◎ 公開特許公報(A) 平3-66689

⑤Int. Ci. ⁵

識別記号

庁内整理番号

@公開 平成3年(1991)3月22日

C 07 D 471/04 A 01 N 43/90 C 07 D 471/04 1 1 7 N 1 0 5 Z

8829-4C 8930-4H

8829-4C ×

審査請求 未請求 請求項の数 11 (全29頁)

ピリドピリミジン誘導体

②特 願 平2-201061

②出 願 平2(1990)7月27日

優先権主張

@1989年7月27日@米国(US)@385840

⑩発明 者

ロナルド・アービン・ アメリカ省

ハツクラー

アメリカ合衆国インデイアナ46226、インデイアナポリ

ス、ホークス・ポイント・ロード5234番

⑩発 明 者

グレン・フイル・ジョ

アメリカ合衆国インデイアナ46161、モーリスタウン、ア

ーダン

ール・アール・ナンパー1・ポックス・74ピー(番地の表

示なし)

⑪出 願 人 イーライ・リリー・ア

ンド・カンパニー

アメリカ合衆国46285インディアナ州 インディアナポリ

ス市、リリー・コーポレイト・センター(番地の表示な

L)

外1名

⑩代 理 人 弁理士 青山 葆

最終頁に続く

明細書

1. 発明の名称

ピリドピリミジン誘導体

- .2. 特許請求の範囲
- 1. 式(1):

で示されるピリドピリミジン誘導体、またはその 酸付加塩:

[式中、A、B、EおよびDのうち1つまたは2 つはN、他はCR¹であるか、またはA、EおよびDはN、BはCR¹であり、

R * および R * はそれぞれ独立して H 、ハロゲン、(C, ~ C,) アルキル、分枝鎖状(C, ~ C,) アルキル、(C, ~ C,) アルコキシ、ハロ(C, ~ C,) アルキル、フェニル、または置換フェニルであり、 XはO、S、SO、SO、NR*、または

 $CR^*R^*(CCC, R^* \text{ th}, (C_1 \sim C_4) + \nu +$

ルまたは(C,~C,)アシルであり、R*およびR*はそれぞれ独立してH、(C,~C,)アシル、(C,~C,)アルキル、(C,~C,)アルケニルもしくはアルキニル、CN、またはOHであるか、またはR*およびR*は一緒になって炭素原子数4から6個の炭素環を形成するものである)であり、

Yは、単結合または炭素原子数 1 から 6 個のアルキレン鎖であり、アルキレン鎖の場合、これは炭素環を含んでいてもよく、かつ、O、N R 2 、S S O S O $_{2}$ S C 2 S C 2 C C 2 C C 2 C 2