147. The method of claim 138, further comprising:

- (j) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
- 148. The method of claim 138, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 149. The method of claim 138, wherein

h is a member independently selected from the integers between 1 and 3;

a, b, c, d, e, f, g, i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;

n, v, w, x, and y are 0; and

q, p are 1.

5

10

15

20

150. The method of claim 138, wherein

a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0;

- e, g, i, r, and t are members independently selected from 0 and 1; and q, p are 1.
 - 151. The method of claim 138, wherein

a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x, and y are 0;

q, p are 1; and

i is independently selected from 0 and 1.

- 152. The method of claim 138, wherein a, b, c, d, e, f, g, h, I, j, k, l, m, r, s, t, u, v, w, x, and y are 0; and p, q are 1.
 - 153. The method of claim 138, wherein

25 a, b, c, d, e, f, g, h, i, j, k, l, m, and n are 0;

q, p are 1; and

r, s, t, u, v, w, x, and y are members independently selected from 0 and 1.

154. The method of claim 138, wherein a, b, c, d, e, f, g, h, i, r, s, t, and u are members independently selected from 0 and 1; j, k, l, m, n, v, w, x, and y are 0; and q, p are 1.

5

155. The method of claim 138, wherein

a, b, c, d, h, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;

e, f, g, are members selected from the integers between 0 and 3;

n, v, w, x, and y are 0; and

10 q, p are 1.

156. The method of claim 138, wherein

a, b, c, d, i, j, k, l, m, r, s, t, u, p and q are members independently selected from 0 and

1;

e, f, g, and h are 1; and

15

n, v, w, x, and y are 0.

157. An interferon beta peptide conjugate formed by the method of claim 138.

20

158. A method of forming a conjugate between a Factor VIIa peptide and a modifying group, wherein said modifying group is covalently attached to said Factor VIIa peptide through an intact glycosyl linking group, said Factor VIIa peptide comprising a glycosyl residue having a formula which is a member selected from:

$$(Fuc)_{i} \qquad ([GlcNAc-(Gal)_{a}]_{e}-(Sia)_{j}-(R)_{v})_{r} \\ ([GlcNAc-(Gal)_{b}]_{f}-(Sia)_{k}-(R)_{w})_{s} \\ ([GlcNAc-(Gal)_{c}]_{g}-(Sia)_{l}-(R)_{x})_{t} \\ ([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y})_{u} \\ ([GlcNAc-(Gal)_{d}]_{h}$$

wherein

a, b, c, d, i, o, p, q, r, s, t, and u, are members independently selected from 0 and 1;

e, f, g, h and n are members independently selected from the integers from 0 to 6;

j, k, l and m are members independently selected from the integers from 0 to 20;

v, w, x and y are 0; and

R is a modifying group, a mannose, an oligomannose, SialylLewis^x or SialylLewis^a; said method comprising:

10

15

5

- (a) contacting said Factor VIIa peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 159. The method of claim 158, further comprising:
- (b) prior to step (a), contacting said Factor VIIa peptide with a sialidase under conditions appropriate to remove sialic acid from said Factor VIIa peptide.
 - 160. The method of claim 158, further comprising:
 - (c) prior to step (a), contacting said Factor VIIa peptide with a galactosidase under conditions appropriate to remove galactose from said Factor VIIa peptide.

20

- 161. The method of claim 158, further comprising:
- (d) prior to step (a), contacting said Factor VIIa peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said Factor VIIa peptide.
- 162. The method of claim 158, further comprising:
- (e) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.

163. The method of claim 158, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

164. The method of claim 158, wherein a, b, c, d, e, g, i, j, l, o, p and q members independently selected from 0 and 1; r and t are 1; f, h, k, m, s, u, v, w, x and y are 0; and n is selected from the integers from 0 to 4.

165. The method of claim 158, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, n, ,o, p, q, r, s, t and u are members independently selected from 0 and 1;

v, w, x and y are 0; and
n is a member selected from the integers from 0 to 4.

- 166. A Factor VIIa peptide conjugate formed by the method of claim 158.
- 167. A method for forming a conjugate between a Factor IX peptide and a modifying group, wherein said modifying group is covalently attached to said Factor IX peptide through an intact glycosyl linking group, said Factor IX peptide comprising a glycosyl residue having a formula which is a member selected from:

$$(Fuc)_{i} \qquad (GlcNAc-(Gal)_{a}l_{e}-(Sia)_{j}-(R)_{v})_{r} \\ = -GlcNAc-GlcNAc-Man \qquad (GlcNAc-(Gal)_{b}l_{f}-(Sia)_{k}-(R)_{w})_{s} \\ = -GlcNAc-(Gal)_{b}l_{f}-(Sia)_{k}-(R)_{w})_{s} \\ = -(GlcNAc-(Gal)_{c}l_{g}-(Sia)_{l}-(R)_{x})_{t} \\ = -(GlcNAc-(Gal)_{d}l_{h}-(Sia)_{m}-(R)_{y})_{u} \\ = -(Glc-(Xyl)_{aa})_{bb} \qquad (GlcNAc)_{cc}-(Gal)_{dd}-(Sia)_{ee} \\ = -(Glc-(Xyl)_{aa})_{bb} \qquad (GlcNAc)_{cc}-(Gal)_{dd}-(Sia)_{ee} \\ = -(GlcNAc)_{cc}-(Gal)_{dd}-(Sia)_{ee} \\ = -(GlcNAc)_{cc}-(Gal)_{dd}-(Gal)_{dd}-(Gal)_{ee} \\ = -(Gal)_{cc}-(Gal)_{dd}-(Gal)_{ee} \\ = -(Gal)_{cc}-(Gal)_{$$

wherein

5

10

15

- a, b, c, d, i, n, o, p, q, r, s, t, u, bb, cc, dd, ee, ff and gg are members independently selected from 0 and 1;
- e, f, g, h and aa are members independently selected from the integers from 0
- j, k, l and m are members independently selected from the integers from 0 to 20;

v, w, x, y and z are 0;

R is a modifying group, a mannose or an oligomannose;

- said method comprising:
 - (a) contacting said Factor IX peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
 - 168. The method of claim 167, further comprising:
 - (b) prior to step (a), contacting said Factor IX peptide with a sialidase under conditions appropriate to remove sialic acid from said Factor IX peptide.
 - 169. The method of claim 167, further comprising:

5

10

15

- (c) contacting the product formed in step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
- 170. The method of claim 168, further comprising:
- (d) contacting the product from step (b) with a galactosyltransferase and a galactose donor under conditions appropriate to transfer said galactose to said product.
- 171. The method of claim 170, further comprising:
- (e) contacting the product from step (d) with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
- 172. The method of claim 167, further comprising:
- (d) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
- 173. The method of claim 167, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 174. The method of claim 167, wherein
 - a, b, c, and d are 1;
 - e, f, g and h are members independently selected from the integers from 1 to 4:
 - aa, bb, cc, dd, ee, ff, j, k, l, m, i, n, o, p, q, r, s, t and u are members independently selected from 0 and 1; and
 - v, w, x, y, z and gg are 0.
 - 175. The method of claim 167, wherein
- a, b, c, d, n, q are independently selected from 0 and 1;
 aa, e, f, g and h are members independently selected from the integers
 from 1 to 4;

bb, cc, dd, ee, ff, j, k, l, m, i, o, p, r, s, t and u are members independently selected from 0 and 1; and v, w, x, y, z and gg are 0.

176. The method of claim 167, wherein

a, b, c, d, n, bb, cc, dd and ff are 1;

e, f, g, h and aa are members independently selected from the integers from 1 to 4;

q, ee, i, j, k, l, m, o, p, r, s, t and u are members independently selected from 0 and 1; and

v, w, x, y, z and gg are 0.

177. The method of claim 167, wherein

a, b, c, d and q are 1;

e, f, g and h are members independently selected from the integers from 1 to 4;

aa, bb, cc, dd, ee, ff, j, k, l, m, i, n, o, p, r, s, t and u are members independently selected from 0 and 1; and

v, w, x, y, z and gg are 0.

178. The method of claim 167, wherein

a, b, c, d, q, bb, cc, dd and ff are 1;

aa, e, f, g and h are members independently selected from the integers from 1 to 4;

ee, i, j, k, l, m, o, p, r, s, t and u are members independently selected from 0 and 1; and

v, w, x, y, z and gg are 0.

179. A Factor IX peptide conjugate formed by the method of claim 167.

-413-

5

10

15

20

180. A method of forming a conjugate between a follicle stimulating hormone (FSH) peptide and a modifying group, wherein said modifying group is covalently attached to said FSH peptide through an intact glycosyl linking group, said FSH peptide comprising a glycosyl residue having the formula:

wherein

a, b, c, d, i, q, r, s, t, and u are members independently selected from 0 and 1;

e, f, g, and h are members independently selected from the integers between 0 and 6;

j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0; and

R is a modifying group, a mannose or an oligomannose; said method comprising:

15

5

10

(a) contacting said FSH peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

- 181. The method of claim 180, further comprising:
- (b) prior to step (a), contacting said FSH peptide with a sialidase under conditions appropriate to remove sialic acid from said FSH peptide.

- 182. The method of claim 180, further comprising:
- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 183. The method of claim 180, further comprising:

5

10

15

20

- (d) prior to step (a), contacting said FSH peptide with a galactosidase under conditions appropriate to remove galactose from said FSH peptide.
 - 184. The method of claim 180, further comprising:
- (e) prior to step (a) contacting said FSH peptide with a combination of a glycosidase and a sialidase.
 - 185. The method of claim 180, further comprising:
- (f) prior to step (a), contacting said FSH peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said FSH peptide.
 - 186. The method of claim 180, further comprising:
- (d) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 187. The method of claim 180, further comprising:
- (e) prior to step (b), contacting said FSH peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said FSH peptide.
 - 188. The method of claim 180, further comprising:
- (f) prior to step (a), contacting said FSH peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said FSH peptide.

189. The method of claim 180, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

190. The method of claim 180, wherein

a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1;

e, f, g, and h are 1; and v, w, x, and y are 0.

191. The method of claim 180, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1;

v, w, x, and y are 0.

192. The method of claim 180, wherein

a, b, c, d, f, h, j, k, l, m, s, u, v, w, x, and y are 0; and

e, g, i, q, r, and t are members independently selected from 0 and 1.

193. The method of claim 180, wherein

a, b, c, d, e, f, g, h, j, k, l, and m are 0;

i, q, r, s, t, u, v, w, x, and y are independently selected from 0 and 1;

p is 1;

15

20

25

R (branched or linear) is a member selected from mannose and oligomannose.

194. The method of claim 180, wherein

a, b, c, d, e, f, g, h, j, k, l, m, r, s, t, u, v, w, and y are 0;

i is 0 or 1; and

q is 1.

195. A FSH peptide conjugate formed by the method of claim 180.

196. A method for forming a conjugate between an erythropoietin (EPO) peptide and a modifying group, wherein said modifying group is covalently attached to said EPO peptide through an intact glycosyl linking group, said EPO peptide comprising a glycosyl residue having a formula which is a member selected from:

$$(Fuc)_{i}$$

$$--GlcNAc-GlcNAc-Man$$

$$= Man \left[[GlcNAc-(Gal)_{a}]_{e^{-}} (Sia)_{j^{-}} (R)_{v^{-}} \right]_{r}$$

$$= \left[[GlcNAc-(Gal)_{b}]_{f^{-}} (Sia)_{k^{-}} (R)_{w^{-}} \right]_{s}$$

$$= Man \left[[GlcNAc-(Gal)_{c}]_{g^{-}} (Sia)_{l^{-}} (R)_{x^{-}} \right]_{t}$$

$$= \left[[GlcNAc-(Gal)_{d}]_{h^{-}} (Sia)_{m^{-}} (R)_{y^{-}} \right]_{u}$$

$$= (Sia)_{s}$$

$$\frac{(Sia)_{o}}{-GalNAc-(Gal)_{n}-(Sia)_{p}-(R)_{z}}$$

wherein

5

10

15

20

25

30

- a, b, c, d, i, n, o, p, q, r, s, t, and u are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 4;
- j, k, l, and m are members independently selected from the integers between 0 and 20;

v, w, x, y, and z are 0; and

R is a modifying group, a mannose or an oligomannose;

said method comprising:

- (a) contacting said EPO peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 197. The method of claim 196, further comprising:
- (b) prior to step (a), contacting said EPO peptide with a sialidase under conditions appropriate to remove sialic acid from said EPO peptide.

- 198. The method of claim 196, further comprising:
- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 199. The method of claim 196, further comprising:

5

10

15

- (d) prior to step (a), contacting said EPO peptide with a galactosidase operating synthetically under conditions appropriate to add a galactose to said EPO peptide.
 - 200. The method of claim 196, further comprising:
- (e) prior to step (a), contacting said EPO peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said EPO peptide.
 - 201. The method of claim 200, further comprising:
- (f) contacting the product from step (e) with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 202. The method of claim 196, further comprising:
- (g) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 203. The method of claim 196, further comprising:
- 20 (h) prior to step (a), contacting said EPO peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said EPO peptide.
 - 204. The method of claim 196, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 205. The method of claim 196, wherein a, b, c, d, e, f, g, n, and q are 1;

h is a member selected from the integers between 1 and 3; i, j, k, l, m, o, p, r, s, t, and u are members independently selected from 0 and 1; and, v, w, x, y and z are 0.

5

206. The method of claim 196, wherein a, b, c, d, f, h, j, k, l, m, q, s, u, v, w, x, y, and z are 0; and e, g, i, r, and t are members independently selected from 0 and 1.

a, 10 se

207. The method of claim 196, wherein a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, and u are members independently selected from 0 and 1; and v, w, x, y, and z are 0.

208. The method of claim 196, wherein

a, b, c, d, e, f, g, n, and q are 1;

h is a member selected from the integers between 1 and 3;

15

i, j, k, l, m, o, p, r, s, t, and u are members independently selected from 0 and 1; and v, w, x, y and z are 0.

209. The method of claim 196, wherein

a, b, c, d, f, h, j, k, l, m, o, p, s, u, v, w, x, y, and z are 0; and e, g, i, n, q, r, and t are independently selected from 0 and 1.

20

210. The method of claim 196, wherein a, b, c, d, f, h, j, k, l, m, n, o, p, s, u, v, w, x, y, and z are 0; and e, g, i, q, r, and t are members independently selected from 0 and 1.

211. The method of claim 196, wherein

q is 1;

25

a, b, c, d, e, f, g, h, i, n, r, s, t, and u are members independently selected from 0 and 1; and

j, k, l, m, o, p, v, w, x, y, and z are 0.

212. An EPO peptide conjugate formed by the method of claim 196.

213. A method for forming a conjugate between a granulocyte macrophage colony stimulating factor (GM-CSF) peptide and a modifying group, wherein said modifying group is covalently attached to said GM-CSF peptide through an intact glycosyl linking group, said GM-CSF peptide comprising a glycosyl residue having a formula selected from:

$$\begin{array}{c|c} & & & \\ \hline & (Fuc)_i \\ \hline & GlcNAc\text{-}GlcNAc\text{-}Man \\ & & \\ \hline & ([GlcNAc\text{-}(Gal)_a]_e\text{-} (Sia)_j\text{-} (R)_v)_r \\ \hline & ([GlcNAc\text{-}(Gal)_b]_f\text{-} (Sia)_k\text{-} (R)_w)_s \\ \hline & & \\ \hline & (R')_{cc} \\ & & \\ \hline & & \\ \hline & ([GlcNAc\text{-}(Gal)_b]_f\text{-} (Sia)_l\text{-} (R)_x)_t \\ \hline & & \\ \hline & ([GlcNAc\text{-}(Gal)_d]_h\text{-} (Sia)_m\text{-} (R)_y)_u \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$$
; and

$$-\left(\begin{array}{c} (Sia)_{o} \\ -GalNAc-(Gal)_{n}-(Sia)_{p}-(R)_{z} \end{array}\right)_{ai}$$

wherein

- a, b, c, d, i, n, o, p, q, r, s, t, u, aa, bb, and cc are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0;

R is a modifying group, mannose or oligomannose; and R' is H or a glycosyl residue, or a modifying group or a glycoconjugate,

said method comprising:

(a) contacting said GM-CSF peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a

20

15

5

10

substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

214. The method of claim 213, further comprising:

5

10

15

20

- (b) prior to step (a), contacting said GM-CSF peptide with a sialidase under conditions appropriate to remove sialic acid from said GM-CSF peptide.
 - 215. The method of claim 213, further comprising:
- (c) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 216. The method of claim 213, further comprising:
- (d) prior to step (a) contacting said GM-CSF peptide with a combination of a glycosidase and a sialidase.
 - 217. The method of claim 213, further comprising:
- (e) prior to step (a), contacting said GM-CSF peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said GM-CSF peptide.
 - 218. The method of claim 213, further comprising:
 - (f) prior to step (a), contacting said GM-CSF peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said GM-CSF peptide.
 - 219. The method of claim 213, further comprising:
 - (g) prior to step (a) contacting said GM-CSF peptide with a mannosidase under conditions appropriate to cleave a mannose residue from said GM-CSF peptide.

220. The method of claim 213, further comprising:

- (h) prior to step (a), contacting said GM-CSF peptide with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 221. The method of claim 213, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 222. The method of claim 213, wherein
- a, b, c, d, i, j, k, l, m, o, p, q, r, s, t, u, and aa are members independently selected from 0 and 1;
- bb, e, f, g, h, and n are 1; and cc, v, w, x, y, and z are 0.

ı

5

- 223. The method of claim 213, wherein
- a, b, c, d, i, j, k, l, m, o, p, q, r, s, t, u, and aa are members independently selected from 0 and 1;
- bb, e, f, g, h, and n are members independently selected from 0 and 1; and cc, v, w, x, y, and z are 0.
 - 224. The method of claim 213, wherein cc, a, b, c, d, f, h, j, k, l, m, o, p, s, u, v, w, x, y, and z are 0; and e, g, i, n, q, r, t, and aa are members independently selected from 0 and 1; and bb is 1.
 - 225. The method of claim 213, wherein
 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, z and cc are 0;
 q, r, s, t, u, v, w, x, y, and aa are members independently selected from 0 and 1; bb is 1; and
- 25 R is mannose or oligomannose.
 - 226. The method of claim 213, wherein a, b, c, d, e, f, g, h, i, j, k, l, m, o, q, r, s, t, u, aa, and bb are members

independently selected from 0 and 1; and n, p, v, w, x, y, z, and cc are 0.

227. A GM-CSF peptide conjugate formed by the method of claim 213.

5

228. A method of forming a conjugate between an interferon gamma peptide and a modifying group, wherein said modifying group is covalently attached to said interferon gamma peptide through an intact glycosyl linking group, said interferon gamma peptide comprising a glycosyl residue having the formula:

$$= \left(\begin{array}{c} \\ \text{(Fuc)}_{i} \\ \text{-GlcNAc-Gal)}_{i} \\ \text{-GlcNAc-Gal)}_{i} \\ \text{(R')}_{n} \end{array} \right)_{f} \\ \text{(GlcNAc-(Gal)}_{b}|_{f} \\ \text{-(Sia)}_{k} \\ \text{-(R)}_{w} \\ \text{Sia)}_{k} \\ \text{-(R)}_{w} \\ \text{-(Sia)}_{k} \\ \text{-(R)}_{w} \\ \text{-(Sia)}_{k} \\ \text{-(R)}_{w} \\ \text{-(R)}_{w} \\ \text{-(R)}_{v} \\ \text{-(R)}_{v}$$

10

15

wherein

- a, b, c, d, i, n, p, q, r, s, t, and u are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0;

R is a modifying group, mannose or oligomannose; and

20

R' is H or a glycosyl residue, a glycoconjugate, or a modifying group, said method comprising:

(a) contacting said interferon gamma peptide with a member selected from a glycosyltransferase and a galactosidase operating synthetically and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

229. The method of claim 228, further comprising:

5

10

15

20

- (b) prior to step (a), contacting said interferon gamma peptide with a sialidase under conditions appropriate to remove sialic acid from said interferon gamma peptide.
 - 230. The method of claim 228, further comprising:
- (c) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 231. The method of claim 228, further comprising:
- (d) prior to step (a) contacting said interferon gamma peptide with a combination of a glycosidase and a sialidase.
 - 232. The method of claim 228, further comprising:
- (e) prior to step (a), contacting said interferon gamma peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said interferon gamma peptide.
 - 233. The method of claim 228, further comprising:
- (f) prior to step (a), contacting said interferon gamma peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said interferon gamma peptide.
 - 234. The method of claim 228, further comprising:

(g) prior to step (a), contacting said interferon gamma peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer galactose to said product.

- 235. The method of claim 228, further comprising:
- (h) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 236. The method of claim 228, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

10 237. The method of claim 228, wherein

wherein a, b, c, d, i, j, k, l, m, q, p, r, s, t, and u are members independently selected from 0 and 1;

e, f, g, and h are 1; and

. 5

n, v, w, x, and y are 0.

15 238. The method of claim 228, wherein

a, b, c, d, i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;

p, q, e, f, g, and h are 1; and

n, v, w, x, and v are 0.

20 239. The method of claim 228, wherein

a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and

e, g, i, q, r, and t are members independently selected from 0 and 1; and p is 1.

240. The method of claim 228, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, and n are 0;

q, r, s, t, u, v, w, x, and y are members independently selected from 0 and 1; and p is 1; and

R is mannose or oligomannose.

241. The method of claim 228, wherein

a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and

1;

5

e, f, g, h, and p are 1; and

n, v, w, x, and y are 0.

242. An interferon gamma peptide conjugate formed by the method of claim 228.

243. A method of forming a conjugate between an alpha 1 protease inhibitor (A-1-PI) peptide and a modifying group, wherein said modifying group is covalently attached to said A-1-PI peptide through an intact glycosyl linking group, said A-1-PI peptide comprising a glycosyl residue having the formula:

wherein

15

- a, b, c, d, i, n, p, q, r, s, t, and u are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0;

R is a modifying group, mannose and oligomannose; and

R' is H or a glycosyl residue, a glycoconjugate, or a modifying group; said method comprising:

- (a) contacting said A-1-PI peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 244. The method of claim 243, further comprising:
- (b) prior to step (a), contacting said A-1-PI peptide with a sialidase under conditions appropriate to remove sialic acid from said A-1-PI peptide.
 - 245. The method of claim 243, further comprising:
- (c) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 246. The method of claim 243, further comprising:
- (d) prior to step (a) contacting said A-1-PI peptide with a combination of a glycosidase and a sialidase.
 - 247. The method of claim 243, further comprising:
- (e) prior to step (a), contacting said A-1-PI peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said A-1-PI peptide.
 - 248. The method of claim 243, further comprising:
- (f) prior to step (a), contacting said A-1-PI peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said A-1-PI peptide.
 - 249. The method of claim 244, further comprising:
- (g) prior to step (a), contacting said A-1-PI peptide with a mannosidase under conditions appropriate to remove mannose from said A-1-PI peptide.

5

10

15

250. The method of claim 243, further comprising:

- (h) prior to step (a), contacting said A-1-PI peptide with a member selected from a mannosidase, a xylosidase, a hexosaminidase and combinations thereof under conditions appropriate to remove a glycosyl residue from said A-1-PI peptide.
 - 251. The method of claim 243, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 252. The method of claim 243, wherein
- a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1; and
- e, f, g, and h are 1; and n, v, w, x, and y are 0.
 - 253. The method of claim 243, wherein
- a, b, c, d, e, f, g, h, i, j, k, l, m, q, r, s, t and u are members independently selected from 0 and 1; and
- 15 n, v, w, x, and y are 0.

5

- 254. The method of claim 243, wherein
- a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and
- e, g, i, q, r, and t are members independently selected from 0 and 1.
 - 255. The method of claim 243, wherein
- 20 n, a, b, c, d, e, f, g, h, i, j, k, l, and m are 0;
 - q, r, s, t, u, v, w, x, and y area members independently selected from 0 and 1; and p is 1.
 - 256. The method of claim 243, wherein
 - a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, and q are 0;
- 25 r, s, t, u, v, w, x, and y are members independently selected from 0 and 1.

257. The method of claim 243, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;

p, v, w, x, and y are 0; and

5 n and q are 1.

258. An alpha 1 protease inhibitor peptide conjugate formed by the method of claim 243.

259. A method of forming a conjugate between a beta glucosidase peptide and a modifying group, wherein said modifying group is covalently attached to said beta glucosidase peptide through an intact glycosyl linking group, said beta glucosidase peptide comprising a glycosyl residue having the formula:

$$= \left(\begin{array}{c} \\ \text{(Fuc)}_i \\ \text{-GlcNAc-Gal)}_i \\ \text{-GlcNAc-Gal)}_i \\ \text{(R')}_n \end{array} \right)_r \\ \left(\begin{array}{c} \text{[GlcNAc-(Gal)}_a]_c - (\text{Sia)}_j - (\text{R)}_v \\ \text{[GlcNAc-(Gal)}_b]_f - (\text{Sia)}_k - (\text{R)}_w \\ \text{Sia)}_i - (\text{R)}_x \\ \text{(R')}_n \end{array} \right)_t \\ \left(\begin{array}{c} \text{[GlcNAc-(Gal)}_d]_g - (\text{Sia)}_i - (\text{R)}_y \\ \text{Man} \end{array} \right)_t \\ \left(\begin{array}{c} \text{[GlcNAc-(Gal)}_d]_h - (\text{Sia)}_m - (\text{R)}_y \\ \text{U} \end{array} \right)_q \\ p \\ \end{array}$$

15

wherein

a, b, c, d, i, n, p, q, r, s, t, and u are members independently selected from 0 and 1;

- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 100; and

v, w, x, and y are 0;

R is a modifying group, a mannose or an oligomannose; and
R' is H or a glycosyl residue, a glycoconjugate, or a modifying group,
said method comprising:

5 ⁽

(a) contacting said beta glucosidase peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

10

- 260. The method of claim 259, further comprising:
- (b) prior to step (a), contacting said beta glucosidase peptide with a sialidase under conditions appropriate to remove sialic acid from said beta glucosidase peptide.
 - 261. The method of claim 259, further comprising:

15

20

- (c) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 262. The method of claim 259, further comprising:
- (d) prior to step (a) contacting said beta glucosidase peptide with a combination of a glycosidase and a sialidase.
 - 263. The method of claim 259, further comprising:
- (e) prior to step (a), contacting said beta glucosidase peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said beta glucosidase peptide.

- 264. The method of claim 259, further comprising:
- (f) prior to step (a), contacting said beta glucosidase peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said beta glucosidase peptide.

265. The method of claim 259, further comprising:

- (g) prior to step (a), contacting said beta glucosidase peptide with a galactosyl transferase and a galactose donoer under conditions appropriate to transfer galactose to said product.
 - 266. The method of claim 259, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 267. The method of claim 259, wherein

a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and

10 1;

15

5

p, e, f, g, and h are 1; and

n, v, w, x, and y are 0.

268. The method of claim 259, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1; and

n, v, w, x, and y are 0.

269. The method of claim 259, wherein

a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0;

e, g, i, q, r, and t are members independently selected from 0 and 1; and

20 p is 1.

259.

270. The method of claim 259, wherein

n, a, b, c, d, e, f, g, h, i, j, k, l, and m are 0;

q, r, s, t, u, v, w, x, and y are members independently selected from 0 and 1;

p is 1; and

25 R is mannose or oligomannose.

271. A beta glucosidase peptide conjugate formed by the method of claim

272. A method of forming a conjugate between a tissue plasminogen activator (TPA) peptide and a modifying group, wherein said modifying group is covalently attached to said TPA peptide through an intact glycosyl linking group, said TPA peptide having a glycosyl subunit comprising the formula:

5

wherein

10

15

- a, b, c, d, i, n, o, p, q, r, s, t, u, v, w, x and y are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers from 0 and 6;
- j, k, l, and m are members independently selected from the integers from 0 and 100;

R is a modifying group, mannose or oligomannose;

R' is H or a glycosyl residue, a glycoconjugate, or a modifying group; and

R" is a glycosyl group, a glycoconjugate or a modifying group; said method comprising:

20

(a) contacting said TPA peptide with a member selected from a glycosyltransferase and a glycosidase operating synthetically and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

273. The method of claim 272, further comprising:

- (b) prior to step (a), contacting said TPA peptide with a sialidase under conditions appropriate to remove sialic acid from said TPA peptide.
 - 274. The method of claim 272, further comprising:

5

10

15

20

- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 275. The method of claim 272, further comprising:
- (d) prior to step (a), contacting said TPA peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said TPA peptide.
 - 276. The method of claim 272, further comprising:
- (e) prior to step (a) contacting said TPA peptide with a combination of a glycosidase and a sialidase.
 - 277. The method of claim 272, further comprising:
- (f) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 278. The method of claim 272, further comprising:
- (g) prior to step (a), contacting said TPA peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said TPA peptide.
 - 279. The method of claim 272, further comprising:
 - (h) prior to step (a), contacting said TPA peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said TPA peptide.

280. The method of claim 272, further comprising:

(i) prior to step (a), contacting said TPA peptide with a member selected from a mannosidase, a xylosidase, a hexosaminidase and combinations thereof under conditions appropriate to remove a glycosyl residue from said TPA peptide.

- 281. The method of claim 272, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 282. The method of claim 272, wherein

a, b, c, d are 1;

e, f, g and h are members selected from the integers between 1 and 3;

i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1; and n, o, v, w, x, and y are 0.

283. The method of claim 272, wherein

a, b, c, d, f, h, j, k, l, m, n, o, s, u, v, w, x, and y are 0;

e, g, i, r, and t are members independently selected from 0 and 1; and

15 q and p are 1.

5

25

284. The method of claim 272, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, p, q, r, s, t, and u are members independently selected from 0 and 1; and

n, o, v, w, x, and y are 0.

20 285. The method of claim 272, wherein

a, b, c, d, e, f, g, and p are 1;

h is a member selected from the integers between 1 and 3;

j, k, l, m, i, q, r, s, t, and u are members independently selected from 0 and 1; and n, o, v, w, x, and y are 0.

286. The method of claim 272, wherein

a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0;

e, g, i, q, r, and t are members independently selected from 0 and 1;

o is 1; and

R" is xylose.

287. The method of claim 272, wherein

a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and

5 1;

10

15

e, f, g, and h are 1; and

n, o, v, w, x, and y are 0.

288. The method of claim 272, wherein

a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x, and y are 0;

i and q are members independently selected from 0 and 1; and p is 1.

289. The method of claim 272, wherein

a, b, c, d, e, f, g, h, j, k, l, m, o, r, s, t, u, v, w, x, and y are 0;

i and q are members independently selected from 0 and 1;

p is 0; and

n is 1.

290. A TPA peptide conjugate formed by the method of claim 272.

291. A method of forming a conjugate between an interleukin 2 (IL-2) peptide and a modifying group, wherein said modifying group is covalently attached to said IL-2 peptide through an intact glycosyl linking group, said IL-2 peptide comprising a glycosyl residue having the formula:

$$-\left[\begin{matrix} (Sia)_b \\ -GalNAc-(Gal)_a-(Sia)_c-(R)_d \end{matrix}\right]_e$$

wherein

5

10

25

a, b, c, and e are members independently selected from 0 and 1; d is 0; and

R is a modifying group,

said method comprising:

- (a) contacting said IL-2 peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 292. The method of claim 291, further comprising:
- (b) prior to step (a), contacting said IL-2 peptide with a sialidase under conditions appropriate to remove sialic acid from said IL-2 peptide.
 - 293. The method of claim 291, further comprising:
- (c) prior to step (a), contacting said IL-2 peptide with an endo-N-acetylgalactosaminidase operating synthetically under conditions appropriate to add a GalNAc to said IL-2 peptide.
 - 294. The method of claim 291, further comprising:
- 20 (d) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 295. The method of claim 291, further comprising:
 - (e) prior to step (a), contacting said IL-2 peptide with N-acetylgalactosamine transferase and a GalNAc donor under conditions appropriate to transfer GalNAc to said IL-2 peptide.
 - 296. The method of claim 291, further comprising

5

10

(f) prior to step (a) contacting said IL-2 peptide with galactosyltransferase and a galactose donor under conditions appropriate to transfer galactose to said IL-2 peptide.

297. The method of claim 291, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

298. The method of claim 291, wherein a and e are members independently selected from 0 and 1; and b, c, and d are 0.

299. The method of claim 291, wherein a, b, c, d, and e are 0.

300. An IL-2 peptide conjugate formed by the method of claim 291.

301. A method of forming a conjugate between a Factor VIII peptide and a modifying group, wherein said modifying group is covalently attached to said glycopeptide through an intact glycosyl linking group, said glycopeptide comprising a glycosyl residue having a formula which is a member selected from:

$$\begin{array}{c} & \left\{ [\text{GlcNAc-}(\text{Gal})_a]_e - (\text{Sia})_j - (R)_v \right\}_r \\ & \left\{ [\text{GlcNAc-}(\text{Gal})_b]_f - (\text{Sia})_k - (R)_w \right\}_s \\ & \left\{ [\text{GlcNAc-}(\text{Gal})_b]_f - (\text{Sia})_h - (R)_x \right\}_t \\ & \left\{ [\text{GlcNAc-}(\text{Gal})_d]_h - (\text{Sia})_m - (R)_y \right\}_u \end{array} \right\}_{aa}$$

and

$$\begin{array}{c}
\left(\begin{array}{c}
\text{(Sia)}_{0} \\
\text{-GalNAc-(Gal)}_{n}\text{-(Sia)}_{p}\text{-}(R)_{z}
\end{array}\right)
\end{array}$$

wherein

a, b, c, d, i, n, o, p, q, r, s, t, u, aa, cc, and dd are members independently selected from 0 and 1;

- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 20;

v, w, x, y and z are 0; and

R is a modifying group, a mannose or an oligomannose;

R' is a member selected from H, a glycosyl residue, a modifying group and a glycoconjugate,

said method comprising:

- (a) contacting said glycopeptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 302. The method of claim 301, further comprising:
- (b) prior to step (a), contacting said glycopeptide with a sialidase under conditions appropriate to remove sialic acid from said glycopeptide.

303. The method of claim 301, further comprising:

- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 304. The method of claim 301, further comprising:
- (d) prior to step (a), contacting said glycopeptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said glycopeptide.

10

15

20

- 305. The method of claim 301, further comprising:
- (e) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.

306. The method of claim 301, further comprising:

5

10

15

20

- (f) prior to step (a), contacting said glycopeptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said glycopeptide.
 - 307. The method of claim 301, further comprising:
- (g) prior to step (a), contacting said glycopeptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said glycopeptide.
 - 308. The method of claim 301, further comprising:
 - (h) prior to step (a), contacting said glycopeptide with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 309. The method of claim 301, further comprising:
 - (i) prior to step (a), contacting said glycopeptide with a mannosidase under conditions appropriate to remove mannose from said glycopeptide.
- 310. The method of claim 301, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 311. The method of claim 301, wherein
 - e, f, g, and h are members independently selected from the integers between 1 and 4;
 - a, b, c, d, i, j, k, l, m, n, o, p, q, r, s, t, u, aa, and cc are members independently selected from 0 and 1; and
 - v, w, x, y, z, and dd are 0.
 - 312. A Factor VIII peptide conjugate formed by the method of claim 301.

313. A method of forming a conjugate between a tumor necrosis factor (TNF) alpha receptor/IgG fusion peptide and a modifying group, wherein said modifying group is covalently attached to said glycopeptide through an intact glycosyl linking group, said glycopeptide comprising a glycosyl residue having the formula:

5

$$= \left\{ \begin{array}{c} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \right\}_{r} \\ \left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left(\operatorname{R'} \right)_{n} - \left(\operatorname{GlcNAc-(Gal)}_{b} \right)_{e} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right)_{t} \\ \left[\left(\operatorname{GlcNAc-(Gal)}_{b} \right)_{l} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right)_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u}$$

wherein

- a, b, c, d, i, j, k, l, m, q, r, s, t, u, w, ww, and z are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 4;

n, v, x, and y are 0;

R is a modifying group, a mannose or an oligomannose; and
R' is a member selected from H, a glycosyl residue, a modifying group
and a glycoconjugate,

said method comprising:

(a) contacting said glycopeptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

10

314. The method of claim 313, further comprising:

- (b) prior to step (a), contacting said glycopeptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said glycopeptide.
 - 315. The method of claim 313, further comprising:
- (c) prior to step (a), contacting said glycopeptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said glycopeptide.
- 316. The method of claim 313, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
- 317. The method of claim 313, wherein
 a, c, i, j, and l are members independently selected from 0 and 1;
 e, g, q, r, t, and z are 1; and
 b, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0.

5

- e, g, i, r, and t are members independently selected from 0 and 1 a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and q and z are 1.
- 319. A TNF alpha receptor/IgG fusion peptide conjugate formed by the method of claim 313.
 - 320. A method of forming a conjugate between a urokinase peptide and a modifying group, wherein said modifying group is covalently attached to said urokinase peptide through an intact glycosyl linking group, said urokinase peptide comprising a glycosyl residue having the formula:

WO 03/031464

$$\left\{ \begin{array}{c} \left[\operatorname{GlcNAc-(Gal)_a} \right]_e - \left(\operatorname{Sia} \right)_j - \left(R \right)_v \right)_r \\ \left[\operatorname{GlcNAc-(Gal)_b} \right]_f - \left(\operatorname{Sia} \right)_k - \left(R \right)_w \right)_s \\ \left[\operatorname{GlcNAc-(Gal)_b} \right]_f - \left(\operatorname{Sia} \right)_k - \left(R \right)_x \right)_t \\ \left[\left(\operatorname{R'} \right)_n \right]_{q} - \left(\operatorname{GlcNAc-(Gal)_d} \right)_{q} - \left(\operatorname{Sia} \right)_m - \left(R \right)_y \right)_u \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \right)_u \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \right)_u \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_y \\ \left[\operatorname{GlcNAc-(Gal)_d} \right]_{q} - \left(\operatorname{Sia} \right)_m - \left(\operatorname{R'} \right)_q - \left(\operatorname{Sia} \right)_m - \left(\operatorname{Si$$

wherein

- a, b, c, d, i, n, p, q, r, s, t, and u are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0;

R is a modifying group, a mannose or an oligomannose; and
R' is H or a glycosyl residue, a glycoconjugate, or a modifying group;
said method comprising:

- (a) contacting said urokinase peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 321. The method of claim 320, further comprising:
- (b) prior to step (a), contacting said urokinase peptide with a sialidase under conditions appropriate to remove sialic acid from said urokinase peptide.

10

15

- 322. The method of claim 320, further comprising:
- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 323. The method of claim 320, further comprising:

5

10

15

- (d) prior to step (a), contacting said urokinase peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said urokinase peptide.
 - 324. The method of claim 320, further comprising:
- (e) prior to step (a) contacting said urokinase peptide with a combination of a glycosidase and a sialidase.
 - 325. The method of claim 320, further comprising:
- (f) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 326. The method of claim 320, further comprising:
- (g) prior to step (a), contacting said urokinase peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said urokinase peptide.
 - 327. The method of claim 320, further comprising:
- (h) prior to step (a), contacting said urokinase peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said urokinase peptide.
 - 328. The method of claim 320, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

```
329. The method of claim 320, wherein
a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and
1;
e, f, g, and h are 1;
v, w, x, and y are 0; and
p is 1.
```

330. The method of claim 320, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1;

10 n, v, w, x, and y are 0; and p is 1.

5

15

20

25

331. The method of claim 320, wherein a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and e, g, i, q, r, and t are members independently selected from 0 and 1; and p is 1.

332. The method of claim 320, wherein a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x and y are 0;

i is 0 or 1; and q and p are 1. 333. The method of claim 320, wherein

a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1; e, f, g, and h are independently selected from 0, 1,2, 3 and 4; and n, v, w, x, and y are 0.

334. The method of claim 320, wherein a, b, c, d, e, f, g, h, i, j, k, l, m, o, r, s, t, u, v, w, x and y are 0; q is1; and n is 0 or 1.

335. A urokinase peptide conjugate formed by the method of claim 320.

336. A method of forming a conjugate between an anti-glycoprotein IIb/IIIa monoclonal antibody peptide and a modifying group, wherein said modifying group is covalently attached to said glycopeptide through an intact glycosyl linking group, said glycopeptide comprising a glycosyl residue having a formula which is a member selected from:

$$- \left\{ \begin{array}{l}
\text{(Sia)}_{bb} \\
\text{(Gal)}_{aa} - \text{(Sia)}_{\overline{cc}}(R)_{dd}
\end{array} \right\}_{ee}$$

10

wherein

a, b, c, d, i, j, k, l, m, r, s, t, u, z, aa, bb, cc, and ee are members independently selected from 0 and 1;

15

e, f, g, and h are members independently selected from the integers from 0 and 4;

n, v, w, x, y, and dd are 0;

R is a modifying group a mannose or an oligomannose; and R' is a member selected from H, a glycosyl residue, a modifying group and a glycoconiugates.

20

said method comprising:

(a) contacting said glycopeptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

5

- 337. The method of claim 336, further comprising:
- (b) prior to step (a), contacting said glycopeptide with a sialidase under conditions appropriate to remove sialic acid from said glycopeptide.
 - 338. The method of claim 336, further comprising:
- 10 (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 339. The method of claim 336, further comprising:
 - (d) prior to step (a), contacting said glycopeptide with a galactosidase operating synthetically under conditions appropriate to add a galactose to said glycopeptide.
 - 340. The method of claim 336, further comprising:
 - (e) prior to step (a), contacting said glycopeptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said glycopeptide.

20

25

- 341. The method of claim 340, further comprising:
- (f) contacting the product from step (e) with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 342. The method of claim 336, further comprising:
- (g) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.

343. The method of claim 336, further comprising:

(h) prior to step (a), contacting said glycopeptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said glycopeptide.

344. The method of claim 336, further comprising:

- (i) prior to step (a), contacting said glycopeptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said glycopeptide.
 - 345. The method of claim 336, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

346. The method of claim 336, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m r, s, t, and u are members independently selected from 0 and 1;

n, v, w, x, and y are 0; and

15 z is 1.

347. The method of claim 336, wherein a, b, c, d, e, f, g, h, j, k, l, m, n, s, t, u, v, w, x, and y are 0; i and r are members independently selected from 0 and 1; and z is 1.

20

25

5

10

348. The method of claim 336, wherein
a, b, c, d, e, f, g, h, i, j, k, l, m, and n are 0;

T, S, t, u, v, w, X, and v are members independently selected from 0 and 1; and 1; and 1; and 2; are members independently selected from 0 and 1; and 2; and 3; and 4; and 4; and 5; and 6; and

r, s, t, u, v, w, x, and y are members independently selected from 0 and 1; and z is 1.

349. The method of claim 336, wherein

aa, bb, cc, and ee are members independently selected from 0 and 1; and dd is 0.

- 350. The method of claim 336, wherein as and ee are members independently selected from 0 and 1; and bb, cc, and dd are 0.
- 351. The method of claim 336, wherein aa, bb, cc, dd, and ee are 0.
 - 352. An anti-glycoprotein IIb/IIIa monoclonal antibody peptide conjugate formed by the method of claim 336.
- antibody peptide and a modifying group, wherein said modifying group is covalently attached to said chimeric anti HER2 antibody peptide through an intact glycosyl linking group, said chimeric anti HER2 antibody peptide comprising a glycosyl residue having the formula:

$$(Fuc)_{i} = (GlcNAc-(Gal)_{a})_{e} - (Sia)_{j} - (R)_{v}$$

$$(GlcNAc-(Gal)_{b})_{f} - (Sia)_{k} - (R)_{w}$$

$$(R')_{n} = (GlcNAc-(Gal)_{c})_{g} - (Sia)_{l} - (R)_{x}$$

$$(GlcNAc-(Gal)_{c})_{g} - (Sia)_{l} - (R)_{x}$$

$$(GlcNAc-(Gal)_{d})_{h} - (Sia)_{m} - (R)_{y}$$

$$(GlcNAc-(Gal)_{d})_{h} - (Sia)_{m} - (R)_{y}$$

15 wherein

20

- a, b, c, d, i, j, k, l, q, r, s, t, u, and z are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 4;

n, v, w, x, and y are 0;

m is 0-20;

R is a modifying group, a mannose or an oligomannose; and

R' is a member selected from hydrogen and a glycosyl residue, and a modifying group,

said method comprising:

5

10

15

20

25

(a) contacting said chimeric anti HER2 antibody peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

354. The method of claim 353, further comprising:

- (b) prior to step (a), contacting said chimeric anti HER2 antibody peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said chimeric anti HER2 antibody peptide.
 - 355. The method of claim 353, further comprising:
- (c) prior to step (a), contacting said chimeric anti HER2 antibody peptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said chimeric anti HER2 antibody peptide.
 - 356. The method of claim 353, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

357. The method of claim 353, wherein

a, c, and i are members independently selected from 0 and 1;

e, g, r, and t are 1;

b, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and

q and z are 1.

358. The method of claim 353, wherein

i is 0 or 1;

q and z are 1; and

a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x, and y are 0.

359. The method of claim 353, wherein e, g, i, r, and t are members independently selected from 0 and 1; a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and q and z are 1.

5

360. An anti HER2 antibody peptide conjugate formed by the method of claim 353.

361. A method of forming a conjugate between an anti-RSV F peptide and a modifying group, wherein said modifying group is covalently attached to said anti-RSV F peptide through an intact glycosyl linking group, said anti-RSV F peptide comprising a glycosyl residue having the formula:

$$(Fuc)_{i} \qquad (GlcNAc-(Gal)_{a})_{e} - (Sia)_{j} - (R)_{v} \qquad (GlcNAc-Man \qquad (GlcNAc-(Gal)_{b})_{f} - (Sia)_{k} - (R)_{w} \qquad (GlcNAc-(Gal)_{b})_{g} - (Sia)_{l} - (R)_{x} \qquad (GlcNAc-(Gal)_{d})_{h} - (Sia)_{m} - (R)_{y} \qquad (GlcNAc-(Gal)_{d})_{h} - (Gal)_{m} - (Gal)_{m}$$

20

25

wherein

a, b, c, d, i, j, k, l, m, p, q, r, s, t, u, and z are members independently selected from 0 and 1:

e, f, g and h are members independently selected from the integers from 0 to 4; n, v, w, x and y are 0;

R is a modifying group, a mannose or an oligomannose; and

R' is a member selected from H and a glycosyl residue, a glycoconjugate, and a modifying group

said method comprising:

30

(a) contacting said anti-RSV F peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said

modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

362. The method of claim 361, further comprising:

5

10

15

20

25

- (b) prior to step (a), contacting said anti-RSV F peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said anti-RSV F peptide.
- 363. The method of claim 362, further comprising:
- (c) prior to step (b), contacting said anti-RSV F peptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said anti-RSV F peptide.

364. The method of claim 361, wherein a, c, e, g and i are members independently selected from 0 and 1; r and t are 1; b, d, f, h, j, k, l, m, n, s, u, v, w, x and y are 0; and z is 1.

365. The method of claim 361, wherein a, b, c, d, e, f, g, h, j, k, l, m, r, s, t, u, v, w, x, y are 0; i and p are independently selected from 0 or 1; q and z are 1; and n is 0.

366. The method of claim 361, wherein e, g, i, r and t are members independently selected from 0 and 1; a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x and y are 0; and q and z are 1.

367. The method of claim 361, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

368. An anti RSV F peptide conjugate formed by the method of claim 361.

369. A method of forming a conjugate between an anti-CD20 antibody peptide and a modifying group, wherein said modifying group is covalently attached to said anti-CD20 antibody peptide through an intact glycosyl linking group, said anti-CD20 antibody peptide having a glycosyl subunit comprising the formula:

$$(Fuc)_{i} \\ GlcNAc-Man \\ (R')_{n} \\ (GlcNAc-Man) \\ (GlcNAc-Gal)_{a}_{e}-(Sia)_{j}-(R)_{v} \\ (GlcNAc-(Gal)_{b}_{f}-(Sia)_{k}-(R)_{w} \\ (GlcNAc-(Gal)_{c}_{g}-(Sia)_{l}-(R)_{x} \\ (GlcNAc-(Gal)_{d}_{h}-(Sia)_{m}-(R)_{y} \\ (GlcNAc-(Gal)_{d})_{h} \\ (GlcNAc-(Gal)_{d})_{h}-(Sia)_{m}-(R)_{y} \\ (GlcNAc-(Gal)_{d})_{h} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_{d} \\ (GlcNAc-(Gal)_{d})_{h}-(Gal)_$$

wherein

15

a, b, c, d, i, j, k, l, m q, r, s, t, u and z are integers independently selected from 0 and 1;

e, f, g, and h are independently selected from the integers from 0 to 4;

20 n, v, w, x, and y are 0;

R is a modifying group, a mannose or an oligomannose; and

R' is a member selected from H, a glycosyl residue, a glycoconjugate or a modifying group,

said method comprising:

25

(a) contacting said anti-CD20 antibody peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

30

370. The method of claim 369, said method further comprising:

(b) prior to step (a), contacting said anti-CD20 antibody peptide with a galactosyltransferase and a galactosyl donor under conditions appropriate for the transfer of said galactosyl donor to said anti-CD20 antibody peptide.

5

371. The method of claim 370, further comprising:

- (c) prior to step (b), contacting said anti-CD20 antibody peptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said anti-CD20 antibody peptide.
- 372. The method of claim 371, further comprising:

10

- (d) prior to step (a), contacting said anti-CD20 antibody peptide with a mannosidase under conditions appropriate to remove mannose from said anti-CD20 antibody peptide.
- 373. The method of claim 369, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.

15

374. The method of claim 369, wherein said glycosyltransferase is galactosyltransferase and said modified glycosyl donor is a modified galactosyl donor.

375. The method of claim 369, wherein
a, c, e, g and i are members independently selected from 0 and 1;
r, t, q and z are 1; and

20

b, d, f, h, j, k, l, m, n, s, u, v, w, x and y are 0.

376. The method of claim 369, wherein

a, c, e, g, i, q, r, and t are members independently selected from 0 and 1;

b, d, f, h, j, k, l, m, s, u, v, w, x, y are 0; and z is 1.

25

377. The method of claim 369, wherein

e, g, i, q, r, and t are members independently selected from 0 and 1;

5

10

15

20

a, b, c, d, f, h, j, k, l, m, n, s, u, v, w, x, and y are 0; and z is 1.

378. The method of claim 369, wherein

i is 0 or 1;

q and z are 1; and

a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x and y are 0.

379. The method of claim 369, wherein

e, g, i, r, t, v, x and z are members independently selected from 0 and 1;

a, b, c, d, f, h, j, k, l, m, n, s, u, w and y are 0; and

z is 1.

380. The method of claim 369, wherein

a, b, c, d, e, f, g, h, j, k, l, m, r, s, t, u, v, w, x and y are 0;

n and q are 1; and

i is 0 or 1.

381. An anti-CD20 antibody peptide conjugate formed by the method of claim 369.

382. A method of forming a conjugate between a recombinant DNase peptide and a modifying group, wherein said modifying group is covalently attached to said recombinant DNase peptide through an intact glycosyl linking group, said recombinant DNase peptide comprising a glycosyl residue having the formula:

wherein

a, b, c, d, i, n, p q, r, s, t, and u are members independently selected from 0 and 1;

5

e, f, g, and h are members independently selected from the integers between 0 and 6;

j, k, l, and m are members independently selected from the integers between 0 and 100;

v, w, x, and y are 0; and

10

R is a member selected from polymer, a glycoconjugate, a mannose, an oligomannose and a modifying group.

said method comprising:

(a) contacting said recombinant DNase peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

383. The method of claim 382, further comprising:

- (b) prior to step (a), contacting said recombinant DNase peptide with a sialidase under conditions appropriate to remove sialic acid from said recombinant DNase peptide.
 - 384. The method of claim 382, further comprising:

5

10

15

20

- (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 385. The method of claim 382, further comprising:
- (d) prior to step (a), contacting said recombinant DNase peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said recombinant DNase peptide.
 - 386. The method of claim 382, further comprising:
- (e) prior to step (a) contacting said recombinant DNase peptide with a combination of a glycosidase and a sialidase.
 - 387. The method of claim 382, further comprising:
- (f) contacting the product from step (a) with a moiety that reacts with said modifying group, thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 388. The method of claim 382, further comprising:
- (g) prior to step (a), contacting said recombinant DNase peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said recombinant DNase peptide.
 - 389. The method of claim 382, further comprising:
- (h) prior to step (a), contacting said recombinant DNase peptide with an endoglycanase under conditions appropriate to cleave a glycosyl moiety from said recombinant DNase peptide.

390. The method of claim 382, wherein a, b, c, d, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 1; e, f, g, h and p are 1; and n, v, w, x, and y are 0. 5 391. The method of claim 382, wherein a, b, c, d, e, f, g, h, i, j, k, l, m, q, r, s, t, and u are members independently selected from 0 and 1; p is 1; and 10 n, v, w, x, and y are 0. 392. The method of claim 382, wherein a, b, c, d, f, h, j, k, l, m, s, u, v, w, x, and y are 0; and e, g, i, q, r, and t are members independently selected from 0 and 1; and p is 1. 393. The method of claim 382, wherein 15 a, b, c, d, e, f, g, h, j, k, l, m, n, r, s, t, u, v, w, x, and y are 0; i is 0 or 1; and p is 1. 394. The method of claim 382, wherein a, b, c, d, e, f, g, h, j, k, l and m are 0; 20 i, q, r, s, t, u, v, x and y are independently selected from 0 or 1; p is 1; and

395. A recombinant DNase peptide conjugate formed by the method of claim 382.

R is mannose or oligomannose.

396. A method of forming a conjugate between an anti-tumor necrosis factor (TNF) alpha peptide and a modifying group, wherein said modifying group is covalently attached to said anti-TNF alpha peptide through an intact glycosyl linking group, said anti-TNF alpha peptide comprising a glycosyl residue having the formula:

wherein

5

10

15

20

- a, b, c, d, i, n, o, p, q, r, s, t, u and z are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 6;
- j, k, l, and m are members independently selected from the integers between 0 and 20;

n, v, w, x and y are 0; and

R is a modifying group, a mannose or an oligomannose;

R' is a glycoconjugate or a modifying group;

said method comprising:

(a) contacting said anti-TNF alpha peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

397. The method of claim 396, further comprising:

- (b) prior to step (a), contacting said anti-TNF alpha peptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said anti-TNF alpha peptide.
 - 398. The method of claim 396, further comprising:
- (c) prior to step (a), contacting said anti-TNF alpha peptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said anti-TNF alpha peptide.
- 399. The method of claim 396, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 400. The method of claim 396, wherein
 - a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, q, r, s, t and u are members independently selected from 0 and 1;

n is 1; and

5

v, w, x, y, and z are 0.

401. The method of claim 396, wherein

a, c, e, g and i are members independently selected from 0 and 1;

r and t are 1;

b, d, f, h, j, k, l, m, n, s, u, v, w, x and y; and

q and z are 1.

402. An anti-TNF alpha peptide conjugate formed by the method of claim 396.

403. A method of forming a conjugate between an insulin peptide and a modifying group, wherein said modifying group is covalently attached to said glycopeptide through an intact glycosyl linking group, said glycopeptide comprising a glycosyl residue having a formula which is a member selected from:

$$\begin{cases} \text{[GlcNAc-(Gal)_a]_c} - (\text{Sia})_j - (\text{R})_v \\ \text{r} \\ \text{[GlcNAc-(Gal)_b]_f} - (\text{Sia})_k - (\text{R})_w \\ \text{s} \\ \text{[GlcNAc-(Gal)_c]_g} - (\text{Sia})_i - (\text{R})_x \\ \text{t} \\ \text{(R')_n} \end{cases}; \text{ and } \\ \text{[GlcNAc-(Gal)_d]_h} - (\text{Sia})_m - (\text{R})_y \\ \text{u} \\ \text{z} \end{cases}$$

$$\begin{array}{c}
\left(\text{Sia} \right)_{bb} \\
\mid \\
-\text{GalNAc-(Gal)}_{aa} - \left(\text{Sia} \right)_{\overline{cc}} \left(R \right)_{dd} \\
\text{ee}
\end{array}$$

wherein

a, b, c, d, i, j, k, l, m, r, s, t, u, z, aa, bb, cc, and ee are members independently selected from 0 and 1;

e, f, g, and h are members independently selected from the integer between 0 and 4;

dd, n, v, w, x and y are 0;

R is a modifying group, a mannose or an oligomannose; and
R' is a member selected from H, a glycosyl residue, a modifying group
and a glycoconjugate,

said method comprising:

(a) contacting said glycopeptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

404. The method of claim 403, further comprising:

- (b) prior to step (a), contacting said glycopeptide with a sialidase under conditions appropriate to remove sialic acid from said glycopeptide.
 - 405. The method of claim 403, further comprising:
- 5 (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 406. The method of claim 403, further comprising:
 - (d) prior to step (a), contacting said glycopeptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said glycopeptide.
 - 407. The method of claim 403, further comprising:
 - (e) prior to step (a), contacting said glycopeptide with Endo-H under conditions appropriate to cleave a glycosyl moiety from said glycopeptide.
- 408. The method of claim 403, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety and a glycoconjugate.
 - 409. The method of claim 403, wherein
 - a, b, c, d, e, f, g, h, i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;
 - n, v, w, x, and y are 0; and
- z is 1.

- 410. The method of claim 403, wherein
- a, b, c, d, e, f, g, h, j, k, l, m, n, s, t, u, v, w, x, and y are 0;
- i and r are members independently selected from 0 and 1; and
- z is 1.
- 25 411. The method of claim 403, wherein
 - a, b, c, d, e, f, g, h, i, j, k, l, m, and n are 0;
 - r, s, t, u, v, w, x, and y are members independently selected from 0 and 1; and

z is 1.

412. The method of claim 403, wherein aa, bb, cc, and ee are members independently selected from 0 and 1; and dd is 0.

5

413. The method of claim 403, wherein as and ee are members independently selected from 0 and 1; and bb, cc, and dd are 0.

414. The method of claim 403, wherein aa, bb, cc, dd, and ee are 0.

10

415. An insulin peptide conjugate formed by the method of claim 403.

416. A method of forming a conjugate between a hepatitis B surface antigen (HbsAg) peptide and a modifying group, wherein said modifying group is covalently attached to said HBsAg peptide through an intact glycosyl linking group, said HBsAg peptide comprising a glycosyl residue having a formula which is a member selected from:

$$\left\{ \begin{array}{c} \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_j - \left(R \right)_v \right]_r \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_j - \left(R \right)_w \right]_s \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_k - \left(R \right)_w \right]_s \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_x \right]_t \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(R \right)_y \right]_u \\ \left[\operatorname{GlcNAc-(Gal)_al_e} - \left(\operatorname{Sia} \right)_i - \left(\operatorname{Sia} \right)_i$$

wherein

5

10

15

20

aa, bb, a, b, c, d, i, n, q, r, s, t, and u are members independently selected from 0 and 1;

- e, f, g, and h are members independently selected from the integers between 0 and 6;
- o, p, j, k, l, and m are members independently selected from the integers between 0 and 100;

cc, v, w, x, and y are 0;

R is a modifying group, a mannose or an oligomannose; and
R' is H or a glycosyl residue, a glycoconjugate, or a modifying group,
said method comprising:

- (a) contacting said HBsAg peptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.
- 417. The method of claim 416, further comprising:
- (b) prior to step (a), contacting said HBsAg peptide with a sialidase under conditions appropriate to remove sialic acid from said HBsAg peptide.
 - 418. The method of claim 416, further comprising:
 - (c) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 419. The method of claim 416, further comprising:
- 25 (d) prior to step (a), contacting said HBsAg peptide with a galactosidase under conditions appropriate to cleave a glycosyl residue from said HBsAg peptide.
 - 420. The method of claim 416, further comprising:
 - (e) prior to step (a), contacting said HBsAg peptide with a galactosyl transferase and a

15

galactose donor under conditions appropriate to transfer said galactose to said HBsAg peptide.

- 421. The method according to claim 88, further comprising:
- 5 (f) contacting the product of step (d) with ST3Gal3 and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 422. The method of claim 416, further comprising:
- (g) contacting the product from step (a) with a moiety that reacts with said modifying group,
 thereby forming a conjugate between said intact glycosyl linking group and said moiety.
 - 423. The method of claim 416, further comprising:
 - (h) prior to step (a), contacting said HBsAg peptide with N-acetylglucosamine transferase and a GlcNAc donor under conditions appropriate to transfer GlcNAc to said HBsAg peptide.
 - 424. The method of claim 416, further comprising:
 - (i) prior to step (a), contacting said HBsAg peptide with a mannosidase under conditions appropriate to cleave mannose from said HBsAg peptide.
- 20 425. The method according claim 1, further comprising:
 - (j) prior to step (a), contacting said HBsAg peptide with endoglycanase under conditions sufficient to cleave a glycosyl group from said HBsAg peptide.
- 426. The method of claim 416, wherein said modifying group is a member selected from a polymer, a toxin, a radioisotope, a therapeutic moiety, an adjuvant and a glycoconjugate.
 - 427. The method of claim 416, wherein a, b, c, d, i, j, k, l, m, o, p, q, r, s, t, u, and aa are members independently selected from 0 and 1;
- 30 bb, e, f, g, h, and n are 1; and

cc, v, w, x, y, and z are 0.

428. The method of claim 416, wherein

a, b, c, d, i, j, k, l, m, n, o, p, q, r, s, t, u, and as are members independently selected from 0 and 1:

e, f, g, and h are independently selected from 0, 1, 2, 3, or 4;

cc, v, w, x, y, and z are 0; and

bb is 1.

bb is 1.

5

- 429. The method of claim 416, wherein cc, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, v, w, x, y and z are 0; and q, r, s, t, u, v, w, x, y, and aa are members independently selected from 0 and 1; and
- 430. The method of claim 416, wherein
 a, b, c, d, i, j, k, l, m, o, q, r, s, t, u, and aa are members independently selected from 0 and 1;
 bb, e, f, g, h, and n are 1; and
 n, p cc, v, w, x, y, and z are 0.
- 431. The method of claim 416, wherein bb, a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, q, r, s, t, u, v, w, x, y, and z are members independently selected from 0 and 1; cc is 1; and n is 0 or 1.

25

432. The method of claim 416, wherein a, b, c, d, f, h, j, k, l, m, o, p, s, u, v, w, x, y, z, and cc are 0; bb is 1;

e, g, i, n, q, r, t, and aa are members independently selected from 0 and 1.

433. The method of claim 416, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, z, and cc are 0;

q, r, s, t, u, v, w, x, y, and aa are members independently selected from 0 and 1; and bb is 1.

5

434. A HBsAg peptide conjugate formed by the method of claim 416.

435. A method of forming a conjugate between a human growth hormone (HGH) peptide and a modifying group, wherein said modifying group is covalently attached to said glycopeptide through an intact glycosyl linking group, said glycopeptide comprising a glycosyl residue having a formula which is a member selected from:

$$(Fuc)_{i} \\ --GlcNAc \\ -GlcNAc \\ -Man \\ \left[[GlcNAc-(Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v} \right]_{r} \\ (R')_{n} \\ --GlcNAc \\ --Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w}]_{s} \\ (R')_{n} \\ --GlcNAc \\ --GlcNAc \\ --Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x} \\ --GlcNAc \\ --Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}]_{u} \\ --GlcNAc \\ --GlcNAc \\ --GlcNAc \\ --Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}]_{u} \\ --GlcNAc \\$$

$$-\left(\begin{array}{c} (\mathrm{Sia})_{bb} \\ -\mathrm{GalNAc-(Gal)}_{\bar{a}\bar{a}} - (\mathrm{Sia})_{cc} - (\mathrm{R})_{dd} \end{array}\right)_{cc}$$

15

wherein

- a, b, c, d, i, j, k, l, m, r, s, t, u, z, aa, bb, cc, and ee are members independently selected from 0 and 1;
- e, f, g, and h are members independently selected from the integers between 0 and 4;

20

n, v, w, x, y, and dd are 0;

R is a modifying group, a mannose or an oligomannose; and

R' is a member selected from H, a glycosyl residue, a modifying group and a glycoconjugate,

said method comprising:

5

10

15

20

(a) contacting said glycopeptide with a glycosyltransferase and a modified glycosyl donor, comprising a glycosyl moiety which is a substrate for said glycosyltransferase covalently bound to said modifying group, under conditions appropriate for the formation of said intact glycosyl linking group.

- 436. The method of claim 435, further comprising:
- (b) prior to step (a), contacting said glycopeptide with a sialidase under conditions appropriate to remove sialic acid from said glycopeptide.
 - 437. The method of claim 435, further comprising:
- (c) prior to step (a), contacting said glycopeptide with endoglycanase under conditions appropriate to cleave a glycosyl moiety from said glycopeptide.
 - 438. The method of claim 435, further comprising:
- (c) prior to step (a), contacting said glycopeptide with a galactosyl transferase and a galactose donor under conditions appropriate to transfer said galactose to said glycopeptide.
 - 439. The method of claim 435, further comprising:
- (d) contacting the product of step (a) with a sialyltransferase and a sialic acid donor under conditions appropriate to transfer sialic acid to said product.
 - 440. The method of claim 435, further comprising:
- (d) prior to step (a), contacting said glycopeptide with a galactosidase under conditions appropriate to cleave a glycosyl residue from said glycopeptide.
- 25 441. The method of claim 435, wherein
 - a, b, c, d, e, f, g, h, i, j, k, l, m, r, s, t, and u are members independently selected from 0 and 1;

n, v, w, x, and y are 0; and z is 1.

5

10

15

442. The method of claim 435, wherein a, b, c, d, e, f, g, h, j, k, l, m, n, s, t, u, v, w, x, and y are 0; i and r are members independently selected from 0 and 1; and z is1.

443. The method of claim 435, wherein

a, b, c, d, e, f, g, h, i, j, k, l, m, and n are 0;

r, s, t, u, v, w, x and y are members independently selected from 0 and 1; and z is 1.

444. The method of claim 435, wherein as and ee are members independently selected from 0 and 1; and bb, cc, and dd are 0.

445. The method of claim 435, wherein aa, bb, cc, dd, and ee are 0.

446. The method of claim 435, wherein aa, bb, cc, dd, ee, and n are 0.

447. A HGH peptide conjugate formed by the method of claim 435.

1/345

12AP1/E5 -- Viventia Biotech Al-201 – AutoImmune 1964 -- Aventis Al-301 – AutoImmune 20K growth hormone – AMUR AIDS vaccine - ANRS, CIBG, Hesed 28P6/E6 -- Viventia Biotech Biomed, Hollis-Eden, Rome, United Biomedical, American Flome Products, 3-Hydroxyphthaloyl-beta-lactoglobulin – 4-IBB ligand gene therapy -Maxygen airway receptor ligand -- IC Innovations 64-Cu MAb conjugate TETA-1A3 --- AJvW 2 -- Aiinomoto Mallinckrodt Institute of Radiology AK 30 NGF -- Alkermes 64-Cu MAb conjugate TETA-cT84.66 Albuferon -- Human Genome Sciences 64-Cu Trastuzumab TETA conjugate albumin - Biogen, DSM Anti-Infectives, Genentech Genzyme Transgenics, PPL Therapeutics, A 200 -- Amgen TranXenoGen, Welfide Corp. A10255 – Eli Liliy aldesleukin -- Chiron A1PDX – Hedral THerapeutics alefacept -- Biogen A6 - Angstrom aaAT-III -- Genzyme Alemtuzumab -Abciximab -- Centocor Allergy therapy -- ALK-Abello/Maxygen, ABI.001 - Atlantic BioPharmaceuticals ALK-Abello/RP Scherer ABT-828 – Abbott allergy vaccines -- Allergy Therapeutics Alnidofibatide -- Aventis Pasteur Accutin Alnorine -- SRC VB VECTOR Actinohivin activin -- Biotech Australia, Human ALP 242 -- Gruenenthal Alpha antitrypsin -- Arriva/Hyland **Therapeutics** Immuno/ProMetic/Protease Sciences activin -- Curis AD 439 - Tanox Alpha-1 antitrypsin – Cutter, Bayer, PPL Therapeutics, Profile, ZymoGenetics, AD 519 – Tanox Adalimumab - Cambridge Antibody Tech. Arriva Adenocarcinoma vaccine – Biomira – NIS Alpha-1 protease inhibitor -- Genzyme Transgenics, Welfide Corp. Adenosine A2B receptor antagonists — Alpha-galactose fusion protein – Adenosine Therapeutics ADP-001 – Axis Genetics **Immunomedics AF 13948 – Affymax** Alpha-galactosidase A -- Research Afelimomab – Knoll Corporation Technologies Alpha-glucosidase - Genzyme, Novazyme AFP-SCAN – Immunomedics Alpha-lactalbumin AG 2195 – Corixa agalsidase alfa -- Transkaryotic Therapies Alpha-L-iduronidase - Transkaryotic agalsidase beta -- Genzyme Therapies, BioMarin AGENT – Antisoma alteplase -- Genentech Al 300 – Autolmmune alvircept sudotox -- NIH Al-101 – Teva ALX1-11 -sNPS Pharmaceuticals AI-102 - Teva Alzheimer's disease gene therapy -

FIG. 1A

AM-133 -- AMRAD Anti-B4 MAb-DC1 conjugate -- ImmunoGen Amb a 1 immunostim conj. -- Dynavax Anti-B7 antibody PRIMATIZED - IDEC AMD 3100 - AnorMED -- NIS Anti-B7-1 MAb 16-10A1 AMD 3465 - AnorMED -- NIS Anti-B7-1 MAb 1G10 AMD 3465 - AnorMED -- NIS Anti-B7-2 MAb GL-1 AMD Fab -- Genentech Anti-B7-2-gelonin immunotoxin – Amediplase - Menarini, Novartis Antibacterials/antifungals --AM-F9 Diversa/IntraBiotics Amoebiasis vaccine Anti-beta-amyloid monoclonal antibodies -Cambridge Antibody Tech., Wyeth-Ayerst Amphiregulin -- Octagene anakinra -- Amgen Anti-BLyS antibodies -- Cambridge analgesic - Nobex Antibody Tech. /Human Genome Sciences ancestim -- Amgen Antibody-drug conjugates -- Seattle AnergiX.RA - Corixa, Organon Genetics/Eos Angiocidin -- InKine Anti-C5 MAb BB5-1 -- Alexion angiogenesis inhibitors -- ILEX Anti-C5 MAb N19-8 -- Alexion AngioMab - Antisoma Anti-C8 MAb Angiopoietins -- Regeneron/Procter & anticancer cytokines -- BioPulse Gamble anticancer matrix - Telios Integra angiostatin -- EntreMed Anticancer monoclonal antibodies – ARIUS, Angiostatin/endostatin gene therapy --Immunex anticancer peptides - Maxygen, Micrologix **Genetix Pharmaceuticals** angiotensin-II, topical -- Maret Anticancer prodrug Tech. -- Alexion Anthrax -- EluSys Therapeutics/US Army **Antibody Technologies** Medical Research Institute anticancer Troy-Bodies -- Affite -- Affitech Anthrax vaccine anticancer vaccine -- NIH Anti platelet-derived growth factor D human anticancers -- Epimmune monoclonal antibodies -- CuraGen Anti-CCR5/CXCR4 sheep MAb - KS Anti-17-1A MAb 3622W94 --**Biomedix Holdings GlaxoSmithKline** Anti-CD11a MAb KBA – Anti-2C4 MAb -- Genentech Anti-CD11a MAb M17 anti-4-1BB monoclonal antibodies -- Bristol- Anti-CD11a MAb TA-3 --Myers Squibb Anti-CD11a MAb WT.1 – Anti-Adhesion Platform Tech. – Cytovax Anti-CD11b MAb - Pharmacia Anti-adipocyte MAb -- Cambridge Antibody Anti-CD11b MAb LM2 Tech./ObeSys Anti-CD154 MAb -- Biogen antiallergics -- Maxygen Anti-CD16-anti-CD30 MAb -- Biotest antiallergy vaccine -- Acambis Anti-CD18 MAb -- Pharmacia Anti-alpha-4-integrin MAb Anti-CD19 MAb B43 – Anti-angiogenesis monoclonal antibodies -- Anti-CD19 MAb -liposomal sodium butyrate KS Biomedix/Schering AG conjugate -

Anti-CD4 MAb KT6 Anti-CD19 MAb-saporin conjugate – Anti-CD4 MAb OX38 Anti-CD19-dsFv-PE38-immunotoxin -Anti-CD4 MAb PAP conjugate -- Bristol-Anti-CD2 MAb 12-15 -Myers Squibb Anti-CD2 MAb B-E2 - Diaclone Anti-CD4 MAb RIB 5-2 Anti-CD2 MAb OX34 -Anti-CD2 MAb OX54 – Anti-CD4 MAb W3/25 Anti-CD4 MAb YTA 3.1.2 Anti-CD2 MAb OX55 -Anti-CD4 MAb YTS 177-9 Anti-CD2 MAb RM2-1 Anti-CD40 ligand MAb 5c8 -- Biogen Anti-CD2 MAb RM2-2 Anti-CD40 MAb Anti-CD2 MAb RM2-4 Anti-CD40 MAb 5D12 - Tanox Anti-CD20 MAb BCA B20 Anti-CD20-anti-Fc alpha RI bispecific MAb -Anti-CD44 MAb A3D8 Anti-CD44 MAb GKWA3 Medarex, Tenovus Anti-CD22 MAb-saporin-6 complex -Anti-CD44 MAb IM7 Anti-CD44 MAb KM81 Anti-CD3 immunotoxin -Anti-CD44 variant monoclonal antibodies --Anti-CD3 MAb 145-2C11 -- Pharming Anti-CD3 MAb CD4lgG conjugate --Corixa/Hebrew University Anti-CD45 MAb BC8-I-131 Genentech Anti-CD3 MAb humanised – Protein Design, Anti-CD45RB MAb Anti-CD48 MAb HuLy-m3 RW Johnson Anti-CD48 MAb WM-63 Anti-CD3 MAb WT32 Anti-CD3 MAb-ricin-chain-A conjugate -Anti-CD5 MAb -- Becton Dickinson Anti-CD3 MAb-xanthine-oxidase conjugate Anti-CD5 MAb OX19 Anti-CD6 MAb Anti-CD30 MAb BerH2 -- Medac Anti-CD7 MAb-PAP conjugate Anti-CD7 MAb-ricin-chain-A conjugate Anti-CD30 MAb-saporin conjugate Anti-CD8 MAb - Amerimmune, Cytodyn, Anti-CD30-scFv-ETA'-immunotoxin Anti-CD38 MAb AT13/5 Becton Dickinson Anti-CD38 MAb-saporin conjugate Anti-CD8 MAb 2-43 Anti-CD3-anti-CD19 bispecific MAb Anti-CD8 MAb OX8 Anti-CD3-anti-EGFR MAb Anti-CD80 MAb P16C10 -- IDEC Anti-CD80 MAb P7C10 -- ID Vaccine Anti-CD3-anti-interleukin-2-receptor MAb Anti-CD3-anti-MOv18 MAb -- Centocor Anti-CD8-idarubicin conjugate Anti-CD3-anti-SCLC bispecific MAb Anti-CEA MAb CE-25 Anti-CD4 idiotype vaccine Anti-CEA MAb MN 14 – Immunomedics Anti-CD4 MAb - Centocor, IDEC Anti-CEA MAb MN14-PE40 conjugate – Pharmaceuticals, Xenova Group **Immunomedics** Anti-CEA MAb T84.66-interleukin-2 Anti-CD4 MAb 16H5 Anti-CD4 MAb 4162W94 -- GlaxoSmithKline conjugate Anti-CEA sheep MAb -- KS Biomedix Anti-CD4 MAb B-F5 -- Diaclone Anti-CD4 MAb GK1-5 Holdings

4/345

Anti-cell surface monoclonal antibodies --Cambridge Antibody Tech. /Pharmacia Anti-c-erbB2-anti-CD3 bifunctional MAb --Otsuka Anti-CMV MAb -- Scotgen Anti-CTLA-4 MAb Anti-EGFR catalytic antibody -- Hesed Biomed anti-EGFR immunotoxin -- IVAX Anti-EGFR MAb -- Abgenix Anti-EGFR MAb 528 Anti-EGFR MAb KSB 107 -- KS Biomedix Anti-EGFR MAb-DM1 conjugate --**ImmunoGen** Anti-EGFR MAb-LA1 -Anti-EGFR sheep MAb -- KS Biomedix Anti-FAP MAb F19-I-131 Anti-Fas IgM MAb CH11 Anti-Fas MAb Jo2 Anti-Fas MAb RK-8 Anti-fungal peptides -- State University of **New York** antifungal tripeptides -- BTG fusion protein -- Lexigen Anti-GM2 MAb -- Kyowa Anti-GM-CSF receptor monoclonal antibodies -- AMRAD Anti-gp130 MAb -- Tosoh Anti-HCA monoclonal antibodies --AltaRex/Epigen Anti-hCG antibodies -- Abgenix/AVI BioPharma Anti-heparanase human monoclonal antibodies - Oxford Glycosciences/Medarex Anti-hepatitis C virus human monoclonal antibodies -- XTL Biopharmaceuticals Anti-HER-2 antibody gene therapy Anti-herpes antibody -- Epicyte

Anti-HIV antibody -- Epicyte anti-HIV catalytic antibody - Hesed Biomed anti-HIV fusion protein -- Idun anti-HIV proteins -- Cangene Anti-HM1-24 MAb -- Chugai Anti-hR3 MAb Anti-Human-Carcinoma-Antigen MAb --Anti-ICAM-1 MAb -- Boehringer Ingelheim Anti-ICAM-1 MAb 1A-29 -- Pharmacia Anti-ICAM-1 MAb HA58 Anti-ICAM-1 MAb YN1/1.7.4 Anti-ICAM-3 MAb ICM3 -- ICOS Anti-idiotype breast cancer vaccine 11D10 Anti-idiotype breast cancer vaccine ACA14C5 -Anti-idiotype cancer vaccine -- ImClone Systems/Merck KGaA ImClone, Viventia **Biotech** Anti-idiotype cancer vaccine 1A7 -- Titan Anti-Flt-1 monoclonal antibodies -- ImClone Anti-idiotype cancer vaccine 3H1 -- Titan Anti-idiotype cancer vaccine TriAb -- Titan Anti-idiotype Chlamydia trachomatis vaccine Anti-ganglioside GD2 antibody-interleukin-2 Anti-idiotype colorectal cancer vaccine --**Novartis** Anti-idiotype colorectal cancer vaccine --Onyvax Anti-idiotype melanoma vaccine -- IDEC **Pharmaceuticals** Anti-idiotype ovarian cancer vaccine ACA 125 Anti-idiotype ovarian cancer vaccine AR54 -- AltaRex Anti-idiotype ovarian cancer vaccine CA-125 - AltaRex, Biomira Anti-IgE catalytic antibody -- Hesed Biomed Anti-IgE MAb E26 -- Genentech Anti-IGF-1 MAb

anti-inflammatory -- GeneMax anti-inflammatory peptide -- BTG

Anti-mu MAb -- Novartis anti-integrin peptides -- Burnha Anti-interferon-alpha-receptor MAb 64G12 - Anti-MUC-1 MAb Pharma Pacific Management Anti-interferon-gamma MAb -- Protein Design Labs Anti-interferon-gamma polyclonal antibody - - Dompe - Advanced Biotherapy Anti-interleukin-10 MAb -Anti-interleukin-12 MAb --Anti-interleukin-1-beta polyclonal antibody -- Anti-PDGF/bFGF sheep MAb -- KS Biomedix R&D Systems Anti-interleukin-2 receptor MAb 2A3 Anti-interleukin-2 receptor MAb 33B3-1 --**Immunotech** Anti-interleukin-2 receptor MAb ART-18 Anti-interleukin-2 receptor MAb LO-Tact-1 Anti-interleukin-2 receptor MAb Mikbeta1 Anti-interleukin-2 receptor MAb NDS61 Anti-interleukin-4 MAb 11B11 Anti-interleukin-5 MAb -- Wallace Laboratories Anti-interleukin-6 MAb - Centocor, Diaclone, Pharmadigm Anti-interleukin-8 MAb -- Xenotech Anti-JL1 MAb Anti-Klebsiella sheep MAb -- KS Biomedix Holdings Anti-Laminin receptor MAb-liposomal doxorubicin conjugate Anti-LCG MAb -- Cytoclonal Anti-lipopolysaccharide MAb -- VitaResc Anti-L-selectin monoclonal antibodies --Protein Design Labs, Abgenix, Stanford Genzyme University Anti-MBL monoclonal antibodies --Alexion/Brigham and Women's Hospital Anti-MHC monoclonal antibodies Myriad Anti-MIF antibody humanised – IDEC, Cytokine PharmaSciences

Anti-MRSA/VRSA sheep MAb -- KS

Biomedix Holdings

Anti-Nogo-A MAb IN1 Anti-nuclear autoantibodies -- Procyon Anti-ovarian cancer monoclonal antibodies -Anti-p185 monoclonal antibodies Anti-p43 MAb Antiparasitic vaccines Anti-properdin monoclonal antibodies --Abgenix/Gliatech Anti-PSMA MAb J591 -- BZL Biologics Anti-Rev MAb gene therapy – Anti-RSV antibodies - Epicyte, Intracell Anti-RSV monoclonal antibodies --Medarex/MedImmune, Applied Molecular Evolution/MedImmune Anti-RSV MAb, inhalation --Alkermes/MedImmune Anti-RT gene therapy Antisense K-ras RNA gene therapy Anti-SF-25 MAb Anti-sperm antibody -- Epicyte Anti-Tac(Fv)-PE38 conjugate Anti-TAPA/CD81 MAb AMP1 Anti-tat gene therapy Anti-TCR-alphabeta MAb H57-597 Anti-TCR-alphabeta MAb R73 Anti-tenascin MAb BC-4-I-131 Anti-TGF-beta human monoclonal antibodies -- Cambridge Antibody Tech., Anti-TGF-beta MAb 2G7 -- Genentech Antithrombin III -- Genzyme Transgenics, Aventis, Bayer, Behringwerke, CSL, Anti-Thy1 MAb Anti-Thy1.1 MAb

6/345

Anti-tissue factor/factor VIIA sheep MAb -- ARGENT gene delivery systems -- ARIAD Arresten KS Biomedix ART-123 -- Asahi Kasei Anti-TNF monoclonal antibodies arylsulfatase B -- BioMarin Centocor, Chiron, Peptech, Pharacia, Arylsulfatase B, Recombinant human --Serono Anti-TNF she'ep MAb -- KS Biomedix BioMarin AS 1051 -- Ajinomoto **Holdings** ASI-BCL -- Intracell Anti-TNFalpha MAb -- Genzyme Anti-TNFalpha MAb B-C7 -- Diaclone ATL-101 -- Alizyme atrial natriuretic peptide - Pharis Anti-tooth decay MAb -- Planet BioTech. Aurintricarboxylic acid-high molecular antitumour RNases -- NIH Anti-VCAM MAb 2A2 -- Alexion weight autoimmune disorders -- GPC Anti-VCAM MAb 3F4 -- Alexion Biotech/MorphoSys Anti-VCAM-1 MAb Autoimmune disorders and transplant Anti-VEC MAb -- ImClone rejection -- Bristol-Myers Squibb/Genzyme Anti-VEGF MAb — Genentech Tra Anti-VEGF MAb 2C3 Autoimmune disorders/cancer ---Anti-VEGF sheep MAb -- KS Biomedix Abgenix/Chiron, /CuraGen **Holdings** Anti-VLA-4 MAb HP1/2 -- Biogen **Autotaxin** Avicidin -- NeoRx Anti-VLA-4 MAb PS/2 axogenesis factor-1 -- Boston Life Sciences Anti-VLA-4 MAb R1-2 Axokine -- Regeneron Anti-VLA-4 MAb TA-2 B cell lymphoma vaccine - Biomira Anti-VRE sheep MAb -- KS Biomedix B7-1 gene therapy – **Holdings** ANUP -- TranXenoGen BABS proteins -- Chiron ANUP-1 -- Pharis BAM-002 -- Novelos Therapeutics Bay-16-9996 -- Bayer AOP-RANTES -- Senetek Apan-CH -- Praecis Pharmaceuticals Bay-39-9437 -- Bayer APC-8024 -- Demegen Bay-50-4798 -- Bayer ApoA-1 -- Milano, Pharmacia BB-10153 -- British Biotech Apogen -- Alexion BBT-001 -- Bolder BioTech. apolipoprotein A1 -- Avanir BBT-002 -- Bolder BioTech. Apolipoprotein E -- Bio-Tech. General BBT-003 – Bolder BioTech. Applaggin -- Biogen BBT-004 -- Bolder BioTech. BBT-005 -- Bolder BioTech. aprotinin -- ProdiGene APT-070C -- AdProTech BBT-006 -- Bolder BioTech. AR 177 -- Aronex Pharmaceuticals BBT-007 -- Bolder BioTech. AR 209 -- Aronex Pharmaceuticals, BCH-2763 -- Shire **BCSF** -- Millenium Biologix **Antigenics**

FIG. 1F

BDNF -- Regeneron -- Amgen

AR545C

Becaplermin -- Johnson & Johnson, Chiron BST-3002 -- BioStratum

Bectumomab - Immunomedics

Beta-adrenergic receptor gene therapy –

University of Arkansas

BI 51013 -- Behringwerke AG

BIBH 1 -- Boehringer Ingelheim

BIM-23190 — Beaufour-Ipsen

birch pollen immunotherapy -- Pharmacia

bispecific fusion proteins -- NIH Bispecific MAb 2B1 -- Chiron

Bitistatin

BIWA 4 -- Boehringer Ingelheim

blood substitute – Northfield, Baxter Intl.

BLP-25 -- Biomira

BLS-0597 - Boston Life Sciences

BLyS -- Human Genome Sciences

BLyS radiolabelled -- Human Genome

Sciences

BM 06021 - Boehringer Mannheim

BM-202 -- BioMarin

BM-301 — BioMarin

BM-301 -- BioMarin

BM-302 -- BioMarin

BMP 2 -- Genetics Institute/Medtronic-

Sofamor Danek, Genetics Institute/

Collagenesis, Genetics

Institute/Yamanouch

BMP 2 gene therapy

BMP 52 - Aventis Pasteur, Biopharm

BMP-2 -- Genetics Institute

BMS 182248 -- Bristol-Myers Squibb

BMS 202448 -- Bristol-Myers Squibb

bone growth factors -- IsoTis

BPC-15 -- Pfizer

brain natriuretic peptide -

Breast cancer -- Oxford

GlycoSciences/Medarex

Breast cancer vaccine -- Therion Biologics, Cancer vaccine CEA-TRICOM -- Aventis

Oregon

BSSL -- PPL Therapeutics

BST-2001 – BioStratum

BTI 322 -

butyrylcholinesterase -- Shire

C 6822 -- COR Therapeutics

C1 esterase inhibitor -- Pharming

C3d adjuvant -- AdProTech

CAB-2.1 -- Millennium

calcitonin – Inhale Therapeutics Systems,

Aventis, Genetronics, TranXenoGen,

Unigene, Rhone Poulenc Rohrer calcitonin -- oral - Nobex, Emisphere,

Pharmaceutical Discovery

Calcitonin gene-related peptide -- Asahi

Kasei -- Unigene

calcitonin, human -- Suntory

calcitonin, nasal – Novartis, Unigene

calcitonin, Panoderm -- Elan

calcitonin, Peptitrol -- Shire

calcitonin, salmon -- Therapicon

calin -- Biopharm

Calphobindin I

calphobindin I -- Kowa

calreticulin -- NYU

Campath-1G

Campath-1M

cancer therapy -- Cangene

cancer vaccine - Aixlie, Aventis Pasteur,

Center of Molecular Immunology, YM

BioSciences, Cytos, Genzyme,

Transgenics, Globelmmune, Igeneon,

ImClone, Virogenetics, InterCell, Iomai,

Jenner Biotherapies, Memorial Sloan-

Kettering Cancer Center, Sydney Kimmel

Cancer Center, Novavax, Protein

Sciences, Argonex, SIGA

Cancer vaccine ALVAC-CEA B7.1 --

Aventis Pasteur/Therion Biologics

Pasteur/Therion Biologics

Cancer vaccine gene therapy -- Cantab

Pharmaceuticals

Cancer vaccine HER-2/neu -- Corixa Cancer vaccine THERATOPE -- Biomira cancer vaccine, PolyMASC -- Valentis Candida vaccine – Corixa, Inhibitex Canstatin -- ILEX CAP-18 — Panorama Cardiovascular gene therapy -- Collateral Therapeutics carperitide - Suntory Casocidin-1 -- Pharis CAT 152 -- Cambridge Antibody Tech. CAT 192 - Cambridge Antibody Tech. CAT 213 -- Cambridge Antibody Tech. Catalase-- Enzon Cat-PAD -- Circassia CB 0006 -- Celltech CCK(27-32)-- Akzo Nobel CCR2-64I -- NIH CD, Procept -- Paligent CD154 gene therapy CD39 - Immunex CD39-L2 -- Hyseq CD39-L4 -- Hyseq CD4 fusion toxin -- Senetek CD4 IgG - Genentech CD4 receptor antagonists --Pharmacopeia/Progenics CD4 soluble -- Progenics CD4, soluble -- Genzyme Transgenics CD40 ligand -- Immunex CD4-ricin chain A — Genentech CD59 gene therapy — Alexion CD8 TIL cell therapy -- Aventis Pasteur CD8, soluble -- Avidex CD95 ligand -- Roche CDP 571 -- Celltech CDP 850 - Celltech CDP 870 -- Celltech CDS-1 -- Ernest Orlando Cedelizumab -- Ortho-McNeil Cetermin - Insmed

CETP vaccine -- Avant Cetrorelix Cetuximab CGH 400 -- Novartis CGP 42934 -- Novartis **CGP 51901 – Tanox** CGRP -- Unigene CGS 27913 -- Novartis CGS 32359 -- Novartis Chagas disease vaccine -- Corixa chemokines -- Immune Response CHH 380 -- Novartis chitinase – Genzyme, ICOS Chlamydia pneumoniae vaccine -- Antex **Biologics** Chlamydia trachomatis vaccine -- Antex Biologics Chlamydia vaccine -- GlaxoSmithKline Cholera vaccine CVD 103-HqR -- Swiss Serum and Vaccine Institute Berne Cholera vaccine CVD 112 -- Swiss Serum and Vaccine Institute Berne Cholera vaccine inactivated oral -- SBL Vaccin Chrysalin -- Chrysalis BioTech. CI-782 -- Hitachi Kase Ciliary neurotrophic factor – Fidia, Roche CIM project -- Active Biotech CL 329753 -- Wyeth-Averst CL22, Cobra -- ML Laboratories Clenoliximab -- IDEC Clostridium difficile antibodies -- Epicyte clotting factors -- Octagene CMB 401 -- Celltech CNTF -- Sigma-Tau Cocaine abuse vaccine - Cantab, ImmuLogic, Scripps coccidiomycosis vaccine - Arizo collagen -- Type I -- Pharming Collagen formation inhibitors - FibroGen

FIG. 1H

Collagen/hydroxyapatite/bone growth factor CY 1747 -- Epimmune -- Aventis Pasteur, Biopharm, Orquest CY 1748 -- Epimmune Cyanovirin-N collagenase -- BioSpecifics Colorectal cancer vaccine -- Wistar Institute Cystic fibrosis therapy -- CBR/IVAX CYT 351 Component B, Recombinant -- Serono Connective tissue growth factor inhibitors - cytokine Traps - Regeneron cytokines - Enzon, Cytoclonal FibroGen/Taisho Cytomegalovirus glycoprotein vaccine -Contortrostatin contraceptive vaccine -- Zonagen Chiron, Aquila Biopharmaceuticals, Contraceptive vaccine hCG Aventis Pasteur, Virogenetics Contraceptive vaccine male reversible --Cytomegalovirus vaccine live -- Aventis **Pasteur IMMUCON** Cytosine deaminase gene therapy --Contraceptive vaccine zona pellucida --**GlaxoSmithKline** Zonagen DA-3003 -- Dong-A Copper-64 labelled MAb TETA-1A3 -- NCI DAB389interleukin-6 -- Senetek Coralyne Corsevin M DAB389interleukin-7 C-peptide analogues -- Schwarz DAMP[^] -- Incyte Genomics CPI-1500 -- Consensus Daniplestim -- Pharmacia darbepoetin alfa -- Amgen CRF - Neurobiological Tech. cRGDfV pentapeptide -DBI-3019 -- Diabetogen CRL 1095 - CytRx DCC -- Genzyme DDF -- Hyseq CRL 1336 -- CytRx decorin – Integra, Telios CRL 1605 -- CytRx defensins -- Large Scale Biology CS-560 -- Sankyo **DEGR-VIIa** CSF -- ZymoGenetics CSF-G - Hangzhou, Dong-A, Hanmi Delmmunised antibody 3B6/22 AGEN Deimmunised anti-cancer antibodies --CSF-GM - Cangene, Hunan, LG Chem Biovation/Viragen CSF-M -- Zarix CT 1579 – Merck Frosst Dendroamide A CT 1786 – Merck Frosst Dengue vaccine -- Bavarian Nordic, Merck CT-112[^] -- BTG denileukin diftitox -- Ligand CTB-134L -- Xenova **DES-1101 -- Desmos** CTC-111 -- Kaketsuken desirudin -- Novartis CTGF -- FibroGen desmopressin -- Unigene Desmoteplase - Merck, Schering AG CTLA4-Ig -- Bristol-Myers Squibb Destabilase CTLA4-Ig gene therapy – Diabetes gene therapy - DeveloGen, Pfizer CTP-37 -- AVI BioPharma Diabetes therapy -- Crucell C-type natriuretic peptide -- Suntory CVS 995 - Corvas Intl. Diabetes type 1 vaccine -- Diamyd

FIG. 11

Therapeutics

CX 397 – Nikko Kyodo

10/345

DiaCIM -- YM BioSciences EGF-P64k vaccine -- Center of Molecular dialytic oligopeptides -- Research Corp **Immunology** Diamyd -- Diamyd Therapeutics EL 246 -- LigoCyte elastase inhibitor -- Synergen DiaPep227-- Pepgen DiavaX -- Corixa elcatonin -- Therapicon Diphtheria tetanus pertussis-hepatitis B EMD 72000 - Merck KGaA vaccine -- GlaxoSmithKline Emdogain -- BIORA DIR therapy - Solis Therapeutics emfilermin -- AMRAD DNase -- Genentech Emoctakin - Novartis Dornase alfa -- Genentech enamel matrix protein -- BIORA Dornase alfa, inhalation — Genentech Endo III -- NYU Doxorubicin-anti-CEA MAb conjugate endostatin – EntreMed, Pharis Enhancins -- Micrologix **Immunomedics** DP-107 -- Trimeris Enlimomab -- Isis Pharm. drotrecogin alfa -- Eli Lilly Enoxaparin sodium -- Pharmuka **DTctGMCSF** enzyme linked antibody nutrient depletion DTP-polio vaccine -- Aventis Pasteur therapy -- KS Biomedix Holdings DU 257-KM231 antibody conjugate --Eosinophil-derived neutralizing agent – Kyowa EP-51216 -- Asta Medica dural graft matrix -- Integra EP-51389 -- Asta Medica Duteplase – Baxter Intl. EPH family ligands -- Regeneron DWP-401 -- Daewoong Epidermal growth factor -- Hitachi Kasei, DWP-404 -- Daewoong Johnson & Johnson DWP-408 - Daewoong Epidermal growth factor fusion toxin --E coli O157 vaccine -- NIH Senetek E21-R -- BresaGen Epidermal growth factor-genistein -Eastern equine encephalitis virus vaccine - EPI-HNE-4 -- Dyax Echicetin -EPI-KAL2 -- Dyax Echinhibin 1 – Epoetin-alfa – Amgen, Dragon Echistatin -- Merck Pharmaceuticals, Nanjing Huaxin Echitamine – Epratuzumab – Immunomedics EC-SOD - PPL Therapeutics Epstein-Barr virus vaccine --EDF -- Ajinomoto Aviron/SmithKline Beecham, Bioresearch EDN derivative -- NIH Eptacog alfa -- Novo Nordisk EDNA -- NIH Eptifibatide -- COR Therapeutics Edobacomab -- XOMA erb-38 -Edrecolomab -- Centocor Erlizumab - Genentech

EF 5077

Efalizumab -- Genentech

EGF fusion toxin - Seragen, Ligand

FIG. 1J

11/345

erythropoietin -- Alkermes, ProLease, Dong-Fas TR -- Human Genome Sciences A, Elanex, Genetics Institute, LG Chem, Felvizumab -- Scotgen Protein Sciences, Serono, Snow Brand, FFR-VIIa -- Novo Nordisk SRC VB VECTOR, Transkaryotic FG-001 - F-Gene Therapies FG-002 – F-Gene Erythropoietin Beta -- Hoffman La Roche FG-004 – F-Gene Erythropoietin/Epoetin alfa -- Chugai FG-005 - F-Gene Escherichia coli vaccine -- North American FGF + fibrin -- Repair Vaccine, SBL Vaccin, Swiss Serum and Fibrimage -- Bio-Tech. General Vaccine Institute Berne fibrin-binding peptides – ISIS Innovation etanercept - Immunex fibrinogen -- PPL Therapeutics, Pharming examorelin – Mediolanum fibroblast growth factor – Chiron, NYU, exonuclease VII Ramot, ZymoGenetics F 105 -- Centocor fibrolase conjugate -- Schering AG F-992 -- Fornix Filgrastim -- Amgen Factor IX - Alpha Therapeutics, Welfide filgrastim -- PDA modified -- Xencor Corp., CSL, enetics Institute/AHP, FLT-3 ligand -- Immunex Pharmacia, PPL Therapeutics FN18 CRM9 -Factor IX gene therapy - Cell Genesys follistatin -- Biotech Australia, Human Factor VII -- Novo Nordisk, Bayer, Baxter **Therapeutics** Intl. follitropin alfa – Alkermes, ProLease, Factor VIIa -- PPL Therapeutics, PowderJect, Serono, Akzo Nobel ZymoGenetics Follitropin Beta – Bayer, Organon Factor VIII - Bayer Genentech, Beaufour-FP 59 Ipsen, CLB, Inex, Octagen, Pharmacia, **FSH** -- Ferring **Pharming** FSH + LH -- Ferring Factor VIII -- PEGylated -- Bayer F-spondin -- CeNeS fusion protein delivery system -- UAB Factor VIII fragments -- Pharmacia Factor VIII gene therapy — Targeted Research Foundation **Genetics** fusion toxins -- Boston Life Sciences Factor VIII sucrose formulation – Bayer, G 5598 -- Genentech Genentech GA-II -- Transkaryotic Therapies Factor VIII-2 -- Bayer Gamma-interferon analogues -- SRC VB Factor VIII-3 -- Bayer **VECTOR** Factor Xa inhibitors - Merck, Novo Nordisk, Ganirelix -- Roche Mochida gastric lipase -- Meristem Factor XIII -- ZymoGenetics Gavilimomab -Factors VIII and IX gene therapy -- Genetics G-CSF - Amgen, SRC VB VECTOR Institute/Targeted Genetics GDF-1 -- CeNeS Famoxin - Genset GDF-5 -- Biopharm Fas (delta) TM protein – LXR BioTech. GDNF -- Amgen

FIG. 1K

gelsolin -- Biogen Gemtuzumab ozogamicin -- Celltech Gene-activated epoetin-alfa -- Aventis Pharma -- Transkaryotic Therapies Glanzmann thrombasthenia gene therapy -Glatiramer acetate - Yeda glial growth factor 2 -- CeNeS GLP-1 - Amylin, Suntory, TheraTech, Watson GLP-1 peptide analogues - Zealand **Pharaceuticals** glucagon -- Eli Lilly, ZymoGenetics Glucagon-like peptide-1 7-36 amide --Suntory Glucocerebrosidase -- Genzyme glutamate decarboxylase -- Genzyme Transgenics Glycoprotein S3 -- Kureha GM-CSF - Immunex GM-CSF tumour vaccine -- PowderJect GnRH immunotherapeutic -- Protherics gp75 antigen -- ImClone gp96 - Antigenics GPI 0100 -- Galenica GR 4991W93 -- GlaxoSmithKline Granulocyte colony-stimulating factor --Dong-A Granulocyte colony-stimulating factor conjugate grass allergy therapy -- Dynavax GRF1-44 -- ICN Growth Factor – Chiron, Atrigel, Atrix, Innogenetics, ZymoGenetics, Novo growth factor peptides -- Biotherapeutics growth hormone -- LG Chem growth hormone, Recombinant human --Serono GT 4086 -- Gliatech GW 353430 -- GlaxoSmithKline GW-278884 -- GlaxoSmithKline H 11 -- Viventia Biotech

H5N1 influenza A virus vaccine -- Protein Sciences haemoglobin -- Biopure haemoglobin 3011, Recombinant -- Baxter Healthcare haemoglobin crosfumaril – Baxter Intl. haemoglobin stabilized -- Ajinomoto haemoglobin, recombinant -- Apex HAF -- Immune Response Hantavirus vaccine **HB** 19 HBNF -- Regeneron HCC-1 -- Pharis hCG -- Milkhaus hCG vaccine -- Zonagen HE-317 -- Hollis-Eden Pharmaceuticals Heat shock protein cancer and influenza vaccines -- StressGen Helicobacter pylori vaccine - Acambis, AstraZeneca/CSL, Chiron, Provalis Helistat-G -- GalaGen Hemolink -- Hemosol hepapoietin - Snow Brand heparanase -- InSight heparinase I - lbex heparinase III -- Ibex Hepatitis A vaccine -- American Biogenetic **Sciences** Hepatitis A vaccine inactivated Hepatitis A vaccine Nothav -- Chiron Hepatitis A-hepatitis B vaccine --GlaxoSmithKline hepatitis B therapy -- Tripep Hepatitis B vaccine - Amgen, Chiron SpA, Meiji Milk, NIS, Prodeva, PowderJect, Rhein Biotech Hepatitis B vaccine recombinant -- Evans Vaccines, Epitec Combiotech, Genentech, MedImmune, Merck Sharp & Dohme, Rhein Biotech, Shantha Biotechnics, Vector, Yeda

FIG. 1L

Hepatitis B vaccine recombinant TGP 943 -- HIV peptides -- American Home Products Takeda HIV vaccine -- Applied bioTech., Axis Hepatitis C vaccine -- Bavarian Nordic, Genetics, Biogen, Bristol-Myers Squibb, Chiron, Innogenetics Acambis, Genentech, Korea Green Cross, NIS, Hepatitis D vaccine -- Chiron Vaccines Oncogen, Protein Sciences Corporation. Hepatitis E vaccine recombinant --Terumo, Tonen Corporation, Wyeth-Genelabs/GlaxoSmithKline, Novavax Averst, Wyeth-Lederle Vaccines-Malvern. hepatocyte growth factor - Panorama, Advanced BioScience Laboratories. Sosei Bavarian Nordic, Bavarian Nordic/Statens hepatocyte growth factor kringle fragments -Serum Institute, GeneCure, Immune - EntreMed Response, Progenics, Therion Biologics, Her-2/Neu peptides -- Corixa United Biomedical, Chiron Herpes simplex glycoprotein DNA vaccine – HIV vaccine vCP1433 – Aventis Pasteur Merck, Wyeth-Lederle Vaccines-Malvern, HIV vaccine vCP1452 -- Aventis Pasteur Genentech, GlaxoSmithKline, Chiron, HIV vaccine vCP205 -- Aventis Pasteur Takeda HL-9 -- American BioScience Herpes simplex vaccine -- Cantab HM-9239 -- Cytran Pharmaceuticals, CEL-SCI, Henderson HML-103 -- Hemosol Morley HML-104 -- Hemosol Herpes simplex vaccine live -- ImClone HML-105 -- Hemosol Systems/Wyeth-Lederle, Aventis Pasteur HML-109 -- Hemosol HGF derivatives - Dompe HML-110 -- Hemosol hIAPP vaccine -- Crucell HML-121 -- Hemosol Hib-hepatitis B vaccine -- Aventis Pasteur hNLP -- Pharis HIC 1 Hookworm vaccine HIP-- Altachem host-vector vaccines -- Henogen Hirudins - Biopharma, Cangene, Dongkook, HPM 1 -- Chugai Japan Energy Corporation, Pharmacia HPV vaccine -- MediGene Corporation, SIR International, Sanofi-HSA -- Meristem Synthelabo, Sotragene, Rhein Biotech HSF - StressGen HIV edible vaccine -- ProdiGene HSP carriers –Weizmann, Yeda, Peptor HIV gp120 vaccine – Chiron, Ajinomoto, HSPPC-70 -- Antigenics GlaxoSmithKline, ID Vaccine, Progenics, HSPPC-96 -- pathogen-derived --VaxGen **Antigenics** HSV 863 -- Novartis HIV gp120 vaccine gene therapy – HIV gp160 DNA vaccine - PowderJect, HTLV-I DNA vaccine Aventis Pasteur, Oncogen, Hyland HTLV-I vaccine Immuno, Protein Sciences HTLV-II vaccine -- Access HIV gp41 vaccine -- Panacos HU 901 -- Tanox HIV HGP-30W vaccine -- CEL-SCI Hu23F2G -- ICOS HIV immune globulin – Abbott, Chiron HuHMFG1

FIG. 1M

HumaLYM - Intracell Human krebs statika -- Yamanouchi human monoclonal antibodies --Abgenix/Biogen, Abgenix/ Corixa, Abgenix/Immunex, Abgenix/Lexicon, Abgenix/ Pfizer, Athersys/Medarex, Biogen/MorphoSys, CAT/Searle, Centocor/Medarex, Corixa/Kirin Brewery, Corixa/Medarex, Eos BioTech./Medarex, Eos/Xenerex, Exelixis/Protein Design Labs, ImmunoGen/Raven. Medarex/B.Twelve. MorphoSys/ImmunoGen, XTL Biopharmaceuticals/Dvax. Human monoclonal antibodies --Medarex/Northwest Biotherapeutics. Medarex/Seattle Genetics human netrin-1 -- Exelixis human papillomavirus antibodies -- Epicyte IK HIR02 -- Iketon Human papillomavirus vaccine -- Biotech Australia, IDEC, StressGen Human papillomavirus vaccine MEDI 501 -- IL-17 receptor -- Immunex MedImmune/GlaxoSmithKline Human papillomavirus vaccine MEDI 503/MEDI 504 --MedImmune/GlaxoSmithKline Human papillomavirus vaccine TA-CIN -Cantab Pharmaceuticals Human papillomavirus vaccine TA-HPV --Cantab Pharmaceuticals Human papillomavirus vaccine TH-GW --Cantab/GlaxoSmithKline human polyclonal antibodies -- Biosite/Eos BioTech./ Medarex human type II anti factor VIII monoclonal antibodies - ThromboGenics humanised anti glycoprotein lb murine monoclonal antibodies -- ThromboGenics HumaRAD -- Intracell HuMax EGFR -- Genmab HuMax-CD4 -- Medarex

HuMax-IL15 -- Genmab HYB 190 -- Hybridon HYB 676 -- Hybridon I-125 MAb A33 -- Celltech Ibritumomab tiuxetan - IDEC IBT-9401 -- Ibex IBT-9402 -- Ibex IC 14 - ICOS Idarubicin anti-Ly-2.1 -IDEC 114 -- IDEC IDEC 131 -- IDEC IDEC 152 - IDEC **IDM 1 -- IDM** IDPS -- Hollis-Eden Pharmaceuticals iduronate-2-sulfatase -- Transkaryotic **Therapies** IGF/IBP-2-13 - Pharis IGN-101 -- Igeneon IL-11 -- Genetics Institute/AHP IL-13-PE38 - NeoPharm IL-18BP -- Yeda IL-1Hv1 -- Hyseq IL-1ß -- Celltech IL-1ß adjuvant -- Celltech IL-2 -- Chiron IL-2 + IL-12 -- Hoffman La-Roche IL-6/sIL-6R fusion -- Hadasit IL-6R derivative -- Tosoh IL-7-Dap 389 fusion toxin -- Ligand IM-862 -- Cytran IMC-1C11 -- ImClone imiglucerase -- Genzyme Immune globulin intravenous (human) --Hoffman La Roche immune privilege factor -- Proneuron Immunocal -- Immunotec Immunogene therapy -- Briana Bio-Tech Immunoliposomal 5-fluorodeoxyuridinedipalmitate -

FIG. 1N

15/345

immunosuppressant vaccine -- Aixlie integrin antagonists -- Merck immunotoxin – Antisoma, NIH interferon (Alpha2) -- SRC VB VECTOR, ImmuRAIT-Re-188 – Immunomedics Viragen, Dong-A, Hoffman La-Roche, imreg-1 -- Imreg Genentech infertility - Johnson & Johnson, E-TRANS interferon - BioMedicines, Human Genome Influenza virus vaccine -- Aventis Pasteur. **Sciences Protein Sciences** interferon (Alfa-n3)—Interferon Sciences inhibin -- Biotech Australia, Human **Therapeutics** interferon (Alpha), Biphasix -- Helix interferon (Alpha)—Amgen, BioNative, Inhibitory G protein gene therapy INKP-2001 -- InKine Novartis, Genzyme Transgenics, Inolimomab -- Diaclone Hayashibara, Inhale Therapeutics insulin -- Autolmmune, Altea, Biobras, Systems, Medusa, Flamel, Dong-A. BioSante, Bio-Tech. General, Chong Kun GeneTrol, Nastech, Shantha, Dang, Emisphere, Flamel, Provalis, Rhein Wassermann, LG Chem, Sumitomo, Biotech, TranXenoGen Aventis, Behring EGIS, Pepgen, Servier, insulin (bovine) - Novartis Rhein Biotech, insulin analogue -- Eli Lilly interferon (Alpha2A) interferon (Alpha2B) - Enzon, Schering-Insulin Aspart — Novo Nordisk insulin detemir - Novo Nordisk Plough, Biogen, IDEA interferon (Alpha-N1) -- GlaxoSmithKline insulin glargine -- Aventis insulin inhaled – Inhale Therapeutics interferon (beta) - Rentschler, GeneTrol, Systems, Alkermes Meristem, Rhein Biotech, Toray, Yeda, insulin oral -- Inovax Daiichi, Mochida insulin, AeroDose -- AeroGen interferon (Beta1A) – Serono, Biogen insulin, AERx -- Aradigm interferon (beta1A), inhale -- Biogen insulin, BEODAS -- Elan interferon (\$1b)-- Chiron insulin, Biphasix -- Helix interferon (tau)-- Pepgen insulin, buccal -- Generex Interferon alfacon-1 -- Amgen insulin, I2R -- Flemington Interferon alpha-2a vaccine insulin, intranasal -- Bentley Interferon Beta 1b - Schering/Chiron, insulin, oral - Nobex, Unigene InterMune insulin, Orasome -- Endorex Interferon Gamma -- Boehringer Ingelheim, insulin, ProMaxx -- Epic Sheffield, Rentschler, Hayashibara interferon receptor, Type I - Serono insulin, Quadrant -- Elan insulin, recombinant -- Aventis interferon(Gamma1B) -- Genentech insulin, Spiros -- Elan Interferon-alpha-2b + ribavirin – Biogen. insulin, Transfersome -- IDEA ICN insulin, Zymo, recombinant -- Novo Nordisk Interferon-alpha-2b gene therapy -insulinotropin -- Scios Schering-Plough Interferon-con1 gene therapy -Insulysin gene therapy -**FIG. 10**

16/345

interleukin-1 antagonists -- Dompe IPF - Metabolex Interleukin-1 receptor antagonist — Abbott IR-501 -- Immune Response Bioresearch, Pharmacia ISIS 9125 -- Isis Pharmaceuticals Interleukin-1 receptor type I -- Immunex ISURF No. 1554 -- Millennium interleukin-1 receptor Type II – Immunex ISURF No. 1866 - Iowa State Univer. Interleukin-10 – DNAX, Schering-Plough ITF-1697 -- Italfarmaco Interleukin-10 gene therapy – IxC 162 -- Ixion interleukin-12 -- Genetics Institute, Hoffman J 695 -- Cambridge Antibody Tech., La-Roche Genetics Inst., Knoll interleukin-13 - Sanofi Jagged + FGF -- Repair interleukin-13 antagonists -- AMRAD JKC-362 -- Phoenix Pharmaceuticals Interleukin-13-PE38QQR JTP-2942 - Japan Tobacce interleukin-15 -- Immunex Juman monoclonal antibodies -interleukin-16 -- Research Corp Medarex/Raven interleukin-18 -- GlaxoSmithKline K02 -- Axys Pharmaceuticals Interleukin-1-alpha -- Immunex/Roche Keliximab - IDEC interleukin-2 - SRC VB VECTOR, Keyhole limpet haemocyanin Ajinomoto, Biomira KGF -- Amgen Interleukin-3 -- Cangene KM 871 -- Kyowa Interleukin-4 -- Immunology Ventures, KPI 135 -- Scios Sanofi Winthrop, Schering-Plough, KPI-022 -- Scios Immunex/ Sanofi Winthrop, Bayer, Ono Kringle 5 interleukin-4 + TNF-Alpha -- NIH KSB 304 interleukin-4 agonist -- Bayer KSB-201 -- KS Biomedix interleukin-4 fusion toxin -- Ligand L 696418 -- Merck Interleukin-4 receptor – Immunex, Immun L 703801 -- Merck Interleukin-6 – Ajinomoto, Cangene, Yeda. L1 -- Acorda Genetics Institute, Novartis L-761191 -- Merck interleukin-6 fusion protein – lactoferrin - Meristem, Pharming, Agennix interleukin-6 fusion toxin - Ligand, Serono lactoferrin cardio -- Pharming interleukin-7 -- IC Innovations LAG-3 -- Serono interleukin-7 receptor -- Immunex LAIT -- GEMMA interleukin-8 antagonists -- Kyowa LAK cell cytotoxin -- Arizona Hakko/Millennium/Pfizer lamellarins -- PharmaMar/University of interleukin-9 antagonists -- Genaera Malaga interleukins -- Cel-Sci laminin A peptides -- NIH Iodine I 131 tositumomab -- Corixa lanoteplase -- Genetics Institute ior EPOCIM -- Center of Molecular laronidase -- BioMarin Immunology Lassa fever vaccine lor-P3 -- Center of Molecular Immunology LCAT -- NIH

FIG. 1P

LDP 01 -- Millennium

IP-10 -- NIH

17/345

LDP 02 -- Millennium Lecithinized superoxide dismutase --Seikagaku LeIF adjuvant -- Corixa leishmaniasis vaccine - Corixa lenercept -- Hoffman La-Roche Lenograstim – Aventis, Chugai lepirudin -- Aventis leptin – Amgen, IC Innovations Leptin gene therapy -- Chiron Corporation leptin, 2nd-generation -- Amgen Ieridistim -- Pharmacia leuprolide, ProMaxx -- Epic leuprorelin, oral -- Unigene LeuTech - Papatin LEX 032 - SuperGen LiDEPT -- Novartis lipase -- Altus Biologics lipid A vaccine -- EntreMed lipid-linked anchor Tech. – ICRT, ID **Biomedical** liposome-CD4 Tech. -- Sheffield Listeria monocytogenes vaccine LMB₁ LMB 7 LMB 9 - Battelle Memorial Institute, NIH LM-CD45 -- Cantab Pharmaceuticals lovastatin -- Merck LSA-3 LT-ß receptor -- Biogen lung cancer vaccine -- Corixa lusupultide -- Scios L-Vax -- AVAX LY 355455 -- Eli Lilly LY 366405 -- Eli Lilly LY-355101 -- Eli Lilly Lyme disease DNA vaccine -- Vical/Aventis Pasteur

Lyme disease vaccine -- Aquila Biopharmaceuticals, Aventis, Pasteur, Symbicom, GlaxoSmithKline, Hyland Immuno, MedImmune Lymphocytic choriomeningitis virus vaccine lymphoma vaccine - Biomira, Genitope LYP18 lys plasminogen, recombinant Lysosomal storage disease gene therapy --Avigen lysostaphin -- Nutrition 21 M 23 -- Gruenenthal M1 monoclonal antibodies -- Acorda Therapeutics MA 16N7C2 – Corvas Intl. malaria vaccine -- GlaxoSmithKline, AdProTech, Antigenics, Apovia, Aventis Pasteur, Axis Genetics, Behringwerke, CDCP, Chiron Vaccines, Genzyme Transgenics, Hawaii, MedImmune, NIH, NYU, Oxxon, Roche/Saramane, Biotech Australia, Rx Tech Malaria vaccine CDC/NIIMALVAC-1 malaria vaccine, multicomponent mammaglobin -- Corixa mammastatin -- Biotherapeutics mannan-binding lectin -- Natlmmu mannan-MUC1 -- Psiron **MAP 30** Marinovir -- Phytera MARstem -- Maret MB-015 -- Mochida MBP -- ImmuLogic MCI-028 -- Mitsubishi-Tokyo MCIF -- Human Genome Sciences MDC -- Advanced BioScience -- Akzo Nobel, ICOS MDX 11 -- Medarex MDX 210 -- Medarex

MDX 22 -- Medarex

MDX 22

FIG. 1Q

MDX 240 -- Medarex Methionine lyase gene therapy -**MDX 33** AntiCancer MDX 44 -- Medarex Met-RANTES - Genexa Biomedical, MDX 447 -- Medarex Serono MDX H210 -- Medarex Metreleptin MGDF -- Kirin MDX RA -- Houston BioTech., Medarex ME-104 -- Pharmexa MGV -- Progenics Measles vaccine micrin -- Endocrine Mecasermin -- Cephalon/Chiron, Chiron microplasmin -- ThromboGenics MEDI 488 -- Medimmune MIF - Genetics Institute **MEDI 500** migration inhibitory factor -- NIH MEDI 507 -- BioTransplant Mim CD4.1 – Xycte Therapies melanin concentrating hormone -mirostipen -- Human Genome Sciences **Neurocrine Biosciences** MK 852 -- Merck Mobenakin -- NIS melanocortins -- OMRF Melanoma monoclonal antibodies -- Viragen molgramostim -- Genetics Institute, Novartis melanoma vaccine -- GlaxoSmithKline, monoclonal antibodies -- Abgenix/Celltech, Akzo Nobel, Avant, Aventis Pasteur, Immusol/ Medarex, Viragen/ Roslin Bavarian Nordic, Biovector, CancerVax, Institute, Cambridge Antibody Tech./Elan Genzyme Molecular Oncology, Humbolt, MAb 108 -ImClone Systems, Memorial, NYU, Oxxon MAb 10D5 --Melanoma vaccine Magevac -- Therion MAb 14.18-interleukin-2 immunocytokine -memory enhancers - Scios Lexigen meningococcal B vaccine -- Chiron MAb 14G2a meningococcal vaccine - CAMR MAb 15A10 -Meningococcal vaccine group B conjugate - MAb 170 -- Biomira - North American Vaccine MAb 177Lu CC49 --Meningococcal vaccine group B MAb 17F9 recombinant -- BioChem Vaccines, MAb 1D7 Microscience MAb 1F7 – Immune Network Meningococcal vaccine group Y conjugate - MAb 1H10-doxorubicin conjugate North American Vaccine MAb 26-2F Meningococcal vaccine groups A B and C MAb 2A11 MAb 2E1 -- RW Johnson conjugate -- North American Vaccine Mepolizumab - GlaxoSmithKline MAb 2F5 Metastatin – EntreMed, Takeda MAb 31.1 — International Biolmmune Met-CkB7 -- Human Genome Sciences **Systems** met-enkephalin -- TNI MAb 32 -- Cambridge Antibody Tech., METH-1 -- Human Genome Sciences Peptech methioninase -- AntiCancer MAb 323A3 -- Centocor

MAb 3C5

FIG. 1R

MAb 3F12 MAb C242-PE conjugate MAb 3F8 MAb c30-6 MAb 42/6 MAb CA208-cytorhodin-S conjugate --MAb 425 -- Merck KGaA Hoechst Japan MAb 447-52D -- Merck Sharp & Dohme MAb CC49 -- Enzon MAb 45-2D9- — haematoporphyrin MAb ch14.18 conjugate MAb CH14.18-GM-CSF fusion protein --MAb 4B4 Lexigen MAb 4E3-CPA conjugate -- BCM Oncologia MAb chCE7 MAb 4E3-daunorubicin conjugate MAb CI-137 -- AMRAD MAb 50-6 MAb cisplatin conjugate MAb 50-61A - Institut Pasteur MAb CLB-CD19 MAb 5A8 -- Biogen MAb CLB-CD19v MAb 791T/36-methotrexate conjugate MAb CLL-1 -- Peregrine MAb 7c11.e8 MAb CLL-1-GM-CSF conjugate MAb 7E11 C5-selenocystamine conjugate MAb CLL-1-IL-2 conjugate -- Peregrine MAb 93KA9 -- Novartis MAb CLN IgG -- doxorubicin conjugates MAb A5B7-cisplatin conjugate --MAb conjugates – Tanox Biodynamics Research, Pharmacia MAb D612 MAb A5B7-I-131 MAb Dal B02 MAb A7 MAb DC101 -- ImClone MAb A717 -- Exocell MAb EA 1 -MAb A7-zinostatin conjugate MAb EC708 - Biovation MAb ABX-RB2 -- Abgenix MAb EP-5C7 -- Protein Design Labs MAb ACA 11 MAb ERIC-1 -- ICRT MAb AFP-I-131 - Immunomedics MAb F105 gene therapy MAb AP1 MAb FC 2.15 MAb AZ1 MAb G250 -- Centocor MAb B3-LysPE40 conjugate MAb GA6 MAb B4 – United Biomedical MAb GA733 MAb B43 Genistein-conjugate MAb Gliomab-H -- Viventia Biotech MAb B43.13-Tc-99m — Biomira MAb HB2-saporin conjugate MAb B43-PAP conjugate MAb HD 37 -MAb B4G7-gelonin conjugate MAb HD37-ricin chain-A conjugate MAb BCM 43-daunorubicin conjugate --MAb HNK20 -- Acambis **BCM** Oncologia MAb huN901-DM1 conjugate --MAb BIS-1 ImmunoGen MAb BMS 181170 -- Bristol-Myers Squibb MAb I-131 CC49 -- Corixa MAb BR55-2 MAb ICO25 MAb BW494 MAb ICR12-CPG2 conjugate

MAb C 242-DM1 conjugate -- ImmunoGen MAb ICR-62 FIG. 1S

MAb R-24 MAb IRac-ricin A conjugate MAb R-24 α Human GD3 — Celltech MAb K1 MAb RFB4-ricin chain A conjugate MAb KS1-4-methotrexate conjugate MAb L6 -- Bristol-Myers Squibb, Oncogen MAb RFT5-ricin chain A conjugate MAb SC 1 MAb LiCO 16-88 MAb LL2-I-131 - Immunomedics MAb SM-3 -- ICRT MAb LL2-Y-90 MAb SMART 1D10 -- Protein Design Labs MAb LS2D617 - Hybritech MAb SMART ABL 364 -- Novartis MAb LYM-1-gelonin conjugate MAb SN6f MAb LYM-1-I-131 MAb SN6f-deglycosylated ricin A chain MAb LYM-1-Y-90 conjugate -MAb SN6i MAb LYM-2 -- Peregrine MAb SN7-ricin chain A conjugate MAb M195 MAb T101-Y-90 conjugate -- Hybritech MAb M195-bismuth 213 conjugate --Protein Design Labs MAb T-88 -- Chiron MAb M195-gelonin conjugate MAb TB94 -- Cancer ImmunoBiology MAb M195-I-131 MAb TEC 11 MAb M195-Y-90 MAb TES-23 -- Chugai MAb MA 33H1 -- Sanofi MAb TM31 -- Avant MAb TNT-1 -- Cambridge Antibody Tech., MAb MAD11 MAb MGb2 Peregrine MAb TNT-3 MAb MINT5 **MAb MK2-23** MAb TNT-3 -- IL2 fusion protein -MAb MOC31 ETA(252-613) conjugate MAb TP3-At-211 MAb MOC-31-In-111 MAb TP3-PAP conjugate – MAb MOC-31-PE conjugate MAb UJ13A -- ICRT MAb MR6 -MAb UN3 MAb MRK-16 -- Aventis Pasteur MAb ZME-018-gelonin conjugate MAb-BC2 -- GlaxoSmithKline MAb MS11G6 MAb MX-DTPA BrE-3 MAb-DM1 conjugate -- ImmunoGen MAb-ricin-chain-A conjugate -- XOMA MAb MY9 MAb Nd2 -- Tosoh MAb-temoporfin conjugates Monopharm C -- Viventia Biotech MAb NG-1 -- Hygeia MAb NM01 – Nissin Food monteplase -- Eisai montirelin hydrate -- Gruenenthal **MAb OC 125** moroctocog alfa -- Genetics Institute MAb OC 125-CMA conjugate MAb OKI-1 -- Ortho-McNeil Moroctocog-alfa -- Pharmacia MP 4 MAb OX52 -- Bioproducts for Science MP-121 -- Biopharm MAb PMA5 MP-52 -- Biopharm MAb PR1 MRA -- Chugai MAb prost 30

FIG. 1T

21/345

MS 28168 -- Mitsui Chemicals, Nihon Schering Auckland MSH fusion toxin -- Ligand MSI-99 -- Genaera MT 201 -- Micromet Muc-1 vaccine -- Corixa mucosal tolerance -- Aberdeen mullerian inhibiting subst muplestim -- Genetics Institute, Novartis, **DSM Anti-Infectives** murine MAb -- KS Biomedix NKI-B20 Mutant somatropin -- JCR Pharmaceutical MV 833 -- Toagosei Mycoplasma pulmonis vaccine Mycoprex -- XOMA myeloperoxidase -- Henogen myostatin -- Genetics Institute Nonacog alfa Nacolomab tafenatox -- Pharmacia nagrestipen -- British Biotech NAP-5 – Corvas Intl. NAPc2 - Corvas Inti. nartograstim -- Kyowa Natalizumab -- Protein Design Labs Nateplase – NIH, Nihon Schering NU 3056 nateplase -- Schering AG **NU 3076** NBI-3001 -- Neurocrine Biosci. NBI-5788 -- Neurocrine Biosci. NBI-6024 -- Neurocrine Biosci. Nef inhibitors -- BRI Neisseria gonorrhoea vaccine -- Antex **Biologics** Neomycin B-arginine conjugate Nerelimomab -- Chiron Nerve growth factor – Amgen – Chiron, Genentech Nerve growth factor gene therapy nesiritide citrate -- Scios OM 991 neuregulin-2 -- CeNeS OM 992 neurocan -- NYU oncoimmunin-L -- NIH neuronal delivery system -- CAMR

Neuroprotective vaccine -- University of neurotrophic chimaeras -- Regeneron neurotrophic factor – NsGene, CereMedix NeuroVax - Immune Response neurturin -- Genentech neutral endopeptidase -- Genentech NGF enhancers -- NeuroSearch NHL vaccine -- Large Scale Biology NIP45 -- Boston Life Sciences NM 01 – Nissin Food NMI-139 -- NitroMed NMMP -- Genetics Institute NN-2211 -- Novo Nordisk Noggin -- Regeneron Norelin -- Biostar Norwalk virus vaccine NRLU 10 -- NeoRx NRLU 10 PE -- NeoRx NT-3 -- Regeneron NT-4/5 -- Genentech NX 1838 -- Gilead Sciences NY ESO-1/CAG-3 antigen - NIH NYVAC-7 -- Aventis Pasteur NZ-1002 -- Novazyme obesity therapy -- Nobex OC 10426 -- Ontogen OC 144093 -- Ontogen OCIF - Sankyo Oct-43 - Otsuka OK PSA - liposomal OKT3-gamma-1-ala-ala Omalizumab -- Genentech

Oncolysin B -- ImmunoGen

FIG. 1U

WO 03/031464

22/345

Oncolysin CD6 -- ImmunoGen Oncolysin M -- ImmunoGen Oncolysin S -- ImmunoGen Oncophage -- Antigenics Oncostatin M -- Bristol-Myers Squibb OncoVax-CL -- Jenner Biotherapies OncoVax-P -- Jenner Biotherapies onercept -- Yeda onychomycosis vaccine - Boehringer Inaelheim opebecan -- XOMA opioids -- Arizona Oprelvekin -- Genetics Institute Org-33408 b-- Akzo Nobel Orolip DP -- EpiCept oryzacystatin OSA peptides - GenSci Regeneration osteoblast-cadherin GF -- Pharis Osteocalcin-thymidine kinase gene therapy PEG anti-ICAM MAb -- Boehringer osteogenic protein -- Curis osteopontin -- OraPharma osteoporosis peptides – Integra, Telios osteoprotegerin - Amgen, SnowBrand otitis media vaccines - Antex Biologics ovarian cancer - University of Alabama OX40-lgG fusion protein -- Cantab, Xenova P 246 -- Diatide P 30 -- Alfacell p1025 -- Active Biotech P-113[^] – Demegen P-16 peptide -- Transition Therapeutics p43 - Ramot P-50 peptide -- Transition Therapeutics p53 + RAS vaccine - NIH, NCI PACAP(1-27) analogue paediatric vaccines -- Chiron Pafase -- ICOS PAGE-4 plasmid DNA -- IDEC PAI-2 -- Biotech Australia, Human **Therapeutics** Palivizumab -- MedImmune

PAM 4 -- Merck pamiteplase -- Yamanouchi pancreatin, Minitabs -- Eurand Pangen -- Fournier Pantarin - Selective Genetics Parainfluenza virus vaccine – Pharmacia, Pierre Fabre paraoxanase -- Esperion parathyroid hormone - Abiogen, Korea **Green Cross** Parathyroid hormone (1-34) --Chugai/Suntory Parkinson's disease gene therapy -- Cell Genesys/ Ceregene Parvovirus vaccine -- MedImmune PCP-Scan - Immunomedics PDGF cocktail -- Theratechnologies peanut allergy therapy -- Dynavax Ingelheim PEG asparaginase -- Enzon PEG glucocerebrosidase PEG hirudin - Knoll PEG interferon-alpha-2a -- Roche PEG interferon-alpha-2b + ribavirin – Biogen, Enzon, ICN Pharmaceuticals, Schering-Plough PEG MAb A5B7 -Pegacaristim – Amgen -- Kirin Brewery --ZymoGenetics Pegaldesleukin -- Research Corp. pegaspargase -- Enzon pegfilgrastim -- Amgen PEG-interferon Alpha -- Viragen PEG-interferon Alpha 2A -- Hoffman La-Roche PEG-interferon Alpha 2B -- Schering-Plough PEG-r-hirudin -- Abbott PEG-uricase -- Mountain View

Pegvisomant – Genentech

FIG. 1V

GlycoSciences

Pharmaprojects No. 5883 -- Asahi Brewery

23/345

PEGylated proteins, PolyMASC -- Valentis Pharmaprojects No. 5947 -- StressGen PEGylated recombinant native human leptin Pharmaprojects No. 5961 --**Theratechnologies** -- Roche Pemtumomab Pharmaprojects No. 5962 -- NIH Penetratin -- Cyclacel Pharmaprojects No. 5966 -- NIH Pepscan – Antisoma Pharmaprojects No. 5994 -- Pharming peptide G - Peptech, ICRT Pharmaprojects No. 5995 -- Pharming peptide vaccine -- NIH ,NCI Pharmaprojects No. 6023 - IMMUCON Pexelizumab Pharmaprojects No. 6063 -- Cytoclonal pexiganan acetate -- Genaera Pharmaprojects No. 6073 -- SIDDCO Pharmaprojects No. 3179 -- NYU Pharmaprojects No. 6115 -- Genzyme Pharmaprojects No. 3390 -- Ernest Orlando Pharmaprojects No. 6227 -- NIH Pharmaprojects No. 3417 -- Sumitomo Pharmaprojects No. 6230 -- NIH Pharmaprojects No. 3777 -- Acambis Pharmaprojects No. 6236 - NIH Pharmaprojects No. 4209 -- XOMA Pharmaprojects No. 6243 -- NIH Pharmaprojects No. 4349 – Baxter Intl. Pharmaprojects No. 6244 -- NIH Pharmaprojects No. 4651 Pharmaprojects No. 6281 -- Senetek Pharmaprojects No. 4915 - Avanir Pharmaprojects No. 6365 - NIH Pharmaprojects No. 5156 -- Rhizogenics Pharmaprojects No. 6368 - NIH Pharmaprojects No. 5200 -- Pfizer Pharmaprojects No. 6373 -- NIH Pharmaprojects No. 5215 - Origene Pharmaprojects No. 6408 – Pan Pacific Pharmaprojects No. 5216 -- Origene Pharmaprojects No. 6410 -- Athersys Pharmaprojects No. 6421 - Oxford Pharmaprojects No. 5218 -- Origene Pharmaprojects No. 5267 -- ML **GlycoSciences** Laboratories Pharmaprojects No. 6522 -- Maxygen Pharmaprojects No. 5373 -- MorphoSys Pharmaprojects No. 6523 -- Pharis Pharmaprojects No. 5493 -- Metabolex Pharmaprojects No. 6538 -- Maxygen Pharmaprojects No. 5707 -- Genentech Pharmaprojects No. 6554 -- APALEXO Pharmaprojects No. 5728 -- Autogen Pharmaprojects No. 6560 -- Ardana Pharmaprojects No. 5733 -- BioMarin Pharmaprojects No. 6562 -- Bayer Pharmaprojects No. 5757 -- NIH Pharmaprojects No. 6569 -- Eos Pharmaprojects No. 5765 -- Gryphon Phenoxazine Pharmaprojects No. 5830 -- AntiCancer Phenylase -- Ibex Pharmaprojects No. 5839 -- Dyax Pigment epithelium derived factor -Pharmaprojects No. 5849 -- Johnson & plasminogen activator inhibitor-1, Johnson recombinant -- DuPont Pharmaceuticals Pharmaprojects No. 5860 -- Mitsubishi-Tokyo Pharmaprojects No. 5869 – Oxford

FIG. 1W

24/345

Plasminogen activators -- Abbott Laboratories, American Home Products, Boehringer Mannheim, Chiron Corporation, DuPont Pharmaceuticals, Eli protein C – Baxter Intl., PPL Therapeutics, Lilly, Shionogi, Genentech, Genetics Institute, GlaxoSmithKline, Hemispherx Biopharma, Merck & Co, Novartis, Pharmacia Corporation, Wakamoto, Yeda protirelin -- Takeda plasminogen-related peptides -- Bio-Tech. General/MGH platelet factor 4 -- RepliGen Platelet-derived growth factor - Amgen --**ZymoGenetics** plusonermin-- Hayashibara PMD-2850 -- Protherics Pneumococcal vaccine -- Antex Biologics, **Aventis Pasteur** Pneumococcal vaccine intranasal --**BioChem Vaccines/Biovector** PR1A3 PR-39 pralmorelin -- Kaken Pretarget-Lymphoma -- NeoRx Priliximab -- Centocor PRO 140 -- Progenics PRO 2000 -- Procept PRO 367 - Progenics PRO 542 -- Progenics pro-Apo A-I -- Esperion prolactin -- Genzyme Prosaptide TX14(A) -- Bio-Tech. General prostate cancer antbodies – Immunex, UroCor prostate cancer antibody therapy --Genentech/UroGenesys, Genotherapeutics prostate cancer immunotherapeutics -- The RC 529 -- Corixa PSMA Development Company prostate cancer vaccine -- Aventis Pasteur, RD 62198 Zonagen, Corixa, Dendreon, Jenner Biotherapies, Therion Biologics

prostate-specific antigen -- EntreMed protein A -- RepliGen protein adhesives -- Enzon **ZymoGenetics** protein C activator - Gilead Sciences protein kinase R antags -- NIH protocadherin 2 - Caprion Pro-urokinase – Abbott, Bristol-Myers Squibb, Dainippon, Tosoh -- Welfide P-selectin glycoprotein ligand-1 -- Genetics Institute pseudomonal infections -- InterMune Pseudomonas vaccine -- Cytovax PSGL-Ig -- American Home Products PSP-94 -- Procyon PTH 1-34 -- Nobex Quilimmune-M -- Antigenics R 101933 R 125224 -- Sankyo RA therapy -- Cardion Rabies vaccine recombinant -- Aventis Pasteur, BioChem Vaccines, Kaketsuken **Pharmaceuticals** RadioTheraClM -- YM BioSciences Ramot project No. 1315 -- Ramot Ramot project No. K-734A -- Ramot Ramot project No. K-734B -- Ramot RANK -- Immunex ranpirnase -- Alfacell ranpirnase-anti-CD22 MAb -- Alfacell RANTES inhibitor -- Milan RAPID drug delivery systems -- ARIAD rasburicase -- Sanofi rBPI-21, topical – XOMA rCFTR -- Genzyme Transgenics rDnase -- Genentech RDP-58 -- SangStat

FIG. 1X

25/345

Ribozyme gene therapy -- Genset RecepTox-Fce -- Keryx RecepTox-GnRH – Keryx, MTR **Technologies** RecepTox-MBP - Keryx, MTR RIP-3 -- Rigel **Technologies** recFSH -- Akzo Nobel, Organon REGA 3G12 Regavirumab -- Teijin relaxin -- Connetics Corp Renal cancer vaccine -- Macropharm repifermin -- Human Genome Sciences Respiratory syncytial virus PFP-2 vaccine -- RO 631908 -- Roche Wyeth-Lederle Respiratory syncytial virus vaccine – GlaxoSmithKline, Pharmacia, Pierre Fabre RP-128 - Resolution Respiratory syncytial virus vaccine inactivated Respiratory syncytial virus-parainfluenza virus vaccine -- Aventis Pasteur, **Pharmacia** Reteplase -- Boehringer Mannheim, Hoffman La-Roche Retropep -- Retroscreen RFB4 (dsFv) PE38 RFI 641 -- American Home Products Sant 7 RFTS -- UAB Research Foundation RG 12986 -- Aventis Pasteur RG 83852 -- Aventis Pasteur RG-1059 -- RepliGen rGCR -- NIH rGLP-1 -- Restoragen rGRF -- Restoragen rh Insulin – Eli Lilly RHAMM targeting peptides -- Cangene rHb1.1 - Baxter Intl. rhCC10 -- Claragen rhCG -- Serono Rheumatoid arthritis gene therapy Rheumatoid arthritis vaccine -- Veterans Affairs Medical Center Schering AG rhLH -- Serono ScFv(FRP5)-ETA -

Rickettsial vaccine recombinant RIGScan CR -- Neoprobe RK-0202 -- RxKinetix RLT peptide -- Esperion rM/NEI -- IVAX rmCRP -- Immtech RN-1001 -- Renovo RN-3 -- Renovo RNAse conjugate -- Immunomedics Rotavirus vaccine -- Merck RP 431 -- DuPont Pharmaceuticals RPE65 gene therapy – RPR 110173 -- Aventis Pasteur RPR 115135 -- Aventis Pasteur RPR 116258A – Aventis Pasteur rPSGL-Ig -- American Home Products r-SPC surfactant - Byk Gulden rV-HER-2/neu -- Therion Biologics **SA 1042 -- Sankyo** sacrosidase - Orphan Medical Sargramostim -- Immunex saruplase -- Gruenenthal Satumomab -- Cytogen SB 1 -- COR Therapeutics SB 207448 -- GlaxoSmithKline SB 208651 -- GlaxoSmithKline SB 240683 -- GlaxoSmithKline SB 249415 -- GlaxoSmithKline SB 249417 -- GlaxoSmithKline SB 6 -- COR Therapeutics SB RA 31012 -SC 56929 -- Pharmacia SCA binding proteins – Curis, Enzon scFv(14E1)-ETA Berlex Laboratories,

FIG. 1Y

ScFv6C6-PE40 -SCH 55700 -- Celltech Schistosomiasis vaccine -- Glaxo Wellcome/Medeva, Brazil SCPF -- Advanced Tissue Sciences scuPA-suPAR complex -- Hadasit SD-9427 -- Pharmacia SDF-1 -- Ono SDZ 215918 -- Novartis SDZ 280125 -- Novartis SDZ 89104 -- Novartis SDZ ABL 364 -- Novartis SDZ MMA 383 -- Novartis serine protease inhibs -- Pharis sermorelin acetate -- Serono SERP-1 -- Viron sertenef -- Dainippon serum albumin, Recombinant human --**Aventis Behring** serum-derived factor -- Hadasit Sevirumab -- Novartis SGN 14 -- Seatle Genetics SGN 15 -- Seatle Genetics SGN 17/19 -- Seatle Genetics SGN 30 -- Seatle Genetics SGN-10 -- Seatle Genetics SGN-11 -- Seatle Genetics SH 306 -- DuPont Pharmaceuticals Shanvac-B -- Shantha Shigella flexneri vaccine - Avant, Acambis, ß-amyloid peptides -- CeNeS Novavax Shigella sonnei vaccine sICAM-1 -- Boehringer Ingelheim Silteplase -- Genzyme SIV vaccine – Endocon, Institut Pasteur SK 896 -- Sanwa Kagaku Kenkyusho SK-827 -- Sanwa Kagaku Kenkyusho Skeletex -- CellFactors SKF 106160 -- GlaxoSmithKline S-nitroso-AR545C –

SNTP - Active Biotech

Tokyo, NIH somatomedin-1 carrier protein -- Insmed somatostatin -- Ferring Somatotropin/ Human Growth Hormone -- Bio-Tech. General, Eli Lilly somatropin -- Bio-Tech. General, Alkermes, ProLease, Aventis Behring, Biovector, Cangene, Dong-A, Eli Lilly, Emisphere, Enact, Genentech, Genzyme Transgenics. Grandis/InfiMed, CSL, InfiMed, MacroMed. Novartis, Novo Nordisk, Pharmacia Serono, TranXenoGen somatropin derivative -- Schering AG somatropin, AIR -- Eli Lilly Somatropin, inhaled -- Eli Lilly/Alkermes somatropin, Kabi -- Pharmacia somatropin, Orasome -- Novo Nordisk Sonermin -- Dainippon Pharmaceutical SP(V5.2)C - Supertek SPf66 sphingomyelinase -- Genzyme SR 29001 -- Sanofi SR 41476 -- Sanofi SR-29001 -- Sanofi SS1(dsFV)-PE38 -- NeoPharm ß2 microglobulin -- Avidex ß2-microglobulin fusion proteins -- NIH **ß-defensin** -- Pharis Staphylococcus aureus infections --Inhibitex/ZLB Staphylococcus aureus vaccine conjugate --Nabi Staphylococcus therapy -- Tripep Staphylokinase – Biovation, Prothera, **Thrombogenetics** Streptococcal A vaccine -- M6 Pharmaceuticals, North American Vaccine Streptococcal B vaccine - Microscience

somatomedin-1 - GroPep, Mitsubishi-

FIG. 1Z

Streptococcal B vaccine recombinant --**Biochem Vaccines** Streptococcus pyogenes vaccine STRL-33 -- NIH Subalin -- SRC VB VECTOR SUIS -- United Biomedical SUIS-LHRH -- United Biomedical SUN-E3001 -- Suntory super high affinity monoclonal antibodies -YM BioSciences Superoxide dismutase – Chiron, Enzon, Ube Industries, Bio-Tech, Yeda superoxide dismutase-2 - OXIS suppressin -- UAB Research Foundation SY-161-P5 -- ThromboGenics SY-162 - ThromboGenics Systemic lupus erythematosus vaccine --MedClone/VivoRx T cell receptor peptide vaccine T4N5 liposomes -- AGI Dermatics TACI, soluble -- ZymoGenetics targeted apoptosis -- Antisoma tasonermin -- Boehringer Ingelheim **TASP** TASP-V Tat peptide analogues -- NIH TBP I -- Yeda TBP II TBV25H -- NIH Tc 99m ior cea1 — Center of Molecular **Immunology** Tc 99m P 748 -- Diatide Tc 99m votumumab -- Intracell Tc-99m rh-Annexin V – Theseus Imaging teceleukin -- Biogen tenecteplase -- Genentech Teriparatide -- Armour Pharmaceuticals. Asahi Kasei, Eli Lilly terlipressin -- Ferring testisin -- AMRAD

Tetrafibricin -- Roche

TFPI -- EntreMed tgD-IL-2 -- Takeda TGF-Alpha -- ZymoGenetics TGF-ß -- Kolon TGF-ß2 -- Insmed TGF-ß3 -- OSI Thalassaemia gene therapy -- Crucell TheraCIM-h-R3 -- Center of Molecular Immunology, YM BioSciences Theradigm-HBV -- Epimmune Theradigm-HPV -- Epimmune Theradigm-malaria -- Epimmune Theradigm-melanoma -- Epimmune TheraFab - Antisoma ThGRF 1-29 -- Theratechnologies ThGRF 1-44 -- Theratechnologies thrombomodulin – Iowa, Novocastra Thrombopoietin -- Dragon Pharmaceuticals, Genentech thrombopoietin, Pliva -- Receptron Thrombospondin 2 – thrombostatin -- Thromgen thymalfasin -- SciClone thymocartin – Gedeon Richter thymosin Alpha1 -- NIH thyroid stimulating hormone -- Genzyme tlCAM-1 -- Bayer Tick anticoagulant peptide - Merck TIF -- Xoma Tifacogin – Chiron, NIS, Pharmacia Tissue factor -- Genentech Tissue factor pathway inhibitor TJN-135 -- Tsumura TM 27 -- Avant TM 29 - Avant TMC-151 – Tanabe Seiyaku TNF tumour necrosis factor -- Asahi Kasei TNF Alpha -- Cytlmmune TNF antibody -- Johnson & Johnson TNF binding protein -- Amgen TNF degradation product -- Oncotech

FIG. 1AA

TNF receptor -- Immunex TXU-PAP

TNF receptor 1, soluble -- Amgen TY-10721 – TOA Eiyo

TNF Tumour necrosis factor-alpha -- Asahi Type I diabetes vaccine -- Research Corp

Kasei, Genetech, Mochida Typhoid vaccine CVD 908 TNF-Alpha inhibitor -- Tripep U 143677 -- Pharmacia TNFR:Fc gene therapy - Targeted Genetics U 81749 -- Pharmacia

TNF-SAM2 **UA 1248 -- Arizona** ToleriMab -- Innogenetics UGIF -- Sheffield

Toxoplasma gondii vaccine --UIC 2 **GlaxoSmithKline UK 101**

TP 9201 -- Telios UK-279276 - Corvas Intl. TP10 -- Avant urodilatin -- Pharis

TP20 -- Avant urofollitrophin -- Serono tPA -- Centocor uteroferrin-- Pepgen trafermin -- Scios V 20 -- GLYCODesign

TRAIL/Apo2L -- Immunex V2 vasopressin receptor gene therapy

transferrin-binding proteins -- CAMR vaccines - Active Biotech

Transforming growth factor-beta-1 --Varicella zoster glycoprotein vaccine --Genentech Research Corporation Technologies

transport protein -- Genesis Varicella zoster virus vaccine live -- Cantab

TRH - Ferring **Pharmaceuticals**

Triabin -- Schering AG Vascular endothelial growth factor – Triconal Genentech, University of California

Triflavin Vascular endothelial growth factors - R&D troponin I -- Boston Life Sciences **Systems**

TRP-2^ -- NIH

vascular targeting agents -- Peregrine trypsin inhibitor -- Mochida vasopermeation enhancement agents --

TSP-1 gene therapy -TT-232

TTS-CD2 -- Active Biotech

Tuberculosis vaccine -- Aventis Pasteur,

Genesis

Tumor Targeted Superantigens -- Active

Biotech -- Pharmacia

tumour vaccines -- PhotoCure tumour-activated prodrug antibody conjugates -- Millennium/ImmunoGen

tumstatin -- ILEX Tuvirumab -- Novartis TV-4710 - Teva

TWEAK receptor -- Immunex

Peregrine

vasostatin - NIH

VCL -- Bio-Tech. General VEGF – Genentech, Scios

VEGF inhibitor -- Chugai

VEGF-2 -- Human Genome Sciences

VEGF-Trap -- Regeneron

viscumin, recombinant -- Madaus

Vitaxin

Vitrase -- ISTA Pharmaceuticals

West Nile virus vaccine -- Bayarian Nordic

WP 652

WT1 vaccine -- Corixa WX-293 -- Wilex BioTech.

FIG. 1BB

29/345

WX-360 -- Wilex BioTech.
WX-UK1 -- Wilex BioTech.
XMP-500 -- XOMA
XomaZyme-791 -- XOMA
XTL 001 -- XTL Biopharmaceuticals
XTL 002 -- XTL Biopharmaceuticals
yeast delivery system -- Globelmmune
Yersinia pestis vaccine
YIGSR-Stealth -- Johnson & Johnson
Yissum Project No. D-0460 -- Yissum

YM 207 -- Yamanouchi YM 337 -- Protein Design Labs Yttrium-90 labelled biotin Yttrium-90-labeled anti-CEA MAb T84.66 --ZD 0490 -- AstraZeneca ziconotide -- Elan ZK 157138 -- Berlex Laboratories Zolimomab aritox Zorcell -- Immune Response ZRXL peptides -- Novartis

FIG. 4

上G. 5

34/345

(GlcNAc) (GlcNAc)

$$\beta 2$$
 | $\beta 2$
Man $\alpha 3$ Man $\alpha 6$
 $xyl \frac{\alpha 3}{\beta 2}$ | $\beta 4$
 $ClcNAc$ | $\beta 4$

35/345

(GlcNAc)
$$\begin{array}{c|c} (GlcNAc) \\ \beta 2 \\ (Man) \\ \alpha 3 \end{array} \quad \begin{array}{c|c} Man \\ \alpha 6 \\ \hline \beta 4 \\ GlcNAc \\ \hline \beta 4 \\ GlcNAc \\ \hline \beta 4 \\ GlcNAc \\ \hline \end{array}$$
(Fuc) $\begin{array}{c|c} \alpha 3 \\ \hline \alpha 3 \\ \hline \end{array}$ GlcNAc (Fuc

FIG. 7

36/345

Ĺ.

This page is not part of the document!

US2002032263 / 2003-031464 5/10

Date: Apr 17, 2003

Recipient: IB

-1G. 11

FIG. 12

FIG. 14

FIG. 15

FIG. 16

FIG. 19

WO 03/031464 PCT/US02/32263

FIG. 22A

FIG. 22B

WO 03/031464 PCT/US02/32263

55/345

BisP =Linker-HN-CH(PO₃)₂

FIG. 22C

FIG. 24

 ▲ Sialic acid
 ■ N-acetylglucosamine

 ● Galactose
 ○ Mannose

FIG. 26

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose

FIG. 27A

CHO, BHK, 293 cells, Vero expressed G-CSF a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 27B

Insect cell expressed G-CSF a, e (independently selected) = 0 or 1; b, c, d = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 27C

E. coli expressed G-CSF a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 27D

NSO expressed G-CSF a, e (independently selected) = 0 or 1; b, c, d = 0

- 1. CMP-SA-levulinate, ST3Gal1
- 2. H₄N₂-PEG

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 27E

1. Endo-GalNAc-osaminidase (synthetic enzyme), PEG-Gal-GalNAc-F

a, d,
$$e = 1$$
; b, $c = 0$; $R = PEG$.

FIG. 27F

FIG. 27G

$$A = GlcNAc-Man \begin{cases} [GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \\ [GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\ [GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \\ [GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \\ u \\ aa \\ bb \end{cases}$$

$$\mathbf{B} \quad \bullet \begin{array}{c} \text{(GlcNAc-Gal)}_{cc}\text{-(Sia)}_{o}\text{-(R)}_{ee} \\ \text{-GalNAc-(Gal)}_{n}\text{-(Sia)}_{p}\text{-(R)}_{z} \\ \end{array}$$

a-d, i, n-u (independently selected) = 0 or 1.

aa, bb, cc, dd, ee (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

v-z = 0; R = modifying group, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 28A

WO 03/031464 PCT/US02/32263

65/345

CHO, BHK, 293 cells, Vero expressed interferon alpha 14C.

a-d, aa, bb = 1; e-h = 1 to 4; cc, j-m, i, r-u (independently selected) = 0 or 1; q, n-p, v-z, cc, dd, ee = 0.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-d, aa, bb = 1; e-h = 1 to 4;
bb, cc, i, r-u (independently selected) = 0 or 1;
q, n-p, v-z, cc, dd, ee = 0;
v-y (independently selected) = 1,
when j-m (independently selected) = 1;
R = PEG.
```

FIG. 28B

Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-q, s, u, v-z, cc, dd, ee = 0; e, g, i, r, t (independently selected) = 0 or 1; aa, bb = 1.

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
b, d, f, h, j-q, s, u, w, y, z, cc, dd, ee = 0;
a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when a, c, (independently selected) = 1;
aa, bb = 1; R = PEG.
```

FIG. 28C

Yeast expressed interferon alpha-14C.

a-q, cc, dd, ee, v-z = 0;

r-y (independently selected) = 0 to 1;

aa, bb = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-z, bb = 0; aa = 1; R' = -Gal-Sia-PEG.

FIG. 28D

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1. R = polymer; R' = sugar, glycoconjugate.

FIG. 28E

WO 03/031464 PCT/US02/32263

68/345

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;

a-g, j-m, i (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, ST3Gal3

```
h = 1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 28F

```
Insect cell or fungi expressed
interferon alpha-14C.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.
```

FIG. 28G

Yeast expressed interferon alpha-14C. a-n = 0; r-y (independently selected) = 0 to 1; z = 1; R (branched or linear) = Man, oligomannose.

- 1. mannosidases
- 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal
- 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 28H

NSO expressed interferon alpha 14C. a-i, r-u (independently selected) = 0 or 1; j-m, n, v-y=0; z=1.

- CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG
- a-i, j-m, r-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG.

FIG. 281

WO 03/031464 PCT/US02/32263

70/345

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;

a-g, j-m, i (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, α 2,8-ST

```
h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
z = 1; n = 0; R = PEG.
```

FIG. 28J

```
CHO, BHK, 293 cells, Vero expressed
Interferon alpha-14C.
a-g, j-m, r-u (independently selected) = 0 or 1;
h = 1 to 3; n, v-y = 0; z = 1.
```

- 1. Sialidase
- 2. Trans-sialidase, PEG-Sia-lactose

a-g, j-m, r-y (independently selected) = 0 or 1; h = 1 to 3; n = 0; z = 1; R = PEG.

FIG. 28K

WO 03/031464 PCT/US02/32263

71/345

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;
a-g, j-m, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1.
```

1. CMP-SA, α2,8-ST

```
h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 40;
z = 1; v-y, n = 0.
```

FIG. 28L

```
Insect cell or fungi expressed interferon alpha-14C.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- 1. GNT's 1 & 2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-linker-SA-CMP
- 3. ST3Gal3, transferrin

a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1; z = 1; b, d, f, h, j-n, s, u, w, y = 0; R = transferrin.

FIG. 28M

Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.

- 1. endoglycanase
- 2. Galactosyltransferase, UDP-Gal-linker-SA-CMP
- 3. ST3Gal3, transferrin

```
i (independently selected) = 0 or 1;
a-h, j-m, r-z = 0;
n = 1; R' = -Gal-linker-transferrin.
```

FIG. 28N

$$\mathbf{B} \quad \bullet \begin{array}{c} \text{(GlcNAc-Gal)}_{f_{-}^{\mathsf{T}}}(\mathrm{Sia)}_{b}\text{-}(\mathrm{R})_{g} \\ -\mathrm{GalNAc-}(\mathrm{Gal)}_{a}\text{-}(\mathrm{Sia)}_{c}\text{-}(\mathrm{R})_{d} \\ \end{array} \right|_{e}$$

a-c, e, f (independently selected) = 0 or 1; d, g = 0; R = polymer, glycoconjugate.

FIG. 280

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b). a-c (independently selected) = 0 or 1; e = 1; d, f, g = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 28P

Insect cell expressed interferon alpha (2a or 2b). a, e (independently selected) = 0 or 1; b, c, d, f, g = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; b, f, g = 0; R = PEG.

FIG. 28Q

E. coli expressed IF-alpha (2a or 2b). a-g=0.

 GalNAc Transferase, UDP-GalNAc-PEG

a-c, f, g = 0; d, e = 1; R = PEG.

FIG. 28R

NSO expressed IF-alpha (2a or 2b). a (independently selected) = 0 or 1; e = 1; b, c, d, f, g = 0

- 1. CMP-SA-levulinate, ST3Gal1
- 2. H₄N₂-PEG

a, c, d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 28S

E. coli expressed IF-alpha (2a or 2b). a-g=0.

1. Endo-N-acetylgalatosamidase (synthetic enzyme), PEG-Gal-GalNAc-F

a, d, e = 1; b, c, f, g = 0; R = PEG.

FIG. 28T

E. coli expressed IF-alpha (2a or 2b). a-g=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. sialyltransferase, CMP-SA-PEG

b, d = 0 or 1; e = 1; a, c, f, g = 0; R = PEG.

FIG. 28U

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b).

a-c, f (independently selected) = 0 or 1; e = 1; d, g = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1 and ST3Gal3

a-d, f, g (independently selected) = 0 or 1; e = 1; R = PEG.

FIG. 28V

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b).

a-c, f (independently selected) = 0 or 1; e = 1; d, g = 0

- 1. Sialidase
- 2. CMP-SA-linker-SA-CMP, ,ST3Gal1
- 3. ST3Gal3, transferrin

a-d, f (independently selected) = 0 or 1; e = 1; R = transferrin; g = 0.

FIG. 28W

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, glycoconjugate.

FIG. 28X

CHO, BHK, 293 cells, Vero expressed interferon alpha-mucin fusion protein. a-c, e (independently selected) = 0 or 1; d = 0

- Sialidase
 - 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 28Y

Insect cell expressed interferon alpha-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 28Z

E. coli expressed interferon alpha-mucin fusion protein.

$$a-e = 0$$
.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 28AA

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)_{a}-(Sia)_{c}-(R)_{d}} \end{bmatrix}_{a}$$

$$\mathbb{C} \leftarrow (\mathbb{R}')_n$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 28BB

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 28CC

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 28DD

E. coli expressed Interferon alpha (no fusion). a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, transferrin

a-e=0; n=1; R' = linker-transferrin.

FIG. 28EE

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = polymer

FIG. 29A

WO 03/031464 PCT/US02/32263

85/345

CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
h = 1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 29B

```
Insect cell expressed IF-beta
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal3, buffer, salt

b, d, f, h, k, m, n, s, u, w, y = 0; a, c, e, g, i, r, t (independently selected) = 0 or 1; j, 1, v, x (independently selected) = 0 or 1; z = 1; R = PEG.

Yeast expressed IF-beta a-n = 0; z = 1; r-y (independently selected) = 0 to 1; R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-m, r-z=0; n=1; R'=-Gal-Sia-PEG.

FIG. 29D

```
CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, ST3Gal3

```
h = 1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 29E

Insect cell expressed IF-beta a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 29F

Yeast expressed IF-beta a-n = 0; z = 1; r-y (independently selected) = 0 to 1; R (branched or linear) = Man, oligomannose.

- 1. mannosidases
- 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal
- 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

NSO expressed IF-beta a-i, r-u (independently selected) = 0 or 1; j-m, n, v-y=0; z=1.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

a-i, j-m, r-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG.

FIG. 29H

CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.

1. CMP-SA-PEG, α 2,8-ST

h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
z = 1; n = 0; R = PEG.

FIG. 291

CHO, BHK, 293 cells, Vero expressed IF-beta a-g, j-m, r-u (independently selected) = 0 or 1; h = 1 to 3; n, v-y = 0; z = 1.

- 1. Sialidase
- 2. Trans-sialidase, PEG-Sia-lactose

a-g, j-m, r-y (independently selected) = 0 or 1; h = 1 to 3; n = 0; z = 1; R = PEG.

FIG. 29J

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n=0;

v-y (independently selected) = 0 or 1; R = PEG.

FIG. 29K

```
NSO expressed Ifn-beta.
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; R = PEG
n = 0; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
```

FIG. 29L

```
CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 29M

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H₄N₂-PEG

```
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n = 0;
v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 29N

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

1. CMP-SA, α 2,8-ST

a-d, i, r-u, z (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; n, v-y (independently selected) = 0.

FIG. 290

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group; R' = H, glycosyl group, modifying group, glycoconjugate.

Insect cell expressed Ifn-beta.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a-i, q-u (independently selected) = 0 or 1; j-m = 0; v-y (independently selected) = 1, when e-h (independently selected) is 1; R = PEG.

FIG. 29Q

```
Yeast expressed Ifn-beta.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 29R

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal3, desialylated transferrin.
- 3. CMP-SA, ST3Gal3

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 29S

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ q = \begin{bmatrix} \operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \end{bmatrix}_{u}$$

$$B \! \leftarrow \! \! \left\{ \text{Glc-(Xyl)}_n \right\}_{\!\!\!\!o}$$

$$C \leftarrow \text{(-Fuc)}_p$$

a-d, i, q-u (independently selected) = 0 or 1.
o, p (independently selected) = 0 or 1.
e-h, n (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 20.
v-y = 0;
R = modifying group, mannose, oligo-

mannose, Sia-Lewis X, Sia-Lewis A..

FIG. 30A

BHK expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y = 0; n = 0-4.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mole eq), ST3Gal3

```
a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1;

r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4;

v, x, (independently selected) = 1,

when j, l (respectively, independently selected) is 1;

R = PEG.
```

FIG. 30B

CHO, BHK, 293 cells, Vero expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y=0; n=0-4.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mole eq), ST3Gal3
- 3. CMP-SA (8 mol eq), ST3Gal3

a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4; v or x, (independently selected) = 1, when j or l, (respectively, independently selected) is 1; R = PEG.

FIG. 30C

```
NSO expressed Factor VII or VIIa
a--u (independently selected) = 0 or 1;
v-y = 0; n = 0-4;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, o-u (independently selected) = 0 or 1;
n = 0-4; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
Sia = Sia; R = PEG.
```

FIG. 30D

WO 03/031464 PCT/US02/32263

98/345

a-d, i, n-u (independently selected) = 0 or 1. bb, cc, dd, ee, ff, gg (independently selected) = 0 or 1. e-h, aa (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20.

v-z=0; R= modifying group, mannose, oligo-mannose.

FIG. 31A

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-d, q = 1; e-h = 1 to 4;

aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)

= 0 or 1;

o, p, z = 0;

j-m, ee, v-y, gg (independently selected) = 0 or 1;

R = PEG.
```

FIG. 31B

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3
- 3. ST3Gal1, CMP-SA

```
a-d, n, p, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, r-u (independently selected) = 0 or 1;
j-m, ee, v-y, gg (independently selected) = 0 or 1;
o, z = 0; R = PEG.
```

FIG. 31C

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; ee, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

- 1. sialidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
- 4. CMP-SA-PEG, ST3Gal1

```
a-d, n, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, r-u (independently selected) =
0 or 1; R = PEG;
o, v-y, gg = 0;
j-m, p, ee (independently selected) = 0 or 1, but when
p = 1, z = 1.
```

FIG. 31D

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

CMP-SA-PEG, ST3Gal3

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)
= 0 or 1; R = PEG;
o, p, z = 0; j-m, ee, v-y, gg (independently selected) = 0 or 1.
```

FIG. 31E

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

1. CMP-SA-levulinate, ST3Gal3, buffer, salt

2. H₄N₂-PEG

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)
= 0 or 1;
o, p, z = 0; R = PEG;
j-m, ee, v-y, gg (independently selected) = 0 or 1.
```

FIG. 31F

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; ee, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

1. CMP-SA-PEG, α 2,8-ST

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected) = 0 or 1;
o, p, z = 0; R= PEG;
j-m, ee (independently selected) = 0 to 2;
v-y, gg (independently selected) = 1, when j-m (independently selected) is 2;
```

FIG. 31G

FSH
$$\beta$$

$$\downarrow$$

$$H_2N$$

$$7$$

$$24$$
COOH

$$A = (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-GlcNAc-Man} \\ \operatorname{GlcNAc-GlcNAc-Man} \\ \operatorname{[GlcNAc-(Gal)_{a}]_{e}-(\operatorname{Sia})_{j}-(R)_{v}}_{r} \\ \operatorname{[GlcNAc-(Gal)_{b}]_{f}-(\operatorname{Sia})_{k}-(R)_{w}}_{s} \\ \operatorname{[GlcNAc-(Gal)_{c}]_{g}-(\operatorname{Sia})_{l}-(R)_{x}}_{t} \\ \operatorname{[GlcNAc-(Gal)_{d}]_{h}-(\operatorname{Sia})_{m}-(R)_{y}}_{u} \\ \operatorname{[GlcNAc-(Gal)_{d}]_{h}-(\operatorname{Sia})_{m}-(R)_{w}}_{u} \\ \operatorname{[GlcNAc-(Gal)_{d$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose.

FIG. 32A

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = PEG.

FIG. 32B

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 32C

NSO expressed FSH.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal1

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 32D

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 32E

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 32F

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 32G

This page is not part of

the document!

US2002032263 / 2003-031464 6/10

Date: Apr 17, 2003

Recipient: IB

WO 03/031464 PCT/US02/32263

106/345

Insect cell expressed FSH.

a-d, f, h, j-m, s, u, v-y = 0;

e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.

FIG. 32H

```
Yeast expressed FSH.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 321

```
CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated chorionic gonadrophin (CG) produced in CHO.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-CG.
```

FIG. 32J

$$\begin{array}{c} (\operatorname{Fuc})_{i} \\ \mathbf{A} \leftarrow -\operatorname{GlcNAc-GlcNAc-Man} \\ & \begin{array}{c} \operatorname{Man} \left[[\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v^{-}} \right]_{r} \\ \left[(\operatorname{GlcNAc-(Gal)}_{b})_{f^{-}} (\operatorname{Sia})_{k^{-}} (\operatorname{R})_{w^{-}} \right]_{s} \\ & \begin{array}{c} \operatorname{Man} \left[(\operatorname{GlcNAc-(Gal)}_{c})_{g^{-}} (\operatorname{Sia})_{l^{-}} (\operatorname{R})_{x^{-}} \right]_{t} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y^{-}} \right]_{u} \\ \end{array} \\ \mathbf{B} \leftarrow \begin{array}{c} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n^{-}} (\operatorname{Sia})_{p^{-}} (\operatorname{R})_{z^{-}} \right]_{q} \end{array}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0;

R = modifying group, mannose, oligo-mannose.

FIG. 33A

WO 03/031464 PCT/US02/32263

109/345

CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; v-z = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;

i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

j-m, v-y (independently selected) = 0 or 1;

R = PEG; z = 0.
```

FIG. 33B

```
Insect cell expressed EPO
a-d, f, h, j-q, s, u, v-z = 0;
e, g, i, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
b, d, f, h, k, m-q, s, u, w, y, z = 0;
a, c, e, g, i, r, t (independently selected)= 0 or 1;
j, l, v, x (independently selected) = 0 or 1;
R = PEG.
```

FIG. 33C

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

- 1. sialidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
- 4. CMP-SA-PEG, ST3Gal1

```
a-h, n, q = 1;
i-m, o, r-u (independently selected) = 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 33D

```
CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 33E

WO 03/031464 PCT/US02/32263

111/345

Insect cell expressed EPO a-d, f, h, j-m, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a-c, e-g, n, q-t, v-x, z (independently selected) = 0 or 1; d, h, j-m, o, p, y, z = 0; R = PEG.

FIG. 33F

Insect cell expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosidase (synthetic enzyme), PEG-Gal-F.

a-c, e-g, n, q-t, v-x, z (independently selected) = 0 or 1; d, h, j-m, o, p, y, z = 0; R = PEG.

FIG. 33G

```
NSO expressed NESP
q = 1; a-i, n, r-u (independently selected) = 0
or 1; j-m, o, p, v-z = 0
```

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

q = 1; a-i, j-n, r-y (independently selected) = 0 or 1;
o, p, z = 0; R = PEG.

FIG. 33H

```
CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, α2,8-ST

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
R = PEG; z = 0.
```

FIG. 331

CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to1; v-z = 0

1. CMP-SA, poly-α2,8-ST

a-g, n, q = 1; h = 1 to 3; i, j-m, o, p, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-40; R = Sia.

FIG. 33J

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc-GlcNAc-Man} \end{bmatrix} \xrightarrow{\operatorname{Man}} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v} \\ [\operatorname{GlcNAc-(Gal)}_{b}]_{f^{-}} (\operatorname{Sia})_{k^{-}} (\operatorname{R})_{w} \end{bmatrix}_{s}^{r} \\ \operatorname{Man} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_{b}]_{g^{-}} (\operatorname{Sia})_{l^{-}} (\operatorname{R})_{x} \\ [\operatorname{GlcNAc-(Gal)}_{d}]_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-(Gal)}_{d^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ \operatorname{GlcNAc-(Gal)}_{d^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-(Gal)}_{d^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ \operatorname{GlcNAc-(Gal)}_{d^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{m^{-}} (\operatorname{R})_{m^$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{aa}$$

a-d, i, n-u, as (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 34A

WO 03/031464 PCT/US02/32263

115/345

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 34B

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z=0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3 & ST3Gal1

a-d, i-m, p-u, aa (independently selected) = 0 or 1; o, z = 0; n, e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34C

NSO expressed GM-CSF.

a-d, i-m, o-u, aa (independently selected) = 0 or 1;

n, e-h = 1; v-z = 0;

Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α -galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-PEG, ST3Gal1

a-d, i-m, p-u, z, as (independently selected) = 0 or 1; n, e-h = 1; o, v-y = 0; z = 1, when p = 1; R = PEG.

FIG. 34D

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, q-y, as (independently selected) = 0 or 1; o, p, z = 0; n, e-h = 1; R = PEG.

FIG. 34E

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, as (independently selected) = 0 or 1; n, e-h=1; v-z=0.

- 1. CMP-SA-levulinate, ST3Ga13, buffer, salt
- 2. H₄N₂-PEG

a-d, i-m, o-y, as (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = PEG.

FIG. 34F

CHO, BHK, 293 cells, Vero expressed GMCSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

1. CMP-SA, α2,8-ST

a-d, i, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; j-m (independently selected) = 0-20; v-z (independently selected) = 0.

FIG. 34G

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ (\operatorname{Fuc})_{i} & & & \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \\ (\operatorname{R'})_{cc} & & & \\ (\operatorname{GlcNAc-(Gal)}_{c}]_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a})_{e} - (\operatorname{Sia})_{e} - (\operatorname$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{aa}$$

a-d, i, n-u, aa, bb, cc (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose. R'= H, glycosyl residue, modifying group. glycoconjugate.

FIG. 34H

WO 03/031464 PCT/US02/32263

119/345

```
Insect cell expressed GM-CSF.
a-d, f, h, j-m, o, p, s, u, v-z = 0;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, n, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 341

```
Yeast expressed GM-CSF.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

- 1. Endoglycanase
- 2. mannosidase (if aa = 1).
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-p, r-z, aa, bb = 0;
q, cc (independently selected) = 0 or 1;
R' = -Gal-PEG.
```

FIG. 34J

CHO, BHK, 293 cells, Vero expressed GM-CSF. a--m, o-u, aa, bb (independently selected) = 0 or 1; n, v-z, cc = 0.

- 1. sialidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-linker-SA-CMP, ST3Gal1
- 3. ST3Gal3, transferrin

a--m, p-u, z, as (independently selected) = 0 or 1; o, v-y, cc = 0; bb, n = 1; R = transferrin.

FIG. 34K

WO 03/031464 PCT/US02/32263

121/345

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 35A

CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 35B

```
CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 35C

```
NSO expressed Interferon gamma.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 35D

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 35E

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. CMP-SA-levulinate, ST3Gal3,
- 2. H₄N₂-PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 35F

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

1. CMP-SA, α 2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 35G

$$A = GlcNAc-Man \begin{cases} [GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \\ [GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\ [R')_n \end{cases} Man \begin{cases} [GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \\ [GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\ [GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \\ [GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \\ [GlcNAc-(Gal)_d]_h - (R)_y$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 35H

```
Insect or fungi cell expressed IF-gamma.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 351

```
Yeast expressed IF-gamma.

a-m = 0; q-y (independently selected) = 0 to 1; p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 35J

CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase.

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 35K

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1; n, v-y = 0.
```

1. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1;
n, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 35L

WO 03/031464 PCT/US02/32263

128/345

```
Insect or fungi cell expressed IF-gamma.

a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT's 1 & 2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, q (independently selected) = 0 or 1;
p = 1; v, x (independently selected) = 1,
when e, g (independently selected) is 1;
R = PEG.
```

FIG. 35M

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA-PEG, α2,8-ST
```

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-m (independently selected) = 0-2;
v-y (independently selected) = 1,
when j-m (independently selected) = 2;
R = PEG.
```

FIG. 35N

$$\mathbf{H_2N} = \begin{array}{c|c} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \hline \downarrow & \downarrow & \downarrow \\ \hline 70\ 107 & 271 \end{array}$$
 COOH

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc} - (\mathrm{Gal})_{a}]_{e} - (\mathrm{Sia})_{j} - (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc} - (\mathrm{Gal})_{b}]_{f} - (\mathrm{Sia})_{k} - (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc} - (\mathrm{Gal})_{c}]_{g} - (\mathrm{Sia})_{l} - (\mathrm{R})_{x} \end{bmatrix}_{t}^{r} \\ [\mathrm{GlcNAc} - (\mathrm{Gal})_{d}]_{h} - (\mathrm{Sia})_{m} - (\mathrm{R})_{y} \end{bmatrix}_{u}^{q}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 36A

WO 03/031464 PCT/US02/32263

130/345

CHO, BHK, 293 cells, Vero or transgenic animal expressed α₁ antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.

FIG. 36B

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed α<sub>1</sub> antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 36C

```
NSO expressed \alpha_1-antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 36D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed alpha-1 antitrypsin.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 36E

```
CHO, BHK, 293 cells, Vero or transgenic animal
  expressed \alpha_1-antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H_aN_2 -PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 36F

```
CHO, BHK, 293 cells, Vero expressed \alpha_1-antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

1. CMP-SA, α 2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1; e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 36G

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_{a}]_{e} - (\mathrm{Sia})_{j} - (\mathrm{R})_{v} \\ [\mathrm{GlcNAc-(Gal)}_{b}]_{f} - (\mathrm{Sia})_{k} - (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_{b}]_{f} - (\mathrm{Sia})_{k} - (\mathrm{R})_{w} \\ [\mathrm{GlcNAc-(Gal)}_{c}]_{g} - (\mathrm{Sia})_{l} - (\mathrm{R})_{x} \end{bmatrix}_{t} \\ \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_{d}]_{h} - (\mathrm{Sia})_{m} - (\mathrm{R})_{y} \end{bmatrix}_{u} \\ q \\ p \end{bmatrix}$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 36H

Insect or fungi cell expressed α_1 -antitrypsin. a-d, f, h, j-m, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1; j-m = 0;
v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 361

Yeast expressed α_1 -antitrypsin. a-m=0; q-y (independently selected) = 0 to 1; p=1; R (branched or linear) = Man, oligomannose.

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 36J

CHO, BHK, 293 cells, Vero expressed α_1 -antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

```
a-m, q-u (independently selected) = 0 or 1;
p = 1; n = 0;
v-y (independently selected) = 0 or 1;
R = linker-transferrin.
```

FIG. 36K

$$A \leftarrow GlcNAc-Man \\ (R')_{p} \qquad (R')_{q} \qquad (GlcNAc-(Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v} \\ (R')_{p} \qquad (R')_{q} \qquad (GlcNAc-(Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w} \\ (R')_{q} \qquad (GlcNAc-(Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x} \\ (GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y} \\ (GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y} \\ (R')_{q} \qquad (GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{q} \\ (R')_{q} \qquad (GlcNAc-(Gal)_{d}]_{h} - (Sia)_{q} - (Sia)_{q}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4.

e-n (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer;

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 36L

Yeast expressed alpha-1 antitrypsin. a-h, i-m, p, q = 0; R (independently selected) = mannose, oligomannose, polymannose; r-u, v-y (independently selected) = 0 or 1; n, o = 1.

- 1. endoglycanase
 - 2. Galactosyltransferase, UDP-Gal-PEG

a-h, i-o, q, r-u, v-y = 0; p = 1. R" = Gal-PEG.

FIG. 36M

Plant expressed alpha-1 antitrypsin. a-d, f, h, j- m, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1; n = 1; R' = xylose

- 1. hexosaminidase,
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.

FIG. 36N

CHO, BHK, 293 cells, Vero, transgenic animal expressed α_1 antitrypsin. a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y = 0.

> 1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 360

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v^{-}} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w^{-}} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x^{-}} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 37A

CHO, BHK, 293 cells, Vero expressed Cerezyme a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 37B

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-M-6-P (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = mannose-6-phosphate

FIG. 37C

```
NSO expressed Cerezyme.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α -Galactosyltransferase, UDP-Gal

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = mannose-6 phosphate
```

FIG. 37D

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = Mannose-6-phosphate
```

FIG. 37E

CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
 - 2. H₄N₂-spacer-M-6-P or clustered M-6-P

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = M-6-P or clustered M-6-P
```

FIG. 37F

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 37G

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{a}]_{e}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{c}]_{g}^{-} & (\mathrm{Sia})_{l}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{q} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{q}$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 37H

```
Insect cell expressed Cerezyme.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0;

v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 371

```
Yeast expressed Cerezyme.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 37J

CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal3, desialylated transferrin.
- 3. CMP-SA, ST3Gal3

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-transferrin.

FIG. 37K

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 38A

WO 03/031464 PCT/US02/32263

147/345

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; o, v-y = 0.
```

- 1. Mannosidase(s), sialidase
- 2. GNT1,2 (4 and/or 5) UDP-GlcNAc
- 3. Gal transferase, UDP-Gal
- 4. CMP-SA-PEG, ST3Gal3

```
A = B; a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1;
o = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG
```

FIG. 38B

```
Insect or fungi cell expressed tPA

A = B; a-d, f, h, j-o, s, u, v-y = 0;
e, g, i, n, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- **♦** 3. CMP-SA-PEG, ST3Gal3

```
A = B; b, d, f, h, k, m, o, s, u, w, y = 0;
a, c, e, g, i, r, t (independently selected) = 0 or 1;
n = 1; j, l, v, x (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38C

Yeast expressed tPA B = A; i = 0.

- 1. endoglycanase
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; a-n, r-y = 0; o = 1; R' = Gal-PEG.

FIG. 38D

Insect or fungi cell expressed tPA A = B; a-d, f, h, j-o, s, u, v-y = 0; e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. alpha and beta mannosidases
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; a-n, r-y = 0; o = 1; R' = Gal-PEG.

FIG. 38E

Insect or fungi cell expressed tPA
A = B; a-d, f, h, j-o, s, u, v-y = 0;
e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; b, d, f, h, j-o, s, u, w, y = 0; a, c, e, g, i, r, t, v, x (independently selected)= 0 or 1; n = 1; R = PEG.

FIG. 38F

Insect or fungi cell expressed tPA A = B; a-d, f, h, j-o, s, u, v-y = 0; e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. GNT's 1 & 2, UDP-GlcNAc
- 2. Galactosidase (synthetic enzyme), PEG-Gal-F.

A = B; b, d, f, h, j-o, s, u, w, y = 0; a, c, e, g, i, r, t, v, x (independently selected)= 0 or 1; n = 1; R = PEG.

FIG. 38G

a-d, i, n-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 to 20.
R = polymer; R' = sugar, glycoconjugate.

FIG. 38H

WO 03/031464 PCT/US02/32263

151/345

```
NSO expressed tPA
A = B; a-m, r-u (independently selected) = 0 or 1;
n = 1; o, p, q, v-y = 0
```

- 1. sialidase, alpha-galactosidase
- 2. CMP-SA-levulinate, ST3Gal3,
- $3. H_4 N_2$ -PEG

```
A = B; a-m, r-y (independently selected) = 0 or 1;

n = 1; o, p, q = 0;

v-y (independently selected) = 1,

when j-m (independently selected) is 1;

R = PEG.
```

FIG. 381

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n, p = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; q, o, v-y = 0.
```

- 1. alpha and beta Mannosidases
- 2. CMP-SA, ST3Gal3
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1; o = 1;
q, p, v-y = 0; j-m (independently selected) = 0 or 1;
R' = Gal-PEG
```

FIG. 38J

```
Plant expressed tPA

A = B; a-d, f, h, j-m, s, u, v-y = 0;

e, g, i, q, r, t (independently selected) = 0 or 1;

n = 1; R' = xylose
```

- 1. hexosaminidase,
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

```
A = B; a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.
```

FIG. 38K

$$\begin{array}{c} (\operatorname{Fuc})_{i} \\ A & & \left[(\operatorname{GlcNAc-(Gal)}_{a})_{e^{-}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v^{-}} \right]_{r} \\ \operatorname{GlcNAc-GlcNAc-Man} \\ & & \left[(\operatorname{GlcNAc-(Gal)}_{b})_{f^{-}} (\operatorname{Sia})_{k^{-}} (\operatorname{R})_{w^{-}} \right]_{s} \\ & & \left[(\operatorname{GlcNAc-(Gal)}_{c})_{g^{-}} (\operatorname{Sia})_{l^{-}} (\operatorname{R})_{x^{-}} \right]_{t} \\ & & \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y^{-}} \right]_{u^{-}} \end{array}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 38L

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 38M

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38N

WO 03/031464 PCT/US02/32263

155/345

```
NSO expressed TNK tPA
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 380

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v^{-}} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w^{-}} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x^{-}} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \right]_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer. WO 03/031464 PCT/US02/32263

157/345

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38Q

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG
- 2. H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 38R

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 38S

a-d, i, n-y (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

R" = glycosyl residue.

FIG. 38T

```
Insect cell expressed TNK tPA
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0; v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 38U

```
Yeast expressed TNK tPA
a-m = 0; q-y (independently selected) = 0 to 1; p = 1;
R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-PEG.
```

FIG. 38V

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, anti-TNF IG chimera produced in CHO.

a-m, r-u (independently selected) = 0 or 1; p, q = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-anti-TNF IG chimera protein.

FIG. 38W

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose.

FIG. 39A

CHO, BHK, 293 cells, Vero expressed IL-2 a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 39B

Insect cell expressed IL-2 a, e (independently selected) = 0 or 1; b, c, d = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 39C

E. coli expressed IL-2 a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 39D

NSO expressed IL-2

a, e (independently selected) = 0 or 1;

b, c, d = 0

- 1. CMP-SA-levulinate, ST3Gal1
- 2. H_4N_2 -PEG

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 39F

FIG. 39G

2 peptides

A and A' - N-linked sites

B - O-linked sites

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v^{-}} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w^{-}} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x^{-}} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right]_{u^{-}} \\ aa$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -(\mathrm{GalNAc-(Gal)}_{n}-(\mathrm{Sia})_{p}-(\mathrm{R})_{z} \end{bmatrix}_{q}$$

a-d, i, n-u (independently selected) = 0 or 1. aa, bb (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer, glycoconjugate.

FIG. 40A

```
CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n, q-u (independently selected) = 0 or 1;
o, p, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40B

```
CHO, BHK, 293S cells, Vero, MDCK, 293S, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3
- 3. ST3Gal1, CMP-SA

```
e-h = 1 to 4;
aa, bb, a-d, i, n, p-u (independently selected) = 0 or 1;
o, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40C

```
CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;

v-z = 0.
```

1. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n-u (independently selected) = 0 or 1;
z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40D

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) 0 or 1;

v-z = 0.
```

1. CMP-SA-PEG, ST3Gal1

```
e-h = 1 to 4;
aa, bb, a-d, i, n-u (independently selected) = 0 or 1;
z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40E

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;

v-z = 0.
```

1. CMP-SA-PEG, α 2,8-ST

```
e-h = 1 to 4;
aa, bb, a-d, i, n-y (independently selected) = 0 or 1;
z = 0; j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
R = PEG.
```

FIG. 40F

2 peptides

A or A' - N-linked sites

B - O-linked sites

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{q}$$

a-d, i, n-u, (independently selected) = 0 or 1.

aa, bb, cc, dd (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

v-z = 0;

R = modifying group, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 40G

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
e-h = 1 to 4;
aa, bb, cc, a-d, i, n-u (independently selected) = 0 or 1;
dd, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40H

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

endo-H
 galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z = 0; R' = -Gal-PEG.
```

FIG. 401

WO 03/031464 PCT/US02/32263

172/345

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

- 1. ST3Gal3, CMP-SA
- 2. endo-H
- 3. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z = 0; R' = -Gal-PEG.
```

FIG. 40J

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc
- 3. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0; R = PEG.
```

FIG. 40K

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

- 1. mannosidases
- 2. GNT-1,2, 4 & 5; UDP-GlcNAc
- 3. galactosyltransferase, UDP-Gal
 - 4. ST3Gal3, CMP-SA

```
e-h = 1 to 4;
aa, bb, cc, a-d, i, j-q (independently selected) = 0 or 1;
dd, v-z=0.
```

FIG. 40L

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

1. mannosidases

2. GNT-1, UDP-GlcNAc-PEG

```
e-h = 0 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0.
```

FIG. 40M

This page is not part of the document!

US2002032263 / 2003-031464 7/10

Date: Apr 17, 2003

Recipient: IB

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v^{-}} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w^{-}} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x^{-}} \right)_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y^{-}} \right)_{u^{-}} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{d^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \left(\operatorname{Sia} \right)_{u^{-}} \right)_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{-}} \left(\operatorname{R} \right)_{u^{-}} \right)_{u^{-}} \right]_{u^{-}} \\ \left[\operatorname{GlcNAc-(Gal)}_{u^{$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 41A

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 41B

```
CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 41C

WO 03/031464 PCT/US02/32263

176/345

```
NSO expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 41D

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 41E

```
CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 41F

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y=0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 41G

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_a]_e - (\mathrm{Sia})_j - (\mathrm{R})_v \end{bmatrix}_r \\ [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_k - (\mathrm{R})_w \end{bmatrix}_s \\ [\mathrm{GlcNAc-(Gal)}_b]_g - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc-(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc-(Gal)}_b]_h - (\mathrm{Sia})_h - (\mathrm{Sia$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 41H

```
Insect cell expressed Urokinase.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-n = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 411

```
Yeast expressed Urokinase.

a-n=0;

q-y (independently selected) = 0 to 1;

p=1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 41J

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0.
```

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated Urokinase produced in CHO.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-Urokinase.
```

FIG. 41K

```
Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0; n = 0;

Sia (independently selected) = Sia or SO<sub>4</sub>;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
```

- 1. sulfohydrolase
- 2. CMP-SA-PEG, sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
n = 0; e-h = 1; Sia = Sia;
Gal (independently selected) = Gal or GalNAc;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 41L

Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; n = 0; v-y = 0;

Sia (independently selected) = Sia or SO₄;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.

- 1. sulfohydrolase, hexosaminidase
- 2. UDP-Gal-PEG, galactosyltransferase

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-n = 0; Gal (independently selected) = Gal; GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 41M

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \end{bmatrix}_{q}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 42A

WO 03/031464 PCT/US02/32263

183/345

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 42B

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42C

```
NSO expressed DNase I.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 42D

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42E

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42F

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 42G

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-Man} & & \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f^{-}} (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \\ (\operatorname{R'})_{n} & & & \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{p^{-}} (\operatorname{Sia})_{1} - (\operatorname{R})_{x} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a})_{e^{-}} (\operatorname{Sia})_{1} - (\operatorname{R})_{x} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ (\operatorname{GlcNAc-(Gal)}_{d^{-}})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d^{-}})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ (\operatorname{GlcNAc-(Gal)}_{d^{-}})_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \end{bmatrix}_{u} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d^{-}})_{h^{-}} (\operatorname{Sia})_{h^{-}} (\operatorname{Sia})_{h^{-}} (\operatorname{R})_{y} \\ (\operatorname{GlcNAc-(Gal)}_{d^{-}})_{h^{-}} (\operatorname{Sia})_{h^{-}} (\operatorname{Sia$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 42H

Insect cell expressed DNase I. a-d, f, h, j-n, s, u, v-y' = 0; e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1; j-n = 0;
v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 421

```
Yeast expressed DNase I.

a-n = 0;

q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-n, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 42J

WO 03/031464 PCT/US02/32263

188/345

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated alpha-1-Proteinase inhibitor.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;
p = 1; n = 0;
v-y (independently selected) = 0 or 1;
R = linker- alpha-1-Proteinase inhibitor.
```

FIG. 42K

$$\begin{array}{c} \text{(Fuc)}_{i} \\ \textbf{A} \leftarrow \text{GlcNAc-Man} \\ \text{(R')}_{n} \end{array} \\ \begin{array}{c} \text{(GlcNAc-(Gal)}_{a}]_{e} \text{- (Sia)}_{j} \text{- (R)}_{v} \\ \text{[[GlcNAc-(Gal)}_{b}]_{f} \text{- (Sia)}_{k} \text{- (R)}_{w} \\ \text{[[GlcNAc-(Gal)}_{c}]_{g} \text{- (Sia)}_{l} \text{- (R)}_{x} \\ \text{[[GlcNAc-(Gal)}_{d}]_{h} \text{- (Sia)}_{m} \text{- (R)}_{y} \\ \text{[[GlcNAc-(Gal)}_{d}]_{h} \text{- (R)}_{w} \\ \text{- (R)}_{w} \\ \text{[[GlcNAc-(Gal)}_{d}]_{h} \text{- (R)}_{w} \\ \text{- (R)}_{w} \\ \text{[[GlcNAc-(Gal)}_{d}]_{h} \\ \text{- (R)}_{w} \\ \text{- (R)}_{w$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 43A

```
CHO, BHK, 293 cells, Vero expressed Insulin.
a-m, r-u (independently selected) = 0 or 1;
n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 43B

```
Insect cell expressed Insulin.
a-h, j-n, s-y = 0;
i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 43C

Yeast expressed Insulin.

a-n=0; r-y (independently selected) = 0 to 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z=0; n = 1; R' = -Gal-PEG.

FIG. 43D

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{pmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 43E

CHO, BHK, 293 cells, Vero expressed insulinmucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 43F

Insect cell expressed Insulin-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 43G

E. coli expressed Insulin-mucin fusion protein. a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 43H

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligo-mannose.

FIG. 431

E. coli expressed Insulin-mucin fusion protein. a-e, n=0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 43J

E. coli expressed Insulin-mucin fusion protein. a-e, n=0.

- 1. GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 43K

E. coli expressed Insulin (N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- ST3Gal3, asialo-transferrin
 CMP-SA, ST3Gal3

a-e = 0; n = 1;R' = linker-transferrin.

FIG. 43L

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & \operatorname{Man} \left([\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j^{-}} (R)_{v^{-}} \right)_{r} \\ (\operatorname{GlcNAc-GlcNAc-Man} & \left([\operatorname{GlcNAc-(Gal)}_{b}]_{f^{-}} (\operatorname{Sia})_{k^{-}} (R)_{w^{-}} \right)_{s} \\ \operatorname{Man} \left([\operatorname{GlcNAc-(Gal)}_{c}]_{g^{-}} (\operatorname{Sia})_{1^{-}} (R)_{x^{-}} \right)_{t} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h^{-}} (\operatorname{Sia})_{m^{-}} (R)_{y^{-}} \\ \mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{0} \\ -\operatorname{GalNAc-(Gal)}_{n^{-}} (\operatorname{Sia})_{p^{-}} (R)_{z^{-}} \right)_{aa} \end{bmatrix}$$

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 44A

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-linker-lipid-A, ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = linker-lipid-A.
```

FIG. 44B

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. sialidase
- 2. CMP-SA-linker-tetanus toxin, ST3Gal1
- 3. CMP-SA, ST3Gal3

a-d, i-m, p-u, z, aa (independently selected) = 0 or 1; o, v-y=0; n, e-h=1; R= tetanus toxin.

FIG. 44C

```
NSO expressed M-antigen.
a-d, i-n, o-u, aa (independently selected) = 0 or 1;
e-h = 1; v-z = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. α-galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-KLH, ST3Gal1

```
a-d, i-n, p-u, z, aa (independently selected) = 0 or 1;
e-h = 1; o, v-y = 0;
z = 1, when p = 1;
R = KLH.
```

FIG. 44D

```
Yeast expressed M-antigen.
a-p, z = 0; q-y, aa (independently selected) = 0 to 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

1. α1,2-mannosidase

2. GNT 1,

UDP-GlcNAc-linker-diphtheria toxin.

e, q, l, m, r, t, u, v, aa (independently selected) =0 or 1; a-d, f-h, j, k, n-p, s, w-z = 0; Sia = Man; R = linker-diphtheria toxin.

FIG. 44E

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z=0.

- 1. CMP-SA-levulinate, ST3Gal3,
- 2. H₄N₂-linker-DNA

a-d, i-m, o-y, aa (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = linker-DNA.

FIG. 44F

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-n, o-u, aa (independently selected) = 0 or 1; e-h=1; v-z=0.

1. CMP-SA, poly- α 2,8-ST

a-d, i, n-u, aa (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-100; v-z (independently selected) = 0.

FIG. 44G

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc} - \operatorname{GlcNAc} - \operatorname{Man} \\ [(\operatorname{GlcNAc} - (\operatorname{Gal})_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ [(\operatorname{GlcNAc} - (\operatorname{Gal})_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \\ [(\operatorname{GlcNAc} - (\operatorname{Gal})_{c}]_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \\ [(\operatorname{GlcNAc} - (\operatorname{Gal})_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \end{bmatrix}_{q}$$

$$\mathbf{B}$$

$$\bullet \left(\begin{array}{c} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{array} \right)_{aa}$$

a-d, i, n, q-u, aa, bb, (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-p (independently selected) = 0 to 100.
Cc, v-y = 0;
R = modifying group, mannose, oligo-mannose.
R'= H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 44H

```
Insect cell expressed M-antigen.
a-d, f, h, j-m, o, p, s, u, v-z, cc = 0;
bb = 1;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

1. GNT-2, UDP-GlcNAc-linker-Neisseria protein

```
a, c, e, g, i, n, q, r, t, v, x, aa (independently selected) = 0 or 1;
b, d, f, h, j-p, s, u, w, y, z, cc = 0;
bb = 1; R = -linker-Neisseria protein.
```

FIG. 441

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

1. Endoglycanase

2. Galactosyltransferase, UDP-Gal-linker-Neisseria protein

```
a-p, r-z, bb = 0;
q, aa, cc (independently selected) = 0 or 1;
R' = -Gal-linker-Neisseria protein.
```

FIG. 44J

```
Yeast expressed M-antigen.

a-p, z, cc = 0;

q-y, aa (independently selected) = 0 to 1; bb = 1;

R (branched or linear) = Man, oligomannose;

GalNAc = Man.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc
- 3. UDP-Gal, Galactosyltransferase,
- 4. CMP-SA, sialyltransferase

```
a, c, e, g, j, l, q, r, t, aa (independently selected) = 0 or 1;
b, d, f, h, k, m-p, s, u-z, cc = 0; bb = 1.
```

FIG. 44K

$$(Fuc)_{i}$$

$$-GlcNAc-GlcNAc-Man$$

$$(R')_{n}$$

$$(Fuc)_{i}$$

$$-GlcNAc-Man$$

$$-GlcNAc-Man$$

$$-GlcNAc-Man$$

$$-GlcNAc-Man$$

$$-GlcNAc-Man$$

$$-GlcNAc-Gal)_{b}_{f}-(Sia)_{k}-(R)_{w}_{g}$$

$$-(Sia)_{f}-(Sia)_{h}-(R)_{w}_{g}$$

$$-(GlcNAc-(Gal)_{c})_{g}-(Sia)_{f}-(R)_{x}_{g}$$

$$-(GlcNAc-(Gal)_{d})_{h}-(Sia)_{m}-(R)_{y}_{g}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 45A

CHO, BHK, 293 cells, Vero expressed Growth Hormone.

```
a-m, r-u (independently selected) = 0 or 1;

n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 45B

```
Insect cell expressed growth hormone.
a-h, j-n, s-y = 0;
i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected)= 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 45C

Yeast expressed growth hormone.

a-n=0; r-y (independently selected) = 0 to 1; z=1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 45D

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligo-

R = modifying group, mannose, oligomannose.

FIG. 45E

CHO, BHK, 293 cells, Vero expressed growth hormone-mucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 45F

Insect cell expressed Growth Hormone-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 45G

E. coli expressed growth hormone-mucin fusion protein.

a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 45H

E. coli expressed growth hormone-mucin fusion protein.

a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 451

E. coli expressed growth hormone-mucin fusion protein.

a-e, n = 0.

- 1. GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 45J

E. coli expressed growth hormone (N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R' = linker-transferrin.

FIG. 45K

a-d, i-m, q-u, w, z, nn, ww, zz (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. n, v-y = 0;

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 46A

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

- 1. CMP-SA, ST3Gal1
- 2. galactosyltransferase, UPD-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 46B

CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

- 1. sialidase
- ↓ 2. CMP-SA-PEG, ST3Gal1

a-i, p-u, z, as (independently selected) = 0 or 1; n = 1; o, j-m, v-y = 0; R = PEG.

FIG. 46C

CHO, BHK, 293 cells, Vero expressed
TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 46D

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

CMP-SA, ST3Gal1
 galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 46E

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.

a-m, o-u, aa (independently selected) = 0 or 1;

n = 1; v-z = 0.

```
1. CMP-SA-levulinate, ST3Gal12. H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-m, o-u, v-y, as (independently selected) = 0 or 1;
 n = 1; z = 0; R = PEG.
```

FIG. 46F

```
CHO, BHK, 293 cells, Vero expressed

TNF Receptor IgG Fusion.

a-m, o-u, aa (independently selected) = 0 or 1;

n = 1; v-z = 0.
```

1. CMP-SA-PEG, α 2,8-ST

```
a-i, o, q-u, v-z, aa (independently selected) = 0 or 1;
n = 1; j-m, p (independently selected) = 0 to 2;
v-z (independently selected) = 1,
when j-m, p (independently selected) is 2;
R = PEG.
```

FIG. 46G

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_{a}]_{e}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{t} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{c}]_{g}^{-} & (\mathrm{Sia})_{l}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{t} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{z} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{z} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{z} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{z} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}^{z} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}$$

a-d, i, l, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-k (independently selected) = 0 or 1.

M = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 47A

WO 03/031464 PCT/US02/32263

217/345

```
CHO, BHK, 293 cells, Vero expressed Herceptin.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; R = toxin;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 51,
when j, l (independently selected) is 1.
```

FIG. 47B

```
CHO, BHK, 293 cells, Vero or fungal expressed Herceptin.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

 galactosyltransferase, UPD-Gal-Toxin

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 47C

Fungi expressed Herceptin. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- ↓ 3.. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 47D

a-d, i, p-u, (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 48A

WO 03/031464 PCT/US02/32263

220/345

```
CHO, BHK, 293 cells, Vero expressed Synagis.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1;
b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

1. galactosyltransferase, UPD-Gal

2. CMP-SA-PEG, ST3Gal3

```
a, c, i, j, w, (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 48B

```
CHO, BHK, 293 cells, Vero or fungal expressed Synagis.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i, w (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 48C

Fungi expressed Synagis. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-m, r-z=0; q, n=1; R' = -Gal-Sia-PEG.

FIG. 48D

WO 03/031464 PCT/US02/32263

222/345

$$\mathbf{A} = \underbrace{\left(\begin{bmatrix} \operatorname{GlcNAc-(Gal)}_{a} \end{bmatrix}_{e^{-}} \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \right)_{r}}_{\left[\begin{bmatrix} \operatorname{GlcNAc-(Gal)}_{b} \end{bmatrix}_{f^{-}} \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right)_{s}} \\ + \underbrace{\left(\begin{bmatrix} \operatorname{GlcNAc-(Gal)}_{b} \end{bmatrix}_{f^{-}} \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right)_{s}}_{\left[\begin{bmatrix} \operatorname{GlcNAc-(Gal)}_{d} \end{bmatrix}_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right)_{u}}_{z} \end{aligned}}_{q}$$

a-d, i, q-u, w (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 49A

```
CHO, BHK, 293 cells, Vero expressed Remicade.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.
```

FIG. 49B

```
CHO, BHK, 293 cells, Vero or fungal expressed Remicade.
```

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 49C

Fungi expressed Remicade.

e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y=0; q, z=1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 49D

$$\mathbf{A} \leftarrow \begin{array}{c} \text{(Fuc)}_{i} \\ \text{GlcNAc-Man} \\ \text{(R')}_{n} \end{array} \begin{array}{c} \text{(GlcNAc-(Gal)_{a}]_{e^{-}}(Sia)_{j^{-}}(R)_{v^{-}})_{r^{-}}} \\ \text{(GlcNAc-(Gal)_{b}]_{f^{-}}(Sia)_{k^{-}}(R)_{w^{-}})_{s^{-}}} \\ \text{(IGlcNAc-(Gal)_{c}]_{g^{-}}(Sia)_{l^{-}}(R)_{x^{-}})_{t^{-}}} \\ \text{(IGlcNAc-(Gal)_{d}]_{h^{-}}(Sia)_{m^{-}}(R)_{y^{-}})_{u^{-}}} \end{array}$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 50A

CHO, BHK, 293 cells, Vero expressed Reopro. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 50B

```
Insect cell expressed Reopro.
a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1;
z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 50C

Yeast expressed Reopro.

a-n = 0; r-y (independently selected) = 0 to 1; z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 50D

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 50E

CHO, BHK, 293 cells, Vero expressed
Reopro-mucin fusion protein.
a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
 - 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 50F

Insect cell expressed Reopro-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 50G

E. coli expressed Reopro-mucin fusion protein. a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

```
c, d, e (independently selected) = 0 or 1;
a, b = 0; R = PEG.
```

FIG. 50H

$$\mathbf{B} = \left(\frac{(\operatorname{Sia})_{b}}{\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d}} \right)_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 501

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 50J

E. coli expressed Reopro-mucin fusion protein. a-e, n=0.

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 50K

E. coli expressed Reopro(N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R'=linker-transferrin.

FIG. 50L

WO 03/031464 PCT/US02/32263

234/345

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-Man} \end{bmatrix} \\ \operatorname{Man} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a})_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b})_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \operatorname{Man} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b})_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{R}')_{n} \end{bmatrix}_{t} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{h} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{u} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{u} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d})_{u} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{GlcNAc-(Gal)}_{u})_{u} - (\operatorname{Gal})_{u} \right]_{u} \\ \left[(\operatorname{$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotopecomplex, drug, glycoconjugate.
R' = H, sugar, glycoconjugate.

_

FIG. 51A

CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y=0; q, z=1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = toxin.
```

FIG. 51B

```
CHO, BHK, 293 cells, Vero or fungal expressed Rituxan.
```

```
a, c, e, g, i, r, t (independently selected) = 0 or 1;
b, d, f, h, j-m, n, s, u-y=0; q, z=1.
```

1. galactosyltransferase, UPD-Gal-drug

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 51C

Fungi expressed Rituxan. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 51D

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-Man} \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \operatorname{Man} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b}]_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{R}')_{n} \end{bmatrix}_{t} \\ \left[(\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \right]_{u} \\ \operatorname{GlcNAc-(Gal)}_{d} = (\operatorname{Sia})_{l} - (\operatorname{Sia})_{l} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \end{bmatrix}_{t} \\ \operatorname{GlcNAc-(Gal)}_{d} = (\operatorname{Sia})_{l} - (\operatorname{Si$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = polymer, toxin, radioisotope-complex, drug, glycoconjugate, mannose, oligo-mannose.
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51E

CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y=0;
q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.
```

FIG. 51F

```
Fungi, yeast or CHO expressed Rituxan.
e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose, polymannose.
```

- 1. mannosidases (alpha and beta)
- 2. GNT-I,II, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal-radioisotope

```
a-m, r-z= 0; q, n = 1;
R' = -Gal-radioisotope complex.
```

FIG. 51G

WO 03/031464 PCT/US02/32263

239/345

FIG. 52A

FIG. 52B

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro

FIG. 53A

GCGCCTCTTATGTACCCACAAAAATCTATTTTCAAAAAAGTTGCTCTA AGAATATAGTTATCAAGTTAAGTAAAATGTCAATAGCCTTTTAATTTA ATTTTTAATTGTTTTATCATTCTTTGCAATAATAAAACATTAACTTTAT ACTTTTTAATTTAATGTATAGAATAGAGATATACATAGGATATGTAAA TAGATACACAGTGTATATGTGATTAAAATATAATGGGAGATTCAATC AATAATGAAAAAATGTGGTGAGAAAAACAGCTGAAAACCCATGTA AAGAGTGTATAAAGAAAGCAAAAAGAGAAGTAGAAAGTAACACAGG GGCATTTGGAAAATGTAAACGAGTATGTTCCCTATTTAAGGCTAGGC ACAAAGCAAGGTCTTCAGAGAACCTGGAGCCTAAGGTTTAGGCTCAC CCATTTCAACCAGTCTAGCAGCATCTGCAACATCTACAATGGCCTTGA CCTTTGCTTTACTGGTGCCCTCCTGGTGCTCAGCTGCAAGTCAAGCT GCTCTGTGGGCTGTGATCTGCCTCAAACCCACAGCCTGGGTAGCAGG AGGACCTTGATGCTCCTGGCACAGATGAGGAGAATCTCTCTTTTCTCC TGCTTGAAGGACAGACATGACTTTGGATTTCCCCAGGAGGAGTTTGG CAACCAGTTCCAAAAGGCTGAAACCATCCCTGTCCTCCATGAGATGA TCCAGCAGATCTTCAATCTCTTCAGCACAAAGGACTCATCTGCTGCTT GGGATGAGACCCTCCTAGACAAATTCTACACTGAACTCTACCAGCAG CTGAATGACCTGGAAGCCTGTGTGATACAGGGGGTGGGGGTGACAGA GACTCCCTGATGAAGGAGGACTCCATTCTGGCTGTGAGGAAATACT TCCAAAGAATCACTCTCTATCTGAAAGAGAAGAAATACAGCCCTTGT GCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCTTTTTCTTTGTCA ACAAACTTGCAAGAAAGTTTAAGAAGTAAGGAATGAAAACTGGTTCA ACATGGAAATGATTTCATTGATTCGTATGCCAGCTCACCTTTTTATG ATCTGCCATTTCAAAGACTCATGTTTCTGCTATGACCATGACACGATT TAAATCTTTTCAAATGTTTTTAGGAGTATTAATCAACATTGTATTCAG ATCTATTTAAAATATTTTAAAAATATTATTTATTTAACTATTTATAAAAC AACTTATTTTTGTTCATATTATGTCATGTGCACCTTTGCACAGTGGTTA CATTGAACTTTTGCTATGGAACTTTTGTACTTGTTTATTCTTTAAAATG AAATTCCAAGCCTAATTGTGCAACCTGATTACAGAATAACTGGTACA CTTCATTTGTCCATCAATATTATATTCAAGATATAAGTAAAAATAAAC TTTCTGTAAACCAAGTTGTATGTTGTACTCAAGATAACAGGGTGAACC TAACAAATACAATTCTGCTCTCTTGTGTATTTGATTTTTGTATGAAAA AAACTAAAAATGGTAATCATACTTAATTATCAGTTATGGTAAATGGT ATGAAGAGAAGAAGGAACG

WO 03/031464 PCT/US02/32263

241/345

FIG. 53B

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu

This page is not part of the document!

US2002032263 / 2003-031464 8/10

Date: Apr 17, 2003

Recipient: IB

FIG. 54A

ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGTGCTTCTCC ACTACAGCTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAAGA AGCAGCAATTTTCAGTGTCAGAAGCTCCTGTGGCAATTGAATGGGAG GCTTGAATATTGCCTCAAGGACAGGATGAACTTTGACATCCCTGAGG AGATTAAGCAGCTGCAGCAGTTCCAGAAGGAGGACGCCGCATTGACC ATCTATGAGATGCTCCAGAACATCTTTGCTATTTTCAGACAAGATTCA TCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCTAA TGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAAC TGGAGAAAGAAGATTTTACCAGGGGAAAACTCATGAGCAGTCTGCAC CTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGA GTACAGTCACTGTGCCTGGACCATAGTCAGAGTGGAAATCCTAAGGA ACTTTTACTTCATTAACAGACTTACAGGTTACCTCCGAAACTGAAGAT CTCCTAGCCTGTCCCTCTGGGACTGGACAATTGCTTCAAGCATTCTTC AACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTACTGCAAAT GAAAGGACACTAGAAGATTTTGAAATTTTTATTAAATTATGAGTTATT TTTATTTAT TTAAATTTTATTTTGGAAAATAAATTATTTTTGGTGC

FIG. 54B

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly ArgLeu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn

FIG. 55A

ATGGTCTCCCAGGCCCTCAGGCTCCTCTGCCTTCTGCTTGGGCTTCAG GGCTGCCTGCCAGTCTTCGTAACCCAGGAGGAAGCCCACGGCGT CCTGCACCGGCGCGCGCGCCAACGCGTTCCTGGAGGAGCTGCGGC CGGGCTCCCTGGAGAGGGAGTGCAAGGAGGAGCAGTGCTCCTTCGA GGAGGCCCGGGAGATCTTCAAGGACGCGGAGAGGACGAAGCTGTTC TGGATTTCTTACAGTGATGGGGACCAGTGTGCCTCAAGTCCATGCCA GAATGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGCTTCT GCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGAC CAGCTGATCTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAG TGACCACACGGGCACCAAGCGCTCCTGTCGGTGCCACGAGGGGTACT CTCTGCTGGCAGACGGGGTGTCCTGCACACCCACAGTTGAATATCCA TGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCA AGGCCGAATTGTGGGGGGCAAGGTGTCCCCAAAGGGGAGTGTCCA TGGCAGGTCCTGTTGTTGGTGAATGGAGCTCAGTTGTGTGGGGGGAC CCTGATCAACACCATCTGGGTGGTCTCCGCGGCCCACTGTTTCGACAA AATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAGCACGAC CTCAGCGAGCACGACGGGATGAGCAGAGCCGGCGGGTGGCGCAGG GCGCTGCTCCGCCTGCACCAGCCCGTGGTCCTCACTGACCATGTGGTG CCCCTCTGCCTGCCCGAACGGACGTTCTCTGAGAGGACGCTGGCCTTC GTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGTGG CGCCACGCCCTGGAGCTCATGGTGCTCAACGTGCCCCGGCTGATGA CCCAGGACTGCCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAAT ATCACGGAGTACATGTTCTGTGCCGGCTACTCGGATGGCAGCAAGGA GCACGTGGTACCTGACGGCCATCGTCAGCTGGGGCCAGGGCTGCGCA ACCGTGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGA GTGGCTGCAAAAGCTCATGCGCTCAGAGCCACGCCCAGGAGTCCTCC TGCGAGCCCCATTTCCC

FIG. 55B

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Glu Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro

FIG. 56A

ATGCAGCGCGTGAACATGATCATGGCAGAATCACCAAGCCTCATCAC CATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTT GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA GTATGGAAGAAAGTGTAGTTTTGAAGAACCACGAGAAGTTTTTGAA AACACTGAAAAGACAACTGAATTTTGGAAGCAGTATGTTGATGGAGA TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGA ACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT GAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGT GCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCAC CCGTGCTGAGGCTGTTTTTCCTGATGTGGACTATGTAAATCCTACTGA AGCTGAAACCATTTTGGATAACATCACTCAAGGCACCCAATCATTTA ATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAA TTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGA GGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTT GAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGA GGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAGCAATT ATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACG TTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCA AATTTGGATCTGGCTATGTAAGTGGCTGGGCAAGAGTCTTCCACAAA **GGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGAC** CGAGCCACATGTCTTCGATCTACAAAGTTCACCATCTATAACAACAT GTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAG ATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTA ACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATA TGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAA AAACAAAGCTCACTTAATGAAAGATGGATTTCCAAGGTTAATTCATT **GGAATTGAAAATTAACAG**

FIG. 56B

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe LeuAsp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asp Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr

FIG. 57A

FIG. 57B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

FIG. 57C

FIG. 57D

Met Lys Thr Leu Gln Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu

FIG. 58A

CCCGGAGCCGGGCCACCGCGCCCGCTCTGCTCCGACACCGC GCCCCTGGACAGCCGCCCTCTCCTCCAGGCCCGTGGGGCTGGCCCT GCACCGCGAGCTTCCCGGGATGAGGGCCCCCGGTGTGGTCACCCGG CGCGCCCAGGTCGCTGAGGGACCCCGGCCAGGCGCGGAGATGGGG GTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGTCG CTCCCTCTGGGCCTCCCAGTCCTGGGCGCCCCACCACGCCTCATCTGT GACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAGGAGGCCG AGAATATCACGACGGGCTGTGCTGAACACTGCAGCTTGAATGAGAAT ATCACTGTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGGAT GGAGGTCGGGCAGCAGGCCGTAGAAGTCTGGCAGGGCCTGGCCCTG CTGTCGGAAGCTGTCCTGCGGGGCCAGGCCCTGTTGGTCAACTCTTCC CAGCCGTGGGAGCCCCTGCAGCTGCATGTGGATAAAGCCGTCAGTGG CCTTCGCAGCCTCACCACTCTGCTTCGGGCTCTGCGAGCCCAGAAGG AAGCCATCTCCCCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACA ATCACTGCTGACACTTTCCGCAAACTCTTCCGAGTCTACTCCAATTTC CTCCGGGGAAAGCTGAAGCTGTACACAGGGGAGGCCTGCAGGACAG GGGACAGATGACCAGGTGTGTCCACCTGGGCATATCCACCACCTCCC TCACCAACATTGCTTGTGCCACACCCTCCCCGCCACTCCTGAACCCC GTCGAGGGCTCTCAGCTCAGCCCCAGCCTGTCCCATGGACACTCCA GTGCCAGCAATGACATCTCAGGGGCCAGAGGAACTGTCCAGAGAGC AACTCTGAGATCTAAGGATGTCACAGGGCCAACTTGAGGGCCCAGAG CAGGAAGCATTCAGAGAGCAGCTTTAAACTCAGGGACAGAGCCATG CTGGGAAGACGCCTGAGCTCACTCGGCACCCTGCAAAATTTGATGCC AGGACACGCTTTGGAGGCGATTTACCTGTTTTCGCACCTACCATCAGG GACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGACTTCTCCAG GTCTCACGGGCATGGGCACTCCCTTGGTGGCAAGAGCCCCCTTGACA CCGGGGTGGTGGGAACCATGAAGACAGGATGGGGGCTGGCCTCTGG CTCTCATGGGGTCCAAGTTTTGTGTATTCTTCAACCTCATTGACAAGA ACTGAAACCACCAAAAAAAAAAAAAA

FIG. 58B

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg

FIG. 59A

ATGTGGCTGCAGAGCCTGCTGCTCTTTGGGCACTGTGGCCTGCAGCAT CTCTGCACCCGCCCGCTCGCCCAGCCCCAGCACGCAGCCCTGGGAGC ATGTGAATGCCATCCAGGAGGCCCGGCGTCTCCTGAACCTGAGTAGA GACACTGCTGCTGAGATGAAACAGTAGAAGTCATCTCAGAAAT GTTTGACCTCCAGGAGCCGACCTGCCTACAGACCCGCCTGGAGCTGT ACAAGCAGGGCCTGCGGGGCAGCCTCACCAAGCTCAAGGGCCCCTTG ACCATGATGGCCAGCCACTACAAGCAGCACTGCCCTCCAACCCCGGA AACTTCCTGTGCAACCCAGATTATCACCTTTGAAAGTTTCAAAGAGA ACCTGAAGGACTTTCTGCTTGTCATCCCCTTTGACTGCTGGGAGCCAG TCCAGGAGTGA

FIG. 59B

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu

FIG. 60A

ATGAAATATACAAGTTATATCTTGGCTTTTCAGCTCTGCATCGTTTTG
GGTTCTCTTGGCTGTTACTGCCAGGACCCATATGTAAAAAGAAGCAGA
AAACCTTAAGAAATATTTTAATGCAGGTCATTCAGATGTAGCGGATA
ATGGAACTCTTTTCTTAGGCATTTTGAAGAATTGGAAAGAGGAGAGT
GACAGAAAAATAATGCAGAGCCAAATTGTCTCCTTTTACTTCAAACT
TTTTAAAAAACTTTAAAGATGACCAGAGCATCCAAAAAGAGTGTGGAGA
CCATCAAGGAAGACATGAATGTCAAGTTTTTCAATAGCAACAAAAAG
AAACGAGATGACTTCGAAAAAGCTGACTAATTATTCGGTAACTGACTT
GAATGTCCAACGCAAAGCAATACATGAACTCATCCAAGTGATGGCTG
AACTGTCGCCAGCAGCTAAAAACAGGGAAGCGAAAAAAGGAGTCAGAT
GCTGTTTCGAGGGTCGAAGAGCATCCCAGTAA

FIG. 60B

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg Gly Arg Arg Ala Ser Gln

FIG. 61A

CTGGGACAGTGAATCGACAATGCCGTCTTCTGTCTCGTGGGGCATCCT CCTGCTGGCAGGCCTGTGCTGCCTGGTCCCTGTCTCCCTGGCTGAGGA TCCCCAGGGAGATGCTGCCCAGAAGACAGATACATCCCACCATGATC AGGATCACCCAACCTTCAACAAGATCACCCCCAACCTGGCTGAGTTC GCCTTCAGCCTATACCGCCAGCTGGCACACCAGTCCAACAGCACCAA TATCTTCTCCCCAGTGAGCATCGCTACAGCCTTTGCAATGCTCTC CCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCCTGA ATTTCAACCTCACGGAGATTCCGGAGGCTCAGATCCATGAAGGCTTC GACCACCGGCAATGGCCTGTTCCTCAGCGAGGGCCTGAAGCTAGTGG ATAAGTTTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAAGCCTTC ACTGTCAACTTCGGGGACACCGAAGAGGCCAAGAAACAGATCAACG ATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTTGGTCAAG GAGCTTGACAGAGACACAGTTTTTGCTCTGGTGAATTACATCTTCTTT AAAGGCAAATGGGAGAGACCCTTTGAAGTCAAGGACACCGAGGAAG AGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATG AAGCGTTTAGGCATGTTTAACATCCAGCACTGTAAGAAGCTGTCCAG CTGGGTGCTGATGAAATACCTGGGCAATGCCACCGCCATCTTCT TCCTGCCTGATGAGGGGAAACTACAGCACCTGGAAAATGAACTCACC CACGATATCATCACCAAGTTCCTGGAAAAATGAAGACAGAAGGTCTGC CAGCTTACATTTACCCAAACTGTCCATTACTGGAACCTATGATCTGAA GAGCGTCCTGGGTCAACTGGGCATCACTAAGGTCTTCAGCAATGGGG CTGACCTCTCCGGGGTCACAGAGGAGGCACCCCTGAAGCTCTCCAAG GCCGTGCATAAGGCTGTGCTGACCATCGACGAGAAAGGGACTGAAGC TGCTGGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCGA GGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACAAAATAC AACTGCCTCTCCTCAACCCCTCCCTCCATCCCTGGCCCCCTCC CTGGATGACATTAAAGAAGGGTTGAGCTGG

FIG. 61B

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala LeuVal Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu AspArg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro · Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gln Lys

255/345 FIG. 62A-1

GCTAACCTAGTGCCTATAGCTAAGGCAGGTACCTGCATCCTTGTTTTT GTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACCCCTGTGGTCT TCTCTTCATCTAATGACCCTGAGGGGATGGAGTTTTCAAGTCCTTCCA AGCCTCACAGGTTTGCTTCTACTTCAGGCAGTGTCGTGGGCATCAGGT GCCCGCCCTGCATCCCTAAAAGCTTCGGCTACAGCTCGGTGGTGTGT GTCTGCAATGCCACATACTGTGACTCCTTTGACCCCCCGACCTTTCCT GCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCAGTGGGCGACG GATGGAGCTGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAG GGATTTGGAGGGCCATGACAGATGCTGCTGCTCTCAACATCCTTGCC CTGTCACCCCCTGCCCAAAATTTGCTACTTAAATCGTACTTCTCTGAA GAAGGAATCGGATATAACATCATCCGGGTACCCATGGCCAGCTGTGA CTTCTCCATCCGCACCTACACCTATGCAGACACCCCTGATGATTTCCA GTTGCACAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCCAGCGTCCCGTTTCACTCC TTGCCAGCCCCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCG GTGAATGGGAAGGGTCACTCAAGGGACAGCCCGGAGACATCTACC ACCAGACCTGGGCCAGATACTTTGTGAAGTTCCTGGATGCCTATGCTG AGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATGAGCCTTCT GCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCT GAACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCC AACAGTACTCACCACAATGTCCGCCTACTCATGCTGGATGACCAACGC TTGCTGCTGCCCCACTGGGCAAAGGTGGTACTGACAGACCCAGAAGC AGCTAAATATGTTCATGGCATTGCTGTACATTGGTACCTGGACTTTCT GGCTCCAGCCAAAGCCACCCTAGGGGAGACACACCGCCTGTTCCCCA ACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGC CACAGCATCATCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGAC TGGAACCTTGCCCTGAACCCCGAAGGAGGACCCAATTGGGTGCGTAA CTTTGTCGACAGTCCCATCATTGTAGACATCACCAAGGACACGTTTTA CAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCAAGTTCATTCC TGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCG TGCTAAACCGCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTG CTGTGGGCTTCCTGGAGACAATCTCACCTGGCTACTCCATTCACACCT ACCTGTGGCATCGCCAGTGATGGAGCAGATACTCAAGGAGGCACTGG GCTCAGCCTGGCATTAAAGGGACAGAGTCAGCTCACACGCTGTCTG TGACTAAAGAGGCACAGCAGGGCCAGTGTGAGCTTACAGCGACGT

FIG. 62A-2

FIG. 62B

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Leu Gln Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg Gln

257/345 FIG. 63A

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCCAGGAAATCCATGCCCGATTCAGAA GAGGAGCCAGATCTTACCAAGTGATCTGCAGAGATGAAAAAACGCA GATGATATACCAGCAACATCAGTCATGGCTGCGCCCTGTGCTCAGAA GCAACCGGGTGGAATATTGCTGGTGCAACAGTGGCAGGGCACAGTGC CACTCAGTGCCTGTCAAAAGTTGCAGCGAGCCAAGGTGTTTCAACGG GGGCACCTGCCAGCAGGCCCTGTACTTCTCAGATTTCGTGTGCCAGTG CCCCGAAGGATTTGCTGGGAAGTGCTGTGAAATAGATACCAGGGCCA CGTGCTACGAGGACCAGGGCATCAGCTACAGGGGCACGTGGAGCAC AGCGGAGAGTGCCCGAGTGCACCAACTGGAACAGCAGCGCGTTG GCCCAGAAGCCCTACAGCGGGCGGAGGCCAGACGCCATCAGGCTGG GCCTGGGGAACCACAACTACTGCAGAAACCCAGATCGAGACTCAAA GCCCTGGTGCTACGTCTTTAAGGCGGGGAAGTACAGCTCAGAGTTCT GCAGCACCCCTGCCTGCTCTGAGGGAAACAGTGACTGCTACTTTGGG AATGGGTCAGCCTACCGTGGCACGCACAGCCTCACCGAGTCGGGTGC CTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGTTTACAC AGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTG AAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTC CACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAG GAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCCATCT TTGCCAAGCACAGGAGGTCGCCGGGAGAGCGGTTCCTGTGCGGGGGC ATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAG GAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATA CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAA TACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACAT TGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGA GCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTG CCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGC CTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACT GTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAG TCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGCCCC CAGGCAÄACTTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCT GGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGCCATCATCAGCT GGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACCAAG GTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGACC AGGAACACCCGACTCCTCAAAAGCAAATGAGATCC

FIG. 63B

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Glu Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met

259/345 FIG. 64A

ATCACTCTCTTTAATCACTACTCACATTAACCTCAACTCCTGCCACAA TGTACAGGATGCAACTCCTGTCTTGCATTGCACTAATTCTTGCACTTG TCACAAACAGTGCACCTACTTCAAGTTCGACAAAGAAAACAAAGAAA ACACAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGATTTTG AATGGAATTAATAATTACAAGAATCCCAAACTCACCAGGATGCTCAC ATTTAAGTTTTACATGCCCAAGAAGGCCACAGAACTGAAACAGCTTC AGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTGAATTTA GCTCAAAGCAAAACTTTCACTTAAGACCCAGGGACTTAATCAGCAA TATCAACGTAATAGTTCTGGAACTAAAGGGATCTGAAACAACATTCA TGTGTGAATATGCAGATGAGACAGCAACCATTGTAGAATTTCTGAAC AGATGGATTACCTTTTGTCAAAGCATCATCTCAACACTAACTTGATAA AATATTTAAATTTTATTTTTTTTTTGAATGTATGGTTGCTACCTATTG TAACTATTATTCTTAATCTTAAAACTATAAATATGGATCTTTTATGAT CAAAAATATTTATTATTATGTTGAATGTTAAATATAGTATCTATGTAG AAACAAAAAAAAAA

FIG. 64B

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys Thr Gln Leu Gln Leu Glu His Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr

WO 03/031464 PCT/US02/32263

260/345 FIG. 65A-1

ATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTTGCGATTCT GCTTTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCA TGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGACGCAAG ATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTCAACACCTCAGTCGT GTACAAAAAGACTCTGTTTGTAGAATTCACGGATCACCTTTTCAACAT CGCTAAGCCAAGGCCACCCTGGATGGGTCTGCTAGGTCCTACCATCC AGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCT TCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCT TCTGAGGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAG AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTAC CTACTCATATCTTCTCATGTGGACCTGGTAAAAGACTTGAATTCAGG CCTCATTGGAGCCCTACTAGTATGTAGAGAAGGGAGTCTGGCCAAGG AAAAGACACAGACCTTGCACAAATTTATACTACTTTTTTGCTGTATTTG ATGAAGGGAAAAGTTGGCACTCAGAAACAAAGAACTCCTTGATGCA GGATAGGGATGCTCCATCTGCTCGGGCCTAAAATGCACACAG TCAATGGTTATGTAAACAGGTCTCTGCCAGGTCTGATTGGATGCCACA GGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCAT CGCCAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA ACACTCTTGATGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTCTT CCCACCAACATGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGGAAG ACTATGATGATCTTACTGATTCTGAAATGGATGTGGTCAGGTTTG ATGATGACAACTCTCCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGA AGCATCCTAAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGAC TGGGACTATGCTCCCTTAGTCCTCGCCCCGATGACAGAAGTTATAAA AGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAA AAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCGTG AAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGG TCAAGGAGATTACCAAAAGGTGTAAAAACATTTGAAGGATTTTCCAAT TCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC TCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGATA ATGTCAGACAAGAGGAATGTCATCCTGTTTTCTGTATTTGATGAGAAC CGAAGCTGGTACCTCACAGAGAATATACAACGCTTTCTCCCCAATCCA GCTGGAGTGCAGCTTGAGGATCCAGAGTTCCAAGCCTCCAACATCAT GCACAGCATCAATGGCTATGTTTTTGATAGTTTGCAGTTTGTCAGTTTG TTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGAGCACAGA CTGACTTCCTTCTCTCTCTGGATATACCTTCAAACACAAAAT

261/345 FIG. 65A-2

GGTCTATGAAGACACACTCACCCTATTCCCATTCTCAGGAGAAACTGT CTTCATGTCGATGGAAAACCCAGGTCTATGGATTCTGGGGTGCCACA ACTCAGACTTTCGGAACAGAGGCATGACCGCCTTACTGAAGGTTTCT AGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTATGAAGA TATTTCAGCATACTTGCTGAGTAAAAACAATGCCATTGAACCAAGAA GCTTCTCCCAGAATTCAAGACACCGTAGCACTAGGCAAAAGCAATTT AATGCCACCACAATTCCAGAAAATGACATAGAGAAGACTGACCCTTG GTTTGCACACAGAACACCTATGCCTAAAATACAAAATGTCTCCTCTA GTGATTTGTTGATGCTCTTGCGACAGAGTCCTACTCCACATGGGCTAT CCTTATCTGATCTCCAAGAAGCCAAATATGAGACTTTTTCTGATGATC CATCACCTGGAGCAATAGACAGTAATAACAGCCTGTCTGAAATGACA CACTTCAGGCCACAGCTCCATCACAGTGGGGACATGGTATTTACCCC TGAGTCAGGCCTCCAATTAAGATTAAATGAGAAACTGGGGACAACTG CAGCAACAGAGTTGAAGAAACTTGATTTCAAAGTTTCTAGTACATCA AATAATCTGATTTCAACAATTCCATCAGACAATTTGGCAGCAGGTACT GATAATACAAGTTCCTTAGGACCCCCAAGTATGCCAGTTCATTATGAT AGTCAATTAGATACCACTCTATTTGGCAAAAAGTCATCTCCCCTTACT GAGTCTGGTGGACCTCTGAGCTTGAGTGAAGAAAATAATGATTCAAA GTTGTTAGAATCAGGTTTAATGAATAGCCAAGAAAGTTCATGGGGAA AAAATGTATCGTCAACAGAGAGTGGTAGGTTATTTAAAGGGAAAAGA GCTCATGGACCTGCTTTGTTGACTAAAGATAATGCCTTATTCAAAGTT AGCATCTCTTTGTTAAAGACAAACAAAACTTCCAATAATTCAGCAACT AATAGAAAGACTCACATTGATGGCCCATCATTATTAATTGAGAATAG TCCATCAGTCTGGCAAAATATATTAGAAAGTGACACTGAGTTTAAAA AAGTGACACCTTTGATTCATGACAGAATGCTTATGGACAAAAATGCT ACAGCTTTGAGGCTAAATCATATGTCAAATAAAACTACTTCATCAAA AAACATGGAAATGGTCCAACAGAAAAAAGAGGGCCCCATTCCACCA GATGCACAAAATCCAGATATGTCGTTCTTTAAGATGCTATTCTTGCCA GAATCAGCAAGGTGGATACAAAGGACTCATGGAAAGAACTCTCTGAA CTCTGGGCAAGGCCCCAGTCCAAAGCAATTAGTATCCTTAGGACCAG GTAGTAGGAAAGGGTGAATTTACAAAGGACGTAGGACTCAAAGAGA TGGTTTTTCCAAGCAGCAGAAACCTATTTCTTACTAACTTGGATAATT TACATGAAAATAATACACACAATCAAGAAAAAAAAAATTCAGGAAGA AATAGAAAAGAAGGAAACATTAATCCAAGAGAATGTAGTTTTGCCTC AGATACATACAGTGACTGGCACTAAGAATTTCATGAAGAACCTTTTC TTACTGAGCACTAGGCAAAATGTAGAAGGTTCATATGACGGGGCATA TGCTCCAGTACTTCAAGATTTTAGGTCATTAAATGATTCAACAAATAG AACAAAGAAACACACAGCTCATTTCTCAAAAAAAGGGGAGGAAGAA AACTTGGAAGGCTTGGGAAATCAAACCAGCAAATTGTAGAGAAATAT GCATGCACCACAAGGAATATCTCCTAATACAAGCCAGCAGAATTTTG TCACGCAACGTAGTAAGAGAGCTTTGAAACAATTCAGACTCCCACTA

262/345 FIG. 65A-3

GAAGAAACAGAACTTGAAAAAAGGATAATTGTGGATGACACCTCAAC CCAGTGGTCCAAAAACATGAAACATTTGACCCCGAGCACCCTCACAC AGATAGACTACAATGAGAAGGAGAAAGGGGCCATTACTCAGTCTCCC TTATCAGATTGCCTTACGAGGAGTCATAGCATCCCTCAAGCAAATAGA TCTCCATTACCCATTGCAAAGGTATCATCATTTCCATCTATTAGACCTA TATATCTGACCAGGGTCCTATTCCAAGACAACTCTTCTCATCTTCCAG CAGCATCTTATAGAAAGAAAGATTCTGGGGTCCAAGAAAGCAGTCAT TTCTTACAAGGAGCCAAAAAAAAAAACCTTTCTTTAGCCATTCTAACC TTGGAGATGACTGGTGATCAAAGAGAGGTTGGCTCCCTGGGGACAAG TGCCACAAATTCAGTCACATACAAGAAAGTTGAGAACACTGTTCTCCC GAAACCAGACTTGCCCAAAACATCTGGCAAAGTTGAATTGCTTCCAA AAGTTCACATTTATCAGAAGGACCTATTCCCTACGGAAACTAGCAATG GGTCTCCTGGCCATCTGGATCTCGTGGAAGGGAGCCTTCTTCAGGGAA CAGAGGGAGCGATTAAGTGGAATGAAGCAAACAGACCTGGAAAAGT GCTATTGGATCCTCTTGCTTGGGATAACCACTATGGTACTCAGATACC AAAAGAAGAGTGGAAATCCCAAGAGAAGTCACCAGAAAAAACAGCT TTTAAGAAAAAGGATACCATTTTGTCCCTGAACGCTTGTGAAAGCAAT CATGCAATAGCAGCAATAAATGAGGGACAAAATAAGCCCGAAATAG AAGTCACCTGGGCAAAGCAAGGTAGGACTGAAAGGCTGTGCTCTCAA AACCCACCAGTCTTGAAACGCCATCAACGGGAAATAACTCGTACTAC TCTTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGT TGAAATGAAGAAGGAAGATTTTGACATTTATGATGAGGATGAAAATC AGAGCCCCGCAGCTTTCAAAAGAAAACACGACACTATTTTATTGCTG CAGTGGAGAGGCTCTGGGATTATGGGATGAGTAGCTCCCCACATGTT CTAAGAAACAGGGCTCAGAGTGGCAGTGTCCCTCAGTTCAAGAAAGT TGTTTTCCAGGAATTTACTGATGGCTCCTTTACTCAGCCCTTATACCGT GGAGAACTAAATGAACATTTGGGACTCCTGGGGCCATATATAAGAGC AGAAGTTGAAGATAATATCATGGTAACTTTCAGAAATCAGGCCTCTC GTCCCTATTCCTTCTATTCTAGCCTTATTTCTTATGAGGAAGATCAGAG GCAAGGAGCAGAACCTAGAAAAACTTTGTCAAGCCTAATGAAACCA AAACTTACTTTTGGAAAGTGCAACATCATATGGCACCCACTAAAGAT GAGTTTGACTGCAAAGCCTGGGCTTATTTCTCTGATGTTGACCTGGAA AAAGATGTGCACTCAGGCCTGATTGGACCCCTTCTGGTCTGCCACACT AACACACTGAACCCTGCTCATGGGAGACAAGTGACAGTACAGGAATT TGCTCTGTTTTCACCATCTTTGATGAGACCAAAAGCTGGTACTTCACT GAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGA CATAATGGATACACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGA TTCGATGGTATCTGCTCAGCATGGGCAGCAATGAAAACATCCATTCT TAAAATGGCACTGTACAATCTCTATCCAGGTGTTTTTGAGACAGTGGA

263/345 FIG. 65A-4

AATGTTACCATCCAAAGCTGGAATTTGGCGGGTGGAATGCCTTATTGG CGAGCATCTACATGCTGGGATGAGCACACTTTTTCTGGTGTACAGCAA TAAGTGTCAGACTCCCCTGGGAATGGCTTCTGGACACATTAGAGATTT TCAGATTACAGCTTCAGGACAATATGGACAGTGGGCCCCAAAGCTGG CCAGACTTCATTATTCCGGATCAATCAATGCCTGGAGCACCAAGGAG CCCTTTTCTTGGATCAAGGTGGATCTGTTGGCACCAATGATTATTCAC GGCATCAAGACCCAGGGTGCCCGTCAGAAGTTCTCCAGCCTCTACAT CTCTCAGTTTATCATCATGTATAGTCTTGATGGGAAGAAGTGGCAGA CTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTCTTTGGCAATG TGGATTCATCTGGGATAAAACACAATATTTTTAACCCTCCAATTATTG CTCGATACATCCGTTTGCACCCAACTCATTATAGCATTCGCAGCACTC TTCGCATGGAGTTGATGGGCTGTGATTTAAATAGTTGCAGCATGCCAT TGGGAATGGAGAGTAAAGCAATATCAGATGCACAGATTACTGCTTCA TCCTACTTTACCAATATGTTTGCCACCTGGTCTCCTTCAAAAGCTCGA CTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCAGGTGAATAA TCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAAGACAATGAAAGTCA CAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAGCATGTAT GTGAAGGAGTTCCTCATCTCCAGCAGTCAAGATGGCCATCAGTGGAC TCTCTTTTTCAGAATGGCAAAGTAAAGGTTTTTCAGGGAAATCAAGA CTCCTTCACACCTGTGGTGAACTCTCTAGACCCACCGTTACTGACTCG CTACCTTCGAATTCACCCCCAGAGTTGGGTGCACCAGATTGCCCTGAG GATGGAGGTTCTGGGCTGCGAGGCACAGGACCTCTACTGAGGGTGGC CACTGCAGCACCTGCCACTGCCGTCACCTCTCCCTCAGCTCCAGG GCAGTGTCCCTCCCTGGCTTGCCTTCTACCTTTGTGCTAAATCCTAGC AGACACTGCCTTGAAGCCTCCTGAATTAACTATCATCAGTCCTGCATT TCTTTGGTGGGGGCCAGGAGGGTGCATCCAATTTAACTTAACTCTTA AGGCAAAAAGAAGTGAGGAGAAACCTGCATGAAAGCATTCTTCCCTG AAAAGTTAGGCCTCTCAGAGTCACCACTTCCTCTGTTGTAGAAAAACT ATGTGATGAAACTTTGAAAAAGATATTTATGATGTTAACATTTCAGGT TAAGCCTCATACGTTTAAAAATAAAACTCTCAGTTGTTTATTATCCTGA TCAAGCATGGAACAAAGCATGTTTCAGGATCAGATCAATACAATCTT GGAGTCAAAAGGCAAATCATTTGGACAATCTGCAAAATGGAGAGAA TACAATAACTACTACAGTAAAGTCTGTTTCTGCTTCCTTACACATAGA TATAATTATGTTATTTAGTCATTATGAGGGGCACATTCTTATCTCCAA AACTAGCATTCTTAAACTGAGAATTATAGATGGGGTTCAAGAATCCC TAAGTCCCCTGAAATTATATAAGGCATTCTGTATAAATGCAAATGTGC ATTTTCTGACGAGTGTCCATAGATATAAAGCCATTTGGTCTTAATTCT GACCAATAAAAAAATAAGTCAGGAGGATGCAATTGTTGAAAGCTTTG AAATGATGA

264/345 FIG. 65B-1

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asp Ser Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp Asp Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp

265/345 FIG. 65B-2

Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu

266/345 FIG. 65B-3

Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His

267/345 FIG.65B-4

Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr

FIG. 66A

TCCACCTGTCCCCGCAGCGCCGGCTCGCGCCCTCCTGCCGCAGCCACC GAGCCGCCGTCTAGCGCCCCGACCTCGCCACCATGAGAGCCCTGCTG GCGCGCCTGCTTCTCTGCGTCCTGGTCGTGAGCGACTCCAAAGGCAGC AATGAACTTCATCAAGTTCCATCGAACTGTGACTGTCTAAATGGAGGA ACATGTGTGTCCAACAAGTACTTCTCCAACATTCACTGGTGCAACTGC CCAAAGAAATTCGGAGGGCAGCACTGTGAAATAGATAAGTCAAAAAC CTGCTATGAGGGGAATGGTCACTTTTACCGAGGAAAGGCCAGCACTG ACACCATGGGCCGGCCCTGCCTGCCCTGGAACTCTGCCACTGTCCTTC AGCAAACGTACCATGCCCACAGATCTGATGCTCTTCAGCTGGGCCTGG GGAAACATAATTACTGCAGGAACCCAGACAACCGGAGGCGACCCTGG TGCTATGTGCAGGTGGGCCTAAAGCCGCTTGTCCAAGAGTGCATGGT GCATGACTGCGCAGATGGAAAAAAGCCCTCCTCCTCCCAGAAGAAT TAAAATTTCAGTGTGGCCAAAAGACTCTGAGGCCCCGCTTTAAGATTA TTGGGGGAGAATTCACCACCATCGAGAACCAGCCCTGGTTTGCGGCC ATCTACAGGAGGCACCGGGGGGGCTCTGTCACCTACGTGTGTGGAGG CAGCCTCATCAGCCCTTGCTGGGTGATCAGCGCCACACACTGCTTCAT TGATTACCCAAAGAAGGAGGACTACATCGTCTACCTGGGTCGCTCAA GGCTTAACTCCAACACGCAAGGGGAGATGAAGTTTGAGGTGGAAAAC CTCATCCTACACAAGGACTACAGCGCTGACACGCTTGCTCACCACAAC GACATTGCCTTGCAAGATCCGTTCCAAGGAGGCAGGTGTGCGCA GCCATCCCGGACTATACAGACCATCTGCCTGCCCTCGATGTATAACGA TCCCCAGTTTGGCACAAGCTGTGAGATCACTGGCTTTGGAAAAGAGA ATTCTACCGACTATCTCTATCCGGAGCAGCTGAAGATGACTGTTGTGA AGCTGATTTCCCACCGGGAGTGTCAGCAGCCCCACTACTACGGCTCTG AAGTCACCACAAAATGCTGTGTGCTGCTGACCCACAGTGGAAAACA GATTCCTGCCAGGGAGACTCAGGGGGACCCCTCGTCTGTTCCCTCCAA GGCCGCATGACTTTGACTGGAATTGTGAGCTGGGGCCGTGGATGTGC CCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTAC CCTGGATCCGCAGTCACACCAAGGAAGAGAATGGCCTGGCCCTCTGA GGGTCCCCAGGGAAAACGGGCACCACCCGCTTTCTTGCTGGTTGTC ATTTTTGCAGTAGAGTCATCTCCATCAGCTGTAAGAAGAGACTGGGA AGAT

FIG. 66B

Met Arg Ala Leu Leu Ala Arg Leu Leu Cys Val Leu Val Val Ser Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu

FIG.67A

TCCTGCACAGGCAGTGCCTTGAAGTGCTTCTTCAGAGACCTTTCTTCA TAGACTACTTTTTTTTTTTAAGCAGCAAAAGGAGAAAATTGTCATCA AGGATATTCCAGATTCTTGACAGCATTCTCGTCATCTCTGAGGACATC ACCATCATCTCAGGATGAGGGGCATGAAGCTGCTGGGGGGCGCTGCTG GCACTGGCGCCCTACTGCAGGGGGCCGTGTCCCTGAAGATCGCAGC CTTCAACATCCAGACATTTGGGGAGACCAAGATGTCCAATGCCACCCT CGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGT CCAGGAGGTCAGAGACAGCCACCTGACTGCCGTGGGGAAGCTGCTGG ACAACCTCAATCAGGATGCACCAGACACCTATCACTACGTGGTCAGT GAGCCACTGGGACGGAACAGCTATAAGGAGCGCTACCTGTTCGTGTA CAGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACGATGATG GTCAGGTTCTCCCCGGTTCACAGAGGTCAGGGAGTTTGCCATTGTT CCCCTGCATGCGGCCCCGGGGGACGCAGTAGCCGAGATCGACGCTCT CTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGCTTGGAGGACG TCATGTTGATGGGCGACTTCAATGCGGGCTGCAGCTATGTGAGACCCT CCCAGTGGTCATCCATCCGCCTGTGGACAAGCCCCACCTTCCAGTGGC TGATCCCCGACAGCGCTGACACCACAGCTACACCCACGCACTGTGCCT ATGACAGGATCGTGGTTGCAGGGATGCTGCTCCGAGGCGCCGTTGTTC CCGACTCGGCTCTTCCCTTTAACTTCCAGGCTGCCTATGGCCTGAGTG ACCAACTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGTGATG CTGAAGTGAGCAGCCCCTCCCCACACCAGTTGAACTGCAG

FIG. 67B

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser Asp His Tyr Pro Val Glu Val Met Leu Lys

FIG. 68A

FIG. 68B

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn

FIG. 69A

ATGGGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCT TTCTGTTCCCAATCCTCTGGGATTCTTTCCCGATCACCAGTTGGACCCT GCGTTCGGAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCCAA CAAGGATCACTGGCCAGAGGCAATCAAGGTAGGAGCGGGAGACTTC GGGCCAGGGTTCACCCCACCACACGGCGTCTTTTGGGGTGGAGCCC TCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGCGCCTCCTCCTG TTTCCACCAATCGGCAGTCAGGAAGACAGCCTACTCCCATCTCTCCAC CTCTAAGAGACAGTCATCCTCAGGCCATGCAGTGGAACTCCACAACA TTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTATATTTTCCT GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACTACTGTC TCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCTGCACCGAAC ATGGAGAGCACAACATCAGGATTCCTAGGACCCCTGCTCGTGTTACA GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCACAGAGTCT AGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAGCACCCACGTG TTGTCCTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTT ATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTC TTCTGGACTACCAAGGTATGTTGCCCGTTTGTCCTCTACTTCCAGGAA CATCAACTACCAGCACGGGACCATGCAAGACCTGCACGATTCCTGCT CAAGGAACCTCTATGTTTCCCTCTTGTTGCTGTACAAAACCTTCGGAC GGAAACTGCACTTGTATTCCCATCCCATCATCCTGGGCTTTCGCAAGA TTCCTATGGGAGTGGGCCTCAGTCCGTTTCTCCTGGCTCAGTTTACTA GTGCCATTTGTTCAGTGGTTCGCAGGGCTTTCCCCCACTGTTTGGCTTT CAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAACATCT TGAGTCCCTTTTTACCTCTATTACCAATTTTCTTTTTGTCTTTGGGTATAC ATTTGA

FIG. 69B

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile

FIG. 70A

CGAACCACTCAGGGTCCTGTGGACAGCTCACCTAGCTGCAATGGCTA CCTGGCTTCAAGAGGGCAGTGCCTTCCCAACCATTCCCTTATCCAGGC CTTTTGACAACGCTATGCTCCGCGCCCATCGTCTGCACCAGCTGGCCT TTGACACCTACCAGGAGTTTGAAGAAGCCTATATCCCAAAGGAACAG AAGTATTCATTCCTGCAGAACCCCCAGACCTCCCTCTGTTTCTCAGAG TCTATTCCGACACCCTCCAACAGGGAGGAAACACAACAGAAATCCAA CCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGA GCCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTGGTGTACGG CGCCTCTGACAGCAACGTCTATGACCTCCTAAAGGACCTAGAGGAAG GCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACT GGGCAGATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACA CAACGATGACGCACTACTCAAGAACTACGGGCTGCTCTACTGCTTCAG GAAGGACATGGCAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCG CTCTGTGGAGGGCAGCTGTGGCTTCTAGCTGCCCGGGTGGCATCCCTG TGACCCCTCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGT GCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATC

FIG. 70B

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln CysArg Ser Val Glu Gly Ser Cys Gly Phe

FIG. 71A

ATGGCGCCCGTCGCCGTCTGGGCCGCCGCTCGGACTGGAGCT CTGGGCTGCGCCACGCCTTGCCCGCCCAGGTGGCATTTACACCCTA CGCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAATACTATGACC AGACAGCTCAGATGTGCTGCAGCAAATGCTCGCCGGGCCAACATGCA AAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGTGACTCCTGTGAG GACAGCACATACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAG CTGTGGCTCCCGCTGTAGCTCTGACCAGGTGGAAACTCAAGCCTGCAC TCGGGAACAGAACCGCATCTGCACCTGCAGGCCCGGCTGGTACTGCG CGCTGAGCAAGCAGGAGGGGTGCCGGCTGTGCGCCAAG TGCCGCCCGGGCTTCGGCGTGGCCAGACCAGGAACTGAAACATCAGA CGTGGTGTGCAAGCCCTGTGCCCCGGGGACGTTCTCCAACACGACTTC ATCCACGGATATTTGCAGGCCCCACCAGATCTGTAACGTGGTGGCCAT CCCTGGGAATGCAAGCATGGATGCAGTCTGCACGTCCCCCA ACACGATCCCAACACACGCAGCCAACTCCAGAACCCAGCACTGCTCC AAGCACCTCCTTCCTGCTCCCAATGGGCCCCAGCCCCCCAGCTGAAGG GAGCACTGGCGACTTCGCTCTTCCAGTTGGACTGATTGTGGGTGTGAC AGCCTTGGGTCTACTAATAATAGGAGTGGTGAACTGTGTCATCATGAC CCAGGTGAAAAAGAAGCCCTTGTGCCTGCAGAGAGAAGCCAAGGTGC CTCACTTGCCTGCCGATAAGGCCCGGGGTACACAGGGCCCCGAGCAG CAGCACCTGCTGATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGA GAGCTCGGCCAGTGCGTTGGACAGAAGGGCGCCCACTCGGAACCAGC CACAGGCACCAGGCGTGGAGGCCAGTGGGGCCGGGGAGGCCCGGGC CAGCACCGGGAGCTCAGATTCTTCCCCTGGTGGCCATGGGACCCAGG TCAATGTCACCTGCATCGTGAACGTCTGTAGCAGCTCTGACCACAGCT CACAGTGCTCCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC AGCCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCCTTCTCCAAGGA GGAATGTGCCTTTCGGTCACAGCTGGAGACGCCAGAGACCCTGCTGG GGAGCACCGAAGAGAAGCCCCTGCCCCTTGGAGTGCCTGATGCTGGG ATGAAGCCCAGTTAACCAGGCCGGTGTGGGCTGTGTCGTAGCCAAGG TGGGCTGAGCCCTGCCAGGATGACCCTGCGAAGGGGCCCTGGTCCTT **CCAGGC**

FIG. 71B

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser

FIG. 72A

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

FIG. 72B

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

FIG. 73A

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser

FIG. 73B

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

١

FIG. 74A

GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGA
GAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGTTCGTTGGCTCAAGC
ATCCACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATA
AAGTATGCTTCTGAGTCTATGTCTGGGATCCCTTCCAGGTTTAGTGGC
AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACACTGTGGAGTCT
GAAGATATTGCAGATTATTACTGTCAACAAAGTCATAGCTGGCCATTC
ACGTTCGGCTCGGGGACAAATTTGGAAGTAAAAGAAGTGAAGCTTGA
GGAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCT
CCTGTGTTGCCTCTGGATTCATTTTCAGTAACCACTGGATGAACTGGG
TCCGCCAGTCTCCAGAGAAGGGGCTTGAGTGGGTTGCTGAAATTAGA
TCAAAATCTATTAATTCTGCAACACATTATGCGGAGTCTGTGAAAGGG
AGGTTCACCATCTCAAGAGATGATTCCAAAAGTGCTGTCTACCTGCAA
ATGACCGACTTAAGAACTGAAGACACTGGGGCCAAGGCACCACTCTC
ACAGTCTCC

FIG. 74B

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser

FIG. 75A

ATGGAGACAGACACTCCTGTTATGGGTGCTGCTGCTCTGGGTTCCA GGTTCCACTGGTGACGTCAGGCGAGGCCCCGGAGCCTGCGGGGCAG GGACGCCCAGCCCCACGCCCTGCGTCCCGGCCGAGTGCTTCGACC TGCTGGTCCGCCACTGCGTGGCCTGCGGGCTCCTGCGCACGCCGCGGC CGAAACCGGCCGGGCCAGCAGCCCTGCGCCCAGGACGCCCTGCAG CCGCAGGAGTCGGTGGCCGGGGGGGCGGCGAGGCGGTCGACA AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA CCGTCAGTCTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGATC TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGA AGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGC ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG CCTCCCGTGTTGGACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTC ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT CCCTGTCTCCCGGGAAATGA

FIG. 75B

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

FIG. 76

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

FIG. 77

Gin Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ala

FIG. 78

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys

FIG. 79

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

FIG. 80

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

FIG. 81

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly

FIG. 82A

FIG. 82B

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

FIG. 83A

FIG. 83B

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala

291/345 FIG. 84A

CAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG AGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCC GTCGACATGGGTTGGAGCCTCATCTTGCTCTTCCTTGTCGCTGTTGCTA CGCGTGTCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGG ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGG CACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA AGGTGGACAAGAAAGCAGAGCCCAAATCTTGTGACAAAACTCACACA TGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC CTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGA CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA GTGCAAGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACCA TCTCCAAAGCCAAAGGCAGCCCCGAGAACCACAGGTGTACACCCTG CCCCATCCCGGGATGAGCTGACCAGGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG GACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTG ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCCT CCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGG TGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA TGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAGC GCTGGATCTCCCGATCCCCAGCTTTGCTTCTCAATTTCTTATTTGCATA ATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGAT TGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC AATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCAT ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGG

FIG. 84B

CAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG AGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCC GTCGACATGGGTTGGAGCCTCATCTTGCTCTTTCCTTGTCGCTGTTGCTA CGCGTGTCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGG ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGG CACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA AGGTGGACAAGAAGCAGAGCCCAAATCTTGTGACAAAACTCACACA TGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC CTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGA CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA GTGCAAGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACCA TCTCCAAAGCCAAAGGCAGCCCCGAGAACCACAGGTGTACACCCTG CCCCCATCCCGGGATGAGCTGACCAGGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA GCAATGGCCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG GACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG AGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTG ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCCT CCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGG TGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA TGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAGC GCTGGATCTCCCAGCTTTGCTTCTCAATTTCTTATTTGCATA ATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGAT TGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC AATCTGCTCACACAGGATAGAGAGGGCAGGGCAGGCAGAGCAT ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGG

293/345 FIG. 84C

GCTGCGATTTCGCGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTG GTAGGATTTTATCCCCGCTGCCATCATGGTTCGACCATTGAACTGCAT CGTCGCCGTGTCCCAAAATATGGGGATTGGCAAGAACGGAGACCTAC CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACC ACAACCTCTTCAGTGGAAGGTAAACAGAATCTGGTGATTATGGGTAG GAAAACCTGGTTCTCCATTCCTGAGAACAATCGACCTTTAAAGGACA GAATTAATATAGTTCTCAGTAGAGAACTCAAAGAACCACCACGAGGA GCTCATTTCTTGCCAAAAGTTTGGATGATGCCTTAAGACTTATTGAA CAACCGGAATTGGCAAGTAAAGTAGACATGGTTTGGATAGTCGGAGG CAGTTCTGTTTACCAGGAAGCCATGAATCAACCAGGCCACCTTAGACT CTTTGTGACAAGGATCATGCAGGAATTTGAAAGTGACACGTTTTTCCC AGAAATTGATTTGGGGAAATATAAACTTCTCCCAGAATACCCAGGCG TCCTCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTTGAA GTCTACGAGAAGAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGC TCCCCTCCTAAAGTCATGCATTTTTATAAGACCATGGGACTTTTGCTG TTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCAC TGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCT ATGGAACCAGCTGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTT ATTTGCATAATGAGAAAAAAAGGAAAATTAATTTTAACACCAATTCA GTAGTTGATTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACA GTGTTCTCTGCACAGATAAGGACAAACATTATTCAGAGGGAGTACCC AGAGCTGAGACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGA AATATGCTTGTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGG TAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCCAGGAGCCAGGG ĊAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTC TGACATAGTTGTTGGGAGCTTGGATCGATCCTCTATGGTTGAACAA GATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTC GGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGT GTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGA CCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTAT CGTGGCTGGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG TCACTGAAGCGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGG CAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATC ATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGC CCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCG GATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATC AGGGCTCGCCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATG CCCGACGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCG

294/345 FIG. 84D

AATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGC CGGCTGGGTGTGGCGACCGCTATCAGGACATAGCGTTGGCTACCCG TGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGT GCTTTACGGTATCGCCGCTTCCCGATTCGCAGCGCATCGCCTTCTATC GCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGAC CGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCG CCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCG GCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCC ACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATA GCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTT GTGGTTTGTCCAAACTCATCAATCTATCTTATCATGTCTGGATCGCGG CCGCGATCCCGTCGAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCC TGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGG AGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTC GTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTT TGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAA TACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGA GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC TGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATC GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACC CTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG GCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTA ACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA -AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA CAAACCACCGCTGGTAGCGGTGGTTTTTTTTGTTTGCAAGCAGCAGATT ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTAC GGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGG TCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA AATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTG ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC TATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC GATACGGGAGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC GAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA GCCGGAAGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTC

295/345 FIG. 84E

CAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGG
TGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAAC
GATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAAGCGGTT
AGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGC
CATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT
TCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAA
TACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATC
ATTGGAAAACGTTCTTCGGGGGCGAAAACTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCA
GCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGG
CAAAATGCCGCAAAAAAAGGGAATAAAGGGCGACACGGAAATGTTGAA
TACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAATAAACA
AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCT

296/345 FIG. 85A

GACGTCGCGGCCGCTCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT AAAATTAGTCAGCCATGCATGGGGCGGAGAATGGGCGGAACTGGGCG GAGTTAGGGGCGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCT GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCT ATACTTCTGCCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGA CACACATTCCACAGAATTAATTCCCCTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA CTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACT TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA TTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGGATACC GGTTTGACTCACGCGGATTTCCAAGTCTCCACCCCATTGACGTCAATG GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA ACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGG GAGGTCTATATAAGCAGAGCTGGGTACGTGAACCGTCAGATCGCCTG GAGACGCCATCACAGATCTCTCACTATGGATTTTCAGGTGCAGATTAT CAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAAT TGTTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAA GGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAGTTACATCCACT GGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTATGCCA CATCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGT CTGGGACTTCTTACTCTCACAATCAGCAGAGTGGAGGCTGAAGATG GAGGGGGACCAAGCTGGAAATCAAACGTACGGTGGCTGCACCATCT GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGCCTGCAATAACTTCTATCCCAGAGAGGCCAAAGTA CAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAG TGTCACAGAGCAGCAGCAAGGACAGCACCTACAGCCTCAGCAGCA CCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCC TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTT CAACAGGGGAGAGTGTTGAATTCAGATCCGTTAACGGTTACCAACTA CCTAGACTGGATTCGTGACAACATGCGGCCGTGATATCTACGTATGAT CAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTC CCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCC

297/345 FIG. 85B

TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT ATTCTGGGGGTGGGGTGGGCAGGACAGCAAGGGGGAGGATTGGG AAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCA GCTGGGGCTCGACAGCTATGCCAAGTACGCCCCCTATTGACGTCAATG ACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGG ACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT GGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTG ACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT TGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT CCGCCCATTGACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTC TATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGA ACACAGACCCGTCGACATGGGTTGGAGCCTCATCTTGCTCTTGT CGCTGTTGCTACGCGTGTCCTGTCCCAGGTACAACTGCAGCAGCCTGG GGCTGAGCTGGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGG CTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGA CACCTGGTCGGGGCCTGGAATGGATTGGAGCTATTTATCCCGGAAAT GGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATTGAC TGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGA CATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACG GCGGTGACTGGTACTTCAATGTCTGGGGCGCAGGGACCACGGTCACC GTCTCTGCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGT CAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCG CCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG GCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACC AAGGTGGACAAGAAAGCAGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG TCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAG ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCT GCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGT

298/345 FIG. 85C

GACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCC ACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAA ATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGGTGGG GTGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC ATGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAG CGCTGGATCTCCCGATCCCCAGCTTTGCTTCTCAATTTCTTATTTGCAT AATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGA TTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGGGCTGCGATTTCG CGCCAAACTTGACGCCAATCCTAGCGTGAAGGCTGGTAGGATTTTATC CCCGCTGCCATCATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCC CAAAATATGGGGATTGGCAAGAACGGAGACCTACCCTGGCCTCCGCT CAGGAACGAGTTCAAGTACTTCCAAAGAATGACCACAACCTCTTCAG TGGAAGGTAAACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTC TCCATTCCTGAGAAGAATCGACCTTTAAAGGACAGAATTAATAGTT CTCAGTAGAGAACTCAAAGAACCACCACGAGGAGCTCATTTTCTTGC CAAAAGTTTGGATGATGCCTTAAGACTTATTGAACAACCGGAATTGG CAAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGTTCTGTTTACC AGGAAGCCATGAATCAACCAGGCCACCTTAGACTCTTTGTGACAAGG ATCATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGATTTG GGGAAATATAAACTTCTCCCAGAATACCCAGGCGTCCTCTCTGA GGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTTGAAGTCTACGAGA AGAAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGCTCCCCTCCTAA AGCTATGCATTTTTATAAGACCATGGGACTTTTGCTGGCTTTAGATCA GCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCC CCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTA ATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT TCTGGGGGTGGGGTGGGCAGGACAGCAAGGGGGAGGATTGGGAA GACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCAGC TGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTTATTTGCATAATG GCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCTGCA CAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAGACT CCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTTGTC ATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCCAAT CTGCTCACACAGGATAGAGAGGGCAGGGCAGGGCAGAGCATATA AGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAGTTG

299/345 FIG. 85D

TGTTGGGAGCTTGGATCGATCCTCTATGGTTGAACAAGATGGATTGCA CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTC AGCGCAGGGCCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGC CCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCCA CGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGG GAAGGGACTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTG TCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCA ATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCAC CAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG TCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGC CAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGCGAG GATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTG GAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTG GCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGA AGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTAT CGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGA GCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGA AAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCT CCAGCGCGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTT TATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAA ACTCATCAATCTATCTTATCATGTCTGGATCGCGGCCGCGATCCCGTC GAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGT TATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTG TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGC GCTCTTCCGCTTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCT GCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA CAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCC ATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGT CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCC CCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC CGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCA ATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA GCTGGGCTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

300/345 FIG. 85E

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC ACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATC AAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAA ATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGG CTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC ACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCG ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGC GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGT TTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTA CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTC CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTA TGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCT TTTCTGTGACTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTA TGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACC GCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCG ATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCA CCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAA AAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC GCACATTTCCCCGAAAAGTGCCACCT

Pre Post

FIG. 86

303/345

305/345

306/345

307/345

FIG. 93

This page is not part of the document!

US2002032263 / 2003-031464 9/10

Date: Apr 17, 2003

Recipient: IB

310/345

311/345

312/345

313/345

314/345

315/345

FIG. 99A

FIG. 99B

318/345

FIG. 101

320/345

321/345

322/345

FIG. 104

FIG. 105

FIG. 106

FIG. 107

FIG. 108

FIG. 109

FIG. 110

FIG. 111

331/345

FIG. 114

FIG. 115

FIG. 116

336/345

337/345

338/345

FIG. 120

FIG. 121

FIG. 122

FIG. 123

FIG. 124

FIG. 125

FIG. 126

SEQUENCE LISTING

	Neose Technologies, Inc. DeFrees, Shawn Zopf, David Bayer, Robert Bowe, Caryn Hakes, David Chen, Xi
<120>	REMODELING AND GLYCOCONJUGATION OF PEPTIDES
<130>	040853-01-5050WO
	US 60/328,523 2001-10-10
- - ·	US 60/344,692 2001-10-19
	US 60/334,233 2001-11-08

- <150> US 60/334,301
- <151> 2001-11-08
- <150> US 60/387,292
- <151> 2002-06-07
- <150> US 60/391,777
- <151> 2002-06-25
- <150> US 60/396,594
- <151> 2002-07-17
- <150> US 60/404,249
- <151> 2002-08-16
- <150> US 60/407,527
- <151> 2002-08-28
- <160> 62
- <170> PatentIn version 3.1
- <210> 1
- <211> 525
- <212> DNA
- <213> Homo sapiens
- <400> 1
 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg cttagagcaa 60
 gtgaggaaga tccagggcga tggcgcagcg ctccaggaga agctgtgtgc cacctacaag 120
 ctgtgccacc ccgaggagct ggtgctgctc ggacactctc tgggcatccc ctgggctccc 180

WO 03/031464		PCT/US02/32263
--------------	--	----------------

ctgagcagct g	gccccagcca	ggccctgcag	ctggcaggct	gcttgagcca	actccatage	240
ggccttttcc t	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	cgagttgggt	300
cccaccttgg a	acacactgca	gctggacgtc	gccgactttg	ccaccaccat	ctggcagcag	360
atggaagaac t	tgggaatggc	ccctgccctg	cagcccaccc	agggtgccat	geeggeette	420
geetetgett t	tccagcgccg	ggcaggaggg	gtcctggttg	cctcccatct	gcagagcttc	480
ctggaggtgt (525

<210> 2

<211> 174

<212> PRT

<213> Homo sapiens

<400> 2

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe

1320

145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 3

<211> 1733

<212> DNA

<213> Homo sapiens

<400> gcgcctctta tgtacccaca aaaatctatt ttcaaaaaag ttgctctaag aatatagtta 60 120 tgcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 240 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 300 aqaaaaaaqt ttctaaaaag gctctggggt aaaagaggaa ggaaacaata atgaaaaaaa tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga 360 aqtaqaaaqt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc 420 480 taggcacaaa gcaaggtett cagagaacet ggageetaag gtttaggete acceatttea 540 accagtctag cagcatctgc aacatctaca atggccttga cctttgcttt actggtggcc ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600 agcctgggta gcaggaggac cttgatgctc ctggcacaga tgaggagaat ctctcttttc 660 tcctgcttga aggacagaca tgactttgga tttccccagg aggagtttgg caaccagttc 720 caaaaggetg aaaccatece tgteetecat gagatgatee ageagatett caatetette 780 840 agcacaaagg actcatctgc tgcttgggat gagaccctcc tagacaaatt ctacactgaa ctctaccagc agctgaatga cctggaagcc tgtgtgatac agggggtggg ggtgacagag 900 acteceetga tgaaggagga etecattetg getgtgagga aataetteea aagaateaet 960 1020 ctctatctga aagagaagaa atacagccct tgtgcctggg aggttgtcag agcagaaatc atgagatett tttetttgte aacaaacttg caagaaagtt taagaagtaa ggaatgaaaa 1080 1140 ctqqttcaac atqqaaatga ttttcattga ttcgtatgcc agctcacctt tttatgatct 1200 qccatttcaa aqactcatgt ttctgctatg accatgacac gatttaaatc ttttcaaatg tttttaggag tattaatcaa cattgtattc agctcttaag gcactagtcc cttacagagg 1260

accatgctga ctgatccatt atctatttaa atattttaa aatattattt atttaactat

ttataaaaca	acttattttt	gttcatatta	tgtcatgtgc	acctttgcac	agtggttaat	1380
gtaataaaat	gtgttctttg	tatttggtaa	atttattttg	tgttgttcat	tgaacttttg	1440
ctatggaact	tttgtacttg	tttattcttt	aaaatgaaat	tccaagccta	attgtgcaac	1500
ctgattacag	aataactggt	acacttcatt	tgtccatcaa	tattatattc	aagatataag	1560
taaaaataaa	ctttctgtaa	accaagttgt	atgttgtact	caagataaca	gggtgaacct	1620
aacaaataca	attctgctct	cttgtgtatt	tgatttttgt	atgaaaaaaa	ctaaaaatgg	1680
taatcatact	taattatcag	ttatggtaaa	tggtatgaag	agaagaagga	acg	1733

<210> 4

<211> 188

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys
1 10 15

Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30

Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45

Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60

Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His 65 70 75 80

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser 85 90 95

Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr 100 105 110

Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115 120 125

Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys 130 135 140 Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro 145 150 155 160

Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu 165 170 175

Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 185

<210> 5 <211> 757

<212> DNA

<213> Homo sapiens

<400> 5

atgaccaaca agtgtctcct ccaaattgct ctcctgttgt gcttctccac tacagctctt 60 120 tccatgagct acaacttgct tggattccta caaagaagca gcaattttca gtgtcagaag 180 ctcctgtggc aattgaatgg gaggcttgaa tattgcctca aggacaggat gaactttgac atccctgagg agattaagca gctgcagcag ttccagaagg aggacgccgc attgaccatc 240 tatgagatgc tccagaacat ctttgctatt ttcagacaag attcatctag cactggctgg 300 aatgagacta ttgttgagaa cctcctggct aatgtctatc atcagataaa ccatctgaag 360 acagtcctgg aagaaaaact ggagaaagaa gattttacca ggggaaaact catgagcagt 420 ctqcacctqa aaaqatatta tqqqaqqatt ctgcattacc tgaaggccaa ggagtacagt 480 cactgtgcct ggaccatagt cagagtggaa atcctaagga acttttactt cattaacaga 540 cttacaggtt acctccgaaa ctgaagatct cctagcctgt ccctctggga ctggacaatt 600 gcttcaagca ttcttcaacc agcagatgct gtttaagtga ctgatggcta atgtactgca 660 720 757 ttaaatttta ttttggaaaa taaattattt ttggtgc

<210> 6

<211> 187

<212> PRT

<213> Homo sapiens

<400> 6

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser 1 5 10 15

Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Gly Phe Leu Gln Arg 20 25 30

Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 45

Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu 50 55 60

Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile 65 70 75 80

Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 90 95

Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 105 110

Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 115 120 125

Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 130 135 . 140

Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 145 150 155 160

His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 165 170 175

Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn 180 185

<210> 7

<211> 1332

<212> DNA

<213> Homo sapiens

<400> 7

atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg ctgcctggct 60
gcagtcttcg taacccagga ggaagcccac ggcgtcctgc accggcgccg gcgcgccaac 120
gcgttcctgg aggagctgcg gccgggctcc ctggagaggg agtgcaagga ggagcagtgc 180
tccttcgagg aggcccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt 240

tcttacagtg	atggggacca	gtgtgcctca	agtccatgcc	agaatggggg	ctcctgcaag	300
-	agtcctatat					360
						420
acgcacaagg	atgaccagct	gatetgtgtg	aacgagaacg	geggetgtga	geagtaetge	420
agtgaccaca	cgggcaccaa	gegeteetgt	cggtgccacg	aggggtactc	tctgctggca	480
gacggggtgt	cctgcacacc	cacagttgaa	tatccatgtg	gaaaaatacc	tattctagaa	540
aaaagaaatg	ccagcaaacc	ccaaggccga	attgtggggg	gcaaggtgtg	ccccaaaggg	600
gagtgtccat	ggcaggtcct	gttgttggtg	aatggagctc	agttgtgtgg	ggggaccctg	660
atcaacacca	tctgggtggt	ctccgcggcc	cactgtttcg	acaaaatcaa	gaactggagg	720
aacctgatcg	cggtgctggg	cgagcacgac	ctcagcgagc	acgacgggga	tgagcagagc	780
cggcgggtgg	cgcaggtcat	catccccagc	acgtacgtcc	cgggcaccac	caaccacgac	840
atcgcgctgc	tccgcctgca	ccagcccgtg	gtcctcactg	accatgtggt	gcccctctgc	900
ctgcccgaac	ggacgttctc	tgagaggacg	ctggccttcg	tgcgcttctc	attggtcagc	960
ggctggggcc	agctgctgga	ccgtggcgcc	acggccctgg	agctcatggt	gctcaacgtg	1020
ccccggctga	tgacccagga	ctgcctgcag	cagtcacgga	aggtgggaga	ctccccaaat	1080
atcacggagt	acatgttctg	tgccggctac	tcggatggca	gcaaggactc	ctgcaagggg	1140
gacagtggag	gcccacatgc	cacccactac	cggggcacgt	ggtacctgac	gggcatcgtc	1200
agctggggcc	agggctgcgc	aaccgtgggc	cactttgggg	tgtacaccag	ggtctcccag	1260
tacatcgagt	ggctgcaaaa	gctcatgcgc	tcagagccac	gcccaggagt	cctcctgcga	1320
gccccatttc	cc					1332

<210> 8 <211> 444 <212> PRT <213> Homo sapiens

Tomo Dapas

<400> 8

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln 1 5 10 15

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val 20 25 30

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

4

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 70 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 105 110

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 155 160

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175

Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val 180 185 190

Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu 195 200 205

Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile 210 215 220

Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg 225 230 235 240

Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly 245 250 255

Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr 260 265 270

This page is not part of the document!

US2002032263 / 2003-031464 10/10

Date: Apr 17, 2003

Recipient: IB

Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln 280 285 275 Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg 295 300 290 Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser 320 305 310 315 Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met 330 Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala 360 Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly 375 Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val 390 Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu 425 420 Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro 435 440 <210> 9 <211> 1437 <212> DNA <213> Homo sapiens <400> 9 atgcagcgcg tgaacatgat catggcagaa tcaccaagcc tcatcaccat ctgcctttta 60 ggatatctac tcagtgctga atgtacagtt tttcttgatc atgaaaacgc caacaaaatt 120 ctgaatcggc caaagaggta taattcaggt aaattggaag agtttgttca agggaacctt 180

gagagagaat	gtatggaaga	aaagtgtagt	tttgaagaac	cacgagaagt	ttttgaaaac	240
actgaaaaga	caactgaatt	ttggaagcaģ	tatgttgatg	gagatcagtg	tgagtccaat	300
ccatgtttaa	atggcggcag	ttgcaaggat	gacattaatt	cctatgaatg	ttggtgtccc	360
tttggatttg	aaggaaagaa	ctgtgaatta	gatgtaacat	gtaacattaa	gaatggcaga	420
tgcgagcagt	tttgtaaaaa	tagtgctgat	aacaaggtgg	tttgctcctg	tactgaggga	480
tatcgacttg	cagaaaacca	gaagtcctgt	gaaccagcag	tgccatttcc	atgtggaaga	540
gtttctgttt	cacaaacttc	taagctcacc	cgtgctgagg	ctgtttttcc	tgatgtggac	600
tatgtaaatc	ctactgaagc	tgaaaccatt	ttggataaca	tcactcaagg	cacccaatca	660
tttaatgact	tcactcgggt	tgttggtgga	gaagatgcca	aaccaggtca	attcccttgg	720
caggttgttt	tgaatggtaa	agttgatgca	ttctgtggag	gctctatcgt	taatgaaaaa	780
tggattgtaa	ctgctgccca	ctgtgttgaa	actggtgtta	aaattacagt	tgtcgcaggt	840
gaacataata	ttgaggagac	agaacataca	gagcaaaagc	gaaatgtgat	tcgagcaatt	900
attcctcacc	acaactacaa	tgcagctatt	aataagtaca	accatgacat	tgcccttctg	960
gaactggacg	aacccttagt	gctaaacagc	tacgttacac	ctatttgcat	tgctgacaag	1020
gaatacacga	acatcttcct	caaatttgga	tctggctatg	taagtggctg	ggcaagagtc	1080
ttccacaaag	ggagatcagc	tttagttctt	cagtacctta	gagttccact	tgttgaccga	1140
gccacatgto	: ttcgatctac	aaagttcacc	atctataaca	acatgttctg	tgctggcttc	1200
catgaaggag	gtagagatto	atgtcaagga	gatagtgggg	gaccccatgt	tactgaagtg	1260
gaagggacca	gtttcttaac	tggaattatt	agctggggtg	aagagtgtgc	: aatgaaaggc	1320
aaatatggaa	a tatataccaa	ggtatcccgg	tatgtcaact	ggattaagga	aaaaacaaag	1380
ctcacttaat	gaaagatgga	tttccaaggt	: taattcattg	gaattgaaaa	ttaacag	1437

<210> 10

<211> 462

<212> PRT

<213> Homo sapiens

<400> 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr 5

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys 50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn 65 70 75 80

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln 85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly 145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe 165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala 180 185 190

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu 195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp 225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 290 295 300

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 305 310 315 320

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 325 330 335

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly 340 345 350

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu 355 360 365

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 370 375 380

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe 385 390 395 400

His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His 405 410 415

Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp 420 425 430

Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val435 440 445

Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 455 460

<210> 11

<211> 603

<212> DNA

<213> Homo sapiens

<400> 11 atggattact	acagaaaata	tgcagctatc	tttctggtca	cattgtcggt	gtttctgcat	60
gttctccatt	ccgctcctga	tgtgcaggat	tgcccagaat	gcacgctaca	ggaaaaccca	120
ttcttctccc	agccgggtgc	cccaatactt	cagtgcatgg	gctgctgctt	ctctagagca	180
tatcccactc	cactaaggtc	caagaagacg	atgttggtcc	aaaagaacgt	cacctcagag	240
tccacttgct	gtgtagctaa	atcatataac	agggtcacag	taatgggggg	tttcaaagtg	300
gagaaccaca	cggcgtgcca	ctgcagtact	tgttattatc	acaaatctta	aatgttttac	360
caagtgctgt	cttgatgact	gctgattttc	tggaatggaa	aattaagttg	tttagtgttt	420
atggctttgt	gagataaaac	tctccttttc	cttaccatac	cactttgaca	cgcttcaagg	480
atatactgca	gctttactgc	cttcctcctt	atcctacagt	acaatcagca	gtctagttct	540
tttcatttgg	aatgaataca	gcattaagct	tgttccactg	caaataaagc	cttttaaatc	600
atc						603

<210> 12

<211> 116

<212> PRT

<213> Homo sapiens

<400> 12

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser 1 5 10 15

Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro 20 25 30

Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro 35 40 45

Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro 50 55 60

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 65 70 75 80

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly 85 90 95

Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 100 105 110 Tyr His Lys Ser 115

<210> 13 <211> 390 DNA <212> <213> Homo sapiens

<400>

atgaagacac tocagttttt cttccttttc tgttgctgga aagcaatctg ctgcaatagc 60 tgtgagctga ccaacatcac cattgcaata gagaaagaag aatgtcgttt ctgcataagc 120 atcaacacca cttggtgtgc tggctactgc tacaccaggg atctggtgta taaggaccca 180 gccaggccca aaatccagaa aacatgtacc ttcaaggaac tggtatatga aacagtgaga 240 gtgcccggct gtgctcacca tgcagattcc ttgtatacat acccagtggc cacccagtgt 300 360 cactgtggca agtgtgacag cgacagcact gattgtactg tgcgaggcct ggggcccagc 390 tactgctcct ttggtgaaat gaaagaataa

<210> 14 129 <211> <212> PRT <213> Homo sapiens

<400> 14

Met Lys Thr Leu Gln Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile 5

Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys 20

Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly 45 35

Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys 60 50 55

Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg 75 80 65

Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val 85

Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys 100 105 110

Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys 115 120 125

Glu

<210> 15 <211> 1342 <212> DNA <213> Homo sapiens

<400> 15 cccggagccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 cegecetete etceaggece gtggggetgg ecetgeaceg ecgagettee egggatgagg 120 gccccggtg tggtcacccg gcgcgcccca ggtcgctgag ggaccccggc caggcgcgga 180 gatgggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 240 300 tctgggcctc ccagtcctgg gcgccccacc acgcctcatc tgtgacagcc gagtcctgga gaggtacctc ttggaggcca aggaggccga gaatatcacg acgggctgtg ctgaacactg 360 cagcttgaat gagaatatca ctgtcccaga caccaaagtt aatttctatg cctggaagag 420 gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 ageccagaag gaagecatet eccetecaga tgeggeetea getgetecae teegaacaat 660 cactgotgac actttccgca aactcttccg agtctactcc aatttcctcc ggggaaagct 720 gaagctgtac acaggggagg cctgcaggac aggggacaga tgaccaggtg tgtccacctg 780 ggcatateca ceaecteett caccaacatt gettgtgeca cacceteece egecaeteet 840 gaaccccgtc gaggggctct cagctcagcg ccagcctgtc ccatggacac tccagtgcca 900 gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg 960 tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagcc atgctgggaa gacgcctgag ctcactcggc accctgcaaa atttgatgcc 1080 aggacacget ttggaggega tttacetgtt ttegeaceta ceateaggga caggatgace 1140

tggagaactt	aggtggcaag	ctgtgacttc	tccaggtctc	acgggcatgg	gcactccctt	1200
ggtggcaaga	gcccccttga	caccggggtg	gtgggaacca	tgaagacagg	atgggggctg	1260
gcctctggct	ctcatggggt	ccaagttttg	tgtattcttc	aacctcattg	acaagaactg	1320
aaaccaccaa	aaaaaaaaa	aa				1342

<210> 16 <211> 193

<212> PRT

<213> Homo sapiens

<400> 16

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30

Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95

Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115 120 125

Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu 130 135 140

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu

435

175

165 170

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180 185 190

Arg

<210>	17						
<211>	435						
<212>	DNA						
<213>	Homo	sapiens					
	17						
atgtgg	ctgc	agagcctgct	gctcttgggc	actgtggcct	gcagcatctc	tgcacccgcc	60
cgctcg	ccca	gccccagcac	gcagccctgg	gagcatgtga	atgccatcca	ggaggcccgg	120
							180
cgtctc	ctga	acctgagtag	agacactgct	getgagatga	atgaaacagt	agaagccacc	100
tcagaa	atgt	ttgacctcca	ggagccgacc	tgcctacaga	cccgcctgga	gctgtacaag	240
			anaganasta	aaggggggt	tgaccatgat	ggccagccac	300
cagggc	ctgc	ggggeageet	caccaagette	aagggcccc	egaccaegae	5500050000	
tacaag	cagc	actgccctcc	aaccccggaa	acttcctgtg	caacccagat	tatcaccttt	360
	ttca	aadadaacct	gaaggacttt	ctacttatca	tcccctttga	ctqctqggag	420
gaaagt	Luca	aagagaacce	5445540000			2 333 2	

<210> 18

<211> 144

<212> PRT

<213> Homo sapiens

ccagtccagg agtga

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile 1 5 10 15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His 20 25 30

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met 85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser 100 105 110

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Glu 130 135 140

<210> 19

<211> 501

<212> DNA

<213> Homo sapiens

<400> 19 atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 300 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 360 tattcggtaa ctgacttgaa tgtccaacgc aaagcaatac atgaactcat ccaagtgatg 420 gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga 480 501 ggtcgaagag catcccagta a

<210> 20

<211> 166

<212> PRT

<213> Homo sapiens

<400> 20

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 1 5 10 15

. Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu

20

360

25

30

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 40 35 Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp 55 60 50 Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg 105 Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 135 130 Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg 155 150 145 Gly Arg Arg Ala Ser Gln 165 <210> 21 <211> 1352 <212> DNA <213> Homo sapiens <400> 21 ctgggacagt gaatcgacaa tgccgtcttc tgtctcgtgg ggcatcctcc tgctggcagg 60 cctgtgctgc ctggtccctg tctccctggc tgaggatccc cagggagatg ctgcccagaa 120 gacagataca toccaccatg atcaggatca cocaacctto aacaagatca cocccaacct 180 ggctgagttc gccttcagcc tataccgcca gctggcacac cagtccaaca gcaccaatat 240 cttcttctcc ccagtgagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc 300

tgacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttccggaggc

tcagatccat	gaaggcttcc	aggaactcct	ccgtaccctc	aaccagccag	acagccagct	420
ccagctgacc	accggcaatg	gcctgttcct	cagcgagggc	ctgaagctag	tggataagtt	480
tttggaggat	gttaaaaagt	tgtaccactc	agaagccttc	actgtcaact	tcggggacac	540
cgaagaggcc	aagaaacaga	tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	600
ggatttggtc	aaggagcttg	acagagacac	agtttttgct	ctggtgaatt	acatcttctt	660
taaaggcaaa	tgggagagac	cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	720
ggaccaggtg	accaccgtga	aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	780
gcactgtaag	aagctgtcca	gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	840
catcttcttc	ctgcctgatg	aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	900
tatcatcacc	aagttcctgg	aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	960
actgtccatt	actggaacct	atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1020
ggtcttcago	aatggggctg	acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1080
caaggccgtg	cataaggctg	tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1140
catgttttta	gaggccatac	ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1200
tgtcttctta	atgattgaac	aaaataccaa	gtctcccctc	ttcatgggaa	aagtggtgaa	1260
tcccacccaa	aaataactgo	ctatagataa	tcaacccctc	ccctccatco	ctggccccct	1320
ccctggatga	a cattaaagaa	gggttgagct	gg		·	1352

<210> 22

<211> 418

<212> PRT

<213> Homo sapiens

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys 5

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn 35

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 55

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser 65 70 75 80

Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr 85 90 95

His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro 100 105 110

Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn 115 120 125

Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu 130 135 140

Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys 145 150 155 160

Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu
165 170 175

Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys 180 185 190

Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu 195 200 205

Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val 210 215 220

Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val 225 230 235 240

Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys 245 250 255

Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala 260 265 270

Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu 275 280 285

Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp 290 295 300

Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr 305 310 315 320

Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe 325 330 335

Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys 340 345 350

Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly 355 360 365

Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile 370 375 380

Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu 385 390 395 400

Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr 405 410 415

Gln Lys

<210> 23

<211> 2004

<212> DNA

<213> Homo sapiens

<400> 23 gctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60 ctctatcctt cagagactct ggaacccctg tggtcttctc ttcatctaat gaccctgagg 120 ggatggagtt ttcaagtcct tccagagagg aatgtcccaa gcctttgagt agggtaagca 180 tcatggctgg cagcctcaca ggtttgcttc tacttcaggc agtgtcgtgg gcatcaggtg 240 cccgccctg catccctaaa agcttcggct acagctcggt ggtgtgtgtc tgcaatgcca 300 catactgtga ctcctttgac cccccgacct ttcctgccct tggtaccttc agccgctatg 360 agagtacacg cagtgggcga cggatggagc tgagtatggg gcccatccag gctaatcaca 420 480

<210> 24

<211> 536

<212> PRT

<213> Homo sapiens

<400> 24

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser 1 5 10 15

Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln 20 25 30

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe 35 40 45

Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser 50 55 60

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln 100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 195 200 205

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu

210 215

220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 250 255

Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu 275 280 285

Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly 290 295 300

Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu 305 310 315 320

Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr 325 330 335

Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr 340 345 350

Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg 355 360 365

Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser 370 375 380

Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met 385 390 395 400

Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly
405 410 415

Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp
420 425 430

Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp 435 440 445 Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys 450 455 460

Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys 465 470 475 480

Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val 485 490 495

Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys
500 505 510

Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile 515 520 525

His Thr Tyr Leu Trp His Arg Gln 530 535

<210> 25

<211> 1726

<212> DNA

<213> Homo sapiens

<400> 25

atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tegeccagee aggaaateea tgecegatte agaagaggag ccagatetta ccaagtgate 120 180 tgcagagatg aaaaaacgca gatgatatac cagcaacatc agtcatggct gcgccctgtg ctcagaagca accgggtgga atattgctgg tgcaacagtg gcagggcaca gtgccactca 240 300 gtgcctgtca aaagttgcag cgagccaagg tgtttcaacg ggggcacctg ccagcaggcc 360 ctgtacttct cagatttcgt gtgccagtgc cccgaaggat ttgctgggaa gtgctgtgaa atagatacca gggccacgtg ctacgaggac cagggcatca gctacagggg cacgtggagc 420 acageggaga gtggegeega gtgeaceaac tggaacagea gegegttgge ceagaageee 480 540 tacagogggo ggaggocaga ogcoatcagg otgggoctgg ggaaccacaa ctactgoaga aacccagatc gagactcaaa gccctggtgc tacgtcttta aggcggggaa gtacagctca 600 gagttctgca gcacccctgc ctgctctgag ggaaacagtg actgctactt tgggaatggg 660 tcagcctacc gtggcacgca cagcctcacc gagtcgggtg cctcctgcct cccgtggaat 720 780 tccatgatcc tgataggcaa ggtttacaca gcacagaacc ccagtgccca ggcactgggc

ctgggcaaac	ataattactg	ccggaatcct	gatggggatg	ccaagccctg	gtgccacgtg	840
ctgaagaacc	gcaggctgac	gtgggagtac	tgtgatgtgc	cctcctgctc	cacctgcggc	900
ctgagacagt	acagccagcc	tcagtttcgc	atcaaaggag	ggctcttcgc	cgacatcgcc	960
tcccacccct	ggcaggctgc	catctttgcc	aagcacagga	ggtcgccggg	agagcggttc	1020
ctgtgcgggg	gcatactcat	cagctcctgc	tggattctct	ctgccgccca	ctgcttccag	1080
gagaggtttc	cgccccacca	cctgacggtg	atcttgggca	gaacataccg	ggtggtccct	1140
ggcgaggagg	agcagaaatt	tgaagtcgaa	aaatacattg	tccataagga	attcgatgat	1200
gacacttacg	acaatgacat	tgcgctgctg	cagctgaaat	cggattcgtc	ccgctgtgcc	1260
caggagagca	gcgtggtccg	cactgtgtgc	cttcccccgg	cggacctgca	gctgccggac	1320
tggacggagt	gtgagctctc	cggctacggc	aagcatgagg	ccttgtctcc	tttctattcg	1380
gageggetga	aggaggctca	tgtcagactg	tacccatcca	gccgctgcac	atcacaacat	1440
ttacttaaca	gaacagtcac	cgacaacatg	ctgtgtgctg	gagacactcg	gagcggcggg	1500
ccccaggcaa	acttgcacga	cgcctgccag	ggcgattcgg	gaggccccct	ggtgtgtctg	1560
aacgatggcc	gcatgacttt	ggtgggcatc	atcagctggg	gcctgggctg	tggacagaag	1620
gatgtcccgg	gtgtgtacac	caaggttacc	aactacctag	actggattcg	tgacaacatg	1680
cgaccgtgac	caggaacacc	cgactcctca	aaagcaaatg	agatcc		1726

<210> 26 <211> 562 <212> PRT

<213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly . 5

Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg

Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met 40

Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn 50

Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser 65 70 75 80

Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr 85 90 95

Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 100 105 110

Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr 115 120 125

Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser 130 135 140

Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro 145 150 155 160

Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His 165 170 175

Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val 180 185 190

Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys 195 200 205

Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg 210 215 220

Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn 225 230 235 240

Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 245 250 255

Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly 260 265 270

Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 275 280 285

Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr

290 295

300

Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 305 310 315 320

Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro 325 330 335

Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile 340 345 350

Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu 355 360 365

Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu 370 375 380

Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp 385 390 395 400

Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser 405 410 415

Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro 420 425 430

Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly
435 440 445

Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys 450 455 460

Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His 465 470 475 480

Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr 485 490 495

Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp 500 505 510

Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val 515 520 525

Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly 530 535 540

Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met 545 550 555 560

Arg Pro

<210>	27	
<211>	825	
<212>	DNA	
<213>	Homo	sapiens

<400> 27 atcactctct ttaatcacta ctcacattaa cctcaactcc tgccacaatg tacaggatgc 60 aactcctgtc ttgcattgca ctaattcttg cacttgtcac aaacagtgca cctacttcaa 120 gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac 180 agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat 240 ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag 300 aactcaaacc tctggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac 360 ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa 420 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga 480 ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa 540 aacatatcag gccttctatt tatttattta aatatttaaa ttttatattt attgttgaat 600 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt 660 ttatgattct ttttgtaagc cctaggggct ctaaaatggt ttaccttatt tatcccaaaa 720 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta 780 825 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa

<210> 28 <211> 156 <212> PRT <213> Homo sapiens

<400> 28

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu

1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys 20 25 30

Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu 35 40 45

Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr 50 55 60

Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln 65 70 75 80

Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala 85 90 95

Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile 100 105 110

Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys 115 120 125

Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp 130 135 140

Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr 145 150 155

<210> 29

<211> 7931

<212> DNA

<213> Homo sapiens

<400> 29

atgcaaatag agctctccac ctgcttcttt ctgtgccttt tgcgattctg ctttagtgcc 60
accagaagat actacctggg tgcagtggaa ctgtcatggg actatatgca aagtgatctc 120
ggtgagctgc ctgtggacgc aagatttcct cctagagtgc caaaatcttt tccattcaac 180
acctcagtcg tgtacaaaaa gactctgttt gtagaattca cggatcacct tttcaacatc 240
gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc tgaggtttat 300
gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct tcatgctgtt 360

WO 03/031464

ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac cagtcaaagg	420
gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg gcaggtcctg	480
aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat	540
gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt atgtagagaa	600
gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgctgta	660
tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca ggatagggat	720
gctgcatctg ctcgggcctg gcctaaaatg cacacagtca atggttatgt aaacaggtct	780
ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaatgggc	840
accactectg aagtgeacte aatatteete gaaggteaca catttettgt gaggaaccat	900
cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac actcttgatg	960
gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa	·· 1020
gcttatgtca aagtagacag ctgtccagag gaaccccaac tacgaatgaa aaataatgaa	1080
gaagcggaag actatgatga tgatcttact gattctgaaa tggatgtggt caggtttgat	1140
gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca tcctaaaact	1200
tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt agtcctcgcc	1260
cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg	1320
aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac tcgtgaagct	1380
attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg agacacactg	1440
ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaatcact	1500
gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt gaaggatttt	1560
ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga agatgggcca	1620
actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa tatggagaga	1680
gatctagett caggaeteat tggeeetete eteatetget acaaagaate tgtagateaa	1740
agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt atttgatgag	1800
aaccgaaget ggtacctcac agagaatata caacgettte teeccaatee agetggagtg	1860
cagcttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa tggctatgtt	1920
tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta cattctaagc	1980
attggagcac agactgactt cetttetgte ttettetetg gatatacett caaacacaaa	2040
atggtctatg aagacacact caccctattc ccattctcag gagaaactgt cttcatgtcg	2100

WO 03/031464

atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg gaacagaggc 2160 atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta ttacgaggac 2220 2280 agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga accaagaagc 2340 ttctcccaga attcaagaca ccgtagcact aggcaaaagc aatttaatgc caccacaatt ccagaaaatg acatagagaa gactgaccct tggtttgcac acagaacacc tatgcctaaa 2400 atacaaaatg tctcctctag tgatttgttg atgctcttgc gacagagtcc tactccacat 2460 2520 gggctatcct tatctgatct ccaagaagcc aaatatgaga ctttttctga tgatccatca cctggagcaa tagacagtaa taacagcctg tctgaaatga cacacttcag gccacagctc 2580 catcacagtg gggacatggt atttacccct gagtcaggcc tccaattaag attaaatgag 2640 2700 aaactgggga caactgcagc aacagagttg aagaaacttg atttcaaagt ttctagtaca tcaaataatc tgatttcaac aattccatca gacaatttgg cagcaggtac tgataataca 2760 agttccttag gacccccaag tatgccagtt cattatgata gtcaattaga taccactcta 2820 2880 tttggcaaaa agtcatctcc ccttactgag tctggtggac ctctgagctt gagtgaagaa 2940 aataatgatt caaagttgtt agaatcaggt ttaatgaata gccaagaaag ttcatgggga 3000 aaaaatgtat cgtcaacaga gagtggtagg ttatttaaag ggaaaagagc tcatggacct gctttgttga ctaaagataa tgccttattc aaagttagca tctctttgtt aaagacaaac 3060 aaaacttcca ataattcagc aactaataga aagactcaca ttgatggccc atcattatta 3120 attgagaata gtccatcagt ctggcaaaat atattagaaa gtgacactga gtttaaaaaa 3180 3240 gtgacacctt tgattcatga cagaatgctt atggacaaaa atgctacagc tttgaggcta 3300 aatcatatgt caaataaaac tacttcatca aaaaacatgg aaatggtcca acagaaaaaa 3360 gagggcccca ttccaccaga tgcacaaaat ccagatatgt cgttctttaa gatgctattc 3420 ttgccagaat cagcaaggtg gatacaaagg actcatggaa agaactctct gaactctggg caaggcccca gtccaaagca attagtatcc ttaggaccag aaaaatctgt ggaaggtcag 3480 aatttottgt otgagaaaaa caaagtggta gtaggaaagg gtgaatttac aaaggacgta 3540 3600 ggactcaaag agatggtttt tccaagcagc agaaacctat ttcttactaa cttggataat 3660 ttacatgaaa ataatacaca caatcaagaa aaaaaaattc aggaagaaat agaaaagaag gaaacattaa tocaagagaa tgtagttttg cotcagatac atacagtgac tggcactaag 3720 3780 aatttcatga agaacctttt cttactgagc actaggcaaa atgtagaagg ttcatatgac

3900 aagaaacaca cagctcattt ctcaaaaaaa ggggaggaag aaaacttgga aggcttggga 3960 aatcaaacca agcaaattgt agagaaatat gcatgcacca caaggatatc tcctaataca agccagcaga attttgtcac gcaacgtagt aagagagctt tgaaacaatt cagactccca 4020 4080 ctagaagaaa cagaacttga aaaaaggata attgtggatg acacctcaac ccagtggtcc 4140 aaaaacatga aacatttgac cccgagcacc ctcacacaga tagactacaa tgagaaggag aaaggggcca ttactcagtc tcccttatca gattgcctta cgaggagtca tagcatccct 4200 caagcaaata gatctccatt acccattgca aaggtatcat catttccatc tattagacct 4260 atatatctga ccagggtcct attccaagac aactcttctc atcttccagc agcatcttat 4320 agaaagaaag attctggggt ccaagaaagc agtcatttct tacaaggagc caaaaaaaat 4380 4440 aacctttctt tagccattct aaccttggag atgactggtg atcaaagaga ggttggctcc 4500 ctggggacaa gtgccacaaa ttcagtcaca tacaagaaag ttgagaacac tgttctcccg 4560 aaaccagact tgcccaaaac atctggcaaa gttgaattgc ttccaaaagt tcacatttat 4620 cagaaggacc tattccctac ggaaactagc aatgggtctc ctggccatct ggatctcgtg gaagggagcc ttcttcaggg aacagaggga gcgattaagt ggaatgaagc aaacagacct 4680 4740 ggaaaagttc cctttctgag agtagcaaca gaaagctctg caaagactcc ctccaagcta 4800 ttggatcctc ttgcttggga taaccactat ggtactcaga taccaaaaga agagtggaaa 4860 tcccaagaga agtcaccaga aaaaacagct tttaagaaaa aggataccat tttgtccctg aacgcttgtg aaagcaatca tgcaatagca gcaataaatg agggacaaaa taagcccgaa 4920 atagaagtca cctgggcaaa gcaaggtagg actgaaaggc tgtgctctca aaacccacca 4980 gtottgaaac gccatcaacg ggaaataact cgtactactc ttcagtcaga tcaagaggaa 5040 5100 attgactatg atgataccat atcagttgaa atgaagaagg aagattttga catttatgat gaggatgaaa atcagagccc ccgcagcttt caaaagaaaa cacgacacta ttttattgct 5160 gcagtggaga ggctctggga ttatgggatg agtagctccc cacatgttct aagaaacagg 5220 gctcagagtg gcagtgtccc tcagttcaag aaagttgttt tccaggaatt tactgatggc 5280 5340 tcctttactc agcccttata ccgtggagaa ctaaatgaac atttgggact cctggggcca tatataagag cagaagttga agataatatc atggtaactt tcagaaatca ggcctctcgt 5400 5460 ccctattcct tctattctag ccttatttct tatgaggaag atcagaggca aggagcagaa cctagaaaaa actttgtcaa gcctaatgaa accaaaactt acttttggaa agtgcaacat 5520

catatggcac ccactaaaga tgagtttgac tgcaaagcct gggcttattt ctctgatgtt 5580 gacctggaaa aagatgtgca ctcaggcctg attggacccc ttctggtctg ccacactaac 5640 acactgaacc ctgctcatgg gagacaagtg acagtacagg aatttgctct gtttttcacc 5700 atctttgatg agaccaaaag ctggtacttc actgaaaata tggaaagaaa ctgcagggct 5760 ccctgcaata tccagatgga agatcccact tttaaagaga attatcgctt ccatgcaatc 5820 aatggctaca taatggatac actacctggc ttagtaatgg ctcaggatca aaggattcga 5880 tggtatctgc tcagcatggg cagcaatgaa aacatccatt ctattcattt cagtggacat 5940 6000 gtgttcactg tacgaaaaaa agaggagtat aaaatggcac tgtacaatct ctatccaggt 6060 gtttttgaga cagtggaaat gttaccatcc aaagctggaa tttggcgggt ggaatgcctt attggcgagc atctacatgc tgggatgagc acactttttc tggtgtacag caataagtgt 6120 6180 cagactecce tgggaatgge ttetggacae attagagatt tteagattae agetteagga caatatggac agtgggcccc aaagctggcc agacttcatt attccggatc aatcaatgcc 6240 6300 tggagcacca aggagccctt ttcttggatc aaggtggatc tgttggcacc aatgattatt 6360 cacggcatca agacccaggg tgcccgtcag aagttctcca gcctctacat ctctcagttt 6420 atcatcatgt atagtcttga tgggaagaag tggcagactt atcgaggaaa ttccactgga accttaatgg tcttctttgg caatgtggat tcatctggga taaaacacaa tattttaac 6480 cctccaatta ttgctcgata catccgtttg cacccaactc attatagcat tcgcagcact 6540 cttcgcatgg agttgatggg ctgtgattta aatagttgca gcatgccatt gggaatggag 6600 agtaaagcaa tatcagatgc acagattact gcttcatcct actttaccaa tatgtttgcc 6660 acctggtctc cttcaaaagc tcgacttcac ctccaaggga ggagtaatgc ctggagacct 6720 caggtgaata atccaaaaga gtggctgcaa gtggacttcc agaagacaat gaaagtcaca 6780 ggagtaacta ctcagggagt aaaatctctg cttaccagca tgtatgtgaa ggagttcctc 6840 6900 atctccagca gtcaagatgg ccatcagtgg actctctttt ttcagaatgg caaagtaaag gtttttcagg gaaatcaaga ctccttcaca cctgtggtga actctctaga cccaccgtta 6960 7020 ctqactcgct accttcgaat tcacccccag agttgggtgc accagattgc cctgaggatg gaggttctgg gctgcgaggc acaggacctc tactgagggt ggccactgca gcacctgcca 7080 ctgccgtcac ctctccctcc tcagctccag ggcagtgtcc ctccctggct tgccttctac 7140 7200 ctttgtgcta aatcctagca gacactgcct tgaagcctcc tgaattaact atcatcagtc

WO 03/031464

<210> 30

<211> 2351

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln 85 90 95 Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile 180 185 190

Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr 195 200 205

Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly 210 215 220

Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225 230 235 240

Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr 245 250 255

Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val 260 265 270

Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile 275 280 285

Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser 290 295 300

Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met 305 310 315 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His 325 330 335

Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro 340 345 350

Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp 355 360 365

Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser 370 375 380

Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr 385 390 395 400

Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro 405 410 415

Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn 420 425 430

Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met 435 440 445

Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu 450 455 460

Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465 470 475 480

Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro 485 490 495

His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys 500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 515 520 525

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530 535 540

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg

545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu 565 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 580 585 590

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 610 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe 660 665 670

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr 675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro 690 695 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg
755 760 765

Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 770 775 780

Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser

Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr 820 825 830

Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn 835 840 845

Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly 850 855 860

Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu 865 870 875 880

Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys 885 890 895

Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn 900 905 910

Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met 915 920 925

Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys 930 935 940

Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu 945 950 955 960

Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu 965 970 975

Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe 980 985 990

Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala 995 1000 1005

Leu	Phe	Lys	Val	Ser	Ile	Ser	Leu	Leu	Lys	Thr	Asn	Lys	Thr	Ser
	1010	_				1015					1020			

- Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser 1025 1030 1035
- Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu 1040 1045 1050
- Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg 1055 1060 1065
- Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met 1070 1075 1080
- Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln 1085 1090 1095
- Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met 1100 1105 1110
- Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile 1115 1120 1125
- Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro 1130 1135 1140
- Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu 1145 1150 1155
- Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys 1160 1165 1170
- Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro 1175 1180 1185
- Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu 1190 1195 1200
- Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu 1205 1210 1215

PCT/US02/32263

Lvs	Lvs	Glu	Thr	Leu	Ile	Gln	Glu	Asn	Val	Val	Leu	Pro	${\tt Gln}$	Ile
-7-	1220					1225					1230			

- His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu
- Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr
- Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn
- Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu
- Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu
- Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln
- Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg
- Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp
- Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro
- Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala
- Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser
- Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser
- Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe
- Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys

1430	1435	1440
1420	2100	

- Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys 1445 1450 1455
- Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly 1460 1465 1470
- Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser 1475 1480 1485
- Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp 1490 1495 1500
- Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His 1505 1510 1515
- Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser 1520 1525 1530
- Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr 1535 1540 1545
- Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val 1550 1555 1560
- Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser 1565 1570 1575
- Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln 1580 1585 1590
- Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys 1595 1600 1605
- Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys 1610 1615 1620
- Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys 1625 1630 1635
- Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg 1640 1645 1650

- Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr
- Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile 1685 1690 1695
- Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys 1700 1705 1710
- Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr 1715 1720 1725
- Gly Met Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser 1730 1735 1740
- Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr 1745 1750 1755
- Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu 1760 1765 1770
- His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp 1775 1780 1785
- Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser 1790 1795 1800
- Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly 1805 1810 1815
- Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr 1820 1825 1830
- Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu 1835 1840 1845
- Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu 1850 1855 1860

2015

2030

2045

Lys Asp 1865		is Ser	Gly	Leu 1870	Ile	Gly	Pro	Leu	Leu 1875	Val	Cys	His
Thr Asn 1880		eu Asn	Pro	Ala 1885	His	Gly	Arg	Gln	Val 1890	Thr	Ùal	Gln
Glu Phe 1895		eu Phe	Phe	Thr 1900	Ile	Phe	ĄaĄ	Glu	Thr 1905	Lys	Ser	Trp
Tyr Phe 1910		lu Asn	Met	Glu 1915	_	Asn	Cys	Arg	Ala 1920	Pro	Cys	Asn
Ile Gln 1925		lu Asp	Pro	Thr 1930	Phe	Lys	Glu	Asn	Tyr 1935	Arg	Phe	His
Ala Ile 1940		ly Tyr	Ile	Met 1945	Asp	Thr	Leu	Pro	Gly 1950	Leu	Val	Met
Ala Gln 1955		ln Arg	Ile	Arg 1960	Trp	Tyr	Leu	Leu	Ser 1965	Met	Gly	Ser
Asn Glu 1970		le His	Ser	Ile 1975	His	Phe	Ser	Gly	His 1980	Val	Phe	Thr
Val Arg 1985	_	ys Glu	Glu	Tyr 1990	_	Met	Ala	Leu	Tyr 1995	Asn	Leu	.Tyr
Pro Gly 2000		he Glu	Thr	Val 2005	Glu	Met	Leu	Pro	Ser 2010	Lys	Ala	Gly

Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly

Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro

Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala

Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His 2060 2065 2070

2020

2035

2050

2040

- Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser 2075 2080 2085
- Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile 2090 2095 2100
- Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser 2105 ' 2110 2115
- Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr 2120 2125 2130
- Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn 2135 2140 2145
- Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile 2150 2155 2160
- Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg 2165 2170 2175
- Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys 2180 2185 2190
- Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln 2195 2200 2205
- Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser 2210 2215 2220
- Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp 2225 2230 2235
- Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe 2240 2245 2250
- Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys 2255 2260 2265
- Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser 2270 2275 2280
- Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys

WO 03/031464 PCT/US02/32263

2285 2290 2295

Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val 2300 2305 2310

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His 2315 2320 2325

Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu 2330 2335 2340

Gly Cys Glu Ala Gln Asp Leu Tyr 2345 2350

<210> 31

<211> 1471

<212> DNA

<213> Homo sapiens

<400> atggcgcccg tcgccgtctg ggccgcgctg gccgtcggac tggagctctg ggctgcggcg 60 cacgccttgc ccgcccaggt ggcatttaca ccctacgccc cggagcccgg gagcacatgc 120 cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctcgccgggc 180 caacatgcaa aagtcttctg taccaagacc tcggacaccg tgtgtgactc ctgtgaggac 240 300 agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt agctctgacc aggtggaaac tcaagcctgc actcgggaac agaaccgcat ctgcacctgc 360 aggcccggct ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg 420 cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg 480 tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg 540 600 ccccaccaga totgtaacgt ggtggccatc cotgggaatg caagcatgga tgcagtotgc acgtccacgt cccccacccg gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tecacaegat cecaacaeae geageeaaet eeagaaeeea geaetgetee aageaeetee 720 ttcctgctcc caatgggccc cagccccca gctgaaggga gcactggcga cttcgctctt 780 ccagttggac tgattgtggg tgtgacagcc ttgggtctac taataatagg agtggtgaac 840 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 900 960 cctcacttgc ctgccgataa ggcccggggt acacagggcc ccgagcagca gcacctgctg

atcacagcgc cgagctccag cago	agctcc ctggagagct	cggccagtgc	gttggacaga	1020
agggcgccca ctcggaacca gcca	caggca ccaggcgtgg	aggccagtgg	ggccggggag	1080
gcccgggcca gcaccgggag ctca	gattct tcccctggtg	gccatgggac	ccaggtcaat	1140
gtcacctgca tcgtgaacgt ctgt	agcage tetgaccaca	gctcacagtg	ctcctcccaa	1200
gccagctcca caatgggaga caca	agattcc agcccctcgg	g agtccccgaa	ggacgagcag	1260
gtccccttct ccaaggagga atg	tgccttt cggtcacago	tggagacgcc	agagaccctg	1320
ctggggagca ccgaagagaa gcc	cctgccc cttggagtg	c ctgatgctgg	gatgaagccc	1380
agttaaccag gccggtgtgg gct	gtgtcgt agccaaggt	g ggctgagccc	tggcaggatg	1440
accctgcgaa ggggccctgg tcc	ttccagg c			1471

<210> 32

<211> 461

<212> PRT

<213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

1 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 170 165 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 200 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 235 230 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 260 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 275 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 295 Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 310 315 305

Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 435 440 445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 33

tecacetyte eccycagege eggetegege ecteetyceg cagecacega geegeegtet 60 agegeceega ectegecace atgagageee tgetggegeg ectgettete tgegteetgg 120 tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaac tgtgactgtc 180 taaatggagg aacatgtgtg tccaacaagt acttctccaa cattcactgg tgcaactgcc 240 caaagaaatt cggagggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga 300 atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgcctgccct 360 ggaactetge caetgteett cagcaaacgt accatgeeca cagatetgat getetteage 420 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480 atgtgcaggt gggcctaaag ccgcttgtcc aagagtgcat ggtgcatgac tgcgcagatg 540 gaaaaaagcc ctcctctcct ccagaagaat taaaatttca gtgtggccaa aagactctga 600 ggccccgctt taagattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg 660 720 cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgtgga ggcagcctca

tcagcccttg	ctgggtgatc	agcgccacac	actgcttcat	tgattaccca	aagaaggagg	780
actacatcgt	ctacctgggt	cgctcaaggc	ttaactccaa	cacgcaaggg	gagatgaagt	840
ttgaggtgga	aaacctcatc	ctacacaagg	actacagcgc	tgacacgctt	gctcaccaca	900
acgacattgc	cttgctgaag	atccgttcca	aggagggcag	gtgtgcgcag	ccatcccgga	960
ctatacagac	catctgcctg	ccctcgatgt	ataacgatcc	ccagtttggc	acaagctgtg	1020
agatcactgg	ctttggaaaa	gagaattcta	ccgactatct	ctatccggag	cagctgaaga	1080
tgactgttgt	gaagctgatt	teccaceggg	agtgtcagca	gccccactac	tacggctctg	1140
aagtcaccac	caaaatgctg	tgtgctgctg	acccacagtg	gaaaacagat	tcctgccagg	1200
gagactcagg	gggacccctc	gtetgtteee	tccaaggccg	catgactttg	actggaattg	1260
tgagctgggg	ccgtggatgt	gccctgaagg	acaagccagg	cgtctacacg	agagtctcac	1320
acttcttacc	ctggatccgc	agtcacacca	aggaagagaa	tggcctggcc	ctctgagggt	1380
ccccagggag	gaaacgggca	ccacccgctt	tcttgctggt	tgtcattttt	gcagtagagt	1440
catctccatc	agctgtaaga	agagactggg	aagat	•		1475

<210> 34

<211> 431

<212> PRT

<213> Homo sapiens

<400> 34

Met Arg Ala Leu Leu Ala Arg Leu Leu Cys Val Leu Val Val Ser 1 5 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp 20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile 35 40 45

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile 50 55 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly 65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser 85 90 95

- Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 115 120 125
- Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln 130 135 140
- Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 145 150 155 160
- Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 170 175
- Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp 180 185 190
- Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val
- Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 215 220
- Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 230 235
- Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val 245 250 255
- Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His 260 265 270
- His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys 275 280 285
- Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 295 300
- Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly
340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro

95

85 90

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala 100 105 110

Gly Thr Thr Val Thr Val Ser Ser

<210> 38

<211> 106

<212> PRT

<213> Mus musculus

<400> 38

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met 20 25 30

His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60

Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp 65 70 75 80

Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr 85 90 95

1039

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100

<210> 39 <211> 1039 <212> DNA

<213> Homo sapiens

<400> 39 tcctgcacag go	cagtgcctt	gaagtgcttc	ttcagagacc	tttcttcata	gactactttt	60
ttttctttaa go	cagcaaaag	gagaaaattg	tcatcaaagg	atattccaga	ttcttgacag	120
cattctcgtc at	tctctgagg	acatcaccat	catctcagga	tgaggggcat	gaagctgctg	180
ggggcgctgc to	ggcactggc	ggccctactg	cagggggccg	tgtccctgaa	gatcgcagcc	240
ttcaacatcc ag	gacatttgg	ggagaccaag	atgtccaatg	ccaccctcgt	cagctacatt	300
gtgcagatcc to	gagccgcta	tgacatcgcc	ctggtccagg	aggtcagaga	cagccacctg	360
actgccgtgg g	gaagctgct	ggacaacctc	aatcaggatg	caccagacac	ctatcactac	420
gtggtcagtg ag	gccactggg	acggaacagc	tataaggagc	gctacctgtt	cgtgtacagg	480
cctgaccagg t	gtctgcggt	ggacagctac	tactacgatg	atggctgcga	gccctgcggg	540
aacgacacct t	caaccgaga	gccagccatt	gtcaggttct	teteceggtt	cacagaggtc	600
agggagtttg c	cattgttcc	cctgcatgcg	gccccggggg	acgcagtagc	cgagatcgac	660
gctctctatg a	cgtctacct	ggatgtccaa	gagaaatggg	gcttggagga	cgtcatgttg	720
atgggcgact t	caatgcggg	ctgcagctat	gtgagaccct	cccagtggtc	atccatccgc	780
ctgtggacaa g	ccccacctt	ccagtggctg	atccccgaca	gcgctgacac	cacagctaca	840
cccacgcact g	tgcctatga	caggatcgtg	gttgcaggga	tgctgctccg	aggcgccgtt	900
gttcccgact c	ggctcttcc	ctttaacttc	caggctgcct	atggcctgag	tgaccaactg	960
gcccaagcca t	cagtgacca	ctatccagtg	gaggtgatgc	tgaagtgagc	agcccctccc	1020

<210> 40

<211> 282

<212> PRT

<213> Homo sapiens

cacaccagtt gaactgcag

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu

5

20

1

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr 25

15

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val 35

10

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp 55 50

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp 70 75

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn 85

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn 120

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe 135

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly 155 150

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val 165

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu 195

Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr 220 215 210

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly 235 225 230

Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn 245 250 255

Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser 260 265 270

Asp His Tyr Pro Val Glu Val Met Leu Lys 275 280

<210> 41

<211> 678

<212> DNA

<213> Mus musculus

<400> 41 gacatettge tgacteagte tecagecate etgtetgtga gtecaggaga aagagteagt 60 ttctcctgca gggccagtca gttcgttggc tcaagcatcc actggtatca gcaaagaaca 120 aatggttctc caaggcttct cataaagtat gcttctgagt ctatgtctgg gatcccttcc 180 aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct 240 gaagatattg cagattatta ctgtcaacaa agtcatagct ggccattcac gttcggctcg 300 gggacaaatt tggaagtaaa agaagtgaag cttgaggagt ctggaggagg cttggtgcaa 360 cctggaggat ccatgaaact ctcctgtgtt gcctctggat tcattttcag taaccactgg 420 atgaactggg tecgecagte tecagagaag gggettgagt gggttgetga aattagatea 480 aaatctatta attctgcaac acattatgcg gagtctgtga aagggaggtt caccatctca 540 agagatgatt ccaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact 600 ggcgtttatt actgttccag gaattactac ggtagtacct acgactactg gggccaaggc 660 678 accactctca cagtctcc

<210> 42

<211> 226

<212> PRT

<213> Mus musculus

<400> 42

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
1 10 15

Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser

20 25 30

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile 35 40 45

Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly . 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser 65 70 75 80

Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe 85 90 95

Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu
100 105 110

Glu Ser Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser 115 120 125

Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val 130 135 140

Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser 145 150 155 160

Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg 165 170 175

Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met 180 185 190

Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn 195 200 205

Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr 210 215 220

Val Ser 225

<210> 43 <211> 450

<212>	DNA	
<213>	Homo	sapiens

<400> 43 gctgcatcag	aagaggccat	caagcacatc	actgtccttc	tgccatggcc	ctgtggatgc	60
gcctcctgcc	cctgctggcg	ctgctggccc	tctggggacc	tgacccagcc	gcagcctttg	120
tgaaccaaca	cctgtgcggc	tcacacctgg	tggaagctct	ctacctagtg	tgcggggaac	180
gaggcttctt	ctacacaccc	aagacccgcc	gggaggcaga	ggacctgcag	gtggggcagg	240
tggagctggg	cgggggccct	ggtgcaggca	gcctgcagcc	cttggccctg	gaggggtccc	300
tgcagaagcg	tggcattgtg	gaacaatgct	gtaccagcat	ctgctccctc	taccagctgg	360
agaactactg	caactagacg	cagcccgcag	gcagcccccc	accegeegee	tectgcaceg	420
agagagatgg	aataaagccc	ttgaaccagc				450

<210> 44

<211> 110

<212> PRT

<213> Homo sapiens

<400> 44

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu

Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 20

Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 40 35

Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly 55 50

Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu 70 65

Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys 85 90

Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 105 100

<210> 45

WO 03/031464 PCT/US02/32263

<211> 1203 <212> DNA <213> Hepatitis B virus	•
<400> 45 atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat	60
cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat	120
ccagattggg acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg	180
ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag	240
gctcagggca tattgacaac agtgccagca gcgcctcctc ctgtttccac caatcggcag	300
tcaggaagac agcctactcc catctctcca cctctaagag acagtcatcc tcaggccatg	360
cagtggaact ccacaacatt ccaccaagct ctgctagatc ccagagtgag gggcctatat	420
tttcctgctg gtggctccag ttccggaaca gtaaaccctg ttccgactac tgtctcaccc	480
atatcgtcaa tcttctcgag gactggggac cctgcaccga acatggagag cacaacatca	540
ggattcctag gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc	600
acaataccac agagtctaga ctcgtggtgg acttctctca attttctagg gggagcaccc	660
acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct	720

tgtcctctac ttccaggaac atcaactacc agcacgggac catgcaagac ctgcacgatt 900 cctgctcaag gaacctctat gtttccctct tgttgctgta caaaaccttc ggacggaaac 960 tgcacttgta ttcccatccc atcatcctgg gctttcgcaa gattcctatg ggagtgggcc 1020 tcagtccgtt tctcctggct cagtttacta gtgccatttg ttcagtggtt cgcagggctt 1080 tccccactg tttggcttc agttatatgg atgatgtggt attggggcc aagtctgtac 1140

780

840

ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc

ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat gttgcccgtt

aacatcttga gtcccttttt acctctatta ccaattttct tttgtctttg ggtatacatt 1200

<210> 46

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu
1 5 10 15

Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn 35 40 45

Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly 50 55 60

Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln 65 70 75 80

Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser 85 90 95

Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 100 105 110

Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 115 120 125

Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly 130 135 140

Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 145 150 155 160

Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu 165 170 175

Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly 180 185 190

Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 195 200 205

Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly 210 215 220

Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro 225 230 235 240

Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile 250 245 Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu 270 265 260 Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser 280 275 Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly 290 295 Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn 315 Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu 325 Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro 345 Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser 375 Pro Phe Leu Pro Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile 395 385 390 <210> 47 <211> 799 <212> DNA <213> Homo sapiens cgaaccactc agggtcctgt ggacagctca cctagctgca atggctacag gctcccggac 60 gtccctgctc ctggcttttg gcctgctctg cctgccctgg cttcaagagg gcagtgcctt 120 180 cccaaccatt cccttatcca ggccttttga caacgctatg ctccgcgccc atcgtctgca 240 ccagctggcc tttgacacct accaggagtt tgaagaagcc tatatcccaa aggaacagaa 300 qtattcattc ctgcagaacc cccagacctc cctctgtttc tcagagtcta ttccgacacc

ctccaacagg gagga	aaacac aacagaaatc	caacctagag	ctgctccgca	tctccctgct	360
getcatecag tegt	ggctgg agcccgtgca	gttcctcagg	agtgtcttcg	ccaacagcct	420
ggtgtacggc gcct	ctgaca gcaacgtcta	tgacctccta	aaggacctag	aggaaggcat	480
ccaaacgctg atgg	ggaggc tggaagatgg	cagcccccgg	actgggcaga	tcttcaagca	540
gacctacagc aagt	tcgaca caaactcaca	caacgatgac	gcactactca	agaactacgg	600
gctgctctac tgct	tcagga aggacatgga	caaggtcgag	acattcctgc	gcatcgtgca	660
gtgccgctct gtgg	agggca gctgtggctt	ctagctgccc	gggtggcatc	cctgtgaccc	720
ctccccagtg cctc	tcctgg ccctggaagt	tgccactcca	gtgcccacca	gccttgtcct	780
aataaaatta agtt	gcatc				799

<210> 48

<211> 217

<212> PRT

<213> Homo sapiens

<400> 48

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu 1 5 10 15

Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 20 25 30

Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln 35 40 45

Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys 50 55 60

Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe 65 70 75 80

Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys 85 90 95

Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp 100 105 110

Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140

Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160

Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 185 190

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys
195 200 205

Arg Ser Val Glu Gly Ser Cys Gly Phe 210 215

<210> 49

<211> 963

<212> DNA

<213> Homo sapiens

<400> 49

atggagacag acacactcct gttatgggtg ctgctgctct gggttccagg ttccactggt 60 gacgtcaggc gagggccccg gagcctgcgg ggcagggacg cgccagcccc cacgccctgc 120 180 qtcccggccg agtgcttcga cctgctggtc cgccactgcg tggcctgcgg gctcctgcgc acgccgcggc cgaaaccggc cggggccagc agccctgcgc ccaggacggc gctgcagccg 240 caggagtcgg tgggcgggg ggccggcgag gcggcggtcg acaaaactca cacatgccca 300 ccgtgcccag cacctgaact cctgggggga ccgtcagtct tcctcttccc cccaaaaccc 360 420 aaggacacce teatgatete eeggaceeet gaggteacat gegtggtggt ggacgtgage 480 cacqaaqacc ctqaqqtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc 540 aaqacaaagc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc qtcctqcacc aqqactqqct gaatqqcaag gagtacaagt gcaaggtctc caacaaagcc 600 660 ctcccaqccc ccatcqagaa aaccatctcc aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag ctgaccaaga accaggtcag cctgacctgc 720 780 ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg

WO	03	/031	464

gagaacaact	acaagaccac	gcctcccgtg	ttggactccg	acggctcctt	cttcctctac	840
agcaagctca	ccgtggacaa	gagcaggtgg	cagcagggga	acgtcttctc	atgctccgtg	900
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tetecetgte	tcccgggaaa	960
tga						963

<210> 50

<211> 320

<212> PRT

<213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg 20 25 30

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu 35 40 45

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro 50 55 60

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro 65 70 75 80

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr 85 90 95

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 100 105 110

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 115 120 125

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 130 135 140

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 145 150 155 160

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

165

175

170

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 180 185 190

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 195 200 205

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 210 215 220

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 225 230 235 240

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 245 250 255

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 260 265 270

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 275 280 285

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 290 295 300

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 305 310 315 320

<210> 51

<211> 107

<212> PRT

<213> Homo sapiens

<400> 51

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys 100 105

<210> 52

<211> 107

<212> PRT

<213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 53

<211> 119

<212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser 115

<210> 54

<211> 119

<212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr
1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly
100 105 110

Thr Leu Val Thr Val Ser Ala 115

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr

340 345 350

Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445

<210> 57

<211> 8540

<212> DNA

<213> Homo sapiens

<400> 57 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 60 aggccgaggc ggcctcggcc tctgcataaa taaaaaaaat tagtcagcca tgcatgggc 120 180 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240 gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct 300 ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct 360 agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc 420 gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg 480 acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa 540 600 tgggtggact atttacggta aactgcccac ttggcagtac atcaagtgta tcatatgcca 660 agtacqcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat cgctattacc 720

gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata ttgctgaaga 5940 6000 gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg cttcccgatt 6060 cgcagcgcat cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt 6120 cgaaatgacc gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc 6180 cttctatgaa aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat ctcatgctgg agttcttcgc ccaccccaac ttgtttattg cagcttataa 6240 tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca 6300 ttctagttgt ggtttgtcca aactcatcaa tctatcttat catgtctgga tcgcggccgc 6360 gatecegteg agagettgge gtaateatgg teatagetgt tteetgtgtg aaattgttat 6420 6480 ccqctcacaa ttccacacaa catacgagcc ggagcataaa gtgtaaagcc tggggtgcct 6540 aatqaqtqaq ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 6600 acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 6660 ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 6720 gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg 6780 caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa 6840 gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 6900 6960 ccetcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 7020 cttcgggaag cgtggcgctt tctcaatgct cacgctgtag gtatctcagt tcggtgtagg 7080 togttogeto caagetggge tgtgtgcaeg aaceceegt teagecegae egetgegeet 7140 tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 7200 cagccactgg taacaggatt agcagagega ggtatgtagg eggtgctaca gagttettga 7260 agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga 7320 agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 7380 7440 aagateettt gatettttet aeggggtetg aegeteagtg gaacgaaaac teaegttaag ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat 7500 gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 7560

<210> 58

<211> 9209

<212> DNA

<213> Mus musculus

<400> gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 60 aggccgaggc ggcctcggcc tctgcataaa taaaaaaaat tagtcagcca tgcatggggc 120 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 240 atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct 300 360 ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc 420 gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg 480

ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	tatcagggtt	9120
attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	ataggggttc	9180
cgcgcacatt	tccccgaaaa	gtgecacct				9209
<210> 59 <211> 384 <212> DNA <213> Mus	musculus					
<400> 59 atggattttc	aggtgcagat	tatcagcttc	ctgctaatca	gtgcttcagt	cataatgtcc	60
agagggcaaa	ttgttctctc	ccagtctcca	gcaatcctgt	ctgcatctcc	aggggagaag	120
gtcacaatga	cttgcagggc	cagctcaagt	gtaagttaca	tccactggtt	ccagcagaag	180
ccaggatcct	ccccaaacc	ctggatttat	gccacatcca	acctggcttc	tggagtccct	240
gttcgcttca	gtggcagtgg	gtctgggact	tettactete	tcacaatcag	cagagtggag	300
gctgaagatg	ctgccactta	ttactgccag	cagtggacta	gtaacccacc	cacgttcgga	360
ggggggacca	agctggaaat	caaa				384
<210> 60 <211> 128 <212> PRT <213> Mus			,			

<400> 60

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15

Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile 20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 35 40 45

Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser 50 55 60

Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile

85

90

95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 115 120 125

<210> 61

<211> 420

<212> DNA

<213> Mus musculus

<400> 61

4700> 07						
atgggttgga	gcctcatctt	gctcttcctt	gtcgctgttg	ctacgcgtgt	cctgtcccag	60
gtacaactgc	agcagcctgg	ggctgagctg	gtgaagcctg	gggcctcagt	gaagatgtcc	120
tgcaaggctt	ctggctacac	atttaccagt	tacaatatgc	actgggtaaa	acagacacct	180
ggtcggggcc	tggaatggat	tggagctatt	tatcccggaa	atggtgatac	ttcctacaat	240
cagaagttca	aaggcaaggc	cacattgact	gcagacaaat	cctccagcac	agcctacatg	300
cagctcagca	gcctgacatc	tgaggactct	gcggtctatt	actgtgcaag	atcgacttac	360
tacggcggtg	actggtactt	caatgtctgg	ggcgcagģga	ccacggtcac	cgtctctgca	420

<210> 62

<211> 140

<212> PRT

<213> Mus musculus

<400> 62

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg 1 5 10 15

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ser 50 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 135 140