CLAIMS:

25

- 1. A multi-stack optical data storage medium for recording using a focused radiation beam having a wavelength λ and entering through an entrance face of the medium during recording, comprising:
- a first substrate with present on a side thereof:
- a first recording stack named L₀, comprising a recordable type L₀ recording layer, and formed in a first L₀ guide groove, the L₀ recording layer having a thickness d_{L0G} in the groove and a thickness d_{L0L} adjacent the groove, and a first reflective layer present between the L₀ recording layer and the first substrate,
 - second substrate with present on a side thereof:
- 10 a second recording stack named L₁ comprising a recordable type L₁ recording layer, the L₁ recording layer having a thickness d_{L1G} in the groove and a thickness d_{L1L} adjacent the groove, said second recording stack being present at a position closer to the entrance face than the L₀ recording stack and formed in a second L₁ guide groove,
- a transparent spacer layer sandwiched between the recording stacks, said
 transparent spacer layer having a thickness substantially larger than the depth of focus of the focused radiation beam,
 characterized in that the depth of the first L₀ guide groove is smaller than 0.15λ and that d_{LOL} is substantially equal to or larger than d_{LIG}.
- 20 2. A multi-stack optical data storage medium according to claim 1, wherein d_{L0G} is substantially equal to or larger than $2d_{L1L}$.
 - 3. A multi-stack optical data storage medium according to claim 1, wherein the recordable type L_0 and L_1 recording layers comprise an organic dye.
 - 4. A multi-stack optical data storage medium according to claim 3, wherein d_{L1G} is larger than d_{L1L} .

- 5. A multi-stack optical data storage medium according to claim 4, wherein a dielectric layer is present at a side of the L₀ recording layer opposite from the side where the first reflective layer is present.
- 5 6. A multi-stack optical data storage medium according to claim 5, wherein the dielectric layer has a thickness in the range of 5 nm 120 nm.
 - 7. A multi-stack optical data storage medium according to claim 4, wherein a second reflective layer comprising a metal is present at a side of the L_0 recording layer opposite from the side where the first reflective layer is present.

10

- 8. A multi-stack optical data storage medium according to claim 7, wherein the second reflective layer has a thickness in the range of 5 nm -15 nm.
- 9. A multi-stack optical data storage medium according to claim 7 or 8, wherein the second reflective layer mainly comprises a metal selected from the group of Ag, Au and Cu.
- 10. Use of an optical data storage medium as claimed in any one of the preceding claims for multi stack recording with a reflectivity level of the first recording stack L₀ as such of more than 50% and modulation of recorded marks in the L₀ recording layer of more than 60%.