УПРАЖНЕНИЯ^і

по дисциплината

"Компютърни мрежи и комуникации"

Лектор: проф. д-р Ганчев ФМИ, ПУ "П. Хилендарски" 27.08.2020 г.

2. IPv4 адресация

Име на студента:	Фак. №	

Цели

- · Изучаване на петте IPv4 адресни класа;
- Описание на характеристиките и използването на отделните IPv4 адресни класове;
- · Определяне на класа на *IPv4* адрес на база на мрежовия адрес;
- · Определяне на NetID и HostID частите на IPv4 адрес;
- · Идентифициране на валидни и невалидни адреси на хостове въз основа на правилата за *IPv4* адресиране;
- · Определяне на диапазона от адреси и стандартната мрежова маска (по подразбиране) за всеки клас.

Обща информация

IP адресите се използват за уникално и универсално адресиране на крайни мрежови възли (хостове, *hosts*) и междинни мрежови възли (маршрутизатори, *routers*) в *IP* мрежи и Интернет. По-точно *IP* адрес се задава на всеки *IP* мрежов интерфейс, т.е. ако един мрежов възел разполага с два такива интерфейса, той ще има два различни адреса — по един за всеки интерфейс! За да може един хост да има достъп до Интернет, той трябва да има назначен поне един *IP* адрес. В момента се използват два вида *IP* адреси: *IPv4* (с 4. версия на протокола *IP*) и *IPv6* (с 6. версия на протокола *IP*), като първият е по-широко използван от втория.

IPv4 адресите се състоят от 32 бита (4 байта). Задават се в двоичен вид (binary notation) или в точков десетичен вид (dotted decimal notation). Например:

_

^і По материали на Cisco и Forouzan

IPv4 адресите се използват в мрежовия слой на *TCP/IP* модела и се назначават статично (ръчно) от мрежовия администратор или динамично (автоматично) от *DHCP* сървър (*Dynamic Host Configuration Protocol*). *IPv4* адресът е "логически адрес", което означава, че може да се променя.

В основната си форма IPv4 адресът се състои от две части: идентификатор на мрежата (NetID) и идентификатор на хоста (HostID). Маршрутизаторите в Интернет (т.е. външните маршрутизатори за мрежата-получател) използват IPv4 адреса на хоста-получател (по-точно само неговата NetID част), за да насочват IP пакети към него (по-точно към мрежата-получател, към която той принадлежи). HostID частта се използва от вътрешните маршрутизатори (т.е. маршрутизаторите на мрежата-получател) за доставка на пакети към съответния хост-получател.

За да отделят *NetID* частта от адреса, външните маршрутизатори прилагат операцията "логическо И" (*AND*) спрямо него и т. нар. мрежова маска (по подразбиране), която съдържа двоични единици в *NetID* частта и двоични нули в *HostID* частта:

За всеки адресен клас се използва отделна мрежова маска (по подразбиране), както следва:

Хостовете и маршрутизаторите използват операцията "логическо И" (AND) за определяне на това дали хостът-получател е в същата *IPv4* мрежа или не. В началото хостът-подател сравнява (чрез *AND*) собствения си *IPv4* адрес с мрежовата маска (с която е конфигуриран), за да определи/идентифицира *IPv4* мрежата, в която се намира. След това прави същото с адреса на хоста-получател, за да определи дали той е в същата или в друга *IPv4* мрежа. Ако *IPv4* мрежата е една и съща, двамата ще комуникират директно. Ако *IPv4* мрежите са различни, хостовете ще трябва да комуникират индиректно чрез маршрутизатор/и, ако той/те им позволят.

Стъпка 1: Общ преглед на *IPv4* адресните класове и техните характеристики

Съществуват 5 различни *IPv4* адресни класа. В зависимост от класа на адреса неговите *NetID* и *HostID* части се състоят от различен брой байтове – съответно 1 и 3 байта; 2 и 2 байта; 3 и 1 байта за класове А; В; С. При класове D и E няма разделяне на *NetID* и *HostID* части. Класове А, В, С са за комуникация тип "един към един" (*unicast*). Клас D е за групово предаване (*multicast*), като всеки адрес от този клас дефинира отделна група. Клас E е запазен за научни изследвания и експериментиране.

NetID или *HostID* частта на *IPv4* адрес на хост/маршрутизатор не могат да се състоят изцяло само от двоични единици или само от двоични нули, защото тези комбинации се използват за специални цели. Например, *IPv4* адресът 118.0.0.5 (от клас A) е валиден адрес, тъй като *NetID* частта (първият байт) има значение 118_{10} (= 1110110_2) и не всичките от трите байта на *HostID* частта съдържат нули. Ако *HostID* частта се състоеше само от нули, то това би било специален адрес, който се използва за идентифициране на самата мрежа. Ако *HostID* частта съдържаше само двоични единици, то това би било друг специален адрес (директен *broadcast* адрес), който се използва (например, от локален маршрутизатор) за изпращане на съобщение до всички възли в мрежата. Значението/стойността на всеки един байт в *IPv4* адресите никога не може да бъде по-голямо/а от 255_{10} (=111111112).

Class	1st Octet Decimal Range	1st Octet High Order Bits	Network / Host ID (N=Network, H=Host)	Default Mask	Number of Address Blocks	Hosts per Network (usable addresses)
A	1 – 126*	0	N.H.H.H	255.0.0.0	27 = 128	16,777,214 (2 ²⁴ – 2)
В	128 - 191	10	N.N.H.H	255.255.0.0	$2^{14} = 16384$	65,534 (2 ¹⁶ – 2)
C	192 – 223	110	N.N.N.H	255.255.255.0	$2^{21} = 2.097.152$	254 (2 8 - 2)
D	224 - 239	1110	Reserved for Multicasting			
E	240 - 254	11110	Experimental, used for research			

^{*} Блок 127 на клас А не може да се използва, тъй като е запазен за *loopback* тестване и диагностика.

Стъпка 2: Основи на IPv4 адресацията

Като използвате горната таблица и знанията си за *IPv4* адресните класове, отговорете на следните въпроси:

1. Какви са десетичният и дво	оичният диап	азони от значения за първия байт на клас В?				
В десетичен вид:	от:	_до:				
В двоичен вид:	от:	до:				
2. Кой/и байт/ове представляват NetID частта в IPv4 адреси от клас C?						
3. Кой/и байт/ове представляват <i>HostID</i> частта в <i>IPv4</i> адреси от клас A?						

Стъпка 3: Определяне на HostID и NetID частите на IPv4 адреси

1. За всеки от изброените в следната таблица *IPv4* адреси определете и запишете: класа, адреса на мрежата (с 4 байта), адреса на хоста в нея (с 4 байта), адреса за директен *broadcast* и мрежовата маска (по подразбиране), използвани в съответната мрежа.

Host IP Address	Addr. Class	Network Address	Host Address	Network Broadcast Address	Default Mask
216.14.55.137					
123.1.1.15					
150.127.221.244					
194.125.35.199					
175.12.239.244					

2. Даден е следният IPv4 адрес: X.(X+10).(X+20).(X+30), където X=100+10M+L, а М и L са

съответно предпоследната и последната цифра от факултетния ви надясно). Отговорете на следните въпроси:	номер	(считано	отляво
а. Какво е двоичното значение на първия байт?			
б. Кой е класът на адреса?			
в. Към коя <i>IPv4</i> мрежа принадлежи този адрес? Запишете значенията на	а четирі	ите байта:	
г. Кой хост в тази <i>IPv4</i> мрежа идентифицира този адрес? Запишете значен	нията на	а четирит	е байта:
д. Кой адрес се използва в тази <i>IPv4</i> мрежа за директен <i>broadcast</i> ?			
е. Колко налични <i>IPv4</i> адреса има в тази <i>IPv4</i> мрежа?			
ж. Какъв е максималният възможен брой на мрежовите възли в тази <i>IPv</i>	<i>'</i> 4 мреж	a?	

Стъпка 4: Определяне валидността на *IPv4* адреси

Като използвате следната таблица, определете кои *IPv4* адреси са валидни за назначаване на мрежови възли (крайни или междинни). Обяснете защо.

IP Address	Valid Address? (Yes/No)	Why or why not?
150.100.255.255		
175.100.255.18		
195.234.253.0		
100.0.0.23		
188.258.221.176		
127.34.25.189		
224.156.217.73		

Стъпка 5

-	цната и последната ци	•	(X=100+10M+L, а М и L са номер, считано отляво
X.(X+10).(X+15).(X+20)	X.(X+10).(X+15).(X+25)	X.(X+20).(X+15).(X+30)	X.(X+20).(X+15).(X+35)
X.(X+15).(X+20).(X+30 последната цифра от) , където X=100+10M+	-L, а М и L са съотв ер (считано отляво над	е до хост с <i>IPv4</i> адрес етно предпоследната и дясно). Ще премине ли