Chapter-2 Complex Number

1

AI24BTECH11032 Shreyansh Sonkar

- 7) If $1,a_1,a_2,a_3...a_{n-1}$ are the *n* roots of unity, then show that $(1-a_1)(1-a_2)(1-a_3)...(1-a_{n-1}) = n$ (1984- 2 Marks).
- 8) Show that the area of the triangle on the Argand diagram formed by the complex numbers

 $z, iz \& z + iz \text{ is } \frac{1}{2}|z|^2.$ (1986-2 Marks).

- 9) Let $Z_1=10+6i$ and $Z_2=4+6i$. if Z is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$ then prove that $Z-7-9i=3\sqrt{2}$. (1990-4 Marks).
- 10) if $iz^3 z^2 z + \iota = 0$ then show that |z| = 1. (1995-5 Marks).
- 11) If $|Z| \le 1$, $|W| \le 1$, show that $(Z W)^2 \le (|Z| |W|)^2 + (\arg Z \arg W)^2$. (1995-5 Marks).
- 12) Find all non-zero complex numbers Z satisfying $\bar{Z}=iZ^2$. (1996-2 Marks).
- 13) Let z_1 and z_2 be roots of the equation $z^2+pz+q=0$, where the coefficients p and q may be complex numbers. Let **A** and **B** represent z_1 and z_2 in the complex plane . if $\angle ABC = \alpha \neq 0$ and OA=OB, where O is the origin, prove that $p^2=4q\cos^2\left(\frac{\alpha}{2}\right)$. (1997-5 Marks)
- 14) For complex number z and w,prove that $|z|^2 w |w|^2 z = z w$ if and only if z = w or w = 1. (1999-10 Marks).
- 15) Let a complex number α , $\alpha \neq 1$, be a root of the equation $z^{p+q}-z^p-z^q+1=0$, where \mathbf{p},\mathbf{q} are the distinct primes. Show that either $1+\alpha+\alpha^2+...+\alpha^{p-1}=0$ or $1+\alpha+\alpha^2+...+\alpha^{q-1}=0$, but not both together. (2002-5 Marks)
- 16) If z_1 and z_2 are two complex number such that $|z_1 < 1 < |z_2|$ then prove that $\left|\frac{1-z_1\bar{z}_2}{z_1-z_2}\right| < 1..$ (2003-2 Marks)
- 17) Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$ where $|a_r|$; 2. (2003-2 Marks)
- 18) Find the centre and radius of circle given by $\left| \frac{z-\alpha}{\beta} \right| = k, k \neq 1$ where, $z = x + i, \alpha = \alpha_1 + i\alpha_2$, $\beta = \beta_1 + i\beta_2$. (2004-2 Marks)
- 19) If one the vertices of the square circumscribing the circle $|z 1| = \sqrt{2}$ is $2 + \sqrt{3}i$ find the other vertices of the square

(2005-4 Marks)

PASSAGE-1

Let A,B,C be three sets of complex number as defined below

$$\mathbf{A} = \{z: | \operatorname{Im} z \ge 1\}$$

B={
$$z: |z-2-i|=3$$
}

$$C = \{z: Re((1-i)z) = \sqrt{2}\}\$$

- a) The number of element in the set $A \cap B \cap C$ is. (2008) (a) 0 (b) 1 (c) 2 (d) ∞
- b) Let **z** be any point in $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$ Then, $|z+1-i|^2 + |z-5-i|^2$ lies between. (2008)
 - i) 25 and 29

iii) 35 and 39

ii) 30 and 34

- iv) 40 and 44
- c) Let z be any point **A B C** and let **w** be any point satisfying |w 2 i| < 3. Then, |z| |w| + 3 lies between. (2008)
 - i) -6 and 3

iii) -6 and 6

ii) -3 and 6

iv) -3 and 9