2023-2024 第一学期高等数学 A(上)期中考试题

1. (7 分) 讨论函数 $f(x) = \lim_{n \to \infty} \frac{x^{2n+1}-1}{x^{2n+1}+1}$ 的连续性.

解答: 若
$$|x| < 1$$
, $f(x) = \lim_{n \to \infty} \frac{x^{2n+1}-1}{x^{2n+1}+1} = \frac{0-1}{0+1} = -1$,

若
$$|x| > 1$$
, $f(x) = \lim_{n \to \infty} \frac{x^{2n+1}-1}{x^{2n+1}+1} = \lim_{n \to \infty} \frac{1-\frac{1}{x^{2n+1}}}{1+\frac{1}{x^{2n+1}}} = \frac{1-0}{1+0} = 1$

$$f(1) = 0, \ f(-1)$$
 无定义,因此 $f(x) = \begin{cases} 1, & x < -1 \\ no \ define & x = -1 \\ -1, & -1 < x < 1 \\ 0, & x = 1 \\ 1, & x > 1 \end{cases}$

故 f(x)在 $x = \pm 1$ 为第一类间断点,其余均为连续点.

2. $(7 \ \beta)$ 已知函数 $\varphi(x)$ 在 $(-\infty, +\infty)$ 内具有二阶连续导数,且 $\varphi(0) = 0$. 问: 当常数 a, b为何值时,函数 $f(x) = \begin{cases} \frac{\varphi(x)}{x}, & x > 0 \\ ax + b, x \le 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内可导? 并讨论f'(x)的连续性.

解答: 由于函数 $\varphi(x)$ 在 $(-\infty, +\infty)$ 内具有二阶连续导数,故要函数f(x)在 $(-\infty, +\infty)$ 内可导,只需f(x)在分 段点 x = 0处可导即可. 首先由f(x)在x = 0处连续, 可知 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0)$, 即

$$\lim_{x \to 0^+} \frac{\varphi(x)}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^+} \varphi'(x) = \varphi'(0) = \lim_{x \to 0^-} (ax + b) = b,$$

从而 $b = \varphi'(0)$.

又由f(x)在x = 0处可导,有 $f'_{+}(0) = f'_{-}(0)$,由于

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\varphi(x) - \varphi'(0)x}{x^{2}} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^{+}} \frac{\varphi'(x) - \varphi'(0)}{2x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^{+}} \frac{\varphi''(x)}{2} = \frac{\varphi''(0)}{2},$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{ax + b - b}{x} = a,$$

故
$$a = \frac{\varphi''(0)}{2}$$
且 $f'(0) = \frac{\varphi''(0)}{2}$.

故 $a = \frac{\varphi''(0)}{2}$ 且 $f'(0) = \frac{\varphi''(0)}{2}$.

由上述讨论可知 $f'(x) = \{\frac{x\varphi'(x) - \varphi(x)}{x^2}, x > 0, \\ \frac{\varphi''(0)}{2}, x \le 0.$

$$\boxplus \lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} \frac{x \varphi'(x) - \varphi(x)}{x^{2}} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^{+}} \frac{x \varphi''(x) + \varphi'(x) - \varphi'(x)}{2x}$$

$$= \lim_{x \to 0^{+}} \frac{\varphi''(x)}{2} = \frac{\varphi''(0)}{2} = \lim_{x \to 0^{-}} f'(x) = f'(0) ,$$

可知 f'(x)在点 x = 0处连续,故 f'(x)在 $(-\infty, +\infty)$ 上连续.

3. (7 分) 设不恒为零的奇函数f(x)在x = 0处可导, 试说明 x = 0为函数 $\frac{f(x)}{x}$ 的何种间断点。

解答:
$$f(x)$$
为奇函数 $f(0) = f(-0) = -f(0)$ 得 $f(0) = 0$ 。又 $f(x)$ 在 $x = 0$ 处可导,故
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$$
,即 $\lim_{x \to 0} \frac{f(x)}{x} = f'(0)$, $\frac{f(x)}{x}$ 在 $x = 0$ 处有极限, $x = 0$ 为函数 $\frac{f(x)}{x}$ 的可去间断点.

4. (7 分) 设 f(x)在 $(-\infty, +\infty)$ 上除 x = 0有定义,且对任意的 x, y有 f(xy) = f(x) + f(y),并且f'(1) = 1,试 求f'(x) $(x \neq 0)$.

解答: 由 f(xy) = f(x) + f(y)知 f(1) = 0, 因此对任何 $x \neq 0$,有

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f[x(1 + \frac{\Delta x}{x})] - f(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{f(x) + f(1 + \frac{\Delta x}{x}) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + \frac{\Delta x}{x}) - f(1)}{\Delta x} = \frac{1}{x} f'(1) = \frac{1}{x}.$$

5. (7 分) 计算极限 $\lim_{x\to 0} \frac{1-\cos x \cos 2x \cos 3x}{1-\cos x}$.

解答: 14

6. (7 分) 计算极限 $\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}}-e^2(1-\ln(1+x))}{x}$.

解答:
$$\lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^{2}(1-\ln(1+x))}{x} = \lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^{2} + e^{2}\ln(1+x)}{x} = \lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^{2}}{x} + e^{2}$$
$$= \lim_{x \to 0} \frac{e^{\frac{2\ln(1+x)}{x}} - e^{2}}{x} + e^{2} = e^{2}\lim_{x \to 0} \frac{e^{\frac{2\ln(1+x)}{x}} - e^{2}}{x} + e^{2} = 2e^{2}\lim_{x \to 0} \frac{\ln(1+x) - x}{x^{2}} + e^{2}$$
$$= 2e^{2}\lim_{x \to 0} \frac{1+x}{2x} + e^{2} = -e^{2} + e^{2} = 0.$$

7. (7分) 设x为任意给定的实数,又设 $y_n = \underbrace{\sin \sin \cdots \sin x}_n$,证明 $\{y_n\}$ 的极限存在,并求此极限.

解答: 若 $0 \le y_1 = \sin x \le 1$, 则

$$0 \le y_{n+1} = \sin y_n \le y_n \le 1$$
, $\forall n \in N^*$,

即数列 $\{y_n\}$ 单调减少且有下界,故有极限. 令 $\lim_{n\to\infty}y_n=A$, 这里 $A\in[0,1]$, 在 $y_{n+1}=\sin y_n$ 两边同时取极限可得 $A=\sin A$, 于是 A=0.

若 $-1 \le y_1 = \sin x < 0$,则可类似证明.

8. $(9 \, f)$ 已知函数 $f(x) = \frac{x^3}{(1+x)^2} + 3$,请列表给出:函数f(x)的增减区间、凹凸区间、极值点以及图像的拐点;并给出函数 f(x)的所有渐近线.

解答:函数定义域: $D(x) = (-\infty, -1) \cup (-1, +\infty)$, 求导得:

$$f'(x) = \frac{3x^2 + x^3}{(1+x)^3}, \quad f''(x) = \frac{6x}{(1+x)^4}$$

$$f'(x) = 0$$
, $f'(x) = 0$, $f''(x) = 0$, $f'''(x) = 0$, $f''(x) = 0$, f

1	x	(-∞, -3)	-3	(-3,-1)	-1	(-1,0)	0	(0,+∞)
	f'(x)	+	0	_	不存在	+	0	+
	f"(x)	-		_		_	0	+
	f(x)	单增 上凸	极大	単减 上凸		单增 上凸	拐点 (0,3)	単增 下凸

单增区间: $(-\infty, -3]$, $(-1, +\infty)$; 单减区间: [-3, -1); 极大值 $f(-3) = -\frac{15}{4}$

凸区间: $(-\infty, -1)$, (-1,0); 凹区间: $(0, +\infty)$; 拐点 (0,3)

因
$$\lim_{x\to -1} f(x) = \infty$$
,所以 $x = -1$ 为曲线的铅直渐近线 又 $\lim_{x\to \infty} \frac{f(x)}{x} = 1$, $l_{x\to \infty}(f(x)-x) = 1$,所以有斜渐近线 $y = x+1$ 。

9. (6分) 已知当 $x\to 0$ 时,函数 $\mathrm{e}^x-\frac{1+ax}{1+bx}$ 与 x^3 是同阶无穷小,试确定常数a,b的值.

$$g(x) = g(0) + g'(0)x + \frac{g''(0)}{2}x^2 + o(x^2) \quad (x \to 0)$$

= 1 + (a - b) x + (b - a)bx² + o(x²);

另一方面, $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$ $(x \to 0)$,故

$$e^x - \frac{1+ax}{1+bx} = [1-(a-b)]x + [\frac{1}{2}-(b-a)b]x^2 + o(x^2).$$

由题意有 1-(a-b)=0, $\frac{1}{2}-(b-a)b=0$, 解得 $a=\frac{1}{2}$, $b=-\frac{1}{2}$.

10. (6分) 证明: 方程 $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x = 0$ 在区间 $(-\infty, +\infty)$ 上恰有 2 个不同的实根.

解答: 令 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$,因为函数 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 是偶函数,所以只需讨论函数 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 在区间 $(0, +\infty)$ 上的零点个数. 又因为 $|\cos x| \le 1$,所以当 x > 1时 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x > 1$,故只需讨论函数 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 在区间 (0, 1)上的零点个数.

因为 f(0) = -1 < 0, $f(1) = 2 - \cos 1 > 0$,所以 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 在区间 (0,1)上至少有一个零点. 又当 $0 < x < 1 < \frac{\pi}{2}$ 时, $f'(x) = \frac{1}{4}x^{-\frac{3}{4}} + \frac{1}{2}x^{-\frac{1}{2}} + \sin x > 0$, 所以 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 在区间 (0,1)上单调增加,所以函数 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 在区间 (0,1)内有且只有一个零点.

由于函数 $f(x) = |x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x$ 是偶函数,所以它在 $(-\infty,0)$ 上也只有一个零点. 综上讨论知,方程 $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x = 0$ 在区间 $(-\infty,+\infty)$ 上恰有两个不同实根.

11. (6分) 设 y = y(x) 是由方程 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 确定的,求 y = y(x)的极值.

解答:由 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 求得:

$$y'(x) = \frac{x-y}{3y^2-2y+x} = 0$$

得 x - y = 0.

与原方程联立求得: x=1, y=1, 但由于表达式中含有 y, 无法利用第一充分条件讨论,故只能采用第二充分条件,故只能采用第二充分条件,因

$$y'' = \frac{(1-y')(3y^2-2y+x)-(x-y)(6yy'-2y'+1)}{(3y^2-2y+x)^2}$$

$$x = 1, \quad y = 1.$$

得 $y'' = \frac{1}{2} > 0$. 所以, x = 1, y = 1为极小值.

12. (6 分) 已知 $y = (x^2 + x)e^x$, 求 $y^{(k)}(0)$, 并求 $\sum_{k=0}^n C_n^k k^2 2^{n-k}$, 其中 n和 k均是正整数.

解答: 易见,
$$y(0) = 0$$
, $y'(0) = 1$.

当
$$k \ge 2$$
时, $y^{(k)} = C_k^0(x^2 + x)e^x + C_k^1(2x + 1)e^x + C_k^2 2e^x$,所以 $y^{(k)}(0) = k^2$.

$$\textstyle \sum_{k=0}^n C_n^k k^2 2^{n-k} = \sum_{k=0}^n C_n^k ((x^2+x) \mathrm{e}^x)^{(k)} (\mathrm{e}^{2x})^{(n-k)}|_{x=0} \ = ((x^2+x) \mathrm{e}^{3x})^{(n)}|_{x=0}$$

$$n=1$$
 $\text{H}, \quad \sum_{k=0}^{1} C_1^k k^2 2^{1-k} = 1.$

13. (6 分) 已知函数 f(x)在 [a, b]上连续且恒正, $\forall x_1, x_2 \in (a, b)$, $x_1 < x_2$,试证 $\exists \xi \in [x_1, x_2]$,使得 $f(\xi) = \sqrt{f(x_1)f(x_2)}$.

解答: 若 $f(x_1) = f(x_2)$,则取 $\xi = x_1$ 或 $\xi = x_2$; 就有 $f(\xi) = \sqrt{f(x_1) f(x_2)}$

若 $f(x_1) \neq f(x_2)$,不妨设 $f(x_1) < f(x_2)$,则有 $f(x_1) < \sqrt{f(x_1)f(x_2)} < f(x_2)$,根据复合函数的连续性,依介值定理, $\exists \xi \in (x_1, x_2)$, 使得 $f(\xi) = \sqrt{f(x_1)f(x_2)}$.

14. (6 分) 求极限 $\lim_{n\to\infty} n^2(\arctan\frac{a}{n} - \arctan\frac{a}{n+1})$.

解答: \diamondsuit $f(x) = \arctan \frac{a}{x}$, 则在 [n, n+1]上 f(x)可导,由拉格朗日中值定理,存在 $\xi_n \in (n, n+1)$,使得 $\xi_n \to \infty (n \to \infty)$,且

$$f(n+1) - f(n) = f'(\xi_n)(n+1-n) = f'(\xi_n) = -\frac{a}{\xi_n^2 + a^2}$$

又因为
$$\frac{n^2a}{(n+1)^2+a^2} < \frac{n^2a}{\xi_n^2+a^2} < \frac{n^2a}{n^2+a^2}$$
,且 $\lim_{n\to\infty} \frac{n^2a}{(n+1)^2+a^2} = \lim_{n\to\infty} \frac{n^2a}{n^2+a^2} = a$,故由夹逼法则得
$$\lim_{n\to\infty} n^2 (\arctan\frac{a}{n} - \arctan\frac{a}{n+1}) = a.$$

- 15. (6分) 已知 $xf''(x) + 3[f'(x)]^2 = 1 e^{-x}$,
- (1) 若 f'(c) = 0, 证明 f(x)在 $x = c(c \neq 0)$ 取极小值;
- (2) f(0)是极大还是极小值.

解答: (1) f'(c) = 0 将 $x = c(c \neq 0)$ 代入 $xf''(x) + 3[f'(x)]^2 = 1 - e^{-x}$,

$$f''(c) = \frac{1 - e^{-c}}{c} > 0$$
, $f(x)$ 在 $x = c(c \neq 0)$ 取极小值.

(2)
$$xf''(x) + 3[f'(x)]^2 = 1 - e^{-x}$$
, $f'(0) = 0$.

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0} \frac{f'(x)}{x} = \lim_{x \to 0} f''(x) = \lim_{x \to 0} \frac{1 - e^{-x}}{x} = \lim_{x \to 0} e^{-x} = 1 > 0.$$

则 f(0)是极小值.

16. (附加题 8 分) 设 f(x), g(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,证明:至少 \exists 一个 $\xi \in (a, b)$,使 $f'(\xi) + f(\xi)g'(\xi) = 0$.

解答: 积分法构造辅助函数

$$f'(x) + f(x)g'(x) = 0$$
, $\mathbb{H} \frac{f'(x)}{f(x)} = -g'(x)$.

$$\ln f(x) = -g(x) + C, \ f(x) = ce^{-g(x)},$$
$$f(x)e^{g(x)} = C = 0$$

故可令 $F(x) = f(x)e^{g(x)}$,则 F(x)在 [a,b]上连续,在 (a,b)内可导,F(a) = 0,f(b) = 0 。由罗尔定理,至少 $\exists \xi \in (a,b)$,使 $F'(\xi) = 0$,即 $f'(\xi) + f(\xi)g'(\xi) = 0$.