工科数学分析期末试题(A卷)

	H	
班级	$\Sigma \to \square$.	hH 夕
T/T 2/V	学 有	V+ 7-1
クエラス	· 1 J	江口

(本试卷共6页, 十一个大题. 试卷后面空白纸撕下做草稿纸, 试卷不得拆散.)

题号	_	11	11]	四	五	六	七	八	九	+	+ -	总分
得分												
签名												

- 一. 填空题 (每小题 2 分, 共 10 分)

- 3. 如图,正方形 $\{(x,y)|x| \le 1, |y| \le 1\}$ 被对角线分成四个区域 D_1, D_2, D_3, D_4 , D_3 D_4 D_4
- 5. 设 $\sum_{n=1}^{\infty} b_n \sin nx$ 是 f(x) = x 1 $(0 \le x \le \pi)$ 的以 2π 为周期的正弦级数,则 $b_5 =$ _______.
- 二. (8 分) 设 $I = \int_0^1 dy \int_y^{\sqrt{y}} \frac{\sin x}{x} dx$, 交换积分次序, 并计算积分的值

三. (8 分) 求 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值点和极值.

四. (8 分) 求曲线 $\begin{cases} x+y-z=\ln z+3\\ xyz=3 \end{cases}$ 在点 P(1,3,1) 处的切线方程.

五. (9 分) 计算 $I = \iint_S \frac{x^2 + y^2}{\sqrt{1 + 4x^2 + 4y^2}} dS$, 其中 S 是曲面 $z = x^2 + y^2$ 被柱面 $(x - 1)^2 + y^2 = 1$ 所 截下的有限部分.

六. (11 分) (1)求曲面 $z = -1 - \frac{x^2}{2} - y^2$ 在点 P(2,1,-4) 处的切平面 π 的方程. (2)计算积分 $I = \iint_V x dx dy dz, \ \ \,$ 其中V 是平面 π 与三个坐标面围成的有界区域.

七. (9 分) 求幂级数 $\sum_{n=2}^{\infty} (-1)^n \frac{x^{2n}}{2n-1}$ 的收敛域及和函数.

八. (10 分) 利用格林公式计算 $I = \int_L (e^{-x}\cos y - 2y^3) dx + (e^{-x}\sin y - xy^2) dy$, 其中 L 为曲线 $x = \sqrt{2y - y^2} \text{ 从点 } O(0,0) \text{ 到 } A(0,2).$

十一. (9 分) 计算积分
$$I = \iint_S \frac{x^2 dy dz}{x^2 + y^2 + (z - 1)^2} + \frac{y^2 dz dx}{x^2 + y^2 + (z - 1)^2} + \frac{z^3 dx dy}{x^2 + y^2 + (z - 1)^2},$$
 其中 S 是曲面 $x^2 + y^2 + (z - 1)^2 = 1$ 的内侧.