Индивидуальные домашние задания по уравнениям математической физики.

- 1. Определить тип уравнения. Привести уравнение к каноническому виду.
 - 1) $u_{xx} 2u_{xy} + 2u_{yy} = 0$
 - 2) $u_{xx} 4u_{xy} + 3u_{yy} 2u_x + 6u_y = 0$
 - 3) $u_{xx} + 4u_{yy} + 4u_{yy} + 3u_x + 6u_y = 0$
 - 4) $u_{yy} 2u_{xy} + 2u_x u_y 4e^x = 0$
 - 5) $u_{xx} + 4u_{xy} + 5u_{yy} + u_x + 2u_y = 0$
 - 6) $u_{xx} 6u_{xy} + 9u_{yy} u_x + 2u_y = 0$
 - 7) $2u_{xy} 4u_{yy} + u_x 2u_y + x = 0$
 - 8) $u_{xx} + 2u_{xy} + u_{yy} + 4u_x + 4u_y = 0$
 - 9) $u_{xx} u_{yy} + u_x + u_y = 0$
 - $10) 3u_{xx} 10u_{xy} + 3u_{yy} 2u_x + 4u_y + 2y = 0$
 - $11) u_{xx} 2u_{xy} + u_{yy} = 0$
 - $12) u_{xx} 2u_{xy} + u_x + 4e^y = 0$
 - 13) $(1 + x^2)^2 u_{xx} + u_{yy} + 2x(1 + x^2)u_x = 0$
 - $14) \, 2u_{xx} + 6u_{xy} + 4u_{yy} + u_x + u_y = 0$
 - $15) x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} 2y u_x = 0$
 - $16) u_{xy} + 2u_{yy} u_x + 4u_y = 0$
- 2. Найдите решение уравнения $u_{tt} = u_{xx}$ при заданных начальных условиях u(x,0) и $u_t(x,0)$.
 - 1) $u(x,0) = \frac{\sin x}{x}, u_t(x,0) = \frac{x}{1+x^2}$
 - 2) $u(x,0) = \frac{x}{1+x^2}, u_t(x,0) = \sin x$
 - 3) $u(x,0) = \frac{1}{1+x^2}, u_t(x,0) = \cos x$
 - 4) $u(x,0) = e^{-x^2}, u_t(x,0) = \frac{x}{1+x^2}$
 - 5) $u(x,0) = x^2, u_t(x,0) = 4x$
 - 6) $u(x,0) = e^{-x^2}, u_t(x,0) = \frac{1}{1+x^2}$
 - 7) $u(x,0) = 3x^2, u_t(x,0) = \sin x$
 - 8) $u(x,0) = 2x^3, u_t(x,0) = \frac{x}{1+x^2}$
 - 9) $u(x,0) = \sin x, u_t(x,0) = 2x^2$
 - $10) u(x,0) = \frac{\sin x}{x}, u_t(x,0) = 9x$
 - 11) $u(x, 0) = \cos x, u_t(x, 0) = 3\sin x$
 - 12) $u(x,0) = \frac{1}{1+x^2}, u_t(x,0) = \frac{x}{1+x^2}$
 - 13) $u(x,0) = \frac{\sin x}{x}$, $u_t(x,0) = 5x^2$
 - 14) $u(x,0) = \cos x$, $u_t(x,0) = \frac{x}{1+x^2}$
 - 15) u(x,0) = x, $u_t(x,0) = \sin x$
 - $16) u(x,0) = e^{2x^2}, u_t(x,0) = 9x$

- 3. Используя метод разделения переменных, найти решение однородного волнового уравнения $u_{tt} = a^2 u_{xx}$, 0 < x < l, t > 0 при следующих граничных и начальных условиях:
 - 1) u(0,t) = u(l,t) = 0, $u(x,0) = \sin\frac{\pi}{l}x + \sin\frac{3\pi}{l}x,$ $u_t(x,0) = 0$
 - 2) u(0,t) = u(l,t) = 0, u(x,0) = 0, $u_t(x,0) = 1$
 - 3) $u(0,t) = u_x(l,t) = 0$, $u(x,0) = \sin\frac{\pi}{2l}x + \sin\frac{3\pi}{2l}x$, $u_t(x,0) = 0$
 - 4) u(0,t) = u(l,t) = 0, $u(x,0) = \sin \frac{2\pi}{l} x$, $u_t(x,0) = 1$
 - 5) $u_x(0,t) = u_x(l,t) = 0$, u(x,0) = 1, $u_t(x,0) = 1$
 - 6) $u_x(0,t) = u_x(l,t) = 0$, u(x,0) = 0, $u_t(x,0) = 1 + \cos\frac{\pi}{l}x + \cos\frac{3\pi}{l}x$
 - 7) $u_x(0,t) = u(l,t) = 0,$ u(x,0) = 0, $u_t(x,0) = \cos\frac{\pi}{2l}x + \cos\frac{5\pi}{2l}x$
 - 8) $u(0,t) = u_x(l,t) = 0$, $u(x,0) = \sin \frac{5\pi}{2l} x$, $u_t(x,0) = 1$
 - 9) $u_x(0,t) = u_x(l,t) = 0$, u(x,0) = U = const, $u_t(x,0) = V = const$
 - 10) u(0,t) = u(l,t) = 0, u(x,0) = 0, $u_t(x,0) = 1$

11)
$$u_x(0,t) = u(l,t) = 0$$
,
 $u(x,0) = \cos \frac{3\pi}{2l} x$,
 $u_t(x,0) = 1$

12)
$$u_x(0,t) = u_x(l,t) = 0$$
,
 $u(x,0) = 1$,
 $u_t(x,0) = 2 + \cos \frac{\pi}{l} x$

13)
$$u(0,t) = u(l,t) = 0$$
,
 $u(x,0) = \sin\frac{\pi}{l}x$,
 $u_t(x,0) = \sin\frac{\pi}{l}x + \sin\frac{3\pi}{l}x$

14)
$$u_x(0,t) = u(l,t) = 0$$
,
 $u(x,0) = \cos\frac{\pi}{2l} + 3\cos\frac{3\pi}{2l}x$,
 $u_t(x,0) = \cos\frac{3\pi}{2l}x$

15)
$$u(0,t) = u_x(l,t) = 0$$
,
 $u(x,0) = \sin\frac{\pi}{2l}x$,
 $u_t(x,0) = \sin\frac{\pi}{2l}x + \sin\frac{3\pi}{2l}x$

16)
$$u_x(0,t) = u_x(l,t) = 0$$
,
 $u(x,0) = 2 + \cos \frac{\pi}{l} x$,
 $u_t(x,0) = 1 + \cos \frac{2\pi}{l} x$

4. Решить методом разделения переменных следующую задачу для неоднородного уравнения теплопроводности $u_t = a^2 u_{xx} + f(x,t), 0 < x < 1, t > 0$ при:

1)
$$f(x,t) = 2x + 1$$

 $u(0,t) = 1; u(1,t) = 2$
 $u(x,0) = x + 1$

2)
$$f(x,t) = x + 2$$

 $u_x(0,t) = 1; u(1,t) = 0$
 $u(x,0) = x - 1$

3)
$$f(x,t) = 2x + 1$$

 $u(0,t) = 1; u_x(1,t) = 2$
 $u(x,0) = 2x + 1$

$$4) \quad f(x,t) = x+1$$

$$u(0,t) = 0; u(1,t) = 1$$

 $u(x,0) = x$

5)
$$f(x,t) = 2x + 1$$

 $u_x(0,t) = 2; u(1,t) = 1$
 $u(x,0) = 2x - 1$

6)
$$f(x,t) = x + 2$$

 $u(0,t) = 0; u_x(1,t) = 1$
 $u(x,0) = x$

7)
$$f(x,t) = t$$

 $u(0,t) = 2t; u(1,t) = 1$
 $u(x,0) = x - 3\sin 2\pi x$

8)
$$f(x,t) = 2xt$$

 $u_x(0,t) = -1; u_x(1,t) = t$
 $u(x,0) = 1 - x - \cos\frac{7\pi}{2}x$

9)
$$f(x,t) = 2t^3$$

 $u(0,t) = 1; u_x(1,t) = 2t$
 $u(x,0) = 1 + \sin \frac{5\pi}{2}x$

10)
$$f(x,t) = 2t^2$$

 $u(0,t) = t; u(1,t) = 2t$
 $u(x,0) = 2\sin \pi x - \sin 3\pi x$

11)
$$f(x,t) = t$$

 $u_x(0,t) = 2t; u(1,t) = 1$
 $u(x,0) = 1 + 2\cos\frac{5\pi}{2}x$

12)
$$f(x,t) = 2xt$$

 $u(0,t) = 2t; u_x(1,t) = 1$
 $u(x,0) = x - 2\sin\frac{3\pi}{2}x$

13)
$$f(x,t) = 3t$$

 $u(0,t) = 1; u(1,t) = t$
 $u(x,0) = 1 - x + \sin 4\pi x$

14)
$$f(x,t) = 2xt$$

 $u_x(0,t) = 2t; u(1,t) = t$
 $u(x,0) = 4\cos\frac{3\pi}{2}x$

15)
$$f(x,t) = t^2$$

 $u(0,t) = t; u_x(1,t) = 2t$
 $u(x,0) = 4\sin\frac{9\pi}{2}x$

16)
$$f(x,t) = 2t$$

 $u(0,t) = t^2; u(1,t) = 1$
 $u(x,0) = x - \sin \pi x + 2\sin 5\pi x$