Deep Learning: intuition

Logistic regression

$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Problem: nonlinear dependencies

Logistic regression (generally, linear model) need feature engineering to show good results.

And feature engineering is an *art*.

Classic pipeline

Handcrafted features, generated by experts.

NN pipeline

Automatically extracted features.

NN pipeline: example

E.g. two logistic regressions one after another.

Actually, it's a neural network.

Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^{-a}}$$
$$f(a) = \tanh(a)$$
$$f(a) = \max(0, a)$$
$$f(a) = \log(1 + e^{a})$$

Some generally accepted terms

- Layer a building block for NNs :
 - Dense/Linear/FC layer: f(x) = Wx+b
 - Nonlinearity layer: $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we will cover later
- Activation function function applied to

layer output

- Sigmoid
- o tanh
- ReLU
- Any other function to get nonlinear intermediate signal in NN
- Backpropagation a fancy word for

"chain rule"

Actually, networks can be deep

VGG16

And deeper...

VGG16

VGG19

Much deeper...

How to train it?

Backpropagation and chain rule

Chain rule is just simple math: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Gradient optimization

Stochastic gradient descent (and variations) is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

45

Activation functions

Once more: nonlinearities

$$f(a) = \frac{1}{1 + e^{-a}}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^{a})$$

Activation functions: Sigmoid

- Maps R to (0,1)
- Historically popular, one of the first approximations of neuron activation

Problems:

- Almost zero gradients on the both sides (saturation)
- Shifted (not zero-centered) output
- Expensive computation of the

Activation functions: tanh

- Maps R to (-1,1)
- Similar to the Sigmoid in other ways

Problems:

- Almost zero gradients on the both sides (saturation)
- Shifted (not zero-centered) output
- Expensive computation of the exponent

 $f(a) = \tanh(a)$

Activation functions: ReLU

- Up to 6 times faster than Sigmoid
- Does not saturate when x > 0
 - So the gradients are not 0

Problems:

- Zero gradients when x < 0
- Shifted (not zero-centered) output

 $f(a) = \max(0, a)$

Activation functions: Leaky ReLU

- Very simple to compute (both forward and backward)
 - Up to 6 times faster than Sigmoid
- Does not saturate when

Problems:

 Shifted, but not so much output

$$f(a) = \max(0.01a, a)$$

Activation functions: ELU

- Similar to ReLU
- Does not saturate
- Close to zero mean outputs

Problems:

 Requires exponent computation

$$f(a) = \begin{cases} a, & a > 0 \\ \alpha(\exp(a) - 1), & a \le 0 \end{cases}$$

Activation functions: sum up

- Use ReLU as baseline approach
- Be careful with the learning rates
- Try out Leaky ReLU or ELU
- Try out tanh but do not expect much from it
- Do not use Sigmoid

Fancy neural networks

Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Algebraic Geometry (Latex)

```
Proof. Omitted.
Lemma 0.1. Let C be a set of the construction.
  Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
                                   O_{\mathcal{O}_{+}} = O_{\mathcal{X}}(\mathcal{L})
Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on X_{cost}, we
                          \mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} \{\mathcal{G}, \mathcal{F}\}\}
where G defines an isomorphism F \rightarrow F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U ⊂ X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
                     b: X \to Y' \to Y \to Y \to Y' \times_Y Y \to X.
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of O_X-modules. The following are equivalent
    (1) F is an algebraic space over S.
    (2) If X is an affine open covering.
Consider a common structure on X and X the functor O_X(U) which is locally of
finite type.
```

Linux kernel (source code)

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags;
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xffffffff & (bit << 4):
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   original MLL instead n 1
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seq);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex):
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

٠

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$O_X(F) = \{morph_1 \times_{O_X} (G, F)\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X$$
.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

This since $F \in F$ and $x \in G$ the diagram

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite type f_* . This is of finite type diagrams, and

the composition of G is a regular sequence,

Spec(Ka)

O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas 77. A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{T} -1(\mathcal{O}_{X_{(rest)}}) \longrightarrow \mathcal{O}_{X}^{-1}\mathcal{O}_{X_{0}}(\mathcal{O}_{X_{0}}^{T})$$

is an isomorphism of covering of O_{X_t} . If F is the unique element of F such that Xis an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{X} -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If F is a finite direct sum $O_{N_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of F is a similar morphism.

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG PG
                 vesa slot addr pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type)
#define SWAP ALLOCATE(nr)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd thesp, t0, t3" :: "r" (0)); \
  if ( type & DO READ)
static void stat_PC_SEC __read mostly offsetof(struct seq argsqueue, \
          pC>[1]);
static void
os prefix(unsigned long sys)
#ifdef CONFIG PREEMPT
 PUT PARAM RAID(2, sel) = get state state();
  set pid sum((unsigned long)state, current state str(),
           (unsigned long)-1->lr full; low;
```


Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNN:

Convolutional layer and visual cortex

Outro

- Neural Networks are great
 - Especially for data with specific structure
- All operations should be differentiable to use backpropagation mechanics
 - And still it is just basic differentiation
- Many techniques in Deep Learning are inspired by nature
 - Or general sense
- Do not hesitate to ask questions (and answer them as well)
 More materials for self-study: <u>link</u>