Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 412374, v.1

Punti: / 30	Tempo:
 1 (3 pt) Dato il seguente testo: Esplicitare l'argomento, se esiste. Formalizzare l'argomento, se formalizzabile secon classica. Dimostrare perché l'argomento è valido secondo lo è. 	
4. Determinare se l'argomento è fondato.	
Se Pino ha vinto la corsa campestre, allora Nino è a è arrivato secondo. Quindi Pino non ha vinto la cors	
$\bf 2$ ($\bf 3$ $\bf pt$) Per ogni coppia ordinata (x_n,x_{n+1}) : 1. formalizzare siano contraddittori 3. determinare se formino un in enunciato sia conseguenza logica del primo tramite	ssieme coerente 3. determinare se il secondo
a_1 . Se Gotham esiste allora non ci sono superei	roi.
$a_{2}.$ Non ci sono supereroi.	
$oldsymbol{b_1}$. Il frutto è colorato.	
$oldsymbol{b_2}$. Il frutto è acerbo ma non verde.	
c_1 . Non si può certo dire che piova.	
$c_{2}.$ Piove.	

3 (9 pt)

a.
$$p \lor q, \sim q \vdash p$$

b.
$$(p\supset q)\wedge (p\supset r)\vdash p\supset (q\wedge r)$$

$$\mathbf{c.}\; p \vee (q \vee r) \vdash q \vee (p \vee r)$$

4 (15 pt)

Teoria (1). È vero che «Se $\alpha, \beta \in \Gamma$, allora $\Gamma \vdash \alpha \land \beta$ »? Si spieghi perché oppure si mostri un controesempio.

Teoria (2). È vero che « $\alpha, \beta \in \Gamma$ se e solo se $\Gamma \models \alpha \land \beta$ »? Si spieghi perché oppure si mostri un controesempio.

Teoria (3). Parliamo di numeri naturali $\{0,1,2,\ldots\}$. Sia S l'estensione della funzione successore sui numeri naturali, ovvero l'insieme di tutte le coppie ordinate (a,b) tali che b=a+1. Sia M l'estensione della relazione minore o uguale sui numeri naturali, ovvero l'insieme di tutte le coppie ordinate (a,b) tali che $a\leq b$. È vero che $S\subseteq M$? Motivare la risposta.

Teoria (4). Dato un insieme di formule $\Gamma = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ calcolare il numero di interpretazioni V tali che $\left[\varphi_n * \varphi_{n+1}\right]_V = 1$ dove * indica tutti gli operatori logici in **L**. Dimostrare il procedimento.

Teoria (5). Per ogni caso, costruisci un esempio di relazione:

- 1. riflessiva e antisimmetrica, ma non transitiva;
- 2. simmetrica e riflessiva, ma non transitiva né antisimmetrica;
- 3. antisimmetrica e transitiva, ma non riflessiva né simmetrica.