Thermodynamique

Système isolé aucun échange

Système fermé aucun échange de matière

Système ouvert échanges possibles

Convention égoïste
Transfert thermique Qconduction, convection,
rayonnement
Travail W

Travail W forces de pression W_p autres W_u

Équilibre thermodynamique

Équilibre thermique

T uniforme

 $T = T_{\text{ext}}$ si contact thermique

Équilibre thermique

 $\begin{aligned} P & \text{ uniforme} \\ P &= P_{\text{ext}} \text{ si paroi mobile} \end{aligned}$

Équilibre de diffusion

 μ uniforme

 $\mu = \mu_{\rm ext}$ si système ouvert

- Fonctions d'état

Énergie interne U $U = \mathcal{E}_{c,micro} + \mathcal{E}_{p,micro}$ Enthalpie H

H = U + PV

Entropie S

 $dU = TdS - PdV + \mu dn$

Transformations

Transformation		Relation utile (GP)	Travail W_p
quelconque		PV = nRT	$-\int_{V_i}^{V_f} P_{\text{ext}} \mathrm{d}V$
monobare	$P_{\text{ext}} = \text{cste}$		$-P_{\mathrm{ext}}\Delta V$
isobare	P = cste	$\frac{T}{V} = \text{cste}$	$-P\Delta V$
monotherme	$T_{\rm ext} = {\rm cste}$		
isotherme	$T = T_{\text{ext}} = \text{cste}$	PV = cste	$-nRT_{\rm ext}\ln\frac{V_f}{V_i}$
isochore	V = cste	$\frac{P}{T} = \text{cste}$	0
${\it quasistatique/r\'eversible}$			$-\int_{V_i}^{V_f} P \mathrm{d}V$
adiabatique	Q = 0		$\Delta U \ (1^{\mathrm{er}} \ \mathrm{pp})$
adiabatique réversible (GP)	$\Delta S = 0$	$PV^{\gamma} = \text{cste (Laplace)}$	$\Delta U \ (1^{\mathrm{er}} \ \mathrm{pp})$

_ Premier principe .

 $\begin{aligned} & \mathbf{Cas} \ \mathbf{g\acute{e}n\acute{e}ral} \\ \Delta \mathcal{E}_{\mathrm{m}} + \Delta U &= W_{\mathrm{n.c.}} + Q \end{aligned}$

Cas courant $\Delta U = W + Q$

 $egin{aligned} \mathbf{Monobare} &+ \mathbf{cute{eq.} E.I./E.F.} \ \Delta H &= W_u + Q \end{aligned}$

Deuxième principe

$$\Delta S = S_{\rm \acute{e}ch} + S_{\rm cr\acute{e}\acute{e}e} \quad {\rm avec} \quad S_{\rm \acute{e}ch} = \frac{Q}{T_{\rm ext}} \quad {\rm et} \quad S_{\rm cr\acute{e}\acute{e}e} \geqslant 0 \quad (S_{\rm cr\acute{e}\acute{e}e} = 0 \ {\rm si \ irr\acute{e}versible})$$

Modèles

	GP	PCII
Équation d'état	PV = nRT	V = cste
Capacités thermiques	$C_{ m v} = \left. rac{\partial U}{\partial T} ight _{V}$	et $C_{\rm p} = \left. \frac{\partial H}{\partial T} \right _P$
	$C_{\mathrm{p}} = C_{\mathrm{v}} + nR$ $\gamma = \frac{C_{\mathrm{p}}}{C_{\mathrm{v}}}$ $C_{\mathrm{v}} = \frac{nR}{\gamma - 1}$ et $C_{\mathrm{p}} = \frac{\gamma nR}{\gamma - 1}$	$C_{\rm v} = C_{\rm p} = C$
Cas notables	GPM : $C_{\rm v} = \frac{3}{2}nR$; $C_{\rm p} = \frac{5}{2}nR$	capacité thermique massique $c = \frac{C}{m}$
	GPD : $C_{\rm v} = \frac{5}{2}nR$; $C_{\rm p} = \frac{7}{2}nR$	$c_{\rm eau} = 4.18 {\rm kJ \cdot K^{-1} \cdot mol^{-1}}$
Énergie interne et enthalpie	$\Delta U = C_{\rm v} \Delta T$ et $\Delta H = C_{\rm p} \Delta T$	$\Delta U = \Delta H = C\Delta T$
	$\Delta S = \frac{nR\gamma}{\gamma - 1} \ln \frac{T_f}{T_i} - nR \ln \frac{P_f}{P_i}$	
Entropie	$\Delta S = \frac{nR}{\gamma - 1} \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}$	$\Delta S = C \ln \frac{T_f}{T_i}$
	$\Delta S = \frac{nR}{\gamma - 1} \ln \frac{P_f}{P_i} + \frac{nR\gamma}{\gamma - 1} \ln \frac{V_f}{V_i}$	

- Transitions de phase ---

Enthalpie massique $\Delta_{1\rightarrow 2}h$

$$\Delta_{1\to 2}h = h_2 - h_1$$

Entropie massique
$$\Delta_{1\to 2}s$$

$$\Delta_{1\to 2}s = s_2 - s_1 = \frac{\Delta_{1\to 2}h}{T_{1\to 2}}$$

Machines thermiques

Fonctionnement cyclique

$$\Delta U = 0$$
 et $\Delta S = 0$

Inégalité de Clausius

$$\frac{Q_c}{T_c} + \frac{Q_f}{T_f} \leqslant 0$$

Diagramme de Clapeyron (GP)

Réfrig. + - +
$$e = \frac{Q_f}{W}$$
 $\frac{T_f}{T_c - T_f}$

$$\mathbf{PAC} \qquad + \qquad - \qquad + \qquad e = -\frac{Q_c}{W} \quad \frac{T_c}{T_c - T_t}$$

