Schrödinger Equation

We are interested in solving the unknown complex function $\Psi(x,t)$ on the finite domain 0 < x < l, where x is the position variable and t is the time variable, to the Schrödinger Equation

$$i\hbar\Psi_t = -\frac{\hbar^2}{2m}\Psi_{xx}$$

where \hbar, m are constants and $i \in \mathbb{C}$ such that $i^2 = -1$, given the boundary conditions

$$\Psi(0,t) = 0 \qquad \quad \Psi(l,t) = 0$$

and the initial condition

$$\Psi(x,0) = \phi(x)$$

where $\phi(x)$ is normalized, i.e. $\int_0^l |\phi(x)|^2 dx = 1$

Using the method of separation of variables with the guess that $\Psi(x,t) = X(x) \cdot T(t)$, we have

$$T(t) = Ae^{-\frac{iEt}{\hbar}} \qquad X(x) = Ccos(\sqrt{\frac{2mE}{\hbar^2}}x) + Dsin(\sqrt{\frac{2mE}{\hbar^2}}x)$$

where E > 0.

By considering the boundary conditions, the general solution is given by

$$\Psi(x,t) = \sum_{n=1}^{\infty} A_n sin(\frac{n\pi x}{l}) e^{-\frac{iE_n t}{h}}$$

where $E_n = \frac{n^2 \pi^2 \hbar^2}{2ml^2}$ and by considering the initial condition

$$A_n = \frac{2}{l} \int_0^l \phi(x) \sin(\frac{n\pi x}{l}) dx$$

Useful formulas

- 1. As usual, the orthogonal relation for fourier series.
- $2. \ |\phi(x)|^2 = \overline{\phi(x)} \cdot \phi(x)$
- 3. Euler's formula: $e^{i\theta} = \cos\theta + i\sin\theta$
- 4. $cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$
- 5. If $\phi(x)$ is not normalized, we can always multiply it with a constant N to normalize it, where the value of N can be found by solving the integral $\int_0^l |\phi'(x)|^2 dx = 1$, where $\phi'(x) = N\phi(x)$ is the normalized $\phi(x)$.

Questions

Define the **expected value** at time t to be

$$\langle x \rangle = \int_0^l \overline{\Psi(x,t)} x \Psi(x,t) dx = \int_0^l x |\Psi(x,t)|^2 dx$$

- 1. Given $\phi(x)$, find the normalized constant $N \in \mathbb{R}$, such that $\phi(x)$ is normalized.
- 2. Given the normalized $\phi(x)$, find the solution $\Psi(x,t)$ to the Schrödinger Equation as discussed in the previous page. Find $|\Psi(x,t)|^2$.
- 3. Find $\langle x \rangle$ at any arbitrary time t.
- $\phi(x) = N \sin(\frac{n\pi x}{l})$ n-th stationary state
- $\phi(x) = N(\sin(\frac{\pi x}{l}) + \sin(\frac{2\pi x}{l}))$ even mix of the first two stationary states

- **0.1** $\phi(x) = N sin(\frac{n\pi x}{l})$
 - 1. Find the normalized constant N
 - 2. Find $\Psi(x,t)$ and $|\Psi(x,t)|^2$
 - 3. Find $\langle x \rangle$

$$\mathbf{0.2} \quad \phi(x) = N(\sin(\frac{\pi x}{l}) + \sin(\frac{2\pi x}{l}))$$

1. Find the normalized constant N

2. Find $\Psi(x,t)$ and $|\Psi(x,t)|^2$

3. Find $\langle x \rangle$