用到的公式

haodayizhia

2023年6月22日

目录

1	二体问题		
	1.1	核心公式	. 1
	1.2	推导用到的向量公式	. 1
	1.3	角动量 $ec{h}$ 守恒	. 2
	1.4	近地点方向 $\vec{B}=\mu\vec{e}$. 2
	1.5	运动轨迹	. 2
	1.6	活力公式	. 2
	1.7	anomaly 转换	. 2
	1.8	Conversion between rv and orbit elements	. 3
1 二体问题 1.1 核心公式			
$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r} $			

1.2 推导用到的向量公式

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b}) \tag{1.2}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \tag{1.3}$$

1 二体问题 2

1.3 角动量 \vec{h} 守恒

$$\vec{h} = \vec{r} \times \dot{\vec{r}} \tag{1.4}$$

1.4 近地点方向 $\vec{B} = \mu \vec{e}$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{B} \tag{1.5}$$

1.5 运动轨迹

$$r = \frac{h^2/\mu}{1 + B/\mu \cos \theta} \tag{1.6}$$

$$r = \begin{cases} a & e = 0, \\ \frac{p}{1 + e \cos \theta} = \frac{a(1 - e^2)}{1 + e \cos \theta} & 0 < e < 1, \\ \frac{p}{1 + \cos \theta} & e = 1, \\ \frac{p}{1 \pm e \cos \theta} = \frac{a(1 - e^2)}{1 \pm e \cos \theta} & 1 < e, \\ \chi \end{pmatrix}$$
(1.7)

1.6 活力公式

$$\frac{1}{2}v^2 - \frac{\mu}{r} = -\frac{\mu}{2a} \tag{1.8}$$

1.7 anomaly 转换

 θ : True anomaly(真近点角), E: Eccentric anomaly(偏近点角), M: Mean anomaly(平近点角).

$$a - r = ae\cos E \tag{1.9}$$

$$M = n(t - \tau) = E - e\sin E \tag{1.10}$$

参考文献 3

1.8 Conversion between rv and orbit elements

rv to σ

$$\begin{cases} e = \frac{|\vec{r} \times \vec{h} - \frac{\mu}{r} \vec{r}|}{\mu} \\ a = \frac{h^2}{\mu(1 - e^2)} \\ i = \arccos \frac{\vec{h} \cdot (0, 0, 1)}{h} \\ \Omega = \arccos \frac{(0, 0, 1) \times \vec{h} \cdot (1, 0, 0)}{|(0, 0, 1) \times \vec{h}|} \\ \omega = \arccos \frac{\vec{B} \cdot ((0, 0, 1) \times \vec{h})}{B|(0, 0, 1) \times \vec{h}|} \\ \theta = \arccos \frac{\vec{r} \cdot \vec{B}}{rB} \end{cases}$$
(1.11)

参考文献