STSCI 5080 Probability Models and Inference

Lecture 3: Independence and Random Variables

August 30, 2018

Review of Lecture 2

Property D

Bayes rule —

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Law of total probability -

If
$$0 < P(B) < 1$$
, then

$$P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c).$$

If P(A) > 0 and P(B) > 0, then

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.$$

Beyes rule as a backward calculation

Suppose that the logical flow is that:

B or B^c occurs $\Rightarrow A$ occurs.

In such cases, you can compute $P(A \mid B), P(A \mid B^c)$, and P(B) directly.

- The law of total probability tells you how to compute P(A).
- The Bayes rule is a sort of backward calculation:

given that A occurs, what is the probability that B occured before A?

Generalized law of total probability

Theorem

Let B_1, \ldots, B_n form a partition of Ω in the sense that (1) $B_i \cap B_j = \emptyset$ for each $i \neq j$ and (2) $\bigcup_{i=1}^n B_i = \Omega$. Suppose that $P(B_i) > 0$ for all $i = 1, \ldots, n$. Then for any event A,

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$

Independence

Definition

Events *A* and *B* are said to be independent if $P(A \cap B) = P(A)P(B)$.

Independence via conditional probability

Theorem

If P(B) > 0, then A and B are independent if and only if $P(A \mid B) = P(A)$.

 $P(A \mid B) = P(A) \leftrightarrow \text{event } B \text{ does not affect how likely } A \text{ occurs.}$

Caveat

If *A* and *B* are disjoint, P(A) > 0, and P(B) > 0, then *A* and *B* are NOT independent.

Since $A \cap B = \emptyset$, $P(A \cap B) = P(\emptyset) = 0$. On the other hand, P(A)P(B) > 0, and so $P(A \cap B) \neq P(A)P(B)$.

Example

Consider tossing a coin three times and suppose that all the outcomes occur equally likely. In addition, let

A =the first toss is a head $= \{hhh, hht, hth, htt\},$

B =the second toss is a head $= \{hhh, hht, thh, tht\}.$

In this case, P(A) = P(B) = 1/2. Further, since $A \cap B = \{hhh, hht\}$, we have $P(A \cap B) = 1/4$, so that

$$P(A \cap B) = P(A)P(B).$$

Namely, A and B are independent.

Generalization

Definition

Events A_1, \ldots, A_n are independent if for any subset S of $\{1, \ldots, n\}$,

$$P\left(\bigcap_{i\in S}A_i\right)=\prod_{i\in S}P(A_i).$$

For example, three events A_1, A_2, A_3 are independent if

$$\begin{cases} P(A_1 \cap A_2) = P(A_1)P(A_2) \\ P(A_1 \cap A_3) = P(A_1)P(A_3) \\ P(A_2 \cap A_3) = P(A_2)P(A_3) \\ P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3) \end{cases}$$

Example

Consider tossing a coin three times and suppose that all the outcomes occur equally likely. In addition, let

$$A_i$$
 = the *i*-th toss is a head, $i = 1, 2, 3$.

Then A_1, A_2, A_3 are independent.

Pairwise independence

Definition

Events A_1, \ldots, A_n are pairwise independent if for any $i \neq j$, A_i and A_j are independent, i.e., $P(A_i \cap A_j) = P(A_i)P(A_j)$.

Important!

pairwise independence \Rightarrow independence.

Example

Suppose we toss a coin two times and all the outcomes occur equally likely. Consider

 $A_1 =$ the first toss is a head $= \{hh, ht\},$

 A_2 = the second toss is a head = $\{hh, th\}$,

 A_3 = the first and second tosses are the same = {hh, tt}.

Since $A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \{hh\}$, we see that A_1, A_2, A_3 are pairwise independent. However,

$$P(A_1 \cap A_2 \cap A_3) = P(\{hh\}) = \frac{1}{4} \neq \frac{1}{8} = P(A_1)P(A_2)P(A_3).$$

So, A_1, A_2, A_3 are not independent.

Chapter 2 Random Variables

Definition

Definition (Random variable)

A random variable X is a function from the sample space Ω to the real numbers, i.e., for every $\omega \in \Omega$, $X(\omega)$ is a real number.

Caution!: A probability measure is a function of subsets of Ω ; a random variable is a function of elements of Ω .

If X and Y are random variables, then X + Y is also a random variable:

$$(X + Y)(\omega) = X(\omega) + Y(\omega).$$

Kiyosi Ito (former faculty of Cornell math dept.)

Before Kolmogorov, it was not clear whether X+Y is a random variable if X and Y are random variables.

Kiyosi Ito (1915-2008)

Taken from Wikipedia

Discrete random variable

Definition (Discrete random variable)

A random variable X is discrete if X takes values in a finite or countably infinite set.

Example

Suppose that we toss a coin three times:

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}.$$

$$X(\omega) = \text{total number of heads in } \omega$$

is a discrete random variable taking values in $\{0, 1, 2, 3\}$

Example

Consider the lifetime (in hours) of a laptop: $\Omega = \{t \mid t \geq 0\}.$

$$X(t) = \text{integer part of } t$$

is a discrete random variable taking values in $\{0, 1, 2, \dots\}$.

Probability mass function

- The probability mass function (pmf) and cumulative distribution function (cdf) describe how a discrete random variable behaves randomly.
- For a discrete random variable X that takes values in $\{x_1, x_2, \dots\}$ (called support of X), define

$$p(x_i) = P(X = x_i), i = 1, 2, ...,$$

where $\{X = x\} = \{\omega \mid X(\omega) = x\}$. In general, we write

$$\{X \in S\} = \{\omega \mid X(\omega) \in S\}$$

for a given subset *S* of the real numbers.

• In addition, define p(x) = P(X = x) = 0 for $x \notin \{x_1, x_2, \dots\}$.

Probability mass function (cont.)

Definition

For a discrete random variable X, the probability mass function (pmf) p(x) is a function defined by

$$p(x) = P(X = x)$$

for any real number x.

The pmf p(x) satisfies that $p(x) \ge 0$ for any x and $\sum_{x} p(x) = 1$. In addition,

$$P(X \in S) = \sum_{x \in S} p(x).$$