WL-TR-95-3104

SHIT LABORATORY

STRUCTURAL INTEGRITY ANALYSIS AND VERIFICATION FOR AIRCRAFT STRUCTURES

D.A. Jansen, K.L. Boyd Analytical Services and Materials, Inc. 107 Research Drive Hampton, Virginia 23666

Volume V: Verification of Humidity and Age Effects on C/KC-135 Aircraft Fuselage Skin 2024-T3, 2024-T4, and 7075-T6 Aluminum Alloys.

Final Report for Period 04 May - 31 September 95

August 1996

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 4

FLIGHT DYNAMICS DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AFB, OHIO 45433-7542

19961210 056

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DAVID S. CONLEY, Structural Integrity Engr

Fatigue, Fracture & Reliability Section

ESTELLE R. ANSELMO, Actg Tech Mgr Fatigue, Fracture & Reliability Section

JEROME PEARSON, Chief Structural Integrity Branch

Structures Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/FIBEC, Building 45, 2130 Eighth Street, Suite 1, Wright-Patterson AFB, OH, 45433-7542 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per res

1. AGENCY USE ONLY (Leave blank)	my this burden estimate or any other aspect of this collection y, Sunte 1204, Arlington, VA 22202-4302, and to the Office of the 2. REPORT DATE	3. REPORT TYPE AND D	ources, gathering and maintaining the data needed, and completing and re his burden, to Washington Headquarters Services, Directorate for Info ct (0704-0188), Washington, DC 20503.
	August 1996		
4. TITLE AND SUBTITLE		1 Tindi Repol	t 4 May - 31 Sep 95
Structural Internal			Contract #F33601-94-D-
Aircraft Structures	y Analysis and Verifi	cation for	3212
6. AUTHOR(S))		PE: 62201F
			TA: 01
K.L. Boyd			WU: 01
D.A. Jansen			PR: 2401
7. PERFORMING ORGANIZATION NAM	IE(S) AND ADDRESS(ES)		
			8. PERFORMING ORGANIZATION
			REPORT NUMBER
Analytical Services	and Materials Inc.		
107 Research Drive			
Hampton VA 23666			
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10 Spansoning
Flight David Conley,	WL/FIBEC, 937-255-610	4	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Flight Dynamics Dire Wright Laboratory	ectorate		The state of the s
Air Force Materiel (21	`	
Wright-Patterson AF	ommand	`.	
1. SUPPLEMENTARY NOTES	5 OH 45433-/542		WL-TR-95-3104
Approved for Public	D-1-		
istribution is Unli	mited	ŕ	
. ABSTRACT (Maximum 200 words)	mr ced		
·			
Direct of this re	esearch was to charact ty on fatigue crack or	erize the effects	of material age and
075-T6 aluminum all	ty on fatigue crack gr Dys. These allovs wer	owth behavior of 2	2024-T3, 2024-T4, and
f USAF C/KC-135 air	bys. These alloys wer	e taken from the f	2024-T3, 2024-T4, and uselage and wing skin
ge and mission use	The Targettive o	f the USAF Fleet o	uselage and wing skin f C/KC-135 aircraft in
ental testing and de	The research was broata reduction comparis	ken down into two	activities: Experi-
_	Comparis	OH.	
lie test was designed	to further the under	standing of the ef	fects of humidity on the
dentical test	gue crack growth rate en configurations of	. The testing per	formed involved
hile exposed to ter	en configurations of 'different levels of 'differen	'aged" material su	biected to loading
ompared to the manual	different levels of "	vet" and "dry". T	bjected to loading hese test results were
determine if there	ts of similar test res	sults involving re	hese test results were latively "new" materials
emonstrated humidity	were any age effects.	Of the three ma	latively "new" materials terials only Al7075-T6
fect of age on fati	effects, and Al2024-I gue crack growth rates	3 demonstrated no	age effects. The
fects attributed to	gue crack growth rates	of materials is m	minimal, while the
SUBJECT TERMS	corrosion appear much	more severe.	
			15. NUMBER OF PAGES
midity, Crack Growth	h Rate, Aluminum, Airc	6	48
tigue, Fatigue Test	ing, Damage Tolerance	rait, Structural	16. PRICE CODE
SECONTITI CLASSIFICATION I	18. SECURITY CLASSIFICATION	i 	
FREPORT	OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF
CLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	ABSTRACT

SAR

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR. Oct 94

TABLE OF CONTENTS

FOREWORD	iv
1. INTRODUCTION	1
2. EXECUTIVE SUMMARY	2
3. TESTING	4
3.1. Specimen Configurations	4
3.2. Testing Apparatus	5
3.3. Testing Conditions	6
4. DATA REDUCTION	9
5. DATA ANALYSIS	11
5.1. 2024-T3 Aluminum Alloy	
5.2. 2024-T4 Aluminum Alloy	13
5.3. 7075-T6 Aluminum Alloy	15
6. CONCLUSIONS	18
7. REFERENCES	
8. APPENDICES	21
8.1. Appendix A - Loads and Conditions	21
8.2. Appendix B - Test Data	22

TABLE OF FIGURES

Figure 1	Typical Middle Tension Specimen According to ASTM E647-93	:4
Figure 2	Typical Test Apparatus Showing Configuration for "Dry" Test	6
Figure 3	Fatigue Crack Growth Rates for 2024-T3 Al; R=0.05.	12
Figure 4	Fatigue Crack Growth Rates for 2024-T3 Al; R=0.50.	12
Figure 5	Fatigue Crack-Growth Rates for 2024-T4 Al; R= 0.05	14
Figure 6	Fatigue Crack-Growth Rates for 2024-T4 Al; R= 0.50	14
Figure 7	Fatigue Crack Growth Rates for 7075-T6 Al; R= 0.05	16
Figure 8	Fatigue Crack Growth Rates for 7075-T6 Al; R= 0.50	16

LIST OF TABLES

Table 1	Nominal Specimen Dimensions	5
	Test Matrix for Humidity Effects	

FOREWORD

This report was prepared by Analytical Services & Materials, Inc., Hampton Virginia for WL/FIBEC, Wright-Patterson Air Force Base, Ohio under contract F33615-94-D-3212, "Structural Integrity Analysis and Verification for Aircraft Structures." The contract monitor was Mr. James A. Harter, WL/FIBEC. The government project engineer responsible for this effort was Capt. Daniel J. Groner. The period of performance for this report was 4 May 95 through 31 Sept 95.

The work performed under this project (Delivery Order 0005) was performed by Analytical Services & Materials, Inc. personnel located at the WL/FIBEC Fatigue & Fracture Test Facility, Bldg. 65, Area B, Wright-Patterson AFB, OH. The Principal Investigator of this research was Mr. Kevin L. Boyd. The authors of this report were Mr. Daniel A. Jansen and Mr. Kevin L. Boyd. Technical inputs were submitted by Mr. James A. Harter and Capt. Daniel J. Groner.

1. INTRODUCTION

The C/KC-135 first entered service in 1957; as some of these aircraft approach 40 years of service, corrosion has become an important consideration in the aircraft structural health. Understanding the effects of age and humidity on the fatigue characteristics of the aircraft structure should improve the ability to monitor the aircraft structural health and reliability. This effort was part of the larger "Integrated C/KC-135 Corrosion Program Round Robin Test Program" sponsored by the Oklahoma City Air Logistics Center. The testing performed for this program was intended to characterize the fatigue crack growth behavior of aged 2024-T3, 2024-T4 and 7075-T6 Al alloys subjected to low (<15%) and high (>85%) levels of relative humidity. These materials were taken from retired C/KC-135 aircraft by government personnel and are believed to representative of the general fleet with respect to age and overall condition.

In order to quantify the degradation in material behavior due to the influence of age and humidity, it is very important that testing be performed under reduced variable conditions. By limiting variables to material age and environmental humidity, comparisons between data will better demonstrate the effect of those variables. For example, in two tests that differ only in the material's age, any variation in test results can be attributed to age with greater confidence. It is anticipated that the data generated under this research effort will aid in the understanding of age and humidity effects on the crack-growth behavior of 2024-T3, 2024-T4 and 7075-T6 Al alloys.

2. EXECUTIVE SUMMARY

The objective of this research was to characterize the effects of material age and environmental humidity on the fatigue-crack-growth behavior of 2024-T3, 2024-T4 and 7075-T6 Al alloys. These alloys were taken from the fuselage and wing skin of USAF C/KC-135 aircraft representative of the USAF fleet of C/KC-135 aircraft in age and mission use. The research was broken down into two activities: experimental testing and data reduction and comparison.

The experimental testing activity consisted of two tasks. The first task was to perform specimen testing under "wet" (>85% relative humidity) conditions while the second task was to perform testing under "dry" (<15% relative humidity) conditions. For each task, middle tension specimens of the three aluminum alloys had cracks grown from machined center notches to predetermined lengths before test data was recorded.

Test data was compared to data from the Damage Tolerant Design Handbook (WL-TR-94-4055) and WL/FIBEC in-house data to determine the effects of age and humidity. The in-house data was obtained, over time, from standard laboratory test specimens. This "standard" data was generally from pristine material that had been taken from sheet or plate stock. Standard tests were generated under ambient air, temperature, and humidity conditions.

Plots of da/dN vs. ΔK indicated that the fatigue crack growth rates of the 7075-T6 Al alloy were influenced by the presence of humidity while the fatigue crack growth rates of the 2024 Al alloys were not.

Additionally, age comparisons made for 2024-T3 aluminum suggested no age effects, whereas comparisons for 7075-T6 aluminum were inconclusive due to the lack of control data. Age comparisons were not made for 2024-T4 aluminum due to the lack of data for non-aged material.

3. TESTING

3.1. Specimen Configurations

The specimens used in this test program were prepared by Boeing-PSD Engineering and delivered in "as-received" condition [1]. "As-received" means that the material was obtained from the fuselage of retired C/KC-135 aircraft without artificial corrosion. The alloys were all clad, with nominal thickness of 0.063 inches, and TL specimen orientation. The test specimens were prepared as ASTM E647-93 Middle Tension specimens with EDM wire cut starter notches (Figure 1). The area local to the starter notch had been polished to facilitate optical crack measurement and protected with special cellophane tape which had no adhesive residue.

Figure 1 Typical Middle Tension Specimen According to ASTM E647-93

The nominal specimen dimensions are shown in the table below:

Table 1 Nominal Specimen Dimensions

Alloy	# of Specimens	Width	Length	Thickness	Starter Notch (2a)
2024-T3	8	1.75	7.0	0.063	0.350
2024-T4	8	1.50	6.0	0.063	0.300
7075-T6	8	1.75	7.0	0.063	0.350

3.2. Testing Apparatus

All testing was performed in the Fatigue & Fracture Test Facility, Building 65, Area B, Wright-Patterson AFB, Ohio. The specimens were tested in either a 35 kip or 20 kip MTS servo-hydraulic fatigue test frame using 5 kip and 2 kip load range settings respectively. These test frames are numbered 14 and 15 in the test facility. All tests were conducted at 10 Hz. These test frames were operated in load control using MTS Model 458 test controllers with load signals generated on MS-DOS based computers running MATE software. MATE, MAterial Test and Evaluation, is a software package written by the University of Dayton Research Institute. Load cell data from the MTS Model 458 was recorded using High Gain DC conditioners and a Model RS3800 strip chart recorder. Crack lengths were measured optically using Gaertner Scientific microscopes mounted on Velmex Unislide precision sliding assemblies with a graduated scale of precision ±0.0005 inches.

The two humidity conditions tested were artificially introduced using an ordinary aquarium air pump to pump air into a column of water (or desiccant), then into a small chamber surrounding the test specimen. The air pump was controlled by a humidity sensor mounted in-line with an exhaust hose leading away from the chamber. For the "wet" testing, the column was filled with ASTM D1193 Type III or better reagent water to provide high humidity air. During the "dry" testing, the water was replaced with DESI-PAK, a clay mineral desiccant from United Catalysts Inc. The desiccant conformed to standard Mil-D-3464E. These setups easily provided a relative humidity above 85% and below 15%, respectively.

Figure 2 Typical Test Apparatus Showing Configuration for "Dry" Test

3.3. Testing Conditions

The test program consisted of three materials, two stress ratios ($R = \sigma_{min}/\sigma_{max}$), and two humidity ranges as shown in Table 2.

Table 2 Test Matrix for Humidity Effects

Alloy	# of Specimens	Stress Ratio	Humidity Level
		0.05	>85%
2024-T3	2 each		<15%
		0.50	>85%
			<15%
		0.05	>85%
2024-T4	2 each		<15%
		0.50	>85%
			<15%
		0.05	>85%
7075-T6	2 each		<15%
		0.50	>85%
			<15%

The specimens were subjected to the loads and conditions specified by the Integrated Round Robin Testing Program [1] and designated on each specimen traveling data sheet, as listed in Appendix A.

The crack for each specimen was grown an additional 0.100 inches from the starter notch during pre-cracking. The pre-cracking loads were identical to the test loads and were introduced under ambient humidity and temperature conditions. After pre-cracking, an environmental chamber was placed around the test specimen and environmental conditions were allowed to stabilize at the predetermined humidity levels before fatigue crack-growth rate testing began.

During testing, the specimens were subjected to constant amplitude fatigue loading with a frequency of 10 Hz at the designated maximum stress and stress ratio (R). The specimens were fatigued sufficiently for the total crack (2a) to grow 0.030 inches, at which time the crack was

measured. During crack measurement, the specimen was loaded to eighty percent of the test maximum stress to facilitate optical measurements.

The result of this testing was a record of crack length versus cycle count. The data was hand recorded on each specimen's traveling data sheet. These records can be found in Appendix B.

4. DATA REDUCTION

During testing, crack lengths were recorded at cyclic intervals sufficient to grow the total crack (2a) approximately 0.030 inches. These data were then transferred into an EXCEL spreadsheet where mathematical relationships were solved for stress intensities and crack-growth rates.

The secant method [2] was used to calculate fatigue crack-growth rates, where:

$$\frac{da}{dN} = \frac{((a_{r1} - a_{l1}) - (a_{r0} - a_{l0}))/2}{(N_1 - N_0)}$$
 Equation 1

where: a_{rl} = Current Right Crack Tip Measurement

a_{r0} = Previous Right Crack Tip Measurement

a₁₁ = Current Left Crack Tip Measurement

a₁₀ = Previous Left Crack Tip Measurement

 N_1 = Current Cycle Count

 N_0 = Previous Cycle Count

This equation (5-1) gives the average crack-growth rate for the cyclic interval between the two measurements.

To calculate the applied stress intensity range, ΔK , the following equations were used:

$$\Delta K = \frac{\Delta P}{B} \sqrt{\frac{\pi \alpha}{2W} \sec\left(\frac{\pi \alpha}{2}\right)}$$
 Equation 2

$$\alpha = \frac{2\left(\frac{(a_{r1} - a_{l1}) + (a_{r0} - a_{l0})}{4}\right)}{W}$$
 Equation 3

where: $\Delta P = \text{Maximum Load} - \text{Minimum Load for stress ratios greater than } 0$

B =Thickness of the Specimen

W =Width of the Specimen

This form of the stress intensity factor equation was used in order to calculate the stress intensity for the average crack length of the cyclic interval. This corresponded to the crack length used in the secant method of calculating the fatigue crack-growth rate (Equation 1).

These data were then plotted for da/dN vs. ΔK on a log-log graph and can be found in Section 5.

5. DATA ANALYSIS

To determine the effect of humidity on fatigue crack-growth rates, plots of da/dN vs. ΔK were compared by humidity level for the same materials at the same stress ratios. The data from this test program were compared to data retrieved from the Damage Tolerant Design Handbook [3] and existing in-house data to determine if there were any age effects

5.1. 2024-T3 Aluminum Alloy

Figures 3 and 4 contain the fatigue crack-growth rate data for the 2024-T3 Al alloy. Each figure contains data for four specimens tested at the same stress ratio but two different humidity levels. Also, the figures contain in-house data from pristine material for age comparisons.

Figure 3 shows the "wet" and "dry" data for R=0.05 and suggests no apparent humidity effect on the fatigue crack-growth rates of the 2024-T3 Al alloy. Since these data closely resemble inhouse data, it might be concluded that aged material has the same fatigue crack-growth rate characteristics as new material. Likewise, the data for the tests at R=0.50 (shown in Figure 4) suggest the same conclusions.

Figure 3 Fatigue Crack Growth Rates for 2024-T3 Al; R=0.05

Figure 4 Fatigue Crack Growth Rates for 2024-T3 Al; R=0.50

5.2. 2024-T4 Aluminum Alloy

Figures 5 and 6 show the "wet" and "dry" crack-growth rate data for the 2024-T4 Al alloy. Each figure contains data for the same stress ratios but different humidity levels. There were no published fatigue-crack-growth-rate data available from the Damage Tolerant Design Handbook [3] or in-house to make comparisons between aged and new materials of this aluminum alloy. Therefore, there were no comparisons of this nature made in this report.

At both stress ratios, there was little or no variation of data due to humidity. While Figure 5 demonstrates some scatter of the data, the scatter is consistent within both humidity levels and does not necessarily indicate any appreciable differences in fatigue crack-growth rates. Figure 6 shows both "wet" and "dry" data at the higher stress ratio with less scatter and no apparent humidity effect.

Figure 5 Fatigue Crack-Growth Rates for 2024-T4 Al; R= 0.05

Figure 6 Fatigue Crack-Growth Rates for 2024-T4 Al; R= 0.50

5.3. 7075-T6 Aluminum Alloy

Figures 7 and 8 contain the fatigue crack-growth rate data for the 7075-T6 Al alloy. Figure 7 contains the limited data found in the Damage Tolerant Design Handbook [3] for 7075-T6 aluminum tested at a stress ratio of 0.50. It should be noted that both plots include in-house data for 7075-T651 aluminum. The 7075-T6 aluminum was not represented in the in-house data, and 7075-T651 aluminum was used because of its similarity in fatigue crack-growth rate behavior to the tested material. Both the handbook and in-house data correspond to non-aged material tested in room temperature lab air environments with "ambient" humidity levels of approximately 50-70% which could be used for age effect comparisons.

Both figures (7 and 8) show a clear difference in the fatigue crack-growth rates of 7075-T6 aluminum subjected to different humidity levels which could be attributed to the effect of humidity. Again in both figures, the "wet" test data agrees with the Design Handbook and the lower portion of the in-house data curve. This resemblance between data sets might be attributable to a lack of age effects or an interaction of the effects of age and humidity. The design of the test matrix and limited number of specimens did not allow for the isolation of possible age effects from humidity effects, so it is unclear what effect age had on the fatigue crack-growths rates of 7075-T6 aluminum.

Figure 7 Fatigue Crack Growth Rates for 7075-T6 Al; R= 0.05

Figure 8 Fatigue Crack Growth Rates for 7075-T6 Al; R= 0.50

If there are no age effects, as was the case suggested for 2024-T3 aluminum, then two other observations might be made from examining Figures 7 and 8. First, at both stress ratios, the "wet" data agreed closely with the ambient data from the Design Handbook and in-house data while the data from the "dry" tests fell lower on the graphs. This may suggest that 7075-T6 Al alloy possesses a humidity level threshold where higher humidity levels would have no further effect on 7075-T6 aluminum's fatigue crack growth rates.

Second, the separation between "wet" and "dry" data is less for the higher stress ratio than the lower. This smaller difference may suggest that the humidity effects are sensitive to the applied stress ratio, where a higher stress ratio diminishes the humidity effects.

6. CONCLUSIONS

This research effort included gathering data on three clad aluminum alloys removed from the fuselage of retired U.S. Air Force C/KC-135 aircraft more than 30 years old. These materials were 2024-T3, 2024-T4, and 7075-T6 Al alloys. The test was designed to further the understanding of the effects of humidity and age on the aluminum alloys' fatigue crack growth rates. The testing performed under this Delivery Order involved identical test specimen configurations subjected to fatigue loading while exposed to two different humidity levels, "wet" (>85%) and "dry" (<15%). Furthermore, these test results were compared to the results of similar tests involving relatively "new" materials to determine if there were any age effects.

Of the three materials, only the 7075-T6 aluminum demonstrated a humidity effect. For the two test conditions of "wet" and "dry" at stress ratios of R=0.50 and R=0.05, 7075-T6 Al displayed an increase of fatigue crack-growth rates in the "wet" environment. These results seem to indicate that the humidity effects were less pronounced in tests conducted at higher stress ratios. Other research examining the effects of corrosion have shown that corrosion effects are diminished by increasing load ratios [4]. Similarly, it would seem that increasing stress ratios may also diminish the effects of humidity.

Additionally, from the results of this effort it seems that fatigue crack-growth rates are similar for relative humidity levels of 60% and 90%, while humidity levels near 5% showed slightly lower crack growth rates. The lack of significant difference in fatigue crack growth rates at the two higher humidity levels suggests that humidity levels above a certain percentage will no longer

influence the fatigue crack-growth rate behavior of the 7075-T6 Al alloy. Additional testing, involving a range of humidity levels between 5% and 50-60%, may help to better understand at what levels humidity has no further effect on the fatigue crack-growth rates of 7075-T6 aluminum. Also, further testing would be required to determine the effect of stress ratio on humidity effects. Testing to include stress ratios of 0.7, 0.33, 0.02, and -1.0, which are represented in the Design Handbook, would provide "wet" data to compare against the Design Handbook's baseline data to better understand this phenomenon.

Of the two cases where age effects on fatigue crack-growth rates were examined in this report, 2024-T3 aluminum and 7075-T6 aluminum, only the 2024-T3 aluminum demonstrated no age effect. The results for 7075-T6 aluminum were inconclusive with respect to age, due to lack of data for aged specimens tested at ambient conditions. Therefore, no comparisons could be made with the non-aged data contained in the Design Handbook and in-house data. However, the lack of age effects on fatigue crack-growth rates of several materials has been demonstrated by the research of other organizations [5], which suggests the 7075-T6 aluminum examined in this effort would have behaved similarly. Also, it has been reported, that the effect of age on fatigue crack-growth rates of materials is minimal, while the effects attributed to corrosion appear much more severe [5,6,7].

7. REFERENCES

- [1] Luzar, J., "Pre-Corroded Fatigue Crack-growth Rate Test Plan, Integrated C/KC- 135 Corrosion Program Round Robin Testing," AF Contract F34601-90-C-1336, Product Support Division, Boeing Defense & Space Group, KS, October 1994.
- [2] E647-93 Standard Test Method for Measurement of Fatigue Crack-growth Rates," 1993 Annual Book of ASTM Standards, Section 3, Vol. 03.01, American Society for Testing and Materials, 1993, pp.654-681.
- [3] Skinn, D.A., Gallagher, J.P., Berens, A.P., Huber, P.B., Smith, J., "Damage Tolerant Design Handbook," WL-TR-94-4055, Air Force Materials Directorate, Wright-Patterson Air Force Base, OH, Vol. 4, Ch. 8.10, May 1994.
- [4] Scheuring, J.N. and Grandt, A.F., "An Evaluation of Aging Aircraft Material Properties," Proceedings of the ASME Structural Integrity Aging Aircraft Winter Annual Meeting, San Francisco, CA, 1995
- [5] Scheuring, J.N. and Grandt, A.F., "An Evaluation of Aging Aircraft Material Properties," Annual Report for Air Force Office of Scientific Research Grant Number F49620-93-1-0377, August, 1995.
- [6] Mills, T.B., Magda, D.J., Kinyon, S.E., Hoeppner, D.W., "Fatigue Crack-growth Analysis and Residual Strength Analysis of Service Corroded 2024-T3 Aluminum Fuselage Panels," University of Utah, May 1995.
- [7] Horstman, M., Gregory, J.K., Schwalbe, K.H., "Geometry Effects on Corrosion-Fatigue in Offshore Structural Steels," GKSS Research Center, Geesthact, Germany, Oct 1994.

8. APPENDICES

8.1. Appendix A - Loads and Conditions

2024-T3								
Specimen #	Smax	Stress Ratio	Humidity					
28	15.1	0.50	<15%					
35	10.3	0.05	<15%					
37	10.3	0.05	<15%					
41	15.1	0.50	<15%					
33	7.8	0.05	>85%					
46	11.5	0.50	>85%					
50	11.5	0.50	>85%					
51	7.8	0.05	>85%					

	2024-T4								
Specimen #	Specimen # Smax Stress Ratio								
42	10.9	0.05	<15%						
43	12.2	0.50	>85%						
47	8.3	0.50	>85%						
51	16	0.50	<15%						
63	8.3	0.05	>85%						
64	10.9	0.05	<15%						
65	16	0.50	<15%						
73	12.2	0.50	>85%						

	7075-T6								
Specimen #	Smax	Stress Ratio	Humidity						
2	7.3	0.50	>85%						
7	7.3	0.50	>85%						
18	4.9	0.05	>85%						
19	8.5	0.50	<15%						
20	5.8	0.05	<15%						
26	8.5	0.50	<15%						
29	4.9	0.05	>85%						
33	5.8	0.05	<15%						

8.2. Appendix B - Test Data

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
Astreceived Artificial	[5.1	+0.05	0.1hz	(15%) >85%

 $2a_{n-nearside} = 3.526 - 3.876$

 $2a_{n-farside} =$

π	EST ACTUALS		VI	ew lookin	y at speci	ivear Side				,	
	Specimen ID	20	024下3	ÝT3-28				NEA	RSIDE	FAR	SIDE
PR	F Test date	1 A 46 95		IA	1 Aug 95		N	СІ	æ	G	С1
la	b ID Machine ID				14	17	1,504	3.233	4.174		
	W(inch) t(inch):		490	- 000	2330	18	1,304	3.216	4.187		
Pm	ex(kip) P _{min} (kip):	1.6	79	0.83		19	1304	3.193	4.212		
Te	mp(degF) %RH	71	0	6.9		20	1004	3.180	4.233		
		NEA	NR SIDE	FAR	SIDE	21	804	3.168	4.251		
	N	СІ	CZ	c 2	СІ	22	602	3.144	4.268		
Pre- crack	46,503	3.477	3.939		-1	23	403	3.137	4.281	·	
1	5,064	3.469	3.949			24	404	3.121	4.297		
2	5,002	3.459	3.958			25	304	3.101	4.318		
3	5,004	3.444	3.971			26	152	3.084	4.344		
4	5,003	3.432	3.985	·		27	35	2.827	4.575		
5	5,004	3.417	4.002		`,	28					
6	4,003	3.402	4.015			29					
7	3,004	3.391	4.025			30					
8	3,002	3.379	4.037			31					
9	3,003	3.365	4.051			32					
10	3,004	3.351	4.066			33					
11	3,004	3.337	4.081			34					
12	3,002	3.318	4.100			35					
13	2504	3.298	4.116			36					
14	2003	3.281	4.130			37					
15	1802	3.268	4.141			38					
16	1703	3.251	4.156			39					

TEST REQUIREMENTS				,
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	10.3	+0.05) +0.50	0.1hz 10hz	<u>(15%)</u> >85%

те	ST ACTUALS										
	Specimen ID:	20	24T3	-35				NEA	RSIDE	FAR	SIDE
PRE	Test date:	1 Au	5 95	1 Au	4 95		N	СІ	ß	ся	CI
Lat	ID Machine ID	WL/FI		f	15	17	150 3	3.299	4.240		
	W(inch) (t(inch):	得	58 58	-06°	9750 14	18	1,304	3.289	4.253		
Pm	_x (kip) P _{min} (kip):	1.149	38	0.05	82	19	1367	3.276	4.268		
Ter	np(degF) %RH	410		6.9	%	20	1304	3.268	4.282	,	
		NEA	RSIDE		SIDE	21	1304	3.255	4.296		
1	N.	СI	CZ	S	СІ	22	1304	3.241	4-315		
Pre- crack	35,007	3.548	3.997		•'	23	1007	3.232	4.328		
1	5,003	3.536	4.008			24	1006	3.212	4.341		
2	5,005	3.525	4.022			25	1005	3.203	4.352		
3	5,008	3.511	4.034			26	1024	3.183	4.379		·
4	5,005	3.496	4.047		•	27	104	3.169	4.385		
5	5,004	3.478	4.062		`\	28	604	3.164	4.390		
6	4,003	3.4le1	4.078			29	604	3.155	4.397		
7	3,007	3.447	4.091			30	607	3.148	4.404		
8	3.005	3.432	4.104			31	907	3.140	4.410		
9	3,004	3.416	4.124			32	907	3.124	4.426		
10	2506	3.400	4.136			33	653	2.894	4.646		
11	2,508	3.388	4.149			34					
12	2,504	3.375	4.162			35					
13	2505	3.360	4.182			36					
14	2004	3.344	4.197			37					
15	1804	3.330	4.210			38					
16	1707	3.315	4.778			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	10:3	(10.05) +0.50	0.1hz 10hz	<u>₹15%</u> >85%

π	Test date: 8 F Lab ID Machine ID Will Winch) t(inch): 1.76 P _{mac} (kip) P _{min} (kip): 1.1 Terrp(deg/F) %F8H - N C1 Teach 34,007 4.091 1 5,007 4.100 2 5,004 4.113										
	Specimen ID	2	024T:	3-37				NEA	RSIDE	FAR	SIDE
	Test date	8 Au	495	8 A	us 95		N	СЦ	α	Œ	СІ
La	b ID Machine ID	WLIF			15	17	1,305	4.304	3.336		
	Windh) t(inch):	475	阜	0.00	320	18	1240	4.315	3.319		
Pm	_{ex} (kip) P _{min} (kip):	1.14	6	0.056		19	1206	4.332	3.313		
Te	mp(degiF) %RH	710F		7.1	%	20	1205	4.347	3.310		
		NEA	RSIDE	FARSIDE		21	.1208	4.354	3.306		
	. N	СІ	a	α	СІ	22	1207	4.366	3.300		
Pre- crack	34,007	4.091	3.632		J.	23	1204	4.379	3.290		e
1	5,007	4.100	3.617			24	1206	4.398	3.277		
2	5,004	4.113	3.602			25	1204	4.413	3.260		
3	5,004	4.126	3.585			26	1204	4.434	3.229		
4	4,507	4.132	3.569		.ee.	27	803	4.455	3.208		
5	4,504	4.148	3.550			28	406	4.470	3.197		
6	4,007	4.162	3.535			29	304	4.486	3.176		
7	4,005	4.176	3.514			30	107	4.494	3.170		
8	3,507	4.193	3.492			31	107	4.499	3.160		
9	3,004	4.207	3.472			32	107	4.515	3.136		
10	2,507	4.218	3.452			33	5b	4.529	3.121		
11	2,007	4.228	3.437			34	36	4.746	≥ 2.992		
12	2,007	4.244	3.424			35					
13	1,805	4.255	3.405			36					
14	1604	4.266	3-386			37					
15	1,408	4.278	3.371			38					
16	1,408	4.289	3.354			39					

TEST REQUIREMENTS						
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity		
As-received Artificial	15.1	+0.05	0.1hz (10hz)	>85%		

 $2a_{n-nearside} = 3.913 - 3.563$

2a_{n-farside} =

			Vie	w looking	at specin	nen N	lear Side		2a _{n-farside}	=	
TE	ST, ACTUALS								T		
	Specimen ID:	9	024TZ	-4)				NEAF	RSIDE	FAR	SIDE
	Test date:		16 95		us 95		N	C1	æ	CZ	Cl
Lab	ID Machine ID	WLIF		年に		17	1,402	4.206	3.241	-	
	W(inch) t(inch):	1.75	Þo	0.00 +96	0.0645 +0633		1,214	4.210	3.227		
Pm	(kip) P _{min} (kip):			0.85	45	19	1203	4.229	3.207		
Ten	np(degF) %RH			6.8%		20	1003	4.240	3.192		
	NEAR SIDE FAR SIDE		SIDE	21	1004	4.254	3.171				
	N C1 C2 C2 C1		22	1004	4.284	3.145					
Pre- crack	41,004	3.959	3.509			23	503	4.299	3.129		
1	5,003	3.969	3.499			24	403	4.322	3.101		
2	5,003	3.983	3.485			25	119	4.613	2.863		
3	5,002	3.999	3.471			2 6				.,,	
4	5,002	4.014	3.455			27					
5	4,503	4.028	3.438		\ <u>\</u>	28					
6	4,503	4.043	3.421	·		29					
7	4,004	4.059	3.412			30					
8	4,004	4.075	3.392			31					
9	3,502	4.091	3.373			32					
10	3,064	4.110	3,357			33					
11	2,504	4.124	3.338			34					
12	2,003	4.140	3.324			35					
13	1,802	4.150	3.30 ₆			36					
14	1,703	4.160	3.290			37					
15	1,603	4.173	3.276			38					
16	1.502	4.185	3.258			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	10.9	+0.50	0.1hz 10hz	<16% >85%

1	EST ACTUALS				.g		iveal Side				
	Specimen E	.	2024	-T - † - 4	-2 ::			NEA	RSIDE	FAI	RSIDE
	Test date		16 95	14 A	1695		N	СІ	œ	CZ	CI
L	ab ID Machine ID	WL/	FIBEC		#14	17	603	4.148	3,247		
	W(inch) t(inch)	44	4825 4345	Control of approximation from	16650	18	602	4.160	3.239		
Pn	ex(kip) P _{ntn} (kip)	1.01	14	0.	046	19	404	4.170	3.229		
Те	mp(degiF) %RH	7	40	7.0	1%	20	603	4.185	3.221		
		NEA	VR SIDE		RSIDE	21	1603	4.202	3.210		
	N	СІ	G	ca	СІ	22	603	4.231	3.194		
Pre- crack	31,304	3.873	3.474		-1	23	404	4.261	3.175		ē
1	5,004	3.884	3.461			24	175	4.288	3.169		
2	5:004	3.90萬1	3.446			25	102	4.414	2.932		
3	5,004	3.918	3.432			26					
4	5,002	3.937	3.412			27					
5	3,602	3.953	3.397		`\	28			,		
6	3,602	3.973	3.382			29					
7	3,002	3.990	3,368			30					
8	3,003	4.00%	3.354			31					
9	2504	4027	3.339			32					
10	2004	4.038	3.331			33					
11	2004	4.057	3.320			34					
12	1,756	4.073	3.305			35					
13	1,602	4.086	3.294			36					
14	1,404	4.105	3.278			37					
15	1203	4.121	3.266			38					
16	902	4.139	3.254			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	16.0	+0.05 (+0.50)	0.1hz 10hz	<15%) >85%

 $2a_{n-nearside} = 4.147 - 3.847$

2a_{n-farside} =

TE	ST ACTUALS		•••		g at Specif						
	Specimen ID:			T4-5				NEA	RSIDE	FAR	SIDE
	Test date:	HA	ug 95	14	Aug 95		N	C1	ß	α	СІ
Lat	ID Machine ID	WLIF	-IBEC	#	15	17	305	4.485	3.520		
	W(inch) t(inch):	1.	1820 1832	9,5	16 <u>0</u> 50	18	206	4.494	3.494		
Pm	_ж (kip) Р _{тіп} (kip):	1.48	1	0.73	33	19	108	4.507	3.485		
Ter	np(degF) %RH			8.1%		20	59	4.738	3.256		
		NEAF	RSIDE	FAR	SIDE	21	N.				
	N	CI	æ	œ	CI ·	22					
Pre- crack	37,007	4.199	3.799	·	į	23					d .
1	5,003	4.212	3.780			24					
2	5,007	4.229	3.769			25					
3	5,007	4.250	3.749			26					
4	4,004	4.269	3.733		*	27					
5	3604	4.282	3.714			28					
6	3,608	4.299	3.696			29					
7	3,064	4.317	3.671			30				•	
8	3,005	4.344	3.648			31					
9	2,005	4.366	3.631			32					
10	1,508	4.384	3.616			33					
11	1,005	4.397	3.603			34					
12	1,186	4.416	3.584			35					
13	707	4.428	3.574			36					
14	3704	4.448	3.557			37					
15	506	4.457	3.546			38					
16	406	4.468	3.530			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	16.0	+0.05	0.1hz (10hz)	<16%) >85%

2a _{n-nearside} =	4.095-3.796
----------------------------	-------------

2a_{n-farside} =

TI	EST ACTUALS		Vie	ew lookin	g at speci	men I	Near Side		~~n-farside		
	Specimen ID:	201	24774	-65				NEA	RSIDE	FAR	SIDE
PRI	E Test date:	4Au	695	71	146 95 15		N	СІ	Œ	æ	СІ
la	b ID Machine ID	/ (17	667	4.402	3.499		
	W(inch) t(inch):	1148	25	0,04	28 -	18	504	4.411	3.484		
Pm	_{ex} (káp) P _{min} (káp):	1.49	13	0.73	82	19	441	4.429	3.467		
Te	mp(degF) %RH	690)	7.5	5%	20	207	4.437	3.463		
		NEA	RSIDE	FARSIDE		21	207	4.443	3.460		
	N	δ	Я	ß	СІ	22	257	4.453	3.447		
Pre- crack	40,005	4.147	3.742			ສ	223	4.475	3.428		
1	5,005	4.160	3.729			24	71	4.687	3.205		
2	5,007	4.174	3.718			25					
3	5,006	4.190	3.700			26					
. 4	4,007	4.203	3.6%		κ.	_~ 27					
5	4,007	4.219	3.670		,	28					
6	3505	4.239	3.649			29					
7	2605	4.253	3.637			30					
8	2607	4.268	3.623			'31					
9	2604	4.286	3404			32					
110	2105	4.303	3.583			33					
11	2005	4.321	3.572			34					
12	1908	4.339	3.554			35					
13	807	4.353	3.537			36					
14	805	4.365	3.533			37					
15	805	4.374	3.525			38					
16	906	4.386	3.510			39					

Boeing-PSD

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	10.9	+0.55	0.1hz (10hz)	<15%

TE	ST ACTUALS				g at specifi						
	Specimen ID:	20:	2474-	- 64-				NEAF	RSIDE	FAR	SIDE
PRE	Test date:	4 Aug	95	7 Au	7 Au695 #14		N	СІ	æ	œ	СІ
-	ID Machine ID	WL/F		#14	,	17	1004	4.139	3.262		
ļ ,	W(inch) t(inch):			.063	311	18	904	4.151	3.248		
Pm	_z (káp) P _{mkn} (káp):	1.03	36	0.0		119	719	4.163	3.238		
Ten	np(degiF) %RH			7.3		20	404	4.175	3.230		
			RSIDE		SIDE	21	404	4.184	3.219		
	N	СІ	cz	œ	СІ	22	602	4.196	3.208		
Pre- crack	30,002	3.899	3.497			23	602	4.210	3.193		
1	5,002	3.915	3.485			24	603	4.224	3.171		
2	5,004	3.930	3.471			25	403	4.247	3.153		
3	5,003	3.949	3.453			26	104	4.256	3.142		
4	4:003	3965	3.437			27	104	4.264	3.128	%	
5	3,563	3.978	3.425			28	102	4.285	3.111		
6	3503	3.99(3.411			29	28	4.442	2.960		
7	3503	4.006	3.397			30					
8	3502	4.020	3.380			31					
9	3,002	4.039	3.362			32					
10	2403	4.052	3.348			33					
11	2402	4.068	3.331			34					
12	1903	4.080	3.315			35					
13	1504	4.092	3.306			36					
14	1502	4.100	3.296			37					
15	1503	4.108	3.287			38					
16	1503	4.127	3.273			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	8.5	+0.05 (+0.50)	0.1hz 10hz	>85%

TE	STACTUALS										
	Specimen ID:	-	7075T	6-19				NEA	RSIDE	FAR	SIDE
PR	E Test date:		ıL.95		Jul 95		N	СІ	CC	æ	СІ
Lak	o ID Machine ID	WLIF	IBEC	#	14	17	5.003	3.262	4.194		
	W(inch) t(inch):	176	44	- 0.0	632 73 7	18	5,603	3.245	4.211		
Pm	x(kip) P _{min} (kip):	0.94	5	0.4		19	4,003	3.229	4.228		
Ter	mp(degF) %RH	76	oF		2%	20	3,004	3.216	4.244		
		NEA	RSIDE	FAR	SIDE	21	3,003	3.200	4.257		
	N	СІ	cz	æ	СІ	22	2,502	3.185	4.272		
Pre- crack	1910,003	3.496	3.95Z		J. T	23	2,502	3.173	4.286		£
1	15,003	3.488	3.964			24	2,503	3.156	4.303		
2	151004	3.482	3.968			25	2,002	3.139	4.320		
3	30,003	3.473	3.982			26	1,503	3.122	4.332		
4	30,003	3.451	4.004	je,	Ŷ	27	1,005	3.114	4.341		
5	25,∞3	3.433	4.018		`	28	1,004	3.100	4.351		
6	20,004	3.415	4.038			29	1,003	3.090	4.367		
7	15,002	3.396	4.057			30	1,003	3.076	4.380		
8	10,002	3.380	4.070			31	1,002	3.061	4.398		
9	8,002	3.371	4080			32	752	3.050	4.411		
10	8,004	3.357	4.092			33	753	3.030	4.430		
11	8,004	3.345	4.111			34	503	3.017	4.444		
12	7,003	3.331	4.126			35	403	3.003	4.460		
13	6,003	3.319	4-13%			36	304	2.997	4.479		
14	6,002	3.304	4.153			37	203	2.8491	4.602		
15	5,002	3.291	4.165			38					
16	5,005	3.277	4.179			39					

TEST REQUIREMENTS					
Corrsion State	Smax	R-ratio	Cyclic Fr	requency	Relative Humidity
As-received Artificial	5.8	+0.05 +0.50	0.1hz	10hz	>85%

 $2a_{n-nearside} = 3.632 - 3.982$

2a_{n-farside} =

TE	ST ACTUALS		VIC	ew looking	g at specii	iicii i	vear Side				
	Specimen ID:		70751	6-20				NEAF	RSIDE	FAR	SIDE
PRE	Test date:	17 Ju	L95	18 Ju	18 Jul 95		N	СІ	cz	æ	СП
Lat	ID Machine ID	WL/F	IBEC	# 15		17	9,003	3.366	4.274		
	W(inch) t(inch):	1,75	51 V	100	963 70 73 9	18	7,004	3.351	4.796		
Pm	x(kip) P _{min} (kip):	0.65	0	0.030	5	19	5,006	3.335	4.313		
Ter	np(degF) %RH	76	°F	6.8	%	20	4,005	3.319	4.325		
		NEA	RSIDE	FAR	SIDE	21	3,004	3.306	4.338		
	N	ប	В	В	ದ	22	13,004	3.297	4.350		
Pre- crack	190,008	3.578	4.043			23	3,∞4	3.284	4.366		
1	25,006	3.571	4.051			24	3,008	3.267	4.382		
2	30,006	3.542	4.064			25	3,004	3.249	4.400		
3	30,007	3.548	4.079			26	2,500	3.232	4.420		
4	20,000	3.538	4.088		8 4	27 ,	2,004	3.217	4.436		
5	20,005	3.530	4.095			28	1.507	3.205	4.448	,	
6	20,006	3.521	4.107			29	1507	3.191	4.466		
7	14.377	3.512	4-118			30	1,004	3.180	4.480		
8	15,006	3.503	4.131			31	1,005	3.167	4.495		
9	15,007	3.491	4.141			32	1,004	3.152	4.511		
10	15,006	3.480	4.153			33	1,004	3.137	4.532		
11	15,007	3.465	4-166			34	758	3,123	4.548		
12	15,006	3.448	4.183			35	754	3.105	4.575		
13	13,004	3.432	4.200			36	408	3.093	4.606		
14	F00,51	3.417	4.220			37	105	3.091	4.634		
15	10,000	3.402	4.238			38	22	2.929	4.684		
16	9,005	3.3%5	4.250			39					

TEST REQUIREMENTS					
Corrsion State	Smax	R-ratio	Cyclic F	requency	Relative Humidity
As-received Artificial	8,5	+0.05	0.1hz	(10hz)	<u>(15%)</u> >85%

TE	STACTUALS										
	Specimen ID:	•	70751	-6-26	2			NEA	RSIDE	FAR	SIDE
PRE	Test date:	25 Ju	_95	26 Ju	26 July 95		N	СІ	a	æ	СІ
Lai	olD Machine ID		FIBEC	•	+14	17	5,003	3.274	4.210		
	W(inch) t(inch):	1.72	53g	- 0.00 +00	0325 129	18	4,004	3.260	4.224		
Pm	x(kắp) P _{min} (kắp):	0.9	15	ì	176	19	3,503	3.249	4.237		
Ter	np(degF) %RH	75°	F	1	5% "	20	3504	3.233	4.253		
		NEA	RSIDE		SIDE	21 *	.2504	3.220	4.264		
	N	C1	æ	æ	ci	22	2,520	3.209	4.275		
Pre- crack	167,004	3.521	3.972		-2	23	2,504	3.195	4.289		a
1	30,003	3.508	3.981			24	2,504	3.175	4.309		
2	30,003	3.493	3.999			25	1903	3.161	4.322		·
3	20,004	3.483	3	4.009		26	1904	3.146	4.338		
4	20,003	3.466	4.022		× -	27	1704	3.133	4.350	55	
5	17,003	3.455	4.034		`,	28	1704	3.113	4.371		
6	17,002	3.442	4.045			29	1303	3.097	4.388		
7	17,002	3.428	4.063			30	100Z	3.077	4.405		
8	15.002	3.40	4.080			31	702	3.069	4.417		
9	12,003	3.393	4.099			32	602	3.059	4.430		
10	9,002		4.112			33	602	3044	豐	**************************************	
11	8,002	3.365	4.123			34	602	3.044	4.449		
12	8,004	3.349	4.138			35	503	3.029	4.464		
13	7,004	3.332	4.152			36	404	300.8	4.497		
14	6,005	3.320	4.164			37	152	2.993	4.506		
15	6,004	3.305	4-176			38	90	2.871	4.623		
16	6,004	3.287	4.193			39					

Corrsion State Smax R-ratio C3 Frequency Relative Humidity

As-received Artificial 5.8 (40.05) +0.50 0.1hz (10hz) <15%) >85%

 $2a_{n-nearside} = 3.622 - 3.972$

2a_{n-farside} = _____

TE	ST ACTUALS		View looking at specimen Near Side NEAR SIDE FARSIDE										
	Specimen ID:	7	075T	6-33				NEAF	RSIDE	FAR	SIDE		
PRE	Test date:				ne 95		N	С	S	æ	CI		
Lat	ID Machine ID	WL-F	iBEC	#	15	17	5,004	3.334	4.256				
	W(inch) t(inch):	1:75	532 V	0.0 -18t	0.06320		5,006	3.317	4.273				
Pm	_x (kip) P _{min} (kip):	0.65	0	0.0		19	4,006	3.305	4.289				
Ten	np(deg(F) %RH	75	°F	7°	7.	20	3,506	3.291	4.300				
		NEA	RSIDE	FAR	SIDE	21	3505	3.775	4.317				
	N	СІ	æ	æ	СІ	22 -	3.024	3.260	4.332				
Pire- crack	160,007	3.576	4.025			23	2,505	3.246	\$.344				
1	30,008	3.565	4.035		J.	24	2,506	3.233	4.358		c .		
2	30,007	3.551	4.049			25	2508	3.214	4.377				
3	25,005	3.541	4.062			26	1908	3.198	4.392				
4	25,006	3.529	4.071			27	1704	3.184	4.410				
5	25,005	3.504	4.077		<i>3</i>	28	1705	3.164	4.427	*			
6	20,004	3.494	4.093			29	1307	3.145	4.445				
7	20,004	3.479	4.106		,	30	1004	3.131	4.458				
8	17,006	3.476	4.114			31	708	3.120	4.470				
9	17,005	3.459	4.127			32	607	3.11\	4.481				
10	17,007	3.437	4.148			೫	603	3,097	4.495				
11	(3,608	3.420	4.165			34	507	3.085	4.507				
12	11,007	3.405	4.182			35	505	3.067	4.522				
13	9,008	3.391	4.198			36	408	3.049	4.538				
14	8,006	3.376	4.214			37	207	3.045	4.548				
15	6,005	3.362	4.227			38	204	3.037	4.562				
16	le 1∞6	3.348	4.245			39	204	3.027	4.587				

Boeing-PSD
August 30, 1994

FATIGUE CRACK GROWTH RATE DATA SHEET	36	3.024	4.954
FATIGUE CRACK GROWTH TOTTE DATA SHEET	36	3.018	500.4
34	36	2.970	4.673

Corrsion State Smax R-ratio Cyclic Frequency Relative Humidity

As-received Artificial 7.8 (+0.05) +0.50 (0.1hz (10hz) <15% (>85%)

I	EST ACTUALS		SECULIAR AND								
	Specimen II	D:	2024T	3-33	5			NE	ARSIDE	FA	RSIDE
	Test dat	26.	Jun 95	275	un95		N	СІ	C2	CZ	С
Li	ab ID Machine II	WL/	FIBEC	廿	#14		3,004	4.279	3.285		
	W(inch) t(inch): 4 7 \$	FIBEC 17545 50	, QU	,33 v	18	2,003	4.291	3274		
Pn	ax(kip) P _{min} (kip)	0.80	68	0.0	941	19	2,002	4.307	3.261		
Te	mp(degiF) %Rt	7	25°	88	%	20	1,503	4.319	3.250		
		NE	ARSIDE	FA	RSIDE	21	1,502	4.332	3.238		
<u></u>	N	СП	Œ	ß	C1	22	1,502	4.346	3.226		
Pre- crack	128,003	3.993	3.542			23	1,503	4.363	3.210.		e
1	15,002	4.007	3.529			24	1,003	4.381	3.193		
2	15,003	4.029	3.516			25	1,005	4.397	3.183		
3	12,003	4.043	3.501			26	1,004	4.415	3.169		
4	10,003	4.061	3.487			27	4,002	4.430	3.151		
5	9,002	4.080	3.472			28	805	4.445	3.138		·
6	8,003	4.099	3.457		\ \ \	29	603	4.462	3.125		
7	7,002	4.119	3.444			30	404	4.478	3.110		
8	6,003	4.134	3.429			31	203	4.483	3.100		
9	5,504	4.154	3.411			32	202	4.437	3.098		
10	4,502	4.172	3.395			33	203	4.497	3.093		
11	4,004	4.184	3.381			34	203	4.507	3.084		
12	4,004	4.201	3.361			35	203	4.527	3.070		
13	3,004	4-216	3.350			36	55	4.536	3.069		
14	3,003	4.227	3.329			37	47	4.545	3.062		
15	3,004	4.246	3.318			38	50	4.661	2.907		
16	3,∞3	4.258	3.303			39					

Boeing-PSD
August 30, 1994

TEST REQUIREMENTS	1			
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	11.5	+0.05 (+0.	50 0.1hz 10hz	<15% / (>85%)

 $2a_{n-nearside} = 3.957 - 3.667$

2a_{n-farside} =

	EST ACTUALS		VI	ew lookir	ig at spec	imen	Near Side		Zun-farsid		
	Specimen II): 2	20247	-3-40	p			NE	AR SIDE	FA	RSIDE
PR	E Test date	= 26	Jun 95	27	Jun 95		N	С1	æ	C2	C1
L	ab ID Machine II	WL/F	FIBEC	#19		17	3,007	4.251	3.290		
	W(inch) t(inch)	: 175	504×	106	34 -	18	2,505	4.274	3.274		
P,	nex(kip) P _{min} (kip)	1.	277	0.637		19	2,004	4.286	3.2%		
Te	mp(degF) %RH	7	<i>%</i> °	88	3%	20	1,506	4.298	3.245		
		NE	RSIDE	FAF	RSIDE	21	1,504	4.311	3.232		
	N	СІ	ca	ß	СІ	22	1505	4.326	3.213		
Pre- crack	117,004	4.00%	3.559		-1	-23	1:003	4.336	3.202		2
1	10007	4.016	3.548			24	1,005	4.347	3.193		
2	15,005	4.037	3.522			25	1,007	4.360	3.182		
3	9,008	4.049	3.507			26	1,004	4.374	3.165		·
4	8,007	4.064	3.491		.•	27	1,004	4.390	3.146	14	
5	7,005	4.076	3.480			28	8,07	4.463	3.127		
6	7,007	4.090	3.465		``	29	606	4.422	3.112		
7	6,504	4.104	3448			30	406	4.432	3.092		·
8	6,005	4.119	3.433			31	203	4.448	3.081		
9	5,505	4.134	3.417			32	104	4.460	3.065		
10	5,000	4.147	3.398			33	40	4.654	2.904		
11	4,507	4.163	3.383			34					
12	4,005	4.182	3.369			35					
13	3,007	4.193	3.357			36					
14	3,008	4.204	3.343			37					
15	3,008	4.220	3.326			38					
16	7,007	4.235	3.312			39					

BOEING-PSDAugust 30, 1994

	TEST REQUIREMENTS				
	Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
-	As-received Artificial	11.5	+0.05 +0.50	0.1hz 10hz	<15% >86%

 $2a_{n-nearside} = 3.939 - 3.588$

 $2a_{n-farside} =$ _

TE	EST ACTUALS		VI	ew lookiii	g at speci	men	Near Side				
	Specimen ID		2024T	3-50				NEA	RSIDE	FAR	SIDE
PRE	Test date	30 J	ws 95				N	СІ	cz	æ	СІ
La	b ID Machine ID	WLF	IBEC	#15		17	3007	4.238	3.303		
	W(inch) t(inch):	单	<i>\$8</i> €	0.0636		18	2004	4.252	3.290		
Pm	∞(kắp) P _{min} (kắp):	1.2848		0.6	344	19	2004	4.267	3.276	·	
Ter	mp(degiF) %RH	790		88	2	20	2004	4.282	3.262		
		NEA	RSIDE	FAR	RSIDE	21	2004	4.299	3.249		
	N	СІ	a	æ	а	22	2,008	4.311	3.729		
Pre- crack	127,006	3.999	3.537		-	23	2004	4.330	3.208		*
1	15,002	2-180	2			24	1504	4.350	3.191		
2	15,006	4.019	3511			25	1504	4.370	3.173		
3	10,004	4.038	3.501			26	1006	4.389	3.155	.v	
4	8,007	FHO. H	3.488			27	805	4.404	3.138		
5	8,003	4.061	3.473		\ \	28	==	蚆	=		
6	7,004	4.070	3.462			29	605	4.422	3.124		
7	7,005	4.083	3.453			30	403	4.432	3.113		
8	7,000	4.100	3.434			31	307	4.441	3.097		
9	6,005	4.115	3.419			32	155	4.451	3.090		
10	5,005	4.132	3.400			33	106	4.462	3.678		
11	4.007	4.144	3.390			34	35	4.639	2.889		
12	4,003	4.155	3.377			35					
13	4,005	4.172	3.362			36					
14	4,003	4-188	3.350			37		·			
15	4,004	4.205	3.332			38					
16	3,007	4.222	3.321			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	7.8	+0.05	0.1hz 10hz	<15% >85%

TE	ST ACTUALS				•		·				
	Specimen ID:	2	D24T3	-51				NEAF	RSIDE	FAR	SIDE
PRE	Test date:		N 95				N	СІ	cz	CC	СІ
Lab	ID Machine ID	WLIFI		#14		17	3003	3.265	4.138		
1	W(inch) (t(inch):	and and the second	261	0.0636		18	2002	3.255	4.145		
Pme	(káp) P _{min} (káp):	terror transportation and transportation and transportation and transportation and transportation and transport		0.0	35.4	19	2004	3.249	4.152		
Ten	np(degiF) %RH	79'	,	88	3%	20	2502	3.238	4.164		٠.
		NEAF	RSIDE	FAR	SIDE	21 `	2504	3.224	4.179		
	.N	CI	cz	cz	СІ	22	2505	3.20co	4.192		
Pre- crack	135,002	3.935	3.489		•'	23	2502	3.187	4.210		
1	5,00	3943	3.478			24	2002	3.169	4.220		
2	15,002		3			25	Z003	3.151	4.234		
3	15/002	3.458	3.960			26	2004	3.132	4.250		
4	5,004	3.449	3.968			27	1002	3.124	4.257		
5	5,002	3.441	3.975		`\	28	2006	3.095	4.279		
6	7,003	3.430	3.985			29	1003	3.079	4.289		
7	7.002	3.416	3.998			30	1003	3.066	4.302		
8	7,004	3.400	4.012			31	1004	3.046	4.316		
9	6,∞3	3.387	4.026			32	703	3.032	4.328		
10	5,005	3.374	4.03%			33	702	3.010	4.342		
11	5,003	3.362	4.056			34	603	2.985	4.356		
12	5,005	3.343	4.071			35	403	2.942	4.377		
13	4,003	3.330	4.082			36	53	2.919	4.386		
14	4,004	3.316	4.093			37	ほ	2.846	4.598		
15	4,002	3.300	4.107			38					
16	4,002	3.283	4.123			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	12.2	+0.05 (+0.50)	0.1hz (10hz)	<15%

TE	ST ACTUALS	View rooking at specimen real olde									
	Specimen ID:		2024	-T4-4	- <u>5</u>			NEA	RSIDE	FAR	SIDE
PRI	∈ Test date:	15 Jun	ie 95	19 1	un 95		N	СІ	ß	ß	а
lai	DID Machine ID	WL/F	FIBEC	#14		17	1504	4.330	3.451		
	W(inch) t(inch):	1.4	1835	0.9625		18	睡				
Pm	_{ex} (káp) P _{min} (káp):	1.129		0.54	25	19	1502	4.343	3.436		
Ter	mp(degF) %RH	77	o F	89	%	20	1503	4:357	3.421		
		NEA	RSIDE	FAR	SIDE	21	M03	4.377	3.402		
	N	СІ	æ	œ	сі	22	1253	4.403	3.380		
Pre- crack	109,004	4.103	3.697		.,	23	1254	4.424	3.352		c
1	16,004	4.111	3.686			24	1003	4.480	3.309		
2	15,004	4-138	3.657			25	\$ 55	4.632	3.149		
3	8,003	4.154	3.640			26					
4	ê,003	4-165	3.622		×.	27					
5	5,004	4.177	3.603			28					
6	4,005	4.190	3.590		·	29					
7	4,003	4.199	3.580			30					
8	4,003	4.216	3.568			31					
9	4,003	4.228	3.552			32					
10	3 .5 03	4.240	3.540			33					
11	3,504	4.255	3.521			34					
12	2,504	4.268	3.512			35					
13	2,504	4.278	3.498			36					
14	2,503	4-290	3.485			37					
15	2,503	4.313	3.469			38					
16	1,504	4.320	3.460			39					

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
As-received Artificial	8.3	+0.05	0.1hz (10hz)	<15% >85%

 $2a_{n-nearside} = 4.107 3807$

2a_{n-farside} =

TE	ST ACTUALS										
	Specimen ID:		2024	т4-4	7			NEAF	RSIDE	FAR	SIDE
PRE	Test date:	15 Ju	N95	19 J	un 95		N	СІ	ß	æ	СІ
Lat	o ID Machine ID	WLIF	BEC	ı	15	17	1006	4.420	3.531		
	W(inch) t(inch):	42	<i>(</i> 839	0,00	,23	18	1004	4.429	3.530		
P _m	_x (kúp) P _{min} (kúp):	0.76	rle	0.0	37	19	1007	4.454	3.520		
Ter	np(degF) %RH			89	%	20	1006	4.462	3,510		
		NEAF	RSIDE	FAR	SIDE	21	11007	4.474	3.499		
	N	С	cx	α	СІ	22	1000	4.490	3.485		
Pre- crack	100003	4.177	3.748			23	1006	4.516	3.469		c
1	10,004	4.192	3.731			24	803	4.540	3.454		
2	10,004	4.213	3.714			25	604	4.574	3.437		
3	8,009	4.236	3.698			26	20%	4.698	3.215		
4	ů, 005	4.251	3.678		K	27				•	
5	4,007	4.272	3.667			28					
6	3,005	4.279	3.655		,	29			, in the second		
7	3,003	4.293	3.646			30					
8	3,005	4.309	3.634			31					
9	3,005	4.325	3.617			32					
10	2,50%	4.344	3-603			33					
11	2,005	4.361	3.591			34					
12	1,504	4.365	3.5%2			35					
13	1,504	4.375	3.574			36					
14	1,504	4.385	3.562			37					
15	1,503	4.402	3.552			38					
16	1,005	4.411	3.545			39					

TEST REQUIREMENTS						
Corrsion State	Smax	R-ratio	Cyclic F	requency	Relative Humidity	
es-received Artificial	8.3	+0.05 +0.50	0.1hz	10hz	<16% >85%	

 $2a_{n-nearside} = 4.105 - 3.806$

2a_{n-farside} = _____

70	ST ACTUALS	1	VI	ew looking	g at specii	men i	Near Side		n-raiside		
					•	1					
	Specimen ID:		?024T4					NEA	RSIDE	HAR	SIDE
PRI	Test date:	2170	N95	22 Ju	IN 95		N	CI	œ	CZ	СІ
Lat	otD Machine ID	WLJF	IBEC	井1		17	17 1,006 4.420 3.4		3.491		
	W(inch) (t(inch):	<u> 1:4</u>	1/830	· P(2)31		18	1,007	4.429	3.483		
Pm	κ(kάρ) [P _{min} (kάρ):	0.7	279	0.0	36	19	1,208	4.441	3.47Z		
Ter	np(degF) %RH	7	6	8	7.5	20	1,203	4.456	3.460		
		NEA	RSEDE	FAR	SIDE	21	1,205	4.470	3.444		
	N	а	8	ผ	а	22	1,200	4.484	3.427		
Pre- crack	96,007	4.163	3.753			23	1208	4.508	3.405		
1	10,003	4.175	3.741			24	1007	4.533	3.381		
2	10.008	4.191	3.723			25	505	4.555	3.360		
3	9,005	4.204	3.705			26	2154	4.565	3.350		
4	8,005	4.221	3.690			2 7	155	4.582	3, 338		
5	7,003	4.240	3.674	, and a	k n	28	56	4.590	3,330		
6	6,000	4.255	3.656			29	39	4.697	3.214		
7	5,006	4.270	3.641			30					
8	4,504	4.282	3.626			31	-				
9	4,505	4.300	3.613			32					
10	4,504	4.318	3.595			33					
11	4,004	4.333	3.576			34					
12	3,506	4.356	3.556			35					
13	2,500	4.368	3.539			36					
14	2,006	4.380	3.531			37					
15	2,006	4.395	3.522			38					
16	2,007	4.412	3.501			39					

Boeing-PSD

TEST REQUIREMENTS				
Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity
s-received Artificial	12.2	+0.05 (+0.50)	0.1hz (10hz)	<15%

 $2a_{n-nearside} = 3.961 - 3.662$

2a_{n-farside} =

TEST ACTUALS											
	Specimen ID:	202474-73						NEAF	RSIDE	FAR	SIDE
RRE Test date:		21 Ju	21 Jun 95 22 Jun 95				N	СІ	æ	СZ	СІ
Lab	ID Machine ID	WLlF	IBEC	#	14	17	1,504	4.257	3.366		
,	W(inch) t(inch):	1.48	34	0.00	200	18	1,563	4.270	3.352		
Pm	_х (káp) Р _{піп} (káp):			0.50		19	1,504	4.282	3.340		
Ten	np(degiF) %RH	75			8.5	20	1,502	4.798	3.324		
			RSIDE	FAR	SIDE	21	.1504	4.314	3.310		•
	N	СІ	æ	æ	СІ	22	1203	4.330	3.292		
Pre- crack	116,003	4.006	3.610			23	1002	4.346	3.277		
1	10,003	4.020	3.598			24	802	4.360	3.261		
2	10,004	4.031	3.587			25	603	4.386	3.231		
3	10,003	4.048	3.571			26	289	4.554	3.070		
4	9,002	4.062	3.553		, °	27				to .	
5	8,002	4.081	3.538			28					
6	7,003	4.096	3.522			29					
7	6,003	4.115	3.507	_		30					
8	5,004	4.130	3.493			31					
9	4,503	4.147	3.480			32					
10	4,504	4.165	3.462			33					
11	4,004	4.183	3.445			34					
12	3,504	4.195	3.430			35					
13	3,003	4.211	3.409			36					
14	2,002	4.224	3.401			37					
15	2,003	4.231	3.390			38					
16	2,003	4.246	3.377			39					

Γ	Corrsion State	Smax	R-ratio	Cyclic Frequency	Relative Humidity	
	As-received Artificial	7.3	+0.05 +0.50	0.1hz (10hz	<15% (>85%)	

 $2a_{n-nearside} = 4.101 - 3.660$

2a_{n-farside} =

TEST ACTUALS											
	Specimen ID:	Ţ	107576	,-a				NEAR	SIDE	FAR	XDE
Test date:			1 MAY				N	СІ	œ	œ	СІ
Lab ID Machine fD						17	4,003	4.327	3387		
١	W(inch) t(inch):	155	12	0.00 -04	器	18	3,003	4.338	3.375		
Pme	_х (kip) (Р _{піп} (kip):	0.8		0.4		19	3,003	4.351	3.363		
Ten	np(degF) %F3H	75		91		20	2,504	4.363	3.352		
		NEAR	SIDE	FAR	SIDE	21	2,504	4.377	3.338		
	N .	CI .	æ	CZ	СІ	22	,2,503	4.393	3.323		
Pre- crack	430,002	4.079	3.630		ď,	23	2,003	4.407	3.310		
1	50,004	4.092	3.615			24	2,003	4.425	3.296		
2	56,004	4.112	3.600			25	1,503	4.438	3.285		
3	35,004	4.127				26	1,502	4.452	3.270		
4	30,003	4.141	3.572			27	1,003	4.463	3.257		
5	25,003	4.159	3.55Z		S. J.	28	1,007	4.475	3. 251	tu	
6	20,005	4.174	3.535			29	1,001	4.489	3.237		
7	15,004	4.181	3.525			30	800	4.501	3.227		
8	15,003	4.201	3.511			31	602	4.511	3.218		
9	10,003	4.212	3.496	,		32	5 <i>00</i>	4.521	3.209		
10	6,003		3.482			33	400	4.530	3.202		
11	7,005	4.237				34	401	4.539	3.195		
12	7,003	4.250	3.460			35	400	4.549	3.187		
13	7,003	4.265	3.445			36	400	4.562	3.181		
14	6,005	4.281	3.427			37	401	4.577	3.176		
15	5,005	4.294	3.418			38	401	4.595	3.163		
16	5,003	4.308	3.401			39	302	4.619	3.152		
<u> </u>	<u> </u>					40	201	4.657	3.143	1	

Boeing-PSD
August 30, 1994

TEST REQUIREMENTS							
Corrsion State	Smax	R-r-	atio	Cyclic I	Frequency	Relative Humidity	
As-received) Artificial	7.3	+0.05	+0.50	0.1hz	10hz	<15% >85%	

TOX	ST ACTUALS		Vie	w looking	at specir	nen iv	ear Side				
	Specimen ID:	7	7075T6	-7				NEAR	SIDE	FARS	aDE adk
	Test date:	1					N	С1	C2	æ	СІ
Lab	ID Machine ID	≈3 11 my 13				17	5,007	4.377	3.499		
	W(inch) t(inch):	WPAFE	#817340 3	# 15 0.0 # 15	635	18	5,005	4.396	3.483		
	x(kip) P _{trict} (kip):	0.812		0,40		19	4,003	4.411	3.469		
	np(degF) %RH	760		91.3		20	4,004	4.426	3.452		
			SIDE		SIDE	21	4,008	4.445			
	N	СІ	œ	CZ	СІ	22	2,003	4.459	3.421		
Pre- crack	298,003	4.164	3.714		_r	- 23	2,004	4.471	3.407		ŝ
1	35,007	4.173	3.698			24	2,004	4.483	3.397		
2	40,005	4.183	3688			25	2,005	4.497	3.382		
3	35,000	4.198	3.672			26	1,507	4.512	3.371		
4	27,004	4.211	3.657			27 -	1507	4.525	3.356	24	
5	20,004	4.228	3.647			28	3005	4.563	3.3.27		
6	13,000	4.236	3.635		``	29	2507	4.592	3.290		
7	15,008	4.248	3-626			30	2005	4-631	3.250		
8	15,004	4-261	3.611			31	508	4.646	3.239		
9	11,004	4.272	3.600			32	508	4-664	3.225		
10	11,006	1	1			33	257	4.673	3.214		
11	8,004	4.300	3.572			34	257	4.685			
12	6,006	4.311	3.560			35	204	4.702			
13	6,004	4.322	3.550			36	105				
14	6,004	4.333	3.542			37	54	4.812	3-059		
15	6,006	4.349	3.528			38					
16	6,506	4.367	3-515			39					

Boeing-PSD

TEST ACTUALS					ig at spec		rical Olac				
	Specimen II).	70757	76-18	76-18			NE/	VR SIDE	FA	RSIDE
PRE Test date:		8 Jun 95, 9 Jan 95					N	СІ	æ	C2	СІ
Lä	nb ID Machine ID	1 22-111		# 10		17	3010	4.438	3.456		
	W(inch) t(inch)	475	1437536	0:0	26350 430	18	3006	4.453	3.441		
Pn	_{sex} (kip) P _{min} (kip)	0.5	T45	0.0		19	2504	4.470	3.429		
Te	mp(degF) %RH	7	b°F	8	8	20	2516	4.485	3.414		
		NEA	VR SIDE	FAI	RSIDE	21	2511	4.504	3.397		
	N .	СІ	æ	cz	СІ	22	2007	4.521	3.381		
Pre- crack	273006	4.168	3.717		**	- 23	2008	4.543	3.363		c
1	36,007	4.175	3.707			24	1508	4.557	3.348		
2	40,006	4.184	3.695			25	1004	4.574	3.338		
3	50,004	4.198	3.680			26	753	4.5%	3.323		
4	50,027	4.217	3.6 le \$			27	5,07	4.595	3.316		
5	40,007	4.231	3.655			28	510	4.602	3.310		
6	40,006	4.242	3.638		,	29	507	4.610	3.303		
7	40,007	4.258	3.626			30	507	4.620	3.296		
8	40,042	4.279	3.605			31	507	4.634	3.285		
9	30,036	4.297	3.587			32	507	4.651	3.274		
10	25,067	4.312	3.568			33	507	4.668	3.763		
11	20,014	4.341	3-541			34	512	4-684	3.247		
12	10,008	4.364	3.522			35	408	4.696	3.235		
13	5,008	4.376	3.510			36	411	4.717	3.217		
14	5,608	4.390	3.498			37	304	4.737	3-201		
15	5,004	4.407	3.482			38	205	4.773	3.187		
16	4,006	4.425	3.467			39	23	4.817	3.064		

TEST REQUIREMENTS							
Corrsion State	Smax	R-ra	atio	Cyclic Frequency		Relative Humidity	
	.19	+0.05	+0.50	. 0.1hz	10hz	<15%	>85%
As-received Artificial	4.1			L			

 $2a_{\text{n-nearside}} = \frac{4.012 - 3.662}{6}$

2a_{n-farside} =

			Vie	w looking	at specin	nen N	ear Side			i	
TES	T ACTUALS	*. 2 dp. 6 56 1885	enriebiški					NEAR	SIDE	FARS	ADE
	Specimen ID:	7	075TU	g- 29	- 29					C2	СІ
PRE	Test date:	9 June	۹5 ,	12 June 95			N	СІ	. 62		
Lab	ID Machine ID	WLIF		#1		17	2505	4.325	3.261		
. 1	M(inch) t(inch):	1.7	彈	0.00 1 00	33 29	18	2502	4.342	3.241		
Pmo	(káp) P _{min} (káp):	0.55	D	0.03	O	19	2004	4.355	3.223		
Ten	np(degiF) %RH	740		88		20	2004	4.370	3.199		
		NEAF	RSIDE	FAR	SIDE	21	1504	4.387	3.178		
	N	С1	cz	æ	CI	22	1003	4.398	3.162		
Pre- crack	270,00"4	4.063	3.61D		•*	~23	1004	4.41)	3.139		·
1	40,005	4.085	3.585			24	1003	4.425	3.117		
2	30,003	4.090	3.568			25	752	4.435	3.092		
3	30.007	4.106	3.552			26	753	4.450	3.067		
4	Ü5,003	4.111	3.543		, , ,	27	503	4.461	3.040	·-	
5	25,003	4.116	3.533			28		***			
6	25,003	4.127	3.517		`,	29	303	4.466	3.018		
7	25,004	4.135	3.505			30	53	4.471	3009		
8	25,004	4.148	3.495			31	53	4.485	2.961		
9	25,004	4.160	3.483			32	29	4.493			
10	25,004	4.173	3.465			33	22	4.502			
11	25.007	4.187	3.439			34	22	4.510			
12	25,008	4.217	3.413			35	43	4.525			
13	15 004	4.240	3.377			36	43	4.535			
14	10.004	4.265	3.341			37	43	4.554			
15	7,504	4.288	3.307			38	39	4.712			
16	5,003	4.313	3.278			39					