

33° **52**′ **37′′S** 151° 06' 04"E

10 ADV JE MATHS

1.	- Set notation: A couple has two children, each eit (a) List all the outcomes.	ther a boy or a girl.	
	(b) List all the outcomes which ha (i) at least one boy for set A.	(ii) only one boy for set B.	je maths
	(iii) no boy.	THS JE MATHS	
	(c) How many outcomes are in (i) set A. JB MATHS	JB MATHS (ii) set B.	je maths
	A couple has three children, each each (a) List all the outcomes.	either a boy or a girl.	
	JE MATHS	JE MATHS	
	 (b) List all the outcomes which hat (i) at least one boy for set Λ. 	(ii) only one boy for set B.	
	(iii) no boy. JB MATHS	JE MATHS	
	(c) How many outcomes are in		

JE MATHS

(ii) set B.

JE MATHS

(i) set A.

JE MATHS

	0 4		
-	Set	proving	g

JE MATHS

JE MATHS

JE MATHS

- Set theory (addition law): $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Two dice are thrown, what is the probability that
 - (a) the sum is more than 8?
- (b) the sum is equal to 8?
- (c) the sum is more than or equal to 8.

JE MATHS

JE MATHS

JE MATHS

- From 1 to 50 inclusively, one integer is chosen at random. Find the probability that this integer
 - (a) a multiple of 3.

(b) a multiple of 5.

JE MATHS

JE MATHS

(c) a multiple of 3 or 5.

JE MATHS

- 6. In a bag, $\frac{1}{2}$ are red balls, $\frac{1}{3}$ are black balls and the rest are green balls. If a ball is chosen at random, what is the probability that it is
 - (a) a green ball?

JE MATHS

JE MATHS

(b) a red ball or a black ball?

JE MATHS

JE MATHS

JE MATHS

(c) a red ball or a green ball?

7.	Two dice are thrown, that is the probabil (a) a sum of 5 or a sum more than 9?	ity of getting	
	(a) a sum of 5 of a sum more than 5:		
	-1		
	(b) a sum of 5 or 2 odd numbers?	JE MATHS	JE MATHS
	(a) a sum more than 0 on 2 odd number	-O	
	(c) a sum more than 9 or 2 odd numbers	81	JE MATHS
	- Application of set theory (addition la	w) in probability:	
8.	From the following numbers from 1 to 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0:	
	The events A, B, C and D are:		
	A: an even number is chosen:	an:	JE MATHS
	B: a number greater than 15 is chos C: a multiple of 3 is chosen:	CII.	
	D: a one-digit number is chosen:		
	(a) Find the probability of	JE MATHS	
	(i) an even number is chosen.	(ii) a number grea	ater than 15 is chosen.
	JE MATHS		JE MATHS
	(iii) a multiple of 3 is chosen.	(iv) a one-digit m	imber is chosen.
	JE MATHS		
	(I) Haras Carl		
	(b) Hence find: (i) an even number or a number great	ter than 15 is chosen. JB MATHS	
	JE MATHS		
	(ii) an even number or multiple of 3	is chosen.	
	JE MATHS	JE MATHS	JE MATHS
	IR Mys.	IR WY	IR WYTT
	(iii) a number greater than 15 or a on	e-digit number is chosen	

- Application of set shading in probability:

A survey has been conducted by a group of 60 customers to try out three **freeze drinks in KFC**: Mountain Dew Freeze, Citrus Freeze and Pepsi Freeze — 32 tried out for Mountain Dew Freeze, 29 tried out for Citrus Freeze, 15 tried out for Pepsi Freeze, 11 tried out for Mountain Dew Freeze and Citrus Freeze, 9 tried out for Citrus Freeze and Pepsi Freeze, 8 tried out for Mountain Dew Freeze and Pepsi Freeze, and 5 tried out for all three drinks. JE MATHS

(a) Draw a Venn diagram.

(b) Find the probability that a person is chosen at random that

(i) likes Mountain Dew or Pepsi Freeze.

JE MATHS

(ii) likes Citrus or Pepsi Freeze but does not Mountain Dew freeze.

(iii) like Citrus Freeze but does not like Pepsi or Mountain Dew freeze. 18-MATHD JE MATHS

	- Set theory (multiplication law)): $P(A \text{ and } B) = P(A \cap B) = P(A) \times P(A)$	$(B \mid A)$
10.	There are 16 red and 14 black bal (a)If 2 balls are drawn one after a (i) all balls are red. (red and red)	nother with replacement, find the pr	obability that
	JE MATHS	JE MATHS	JE MATHS
	(ii) the first ball is red and the sec	cond ball is black. (red and black) ATHS	MATHS
	(b)If 2 balls are drawn one after a (i) all balls are red. (red and re	nother without replacement, find the	e probability that
	JB MATHS		JE MATHS
	(ii) the first ball is red and the	e second ball is black. (red and black)	
	JE MATHS	IE I	MATHS
11.	- Application of set theory (mul	tiplication law) in probability: bronze coins in a bag. If 3 coins are	
	(b) all are of the same kind?	JE MATHS	
	(c) 2 gold and 1 silver?		
	JE MATHS	JE MATHS	JE MATHS
	(d) none are gold?		

12.	A box contains 50 colour crayons replacement, find the probability (a) both are yellow.		w. If two are	drawn in s	uccession without
	(b) only one is yellow.	JE MATHS			JE MATHS
	IB W ₁	ATHS		JE MATHS	
	(c) neither is yellow.				
			JE MATHS		
13.	- Question involving multiple set A coin is tossed four times. Find to (a) every toss is a head.				JB MATHS
		JE MATHS			
	(b) no toss is a head.			JE MATHS	
	JB 141	ATHS			
	(c) there is at least one head.				
	-		JE MATHS		
	JB MATHS				
	(d) the first three coins are heads.				
	JE MATHS	JE MATHS			JE MATHS
	(e) the middle two are tails.				

(0 G 1 · 1 · 1					
(f) Complete the tab	ole and show all wo	rking out.			
No of hea	nds 0	1	2	3	4
D. 1 -1-77					
Probabilit	.y		-	-	-
JE MA.					
	JE MATHS			JE MATH	S
30 Mari 100 M					
4. A bag contains six w					
At each draw, if the probabilities of draw		is replaced, a	nd 11 It IS	blue it is n	ot replaced. Find
(a) no blue marbles.					JE MATHS
-					
		HS			
		JE MATHS			
(b) one blue marble.				JE MATH	S
TR in.				IR mir-	
	JE MATHS				
(c) two blue marbles					
(c) two blue marbles			JE MATHS	;	
	S.		je math:	;	
(c) two blue marbles	S.		je math:	;	
-	s. - THS		JE MATH ^S	;	
JВ МА	s. - THS		je math ^s	;	

- 15. (a) When a die is thrown $\mathbf{2}$ times, find the probability of obtaining
 - ıg
- A gambler's dispute in 1654.

(ii) at least one six. (3dps)

no six.

JE MATHS

JE MATHS

(b) When a die is thrown 4 times, find the probability of obtaining(i) no six.

(ii) at least one six. (3dps)

IE MATHS

(c) A gambler's dispute problem in 1654:

When two dice are thrown 24 times, find the probability of obtaining

(i) no double-six in one throw of two dice.

(ii) at least one double-six in 24 throws. (3dps)

JE MATHS

- Set theory (condition probability formula): $P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{|A \cap B|}{|A|}$ $|B| = \frac{|A \cap B|}{|A|}$ $|B| = \frac{|A \cap B|}{|A|}$

16. Rolling a die, given that only even numbers are considered, find the probability that the number is less than 3.

 Application of se 	et theory	(condition	probability	formula)	in i	probability	y:

- 17. A die is rolled twice. Events A and B are defined as follows:
 - A: The number obtained at the first time is greater than that at the second time.
 - B: The sum of the two numbers is even.

Find the probability that

(a) the sum of the two numbers is even given that the number obtained at the first time is greater than that at the second time.

IE MATHS

(b) the number obtained at the first time is greater than that at the second time given that the sum of the two numbers is even.

JB MATHS

In a certain population:

JB M

30% of people have blue eyes

20% have black hair

10% have black hair and blue eyes B MATHS

A person is chosen from this population at random.

(a) Find the probability that they have black hair, given that they have blue eyes.

- WATHS

(b) Find the probability that they have blue eyes, given that they have black hair.

JE MATHS

19. If P(A|B) = P(A), prove that P(B|A) = P(B).

— JE MATHS

JE MATHS

JE MATHS

JE MATHS

- Application of condition	probability	formula in	tree diagram cases:

JE MATHS

20. A bag contains 5 white balls and 3 red balls. Two players, A and B, take turns drawing one ball from the bag at random, and balls drawn are not replaced. The player who <u>first gets two red balls is the **winner**</u>, and the game stops then. Player A draws first. JE MATHS (a) Find the probability that player A wins on his second draw.

(b) Find the probability that player B wins on his second draw, JE MATHS JE MATHS

JE MATHS

(c) Find the probability that player Λ wins, given that the winning player wins on his second draw.

JE MATHS

(d) Neither player has won after two draws, given that A draws a red ball on his first draw.

JE MATHS JE MATHS

JE MATHS

	1 2 3		
	Avg:		

Week

A

Д

Want to learn? We will help u.

Don't want to learn? We will change u.

ph: 0422 777 073