A THE PARTY THE PROPERTY OF TH

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

MID SEMESTER EXAMINATION - BT 305: Computational Biology

Maximum Marks: 40. Time: 2 hours

Questions 1-6 has 5 marks each and question 7 has 10 marks

Q 1. Examine the structure of methane molecule given in the following diagram (Figure 1A). Assume that you define force field with a potential energy (u) Vs angle (Θ). Draw and spot the position of Potential Energy in the graph (Figure 1B) in your answer book after giving appropriate scales for x and y axis as per your calculations. Attempt it for all possible angle combinations, while there is a bend of 3° and 2° in angle between H_1 , C, H_3 and H_2 , C, H_3 of methane molecule respectively.

Q 2. In the following Ramachandran map, β (beta), Polyproline (PP II) and α (alpha) helical region are shown. Write approximate dihedral angles for a nine residue poly-glycine peptide to get the structure of A) Right handed alpha helix; B) Beta sheet; C) Beta strand and D) Random coil.

Q 3. Write your name and surname in the format of a continuous string; for e.g. SACHIN KUMAR as SACHINKUMAR. Omit letters that do not represent amino acids. Assuming this as a protein sequence, rationally design another sequence with the same length (and score them), that can likely to have same function as that of the first (your name) sequence. Please note that both sequences should not have any sequence identity. You may use the following substitution matrix for your calculations.

Α R Ν D C Q Ε G Н 1 L K M F P S Т W Y ν 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 Α R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 N -2 0 6 ı -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 D -2 -2 1 6 -3 0 2 -1 -1 -3 -3 -3 -1 -1 -4 -3 -3 -4 -1 0 C D -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -2 Q 1 0 0 -3 5 2 0 -3 -2 1 -2 -2 -1 0 -3 -1 0 -1 -1 2 2 -2 Ε 0 0 5 0 -3 -3 1 -2 -3 -1 -3 -2 -2 -l -1 -2 -2 G 0 -2 0 -1 -3 -2 6 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 0 H -2 0 1 -1 -3 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 -3 1 -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -2 -2 2 -2 2 L -1 -3 -4 -1 -3 -4 -3 4 0 -3 -2 -1 -2 -1 1 2 -1 1 1 -2 -1 -3 -2 5 -3 K -1 0 -3 -1 -1 0 -1 -3 -2 -2 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -3 -3 -2 -3 -3 -3 -1 0 0 0 6 -2 -2 F -2 -3 -4 1 3 -1 -2 -2 -l -3 -1 -1 -2 -2 -3 -1 -2 7 -1 -2 Р -l -3 -4 -1 -4 -3 S -1 0 -2 -2 -2 -2 1 1 0 -1 0 0 -1 0 -1 -1 4 1 -3 -2 -2 -2 Т 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 1 5 -2 0 W -3 -2 -2 -3 -3 -3 -4 -4 -2 -2 -3 -2 -3 -1 ı -4 -3 -2 11 Y -2 -2 -2 -3 -2 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -1 D -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Q 4. What is relevance of united atom approximation while defining a force field? What could be the possible consequence if we switch off improper dihedral angle term while we perform MD simulations of an alanine molecule in water at 298 K.

A) Contact map of a protein molecule is shown in the following figure. Draw the same diagram in your answer sheet and identify secondary structure segments.

B) Sketch an approximate structure from the TOPS diagram shown below.

C) Assuming bigger atom as carbons and smaller ones hydrogen in this ethane molecule, write an approximate internal coordinate representation from the following figure.

Q6. 'The Verlet algorithm uses positions and accelerations at time t and the positions from time t-dt to calculate new positions at time t+dt'. Prove this statement from first principles.

Q7. Protein data bank file of a typical structural segment is shown below.

ATOM	186	N	ALA A 26	8.203 11.601 26.881 1.00 14.97	Ν
ATOM	187	CA	ALA A 26	8.146 12.442 25.683 1.00 13.53	С
ATOM	188	С	ALA A 26	7.714 11.629 24.416 1.00 14.75	С
ATOM	189	0	ALA A 26	6.938 12.111 23.579 1.00 13.31	0
ATOM	190	СВ	ALA A 26	9.461 13.156 25.466 1.00 14.89	С
ATOM	191	N	GLU A 27	8.154 10.378 24.341 1.00 15.13	Ν
ATOM	192	CA	GLU A 27	7.820 9.450 23.250 1.00 17.82	С
ATOM	193	С	GLU A 27	6.311 9.168 23.271 1.00 16.72	С
ATOM	194	0	GLU A 27	5.674 9.075 22.251 1.00 16.01	0
ATOM	195	СВ	GLU A 27	8.568 8.142 23.436 1.00 20.13	С
ATOM	196	CG	GLU A 27	8.520 7.306 22.200 1.00 24.41	С
ATOM	197	CD	GLU A 27	8.632 5.841 22.496 1.00 27.22	С
ATOM	198	OE1	GLU A 27	9.616 5.404 23.084 1.00 28.16	0
ATOM	199	OE2	GLU A 27	7.736 5.086 22.132 1.00 29.79	0
ATOM	200	N	LYS A 28	5.737 9.141 24.464 1.00 17.07	Ν
ATOM	201	CA	LYS A 28	4.309 8.916 24.682 1.00 16.77	С
ATOM	202	С	LYS A 28	3.512 10.055 24.083 1.00 16.33	С
ATOM	203	0	LYS A 28	2.562 9.839 23.323 1.00 15.88	0
ATOM	204	СВ	LYS A 28	4.030 8.930 26.195 1.00 19.04	С
ATOM	205	CG	LYS A 28	3.240 7.794 26.717 1.00 22.58	С
ATOM	206	CD	LYS A 28	3.372 7.848 28.264 1.00 24.65	С
ATOM	207	CE	LYS A 28	4.842 7.593 28.786 1.00 24.97	С
ATOM	208	NZ	LYS A 28	4.999 7.896 30.267 1.00 26.72	Ν
ATOM	209	N	VALA 29	3.810 11.267 24.514 1.00 14.87	Ν
ATOM	210	CA	VALA 29	3.067 12.375 23.977 1.00 15.81	С
ATOM	211	С	VALA 29	3.321 12.571 22.458 1.00 14.71	С
ATOM	212	0	VALA 29	2.396 12.980 21.753 1.00 14.07	0
ATOM	213	CB	VALA 29	3.280 13.702 24.765 1.00 16.97	С
ATOM	214	CG1	VALA 29	2.657 14.908 24.038 1.00 14.55	С
ATOM	215	CG2	VALA 29	2.728 13.594 26.066 1.00 17.42	С
ATOM	216	N	PHE A 30	4.545 12.325 21.972 1.00 11.59	Ν
ATOM	217	CA	PHE A 30	4.843 12.494 20.533 1.00 11.44	С
ATOM	218	С	PHE A 30	4.080 11.466 19.686 1.00 10.70	С
ATOM	219	0	PHE A 30	3.477 11.802 18.675 1.00 11.11	0
ATOM	220	СВ	PHE A 30	6.350 12.498 20.265 1.00 10.85	С
ATOM	221	CG	PHE A 30	7.043 13.804 20.666 1.00 10.38	С
ATOM	222	CD1	PHE A 30	6.396 15.038 20.577 1.00 9.64	С
ATOM	223	CD2	PHE A 30	8.380 13.821 21.061 1.00 8.62	С
ATOM	224	CE1	PHE A 30	7.108 16.238 20.873 1.00 9.89	С
ATOM	225	CE2	PHE A 30	9.031 15.017 21.334 1.00 9.58	С

A) Calculate Electrostatic interaction energies between all atoms in residue 26 (ala) and residue 30 (phe). Use the following data. (5 marks)

name	type	charge
N	N	-0.280
Н	H	0.280
CA	CH2	0.000
С	C	0.380
0	0	-0.380

B) Predict from distance and angle measurements, the possibility of hydrogen bond formation between backbone atoms of residue 26 (ALA) and residue 30 (PHE). Does this give any clue about the possible structure of this protein segment? If yes explain How? (5 marks).

---- END OF QUESTIONS ----