Topologie SoSe 2022 — Ubungsblatt 5

Ausgabe23.05.22Dozent: Prof. Wolfgang SoergelAbgabe30.05.22Tutorium: Dr. Leonardo Patimo

Aufgabe 5.1: Sei X ein wegzusammenhängender topologischer Raum und seien $x, y \in X$. Zeigen Sie, dass die Fundamentalgruppen $\pi_1(X, x)$ und $\pi_1(X, y)$ isomorph sind.

(4 Punkte)

Aufgabe 5.2: Die Abbildung $S^1 \to S^1$, $z \mapsto z^n$ induziert auf der Fundamentalgruppe $\pi_1(S^1, 1) \cong \mathbb{Z}$ die Abbildung $c \mapsto n \cdot c$.

(4 Punkte)

Aufgabe 5.3: Sei $V \subseteq \mathbb{R}^n$ ein Untervektoraum der Dimension dim $V \leq n-3$. Zeigen Sie, das die Fundamentalgruppe des Komplements von $\mathbb{R}^n \setminus V$ trivial ist, in Formeln $\pi_1(\mathbb{R}^n \setminus V, p) = 1$ f ur jeden Punkt $p \in \mathbb{R}^n \setminus V$.

(4 Punkte)

Aufgabe 5.4: Ein topologischer Raum in X ist Folgenkompakt, wenn jede Folge eine konvergente Teilfolge besitzt.

1. Sei

$$X = \prod_{i \in \mathbb{N}} \{0,1\}$$

mit der Produkttopologie. Zeigen Sie, dass X Kompakt und Folgenkompakt ist.

2. Bonus: Sei

$$X = \prod_{S \in \mathcal{P}(\mathbb{N})} \{0, 1\}$$

mit der Produkttopologie, wobei $\mathcal{P}(\mathbb{N}) = \{S \mid S \subset \mathbb{N}\}$ die Potenzmenge von \mathbb{N} ist. Zeigen Sie, dass X Kompakt aber nicht Folgenkompakt ist.

Hinweis: 1) Sei $\{x(n)\}_{n\in\mathbb{N}}$ eine Folge mit $x(n) = (x(n)_i)_{i\in\mathbb{N}} \in X$. Dann existiert eine unendliche Teilmenge S_1 mit $x(n)_1 = 1$ oder $x(n)_1 = 0$ für alle $n \in S_1$, und eine unendliche Teilmenge $S_2 \subset S_1$ mit $x(n)_2 = 0$ oder $x(n)_2 = 1$ für alle $n \in S_2$, etc. Dann betrachten Sie eine Teilfolge $x(n_1), x(n_2)$, mit $n_i \in S$.

2) Sei $\{(x(n)_S)_{S\subset \mathbb{N}}\}_{n\in \mathbb{N}}$ die Folge in X definiert durch

 $x(n)_S = 1 \iff n \in S$ und die Anzahl der Elemente von $\{k \in S \mid k < n\}$ ist gerade.

Nehmen wir an, dass es eine konvergente Teilfolge $\{x(n_k)_S\}$ gibt. Betrachten Sie die Teilmenge $T=\{n_k\mid k\in\mathbb{N}\}.$

(4+4 Punkte)