Python 3.11.3 [main, GCC 13.1.1 20230429] Linux-6.4.3-arch1-2-x86_64-with-glibc2.37 Module Index : Topics : Keywords

Get

Search

depal (version 0.0.1)

index/ home/sachin/Projects/depal/depal.py/

depal.py: Digital Earth Pacific (Abstration Library)

Modules

 geopandas
 numpy
 pystac_client

 itertools
 planetary_computer
 rasterio

 matplotlib
 pandas
 rioxarray

 vrsnatial multispectral
 matplotlib pyplot
 stackstac

<u>xrspatial.multispectral</u> <u>matplotlib.pyplot</u> <u>stackstac</u> <u>xarray</u>

Functions

cleanup()

Cleanup Dask Resources

coastal clip(aoi, data, buffer=100)

Clip Coastal Buffer by Metres

colour maps()

List Colour Maps

get area from geojson(geojson file)

AOI from GeoJson File (use geojson.io)

get_cloudless_mosaic(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='yearly')

median composite - Cloudless Mosaic achieved y combining images across time

get country admin boundary(country, admin type, admin)

AOI from Country Administrative Boundary

get_country_boundary(country)

AOI from a Country Nation Boundary

get_data(aoi, bands=[], collection_name='sentinel-2-l2a', timeframe='2023-01-01/2023-12-31', cloudcover=10, resolution=100, max=30, period='monthly')

Xarray Dataset from STAC

get_evi(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='monthly')

evi - Enhanced Vegetation

get_gci(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='monthly')

gci - Green Chlorophyll Index

get_global_land_cover(aoi, name='io-lulc-9-class')

Get Global LandCover over AOI

get_latest_images(aoi, collection_name='sentinel-2-l2a', timeframe='2023-01-01/2023-12-31', cloudcover=10, resolution=100, max=30, period='daily')

Latest RGB Images

get_ndmi(aoi, collection_name='sentinel-2-12a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='monthly')

ndmi - Normalised Difference Moisture Index

get_ndvi(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='monthly')

ndvi - Normalised Difference Vegetation Index

get_ndwi(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100, period='monthly')

ndmi - Normalised Difference Water Index

```
get_sipi(aoi, collection_name='sentinel-2-l2a', timeframe='2019-11-01/2022-11-31', cloudcover=10, resolution=100, max=100,
period='monthly')
     # sipi - Structure Insensitive Pigment Index: which is helpful in early disease detection in vegetation.
init(type='remote', maxWorkers=12, resolution=100)
      # Initialise and Configure Dask and Resolution Defaults
list_boundary_types(country)
     # List Administrative Boundaries In a Country
list countries()
     # List Pacific Island Countries and Territories
list country boundary(country, admin type)
     # List Areas/Locations of a Administration Type Within A Country
list data assets(collection name)
     # List Data Assets (non-spectral) and Common Names within a Data Source, Pipeline or Sensor
list data bands(collection name='sentinel-2-12a')
     # List Data Bands and Common Names within a Data Source, Pipeline or Sensor
list_data_sources()
     # List Data Sources, Pipelines and Models
list global land cover()
     # List Global LandCover DataSets
save(data, file name)
     # Save Data as GeoTIFF/COG Series
smooth(data)
     # Focal Mean Smooting
visualise(data, cmap=None)
     # Visual Data by Colour Maps
```

Data

```
__copyright__ = 'Pacific Community (SPC)'
__email__ = 'sachindras@spc.int'
__license__ = 'GPL'
__status__ = 'Development'
catalog = <Client id=microsoft-pc>
chunk_size = 4096
default_resolution = 100
padm = country ... ... -176.24805 -13.28860))) [698 rows x 12 columns]
```

Author

Sachindra Singh