Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

$$\int f(x)g(x)\,dx.$$

Integration by Parts Formula

$$\int u \, dv = uv - \int v \, du \tag{2}$$

This formula expresses one integral, $\int u \, dv$, in terms of a second integral, $\int v \, du$. With a proper choice of u and v, the second integral may be easier to evaluate than the first. In using the formula, various choices may be available for u and dv. The next examples illustrate the technique. To avoid mistakes, we always list our choices for u and dv, then we add to the list our calculated new terms du and v, and finally we apply the formula in Equation (2).

EXAMPLE 2 Find

$$\int \ln x \, dx.$$

Solution Since $\int \ln x \, dx$ can be written as $\int \ln x \cdot 1 \, dx$, we use the formula $\int u \, dv = uv - \int v \, du$ with

$$u=\ln x$$
 Simplifies when differentiated $dv=dx$ Easy to integrate $du=\frac{1}{x}dx$, Simplest antiderivative

Then from Equation (2),

$$\int \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - \int dx = x \ln x - x + C.$$

Sometimes we have to use integration by parts more than once.

EXAMPLE 3 Evaluate

$$\int x^2 e^x \, dx.$$

Solution With $u = x^2$, $dv = e^x dx$, du = 2x dx, and $v = e^x$, we have

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx.$$

The new integral is less complicated than the original because the exponent on x is reduced by one. To evaluate the integral on the right, we integrate by parts again with u = x, $dv = e^x dx$. Then du = dx, $v = e^x$, and

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C.$$

Using this last evaluation, we then obtain

$$\int x^2 e^x \, dx = x^2 e^x - 2 \int x e^x \, dx$$
$$= x^2 e^x - 2x e^x + 2e^x + C.$$

Tabular Integration

We have seen that integrals of the form $\int f(x)g(x) dx$, in which f can be differentiated repeatedly to become zero and g can be integrated repeatedly without difficulty, are natural candidates for integration by parts. However, if many repetitions are required, the calculations can be cumbersome; or, you choose substitutions for a repeated integration by parts that just ends up giving back the original integral you were trying to find. In situations like these, there is a way to organize the calculations that prevents these pitfalls and makes the work much easier. It is called **tabular integration** and is illustrated in the following examples.

EXAMPLE 7 Evaluate

$$\int x^2 e^x \, dx.$$

Solution With $f(x) = x^2$ and $g(x) = e^x$, we list:

f(x) and its derivatives		g(x) and its integrals
x ²	(+)	e^x
2x	(-)	e^x
2	(+)	e^x
0		e^x

We combine the products of the functions connected by the arrows according to the operation signs above the arrows to obtain

$$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C.$$

Compare this with the result in Example 3.