Регрессионный анализ, часть 1

Математические методы в зоологии - на R, осень 2013

Марина Варфоломеева Каф. Зоологии беспозвоночных, СПбГУ

Знакомимся с линейными моделями

- Модель простой линейной регрессии
- · Проверка валидности модели (t- и F-критерии)
- Условия применимости
- Мощность линейной регрессии

Вы сможете

- подобрать модель линейной регрессии
- проверить валидность модели при помощи t- или F-теста
- проверить выполнение условий применимости линейной регрессии
- расчитать мощность линейной регрессии

Модель простой линейной регрессии

Линейная регрессия

• простая

$$Y_i = eta_0 + eta x_i + \epsilon_i$$

• множественная

$$Y_i = eta_0 + eta x_{1i} + + eta x_{2i} + \ldots + \epsilon_i$$

Запись моделей в R

зависимая переменная ~ модель

- $\hat{y}_i = b_0 + bx_i$ (простая линейная регрессия со свободным членом (intercept))
- . Y~X
- · Y ~ 1 + X
- · Y ~ X + 1
- $\hat{y}_i = b x_i$ (простая линейная регрессия без свободного члена)
- · Y ~ X 1
- · Y ~ -1 + X
- $\hat{y}_i = b_0$ (уменьшенная модель, линейная регрессия у от свободного члена)
- · Y~1
- · Y ~ 1 X

Запишите в нотации R

эти модели линейных регрессий

- : $\hat{y}_i = b_0 + bx_{1i} + bx_{2i} + bx_{3i}$ (множественная линейная регрессия со свободным членом)
- : $\hat{y}_i = b_0 + bx_{1i} + bx_{3i}$ (уменьшенная модель множественной линейной регрессии, без X2)

Минимизируем остаточную изменчивость

$$Y_i = eta_0 + eta x_i + \epsilon_i$$
 - модель регрессии

 $\hat{y}_i = b_0 + b_1 x_i$ - оценка модели

нужно оценить β_0 , β_1 и σ^2

· Метод наименьших квадратов (Ordinary Least Squares, см. рис.)

Еще есть методы максимального правдоподобия (Maximum Likelihood, REstricted Maximum Likelihood)

Оценки параметров линейной регрессии

минимизируют $\sum \left(y_i - \hat{y}_i
ight)^2$, т.е. остатки.

ПАРАМЕТРЫ	ОЦЕНКИ ПАРАМЕТРОВ	СТАНДАРТНЫЕ ОШИБКИ ОЦЕНОК	
β_1	$b_1 = rac{\sum_{i=1}^{n} \left[(x_i - ar{x})(y_i - ar{y}) ight]}{\sum_{i=1}^{n} \left(x_i - ar{x} ight)^2}$	$SE_{b_1} = \sqrt{rac{MS_e}{\sum_{i=1}^n \left(x_i - ar{x} ight)^2}}$	
eta_0	$b_0 = \bar{y} - b_1 \bar{x}$	$SE_{b_0} = \sqrt{MS_e[rac{1}{n} + rac{ar{x}}{\sum_{i=1}^n \left(x_i - ar{x} ight)^2}]}$	
	$e_i = y_i - \hat{y}_i$	$pprox \sqrt{MS_e}$	

- Стандартные ошибки коэффициентов нужны
 - для построения доверительных интервалов
 - для статистических тестов

Коэффициенты регрессии

- Если нужно сравнивать лучше стандартизованные (= "бета коэффициенты") коэффициенты (на след.лекции про сравнение моделей)
 - $b_1^*=rac{b_1\sigma_x}{\sigma_y}$
 - не зависят от масштаба

Пример: усыхающие личинки мучных хрущаков

Как зависит потеря влаги личинками малого мучного хрущака Tribolium confusum от влажности воздуха? (Nelson, 1964)

- 9 экспериментов, продолжительность 6 дней
- · разная относительная влажность воздуха, % (humidity)
- · измерена потеря влаги, мг (weightloss)

Данные в файлах nelson.xlsx и nelson.csv

Читаем данные из файла и знакомимся с ними

Внимание, установите рабочую директорию, или используйте полный путь к файлу

```
setwd("C:\\mathmethr\week2")
## u3 .xlsx
library(XLConnect)
wb <- loadWorkbook(".\data\nelson.xlsx")
nelson <- readWorksheet(wb, sheet = 1)
## unu u3 .csv
# nelson <- read.table(file=".\data\nelson.xlsx", header = TRUE, sep = "\t", dec = ".")

str(nelson)

## 'data.frame': 9 obs. of 2 variables:
## $ humidity : num 0 12 29.5 43 53 62.5 75.5 85 93
## $ weightloss: num 8.98 8.14 6.67 6.08 5.9 5.83 4.68 4.2 3.72

head(nelson)</pre>
## humidity weightloss
```

```
humidity weightloss
## 1
        0.0
                 8.98
       12.0
             8.14
## 3
       29.5
             6.67
6.08
       43.0
## 4
                                                                          12/64
       53.0
             5.90
       60 E
                 E 02
```

Как зависит потеря веса от влажности? График рассеяния.

```
library(ggplot2)
p_nelson <- ggplot(data=nelson, aes(x = humidity, y = weightloss)) +
  geom_point() +
  labs(x = "Относительная влажность, %", y = "Потеря веса, мг")
p_nelson</pre>
```


Внешний вид графиков можно менять при помощи тем

```
p_nelson + theme_classic()
p_nelson + theme_bw()
theme_set(theme_classic()) # устанавливаем понравившуюся тему до конца сессии
```


Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
      Min
               10 Median
                              30
                                     Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
## (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
                         0.00326 -16.4 0.00000078161 ***
## humidity -0.05322
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.297 on 7 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
## F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

Добавим линию регрессии на график

p_nelson + geom_smooth(method = "lm")

Как вы думаете,

что это за серая область вокруг линии регрессии?

Неопределенность оценок коэффициентов и предсказанных значений

Неопределенность оценок коэффициентов

- Доверительный интервал коэффициента
 - зона, в которой с $(1-\alpha)\cdot 100\%$ вероятностью содержится среднее значение коэффициента
 - $b_1 \pm t_{lpha,df=n-2} SE_{b_1}$
 - lpha = 0.05 => $(1-0.05) \cdot 100\% = 95\%$ интервал
- . Доверительная зона регрессии
 - зона, в которой с $(1-\alpha)\cdot 100\%$ вероятностью лежит регрессионная прямая

Находим доверительные интервалы коэффициентов

```
# Вспомните, в выдаче summary(nelson_lm) были только оценки коэффициентов
# и стандартные ошибки
# оценки коэффициентов отдельно
coef(nelson_lm)
```

```
## (Intercept) humidity
## 8.7040 -0.0532
```

```
# доверительные интервалы коэффициентов confint(nelson_lm)
```

```
## 2.5 % 97.5 %
## (Intercept) 8.2510 9.1570
## humidity -0.0609 -0.0455
```

Оценим, какова средняя потеря веса при заданной влажности

Нельзя давать оценки вне интервала значений X!

```
# новые данные для предсказания значений newdata <- data.frame(humidity = c(50, 100)) predict(nelson_lm, newdata, interval = "confidence", se = TRUE)
```

```
## $fit
## fit lwr upr
## 1 6.04 5.81 6.28
## 2 3.38 2.93 3.83
##
## $se.fit
## 1 2
## 0.0989 0.1894
##
## $df
## [1] 7
##
## $residual.scale
## [1] 0.297
```

доверительный интервал к среднему значению

- При 50 и 100% относительной влажности ожидаемая средняя потеря веса жуков будет 6 ± 0.2 и 3.4 ± 0.4 , соответственно.

Строим доверительную зону регрессии

```
p_nelson + geom_smooth(method = "lm") +
   ggtitle ("95% доверительная зона регрессии")
p_nelson + geom_smooth(method = "lm", level = 0.99) +
   ggtitle ("99% доверительная зона регрессии")
```


Неопределенность оценок предсказанных значений

- . Доверительный интервал к предсказанному значению
 - зона в которую попадают $(1-lpha)\cdot 100\%$ значений \hat{y}_i при данном x_i
 - $\hat{y}_i \pm t_{0.05,n-2} SE_{\hat{y}_i}$

$$SE_{\hat{y}} = \sqrt{MS_e[1+rac{1}{n}+rac{(x_{prediction}-ar{x})^2}{\sum_{i=1}^n(x_i-ar{x})^2}]}$$

- . Доверительная область значений регрессии
 - зона, в которую попадает $(1-\alpha)\cdot 100\%$ всех предсказанных значений

Предсказываем для новых значений

Нельзя использовать для предсказаний вне интервала значений X!

```
# новые данные для предсказания значений newdata <- data.frame(humidity = c(50, 100)) predict(nelson_lm, newdata, interval = "prediction", se = TRUE)
```


 \cdot У 95% жуков при 50 и 100% относительной влажности будет потеря веса будет в пределах 6 \pm 0.7 и 3.4 \pm 0.8, соответственно.

Данные для доверительной области значений

```
# предсказанные значения для исходных данных
predict(nelson lm, interval = "prediction")
## Warning: predictions on current data refer to future responses
      fit lwr upr
## 1 8.70 7.87 9.54
## 2 8.07 7.27 8.86
## 3 7.13 6.38 7.89
## 4 6.42 5.67 7.16
## 5 5.88 5.14 6.62
## 6 5.38 4.63 6.12
## 7 4.69 3.92 5.45
## 8 4.18 3.39 4.97
## 9 3.75 2.95 4.56
# объединим с исходными данными в новом датафрейме - для графиков
nelson with pred <- data.frame(nelson, predict(nelson lm, interval = "prediction"))</pre>
## Warning: predictions on current data refer to future responses
```

Строим доверительную область значений и доверительный интервал

$$H_0:eta_1=0$$
 или t-, или F-тест

Проверка валидности модели

Проверка при помощи t-критерия

$$H_0: b_1= heta, heta=0$$

$$t = \frac{b_1 - \theta}{SE_{b_1}}$$

$$df=n-2$$

Проверка коэффициентов с помощью t-критерия есть в сводке модели

```
summary(nelson_lm)
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
              10 Median
                              30
      Min
                                     Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
## (Intercept) 8.70403
                         0.19156 45.4 0.00000000065 ***
## humidity -0.05322 0.00326 -16.4 0.00000078161 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.297 on 7 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
## F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

. Увеличение относительной влажности привело к достоверному замедлению потери веса жуками ($b_1=-0.053,\,t=-16.35,\,p<0.01$)

Проверка при помощи F-критерия

 $H_0:eta_1=0$

• Та же самая нулевая гипотеза. Как так получается?

Общая изменчивость - отклонения от общего среднего значения

SS_{total}

$SS_{total} = SS_{regression} + SS_{error}$

Если зависимости нет, $b_1=0$

Тогда $\hat{y}_i = \bar{y}_i$ и $MS_{regression} pprox MS_{error}$

F-критерий и распределение F-статистики

$$F=rac{ ext{Объясненная изменчивость}}{ ext{Heoбъясненная изменчивость}}=rac{MS_{regression}}{MS_{error}}$$

F-распределение при $H_0:b_1=0$

Зависит от

- \cdot α
- $\cdot df_{regression}$
- $\cdot df_{error}$

Таблица результатов дисперсионного анализа

ИСТОЧНИК ИЗМЕНЧИВОСТИ	СУММЫ КВАДРАТОВ ОТКЛОНЕНИЙ, SS	ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ, DF	СРЕДНИЙ КВАДРАТ ОТКЛОНЕНИЙ, MS	F
Регрессия	$SS_r = \sum \left(ar{y} - \hat{y}_i ight)^2$	$df_r=1$	$MS_r = rac{SS_r}{df_r}$	$F_{df_r,df_e} = rac{MS_r}{MS_e}$
Остаточная	$SS_e = \sum \left(y_i - \hat{y}_i ight)^2$	$df_e=n-2$	$MS_e = rac{SS_e}{df_e}$	
Общая	$SS_t = \sum \left(ar{y} - y_i ight)^2$	$df_t=n-1$		

- Минимальное упоминание в тексте - F_{df_r,df_e} , p

Проверяем валидность модели при помощи F-критерия

```
nelson_aov <- aov(nelson_lm)
summary(nelson_aov)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## humidity 1 23.51 23.51 267 0.000000078 ***
## Residuals 7 0.62 0.09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 \cdot Количество влаги, потерянной жуками в период эксперимента, достоверно зависело от уровня относительной влажности ($F_{1.7}=267,\,p<0.01$).

Оценка качества подгонки модели

Коэффициент детерминации

доля общей изменчивости, объясненная линейной связью х и у

$$R^2=rac{SS_r}{SS_t}$$

$$0 \leq R^2 \leq 1$$

Иначе рассчитывается как $R^2=r^2$

Коэффициент детерминации

можно найти в сводке модели

· Осторожно, не сравнивайте R^2 моделей с разным числом параметров, для этого есть $R^2_{adjusted}$

```
summary(nelson_lm)
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
               10 Median
                          30
      Min
                                     Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
## humidity
              -0.05322
                         0.00326 -16.4 0.00000078161 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.297 on 7 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
                                                                                39/64
## F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

Условия применимости простой линейной регрессии и анализ остатков

Условия применимости простой линейной регрессии

должны выполняться, чтобы тестировать гипотезы

- 1. Независимость
- 2. Линейность
- 3. Нормальное распределение
- 4. Гомогенность дисперсий

Независимость

- \cdot Значения y_i должны быть независимы друг от друга
 - берегитесь псевдоповторностей
 - берегитесь автокорреляций (например, временных)
- Контролируется на этапе планирования
- Проверяем на графике остатков

Линейность связи

- проверяем на графике рассеяния исходных данных
- проверяем на графике остатков

Вот, что бывает, если неглядя применять линейную регрессию

<u>Квартет Энскомба</u> - примеры данных, где регрессии одинаковы во всех случаях (Anscombe, 1973)

$$y_i = 3.0 + 0.5x_i$$

$$r^2 = 0.68$$
,

$$H_0: eta_1 = 0, \, t = 4.24, \, p = 0.002$$

Нормальное распределение

Нужно, т.к. в модели $Y_i = eta_0 + eta x_i + \epsilon_i$ $Y \sim N(0,\sigma^2)$

 \cdot К счастью, это значит, что $\epsilon_i \sim N(0,\sigma^2)$

- Нужно для тестов параметров, а не для подбора методом наименьших квадратов
- Тесты устойчивы к небольшим отклонениям от нормального распределения
- Проверяем распределение остатков на нормально-вероятностном графике

Гомогенность дисперсий

Нужно, т.к. в модели $Y_i = eta_0 + eta x_i + \epsilon_i$

$$Y \sim N(0, \sigma^2)$$
,

и дисперсии $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2$ для каждого Y_i

· К счастью, поскольку $\epsilon_i \sim N(0,\sigma^2)$, можно проверить равенство дисперсий остатков ϵ_i

- Нужно и важно для тестов параметров
- Проверяем на графике остатков по отношению к предсказанным значениям
- Можно сделать тест С Кокрана (Cochran's C), но только если несколько значений у для каждого х

Диагностика регрессии по графикам остатков

- а все в порядке
- b разброс остатков разный (wedgeshaped pattern)
- · с разброс остатков одинаковый, но нужны дополнительные предикторы
- d к нелинейной зависимости применили линейную регрессию

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage рычаг, "сила"; иногда называют hat)
- 1 не влияет
- · 2 умеренно влияет (большой остаток, малая сила влияния)
- · 3 очень сильно влияет (большой остаток, большая сила влияния)

Как оценить влиятельность наблюдений

Расстояние Кука (Cook's d) (Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- · Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.

Дж. Фокс советует не обращать внимания на пороговые значения (Fox, 1991).

- Что делать с влиятельными точками?
 - Проверить, не ошибка ли это. Если это не ошибка, не удалять - обсуждать!
- Проверить, что будет, если их исключить из модели
 Рисунок из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

49/64

Проверим условия применимости

Проверьте линейность связи,

постройте для этого график рассеяния

```
ggplot()
aes()
geom_point()
```

Для анализа остатков выделим нужные данные в новый датафрейм

```
# library(ggplot2)
nelson_diag <- fortify(nelson_lm)
names(nelson_diag) # названия переменных
```

```
## [1] "weightloss" "humidity" ".hat" ".sigma" ".cooksd"
## [6] ".fitted" ".resid" ".stdresid"
```

- · Kpome weightloss и humidity нам понадобятся
 - .cooksd расстояние Кука
 - .fitted предсказанные значения
 - .resid остатки
 - .stdresid стандартизованные остатки

Постройте график зависимости остатков от предиктора

(относительная влажность),

используя данные для анализа остатков из nelson_diag

```
names()
ggplot()
aes()
geom_point()
```

· По абсолютным остаткам сложно сказать, большие они или маленькие. Нужна стандартизация

Постройте график зависимости стандартизованных остатков от предсказанных значений

Стандартизованные остатки $rac{y_i - \hat{y}_i}{\sqrt{MS_e}}$

- можно сравнивать между регрессиями
- можно сказать, какие остатки большие, какие нет
 - < 2SD обычные
 - $oldsymbol{-} > 3SD$ редкие

```
ggplot()
aes()
geom_point()
```

График станет информативнее, если кое-что добавить

```
ggplot(data = nelson_diag, aes(x = .fitted, y = .stdresid)) +
geom_point(aes(size = .cooksd)) + # расстояние Кука
geom_smooth(method="loess", se = FALSE) + # линия тренда
geom_hline(yintercept = 0) # горизонтальная линия на уровне y = 0
```


Какие выводы можно сделать по графику остатков?

- Стандартизованные остатки умеренной величины (в пределах двух стандартных отклонений), их разброс почти одинаков
- Мало точек, чтобы надежно оценить наличие трендов среди остатков

Нормально-вероятностный график остатков

Используется, чтобы оценить форму распределения.

Если точки лежат на одной прямой - нормальное распределение.

```
ggplot(nelson_diag, aes(sample = .stdresid)) +
  geom_point(stat = "qq")
```


57/64

На нормально-вероятностный график можно добавить линию

```
source(url("http://stat511.cwick.co.nz/code/stat_qqline.r"))
ggplot(nelson_diag, aes(sample = .stdresid)) +
  geom_point(stat = "qq") +
  stat_qqline()
```


- Небольшие отклонения от нормального распределения, но мало точек, чтобы оценить это с уверенностью
- Небольшими отклонениями можно пренебречь, т.к. тесты, используемые в регрессионном анализе к ним устойчивы.

Мощность линейной регрессии

Величина эффекта из общих соображений

```
Library(pwr)
cohen.ES(test="f2",size="large")

##
## Conventional effect size from Cohen (1982)
##
## test = f2
## size = large
## effect.size = 0.35
```

Величина эффекта для набора предикторов по \mathbb{R}^2

$$f^2=\frac{R^2}{1-R^2}$$

 R^2 - коэффициент детерминации

Посчитайте

какой нужен объем выборки, чтобы с вероятностью 0.8 обнаружить умеренную зависимость при помощи простой линейной регрессии?

```
cohen.ES()
pwr.f2.test()
```

Take home messages

- · Модель простой линейной регрессии $y_i = eta_0 + eta_1 \dot{x}_i + \epsilon_i$
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность. Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Валидность модели линейной регрессии можно проверить при помощи t- или F-теста. $H_0: \beta_1 = 0$
- Условия применимости линейной регрессии:
 - Независимость
 - Линейная связь
 - Нормальное распределение
 - Гомогенность дисперсий
- Анализ остатков используется для диагностики условий применимости линейной регрессии
- Мощность линейной регрессии можно рассчитать, например, как мощность F-критерия

Дополнительные ресурсы

- · Гланц, 1999, стр. 221-244
- · Logan, 2010, pp. 170-207
- · Quinn, Keough, 2002, pp. 78-110
- Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- · Sokal, Rohlf, 1995, pp. 451-491
- · Zar, 1999, pp. 328-355