jhTAlib

Joost Hoeks

2020-03-23

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
In Colab	3
Check Installation	4
Basic Usage	4
Examples	4
Example 1	5
Example 2	5
Example 3	5
Example 4	5
Example 5	5
Example 6	6
Example 7	6
Example 8	6
Example 9	6
Example 10	7
Example 11	7
Test	7
Reference	7
Behavioral Techniques	7
Candlestick	10
Cycle Indicators	12
Data	13
Event Driven	14
Experimental	16
General	17
Information	18
Math Functions	19
Momentum Indicators	24

Overlap Studies
jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
• Technical Analysis Software
• Charting Software
• Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on • The Python Standard Library
Docs
• .html
• .epub
• .json

• .odt

- .pdf
- \bullet .rst
- .rtf
- .xml

Install

```
From PyPI:
```

\$ [sudo] pip3 install jhtalib

From source - source mirror 1 - source mirror 2:

- \$ git clone https://github.com/joosthoeks/jhTAlib.git
- \$ cd jhTAlib
- \$ [sudo] pip3 install -e .

Update

From PyPI:

\$ [sudo] pip3 install --upgrade jhtalib

From source - source mirror 1 - source mirror 2:

- \$ cd jhTAlib
- \$ git pull [upstream master]

In Colab

```
From PyPI:
```

```
!pip install --upgrade jhtalib
import jhtalib as jhta
```

From source - source mirror 1 - source mirror 2:

!git clone [-b branch-name] https://github.com/joosthoeks/jhTAlib.git
%cd '/content/jhTAlib'
import jhtalib as jhta
%cd '/content'
!rm -rf ./jhTAlib/

Check Installation

```
$ python3
>>> import jhtalib as jhta
>>> jhta.example()
If not errors then installation is correct.
>>> quit()
```

Basic Usage

```
# Import Built-Ins:
from pprint import pprint as pp
# Import Third-Party:
# Import Homebrew:
import jhtalib as jhta
# df is DataFeed:
df = {
    'datetime': ('20151217', '20151218', '20151221', '20151222', '20151223', '20151224', '20
    'Open': (235.8, 232.3, 234.1, 232.2, 232.7, 235.4, 236.9, 234.85, 236.45, 235.0),
    'High': (238.05, 236.9, 237.3, 232.4, 235.2, 236.15, 236.9, 237.6, 238.3, 237.25),
    'Low': (234.55, 230.6, 230.2, 226.8, 231.5, 233.85, 233.05, 234.6, 234.55, 234.4),
    'Close': (234.6, 233.6, 230.2, 230.05, 234.15, 236.15, 233.25, 237.6, 235.75, 234.4),
    'Volume': (448294, 629039, 292528, 214170, 215545, 23548, 97574, 192908, 176839, 69347)
    }
# basic usage:
#pp (df)
pp (jhta.SMA(df, 10))
#pp (jhta.BBANDS(df, 10))
```

Examples

```
$ cd example/
```

Example 1
\$ python3 example-1-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-1-plot.ipynb
Example 2
\$ python3 example-2-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-2-plot.ipynb
Example 3
\$ python3 example-3-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-3-plot.ipynb
Example 4
\$ python3 example-4-plot-quandl.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quand1.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

Example 7

\$ python3 example-7-quandl-2-df.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb

Example 8

\$ python3 example-8-alphavantage-2-df.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb

Example 9

\$ python3 example-9-cryptocompare-2-df.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-9-cryptocompare-2-df.ipynb

Example 10

DF NumPy Pandas	
https://colab.research.google.com/github/joosthoeks/jhTAlexample/example-10-df-numpy-pandas.ipynb	lib/blob/master/
Example 11	
Basic Usage	
https://colab.research.google.com/github/joosthoeks/jhTA	lib/blob/master/
Test	
<pre>\$ cd test/ \$ python3 test.py</pre>	
Reference	
import jhtalib as jhta	
Behavioral Techniques	
ATH All Time High DONE	
• dict of lists of floats = jhta.ATH(df, price='	High')
LMC Last Major Correction DONE	
• dict of lists of floats = jhta.LMC(df, price='	Low', price_high='High')

PP | Pivot Point | DONE • dict of lists of floats = jhta.PP(df, high='High', low='Low', close='Close') • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists of floats = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists of floats = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements | JDN | Julian Day Number | DONE • jdn = jhta.JDN(utc_year, utc_month, utc_day) • https://en.wikipedia.org/wiki/Julian_day

- JD | Julian Date | DONE
 - jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute, utc_second)
 - https://en.wikipedia.org/wiki/Julian_day

SUNC Sun Cycle •
MERCURYC Mercury Cycle •
VENUSC Venus Cycle •
EARTHC Earth Cycle
MARSC Mars Cycle •
JUPITERC Jupiter Cycle •
SATURNC Saturn Cycle •
URANUSC Uranus Cycle •

NEPTUNEC Ne	eptune Cycle
PLUTOC Pluto	Cycle
MOONC Moon	Cycle
Candlestick	
• list of floa	ndle Body Size DONE ts = jhta.CDLBODYS(df, open='Open', close='Close') radeciety.com/understand-candlesticks-patterns/
CDLWICKS Car	ndle Wick Size DONE
	ts = jhta.CDLWICKS(df, high='High', low='Low') radeciety.com/understand-candlesticks-patterns/
CDLUPPSHAS	Candle Upper Shadow Size DONE
• list of floar close='Close	ts = jhta.CDLUPPSHAS(df, open='Open', high='High',
• https://www.t	radeciety.com/understand-candlesticks-patterns/

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list of floats = jhta.CDLLOWSHAS(df, open='Open', low='Low', close='Close')
- https://www.tradeciety.com/understand-candlesticks-patterns/

CDLBODYP | Candle Body Percent | DONE

• list of floats = jhta.CDLBODYP(df, open='Open', close='Close')

CDLBODYM | Candle Body Momentum | DONE

- list of floats = jhta.CDLBODYM(df, n, open='Open', close='Close')
- book: Trading Systems and Methods

GAP | Gap | DONE

• list of floats = jhta.GAP(df, high='High', low='Low', close='Close')

QSTICK | Qstick | DONE

- list of floats = jhta.QSTICK(df, n, open='Open', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=Qstick.htm

SHADOWT | Shadow Trends | DONE

- dict of lists of floats = jhta.SHADOWT(df, n, open='Open', high='High', low='Low', close='Close')
- book: The New Technical Trader

IMI | Intraday Momentum Index | DONE • list of floats = jhta.IMI(df, open='Open', close='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=IMI.htm$ INSBAR | Inside Bar | DONE • list of ints = jhta.INSBAR(df, high='High', low='Low') OUTSBAR | Outside Bar | DONE • list of ints = jhta.OUTSBAR(df, high='High', low='Low') **Cycle Indicators** HT_DCPERIOD | Hilbert Transform - Dominant Cycle Period | HT_DCPHASE | Hilbert Transform - Dominant Cycle Phase | HT_PHASOR | Hilbert Transform - Phasor Components | HT_SINE | Hilbert Transform - SineWave |

HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE
• list of floats = jhta.TS(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm} \\ \underline{\hspace{1cm}}$
Data
CSV2DF CSV file 2 DataFeed DONE
• dict of tuples of floats = jhta.CSV2DF(csv_file_path, datetime='datetime' Open='Open', high='High', low='Low', close='Close', volume='Volume')
CSVURL2DF CSV file url 2 DataFeed DONE
<pre>• dict of tuples of floats = jhta.CSVURL2DF(csv_file_url, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')</pre>
DF2CSV DataFeed 2 CSV file DONE
• csv file = jhta.DF2CSV(df, csv_file_path, datetime='datetime', Open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFREV | DataFeed 2 DataFeed Reversed | DONE

• dict of tuples of floats = jhta.DF2DFREV(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFWIN | DataFeed 2 DataFeed Window | DONE

dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF_HEAD | DataFeed HEAD | DONE

dict of tuples of floats = jhta.DF_HEAD(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF_TAIL | DataFeed TAIL | DONE

• dict of tuples of floats = jhta.DF_TAIL(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE

• dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

Event Driven

ASI | Accumulation Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.ASI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

14

SI | Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.SI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

SAVGP | Swing Average Price - previous Average Price | DONE

• list of floats = jhta.SAVGP(df, open='Open', high='High', low='Low', close='Close')

SAVGPS | Swing Average Price - previous Average Price Summation | DONE

• list of floats = jhta.SAVGPS(df, open='Open', high='High', low='Low', close='Close')

SCO | Swing Close - Open | DONE

• list of floats = jhta.SCO(df, open='Open', close='Close')

SCOS | Swing Close - Open Summation | DONE

• list of floats = jhta.SCOS(df, open='Open', close='Close')

SMEDP | Swing Median Price - previous Median Price | DONE

• list of floats = jhta.SMEDP(df, high='High', low='Low')

SMEDPS | Swing Median Price - previous Median Price Summation | DONE

• list of floats = jhta.SMEDPS(df, high='High', low='Low')

SPP | Swing Price - previous Price | DONE • list of floats = jhta.SPP(df, price='Close') SPPS | Swing Price - previous Price Summation | DONE • list of floats = jhta.SPPS(df, price='Close') STYPP | Swing Typical Price - previous Typical Price | DONE • list of floats = jhta.STYPP(df, high='High', low='Low', close='Close') STYPPS | Swing Typical Price - previous Typical Price Summation | DONE • list of floats = jhta.STYPPS(df, high='High', low='Low', close='Close') SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE • list of floats = jhta.SWCLP(df, high='High', low='Low', close='Close') SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

Experimental

close='Close')

MONTECARLO | Monte Carlo | DONE

• list of ints = jhta.MONTECARLO(df, price='Close')

• list of floats = jhta.SWCLPS(df, high='High', low='Low',

 $\bullet \ \ https://en.wikipedia.org/wiki/Monte_Carlo_method$ General NORMALIZE | Normalize | DONE • list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close') • https://machinelearningmastery.com/normalize-standardize-time-seriesdata-python/ STANDARDIZE | Standardize | DONE • list of floats = jhta.STANDARDIZE(df, price='Close') • https://machinelearningmastery.com/normalize-standardize-time-seriesdata-python/ REMAP | Remap | DONE • float = jhta.REMAP(x, old_min=0, old_max=1000, new_min=0, $new_max=100)$ REMAPS | Remaps | DONE • list of floats = jhta.REMAPS(df, old_min=0, old_max=1000, new_min=0, new_max=100, price='Close') RATIO | Ratio | DONE • list of floats = jhta.RATIO(df1, df2, price1='Close', price2='Close')

• https://www.fmlabs.com/reference/default.htm?url=Ratio.htm

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')
- $\label{lem:https://www.fmlabs.com/reference/default.htm?url=CompPerformance.} \\ \text{htm}$

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RSIC.htm$

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE

• print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list)

18

Math Functions

EXP | Exponential | DONE • list of floats = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list of floats = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list of floats = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list of floats = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close') ATAN | Arc Tangent | DONE • list of floats = jhta.ATAN(df, price='Close') COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close')

SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close') TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list of floats = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list of floats = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list of floats = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list of floats = jhta.TANH(df, price='Close')

PI Mathematical constant PI DONE
• float = jhta.PI()
E Mathematical constant E DONE
• float = jhta.E()
TAU Mathematical constant TAU DONE
• float = jhta.TAU()
PHI Mathematical constant PHI DONE
• float = jhta.PHI()
FIB Fibonacci series up to n DONE
• list of ints = jhta.FIB(n)
CEIL Ceiling DONE
• list of floats = jhta.CEIL(df, price='Close')
FLOOR Floor DONE
• list of floats = jhta.FLOOR(df, price='Close')
DEGREES Radians to Degrees DONE
• list of floats = jhta.DEGREES(df, price='Close')

RADIANS | Degrees to Radians | DONE • list of floats = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list of floats = jhta.ADD(df, high='High', low='Low') DIV | Division High / Low | DONE • list of floats = jhta.DIV(df, high='High', low='Low') MAX | Highest value over a specified period | DONE • list of floats = jhta.MAX(df, n, price='Close') MAXINDEX | Index of highest value over a specified period | DONE • list of ints = jhta.MAXINDEX(df, n, price='Close') MIN | Lowest value over a specified period | DONE • list of floats = jhta.MIN(df, n, price='Close') MININDEX | Index of lowest value over a specified period | DONE • list of ints = jhta.MININDEX(df, n, price='Close')

MINMAX | Lowest and Highest values over a specified period | DONE • dict of lists of floats = jhta.MINMAX(df, n, price='Close') MINMAXINDEX | Indexes of lowest and highest values over a specified period | DONE • dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close') MULT | Multiply High * Low | DONE • list of floats = jhta.MULT(df, high='High', low='Low') SUB | Subtraction High - Low | DONE • list of floats = jhta.SUB(df, high='High', low='Low') **SUM | Summation | DONE** • list of floats = jhta.SUM(df, n, price='Close') SLOPE | Slope | DONE • float = jhta.SLOPE(x1, y1, x2, y2) • book: An Introduction to Algorithmic Trading

SLOPES | Slopes | DONE

- list of floats = jhta.SLOPES(df, n, price='Close')
- $\bullet\,$ book: An Introduction to Algorithmic Trading

23

ED Euclidean Distance DONE
• float = jhta.ED(x1, y1, x2, y2)
• book: An Introduction to Algorithmic Trading
EDS Euclidean Distances DONE
• list of floats = jhta.EDS(df, n, price='Close')
• book: An Introduction to Algorithmic Trading
Momentum Indicators
ADX Average Directional Movement Index
•
ADXR Average Directional Movement Index Rating
•
APO Absolute Price Oscillator DONE
• list of floats = jhta.APO(df, n_fast, n_slow, price='Close')
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm$
AROON Aroon
•
AROONOSC Aroon Oscillator
•

BOP Balance Of	f Power	
CCI Commodity	Channel Index	
CMO Chande M	Iomentum Oscillator	
DX Directional I	Movement Index	
MACD Moving	Average Convergence/Divergence	I
MACDEXT MA	.CD with controllable MA type	
MACDFIX Mov	ing Average Convergence/Diverge	nce Fix 12/26
close='Close	w Index DONE ts = jhta.MFI(df, n, high='High', ', volume='Volume')	
• https://www.fr	mlabs.com/reference/default.htm?url=	=MoneyFlowIndex.

htm

MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
MOM Momentum DONE • list of floats = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator •
RMI Relative Momentum Index DONE • list of floats = jhta.RMI(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RMI.htm

ROC | Rate of Change | DONE • list of floats = jhta.ROC(df, n, price='Close') ROCP | Rate of Change Percentage | DONE • list of floats = jhta.ROCP(df, n, price='Close') ROCR | Rate of Change Ratio | DONE • list of floats = jhta.ROCR(df, n, price='Close') ROCR100 | Rate of Change Ratio 100 scale | DONE • list of floats = jhta.ROCR100(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm RSI | Relative Strength Index | DONE • list of floats = jhta.RSI(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=rsi.htm$ STOCH | Stochastic | DONE • list of floats = jhta.STOCH(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm STOCHF | Stochastic Fast |

STOCHRSI | Stochastic Relative Strength Index | TRIX | 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA | ULTOSC | Ultimate Oscillator | VHF | Vertical Horizontal Filter | DONE • list of floats = jhta.VHF(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=VHF.htm WILLR | Williams' %R | DONE • list of floats = jhta.WILLR(df, n, high='High', low='Low', close='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm$ **Overlap Studies** BBANDS | Bollinger Bands | DONE • dict of lists of floats = jhta.BBANDS(df, n, f=2, high='High', low='Low', close='Close')

• https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm

• list of close='C	floats = jhta.BBANDW(df, n, f=2, high='High', low='Low lose')
• https://w htm	rww.fmlabs.com/reference/default.htm?url=BollingerWidth.

EMA | Exponential Moving Average | DONE

BBANDW | Bollinger Band Width | DONE

- list of floats = jhta.EMA(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm$

ENVP | Envelope Percent | DONE

- dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm$

KAMA | Kaufman Adaptive Moving Average |

•

MA | Moving Average |

MAMA | MESA Adaptive Moving Average |

•

MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list of floats = jhta.MIDPRICE(df, n, high='High', low='Low') • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list of floats = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list of floats = jhta.SAR(df, af_step=.02, af_max=.2, high='High', low='Low') • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended |

SMA | Simple Moving Average | DONE • list of floats = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm T3 | Triple Exponential Moving Average (T3) | TEMA | Triple Exponential Moving Average | TRIMA | Triangular Moving Average | DONE • list of floats = jhta.TRIMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm VAMA | Volume Adjusted Moving Average | DONE • list of floats = jhta.VAMA(df, n, price='Close', volume='Volume') • https://www.fmlabs.com/reference/default.htm?url=VolAdjustedMA. htm WMA | Weighted Moving Average

WWMA | Welles Wilder Moving Average | DONE

- list of floats = jhta.WWMA(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=WellesMA.htm

WWS | Welles Wilder Summation | DONE

- list of floats = jhta.WWS(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=WellesSum.htm

```
Pattern Recognition
```

CDL2CROWS | Two Crows |

CDL3BLACKCROWS | Three Black Crows |

CDL3INSIDE | Three Inside Up/Down |

CDL3LINESTRIKE | Three-Line Strike |

CDL3OUTSIDE | Three Outside Up/Down |

CDL3STARSINSOUTH | Three Stars In The South |

CDL3WHITESOLDIERS | Three Advancing White Soldiers |

CDLABANDONEDBABY | Abandoned Baby |

CDLADVANCEBLOCK | Advance Block |

CDLBELTHOLD | Belt-hold |

 ${\bf CDLBREAKAWAY} \mid {\bf Breakaway} \mid$

CDLCLOSINGMARUBOZU | Closing Marubozu |

CDLCONSEALBABYSWALL | Concealing Baby Swallow |

CDLCOUNTERATTACK | Counterattack |

```
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
```

```
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
{\bf CDLLADDERBOTTOM} \mid {\bf Ladder~Bottom} \mid
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
```

```
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
Price Transform
AVGPRICE | Average Price | DONE
  • list of floats = jhta.AVGPRICE(df, open='Open', high='High',
    low='Low', close='Close')
  \bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm
```

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df, high='High', low='Low')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df, high='High', low='Low', close='Close')
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm}$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df, high='High', low='Low', close='Close')

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list of floats = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list of floats = jhta.MEDIAN(df, n, price='Close')

• list of floats = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list of floats = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None)

MEDIAN_LOW | Low median of data | DONE

$\mathbf{COV} \mid \mathbf{Covariance} \mid \mathbf{DONE}$

- float = jhta.COV(x_list, y_list)
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COVARIANCE | Covariance | DONE

- list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')

COR | Correlation | DONE

• float = jhta.COR(x_list, y_list)

CORRELATION | Correlation | DONE

• list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(x_list, y_list)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

38

R2 | R-Squared | DONE

- float = jhta.R2(x_list, y_list)
- $\bullet \ \ https://www.wallstreetmojo.com/r-squared-formula/$

RSQUARED | R-Squared | DONE

- list of floats = jhta.RSQUARED(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://www.wallstreetmojo.com/r-squared-formula/$

${\bf REGRESSION} \mid {\bf Regression} \mid {\bf DONE}$

- dict of lists of floats = jhta.REGRESSION(x_list, y_list)
- $\bullet \ \ https://www.wallstreetmojo.com/regression-formula/$

SSE | Sum of the Squared Errors | DONE

- float = jhta.SSE(x_list, y_list)
- https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate

-

SEE | Standard Error of Estimate | DONE

- float = jhta.SEE(x_list, y_list)
- https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate

PSEE | Population Standard Error of Estimate | DONE

- float = jhta.PSEE(x_list, y_list)
- $\bullet \ \ https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate$

LSMA | Least Squares Moving Average | DONE

- list of floats = jhta.LSMA(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=LstSqrMA.htm$

BETA | Beta | DONE

- float = jhta.BETA(x_list, y_list)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- https://www.mathsisfun.com/data/least-squares-regression.html

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \, \text{https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/} \\$

Uncategorised

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- https://en.wikipedia.org/wiki/Expected_value

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

BPPS | Basis Points per Second | DONE

- float = jhta.BPPS(trade_start_price, trade_end_price, trade_start_timestamp, trade_end_timestamp)
- book: An Introduction to Algorithmic Trading

RET | Return | DONE

- list of floats = jhta.RET(df, price='Close')
- book: An Introduction to Algorithmic Trading

RETS | Returns | DONE

- list of floats = jhta.RETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRET | %Return | DONE

- list of floats = jhta.PRET(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRETS | %Returns | DONE

- list of floats = jhta.PRETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

Volatility Indicators

AEM | Arms Ease of Movement | DONE

- list of floats = jhta.AEM(df, high='High', low='Low', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ArmsEMV.htm$

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n, high='High', low='Low', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

NATR | Normalized Average True Range |

.

RVI | Relative Volatility Index | DONE

- list of floats = jhta.RVI(df, n, high='High', low='Low')
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

RVIOC | Relative Volatility Index Original Calculation | DONE

- list of floats = jhta.RVIOC(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RVIoriginal.htm$

INERTIA | Inertia | DONE

- list of floats = jhta.INERTIA(df, n, price='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Inertia.htm$

-

PRANGE | %Range | DONE

- list of floats = jhta.PRANGE(df, n, max_price='High', min_price='Low')
- book: An Introduction to Algorithmic Trading

TRANGE | True Range | DONE

- list of floats = jhta.TRANGE(df, high='High', low='Low', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=TR.htm

DVOLA | Daily Volatility | DONE

- list of floats = jhta.DVOLA(df, n=30, price='Close')
- https://www.wallstreetmojo.com/volatility-formula/

AVOLA | Annual Volatility | DONE

- list of floats = jhta.AVOLA(df, n=30, na=252, price='Close')
- $\bullet \ \ https://www.wallstreetmojo.com/volatility-formula/$

Volume Indicators

AD | Chaikin A/D Line | DONE

- list of floats = jhta.AD(df, high='High', low='Low', close='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$

ADOSC | Chaikin A/D Oscillator |

•

MFAI | Market Facilitation Index | DONE

- list of floats = jhta.MFAI(df, high='High', low='Low', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MFI.htm$

NVI | Negative Volume Index | DONE

- list of floats = jhta.NVI(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=NVI.htm

OBV | On Balance Volume | DONE

- list of floats = jhta.OBV(df, close='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=OBV.htm$

PVR | Price Volume Rank | DONE

- list of ints = jhta.PVR(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=PVrank.htm

PVT | Price Volume Trend | DONE

- list of floats = jhta.PVT(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVT.htm$

PVI | Positive Volume Index | DONE

- list of floats = jhta.PVI(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVI.htm$

VWAP | Volume Weighted Average Price | DONE

- list of floats = jhta.VWAP(df, open='Open', high='High', low='Low', close='Close', volume='Volume')
- book: An Introduction to Algorithmic Trading

Notebooks

• https://github.com/joosthoeks/jhTAlib/tree/master/notebook

A Sane and Simple bitcoin Savings plan SSS

• https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebook/a_sane_and_simple_bitcoin_savings_plan_(sss) .ipynb

Dollar Cost Averaging Discount DCAD

 $\bullet \ https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/\\ master/notebook/dollar_cost_averaging_discount_dcad.ipynb$

Recession Probability

 $\bullet \ https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebook/recession_probability.ipynb \\$

Donation and Funding

- BTC: 3KCoXMyUDgVABoFSuV8GQT3k8qkUhEDG9X