Time calibrated phylogeny (incl. diagnostics)

Beatriz Willink

Rachel Blow

May 2020

Contents

StarBEAST2 species trees file output	1
Building the tree (Fig. 2)	1
StarBEAST2 log files output	2
Reading in the data as mcmc objects	2
Comparing log files when sampling from the prior and when sampling from the data (Fig. 3)	6
Diagnostics of StarBEAST2 analysis	7
1) Diagnostics for a single run	7
a) Autocorrelation	7
b) Effective sample size	9
2) Test for convergence of multiple runs	9
a) Gelman-Rubin statistic	9
b) Plotting traces	9
c) Plotting density curves	10

StarBEAST2 species trees file output

Building the tree (Fig. 2)

Set your working directory to the parent directory containing all of your MCMC analyses

```
knitr::opts_knit$set(root.dir = '..' )
```

Call "treeio" and "ggtree" packages for reading and writing trees

```
require(treeio)
require(ggtree)
```

Read in the summary tree

```
beast_tree <- read.beast("StarBEAST2/summary.tree")</pre>
```

Rename taxa for displaying on tree

Call "ggplot2" for additional plotting capability

```
require(ggplot2)
```

Create time-calibrated phylogeny displaying age-estimation uncertainty and posterior estimates

```
tree <- ggtree(beast_tree) +
  coord_cartesian(clip = 'off') +
  geom_tiplab(aes(label = label2), size=3, offset = 1) +
  geom_nodelab(aes(x=x, label=round(posterior, 2)), hjust=1, vjust=-1.2, size=2) +
  geom_range("height_0.95_HPD", color = "grey", size = 2, alpha = 0.7) +
  theme_tree2(plot.margin=margin(6, 15, 6, 3)) +
  geom_cladelabel(node=43, label = "Clade I", offset = 5) +
  geom_cladelabel(node=69, label= "Clade II", offset = 5) +
  geom_cladelabel(node=53, label= "Clade III", offset = 5) +
  geom_cladelabel(node=56, label= "Clade IV", offset = 5)</pre>
revts_tree <- revts(tree)
```

Save it as a PDF

```
ggsave("Figures/Fig2.pdf", revts_tree, width = 12, height = 7)
```

StarBEAST2 log files output

Output from each independent run should be saved into its own subdirectory within the StarBEAST2 directory.

Reading in the data as mcmc objects

Read in your traces and make sure they are named correctly

```
path <- ("StarBEAST2/")
directories <- c("run1/","run2/", "run_from_prior/")
filename <- "starbeast.log"</pre>
```

```
for (i in directories){
   x = c(path, i, filename)
   assign(paste("run", which(directories==i), sep=""),
        as.data.frame(read.table(paste(x, collapse =""), header=T)))
}
```

Remove any parameters that are not involved with the species tree and give the remaining parameters sensible names

attributes(run1)\$names

```
[1] "Sample"
##
##
     [2] "posterior"
##
     [3] "likelihood"
##
     [4] "prior"
##
     [5] "speciescoalescent"
     [6] "popMean.Species"
##
##
     [7] "branchRatesStdev.Species"
##
     [8] "TreeHeight.Species"
     [9] "TreeHeight.t.16S"
##
##
    [10] "TreeHeight.t.ARG"
    [11] "TreeHeight.t.COI"
##
    [12] "TreeHeight.t.D7"
##
    [13] "TreeHeight.t.H3"
##
    [14] "TreeLength.Species"
##
##
    [15] "treeLikelihood.16S"
    [16] "treeLikelihood.ARG"
##
##
    [17] "treeLikelihood.COI"
##
    [18] "treeLikelihood.D7"
##
   [19] "treeLikelihood.H3"
##
    [20] "rateAC.s.16S"
   [21] "rateAG.s.16S"
##
##
   [22] "rateAT.s.16S"
   [23] "rateCG.s.16S"
##
##
    [24] "rateCT.s.16S"
##
   [25] "rateGT.s.16S"
   [26] "substmodel.s.16S"
##
   [27] "rateAC.s.ARG"
   [28] "rateAG.s.ARG"
##
##
   [29] "rateAT.s.ARG"
##
   [30] "rateCG.s.ARG"
   [31] "rateCT.s.ARG"
##
##
    [32] "rateGT.s.ARG"
   [33] "substmodel.s.ARG"
##
##
   [34] "rateAC.s.COI"
##
    [35] "rateAG.s.COI"
    [36] "rateAT.s.COI"
##
##
   [37] "rateCG.s.COI"
   [38] "rateCT.s.COI"
##
##
    [39] "rateGT.s.COI"
##
   [40] "substmodel.s.COI"
  [41] "rateAC.s.D7"
## [42] "rateAG.s.D7"
```

```
[43] "rateAT.s.D7"
##
    [44] "rateCG.s.D7"
    [45] "rateCT.s.D7"
##
    [46] "rateGT.s.D7"
##
##
    [47] "substmodel.s.D7"
##
    [48] "rateAC.s.H3"
##
    [49] "rateAG.s.H3"
    [50] "rateAT.s.H3"
##
##
    [51] "rateCG.s.H3"
##
    [52] "rateCT.s.H3"
    [53] "rateGT.s.H3"
    [54] "substmodel.s.H3"
##
    [55] "BMT ModelIndicator.s.16S"
##
##
    [56] "BMT_ModelIndicator.s.ARG"
##
    [57] "BMT_ModelIndicator.s.COI"
##
    [58] "BMT_ModelIndicator.s.D7"
##
    [59] "BMT_ModelIndicator.s.H3"
##
    [60] "BMT Rates.s.16S1"
##
    [61] "BMT_Rates.s.16S2"
    [62] "BMT Rates.s.16S3"
##
##
    [63] "BMT_Rates.s.16S4"
##
    [64] "BMT Rates.s.16S5"
    [65] "BMT_Rates.s.16S6"
##
##
    [66] "BMT Rates.s.ARG1"
##
    [67] "BMT Rates.s.ARG2"
    [68] "BMT Rates.s.ARG3"
##
    [69] "BMT_Rates.s.ARG4"
    [70] "BMT_Rates.s.ARG5"
##
    [71] "BMT_Rates.s.ARG6"
##
    [72] "BMT Rates.s.COI1"
##
    [73] "BMT_Rates.s.COI2"
##
##
    [74] "BMT_Rates.s.COI3"
    [75] "BMT_Rates.s.COI4"
##
##
    [76] "BMT_Rates.s.COI5"
    [77] "BMT Rates.s.COI6"
##
##
    [78] "BMT Rates.s.D71"
##
    [79] "BMT Rates.s.D72"
##
    [80] "BMT_Rates.s.D73"
    [81] "BMT Rates.s.D74"
##
    [82] "BMT_Rates.s.D75"
##
    [83] "BMT Rates.s.D76"
    [84] "BMT Rates.s.H31"
##
    [85] "BMT Rates.s.H32"
##
##
    [86] "BMT_Rates.s.H33"
    [87] "BMT_Rates.s.H34"
    [88] "BMT_Rates.s.H35"
##
    [89] "BMT Rates.s.H36"
##
##
    [90] "BMT_gammaShape.s.16S"
##
    [91] "BMT_gammaShape.s.ARG"
    [92] "BMT_gammaShape.s.COI"
##
##
    [93] "BMT_gammaShape.s.D7"
##
    [94] "BMT_gammaShape.s.H3"
##
    [95] "BMT_ProportionInvariable.s.16S"
    [96] "BMT ProportionInvariable.s.ARG"
##
```

```
[97] "BMT ProportionInvariable.s.COI"
##
    [98] "BMT_ProportionInvariable.s.D7"
   [99] "BMT ProportionInvariable.s.H3"
## [100] "hasGammaRates.s.16S"
## [101] "hasGammaRates.s.ARG"
## [102] "hasGammaRates.s.COI"
## [103] "hasGammaRates.s.D7"
## [104] "hasGammaRates.s.H3"
## [105] "hasInvariableSites.s.16S"
## [106] "hasInvariableSites.s.ARG"
## [107] "hasInvariableSites.s.COI"
## [108] "hasInvariableSites.s.D7"
## [109] "hasInvariableSites.s.H3"
## [110] "ActivePropInvariable.s.16S"
## [111] "ActivePropInvariable.s.ARG"
## [112] "ActivePropInvariable.s.COI"
  [113] "ActivePropInvariable.s.D7"
  [114] "ActivePropInvariable.s.H3"
## [115] "ActiveGammaShape.s.16S"
## [116] "ActiveGammaShape.s.ARG"
## [117] "ActiveGammaShape.s.COI"
## [118] "ActiveGammaShape.s.D7"
## [119] "ActiveGammaShape.s.H3"
## [120] "hasEqualFregs.s.16S"
## [121] "hasEqualFreqs.s.ARG"
  [122] "hasEqualFreqs.s.COI"
## [123] "hasEqualFreqs.s.D7"
## [124] "hasEqualFreqs.s.H3"
## [125] "BMT_frequencies.s.16S1"
## [126] "BMT_frequencies.s.16S2"
## [127] "BMT_frequencies.s.16S3"
  [128] "BMT_frequencies.s.16S4"
## [129] "BMT_frequencies.s.ARG1"
## [130] "BMT_frequencies.s.ARG2"
## [131] "BMT frequencies.s.ARG3"
## [132] "BMT_frequencies.s.ARG4"
## [133] "BMT frequencies.s.COI1"
## [134] "BMT_frequencies.s.COI2"
## [135] "BMT frequencies.s.COI3"
## [136] "BMT_frequencies.s.COI4"
  [137] "BMT frequencies.s.D71"
## [138] "BMT frequencies.s.D72"
  [139] "BMT_frequencies.s.D73"
## [140] "BMT_frequencies.s.D74"
## [141] "BMT_frequencies.s.H31"
## [142] "BMT_frequencies.s.H32"
## [143] "BMT_frequencies.s.H33"
## [144] "BMT_frequencies.s.H34"
## [145] "molecularClockRate.c.16S"
## [146] "molecularClockRate.c.ARG"
## [147] "molecularClockRate.c.COI"
## [148] "molecularClockRate.c.D7"
## [149] "molecularClockRate.c.H3"
## [150] "BirthDeathModel.t.Species"
```

Set the variables that will be used to create your MCMC object, including 20% post-burnin used when combining posterior species trees.

```
burnin <- floor(0.20 * nrow(run1))
thin <- run1$sample[2] - run1$sample[1]
start <- burnin*thin
end <- max(run1$sample)</pre>
```

Call the "coda" package for creating mcmc objects

```
require(coda)
```

Make your mcmc objects and throw away the burnin

Put them into a list

```
mh.list <-mcmc.list()
for (i in 1:length(directories)){
    temp <- eval(parse(text=paste("mcmc", i, sep = "")))
    mh.list[[i]] <- temp
}</pre>
```

Comparing log files when sampling from the prior and when sampling from the data (Fig. 3)

Reshape data for root age parameter from run 1 (sampling with data) and run 3 (sampling from the prior only)

```
reshaping <- function(x) {
    y <- rbind(t(x[,-1]))
    result <- setNames(as.data.frame.table(y),c("variable","run","value"))
}

for (i in 1:length(directories)){
    temp <- eval(parse(text=paste("run", i,sep = "")))
    reshape <- reshaping(temp)
    reshape$run <- as.factor(rep(i, nrow(reshape)))
    reshape <- reshape[-c(1:burnin),]
    assign(paste("reshape", i, sep = ""), reshape)
}

plot_df <- subset(rbind(reshape1,reshape3), variable == "root.age")</pre>
```

Plot the density curves againt each other

Save figure

Diagnostics of StarBEAST2 analysis

1) Diagnostics for a single run

Create a new mh.list only including data from runs 1 and 2 (runs with data)

```
mh.list.2 <- mcmc.list()
for (i in 1:(length(directories)-1)){
    temp <- eval(parse(text=paste("mcmc", i, sep = "")))
    mh.list.2[[i]] <- temp
}</pre>
```

a) Autocorrelation

Calculate autocorrelation between draws

diag(autocorr(mcmc1)[2, ,])

```
##
                        sample
                                                  posterior
##
                     0.9996250
                                                  0.4157919
##
                    likelihood
                                                      prior
                                                  0.2979133
##
                     0.5059585
##
                    coalescent
                                           population.size
##
                     0.4823087
                                                  0.3565740
##
                  branch.rates
                                                   root.age
##
                     0.7760449
                                                  0.1098280
        branch.lengths.summed
                                         birth.death.model
##
                     0.2020148
                                                  0.1964479
##
##
         diversification.rate
                                       extinction.fraction
                     0.3313919
                                                  0.3109229
##
##
                      root.log
                                      root.hyper.parameter
                     0.2380908
                                                  0.4868924
##
##
   root.hyper.parameter.prior
##
                     0.3317132
```

Present autocorrelation in plot form

```
par(mfrow=c(5,3), mar=c(2,4,2,2)+0.1, cex.main = 0.9)
autocorr.plot(mcmc1[,-1], lag.max = 25, auto.layout = F)
```


b) Effective sample size

Calculate effective sample size

effectiveSize(mcmc1[,-1])

##	posterior	likelihood
##	393.8220	565.2079
##	prior	coalescent
##	636.0853	316.9500
##	population.size	branch.rates
##	401.9005	537.4080
##	root.age	branch.lengths.summed
##	3122.9389	987.4064
##	birth.death.model	diversification.rate
##	996.7976	2579.2317
##	extinction.fraction	root.log
##	3925.2359	2989.5049
##	root.hyper.parameter	${\tt root.hyper.parameter.prior}$
##	2633.7426	3433.4249

2) Test for convergence of multiple runs

a) Gelman-Rubin statistic

Calculate Gelman-Rubin diagnostic of convergence

gelman.diag(mh.list.2,confidence = 0.95, transform=TRUE, autoburnin=FALSE, multivariate=FALSE)

Potential scale reduction factors:

##					
##		Point	est.	Upper	C.I.
##	sample		NaN		${\tt NaN}$
##	posterior		1.00		1.00
##	likelihood		1.15		1.16
##	prior		1.00		1.00
##	coalescent		1.00		1.00
##	population.size		1.00		1.00
##	branch.rates		1.00		1.00
##	root.age		1.00		1.00
##	branch.lengths.summed		1.00		1.00
##	birth.death.model		1.00		1.00
##	diversification.rate		1.00		1.00
##	extinction.fraction		1.00		1.00
##	root.log		1.00		1.00
##	root.hyper.parameter		1.00		1.00
##	<pre>root.hyper.parameter.prior</pre>		1.00		1.00

b) Plotting traces

Get data into correct format for plotting traces from both runs simultaneously

```
for (i in 2:length(run1)){
   for (j in 1:length(directories)){
      temp <- eval(parse(text=paste("mcmc", j, "[,i]", sep = "")))
      assign(paste("trace_", "mcmc", j, colnames(run1[i]), sep=""), temp)
   }
}

temp_list = mcmc.list()
for (i in 2:length(run1)){
   for (j in 1:(length(directories)-1)){
      temp_list[[j]] <- eval(parse(text=paste("trace_mcmc", j, colnames(run1[i]), sep = "")))
      assign(paste("trace_", colnames(run1[i]), sep = ""), temp_list)
   }
}</pre>
```

Plot traces

```
par(mfrow=c(5,3), mar = c(2,4,2,2)+0.1, cex.main = 0.9)
for (i in 2:length(run1)){
  temp <- eval(parse(text = paste("trace_", colnames(run1[i]), sep = "")))
  traceplot(temp,col = rainbow(3, start=0.2, end=0.9))
  title(main = colnames(run1[i]), ylab = " ")
}</pre>
```


c) Plotting density curves

Get data into correct format for plotting density curves of both runs and throw out burnin

```
reshaping <- function(x) {
   y <- rbind(t(x[,-1]))
   result <- setNames(as.data.frame.table(y),c("variable","run","value"))
}

for (i in 1:(length(directories)-1)){
   temp <- eval(parse(text=paste("run", i,sep = "")))
   reshape <- reshaping(temp)
   reshape$run <- as.factor(rep(i, nrow(reshape)))
   reshape <- reshape[-c(1:burnin),]
   assign(paste("reshape", i, sep = ""), reshape)
}

plot_df <- rbind(reshape1,reshape2)</pre>
```

Plot by each parameter

```
p <- ggplot(plot_df, aes(x= value, fill = run, colour = run)) +
    geom_density(alpha = 0.1) +
    theme_bw(base_size = 12)+
    theme(legend.position = "none", strip.text.x = element_text(size = 6),
        axis.text.y = element_text(size=5), axis.text.x = element_text(size=5),
        panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
    labs(x="Parameter value", y = "Density") +
    facet_wrap(~variable, scales = "free", ncol = 3)</pre>
```

