REM Tutorial 3: Regression I - Hedonic

Prof. Dr. Kathleen Kürschner Rauck

AT 2023

Hedonic (House) Pricing

- ► Heterogeneous goods → buying a house always means selecting a whole bundle of housing characteristics
- No price per standard quantity or quality of housing available (observable market price is an outcome of the unobservable utility from house ownership and use)
- ► **Hedonic price equation:** observable market price is modeled as a function of observable housing characteristics

$$P = \alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$
 (1)

with:

P = market price

 $\alpha = constant term$

 X_i = characteristic i (i = 1, ..., n), e.g., size, age, neighbourhood

 $\beta_i = \text{implicit increase in price}$ for an additional unit of characteristic *i*

➤ Various applications in empirical research (see, e.g., academic GIFt: https://www.youtube.com/watch?v=0_NreXsVvVY&t=12s
Paper: https://link.springer.com/article/10.1007/s11116-022-10295-8)

Today's Agenda

Learning Outcomes	R Functions	Packages	Data
Be able to plot kernel density estimates	<pre>max(); density()</pre>		Lucas_County_data
	polygon()		
Know how to add a curve to a plot	<pre>curve(); dnorm()</pre>		
	mean(); sd()		
Be able to perform the Jarque-Bera test in ${\sf R}$	<pre>jarque.bera.test()</pre>	tseries	
		quadprog	
Be able to run an OLS regression using R	lm()		
& assess regression output	summary()		
Be able to produce a two-way scatter plot	plot()		
& remove scientific notation from axes	options()		
& add a fitted regression line to the plot	abline()		
Understand/recap common functional forms			
Know how to include & interpret a quadratic	I()		
term in a linear regression model			
Be able to plot a non-linear fitted line	<pre>data.frame(); seq()</pre>		
& determine minimum/maximum point	min(); max()		
	<pre>nrow(); predict()</pre>		
	as.data.frame()		
	lines(); abs()		
Know how to interpret coefficient estimates	as.factor()		
for categorical variables	levels()		
Know how to produce contingency tables	table()		

Practice

Work through **Tutorial 3 - Workbook** to solve the practical problems provided in **Tutorial 3 - Problem Set**.

Follow up

I'm adding some code of what I showed in class on alternative ways to generate squared terms etc. (not contained in Workbook):

Alternatively, we could generate age squared manually and add this variable to regression equation:

```
dat1$age2 <- (dat1$age)^2 # gen. age squared and add to dat1
fit2.2 <- lm(price ~ age + age2, data = dat1)
summary(fit2.2) # same result</pre>
```

Or we use the poly function to generate age^2 age^3 etc. and write result to dat1:

```
age.poly <- poly(dat1$age, 3, raw = TRUE) # evaluates raw, not orthogonal, polynomials to the constant polynomial (degree=0) head(age.poly) # to view: 1st col is age, 2nd is age<sup>2</sup>, 3rd is age<sup>3</sup> # add to dat1 in one step dat1$age3 <- poly(dat1$age, 3, raw = TRUE)[,3]
```