O ANUSANDRA STATE OF THE STATE		ITER, SIKSHA 'O' ANUSANDHAN (Deemed to be University)			Ass	Assignment		
Branch		Computer Science and Engineering Programme		me	В	B.Tech		
Course Name				Semester	Semester		III	
Course Code		EET1211 Academic Y		c Year	ar 2022/O d			
Assig	Assignment-2 Topic- Gate-level Minimization and Combinational Logic		GP-1					
Learning Level		L1: Remembering	L3: Applying		L5: Evaluating	3		
(LL)		L2: Understanding	L4: Analysing		L6: Creating	L6: Creating		
Q's		Questio			СО	s	LL	
1	If the input to the digital circuit (in the figure) consisting of a cascade of 20 XOR gates is X, then the output Y is equal to CO2 L2				L2			
2	F	The output Y in the circuit below is always `1' when CO2 L4			L4			
3	In the circuit shown in the figure, if $C = 0$, the expression for Y is $C = 0$ $A \circ B \circ Y$			со	2	L2		
4	For the logic circuit shown in the figure, the required input condition (A, B, C) to make the output $(X) = 1$ is CO2 L2			L2				
5	The output of the logic gate in figure is A F [1997]			L3				
6	The minimum number of NAND gates required to implement the Boolean function $A + A\overline{B} + A\overline{B}C$ is equal to (a) Zero (b) 1 (c) 4 (d) 7 [1995]			со	2	L2		

	For the circuit shown below the output F is given by		
7	X > F [1988]	CO2	L3
8	In the figure shown, the output Y is required to be $Y = AB + \overline{C} \overline{D}$. The gates G_1 and G_2 must be, respectively. [2015] A B G G G G (A) NOR, OR (B) OR, NAND (C) NAND, OR (D) AND, NAND	CO2	L2
9	Which of the following Boolean expressions correctly represents the relation between P , Q , R and M_1 ? (a) $M_1 = (P \text{ OR } Q) \text{ XOR } R$ (b) $M_1 = (P \text{ AND } Q) \text{ XOR } R$ (c) $M_1 = (P \text{ NOR } Q) \text{ XOR } R$ (d) $M_1 = (P \text{ XOR } Q) \text{ XOR } R$ [2008]	CO2	L2
10	The number of product terms in the minimized sum- of-product expression obtained through the following K-map is (where 'd' denotes don't care states) 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 2 (b) 3 (c) 4 (d) 5 [2005]	CO2	L3
11	The truth table for the output Y in terms of three inputs A , B and C are given in Table. Draw a logic circuit realization using only NOR gates. A 0 1 0 1 1 0 1 B 0 0 1 1 0 0 1 1 C 0 0 0 0 1 1 1 1 Y 1 1 1 0 0 0 0	CO2	L3

12	Consider the combinational circuit shown above. a. Derive the Boolean expressions for T ₁ through T ₄ . Evaluate the outputs F ₁ and F ₂ as a function of the four inputs. b. List the truth table with 16 binary combinations of the four input variables. Then list the binary values for T ₁ through T ₄ and outputs F ₁ and F ₂ in the table.	CO3	L4
13	Design a combinational circuit with three inputs, x , y , and z , and three outputs, A , B , and C . When the binary input is 0, 1, 2, or 3, the binary output is two greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is three less than the input.	CO3	L6
14	Construct a 16 × 1 multiplexer with two 8 × 1 and one 2 × 1 multiplexers. Use block diagrams	CO3	L6
15	Design a combinational circuit that converts a four-bit Gray code to a four-bit binary number. Write a Verilog dataflow model of the circuit.	CO3,CO6	L6
16	Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to4-line decoder. Use block diagrams for the components.	CO3	L6
17	Using a decoder and external gates, design the combinational circui defined by the following three Boolean functions: (a) $F_1 = x'yz' + xz$ (b) $F_1 = (y' + x)z$ $F_2 = xy'z' + x'y$ $F_3 = x'y'z' + xy$ $F_3 = (x + y)z$	CO3	L6
18	Implement the following Boolean function with a multiplexer (a) $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$ (b) $F(A, B, C, D) = \Pi(2, 6, 11)$	CO3	L3
19	Write the HDL gate-level description of 4bit priority encoder circuit given below. D ₃ D ₂ D ₁ V	CO6	L4
20	An 8×1 multiplexer has inputs A , B , and C connected to the selection inputs S_2 , S_1 , and S_0 , respectively. The data inputs I_0 through I_7 are as follows: (a)* $I_1 = I_2 = I_7 = 0$; $I_3 = I_5 = 1$; $I_0 = I_4 = D$; and $I_6 = D$. (b) $I_1 = I_2 = 0$; $I_3 = I_7 = 1$; $I_4 = I_5 = D$; and $I_0 = I_6 = D$. Determine the Boolean function that the multiplexer implements.	CO3	L2

Assignment 2	Topic: Gate-level Minimization and	Date of Assignment2:	Date of Submission:
	Combinational Logic	24.11.2022	03.12.2022

Note:

- 1. assignment carries weightage of 20 marks out of 100
- 2. Course outcome CO1 to CO2 was covered.

	CO1	Able to State and explain different number systems, binary codes
	CO2	Able to apply the principles of Boolean algebra and Karnaugh map to simplify logic expressions and implement it using gates
Course	A 1.1. 4 - A 1 4 1 1 CC 4 1 1 1 1 1 1	
Outcomes		
	CO5	Able to Analyse and design various Memory, Programmable Logic circuits and register transfer level
	CO6	Able to implement various digital circuits using HDL and Standard ICs.