

What we have learnt

- Arithmetic and Logic operations
- Histograms

What we have learnt

Content

- Enhancement Techniques
- Segmentation
- Low Pass Filters
- High Pass Filters

Image Enhancement Techniques

Image Enhancement Techniques

- A blurring image happens when the camera takes a picture out of focus.
- Sharper regions in the image lose their detail, normally as a disc/circular shape.
 Then each pixel in the image is mixed in with its surrounding pixel intensities.
- Image enhancement techniques are very important not only to improve the subjective quality of an image for human viewing, but also to modify the image in such a way as to make it more suitable to further analysis and automatic extraction of its contents.

Image Enhancement Techniques

- We have different types of enhancement techniques:
 - Low pass Filters
 - Average Filtering
 - Gaussian filter
 - Nonlinear filtering
 - High Pass filters
 - Laplacian filter

LOW PASS FILTER

Average Filtering

- In this technique it is calculates the average of the neighbourhood pixels
- This box is named as kernel box.

30	100	130
130	Pixel	160
50	100	210

No OpenCV it is used the blur method for this technique.

Average Filtering

Low Pass Filter

Average Filter

Gaussian Filter

- It is used a kernel gaussian
- This is calculated using the cv2.GaussianBlur.
- The function requires the specification of a width and height with odd numbers
- Optionally, it is possible to specify the number of standard deviations on the X and Y axis (horizontal and vertical).

A 2D Gaussian is just the product of 1D Gaussians:

$$g(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}} = g_{\sigma}(x) \cdot g_{\sigma}(y)$$

Gaussian Filter vs Neighbourhood

Gaussian

Average

- In linear filtering each output pixel is a weighted summation of some number of input pixels;
- Easier to compose and are amenable to frequency response analysis. In nonlinear filtering a combination of neighbouring pixels is performed.
- They are also known as rank-order filters.
- Median Filter consists in finding the median value on a neighbourhood with a given size. It is more effective in not blurring edges.

Nonlinear Filter

- When applying a median blur, we first define our kernel size k.
- Then, as in the averaging blurring method, we consider all pixels in the neighbourhood of size kxk.
- Instead of replacing the central pixel with the average of the neighbourhood, we replace the central pixel with the median of the neighbourhood.
- Median blurring is more effective
- Averaging and Gaussian methods can compute means or weighted means for the neighbourhood
- By replacing our central pixel with a median rather than an average, we can substantially reduce noise.

High PASS FILTER

Laplacian Filter

- Laplacian filter is a High-Pass Filter (HPF) whose effect on the output image is equivalent to preserving or emphasizing its high-frequency components (e.g., fine details, points, lines, and edges), i.e., to highlight transitions in intensity within the image.
- Linear HPFs can be implemented using 2D convolution masks with positive and negative coefficients, which correspond to a digital approximation of the Laplacian, a simple, isotropic (i.e., rotation invariant) second-order derivative that can respond to intensity transitions in any direction.

Laplacian Filter

Image Segmentation

- Extract symbolic information as regions of interest
- Finding groups of pixels
- Image segmentation techniques can vary widely according to:
 - **type of image** (*e.g.*, binary, gray, color).
 - choice of mathematical framework (e.g., morphology, image statistics, graph theory).
 - type of features (e.g., intensity, color, texture, motion) and
 - **approach** (e.g., top-down, bottom-up, graph-based).
- Three categories:
 - Intensity-based (non-contextual) methods: work based on pixel distributions (i.e., histograms).
 - Region-based (contextual) methods: rely on adjacency and connectivity criteria between a pixel and its neighbours.
 - Other methods: segmentation based on texture, edges, and motion

Image Segmentation: Simple Thresholding

A simple thresholding example would be selecting a pixel value T, and then setting all pixel intensities less than T to zero, and all pixel values greater than T to 255. In this way, we can create a binary representation of the image.

$$g(x,y) = \begin{cases} 255 & if \quad f(x,y) \ge T \\ 0 & if \quad f(x,y) < T \end{cases}$$

Image Segmentation: Simple Thresholding

- For autonomous vehicle this is one of the techniques used to identify the road
- The same technique is used to identify objects

Image Segmentation: Adaptative Thresholding

- T value used in the previous example was arbitrary. However, there are math techniques to optimise. This is proposed by adaptative thresholding
- We need:
 - A window value where the threshold is calculated using pixels next to the image.
 - A parameter which is subtracted to the average calculated and generate the final threshold

Image Segmentation: Adaptative Thresholding

Otsu

- Otsu's method assumes there are two peaks in the grayscale histogram of the image and then tries to find an optimal value to separate those
- Otsu is common seen as a global thresholding method.

Let's play with images!

Do conhecimento à prática.