RAD/GBS approach When biology means bioinformatics

3 main steps

1. Library preparation and sequencing

2. Identifying and genotyping genetic markers

3. Analysing genetic structure

Library preparation

- Using digestion enzyme to sequence a genome subset
- Two methods:
 - Restricted Site Associated (RAD)
 - Genotyping By Sequencing (GBS)

Identifying and genotyping genetic markers

- 1. STACKS (Catchen et al 2013)
- -> https://groups.google.com/forum/#!forum/stacks-users
- 2. PyRAD (Eaton et al. 2014)
- 3. GBSx (Herten et al 2015)
- 4. dDocent (Putitz et al 2014)
- 5. AftrRAD (Sovic et al 2015)

Following STACKs tutorial

https://github.com/enormandeau/stacks_workflow

- 1. Stacks workflow tutorial
- 2. Install Stacks_workflow
- Download your raw datafiles (Illumina or prepared IonProton lanes)
- 4. Extract individual data with process_radtags
- 5. Rename samples
- Align reads to a reference genome (optional)
- 7. STACKS pipeline
- 8. Filtering the results
- 9. Conclusion

STACKs software

STACKs parameters

FASTQC

http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

Cut the adaptaters with CUTADAPT https://code.google.com/p/cutadapt/

- 1. Process_Radtags
- -> cut-off number of bp
- -> Enzyme used

2. USTACKS

- -> m = minimum depth of coverage
- -> M= Maximum de distance allowed between stacks (Ilut et al. 2014)

Thinking about your species

Lobster

Haplotype Cluster: → 1 allele/cluster → 2 alleles/cluster → >= 3 alleles/cluster

Lake trout

Haplotype Cluster: → 1 allele/cluster → 2 alleles/cluster → >= 3 alleles/cluster

3. CSTACKS (default setting)

4. SSTACKS (default setting)

5. POPULATION

- -> m: minimum depth required for individuals
- -> r : minimum percentage of individuals in a population

"The ideal molecular approach for population genomics should uncover hundreds of polymorphic markers that cover the entire genome in a single, simple and reliable experiment. Unfortunately, at present there is no such approach."

Luikart et al, 2003

Entering in the genomics world

1. VCFTOOLS

http://vcftools.sourceforge.net

Go to the **full manual** page

2. PLINK

http://pngu.mgh.harvard.edu/~purcell/plink/

3. R software

Exploring data

From STACKS to SNPs

FROM READS TO SNPS	SNP count	
STACKS CATALOG		200,293
POPULATION FILTERS		
Genotyped		
> 70% of the samples		74,229
> 70% of the populations		
MAF FILTERS		
Global MAF > 0.05		15,552
Local MAF > 0.1		
COVERAGE FILTER		
From 10 to 100x		15,505
HWE FILTERS		
$F_{IS} > -0.3$		10,324
Hardy-Weinberg equilibrium		
(P-value 0.05)		
$H_{OBS} < 0.5$		10,156
GENOME SCAN FILTER		
Putatively neutral		8144
Putatively under divergent selection		32

PGDspider is your best friend

PGDSpider version 2.0.8.1 (April 2015)

http://www.cmpg.unibe.ch/software/PGDSpider/

Finding the number of clusters

1. DPCA (library adegenet) http://adegenet.r-forge.r-project.org

3. ADMIXTURE

https://www.genetics.ucla.edu/software/admixture/

F-statistics

1. GENODIVE

http://www.bentleydrummer.nl/software/software/
GenoDive.html

2. ARLEQUIN

http://cmpg.unibe.ch/software/arlequin35/

Genome scan

1. BAYESCAN

http://cmpg.unibe.ch/software/BayeScan/

2. ARLEQUIN

http://cmpg.unibe.ch/software/arlequin35/

Learning is an ongoing process

Thanks for your attention

