FACULDADE ANHANGUERA EDUCACIONAL LISTA 3 – Matemática Aplicada III

Profa Thabata Martins

Bibliografia adotada (PLT)

Hughes-Hallett, Gleason, McCallum, et al. Cálculo de uma variável. 3ª ed. Rio de Janeiro: LTC, 2002.

DERIVADAS DE FUNÇÕES EXPONENCIAIS

Se
$$f(x) = e^x \rightarrow f'(x) = e^x$$
.

Se
$$f(x) = a^x \rightarrow f'(x) = a^x$$
.(In a)

I) Encontre as derivadas das funções nos itens a seguir e suponha que a, b, c e k são constantes.

a)
$$f(x) = 2e^x + x^2$$

b)
$$f(x) = 5^x + 2$$

c)
$$f(x) = 5x^2 + 2^x + 3$$

d)
$$f(x) = 4.10^x - x^3$$

e)
$$y = \frac{3^x}{3} + \frac{33}{\sqrt{x}}$$

f)
$$f(x) = e^{1+x}$$

g)
$$f(x) = e^{\theta - 1}$$

h)
$$z = 4^x.(ln 4)$$

i)
$$f(x) = x^3 + 3^x$$

j)
$$y = \pi^2 + \pi^x$$

• Se u = f(x) e v = g(x) são diferenciáveis, então:

REGRA DO PRODUTO (u.v)' = u'.v + u.v'

II) Derive

(a) x^2 . e^x

(b) $(3x^2 + 5x)e^x$

(c) $\frac{e^x}{x^2}$

REGRA DO QUOCIENTE $\left(\frac{u}{v}\right)' = \left(\frac{u'.v - u.v'}{v^2}\right)$

III) Derive:

(a) $\frac{5x^2}{x^3+1}$

(b) $\frac{1}{1 + e^{x}}$

(c) $\frac{e^x}{x^2}$

EQUAÇÃO DA RETA TANGENTE y - f(a) = m(x-a)

Encontre a equação da reta tangente ao gráfico de $f(x) = x^2 + 3x$ no ponto onde x = 2. IV)

Encontre a equação da reta tangente ao gráfico de $w = \frac{y^3 - 6y^2 + 7y}{y}$ no ponto onde x = 0V)

Exercícios Propostos da Lista 2 – Utilizando as regras de derivação

1) Seja $f(x) = x^2(x^3 + 5)$, encontre f'(x) de duas maneiras: usando a regra do produto e efetuando a multiplicação antes de derivar. Você obtém o mesmo resultado? Deveria obter?

Para os exercícios de 2 a 15, encontre a derivada. Pode ser mais fácil simplificar primeiro. Suponha que a, b, c e k são constantes.

2)
$$f(x) = xe^{x}$$

3)
$$y = \sqrt{x} 2^x$$

4)
$$z = (s^2 - \sqrt{s}) (s^2 + \sqrt{s})$$

5)
$$y = (t^3 - 7t^2 + 1)e^t$$

6)
$$g(x) = \frac{25x^2}{e^x}$$

7)
$$q(r) = \frac{3r}{5r+2}$$

8)
$$z = \frac{3t+1}{5t+2}$$

9)
$$z = \frac{t^2 + 3t + 1}{t+1}$$

9)
$$z = \frac{t^2 + 3t + 1}{t + 1}$$

10) $w = \frac{y^3 - 6y^2 + 7y}{y}$

11)
$$f(z) = \frac{z^2 + 1}{\sqrt{z}}$$

12) h(r) =
$$\frac{r^2}{2r+1}$$

13) w(x) =
$$\frac{17e^x}{2^x}$$

14)
$$f(x) = \frac{1+x}{2+3x+4x^2}$$

15) w =
$$(t^3 + 5t)(t^2 - 7t + 2)$$

16) Encontre a equação da reta tangente ao gráfico de f(x) = $\frac{2x-5}{x+1}$ no ponto onde x = 0.

17) Derive $f(x) = e^{2x}$ escrevendo $f(x) = e^{x}.e^{x}$.

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

Exercício I)

a)
$$f'(x) = 2e^x + 2x$$

b)
$$f'(x) = (\ln 5)5^x$$

c)
$$f'(x) = 10x + (ln2)2^x$$

d)
$$f'(x) = 4. (ln 10)10^x - 3x^2$$

e)
$$y' = \frac{(\ln 3) 3^x}{3} - \frac{33x^{-3/2}}{2}$$

f) $f'(x) = e^{1+x}$

f)
$$f'(x) = e^{1+x}$$

g)
$$f'(x) = e^{\theta - 1}$$

h)
$$z' = 4^x . (\ln 4)^2$$

i)
$$f'(x) = 3x^2 + (\ln 3)3^x$$

j)
$$y' = \pi^x \ln \pi$$

Exercício II): (a)
$$(2x + x^2)$$
. e^x

(b)
$$(3x^2 + 11x + 5)e^x$$
 (c) $(-2x^{-3} + x^{-2})e^x$

(c)
$$(-2x^{-3} + x^{-2}) e^x$$

Exercício III): (a)
$$\frac{-5x^4+10x}{(x^3+1)^2}$$
 (b) $\frac{-e^x}{(1+e^x)^2}$ (c) $e^x \cdot \left(\frac{x-2}{x^3}\right)$

(b)
$$\frac{-e^x}{(1+e^x)^2}$$

(c)
$$e^x \cdot \left(\frac{x-2}{x^3}\right)$$

Exercício IV) 7x - 4

Exercício V) -6x + 7

Resposta dos Exercícios Propostos da Lista 2 – Utilizando as regras de derivação

1)
$$5x^4 + 10x$$

2)
$$f'(x) = e^x(x+1)$$

3)
$$y' = \sqrt{x} \ 2^x \frac{2^x}{2\sqrt{x}} + \sqrt{x}(\ln 2)2^x$$

4)
$$z' = 4s^3 - 1$$

5)
$$y' = (t^3 - 4t^2 - 14t + 1)e^t$$

6)
$$g'(x) = \frac{50x - 25x^2}{e^x}$$
7) $q'(r) = \frac{3r}{5r + 2}$

7)
$$q'(r) = \frac{3r}{5r+2}$$

8)
$$z' = \frac{6}{(5t+2)^2}$$

9)
$$z' = \frac{t^2 + 2t + 2}{(t+1)^2}$$

10)
$$w' = 2y - 6, y \neq 0$$

11)
$$f'(z) = \sqrt{z}(3 - z^{-2})/2$$

12)
$$h'(r) = 2r(r+1)/((2r+1)^2)$$

13) w'(x) =
$$\frac{17e^x(1-ln2)}{2^x}$$

14)
$$f'(x) = \frac{-4x^2 - 8x - 1}{(2 + 3x + 4x^2)^2}$$

15) w' =
$$(3t^2 + 5)(t^2 - 7t + 2) + (t^3 + 5t)(2t - 7)$$

16)
$$Y = 7x - 5$$

17)
$$y' = 2e^{2x}$$