Examples of Diels-Alder Reaction

Me⁻

Me^{*}

Ме

Diels-Alder reaction

Reactivity of Diene

Factors affecting reactivity of diene

- 1) Ability of diene to adopt an *s-Cis* conformation and Planarity of the system
- 2) Electron donor groups

Diels-Alder reaction

Reactivity of Diene

Higher electron donating tendency

Diels-Alder reaction

Reactivity of Dienophile

Factors affecting reactivity of dienophile

- 1) Electron withdrawing groups
- 2) A weak π bond

More electron deficiency- higher the reactivity

More electron withdrawing tendency- higher the reactivity

Regioselectivity of the Diels-Alder reaction

Due to size of MOs, and distribution of partial charges:

OMe
$$CO_2Me$$
 OMe OMe

MOs closely matched in size react with each other more efficiently (stepwise analogy).

Relative orientation of the groups in the dienophile remains unchanged

Endo and Exo isomers

Endo meaning "within, inner, absorbing, or containing"

Exo meaning external; from outside.

Is it Exo Product or Endo Product?

Endo and Exo isomers

Exo product

exo and endo Transition States and Molecular Orbitals

Interaction between extended π -orbitlas of diene and dienophile is possible which can lower the energy of the transition state

Lower –energy transition state = faster rate!

exo product

Thermodynamic product

This interaction is not available in exo-transition state

diene

dienophile

Bond forming interactions

Secondary orbital interactions