28 Water waves of wavelength λ are diffracted as they pass through a gap of width d in a barrier.

Which combination of wavelength and gap width would produce the greatest angle of diffraction?

	gap width	wavelength
Α	$\frac{1}{2}d$	2λ
В	$\frac{1}{2}d$	$\frac{1}{2}\lambda$
С	2 <i>d</i>	2λ
D	2 <i>d</i>	$\frac{1}{2}\lambda$

29 Two horizontal parallel plate conductors are separated by a distance of 20 mm in air. The upper plate is earthed and the potential of the lower plate is +100 V.

What is the electric field strength at point P midway between the plates?

- **A** 5000 V m⁻¹ downwards
- **B** $5000 \,\mathrm{V \, m^{-1}}$ upwards
- \mathbf{C} 10 000 V m⁻¹ downwards
- **D** $10\,000\,\mathrm{V}\,\mathrm{m}^{-1}\,\mathrm{upwards}$