第五章 内存控制器

概述

S3C2440A 内存控制器为外部记忆存取提供被需要的内存控制信号。 S3C2440A 有下列特征:

- --大/小模式(通过软件选择)
- --地址空间:每个内存控制器接口128M(所有内存控制器接口为1GB/8)
- 一除内存控制器接口0(16/32-bit)以外所有内存控制器接口的可编程访问大小(8/16/32-bit)
 - --8个内存控制器接口
 - 6个为ROM, SRAM, 等。
 - 剩余的2个为ROM, SRAM, SDRAM, 等
 - --具有7个固定内存控制器接口起始地址
 - --具有一个起始地址可调,可编程大小的内存控制器接口
 - --所有内存控制器接口具有可编程的存取周期
 - --等待外部扩充总线周期
 - --SDRAM支持自动更新和掉电模式

2007.9.7

1

图 5-1. S3 C2440 A 复置后的内存联家 注意

SROM 代表ROM或 SRAM 型内存控制器

表 5-1 接口6/7的地址

Address	2MB	/JAB	8MB	16MB	32MB	64MB	128MB
			Bar	nk 6			
Start address	0x3000_0000	Ux3000_0000	0x3000_0000	0x3000_0000	0x3000_0000	0x3000_0000	0x3000_0000
End address	0x301F_FFFF	CX203F_FFFF	0X307F_FFFF	0X30FF_FFFF	0X31FF_FFFF	0X33FF_FFFF	0X37FF_FFFF
	Bank 7						
Start address	0x3020_0000	0x3040_0000	0x3080_0000	0x3100_0000	0x3200_0000	0x3400_0000	0x3800_0000
End address	0X303F_FFFF	0X307F_FFFF	0X30FF_FFFF	0X31FF_FFFF	0X33FF_FFFF	0X37FF_FFFF	0X3FFF_FFFF

注意:接口6和7内存大小必须相同

功能描述

接口0的总线宽度

BANKO (nGCS 0) 的数据总线应该与一个宽度为16位或32位的总线一起设定。 因为接口 0作为引导ROM接口 (映像至 0 x 0000_0000), BANKO 的总线宽度应该被决定在第一个ROM访问之前,它将会依赖OM[1:0] 的逻辑电平

OM1 (Operating Mode 1)	OM0 (Operating Mode 0)	Booting ROM Data width
0	0	Nand Flash Mode
0	1	16-bit
1	0	32-bit
1	1	Test Mode

SROM/SDRAM 内存连接地址

MEMORY ADDR. PIN	\$3C2440A ADDR. @ 8-bit DATA BUS	\$3C2440A ADDR. @ 16-bit DATA BUS	\$3C2440A ADDR. @ 32-bit DATA BUS
A0	A0	A1	A2
A1	A1	A2	A3

SDRAM 接口地址连接例子

表 5-2 SDRAM 接口地址结构例子

ank Size	Bus Width	Base Component	Memory Configuration	Bank Address
2MByte	x8	16Mbit	(1M x 8 x 29ank) x 1	A20
	x16		(512K x 16 x 2b) x 1	
4MB	x16		(;М x 8 x 2ы) x 2	A21
	x16		(1M x 8 x 2B) x 2	
8MB	x16	16Mb	(2M×4×2B) ×4	A22
	x32		(1M x 8x 2B) x 4	
	x8	64Mb	(4M x 8 x 2B) x 1	
	x8		(2M x 8 x 4B) x 1	A[22:21]
	x16		(2M x 16 x 2B) x 1	A22
	x16		(1M x 16 x 4B) x 1	A[22:21]
	x32		(512K x 32 x 4B) x 1	
16MB	x32	16i/to	(2M x 4 x 2B) x 8	A23
	x8	64Mi	(8M x 4 x 2B) x 2	
	x8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(4M x 4 x 4B) x 2	A[23:22]
	x16		(4M x 8 x 2B) x 2	A23
	x16		(2M x 8 x 4B) x 2	A[23:22]
	x32		(2M x 16 x 2B) x 2	A23
	x32		(1M x 16 x 4B) x 2	A[23:22]
	XP/	128Mb	(4M x 8 x 4B) x 1	1
	xis		(2M x 16 x 4B) x 1]
32MB	x16	64Mb	(8M × 4 × 2B) × 4	A24
	x16		(4M × 4 × 4B) × 4	A[24:23]
	x32		(4M x 8 x 2B) x 4	A24
	x32		(2M × 8 × 4B) × 4	A[24:23]
	x16	128Mb	(4M x 8 x 4B) x 2]
	x32		(2M x 16 x 4B) x 2]
	x8	256Mb	(8M x 8 x 4B) x 1]
	x16		(4M x 16 x 4B) x 1	1
64MB	x32	128Mb	(4M x 8 x 4B) x 4	A[25:24]
	x16	256Mb	(8M x 8 x 4B) x 2	1
	x32		(4M x 16 x 4B) x 2]
	x8	512Mb	(16M x 8 x 4B) x 1	1
128MB	x32	256Mb	(8M x 8 x 4Bank) x 4	A[26:25]
	x8	512Mb	(32M x 4 x 4B) x 2	1
	x16		(16M x 8 x 4B) x 2	1
	x32		(8M x 16 x 4B) x 2	1

nWAIT 引脚运算

如果WAIT位(BWSCON中的WSn位)允许符合每个内存控制器接口, nOE 持续时间将被外部的nWAIT引脚延长,那么这个内存控制器接口是有效的。nWAIT 从tacc-1 被检查。在 nWAIT为高电平之后的下一个时钟nOE 将被重新设定。 nWE 和nOE有相同的关系式。

图 5-2. S3C2440A 外部nWAIT的时序表(facc=4)

nXBREQ/nXBACK引脚运算

如果 nXBREQ 有效, S3 C244C A 将会通过降低 nXBACK 做出反应。 如果 nXBACK=L, 地址/数据总线和内存控制信号达到 Hi-Z 态, 如表 1-1 所显示. nXBREQ 是无效,则 nXBACK 也将无效

图 5-3. S3 C2440 A nXBREQ/nXBACK 时序图 ROM存储接口举例

图5-4 8位ROM的存储器接口

图5-5 2片8位ROM存储器接口

图5-6 4片8位ROM存储器接口

图5-7 16位ROM存储器接口

SRAM存储器接口举例

图5-8 16位SRAM存储器接口

图5-9 2片16位SRAM存储器接口

SDRAM存储器接口举例

图5-10 16位SDRAM存储器接口(4Mx16, 4banks)

图5-11 2片16位SDRAM存储器接口(4Mx16x4Bank * 2ea)

SDRAM的接口地址配置参考表5-2

图5-12 S3C2410A nGCS时序图

图5-13 S3C2410A SDFAM时序图

总线宽度和WAIT控制寄存器(BWSCON)

寄存器	地址	R/W	描述	复位值
BWSCON	0x48000000	R/W	总线宽度和状态控制寄	0x000000
			存器	

BWSCON	位	描述	初始
			状态
ST7	[31]	决定SRAM映射在bank7时,是否使用UB/LB	0
		0=不使用 UB/LB (引脚对应 nWBE[3:0])	
		1 =使用UB/LB (引脚对应nBE[3:0])	
WS7	[30]	决定bank7的WAIT状态.	0
		0 =WAIT禁止;1 =WAIT使能	

DW7	[29:28]	决定bank7的数据总线宽度.	0
	[_0.20]	00 = 8-位, 01 = 16-位, 10 = 32-位 , 11 =保留	
ST6	[27]	决定SRAM映射在bank6时,是否使用UB/LB	0
	[]	0 = 不使用UB/LB (引脚对应nWBE[3:0)	
		1 = Using UB/LB (引脚对应 nBE[3:0])	
WS6	[26]	决定bank6中的WAIT状态.	0
		0 =WAIT停止;1 =WAIT使能	
DW6	[25:24]	决定bank6的数据总线宽度.	0
		00 = 8-位, 01 = 16-位, 10 = 32-位 ,11 =保留	
ST5	[23]	决定SRAM映射在bank5时,是否使用UB/LB	0
		0 = 不使用UB/LB (引脚对应nWBE[3:0)	
		1 = Using UB/LB (引脚对应 nBE[3:0])	
WS5	[22]	决定bank5中的WAIT状态.	0
		0 =WAIT停止;1 =WAIT使能	
DW5	[21:20]	决定bank5的数据总线宽度. 00 = 8-位, 61 = 16-位, 10	0
		= 32-位 ,11 =保留	
ST4	[19]	决定SRAM映射在bank4时,是否使用UE/LB	0
		0 = 不使用UB/LB (引脚对应nWBE3:5)	
		1 = Using UB/LB (引脚对应 n3 [3:0])	
WS4	[18]	决定bank4中的WAIT状态.	0
		O=WAIT停止;1=WAIT使能	
DW4	[17:16]	决定bank4的数据总线宽度.	0
070	F4 = 3	00 = 8-位, 01 = 16-位,10 = 32-位 ,11 =保留	
ST3	[15]	决定SRAM使用bank3的.	0
		0 = 不使用UB/LB (引脚对应nWBE[3:0)	
WS3	[4.4]	1 = Using UBAB (分脚对应 nBE[3:0])	0
VV 53	[14]	决定bank3中的WAIT状态. 0=WAIT停止: 1=WAIT使能	0
DW3	[42:42]	3.00	0
טעען	[13:12]	决定 $bark3$ 的数据总线宽度. $00 = 8$ -位, $01 = 16$ -位, $10 = 32$ -位 , $11 = 4$ 保留	U
ST2	[11]	决定SRAM使用bank2的.	0
312	[' ' ']	0 = 不使用UB/LB (引脚对应nWBE[3:0)	
		1 = Using UB/LB (引脚对应 nBE[3:0])	
WS2	[10]	A定bank2中的WAIT状态.	0
	''-'	0 =WAIT停止;1 =WAIT使能	
DW2	[9:8]	决定bank3的数据总线宽度.	0
		00 = 8-位, 01 = 16-位, 10 = 32-位 , 11 =保留	
ST1	[7]	决定SRAM使用bank1的.	0
		0 = 不使用UB/LB (引脚对应nWBE[3:0)	
		1 = Using UB/LB (引脚对应 nBE[3:0])	
WS1	[6]	决定bank1中的WAIT状态.	0
		0 =WAIT停止;1 =WAIT使能	
DW1	[5:4]	决定bank1的数据总线宽度.	0
		00 = 8-位, 01 = 16-位, 10 = 32-位 ,11 =保留	

DW0	[2:1]	显示bank0的数据总线宽度(只读),	0
		01 = 16-位t, 10 = 32位,通过OM[1:0]引脚来选择状态	
Reserved	[0]		0

注意:

- 1. 在这个存储控制器中的所有类型的主时钟都符合总线时钟 例如, SRAM 的 HCLK 就是相同的总时钟, SDRAM的SCLK 也是。 在这一个章里,一个时钟就是一个总线时钟。
- 2. nBE[3:0]是nWBE[3:0]和n0E的与讯号。

BANK控制寄存器(BANKCONN: NGCS0-NGCS5)

寄存器	地址	R/W	描述	复位值
BANKCON0	0x48000004	R/W	Bank 0 控制寄存器	0x0700
BANKCON1	0x48000008	R/W	Bank 1 控制寄存器	0x0700
BANKCON2	0x4800000c	R/W	Bank 2 控制寄存器	0x0700
BANKCON3	0x48000010	R/W	Bank 3 控制寄存器	0x0700
BANKCON4	0x48000014	R/W	Bank 4 控制寄存器	0x0700
BANKCON5	0x48000018	R/W	Bank 5 控制寄存器	0x0700

BANKCONn	位	描述	初始状态
Tacs	[14:13]	在nGCSn起效之前,地址信号的建立时	00
		间:	
		$00 = 0 \operatorname{clock} 0^{1} = 1 \operatorname{clock}$	
		10 = 2 clocks 11 = 4 clocks	
Tcos	[12:11]	在nCF起效之前,片选的建立时间	00
		00 = 2 clock 01 = 1 clock	
		10 - 2 clocks 11 = 4 clocks	
Tacc	[10:8]	访问周期	111
		000 = 1 clock 001 = 2 clocks	
		010 = 3 clocks 011 = 4 clock	
		100 = 6 clocks 01 = 8 clocks	
		110 = 10 clocks 111 = 14 clocks	
		NOTE: 如果启用了nWAIT信号,Tacc	
		将大于或等于4 clocks.	
Tcoh	[7:6]	nOE之后,片选的保持时间:	000
		00 = 0 clock 01 = 1 clock	
		10 = 2 clocks 11 = 4 clocks	
Tcah	[5:4]	nGCSn之后,地址信号的保持时间:	00
		00 = 0clock 01 = 1 clock	
		10 = 2 clocks 11 = 4 clocks	
Таср	[3:2]	Page模式的访问周期(在Page模式下)	00
		00 = 2 clocks 01 = 3 clocks	
		10 = 4 clocks 11 = 6 clocks	

PMC	[1:0]	Page 模式配置	00
		00 =正常 (1 data) 01 = 4 data	
		10 = 8 data 11 = 16 data	

BANK控制寄存器(BANKCONn: nGCS6-nGCS7)

Register	Address	R/W	Description	Reset Value
BANKCON6	0x4800001C	R/W	Bank 6 control register	0×18008
BANKCON7	0x48000020	R/W	Bank 7 control register	0x18008

BANKCONn	位	描述	初始状态		
MT	[16:15]	决定bank6和bank7的存储器类型	11		
		00 = ROM或SRAM 01 = 保留 (不使			
		用)			
		10 =保留 (不使用) 11 = Sync.DRAM			
存储器类型 = RO	M or SRAM [MT=0	0] (15-bit)			
Tacs	[14:13]	nGCSn起效之前,也址信号的建立时	00		
		间:			
		00 = 0 clock 01 = 1 clock			
		10 = 2 clocks 11 = 4 clocks			
Tcos	[12:11]	nOE起放之前、片选的建立时间:	00		
		00 = 0 5.0ck 0 l = 1 clock			
		10 = 2 ciocks 11 = 4 clocks			
Tacc	[10:8]	访问周期	111		
		000 = 1 clock 001 = 2 clocks			
		010 = 3 clocks 011 = 4 clocks			
		100 = 6 clocks 101 = 8 clocks			
		110 = 10 clocks 111 = 14 clocks			
Tcoh	[7:6]	NOE之后,片选持续时间	00		
		00 = 0 clock 01 = 1 clock			
		10 = 2 clocks 11 = 4 clocks			
Tcah	[5:4]	nGCSn之后,地址信号保持时间	00		
		00 = 0 clock 01 = 1 clock			
		10 = 2 clocks 11 = 4 clocks			
Таср	[3:2]	Page模式下的访问周期(Page模式下)	00		
		00 = 2 clocks 01 = 3 clocks			
		10 = 4 clocks 11 = 6 clocks			
PMC	[1:0]	Page模式配置	00		
		00 =正常 (1 data) 01 = 4数据连续访			
		问			
		10 = 8数据连续访问 11 = 16数据连续			
访问					
存储器类型 = SDRAM [MT=11] (4-bit)					

Trcd	[3:2]	RAS 到CAS 延迟	10
		00 = 2 clocks 01 = 3 clocks 10 = 4	
		clocks	
SCAN	[1:0]	列地址位数	00
		00 = 8-bit 01 = 9-bit 10= 10-bit	

刷新控制存储器

寄存器	地址	R/W	描述	复位值
REFRESH	0x48000024	R/W	SDRAM刷新控制存储	0xac0000
			器	

刷新	位	描述	初始状态
REFEN	[23]	SDRAM刷新使能	1
		0 = 停止 1 =使能 (自我/自动 刷新)	
TREFMD	[22]	SDRAM 刷新模式	0
		0 = 自动刷新 1 = 烏我刷新	
		在自我刷新模式下SCRAM控制信号	
		被置于适当的电平。	
Trp	[21:20]	SDRAM RAS 预汽电时间	10
		00 = 2 clocks 01 = 3 clocks 10 = 4	
		clocks 11 = 元文持	
Tsrc	[19:18]	SDFAM学行号期时间	11
		00 - 1 clocks 01 = 5 clocks 10= 6	
		clocks 11 =7 clocks	
	_	SDRAM's 行周期时间(Trc) = Tsrc +	
		Tro	
		如果Trp=3 clocks和Tsrc=7 clocks, Trc	
		= 3 + 7 = 10 clocks	
Reserved	[17:16]	不使用	00
Reserved	[15.11]//	不使用	0000
Refresh Counter	[10:0]	SDRAM刷新计数器值.	0
		刷新时间= (211-刷新计数器值	
		+1)/HCLK	
		Ex)如果刷新时间是15.6 us ,HCLK是	
		60MHz, 刷新时间计	
		算如下: 刷新时间 = 211 + 1 -	
		60x15.6 = 1113	

BANKSIZE寄存器

寄存器	地址	R/W	描述	复位值
BANKSIZE	0x48000028	R/W	可灵活设置的bank尺寸寄存	0x0
			器	

BANKSIZE	位	描述	初始状态
BURST_EN	[7]	ARM 内核猝发操作使能	0
		0 =禁止猝发操作	
		1 = 使能猝发操作	
Reserved	[6]	不使用	0
SCKE_EN	[5]	SCKE 使能控制	0
		0 = SDRAM SCKE禁止	
		1 = SDRAM SCKE使能	
SCLK_EN	[4]	只有在SDRAM访问周期期间,SCLK	0
		才使能,这样	
		做是可以减少功耗。当SDRAM不被访	
		问时,SCLK	
		变成低电平	
		0 = SCLK总是激活	
		1 = SCLK只有在访问期间(推荐的)	
		激活	
Reserved	[3]	不使用	0
BK76MAP	[2:0]	BANK6/7的存储空闾分布	010
		010 = 128MB/128MB 001 =	
		64MB/64 wiB	
		000 = 32M/32W 111 = 16M/16M	
		110 = 2 M/8 M 101 = 4 M/4 M	
		100 = 2M/2M	

SDRAM 模式寄存器组寄存器(MRSR)

寄存器	地址 // //	R/W	描述	复位值
MRSRB6	0x4800002C	R/W	模式寄存器组寄存器	XXX
			bank6	
MRSRB7	0x48000030	R/W	模式寄存器组寄存器	XXX
	•		bank7	

MRSR	位	描述	初始状态
Reserved	[11:10]	不使用	_
WBL	[9]	写脉冲串长度	Х
		0: 脉冲 (固定)	
		1: 保留	
TM	[8:7]	测试方式	XX
		00: 模式寄存器组 (固定)	
		01, 10 和11:保留	

CL	[6:4]	CAS 等待时间	xxx
		000 = 1 时钟, 010 = 2时钟, 011=3	
		时钟	
		其他:保留	
BT	[3]	脉冲串类型	X
		0: 时序 (固定)	
		1: 保留	
BL	[2:0]	脉冲串长度	xxx
		000: 1 (固定	
		其他:保留	

注意: 当代码在SDRAM中运行的时候, MRSR 寄存器不能被重新配置。 重要的声明: 在休眠模态中, sdram 必须进入 sdram的动刷新模式

