SEARCH FOR THE STANDARD MODEL HIGGS BOSON IN THE DECAY CHANNEL $H \rightarrow ZZ \rightarrow 2l2q$ AT CMS

Matthew Kress

Adviser: Daniela Bortoletto Preliminary Report December 4, 2012

Outline

- Standard Model
- 2 Experiment
- 3 Event Selection
- Signal Region Optimization
- 5 Statistical Analysis and Results
- 6 Next Steps

2l2q Team

- WISCONSIN: M.U.Mozer
- CERN: A.Bonato, P.Lenzi, M.Mannelli
- CIEMAT: O.González López, D.Domínguez Vázquez, P.García, J.Hernández, E. Navarro
- JHU: A.Gritsan, S.Bolognesi, A.Withbeck, C.Martin, I.Anderson
- U & INFN-Napoli: A.Decosa, F.Fabozzi, L.Lista
- National Central U: A.P.Singh, S.S.Yu
- Panjab: L.K.Saini
- Purdue: D.Bortoletto, M.Kress, M.Vidal
- Rochester: R.Covarelli, P.Goldenzweig, R.Demina, A.Garcia-Bellido
- UAM: G.Codispoti, J.Fernández de Trocóniz
- METU: M.Yalvac
- U & INFN-Firenze: A.Tropiano, V.Gori, V.Ciulli, E.Gallo

Outline

- Standard Model
- 2 Experiment
- Bvent Selection
- Signal Region Optimization
- Statistical Analysis and Results
- Next Steps

Sub-atomic World

Particle Physics is the study of the properties of the fundamental building blocks of the universe and the interactions between them.

The Four Fundamental Forces

There are four fundamental forces that we know of.

Force	Boson	Charge	Mass
Gravitational	graviton(G)	0	?
Electromagnetic	$photon(\gamma)$	0	0
Weak	W boson(W^{\pm})	± 1	81 GeV
	Z boson(Z)	0	92GeV
Strong	gluon(g)	0	0

The Standard Model

The Standard Model is the compilation of over 100 years of scientific discoveries and is in excellent agreements with a wide range of experimental observations.

Particle Discoveries

Year	Discovery
1897	e discovery, by J.J. Thompson (cathode ray tube, UK)
1919	proton, Ernest Rutherford (UK)
1930	neutron, James Chadwick (UK)
1936	m, Carl D. Anderson at Caltech
1947	strange quark(K+=usbar, K-=subar)
1956	$ u_e$ discovery (nuclear reactor)
1962	$ u_{\mu}$ discovery at BNL
1968	u and d quark (quark model)
1974	c quark (BNL, SLAC,J/y=ccbar)
1977	tau discovery (SLAC)
1977	b quark (Upsilon, FNAL)
1979	gluon (DESY)
1983	W and Z (CERN)
1995	top quark
2000	$ u_t$ discovery (Fermilab)
2012	??Higgs?? (CERN)

The Higgs Mechanism

- The potential on the left if symmetric as is the potential on the right.
- The ground state symmetry is spontaneously broken in the potential on the right.

- The Higgs field is the simplest of several proposed causes for electroweak symmetry breaking and the means by which elementary particles acquire mass.
- The Higgs boson is the smallest possible excitation of the Higgs field.

Outline

- Standard Model
- 2 Experiment
- Bvent Selection
- Signal Region Optimization
- Statistical Analysis and Results
- 6 Next Steps

Particle Accelerators

Particle accelerators accelerate particles to high energies.

This allows us to:

- Look deeper into matter (E $\propto \frac{1}{size}$). "microscope"
- Discover new heavier particles (E = mc²).
- Probe early conditions of the Universe (E = kT).

Before the particle accelerator All this while being controlled in the laboratory.

The LHC Accelerator

- Proton-proton collider
- Circumference: 26.7 km
- Tunnel: 100 meters underground
- dipoles operate at 8.3 T
- 1232 superconducting Niobium-Titanium magnets
- better vacuum and colder than inter-planetary space

Injection Scheme

- Linac2 → 50 MeV
- Proton Synchrotron → 1.4 GeV
- $\bullet \ \, \text{Super Protron Synchrotron} \rightarrow \text{450 GeV} \\$
- ullet LHC ightarrow 4.0 TeV

LHC Environment

LHC Delivered Data

Compact Muon Solenoid

CMS Slice

CMS Detector Glossary

The Missing Piece

Before LHC

Experimental constraints:

- From direct searches at LEP and Tevatron.
- Indirect ones from LEP precision EWK measurements.

Higgs Production

Gluon-gluon fusion $(gg \rightarrow H)$ and vector-boson fusion $(qq \rightarrow qqH)$ are dominant

Higgs Decay

- Discovery strategy depends on the available decay channels.
- Decays with leptons provide clean signatures.

Main Discovery Channels

- \bullet $H \rightarrow \gamma \gamma$
- \bullet $H \rightarrow W^+W^-$
- \bullet $H \rightarrow ZZ$

The $H \rightarrow ZZ$ Decay

- Decay to two Z bosons is the most promising discovery channel for $m_H > 180 \, GeV$.
- If both Z bosons decay to electrons or muons you get a very clean signature.

The $H \rightarrow ZZ \rightarrow Ilqq$ channel

Large Yields:

- BR($Z \to qq$) = 70%
- BR($ZZ \rightarrow 2I2q$) = 20 × BR($ZZ \rightarrow 4I$)
- BR($ZZ \rightarrow 2I2q$) = $3.5 \times BR(ZZ \rightarrow 2I2\nu)$

Drawbacks

- Bad resolutions coming from jets.
- Large backgrounds coming from Z+jets

Full decay is reconstructed (closed kinematics)

Outline

- Standard Model
- 2 Experiment
- Selection
- Signal Region Optimization
- Statistical Analysis and Results
- 6 Next Steps

Analysis workflow

Samples

Data is Double Electron and Double Muon datasets.

Background

MC Sample	Generator	Percent of Final Region
Z+Jets	MADGRAPH	80%
tt	PYTHIA	7%
ZZ	PYTHIA	11%
WZ	PYTHIA	2%
WW	PYTHIA	<1%

The signal Monte Carlo samples are POWHEG. $m_H = 200,210,220,230,250,275,300,325,350,375,400,425,450,475,500,525,550,575,600$ GeV

Leptons

We are using the official prescriptions from the POGs for both Lepton ID and Isolation.

Electrons

- GSF Electrons
- $p_T > 40/20 \text{ GeV}, |\eta| < 2.5$
- Working Point Loose
- + Tight trigger cuts
- PU corrected ISO < 0.15

Muons

- reco::Muons
- $p_T > 40/20 \text{ GeV}, |\eta| < 2.4$
- Tight Muon
- PU corrected ISO < 0.12</p>

Jets

- AK5PF, L1FastJet+L2+L3
- $p_T > 30 \text{ GeV}$, $|\eta| < 2.4$

b-tagging

- Using JP algorithm, "loose" and "medium" WPs, allowing migrations among the tagging categories when applying the SF to MC
- Up to date using the latest calibrations available for the JP algorithm

0 - tag	Both Jets < Loose
1 - tag	> Loose and < Medium
2 - tag	> Loose and > Medium

Signal and Sideband Regions

Study Regions

- Signal Region is $70 < m_{\parallel} < 110$ GeV and $75 < m_{jj} < 105$ GeV
- Also we are looking at the sidebands region, defined as $60 < m_{jj} < 75 \text{ GeV} \parallel 105 < m_{jj} < 130 \text{ GeV}$ (i.e. outside signal window 75 < mjj < 105 GeV).

Data-MC m_{IIjj} plots - Side Band Region

Background Estimation

- We use the mjj sideband in data to get the normalization and a MC shape correction.
- The fit is to a Fermi*CrystallBall function

Outline

- Standard Model
- 2 Experiment
- Beautiful Selection
 3
- Signal Region Optimization
- Statistical Analysis and Results
- 6 Next Steps

Helicity and Production Angles

Final state kinematics completely determined by 5 angles.

$$\textit{cos}(\theta^*), \textit{cos}(\theta_1), \textit{cos}(\theta_2), \Phi, \Phi_1$$

Electron Helicity and Production Angles

Muon Helicity and Production Angles

Angular Distribution Fits

Helicity LD

		0 <i>b</i> -tag	1 <i>b</i> -tag	2 <i>b</i> -tag
ſ	Helicity LD	$> (0.55 + 0.00025 \times m_{ZZ})$	$> (0.302 + 0.000656 \times m_{ZZ})$	> 0.5

Neural Network with TMVA Package

Neural Network Training and Testing

The trainings are done after preselection and additionally require at least one B-tagged Medium jet Left: Training 400 GeV Higgs boson with a MLP neural network. Right: Training 400 GeV Higgs boson with

MLP vs Helicity LD

The working point is the background rejection point that we currently achieve in the two tag region in our analysis.

High Mass MVA Introduction

- Since the current helyLD optimization does not work at high mass I am looking at the performance of the straight forward MLP neural network performance in the High Mass region.
- This looks at a training on the Higgs 400GeV signal sample (a trianing that works well for 300-600 as shown in previous talks) as well as the same training but on a Higgs 800 GeV signal sample.
- These signal samples are the Gluon-Gluon samples

MLP

Electrons (zero,one,two)

Muons (zero,one,two)

Outline

- Standard Model
- 2 Experiment
- Bvent Selection
- Signal Region Optimization
- 5 Statistical Analysis and Results
- 6 Next Steps

Tag and Probe

- Method to use Z boson to calculate efficiency of Data and Monte Carlo.
- One lepton is "good" (tag) and the other is used for the calculations(probe).
- Compairing Monte Carlo to data gives us Scale Factors.

Triggers

- Muons
 - HLT_Mu17_Mu8
 - HLT_Mu17_TkMu8

- Electrons
 - HLT Ele17 CaloIdT CaloIsoVL TrkIdVL TrkIsoVL Ele8 CaloIdT CaloIsoVL TrkIdVL TrkIsoVL
- EMu (for backround estimation and analysis checks)
 - Mu8_Ele17_CaloIdT_CaloIsoVL
 - Mu17_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL

We are using the POG provided scale factors for electrons and computing the WP to HLT ourselves.

Efficiency Fit

The signal efficiency as a function of the Higgs mass is fitted to a polinomial in order to be estimatated for those Higgs mass hypothesis where no Monte-Carlo sample is available

Systematics

source	0 <i>b</i> -tag	1 <i>b</i> -tag	2 <i>b</i> -tag	comment		
muons reco	2.7%			tag-and-probe study		
electrons reco	4.5%			tag-and-probe study		
jet reco	1%–8%			JES-uncert., JER uncert. negligible; correlated be-		
				tween categ		
pileup	1-2%			correlated between categ		
b-tagging	2-7%	3-5%	10-11%	anti-correlated between categ.		
MET	3-4%			loose requirement		
production mechanism (PDF)	2-4%			PDF4LHC, acceptance only		
production mechanism (WBF)	1%					
production mechanism (lineshape)	0-3%			only for $M_H > 400$		
luminosity	4.4%			same for all analyses		
Higgs cross-section (for R)	13–18%			detailed table from YR available		

2011 Results

Limit on the expected 95% CL upper limit on the product of the Higgs boson production cross section and the branching fraction of $H\rightarrow ZZ$ (black dots.), for the recorded luminosity in 2011 of 4.9 fb⁻¹ at 7TeV. Yellow and Green bands represent the 68% and 95% ranges of expectation.

Asymptotic CL for H->ZZ->2l2q 7TeV 4.9f-1

2012 Preliminary Results

Limit on the expected 95% CL upper limit on the product of the Higgs boson production cross section and the branching fraction of $H \rightarrow ZZ$ (dash line(and observed upper limit (black dots.) Yellow and Green bands represent the 68% and 95% ranges of expectation.

CMS Preliminary 2012, 5.1fb-1 vs=8TeV

Outline

- Standard Model
- 2 Experiment
- Bvent Selection
- Signal Region Optimization
- Statistical Analysis and Results
- 6 Next Steps

Next Step

- Train analysis for high mass range (from 600 GeV to 1000 GeV).
- Run limit calculations on the MVA analysis.
- Run tag and probe efficiency calculations for muons.
- Optimize Z_{II} and Z_{ii} cuts for preselection.
- Improve reconstruction of high mass jets.
- Run analysis over full 2012 data sample at the end of the run.

Thank You

Backup

BACKUP

Pile-up Rejection

 β is the sum of transverse momenta of all charged particles in the jet coming from the primary vertex, normalized to the total sum of transverse momenta of all charged particles in the jet.

- Using β variable to remove candidates with PU-like jets
- Cutting on $\beta \geq 0.2$

Signal

$\sqrt{\mathsf{Signal} + \mathsf{Background}}$

400GeV Training

		Electron	1	Muon		
Sample	zero	one	two	zero	one	two
GG600	0.215	0.224	0.309	0.232	0.210	0.345
GG700	0.086	0.089	0.121	0.088	0.083	0.134
GG800	0.035	0.036	0.052	0.036	0.033	0.057
GG900	0.016	0.016	0.023	0.016	0.015	0.025
GG1000	0.009	0.009	0.012	0.009	0.008	0.013

800GeV Training

		Electron]	Muon		
Sample	zero	one	two	zero	one	two
GG600	0.204	0.223	0.297	0.225	0.198	0.344
GG700	0.084	0.091	0.118	0.088	0.082	0.140
GG800	0.035	0.039	0.053	0.038	0.034	0.061
GG900	0.017	0.018	0.023	0.017	0.016	0.027

	Electron			Muon			
Sample	zero	one	two	zero	one	two	
GG600	4.93%	0.18%	4.17%	2.98%	5.49%	0.33%	
GG700	1.72%	-2.75%	2.58%	0.36%	1.57%	-3.91%	
GG800	-1.71%	-7.89%	-2.51%	-4.42%	-2.47%	-7.02%	
GG900	-2.87%	-8.16%	0.30%	-5.16%	-4.40%	-8.41%	
GG1000	-2.62%	-8.38%	-1.75%	-4.26%	-2.13%	-10.91%	