Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

Test 13

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{16} \sqrt{32} + \sqrt{18} + \sqrt{2} 2^2 = 0$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + a^2$, unde a este număr real. Determinați numerele reale a, pentru care f(1) = 2.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{3x+1} = 3^4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie impar.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,1) și B(3,7). Determinați coordonatele simetricului punctului B fată de punctul A.
- **5p 6.** Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{\sqrt{2}}{2}$, arătați că $\sin^2 x 2\sin x \cos x + \cos^2 x = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(x) = B + xI_2$, unde x este număr real.
- **5p** a) Arătați că det A = -5.
- **5p b**) Arătați că $A \cdot M(x) = M(x) \cdot A$, pentru orice număr real x.
- **5p** c) Determinați numărul real x pentru care $A \cdot A 3(A + M(x)) = I_2$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x * y = \frac{1}{3}xy + x + y$.
- **5p** a) Arătați că 2020*(-3) = -3.
- **5p b**) Determinați numerele reale x pentru care (6*x)*6=6.
- **5p** c) Determinați numerele reale nenule x pentru care $x * \frac{1}{x} = -3$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x(x^2 3) + 3$.
- **5p** a) Arătați că $f'(x) = 3(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(x) x^3}{x+1} = -3$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 + x + e^x$.
- **5p** a) Arătați că $\int_{-1}^{1} \left(f(x) x e^x \right) dx = \frac{2}{5}.$
- **5p b)** Arătați că $\int_{1}^{e} (f(x) x^4 e^x) \ln x \, dx = \frac{e^2 + 1}{4}$.
- **5p** c) Determinați numărul real a pentru care $\int_{0}^{a} f(x) dx = \frac{5a^{2} + 54}{10} + e^{a}$.