CS 2002 Artificial Intelligence

Waheed Ahmed

Email: waheedahmed@nu.edu.pk

Week 10: Supervised Learning (Learning from Examples)

Russell & Norvig, Chapter 18.

(Most of slides from Wang Ling, Pieter Abbeel)

Machine Learning definition

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

■ Tom Mitchell (19) d to learn Problem: A comp Dome task T and from experience some performance performance ith experience on T, as measure

Machine Learning algorithms

Machine learning algorithms:

- Supervised learning
- Unsupervised learning

Others: Reinforcement learning, recommender systems.

Also talk about: Practical advice for applying learning algorithms.

Supervised Learning

- Supervised learning describes a class of problem that involves using a model to learn a mapping between input examples and the target variable.
- Applications in which the training data comprises examples of the input vectors along with their corresponding target vectors are known as supervised learning problems.
 Pattern Recognition and Machine Learning, 2006.
- There are two main types of supervised learning problems:
 Classification: Supervised learning problem that involves predicting a class label.
- Regression: Supervised learning problem that involves predicting a numerical label.

Numbers are our friends

Variables are our friends

Variables are our friends

5 **y**

Operators are our friends

Operators are our friends

$$y = 3x$$

 Input, x - Number of Apples given by Abby

$$y = 3x$$

- Input, x Number of Apples given by Abby
- Output, y Number of Bananas received by Abby

$$y = 3x$$

x : English Sentence

Translate

Break through language barriers.

y: Move

x : Image

y: Category

x: Board

?????????????????????????

y: Move

y = ??

y = ??

y = ??

$$y = 3x + 1$$

- Input
- Output

- Input
- Output
- Parameters

Input - Fixed, comes from data
Parameters - Need to be estimated

$$y = wx + b$$

How to find the parameters w and b?

$$y = 1x + 0$$

X	y
1	0
5	16
6	20

$$y = 1x + 0$$
 $1 = 1*1 + 0$
 $5 = 1*5 + 0$
 $6 = 1*6 + 0$

X	ŷ	у
1	0	1
5	16	5
6	20	6

$$y = wx + b$$

$$y = 1x + 0$$

X	ŷ	у
1	0	1
5	16	5
6	20	6

Model Candidate 2

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

Parameters are our friends

Data	
x y	
1	0
5	16
6	20

$$y = wx + b$$

$$y = 1x + 0$$

X	ŷ	у
1	0	1
5	16	5
6	20	6

Model Candidate 2

$$y = 2x + 2$$

Which one is better?

X	ŷ	y
1	0	4
5	16	12
6	20	14

Parameters are our friends

$$y = wx + b$$

$$y = 1x + 0$$

X	ŷ	у
1	0	1
5	16	5
6	20	6

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data	
n	X	у
0	1	0
1	5	16
2	6	20

$$y_n = wx_n + b$$

Model	
Candidate 1	

$$y = 1x + 0$$

X	ŷ	у
1	0	1
5	16	5
6	20	6

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data	
n	X	у
0	1	0
1	5	16
2	6	20

$$y_n = wx_n + b$$

Model	
Candidate 1	

$$y = 1x + 0$$

X	ŷ	у
1	0	1
5	16	5
6	20	6

Cost

C(w,b)

$$y = 2x + 2$$

X	ŷ	y
1	0	4
5	16	12
6	20	14

	Model
	Candidate 1
L	Carialaate 1

$$y = 1x + 0$$

X	ŷ	y
1	0	1
5	16	5
6	20	6

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

$$y = 1x + 0$$

n	X	ŷ	у	(y-ŷ) ²
0	1	0	1	
1	5	16	5	
2	6	20	6	

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

X	ŷ	y
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

_		ì
	Model	l
	Candidate 1	l
_		

$$y = 1x + 0$$

n	X	ŷ	y	(y-ŷ) ²
0	1	0	1	1
1	5	16	5	
2	6	20	6	

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

$$y = 1x + 0$$

n	X	ŷ	у	(y-ŷ) ²
0	1	0	1	1
1	5	16	5	121
2	6	20	6	

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

$$y = 1x + 0$$

n	X	ŷ	у	(y-ŷ) ²
0	1	0	1	1
1	5	16	5	121
2	6	20	6	196

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

$$y = 1x + 0$$

n	X	ŷ	у	(y-ŷ) ²
0	1	0	1	1
1	5	16	5	121
2	6	20	6	196
C(1,0)			318	

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

X	ŷ	у
1	0	4
5	16	12
6	20	14

	Data		
n	X	у	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

ı	Model
ı	Wiodei
ı	Candidate 1
J	Sarraraats 1

$$y = 1x + 0$$

n	X	ŷ	y	$(y-\hat{y})^2$
0	1	0	1	1
1	5	16	5	121
2	6	20	6	196
C(1,0)			318	

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

Model Candidate 2

$$y = 2x + 2$$

n	X	ŷ	y	$(y-\hat{y})^2$
0	1	0	4	16
1	5	16	12	16
2	6	20	14	36

C(2,2)

	Data			
n	X	у		
0	1	0		
1	5	16		
2	6	20		

$$y_n = wx_n + b$$

$$y = 1x + 0$$

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$y = 2x + 2$$

318

	Data			
n	X	у		
0	1	0		
1	5	16		
2	6	20		

$$y_n = wx_n + b$$

Cost

How to find the parameters w and b?

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

	Data			
n	X	у		
0	1	0		
1	5	16		
2	6	20		

$$y_n = wx_n + b$$

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

$$\underset{w,b \in [-\infty,\infty]}{\text{arg min } C(w,b)}$$

```
optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]
```



```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68
```



```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68
```



```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68

w_1,b_1 = 3,2 : C(w_1,b_1) = ?
```


arg min C(w,b)

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$w_1,b_1 = 3,2 : C(w_1,b_1) = 26$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	5	25
1	5	16	17	1
2	6	20	20	0
	26			

arg min C(w,b)

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$w_1,b_1 = 3,2 : C(w_1,b_1) = 26$$

n	X	ŷ	у	(y-ŷ) ²
0	1	0	5	25
1	5	16	17	1
2	6	20	20	0
	26			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_1,b_1 = 3,2 : C(w_1,b_1) = 26

w_2,b_2 = 4,2 : C(w_2,b_2) = ??
```


Optimizer

arg min C(w,b)

$$w_1,b_1 = 3,2 : C(w_1,b_1) = 26$$

$$w_2,b_2 = 4,2 : C(w_2,b_2) = 136$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	6	36
1	5	16	22	64
2	6	20	26	36
	136			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_1,b_1 = 3,2 : C(w_1,b_1) = 26
```


Optimizer

arg min C(w,b)

$$w_1,b_1 = 3,2 : C(w_1,b_1) = 26$$

$$w_2,b_2 = 3,3 : C(w_2,b_2) = 41$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	6	36
1	5	16	18	4
2	6	20	21	1
	41			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_1,b_1 = 3,2 : C(w_1,b_1) = 26
```


Optimizer

arg min C(w,b)

 $w,b \in [-\infty,\infty]$

 $w_1,b_1 = 3,2 : C(w_1,b_1) = 26$

 $w_2,b_2 = 3,1 : C(w_2,b_2) = 17$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	4	16
1	5	16	16	0
2	6	20	19	1
	17			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_2,b_2 = 3,1 : C(w_2,b_2) = 17
```


Optimizer

arg min C(w,b)

$$w,b \in [-\infty,\infty]$$

$$w_2,b_2 = 3,1 : C(w_2,b_2) = 17$$

 $w_3,b_3 = 3,0 : C(w_3,b_3) = 13$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	3	9
1	5	16	15	1
2	6	20	18	4
	13			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w<sub>3</sub>,b<sub>3</sub> = 3,0 : C(w<sub>3</sub>,b<sub>3</sub>) = 13
```


arg min C(w,b)

 $w,b \in [-\infty,\infty]$

$$w_3,b_3=3,0:C(w_3,b_3)=13$$

$$w_4,b_4=3,-1:C(w_4,b_4)=17$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	2	4
1	5	16	14	4
2	6	20	17	9
	17			

Optimizer

arg min C(w,b)

$$w,b \in [-\infty,\infty]$$

$$w_3,b_3=3,0:C(w_3,b_3)=13$$

$$w_4,b_4 = 2,0 : C(w_4,b_4) = 104$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	2	4
1	5	16	10	36
2	6	20	12	64
	104			

Optimizer

arg min C(w,b)

$$w,b \in [-\infty,\infty]$$

$$w_3,b_3=3,0:C(w_3,b_3)=13$$

$$w_4,b_4 = 4,0 : C(w_4,b_4) = 104$$

n	X	ŷ	у	(y -ŷ) ²
0	1	0	4	16
1	5	16	20	16
2	6	20	24	16
	54			


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_3,b_3 = 3,0 : C(w_3,b_3) = 13
```

The End?


```
Optimizer
                                               y = wx + b
arg min C(w,b)
   w,b∈[-∞,∞]
w_?,b_? = 4,-2 : C(w_?,b_?) = ??
```


$W_?,b_? = 4$	1,-2:	$C(w_?,b_?)$) = 12
---------------	-------	--------------	--------

n	X	ŷ	у	(y -ŷ) ²
0	1	0	2	4
1	5	16	18	4
2	6	20	22	4
C(4,-2)				12


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w,b^* = 4,-2 : C(w^*,b^*) = 12
```



```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w*,b* = 4,-4 : C(w*,b*) = 0
```


Data		
X	ŷ	
1	0	
5	16	
6	20	

Data		
X	ŷ	
1	0	
5	16	
6	20	

3

Functions are our friends

$$y = wx + b$$

x : Image

y: Is this a cat

Functions are our friends

Functions are our friends


```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68
```



```
optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68

h_w = 1
```



```
Optimizer

arg min C(w,b)

w,b \in [-\infty,\infty]

w_0,b_0 = 2,2 : C(w_0,b_0) = 68

h_w = 1

C(w_0+h_w,b_0) = C(3,2) = 26
```



```
Optimizer
arg min C(w,b)
    w,b \in [-\infty,\infty]
 w_0,b_0 = 2,2 : C(w_0,b_0) = 68
 h_{w} = 1
 C(w_0+h_w,b_0)=C(3,2)=26
r = \frac{(C(w_0+1,b_0)-C(w_0,b_0))}{(w_0+1,b_0)-C(w_0,b_0)}
```



```
Optimizer
arg min C(w,b)
   w,b \in [-\infty,\infty]
 w_0,b_0 = 2,2 : C(w_0,b_0) = 68
 h_w = 1, r = -42
 h_w = 0.1, r = -98
 h_w = 0.01, r = -104
 h_w = 0.001, r = -104
```


Optimizer y = wx + barg min C(w,b) $w,b \in [-\infty,\infty]$ $w_0,b_0 = 2,2 : C(w_0,b_0) = 68$ $h_w = 1$, r = -42 $h_w = 0.1, r = -98$ $h_w = 0.01$, r = -104 $h_w = 0.001$, r = -104 $h_w \rightarrow 0$, $r = \frac{\partial C}{\partial w}$ (w₀,b₀) $D_{\mathbf{u}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$

arg min C(w,b)

w,b∈[-∞,∞]

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$\frac{\partial \mathbf{C}}{\partial \mathbf{w}} = \frac{\partial \sum_{n} (\mathbf{y}_{n} - \hat{\mathbf{y}}_{n})^{2}}{\partial \mathbf{w}}$$

Optimizer arg min C(w,b) w,b \in [-\infty,\infty] wo,bo = 2,2 : C(wo,bo) = 68 $\frac{\partial C}{\partial w} = \frac{\partial \sum_{n} (y_n - \hat{y}_n)^2}{\partial w} = \sum_{n} 2(y_n - \hat{y}_n) x_n$ 2

Optimizer

arg min C(w,b)

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$\frac{\partial C}{\partial w} = \frac{\partial \sum_{n} (y_n - \hat{y}_n)^2}{\partial w} = \sum_{n} 2(y_n - \hat{y}_n) x_n$$

$$h_w \rightarrow 0$$
, $r = \frac{\partial C}{\partial w} (w_0, b_0) = -104$

n	X	ŷ	y	(y -ŷ)	2(y -ŷ)x
0	1	0	4	4	8
1	5	16	12	-4	-40
2	6	20	14	-6	-72

Optimizer arg min C(w,b) $w,b \in [-\infty,\infty]$ $w_0,b_0 = 2,2 : C(w_0,b_0) = 68$ $\frac{\partial C}{\partial x} = \frac{\partial \sum_{n} (y_n - \hat{y}_n)^2}{\partial x_n} = \sum_{n} 2(y_n - \hat{y}_n) x_n$ $\frac{\partial \mathbf{C}}{\partial \mathbf{C}} = \frac{\partial \sum_{\mathbf{n}} (\mathbf{y}_{\mathbf{n}} - \hat{\mathbf{y}}_{\mathbf{n}})^{2}}{\sum_{\mathbf{n}} (\mathbf{y}_{\mathbf{n}} - \hat{\mathbf{y}}_{\mathbf{n}})^{2}} = \sum_{\mathbf{n}} 2(\mathbf{y}_{\mathbf{n}} - \hat{\mathbf{y}}_{\mathbf{n}})$

Optimizer

arg min C(w,b)

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$h_w \rightarrow 0$$
, $r_w = \frac{\partial C}{\partial w} (w_0, b_0) = -104$
 $h_b \rightarrow 0$, $r_b = \frac{\partial C}{\partial w} (w_0, b_0) = -12$

n	X	ŷ	у	(<mark>y</mark> -ŷ)	2(y -ŷ)
0	1	0	4	4	8
1	5	16	12	-4	-8
2	6	20	14	-6	-12

Optimizer

arg min C(w,b)

$$w_0,b_0 = 2,2 : C(w_0,b_0) = 68$$

$$h_w \rightarrow 0$$
, $r_w = \frac{\partial C}{\partial w} (w_0, b_0) = -104$
 $h_b \rightarrow 0$, $r_b = \frac{\partial C}{\partial w} (w_0, b_0) = -12$

$$W_1 = W_0 - r_W \alpha$$

 $D_1 = D_0 - r_D \alpha$

a → Learning Rate/ Step size

Summary

	Data		
n	X	ŷ	
0	1	0	
1	5	16	
2	6	20	

$$y_n = wx_n + b$$

$$C(w,b) = \sum_{n \in \{0,1,2\}} (y_n - \hat{y}_n)^2$$

Optimizer

$$\underset{w,b \in [-\infty,\infty]}{\text{arg min } C(w,b)}$$

Summary

This section

- Linear regression
 - Univariate case
 - Gradient descent algorithm

Regression

- Predicting a continuous outcome variable
 - Predicting the value of a company's future stock price using its pat and existing financial info
 - Predicting the amount of rainfall
 - Predicting ...
- Key difference from classification
 - We measure prediction errors differently
 - ▶ This leads us to quite different learning models and algorithms

E.g., Predicting the sale price of a house

Which **features** to use? size, no. of rooms, neighborhood, annual taxes, requires renovation, etc..

Let's look at the relationship between price and size of the house

Data for house sale prices in Portland, Oregon, USA

Possible linear relationship

Sale price ≈ price_per_sqft x square_footage + fixed_expense

How to learn the parameters?

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Which linear relationship

Sale price ≈ price_per_sqft x square_footage + fixed_expense

Which linear relationship

Sale price ≈ price_per_sqft x square_footage + fixed_expense

Definitions

- Let's denote the parameters: **price_per_sqft** as w_I and **fixed_expense** as w_0
- The parameters, w_0 and w_1 , are often represented together as a vector, **w**:

$$\mathbf{w} = [w_0 \ w_1]$$

We can then make predictions using the function $f_{\mathbf{w}}$ with parameters \mathbf{w} as follows (where, x = square footage of the house):

$$f_{\mathbf{w}}(x) = w_0 + w_I x$$

prediction functions are often called hypothesis in ML community

- The function that computes the prediction error of the model with parameters \mathbf{w} on the training set is called the **cost function** or the **error function**, $J(\mathbf{w})$
- Goal: Find w that minimizes the prediction error as much as possible

$$arg min J(\mathbf{w})$$

How do we define errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes
- We can look at the absolute difference:| prediction sale price |
- However, for simplicity we would look at the squared error:
 (prediction sale price)²

Residual sum of squares

Define:

$$J(\mathbf{w}) = RSS(\mathbf{w})$$

▶ RSS(w) is called residual sum of squares, defined as follows:

$$RSS(\mathbf{w}) = RSS(w_0, w_1) = \sum_{n} [y_n - f_{\mathbf{w}}(x_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

- Other definitions of errors also exist.
- We will look into few examples as we go along.

Some intuition about RSS

Hypothesis:

$$f_{\mathbf{w}}(x) = w_0 + w_1 x$$

Parameters:

$$\mathbf{w} = [w_0 w_1]$$

Cost Function:

$$J(\mathbf{w}) = \sum_{n} [y_{n} - (w_{0} + w_{1}x_{n})]^{2}$$

Goal:

$$\underset{\mathbf{w}}{\operatorname{arg \, min}} J(\mathbf{w}) = \underset{w_0, w_1}{\operatorname{arg \, min}} J(w_0, w_1)$$

Simplified

$$f_{\mathbf{w}}(x) = w_1 x$$

$$\mathbf{w} = [0 \quad w_1]$$

$$J(\mathbf{w}) = \sum_{n} [y_n - w_1 x_n]^2$$

$$\arg\min_{\mathbf{w}} J(\mathbf{w}) = \arg\min_{w_1} J(w_1)$$

$f_{\mathbf{w}}(x)$

 $J(w_1) = (1-1)^2 + (2-2)^2 + (3-3)^2$ $J(w_1) = 0$

$f_{\mathbf{w}}(x)$

 $J(w_1) = (1-0.5)^2 + (2-1)^2 + (3-1.5)^2$ $J(w_1) = 3.5$

$f_{\mathbf{w}}(x)$

 $J(w_1) = (1-0)^2 + (2-0)^2 + (3-0)^2$ $J(w_1) = 14$

 $f_{\mathbf{w}}(x)$

 $J(w_0,w_1)$ (function of parameters w_0,w_1)

Gradient Descent Algorithm

Gradient Descent algorithm

- ▶ Have some function $J(\mathbf{w}) = J(w_0, w_1)$
- Want $\underset{\mathbf{w}}{\operatorname{arg min}} J(\mathbf{w}) = \underset{w_0, w_1}{\operatorname{arg min}} J(w_0, w_1)$

Outline

- Start with some w_0 , w_1
- Keep changing w_0 , w_1 to reduce $J(w_0, w_1)$ until we hopefully end at a minimum

Gradient descent algorithm

Repeat until convergence {

$$w_i \coloneqq w_i - \alpha \frac{\partial}{\partial w_i} J(w_0, w_1)$$
 for $i = 0$ and $i = 1$
Learning rate Partial derivative

Correct: Simultaneous update

$$temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$$

$$temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$$

$$w_0 := temp0$$

$$w_1 := temp1$$

Incorrect:

$$temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$$

 $w_0 := temp0$
 $temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$
 $w_1 := temp1$

Relating maths with intuition

Effect of learning rate

$$w_i \coloneqq w_i - \alpha \frac{\partial}{\partial w_i} J(w_0, w_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

What if you initialize w_i at a minimum

Gradient descent for Linear regression

Gradient descent algorithm for Linear regression

Gradient descent

Repeat until convergence {

$$w_i := w_i - \alpha \frac{\partial}{\partial w_i} J(w_0, w_1)$$
 for $i = 0$ and $i = 1$

For linear regression

$$J(\mathbf{w}) = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

- For $w_0: \frac{\partial}{\partial w_0} \sum_n [y_n (w_0 + w_1 x_n)]^2 = 2 \sum_n [y_n (w_0 + w_1 x_n)]$
- For $w_1 : \frac{\partial}{\partial w_1} \sum_n [y_n (w_0 + w_1 x_n)]^2 = 2 \sum_n [y_n (w_0 + w_1 x_n)] x_n$

Gradient descent algorithm for Linear regression

Repeat until convergence {

$$w_0 := w_0 - \alpha \sum_n [y_n - (w_0 + w_1 x_n)]$$

$$w_1 := w_1 - \alpha 2 \sum_n [y_n - (w_0 + w_1 x_n)] . x_n$$

This particular version is called "Batch" gradient descent

Are there other methods to find optimal w

Closed form solution exists using Linear Algebra

$$y = w^T X - b$$

▶ The method is called Least squares method