Stochastic Optimization of Coupled Power Distribution-Urban Transportation Network Operations with Autonomous Mobility on Demand Systems

The probability models and parameters for RDGs are given as Tables A1-A4.

TABLE A1
PROBABILITY MODELS OF WIND SPEED AND SOLAR IRRADIANCE

Variable	Model	Probability density function		
Wind speed	Weibull	$f(v) = \left(\frac{K}{C}\right) \left(\frac{v}{C}\right)^{K-1} \exp\left[-\left(\frac{v}{C}\right)^{K}\right]$		
Solar irradiance	Beta	$f(r) = \frac{\Gamma(A+B)}{\Gamma(A)\Gamma(B)} \left(\frac{r}{r_{\text{max}}}\right)^{A-1} \left(1 - \frac{r}{r_{\text{max}}}\right)^{B-1}$		

where v is the wind speed; K and C are the parameters of a Weibull distribution; r is the solar irradiance; r_{max} is the maximum solar irradiance; A and B are the parameters of a Beta distribution.

TABLE A2
POWER OUTPUT MODELS OF PV AND WT

RDG	Power output			
PV	$P_{ ext{PV}} = rR\eta$			
WT	$P_{ m WT} = egin{cases} 0, \ P_{ m w}(v - v_{ m in}) \ v_{ m r} - v_{ m in} \ P_{ m w}, \end{cases}$	$v < v_{in}$ or $v > v_{out}$ $v_{in} \le v \le v_{r}$ $v_{r} < v < v_{out}$		

where P_w is the rated power of WT units; v_{in} , v_r , and v_{out} are the cut-in, rated, and cut-out wind speeds, respectively; R is the area of PV cells; η is the photoelectric conversion rate.

 $\label{eq:table A3} \mbox{Parameters for Probability Models of RDGs}$

Bus in PDN	Variable	Model	Parameters
2	WT_1	Weibull	C=7.5, K=3.0
7	WT_2	Weibull	<i>C</i> =7.0, <i>K</i> =2.0
9	WT_3	Weibull	<i>C</i> =6.0, <i>K</i> =2.5
10	PV_1	Beta	A=0.40, B=8.56
11	PV_2	Beta	A=0.45, B=9.81
12	PV_3	Beta	A=0.50, B=8.94

 $\label{eq:table A4} \mbox{Parameters for Power Output Models of RDGs}$

RDG	$P_w/(\text{p.u.})$	$v_{\rm in}({\rm m/s})$	$v_{\rm r}({\rm m/s})$	$v_{\rm out}({\rm m/s})$	RDG	$R(m^2)$	η /%
WT_1	0.24	3.5	14.5	20.0	PV_1	2400	0.15
WT_2	0.16	3.0	13.0	19.0	PV_2	2400	0.14
WT_3	0.20	3.5	15.5	20.0	PV_3	2400	0.16