DSA Week 13 activities

This week, you are required to complete a questionnaire and two labs.

- a. In this print out, answer all Week 13 questions.
- **b.** Also, in this print out, complete Week 13 lab 1 & 2 using the lab computers.

Note: You can complete the activities in any order, however, make an effort to complete and understand everything which prepares you for well for test 2 & Final Evam

DCA	\ A /	1. 12 0	uestions
$1.1 \times \Delta$	WAR	κ $()$	HESTINDS
	VVCC	κ $\pm \sigma$ α	ucstions

uers	italiu everytiilig which prepares you for well for test 2 & Final Exam.
	Week 13 Questions What is a Queue?
2.	Discuss the five methods used with queues.
3.	 A queue has the elements (10, 28, 31). a. What happens to the stack when you enqueue (30)? b. What happens to the stack when you dequeue(10), dequeue (28), dequeue (31) and dequeue (30)? c. After performing the methods above, which elements are still in the queue? d. After the three step above, if you run the method isEmpty() will it return true or false? Explain why it would return true or false.
4.	Complete the sentence, Queues FIFO are implemented through and data structures.
5.	What is the FIFO principle?
6.	How to you differentiate between stacks and queue data structures?

DSA Week 13 Lab Activity (Week9Lab1)

Using the lab computers create the following Java program using jGrasp!

Step 1: Login to your lab computer and create a new java file in jGrasp.

Step 2: When the window below appears. Type the following code into jGrasp.

```
1 import java.util.LinkedList;
 2 import java.util.Queue;
 4 public class Week9Lab1 {
 5
      public static void main(String[] args) {
 6
 7
         // Create a Queue object called itiCourses
         Queue<String> itiCourses = new LinkedList<>();
 8
9
10
         // Enqueue elements into the queue
         itiCourses.add("DIT");
11
         itiCourses.add("DHRM");
12
         itiCourses.add("DACC");
13
         itiCourses.add("DICT");
14
15
         // Peek or see the front element of the queue
16
         System.out.println("Front element: " + itiCourses.peek());
17
18
19
         // If queue is empty, print message; else print elements in the queue
20
         if(itiCourses.isEmpty()) {
21
            System.out.println("Queue is empty");
         } else {
22
23
            // Print the queue (it will display elements in FIFO order)
            System.out.println("Queue contents: " + itiCourses);
24
25
26
      }
27 }
```

Step 3: Go to file/save to save your java program as Week9Lab1

Step 4: After saving, compile (**click on compile icon or on your keyword hold Ctrl + B**) to check for syntax errors.

Step 5: If compiling is successfully then run (click on the find and run main method icon or on your keyboard hold Ctrl + R) your program.

Step 6: If run is successful then you should see the following output in the console

```
Compile Messages | jGRASP Messages | Run I/O | Interactions |

End | ----jGRASP exec: java Week9Lab1 |
Front element: DIT |
Queue contents: [DIT, DHRM, DACC, DICT] |
----jGRASP: operation complete.
```

Step 7: Week9Lab1 Completed! Save your file for future Java lab activities.

DSA Week 13 Lab Activity (Week9Lab2)

Using the lab computers create the following Java program using jGrasp!

Step 1: Login to your lab computer and create a new java file in jGrasp.

Step 2: Switch on line numbers, Go to View\Line Numbers or hit Ctrl + L to enable line numbers.

Step 3: Now, type the following code into jGrasp. Note: this program has 87 lines of Java code, hence, we have to enable line numbers to assist our coding and resolve errors when coding, compiling or debugging.

```
1 import java.util.LinkedList;
2 import java.util.Queue;
 4 public class Week9Lab2<E> {
      private Queue<E> queue; // Change Stack to Queue
 6
      // Constructor
 8
 9
     public Week9Lab2() {
         this.queue = new LinkedList<>();
10
11
12
      // Enqueue method (add elements to the queue)
13
14
     public void enqueue(E item) {
15
         queue.add(item);
16
17
18
      // Dequeue method (remove elements from the front of the queue)
      public E dequeue() {
19
20
         if (!queue.isEmpty()) {
21
             return queue.poll();
22
         } else {
23
             System.out.println("Queue is empty.");
24
             return null;
25
         }
     3
26
27
      // Peek method (check front element)
public E peek() {
28
29
30
         if (!queue.isEmpty())
31
             return queue.peek();
32
         } else {
33
             System.out.println("Queue is empty.");
34
             return null;
35
36
      3
37
38
      // Check if queue is empty
39
     public boolean isEmpty()
40
         return queue.isEmpty();
41
42
      // Print queue elements
43
      public void printQueue() {
44
         if (queue.isEmpty()) {
45
             System.out.println("Queue is empty.");
46
47
         } else {
            System.out.println("Queue contents:");
48
49
             for (E item : queue) {
                System.out.println(item);
51
52
         }
      }
53
54
```

```
public static void main(String[] args) {
55
56
         // Create a generic queue for Strings
57
         Week9Lab2<String> stringQueue = new Week9Lab2<>();
58
         stringQueue.enqueue("DIT");
         stringQueue.enqueue("DHRM");
59
         stringQueue.enqueue("DACC");
60
         stringQueue.enqueue("DICT");
61
62
         System.out.println("String Queue:");
63
         System.out.println("Front element: " + stringQueue.peek());
64
65
         stringQueue.printQueue();
66
67
         // Create a generic queue for Integers
68
         Week9Lab2<Integer> intQueue = new Week9Lab2<>();
         intQueue.enqueue(10);
69
70
         intQueue.enqueue(20);
71
         intQueue.enqueue(30);
72
         System.out.println("\nInteger Queue:");
73
         System.out.println("Front element: " + intQueue.peek());
74
75
         intQueue.printQueue();
76
77
         // Create a generic queue for Doubles
78
         Week9Lab2<Double> doubleQueue = new Week9Lab2<>();
79
         doubleQueue.enqueue(10.5);
80
         doubleQueue.enqueue(20.75);
81
         doubleQueue.enqueue(30.25);
82
         System.out.println("\nDouble Queue:");
83
         System.out.println("Front element: " + doubleQueue.peek());
84
85
         doubleQueue.printQueue();
86
87 }
```

Step 4: After coding the program, go to file/save to save your java program as Week9Lab2

Step 5: After saving, compile (**click on compile icon or on your keyword hold Ctrl + B**) to check for syntax errors.

Step 6: If compiling is successfully then run (click on the find and run main method icon or on your keyboard hold Ctrl + R) your program.

Step 7: If successful your program should display an output like shown in the screenshot above.

Step 8: Week9Lab2 Completed! You have created your first generic Queue data structure program.

Summary of application of gueues in the Real World

- 1. Using of task scheduling use queues to prior and order to receive tasks and complete them.
- 2. Operation system use queues to manage processes, requests and resources.
- 3. Computer networks use queues in networking protocols like TCP to manage packets transmitted over the network. Ensure delivery order and appropriate rate of network communication.