

Классификация различных типов воздушных судов с использованием методов машинного обучения

Стонтов Е.О.

Научный руководитель: Татарникова Т.М.

Рис. 1 – Методы машинного обучения для классификации изображений

Методы машинного обучения

Рис. 2 — Семантическая карта встречаемости ключевых слов

Свёрточные нейронные сети

Рис. 3 – Принцип работы свёрточной нейронной сети

Свёрточные нейронные сети

ResNet-34

Рис. 4 – Архитектура модели ResNet-34

Свёрточные нейронные сети

Табл. 1 – Используемые модели

Модель	Количество слоев	Модель	Количество слоев
Архитектура VGG		Архитектура MobileNetV3	
VGG-16	16	MobileNetV3Small	14
VGG-19	19	MobileNetV3Large	19
Архитектура ResNet		Архитектура EfficientNetV2	
ResNet-34	34	EfficientNetV2S	42
ResNet-101	101	EfficientNetV2M	65
		EfficientNetV2L	83

Набор данных

Рис. 5 – Примеры изображений из набора данных

Набор данных

Табл. 2 – Структура классов в наборе данных

Тип воздушного судна	Количество изображений	Тип воздушного судна	Количество изображений
B-1	513	C-130	763
B-2	619	C-135	526
B-29	321	C-17	480
B-52	548	C-5	499
Boeing	605	E-3	452
F-16	372	F-22	846
KC-10	554	C-21	491
U-2	362	T-6	248
P-63	305	T-43	306

Обучение моделей

- Использовались библиотеки для языка программирования Python TensorFlow и Keras;
- При обучении использовалось 50 эпох;
- Использовались методы ModelCheckpoint и метод ReduceLROnPlateau;

Рис. 6 – Зависимость точности от эпохи

Рис. 7 — Зависимость значения функции потери от эпохи

Определение оптимальной модели

Рис. 8 – Значения точности

Рис. 9 – Значения функции потерь

• Модель EfficientNetV2S продемонстрировала самое высокое значение точности -94.6% и самую низкое значение функции потерь -0.19.

Определение оптимальной модели

Рис. 10 — Среднее время обработки одного изображения

• Минимальное среднее время обработки одного изображения продемонстрировали модели с архитектурой MobileNet – 40 мс.

Puc. 11 — Точности различных порядков для модели EfficientNetV2S

Спасибо за внимание!