Application No.: 09/695,807 7 Docket No.: 432722002623

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method to enhance bone formation or to treat pathological dental conditions or to treat degenerative joint conditions in a vertebrate animal, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound that inhibits the activity of NF- kB or that inhibits proteasomal activity or that inhibits production of proteasome proteins wherein the compound does not inhibit the isoprenoid pathway.

2. (Canceled)

- 3. (Currently amended) The method of claim $\underline{1}[[2]]$, wherein the compound inhibits the chymotrypsin-like activity of the proteasome.
- 4. (Original) The method of claim 3, wherein the compound is a peptide having at least 3 amino acids and a C-terminal functional group that reacts with the threonine residue of the chymotrypsin-like catalytic site of the proteasome.
- 5. (Original) The method of claim 4, wherein the c-terminal functional group is selected from the group consisting of an epoxide, a $-B(OR)_2$ group, a $-S(OR)_2$ group and a -SOOR group, wherein R is H, an alkyl (C_{1-6}) or an aryl (C_{1-6}).
- 6. (Original) The method of claim 5, wherein the functional group is an epoxide that forms a morpholino ring with the threonine residue of the chymotrypsin-like catalytic site of the proteasome.
- 7. (Original) The method of claim 3, wherein the peptide is a peptide α' , β' -epoxyketone.
- 8. (Original) The method of claim 7, wherein the peptide α' , β' -epoxyketone has at least 4 amino acids.

9. (Original) The method of claim 7, wherein the c-terminus amino acid of the peptide α , β -epoxyketone is a hydrophobic amino acid.

8

- 10. (Original) The method of claim 9, wherein the hydrophobic amino acid is leucine or phenylalanine.
- 11. (Currently Amended) The method of claim 7, wherein the peptide α' , β' -epoxyketone has the following formula:

$$\begin{array}{c|c}
H & O & R^I & H & O & R^2 \\
N & M & N & N & N & N & N & N
\end{array}$$

wherein each of R, R^I, R² and R³ is a hydrophophic hydrophobic substituent.

12. (Original) The method of claim 11 wherein each of R, R¹, R² and R³ is independently selected from the group consisting of

COOtBu
$$(CH_2)_{1-2}$$

13. (Original) The method of claim 11, wherein R² and R³ are and the compound is selected from the group consisting of

9

compound 2 (
$$R^{l}$$
 and R and R and R compound 3 (R^{l} and R and R and R and R and R compound 5 (R^{l} and R a

14. (Original) The method of claim 11, wherein the peptide α ', β '-epoxyketone has the following stereo-configuration:

15. (Original) The method of claim 7, wherein the peptide α ', β '-epoxyketone has the following formula:

10

$$\begin{array}{c|c}
H & O & H & O \\
N & N & N & N & N \\
O & R & O & N & N \\
\end{array}$$

wherein R is selected from the group consisting of

16. (Original) The method of claim 15, wherein the peptide α ', β '-epoxyketone has the following stereo-configuration:

17. (Original) The method of claim 16, wherein the peptide α' , β' -epoxyketone is

18. (Currently Amended) The method of claim 3, wherein the compound is selected from the group consisting of

$$\begin{array}{c|c} & & & & \\ H_2N & & & & \\ \hline \\ H & O & & \\ \end{array}$$

, epoxomicin, pyrazylcaarbonyl-Phe-Leu-Boronate

(PS-341), tri-leucine vinyl sulfone (NLVS), N-carbobenzoyl-Ile-Glu-(OtBu)-Ala-Leu-CHO (PSI) epoxide, lactacystin, pentoxyfilline (PTX) and a peptidyl aldehyde.

19. (Original) The method of claim 3, wherein the compound has the following formula:

$$X \longrightarrow CH \longrightarrow A \longrightarrow CH \longrightarrow Warhead$$

wherein the warhead reacts irreversibly with the catalytic chymotrypsin site of the proteasome;

A is independently CO-NH or isostereomer thereof;

R is independently a hydrocarbyl;

X is a polar group; and

n = 0-2.

Docket No.: 432722002623

- 20. (Original) The method of claim 19, wherein R contains a substituted group selected from the group consisting of a halo group, -OR, -SR, -NR₂, =O, -COR, -OCOR, -NHCOR, -NO₂, -CN, and -CF₃.
 - 21. (Original) The method of claim 19, wherein X is protected.
- 22. (Original) The method of claim 1, wherein the subject is characterized by a condition selected from the group consisting of osteoporosis, bone fracture or deficiency, primary or secondary hyperparathyroidism, periodontal disease or defect, metastatic bone disease, osteolytic bone disease, post-plastic surgery, post-prosthetic joint surgery, and post-dental implantation.
- 23. (Original) The method of claim 1, which further comprises administering to the subject one or more agents that promote bone growth or that inhibit bone resorption.
- 24. (Original) The method of claim 23, wherein the agents are selected from the group consisting of bone morphogenetic factors, anti-resorptive agents, osteogenic factors, cartilagederived morphogenetic proteins, growth hormones, estrogens, bisphosphonates, statins and differentiating factors.

25-43 (Canceled)