ECE4634 Digital Communications Fall 2007

Instructor: R. Michael Buehrer

Lecture #19: *M*-ary FSK

Pulse shaping

 Previously we examined two methods of multilevel (M-ary) modulation M-PSK and QAM

Overview

- Allows for improved bandwidth efficiency but degraded energy efficiency
- Today we extend our discussion to M-FSK modulation
 - Does not improve bandwidth efficiency (in fact degrades bandwidth efficiency) but improves energy efficiency
- What to read Sections 7.5, 7.7

Bandpass Modulation - FSK

- Binary Frequency Shift Keying (BFSK)
- We modulate or change the frequency depending on the data bit to be sent
- Basic Idea:
 - Send one tone f₁ for a 1
 - Send another tone f₂ for a 0
 - Then we transmit the signal s(t):

$$1 \Rightarrow s(t) = \cos\left(2\pi f_1 t + \theta_1\right)\Big|_0^{T_s}$$
$$0 \Rightarrow s(t) = \cos\left(2\pi f_2 t + \theta_2\right)\Big|_0^{T_s}$$

 θ_1 and θ_2 are arbitrary constants that simply reflect the fact that the two oscillators are not phase locked. Better spectral properties are achieved if θ_1 = θ_2 and if the phase is continuous.

- We can also create a BFSK signal using a frequency modulator. Such a scheme keeps the phase a continuous function (i.e., there are no phase jumps).
- This type of FSK has better spectral properties and is called continuous phase FSK

$$s(t) = A_c \cos \left[\omega_c t + D_f \int_{-\infty}^t m(\lambda) d\lambda \right]$$

$$= \text{Re} \left\{ g(t) e^{j\omega_c t} \right\}$$

$$g(t) = A_c e^{j\theta(t)}$$

$$\theta(t) = D_f \int_{-\infty}^t m(\lambda) d\lambda$$

Virginia Tech Fall 2007 m(t) = polar NRZ line code $D_f = 2\pi\Delta f$

Minimum Shift Keying

 Can be viewed as a pulse shaped version of Offset QPSK with Sinusoidal pulse shaping

$$s(t) = A \left\{ \begin{bmatrix} \sum_{n=-\infty}^{\infty} I_{2n} g\left(t - nT_{s}\right) \end{bmatrix} \cos\left(2\pi f_{c} t\right) + \begin{bmatrix} \sum_{n=-\infty}^{\infty} I_{2n+1} g\left(t - nT_{s} - \frac{T_{s}}{2}\right) \end{bmatrix} \sin\left(2\pi f_{c} t\right) \right\}$$

$$I_{n} \in \left\{+1, -1\right\}$$

$$I_{n} = \left(-1\right)^{b_{n}}$$

$$g(t) = \begin{cases} \sin\left(\frac{\pi t}{T_{s}}\right) & 0 \le t \le T_{s} \\ 0 & else \end{cases}$$

- Can also be viewed as a special case of FSK
 - With minimum coherent frequency separation (thus the name *Minimum* Shift Keying)

I channel bits - pulse shaped with $sin(\pi t/T_s)$

Q channel bits - pulse shaped with $sin(\pi t/T_s)$ and staggered by $T_s/2$

Tx Signal

Phase Note: Phase is continuous

MSK vs BFSK

 When viewed/demodulated bit by bit, we have an BFSK signal. However, because of the phase constraints imposed, we can view the signal over a two bit interval as offset QPSK with sinusoidal pulse shaping.

Each bit changes the direction of the phase rotation

I/Q functions stay constant over a 2 bit interval

Main lobe is wider

Side-lobes fall off faster

- To extend FSK to M > 2 we simply add frequencies
- Example 4-FSK

$$s_{1}(t) = A \cos(\omega_{1}t)\Big|_{0}^{T}$$

$$s_{2}(t) = A \cos(\omega_{2}t)\Big|_{0}^{T}$$

$$s_{3}(t) = A \cos(\omega_{3}t)\Big|_{0}^{T}$$

$$s_{4}(t) = A \cos(\omega_{4}t)\Big|_{0}^{T}$$

Four orthogonal carriers Four symbols Two bits per symbol

- Non-coherent carriers
 - Recall that the minimum frequency spacing to maintain orthogonality between carriers is $2\Delta f_{min} = R_s$
 - Further, if we assume square pulses, the first null bandwidth on either side of the first and last carrier is R_s.
 - Thus, the total bandwidth (null-to-null) is thus

$$B = R_s + (M-1)(f_1 - f_2) + R_s$$

$$= 2R_s + (M-1)2\Delta f$$

$$= 2R_s + (M-1)R_s$$

$$= (M+1)R_s$$

- Coherent Carriers
 - Recall that the minimum frequency spacing to maintain orthogonality between carriers is $2\Delta f_{min} = R_s/2$
 - Further, if we assume square pulses, the first null bandwidth on either side of the first and last carrier is R_s.
 - Thus, the total bandwidth (null-to-null) is

$$B = R_s + (M-1)(f_1 - f_2) + R_s$$

$$= 2R_s + (M-1)2\Delta f$$

$$= 2R_s + (M-1)R_s / 2$$

$$= \left(\frac{M+3}{2}\right)R_s$$

- We typically refer to bandwidth efficiency η_{BW} as the bit rate over the bandwidth
- Thus for non-coherent carriers:

$$B = (M+1)R_{s}$$

$$R_{b} = (\log_{2} M)R_{s}$$

$$\eta_{BW} = \frac{R_{b}}{B} = \frac{(\log_{2} M)R_{s}}{(M+1)R_{s}}$$

$$= \frac{\log_{2} M}{M+1}$$

Thus, the bandwidth efficiency of FSK decreases with M. This is in contrast to PSK, QAM, ASK.

Bandwidth Efficiency

Modulation	First null-to-null bandwidth
Scheme	efficiency
M-PSK	$\eta_{BW} = \frac{\log_2 M}{2}$
M-ASK	$\eta_{BW} = \frac{\log_2 M}{2}$
QAM	$\eta_{BW} = \frac{\log_2 M}{2}$
M-FSK	$\eta_{BW} = \frac{\log_2 M}{M+1}$
(non-coherent carriers)	$\eta_{BW} = \frac{32}{M+1}$

- FSK is one form of a family of modulation schemes known as orthogonal modulation schemes
- With orthogonal modulation schemes all M symbols are orthogonal
 - Requires M "dimensions" we will discuss this more in a week or so
 - Increasing the number of dimensions improves performance but drastically reduces bandwidth efficiency

- Frequency Shift Keying can be analyzed just as any other modulation scheme
- It is slightly different due to the fact that as M increases, the number of dimensions (i.e., the number of orthogonal components) increases.
 - This is in contrast to PSK, ASK and QAM which have a constant number of dimensions.
- The result is that bandwidth efficiency goes down with M and energy efficiency goes up with M

- So far we have discussed controlling bandwidth by using multi-level modulation
 - Reducing the symbol rate without reducing the bit rate reduces the bandwidth
 - Has implications on performance
- We can also reduce the bandwidth of bandpass modulation schemes through pulse shaping
 - Analogous to baseband case

 Recall that both M-PSK, M-ASK and QAM can be represented as

$$s(t) = x(t)\cos(\omega_c t) - y(t)\sin(\omega_c t)$$

Square pulse

where

$$x(t) = \sum_{i=-\infty}^{\infty} a_i p(t - iT_s)$$

$$y(t) = \sum_{i=-\infty}^{\infty} b_i p(t - iT_s)$$

$$\begin{array}{c} \mathsf{PSK} \boldsymbol{\rightarrow} \quad a_i = \cos\left(\frac{2\pi}{M}i\right) \quad b_i = \sin\left(\frac{2\pi}{M}i\right) \\ \mathsf{QAM} \boldsymbol{\rightarrow} \quad a_i \; , b_i \; \in \left\{\pm 1, \pm 2, ... \pm \sqrt{M}\right\} \\ \mathsf{ASK} \boldsymbol{\rightarrow} \quad a_i \; \in \left\{0, 1, 2, ... M - 1\right\} \\ b_i \; = 0 \end{array}$$

Power Spectral Density

Thus, the complex baseband version is

$$g(t) = x(t) + jy(t)$$
$$= \sum_{i=0}^{\infty} (a_i + jb_i) p(t - iT)$$

We know from the modulation principle that

$$P_{v}(f) = \frac{1}{4} [P_{g}(f - f_{c}) + P_{g}(-f - f_{c})]$$

Further, for a digitally modulated pulse stream

$$P_{x}(f) = \underbrace{\frac{\sigma_{a}^{2}}{T_{s}}}_{continuous} F(f) \Big|_{T_{s}}^{2} \underbrace{\frac{m_{a}^{2}}{T_{s}}}_{s}^{\infty} F\left(\frac{n}{T_{s}}\right) \Big|_{discrete}^{2} \delta\left(f - \frac{n}{T_{s}}\right)$$

Power Spectral Density

Assume equal average power for all schemes

$$E\{|a_i + jb_i|^2\} = P_{avg}$$

$$= \begin{cases} \sigma^2 & PSK, QAM \\ \sigma^2 + A_{avg}^2 & ASK \end{cases}$$

$$\left| P_g(f) = \frac{P_{avg}}{T_s} |F(f)|^2 \right| \qquad \text{PSK, QAM}$$

$$\left| P_g(f) = \frac{P_{avg} - A_{avg}^2}{T_s} \left| F(f) \right|^2 + \frac{A_{avg}^2}{T_s} \sum_{k = -\infty}^{\infty} \left| F\left(\frac{n}{T_s}\right) \right|^2 \delta\left(f - \frac{n}{T_s}\right) \right| \quad \text{ASK}$$

 Thus we can control the power spectral density through the pulse shape F(f)

- Pulse shaping for bandpass systems (when PSK, QAM, ASK are used) is identical to pulse shaping for baseband systems
- Raised cosine (and sinc) pulses are preferable since they have controlled bandwidth properties and have zero ISI
- Since a matched filter is desired at the receiver, we actually use square root raised cosine pulses

Square Pulses

Pulse shape

Spectrum

Phase of Carrier

Square Pulses – QPSK

Phase of Carrier

Time

Amplitude of Carrier

Cosine Pulses

Pulse shape

Spectrum

Cosine Pulses – BPSK

Phase of Carrier

Cosine Pulses – QPSK

Phase of Carrier

Cosine Pulses – BASK

Amplitude of Carrier

-30

-35

-40 <u>-</u> -4

0 (f-f_c)*T

Conclusions

- Pulse shaping does not affect the phase modulation but does affect amplitude modulation
 - Can be ignored with proper sampling time
- Pulse shaping does affect the spectral characteristics
- Using non-square pulses results in non-constant envelope
- We will find that the performance is unaffected by pulse shape provided
 - No ISI introduced
 - Matched filter used