# On Variational Bounds of Mutual Information

-Summary-

### Introduction

#### Introduction

- Mutual information (MI) :  $I(X;Y) = \mathbb{E}_{p(x,y)}[p(x,y)\log\frac{p(x,y)}{p(x)p(y)}] = \mathbb{E}_{p(x,y)}[\log(\frac{p(y|x)}{p(x)})] = \mathbb{E}_{p(x,y)}[\log(\frac{p(x|y)}{p(y)})]$
- KL divergence :  $KL(P||Q) = \int_{\mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$  when  $P \ll Q$
- Properties on MI required on paper
  - 1. I(X;Y) = KL(P(x,y)||p(x)p(y))
  - 2.  $I(X; Y) \ge 0$
  - 3. When  $X_1 \rightarrow X_2 \dots \rightarrow X_n$  forms Markov chain,  $I(X_1; X_2, \dots X_n) = I(X_1; X_2)$
  - 4. I(X,Z;Y) = I(X;Y) if p(x,y,z) = p(x,y)p(z) (i.e :  $Z \perp (X,Y)$ )
- MI : measure independence between X, Y (i.e : I(X; Y) = 0 if  $f(X \perp Y)$
- Problem : estimating MI is challenging as we don't have access to underlying distributions, but only the samples.

### Introduction

#### Introduction

- Usages of MI:
  - 1. Just estimation of MI
  - 2. Limit upper bound of MI to restrict the capacity or contents of representations.
  - 3. Maximize MI between a learned representation and an aspect of the data. (representation learning) (Given  $x \sim p(x)$ , learn a stochastic representation of the data  $p_{\theta}(y|x)$  that maximize MI subject to constraints on the mapping)

Note: To maximize MI, we need to find a lower bound on MI with respect to parameter  $\theta$  (Variational lower bound of MI), and use Gradient Descent to tighten the lower bound to actual MI.

#### Normalized upper bound (what does 'normalized' means?)

• Upper bounding MI is challenging, but is possible when p(y|x) is known

$$I(X;Y) = \mathbb{E}_{p(x,y)} \left[ \log \frac{p(y|x)}{p(y)} \right] = \mathbb{E}_{p(x,y)} \left[ \log \frac{p(y|x)}{q(y)} \right] - KL(p(y)||q(y)) \le \mathbb{E}_{p(x)} \left[ KL(p(y|x)||q(y)) \right]$$

(Note : drop the KL(p(y)||q(y)| term)

where q(y) is variational approximation of p(y), which is intractable.

•  $R \triangleq \mathbb{E}_{p(x)}[KL(p(y|x)||q(y)]$  is one of variational upper bound of MI

#### Normalized lower bounds ( $I_{BA}$ )

- $I(X;Y) = \mathbb{E}_{p(x,y)}[\log \frac{q(x|y)}{p(x)}] + \mathbb{E}_{p(y)}[KL(p(x|y)||q(x|y))] \ge \mathbb{E}_{p(x,y)}[\log(q(x|y)) + h(X)]$ (drop the  $\mathbb{E}_{p(y)}[KL(p(x|y)||q(x|y))]$  term)
- $I_{BA} \triangleq \mathbb{E}_{p(x,y)}[\log(q(x|y)] + h(X)]$  is a variational lower bound of MI
- Note : h(X) is differential entropy defined by  $h(X) = \mathbb{E}_{p(x)}[-\log(p(X))] => \text{constant}$
- The bound is tight when q(x|y) = p(x|y) and  $\mathbb{E}_{p(x,y)}[\log(q(x|y))] = -h(X|Y)$
- Note :  $h(X|Y) = \mathbb{E}_{p(x,y)}[-\log(p(X|Y))]$
- Evaluating h(X) is intractable (and often unknown), but gradient of  $I_{BA}$  is tractable if q(x|y) [decoder on representation learning] is tractable (challenging when X is high dimensional and H(X|Y) is large)

#### **Unnormalized lower bounds – backgrounds**

- To avoid 'tractable' decoder, we turn to 'unnormalized' distributions for the variational family of q(x|y).
- Here, we choose energy-based variational family using 'critic' f(x, y) and scaled by p(x):

$$q(x|y) = \frac{p(x)}{Z(y)}e^{f(x,y)}$$
, where  $Z(y) = \mathbb{E}_{p(x)}[e^{f(x,y)}]$ 

• Critic acts as loss function (if discrepancy between x, y is big, then gives high critic value f(x, y))

#### Unnormalized lower bounds ( $I_{UBA}$ )

- Recall  $I_{BA} = \mathbb{E}_{p(x,y)}[\log(q(x|y))] + h(X)$ , HERE, put q(x|y) as a energy based variational family.
  - (Again, recall energy based variational family :  $q(x|y) = \frac{p(x)}{Z(y)}e^{f(x,y)}$ , where  $Z(y) = \mathbb{E}_{p(x)}[e^{f(x,y)}]$ )
- Then, we get  $I(X;Y) \ge \mathbb{E}_{p(x,y)}[f(x,y)] \mathbb{E}_{p(y)}[logZ(y)] \triangleq I_{UBA}$
- Bound is tight when  $f(x, y) = \log p(y|x) + c(y)$  where c(y) is solely a function of y.
  - (actually using condition q(x|y) = p(x|y), we can deduce  $c(y) = \log \frac{Z(y)}{p(y)}$ )
- Note: By scaling q(x|y) by p(x), we could remove intractable h(X) term.
- Problem :  $\log partition function log Z(y)$  is intractable.

#### Unnormalized lower bounds ( $I_{DV}$ )

- To avoid intractable log partition function  $\log Z(y)$  in  $I_{UBA}$ , We use Jensen's inequality to  $\mathbb{E}_{p(y)}[\log Z(y)]$  term on  $I_{UBA}$ .
- $\mathbb{E}_{p(y)}[\log Z(y)] \leq \log(\mathbb{E}_{p(y)}[Z(y)])$  using concavity of log and Jensen's inequality.
- Then, we get  $I(X,Y) \ge I_{UBA} \ge \mathbb{E}_{p(x,y)}[f(x,y)] \log(\mathbb{E}_{p(y)}[Z(y)]) \triangleq I_{DV}$
- Problem : Achieving I<sub>DV</sub> is still intractable in practice.
- One may use the inequality  $\log Z(y) = \log \mathbb{E}_{p(x)}[e^{f(x,y)}] \ge \mathbb{E}_{p(x)}[\log(e^{f(x,y)})] = \mathbb{E}_{p(x)}[f(x,y)]$  to upper bound the  $\log Z(y)$  term in  $I_{UBA}$  AND use MC approximation. but this gives neither an upper and lower bound. (Since this becomes upper bound of  $I_{UBA}$ , which is an lower bound of MI)

#### Unnormalized lower bounds ( $I_{TUBA}$ )

• To form a tractable bound (especially deal with log partition), we use following inequality

$$\log(x) \le \frac{x}{a} + \log(a) - 1 \text{ for all } x, a > 0$$

(this get tight when x = a)

- Then,  $\log Z(y) \le \frac{Z(y)}{a(y)} + \log(a(y)) 1$ , for some function a(y) > 0 and this get tight when a(y) = Z(y)
- Applying this inequality on  $I_{UBA} = \mathbb{E}_{p(x,y)}[f(x,y)] \mathbb{E}_{p(y)}[logZ(y)]$ , we get following :

$$\mathbb{E}_{p(x,y)}[f(x,y)] - \mathbb{E}_{p(y)}\left[\frac{\mathbb{E}_{p(x)}[e^{f(x,y)}]}{a(y)} + \log(a(y)) - 1\right] \triangleq I_{TUBA}$$

To tighten this lower bound, we can maximize this bound w.r.t variational parameters a(y) and f.

### Unnormalized lower bounds $(I_{NWI})$

• To simplify the  $I_{TUBA}$ , put a(y) = e ,which yields  $I_{NWI}$ :

$$I_{NWJ} = \mathbb{E}_{p(x,y)}[f(x,y)] - e^{-1}\mathbb{E}_{p(y)}[Z(y)]$$

Note: there exists a unique optimal critic  $f^*(x,y) = 1 + \log(\frac{p(x|y)}{p(x)})$  such that  $I_{NWJ} = I(X;Y)$ .

Note: We can also choose  $a(y) = \frac{1}{K} \sum_{i=1}^{K} e^{f(x_i, y_i)}$  (scalar exponential moving average, EMA), where K = minibatch size, then, the gradient of  $I_{TUBA}$  yields the 'improved MINE gradient estimator'

#### Multi-sample unnormalized lower bounds

- To reduce variance of variational bounds, we extend the unnormalized bounds to depend on multiple samples.
- Goal : estimate  $I(X_1; Y)$  given samples from  $p(x_1)p(y|x_1)$  and access to K-1 additional samples  $x_{2:k} \sim r^{K-1}(x_{2:K}) = \prod_{i=2}^K p(x_i)$ .
- Note: We assume  $X_1, ... X_K$  are independent (not sure...or assuming Markov chain), so using fact: I(X,Z;Y) = I(X;Y) if  $Z \perp (X,Y)$ , we get  $I(X_1;Y) = I(X_1,...X_K;Y)$
- Recall :  $f^*(x,y) = 1 + \log(\frac{p(x|y)}{p(x)})$  on  $I_{NWJ} = \mathbb{E}_{p(x,y)}[f(x,y)] e^{-1}\mathbb{E}_{p(y)}[Z(y)]$

Using this, the optimal critic for multi sample case :  $f^*(x_{1:k}, y) = 1 + \log\left(\frac{p(y|x_{1:k})}{p(y)}\right) = 1 + \log\left(\frac{p(y|x_1)}{p(y)}\right)$ 

=> Critics now also depends on the additional samples  $x_{2:K}$ 

#### Multi-sample unnormalized lower bounds ( $I_{NWI}$ )

• By setting, the critic  $f(x_{1:k}, y) = 1 + \log \frac{e^{f(x_1, y)}}{a(y; x_1, y)}$  and  $r^{K-1}(x_{2:K}) = \prod_{j=2}^K P(x_j)$ , the multi-sample  $I_{NWJ}$  becomes (the RHS term):

$$I(X_1; Y) \ge 1 + \mathbb{E}_{p(x_{1:K})p(y|X_1)} \left[ \log \frac{e^{f(x_1, y)}}{a(y; x_{1:K})} \right] - \mathbb{E}_{p(x_{1:K})p(y)} \left[ \frac{e^{f(x_1, y)}}{a(y; x_{1:K})} \right]$$

• One way to exploit additional sample  $x_{2:K}$  from p(x) is to use MC estimate of the partition function Z(y):

$$\Rightarrow$$
 Set  $a(y; x_{1:K}) = m(y; x_{1:K}) = \frac{1}{K} \left( \sum_{i=1}^{K} e^{f(x_i, y)} \right) \cong Z(y)$ 

• Then, the last term  $\mathbb{E}_{p(x_{1:K})p(y)}\left[\frac{e^{f(x_1,y)}}{m(y;x_{1:K})}\right] = \frac{1}{K}\sum_{i=1}^{K}\mathbb{E}_{p(x_{1:K})p(y)}\left[\frac{e^{f(x_i,y)}}{m(y;x_{1:K})}\right] = 1$ , Thus, we get  $I_{NCE}$ :

$$I(X;Y) \ge \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^K\log\frac{e^{f(x_i,y_i)}}{\frac{1}{K}\sum_{j=1}^K e^{f(x_i,y_i)}}\right]$$
, where expectation is taken over  $\Pi_j p(x_j,y_j)$ 

#### Multi-sample unnormalized lower bounds ( $I_{NWI}$ , $I_{\alpha}$ )

- Note :  $I_{NCE} < \log K$  and the optimal critic for  $I_{NCE}$  is  $f(x,y) = \log p(y|x) + c(y)$ Therefore, if  $I(X;Y) > \log K$ , then the lower bound  $(I_{NWI})$  may be loose.
- Note :  $I_{NWI}$  : low-bias, high variance estimator  $\Leftrightarrow I_{NCE}$  : high-bias, low-variance estimation.
- To get a continuum between  $I_{NWJ}$  and  $I_{NCE}$ , set  $f(x_{1:k},y)=1+\log\frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K})+(1-\alpha)q(y)}$  with  $\alpha\in[0,1]$ , then we get following lower bound  $I_{\alpha}$ :

$$1 + \mathbb{E}_{p(x_{1:K})p(y|x_1)} \left[ \log \frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right] - \mathbb{E}_{p(x_{1:K})p(y)} \left[ \frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right]$$

• Note :  $I_{NWJ}(\alpha=0)$  and  $I_{NCE}(\alpha=1)$  and  $I_{\alpha}<\log\frac{K}{\alpha}$ 

#### Structured bounds with tractable encoders

- When the conditional distribution p(y|x) is known (This case is common in representation learning), we can use previous bounds to find upper bound.
- Recall  $R \triangleq \mathbb{E}_{p(x)}[KL(p(y|x)||q(y)]$ , which is an upper bound of MI.

Given a minibatch of  $K(x_i, y_i)$  pairs, we can approximate  $p(y) \cong \frac{1}{K} \sum_{i=1}^{K} p(y|x_i)$  and  $q_i(y) = \frac{1}{K-1} \sum_{j \neq i} p(y|x_j)$ . Using this, we can upper bound MI by following :

$$I(X;Y) \le \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \left[ \log \frac{p(y_i|x_i)}{\frac{1}{K-1} \sum_{j \ne i} p(y_i|x_i)} \right] \right]$$

where the expectation is over  $\Pi_i p(x_i, y_i)$ .

• Using  $I_{NCE}$  and this upper bound, we can sandwich MI without introducing learned variational distribution.

# **Experiments**

#### **Comparing estimates across different lower bounds**

- Experiment environment :
  - (x,y) are drawn from 20-dim Gaussian distribution with correlation  $\rho(t)$ , where t = step
  - $(x, (Wy)^3)$  are also prepared using  $W_{ij} \sim N(0,1)$  and cubic exponent done by element-wise.
  - Note :  $I(X;Y) = I(X;(WY)^3)$  (full rank linear transformation does not change MI)

