VMD Workshop

1

VISUALIZATION AND ANALYSIS OF MD
TRAJECTORIES

Problems to solve

Analysis of 3.6-ns trajectory of an O₂ molecule diffusing within Mb (together):

- Make a picture of myoglobin (Mb) crystallized under Xe pressure (PDB 2W6W) using different drawing and coloring methods (pic1)
- Make a picture of all positions of the O_2 molecule diffusing within Mb for 3.6 ns (pic2a)
- Make a picture of O_2 density within Mb averaged over the 3.6-ns trajectory (pic3a)
- Make a movie of the 3.6-ns diffusion of the O₂ molecule within Mb (movie1)

Analysis of 48-ns trajectory of an O₂ molecule diffusing within Mb (self-practice):

- Find time of the O₂ escape from Mb and residues at the escape portal
- Make a picture of all positions of the O_2 molecule diffusing within Mb for 48 ns and show residues at the escape portal (pic2b)
- Make a picture of O_2 density within Mb averaged over the 48-ns trajectory and compare the regions of high O_2 population with the experimental Xe cavities (see pic1 as a reference) (pic3b)
- Plot the opening of the escape portal vs time and compare with its opening at time of the O_2 escape (estimate the opening of the portal as the area of triangle between three C_{α} atoms of the residues lining the portal) (plot1).

1. Starting VMD

General molecular visualization

- reads data files using an extensible plugin system,
- supports Babel for conversion of other formats.

Visualization of dynamic molecular data

• load atomic coordinate trajectories from AMBER, Charmm, DLPOLY, Gromacs, MMTK, NAMD, X-PLOR, and others.

Visualization of volumetric data

• load, generate, and display, volumetric maps

Interactive molecular dynamics simulations

• interactively apply and visualize forces in an MD simulation as it runs

Molecular analysis commands

Tcl and Python scripting languages

1.1. Molecule manipulation

VMD OpenGL Display

display and manipulate molecules

VMD main menu

- manipulate molecules and trajectories
- run interfaces and extensions

VMD console

show info and run text commands

1.1. Molecule manipulation

File → New Molecule... → load a crystal structure of Mb under Xe pressure from web (Filename: 2W6W; Determine file type: Web PDB Download)

- Press R for rotate mode (use and check the VMD console)
- Press T for *translate* mode (use and check the VMD console)
- Press s for *scale* mode (use and check the VMD console)
- Press C to change *center* of rotation/scale
- Press 0 to get info about atom (check the VMD console)
- Press 1 to *label* atom
- Try 2 4 to *measure* distance, angle and dihedral angle
- Try 5 8 to *move* atom, residue, fragment and molecule

Go to Mouse →

1.2. Molecule display

1. list of molecules

2. list of representations -

Graphics → Representations...

 create representations using atom selection, drawing method and coloring method

Color Controls □ □ X Assign colors to categories: Background BackgroundTop Name BackgroundBot 2 gray Foreground 3 orange Element 4 yellow Resname Color Definitions | Color Scale 7 green 8 white 9 pink 10 cyan 11 purple Gravscale Default

Graphics → Colors...

1. label types →

assign colors to all categories

Labels

Picked Atom | Graph | Properties | Global Properties |

Molecule: 0: 2W6W.pdb

XYZ: 28.711 | 11.603 | -13.319

ResName: VAL | Chain: A

ResID: 1 | SegName: |

Type: CG1

Delete

0.000

■ Graphical Represer ⇔ ... 👝 📵 🕱 Selected Molecule 1: 2W6W.pdb Create Rep Delete Rep Color Selection Lines Name Selected Atoms Draw style | Selections | Trajectory | Periodic Coloring Method Material Name Lines Default Thickness (Apply Changes Automatically

Graphics → Labels...

manipulate labels

1.2. Molecule display

Selection examples:

name CA resid 35 and noh name CA CB and resname ALA ARG backbone and resid 1 to 6 not protein protein (backbone or name SD) name "C.*" mass > 50numbonds = 2abs(charge) > 1 x > 30 and x < 40sqr(x-33)+sqr(y-10)+sqr(z-7) < sqr(15)within 10 of name FF exwithin 3 of protein protein within 5 of name FE same resid as (protein within 5 of name FE) protein sequence "K.K"

1.2. Molecule display

Try Display → Reset View, Orthographic/Perspective, Depth cueing (what do they

- (2) Show protein backbone with coordinates of z>15 and y>4 as yellow tube (radius = 0.1)
- (3) Show rest protein backbone as NewRibbons coloured by secondary structure
- (4) Find and show as red Licorice all acidic residues among residues 1-20
- (5) Show heme molecule as CPK colored by atom name
- (6) Find atoms heavier than sulphur and show them as VDW (sphere scale = 0.5) coloured by mass
- (7) Find an internal water molecule (near Fe) and show it as VDW (sphere scale = 0.5)
- (8) Show residues, those atoms closer than 5 Å to the internal water, as orange licorice
- (9) Label distance between the internal water and the closest Xe atom (red color, text size = 1.2, text thickness = 3)
- (10)Show external water molecules as Solvent
- (11)Build a protein's volumetric surface using Surf as drawing method and Glass1 as material and color it by atom name
- (12)Change background color to white and carbon atom color to green

1.3. Molecule scene rendering

File \rightarrow Save Visualization State...

save the visualization state as VMD file

File \rightarrow Render...

- render the current scene using Snapshot (pic1.bmp)
- render the current scene using Tachyon (pic1.dat)
- render the current scene using VRML 2.0 (pic1.wrl)

1.4. Working with MD trajectories

Look at the VMD console for the information about the molecule loaded

1.5. Analysis of MD trajectories

Try Graphics \rightarrow Representations... \rightarrow Periodic (what can it be used for?)

- (2) Using Extensions \rightarrow Analysis \rightarrow RMSD Trajectory Tool:
 - align frames by positions of C_{α} atoms of protein (Trace) using crystal structure (frame 0) as a reference
 - plot RMSD of C_{α} atoms vs frame (check Plot to make a plot with MultiPlot console)
 - Note: TkConsole interactively shows data from MultiPlot
- (3) Hide water, show protein as tube, heme molecule as Licorice and O₂ molecule as CPK
- (4) Label the distance between the O₂ molecule and the Fe atom
- (5) Plot the distance vs frame using Graphics \rightarrow Labels... (at what time does O_2 diffuse from the heme cavity to the neighbouring cavity?)

1.5. Analysis of MD trajectories

- (6) Create a new representation for the O₂ molecule as lines
- (7) Draw multiple frames typing 0:3600 in Graphics \rightarrow Representations... \rightarrow Trajectory
- (8) Color the representation according Timestep of the trajectory
- (9) Using Extensions → Visualization → Color Scale Bar, add a heat bar for 0 to 3600 frames (autoscale off, 4 axis labels, Decimal), corresponding Timestep coloring
 (10)Save a picture (pic2a)
- (11)Using Extensions \rightarrow Analysis \rightarrow VolMapTool, create a density volumetric map of the O₂ molecule (only!) averaged over all frames of the trajectory
- (12)Find a new Isosurface representation and try different Isovalues
- (13) Change to Isovalue of 0.005 (white color, wireframe, without box)
- (14)Save a picture (pic3a)

1.6. Making a movie in VMD

- (1) Hide all representations except protein, heme and O₂
- (2) Go to Extensions \rightarrow Visualization \rightarrow Movie Maker
 - click Help to get a link to VideoMach, a movie compression soft (it is installed)
 - set up working directory, name of movie (movie1), rotational angle (0), trajectory step (10)
 - choose Trajectory in Movie Settings
 - press Make Movie

1.7. Extensions

Biochemistry:

Extensions \rightarrow Analysis \rightarrow

Contact Map

Hydrogen Bonds

Salt Bridges

Timeline Plugin

RMSD Trajectory Tool

RMSD Visualizer Tool

Ramachandran Plot

Sequence Viewer

MultiSeq

PropKa

General:

Extensions \rightarrow Analysis \rightarrow

Collective variable analysis (PLUMED)

NAMD Energy

NAMD Plot

VolMap Tool

Inorganic chemistry:

Extensions \rightarrow Analysis \rightarrow

IR Spectral Density Calculator

Radial Pair Distribution Function

Symmetry Tool

2. Scripting with Tcl/Tk in VMD

Tcl (Tool Command Language)

- powerful and highly extensible
- easy to learn and deploy
- dynamic programming language
- uses the standard I/O commands to access disk files and web and ftp sites
- suitable for a very wide range of uses
- open source and free
- cross platform (Windows, Mac OS X, Linux)

Tk (graphical user interface toolkit)

- supports many dynamic languages
- cross platform (Windows, Mac OS X, Linux)

Open Extensions → Tk Console

```
#### Commands puts and set ####
#### puts value ;# creates output (in Tk Console)
puts Apple
puts Apple; puts Cake ;# to separate lines
puts -nonewline Apple; puts Cake ;# to remove new line at the end of output
puts Apple\n; puts Cake ;# to add another new line at the end of output
puts Milk and Cookies
puts "Milk and Cookies" ;# to group elements
#### set variable value ;# assigns values to variables
#### $variable ;# refers to values of variables
#### unset variable ;# removes a variable use
set a 10
puts $a
set text Milk
puts "Glass of $text"
puts {Glass of $text} ;# to ignore $variable
```

Try in Tk Console


```
#### Commands expr and relational operators ####
#### expr math expression
expr 5/3 expr 5/3.0
expr 5%3
set a 10
expr - 3 * $a
#### eq ne | | && == != < > <= >= | & ;# relational operators
expr { {apple} eq {banana} } ;# returns 1 if true, 0 if false
expr { 1 > 0}
expr {9 == 9.0}
expr {9 eq 9.0}
expr {$a>3} & {$a<30}
#### [function] ;# returns the result of function
puts "2^8 = [expr pow(2,8)]"
```



```
#### Commands if and for ####
#### if {expr1} then {commands} elseif {expr2} then {commands} else {commands}
if { 3.0 == 3 } {
     puts "3.0 and 3 are equal as they are numbers"
     puts "3.0 and 3 are not equal as they are strings"
if { 3.0 eq 3 } {
     puts "3.0 and 3 are equal as they are numbers"
     } {
     puts "3.0 and 3 are not equal as they are strings"
#### for {initialization} {test} {increment} {commands}
for {set a 0} {$a <= 10} {incr a} {
     puts "$a * 3 = [ expr $a * 3]"
```



```
#### Working with files from Tk console ####
dir
cd C:/cermm/VMD workshop
#### open file w; open file r; close $file
#### puts $file $variable ;# creates output in a file
set file1 [open "myoutput.dat" w] ;#opens file to write
puts $file1 "All\ncats\nare\ngrey\nin\nthe\ndark"
close $file1
file exists myoutput.dat ;# returns 1 if file exits, 0 if file does exist
set file2 [open "myoutput.dat" r];# opens file to read
set file data [read $file2];# reads data from a file
close $file2
puts $file data
file delete myoutput.dat
```


Working with lists

set llist {c "o" {r4 r5} duck!} ;#makes a list

Illength \$Ilist ;# returns length of the list

lindex \$llist 0;# lists an element by index

lindex \$llist 2

lindex [lindex \$llist 2] 0

lappend llist (i7 i8 i9) (a),;#add elements to the list

set llist [lreplace \$llist 2 4 r d i] ;#replaces elements

set llist [linsert \$llist O hi o n] ;#inserts elements

lset llist_0,c, ;#replaces one element

Isearch \$llist c ;# returns the 1st index of element in the list

Isearch -all \$llist c ;# returns all indexes of element

Isort \$llist ;#sorts elements in a list

Isort -unique \$llist ;#sorts a list and removes repetitions

join \$llist - ;# converts list to string

Working with lists

```
set llist [split "1,2,3,4" ","]
set llist [split "12345" ""] ;# string to list
set llist "A B C"
puts $llist
list $llist
llength $llist
llength [list $llist]
llength [list A B C]
llength [list "A B C"]
```



```
#### Command foreach ####
#### foreach element $list1 {commands}
set fruit list {apples oranges grapes pears}
foreach fruit $fruit list {
     puts $fruit
#### foreach element list1 $list1 element list2 $list2 ... {commands}
set fruit list {apples oranges grapes pears}
set color list {red juicy seedless Chinese}
set mass list {2 5 1 3}
foreach fruit $fruit list color $color list mass $mass list {
     puts "$mass kg of $color $fruit"
```

2.2. Working with molecules using Tcl

Commands mol and molinfo

mol command arguments ;# loads, modifies, or deletes a molecule in VMD

mol new Mb_O2.psf

mol addfile Mb_O2.pdb

mol addfile traj1.dcd waitfor all

Type mol to see a full list of its functions

molinfo command arguments ;# returns information about loaded molecules

molinfo num ;# number of loaded molecules

molinfo top ;# gets ID of top molecule

molinfo top get numatoms ;# returns number of atoms

molinfo top get numframes ;# returns number of frames

molinfo top get filename ;# returns file names

Type molinfo to see a full list of its functions

2.2. Working with molecules using Tcl

Command atomselect

atomselect <molid> selection ;# to access information about the atoms in a molecule #### <molid> \leftrightarrow top \leftrightarrow (top by default)

set sel [atomselect top "protein resid 1 to 3"]

\$sel num ;# gets number of atoms

\$sel molid ;#gets selection's molecule ID

\$sel text ;# gets selection's text

\$sel get name ;# gets names of selection's atoms

\$sel get {resname resid} ;# gets residues names and numbers of selection's atoms

\$sel get {index name mass resname} ;# gets atom indices, names, mass and residues names

\$sel get {x y z} ;# gets coordinates of selection's atoms

\$sel delete ;# deletes the selection

mol delete top ;# deletes the top molecule

A few examples of what we can do with tcl scripts:

- (1) Measure distance between the O₂ molecule and the Fe atom vs time
- (2) Measure distance between the O₂ molecule and the center of mass of protein vs time
- (3) Align protein structures over trajectory (by rigid-body translations and rotations)
- (4) Remove water from the trajectory
- (5) Find residues, which collide with the diffusing O₂ molecule

```
#### Load the first part of the MD trajectory (traj1.dcd) mol new Mb_O2.psf
```

mol addfile Mb_O2.pdb

mol addfile traj1.dcd waitfor all

26

(1) Measure distance between the O_2 molecule and the Fe atom vs time

```
set fe sel [atomselect top "resname HEME and name FE"]
set o2 sel [atomselect top "resname O2G and name O1"]
set fe index [$fe sel get index]
set o2 index [$o2 sel get index]
#### measure command arguments ;# supplies algorithms for analyzing molecular structures
#### Type measure to see a full list of its functions
#### measure bond {$index1 $index2} frame < frame>
#### measure angle {$index1 $index2 $index3} frame < frame>
#### measure dihed {$index1 $index2 $index3 $index4} frame < frame >
#### frame < frame > \longleftrightarrow frame all \longleftrightarrow (current frame by default)
#### first <frame> last <frame> step <step>
measure bond "$fe index $o2 index" first 0 last 100 ;# distances for frames 0 - 100
set bond list [measure bond "$fe_index $02_index" first 0 last 100 ]
for {set i 0} {$i <= 100} {incr i} {
     puts "frame $i bond [lindex $bond list $i]"}
```

27

(1) Measure distance between the O_2 molecule and the Fe atom vs time

```
#### Put data for all frames in a file
set nf [molinfo top get numframes]
set file [open "dist_o2_fe.dat" w]
puts $file "time|distance(o2-fe)"
puts $file "ns|A"
for {set i 0 } {$i < $nf } {incr i } {
    set dist [measure bond "$fe_index $o2_index" frame $i]
    set time [expr ($i/1000.0)]
    puts $file "$time|$dist"
    }
close $file</pre>
```

28

(2) Measure distance between the O_2 molecule and the center of mass of protein vs time

```
set o2_sel [atomselect top "resname O2G and name O1"]
$02 sel frame 0 ;# updates selection for the frame
0 $02 sel get \{x y z\}
$o2 sel frame 1
0 $02 sel get \{x y z\}
set prot [atomselect top "protein"]
measure center $prot weight mass ;# returns coordinates of COM of selection at current frame
#### Measure distance between O<sub>2</sub> and COM of protein at frame 0
$o2 sel frame 0
$prot frame 0
set o2 coord [$o2 sel get {x y z}]
set prot_center [measure center $prot weight mass]
set dist [veclength [vecsub $02_coord $prot_center]]
#### expr ({list}) ;# to return a list without {}
set dist [veclength [vecsub [expr ($02_coord)] $prot_center]]
```


29

(2) Measure distance between the O₂ molecule and the center of mass of protein vs time

```
#### Put data for all frames in a file
set file [open "dist o2 prot.dat" w]
puts $file "time|distance(o2-prot com)"
puts $file "ns | A"
set nf [molinfo top get numframes]
for {set i 0 } {$i < $nf } {incr i } {
     $o2 sel frame $i
     $prot frame $i
     set o2_coord [$o2_sel get {x y z}]
     set prot center [measure center $prot]
     set dist [veclength [vecsub [expr ($02 coord)] $prot center]]
     set time [expr ($i/1000.0)]
     puts $file "$time|$dist"
close $file
```

30

(3) Align protein structures over trajectory (by rigid-body translations and rotations)

```
set ca_sel [atomselect top "protein and name CA"] ;# sets up a protein selection
set ca_ref [atomselect top "protein and name CA" frame 0] ;# sets up a reference selection
set all_sel [atomselect top all] ;# sets up a selection of all atoms
set nf [molinfo top get numframes]
for {set i 0} {$i < $nf} {incr i} {
    $ca_sel frame $i ;# updates a selection
    $all_sel frame $i
    set trans_mat [measure fit $ca_sel $ca_ref] ;# measures a 4x4 transformation matrix
    $all_sel move $trans_mat ;# applies the transformation matrix to the coordinates of each atom in the selection
}
```


(4) Remove water from the trajectory

```
mkdir nowater
set nowater sel [atomselect top "protein or resname HEME O2G"] ;# sets up a new
   selection
$nowater sel writepsf nowater/nowater.psf ;# creates a new psf file
set nf [molinfo top get numframes]
for {set i 0} {$i < $nf} {incr i} {
     $nowater sel frame $i
     $nowater sel writepdb nowater/$i.pdb ;# creates pdb files for each frame
#### If you need to free memory ####
$nowater sel delete
unset nowater sel
```

32

(4) Remove water from the trajectory

```
mol load psf nowater/nowater.psf ;# loads the new psf file
#### animate command arguments ;# controls the animation of a molecular trajectory, reads
    and writes animation frames to/from a file
#### Type animate to see a full list of their functions
for {set i 1} {$i < $nf} {incr i} {
     animate read pdb nowater/$i.pdb ;# loads the new pdb files
animate write dcd nowater/nowater.dcd waitfor all top ;# writes a new dcd file
mol delete top
for {set i 0 } {$i < $nf} {incr i } {
     file delete nowater/$i.pdb ;# deletes the pdb files
#### Open nowater.psf and nowater.dcd and check the new trajectory
```

33

(5) Find residues, which collide with the diffusing O₂ molecule

```
set o2 sel [atomselect top "resname O2G"]
set o2_list [$o2_sel get index] ;# gets indexes of atoms of the O2 molecule
set prot_sel [atomselect top "protein and noh"]
set prot_list [$prot_sel get index] ;# gets indexes of not-hydrogen atoms of the protein
#### Find protein residues, which are closer than 4 Å to O<sub>2</sub> at frame 0
set coll list "" ;# set up a blank list
foreach o2 atom $02 list { ;# runs over atom indexes of the O2 molecule
     foreach prot_atom $prot_list { ;# runs over atom indexes of the protein
          set dist [measure bond "$02_atom $prot_atom" frame $i]
          if {$dist < 4} {
                append coll_list " $prot_atom" ;# adds indexes of the protein atoms to the list
          }}}
puts $coll_list
set coll list [Isort -unique $coll list] ;# removes repetitions from the list
#### Create a representation with the found atoms and compare with the O<sub>2</sub> position
```

34

(5) Find residues, which collide with the diffusing O₂ molecule

```
#### Find protein residues, which are closer than 4 Å to O<sub>2</sub> over the trajectory
set coll list "" ;# set up a blank list
set nf [molinfo top get numframes]
for \{\text{set i 0}\}\ \{\text{incr i}\}\ \{\text{incr i}\}\ \{\text{imcr i}\}\
  foreach o2 atom $02_list { ;# runs over atom indexes of the O2 molecule
     foreach prot atom $prot list { ;# runs over atom indexes of the protein
           set dist [measure bond "$02 atom $prot atom" frame $i]
           if {$dist < 4} {
                append coll list "$prot atom";# adds indexes of the protein atoms to the list
           }}}
     set coll list [Isort -unique $coll list] ;# removes repetitions from the list
puts $coll list
```


(5) Find residues, which collide with the diffusing O₂ molecule

```
#### Find residues corresponding to the atoms from the created index list

set coll_sel [atomselect top "index $coll_list"] ;# selects atoms from the list

$coll_sel get resid ;# finds residues numbers of the atoms

Isort -unique -real [$coll_sel get resid] ;# sorts and removes repetitions from the list of residues

#### Show the found residues as a new representation and compare with the O<sub>2</sub>

trajectory
```



```
#### Command proc and procedures ####
#### proc name {arguments} {commands} ;# creates a new command
proc eucl_division {arg1 arg2} {
    set q [expr {$arg1/$arg2}]
    set r [expr {$arg1%$arg2}]
    return "$arg1=$arg2*$q+$r (the quotient is: $q; the remainder is: $r)"
    }
eucl_division 29 3 ;# works as a command now
```



```
#### Working with molecule representations ####
#### Remove all representations of the molecule except one
mol modselect 0 top protein ;# changes the selection for a rep
mol modcolor 0 top colorid 8 ;# changes the color for a rep
mol modstyle 0 top tube 0.2 26; # changes the drawing style for a rep
mol addrep top ;# adds a new representation
mol modselect 1 top "resname HEME and not hydrogen"
mol modcolor 1 top colorid 1
mol modstyle 1 top licorice 0.3 30
mol addrep top
mol modselect 2 top "resname O2G"
mol modstyle 2 top lines 2
mol modcolor 2 top timestep
mol drawframes top 2 0:3600 ;# sets drawn frame range
mol delrep 2 top ;# deletes a rep
#### Type mol to see a full list of its functions
```


Drawing shapes

graphics molid command arguments = draw command arguments

mol load graphics grph ;# creates a new graphics molecule

graphics top sphere {3 3 0} radius 2 resolution 30;# creates a sphere of default color

graphics top color yellow ;# changes graphics color

graphics top line {6 0 0} {0 0 0} width 5 style dashed ;# creates a line of current graphics color

graphics top text {3 -3 0} "dashed line" size 2 thickness 2 ;# creates a text label

graphics top list ;# lists all graphics IDs

graphics top info 0;# returns info about graphics 0

graphics top delete all ;# deletes all graphics

set cyl_id [graphics top cylinder {0 0 0} {6 0 0} radius 2 resolution 30 filled 1] ;# a cylinder

graphics top delete \$cyl_id


```
#### Changing VMD defaults ####
#### Open a file vmd.rc in the VMD directory
#### Changes turning-on of menus
menu main on ;# should be always on
menu graphics on ;# shows representations dialog
after idle { menu tkcon on }
#### Changes display defaults
display resize 600 600
axes location off
display projection orthographic
color Display Background white
#### Changes defaults for molecule representations
mol default style VDW ;# sets default style for representations (VDW not Lines)
mol default selection protein
#### Sets up user keys
user add key o {display projection orthographic}
user add key p {display projection perspective}
```


Working with scripts

Save the following strings as a tcl file (load.tcl) in the VMD directory

cd C:/cermm/VMD_workshop

mol new Mb_O2.psf

mol addfile Mb O2.pdb

mol addfile traj1.dcd waitfor all

set nf [molinfo top get numframes]

return "\$nf frames are loaded"

Three ways to run a tcl script:

1) copy its content into TkConsole

2) run VMD with -e

vmd -e load.tcl ;# starts VMD executing a specific script at startup

3) source scripts from TkConsole at any time or from vmd.rc at startup source load.tcl

Problems to solve

Analysis of 3.6-ns trajectory of an O_2 molecule diffusing within Mb (together):

- Make a picture of myoglobin (Mb) crystallized under Xe pressure (PDB 2W6W) using different drawing and coloring methods (pic1)
- Make a picture of all positions of the O_2 molecule diffusing within Mb for 3.6 ns (pic2a)
- Make a picture of O_2 density within Mb averaged over the 3.6-ns trajectory (pic3a)
- Make a movie of the 3.6-ns diffusion of the O₂ molecule within Mb (movie1)

Analysis of 48-ns trajectory of an O₂ molecule diffusing within Mb (self-practice):

- Find time of the O₂ escape from Mb and residues at the escape portal
- Make a picture of all positions of the O_2 molecule diffusing within Mb for 48 ns and show residues at the escape portal (pic2b)
- Make a picture of O₂ density within Mb averaged over the 48-ns trajectory and compare the regions of high O₂ population with the experimental Xe cavities (see pic1 as a reference) (pic3b)
- Plot the opening of the escape portal vs time and compare with its opening at time of the O_2 escape (estimate the opening of the portal as the area of triangle between three C_{α} atoms of the residues lining the portal) (plot1).

Problems to solve

Heron's formula:

the area of a triangle whose sides have lengths a, b, and c is

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where s is the semiperimeter of the triangle; that is,

$$s = \frac{a+b+c}{2}.$$