27

CLAIMS

1. Use of a compound having the formula I

$$R_{5}$$
 R_{7}
 R_{7}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{12}
 R_{4}
 R_{5}
 R_{10}
Formula I

5

10

20

wherein A and B are rings linked together by a bridge C and independently represent benzene, pyridine or pyrimidine rings;

the bridge C is a carbon atom, a nitrogen, an oxygen or a sulphur atom;

R₁ and R₂ independently are H, OH, a C₁₋₆ linear or branched alkoxy chain or a C₁₋₂₀ linear or branched alkyl chain, or a C₁₋₆ linear or branched alkoxy or C₁₋₂₀ linear or branched alkyl chain having one or more of 1-2 double bonds, 1 triple bond, 1-4 oxygen functions, 1-3 nitrogen-, 1-3 halogen- or 1-2 sulphur-containing substituents, 1-2 phosphate groups, 1-2 non-substituted or substituted phenyl or cyclohexyl groups, or 1-2 five- or six-membered heterocyclic rings; or R₁ and R₇ together are said alkyl or alkoxy chain bonded directly to a carbon atom in the ring A or via a 15 carbon, oxygen, nitrogen or sulphur atom; or R1 and R2 together form a double bond to the optionally substituted C₁₋₂₀ linear or branched alkyl chain, to an oxo group, to a sulphur atom or to a nitrogen atom substituted with H, OH, an alkyl or alkoxy group; and R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ and R₁₂, which can be the same or different, are selected from the group consisting of H, OH, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH(CH₃)₂, OC(CH₃)₃, OCHCH₂, OCHCHCH3, OCH2CHCH2, OCCH, OCOH, OCO(CH2)0-18CH3, OCH2OH, OCHO, OCOOH, OCOCH₃, OCOC₂H₅, OCOC₃H₇, OCOOCH₃, OCOOC₂H₅, OCOOC₃H₇, OCH₂OOCH, OCH2OOCCH3, OCH2OOCC2H5, OCH2CH2OH, OCH2CHO, OCH2COOH, OC2H4CH2OH, OC₂H₄CHO, OC₂H₄COOH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, C(CH₃)₃, CHCH₂, CHCHCH₃, CH₂CHCH₂, CCH, CH₂OH, CHO, COOH, COCH₃, COC₂H₅, COC₃H₇, COOCH₃, COOC₂H₅,

0

5

COOC₃H₇, CH₂OOCH, CH₂OOCCH₃, CH₂OOCC₂H₅, CH₂CH₂OH, CH₂CHO, CH₂COOH, C₂H₄CH₂OH, C₂H₄CHO, C₂H₄COOH, F, Cl, Br, I, CF₃, CN, NH₂, NO₂, CH₂CN, CH₂NH₂, CH₂NO₂, CONH₂, CONHCH₃, NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, NHCOCH₃, NHNHCOCH₃, NHNHCONH₂, SCH₃, OPO₃ and OSi(CH₃)₂C(CH₃)₃; or

wherein two of R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ and R₁₂ on adjacent carbon atoms in the rings A and B together are CH₂CH₂CH₂, CH₂CH₂CH₂CH₂, O(CH₂)₁₋₃O, OCHCH₃O, OC(CH₃)₂O, OCOO, OCOCH₂, NHCH₂CH₂, or NHCOCH₂;

with the provisos that when R₄ and R₅ together form a methylenedioxy group:

- i) R₃ and R₆ must not both be H when R₇ is H or forms a bond with R₁ being a C₁₋₅ linear or branched alkyl chain optionally having a double bond; or
- ii) R₈, R₉, R₁₀, R₁₁ and R₁₂ must not be 1-3 OCH₃ and 2-4 H, or 1 OCH₃ and 2 OH and 2 H, or 1 OCH₃ and 1 OH and 3 H, or 2 OCH₃ and 1 OH and 2 H; or
- and when R₂ is H, then R₁ must not be H, OH, OCH₃, OC₂H₅, or a C₁₋₅ linear or branched alkyl chain optionally having a double bond or together with R₇ forming a bond to the carbon atom in the ring A, and with 0-3 oxygen functions; or
- iv) and when R_2 is H, then the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm; as a specific inhibitor of tyrosine phosphorylation of the insulin-like growth factor-1 receptor.

20 2. Use according to claim 1 of a compound having the formula Ib

$$R_{5}$$
 A
 R_{7}
 R_{1}
 R_{2}
Formula Ib
 R_{10}

wherein A and B represent benzene rings and C is a carbon atom;

R₁ and R₂, which can be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₂CH₃, CH₂CH₂CH₂CH₃, CH₂CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₂CH₃, OCH₂CH₂CH₂CH₃, OCH₂CH₂CH₂OH, OCH₂CH₂CH₂OH, OCH₂CH₂CH₂OH, a phenyl, piperidinyl and morpholino group; or R₁ and R₂ together are O, CH₂, CHCH₃, CHCH₂CH₃, C(CH₃)₂, CHCH(CH₃)₂, C(CH₂CH₃)phenyl, NOH, NOCH₃, NOCH₂CH₃ or NOCH₂CH₂CH₃; and R₄, R₅, R₇, R₉, R₁₀ and R₁₁, which may be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₂, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, NH₂, NHCH₃, OCH₂CHCH₂, CH₂OH, CH₂OH, CH₂OH, OCH₂OH, COOCH₃, F, Cl, CF₃, NH₂, NHCH₃,

OCO(CH₂)₀₋₁₈CH₃ and OPO₃; or wherein R₄ and R₅ and/or R₉ and R₁₀ together are a methylenedioxy group;

with the provisos that when R₄ and R₅ together form a methylenedioxy group:

- i) R₇ must not be H; or
- ii) R_9 , R_{10} , and R_{11} must not be 1-3 OCH₃ and 0-2 H, or 1 OCH₃ and 2 OH, or 1 OCH₃ and 1 OH and 1 H, or 2 OCH₃ and 1 OH; or
- iii) and when R₂ is H, then R₁ must not be H, OH, OCH₃, OC₂H₅, or a C₁₋₅ linear or branched alkyl chain optionally having a double bond and/or 1-3 oxygen functions; or
- iv) and when R_2 is H, then the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm.

20

15

3. Use according to claim 1 of a compound of the formula Π

Formula II

wherein A and B represent benzene rings;

X is O, NH, NCH3, NCH2CH3, NOH, NOCH3, S or SO2;

R₄, R₅, R₉, R₁₀ and R₁₁, which may be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₂, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂OH, CH₂CH₂OH, OCH₂CH₂OH, COOCH₃, F, Cl, CF₃, NH₂, NHCH₃,

- OCO(CH₂)₀₋₁₈CH₃ and OPO₃; or R₄ and R₅ and/or R₉ and R₁₀ together are a methylenedioxy group; and
- O CH₂CH₂OH, CH₂CH₂OH, OCH₂OH, OCH₂OH, OCH₂CH₂OH, a phenyl, piperidinyl and morpholino group; or R₁₄ and R₁₅ together form a double bond between the carbon atoms 2 and 3.
- 4. Use of a compound of the formula II according to claim 3, wherein R₁₃ and R₁₄ together or R₁₅ and R₁₆ together are O, or R₁₄ and R₁₅ together are selected from the group consisting of CH₂OCO, COOCH₂, CH₂OCH₂, CH₂CCH₂CO, CH₂OC(CH₃)₂OCH₂, OC(CH₃)₂O, CH₂OCOOCH₂, OCOO, CH₂OCH₂OCH₂ and OCH₂O.
 - 5. Use according to claim 1 of a compound of the formula III

Formula III

20

wherein A and B represent benzene rings;

R₃, R₄, R₅, R₆, R₉, R₁₀ and R₁₁, which may be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₂, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CHCH₂, CH₂OH, CH₂CH₂OH, OCH₂CH₂OH, COOCH₃, F, Cl, CF₃, NH₂, NHCH₃, OCO(CH₂)₀₋₁₈CH₃ and OPO₃; or R₄ and R₅ and/or R₉ and R₁₀ together are a methylenedioxy group;

- R₁₄ and R₁₅ together or R₁₇ and R₁₈ together are O; or R₁₄ and R₁₅ together are OC(CH₃)₂O, OCOO or OCH₂O; or R₁₄ and R₁₅ form a double bond between the carbon atoms 2 and 3; with the provisos that when R₄ and R₅ together form a methylenedioxy group:
 - i) R₃ and R₆ must not both be H; or
- ii) R_9 , R_{10} and R_{11} must not be 1-3 OCH₃ and 0-2 H, or 1 OCH₃ and 2 OH, or 1 OCH₃ and 1 OH and 1 H, or 2 OCH₃ and 1 OH; or
 - iii) R_{13} and R_{14} together, R_{15} and R_{16} together, or R_{17} and R_{18} together must not be O; or
 - iv) and when R₁₃, R₁₅ and R₁₇ are H, R₁₄, R₁₆ and R₁₈ must not be only H, OH or OCH₃ or R₁₄ and R₁₆ together or R₁₄ and R₁₈ together must not form a methylenedioxy group, acetonide group or a carbonate group; or
- 20 v) the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm.
 - 6. Use according to claim 1 of a compound of the formula IV

$$R_{11}$$
 R_{18}
 R_{14}
 R_{19}
 R_{15}
 R_{20}
 R_{11}
 R_{10}
Formula IV

wherein A and B represent benzene rings;

R₃, R₄, R₅, R₆, R₉, R₁₀ and R₁₁, which may be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₂, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CHCH₂, CH₂OH, CH₂CH₂OH, OCH₂CH₂OH, COOCH₃, F, Cl, CF₃, NH₂, NHCH₃, OCO(CH₂)₀₋₁₈CH₃ and OPO₃; or R₄ and R₅ and/or R₉ and R₁₀ together are a methylenedioxy group; R₁₄ and R₁₅, which can be the same or different, are H, OH, CH₃ or OCH₃; R₁₇ and R₁₈, which can be the same or different, are H, OH, CH₃,CH₂CH₃,OCOH, OCO(CH₂)₀₋₁₈CH₃, OCH₃, OC₂H₅ or OPO₃; or R₁₇ and R₁₈ together are O, CH₂, CHCH₃, NOH, NOCH₃,

10 NOCH2CH3:

20

25

R₁₉ and R₂₀, which can be the same or different, are H, OH, OCH₃, OC₂H₅, OOCH₃, OOCH₂CH₃, OCOH, or OCO(CH₂)₀₋₁₈CH₃,; or R₁₉ and R₂₀ together are O, CH₂, CHCH₃, NOH, NOCH₃, NOCH₂CH₃ or a methylene bridge, an ether or a lactone group;

with the provisos that when R₄ and R₅ together form a methylenedioxy group:

15 i) R₃ and R₆ must not both be H; or

- ii) R_9 , R_{10} and R_{11} must not be 1-3 OCH₃ and 0-2 H, or 1 OCH₃ and 2 OH, or 1 OCH₃ and 1 OH and 1 H, or 2 OCH₃ and 1 OH; or
- iii) and when R₁₄, R₁₅ and R₁₇ are H, then R₁₈, R₁₉ and R₂₀ must not only be H, OH, OCH₃ or OC₂H₅, or R₁₉ and R₂₀ must not be OOCH₃ or OOCH₂CH₃ or R₁₉ and R₂₀ together must not be an ether or a lactone group; or
- iv) and when R₁₄ and R₁₅ are H, then R₁₇ and R₁₈ together must not be O in combination with R₁₉ and R₂₀ being H, OH, OCH₃ or OC₂H₅, or R₁₉ and R₂₀ being OOCH₃ or OOCH₂CH₃ or R₁₉ and R₂₀ together being an ether or a lactone group; or
- v) the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm.
- 7. Use according to claim 6 of a compound selected from the group consisting of 4,5-demethylene-deoxypodophyllotoxin, 4,5-dimethoxy-deoxypodophyllotoxin, 4,5-dimethoxy-deoxypicropodophyllin, beta-picropeltatin, beta-picropeltatin disodium phosphate, beta-picropeltatin valerate, picropodophyllin disodium phosphate, picropodophyllin valerate, austrobailignan 1, austrobailignan 2, austrobailignan 3, polygamatin and picropolygamatin.

8. A compound of the formula III

$$R_{5}$$
 R_{17}
 R_{18}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{10}
Formula III

wherein A and B represent benzene rings;

- R₃, R₄, R₅, R₆, R₉, R₁₀ and R₁₁, which can be the same or different, are selected from the group consisting of H, OH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₂, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CHCH₂, CH₂OH, CH₂CH₂OH, OCH₂CH₂OH, COOCH₃, F, Cl, CF₃, NH₂, NHCH₃, OCO(CH₂)₀₋₁₈CH₃ and OPO₃; or R₄ and R₅ and/or R₉ and R₁₀ together are a methylenedioxy group; R₁₃, R₁₄, R₁₅, R₁₆, R₁₇ and R₁₈, which can be the same or different, are selected from the group consisting of H, OH, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCH₂CHCH₂, OCH₂CH(CH₃)₂, CH₂OH, CH₂CH₂OH, CH₂CH₂OH, OCH₂OH, OCH₂CH₂OH, OCH₂CH₂OH, OCH₂CH₂OH, OCH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CHCH₃, or CH₂CH(CH₃)₂; or R₁₃ and R₁₄ together or R₁₄ and R₁₅ together or R₁₇ and R₁₈ together are O; or R₁₄ and R₁₅ together are OC(CH₃)₂O, OCOO or OCH₂O; or R₁₄ and R₁₅ form a double bond between the carbon atoms 2 and 3; with the provisos that when R₄ and R₅ together form a methylenedioxy group:
 - i) R₃ and R₆ must not both be H; or
 - ii) R_9 , R_{10} and R_{10} must not be 1-3 OCH₃ and 0-2 H, or 1 OCH₃ and 2 OH, or 1 OCH₃ and 1 OH and 1 H, or 2 OCH₃ and 1 OH; or
- 20 iii) R_{13} and R_{14} together, R_{15} and R_{16} together, or R_{17} and R_{18} together must not be O; or

- iv) and when R₁₃, R₁₅ and R₁₇ are H, R₁₄, R₁₆ and R₁₈ must not be only H, OH or OCH₃ or R₁₄ and R₁₆ together or R₁₄ and R₁₈ together must not form a methylenedioxy group, acetonide group or a carbonate group; or
- v) the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm.
- 9. A compound according to claim 8 for use as a medicament.

WO 2004/093781

10. A pharmaceutical composition comprising a compound of the formula I

$$R_{5}$$
 R_{7}
 R_{1}
 R_{2}
 R_{12}
 R_{2}
 R_{3}
 R_{12}
 R_{10}
Formula I

10

15

20

5

wherein A and B are rings linked together by a bridge C and independently represent benzene, pyridine or pyrimidine rings;

the bridge C is a carbon atom, a nitrogen, an oxygen or a sulphur atom;

R₁ and R₂ independently are H, OH, a C₁₋₆ linear or branched alkoxy chain or a C₁₋₂₀ linear or branched alkyl chain, or a C₁₋₆ linear or branched alkoxy or C₁₋₂₀ linear or branched alkyl chain having one or more of 1-2 double bonds, 1 triple bond, 1-4 oxygen functions, 1-3 nitrogen-, 1-3 halogen- or 1-2 sulphur-containing substituents, 1-2 phosphate groups, 1-2 non-substituted or substituted phenyl or cyclohexyl groups, or 1-2 five- or six-membered heterocyclic rings; or R₁ and R₂ together are said alkyl or alkoxy chain bonded directly to a carbon atom in the ring A or via a carbon, oxygen, nitrogen or sulphur atom; or R₁ and R₂ together form a double bond to the optionally substituted C₁₋₂₀ linear or branched alkyl chain, to an oxo group, to a sulphur atom or to a nitrogen atom substituted with H, OH, an alkyl or alkoxy group; and

R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ and R₁₂, which can be the same or different, are selected from the group consisting of H, OH, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH(CH₃)₂, OC(CH₃)₃, OCHCH₂,

15

20

25 .

OCHCHCH₃, OCH₂CHCH₂, OCCH, OCOH, OCO(CH₂)₀₋₁₈CH₃, OCH₂OH, OCHO, OCOOH, OCOCH₃, OCOC₂H₅, OCOC₂H₅, OCOOC₃H₇, OCH₂OOCH, OCH₂OOCCH₃, OCH₂OOCC₂H₅, OCH₂CH₂OH, OCH₂CHO, OCH₂COOH, OC₂H₄CH₂OH, OC₂H₄CHO, OC₂H₄COOH, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, C(CH₃)₃, CHCH₂, CHCHCH₃, CH₂CHCH₂, CCH, CH₂OH, CHO, COOH, COCH₃, COC₂H₅, COC₃H₇, COOCH₃, COOC₂H₅, COOC₃H₇, CH₂OOCH, CH₂OOCCH₃, CH₂OOCC₂H₅, CH₂CH₂OH, CH₂CHO, CH₂COOH,

COOC₃H₇, CH₂OOCH, CH₂OOCCH₃, CH₂OOCC₂H₅, CH₂CH₂OH, CH₂CHO, CH₂COOH, C₂H₄CH₂OH, C₂H₄CHO, C₂H₄COOH, F, Cl, Br, I, CF₃, CN, NH₂, NO₂, CH₂CN, CH₂NH₂, CH₂NO₂, CONH₂, CONHCH₃,

NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, NHCOCH₃, NHNHCOCH₃, NHNHCONH₂, SCH₃, OPO₃ and OSi(CH₃)₂C(CH₃)₃; or

wherein two of R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ and R₁₂ on adjacent carbon atoms in the rings A and B together are CH₂CH₂CH₂, CH₂CH₂CH₂CH₂, O(CH₂)₁₋₃O, OCHCH₃O, OC(CH₃)₂O, OCOO, OCOCH₂, NHCH₂CH₂, or NHCOCH₂;

with the provisos that when R₄ and R₅ together form a methylenedioxy group:

- i) R₃ and R₆ must not both be H when R₇ is H or forms a bond with R₁ being a C₁₋₅ linear or branched alkyl chain optionally having a double bond; or
 - ii) R₈, R₉, R₁₀, R₁₁ and R₁₂ must not be 1-3 OCH₃ and 2-4 H, or 1 OCH₃ and 2 OH and 2 H, or 1 OCH₃ and 1 OH and 3 H, or 2 OCH₃ and 1 OH and 2 H; or
 - iii) and when R₂ is H, then R₁ must not be H, OH, OCH₃, OC₂H₅, or a C₁₋₅ linear or branched alkyl chain optionally having a double bond or together with R₇ forming a bond to the carbon atom in the ring A, and with 0-3 oxygen functions; or
- iv) and when R_2 is H, then the distance between the carbon atom of the methylenedioxy group and the carbon atom of a methoxy group in the ring B must not be 0.85 1.05 nm; in combination with a physiologically acceptable carrier.
- 11. A pharmaceutical composition according to claim 10, comprising a compound having the formula I, Ib, Π , III or IV as defined in any of claims 2-8.
- 12. Use of a compound having the formula I, Ib, II, III or IV as defined in any of claims 1-8 for the preparation of a medicament specifically inhibiting tyrosine phosphorylation of the insulin-like growth factor-1 receptor.

- 13. Use of a compound having the formula I, Ib, II, III or IV as defined in any of claims 1-8 for the preparation of a medicament for prophylaxis or treatment of IGF-1R dependent diseases in vertebrates, such as benign and malignant neoplasms, the latter including carcinomas, sarcomas, neuroectodermal tumours, gliomas, myeloproliferative and lymphoproliferative diseases, and arteriosclerosis, restenosis of the coronary arteries after vascular surgery, psoriasis, certain endocrine disorders, such as acromegaly, and metabolic disorders, such as syndrome X, and also for treatment of virus infected cells and self-reactive lymphocytes (T-cells), when these cells are dependent on IGF-1R for their survival.
- 10 14. Use according to claim 13 for prophylaxis or treatment in mammals, especially humans.
 - 15. Use of a compound having the formula I, Ib, II, III or IV as defined in any of claims 1-8 in combination with other anti-cancer treatments, including cytostatica and other anti-cancer drugs, radiation, radiotherapy and surgery, for treatment of cancer in mammals.

16. Method of treatment of a cancer in a mammal, comprising the steps of administrating a pharmaceutical composition according to claim 10 or 11 by constant infusion to a patient suffering from a tumour, monitoring the plasma level of the compound, and adjusting the rate of infusion to keep the plasma level relatively low and relatively constant for a period of time being sufficient for the tumour to be retarded or to disappear.

20

15