HOJA DE EJERCICIOS 4

Análisis Matemático. CURSO 2012-2013.

<u>Problema</u> 1. Si $M, N \subset \mathbb{R}^{n+k}$ son subvariedades n dimensionales arbitrarias, ¿es siempre $M \cup N$ una subvariedad? ¿Y $M \cap N$?

Problema 2. Estudiar si el conjunto

$$M = \{(x, y, z) \in \mathbb{R}^3 : xy = 0, x^2 + y^2 + z^2 = 1, z \neq 0, \pm 1\}$$

es una subvariedad unidimensional de \mathbb{R}^3 . Representar gráficamente M .

Problema 3. Demostrar que $M = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2\}$ no es una subvariedad unidimensional de \mathbb{R}^2 .

Problema 4. Representar gráficamente el conjunto

$$C = \{(\cos t, \sin t, t^2 (2\pi - t)^2) \in \mathbb{R}^3 : 0 \le t \le 2\pi\}$$

y probar que es una subvariedad de dimensión 1 en \mathbb{R}^3 . Hallar los espacios tangente y normal a C en el punto (1,0,0).

<u>Problema</u> 5. Considérense las subvariedades de dimensión 1, C_1 y C_2 en \mathbb{R}^3 determinadas, respectivamente, por

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$
 y
$$\begin{cases} x^2 + y^2 = z^2 \\ x + y + z = 1 \end{cases}$$

- a) Representar gráficamente ambas curvas.
- b) Probar que, efectivamente, son subvariedades de dimensión 1.
- c) Hallar la recta tangente a C_1 en el punto $(1/\sqrt{14}, 2/\sqrt{14}, -3/\sqrt{14})$. Hallar la ecuación del plano normal a C_2 en el punto $((3+\sqrt{5})/2, (3+\sqrt{5})/4, -(5+3\sqrt{5})/4)$.
- d) Calcular parametrizaciones locales de C_1 y de C_2 . Indicación: Utilizar coordenadas esféricas en C_1 y cilíndricas en C_2 .

Problema 6. a) Hallar el hiperplano tangente a la gráfica G de la función

$$f(x, y, z) = e^y \cos z + e^z \cos x + e^x \cos y$$

en el punto de G correspondiente a x = y = z = 0.

b) Estudiar si

$$M = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 3\}$$

define, localmente en $\mathbf{p} = (0,0,0)$, una superficie regular en \mathbb{R}^3 . Hallar el plano tangente a M en \mathbf{p} . Explicar la relación que guarda éste con el calculado en el apartado anterior.

Problema 7. Sea una parametrización \mathbf{X} de una superficie $S \subset \mathbb{R}^3$ con $\mathbf{X}(0,0) = (x_0,y_0,z_0)$, y denotemos por $(a_{ij})_{i=1,2,3,j=1,2}$ la matriz de $D\mathbf{X}(0,0)$. Demostrar que la recta normal a S en (x_0,y_0,z_0) viene dada por

$$\frac{x - x_0}{\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}} = \frac{y - y_0}{\begin{vmatrix} a_{31} & a_{11} \\ a_{32} & a_{12} \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix}}.$$

Problema 8. Sea

$$\mathbb{T}^2 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 = 1, \ x_3^2 + x_4^2 = 1 \}$$

Estudiar si M es una subvariedad bidimensional de \mathbb{R}^4 . Hallar una parametrización de M en un entorno de (1,0,0,-1). Hallar el espacio tangente a M en (0,1,1,0) exhibiendo una de sus bases.

1

Problema 9. Sea $\Gamma \subset \mathbb{R}^4$ la curva definida por

$$\begin{cases} x^2 + y^2 + z^2 + t^2 = 7 \\ x^2 - 3z^2 + t^2 = 2 \\ 4x^2 - y^2 - z^2 - 2t^2 = -6 \end{cases}$$

Hallar los puntos de Γ en los que (2, -16, 4, 5) es vector tangente.

<u>Problema</u> 10. Considérese la superficie esférica \mathbb{S}^2 descrita mediante la parametrización local

$$\mathbf{X}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{u^2+v^2-1}{1+u^2+v^2}\right)$$

dada por la proyección estereográfica (que proyecta cada punto de $\mathbb{R}^2 \times \{0\}$ en \mathbb{S}^2 por medio de la recta que lo une con el polo norte N = (0, 0, 1)).

- a) Calcular la matriz diferencial, y comprobar que $||\mathbf{X}(u,v)|| = 1$ en todo $(u,v) \in \mathbb{R}^2$. ¿Hay algún punto (a,b,c) en la esfera de \mathbb{R}^3 que no es la imagen de ningún $(u,v) \in \mathbb{R}^2$ mediante \mathbf{X} ?
- b) Sea Γ la curva en \mathbb{S}^2 obtenida mediante

$$\gamma(u) = \mathbf{X}(u, v)$$
 cuando $3v = u - 2, u \in \mathbb{R}$.

Representar gráficamente Γ en \mathbb{S}^2 . Indicación: Intentar visualizar la proyección estereográfica.

c) Hallar la ecuación de la recta tangente a Γ en el punto $(\frac{10}{27}, \frac{2}{27}, \frac{25}{27})$.

Problema 11. a) Demostrar que

$$\mathbb{H} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 + z^2\}$$

es una superficie regular en \mathbb{R}^3 . Representar gráficamente \mathbb{H} .

b) Demostrar que la función

$$\mathbf{X}(u,v) = (v \cos u, v \sin u, u), \quad \text{donde} \quad u \in \mathbb{R}, v > 0,$$

permite definir parametrizaciones locales de una superficie regular H en \mathbb{R}^3 . Representar gráficamente H.

Problema 12. Hallar los valores extremos de f(x, y, z) = x - 2y + 2z en la esfera $x^2 + y^2 + z^2 = 1$.

Problema 13. Hallar los puntos de la curva determinada por

$$\begin{cases} x^2 + xy + y^2 - z^2 = 1\\ x^2 + y^2 = 1 \end{cases}$$

que están más próximos al origen.

Problema 14. a) Hallar el valor máximo de $\log x + \log y + 3 \log z$ en la porción de la esfera $x^2 + y^2 + z^2 = 5 r^2$ en la que x > 0, y > 0 y z > 0. Aplicar el resultado para demostrar que para cualesquiera números reales positivos a, b y c se cumple

$$abc^3 \le 27\left(\frac{a+b+c}{5}\right)^5.$$

b) Demostrar la desigualdad aritmético-geométrica

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$$
 para $a_i \ge 0$.

Indicación: Escríbase $a_i = x_i^2$ y considérese sólo lo que ocurre en la esfera unidad n-dimensional.

Problema 15. a) Calcular los extremos absolutos de la función $f(x,y) = 2x + y^2$ sobre el conjunto

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 2, y^2 > x\}.$$

b) Determinar los extremos absolutos de la función $f(x, y, z) = 2x^2 + y^2 + z^2 - xy$ sobre el conjunto

$$K = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{8} \le 1\}.$$

Problema 16. Calcular el paralelepípedo de mayor volumen inscrito en el elipsoide

$$M = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\},$$

siendo a, b, c > 0.

Problema 17. Sean a y b dos números reales positivos tales que a b (a + b) = 1. Calcular el volumen máximo de los sólidos que tienen como base el triángulo de vértices (0,0), (a,0) y (0,b) y cuyas secciones al cortar por planos perpendiculares al plano XY y paralelos al plano YZ son triángulos isósceles de altura 4.

Problema 18. Utilizar los multiplicadores de Lagrange para hallar una fórmula para la distancia de un punto (a, b, c) a un plano Ax + By + Cz + D = 0.

Problema 19. Determinar los máximos y mínimos de la función

$$f(x, y, z) = x^4 + y^4 + z^4$$

sobre la variedad

$$\Pi = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 5\}.$$

<u>Problema</u> 20. Calcular la longitud de las aristas laterales de la pirámide de base rectangular con volumen máximo entre las inscritas en la esfera de radio R.

Problema 21. Sea la función

$$f_{\alpha}(x,y) = x^4 + y^4 + \alpha(x^2 + y^2), \ \alpha \in \mathbb{R}.$$

- a) Calcular los valores de α para los que f_{α} sólo tiene un máximo relativo, indicando el valor del mismo.
- b) Determinar el valor del parámetro α_0 de forma que (5,5) sea un punto crítico para f_{α} .
- c) Para el valor calculado en el apartado anterior, determinar el máximo y mínimo absolutos de f_{α} en

$$x^2 + y^2 = 36.$$