Midterm II

April 22-25, 2014

Math 465/501 - Introduction to Differential Geometry Name

You may use any references or sources you wish, but you must work independently.

Problem 1. (25 points) Let V be a 3-dimensional vector space, and let $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis, with dual basis $\mathcal{B}^* = \{\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3\}$.

Let $\eta=2\mathbf{e}^1-\mathbf{e}^3$ and let $\gamma=\frac{1}{2}\mathbf{e}^2+\mathbf{e}^3$. Set $T=\eta\wedge\gamma$ and $S=\eta\odot\gamma$.

- a) (5 points) Express S and T as tensors (that is, without the symbols " \wedge " or " \odot ").
- **b**) (5 points) Determine the values of the following symbols: T_{33} , T_{12} , S_{33} , and S_{12} .
- **c**) (5 points) Suppose V has a metric $g = g_{ij} \mathbf{e}^i \otimes \mathbf{e}^j$ where

$$g_{ij} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Find Tr(S). (Hint: The matrix g is easy to invert by hand.)

d) (10 points) Compute the norm-square of T; that is, compute $|T|^2$.

Problem 2. (15 points)

Recall the following operations in classical 3-dimensional vector field theory: Given vector fields $X = (a, b, c)^T$ and $Y = (\alpha, \beta, \gamma)^T$ on \mathbb{R}^3 , we have the operations

- The inner product: $\langle X, Y \rangle = a\alpha + b\beta + c\gamma$.
- The cross product: $X \times Y = (b\gamma c\beta, c\alpha a\gamma, a\beta b\alpha)^T$
- The curl: $\nabla \times X = \left(\frac{\partial c}{\partial y} \frac{\partial b}{\partial z}, \frac{\partial a}{\partial z} \frac{\partial c}{\partial x}, \frac{\partial b}{\partial x} \frac{\partial a}{\partial y}\right)^T$
- The divergence: $\nabla \cdot X = \frac{\partial a}{\partial x} + \frac{\partial b}{\partial y} + \frac{\partial c}{\partial z}$

In the formalism of exterior forms, these operations can be expressed with combinations of the Hodge star * and the exterior derivative d as follows: If $\eta = X_{\flat}$ and $\gamma = Y_{\flat}$ are 1-forms on \mathbb{R}^3 , then

- i) The inner product of η with γ : $\langle \eta, \gamma \rangle = *(\eta \wedge *\gamma)$.
- ii) The cross product of η with γ : $*(\eta \wedge \gamma)$
- *iii*) The curl of η : $curl(\eta) = *d\eta$
- iv) The divergence of η : $div(\eta) = *d(*\eta)$

(You are not asked to prove these; you may accept them as facts.) One advantage of our new formalism is that it becomes easy to determine vector calculus identities: for instance the classical identity div(curl(X)) = 0 is simply

$$div(curl(\eta)) = *d **d\eta = *dd\eta = 0$$

where we used that $**: \bigwedge^k \to \bigwedge^k$ equals $(-1)^{k(n-k)}$ and $dd: \bigwedge^k \to \bigwedge^{k+2}$ is always zero.

Use the formalism of exterior forms to prove the classic vector calculus identity:

$$\nabla \cdot (X \times Y) = \langle Y, \nabla \times X \rangle - \langle X, \nabla \times Y \rangle.$$

(Hint: You will have to use the identity $** = (-1)^{k(n-k)}$ <u>twice</u>: once at the beginning of the problem, and then later in order to use the identity (i) in conjunction with (iii).)

Problem 3. (35 points) We have often used stereographic projection to create coordinate charts on the sphere, but there are other ways to construct charts. Let

$$\mathbb{S}^2 \ = \ \left\{ \, (x^1, x^2, x^2)^2 \in \mathbb{R}^2 \, \left| \, (x^1)^2 + (x^2)^2 + (x^3)^2 \, \right. \, = \, 1 \, \right\}$$

be the unit sphere. Let U and V be the following hemispheres:

$$U = \{(x^1, x^2, x^3)^T \in \mathbb{S}^2 \mid x^3 > 0\},$$
 (this is the upper hemisphere)
 $V = \{(x^1, x^2, x^3)^T \in \mathbb{S}^2 \mid x^2 > 0\}$

We will use the projection charts

$$\varphi_U : U \to \mathbb{R}^2, \qquad \varphi_U(x^1, x^2, x^3) = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$$

$$\varphi_V : V \to \mathbb{R}^2, \qquad \varphi_V(x^1, x^2, x^3) = \begin{pmatrix} x^1 \\ x^3 \end{pmatrix}$$

Give the *U*-chart coordinates u^1, u^2 and give the *V*-chart coordinates v^1, v^2 .

- **a)** (5 points) As best you can, sketch the two domains U and V on the sphere $\mathbb{S}^2 \in \mathbb{R}^3$. Indicate the location (or locations) where they overlap. Do the sets U, V with the maps φ_U , φ_V constitute an atlas for \mathbb{S}^2 ?
 - **b**) (5 points) Show that

$$\varphi_U^{-1}(u^1, u^2) = \begin{pmatrix} u^1 \\ u^2 \\ (1 - (u^1)^2 - (u^2)^2)^{\frac{1}{2}} \end{pmatrix}$$

$$\varphi_V^{-1}(v^1, v^2) = \begin{pmatrix} v^1 \\ (1 - (v^1)^2 - (v^2)^2)^{\frac{1}{2}} \\ v^2 \end{pmatrix}$$

- **c**) (5 points) Compute the *U*-to-*V* transition φ_{VU} . What is v^1 as a function of u^1 and u^2 ? What is v^2 as a function of u^1 and u^2 ?
- **d**) (5 points) Consider the function $h: \mathbb{S}^2 \to \mathbb{R}$ given by $h(x^1, x^2, x^3) = x^3$ (this sometimes called the height function). For points in the *U*-chart, express h as a function of u^1, u^2 . For points in the *V*-chart, express h as a function of v^1, v^2 .
 - e) (5 points) Compute dh in the U-chart and in the V-chart.
- \mathbf{f}) (10 points) Show by computation that your two expressions for dh, though they look very different, are identical up to change of coordinates.

Problem 4. (25 points) Consider the two paths

$$a: [-0.5, 0.5] \longrightarrow \mathbb{R}^2, \qquad a(t) = \begin{pmatrix} t \\ \frac{1}{2}t \end{pmatrix}$$

 $b: [-0.5, 0.5] \longrightarrow \mathbb{R}^2, \qquad b(t) = \begin{pmatrix} t \\ \frac{1}{2}\sin(t) \end{pmatrix}$

These paths obviously coincide at t = 0. Assume \mathbb{R}^2 has coordinates u^1 and u^2 .

- a) (10 points) Do the paths a and b determine the same vector at the point $(0,0) \in \mathbb{R}^2$? To check this, you must use the definitions—in other words if f is an arbitrary differentiable function, you must show that the differential operators associated to a(t) and b(t) at t = 0 have the same action on f.
- **b**) (5 points) Express the vector $\mathbf{v} = \frac{da}{dt}\big|_{t=0} \in T_{(0,0)^T}\mathbb{R}^2$ in terms of the coordinate fields $\frac{\partial}{\partial u^1}$, $\frac{\partial}{\partial u^2}$.
- **c**) (10 points) Consider again the coordinate chart $\varphi_U: U \to \mathbb{R}^2$ from Problem (3). Let $\psi_U = \varphi_U^{-1}$ be the associated parametrization. The vector **v** pushes forward along ψ_U to a vector on the sphere. Answer the following two questions: At what point on \mathbb{S}^2 is the vector $\psi_{U*}(\mathbf{v})$ based? What is the expression of $\psi_{U*}(\mathbf{v})$ in terms of the standard coordinate fields $\left\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3}\right\}$ of \mathbb{R}^3 ?