Министерство науки и высшего образования Российской Федерации Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

И.И. Ерохин

ОБРАБОТКА ДАННЫХ СРЕДСТВАМИ БИБЛИОТЕК NUMPY И PANDAS. ВИЗУАЛИЗАЦИЯ ДАННЫХ.

Методические указания к выполнению лабораторной работы по курсу «Технологии анализа данных»

УДК 004.62 ББК 32.972.1 Б435

Методические указания составлены в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» кафедры «Программного обеспечения ЭВМ, информационных технологий».

Методические указания рассмотрены и одобрены:	
- Кафедрой «Программного обеспечения ЭВМ, протокол № _ от «_ » 2020 г.	информационных технологий» (ИУ4-КФ)
Зав. кафедрой ИУ4-КФ	к.т.н., доцент Ю.Е. Гагарин
- Методической комиссией факультета ИУ-КФ прото	кол № от «» 2020 г.
Председатель методической комиссии факультета ИУ-КФ	к.т.н., доцент М.Ю. Адкин
- Методической комиссией	
КФ МГТУ им.Н.Э. Баумана протокол № от «	»2019 г.
Председатель методической комиссии КФ МГТУ им.Н.Э. Баумана	д.э.н., профессор О.Л. Перерва
Рецензент:	
к.т.н., доцент кафедры ИУЗ-КФ	А.В. Финошин
Авторы	
ассистент кафедры ИУ4-КФ	И.И. Ерохин

Аннотация

Методические указания к выполнению лабораторной работы по курсу «Технологии анализа данных» содержат общие сведения о библиотеках numpy и pandas, используемых для анализа данных, а также средствах визуализации в языке Python.

Предназначены для студентов 4-го курса бакалавриата КФ МГТУ им. Н.Э. Баумана, обучающихся по направлению подготовки 09.03.04 «Программная инженерия».

© Калужский филиал МГТУ им. Н.Э. Баумана, 2020 г.

© И.И. Ерохин, 2020 г.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой проведения лабораторных работ по курсу «Технологии анализа данных» на кафедре «Программное обеспечение ЭВМ, информационные технологии» факультета «Информатика и управление» Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания, ориентированные на студентов 4-го курса направления подготовки 09.03.04 «Программная инженерия», содержат базовые сведения о библиотеках numpy и pandas и средствах визуализации языка Python.

Методические указания составлены для ознакомления студентов с библиотеками, применяемые для анализа данных в языке Python. Для выполнения лабораторной работы студенту необходимы знания языка программирования Python и навыки работы с Anaconda.

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков работы с библиотеками numpy и pandas, а также применения средств визуализации данных языка Python.

Основными задачами выполнения лабораторной работы являются:

- 1. Ознакомиться с функциональными возможностями библиотек numpy и pandas.
- 2. Изучить средства визуализации языка Python.

Результатами работы являются:

- 1. Правильно обработанный массив данных.
- 2. Построенные графики.
- 3. Подготовленный отчет.

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ

Мы живем в мире, в котором наблюдается переизбыток данных. Веб-сайты отслеживают любое нажатие любого пользователя. Смартфоны накапливают сведения о местоположении и скорости в ежедневном и ежесекундном режиме. Умные авто собирают сведения о манерах вождения своих владельцев, умные дома - об образе жизни своих обитателей, а маркетологи – о покупательских привычках. Сам Интернет представляет собой огромный граф знаний, который, среди всего прочего, содержит обширную гипертекстовую энциклопедию, специализированные базы данных о фильмах, музыке, спортивных статистических результатах И много отчетов В этих данных кроятся ответы на бесчисленные вопросы, которые никто даже не думает задавать.

В последнее время для анализа данных все чаще используется язык программирования Python, как в науке, так и коммерческой сфере. Этому способствует простота языка, а также большое разнообразие открытых библиотек. Далее в данном методическом указании будут рассмотрены две из них — это библиотеки numpy и pandas, а также средства, с помощью которых можно визуализировать обработанные данные.

Библиотека питру.

Numerical Python, или сокращенно NumPy - базовый пакет для высокопроизводительных научных расчетов и анализа данных. Это фундамент, на котором возведены многие высокоуровневые инструменты. Основной функционал библиотеки numpy следующий:

- ndarray. быстрый и потребляющий мало памяти многомерный массив, предоставляющий векторные арифметические операции.
- стандартные математические функции для выполнения быстрых операций над целыми массивами без явного выписывания циклов.
- средства для чтения массива данных с диска и записи его на диск, а также для работы с проецируемыми на память файлами.

- алгоритмы линейной алгебры, генерация случайных чисел и преобразование Фурье.
- средства для интеграции с кодом, написанным на C/C++ или Fortran

Одна из ключевых особенностей NumPy - объект пdarray для представления N-мерного массива; это быстрый и гибкий контейнер для хранения больших наборов данных в Python. Массивы позволяют выполнять математические операции над целыми блоками данных, применяя такой же синтаксис, как для соответствующих операций над скалярами. Ниже представлены основные типы данных библиотеки numpy (табл.1):

Функции	Код типа	Описание
int 8. uint8	i1, u1	Знаковое и беззнаковое 8-разрядное (1 байт) целое
int 16. uint16	i2, u2	Знаковое и беззнаковое 16 разрядное (2 байта) целое
int32. uint32	i4, u4	Знаковое и беззнаковое 32-разрядное (4 байта) целое
int64. uint64	i8, u8	Знаковое и беззнаковое 64-разрядное (8 байт) целое
float16	f2	С плавающей таксой половинной точности
float32	f4	Стандартный тип с плавающей точкой одинарной точности
		Совместим с типом С float
float 64	f8 или d	Стандартный тип с плавающей точкой двойной точности.
		Совместим с типом С double и с типом Python float
float128	f16	С плавающей точкой расширенной

		точности
complex64 complex128	c8, c16 c32	Комплексные числа, вещественная и мнимая части которых представлены соответственно типами float32, float64 и float128
bool	7	Булев тип, способный хранить значение True и False
object	О	Тип объекта Python
string	S	Тип строки
unicode_	u	Тип Unicode

Табл. 1 Типы данных питру

Массив ndarray содержит следующие статистические методы (табл.2):

Метод	Описание
sum	Сумма элементов всего массива или вдоль одной оси Для массивов нулевой длины функция вин возвращает 0
mean	Среднее арифметическое Для массивов нулевой длины равно NaN
std, var	Стандартное отклонение и дисперсия, соответственно Может быть задано число степеней свободы (по умолчанию знаменатель равен n)
min, max	Минимум и максимум
argmin, argmax	Индексы минимального и максимального элемента
cumsum	Нарастающая сумма с начальным значением 0
cumprod	Нарастающее произведение с начальным

значением 1

Табл. 2 Статистические методы массива ndarray

Кроме того, над массивами можно выполнять теоретикомножественные операции (табл. 3):

Метод	Описание
	Вычисляет отсортированное множество
unique(x)	уникальных элементов
	Вычисляет отсортированное множество элементов,
intersectld(x, y)	общих для х и у
	Вычисляет отсортированное объединение
unionld(x, y)	элементов
	Вычисляет булев массив, показывающий, какие
inld(x, y)	элементы х встречаются в у
	Вычисляет разность множеств, т. е. элементы,
setdiffld(x, y)	принадлежащие х, но не принадлежащие у
	Симметрическая разность множеств; элементы,
	принадлежащие одному массиву, но не обоим
setxorld(x, y)	сразу

Табл. 3 Теоретико-множественные операции

Модуль numpy.random дополняет встроенный модуль random функциями, которые генерируют целые массивы случайных чисел с различными распределениями вероятности. Некоторые из этих функций приведены в таб. 4:

Функции	Описание
seed	Задает начальное значение генератора случайных
	чисел
permutation	Возвращает случайную перестановку
	последовательности диапазона
shuffle	Случайным образом переставляет
	последовательность на месте

rand	Случайная выборка с равномерным распределением
randint	Случайного выборка целого числа из заданного диапазона
randn	Случайная выборка с нормальным распределением со средним 0 и стандартным отклонением 1 (интерфейс похож на MATLAB)
binomial	Случайная выборка с биноминальным распределением
normal	Случайная выборка с нормальным (гауссовым) распределением
beta	Случайная выборка с бета-распределением
chisquare	Случайная выборка с распределением хи-квадрат
gamma	Случайная выборка с гамма-распределением
uniform	Случайная выборка с равномерным распределением на полуинтервале (0,1)

Табл. 4 Некоторые функции модуля numpy.random

Библиотека pandas

Библиотека pandas содержит высокоуровневые структуры данных и средства манипуляции ими, спроектированные так, чтобы обеспечить простоту и высокую скорость анализа данных на Python. Эта библиотека построена поверх NumPy, потому ей легко пользоваться в приложениях, ориентированных на NumPy.

Бибилиотека pandas была разработана для того, чтобы обеспечить следующие возможности:

- Структуры данных с помеченными осями, поддерживающие автоматическое или явное выравнивание.
- Встроенная функциональность для работы с временными рядами.

- Гибкая обработка отсутствующих данных.
- Объединение и другие реляционные операции.

Чтобы начать работу с pandas, необходимо освоить две основные структуры данных: Series и Data Frame. Они, конечно, не являются универсальным решением любой задачи, но все же образуют солидную и простую для использования основу большинства приложений.

Series - одномерный похожий на массив объект, содержащий массив данных (любого типа, поддерживаемого NumPy) и ассоциированный с ним массив меток, который называется индексом. Простейший объект Series состоит только из массива данных.

В строковом представлении Series, отображаемом в интерактивном режиме, индекс находится слева, а значения справа. Имея объект Series, можно получить представление самого массива и его индекса можно с помощью атрибутов values, и index соответственно.

Объект DataFrame представляет табличную структуру данных, состоящую из упорядоченной коллекции столбцов, причем типы значений (числовой, строковый. булев и т. д.) в разных столбцах могут различаться. В объекте DataFrame хранятся два индекса: по строкам и по столбцам. Можно считать, что это словарь объектов Series. Внутри объекта данные хранятся в виде одного или нескольких двумерных блоков, а не в виде списка, словаря или еще какой-нибудь коллекции одномерных массивов.

Хотя в DataFrame данные хранятся в двумерном формате, в виде таблицы, нетрудно представить и данные более высокой размерности, если воспользоваться иерархическим индексированием.

Есть много способов сконструировать объект DataFrame, один из самых распространенных - на основе словаря списков одинаковой длины или массивов NumPy.

На первом этапе обработки данные, хранящиеся в объекте pandas, будь то Series, DataFrame или что-то еще, разделяются на группы по одному или нескольким указанным ключам. Разделение производится вдоль одной оси объекта. Например, в DataFrame можно группировать

по строкам (axis=0) или по столбцам (axis=1). Затем к каждой группе применяется некоторая функция, которая порождает новое значение. Наконец, результаты применения всех функций объединяются в результирующий объект. Форма результирующего объекта обычно зависит от того, что именно проделывается с данными.

Ключи группировки могут задаваться по-разному и необязательно должны быть одного типа:

- список или массив значений той же длины, что ось по которой производится группировка;
- значение, определяющее имя столбца объекта DataFrame;
- словарь или объект Series, определяющий соответствие между значениями на оси группировки и именами групп;
- функция, которой передается индекс оси или отдельные метки из этого индекса.

Для группирования данных применяется специальный метод – groupby(). Идея этого метода в том, что объект GroupBy хранит всю информацию, необходимую для последующего применения некоторой операции к каждой группе. Например, чтобы вычислить средние по группам, можно вызвать метод mean объекта GroupBy. Список функций агрегирования приведен в табл.5:

Имя функции	Описание
count	Количество отличных от NA значений в группе
sum	Сумма отличных от NA значений
mean	Среднее отличных от NA значений
median	Медиана отличных от NA значений
std, var	Несмещенное (со знаменателем n-1) стандартное
	отклонение и дисперсия
min, max	Минимальное и максимальное отличное от NA
	значение
prod	Произведение отличных от NA значений
first, last	Первое и последнее отличное от NA значение

Табл. 5 Функции агрегирования

СРЕДСТВА ВИЗУАЛИЗАЦИИ РҮТНОМ

Библиотека matplotlib

Маtplotlib - это пакет для построения графиков (главным образом, двумерных) полиграфического качества. При использовании в сочетании с какой-нибудь библиотекой ГИП (например, внутри IPython), matplotlib приобретает интерактивные возможности: панорамирование, масштабирование и другие. Этот пакет поддерживает разнообразные системы ГИП во всех операционных системах, а также умеет экспортировать графические данные во всех векторных и растровых форматах: PDF, SVG, JPG, PNG, BMP и т. д.

Для matplotlib имеется целый ряд дополнительных библиотек, например, mplot3d для построения трехмерных графиков и basemap для построения карт и проекций.

Если все настроено правильно, то появится новое окно с линейным графиком. Окно можно закрыть мышью или введя команду close(). Все функции matplotlib API. в частности plot и close, находятся в модуле matplotlib.pyplot, при импорте которого обычно придерживаются следующего соглашения:

```
import matplotlib.pyplot as pit
```

Графики в matplotlib «находятся» внутри объекта рисунка Figure. Создать новый рисунок можно методом plt.figure:

```
fig=plt.figure()
```

У метода plt.figure много параметров, в частности figsize гарантирует, что при сохранении рисунка на диске у него будут определенные размер и отношение сторон. Рисунки в matplotlib поддерживают схему нумерации (например, plt.figure(2)). Для получения ссылки на активный рисунок служит метод plt.gcf().

Активный рисунок можно сохранить в файле методом plt.savefig. Этот метод эквивалентен методу экземпляра рисунка savefig. Например, чтобы сохранить рисунок в формате SVG, достаточно указать только имя файла:

```
plt.savefig('figpath.svg')
```

Формат выводится из расширения имени файла. Если бы был задан файл с расширением .pdf, то рисунок был бы сохранен в формате PDF. Чтобы получить тот же самый график в формате PNG с минимальным обрамлением и разрешением 400 DPI, нужно было бы написать:

```
plt.savefig('figpath.png'. dpi=400, bbox inches='tiqht')
```

В бибилиотеке pandas также имеется инструмент для того, чтобы построить график из DataFrame. Параметры этого метода приведены в табл 6:

Аргумент	Описание
subplots	Рисовать график каждого столбца DataFrame в
	отдельном подграфике
sharex	Если subplots=True, то совместно использовать ось X,
	объединяя риски и границы
sharey	Если subplots=True, то совместно использовать ось
	Y
figsize	Размеры создаваемого рисунка в виде кортежа
title	Название графика в виде строки
legend	Помещать в подграфик пояснительную надпись
	(по умолчанию True)
sort columns	Строить графики столбцов в алфавитном порядке, по
_	умолчанию используется существующий порядок
	столбцов

Табл. 6 Параметры функции DataFrame.plot()

Инструмент IPython

Проект IPython в 2001 году основал Фернандо Перес как побочный продукт по ходу создания усовершенствованного интерактивного интерпретатора Python. Впоследствии он превратился в один из самых важных инструментов в арсенале ученых, работающих на Python. Сам по себе он не предлагает ни вычислительных, ни аналитических но изначально спроектирован целью повысить средств, продуктивность интерактивных вычислений и разработки ПО. В его основе лежит последовательность действий «выполни и посмотри» вместо типичной для многих языков «отредактируй, откомпилируй и запусти». Он также очень тесно интегрирован с оболочкой операционной системы и с файловой системой. Поскольку анализ данных подразумевает исследовательскую работу, применение метода проб и ошибок и итеративный подход, то IPython почти во всех случаях позволяет ускорить выполнение работы.

Разумеется, сегодняшний IPython - это куда больше, чем просто усовершенствованная интерактивная оболочка Python. В его состав входит развитая графическая консоль с встроенными средствами построения графиков, интерактивный веб-блокнот и облегченный движок для быстрых параллельных вычислений. И подобно многим другим инструментам, созданным программистами для программистов, он настраивается в очень широких пределах.

ПОРЯДОК УСТАНОВКИ БИБЛИОТЕК И ЗАПУСКА ІРУТНОМ

Установка библиотек осуществляется при помощи следующих команд, которые необходимо набрать в терминале PyCharm:

conda install -n lab1 -c conda-forge matplotlib conda install -n lab1 -c anaconda pandas conda install -n lab1 -c anaconda numpy

Кроме того, нужно установить библиотеки jupyter и sympy. Для этого необходимо перейти в раздел Project Interpreter и нажать + (Install), после чего ввести названия пакетов.

Запуск IPython осуществляется следующим образом:

- 1. Создать Jupyter Notebook файла
- 2. Нажать кнопку запуск (зеленая стрелка)
- 3. В появившемся окне нажать Cancel
- 4. На всплывающем сообщении нажать Run Jupyter Notebook
- 5. Скопировать первую ссылку в окне Run, вставить её в адресную строку браузера и перейти по ней
- 6. Откроется страница Home, в которой будут отображаться файлы проекта
- 7. Нажать на созданный Jupyter Notebook файл. В открывшейся странице можно осуществлять написание кода и его запуск
- 8. То же самое можно осуществлять непосредственно в среде РуСharm

ОБРАЗЕЦ ВЫПОЛНЕНИЯ ЗАДАНИЯ

```
import pandas as pd
import numpy as np
from matplotlib.pyplot import figure, savefig, rc
from mpl toolkits.mplot3d import axes3d, Axes3D
# считываем CSV файл с данными
apps = pd.read csv('data/googleplaystore.csv', ",")
# выбираем нужные столбцы
installs = apps[['Genres', 'Installs', 'Android Ver']]
# убираем '+' на конце
installs.Installs = installs.Installs.str[:-1]
# убираем запятые
installs.Installs = installs.Installs.str.replace(',', '',
regex=False)
# преобразуем в int
installs. Installs = pd.to numeric (installs. Installs,
errors='coerce').fillna(0).astype(int)
# группируем и суммируем скачивания по жанрам
installs genres = installs.groupby(['Genres'], as index =
False).sum()
# группируем и суммируем скачивания по версии Android и по жанрам
installs android and genres = installs.groupby(['Genres', 'Android
Ver'], as index = False).sum()
# получение 5 наибольших и наименьших значений
largest = installs genres.nlargest(5, 'Installs')
smallest = installs genres.nsmallest(5, 'Installs')
# построение графиков с помощью pandas.plot() и сохранение в pdf-файл
rc('font', size=90)
largest.plot(x='Genres', y='Installs', figsize=(100, 100),
fontsize=90, linewidth=10.0,
             title="Зависимость скачиваемости приложений от их
жанра")
savefig('largest.pdf')
smallest.plot(x='Genres', y='Installs', figsize=(100, 100),
fontsize=90, linewidth=10.0,
             title="Зависимость скачиваемости приложений от их
жанра")
savefig('smallest.pdf')
# параметры гиперболоида
a = 5
b = 4
```

```
c = 7
```

```
# вычисление значений точек гиперболоида с помощью бибиотеки numpy X = np.arange(-5, 5, 0.05)
Y = np.arange(-5, 5, 0.05)
X, Y = np.meshgrid(X, Y)
Z1 = np.sqrt(c**2/a**2 * X**2 + c**2/b**2 * Y**2 - 1)
Z2 = -np.sqrt(c**2/a**2 * X**2 + c**2/b**2 * Y**2 - 1)
# построение гиперболоида с помощью matplotlib
rc('font', size=15)
fig = figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z1, linewidth=1)
ax.plot_surface(X, Y, Z2, linewidth=1)
savefig('hyperboloid.pdf')
```

В результате выполнения программы будут построены следующие графики (рис. 1):

Рис. 1 Примеры графиков

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Для всех вариантов необходимо осуществить обработку данных из файла формата CSV, применяя методы агрегации и групповые операции. Визуализировать эти данные в виде графика зависимости. Построить трехмерную фигуру согласно заданию, указанному в варианте. Файлы для заданий имеют названия, соответствующие варианту.

ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ

В качестве результата работы необходимо построить графики и отобразить их в Jupyter Notebook. Также необходимо сохранить эти графики в pdf файле.

ВАРИАНТЫ ЗАДАНИЙ

Вариант 1

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение числа просмотров к числу загруженных видео. Определить название канала, имеющего оценку В+, который имеет наибольшее число загруженных видео. Построить график зависимости среднего арифметического количества просмотров от рейтинга канала. Вывести результаты для 5 самых популярных каналов и 5 самых непопулярных (по среднему числу просмотров). Построить трехмерную поверхность — куб (размеры куба задать произвольно).

Вариант 2

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение заработной платы футболиста к его стоимости (K=1000, M=1000000). Определить футболиста из Бразилии, имеющего правую рабочую ногу, стоимость которого максимальна. Построить график зависимости среднего общего рейтинга от страны. Вывести результаты для 5 самых высоких рейтингов и 5 самых низких (по

среднему значению). Построить трехмерную поверхность – шар (размеры шара задать произвольно).

Вариант 3

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится количество символов в строке адреса. Определить ID камеры, зафиксировавшую наибольшее число нарушений. Вычислить стандартное отклонение числа нарушений. Построить график зависимости количества нарушений от адреса расположения камеры. Вывести результаты для 5 адресов с самым большим числом нарушений и 5 с самым маленьким. Построить трехмерную поверхность — двуполостный гиперболоид (параметры гиперболоида задать произвольно).

Вариант 4

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится разница (по модулю) между средним возрастом и возрастом каждого из покупателей. Определить ID покупательницы, не моложе 40 лет, которая имеет самый большой доход. Построить график зависимости дохода покупателя (среднее значение) от его возраста. Вывести результаты для 5 покупателей с самым большим средним доходом и 5 с самым маленьким. Построить трехмерную поверхность — прямоугольный параллелепипед (параметры параллелепипеда задать произвольно).

Вариант 5

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится количество символов в строке идентификатора продукта. Определить возрастную группу покупателя (мужчина), который приобрел больше всего товаров (по стоимости). Построить график зависимости потраченных средств покупателей (среднее значение) от возрастной группы. Вывести результаты для 5 покупателей с самыми большими

расходами и 5 с самыми маленькими. Построить трехмерную поверхность – цилиндр (параметры цилиндра задать произвольно).

Вариант 6

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение числа просмотров к числу подписчиков. Определить название канала, имеющего оценку В или В+, который имеет наибольшее число подписчиков. Построить график зависимости среднего арифметического количества загруженных видео от рейтинга канала. Вывести результаты для 5 активных каналов и 5 самых неактивных (по среднему числу загруженных видео). Построить трехмерную поверхность – шар (размеры шара задать произвольно).

Вариант 7

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение заработной платы футболиста к его стоимости (K = 1000, M = 1000000). Определить футболиста из Аргентны, имеющего общий рейтинг не менее 88, стоимость которого минимальна. Построить график зависимости среднего общего рейтинга от страны. Вывести результаты для 5 самых высоких рейтингов и 5 самых низких (по среднему значению). Построить трехмерную поверхность – куб (размеры куба задать произвольно).

Вариант 8

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится количество символов в строке адреса. Определить ID камеры, зафиксировавшую наибольшее число нарушений 17 января 2019 года. Построить график зависимости количества нарушений от адреса расположения камеры. Вывести результаты для 5 адресов с самым большим числом нарушений и 5 с самым маленьким. Построить трехмерную

поверхность – двуполостный гиперболоид (параметры гиперболоида задать произвольно).

Вариант 9

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится разница (по модулю) между средним возрастом и возрастом каждого из покупателей. Определить ID покупательницы, старше 25 лет и моложе 40 лет, которая имеет самый маленький доход. Построить график зависимости дохода покупателя (среднее значение) от его возраста. Вывести результаты для 5 покупателей с самым большим средним доходом и 5 с самым маленьким. Построить трехмерную поверхность – цилиндр (параметры цилиндра задать произвольно).

Вариант 10

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится количество символов в строке идентификатора продукта. Определить возрастную группу покупательницы, которая приобрела меньше всего товаров (по стоимости). Построить график зависимости потраченных средств покупателей (среднее значение) от возрастной группы. Вывести результаты для 5 покупателей с самыми большими расходами и 5 с самыми маленькими. Построить трехмерную поверхность — прямоугольный параллелепипед (параметры параллелепипеда задать произвольно).

Вариант 11

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение заработной платы футболиста к его стоимости (K = 1000, M = 1000000). Определить футболиста (-ов) из ФК Chelsea, имеющего (-их) левую рабочую ногу, стоимость которого (-ых) находится в интервале от 50 до 70 млн. евро. Построить график зависимости общего рейтинга футболиста от его зарплаты (по всем данным).

Вывести результаты для 5 самых высоких зарплат и 5 самых низких. Построить трехмерную поверхность — шар (размеры шара задать произвольно).

Вариант 12

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится среднее арифметическое показателей math score, reading score и writing score. Определить студента(-ов), прошедшего курс подготовки к экзаменам, у которого все показатели выше среднего значения math score (для всех студентов). Построить график зависимости среднего арифметического показателей от показателя math score. Вывести результаты для 5 самых высоких значений math score и 5 самых низких. Построить трехмерную поверхность — прямоугольный параллелепипед (параметры параллелепипеда задать произвольно).

Вариант 13

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение стоимости автомобиля к его пробегу (км.). Определить автомобиль(-ли), являющийся гибридом с пробегом более 10000 км, у которого год выпуска старше 2005. Построить график зависимости пробега автомобиля от его стоимости. Вывести результаты для 5 самых дорогих и 5 самых дешевых. Построить трехмерную поверхность — шар (параметры шара задать произвольно).

Вариант 14

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится сумма показателей math score, reading score и writing score. Определить студента(-ов), непрошедшего курс подготовки к экзаменам, у которого среднее арифметическое показателей выше среднего значения writing score (для всех студентов). Построить график зависимости суммы показателей от показателя reading score. Вывести результаты для 5

самых высоких значений reading score и 5 самых низких. Построить трехмерную поверхность — двуполостный гиперболоид (параметры гиперболоида задать произвольно).

Вариант 15

Считать данные из CSV файла в структуру DataFrame. Добавить в DataFrame еще один столбец, в котором содержится отношение стоимости автомобиля к разнице (в годах) между текущей датой и датой выпуска. Определить автомобиль(-ли), потребляющий бензин, с пробегом от 10000 до 40000 км, у которого год выпуска расположен в промежутке от 2006 до 2010. Построить график зависимости пробега автомобиля от его года выпуска. Вывести результаты для 5 самых старых и 5 самых новых автомобилей. Построить трехмерную поверхность – цилиндр (параметры цилиндра задать произвольно).

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Перечислите основные возможности библиотеки numpy.
- 2. Раскройте достоинства массива ndarray.
- 3. Приведите основные типы данных библиотеки numpy.
- 4. Перечислите и раскройте основные статистические методы массива ndarray.
- 5. Перечислите и раскройте основные теоретико-множественные операции с массивами, реализованные в numpy.
- 6. Опишите назначение модуля numpy.random.
- 7. Перечислите и раскройте основные функции модуля numpy.random.
- 8. Опишите назначение объекта Series библиотеки pandas.
- 9. Опишите назначение объекта DataFrame библиотеки pandas.
- 10. Приведите функции для чтения данных форматов CSV, реализованные в библиотеке pandas.
- 11. Опишите назначение объекта GroupBy библиотеки pandas.
- 12. Перечислите основные функции агрегирования библиотеки pandas.
- 13. Приведите основные возможности библиотеки matplotlib.
- 14. Перечислите основные параметры функции DataFrame.plot().
- 15. Раскройте назначение инструмента IPython (Jupiter Notebook).

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 1 занятие (2 академических часа: 1 час на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета).

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ax)): титульный лист, формулировка задания, описание процесса выполнения лабораторной работы, результаты выполнения работы, выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Маккинли, Уэс Python и анализ данных / Пер. с англ. Слинкин А.А. М.: ДМК Пресс, 2015. 482 с.:ил.
- 2. Грас, Дж. Data Science. Наука о данных с нуля / Пер. с англ. СПБ.: БХВ -Петербург, 2017. 336с.: ил.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

3. Henley, A.J. Learn Data Analysis with Python: Lessons in Coding / A.J. Henley, Dave Wolf ISBN 978-1-4842-3486-0

Электронные ресурсы:

- 4. Научная электронная библиотека http://eLIBRARY.RU
- 5. Электронно-библиотечная система http://e.lanbook.com