

ATS2825 Bluetooth Module SPEC

Latest Version: 1.1

2015-10-26

Declaration

Disclaimer

Information given in this document is provided just as a reference or example for the purpose of using Actions' products, and cannot be treated as a part of any quotation or contract for sale.

Actions products may contain design defects or errors known as anomalies or errata which may cause the products' functions to deviate from published specifications. Designers must not rely on the instructions of Actions' products marked "reserved" or "undefined". Actions reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

ACTIONS DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY, ACCURACY, SECURITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY AND THE LIKE TO THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS.

IN NO EVENT SHALL ACTIONS BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION FOR LOST OF DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND ARISING FROM USING THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS. REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS OR OTHERS; STRICT LIABILITY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Actions' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions and further testing and/or modification will be fully at the risk of the customer.

Ways of obtaining information

Copies of this document and/or other Actions product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained by visiting Actions' website at: http://www.actions-semi.com or from an authorized Actions representative.

Trademarks

The word "Actions" and the logo are the trademarks of Actions Semiconductor Co., Ltd, and Actions (Zhuhai) Technology Co., Limited is authorized to use them. Word "炬芯" is the trademark of Actions (Zhuhai) Technology Co., Limited. Names and brands of other companies and their products that may from time to time descriptively appear in this document are the trademarks of their respective holders, no affiliation, authorization, or endorsement by such persons are claimed or implied except as may be expressly stated therein.

Rights Reserved

The provision of this document shall not be deemed to grant buyers any right in and to patent, copyright, trademark, trade secret, know how, and any other intellectual property of Actions or others.

Miscellaneous

Information contained or described herein relates only to the Actions products and as of the release date of this publication, abrogates and supersedes all previously published data and specifications relating to such products provided by Actions or by any other person purporting to distribute such information.

Actions reserves the rights to make changes to information described herein at any time without notice. Please contact your Actions sales representatives to obtain the latest information before placing your

product order.

Additional Support

Additional products and company information can be obtained by visiting the Actions website at: http://www.actions-semi.com

List of Contents

Declaration	2
List of Contents	4
Features	
Applications	
Application Diagram	
Specifications	
Electrical Characteristics	6
AUDIO Features	7
RF Characteristics	13
PMU Characteristics	16
Module Pin definitions	18
Pin Configurations	18
Module Package Information	20
Document History	22
Contact Information	

Features

- 104 MHz MIPS32 Processor and 180 MHz DSP
- Internal ROM and serial flash memory interface supporting randomizer
- Internal RAM for data and program
- Built-in high performance stereo 24 bit DAC & ADC
- Supports Digital microphones, single-ended Analog microphones and full difference microphone
- Built-in stereo PA for headphone and differential audio output for speaker PA
- Bluetooth V4.2 compatible with Bluetooth V4.1,V4.1 BLE, V3.0, V2.1 systems
- Bluetooth fast AGC control to improve receiving dynamic range
- Supports AFH to dynamically detect channel quality to improve Bluetooth transmission quality
- Support SD/MMC/eMMC card interface and SPI Nor Flash interface
- Audio Interfaces: I2S, SPDIF TX
- Serial Interfaces: USB2.0, UART, TWI, SPI
- Infrared Remote controller supported
- Segment LCD panels
- Digital matrix LED panels
- Integrated PMU supports multiple low energy States
- Integrated Linear battery charger up to 600mA charging current
- PCB Dimension: 24.9mm (L) × 14mm (W) × 0.8mm (H)

ATS2825 Bluetooth Module

Bluetooth Audio Solution

Low Power Solution for Portable&Wireless Audio Applications Local MMC/SD Card Audio Playback

MIPS + DSP Dual-core Single-chip Bluetooth V4.2 Revision V1.1

Applications

- Stereo headsets and headphones
- Portable stereo speakers and speakerphones
- Bluetooth car audio unit
- Bluetooth sound bar
- Bluetooth smart LED

More Information please visit:

http://www.actions-semi.com

ATS2825 provides wireless and local high quality music and support wireless calls with low power and BOM, making it competitive at high-end Bluetooth audio products market. Above all, ATS2825 delivers a true "ALL-IN-ONE" solution; it is the ideal choice for Single-chip wireless and local MMC/SD card audio application

Application Diagram

Specifications

Operating Frequency Band	2.4GHz ~ 2.48GHz unlicensed ISM band
Bluetooth Specification	V2.1+EDR/V3.0/V4.0/ V4.1/V4.1 BLE/V4.2
Bluetooth Protocol	A2DP,AVRCP,HFP,SPP BAS,DIS,FMP,HRP,HRS,HTP,HTS,IAS,LLS
Output Power Class	Class 2
Operating Voltage	Core :1.2V, IO:3.3V, BAT:3.4V~4.2V
Operating temperate range	-10 °C ~ +70 °C
External Interface	UART,SPI,TWI,I2S,IR,SD Card,USB,DMIC,SPDIF TX

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Electrical Characteristics

Absolute Maximum Ratings								
Parameter Symbol Min Max Unit								
Temperature	Storage temperature (Tstg)	-55	+150	°C				
ESD Stress voltage	VESD (Human body model)	2000	-	V				
	DC5V	-0.3	9.0	V				
Cymply Voltago	BAT	-0.3	5.0	V				
Supply Voltage	VCC/AVCC/BTVCC	-0.3	3.6	V				
	VDD	-0.3	1.32	V				
Innut Valtage	3.3V IO	-0.3	3.6	V				
Input Voltage	1.2V IO	-0.3	1.32	V				

Recommended Power Supply							
Supply Voltage	Min	Тур	Max	Unit			
BAT (Li)	3.4	3.8	4.3	V			
DC5V	4.5	5.0	7.0	V			
VCC/AVCC/BTVCC	2.8	3.1	3.4	V			
VD15	1.0	1.5	1.7	V			
VDD/RTCVDD	1.08	1.2	1.32	V			
VD12	0.8	1.05	1.5	V			

Regulators Maximum Output Current						
Block Name Output Voltage Load Capacity						
VCC	2.7V ~ 3.4V	300mA				
VDD	0.8V ~ 1.32V	100mA				
VD15	1.0V ~ 1.7V	170mA				
BTVCC	2.8V ~ 3.5V	100mA				
AVCC	VCC - 0.15V	50mA@98%				

Note: The output voltages are precisely within $\pm 2\%$, providing large currents with a significantly small dropout voltage within $\pm 5\%$.

AUDIO Features

Test Condition: Power BAT=3.8V, Analog audio output AOUTL/R, Load = 10K ohm, BW=20Hz ~ 20 KHz, A-Weight. Test equipment: AP2700.

Audio Codec	DAC/ADC Sampling rate	Max: 48K Typical: 44.1K Min: 8K
	Output Level	Max: 960mVrms Typical: 940 mVrms
	Ground Noise	Max: 10 uV Typical: 7 uV
Audio performance DAC	DAC SNR	Max: 101dB Typical: 98dB
(0Hz/1KHz,A weight)	DAC THD+N	Min: -87dB Typical: -85 dB
(0112/1KHz,A weight)	Dynamic Range	Max: 101 dB Typical: 98dB
	Crosstalk	Min: -100 dB Typical: -96dB
	Frequency Response	20Hz ~20KHz
	Input Level THD+N <1%	Max: 980mVrms Min:
	Ground Noise	Max: 40 uVrms Typical: 30 uVrms
Audia nanfamuana ADC	ADC SNR	Max: 90 dB Typical: 87 dB
Audio performance ADC	ADC THD+N	Min: -82dB Typical: -80 dB
(0Hz/1KHz,A weight)	Dynamic Range	Max: 85 dB Typical: 82dB
	Crosstalk	Min: -85 dB Typical: -82dB
	Frequency Response	20Hz ~20KHz

DAC/ADC audio output performance chart:

Card Player Music Mode:

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Card player: 1KHz Sin wave FFT 20Hz ~ 20 KHz

Card Player: 0Hz FFT 20Hz \sim 20 KHz

Card Player: Frequency Response 20Hz ~ 20 KHz

Card Player: THD+N Distortion 20Hz $\sim 20\ KHz$

Line in Input Mode:

Line in Input player: 1KHz Sin wave FFT 20Hz ~ 20 KHz

Line in Input player: 0KHz FFT $20Hz \sim 20$ KHz

Line in Input Player: Frequency Response $20Hz \sim 20 \text{ KHz}$

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved. Page 10

Line in Input player: THD+N Distortion 20Hz ~ 20 KHz

Bluetooth Player Music Mode:

Bluetooth A2DP Player: 1KHz Sin wave FFT 20Hz ~ 20 KHz

Bluetooth A2DP Player: 0Hz FFT 20Hz \sim 20 KHz

Bluetooth A2DP Player: Frequency Response $20\text{Hz} \sim 20 \text{ KHz}$

Bluetooth A2DP Player: THD+N Distortion $20\text{Hz} \sim 20 \text{ KHz}$

RF Characteristics

Test conditions:

- 1. BAT=3.8V, VCC=3.1V, VDD=1.2V, Tamb=25 $^{\circ}$ C.
- 2 . BLE ON, SPP OFF, Scan time:1.28S, DAE OFF, No Load.

		A2DP1.3
BT Protocols	A2DP/AVRCP/HFP	AVRCP1.6
DI FIOLOCOIS	/SPP	HFP1.7
		SPP1.2
	A2DP	Typical : 21mA
D	HFP	Typical: 26mA
Power Consumption	Sniff	Typical: 0.6mA
	Standby	Typical : 38uA
Distance	A2DP	Max:50M Typical: 20M
Distance	HFP	Max: 20M Typical: 10M

Basic Data Rate of Transmitter

Core Supply Voltage = 1.05V @ Tamb=25°C

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Parameter	Condition	Min.	Typ.	Max.	Unit
Maximum RF Transmit			2	4	dBm
Power			2	4	abiii
RF Power Control Range		2	3	8	dB
20dB Bandwidth for			020	000	1/11-
Modulated Carrier			930	990	KHz
	+2 MHz	-47	-52		dBm
A discout Channel Transmit	-2 MHz	-51	-52		dBm
Adjacent Channel Transmit	+3 MHz	-40	-58		dBm
	-3 MHz	-56	-57		dBm
	Δflavg Maximum	140	170	175	KHz
Frequency Deviation	Δf2max Maximum	100%	100%		
	Δflavg/Δf2avg	0.89	0.9	0.91	
Initial Carrier Frequency		3	5	6	KHz
Tolerance		3	3	0	КПХ
	HD1 Packet	-9	-8	8	KHz
Frequency Drift	HD3 Packet	-8	-9	-10	KHz
	HD5 Packet	-10	-7	-6	KHz
Frequency Drift Rate		3	4	5	KHz/50us
Harmonic Content			-50		dBm

Enhanced Data Rate of Transmitter					
Core Supply Voltage =1. 05V	@ Tamb=25℃				
Parameter	Condition	Min.	Тур.	Max.	Unit
Relative Transmit Power			-0.4		dB
$\pi/4$ DQPSK max carrier		-10		10	KHz
frequency stability $ \omega_0 $					
$\pi/4$ DQPSK max carrier frequency stability $ \omega_i $		-75		75	KHz
1 3 3 1 4					
$\pi/4$ DQPSK max carrier frequency stability $ \omega_0+\omega_i $		-75		75	KHz
8DPSK max carrier		-10		10	KHz
frequency stability $ \omega_0 $		-10		10	KHZ
8DPSK max carrier		-75		75	KHz
frequency stability $ \omega_i $		-73		/3	KHZ
8DPSK max carrier		-75		75	KHz
frequency stability $ \omega_0 + \omega_i $		-73		13	K11Z
π/4 DQPSK Modulation	RMS DEVIN		7	20	%

Accuracy	99% DEVM	99	100		%
	Peak DEVM		18	35	%
8DPSK Modulation	RMS DEVIN		6	13	%
	99% DEVM	99	100		%
Accuracy	Peak DEVM		18	25	%
	F > F0 + 3MHz			-40	dBm
	F < F0 - 3MHz			-40	dBm
	F = F0 + 3MHz			-40	dBm
In-band spurious emissions	F = F0 - 3MHz			-40	dBm
in-band spurious emissions	F = F0 + 2MHz			-20	dBm
	F = F0 - 2MHz			-20	dBm
	F = F0 + 1MHz			-26	dB
	F = F0 - 1MHz			-26	dB
EDR Differential Phase		99	100		%
Encoding		99	100		/0

Basic Data Rate of Receiver								
Core Supply Voltage =1. 05V(Core Supply Voltage =1. 05V@ Tamb=25°C							
Parameter	Condition	Min.	Typ.	Max.	Unit			
	2.404GHz		-90		dBm			
Sensitivity at 0.1% BER	2.441GHz		-90		dBm			
	2.480GHz		-90		dBm			
Maximum Input Power at 0.1% BER		-20			dBm			
Co-Channel Interface				11	dB			
	$F = F_0 + 1MHz$			0	dB			
	$F = F_0 - 1MHz$			0	dB			
Adjacent Channel Selectivity	$F = F_0 + 2MHz$			-20	dB			
C/I	$F = F_0 - 2MHz$			-20	dB			
	$F = F_0 + 3MHz$			-40	dB			
	$F = F_{image}$			-9	dB			
Maximum Level of Intermediation Interface		-39			dBm			
	30-2000 MHz	-10	-8		dBm			
Blocking @ Pin = -67dBm	2000-2400 MHz	-27	-25		dBm			
with 0.1% BER	2500-3000 MHz	-27	-25		dBm			
	3000-12750 MHz	-10	-8		dBm			

Enhanced Data Rate of Receiver								
Core Supply Voltage = 1. 05V @ Tamb=25°C								
Parameter	Condition		Min.	Typ.	Max.	Unit		
Sensitivity at 0.01%	π/4 DQPSK			-88		dBm		
BER	8DPSK			-82		dBm		
Maximum Input	π/4 DQPSK		-20			dBm		
Power at 0.1% BER	8DPSK		-20			dBm		
Co-Channel	π/4 DQPSK			13		dB		
Interference	8DPSK			21		dB		
	$F = F_0 + 1MHz$	π/4 DQPSK		0		dB		
		8DPSK		5		dB		
	$F = F_0 - 1MHz$	π/4 DQPSK		0		dB		
		8DPSK		5		dB		
	$F = F_0 + 2MHz$	π/4 DQPSK		-30		dB		
Adjacent Channel		8DPSK		-25		dB		
Selectivity C/I	$F = F_0 - 2MHz$	π/4 DQPSK		-20		dB		
		8DPSK		-13		dB		
	$F = F_0 + 3MHz$	π/4 DQPSK		-40		dB		
		8DPSK		-33		dB		
	$F = F_{image}$	π/4 DQPSK		-7		dB		
		8DPSK		0		dB		

PMU Characteristics

PMU	Charging current	Max: 600mA Typical: 500mA	
TWIO	Charger input voltage	Max: 7.0V Typical: 5V Min: 4.5V	
	Test conditions:		
Power Consumption	2. BAT=3.8V, VCC=3.1V, VDD=1.2V, Tamb=25°C.		
	3. BLE ON, SPP OF	F, Scan time:1.28S, DAE OFF, No Load.	
	Standby	38 uA (type)	
	Card music play	13 mA (type)	
	Line in music play	10.4 mA (type)	

Bluetooth music play	20.6mA	(type)
Bluetooth hands free	26.4 mA	(type)

Charge Flow Chart and Settings:

Charge Flow Chart

Note:

- 1. Charging process is divided into 3 stages: the pre charge process, the constant current process and the constant voltage process.
- 2. The pre charge current (IPC) is 0.1 times the constant current charge current (ICC). Or $I_{PC} = 0.1 \times I_{CC}$ (mA); Disable this function by set [CHG CTL.bit14] =0, default is
- 3. When the starting charge voltage to 3.0V (V_{TV}), the pre charging process is over, and the charging process is entered into the constant current charging process.
- 4. Set the constant current charging current Icc, constant current charge continues to the battery voltage to Vcv, switch to the constant voltage charging process. can be set with 8 levels of parameters: 000:25mA, 001:50mA, 010:100mA, 011:200mA, 100:300mA, 101:400mA, **110:500mA**, 111:600mA.
- 5. Vcv voltage can be set with 8 levels of parameters: 000:4.2V, 001:4.23V, 010:4.26V, 011:4.29V, 100:4.32V, 101:4.35V, 110:4.38V, 111:4.41V.
- 6. After the end of the charge, the Li-BAT voltage is generally V_{EV} = 4.18V±0.05V.

Module Pin definitions

Pin Configurations

PIN NO.	NAME	TYPE	FUNCTION
1	VRO_S	Analog input	VRO Sense for PA
2	AGND	Power ground	Analog ground
3	DM	Bi-directional	USB D-
4	DP	Bi-directional	USB D+
5	VCC	Power output	3.3V power supply
6	GPIOA17	Bi-directional	General Purpose Input Output: A17

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

7	GPIOA20	Bi-directional	General Purpose Input Output: A20
8	GPIOB7	Bi-directional	General Purpose Input Output: B7
9	GPIOB8	Bi-directional	General Purpose Input Output: B8
10	GPIOB9	Bi-directional	General Purpose Input Output: B9
11	GND	Power ground	Ground
12	GPIOA5	Bi-directional	General Purpose Input Output: A5
13	GPIOA21	Bi-directional	General Purpose Input Output: A21
14	GPIOA6	Bi-directional	General Purpose Input Output: A6
15	GPIOA23	Bi-directional	General Purpose Input Output: A23
16	GPIOA22	Bi-directional	General Purpose Input Output: A22
17	GPIOA15	Bi-directional	General Purpose Input Output: A15
18	GPIOA14	Bi-directional	General Purpose Input Output: A14
19	GPIOA13	Bi-directional	General Purpose Input Output: A13
20	GPIOA12	Bi-directional	General Purpose Input Output: A12
21	GPIOA11	Bi-directional	General Purpose Input Output: A11
22	GPIOA10	Bi-directional	General Purpose Input Output: A10
23	GPIOA9	Bi-directional	General Purpose Input Output: A9
24	GPIOA8	Bi-directional	General Purpose Input Output: A8
25	GPIOA16	Bi-directional	General Purpose Input Output: A16
26	SPI_MOSI	Bi-directional	SPI data
27	SPI_CLK	Bi-directional	SPI clock
28	SPI_SS	Bi-directional	SPI chip enable
29	GPIOB11	Bi-directional	General Purpose Input Output: B11
30	GND	Power ground	Ground
31	BT_ANT	Bi-directional	Bluetooth antenna junction
32	RTCVDD	Power output	power for RTC Module, typical
			voltage:1.2V
33	NFC_WK_RTCVD D	Input	NFC wake signal input
34	GPIOA0	Bi-directional	General Purpose Input Output: A0
35	GPIOA1	Bi-directional	General Purpose Input Output: A1
36	GPIOA2	Bi-directional	General Purpose Input Output: A2
37	ONOFF	Input	Power on/off
38	GND	Power ground	Ground
39	BAT	Power input	Battery input, typical voltage range :3.4V ~ 4.2V
40	DC5V	Power input	USB power input, typical voltage range :4.5V ~ 7.0V
41	GPIOB0	Bi-directional	General Purpose Input Output: B0

42	GPIOA7	Bi-directional	General Purpose Input Output: A7
43	AVCC	Power output	Power for Analog module, typical
			voltage:2.95V
44	AUX1R	Analog input	AUX1 right channel input
45	AUX1L	Analog input	AUX1 left channel input
46	AUX0R	Analog input	AUX0 right channel input
47	AUX0L	Analog input	AUX0 left channel input
48	AGND	Analog ground	Analog ground
49	SVCC	Power output	Power for Standby
50	MICINR	Analog input	MIC right channel input
51	MICINL	Analog input	MIC left channel input
52	VRO	Analog output	Virtual Ground for PA
53	AOUTL	Analog output	Left channel of PA
54	AOUTR	Analog output	Right channel of PA

Module Package Information

Module Dimension (Bottom VIEW)

Recommended PCB layout footprint

Document History

Revision	Date	History
V1.0	2015/06/09	First release
V1.1	2015/10/26	Update PMU and Audio 。

Contact Information

Actions (Zhuhai) Technology Co.,Limited

http://www.actions-semi.com

Address:

No. 1 / C, Ke Ji Si Road, Hi-Tech Zone,

Tangjia, Zhuhai Post Code: 519085

Fax: +86-756-3392251

Tel: +86-756-3392353

Business Email:

mmp-sales@actions-semi.com

Technical Service Email: mmp-cs@actions-semi.com