T1)Demuestre que si z=f(x,y) es diferenciable en el punto (x_0,y_0) entonces existen todas las derivadas direccionales en dicho punto

Dada $f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^2 \sin \mathbf{y}}{\mathbf{x}^2 + \mathbf{y}^2}$, si $(\mathbf{x}, \mathbf{y}) \neq (\mathbf{0}, \mathbf{0})$ y $f(\mathbf{x}, \mathbf{y}) = \mathbf{0}$ si $(\mathbf{x}, \mathbf{y}) = (\mathbf{0}, \mathbf{0})$ verifique que $f(\mathbf{x}, \mathbf{y})$ es continua y derivable en toda dirección en $(\mathbf{0}, \mathbf{0})$, pero no es diferenciable en dicho punto, halle también las cuatro direcciones en que la derivada direccional es nula

T2)Defina punto regular y singular de una curva C y analice si la curva solución de la ecuación diferencial y'-2y=x, que pasa por (0,-1/4) es regular en dicho punto y halle la recta tangente a la misma en ese punto

P1)Sea C la curva definida como la intersección de las superficies de ecuaciones $y = x^2$ y $e^{xz-1} - xy + \ln yz = 0$ si L_0 es la recta tangente a C en A=(1,1,1), calcule la distancia desde A hasta el punto en que L_0 interseca al plano de ecuación x + y = 8

P2)Aproxime el valor $1.01^{1,98}$ utilizando el polinomio de Taylor hasta el 2do orden de una función adecuada en el punto A=(1,2)

P3)Sea w=f(u,v) definida implícitamente por: $3v + ue^{2w} - w = 1$ con f(7,-2)=0. Si u=x-2y y v=x+y, halle el polinomio de Taylor de primer orden para w=(x,y) en el punto (1,-3) y utilícelo para calcular aproximadamente el valor de w cuando x=0,97 e y=-3,01

P4)Halle los extremos relativos de $f(x,y)=x^4+y^4-4xy+1$ y clasifíquelos