

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

 \subset 75.562 \Re 11 \Re 01 \Re 20 \Re E Ξ / \in 75.562 11 01 20 EX

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Este enunciado corresponde también a las siguientes asignaturas:

• 81.518 - Fundamentos de computadores

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
- Tiempo total: 2 horas Valor de cada pregunta: Prob. 1: 20%; Prob. 2: 35%; Prob. 3: 35%; Prob 4: 10%
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?:
- En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?

Indicaciones específicas

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

Enunciados

PROBLEMA 1 [20%]

- a) [10%] Dados los valores B = 111011 y C = 011001, que representan dos números binarios enteros expresados en complemento a 2 con 6 bits, calculad B - C usando el mismo formato. ¿Se produce desbordamiento?
 - Para restar en Ca2, convertimos la operación B C en B + (-C), cambiando el signo de C, esto es, complementando bit a bit y sumando 1 al resultado

$$-C = 100110 + 1 = 100111$$

• Ahora hacemos la suma:

```
111111 (acarreo
111011 (B
+100111 (-C
100010
```

- En Ca2 ignoramos el acarreo en el bit más significativo y el resultado será: 100010
- No se produce desbordamiento porque hemos sumado dos números negativos y el resultado es negativo
- b) [10%] Dado el formato de coma flotante siguiente:

S	Exponente	Mantisa				
13	12	8	7		0	

Donde:

- El bit de signo, S, vale 0 para cantidades positivas y 1 para negativas.
- El exponente se representa en exceso a 16.
- Hay bit implícito.
- La mantisa está normalizada en la forma 1,X.

Representad el número 23,45(10 en este formato.

El número que queremos representar es positivo, así el bit S será 0.

Ahora, pasamos la parte entera a binario, usando el método de la división entera:

```
23 = 11 \cdot 2 + 1
11 = 5 \cdot 2 + 1
5 = 2 \cdot 2 + 1
2 = 1 \cdot 2 + 0
1 = 0 \cdot 2 + 1
```

 $23_{(10} = 10111_{(2)}$

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

Ahora, aplicamos el método para encontrar la representación binaria de la parte fraccionaria:

 $0,45 \cdot 2 = 0,9$ $0,9 \cdot 2 = 1,8$ $0,8 \cdot 2 = 1,6$ $0,6 \cdot 2 = 1,2$ $0,2 \cdot 2 = 0,4$ 0,4.2 = 0,8 $0,45_{(10} = 0,011100_{(2)}$

Paramos porque hemos encontrado un conjunto de bits (1100) que se repetirán de forma periódica.

Juntamos la parte entera y la parte fraccionaria: 10111,011100(2

Para normalizar la mantisa tenemos que mover la coma 4 posiciones a la izquierda:

$$10111,011100_{(2} = 1,0111011100_{(2} \cdot 2^4)$$

Identificamos cada campo:

- Signo positivo -> S = 0
- Exponente = 4, como debe ser representado en exceso a 16, le sumamos 16 (4 + 16 = 20) y lo representamos en binario con 5 bits 10100
- Mantisa = 1,01110111, como tenemos bit implícito sólo tenemos que almacenar 01110111

Así, el resultado final será: 0 10100 01110111

PROBLEMA 2 [35%]

a) [15%] Escribid la expresión algebraica mínima a dos niveles de la función g, obteniéndola mediante el método de Karnaugh.

X	у	Z	W	g
0	0	0	0	0 1 0 1 x 1 1 0 x x 0 x
0 0 0 0 0 0	0	0 0 1 1 0 0		1
0	0	1	0	0
0	0 0 0 1 1	1	1 0 1 0 1 0 1 0 1 0	1
0	1	0	0	Х
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1 1 1 1 1		0	0	Х
1	0	0	1	Х
1	0 0 0 0	0 0 1 1 0 0	0	0
1	0	1	1	Х
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0 1 0 1
1	1	1	1	1

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

El mapa de Karnaugh para la función *g* es el siguiente:

De este mapa obtenemos la expresión mínima siguiente:

$$g = z' w + xw + x' y w' + y' w$$

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

b) [20%] Dado el circuito lógico combinacional siguiente:

Rellenad la tabla de la verdad siguiente, que especifica las salidas x, y, z, w en función de las entradas a, b, c. Hay que calcular previamente los valores intermedios indicados en la tabla.

Nota: No hace falta que expliquéis textualmente como obtenéis el valor de cada señal.

En primer lugar, escribiremos la expresión algebraica correspondiente a cada punto intermedio y la simplificaremos aplicando las leyes de De Morgan siempre que sea posible.

- i1: (c' XOR ab)'. Cuando ab=0 valdrá c y cuando ab=1 valdrá c'.
- i2: (ab OR c)'. Cuando ab=0 valdrá c' y cuando ab=1 valdrá 0.
- $x: ((i1 \cdot 1) \cdot i2)' = (i1 \cdot i2)'.$
- i5: a', dado que la entrada B del sumador siempre vale 1.
- *i*4: Si *a*=0, valdrá *b* XOR *c*. Si *a*=1, valdrá (*b* XOR *c*)'.
- B: bc + cin(b XOR c) = bc + a(bc XOR c). Siempre que bc=1 valdrá 1. Si no, siempre que a=1 valdrá b XOR c. En el resto de casos valdrá 0.
- [z, y] es la salida de la ROM. La ROM contiene los valores 2,3,1,0 en las direcciones 0,1,2,3. La señal que llega a la entrada de direcciones de la ROM es [i4, i5].
- w: i3.

La tabla quedará así:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

а	b	С	<i>i</i> 1	i2	i3	i4	<i>i</i> 5	X	У	Z	W
0	0	0	0	1	0	0	1	1	1	1	0
0	0	1	1	0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	1	1	0	0	0
0	1	1	1	0	1	0	1	1	1	1	1
1	0	0	0	1	0	1	0	1	1	0	0
1	0	1	1	0	1	0	0	1	0	1	1
1	1	0	1	0	1	0	0	1	0	1	1
1	1	1	0	0	1	1	0	1	1	0	1

PROBLEMA 3 [35%]

a) [20%] Considerad un circuito secuencial que tiene una señal de entrada x y una señal de salida z, ambas de un bit.

Por la entrada x llegan paquetes de 3 bits, a razón de un bit a cada ciclo de reloj. Denominaremos $x_1x_2x_3$ los bits que forman un paquete y que han llegado en el orden que indican los subíndices.

Cuando haya llegado un paquete, el valor de la salida z vendrá dado por esta expresión: $z = x_1 + x_2x_3$. En cualquiera otro momento, z = 0. En la tabla vemos un ejemplo:

Entrada x	0	1	1	0	0	0	1	0	1	0	1	0	
Salida z	0	0	0	1	0	0	0	0	0	1	0	0	0

Dibujad el grafo de estados que expresa el funcionamiento del circuito mediante el modelo de Moore.

El grafo tendrá un primer estado, *INI*, que indica que estamos a punto de iniciar un paquete. Si el primer valor de entrada es un 1, es decir, si $x_1 = 1$, la expresión $x_1 + x_2x_3$ valdrá 1. Por lo tanto pasamos al estado U a partir del cual, para cualesquiera dos valores de entrada posteriores, llegaremos al estado OK, que significa que se ha acabado un paquete y la expresión vale 1 y, por lo tanto, la salida será 1.

Si el primer valor de entrada es un 0 pasamos al estado Z. Ahora la expresión $x_1 + x_2x_3$ sólo podrá valer 1 (estado OK) si tanto x_2 como x_3 valen 1. Por lo tanto, si el segundo valor de entrada es un 1 pasamos al estado ZU, que indica que podemos llegar al estado OK si el tercer bit es también 1. Pero si el segundo bit del paquete vale 0 pasamos al estado ZZ; en este caso, la expresión ya no puede valer 1, por lo que en todo caso pasaremos al estado INI, donde esperaremos un nuevo paquete.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

b) [15%] Sea el circuito secuencial siguiente, cuyo banco de registros tiene inicialmente el contenido que se muestra en la tabla.

Registro	Contenido
R1	F1h
R2	F2h
R3	F3h
R4	F4h

Rellenad el cronograma siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

El banco de registros mostrará por *Dout* el registro identificado por los bits $x_{1:0}$. Por lo tanto, en el estado inicial, cuando X=06h ($x_1=1$ y $x_0=0$), el valor de *Dout* será el contenido de R2, que es F3h. RA vale 00h. Y la señal *esc* vale $z_1 \cdot z_0$, siendo éstos los dos bits de menos pes de RA; por lo tanto, *esc* vale $0 \cdot 0 = 0$.

En el instante t_0 , X=11h y en *Dout* tenemos R1 (F2h). RA se cargará a caca ciclo de reloj con la suma *Dout* + X. Por lo tanto, en el instante t_0 RA se carga con el valor F3h + 06h = F9h. Y, desde t_0 hasta t_1 , esc vale 0.1 = 0. En el instante t_1 X=07h, y por lo tanto en *Dout* tendremos R3 = F4h. RA se carga con F2h+11h = 03h y, por lo tanto, esc valdrá 1.1 = 1 hasta t_2 .

Puesto que esc = 1, en el instante t_2 se realiza una escritura en el banco de registros; en concreto se escribe el valor 55h en el registro R0. X=18h, por lo tanto en *Dout* tendremos el valor de R0, que es 55h. RA se carga con F4h+07h = FBh, y esc vale $1\cdot 1 = 1$ durante todo el ciclo. Finalmente, en el instante t_3 se vuelve a escribir en el banco de registros, el mismo valor en el mismo registro. X=25h y en *Dout* tenemos R1 = F2h. RA se carga con 55h+18h = 6Dh, y $esc = 0\cdot 1 = 0$.

El cronograma queda tal y como se muestra a continuación:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	11/01/2020	09:00

PROBLEMA 4 [10%]

- a) [5%] En un procesador microprogramado, ¿qué función tiene el secuenciador?
 De controlador de una máquina de interpretación de instrucciones.
- b) [5%] ¿Para qué se usan los módulos de acceso directo a memoria (DMA)?

Para liberar a las CPU de las transferencias de información entre periféricos y memoria principal.