CS183

Instructor: Ali Davanian (Slides were adopted from Brian Crites and Alireza Abdoli)

L3 Advanced Topics Routing and Security

Logistics

- Please start working on your project ASAP (if you already haven't)
 - Next week we'll have a Holiday, and the week after is your last chance to get help
- Expect a Pop-up quiz quiz after the holiday
- Week 10 is only for your project presentations
 - 4 minutes per group; you'd need to sign up if you want to present
 - Not In-Person, only virtual

The Routing Table

- The routing table performs a similar function to the switching table in L2 and is responsible for making sure traffic gets to where it needs to go
- The routing table is primarily made up of the following fields:
 - Network ID & Mask represents an available network a device can route traffic to (0.0.0.0 used to route traffic not otherwise in the table)
 - Gateway (Next Hop) is the next L3 appliance interface's IP address that must be traversed to reach the destination
 - Interface is the port* used to reach the next hop
 - Metric is the cost of getting to the next hop through the interface

IP Address ranges

Table 13.3 Historical Internet address classes

Class	1st byte	Format	Comments
Α	1-126	N.H.H.H	Very early networks, or reserved for DOD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
C	192-223	N.N.N.H	Easy to get, often obtained in sets
D	224-239	-	Multicast addresses, not permanently assigned
E	240-254	-	Experimental addresses

Table 13.7 IP addresses reserved for private use

IP class	From	То	CIDR range
Class A	10.0.0.0	10.255.255.255	10.0.0.0/8
Class B	172.16.0.0	172.31.255.255	172.16.0.0/12
Class C	192.168.0.0	192.168.255.255	192.168.0.0/16

Routing configuration

- Routing configuration can be done statically or dynamically
- In static routing, the entries are manually added to the router:
 - ip route add [subnet-CIDR] via [destination-ip] dev [local-interface]
- In dynamic routing, a routing protocol is used
 - They learn the routes automatically
 - They update the routes automatically if there is any change

Network ID	Gateway	Interface	Metric
0.0.0.0/0	137.164.24.208	192.168.10.2/24	10
192.168.10.0/24	192.168.10.1/24	192.168.10.1/24	10
192.168.20.0/24	192.168.2.2	192.168.2.1/24	10
192.168.40.0/24	192.168.1.2	192.168.1.1/24	10
192.168.30.0/24	192.168.1.2	192.168.1.1/24	10

Network ID	Gateway	Interface	Metric
0.0.0.0/0	192.168.2.1	192.168.2.2/24	10
192.168.20.0/24	192.168.20.1/24	192.168.20.1/24	10
-192.168.30.0/24	192.168.2.1	192.168.2.2/24	- 10
-192.168.40.0/24	192.168.2.1	192.168.2.2/24	-10
-192.168.10.0/24	192.168.2.1	192.168.2.2/24	-10

Network ID	Gateway	Interface	Metric
0.0.0.0/0	192.168.3.2	192.168.3.1/24	10
192.168.30.0/24	192.168.30.1/24	192.168.30.1/24	10
-192.168.20.0/24	192.168.3.2	192.168.3.1/24	-10
-192.168.40.0/24	192.168.3.2	192.168.3.1/24	-10
-192.168.10.0/24	192.168.3.2	192.168.3.1/24	-10

Routing Table - Router 4 (Exercise)

Network ID	Gateway	Interface	Metric
			10
			10
			10
			10
			10

Network ID	Gateway	Interface	Metric
0.0.0.0/0	192.168.1.1	192.168.1.2/24	10
192.168.40.0/24	192.168.40.1/24	192.168.40.1/24	10
192.168.30.0/24	192.168.3.1	192.168.3.2/24	10

Example: setting up static routing for a network

Example: steps to provide external access

- To use the Linux system as a router, ip forwarding should be enabled
- ip forwarding refers to capability of redirecting ip packets:
 - sysctl -w net.ipv4.ip_forward=1
 - sysctl -p /etc/sysctl.conf
 - This configuration would override the value stored in /proc/sys/net/ipv4/ip_forward
- We need to add the routes
 - A simple default route suffices: sudo ip route add default via dev 10.0.2.1

Example: Network Address Translation (NAT)

- Outside routers do not know about our internal structure!
 - The router will route the traffic but we will not get any responses back!
- NAT allows us change the sender address to the router address
 - The outside routers know where to send the traffic for the router address
- The command is:
 - o iptables –t nat -A POSTROUTING -o enp0s3 -j SNAT --to-source 10.0.2.22

Routing protocols

- Routing protocols simplify the configuration process by automatically compiling routing tables
- Most common protocols are:
 - RIP: simple distance-vector protocols that use hop counts as a cost metric
 - EIGRP: another distance vector protocol that is designed to avoid looping problems
 - OSPF: most popular dynamic routing protocol, only usable on internal private networks, analogous to STP in L2

Open Shortest Path First (OSPF)

- Most popular dynamic routing protocol, only usable on internal private networks, analogous to STP in L2
- Designed for networks using variable length CIDR addresses
- It is able to converge on a loop-free topology quickly (seconds)
- Can handle any topology structure and allows for authentication

Terminology

- Area: way to segment networks in OSPF using a 32 bit ID
- Neighbor: connected router running OSPF in the same area
- Adjacency Database: table of all OSPF connections that are neighbors
- Router ID: unique ID of a router within an area
- (Backup) Designated Router: routers which hold global topology view (all routers must form an adjacency to these), they are elected by priority

OSPF Algorithm

1. Neighbor Discovery:

- a. Use L2 broadcast "hello" messages to identify "adjacent" neighbors
- These routers must interface on the same subnet, have different IDs, be in the same area, and have the same authentication parameters

2. Topology Database Exchange:

- a. Send **Link State Advertisements** (LSA) onto the network which contains a router ID, list of router interfaces, and list of neighbors on each interface
- Routers store this information into the Link State Database (LSDB), which should be the same for all routers in the area

3. Route Computation

- a. Use a **Shortest Path First** (SPF) algorithm (equivalent to Dijkstra's) based on LSDB information
- b. Update the routing table with the routes calculated using SPF

SPT for R1

Areas

- Breaking our network into smaller areas allow for a number of benefits when running OSPF
 - Smaller LSDBs for each router in the area
 - Reduction in the amount of LSA traffic, since it won't traverse area boundaries
 - Quicker SPF calculations (mostly because of the above)

Security Issues at layer 3

- Security is a multi-layer concept
- In a network, a server/client could be vulnerable at one or multiple layers
- Vulnerabilities in layer 3 can have different effects:
 - Bypassing firewall rules
 - Denial of services
- It is important to understand that there is neither authentication nor encryption at layer 3
 - VPN tunneling provides both for layer 3

Routing issues

- IP forwarding: unless you perform routing IP forwarding should be disabled
 - Otherwise, an attacker can trick your router into routing their packets and possibly bypass network scanners and packet filters
- Source routing: IP protocol allows the sender to choose their route to the destination
 - Through Strict Source Route (SSR) and Loose Source Route (LSR) header options
 - It can be misused to bypass firewalls

```
Identification: 0xeb63 (60259)

Flags: 0x00
Fragment offset: 0
Time to live: 128
Protocol: ICMP (0x01)

Header checksum: 0x98b6 [correct]

Source: 10./1.10.6 (10./1.10.6)
Destination: 10.71.10.254 (10.71.10.254)

□ options: (8 bytes)

■ Loose source route (7 bytes)

Pointer: 4
4.2.2.2 <- (current)
```

ICMP redirects

- Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite
- The router can inform senders of particular problems by sending "ICMP redirects"
 - The message says you should not send packets for host x to me, send it to y
- In theory, the recipient might adjust its routing table to reflect the change

IP spoofing

- Sender IP is usually set by the kernel
- An attacker can craft a packet with a sender IP other than their own
 - Firewall might permit the packet from the forged address
- IP spoofing is mainly used for DDOS attacks
 - Combined with source routing can completely bypass L3 IP filtering

Questions?

Additional Resources

Packet Guide to Routing and Switching (Chapter 5 and 6)