

IoT Network Security in Smart Homes

Untersuchung der verschieden Schutzmechanismen in Smart Home Netzwerken

Aiman Al-Hazmi & Zohreh Asadi

Übersicht

- Grundlagen von Smart Home Netzwerken
- Verschlüsselung
- Authentifizierung
- Zugriffskontrolle

Übersicht

- Grundlagen von Smart Home Netzwerken
- Verschlüsselung
- Authentifizierung
- Zugriffskontrolle

- loT und Smart Homes Architektur
- Kommunikationsprotokolle
- Bedrohngen und Risiken
- Wichtige Schutzmechanismen

- o loT und Smart Homes Architektur
- o Kommunikationsprotokolle
- o Bedrohngen und Risiken
- Wichtige Schutzmechanismen

- IoT Architektur
 - Basic Layerd Architecture

- IoT Architektur
 - i. Basic Layerd Architecture
 - ii. Service Oriented Architecture

- ✓ IoT Architektur
- Smart Homes Architektur

- ✓ IoT Architektur
- ✓ Smart Homes Architektur

✓ IoT und Smart Homes Architektur

- Kommunikationsprotokolle
- Bedrohngen und Risiken
- Wichtige Schutzmechanismen

✓ IoT und Smart Homes Architektur

- Kommunikationsprotokolle
 - Auswahl von Protokollen

Reichweite, Energieverbrauch, Sicherheit, Kompatibilität..usw.

✓ IoT und Smart Homes Architektur

Kommunikationsprotokolle

Auswahl von Protokollen

Reichweite, Energieverbrauch, Sicherheit, Kompatibilität..usw.

ii. Bekannte Protokolle

Je nach Schicht: Wi-Fi, Bluetooth, Zigbee, Z-Wave, TLS, MQTT, CoAP, usw.

TLS (Transport Layer Security)

- I. Sichere und Zuverlässige Kommunikation
- II. zwischen der Anwendungsschicht (z. B. HTTP) und der Transportschicht (z. B. TCP)
- III. TLS bietet Serverauthentifizierung(Handshake)
- IV.Unterstützt eine Vielzahl kryptografischer Algorithmen.

✓ IoT und Smart Homes Architektur.

Kommunikationsprotokolle

Auswahl von Protokollen

Reichweite, Energieverbrauch, Sicherheit, Kompatibilität..usw.

ii. Bekannte Protokolle

Je nach Schicht: Wi-Fi, Bluetooth, Zigbee, Z-Wave, TLS, MQTT, CoAP, usw.

Constrained Application Protocol (CoAP)

- i. Anwendungsprotokoll auf der Anwendungsschicht
- ii. Speziell für eingeschränkte Geräte.
- iii. Datenaustausch unter Verwendung des REST-Modells (GET, PUST, DELETE, PUT)
- i. Keine Sicherheit für die Übertragung der Daten
- Deswegen verwendet DTLS (Datagram Transport Layer Security), welches auf UDP basiert

- ✓ IoT und Smart Homes Architektur
- ✓ Kommunikationsprotokolle
- Bedrohngen und Risiken
- Wichtige Schutzmechanismen

Bedrohungen und Risiken

- Risikoanalyse ist die große Herausforderung für die Entwicklung von Smart-Home-Systemen.
- Die gefährlichsten Risiken:
 - 1. Änderungen an den Softwarekomponenten
 - 2. Unbefugte Änderungen an Systemfunktionen auf mobilen Geräten
 - 3. Zugriff auf Ressourcen
 - 4. Manipulationen an physischen Sensoren/internen Gateways

Bedrohungen und Risiken

Intentional-Threads:

- Identitätsbetrug
- DoS
- Datenmanipulation

Konsequenzen:

- Unbefugte Änderungen an Richtlinien
- Identitätsdiebstahl
- Die Ausnutzung von SH-Diensten

Unintentional-Threads:

- Informationen von unbekannte Quellen.
- Zufällige Änderung von Daten/Richtlinien
- Schwache Installation
- Falsche Sicherheitsrichtlinien in Geräten

Konsequenzen:

- Dataverlust
- Verletzung der Sicherheitsrichtlinien
- Systemausfall

Bedrohungen und Risiken

Mulfunction-Threads:

- Häufigsten beispiel in störungsthreads
- Die dritte Party geht (z.B sensor) kaput
- Ausfälle in internet
- Hardware oder softwarefehler

Konzequenzen:

- Fehlfunction
- Functionsverlust

Cyber-attacks

Sinkhole: Umlitung der Daten während der Übertragung

- Reduzirung der Datenverkehr
- Tauschung der Absender
- Generierung der Datenvekehr

Selektiver weiterleitungsangeriff: Einnahme von ein oder mehreren Knoten im Netzwerk durch Hacker

- Paketverlust
- Schwer oder nicht erkennbar
- Übertragung unvollständige Infos (gefährlicher als No-Info)

Cyber-attacks

Sybil: Manipulation von Knoten und Erstellung mehrerer Identitäten

- Redudanz/falsche infos
- Erhöhung des Spam-Verkehrs
 - · Malware und Phishing

DoS: Mehrere attacks, 1 system

- Überschwemmung des Netzwerks mit nutzlosem Datenverkehr
- Diebstahl vertraulicher Infos
- Herunterfahren des gesamten Netzwerks.

- ✓ IoT und Smart Homes Architektur
- ✓ Kommunikationsprotokolle
- ✓ Bedrohngen und Risiken
- Wichtige Schutzmechanismen

Schutzmechanismen

Seven key Konzept

Integrität, Authentifizierung, Autorisierung, Vertraulichkeit, Accountability, Verfügbarkeit Non-repudiation

IoT-Sicherheitsarchitekturen

- IoT Cloud on CoAP
- SH-BlockCC
- FIWARE

security architectures	AuthN	AuthZ	Cf'ty	D In'ty	Acb'ty	Av'ty	N-R'ion
IoT Cloud on CoAP	YES		YES	YES			
SH-BlockCC	YES		YES	YES		YES	YES
FIWARE	YES	YES	YES	YES	YES		

Matrix of security architectures and security goals (Authentication (AuthN), Authorization (AuthZ), Confidentiality (Cf'ty), Data Integrity (D In'ty), Accountability (Acb'ty), Availability (Av'ty), Non-Repudiation (N-R'ion))

Schutzmechanismen

- Weitere Schutzmechanismen
 - Intrusion detection systems (IDS)
 - Starke Passwörter
 - Aktualisierte Firmware und Sicherheitspatches

- ✓ Architektur
- ✓ Kommunikationsprotokolle
- ✓ Bedrohngen und Risiken
- ✓ Wichtige Schutzmechanismen

Übersicht

- ✓ Grundlagen von Smart Home Netzwerken
- Verschlüsselung
- Authentifizierung
- > Zugriffskontrolle

Ziel:

- Vertraulichkeit
- Authentifizierung
- Integrität
- Bestreitbarkeit
- Zugangskontrolle

Klassen

Symmetrik-Verschlüsselung (AES, BLOWFISH):

Public key

Encryption und Decryption

Asymmetrik-Verschlüsselung (RSA):

- Public key
 - Encryption
- Private key
 - Decryption

Advanced Encryption Standard (AES)

- Symmetric Verschlüsselung
- Datenblöcken
- Substitutions-Permutations-Netzwerk (SPN)
- Ersetzungs- und Permutationsoperationen
 - Vertraulichkeit
 - Datenintegrität

Vorteile

- Schnelle Ver- und Entschlüsselung (HW,SW)
- Flexible Schlüsselgrößen (128, 192, 256 Bit)
- Bessere Sicherheit als DES und Triple-DES
- Kein Wurmlöcher

Nachteile

- Mehr Rechenleistung f
 ür große Datenbl
 öcke
- Nicht effizient für große Pakete

BLOWFISH

- Symmetric verschlüsselung
- Für Software entwickelt
- Schlüsselgröße: 32-448 Bit
- Schnelle Ver- und Entschlüsselung
- Verwendet Substitutions-Boxen und XOR-Operationen

Diagram of Blowfish's F function

Vorteile

- Gute Leistung, keine Wurmlöcher
- Effiziente Ver-/Entschlüsselung
- Variable Schlüsselgröße: 32-448 Bit
- Weniger Kryptoanalyseversuche

Nachteile

- Rechenintensiver als AES
- Zeit- und Stromverbrauch
- Nicht Hardware-optimiert
- Potenziell weniger analysiert

RSA

- Asymmetrischer Algorithmus
- Sicherheit durch Faktorisierungsschwierigkeit
- Encryption (Verschlüsselung): C = M^e mod n
- Decryption (Entschlüsselung): M = C^d mod n
 - C ciphertext, M Plaintext
 - · Primzahlen p und q
 - Geheimhaltung von Primzahlen
 - Produkt n = p*q
 - Öffentlicher Exponent e
 - Private Exponent d

Vorteile

- Sichere Übertragung
- Digitale Signaturen
- Sicherer Algorithmus

Nachteile

- Rechenintensiverals symmetric-encryption
- Timing-Angriffe
- Spezielle HW- und SW-Implementierungen

Übersicht

- ✓ Grundlagen von Smart Home Netzwerken
- ✓ Verschlüsselung
- Authentifizierung
- > Zugriffskontrolle
- Best Practices

Authentifizierung

Authentifizierung

- Taxonomie der IoT-Authentifizierungsschemas
- Mutual TLS(MTLS)
- Lightweight CoAP-based Authentication
- CoAP Payload Based Lightweight Authentication

- Taxonomie der IoT-Authentifizierungsschemas
- Mutual TLS(MTLS)
- Lightweight CoAP-based Authentication
- CoAP Payload Based Lightweight Authentication

Taxonomie der IoT-Authentifizierungsschemas

Taxonomie der IoT-Authentifizierungsschemas

Authentifizierungsverfahren

Authentifizierungsfaktor

Multi-Factor Authentication

Taxonomie der IoT-Authentifizierungsschemas

Authentifizierungsverfahren

Authentifizierungsfaktor

Token-Based

IoT Network Security in Smart Homes, 11,07,2023

Taxonomie der IoT-Authentifizierungsschemas

Authentifizierungsverfahren

Authentifizierungsfaktor

Token-Based

One-Way authentication(Handshake)

Einweg (One-Way authentication)

Shared

key

Taxonomie der IoT-Authentifizierungsschemas

Authentifizierungsverfahren

Authentifizierungsfaktor

Token-Based

One-Way authentication(Handshake)

Two-Way authentication (Mutual)

Public key

timestamp

- ✓ Taxonomie der IoT-Authentifizierungsschemas
- Mutual TLS(MTLS)
- Lightweight CoAP-based Authentication
- CoAP Payload Based Lightweight Authentication

Mutual TLS(MTLS)

- ✓ Taxonomie der IoT-Authentifizierungsschemas
- ✓ Mutual TLS(MTLS)
- Lightweight CoAP-based Authentication
- CoAP Payload Based Lightweight Authentication

Lightweight CoAP-based Authentication

- Sichere und zuverlässige Alternative zu DTSL
- Vier handshake Nachrichten
- AES zur Verschlüsselung

Lightweight CoAP-based Authentication

Session initiation:

M0p = Gerät-ID

Server challenge:

M1p = AES{Yi, ((Yi XOR Ks) | nonceServer)}

Client response & challenge:

E(M1p) &

M2p = AES{Ks, (nonceServer XOR Yi | nonceClient)}

Server response:

 $M3p = AES{Yi, (nonceClient | Ks)}$

Jetzt erfolgt die Kommunikation unter Verwendung Ks zur Verschlüsselung

- ✓ Taxonomie der IoT-Authentifizierungsschemas
- ✓ Mutual TLS(MTLS)
- ✓ Lightweight CoAP-based Authentication
- CoAP Payload Based Lightweight Authentication

CoAP Payload Based Lightweight Authentication

- Nur zwei Handshke-Nachrichten
- Gemeinsamer Geheimschlüssel (Ki)

1. Request von Client:

 $M1p = IDi \mid\mid C1$ Wobei $C1 = E (Ki, ((Nc XOR IDi) \mid\mid (Nc XOR KiL))$

2. Response von Server: M2p = E (Ki, (Ns || (Ns XOR Nc))

- ✓ Taxonomie der IoT-Authentifizierungsschemas
- ✓ Mutual TLS(MTLS)
- ✓ Lightweight CoAP-based Authentication
- ✓ CoAP Payload Based Lightweight Authentication

Übersicht

- ✓ Grundlagen von Smart Home Netzwerken
- ✓ Verschlüsselung
- ✓ Authentifizierung
- > Zugriffskontrolle

Zugriffskontrolle

- Authentifizierung, Autorisierung und Verantwortlichkeit
- Zugriffskontrollmechanismen:
 - RBAC, ABAC, HyBACAC
- Überprüfung und Verifizierung der Zugriffskontrollrichtlinien
 - Tools: ACLs, Router, Verschlüsselung, Prüfprotokolle, IDS, Antivirensoftware, Firewalls,
 Smartcards

Zugriffskontrolle

ABAC

- Rollenzentrierung + Autorisierung
- Echtzeit-Umgebungszustände
- Flexibilität, Granularität und Kontextbezogene Steuerung
- Erfordert Eigenschafts- und Richtlinienverwaltung
- Für dynamische Umgebungen geeignet
- Einfacher zu implementieren
- Rollen als Benutzerattribute
- Flexibilität durch Attribute

RBAC

- Verwaltungs- und Sicherheitsvorteile
- Basierend auf vordefinierten Rollen und Berechtigungen
- Vereinfachte Administration
- Einfacher in der Implementierung
- Rollen als Benutzerattribute
- Flexibilität durch Attribute

Zugriffskontrolle

HyBACAC: ABAB + RBAC

- Verbesserte Skalierbarkeit und Ausdauer
- Dynamische Attribute und Umgebungsrollen für Zugriffsbeschränkungen
- Anpassung an changing Bedingungen in intelligenten IoT-Systemen
- Vereinfacht Administration und Zugriffsverwaltung
- Ermöglichung der Feinkörnige Zugriffskontrolle
- Dynamische Entscheidungsfindung basierend auf Kontextfaktoren
- Kombiniert Rollen- und attributbasierte Zugriffskontrolle
- Komplexität der Implementation
- Kosten
- Abhängigkeit von Workload und Anwendungen

Inhaltsverzeichnis

- Grundlagen von Smart Home Netzwerken
 - Architektur von Smart Home-Netzwerken
 - Kommunikationsprotokolle in Smart Home Netzwerken
 - Bedrohungen und Risiken für Smart Home-Netzwerke
 - Wichtige Schutzmechanismen zur Sicherung von Smart Home-Netzwerken
- Verschlüsselung, Authentifizierung und Zugriffskontrolle in Smart Home-Netzwerken
 - Verschlüsselungstechnologien
 - AES
 - BLOWFISH
 - RSA
 - Authentifizierung
 - Taxonomie der IoT-Authentifizierungsschemas
 - Mutual TLS
 - Lightweight CoAP-based Authentication
 - CoAP Payload Based Lightweight Authentication
 - Zugriffskontrolle und Berechtigungen
 - Zugriffskontrollmechanismen
 - RBAC und ABAC
 - HyBACAC

Plan

Plan

Quellen

Bilder:

- Basic Layerd
- Einseitige Authentifizierung

<u>GitLab</u>

Danke für die Aufmerksamkeit!