

Recurrent Neural Networks

K. Breininger, F. Denzinger, F. Thamm, Z. Yang, N. Maul, F. Meister, C. Liu, S. Jaganathan, L. Folle, M. Vornehm, A. Popp, B. Geissler, S. Mehltretter, N. Patel, V. Bacher, K. Fischer Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg December 13, 2020

Activation Functions

Sigmoid Activation Function

Sigmoid (logistic function)

$$f(x) = \frac{1}{1 + exp(-x)}$$
$$f'(x) = f(x)(1 - f(x))$$

→ Observe that the derivative can be solely expressed in terms of the activation!

Tanh Activation Function

Tanh

$$f(x) = tanh(x)$$

$$f'(x) = 1 - f(x)^{2}$$

→ The derivative is still a function of the activation!

Elman Recurrent Neural Network

General strategy

• We interpret the **batch** dimension as **time** dimension now

General strategy

- We interpret the batch dimension as time dimension now
- → Samples are correlated in this dimension

General strategy

- We interpret the batch dimension as time dimension now
- → Samples are correlated in this dimension
- This allows to reuse loss functions, optimizers, initializers, activation functions and the Neural Network class

Output formula:

$$\mathbf{y}_t = \sigma \left(\mathbf{h}_t \cdot \mathbf{W}_{hy} + \mathbf{b}_y \right)$$

 \mathbf{W}_{hy} : Weight matrix for current hidden state \mathbf{h}_t

 \mathbf{b}_{v} : Output bias

A word on software engineering

 In terms of encapsulation - how good was the idea to demand exposition of the weights as member?

A word on software engineering

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so

A word on software engineering

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so
- Takeaway? Not doing proper software engineering most of the time will demand a price at some point.

$$\mathbf{h}_t = \tanh \left(\mathbf{h}_{t-1} \cdot \mathbf{W}_{hh} + \mathbf{x}_t \cdot \mathbf{W}_{xh} + \mathbf{b}_h \right)$$

$$\mathbf{h}_t = \tanh \left(\mathbf{h}_{t-1} \cdot \mathbf{W}_{hh} + \mathbf{x}_t \cdot \mathbf{W}_{xh} + \mathbf{b}_h \right)$$

 \mathbf{W}_{hh} : Weight matrix for previous hidden state \mathbf{h}_{t-1}

 \mathbf{W}_{xh} : Weight matrix for current input \mathbf{x}_t

b_h: Update bias

$$\mathbf{h}_t = \mathrm{tanh}\left(\mathbf{\tilde{x}}_t \cdot \mathbf{W}_h\right)$$

 \mathbf{W}_h : Weight matrix of a fully connected layer

 $\tilde{\mathbf{x}}_t$: Concatenation of \mathbf{x}_t , \mathbf{h}_{t-1} and a 1

Different from output: Not processed independently!

Backward

- Most gradients are handled by the **embedded layers**
- Store and feed the values for backprop (input tensors, activations)
 externally to the embedded layers because of multiple forward calls
- We need gradients through summation, multiplication and copying

Backward

Sum

$$f(x_1,x_2)=x_1+x_2$$

$$\frac{\partial \hat{y}}{\partial x_1} = 1$$

Multiply

$$f(x_1,x_2)=x_1\cdot x_2$$
$$\partial \hat{y}$$

ot is with a

Copy

Backward pass of sum So the gradient is a sum!

Gradient is **copying** $\frac{\partial L}{\partial \hat{y}}$ Gradient is · with **switched** inputs

• Implemented by passing the whole sequence as a batch

- Implemented by passing overlapping parts as a batch
- We need to implement memory between states
- Simply store the last hidden state and implement a method switching whether this state is reused in subsequent forward passes.
- Data has to be fed in accordingly!
- Referencing the TBPPT Algorithm presented in the lecture: k_1 is always the sequence length and k_2 is always the TBPTT length.

Long Short-Term Memory (optional)

Forward

- We can reuse a fully connected layer again to for the output
- The concatenation is also analogous to the RNN
- The gates σ and the yellow tanh can be a single **fully connected** layer with an output size of $4 \cdot \dim(hidden state)$
- Remember that we have to pass the vectors of the input tensor sequentially

Backward

- Most gradients are again handled by the embedded layers
- Again store and feed the values for backprop externally to the embedded layers

Thanks for listening.

Any questions?