Symbolic Weighted Language Models andQuantitative Parsing over Infinite Alphabets

- 🛚 Florent Jacquemard 🖂 🧥 🗅
- 4 Inria & CNAM, Paris, France

— Abstract

We propose a framework for weighted parsing over infinite alphabets. It is based on language models called Symbolic Weighted Automata (swA) at the joint between Symbolic Automata (sA) and Weighted Automata (wA), as well as Transducers (swT) and Visibly Pushdown (sw-VPA) variants. Like sA, swA deal with large or infinite input alphabets, and like wA, they output a weight value in a semiring domain. The transitions of swA are labeled by functions from an infinite alphabet into the weight domain. This is unlike sA whose transitions are guarded by boolean predicates overs symbols in an infinite alphabet and also unlike wA whose transitions are labeled by constant weight values, and who deal only with finite automata. We present some properties of swA, swT and sw-VPA models, that we use to define and solve a variant of parsing over infinite alphabets. We also briefly describe the application that motivated the introduction of these models: a parse-based approach to automated music transcription.

- ¹⁷ **2012 ACM Subject Classification** Theory of computation \rightarrow Quantitative automata
- 18 Keywords and phrases Weighted Automata, Symbolic Automata, Visibly Pushdown, Parsing
- 19 Digital Object Identifier 10.4230/LIPIcs...
- 20 Funding Florent Jacquemard: Inria AEx Codex, ANR Collabscore, EU H2020 Polifonia
- 21 Acknowledgements I want to thank ...

1 Introduction

Parsing is the problem of structuring a linear representation on input (a finite word), according to a language model. Most of the context-free parsing approaches [15] assume a finite and reasonably small input alphabet. Such a restriction makes perfect sense in the context of NLP tasks such as constituency parsing, or of programming languages compilers or interpreters. Considering large or infinite alphabets can however be of practical interest, for instance, when dealing with large characters encodings such as UTF-16, e.g. for vulnerability detection in Web-applications [8], for the analyse (e.q. validation or filtering) of data streams or serialization of structured documents (with textual or numerical attributes) [26], or for processing timed execution traces [3]. The latter case is related to a study that motivated the present work: automated music transcription. In this problem, a music performance, represented symbolically in the form of a sequence of timed musical events, is converted into a score in Common Western Music Notation [14], structured according to nested grouping and metric strength of events. It can therefore be stated as a parsing problem [12], over an 35 infinite alphabet of timed events. 36

Various extensions of language models for handling infinite alphabets have been studied. For instance, some automata with memory extensions allow restricted storage and comparison of input symbols, (see [26] for a survey), with pebbles for marking positions [25], registers [18], or the possibility to compute on subsequences with the same attribute values [2]. The automata at the core of model checkers compute on input symbols represented by large bitvectors [27] (sets of assignments of Boolean variables) and in practice, each transition accepts a set of such symbols (instead of an individual symbol), represented by Boolean

I think that we can make the case for a larger set of situations: given a linear music notation input, for instance elements in an XML file, we we want to structure the input according to a hierarchical rhythmic space. I can elabor-

register: skip refs and details, add Mikolaj recent

Figure 1 Classes of Symbolic/Weighted Automata. Σ_{fin} is a finite alphabet, Σ_{inf} is a countable alphabet, \mathbb{B} is the Boolean algebra, \mathbb{S} is a commutative semiring, $q \xrightarrow{\cdots} q'$ is a transition between states q and q'.

formula or Binary Decision Diagrams. Following a similar idea, in symbolic automata (sA) [7, 8], the transitions are guarded by predicates over infinite alphabet domains. With appropriate closure conditions on the sets of such predicates, all the good properties enjoyed by automata over finite alphabets are preserved.

Other extensions of language models help in dealing with non-determinism, by the computation of weight values. With an ambiguous grammar, there may exist several derivations (abstract syntax trees – AST) yielding one input word. The association of one weight value to each AST permits to select a best one (or n bests). This is roughly the principle of weighted parsing approaches [13, 24, 23]. In weighted language models, like e.g. probabilistic context-free grammars and weighted automata (wA) [11], a weight value is associated to each transition rule, and the rule's weights can be combined with a associative product operator \otimes into the weight of an AST. A second operator \oplus , associative and commutative, is moreover used to handle the ambiguity of the model, by summing the weights of the possibly several (in general exponentially many) AST associated to a given input word. Typically, \oplus will select the best of two weight values. The weight domain, equipped with these two operators shall be, at minima, a semiring where \oplus can be extended to infinite sums, such as the Viterbi semiring and the tropical min-plus algebra, see Figure 2.

In this paper, we present a uniform framework for weighted parsing over infinite input alphabets. It is based on symbolic weighted finite states language models (swM), generalizing sA, with functions into an arbitrary semiring instead of Boolean guards, and wA, by handling infinite alphabets, see Figure 1. In the transition rules of swM models, input symbols appear as variables, and the weight associated to a transition rule is a function of these variables. The models presented here are finite automata called symbolic-weighted (swA), transducers (swT), and pushdown automata with a visibly restriction [1] (sw-VPA). The latter model of automata operates on nested words [1], a structured form of words parenthesized with markup symbols, corresponding to a linearization of trees. In the context of parsing, they can represent (weighted) AST of CF grammars. More precisely, a sw-VPA A associates a weight value A(t) to a given nested word t, which is the linearization of an AST. On the other hand, a swT can define a distance T(s,t) between finite words s and t over infinite alphabets. Then, the SW-parsing problem aims at finding t minimizing $T(s,t) \otimes A(t)$ (wrt the ranking defined by \oplus), given an input word s. The latter value is called the distance between s and A in [21]. Like weighted-parsing methods [13, 24, 23], our approach proceeds

This sentence (symbols as variables) is not immediatly clear to me. Maybe a short example or

The weight is a label?
on edges in the derivation tree, right? 78
Not sure I understand the sentence.

You mean the distance between s and t? "The latter value" is a hit ambiguous

in two steps, based on properties of the swM. The first step is an intersection (Bar-Hillel construction [15]) where, given a swT T, a sw-VPA A, and an input word s, a sw-VPA $A_{T,s}$ is built, such that for all t, $A_{T,s}(t) = T(s,t) \otimes A(t)$. In the second step, a best AST t is found by applying to $A_{T,s}$ a best search algorithm similar to the shortest distance in graphs [20, 17].

The main contributions of the paper are: (i) the introduction of automata, swA, transducers, swT (Section 3), and visibly pushdown automata sw-VPA (Section 4), generalizing the corresponding classes of symbolic and weighted models, (ii) a polynomial best-search algorithm for sw-VPA, and (iii) a uniform framework (Section 5) for parsing over infinite alphabets, the keys to which are (iii.a) the swT-based definition of generic edit distances between input and output (yield) words, and (iii.b) the use, convenient in this context, of nested words, and sw-VPA, instead of syntax trees and grammars.

chap. intersection in [15]

The notation $A_{T,s}$ has not been introduced so far. It is not clear why T is a parameter there

OK, à quelques détails (pour moi), tout ça est très bien expliqué

expressiveness: VPA have restricted equality test. comparable to pebble automata? \rightarrow conclusion

2 Preliminary Notions

Semirings

77

78

80

82

83

84

98

100

101

102

103

105

106

108

We shall consider semirings for the weight values of our language models. A semiring $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes , with respective neutral elements \mathbb{O} and $\mathbb{1}$, and such that:

 \oplus is commutative: $\langle \mathbb{S}, \oplus, \mathbb{O} \rangle$ is a commutative monoid and $\langle \mathbb{S}, \otimes, \mathbb{1} \rangle$ a monoid,

95 \blacksquare \otimes distributes over \oplus : $\forall x, y, z \in \mathbb{S}$, $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$, and $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$,

Intuitively, in the models presented in this paper, \oplus selects an optimal value from two given values, in order to handle non-determinism, and \otimes combines two values into a single value, in a chaining of transitions.

A semiring $\mathbb S$ is *commutative* if \otimes is commutative. It is *idempotent* if for all $x \in \mathbb S$, $x \oplus x = x$. Every idempotent semiring $\mathbb S$ induces a partial ordering \leq_{\oplus} called the *natural ordering* of $\mathbb S$ [20] defined, by: for all $x,y \in \mathbb S$, $x \leq_{\oplus} y$ iff $x \oplus y = x$. The natural ordering is sometimes defined in the opposite direction [10]; We follow here the direction that coincides with the usual ordering on the Tropical semiring min-plus (Figure 2). An idempotent semiring $\mathbb S$ is called total if it \leq_{\oplus} is total i.e. when for all $x,y \in \mathbb S$, either $x \oplus y = x$ or $x \oplus y = y$.

▶ Lemma 1 (Monotony, [20]). Let $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ be an idempotent semiring. For all $x, y, z \in \mathbb{S}$, if $x \leq_{\oplus} y$ then $x \oplus z \leq_{\oplus} y \oplus z$, $x \otimes z \leq_{\oplus} y \otimes z$ and $z \otimes x \leq_{\oplus} z \otimes y$.

To express the property of Lemma 1, we call S monotonic $wrt \leq_{\oplus}$. Another important semiring property in the context of optimization is superiority [16], which corresponds to the non-negative weights condition in shortest-path algorithms [9]. Intuitively, it means that combining elements with \otimes always increase their weight. Formally, it is defined as the property (i) below.

Lemma 2 (Superiority, Boundedness). Let $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ be an idempotent semiring. The two following statements are equivalent:

```
i. for all x, y \in \mathbb{S}, x \leq_{\oplus} x \otimes y and y \leq_{\oplus} x \otimes y ii. for all x \in \mathbb{S}, \mathbb{1} \oplus x = \mathbb{1}.
```

Proof. $(ii) \Rightarrow (i) : x \oplus (x \otimes y) = x \otimes (\mathbb{1} \oplus y) = x$, by distributivity of \otimes over \oplus . Hence $x \leq_{\oplus} x \otimes y$. Similarly, $y \oplus (x \otimes y) = (\mathbb{1} \oplus x) \otimes y = y$, hence $y \leq_{\oplus} x \otimes y$. $(i) \Rightarrow (ii)$: by the second inequality of (i), with $y = \mathbb{1}$, $\mathbb{1} \leq_{\oplus} x \otimes \mathbb{1} = x$, *i.e.*, by definition of \leq_{\oplus} , $\mathbb{1} \oplus x = \mathbb{1}$.

The results are established for a general class of semirings. They can be instantiated for concrete cases.

There is sometimes a confusion in the text between the struture and the domain S. Not essential

is total necessary?

XX:4 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

	domain	\oplus	\otimes	0	1
Boolean	$\{\bot, \top\}$	V	٨	Τ	Т
Counting	N	+	×	0	1
Viterbi	$[0,1]\subset\mathbb{R}$	max	×	0	1
Tropical min-plus	$\mathbb{R}_+ \cup \{\infty\}$	min	+	∞	0

Figure 2 Some commutative, bounded, total and complete semirings.

In [16], when the property (i) holds, S is called superior wrt the ordering \leq_{\oplus} . We have seen in the proof of Lemma 2 that it implies that $\mathbb{1} \leq_{\oplus} x$ for all $x \in \mathbb{S}$. Similarly, by the first inequality of (i) with y = 0, $x \leq_{\oplus} x \otimes 0 = 0$. Hence, in a superior semiring, it holds that for all $x \in \mathbb{S}$, $\mathbb{1} \leq_{\oplus} x \leq_{\oplus} \mathbb{0}$. Intuitively, from an optimization point of view, it means that 1 is the best value, and 0 the worst. In [20], S with the property (ii) of Lemma 2 is called bounded – we shall use this term in the rest of the paper. It implies that, when looking for a best path in a graph whose edges are weighted by values of S, the loops can be safely avoided, because, for all $x \in \mathbb{S}$ and $n \geq 1$, $x \oplus x^n = x \otimes (\mathbb{1} \oplus x^{n-1}) = x$.

▶ **Lemma 3.** Every bounded semiring is idempotent.

Proof. By boundedness, $\mathbb{1} \oplus \mathbb{1} = \mathbb{1}$, and idempotency follows by multiplying both sides by x and distributing.

Here the difference 13

121

122

123

125

127

128

129

130

131

137

138

140

144

We shall need below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* [11] if it has an operation $\bigoplus_{i\in I} x_i$ for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb{S})$ over an index set $I\subset\mathbb{N}$, such that:

i. infinite sums extend finite sums:

i. infinite sams extend fittle sams.
$$\bigoplus_{i \in \emptyset} x_i = \emptyset, \quad \forall j \in \mathbb{N}, \bigoplus_{i \in \{j\}} x_i = x_j, \, \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k,$$
ii. associativity and commutativity:

for all
$$I \subseteq \mathbb{N}$$
 and all partition $(I_j)_{j \in J}$ of I , $\bigoplus_{j \in J} \bigoplus_{i \in I_j} x_i = \bigoplus_{i \in I} x_i$,

$$\begin{array}{c} iii. \ \ distributivity \ of \ product \ over \ infinite \ sum: \\ \text{for all} \ I \subseteq \mathbb{N}, \bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i, \ \text{and} \ \bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y. \end{array}$$

results of this paper14

OK, donc c'est là que les fonc-tions d'étiquettes

ennent en argu-ent l'input de la

dans quelle mesure il faut donner un

peu d'explications pour faciliter la com¹⁴ préhension du form-

Label Theory

We shall now define the functions labeling the transitions of SW automata and transducers, generalizing the Boolean algebras of [7] from Boolean to other semiring domains. We consider alphabets, which are countable sets of symbols denoted Σ , Δ ,... Given a semiring $(S, \oplus, 0, \otimes, 1)$, a label theory over S is a set $\bar{\Phi}$ of recursively enumerable sets denoted Φ_{Σ} , containing unary functions of type $\Sigma \to \mathbb{S}$, or $\Phi_{\Sigma,\Delta}$, containing binary functions $\Sigma \times \Delta \to \mathbb{S}$, and such that:

- for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$, we have $\Phi_{\Sigma} \in \bar{\Phi}$ and $\Phi_{\Delta} \in \bar{\Phi}$
- every $\Phi_{\Sigma} \in \bar{\Phi}$ contains all the constant functions from Σ into \mathbb{S} ,
- for all $\alpha \in \mathbb{S}$ and $\phi \in \Phi_{\Sigma}$, $\alpha \otimes \phi : x \mapsto \alpha \otimes \phi(x)$, and $\phi \otimes \alpha : x \mapsto \phi(x) \otimes \alpha$
- belong to Φ_{Σ} , and similarly for \oplus and for $\Phi_{\Sigma,\Delta}$
- for all $\phi, \phi' \in \Phi_{\Sigma}, \phi \otimes \phi' : x \mapsto \phi(x) \otimes \phi'(x)$ belongs to Φ_{Σ}
- for all $\eta, \eta' \in \Phi_{\Sigma, \Delta}$ $\eta \otimes \eta' : x, y \mapsto \eta(x, y) \otimes \eta'(x, y)$ belongs to $\Phi_{\Sigma, \Delta}$

```
155 – for all \phi \in \Phi_{\Sigma} and \eta \in \Phi_{\Sigma,\Delta}, \phi \otimes_1 \eta : x, y \mapsto \phi(x) \otimes \eta(x, y) and

156 \eta \otimes_1 \phi : x, y \mapsto \eta(x, y) \otimes \phi(x) belong to \Phi_{\Sigma,\Delta}

157 – for all \psi \in \Phi_{\Delta} and \eta \in \Phi_{\Sigma,\Delta}, \psi \otimes_2 \eta : x, y \mapsto \psi(y) \otimes \eta(x, y) and

158 \eta \otimes_2 \psi : x, y \mapsto \eta(x, y) \otimes \psi(y) belong to \Phi_{\Sigma,\Delta}

169 – similar closures hold for \oplus.
```

partial application is needed?

Intuitively, the operators \bigoplus_{Σ} return global minimum, $wrt \leq_{\oplus}$, of functions of Φ_{Σ} . When the semiring \mathbb{S} is complete, we consider the following operators on the functions of $\bar{\Phi}$.

$$\bigoplus_{\Sigma} : \Phi_{\Sigma} \to \mathbb{S}, \ \phi \mapsto \bigoplus_{a \in \Sigma} \phi(a)$$

$$\bigoplus_{\Sigma}^{1} : \Phi_{\Sigma,\Delta} \to \Phi_{\Delta}, \ \eta \mapsto \left(y \mapsto \bigoplus_{a \in \Sigma} \eta(a,y) \right) \quad \bigoplus_{\Delta}^{2} : \Phi_{\Sigma,\Delta} \to \Phi_{\Sigma}, \ \eta \mapsto \left(x \mapsto \bigoplus_{b \in \Delta} \eta(x,b) \right)$$

In what follows, we might omit the sub- and superscripts in \otimes_1 , \bigoplus_{Σ}^1 ..., when there is no ambiguity. We shall keep them only for the special case $\Sigma = \Delta$, *i.e.* $\eta \in \Phi_{\Sigma,\Sigma}$, in order to be able to distinguish between the first and the second argument.

▶ **Definition 4.** A label theory $\bar{\Phi}$ is complete when the underlying semiring \mathbb{S} is complete, and for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$ and all $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma}^1 \eta \in \Phi_{\Delta}$ and $\bigoplus_{\Delta}^2 \eta \in \Phi_{\Sigma}$.

The following facts are immediate.

180

181

182

184

185

186

notion of diagram of functions akin BDD for transitions in practice

mv appendix

```
Lemma 5. For \bar{\Phi} complete \alpha \in \mathbb{S}, \phi, \phi' \in \Phi_{\Sigma}, \psi \in \Phi_{\Delta}, and \eta \in \Phi_{\Sigma,\Delta}:

i. \bigoplus_{\Sigma} \bigoplus_{\Delta}^{2} \eta = \bigoplus_{\Delta} \bigoplus_{\Sigma}^{1} \eta

ii. \alpha \otimes \bigoplus_{\Sigma} \phi = \bigoplus_{\Sigma} (\alpha \otimes \phi) and (\bigoplus_{\Sigma} \phi) \otimes \alpha = \bigoplus_{\Sigma} (\phi \otimes \alpha), and similarly for \oplus

iii. (\bigoplus_{\Sigma} \phi) \oplus (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \oplus \phi') and (\bigoplus_{\Sigma} \phi) \otimes (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \otimes \phi')

iv. (\bigoplus_{\Delta}^{2} \eta) \oplus (\bigoplus_{\Delta}^{2} \eta') = \bigoplus_{\Delta}^{2} (\eta \oplus \eta'), and (\bigoplus_{\Delta}^{2} \eta) \otimes (\bigoplus_{\Delta}^{2} \eta') = \bigoplus_{\Delta}^{2} (\eta \otimes \eta')

v. \phi \otimes (\bigoplus_{\Delta}^{2} \eta) = \bigoplus_{\Delta} (\phi \otimes_{1} \eta), and (\bigoplus_{\Delta}^{2} \eta) \otimes \phi = \bigoplus_{\Delta} (\eta \otimes_{1} \phi), and similarly for \oplus

vi. \psi \otimes (\bigoplus_{\Sigma}^{1} \eta) = \bigoplus_{\Sigma} (\psi \otimes_{2} \eta), and (\bigoplus_{\Sigma}^{1} \eta) \otimes \psi = \bigoplus_{\Sigma} (\eta \otimes_{2} \psi), and similarly for \oplus
```

177 vi.
$$\psi \otimes (\bigoplus_{\Sigma}^{*} \eta) = \bigoplus_{\Sigma} (\psi \otimes_{2} \eta)$$
, and $(\bigoplus_{\Sigma}^{*} \eta) \otimes \psi = \bigoplus_{\Sigma} (\eta \otimes_{2} \psi)$, and similarly for \oplus
178 A label theory is called effective when for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma} \phi$, $\bigoplus_{\Delta} \bigoplus_{\Sigma} \eta$, and

 $\bigoplus_{\Sigma} \bigoplus_{\Delta} \eta$ can be effectively computed from ϕ and η .

Concretely, in one of the language models defined below, we consider a finite number of base functions ϕ, η of the underlying label theory, labelling transitions, and combine them

with the above operators for construction of other models. The combinations might be represented by dags (diagrams) whose leaves are labeled by base functions and inner nodes by operators.

beaucoup de notions à retenir (complete, effective) et ça devient difficile pour un lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais plus qui m'avait dit: un concept en plus, un point en moins.

 \exists oracle returning . in worst time complexity T.

3 SW Automata and Transducers

We follow the approach of [21] for the computation of distances, between words and languages, using weighted transducers, and extend it to infinite alphabets. The models introduced in this section generalize weighted automata and transducers [11] by labeling each transition with a weight function (instead of a simple weight value), that takes the input and output symbols as parameters. These functions are similar to the guards of symbolic automata [7, 8], but they can return values in a generic semiring, whereas the latter guards are restricted to the Boolean semiring.

Let $\mathbb S$ be a commutative semiring, Σ and Δ be alphabets called respectively *input* and *output*, and $\bar{\Phi}$ be a label theory over $\mathbb S$ containing Φ_{Σ} , Φ_{Δ} , $\Phi_{\Sigma,\Delta}$.

▶ **Definition 6.** A symbolic-weighted transducer (swT) over Σ , Δ , $\mathbb S$ and $\bar{\Phi}$ is a tuple $T = \langle Q, \operatorname{in}, \bar{\operatorname{w}}, \operatorname{out} \rangle$, where Q is a finite set of states, $\operatorname{in}: Q \to \mathbb S$ (respectively out : $Q \to \mathbb S$) are functions defining the weight for entering (respectively leaving) computation in a state, and $\bar{\operatorname{w}}$ is a triplet of transition functions $\operatorname{w}_{10}: Q \times Q \to \Phi_{\Sigma}$, $\operatorname{w}_{01}: Q \times Q \to \Phi_{\Delta}$, and $\operatorname{w}_{11}: Q \times Q \to \Phi_{\Sigma,\Delta}$.

I missed sth: what 200 is this ε ? Intuitively clear but not 200 defined?

We call number of transitions of T the number of pairs of states $q, q' \in Q$ such that w_{10} or w_{01} or w_{11} is not the constant \mathbb{O} . For convenience, we shall sometimes present transitions as functions of $Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times Q \to \mathbb{S}$, overloading the function names, such that, for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$,

$$\begin{array}{llll} & \mathsf{w}_{10}(q,a,\varepsilon,q') & = & \phi(a) & & \mathrm{where} \; \phi = \mathsf{w}_{10}(q,q') \in \Phi_{\Sigma}, \\ & \mathsf{w}_{01}(q,\varepsilon,b,q') & = & \psi(b) & & \mathrm{where} \; \psi = \mathsf{w}_{01}(q,q') \in \Phi_{\Delta}, \\ & \mathsf{w}_{11}(q,a,b,q') & = & \eta(a,b) & & \mathrm{where} \; \eta = \mathsf{w}_{11}(q,q') \in \Phi_{\Sigma,\Delta}. \end{array}$$

The swT T computes on pairs of words $\langle s,t\rangle \in \Sigma^* \times \Delta^*$, s and t, being respectively called input and output word. More precisely, T defines a mapping from $\Sigma^* \times \Delta^*$ into $\mathbb S$, based on an intermediate function weight defined recursively, for every states $q,q' \in Q$, and every pairs of strings $\langle s,t\rangle \in \Sigma^* \times \Delta^*$, where au, and bv, denote the concatenation of the symbol $a \in \Sigma$ (resp. $b \in \Delta$) with a word $u \in \Sigma^*$ (resp. $v \in \Delta^*$).

added u and v def 210

206

209

21

218

219

220

221

222

223

224

225

226

227

228

229

230

weight
$$_{T}(q, \varepsilon, \varepsilon, q') = \mathbb{1}$$
 if $q = q'$ and $\mathbb{0}$ otherwise (1)

weight $_{T}(q, s, t, q') = \bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma}} \mathsf{w}_{10}(q, a, \varepsilon, q'') \otimes \mathsf{weight}_{T}(q'', u, t, q')$

$$\bigoplus_{\substack{q'' \in Q \\ t = bv, b \in \Delta}} \mathsf{w}_{01}(q, \varepsilon, b, q'') \otimes \mathsf{weight}_{T}(q'', s, v, q')$$

$$\bigoplus_{\substack{q'' \in Q \\ s = au, t = bv}} \mathsf{w}_{11}(q, a, b, q'') \otimes \mathsf{weight}_{T}(q'', u, v, q')$$

OK tout ça se lit bien :-) We recall that, by convention (Section 2), an empty sum with \bigoplus is equal to $\mathbb O$. Intuitively, using a transition $\mathsf{w}_{ij}(q,a,b,q')$ means for T: when reading respectively a and b at the current positions in the input and output words, increment the current position in the input word if and only if i=1, and in the output word iff j=1, and change state from q to q'. When $a=\varepsilon$ (resp. $b=\varepsilon$), the current symbol in the input (resp. output) is not read. Since $\mathbb O$ is absorbing for \otimes in $\mathbb S$, one term $\mathsf{w}_{ij}(q,a,b,q'')$ equal to $\mathbb O$ in the above expression will be ignored in the sum, meaning that there is no possible transition from state q into state q' while reading a and b. This is analogous to the case of a transition's guard not satisfied by $\langle a,b\rangle$ for symbolic transducers.

The expression (1) can be seen as a stateful definition of an edit-distance between a word $s \in \Sigma^*$ and a word $t \in \Delta^*$, see also [22]. Intuitively, $\mathsf{w}_{10}(q,a,\varepsilon,r)$ is the cost of the deletion of the symbol $a \in \Sigma$ in s, $\mathsf{w}_{01}(q,\varepsilon,b,r)$ is the cost of the insertion of $b \in \Delta$ in t, and $\mathsf{w}_{11}(q,a,b,r)$ is the cost of the substitution of $a \in \Sigma$ by $b \in \Delta$. The cost of a sequence of such operations transforming s into t, is the product, with \otimes , of the individual costs of the operations involved; and the distance between s and t is the sum, with \oplus , of all possible products. Formally, the weight associated by T to $\langle s, t \rangle \in \Sigma^* \times \Delta^*$ is:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_T(q,s,t,q') \otimes \operatorname{out}(q') \tag{2}$$

25@

▶ Example 7. In Common Western Music Notation [14], several symbols may be used to represent one single sounding event. For instance, several notes can be combined with a tie, like in \downarrow , and one note can be augmented by half its duration with a dot like in \downarrow . These notations are perceived equivalent when played, as their duration is equal, yet the notation is different. We thus want to be able to compare a music score with music played by a performer. We propose a small weighted transducer model that calculates the distance bewteen an input sequence of sounding events (music "performance") to an output sequence of written events (music "score"). Let us consider the tropical (min-plus) semiring $\mathbb S$ of Figure 2 and let $\Sigma = \mathbb R_+$ be an input alphabet of event dates and $\Delta = \{e, -\} \times \mathbb R_+$ be an output alphabet of symbols with timestamps. A symbol $\langle e, d \rangle \in \Delta$ represents an event starting at date d, and $\langle -, d \rangle$ is a continuation of the previous event.

We consider a swT with two states q_0 and q_1 whose purpose is to compare a recorded performance $s \in \Sigma^*$ with a notated music sheet $t \in \Delta^*$. One timestamp $d_i \in \Sigma$ may correspond to one notated event $\langle \mathsf{e}, d_i' \rangle \in \Delta$, in which case the weight value computed by the swT is the time distance between both (see transitions w_{11} below). If $\langle \mathsf{e}, d_i' \rangle$ is followed by continuations $\langle -, d_{i+1}' \rangle \dots$, they are just skipped with no cost (transitions w_{01} or weight 1).

$$\begin{array}{lcl} \mathbf{w}_{11}(q_0,d,\langle\mathbf{e},d'\rangle,q_0) & = & |d'-d| & \mathbf{w}_{11}(q_1,d,\langle\mathbf{e},d'\rangle,q_0) & = & |d'-d| \\ \mathbf{w}_{01}(q_0,\varepsilon,\langle-,d'\rangle,q_0) & = & \mathbb{1} & \mathbf{w}_{01}(q_1,\varepsilon,\langle-,d'\rangle,q_0) & = & \mathbb{1} \\ \mathbf{w}_{10}(q_0,d,\varepsilon,q_1) & = & \alpha & \end{array}$$

We also must be able to take performing errors into account, while still being able to compare with the score, since a performer could, for example, play an unwritten extra note. This is modelled by the transition w_{10} with an arbitrary weight value $\alpha \in \mathbb{S}$, switching from state q_0 (normal) to q_1 (error). The transitions in the second column below switch back to the normal state q_0 . At last, we let q_0 be the only initial and final state, with $in(q_0) = out(q_0) = 1$, and $in(q_1) = out(q_1) = 0$.

That way, an swT is capable of evaluating the differences between a score and a performance, all the while ensuring that performance errors are plausible.

The *Symbolic Weighted Automata* are defined similarly as the transducers of Definition 6, by simply omitting the output symbols.

▶ **Definition 8.** A symbolic-weighted automaton (swA) over Σ , \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in} : Q \to \mathbb{S}$ (respectively $\mathsf{out} : Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and w_1 is a transition function from $Q \times Q$ into Φ_{Σ} .

As above in the case of swT, when $w_1(q, q') = \phi \in \Phi_{\Sigma}$, we may write $w_1(q, a, q')$ for $\phi(a)$. The computation of A on words $s \in \Sigma^*$ is defined with an intermediate function weight_A, defined as follows for $q, q' \in Q$, $a \in \Sigma$, $u \in \Sigma^*$,

$$\begin{array}{ll} {}_{270} & \operatorname{weight}_A(q,\varepsilon,q) = \mathbb{1} \\ {}_{271} & \operatorname{weight}_A(q,\varepsilon,q') = \mathbb{0} \quad \text{if } q \neq q' \\ {}_{272} & \operatorname{weight}_A(q,au,q') = \bigoplus_{q'' \in Q} \operatorname{w}_1(q,a,q'') \otimes \operatorname{weight}_A(q'',u,q') \\ {}_{273} & \end{array}$$

Je crois qu'il faudrait numéroter les exemples in-dépendamment des définitions. Cet exemple est le premier qui donne des détails sur l'application visée. Il arrive peutêtre un peu tard et est long. On pourrait introduire la mo tivation dans l'intro, et développer des petits exemples au fur et à mesure.

unique → similar

similar → single

modif.

changed end

reformulated this

ccl to the ex

and the weight value associated by A to $s \in \Sigma^*$ is defined as follows:

$$A(s) = \bigoplus_{q,q' \in Q} \mathsf{in}(q) \otimes \mathsf{weight}_A(q,s,q') \otimes \mathsf{out}(q') \tag{4}$$

The following property will be useful to the approach on symbolic weighted parsing presented in Section 5.

Proposition 9. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and a swA A over Σ , $\mathbb S$ and $\bar{\Phi}$, there exists an effectively constructible swA $B_{T,A}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{T,A}(t) = \bigoplus_{s \in \Sigma^*} A(s) \otimes T(s,t)$.

Proof. Let $T = \langle Q, \mathsf{in}_T, \bar{\mathsf{w}}, \mathsf{out}_T \rangle$, where $\bar{\mathsf{w}}$ contains w_{10} , w_{01} , and w_{11} , from $Q \times Q$ into 281 respectively Φ_{Σ} , Φ_{Δ} , and $\Phi_{\Sigma,\Delta}$, and let $A = \langle P, \mathsf{in}_A, \mathsf{w}_1, \mathsf{out}_A \rangle$ with $\mathsf{w}_1 : Q \times Q \to \Phi_{\Sigma}$. The 282 state set of $B_{T,A}$ will be $Q' = P \times Q$. The entering, leaving and transition functions of $B_{T,A}$ 283 will simulate synchronized computations of A and T, while reading an output word of Δ^* . Its state entering functions is defined for all $p \in P$, $q \in Q$ by $\operatorname{in}'(p,q) = \operatorname{in}_A(p) \otimes \operatorname{in}_T(q)$. The 285 transition function w'_1 will roughly perform a synchronized product of transitions defined by 286 w_1 , w_{01} (T reading in output word and not an input word) and w_{11} (T reading both an input 287 word and an output word). Moreover, w'_1 also needs to simulate transitions defined by w_{10} : 288 T reading in input word and not an output word. Since $B_{T,A}$ will read only in the output word, such a transition corresponds to an ε -transition of swA, but swA have been defined 290 without ε -transitions. Therefore, in order to take care of this case, we perform an on-the-fly suppression of ε -transition in the swA in construction, following the algorithm of [19]. Initially, for all $p_1, p_2 \in P$, and $q_1, q_2 \in Q$, let 293

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_2\rangle\big)=\mathsf{w}_1(p_1,p_2)\otimes\big[\mathsf{w}_{01}(q_1,q_2)\oplus\bigoplus_{\Sigma}\mathsf{w}_{11}(q_1,q_2)\big].$$

Iterate the following for all $p_1 \in P$ and $q_1, q_2 \in Q$: for all $p_2 \in P$ and $q_3 \in Q$,

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_3\rangle\big) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \mathsf{w}_1'\big(\langle p_1,q_2\rangle,\langle p_2,q_3\rangle\big)$$

proof correctness 2

and
$$\operatorname{\mathsf{out}}'(p_1,q_1) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \operatorname{\mathsf{out}}'(p_1,q_2)$$

revise with nb of tr.299 and states

303

304

305

307

The construction time and size for $B_{T,A}$ are $O(||T||^3.||A||^2)$, where the sizes ||T|| and ||A|| are their number of states.

▶ Corollary 10. Given a swT T over Σ , Δ , \mathbb{S} commutative, bounded and complete, and $\bar{\Phi}$ effective, and $s \in \Sigma^+$, there exists an effectively constructible swA $B_{T,s}$ over Δ , \mathbb{S} and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{T,s}(t) = T(s,t)$.

4 SW Visibly Pushdown Automata

The model presented in this section generalizes Symbolic VPA [6] from Boolean semirings to arbitrary semiring weight domains. It will compute on nested words over infinite alphabets, associating to every such word a weight value. Nested words are able to describe structures of labeled trees, and in the context of parsing, they will be useful to represent AST.

Let Ω be a countable alphabet that we assume partitioned into three subsets Ω_i , Ω_c , Ω_r , whose elements are respectively called *internal*, call and return symbols. Let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{I} \rangle$

Là je crois qu'il faudrait expliquer ces Omega, je commence à fatiguer et je suis un peu largué par toutes ces définitions. J'intuite qu'il s'agit des symboles, parenthèses ouvrantes et fermantes? Pourquoi il faut un alphabet pour les parenthèses?

be a commutative and complete semiring and let $\bar{\Phi} = \langle \Phi_i, \Phi_c, \Phi_r, \Phi_{ci}, \Phi_{cc}, \Phi_{cr} \rangle$ be a label theory over S where Φ_i , Φ_c , Φ_r and Φ_{cx} (with $x \in \{i, c, r\}$) stand respectively for Φ_{Ω_i} , Φ_{Ω_c} , Φ_{Ω_r} and Φ_{Ω_c,Ω_x} .

Definition 11. A Symbolic Weighted Visibly Pushdown Automata (sw-VPA) over $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$, \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, P, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, P is a finite set of stack symbols, $\mathsf{in}: Q \to \mathbb{S}$ (respectively $\mathsf{out}: Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) a state, and $\bar{\mathsf{w}}$ is a sextuplet composed of the transition functions: $\mathsf{w}_i: Q \times P \times Q \to \Phi_{\mathsf{ci}}$, $\mathsf{w}_i^\mathsf{e}: Q \times Q \to \Phi_i$, $\mathsf{w}_\mathsf{c}: Q \times P \times Q \times P \to \Phi_{\mathsf{cc}}$, $\mathsf{w}_\mathsf{c}: Q \times P \times Q \to \Phi_\mathsf{c}$, $\mathsf{w}_\mathsf{r}: Q \times P \times Q \to \Phi_\mathsf{r}$.

Est-ce que tout le monde sait ce qu'est un pushdown automata? Je suppose que c'est lié à la nile

Similarly as in Section 3, we extend the above transition functions as follows for all $q, q' \in Q$, $p \in P$, $a \in \Omega_i$, $c \in \Omega_c$, $r \in \Omega_r$, overloading their names:

The intuition is the following for the above transitions. w_i^e , w_c^e , and w_r^e describe the cases where the stack is empty. w_i and w_i^e both read an input internal symbol a and change state from q to q', without changing the stack. Moreover, w_i reads a pair made of $c \in \Omega_c$ and $p \in P$ on the top of the stack (c is compared to a by the weight function $\eta_{ci} \in \Phi_{ci}$). w_c and w_c^e read the input call symbol c', push it to the stack along with p', and change state from q to to q'. Moreover, w_c reads c and p at the top of the stack (c is compared to c'). w_r and w_r^e read the input return symbol r, and change state from q to to q'. Moreover, w_r reads and pop from stack a pair made of c and c and c is compared to c').

323

324

326

327

329

330

331

332

333

334

335

moved this to the

Formally, the transitions of the automaton A are defined in term of an intermediate function weight_A , like in Section 3. A configuration, denoted by $q[\gamma]$, is here composed of a state $q \in Q$ and a stack content $\gamma \in \Gamma^*$, where $\Gamma = \Omega_{\mathsf{c}} \times P$. Hence, weight_A is a function from $[Q \times \Gamma^*] \times \Omega^* \times [Q \times \Gamma^*]$ into $\mathbb S$. The empty stack is denoted by \bot , and the upmost symbol is the last pushed content. The following functions illustrate each of the possible cases, being : reading $a \in \Omega_{\mathsf{i}}$, or $c \in \Omega_{\mathsf{c}}$, or $r \in \Omega_{\mathsf{r}}$ for each possible state of the stack (empty or not), to add to $u \in \Omega^*$.

intro to func

introduced the 6

weight_A
$$(q[\bot], \varepsilon, q'[\bot]) = \mathbb{1}$$
 if $q = q'$ and 0 otherwise (5)

weight_A $(q\begin{bmatrix} \langle c, p \rangle \\ \gamma \end{bmatrix}, a u, q'[\gamma']) = \bigoplus_{q'' \in Q} \mathsf{w}_{\mathsf{i}}(q, c, p, a, q'') \otimes \mathsf{weight}_{A}(q''\begin{bmatrix} \langle c, p \rangle \\ \gamma \end{bmatrix}, u, q'[\gamma'])$

weight_A $(q[\bot], a u, q'[\gamma']) = \bigoplus_{q'' \in Q} \mathsf{w}_{\mathsf{i}}^{\mathsf{e}}(q, a, q'') \otimes \mathsf{weight}_{A}(q''[\bot], u, q'[\gamma'])$

weight_A $(q\begin{bmatrix} \langle c, p \rangle \\ \gamma \end{bmatrix}, c' u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ p' \in P}} \mathsf{w}_{\mathsf{c}}(q, c, p, c', p', q'') \otimes \mathsf{weight}_{A}(q''\begin{bmatrix} \langle c', p' \rangle \\ \langle c, p \rangle \\ \gamma \end{bmatrix}, u, q'[\gamma'])$

weight_A $(q[\bot], c u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ p' \in P}} \mathsf{w}_{\mathsf{c}}(q, c, p, q'') \otimes \mathsf{weight}_{A}(q''[\langle c, p \rangle], u, q'[\gamma'])$

XX:10 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

$$\begin{aligned} & \mathsf{weight}_A \big(q \left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], r \, u, q'[\gamma'] \big) = \bigoplus_{q'' \in Q} \mathsf{w_r} \big(q, c, p, r, q'' \big) \otimes \mathsf{weight}_A \big(q''[\gamma], u, q'[\gamma'] \big) \\ & \mathsf{weight}_A \big(q[\bot], r \, u, q'[\gamma'] \big) = \bigoplus_{q'' \in Q} \mathsf{w_r^e} (q, r, q'') \otimes \mathsf{weight}_A \big(q''[\bot], u, q'[\gamma'] \big) \\ & \mathsf{undergy}_A = \bigoplus_{q'' \in Q} \mathsf{undergy}_A = \bigoplus_{q' \in Q$$

c p to <c, p>

The weight associated by A to $s \in \Omega^*$ is defined according to empty stack semantics:

$$A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{A}(q[\bot], s, q'[\bot]) \otimes \operatorname{out}(q'). \tag{6}$$

todo example VPA 348

▶ **Example 12.** structured words with timed symbols... intro language of music notation? (markup = time division, leaves = events etc)

Every swA $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, over Σ , $\mathbb S$ and $\bar{\Phi}$ is a particular case of sw-VPA $\langle Q, \emptyset, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$ over Ω , $\mathbb S$ and $\bar{\Phi}$ with $\Omega_\mathsf{i} = \Sigma$ and $\Omega_\mathsf{c} = \Omega_\mathsf{r} = \emptyset$, and computing with an always empty stack: $\mathsf{w}_\mathsf{i}^\mathsf{e} = \mathsf{w}_1$ and all the other functions of $\bar{\mathsf{w}}$ are the constant $\mathbb O$.

Like VPA and symbolic VPA, the class of sw-VPA is closed under the binary operators of the underlying semiring.

Proposition 13. Let A_1 and A_2 be two sw-VPA over the same Ω , $\mathbb S$ and $\bar \Phi$. There exists two effectively constructible sw-VPA $A_1 \oplus A_2$ and $A_1 \otimes A_2$, such that for all $s \in \Omega^*$, $(A_1 \oplus A_2)(s) = A_1(s) \oplus A_2(s)$ and $(A_1 \otimes A_2)(s) = A_1(s) \otimes A_2(s)$.

Proof. The construction is essentially the same as in the case of the Boolean semiring [6].

total?

Let us assume that the semiring $\mathbb S$ is commutative, bounded, and complete, and that $\bar\Phi$ is an effective label theory. We propose a Dijkstra algorithm computing, for a sw-VPA A over Ω , $\mathbb S$ and $\bar\Phi$, the minimal weight for a word in Ω^* . We distinguish two cases: when the stack is empty, and when it is not. In the case of an empty stack, let $b_\perp: Q \times Q \to \mathbb S$ be such that:

introduced 2 cases 36

 $b_{\perp}(q, q') = \bigoplus_{s \in \Omega^*} \mathsf{weight}_A(q[\perp], s, q'[\perp]). \tag{7}$

365 366

377

35)

360

363

Since S is complete, the infinite sum in (7) is well defined, and, providing that S is total, it is the minimum in Ω^* , $wrt \leq_{\oplus}$, of the fonction $s \mapsto \mathsf{weight}_A(q[\sigma], s, q'[\sigma])$. The term $q[\bot], s, q'[\bot]$ of this sum is the central expression in the definition (6) of $A(s_0)$, for the minimum s_0 of the function weight_A .

b_⊤: mot bien par-

If the stack is not empty, let \top be a fresh stack symbol which does not belong to Γ , and let $b_{\top}: Q \times P \times Q \to \Phi_{c}$ be such that, for every two states $q, q' \in Q$ and stack symbol $p \in P$:

$$b_{\top}(q, p, q') : c \mapsto \bigoplus_{s \in \Omega^*} \mathsf{weight}_A \left(q \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix}, s, q' \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix} \right) \tag{8}$$

Intuitively, the function defined in (8) associates to $c \in \Omega_c$ the minimum weight of a computation of A starting in state q with a stack $\langle c, p \rangle \cdot \gamma \in \Gamma^+$ and ending in state q' with the same stack, such that the computation can not pop the pair made of c and p at the top of this stack, but may only read these symbols. Moreover, A may push another pair $\langle c', p' \rangle$ on the top of $\langle c, p \rangle \cdot \gamma$, following the third case of in the definition (5) of weight_A, and may pop $\langle c', p' \rangle$ later, following the fifth case of (5) (return symbol).

Algorithm 1 constructs iteratively markings $d_{\perp}: Q \times Q \to \mathbb{S}$ and $d_{\top}: Q \times P \times Q \to \Phi_{\mathbf{c}}$ that converges eventually to b_{\top} and b_{\perp} .

■ Algorithm 1 Best search for sw-VPA

```
initially let \mathcal{Q} = (Q \times Q) \cup (Q \times P \times Q), and let d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{1} if q_1 = q_2 and d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{0} otherwise while \mathcal{Q} \neq \emptyset do

| extract \langle q_1, q_2 \rangle or \langle q_1, p, q_2 \rangle from \mathcal{Q} such that d_{\perp}(q_1, q_2), resp.

| \bigoplus_{c \in \Omega_c} d_{\top}(q_1, p, q_2)(c), is minimal in \mathbb{S} wrt \leq_{\oplus}

| update d_{\perp} with \langle q_1, q_2 \rangle or d_{\top} with \langle q_1, p, q_2 \rangle (Figure 3).
```

For all $q_0, q_3 \in Q$,

$$\begin{array}{lll} d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathbf{i}}} \mathsf{w_i}(q_2,p,q_3) \\ \\ d_{\bot}(q_1,p,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathbf{i}}} \mathsf{w_i^e}(q_2,q_3) \\ \\ d_{\top}(q_0,p,q_3) & \oplus = & \bigoplus_{\Omega_{\mathbf{c}}} ^2 \left[\left(\mathsf{w_c}(q_0,p,p',q_1) \otimes_2 d_{\top}(q_1,p',q_2) \right) \otimes_2 \bigoplus_{\Omega_{\mathbf{r}}} \mathsf{w_r}(q_2,p',q_3) \right] \\ \\ d_{\bot}(q_0,q_3) & \oplus = & \bigoplus_{\Omega_{\mathbf{c}}} \left(\mathsf{w_c^e}(q_0,p,q_1) \otimes d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathbf{r}}} \mathsf{w_r}(q_2,p,q_3) \right) \\ \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathbf{r}}} \mathsf{w_r^e}(q_2,q_3) \\ \\ d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes d_{\top}(q_2,p,q_3), \text{if } \langle q_2,\top,q_3 \rangle \notin P \\ \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes d_{\bot}(q_2,q_3), \text{if } \langle q_2,\bot,q_3 \rangle \notin P \end{array}$$

Figure 3 Update d_{\perp} with $\langle q_1, q_2 \rangle$ or d_{\perp} with $\langle q_1, p, q_2 \rangle$.

```
explication Fig. 3 379
suivant cas de (5)
```

382

383

384

385

complete **

The infinite sums in the updates of d in Algorithm 1, Figure 3 are well defined since \mathbb{S} is complete. ** effectively computable by hypothesis that the label theory is effective** The algorithm performs $2.|Q|^2$ iterations until P is empty, and each iteration has a time complexity $O(|Q|^2.|P|)$. That gives a time complexity $O(|Q|^4.|P|)$. It can be reduced by implementing P as a priority queue, prioritized by the value returned by d.

detail with nb tr.

The correctness of Algorithm 1 is ensured by the invariant expressed in the following lemma.

```
Lemma 14. For all (q_1, q_2) \notin \mathcal{Q}, d_{\perp}(q_1, q_2) = b_{\perp}(q_1, q_2)/
```

The proof is by contradiction, assuming a counter-example minimal in the length of the witness word.

```
Lemma 15. For all (q_1, p, q_2) \notin \mathcal{Q}, d_{\top}(q_1, p, q_2) = b_{\top}(q_1, p, q_2),
```

For computing the minimal weight of a computation of A, we use the fact that, at the termination of Algorithm 1, $\bigoplus_{s \in \Omega^*} A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes d_{\perp}(q,q') \otimes \operatorname{out}(q')$.

In order to obtain effectively a witness (word of Ω^* with a computation of A of minimal weight), we require the additional property of convexity of weight functions.

Proposition 16. For a sw-VPA A over Ω , $\mathbb S$ commutative, bounded, total and complete, and $\bar{\Phi}$ effective, one can construct in PTIME a word $t \in \Omega^*$ such that A(t) is minimal wrt the natural ordering for $\mathbb S$.

5 Symbolic Weighted Parsing

Let us now apply the models and results of the previous sections to the problem of parsing over infinite alphabet. Let Σ be a countable input alphabet, and $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$ be a countable output alphabet. Let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ be a commutative, bounded, and complete semiring and let $\bar{\Phi}$ be an effective label theory over \mathbb{S} , containing Φ_{Σ} , Φ_{Σ,Ω_i} , as well as Φ_i , Φ_c , Φ_r , Φ_{cr} (following the notations of Section 4). We assume given the following input:

 $_{403}$ – a swT T over Σ , Ω_{i} , \mathbb{S} , and $\bar{\Phi}$, defining a measure $T: \Sigma^{*} \times \Omega_{i}^{*} \to \mathbb{S}$,

- a sw-VPA A over Ω , \mathbb{S} , and $\bar{\Phi}$, defining a measure $A:\Omega^*\to\mathbb{S}$,

- an input word $s \in \Sigma^*$.

398

399

400

40)

410

411

412

413

416

417

418

419

420

421

424

425

426

429

430

437

438

439

Ah oui, ça aurait pu41 être dit avant.

total?

For all $s \in \Sigma^*$ and $t \in \Omega^*$, let $d(s,t) = T(s,t|_{\Omega_i})$, where $t|_{\Omega_i} \in \Omega_i^*$ is the projection of t onto Ω_i , obtained from t by removing all symbols in $\Omega \setminus \Omega_i$. Symbolic weighted parsing is the problem, given the above input, to find $t \in \Omega^*$ minimizing $d(s,t) \otimes A(t)$ wrt \leq_{\oplus} , i.e. s.t.

$$d(s,t) \otimes A(t) = \bigoplus_{t' \in \mathcal{T}(\Omega)} d(s,t') \otimes A(t')$$
(9)

Following the terminology of [21], sw-parsing is the problem of computing the distance (9) between the input s and the output weighted language of A, and returning a witness t. Every labeled tree t can be linearized into a nested word $\operatorname{lin}(t) \in \Omega^*$, assuming e.g. that Ω_i contain the symbols labelling the leaves (symbols of rank 0) and Ω_c and Ω_r contain respectively one left and right parenthesis $\langle b \rangle$ for each symbol b labelling inner nodes (symbols of rank > 0). With this representation, the projection $\operatorname{lin}(t)|_{\Omega_i}$ is then the sequence of leaves of t, enumerated in a dfs-traversal. We show in Appendix A how to convert a (sw) tree automaton t into a sw-VPA computing t for every tree t. That also holds, for the set of ASTs of a weighted CF-grammar. Therefore, sw-parsing generalizes the problem of searching, the best derivation of a weighted CF-grammar that yields a given input, sometimes referred as weighted parsing, see t for a more general weighted parsing framework. The latter indeed corresponds to the particular case where the alphabet is finite, t computes identity and t is obtained from the weighted CF grammar.

▶ Proposition 17. The problem of Symbolic Weighted parsing can be solved in PTIME in the size of the input swT T, sw-VPA A and input word s, and the computation time of the functions of the label theory.

Proof. (sketch) We follow a *Bar-Hillel* construction, also called parsing by intersection.

We first extend the swT T over Σ , $\Omega_{\rm i}$, \mathbb{S} , and $\bar{\Phi}$, into a swT T' over Σ and Ω (and the same semiring and label theory), such that for all $s \in \Sigma^*$, and $u \in \Omega^*$, $T'(s,u) = T(s,u|_{\Omega_{\rm i}})$. The transducer T' simply skips every symbol $b \in \Omega \setminus \Omega_{\rm i}$, by the addition to the transition of T, of new transitions of the form $\mathsf{w}_{01}(q,\varepsilon,b,q')$. Then, given an input word $s \in \Sigma^*$, using Corolary 10, we compute the swA $B_{T',s}$, such that for all $t \in \Omega^*$, $B_{T',s}(t) = d(s,t)$.

Next, we compute the sw-VPA $B_{T',s} \otimes A$, using Proposition 13. It remains to compute a best nested-word $w \in \Omega^*$ using the best-search procedure of Proposition 16.

2 lines Application 43 to Automated Music Transcription: implementation ≠ but same principle, on-the-fly automata 43 construction during best search, for efficiency.

Conclusion

We have introduced weighted language models (SW transducers and visibly pushdown automata) computing over infinite alphabets, and applied them to the problem of parsing with infinitely many possible input symbols (typically timed events). This approach extends conventional parsing and weighted parsing by computing a derivation tree modulo a generic

distance between words, defined by a SW transducer given in input. This enables to consider finer word relationships than strict equality, opening possibilities of quantitative analysis via

442 this method.

451

443 Ongoing and future work include

The study of other theoretical properties of SW models, such as the extension of the best search algorithm from 1-best to n-best [17], and to k-closed semirings [20] (instead of bounded, which corresponds to 0-closed).

 $^{447}\,$ – ... there is room to improve the complexity bounds for the algorithms ... modular approach $^{448}\,$ with oracles ...

- present here an offline algorithm for best search, semi-online implementation for AMT (bar-by-bar approach) with an on-the-fly automata construction.

References

- R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM (JACM), $56(3):1-43,\ 2009.$
- M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on
 data words. ACM Transactions on Computational Logic (TOCL), 12(4):1–26, 2011.
- P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and timed languages. *Information and Computation*, 182(2):137–162, 2003.
- M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly pushdown automata with multiplicities:
 finiteness and k-boundedness. In *International Conference on Developments in Language Theory*, pages 226–238. Springer, 2012.
- H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison, and
 M. Tommasi. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr,
 2007.
- L. D'Antoni and R. Alur. Symbolic visibly pushdown automata. In *International Conference* on Computer Aided Verification, pages 209–225. Springer, 2014.
- L. D'Antoni and M. Veanes. The power of symbolic automata and transducers. In *International Conference on Computer Aided Verification*, pages 47–67. Springer, 2017.
- 468 **8** L. D'Antoni and M. Veanes. Automata modulo theories. Communications of the ACM, 64(5):86–95, 2021.
- 9 E. W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959.
- M. Droste and W. Kuich. Semirings and formal power series. In *Handbook of Weighted Automata*, pages 3–28. Springer, 2009.
- M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. Springer Science &
 Business Media, 2009.
- F. Foscarin, F. Jacquemard, P. Rigaux, and M. Sakai. A Parse-based Framework for Coupled Rhythm Quantization and Score Structuring. In *Mathematics and Computation in Music* (MCM), volume 11502 of Lecture Notes in Artificial Intelligence, Madrid, Spain, 2019. Springer.
- J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573–606, 1999.
- 480 14 E. Gould. Behind Bars: The Definitive Guide to Music Notation. Faber Music, 2011.
- D. Grune and C. J. Jacobs. Parsing Techniques. Number 2nd edition in Monographs in
 Computer Science. Springer, 2008.
- 483 16 L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In In COLING, 2008.
- L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the Ninth International
 Workshop on Parsing Technology, Parsing '05, pages 53–64, Stroudsburg, PA, USA, 2005.
 Association for Computational Linguistics.
- M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134:329–363,
 November 1994.

TODO future work

XX:14 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- 490 19 S. Lombardy and J. Sakarovitch. The removal of weighted ε-transitions. In International
 491 Conference on Implementation and Application of Automata, pages 345–352. Springer, 2012.
- M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal of Automata, Languages and Combinatorics*, 7(3):321–350, 2002.
- M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.
- M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.
- R. Mörbitz and H. Vogler. Weighted parsing for grammar-based language models. In *Proceedings*of the 14th International Conference on Finite-State Methods and Natural Language Processing,
 pages 46–55, Dresden, Germany, Sept. 2019. Association for Computational Linguistics.
- M.-J. Nederhof. Weighted deductive parsing and Knuth's algorithm. Computational Linguistics,
 29(1):135-143, 2003.
- F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.

 ACM Trans. Comput. Logic, 5(3):403–435, July 2004.
- L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In *Computer Science Logic*, volume 4207 of *LNCS*. Springer, 2006.
- M. Y. Vardi. Linear-time model checking: automata theory in practice. In *International Conference on Implementation and Application of Automata*, pages 5–10. Springer, 2007.

A Nested-Words and Parse-Trees

510

511

513

514

516

518

519

521

527

532

535

537

538

540

543

545

The hierarchical structure of nested-words, defined with the *call* and *return* markup symbols suggest a correspondence with trees. The lifting of this correspondence to languages, of tree automata and VPA, has been discussed in [1], and [4] for the weighted case. In this section, we describe a correspondence between the symbolic-weighted extensions of tree automata and VPA.

Let Ω be a countable ranked alphabet, such that every symbol $a \in \Omega$ has a rank $\mathsf{rk}(a) \in [0..M]$ where M is a fixed natural number. We denote by Ω_k the subset of all symbols a of Ω with $\mathsf{rk}(a) = k$, where $0 \le k \le M$, and $\Omega_{>0} = \Omega \setminus \Omega_0$. The free Ω -algebra of finite, ordered, Ω -labeled trees is denoted by $\mathcal{T}(\Omega)$. It is the smallest set such that $\Omega_0 \subset \mathcal{T}(\Omega)$ and for all $1 \le k \le M$, all $a \in \Omega_k$, and all $t_1, \ldots, t_k \in \mathcal{T}(\Omega)$, $a(t_1, \ldots, t_k) \in \mathcal{T}(\Omega)$. Let us assume a commutative semiring $\mathbb S$ and a label theory Φ over $\mathbb S$ containing one set Φ_{Ω_k} for each $k \in [0..M]$.

▶ **Definition 18.** A symbolic-weighted tree automaton (swTA) over Ω , S, and $\bar{\Phi}$ is a triplet $A = \langle Q, \mathsf{in}, \bar{\mathsf{w}} \rangle$ where Q is a finite set of states, $\mathsf{in} : Q \to \Phi_{\Omega}$ is the starting weight function, and $\bar{\mathsf{w}}$ is a tuplet of transition functions containing, for each $k \in [0..M]$, the functions $\mathsf{w}_k : Q \times Q^k \to \Phi_{\Omega_{>0},\Omega_k}$ and $\mathsf{w}_k^e : Q \times Q^k \to \Phi_{\Omega_k}$.

We define a transition function $w: Q \times (\Omega_{>0} \cup \{\varepsilon\}) \times \Omega \times \bigcup_{k=0}^{M} Q^{k} \to \mathbb{S}$ by:

$$\begin{array}{lcl} \mathsf{w}(q_0,a,b,q_1\ldots q_k) & = & \eta(a,b) & \text{where } \eta = \mathsf{w}_k(q_0,q_1\ldots q_k) \\ \mathsf{w}(q_0,\varepsilon,b,q_1\ldots q_k) & = & \phi(b) & \text{where } \phi = \mathsf{w}_k^\varepsilon(q_0,q_1\ldots q_k). \end{array}$$

where $q_1 \dots q_k$ is ε if k = 0. The first case deals with a strict subtree, with a parent node labeled by a, and the second case is for a root tree.

Every swTA defines a mapping from trees of $\mathcal{T}(\Omega)$ into \mathbb{S} , based on the following intermediate function weight_A: $Q \times (\Omega \cup \{\varepsilon\}) \times \mathcal{T}(\Omega) \to \mathbb{S}$

$$\mathsf{weight}_A(q_0, a, t) = \bigoplus_{q_1 \dots q_k \in Q^k} \mathsf{w}(q_0, a, b, q_1 \dots q_k) \otimes \bigotimes_{i=1}^k \mathsf{weight}_A(q_i, b, t_i) \tag{10}$$

where $q_0 \in Q$, $a \in \Omega_{>0} \cup \{\varepsilon\}$ and $t = b(t_1, \dots, t_k) \in \mathcal{T}(\Omega)$, $0 \le k \le M$.

Finally, the weight associated by A to $t \in \mathcal{T}(\Omega)$ is

$$A(t) = \bigoplus_{q \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_A(q, \varepsilon, t) \tag{11}$$

Intuitively, $w(q_0, a, b, q_1 \dots q_k)$ can be seen as the weight of a production rule $q_0 \to b(q_1, \dots, q_k)$ of a regular tree grammar [5], that replaces the non-terminal symbol q_0 by $b(q_1, \dots, q_k)$, provided that the parent of q_0 is labeled by a (or q_0 is the root node if $a = \varepsilon$). The above production rule can also be seen as a rule of a weighted CF grammar, of the form $[a, b] q_0 := q_1 \dots q_k$ if k > 0, and $[a] q_0 := b$ if k = 0. In the first case, b is a label of the rule, and in the second case, it is a terminal symbol. And in both cases, a is a constraint on the label of rule applied on the parent node in the derivation tree. This features of observing the parent's label are useful in the case of infinite alphabet, where it is not possible to memorize a label with the states. The weight of a labeled derivation tree t of the weighted CF grammar associated to A as above, is weight $_A(q,t)$, when q is the start non-terminal. We shall now establish a correspondence between such derivation tree t and some word describing a linearization of t, in a way that weight $_A(q,t)$ can be computed by a sw-VPA.

XX:16 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

All cases not matched by one of the above equations have a weight \mathbb{O} , for instance $\mathsf{w}_\mathsf{r}(\bar{u}, \langle_c, \bar{p}, _d\rangle, \bar{q}) = \mathbb{O}$ if $c \neq d$ or $\bar{u} \neq \varepsilon$ or $\bar{q} \neq \bar{p}$.

Todo list

564	I think that we can make the case for a larger set of situations: given a linear music
565	notation input, for instance elements in an XML file, we we want to structure the
566	input according to a hierarchical rhythmic space. I can elaborate
567	register: skip refs and details, add Mikolaj recent
568	This sentence (symbols as variables) is not immediatly clear to me. Maybe a short
569	example or intuition?
570	The weight is a label on edges in the derivation tree, right? Not sure I understand
571	the sentence
572	You mean the distance between s and t ? "The latter value" is a bit ambiguous 2
573	chap. intersection in [15]
574	The notation $A_{T,s}$ has not been introduced so far. It is not clear why T is a
575	parameter there
576	OK, à quelques détails (pour moi), tout ça est très bien expliqué
577	expressiveness: VPA have restricted equality test. comparable to pebble automata?
578	\rightarrow conclusion
579	The results are established for a general class of semirings. They can be instantiated
580	for concrete cases
581	There is sometimes a confusion in the text between the struture and the domain S.
582	Not essential
583	is total necessary?
584	Here the difference between S as a structure and as a domain is blurred 4
585	$j \in \mathbb{N}$: j is en element of \mathbb{N} , not the same s $j \subset \mathbb{N}$
586	results of this paper: for semirings commutative, bounded, total and complete 4
587	OK, donc c'est là que les fonctions d'étiquettes prennent en argument l'input de la
588	règle. Je ne sais pas dans quelle mesure il faut donner un peu d'explications pour
589	faciliter la compréhension du formalisme
590	partial application is needed?
591	notion of diagram of functions akin BDD for transitions in practice
592	mv appendix?
593	Je trouve qu'il y a beaucoup de notions à retenir (complete, effective) et ça devient
594	difficile pour un lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais
595	plus qui m'avait dit: un concept en plus, un point en moins
	\exists oracle returning in worst time complexity T
596	I missed sth: what is this ε ? Intuitively clear but not defined? 6
597	added u and v def \dots 6
598	OK tout ça se lit bien :-)
599	Je crois qu'il faudrait numéroter les exemples indépendamment des définitions. Cet
600	
601	exemple est le premier qui donne des détails sur l'application visée. Il arrive
602	peut-être un peu tard et est long. On pourrait introduire la motivation dans
603	l'intro, et développer des petits exemples au fur et à mesure
604	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
605	$similar \rightarrow single$
606	modif
607	changed end
608	reformulated this sentence
609	ccl to the ex
610	proof correctness

XX:18 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

611	revise with nb of tr. and states	8
612	Là je crois qu'il faudrait expliquer ces Omega, je commence à fatiguer et je suis un peu	
613	largué par toutes ces définitions. J'intuite qu'il s'agit des symboles, parenthèses	
614	ouvrantes et fermantes? Pourquoi il faut un alphabet pour les parenthèses?	8
615	Est-ce que tout le monde sait ce qu'est un pushdown automata? Je suppose que	
616	c'est lié à la pile	8
617	moved this to the beginning	9
618	intro to func	9
619	introduced the 6 cases	9
620	notation cp for $\langle c, p \rangle$?	9
621	c p to <c, p=""></c,>	9
622	todo example VPA	10
623	total?	10
624	introduced 2 cases for b	10
625	so ?	10
626	b_{\top} : mot bien parenthèsé c/r	10
627	explication Fig. 3 suivant cas de (5)	10
628	complete **	10
629	detail with nb tr. and states	10
630	total?	11
631	Ah oui, ça aurait pu être dit avant	12
632	2 lines Application to Automated Music Transcription: implementation \neq but same	
633	principle, on-the-fly automata construction during best search, for efficiency	12
634	TODO future work	12