มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบปลายภาคเรียนที่ 1 ประจำปีการศึกษา 2552

ข้อสอบวิชา ENE 210 Electronic Devices & Circuit Design I นศ.วศ.อิเล็กทรอนิกส์ ชั้นปีที่ 2 สอบวันที่ 29 กันยายน พ.ศ. 2552 เวลา 13:00-16:00 น

4		٥ م	ب جا جا جا	
ขอลก	ງຄ	.รหลบระจาตว	เลขทนาล	ยบ

<u>ข้อปฏิบัติในการทำข้อสอบ</u>

- 1 ข้อสอบมีทั้งหมด 6 ข้อ ให้ทำทุกข้อ โดยตอบลงในข้อสอบ
- 2 เขียนตอบให้ชัดเจน อ่านได้โดยง่าย ทั้งนี้เพื่อผลประโยชน์ของนักศึกษาเอง
- 3 ห้ามนำเอกสารใดเข้าห้องสอบ
- 4 อนุญาตให้ใช้เครื่องคำนวณอิเล็กทรอนิกส์ ตามระเบียบมหาวิทยาลัยฯ
- 5 หากพบว่าข้อสอบผิดพลาดหรือมีข้อมูลไม่เพียงพอ ให้นักศึกษาตัดสินใจด้วยตนเองและแจ้ง การแก้ไขพร้อมแสดงเหตุผลมาด้วย

คำเตือน

- 1 ให้นักศึกษาระมัดระวังทำทุจริตในการสอบ โดยไม่ตั้งใจเช่นอาจมีข้อความอยู่ในเครื่อง คำนวณอิเล็กทรอนิกส์ นักศึกษาต้องตรวจตราให้เรียบร้อยก่อน และให้ต้องไม่ทำทุจริตใน การสอบโดยเด็ดขาด อาจได้รับโทษถึงขั้นหมดสภาพการเป็นนักศึกษา
- 2 ให้ระวังการนำข้อสอบออกนอกห้องสอบโดยไม่ตั้งใจ ซึ่งอาจส่งผลให้ไม่ตรวจให้คะแนน

อาจารย์ยุทธศักดิ์ รุ่งเรื่องพลางกูร ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมอิเล็กทรอนิกส์ฯแล้ว

Date Ith

ผศ.ดร. วุฒิซัย อัศวินซัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์ฯ

ข้อ 1 ก) จงแสดงวิธีทำเพื่อ transfer characteristic จากวงจรที่กำหนดมาให้ เมื่อแรงดันขาเข้า วงจรมีรูปคลื่นเป็น sinusoidal มีความถึ่ 1 kHz (7 คะแนน)

ข) จงสเก็ตรูปคลื่นขาออกให้สัมพันธ์กับรูปคลื่น
 ขาเข้าบนแกนเวลา จากวงจรที่กำหนดมาให้
 เมื่อแรงดันขาเข้า V_i = 10 sin 2πt V
 (f = 1 Hz) (6 คะแนน)

d		~	al
ชอ-สกุ	ត	รหัส	เลขที่นั่งสอบ

ข้อ 2 ก) จงออกแบบวงจรแหล่งจ่ายไฟตรงจากไฟฟ้ากระแสสลับ 220 V 50 Hz ให้ได้แรงดันขาออก 40 V ที่กระแสขาออก 3 A และมี ripple factor ต่ำกว่า 0.05 กำหนดให้ใช้วงจรเรียงกระแส เป็นแบบบริดจ์ ให้เขียนวงจรที่ออกแบบมาด้วย (15 คะแนน)

ଶୁମିନ ripple factor =
$$V_{r(RMS)} / V_{O(DC)}$$
, $V_{r(RMS)} = V_{r(p-p)} / 2\sqrt{3}$
 $V_{r(p-p)} = I_{O(DC)} V_{O(DC)} / 2fCV_m$

al de la companya de		ط ا
ชื่อ-สกุล	รหัส	เลขที่นั่งสอบ

ข้อ 2 ข) จงออกแบบวงจร voltage regulator อย่างง่ายที่ใช้ไดโอดซีเนอร์ เพื่อให้ได้แรงดันขาออก
-12 V (ลบ 12 V) และมีกระแสขาออก 0 – 15 mA กำหนดให้ใช้ไดโอดซีเนอร์ 12 V ซึ่งมี $I_{ZM} = 70$ mA และ $I_{Z(MIN)} = 3$ mA เมื่อแรงดันขาเข้ามีค่า 15 V – 18 V ให้เขียนวงจรที่
ออกแบบมาด้วย (10 คะแนน)

หน้า 5

			•
.1			(1
4		~	4 2
നം െെ≪ിറ	৯	59.8 <i>4</i> 5	ାଲ୍ୟାମମ । ଏହାଲୀ ରା ।
T D - 241 1	61	d VI61,,,,,	

ข้อ 3 ก) จงอธิบายถึงความจำเป็นในการ bias ให้กับ BJTs และมีสิ่งใดที่ท้าทายและต้องต่อสู้ ให้เขียนตัวอย่างวงจร bias ที่คิดว่าดีมาหนึ่งวงจร (10 คะแนน) ข้อ 3 ข) จงแสดงวิธีทำเพื่อวิเคราะห์วงจร เพื่อหา $V_{\rm B},V_{\rm E},V_{\rm C},I_{\rm B},I_{\rm C}~{\rm llat}~I_{\rm E}~{\rm lid}$ เมื่อกำหนดให้ ทรานซิสเตอร์ มี $\beta_{\rm F}$ ในขณะ active เท่ากับ $30~{\rm llat}~V_{\rm EC(sat)}~=~0.3~V~(10~{\rm Ptllul})$

หน้า 7

ชื่อ-สกุลเลขที่นั่งสอบ	ชื่อ-สกุล	รหัด	เลขที่นั่งสอบ
------------------------	-----------	------	---------------

ข้อ 4 ก) จงแสดงวิธีหาค่า h-parameter จาก input และ output characteristics ของ BJT (10 คะแนน)

ชื่อ-สกุล......รหัส.....เลขที่นั่งสอบ......

ข้อ 4 ข) จากวงจรดังแสดง จงแสดงวิธีทำเพื่อหาเพื่อหา input impedance (R_i), output impedance (R_o) และ voltage gain ($A_v = V_o / V_i$) เมื่อกำหนดให้ทรานซิสเตอร์มี β_F = $h_{fe} = 100$, $V_A = -100$ V, $V_{BE} = 0.7$ V และ กำหนดให้ I = 2 mA ในส่วนของ h-parameter หรือ Hybrid- π parameter นั้นค่า $1/h_{oe} = r_o = I V_A I / I_{cq}$ และพิจารณาว่า X_c ของคาปาซิเตอร์ทุกตัวมีค่าเป็นศูนย์ (15 คะแนน) hie = $r_{\pi} = \frac{26 \, \text{mV}}{r_{BQ}}$

หน้า 9

ชื่อ-สกล	ราหัส	เลขที่นั่งสอบ
ПП_риториториториториториториториториторито	Ø V 61	

ข้อ 5 ก) จงอธิบายการทำงานของ E-type n channel MOSFET ให้ครอบคลุมถึงโครงสร้างและ Drain characteristic (15 คะแนน)

สมการ
$$I_D=K\left[2\left(V_{GS}\text{-}V_t\right)V_{DS}\text{-}V_{DS}^2\right]$$
 เมื่ออยู่ในช่วง triode
$$I_D=K\left(V_{GS}\text{-}V_t\right)^2$$
 เมื่อในช่วง saturation
$$K=(1/2)\mu_nC_{OX}\left(W/L\right)$$

ข้อ 5 ข) จากวงจรที่กำหนดให้มา จงแสดงวิธีทำ เพื่อหา $V_{\rm S}, V_{\rm G}, V_{\rm D}$ และ $I_{\rm D}$ (8 คะแนน)

$$V_{G}$$
 V_{G}
 V

ข้อ 6 จงแสดงวิธีทำเพื่อหา I_{DQ} , input impedance (R_i), output impedance (R_o) และ voltage gain เมื่อกำหนดให้ $V_i = 2$ V, K = 0.1 mA / V_A^2 , $V_A = -100$ V และ $r_O = I$ V_AI / I_{DQ} (15 คะแนน)

