Highlights

Numerical analysis of the twin tunnels with transverse galleries using plastic and viscous constitutive models for rockmass and lining

Quevedo, F. P. M., Colombo, C. A. M. M., Bernaud, D., Maghous, S.

- Qualquer coisa 1
- Qualquer coisa 2
- Qualquer coisa 3

Numerical analysis of the twin tunnels with transverse galleries using plastic and viscous constitutive models for rockmass and lining

Quevedo, F. P. M. a,*, Colombo, C. A. M. M. a, Bernaud, D. a and Maghous, S. a

^a Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99, Porto Alegre, 90.035-190, RS, Brazil

ARTICLE INFO

Keywords: twin tunnels transverse gallery constitutive models finite element method

ABSTRACT

This paper aims to demonstrate the long-term implications of the rheological constitutive behavior of rock mass and concrete lining in the convergence of the intersection area of twin tunnel galleries using a three-dimensional numerical analysis based on the finite-element method. A Drucker-Prager-Perzyna elastoplastic-viscoplastic constitutive law represents the rock mass and, for the lining, an elastic and viscoelastic law. The deactivation-activation methods simulate the excavation process. Comparisons of convergence reveal that the viscous effects of the rock mass and the lining significantly influence the peak convergence within the intersection zone, resulting in differences of approximately 10% in convergence values.

1. Introduction

The structural design of deep twin tunnels involves estimating cross-section convergence, lining pressure, and the size of the plastic zone within the rock mass caused by the excavation process. The final convergence and stress field around the tunnel depend on *in situ* initial stresses, cross-section geometry, and the coupling between the lining and the rock mass during construction. Unlinke a single tunnel, the proximity between twin tunnels break the symmetry of deformations in tunnel wall. Many twin tunnels have transverse galleries that serve as emergency routes. These galleries will introduce a local effect on the convergence profile of the longitudinal tunnel.

Additionaly, the rheological behavior of the rockmass and lining plays a crucial role in how stress and displacements fields evolve over time.

Indicar os objectivos do trabalho e fornecer um contexto adequado, evitando uma pesquisa bibliográfica ou um resumo dos resultados.

2. Material and Methods

Fornecer pormenores suficientes para que o trabalho possa ser reproduzido por um investigador independente. Os métodos que já tenham sido publicados devem ser resumidos e indicados por uma referência. Se citar diretamente de um método previamente publicado, use aspas e cite também a fonte. Quaisquer modificações dos métodos existentes também devem ser descritas.

^{*}Corresponding author.

motta.quevedo@ufrgs.br(Q.F.P.M.); carlos.colombo@ufrgs.br(C.C.A.M.M.); denise.bernaud@ufrgs.br(B.D.); samir.maghous@ufrgs.br(M.S.)

https://www.researchgate.net/profile/Felipe-Pinto-Da-Motta-Quevedo (Q.F.P. M.); http://lattes.cnpq.br/4919388217690564 (C.C.A.M. M.); http://lattes.cnpq.br/2809615143819128 (B. D.); http://lattes.cnpq.br/6305244914209829 (M. S.)

ORCID(s): 0000-0003-4171-1696 (Q.F.P. M.); 0000-0000-0000 (C.C.A.M. M.); 0000-0001-6365-3269 (B. D.); 0000-0002-1123-3411 (M. S.)

- 2.1. Problem description and assumptions
- 2.2. Constitutive Model of the Rock Mass
- 2.3. Constitutive Model of the Lining
- 2.4. Description of numerical model
- 3. Verification with analytical solutions

4. Results and Discussion

Resultados devem ser claros e concisos

- 4.1. Influência do afastamento entre os túneis
- 4.2. A influência da rigidez do revestimento
- 4.3. A influência da presença da galeria no túnel longitudinal
- 4.4. Abrangencia da região de influência da galeria
- 4.5. A influência dos modelos que envolve efeitos diferidos

5. Conclusions

As principais conclusões do estudo podem ser apresentadas numa breve secção de Conclusões, que pode ser autónoma ou constituir uma subsecção de uma secção de Discussão ou de Resultados e Discussão.

6. Appendices

Se houver mais do que um apêndice, estes devem ser identificados como A, B, etc. As fórmulas e equações dos apêndices devem ser numeradas separadamente: Eq. (A.1), Eq. (A.2), etc.; num apêndice seguinte, Eq. (B.1) e assim por diante. O mesmo se aplica aos quadros e figuras: Tabe a A.1; Fig. A.1, etc.