COMMUNITY INFLUENCE ANALYSIS IN SOCIAL NETWORK

Ximing Li

AGENDA

- Introduction
- Motivation
- Problem Definition
- Algorithm
- Implementation
- Conclusion&Future work

INTRODUCTION

- Background:
 - Social Network
 - Social influence

MOTIVATION

- Community-level influence
- Directed graph with weightage
- Internal and external influence
- Centrality information

PROBLEM & DEFINITION

- Community-Level influence
- Citation Network: G{V,E}
- Joint weight based direct graph
 - V: node(Venue)
 - E: edge associate with weightage
- Identifying the most influential community

ALGORITHM-PAGERANK

- Page Rank is "vote" by all the other nodes.
- PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

Algorithm outline: ←

- Randomly assign vector X with positive numbers,
 and the length of X is same as the number of nodes
- Repeat

Until |X-R| < θ // θ is threshold value

Where S is the source matrix of graph

ALGORITHM MODIFY

- Modify
 - Ignore internal influence
 - Ignore weight
- Wight formula: $w_i = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{c_{ij}}{\left(\frac{T_i + T_j}{2} \right)} * C_{id} \right)$

ALGORITHM DESIGN

ComRank:

```
Algorithm: ComRank 47
    Input: weight matrix w and G(V,E)←
    Output: Rank vector R;
1. set threshold value
set damping factor d;//between 0 to 1 ⁴
3. n = |G| - |G|

 uniform matrix e<sup>T**</sup>

5. for i=0 to n-1 \leftarrow
7. transition matrix w;
8. R[Q]=w'*CR[0] 4

 for i=1 to n 

          while |R[i]-R[i-1]| \ge threshold value do \blacktriangleleft
10.
                     R[i] = R[i-1] * CR[i]; \leftarrow
11.
12.
                      continue;
                  if |R[i]-R[i-1] | < threshold value then -
13.
                      break; 🕌
14.

 collections.sort vector R.
```

IMPLEMENTATION

Dataset:DBLP V7

Paper:2,244,021

#*A three-stage approach for the resource-constrained shortest path as a sub-problem
in column generation.
#@Xiaoyan Zhu,Wilbert E. Wilhelm
#t2012
#cComputers & OR
#index3063614
#%186398
#%811958
#%885474
#%924122

- Citation Relationship:4,354,534
- Ranging form 1995 to 2016
- Each Venue can be seen as a community

IMPLEMENTATION-CITATION RELATIONSHIP

Citation relationship

```
#cAAAI\\ &&& #cAAAI\\
#cAAAI\\ &&& #cAAMAS (1)\\
#cAAAI\\ &&& #cAAMAS (2)\\
#cAAAI\\ &&& #cAAMAS (3)\\
#cAAAI\\ &&& #cAAMAS (Industry Track)\\
#cAAAI\\ &&& #cAAMAS\\
#cAAAI\\ &&& #cACL/AFNLP (Short Papers)\\
#cAAAI\\ &&& #cACL/AFNLP\\
#cAAAI\\ &&& #cAGI\\
#cAAAI\\ &&& #cARES\\
#cAAAI\\ &&& #cAnn. Math. \ul Artif\ulnone . \ul Intell\ulnone .\\
#cAAAI\\ &&& #cArtif. \ul Intell\ulnone .\\
#cAAAI\\ &&& #cArtificial Life\\
#cAAAI\\ &&& #cAuton, Robots\\
#cAAAI\\ &&& #cAutonomous Agents and \ul Multi\ulnone -Agent Systems\\
#cAAAI\\ &&& #cCATS\\
#cAAAI\\ &&& #cCHI Extended Abstracts\\
#cAAAI\\ &&& #cCHI\\
#cAAAI\\ &&& #cCoRR\\
#cAAAI\\ &&& #cCommun. ACM\\
#cAAAI\\ &&& #cComputational Linguistics\\
#cAAAI\\ &&& #cConstraints\\
#cAAAI\\ &&& #cECIR\\
#cAAAI\\ &&& #cECML/PKDD (2)\\
#cAAAI\\ &&& #cHICSS\\
#cAAAI\\ &&& #cHRI\\
```

Citation Weight

```
#cAAAI\\ &&& #cAAAI\\ : 0.051960784313725486
#cAAAI\\ &&& #cAAMAS (1)\\ : 0.051960784313725486
#cAAAI\\ &&& #cAAMAS (2)\\: 0.4676470588235294
#cAAAI\\ &&& #cAAMAS (3)\\: 0.15588235294117647
#cAAAI\\ && #cAAMAS (Industry Track)\\: 0.051960784313725486
#cAAAI\\ &&& #cAAMAS\\: 0.051960784313725486
#cAAAI\\ && #cACL/AFNLP (Short Papers)\\: 0.051960784313725486
#cAAAI\\ &&& #cACL/AFNLP\\ : 0.051960784313725486
#cAAAI\\ &&& #cAGI\\ : 0.051960784313725486
#cAAAI\\ &&& #cARES\\ : 0.051960784313725486
#cAAAI\\ &&& #cAnn. Math. \ul Artif\ulnone . \ul Intell\ulnone .\\ : 0.051960784313725
#cAAAI\\ &&& #cArtif. \ul Intell\ulnone .\\: 0.20784313725490194
#cAAAI\\ &&& #cArtificial Life\\: 0.051960784313725486
#cAAAI\\ &&& #cAuton. Robots\\: 0.051960784313725486
#cAAAI\\ && #cAutonomous Agents and \ul Multi\ulnone -Agent Systems\\ : 0.05196078431
#cAAAI\\ &&& #cCATS\\ : 0.051960784313725486
#cAAAI\\ &&& #cCHI Extended Abstracts\\: 0.051960784313725486
#cAAAI\\ &&& #cCHI\\ : 0.20784313725490194
#cAAAI\\ &&& #cCoRR\\: 0.051960784313725486
#cAAAI\\ &&& #cCommun. ACM\\ : 0.051960784313725486
#cAAAI\\ && #cComputational Linguistics\\: 0.051960784313725486
#cAAAI\\ &&& #cConstraints\\: 0.051960784313725486
#cAAAI\\ &&& #cECIR\\ : 0.051960784313725486
#cAAAI\\ &&& #cECML/PKDD (2)\\: 0.051960784313725486
#cAAAI\\ &&& #cHICSS\\ : 0.051960784313725486
#cAAAI\\ &&& #cHRI\\ : 0.10392156862745097
#cAAAI\\ &&& #cI. J. Robotic Res.\\: 0.15588235294117647
#cAAAI\\ &&& #cIAT\\ : 0.051960784313725486
#cAAAI\\ &&& #cICALT\\ : 0.051960784313725486
```

IMPLEMENTATION-RESULT TOP5

Community Ranking:

Rank←	ComRank 4-3		PageRank ←		4J
NO. 43	Community 42	Level*	Community	Level←	ęJ
142	AAAI₽	A≠²	SAC42	C4 ²	43
242	ICDE+3	A♣³	ICML4 ²	A 4-2	4J
342	SIGCOMM€	A♣³	IJCAI4³	A4 ²	ĘĴ
442	CRYPTO43	A4 ³	GECCO ← ²	B€³	ąJ
542	KDD↔	A4 ²	AAAI 📢	A4 ²	4J

IMPLEMENTATION-RESULT TOP10

Rank 🕶	ComRank←		PageRank ◆3	
NO.♣³	Community 42	Level⁴	Community 4	Level*
142	AAAI43	A+ ³	SAC43	C4 ²
243	ICDE ←³	A4 ³	ICML4-3	A♣³
3+3	SIGCOMM←	A4 ³	IJCAI♣³	A+³
4+3	CRYPTO43	A←³	GECCO↔	B43
543	KDD ← ²	A4 ³	AAAI4³	A♣³
643	SODA 🗗	A4 ³	SODA↔	A+³
7€³	SIGIR←	A4 ³	WWW♣³	A♣³
843	CIKM€	A4 ³	SIGCOMM←	A♣³
942	ICCV 42	A←³	EMNLP↔	B42
10♣3	ICCAD4³	A4 ³	STOC43	A♣³

IMPLEMENTATION-RESULT TOP15

Rank 4-3	ComRank ⁴		PageRank 4-3		43
NO.43	Community 42	Level*	Community 42	Level*	ęJ
142	AAAI43	A+3	SAC43	C+ ²	43
243	ICDE€	A4 ²	ICML€	A 4 ³	¢J
342	SIGCOMM◆	A4 ²	IJCAI ◆ ²	A◆³	ęJ
4+3	CRYPTO•3	A+2	GECCO◆²	Be³	ęJ
543	KDD43	A+ ²	AAAI•³	A+³	ęJ
643	SODA ♣³	A+ ²	SODA↔	A+³	43
742	SIGIR 4-2	A4 ²	www⊷	A◆³	ęJ
843	CIKM4 ²	A+ ²	SIGCOMM*	A≠³	ęJ
943	ICCV 🗗	A+3	EMNLP +2	B4 ²	ęJ
1043	ICCAD4³	A+ ²	STOC+3	A≠³	ęJ
1142	TACAS43	B42	CRYPTO⊷	A4 ³	43
1243	IJCAI4³	A4 ²	KDD€	A◆³	¢J
1342	ICML4 ²	A4 ²	SIGIR 4-3	A 4 ³	¢3
1443	FOCS42	A4 ²	ICDE42	A◆³	¢J
1542	WSDM€³	B42	WSDM◆³	B₄³	43

CONCLUSION & FUTURE WORK

- Conclusion
 - Community-level influence analysis
 - Assign weight based on joint method
 - Internal influence of community
 - Modify PageRank algorithm to incorporate weight
- Future Work
 - Apply cluster to generate community
 - More factor, more data
 - Citation overlapping

REFERENCE

- [1].Erjia Yan, Ying Ding, Discovering author impact: A PageRank perspective, in Information Processing and Management 47 125-134
- [2]. Citation Network Dataset, available form: https://aminer.org/billboard/citation
- [3]. Conference level, available form: http://www.ntu.edu.sg/home/assourav/crank.htm.
- [4]. Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. ArnetMiner: Extraction and Mining of Academic Social Networks. In Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD). pp.990-998.

THANK YOU!

ALGORITHM MODIFY

Different edge has different weight.

Weight formula 1: $\frac{A \text{ got citation form B}}{A \text{ total citation}}$

Weight formula 2: A got citation form B B total citaton