Approche logique de l'Intelligence Artificielle

INSA 4IF/4IFA Sylvie Calabretto

IA: Histoire en cours d'écriture...

- Acte de naissance : 1956, Darmouth College (New Hampshire, USA)
- Le but de l'Intelligence Artificielle est de concevoir des systèmes capables de reproduire le comportement de l'humain dans ses activités de raisonnement
- À un niveau basique, l'IA décrit un ordinateur qui reproduit des fonctions humaines, comme l'apprentissage ou la résolution de problèmes.

Les premiers programmes d'IA

- Newell, Simon et Shaw proposent un premier programme de démonstration de thèorèmes en logique (1956!)
- Ils généralisent en proposant le General Problem Solver qui progresse dans la résolution en évaluant la différence entre la situation du solveur et le but à atteindre.

Premiers défis...

- Programmes capables de jouer aux échecs (premières idées en 1950 par Shannon!) -> première victoire sur un maître en 1997 <u>Deep Blue bat Kasparov</u>
- ▶ Test « d'intelligence » (Evans 1963) : trouver la suite d'une série de figures.
- Résolution de problèmes par propagation de contraintes (Waltz 1975)
- Dialogue en « langage naturel » (<u>Eliza</u>, Weizenbaum 1965) (<u>Système SHRDLU</u>, Winograd 1971)

L'ère des « systèmes experts »

- Les années 70 et 80 virent un véritable engouement pour les systèmes experts :
 - DENDRAL (en chimie)
 - MYCIN (en médecine)
 - Hersay II (en compréhension de la parole)
 - Prospector (en géologie)
- Générateurs de systèmes experts
 - ▶ GURU
 - ▶ CLIPS
 - Sherlock (INSA-IF)

2000 : Premières applications pour le Web (Google Knowledge Graph)

L'ère du « deep learning »

- ▶ En 2010 : Introduction du concept d'Apprentissage profond
- ▶ En 2015, AlphaGo: premier programme à battre le champion européen (le français <u>Fan Hui</u>) puis en 2016, le champion du monde (Lee Sedol)
- L'intelligence artificielle en santé aiguise les appétits des Gafam et de start-up
 - « Les Gafam entendent tirer profit des grands volumes de données qu'ils captent chez leurs clients via les dispositifs médicaux connectés »
 - Place de l'éthique ?

Langages de programmation pour l'IA?

- LISP (origine américaine)
- PROLOG (France ! Colmerauer)
- SmallTalk (Langage objet)
- Les langages de Frame
 - YAFOOL (Yet Another Frame based Object Oriented Language)
 - KL-ONE (Knowledge Language)
- Langage de logique de description
- Langages du Web sémantique : RDF, SPARQL, RIF
- ▶ Machine learning: Python, R, C, C++, C#, ...

Les grandes questions de l'IA

(d'après « L'IA, mais enfin de quoi s'agit-il? »

- Représenter, acquérir des connaissances
- Algorithmes généraux de résolution de problème
- Intelligence artificielle « collective »
- Formaliser, mécaniser # types de raisonnement
- Evaluer des situations, décider, planifier
- ▶ Raisonner sur le temps et l'espace
- Résumer, apprendre, découvrir
- Langue et IA
- Indexation et IA
- Réalité virtuelle et IA

Multiples facettes de l'IA

Facette des mathématiques

- formalisation du raisonnement mathématique (logique)
- Contribution à de nouveaux champs (logiques modales -> logique possibiliste)

Facette informatique

- Nouveau « paradigmes » de programmation
 - Programmation logique
 - Programmation objet
 - Programmation fonctionnelle
- Nouvelles façons de voir les systèmes d'information
 - Gestion de la connaissance
 - Indexation WEB (semantic web)
 - Description des documents numériques

La représentation des connaissances

- Problème central en IA
- Mise en évidence d'un problème en amont :
 - L'acquisition des connaissances
 - La modélisation des connaissances
- Plusieurs formes de représentations
 - Représentation objet
 - ▶ Règles de production ...

Rôle de la logique

- Un formalisme de représentation de connaissances
- Un mécanisme d'inférence : la déduction et la méthode de résolution

Central pour:

- PROLOG
- Systèmes à base de connaissances

Conduite automobile sans pilote

- La voiture a pour consigne de suivre un chemin, par exemple matérialisé par des marqueurs de couleur
- Exemple de règle : Si la voiture s'écarte un peu du chemin, mais que la direction suivie est à peu près bonne, alors il faut braquer légèrement pour se rapprocher du chemin
- Descripteurs linguistiques
- Variables impliquées :
 - Entrée : déviation de position, déviation d'angle par rapport au chemin
 - Sortie : angle de braquage
- Raisonnement flou

Nous faisons de la logique floue....

Exemple de règles floues:

Règles de conduite automobile à l'approche d'un carrefour contrôlé par des feux tricolores.

si le feu est	si ma vitesse est	et si le feu est	alors je freine fort.
rouge	élevée	proche	
si le feu est	si ma vitesse est	et si le feu est	alors je maintiens ma
rouge	faible	loin	vitesse.
si le feu est	si ma vitesse est	et si le feu est	alors je freine
orange	moyenne	loin	doucement.
si le feu est	si ma vitesse est	et si le feu est	alors j'accélère.
vert	faible	proche	

Logique floue

Les règles floues sont énoncées en langage naturel

Principe d'un contrôleur flou

Objectifs du cours : Compétences 1

- Appendre les fondements théoriques des logiques de l'Intelligence Artificielle : logique classique (logique ordre 0, logique ordre 1, logique ordre 2, ...), logique multivaluée, logique floue, ...
- Apprendre les techniques de résolution et d'inférence
- Etre capable de Modéliser/Traduire des problèmes/argumentations énoncés en langage naturel à l'aide de formules logiques
- Etre capable de Résoudre ces problèmes à l'aide de raisonnements classiques ou non standards (par utilisation de règles d'inférence : Modus Ponens, syllogisme, résolution, ...)

Objectifs du cours : Compétences 2

- Etre capable d'utiliser un langage de programmation logique comme Prolog pour modéliser et résoudre des problèmes d'intelligence artificielle typiques.
- Le projet de programmation consiste à développer des intelligences artificielles capables de jouer dans des jeux à deux joueurs (Othello, Jeu d'échecs, Jeu de Dames, Puissance 4, Bataille Navale, Kalah, ...)

Exemples

- Puissance 4 : https://youtu.be/UdZ3eAXKUkg
- Othello: https://youtu.be/BgP3RqneRbw
- Bataille navale : https://youtu.be/l0_doA_96z8
- ► PACMAN : https://youtu.be/Emq-4E7MJ0w

Plan du cours

Logique Classique

- Systèmes Formels
- Calcul des Propositions/ Logique ordre 0
- Calcul des Prédicats/ Logique ordre 1
- Calcul des Prédicats/ Logiques ordres supérieurs
- Logiques Multivaluées
 - Logique Floue

Logique : définition

- Logique : raison, discours
 - science du raisonnement exact
- Un des principaux apport de l'Antiquité Grecque, avec la notion de grammaire
- La théorie des Systèmes Formels est un cadre commun aux logiques formelles et grammaires formelles

Logique et Informatique

- La logique apparaît dans différents aspects de l'informatique :
 - Analyse formelle de programmes : formalisation des spécifications, preuves de programmes, optimisations...
 - Preuves mathématiques : assistants de preuves, démonstrateurs automatiques.
- Plus généralement, la logique est une base de l'intelligence artificielle, avec de nombreux aspects :
 - Représentation, acquisition et utilisation de connaissances (systèmes experts ou à base de connaissances);
 - Résolution de problèmes (*robots, jeux*);
 - Compréhension et traitement des langues naturelles (linguistique informatique).

Les applications de la logique

- Calcul des propositions et des prédicats : Systèmes à Base de Connaissances, Systèmes Experts,
 Bases de données déductives, ...
- Logique floue : Systèmes à Base de Connaissances, Systèmes Experts, Bases de Données, Commande de procédés
- Logique temporelle: Traitement de la langue naturelle, ordonnancement, aménagement de l'espace, ...

Historique

Epoque	la logique à travers le discours	la logique système formel	démons- tra- tion auto- matique	logiques non standards
-350	Aristote Euclide Chrysippe			
500	Boèce			
1200 1300	Avicenne Averroès Thomas d'Aquin R.Bacon R.Lulle G.d'Occam			
1650	Arnaud, Nicolle			
	Leibniz	Leibniz		
1850	G.Boole L.Caroll	G.Boole, Venn, A. de Morgan		
1880		Frege Peano		
1900		Whitehead Russell		Lewis Langford
1920		Hilbert		Lukasiewicz Post
1930		Gödel	Herbrand	
1960			Robinson	Zadeh
1970			Colmerauer	Kripke Dubois, Prade

Objectifs du cours d'ALIA

- Etudier les mécanismes déductifs permettant de tirer des conclusions à partir d'hypothèses (prémisses données),
 - c'est-a-dire d'enchainer toutes les **étapes d'inférence**.
- Essayer dans la mesure du possible de mécaniser la pensée.
- Ce sont les bases de l'Intelligence Artificielle.

Principales logiques

Logique Positive Logique Minimale Logique Intuitionniste extension Logique extension inférentielle Classique algébrique Lukasiewicz, Post Logiques Révisables Logiques Multivaluées Reiter Logique des Défauts Logiques Floues Dubois, Prade Logiques Possibilistes **Logiques Modales** Aléthiques nécessité Déontiques morale et droit **Temporelles** selon vue du temps **Dynamiques** pour la programmation **Epistémiques** des savoirs et croyances

Logiques : caractères communs

- Une syntaxe, qui définit la forme des énoncés
- une dynamique, qui formalise raisonnement, argumentation, démonstration, ...
 - règles d'inférence ou de déduction
- des interprétations qui associent une signification à chaque forme de la syntaxe

Plan du cours

- Logique Classique
 - Systèmes Formels
 - Calcul des Propositions/ Logique ordre 0
 - Calcul des Prédicats/ Logique ordre 1
 - Calcul des Prédicats/ Logiques ordres supérieurs
- Logiques Multivaluées
 - Logique Floue

Définition des Systèmes Formels

- Un Système Formel est constitué de :
 - un alphabet fini de symboles
 - un mécanisme de construction des mots
 - un ensemble d'axiomes (mots particuliers)
 - un ensemble de règles d'inférence (ou de déduction)

Définitions complémentaires

- Une **preuve** est une suite finie de mots M₁, M₂, ..., M_n dans laquelle chaque M_i est un axiome ou bien se déduit des mots précédents par application des règles d'inférence
- Un **théorème** est un mot t tel qu'il existe une preuve $(M_1, M_2, ..., M_r)$ avec $M_r = t$.
- En particulier, tout axiome est un théorème

Le système formel MIU

- ▶ **Alphabet** : M, I, U
- **Mots**: toute suite de lettres de l'alphabet
- **Axiome** : MI
- Règles d'inférence :

```
ightharpoonup R1 : xI \Rightarrow xIU (production)
```

$$ightharpoonup R2 : Mx \Rightarrow Mxx$$
 (production)

- $ightharpoonup R3 : III \rightarrow U$ (réécriture)
- $ightharpoonup R4: UU \rightarrow (réécriture)$

où x est un mot quelconque

Exemple de déduction

```
1) MI : axiome
```

2) MII : R2 à partir de 1)

3) MIIII : R2 sur 2)

4) MIIIU : R1 sur 3)

5) MIUU : R3 à partir de 4) en 3ème position

6) MI : R4 à partir de 5)

Le système formel MIU

- MIIU et MUIU sont des théorèmes du système MIU
- Tous les théorèmes du système commencent par M
- MU est-il un théorème du système MIU ?

Arbre de génération de théorèmes

Théorie des Nombres Typographiques (TNT)

Alphabet :

- Symboles numériques (0, S),
- Variables (a, b, c, d, , a ', b ' ', ...)
- Termes (0, b, SSa', (S0.(SS0+c)))

Axiomes:

- ► A1 : ∀a:~Sa=0
- ► A2 : ∀a:(a+0)=a
- A3: $\forall a: \forall b: (a+Sb)=S(a+b)$
- ► A4: ∀a:(a.0)=0
- A5: \forall a: \forall b:(a.Sb)=((a.b)+a)

Théorie des Nombres Typographiques (TNT)

Règles de déduction :

- Toutes les règles du calcul des propositions
- Règle de spécification
- Règle de généralisation
- Règle d'existence
- Règle d'égalité
- Règle de succession

Règles de déduction de la TNT

Règle de spécification :

Soit u une variable contenue dans l'expression x. Si l'expression ∀u:x est un théorème, alors x l'est aussi, ainsi que toute expression obtenue à partir de x en remplaçant u, chaque fois qu'il apparaît, par un seul et même terme. (Restriction: Le terme remplaçant u ne doit contenir aucune variable quantifiée dans x.)

Règle de généralisation :

Soit x un théorème dans lequel u, une variable, est libre. ∀u:x est alors un théorème.

Règles d'égalité :

- Symétrie : Si r = s est un théorème, alors s = r en est aussi un.
- Transitivité : Si r = s et s = t sont des théorèmes, alors r = t en est aussi un.

Règles de succession :

- Ajout de S : Si r = t est un théorème, alors Sr = St en est aussi un
- Suppression de S : Si Sr = St est un théorème, alors r = t en est aussi un .

Théorie des Nombres Typographiques (TNT)

Prouver les théorèmes suivants à l'aide des règles du système formel TNT :

- > S0 + S0 = SS0
- > S0.S0 = S0
- $\mathbf{0} = \mathbf{0}$

Plan du cours

- Logique Classique
 - Systèmes Formels
 - Calcul des Propositions/ Logique ordre 0
 - Calcul des Prédicats/ Logique ordre 1
 - Calcul des Prédicats/ Logiques ordres supérieurs
- Logiques Multivaluées
 - Logique Floue

Notion de proposition

- La notion de « proposition » est fondamentale en logique
- Une proposition est tout simplement une affirmation
- Cette affirmation peut être vraie ou fausse
- Interpréter une proposition = lui attribuer une valeur de vérité
 V ou F
- Exemple : « Il pleut » peut être vrai ou faux
- Principe du tiers exclu : une proposition est soit vraie, soit fausse mais pas autre chose.

Notion de proposition en langage symbolique

- Les propositions sont notées par un simple symbole
- En règle générale, une proposition est notée avec une lettre majuscule
- Les propositions sont des formules atomiques

Connecteurs logiques

- La notion de connecteur logique est déjà présente dans la logique d'Aristote
- C'est une notion qui apparaît naturellement lorsqu'on tente de faire des raisonnements
 - On peut imaginer que de A on peut déduire B c'est-à-dire si A est vrai alors B est vrai aussi
 - ▶ On écrit alors « si A alors B » ou « $A \rightarrow B$ »
 - \sim * est un connecteur logique
 - $A \rightarrow B$ est une **formule composée**

Le connecteur « non » (négation)

- Considérons une proposition A. La proposition « non A » est vrai si A est faux, et fausse si A est vrai.
- ▶ Ce connecteur s'écrit symboliquement ¬.
- On peut illustrer cela dans un tableau appelé « table de vérité »

A	¬A
V	F
F	V

Le connecteur « ou » (disjonction)

- Ce connecteur permet de former des formules comme « A ou B ».
- ▶ Ce connecteur s'écrit symboliquement ∨.
- A V B est faux si A et B sont tous les deux faux, vrai dans tous les autres cas.

A	В	$A \lor B$
V	V	V
V	F	V
F	V	V
F	F	F

Le connecteur « et » (conjonction)

- Ce connecteur permet de former des formules comme « A et B ».
- ▶ Ce connecteur s'écrit symboliquement ∧.
- A ∧ B est vrai si A et B sont tous les deux vrai, faux dans tous les autres cas.

A	В	$\mathbf{A} \wedge \mathbf{B}$
V	V	V
V	F	F
F	V	F
F	F	F

Le connecteur « si ... alors »

- « si A alors B » veut dire que si A est vrai, alors B est vrai.
- ightharpoonup Ce connecteur s'écrit symboliquement ightharpoonup.
- La seule manière de contrarier $A \rightarrow B$ est d'avoir B faux alors que A est vrai.

A	В	$\mathbf{A} o \mathbf{B}$
V	V	V
V	F	F
F	V	V
F	F	V

Le connecteur « est équivalent à »

Ce connecteur s'écrit symboliquement ↔ et signifie : « à la même valeur de vérité que ».

A	В	$\mathbf{A} \leftrightarrow \mathbf{B}$
V	V	V
V	F	F
F	V	F
F	F	V

Tautologies

- Une tautologie est une formule qui est toujours vraie quelle que soit la valeur de vérité des formules atomiques qui la compose.
- Une tautologie est appelée aussi une formule valide.

Tautologies: exemples

 $A \to A$

A	$A \rightarrow A$
V	V
F	V

A ∨¬A(Principe du tiers exclu)

A	$\neg A$	$A \lor \neg A$
V	F	V
F	V	V

Tautologies remarquables

- ▶ Double négation : $\neg \neg A \equiv A$
- ▶ Idempotence de \land et \lor : $A \lor A \equiv A$ et $A \land A \equiv A$
- Commutativité de \land et \lor : A \lor B \equiv B \lor A et A \land B \equiv B \land A
- Associativité de \land et \lor : $A \lor (B \lor C) \equiv (A \lor B) \lor C \text{ et } A \land (B \land C) \equiv (A \land B) \land C$
- ▶ Contradiction : $A \lor \neg A \equiv V$ et $A \land \neg A \equiv F$

Tautologies remarquables

Distributivité :

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \text{ et}$$

 $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$

- ▶ Absorption : $A \lor (A \land B) \equiv A \text{ et } A \land (A \lor B) \equiv A$
- Lois de De Morgan : $\neg (A \land B) \equiv \neg A \lor \neg B \text{ et } \neg (A \lor B) \equiv \neg A \land \neg B$
- **Conditionnel matériel :** $A \rightarrow B \equiv \neg A \lor B$
- ► Contraposition : $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- ▶ Equivalence matérielle : $(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$

Antilogies

- Une antilogie est une formule A qui est toujours fausse quelle que soit la valeur de vérité des formules atomiques qui la compose.
- Une antilogie est appelée aussi une formule invalide.
- Exemple : $A \land \neg A$

A	$\neg A$	$A \land \neg A$
V	F	F
F	V	F

Raisonnement logique

- Le principe d'un raisonnement logique est de déduire de nouvelles formules à partir d'anciennes formules.
- Deux méthodes :
 - **Déduction naturelle** : plusieurs règles d'inférence dont le Modus Ponens

$$A, A \rightarrow B \Rightarrow B$$

Méthode de résolution : une seule règle d'inférence

$$A \vee B$$
, $\neg A \vee C \Rightarrow B \vee C$

→ : Méta-symbole logique ou symbole du métalangage

$$(A1, A2, ..., An) \Rightarrow B$$

Prémisse Conclusion

Déduction naturelle

- Les 3 principales règles d'inférence
 - ▶ Modus Ponens : A, A \rightarrow B \Rightarrow B
 - ▶ Modus Tollens : $\neg B$, $A \rightarrow B \Rightarrow \neg A$
 - Syllogisme : $(A \rightarrow B)$, $(B \rightarrow C) \Rightarrow (A \rightarrow C)$
- Autres règles :
 - ▶ Conjonction : A, B \Rightarrow (A \land B)
 - ▶ Equivalence : $(A \rightarrow B)$, $(B \rightarrow A) \Rightarrow (A \leftrightarrow B)$

Règles d'inférence de la négation

- ▶ Contraposition : $(A \rightarrow B) \Rightarrow (\neg B \rightarrow \neg A)$
- ▶ Réfutation : $(A \rightarrow B)$, $(A \rightarrow \neg B) \Rightarrow \neg A$
- ▶ Equivalence : $(A \rightarrow B)$, $(\neg A \rightarrow \neg B) \Rightarrow (A \leftrightarrow B)$

Contraposition + Modus Ponens = Modus Tollens

Système Formel du Calcul des Propositions

- ▶ **Alphabet** : A, B, C, ... des propositions et les 5 connecteurs logiques
- **Vocabulaire** (mot) : toute composition de propositions avec les connecteurs logiques
- Axiomes :
 - 1. $A \rightarrow (B \rightarrow A)$
 - 2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 - 3. $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$
- Règle d'inférence :
 - ► Modus Ponens : A, A \rightarrow B \Rightarrow B

Exemple de déduction : $P \rightarrow P$

- 1. $P \rightarrow ((P \rightarrow P) \rightarrow P)$ Axiome 1 avec A = P et $B = P \rightarrow P$
- 2. $((P \rightarrow ((P \rightarrow P) \rightarrow P)) \rightarrow ((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P)))$ Axiome 2 avec A = P, B = P \rightarrow P, C = P
- 3. $(P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P))$ Modus Ponens 1. + 2.
- 4. $(P \rightarrow (P \rightarrow P))$ Axiome 1 avec A = P et B = P
- 5. $(P \rightarrow P)$ Modus Ponens 3. + 4.

Méthode de résolution

- Cette méthode permet d'effectuer des preuves par l'absurde
- Pour deux formules A et B, on dira que B est une conséquence logique de A si la formule (A ∧ ¬ B) est contradictoire.
- Cette méthode est à la base de nombreux systèmes de démonstration automatique et en particulier des langages de programmation en logique

Méthode de résolution

- Les méthodes de résolution les plus utilisées sont les méthodes de résolution clausale
- Elles nécessitent la transformation des formules dont on veut montrer la contradiction
- Cette transformation est appelée mise sous forme clausale

Forme clausale

- Un littéral est une formule atomique (littéral de signe positif) ou une formule atomique précédée du symbole de négation (littéral de signe négatif)
- Une clause est une disjonction de littéraux
- Exemples de clauses :
 - ▶ A ∨ B
 - \rightarrow A $\vee \neg B$
 - \rightarrow A $\vee \neg$ B $\vee \neg$ C
 - \rightarrow A \vee B \vee \neg C \vee D
- Contre-exemples :
 - $A \wedge B$
 - \rightarrow A \vee (\neg B \wedge C)

Mise sous forme clausale

▶ Elimination des connecteurs \leftrightarrow , \rightarrow en utilisant les tautologies :

$$(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$$

 $(A \rightarrow B) \equiv (\neg A \lor B)$

Transfert des négations devant les atomes en utilisant les tautologies :

$$\neg\neg A \equiv A$$

 $\neg (A \lor B) \equiv (\neg A \land \neg B)$
 $\neg (A \land B) \equiv (\neg A \lor \neg B)$

Règle d'inférence de la résolution

- Règle de la résolution :
 - $\land A \lor B , \neg A \lor C \Rightarrow B \lor C$
- Cette règle est une forme de syllogisme
 - ► (A \rightarrow B, B \rightarrow C) codé (\neg A \lor B, \neg B \lor C) produit une résolvante (\neg A \lor C) représentant (A \rightarrow C)
- Les règles du *modus ponens* et du *modus tollens* en sont des cas particuliers
 - (A, A→B) codé (A, ¬A ∨ B) produit la résolvante (B), conclusion du modus ponens
 - ▶ $(\neg B, A \rightarrow B)$ codé $(\neg B, \neg A \lor B)$ produit la résolvante $(\neg A)$, conclusion du modus tollens

Application de la résolution à la démonstration d'une formule

- Soit Γ un ensemble de clauses, et C une clause, C est un théorème de Γ si et seulement si la clause vide se déduit de l'ensemble constitué de Γ et de ¬C.
- On dit aussi que C est une conséquence logique de Γ.

Exemple 1

- Pour montrer que c est une conséquence logique de : $C_1 = a \lor b \lor c$, $C_2 = \neg a \lor b \lor c$, $C_3 = \neg b \lor c$, il faut montrer que de $\{C_1, C_2, C_3, \neg c\}$, on peut déduire la clause vide.
- On pose $C_4 = \neg c$
- Preuve :
 - $C_1, C_2 \Rightarrow b \lor c = C_5$
 - $C_3, C_5 \Rightarrow c = C_6$
 - $C_4, C_6 \Rightarrow \Box$

Exemple 2

- ▶ P1 est-il une conséquence logique de $\{P1 \lor P2, P2 \rightarrow P3, \neg P3\}$?
- La forme clausale de l'ensemble est :
 - $C1 = P1 \vee P2$
 - $C2 = \neg P2 \lor P3$
 - $C3 = \neg P3$
 - $C4 = \neg P1$
- Preuve :
 - ightharpoonup C1, C2 \Rightarrow P1 \vee P3 = C5
 - \triangleright C5, C3 \Rightarrow P1 = C6
 - C6, C4 ⇒ □

Exercice

Pour constituer un club, on a énoncé le règlement suivant :

Article premier: Tout membre non Ecossais porte des chaussettes oranges.

Article second: Tout membre porte une jupe ou ne porte pas de chaussettes oranges.

Article troisième : Les membres mariés ne sortent pas le dimanche.

Article quatrième : Un membre sort le dimanche si et seulement si il est Ecossais.

Article cinquième : Tout membre qui porte une jupe est Ecossais et marié.

Article sixième: Tout membre Ecossais porte une jupe.

Pourquoi n'a-t-on jamais accepté quelqu'un comme membre de ce club ?