Cellular Automata Cloud Simulation

Daniel Hua

Why is this Problem Interesting?

• 3D Cellular Automata – Bandwidth Bound?

Slightly "Irregular" Memory Accesses for Each Cell

Real Time Cloud Simulation can be used in Games

Memory Accesses for Each Cell

Top View

Side View

Memory Accesses for Each Cell

3D View

The Algorithm

• Each Cell has 3 Bits of Information:

• HUM (H): Is this cell humid enough to form clouds?

• <u>ACT (A)</u>: Activation factor.

• CLD (C): Is there a cloud in this cell?

Naïve Implementation (Kernel Pseudocode)

Performance of Naïve Implementation

Optimization Attempt 1: Shared Memory

• Each cell requires accessing global memory 12 times for neighboring cells and itself.

 Using shared memory, we would only need to load each cell 1 time from global memory.

Shared Memory Pseudocode (First Attempt)

```
updateCellNaive SharedMem(char* src buffer, char* dst buffer) {
    shared sharedMem[]; // statically allocated
                            // (hard coded for block size)
    // load elements into shared memory
    syncthreads();
    // update as before, except read from shared memory instead
    // write new cell to dst_buffer
// swap src and dst buffers after each iteration
```

Shared Memory Makes the Performance Worse?

What Are We Bound By?

Average Milliseconds (Naïve Kernel, 512 x 512 x 64)

- Less Bandwidth → Same Performance
- Less Compute → Lower Performance
- We are compute bound

Why are We Compute Bound?

 The simulation involves quite a bit of operations

 Computing the correct indices for using shared memory is even more work

```
\begin{aligned} &hum(i,j,k,t_{i+1}) = hum(i,j,k,t_{i}) \land \neg act(i,j,k,t_{i}) \\ &cld(i,j,k,t_{i+1}) = cld(i,j,k,t_{i}) \lor act(i,j,k,t_{i}) \\ &act(i,j,k,t_{i+1}) = \neg act(i,j,k,t_{i}) \land hum(i,j,k,t_{i}) \land f_{act}(i,j,k) \\ &f_{act}(i,j,k) = act(i+1,j,k,t_{i}) \lor act(i,j+1,k,t_{i}) \\ &\lor act(i,j,k+1,t_{i}) \lor act(i-1,j,k,t_{i}) \lor act(i,j-1,k,t_{i}) \\ &\lor act(i,j,k-1,t_{i}) \lor act(i-2,j,k,t_{i}) \lor act(i+2,j,k,t_{i}) \\ &\lor act(i,j-2,k,t_{i}) \lor act(i,j+2,k,t_{i}) \lor act(i,j,k-2,t_{i}) \end{aligned}
```

Source: http://evasion.imag.fr/~Antoine.Bouthors/research/dea/sig00_cloud.pdf

So What Now?

• Let's try to reduce the overall computation needed.

Optimization Attempt 2: Compact Storage

Each cell only requires 3 bits to store

- The naïve kernel uses 1 byte to store each cell. That's wasting 5 bits per cell!
 - Current bit layout (1 byte): 00000CAH

- We can easily store 2 cells in each byte (still wastes 2 bits):
 - $00C_1A_1H_1C_2A_2H_2$

There's a Better Solution

 The only information that you need to render a cloud is the <u>CLOUD</u> bit of each cell

 The only information you need from adjacent cells is the <u>ACTIVE</u> bit

Use separate HUM, ACT, and CLD buffers.

```
\begin{aligned} &hum(i,j,k,t_{i+1}) = hum(i,j,k,t_{i}) \land \neg act(i,j,k,t_{i}) \\ &cld(i,j,k,t_{i+1}) = cld(i,j,k,t_{i}) \lor act(i,j,k,t_{i}) \\ &act(i,j,k,t_{i+1}) = \neg act(i,j,k,t_{i}) \land hum(i,j,k,t_{i}) \land f_{act}(i,j,k) \\ &f_{act}(i,j,k) = act(i+1,j,k,t_{i}) \lor act(i,j+1,k,t_{i}) \\ &\lor act(i,j,k+1,t_{i}) \lor act(i-1,j,k,t_{i}) \lor act(i,j-1,k,t_{i}) \\ &\lor act(i,j,k-1,t_{i}) \lor act(i-2,j,k,t_{i}) \lor act(i+2,j,k,t_{i}) \\ &\lor act(i,j-2,k,t_{i}) \lor act(i,j+2,k,t_{i}) \lor act(i,j,k-2,t_{i}) \end{aligned}
```

Separate Buffers Attempt 1 (8x1x1 Blocks)

• Layout of a byte in the buffers:

- $C_0C_1C_2C_3C_4C_5C_6C_7$
- $H_0H_1H_2H_3H_4H_5H_6H_7$
- $A_0A_1A_2A_3A_4A_5A_6A_7$

No bits are unused

Cloud Grid

Wait, Why are We Reducing Memory?

• Using separate buffers, we can actually store the information from 8 cells in 1 byte

• Then <u>using bitwise operations</u>, we can <u>update 8 cells at a time</u>

Using 8x1x1 Blocks Results in Speedup

What About a Different Block Shape?

Layout of a byte in the buffers:

- $C_0C_1C_2C_3C_4C_5C_6C_7$
- $H_0H_1H_2H_3H_4H_5H_6H_7$
- $A_0A_1A_2A_3A_4A_5A_6A_7$

2x2x2 Block

2x2x2 Blocks Perform Better Than 8x1x1 Blocks

Why is 2x2x2 Better?

Less Memory Accesses?

8x1x1 Block

2x2x2 Block

7 Total

More Code Divergence for Checking Boundary Conditions

8x1x1 Block

```
if (y - 2 \ge 0) {
    f \mid = src act[xyzToIdx2(x, y - 2, z, d)];
if (y - 1 >= 0) {
    f |= src act[xyzToIdx2(x, y - 1, z, d)];
if (y + 1 < d.y) {
    f \mid = src act[xyzToIdx2(x, y + 1, z, d)];
if (y + 2 < d.y) {
    f \mid = src act[xyzToIdx2(x, y + 2, z, d)];
if (z - 2 >= 0) {
    f |= src act[xyzToIdx2(x, y, z - 2, d)];
if (z - 1 >= 0) {
    f \mid = src act[xyzToIdx2(x, y, z - 1, d)];
if (z + 1 < d.z) {
    f \mid = src act[xyzToIdx2(x, y, z + 1, d)];
```

2x2x2 Block

```
if (y - 1 >= 0) {
    char front = src act[xyzToIdx2(x, y - 1, z, d)];
    f |= front;
    f = (front >> 2) & 0x33;
f \mid = (a \& 0x33) << 2;
if (y + 1 < d.y) {
    char back = src act[xyzToIdx2(x, y + 1, z, d)];
    f |= back;
    f \mid = (back \& 0x33) << 2;
f = (a >> 2) & 0x33;
if (z - 1 > 0) {
    char lower = src act[xyzToIdx2(x, y, z - 1, d)];
    f |= lower;
    f \mid = (lower >> 4) \& 0xF;
f \mid = (a \& 0xF) << 4;
if (z + 1 < d.z) {
    char upper = src act[xyzToIdx2(x, y, z + 1, d)];
    f \mid = (upper \& 0xF) << 4;
f \mid = (a >> 4) \& 0xF;
```

Questions?