

BerkeleyX: CS190.1x Scalable Machine Learning

NEURONS (1/1 point)

A mouse brain has approximately how many times as many neurons as the brain of a larval zebrafish?

© 80
© 8000
EXPLANATION
A larval zebrafish has approximately 100,000 neurons while a mouse has approximately 80,000,000 neurons.
CHECK HIDE ANSWER
FMRI (1/1 point)
fMRI scanners provide too low of a resolution to tell, in detail, what is occurring at the neuron level.
● True ✔
False
EXPLANATION
fMRI provides a coarse-grained view of neural activity.
CHECK HIDE ANSWER

LIGHT-SHEET MICROSCOPY (1/1 point)

Light-sheet microscopy can only be used in transparent animals.

● True ✔
O False
EXPLANATION
Light-sheet microscopy can only be used in transparent animals like the larval zebrafish.
CHECK HIDE ANSWER
EXPERIMENT DATA (1/1 point)
According to the lecture, recording the neuron activity of the entire brain of a larval zebrafish during a typical experiment requires:
1 MB of data
O 1 GB of data
● 1 TB of data ✓
1 PB of data
EXPLANATION
Recording the neural activity for the larval zebrafish's 100,000 neurons requires approximately 1 TB of data.
CHECK HIDE ANSWER
CLUSTERING (1/1 point)

Clustering is a supervised learning technique.

O True
● False ✔
EXPLANATION
Clustering does not use labels. It attempts to place similar (according to some measure of similarity) observations into groups based on their features.
CHECK HIDE ANSWER
PCA DISTANCE METRIC (1/1 point)
When working with two dimensional data, if we project data points onto the top principal component (which is a line in 2D space), the distance between the projected points and the original points minimizes which distance?
vertical distance
● euclidean distance ✔
manhattan distance
horizontal distance
EXPLANATION
PCA minimizes the euclidean distance between points and their projections.
CHECK HIDE ANSWER

COVARIANCE MATRIX SYMMETRY (1/1 point)

The covariance matrix is asymmetric.

• True
● False ✔
EXPLANATION
The covariance matrix is symmetric. The covariance between vectors \mathbf{u} and \mathbf{v} is equal to the covariance between \mathbf{v} and \mathbf{u} , i.e. $cov(\mathbf{u}, \mathbf{v}) == cov(\mathbf{v}, \mathbf{u})$.
CHECK HIDE ANSWER
COVARIANCE MATRIX DIAGONAL ENTRIES (1/1 point)
The values along the diagonal of the covariance matrix are variances.
● True ✔
False
EXPLANATION
Along the diagonal of the covariance matrix, the values are the covariance of a feature with itself, which is the variance of the feature, i.e. $cov(x, x) == var(x)$.
CHECK HIDE ANSWER
PRINCIPAL COMPONENTS PROPERTIES (1/1 point)
For a set of principal component vectors, the dot product between any two distinct vectors equals:
One One
● Zero ✔

d -- the number of features

EXPLANATION

Principal component vectors are orthnormal, which means that they are pair-wise perpendicular. The dot product of perpendicular vectors is zero.

CHECK

HIDE ANSWER

PRINCIPAL COMPONENTS (1/1 point)

Principal components equal the eigenvalues of some matrix.

EXPLANATION

Principal components are eigenvectors of the sample covariance matrix.

CHECK

HIDE ANSWER

NUMBER OF PRINCIPAL COMPONENTS (1/1 point)

Given a d-dimensional dataset with n observations, the total number of principal components is:

EXPLANATION

The total number of principal components equals the number of dimensions of the data.

CHECK

HIDE ANSWER

⊚ (§ (§ (§ ⊙ Some Rights Reserved

About Blog News FAQs Contact Jobs Donate Sitemap

Terms of Service & Honor Code Privacy Policy Accessibility Policy

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

