

HM0.460.003

UNIDADE DE ACIONAMENTO MOTORIZADO TIPO CMA9

Instruções de Operação

SHANGHAI HUAMING POWER EQUIPMENT CO.,LTD

Agradecemos pela escolha de nossa unidade de acionamento motorizado!

Antes de operar a unidade de acionamento motorizado que acaba de adquirir, por favor, leia atentamente as instruções contidas neste manual.

Obrigado!

Indice

1. Generalidades	I
2. Informações técnicas	2
3. Projeto	3
4. Principio Operacional	5
5 Instalação	12
6. Controles e ajustes	13
7. Solução de problemas	14
8. Indicador do HMC-3C	16
9. Acessórios opcionais	18
10. Anexo 1 Vista explodida do Sistema de Controle Mecânico	19
11. Anexo 2 Diagrama de ligação do indicador de posição	20
12. Anexo 3 Diagrama geral dimensional do CMA9	21
13. Anexo 4 Diagrama do principio elétrico do CMA9	22
14. Anexo 5 Explicação dos terminais X1 e X3	23
15. Anexo 6 Explicação do terminal CX	24

1. Generalidades

O acionamento motorizado CMA9 (Fig.1e2) serve para o acionamento do comutador tipo CV, que é a opção de operação escolhida.

Também pode ser usado em alguns comutadores sem carga. O gabinete do acionamento motorizado contém todas as partes mecânica e elétrica necessárias para o funcionamento do comutador desde uma posição até a seguinte, a ação do acionamento motorizado é inicializada por um único sinal de controle e concluída sem qualquer interrupção.

As ultrapassagens das posições finais são impedidas pelo duplo equipamento limitador. Equipamentos de segurança e monitoramento estão disponíveis e são de fácil operação.

Nota: A instalação do acionamento motorizado, ligação elétrica e operação, devem ser executadas por pessoal treinado de acordo com as instruções de operação. Não recomendamos a substituição outgraça do acionamento motorizado sem a permissão de nossa empresa. Falhas podem causar severos danos ao comutador e ao transformador.

Durante o período da instalação do acionamento motorizado, ligações elétricas e operação impróprias podem ter influência na operação do acionamento motorizado, comutador sob carga e transformador.

2. INFORMAÇÕES TÉCNICAS

Nota: As informações técnicas listadas aplicam-se apenas para o projeto padrão, devendo haver algumas diferenças para outros equipamentos, reservamo-nos no direito de fazer as modificações necessárias.

	Item	Dados
	Potência Nominal (W)	370
	Tensão Nominal (V)	Trifásico - 380VAC
Motor	Corrente Nominal (A)	1,1
	Frequência (Hz)	50
	Rotação (rpm)	1400
Torque de saída no eixo de acionamento (Nm)		40
Voltas no e	ixo de acionamento para troca de TAP	2
Voltas na m	nanivela para troca de TAP	30
Tempo de duração da troca de TAP (S)		± 4
Número máximo de posições de operação		27
Tensão do circuito de controle e aquecimento (V)		Monofásico 220VAC
Consumo de energia no circuito de comando (VA)		52
Consumo d	e energia do aquecimento (W)	30
Nivel de iso	olação para terra (50Hz, 1 min.)	2kV
Peso (kg)		70
Nível de Pr	oteção	IP56
Vida útil do motor de acionamento (operações)		800.000

2.1 Condições de trabalho da unidade de acionamento motorizado:

- 2.1.1 A altitude não deverá ser superior a 2.000 metros.
- 2.1.2 A temperatura ambiente deverá ficar entre $25 \sim 40^{\circ}$ C.
- 2.1.3 A inclinação vertical da instalação não deverá exceder 2%.
- 2.1.4 O local definitivo de operação deverá ser livre poeira explosiva e/ou gases corrosivos.

3. PROJETO

3.1 Estrutura mecânica **Nota: A estrutura e equipamentos** descritos nesta seção, aplicam-se somente ao projeto padrão, reservamos o direito de fazer as modificações.

3.1.1 Gabinete (Ver figura 1)

O gabinete consiste de duas partes, a caixa e a tampa, ambos fabricados com metal leve fundido e a prova de corrosão. A tampa pode ser aberta facilmente. A direção de abertura é para o lado esquerdo.

A junta entre a tampa e o cubículo é protegido por um entalhe e vedado com borracha.

Os buracos para o eixo acionador, janela de inspeção e manivela, são vedados de maneira que o gabinete seja bem protegido contra jatos de água.

A ventilação do gabinete é através de aberturas em ambos os lados da caixa. A base da caixa possui aberturas para passagem dos cabos os quais são tapados provisoriamente com borracha para fins de transporte e entrega.

3.1.2 Engrenagens (ver fig.3)

O conjunto de engrenagens consistem de engrenagem de transmissão e engrenagem de comando. A engrenagem de transmissão é fornecida em uma caixa. A engrenagem de comando é fixada em um dos lados da engrenagem de transmissão. Isso compreende uma roda excêntrica do interruptor de leva da operação mecânica, indicador de posição mecânica e roda de indicação do comutador. A roda de indicação do comutador, e também a roda excêntrica, giram uma volta para cada operação de chaveamento. A zona verde indica a posição descanso do interruptor de leva. A posição inicial da operação do comutador está indicada na marca central vermelha no campo verde.

3.1.3 Manivela

A manivela fornecida com um cabo plástico é preso através de um grampo com porca borboleta, do lado de fora do gabinete.

Fig. 3 Unidade Motorizada

Engren. Acion.:

- 1 Motor de excitação
- 2 Eixo sem-fim z=1, m=1.5 103Acoplamento 3 Roda sem-fimz=56 m=1.5 104 Roda de comando
- 5 Engren.helicoidalz=56 m=1¹⁰⁶ Engrenagem z=25 m=1
- 6 Eixo da lingueta
- 7 Chave de segurança para operação manual
- 8 Manivela
- 9 Eixo acionador
- 10Engren.helic.z=52. m=1
- 11Engren.helic.z=26. m=1

Engrenagem de controle:

- 102 Eixo de controle

- 4 Engren.helicoidalz=15 m=1¹⁰⁵ Chave de comando passo-a-passo

 - 107 Roda indicação de posição fase de andamento
 - 108 Roda dentada z=132 m=1
 - 109 Engrenagem intermediária z=22 m=1
 - 110 Proteção limite da roda de engrenagem
 - 111 Limite de posição da roda
 - 112 Indicação de posição da roda
 - 115 Contador de operações
 - 116 Limite do bloco parador
 - 117 Limite da chave elétrica
 - 118 Limite da chave do circuito de comando
 - 119 Limite de chave do circuito principal 120 Roda de indicação de posição
 - (contato estático) 121 Roda de indicação de posição
 - 122 Acoplamento

(contato móvel)

- 123 Bloco seguidor
- 126 Engrenagem z=56, m=1

3.1.4 Contador

O contador elétrico registra as operações de chaveamento executadas. Para a leitura do contador, não é necessário abrir o gabinete.

3.2 Elemento elétrico

Nota: A identificação de cada elemento tem que ser anotado na etiqueta adesiva do equipamento.

Equipamento padrão:

H1	Lâmpada de sinalização da ativação da chave de proteção Q1 do motor com soquete de lâmpada.	S5	Botoeira de acionamento da chave de proteção Q1 do motor Contatos: 1 NO + 1 NC
KI/K2	Contatora do motor para controle de direção do	S16/S17	com soquete de lâmpada (para lâmpada H1) Chave limitadora da posição n/posição 1,
	motor "aumentar" (para posição n), K1 fechado.		chave liga/desliga do circuito de controle
	" diminuir " (para posição 1), K2 fechado.		Contato: 1 NC
K3	Contatos: 4 NO + 2 NO + 2 NC Contatora do freio Contatos: 4 NO + 4 NC	S6/S7	Chave limitadora da posição n/posição 1, Chave liga/desliga do circuito de controle principal Contatos: 3 NC
K20	Contato intermediário Relé auxiliar para operação passo-a-passo. Contato: 4 NO + 4 NC.	S8	Chave de segurança para operação manual Contatos: 3 NC
M1	Motor de excitação	S12/S14	Interruptor para direção de controle
	Motor com rotor em curto-circuito		em direção a posição 1 /em direção a posição n
	Ver lista da seção 2		Contato: 1 NO + 1 NC com chave de ponto comum
Q1	Chave de proteção do motor com acionamento		
	magnético e térmico	S13	Interruptor para operação passo-a-passo
	Contatos: 1 NO + 1 NC contatos auxiliares	X1/X3	Terminais para ligações externas.
R1	Aquecedor	S38	"Seletor Remoto" / "local"
	Resistência 1.5 kΩ	X10	Tomada (220V.AC.10A)
S1/S2	Botoeira do comando de direção de rotação do motor.	K21	Relé de temporizador, impede a operação contínua
	Contatos: 1 NO + 1 NC	CX	Soquete terminal para 19 sinais de cabo
		COUN	Contador

4. Principio Operacional Elétrico

4.1 Circuitos

O circuito de acionamento motorizado inclui os seguintes circuitos: circuito motorizado (circuito principal), circuito de comando, circuito de proteção e circuito de sinalização (ver diagrama 5).

4.1.1 Circuito do Motor

Os terminais do motor U, V, W são ligados aos terminais X1/1, 2, 3 da fonte de alimentação L1, L2 e L3 através da contactora motorizada K3, K1/K2, chave limitadora S6/S7, chave de proteção manual S8 e chave Q1 de proteção do motor.

4.1.2 Circuito de comando

O circuito de comando é ligado a L1, N através dos terminais 6, 7, com a chave S8 de proteção do motor que está ligada com a tensão de comando que é interrompido quando Q1 ou S8 é energizado.

O circuito ativador da chave de proteção Q1 do motor está interligado com o circuito de comando.

Esta chave Q1 é fornecida com um núcleo ativador o qual pode ser energizado através do botão de pressão S5 (na unidade de acionamento motorizado e na sala de controle) e via circuito de segurança.

da chave Q1 de proteção do motor

O circuito de segurança consiste de elementos de chaveamento dos interruptores de leva S12, S13, S14 e dos contatos auxiliares das contatoras motorizadas K1/K2 e K3.

4.1.3 Circuito de sinalização da ativação da chave Q1 de proteção do motor.

Este circuito é ligado a L1 e N através dos terminais X1/17,18. A lâmpada H1 de sinalização está instalada no botão de pressão de emergência desligado S5 na unidade de acionamento motorizado. O contato auxiliar Q1(43,44) é ligado com o X1/27,28, o qual é o contato preso quando Q1 está fechado.

Fig. 4.1.2 Circuito de comando

4.1.4 Operação do motor do Circuito de sinalização

A tensão de fase do motor M1 é ligada nos terminais X1/19,20. A lâmpada H3 sinaliza a operação (dentro da sala de controle). Enquanto o sinal da operação do motor é captado, o sinal do contato e completado por K1 (23,24) K2 (23,24) é ligado a X1/25, 26.

4.1.5 Localização à distância do Circuito de Sinalização

O transmissor digital do sinal de localização à distância adota um conjunto de contatos, o contato fixo é ligado ao terminal soquete via código decimal, o mecanismo é operado através de "primeiro abre" e "depois fecha" da posição 1 para a próxima posição. E completado com o parâmetro de localização "Ver e Visualizar" (ver diagrama 2 anexo).

4.1.6 Circuito do Aquecedor

O circuito aquecedor é ligado a L1, N através dos terminais X1/4 e 5. O resistor aquecedor R1 é permanentemente ligado com a fonte de energia.

4.2 Operação (Ver diagrama 5 anexo)

4.2.1 Comando

O comando do acionamento motorizado segue o princípio do passo-a-passo, isto é, depois de iniciada a operação de chaveamento, ela é automaticamente e irrevogavelmente concluída, independentemente da operação dos botões de pressão S1 e S4 serem operados durante o tempo de funcionamento do acionamento motorizado (parada por emergência é uma exceção).

Outra operação de chaveamento somente será possível quando o sistema de comando estiver novamente na posição parada. A posição parada do controle do período de funcionamento dos interruptores de leva, é mostrada pela marca central vermelha na roda de sinalização da troca de tensão.

Pré-requisitos: A chave Q1 de proteção do motor deverá estar fechada; a tensão de L1, L2 e L3: 380V AC, 3 fases, 50 Hz; Tensão de L1 e N: 220 V 50 Hz, a seqüência de fase deverá estar correta, Chave S38 de controle local/á distancia deverá estar posicionada.

Operação: mudança do comando para a posição n.

4.2.1.1 Iniciar

Pressionar o botão de pressão S1, 13-14 de S1 será fechado (21-22 isolado), por enquanto a corrente ligará o núcleo K1 do X1/6 via Q(13,14) !S8(S, V) !S38(1, 2)-S2(21, 22), S1(13,14), K20(52,51),S16(C,NC),S6(S,V), K2(32,31);

Fig. 4.2.1 Circuito de comando

Fig. 4.1.6 Circuito do aquecedor

Fig. 4.2.1 Circuito de comando

A contactora K1 será fechada, que fará o contato K1(5,6) fechar, o núcleo do K20 será energizado via K20 (72,71), assim, a ação instantânea terá sido concluída.

Quando K1 é fechado, o contato K1 (13,14) será fechado, o qual fará com que o núcleo K3 via K1, K3 feche, o motor M1 operará.

4.2.1.2 Comando passo-a-passo:

Depois da partida do motor, a roda de sinalização de posição ultrapassará o campo verde, o interruptor de leva S14 (C,NO) fechará, a contactora K1(A1,A2) poderá ser energizada pela S14(C,NO). Quando o motor girar um pouco mais essa roda de sinalização, o interruptor de leva S13 iniciará o fechamento de S13(NO1,NO2), fazendo o núcleo do relé K20 fechar depois de ser energizado, K20(52,51), K20(72,71) abre, K20(14,13), K20(34,33) fecha, e K20 é energizado através de S13(NO1, NO2) e K3(13,14), K20(34, 33), mas K1 pode se manter energizado somente via contato do interruptor de leva S14(C, NO), S13(NO1, NO2) será aberto antes da parada do acionamento motorizado, e K20 ainda se manterá energizado via K3 (13,14), K20 (34,33).

4.2.1.3 Parada

Ouando for concluída a operação do passo 1, o interruptor de leva S14 (C,NO1) abrirá, K1 liberará o contato 13.14 abrindo, K3 liberará e o circuito principal abre, contato do freio do motor 21-22,31-32,41-42, 51-52 é auto-ativado reduzindo o consumo de energia, o motor M1 pára. Ao mesmo tempo, K3 é liberado, os contatos 13 e 14 são abertos, o que faz com que K20 seja desenergizado.

Fig. 4.2.1.2 Comando passo-a-passo

| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.2.1.2 | Comando passo-a-passo
| Signature | Fig. 4.

Fig. 4.2.1.3 Parada

Se o botão de pressão S1 ou S2 for pressionado, K20 será auto-bloqueado via seu contato 13-14 ou 23-24 para impedir que K1 ou K2 seja excitado através de 51-52 ou 61-62 do K20, se o botão de pressão S1 ou S2 não for pressionado, K20 será liberado.

O controle da mudança da posição 1: pressionar o botão S2, a contactora K2 é motorizada e fechada! contactora de freio K3 é motorizada e fechada! O motor girará no sentido contrário! A memória de direção do interruptor de leva S12 iniciará o comando seguinte que é o mesmo que a mudança em direção a posição n.

A sequência de movimento da chave de uma comutação para a próxima (roda de indicação e avanço da fase em bloco 0-30), a situação da operação de cada comando é mostrado na figura 4.

A seqüência de movimento da chave de uma comutação para a próxima (roda de indicação e avanço da fase em bloco 0-30), a situação da operação de cada elemento de comando.

A sequência de fechamento: S1(S2), K1(K2)K3, S14 (S12), S13,K20

A seqüência de abertura: S1 (S2), S13, S14 (S12), K1 (K2), K3, K20.

4.2.2Desempenho da atuação do ponto médio

Para a chave com ponto médio a unidade de acionamento motorizado, executará operação contínua por meio da S37 fecha/abre

4.2.3 Desempenho da Proteção da segurança 4.2.3.1 Proteção da posição limite

Quando o acionamento motorizado alcança a posição limite, o contato fechado C-CN permanente da chave limite S16 (na posição N) ou S17 (na posição 1) abrirá, assim a contactora K1 ou K2 não poderá ser mais energizada. Quando a posição limite for alcançada, a chave limite S6 ou S7 abrirá o contato do circuito principal R-U, T-W,

Assim, o motor irá parar, e o motor da contactora K1 ou circuito K2 abrirá através do contato S-V.

4.2.3.2 Proteção da operação manual

Encaixar a manivela no eixo, a chave S8 de proteção manual atuará para cortar a energia fornecida ao motor e ao comando. Depois da operação manual, a manivela é retirada do eixo e a chave de proteção manual S8 é novamente fechada.

Nota: Para impedir que a unidade de acionamento motorizado seja inicializado automaticamente, depois da operação manual, este deverá ser balançado para o interior da linha vermelha da roda de indicação de posição, pelo lado de fora desta linha, estará o interruptor de leva na posição de descanso dirigida pela unidade de acionamento motorizado.

Fig. 4

Fig. 4.2.3.1 Proteção da posição limite

4.2.3.3 Proteção da sequência de fase

Para garantir que a unidade de acionamento motorizado gire na direção pré-definida, há certas exigências para a sequência de fase do motor trifásico, se a sequência de fase da rede L1, L2 e L3 não for a correta, o circuito de proteção da següência de fase fará a chave de segurança Q1 ativar, ver fig.4; quando a seqüência de fase estiver incorreta, pressionar o botão de pressão S1, K1 fechará, K1(41,42) abrirá, e o motor girará no sentido contrário aos ponteiros do relógio, o acionamento motorizado operará na direção contrária para fazer S12(C,NO2) fechar, fazer Q1 liberar o núcleo energizado através de K2(41,42), S13 (NC1,NC2), chave de segurança atuará, cortará o circuito principal e circuito de comando, o motor irá parar, neste caso, a sequência de fase será ajustada adequadamente (qualquer duas fases podem ser trocadas), a operação não pode ser executada até que a operação manual alcance o centro da linha vermelha do passo-a-passo da roda de sinalização de posição do campo verde e chave de segurança fechada.

Fig. 4.2.3.2 Proteção da Operação Manual

Fig. 4.2.3.3 Proteção de sequência de fase

Fig. 4.2.3.4 Reinicialização Automática

Além disso, quando o comutador for iniciado, e o motor esses dois botões de pressão estão ligados em paralelo. de operação automática) e não por botão de pressão, a chave de segurança Q1 atuará através da S14(C,NO2), K1(41,42), S13(NC1, NC2) ou S12(C, S13(NC1,NC2).

4.2.3.4 Reinicialização automática da prote--ção após temporária sub-tensão de controle

Se a tensão de controle restabelecer depois de desaparecer dentro do tempo de operação da unidade de acionamento motorizado, esta unidade, restabelecerá automaticamente de acordo com a instrução controlada. Uma vez restabelecida, a ação da troca de tensão, será executada pela memória de direção interna do interruptor de leva S14 ou S12. Neste caso, o circuito de segurança não é energizado como o interruptor de leva S13(NC1, NC2) que está aberto.

4.2.3.5 Proteção de Emergência pelo corte do fornecimento de energia (parada de emergência)

Ver figura 4, pressionar para baixo o botão de pressão S5 para liberar a emergência do acionamento motorizado, ou o botão de pressão S9 na sala de controle para liberar a emergência, a chave Q1 atuará imediatamente, pois

Fig. 4.2.3.5 Parada de Emergência

tiver a partida através do contato excêntrico S14/S12 da Depois que a chave de segurança for operada, ela não poderá memória de direção (Não é permitido através da posição operar até que a porta da unidade de acionamento motorizado seja aberta e a chave Q1 de segurança seja fechada.

4.2.3.6 Proteção da operação contínua

O relé de tempo K21 é inicializado com ponto de ajuste, se a unidade de acionamento motorizado faz uma troca contínua de tensão sem sinal de controle, o tempo energizado de K21 excede o ponto de ajuste, os contatos 15,18 serão guiados e a chave de proteção O1 atuará.

4.2.3.7 Ligação do sistema de um circuito externo

Na caixa da unidade de acionamento motorizado, há terminais especiais X1 como:os dos cabos de corrente, controle remoto e indicador de sinal, que pode executar todo o controle a distância de redução, aumento, desligamento de emergência e indicação remota e sinais das posições de operação. O circuito externo é mostrado pela linha pontilhada no diagrama de circuito, os usuários podem instalar e ligá-los de acordo com esse diagrama.

Fig. 4.2.3.6 Proteção da operação contínua

Fig. 4.2.3.8 Terminal preso do sinal

Fig. 4.2.3.7 Ligação do circuito externo

4.2.3.8 Terminais presos do conjunto de sinal (também chamado de sinal duplo)

Adicionar um grupo de contatos deslizantes no transmissor de posição remoto, o contato estático está próximo a posição do contato estático do circuito de indicação de posição, e ligado ao bloco terminal X3 de acordo com a seqüência de 1 a N;

O movimento dos contatos inicia através de "primeiro abre" e "mais tarde fecha" desde uma posição até a próxima . Os dois grupos de contatos mantém relativa sincronização mecânica, independente da parte elétrica de cada um, assim o contato do sinal equipado com terminais X3 é um conjunto preso e posição de operação fechada.

5. Instalação

5.1 Montagem da unidade de acionamento motorizado no tanque do transformador (ver anexo, desenho e dimensões).

A unidade de acionamento motorizado é montada através de 4 parafusos prisioneiros fixados nos lados do tanque do transformador. Os furos correspondentes estão do lado externo do gabinete do acionamento motorizado. Tomar cuidado para que a montagem da unidade esteja na posição vertical e que o eixo acionador esteja alinhado corretamente com o eixo das engrenagens cônicas. Se o transformador causar vibrações mecânicas muito intensas, é recomendada a utilização de amortecedores anti-vibrações.

5.2 Acoplamento do comutador ao acionamento motorizado.

É absolutamente necessário que a operação de troca de tensão esteja completa antes da parada do acionamento motorizado. Isto é assegurado pelo ajuste do tempo do movimento da chave seletora ou desviadora no intervalo distinto antes do fim do movimento do acionamento motorizado. Esta marca central vermelha é utilizada como referência quando está ajustado.

Exemplo: (ver figura 5)

a) O comutador sob carga agora está na posição 10 de operação. Girar a manivela em direção a posição 11 até a chave selecionada fazer um som de um clique, manter girando a manivela e contar o número da seção da linha vermelha.

(Giros da manivela)

b)Resultado: 4 seções

Comparar "a" com "b" 2=4 seções, escolher 3.75

12-4=8 seções que é maior do que 3.75 seções

Isso deverá ser ajustado novamente

Número correto de seções (12-4)seções

c)Girar a manivela em direção a 11 até aparecer a marca central ver--melha.

d)Desacoplar o grampo da junta de acoplamento sob o eixo do acio--namento vertical.

e)Girar na mesma direção (em direção a 12) perto de 3.75 seções.

f)Acoplar novamente.

g)Girar na mesma direção (conforme item "e") até ocorrer o movi--mento da chave seletora.Contar o número de TIW seções até apare--cer a marca central vermelha.

Resultado: 8.25 seções.

h)Conferir na direção oposta Resultado: 7.25 TIW seções.

8.25-7.25=1 menor do que 3.75 seções

O acoplamento comutador-acionamento motorizado é suficientemente simétrico em ambas direções.

Uma operação do comutador, corresponde a uma rotação da roda indicadora de rotação . A roda indicadora do comutador é dividida em 30 seções, onde cada seção corresponde a uma rotação da manivela. O número de seções contadas desde o início da operação do comutador até a marca central vermelha da roda indicadora, está de fronte a marca da janela de inspeção.

Que deve ser igual em ambos sentidos de rotações. Admite-se mínima assimetria. Acoplamento simétrico é executado como

- -Os ajustes devem ser realizados apenas com operação manual.
- -O comutador e o acionamento motorizado devem estar na posição de ajuste.
- -Acoplar comutador e acionamento motorizado
- -Girar a manivela em uma direção até ocorrer o movimento da chave seletora ou desviadora. Contar as TIW seções remanescentes até a marca central vermelha da roda de indicação do comutador, que é visível no centro da janela de inspeção.
- -Repetir estes procedimentos na direção oposta.

-Se há uma diferença entre os números da contagem de seções em ambas direções, o acionamento motorizado deverá ser reajustado em relação ao comutador através da metade desta diferença numérica.

Notas:

O tubo do eixo quadrado do eixo do acionamento vertical, somente poderá ser acoplado ao acoplamento bipartido depois de uma rotação com ângulo de 90° ou múltiplo. Este ângulo corresponde a 3.75 TIW ao quadrado. Ajustar novamente, então, torna-se necessário somente se a diferença entre os giros da manivela no sentido horário e o anti-horário exceder a 3.75 TIW seções.

6. Ajustes e teste operacional

6.1 Preparação

Depois que o transformador tiver sido instalado no local definitivo, e antes de operar o comutador, a unidade de acionamento motorizado deverá ter os seguintes testes:

- . Antes de operar, esteja certo de familiarizar-se com o manual de instruções e método de uso.
- . Antes de usar, conferir se são idênticas as posições do ajuste do sinal do comutador, acionamento motorizado e a posição do mostrador remoto (acessórios).
- . Antes de ligar a fonte de energia, conferir se as ligações dos fios de todos elementos elétricos não estão soltos, os defeitos na carcaça do motor devem ser aterrados de forma segura.
- . Antes de operar eletricamente, conferir se a operação manual está livre, através da manivela e, se as posições de chaveamento e parada do comutador estão corretas.

por várias horas antes de operar. Se o comutador for transportado e armazenado por mais de duas semanas, o resistor deverá ser ligado a fonte de energia para evitar umidade e ferrugem..

6.2 Teste de operação elétrica

Nota: As exigências de operação do suprimento de energia e seqüência de fase (ver anexo 2) deverão ser atendidas!

6.2.1 Conferir a operação passo-a-passo

Pressionar para baixo o botão de pressão S1 ou S2 para fazer com que o acionamento motorizado gire no sentido horário (anti-horário), conferir se a excitação do motor é desligada automaticamente quando o comutador executa uma troca de tensão e a marca vermelha e a marca digital será alinhada com a marca de referencia de quando está parado.

Na prática, a marca vermelha da roda de indicação de posição não pode ser alinhada com a marca de referência, pois pode haver algum desvio entre as marcas, se elas ainda estão dentro do campo verde, não afetará a operação, mas quando a marca de referência está fora do campo verde, deverá ser ajustada, e o método de ajuste é como segue:

Quando o acionamento motorizado é ajustado um degrau para cima (para baixo), aparecerá um desvio na marca vermelha, em uma peça para cima (ou para baixo) a roda excêntrica será solta, ajustar o ângulo, o qual já vem ajustado antes da entrega aos clientes, que por sua vez, não necessitam fazer qualquer ajuste mais adiante.

6.2.2 Conferir a posição limite

Concluir o ciclo completo da troca de tensão até que alcance a Sob baixa temperatura e condições de umidade, ligar o aquecedor posição final e é impossível manter a operação elétrica ainda mais na mesma direção, mas isto é possível na direção oposta. O mesmo procedimento é aplicado, para testar outra posição final. Quando a posição final é alcançada, a atuação entre o comando e o circuito principal é executado através do bloco limitador no primeiro dente da roda veloz da proteção limite S16 (ou S17) e depois S6 (ou S7).

Assim: a. Ajustar S16 (posição n) ou S17 (posição 1).

b. Ajustar o bloco limitador

Fazer S16 ou S17 iniciar o movimento antes de completar a troca de tensão, e S6 ou S7 iniciar o movimento somente no fim da posição final. Esses ajustes são geralmente realizados na fábrica antes de entregar ao cliente, o qual não necessita fazer quaisquer ajustes adicionais.

6.2.3 Teste de proteção da operação manual

Ao inserir a manivela para acionamento manual, deve-se escutar um ruído da chave de proteção S8, e a operação é impossível através do pressionamento de qualquer botão de pressão de S1 a S5, se S8 não atuar, ajustes são necessários, movimentar a manivela para frente para fazer iniciar a atuação mais cedo.

Ao extrair a manivela, deve-se escutar o ruído de restauração da S8, e a operação elétrica estará OK, se S8 não puder ser restaurada, poderemos ajustar clip ring, se S8 não puder ser restaurada, deverá ser substituída.

6.2.4 Verificar a emergência pelo corte do suprimento de energia

Ver 4.2.3.5

7. Solução de problemas

7.1 Causas de curto-circuito nos cabos de força

- a. Falha na operação externa do suprimento de energia.
- b. Ligações de forma incorreta do suprimento de energia, as ligações deverão ser feitas de acordo com o arranjo do bloco de terminais do diagrama de circuito 4.
- c. Ligações-ponte de forma incorreta no bloco terminal, na maioria das vezes causadas por ligações originais soltas e ligações mal feitas externas realizadas pelo usuário, as ligações-ponte devem ser feitas corretamente de acordo com o bloco de terminais do diagrama de circuito 4.

7.2 A contactora não pode ser fechada mesmo pressionando o botão S1 ou S2

(Ver 4.2.1.1) Posição da chave Remota/local está de forma incorreta.

7.2.1 Em ambas direções não pode ser fechada

- a. A ligação dos cabos paralelos do bloco terminal X1 estão frouxas ou soltas, as quais fazem o controle externo do suprimento de energia.
- b. O disjuntor Q1 não está fechado.
- c. A chave de proteção manual S8 não está restaurada ou desligada (ver 6.2.3).
- d. Algumas juntas de ligações estão frouxas ou soltas.
- e. A posição da chave Remota/local está de forma incorreta.

7.2.2 Em uma das direções não é fechada

- a. O botão de pressão não foi restaurado, os dois botões S1
 e S2 são integrados, a ação inválida do botão em uma direção é geralmente devido a não restauração do botão na outra direção.
- b. Falha do próprio botão de pressão.
- c. Chave limitadora S16 (aumentar) ou S7 (diminuir) não foi restaurada ou desligada.
- d. Chave limitadora S6 (aumentando) ou S7 (diminuindo) não foi restaurada ou falhou, fazendo desligar o contato S-V.

- e. O contato auxiliar 61-62 normalmente fechado da contactora K2 (aumentando) ou S7 (diminuindo) está desligado.
- f. O núcleo do contato K1(aumentando) ou K2 (diminuindo) está quebrado.
- g. Alguns cabos de corrente do circuito de comando estão frouxos ou desligados.

7.3 Contato fechado quando pressionado S1 ou S2, mas o motor não pode partir (ver 4.1.1)

- a. Fornecimento de energia externa não está conforme as exigências (ver 2).
- b. Alguns contatos das chaves de avanço S6, S7, S8 ou K1, K2, K3 não podem fechar normalmente.
- c. Algumas ligações dos cabos de corrente do circuito principal estão frouxos ou desligados.
- d. Motor principal está quebrado ou queimado.

7.4 Pausa no processo de operação

- a. Fornecimento de energia externa está em falta total "blackout".
- b. A posição do interruptor de leva S14 (aumentar) ou S12 (diminuir) não está alinhada corretamente ou o contato NO não pode ser fechado.
- c. A sequência de movimento do interruptor de leva S12, S13, S14 está errada (ver 4.2.1.2)
- d. Quando o acionamento motorizado está na posição limite, o bloco limitador tende para a frente, assim a estrutura de S6 ou S7 é de desligados quando o passo 1 da troca de tensão não foi completada (ver 6.2.2).
- e. As falsas ligações entre o acionamento motorizado e a chave (a posição de passo não é a mesma) causa limitação de posição mecânica quando a posição limite da chave é alcançada.

7.5 A atuação da chave de segurança Q1

7.5.1 Atuação na ligação do fornecimento de energia

- a. Ligação falsa do contato normalmente-fechado do botão de pressão S9 de parada remota externa ,dentro da sala de controle, a qual deverá ser ligada ao contato normalmente-aberto.
- b. Terminal interno 4 e 5 do plugue do botão de pressão está quebrado.
- c. Chave a freio de ar Q1 está com defeito e deve ser substituída.

7.5.2 A operação durante a atuação

- a. A seqüência de fases das três fases está errada, a proteção de fase atuará (ver 4.2.3.3)
- b. Curto-circuito entre a chave de segurança e algum circuito fornecedor de energia.

7.5.3 Girar um passo, atuando quando parado

- a. A liberação do contato do interruptor de leva S12 ou S14 não está sincronizado.
- b. A força de restauro da mola da roda excêntrica é muito grande, que causa um golpe contrário nesta roda e no interruptor de leva quando restaurados, e acompanhado de imediato por S12 ou S14, assim fazendo Q1 atuar (ver último parágrafo de 4.2.3.3).
- c. Em ação contínua, a ativação do relé de tempo faz atuar a chave de segurança.

7.6 Quando parado, aparecerá desvio na linha vermelha (ver 6.2.1)

7.6.1 Desvio de uma direção

O bloco da roda excêntrica está frouxo e deslocado, reajustá-lo novamente (ver 6.2.1)

7.6.2 Desvio em ambas direções

- a. Soltar a roda de indicação de posição do progresso de passo porque não está apertada. Característica: a posição da linha vermelha está a esmo, indefinida.
- b. O mau contato do contato auxiliar (o contato do freio causa curto-circuito no motor) da contactora K3 ou a liberação da contactora K3 até o atraso do disparo (se houver o magnetismo residual do núcleo haverá ruído no contato auxiliar). Característica: em ambas direções de operação, a totalidade da linha vermelha ficará mais longe quando parada.

7.7 Travamento da unidade de acionamento motorizado

- a. A posição do interruptor de leva S13 é muito larga, o contato normalmente aberto nunca fecha durante um ciclo de operação de transformação, sendo o motivo do relé intermediário K20 não fechar todo o tempo.
- b. O interruptor de leva S13 está fora de ação e seu contato normalmente aberto geralmente não pode ser fechado.
- c. A contactora K1(aumentando) ou K2(diminuindo) libera carga enquanto há atraso na liberação.

Quando da próxima transformação do comutador a chave S14 (C,NO1) ou S12(C,NO1), ainda não liberará quando fechar novamente.

7.8 O motor pode girar, mas a roda indicadora progressiva de passo não funciona

O parafuso do bloco da ventoinha da roda indicadora do progresso de passo está quebrado.

- 7.9 Proteção limite está inválida (ver 6.2.2)
- 7.10 Uma vez ligado, o botão de pressão não tem de ser pressionado, mas a unidade de acionamento motorizado acionará automaticamente um passo, e o relé intermediário K20 não atuará quando parado.
- a. O terminal 1,2 (superior) ou 3,4 (inferior) dos plugues do botão de pressão estão quebrados.
- b. O botão de pressão S3(superior) ou S4(inferior) do controle remoto externo, está incorretamente ligado ao contato normalmente fechado e, deve estar ligado ao contato normalmente aberto.

7.11 Sem indicação no indicador

7.11.1 Nenhuma indicação no indicador

- a. Não há fornecimento de energia em 220V.
- b. A chave do indicador não foi ligada.
- c. O cabo da unidade de acionamento motorizado da sala de controle não foi ligado ou os plugues de ambas extremidades não estão apertados.
- d. Quando o usuário adicionar cabo, parte do terminal do indicador de posição tem que estar ligado.
- e.O encaixe dos plugues não é compatível com a tomada de corrente.
- f. O indicador está quebrado.

7.11.2 Sem indicação para um passo característico

- a. Mau contato do conjunto de contatos deslizantes.
- com solda fraca ou quebrados.
- c. Falta alguma ligação dos cabos de corrente.

7.12 A indicação do passo não corresponde ao local da roda de indicação de posição

7.12.1 Passo característico não está correspondendo

a. O cabo de corrente está ligado erroneamente.

b. O contato do conjunto de contatos dos cabos de corrente estão b.O contato do conjunto de contatos do cabo de corrente está soldado

7.12.2 Todos os passos estão incorretamente indicados

Soltar e deslocar o eixo do braço do contato do acoplador.

8. Indicador de posição HMC-3C para Comutador sob Carga

8.1 Apresentação do desempenho

O indicador de posição tipo HMC-3C do comutador sob carga pode ser usado para indicação remota, desde que combinado com circuito de indicação de posição remoto (4.1.5) da unidade de acionamento motorizado. Também tem a função de "aumentar", "parar" e "diminuir" o comu-tador, com lâmpada de indicação remota.

O indicador HMC-3C utiliza circuito de controle integrado, indicação digital LED (LED = pequena lâmpada usada como indicador) o qual possui alta estabilidade e confiabilidade, seu gabinete é de plástico, leve, pequeno volume, seguro e fácil de usar.

8.2 Informações Técnicas

a. Tensão de operação:: ~220 W0BD b. Freqüência de operação: 50Hz/60Hz c. Número Máx. Indicação de passos: 39 passos d. Temperatura de operação: -10 ~ 40 ° C e. Dimensões: Largura Altura Profundi Profundidade 166(mm)

f. Peso: cerca de 0,85 kg.

8.3 Como ligar

a. Ligar uma extremidade do cabo do indicador a tomada sob a base da caixa da unidade de acionamento motorizado. A outra extremidade deverá ser ligada a tomada atrás do mostrador.

Atenção: apertar com segurança para obter bom contato.

- b. Ligar os terminais de comando da operação.
- c. Ligar os terminais da tensão de operação em 220 V CA.
- d. Pressionar o botão de fornecimento de energia, isso pode colocar em operação.

Terminal do Indicador HMC-3C	Unidade de Acionamento do Motor CMA7/CMA9	Comentários
1	8	1 N
2	12	Para
3	9	N 1
4	11	Comum
5	23	Indicação de Controle Remoto
6	24	muicação de Controle Remoto

Ligar o cabo terminal atrás do indicador.

Diagrama de Circuito do Indicador de Posições HMC-3C

9. Acessórios opcionais

Apresentação do desempenho do controlador automático do comutador regulador de tensão sob carga tipo HMK-2A

O controlador automático HMK-2A do comutador pode ser usado com controle automático ou manual do regulador de tensão sob carga do transformador. Se a tensão real do HMK-2A(fluir do PT ao segundo lado) parecer-se com a tensão de ajuste, uma vez que o desvio de tensão da faixa pré-definida, produzirá um sinal de controle de "1->N" ou "N->1", assim fazendo com que o comutador sob carga se movimente de uma posição de tensão para a próxima. O HMK-2A tem apenas três maneiras de indicação de tensão, que pode mostrar o sinal de tensão, limite superior de tensão (tensão mais baixa), limite inferior de tensão (elevação de tensão).

O indicador de posição pode mostrar a posição da tensão do comutador; o conjunto de tensões pré-definidas pode ser definida pelos usuários pela escolha das faixas; A faixa de ajuste do relé deverá ser de 20~180 s. O HMK-2A também é fornecido com as funções de bloqueio de "sobre-tensão" e "sub-tensão", e caso exista qualquer problema na rede de potencia, este bloqueia automaticamente, e a capacidade do controlador livrar-se de problemas está enormemente avancado.

O HMK-2A também tem a função de alarmar por "sobre-tensão" ou "sub-tensão". Apresenta a função de bloqueio de "sobre-corrente" e de "resistência compensadora".

Anexo 1 – Vista Explodida do Sistema de Controle Mecânico

Anexo 2 — Diagrama de Conexões do Indicador de Posição

Anexo 3 - Dimensão Gerais da Unidade de Acionamento do Motor CMA9

Unit:mm

Anexo 5 - Conexões das Réguas de Bornes X1 e X3

Conexões da Régua de Bornes X1:

Borne Número	Conexão
1, 2, 3 e 5	Entrada de Alimentação Alternada (Vac) – Tensão para L1, L2 e L3 = 380 Vac/60 Hz. – Tensão para L1 e N = 220 Vac/60 Hz.
8	Entrada de comando remoto para "aumentar"
9	Entrada de comando remoto para "diminuir"
10 e 11	Compartilhado por controle de comando remoto
12	Entrada de comando remoto para "parar"
18	Saída de sinal de trip – emergência (saída em 220 Vac/60 Hz.)
19 e 20	Saída de sinal de motor operando (saída em 220 Vac/60 Hz.)
23 e 24	Sinalização remota para "Controle Remoto"
25 e 26	Sinalização remota para "Motor Operando"
27 e 28	Por questões de segurança, "fechado" indica circuito do motor energizado.

Conexões da Régua de Bornes X3:

Os sinais fornecidos pela régua X3 é um conjunto de sinais 1 a 1 correspondentes à posição que encontra-se o comutador; assim, entre X3-1 e X3-N estão contidas todas posições referentes ao projeto; em X3-N+1 está contido o terminal comum para alimentação da medição.

Anexo 6 - Explicação do Terminal CX

Terminal CX — Saída de sinais decimais de posição. O Terminal CX geralmente é conectado ao indicador de posição HMC-3C.

Soquete CX.	Identificação
CX-1	Sinal de posição do Comutador "unidade" dígito "1"
CX-2	Sinal de posição do Comutador "unidade" dígito "2"
CX-3	Sinal de posição do Comutador "unidade" dígito "3"
CX-4	Sinal de posição do Comutador "unidade" dígito "4"
CX-5	Sinal de posição do Comutador "unidade" dígito "5"
CX-6	Sinal de posição do Comutador "unidade" dígito "6"
CX-7	Sinal de posição do Comutador "unidade" dígito "7"
CX-8	Sinal de posição do Comutador "unidade" dígito "8"
CX-9	Sinal de posição do Comutador "unidade" dígito "9"
CX-10	Sinal de posição do Comutador "unidade" dígito "0"
CX-11	Sinal de posição do Comutador "dezena" dígito "0"
CX-12	Sinal de posição do Comutador "dezena" dígito "1"
CX-13	Sinal de posição do Comutador "dezena" dígito "2"
CX-14	Sinal de posição do Comutador "dezena" dígito "3"
CX-15	Sinal de posição do Comutador "Terminal Comum"
CX-16	Sinal de posição do Comutador "Terminal Comum da Lâmpada de Indicação"
CX-17	"1→N" indicação de comutador elevando
CX-18	"N→1" indicação de comutador diminuindo
CX-19	"Parada" indicação de parada

AVISOS DE UTILIZAÇÃO

O cliente e usuário final deverão registrar as inspeções e número de operações do comutador. No caso de condições especiais de trabalho, favor contatar-nos e enviar-nos seus registros objetivando a coleta de informações, pois possivelmente poderemos fornecer as melhores recomendações para sua próxima inspeção.

Após a venda do comutador sob carga e saída da fábrica, dentro do prazo de 18 meses, no caso de qualquer dano ou mau funcionamento deste, decorrente de qualidade de produção, que o cliente ou usuário final venha a encontrar, desde que submetidos aos procedimentos para armazenagem adequados, nós oferecemos inspeção e serviço de reparos sem custos.

Geralmente o cabo do indicador é fornecido com 30 metros. Favor especificar suas necessidades especiais quando enviar seu pedido.

CORDIALMENTE SEJA BEM VINDO, ENVIE-NOS SEUS COMENTÁRIOS E SUGESTÕES DE NOSSOS PRODUTOS. AGRADECEMOS A VOCÊ PELO SEU APOIO E COLABORAÇÃO.

GOSTARÍAMOS DE CONTINUAR FORNECENDO AOS NOSSOS CLIENTES, PRODUTOS DE ALTA QUALIDADE, EXCELENTES SERVIÇOS E PREÇOS ATRATIVOS.

M SHANGHAI HUAMING POWER EQUIPMENT CO., LTD

Address: 977 Tong Pu Road, Shanghai, China

Tel: 86 (0)21-52702715 Fax: 86 (0)21-52703385 Post code: 200333

Email: public@huaming.com Http://www.huaming.com