RMM

Claim

For all mice A (determinate or randomized) there exists $p_1,...,p_n E[A_{COST}(p_1,p_2,...,p_n)] > (\log m)OPT(p_1,p_2,...,p_n)$

Proof idea

Show that a cat exists that will cause A to move $> \log m$ times more than OPT.

If cat probes at random then no matter what mouse A does, Cat finds it with probability $\frac{1}{m}$. Expected number of times A must move over sequence of t probes is $\frac{t}{m}$. How many Random Cat probes until cat examines all m spots? (coupon collector problem).

 $m \ln m$.

So OPT moves once every $m \ln m$ probes while A moves $\frac{m \ln m}{m}$ times. A faults $\geq \ln m$ times OPT.

Hash Functions

Universal Hash functions

\$m = \$size of hash table.

A set of hash functions H that map $U \to \{0,1,\dots,m-1\}$ is universal if for all distinct keys $k,l \in U$ the number of hash functions $h \in H$ such that h(k) = h(l) is at most $\frac{|H|}{m}$.

Chaining using universal hash functions

Hash n keys into a table T of size m using hash function $h \in_R H$

$$\alpha = \frac{n}{m} = \operatorname{load}$$
 factor

Theorem: For key k,

$$E[n_{h(k)}] \le \{\alpha + 1ifkey \in T, \alpha ifk \notin T\}$$