Algorithms and Satisfiability

Lecture 2 Greedy Algorithms

DAT6 spring 2023 Simonas Šaltenis

Greedy algorithms

- Goals of the lecture:
 - to understand the principles of the greedy algorithm design technique;
 - to understand the example greedy algorithms for activity selection and Huffman coding, to be able to prove that these algorithms find optimal solutions;
 - to be able to apply the greedy algorithm design technique.

Activity-Selection Problem

- Input:
 - A set of n activities, each with start and end times: A[i].s and A[i].f. The activity lasts during the period [A[i].s, A[i].f)
- Output:
 - The largest subset of mutually compatible activities
 - Activities are compatible if their intervals do not intersect

"Straight-forward" solution

- Let's just pick (schedule) one activity A[k]: k-nary choice
 - This generates two set's of activities compatible with it: Before(k), After(k)
 - E.g., $Before(4) = \{1, 2\}$; $After(4) = \{6,7,8,9\}$

Solution:
$$MaxN(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ \max_{a \in A} \{ MaxN(Before(a)) + MaxN(After(a)) + 1 \} & \text{if } A \neq \emptyset. \end{cases}$$

Dynamic Programming Alg.

- The recurrence results in a dynamic programming algorithm
 - Sort activities on the end time (for simplicity assume also "sentinel" activities A[0] and A[n+1])
 - Let S_{ij} a set of activities after A[i] and before A[j] and compatible with A[i] and A[j].
 - Let's have a two-dimensional array, s.t., $c[i, j] = MaxN(S_{ij})$:

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

• $MaxN(A) = MaxN(S_{0,n+1}) = c[0, n+1]$

Dynamic Programming Alg. II

- Does it really work correctly?
 - We have to prove the optimal sub-structure:
 - If an optimal solution A to S_{ij} includes A[k], then it also includes optimal solutions to S_{ik} and S_{ki}
 - To prove use "cut-and-paste" argument
- What is the space used by this algorithm?
- What is the running time of this algorithm?
 - Definitely $\Omega(n^2)$

Activity Selection DP Alg. 2.0

- Alternative way of thinking about it binary choice:
 - Sort activities on the start time (have "sentinel" activity A[n+1] after all the other activities)
 - Let $next(i) = min \{k \mid k > i \land \neg overlaps(A[i], A[k])\}$
 - The subproblem is then to schedule all the activities starting with i and after.
 - What is the recurrence?

$$c[i] = \begin{cases} 0 & \text{if } i > n, \\ \max(1+c[next(i)], c[i+1]) & \text{otherwise.} \end{cases}$$

- \blacksquare MaxN(A) = c[1]
- What is the running time and space used?
 - Don't forget next(i)...

Greedy choice

- What if we could choose "the best" activity (as of now) and be sure that it belongs to an optimal solution
 - We wouldn't have to check out all these sub-problems and consider all currently possible choices!
- Idea: Choose the activity that finishes first!
 - Intuition: leave as much time as possible for other activities
 - Then, solve only one sub-problem for the remaining compatible activities
 - (Have sentinel activity A[0].f = 0 before all other)

```
MaxN(A[0..n], i) //returns a set of activities
01 m ← i + 1
02 while m ≤ n and A[m].s < A[i].f do
03  m ← m + 1
04 if m ≤ n then return {A[m]} ∪ MaxN(A, m)
05  else return Ø</pre>
```

Iterative algorithm

Let's run it:

What is the running time?

Greedy-choice property

- Does it find an optimal solution?:
 - We have to prove the optimal sub-structure property (we did that already)
 - We have to prove the greedy-choice property, i.e., that our locally optimal choice a₁ belongs to some globally optimal solution.
 - Let A be an optimal solution and x be an activity with smallest finishing time in A.
 - $a_1.f \le x.f$, as a_1 is the activity with the smallest finishing time overall.
 - Thus, we can replace x with a₁ in A to get a valid solution of the same size!
 - Greedy exchange proof.

Greedy-choice property

- The challenge is to choose the right interpretation of "the best choice":
 - How about the activity that starts first?
 - Show a counter-example
 - The shortest activity?
 - The activity that overlaps the smallest number of the remaining activities?

Greedy choice property

How about the activity that starts first?

a1	a2	a3
1	2	4
10	3	6

- {a2, a3}, but not a1 that starts first.
- The shortest activity?

a1	a2	a3	a4
1	11	21	9
10	20	30	12

{a1, a2, a3}, but not a4 that is the shortest activity.

Greedy choice property

 The activity that overlaps the smallest number of the remaining activities?

 The second row gives the maximum-size set of mutually compatible activities, but it does not include the activity with the smallest overlaps, i.e., the one with 2.

Data Compression

- Data compression problem strings S and S':
 - $S \rightarrow S' \rightarrow S$, such that |S'| < |S|
- Text compression by coding with variable-length code:
 - Obvious idea assign short codes to frequent characters: "abracadabra"

Frequency table:

	a	b	С	d	r
Frequency	5	2	1	1	2
Fixed-length code	000	001	010	011	100
Variable-length code	1	001	0000	0001	01

How much do we save in this case?

Prefix code

- Optimal code for the given frequencies:
 - Achieves the minimal length of the coded text
- Prefix code: no codeword is a prefix of another
 - It can be shown that optimal coding can be done with prefix code

- We can store all codewords in a binary trie very easy to decode
 - Coded characters in leaves
 - Each node contains the sum of the frequencies of all descendants

Decoding using a binary trie

- **Leaves** represent characters.
- Codeword for a character is the simple path from the root to that character.
- 0: left 1:right

Decode: 001011101

Go to Socrative and write in your answer.

Optimal Code/Trie

• The *cost* of the coding trie *T*:

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

- C the alphabet,
- f(c) frequency of character c,
- $d_{\tau}(c)$ depth of c in the trie (length of code in bits)
- Optimal trie the one that minimizes B(T)
- Observation optimal trie is always full:
 - Every non-leaf node has two children. Why?

Huffman Algorithm - Idea

- Huffman algorithm, builds the code trie bottom up. Consider a forest of trees:
 - Initially one separate node for each character.
 - In each step join two trees into a larger tree

- Repeat this until one tree (trie) remains.
- Which trees to join? Greedy choice the trees with the smallest frequencies!

Huffman Algorithm


```
Huffman(C)
01 Q.build(C) // Builds a min-priority queue on frequencies
02 for i ← 1 to n-1 do
03    Allocate new node z
04    x ← Q.extractMin()
05    y ← Q.extractMin()
06    z.setLeft(x) // corresponding to bit 0
07    z.setRight(y) // corresponding to bit 1
08    z.setF(x.f() + y.f())
09    Q.insert(z)
10 return O.extractMin() // Return the root of the trie
```

- What is its running time?
- Run the algorithm on: "oho ho, ole"

Correctness of Huffman

- Greedy choice property:
 - Let x, y two characters with lowest frequencies. Then there exists an optimal prefix code where codewords for x and y have the same length and differ only in the last bit
 - Let's prove it:
 - Transform an optimal trie T into one (T"), where x and y are max-depth siblings. Compare the costs.

Greedy choice property

- Let x and y be the two characters with lowest frequencies.
- Let's assume that we have an optimal code tree T, where leaves a and b are two siblings of the maximum depth.
- Swap a and x, we get tree T'.

$$B(T) - B(T')$$

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x))$$

$$\geq 0.$$

$$B(T) \geq B(T')$$

Since x and y are the two characters with lowest frequencies, we have $x.freq \le a.freq$

In tree *T*, *a* and *b* are two siblings of maximum depth. Thus, we have

$$d_{\tau}(a) \geq d_{\tau}(x)$$

Correctness of Huffman

- Optimal sub-structure property:
 - Let *x*, *y* characters with minimum frequency
 - $C' = C \{x,y\} \cup \{z\}$, such that f(z) = f(x) + f(y)
 - Let *T'* be an optimal code trie for *C'*
 - Replace leaf z in T' with internal node with two children x and y
 - The result tree *T* is an optimal code trie for *C*
- Proof a little bit more involved than a simple "cut-andpaste" argument

Elements of Greedy Algorithms

- Greedy algorithms are used for optimization problems
 - A number of choices have to be made to arrive at an optimal solution.
 - At each step, make the "locally best" choice, without considering all possible choices and solutions to subproblems induced by these choices (compare to dynamic programming).
 - After the choice, only one sub-problem remains (smaller than the original).
- Greedy algorithms usually sort or use priority queues.

Elements of Greedy Algorithms

- First, one has to prove the optimal sub-structure property
 - the simple "cut-and-paste" argument may work
 - Not always possible (sign it is a hard problem):
 - Longest (vs. shortest) simple unweighted path
 - Maximum clique in a graph (vs. activity selection)
- The main challenge is to decide the interpretation of "the best" so that it leads to a global optimal solution, i.e., you can prove the greedy choice property
 - The proof is usually constructive: takes a hypothetical optimal solution without the specific greedy choice and transforms into one that has this greedy choice.
 - Or you find counter-examples demonstrating that your greedy choice does not lead to a global optimal solution.

Prim's alg. for MST

$$MST(G) = T$$

$$MST(G') = T - (u,v)$$

- Optimal substructure: If (u,v) is in an MST T then T (u,v) is an MST of G'
- "Cut and paste" argument
 - If G' would have a cheaper ST T', then we would get a cheaper ST of G: T' + (u, v)
- Greedy choice: choose an edge incident on the "supervertex" with a minimum weight