1 Fourier-transformation og karakteristiske funktioner

1.1 Definition og indledende bemærkninger

Definition 1.1.1. Lad μ være et sandsynlighedsmål på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Den Fourier-transofrmerede af μ er funktionen $\hat{\mu} : \mathbb{R}^d \to \mathbb{C}$ givet ved

$$\hat{\mu}(t) = \int_{\mathbb{R}^d} e^{\mathrm{i}\langle t, x \rangle} \mu(\mathrm{d}\,x) = \int_{\mathbb{R}^d} \cos(\langle t, x \rangle) \mu \,\mathrm{d}\,x + \mathrm{i} \int_{\mathbb{R}^d} \sin(\langle t, x \rangle) \mu \,\mathrm{d}\,x$$

for ethvert t i \mathbb{R}^d . I tilfældet d=1 ser vi specielt, at

$$\hat{\mu}(t) = \int_{\mathbb{R}} e^{itx} \mu(dx) = \int_{\mathbb{R}} \cos(tx) \mu dx + i \int_{\mathbb{R}} \sin(tx) \mu dx$$

for eth vert t i $\mathbb R$

Bemærkning 1.1.2. Antag, at μ er et sandsynlighedsmål på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ med tæthed f fra $\mathcal{L}^1(\lambda)^+$ med hensyn til λ . Det følger da for ethvert t i \mathbb{R} , at

$$\hat{\mu}(t) = \int_{\mathbb{R}} e^{itx} \mu(dx) = \int_{\mathbb{R}} e^{itx} f(x) \lambda(dx) = \sqrt{2\pi} \hat{f}(-t),$$

hvor \hat{f} betegner den Fourier-transformerede af f (jvf. Definition 12.1.1 i [M&I])

Eksempel 1.1.3 (Den Fourier-transformerede af normalfordelingen). Vi har

$$\widehat{N(\xi,\sigma^2)}(t) = e^{\mathrm{i}\,t\xi}e^{-\sigma^2t^2/2}$$

for ethvert t i \mathbb{R}

Sætning 1.1.4. Lad μ og ν være ssh.-mål på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ hhv. $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$. Da gælder følgende udsagn:

- (i) $|\hat{\mu}(t)| < \hat{\mu}(0) = 1$ for alle t i \mathbb{R}^d
- (ii) $\hat{\mu}: \mathbb{R}^d \to \mathbb{C}$ er en kontinuert funktion.
- (iii) $\hat{\mu}(-t) = \overline{\hat{\mu}(t)}$ for alle t i \mathbb{R}^d
- (iv) Hvis d = m gælder der, at

$$\int_{\mathbb{R}^d} \hat{\mu}(t)\nu(\mathrm{d}\,t) = \int_{\mathbb{R}^d} \hat{\nu}(t)\mu(\mathrm{d}\,t)$$

- (v) $\widehat{\mu \otimes \nu}(t,s) = \widehat{\mu}(t)\widehat{\nu}(s)$ for alle (t,s) i $\mathbb{R}^d \times \mathbb{R}^m = \mathbb{R}^{d+m}$
- (vi) $\widehat{\mu * \nu}(t,s) = \widehat{\mu}(t) \cdot \widehat{\nu}(t)$ for alle t i \mathbb{R}^d

Definition 1.1.5. Lad X være en d-dimensionel stokastisk vektor defineret op sandsynlighedsfeltet (Ω, \mathcal{F}, P) . Den karakteristiske funktion for X er funktionen $\varphi_X : \mathbb{R}^d \to \mathbb{C}$ givet ved

$$\varphi_{\mathsf{X}} = \hat{P}_{\mathsf{X}}, \text{ hvor } P_{\mathsf{X}} = P \circ \mathsf{X}^{-1}$$

For ethvert t i \mathbb{R}^d hat vi altså, at

$$\varphi_{\mathsf{X}}(t) = \int_{\mathbb{R}^d} e^{\mathrm{i}\langle t, x \rangle} P_{\mathsf{X}}(\mathrm{d}\,x) = \int_{\Omega} e^{\mathrm{i}\langle t, \mathsf{X}(\omega) \rangle} P(\mathrm{d}\,\omega) = \mathbb{E}[e^{\mathrm{i}\langle t, x \rangle}]$$

Eksempel 1.1.6. Hvis X er normalfordelt, så har vi

$$\varphi_{\mathsf{X}}(t) = \widehat{N(\xi, \sigma^2)}(t) = e^{\mathrm{i}\,t\xi} e^{-\sigma^2 t^2/2}$$

for alle t i \mathbb{R}

Korollar 1.1.7 (Egenskaber ved den karakteristiske funktion). Lad X og Y være hhv. d- og m-dimensionale stokastiske vektorere definerede på (Ω, \mathcal{F}, P) . Da gælder følgende udsagn:

- (i) $|\varphi_{\mathsf{X}}(t)| \leq \varphi_{\mathsf{X}}(0) = 1$ for alle t i \mathbb{R}^d
- (ii) Funktionen $\varphi_{\mathsf{X}}: \mathbb{R}^d \to \mathbb{C}$ er kontinuert.
- (iii) $\varphi_{\mathsf{X}}(-t) = \varphi_{-\mathsf{X}}(t) = \overline{\varphi_{\mathsf{X}}(t)}$ for alle t i \mathbb{R}^d
- (iv) For enhver $m \times n$ matrix A og enhver vektor b i \mathbb{R}^m gælder formlen:

$$\varphi_{AX+b}(s) = e^{i\langle s,b\rangle} \varphi_X(A^T s), \quad (s \in \mathbb{R}^m)$$

- (v) Hvis d = m, gælder formlen: $\mathbb{E}[\varphi_{\mathsf{Y}}(\mathsf{X})] = \mathbb{E}[\varphi_{\mathsf{X}}(\mathsf{Y})]$
- (vi) Hvis X og Y er uafhængige, gælder formlen:

$$\varphi_{(\mathsf{X},\mathsf{Y})}(t,s) = \varphi_{\mathsf{X}}(t)\varphi_{\mathsf{Y}}(s), \quad (t \in \mathbb{R}^d, s \in \mathbb{R}^m)$$

(vii) Hvis d = m, og X og Y er uafhængige, gælder formlen:

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t) = \varphi_{(X,Y)}(t,t), \quad (t \in \mathbb{R}^d)$$

1.2 Entydighed og Inversionsætningen for karakteristiske funktioner

Lemma 1.2.1. Lad μ og ν være to mål på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ og antag at $\mu((-n, n)^d) < \infty$ for alle n i \mathbb{N} , samt at

$$\int_{\mathbb{R}^d} \psi \, \mathrm{d} \, \mu = \int_{\mathbb{R}^d} \psi \, \mathrm{d} \, \nu \quad \text{for alle } \psi \, \mathrm{i} \, C_c(\mathbb{R}^d, \mathbb{R})^+$$

Da gælder der, at $\mu = \nu$

Altså at ψ tilhører alle kontinuerte funktioner med kompakt støtte.

Lemma 1.2.2. Lad X og Y være uafhængiged d-dimensionale stokastiske vektorer definerede på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og antag, at X er absolut kontinuert med tæthed f_X (med hensyn til λ_d).

Da er X + Y ligeledes absolut kontinuert med λ_d -tæthed f_{X+Y} givet ved

$$f_{\mathsf{X}+\mathsf{Y}}(z) = \int_{\mathbb{R}^d} f_{\mathsf{X}}(z-y) P_{\mathsf{Y}}(\mathrm{d}\,y), \quad (z \in \mathbb{R}^d)$$

Lemma 1.2.3. Lad X og U være uafhængige d-dimensionale stokastiske vektorer på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og antag, at $U = (U_1, \dots, U_d)$, hvor U_1, \dots, U_d er uafhængige identisk N(0, 1)-fordelte stokastiske variable.

For ethvert σ i $(0, \infty)$ gælder der da, at $X + \sigma U$ er absolut kontinuert med tæthed $f_{X+\sigma U}$ givet ved:

$$f_{\mathsf{X}+\sigma\mathsf{U}}(t) = (2\pi)^{-d} \int_{\mathbb{R}^d} e^{-\frac{1}{2}\sigma^2\|s\|^2} e^{-\operatorname{i}\langle t,s\rangle} \varphi_{\mathsf{X}}(s) \lambda_d(\operatorname{d} s), \quad (t \in \mathbb{R}^d),$$

hvor φ_X er den karakteristiske funktion for X

Lemma 1.2.4. Lad X og U være d-dimensionale stokastiske vektorer defineret på (Ω, \mathcal{F}, P) , og betragt for ethvert n i N den stokastiske vektor $\mathsf{X} + \frac{1}{n}\mathsf{U}$. For enhver funktion ψ fra $C_b(\mathbb{R}^d, \mathbb{C})$ gælder der da, at

$$\int_{\mathbb{R}^d} \psi(t) P_{\mathsf{X} + \frac{1}{n} \mathsf{U}}(\operatorname{d} t) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^d} \psi(t) P_{\mathsf{X}}(\operatorname{d} t)$$

Sætning 1.2.5. (i) Lad X og Y være d-dimensionale stokastiske vektorer. Da gælder implikationen

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{Y}} \Longrightarrow \mathsf{X} \sim \mathsf{Y}$$

(ii) Lad μ og ν være sandsynlighedsmål på (\mathbb{R}^d , $\mathcal{B}(\mathbb{R}^d)$). Da gælder implikationen:

$$\hat{\mu} = \hat{\nu} \Longrightarrow \mu = \nu$$

Bemærkning 1.2.6. X og Y behøver ikke at være defineret på samme sandsynlighedsfelt. Der kan derfor findes stokastiske variable \tilde{X}, \tilde{Y} således at $\tilde{X} \sim X$ og $\tilde{Y} \sim Y$ og ræssonere:

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{Y}} \Longleftrightarrow \varphi_{\tilde{\mathsf{X}}} = \varphi_{\tilde{\mathsf{Y}}} \Longrightarrow \tilde{\mathsf{X}} \sim \tilde{\mathsf{Y}} \Longrightarrow \mathsf{X} \sim \mathsf{Y}$$

Korollar 1.2.7. Lad X og Y være hhv. d- og m-dimensionale stokastiske vektorer definerede på sandsynlighedsfeltet (Ω, \mathcal{F}, P) . Da er X og Y uafhængige, hvis og kun hvis der gælder, at

$$\varphi_{(X,Y)}(t,s) = \varphi_X(t)\varphi_Y(s)$$
 for alle $t \in \mathbb{R}^d$, og $s \in \mathbb{R}^m$

Sætning 1.2.8 (Inversionssætningen for karakteristiske funktioner). Lad X være en d-dimensional stokastisk vektor på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og antag, at dens karakteristiske funktion φ_X er element i $\mathcal{L}^1_{\mathbb{C}}(\lambda_d)$. Da er P_X absolut kontinuert med tæthed f_X givet ved:

$$f_{\mathsf{X}}(t) = (2\pi)^{-d} \int_{\mathbb{R}^d} e^{\mathrm{i}\langle t, s \rangle} \varphi_{\mathsf{X}}(s) \lambda_d(\mathrm{d}\, s), \quad (t \in \mathbb{R}^d)$$

Proof. Proof

1.3 Differentiabilitet og Taylor-udvikling for karakteristiske funktioner

Sætning 1.3.1 (Differentiabilitet for den karakteristiske funktion). (i)

Lad μ være et sandsynlighedsmål på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, og antag at $p \in \mathbb{N}_0$, således at $\int_{\mathbb{R}} |x|^p \mu(\mathrm{d} x) < \infty$.

Da er $\hat{\mu}$ p-gange differentiabel med afledede

$$\hat{\mu}^{(k)}(t) = \mathrm{i}^k \int_{\mathbb{R}} \mathsf{x}^k e^{\mathrm{i}\,\mathsf{x}t} \mu(\mathrm{d}\,x), \quad (t \in \mathbb{R}, k = 0, 1, \dots, p).$$

(ii) Lad X være en stokastisk variabel defineret på (Ω, \mathcal{F}, P) , og antag, at $p \in \mathbb{N}_0$, således at $\mathbb{E}[|\mathsf{X}|^p] < \infty$.

Da er φ_{X} p-gange differentiabel med afledede:

$$\varphi_{\mathsf{X}}^{(k)}(t) = \mathrm{i}\,\mathbb{E}[\mathsf{X}^k e^{\mathrm{i}\,t\mathsf{X}}], \quad (t \in \mathbb{R}, k = 0, 1, \dots, p).$$

Specielt er

$$\mathbb{E}[X^k] = i^{-k} \varphi_X^{(k)}(0), \quad (k = 0, 1, \dots, p).$$

Bemærk at ii) følger af i)

Lemma 1.3.2. For hvert $n \in \mathbb{N}_0$ defineres funktionen $r_n : \mathbb{R} \to \mathbb{C}$ ved

$$r_n(t) = e^{it} - \sum_{k=0}^n \frac{i^k t^k}{k!}, \quad (t \in \mathbb{R}).$$

Da gælder vurderingen:

$$|r_n(t)| \le \frac{2|t|^n}{n!} \wedge \frac{|t|^{n+1}}{(n+1)!}, \quad (t \in \mathbb{R}).$$

Ovenstående kan også skrives som

$$|r_n(t)| \le \min\{\frac{2|t|^n}{n!}, \frac{|t|^{n+1}}{(n+1)!}\}, \quad (t \in \mathbb{R}).$$

Korollar 1.3.3. Lax X være en stokastisk variabel på (Ω, \mathcal{F}, P) , således at $\mathbb{E}[X^2] < \infty$. For ethvert α i [2,3] gælder da vurderingen:

$$\left| \varphi_{\mathsf{X}}(t) - 1 - \mathrm{i}\, t \mathbb{E}[\mathsf{X}] + \frac{1}{2} t^2 \mathbb{E}[\mathsf{X}^2] \right| \le |t|^\alpha \mathbb{E}[|\mathsf{X}|^\alpha], \quad (t \in \mathbb{R}).$$

Korollar 1.3.4. Lad X være en stokastisk variabel på (Ω, \mathcal{F}, P) , og antag, at $\sigma^2 := \mathbb{E}[\mathsf{X}^2] < \infty$, samt at $\mathbb{E}[\mathsf{X}] = 0$.

Da gælder der, at

$$\frac{\varphi_{\mathsf{X}}(t)-1}{t^2} \longrightarrow -\frac{\sigma^2}{2} \quad \text{ for } t \to 0.$$

Sætning 1.3.5 (Taylor-udvikling af den karakteristiske funktion). Lad X være en stokastisk variabel på (Ω, \mathcal{F}, P) med momenter af enhver orden. Antag yderligere at følgende betingelse er opfyldt:

$$\exists \rho \in (0, \infty) : \lim_{n \to \infty} \frac{\rho^n \mathbb{E}[|\mathsf{X}|^n]}{n!} = 0, \tag{1}$$

og vælg et ρ i henhold hertil. For ethvert a i $\mathbb R$ gælder der da, at Taylor-rækken for $\varphi_{\mathsf X}$ i a er konvergent i $[a-\rho,a+\rho]$ med sum $\varphi_{\mathsf X}$, dsv.

$$\varphi_{\mathsf{X}}(t) = \sum_{k=0}^{\infty} \frac{\varphi_{\mathsf{X}}^{(k)}(a)}{k!} (t-a)^k = \sum_{k=0}^{\infty} \frac{\mathrm{i}^k \, \mathbb{E}[\mathsf{X}^k e^{\mathrm{i} \, a \mathsf{X}}]}{k!} (t-a)^k, \quad (t \in [a-\rho, a+\rho]).$$

Bemærkning 1.3.6. Betingelsen (1) er ækvivalent med følgende betingelse:

$$\exists c \in (0, \infty) \forall n \in \mathbb{N} : \mathbb{E}[|\mathsf{X}|^n] \le c^n n!$$

Betingelsen er altså en begrænsning på hvor hurtigt momenterne må vokse med n.

1.4 Anvendelser af den karakteristiske funktion

Sætning 1.4.1. (i) Lad X være en symmetrisk stokastisk variabel, og lad videre X_1, X_2, X_3, \ldots være i.i.d stokastiske variable, således at $X_n \sim X$ for alle n. Hvis yderligere $X \sim \frac{X_1 + \cdots + X_n}{\sqrt{n}}$ for alle n, da gælder der, at $X \sim N(0, \sigma^2)$ for passende σ i $[0, \infty)$

(ii) Lad X være en stokastisk variabel, og antag at $\sigma^2 := \mathbb{E}[X^2] < \infty$. Antag endvidere, at $X \sim \frac{X_1 + X_2}{\sqrt{2}}$, hvor X_1, X_2 er i.i.d, og $X_1 \sim X$.

Da gælder der, at $X \sim N(0, \sigma^2)$

For $\sigma = 0$ tænker vi på X som dirac-målet.

Lemma 1.4.2. Lad $(a_n)_n \in \mathbb{N}$ være en følge af komplekse tal, således at $a_n \longrightarrow a \in \mathbb{C}$ for $n \to \infty$. Da gælder der, at

$$\lim_{n \to \infty} \left(1 + \frac{a_n}{n} \right)^n = \exp(a),$$

hvor $\exp(a) = e^{\operatorname{Re}(a)}(\cos(\operatorname{Im}(a))) + i\sin(\operatorname{Im}(a)).$

1.5 Momentproblemet

Problemstilling 1.5.1 (Momentproblemet). Lad X og Y være to stokastiske variable, og antag, at $\mathbb{E}[|X|^p], \mathbb{E}[|Y|^p] < \infty$ for alle p i \mathbb{N} , samt at

$$\mathbb{E}[|\mathsf{X}|^p] = \mathbb{E}[|\mathsf{Y}|^p]$$
 for alle p i N

Under hvilke yderligere betingelser kan man da slutte at $X \sim Y$?

Sætning 1.5.2. Lad X og Y være to stokastiske variable, og antag, at $\mathbb{E}[|X|^p], \mathbb{E}[|Y|^p] < \infty$ for alle p i \mathbb{N} , samt at

$$\mathbb{E}[|\mathsf{X}|^p] = \mathbb{E}[|\mathsf{Y}|^p] \quad \text{for alle p i } \mathbb{N}$$

Hvis yderligere

$$\exists \rho \in (0, \infty) : \mathbb{E}[e^{\rho |X|}] < \infty,$$

da gælder der, at $X \sim Y$

Til beviset for Sætning 1.5.2 får vi brog for følgende lemma:

Lemma 1.5.3. Lad X være en stokastisk variabel på (Ω, \mathcal{F}, P) . Da er følgende betingelser ækvivalente:

- (i) $\exists \rho \in (0, \infty) : \mathbb{E}[e^{\rho |X|}] < \infty$.
- (ii) $\exists c \in (0, \infty) \forall n \in \mathbb{N} : \mathbb{E}[|\mathsf{X}|^n] \le c^n n!$.
- (iii) $\exists c \in (0, \infty) \forall n \in \mathbb{N} : \mathbb{E}[\mathsf{X}^{2n}] \le c^{2n}(2n)!.$

Korollar 1.5.4. Lad X og Y være stokastiske variable på (Ω, \mathcal{F}, P) , og antag, at P_X og P_Y begge har kompakt støtte, dvs.

$$\exists b < 0 : P(X \in [-b, b]) = 1 = P(Y \in [-b, b])$$

Da X og Y har momenter af enhver orden. Hvis yderligere $\mathbb{E}[X^p] = \mathbb{E}[Y^p]$ for alle p i \mathbb{N} , da gælder der, at $X \sim Y$.

Korollar 1.5.5. Lad X være en ikke-negativ stokastisk variabel, og betragt dens Laplace transformerede:

$$L_{\mathsf{X}}(s) = \mathbb{E}[e^{-s\mathsf{X}}], \quad (s \in [0, \infty)).$$

Da er P_X entydigt bestemet af L_X . Med andre ord: Hvis Y er en anden ikke-negativ stokastisk variabel, således at $L_Y(s) = L_X(s)$ for alle s i $[0, \infty)$, da gælder der, at $X \sim Y$.

2 Konvergens i mål og i sandsynlighed

2.1 De tre fundamentale konvergenstyper og deres indbyrdes styrkeforhold

Definition 2.1.1. Lad (X, \mathcal{E}, μ) være et målrum, og lad $(f_n)_{n \in \mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, og lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$. Lad endvidere p være et (strengt) positivt tal. Vi siger da, at

(a) f_n konvergerer mod f i μ -mål for $n \to \infty$, hvis

$$\forall \epsilon > 0 : \mu \left(\left\{ x \in \mathsf{X} \middle| |f_n(x) - f(x)| > \epsilon \right\} \right) \longrightarrow 0 \quad \text{for } n \to \infty.$$

I så fald benyttes notationen: $f_n \to f$ i μ -mål.

(b) f_n konvergerer mod f μ -n.o. for $n \to \infty$, hvis

$$\mu\left(\left\{x \in X \middle| \lim_{n \to \infty} f_n(x) = f(x)\right\}^c\right) = 0.$$

I så fald benyttes notationen: $f_n \to f\mu$ -n.o.

(c) f_n konvergerer mod f i $\mu - p$ middel for $n \to \infty$, hvis

$$\int_X |f_n - f|^p \, \mathrm{d}\, \mu \longrightarrow 0, \quad \text{for } n \to \infty$$

I så fald benyttes notationen: $f_n \to f$ i $\mu - p$ -middel.

Bemærkning 2.1.2. Blandt andet linearitet bevarer konvergens.

Sætning 2.1.3. Lad " \rightarrow " betegne én af de tre konvergensformer indført i Definition 2.1.1, og betragt funktioner $f, g, f_1, f_2, f_3, \ldots$ fra $\mathcal{M}(\mathcal{E})$. Da gælder implikationen:

$$f_n \longrightarrow f$$
, og $f_n \longrightarrow g \implies f = g \ \mu - \text{n.o}$

Sætning 2.1.4. Lad $(f_n)_{n\in\mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, og lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$. Lad endvidere p være et positivt tal. Da gælder følgende udsagn:

- (i) Hvis $f_n \to f$ i μp middel, så gælder der også at $f_n \to f$ i $\mu -$ mål.
- (ii) Hvis $\sum_{n=1}^{\infty} \int_X |f_n f|^p d\mu < \infty$, så gælder der, at $f_n \to f\mu n.o.$
- (iii) Hvis $f_n \to f$ i μ -mål, så findes en voksende følge $(n_k)_{k \in \mathbb{N}}$ af naturlige tal, således at $f_{n_k} \to f \mu$ -n.o. for $k \to \infty$

Sætning 2.1.5. Antag, at μ er et endeligt mål, lad $(f_n)_{n\in\mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, og lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$. Lad endvidere p,r være positive tal. Da gælder følgende udsagn:

- (i) Følgende betingelser er endbetydende:
 - (i1) $f_n \to fi \mu mål$.
 - (i2) $\forall K \in (0, \infty) : \lim_{n \to \infty} \int_{\mathsf{X}} |f_n f| \wedge K \, \mathrm{d} \, \mu = 0.$
 - (i3) $\lim_{n\to\infty} \int_{\mathbf{X}} |f_n f| \wedge 1 \,\mathrm{d}\,\mu = 0.$
- (ii) Hvis $f_n \to f$ $\mu{\rm -n.o.}$, så gælder der også, at $f_n \to f$ i $\mu{\rm -mål.}$
- (iii) Hvis r < p, og $f_n \to f$ i μ -p-middel, da gælder der også at $f_n \to f$ i μ -r-middel.

2.2 Fuldstændighed

Definition 2.2.1. Lad (X, \mathcal{E}, μ) være et målrum, og lad $(f_n)_{n \in \mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$. Lad endvidere p være et strengt positivt tal. Vi siger da, at

(a) $(f_n)_{n\in\mathbb{N}}$ er en Cauchy-følge i μ -mål, hvis

$$\forall \epsilon > 0 : \lim_{n,m \to \infty} \mu\left(\left\{\left|f_n - f_m\right| > \epsilon\right\}\right) = 0.$$

eller udskrevet hvis

$$\forall \epsilon, \delta > 0 \exists N \in \mathbb{N} \forall n, m \ge N : \mu \left(\{ |f_n - f_m| > \epsilon \} \right) \le \delta$$

(b) $(f_n)_{n\in\mathbb{N}}$ er en Cauchy-følge μ -n.o., hvis $\mu(F^C)=0$, hvor

$$F = \{x \in X | (f_n(x))_{n \in \mathbb{N}} \text{ er en Cauchy-følge i } \mathbb{R} \}$$

(c) $(f_n)_{n\in\mathbb{N}}$ er en Cauchy-følge i $\mu-p$ -middel, hvis

$$\lim_{n,m\to\infty} \int_{\mathsf{X}} f_n - f_m|^p \,\mathrm{d}\,\mu = 0,$$

eller udskrevet hvis

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n, m \ge N : \int_{\mathsf{X}} |f_n - f_m|^p d\mu \le \epsilon.$$

Bemærkning 2.2.2. Mængden F er målelig - det følger af omskrivningen

$$F = \bigcap_{K \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{n,m \ge N} \left\{ x \in X | |f_n(x) - f_m(x)| \le \frac{1}{K} \right\}.$$

Lemma 2.2.3. Lad (X, \mathcal{E}, μ) være et målrum, og lad $(f_n)_{n \in \mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$. Da gælder følgende udsagn:

(i) Lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$, og antag, at der findes en følge $(\epsilon_n)_{n\in\mathbb{N}}$ af (strengt) positive tal, således at

$$\lim_{n \to \infty} \epsilon_n = 0, \quad \text{og} \quad \sum_{n=1}^{\infty} \mu\left(\{|f_n - f| > \epsilon_n\}\right) < \infty.$$

Da gælder der, at

$$f_n \to \mu - \text{n.o.}, \text{ og } f_n \to f \text{ i } \mu\text{-mål.}$$

(ii) Antag, at der findes en følge $(\epsilon_n)_{n\in\mathbb{N}}$ af (strengt) positive tal, således at

$$\sum_{n=1}^{\infty} \epsilon_n < \infty, \quad \text{og} \quad \sum_{n=1}^{\infty} \mu\left(\left\{|f_{n+1} - f_n| > \epsilon_n\right\}\right) < \infty$$

Da findes der en funtkion f fra $\mathcal{M}(\mathcal{E})$, således at

$$f_n \to f \ \mu$$
-n.o., og $f_n \to f \ i \ \mu$ -mål.

Sætning 2.2.4. Lad (X, \mathcal{E}, μ) være et målrum, og lad $(f_n)_{n \in \mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$. Da er følgende betingelser ækvivalente:

- (i) Der findes en funktion f fra $\mathcal{M}(\mathcal{E})$, således at $f_n \to f$ i μ -mål.
- (ii) $(f_n)_{n\in\mathbb{N}}$ er en Cauchy-følge i μ -mål.

Med andre ord er konvergens i μ -mål et fuldstændigt konvergensbegreb.

Korollar 2.2.5. Lad (X, \mathcal{E}, μ) være et målrum, lad (f_n) være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, og lad p være et strengt positivt tal. Da er følgende betingelser ævkvivalente:

- (i) Der findes en funktion f fra $\mathcal{M}(\mathcal{E})$, således at $f_n \to f$ i μ -p-middel.
- (ii) (f_n) er en Cauchy-følge i μ -p-middel.

Korollar 2.2.6. Lad (X, \mathcal{E}, μ) være et målrum, lad p være et tal i $[1, \infty)$, og lad (f_n) være en følge af funktioner fra $\mathcal{L}^p(\mu)$. Da gælder implikationen:

$$\sum_{n=1}^{\infty} \|f_n\|_p < \infty \quad \Longrightarrow \quad \sum_{n=1}^{\infty} f_n \text{ er konvergent i μ-p-middel}.$$

Med andre ord gælder der, at absolut konvergens medfører konvergens i $\mathcal{L}^p(\mu)$.

2.3 Konvergens af f_n vs. konvergens af $|f_n|^p$

2.4 Konvergens i sandsynlighed

Definition 2.4.1. Lad (X_n) være en følge af stokastiske variable defineret på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og lad X være endnu en stokastisk variabel herpå. Lad endvidere r være et positivt tal. Vi siger da, at X_n konvergerer mod X

• i sandsynlighed, hvis der for ethvert positivt ϵ gælder, at

$$\lim_{n \to \infty} P(|\mathsf{X}_n - \mathsf{X}| > \epsilon) = 0.$$

I bekræftende fald skriver vi
: $\mathsf{X}_n \overset{P}{\longrightarrow} \mathsf{X}$ for $n \to \infty.$

• i r-middel, hvis

$$\lim_{n\to\infty} \mathbb{E}\left[|\mathsf{X}_n - \mathsf{X}|^r \right] = 0.$$

I bekræftende fald skriver vi
: $\mathsf{X}_n \overset{\mathcal{L}^r(P)}{\longrightarrow} \mathsf{X}$ for $n \to \infty.$

• P-næsten overalt (eller P-næsten sikkert), hvis

$$P(\lim_{n\to\infty} \mathsf{X}_n = \mathsf{X}) = 1,$$

eller mere udførligt, hvis P(F) = 1, hvor

$$F = \{ \omega \in \Omega \big| \lim_{n \to \infty} \mathsf{X}_n(\omega) = \mathsf{X}(\omega) \} \in \mathcal{F}.$$

I begræftende fald skriver vi
: $X_n \xrightarrow{\text{n.o.}} X$ (eller $X_n \xrightarrow{\text{n.s.}} X$) for $n \to \infty$.

2.5 Konvergens i sandsynlighed på generelle metriske rum

Definition 2.5.1 (Produktmetrikker). Lad (S, ρ) og (T, δ) betegne metriske rum. En metrik η på $S \times T$ kaldes en **produktmetrik**, hvis den opfylder følgende betingelse:

For alle $(x, y), (x_1, y_1), (x_2, y_2), (x_3, y_3), \dots$ i $S \times T$ galder bi-implikationen:

$$\lim_{n \to \infty} \eta\left(\left(x_{n}, y_{n}\right), \left(x, y\right)\right) = 0 \quad \Longleftrightarrow \quad \lim_{n \to \infty} \rho\left(x_{n}, x\right) = \lim_{n \to \infty} \delta\left(y_{n}, y\right) = 0$$

Bemærkning 2.5.2. Afbildningen $\rho: S \times S \to \mathbb{R}$ er $(B)(S \times S) - \mathcal{B}(\mathbb{R})$ -målelig.

Definition 2.5.3 (Borel-algebraen på $S \times S$). Lad (S, ρ) være et metrisk rum. Borel-algebraen $\mathcal{B}(S \times S)$ på $S \times S$ defineres da ved

$$\mathcal{B}(S \times S) = \sigma(\mathcal{G}(\eta))$$

hvor η er en vilkårlig produktmetrik på $S\times S.$

Bemærkning 2.5.4. Hvis (S, ρ) er separabelt, så gælder:

$$\mathcal{B}(S \times S) = \mathcal{B}(S) \otimes \mathcal{B}(S).$$

Ydermere hvis X, Y er stokastiske funktioner på sandsynlighedsfeltet (Ω, \mathcal{F}, P) med værdier i et separabelt metrisk rum (S, ρ) , da er afbildningen

$$D := \rho(\mathsf{X}, \mathsf{Y}) : \Omega \to \mathbb{R}$$

 $\mathcal{F} - \mathcal{B}(\mathbb{R})$ -målelig.

Definition 2.5.5. Lad (S, ρ) være et separabelt metrisk rum, og lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i (S, ρ) . Vi siger da, at

(a) X_n konvergerer mod X næsten overalt (skrevet: $\mathsf{X}_n \xrightarrow{\text{n.o.}} \mathsf{X}$), hvis $P(F^C) = 0,$ hvor

$$F = \left\{ \omega \in \Omega \mid \lim_{n \to \infty} \rho \left(\mathsf{X}_n(\omega), \mathsf{X}(\omega) \right) = 0 \right\}$$

(b) X_n konvergerer mod X i sandsynlighed (skrevet: $X_n \xrightarrow{P} X$), hvis

$$\forall \epsilon > 0 : \lim_{n \to \infty} P\left(\rho\left(\mathsf{X}_{n}, \mathsf{X}\right) > \epsilon\right) = 0$$

Bemærkning 2.5.6. Betragt for hert n i \mathbb{N} den stokastiske variable $D_n := \rho(X_n, X)$. Så har vi bi-implikationerne:

$$\mathsf{X}_n \xrightarrow{\mathrm{n.o.}} \mathsf{X} \Longleftrightarrow D_n \xrightarrow{\mathrm{n.o.}} 0, \quad \text{ og } \quad \mathsf{X}_n \xrightarrow{\mathrm{P}} \mathsf{X} \Longleftrightarrow D_n \xrightarrow{\mathrm{P}} 0.$$

Sætning 2.5.7. Lad (S, ρ) være et separabelt metrisk rum, og lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i (S, ρ) . Da gælder følgende udsagn:

- (i) $X_n \xrightarrow{\text{n.o.}} X \Longrightarrow X_n \xrightarrow{P} X$.
- (ii) Hvis $\mathsf{X}_n \xrightarrow{P} \mathsf{X}$, findes en voksende følge $n_1 < n_2 < n_3 < \cdots$ af naturlige tal, således at $\mathsf{X}_{n_k} \xrightarrow{\mathrm{n.o.}} \mathsf{X}$.
- (iii) $X_n \xrightarrow{P} X \iff \lim_{n \to \infty} \mathbb{E} \left[\rho \left(X_n, X \right) \wedge 1 \right] = 0.$

Sætning 2.5.8. Lad (S, ρ) være et separabelt metrisk rum, og lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i (S, ρ) . Betragt endvidere endnu et separabelt metrisk rum (T, δ) , og en $\mathcal{B}(S) - \mathcal{B}(T)$ -målelig afbildning $f: S \to T$. Antag, at der findes en mængde C i $\mathcal{B}(S)$, således at

$$P(X \in C) = 1$$
, og f er kontinuert i ethvert punkt x fra C.

Da gælder følgende implikationer:

(i)
$$X_n \xrightarrow{\text{n.o.}} X \Longrightarrow f(X_n) \xrightarrow{\text{n.o.}} f(X)$$
.

(ii)
$$X_n \xrightarrow{P} X \Longrightarrow f(X_n) \xrightarrow{P} f(X)$$
.

Bemærkning 2.5.9. Antag, at ρ, ρ' er to ækvivalente metrikker på S, således at (S, ρ) og (S, ρ') er separable.

Betragt afbildningerne id: $(S, \rho) \to (S, \rho') \circ \text{ogid}' : (S, \rho') \to (S, \rho)$ givet ved

$$id(x) = id'(x) = x, \quad (x \in S)$$

Da ρ og ρ' er ækvivalente, er id og id ' begge kontinuerte. Det følger derfor umiddelbart fra Sætning 2.5.8, at

$$X_n \xrightarrow{\text{n.o. /P}} X \text{ mht. } \rho \Longrightarrow X_n = \text{id}(X_n) \xrightarrow{\text{n.o. /P}} \text{id}(X) = X \text{ mht. } \rho'.$$

Overgang til en ækvivalent metrik ændrer altså ikke på, om $X_n \to X$ n.o./ i sandsynlighed eller ej.

Sætning 2.5.10. Lad (S, ρ) og (T, δ) være separable metriske rum, og lad X, X_1, X_2, X_3, \ldots samt Y, Y_1, Y_2, Y_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i hhv. (S, ρ) og (T, δ) . Udstyr endvidere $S \times T$ med en produktmetrik η . Da gælder bi-implikationerne:

$$(\mathrm{i}) \ (\mathsf{X}_n,\mathsf{Y}_n) \xrightarrow{\mathrm{n.o.}} (\mathsf{X},\mathsf{Y}) \Longleftrightarrow \mathsf{X}_n \xrightarrow{\mathrm{n.o.}} \mathsf{X} \ \mathrm{og} \ \mathsf{Y}_n \xrightarrow{\mathrm{n.o.}} \mathsf{Y}.$$

(ii)
$$(X_n, Y_n) \xrightarrow{P} (X, Y) \Longleftrightarrow X_n \xrightarrow{P} X \text{ og } Y_n \xrightarrow{P} Y.$$

3 Uniform integrabilitet

3.1 Definition og indledende begreber

Definition 3.1.1. En delmængde \mathcal{H} af $\mathcal{M}(\mathcal{E})$ siges at være uniformt integrabel (mht. μ), hvis den opfylder følgende betingelse:

$$\forall \epsilon > 0 \exists K > 0 \forall f \in \mathcal{H} : \int_{\{|f| > K\}} |f| d\mu \le \epsilon.$$

eller ækvivalent:

$$\forall \epsilon > 0 \exists K > 0 : \sup_{f \in \mathcal{H}} \int_{\{|f| > K\}} |f| \mathrm{d}\mu \le \epsilon.$$

Bemærkning 3.1.2. (i) Hvis \mathcal{H} er uniformt integrabel, da gælder der automatisk at $\mathcal{H} \subseteq \mathcal{L}^1(\mu)$. For hvis \mathcal{H} er uniformt integrabel kan vi f.eks. vælge K > 0, således at

$$\sup_{f \in \mathcal{H}} \int_{\{|f| > K\}} |f| \mathrm{d}\mu \le 1$$

For hvert f fra \mathcal{H} har vi da, at

$$\begin{split} \int_X |f| \mathrm{d}\mu &= \int_{\{|f| \leq K\}} |f| \mathrm{d}\mu + \int_{\{|f| > K\}} |f| \mathrm{d}\mu \\ &\leq \int_{\{|f| \leq K\}} K \; \mathrm{d}\mu + 1 \leq K\mu(X) + 1 < \infty \end{split}$$

(ii) Hvis \mathcal{H} er uniformt integrabel, gælder dette også enhver delmængde \mathcal{H}_0 af \mathcal{H} .

Hvis $\mathcal{H}_1, \ldots, \mathcal{H}_n$ er endeligt mange uniformt integrable delmængder af $\mathcal{M}(\mathcal{E})$, da er $\bigcup_{i=1}^n \mathcal{H}_j$ ligeledes uniformt integrabel.

Specielt fremgår det, at enhver endelig delmængde $\{f_1, \ldots, f_n\}$ af $\mathcal{L}^1(\mu)$ er uniformt integrabel.

Lemma 3.1.3. Lad \mathcal{H} være en delmængde af $\mathcal{M}(\mathcal{E})$, og lad (f_n) og (g_n) være følger af funktioner fra $\mathcal{M}(\mathcal{E})$.

(i) Hvis \mathcal{H} er uniformt integrabel, da er også mængden

$$\tilde{\mathcal{H}} := \{ f \in \mathcal{M}(\mathcal{E}) | \exists g \in \mathcal{H} : |f| < |g|\mu\text{-n.o.} \},$$

uniformt integrabel.

- (ii) For enhver funktion g fra $\mathcal{L}^1(\mu)^+$ er mængden $\{f \in \mathcal{M}(\mathcal{E}) \big| |f| \leq g\mu$ -n.o.} uniformt integrabel.
- (iii) Hvis mængden $\{g_n|n\in\mathbb{N}\}$ er uniformt integrabel, og $|f_n|\leq |g_n|\mu$ -n.o. for alle n, da er mængden $\{f_n|n\in\mathbb{N}\}$ ligeledes uniformt integrabel.

Sætning 3.1.4. En delmængde \mathcal{H} af $\mathcal{M}(\mathcal{E})$ er uniformt integrabel, hvis og kun hvis den opfylder følgende to betingelser:

- (i) $\sup_{f \in \mathcal{H}} \int_X |f| d\mu < \infty$.
- (ii) $\forall \epsilon > 0 \exists \delta > 0 \forall A \in \mathcal{E} : \mu(A) \leq \delta \Longrightarrow \sup_{\delta \in \nu} \int_{\Delta} |f| d\mu \leq \epsilon.$

Korollar 3.1.5. Antag, at \mathcal{H}_1 og \mathcal{H}_2 er to uniformt integrable delmængder af $\mathcal{M}(\mathcal{E})$. Da er mængden

$$\mathcal{H}_1 + \mathcal{H}_2 = \{ f_1 + f_2 \mid f_1 \in \mathcal{H}_1, f_2 \in \mathcal{H}_2 \}$$

også uniformt integrabel.

Sætning 3.1.6. Lad \mathcal{H} være en delmængde af $\mathcal{M}(\mathcal{E})$, og antag, at der findes en Borel-målelig funktion $\varphi:[0,\infty)\to[0,\infty)$, således at følgende to betingelser er opfyldte:

- (i) $\lim_{x\to\infty} \frac{x}{\varphi(x)} = 0$
- (ii) $\sup_{f \in \mathcal{H}} \int_X \varphi \circ |f| d\mu < \infty$.

Da er \mathcal{H} uniformt integrabel.

3.2 Uniform integrabilitet vs. konvergens i μ -middel

Sætning 3.2.1. Lad $(f_n)_{n\in\mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, og lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$.

Da er følgende betingelser ækvivalente:

- (i) $f \in \mathcal{L}^1(\mu), f_n \in \mathcal{L}^1(\mu)$ for alle n, og $f_n \to f$ i μ -1-middel.
- (ii) $f_n \to f$ i μ -mål, og mængden $\mathcal{H} = \{f_n \mid n \in \mathbb{N}\}$ er uniformt integrabel.

Korollar 3.2.2. Lad $(f_n)_{n\in\mathbb{N}}$ være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$, lad f være endnu en funktion fra $\mathcal{M}(\mathcal{E})$, og lad p være et tal $i(0,\infty)$.

Da er følgende betingelser ækvivalente:

- (i_p) $f \in \mathcal{L}^p(\mu), f_n \in \mathcal{L}^p(\mu)$ for alle n, og $f_n \to f$ i μ -p-middel.
- (ii_p) $f_n \to f$ i μ -mål, og mængden $\mathcal{H} = \{|f_n| \, p \mid n \in \mathbb{N}\}$ er uniformt integrabel.

4 Summer af uafhængige stokastiske variable og store tals stærke lov

4.1 Lévys Ulighed

Sætning 4.1.1 (Lévys Ulighed). Lad X_1, \ldots, X_n være uafhængige, symmetriske stokastiske variable på (Ω, \mathcal{F}, P) . Da gælder uligheden:

$$P\left(\max_{k=1,\dots,n}\left|\sum_{j=1}^k\mathsf{X}_j\right|>t\right)\leq 2P\left(\left|\sum_{j=1}^n\mathsf{X}_j\right|>t\right)\quad\text{ for alle }ti(0,\infty).$$

Hvis vi sætter

$$S_k = X_1 + \dots + X_k, \quad (k \in \{1, 2, \dots, n\})$$

og

$$\mathsf{M}_n = \max_{k=1,\dots,n} |\mathsf{S}_k|$$

da kan uligheden skrives:

$$P(M_n > t) \le 2P(|\mathsf{S}_n| > t)$$
 for alle t i $(0, \infty)$.

Korollar 4.1.2. Lad X_1, \ldots, X_n være uafhængige, symmetriske stokastiske variable på (Ω, \mathcal{F}, P) .

Sæt

$$S_k = X_1 + \dots + X_k, \quad (k \in \{1, 2, \dots, n\})$$

og

$$\mathsf{M}_n = \max_{k=1,\dots,n} |\mathsf{S}_k|$$

Da gælder uligheden:

$$\mathbb{E}\left[\mathsf{M}_{n}^{p}\right] \leq 2\mathbb{E}\left[\left|\mathsf{S}_{n}\right|^{p}\right] \quad \text{ for alle } p \text{ i } (0, \infty)$$

4.2 Konvergens af summer af uafhænige stokastiske variable

Lemma 4.2.1. Lad (Y_n) være en følge af stokastiske variable på (Ω, \mathcal{F}, P) , og definér for hvert p i \mathbb{N} :

$$\mathsf{L}_p = \sup_{k,\ell \geq p} |\mathsf{Y}_k - \mathsf{Y}_\ell| \in \overline{\mathcal{M}}(\mathcal{F})^+$$

Da er følgende to udsagn ækvivalente:

- (i) Der findes en stokastisk variabel Y på (Ω, \mathcal{F}, P) , således at $\mathsf{Y}_n \to \mathsf{Y}$ P-n.o. for $n \to \infty$.
- (ii) $L_p \wedge 1 \to 0$ i sandsynlighed for $p \to \infty$.

Lemma 4.2.2. Lad $(X_n)_{n\in\mathbb{N}}$ være en følge af uafhængige, symmetriske stokastiske variable på (Ω, \mathcal{F}, P) . Da gælder bi-implikationen:

$$\sum_{n=1}^{\infty}\mathsf{X}_n \text{ konvergerer P-n.o. } \Longleftrightarrow \sum_{n=1}^{\infty}\mathsf{X}_n \text{ konvergerer i sandsynlighed.}$$

Bemærkning 4.2.3 (Det målelige rum $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$). Betragt vektorrummet

$$\mathbb{R}^{\infty} = \left\{ (x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{R} \text{ for alle } n \text{ i } \mathbb{N} \right\}$$

For n i \mathbb{N} og mængder B_1, \ldots, B_n i $\mathcal{B}(\mathbb{R})$ sætter vi

$$[B_1 \times \dots \times B_n \times \mathbb{R} \times \mathbb{R} \times \dots] = \{(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^\infty \mid x_1 \in B_1, \dots, x_n \in B_n\}$$

Vi sætter endvidere

$$\mathcal{J} = \{ [B_1 \times \dots \times B_n \times \mathbb{R} \times \mathbb{R} \times \dots] \mid n \in \mathbb{N}, B_1, \dots, B_n \in \mathcal{B}(\mathbb{R}) \}$$

og

$$\mathcal{B}\left(\mathbb{R}^{\infty}\right) = \sigma(\mathcal{J})$$

For hvert k i $\mathbb N$ betragter vi afbildningen $p_k:\mathbb R^\infty\to\mathbb R$ givet ved

$$p_k\left((x_n)_{n\in\mathbb{N}}\right) = x_k, \quad \left((x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\infty}\right)$$

Vi bemærker for B_k i $\mathcal{B}(\mathbb{R})$, at

$$p_{k}^{-1}(B_{k}) = \left\{ (x_{n})_{n \in \mathbb{N}} \in \mathbb{R}^{\infty} \mid x_{k} \in B_{k} \right\}$$

$$= \underbrace{\left[\mathbb{R} \times \cdots \times \mathbb{R} \times B_{k} \times \mathbb{R} \times \mathbb{R} \times \cdots \right]}_{k-1 \text{ gange}} \in \mathcal{B}(\mathbb{R}^{\infty})$$

og for B_1, \ldots, B_n i $\mathcal{B}(\mathbb{R})$, at

$$[B_1 \times B_2 \times \dots \times B_n \times \mathbb{R} \times \mathbb{R} \times \dots] = p_1^{-1}(B_1) \cap p_2^{-1}(B_2) \cap \dots \cap p_n^{-1}(B_n)$$

Dermed er $\mathcal{B}(\mathbb{R}^{\infty})$ den mindste σ -algebra på \mathbb{R}^{∞} , som g $\not = p_1, p_2, p_3, \ldots$ målelige. Bemærk specielt, at

$$\begin{split} C &:= \left\{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\infty} \mid \lim_{n \to \infty} x_n \text{ eksisterer i } \mathbb{R} \right\} \\ &= \left\{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\infty} \mid (x_n)_{n \in \mathbb{N}} \text{ er en Cauchy-følge} \right\} \\ &= \bigcap_{m \in \mathbb{N}} \bigcup_{N \in \mathbb{N} k, \ell \geq N} \bigcap_{n} \left\{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\infty} || p_k \left((x_n) \right) - p_\ell \left((x_n) \right) \right| \leq \frac{1}{m} \right\} =: A \\ &= \bigcap_{m \in \mathbb{N}} \bigcup_{N \in \mathbb{N} k, \ell \geq N} \bigcap_{N} \left(p_k - p_\ell \right)^{-1} \left(\left[-\frac{1}{m}, \frac{1}{m} \right] \right) \in \mathcal{B} \left(\mathbb{R}^{\infty} \right). \end{split}$$

Bemærkning 4.2.4 (Den simultane fordeling af en følge af stokastiske variable). Betragt nu et sandsynlighedsfelt (Ω, \mathcal{F}, P) og en følge $(\mathsf{X}_n)_{n \in \mathbb{N}}$ af stokastiske variable defineret herpå. Vi kan da betragte afbildningen $\mathbb{X} : \Omega \to \mathbb{R}^{\infty}$ givet ved

$$\mathbb{X}(\omega) = (X_n(\omega))_{n \in \mathbb{N}}, \quad (\omega \in \Omega)$$

Vi bemærker, at \mathbb{X} er $\mathcal{F} - \mathcal{B}(\mathbb{R}^{\infty})$ -målelig:

$$\mathbb{X}^{-1}\left(\left[B_{1}\times\cdots\times B_{n}\times\mathbb{R}\times\mathbb{R}\cdots\right]\right)=\left\{\mathsf{X}_{1}\in B_{1}\right\}\cap\cdots\cap\left\{\mathsf{X}_{n}\in B_{n}\right\}\overset{?}{\in}\mathcal{F}$$

for alle n i \mathbb{N} og $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$. Dermed kan vi betragte fordelingen P_X af \mathbb{X} , dvs. ssh-målet

$$P_{\mathsf{X}}(A) = P(\mathbb{X} \in A) = P(\mathbb{X}^{-1}(A)), \quad (A \in \mathcal{B}(\mathbb{R}^{\infty}))$$

Da \mathcal{J} er \cap -stabilt, er P_X entydigt bestemt af tallene:

$$P_{\mathsf{X}}\left([B_1 \times \dots \times B_n \times \mathbb{R} \times \mathbb{R} \times \dots]\right) = P\left(\mathsf{X}_1 \in B_1, \dots, \mathsf{X}_n \in B_n\right)$$
 for $n \in \mathbb{N}$ og $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$ (ivf. Sætn. 2.2.1 i [M&I]).

Bemærkning 4.2.5 (Konvergens i termer af den simultane fordeling). Vi bemærker specielt, at

$$(X_n)_{n\in\mathbb{N}}$$
 konvergerer n.o. $\iff P(X \in C) = 1 \iff P_X(C) = 1$

og at $(\mathsf{X}_n)_{n\in\mathbb{N}}$ konvergerer i s
sh. $\Longleftrightarrow (\mathsf{X}_n)_{n\in\mathbb{N}}$ er en Cauchy-følge i s
sh.

$$\iff \forall \epsilon > 0 : \lim_{n,m \to \infty} P\left(|\mathsf{X}_n - \mathsf{X}_m| > \epsilon\right) = 0$$

$$\iff \forall \epsilon > 0 : \lim_{n \to \infty} P_{\mathsf{X}}\left((p_n - p_m)^{-1}\left([-\epsilon, \epsilon]^c\right)\right) = 0.$$

Dermed afhænger konvergens n.o. og i ssh. kun af P_X . Hvis $P_X = P_Y$ gælder der altså, at $(\mathsf{X}_n)_{n\in\mathbb{N}}$ konvergerer i ssh./n.o. $\Longleftrightarrow (\mathsf{Y}_n)_{n\in\mathbb{N}}$ konvergerer i ssh./n.o. og at $(\sum_{k=1}^n \mathsf{X}_k)_{n\in\mathbb{N}}$ konv. i ssh./n.o.

Lemma 4.2.6. Lad $(\mathsf{X}_n)_{n\in\mathbb{N}}$ være en følge af uafhængige stokastiske variable på (Ω, \mathcal{F}, P) . Antag endvidere, at der findes endnu en følge $(\mathsf{Y}_n)_{n\in\mathbb{N}}$ af stokastiske variable på (Ω, \mathcal{F}, P) , således at

$$\mathbb{X} = (\mathsf{X}_n)_{n \in \mathbb{N}}$$
 og $\mathbb{Y} = (\mathsf{Y}_n)_{n \in \mathbb{N}}$ er uafhængige, og $P_{\mathbb{X}} = P_{\mathbb{Y}}$

Da gælder bi-implikationen:

$$\sum_{n=1}^{\infty} \mathsf{X}_n \text{ konvergerer } P\text{-n.o.} \iff \sum_{n=1}^{\infty} \mathsf{X}_n \text{ konvergerer } i \text{ sandsynlighed.}$$

Sætning 4.2.7. Lad $(\mathsf{X}_n)_{n\in\mathbb{N}}$ være en følge af uafhængige stokastiske variable på (Ω,\mathcal{F},P) . Da gælder bi-implikationen: $\sum_{n=1}^{\infty}\mathsf{X}_n$ konvergerer P-n.o. $\iff \sum_{n=1}^{\infty}\mathsf{X}_n$ konvergerer i sandsynlighed.

Korollar 4.2.8. Lad $(\mathsf{Z}_n)_{n\in\mathbb{N}}$ være en følge af uafhængige stokastiske variable på (Ω, \mathcal{F}, P) . Da gælder for ethvert r > 0 implikationen:

$$\sum_{n=1}^{\infty}\mathsf{Z}_n$$
konvergerer i P-r-middel $\Longrightarrow \sum_{n=1}^{\infty}\mathsf{Z}_n$ konvergerer n.o.

Korollar 4.2.9. Lad $(\mathsf{X}_n)_{n\in\mathbb{N}}$ være en følge af ufhængige stokastiske variable på (Ω,\mathcal{F},P) , og antag, at $\mathsf{X}_n\in\mathcal{L}^2(P)$ for alle n.

Sæt endvidere $\mu_n = \mathbb{E}[X_n]$ for alle n. Da gælder implikationen:

$$\sum_{n=1}^{\infty} \mathbb{V}\left[\mathsf{X}_{n}\right] < \infty \Longrightarrow \sum_{n=1}^{\infty} \left(\mathsf{X}_{n} - \mu_{n}\right) \quad \text{konvergerer P-n.o. og i P-2-middel}.$$

4.3 Store tals stærke lov

Lemma 4.3.1 (Kroneckers lemma). Lad $(a_n)_{n\in\mathbb{N}}$ og $(b_n)_{n\in\mathbb{N}}$ være følger af reelle tal, således at

$$0 < b_1 < b_2 < b_3 < \cdots, \quad \lim_{n \to \infty} b_n = \infty$$

og at $\sum_{k=1}^{\infty} \frac{a_k}{b_k}$ er konvergent i \mathbb{R} , dvs. $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{a_k}{b_k}$ eksisterer i \mathbb{R} . Da gælder der, at

$$\frac{1}{b_n} \sum_{k=1}^n a_k \xrightarrow[n \to \infty]{} 0$$

Sætning 4.3.2 (\mathcal{L}^2 -udgave af Store tals lov). Lad $(\mathsf{X}_k)_{k\in\mathbb{N}}$ være en følge af uafhængige stokastiske variable på (Ω, \mathcal{F}, P) , og antag, at $\mathsf{X}_k \in \mathcal{L}^2(P)$ for alle $ki\mathbb{N}$. Sæt endvidere $\mu_k = \mathbb{E}\left[\mathsf{X}_k\right]$ for alle $ki\mathbb{N}$. Da gælder implikationen:

$$\sum_{k=1}^{\infty} \frac{\mathbb{V}\left[\mathsf{X}_{k}\right]}{k^{2}} < \infty \Longrightarrow \frac{1}{n} \sum_{k=1}^{n} \left(\mathsf{X}_{k} - \mu_{k}\right)_{n \to \infty} 0 \quad \text{ n.o. og i 2-middel}.$$

Eksempel 4.3.3.

Lemma 4.3.4. Lad a, a_1, a_2, a_3, \ldots være reelle tal, således at $a_n \to a$ for $n \to \infty$. Da gælder der også, at

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} a_j = a.$$

Lemma 4.3.5. (i) For ethvert naturligt tal N gælder der, at

$$\sum_{n=N}^{\infty} \frac{1}{n^2} \le \frac{2}{N}$$

(ii) For ethvert x i $(0, \infty)$ gælder der, at

$$\sum_{n \in \mathbb{N}: n \ge x} \frac{1}{n^2} \le \frac{2}{x}$$

Sætning 4.3.6 (Store tals stærke lov). Lad $(\mathsf{X}_n)_{n\in\mathbb{N}}$ være en følge af i.i.d. stokastiske variable på (Ω,\mathcal{F},P) , således at $\mathbb{E}\left[|\mathsf{X}_1|\right]<\infty$, og sæt $\mathbb{E}\left[\mathsf{X}_1\right]=\mu$. Da gælder der, at

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\mathsf{X}_j=\mu\quad \text{ P-n.o. og i P-1-middel}.$$

5 Konvergens i fordeling

5.1 Svag konvergens og konvergens i fordeling

Definition 5.1.1 (Svag konvergens af sandsynlighedsmål). Lad (S, ρ) være et metrisk rum, og lad $\mu, \mu_1, \mu_2, \ldots$ være sandsynlighedsmål på $(S, \mathcal{B}(S))$. Vi siger da, at μ_n konvergerer svagt imod μ for $n \to \infty$ (skrevet: $\mu_n \xrightarrow{w} \mu$), hvis følgende betingelse er opfyldt:

$$\forall f \in C_b(S) : \lim_{n \to \infty} \int_S f(s) \mu_n(\mathrm{d}\, s) = \int_S f(s) \mu(\mathrm{d}\, s).$$

Definition 5.1.2 (Konvergens i fordeling). Lad (S, ρ) være et metrisk rum, og lad X, X_1, X_2, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i (S, ρ) . Vi siger da, at X_n konvergerer mod X **i fordeling** (skrevet: $X_n \xrightarrow{\sim} X$), hvis $P_{X_n} \xrightarrow{w} X$

Udskrevet er betingelsen altså:

$$\forall f \in C_b(S) : \mathbb{E}\left[f\left(\mathsf{X}_n\right)\right] = \int_S f \, \mathrm{d}P_{\mathsf{X}_n} \xrightarrow[n \to \infty]{} \int_S f \, \mathrm{d}P_{\mathsf{X}} = \mathbb{E}[f(\mathsf{X})].$$

Hvis μ er et sandsynlighedsmål på $(S, \mathcal{B}(S))$, siger vi tilsvarende, at X_n konvergerer mod μ i fordeling (skrevet: $\mathsf{X}_n \xrightarrow{\sim} \mu$), hvis $P_{\mathsf{X}_n} \xrightarrow{\mathsf{w}} \mu$. Udskrevet er betingelsen altså:

$$\forall f \in C_b(S) : \mathbb{E}\left[f\left(\mathsf{X}_n\right)\right] = \int_S f \, \mathrm{d}P_{\mathsf{X}_n} \xrightarrow[n \to \infty]{} \int_S f \, \mathrm{d}\mu$$

Bemærkning 5.1.3. 1. Udvidelse til komplekse funktioner:

Lad (S, ρ) være et metrisk rum, og lad X, X_1, X_2, X_3, \dots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i (S, ρ) .

Lad videre μ være et sandsynlighedsmål på ($S, \mathcal{B}(S)$), og antag, at $\mathsf{X}_k \xrightarrow{\sim} \mu$ for $k \to \infty$.

For enhver funktion f i $C_b(S, \mathbb{C})$ har vi oplagt, at Re(f), $\text{Im}(f) \in C_b(S, \mathbb{R})$, og dermed at

$$\mathbb{E}\left[f\left(\mathsf{X}_{k}\right)\right] = \mathbb{E}\left[\operatorname{Re}\left(f\left(\mathsf{X}_{k}\right)\right)\right] + \mathrm{i}\mathbb{E}\left[\operatorname{lm}\left(f\left(\mathsf{X}_{k}\right)\right)\right]$$

$$\xrightarrow[k \to \infty]{} \int_{S} \operatorname{Re}(f) \mathrm{d}\mu + \mathrm{i}\int_{S} \operatorname{Im}(f) \mathrm{d}\mu = \int_{S} f \ \mathrm{d}\mu$$

Specielt ser vi i tilfældet $S = \mathbb{R}^d$, at

$$\varphi_{\mathsf{X}_k}(t) = \mathbb{E}\left[\mathrm{e}^{\mathrm{i}(t,\mathsf{X}_k)}\right] \underset{k \to \infty}{\longrightarrow} \int_{\mathbb{R}^n} \mathrm{e}^{\mathrm{i}(t,x)} \mu(\mathrm{d}x) = \hat{\mu}(t) \quad \text{ for alle } t \mathrm{i} \mathbb{R}^d.$$

2. Overgang til ækvivalent metrik

Lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner med værdier i et metrisk rum (S, ρ) .

Da ændres definitionen af, at $X_n \xrightarrow{\sim} X$, ikke, hvis ρ erstattes af en ækvivalent metrik ρ' på S.

I denne situation gælder der nemlig, at

$$C_b(S, \rho) = C_b(S, \rho')$$

og dermed ændres ikke på betingelsen:

$$\forall f \in C_b(S, \rho) : \mathbb{E}\left[f\left(\mathsf{X}_n\right)\right] \xrightarrow[n \to \infty]{} \mathbb{E}[f(\mathsf{X})]$$

Sætning 5.1.4 (Entydighedssætning for mål). Lad (S, ρ) være et metrisk rum, og lad μ og ν være to sandsynlighedsmål på $(S, \mathcal{B}(S))$. Antag videre, at

$$\int_{S} f \, d\mu = \int_{S} f \, d\nu \quad \text{ for alle f i } C_{b}(S)^{+}$$

Da er $\mu = \nu$.

Korollar 5.1.5 (Entydighed af grænse ved konvergens i fordeling). Betragt et metrisk rum (S, ρ) .

1. Lad $\nu, \mu, \mu_1, \mu_2, \mu_3, \ldots$ være sandsynlighedsmål på $(S, \mathcal{B}(S)),$ og antag, at

$$\mu_n \xrightarrow{\mathrm{w}} \mu$$
, og $\mu_n \xrightarrow{\mathrm{w}} \nu$ for $n \to \infty$.

Da gælder $\mu = \nu$.

2. Lad Y, X, X₁, X₂, X₃, . . . være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier $i(S, \rho)$, og antag, at

$$X_n \xrightarrow{\sim} X$$
, og $X_n \xrightarrow{\sim} Y$

Da gælder $X \sim Y$.

Sætning 5.1.6 (Styrkeforhold). Lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i et separabelt metrisk rum (S, ρ) . Da gælder implikationen:

$$\mathsf{X}_n \xrightarrow{P} \mathsf{X} \Longrightarrow \mathsf{X}_n \xrightarrow{\sim} \mathsf{X}.$$

Sætning 5.1.7. Lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i et separabelt metrisk rum (S, ρ) . Antag endvidere, at

$$\exists a \in S : P(X = a) = 1$$

Da gælder bi-implikationen:

$$X_n \xrightarrow{P} X \iff X_n \xrightarrow{\sim} X.$$

Sætning 5.1.8. Lad $\mathsf{X}_1,\mathsf{X}_2,\mathsf{X}_3,\ldots$ være stokastiske funktioner på (Ω,\mathcal{F},P) med værdier i et metrisk rum (S,ρ) , og lad μ være et sandsynlighedsmål på $(S,\mathcal{B}(S))$. Antag, at $\mathsf{X}_n \xrightarrow{\sim} \mu$. Da gælder der, at

$$\int_{S} g \, d\mu = \lim_{n \to \infty} \mathbb{E}\left[g\left(\mathsf{X}_{n}\right)\right]$$

for enhver begr. funktion g i $\mathcal{M}(\mathcal{B}(S))$, som er kontinuert i μ -n.a. x i S.

Definition 5.1.9 (Lipschitz-afbildninger). Lad (S, ρ) og (T, δ) være metriske rum. En afbildning $f: S \to T$ siges da at være en Lipschitz afbildning, hvis der findes en konstant K i $(0, \infty)$, således at

$$\delta(f(x),f(y)) \leq K\rho(x,y) \quad \text{ for alle } x,y \text{ i } S.$$

Med $\operatorname{Lip}(S,\rho)$ betegnes mængden af Lipschitz funktioner $f:(S,\rho)\to\mathbb{R}$. Med $\operatorname{Lip}_b(S,\rho)$ betegnes mængden af begrænsede Lipschitz funktioner $f:(S,\rho)\to\mathbb{R}$.

Lemma 5.1.10. Lad S og T være ikke-tomme mængder, og lad $G: S \times T \to \mathbb{R}$ være en nedadtil begrænset funktion (dvs. G opfylder, at $\inf_{(x,y) \in S \times T} G(x,y) > -\infty$). For vilkårlige x, x' i S gælder der da, at

$$\left| \inf_{y \in T} G(x, y) - \inf_{y \in T} G\left(x', y\right) \right| \le \sup_{y \in T} \left| G(x, y) - G\left(x', y\right) \right|.$$

Lemma 5.1.11. Lad (S, ρ) være et metrisk rum, og lad $g: S \to [0, \infty)$ være en vilkårlig ikke-negativ funktion. Betragt for hvert $ki\mathbb{N}$ funktionen $g_k: S \to [0, \infty)$ givet ved

$$g_k(x) = \inf_{y \in S} (g(y) + k\rho(x, y)), \quad (x \in S)$$

(i) For hvert $ki\mathbb{N}$ er g_k en Lipschitz funktion med konstant k:

$$|g_k(x) - g_k(x')| \le k\rho(x, x'), \quad (x, x' \in S)$$

(ii) For vilkårlige $ki\mathbb{N}, x$ iS og r > 0 gælder der, at

$$0 \le \left(\inf_{y \in b(x,r)} g(y)\right) \land kr \le g_k(x) \le g_{k+1}(x) \le g(x)$$

(iii) Hvis g er kontinuert i $x \in S$, gæ/der der, at $g_k(x) \uparrow g(x)$ for $k \to \infty$.

5.2 Portmanteau sætningerne

Sætning 5.2.1. Lad X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i et metrisk rum (S, ρ) , og lad μ være et sandsynlighedsmål på $(S, \mathcal{B}(S))$. Da er følgende betingelser ækvivalente:

- (i) $X_n \xrightarrow{\sim} \mu$.
- (ii) $\forall f \in C(S)^+ : \int_S f \, d\mu \le \liminf_{n \to \infty} \mathbb{E}[f(X_n)].$
- (iii) $\forall f \in C_b(S)^+ : \int_S f \, d\mu \le \liminf_{n \to \infty} \mathbb{E}[f(X_n)].$

Bemærkning 5.2.2.

Sætning 5.2.3 (Portmanteau Sætning I). Lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i et metrisk rum (S, ρ) , og lad μ være et sandsynlighedsmål på $(S, \mathcal{B}(S))$. Da er følgende betingelser ækvivalente:

- (i) $X_n \xrightarrow{\sim} \mu$.
- (ii) $\int_{S} g \, d\mu \leq \liminf_{n \to \infty} \mathbb{E}[g(X_n)]$ for alle $gi \operatorname{Lip}_b(S, \rho)^+$.
- (iii) $\mu(G) \leq \liminf_{n \to \infty} P(X_n \in G)$ for enhver åben delmængde. G af S.
- (iv) $\mu(F) \ge \limsup_{n \to \infty} P(X_n \in F)$ for enhver lukket delmængde. F af S.

Korollar 5.2.4. Lad X, X_1, X_2, X_3, \ldots være stokastiske funktioner på (Ω, \mathcal{F}, P) med værdier i et metrisk rum (S, ρ) , og lad μ være et sandsynlighedsmål på $(S, \mathcal{B}(S))$. Da er følgende betingelser ækvivalente:

- (i) $X_n \xrightarrow{\sim} \mu$.
- (ii) For enhver mængde B i $\mathcal{B}(S)$ gælder der, at

$$\mu\left(B^{\circ}\right) \leq \liminf_{n \to \infty} P\left(\mathsf{X}_{n} \in B\right) \leq \limsup_{n \to \infty} P\left(\mathsf{X}_{n} \in B\right) \leq \mu(\bar{B})$$

hvor
$$B^{\circ} = (\overline{B^c})^c \subseteq (B^c)^c = B \subseteq \overline{B}$$
.

Hvis (i) og (ii) er opfyldte, gælder der yderligere, at

$$\mu(B) = \lim_{n \to \infty} P(X_n \in B)$$

for enhver mængde B fra $\mathcal{B}(S)$, således at $\mu(\bar{B}\backslash B^{\circ})=0$.

Sætning 5.2.5 (Portmanteau Sætning II). Lad (S, ρ) og (T, δ) være metriske rum, og udstyr $S \times T$ med en produktmetrik η . Betragt endvidere stokastiske funktioner X, X_1, X_2, X_3, \ldots og Y, Y_1, Y_2, Y_3, \ldots med værdier i hhv. (S, ρ) og (T, δ) . Da gælder følgende udsagn:

- (i) Hvis $\mathsf{X}_n \xrightarrow{\sim} \mathsf{X}$, gælder der også, at $f(\mathsf{X}_n) \xrightarrow{\sim} f(\mathsf{X})$ for enhver kontinuert afbildning $f: S \to T$.
- (ii) Antag, at (T, δ) er separabelt. Hvis $\mathsf{X}_n \xrightarrow{\sim} \mathsf{X}, \mathsf{Y}_n \xrightarrow{\sim} \mathsf{Y}$, og Y er udartet, så gælder der også, at $(\mathsf{X}_n, \mathsf{Y}_n) \xrightarrow{\sim} (\mathsf{X}, \mathsf{Y})$.
- (iii) Antag, at (S, ρ) og (T, δ) er separable. Hvis $\mathsf{X}_n \xrightarrow{\sim} \mathsf{X}, \mathsf{Y}_n \xrightarrow{\sim} \mathsf{Y}$ og $\mathsf{X}_n, \mathsf{Y}_n$ er uafhængige for alle n, da gælder der også, at

$$(\mathsf{X}_n,\mathsf{Y}_n) \xrightarrow{\sim} P_\mathsf{X} \otimes P_\mathsf{Y}, \quad \text{dvs.} \quad P_\mathsf{X}_n \otimes P_\mathsf{Y}_n \xrightarrow{\mathsf{w}} P_\mathsf{X} \otimes P_\mathsf{Y}$$

Bemærkning 5.2.6. Udsagn (ii) i Portmanteau II gælder ikke generelt, hvis Y ikke er udartet. Betragt nemlig f.eks. en symmetrisk stokastisk variabel $X(dvs.X\sim -X)$, og definér så

$$X_k = X$$
, og $Y_k = -X$, $(k \in \mathbb{N})$.

Så gælder der oplagt, at $X_k \xrightarrow{\sim} X$, og $Y_k \xrightarrow{\sim} -X \sim X$. Hvis (ii) gjaldt generelt, kunne vi så slutte, at $(X_k, Y_k) \xrightarrow{\sim} (X, X)$. Anvendes så (i) i Portmanteau II på funktionen f(x, y) = x + y, ville det følge, at

$$0 = \mathsf{X}_k + \mathsf{Y}_k = f\left(\mathsf{X}_k, \mathsf{Y}_k\right) \xrightarrow{\sim} f(\mathsf{X}, \mathsf{X}) = 2\mathsf{X}.$$

Dette er oplagt forkert, med mindre $X \sim \delta_0$ (jvf. 5.1.5).

5.3 Stramhed

Definition 5.3.1 (Stramhed). Lad (S, ρ) være et metrisk rum, og lad \mathcal{K} betegne systemet af kompakte delmængder af S.

(a) En familie \mathcal{M} af sandsynlighedsmål på $(S, \mathcal{B}(S))$ siges at være stram, hvis følgende betingelse er opfyldt:

$$\forall \epsilon > 0 \exists K \in \mathcal{K} : \sup_{\mu \in \mathcal{M}} \mu(K^c) \le \epsilon$$

(b) En familie \mathcal{H} af stokastiske funktioner med værdier i (S, ρ) siges at være stram, hvis mængden $\{P_X \mid X \in \mathcal{H}\}$ er stram i henhold til (a); dvs. hvis

$$\forall \epsilon > 0 \exists K \in \mathcal{K} : \sup_{\mathsf{X} \in \mathcal{H}} P\left(\mathsf{X} \in K^{c}\right) \leq \epsilon,$$

eller ækvivalent:

$$\forall \epsilon > 0 \exists K \in \mathcal{K} : \inf_{\mathsf{X} \in \mathcal{H}} P(\mathsf{X} \in K) \geq 1 - \epsilon$$

Bemærkning 5.3.2. 1. Lad \mathcal{M}_1 og \mathcal{M}_2 være to mængder af sandsynlighedsmål på $(S, \mathcal{B}(S))$. Da gælder implikationerne:

$$\mathcal{M}_2$$
 stram og $\mathcal{M}_1 \subseteq \mathcal{M}_2 \Longrightarrow \mathcal{M}_1$ stram $\mathcal{M}_1, \mathcal{M}_2$ stramme $\Longrightarrow \mathcal{M}_1 \cup \mathcal{M}_2$ stram

2. For ethvert sandsynlighedsmål μ på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ er $\{\mu\}$ stram. Vi har nemlig (i tilfældet d=1), at

$$\mu\left([-N,N]^c\right) = 1 - \mu([-N,N]) \xrightarrow[N \to \infty]{} 1 - \mu(\mathbb{R}) = 0$$

Og her er [-N, N] kompakt for alle N i \mathbb{N} .

- 3. Specielt er enhver endelig familie af ssh.-mål på \mathbb{R}^d (eller af d-dim. stokastiske vektorer) automatisk stram.
- 4. En familie \mathcal{H} af d-dimensionale stokastiske vektorer er stram, hvis der findes $\alpha > 0$, således at

$$\sup_{\mathbf{X}\in\mathcal{H}}\mathbb{E}\left[\|\mathbf{X}\|^{\alpha}\right]<\infty.$$

Det følger nemlig fra Markovs Ulighed, at

$$\sup_{\mathsf{X}\in\mathcal{H}}P(\|\mathsf{X}\|>N)\leq\frac{1}{N^\alpha}\sup_{\mathsf{X}\in\mathcal{H}}\mathbb{E}\left[\|\mathsf{X}\|^\alpha\right], \text{ hvor } \frac{1}{N^\alpha}\to 0 \text{ for } N\to\infty.$$

Sætning 5.3.3. Lad $(X_k)_{k\in\mathbb{N}}$ være en følge af d-dimensionale stokastiske vektorer. Det er følgende betingelser hver især tilstrækkelige for, at $\{X_k \mid k \in \mathbb{N}\}$ er stram:

- (i) Der findes et sandsynlighedsmål μ på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, således at $\mathsf{X}_k \xrightarrow{\sim} \mu$.
- (ii) $\forall \epsilon > 0 \exists a > 0 : \liminf_{k \to \infty} \mathbb{E}\left[e^{-a\|X_k\|^2}\right] > 1 \epsilon.$

5.4 Konvergens i fordeling for stokastiske variable

Sætning 5.4.1. Lad $(X_n)_{n\in\mathbb{N}}$ være en følge af stokastiske variable på (Ω, \mathcal{F}, P) , og lad μ være et sandsynlighedsmål på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Betragt endvidere de tilhørende fordelingsfunktioner:

$$F_n(x) = P_{\mathsf{X}_n}((-\infty, x]) = P\left(\mathsf{X}_n \in (-\infty, x]\right), \quad (x \in \mathbb{R}, n \in \mathbb{N}),$$

$$F_n(x) = \mu((-\infty, x]), \quad (x \in \mathbb{R})$$

Da er følgende betingelser ækvivalente:

- (i) $X_n \xrightarrow{\sim} \mu$.
- (ii) $F_{\mu}(x-) \leq \liminf_{n \to \infty} F_n(x) \leq \limsup_{n \to \infty} F_n(x) \leq F_{\mu}(x)$ for alle $xi\mathbb{R}$.
- (iii) $\lim_{n\to\infty} F_n(x) = F_\mu(x)$ for alle $xi\mathbb{R}$, hvor $\mu(\{x\}) = 0$.
- (iv) Der findes en tæt delmængde D af \mathbb{R} , således at

$$\lim_{n \to \infty} F_n(x) = F_{\mu}(x) \quad \text{for alle } xiD$$

(v) $\mu((a,b)) \leq \liminf_{n \to \infty} P(a < X_n < b)$ for alle $a, bi\overline{\mathbb{R}}$, så a < b.

Sætning 5.4.2. Lad X, X_1, X_2, \ldots være stokastiske variable på (Ω, \mathcal{F}, P) , og betragt de tilhørende fordelingsfunktioner $F_X, F_{X_1}, F_{X_2}, \ldots$ Antag at $X_n \xrightarrow{\sim} X$ for $n \to \infty$, og at F_X er kontinuert. Da gælder der at

$$\sup_{x \in \mathbb{R}} |F_{\mathsf{X}_n}(x) - F_{\mathsf{X}}(x)| \xrightarrow[n \to \infty]{} 0,$$

dvs. $F_{\mathsf{X}_n} \to F_{\mathsf{X}}$ uniformt på \mathbb{R}

Definition 5.4.3 (limespunkt). Lad (X_k) være en følge af stokastiske funktioner med værdier i et metrisk rum (S, ρ) .

Et sandsynlighedsmål μ på $(S, \mathcal{B}(S))$ kaldes da for et limespunkt for $(\mathsf{X}_k)_{k \in \mathbb{N}}$, hvis der findes en voksende følge $k_1 < k_2 < k_3 < \cdots$ af naturlige tal, således at

$$X_{k_{\ell}} \xrightarrow{\sim} \mu \quad \text{for } \ell \to \infty$$

Sætning 5.4.4 (Hellys Lemma). Lad $(F_k)_{k \in \mathbb{N}}$ være en følge af fordelingsfunktioner. Da findes en voksende følge $k_1 < k_2 < k_3 < \cdots$ af naturlige tal, og en voksende, højrekontinuert funktion $F : \mathbb{R} \to [0,1]$, således at

$$\lim_{\ell \to \infty} F_{k_{\ell}}(x) = F(x) \quad \text{ for alle } x \text{ i } C_F$$

Her betegner C_F mængden af kontinuitetspunkter for F, dvs.

$$C_F = \{x \in \mathbb{R} \mid F \text{ er kontinuert } ix\}$$

Specielt gælder der, at $F_{k_{\ell}} \to F$ punktvist, for $\ell \to \infty$, hvis F er kontinuert.

Bemærkning 5.4.5.

Sætning 5.4.6 (Helly-Bray's Sætning). Lad $(X_k)_{k\in\mathbb{N}}$ være en følge af d-dimensionale stokastiske vektorer, og antag, at $\{X_k \mid k\in\mathbb{N}\}$ er stram. Da gælder følgende udsagn:

- (i) $(X_k)_{k\in\mathbb{N}}$ har mindst ét limespunkt.
- (ii) Hvis $(\mathsf{X}_k)_{k\in\mathbb{N}}$ kun har ét limespunkt μ , så gælder der, at $\mathsf{X}_k \xrightarrow{\sim} \mu$ for $k \to \infty$.

5.5 Kontinuitetssætningen

Korollar 5.5.1. Lad $(X_k)_{hCN}$ æare en stram folge af d-dimensionale stokastiske vektorer, og antag, at

$$\lim_{k\to\infty} \varphi_{\mathsf{X}_k}(t) \text{ eksisterer } i\mathbb{C} \text{ for alle } ti\mathbb{R}^d.$$

Da findes et sandsynlighedsmål μ på \mathbb{R}^d , således at $\mathsf{X}_k \xrightarrow{\sim} \mu$ for $k \to \infty$. Der gælder yderligere, at

$$\hat{\mu}(t) = \lim_{k \to \infty} \varphi_{\mathsf{X}_k}(t) \text{ for alle } ti\mathbb{R}^d$$

Sætning 5.5.2 (Kontinuitetssætningen for karakteristiske funktioner). For en følge $(X_k)_{k\in\mathbb{N}}$ af d-dimensionale stokastiske vektorer er følgende betingelser ækvivalente:

- (i) Der findes et ssh-mål μ på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, således at $X_k \xrightarrow{\sim} \mu$.
- (ii) Der findes en funktion $\gamma: \mathbb{R}^d \to \mathbb{C}$, som er kontinuert i 0 , således at

$$\lim_{k \to \infty} \varphi_{X_k}(t) = \gamma(t) \quad \text{ for alle } ti\mathbb{R}^d$$

I bekræftende fald gælder der yderligere, at

$$\hat{\mu}(t) = \gamma(t)$$
 for alle $t i \mathbb{R}^d$

Korollar 5.5.3. Lad X, X_1, X_2, X_3, \ldots være d-dimensionale stokastiske vektorer og $Y, Y_1, Y_2, Y_3, \ldots m$ -dimensionale stokastiske vektorer.

Antag endvidere, at X_n og Y_n er uafhængige for ethvert n i \mathbb{N} , samt at $X_n \xrightarrow{\sim} X$ og $Y_n \xrightarrow{\sim} Y$.

Da gælder der også, at $(\mathsf{X}_n,\mathsf{Y}_n) \xrightarrow{\sim} P_\mathsf{X} \otimes P_\mathsf{Y}$.

6 Centrale Grænseværdisætninger

6.1 Laplaces version

Sætning 6.1.1 (Laplaces CLT). Lad $(X_n)_{n\in\mathbb{N}}$ være en følge af i.i.d. stokastiske variable, således at $\mathbb{E}[X_1^2]<\infty$.

Sæt endvidere

$$\sigma^2 := \mathbb{V}\left[\mathsf{X}_1\right], \quad \text{ og } \quad \mu := \mathbb{E}\left[\mathsf{X}_1\right]$$

Da gælder der, at

$$\frac{\sum_{k=1}^{n} \mathsf{X}_k - n\mu}{\sqrt{n\sigma^2}} = \mathsf{U}_n := \frac{1}{\sqrt{n\sigma^2}} \sum_{k=1}^{n} \left(\mathsf{X}_k - \mu \right) \stackrel{\sim}{\to} N(0, 1).$$

6.2 Lindebergs version

Definition 6.2.1. Et uafhængigt trekantsskema er en familie $\{X_{nk} \mid n \in \mathbb{N}, k \in \{1, ..., n\}\}$ af stokastiske variable, således at

$$X_{n1}, \ldots, X_{nn}$$
 er uafhængige for alle n i \mathbb{N} .

Et uafhængigt trekantsskema anskuelliggøres ofte på formen:

$$X_{11}$$
 X_{21}, X_{22}
 X_{31}, X_{32}, X_{33}
 \vdots
 \vdots
 $X_{n1}, X_{n2}, \dots, X_{nn}$

Problemstilling 6.2.2. Lad $\{X_{nk}|n\in\mathbb{N},1\leq k\leq n\}$ være et uafhængigt trekantsskema. Det tilhørende CLT-problem udgøres da af følgende spørgsmål. Findes der:

- en familie $\{m_{nk}|n\in\mathbb{N},1\leq k\leq n\}$ af reelle tal,
- en familie $\{a_n|n\in\mathbb{N}\}$ af (strengt) positive tal,
- et ikke-udartet sandsynlighedsmål μ på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

således at

$$\frac{1}{a_n} \sum_{k=1}^n (\mathsf{X}_{nk} - m_{nk}) \underset{n \to \infty}{\sim} \mu?$$

Sætning 6.2.3 (Lindebergs CLT). Lad $\{\mathsf{X}_{nk}\mid n\in\mathbb{N}, 1\leq k\leq n\}$ være et uafhængigt trekantsskema, således at $\mathbb{E}\left[\mathsf{X}_{nk}^2\right]<\infty$ for alle n,k. Sæt

$$\mu_{nk} = \mathbb{E}\left[\mathsf{X}_{nk}\right], \quad \sigma_{nk}^2 = \mathbb{V}\left[\mathsf{X}_{nk}\right], \quad \text{og} \quad s_n = \left(\sigma_{n1}^2 + \sigma_{n2}^2 + \dots + \sigma_{nn}^2\right)^{1/2}$$

for alle n, k, og antag, at $s_n > 0$ for alle n. Sæt yderligere

$$U_n = \frac{1}{s_n} \sum_{k=1}^n (X_{nk} - \mu_{nk}), \quad (n \in \mathbb{N})$$

Antag endvidere Lindebergs betingelse:

$$\forall \epsilon > 0 : \lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{|X_{nk} - \mu_{nk}| > \epsilon s_n\}} (X_{nk} - \mu_{nk})^2 dP = 0.$$

Da gælder der, at $U_n \xrightarrow{\sim} N(0,1)$.

Lemma 6.2.4. Lad z_1, \ldots, z_n og w_1, \ldots, w_n være komplekse tal, således at $|z_k| \leq 1$ og $|w_k| \leq 1$ for alle $ki\{1, 2, \ldots, n\}$. Da gælder uligheden:

$$\left| \prod_{k=1}^{n} z_k - \prod_{k=1}^{n} w_k \right| \le \sum_{k=1}^{n} |z_k - w_k|$$

Lemma 6.2.5. For ethvert x i $[0, \infty)$ gælder uligheden:

$$\left| e^{-x} - 1 + x \right| \le \frac{1}{2}x^2.$$

6.3 Bevis for Laplaces version

6.4 Lyapounovs version

Sætning 6.4.1 (Lyapounovs CLT). Lad $\{X_{nk} \mid n \in \mathbb{N}, 1 \leq k \leq n\}$ være et uafhængigt trekantsskema, således at $\mathbb{E}\left[X_{nk}^2\right] < \infty$ for alle n, k. Sæt

$$\mu_{nk} = \mathbb{E}\left[\mathsf{X}_{nk}\right], \quad \sigma_{nk}^2 = \mathbb{V}\left[\mathsf{X}_{nk}\right], \quad \text{og} \quad s_n = \left(\sigma_{n1}^2 + \sigma_{n2}^2 + \dots + \sigma_{nn}^2\right)^{1/2}$$

for alle n, k, og antag, at $s_n > 0$ for alle n. Sæt yderligere

$$U_n = \frac{1}{s_n} \sum_{k=1}^n (X_{nk} - \mu_{nk}), \quad (n \in \mathbb{N})$$

Antag endvidere Lyapounov's betingelse:

$$\exists \alpha > 2 : \lim_{n \to \infty} \frac{1}{s_n^{\alpha}} \sum_{k=1}^{n} \mathbb{E}\left[\left| \mathsf{X}_{nk} - \mu_{nk} \right|^{\alpha} \right] = 0$$

Da gælder der, at $U_n \xrightarrow{\sim} N(0,1)$.

7 Betingede middelværdier

7.1 Definition, eksistens og entydighed

Definition 7.1.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del- σ -algebra af $\mathcal{F}(\text{ dvs. } \mathcal{B} \subseteq \mathcal{F})$. Lad videre X være en stokastisk variabel fra $\mathcal{L}^1(P)$. En betinget middelværdi af X givet \mathcal{B} er en stokastisk variabel U på (Ω, \mathcal{F}, P) , der opfylder følgende tre betingelser:

- 1. $U \in \mathcal{L}^1(P)$.
- 2. U er \mathcal{B} -målelig.
- 3. Der gælder, at

$$\int_B \mathbf{U} \; \mathrm{d}P = \int_B \mathbf{x} \mathrm{d}P \quad \text{ for alle } B \neq \emptyset.$$

Lemma 7.1.2 (Restriktion af mål til del- σ -algebra.). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del- σ -algebra af \mathcal{F} . Da defineres ved formlen:

$$P_{\mathcal{B}}(B) = P(B), \quad (B \in \mathcal{B})$$

et sandsynlighedsmål på (Ω, \mathcal{B}) , som kaldes restriktionen af P til \mathcal{B} . Der gælder endvidere, at

$$\mathcal{L}(P_{\mathcal{B}}) = \mathcal{L}(P) \cap \overline{\mathcal{M}}(\mathcal{B}), \quad \text{og} \quad \mathcal{L}^{1}(P_{\mathcal{B}}) = \mathcal{L}^{1}(P) \cap \mathcal{M}(\mathcal{B})$$

samt at

$$\int_{\Omega} \mathbf{U} \, dP_{\mathcal{B}} = \int_{\Omega} \mathbf{U} \, dP \quad \text{ for alle } \mathbf{U} \in \mathcal{L}(P_{\mathcal{B}}) \subseteq \mathcal{L}(P)$$

Korollar 7.1.3. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del σ -algebra af \mathcal{F} .

Lad videre \mathcal{D} være et \cap -stabilt frembringersystem for \mathcal{B} , således at $\Omega \in \mathcal{D}$. Lad endelig U og U' være to \mathcal{B} -målelige stokastiske variable fra $\mathcal{L}^1(P)$. Da gælder følgende bi-implikationer:

- (i) $U \leq U'$ P-n.o. $\iff \int_B U dP \leq \int_B U' dP$ for alle B i \mathcal{B} .
- (ii) U = U' P-n.o. $\iff \int_B \mathrm{Ud}P = \int_B \mathrm{U'd}P$ for alle $B;\mathcal{D}.$

Sætning 7.1.4. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del σ -algebra af \mathcal{F} .

For enhver stokastisk variabel X i $\mathcal{L}^1(P)$ findes da en betinget middelværdi U af X givet \mathcal{B} .

Hvis U, U' begge er betingede middelværdier af X givet \mathcal{B} , da gælder der, at U = U'P-n.o.

Enhver betinget middelværdi af X givet \mathcal{B} betegnes med $\mathbb{E}[X|\mathcal{B}]$.

7.2 Egenskaber for betingede middelværdier

Sætning 7.2.1. Lad (Ω, \mathcal{F}, P) være et ssh-felt, og lad \mathcal{B} være en del- σ -algebra af \mathcal{F} . Antag videre, at $X, Y \in \mathcal{L}^1(P)$, og at $a \in \mathbb{R}$. Da gæ/der følgende udsagn:

- (i) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{B}]] = \mathbb{E}[X]$.
- (ii) $\mathbb{E}[aX + Y \mid \mathcal{B}] = a\mathbb{E}[X \mid \mathcal{B}] + \mathbb{E}[Y \mid \mathcal{B}]$ P-n.o.
- (iii) Hvis $X \leq YP$ -n.o. gælder følgende udsagn:
 - (a) $\mathbb{E}[X \mid \mathcal{B}] \leq \mathbb{E}[Y \mid \mathcal{B}]$ P-n.o.
 - (b) Hvis X = Y P-n.o., har vi også, at $\mathbb{E}[X \mid \mathcal{B}] = \mathbb{E}[Y \mid \mathcal{B}]P$ -n.o.
 - (c) Hvis X < Y P-n.o., har vi også, at $\mathbb{E}[X \mid \mathcal{B}] < \mathbb{E}[Y \mid \mathcal{B}]$ P-n.o.
 - (d) Sættes $A = \{ \mathbb{E}[X \mid \mathcal{B}] = \mathbb{E}[Y \mid \mathcal{B}] \}$, har vi, at $X1_A = Y1_A$ P-n.o.
- (iv) Hvis X er \mathcal{B} -målelig, gælder der, at $\mathbb{E}[X \mid \mathcal{B}] = XP$ -n.o.

Sætning 7.2.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ -algebra af \mathcal{F} , og antag, at $X \in \mathcal{L}^1(P)$.

Lad videre I være et interval i $\mathbb R$ med endepunkter:

$$v \in [-\infty, \infty), \quad \text{og} \quad h \in (-\infty, \infty]$$

og antag, at $P(\mathsf{X} \in I) = 1$. Da gælder der, at

$$P(\mathbb{E}[X \mid \mathcal{B}] \in I) = 1$$

og at

$$X = v$$
-n.o. på $\{\mathbb{E}[X \mid B] = v\}$

og at

$$X = h$$
-n.o. på $\{\mathbb{E}[X \mid B] = h\}$.

Terminologi 7.2.3. Lad X og Y være stokastiske variable på (Ω, \mathcal{F}, P) , og lad A være en mængde fra \mathcal{F} .

Vi siger da (f.eks.), at $\mathsf{X} \geq \mathsf{Y} P$ -n.o. på A, hvis følgende ækvivalente betingelser er opfyldte:

- $(1) P(A \setminus \{X \ge Y\}) = 0.$
- (2) $P(A \cap \{X \ge Y\}) = P(A)$.
- (3) $X\mathbb{1}_A \ge Y\mathbb{1}_A P$ -n.o.

Bemærk nemlig, at

$$P(A) = P(A \setminus \{X \ge Y\}) + P(A \cap \{X \ge Y\})$$

og at

$$P(X\mathbb{1}_A < Y\mathbb{1}_A) = P(A \cap \{X < Y\}) = P(A \setminus \{X \ge Y\})$$

Sætning 7.2.4 (Tårnegenskaben). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad X være en integrabel stokastisk variabel herpå, og lad $\mathcal{B}, \mathcal{B}_1$ være del- σ -algebraer af \mathcal{F} .

Hvis $\mathcal{B}_1 \subseteq \mathcal{B}$, gælder der, at

$$\mathbb{E}\left[\mathbb{E}[\mathsf{X}\mid\mathcal{B}]\mid\mathcal{B}_1\right] = \mathbb{E}\left[\mathsf{X}\mid\mathcal{B}_1\right] = \mathbb{E}\left[\mathbb{E}\left[\mathsf{X}\mid\mathcal{B}_1\right]\mid\mathcal{B}\right] \quad \text{ P-n.o.}$$

7.3 Jensens ulighed for betingede middelværdier

Lemma 7.3.1. Lad I være et interval i \mathbb{R} , og lad $\varphi: I \to \mathbb{R}$ være en konveks funktion. Da findes en følge $(\ell_n)_{n \in \mathbb{N}}$ af affine funktioner på \mathbb{R} , således at

$$\varphi(t) \ge \sup_{n \in \mathbb{N}} \ell_n(t)$$
 for alle til ,

og

$$\varphi(t) = \sup_{n \in \mathbb{N}} \ell_n(t)$$
 for alle til° .

Sætning 7.3.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del- σ -algebra af \mathcal{F} . Lad videre Z være en stokastisk variabel i $\mathcal{L}^1(P)$. For enhver mængde A fra \mathcal{B} gælder der da, at

$$\mathbb{E}\left[\mathbb{1}_A \mathbf{Z} \mid \mathcal{B}\right] = \mathbb{1}_A \mathbb{E}[\mathbf{Z} \mid \mathcal{B}]$$
 P-n.o.

Sætning 7.3.3 (Jensens ulighed for betingede middelværdier.). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ -algebra af \mathcal{F} , og antag, at $X \in \mathcal{L}^1(P)$. Lad videre $\varphi : \mathbb{R} \to \mathbb{R}$ være en Borel-funktion, som er konveks på et interval $I \subseteq \mathbb{R}$. Antag, at $P(X \in I) = 1$, og at $\varphi(X) \in \mathcal{L}^1(P)$. Da gælder der, at

$$P(\mathbb{E}[\mathsf{X} \mid \mathcal{B}] \in I) = 1, \quad \text{og} \quad \varphi(\mathbb{E}[\mathsf{X} \mid \mathcal{B}]) \leq \mathbb{E}[\varphi(\mathsf{X}) \mid \mathcal{B}] \text{ P-n.o.}$$

7.4 Konvergens resultater for betingede middelværdier

Sætning 7.4.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del- σ -algebra af \mathcal{F} .

For ethvert r i $[1, \infty)$ gælder da implikationen:

$$X \in \mathcal{L}^r(P) \Longrightarrow \mathbb{E}[X \mid \mathcal{B}] \in \mathcal{L}^r(P)$$

Hvis $X, Y \in \mathcal{L}^1(P)$, og $X - Y \in \mathcal{L}^r(P)$, gæ/der der endvidere, at

$$\|\mathbb{E}[\mathsf{X} \mid \mathcal{B}] - \mathbb{E}[\mathsf{Y} \mid \mathcal{B}]\|_r \leq \|\mathsf{X} - \mathsf{Y}\|_r$$

For stokastiske variable X, X_1, X_2, X_3, \dots i $\mathcal{L}^1(P)$, kan vi derfor slutte, at

$$\mathsf{X}_n \to \mathsf{X} \text{ i } r\text{-middel } \Longrightarrow \mathbb{E}\left[\mathsf{X}_n \mid \mathcal{B}\right] \to \mathbb{E}\left[\mathsf{X} \mid \mathcal{B}\right] \text{ i } r\text{-middel}.$$

Sætning 7.4.2 (Monoton konvergens for betingede middelværdier). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ -algebra af \mathcal{F} , og lad X, X_1, X_2, X_3, \ldots være stokastiske variable i $\mathcal{L}^1(P)$.

- (i) Hvis $X_n \uparrow X$ P-n.o., da gælder der også, at $\mathbb{E}[X_n \mid \mathcal{B}] \uparrow \mathbb{E}[X \mid \mathcal{B}]$ P-n.o. og i 1-middel.
- (ii) Hvis $\mathsf{X}_n\downarrow\mathsf{X}$ P-n.o., da gælder der også, at $\mathbb{E}\left[\mathsf{X}_n\mid\mathcal{B}\right]\downarrow\mathbb{E}\left[\mathsf{X}\mid\mathcal{B}\right]$ P-n.o. og i 1-middel.

Korollar 7.4.3 (Fatous lemma for betingede middelværdier). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad \mathcal{B} være en del- σ -algebra af \mathcal{F} .

Lad videre X, X_1, X_2, X_3, \ldots være stokastiske variable i $\mathcal{L}^1(P)$, og antag, at $X_n \geq 0$ n.o. for alle n i \mathbb{N} , samt at $X \leq \liminf_{n \to \infty} X_n P$ -n.o.
Da gælder uligheden:

$$\mathbb{E}[X \mid \mathcal{B}] \leq \liminf_{n \to \infty} \mathbb{E}[X_n \mid \mathcal{B}] \text{ P-n.o.}$$

Hvis $\liminf_{n\to\infty} X_n \in \mathcal{L}^1(P)$, kan vi specielt slutte, at (?)

$$\mathbb{E}\left[\liminf_{n\to\infty}\mathsf{X}_n\mid\mathcal{B}\right]\leq \liminf_{n\to\infty}\mathbb{E}\left[\mathsf{X}_n\mid\mathcal{B}\right] \text{ P-n.o.}$$

Sætning 7.4.4 (Domineret konvergens for betingede middelværdier). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ -algebra af \mathcal{F} , og lad X, X_1, X_2, X_3, \dots være stokastiske variable på (Ω, \mathcal{F}, P) .

Antag, at - $X_n \to X$ P-n.o. for $n \to \infty$. - Der findes en stokastisk variabel Y fra $\mathcal{L}^1(P)^+$, således at $|\mathsf{X}_n| \leq \mathsf{Y}$ P-n.o. for alle n i \mathbb{N} . Da gælder der, at $\mathsf{X} \in \mathcal{L}^1(P)$, at $\mathsf{X}_n \in \mathcal{L}^1(P)$ for alle n, og at

$$\mathbb{E}\left[\mathsf{X}_n\mid\mathcal{B}\right]\underset{n\to\infty}{\longrightarrow}\mathbb{E}[\mathsf{X}\mid\mathcal{B}]\quad\text{ P-n.o. og i 1-middel}.$$

7.5 \mathcal{B} -målelige variable som konstanter

Sætning 7.5.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ algebra af \mathcal{F} , og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$.

Betragt endvidere to \mathcal{B} -målelige stokastiske variable U_1 og U_2 , og antag, at

$$P\left(\mathbf{U}_{1} \leq \mathsf{X} \leq \mathbf{U}_{2}\right) = 1$$

Da gælder der også, at

$$P(U_1 \leq \mathbb{E}[X \mid \mathcal{B}] \leq U_2) = 1.$$

Sætning 7.5.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ algebra af \mathcal{F} , og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$. Betragt videre en \mathcal{B} målelig stokastisk variabel U, således at $UX \in \mathcal{L}^1(P)$. Da gælder der, at

$$\mathbb{E}[\mathrm{UX}\mid\mathcal{B}] = \mathrm{U}\mathbb{E}[\mathsf{X}\mid\mathcal{B}]$$
 P-n.o.

7.6 Uafhængighed vs. betinget middelværdi

Sætning 7.6.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad \mathcal{B} være en del- σ algebra af \mathcal{F} , og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$. Antag videre, at X og \mathcal{B} er uafhængige. Da gælder der, at

$$\mathbb{E}[X \mid \mathcal{B}] = \mathbb{E}[X]$$
 P-n.o.

Sætning 7.6.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad $\mathcal{B}, \mathcal{B}_1$ være del- σ algebraer af \mathcal{F} , og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$. Antag, at (X, \mathcal{B}) og \mathcal{B}_1 er uafhængige, dvs. at

$$\sigma(\sigma(X) \cup \mathcal{B})$$
 og \mathcal{B}_1 er uafhængige.

Da gælder formlen:

$$\mathbb{E}\left[\mathsf{X}\mid\sigma\left(\mathcal{B}\cup\mathcal{B}_{1}\right)\right]=\mathbb{E}\left[\mathsf{X}\mid\mathcal{B}\right]\quad\text{P-n.o.}$$

Sætning 7.6.3. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad X, Y være stokastiske variable herpå, og lad \mathcal{B} være en del- σ -alg. af \mathcal{F} .

Antag, at X og \mathcal{B} er uafhængige, og at Y er \mathcal{B} -målelig. Betragt endvidere en begrænset Borel-funktion $H: \mathbb{R}^2 \to \mathbb{R}$, og indfør funktionen $\tilde{H}: \mathbb{R} \to \mathbb{R}$ givet ved

$$\tilde{H}(y) = \mathbb{E}[H(X, y)], \quad (y \in \mathbb{R})$$

Da gælder formlen:

$$\mathbb{E}[H(X,Y) \mid \mathcal{B}] = \tilde{H}(Y)$$
 P-n.o.

7.7 Uniform integrabilitet af betingede middelværdier

Sætning 7.7.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad $(\mathcal{B}_i)_{i \in I}$ være en familie af del- σ -algebraer af \mathcal{F} .

Lad videre \mathcal{H} være en uniformt integrabel familie af stokastiske variable på (Ω, \mathcal{F}, P) . Da er familien

$$\{\mathbb{E}\left[\mathbf{X}\mid\mathcal{B}_{i}\right]\mid\mathbf{x}\in\mathcal{H},\quad i\in I\}$$

igen uniformt integrabel.

7.8 Betinget middelværdi givet en stokastisk funktion

Definition 7.8.1 (Betinget middelværdi af X givet Y). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$.

Betragt videre en stokastisk funktion Y : $\Omega \to E$ med værdier i et måleligt rum $(E,\mathcal{E}),$ og definér:

$$\sigma(\mathbf{Y}) := \mathbf{Y}^{-1}(\mathcal{E}) = \left\{ \mathbf{Y}^{-1}(B) \mid B \in \mathcal{E} \right\} = \left\{ \left\{ \mathbf{Y} \in B \right\} \mid B \in \mathcal{E} \right\} \subseteq \mathcal{F}$$

En betinget middelværdi $\mathbb{E}[\mathbf{X}\mid\mathbf{Y}]$ af \mathbf{X} givet \mathbf{Y} defineres da ved:

$$\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid \sigma(Y)]$$
 P-n.o.

M.a.o. er $\mathbb{E}[X \mid Y]$ en integrabel, $\sigma(Y)$ -målelig stokastisk variabel, så

$$\int_{\{Y \in B\}} \mathbb{E}[X \mid Y] dP = \int_{\{Y \in B\}} X dP \quad \text{for alle } Bi\mathcal{E}$$

Lemma 7.8.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$. Betragt videre en stokastisk funktion $Y : \Omega \to E$ med værdier i et måleligt rum (E, \mathcal{E}) .

- (i) Der findes en funktion $\varphi: E \to \mathbb{R}$ fra $\mathcal{M}(\mathcal{E})$, således at $\mathbb{E}[X \mid Y] = \varphi(Y)$ P-n.o.
- (ii) Hvis $\varphi \in \mathcal{M}(\mathcal{E})$ og opfylder, at $\mathbb{E}[X \mid Y] = \varphi(Y)$ P-n.o., så gælder der automatisk, at $\varphi \in \mathcal{L}^1(P_Y)$.
- (iii) Antag, at φ, ψ er to funktioner fra $\mathcal{M}(\mathcal{E})$, således at

$$\varphi(Y) = \mathbb{E}[X \mid Y] = \psi(Y)$$
 P-n.o.

Så gælder der automatisk, at $\psi(y) = \varphi(y)$ for $P_Y - n$.a. y i E.

Definition 7.8.3 (Betinget middelværdi af X givet Y). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$.

Betragt videre en stokastisk funktion $Y : \Omega \to E$ med værdier i et måleligt rum (E, \mathcal{E}) . Enhver funktion φ i $\mathcal{M}(\mathcal{E})$ der opfylder, at

$$\mathbb{E}[X \mid Y] = \varphi(Y), P\text{-n.o.},$$

kaldes en betinget middelværdi af X givet værdien af Y . Man benytter ofte notationen:

$$\varphi(y) = \mathbb{E}[X \mid Y = y], \quad (y \in E)$$

Lemma 7.8.4. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, lad X være en stokastisk variabel i $\mathcal{L}^1(P)$, og lad $Y: \Omega \to E$ være en stokastisk funktion med værdier i et måleligt rum (E, \mathcal{E}) .

Betragt videre en funktion $\varphi: E \to \mathbb{R}$ fra $\mathcal{M}(\mathcal{E})$. Da er φ en betinget middelværdi af X givet værdien af Y , hvis og kun hvis den opfylder følgende to betingelser:

- (i) $\varphi \in \mathcal{L}^1(P_Y)$.
- (ii) $\int_B \varphi(y) P_{\mathbf{Y}}(\mathrm{d}y) = \int_{\{\mathbf{Y} \in B\}} \mathrm{Xd}P$ for alle B fra $\mathcal{E}.$

Lemma 7.8.5. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad $X, \tilde{x}, x_1, X_2, X_3, \dots$ være stokastiske variable fra $\mathcal{L}^1(P)$. Lad videre $Y: \Omega \to E$ være en stokastisk funktion med værdier $i(E, \mathcal{E})$.

(i) For ethvert $\alpha i\mathbb{R}$ gælder der, at

$$\mathbb{E}[\alpha \mathbf{X} + \tilde{\mathbf{X}} \mid \mathbf{Y} = y] = \alpha \mathbb{E}[\mathbf{X} \mid \mathbf{Y} = y] + \mathbb{E}[\tilde{\mathbf{X}} \mid \mathbf{Y} = y] \quad \text{ for } P_{\mathbf{Y}} - \text{ n.a. } y.$$

- (ii) Hvis $\tilde{\mathbf{X}} \leq \mathbf{X}$ P-n.o., gælder der også, at $\mathbb{E}[\tilde{\mathbf{X}} \mid \mathbf{Y}=y] \leq \mathbb{E}[\mathbf{X} \mid \mathbf{Y}=y]$ fo P_Y- n.a. y.
- (iii) Hvis $X_n \uparrow X$ P-n.o., gælder der også, at $\mathbb{E}[X_n \mid Y = y] \uparrow \mathbb{E}[X \mid Y = y]$ for $P_V n.a.y$.
- (iv) Hvis $X_n \downarrow X$ P-n.o., gælder der også, at $\mathbb{E}[X_n \mid Y=y] \downarrow \mathbb{E}[X \mid Y=y]$ for P_Y -n.a. y.

Sætning 7.8.6. Lad X, X' være stokastiske variable i $\mathcal{L}^1(P)$, og lad Y, Y' : $\Omega \to E$ være to stokastiske funktioner med værdier i et måleligt rum (E, \mathcal{E}) . Antag, at

$$(X,Y) \sim (x',Y')$$
, altså at $P_{(x,Y)} = P_{(x',Y')}p$ å $(\mathbb{R} \times E, \mathcal{B}(\mathbb{R}) \otimes \mathcal{E})$

Da vil enhver betinget middelværdi af X givet værdien af Y også være en betinget middelværdi af X' givet værdien af Y'.

For φ i $\mathcal{M}(\mathcal{E})$ gælder der således implikationen:

$$\mathbb{E}[X \mid Y] = \varphi(Y) \text{ P-n.o.} \implies \mathbb{E}[X' \mid Y'] = \varphi(Y') \text{ P-n.o.}$$

8 Betingede fordelinger

8.1 Definition, eksempler og entydighed

Definition 8.1.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stok. fkt. med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) . En betinget fordeling af X givet (værdien af) Y er en afbildning $\varphi : \mathcal{E}_1 \times E_2 \to [0, 1]$, der opfylder følgende tre betingelser:

1. For hvert fast y i E_2 er afbildningen

$$\varphi(\cdot,y):A\mapsto\varphi(A,y):\mathcal{E}_1\to[0,1]$$

et sandsynlighedsmål på (E_1, \mathcal{E}_1).

2. For enhver fast mængde A i \mathcal{E}_1 er afbildningen

$$\varphi(A,\cdot): y \mapsto \varphi(A,y): E_2 \to [0,1]$$

 \mathcal{E}_2 -målelig.

3. For enhver mængde A i \mathcal{E}_1 og enher mængde B i \mathcal{E}_2 gælder der, at

$$\int_{B} \varphi(A, y) P_{Y}(dy) = P(X \in A, Y \in B)$$

Man skriver ofte $P_{\mathbf{X}}(A \mid \mathbf{Y} = y)$ i stedet for $\varphi(A,y)$. For hvert y i E_2 kaldes sandsynlighedsmâlet

$$\varphi(\cdot, y) = P_{\mathbf{x}}(\cdot \mid \mathbf{Y} = y)$$

for den betingede fordeling af X givet Y = y.

Bemærkning 8.1.2.

Eksempel 8.1.3. Lad X og Y være stokastiske variable på (Ω, \mathcal{F}, P) , og antag, at Y er Poisson fordelt med parameter $\ell > 0$.

Vi definerer så $\varphi : \mathcal{B}(\mathbb{R}) \times \mathbb{R} \to [0,1]$ ved

$$\begin{split} \varphi(A,y) &= \begin{cases} \frac{P(\mathbb{X} \in A, Y = y)}{P(Y = y)}, & \text{hvis } y \in \mathbb{N}_0 \\ \delta_0(A), & \text{hvis } y \in \mathbb{R} \backslash \mathbb{N}_0 \end{cases} \\ &= \begin{cases} \frac{P(\mathbb{X} \in A, Y = y)}{e^{-\varepsilon_\ell y/y!}}, & \text{hvis } y \in \mathbb{N}_0 \\ \delta_0(A), & \text{hvis } y \in \mathbb{R} \backslash \mathbb{N}_0 \end{cases} \end{split}$$

Da er φ en betinget fordeling af X givet værdien af Y . Bemærk, at der for alle A i $\mathcal{B}(\mathbb{R})$ og y i \mathbb{R} gælder formlen:

$$\varphi(A, y) = \delta_0(A) 1_{R \setminus N_0}(y) + \sum_{n=0}^{\infty} \frac{P(X \in A, Y = n)}{e^{-\ell \ell^n / n!}} 1_{\{n\}}(y)$$

Eksempel 8.1.4. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stokastiske variable herpå.

Antag, at $P_{(x,Y)}$ er absolut kontinuert med tæthed $f \in \mathcal{M}(\mathcal{B}(\mathbb{R}^2))^+$ med hensyn til λ_2 . Husk, at P_X og P_Y da automatisk er absolut kontinuerte mht. λ , med tætheder givet ved (jvf. 13.3.4 i [M&l]):

$$f_{\mathbf{X}}(x) = \int_{\mathbb{R}} f(x, t) \lambda(\mathrm{d}t), \quad \text{og} \quad f_{\mathbf{Y}}(y) = \int_{\mathbb{R}} f(s, y) \lambda(\mathrm{d}s), \quad (x, y \in \mathbb{R})$$

Det følger da, at der ved formlen:

$$\varphi(A,y) = \begin{cases} \frac{1}{f_Y(y)} \int_A f(x,y) \lambda(\mathrm{d}x), & \text{hvis } f_Y(y) > 0, \\ \delta_0(A), & \text{hvis } f_Y(y) = 0, \end{cases} (A \in \mathcal{B}(\mathbb{R}), y \in \mathbb{R}),$$

defineres en betinget fordeling af X givet (værdien af) Y. (a) For fast y i \mathbb{R} ses det umiddelbart, at $A \mapsto \varphi(A, y)$ er et sandsynlighedsmål på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Hvis $f_Y(y) > 0$ er det målet med tæthed $f_Y(y)^{-1}f(\cdot, y)$ med hensyn til λ . (b) For fast A i $\mathcal{B}(\mathbb{R})$ følger det fra Tonelli's Sætning, at funktionen

$$y \mapsto \int_A f(x,y)\lambda(\mathrm{d}x) = \int_{\mathbf{R}} f(x,y)1_A(x)\lambda(\mathrm{d}x)$$

er $\mathcal{B}(\mathbb{R})$ -målelig. Dermed sikrer Sætning 4.4.3 i [M&I], at

$$y \mapsto \varphi(A, y) = \begin{cases} \frac{1}{f_{Y}(y)} \int_{A} f(x, y) \lambda(dx), & \text{hvis } f_{Y}(y) > 0\\ \delta_{0}(A), & \text{hvis } f_{Y}(y) = 0 \end{cases}$$

er $\mathcal{B}(\mathbb{R})$ -målelig.

(c) For endnu en Borel-mængde B i $\mathcal{B}(\mathbb{R})$ finder vi endelig, at

$$\int_{B} \varphi(A, y) P_{Y}(dy) = \int_{B \cap \{f_{Y} > 0\}} \varphi(A, y) f_{Y}(y) \lambda(dy)$$

$$= \int_{B \cap \{f_{Y} > 0\}} \left(\frac{1}{f_{Y}(y)} \int_{A} f(x, y) \lambda(dx) \right) f_{Y}(y) \lambda(dy)$$

$$= \int_{B \cap \{f_{Y} > 0\}} \left(\int_{A} f(x, y) \lambda(dx) \right) \lambda(dy)$$

$$= \int_{B} \left(\int_{A} f(x, y) \lambda(dx) \right) \lambda(dy) \xrightarrow{\text{Tonelli}} \int_{A \times B} f d\lambda_{2}$$

$$= P((X, Y) \in A \times B)$$

$$= P(X \in A, Y \in B)$$

Eksempel 8.1.5. Antag, at (X,Y) er 2-dimensionalt normalfordelt med middelværdi-vektor $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ og kovariansmatrix $\Sigma = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$. Mao. er (X,Y) absolut kontinuert med λ_2 -tæthed givet ved

$$f_{(X,Y)}(x,y) = \frac{1}{\sqrt{(2\pi)^2 \det(\Sigma)}} \exp\left(-\frac{1}{2} \left\langle \Sigma^{-1} \binom{x}{y}, \binom{x}{y} \right\rangle \right)$$
$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2} \left\langle \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix} \binom{x}{y}, \binom{x}{y} \right\rangle \right)$$
$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2} \left(x^2 - 4xy + 5y^2\right)\right)$$

Bemærk også, at Y $\sim N(0,1)$, dvs. Y har λ -tæthed:

$$f_{\rm Y}(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)$$

Det følger derfor fra Eksempel 8.1.4, at $P_{\mathbf{X}}(\cdot\mid\mathbf{Y}=y)$ er målet med λ -tæthed:

$$x \mapsto \frac{f_{(X,Y)}(x,y)}{f_Y(y)} = \frac{\frac{1}{2\pi} \exp\left(-\frac{1}{2} \left(x^2 - 4xy + 5y^2\right)\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)}$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(x^2 - 4xy + 4y^2\right)\right)$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} (x - 2y)^2\right)$$

Det følger således at, $P_{\mathbf{X}}(\cdot \mid \mathbf{Y} = y) = N(2y, 1)$ for alle y i \mathbb{R} .

Eksempel 8.1.6. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stok. fkt. med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) .

Da er X og Y uafhængige, hvis og kun hvis der findes et sandsynlighedsmål μ på (E_1, \mathcal{E}_1) , således at der ved

$$\varphi(A, y) = \mu(A), \quad (A \in \mathcal{E}_1, y \in E_2)$$

defineres en betinget fordeling af X givet (værdien af) Y. I bekræftende fald gælder der, at $\mu = P_X$. Antag nemlig, at X og Y er uafhængige, og definér $\varphi : \mathcal{E}_1 \times E_2 \to [0,1]$ ved

$$\varphi(A, y) = P_{\mathbf{X}}(A), \quad (A \in \mathcal{E}_1, y \in E_2)$$

- (i) Det er klart, at $A\mapsto \varphi(A,y)$ er et sandsynlighedsmål for ethvert y i $E_2.$
- (ii) For enher fast mængde A i \mathcal{E}_1 er det også klart, at $y \mapsto \varphi(A, y)$ er \mathcal{E}_2 -målelig.
- (iii) For en vilkårlig mængde B fra \mathcal{E}_2 finder vi endelig, at

$$\int_{B} \varphi(A, y) P_{\mathbf{Y}}(dy) = \int_{B} P_{\mathbf{X}}(A) P_{\mathbf{Y}}(dy) = P_{\mathbf{X}}(A) P_{\mathbf{Y}}(B)$$
$$= P(\mathbf{X} \in A) P(\mathbf{Y} \in B) = P(\mathbf{X} \in A, \mathbf{Y} \in B)$$

Antag omvendt, at der findes et ssh-mål μ på (E_1, \mathcal{E}_1) , således at

$$\varphi(A, y) = \mu(A), \quad (A \in \mathcal{E}_2, y \in E_2)$$

definerer en betinget fordeling af X givet (værdien af) Y. For vilkårlige A i \mathcal{E}_1 og B i \mathcal{E}_2 følger det da, at

$$P(X \in A, Y \in B) = \int_{B} \varphi(A, y) P_{Y}(dy) = \int_{B} \mu(A) P_{Y}(dy)$$
$$= \mu(A) P_{Y}(B) = \mu(A) P(Y \in B)$$

Sættes specielt $B = E_2$, fremgår det, at

$$P(X \in A) = P(X \in A, Y \in E_2) = \mu(A)P(Y \in E_2) = \mu(A)$$

således at $\mu = P_{\mathbf{x}}$. Dermed viser udregningen ovenfor videre, at

$$P(\mathbf{x} \in A, \mathbf{Y} \in B) = P_{\mathbf{X}}(A)P(\mathbf{Y} \in B) = P(\mathbf{X} \in A)P(\mathbf{Y} \in B).$$

Sætning 8.1.7. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stokastiske funktioner med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) . Antag, at $\varphi, \tilde{\varphi}: \mathcal{E}_1 \times E_2 \to [0, 1]$ er to betingede fordelinger af X givet (værdien af)

Antag endvidere, at \mathcal{E}_1 er tælleligt frembragt. Da findes en mængde N fra \mathcal{E}_2 , således at

- (i) $P(Y \in N) = 0$.
- (ii) $\varphi(A, y) = \tilde{\varphi}(A, y)$ for alle A i \mathcal{E}_1 og y i N^c .

8.2 Transformation og integration med funktioner af én variabel

Sætning 8.2.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stokastiske funktioner herpå med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) . Lad (E_3, \mathcal{E}_3) være endnu et måleligt rum, og betragt en $\mathcal{E}_1 - \mathcal{E}_3$ -målelig afbildning $\psi: E_1 \to E_3$.

Antag, at der findes en betinget fordeling

$$P_{\mathbf{X}}(\cdot \mid \mathbf{Y} = \cdot) : \mathcal{E}_1 \times E_2 \rightarrow [0, 1]$$

af X givet værdien af Y . Da er afbildningen

$$\varphi(C, y) = P_{\mathbf{X}} \left(\psi^{-1}(C) \mid \mathbf{Y} = y \right), \quad (C \in \mathcal{E}_3, y \in E_2),$$

en betinget fordeling af $\psi(X)$ givet værdien af Y .

Sætning 8.2.2. Lad (Ω, \mathcal{F}, P) være et ssh.-felt, og lad X og Y være stok. fkt. med værdier i målelige rum $h\mathbf{h}\mathbf{v}$. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) . Antag, at der findes en betinget fordeling $P_{\mathbf{X}}(\cdot \mid \mathbf{Y} = \cdot)$ af X givet (værdien af) Y. Antag videre, at $\psi : E_1 \to \mathbb{R}$ er en $\mathcal{E}_1 - \mathcal{B}(\mathbb{R})$ -målelig funktion, således at $\mathbb{E}[\|\psi(\mathbf{X})\| < \infty$.

- (i) Mængden $N_{\psi}:=\left\{y\in E_{2}\mid\psi\notin\mathcal{L}^{1}\left(P_{\mathbf{X}}(\cdot\mid\mathbf{Y}=y)\right)\right\}$ er element $i\mathcal{E}_{2},$ og $P\left(Y\in N_{\psi}\right)=0.$
- (ii) Funktionen

$$w(y) = \begin{cases} \int_{E_1} \psi(x) P_{\mathbf{X}}(\, \mathrm{d}x \mid \mathbf{Y} = y), & \text{hvis } y \in N_{\psi}^c \\ 0, & \text{hvis } y \in N_{\psi} \end{cases}$$

er en version af $y \mapsto \mathbb{E}[\psi(X) \mid Y = y]$.

Eksempel 8.2.3. Antag, at (X,Y) er 2-dimensionalt normalfordelt med middelværdivektor $\underline{0}$ og kovariansmatrix $\Sigma = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.

Vi har tidligere set, at $P_X(\cdot \mid Y = y) = N(2y, 1)$ for alle y i \mathbb{R} . Vha. Sætning 8.2.2 følger det så specielt for P_Y -n.a. y, at

$$\mathbb{E}[X \mid Y = y] = \int_{\mathbb{R}} x P_X(dx \mid Y = y) = \int_{\mathbb{R}} x N(2y, 1)(dx) = 2y$$

$$\mathbb{E}[X^2 \mid Y = y] = \int_{\mathbb{R}} x^2 P_X(dx \mid Y = y) = \int_{\mathbb{R}} x^2 N(2y, 1)(dx) = 1 + 4y^2$$

således at $\mathbb{E}[X \mid Y] = 2Y, \mathbb{E}[X^2 \mid Y] = 1 + 4Y^2$, og $\mathbb{V}[X \mid Y] = 1$.

8.3 Transformation og integration med funktioner af to variable

Lemma 8.3.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stok. fkt. med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) .

Antag, at der findes en betinget fordeling $P_X(\cdot \mid Y = \cdot)$ af X givet (værdien af) Y. For enhver mængde H i $\mathcal{E}_1 \otimes \mathcal{E}_2$ gælder der da, at funktionen

$$w_H(y) := \int_{E_1} 1_H(x, y) P_X(dx \mid Y = y), \quad (y \in E_2)$$

er en version af $y \mapsto \mathbb{E}[1_H(X, Y) \mid Y = y]$. Der gælder altså, at

$$\mathbb{E}\left[1_{H}(X,Y) \mid Y = y\right] = \int_{E_{1}} 1_{H}(x,y) P_{X}(dx \mid Y = y), \quad (y \in E_{2})$$

Korollar 8.3.2. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stok. fkt. med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) .

Antag, at der findes en betinget fordeling $P_X(\cdot \mid Y = \cdot)$ af X givet (værdien af) Y. Antag videre, at (E_3, \mathcal{E}_3) er et måleligt rum, og at $\psi : E_1 \times E_2 \to E_3$ er en $\mathcal{E}_1 \otimes \mathcal{E}_2 - \mathcal{E}_3$ -målelig funktion.

Da er afbildningen $\varphi: \mathcal{E}_3 \times E_2 \to [0,1]$ givet ved

$$\varphi(C, y) = P_{\mathbf{X}} \left(\psi(\cdot, y)^{-1}(C) \mid \mathbf{Y} = y \right), \quad (C \in \mathcal{E}_3, y \in E_2)$$

en betinget fordeling af $\psi(X,Y)$ givet (værdien af) Y. Med andre ord gælder der altså, at

$$P_{\psi(X,Y)}(\cdot \mid Y=y) = P_X(\cdot \mid Y=y) \circ \psi(\cdot,y)^{-1}$$
 for P_Y – n.a. y i E_2 .

Sætning 8.3.3. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stok. fkt. med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) .

Antag, at der findes en betinget fordeling $P_X(\cdot \mid Y = \cdot)$ af X givet (værdien af) Y. Antag videre, at $\psi : E_1 \times E_2 \to \mathbb{R}$ er en $\mathcal{E}_1 \otimes \mathcal{E}_2 - \mathcal{B}(\mathbb{R})$ -målelig funktion, således at $\mathbb{E}[\|\psi(X,Y)\| < \infty$.

- (i) Mængden $N:=\{y\in E_2\mid \psi(\cdot,y)\notin \mathcal{L}^1\left(P_{\mathbf{X}}(\cdot\mid \mathbf{Y}=y)\right)\}$ er element $i\in\mathcal{E}_2,$ og $P(\mathbf{Y}\in N)=0.$
- (ii) Funktionen

$$W(y) = \begin{cases} \int_{E_1} \psi(x, y) P_{\mathbf{X}}(dx \mid \mathbf{Y} = y), & \text{hvis } y \in N^c \\ 0, & \text{hvis } y \in N \end{cases}$$

er en version af $y \mapsto \mathbb{E}[\psi(X, Y) \mid Y = y]$.

Eksempel 8.3.4. Antag, at (X,Y) er 2-dimensionalt normalfordelt med middelværdivektor $\underline{0}$ og kovariansmatrix $\Sigma = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$. Vi ønsker at bestemme $\mathbb{E}[\cos(XY) \mid Y]$. Vi har tidligere set, at $P_X(\cdot \mid Y = y) = N(2y,1)$ for alle y i \mathbb{R} . Vi finder så ved brug af Sætning 8.3.4, at

$$\mathbb{E}[\cos(\mathbf{X}\mathbf{Y}) \mid \mathbf{Y} = y] = \int_{\mathbb{R}} \cos(xy) P_{\mathbf{X}}(dx \mid \mathbf{Y} = y)$$

$$= \int_{\mathbb{R}} \cos(xy) N(2y, 1)(dx) = \operatorname{Re}\left(\int_{\mathbb{R}} e^{ixy} N(2y, 1)(dx)\right)$$

$$= \operatorname{Re}(\widehat{N(2y, 1)}(y)) \stackrel{\text{1.1.3}}{\stackrel{\downarrow}{=}} \operatorname{Re}\left(e^{i2y(y)}e^{-y^2/2}\right) = \cos(2y^2) e^{-y^2/2}.$$

Vi kan dermed slutte, at

$$\mathbb{E}[\cos(XY) \mid Y] = \cos(2Y^2) e^{-Y^2/2}$$

8.4 Eksistens af betingede fordelinger

Sætning 8.4.1. Lad X være en reel stokastisk variabel på (Ω, \mathcal{F}, P) , og lad Y være en stokastisk funktion på (Ω, \mathcal{F}, P) med værdier i et måleligt rum (E, \mathcal{E}) . Da findes en betinget fordeling $P_{\mathbf{X}}(\cdot \mid \mathbf{Y} = \cdot)$ af X givet værdien af Y .

Lemma 8.4.2. Lad $G: \mathbb{Q} \to [0,1]$ være en voksende funktion, således at

$$\lim_{n \to \infty} G(-n) = 0, \quad \text{og} \quad \lim_{n \to \infty} G(n) = 1$$

Definér funktionen $F:\mathbb{R}\to [0,1]$ ved

$$F(x) = \inf\{G(q) \mid q \in (x, \infty) \cap \mathbb{Q}\}, \quad (x \in \mathbb{R})$$

Da er F voksende, højrekontinuert, og der gælder at

$$\lim_{x \to -\infty} F(x) = 0, \quad \text{og} \quad \lim_{x \to \infty} F(x) = 1$$

Med andre ord er F fordelingsfunktionen for et sandsynlighedsmål på \mathbb{R} (Lebesgue-Stieltjes målet hørende til F - jvf. 3.5.7 i [M&I]).

Definition 8.4.3. Et måleligt rum (E, \mathcal{E}) kaldes for et Borel-rum, hvis der findes en mængde M i $\mathcal{B}(\mathbb{R})$, og en afbildning $\psi : E \to M$, således at

- 1. ψ er bijektiv.
- 2. ψ er $\mathcal{E} \mathcal{B}(\mathbb{R})_M$ -målelig.
- 3. $\psi^{\langle -1 \rangle}: M \to E \text{ er } \mathcal{B}(\mathbb{R})_{M^-}\mathcal{E}\text{-målelig.}$

Husk, at

$$\mathcal{B}(\mathbb{R})_M = \{ M \cap A \mid A \in \mathcal{B}(\mathbb{R}) \} = \{ B \in \mathcal{B}(\mathbb{R}) \mid B \subseteq M \}$$

Sætning 8.4.4. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad X og Y være stokastiske funktioner herpå med værdier i målelige rum hhv. (E_1, \mathcal{E}_1) og (E_2, \mathcal{E}_2) . Antag, at (E_1, \mathcal{E}_1) er et Borel-rum. Da findes en betinget fordeling

$$P_{\mathbf{X}}(\cdot \mid \mathbf{Y} = \cdot) : \mathcal{E}_1 \times E_2 \to [0, 1]$$

af X givet værdien af Y.

9 Martingaler

9.1 Definition, eksempler og grundlæggende egenskaber

Definition 9.1.1. Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt.

- 1. Et filter på (Ω, \mathcal{F}) er en voksende følge $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ af del- σ -algebraer af \mathcal{F} .
- 2. Hvis $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ er et filter på (Ω,\mathcal{F}) , siges $(\Omega,\mathcal{F},\mathcal{F}_n,P)$ at være et filtreret sandsynlighedsfelt.
- 3. En følge $(X_n)_{n\in\mathbb{N}_0}$ af stokastiske variable på (Ω, \mathcal{F}, P) kaldes tilpasset med hensyn til et filter $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$, hvis X_n er \mathcal{F}_n -målelig for alle n i \mathbb{N}_0 .
- 4. En følge $(X_n)_{n\in\mathbb{N}_0}$ af stokastiske variable på (Ω, \mathcal{F}, P) kaldes forudsigelig (eller predictabel) med hensyn til et filter $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$, hvis x_n er $\mathcal{F}_{(n-1)\vee 0^{-malelig}}$ for alle n i \mathbb{N}_0 .

Definition 9.1.2 (Martingaler, sub-martingaler og super-martingaler). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en følge af stokastiske variable herpå. Antag, at

- (a) $X_n \in \mathcal{L}^1(P)$ for alle n.
- (b) $(X_n)_{n\in\mathbb{N}_0}$ er tilpasset med hensyn til (\mathcal{F}_n) . Vi siger da, at
- (c1) $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal, hvis $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n P$ -n.o. for alle n.
 - c2 $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-martingal, hvis $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \geq X_n P$ -n.o. for alle n.
 - c3 $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en super-martingal, hvis $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \leq X_n$ P-n.o. for alle n.

Bemærkning 9.1.3. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad (X_n) være en følge af stokastiske variable.

1. Hvis (X_n, \mathcal{F}_n) er en martingal, gælder der, at

$$\mathbb{E}\left[\mathbf{X}_{m}\mid\mathcal{F}_{n}\right]\overset{2.4}{=}\mathbb{E}\left[\mathbb{E}\left[\mathbf{X}_{m}\mid\mathcal{F}_{m-1}\right]\mid\mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbf{X}_{m-1}\mid\mathcal{F}_{n}\right]=\cdots=\mathbb{E}\left[\mathbf{X}_{n}\mid\mathcal{F}_{n}\right]=\mathbf{X}_{n}$$

for alle m, n i \mathbb{N} , så n < m. Specielt ses, at $\mathbb{E}[X_m] = \mathbb{E}[X_n]$.

2. Hvis (X_n, \mathcal{F}_n) er en sub-martingal, gælder der, at

$$\mathbb{E}\left[X_{m} \mid \mathcal{F}_{n}\right] = \mathbb{E}\left[\mathbb{E}\left[X_{m} \mid \mathcal{F}_{m-1}\right] \mid \mathcal{F}_{n}\right] \geq \mathbb{E}\left[X_{m-1} \mid \mathcal{F}_{n}\right] \geq \cdots \geq \mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right] = X_{n}$$

for alle m, n i \mathbb{N} , så n < m. Specielt ses, at $\mathbb{E}[X_m] \ge \mathbb{E}[X_n]$.

3. Hvis (X_n, \mathcal{F}_n) er en super-martingal, gælder der, at $\mathbb{E}[X_m \mid \mathcal{F}_n] \leq X_n$ og $\mathbb{E}[X_m] \leq \mathbb{E}[X_n]$ for alle m, n i \mathbb{N} , så n < m.

Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(\mathbf{X}_n)_{n \in \mathbb{N}_0}$ være en følge af stokastiske variable herpå.

Der gælder da, at

$$(X_n, \mathcal{F}_n)$$
 er en sub-MG \iff $(-X_n, \mathcal{F}_n)$ er en super-MG,

og (X_n, \mathcal{F}_n) er en MG \iff (X_n, \mathcal{F}_n) er både en sub-MG og en super-MG.

Eksempel 9.1.4. En spiller deltager i en (uendelig) følge af uafhængige spil på et casino. For hvert n i \mathbb{N}_0 sætter vi

 $X_n = \text{gevinsten (eller tabet) ved det } n \text{ 'te spil.}$

Vi antager, at hvert spil er fair, dvs. at $\mathbb{E}[X_n] = 0$ for alle n i \mathbb{N}_0 (specielt antages det, at $X_n \in \mathcal{L}^1(P)$).

Vi sætter endelig

 $S_n = \text{spillerens samlede gevinst (eller tab) efter det } n$ 'te spil

$$= \sum_{j=0}^{n} X_{j}$$

Da er $(S_n)_{n \in \mathbb{N}_0}$ en martingal med hensyn til følgen:

$$\mathcal{F}_n = \sigma(X_0, \dots, X_n), \quad (n \in \mathbb{N}_0)$$

Eksempel 9.1.5 (Lévy martingaler). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad X være en stokastisk variabel i $\mathcal{L}^1(P)$.

Sæt $X_n = \mathbb{E}[X \mid \mathcal{F}_n]$ for alle n i \mathbb{N}_0 . Da er $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ en martingal. Det er nemlig klart, at $X_n = \mathbb{E}[X \mid \mathcal{F}_n]$ er integrabel og \mathcal{F}_n -målelig for ethvert n i \mathbb{N}_0 .

For hvert n i \mathbb{N}_0 finder vi videre, at

$$\mathbb{E}\left[\mathbf{X}_{n+1} \mid \mathcal{F}_{n}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbf{X} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_{n}\right] \stackrel{?}{\rightleftharpoons} \mathbb{E}\left[\mathbf{X} \mid \mathcal{F}_{n}\right] \stackrel{?}{=} \mathbf{X}_{n} \quad \text{P-n.o.}$$

Ifølge 7.7.1 er $\{X_n \mid n \in \mathbb{N}_0\}$ uniformt integrabel.

Eksempel 9.1.6. Se øvelse 9.1

Lemma 9.1.7. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ og $(Y_n)_{n \in \mathbb{N}_0}$ være følger af stokastiske variable herpå.

- (i) Hvis (X_n, \mathcal{F}_n) og (Y_n, \mathcal{F}_n) er martingaler, og $a, b \in \mathbb{R}$, da er $(aX_n + bY_n, \mathcal{F}_n)$ igen en martingal.
- (ii) Hvis (X_n, \mathcal{F}_n) og (Y_n, \mathcal{F}_n) er sub-martingaler, og $a, b \in [0, \infty)$, da er $(aX_n + bY_n, \mathcal{F}_n)$ igen en sub-martingal.
- (iii) Hvis (X_n, \mathcal{F}_n) og (Y_n, \mathcal{F}_n) er super-martingaler, og $a, b \in [0, \infty)$, da er $(aX_n + bY_n, \mathcal{F}_n)$ igen en super-martingal.

Sætning 9.1.8 (Konvekse transformationer af martingaler og sub-martingaler). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en følge af stokastiske variable herpå.

Lad videre $\varphi : \mathbb{R} \to \mathbb{R}$ være en konveks-funktion, således at $\varphi(X_n) \in \mathcal{L}^1(P)$ for alle n.

Da gælder følgende udsagn:

- (i) Hvis (X_n, \mathcal{F}_n) er en martingal, da er $(\varphi(X_n), \mathcal{F}_n)$ en submartingal.
- (ii) Hvis (X_n, \mathcal{F}_n) er en sub-martingal, og φ yderligere er voksende, da er $(\varphi(X_n), \mathcal{F}_n)$ igen en submartingal.

Lemma 9.1.9. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret ssh-felt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en følge af stokastiske variable herpå.

(i) Hvis (X_n, \mathcal{F}_n) er en sub-martingal, så gæ/der der, at

$$\sup_{n \in \mathbb{N}_0} \mathbb{E}\left[|\mathbf{X}_n|\right] < \infty \Longleftrightarrow \sup_{n \in \mathbb{N}_0} \mathbb{E}\left[\mathbf{X}_n^+\right] < \infty.$$

- (ii) Hvis (X_n, \mathcal{F}_n) er en sub-MG, og der findes en stok. var. Z i $\mathcal{L}^1(P)$, så $X_n \leq Z$ P-n.o. for alle n, da er $\sup_{n \in \mathbb{N}_0} \mathbb{E}[|X_n|] < \infty$.
- (iii) Hvis (X_n, \mathcal{F}_n) er en super-martingal, så gæ/der der, at

$$\sup_{n\in\mathbb{N}_{0}}\mathbb{E}\left[\left|\mathbf{X}_{n}\right|\right]<\infty\Longleftrightarrow\sup_{n\in\mathbb{N}_{0}}\mathbb{E}\left[\mathbf{X}_{n}^{-}\right]<\infty$$

(iv) Hvis (X_n, \mathcal{F}_n) er en super-MG, og der findes en stok. var. Z i $\mathcal{L}^1(P)$, så $X_n \geq Z$ P-n.o. for alle n, da er $\sup_{n \in \mathbb{N}_0} \mathbb{E}[|X_n|] < \infty$.

9.2 Konstruktioner med martingaler

Sætning 9.2.1 (Doob-dekompositionen). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable fra $\mathcal{L}^1(P)$. Da kan $(X_n)_{n \in \mathbb{N}_0}$ dekomponeres på formen:

$$X_n = M_n + A_n, \quad (n \in \mathbb{N}_0)$$

hvor

- 1. $(M_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal.
- 2. $A_0 \equiv 0$, og $A_n \in \mathcal{L}^1(P)$, og A_n er \mathcal{F}_{n-1} -målelig for alle $ni\mathbb{N}$.

Hvis $X_n = \tilde{M}_n + \tilde{A}_n$ er endnu en dekomposition af X_n , således at (a) og (b) er opfyldte, da gælder der, at

$$M_n = \tilde{M}_n$$
 P-n.o. og $A_n = \tilde{A}_n$ P-n.o. for alle $ni\mathbb{N}_0$.

Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-martingal (hhv. en super-martingal), da er følgen $(A_n)_{n \in \mathbb{N}_0}$ voksende P-n.o. (hhv. aftagende P-n.o.)

Sætning 9.2.2 (Martingal transforms). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable fra $\mathcal{L}^1(P)$. Lad endvidere $(V_n)_{n \in \mathbb{N}_0}$ være en forudsigelig proces (dvs. V_n er $\mathcal{F}_{0 \vee (n-1)}$ -målelig for alle n), og antag, at hvert V_n er begrænset. Definér nu

$$\Delta X_n = X_n - X_{n-1}$$
 for alle $ni\mathbb{N}$,

og

$$\mathbf{V} \bullet \mathbf{X}_n = \mathbf{V}_0 \mathbf{X}_0 + \sum_{k=1}^n \mathbf{V}_k \Delta \mathbf{X}_k$$
 for alle $ni \mathbb{N}_0$

- (i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal, da er $(V \bullet X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ igen en MG.
- (ii) Hvis $V_n \geq 0$ for alle n, og $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-MG (hhv. super-MG), da er $(V \bullet X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ igen en sub-MG (hhv. super-MG).

9.3 Stoppetider

Definition 9.3.1 (Stoppetider). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt. En stoppetid (med hensyn til filteret $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$) er en afbildning $\tau:\Omega\to\mathbb{N}_0\cup\{+\infty\}$, der opfylder betingelsen:

$$\{\tau > n\} \in \mathcal{F}_n$$
 for alle n i \mathbb{N}_0

Betingelsen kan ækvivalent formuleres som:

$$\{\tau \leq n\} \in \mathcal{F}_n$$
 for alle n i \mathbb{N}_0

eller som

$$\{\tau = n\} \in \mathcal{F}_n$$
 for alle n i \mathbb{N}_0

Specielt følger det, at τ er $\mathcal{F} - \mathcal{P}(\mathbb{N}_0 \cup \{\infty\})$ -målelig.

En stoppetid $\tau: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ kaldes

- endelig, hvis $P(\tau < \infty) = 1$.
- begrænset, hvis der findes en konstant K i \mathbb{N} , således at $\tau(\omega) \leq K$ for alle ω i Ω .

Bemærkning 9.3.2.

Eksempel 9.3.3. 1. For ethvert $n i \mathbb{N}_0 \cup \{\infty\}$ er $\tau \equiv n$ en stoppetid.

2. Antag, at $(X_n)_{n\in\mathbb{N}_0}$ er en tilpasset følge af stokastiske variable, og at $(A_n)_{n\in\mathbb{N}_0}$ er en følge af Borel-mængder i \mathbb{R} .

Da definerer udtrykket

$$\tau_A(\omega) = \inf \{ k \in \mathbb{N}_0 \mid x_k(\omega) \in A_k \}, \quad (\omega \in \Omega)$$

en stoppetid. Her benyttes konventionen: $\inf(\emptyset) = \infty$. For ethvert n i \mathbb{N}_0 har vinemlig, at

$$\{\tau > n\} = \{x_0 \notin A_0\} \cap \{X_1 \notin A_1\} \cap \dots \cap \{X_n \notin A_n\} \stackrel{?}{\in} \mathcal{F}_n.$$

3. (C) En afbildning $\tau: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ er en stoppetid, hvis og kun hvis der findes en følge $(F_n)_{n \in \mathbb{N}_0}$ af hændelser, således at

$$\tau(\omega) = \inf \left\{ k \in \mathbb{N}_0 \mid \omega \in F_k \right\}$$

(*) og

$$F_n \in \mathcal{F}_n$$
 for alle n i \mathbb{N}_0

(**)

Hvis (*) og (**) er opfyldte, har vi nemlig for heert n i \mathbb{N}_0 , at

$$\{\tau > n\} = F_0^c \cap \cdots \cap F_n^c \stackrel{?}{\in} \mathcal{F}_n.$$

Omvendt kan vi for en givet stoppetid τ definere

$$F_n = \{ \tau \le n \}, \quad (n \in \mathbb{N}_0)$$

hvorved (*) og (**) er opfyldte.

Sætning 9.3.4. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynligheds-felt. Da gælder følgende udsagn:

- (i) Lad τ_1, τ_1 være stoppetider på $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Da er $\tau_1 + \tau_2, \tau_1 \vee \tau_2$ og $\tau_1 \wedge \tau_2$ igen stoppetider.
- (ii) Lad $(\tau_k)_{k\in\mathbb{N}}$ være en følge af stoppetider på $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Da er $\sup_{k\in\mathbb{N}} \tau_k$, $\inf_{k\in\mathbb{N}} \tau_k$ og $\sum_{k=1}^{\infty} \tau_k$ igen stoppetider.

Definition 9.3.5 (\sigma-algebraen \mathcal{F}_{\tau}). Lad (Ω, \mathcal{F}, P) være et sandsynlighedsfelt, og lad $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ være et filter herpå. Vi definerer så

$$\mathcal{F}_{\infty} = \sigma \left(\bigcup_{n \in \mathbb{N}_0} \mathcal{F}_n \right).$$

Lad videre $\tau:\Omega\to\mathbb{N}_0\cup\{\infty\}$ være en stoppetid m
ht. $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$. Vi definerer så

$$\mathcal{F}_{\tau} = \{ F \in \mathcal{F}_{\infty} \mid F \cap \{ \tau = n \} \in \mathcal{F}_n \text{ for alle } n \text{ i } \mathbb{N}_0 \}$$

Bemærk, at for F fra \mathcal{F}_{τ} gælder der automatisk, at

$$F \cap \{\tau = \infty\} \in \mathcal{F}_{\infty}$$

idet $F \in \mathcal{F}_{\infty}$, og $\{\tau = \infty\} = \bigcap_{k \in \mathbb{N}_0} \{\tau > k\} \in \mathcal{F}_{\infty}$.

Lemma 9.3.6. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt.

- (i) For enhver stoppetid $\tau: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ er \mathcal{F}_{τ} en σ -algebra.
- (ii) For enhver \mathcal{F}_{τ} -målelig stokastisk variabel $Y : \Omega \to \mathbb{R}$ gælder der, at $Y1_{\{\tau=n\}}$ er \mathcal{F}_n -målelig for alle $ni\mathbb{N}_0 \cup \{\infty\}$.

Sætning 9.3.7. Lad τ være en stoppetid med hensyn til filteret $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$. Da gælder følgende udsagn:

- (i) $A \cap \{\tau = n\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_n$ for alle $ni\mathbb{N}_0 \cup \{\infty\}$ og A i \mathcal{F}_n .
- (ii) $\tau \operatorname{er} \mathcal{F}_{\tau} \mathcal{P}(\mathbb{N}_0 \cup \{\infty\})$ -målelig.
- (iii) For ethvert n i $\mathbb{N}_0 \cup \{\infty\}$ og X i $\mathcal{L}^1(P)$ gælder formlen:

$$\mathbb{E}\left[\mathbf{X}\mid\mathcal{F}_{\tau}\right]\mathbf{1}_{\{\tau=n\}} = \mathbb{E}\left[\mathbf{X}\mid\mathcal{F}_{n}\right]\mathbf{1}_{\{\tau=n\}} \overset{7.3.2}{\stackrel{\downarrow}{=}} \mathbb{E}\left[\mathbf{X}\mathbf{1}_{\{\tau=n\}}\mid\mathcal{F}_{n}\right] \quad \text{P-n.o.}$$

Sætning 9.3.8. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynligheds-felt, og lad τ, τ_1, τ_2 være stoppetider herpå.

- (i) Hvis $\tau \equiv n \in \mathbb{N}_0 \cup \{\infty\}$, gælder der, at $\mathcal{F}_{\tau} = \mathcal{F}_n$.
- (ii) Hvis $\tau_1 \leq \tau_2$, gælder der, at $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.
- (iii) $\mathcal{F}_{\tau_1 \wedge \tau_2} = \mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2}$.
- (iv) $\{\tau \leq n\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{n} = \mathcal{F}_{n \wedge \tau} \text{ for alle } ni\mathbb{N}_{0}.$
- (v) For alle A i \mathcal{F}_{τ_1} gælder der, at

$$A \cap \{\tau_1 < \tau_2\} \in \mathcal{F}_{\tau_1 \wedge \tau_2}, \quad \text{og} \quad A \cap \{\tau_1 \le \tau_2\} \in \mathcal{F}_{\tau_1 \wedge \tau_2}$$

(vi) For enhver mængde A i $\mathcal{F}_{\tau_1 \wedge \tau_2}$ er $\tau_A := \tau_1 1_A + \tau_2 1_{A^c}$ igen en stoppetid.

Sætning 9.3.9. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynligheds-felt, og lad τ være en stoppetid herpå.

Da gælder formlen:

$$\mathcal{F}_{\tau} = \sigma \left(\bigcup_{n \in \mathbb{N}_0} \mathcal{F}_{\tau \wedge n} \right)$$

Sætning 9.3.10. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad σ, τ være stoppetider herpå, og betragt de tilhørende σ -algebraer \mathcal{F}_{τ} og \mathcal{F}_{σ} . For enhver stokastisk variabel X fra $\mathcal{L}^1(P)$ gælder da følgende udsagn:

(i) Hvis X@ \mathcal{F}_{τ} , gælder formlen:

$$\mathbb{E}\left[X \mid \mathcal{F}_{\sigma}\right] = \mathbb{E}\left[X \mid \mathcal{F}_{\sigma \wedge \tau}\right].$$

(ii) Generelt gælder formlen:

$$\mathbb{E}\left[\mathbb{E}\left[\mathbf{X}\mid\mathcal{F}_{\tau}\right]\mid\mathcal{F}_{\sigma}\right] = \mathbb{E}\left[\mathbf{X}\mid\mathcal{F}_{\sigma\wedge\tau}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbf{X}\mid\mathcal{F}_{\sigma}\right]\mid\mathcal{F}_{\tau}\right]$$

Den stokastiske variabel X_{τ}

Lad $(X_{n\in\mathbb{N}})$ være en tilpasset følge af stok. var. på $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Vi definerer da den stokastiske variable $X_{\infty}: \Omega \to \mathbb{R}$ ved

$$\mathbf{X}_{\infty}(\omega) = \begin{cases} \lim_{n \to \infty} \mathbf{X}_n(\omega), & \text{hvis } \lim_{n \to \infty} \mathbf{X}_n(\omega) \text{ eksisterer i } \mathbb{R} \\ 0, & \text{ellers} \end{cases}$$

Det følger fra Korollar 4.3.11 i [M&I], at X_{∞} er $\mathcal{F}_{\infty} - \mathcal{B}(\mathbb{R})$ -målelig. For enhver stoppetid τ definerer vi den stok. var. X_{τ} ved formlen:

$$\begin{split} \mathbf{X}_{\tau}(\omega) &= \mathbf{X}_{\tau(\omega)}(\omega) = \begin{cases} \mathbf{X}_{n}(\omega), & \text{hvis } \tau(\omega) = n \text{ for et } n \text{ i } \mathbb{N}_{0} \\ \mathbf{X}_{\infty}(\omega), & \text{hvis } \tau(\omega) = \infty \end{cases} \\ &= \mathbf{X}_{\infty}(\omega) \mathbf{1}_{\{\tau = \infty\}}(\omega) + \sum_{k=0}^{\infty} \mathbf{X}_{k}(\omega) \mathbf{1}_{\{\tau = k\}}(\omega) \end{split}$$

Specielt viser (2), at $X_{\tau} @ \mathcal{F}_{\infty}$. Husk: $X_{\tau}(\omega) = \begin{cases} X_n(\omega), & \text{hvis } \tau(\omega) = n \text{ for et } n \text{ i } \mathbb{N}_0, \\ X_{\infty}(\omega), & \text{hvis } \tau(\omega) = \infty, \end{cases}$

Alternativt kan vi skrive X_{τ} på formen:

$$\begin{split} \mathbf{X}_{\tau}(\omega) &= \begin{cases} \mathbf{X}_{n}(\omega), & \text{hvis } \tau(\omega) = n \text{ for et } n \mathrm{i} \mathbb{N}_{0}, \\ \lim_{k \to \infty} \mathbf{X}_{k}(\omega), & \text{hvis } \tau(\omega) = \infty, \text{ og } \lim_{k \to \infty} \mathbf{X}_{k}(\omega) \text{ eksisterer i} \mathbb{R}, \\ 0, & \text{ellers} \end{cases} \\ &= \begin{cases} \lim_{k \to \infty} \mathbf{X}_{\tau(\omega) \wedge k}(\omega), & \text{hvis grænseværdien eksisterer i} \mathbb{R}, \\ 0, & \text{ellers}. \end{cases} \end{split}$$

Specielt ser vi, at

$$|X_{\tau}| \leq \liminf_{k \to \infty} |X_{\tau \wedge k}|.$$

Definition 9.3.11. For enhver stoppetid τ definerer vi den stok. var. X_{τ} ved formlen:

$$\begin{split} \mathbf{X}_{\tau}(\omega) &= \mathbf{X}_{\tau(\omega)}(\omega) = \begin{cases} \mathbf{X}_{n}(\omega), & \text{hvis } \tau(\omega) = n \text{ for et } n \text{ i } \mathbb{N}_{0} \\ \mathbf{X}_{\infty}(\omega), & \text{hvis } \tau(\omega) = \infty \end{cases} \\ &= \mathbf{X}_{\infty}(\omega) \mathbf{1}_{\{\tau = \infty\}}(\omega) + \sum_{k=0}^{\infty} \mathbf{X}_{k}(\omega) \mathbf{1}_{\{\tau = k\}}(\omega) \end{split}$$

Bemærkning 9.3.12. Alternativt kan vi skrive X_{τ} på formen:

$$\begin{split} \mathbf{X}_{\tau}(\omega) &= \begin{cases} \mathbf{X}_{n}(\omega), & \text{hvis } \tau(\omega) = n \text{ for et } n \mathrm{i} \mathbb{N}_{0}, \\ \lim_{k \to \infty} \mathbf{X}_{k}(\omega), & \text{hvis } \tau(\omega) = \infty, \text{ og } \lim_{k \to \infty} \mathbf{X}_{k}(\omega) \text{ eksisterer i} \mathbb{R}, \\ 0, & \text{ellers} \end{cases} \\ &= \begin{cases} \lim_{k \to \infty} \mathbf{X}_{\tau(\omega) \wedge k}(\omega), & \text{hvis grænseværdien eksisterer i} \mathbb{R}, \\ 0, & \text{ellers.} \end{cases} \end{split}$$

Sætning 9.3.13. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynligheds-felt, og lad $(\mathbf{X}_n)_{n\in\mathbb{N}}$ være en tilpasset følge af stokastiske variable herpå. Lad videre τ være en stoppetid på $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Da gælder følgende udsagn:

- (i) $X_{\tau} \in \mathcal{F}_{\tau}$.
- (ii) Hvis $\sup_{n\in\mathbb{N}} \mathbb{E}\left[|X_{\tau\wedge n}|\right] < \infty$, gælder der, at $X_{\tau} \in \mathcal{L}^{1}(P)$.
- (iii) Hvis τ er begrænset, og $X_n \in \mathcal{L}^1(P)$ for alle n i \mathbb{N} , gælder der, at $X_\tau \in \mathcal{L}^1(P)$.

9.4 Optional sampling(første version)

Sætning 9.4.1. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad τ være en stoppetid, og lad $(X_n)_{n\in\mathbb{N}_0}$ være en følge af stokastiske variable. Da gælder følgende udsagn:

- (i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-martingal, da er $(X_{n \wedge \tau}, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ igen en sub-martingal.
- (ii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en super-martingal, da er $(X_{n \wedge \tau}, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ igen en super-martingal.
- (iii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal, da er $(X_{n \wedge \tau}, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ igen en martingal.

Sætning 9.4.2. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad σ, τ være begrænsede stoppetider, således at $\sigma \leq \tau$.

(i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-martingal, gælder der, at $X_\sigma, X_\tau \in \mathcal{L}^1(P)$, og at

$$\mathbb{E}\left[x_{0}\right] \leq \mathbb{E}\left[x_{\sigma}\right] \leq \mathbb{E}\left[x_{\tau}\right], \quad \text{ og } \quad \mathbb{E}\left[x_{\tau} \mid \mathcal{F}_{\sigma}\right] \geq X_{\sigma} \quad \text{ P-n.o.}$$

(ii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en super-martingal, gælder der, at $X_\sigma, X_\tau \in \mathcal{L}^1(P)$, og at

$$\mathbb{E}\left[x_{0}\right] \geq \mathbb{E}\left[x_{\sigma}\right] \geq \mathbb{E}\left[X_{\tau}\right], \quad \text{ og } \quad \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] \leq X_{\sigma} \quad \text{ P-n.o.}$$

(iii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal, gælder der, at $X_{\sigma}, X_{\tau} \in \mathcal{L}^1(P)$, og at $\mathbb{E}[X_0] = \mathbb{E}[X_{\sigma}] = \mathbb{E}[X_{\tau}]$, og $\mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}] = X_{\sigma}$ P-n.o.

Korollar 9.4.3. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad τ være en stoppetid. Lad videre $(X_n)_{n\in\mathbb{N}}$ være en tilpasset følge fra $\mathcal{L}^1(P)$.

(i) Hvis (X_n, \mathcal{F}_n) er en sub-MG (hhv. super-MG), da er $(X_{n \wedge \tau}, \mathcal{F}_n)$ igen en sub-MG (hhv. super-MG), og der gælder implikationen:

$$\sup_{n\in\mathbb{N}_0}\mathbb{E}\left[|\mathbf{X}_n|\right]<\infty\Longrightarrow\sup_{n\in\mathbb{N}_0}\mathbb{E}\left[|\mathbf{X}_{n\wedge\tau}|\right]<\infty$$

- (ii) (a) Hvis (X_n, \mathcal{F}_n) er en sub-MG og $\{X_n^+ \mid n \in \mathbb{N}_0\}$ er uniformt integrabel, da er $\{X_{n \wedge \tau}^+ \mid n \in \mathbb{N}_0\}$ ligeledes uniformt integrabel.
 - (b) Hvis (X_n, \mathcal{F}_n) er en super- MG og $\{X_n^- \mid n \in \mathbb{N}_0\}$ er uniformt integrabel, da er $\{X_{n \wedge \tau}^- \mid n \in \mathbb{N}_0\}$ ligeledes uniformt integrabel.
 - (c) Hvis (X_n, \mathcal{F}_n) er en uniformt integrabel MG, da er $\{X_{n \wedge \tau} \mid n \in \mathbb{N}_0\}$ ligeledes uniformt integrabel.

9.5 Martingale Maximal-uligheder

Sætning 9.5.1. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(X_n)_{n \in \mathbb{N}}$ være en tilpasset følge af integrable stokastiske variable, og lad ℓ være et strengt positivt tal.

(i) Hvis (X_n, \mathcal{F}_n) er en sub-MG, da gælder for hvert n i $\mathbb N$ uligheden:

$$\ell P\left(\max_{0 \le k \le n} \mathbf{X}_k > \ell\right) \le \int_{\left\{\max_{0 \le k \le n} \mathbf{X}_k > \ell\right\}} \mathbf{X}_n \, dP \le \mathbb{E}\left[\mathbf{X}_n^+\right].$$

(ii) Hvis (X_n, \mathcal{F}_n) er en sub-MG, da gælder for hvert n i $\mathbb N$ uligheden:

$$\ell P\left(\min_{0 \le k \le n} X_k < -\ell\right) \le \mathbb{E}\left[X_n^+\right] - \mathbb{E}\left[X_0\right].$$

(iii) Hvis (X_n, \mathcal{F}_n) er en sub-MG eller en super-MG, da gælder for hvert $ni \mathbb{N}$ ulighederne:

$$\ell P\left(\max_{0 \leq k \leq n} |\mathcal{X}_k| > \ell\right) \leq 2\mathbb{E}\left[|\mathcal{X}_n|\right] + \mathbb{E}\left[|\mathcal{X}_0|\right] \leq 3 \max_{0 \leq k \leq n} \mathbb{E}\left[|\mathcal{X}_k|\right]$$

(iv) Hvis (X_n, \mathcal{F}_n) er en sub-MG eller en super-MG, da gælder uligheden:

$$\ell P\left(\sup_{k\in\mathbb{N}_{0}}\left|\mathbf{x}_{k}\right|>\ell\right)\leq3\sup_{k\in\mathbb{N}_{0}}\mathbb{E}\left[\left|\mathbf{x}_{k}\right|\right].$$

Korollar 9.5.2. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad (X_n, \mathcal{F}_n) være en sub-MG eller en super-MG. Antag, at

$$\sup_{n\in\mathbb{N}_0}\mathbb{E}\left[|\mathbf{X}_n|\right]<\infty$$

Da gælder der, at

$$P\left(\sup_{n\in\mathbb{N}_0} |\mathbf{X}_n| < \infty\right) = 1$$

Sætning 9.5.3. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad (X_n, \mathcal{F}_n) være en tilpasset følge, således at $(|X_n|, \mathcal{F}_n)$ er en sub-MG. Lad videre p være et tal $i(1, \infty)$, og lad q $i(1, \infty)$ være bestemt ved, at $\frac{1}{p} + \frac{1}{q} = 1$.

(i) For ethvert $ni\mathbb{N}_0$ gælder uligheden:

$$\left\| \max_{0 \le k \le n} |\mathbf{X}_k| \right\|_p \le q \left\| \mathbf{X}_n \right\|_p$$

(ii) Der gælder endvidere uligheden:

$$\mathbb{E}\left[\sup_{n\in\mathbb{N}_{0}}\left|\mathbf{X}_{n}\right|^{p}\right] \leq q^{p}\sup_{n\in\mathbb{N}_{0}}\mathbb{E}\left[\left|\mathbf{X}_{n}\right|^{p}\right]$$

Lemma 9.5.4. Lad X og Y være ikke-negative stokastiske variable på (Ω, \mathcal{F}, P) , og antag, at

$$\forall \ell > 0: \ell P(\mathbf{x} > \ell) \leq \int_{\{\mathbf{x} > \ell\}} \mathbf{Y} \ \mathrm{d}P.$$

For ethvert p i $(1, \infty)$ gælder da uligheden:

$$\mathbb{E}\left[\mathbf{X}^{p}\right]^{1/p} \leq \frac{p}{p-1} \mathbb{E}\left[\mathbf{Y}^{p}\right]^{1/p}.$$

9.6 Opkrydsninger og Martingal Konvergens Sætningen

Definition af opkrydsninger Lad r, s være reelle tal, således at r < s. For en følge $(x_n)_{n \in \mathbb{N}_0}$ af reelle tal, definerer vi tallene

$$0 \le \tau_1 \le \sigma_1 \le \tau_2 \le \sigma_2 \le \tau_3 \le \sigma_3 \le \cdots$$

ved:

$$\tau_1 = \inf \{ n \in \mathbb{N}_0 \mid x_n < r \}, \quad \text{og} \quad \sigma_1 = \inf \{ n > \tau_1 \mid x_n > s \}
\tau_2 = \inf \{ n > \sigma_1 \mid x_n < r \}, \quad \text{og} \quad \sigma_2 = \inf \{ n > \tau_2 \mid x_n > s \}$$

og generelt for $ki\{2,3,4,\ldots\}$ sætter vi

$$\tau_k = \inf \left\{ n > \sigma_{k-1} \mid x_n < r \right\}, \quad \text{ og } \quad \sigma_k = \inf \left\{ n > \tau_k \mid x_n > s \right\}.$$

Som sædvanlig benytter vi her konventionen: $\inf(\emptyset) = +\infty$. Bemærk, at der for ethvert $ki\mathbb{N}$ gælder implikationerne:

$$\tau_k = \sigma_k \Longrightarrow \tau_k = \infty, \quad \text{og} \quad \sigma_k = \tau_{k+1} \Longrightarrow \sigma_k = \infty$$

Vi definerer derefter antallet af opkrydsninger fra r til s for $(x_n)_{n\in\mathbb{N}_0}$ ved formlen:

$$\begin{split} U_{r,s} &= \sum_{k=1}^{\infty} \mathbf{1}_{[0,\infty)} \left(\sigma_k \right) = \# \left\{ k \in \mathbb{N} \mid \sigma_k < \infty \right\} \\ &= \begin{cases} 0, & \text{hvis } \sigma_1 = \infty \\ m, & \text{hvis } \sigma_m < \infty, \text{ og } \sigma_{m+1} = \infty \\ \infty, & \text{hvis } \sigma_m < \infty \text{ for alle } m \text{ i } \mathbb{N} \end{cases} \end{split}$$

Vi definerer endvidere antallet af opkrydsninger fra r til si "tidsintervallet" [0, n] for $(x_n)_{n \in \mathbb{N}_0}$ ved formlen:

$$\begin{split} U_{r,s}^{(n)} &= \sum_{k=1}^{\infty} \mathbf{1}_{[0,n]} \left(\sigma_k \right) = \# \left\{ k \in \mathbb{N} \mid \sigma_k \leq n \right\} \\ &= \begin{cases} 0, & \text{hvis } \sigma_1 > n \\ m, & \text{hvis } \sigma_m \leq n, \text{ og } \sigma_{m+1} > n. \end{cases} \end{split}$$

Bemærkning 9.6.1. 1. For ethvert n i \mathbb{N} gælder der, at

$$U_{r,s}^{(n)} \le \left\lceil \frac{n+1}{2} \right\rceil.$$

2. Vi finder ved anvendelse af Monoton Konvergens, at

$$U_{r,s}^{(n)} = \sum_{k=1}^{\infty} 1_{[0,n]}(\sigma_k) \uparrow \sum_{k=1}^{\infty} 1_{[0,\infty)}(\sigma_k) = U_{r,s}$$

for $n \to \infty$.

3. Der gælder bi-implikationen:

$$U_{r,s} = \infty \iff \#\{k \in \mathbb{N}_0 \mid x_k < r\} = +\infty = \#\{k \in \mathbb{N}_0 \mid x_k > s\}.$$

Lemma 9.6.2. For enhver følge $(x_n)_{n\in\mathbb{N}_0}$ af reelle tal er følgende udsagn ækvivalente:

- (i) $\lim_{n\to\infty} x_n$ eksisterer $i\overline{\mathbb{R}}$
- (ii) $U_{r,s} < \infty$ for alle r, s i \mathbb{R} , således at r < s.
- (iii) $U_{r,s} < \infty$ for alle $r, si\mathbb{Q}$, således at r < s.

Sætning 9.6.3 (Doobs opkrydsningsmulighed). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad (X_n, \mathcal{F}_n) være en super-martingal herpå. Lad endvidere r, s være reelle tal, således at r < s. Definér

$$\tau_1 = \inf\left\{n \in \mathbb{N}_0 \mid \mathbf{X}_n < r\right\}, \quad \text{ og } \quad \sigma_1 = \inf\left\{n > \tau_1 \mid \mathbf{X}_n > s\right\},$$
 og for $ki\{2,3,4,\ldots\}$

$$\tau_k = \inf \{ n > \sigma_{k-1} \mid X_n < r \}, \quad \text{og} \quad \sigma_k = \inf \{ n > \tau_k \mid X_n > s \}.$$

Definér endvidere,

$$\mathbf{U}_{r,s}^{(n)} = \sum_{k=1}^{\infty} \mathbf{1}_{[0,n]} \left(\sigma_k \right), \quad (n \in \mathbb{N}),$$

og

$$U_{r,s} = \sum_{k=1}^{\infty} 1_{[0,\infty)} (\sigma_k).$$

Da gælder følgende udsagn:

- (i) τ_k, σ_k er stoppetider for alle $ki\mathbb{N}$.
- (ii) For ethvert n i \mathbb{N} er $U_{r,s}^{(n)}\mathcal{F}$ -målelig, og der gælder ulighederne:

$$(s-r)\mathbb{E}\left[\mathbf{U}_{r,s}^{(n)}\right] \leq \mathbb{E}\left[\mathbf{X}_{n}^{-}\right] + r^{+}$$

(iii) Også $U_{r,s}$ er \mathcal{F} -målelig, og der gælder uligheden:

$$(s-r)\mathbb{E}\left[\mathbf{U}_{r,s}\right] \le r^{+} + \sup_{n \in \mathbb{N}_{0}} \mathbb{E}\left[\mathbf{X}_{n}^{-}\right]$$

Bemærkning 9.6.4.

Sætning 9.6.5 (Martingal konvergenssætningen). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad (X_n, \mathcal{F}_n) være en sub-martingal eller en supermartingal.

Antag, at $\sup_{n\in\mathbb{N}_0} \mathbb{E}[|\mathbf{X}_n|] < \infty$. Da eksisterer $\lim_{n\to\infty} \mathbf{X}_n(\omega)i\mathbb{R}$ for P-n.a. ω . Med andre ord gælder der, at $\mathbf{X}_n \to \mathbf{X}_\infty$ P-n.o., hvor

$$\mathbf{X}_{\infty}(\omega) = \begin{cases} \lim_{n \to \infty} \mathbf{X}_n(\omega), & \text{hvis } \lim_{n \to \infty} \mathbf{X}_n(\omega) \text{ eksisterer } i\mathbb{R}, \\ 0, & \text{ellers.} \end{cases}$$

Der gæ/der endvidere, at

$$\mathbb{E}\left[|X_{\infty}|\right]<\infty.$$

9.7 Uniformt integrable (sub- og super-)martingaler

Korollar 9.7.1. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ være en sub-martingal eller en super-martingal. Hvis $\{X_n \mid n \in \mathbb{N}_0\}$ er uniformt integrabel, gælder der, at $X_n \to X_\infty$ n.o. og i 1-middel

Korollar 9.7.2. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en følge af stokastiske variable herpå.

(i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-martingal, og $\{X_n^+ \mid n \in \mathbb{N}_0\}$ er uniformt integrabel, så gælder der, at $X_{\infty} \in \mathcal{L}^1(P)$, og

$$X_n \leq \mathbb{E}[X_\infty \mid \mathcal{F}_n]$$
 for alle $ni\mathbb{N}_0$

(ii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en martingal, og $\{X_n \mid n \in \mathbb{N}_0\}$ er uniformt integrabel, så gælder der, at $X_\infty \in \mathcal{L}^1(P)$, og

$$X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$$
 for alle $ni\mathbb{N}_0$

Sætning 9.7.3. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og sæt

$$\mathcal{F}_{\infty} = \sigma \left(\bigcup_{n \in \mathbb{N}_0} \mathcal{F}_n \right)$$

Lad videre X være en stokastisk variabel i $\mathcal{L}^1(P)$, og definér

$$X_n = \mathbb{E}[X \mid \mathcal{F}_n], \quad (n \in \mathbb{N}_0)$$

Da gælder følgende udsagn:

- (i) $X_n \to \mathbb{E}[X \mid \mathcal{F}_{\infty}]$ P-n.o. og i 1-middel.
- (ii) Hvis X yderligere er \mathcal{F}_{∞} -målelig, så gælder der, at $X_n \to X$ P-n.o. og i 1-middel.
- (iii) For enhver stoppetid τ med hensyn til (\mathcal{F}_n) gælder der, at

$$\mathbb{E}\left[X \mid \mathcal{F}_{\tau}\right] = X_{\tau}$$

9.8 Optional Sampling (anden version)

Definition 9.8.1. Lad $\Omega, \mathcal{F}, \mathcal{F}_n, P$ være et filtreret sandsynlighedsfelt, og betragt enmm tilpasset følge $(Y_n)_{n\geq 0}$ af stokastiske variable herpå. Lad viodere τ være en stoppetid mht. $(\mathcal{F}_{\setminus})$. Vi siger da, at τ er optional for (Y_n) , hvis familien $\{Y_{\tau \wedge n|n\in\mathbb{N}_0}\}$ er uniformt integrabel.

Bemærkning 9.8.2. Bemærkninger om optionalitet Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(Y_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå.

(1) Antag, at σ og τ er to stoppetider, som begge er optionale for $(Y_n)_{n\in\mathbb{N}_0}$.

Da er $\sigma \wedge \tau$ og $\sigma \vee \tau$ igen optionale for $(Y_n)_{n \in N_0}$. Vi har nemlig for ethvert n i N_0 , at

$$\left| \mathbf{Y}_{(\sigma \wedge \tau) \wedge n} \right| = \left| \mathbf{Y}_{\sigma \wedge n} \right| \mathbf{1}_{\{\sigma \leq \tau\}} + \left| \mathbf{Y}_{\tau \wedge n} \right| \mathbf{1}_{\{\sigma > \tau\}} \leq \left| \mathbf{Y}_{\sigma \wedge n} \right| + \left| \mathbf{Y}_{\tau \wedge n} \right|,$$

og

$$\left| \mathbf{Y}_{(\sigma \vee \tau) \wedge n} \right| = \left| \mathbf{Y}_{\tau \wedge n} \right| \mathbf{1}_{\{\sigma < \tau\}} + \left| \mathbf{Y}_{\sigma \wedge n} \right| \mathbf{1}_{\{\sigma > \tau\}} \le \left| \mathbf{Y}_{\tau \wedge n} \right| + \left| \mathbf{Y}_{\sigma \wedge n} \right|,$$

hvor $\{|Y_{\sigma \wedge n}| \mid n \in \mathbb{N}_0\} + \{|Y_{\tau \wedge n}| \mid n \in \mathbb{N}_0\} \text{ er UI (jvf. } 3.1.5 \text{ og } 3.1.3).$

(2) Hvis τ optional for $(Y_n)_{n \in N_0}$, gælder der specielt, at $Y_{\tau} \in \mathcal{L}^1(P)$. Der gælder nemlig

$$(\mathbf{Y}_{\tau \wedge n})_{n \in \mathbb{N}_0} \text{ er UI} \stackrel{3.3.2}{\Longrightarrow} \sup_{n \in \mathbb{N}_0} \mathrm{E}\left[|\mathbf{Y}_{\tau \wedge n}|\right] < \infty \stackrel{9.3.13}{\Longrightarrow} \mathbf{Y}_{\tau} \in \mathcal{L}^1(P).$$

Lemma 9.8.3 (Kriterier for optionalitet). Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(Y_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå, og lad τ være en stoppetid mht. (\mathcal{F}_n) .

Da er følgende betingelser hver især tilstrækkelige for, at τ er optional for $(Y_n)_{n\in\mathbb{N}_0}$:

1. Der findes en stokastisk variabel Y i $\mathcal{L}^1(P)$, således at

$$\sup_{n\in\mathbb{N}_0}|\mathbf{Y}_{\tau\wedge n}|\leq |\mathbf{Y}|P\text{-n.o.}$$

[Jvf. Lemma 3.1.3(ii).]

- 2. Der findes α i $(1,\infty)$, således at $\sup_{n\in\mathbb{N}_0}\mathbb{E}\left[\left|\mathbf{Y}_{\tau\wedge n}\right|^{\alpha}\right]<\infty$. [Jvf. Eksempel 3.1.6.]
- 3. $Y_{\tau \wedge n} \in \mathcal{L}^1(P)$ for alle n, og der findes Z i $\mathcal{L}^1(P)$, så $Y_{\tau \wedge n} \to Z$ i 1 -middel for $n \to \infty$. [Jvf. Sætning 3.2.1.]

Eksempel 9.8.4. (A) Betingelse (a) er specielt opfyldt, hvis $Y_n \in \mathcal{L}^1(P)$ for alle n, og der findes en konstant M i \mathbb{N} , saledes at $\tau \leq MP$ -n.o.

For ethvert n i \mathbb{N}_0 har vi nemlig da, at

$$\begin{aligned} |\mathbf{Y}_{\tau \wedge n}| &\stackrel{\text{m.o.o.}}{=} \sum_{k=0}^{M} |\mathbf{Y}_{\tau \wedge n}| \, \mathbf{1}_{\{\tau \wedge n = k\}} \\ &= \sum_{k=0}^{M} |\mathbf{Y}_{k}| \, \mathbf{1}_{\{\tau \wedge n = k\}} \leq \sum_{k=0}^{M} |\mathbf{Y}_{k}| \in \mathcal{L}^{1}(P) \end{aligned}$$

(B) Betragt reelle tal a < b og stoppetiden (jvf. 9.3.3)

$$\tau_{a,b} = \inf \{ n \in \mathbb{N}_0 \mid \mathbf{Y}_n \notin (a,b) \}.$$

Antag, at $Y_0 \in \mathcal{L}^1(P)$, og at der findes en konstant $Mi(0, \infty)$, således at $|Y_n - Y_{n-1}| \le MP$ -n.o. for alle n i \mathbb{N} .

Da er $\tau_{a,b}$ optional for $(\mathbf{Y}_n)_{n\in\mathbb{N}_0}.$ For alle n i \mathbb{N}_0 har vi nemlig, at

$$\begin{split} & \left| \mathbf{Y}_{\tau_{a,b} \wedge n} \right| = \left| \mathbf{Y}_{\tau_{a,b}} \right| \mathbf{1}_{\{\tau_{a,b} \leq n\}} + \left| \mathbf{Y}_{n} \right| \mathbf{1}_{\{\tau_{a,b} > n\}} \\ & = \left| \mathbf{Y}_{0} \right| \mathbf{1}_{\{\tau_{a,b} = 0\}} + \left| \mathbf{Y}_{\tau_{a,b} - 1} + \left(\mathbf{Y}_{\tau_{a,b}} - \mathbf{Y}_{\tau_{a,b} - 1} \right) \right| \mathbf{1}_{\{1 \leq \tau_{a,b} \leq n\}} \\ & \quad + \left| \mathbf{Y}_{n} \right| \mathbf{1}_{\{\tau_{a,b} > n\}} \\ & \quad \text{n.o.} \\ & \leq \left| \mathbf{Y}_{0} \right| + \left((|a| \vee |b|) + M \right) \mathbf{1}_{\{1 \leq \tau_{a,b} \leq n\}} + (|a| \vee |b|) \mathbf{1}_{\{\tau_{a,b} > n\}} \\ & = \left| \mathbf{Y}_{0} \right| + 2(|a| \vee |b|) + M \in \mathcal{L}^{1}(P) \end{split}$$

Sætning 9.8.5. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(Y_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå, og lad τ være en endelig stoppetid mht. (\mathcal{F}_n) .

Da er τ optional for $(Y_n)_{n\in\mathbb{N}_0}$, hvis og kun hvis følgende 3 betingelser alle er opfyldte:

- 1. $\mathbb{E}[|Y_{\tau}|] < \infty$,
- 2. $\int_{\{\tau > n\}} |\mathbf{Y}_n| \, \mathrm{d}P < \infty$ for all $n \in \mathbb{N}_0$,
- 3. $\lim_{n\to\infty} \int_{\{\tau>n\}} |Y_n| \, \mathrm{d}P = 0.$

Sætning 9.8.6. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(Y_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå, og lad σ, τ være stoppetider $mht. (\mathcal{F}_n)_{n \in \mathbb{N}_0}$.

Antag, at $\sigma \leq \tau$, og at τ er optional for $(Y_n)_{n \in \mathbb{N}_0}$. Da er σ optional for $(Y_n)_{n \in \mathbb{N}_0}$, hvis og kun hvis $\mathbb{E}[|Y_{\sigma}|] < \infty$.

Sætning 9.8.7. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå. Lad videre σ og τ være stoppetider mht. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$, og antag, at $\sigma \leq \tau$.

(i) Antag, at (X_n, \mathcal{F}_n) er en sub-MG, og at τ er optional for $(X_n^+)_{n \in \mathbb{N}_0}$. Da gælder der, at $X_{\sigma}, X_{\tau} \in \mathcal{L}^1(P)$, og at

$$\mathbb{E}\left[X_{0}\right] \leq \mathbb{E}\left[X_{\sigma}\right] \leq \mathbb{E}\left[X_{\tau}\right], \quad \text{samt} \quad X_{\sigma} \leq \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] \quad \text{P-n.o.}$$

(ii) Antag, at (X_n, \mathcal{F}_n) er en super-MG, og at τ er optional for $(X_n^-)_{n \in \mathbb{N}_0}$. Da gælder der, at $X_\sigma, X_\tau \in \mathcal{L}^1(P)$, og at

$$\mathbb{E}\left[X_{0}\right] \geq \mathbb{E}\left[X_{\sigma}\right] \geq \mathbb{E}\left[X_{\tau}\right], \quad \text{samt} \quad X_{\sigma} \geq \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] \quad \text{P-n.o.}$$

(iii) Antag, at (X_n, \mathcal{F}_n) er en MG, og at τ er optional for $(X_n)_{n \in \mathbb{N}_0}$. Da gælder der, at $X_{\sigma}, X_{\tau} \in \mathcal{L}^1(P)$, og at

$$\mathbb{E}\left[X_{0}\right] = \mathbb{E}\left[X_{\sigma}\right] = \mathbb{E}\left[X_{\tau}\right], \quad \text{ samt } \quad X_{\sigma} = \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] \quad \text{ P-n.o.}$$

Korollar 9.8.8. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, og lad $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ være en ikke-negativ super-martingal.

- (i) For enhver stoppetid τ mht. $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ gælder der, at $X_{\tau}\in\mathcal{L}^1(P)$.
- (ii) Hvis σ, τ er stoppetider mht. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$, og $\sigma \leq \tau$, gælder der, at

$$\mathbb{E}\left[x_{0}\right] \geq \mathbb{E}\left[x_{\sigma}\right] \geq \mathbb{E}\left[x_{\tau}\right] \geq \mathbb{E}\left[x_{\infty}\right], \quad \text{ og } \quad x_{\sigma} \geq \mathbb{E}\left[x_{\tau} \mid \mathcal{F}_{\sigma}\right] \text{ P-n.o.}$$

(iii) For et vilkårligt tal $\ell i(0, \infty)$ gælder der, at

$$\ell P\left(\sup_{n\in\mathbb{N}_0}\mathbf{x}_n>\ell\right)\leq \mathbb{E}\left[\mathbf{x}_0\right]$$

Korollar 9.8.9. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(X_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå, og lad σ, τ være stoppetider mht. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$.

(i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-MG, og τ er optional for $(X_n^+)_{n \in \mathbb{N}_0}$, så gælder der, at

$$X_{\sigma \wedge \tau} \leq \mathbb{E} [X_{\tau} \mid \mathcal{F}_{\sigma}]$$
 P-n.o.

(ii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en super-MG, og τ er optional for $(X_n^-)_{n \in \mathbb{N}_0}$, så gælder der, at

$$X_{\sigma \wedge \tau} \geq \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$$
 P-n.o.

(iii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en MG, og τ er optional for $(X_n)_{n \in \mathbb{N}_0}$, så gælder der, at

$$X_{\sigma \wedge \tau} = \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$$
 P-n.o.

Korollar 9.8.10. Lad $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ være et filtreret sandsynlighedsfelt, lad $(\mathbf{X}_n)_{n \in \mathbb{N}_0}$ være en tilpasset følge af stokastiske variable herpå, og lad σ, τ være stoppetider mht. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$, således at $\sigma \leq \tau$.

- (i) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en sub-MG, og $\{X_n^+ \mid n \in \mathbb{N}_0\}$ er UI, da gælder der, at $X_{\sigma}, X_{\tau} \in \mathcal{L}^1(P)$, og at $\mathbb{E}[X_0] \leq \mathbb{E}[X_{\sigma}] \leq \mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_{\infty}]$, samt at $X_{\sigma} \leq \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$ P-n.o.
- (ii) Hvis $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en super-MG, og $\{X_n^- \mid n \in \mathbb{N}_0\}$ er Ul, da gælder der, at $X_\sigma, X_\tau \in \mathcal{L}^1(P)$, og at $\mathbb{E}[X_0] \geq \mathbb{E}[X_\sigma] \geq \mathbb{E}[X_\tau] \geq \mathbb{E}[X_\infty]$, samt at $X_\sigma \geq \mathbb{E}[X_\tau \mid \mathcal{F}_\sigma]$ P-n.o.
- (iii) Hvis $(\mathbf{X}_n, \mathcal{F}_n)_{n \in \mathbb{N}_0}$ er en MG, og $\{\mathbf{X}_n \mid n \in \mathbb{N}_0\}$ er UI, da gælder der, at $\mathbf{X}_{\sigma}, \mathbf{X}_{\tau} \in \mathcal{L}^1(P)$, og at $\mathbb{E}\left[\mathbf{X}_0\right] = \mathbb{E}\left[\mathbf{X}_{\sigma}\right] = \mathbb{E}\left[\mathbf{X}_{\tau}\right] = \mathbb{E}\left[\mathbf{X}_{\infty}\right]$, samt at $\mathbf{X}_{\sigma} = \mathbb{E}\left[\mathbf{X}_{\tau} \mid \mathcal{F}_{\sigma}\right]$ P-n.o.