CS152-12

Hongchen Cao 2019533114

2020/12/15

1

- 1. At the first time, Olga can records $(r_1, y_1, \mathbf{Cert}(Bob))$.
- 2. Then Olga can pretends to be Bob and send $(r_1, y_1, \mathbf{Cert}(Bob))$ to Alice.
- 3. Then Olga will get $(r'_2, y'_3, \mathbf{Cert}(Alice))$ where r'_2 is a random challenge and $y'_3 = sig_{Alice}(r'_2)$ is a signature.
- 4. Then Olga can pretends to be Alice and send $(r'_2, y'_3, \mathbf{Cert}(Alice))$ to Bob.
- 5. Then Olga will get $sig_{Bob}(r_2)$ and he can forward this response to Alice.

- 1. At the first time, Bob sends $(r_1, \mathbf{Cert}()Bob)$ to Alice.
- 2. Then, adversary can records $(r_1, \mathbf{Cert}()Bob)$ and pretends to be Bob and send it to Alice.
- 3. Then adversary will get $(r_2, y_1, \mathbf{Cert}(Alice))$ where y_1 is $\mathbf{sig}_{Alice}(ID(Bob)||r_1||r_2)$.
- 4. Then adversary can pretend to be Alice and send $(r_2, y_1, \mathbf{Cert}(Alice))$ to Bob.
- 5. Finally, Bob will accept and adversary broke this protocol.

- 1. First, Bob chooses a random $r \in \mathbb{Z}_n$. If gcd(r, n) > 1 then Bob obtains the factorization, but it happens with extremely low probability.
- 2. Otherwise, Bob computes $x = r^2 \mod n$.
- 3. Then Alice will send Bob y which is a square root of $x \mod n$.
- 4. Since Alice does not know r, the probability that $y \not\equiv \pm r \mod n$ is $\frac{1}{2}$. So, by calculating $\gcd(y+r,n)$ Bob can gets the factorization n=pq.
- 5. Finally, he can pretends Alice.

```
4
```

4.1

```
In [1]: p = 122503

q = 1201

t = 10

alpha = 11538

In [2]: (p-1)/q

Out[2]: 102

In [7]: mod(5 ^ 102, p) = alpha

Out[7]: True

So, \alpha has order q in \mathbb{Z}_p*
```

4.2

4.3

4.4

```
In [12]: r = 501
y = mod(k + a * r, q)
y
Out[12]: 776
```

4.5

```
In [15]: mod(pow(alpha, y) * pow(v, r), p)
Out[15]: 89937
In [16]: mod(pow(alpha, k), p)
Out[16]: 89937
```