Particle spectrograph

Wave operator and propagator

ı							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\mathfrak{r}_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}$ $_{lphaeta}$		$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
		$\frac{2}{2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$+ + \alpha \beta$ 0	$+ + \alpha \beta - \frac{\sqrt{2}}{t_1 + k^2 t_1}$	$+ + \alpha \beta$ $\frac{i \sqrt{1}}{t_1 + k}$))

	$S == \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha\prime}_{\alpha} \ \omega^{\theta}_{\prime, \ \theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 4t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{\prime} f^{\alpha\prime} + 4t_1 \ \omega^{\theta}_{\prime, \ \theta}$		$2t_1\partial_{i}f^{\alpha i}\partial_{\theta}f_{\alpha}^{\ \ \theta}+4t_1\partial^{i}f^{\alpha}_{\ \alpha}\partial_{\theta}f_{\ \ i}^{\ \ \theta}+6r_1\partial_{\alpha}\omega^{\alpha\beta i}\partial_{\theta}\omega_{\beta \ \ i}^{\ \ \theta}-12r_1\partial^{i}\omega^{\alpha\beta}_{\ \alpha}\partial_{\theta}\omega_{\beta \ \ i}^{\ \ \theta}-$	$6r_1\partial_\alpha\omega^{\alpha\beta\prime}\partial_\theta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$t_1\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{i\alpha}\partial^\theta f^{\alpha\prime} + 6t_1\omega_{\alpha\theta\prime}(\omega^{\alpha\prime\theta} + 2\partial^\theta f^{\alpha\prime}) -$	$r_1\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	z dly dlx dlt	$\frac{1}{2}$	0	0	0	<i>ikt</i> 1 3	$\sqrt{2} kt_1$	
	$\omega_{\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\partial'\omega^{\alpha\beta}$.	$12 r_1 \partial' u$	$^{\alpha\prime}$ -3 t_1 \hat{c}	$\omega_{\alpha \theta_{I}}$ (ω	$\omega^{\alpha\beta_l}$ - 4	y, z]d;	α $f_1^{#2}$)		$\frac{1}{3}$ \vec{l}	
	-4t	$\omega_{eta}^{ $	θ,	$f_{\theta} \varrho^{\theta}$	$6t_1$	$\theta^{\alpha} \partial^{\epsilon}$	[t, x,	$f_{1^{ ilde{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	,
	$\delta \; \omega^{aeta\chi} \; \sigma_{aeta\chi}$	$\partial' f^{\alpha}_{\ \alpha} - 2 t_1 \partial_i f^{\theta}_{\ \theta} \partial^i f^{\alpha}_{\ \alpha} - 6 r_1 \partial_\beta \omega^{ \theta}_{\ \beta} \partial^i \omega^{\alpha \beta}_{\ \alpha} + 6 r_1 \partial_i \omega^{ \theta}_{\ \beta} \partial^i \omega^{\alpha \beta}_{\ \alpha} -$	$_{1}\partial_{lpha}\omega^{lphaeta_{1}}\partial_{eta}\omega$	$^{ heta}_{eta}$ -6 $t_1 \partial_{lpha} f_{,}$	$\theta_{\beta} = \theta_{\alpha} + \theta_{\alpha} + \theta_{\alpha} + \theta_{\alpha}$	$8r_1\partial_\beta\omega_{\alpha\prime\theta}\partial^\theta\omega^{\alpha\beta\prime} + 4r_1\partial_\beta\omega_{\alpha\theta\prime}\partial^\theta\omega^{\alpha\beta\prime} - 16r_1\partial_\beta\omega_{\iota\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime} - 4r_1\partial_\imath\omega_{\alpha\beta\theta}$	$\partial^{\theta}\omega^{lphaeta_{l}} + 4r_{1}\partial_{\theta}\omega_{lphaeta_{l}}\partial^{\theta}\omega^{lphaeta_{l}} + 4r_{1}\partial_{\theta}\omega_{lpha_{l}eta}\partial^{\theta}\omega^{lphaeta_{l}}))[t,x,y,z]dzdydxdt$	$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	٤ <u>1</u>	•
	$^{\beta} \tau_{\alpha\beta} + 6$	$\omega^{$	$f_{,\theta}^{\theta}+6r_{1}$	$^{\alphaeta}_{}\partial_{\theta}\omega_{}$	$u + 3t_1 \delta_1$	$^{(heta)}_{(heta)} \omega_{lpha eta}$	$4 r_1 \partial_{\theta} \omega$	$\omega_{1^{\bar{-}}}^{\#1}$	0	0	0	$\frac{9}{\Gamma_{\overline{J}}}$	$\frac{t_1}{3\sqrt{2}}$	
	+ 6 f ^α ,	- 6 r_1 ∂_{eta}	$f^{\alpha}_{\alpha}\partial_{\theta}$	$2 r_1 \partial' \omega$	$f_{\alpha_{l}}\partial^{\theta}f^{c}$	$r_1\partial_eta\omega_o$	$^{\beta}\omega^{lphaeta\prime}$ +	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	•
	$^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$	$_{\theta}\partial'f^{\alpha}_{\ \alpha}$	$+4t_{1}$	$\frac{\theta}{\beta} + 1$	$3t_1\partial_{\theta}$	$\alpha^{\beta'} + 4$	$_{ heta}\omega_{lphaeta_{\prime}}\partial^{\epsilon}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	,
	$(2t_1 \ \omega^{\alpha}$	$-2t_1\partial_{_{l}}f^{artheta}$	$f^{lpha l}\partial_{ heta} f_{lpha}^{\ \ \ \ \ \ \ \ }$	$_{\chi}\omega^{lphaeta\prime}\partial_{ heta}\omega_{\chi}$	$+ \alpha_{\theta} g^{\theta} f^{\alpha \prime} +$	$\omega_{lpha_{B}} \partial^{ heta} \omega_{arepsilon}$	$^{3\prime}+4r_1\partial_{0}$	$\omega_{1}^{\#1}{}_{lphaeta} \;\; \omega_{1}^{\#2}{}_{lphaeta} \; f_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#1} + \alpha \beta k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	(
1	$S == \iiint \left(\frac{1}{6} \right)$	$\partial' f^{\alpha}$	$2t_1\partial_{\mu}$	$6 r_1 \partial_a$	$t_1 \partial_{\scriptscriptstyle I} f_{\scriptscriptstyle C}$	$8 r_1 \partial_{eta}$	$\partial^{ heta}\omega^{lphaeta}$		$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^-}^{\#_1} +^\alpha$	$\omega_{1}^{\#2} +^{\alpha}$	ς#1 . α

$\tau_{2}^{*1} + \tau_{2}^{\alpha \rho}$	$\frac{2t\sqrt{2}x}{(1+2k^2)^2t_1}$	(1+2	$(2k^2)^2t_1$	0				
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0		0	$\frac{2}{2 k^2 r_1 + t_1}$				
Source	constraint	ts/aa	ulde de	nerators				
SO(3) i		uge generators Multiplicities						
$\overline{\sigma_{0^+}^{\#1}} == 0$)	1						
$\tau_{0^{+}}^{\#1} == 0$		1						
$\tau_{0^{+}}^{\#2} == 0$		1						
$\tau_1^{\#2\alpha}$ +	$2ik \sigma_1^{\#1\alpha} =$	3						
$\tau_1^{\#1}{}^{\alpha} ==$	0	3						
$\sigma_1^{\#_1\alpha} =$	$= \sigma_1^{\#2\alpha}$	3						
$\tau_{1}^{\#1}{}^{\alpha\beta}$ +	$+ik \sigma_{1}^{\#2\alpha\beta}$	3						
$\tau_2^{\#1\alpha\beta}$ -	$2ik \sigma_{2}^{\#1}{}^{\alpha\beta}$	== 0	5					
Total co	onstraints:		20	20				

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $2k^2t_1$

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_1$

0

 $\sigma_2^{\#1}_{\alpha\beta\chi}$

2 i √2 k

 $-\frac{1}{(1+2k^2)^2t_1}$

f									
$f_{0^+}^{\#1}$	0	0	0	0					
$\omega_{0^+}^{\#1}$	0	0	0	0					
'	$\omega_{0}^{\#1}$ †	c#1 + 0	c#2 +	$\omega_{0}^{\#1}$ \dagger	1				
	3	f	f	3					
					_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
					$\sigma_{0^+}^{\#1}$ †	0	0	0	0
					_#1 _			0	0
					$\tau_{0^{+}}^{\#1} +$	0	0	U	U
					$\tau_{0^{+}}^{#2}$ †	0	0	0	0

Massive and massless spectra

(No massless particles)

Unitarity conditions