Info0651 - Réseaux Informatiques

- IPv4
 - Protocoles et services auxiliaires
- IPv6

Objectifs de ce cours

- ▶ Étudier le comportement du NAT, des protocoles auxiliaires à IP (ICMP, etc) et comprendre ses limitations
- Introduire IPv6

NAT

- La RFC 1918 a défini des plages d'adresses IP dites privées dans les 3 classes A, B et C
 - **10.0.0.0/8**
 - **172.16.0.0/12**
 - **192.168.0.0/16**
- Ces adresses servent à créer des réseaux privés, qui ne sont pas visibles de l'extérieur
 - Des règles "filtrent" ces routes

NAT

- Quand une machine interne à un réseau veux communiquer avec un hôte sur Internet il faut passer par un "traducteur d'adresses"
 - 1. Transmission du paquet au routeur de sortie
 - 2. Traduction de l'adresse de réseau privé en adresse publique
 - 3. Transmission du paquet modifié au hôte de destination
- Le serveur NAT doit garder une table de correspondance pour rediriger les messages reçus d'Internet

Adresse privée Interne

Adresse publique

Adresse destination

▶ 10.10.10.1

130.14.15.15

- Adresse privée Interne
- 10.10.10.1

Adresse publique

130.14.15.15

Adresse destination

- Adresse privée Interne
- 10.10.10.1

Adresse publique 130.14.15.15

que Adresse destination

• Adresse privée Interne

• 10.10.10.1

Adresse publique 130.14.15.15

Adresse destination

Le PAT

Le PAT est une variante du NAT qui utilise un tableau de adresses/ports

Le PAT

Adresse privée Interne

10.10.10.1:1784

10.10.10.2:1487

Adresse publique

130.14.15.15:1784

130.14.15.15:1487

Adresse destination

179.54.14,10:80

179,54.14.10:80

Limitations du NAT

- NAT viole le modèle architectural IP
 - ► Adresse unique
 - ► Connexion bout-en-bout interdite
- ► Le serveur NAT doit garder la trace des connexions
- ► Un max de 65536 connexions simultanées sont possibles
- Sécurité
 - ▶ Se cacher derrière un NAT n'est pas une garantie de sécurité
 - L'arrivée de IPv6 le prouve!

Le protocole ICMP

- ► ICMP (Internet Control Message Protocol)
 - Défini dans le RFC 950
- Protocole auxiliaire à IP car
 - ▶ IP ne vérifie pas si les paquets émis sont arrivés à leur destinataire
 - Si une passerelle ne peut router ou délivrer directement un paquet, il faut prévenir la source
 - ➤ Si un <u>évènement anormal</u> arrive sur le réseau, il faut pouvoir en informer l'hôte qui a émis le paquet

Traitement des messages ICMP

- ▶ Généralement ICMP est généré par la couche réseau (IP)
 - ► Certaines applications ont l'accès à ICMP
- ► Le traitement des messages se fait aussi sur la couche IP
 - quand un message d'erreur arrive pour un paquet émis, c'est la couche IP elle-même qui gère le problème, la plupart des cas sans en informer les couches supérieures

Format des Messages ICMP

- Les paquets ICMP sont envoyés avec des entêtes IP
 - ► Raison : parfois il faut traverser plusieurs réseaux pour avertir un problème

Les messages ICMP sont composés :

Messages ICMP

- ► Echo Request (8), Echo reply (0)
- ▶ Utilisés pour l'application PING

- ► Time exceeded (11)
 - Chaque datagramme contient un champ TTL
 - ▶ Le message ICMP de type 11 indique que le TTL est expiré (utilisé pour l'une des variantes de traceroute)

Messages ICMP

- ► Destination Unreachable (3)
 - Quand une passerelle ne peut pas délivrer un datagramme IP
 Le champ CODE complète le message
 - ▶ 0 Network unreachable
 - ▶ 1 Host unreachable
 - ▶ 2 Protocol unreachable
 - ▶ 3 Port unreachable
 - ▶ 4 Fragmentation needed and DF set
 - ▶ 5 Source route failed

Outil ping

- Principe
 - exploite la fonction d'écho de ICMP
 - un routeur ou un hôte recevant un "echo request" retourne un "echo reply"
 - permet de
 - ▶ tester l'accessibilité d'une machine
 - ▶ obtenir des statistiques sur la qualité de la route
- Exemple

```
lsteffenel@cosy:~$ ping www.ufsm.br
PING www.ufsm.br (200.132.39.115) 56(84) bytes of data.
64 bytes from coral.ufsm.br (200.132.39.115): icmp_req=1 ttl=44 time=267 ms
64 bytes from coral.ufsm.br (200.132.39.115): icmp_req=2 ttl=44 time=272 ms
64 bytes from coral.ufsm.br (200.132.39.115): icmp_req=7 ttl=44 time=266 ms
64 bytes from coral.ufsm.br (200.132.39.115): icmp_req=8 ttl=44 time=266 ms
67 c
--- www.ufsm.br ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 8124ms
rtt min/avg/max/mdev = 266.508/268.193/272.549/1.849 ms
```


Outil traceroute

- Principe
 - transmet des paquets vers une destination, en partant d'un TTL de 1 et en l'incrémentant

- > si un routeur décrémente le TTL à 0, il retourne un message ICMP "TTL expiré"
- permet d'identifier la route vers la destination

Outil Traceroute/Tracepath

- Variations:
 - ▶ ICMP echo request avec TTL incrémental
 - ▶ UDP sur un port aléatoire
 - ► TCP sur un port aléatoire
- Dans tous les cas, l'outil reçoit des paquets ICMP 11 (Time Exceeded)
- lsteffenel@cosy:-\$ traceroute access.grid5000.fr
 traceroute to access.grid5000.fr (194.254.60.5), 30 hops max, 60 byte packets
 1 h1.univ-reims.fr (194.57.105.1) 0.304 ms 0.294 ms 0.310 ms
 2 10.1.81.254 (10.1.81.254) 0.459 ms 0.648 ms 0.821 ms
 3 rt1-223-a.actif.univ-reims.fr (192.168.223.1) 3.647 ms 3.671 ms 3.705 ms
 4 router1.actif.univ-reims.fr (192.168.123.1) 3.747 ms 3.772 ms 3.793 ms
 5 33.1.79.86.rev.sfr.net (86.79.1.33) 3.834 ms 3.857 ms 3.880 ms
 6 ***
 7 te0-1-0-2-paris2-rtr-001.noc.renater.fr (193.51.189.105) 10.565 ms 10.587 ms 13.557 ms
 8 te0-3-4-0-paris1-rtr-001.noc.renater.fr (193.51.189.5) 71.983 ms 69.355 ms 69.407 ms

10 inria-lille-projetgrid5000-vl536-gi8-4-lille-rtr-021.noc.renater.fr (193.51.183.177) 11.389 ms!X

IPv6

Un peu d'Histoire

- Dans les années 90 :
 - Augmentation exponentielle de l'Internet
 - Augmentation du nombre d'entrées dans les tables de routage
- Allocation des adresses Janvier 1996
 - Classe A 100.00%
 - ► Classe B 61.95%
 - ► Classe C 36.44%
- Prévisions d'exhaustion du espace d'adressage
 - Première alerte 1994
 - Depuis le 1er février 2011 tous les blocs ont été attribués
 - Fin des adresses disponibles : août 2011
 - http://www.ipv6forum.org/

IPv4 en chiffres

- Attribution des adresses IPv4
 - 3 706 650 000 vraiment utilisables
 - 2³² [4 294 967 296] (classes D et E, réseaux 0 et 127 et RFC1918)
- 6,5 milliards d'habitants
 - 40% des adresses sont allouées aux USA
 - 3% des adresses sont allouées à la Chine

Comment les adresses étaient attribuées

► RFC 790 (septembre 1981):

"The assignment of numbers is also handled by Jon. If you are developing a protocol or application that will require the use of a link, socket, port, protocol, or network number **please contact Jon** to receive a number assignment.

Jon Postel

USC - Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California 90291"

- ▶ Plus sérieusement, les blocs d'adresses étaient distribués sans trop de contrôle...
- jusqu'à la crise des adresses des années 1990

Mesures Palliatives - 1994

- Routage "classless"
 - CIDR (Classless Internet Domain Routing) (RFC 1519)
 - Adresse réseau = préfixe/longueur du préfixe
 - Limite les pertes d'adresses
- Agrégation des routes (réduction des tables de routage)
 - Réorganisation des adresses déjà alloués (RFC 1917)
- Plans d'adressage privés (RFC 1918)
 - Utilisation de proxies ou NAT

IPv6 - Une nouvelle version de IP

- LA réponse pour le problème de la croissance de l'Internet
 - Nouveaux réseaux
 - Nouvelles machines/dispositifs
 - Utilisation mobile/nomade
- Augment le format des adresses à 128 bits (16 octets)
- Garde les bonnes choses de IPv4
 - Format fixe et bien connu pour l'entête
 - Taille d'adresses fixe
- Départ avec les bonnes habitudes
 - Réseaux structuré et hiérarchisé
 - Distribution "logique" et géographique

128 bits - Est-ce que cela suffit ?

- Longueur des adresses = 128 bits
 - Pour rappel, IPv4 compte avec des adresses de 32 bits
- Attention: 2¹²⁸ >>>>> 4 x 2³²
 - $2^{32} = 4.2 \times 10^9$
 - 4 294 967 296
 - $2^{128} = 3.4 \times 10^{38}$
 - 340 282 366 920 938 463 463 374 607 432 768 211 456
- Pour comparaison
 - Étoiles observables dans le ciel = 2^{52} = 4.5×10^{15}
 - Approximativement 506 102 adresses par m² sur terre
 - ou 5×10²⁸ adresses pour chaque habitant de la planète

Ce que change dans les entêtes

Les Extensions IPv6

- Optionnelles, utilisées à la place des options IPv4
 - Insérées entre l'entête IPv6 et les données (TCP, etc.)
 - Le protocole n'est pas figé, il peut évoluer avec le temps

- Les extensions ne sont pas traitées par aucun nœud intermédiaire
 - Exception: l'extension "hop by hop"

Les Extensions et leur Ordre

L'Adressage IPv6

- Adresse sur 128 bits découpée en 8 mots de 16 bits.
 - Utilisation de chiffres hexadécimaux pour gagner de la place
- Exemple: FEDC:0000:0000:0210:EDBC:0000:6543:210F
- Format compressé
 - compression des 0 d'entête FEDC:0:210:EDBC:0:6543:210F
 - Remplacer une séquence de 0 par :: (une seule fois)
 - FEDC::210:EDBC:0:6543:210F
 - FF01:0:0:0:0:0:0:1 → FF01::1
 - 0:0:0:0:0:0:0:1 \rightarrow ::1
 - 0:0:0:0:0:0:0:0 → ::
- Exemple d'utilisation :
 - http://[2001:1234:12::1]:8080

Adresses Spécifiques

- loopback
 - 0:0:0:0:0:0:0:1 => ::1
- unspecified
 - Indique l'absence d'une adresse
 - 0:0:0:0:0:0:0 => ::
 - Ne doit pas être utilisée comme adresse de destination

IPv6 - types d'adresses

- Adresses Unicast
 - Associées à une seule interface
 - IPv6 contient plusieurs types (global, link local, etc).
- Multicast
 - Adresse de diffusion "un vers plusieurs"
 - Permet une utilisation plus efficace du réseau
 - Remplace (avantageusement) la diffusion Broadcast
- Anycast "un vers le plus proche"
 - Permet à plusieurs dispositifs de partager une même adresse
 - Tous les nœuds doivent offrir les mêmes services
 - Les routeurs décident quel est le dispositif le plus proche
 - Adapté à l'équilibrage de charge et au contexte
- On n'a plus les adresses de BROADCAST!

Et les masques IPv6 (Préfixes)?

- Tout comme dans IPv4, le préfixe IPv6 est utilisé pour indiquer le nombre de bits de la partie hôte
 - La longueur du préfixe peut aller de 0 à 128
 - Le préfixe typique pour les LANs est /64

Adresses IPv6

- Dans IPv6, une interface peut avoir plusieurs adresses simultanément !!!!
- Alors on peut avoir :
 - Global Unicast adresse global unique, routable sur Internet
 - Link-local adresse local, utilisé à l'intérieur d'un segment (équivaut à l'adresse MAC en couche 3). Utilisé pour les communications "internes" (routage, etc.)
 - Unique Local adresse IPv6 limité à l'intérieur d'un LAN. À proscrire

Adresses Lien Local

```
      10 bits
      54 bits
      64 bits

      1111111010
      0
      Interface ID
      FE80::/64
```


Interface ID

 Interface ID - Format EUI-64 obtenu en modifiant la représentation d'une adresse MAC sur 48 bits

- Pour s'assurer que l'adresse choisie corresponde à une adresse globale unique MAC, le bit universal/local (U/L bit) est défini comme 1 pour l'étendue globale (0 pour l'étendue locale)
 - Le U/L bit est le 7ème bit du premier octet

Les adresses globales "disponibles"

- L'espace d'adressage unicast IPv6 comprends tout l'espace IPv6
 - a l'exception du FF00::/8 (1111 1111), réservé aux adresses multicast
- Les adresses 2000::/3 (001) à E000::/3 (111), doivent utiliser le format Extended Universal Identifier (EUI)-64
 - obtenu à partir des adresses MAC des interfaces réseau
- Aujourd'hui, l'IANA distribue aux FAI des adresses IPv6 dans le plage 2001::/16.
 - généralement composé d'un préfixe global de **48 bits** et un identifiant de sous-réseau de **16 bits**

Adressage IPv6

• Espace d'adressage (IETF)

• 0000::/8	Reserved by IETF	[RFC3513]
• 2000::/3	Global Unicast	[RFC3513]
• FC00::/7	Unique Local Unicast	[RFC4193]
• FE80::/10	Link Local Unicast	[RFC3513]
• FEC0::/10	Reserved by IETF	[RFC3879]
• FF00::/8	Multicast	[RFC3513]

Adresses Globales

Comment est attribuée une IPv6?

- De manière statique
- Auto-configuration (stateless)
 - Intégrée dans le protocole
 - Génération automatique des adresses à partir d'informations reçues par le routeur et de l'adresse MAC
 - L'auto-configuration est un processus à plusieurs étapes
 - Peut représenter quelques risques de sécurité

DHCPv6

- Un serveur DHCP est responsable pour l'attribution des adresses
- L'administrateur garde un peu plus de contrôle sur les machines admises

Résultat

10

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

Autoconfiguration?

- En IPv4 on avait ARP et RARP qui pouvaient être utilisés pour le BOOTP
 - Ancêtre du DHCP
- En IPv6 on fait de l'auto-configuration grâce à la découverte des voisins
- Découverte de voisins
 - résolution IPv6 -> MAC (comme ARP avec IPv4)
- Découverte des routeurs
 - Obtention d'informations pour l'auto-configuration d'adresses
- Détection d'accessibilité des voisins
- Détection des adresses dupliquées
- Découverte des préfixes et paramètres du réseau

Les Quatre Messages

- Router Solicitation (RS)
 - utilisé par un nœud pour découvrir les routeurs sur le réseau
- Router Advertisement (RA)
 - utilisé par un routeur pour annoncer le préfixe à utiliser et d'autres options (ex: MTU du lien)
- Neighbor Solicitation (NS)
 - permet à un nœud de demander l'adresse MAC correspondante à une adresse IPv6
- Neighbor Advertisement (NA)
 - réponse au message NS

L'auto-configuration en résumé

- ► Soit donné l'adresse MAC 00:17:f2:ea:59:46
- 1. création d'une adresse lien-local
 - (fe80::217:f2ff:feea:5946)
- 2. vérification d'unicité de l'adresse lien-local
 - message NS sans réponse
- 3. récupération du préfixe IPv6 du lien
 - RS/RA (ex: **2001:db8:42**::/64)
- 4. création de l'adresse globale
 - (2001:db8:42::217:f2ff:feea:5946)
- 5. vérification d'unicité de l'adresse globale

Coexistence IPv4 et IPv6

▶ Il existe plusieurs techniques de migration IPv4 à IPv6

Dual stack - Les dispositifs executant autant la pile IPv4 que la pile IPv6

Tunneling -Les paquets IPv6 sont encapsulés pour traverser des réseaux IPv4

Traduction - Network
Address Translation 64
(NAT64) permet à un
dispositif IPv6 de contacter
un dispositif IPv4

En Résumé

- ▶ IPv4 a été la base de l'Internet actuelle
 - ► Adressage de taille fixe
 - ▶ Mécanisme de sous-réseaux
- Problèmes de IPv4
 - ► Espace d'adressage réduit
 - ► Mauvaise distribution des adresses
- ▶ Ce qui IPv6 apporte de nouveau
 - ► Espace d'adressage plus grand
 - Organisation vraiment hiérarchique
 - ▶ Découverte automatique du réseau
 - ▶ Peu de rupture avec le modèle précédent

