Содержание

Введение	4
1 Метрические пространства	
Тема 1 Сходящиеся последовательности в метрических	
пространствах	5
Тема 2 Топология метрических пространств	
Тема 3 Полнота метрических пространств	
19	
Тема 4 Непрерывные отображения	25
Тема 5 Компактные множества в метрических пространствах	
Тема 6 Сжимающие отображения	35
2 Линейные нормированные пространства и операторы в них	
Тема 1 Линейные нормированные пространства	41
Тема 2 Линейные ограниченные операторы в банаховых	
пространствах	48
Тема 3 Обратные операторы	
Литература	

Введение

Функциональный анализ является одним из важнейших разделов математического анализа, воплотившим в себе единство абстрактной и прикладной математики.

Данный сборник содержит задачи, подобранные в соответствии с «Функциональный курса анализ программой И интегральные 1-31 03 01-02 уравнения» ДЛЯ студентов специальности «Математика (научно-педагогическая деятельность)» (5-й семестр обучения). В сборнике представлены наиболее типичные задачи по разделам «Метрические пространства», «Линейные нормированные пространства и операторы в них».

Предлагаемый материал направлен на закрепление теоретического материала путем самостоятельного решения задач, а также на овладение основными приемами и методами решения задач по функциональному анализу.

Сборник предназначен, в первую очередь, для проведения лабораторных и практических занятий по курсу «Функциональный анализ и интегральные уравнения». Подбор задач осуществлен в соответствии с расположением учебного материала в программе дисциплины. Задачи объединены в группы по темам, по каждой из которых учебным планом по дисциплине «Функциональный анализ и интегральные уравнения» для студентов специальности 1-31 03 01-02 «Математика (научно-педагогическая деятельность)» предусмотрено выполнение лабораторной работы. Для каждого типового задания подобрано 6 вариантов задач примерно одинаковой использовать Это позволит также сборник самоконтроля при подготовке к экзамену. Самостоятельное решение функциональному анализу часто вызывает большие трудности у студентов, поэтому пособие содержит примеры решения типовых задач.

1 Метрические пространства

Тема 1 Сходящиеся последовательности в метрических пространствах

1.1.1 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a, если выполнены следующие условия (таблица 1.1.1).

Таблица 1.1.1

вариант	X	\mathcal{X}_n	а
1	C[0;2]	$\left(tn^2+1\right)/\left(n^2+t\right)$	t
2	C[0;5]	$\left(nt^2+n^2t\right)/\left(n^2t+1\right)$	1
3	C[-3;3]	$\sqrt{t^2 + 1/n^3}$	
4	C[0;8]	$(t/8)^n - (t/8)^{2n} + t$	t
5	C[0;1]	$t^{2n} - t^{n+1} + t$	t
6	C[1;2]	$n(\sqrt{1/n+t}-\sqrt{t})$	$1/(2\sqrt{t})$

1.1.2 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a, если выполнены следующие условия (таблица 1.1.2).

Таблица 1.1.2

1 aonaga	1.1.2		
вариант	X	X_n	а
1	2	3	4
1	$l_{\scriptscriptstyle\infty}$	$ \left(\underbrace{\frac{4n+1}{4n+2}}_{1} \underbrace{\frac{1}{2}}_{n}, \dots, \underbrace{\frac{4n+1}{4n+3}}_{1} \underbrace{\frac{1}{2}}_{n}, 0, 0, \dots \vdots \underbrace{\frac{1}{2}}_{n} \right) + \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{4n+1}{4n+3}}_{n} \underbrace{\frac{1}{2}}_{n}, \dots, \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n}, \dots, \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n}, \dots, \underbrace{\frac{1}{2}}_{n}, \dots$	$(e^{-1/2}, e^{-1/2}, \dots)$
2	<i>l</i> _{8/5}	$\left(\frac{\cos(1/n)}{\square \square^n\square \square \square^n\square \square^n}, 0, 0, \dots\right)$	(0,0,0,)
3	l_1	$ \begin{pmatrix} \sin \frac{1}{4^{2}}, \dots, \sin \frac{1}{3^{n}}, 0, 0, \dots \\ 1 4^{2} 4 2 4 4 3^{n} & \vdots \\ \frac{1}{3^{n}} & \frac{1}{3^{n}} & \frac{1}{3^{n}} \end{pmatrix} $	(0,0,0,)

Окончание таблицы 1.1.2

1	2	3	4
4	$l_{3/2}$	$((1+1/n)^n, (\sin n^2)/n, (\sin n^3)/n^2, (\sin n^k)/n^{k-1},)$	(e, 0, 0,)
5	l_3	$ \left(\begin{array}{c} \frac{n^2}{3^n}, \dots, \frac{n^2}{3^n}, 0, 0, \dots \\ \vdots \\ \frac{n^2}{3^n}, \dots, \frac{n^2}{3^n}, 0, 0, \dots \\ \vdots \right) $	(0,0,0,)
6	l_2	$ \left(\frac{1}{142},,\frac{1}{2},n,0,0,\div \frac{\vdots}{\vdots},n,0,0,0,\div \frac{\vdots}{\vdots}\right) $	(0,0,0,)

1.1.3 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a, если выполнены следующие условия (таблица 1.1.3).

Таблица 1.1.3

1 costitiçoi :			
вариант	X	X_n	a
1	$L_2[0;2]$	1/(1+nt)	0
2	$L_4[0;3]$	$\left(t/3\right)^n + 2t$	2 <i>t</i>
3	$L_{4/3}[-1;2]$	$\left(t/2\right)^n + \sin t$	sin t
4	$L_1[0;1]$	$e^{n(t-1)}$	0
5	$L_{3/2}[-2;0]$	$\sin(t/n) + 2t^2$	$2t^2$
6	$L_2[0;2]$	$(\sin nt)/n^2+t^3$	t^3

1.1.4 Является ли данное условие: а) необходимым, б) достаточным, в) необходимым и достаточным для сходимости последовательности x_n в метрическом пространстве X (таблица 1.1.4)?

Таблица 1 1 4

1 aostatya 1	• • • •	
вариант	X	Условие
1	2	3
1	C[a;b]	$\forall t \in [a;b]$ существует предел числовой последовательности
		$x_n(t)$
2	l_1	$\forall k \in N$ существует предел числовой последовательности
		$x_n(k)$
3	l_4	$\lim_{n\to\infty} \sup_{k\in N} x_n(k) - a(k) = 0, \text{ rge } a = (a(1), a(2),, a(k),) \in l_4$
		$\forall k \in N$ существует предел числовой последовательности
4	l_{∞}	$x_n(k)$

Окончание таблицы 1.1.4

1	2	3
5	c_0	$\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} x_n(k) - a(k) \frac{1}{2} \right) = 0, \text{ где } a = (a(1), a(2),, a(k),)$
6	l_1	$\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} x_n(k) - a(k) ^2 \frac{1}{2} \right) = 0, \text{ где } a = (a(1), a(2),, a(k),)$

1.1.5 Найти предел последовательности x_n в метрическом пространстве X, если он существует (таблица 1.1.5).

Таблица 1.1.5

гаолица	I.I.J	
вариант	X	\mathcal{X}_n
1	$l_{\scriptscriptstyle \infty}$	$ \begin{pmatrix} tg \left(1 + \frac{1}{2}, \frac{1}{2}, \dots, tg \left(1 + \frac{1}{2}, \frac{1}{2}, 0, 0, \dots; \frac{1}{2}, 0, 0, \dots; \frac{1}{2}, \frac{1}$
2	l_3	$ \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots \div \frac{1}{2}, 0, 0, \dots \div \frac{1}{2}, \dots \right) $
3	l_2	$ \begin{pmatrix} \sin \frac{1}{2},, \sin \frac{1}{2}, 0, 0, & \vdots \\ 1 44 2 4 48^{n} & \vdots \\ \frac{n^{2}}{2} \end{pmatrix} $
4	C_0	$ \left(\sqrt{\frac{n+2}{4^n}},, \sqrt{\frac{n+2}{4^n}}, 0, 0,; \frac{1}{2^n} \right)^{\frac{1}{2}}, 0, 0,; $
5	$l_{\scriptscriptstyle \infty}$	$(tg(1/n), tg(1/n^2), tg(1/n^k),)$
6	l_1	$ \left(\frac{\sin 3^{n}}{1^{n}\cancel{4}}, \dots, \frac{\sin 3^{n}}{\cancel{4}}, 0, 0, \dots; \frac{\vdots}{\vdots}\right) $

Примеры решения типовых задач

1 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a.

метрического пространства
$$X$$
 к точке a . Пример 1 $x_n(t) = \frac{1}{n^2} \sqrt{n^4 t^2 + 1}$, $a(t) = |t|$, $X = C[-4;4]$.

Решение Рассмотрим расстояние $\rho_C(x_n, a) = \max_{t \in [-4,4]} |x_n(t) - a(t)|$. Так как при всех $t \in [-4,4]$ имеем

$$|x_n(t) - a(t)| = \left| \frac{1}{n^2} \sqrt{n^4 t^2 + 1} - |t| \right| = \sqrt{t^2 + \frac{1}{n^4}} - |t| = \frac{t^2 + \frac{1}{n^4} - t^2}{\sqrt{t^2 + \frac{1}{n^4} + |t|}} \le \frac{\frac{1}{n^4}}{\sqrt{\frac{1}{n^4}}} = \frac{1}{n^2} \to 0$$

при $n \to \infty$, то $\rho_C(x_n, a) \to 0 \ (n \to \infty)$. Значит, x_n сходится к a в C[-4; 4].

Пример 2
$$x_n(t) = t^n - t^{n+1} + t$$
, $a(t) = t$, $X = C[0;1]$.

Решение Рассмотрим $\rho_C(x_n,a) = \max_{0 \le t \le 1} |t^n - t^{n+1}|$. Обозначим $t^n - t^{n+1}$ через $\Delta_n(t)$ и найдем наибольшее значение функции $|\Delta_n(t)| = \Delta_n(t) = t^n - t^{n+1}$ на отрезке [0;1]. Имеем $\Delta'_n(t) = nt^{n-1} - (n+1)t^n$, $\Delta'_n(t) = 0$, если t = 0 или $t = \frac{n}{n+1}$.

$$\Delta_{n}\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^{n} - \left(\frac{n}{n+1}\right)^{n+1} = \left(\frac{n}{n+1}\right)^{n} \left(1 - \frac{n}{n+1}\right) = \frac{1}{\left(1 + \frac{1}{n}\right)^{n}} \frac{1}{n+1}, \ \Delta_{n}(0) = 0,$$

$$\Delta_{n}(1) = 0.$$

Значит, (по правилу нахождения наибольшего значения функции на отрезке), $\rho_{C}(x_{n},a)=\frac{1}{\left(1+\frac{1}{n}\frac{\right)^{n}}{1}}\frac{1}{n+1}\to \frac{1}{e}\cdot 0=0$,

а поэтому x_n сходится к a в C[0;1].

Пример 3
$$x_n = \begin{pmatrix} \frac{1}{\sqrt{n_1}}, ..., \frac{1}{\sqrt{n_1}}, 0, 0, ... & \vdots \\ \frac{1}{\sqrt{n_1}}, ..., \frac{1}{\sqrt{n_1}}, 0, 0, ... & \vdots \\ \frac{1}{\sqrt{n_1}}, \frac{1}{\sqrt{n_1}}, \frac{1}{\sqrt{n_1}}, 0, 0, ... & \vdots \\ \frac{1}{\sqrt{n_1}}, \frac{1}{\sqrt{n_1}}, \frac{1}{\sqrt{n_1}}, 0, 0, ... & \vdots \\ \frac{1}{\sqrt{n_1}}, \frac{1}{\sqrt{n_1}}$$

Решение
$$\rho_{3}(x_{n},a) = \left[\sum_{i=1}^{\infty} \left| x_{n_{i}} - a_{i} \right|^{3} \right]^{1/3} = \left[n^{2} \left| \frac{1}{\sqrt{n}} - 0 \right|^{3} \right]^{1/3} = \left[n^{2} \left| \frac{1}{\sqrt{n}} - 0 \right|^{3} \right]^{1/3} = \left[n^{2} \left| \frac{1}{\sqrt{n}} - 0 \right|^{3} \right]^{1/3} = n^{1/6} \rightarrow \infty \text{ при } n \rightarrow \infty.$$

Так как $\rho_3(x_n,a)$ не стремится к нулю, то x_n не сходится к a в l_3 .

Пример 4
$$x_n = \left(\frac{\sin n}{1^n 442}, \dots, \frac{\sin n}{4^n 43}, 0, 0, \dots; \atop \vdots, a = (0,0,0,\dots), X = l_2.$$

Решение
$$\rho_2(x_n, a) =$$

$$= \left\| \sum_{i=1}^{\infty} \left| x_{n_i} - a_i \right|^2 \right\|^{1/2} = \left\| n \frac{\sin^2 n}{n^2} \right\|^{1/2} = \left\| \frac{\sin^2 n}{n} \right\|^{1/2} = \frac{\left| \sin n \right|}{\sqrt{n}} \to 0 \text{ При } n \to \infty.$$

Значит, x_n сходится к a в l_2 .

Пример 5
$$x_n(t) = n(\sqrt{t+1/n} - \sqrt{t}), a(t) = \frac{1}{2\sqrt{t}}, X = L_1[0;1].$$

Решение
$$\rho_{L_1}(x_n,a) = \int_0^1 |x_n(t) - a(t)| dt = \int_0^1 |n(\sqrt{t+1/n} - \sqrt{t}) - \frac{1}{2\sqrt{t}}| dt = \int_0^1 \left| \frac{1}{\sqrt{t+1/n} + \sqrt{t}} - \frac{1}{2\sqrt{t}} | dt = \int_0^1 \left| \frac{1}{2\sqrt{t}} - \frac{1}{\sqrt{t+1/n} + \sqrt{t}} | dt \right| dt.$$

Применим теорему Беппо Леви о предельном переходе под знаком интеграла. Обозначим $f_n(t) = \frac{1}{2\sqrt{t}} - \frac{1}{\sqrt{t+1/n} + \sqrt{t}}$. Функция $f_n(t)$ является интегрируемой на [0;1] для любого $n \in N$, и $f_1(t) \ge f_2(t) \ge \dots \ge f_n(t) \ge \dots$. Кроме того, $f_n(t) \to 0$ $(n \to \infty)$. Значит, по теореме Б. Леви,

$$\lim_{n\to\infty} \rho_{L_1}(x_n,a) = \lim_{n\to\infty} \int_0^1 f_n(t)dt = 0.$$

Следовательно, x_n сходится к a в $L_1[0;1]$.

Пример 6 $x_n(t) = n \sin(t/n)$, a(t) = t, $X = L_1[0;1]$.

Решение
$$\rho_{L_1}(x_n, a) = \int_0^1 n \sin \frac{t}{n} - t dt = \int_0^1 n \sin \frac{t}{n} dt = \int_0^1 t - n \sin \frac{t}{n} d$$

при $n \to \infty$ (мы воспользовались тем, что $\sin x \sim x$ при $x \to 0$). Значит, x_n сходится к a в $L_1[0;1]$.

2 Является ли данное условие: а) необходимым, б) достаточным, в) необходимым и достаточным для сходимости последовательности x_n в метрическом пространстве X?

Пример 1 $X = C_L[a;b]$ — пространство непрерывных функций с метрикой $\rho_L(x,y) = \int\limits_a^b \left|x(t)-y(t)\right| \,dt$.

Условие: последовательность $x_n(t)$ поточечно сходится к непрерывной функции a(t).

Решение Не нарушая общности, можем считать, что a = 0, b = 1. Покажем, что условие не является ни необходимым, ни достаточным. Для выяснения достаточности условия рассмотрим следующую последовательность $x_n(t)$, заданную на [O; 1] графически (рисунок 1):

Рисунок 1 — График функции $x_n(t)$

Последовательность x_n сходится к $a \equiv 0$ поточечно на [O; 1] (почему?), но

$$\rho_L(x_n,a) = \int_0^1 |x_n(t) - 0| dt = \int_0^{2/n} x_n(t) dt = \frac{1}{2} \times \frac{2}{n} \times \frac{1}{n} = 1,$$

то есть $\rho_L(x_n,a)$ не стремится к нулю. Значит, данное условие не является достаточным для сходимости последовательности x_n в метрическом пространстве $C_L[a;b]$.

Теперь допустим, что $x_n \to a$ в $C_L[0;1]$, то есть $\int_{a}^{1} |x_n(t) - a(t)| dt \to 0$ при $n \to \infty$. Покажем на примере, что отсюда не следует поточечная сходимость x_n к a. Рассмотрим последовательность $x_n(t) = t^n$ функцию $a(t) \equiv 0$. Имеем

$$\rho_L(x_n,a) = \int_0^1 t^n dt = \frac{t^{n+1}}{n+1} \Big|_0^1 = \frac{1}{n+1} \to 0$$
 при $n \to \infty$.

Значит, $x_n \to a = 0$ в $C_L[0;1]$. Но t^n не сходится к a = 0 поточечно, так как $t^n \to 1$ при t=1. Значит, данное условие не является необходимым

для сходимости последовательности x_n в метрическом пространстве $C_L[a;b]$.

Пример 2 $X = l_2$.

Условие:
$$\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} |x_n(k) - a(k)| \frac{1}{2} \right) = 0$$
, где $a = (a_1, a_2, ..., a_k, ...)$.

Решение Положим $\alpha_n := \sum_{k=1}^{\infty} |x_n(k) - a(k)|$. Тогда данное условие означает, что $\alpha_n \to 0$ при $n \to \infty$. Докажем, что это условие является достаточным для сходимости последовательности x_n к a в пространстве l_2 .

Поскольку при выполнении этого условия $\alpha_n < 1$ при достаточно больших n, то при этих n и при всех k имеем $|x_n(k) - a(k)| < 1$. Поэтому $|x_n(k) - a(k)|^2 \le |x_n(k) - a(k)|$ при этих n и при всех k. Значит,

$$(\rho_2(x_n, a))^2 \le \alpha_n \to 0 \ (n \to \infty) \ ,$$

а это значит, что $\rho_2(x_n,a) \to 0$. Следовательно, $x_n \to a$ в l_2 . Достаточность доказана.

Теперь покажем, что условие не является необходимым. Рассмотрим последовательность $x_n = \left(1, \frac{1}{2}, ..., \frac{1}{n}, 0, 0, 0, ...\right)$ и точку

$$a = \left(1, \frac{1}{2}, ..., \frac{1}{n}, \frac{1}{n+1}, ...\right)$$
 из l_2 . Имеем $\rho_2(x_n, a) = \left[\sum_{n=1}^{\infty} \frac{1}{n^2}\right]^{1/2} \to 0$ $(n \to \infty)$ как

остаток сходящегося ряда. Значит, $x_n \to a$ в l_2 . Но в этом примере $\alpha_n = \infty$ (сравните с гармоническим рядом), а потому данное условие не выполняется.

3 Найти предел последовательности x_n в метрическом пространстве X, если он существует.

Пример 1
$$X = l_1, x_n = \left(\frac{1}{2}, \frac{4}{5}, \dots, \frac{n^2}{n^2 + 1}, 0, 0, \dots\right)$$

Решение

 $l\ cnocoo$ Допустим, x_n сходится к некоторому a в l_1 . Так как для любого k справедливо неравенство

$$|x_n(k)-a(k)| \le \rho_1(x_n,a) \to 0 (n \to \infty),$$

то имеем и покоординатную сходимость x_n к a. Но покоординатно x_n «сходится» к последовательности

$$\left(\frac{1}{2}, \frac{4}{5}, \dots, \frac{n^2}{n^2 + 1}, \frac{(n+1)^2}{(n+1)^2 + 1}, \dots, \frac{1}{1}, \dots \right)$$

которая не принадлежит пространству I_1 (ряд $\sum_{n=1}^{\infty} \frac{n^2}{n^2+1}$ расходится, по необходимому признаку). Мы пришли к противоречию. Значит, x_n не сходится в I_1 .

 $ho_1^-(x_n,x_{n+1})=rac{(n+1)^2}{(n+1)^2+1} o 1$ при $n o \infty$, последовательность x_n не является фундаментальной. Следовательно, x_n не сходится в l_1 .

Пример 2
$$X = l_{\infty}$$
, $x_n = (1, \sqrt{2}, \sqrt[3]{3}, ..., \sqrt[n]{n}, 0, 0, ...)$.

Решение

1 способ Допустим, x_n сходится к некоторому a в l_∞ . Так как $|x_n(k)-a(k)| \le \rho_\infty(x_n,a) \to 0$ при $n\to\infty$ для любого k, то имеем покоординатную сходимость x_n к a. Но покоординатно x_n «сходится» к последовательности

$$a = (1, \sqrt{2}, \sqrt[3]{3}, ..., \sqrt[n]{n}, \sqrt[n+1]{n+1}, ...) \in l_{\infty},$$

для которой $\rho_{\infty}(x_n,a) = \sup_{k \ge n+1} \left| \sqrt[k]{k} \right| = \sqrt[n+1]{n+1} \to 1$ (почему?) при $n \to \infty$. Следовательно, x_n не сходится к a в l_{∞} . Противоречие.

2 способ Заметим, что последовательность x_n не является фундаментальной в l_{∞} . Действительно, $x_{n+1} = \left(1, \sqrt{2}, \sqrt[3]{3}, ..., \sqrt[n]{n}, \sqrt[n+1]{n+1}, 0, 0, ...\right)$, $\rho(x_n, x_{n+1}) = \sqrt[n+1]{n+1} \to 1$ при $n \to \infty$. Так как x_n не фундаментальна в l_{∞} , то она не сходится в l_{∞} .

Тема 2 Топология метрических пространств

1.2.1 Является ли данное множество M открытым, замкнутым, ограниченным в пространстве C[a;b]? Найти его замыкание, внутренние и граничные точки (таблица 1.2.1).

Таблица 1.2.1

вариант	M	вариант	M
1	$\left x \in C^{(1)}[a;b] \middle x(a) = 0 \right $	4	$\left x \mid x(a) > 0 \right $
2	$\left x \left x(a) = x(b) \right \right $	5	$\left x \right x(t) = const \right $
3		6	$\left x \in C^{(1)}[a;b] x(a) = x`(a)\right $

1.2.2 Для данного множества A выяснить, является ли множество $B = A \cap l_p$ открытым, замкнутым, ограниченным в l_p (таблица 1.2.2).

Таблица 1.2.2

вариант	p	A	вариант	p	A
1	1	$\left x \left\ x(k) \right \le \frac{1}{k} \right $	4	∞	$\left\{ x \mid \exists n : \forall k > n \ x(k) = 0 \right\}$
2	2	$\left x \mid x(k) > 0 \right $	5	3/2	$ x x(1) = \dots = x(n) = 0$
3	2	$\left x \left\ x(k) \right < \frac{1}{\sqrt[3]{k^2}} \right $	6	2	$\left\{ \left. X \left \sum_{k=1}^{\infty} \left x(k) \right < 1 \right. \right\}$

Примеры решения типовых задач

1 Является ли данное множество M открытым, замкнутым, ограниченным в пространстве C[a;b]? Найти его замыкание, внутренние и граничные точки.

Пример 1
$$M = |x| |x(a) = 0|$$
.

Решение Множество M не является открытым, и более того, ни одна его точка не является внутренней. Действительно, $\forall x_0 \in M$ и для любого шара $B(x_0, \varepsilon)$ имеем $x = x_0 + \varepsilon/2 \in B(x_0, \varepsilon)$, но $x \notin M$, так как $x(a) = x_0(a) + \frac{\varepsilon}{2} = \frac{\varepsilon}{2} \neq 0$.

Множество M является замкнутым, так как оно содержит в себе пределы всех своих сходящихся последовательностей. Действительно, если $x_n(t) \to x_0(t)$ в C[a;b], $x_n(a) = 0$, то и $x_0(a) = 0$. А это значит, что $x_0 \in M$.

Граница множества ∂M совпадает с самим множеством M, что теперь сразу следует из формулы $\partial M = \overline{M} \setminus IntM$.

Множество M не является ограниченным, так как последовательность $x_n(t) = n \cdot (t - a) \in M$, но $\rho(x_n, 0) = n \times (b - a) \to \infty (n \to \infty)$.

Пример 2
$$M = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x \Big|_{a}^{b} \int_{a}^{b} x(t)dt < 1 \end{bmatrix}$$
.

Peшениe Покажем, что M является открытым. Возьмём $\forall x_0 \in M$, то есть

$$\int_{a}^{b} x_0(t)dt < 1.$$

Тогда $\exists \varepsilon > 0$: $\int_a^b x_0(t)dt < 1-\varepsilon$. Покажем, что шар $B(x_0, \varepsilon/(b-a)) \subseteq M$.

Возьмём $\forall y \in B(x_0, \varepsilon/(b-a))$. Это значит, что $\max_{a \le s} |x_0(t) - y(t)| < \frac{\varepsilon}{b-a}$. Тогда

$$\int_{a}^{b} y(t)dt = \int_{a}^{b} x_{0}(t)dt + \int_{a}^{b} (y(t) - x_{0}(t))dt \le$$

$$\int_{a}^{b} x_{0}(t)dt + \int_{a}^{b} |y(t) - x_{0}(t)|dt < 1 - \varepsilon + \frac{\varepsilon}{b - a} \cdot (b - a) = 1.$$

3начит, *y* ∈ M.

Так как M открыто, то IntM = M.

Множество M не является замкнутым, так как содержит не все свои предельные точки. Действительно, возьмём последовательность

$$x_n(t) = \frac{n}{n+1} \cdot \frac{1}{b-a}$$
 из M . Тогда $x_n(t) \to \frac{1}{b-a}$, но $\int_a^b \frac{dt}{b-a} = 1$, т.е. $\frac{1}{b-a} \notin M$.

Замечание Нормированное пространство X всегда связно, так как любые две его точки x и y можно связать непрерывным путем $tx + (1 - t)y, t \in [0;1]$, лежащим в X, а потому в нем нет открытых и одновременно замкнутых собственных подмножеств.

Замыкание $\overline{M} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} x(t)dt \le 1 \end{bmatrix}$. Действительно, если x_0 принадлежит \overline{M} , то найдется последовательность $x_n \in M$ равномерно сходящаяся к x_0 на [a;b]. А тогда

$$\int_{a}^{b} x_{0}(t)dt = \int_{a}^{b} \lim_{n \to \infty} x_{n}(t)dt = \lim_{n \to \infty} \int_{a}^{b} x_{n}(t)dt \le 1.$$

Обратно, если $\int_a^b x_0(t)dt \le 1$, то последовательность $x_n = n/(n+1)x_0$ принадлежит M и сходится к x_0 равномерно (проверьте!), а потому x_0 принадлежит \overline{M} .

Теперь ясно, что граница
$$\partial M = \overline{M} \setminus IntM = \overline{M} \setminus M = \begin{bmatrix} x \\ x \end{bmatrix}_a^b x(t)dt = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Наконец, M не является ограниченным, так как $x_n(t) = n \in M$, но $\rho(x_n,0) = n \to \infty$.

Пример 3
$$M = |x| \max |x(t)| < 1$$
.

Решение Покажем, что M открыто. Возьмём $\forall x_0 \in M$. Тогда $\max |x_0(t)| < 1$, а потому $\exists \varepsilon > 0 : \max |x_0(t)| < 1 - \varepsilon$. Рассмотрим $B(x_0, \varepsilon)$. Для любого $y \in B(x_0, \varepsilon)$ имеем $\max_{a \not\in \mathcal{S}} |y(t) - x_0(t)| < \varepsilon$, а тогда

$$\max \left| y(t) \right| \leq \max \left| y(t) - x_0(t) \right| + \max \left| x_0(t) \right| < \varepsilon + 1 - \varepsilon = 1.$$

Покажем, что замыкание множества M есть $\overline{M} = [x \mid \max \mid x(t) \mid \leq 1]$. Действительно, если x_0 принадлежит \overline{M} , то найдется последовательность $x_n \in M$, равномерно сходящаяся к x_0 на [a;b]. А тогда $|x_0(t)| = \lim_{n \to \infty} |x_n(t)| \leq 1$.

Обратно, если $\max |x(t)| \le 1$, то последовательность $x_n = n/(n+1)x_0$ принадлежит M и сходится к x_0 равномерно на [a;b] (проверьте), а потому x_0 принадлежит \overline{M} .

Очевидно, что данное множество ограничено.

2 Для данного множества A выяснить, является ли множество $B = A \cap l_p(p \ge 1)$ открытым, замкнутым, ограниченным в l_p .

Пример 1
$$p = 3/2$$
, $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} x |x(k)| \le \frac{1}{k} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Решение Множество $B = A \cap l_{3/2}$ замкнуто, так как содержит в себе все свои предельные точки. Действительно, если $x_n \to x_0, x_n \in A$, то $\forall k \in N$ $x_n(k) \to x_0(k)$ (почему?). Но так как $|x_n(k)| \le 1/k$, то и $|x_0(k)| \le 1/k$. Значит, $x_0 \in B$.

Так как B замкнуто, то оно не является открытым, поскольку $\forall p \geq 1$ пространство l_p связно (см. замечание к примеру 2 в задаче 1). Но легко дать и прямое доказательство. Действительно, точка $e_1 = (1,0,0,\ldots)$ принадлежит B, но для любого $\varepsilon > 0$ точка $(1+\varepsilon/2,0,0,\ldots) \notin B$, хотя и лежит в ε — окрестности точки e_1 .

Наконец, B ограничено, так как $\forall x \in B$

$$\rho_{3/2}(x,0) = \left\| \sum_{k=1}^{\infty} |x(k)|^{3/2} \right\|^{2/3} \le \left\| \sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \right\|^{2/3}.$$

Пример 2
$$p = \infty, A = |x| 0 < x(k) < 1$$
.

Решение Множество ${}^B=A\cap l_\infty$ не является открытым. Для доказательства покажем, что точка $x_0=(1/2,1/3,...)\in B$ не является для него внутренней. Возьмём $\forall \varepsilon>0$ и найдём такое натуральное N, что $\frac{1}{N}<\frac{\varepsilon}{2}$ Тогда $x_\varepsilon=(\frac{1}{2},...,\frac{1}{N}-\frac{\varepsilon}{2},\frac{1}{N+1},...)\in B(x_0,\varepsilon)$, но $x_\varepsilon\not\in B$, поскольку $x_\varepsilon(N)<0$.

Множество B не замкнуто. Действительно, рассмотрим $x_n = (\frac{1}{n+1}, \frac{1}{n+2}, \ldots) \in B$. Тогда x_n сходится к точке $0 = (0,0,\ldots)$, так как $\rho_\infty(x_n,0) = \frac{1}{n+1} \to 0$ при $n \to \infty$, но $(0,0,\ldots) \notin B$.

Множество B ограничено, так как $\rho_{\scriptscriptstyle\infty}(x,0) \le 1, \ \forall x \in B$.

Решение Покажем, что множество $B = A \cap l_1$ открыто.

Возьмём $\forall x_0 \in B$. Найдется такое $0 < \varepsilon < 1$, что $\sum_{k=1}^{\infty} |x_0(k)|^2 < (1-\varepsilon)^2$. Если $x \in B(x_0, \varepsilon^2)$ (шар рассматривается, конечно, в I_1), то $\sum_{k=1}^{\infty} |x(k) - x_0(k)| < \varepsilon^2$. Тогда и $\sum_{k=1}^{\infty} |x(k) - x_0(k)|^2 \le \sum_{k=1}^{\infty} |x(k) - x_0(k)| < \varepsilon^2$. Теперь, в силу неравенства Минковского, имеем

$$\sqrt{\sum_{k=1}^{\infty}\left|x(k)\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|x(k)-x_{0}(k)\right|^{2}} + \sqrt{\sum_{k=1}^{\infty}\left|x_{0}(k)\right|^{2}} < \varepsilon + 1 - \varepsilon = 1.$$

Значит, $\sum_{k=1}^{\infty} |x(k)|^2 < 1$, т. е. $x \in B$. Итак, $B(x_0, \varepsilon^2) \subset B$.

Так как B открыто, то B не замкнуто по замечанию из решения примера 2 к задаче 1. Дадим прямое доказательство этого факта. Точки $x_n = c(1,1/2^2,...,1/n^2,0,0,...)$, где $c = \left(\sum_{n=1}^{\infty} 1/n^4\right)^{-1/2}$, очевидно, принадлежат B. Но B то же время x_n сходится B l_1 к $c(1,1/2^2,1/3^2,...) \notin B$.

Покажем, что В не ограничено. Рассмотрим последовательность

$$x_n = \sqrt{\frac{6}{\pi^2}} \cdot 1, \sqrt{\frac{6}{\pi^2}} \cdot \frac{1}{2}, ..., \sqrt{\frac{6}{\pi^2}} \cdot \frac{1}{n}, 0, 0, ...$$

Имеем: $x_n \in B$, так как

$$\sum_{k=1}^{\infty} |x_n(k)|^2 = \sum_{k=1}^{n} \frac{6}{\pi^2} \cdot \frac{1}{k^2} < \frac{6}{\pi^2} \cdot \sum_{k=1}^{\infty} \frac{1}{k^2} = 1,$$

но в то же время $\rho_1(x_n,0) = \sqrt{\frac{6}{\pi^2}} \cdot \sum_{K=1}^{\infty} \frac{1}{k} \to \infty$ при $n \to \infty$.

Пример 4
$$p=2, A= \begin{bmatrix} \mathbb{I} & x \\ \mathbb{I} & x \end{bmatrix} \sum_{k=1}^{\infty} \left|x(k)\right| \cdot k < 1 \end{bmatrix}$$
.

Решение Покажем, что $B = A \cap l_2$ не является открытым. Возьмём $x_0 = (0,0,...) \in B$ и $\forall \varepsilon > 0$. Найдётся такое натуральное N, что $N \cdot \varepsilon / 2 > 1$.

Тогда
$$x(\varepsilon) = (0,0,...,0, \operatorname{F}/2,0,0,...) \in B(x_0,\varepsilon)$$
 , но $x(\varepsilon) \notin B$.

Множество B не является и замкнутым. Для доказательства рассмотрим последовательность $x_n = \frac{6}{\pi^2} \cdot \left[1, \frac{1}{2^3}, ..., \frac{1}{n^3}, 0, 0, ... \right] \in B$. Она сходится к точке $x_0 = \frac{6}{\pi^2} \cdot \left[1, \frac{1}{2^3}, ..., \frac{1}{n^3}, \frac{1}{(n+1)^3}, ... \right]$, которая не принадлежит B, так как $\sum_{k=1}^{\infty} |x(k)| \cdot k = \frac{6}{\pi^2} \cdot \sum_{k=1}^{\infty} \frac{1}{k^2} = 1$.

Множество B ограничено, поскольку неравенство $|x(k)| < \frac{1}{k}$ влечет $\rho_2(x,0) = \lim_{k \to 1} \sum_{k=1}^{\infty} |x(k)|^2 \lim_{k \to 1} \sum_{k=1}^{\infty} \frac{1}{k^2} \lim_{k \to 1} \frac{1}{k^2} = \frac{\pi}{\sqrt{6}} \,.$

$$\rho_2(x,0) = \left\| \sum_{k=1}^{\infty} |x(k)|^2 \right\|_{1}^{1/2} \le \left\| \sum_{k=1}^{\infty} \frac{1}{k^2} \right\|_{1}^{1/2} = \frac{\pi}{\sqrt{6}}$$

Тема 3 Полнота метрических пространств

1.3.1 Является ли последовательность x_n фундаментальной в данном пространстве X? Найти $\lim_{n\to\infty} x_n$, если он существует (таблица 1.3.1).

Таблица 1.3.1

Таолица 1.3	· · 1	
вариант	X	X_n
1	$L_1[-1;2]$	$x_n(t) = \begin{cases} \sin nt, t \in Q \cap [-1; 2], \\ \sqrt{t^2 + \frac{1}{n^3}}, t \in [-1; 2] \setminus Q \end{cases}$
2	$L_{3/2}[0;1]$	$x_n(t) = \begin{cases} ne^{nt}, t \in K, \\ \frac{t^3}{n}, t \in [0, 1] \setminus K \end{cases}$
3	L_4 [-2;0]	$x_n(t) = \begin{cases} nt, t \in Q \cap [-2, 0], \\ ne^{nt}, t \in [-2, 0] \setminus Q \end{cases}$
4	L ₂ [-1;1]	$x_{n}(t) = \begin{cases} \sqrt{t^{2} + \frac{1}{n^{4}}}, t \in [-1;1] \setminus K, \\ \cos(n+t), t \in K \cap [-1;1] \end{cases}$
5	$L_4[0;3]$	$x_n(t) = \begin{cases} \sin \pi nt, t \in Q \cap [0;3] \\ \left(\frac{t}{3}\right)^n, t \in [0;3] \setminus Q \end{cases}$
6	$L_2[0;\pi]$	$x_n(t) = \begin{cases} \sin(t/n), t \in [0; \pi/] \setminus Q, \\ \exp(n^2 t), t \in Q \cap [0; \pi/2] \end{cases}$

1.3.2 Выяснить, является ли заданное пространство (X, ρ) полным.

Bариант l а) пространство $C^{(1)}[a;b]$ непрерывно дифференцируемых на отрезке [a;b] функций с метрикой $\rho(x;y) = \max_{a \le l \le b} \left| x(t) - y(t) \right| + \max_{a \le l \le b} \left| x^{'}(t) - y^{'}(t) \right|;$

б) пространство всех дважды дифференцируемых на отрезке [a;b] функций с метрикой $\rho(x;y) = \max_{a \le t \le b} |x(t) - y(t)|$.

Вариант 2 а) пространство $l_p(p \ge 1)$ числовых последовательностей x = (x(1), x(2), ..., x(k), ...), удовлетворяющих условию $\sum_{k=1}^{\infty} |x(k)|^p < \infty$, с метрикой $\rho(x,y) = \int_{0}^{\infty} \sum_{k=1}^{\infty} |x(k) - y(k)|^p \int_{0}^{1/p}$;

б) пространство всех непрерывных на отрезке [a;b] функций с метрикой $\rho(x,y) = \int_{a}^{b} |x(t) - y(t)|^2 dt \Big|_{a}^{1/2}$.

Вариант 3 а) пространство l_{∞} всех ограниченных числовых последовательностей x = (x(1), x(2), ..., x(k), ...) с метрикой $\rho(x; y) = \sup_{k} \left| x(k) - y(k) \right|$,

б)
$$X = C[0;1]$$
 с метрикой $\rho(x,y) = \int_{0}^{1} |x(t) - y(t)| dt$.

Bapuahm 4 а) пространство c_0 сходящихся к нулю последовательностей x=(x(1),x(2),...,x(k),...) с метрикой $\rho(x;y)=\sup_k \left|x(k)-y(k)\right|$

б)
$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x \in C[0;1] \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 с метрикой $\rho(x;y) = \max_{0 \le t \le 1} |x(t) - y(t)|$.

Вариант 5 а) Пространство c сходящихся последовательностей x = (x(1), x(2), ..., x(k), ...) с метрикой $\rho(x; y) = \sup_{k} |x(k) - y(k)|$;

б)
$$X = C[0;1]$$
 с метрикой $\rho(x,y) = \int_a^b |x(t) - y(t)|^2 dt \Big|_a^{1/2}$.

Bариант b а) Пространство CB[a;b] ограниченных и непрерывных на интервале a;b функций с метрикой $\rho(x;y) = \sup_{a \le t \le b} |x(t) - y(t)|$;

б)
$$X = l_1$$
 с метрикой $\rho(x; y) = \sup_{k} |x(k) - y(k)|$.

Примеры решения типовых задач

1 Является ли последовательность x_n фундаментальной в данном пространстве X? Найти $\lim_{n\to\infty} x_n$, если он существует.

Пример 1
$$X = L_{3/5}[0;1], \rho(x,y) = \left[\int_{0}^{1} x(t) - y(t)\right]^{3/5} dt \left[\int_{0}^{5/3} x(t) - y(t)\right]^{3/5} dt$$

$$\chi_{n}(t) = \lim_{t \to \infty} (n+t)^{-1}, t \in [0,1] \setminus K,$$

$$\lim_{t \to \infty} \exp(n^{2}t), t \in K \cap [0,1]$$
, где K — канторово множество.

Решение Так как канторово множество имеет лебегову меру нуль, то и $K \cap [0;1]$ — множество меры нуль. Значит, $x_n(t) = (n+t)^{-1}$ почти всюду.

Покажем, что x_n сходится к 0 в $L_{3/5}[0;1]$. Для этого рассмотрим

$$\rho^{3/5}(x_n,0) = \int_0^1 \left| \frac{1}{n+t} - 0 \right|^{3/5} dt = \frac{5(n+t)^{2/5}}{2} \Big|_0^1 = \frac{5}{2} \left((n+1)^{2/5} - n^{2/5} \right) = \frac{5}{2} n^{2/5} \left\| \frac{1}{n} + \frac{1}{n} \right\|_0^{2/5} - 1 \left\| \frac{1}{n} \right\|_0^{2/5}$$

и воспользуемся разложением по формуле Тейлора:

$$(1+x)^{\alpha}-1=\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+o(x^2)$$
 при $x\to 0$.

Получаем:

$$\rho^{3/5}(x_n,0) = \frac{5}{2} \cdot n^{2/5} \left\| \frac{2}{5} \cdot \frac{1}{n} - \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{1}{n^2} + o \right\| \frac{1}{n^2} \left\| \frac{1}{n^2} \right\| =$$

$$= \frac{1}{n^{3/5}} - \frac{3}{5 \cdot n^{8/5}} + o \left\| \frac{1}{n^{8/5}} \right\| \to 0 \quad \text{при} \quad n \to \infty.$$

Тот же результат мы получим, применив теорему Лебега о предельном переходе под знаком интеграла.

Итак, x_n сходится к 0, а потому она фундаментальна.

Пример 2
$$X = L_{s/3}[0;1], \quad \chi_{_{n}}(t) = \begin{bmatrix} \cos nt, t \in [0;1] \setminus K, \\ = \end{bmatrix} \\ \begin{bmatrix} \exp(\pi t^{^{n}}), t \in K \cap [0;1] \end{bmatrix}$$

Решение Так как $K \cap [0;1]$ — множество меры нуль, то $x_n(t) = \cos nt$ почти всюду на [0;1]. Покажем, что эта последовательность не фундаментальна в нашем пространстве:

$$\rho^{5/3}(x_{n+2}, x_n) = \int_0^1 x_{n+2}(t) - x_n(t) \Big|^{5/3} dt = 2^{5/3} \int_0^1 \sin t \Big|^{5/3} \Big| \sin(n+1)t \Big|^{5/3} dt \ge 2^{5/3} \int_0^1 \sin^2 t \sin^2 t \cos^2(n+1)t dt = 2^{5/3} \int_0^1 \sin^2 t \frac{1 - \cos^2(n+1)t}{2} dt = 2^{2/3} \int_0^1 \sin^2 t dt - \int_0^1 \sin^2 t \cos^2(n+1)t dt \Big| - 2^{2/3} \int_0^1 \sin^2 t dt \ne 0 \quad (n \to \infty).$$

(мы воспользовались леммой Римана из теории рядов Фурье, согласно которой $\int\limits_0^1 \sin^2 t \sin 2(n+1)t dt \to 0$, но можно было бы вычислить интеграл и непосредственно).

2 Является ли метрическое пространство (X, ρ) полным?

Пример 1 X = B[0;1] — пространство вещественнозначных ограниченных функций на [0;1], наделенное метрикой $\rho(x,y) = \sup_{t \in [0;1]} |x(t) - y(t)|$.

Решение Покажем, что любая фундаментальная последовательность (x_n) в B[0;1] является сходящейся. Ее фундаментальность означает, что $\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n,m > n_{\varepsilon}$ выполняется неравенство

$$\sup_{t \in [0;1]} |x_n(t) - x_m(t)| < \varepsilon.$$

(1)

Зафиксируем произвольное число $t \in [0;1]$. Тогда числовая последовательность $(x_n(t))$, в силу (1), является фундаментальной в \mathbf{R} . По причине полноты пространства \mathbf{R} , последовательность $x_n(t)$ сходится. Положим $x_0(t) = \lim_{n \to \infty} x_n(t)$, $t \in [0;1]$. Тем самым на [0;1] определена функция $x_0(t)$, к которой $x_n(t)$ сходится поточечно. Осталось доказать, что

- 1) $x_0 \in B[0;1]$;
- 2) $\rho(x_n, x_0) \rightarrow 0 \text{ при } n \rightarrow \infty$.

С этой целью перейдем в (1) (а точнее, в неравенстве $|x_n(t) - x_m(t)| < \varepsilon$, справедливом при всех t из [0;1]) к пределу при $m \to \infty$. Получим, что $\forall n > n_\varepsilon \sup_{t \in [0;1]} |x_n(t) - x_0(t)| \le \varepsilon$.

(2)

В частности, при $N = n_{\varepsilon} + 1 \ \forall t \in [0;1]$ выполняется оценка:

$$-\sup_{t\in[0;1]} |x_N(t)| - \varepsilon \leq x_0(t) \leq \sup_{t\in[0;1]} |x_N(t)| + \varepsilon,$$

из которой следует ограниченность x_0 . Следовательно, $x_0 \in B[0;1]$. Наконец, формула (2) означает, что $\forall n > n_\varepsilon$ $\rho(x_n, x_0) \leq \varepsilon$. Поэтому $\rho(x_n, x_0) \to 0$ при $n \to \infty$.

Пример 2 $X = l_{p,\mu}$ $(p \ge 1)$ — пространство числовых последовательностей x = (x(1), x(2), ..., x(n), ...), удовлетворяющих условию:

 $\sum_{n=1}^{\infty} \left| x(n) \right|^p \mu(n) < \infty \text{, где } \mu = (\mu(1), \mu(2), ..., \mu(n), ...) \text{, } \mu(n) > 0 \text{ — заданная числовая }$ последовательность; $\rho(x, y) = \frac{1}{n} \sum_{n=1}^{\infty} \left| x(n) - y(n) \right|^p \mu(n) \frac{1}{n} \text{.}$

Решение Покажем, что данное пространство полно. Пусть (x_n) — фундаментальная последовательность в $l_{p,\mu}$. Это значит, что

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} : \forall n, m > n_{\varepsilon} \quad \left\| \sum_{n=1}^{\infty} |x_n(i) - x_m(i)|^p \, \mu(i) \right\|^{1/p} < \varepsilon \,. \tag{3}$$

Тогда для любого фиксированного і имеем:

$$\forall n, m > n_{\varepsilon} |x_n(i) - x_m(i)|^p \mu(i) < \varepsilon^p, \text{ или } |x_n(i) - x_m(i)| < \varepsilon / (\mu(i))^{1/p}.$$

Следовательно, для любого фиксированного i числовая последовательность $(x_n(i))_{n=1}^{\infty}$ является фундаментальной, а потому сходится. Обозначим $x_0(i) = \lim_{n \to \infty} x_n(i)$ и положим $x_0 = (x_0(1), x_0(2), ..., x_0(n), ...)$. Осталось показать, что

- 1) $x_0 \in l_{p,\mu}$ M
- 2) $\rho(x_n, x_0) \rightarrow 0$ $\Pi p_H n \rightarrow \infty$.

Из (3) следует, что $\sum_{i=1}^{M} \left| x_n(i) - x_m(i) \right|^p \mu(i) < \varepsilon^p$ любого фиксированного M, что в пределе при $m \to \infty$ дает $\forall M \sum_{i=1}^{M} \left| x_n(i) - x_0(i) \right|^p \mu(i) \le \varepsilon^p$. Переходя теперь к пределу при $M \to \infty$, получим $\sum_{i=1}^{\infty} \left| x_n(i) - x_0(i) \right|^p \mu(i) \le \varepsilon^p$, т. е.

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \quad \sum_{i=1}^{\infty} |x_n(i) - x_0(i)|^p \ \mu(i) \le \varepsilon^p \ . \tag{4}$$

Возьмем какие-нибудь $\varepsilon > 0$ и $N > n_{\varepsilon}$ и обозначим

$$\rho(x_N,0) = \left(\sum_{i=1}^{\infty} |x_N(i) - x_0(i)|^p \mu(i) \frac{1}{j}\right)^{1/p} = C.$$

Вследствие неравенства Минковского, имеем

$$\left\|\sum_{i=1}^{\infty}\left|x_{0}(i)\right|^{p}\mu(i)\right\|^{\frac{1}{p}}\leq\left\|\sum_{i=1}^{\infty}\left|x_{0}(i)-x_{N}(i)\right|^{p}\mu(i)\right\|^{\frac{1}{p}}+\left\|\sum_{i=1}^{\infty}\left|x_{N}(i)\right|^{p}\mu(i)\right\|^{\frac{1}{p}}\leq\varepsilon+C<\infty\,,$$

а это значит, что $x_0 \in l_{p,\mu}$. Теперь (4) показывает, что $\rho(x_n, x_0) \to 0$ при $n \to \infty$, а потому (x_n) сходится в нашем пространстве к x_0 .

Пример 3 $X = C^{(1)}[-1;1]$ — множество непрерывно дифференцируемых на [-1;1] функций с метрикой $c(x,y) = \int_{0}^{1} r(t) - y(t) dt$

$$\rho(x,y) = \int_{-1}^{1} |x(t) - y(t)| dt.$$

Решение Рассмотрим последовательность $x_n(t) = arctg(nt)$ и покажем, что она является фундаментальной, но не является сходящейся в нашем пространстве. Заметим, что эта последовательность поточечно

сходится к функции
$$x_0(t) = \frac{\pi}{2} \operatorname{sgn} t \in L_1[\text{--}1;1] \setminus X$$
 , где

$$sgn t = \begin{bmatrix}
1, t \in (0;1], \\
0, t = 0, \\
-1, t \in [-1;0)
\end{bmatrix}.$$

 $\sup_{t} t = \begin{bmatrix} 1, t \in (0;1], \\ 0, t = 0, \\ -1, t \in [-1;0) \end{bmatrix}$ А так как $\forall t \quad |x_n(t) - x_0(t)| \le \pi/2 + \pi/2$, то, по теореме $\rho(x_n, x_0) = \int_{-1}^{1} |x(t) - x_0(t)| dt \to 0$ при $n \to \infty$. Это означает, что в пространстве L_1 [-1;1] последовательность x_n сходится к x_0 . Следовательно, она фундаментальна в X. С другой стороны, если предположить, что последовательность x_n сходится в данном пространстве X к некоторой функции $\psi \in C^{(1)}$ [- 1;1], то получим, что x_n имеет два предела (x_0 и ψ) в L_1 [-1;1]. Противоречие. Итак, данное пространство не является полным.

Тема 4 Непрерывные отображения

1.4.1 Выяснить, является ли заданное отображение $F: X \to Y$ на своей естественной области определения непрерывным в точке x_0 (таблица 1.4.1)?

Таблица 1.4.1

вариант	X	Y	F	$x_0(t)$
1	$L_2[0;1]$	$L_1[0;1]$	$(Fx)(t) = t^{-1/4} \sin x(t)$	t^2
2	C[0;1]	$L_1[0;1]$	$(Fx)(t) = \sin x^2(t)$	t
3	$L_2[0;1]$	$L_2[0;1]$	$(Fx)(t) = x(\sqrt{t})$	\sqrt{t}
4	C[0;1]	C[0;1]	$(Fx)(t) = \int_{0}^{1} \frac{t x(s) }{\sqrt{s}} ds$	t
5	C[0;1]	C[0;2]	$(Fx)(t) = 2x^3(t/2)$	1
6	$L_1[0;1]$	$L_2[0;1]$	(Fx)(t) = x(t)	0

1.4.2 Является ли заданное отображение $F: X \to Y$: а) непрерывным; б) равномерно непрерывным; в) удовлетворяющим условию Липшица (таблица 1.4.2)?

Таблица 1.4.2

таолица	1.7.2		
вариант	X	Y	F
1	C[0;1]	C[0;1]	$(Fx)(t) = x^2 \left(\sqrt{t}\right) e^t$
2	C[-1;1]	C[-1;1]	$(Fx)(t) = \frac{x(t)}{1 + x^2(t)}$
3	L ₂ [-1;0]	<i>L</i> ₁ [-1;0]	$(Fx)(t) = \int_{-1}^{0} \frac{tx(s)}{1 + x^{2}(s)} ds$
4	C[-1;2]	$L_1[-1;2]$	$(Fx)(t) = \frac{e^{x(t)}}{1 + e^{x(t)}}$
5	l_1	l_1	$Fx = (\cos x(1), x(2), x(3),, x(k),)$
6	C[-5;2]	<i>L</i> ₁ [-5;2]	$Fx(t) = \int_{0}^{1} t x(s) ^{2/3} ds$

Примеры решения типовых задач

1 Является ли заданное отображение $F: X \to Y$ на своей естественной области определения непрерывным в точке x_0 ?

Пример 1
$$F: C[0;2] \to L_1[0;1]$$
, $(Fx)(t) = x(1) - \int_0^2 tx^2(s)ds$, $x_0(t) = t$.

Решение Очевидно, что заданное отображение определено на всем C[0;2]. Представим его в виде $Fx = F_1x - F_2x$, где $F_1x = x(1)$, $F_2x(t) = \int_0^2 tx^2(s)ds$, и покажем, что F_1 и F_2 непрерывны в любой точке $x_0 \in C[0;2]$. Пусть последовательность (x_n) сходится к $x_0 \in C[0;2]$. Тогда

$$\rho_{L_{1}}(F_{1}x_{n}, F_{1}x_{0}) = \int_{0}^{1} |x_{n}(1) - x_{0}(1)| ds \leq \max_{t \in [0;1]} |x_{n}(t) - x_{0}(t)| = \rho_{C}(x_{n}, x_{0})$$

$$\to 0 (n \to \infty)$$

Отсюда следует, что F_1 непрерывно.

Докажем непрерывность F_2 . Так как функция $x_0 \in C[0;2]$, то она ограничена на [0;2], т. е. $\exists M \in R: |x_0(s)| \leq M \quad \forall s \in [0;2]$. А так как $x_n \to x_0$ равномерно на [0;2], то, начиная с некоторого номера, $|x_n(s)| \leq 2M$ на [0;2] (почему?). Тогда

$$\rho_{L_{1}}(F_{2}x_{n}, F_{2}x_{0}) = \int_{0}^{1} t \left| \int_{0}^{2} x_{n}^{2}(s) ds - \int_{0}^{2} x_{0}^{2}(s) ds \right| ds = \int_{0}^{1} t dt \left| \int_{0}^{2} x_{n}^{2}(s) - x_{0}^{2}(s) ds \right| = \frac{1}{2} \left| \int_{0}^{2} |x_{n}(s) - x_{0}(s)| \left| x_{n}(s) + x_{0}(s) \right| ds \le \frac{1}{2} \times 3M \max_{s \in [0;2]} \left| x_{n}(s) - x_{0}(s) \right| \ge = \frac{3M}{2} \times \rho_{C}(x_{n}, x_{0}) \to 0 \ (n \to \infty).$$

Отсюда следует, что $F_2x_n \to F_2x_0$ в $L_1[0;1]$. Поэтому в силу произвольности x_0 отображение F непрерывно в любой точке из C[0;2].

Пример 2
$$F: L_2[0;1] \to L_1[0;1], (Fx)(t) = tx(t^3), x_0(t) = 0$$
.

Решение Пусть последовательность (x_n) сходится к x_0 в $L_2[0;1]$.

Тогда
$$\rho_{L_2}(x_n,x_0) = \int_0^1 |x_n(t) - x_0(t)|^2 dt \Big|_0^{1/2} = \int_0^1 |x_n(t)|^2 dt \Big|_0^{1/2} \to 0$$
 при $n \to \infty$.

Теперь в силу неравенства Коши-Буняковского,

$$\rho_{L_{1}}(Fx_{n}, Fx_{0}) = \int_{0}^{1} |tx_{n}(t^{3})| dt = \begin{bmatrix} t^{3} = s & dt = \frac{1}{3}s^{-2/3}ds \\ t = \sqrt[3]{s} & s \in [0;1] \end{bmatrix} = \frac{1}{3} \int_{0}^{1} \frac{|x_{n}(s)|}{s^{1/3}} ds \leq \frac{1}{3} \int_{0}^{1} |x_{n}(s)|^{2} ds \Big|_{0}^{1/2} ds \Big|_{0}^{1/2} = \frac{\sqrt{3}}{3} \rho_{L_{2}}(x_{n}, x_{0}) \to 0 \ (n \to \infty).$$

(аналогичные вычисления показывают, что Fx принадлежит $L_1[0;1]$ при X из $L_2[0;1]$; поэтому отображение F определено на всем $L_1[0;1]$). Значит, F — непрерывное отображение в точке x_0 .

Пример 3
$$F: L_1[0;1] \to L_2[0;1], (Fx)(t) = \int_0^1 t \sqrt{s} x^2(s) ds, x_0(t) = 0.$$

Решение Покажем, что отображение не является непрерывным. Возьмём последовательность $x_n = n^{3/4} \cdot \chi_{[0;1/n]}$, которая стремится к нулю в $L_1[0;1]$. Действительно,

$$\rho_{L_1}(x_n,0) = \int_0^{1/n} n^{3/4} dt = \frac{n^{3/4}}{n} = \frac{1}{n^{1/4}} \to 0 \text{ При } n \to \infty.$$

Рассмотрим теперь выражение

$$\rho_{L_{2}}^{2}(Fx_{n}, Fx_{0}) = \rho_{L_{2}}^{2}(Fx_{n}, 0) = \int_{0}^{1} |Fx_{n}(t)|^{2} dt = \int_{0}^{1} \left(\int_{0}^{1} t \sqrt{s} x_{n}^{2}(s) ds \frac{1}{s}\right)^{2} dt = 0$$

$$\int_{0}^{1} t^{2} dt \times \left(\int_{0}^{1} \sqrt{s} x_{n}^{2}(s) ds \frac{1}{s}\right)^{2} = \frac{1}{3} \int_{0}^{1/n} \sqrt{s} n^{3/2} ds \right)^{2} = \frac{1}{3} \int_{0}^{1/n} n^{3/2} \cdot \frac{2s^{3/2}}{3} \Big|_{0}^{1/n} \Big|_{0}^{2} = \frac{4}{27}.$$

Следовательно, последовательность $\rho_{L_2}(Fx_n, Fx_0)$ не стремится к нулю при $n \to \infty$, а потому Fx_n не стремится к Fx_0 .

Пример 4
$$F: L_2[0;1] \to L_1[0;1], (Fx)(t) = \int_0^1 \frac{tx^2(s)}{\sqrt[4]{s}} ds, x_0(t) = 0$$
.

Решение Покажем, что отображение не является непрерывным. Заметим, что

$$\rho_{L_1}(Fx_n, Fx_0) = \rho_{L_1}(Fx_n, 0) = \int_0^1 \left| \int_0^1 \frac{tx_n^2(s)}{\sqrt[4]{s}} ds \right| dt = \int_0^1 t dt \times \left| \int_0^1 \frac{x_n^2(s)}{\sqrt[4]{s}} ds \right| = \frac{1}{2} \int_0^1 \frac{x_n^2(s)}{\sqrt[4]{s}} ds.$$

Возьмем последовательность $x_n = n^{7/8} \cdot \chi_{[0;n^{-2}]}$, которая сходится к нулю

В
$$L_2[0;1]$$
, так как $\int_{0}^{n^{-2}} \int_{0}^{n^{7/4}} dt \Big|_{0}^{1/2} = \left[\frac{n^{7/4}}{n^2} \right]_{0}^{1/2} = \frac{1}{\sqrt[8]{n}} \to 0$ при $n \to \infty$.

Тогда
$$\rho_{L_1}(Fx_n,0) = \frac{1}{2} \int_0^{n-2} \frac{n^{7/4}}{\sqrt[4]{s}} ds = \frac{n^{7/4}}{2} \cdot \frac{4s^{3/4}}{3} \Big|_0^{1/n^2} = \frac{2}{3} \cdot \frac{n^{7/4}}{n^{3/2}} \to \infty$$
 при $n \to \infty$,

а потому Fx_n не стремится к Fx_0 .

- **2** Является ли заданное отображение $F: X \to Y$: а) непрерывным;
- б) равномерно непрерывным; в) удовлетворяющим условию Липшица?

Пример 1
$$X = Y = C[-4;2], (Fx)(t) = x(t)\sin x(t)$$
.

 $Peшение \ a) \ {
m O}$ тображение F является непрерывным, так как $ho(Fx,Fx_0)=\max_{t\in [-4;2]} \left|x(t)\sin x(t)-x_0(t)\sin x_0(t)\right| \leq \max_{t\in [-4;2]} \left|x(t)\sin x(t)-x_0(t)\sin x(t)\right| + C$

$$+ \left| \chi_0(t) \sin \chi(t) - \chi_0(t) \sin \chi_0(t) \right| \leq \max_{t \in [-4,2]} |\chi(t) - \chi_0(t)| +$$

 $+ \max_{t \in [-4;2]} \left| x_0(t) \cdot 2 \sin \frac{x(t) - x_0(t)}{2} \cdot \cos \frac{x(t) + x_0(t)}{2} \right| \leq \max_{t \in [-4;2]} \left| x(t) - x_0(t) \right| + M \cdot \max_{t \in [-4;2]} \left| x(t) - x_0(t) \right| = \\ = (M+1)\rho(x,x_0) \text{ (мы воспользовались неравенством } \left| \sin x \right| \leq \left| x \right|; \text{ здесь } M = \\ \max_{t \in [-4;2]} \left| x_0(t) \right| \text{)}.$

б) Покажем, что F не является равномерно непрерывным. Возьмём $x_n(t) = 2\pi (n+1/n), y_n(t) = 2\pi n$. Тогда $\rho(x_n, y_n) = \frac{2\pi}{n} \to 0$ при $n \to \infty$, но $\rho(Fx_n, Fy_n) = 2\pi (n+1/n) \sin \frac{2\pi}{n} - 2\pi n \times \sin 2\pi n = 2\pi n \sin \frac{2\pi}{n} + \frac{2\pi}{n} \sin \frac{2\pi}{n} = 4\pi^2 \frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} + \frac{2\pi}{n} \sin \frac{2\pi}{n} \to 4\pi^2,$

а значит, $\rho(Fx_n, Fy_n)$ не стремится к нулю при $n \to \infty$. Это противоречит определению равномерной непрерывности (проверьте).

в) Так как F не является равномерно непрерывным, то оно не удовлетворяет условию Липшица (почему?).

Пример 2
$$X = l_2, Y = l_{\infty}, Fx = \left(\frac{x_1^2}{1 + x_1^2}, x_1, x_2, \dots\right)$$

Peшение Покажем, что F удовлетворяет условию Липшица с константой L =1 . Заметим, что

$$\rho_{l_{\infty}}(Fx, Fy) = \sup \left\{ \left| \frac{x_1^2}{1 + x_1^2} - \frac{y_1^2}{1 + y_1^2} \right|; |x_1 - y_1|; |x_2 - y_2|; \dots \right\}.$$

Рассмотрим функцию $f(x) = \frac{x^2}{1+x^2}$. Тогда

$$|f'(x)| = \left| \frac{2x(1+x^2) - x^2 \times 2x}{(1+x^2)^2} \right| = \frac{2|x|}{(1+x^2)^2} \le 1.$$

Следовательно, по теореме Лагранжа, $|f(x_1) - f(y_1)| \le |x_1 - y_1|$, а значит,

$$\rho_{l_{\infty}}(Fx, Fy) = \sup \left\{ \left| \frac{x_1^2}{1 + x_1^2} - \frac{y_1^2}{1 + y_1^2} \right| ; |x_1 - y_1|; |x_2 - y_2|; \dots \right\} \le \sup_{k} |x_k - y_k| \le \rho_{l_2}(x, y).$$

Так как F удовлетворяет условию Липшица, то оно равномерно непрерывно, а потому и непрерывно.

Пример 3
$$X = L_1[0;1], Y = L_2[-1;1], (Fx)(t) = \int_0^1 e^t arctgx(s) ds$$
.

Pешение Покажем, что F удовлетворяет условию Липшица. Действительно,

$$\rho_{L_{2}}(Fx,Fy) = \left[\int_{-1}^{1} Fx(t) - Fy(t) \right]^{2} dt \left[\int_{-1}^{1/2} \left[\int_{0}^{1} arctgx(s) - \int_{0}^{1} arctgy(s) \right]^{2} dt \right] \right]^{1/2} =$$

$$= \sqrt{ch2} \int_{0}^{1} \left| arctgx(s) - arctgy(s) \right| ds .$$

Так как $|(arctgx)'| = \frac{1}{1+x^2} \le 1$, то по теореме Лагранжа $|arctgx - arctgy| \le |x-y|$. Поэтому при любых x,y

$$\rho_{L_2}(Fx, Fy) \leq \sqrt{ch2} \ \rho_{L_1}(x, y)$$
.

Так как F удовлетворяет условию Липшица, то оно является равномерно непрерывным.

Пример 4
$$X = l_2, Y = l_1, Fx = \left[0, 0, \sqrt{|x^3(21)|}, 0, 0, ...\right]$$
.

Решение а) Покажем, что F непрерывно. Действительно, если $x_n \to x_0$ в l_2 , то числовая последовательность $x_n(21)$ сходится к $x_0(21)$. Тогда $\rho_{l_2}(Fx_n,Fx_0) = \left|\sqrt{\left|x_n^3(21)\right|} - \sqrt{\left|x_0^3(21)\right|}\right| \to 0$ при $n \to \infty$.

б) Покажем, что F не является равномерно непрерывным. Пусть

$$x_n(21) = \left(\sqrt{n} + \frac{1}{n}\right)^2, \ y_n(21) = n, \ x_n(k) = y_n(k) = 0, \ \forall k \neq 21.$$

Тогда
$$\rho_{l_2}(x_n, y_n) = \left(\sqrt{n} + \frac{1}{n}\right)^2 - n = \frac{2}{\sqrt{n}} + \frac{1}{n^2} \to 0$$
 при $n \to \infty$.

Ho
$$\rho_{l_1}(Fx_n, Fy_n) = \left(\sqrt{n} + \frac{1}{n}\right)^3 - \sqrt{n^3} = 3 + \frac{3}{n\sqrt{n}} + \frac{1}{n^3} \to 3$$
 πρυ $n \to \infty$.

в) Так как F не является равномерно непрерывным, то оно не удовлетворяет и условию Липшица.

Пример 5
$$X = C[-5;2], Y = L_1[-5;2], (Fx)(t) = \int_0^1 t |x(s)|^{2/3} ds$$
.

Peшение a) Покажем, что F не удовлетворяет условию Липшица. Допустим противное, то есть что

$$\exists L \in \mathbf{R}: \ \forall x, y \in C[-5;2] \ \rho_{L_1}(F(x), F(y)) \le L \cdot \rho_C(x, y).$$

Bозьмем $x_n(t) = 1/n, y(t) = 0$.

Так как

$$\rho_{L_1}(Fx, Fy) = \int_0^1 \int_0^1 t |x(s)|^{2/3} ds - \int_0^1 t |y(s)|^{2/3} ds \left| dt = \frac{1}{2} \int_0^1 (|x(s)|^{2/3} - |y(s)|^{2/3}) ds \right|,$$

то получим $\rho_{L_1}(Fx_n, Fy) = \frac{1}{2} \cdot \frac{1}{n^{2/3}} \le L \cdot \frac{1}{n}$, то есть $n^{1/3} \le 2L$, $\forall n \in \mathbb{N}$. Противоречие.

б) Покажем, что F является равномерно непрерывным.

Заметим, что функция $f(t) = \sqrt[3]{t^2}$ является равномерно непрерывной на \mathbf{R} (она равномерно непрерывна на [-2;2] по теореме Кантора и равномерно непрерывна на $(-\infty;-1] \cup [1;\infty)$, так как $|f'(t)| = \frac{2}{3} \cdot \frac{1}{\sqrt[3]{|t|}} \le \frac{2}{3}$ при $|t| \ge 1$). Равномерная непрерывность функции $f(t) = \sqrt[3]{t^2}$ означает, что

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall t, t_1 \in R: \ \left| t - t_1 \right| < \delta \Rightarrow \left| t^{2/3} - t_1^{2/3} \right| < \varepsilon.$$

Теперь если $\rho_c(x,y) < \delta$, то $|x(s) - y(s)| < \delta$ $\forall s \in [-5;2]$, тогда, в силу равенства (1),

$$\rho_{L_1}(Fx, Fy) \leq \frac{1}{2} \int_0^1 x^{2/3}(s) - y^{2/3}(s) ds < \frac{1}{2} \varepsilon < \varepsilon.$$

Тема 5 Компактные множества в метрических пространствах

1.5.1 Выяснить, является ли множество M предкомпактным, компактным в C[0;1] (таблица 1.5.1).

*Таблица 1.5.*1

вариант	M	вариант	M
1	$\left at^{\alpha}\left 1\leq\alpha\leq10,\left a\right \leq10\right $	4	$\{a\sin(t+b))\mid 0\leq a,b\leq 1\}$
2	$\left at^{\alpha} \middle 0 \le \alpha \le 1; 0 < a < 1 \right $	5	$\left\{ \frac{t+a}{t+b} \mid 1 \le a, b \le 2 \right\}$
3	$\left \cos at\right - 1 \le a \le 1$	6	$\left\{ arctg \left(at+b \right) \mid a \le 1, b > 1 \right\}$

1.5.2 Является ли множество M предкомпактным в $^{I_{P}}$ (таблица1.5.2)?

Таблииа 1.5.2

1 иолици	1.5.2	
вариант	p	M
1	2	$\left\{ \left. x\right \;\; \left x(k) \right < \frac{1}{k}, k \in \mathbb{N} \;\right\}$
2	1	$\left\{ x \mid \frac{1}{k^2} < x(k) < \frac{2}{k^2}, k \in N \right\}$
3	2	$\left\{ \left. x\right \; \left x(k) \right \le \frac{1}{2^k}, k \in N \right. \right\}$
4	2	$\{x \mid \frac{1}{2^k} \le x(k) \le \frac{1}{2^{k+1}}, k \in N \}$
5	1	$\{x \mid x(2k) = 0, 0 < x(2k+1) \le \frac{1}{2^k}, k \in N \}$
6	1	$\left\{ \left. x\right \; \left x(k) \right < \frac{1}{k^{\alpha}}, \frac{3}{2} \le \alpha \le \frac{5}{2} \right\}$

Примеры решения типовых задач

1 Выяснить, являются ли данные множества предкомпактными, компактными в C[0;1].

Пример 1 а)
$$M = |ae^{-\alpha t + b}|a, b, \alpha \in [0,1]|$$
;

6)
$$M_1 = |ae^{-\alpha t + b}|a, b \in [0; 1], \alpha \in (0; 1)|$$
.

Pешение Проверим для множества M условия теоремы Арцела-Асколи.

Рассмотрим функцию $f(t,a,b,\alpha) = ae^{-\alpha t + b}$. Пусть $K = [0;1]^3$. Тогда f непрерывна на $[0;1] \times K$ и $M = |f(;s)|s \in K|$.

Множество $[0;1] \times K$ является компактом. По теореме Вейерштрасса, f ограничена на $[0;1] \times K$, т.е. $\exists C \in R : \forall t \in [0;1] \ \forall (a,b,\alpha) \in [0;1]^3$ справедливо неравенство $\left| ae^{-at+b} \right| \leq C$. Значит, M — равномерно ограничено (впрочем, легко проверить и непосредственно, что при наших условиях $\left| ae^{-at+b} \right| \leq e$).

Проверим равностепенную непрерывность множества M. По теореме Кантора, f равномерно непрерывна на $[0;1] \times K$. Если обозначить через $s = (a,b,\alpha)$ произвольную точку из K, то равномерная непрерывность f означает, что $\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall t_1,t_2 \in [0;1]$, таких, что $|t_1 - t_2| < \delta$, и $\forall s_1,s_2 \in K$, таких, что $\rho(s_1,s_2) < \delta$ (ρ обозначает евклидову метрику в K), справедливо неравенство

$$\left| f(t_1, s_1) - f(t_2, s_2) \right| < \varepsilon.$$

Отсюда следует равностепенная непрерывность множества M (см. определение). Значит, по теореме Арцела-Асколи, M – предкомпактно.

Для доказательства компактности множества M теперь достаточно проверить его замкнутость в C[0;1]. Но это тоже следует из непрерывности функции f. В самом деле, если x — предельная точка множества M, то найдется последовательность $f(\$s_n)$ функций из M, сходящаяся к x в C[0;1]. По теореме Больцано-Вейерштрасса, из последовательности s_n точек множества K можно выбрать подпоследовательность s_n , сходящуюся к точке $s \in K$. Тогда поточечно $f(t,s_n) \to f(t,s)$, а потому, в силу единственности предела, $x = f(\$s) \in M$. Итак, M — компакт.

Далее, так как $M_1 \subseteq M$, то множество M_1 предкомпактно. Но M_1 не является компактом, так как не замкнуто в C[0;1]. Действительно, функции $x_n(t) = e^{-t/n} \in M_1$, но предел этой последовательности $x_0(t) = 1$ не принадлежит множеству M_1 .

Пример 2
$$M = |t^n| n \in N$$
.

Решение

 $1\ cnoco\delta$ Это множество является равномерно ограниченным, но не является равностепенно непрерывным. Действительно, возьмем $\varepsilon=1/4$. Тогда $\forall \delta>0$ найдется такое натуральное n, что точки $t_1=1$ и $t_2=1/\sqrt[n]{2}\in[0;1]$ удовлетворяют неравенству $|t_1-t_2|=|1-1/\sqrt[n]{2}|<\delta$, но в то же время $|t_1^n-t_2^n|=|1-1/2|>\varepsilon$. Значит, по теореме Арцела-Асколи, M не является предкомпактным, а потому и компактным множеством.

 $2\ cnocof\ M$ не является предкомпактным, так как из него нельзя извлечь сходящейся в C[0;1] подпоследовательности. Действительно, все его подпоследовательности сходятся к разрывной функции.

Пример 3
$$M = \{\sin(t+a) \mid a \in R\}$$
.

Pешение Множество M равномерно ограничено, так как

$$\forall t \in \mathbf{R} \quad \forall a \in \mathbf{R} \quad \left| \sin(t+a) \right| \le 1.$$

Множество M равностепенно непрерывно, так как $\forall \varepsilon > 0 \quad \forall a \in \mathbf{R}$ и $\forall t_1, t_2 \in [0;1]$, таких, что $|t_1 - t_2| < \varepsilon$, имеем

$$\left|\sin(t_1+a) - \sin(t_2+a)\right| = \left|2\sin\frac{t_1-t_2}{2}\cos\frac{t_1+t_2+2a}{2}\right| \le |t_1-t_2| < \varepsilon.$$

Значит, по теореме Арцела-Асколи, M – предкомпактно.

Покажем, что M содержит все свои предельные точки. Пусть x есть предельная точка множества M, $\sin(t+a_k) \to x(t)$ равномерно на [O; 1]. В силу периодичности синуса, можно считать, что $a_k \in [0; 2\pi)$. При этом промежуток $[0;2\pi)$ удобно отождествлять с фактор-группой $R/2\pi Z$, то есть с единичной окружностью, наделенной естественной топологией, в которой она компактна. (Отличие здесь в том, последовательность $a_k \in [0; 2\pi)$ в **R** сходится к 2π , то в этой топологии предел считается равным 0). Заметим, что в этой топологии $\lim_{k\to\infty} a_k = a \in [0; 2\pi)$. Действительно, существует если допустить противное, то найдутся две подпоследовательности a_k' и a_k'' , имеющие и $a'' \in [0; 2\pi)$ соответственно. Но тогда различные пределы а' $x(t) = \sin(t + a') = \sin(t + a'')$ a' = a''. откуда Противоречие. Следовательно, $x(t) = \sin(t+a) \in M$.

Значит, M — замкнутое множество, откуда следует, что M — компакт.

Пример 4 $M = |\sin nt| n \in N$].

Решение Множество M равномерно ограничено, так как $\forall t \in \mathbf{R} \ \forall n \in \mathbf{N} \ |\sin nt| \le 1$.

Но множество не является равностепенно непрерывным. Действительно, возьмем $\varepsilon = 1/2$. Тогда $\forall \delta > 0$ найдется такое натуральное n, что точки $t_1 = 0$ и $t_2 = \pi/2n \in [0;1]$ удовлетворяют неравенству $|t_1 - t_2| = |\pi/2n| < \delta$, но в то же время $|\sin nt_1 - \sin nt_2| = \sin \pi/2 = 1 > \varepsilon$. Значит, по теореме Арцела-Асколи, M не является предкомпактным, а потому и компактным множеством.

2 Является ли множество M предкомпактным в l_1 ?

Пример 1
$$M = \{x \in l_1 | |x(2k)| < \frac{1}{2^k}, |x(2k+1)| < \frac{1}{3^{2k}}, |x(1)| = 1\}.$$

Решение Проверим критерий предкомпактности в l_1 .

- 1) Множество M является ограниченным, поскольку $\forall n \ge 2$ $|x(n)| < \frac{1}{2^{n/2}}$, а потому $\forall x \in M$ $\sum_{n=1}^{\infty} |x(n)| < 1 + \sum_{n=2}^{\infty} \frac{1}{2^{n/2}} = 2 \frac{\sqrt{2}}{2}$.
- 2) Так как ряд $\sum_{n=2}^{\infty} \frac{1}{(\sqrt{2})^n}$ сходится, то его остаток стремится к нулю, то есть $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in N : \sum_{n=N_{\varepsilon}+1}^{\infty} \frac{1}{(\sqrt{2})^n} < \varepsilon$.

$$\prod_{0 \ni \text{TOMY}} \forall \varepsilon > 0 \ \exists N_{\varepsilon} \in N: \ \forall x \in M \ \sum_{n=N_{\varepsilon}+1}^{\infty} \left| x(n) \right| < \sum_{n=N_{\varepsilon}+1}^{\infty} \frac{1}{\left(\sqrt{2}\right)^{n}} < \varepsilon.$$

Значит, множество M – предкомпактно.

Тема 6 Сжимающие отображения

1.6.1 Является ли отображение F метрического пространства X в себя сжимающим? Найти x_3 , где $x_{k+1} = F(x_k), x_0 = 0$. Оценить расстояние от x_3 до неподвижной точки в случае, если F является сжимающим (таблица 1.6.1).

Таблица 1.6.1

вариант	X	F
1	l _{8/3}	$F(x) = \begin{bmatrix} 0, \frac{x(1)}{2} + \frac{1}{2}, \frac{x(2)}{4} + \frac{1}{3}, \dots, \frac{x(k)}{2^k} + \frac{1}{k+1}, \dots \end{bmatrix}$
2	l_{∞}	$F(x) = \left(\frac{x(2)}{2} + \frac{1}{2}, \frac{x(3)}{3} + \frac{1}{4}, \dots, \frac{x(k)}{k} + \frac{1}{2^{k-1}}, \dots\right)$
3	C[-1;1]	$(Fx)(t) = tx(t) + \exp(\sin \pi t)$
4	l_{21}	$F(x) = (\sin(\pi/6)x(1) + 1,, (\sin(\pi/6))^k x(k) + 1/k,)$
5	C[-1;1]	$(Fx)(t) = \frac{1}{2}x(t^2) + t$
6	$L_2[0;1]$	$(Fx)(t) = \frac{1}{8}x(\sqrt{t}) + 1$

1.6.2 Применим ли принцип сжимающих отображений к заданному интегральному уравнению в пространстве X при $\lambda = \lambda_1$, $\lambda = \lambda_2$, $\lambda = \lambda_3$? При $\lambda = \lambda_1$ с точностью до 0,01 найти приближенное решение и сравнить его с точным решением (таблица 1.6.2).

Таблица 1.6.2

вариант	X	$\lambda_{_{1}}$	λ_2	λ_3	Уравнение
1	2	3	4	5	6
1	C[0;1]	$\frac{1}{3}$	$-\frac{1}{8}$	$\sqrt{\frac{3}{2}}$	$x(t) = \lambda \int_0^1 t^{1/4} sx(s) ds + t^2$
2	C[- 1;1]	1/8	$-\frac{1}{10}$	$\frac{3}{2}$	$x(t) = \lambda \int_{-1}^{1} (t^2 - 1)s^2 x(s) ds + t$

Окончание таблицы 1.6.2

1	2	3	4	5	6
3	C[-2;2]	$\frac{1}{45}$	$-\frac{1}{40}$	$\frac{2}{15}$	$x(t) = \lambda \int_{-2}^{2} (1+s)(1-t)x(s)ds + t$
4	C[- 1;1]	$\frac{1}{20}$	$-\frac{1}{12}$	1	$x(t) = \lambda \int_{-1}^{1} tsx(s)ds + 2$
5	C[0;1]	$\frac{1}{6}$	$-\frac{1}{8}$	$\frac{2}{3}$	$x(t) = \lambda \int_{0}^{1} t(1+s)x(s)ds - 5$
6	C[- 1;1]	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{5}{2}$	$x(t) = \lambda \int_{-1}^{1} t^{2} s^{2} x(s) ds + t^{3}$

Примеры решения типовых задач

1 Является ли отображение F метрического пространства X в себя сжимающим? Найти x_3 , где $x_{k+1} = F(x_k), x_0 = 0$. Оценить расстояние от x_3 до неподвижной точки, если F является сжимающим.

Пример 1
$$X = C[-1;1], (Fx)(t) = 1/3 \sin x(t) + e^{t}$$
.

Решение Оценим расстояние в C[-1;1]

$$\rho(Fx, Fy) = \max_{-1 \le s \le 1} \left| \frac{1}{3} \sin x(t) - \frac{1}{3} \sin y(t) \right| = \max_{-1 \le s \le 1} \frac{1}{3} \left| \sin x(t) - \sin y(t) \right| =$$

$$= \max_{-1 \le s \le 1} \frac{1}{3} \left| 2 \sin \frac{x(t) - y(t)}{2} \cdot \cos \frac{x(t) + y(t)}{2} \right| \le \frac{1}{3} \max_{-1 \le s \le 1} \left| x(t) - y(t) \right| = \frac{1}{3} \rho(x, y)$$

(мы воспользовались неравенством $|\sin x| \le |x|$). Значит, F является сжимающим отображением с константой Липшица $\alpha = 1/3$.

Построим последовательность $x_{k+1} = F(x_k)$. По условию $x_0 = 0$, поэтому $x_1 = F(x_0) = e^t$, $x_2 = F(x_1) = \frac{1}{3}\sin e^t + e^t$, $x_3 = F(x_2) = \frac{1}{3}\sin(\frac{1}{3}\sin e^t + e^t) + e^t$.

А так как $\rho(x_n; x^*) \le \frac{\alpha^n}{1-\alpha} \rho(x_1; x_0)$, где x^* – неподвижная точка, то

$$\rho(x_3; x^*) \le \frac{(1/3)^3}{1 - 1/3} \cdot \max_{-1 \le t \le 1} \left| e^t \right| = \frac{e \times 1/27}{2/3} = \frac{e}{18} < \frac{2,72}{18} \approx 0,1511.$$

Пример 2
$$X = l_4$$
, $f(x) = (1, \frac{x(3)}{5}, \frac{x(4)}{6}, \frac{x(5)}{7}, ...)$.

Решение Оценим расстояние в l_4 .

$$\rho(f(x), f(y)) = \left\| \sum_{k=3}^{\infty} \left| \frac{x(k)}{k+2} - \frac{y(k)}{k+2} \right|^4 \right\|^{1/4} \le \frac{1}{5} \rho(x, y).$$

Значит, F – сжимающее отображение с константой $\alpha = 1/5$.

По условию, $x_0=(0,0,0,\ldots)$. Тогда $x_1=(1,0,0,\ldots), x_2=x_3=(1,0,0,\ldots)$ а потому

$$\rho(x_3; x^*) \le \frac{(1/5)^3}{1 - 1/5} \cdot \rho(x_1; x_0) = 0.01$$

(на самом деле, как легко проверить, x_3 является неподвижной точкой).

Пример 3
$$X = L_4[-1;1], (Fx)(t) = \sqrt[3]{t} \cdot x(t) + \ln(t+2)$$
.

Решение Допустим, что отображение F является сжимающим, то есть $\exists \alpha \in [0;1): \forall x,y \in X$ $\rho(Fx,Fy) \leq \alpha \rho(x,y)$.

При y = 0 из этого неравенства следует, что

$$\forall x \in X \int_{-1}^{1} t^{4/3} |x(t)|^{4} dt \leq \alpha^{4} \int_{-1}^{1} |x(t)|^{4} dt.$$
(1)

Подставив $x(t) = \sqrt[4]{n} \times \chi_{[1-\frac{1}{n};1]}(t)$ в левую часть неравенства (1), получим

$$\int_{1-\frac{1}{n}}^{1} t^{4/3} \cdot n dt = \frac{3nt^{7/3}}{7} \Big|_{1-\frac{1}{n}}^{1} = \frac{3n}{7} (1 - (1 - \frac{1}{n})^{7/3}) \sim \frac{3n}{7} \cdot \frac{7}{3n} = 1 \text{ при } n \to \infty$$

(мы воспользовались эквивалентностью $(1+x)^{\alpha}-1\sim \alpha x$ при $x\to 0$).

Правая же часть неравенства (1), как легко проверить, при этом значении x равна α^4 . Следовательно, неравенство (1) при указанных x,y и $n\to\infty$ примет вид: $1\le\alpha^4$, противоречие. Значит, F не является сжимающим. (Аналогичное решение получается и при $x=\chi_{[1-\frac{1}{x};1]}(t)$).

2 Применим ли принцип сжимающих отображений к заданному интегральному уравнению в пространстве X при $\lambda_1 = \frac{1}{6}$, $\lambda_2 = -\frac{1}{3}$, $\lambda_3 = 2$? При $\lambda = \lambda_1$ с точностью до 0,01 найти приближенное решение и сравнить его с точным решением.

Пример 1
$$X = C[0;1], x(t) = \lambda \int_{0}^{1} ts \cdot x(s) ds + 1$$
. (2)

$$(f(x))(t) = \lambda \int_{0}^{1} ts \times x(s) ds + 1.$$

Тогда исходное уравнение запишется в виде x = f(x), и искомое решение есть неподвижная точка отображения f. Метрическое пространство C[0;1] является полным, поэтому если мы покажем, что f — сжимающее отображение C[0;1] в себя, то можно будет применить принцип сжимающих отображений.

То, что отображение f непрерывную на [0;1] функцию переводит в непрерывную, в данном случае очевидно (а в общем следует из свойств интеграла, зависящего от параметра). Определим, при каких λ отображение f является сжимающим.

Известно, что отображение

$$(Ax)(t) = \lambda \int_{a}^{b} K(s,t)x(s)ds + g(t)$$

является сжимающим в C[a;b], если $|\lambda| < \frac{1}{M(b-a)}$, где $M = \max_{s,t \in [a;b]} |K(s,t)|$

. При этом константа Липшица $\alpha = M \cdot |\lambda| \cdot (b-a)$. (Заметим, что это утверждение дает лишь достаточное условие сжимаемости). В данном случае K(s,t)=ts, $M=\max_{s,t\in [0;1]} |ts|=1$. Следовательно, f является сжимающим при $|\lambda|<1$, то есть, в частности, при $\lambda=\lambda_1$ и $\lambda=\lambda_2$.

Докажем, что f не является сжимающим при $\lambda_3 = 2$. Если допустить, что f — сжимающее, то для $\forall x, y \in X$ и некоторого $\alpha \in [0;1)$ должно выполняться неравенство

$$\max_{0 \le s \le 1} \left| 2 \int_0^1 fs(x(s) - y(s)) ds \right| \le \alpha \cdot \max_{0 \le s \le 1} |x(t) - y(t)|.$$

При y(t) = 0, x(t) = 1 последнее неравенство примет вид:

$$2\left|\int_{0}^{1} sx(s)ds\right| \leq \alpha.$$

Вычислив интеграл в левой части, получим $1 \le \alpha$. Это противоречие доказывает, что f не является сжимающим при $\lambda_3 = 2$.

Решим уравнение (2) при $\lambda = 1/6$. При этом λ отображение f является сжимающим, а потому для нахождения приближенного решения можно воспользоваться методом итераций (последовательных приближений).

Поскольку x_0 выбирается произвольно, возьмём $x_0(t)=0$. Дальнейшие приближения находятся по формулам $x_1=f(x_0)$, $x_2=f(x_1)$, $X_1=f(x_0)$, ...

Установим номер k, при котором элемент x_k будет давать точность приближения 0,01. Используем оценку погрешности (x — точное решение)

$$\rho(x_n, x) \le \frac{\alpha^n}{1 - \alpha} \times \rho(x_0, x_1) \le 0.01.$$

В нашем случае $\alpha = |\lambda| M(b-a) = 1/6$. Кроме того, легко подсчитать, что $x_1(t) = 1$. Следовательно, для нахождения нужного числа итераций имеем неравенство

$$\rho(x_n, x) \le \left(\frac{1}{6}\right)^n \times \frac{6}{5} \times \frac{1}{100},$$

Поскольку k=3 ему удовлетворяет, то x_3 будет приближенным решением исходного уравнения с точностью 0,01. Найдём x_3 :

$$x_2(t) = f(x_1)(t) = \frac{1}{6}t \int_0^1 s ds + 1 = \frac{1}{12}t + 1,$$

$$x_3(t) = f(x_2)(t) = \frac{t}{6}\int_0^1 s \left(\frac{1}{12}s + 1\right) ds + 1 = \frac{19}{204}t + 1 \approx 0,093t + 1.$$

Итак, приближённое решение с нужной точностью есть

$$x_3(t) = \frac{19}{204}t + 1.$$

Найдем точное решение данного уравнения. Из (2) следует, что его решение имеет вид

$$x(t) = \lambda \times t +$$
 где $c = \int_{0}^{1} sx(s)ds$, (3)

то есть вид $x(t) = \frac{c}{6}t + 1$. Подставив x(t) в (2), получим

$$\frac{c}{6}t+1=\frac{t}{6}\int_{0}^{1}s\left(\frac{c}{6}s+1\right)ds+1.$$

Отсюда $c = \int_{0}^{1} \left(\frac{c}{6}s^{2} + s\right) ds$, $c = \frac{c}{18} + \frac{1}{2}$, $c = \frac{9}{17}$. Следовательно, точное решение есть

$$x(t) = \frac{9}{102}t + 1 \approx 0,088t + 1.$$

Сравним его с приближённым:

$$\rho(x_3;x) = \max_{0 \le t \le 1} \left| \frac{9}{102} t + 1 - \frac{19}{204} t - 1 \right| < \frac{1}{100}.$$

Примечание Первую часть решения можно сократить, если воспользоваться тем фактом, что норма линейного оператора

$$(A_1 x)(t) = \int_a^b k(s, t) x(s) ds$$

в пространстве C[0;1] дается формулой:

$$||A_1|| = \max_{t \in [a;b]} \int_a^b |k(t,s)| ds$$
.

Поскольку норма есть *точная* константа в неравенстве ограниченности, отображение A_1 является сжимающим тогда и только тогда, когда $\|A_1\| < 1$. То же верно и для отображения $f(x) = A_1 x + g$ (почему?).

2 Линейные нормированные пространства и операторы в них

Тема 1 Линейные нормированные пространства

2.1.1 Проверить, является ли функция p нормой в пространстве X. Образует ли пара (X, ρ) , где $\rho(x, y) = p(x - y)$, метрическое пространство (таблица 2.1.1)?

Таблица 2.1.1

таолица 2	.1.1	
вариант	X	p(x)
1	$C^{(n)}[0;1]$	$\sum_{k=0}^{n} \max_{0 \le t \le 1} \left x^{(k)} \left(t \right) \right $
2	l_{∞}	
3	B(R)	$\sup\{ x(t) t\in R\}$
4	$C^{(1)}[0;1]$	$\int_{0}^{1} x(t) dt$
5	l_1	$\sum_{n=1}^{\infty} n^{-1} x(n) $
6	$C^{(1)}[a;b]$	$ x(a) + \max x'(t) : t \in [a;b]$

2.1.2 Является ли множество A выпуклым в пространстве X (таблица 2.1.2)?

Таблица 2.1.2

вариант	X	A
1	C[0;1]	неубывающие функции
2	l_2	$\left x \in l_2 \left \left x(n) \right < 2^{-n}, n \in \mathbb{N} \right $
3	C[a;b]	многочлены степени п
4	l_1	
5	$C^{(1)}[0;1]$	многочлены степени $\leq k$
6	$C^{(1)}[a;b]$	$x \in C^{(1)}[a;b] x(t) + x'(t) \le 1, t \in [a;b]$

2.1.3 Проверить, является ли данная последовательность векторов (x_k) в бесконечномерном пространстве X линейно независимой (таблица 2.1.3).

Таблица 2.1.3

вариант	X	x_k
1	l_3	$x_k = \begin{bmatrix} \frac{1}{k+1}, \frac{1}{(k+1)^2}, \frac{1}{(k+1)^3}, \dots \end{bmatrix}, k = 1, \dots, p$
2	$l_{\scriptscriptstyle\infty}$	$x_k = \begin{bmatrix} \frac{1}{k+1}, \frac{1}{(k+1)^2}, \frac{1}{(k+1)^3}, \dots \end{bmatrix}, k = 1, \dots, p$
3	C[a;b]	$x_{k}(t) = t^{k}, k = 0, 1,, p$
4	C[a;b]	$x_{k}(t) = e^{itk}, k = 0, 1,, p$
5	$L_2[a;b]$	$x_{k}\left(t ight)=\left(1+D\left(t ight) ight)t^{k},k=0,1,,p,D-$ функция Дирихле
6	C[0;1]	$x_{1}(t) = \left 2t - 1\right - \left 2t - \frac{1}{2}\right , x_{2}(t) = \left 4t - 2\right + \left 4t - 1\right , x_{3}(t) = \left 4t - 1\right + \left 2t - 1\right $

2.1.4 Привести пример последовательности $(x_n) \subset X \cap Y$, которая сходится в X, но не сходится в Y, если пространства X и Y наделены естественными нормами (таблица 2.1.4).

Таблица 2.1.4

вариант	1	2	3	4	5	6
X	$l_{\scriptscriptstyle \infty}$	$l_{\scriptscriptstyle \infty}$	c_0	C[0;1]	$L_1[0;1]$	l_2
Y	l_1	l_2	l_4	$C^{(1)}[0;1]$	C[0;1]	I_1

2.1.5 Являются ли нормы p и q эквивалентными в пространстве E (таблица 2.1.5)?

Таблица 2.1.5

I dioittiyet =	dostitifa 2.1.5					
вариант	E	p	q			
1	2	3	4			
1	l_2	$\sup_{n\in N} x(n) $				
2	C[0;1]	$\max_{t\in[0;1]}\left x(t)\right $	$\left[\left \int_{0}^{1} x(t) ^{2} dt\right ^{1/2}$			
3	$C^{(1)}[0;1]$	$\max_{t \in [0;1]} \left x(t) \right + \max_{t \in [0;1]} \left x'(t) \right $	$\int_{0}^{1} x(t) dt$			

Окончание таблицы 2.1.5

1	2	3	4
4	С	$\sup_{n\in N} x(n) $	$\sup_{n\in N}\frac{n x(n) }{n+1}$
5	R^n	$\sup_{1 \le k \le n} x(k) $	$\sum_{k=1}^{n} x(k) $
6	$C^{(1)}[0;1]$	$\max_{t \in [0,1]} x(t) $	$\left x(0)\right + \max_{t \in [0;1]} \left x'(t)\right $

2.1.6 Построить изоморфизм между фактор-пространством L/M и одним из стандартных линейных пространств (таблица 2.1.6).

Таблииа 2.1.6

вариант	L	M
1	C[-1;1]	$x \in C[-1;1] x(t) = 0, t \in [0;1]$
2	C[0;1]	$\left x \in C[0;1] \middle x(0) = 0 \right $
3	$C^{\infty}[0;1]$	$x \in C^{\infty}[0;1] x(0) = x'(0) = 0$
4	l_1	$\{ x \in l_1 \mid x_1 + x_2 = 0 \}$
5	$C^{(1)}[a;b]$	$x \in C^{(1)}[a;b] x(a) = x(b)$
6	$l_{_{\infty}}$	$\{ x \in l_{\infty} \mid x_1 = x_3 = 0 \}$

Примеры решения типовых задач

1 Является ли множество A выпуклым в пространстве X?

Пример 1
$$X = c_0$$
, $A = |x \in c_0 : |x(1)| + |x(2)| \le 1$.

Решение Воспользуемся определением выпуклости. Возьмем $\forall x, y \in A, \forall \lambda \in [0;1]$ и покажем, что $\lambda x + (1-\lambda)y \in A$.

Действительно, так как
$$|x(1)| + |x(2)| \le 1$$
 и $|y(1)| + |y(2)| \le 1$, то $|\lambda x(1) + (1 - \lambda)y(1)| + |\lambda x(2) + (1 - \lambda)y(2)| \le \lambda |x(1)| + (1 - \lambda)|y(1)| + \lambda |x(2)| + (1 - \lambda)|y(2)| =$ $= \lambda (|x(1)| + |x(2)|) + (1 - \lambda)(|y(1)| + |y(2)|) \le \lambda + 1 - \lambda = 1$.

Значит, множество A является выпуклым.

2 Проверить, является ли заданная система векторов (x_k) в бесконечномерном пространстве X линейно независимой.

Пример 1
$$X = C[a;b], x_k(t) = (t-a)^k, k = 0,1,2,...n.$$

Решение Покажем по определению, что система $1, t-a, (t-a)^2, ..., (t-a)^n$ является линейно независимой. Пусть

$$\alpha_0 \times 1 + \alpha_1(t - a) + \alpha_2(t - a)^2 + \dots + \alpha_n(t - a)^n = 0 \quad \forall t \in [a; b].$$
 (1)

Подставив в это равенство t = a, получим $\alpha_0 = 0$, а потому

$$\alpha_1(t - a) + \alpha_2(t - a)^2 + ... + \alpha_n(t - a)^n = 0$$

Сокращая на t-a и снова полагая t=a , получим $\alpha_1=0$. Продолжая этот процесс, окончательно будем иметь $\alpha_0=\alpha_1=...=\alpha_n=0$.

Возможно другое решение: алгебраическое уравнение (1) не может иметь более n корней, если не все его коэффициенты равны нулю (почему?).

Пример 2
$$X = C[0;1],$$

$$x_1(t) = \left| t - \frac{1}{2} \right| - \left| t - \frac{1}{3} \right|, x_2(t) = \left| t - \frac{1}{2} \right| + \left| t - \frac{1}{3} \right|, x_3(t) = \left| 2t - 1 \right| - \left| 3t - 1 \right|.$$

Решение Заметим, что $x_1(t) + x_2(t) = |2t - 1|$, $3(x_2(t) - x_1(t)) = 2|3t - 1|$.

Тогда $x_3(t) = x_1(t) + x_2(t) - \frac{1}{2} \cdot 3(x_2(t) - x_1(t)) = \frac{5}{2}x_1(t) - \frac{1}{2}x_2$, а значит, данные функции линейно зависимы.

3 Привести пример последовательности $(x_n) \subset X \cap Y$, сходящейся в X, но не сходящейся в Y, если пространства X и Y наделены естественными нормами.

Пример 1
$$X = c_0, Y = l_1$$
.

Решение Рассмотрим последовательность $x_n = (1,1/2,...,1/n,0,0,...)$, принадлежащую пространству $X \cap Y$. В пространстве c_0 она сходится к вектору $x_0 = (1,1/2,...,1/n,1/(n+1),...)$, так как

$$\rho_X(x_n, x_0) := \max_k |x_n(k) - x_0(k)| = 1/(n+1) \to 0 \text{ } \text{при } n \to \infty.$$

Допустим, что $\exists a \in l_1 : \rho_Y(x_n, a) \to 0, n \to \infty$.

Так как $\rho_X(x_n, a) = \max_k |x_n(k) - a(k)| \le \sum_{k=1}^{\infty} |x_n(k) - a(k)| = \rho_Y(x_n, a)$, то (x_n)

сходится к a и в пространстве $X = c_0$. В силу единственности предела,

отсюда следует, что a = (1,1/2,...,1/n,...). Но $a \notin l_1$. Это противоречие доказывает, что в l_1 данная последовательность не сходится.

Пример 2 $X = L_1[0;1], Y = L_2[0;1].$

Решение Рассмотрим последовательность $x_n(t) = \begin{cases} n, 0 \le t \le 1/n^2 \\ 0, 1/n^2 < t \le 1 \end{cases}$ в пространстве $X \cap Y$. Тогда в $L_1[0;1]$ имеем:

$$\rho_{L_1}(x_n,0) = \int_0^{1/n^2} n dt = 1/n \to 0 \text{ при } n \to \infty, \text{ то есть } x_n \to 0 \text{ в } L_1[0;1]$$

Допустим, что (x_n) сходится в $L_2[0;1]$ к некоторому a. В силу неравенства Коши-Буняковского,

$$\rho_{L_1}(x_n, a) = \int_0^1 |x_n(t) - a(t)| dt \le \left| \int_0^1 |x_n(t) - a(t)|^2 dt \right|^{1/2} = \rho_{L_2}(x_n, a).$$

Отсюда следует, что если $x_n \to a$ в $L_2[0;1]$, то $x_n \to a$ и в $L_1[0;1]$. В силу единственности предела, a=0. С другой стороны, легко проверить, что $\rho_{L_2}(x_n,0)=1$. Противоречие. Следовательно, в $L_2[0;1]$ данная последовательность не сходится.

Пример 3
$$X = C[0;1], Y = C^{(2)}[0;1].$$

Решение Рассмотрим последовательность $x_n(t) = t^n / n \in X \cap Y$. В C[0;1] имеем $x_n \to 0$, но в $C^{(2)}[0;1]$ $\rho_Y(x_n,0) = \frac{1}{n} + 1 + (n-1) \stackrel{?}{\longrightarrow} 0$ ($n \to \infty$). Значит, $x_n \stackrel{?}{\longrightarrow} 0$ в $C^{(2)}[0;1]$. Воспользовавшись неравенством: $\rho_{C[a;b]}(x_n,a) \le \rho_{C^{(2)}[a;b]}(x_n,a)$ и рассуждая, как в предыдущих примерах, получим, что (x_n) не сходится в $C^{(2)}[0;1]$.

4 Выяснить, являются ли нормы p и q эквивалентными в данном пространстве X.

Пример 1
$$X = l_1$$
, $p(x) = \sup_{n \in \mathbb{N}} |x(n)|$, $q(x) = \sum_{n=1}^{\infty} |x(n)|$.

Pешение Очевидно, $\forall x \in l_1 \ p(x) \leq q(x)$. Допустим теперь, что

$$\exists a > 0 : \forall x \in l_1 \ q(x) \le a \cdot p(x), \text{ T. e. } \sum_{n=1}^{\infty} |x(n)| \le a \sup_{n \in \mathbb{N}} |x(n)|, \forall x \in l_1.$$

Полученное противоречие доказывает, что нормы p и q не эквивалентны.

Пример 2
$$X = C[0;1], p(x) = \max_{0 \le t \le 1} |x(t)|, q(x) = \int_{0}^{1} |x(t)| dt.$$

Решение Заметим, что $\forall x \in C[0;1]$ $q(x) = \int\limits_0^1 \left| x(t) \right| dt \le \max_{0 \le t \le 1} \left| x(t) \right| = p(x)$. Допустим, что $\exists a > 0 : \forall x \in C[0;1]$ $p(x) \le a \cdot q(x)$, то есть $\max_{0 \le t \le 1} \left| x(t) \right| \le a \cdot \int\limits_0^1 \left| x(t) \right| dt$, и положим здесь $x(t) = t^n, n \in \mathbb{N}$ $x(t) = t^n, n \in \mathbb{N}$. Тогда последнее неравенство примет вид $1 \le a \times \frac{1}{n}$, т. е. $n \le a, \forall n \in \mathbb{N}$ $n \le a, \forall n \in \mathbb{N}$. Полученное противоречие показывает, что нормы p и q не эквивалентны.

Пример 3
$$X = \mathbb{R}^n$$
, $p(x) = \sum_{k=1}^n |x(k)|$, $q(x) = \left[\sum_{k=1}^n x^2(k) \right]^{1/2}$.

Решение Так как $\forall k = 1,...,n \ |x(k)| \le \int_{0}^{\infty} \sum_{k=1}^{n} x^{2}(k) \int_{0}^{1/2}$, то

$$\sum_{k=1}^{n} |x(k)| \le n \cdot \left\| \sum_{k=1}^{n} x^{2}(k) \right\|^{1/2}, \text{ то есть } p(x) \le n \times q(x).$$

С другой стороны, так как

$$|x(1)|^{2} + |x(2)|^{2} + \dots + |x(n)|^{2} \le (|x(1)| + |x(2)| + \dots + |x(n)|)^{2},$$

$$\text{TO } \left[\sum_{k=1}^{n} x^{2}(k) \right]^{1/2} \le \sum_{k=1}^{n} |x(k)|, \text{ T.e. } q(x) \le p(x), \forall x \in \mathbb{R}^{n}.$$

Итак, мы доказали, что p и q – эквивалентные нормы.

Пример 4
$$X = L_2[0;1], \ p(x) = \int_0^1 |x(t)| dt, \ q(x) = \int_0^1 |x(t)|^2 dt \Big|_0^{1/2}.$$

Решение В силу неравенства Коши-Буняковского, $\forall x \in X \ p(x) \le q(x)$.

Допустим, что $\exists a > 0: \forall x \in X \ q(x) \leq a \cdot p(x)$. Возьмем $x(t) = \begin{cases} n, t \in [0; 1/n] \\ 0, t \in (1/n; 1]. \end{cases}$ Тогда $q(x) = \sqrt{n}, p(x) = 1$, и последнее неравенство примет вид: $\sqrt{n} \leq a$, $\forall n \in N$, что невозможно ни при каком a. Значит, нормы p и q не эквивалентны.

5 Построить изоморфизм между фактор-пространством L/M и одним из стандартных линейных пространств.

Пример 1
$$L = c$$
, $M = \{ x \in c \mid x_1 = x_2 = 0 \}$.

Решение Возьмем произвольный элемент $\chi \in c$. Его класс эквивалентности есть

$$[x] = \{ y \in c \mid x - y \in M \} = \{ y \in c \mid x_1 - y_1 = x_2 - y_2 = 0 \} = \{ y \in c \mid x_1 = y_1, x_2 = y_2 \}$$

Это равенство показывает, что отображение $f:L/M\to \mathbb{R}^2$, $f([x])=(x_1;x_2)$ корректно определено и инъективно. Очевидно также, что оно линейно и является сюръекцией (проверьте). Значит, f — изоморфизм линейных пространств L/M и \mathbb{R}^2 .

Тема 2 Линейные ограниченные операторы в банаховых пространствах

2.2.1 Пусть X,Y — нормированные пространства. Выяснить, совпадет ли область определения $D(A) = |x \in X| Ax \in Y|$ оператора A с нормированным пространством X. Является ли оператор A линейным, непрерывным оператором из D(A) в Y (таблица 2.2.1)?

Таблица 2.2.1

I continue I = 1			
вариант	X	Y	A
1	C[-3;-1]	C[-3;-1]	$(Ax)(t) = \sqrt[3]{x(t)}$
2	$L_2[0;1]$	$L_2[0;1]$	$(Ax)(t) = \frac{1}{\sqrt{t}}x(t)$
3	L ₈ [0;1]	R	$Ax = \int_{0}^{1} x(t) ^{8} dt$
4	C[-1;2]	C[-1;2]	$(Ax)(t) = \int_{0}^{1} x^{2}(s)ds$
5	l_3	C	$Ax = \sum_{k=1}^{\infty} \left x(k) \right ^3$
6	l_3	l_3	Ax = (x(1), 2x(2),kx(k),)

2.2.2 Доказать, что оператор умножения $A: X \to Y$ является линейным ограниченным, и найти его норму (таблица 2.2.2).

Таблииа 2.2.2

вариант	X	Y	A
1	$L_{3/2}[-1;1]$	$L_{3/2}[-1;1]$	$(Ax)(t) = \sqrt[3]{1+t}x(t)$
2	C[-2;1]	C[-2;1]	$(Ax)(t) = (t^3 - 1)^2 x(t)$
3	$L_{5/4}[1;2]$	$L_{5/4}[1;2]$	$(Ax)(t) = (t^2 - t^4)x(t)$
4	$L_3[0;1]$	$L_3[0;1]$	(Ax)(t) = (t4 - t5)x(t)
5	$L_1[-1;1]$	$L_1[-1;1]$	$(Ax)(t) = \cos \pi t x(t)$
6	C[-1;1]	C[0;1]	(Ax)(t) = (t4 - t2)x(t)

2.2.3 Доказать, что диагональный оператор, действующий из X в Y, является линейным ограниченным, и найти его норму (таблица 2.2.3).

Таблица 2.2.3

вариант	X	Y	A
1	$l_{7/3}$	l _{7/3}	
			$Ax = (\sqrt{2}x(1), \sqrt[3]{3}x(2), \dots, \sqrt[k+1]{k+1}x(k), \dots)$
2	$l_{5/4}$	$l_{5/4}$	$Ax = (\frac{x(1)}{2}, \frac{x(2)}{\sqrt{2}}, \dots, \frac{x(k)}{\sqrt[k]{2}}, \dots)$
3	$l_{3/2}$	$l_{3/2}$	Ax = ((1+1)x(1),,(1+1/k)x(k),)
4	$l_{5/2}$	$l_{5/2}$	$Ax = (\frac{x(1)}{5}, \frac{x(2)}{5^2}, \dots, \frac{x(k)}{5^k}, \dots)$
5	I_1	I_1	$Ax = (0,0,\frac{x(3)}{2},\frac{x(4)}{2^2},,\frac{x(k)}{2^{k-2}},)$
6	$l_{5/4}$	$l_{5/4}$	Ax = (0, x(1), 1/2x(2),, (1 - 1/k)x(k),)

2.2.4 Доказать, что оператор данный замены переменной, действующий из X в Y, является линейным ограниченным, и найти его норму (таблица 2.2.4).

Таблица 2.2.4

вариант	X	Y	A
1	C[-1;1]	C[-1;1]	$(Ax)(t) = (\sin^2 \pi t)x(\sqrt[3]{t})$
2	C[-1;1]	C[-1;1]	$(Ax)(t) = \sin \pi t \cdot x(\sqrt[t]{t})$
3	C[-1;0]	C[-1;0]	$(Ax)(t) = t^2 \sin t \cdot x(t^3)$
4	C[0;1]	C[0;1]	$(Ax)(t) = t^2 x(\sqrt{t})$
5	C[-1;1]	C[0;1]	$(Ax)(t) = (t^2 - t)x(t^2)$
6	$L_4[0;1]$	$L_4[0;1]$	$(Ax)(t) = tx(t^{3/2})$

2.2.5 Доказать, что интегральный оператор, действующий из X в Y, является линейным ограниченным, и найти его норму (таблица 2.2.5).

Таблица 2.2.5

1 aostatja 2	donuga 2.2.5				
вариант	X	Y	A		
1	2	3	4		
1	C[0; 1]	C[0;1]	$(Ax)(t) = \int_{0}^{1} \sin \pi (t - s) x(s) ds$		
2	C[-2;1]	C[1;3]	$(Ax)(t) = \int_{-2}^{1} e^{t+s} sx(s) ds$		
3	C[-3;2]	C[-3;1]	$(Ax)(t) = \int_{-3}^{2} s^{4} signs \cdot \cos t \cdot x(s) ds$		
4	C[-1;1]	C[0; 2]	$(Ax)(t) = \int_{-1}^{1} s^{3} \ln(1+t)x(s)ds$		

Окончание таблицы 2.2.5

1	2	3	4
5	C[0;1]	C[-1;2]	$(Ax)(t) = \int_{0}^{1} (s - 1/2) \cos t \cdot x(s) ds$
6	C[0;1]	C[-1;2]	$(Ax)(t) = \int_{0}^{1/2} (1+t-3s)x(s)ds$

2.2.6 Для последовательности операторов $(A_n) \subset LB(X,Y)$, $X,Y \in Norm$ и $A \in LB(X,Y)$ установить: 1) сходится ли (A_n) поточечно (сильно) к оператору A; 2) сходится ли (A_n) по норме к оператору A (таблица 2.2.6).

Таблица 2.2.6

1 costoteget 2				
вариант	X	Y	A_n	A
1	l_2	l_2	$A_n x = ((1+1/n)x(1),,(1+1/n)x(k)$	1_{l_2}
2	c_{0}	c_{0}	$A_n x = (0,0, x(n), 0, 0,)$	0
3	l_2	l_2	$A_n x = (0,,0,x(n+1),x(n+2),)$	0
4	C[0;1]	C[0;1]	$(A_n x)(t) = (t^n - t^{2n})x(t)$	0
5	$C^{(1)}[0;1]$	C[0;1]	$(A_n x)(t) = (t^n - t^{2n})x(t)$	0
6	$L_2[0;1]$	$L_{1}[0;1]$	$(A_n x)(t) = (1 - t^n)x(t)$	Ax = x

Примеры решения типовых задач

1 Пусть X,Y — нормированные пространства. Выяснить, совпадает ли область определения $D(A) = |x \in X| \ Ax \in Y|$ оператора A с нормированным пространством X. Является ли оператор A линейным, непрерывным оператором из D(A) в Y?

Пример 1
$$X = L_2[0;1], Y = L_1[0;1], (Ax)(t) = |x(t)|$$
.

 $Peшениe \quad \text{Если} \, x \in L_2[0;1], \quad \text{то} \quad \|x\|_2^2 = \int\limits_0^1 \!\! |x(t)|^2 \, dt < + \infty \,. \quad \text{В} \quad \text{силу}$ неравенства Коши-Буняковского,

$$\left\| \int_{0}^{1} |x(t)| dt \right\|^{2} \leq \int_{0}^{1} |x(t)|^{2} dt \cdot \int_{0}^{1} dt = ||x||_{2}^{2} < +\infty.$$
(1)

 $\tag{1}$ Отсюда следует, что $\mathit{Ax} \in L_1[0;1]$. Поэтому $\mathit{D}(\mathit{A}) = X$.

Оператор A не является линейным (рассмотрите, например, $A(\lambda x)$). Исследуем его на непрерывность. Для любой точки $a \in X$ оценим расстояние

$$||Ax - Aa||_1 = ||x(t)| - |a(t)||_1 = \int_0^1 |x(t)| - |a(t)|| dt \le \int_0^1 |x(t) - a(t)| dt \le ||x - a||_2$$

(мы воспользовались числовым неравенством $\|x|-|a\| \le |x-a|$, а затем неравенством (1)). Поэтому $\forall \varepsilon > 0$ получаем при $\delta = \varepsilon$, что $\forall x \in X$ из $\|x-a\|_2 < \delta$ следует $\|Ax-Aa\|_1 < \varepsilon$. Значит, оператор A непрерывен на X.

Пример 2
$$X = l_2, Y = l_1, Ax = (x(1), \frac{x(2)}{\sqrt{2}}, \frac{x(3)}{\sqrt{3}}, ..., \frac{x(k)}{\sqrt{k}}, ...)$$

Решение В этом примере $D(A) \neq X$, так как $x = \left\| \frac{1}{\sqrt{n \ln n}} \right\|_{n=1}^{\infty} \in l_2$, но $Ax = \left\| \frac{1}{n \ln n} \right\|_{n=1}^{\infty} \notin l_1$ (в обоих случаях сходимость ряда исследуется с помощью интегрального признака; проверьте это).

Очевидно, A является линейным оператором, поэтому исследование непрерывности равносильно исследованию ограниченности.

Докажем, что A не является ограниченным. Допустим противное, то есть что $\exists c \in R : \forall x \in X \quad \|A_x\|_{_Y} \leq c \cdot \|x\|_{_X}$. Π ри $x = (1, \frac{1}{\sqrt{2}}, ..., \frac{1}{\sqrt{n}}, 0, 0, ...) \in l_2$ последнее неравенство примет вид

$$\sum_{k=1}^{n} \frac{1}{k} \le c \cdot \left\| \sum_{k=1}^{n} \frac{1}{k} \right\|^{1/2}, \text{ T.e. } \forall n \in \mathbb{N} \quad \sum_{k=1}^{n} \frac{1}{k} \le c^{2}.$$

Поскольку частичные суммы ряда $\sum_{k=1}^{\infty} \frac{1}{k}$ не являются ограниченными, мы пришли к противоречию. Значит, A не является непрерывным.

Пример 3
$$X = L_1[0;1], Y = L_{3/2}[0;1], (Ax)(t) = \int_0^1 e^{t^2s} x(s) ds$$
.

 $\begin{array}{ll} \textit{Решение} \quad \text{Возьмем} \quad \forall x \in L_1[0;1] \text{ , тогда} \quad \int\limits_0^1 \!\! |x(t)| dt < +\infty \text{ . Рассмотрим} \\ \int\limits_0^1 \!\! |(Ax)(t)|^{3/2} \, dt = \int\limits_0^1 \!\! |\int\limits_0^1 \!\! e^{t^2 s} x(s) ds \bigg|^{3/2} \, dt \leq e^{3/2} \int\limits_0^1 \!\! |\int\limits_0^1 \!\! |x(s)| ds \bigg|^{3/2} \, dt = e^{3/2} \bigg|\int\limits_0^1 \!\! |x(s)| ds \bigg|^{3/2} < +\infty \text{ ,} \\ \text{TO есть } \quad Ax \in L_{3/2}[0;1] \text{ . Значит, } D(A) = X \text{ .} \end{array}$

Легко проверить, что A — линейный. Докажем, что A — ограниченный. Используя предыдущее неравенство, получаем

$$||A||_{3/2} = \left\| \int_{0}^{1} \int_{0}^{1} e^{t^{2}s} x(s) ds \right\|^{3/2} dt \left\| \int_{0}^{2/3} \le e \cdot \left\| \int_{0}^{1} \int_{0}^{1} f(s) ds \right\|^{3/2} dt \left\| \int_{0}^{2/3} = e \cdot \left| \int_{0}^{1} f(s) ds \right| \cdot \left\| \int_{0}^{1} dt \right\|^{2/3} \le e \cdot ||x||_{1}.$$

Наконец, как известно, из ограниченности A следует его непрерывность.

Пример 4
$$X = l_{3/2}, Y = C, Ax = \sum_{k=2}^{\infty} k |x(k)|^{3/2}$$
.

Решение Здесь $D(A) \neq X$, так как последовательность $\binom{1/k}{k=1}^{\infty} \in X$, но $Ax = \infty$. Далее, оператор A не является линейным (как в примере 1). Докажем, что он не является непрерывным. Действительно, возьмём следующую последовательность x_n точек из $l_{3/2}$:

$$x_n(k) = \begin{bmatrix} \frac{1}{n+k}, & 1 \le k \le 2n \\ 0, & k > 2n \end{bmatrix}.$$

Тогда $x_n \to 0$ в $l_{3/2}$, так как

$$||x_n - 0||_{3/2}^{3/2} = \sum_{k=1}^{2n} \frac{1}{(n+k)^{3/2}} < \frac{2n}{n^{3/2}} = \frac{2}{\sqrt{n}} \to 0 \text{ mpw } n \to \infty.$$

В то же время

$$\left|Ax_{n}-A0\right| > \sum_{k=n+1}^{2n} \frac{k}{(n+k)^{3/2}} > \sum_{k=n+1}^{2n} \frac{k}{(2k)^{3/2}} = \frac{1}{2^{3/2}} \sum_{k=n+1}^{2n} \frac{1}{k^{1/2}} > \frac{1}{2^{3/2}} n \frac{1}{(2n)^{1/2}} \to \infty.$$

Таким образом, из того, что $x_n \to 0$, не следует, что . Мы показали, что A не является непрерывным в нуле, значит, A не является непрерывным на D(A) .

Пример 5
$$X = C[0;1], Y = R, (Ax)(t) = |x'(0) + x(0)|.$$

Решение Очевидно, что $D(A) \neq X$ и что A — нелинейный. Покажем, что A не является непрерывным в нуле. Возьмём последовательность $x_n(t) = (1-t)^n/n$ из C[O;1]. Она сходится к 0, так как $\|x_n\|_X = 1/n \to 0$ при $n \to \infty$. Но в то же время

$$|Ax_n - A0| = \left| (-1)^n + \frac{1}{n} \right| \to 1 \text{ при } n \to \infty.$$

То есть из того, что $x_n \to 0$, не следует, что . Значит, A не является непрерывным на D(A) .

- **2** Доказать, что оператор $A: X \to Y$ является линейным ограниченным, и найти его норму.
 - а) Оператор умножения, действующий из X в Y.

Пример 1
$$X = Y = C[0;1], (Ax)(t) = \frac{t}{1+t^2}x(t)$$
.

Pешение Ясно, что A — линейный оператор. Так как

$$||Ax|| = \max_{t \in [0;1]} \left| \frac{t}{1+t^2} x(t) \right| \le \max_{t \in [0;1]} \left| \frac{t}{1+t^2} \right| \cdot \max_{t \in [0;1]} |x(t)| = \frac{1}{2} \cdot ||x||,$$
(2)

то A ограничен с константой ограниченности 1/2. А так как норма оператора есть наименьшая из констант ограниченности, то $\|A\| \le 1/2$.

Докажем теперь противоположное неравенство, т. е. что $\|A\| \ge 1/2$. Для этого постараемся подобрать такой ненулевой вектор x_0 , для которого неравенство (2) превращается в равенство. Возьмём $x_0(t) = 1$. Тогда, как легко посчитать, $\|x_0\| = 1$, $Ax_0(t) = \frac{t}{1+t^2}$, $\|Ax_0\| = 1/2$. А так как $\|A\| = \sup\{\|Ax\| \mid \|x\| \le 1\}$, то $\|A\| \ge 1/2$. Сопоставляя полученные неравенства, заключаем, что $\|A\| = 1/2$.

б) Диагональный оператор, действующий из l_p в l_p .

Пример 1
$$A: l_7 \to l_7$$
, $Ax = (0,0,\frac{x(1)}{2},\frac{x(2)}{2^2},...,\frac{x(k)}{2^k},...)$.

Решение Ясно, что А – линейный оператор. Так как

$$||Ax|| = \left\| \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \left\| \frac{|x(k)|}{2^k} \right\|^{\frac{1}{2}} \right\|^{\frac{1}{2}} \le \frac{1}{2} \left\| \sum_{k=1}^{\infty} |x(k)|^{\frac{1}{2}} \right\|^{\frac{1}{2}} = \frac{1}{2} ||x||,$$

то оператор A ограничен, причем $\|A\| \le 1/2$. Возьмём $x_0 = e_3 = (0,0,1,0,0,...)$. Тогда $\|x_0\| = 1$, $\|Ax_0\| = 1/2$. Значит, $\|A\| \ge 1/2$ (почему?). Из полученных неравенств следует, что $\|A\| = 1/2$.

Пример 2
$$A: l_{5/4} \to l_{5/4}$$
, $Ax = (0, \frac{x(2)}{2}, 0, \frac{3x(4)}{4}, 0, ..., (1 - \frac{1}{2k})x(2k), 0, ...)$.

Pешение Оператор A — линейный. Докажем неравенство ограниченности:

$$||Ax|| = \left\| \sum_{k=1}^{\infty} (1 - \frac{1}{2k})^{5/4} \cdot |x(2k)|^{5/4} \right\|_{1}^{4/5} \le \left\| \sum_{k=1}^{\infty} |x(2k)|^{5/4} \right\|_{1}^{4/5} \le ||x||.$$

(3)

Значит, оператор A — ограничен, причем $\|A\| \le 1$.

В отличие от предыдущих примеров, здесь не существует ненулевого вектора, при котором неравенство (3) превращается в равенство

(подумайте, почему?). Поэтому будем подбирать ненулевые векторы x так, чтобы обе части (3) мало отличались друг от друга. Возьмём $x_0 = e_{2k} = (0,...,0,1,0,0,...)$ (единица стоит на 2k-м месте). Тогда имеем $\|x_0\| = 1$, $\|Ax_0\| = 1$ - 1/(2k)

откуда $\forall k \in \mathbb{N}$ $\|A\| \ge 1 - 1/(2k)$ (см. решение примера 1). Ввиду произвольности k, отсюда следует, что $\|A\| \ge 1$. Окончательно получаем: .

в) Оператор замены переменной.

Пример 1
$$A = C[0;1] \rightarrow C[0;1], (Ax)(t) = (t^4 - t^8)x(t^3)$$
.

Pешение Очевидно, оператор A — линеен. Докажем его ограниченность:

$$||Ax|| = \max_{t \in [0,1]} |t^4 - t^8| \cdot |x(t^3)| = [t^3 = s, t = s^{1/3}] = \max_{s \in [0,1]} |s^{4/3} - s^{8/3}| \cdot |x(s)| \le \frac{1}{4} \cdot ||x||,$$
(4)

(4) поскольку, как легко проверить, $\max_{s \in [0;1]} \left| s^{4/3} - s^{8/3} \right| = 1/4$. Следовательно, $\|A\| \le 1/4$. Далее, так как при x(t) = 1 неравенство (4) превращается в равенство, то $\|A\| \ge 1/4$ (см. решения предыдущих примеров). Итак, $\|A\| = 1/4$.

Пример 2
$$A: L_2[0;1] \to L_2[0;1], (Ax)(t) = x(\sqrt[8]{t}).$$

Pешение Очевидно, что оператор A — линеен. Докажем его ограниченность:

$$||Ax|| = \left\| \int_{0}^{1} x^{2} (\sqrt[8]{t}) dt \right\|^{1/2} = \left[\sqrt[8]{t} = z, t = z^{8}, dt = 8z^{7} dt \right] = \left\| \int_{0}^{1} 8z^{7} \cdot x^{2}(z) dz \right\|^{1/2} \le$$

$$\le 2\sqrt{2} \cdot \left\| \int_{0}^{1} x^{2}(z) dz \right\|^{1/2} = 2\sqrt{2} \cdot ||x||$$

$$(5)$$

(мы воспользовались тем, что $z \le 1$). Значит, $||A|| \le 2\sqrt{2}$.

Как и в примере 2 пункта б), не существует ненулевого вектора, при котором неравенство (5) превращается в равенство (подумайте, почему). Поэтому будем подбирать ненулевые векторы x так, чтобы обе части (5) мало отличались друг от друга. Возьмём последовательность $x_n = \sqrt{n} \cdot \chi_{[1-\frac{1}{n};1]}(t)$, состоящую из функций, сосредоточенных в окрестности точки z=1 и таких, что $\|x_n\|=1$. Тогда

$$||Ax_n|| = \int_{0}^{1} \int_{1-\frac{1}{n}}^{1} |8z|^7 n dz \Big|_{0}^{1/2} = \left(nz^8 \Big|_{1-1/n}^{1}\right)^{1/2} = \int_{0}^{1} n \cdot \Big|_{0}^{1} - \Big|_{0}^{1} - \frac{1}{n} \Big|_{0}^{1} \Big|_{0}^{1/2} \Big|_{0}^{1/2}.$$

Значит, $\|A\| \ge \frac{1}{n} n \cdot \frac{1}{n} - \frac{1}{n} \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n} \cdot \frac{1}{n} \cdot$

$$||A|| \ge \lim_{n \to \infty} |n| \cdot \frac{8}{n} ||n|^{1/2} = 2\sqrt{2}.$$

Из полученных неравенств следует, что $||A|| = 2\sqrt{2}$.

 Γ) Интегральный оператор, действующий из X в Y.

Пример 1
$$A: C[-1;3] \to C[-2;0], (Ax)(t) = \int_{-1}^{1} (1-t)s^5x(s)ds$$
.

Pешение Из свойства линейности интеграла следует, что A – линейный оператор. Далее,

$$||Ax|| = \max_{t \in [-2;0]} \left| \int_{-1}^{1} (1-t)s^{5}x(s)ds \right| \le \max_{t \in [-2;0]} |1-t| \cdot \int_{-1}^{1} |s^{5}| \cdot |x(s)|ds \le 3 \cdot 2 \int_{0}^{1} |s^{5}| ds \cdot ||x|| = ||x||.$$
(6)

Значит, оператор A — ограничен, причем $\|A\| \le 1$. Заметим, что неравенство (6) превращается в равенство при $x(t) = \operatorname{sgn} t$, но эта функция не принадлежит C[-1;3]. Возьмем следующую последовательность функций из C[-1;3], которые «похожи» на $\operatorname{sgn} t$ при больших n (сделайте чертеж):

$$x_n(t) = \begin{bmatrix} -1, t \in [-1; -1/n] \\ nt, t \in [-1/n; 1/n] \\ 1, t \in [1/n; 3] \end{bmatrix}.$$

Легко видеть, что $||x_n|| = 1$ в C[-1;3]. Вычислим $||Ax_n||$ в C[-2;0]. Так как функция $s^5 \cdot x_n(s)$ — четная на [-1;1], то

$$||Ax_n|| = \max_{t \in [-2;0]} |1 - t| \cdot \left| \int_{-1}^{1} s^5 \cdot x_n(s) ds \right| = 3 \cdot 2 \cdot \int_{0}^{1} s^5 \cdot x_n(s) ds = 6 \left| \int_{0}^{1/n} n s^6 ds + \int_{1/n}^{1} s^5 ds \right| = 1 - \frac{1}{7n^6}.$$

Значит, $\|A\| \ge 1$ - $1/(7n^6)$, $\forall n \in \mathbb{N}$, а потому $\|A\| \ge 1$. Окончательно получаем, что $\|A\| = 1$.

3 Для последовательности операторов $(A_n) \subset LB(X,Y)$, $X,Y \in Norm$ и $A \in LB(X,Y)$ установить: 1) сходится ли (A_n) поточечно (сильно) к оператору A; 2) сходится ли (A_n) по норме к оператору A.

Пример 1
$$A_n x = (x(1),...,x(n),0,0,...), A = 1_{l_1}, X = Y = l_1$$
.

Решение 1) Заметим, что $\forall x \in l_1$

$$||A_n x - Ax|| = ||(0,...0, x(n+1), x(n+2),...)|| = \sum_{k=n+1}^{\infty} |x(k)| \to 0 \text{ при } n \to \infty$$

как остаток сходящегося ряда. Значит, последовательность (A_n) сходится поточечно (то есть сильно) к оператору A.

2) Воспользуемся тем, что $\|A\| \ge \|Ax_0\|$, $\forall x_0 : \|x_0\| \le 1$. Возьмем вектор $x_0 = e_{n+1} = (0,...,0,1,0,...)$ (единица стоит на (n+1)-м месте). Тогда $\|A_n - A\| \ge \|A_nx_0 - Ax_0\| = \|(0,...,0,0,0,...) - (0,...,0,1,0,...)\| = \|(0,...,0,1,0,...)\| = 1$. Так как $\|A_n - A\| \ge 1$, то (A_n) не сходится по норме к A.

Тема 3 Обратные операторы

2.3.1 Пусть $A: X \to Y$. Доказать, что существует непрерывный обратный оператор A^{-1} , и построить его (таблица 2.3.1).

_	•	_			\sim	2	1
	\mathbf{a}	n	пи	па		1	- 1

	1 иолици 2.5.1				
В	ариант	X	Y	A	

1	$C^{(2)}[0;1]$	$C^{(2)}[0;1]$	$(Ax)(t) = x(t) + \int_{0}^{1} e^{t+s} x(s) ds$
2	C[0;1]	C[0;1]	$(Ax)(t) = x(t) + \int_{0}^{1} (1 - st)x(s)ds$
3	$C^{(1)}[0;1]$	$C^{(1)}[0;1]$	$(Ax)(t) = x(t) + \int_0^1 (t+s)x(s)ds$
4	C[0;1]	C[0;1]	$(Ax)(t) = x(t) + \int_0^1 t^2 sx(s) ds$
5	l_2	l_2	Ax = ((1+1/2)x(1), (1+1/3)x(2), (1+1/4)x(3),)
6	l_2	l_2	
			$Ax = (1(\sin 1/1)x(1), 2(\sin 1/2)x(2), 3(\sin 1/3)x(3), \dots$

2.3.2 Пусть $A: X \to Y$.

- 1) Что представляет собой область значений R(A) оператора A?
- 2) Существует ли на R(A) левый обратный оператор B?
- 3) Является ли оператор $B: R(A) \to X$ ограниченным, если он существует?
- 4) Существует ли обратный оператор A^{-1} (таблица 2.3.2)?

Таблица 2.3.2

вариант	X	Y	A
1	l_5	l_5	$Ax = (\frac{1}{2}x(1), \frac{1}{2^2}x(2), \dots, \frac{1}{2^k}x(k), \dots)$
2	l_2	l_2	Ax = (x(2), x(3),, x(k),)
3	l_2	l_2	
			Ax = (x(2), x(1), x(4), x(3),, x(2k), x(2k-1),)
4	l_1	l_2	Ax = (x(1), 0, x(2), x(3), K, x(k), K)
5	$C^{(2)}[0;1]$	C[0;1]	$(Ax)(t) = x \mathbb{I}(t)$
			$(Au)(t) = t \int u(s) ds$
6	C[0;1]	C[0;1]	$(Ax)(t) = t \int_{0}^{x} f(s) ds$

2.3.3 Пусть $A_{\lambda} \in LB(X,Y)$, где λ — числовой параметр, X_{λ} — банахово пространство. Выяснить, при каких λ существует обратный оператор к оператору A_{λ} , построить его. При каких λ оператор A_{λ} непрерывно обратим (таблица 2.3.3)?

Таблииа 2.3.3

вариант	X_{λ}	Y	A_{λ}			

1	$\begin{cases} x \in C^{(1)}[0;1]: \\ \lambda x(0) = x'(1) \end{cases}$	C[0;1]	$\frac{d}{dt} + tI$
2	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} + \lambda t I$
3	$\begin{cases} x \in C^{(1)}[0;1]: \\ \lambda x(0) = x(1) \end{cases}$	C[0;1]	$\frac{d}{dt}$ - $2tI$
4	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} + \lambda I$
5	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} + \lambda a(t)I, \ a \in C[0;1]$
6	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) + x(1) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} - 3\lambda t^2 I$

Примеры решения типовых задач

1 Пусть $A: X \to Y$. Доказать, что существует непрерывный обратный оператор A^{-1} , и построить его.

Пример 1
$$A: l_1 \to l_1$$
, $Ax = ((1-1/2)^2 x(1), (1-1/3)^3 x(2), (1-1/4)^4 x(3),...)$.

Решение Очевидно, что A — линейный оператор. Докажем, что A является биекцией. Рассмотрим уравнение Ax = y, которое равносильно системе уравнений

$$(1 - 1/(k+1))^{k+1} x(k) = y(k), k = 1,2,...$$

Отсюда

$$x(k) = \frac{y(k)}{(1 - \frac{1}{k+1})^{k+1}}.$$

(1)

А так как несложно найти константу C, такую, что

$$\sum_{k=1}^{\infty} |x_k| \le C \sum_{k=1}^{\infty} |y_k| < +\infty,$$

(2)

то $x \in l_1$. Мы получили, что $\forall y \in l_1$ уравнение Ax = y имеет единственное решение x из l_1 . Значит, A — биекция. Более того, из (1) следует, что обратный оператор A^{-1} задается формулой

$$A^{-1}y = \begin{bmatrix} y(k) & y(k) \\ (1-1/2)^2 & (1-1/3)^3 \end{bmatrix}, \frac{y(k)}{(1-1/4)^4}, \dots \end{bmatrix}.$$

Ограниченность этого оператора следует из оценки

$$||A^{-1}y|| \le C \sum_{k=1}^{\infty} |y(k)| = C||y|| \text{ (cm. (2))}.$$

Пример 2
$$A: C[0;1] \to C[0;1], (Ax)(t) = x(t) + \int_{0}^{1} e^{t+s} x(s) ds.$$

Pешение Очевидно, что A — линейный оператор. Запишем его в виде

$$(Ax)(t) = x(t) + e^t \int_0^1 e^s x(s) ds,$$

и рассмотрим уравнение Ax = y, то есть

$$x(t) + e^t \cdot \int_0^1 e^s x(s) ds = y(t).$$
(3)

Пусть

$$\int_{0}^{1} e^{s} x(s) ds = c.$$

(4)

Тогда (3) примет вид $x(t) + c \cdot e' = y(t)$, откуда $x(t) = y(t) - c \cdot e'$. Мы получили общий вид решения уравнения (3) с неопределенным коэффициентом c. Подставив это выражение в (4), без труда находим, что

$$c = \frac{2}{1 + e^2} \int_0^1 e^s y(s) ds.$$

Таким образом,

$$x(t) = y(t) - \frac{2}{1 + e^2} \int_0^1 e^s y(s) ds = A^{-1} y(t).$$
(5)

Итак, $\forall y \in C[0;1]$ уравнение (2) имеет единственное решение из C[0;1]. Значит, оператор A обратим, причем обратный оператор вычисляется по формуле (5).

Непрерывность обратного оператора вытекает из теоремы об оценке интеграла. Действительно, по этой теореме

$$|A^{-1}y(t)| \le |y(t)| + \frac{2}{1+e^2} \max_{s \in [0;1]} |y(s)| \int_0^1 e^s ds \le C||y||,$$

а потому выполняется неравенство ограниченности $||A^{-1}y|| \le C||y||$ (другое доказательство непрерывности получается из (5) с помощью теоремы о предельном переходе под знаком интеграла Римана).

- **2** Пусть $A: X \to Y$.
- 1) Что представляет собой область значений R(A) оператора A?
- 2) Существует ли на R(A) левый обратный оператор B?
- 3) Является ли оператор $B: R(A) \to X$ ограниченным (в случае, если он существует?
- 4) Существует ли обратный оператор A^{-1} ?

Пример 1
$$A: l_2 \to l_2$$
, $Ax = (0, x(1), x(2), ..., x(k), ...)$.

Решение Очевидно, что

$$R(A) = \{(0, x(1), x(2), ..., x(k), ...) \mid (x(k) \in l_2) = \{y \in l_2 \mid y(1) = 0\} - 1\}$$

множество последовательностей из l_2 , первая координата которых равна нулю. Заметим, что $R(A) \neq l_2$.

Так как уравнение Ax = 0 имеет только нулевое решение, то $Ker A = \begin{bmatrix} 0 \end{bmatrix}$. А это, как известно, равносильно тому, что левый обратный оператор B существует. Легко проверить, что

$$Bx = (x(2), x(3), x(4),...)$$
.

Действительно, при всех x из l_2 имеем

$$BAx = B(0, x(1), x(2),...) = (x(1), x(2), x(3),...)$$

Оператор B ограничен, так как $||Bx|| \le ||x||$.

Поскольку уравнение Ax = y не при всех y имеет решение (например, при y = (1,0,0,K)), то A не является сюрьекцией. А это значит, что правого обратного оператора не существует. Следовательно, оператор A – необратим.

Пример 2
$$A: C[0;1] \to C[0;1], (Ax)(t) = \int_0^t x(s)ds$$
.

Решение По теореме о дифференцировании интеграла с переменным верхним пределом (теорема Барроу), функция $y(t) = \int_0^t x(s)ds$ — дифференцируема, причем y'(t) = x(t). Значит, $y \in C^{(1)}[0;1]$. Кроме того, очевидно, что y(0) = 0. Обратно, если

 $y \in C^{(1)}[0;1]$ и y(0) = 0, то, по формуле Ньютона-Лейбница, $y(t) = \int\limits_0^t \!\! y'(s) ds$. Поэтому

$$R(A) = \{ \int_{0}^{t} x(s) ds | x \in C[0,1] \} = \{ y \in C^{(1)}[0,1] | y(0) = 0 \}.$$

Рассмотрим оператор дифференцирования $Bx = \frac{dx}{dt}$. Поскольку (снова по теореме Барроу) $(BAx)(t) = \frac{d}{dt} \int_0^t f(s) ds = x(t)$ при всех $x \in C[0;1]$, то B – левый обратный для оператора A.

Покажем, что B не является ограниченным оператором. Допустим противное, т. е.

$$\exists c \in \mathbf{R} : ||Bx|| = \max_{0 \le t \le 1} |x'(t)| \le c \cdot \max_{0 \le t \le 1} |x(t)| = c \cdot ||x||.$$

Возьмём $x(t) = t^n \ (n \in \mathbb{N})$. Тогда последнее неравенство примет вид $n \le c, \ \forall n \in \mathbb{N}$. Противоречие.

Поскольку $R(A) \neq C[0;1]$, то A не является сюръекцией. Значит, правого обратного оператора не существует. Следовательно, не существует и A^{-1} .

3 Пусть $A_{\lambda} \in LB(X,Y)$, где λ — числовой параметр, X_{λ} — банахово пространство. Выяснить, при каких λ существует обратный оператор к оператору A_{λ} , построить его. При каких λ оператор A_{λ} непрерывно обратим?

Пример 1
$$X_{\lambda} = \{x \in C^{(1)}[0;1] \mid x'(0) = \lambda x(1)\}, Y = C[0;1], A_{\lambda} = \frac{d}{dt} + 2I$$
.

Решение Для нахождения обратного оператора рассмотрим в X_{λ} уравнение $A_{\lambda}x=y$, т. е. линейное дифференциальное уравнение

$$x' + 2x = y. (6)$$

Нужно выяснить, при каких λ у этого уравнения для любого $y \in C[0;1]$ существует единственное решение $x \in X_{\lambda}$. Другими словами, для любого $y \in C[0;1]$ краевая задача

$$x'(0) = \lambda x(1) \tag{7}$$

для уравнения (6) должна иметь единственное непрерывно дифференцируемое решение. Воспользовавшись формулой для

общего решения линейного дифференциального уравнения первого порядка, получим общее решение уравнения (6):

$$x(t) = e^{-2t} \left(\int_{0}^{t} y(s)e^{2s} ds + C \frac{1}{2} \right).$$
 (8)

Требуется узнать, при каких λ для любого $y \in C[0;1]$ найдется такое C, при котором формула (8) дает решение задачи (7). Подставив (8) в (7), получим после упрощений

$$\left(\lambda e^{-2} + 2\right)C = y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2}ds. \tag{9}$$

Возможны два случая:

а) $\lambda \neq -2e^2$. Тогда уравнение (9) имеет единственное решение

$$C = \frac{1}{2 + \lambda e^{-2}} \left(y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2} ds \frac{1}{2s} \right)$$

для любого $y \in C[0;1]$. Следовательно, при этих λ существует обратный оператор, который мы найдем, подставив это C в равенство (8):

$$A_{\lambda}^{-1}y(t) = e^{-2t} \left(\int_{0}^{t} y(s)e^{2s} ds + \frac{1}{2 + \lambda e^{-2}} \left(y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2} ds \frac{1}{|s|^{\frac{1}{2}}} \right) \right)$$

В силу теоремы Банаха об обратном операторе, непрерывность этого оператора будет следовать из непрерывности оператора $A_{\lambda}x = x' + 2x$. Последний же факт легко доказать по Гейне. Действительно, если $x_n \to 0$ в пространстве $C^{(1)}[0;1]$, то это значит, что $x_n \to 0$ и $x_n' \to 0$ равномерно на [O;1]. Но тогда и $A_{\lambda}x_n = x_n' + 2x_n \to 0$ равномерно на [O;1];

б) $\lambda = -2e^2$. В этом случае уравнение (9) имеет вид

$$0 = 0 \times C = y(0) + 2e^2 \int_0^1 y(s)e^{2s-2}ds.$$

Так как правая часть этого уравнения при некоторых непрерывных y (например, при y(t)=1) не будет равна 0, то при этих y уравнение (9) не имеет решения (относительно C), а потому оператор A_{λ} — не сюръективен.

Итак, обратный оператор к оператору A_{λ} существует тогда и только тогда, когда $\lambda \neq -2e^2$. Причем при таких λ оператор A_{λ} непрерывно обратим.

Литература

- 1 Антоневич, А. Б. Функциональный анализ и интегральные уравнения / А. Б. Антоневич, Я. В. Радыно. Мн.: БГУ, 2003. 430 с.
- 2 Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. М.: Наука, 1972. 496 с.
- 3 Антоневич, А. Б. Функциональный анализ и интегральные уравнения: Лабораторный практикум / А.Б. Антоневич [и др.]. Мн.: БГУ, 2003. 179 с.
- 4 Кириллов, А. А. Теоремы и задачи функционального анализа / А. А. Кириллов, А. Д. Гвишиани. М.: Наука, 1979. 381 с.