CHALMERS

Formelsamling i hållfasthetslära

Magnus Ekh, Peter Hansbo och Jim Brouzoulis 28 augusti 2018

Stänger 3

1 Stänger

EA = dragstyvhet elastisk stång

u(x) = axiell förskjutning

$$\epsilon(x) = du/dx =$$
 deformation (axialtöjning)

$$N = E A \epsilon = \text{snittnormalkraft}$$

$$q_x = \text{yttre last (kraft/längd)}$$

Jämvikt: $-dN/dx = q_x = K_x A$

Stångens differentialekvation:

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left[E A \frac{\mathrm{d}u}{\mathrm{d}x} \right] = q_x$$

Spänningen fås som: $\sigma = N/A$

Styvhetsrelation för elastisk stång:

$$P_{2y}, p_{2y}$$
 P_{2x}, p_{2z}
 P_{1y}, p_{1y}
 P_{1x}, p_{1x}

$$\begin{pmatrix} P_{1x} \\ P_{1y} \\ P_{2x} \\ P_{2y} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} \cos^2(\alpha) & \cos(\alpha)\sin(\alpha) & -\cos^2(\alpha) & -\cos(\alpha)\sin(\alpha) \\ \cos(\alpha)\sin(\alpha) & \sin^2(\alpha) & -\cos(\alpha)\sin(\alpha) & -\sin^2(\alpha) \\ -\cos^2(\alpha) & -\cos(\alpha)\sin(\alpha) & \cos^2(\alpha) & \cos(\alpha)\sin(\alpha) \\ -\cos(\alpha)\sin(\alpha) & -\sin^2(\alpha) & \cos(\alpha)\sin(\alpha) & \sin^2(\alpha) \end{pmatrix} \begin{pmatrix} p_{1x} \\ p_{1y} \\ p_{2x} \\ p_{2y} \end{pmatrix}$$

Axlar 4

2 Axlar

 $GK_{\rm v} = {\rm vridstyvhet}$ elastisk axel

 $\varphi(x) = \text{vridningsvinkeln}$

$$v(x) = d\varphi/dx = \gamma/r =$$
 deformation (förvridning)

 $M_{\rm v} = GK_{\rm v}\upsilon = {\rm snittvridmoment}$

 $q_{\rm v}(x) = \text{yttre last (vridmoment/längd)}$

Jämvikt:
$$-dM_v/dx = q_v(x) = f(x)$$

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left[GK_{\mathbf{v}} \frac{\mathrm{d}\varphi}{\mathrm{d}x} \right] = q_{\mathbf{v}}$$

För ett cirkulärt tvärsnitt fås spänningen som: $\tau(x,r) = M_{\rm v}(x)r/K_{\rm v}(x)$

För ett tunnväggigt cirkulärt tvärsnitt (väggtjocklek t, medelradie \bar{r}) fås spänningen som: $\tau(x,r)=M_{\rm v}(x)/(2\,\pi\bar{r}^2\,t)$

För ett godtyckligt tunnväggigt slutet tvärsnitt med av medellinjen s innesluten area A_m , väggtjocklek t(s) och minsta väggtjocklek t_{\min} :

$$\tau_{\text{max}} = M_{\text{v}}/(2 A_m t_{\text{min}}), \qquad K_{\text{v}} = \frac{4 A_m^2}{\oint \frac{ds}{t(s)}}$$

Snittmoment vid genomplasticerat (antag elastiskt idealplasticitet) tjockväggigt cirkulärt tvärsnitt (ytterradie b, innerradie a): $M_{\rm vf} = \frac{2\pi}{3}(b^3 - a^3)\tau_{\rm s}$

Balkar 5

3 Balkar

 $EI_y = b$ öjstyvhet

w(x) = transversell förskjutning

$$\kappa(x) = -d^2w/dx^2 =$$
 deformation (krökning)

$$M(x) = E I_y \kappa = \text{snittb\"{o}jmoment}$$

$$q(x) = \text{yttre last (kraft/längd)}$$

Jämvikt:
$$dM/dx = T$$
, $dT/dx = -q_z$

Balkens differentialekvation (elastiska linjens ekvation):

$$-\frac{\mathrm{d}^2 M}{\mathrm{d}x^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[EI \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \right] = q_z$$

Naviers formel för böjnormalspänning:

$$\sigma(x,z) = \frac{N}{A} + \frac{Mz}{I_u}$$

Jouravskis formel för böjskjuvspänning (S_y statiskt moment av arean A^* utanför snitt, b snittets bredd):

$$\tau(x,z) = \frac{S_y T}{I_y b}$$

Ytstorheter

4 Ytstorheter

Statiska momentet S_{λ} och yttröghetsmomentet I_{λ} m a p axeln λ definieras som:

$$S_{\lambda} = \sum_{i} A_{i} a_{i} = \int_{A} a \, dA$$

$$I_{\lambda} = \sum_{i} A_{i} a_{i}^{2} = \int_{A} a^{2} \, dA$$

$$y$$

Speciellt gäller att statiska moment och yttröghetsmoment m.a.p. y och z-axlarna:

$$S_y = \int_A z \, dA$$
, $S_z = \int_A y \, dA$, $I_y = \int_A z^2 \, dA$, $I_z = \int_A y^2 \, dA$

Koordinater för ytcentrum (YC):

$$\bar{y} = \frac{S_z}{A} \; , \quad \bar{z} = \frac{S_y}{A}$$

Parallelförflyttningssatsen för yttröghetsmoment (Steiners sats):

$$I_{\lambda} = \overline{I}_{\lambda} + A d^2$$

där \overline{I}_{λ} är yttröghetsmomentet m.a.p. en parallell axeln genom kroppens ytcentrum (YC).

5 Tabell: tvärsnittsdata

YTA	YTSTORHETER	YTA	YTSTORHETER
$h \downarrow b \rightarrow y$	$I_y = \frac{bh^3}{12}$ $I_z = \frac{hb^3}{12}$	$\begin{array}{c c} t_1 & z \\ \hline \uparrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow$	$I_1, t_2 \ll h, b$ $I_y \approx \frac{t_2 h^3}{12} + \frac{t_1 b h^2}{2}$ $I_z \approx \frac{t_1 b^3}{6}$
$ \downarrow \begin{array}{c} $	$I_y = \frac{bh^3}{12}$ $\overline{I}_y = \frac{bh^3}{36}$ $\overline{y} = \frac{a+b}{3}$ $\overline{z} = \frac{h}{3}$	$\begin{array}{c c} t_1 \downarrow & z \\ \hline \uparrow & & \\ \hline \downarrow t_1 & & \\ \hline \end{array}$	$I_{1}, t_{2} \ll h, b$ $I_{y} \approx \frac{t_{2}h^{3}}{6} + \frac{t_{1}bh^{2}}{2}$ $I_{z} \approx \frac{t_{1}b^{3}}{6} + \frac{t_{2}b^{2}h}{2}$

YTA	YTSTORHETER	YTA	YTSTORHETER
$\begin{array}{c} z \\ \\ \downarrow \\ b \end{array}$	$A = \frac{\pi ab}{4}$ $I_y = \frac{\pi ba^3}{64}$ $I_z = \frac{\pi ab^3}{64}$	$\begin{array}{c} z \\ \downarrow \\ \downarrow \\ d \end{array}$	$t \ll d, A \approx \pi dt$ $I_y = I_z \approx \frac{\pi d^3 t}{8}$ $K_v \approx \frac{\pi d^3 t}{4}$
	$I_{y} = I_{z} = \frac{\pi}{4}(b^{4} - a^{4})$ $K_{v} = \frac{\pi}{2}(b^{4} - a^{4})$	<i>z b y</i>	$I_y = I_z = \frac{\pi b^4}{4}$ $K_v = \frac{\pi b^4}{2}$

6 Elementarfall balkböjning

6.1 Fri uppläggning – utböjning

$$* = \begin{cases} \frac{L^3}{6EI} \left(1 - \frac{a}{L} \right) \left[\left(2 - \frac{a}{L} \right) \frac{ax}{L^2} - \frac{x^3}{L^3} \right], & \text{om } 0 \le x \le a \\ - & \text{om } a \le x \le L \end{cases}$$

$$** = \begin{cases} \frac{L^2}{6EI} \left[\left(6\frac{a}{L} - 3\frac{a^2}{L^2} - 2 \right) \frac{x}{L} - \frac{x^3}{L^3} \right], & \text{om } 0 \le x \le a \\ - & \text{om } a \le x \le L \end{cases}$$

	P_1	M_1	W_1	W_2
w =	*	**	$\frac{L^4}{24EI} \left[\frac{x}{L} - 2\frac{x^3}{L^3} + \frac{x^4}{L^4} \right]$	$\frac{L^4}{360EI} \left[7\frac{x}{L} - 10\frac{x^3}{L^3} + 3\frac{x^5}{L^5} \right]$

6.2 Fast inspänd konsol – utböjning

$$* = \begin{cases} \frac{x^2(3a - x)}{6EI}, & \text{om } 0 \le x \le a \\ \frac{L^3}{6EI} \frac{a^2}{L^2} \left[3\frac{x}{L} - \frac{a}{L} \right], & \text{om } a \le x \le L \end{cases}$$

$$** = \begin{cases} \frac{x^2}{2EI}, & \text{om } 0 \le x \le a \\ \frac{L^2}{2EI} \frac{a}{L} \left[\frac{2x}{L} - \frac{a}{L} \right], & \text{om } a \le x \le L \end{cases}$$

	P_1	M_1	W_1	W_2	W_3
w =	*	**	$\frac{L^4}{24EI}\left[6\frac{x^2}{L^2} - 4\frac{x^3}{L^3} + \frac{x^4}{L^4}\right]$	$\frac{L^4}{120EI} \left[10\frac{x^2}{L^2} - 10\frac{x^3}{L^3} + 5\frac{x^4}{L^4} - \frac{x^5}{L^5} \right]$	$\frac{L^4}{120EI} \left[20\frac{x^2}{L^2} - 10\frac{x^3}{L^3} + \frac{x^5}{L^5} \right]$

6.3 Fri uppläggning

$$\star = \begin{cases} \frac{a L^2}{48 EI} \left[3 - \frac{4 a^2}{L^2} \right], & \text{om } a \le L/2 \\ \frac{b L^2}{48 EI} \left[3 - \frac{4 b^2}{L^2} \right], & \text{om } a \ge L/2 \end{cases}$$

	M_1	M_2	P_1	P_2	W_1	W_2	W_3
$R_1 =$	$\frac{-1}{L}$	$\frac{1}{L}$	$\frac{1}{2}$	$\frac{b}{L}$	$\frac{L}{2}$	$\frac{L}{6}$	$a\left[1-\frac{a}{2L}\right]$
$R_2 =$	$\frac{1}{L}$	$\frac{-1}{L}$	$\frac{1}{2}$	$rac{a}{L}$	$rac{L}{2}$	$\frac{L}{3}$	$\frac{a^2}{2L}$
$m_1 =$	$rac{L}{3EI}$	$rac{L}{6EI}$	$\frac{L^2}{16EI}$	$\frac{bL}{6EI}\left[1-\frac{b^2}{L^2}\right]$	$rac{L^3}{24EI}$	$\frac{7L^3}{360EI}$	$\frac{a^2 L}{24 EI} \left[2 - \frac{a}{L} \right]^2$
$m_2 =$	$rac{L}{6EI}$	$rac{L}{3EI}$	$\frac{L^2}{16EI}$	$\frac{aL}{6EI}\left[1-\frac{a^2}{L^2}\right]$	$rac{L^3}{24EI}$	$rac{L^3}{45EI}$	$\frac{a^2 L}{24 EI} \left[2 - \frac{a^2}{L^2} \right]$
$p_1 =$	$rac{L^2}{16EI}$	$\frac{L^2}{16EI}$	$\frac{L^3}{48EI}$	*	$\frac{5L^4}{384EI}$	$\frac{5L^4}{768EI}$	$\frac{a^2 L^2}{96 EI} \left[3 - \frac{2 a^2}{L^2} \right]$
$p_2 =$	$\frac{bL}{6EI}\left[1 - \frac{b^2}{L^2}\right]$	$\frac{aL}{6EI}\left[1-\frac{a^2}{L^2}\right]$	*	$\frac{a^2b^2}{3EIL}$	$\frac{aL^3}{24EI}\left[1 - \frac{2a^2}{L^2} + \frac{a^3}{L^3}\right]$	$\frac{aL^3}{360EI}\left[7 - \frac{10a^2}{L^2} + \frac{3a^4}{L^4}\right]$	_

6.4 Fast inspänd konsol

	P_1	P_2	M_2	W_1	W_2	W_3
$R_1 =$	1	1	0	L	$rac{L}{2}$	a
$M_1 =$	L	a	1	$rac{L^2}{2}$	$rac{L^2}{6}$	$\frac{a^2}{2}$
$p_1 =$	$\frac{L^3}{3EI}$	$\frac{a^2 L}{2 E I} \left[1 - \frac{a}{3 L} \right]$	$\frac{L^2}{2EI}$	$rac{L^4}{8EI}$	$rac{L^4}{30EI}$	$\frac{a^3 L}{24 EI} \left[4 - \frac{a}{L} \right]$
$p_2 =$	$\frac{a^2 L}{2 EI} \left[1 - \frac{a}{3 L} \right]$	$\frac{a^3}{3EI}$	$\frac{a^2}{2 EI}$	$\frac{a^2 L^2}{24 EI} \left[6 - 4\frac{a}{L} + \frac{a^2}{L^2} \right]$	$\frac{L^4}{30EI}$ $\frac{a^2L^2}{120EI}\left[10 - \frac{10a}{L} + \frac{5a^2}{L^2} - \frac{a^3}{L^3}\right]$	$\frac{a^4}{8 EI}$
$m_2 =$	$\frac{L^2}{2EI}$		$\frac{L}{EI}$		$rac{L^3}{24EI}$	$\frac{a^3}{6 EI}$

6.5 Fast inspänd på ena sidan

$$\star\star = \begin{cases} \frac{a\,L^2}{96\,EI} \left[3 - \frac{5\,a^2}{L^2} \right] &, & \text{om } a \le L/2\\ \frac{b^2\,L}{96\,EI} \left[9 - \frac{11\,b}{L} \right] &, & \text{om } a \ge L/2 \end{cases}$$

	M_1	P_1	P_2	W_1	W_2	W_3
$R_1 =$	$\frac{-3}{2L}$	$\frac{5}{16}$	$\frac{b^2}{2L^2} \left[3 - \frac{b}{L} \right]$	$\frac{3L}{8}$	$\begin{split} \frac{L}{10} \\ \frac{2L}{5} \\ \frac{L^2}{15} \\ \frac{L^3}{120EI} \\ \frac{3L^4}{1280EI} \\ \frac{aL^3}{120EI} \left[1 - \frac{2a^2}{L^2} + \frac{a^4}{L^4}\right] \end{split}$	$\frac{a}{8} \left[8 - \frac{6a}{L} + \frac{a^3}{L^3} \right]$
$R_2 =$	$\frac{3}{2L}$	$\frac{11}{16}$	$\frac{a}{2L} \left[3 - \frac{a^2}{L^2} \right]$	$\frac{5L}{8}$	$\frac{2L}{5}$	$\frac{a^2}{8L} \left[6 - \frac{a^2}{L^2} \right]$
$M_2 =$	$\frac{1}{2}$	$\frac{3L}{16}$	$\frac{a}{2} \left[1 - \frac{a^2}{L^2} \right]$	$\frac{L^2}{8}$	$\frac{L^2}{15}$	$\frac{a^2}{8} \left[2 - \frac{a^2}{L^2} \right]$
$m_1 =$	$rac{L}{4EI}$	$\frac{L^2}{32 EI}$	$\frac{ab^2}{4EIL}$	$\frac{L^3}{48EI}$	$\frac{L^3}{120EI}$	$\frac{a^2 L}{48 EI} \left[6 - 8\frac{a}{L} + \frac{3 a^2}{L^2} \right]$
$p_1 =$	$\frac{L^2}{32 EI}$	$\frac{7L^3}{768EI}$	**	$\frac{L^4}{192 EI}$	$\frac{3L^4}{1280EI}$	-
$p_2 =$	$\frac{ab^2}{4EIL}$	**	$\frac{a^2 b^3}{12 EI L^2} \left[4 - \frac{b}{L} \right]$	$\frac{aL^3}{48EI}\left[1 - \frac{3a^2}{L^2} + \frac{2a^3}{L^3}\right]$	$\frac{aL^3}{120EI}\left[1 - \frac{2a^2}{L^2} + \frac{a^4}{L^4}\right]$	-

6.6 Tvåsidig fast inspänning

$$\star \star \star = \begin{cases} \frac{a^2 L}{48 EI} \left[3 - \frac{4 a}{L} \right] , & \text{om } a \le L/2 \\ \frac{b^2 L}{48 EI} \left[3 - \frac{4 b}{L} \right] , & \text{om } a \ge L/2 \end{cases}$$

	P_1	P_2	W_1	W_2	W_3
$R_1 =$	$\frac{1}{2}$	$\frac{b^2}{L^2} \left[1 + \frac{2a}{L} \right]$	$rac{L}{2}$	$\begin{array}{c} \frac{3L}{20} \\ \frac{7L}{20} \\ \frac{L^2}{30} \\ \frac{L^2}{20} \\ \frac{L^2}{768EI} \\ \frac{aL^3}{120EI} \left[\frac{2a}{L} - \frac{3a^2}{L^2} + \frac{a^4}{L^4} \right] \end{array}$	$a\left[1 - \frac{a^2}{L^2} + \frac{a^3}{2L^3}\right]$
$R_2 =$	$\frac{1}{2}$	$\frac{a^2}{L^2} \left[1 + \frac{2b}{L} \right]$	$rac{L}{2}$	$\frac{7L}{20}$	$a\left[\frac{a^2}{L^2} - \frac{a^3}{2L^3}\right]$
$M_1 =$	$\frac{L}{8}$	$\frac{ab^2}{L^2}$	$\frac{L^2}{12}$	$\frac{L^2}{30}$	$\frac{a^2}{12} \left[6 - \frac{8a}{L} + \frac{3a^2}{L^2} \right]$
$M_2 =$	$\frac{L}{8}$	$\frac{a^2 b}{L^2}$	$rac{L^2}{12}$	$rac{L^2}{20}$	$\frac{a^3}{12L}\left[4-\frac{3a}{L}\right]$
$p_1 =$	$\frac{L^3}{192 EI}$	***	$\frac{L^4}{384EI}$	$\frac{L^4}{768EI}$	_
$p_2 =$	***	$\frac{a^3b^3}{3EIL^3}$	$\frac{a^2 L^2}{24 EI} \left[1 - \frac{a}{L} \right]^2$	$\frac{aL^3}{120EI}\left[\frac{2a}{L} - \frac{3a^2}{L^2} + \frac{a^4}{L^4}\right]$	_

7 Huvudspänningar/huvudtöjningar

Huvudspänningar σ och huvudspänningsriktningar \boldsymbol{n} från:

$$(S - \sigma I)n = 0$$
 \Rightarrow $\det(S - \sigma I) = 0$

där \boldsymbol{S} är spänningsmatrisen

$$m{S} = egin{pmatrix} \sigma_x & au_{xy} & au_{xz} \ au_{xy} & \sigma_y & au_{yz} \ au_{xz} & au_{yz} & \sigma_z \end{pmatrix}$$

Huvudtöjningar ϵ och huvudtöjningsriktningar \boldsymbol{n} från:

$$(\epsilon - \epsilon \mathbf{I})\mathbf{n} = \mathbf{0} \qquad \Rightarrow \det(\epsilon - \epsilon \mathbf{I}) = 0$$

där ϵ är töjningsmatrisen

$$\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_x & \gamma_{xy}/2 & \gamma_{xz}/2 \\ \gamma_{xy}/2 & \epsilon_y & \gamma_{yz}/2 \\ \gamma_{xz}/2 & \gamma_{yz}/2 & \epsilon_z \end{pmatrix}$$

8 Spännings- och töjningstillstånd i ett plan

I xy-planet varierar normal och skjuvspänningar enligt:

$$\begin{cases} \sigma(\varphi) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos(2\varphi) + \tau_{xy}\sin(2\varphi) \\ \tau(\varphi) = -\frac{\sigma_x - \sigma_y}{2}\sin(2\varphi) + \tau_{xy}\cos(2\varphi) \end{cases}$$

Analogt för töjningar:

$$\begin{cases} \epsilon(\varphi) = \frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x - \epsilon_y}{2} \cos(2\varphi) + \frac{\gamma_{xy}}{2} \sin(2\varphi) \\ \gamma(\varphi) = -\frac{\epsilon_x - \epsilon_y}{2} \sin(2\varphi) + \frac{\gamma_{xy}}{2} \cos(2\varphi) \end{cases}$$

Speciellt för $\tau_{xz}=\tau_{yz}=0$ fås huvudspänningarna $\sigma_3=\sigma_z$ och

$$\begin{cases} \sigma_{1,2} = \frac{1}{2}(\sigma_x + \sigma_y) \pm R \\ \sin(2\psi_1) = \frac{\tau_{xy}}{R} \\ \cos(2\psi_1) = \frac{\sigma_x - \sigma_y}{2R} \end{cases}$$

där $\varphi = \psi_1$ är riktning till σ_1 och

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Speciellt för $\gamma_{xz} = \gamma_{yz} = 0$ fås huvudtöjningarna $\epsilon_3 = \epsilon_z$ och

$$\begin{cases} \epsilon_{1,2} = \frac{1}{2}(\epsilon_x + \epsilon_y) \pm R_{\epsilon} \\ \sin(2\psi_1) = \frac{\gamma_{xy}}{2R_{\epsilon}} \\ \cos(2\psi_1) = \frac{\epsilon_x - \epsilon_y}{2R_{\epsilon}} \end{cases}$$

där $\varphi = \psi_1$ är riktning till ϵ_1 och

$$R_{\epsilon} = \sqrt{\left(\frac{\epsilon_x - \epsilon_y}{2}\right)^2 + \gamma_{xy}^2/4}$$

Angpanneformlerna 9

För ett tunnväggigt cylindriskt tryckkärl gäller

$$\begin{cases} \sigma_r \approx 0 & p \text{ är inre övertryck} \\ \sigma_{\varphi} = \frac{p \, a}{h} & a \text{ är medelradien} \\ \sigma_z = \frac{p \, b}{2 \, h} & h \text{ är godstjockleken} \end{cases}$$

För ett tunnväggigt sfäriskt tryckkärl gäller

$$\begin{cases} \sigma_r \approx 0 & p \text{ är inre övertryck} \\ \sigma_\varphi = \sigma_\theta = \frac{p \, a}{2 \, h} & a \text{ är medelradien} \\ h \text{ är godstjockleken} \end{cases}$$

Hookes generaliserade lag för linjärt isotropt 10 material

Hookes generaliserade lag på flexibilitetsform:

$$\begin{cases} \epsilon_x = \frac{1}{E} \left(\sigma_x - \nu \left(\sigma_y + \sigma_z \right) \right) + \alpha \, \Delta T \,, & \gamma_{xy} = \frac{1}{G} \tau_{xy} \\ \epsilon_y = \frac{1}{E} \left(\sigma_y - \nu \left(\sigma_z + \sigma_x \right) \right) + \alpha \, \Delta T \,, & \gamma_{yz} = \frac{1}{G} \tau_{yz} \\ \epsilon_z = \frac{1}{E} \left(\sigma_z - \nu \left(\sigma_x + \sigma_y \right) \right) + \alpha \, \Delta T \,, & \gamma_{zx} = \frac{1}{G} \tau_{zx} \end{cases}$$

med $G = E/(2(1+\nu))$, vilket också kan skrivas på styvhetsform som

$$\begin{cases} \sigma_x = \frac{E}{1+\nu} \left(\epsilon_x + \frac{\nu}{1-2\nu} \left(\epsilon_x + \epsilon_y + \epsilon_z \right) \right) - \frac{E \alpha \Delta T}{1-2\nu} , & \tau_{xy} = G \gamma_{xy} \\ \sigma_y = \frac{E}{1+\nu} \left(\epsilon_y + \frac{\nu}{1-2\nu} \left(\epsilon_x + \epsilon_y + \epsilon_z \right) \right) - \frac{E \alpha \Delta T}{1-2\nu} , & \tau_{yz} = G \gamma_{yz} \\ \sigma_z = \frac{E}{1+\nu} \left(\epsilon_z + \frac{\nu}{1-2\nu} \left(\epsilon_x + \epsilon_y + \epsilon_z \right) \right) - \frac{E \alpha \Delta T}{1-2\nu} , & \tau_{zx} = G \gamma_{zx} \end{cases}$$

Plan spänning $(\sigma_z = \tau_{xz} = \tau_{yz} = 0)$, Plan töjning $(\epsilon_z = \gamma_{xz} = \gamma_{yz} = 0)$, normalspänningar:

normaltöjningar:

$$\begin{cases} \sigma_x = \frac{E}{1 - \nu^2} \left(\epsilon_x + \nu \, \epsilon_y \right) \\ \sigma_y = \frac{E}{1 - \nu^2} \left(\nu \, \epsilon_x + \epsilon_y \right) \end{cases} \qquad \begin{cases} \epsilon_x = \frac{1 - \nu^2}{E} \left(\sigma_x - \nu / (1 - \nu) \, \sigma_y \right) \\ \epsilon_y = \frac{1 - \nu^2}{E} \left(-\nu / (1 - \nu) \, \sigma_x + \sigma_y \right) \end{cases}$$

11 Effektivspänningar

von Mises:

$$\sigma_{e}^{vM} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} - \sigma_{x} \sigma_{y} - \sigma_{y} \sigma_{z} - \sigma_{z} \sigma_{x} + 3\tau_{xy}^{2} + 3\tau_{yz}^{2} + 3\tau_{zx}^{2}} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}$$

Tresca:

$$\sigma_{\rm e}^{^{\mathrm{T}}} = \max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|)$$

12 Differentialekvationen för tjockväggigt rör – plan cirkulär skiva

Elastisk axisymmetrisk skiva utsatt för plan spänning ($\sigma_z = \tau_{rz} = \tau_{\varphi z} = 0$) samt enbart belastning i r-led:

$$\frac{\mathrm{d}}{\mathrm{dr}} \left(\frac{1}{r} \frac{\mathrm{d}}{\mathrm{dr}} (u_r r) \right) + \frac{1 - \nu^2}{E} K_r = 0$$

Allmän lösning:

$$u_r = A_1 r + A_2 / r - 1 / r \int r \int \frac{(1 - \nu^2) K_r}{E} dr dr$$

där A_1 och A_2 bestäms från randvillkor.

Töjningar:

$$\epsilon_r(r) = \frac{\mathrm{d}u_r(r)}{\mathrm{d}r}, \quad \epsilon_{\varphi}(r) = \frac{u_r(r)}{r}$$

Spänningar för $K_r = 0$:

$$\sigma_r(r) = A - \frac{B}{r^2}$$
, $\sigma_{\varphi}(r) = A + \frac{B}{r^2}$ där $A = \frac{E}{1 - \nu} A_1$ och $B = \frac{E}{1 + \nu} A_2$

Om istället den axisymmetriska skivan är utsatt för plan töjning översätts E och ν enligt:

plan spänning:
$$E$$
 \rightarrow plan töjning: $\frac{E}{1-\nu^2}$ plan spänning: ν \rightarrow plan töjning: $\frac{\nu}{1-\nu}$

Instabilitet 18

13 Instabilitet

Balkens differentialekvation med hänsyn till konstant tryckande normalkraft P

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(EI \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \right) + P \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} = q$$

För konstant EI och q=0 har ekvationen den allmänna lösningen:

$$w(x) = C_1 nx + C_2 + C_3 \cos(nx) + C_4 \sin(nx)$$

med $n^2 = P/EI$ och integrationskonstanterna $C_1 - C_4$.

Eulers knäckfall:

$$P_{\rm E1} = \frac{\pi^2 EI}{4L^2} \qquad P_{\rm E2} = \frac{\pi^2 EI}{L^2} \qquad P_{\rm E3} = \frac{2.05\pi^2 EI}{L^2} \qquad P_{\rm E4} = \frac{4\pi^2 EI}{L^2} \qquad P_{\rm E5} = \frac{\pi^2 EI}{L^2}$$

Euler 1 Euler 2 Euler 3 Euler 4 Euler 5

14 Spänningskoncentrationer

Linjärt isotropt elastiskt material:

$$\sigma_{\rm max} = K_{\rm t} \, \sigma_{\rm nom}$$

där K_t är spänningskoncentrationsfaktorn.

• För cirkulärt hål, enaxlig belastning (plant spännings- och plant deformationstillstånd):

$$\sigma_{\varphi}(\varphi) = [1-2\cos(2\varphi)] \sigma_{\infty}$$

• Cirkulärt hål, tvåaxlig belastning: (plant spännings- och plant deformationstillstånd):

$$\sigma_{\varphi, \max} = 2 \, \sigma_{\infty}$$

Referenser

Gere and Timoshenko, Mechanics of materials, 3rd edition, 1991.

Samuelsson och Wiberg, Byggnadsmekanik - Hållfasthetslära, Studentlitteratur, Lund, 1988.

Sundström (red.), Handbok och formelsamling i hållfasthetslära, KTH, 1999.