Topologie

Karol Gromada 2024-2025

LMAT1323

Table des matières

1	Esp	Espaces métriques		
	1.1	Espace métrique	2	
	1.2	Fonctions continues sur les espaces métriques	4	
	1.3			
	1.4	Ensembles fermés dans les espaces métriques		
2	Espaces topologiques			
	2.1	Définitions et exemples	7	
	2.2	Intérieur et fermeture	8	
3	Dav	vantage sur les structures topologiques	8	
	3.1	Homéomorphismes	8	
	3.2		ç	
	3.3	Produits d'espaces topologiques		
	3.4	Topologie quotient		
4	Esp	aces de Hausdorff	12	
5	Con	npacité	13	
	5.1		13	
	5.2	Produits d'espaces compacts		
	5.3	Compacité dans les espaces metriques		
6	Connexité			
	6.1	Espaces connexes	20	
	6.2	Espaces connexes par arcs		

1 Espaces métriques

1.1 Espace métrique

Définissons d'abord ce qu'est un espace métrique.

Définition 1.1.1. Soit *X* un ensemble et $d: X^2 \to \mathbb{R}$ une fonction telle que

$$D_1 d(x,y) = 0 \iff x = y$$

$$D_2 \ d(x,y) = d(y,x)$$
 pour tout $x,y \in X$

$$D_3 d(x,y) + d(y,z) \geqslant d(x,z)$$
 pour tout $x,y,z \in X$

alors, on dit que d est une *métrique* sur X et que (X,d) est un *espace métrique*.

Lemme 1.1.2. Si $d: X^2 \to \mathbb{R}$ est une métrique, alors $d(x,y) \ge 0$ pour tout $x,y \in X$.

DÉMONSTRATION. Posons z = x dans l'axiome D_3 pour obtenir

$$d(x,y) + d(y,x) \geqslant d(x,x) = 0$$

Par D_2 , d(y,x) = d(x,y), donc on a $2d(x,y) \ge 0$. Vu que 2 est inversible, on a $d(x,y) \ge 0$.

Ensuite, donnons quelque exemples d'espaces métriques.

1. Soit $X = \mathbb{R}^n$ et

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

2. Soit $X = \mathbb{R}^n$ et

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$
 (la métrique l_1)

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}} \quad \text{(la métrique } l_p\text{)}$$

3. Soit $X = \mathbb{R}^n$ et

$$d_{\infty}(x,y) = \max_{1 \leqslant i \leqslant n} \left\{ |x_i - y_i| \right\} \quad ext{(la métrique l_{∞})}$$

4. Soit X = V un espace vectoriel normé et

$$d(u,v) = ||u - v||$$

5. Soit X = C([a, b]) l'ensemble des fonctions continues sur [a, b], 1 et

$$d_p(f,g) = \left(\int_a^b |f(t) - g(t)|^p dt\right)^{\frac{1}{p}}$$
 (la métrique l_p sur $C([a,b])$)

sinon,

$$d_{\infty}(f,g) = \max_{a \leqslant t \leqslant b} \left\{ |f(t) - g(t)| \right\} \quad \text{(la métrique l_{∞} sur $C([a,b])$)}$$

6. Soit un ensemble *X* et

$$d(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$
 (métrique discrète sur *X*)

Théorème 1.1.3. Soient $(X_1, d_1), \ldots, (X_n, d_n)$ des espaces métriques. Posons

$$X = \prod_{i=1}^{n} X_i$$

Pour chaque n-uplet de points $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in X$, on définit la métrique $d:X^2\to\mathbb{R}$

2

$$d(x,y) = \max_{1 \le i \le n} \left\{ d_i(x_i, y_i) \right\}$$

alors (X, d) est un espace métrique.

DÉMONSTRATION. Vérifions les axiomes de la métrique.

 D_1 Si d(x,y) = 0, alors $d_i(x_i, y_i) = 0$ pour tout i. Donc $x_i = y_i$ pour tout i, donc x = y. Si x = y alors $d_i(x_i, y_i) = 0$ pour tout i, donc d(x, y) = 0.

 D_2 Puisque $d_i(x_i, y_i) = d_i(y_i, x_i)$ pour tout i, on a d(x, y) = d(y, x).

 D_3 Soit $z = (z_1, \dots, z_n) \in X$ et $j, k \in \mathbb{N}$ tels que

$$d(x,y) = d_j(x_j, y_j)$$

$$d(y,z) = d_k(x_k, y_k)$$

Alors, pour $i \in \{1, ..., n\}$, on a

$$d_i(x_i, y_i) \leqslant d_i(x_i, y_i)$$

$$d_i(y_i, z_i) \leqslant d_k(y_k, z_k)$$

Vu que d_i est une métrique, on a

$$d_i(x_i, z_i) \leq d_i(x_i, y_i) + d_i(y_i, z_i) \leq d_i(x_i, y_i) + d_k(y_k, z_k) = d(x, y) + d(y, z)$$

donc

$$d(x,z) = \max_{1 \le i \le n} \left\{ d_i(x_i, z_i) \right\} \le d(x,y) + d(y,z)$$

Remarque. La métrique d est appelée la *métrique produit* des métriques d_1, \ldots, d_n .

Comparons maintenant les espaces métriques $(\mathbb{R}^2, d_{\text{eucl}})$ et $(\mathbb{R}^2, d_{\infty})$. Pour $a \in \mathbb{R}^2$ fixe, quels sont les ensembles

$$\left\{x \in \mathbb{R}^2 : d_{\text{eucl}}(x, a) \leqslant 1\right\}$$
 et $\left\{x \in \mathbb{R}^2 : d_{\infty}(x, a) \leqslant 1\right\}$?

Définition 1.1.4. Deux espaces métriques (A, d_A) et (B, d_B) sont *isométriques* s'il existe des fonctions réciproques $f: A \to B$ et $g: B \to A$ telles que pour chaque $x, y \in A$,

$$d_B(f(x), f(y)) = d_A(x, y)$$

et pour chaque $u, v \in B$,

$$d_A(g(u),g(v)) = d_B(u,v)$$

Théorème 1.1.5. Deux espaces métriques (A, d_A) et (B, d_B) sont isométriques si et seulement s'il existe $f: A \to B$ telle que

- 1. *f* est une bijection
- 2. pour tout $x, y \in A$, $d_B(f(x), f(y)) = d_A(x, y)$

DÉMONSTRATION. Prouvons tout d'abord l'implication vers la droite. Supposons que (A, d_A) et (B, d_B) sont isométriques. Il existe donc des fonctions réciproques $f: A \to B$ et $g: B \to A$ ce qui implique que f est une bijection. De plus, f satisfait la condition 2 par (1.1.4).

Prouvons maintenant l'implication vers la gauche. Supposons que $f:A\to B$ est une bijection telle que pour tout $x,y\in A$, $d_B(f(x),f(y))=d_A(x,y)$. Vu que f est bijection, elle est inversible. Soit $g:B\to A$ telle que f et g, déterminée en posant

$$g(b) = a \operatorname{si} f(a) = b$$

Pour tout $u, v \in B$, soient x = g(u) et y = g(v). Alors

$$d_A(g(u),g(v)) = d_A(x,y)$$

Par 2, on a

$$d_A(x,y) = d_B(f(x), f(y)) = d_B(u,v)$$

1.2 Fonctions continues sur les espaces métriques

Défnissons tout d'abord ce qu'est une fonction continue grâce à une ancienne définition du cours LMAT1121.

Définition 1.2.1 (Ancienne). Une fonction $f: \mathbb{R} \to \mathbb{R}$ est *continue*, étant donné $y \in \mathbb{R}$ et $\varepsilon > 0$, nous pouvons trouver un $\delta(y, \varepsilon) > 0$ tel que pour tout $x \in \mathbb{R}$

$$|f(y) - f(x)| < \varepsilon \text{ si } |y - x| < \delta(y, \varepsilon)$$

Mais cette définition est trop rigide. Elle nous contraint à travailler dans l'espace \mathbb{R} muni de la métrique euclidienne. Nous allons donc généraliser cette définition.

Définition 1.2.2 (Nouvelle). Soit (X,d) et (Y,ρ) des espaces métriques. Une fonction $f:X\to Y$ est *continue* si, étant donné $p\in X$ et $\varepsilon>0$, il existe $\delta(p,\varepsilon)>0$ tel que pour tout $x\in X$

$$\rho(f(p), f(x)) < \varepsilon \operatorname{si} d(p, x) < \delta(p, \varepsilon)$$

Voici quelques exemples...

Lemme 1.2.3. Si (X,d), (Y,ρ) et (Z,σ) sont des espaces métriques et $g:X\to Y$ et $f:Y\to Z$ sont des fonctions continues, alors $f\circ g:X\to Z$ est continue.

1.3 Ensembles ouverts dans les espaces métriques

Définition 1.3.1. Soit (X, d) un espace métrique. Nous disons qu'un sous-ensemble E est ouvert si, pour tout $e \in E$, nous pouvons trouver un $\delta > 0$ (qui dépend de e) tel que

$$x \in E$$
 quand $d(x,e) < \delta$

Les ouverts de $(\mathbb{R}, d_{\text{euc}})$ sont des intervalles ouverts :

$$e \in \mathbb{R} : \{x \in \mathbb{R} \mid d(x,e) < \delta\} =]e - \delta, e + \delta[$$

Définition 1.3.2 (Boule ouverte). Soit (X,d) un espace métrique, $x \in X$ et r > 0. On définit la boule

ouverte de centre x et de rayon r par

$$B(x,r) = \{ y \in X \mid d(x,y) < r \}$$

Prenons un exemple d'un ensemble qui n'est pas ouvert. Pour $(\mathbb{R}^n, d_{\text{euc}})$ et $x \in \mathbb{R}$, l'ensemble $\{x\}$ n'est pas ouvert.

Si (X, d_{ε}) est un espace métrique avec la métrique discrète, alors

$$\{x\} = B\left(x, \frac{1}{2}\right)$$

et tout les sous-ensembles de X sont ouverts. Notons que $d(x,x)=0<\frac{1}{2}$ et $d(x,y)=1>\frac{1}{2}$ pour $x\neq y$. Si $x\in E\subset X$ alors $d(x,y)<\frac{1}{2}$ implique $y=x\in E$ et donc E est ouvert.

Théorème 1.3.3. Soit (X, d) un espace métrique. Alors

- 1. \emptyset et X sont ouverts.
- 2. Si U_{α} est ouvert pour tout $\alpha \in A$, alors $\bigcup_{\alpha \in A} U_{\alpha}$ est ouvert.
- 3. Si U_j est ouvert pour tout $1 \le j \le n$, alors $\bigcap_{j=1}^n U_j$ est ouvert.

DÉMONSTRATION. 1. Comme y a pas de points $e \in \emptyset$, l'affirmation

$$x \in \emptyset$$
 quand $d(x,e) < \delta$

est vraie pour tout $e \in \emptyset$ donc \emptyset est ouvert.

- 2. Si $e \in \bigcup_{\alpha \in A} U_{\alpha}$ alors on trouve $\alpha_1 \in A$ particulier tel que $e \in U_{\alpha_1}$. Comme U_{α_1} est ouvert, on peut trouver $\delta > 0$ tel que $x \in U_{\alpha_1}$ quand $d(x,e) < \delta$. Ensuite, comme $U_{\alpha_1} \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ on a $x \in \bigcup_{\alpha \in A} U_{\alpha}$ quand $d(x,e) < \delta$ ce qui implique que $\bigcup_{\alpha \in A} U_{\alpha}$ est ouvert.
- 3. Si $e \in \bigcap_{j=1}^{n} U_j$ alors $e \in U_j$ pour tout $1 \le j \le n$. Comme U_j est ouvert, on peut trouver $\delta_j > 0$ tel que $x \in U_j$ quand $d(x, e) < \delta_j$.

Posons $\delta = \min\{\delta_1, \dots, \delta_n\}$. Clairement, $\delta > 0$ donc $x \in \bigcap_{j=1}^n U_j$ quand $d(x, e) < \delta$ ce qui implique que $\bigcap_{j=1}^n U_j$ est ouvert.

Remarque. Une interesection infinie d'ouverts n'est pas nécessairement ouverte.

Considérons par exemple \mathbb{R} muni de la métrique usuelle. Par exemple, pour tout $n \in \mathbb{N}_*$, l'ensemble $]-1,\frac{1}{n}[$ est ouvert mais l'intersection infinie

$$\bigcap_{n=1}^{\infty}]-1, \frac{1}{n}[=]-1, 0]$$

n'est pas ouverte.

Pour un autre exemple, considérons (\mathbb{R}^n , d_{euc}). Nous avons que $B\left(x,\frac{1}{j}\right)$ est ouvert mais l'intersection infinie

$$\bigcap_{i=1}^{\infty} B\left(x, \frac{1}{j}\right) = \{x\}$$

ne l'est pas.

Pour éviter toute confusion, nous introduisons la notation suivante : soit (X, d) et (Y, ρ) des espaces métriques et $f: X \to Y$ une fonction. Pour $U \subseteq Y$,

$$f^{-1}(U) = \{ x \in X \mid f(x) \in U \}$$

Théorème 1.3.4. Soit (X, d) et (Y, ρ) des espaces métriques. Une fonction $f: X \to Y$ est continue si et seulement si $f^{-1}(U)$ est ouvert dans X quand U est ouvert dans Y.

DÉMONSTRATION. Pour la première partie de la preuve, supposons que f est continue et que $U \subseteq Y$ est ouvert. Si $x \in f^{-1}(U)$, on peut trouver $y \in U$ tel que y = f(x).

Comme $U \subseteq Y$ est ouvert, il existe $\varepsilon > 0$ tel que $z \in U$ quand $\rho(y, z) < \varepsilon$.

Comme f est continue, il existe $\delta > 0$ tel que

$$\rho(y, f(w)) = \rho(f(x), f(w)) < \varepsilon \text{ quand } d(x, w) < \delta$$

C'est a dire que $w \in f^{-1}(U)$ quand $d(x,w) < \delta$ ce qui implique que $f^{-1}(U)$ est ouvert. Pour la deuxième partie de la preuve, supposons que $f^{-1}(U)$ est ouvert quand $U \subseteq Y$ est ouvert. Si $x \in X$ et $\varepsilon > 0$, on sait que la boule ouverte

$$B(f(x), \varepsilon) = \{ y \in Y \mid \rho(f(x), y) < \varepsilon \}$$

est ouverte. Alors $x \in f^{-1}(B(f(x), \varepsilon))$ et $f^{-1}(B(f(x), \varepsilon))$ est ouvert. Il existe donc $\delta > 0$ tel que

$$w \in f^{-1}(B(f(x), \varepsilon))$$
 quand $d(x, w) < \delta$

c'est a dire que $\rho(f(x), f(w)) < \varepsilon$ quand $d(x, w) < \delta$ ce qui implique que f est continue.

Avec ce théorème, on démontre la loi de composition très facilement : si U est ouvert dans Z alors, par continuité de f, $f^{-1}(U)$ est ouvert dans Y et, par continuité de g, $(f \circ g)^{-1}(U) = g^{-1}(f^{-1}(U))$ est ouvert dans X. Alors $f \circ g$ est continue.

1.4 Ensembles fermés dans les espaces métriques

Définition 1.4.1. Soit x_n une suite dans un espace métrique (X, d). Si pour $x \in X$ et $\varepsilon > 0$ donné, il existe un entier $N \ge 1$ (qui dépend que ε) tel que

$$d(x_n, x) < \varepsilon$$
 pour tout $n \ge N$

nous disons que $x_n \to x$ quand $n \to \infty$ et que x est la limite de la suite x_n .

Lemme 1.4.2. Si une suite x_n dans un espace métrique (X, d) a une limite alors cette limite est unique.

DÉMONSTRATION. Procédons a une preuve par l'absurde. Supposons que $x_n \to x$ et $x_n \to y$ avec $x \neq y$. Pour chaque $\varepsilon > 0$, on peut trouver N_1 , N_2 entier tel que

$$d(x_n, x) < \frac{\varepsilon}{2} \text{ pour tout } n \geqslant N_1$$

et

$$d(x_n, y) < \frac{\varepsilon}{2} \text{ pour tout } n \geqslant N_2$$

En posant $N = \max\{N_1, N_2\}$, on obtient

$$d(x,y) \leqslant d(x,x_n) + d(x_n,y) \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Comme ε est arbitraire, on a d(x,y) = 0 ce qui implique que x = y.

En utilisant le concept des suites et de leur limites, nous pouvons définir les ensembles fermés.

Définition 1.4.3. Soit (X,d) un espace métrique. Un ensemble $F \subseteq X$ est fermé si pour toute suite $x_n \in F$ qui converge vers x, $x \in F$.

Espaces topologiques 2

2.1 Définitions et exemples

Définition 2.1.1. Soit X un ensemble et τ une collection de sous-ensembles de X satisfaisant les propriétés suivantes:

 O_2 Si $U_{\alpha} \in \tau$ pour tout $\alpha \in A$, alors $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$ O_3 Si $U_j \in \tau$ pour tout $1 \le j \le n$, alors $\bigcap_{j=1}^n U_j \in \tau$

Nous disons que τ est une **topologie** sur X et que (X, τ) est un **espace topologique**.

Si (X, τ) est un espace topologique, nous appelons ensembles ouverts les élèments de τ .

Prenons un espace métrique (X, d) et posons $\tau_d = \{U \subseteq X \mid U \text{ ouvert par } d\}$. Alors (X, τ_d) est un espace topologique et τ_d est appelé la topologie induite par la métrique d.

Prenons ensuite l'ensemble $X = \{0,1\}$. On peut munir celui-ci de plusieurs structures d'espace topologique.

- 1. Si on pose $\tau = \{\emptyset, \{0, 1\}\}$, alors τ satisfait les 3 axiomes et est appelé la topologie indiscrète.
- 2. Si on pose $\tau = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$, alors τ satisfait les 3 axiomes et est appelé la topologie discrète.

Lemme 2.1.2. Soit (X, τ) un espace topologique. Si τ est induite par une métrique d, alors pour chaque paire de points distincts $a, b \in X$, il existe des ouverts disjoints U_a et U_b tel que $a \in U_a$, $b \in U_b$.

DÉMONSTRATION. Soit r = d(a, b) et posons

$$U_a = B\left(a, \frac{r}{3}\right)$$
 et $U_b = B\left(b, \frac{r}{3}\right)$

Alors, trivialement, $a \in U_a$, $b \in U_b$ et $U_a \cap U_b = \emptyset$.

Définissons ensuite ce qu'est un ensemble ferme dans un espace topologique.

Définition 2.1.3. Soit (X, τ) un espace topologique. Un ensemble A dans X est dit fermé si son complément est ouvert.

Théorème 2.1.4. Si (X, τ) est un espace topologique alors les affirmations suivantes sont vraies :

- $(F_1) \varnothing$ et X sont fermés.
- (F_2) Si F_α est fermé pour tout α ∈ A alors $\bigcap_{\alpha \in A} F_\alpha$ est fermé.
- (F_3) Si F_j est fermé pour tout $1 \le j \le n$ alors $\bigcup_{j=1}^n F_j$ est fermé.

DÉMONSTRATION. $(F_1) \varnothing^c = X$ est ouvert donc \varnothing est fermé. De manière analogue, $X^c = \varnothing$ est ouvert donc *X* est fermé.

 (F_2) Montrons que $(\bigcap_{\alpha \in A} F_{\alpha})^c$ est ouvert. Clairement

$$\left(\bigcap_{\alpha\in A}F_{\alpha}\right)^{c}=\bigcup_{\alpha\in A}X\setminus F_{\alpha}$$

Par hypothèse, F_{α} est fermée alors $F_{\alpha}^{c} = X \setminus F_{\alpha}$ est ouvert. L'union d'ouverts est ouverte. En conséquence, on déduit que $\bigcap_{\alpha \in A} F_{\alpha}$ est fermé.

 (F_3) De manière analogue, montrons que

$$\left(\bigcup_{j=1}^n F_j\right)^c$$

est ouvert. Clairement,

$$\left(\bigcup_{j=1}^n F_j\right)^c = \bigcap_{j=1}^n X \setminus F_j.$$

On sait aussi que $X \setminus F_j = F_j^c$ est ouvert. L'intersection d'ouverts est ouverte. En conclusion, on déduit que $\bigcup_{j=1}^n F_j$ est fermé.

Théorème 2.1.5. Soient (X, τ) et (Y, σ) des espaces topologiques. Une fonction $f: X \to Y$ est continue si et seulement si $f^{-1}(F)$ est fermé dans X quand F est fermé dans Y.

2.2 Intérieur et fermeture

Définition 2.2.1. Soit (X, τ) un espace topologique et A un sous-ensemble de X. Nous écrivons

$$Int(A) = \bigcup \{ U \in \tau : U \subseteq A \} \text{ et } Cl(A) = \bigcap \{ F \text{ ferme} : F \supseteq A \}$$

et nous l'appelons respectivement l'intérieur de A et la fermeture de A.

Lemme 2.2.2. Nous avons $(Cl(A^c))^c = Int(A)$ et $(Int(A^c))^c = Cl(A)$.

Lemme 2.2.3. Soit (X, τ) un espace topologique et $X \subseteq A$.

- 1. $Int(A) = \{x \in A : \exists U \in \tau \text{ avec } x \in U \subseteq A\}$.
- 2. $\operatorname{Int}(A)$ est le plus large ouvert contenu dans A, c'est-a-dire $\operatorname{Int}(A)$ est l'unique $V \in \tau$ tel que $V \subseteq A$ et, si $W \in \tau$ et $V \subseteq W \subseteq A$ alors V = W.

DÉMONSTRATION. 1. Ceci est juste l'observation que

$$Int(A) = \bigcup \{ U \in \tau : U \subseteq A \} = \{ x \in A : \exists U \in \tau \text{ avec } x \in U \subseteq A \}$$

2. Puisque $\operatorname{Int}(A) = \bigcup \{U \in \tau : U \subseteq A\}$ nous savons que $\operatorname{Int}(A) \subseteq A$. Vu que l'union d'ouvert est ouverte, $\operatorname{Int}(A)$ est ouvert.

Si $W \in \tau$ alors $W \subseteq A$ donc

$$Int(A) = \bigcup \{ U \in \tau : U \subseteq A \} \supseteq W$$

et si $W \supseteq Int(A)$ alors W = Int(A).

3 Davantage sur les structures topologiques

3.1 Homéomorphismes

Définition 3.1.1. Nous disons que deux espaces topologiques (X, τ) et (Y, σ) sont homéomorphes s'il existe une bijection $\theta: X \to Y$ telle que θ et θ^{-1} sont continues. Dans ce cas, nous appelons θ un homéomorphisme.

Remarque. Homéomorphisme implique équivalence en ce qui concerne la topologie.

Lemme 3.1.2. Homéomorphisme est une relation déquivalence sur les espaces topologiques.

DÉMONSTRATION. On définit la relation d'équivalence de la manière suivanteă: $(X,\tau) \sim (Y,\sigma)$ si (X,τ) et (Y, σ) sont homéomorphes.

- 1. Il est clair que \sim est binaire
- 2. \sim est réflexive, car il est clair que la fonction identité est un homéomorphisme.
- 3. Il est clair que \sim est symétrique parce que si $X \stackrel{\theta}{\sim} Y$ alors $Y \stackrel{\theta^{-1}}{\sim} X$
- 4. \sim est transitive

Pour donner un exemple,]-1,1[est homéomorphe à \mathbb{R} . En fait, on peut définir une fonction $f:]-1,1[\to \mathbb{R}$ par

$$f(x) = \tan\left(\frac{\pi x}{2}\right)$$

qui est une bijection et a une réciproque continue $g: \mathbb{R} \to]-1,1[$ donnée par

$$g(y) = \frac{2}{\pi} \arctan(x)$$

Remarque. $(\mathbb{R}^2, d_{\text{euc}})$ et $(\mathbb{R}^2, d_{\infty})$ ne sont pas isométriques, mais $(\mathbb{R}^2, \tau_{\text{euc}})$ et $(\mathbb{R}^2, \tau_{\infty})$ sont homéomorphes!

Théorème 3.1.3. Soit $f:(X,\tau)\to (Y,\sigma)$ une bijection continue. Les conditions suivantes sont equivalentes:

- 1. f(U) est ouvert dans Y si U est ouvert dans X.
- 2. f(F) est fermé dans Y si F est fermé dans X.
- 3. *f* est un homéomorphisme.

DÉMONSTRATION. Commençons par prouver que 1 implique 2. Soit $F \subseteq X$ fermé. Alors F^c est ouvert. On a

$$f(F^c) = \{ f(x) \in Y \mid x \notin F \}$$

= \{ f(x) \in Y \cong f(x) \notin f(F) \}

La deuxième égalité découle du fait que f est une bijection continue. De plus, on a

$$f(F)^c = \{ f(x) \in Y \mid f(x) \not\in f(F) \}$$

Par définition, F^c est ouvert et par hypothèse, on sait que $f(F^c)$ l'est aussi. Cela implique que $f(F)^c$ est ouvert donc f(F) est fermé.

Prouvons ensuite que 2 implique 3. Posons $g = f^{-1}$ et $F \subseteq X$ fermé alors $g^{-1}(F) = f(F)$ qui est fermé par hypothèse. Ceci implique que g est continue. On trouve donc que f est f^{-1} sont réciproques et toutes les 2 continues ce qui implique que f est un homéomorphisme. \Box

Le fait que 3 implique 1 se déduit trivialement.

Sous-espaces topologiques

Cette section est motivée par le fait de vouloir construire des espaces topologiques à partir d'autres.

Lemme 3.2.1. Soit X un espace et, soit \mathcal{H} une collection de sous-ensembles de X. Alors, il existe une topologie unique $\tau_{\mathcal{H}}$ telle que

- 1. $\tau_{\mathcal{H}} \supseteq \mathcal{H}$.
- 2. Si τ est une topologie avec $\tau \supseteq \mathcal{H}$ alors $\tau \supseteq \tau_{\mathcal{H}}$.

DÉMONSTRATION. Prouvons d'abord l'unicité. Soit $\tau_{\mathcal{H}}$ et $\tau'_{\mathcal{H}}$ deux topologies qui satisfont les conditions. Puisque $\tau_{\mathcal{H}} \supseteq \mathcal{H}$, on a $\tau'_{\mathcal{H}} \subseteq \tau_{\mathcal{H}}$. En échangeant les rôles, on obtient $\tau_{\mathcal{H}} \subseteq \tau'_{\mathcal{H}}$. On en conclut que $\tau_{\mathcal{H}} \tau'_{\mathcal{H}}$. \square

Lemme 3.2.2. Soit A non-vide, $(X_{\alpha}, \tau_{\alpha})$ des espaces topologiques et $f_{\alpha}: X \to X_{\alpha}$ des applications avec $\alpha \in A$. Alors, il existe une plus petite topologie τ sur X pour laquelle f_{α} sont continues.

DÉMONSTRATION. Posons

$$\mathcal{H} = \left\{ f_{\alpha}^{-1}(U) \mid \alpha \in A, U \in \tau_{\alpha} \right\}$$

. On sait que les application f_{α} sont continues pour τ si $f_{\alpha}^{-1}(U) \in \tau$. Posons donc $\tau = \tau_{\mathcal{H}}$. Alors, on obtient que $\forall f_{\alpha}, \forall U \in \tau_{\alpha}, f_{\alpha}^{-1}(U) \in \tau_{\mathcal{H}}$, car $\mathcal{H} \subseteq \tau_{\mathcal{H}}$. De plus, tout $f_{\alpha}^{-1}(U) \in X$ donc $\tau_{\mathcal{H}}$ est une topologie sur X telle que $\forall \alpha \in A$, f_{α} est continue.

Si $Y \subseteq X$ alors l'application inclusion $j: Y \to X$ est définie par j(y) = y pour tout $y \in Y$.

Définition 3.2.3. Si (X, τ) est un espace topologique et $Y \subseteq X$, alors la topologie de sous-espace τ_Y sur Y induite par τ est la plus petite topologie sur Y pour laquelle l'application inclusion est continue. On dit alors que Y est un sous-espace topologique de X.

Caractérisons la topologie de sous-espace.

Lemme 3.2.4. Soit (X, τ) un espace topologique et $Y \subseteq X$. Alors la topologie de sous-espace τ_Y sur Y est

$$\tau_Y = \{ Y \cap U \mid U \in \tau \} .$$

DÉMONSTRATION. Posons

$$\theta = \{ Y \cap U \mid U \in \tau \} .$$

Puisque $j:(Y,\tau_Y)\to (X,\tau)$ est continue par hypothèse, on a que si $U\in\tau$ alors $j^{-1}(U)\in\tau_Y$. Or,

$$j^{-1}(U) = \{ y \in Y \mid j(y) \in U \}$$

= \{ y \in Y \ | y \in U \}
= Y \cap U \in \tau_Y.

Donc τ_Y est la plus petite topologie sur Y contenant θ . Montrer que θ est une topologie se fait trivialement.

3.3 Produits d'espaces topologiques

Définition 3.3.1. Si (X, τ) et (Y, σ) sont des espaces topologiques, alors la topologie produit μ sur $X \times Y$ est la plus petite topologie sur $X \times Y$ pour laquelle les applications de projections

$$\pi_X: X \times Y \longrightarrow X$$
$$(x,y) \longmapsto x$$

et

$$\pi_Y: X \times Y \longrightarrow Y$$
$$(x, y) \longmapsto y$$

sont continues.

Lemme 3.3.2. Soient (X, τ) et (Y, σ) des espaces topologiques et μ la topologie produit sur $X \times Y$. Alors

 $O \in \mu$ si et seulement si, pour $(x, y) \in O$ donnes, nous pouvons trouver $U \in \tau$ et $V \in \sigma$ tels que

$$(x,y) \in U \times V \subseteq O$$
.

Pour reconnaître des espaces comme homéomorphes à des produits dautres espaces, il sera utile davoir une description simple pour les applications vers les espaces produit.

Proposition 3.3.3. Soient $(X, \tau), (Y, \sigma)$ et (Z, ρ) des espaces topologiques. Une application continue $f: X \to Y \times Z$ correspond à une paire de fonctions continue $f_Y: X \to Y$ et $f_Z: X \to Z$.

DÉMONSTRATION.

Lemme 3.3.4. Soient τ_1 et τ_2 deux topologies sur le même espace X. Nous avons $\tau_1 \subseteq \tau_2$ si et seulement si, pour $x \in U \in \tau_1$ donné, nous pouvons trouver $V \in \tau_2$ tel que $x \in V \subseteq U$. Nous avons $\tau_1 = \tau_2$ si et seulement si, $\tau_1 \subseteq \tau_2$ et $\tau_2 \subseteq \tau_1$.

3.4 Topologie quotient

Si \sim est une relation d'équivalence sur un ensemble X, nous savons qu'elle donne l'origine a des classes d'équivalences

$$[x] = \{ y \in X \mid y \sim x \}.$$

Il existe une application naturelle q des X vers l'ensemble des classes d'équivalences X/\sim qui est donnée par q(x)=[x].

Lemme 3.4.1. Soit (X, τ) un espace topologique et Y un ensemble. Si $f: X \to Y$ est une application et nous écrivons

$$\sigma = \left\{ U \subseteq Y \mid f^{-1}(U) \in \tau \right\}$$

alors σ est une topologie sur Y telle que

- 1. $f: X \to Y$ est continue.
- 2. Si θ est une topologie sur Y avec $f:(X,\tau)\to (Y,\sigma)$ continue, alors $\theta\subseteq\sigma$.

DÉMONSTRATION. 1.???

- 2. Montrons que σ est une topologie.
 - 1. $f^{-1}(\emptyset) = \emptyset \in \tau \implies \emptyset \in \sigma$. Ensuite, $f^{-1}(X) = X \in \tau \implies X \in \sigma$.
 - 2. Si $\forall \alpha \in A, U_{\alpha} \in \sigma, f^{-1}(U_{\alpha}) \in \tau$ et donc

$$f^{-1}\left(\bigcup_{\alpha\in A}U_{\alpha}\right)=\bigcup_{\alpha\in A}f^{-1}\left(U_{\alpha}\right)\in\tau\implies\bigcup_{\alpha\in A}U_{\alpha}\in\sigma.$$

3. Si pour $j \in \{1, ..., n\}$, $U_i \in \sigma$ on a que $f^{-1}(U_i) \in \tau$. Donc,

$$f^{-1}\left(\bigcap_{j=1}^n U_j\right) = \bigcap_{j=1}^n f^{-1}(U_j) \in \tau \implies \bigcap_{j=1}^n U_j \in \sigma.$$

Définition 3.4.2. Soit (X, τ) un espace topologique et \sim une relation d'équivalence sur X. Écrivons q pour l'application de X vers l'espace X/\sim donnée par q(x)=[x]. La topologie quotient σ est la topologie la plus large sur X/\sim pour laquelle q est continue, c'est-à-dire

$$\sigma = \left\{ U \subseteq X / \sim \mid q^{-1}(U) \in \tau \right\}.$$

Lemme 3.4.3. En utilisant les suppositions et notations de la définition 3.4.2, la topologie quotient consiste à des ensembles *U* tels que

$$\bigcup_{[x]\in U}[x]\in\tau.$$

DÉMONSTRATION.

$$\sigma = \left\{ U \in X / \sim \mid q^{-1}(U) \in \tau \right\}$$

Effectuons le calcul

$$q^{-1}(U) = \{x \in X \mid [x] \in U\}$$

= $\bigcup_{[x] \in U} [x]$

Ceci implique que

$$\sigma = \left\{ U \in X / \sim |\bigcup_{[x] \in U} [x] \in \tau \right\}.$$

4 Espaces de Hausdorff

Définition 4.0.1. Un espace topologique (X, τ) est dit d'Hausdorff si $\forall x, y \in X$ avec $x \neq y$, il existe $U_x, U_y \in \tau$ tels que $x \in U_x, y \in U_y$ et $U_x \cap U_y = \emptyset$.

Une remarque importante à prendre en compte est que les espaces métriques sont Hausdorff. Si (X, d) est un espace métrique alors la topologie induite par cette métrique est Hausdorff.

Définition 4.0.2. Soit (X, τ) un espace topologique et $x \in U \in \tau$. On dit que U est un voisinage ouvert de x.

Lemme 4.0.3. Si (X, τ) est un espace topologique, alors un sous-ensemble $A \subseteq X$ est ouvert si et seulement si tout point de A a un voisinage ouvert $U \subseteq A$.

DÉMONSTRATION. Prouvons d'abord l'implication vers la droite. Si A est ouvert, c'est-à-dire $A \in \tau$ alors $\forall x \in A, x \in A \subseteq A$.

Traitons ensuite l'implication vers la gauche. Par hypothèse, $\forall x \in A$, x possède un voisinage ouvert $U_x \subseteq A$. Cela implique que

$$\bigcup_{x\in A}U_x\subseteq A.$$

Puisque tous les points de A admettent un voisinage ouvert, on sait aussi que

$$A\subseteq\bigcup_{x\in A}U_x.$$

On conclut que

$$A = \bigcup_{x \in A} U_x$$

Proposition 4.0.4. Si (X, τ) est un espace de Hausdorff alors les singletons $\{x\}$ sont fermés.

DÉMONSTRATION. Montrons que $A = X \setminus \{x\}$ est ouvert.

Soit $y \in A$, c'est-à-dire $y \neq x$. Par hypothèse, il existe $U, V \in \tau$ tels que $x \in U$, $y \in V$, et $U \cap V = \emptyset$. Puisque $x \notin V$, on sait que $\forall y \in A$, $y \in V \subseteq A$. On conclut par le lemme 4.0.3 que A est ouvert et donc que $X \setminus A = \{x\}$ est fermé.

Remarque. La réciproque de la proposition ?? est fausse.

Proposition 4.0.5. Soit (X, τ) un espace topologique. Si (X, τ) est Hausdorff alors $Y \subseteq X$ avec la topologie de sous-espace l'est aussi.

DÉMONSTRATION. Soit τ_Y la topologie de sous-espace de Y sur X. Soit $x,y \in Y$ tels que $x \neq y$. Alors $x,y \in X$. Par hypothèse, $\exists U, V \in \tau$ tels que $x \in U, y \in V$ et $U \cap V = \emptyset$.

Posons $\tilde{U} = U \cap Y$ et $\tilde{V} = V \cap Y$. Par définition de τ_Y , on sait que $\tilde{U}, \tilde{V} \in \tau_Y$. Puisque $x, y \in Y$, on sait que $x \in \tilde{U} \subseteq U$ et $y \in \tilde{V} \subseteq V$. En effectuant l'intersection

$$\tilde{V} \cap \tilde{U} = (Y \cap V) \cap (Y \cap U) = \emptyset$$

ce qui implique que (Y, τ_Y) est Hausdorff.

Proposition 4.0.6. Si (X, τ) et (Y, σ) sont des espaces d'Hausdorff alors $X \times Y$ avec la topologie produit l'est aussi.

DÉMONSTRATION. Soient $a,b \in X$ et $c,d \in Y$ tels que $(a,b) \neq (c,d)$. Si $a \neq c$ et $b \neq d$, $\exists U,V \in \tau$ tels que $a \in U$, $c \in V$ et $U \cap V = \emptyset$. De plus, $\exists \tilde{U}, \tilde{V} \in \sigma$ tels que $b \in \tilde{U}, d \in \tilde{V}$ et $\tilde{U} \cap \tilde{V} = \emptyset$.

Proposition 4.0.7. Soient (X, τ) et (Y, σ) des espaces topologiques. Si $f : X \to Y$ est continue et injective et Y est Hausdorff alors X l'est aussi.

DÉMONSTRATION. Soient $x,y\in X$ avec $x\neq y$. Puisque f est injective, on sait que $f(x)\neq f(y)$. Vu que Y est Hausdorff, $\exists U,V\in\sigma$ tels que $f(x)\in U$, $f(y)\in V$ et $U\cap V=\varnothing$. Par continuité de f, on a que $f^{-1}(U)$, $f^{-1}(V)\in\tau$. Comme f est injective, $f^{-1}(U)\cap f^{-1}(V)=\varnothing$ et vu que $x\in f^{-1}(U)$ et $y\in f^{-1}(V)$, l'espace (X,τ) est Hausdorff. \Box

Nous voyons que tout le sous-espace d'Hausdorff lest aussi. En particulier, tous les sous-espaces de \mathbb{R}^n sont Hausdorff! Néanmoins, il existe des espaces topologiques qui ne sont pas Hausdorff. La topologie indiscrète est un exemple simple, mais il y en a dautres.

5 Compacité

5.1 Espaces compactes

Définition 5.1.1. Un espace topologique (X, τ) est dit **compact** si, pour chaque collection $\{U_{\alpha}\}_{\alpha \in A}$ d'ensembles ouverts avec $\bigcup_{\alpha \in A} U_{\alpha} = X$, nous pouvons trouver une sous-collection finie $U_{\alpha(1)}, \ldots, U_{\alpha(n)}$ avec

$$\alpha(j) \in A \text{ et } 1 \leqslant j \leqslant n \text{ tel que } \bigcup_{j=1}^{n} U_{\alpha(j)} = X.$$

Nous disons que $\{U_{\alpha}\}_{{\alpha}\in A}$ tel que $\bigcup_{{\alpha}\in A}U_{\alpha}=X$ est un **recouvrement** de X (par des ouverts).

Par exemple, la droite réelle R n'est pas compacte, car le recouvrement de R par les ouverts

$$\{ |n, n+2[| n \in \mathbb{Z} \} \}$$

ne contient pas une sous-collection finie recouvrant \mathbb{R} .

Remarque. Tout espace *X* contenant un nombre fini de points est forcément compact, car dans ce cas tous les recouvrements de *X* sont finis.

Définition 5.1.2. Si (X, τ) est un espace topologique, alors un sous-ensemble $Y \subseteq X$ est dit compact si la topologie de sous-espace sur Y est compacte.

Lemme 5.1.3. Un sous-ensemble Y d'un espace topologique (X, τ) est dit compact si, pour chaque collection $\{U_{\alpha}\}_{\alpha \in A}$ d'ensembles ouverts avec $\bigcup_{\alpha \in A} U_{\alpha} \supseteq Y$, nous pouvons trouver une sous-collection finie

$$U_{\alpha(1)}, \ldots, U_{\alpha(n)}$$
 avec $\alpha(j) \in A$ et $1 \leqslant j \leqslant n$, tel que $\bigcup_{j=1}^{n} U_{\alpha(j)} \supseteq Y$.

DÉMONSTRATION. Si Y est compact, par définition, il existe une collection $\{V_{\alpha}\}_{\alpha \in A}$ telle que $V_{\alpha} \in \tau_{Y}$ pour tout $\alpha \in A$ avec

$$Y = \bigcup_{\alpha \in A} V_{\alpha}.$$

Vu que $V_{\alpha} \in \tau_{Y}$, $\exists U_{\alpha} \in \tau$ tel que $V_{\alpha} = Y \cap U_{\alpha}$. On sait que $V_{\alpha} \subseteq U_{\alpha}$ et donc la collection $\{U_{\alpha}\}_{\alpha \in A}$ est un recouvrement de Y dans X, c'est-à-dire

$$Y\subseteq\bigcup_{\alpha\in A}U_{\alpha}.$$

Puisque Y est compact, $\exists \alpha(1), \dots, \alpha(n) \in A$ tel que

$$Y = \bigcup_{i=1}^{n} V_{\alpha(i)} = \bigcup_{i=1}^{n} \left(Y \cap U_{\alpha(i)} \right).$$

Étant donné que pour $1 \le i \le n$, on a $Y \cap U_{\alpha(i)} \subseteq U_{\alpha(i)}$ et donc

$$Y = \bigcup_{i=1}^{n} (Y \cap U_{\alpha(i)}) \subseteq \bigcup_{i=1}^{n} U_{\alpha(i)}.$$

Ainsi, si Y est compact, pour tout recouvrement $\{U_{\alpha}\}_{\alpha \in A}$ de Y dans X, il existe un sous-recouvrement fini $\{U_{\alpha(i)}\}_{1 \leqslant i \leqslant n}$ de Y dans X.

L'idée est qu'un ensemble est compact si chaque fois qu'il est recouvert par des ouverts, il est recouvert par un nombre fini d'entre eux.

Nous disons quun sous-ensemble dun espace métrique est borné sil est contenu dans une boule ouverte avec un rayon fini.

Proposition 5.1.4. Soit \mathbb{R} muni de la topologie usuelle. L'intervalle fermé et borné [a,b] est compact.

DÉMONSTRATION. Si a = b le cas est trivial. Supposons a < b et prenons un recouvrement ouvert

$$[a,b]\subseteq\bigcup_{i\in I}\mathcal{U}_i.$$

On a en particulier que c'est un recouvrement de [a,x] pour tout $x \in [a,b]$. Posons S l'ensemble de tous les $x \in [a,b]$ tels que [a,x] admet un sous-recouvrement fini de $\bigcup_{i \in I} \mathcal{U}_i$. Il existe alors $i_0 \in I$ tel que $a \in \mathcal{U}_{i_0}$, donc $a \in S$. On déduit alors que S est un sous-ensemble non vide de \mathbb{R} borné par b. On peut poser

$$x_0 \coloneqq \sup S \in [a, b].$$

Ensuite, montrons par contradiction que $x_0 = b$. Supposons que $x_0 < b$ et notons que $x_0 > a$. En effet, il existe $i_0 \in I$ et $\varepsilon > 0$ tel que $[a, a + \varepsilon] \subseteq \mathcal{U}_{i_0}$, et donc $x_0 \geqslant a + \varepsilon$.

Prenons $i_0 \in I$ tel que $x_0 \in \mathcal{U}_{i_0}$ et $\varepsilon > 0$ tel que $a \leqslant x_0 - \varepsilon < x_0 < x_0 + \varepsilon \leqslant b$. Alors

$$[x_0 - \varepsilon, x_0 + \varepsilon] \subseteq \mathcal{U}_{i_0}$$
.

Puisque $x_0 - \varepsilon$ n'est pas un supremum de S, il existe $x_0 - \varepsilon \leqslant x_1 \leqslant x_0$ tel que $x_1 \in S$. De telle manière, l'intervalle $[a, x_1]$ admet un recouvrement fini, c'est-à-dire

$$[a,x_1]\subseteq\bigcup_{j=1}^n\mathcal{U}_{i_j}.$$

Mais alors, comme $x_0 - \varepsilon \leqslant x_1 \leqslant x_0$ et comme $[x_0 - \varepsilon, x_0 + \varepsilon] \subseteq U_{i_0}$, on a que

$$[a, x_0 + \varepsilon] \subseteq \bigcup_{j=1}^n U_{i_j} \cup U_{i_0}.$$

Il suit que $x_0 + \varepsilon \in S$ ce qui contredit $x_0 = \sup S$. Ainsi, $\sup S = b$ et un argument analogue montre que $b \in S$. Ceci implique qu'il existe un recouvrement fini

$$[a,b]\subseteq\bigcup_{j=1}^n\mathcal{U}_{i_j}.$$

Théorème 5.1.5 (Heine-Borel). Un sous-espace T de \mathbb{R}^n (muni de la topologie usuelle) est compact si et seulement s'il est fermé (comme un sous-ensemble) et borné.

Nous allons déduire la preuve de ce théorème comme conséquences de quelques théorèmes à suivre.

Théorème 5.1.6. Un sous-ensemble fermé d'un ensemble compact est compact. Plus précisément, soit (X, τ) un espace topologique. Si $E \subseteq X$ est compact et F est fermé dans une topologie donnée alors, si $F \subseteq E$ nous avons que F est aussi compact.

DÉMONSTRATION. Soit $\{\mathcal{U}_{\alpha}\}_{\alpha\in A}$ un recouvrement de F. Puisque $X\setminus F\in \tau$, on a que

$$\bigcup_{\alpha\in A}\mathcal{U}_{\alpha}\cup(X\setminus F)=X\supseteq E$$

qui est un recouvrement de *E*.

Vu que *E* est compact, ∃α(j) ∈ A avec 1 ≤ j ≤ n tels que

$$E\subseteq (X\setminus F)\cup \bigcup_{j=1}^n \mathcal{U}_{\alpha(j)}.$$

Comme $X \setminus F \cap F = \emptyset$ et $F \subseteq E$, on a

$$F\subseteq \bigcup_{j=1}^n \mathcal{U}_{\alpha(j)}$$

ce qui implique que F est compact.

La conséquence de ce théorème par rapport au théorème 5.1.5 est la suivante. Si $A \subseteq \mathbb{R}^n$ est fermé et borné, alors A est compact. La démonstration est assez simple. Comme A est borné,

$$A \subseteq B(0,R) \subseteq [-R,R]^n$$
.

Puisque $[-R, R]^n$ est compact, A est fermé et $A \subseteq [-R, R]^n$, on a que A est compact.

Proposition 5.1.7. Si $A \subseteq \mathbb{R}^n$ est compact, alors A est borné.

DÉMONSTRATION. Soit $A \subseteq \mathbb{R}^n$ compact, alors

$$A\subseteq\bigcup_{R>0}B(0,R)=\mathbb{R}^n.$$

Par compacité, $\exists R_1, \dots, R_n$ tel que

$$A \subseteq \bigcup_{i=1}^{n} B(0, R_i) = B(0, \bar{R}) \text{ avec } \bar{R} = \max R_i.$$

On déduit que A est borné.

La conséquence pour le théorème 5.1.5 est immédiate.

Théorème 5.1.8. Si (X, τ) est un espace d'Hausdorff, alors tout sous-ensemble $K \subseteq X$ compact est fermé.

DÉMONSTRATION. Soient $c \in K$ et $x \in X \setminus K$, alors $x \neq c$. Comme X est Hausdorff, $\exists U_x, U_c \in \tau$ tel que $x \in U_x, c \in U_c$ et $U_x \cap U_c = \varnothing$. Comme

 $K\subseteq\bigcup_{c\in K}\{c\}\subseteq\bigcup_{c\in K}U_c,$

on a que $\bigcup_{c \in K} U_c$ est un recouvrement ouvert de K. Par compacité de K, $\exists c(1), \ldots, c(n)$ tel que $\bigcup_{j=1}^{n} U_{c(j)}$ est un recouvrement fini de K.

Puisque $\forall x \in X \setminus K, U_x \cap U_c = \emptyset$, on a que

$$U_x \cap \bigcup_{j=1}^n U_{c(j)} = \varnothing$$

ce qui implique que $U_x \cap K = \emptyset$.

Comme $\forall x \in X \setminus K$, $\exists U_x$ avec $U_x \cap K = \emptyset$, x possède un voisinage ouvert : $x \in U_x \subseteq X \setminus K$. Ceci implique que $X \setminus K$ est ouvert donc K est fermé.

La conséquence par rapport au théorème 5.1.5 est la suivante : Si $A \subseteq \mathbb{R}^n$ est compact, alors A est fermé. La démonstration est la suivante. Puisque \mathbb{R}^n muni de la topologie usuelle est Hausdorff et étant donné que A est compact, on a par le théorème précédent que A est fermé.

Théorème 5.1.9. Soient (X, τ) et (Y, σ) des espaces topologiques et $f: X \to Y$ une fonction continue. Si K est un sous-ensemble compact de X alors f(K) est un sous-ensemble compact de Y.

DÉMONSTRATION. Soit A un ensemble et soient $U_{\alpha} \in \sigma$ avec $\alpha \in A$ tels que

$$f(K)\subseteq\bigcup_{\alpha\in A}U_{\alpha}.$$

Alors

$$\bigcup_{\alpha \in A} f^{-1}(U_{\alpha}) = f^{-1}\left(\bigcup_{\alpha \in A} U_{\alpha}\right) \supseteq K.$$

Par continuité de f,

$$f^{-1}\left(\bigcup_{\alpha\in A}U_{\alpha}\right)\in\tau.$$

Par compacité de K, $\exists \alpha(1), \dots, \alpha(n) \in A$ tels que

$$K\subseteq \bigcup_{j=1}^n f^{-1}(U_{\alpha(j)})\in \tau.$$

Donc,

$$\bigcup_{j=1}^n U_{\alpha(j)} \supseteq f\left(f^{-1}\left(\bigcup_{j=1}^n U_{\alpha(j)}\right)\right) \supseteq K.$$

Ceci implique que f(K) est compact.

Corollaire 5.1.10 (Propriété topologique). Si (X, τ) et (Y, σ) sont homéomorphes, alors (X, τ) est compact si et seulement si (Y, σ) l'est aussi.

П

DÉMONSTRATION. Il existe $f: X \to Y$ continue et bijective, avec y = f(x) et $x = f^{-1}(y)$. Par le théorème précédent, si X est compact alors Y est compact et si Y est compact alors X est compact.

Le théorème 5.1.9 nous donne une propriété agréable pour la topologie quotient.

Corollaire 5.1.11. Soit (X, τ) un espace topologique compact et \sim une relation d'équivalence sur X. Alors la topologie quotient X/\sim est compacte.

DÉMONSTRATION. Par définition d'espace topologique quotient,

$$q: X \longrightarrow X/ \sim x \longmapsto [x]$$

est continue donc la preuve découle du théorème 5.1.9.

Théorème 5.1.12. Soit (X, τ) un espace topologique compact et (Y, σ) un espace topologique d'Hausdorff. Si $f: X \to Y$ est une bijection continue, alors f est un homéomorphisme.

DÉMONSTRATION. Par bijectivité de f on a que, pour $U \in \tau$,

$$\left(f^{-1}\right)^{-1}(U) = f(U) = Y \setminus f(X \setminus U).$$

Comme X est compact, $X \setminus U$ est compact car fermé.

Comme Y est Hausdorff, $f(X \setminus U)$ est fermé car compact.

Il suit que f(U) est ouvert ce qui implique que f^{-1} est continue et donc f est un homéomorphisme.

Lemme 5.1.13. Soient τ_1 et τ_2 des topologies sur un ensemble X. L'application identité

$$\operatorname{Id}:(X,\tau_1)\longrightarrow(X,\tau_2),$$

donnée par $\mathrm{Id}(x) = x$ est continue si et seulement si $\tau_1 \supseteq \tau_2$.

DÉMONSTRATION. Montrons d'abord l'implication vers la droite. Soit $U \in \tau_2$. Par continuité de Id, on sait que $\mathrm{Id}^{-1}(U) = U \in \tau_2$ donc $\tau_2 \subseteq \tau_1$.

Pour l'implication vers la gauche, supposons que $\tau_2 \subseteq \tau_1$. Comme $\forall U \in \tau_2$, on a que $U \in \tau_1$, donc

$$\mathrm{Id}^{-1}(U)=U\in\tau_1,$$

ce qui implique que Id est continue.

Théorème 5.1.14. Soient τ_1 et τ_2 des topologies sur le même ensemble X.

- 1. Si $\tau_1 \supseteq \tau_2$ et τ_1 est compact, alors τ_2 l'est aussi.
- 2. Si $\tau_1 \supseteq \tau_2$ et τ_2 est Hausdorff, alors τ_1 l'est aussi.

3. Si $\tau_1 \supseteq \tau_2$ et τ_1 est compact et τ_2 est Hausdorff, alors $\tau_1 = \tau_2$.

DÉMONSTRATION. 1. Comme $\tau_1 \supseteq \tau_2$, par le théorème 5.1.13 on sait que $\mathrm{Id}: (X, \tau_1) \to (X, \tau_2)$ est continue. De plus, par le théorème 5.1.9, puisque τ_1 est compact, $\forall U \in \tau_1$, $\mathrm{Id}(U) = U \in \tau_2$ est compact. Donc, $\forall U \in \tau_2$, U est compact donc (X, τ_2) est compact.

2. Comme $\tau_1 \supseteq \tau_2$ et τ_2 est Hausdorff, $\forall x, y \in X, \exists U, V \in \tau_2$ tels que $x \in U, y \in V$ et $U \cap V = \emptyset$. Comme Id est continue

$$\mathrm{Id}^{-1}(U \in \tau_2) = U \in \tau_1 \ \text{et} \ \mathrm{Id}^{-1}(V \in \tau_2) = V \in \tau_1.$$

On a donc que $x \in U, y \in V$ et $U \cap V = \emptyset$ avec $U, V \in \tau_1$ ce qui implique que (X, τ_1) est Hausdorff. 3. Comme $\tau_1 \supseteq \tau_2$, l'application $\mathrm{Id}: (X, \tau_1) \to (X, \tau_2)$ est continue. Par le théorème 5.1.12 on sait aussi que Id est un homéomorphisme donc $\mathrm{Id}^{-1}: (X, \tau_2) \to (X, \tau_1)$ est continue. Ainsi,

$$\forall U \in \tau_1, \left(\operatorname{Id}^{-1} \right)^{-1} (U) = U \in \tau_2$$

donc $\tau_1 \subseteq \tau_2$. Comme $\tau_1 \subseteq \tau_2$ et $\tau_1 \supseteq \tau_2$, on a que $\tau_1 = \tau_2$.

5.2 Produits d'espaces compacts

Théorème 5.2.1 (Tychonoff). Le produit d'espaces compacts est compact.

Le theoreme signifie que si (X, τ) et (Y, σ) sont des espaces topologiques compacts et μ est la topologie produit alors $(X \times Y, \mu)$ est compact.

Théorème 5.2.2. Soient (X, τ) et (Y, σ) des espaces topologiques compacts et soit μ la topologie produit. Si $K \subseteq X$ et $L \subseteq Y$ sont compacts alors $K \times L$ est compact dans μ .

DÉMONSTRATION. Établissons d'abord les hypothèses.

K est compact sur τ si et seulement si pour tout $\{U_{\alpha}\}_{{\alpha}\in A}$ avec $U_{\alpha}\in \tau$ et $K\subseteq \bigcup_{{\alpha}\in A}U_{\alpha}$, il existe $\alpha(j)\in A$, $1\leqslant j\leqslant n$ tel que

$$\bigcup_{\alpha(j)\in A}U_{\alpha(j)}\supseteq K.$$

De manière similaire, L est compact sur σ si et seulement si pour tout $\{V_{\beta}\}_{\beta \in B}$ avec $V_{\beta} \in \tau$ et $L \subseteq \bigcup_{\beta \in B} V_{\beta}$, il existe $\beta(j) \in B$, $1 \le j \le n$ tel que

$$\bigcup_{\beta(j)\in B}V_{\beta(j)}\supseteq L.$$

5.3 Compacité dans les espaces metriques

Nous disons qu'un espace métrique est compact si la topologie induite par la métrique est compacte.

Définition 5.3.1. Un espace métrique (X, d) est dit **séquentiellement compact** si toute suite sur X possède au moins une sous-suite convergente.

Par exemple, [a, b] muni de la topologie usuelle avec $a, b \in \mathbb{R}$ est séquentiellement compact.

]0,1] n'est pas séquentiellement compact. Prenons la suite $\left(\frac{1}{2^n}\right)_{n\in\mathbb{N}}$. La limite de cette suite n'est pas dans X.

 \mathbb{R} n'est pas séquentiellement compact, car la suite $(n)_{n\in\mathbb{N}}$ ne possède pas de sous-suite convergente.

Théorème 5.3.2. Un espace métrique est compact si et seulement s'il est séquentiellement compact.

DÉMONSTRATION. Commençons par l'implication vers la droite. Supposons (X,d) un espace métrique compact et $(x_n)_{n\in\mathbb{N}}$ une suite dans X. Supposons par l'absurde que (X,d) n'est pas séquentiellement compact. Donc, $(x_n)_{n\in\mathbb{N}}$ n'admet pas de sous-suite convergente (cette suite est donc elle-même pas convergente). Alors, $\forall x \in X, \exists \delta(x) > 0$ et $N(x) \in \mathbb{N}$ tel que si $n \geqslant N(x)$, on a que

$$x_n \notin B(x, \delta(x)).$$

Remarquons que $x \in B(x, \delta(x))$ donc

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} B(x, \delta(x)).$$

Cette dernière union est un recouvrement ouvert de X, et comme X est compact par hypothèse, il existe $x(1), \ldots, x(n)$ tel que

$$X \subseteq \bigcup_{i=1}^{n} B(x(i), \delta(x(i))).$$

Si $n \geqslant \max_{1 \leqslant i \leqslant n} N(i)$, alors on a que

$$x_n \notin B(x(i), N(i)) \quad \forall i \in \{1, \dots, n\}.$$

Donc, comme $x_n \in X$ et

$$x_n \notin \bigcup_{i=1}^n B(x(i), \delta(x(i)))$$

C'est une contradiction, car l'union ci-dessus est un recouvrement de *X* par construction.

Pour la réciproque de ce théorème, nous allons passer par un lemme intermédiaire.

Lemme 5.3.3. Supposons que (X, d) est un espace métrique séquentiellement compact et que la collection $\{U_{\alpha}\}_{\alpha \in A}$ est un recouvrement ouvert de X. Alors, il existe un $\delta > 0$ tel que, pour chaque $x \in X$ donnée, il existe $\alpha(x) \in A$ tel que $B(x, \delta) \subseteq U_{\alpha(x)}$.

DÉMONSTRATION. Supposons par l'absurde que l'affirmation est fausse. Alors, $\forall n \in \mathbb{N}, \exists x_n \in X$ tel que $\forall \alpha(x) \in A, B(x_n, 2^{-n}) \not\subseteq U_{\alpha(x)}$. Par hypothèse, X est séquentiellement compact donc $(x_n)_{n \in \mathbb{N}}$ a une soussuite convergente dans X. Ceci équivaut à écrire que $\exists x_* \in X$ et $(n_l)_{l \in \mathbb{N}}$ strictement croissant telle que

$$\lim_{l\to\infty}d(x_{n_l},x_*)=0.$$

Comme $x_* \in X$, par hypothèse, il existe $\alpha(x_*) \in A$ tel que $x_* \subseteq U_{\alpha(x_*)}$ car $\{U_{\alpha}\}_{\alpha \in A}$ est un recouvrement de X. Comme on est dans un espace métrique, $\exists \delta_* > 0$ tel que $B(x_*, \delta_*) \subseteq U_{\alpha(x_*)}$.

Puisque $(x_{n_l})_{l\in\mathbb{N}}$ converge vers x_* , nous pouvons prendre $l\in\mathbb{N}$ tel que $d(x_{n_l},x_*)<\frac{\delta_*}{2}$ et tel que $2^{-n_l}\leqslant\frac{\delta_*}{2}$. Nous avons que $B(x_{n_l},2^{-n_l})\subseteq B(x_*,\delta_*)$ parce que $\forall x\in B(x_{n_l},2^{-n_l})$,

$$d(x, x_*) \leq d(x, x_{n_l}) + d(x_{n_l}, x_*)$$

$$\leq 2^{-n_l} + \frac{\delta_*}{2}$$

$$\leq \frac{\delta_*}{2} + \frac{\delta_*}{2} = \delta_*.$$

On a que $B(x_{n_l}, 2^{-n_l}) \subseteq B(x_*, \delta_*) \subseteq U_{\alpha(x_*)}$. Cela mène à une contradiction et achevé la preuve.

Reprenons la preuve du théorème précédent.

Proposition 5.3.4. Si l'espace métrique (X, d) est séquentiellement compact, alors il est compact.

DÉMONSTRATION. Soit $\{U_{\alpha}\}_{\alpha\in A}$ un recouvrement quelconque de X. Par le lemme ci-dessus, il existe $\delta>0$ tel que $\forall x \in X$, $\exists \alpha(x) \in A$ tel que $B(x, \delta) \subseteq U_{\alpha(x)}$ car nous supposons (X, d) séquentiellement compact. Montrons qu'il existe un ensemble $S \subset X$ tel que

$$X = \bigcup_{s \in S} B(s, \delta).$$

Supposons par l'absurde que cela est faux : soit $x_0 \in X$. Choisissons x_1 tel que $x_1 \in X \setminus B(x_0, \delta)$. De même, $x_{n+1} \in X \setminus \bigcup_{i=1}^n B(x_i, \delta)$. Ceci constitue une suite $(x_n)_{n \in \mathbb{N}}$, et par hypothèse de compacité séquentielle, il existe une sous-suite convergente de $(x_n)_{n\in\mathbb{N}}$. Or, ceci est une contradiction, car $d(x_j,x_k)>\varepsilon \forall j \ k$. Ainsi, il existe $S \subset X$ fini tel que

$$X = \bigcup_{s \in S} B(s, \delta).$$

Puisque $\forall s \in S, \exists \alpha(s) \in A$ tel que $B(s, \delta) \subseteq U_{\alpha(s)}$, on a que

$$X \subseteq \bigcup_{s \in S} B(s, \delta) \subseteq \bigcup_{s \in S} U_{\alpha(s)}.$$

Et comme S est un ensemble fini, on a bien que $\{U_{\alpha(s)}\}_{\alpha(s)\in A}$ est un sous-recouvrement fini. (X,d) est donc compact.

6 Connexité

Espaces connexes

Définition 6.1.1. Un espace topologique (Y, σ) est dit **disconnexe** si nous pouvons trouver des ensembles ouverts non-vides U et V tels que $U \cup V = Y$ et $U \cap V = \emptyset$. Un espace qui n'est pas disconnexe est connexe.

Définition 6.1.2. Si E est un sous-ensemble d'un espace topologique (X, τ) , alors E est dit connexe (resp. disconnexe) si la topologie de sous-espace sur *E* est connexe (resp. disconnexe).

Lemme 6.1.3. Si E est un sous-ensemble d'un espace topologique (X, τ) , alors E est disconnexe si et seulement si nous pouvons trouver des ensembles ouverts U et V tels que $U \cup V \supseteq E$, $U \cap V \cap E = \emptyset$, $U \cap E \neq \emptyset$ et $V \cap E \neq \emptyset$.

Par exemple, (X, τ_{ind}) est clairement connexe, car si $U, V \in \tau_{\text{ind}}$ avec $U \cup V = X$ et $U \cap V = \emptyset$ alors forcement un des deux ensembles est le vide.

Théorème 6.1.4. Soit (X, τ) un espace topologique. S'il est connexe et $f: X \to Y$ est une fonction continue, alors f(X) est connexe.

Démonstration. Démontrons la contraposée : si $f: X \to Y$ est continue et f(X) disconnexe, alors X est disconnexe.

Par définition de disconnexité, $\exists U, V \in \tau$ tel que $f(X) \subseteq U \cup V$, $U \cap V \cap f(X) = \emptyset$, $U \cap f(X) \neq \emptyset$ et

On a que $f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V) \supseteq f^{-1}(f(X)) \supseteq X$ donc $X \subseteq f^{-1}(U) \cup f^{-1}(V)$. Par continuité de f, on sait que $f^{-1}(U), f^{-1}(V) \in \tau$. Comme $U \cap f(X) \neq \emptyset$, $\exists x \in X$ tel que $f(x) \in U$ ce qui implique $X \cap f^{-1}(U) \neq \emptyset$. De manière analogue, $X \cap f^{-1}(V) \neq \emptyset$.

Si $x \in f^{-1}(U) \cap f^{-1}(V) \cap f^{-1}(f^{-1}(X))$, alors on trouve que

$$f(x) \in f\left(f^{-1}(U) \cap f^{-1}(V) \cap f^{-1}(f(X))\right)$$

$$\subseteq f(f^{-1}(U)) \cap f(f^{-1}(V)) \cap f(f^{-1}(f(X)))$$

$$\subseteq U \cap V \cap f(X).$$

Or, ceci est impossible par hypothèse, car $U \cap V \cap f(X) = \emptyset$. Donc, $f^{-1}(U) \cap f^{-1}(V) \cap X = \emptyset$ ce qu'implique que X est disconnexe.

Lemme 6.1.5. Soit (X, τ) un espace topologique et A un ensemble. Soit Δ la topologie discrete sur A. Soit $f: X \to A$ une fonction. Les affirmations suivantes sont equivalentes.

- 1. Si $x \in X$ alors nous pouvons trouver un $U \in \tau$ avec $x \in U$ tel que f est constante sur U.
- 2. Si $x \in A$, alors $f^{-1}(\{x\}) \in \tau$.
- 3. L'application $f:(X,\tau)\to (A,\Delta)$ est continue.

DÉMONSTRATION. Prouvons que l'affirmation 1 implique la 2. Soit $y \in A$ et posons $U = f^{-1}(\{y\})$. Alors par hypothèse, $\forall x \in U$, $\exists U_x \in \tau$ tel que $x \in U_x$ et $f \upharpoonright_{U_x}$ est constante. Comme $\forall x \in U$, $U_x \subseteq U$, on a que

$$\bigcup_{x\in U}U_x\subseteq U.$$

De plus,

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} U_x.$$

Donc $U = \bigcup_{x \in U} U_x$, et comme tout $U_x \in \tau$, il suit que $U \in \tau$.

Définition 6.1.6. Si les conditions du lemme 6.1.5 sont respectées, nous disons que f est localement constante.

Théorème 6.1.7. Si A contient au moins deux points, alors un espace topologique (X, τ) est connexe si et seulement si toute fonction localement constante $f: X \to A$ est constante.

DÉMONSTRATION. Prouvons d'abord l'implication vers la droite. Supposons (X, τ) connexe et $f: (X, \tau) \to (A, \Delta)$ continue. Comme Δ est la topologie indiscrète, pour $t \in X$, on a que $\{f(t)\}$, $A \setminus \{f(t)\} \in \Delta$ et donc

$$U = \{x \in X \mid f(x) = f(t)\} = f^{-1}(\{f(t)\})$$
$$V = \{x \in X \mid f(x) \neq f(t)\} = f^{-1}(A \setminus \{f(t)\})$$

sont ouverts. Comme $U \cap V = \emptyset$, $U \cup V = X$ et X connexe, on a que $V = \emptyset$ et U = X et donc f est constante par le lemme précédent.

Ensuite, montrons l'implication vers la gauche. Prouvons la contraposée : si X est disconnexe, alors f : $X \to A$ localement constante n'est pas constante.

Comme (X, τ) est disconnexe, $\exists U, V \in \tau$ tel que $U \cap V = \emptyset$, $U \cup V = X$ et $U, V \neq \emptyset$. Choisissons $a, b \in A$, $a \neq b$ et on pose

$$f(x) = \begin{cases} a & \text{si } x \in U \\ b & \text{si } x \in V \end{cases}$$

Nous obtenons alors une fonction continue, localement constante mais pas constante.

Corollaire 6.1.8.

1. Un espace topologique (X, τ) est connexe si et seulement si toute fonction continue a valeurs entieres $f: X \to \mathbb{R}$ est constante.

2. Un espace topologique (X, τ) est connexe si et seulement si toute fonction continue $f: X \to \mathbb{R}$ a valeurs dans $\{0,1\}$ est constante.

Ce corollaire est tout simplement un cas particuklier du theoreme precedent.

Lemme 6.1.9. Considérons un espace topologique (X, τ) .

- 1. Soit $x_0 \in X$. Si $x_0 \in E_\alpha$ et E_α est connexe pour tout $\alpha \in A$, alors $\bigcup_{\alpha \in A} E_\alpha$ est connexe.
- 2. Définissons $x \sim y$ s'il existe un ensemble connexe E tel que $x,y \in E$. Alors \sim est une relation d'équivalence.
- 3. Les classes d'équivalences [x] sont connexes.
- 4. Si *F* est connexe et $F \supseteq [x]$ alors F = [x].

DÉMONSTRATION. 1. Soit $U, V \in \tau$ tels que $U \cup V \supseteq \bigcup_{\alpha \in A} E_{\alpha}$ et $U \cap V \cap \left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \varnothing$. Sans perte de généralité, supposons $x_0 \in U$. Alors, $\forall \alpha \in A, E_{\alpha} \cap V = \varnothing$ car E_{α} est connexe. Donc $\left(\bigcup_{\alpha \in A} E_{\alpha}\right) \cap V = \bigcup_{\alpha \in A} (E_{\alpha} \cap V) = \varnothing$. L'ensemble $\bigcup_{\alpha \in A} E_{\alpha}$ est connexe.

- 2. Montrons la réflexivité. Posons $U, V \in \tau$ tels que $\{x\} \subseteq U \cup V$ et $U \cap V \cap \{x\} = \emptyset$. Alors,
 - Soit $x \notin U$, donc $\{x\} \cap U = \emptyset$ ce qu'implique que $\{x\}$ est connexe.
 - Soit $x \notin V$, donc $\{x\} \cap V = \emptyset$ ce qu'implique que $\{x\}$ est connexe.

donc $x \sim x$ car $\{x\}$ est connexe.

Montrons la symétrie. Si $x \sim y$ alors il existe E connexe tel que $x,y \in E$. Trivialement, $y,x \in E$ donc $y \sim x$. Montrons la transitivité. Si $x \sim y$ alors il existe E connexe tel que $x,y \in E$. De manière analogue, si $y \sim z$ alors, il existe E' connexe tel que $y,z \in E'$. Par le point 1 de ce lemme, comme $y \in E$ et $y \in E'$, on sait que $E \cup E'$ est connexe. Donc $x \sim z$ car $x,z \in E \cup E'$ qui est connexe.

3. Si $y \in [x]$, alors il existe un ensemble E_y connexe tel que $x, y \in E_y$. Par définition, $[x] \supseteq E_y$ ce qu'implique

$$[x] = \bigcup_{y \in [x]} \{y\} \subseteq \bigcup_{y \in [x]} E_y \subseteq [x].$$

C'est-à-dire, $[x] = \bigcup_{y \in [x]} E_y$. Comme $x \in E_y$, $\forall y \in [x]$, par 1. nous savons que [x] est connexe.

4. Si F est connexe et $[x] \subseteq F$ alors $\forall f \in F, f \sim x$. Donc $f \in [x]$. Ainsi, $F \subseteq [x]$ et donc [x] = F qui est connexe.

Les ensembles [x] sont appelées les composantes connexes de (X, τ) .

6.2 Espaces connexes par arcs

Définition 6.2.1. Soit (X, τ) un espace topologique. Nous disons que $x, y \in X$ sont relié par un chemin s'il existe une fonction continue $\gamma : [0,1] \to X$ telle que $\gamma(0) = x$ et $\gamma(1) = y$. γ est un chemin de x vers y.

Dans la définition, [0, 1] est muni de la topologie usuelle.

Lemme 6.2.2. Si (X, τ) est un espace topologique et si nous écrivons $x \sim y$ si x est relié à y par un chemin, alors \sim est une relation d'équivalence.

DÉMONSTRATION. Montrons la réflexivité. Si $x \in X$, on pose pour $t \in [0,1]$, $\gamma(t) = x$. Ainsi, $\gamma(0) = \gamma(1) = x$ est continue. Donc $x \sim x$.

Montrons la symétrie. Si $x \sim y$, $\exists \gamma : [0,1] \to X$ continue telle que $\gamma(0) = x$ et $\gamma(1) = y$. On pose $\tilde{\gamma}(t) = \gamma(1-t) \forall t \in [0,1]$. La fonction $\tilde{\gamma}$ est clairement continue car c'est la composée de fonctions continues et $\tilde{\gamma}(0) = \gamma(1) = y$ et $\gamma(1) = \gamma(0) = x$ donc $y \sim x$.

Montrons la transitivité. Si $x \sim y$ et $y \sim z$, il existe $\gamma_1, \gamma_2 : [0,1] \to X$ tel que $\gamma_1(0) = x, \gamma_1(1) = y, \gamma_2(0) = y$

FIGURE 2 – Chemin γ reliant x à y

et $\gamma_2(1) = z$. Posons $\gamma : [0,1] \to X$ telle que

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{si } t \in [0, \frac{1}{2}] \\ \gamma_2(2t - 1) & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

Soit $U \subseteq X$ ouvert. Alors

$$\gamma^{-1}(U) = \left\{ \frac{t}{2} \left| t \in \gamma_1^{-1}(U) \right\} \cup \left\{ \frac{1+t}{2} \left| t \in \gamma_2^{-1}(U) \right\} \right.$$

est ouvert donc γ est continue. Comme $\gamma(0) = x$ et $\gamma(1) = z$, $x \sim z$.

Définissons maintenant la connexité par arc.

Définition 6.2.3. Un espace topologique (X, τ) est connexe par arcs si deux points quelconques de X peuvent toujours être reliés par un chemin.

Par exemple, l'espace euclidien \mathbb{R}^n est connexe par arcs. En effet, pour $x, y \in \mathbb{R}^n$,

$$\gamma(t) = (1-t)x + ty$$

est un chemin de x à y.

Théorème 6.2.4. Si un espace topologique est connexe par arcs alors, il est connexe.

DÉMONSTRATION. Soit (X, τ) un espace topologique connexe par arcs et $U, V \in \tau$ tels que $U \cap V = \emptyset$ et $U \cup V = X$. Si U n'est pas vide, choisissons $x \in U$. Si $y \in X$, il existe $f : [0,1] \to X$ continue telle que f(0) = x et f(1) = y. Comme f est continue et [0,1] est connexe, on sait par un théorème précédent que f([0,1]) est connexe. Comme

$$U \cap V \cap f([0,1]) = \emptyset$$
$$U \cup V \supseteq f([0,1])$$
$$U \cap f([0,1]) \neq \emptyset$$

Vu que f([0,1]) est connexe, on sait que $U\supseteq f([0,1])$ ce qu'implique que $y\in Y$. Donc U=X, $V=\varnothing$ ce

qu'implique que (X, τ) est connexe.

Une conséquence directe de ce théorème est que \mathbb{R}^n est connexe.

Théorème 6.2.5. Considérons \mathbb{R}^n muni de la topologie usuelle. Alors tout sous-ensemble ouvert Ω de \mathbb{R}^n connexe est connexe par arcs.

DÉMONSTRATION. Supposons que $\Omega \neq \varnothing$ et prenons $x \in \Omega$. Soient

$$U = \{ w \in \Omega \mid w \text{ relié à } x \text{ par un chemin} \} \subseteq \Omega$$

 $V = \{ w' \in \Omega \mid w' \text{ pas relié à } x \text{ par un chemin} \} \subseteq \Omega.$

Supposons $u \in \Omega$. Comme Ω est ouvert, il existe $B(u, \delta)$ avec $\delta > 0$ telle que $B(u, \delta) \subseteq \Omega$. Si $y \in B(u, \delta)$ alors u est relié à y par un chemin. Il suffit de prendre $\gamma(t) = (1-t)y + tu$. Comme $x \sim u$ et $u \sim y$, par transitivité, on sait que $x \sim y$ et donc $y \in U$. Cela implique que $B(u, \delta) \subseteq U$.

Supposons que $v \in V$. Comme Ω est ouvert, il existe $B(v, \delta)$ avec $\delta > 0$ telle que $B(v, \delta) \subseteq \Omega$. Si $y \in Bvu, \delta$ alors v est relié à y par un chemin. Si $y \sim x$, alors v l'est aussi.

Puisque $U \cup V = \hat{\Omega}$, $U \cap V = \emptyset$. De plus, Ω est connexe donc $U = \Omega$, car $x \in U$ et donc $V = \emptyset$. Tout ça implique que Ω est connexe par arcs.