

Algorithmic Methods for Mathematical Models (AMMM)

Intensification and Diversification

Luis Velasco

(Ivelasco @ ac.upc.edu)
Campus Nord D6-107

Intensification

 Portions of the search space that seem promising should be explored more thoroughly to make sure that the best solutions in these areas are indeed found.

• From time to time, one would thus stop the normal searching process to perform an **intensification phase**.

- Intensification is based on some intermediate-term memory
 - number of consecutive iterations that various solution components have been present in good solutions.
- Intensification is not always necessary.
 - There are many situations where the search performed by the normal searching process is enough.

Diversification

- One of the main problems of all methods based on LS is that they tend to be too "local" (as their name implies).
 - they tend to spend most, if not all, of their time in a restricted portion of the search space.
- Diversification forces the search into previously unexplored areas of the search space.
- It is based on some form of long-term memory of the search
 - total number of iterations (since the beginning of the search) that various "solution components" have been present in the current solution or involved in the selected moves.
- Rarely used components can be forced to the current solution (or the best-known solution) and restarting the search from this point.
- Another option is to use frequency as cost such that the components with higher frequency are penalized.

Path Relinking (PR)

- Path relinking (PR) integrates intensification and diversification strategies in a search scheme.
- It generates new solutions by exploring trajectories that connect highquality solutions.

• It starts from one solution, called an **initiating solution**, and generating a path in the neighborhood space that leads toward another solution,

PR algorithm

```
Given solutions a and b (a: initiating and b: guiding solution)

f^* = \min \{f(a), f(b)\}

x^* = \operatorname{argmin} \{f(a), f(b)\}

x = a

while x \neq b do

u^* \leftarrow \operatorname{argmin} \{f(x+u), \forall u \in b \setminus x\}

x \leftarrow x \cup \{u^*\}

(x \leftarrow \operatorname{remove} element v \in x \setminus b from x, so as to make x feasible)

if f(x) < f^* then

f^* \leftarrow f(x)

x^* \leftarrow x

end
```


Feasible Solutions
Luis Velasco

Feasible Solutions

u	1	2	3	4	5	6	7	8	9	10	_			PR		Eva	mple
cr	2	3	4	1	2	2	1	2	3	4					•	LAG	IIIPIC
init	3	1	3	3	3	1	1	5	1	5							
gui	3	1	3	3	1	3	3	1	1	5	a	1	2	3	4	5	Initiating
u	1	2	3	4	5	6	7	8	9	10	m	R3		R3		R1	Solution
a	3	1	3	3	3	1	1	5	1	5] U(a)	{2,6,7,9}	}	{1,3,4,5}		{8,10}	Cost=460
						-			-		- km-cr	· <u> </u>		1		0	
		_			_		_				а		2	3	4	5	1
u	1	2	3	4	5	6	7	8	9	10	m	R2		R3		R1	
a	3	1	3	3	3	1	3	5	1	5	U(a)	{2,6,9}	{{	1,3,4,5,7}		{8,10}	Cost=420
											km-cr	0		0		0	
											а	1	2	3	4	5	
u	1	2	3	4	5	6	7	8	9	10	m	R3		R2		R1	
a	3	1	3	3	1	1	3	5	1	5] U(a)	{2,5,6,9}		{1,3,4,7}		{8,10}	Cost=420
		•			•	•			•		km-cr	0		0		0	
											•						•
											а	1	2	3	4	5	
	4	0	0	4	_	0	7	0	0	40	m	R2		R3		R1]
u	1	2	3	4	5	6	7	8	9	10]U(a)	{2,5,9}	 	1,3,4,6,7}		{8,10}	Cost=420
a	3	1	3	3	1	3	3	5	1	5	km-cr		${\mathbb H}$	0		0,10	
											KIII-CI	U		U		1 0	
																_	
	1	2	3	1	_	G	7	o	9	10	а	1	2	3	4	5	O i al!
u	-	1		4	5	6	7	8	9	10	m	R3		R3		R1	Guiding Solution
а	3		3	3	1	3	3			5	⊔ U(a)	{2,5,8,9}		{1,3,4,6,7}		{10}	
4											1		1 1				Cost-460

Algorithmic Methods for Mathematical Models (AMMM)

Luis Velasco

km-cr

0

Cost=460

2

0

Elite Set (ES)

- S enters ES if either:
 - f(S) < f(bestES) or</p>
 - f(S) < f(worstES) and d(S,ES) ≥ d(ES)</p>
- if S enters ES one solution in ES must leave ES:
 - closest S' in ES to S with $f(S') \ge f(S)$

 $d(S,ES)=min \{|S \oplus S'|, S' \in ES\}$

 $d(ES)=min \{|S' \oplus S''|, S',S'' \in ES\}$

Symmetric difference

 $A \bigoplus B = (A \cup B) \setminus (A \cap B)$

GRASP with PR

- Heuristic hybridization: Combine several techniques.
 - GRASP + PR -> Diversification + Intensification

Hybrid meta-heuristics

- Example: multi-greedy + PR
 - Three different constructive algorithms to provide diversification.
 - Path Relinking finds new solutions in the path connecting two solutions.

Hybrid meta-heuristics: Solving Time

G3 provides feasible solutions in few miliseconds (20-50 msec)

G1 and G2 provide better solutions but at the expense of higher computation time

Multi-start with PR provides the best results:

Algorithmic Methods for Mathematical Models (AMMM)

Intensification and Diversification

Luis Velasco

(Ivelasco @ ac.upc.edu)
Campus Nord D6-107