PSTAT 122 - HW4

Emily LuJune 11, 2020

5.12 An experiment is conducted to study the influence of operating temperature and three types of faceplate glass in the light output of an oscilloscope tube. The following data are collected:

Glass Type	Temperature		
	100	125	150
1			
	580	1090	1392
	568	1087	1389
	570	1085	1386
2	•		
	550	1070	1328
	530	1035	1312
	579	1000	1299

(a) Use $\alpha = 0.05$ in the analysis. Is there a significant interaction effect? Does glass type or temperature affect the response? What conclusions can you draw?

```
Sol. H_0: (\tau\beta)_{ij} = 0 for all i, j vs. H_1: at least one (\tau\beta)_{ij} \neq 0

light <- c(580, 1090, 1392, 568, 1087, 1380, 570, 1085, 1386, 550, 1070, 1328, 530, 1035, 1312, 579, 1000, 1299)

glass <- as.factor(c(rep(1, 9), rep(2, 9)))

temperature <- as.factor(rep(c(rep(100, 1), rep(125, 1), rep(150, 1)), 6))

df <- cbind(glass, temperature, light)

resp.aov <- aov(light ~ glass*temperature)

summary(resp.aov)
```

```
##
                        Sum Sq Mean Sq F value
                                                  Pr(>F)
## glass
                      1
                          10513
                                  10513
                                          29.66 0.000149 ***
## temperature
                      2 1900633
                                 950317 2681.14 < 2e-16 ***
## glass:temperature
                     2
                           2169
                                   1085
                                           3.06 0.084350 .
## Residuals
                     12
                           4253
                                    354
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

According to the ANOVA table above, there is not a significant interaction between the glass type and temperature since the p-value (0.084350) is greater than $\alpha = 0.05$. The main effects of the glass type and temperature, however, are significant since both of their p-values are less than $\alpha = 0.05$.

```
interaction.plot(temperature, glass, light)
```


Since the lines in the interaction plot are almost parallel, this also suggests that there is not a significant interaction between the glass types and temperatures. Additionally, we could see from the interaction plot that glass type 1 on average outputs more light than glass type 2 outputs.