Примена алгоритма неуроеволуције са променљивим топологијама (NEAT) на примеру симулације кретања робота

Ментор: др Ђорђе Обрадовић Аутор: Нина Марјановић RA138/2012

ЗАДАТАК

Опис задатка који пројекат треба да реши

ЗАДАТАК

- Креирати софтвер који је у стању да симулира кретање робота на основу учитаних параметара.
- Коришћењем NEAT алгоритма пронаћи праве тежине и топологије како би вештачка неуронска мрежа била у стању да мапира улазне податке (нпр. подаци са сензора) на излаз (нпр. параметри актуатора).

МОДУЛИ

URDF

- Unified Robot Description Format (URDF)
- Стандардна ROS (Robot Operating System) XML репрезентација модела робота


```
1 <robot name="test robot">
    link name="link1" />
   link name="link2" />
   link name="link3" />
   k name="link4" />
     <joint name="jointl" type="continuous">
       <parent link="link1"/>
      <child link="link2"/>
10
     </joint>
11
12
     <joint name="joint2" type="continuous">
13
       <parent link="link1"/>
14
      <child link="link3"/>
15
     </joint>
16
17
     <joint name="joint3" type="continuous">
18
       <parent link="link3"/>
19
      <child link="link4"/>
    </joint>
21 </robot>
```


Парсирање URDF датотеке

- Резултат парсирања је URDF модел
- Парсирање коришћењем класе urdf::Model

• Визуелна репрезентација URDF модела (RViz)

Мотивација

Еволутивни алгоритми

- Дизајнирање кретања робота је тежак и временски захтеван посао за инжењере
- Дизајнирање се понавља сваки пут када се робот креира или модификује
- Аутоматско креирање начина кретања робота често даје боље резултате
- Коришћење еволутивних алгоритама је спорије али робустније од класичних метода (BP)

Мотивација

Еволутивни алгоритми

- Инспирисани биолошком еволуцијом мутација, селекција, укрштање
- Еволутивни алгоритми
 - Еволутивно програмирање
 - Фиксна структура програма
 - Нумерички параметри могу да еволуирају
 - Генетско програмирање
 - Решења у форми компјутерских програма
 - Фитнес се одређује на основу степена до ког је проблем решен
 - Фитнес (енг. Fitness) искоришћеност хромозома
 - Генетски алгоритми
 - Представа решења проблема као низ цифара
 - Коришћење оператора рекомбинације, мутације
 - Често се користи за оптимизацију
 - Неуроеволуција
 - Слична генетском програмирању, с тим што геноми представљају вештачку неуронску мрежу описујући структуру и тежине.

Мотивација

Еволутивни алгоритми

NEAT

• НЕУРОЕВОЛУЦИЈА

- Облик машинског учења који користи еволутивне алгоритме за обучавање вештачке неуронске мреже
- Имају ширу примену од алгоритама надгледаног учења
- Задатак је еволуирати неуронску мрежу
- Тежине и топологија се могу оптимизовати еволуцијом
- Примена: рачунарске игре, еволутивна роботика

• ЗАШТО ЕВОЛУИРАТИ ТОПОЛОГИЈЕ?

- Уштеда времена проналажењем тачног броја слојева/неурона
- Добро дизајниран алгоритам може пронаћи глобално оптималну топологију

- NEAT NeuroEvolution of Augmenting Topologies: Kenneth O. Stanley, 2001, The University of Texas at Austin
- Заснован на три основне идеје:
 - Праћење гена са историјским ознакама како би се омогућило укрштање само одговарајућих гена
 - Примена специјације (разврставања) ради очувања нових јединки. Омогућава преживљавање већих, структурно иновативних мрежа. Даје им времена да оптимизују своје тежине и покажу да је структурална иновација била ефективна
 - Инкрементални развој топологија од једноставних иницијалних структура ка сложенијим

Мотивација

Еволутивни алгоритми

- Генетско кодирање
 - Геном линеарна репрезентација веза у мрежи. Сваки геном укључује листу гена, а сваки се референцира на по два чвора које повезује.
 - Ген чворова даје информацију о улазима, скривеним чворовима и излазима који могу бити повезани.

Мотивација

Еволутивни алгоритми

- Генетско кодирање
 - Мутација може да измени како структуру мреже (топологију) тако и тежине веза.

Мотивација

Еволутивни алгоритми

- Мотивација
- Еволутивни алгоритми

- Праћење гена преко историјских ознака
 - Захтева мало рачуна
 - Глобални иновациони број се инкрементира са додавањем новог гена
 - Начин на који систем зна који гени се поклапају с којим
 - Приликом укрштања, гени у геномима са истим иновационим бројевима се упоређују
 - Ген се наслеђује случајно од неког родитеља
 - Спаривањем генома који представљају различите структуре, систем може да формира популацију различитих топологија
 - Нове топологије се штите специјацијом

Мотивација

Еволутивни алгоритми

NEAT

Обучавање неуронске мреже

Мотивација

Еволутивни алгоритми

NEAT

- Заштита иновације кроз специјацију
 - Специјација популација омогућава организмима да се такмиче пре свега у својој околини, а не у оквиру целе популације
 - У околини, топологија има времена да оптимизује своју структуру
 - Број excess и disjoint гена између парова генома је мера њихове компатибилности.
 Већи број = већа некомпатибилност

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}.$$

Делта – компатибилност

E – број excess гена

D – број disjoint гена

W – просечна разлика у тежинама између гена

N – број гена у геному (може бити сетован на 1 за мање геноме)

Мотивација

Еволутивни алгоритми

- Заштита иновације кроз специјацију
 - Разврставање на основу делта
 - Геноми се у свакој генерацији разврставају
 - Свака врста је репрезентована случајним геномом из претходне генерације
 - Геном у текућој генерацији се смешта у ону врсту где је компатибилност са репрезентативним геномом задовољена
 - Спречава се преклапање врсте
 - Уколико није компатибилан ни са једним, креира се нова врста, а тај геном постаје репрезент

• Заштита иновације кроз специјацију

$$f_i' = \frac{f_i}{\sum_{j=1}^n \operatorname{sh}(\delta(i,j))}.$$

Еволутивни алгоритми

Мотивација

- Fitness за организам і се рачуна на основу делта растојања од сваког организма ј у популацији.
- Sh sharing
 - Поставља се на 0 када је растојање изнад неког threshold-а,
 - у супротном на 1
- Свакој врсти се додељује различит број потомака, пропорцијално суми fi организама који припадају тој врсти.
- Елиминишу се најлошији чланови популације
- Врши се укрштање

Мотивација

Еволутивни алгоритми

- Кораци алгоритма:
 - Иницијализација популације
 - Израчунавање fitness за све јединке
 - Разврставање јединки
 - Подешавање fitness f'=f/species size
 - Одређивање броја потомака за све врсте, пропорционално f'
 - Елиминисање најлошијих јединки тренутне генерације
 - Укрштање замена тренутне генерације потомцима
 - Понављање од корака 2 док критеријум заустављања није задовољен

Софтверска решења која обухватају наведени проблем

ПОСТОЈЕЋА РЕШЕЊА

- Webots комерцијално решење. Омогућава моделовање, програмирање и симулирање робота. Имплементација је на кориснику.
- Rviz 3D алат за визуелизацију за ROS
- Actin учитавање САD модела и аутоматско креирање контролног система чиме омогућава корисницима интерактивно експериментисање са симулираним роботом
- Gazebo openSource. Симулација робота, генерисање података са сензора, рад са постојећим моделима робота или креирање нових модела.

ЛИТЕРАТУРА

- 1.http://wiki.ros.org/ROS/Tutorials
- 2.http://wiki.ros.org/urdf/Tutorials
- 3.http://nn.cs.utexas.edu/?neuroevolution
- 4.Competitive Coevolution through Evolutionary Complexification Kenneth O. Stanley, Risto Miikkulainen
- 5.Evolving Neural Networks through Augmenting Topologies Kenneth O. Stanley, Risto Miikkulainen
- 6.http://nn.cs.utexas.edu/?neat
- 7.http://www.cs.ucf.edu/~kstanley/neat.html