PRIMA PROVA IN ITINERE - 06/05/2011 - VERSIONE A

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (6+3+2 punti) Si consideri il sistema lineare AX=B dove la matrice completa del sistema è

$$(A|B) = \left(\begin{array}{ccc|c} 1 & 1 & 1 & b \\ a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \end{array}\right),$$

con a, b parametri reali.

- (1) Stabilire se e quante soluzioni ammette il sistema, al variare di a, b.
- (2) Determinare se esistono valori di a, b per i quali il sistema ammette $X = (-4, -4, 5)^t$ tra le soluzioni.
- (3) Posto a=1 e b=0, ed interpretando (A|B) come matrice rappresentativa, rispetto alle basi canoniche, di un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$, determinare due matrici C, di tipo 3×2 , e D, di tipo 2×4 , che verificano l' uguaglianza CD=(A|B). Le matrici C e D esistono anche se poniamo a=b=0?

Svolgimento. (1) Effettuiamo le operazioni elementari $R_2-R_1 \to R_2, R_3-R_1 \to R_3$ sulla matrice (A|B) ed otteniamo la matrice

$$\left(\begin{array}{ccc|c}
1 & 1 & \boxed{1} & b \\
a-1 & 0 & 0 & 1-b \\
0 & a-1 & 0 & 1-b
\end{array}\right).$$

Se $a-1 \neq 0$, le matrici A ed (A|B) risultano entrambe ridotte per righe ed entrambe di rango 3. Se a=1, la matrice A è ridotta per righe, ed ha rango 1, mentre la matrice (A|B) risulta avere rango 2 se $1-b \neq 0$ (effettuando l' operazione $R_3 - R_2 \rightarrow R_3$ otteniamo una matrice ridotta per righe), mentre risulta avere rango 1 se 1-b=0 (in tal caso risulta anche ridotta per righe). In conclusione,

$$r(A) = \begin{cases} 3 & \text{se } a \neq 1 \\ 1 & \text{se } a = 1 \end{cases}$$
 mentre $r(A|B) = \begin{cases} 3 & \text{se } a \neq 1 \\ 2 & \text{se } a = 1 \text{ e } b \neq 1 \\ 1 & \text{se } a = b = 1 \end{cases}$.

Per il Teorema di Rouché-Capelli, il sistema AX = B ha una sola soluzione se $a \neq 1$, ha ∞^2 soluzioni se a = b = 1, mentre non ha soluzioni se a = 1 e $b \neq 1$.

(2) Sostituendo alle incognite i valori proposti, otteniamo le seguenti equazioni in a e b :

$$\begin{cases} b = -3 \\ -4a = 0 \\ -4a = 0 \end{cases}.$$

È evidente che il sistema ha l' unica soluzione a = 0, b = -3.

(3) Per a = 1 e b = 0, la matrice (A|B) è uguale a

$$(A|B) = \left(\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right)$$

avendo omesso il separatore tra la matrice A e la matrice B. Come già calcolato, essa ha rango 2 ed una base per lo spazio spazio generato dalle sue colonne è data dalle ultime sue 2 colonne, essendo le prime tre colonne uguali tra loro. Sia allora

$$C = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}\right).$$

La matrice D si ottiene facilmente osservando che il prodotto tra la matrice C e le colonne di D deve essere uguale alle colonne di (A|B). Quindi,

$$D = \left(\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right).$$

Analogamente, si poteva ottenere una fattorizzazione usando le righe di (A|B). In tal caso,

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Infine, si osservi che, trovata una fattorizzazione (A|B)=CD, ogni altra fattorizzazione è della forma $\overline{C}\cdot\overline{D}$ con $\overline{C}=CP$, $\overline{D}=P^{-1}D$ e P è una qualunque matrice quadrata invertibile di ordine 2. Per a=b=0, (A|B) non può essere fattorizzata come richiesto. Infatti, r(A|B)=3, mentre il rango di una matrice della forma CD con C di tipo 3×2 e D di tipo 2×4 è ≤ 2 .

Esercizio 2. (4+5+2 punti) Sia U il sottospazio di \mathbb{R}^4 costituito dai vettori $(x,y,z,t)\in\mathbb{R}^4$ che risolvono il sistema lineare omogeneo

$$U: \begin{cases} x+y-z=0\\ x-z+t=0\\ 2x+y-2z+t=0. \end{cases}$$

Sia poi V il sottospazio di \mathbb{R}^4 definito come

$$V = L((1,0,1,0),(0,0,1,2),(1,0,2,2)).$$

- (1) Calcolare basi e dimensioni di U, V.
- (2) Calcolare basi e dimensioni di $U \cap V$ e U + V.
- (3) Costruire, se possibile, un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $\ker(f) = U$ ed f(V) = L((1,1,2),(1,0,1)).

Svolgimento. (1) Essendo omogeneo il sistema che definisce U, esso ha sempre soluzioni, ed il loro numero dipende dal solo rango della matrice A dei coefficienti delle incognite. La matrice A è

$$\left(\begin{array}{rrrr} 1 & 1 & -1 & 0 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & -2 & 1 \end{array}\right),$$

e si osserva facilmente che le prime due righe sono linearmente indipendenti, mentre la terza riga è somma delle prime due. In conclusione, r(A)=2 e quindi $\dim(U)=4-2=2$. Calcoliamo le incognite y,t in funzione di x,z ed otteniamo y=-x+z,t=-x+z. In conclusione, $U=\{(x,-x+z,z,-x+z)\mid x,z\in\mathbb{R}\}$, ed una sua base è $B_U=((1,-1,0,-1),(0,1,1,1))$.

È evidente che il terzo generatore di V è somma dei primi due generatori, mentre i primi due generatori sono linearmente indipendenti. Quindi, dim(V) = 2, ed una sua base è $B_V = ((1,0,1,0),(0,0,1,2))$.

(2) Il sottospazio U+V è generato dai vettori (1,-1,0,-1), (0,1,1,1), (1,0,1,0), (0,0,1,2). Scriviamo le componenti dei vettori rispetto alla base canonica di \mathbb{R}^4 come colonne di una matrice ed otteniamo

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & 1 & 0 & 2 \end{array}\right).$$

Effettuando l' operazione elementare $C_3-C_1-C_2\to C_3$ otteniamo la matrice ridotta per colonne

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 1 & 0 & 2
\end{array}\right)$$

e quindi dim(U+V)=3, ed una sua base è $B_{U+V}=((1,-1,0,-1),(0,1,1,1),(0,0,1,2))$. Dalla formula di Grassmann, si ricava che dim $(U\cap V)=1$. Visto che $(1,0,1,0)\in V$, e che è combinazione lineare dei vettori di B_U , ossia è anche in U, abbiamo che $U\cap V=L((1,0,1,0))$ e quindi una base di $U\cap V$ è $B_{U\cap V}=((1,0,1,0))$.

(3) Se l'applicazione lineare esistesse, potremmo considerare la sua restrizione al sottospazio U+V di \mathbb{R}^4 . Avremmo allora $f:U+V\to\mathbb{R}^3$ lineare, con $U=\ker(f)$. Visto che f(U+V)=f(U)+f(V), e che $f(U)=\{\overrightarrow{0}\}$, allora f(U+V)=f(V), ed ha dimensione 2, come si vede facilmente. Usando il teorema del Rango, abbiamo $\dim(U+V)=\dim(U)+\dim(f(V))$ ossia 3=2+2=4. Essendo falsa l'uguaglianza ottenuta, otteniamo che non esistono applicazioni lineari che verificano le condizioni richieste.

Esercizio 3. (4+4+3 punti) Siano date le matrici:

$$A = \begin{pmatrix} 3 & -3 & 0 \\ -h & h & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 1 & h & -h \\ 0 & 0 & 0 \\ 0 & 0 & 3+h \end{pmatrix},$$

dipendenti dal parametro reale h.

- (1) Posto h=-2, determinare gli autovalori ed una base per ogni autospazio di A.
- (2) Per quali h la matrice A è diagonalizzabile?
- (3) Per quali h le due matrici A e B sono simili?

Svolgimento. (1) Il polinomio caratteristico di A è uguale a $p(t) = \det(A - tI) = (1 - t)^2(-t)$ e quindi le sue radici sono $t_1 = 0$ e $t_2 = 1$ di molteplicità m(0) = 1, e m(1) = 2, rispettivamente. Essendo entrambe le radici nel campo \mathbb{R} su cui stiamo lavorando, sono entrambe autovalori di A. Con facili calcoli, otteniamo che gli autospazi sono V(0) = L((1, 1, 0)) e V(1) = L((3, 2, 0), (0, 0, 1)), di dimensioni 1 e 2, rispettivamente. In conclusione A è diagonalizzabile per h = -2.

(2) Il polinomio caratteristico di A è uguale a $p(t) = (1-t)(t^2-(3+h)t) = -t(t-1)(t-3-h)$ e le sue radici sono $t_1 = 0, t_2 = 1, t_3 = h+3$, tutte reali, e quindi tutte autovalori. Se $h \neq -3, -2$, le radici sono tutte distinte. Se h = -3,

m(0)=2, m(1)=1, ed infine, se h=-2, m(1)=2, m(0)=1. Se gli autovalori hanno tutti molteplicità 1, allora A è diagonalizzabile. Quindi A è diagonalizzabile se $h\neq -3, -2$, e se h=-2, grazie ai calcoli precedenti.

Studiamo quindi la diagonalizzabilità di A per h=-3. In tal caso, $\dim(V(0))=3-r(A-0I)=3-r(A)=3-2=1\neq m(0)$. Quindi, A non è diagonalizzabile. In conclusione, A è diagonalizzabile per $h\neq -3$.

(3) Visto che B è triangolare superiore, il suo polinomio caratteristico è $p_B(t) = -t(t-1)(t-h-3)$ e quindi A e B hanno gli stessi autovalori.

Se $h \neq -3, -2$, entrambe le matrici sono diagonalizzabili, e sono simili a

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & h+3 \end{array}\right)$$

e quindi sono simili tra loro.

Se h=-2, A è diagonalizzabile. Invece, $V_B(1)$ ha dimensione $3-r(B-I)=1\neq m(1)$ e quindi B non è diagonalizzabile. Quindi, A e B non sono simili.

Se h=-3, A non è diagonalizzabile. Invece, $V_B(0)$ ha dimensione 3-r(B)=2=m(0) e quindi B è diagonalizzabile. In conclusione, A e B non sono simili. Riassumendo i risultati, otteniamo che A e B sono simili per $h\neq -3, -2$.

PRIMA PROVA IN ITINERE - 06/05/2011 - VERSIONE B

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 4. (6+3+2 punti) Si consideri il sistema lineareAX=B dove la matrice completa del sistema è

$$(A|B) = \left(\begin{array}{ccc|c} 1 & 2 & 1 & b \\ a & 2 & 1 & 2 \\ 1 & 2 & a & 2 \end{array}\right),$$

con a, b parametri reali.

- (1) Stabilire se e quante soluzioni ammette il sistema, al variare di a, b.
- (2) Determinare se esistono valori di a, b per i quali il sistema ammette $X = (-4, -4, 5)^t$ tra le soluzioni.
- (3) Posto a=1 e b=0, ed interpretando (A|B) come matrice rappresentativa, rispetto alle basi canoniche, di un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$, determinare due matrici C, di tipo 3×2 , e D, di tipo 2×4 , che verificano l' uguaglianza CD=(A|B). Le matrici C e D esistono anche se poniamo a=b=0?

Esercizio 5. (4+5+2 punti) Sia U il sottospazio di \mathbb{R}^4 costituito dai vettori $(x,y,z,t)\in\mathbb{R}^4$ che risolvono il sistema lineare omogeneo

$$U: \left\{ \begin{array}{l} x - y - t = 0 \\ x + z + t = 0 \\ 2x - y + z = 0. \end{array} \right.$$

Sia poi V il sottospazio di \mathbb{R}^4 definito come

$$V = L((1,0,-2,1),(0,1,2,1),(1,0,0,2)).$$

- (1) Calcolare basi e dimensioni di U, V.
- (2) Calcolare basi e dimensioni di $U \cap V$ e U + V.
- (3) Costruire, se possibile, un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $\ker(f) = U$ ed f(V) = L((1,1,2),(1,0,1)).

Esercizio 6. (4+4+3 punti) Siano date le matrici:

$$A = \begin{pmatrix} 2 & -3 & 0 \\ -h & h - 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 0 & h & -h \\ 0 & -1 & 0 \\ 0 & 0 & 2 + h \end{pmatrix},$$

dipendenti dal parametro reale h.

- (1) Posto h=-3, determinare gli autovalori ed una base per ogni autospazio di A.
- (2) Per quali h la matrice A è diagonalizzabile?
- (3) Per quali h le due matrici A e B sono simili?

PRIMA PROVA IN ITINERE - 06/05/2011 - VERSIONE C

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 7. (6+3+2 punti) Si consideri il sistema lineareAX=B dove la matrice completa del sistema è

$$(A|B) = \begin{pmatrix} a & 1 & -1 & 1 \\ 1 & 1 & -1 & b \\ 1 & a & -1 & 1 \end{pmatrix},$$

con a, b parametri reali.

- (1) Stabilire se e quante soluzioni ammette il sistema, al variare di a, b.
- (2) Determinare se esistono valori di a, b per i quali il sistema ammette $X = (-4, -4, 5)^t$ tra le soluzioni.
- (3) Posto a=1 e b=0, ed interpretando (A|B) come matrice rappresentativa, rispetto alle basi canoniche, di un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$, determinare due matrici C, di tipo 3×2 , e D, di tipo 2×4 , che verificano l' uguaglianza CD=(A|B). Le matrici C e D esistono anche se poniamo a=b=0?

Esercizio 8. (4+5+2 punti) Sia U il sottospazio di $\operatorname{Mat}(2,2;\mathbb{R})$ costituito dalle matrici $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \operatorname{Mat}(2,2;\mathbb{R})$ che risolvono il sistema lineare omogeneo

$$U: \begin{cases} x+y-z = 0\\ x-z+t = 0\\ 2x+y-2z+t = 0. \end{cases}$$

Sia poi V il sottospazio di $Mat(2,2;\mathbb{R})$ definito come

$$V = L\left(\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 2 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 2 & 2 \end{array}\right)\right).$$

- (1) Calcolare basi e dimensioni di U, V.
- (2) Calcolare basi e dimensioni di $U \cap V$ e U + V.
- (3) Costruire, se possibile, un' applicazione lineare $f: \operatorname{Mat}(2,2;\mathbb{R}) \to \mathbb{R}^3$ tale che $\ker(f) = U$ ed f(V) = L((1,1,2),(1,0,1)).

Esercizio 9. (4+4+3 punti) Siano date le matrici:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1+h & h & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 1 & 0 & -h \\ 0 & -1 & 0 \\ 0 & 0 & 2+h \end{pmatrix},$$

dipendenti dal parametro reale h.

- (1) Posto h=-3, determinare gli autovalori ed una base per ogni autospazio di A.
- (2) Per quali h la matrice A è diagonalizzabile?
- (3) Per quali h le due matrici A e B sono simili?

PRIMA PROVA IN ITINERE - 06/05/2011 - VERSIONE D

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 10. (6+3+2 punti) Si consideri il sistema lineareAX=B dove la matrice completa del sistema è

$$(A|B) = \left(\begin{array}{ccc|c} a & 2 & 1 & 1\\ 1 & 2 & 1 & b\\ 1 & 2 & a & 1 \end{array}\right),$$

con a, b parametri reali.

- (1) Stabilire se e quante soluzioni ammette il sistema, al variare di a, b.
- (2) Determinare se esistono valori di a, b per i quali il sistema ammette $X = (-4, -4, 5)^t$ tra le soluzioni.
- (3) Posto a=1 e b=0, ed interpretando (A|B) come matrice rappresentativa, rispetto alle basi canoniche, di un' applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$, determinare due matrici C, di tipo 3×2 , e D, di tipo 2×4 , che verificano l' uguaglianza CD=(A|B). Le matrici C e D esistono anche se poniamo a=b=0?

Esercizio 11. (4+5+2 punti) Sia U il sottospazio di $Mat(2,2;\mathbb{R})$ costituito dalle matrici $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in Mat(2,2;\mathbb{R})$ che risolvono il sistema lineare omogeneo

$$U: \left\{ \begin{array}{l} x-y-t=0\\ x+z+t=0\\ 2x-y+z=0. \end{array} \right.$$

Sia poi V il sottospazio di $Mat(2,2;\mathbb{R})$ definito come

$$V = L\left(\left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right)\right).$$

- (1) Calcolare basi e dimensioni di U, V.
- (2) Calcolare basi e dimensioni di $U \cap V$ e U + V.
- (3) Costruire, se possibile, un' applicazione lineare $f: \operatorname{Mat}(2,2;\mathbb{R}) \to \mathbb{R}^3$ tale che $\ker(f) = U$ ed f(V) = L((1,1,2),(1,0,1)).

Esercizio 12. (4+4+3 punti) Siano date le matrici:

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 1+h & 1+h & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{e} \quad B = \begin{pmatrix} 2 & 0 & -h \\ 0 & 0 & 0 \\ 0 & 0 & 3+h \end{pmatrix},$$

dipendenti dal parametro reale h.

- (1) Posto h=-1, determinare gli autovalori ed una base per ogni autospazio di A.
- (2) Per quali h la matrice A è diagonalizzabile?
- (3) Per quali h le due matrici A e B sono simili?

SECONDA PROVA IN ITINERE - 29/06/2011

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 13. (4+5+2 punti) Sia dato il riferimento euclideo (O,(i,j,k)) dello spazio euclideo \mathbb{E}^3 , e siano date le rette r ed s di equazioni parametriche r: x = t, y = 1 + t, z = 1, e s: x = t, y = 1, z = -t.

- (1) Discutere la loro posizione reciproca e determinare l'angolo che esse formano.
- (2) Determinare l'equazione cartesiana del piano contenente r e parallelo ad s, e determinare la distanza tra r ed s.
- (3) Determinare il massimo angolo formato da un piano contenente r e la retta s. Calcolare quindi l' equazione del piano contenente r che soddisfa tale condizione.

Svolgimento. Cambiato il parametro della retta s da t a τ , il sistema che si ottiene per determinare la loro posizione reciproca è formato dalle tre equazioni $t=\tau,1+t=1,1=-\tau$. Dopo facili calcoli, la matrice completa del sistema precedente è

$$(M|N) = \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{array}\right)$$

e quindi r(M)=2, r(N)=3. Otteniamo allora che r ed s sono due rette sghembe. La retta r è parallela al vettore $\overrightarrow{v}=\overrightarrow{i}+\overrightarrow{j}$ mentre la retta s è parallela al vettore $\overrightarrow{u}=\overrightarrow{i}-\overrightarrow{k}$, come si ricava facilmente dalle loro equazioni parametriche. L' angolo θ tra le due rette verifica l' equazione $\cos(\theta)=\frac{1}{2}$ ossia $\theta=\pi/3$.

La retta r contiene il punto A(0,1,1). L' equazione del piano α cercato è allora

$$\overrightarrow{v} \wedge \overrightarrow{u} \cdot \overrightarrow{AP} = 0$$
, ossia det $\begin{pmatrix} 1 & 1 & x \\ 1 & 0 & y - 1 \\ 0 & -1 & z - 1 \end{pmatrix} = -x + y - z = 0$.

È ben noto che $d(r,s)=d(\alpha,s)=d(\alpha,B)$ per ogni $B\in s$. Visto che s contiene il punto B(0,1,0), abbiamo

$$d(r,s) = d(\alpha, B) = \frac{|-1|}{\sqrt{3}} = \frac{1}{\sqrt{3}}.$$

Sapendo che l' angolo non cambia per parallelismo, sia s' una retta parallela ad s ed incidente r. Sia ora π un piano che contiene r. L' angolo φ tra π ed s' è l' angolo che la retta s' forma con la sua proiezione ortogonale su π , ed è inferiore all' angolo che s' forma con una qualunque altra retta contenuta in π . Quindi, $\varphi \leq \widehat{r,s'} = \widehat{r,s} = \pi/3$. Ovviamente, l' uguaglianza vale se r è la proiezione ortogonale di s' su π . In questo caso, π contiene anche la retta ortogonale ed incidente r ed s', e quindi la sua equazione è $\overrightarrow{v} \wedge (\overrightarrow{v} \wedge \overrightarrow{u}) \cdot \overrightarrow{AP} = 0$. Svolgendo i calcoli, si ottiene $\pi: x-y-2z+3=0$.

Esercizio 14. (6+4+1 punti) Sia dato il riferimento euclideo $(O,(\vec{i},\vec{j}))$ del piano euclideo \mathbb{E}^2 , e sia dato il fascio di coniche di equazione

$$C_k : kx^2 + 2(2-k)xy + ky^2 - x - y + 1 - k = 0.$$

- (1) Posto k=3, classificare la conica \mathcal{C}_3 e determinarne una sua equazione canonica. Calcolare quindi le coordinate del suo centro e gli assi, oppure calcolare il cambio di riferimento che la riporta in forma canonica.
- (2) Determinare i valori di k per cui C_k è una conica degenere e le coordinate dei punti base del fascio.
- (3) Calcolare poi i valori di k per cui \mathcal{C}_k è un' iperbole equilatera, e quelli per cui essa è una circonferenza.

Svolgimento. La conica C_3 ha equazione $3x^2-2xy+3y^2-x-y-2=0$. Le matrici associate a C_3 sono quindi

$$B = \begin{pmatrix} 3 & -1 & -\frac{1}{2} \\ -1 & 3 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -2 \end{pmatrix} \qquad e \qquad A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}.$$

Il determinante della prima matrice è $\det(B)=-18\neq 0$ e quindi \mathcal{C}_3 è una conica non degenere, mentre il determinate della seconda è $\det(A)=8>0$. In conclusione, \mathcal{C}_3 è un' ellisse. Sia $\alpha X^2+\beta Y^2+\gamma=0$ la sua equazione canonica. Allora $\gamma=\det(B)/\det(A)=-\frac{9}{4}$. Il polinomio caratteristico di A è p(t)=(t-4)(t-2). Le sue radici sono 2 e 4 entrambe di molteplicità 1. Poniamo $\alpha=2,\beta=4$. In definitiva, l' equazione canonica di \mathcal{C}_3 è $\frac{X^2}{\frac{9}{8}}+\frac{Y^2}{\frac{9}{16}}=1$. Il centro si simmetria di \mathcal{C}_3 si ottiene risolvendo il sistema

$$\begin{cases} 3x - y - \frac{1}{2} = 0 \\ -x + 3y - \frac{1}{2} = 0 \end{cases}$$

la cui unica soluzione è $C(\frac{1}{4},\frac{1}{4})$. L' autospazio V(2) è costituito da tutti e soli i vettori dipendenti linearmente da $\overrightarrow{w} = \overrightarrow{i} + \overrightarrow{j}$. La matrice P è allora

$$P = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right).$$

Il cambio di riferimento è allora

$$\left(\begin{array}{c} x \\ y \end{array}\right) = P\left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array}\right).$$

Visto che nel sistema di riferimento intrinseco di C_3 gli assi di simmetria ortogonale hanno equazioni X=0 e Y=0, essi hanno equazioni $x+y-\frac{1}{2}=0$ e x-y=0 nel sistema di riferimento dato. Il disegno della conica non è richiesto. Esso comunque è

Le matrici associate a C_k sono

$$B_k = \begin{pmatrix} k & 2-k & -\frac{1}{2} \\ 2-k & k & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1-k \end{pmatrix} \qquad e \qquad A = \begin{pmatrix} k & 2-k \\ 2-k & k \end{pmatrix}.$$

La conica C_k è degenere se $\det(B_k) = 0$. Con facili calcoli, si ha che $\det(B_k) = (1-k)(4k-3)$ e quindi C_k è degenere solo se k=1 oppure se $k=\frac{3}{4}$.

I punti base del fascio si ottengono risolvendo il sistema

$$\left\{ \begin{array}{l} x^2 - 2xy + y^2 - 1 = 0 \\ 4xy - x - y + 1 = 0 \end{array} \right. .$$

Le soluzioni del sistema sono i quattro punti di coordinate $(0,1), (-\frac{1}{2}, \frac{1}{2}), (1,0), (\frac{1}{2}, -\frac{1}{2}).$ \mathcal{C}_k è un' iperbole equilatera se A_k ha traccia nulla, e B_k ha rango 3. L' unico valore di k per cui la traccia di A_k è nulla è k=0, che non è tra quelli per cui \mathcal{C}_k è degenere.

Infine, C_k è una circonferenza se A_k è della forma cI e B_k ha rango 3. L' unico valore per cui questo accade è k=2.

Esercizio 15. (4+5+2 punti) Sia dato il riferimento euclideo $(O,(\overrightarrow{i,j,k}))$ dello spazio euclideo \mathbb{E}^3 , e siano dati il punto F(0,0,1) ed il piano $\alpha:x-y=1$. Determinare l' equazione del luogo S formato dai punti $P \in \mathbb{E}^3$ che verificano la condizione

$$d(P, F) = \sqrt{2}d(P, \alpha).$$

- (1) Calcolare l'equazione cartesiana di S, e verificare che S è una quadrica.
- (2) Classificare S, calcolare una sua equazione canonica, e specificare se è una quadrica di rotazione.
- (3) Determinare un piano che incontra S lungo una circonferenza, e l' equazione dell' eventuale asse di rotazione della quadrica.

Svolgimento. Sia Pil punto di coordinate (x,y,z). Allora $P\in S$ se le sue coordinate verificano l'equazione

$$\sqrt{x^2 + y^2 + (z - 1)^2} = \sqrt{2} \frac{|x - y - 1|}{\sqrt{2}}.$$

Svolgendo i facili calcoli, si ottiene l'equazione che descrive S ed essa è

$$S: 2xy + z^2 + 2x - 2y - 2z = 0$$

e quindi S è una quadrica.

Le matrici associate ad S sono

$$B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & -1 & 0 \end{pmatrix} \qquad \text{e} \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Con facili calcoli, si ricava che r(B)=4, e $\det(B)=-1<0$. Quindi S è una quadrica liscia a punti ellittici. Il polinomio caratteristico di A è $p(t)=-t^3+t^2+t-1$ e quindi abbiamo 2 autovalori positivi ed uno negativo. In conclusione, S è un iperboloide ellittico, o a 2 falde. Con pochi altri calcoli, si ricava che gli autovalori di A sono $t_1=1$ e $t_2=-1$, con molteplicità m(1)=2, m(-1)=1. Quindi, S è di rotazione. Una sua equazione canonica è $X^2+Y^2-Z^2+\delta=0$ con $-\delta=-1$. L' equazione canonica cercata è allora $X^2+Y^2-Z^2+1=0$.

I piani che incontrano S lungo una circonferenza sono quelli di equazione Z=c nel nuovo sistema di riferimento, ossia quelli ortogonali all' asse Z. Tale asse è parallelo all' autospazio $V(-1)=V(1)^\perp$ e quindi i piani cercati sono paralleli all' autospazio V(1). Le componenti dei vettori di tale autospazio verificano l' equazione x-y=0 e quindi i piani richiesti hanno equazione x-y+h=0 con $h\in\mathbb{R}$. Inoltre, l' autospazio V(-1) ha $(\stackrel{\rightarrow}{i}-\stackrel{\rightarrow}{j})$ come base (non ortonormale). Il centro di simmetria di S ha coordinate C(1,-1,1) e quindi l' asse di rotazione di S ha equazione a:x=1+t,y=-1-t,z=1. È facile intuire che l' asse di rotazione di S è la retta per F ortogonale al piano α , mentre i piani paralleli ad α tagliano S lungo circonferenze.

TEMA D'ESAME- 14/07/2011

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 16. (5+5+1 punti) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la seguente applicazione lineare

$$f(x, y, z, t) = (x + y - 2z + t, x - y + z + t, x - 2z, y + t).$$

- (1) Determinare una base e la dimensione del nucleo e dell' immagine di f.
- (2) Sia U il sottospazio di \mathbb{R}^4 formato definito come

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - z + t = 0, x - y = 0\}.$$

Determinare una base di U, e stabilire se esistono vettori $\overrightarrow{v} \in \mathbb{R}^4$ che non appartengono a $\ker(f) + U$.

(3) Verificare che f ammette $\lambda = 0$ come autovalore.

Svolgimento. Cominciamo col calcolare base e dimensione di $\ker(f)$. Dalla sua definizione, sappiamo che i vettori (x,y,z,t) appartenenti a $\ker(f)$ sono tutti e soli quelli che verificano l' uguaglianza f(x,y,z,t)=(0,0,0,0), ossia tutti e soli quelli che risolvono il sistema lineare

$$\begin{cases} x + y - 2z + t = 0 \\ x - y + z + t = 0 \\ x - 2z = 0 \\ y + t = 0 \end{cases}.$$

Detta A la matrice dei coefficienti delle incognite, possiamo ridurla effettuando, nell' ordine indicato, le operazioni elementari $R_2 - R_1 \rightarrow R_2$, $R_3 - R_1 \rightarrow R_3$, $R_3 - \frac{1}{2}R_2 \rightarrow R_3$, $R_4 + \frac{1}{2}R_2 \rightarrow R_4$, $R_4 + R_3 \rightarrow R_4$. Si ottiene la matrice

$$\begin{pmatrix}
\boxed{1} & 1 & -2 & 1 \\
0 & \boxed{-2} & 3 & 0 \\
0 & 0 & -\frac{3}{2} & \boxed{-1} \\
0 & 0 & 0 & 0
\end{pmatrix}$$

e quindi r(A) = 3, ossia $\dim(\ker(f)) = 1$. I vettori di $\ker(f)$ sono quindi $\ker(f) = \{z(2, \frac{3}{2}, 1, -\frac{3}{2}) \mid z \in \mathbb{R}\}$ e in conclusione una base di $\ker(f)$ è $B_1 = ((4, 3, 2, -3))$.

Sia B = (4, 3, 2, -3), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) una base di \mathbb{R}^4 che completa B_1 . Sapendo che Im(f) è generato dalle immagini dei 4 vettori indicati, che il primo dei 4 ha immagine nulla, e che dim(Im(f)) = 3 per il Teorema del Rango, allora una base di Im(f) è $B_2 = (f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1)) = ((1, -1, 0, 1), (-2, 1, -2, 0), (1, 1, 0, 1)).$

Con facili calcoli, possiamo riscrivere il sottospazio U come

$$U = \{(x, x, x + t, t) \mid x, t \in \mathbb{R}\} = L((1, 1, 1, 0), (0, 0, 1, 1))$$

e quindi $\dim(U) = 2$, ed una sua base è $B_3 = ((1, 1, 1, 0), (0, 0, 1, 1))$. Sapendo che $\dim(\ker(f) + U) \leq \dim(\ker(f)) + \dim(U) = 3$, è evidente che esistono vettori di \mathbb{R}^4 che non appartengono al sottospazio $\ker(f) + U$.

Infine, sappiamo dai calcoli precedenti, che f(4,3,2,-3)=(0,0,0,0)=0(4,3,2,-3). Per definizione di autovalore, $\lambda=0$ è allora autovalore per f. Inoltre, $V(0)=\ker(f)$ e quindi ha ((4,3,2,-3)) come base e dimensione 1.

Esercizio 17. (5+5+1 punti) Nello spazio euclideo \mathbb{E}^3 , sia fissato un riferimento $\mathcal{R} = (O, (i, j, k))$, e, in esso, si considerino i punti A(1, 4, 0), B(3, 2, 0), C(1, 2, 2).

- (1) Determinare l'equazione del luogo dei punti equidistanti da A e B, e quella del luogo dei punti equidistanti da A e C. Dedurre le equazioni del luogo dei punti equidistanti da A, B, C.
- (2) Determinare l'equazione del piano π contenente i punti A, B, C. Scrivere le coordinate del centro della circonferenza del piano π passante per A, B, C.
- (3) Senza ulteriori calcoli, determinare le coordinate del centro della sfera di raggio minimo passante per A, B, C, giustificando la risposta.

Svolgimento. Sia P il punto di coordinate (x,y,z). Esso è equidistante da A e da B se $\sqrt{(x-1)^2+(y-4)^2+z^2}=\sqrt{(x-3)^2+(y-2)^2+z^2}$. Elevando al quadrato e semplificando, otteniamo che l' equazione del luogo cercato è x-y+1=0 e quindi il luogo cercato è un piano. Analogamente, il luogo dei punti equidistanti da A e C è il piano di equazione y-z-2=0. Il luogo dei punti equidistanti da A, B, e C è l' intersezione dei due piani ed è quindi

$$\begin{cases} x - y + 1 = 0 \\ y - z - 2 = 0 \end{cases}.$$

È immediato verificare che i due piani non sono paralleli, e quindi il luogo è la retta r di equazione parametrica $r: x=-1+t, y=t, z=-2+t, t\in \mathbb{R}$.

Il piano contenente A,B,e Cha equazione vettoriale $\stackrel{\rightarrow}{AP}\cdot \stackrel{\rightarrow}{AB}\wedge \stackrel{\rightarrow}{AC}=0$ ossia

$$\det \left(\begin{array}{ccc} x - 1 & 2 & 0 \\ y - 4 & -2 & -2 \\ z & 0 & 2 \end{array} \right) = 0.$$

Con facili calcoli, si ottiene l' equazione cartesiana di π , ed essa è $\pi: x+y+z-5=0$. La circonferenza per A,B,C è l' intersezione di π con una qualunque sfera contenente i tre punti. Il centro E di una siffatta sfera è equidistante dai punti A,B,C e quindi è un punto di r. Il raggio R della sfera si collega al raggio ρ della circonferenza tramite l' equazione $R^2=\rho^2+d(E,\pi)^2$, e quindi $R\geq \rho$. Il centro della circonferenza F è la proiezione ortogonale di E su π , ma è anche il centro della sfera di raggio uguale al raggio della circonferenza contenente la circonferenza, e si ottiene ovviamente quando $d(E,\pi)=0$.. Questo prova sia che la retta r è ortogonale al piano π , sia che F è il punto d' intersezione di r con π . Con facili calcoli, si ottiene che il parametro t deve soddisfare l' equazione 3t-8=0, da cui t=8/3, ed il centro della circonferenza è $F(\frac{5}{3},\frac{8}{3},\frac{2}{3})$. Per il precedente ragionamento, F è anche il centro della sfera di raggio minimo contenente la circonferenza per A,B,C. Nel seguente disegno, il giallo è riportato il luogo dei punti equidistanti da A e C, in verde quello dei punti equidistanti da A e B, in rosso è rappresentato il piano contenente A,B,C, ed il resto del disegno è di facile interpretazione.

Esercizio 18. (4+6+1 punti) Nello spazio euclideo \mathbb{E}^3 , sia fissato un riferimento $\mathcal{R}=(O,(\vec{i},\vec{j},\vec{k}))$. In tale riferimento, si consideri il piano π di equazione x+y+z-2=0, e la quadrica Ω di equazione $x^2-z^2+2y=0$.

- (1) Scrivere l'equazione cartesiana del cilindro S avente generatrici parallele all'asse z, e direttrice data dalla conica γ intersezione tra Ω e π .
- (2) Classificare la conica sezione di S con il piano xy, ridurla a forma canonica e determinare il cambio di riferimento che la riduce a forma canonica.

(3) Verificare che la matrice associata alla parte quadratica di S ammette 0 come autovalore, e determinare il relativo autospazio.

Svolgimento. Visto che l' equazione cartesiana di S manca della variabile z, la sua equazione si ottiene semplicemente eliminando la variabile z dall' equazione di Ω utilizzando l' equazione cartesiana di π . In pratica, dall' equazione di π si ricava che z=2-x-y. L' equazione di S è allora $x^2-(2-x-y)^2+2y=0$. Svolgendo i calcoli e semplificando, si ha

$$S: 2xy + y^2 - 4x - 6y + 4 = 0.$$

La conica $\Gamma = S \cap [xy]$ è la conica del piano z = 0 di equazione $2xy + y^2 - 4x - 6y + 4 = 0$, ovviamente rispetto al riferimento dato inizialmente. Lavoriamo quindi nel piano [xy], rispetto al riferimento indotto $\mathcal{R}' = (O, (i, j))$. Le matrici associate alla conica sono allora

$$B = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ -2 & -3 & 4 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Con facili calcoli, si ha che $\det(B)=4\neq 0$, e $\det(A)=-1<0$. Quindi Γ è un' iperbole. Detta $\alpha X^2+\beta Y^2+\gamma=0$ una sua equazione canonica, abbiamo $\gamma=\det(B)/\det(A)=-4$. Gli autovalori di A sono le radici del polinomio $p(t)=\det(A-tI)=t^2-t-1=0$ e sono quindi uguali a $\frac{1\pm\sqrt{5}}{2}$. Posto $\alpha=\frac{1+\sqrt{5}}{2}$ e $\beta=-\frac{\sqrt{5}-1}{2}$, otteniamo

$$\Gamma: \frac{X^2}{2(\sqrt{5}-1)} - \frac{Y^2}{2(\sqrt{5}+1)} = 1.$$

Il centro di simmetria di Γ si ottiene risolvendo il sistema lineare

$$\begin{cases} y-2=0\\ x+y-3=0 \end{cases}$$

la cui unica soluzione è C(1,2). L' autospazio relativo all' autovalore $\frac{1+\sqrt{5}}{2}$ è generato dal vettore $\vec{v}=2$ \vec{i} $+(1+\sqrt{5})$ \vec{j} ed una sua base ortonormale è costituita

dall' unico vettore $\overrightarrow{e_1} = \frac{1}{\sqrt{10+2\sqrt{5}}} \overrightarrow{v}$. Il cambio di riferimento che riporta Γ in forma canonica è allora

$$\left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{cc} \frac{2}{\sqrt{10+2\sqrt{5}}} & -\frac{1+\sqrt{5}}{\sqrt{10+2\sqrt{5}}}\\ \frac{1+\sqrt{5}}{\sqrt{10+2\sqrt{5}}} & \frac{2}{\sqrt{10+2\sqrt{5}}} \end{array}\right) \left(\begin{array}{c} X\\ Y \end{array}\right) + \left(\begin{array}{c} 1\\ 2 \end{array}\right).$$

La matrice associata alla parte quadratica di S è

$$M = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

ed il suo polinomio caratteristico è uguale a $q(t)=-t(t^2-t-1)$. Quindi, $\lambda=0$ è autovalore per M, ed il suo autospazio è $V(0)=L(\stackrel{\rightarrow}{k})$. Questo è coerente con fatto che S è un cilindro iperbolico avente generatrici parallele all' asse z del riferimento \mathcal{R} .

TEMA D' ESAME - 05/09/2011

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 19. (5+3+3 punti) Sia $f_k: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare definita come

$$f_k(x, y, z) = (x + ky + (2 - k)z, kx + y + kz),$$

essendo k un parametro reale.

- (1) Determinare, al variare di k, la dimensione ed una base sia del nucleo sia dell' immagine di f_k .
- (2) Sia U il sottospazio di \mathbb{R}^3 definito come

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0\}.$$

Determinare una base di $U \cap \ker(f_1)$ e la sua dimensione.

(3) Sia dato il prodotto scalare standard in \mathbb{R}^3 . Si calcoli la proiezione ortogonale di $\ker(f_3)$ su U.

Svolgimento. (1) Siano C e C' le basi canoniche di \mathbb{R}^3 ed \mathbb{R}^2 , rispettivamente, e sia A_k la matrice che rappresenta f_k rispetto alle basi C e C'. Con facili calcoli, si ricava che

$$A_k = \left(\begin{array}{ccc} 1 & k & 2-k \\ k & 1 & k \end{array}\right).$$

Effettuiamo l' operazione elementare $R_2 - kR_1 \to R_2$ sulle righe di A_k . Otteniamo allora la matrice

$$\left(\begin{array}{ccc} 1 & k & 2-k \\ 0 & 1-k^2 & k^2-k \end{array}\right).$$

Abbiamo quindi che $r(A_k) = 2$ se $k \neq 1$, mentre $r(A_k) = 1$ se k = 1. Sapendo che l' immagine di f_k ha dimensione uguale al rango di A_k , otteniamo che

$$\dim \operatorname{Im}(f_k) = \begin{cases} 2 & \text{se } k \neq 1 \\ 1 & \text{se } k = 1 \end{cases} \qquad \dim \ker(f_k) = \begin{cases} 1 & \text{se } k \neq 1 \\ 2 & \text{se } k = 1 \end{cases}$$

avendo ricavato la dimensione del nucleo dal Teorema del Rango.

Sia $k \neq 1$. Sappiamo che dim $\text{Im}(f_k) = 2$, e quindi che $\text{Im}(f_k) = \mathbb{R}^2$. Una sua base è allora una base qualunque di \mathbb{R}^2 , ad esempio la base canonica C'.

Per calcolare il nucleo, dobbiamo risolvere il sistema lineare omogeneo con matrice dei coefficienti delle incognite

$$\left(\begin{array}{ccc} 1 & k & 2-k \\ 0 & 1-k^2 & k^2-k \end{array}\right).$$

Essendo $k \neq 1$, possiamo dividere la seconda riga per k-1, ed otteniamo la nuova matrice

$$\left(\begin{array}{ccc} 1 & k & 2-k \\ 0 & -(1+k) & k \end{array}\right).$$

Con facili calcoli, otteniamo che le soluzioni sono della forma ${}^t(-k-2,k,1+k)t$ con $t \in \mathbb{R}$. Le soluzioni sono le componenti dei vettori del nucleo rispetto alla base canonica C di \mathbb{R}^3 , e quindi si ha $\ker(f_k) = L((-k-2,k,1+k))$. È evidente che una sua base è ((-k-2,k,1+k)) per ogni k fissato, diverso da 1.

Sia k=1. La matrice A_1 che rappresenta f_1 rispetto alle base canonica $C \in C'$ è

$$A_1 = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right),$$

e sappiamo che ha rango 1, ed in particolare, tutte le sue colonne sono uguali. Quindi, f(1,0,0) = f(0,1,0) = f(0,0,1) = (1,1) da cui $\text{Im}(f_1) = L((1,1))$, ed una sua base è ((1,1)).

Il nucleo di f_1 è dato da $\ker(f_1) = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$. Con facili calcoli, si ottiene che $\ker(f_1) = L((1, 0, -1), (0, 1, -1))$ ed una sua base è ((1, 0, -1), (0, 1, -1)).

(2) L' intersezione di $\ker(f_1)$ ed U si ottiene risolvendo il sistema lineare omogeneo

$$\begin{cases} x + y + z = 0 \\ x - y = 0 \end{cases}$$

Tutti i vettori che risolvono tale sistema sono proporzionali a (1, 1, -2) e quindi $\dim U \cap \ker(f_1) = 1$ ed una sua base è ((1, 1, -2)).

(3) Una base di $\ker(f_3)$ è $(\overrightarrow{v} = (-5,3,4))$ come si ricava facilmente dai calcoli fatti. Il complemento ortogonale di U ha dimensione 1 ed una sua base è ((1,-1,0)). Quindi, una base ortonormale di U^{\perp} è $(\overrightarrow{e} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right))$. La proiezione ortogonale di \overrightarrow{v} su U^{\perp} è uguale a $(\overrightarrow{v} \cdot \overrightarrow{e})$ \overrightarrow{e} e quindi la proiezione ortogonale di \overrightarrow{v} su U è uguale a $\overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{e})$ $\overrightarrow{e} = (-5,4,3) + 4\sqrt{2}$ $\overrightarrow{e} = (-5,3,4) - (-4,4,0) = (-1,-1,4)$. In conclusione, la proiezione ortogonale di $\ker(f_3)$ su U è il sottospazio L((-1,-1,4)).

Esercizio 20. (5+6 punti) Nello spazio euclideo \mathbb{E}^3 sia fissato un riferimento euclideo $\mathcal{R}=(O,(\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j},\stackrel{\rightarrow}{k}))$. In tale riferimento, siano dati la retta $r:x=-3+4t,y=-4-3t,z=0,t\in\mathbb{R}$, ed il piano $\alpha:3x+4y=0$.

- (1) Determinare la posizione mutua di r ed α e la loro distanza.
- (2) Calcolare l' equazione della sfera S tangente ad α in O(0,0,0) e tangente ad r.

Svolgimento. (1) Calcoliamo l' intersezione tra r ed α , sostituendo l' equazione parametrica di r in quella cartesiana di α : con facili calcoli si ottiene -25=0. Quindi, $r\cap\alpha=\emptyset$ e di conseguenza, $r\|\alpha$. Inoltre, $d(r,\alpha)=d(A,\alpha)$ qualunque punto $A\in r$ consideriamo. Posto t=0, otteniamo A(-3,-4,0). Usando l' opportuna formula, si ha $d(A,\alpha)=\frac{25}{5}=5$, da cui $d(r,\alpha)=5$.

(2) Ogni sfera tangente ad α in O ha centro C sulla retta p perpendicolare ad α per O e raggio d(C,O). La retta p ha equazione $p: x=3t, y=4t, z=0, t\in \mathbb{R}$, e quindi C(3t,4t,0). Il raggio R è allora uguale a $d(C,O)=\sqrt{9t^2+16t^2}=5|t|$. La distanza tra C ed r è ancora uguale al raggio della sfera, essendo S tangente anche ad r. Sapendo che

$$d(C,r) = \frac{|\overrightarrow{AC} \wedge \overrightarrow{v}|}{|\overrightarrow{v}|}$$

con A(-3,-4,0) e $\overrightarrow{v}=4$ \overrightarrow{i} -3 \overrightarrow{j} parallelo ad r, otteniamo d(C,r)=5|t+1|. Si ha allora l' equazione |t+1|=|t|, la cui unica soluzione è $t=-\frac{1}{2}$. In conclusione,

 $C(-\frac{3}{2}, -2, 0), R = \frac{5}{2}$ e quindi

$$S: \left(x + \frac{3}{2}\right)^2 + (y+2)^2 + z^2 = \frac{25}{4}$$

ossia $S: x^2 + y^2 + z^2 + 3x + 4y = 0$.

Esercizio 21. (5+5+1 punti) Si consideri la matrice

$$M(h,k) = \begin{pmatrix} k & k & 2h \\ k & 1 & h+1 \\ 3h & h+1 & 2 \end{pmatrix}$$

dipendente dai parametri reali h, k.

- (1) Stabilire per quali valori dei parametri h e k la matrice M(h, k) è la matrice completa associata ad una conica, e verificare che esse formano un fascio \mathcal{F} .
- (2) Classificare le coniche di \mathcal{F} al variare dei parametri h e k.
- (3) Determinare i valori dei parametri per cui P(1,1) appartiene alla conica.

Svolgimento. (1) La matrice completa associata ad una conica è simmetrica. La matrice M(h, k) è simmetrica se, e solo se, 3h = 2h ossia h = 0. In conclusione,

$$M(0,k) = \left(\begin{array}{ccc} k & k & 0 \\ k & 1 & 1 \\ 0 & 1 & 1 \end{array} \right)$$

è la matrice completa associata alla conica

$$\Gamma_k : kx^2 + 2kxy + y^2 + 2y + 2 = 0.$$

Le coniche Γ_k formano un fascio \mathcal{F} visto che l'equazione di Γ_k dipende da un solo parametro in modo lineare.

(2) Classifichiamo ora le coniche Γ_k al variare di $k\in\mathbb{R}$. Oltre alla matrice M(0,k) consideriamo anche la matrice

$$A(k) = \left(\begin{array}{cc} k & k \\ k & 1 \end{array}\right).$$

Con facili calcoli, si ha che $\det(M(0,k)) = k - 2k^2$, e $\det(A(k)) = k - k^2$. Inoltre, $\det(A(k)) > 0$ se 0 < k < 1, mentre $\det(M(0,k)) \neq 0$ se $k \neq 0, \frac{1}{2}$. Abbiamo quindi che

$$\begin{array}{lll} \text{se } k < 0 & \Gamma_k \text{ è un' iperbole} \\ \text{se } k = 0 & \Gamma_0 \text{ è degenere di tipo parabolico} \\ \text{se } 0 < k < 1, k \neq \frac{1}{2} & \Gamma_k \text{ è un' ellisse} \\ \text{se } k = \frac{1}{2} & \Gamma_{\frac{1}{2}} \text{ è degenere di tipo ellittico} \\ \text{se } k = 1 & \Gamma_1 \text{ è una parabola} \\ \text{se } k > 1 & \Gamma_k \text{ è un' iperbole.} \end{array}$$

Inoltre, se k=0 otteniamo che Γ_0 è unione delle due rette parallele complesse coniugate (prive di punti reali) di equazioni $y=-1\pm i$; se $k=\frac{1}{2},$ $\Gamma_{\frac{1}{2}}$ è unione delle due rette complesse coniugate di equazione $x=(-1\pm i)y\pm 2i$ che si incontrano nell' unico punto reale (2,-2). Infine, se $0< k<\frac{1}{2},$ Γ_k è un' ellisse priva di punti reali, visto che $\operatorname{tr}(A(k)) \det(M(0,k))>0$, mentre se $\frac{1}{2}< k<1$, allora Γ_k è un' ellisse reale, essendo $\operatorname{tr}(A(k)) \det(M(0,k))<0$.

(3)
$$P(1,1) \in \Gamma_k$$
 se, e solo se, $k + 2k + 5 = 0$ ossia $k = -\frac{5}{3}$.

TEMA D' ESAME - 06/02/2012

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 22. (4+2+4+1 punti) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita dalle condizioni seguenti:

- (1) (1,1,0) è autovettore per f relativo all' autovalore -1;
- (2) (1,0,1) appartiene al nucleo di f;
- (3) f(0,1,1) = (2,1,1).

Scrivere la matrice che rappresenta f rispetto alla base B = ((1, 1, 0), (1, 0, 1), (0, 1, 1)) di \mathbb{R}^3 , trovare gli autovalori di f ed una base per ogni suo autospazio. Stabilire quindi se f è diagonalizzabile, motivando la risposta.

Svolgimento. Dalle condizioni assegnate, ricaviamo facilmente che

- f(1,1,0) = -(1,1,0) e quindi $[f(1,1,0)]_B = {}^{t}(-1,0,0)$;
- f(1,0,1) = (0,0,0) e quindi $[f(1,0,1)]_B = {}^t(0,0,0)$;
- f(0,1,1) = (1,1,0) + (1,0,1) e quindi $[f(0,1,1)]_B = {}^t(1,1,0)$.

La matrice associata ad frispetto alla base B è allora

$$A = M_{B,B}(f) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Il polinomio caratteristico di f è $p(t) = \det(A-tI) = -t^2(t+1)$ e quindi le sue radici sono $t_1 = 0$ di molteplicità m(0) = 2, e $t_2 = -1$ di molteplicità m(-1) = 1. Essendo entrambe reali, sono entrambi autovalori di f. Sapendo che $1 \le \dim V(-1) \le m(-1) = 1$, abbiamo che dim V(-1) = 1 e quindi V(-1) ha ((1,1,0)) come base. Dalla teoria, sappiamo che $V(0) = \{v \in \mathbb{R}^3 \mid A[v]_B = 0\}$, e quindi dim V(0) = 3 - r(A). Essendo A già ridotta per righe, è immediato dire che v(A) = 1. Di conseguenza, dim v(0) = 1, e quindi v(0) = 1, e quindi v(0) = 1, e quindi v(0) = 1, abbiamo che v(0) = 1, e quindi v(0) = 1, e quindi v(0) = 1, abbiamo che v(0) = 1, abbiamo che

Esercizio 23. (2+5+4 punti) Nello spazio euclideo \mathbb{E}^3 sia fissato un riferimento euclideo $\mathcal{R} = (O, (\stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{j}, \stackrel{\rightarrow}{k}))$. In tale riferimento, siano dati i piani $\alpha: x+y=1$ e $\beta: x+2y-2z=0$.

- (1) Calcolare l'angolo θ tra α e β .
- (2) Calcolare l'equazione del piano β' simmetrico di β rispetto ad α .
- (3) Determinare infine il luogo dei centri delle sfere S che tagliano circonferenze con lo stesso raggio su tutti e tre i piani.

Svolgimento. Un vettore \overrightarrow{u} ortogonale ad α è $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j}$, come risulta immediato dall' equazione di α . Analogamente, un vettore ortogonale a β è $\overrightarrow{v} = \overrightarrow{i} + 2 \overrightarrow{j} - 2 \overrightarrow{k}$. Ricordando che l' angolo tra i due piani è uguale a quello tra i due vettori se i due

vettori formano un angolo acuto, ovvero è il supplementare dell' angolo tra i due vettori, se tale angolo è ottuso, abbiamo

$$\cos(\theta) = \frac{|\overrightarrow{u} \cdot \overrightarrow{v}|}{|\overrightarrow{u}||\overrightarrow{v}|} = \frac{3}{\sqrt{2} \ 3} = \frac{1}{\sqrt{2}}.$$

Quindi $\theta = \frac{\pi}{4}$. Il piano β' forma con α un angolo di $\pi/4$, e quindi l' angolo tra β e β' è $\pi/2$. In conclusione, β' è il piano ortogonale a β che contiene la retta $r = \alpha \cap \beta$. Il fascio di piani di asse r ha equazione

$$\lambda(x + y - 1) + \mu(x + 2y - 2z) = 0$$

ed un vettore ortogonale a tale piano è $\overrightarrow{w}=(\lambda+\mu)$ $\overrightarrow{i}+(\lambda+2\mu)$ $\overrightarrow{j}-2\mu$ \overrightarrow{k} . Perché tale vettore risulti ortogonale a \overrightarrow{v} è necessario e sufficiente che $\overrightarrow{w}\cdot\overrightarrow{v}=3\lambda+9\mu=0$, ossia $\lambda=-3\mu$. Il piano cercato ha allora equazione $\beta':2x+y+2z-3=0$.

Sia C il centro di una sfera di raggio R che taglia i tre piani α, β e β' lungo circonferenze aventi lo stesso raggio r. Sapendo che $R^2 = r^2 + d(C, \pi)^2$, essendo π un qualunque piano che taglia la sfera precedente, allora $d(C, \alpha) = d(C, \beta) = d(C, \beta')$. Sapendo che i piani β e β' sono ortogonali, allora i punti che verificano $d(C, \beta) = d(C, \beta')$ sono o su α , oppure hanno distanza da α uguale a $d(C, \beta)\sqrt{2}$. Quindi, perché le tre distanza siano tutte uguali tra loro, è necessario e sufficiente che esse siano tutte e tre nulle, ossia $C \in \alpha \cap \beta = r$.

Esercizio 24. (8+3 punti) Si consideri la conica Γ di equazione

$$\Gamma: x^2 - xy + 2x - y = 0.$$

- (1) Classificare Γ , trovarne una forma canonica, e l'equazione del relativo cambio di riferimento.
- (2) Dopo aver verificato che tutte le rette parallele all' asse x tagliano Γ in punti reali, determinare la parallela che taglia su Γ la corda di lunghezza minima.

Svolgimento. Le matrici associate a Γ sono

$$B = \begin{pmatrix} 1 & -\frac{1}{2} & 1\\ -\frac{1}{2} & 0 & -\frac{1}{2}\\ 1 & -\frac{1}{2} & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & -\frac{1}{2}\\ -\frac{1}{2} & 0 \end{pmatrix}.$$

Con facili calcoli, si ha che $\det(B)=\frac{1}{4}\neq 0$ e $\det(A)=-\frac{1}{4}<0$. Quindi, Γ è un' iperbole non degenere. Detta $aX^2+bY^2+c=0$ la sua equazione canonica, abbiamo $c=\det(B)/\det(A)=-1$. Inoltre, a e b sono gli autovalori di A. Il polinomio caratteristico di A è uguale a $p_A(t)=t^2-t-\frac{1}{4}$ e quindi abbiamo $a=(1+\sqrt{2})/2, b=(1-\sqrt{2})/2$.

L' autospazio di A relativo all' autovalore a è generato dal vettore $\overrightarrow{u} = \overrightarrow{i} + (1 - \sqrt{2}) \overrightarrow{j}$, che ha modulo $d = \sqrt{4 - 2\sqrt{2}}$. La matrice ortogonale che diagonalizza A è quindi uguale a

$$P = \begin{pmatrix} \frac{1}{d} & \frac{\sqrt{2}-1}{d} \\ \frac{1-\sqrt{2}}{d} & \frac{1}{d} \end{pmatrix}.$$

Il centro C dell' iperbole ha coordinate che risolvono il sistema lineare

$$\begin{cases} x - \frac{1}{2}y - 1 = 0 \\ -\frac{1}{2}x - \frac{1}{2} = 0 \end{cases}$$

da cui C(-1,0). Il cambio di riferimento è descritto allora da

$$\left(\begin{array}{c} x \\ y \end{array}\right) = P\left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} -1 \\ 0 \end{array}\right).$$

Le rette parallele all' asse x hanno equazione y=c. L' intersezione tra una di tali rette e Γ è data dalle soluzioni del sistema

$$\begin{cases} y = c \\ x^2 - xy + 2x - y = 0 \end{cases}.$$

Sostituendo, otteniamo l' equazione di secondo grado in $x: x^2 + x(2-c) - c = 0$ il cui discriminante è $\Delta = (2-c)^2 + 4c = c^2 + 4$. È evidente che $\Delta > 0$ per ogni valore di c, e quindi le rette parallele all' asse x tagliano Γ sempre in due punti reali e distinti. Le coordinate di tali punti sono $\left(\frac{c-2+\sqrt{c^2+4}}{2},c\right)$ e $\left(\frac{c-2-\sqrt{c^2+4}}{2},c\right)$. La distanza tra i due punti è uguale a $f(c) = \sqrt{c^2+4}$ che ha un unico punto di minimo locale ed assoluto per c=0. La minima lunghezza di una corda siffatta è allora uguale a f(0)=2 e si ottiene tagliando Γ con l' asse x.