

BASIC CONTROL SYSTEMS

COURSE INTRODUCTION

HANSHU YU

NOV 2025

WHERE STUDENTS MATTER

CONTENTS

- Learning objectives
- Course material & structure
- Preliminary knowledge
- Potential job opportunities
- Introduction Assignment (Today!)

LEARNING OBJECTIVES - KNOWLEDGE

- Modelling physical systems using the correct mathematical tool
- Have a basic understanding about simple control systems
- Know about how to design and tune a simple controller
- Understand classical analysis and design tools for stable control of simple systems.

LEARNING OBJECTIVES - KNOWLEDGE

- Have a basic understanding of the fundamentals of classical control theory.
- Apply the theory into engineering practice.

Control theory?

A branch of applied mathematics.

LEARNING OBJECTIVES - SOFT SKILLS

Lab Skills

Report writing

Presenting

Collaboration

- We want you to learn from each other!
- Ask questions in your group, study together, help each other with assignments

COURSE MATERIAL

Notes, lecture slides, companion exercises, old exams:

https://hanshuyu.com/material/LN-CCS.html

Other recommended reading material:

Feedback Systems: An Introduction for Scientists and Engineers,

1st edition, Karl J. Åström and Richard M. Murray

Modern Control Engineering, any edition, Katsuhiko Ogata

PRELIMINARY KNOWLEDGE

- Some understanding & computational skills in:
 - Calculus
 - Complex analysis
 - Integral transforms
 - High school level physics and algebra
- Some experience in:
 - Working in a team
 - Writing reports
 - Making presentations

COURSE STRUCTURE - DAILY ACTIVITIES

3 weeks

10 lectures (~1.5h * 10)

2 presentations (1+1) 17.5%*2

3 experiments (2+1) 15%

written exam

50%

WARNING

Theoretical course But very practical if you understand the principles

Higher workload

Involves a lot of self-study

Encourages a lot of group-study

Extremely useful

WARNING - STATISTICS

Historical passing rate 1st exam:

57% ~ 65%

Written exam raw score number >60%:

40% ~ 50%

WARNING BEHAVIOURS CORRELATED WITH (ALMOST) EXAM FAILURE

 I can just skip the lecture and self-study at home with some book I found in the library/internet.
 (63, 60, 71, 54, 53, 47, 20, 32, 78, 92)

I do not have to participate in the group work.
 (66, 40, 41, 20, 48, 55, 41, 34, 54, 60, 60)

• I am afraid to ask questions. (50, 40, 68)

Cheating in the exam (caught 2 last year)

HOW TO STUDY? (RECOMMENDATIONS)

Think, communicate, and interact with me in lectures.

Do the homework assignments in sync with the lecture.

Try solve a few extra problems provided.

Read the reading material if you have time.

Discuss and collaborate with your peers.

Do the experiments & simulations while you can.

HOW TO STUDY? (WARNING)

Treat online material like (video tutorials) with care.

They could be wrong.

COURSE STRUCTURE - DAILY ACTIVITIES

No teaching activities

Lecture

Guided Instructions

Lab Experiments

Presentation

Workshops

→ Always bring your laptop and notebook/pens to class, changes can still be made last minute!

→ No gaming in the classroom at anytime! If you would like to game, do that in the dormitory or internet café.

COURSE STRUCTURE - GROUP WORK

Group structure

→ Project groups

7 ~ 8 students per group

→ Group leader *1

Responsible for **homework hand-in** and **communications** with the teaching staff

HANDING-IN YOUR HOMEWORK

File name format:

GroupX_assignment1.pdf
GroupX_assignment2.pdf
GroupX_report.pdf

You upload your pdf to the server using a local area network within a **fixed time-window**!

Wifi name: Course_admin

Wifi password: 37582968

Each group will receive a server ipv4 address to hand-in your pdf, this will be announced by the teaching assistant.

GRADING AND EXAMINATION

Presentation:

- 17.5% Presentation for assignment 1 (group score)
- 17.5% Presentation for assignment 2 (group score)

Report:

• **15**% Experiment report

Peer Assessment factor: **f**

(group score)

contents

(individual)

In-course raw score:

- sum of raw presentation and experiment scores.
- The raw scores should be the same for every student in the same group.
 3 weeks in-course

In-course final score for each student:

• **50**% raw score * **f** (max 50)

Final Exam (3 hours):

• **50**% Exam is organised by SMU after our 3-week course⁷

GRADING AND EXAMINATION

3 weeks in-course contents

- 17.5% Presentation for assignment 1 (group score) 75
- 17.5% Presentation for assignment 2 (group score) 80

Report:

Presentation:

• **15**% Experiment report

Peer Assessment factor: **f**

(group score) - **70**

(individual) - 1.1

In-course raw score: 75*0.175+80*0.175+70*0.15 = 37.625

- sum of raw presentation and experiment scores.
- The raw scores should be the same for every student in the same group.

In-course final score for each student: 37.625*1.1=41.3875

• **50**% raw score * **f** (max 50) **41.4**

Final Exam (3 hours):

75*0.5 = **37.5**

• **50**% Exam is organised by SMU after our 3-week course⁸

GRADING AND EXAMINATION

Presentation: 3 weeks in-course contents

- 17.5% Presentation for assignment 1 (group score) 75
- 17.5% Presentation for assignment 2 (group score) 80

Report:

TO

Peer Ass

In-course

TOTAL

<u>78.9</u>

79

≡ 3.0

(group score) - **70**

(individual) - **1.1**

0*0.15 = 37.625

nt scores.

every student in

the same group.

In-course final score for each student: 37.625*1.1=41.3875

50% raw score * **f** (max 50)

41.4

Final Exam (3 hours):

75*0.5 = **37.5**

• **50**% Exam is organised by SMU after our 3-week course⁹

JOB OPPORTUNITIES (INDUSTRY)

They know & use control theory:

- Aerospace Engineer
- Mechanical Engineer
- Systems Engineer
- Biotechnical Engineer
- Robotics Engineer
- Power Electronics Engineer
- Integrated Circuit Designer
- •

Industries these people in:

- Robots & Vehicles
- Manufacturing factories
- Microelectronics & semiconductors
- Energy
- Chemical plants
- Smart infrastructure
- Bio-medical instruments
- Modern technology farming
- Consultancy
- Finance & banking
- High Frequency Trading
- IT & network
- Aerospace

INTRODUCTION ASSIGNMENT

Take a group photo
Put it in a presentation (ppt)
Include everyone's English & Chinese name
+ a special skill (Good at drawing, can do a
backflip, great at KTV??)

Make clear who is the group leader

Tell us a little about yourselves in a presentation this afternoon!

~8 minutes

Group leader

QUESTIONS?

If you have questions, ask them through during the lectures or work sessions.

GOOD LUCK AND HAVE FUN WITH THE BCS COURSE!

