Name(last, first):	
	ID (rightmost 4 digits):

UCLA Computer Science Department

CS 180

8 am

Algorithms & Complexity

Final Exam Total Time: 2.5 hours December 16, 2020

*** Write all algorithms in bullet form (as done in the past) ***

You need to prove EVERY answer that you provide.

There are a total of 8 pages including this page.

You need to upload ONE file in PDF to Gradescope.

You can include at most 15 pages in your PDF.

Name(last, first):

1. (20 points: each part has 10 points)

a. What is the run time of union-find? Discuss details of the data structure and prove your answer.

Name(last, first):	
--------------------	--

b. Prove that the k-clustering problem discussed in class is optimal.

Name(last, first):	
--------------------	--

2. (20 points)

- a. Find necessary and sufficient conditions for an undirected graph to be partitionable into a set of disjoint cycles C1 to Ck. (two cycles are disjoint if they do not share an edge). Prove the correctness of your answer.
- b. Show an example of graph on 5 vertices that satisfies the above condition.

3. (15 points: Each part has 10 points)

Consider two arrays of strings A and B each with n elements. Design a linear time algorithm to decide if B is a cyclic shift of A. Cyclic shift means you repeatedly move the last element of an array to the front the array.

For example if $A = (a \ a \ c \ b)$ then its cyclic shifts are $(b \ a \ a \ c)$, $(c \ b \ a \ a)$, $(a \ c \ b \ a)$. And $(b \ c \ a \ a)$ is not a cyclic shift of A.

Name(last, first):	
--------------------	--

4. (15 points)

Use dynamic programming to find a subsequence of a given sequence such that the subsequence sum is maximized and the subsequence elements are in increasing order. The subsequence is not necessarily continuous.

Example: Given a sequence (0, 8, 4, 12, 2, 9) The best subsequence is (8, 12) with max sum being 20 = 8 + 12

Name(last, first):	
--------------------	--

5. (15 points)

From the class we know that max-clique problem is NP-complete. Consider the class of graphs where degree of all vertices is the same. Is max-clique also NP-complete on this class of graphs? Prove your answer.

Name(last, first)	:
-------------------	---

6. (15 points) An edge cover in a graph is a subset of edges such that the union of edge endpoints corresponds to the entire vertex set of the graph.

Design an algorithm for finding a minimum edge cover in a bipartite graph. Describe the algorithm, prove its correctness and analyze its time complexity.