Ve406 Lecture 11

Jing Liu

UM-SJTU Joint Institute

June 20, 2018

- Outliers are points with extreme response values $y_i \mid x_i$, so possibly large \hat{e}_i .
- High leverage points are points with extreme x_{ij} -values relative to others.

Q: Do we have any outlier or high leverage point in the following?

• Notice the difference between the following two cases.

• High leverage points do not necessarily have large residuals, so that it is occasionally difficult to recognise them from a residual plot.

- Outliers need to be discussed because outliers can distort the regression.
- Q: Why do we care about high leverage points? Consider the following

Having different response values for high leverage points

 y_i

will alter the regression surface more in comparison to low leverage points.

- This observation leads to a common detection and quantification method.
- Notice the fitted values are always on the regression surface,

 \hat{y}_i

so if they change values, regression surface will change.

Recall we derived the following when we started multiple regression

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}\mathbf{y} = \mathbf{P}\mathbf{y}$$

where \mathbf{P} is known as the project or hat matrix.

• The leverage score is defined as the partial derivative

$$\frac{\partial \hat{y}_i}{\partial y_i} = [\mathbf{P}]_{ii} = p_{ii}$$
 since $\hat{y}_i = \sum_{j=1}^n p_{ij} y_j$

- ullet The leverage score is entirely depended on the design matrix X, not only y.
- For the model having one predictor x_i and no intercept, it can be shown

$$\frac{\partial \hat{y}_i}{\partial y_i} = p_{ii} = \frac{x_i^2}{\sum_{i=1}^{2} x_j^2}$$

• When we add back the intercept, we have

$$\frac{\partial \hat{y}_i}{\partial y_i} = p_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_j - \bar{x})^2}$$

- Intuitively, the leverage score p_{ii} measures the "the amount of support" that the ith data point provided to the regression surface.
- A large leverage score for the ith point means the ith point is high leverage point, and regression surface alters significantly if y_i takes a different value.
- A high leverage point is not necessarily influential, or an influential point

- An influential point is a point whose deletion would significantly alter the regression surface. There are several detection or quantification methods:
- 1. Standardised difference in coefficients

$$\frac{\hat{\beta}_j - \hat{\beta}_j(-i)}{\operatorname{SE}\left(\hat{\beta}_j\right)}$$

where $\hat{\beta}_j(-i)$ is the estimate of β_j after the ith data point has been deleted.

2. Standardised difference in fitted values

$$\frac{\hat{Y}_j - \hat{Y}_j(-i)}{\operatorname{SE}\left(\hat{Y}_j\right)}$$

• The standard errors are based on an estimate of σ without the *i*th data.

检验是否之前这个点,对beta, 或者fitted value产生了影响,前两种办法

3. Cook's distance, D_i , is based on the idea of confidence ellipsoid

$$\left\{\boldsymbol{\beta} \colon \frac{\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)}{(k+1)\hat{\sigma}^{2}} \leq F_{k+1, n-k-1}(\alpha)\right\}$$

which gives $100 \cdot (1 - \alpha)\%$ confidence ellipsoid for β .

• The idea is to define

$$D_i = \frac{\left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}(-i)\right)^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}(-i)\right)}{(k+1)\hat{\sigma}^2}$$

to quantify the whether $\hat{oldsymbol{eta}}(-i)$ is essentially the same as $\hat{oldsymbol{eta}}$ by comparing

$$D_i$$
 with $F_{k+1,n-k-1}(\alpha)$

合起来考虑, 判断beta有没有意义

Recall one reason to look at the plot of

Residuals Vs Fitted Values

is to check the equal variance assumption.

However, when all assumptions are satisfied, it can shown that

$$\operatorname{Var}\left[\hat{e}_{i} \mid \mathbf{X}\right] = (1 - p_{ii})\sigma^{2}$$

- The implication is that high influence points tend to have smaller variances.
- Because of this, it is common practice to standardise the residuals
- Internally studentised residuals/standardised residual are defined by

$$\hat{e}_i' = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1 - p_{ii}}}$$

Externally studentised residuals/studentised residual are defined by

$$\hat{e}_i^* = \frac{\hat{e}_i}{\hat{\sigma}(-i)\sqrt{1 - p_{ii}}}$$