

GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 9: The SBAS (Short BAseline Subset) Approach to InSAR Time Series

Analysis

BEFORE WE START ...

Think - Pair - Share

Point Target-based InSAR time series techniques (e.g., PS-InSAR):

Activity 1: Point-Like Scatterers and Coherence:

[Ferretti et al., 2001] found that pixels whose radar signal is dominated by one very bright and stable point-like scatterers tend to be coherent over very long times. Hence, in his PS-InSAR technique, Ferretti first identifies point-like targets using their amplitude signature and then analyzes their phase for high-accuracy deformation monitoring.

 Discuss why point-like scatterers with high and stable amplitude usually also have stable phase. Complete the sketch to the right in your discussion.

Activity 2: Limitations of PS-InSAR:

While the point target-based PS-InSAR technique can provide highly accurate surface deformation information in urbanized environments, its performance is often limited when applied to natural environments (e.g., volcano deformation or permafrost subsidence)

– Identify least two reasons why PS-InSAR type techniques often underperform in natural setting?

A ONE-SLIDE RECAP OF THE POINT TARGET-BASED PS-INSAR TECHNIQUE

The PS-InSAR Workflow

And its Limitations for Natural Terrain

SBAS - DISTRIBUTED TARGET-BASED INSAR TIME SERIES ANALYSIS

Study Deformation Over Natural Terrain

Distributed Target InSAR

- + higher point density in natural terrain
- + flexible, easily applicable to large areas
- usually higher noise level
- averaging reduces resolution

Natural Terrain

Distributed targets

- + widespread (pasture, bare soil, etc.)
- + coherence as quality measure
- averaging reduces resolution
- typically less stable: decorrelation

Two important sources of decorrelation

Spatial decorrelation not a major concern for Sentinel-1 and NISAR

Temporal decorrelation

Sub-resolution scatterers change with respect to one another Example: branches move in the wind

Spatial decorrelation

If difference in look angle (spatial baseline): Individual returns add up differently

Adapted from A. Hooper

Short Baseline Subset InSAR

- **Original publication:** Berardino, P. et al., (2002): "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms," IEEE TGRS, 40(11), pp.2375-2383.
- Idea: Form many <u>high coherence</u> interferograms by selecting a subset of interferograms with short spatial and moderate temporal baselines
- Advantages:
 - More coherent information, especially in natural environments!
 - Large number of interferograms helps in mitigating processing errors and noise

• Concept sketch:

PS-InSAR and SBAS InSAR Processing Flows

A Side-By-Side Comparison

PS-InSAR

- Formation of interferograms *relative to unique "reference" image*
- Subtraction of DEM → d-InSAR
- Detection of coherent information
- No phase filtering and no phase unwrapping
- Estimation of surface motion *requires a model* (e.g., linear motion with time)
- Coherent information are *mostly point-like targets*

SBAS InSAR

- Formation of all InSAR pairs with short spatial (& temporal) baseline
- Subtraction of DEM → d-InSAR
- Detection of coherent information
- Phase filtering and phase unwrapping
- Estimation of surface motion does not require a model
- Coherent patches composed of only distributed targets

Critical Processing Steps

Interferogram formation (pairwise)

Form multi-looked interferograms Unwrap

Phase inversion

Estimate best-fit deformation phase history Still contaminated by atmosphere etc.

SBAS processing workflow

Many variants exist; for instance, the phase inversion step may detect unwrapping errors There are also non-SBAS distributed-target approaches that form all interferograms

Filtering

Mitigate atmospheric phase by spatial and temporal filtering

Interferogram Formation

Select M interferograms

Maximize estimated coherence Temporal baseline most critical for Sentinel-1

Computational efficiency vs. improved estimation: N images: N (N-1)/2 possible interferograms

Interferogram computation

Can use standard pairwise processor (e.g. ISCE) Remove topographic phase using reference DEM

Unwrap

SBAS Phase Inversion

Key idea

We have partially redundant interferograms

One time instance contributes to multiple interferograms

Exploit redundancy to reduce noise

Reducing noise by enforcing consistency (or phase closure)

Deformation is temporally consistent¹

Elevation at time 3

Elevation at time 2 Elevation at time 1

Decorrelation noise is not

Reduce noise by making redundant, inconsistent interferograms consistent

Problem: Atmosphere (& DEM error¹) also consistent

1: Deformation and terrain need to be homogeneous

Mathematics of SBAS Phase Inversion

• In a stack of *N* images, number of potential interferograms *M* is:

$$\frac{N+1}{2} \le M \le N \left(\frac{N+1}{2}\right)$$
 For $N=100$: between 51 and 5100 interferograms

- For simplicity, we will initially make the following assumptions:
 - $\phi^k_{x.atmo}$, $\phi^k_{x.orbit}$, and $\phi^k_{x.\Delta DEM}$ can be ignored
 - Phase of individual M interferograms is unwrapped without unwrapping error

Main estimation problem to be solved:

• Estimate: Vector of N unknown deformation phases (at N acquisition times):

$$\varphi_{defo}^{T} = \left[\varphi_{defo}(t_1), \dots, \varphi_{defo}(t_N)\right]$$

• From: Vector of *M* observed d-InSAR phase values:

$$\Delta \phi^T = [\phi(t_1), ..., \phi(t_M)], \text{ where } \phi(t_i) = (\varphi_{reference,i} - \varphi_{secondary,i})$$

Mathematics of SBAS Phase Inversion

Problem statement

Given Wanted

For each location: observed unwrapped phase vector

 $\phi = [\phi_{1,2}, ..., \phi_{N-1,N}]$

M interferograms: ϕ is M-dimensional

We assume no phase unwrapping errors

Consistent phase history

For each location: an N-dimensional vector

 $\boldsymbol{\varphi} = [\varphi_1, ..., \varphi_N]$

where ϕ is proportional to path length at each time

step (surface position but also atmosphere, etc.)

Solution strategy

Model noisy ϕ as function of unknown φ

$$\phi = A \varphi$$

A is a design matrix that encodes which phases contribute to each interferogram

Solve using least squares

Minimize quadratic misfit between the observations ϕ and the model predictions $A \phi$

A Word about Design Matrix \boldsymbol{A}

- Matrix A describes how deformation history $oldsymbol{\phi_{defo}}$ maps into InSAR phase $\Delta oldsymbol{\phi}$
- Example:
 - N=4 SAR acquisition times t_N at which ϕ_{defo} was sampled; M=6 ifgrms ($\Delta\phi$)

We can write this problem as:

$$\begin{cases} \phi_{defo}(t_2) - \phi_{defo}(t_1) \\ \phi_{defo}(t_2) - \phi_{defo}(t_3) \\ \phi_{defo}(t_3) - \phi_{defo}(t_1) \\ \phi_{defo}(t_3) - \phi_{defo}(t_4) \\ \phi_{defo}(t_4) - \phi_{defo}(t_2) \\ \phi_{defo}(t_4) - \phi_{defo}(t_1) \end{cases} = A \cdot \begin{bmatrix} \phi_{defo}(t_1) \\ \phi_{defo}(t_2) \\ \phi_{defo}(t_3) \\ \phi_{defo}(t_3) \\ \phi_{defo}(t_4) \end{bmatrix}$$

- Design matrix A:

$$A = \bigvee_{1}^{80} \left\{ \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1 \end{bmatrix} \right.$$

N = 4 columns

Design Matrix in SBAS Phase Inversion

Design matrix

Describes how the changing surface position is reflected in each interferogram

Parameterization

One can also include a deformation model and the DEM error here (how?)

Example:

N = 4 images, M = 6 Interferograms

Interferogram phase $\phi_{2,1}$ contains the deformation between time 2 and time 1, i.e. $-\varphi_1 + \varphi_2$.

Uniqueness of Solution (advanced material)

Is there always a unique solution?

Problem 1: InSAR is a differential technique

Only sensitive to *differences* in path length such as deformations

What happens if you add a constant shift to φ ?

 $\phi = A \varphi$ does not change!

We say that \boldsymbol{A} has a rank defect (or a non-trivial kernel or nullspace). The solution $\boldsymbol{\varphi}$ to the least-squares problem is not unique. We can make it unique by fixing e.g. $\boldsymbol{\varphi}_1$ and referencing all deformation relative to this time instance. Then $\boldsymbol{\varphi}_2$, say, corresponds to a cleaned interferometric phase $\boldsymbol{\phi}_{2,1}$ with reduced decorrelation noise but still contaminated by atmosphere etc.

Problem 2: Insufficient interferograms

Can you spot the problem?

How would your measurements change if there was a shift to all the time instances in cluster 1?

This is another rank defect. One needs additional conditions or constraints to deal with it.

The Least-Squares Solution:

Requirement for Applying Least Squares:

All acquisitions have to belong to one single set of interconnected interferograms

• If requirement is met:

-M > N and A is of rank N

How to Calculate ϕ_{defo} from $\Delta\phi$

In this case solution is found using Least-Squares methods

$$\hat{\phi} = \left(A^T A\right)^{-1} A^T \delta \phi$$

Normal Equation

The Singular Value Decomposition (SVD) Approach

- **Required** if acquisitions belong to L>1 different interferogram sets
- In the case of L > 1, matrix A is rank deficient (rank: N L + 1) meaning we have less independent observations than unknowns
- Solution through SVD decomposition of A:

How to Calculate ϕ_{defo} from $\Delta\phi$

$$A = USV^T$$

U: eigenvectors of AA^T , V: Eigenvectors of A^TA , and S is matrix of eigenvalues

• Solution for $\hat{\phi}_{defo}$ is found through: $\hat{\phi}_{defo} = A^+ \Delta \phi$ with $A^+ = VS^+ U^T$

How To Deal with Nuisance Signals?

• Reminder of the full interferometric phase equation:

- Also remember that SBAS is operating on unwrapped interferograms → unwrapping errors may occur
- Hence, the following nuisance signals must be treated in SBAS InSAR:
 - Atmospheric noise ϕ_{atmo}
 - DEM errors $\phi_{h_{err}}$
 - Phase unwrapping errors
 - Orbit errors (ϕ_{orbit}) and noise (ϕ_{noise} ; due to heavy filtering) are largely ignored

Filtering for Mitigation of Errors

Properties of the phase history ϕ

Separate components based on their temporal, spatial and baseline characteristics

Filtering for Mitigation of Errors

Key idea

Atmospheric error is smooth in space High-pass in space: Subtract spatially smoothed $\boldsymbol{\varphi}_{\mathrm{S}}$ from $\boldsymbol{\varphi}$

Atmospheric error is random in time Low-pass filter in time: Smooth ϕ in time

 φ from inversion $\varphi_{defo}, \varphi_{atmo}, ...$

Filtered $oldsymbol{arphi}$ mainly $oldsymbol{arphi}_{defo}$

Further Error Mitigation Steps

Tropospheric errors

Systematic elevation dependence

Remove based on dependence of phase on elevation

Regional variability

Use weather models to mitigate regional trends and stratified elevation-dependent errors

Weather model

Remove predicted delay

- Large scale
- Stratified

Jolivet et al., JGR 2014

DEM errors

Exploit dependence on baseline

Not so critical for small baselines (Sentinel-1) and accurate DEMS

 $\phi_{topo} \sim B_{\perp}$

An Example on How To Deal with Nuisance Signals?

Examples: Mapping Italy from Multiple Sentinel-1 Swaths

a) 2016 Norcia Earthquake

Zinno et al., TGRS, 2019

Examples: Mapping Italy from Multiple Sentinel-1 Swaths

b) Etna Volcano

Zinno et al., TGRS, 2019

Examples: Mapping Italy from Multiple Sentinel-1 Swaths

c) Pernicana Fault System

Zinno et al., TGRS, 2019

Comparison SBAS vs. PSI

Advantages and Disadvantages of SBAS

Advantages:

- Usually more coherent points → better description of deformation
- No motion model required → better for geophysical signals

Disadvantages:

- More noise in the estimates (less accurate compared to PS-InSAR)
- Spatial averaging → lower spatial resolution
- More interferograms \rightarrow significantly higher computational effort

Other Notes:

- SBAS requires that there are no temporal gaps in the time series
- A deformation model can be integrated into SBAS to constrain the solution. Variations of SBAS that contain models are often referred to as NSBAS (<u>Doin et al., 2011</u>)

Summary

Input

Time series of SAR images

Processing

- Interferogram formation
- Isolate deformation

Output

Deformation

Point Target InSAR

- + high quality for selected points
- + retains full resolution
- only few coherent points
- does not work well for short stacks

Persistent Scatterer Interferometry (PSI)

Distributed Target InSAR

- + higher point density
- + flexible, easily applicable to large areas
- usually higher noise level
- averaging reduces resolution

More about InSAR Time Series Analysis

Point Target InSAR-Type

SBAS-Type

- InSAR time series analysis is current ongoing research topics
- Many advanced methods have been developed in recent years including:
 - Traditional PS-InSAR (Politecnica di Milano, Italy)
 - StaMPS (Stanford University)
 - DePSI (University of Delft, NL)
 - Coherent Target InSAR (IPTA) (GAMMA Remote Sensing)
 - Traditional SBAS InSAR (University of Napoli, Italy)
 - StamPS SBAS InSAR (Stanford University)
 - GIAnT (Generic InSAR Analysis Toolbox; http://earthdef.caltech.edu/projects/giant/wiki)
 - MintPy (Miami InSAR time-series software in Python; https://github.com/insarlab/MintPy)
 - SqueeSAR (TRE, Italy)

MInTS (Multiscale InSAR Time Series) (CalTec)

Combination of PS and SBAS

Independent Approach

Open Source InSAR Time Series Analysis Software

- Nowadays, there are a number of publicly available open source Time Series Analysis tools available.
- Together with a few community members, we provide coordinated access to these tools via the <u>RadarCODE</u> (Radar COordinated DEvelopment) initiative

Some InSAR Time Series Analysis Literature

- Ferretti, A.; Prati, C.; Rocca, F., "Permanent scatterers in SAR interferometry," *Geoscience and Remote Sensing, IEEE Transactions on*, vol.39, no.1, pp.8,20, Jan 2001
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E., "A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms," *Geoscience and Remote Sensing, IEEE Transactions on*, vol.42, no.7, pp.1377,1386, July 2004
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E., "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms," *Geoscience and Remote Sensing, IEEE Transactions on*, vol.40, no.11, pp.2375,2383, Nov 2002
- Hooper, A, Zebker, H., Segall, P., Kampes, B., "A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers," Geophysical Research Letters, 31(23), 2004
- Hooper, A,, "A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches," Geophysical Research Letters, 35, 2008
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A., "A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR," *Geoscience and Remote Sensing, IEEE Transactions on*, vol.49, no.9, pp.3460,3470, Sept. 2011
- Joaquim J. Sousa, Andrew J. Hooper, Ramon F. Hanssen, Luisa C. Bastos, Antonio M. Ruiz, Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria, Remote Sensing of Environment, Volume 115, Issue 10, 17 October 2011
- Hetland, E., Musé, P., Simons, M., Lin, Y. N., Agram, P. S., DiCaprio, C. J., "Multiscale InSAR Time Series (MInTS) analysis of surface deformation," Journal of Geophysical Research: Solid Earth, 117(B2), 2012

What's Next?

• This is what awaits next:

Tuesday: Lab on InSAR Time Series Analysis for Volcano Applications

