Colles Bossuet **KPAKPO Kévin** 22/05/2018

GILIBERT

Exercice 1: un endomorphisme conservant le signe

On considère ici l'espace vectoriel $\mathbb{R}[X]$ et l'endomorphisme u qui au polynôme P associe le polynôme $\sum_{k=0}^{+\infty} P^{(k)}$.

- 1. Vérifier que, pour $P \in \mathbb{R}[X]$, l'image u(P) de P par u admet bien un sens puis que $u \in \mathcal{L}(\mathbb{R}[X])$.
- 2. Si $P \in \mathbb{R}[X]$ prend ses valeurs dans \mathbb{R}^+ montrer qu'il en est de même de Q = u(P).

DE THOMASSIN

Exercice 2¹

Soit T l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $T(M) = {}^{\mathrm{t}}M$. Calculer tr T et det T.

Exercice 3

Soit f un endomorphisme de'un \mathbb{K} -espace vectoriel E tel que Ker f soit de dimension finie. Montrer que, quel que soit $n \geq 1$, Ker f^n est de dimension finie.

EL JANATI

Exercice 4: exponentier deux fois? Maintenant on peut ²

Pour une fonction f de \mathbb{R} dans \mathbb{R} , on appelle \mathscr{P} la propriété

$$f \in \mathscr{C}(\mathbb{R}; \mathbb{R})$$
 et $f \circ f = \exp$

1. Montrer qu'il existe une unique fonction f satisfaisant la propriété \mathscr{P} et de plus, telle que

$$\forall x \in [0, 1/2], f(x) = x + 1/2$$

- 2. Soit f satisfaisant \mathscr{P} .
 - (a) Montrer que f est strictement monotone, qu'elle n'a aucun point fixe puis qu'elle croît
 - (b) Montrer que, si l'on pose a = f(0), on a alors 0 < a < 1 et f([0, a]) = [a, 1].
 - (c) Montrer que l'image $f(\mathbb{R})$ est un intervalle de la forme $l, +\infty$, avec l < 0.

GUENOUNNI

Exercice 5: une équation fonctionnelle

On désigne par F la fonction de \mathbb{R} dans \mathbb{R} qui à x associe $e^x - x$.

¹Source: Les clefs pour l'X

 $^{^2 \}mathrm{Source}\colon \mathrm{Le}$ jardin d'Eiden : Une année de colles en Math Spé MP

- 1. (a) Montrer qu'il existe une unique fonction ϕ de \mathbb{R} dans \mathbb{R} décroissante et telle que $F \circ \phi = F$. On ne chercher pas à exprimer $\phi(x)$ en fonction de x.
 - (b) Comparer les valeurs F(-x) et F(x) pour x réel et en déduire que $|\phi(x)| < |x|$ pour tout $x \le 0$
- 2. Montrer que ϕ est une involution continue de \mathbb{R} sur lui-même.
- 3. Montrer que ϕ est de classe \mathscr{C}^1 et concave.
- 4. Déterminer des équivalents simples de $\phi(x)$ lorsque $x \to +\infty$ puis lorsque $x \to -\infty$. Donner l'allure du graphe de ϕ .

VIGNON

Exercice 6: quand M commute avec M'

Soit I un intervalle de \mathbb{R} de longueur > 0 et une application M de classe \mathscr{C}^1 de I dans $\mathscr{M}_2(\mathbb{R})$, de la forme:

$$x \in I \to M(x) = \left[egin{array}{cc} a(x) & b(x) \\ c(x) & d(x) \end{array}
ight]$$

- 1. (a) On suppose dans cette question que M(x) et M'(x) commutent pour tout x et que la fonction b ne s'annule pas. Que dire alors des fonctions c/b et (d-a)/b?
 - (b) Montrez, en l'explicitant, qu'il existe une matrice $A \in \mathscr{M}_2(\mathbb{R})$ telle que, pour tout $x \in I, M(x) \in \text{Vect}(I_2, A)$. Montrer que les matrices M(x) et M(x') commutent pour tout couple (x, x').
- 2. Soit A une matrice non scalaire dans $\mathcal{M}_2(\mathbb{R})$. Montrer qu'il existe $X_0 \in \mathbb{R}^2$ tel que (X_0, AX_0) soit une base de \mathbb{R}^2
 - On suppose X_0 ainsi choisi. Si $B \in \mathcal{M}_2(\mathbb{R})$, il existe donc un couple $(u_0, v_0) \in \mathbb{R}^2$ tel que $BX_0 = u_0X_0 + v_0AX_0$. Montrer que si la matrice B commute avec A, on a $B = u_0I_2 + v_0A$.
- 3. On suppose dans cette question que M(x) et M'(x) commutent pour tout $x \in I$ et que M(x) n'est une matrice scalaire pour aucun x.
 - (a) Montrer qu'il existe alors un unique couple (u,v) d'applications continues de I dans \mathbb{R} tel que $M'(x) = u(x)I_2 + v(x)M(x)$ pour tout $x \in I$
 - (b) Pour $x_0 \in I$ donné, on pose $C(x) = M(x)M(x_0) M(x_0)M(x)$ pour tout $x \in I$. Montrer que C satisfait une équation différentielle très simple, dans laquelle intervient la fonction v, puis la résoudre en la ramenant par exemple à des équations différentielles scalaires. En conclure que M(x) et M'(x) commutent pour tout couple (x, x').
- 4. Réciproquement, on suppose que M est une application dérivable d'un intervalle I de \mathbb{R} et à valeurs dans $\mathcal{M}_n(\mathbb{R})$ telle que M(x) et M(x') commutent quels que soient x et x' dans I. Montrer alors que M(x) et M'(x) commutent pour tout $x \in I$.