

Chapitre III: exercices + solutions

MOHAMED MEJRI

Groupe LSFM
Département d'Informatique et de Génie Logiciel
Université LAVAL
Québec, Canada

Chiffrement de Feistel

 \Rightarrow Soient les deux fonctions f_1 et f_2 suivantes :

Entrée	f_1	Sortie	Entrée	f_2	Sortie
00	\longrightarrow	01	00	\longrightarrow	11
01	$-\!$	11	01	\longrightarrow	00
10	$-\!$	10	10	\longrightarrow	00
11	$-\!$	01	11	\longrightarrow	01

- ightharpoonup Q1: Est ce que f_1 et f_2 sont des fonctions inversibles?
- \Rightarrow Soient les deux fonctions F_1 et F_2 suivantes :

- ightharpoonup Q1: Determiner pour chaque valeur d'entrée la valeur de sortie donnée par F_1 (resp. F_2).
- ightharpoonup Q2: Est ce que F_1 et F_2 sont des fonctions inversibles? Dans le cas positif, donner leurs inverses.

Chiffrement de Feistel

Solution:

- $f_1(00) = f_1(11) = 01$ donc f_1 n'est pas inversible. De même, puisque $f_2(01) = f_2(10) = 00$ donc f_2 n'est pas inversible.
- $F_1(L_0,R_0)=L_2,$ R_2 avec L_2 et R_2 sont données par le tableau suivant :

	L_0, R_0	$f_1(R_0)$	$L_1 = R_0$	$R_1 = L_0 \oplus f_1(R_0)$	$f_2(R_1)$	$L_2 = L_1 \oplus f_2(R_1)$	$R_2 = R_1$	
0	00,00	01	00	01	00	00	01	1
1	00,01	11	01	11	01	00	11	3
2	00, 10	10	10	10	00	10	10	10
3	00, 11	01	11	01	00	11	01	13
4	01,00	01	00	00	11	11	00	12
5	01,01	11	01	10	00	01	10	6
6	01, 10	10	10	11	01	11	11	15
7	01, 11	01	11	00	11	00	00	0
8	10,00	01	00	11	01	01	11	7
9	10,01	11	01	01	00	01	01	5
10	10, 10	10	10	00	11	01	00	4
11	10, 11	01	11	11	01	10	11	11
12	11,00	01	00	10	00	00	10	2
13	11,01	11	01	00	11	10	00	8
14	11, 10	10	10	01	00	10	01	9
15	11, 11	01	11	10	00	11	10	14

Chiffrement de Feistel

– $F_2(L_0,R_0)=L_2,\,R_2$ avec L_2 et R_2 sont données par le tableau suivant :

	L_0, R_0	$f_2(R_0)$	$L_1 = R_0$	$R_1 = L_0 \oplus f_2(R_0)$	$f_1(R_1)$	$L_2 = L_1 \oplus f_1(R_1)$	$R_2 = R_1$	
0	00,00	11	00	11	01	01	11	7
1	00,01	00	01	00	01	00	00	0
2	00, 10	00	10	00	01	11	00	12
3	00, 11	01	11	01	11	00	01	1
4	01,00	11	00	10	10	10	10	10
5	01, 01	00	01	01	11	10	01	9
6	01, 10	00	10	01	11	01	01	5
7	01, 11	01	11	00	01	10	00	8
8	10,00	11	00	01	11	11	01	13
9	10,01	00	01	10	01	11	10	14
10	10, 10	00	10	10	10	00	10	2
11	10, 11	01	11	11	01	10	11	11
12	11,00	11	00	00	01	01	00	4
13	11, 01	00	01	11	01	00	11	3
14	11, 10	00	10	11	01	11	11	15
15	11, 11	01	11	10	10	01	10	6

⁻ D'après les valeurs de sorties de F_1 et de F_2 , on voit bien que ces deux fonctions sont inversibles et que $F_1^{-1} = F_2$ et $F_2^{-1} = F_1$.

DES

• Question : Soit K = 133457799BBCDFF1 une clé (en hexadecimal).

Trouver la clé K_1 générée par DES.

→ Solution

$$K = 0001\ 0011\ 0011\ 0100\ 0101\ 0111\ 0111\ 1001$$
 $1001\ 1011\ 1011\ 1100\ 1101\ 1111\ 1111\ 0001$

- $-C_0 = 1111\ 0000\ 1100\ 1100\ 1010\ 1010\ 1111$
- $-D_0 = 0101\ 0101\ 0110\ 0110\ 0111\ 1000\ 1111$
- $-C_1 = 1110\ 0001\ 1001\ 1001\ 0101\ 0101\ 1111$
- $-D_1 = 1010\ 1010\ 1100\ 1100\ 1111\ 0001\ 1110$
- $-K_1 = 0001\ 1011\ 0000\ 0010\ 1110\ 1111\ 1111\ 1100\ 0111\ 0000\ 0111\ 0010$

Chiffrement de Feistel : DES simplifié

Supposons que $R_3 = 011\ 100$ et $K = 0100\ 11001$, calculer $f(R_3, K_4)$

Solution:

$$\begin{split} E(R_3) &= 0111\ 1100, K_4 = 0110\ 0101, E(R_3) \oplus K_4 = 0001\ 1001 \\ S_1(0001) &= S_1[0,2] = 001, S_2(1001) = S_2[1,2] = 000 \\ P(001000) &= 100\ 000 \Longrightarrow f(R_3,K_4) = 100\ 000 \end{split}$$