Doggett et al. (2003) — "Alterations in the intrinsic properties of the GPIb α -vWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val"

March 28, 2018; rev. March 29, 2018 Andrew Watson

1 Introduction

In their previous paper, Doggett et al compared the kinetic properties of the GP1b-vWF bond with wild type vWF and with 2B mutated vWF Doggett et al. (2002). In this paper, they study adhesion of platelets donated from patients with Platelet-type von Willebrand disease (PT-vWD). These patients are heterozygous for a mutation in the GP1b receptors, therefore theirpa platelets have both wild-type and mutant GP1b receptors. The authors developed three hypothetical models of platelet binding to account for this heterogeneous population of GP1b:

- 1. All tethering events are mediated by a single mutant GP1b-vWF bond.
- 2. All tethering events are mediated by a single GP1b-vWF bond, which can either be wild-type or mutant.
- 3. Tethering can be mediated by multiple GP1b-vWF bonds of either type.

2 Models

In Model 1, the pause time represents the length of time it takes for a single mutant GP1b and vWF to dissociate. Assume dissociation is a 1st order reaction with rate $k_{\it off, mut}$. Then the pause times are exponentially distributed with $\langle t \rangle = 1/k_{\it off, mut}$ (i.e. $P(t) = 1/k_{\it off, mut}$).

 $k_{off, mut} \exp(-k_{off, mut}t)$). For this model, the statistical estimate of $k_{off, mut}$ is simply $k_{off, mut} = 1/\langle t \rangle$.

For Model 2, a fraction q of GP1b-vWF bonds are with wild-type GP1b and 1-q of GP1b-vWF bonds are with mutant GP1b. The pause time represents the length of time it takes one of these bonds to dissociate, and if we assume first-order kinetics for both of these bonds, then the pause time distribution is given by $P(t)=qk_{off,\ wt}\exp(-k_{off,\ wt}t)+(1-q)k_{off,\ mut}\exp(-k_{off,\ mut}t)$. Aside: the parameter q depends (not explicitly) on the k_{on} rates of both receptors, and their relative levels of expression. They take $k_{off,\ wt}=3.5\exp\left(\frac{\sigma F_b}{kT}\right)$ from Doggett et al. (2002). Then to estimate $k_{off,\ mut}$, they solved

$$\sum_{i=1}^{N} \frac{(1-q) \exp(-k_{\text{off, mut}} t_i) (1-k_{\text{off, mut}} t_i)}{q k_{\text{off, wt}} \exp(-k_{\text{off, wt}} t_i) + (1-q) k_{\text{off, mut}} \exp(-k_{\text{off, mut}} t_i)} = 0.$$

Values of q were sampled over the range of possible values ($0 \le q \le 1$) and a value of $k_{off, mut}$ was calculated for each value of q. Then they selected the $(q, k_{off, mut})$ pair that gave the best fit to the data.

For Model 3, multiple bonds of either type can form. In this case, the distribution of pause times doesn't have a simple expression, so they used MC simulations for many different $(q, k_{off, mut})$ pairs and selected the one with the best fit.

As in Doggett et al. (2002), the simulation starts with a single GP1b-vWF bond. The GP1b in this bond is wild-type with probability q and mutant with probability 1-q. Then 4 (or 5) things can happen in a time interval dt:

- 1. A WT GP1b-vWF bond can break $(P_1 dt = k_{off, wt} n_{wt} dt)$,
- 2. A mutant GP1b-vWF bond can break $(P_2dt = k_{off, mut}n_{mut}dt)$,
- 3. A WT GP1b-vWF bond can form $(P_3dt = k_{on, wt}X_{A1}X_{wt}dt)$,
- 4. A mutant GP1b-vWF bond can form $(P_4dt = k_{on, mut}X_{A1}X_{mut}dt)$,
- 5. if there are no bonds, the bead can leave $(P_5dt = \gamma_w\delta_{n,0}dt)$. It isn't clear if this is part of their simulation, but it is includeded in their previous paper.

3 Results Overview

Similar to their previous paper, they collected data on platelet accumulation, translocation velocity, frequency of bead thethering, and pause times at variable wall shear rates. They estimated $k_{o\!f\!f}$, $m\!u\!t$ for each shear rate based on Model 1, and then estimated $k_{o\!f\!f}^0$ and σ , the parameters in the Bell model:

$$k_{ ext{off}}(F) = k_{ ext{off}}^0 \exp\left(rac{\sigma F}{kT}
ight).$$

In comparing their three hypothetical models, they found that Model 1 was most consistent with the experimental data. Finally they compared the kinetic parameters of the GP1b-vWF bond in 2B vWD with PT vWD and found no significant difference between these two bonds.

Summary

This paper extends the analysis developed in Doggett et al. (2002) to the case where there are two different receptors in a platelet. While I'm not so interested in the biological conclusions of this paper, this framework may be useful in modeling platelet priming by agonists that act through multiple receptors.

Reference

Doggett, T. A., Girdhar, G., Lawshé, A., Miller, J. L., Laurenzi, I. J., Diamond, S. L., and Diacovo, T. G. (2003). Alterations in the intrinsic properties of the gpib α -vwf tether bond define the kinetics of the platelet-type von willebrand disease mutation, gly233val. *Blood*, pages 152–160.

Doggett, T. A., Girdhar, G., Lawshé, A., Schmidtke, D. W., Laurenzi, I. J., Diamond, S. L., and Diacovo, T. G. (2002). Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the gp1b α -vwf tether bond. *Biophysical Journal*, pages 194–205.