This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) Compounds of formula I

in which

A stands for phenylene or thiophenylene,

stands for a bond or for C_1 - C_{12} -alkylene, C_2 - C_{12} -alkenylene, C_2 - C_{12} -alkinylene, C_3 - C_8 -cycloalkylene, or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano, nitro, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_3 - C_{10} -cycloalkyl, C_1 - C_6 -hydroxyalkyl, $-(CH_2)_pSO_3R^8, \text{ or with the group } -NR^8R^9, -NR^8COR^9, -NR^8CSR^9, \\ -NR^8SOR^9, -NR^8SO_2R^9, -NR^8CONR^8R^9, -NR^8COOR^9, \\ -NR^8C(NH)NR^9R^{10}, -NR^8CSNR^9R^{10}, -NR^8SONR^9R^{10}, \\ -NR^8SO_2NR^9R^{10}, -COR^8, -CSR^8, -S(O)R^8, -S(O)_2R^8, \\ -S(O)_2NR^8R^9, -SO_3R^8, -CO_2R^8, -CONR^8R^9, -CSNR^8R^9, -SR^8 \text{ or } -CR^8(OH)-R^9.$

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group $-NR^{11}$ -, $-NR^{11}(CH_2)$ -, $-NR^{11}O$ -, $-ONR^{11}$ -, $-CR^6R^7$, -C=O, -C=S, -SO, -SO, -CO, -OC, -OC, -SO, -OS, -OS,

- -OS(O)₂-, -CONR⁸-, -N(COR⁸)-, -N(COOR⁸)-, -N(CONR⁸R⁹)-, -NR⁸CO-, -OCONR⁸-, -NR⁸C(O)O-, -CSNR⁸-, -NR⁸CS-, -OCSNR⁸-, -NR⁸CSO-,
- $-SONR^{8}$ -, $-NR^{8}SO$ -, $-SO_{2}NR^{8}$ -, $-S(O)_{2}N(COR^{8})$ -, $-NR^{8}SO_{2}$ -,
- $-NR^8CONR^9$ -, $-NR^8CSNR^9$ -, $-NR^8SONR^9$ -, $-NR^8SO_2NR^9$ -,
- $-NR^8C(O)NR^9$ or $-NR^8C(S)NR^9$ -,
- R¹ and R⁵, in each case independently of one another, stand for hydrogen,

hydroxy, halogen, nitro, cyano, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_3 - C_{10} -cycloalkyl, the group $-C_1$ - C_6 -alkyloxy- C_1 - C_6 -alkyloxy, $-(CH_2)_pPO_3(R^{10})_2$, $-NR^8R^9$, $-NR^8COR^9$, $-NR^8CSR^9$.

- $-NR^8SOR^9$, $-NR^8SO_2R^9$, $-NR^8CONR^9R^{10}$, $-NR^8COOR^9$,
- $-NR^8C(NH)NR^9R^{10}, -NR^8CSNR^9R^{10}, -NR^8SONR^9R^{10}, -NR^8SO_2NR^9R^{10}, -NR^8SO_2NR^{10}, -$
- -SO₃R⁸, -CO₂H, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹,
- $-SR^8$ or $-CR^8(OH)-R^9$, or for C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl, C_2-C_{10} -alkinyl, or C_3-C_{10} -cycloalkyl, that is substituted in one or more places in the same way or differently with hydroxy, C_1-C_6 -alkoxy, halogen, phenyl or with the group $-NR^3R^4$, and the phenyl, C_3-C_{10} -cycloalkyl, C_3-C_{12} -aryl, and
- - $(CH_2)_p$ - C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, or with the group - CF_3 or - OCF_{37}
- R^2 stands for hydrogen or C_1 - C_{10} -alkyl,
- $R^3 \qquad \text{stands for hydrogen, halogen, nitro, cyano, C_1-C_{10}-alkyl, halo-C_1-C_{10}-alkyl, C_2-C_{10}-alkenyl, C_2-C_{10}-alkinyl, C_3-C_{10}-cycloalkyl, hydroxy, C_1-C_6-alkoxy, C_1-C_6-alkylthio, amino, -NH-(CH_2)_p-C_3-C_{10}-cycloalkyl, C_1-C_6-hydroxyalkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl, C_1-C_6-alkyl, -N(C_1-C_6-alkyl)_2, -SO(C_1-C_6-alkyl)_1 -SO_2(C_1-C_6-alkyl), C_1-C_6-alkanoyl,}$
 - -CONR 8 R 9 , -COR 10 , C $_1$ -C $_6$ -alkylOAc, carboxy, or for the group -NR 8 R 9 , or for C $_1$ -C $_{10}$ -alkyl, C $_2$ -C $_{10}$ -alkenyl, C $_2$ -C $_{10}$ -alkinyl, or C $_3$ -C $_{10}$ -cycloalkyl, that is substituted in one or more places in the same way or differently with

hydroxy, halogen, C₁-C₆-alkoxy,

$$\begin{split} &C_1\text{-}C_6\text{-alkylthio, amino, cyano, }C_1\text{-}C_6\text{-alkyl, -NH-}(CH_2)_p\text{-}C_3\text{-}C_{10}\text{-cycloalkyl,}\\ &C_3\text{-}C_{10}\text{-cycloalkyl, }C_1\text{-}C_6\text{-hydroxyalkyl, }C_2\text{-}C_6\text{-alkenyl, }C_2\text{-}C_6\text{-alkinyl, }C_1\text{-}C_6\text{-alkoxy-}C_1\text{-}C_6\text{-alkoxy-}C_1\text{-}C_6\text{-alkyl, -NHC}_1\text{-}C_6\text{-alkyl, -NHC}_1\text{-}C_6\text{-alkyl, -N(C}_1\text{-}C_6\text{-alkyl)}_2, -SO(C_1\text{-}C_6\text{-alkyl), -SO}_2(C_1\text{-}C_6\text{-alkyl), }C_1\text{-}C_6\text{-alkanoyl, -}\\ &CONR^8R^9, \text{-}COR^{10}, C_1\text{-}C_6\text{-alkylOAc, carboxy, -}(CH_2)_pPO_3(R^{10})_2 \text{ or with the group} \end{split}$$

 $-NR^8R^9$.

R⁴ stands for hydrogen, halogen or C₁-C₄-alkyl,

 $R^6, R^7, R^8,$

 R^9 , R^{10}

and R^{11} , in each case independently of one another, stand for hydrogen or for C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, C_3 - C_{10} -cycloalkyl,

m stands for 0 to 8, and

n and p stand for 0 to 6, or isomers, diastereomers, enantiomers or salts thereof.

- 2. (Cancelled)
- 3. (Currently Amended) Compounds of formula (I),

in which

A stands for phenylene or thiophenylene,

B stands for a bond or for C_1 - C_{12} -alkylene, C_3 - C_8 -cycloalkylene or phenylene or thiophenylene that is optionally substituted in one or more places

in the same way or differently with hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl or

$$-(CH_2)_pSO_3R^8$$
,

X and Y, in each case independently of one another, stand for oxygen or for the group -NR¹¹-, -NR¹¹(CH₂)-, -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-,

 R^1 and R^5 , in each case independently of one another, stand for hydrogen, halogen, nitro, C_1 - C_6 -alkyl, or for $-NR^8R^9$, $-C_1$ - C_6 -alkyloxy- C_1 - C_6 -alkyloxy or $--S(O)_2NR^8R^9$,

R² stands for hydrogen,

R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl or -CONR⁸R⁹,

R⁴ stands for hydrogen,

 R^8 .

 \mathbb{R}^9

and R^{11} , in each case independently of one another, stand for hydrogen or for C_1 - C_{10} -alkyl,

- n stands for 0 to 6,
- m stands for 0 to 4, and
- p stands for 0 to 6,

or isomers, diastereomers, enantiomers or salts thereof.

- 4. (Previously Presented) Compounds of formula (I), according to claim 3, in which
 - A stands for phenylene,
 - stands for a bond or for C_1 - C_{12} -alkylene, cyclohexylene or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl or -(CH₂)SO₃R⁸,
 - X stands for oxygen or for the group -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-.
 - Y stands for oxygen or for the group -NR¹¹-,

R¹ and R⁵, in each case independently of one another, stand for hydrogen, amino,

halogen, nitro, C_1 - C_6 -alkyl, or for the group $-NR^8R^9$, $-C_1$ - C_6 -alkyloxy or $-S(O)_2NR^8R^9$,

- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, or -CONR⁸R⁹,
- R⁴ stands for hydrogen,
- R⁸, R⁹ and R¹¹, in each case independently of one another, stand for hydrogen or for methyl or isobutyl,
- m stands for 0 to 4, and
- p stands for 0 to 6,

as well as isomers, diastereomers, enantiomers, and salts thereof.

- 5. (Previously Presented) Compounds of formula (I), according to claim 3, in which
 - A stands for phenylene,
 - B stands for a bond or for C_1 - C_{12} -alkylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1 - C_6 -hydroxyalkyl or -(CH₂)SO₃R⁸,
 - X stands for oxygen or for the group -SO₂NR⁸- or -NR⁸CONR⁹-,
 - Y stands for the group -NR¹¹-,
 - R^1 and R^5 , in each case independently of one another, stand for hydrogen, amino, halogen, nitro or for the group $-S(O)_2NR^8R^9$,
 - R² stands for hydrogen,
 - R³ stands for halogen or cyano,
 - R⁴ stands for hydrogen,
 - R⁸, R⁹ and R¹¹ in each case stand for hydrogen, and
 - m stands for 0 to 4,

or isomers, diastereomers, enantiomers or salts thereof.

- 6. (Canceled)
- 7. (Cancelled)

- 8. (Cancelled)
- 9. (Previously Presented) Process for the production of the compounds of formula I according to claim 1, wherein either
 - a) compounds of formula VIII

in which R¹, R², R³, R⁴, R⁵, X, Y, A, B, m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are cyclized with a an acid to compounds of formula I, or

b) the acyclic precursors of formula (IX)

$$O_2N$$
 A
 $(X)_n$
 B
 (IX)

in which R¹, R³, R⁴, R⁵, X, Y, A, B, m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are first reduced to amine in a solvent and a reducing agent at 0°C until reflux takes place and then the intermediately formed amine is cyclized to the compounds of formula I.

- 10. (Canceled)
- 11. (Canceled)
- 12. (Currently Amended) A method for the treatment of <u>hormone-independent</u> <u>human breast cancer</u>, <u>human nonsmall-cell lung cancer</u>, <u>human colon cancer</u>, <u>hormone-independent human prostate cancer</u>, <u>or hormone-independent</u>, <u>multiple pharmaceutical agent-resistant human breast</u> cancer, <u>as solid tumors</u>, <u>tumor or metastasis growth</u>, <u>Kaposi's sareoma</u>, <u>Hodgkin's disease or leukemia</u>, comprising administering to a host in need thereof a compound of formula I according to claim 1.
 - 13. (Cancelled)
- 14. (Previously Presented) A pharmaceutical composition, comprising at least one compound according to claim 1 and a pharmaceutically acceptable carrier.

- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Previously Presented) A pharmaceutical composition, comprising compound according to claim 3 and suitable formulation substances and vehicles.
 - 18. (Cancelled)
 - 19. (Cancelled)
 - 20. (Cancelled)
 - 21. (Cancelled)
 - 22. (Cancelled)
 - 23. (Cancelled)
 - 24. (Previously Presented) Compounds of formula I

in which

- A stands for phenylene or thiophenylene,
- B stands for C_1 - C_{12} -alkylene, C_3 - C_8 -cycloalkylene, or phenylene that is

optionally substituted in one or more places in the same way or differently with

hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl, or - $(CH_2)_pSO_3R^8$,

X and Y, in each case independently of one another, stand for oxygen, sulfur or

R¹ and R⁵, in each case independently of one another, stand for hydrogen,

halogen, nitro, C₁-C₆-alkyl or for the group -C₁-C₆-alkyloxy-C₁-C₆-alkyloxy,

$$-NR^8R^9$$
, $-NR^8COR^9$, $-S(O)_2NR^8R^9$, $-S(O)_2N$ =CH-NR⁸R⁹,

$$-CO_2H$$
, $-CO_2R^8$, $-CONR^8R^9$,

- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, -CONR⁸R⁹,
- R⁴ stands for hydrogen,

$$R^6, R^7, R^8,$$

$$R^9, R^{10}$$

and R¹¹, in each case independently of one another, stand for hydrogen or for

$$C_1$$
- C_{10} -alkyl, C_2 - C_{10} -alkenyl, -N(C_1 - C_6 -alkyl)₂, or -SO(C_1 - C_6 -alkyl),

- m stands for 0 to 8,
- p stands for 0 to 6, and
- n stands for 1

or diastereomers, enantiomers or salts thereof.