Semestre de Tardor 2018-2019

JUSTIFIQUEU DETALLADAMENT LES VOSTRES RESPOSTES

- 1. Donat $a \ge 0$, definim recursivament una successió $(x_n)_{n\ge 1}$ com $x_1 = a$ i $x_{n+1} = \sqrt{2x_n + 2}$, per $n \ge 1$.
 - (a) Estudieu-ne la monotonia en funció del paràmetre a.
 - (b) Demostreu que és una successió acotada.
 - (c) Demostreu que és una successió convergent i calculeu-ne el límit.
- 2. Resoleu els exercicis següents:
 - (a) Considerem la funció $F: \mathbb{R} \longrightarrow \mathbb{R}$ donada per l'expressió

$$F(x) = \arctan(x+1) - x^3.$$

Demostreu que existeix un valor real x_0 tal que $F(x_0) = 0$.

(b) Sigui $f:(0,+\infty)\longrightarrow \mathbb{R}$ una funció contínua tal que

$$\lim_{x \to 0^+} \frac{f(x)}{x} < 1 \quad \text{i} \quad \lim_{x \to +\infty} \frac{f(x)}{x} > 1.$$

Demostreu que existeix un valor real $x_0 > 0$ tal que $f(x_0) = x_0$.

3. Sigui $(a_n)_{n\geq 1}$ una successió convergent de nombres reals, amb $a=\lim_{n\to +\infty}a_n$. Demostreu que si existeixen constants $c,d\in\mathbb{R}$ i $n_0\in\mathbb{N}$ tals que per a tot $n\geq n_0$,

$$c \le a_n \le d$$
,

aleshores $c \leq a \leq d$.

TOTS ELS EXERCICIS VALEN EL MATEIX

ESCRIVIU LA RESPOSTA A CADA PREGUNTA EN UN FULL DIFERENT

POSEU EL VOSTRE NOM I COGNOM EN CADA FULL EN MAJÚSCULES