Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Increasing alpha value, the model will become underfitting it means model is generalized (model complexity is less). Low variance and high bias for model underfitting

When alpha value is increase it maximize the RMSE value

Ridge = 0.046544372008500826 Lasso = 0.05203395988143083

Ridge Doubled Alpha Co-Efficient		[78]: Lasso Doub	Lasso Doubled Alpha Co-Efficient	
OverallQual	0.235515	OverallQual	0.270385	
TotRmsAbvGrd	0.141937	Total_Bathrooms	0.086175	
LotArea	0.116859	Fireplaces	0.066102	
MasVnrArea	0.105338	TotRmsAbvGrd	0.059513	
Total_Bathrooms	0.102107	GarageArea	0.055202	
LotFrontage	0.073532	GarageCars	0.043245	
GarageArea	0.067169	MasVnrArea	0.042675	
Fireplaces	0.059936	Total_porch_sf	0.004987	
Total_porch_sf	0.036773	LotFrontage	0.000000	
GarageCars	0.034363	YrSold_Old	-0.00000	
OverallCond	0.027760	Heating_Floor	0.000000	
Heating_Floor	0.000000	Exterior2nd_AsphShn	0.000000	
Exterior2nd_AsphShn	0.000000	Exterior1st_AsphShn	0.000000	
Exterior1st_AsphShn	0.000000	RoofMatl_Membran	0.000000	
RoofMatl_Membran	0.000000	MiscVal	-0.000000	
HeatingQC_Po		GarageYrBlt_Old	-0.000000	
MiscVal	-0.000083	MoSold	0.000000	
MoSold	-0.000287	LotArea	0.000000	
YrSold_Old	-0.001772	KitchenAbvGr	-0.000000	

When the alpha value in the ridge regression penalty component in the cost function is doubled, the variance decreases by compromising bias, resulting in greater model generalisation.

When the alpha value in Lasso regression is doubled, the number of features decreases even further.

Question 2 You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- The optimum lambda value in case of Ridge and Lasso is as follows:-
- Ridge 1 Lasso 0.0009
- The Mean Squared Error in case of Ridge and Lasso are:
- Ridge 0.0021396938125939455 Lasso 0.0021246459184499694
- The Mean Squared Error of both the models are almost same.
- Lasso has a greater advantage over Ridge and should be chosen as the final model since it helps in feature reduction (as the coefficient value of some of the features becomes zero).

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer: Five most important predictor variables from Lasso regression

- OverallQual
- Total_Bathrooms
- Fireplaces
- TotRmsAbvGrd
- GarageArea

Metrics after removing 5 most important predictor variables

- The R2 Score of the model on the test dataset is 0.6683695043584168
- The MSE of the model on the test dataset is 0.00373686262951211

Model generated from Five most important predictor variables

		Lasso Co-Efficient		
	MasVnrArea	0.220553		
	GarageCars	0.191974		
	LotArea	0.185439		
	LotFrontage	0.133628		
	Total_porch_sf	0.103080		

R2square value is decrease after removing 5 most important predictor variables

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

The model should be generalised to ensure that the test accuracy does not fall below the training score. The model should be accurate for datasets other than those used for training. Give no weight to outliers so that the model's projected accuracy is high. That is why we need to do an outliers analysis and save just the values that are relevant to the dataset. Outliers that are irrelevant to the dataset must be deleted. The model cannot be trusted for predictive analysis if it is not robust. The model should be as basic as feasible, as this will reduce accuracy while increasing robustness and generalizability.

It is also understandable in terms of the Bias-Variance trade-off. The simpler the model, the greater the bias, but the lower the variance and the greater the generalizability. Its accuracy implication is that a resilient and generalizable model will perform equally well on both training and test data, implying that accuracy does not differ significantly between training and test data. Bias: A model mistake occurs when the model is unable to learn from the data. A high bias indicates that the model is unable to learn details from the data. On training and testing data, the model performs poorly.

Variance: Variance is an inaccuracy in the model that occurs when the model attempts to overlearn from the data. High variance indicates that the model works extraordinarily well on training data since it has been very well trained on this type of data, but performs very poorly on testing data because it was previously unknown data for the model. To avoid overfitting and underfitting of data, Bias and Variance must be balanced.