

Kinematics of Machine

Project

Submitted to

Dr. Amiya Dash

Mr. .Tirath Kumar.

Submitted by

Gunda Venkata Sai Jai Harsha.

190169/190C205003

Geneva Mechanism

Animation

2D sketch's-Driver

Geneva Wheel

Base Part

Kinematic Diagram.

Link 1 is the driver. Link 2 is the Geneva wheel. Link 3 is ground.

Degree of Freedom

Degree of freedom

DOF =
$$3(n-1) - 2$$
 Jp - 2 fi

Total noof links $n = 3$

Total no of joints = 3 = 2
 2 fi = 0

Degree of freedom = $3(3-1) - 2(2) - 0$

= $5-4$

DOF = 1

i. It is 4 bas mechanism so the degree of freedom is 1

Multi Cylinder Engine

Animation

2D sketch's- Piston

Crank Shaft

Connecting Rods

Back Case

Kinematic Diagram

Degree of freedom Noof links n= 4 No of joints no = 4 Efi = 0 Degree of freedom F= 3(n_-1)-2n_-2/i F = 3(4-1) - 2(4)F=9-8 DOF (F) =1. : Degree of freedom of single cylinder engine = 1.

Degree of Freedom

Thank You