

Design and Analysis of Algorithms Greedy Algorithms

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: 1684350406@qq.com

- Dijkstra's Algorithm
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithms

Single-Pair Shortest Path Problem

Problem. Given a digraph G=(V,E), edge lengths $l_e\geq 0$, source $s\in V$, and destination $t\in V$, find a shortest directed path from s to t.

Single-Source Shortest Path Problem

Problem. Given a digraph G = (V, E), edge lengths $l_e \ge 0$, source $s \in V$, find a shortest directed path from s to every node.

Car Navigation

Single-destination shortest paths problem.

Dijkstra's Algorithm for Single-Source Shortest Path Problem

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined $d[u] = \text{length of a shortest } S \rightarrow u$ path.

- Initialize $S \leftarrow \{s\}, d[s] = 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

add v to S, set $d[v] = \pi(v)$.

Dijkstra's Algorithm for Single-Source Shortest Path Problem

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined $d[u] = \text{length of a shortest } S \rightarrow u$ path.

- Initialize $S \leftarrow \{s\}, d[s] = 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$
 add v to S , set $d[v] = \pi(v)$. The length of a shortest path from s to some node u in explored part S , followed by a single edge $e=(u,v)$.

• To recover path, set $pred[v] \leftarrow e$ that achieves min.

Dijkstra's Algorithm: Proof of Correctness

For each node $u \in S$: $d[u] = \text{length of a shortest } s \to u \text{ path.}$

Pf. By induction on |S|

Base case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0.

Inductive hypothesis: Assume true for $|S| \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- A shortest $s \to u$ path plus (u, v) is an $s \to v$ path of length $\pi(v)$.
- Consider any other $s \to v$ path P. We show that it is no shorter than $\pi(v)$.
- Let e = (x, y) be the first edge in P that leaves S, and let P' be the sub-path to x.
- The length of P is already $\geq \pi(v)$ as soon as it reaches y:

$$l(P) \ge l(P') + l_e \ge d[x] + l_e \ge \pi(y) \ge \pi(v)$$

Non-negative lengths

Inductive hypothesis $\pi(y)$

Definition of Dijkstra chose v instead of y

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v):u\in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v):u\in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

 $\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$ Add v to S; set $d[v] \leftarrow \pi(v)$ and $pred(v) \leftarrow argmin$.

Critical optimization 1. For each unexplored node $v \notin S$: explicitly maintain $\pi[v]$ instead of computing directly from definition

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

- For each $v \notin S$: $\pi(v)$ can only decrease (because S only increases).
- More specifically, suppose u is added to S and there is an edge e=(u,v) leaving u. Then, it suffices to update:

$$\pi[v] \leftarrow \min\{\pi[v], \pi[u] + l_e\}$$

Recall: for each $u \in S$, $\pi[u] = d[u] = length of shortest <math>s \to u$ path.

Critical optimization 2. Use a min-oriented priority queue (PQ) to choose an unexplored node that minimizes $\pi[v]$.

A TY 2 TOWN OF THE SECOND OF T

Dijkstra's Algorithm: Efficient Implementation

Implementation.

- Algorithm stores $\pi[v]$ for each node v.
- Priority Queue (PQ) stores unexplored nodes, using $\pi[.]$ as priorities.
- Once u is deleted from the PQ, $\pi[u] = \text{length of a shortest } s \to u$ path.

```
Dijkstra (V, E, l, s)

Create an empty priority queue PQ.

for each v \neq s: \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.

for each v \in V: Insert (PQ, v, \pi[v]).

while Is-Not-Empty (PQ)

u \leftarrow \text{Del-Min} (PQ).

for each edge e = (u, v) \in E leaving u:

if \pi[v] > \pi[u] + l_e

Decrease-Key (PQ, v, \pi[u] + l_e).

\pi[v] \leftarrow \pi[u] + l_e; pred[v] \leftarrow e.
```


Initialization.

- For all $v \neq s$: $\pi[v] \leftarrow \infty$.
- For all $v \neq s$: $pred[v] \leftarrow null$.
- $S \leftarrow \emptyset$ and $\pi[s] \leftarrow 0$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- $pred[v] \leftarrow e$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- $pred[v] \leftarrow e$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- $pred[v] \leftarrow e$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- $pred[v] \leftarrow e$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- $pred[v] \leftarrow e$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + l_e$ then:
- $-\pi[v] \leftarrow \pi[u] + l_e.$
- pred[v] ← e.

Cycles and Cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

Cycles and Cuts

Def. A cut is a partition of the nodes into two nonempty subset S and V-S.

Def. The cutset determined by a cut is the set of edges that have one endpoint in each subset of the partition.

Cycle-Cut Intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

THE SECOND OF TH

Spanning Tree Definition

Def. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). H is a spanning tree of G if H is both acyclic and connected.

Spanning Tree Properties

Proposition. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). Then, the following are equivalent:

- *H* is a spanning tree of *G*.
- *H* is acyclic and connected.
- H is connected and has n-1 edges.
- H is acyclic and has n-1 edges.
- H is minimally connected: removal of any edge disconnects it.
- H is maximally acyclic: addition of any edge creates a cycle.

Minimum Spanning Tree (MST)

Def. Given a connected, undirected graph G = (V, E) with edge costs c_e , a minimum spanning tree (V, T) is a spanning tree of G such that the sum of the edge costs in T is minimized.

Prim's

Prim's Algorithm

Initialize S = any node, $T = \emptyset$.

Repeat n-1 times:

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

Theorem. Prim's algorithm computes an MST.

Prim's Algorithm: Implementation

Implementation almost identical to Dijkstra's algorithm.

```
Prim (V, E, c)
Create an empty priority queue PQ.
S \leftarrow \emptyset, T \leftarrow \emptyset.
                                                                   \pi |v| = \text{weight of cheapest}
s \leftarrow \text{any node in } V.
                                                                   known edge between v and S.
for each v \neq s: \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.
for each v \in V: Insert (PQ, v, \pi[v]),
while Is-Not-Empty (PQ)
   u \leftarrow \text{Del-Min}(PQ).
   S \leftarrow S \cup \{u\}, T \leftarrow T \cup \{pred[u]\}.
   for each edge e = (u, v) \in E with v \notin S:
      if c_{\rho} < \pi[v]
         Decrease-Key (PQ, v, c_{\rho}).
         \pi[v] \leftarrow c_e; pred[v] \leftarrow e.
```

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

Consider edges in ascending order of weight:

Add to tree unless it would create a cycle.

Theorem. Kruskal's algorithm computes an MST.

Kruskal's Algorithm: Implementation

- Sort edges by weights.
- Use union-find data structure to dynamically maintain connected components.

```
Kruskal (V, E, c)

Sort m edges by weight so that c(e_1) \leq c(e_1) \leq \cdots \leq c(e_m). T \leftarrow \emptyset.

for each v \in V: Make-Set (v).

for i = 1 to m

(u, v) \leftarrow e_i.

if Find-Set (u) \neq Find-Set (v) are u and v in same component?

T \leftarrow T \cup \{e_i\}.

Union (u, v). make u and v in same component
```


Consider edges in ascending order of weight:

Consider edges in ascending order of weight:

Proof of Kruskal's Algorithm

Theorem. After running Kruskal's algorithm on a connected weight graph G, its output T is a minimum weight spanning tree.

TA TY - TO SHE THE SHE

Proof of Kruskal's Algorithm

Theorem. After running Kruskal's algorithm on a connected weight graph G, its output T is a minimum weight spanning tree.

Proof. First, T is a spanning tree. This is because:

- *T* is a acyclic.
- *T* is spanning.
- *T* is connected.

Second, T is a spanning tree of minimum weight. We can prove this using induction:

Let T^* be a minimum-weight spanning tree. If $T = T^*$, then T is a minimum weight spanning tree. If $T \neq T^*$, then there exist an edge $e \in T^*$ of minimum weight that is not in T. Further, $T \cup \{e\}$ contains a cycle C such that:

a. Every edge in C has weight less than weight(e). (This follows from how the algorithm constructed T.)

TA TY - TO SHE THE SECOND OF T

Proof of Kruskal's Algorithm

Theorem. After running Kruskal's algorithm on a connected weight graph G, its output T is a minimum weight spanning tree.

If $T = T^*$, then there exist an edge $e \in T^*$ of minimum weight that is not in T. Further, $T \cup \{e\}$ contains a cycle C such that:

- a. Other edges in C have weights less than weight(e). (This follows from how the algorithm constructed T.)
- b. There is some edge f in C that is not in T^* . (Because T^* does not contain the cycle C.) Consider the tree $T_2 = T \cup \{e\} \setminus \{f\}$:
- c. T_2 is a spanning tree.
- d. T_2 has more edges in common with T^* than T did.
- e. And $weight(T_2) \ge weight(T)$. (We exchanged an edge for one that is no more expensive.)

We can redo the same process with T_2 to find a spanning tree T_3 with more edge in common with T^* .

TA TY - TO SHE THE SHE

Proof of Kruskal's Algorithm

Theorem. After running Kruskal's algorithm on a connected weight graph G, its output T is a minimum weight spanning tree.

We can redo the same process with T_2 to find a spanning tree T_3 with more edge in common with T^* . By induction, we can continue this process until we reach T^* , from which we see

$$weight(T) \le weight(T_2) \le weight(T_3) \le \cdots \le weight(T^*)$$

Since T^* is a minimum weight spanning tree, then these inequalities must be equalities and we conclude that T is a minimum weight spanning tree.