

Wellen und Schwingungen

Christian Geng

Fragen Akustik

Schall, Welle, Schwingung

Schalldruck, Schallschnelle

Sinoidalechw

Schallarten

Periodische Signale zeitliche vs. spektrali

Darstellung

Typen von Spektre

Uberführung vom Zeit in den Spektralbereich Fourier-Analyse

Resonan:

Frage 1:

- (a) Was ist der Unterschied zwischen einer Welle und einer Schwingung?
- (b) Welche Kräfte wirken auf ein schwingendes Teilchen?

Wellen

Christian Geng

Fragen Akustik Schall, Welle, Schwingung

Zeitsignal

Schallschnelle

Sinoidalschw

Periodische Signale

zeitliche vs. spekti

Tunna con Contito

Überführung vom Zeit in den Spektralbereich

Resonanz

Frage 2:

- (a) Was ist der Unterschied zwischen Longitudinal- und Transversalwellen?
- (b) Nennen Sie drei Beispiele für Transversalwellen!

dB-Skala

Christian Geng

Fragen Akus Schall, Welle, Schwingung Zeitsignal

Schalldruck, Schallschnelle

Sinoidalschwin

Periodische Signale

zeitliche vs. spektral

Darstellung
Typen von Spektren

Überführung vom Zei in den Spektralbereic Fourier-Analyse

Frage 3:

- (a) In welchen Einheiten lässt sich Schalldruck bzw. Schalldruckpegel angeben?
- (b) Warum wird hierfür eine logarithmische Skala bevorzugt?
- (c) Um wieviel dB ist ein Schalldruck von 1 Pa höher als ein Schalldruck von 0.1 Pa?
- (d) Ein lineares Signal mit Amplitude 5 wird um 6 dB gedämpft. Welche Amplitude ergibt sich?
- (e) Welchem Faktor entspricht eine Schalldruckzunahme um 32 dB?

dB-Skala: Allgemeine Lösung

Christian Geng

Ein lineares Signal mit Amplitude 1.8 wird um 6 dB gedämpft. Welche Amplitude ergibt sich?

► Die dB-Skala: $L[dB] = 20 log \frac{P}{P_0}$

► Einsetzen der Werte $-6dB = 20log\frac{x}{1.8}$

► Umformen: $-6/20dB = log \frac{x}{1.8}$

Note: der dB-Skale liegt der Logarithmus zur Basis 10 zugrunde. Umkehrfunktion: 10^x

► $\rightarrow 10^{-6/20dB} = \frac{x}{1.8}$

 $\rightarrow x = 1.8 * 10^{-6/20dB} \rightarrow x = 0.90214$

Schalldruck,

Periodische Signal zeitliche vs. spektr

Typen von Spektrer

in den Spektralbereic Fourier-Analyse

Spektrum

Christian Geng

Fragen Akustik
Schall, Welle,
Schwingung

Schalldruck, Schallschnelle

Sinoidalschwingu

Periodische Signale

zeitliche vs. spektrali Darstellung

Typen von Spektren Überführung vom Zeit-

in den Spektralbereich: Fourier-Analyse Frage 4: Warum verwendet man bei der graphischen Darstellung des Frequenz-Amplituden-Spektrums von Sprachsignalen ein logarithmiertes Spektrum? Weil ...

Ш	seine Berechnung einfacher ist
	dadurch die Spektrallinien deutlicher sichtbar sind
	sich so die Formantfrequenzen direkt auf der dB-Achse
ablesen lassen	
	so auch die höheren Formanten leichter bestimmbar sind

Ton Klang Geräusch

Christian Geng

Fragen Akustik

Schall, Welle Schwingung Zeitsignal

Schallschnelle

Sinoidalschwing

Schallarten

Periodische Signale

zeitliche vs. spektra Darstellung

Überführung vom Zeitin den Spektralbereich: Fourier-Analyse

Frage 5:

- (a) Welche Arten von Schall lassen sich unterscheiden?
- (b) Was sind Obertöne bzw. Harmonische?
- (c) Was ist Periodizität?
- (d) Wodurch kommt Periodizität im Sprachsignal zustande?

Frage Ton-Geräusch

Christian Geng

.

Schwingung Zeitsignal

Schallschnelle

Sinoidalachuin

Schallarten

Periodische Signale zeitliche vs. spektrali

zeitliche vs. spektra Darstellung

Typen von Spektrer

in den Spektralbereich Fourier-Analyse

Frage 6:

- (a) Worin besteht der Unterschied zwischen einem Ton und einem Geräusch?
- (b) Skizzieren Sie die Schwingungsbilder als Zeitsignal!

Tiefer Ton versus hoher Ton

Christian Geng

Fragen Akustik

Schall, Welle,

Zeitsianal

Schalldruck,

Schallschnell

Schallarten

Periodische Signale

zeitliche vs. spekti

Typen von Spektre

Überführung vom Zeitin den Spektralbereich:

Resonanz

Frage 7: Skizzieren Sie die Schwingungsbilder von einem tiefen und einem hohen Ton!

Graphische Darstellung von Schall

Christian Geng

- ...

Schall, Welle,

Schwingung

Schalldruck,

Schallschnelle

Cinnidalaahuu

Caballastas

Periodische Signale

zeitliche vs. spektrale Darstellung

Typen von Spektre

Überführung vom Zeit in den Spektralbereich Fourier-Analyse

Resonanz

Frage 8:

- (a) Welche Möglichkeiten der graphischen Darstellung von Sprachschall kennen Sie?
- (b) Was wird jeweils dargestellt?

Akustik

Christian Geng

Fragen Akustik

Schwingung

Schalldruck,

Schallschnelle

Sinoidalschwin

Periodische Signale

zeitliche vs. spektr

Typen von Spektren

Uberführung vom Zeitin den Spektralbereich Fourier-Analyse

Resonanz

Frage 9: Was trifft zu?

☐ Bei höherer Grundfrequenz liegen die Harmonischen näher beisammen

☐ Bei höherer Grundfrequenz liegen die Harmonischen

weiter auseinander

Spektrum

Christian Geng

Schall, Welle,

Schwingung

Zeitsignai

Schalldruck,

Cincidalachuinau

Caballasian

Periodische Signale

zeitliche vs. spekt Darstellung

Typen von Spektren

Überführung vom Zeitin den Spektralbereich

Frage 10: Weißes Rauschen ist:

- □ periodisches Rauschen
 □ Rauschen, bei dem die hochfrequenten Bestandteile überwiegen
 □ Rauschen, bei dem alle Spektralanteile die gleiche Intensität besitzen
- \square sehr schmalbandiges Rauschen

Spektren und Fourieranalyse

Christian Geng

Frage 11:

- (a) Was versteht man unter der Phase eines Signals?
- (b) Welche Typen von Spektren gibt es?
- (c) Was leistet die Fourieranalyse?
- (d) Was ist der Grundvorgang bei der Durchführung der Fourieranalyse?
- (e) Warum ist es bei der Bestimmung der Ähnlichkeit erforderlich, sowohl mit den Sinuskomponenten als auch mit den entsprechenden Cosinuskomponenten zu vergleichen?

Schall, Welle, Schwingung

Schalldruck, Schallschnelle

Sinoidalschwing

Schallarten
Periodische Signale

zeitliche vs. spektrale Darstellung

Überführung vom Zeitin den Spektralbereich:

Fourier-Analyse

Chirp

Christian Geng

Fragen Akustik

Schall, Welle, Schwingung

Schalldruck,

Schallschnell

Schallarten

Periodische Signale

renodische Sign

Darstellung

Typen von Spektre

Überführung vom Zeitin den Spektralbereich: Fourier-Analyse

Frage 12:

(a) Handelt es sich hierbei um einen Ton, einen Klang, oder ein Geräusch? Begründen Sie?

Chirp

Cosinussignal mit sich linear über die Zeit ändernder Frequenz. Das Signal hat bei Begin t=0 eine Frequenz von 0Hz undbei t=1sec eine Frequeny on 150Hz.

Grundfrequenz und Periodendauer - 120Hz

Christian Geng

Fragen Akustik

Schall, Welle, Schwingung

Schalldruck,

Sinoidalschwingur

Periodische Signale

zeitliche vs. spektrale Darstellung

Typen von Spektre

in den Spektralbereic Fourier-Analyse

Resonanz

Frage 13:

- Berechnen sie die Grundfrequenz dieses Signals!
- 2 Und was ist die Periodendauer?

Grundfrequenz und Periodendauer - 200Hz

Christian Geng

Fragen Akustik Schall, Welle,

Schalldruck,

Sinoidalschwingu

Periodische Signale

zeitliche vs. spektra

Typen von Spektren

in den Spektralbereic Fourier-Analyse

Resonanz

Frage 14:

Falls nicht lesbar: Die Dauer des markierten Bereichs beträgt (gerundet) 0.025 Sekunden.

- 1 Berechnen sie die Grundfrequenz dieses Signals!
- 2 Und was ist die Periodendauer?

Sprachschall

Christian Geng

Fragen Akustik Schall, Welle, Schwingung Zeitsignal

Schalldruck, Schallschnelle

Sinoidalschwi

Schallarten

Resonanz

Periodische Signale zeitliche vs. spektrali

Darstellung
Typen von Spektren
Überführung vom Ze
in den Spektralbereid

Ī

Frage 15:

- (a) Beeindruckt der Schreiende in Bild 4 (zweite Reihe, ganz links) seine Gegenüber durch hohen Schalldruck (Lautstärke)?
- (b) Begründen Sie!

