\s\

Example of Principle 6

The Otway-Rees Protocol is as follows:

Msg 1.
$$a \rightarrow b : a, b, n_a, \{n_a, a, b\}$$
 shared(a,s)

Msg 2.
$$b - s : a, b, n_a, \{n_a, a, b\}$$
 shared(a,s), $\{n_b, n_a, a, b\}$ shared(b,s)

MSg 3.
$$s \rightarrow b$$
: $\{n_b, k_{ab}\}$ shared (b,s) , $\{n_a, k_{ab}\}$ shared (a,s)

Msg 4.
$$b \rightarrow a$$
: { n_a , k_{ab} } shared(a , s).

The following variant was proposed:

Msg 1.
$$a \rightarrow b$$
: $a, b, n_a, \{n_a, a, b\}$ shared (a,s)

Msg 2.
$$b \rightarrow s$$
: $a, b, n_a, n_b, \{n_a, a, b\}$ shared(a, s), $\{n_a, a, b\}$ shared(b, s)

Msg 3.
$$s \rightarrow b$$
: $\{n_b, k_{ab}\}$ shared (b,s) , $\{n_a, k_{ab}\}$ shared (a,s)

Msg 4.
$$b \rightarrow a$$
: $\{n_a, k_{ab}\}$ shared (a,s) .

An attack

Assume the intruder has previously run the protocol with B, and stored the component $\{N_i, I, B\}_{shared(B,S)}$ from message 2, and the corresponding N_i . Then the following attack is possible.

Msg 1.
$$I_A \rightarrow B: A, B, N'_I, \{N_I, I, B\}$$
 shared(I,S)

Msg 2.
$$B \rightarrow I_S : A, B, N'_i, N_b, \{N_i, I, B\}$$
 shared(1,S),

$$\{N'_i, A, B\}$$
 shared (B,S)

Msg 2'.
$$I_B \rightarrow S: I, B, N_i, N_b, \{N_i, I, B\}$$
 shared(I,S),

$$\{N_i, I, B\}$$
 shared (B,S)

Msg 3.
$$S \rightarrow B$$
: { N_b , K_{ab} } shared(B , S), { N_i , K_{ab} } shared(I , S)

Msg 4.
$$B \rightarrow I_A$$
: { N_i , K_{ab} } shared(I,S)

Analysis of the attack

In the original protocol, n_b was being used as a substitute for a's identity in message 3:

Msg 3.
$$s \rightarrow b$$
: $\{n_b, k_{ab}\}$ shared $(b,s),...$

so that b could be sure the key was for use with a.

 n_b was bound to a's identity by the encryption in message 2

Msg 2.
$$b \rightarrow s : ..., \{n_b, n_a, a, b\}$$
 shared (b,s)

Removing n_b from the encryption (in the adapted version) broke the link between n_b and a, and so allowed the attack.

A better protocol

Rather than using n_b as a substitute for a's identity, it is better to use a's identity explicitly (and similarly for b). This leads to a much simpler protocol:

Msg 1.
$$a \rightarrow b$$
: a, b, n_a

Msg 2.
$$b \to s : a, b, n_b, \{n_a, a\}_{shared(b,s)}$$

Msg 3.
$$s \rightarrow b$$
: {a, n_b , k_{ab} } shared(b , s), {b, n_a , k_{ab} } shared(a , s)

Msg 4.
$$b - a : \{b, n_a, k_{ab}\}$$
 shared(a,s)