t test kan en forklarende variable k udelades

 $H_0: \beta_k = 0$ $H_1: \beta_k \neq 0$

F test kan alle forklarende variable udelades

 $H_0: \beta_1 = \beta_2 = ... = \beta_n = 0$

H₁: Ikke alle de forklarende variable kan udelades

Lineær regression Freestat Linear regression Check: Linearitet XY punktdiagram Normalitet Normal fraktildiagram QQ Varianshomogenitet residualplot Uafhængighed residualplot Multiple regression

2 variable

Multikollinearitet

 $H_0: \mu_1 = \mu_2$ eller $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 - \mu_2 \neq 0$

Ensidet

 $H_0: \mu_1 \ge \mu_2$ eller $H_0: \mu_1 - \mu_2 \ge 0$

 $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 - \mu_2 < 0$

Ensidet

 $H_0: \mu_1 \le \mu_2$ eller $H_0: \mu_1 - \mu_2 \le 0$

 $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 - \mu_2 > 0$

 $H_0: p_1 = p_2$

 $H_1: p_1 \neq p_2$

 $H_0: p_1 \ge p_2$

 $H_1: p_1 < p_2$

Ensidet

Ensidet $H_0: p_1 \le p_2$ $H_1: p_1 > p_2$

2 kontinuerte variable test af middelværdi Freestat Pooled ved ens varianser i de 2 variable

Freestat Unpooled tommelregel når variansen er mere end dobbelt så stor for den ene variabel.

Eller test H_0 : $\sigma_1 = \sigma_2 \mod H_1$: $\sigma_1 \neq \sigma_2$

Freestat paired når der er tale om samme objekt målt før og efter treatment.

2 binære variable test for andele Freestat test of proportions

Kvalitativ binær test af andel p hvor a er en andel mellem 0 og 1

1 variabel

Hypoteser

Freestat test of proportions Forudsætning: n·p·(1-p)>9 for approximativ normalfordelt

Freestat descriptive statistics test mean n<30 check QQ plot for normalitet

Kontinuert test af middelværdi u hvor a er et reelt tal

1. Tosidet alternativhypotese er (=), er ikke (≠), forskellig fra (≠)

 $H_{\Omega}: \mu = a$

H₁:µ≠a

2. Ensidet alternativhypotese nedad mindst (≥), mindre end (<)

 $H_{\Omega}: \mu \geq a$

 $H_1: \mu < a$

3. Ensidet alternativhypotese opad højst (≤), større end (>)

 $H_0: \mu \leq a$

 $H_1: \mu > a$

1. Tosidet alternativhypotese er (=), er ikke (≠), forskellig fra (≠)

 H_{Ω} : p = a

H₁: p ≠ a

2. Ensidet alternativhypotese nedad mindst (≥), mindre end (<)

 $H_{\Omega}: p \ge a$

 $H_1: p < a$

3. Ensidet alternativhypotese opad højst (≤), større end (>)

 $H_{\Omega}: p \leq a$

 $H_1: p > a$