# Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

#### Announcements

- Homework 1 is due on Thursday in class.
- Homework 2 will be out on Thursday.
- Start homeworks early.
- Post questions on bboard.

# **Our Eyes**







- ☐ Index of refraction: cornea 1.376, aqueous 1.336, lens 1.406-1.386
- ☐ Iris is the diaphragm that changes the aperture (pupil)
- ☐ Retina is the sensor where the fovea has the highest resolution

# Accommodation



Changes the focal length of the lens







The cornea is distorted causing images to be un-focused on the retina.

# Blind Spot in Eye +

Close your right eye and look directly at the "+"



# Curved Mirrors in Scallop Eyes







(by Mike Land, Sussex)

... More in the last part of the course

# Binary Images: Properties and Methods

Lecture #4

#### **Binary Images**





- Images with only two values (0 or 1)
- Simple to process and analyze
- Very useful for industrial applications

#### **Binary Images**

- Obtained from gray-level (or color) image g(x, y) by Thresholding
- Characteristic Function

$$b(x, y) = 1$$
 if  $g(x, y) < T$   
0 if  $g(x, y) >= T$ 

- Topics Discussed:
  - •Geometric Properties
  - Continuous and Discrete Binary Images
  - •Multiple Objects (Connectivity)
  - •Sequential (iterative) processing



#### Geometric Properties of Binary Images

у

Χ

b(x, y)

· Assume:

b(x, y) is continuous only one object

· Area: Zeroth Moment

$$A = \iint b(x, y) \, dx \, dy$$

• Position: Center of Mass (First Moment)

$$\overline{x} = \frac{1}{A} \iint x \, b(x, y) \, dx \, dy$$

$$\overline{y} = \frac{1}{A} \iint y \ b(x, y) \ dx \ dy$$

#### Geometric Properties of Binary Images

- · Orientation: Difficult to define!
  - · Axis of least second moment
  - · For mass: Axis of minimum inertia



b(x, y)у

Minimize:

$$E = \iint r^2 \ b(x, y) \ dx \ dy$$

#### Which equation of line to use?



$$y = mx + b$$
?  $0 \le m \le \infty$ 

$$0 \le m \le \infty$$

We use:

$$x\sin\theta - y\cos\theta + \rho = 0$$

 $\theta \rho$ are finite

#### Minimizing Second Moment

Find  $\theta$  and  $\rho$  that minimize E for a given b(x,y)

We can show that:  $r = x \sin \theta - y \cos \theta + \rho$ 

So, 
$$E = \iint (x \sin \theta - y \cos \theta + \rho)^2 b(x, y) dx dy$$

Using 
$$\frac{dE}{d\rho} = 0$$
 we get:  $A(x \sin \theta - y \cos \theta + \rho) = 0$ 

Note: Axis passes through the center (x, y)

So, change co-ordinates:  $x' = x - \overline{x}$ ,  $y' = y - \overline{y}$ 

#### Minimizing Second Moment

We get:  $E = a \sin^2 \theta - b \sin \theta \cos \theta + c \cos^2 \theta$  where,

$$a = \iint (x')^2 b(x, y) dx' dy'$$

$$b = 2 \iint (x'y') b(x, y) dx' dy'$$

$$c = \iint (y')^2 b(x, y) dx' dy'$$

- second moments w.r.t (x, y)

We are not done yet!!

#### Minimizing Second Moment

$$E = a \sin^2 \theta - b \sin \theta \cos \theta + c \cos^2 \theta$$

Using 
$$\frac{dE}{d\theta} = 0$$
 we get:  $\tan 2\theta = \frac{b}{a-c}$ 

$$\sin 2\theta = \pm \frac{b}{\sqrt{b^2 + (a-c)^2}} \cos 2\theta = \pm \frac{a-c}{\sqrt{b^2 + (a-c)^2}}$$

Solutions with +ve sign must be used to minimize E. (Why?)

$$\frac{E_{\min}}{E_{\max}}$$
  $\longrightarrow$  roundedness

#### Discrete Binary Images

· Assume:

b(x, y) is discrete only one object





• Position: Center of Mass (First Moment)

$$\overline{x} = \frac{1}{A} \sum \sum_{i} b_{ij}$$
  $\overline{y} = \frac{1}{A} \sum \sum_{i} j b_{ij}$ 

•Second Moments:

$$a' = \sum \sum_{i} i^{2} b_{ij}$$
  $b' = 2\sum \sum_{i} ij b_{ij}$   $c' = \sum_{i} \sum_{j} j^{2} b_{ij}$ 

Note: a',b',c' are defined w.r.t origin

# Multiple Objects



Need to **SEGMENT** image into separate **COMPONENTS** (regions)

- ( Non-trivial !)

# **Connected Components**

Maximal Set of Connected points

Remember Graph Theory?

A & B are connected: Path exists between A & B along which b(x,y) is constant.



# **Connected Component Labeling**

#### Region Growing Algorithm:

- (a) Start with "SEED" point where b(x,y) = 1
- (b) Assign LABEL to seed point
- (c) Assign SAME LABEL to its Neighbors with b(x,y) = 1
- (d) Assign SAME LABEL to Neighbors of Neighbors

Terminates when a component is completely labeled.

Then, pick another **UNLABELED** seed point.

# What do we mean by Neighbors?

#### Connectedness:



4-connectedness



8-connectedness

Neither is perfect!

# What do we mean by Neighbors?

• Jordan's Curve Theorem:

Closed Curve → 2 connected regions



· Consider:



Hole without Closed curve!

(8-C)

B O B

O B O

B O B

Connected Backgrounds with closed Ring!

# Solution to Neighborhood Problem

Introduce Asymmetry



OR



• Using (b)

|          | 0 | 1 | 0 |
|----------|---|---|---|
| <b>→</b> | 1 | 0 | 1 |
|          | 0 | 1 | 0 |

B O1 BO1 B O2B O2 B

(b)

Two separate Line Segments

# Hexagonal Tessellation





Asymmetry makes a SQUARE grid like HEXAGONAL grid

# Sequential Labeling Algorithm



Note: We want to label A.

B, C, D are already labeled.





# Sequential Labeling Algorithm



Solution:

Let: 
$$label(A) = label(B) = 2$$

Resolve Equivalence in Second Pass

$$2 \equiv 1$$

$$7 \equiv 3,6,4$$

$$\vdots$$

# Morphological Operations

• Euler Number

Number of Bodies (B) – Number of Holes (H)

$$A : E = 0$$



Figure 4-7. The Euler number is the difference between the number of objects and the number of holes. The Euler number of this binary image is 4 since there are 7 objects and 3 holes.

$$E_{\mathit{image}} = \sum E_{\mathit{non-overlapping regions}}$$

#### **Iterative Modification**

- · Allows us to incrementally change image
- Example:

Etch (thin) object to produce SKELETON



- Conservative Operations:
  - Do not change the Euler number of image.







E=1

New Body!

Euler Differential = +1

#### Euler Differential E\*

- Note: If  $E^* = +1$ , for center pixel,  $0 \rightarrow 1$ If E\* = -1, for center pixel,  $1 \rightarrow 0$
- Each pixel has 64 neighborhoods.
- We want to find Neighborhoods with E\* = 0



 $E^* = +1$ 









• Only 5 different sets of neighborhoods possible

$$N_{+1}, N_0, N_{-1}, N_{-2}$$

# Problem with Parallel Implementation



 $\rightarrow$ 

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
|   | * |   |   |

 $E^* \neq 0!$ 

Solution: Use Interlaced Subfields

- No two neighbors have the same label
- Apply parallel operations to ONE subfield at a time

| 1 | 2 | 3 | 1 | 2 | 3 |
|---|---|---|---|---|---|
| 2 | 3 | 1 | 2 | 3 | 1 |
| 2 | 1 | 2 | 3 | 1 | 2 |
| 1 | 2 | 3 | 1 | 2 | 3 |
| 2 | 3 | 1 | 2 | 3 | 1 |
| 3 | 1 | 2 | 3 | 1 | 2 |

#### Notation for Iterative Modification

- Specify Neighborhood Set,  ${\it S}$ , for which the same action must be taken For example:  ${\it S}=N_0$
- Consider pixel (i, j):
  - $a_{ij} = 1$  if Neighborhood of  $(i, j) \in S$
  - $b_{ij}$  = value of pixel (i, j)
  - $c_{ij} = new \ value \ of \ pixel \ (i, j)$
- 16 Boolean Functions

| ab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  |
| 01 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0  | 0  | 1  | 1  | 1  | 1  |
| 10 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1  | 1  | 0  | 0  | 1  | 1  |
| 11 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0  | 1  | 0  | 1  | 0  | 1  |



- $\bullet \ \, {\rm Use} \quad \, S=N_0 \quad \, ({\rm Zero} \ {\rm Euler} \ {\rm Differential} \ {\rm Set}) \\$
- Use 5th Column in the Boolean Functions Table
- Thinning without changing Euler Number!





- Other Tricks:
  - \* Expanding: Thinning the Background
  - \* Noise Removal: Thin and Expand

# Finding Skeletons

- $\bullet \ \, {\rm Use} \quad \, S = N_0 \quad \, ({\rm Zero} \ {\rm Euler} \ {\rm Differential} \ {\rm Set}) \\$
- Use 5th Column in the Boolean Functions Table
- Thinning without changing Euler Number!





#### **Announcements**

- Homework 1 is due on Thursday in class.
- Homework 2 will be out on Thursday.
- Start homeworks early.
- Post questions on bboard.

#### Next Two Classes

- 1D Signal and 2D Image Processing
- Horn, Chapter 6