

BETRIEBSWIRTSCHAFTSLEHRE FÜR INGENIEURE

AGENDA BW 1-II

STANDORT DER UNTERNEHMUNG

- 1. STANDORTFAKTOREN
- 2. STANDORTSTRATEGIEN
- 3. STANDORT-PORTFOLIO
- 4. STANDORTBEDINGUNGEN IN DEUTSCHLAND
- 5. STANDORTPLANUNGSMODELLE
- 6. PRAXISBEISPIELE

1. STANDORTFAKTOREN

BWL für Ingenieure - Standort

Standortfaktoren sind maßgeblich für die Attraktivität von Unternehmensstandorten

Standortfaktoren

verantwortlich

Quantitative Standortfaktoren

Beitrag zum Unternehmenserfolg ist direkt messbar

- Transportkosten der Produkte vom Standort zu den Absatzmärkten
- Grundstückskosten (inkl. Erschließungskosten)
- Kosten der Errichtung der Gebäude
- Personalkosten
- Standortabhängige Finanzierungskosten
- Regionale Fördermaßnahmen der öffentlichen Hand (Investitionszuschüsse, Sonderabschreibungen, Finanzierungshilfen)
- Grund- und Gewerbesteuer (ortabhängig unterschiedliche Hebesätze)
- Gewinnsteuern (bei internationaler Betrachtung)
- Regionale Differenzierung der Absatzpreise

Qualitative Standortfaktoren

Beitrag zum Unternehmenserfolg ist **nicht direkt messbar** \rightarrow subjektive Schätzung der Beiträge durch Planungs- und Entscheidungsträger

- Grundstück (Lage, Form, Beschaffenheit, Bebauungs-vorschriften, Umgebungseinflüsse, Ausdehnungs-möglichkeiten)
- Verkehrslage des Grundstücks (Verbindung zum Personen- und Güterverkehrsnetz)
- Arbeitskräftebeschaffung (Bevölkerungsstruktur und –aus-bildung, Arbeitskraftreserven, Konkurrenz auf dem Arbeitsmarkt)
- Transportsektor (Speditionsunternehmen, Nähe eines Seehafens)
- Absatzbereich (Branchen-Goodwill, Kaufkraft der Bewohner, Konkurrenz)
- Investitions- und Finanzierungsbereich (Bankplatz, Kreditinstitute, N\u00e4he von Anlagen- und Maschinenbaufirmen)
- Infrastruktur des Standortes (Wohnraum, Krankenhäuser, Bildungs- und Kultureinrichtungen, landschaftliche Lage, Umgebung)

2. STANDORTSTRATEGIEN

BWL für Ingenieure - Standort Prof. Dr.

Leitlinien für die langfristige Entwicklung der Betriebsstätten- und Standortstruktur sind von fundamentaler Bedeutung

Strategische Aspekte der Standortplanung

Gegenstand

Langfristige Entwicklung der Betriebsstätten- bzw. Standortstruktur, die ein Ergebnis isolierter Entscheidungen sein kann oder mittels Standortstrategien gesteuert wird.

Arten von Standortstrategien

Expansionsstrategie:

Art und Weise der räumlichen Verteilung eines Zuwachses der Produktionskapazität

Konzentrationsstrategie:

Vermeidung standortbedingter Kosten einer Unternehmung durch räumliche Umverteilung

Kontraktionsstrategie:

Vermeidung standortbedingter Kosten einer Unternehmung durch Stilllegung von Produktions-kapazitäten

Unternehmen können unterschiedliche Standortstrategien verfolgen

3. STANDORT-PORTFOLIO

BWL für Ingenieure - Standort

Die Entscheidung bezüglich der Standortstrategie lässt sich mithilfe eines Portfolio-Modells unterstützen

Dimensionen des Standort-Portfolios

Auf Basis eines Standort-Portfolios werden **Normstrategien** festgelegt, die Auskunft darüber geben, welche Standortstrategie(-n) ein Unternehmen wählen sollte.

Ordinate

Momentanes und zukünftiges Erfolgspotenzial der erstellten Produkte (z.B. unter Heranziehung von Marktanteil, Marktpotenzial etc.)

Abszisse

Standortattraktivität; unterteilbar in

- Interne (endogene) Standortattraktivität, die durch die Unternehmung gestaltbar ist (z.B. F&E-Kapazität, Fabrik-Layout)
- Externe (exogene) Standortattraktivität, die durch die Unternehmung nicht/kaum gestaltbar ist (z.B. Lohnniveau, öffentliche Auflagen)

Das Standort-Portfolio empfiehlt grundlegende Normstrategien

Standort-Portfoliomatrix mit Normstrategien

hoch

Erfolgspotenzial der hergestellten Produkte

gering

Quelle: Corsten/Gössinger (Produktionswirtschaft 2016)

4. STANDORTBEDINGUNGEN IN DEUTSCHLAND

BWL für Ingenieure - Standort Prof. Dr. Kai-Ingo Voigt | 02.11.2021 | 11

Deutschland bietet als Standort hervorragende Ausbildungsbedingungen...

Standortbedingungen in Deutschland (1/2)

	Zuliefermarkt	Rohstoffe und Vorleistungen (insbesondere produktionsnahe Dienstleistungen)	•
		Haushaltsnahe Dienstleistungen	•
	Absatzmarkt	Für Investitionsgüter	•
		Für Gebrauchs- und Verbrauchsgüter	<u>-</u>
(Z)	Kosten der Einsatzfaktoren	Arbeitskosten	<u>-</u>
(\$)		Kapitalkosten	•
	Potenziale des Arbeitsmarktes	Ausbildung	(+)
		(Fach-)Arbeitskraftangebot	<u>-</u>

...die staatlichen Rahmenbedingungen sind jedoch eher kritisch zu betrachten

Standortbedingungen in Deutschland (2/2)

§	Regelung der Arbeits- beziehungen	Gesetzliche Regelungen	zu starr
	Staatliche Rahmen- bedingungen	Steuern (insb. Ökosteuern)	-
		Bürokratie-Belastung	•
		Administration	•
		Rahmenbedingungen	weitgehend verlässlich
	Potenziale der Infrastruktur	Forschungsinfrastruktur	•
		Bildungsinfrastruktur	reformbedürftig
		Verkehrsinfrastruktur	(+)

5. STANDORTPLANUNGSMODELLE

BWL für Ingenieure - Standort Prof. Dr. Kai-Ingo Voigt | 02.11.2021 | 14

Modell 1: Das einfache Transportproblem (1/2)

Das einfache Transportproblem

Zielfunktion

$$K = \sum_g \sum_h T_{gh} \cdot X_{gh} = Min!$$

Symbole

: Index der Lagerorte

h: Index der Bedarfsorte

X_{gh}: Transportmengen (ME/Planperiode) = Variable

des Modells

 T_{gh} : Transportkostensatz pro ME von g nach h

(EUR/ME)

M⁰_h: Bedarfsmengen (ME/PP)

V_g: Vorratsmengen (ME/PP)

K: Kosten in GE (EUR)

Modell 1: Das einfache Transportproblem (2/2)

Modellformulierung

Zielfunktion

$$K = \sum_{g} \sum_{h} T_{gh} \cdot X_{gh} = Min!$$

Bedarfsdeckung:

$$\sum_{g} X_{gh} = M_h^0 \quad orall h$$

Nebenbedingungen

Vorratsverwendung:

$$\sum_{h} X_{gh} = V_{g}$$
 $\forall g$

Nicht-Negativitätsbedingung (NNB):

$$X_{gh} \geq 0 \qquad \forall g, h$$

Modell 2: Transportproblem und Produktionsaufteilung bei gegebenen Produktionsstandorten

Modellformulierung

Zielfunktion

$$K = \sum_g \sum_h \left(T_{gh} + k_g \right) \cdot X_{gh} = Min!$$

Nebenbedingungen

Bedarfsdeckung:

$$\sum_{g} X_{gh} = M_h^0 \quad orall h$$

Kapazitätsgrenze:

$$c_g \cdot \sum_h X_{gh} \leq C_g \ \forall \, \mathsf{g}$$

Nicht-Negativitätsbedingung (NNB):

$$X_{gh} \geq 0$$
 $\forall g, h$

Zusätzliche Symbole

k_g: variable Stückkosten der Produktion (EUR/ME)

c_g: Produktionskoeffizienten; = benötigte Kapazität in Zeiteinheiten pro Mengeneinheit (ZE/ME)

 C_g : verfügbare Kapazität in g (ZE/PP)

Modell 3: Standortplanung mit Standortspaltung und Errichtungskosten

Modellformulierung

Zielfunktion

$$K = \sum_g \sum_h \left(T_{gh} + k_g \right) \cdot X_{gh} + \sum_g v_g \cdot E_g = Min!$$

Bedarfsdeckung:

$$\sum_{g} X_{gh} = M_h^0 \quad orall h$$

Kapazitätsgrenze:

$$c_g \cdot \sum_h X_{gh} \leq C_g \quad \forall g$$

Nebenbedingungen

Steuerung der 0/1 Variablen:

$$\sum_{h} X_{gh} \leq v_g \cdot L \qquad \forall g, mit$$

$$0 \leq v_g \leq 1$$
 ganzzahlig für $\forall g$

Nicht-Negativitätsbedingung (NNB):

$$X_{gh} \geq 0 \hspace{1cm} \forall \, \mathsf{g,h}$$

Zusätzliche Symbole

 v_g : 0/1-Variable (= 1, Standort g gewählt; = 0, Standort wird wird nicht gewählt)

Errichtungskosten

beliebige Konstante

6. PRAXISBEISPIEL

BWL für Ingenieure - Standort Prof. Dr. Kai-Ingo Voigt | 02.11.2021 | 19

Flexibilisierung und Agilität bestimmen BMWs Werkebelegung

Praxisbeispiel BMW: Standortentscheidung für neue BMW Modellreihe

Kapazitätserweiterung des BMW Werkverbundes notwendig

- Bis 2004: Neue Modellreihe im oberen Bereich der unteren Mittelklasse geplant
- Wichtiges Element der Neuausrichtung des Unternehmens

Aber: Vorhandenen Kapazitäten reichen für zusätzliches Produktionsvolumen nicht aus

- → Kurzfristig: Produktionsanlauf im Werk Regensburg
- → Langfristig: Errichtung eines komplett neuen Werkes

Entscheidung für den Interims-Standort Regensburg

- Aktive Nutzung des BMW
 Werkverbundes mit einheitlichen
 Arbeitsinhalten und -abläufen
- Höhere Effizienz und dauerhafte Sicherung der Auslastung
- Erhöhte Flexibilität in der Werkebelegung
- Kürzere Lieferzeiten für Kunden
- deutlicher Zeitgewinn durch Produktionsanlauf eines neuen Modells in einem bestehenden Werk
- Intensives Training der neuen Mitarbeiter im neuen Werk

Anforderungen an den neuen Standort

- Ausreichende Grundstücksgröße
- Gute verkehrstechnische Anbindung (Autobahn, Eisenbahn, Flughafen)
- Gesamtkostenaspekt
- Qualifiziertes und qualifizierbares Personal
- · Anbindung an den BMW Werkverbund
- Attraktivität des lokalen Marktes
- Am neuen Standort sollen bei BMW & Zulieferbetrieben mehrere Tausend Arbeitsplätze entstehen

Eine Standortentscheidung ist von sehr langfristiger Natur und bedarf einer eingehenden und umfassenden Prüfung.

Quelle: BMW Group, 2000

Produktionsstandorte sollten sich bei ihrer Bewerbung um die neue Modellreihe selbst bewerten

Erhebungsblatt – BMW (Auszüge) (1/3)

Grundstückslage & -größe	
■ Land	
Bundesland	
Stadt / Gemeinde / Anschrift	
Grundstücksfläche	
(200–250 ha in einer Fläche) [h	na]

Grundstückstopographie	
■ Höhenlage über NN (min. & max.)	[m]
 Höhenlage über NN der Erschließungsstraße 	[m]
 Höhenlage über NN des nächsten größeren Gewässers (Fluss, See) 	[m]

	Technische Ver	r-
 Distanz zur nächstmöglichen Stromentnahmestelle (110kV/40MW) Distanz zur nächstmöglichen 	[km]	
Gasanschlussstelle (6.600m3/h) Distanz zur nächstmöglichen	[km]	
Wasserentnahmestelle (450m3/h) Distanz zur nächstmöglichen Telekommunikations-	[km]	
anschlussstelle (2x PMA mit je 60AL; 12x Glasfaser mit je 34MB/sec)	[km]	

& Entsorgung	
 Distanz zur nächsten Schmutzwasserkanalanschlussstelle (250m3/h) Höhe über NN Entsorgung Regenwasser durch Brunnen / Kanal / Gewässer; Höhe über NN Entsorgung Abfälle Feststoffe (2000 t/a) – Entsorgungsträger (ET) Schlämme und Fette (1500 t/a) – Entsorgungsträger Verdünner (95 t/a) – Entsorgungsträger 	[km/m]

Produktionsstandorte sollten sich bei ihrer Bewerbung um die neue Modellreihe selbst bewerten

Erhebungsblatt – BMW (Auszüge) (2/3)

		Beschäftigungsdaten,	bezogen auf die Region	
Region	[Bezeichnung]		Bevölkerung nach Schulabschluss:	
Bevölkerung nach Alt	tersgruppen:		ohne Schulabschluss	[Anzahl + %
0 - 5 Jahre		[Anzahl]	Hauptschulabschluss	[Anzahl + %
6 - 15 Jahre		[Anzahl]	Realschul- / gleichw. Abschluss	[Anzahl + %
16 - 25 Jahre		[Anzahl]	■ Hochschulreife (FH / Uni)	[Anzahl + %]
26 - 45 Jahre		[Anzahl]	noch in schulischer Ausbildung	[Anzahl + %
46 - 65 Jahre		[Anzahl]		
■ 66 und mehr Jahre [Anzahl]		Bevölkerung nach Ausbildungsabschluss:		
insgesamt		[Anzahl]	 ohne berufsbildenden oder Hochschulabschluss 	[Anzahl + %
Bevölkerungsentwicklung:		Berufsausbildung	[Anzahl + %	
		[Anzahl 1980, 1990 + 1999]	■ Meister / Techniker oder	
Gestorbene		[Anzahl 1980, 1990 + 1999]	gleichw. Abschluss	[Anzahl + %
■ Überschuss der		■ FH-/ Uni-Absolventen	[Anzahl + %	
Geborenen (+) bzw	<i>'</i> .		noch in Ausbildung	[Anzahl + %
der Gestorbenen (-	.)	[Anzahl 1980, 1990 + 1999]	■ Schüler nach Schularten	[Anzahl / Schulart

BWL für Ingenieure - Standort

Produktionsstandorte sollten sich bei ihrer Bewerbung um die neue Modellreihe selbst bewerten

Erhebungsblatt – BMW (Auszüge) (3/3)

Lebensumfeld

(Umkreis von ca. 50 km; bitte erläutern, auf welche(n) Kreis(e), Bezirke o.ä. sich die angegebenen Daten beziehen;

Angabe der jeweils neuesten verfügbaren Daten mit Angabe des Bezugsjahres)

 Distanz zum nächsten Ort mit Grund-, Haupt- und weiterführenden Schulen

[Name / km / Schularten]

Distanz zum nächsten Ort mit Hochschulen

(Uni/FH) [Ortsname / km / Art / Fachbereiche]

 Distanz zum nächsten Krankenhaus

[km / Bettenzahl]

 Distanz zur nächsten Mittel-/ Großstadt

[Name - Einwohnerzahl - km]

Medizinische Versorgung

■ Ärzte [je 100.000 Einwohner]

■ Zahnärzte [je 100.000 Einwohner]

Apotheken [je 100.000 Einwohner]

verfügbare Krankenhausbetten [Anzahl]

Kriminalität (neueste Zahlen!)

[Straftaten bezogen auf 100.000 Einwohner / Auflistung]

 Vorhandensein einer deutschen / internationalen Schule (gilt nur für Länder außerhalb der BRD)

[Ort / km / Art + Name der Schule / Anzahl Schüler]

Automobilzulieferfirmen mit einem Jahresumsatz von min. 10 Mio. DM

■ im Umkreis von 10 km bzw. 10 - 50 km

[Name / Ort / km]

bekannte Ansiedlungsabsichten neuer Automobilzulieferfirmen im Umkreis von 50 km

[Name / Ort / km / Umfang]

Daimler verfolgte eine Produktions- und Produktmodernisierungs- sowie Globalisierungsoffensive

Praxisbeispiel DaimlerChrysler AG: Gründe und Motive für die Standortwahl

DaimlerChrysler

Ausgangssituation

Neue, globale

Wettbewerbsherausforderungen:

- Stagnierende Nachfrage in den europäischen Kernmärkten
- Hohe Kosten durch ein Produktionssystem, das viele Experten als ineffizient ansahen
- Anwachsender Konkurrenzdruck seitens US-amerikanischer, japanischer und anderer asiatischer Wettbewerber
- Wachsender Produktmodernisierungsund Globalisierungsdruck

Einstieg in den amerikanischen SUV-Markt

Hintergründe:

- USA repräsentieren über 70 Prozent aller weltweiten SUV-Verkäufe
- Einstieg in den Sport Utility Vehicle (SUV)-Markt mit dem Ziel eine Premium-Nische zu bilden
- Passend zur globalen
 Unternehmensstrategie
- Erschließung neuer Absatzmärkte und das Erleichtern der Marktzugangsbedingungen
- Erstellung eines kleinen Projektteams mit voller Kosten- und Marktverantwortung (ca. 120 bis 150 Mitarbeiter)

Montagestätte in Tuscaloosa als Benchmark

Tuscaloosa soll im weltweiten Produktionsverbund weiter **an Bedeutung gewinnen**

- Funktionierendes Supplier-Network mit Systemlieferanten
- Ansiedlung von 120 nationalen und 35 deutschen Zulieferern
- Beste Voraussetzungen für Belieferung der Produktion "just-in-sequence" und "justin-time"
- Minimale Lagerbestände
- Exporte der US-Modelle in Höhe von jährlich einer Milliarde Dollar

Hätte man **Produktionskosten als maßgebliches Kriterium** eingesetzt, wäre man zum damaligen Zeitpunkt an einen Produktionsort in **Russland oder China** nicht vorbeigekommen, wo die Lohnkosten nur ca. 1/30 betrugen.

Fünf eingrenzende Schritte bis zur Entscheidungsfindung

Tesla ist überzeugt vom Standort Deutschland

Praxisbeispiel Tesla Gigafactory: Hauptgründe für den Standort Berlin-Brandenburg

Infrastruktur

- Umfangreiche Infrastruktur mit Fahrradwegen, Straßen und Autobahnen
- Direkte Zugverbindungen
- Nahegelegener neuer internationaler Flughafen BER

Arbeitsmarkt

Berlin kein typischer Automobilcluster

ABER:

- Tesla wird seine Manager deutlich leichter für eine Auslandsstation in Deutschland begeistern können
- Mitarbeiter aus den USA können problemlos direkt zum Werk fliegen
- Hohe Dichte an Wissenschafts- und Forschungseinrichtungen
- Berlin bietet sowohl Zugang zu den umworbenen Top-ITlern als auch zu weniger qualifizierten Arbeitskräften

Ökologie

- Hohe Verfügbarkeit von erneuerbare Energien in Brandenburg
- Starke Verbindung von Klimaschutz mit Wirtschaftsstärke in der Region
- Moderne und nachhaltige Arbeitsumgebung
- Bei elektrischer Leistung aus Öko-Energien pro Einwohner ist Brandenburg bundesweit führend

"Everyone knows that German engineering is **outstanding**, for sure. That's part of the **reason** why we are locating our Gigafactory Europe in Germany,"

Quelle: Tesla, Handelsblatt, 2019

Nähe zum Arbeitsmarkt und eine gute Verkehrsanbindung waren ausschlaggebend für den Standort in Grünheide

Praxisbeispiel Tesla Gigafactory

Quelle: Tesla, 2020

Beschorner/Peemöller (Betriebswirtschaftslehre 2006): Beschorner, D.; Peemöller, V. H.: Allgemeine Betriebswirtschaftslehre; Grundlagen und Konzepte, 2. Auflage, Berlin 2006.

Corsten/Gössinger (Produktionswirtschaft 2016): Corsten, H.; Gössinger, R.: Produktionswirtschaft; Einführung in das industrielle Produktionsmanagement, 14. Auflage, Oldenburg, 2016.

Kinkel (Standortplanung 2009): Kinkel, S.: Erfolgsfaktor Standortplanung, New York, 2009.

Paul (Betriebswirtschaftslehre 2015): Paul, J.: Praxisorientierte Einführung in die Allgemeine Betriebswirtschaftslehre - Mit Beispielen und Fallstudien, 3. Auflage, Wiesbaden, 2015

Schulze (Standortplanung in globalen Wertschöpfungsketten 2007): Schulze, H.: Standortplanung in globalen Wertschöpfungsketten, 2007.

BWL für Ingenieure - Standort Prof. Dr. Kai-Ingo Voigt | 02.11.2021 | 28