Coordinates and Basis

Basis for a Vector Space

Definition 1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a set of vectors in a finite-dimensional vector space V, then S is called a **basis** for V if:

- (a) S spans V.
- (b) S is linearly independent.

EXAMPLE 1 | The Standard Basis for R^n

Recall from Example 1 of Section 4.3 that the standard unit vectors

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

span \mathbb{R}^n and from Example 1 of Section 4.4 that they are linearly independent. Thus, they form a basis for \mathbb{R}^n that we call the **standard basis for \mathbb{R}^n**. In particular,

$$i = (1,0), j = (0,1)$$

and

$$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$

are the standard bases for R^2 and R^3 , respectively.

EXAMPLE 2 | The Standard Basis for P_n

Show that $S = \{1, x, x^2, \dots, x^n\}$ is a basis for the vector space P_n of polynomials of degree n or less.

Solution We must show that the polynomials in S are linearly independent and span P_n . Let us denote these polynomials by

$$\mathbf{p}_0 = 1$$
, $\mathbf{p}_1 = x$, $\mathbf{p}_2 = x^2$,..., $\mathbf{p}_n = x^n$

We showed in Example 3 of Section 4.3 that these vectors span P_n and in Example 4 of Section 4.4 that they are linearly independent. Thus, they form a basis for P_n that we call the **standard basis for** P_n .

EXAMPLE 3 | Another Basis for R^3

Show that the vectors $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 9, 0), \text{ and } \mathbf{v}_3 = (3, 3, 4) \text{ form a basis for } \mathbb{R}^3.$

Solution We must show that these vectors are linearly independent and span \mathbb{R}^3 . To prove linear independence we must show that the vector equation

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0} \tag{1}$$

has only the trivial solution; and to prove that the vectors span R^3 we must show that every vector $\mathbf{b} = (b_1, b_2, b_3)$ in R^3 can be expressed as

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{b} \tag{2}$$

By equating corresponding components on the two sides, these two equations can be expressed as the linear systems

$$c_1 + 2c_2 + 3c_3 = 0$$
 $c_1 + 2c_2 + 3c_3 = b_1$
 $2c_1 + 9c_2 + 3c_3 = 0$ and $2c_1 + 9c_2 + 3c_3 = b_2$ (3)
 $c_1 + 4c_3 = 0$ $c_1 + 4c_3 = b_3$

(verify). Thus, we have reduced the problem to showing that in (3) the homogeneous system has only the trivial solution and that the nonhomogeneous system is consistent for all values of b_1 , b_2 , and b_3 . But the two systems have the same coefficient matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

so it follows from parts (b), (e), and (g) of Theorem 2.3.8 that we can prove both results at the same time by showing that $\det(A) \neq 0$. We leave it for you to confirm that $\det(A) = -1$, which proves that the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 form a basis for R^3 .

EXAMPLE 4 | The Standard Basis for M_{mn}

Show that the matrices

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

form a basis for the vector space M_{22} of 2×2 matrices.

Solution We must show that the matrices are linearly independent and span M_{22} . To prove linear independence we must show that the equation

$$c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = \mathbf{0} \tag{4}$$

has only the trivial solution, where $\bf 0$ is the 2 × 2 zero matrix; and to prove that the matrices span M_{22} we must show that every 2 × 2 matrix

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

can be expressed as

$$c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = B (5)$$

The matrix forms of Equations (4) and (5) are

$$c_1\begin{bmatrix}1&0\\0&0\end{bmatrix}+c_2\begin{bmatrix}0&1\\0&0\end{bmatrix}+c_3\begin{bmatrix}0&0\\1&0\end{bmatrix}+c_4\begin{bmatrix}0&0\\0&1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$

and

$$c_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

which can be rewritten as

$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Since the first equation has only the trivial solution

$$c_1 = c_2 = c_3 = c_4 = 0$$

the matrices are linearly independent, and since the second equation has the solution

$$c_1 = a$$
, $c_2 = b$, $c_3 = c$, $c_4 = d$

the matrices span M_{22} . This proves that the matrices M_1 , M_2 , M_3 , M_4 form a basis for M_{22} . More generally, the mn different matrices whose entries are zero except for a single entry of 1 form a basis for M_{mn} called the **standard basis for M_{mn}**.

Coordinates Relative to a Basis

Theorem 4.5.1

Uniqueness of Basis Representation

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$ in exactly one way.

Definition 2

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an ordered basis for a vector space V, and

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

is the expression for a vector \mathbf{v} in terms of the basis S, then the scalars c_1, c_2, \ldots, c_n are called the **coordinates of v relative to the basis S**. The vector (c_1, c_2, \ldots, c_n) in \mathbb{R}^n constructed from these coordinates is called the **coordinate vector of v relative to S**; it is denoted by

$$(\mathbf{v})_S = (c_1, c_2, \dots, c_n) \tag{6}$$

EXAMPLE 8 | Coordinate Vectors Relative to Standard Bases

(a) Find the coordinate vector for the polynomial

$$\mathbf{p}(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

relative to the standard basis for the vector space P_n .

(b) Find the coordinate vector of

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

relative to the standard basis for M_{22} .

Solution (a) The given formula for $\mathbf{p}(x)$ expresses this polynomial as a linear combination of the standard basis vectors $S = \{1, x, x^2, \dots, x^n\}$. Thus, the coordinate vector for \mathbf{p} relative to S is

$$(\mathbf{p})_S = (c_0, c_1, c_2, \dots, c_n)$$

Solution (b) We showed in Example 4 that the representation of a vector

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

as a linear combination of the standard basis vectors is

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

so the coordinate vector of B relative to S is

$$(B)_S = (a, b, c, d)$$

EXAMPLE 9 | Coordinates in \mathbb{R}^3

(a) We showed in Example 3 that the vectors

$$\mathbf{v}_1 = (1, 2, 1), \quad \mathbf{v}_2 = (2, 9, 0), \quad \mathbf{v}_3 = (3, 3, 4)$$

form a basis for R^3 . Find the coordinate vector of $\mathbf{v} = (5, -1, 9)$ relative to the basis $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$.

(b) Find the vector \mathbf{v} in \mathbb{R}^3 whose coordinate vector relative to S is $(\mathbf{v})_S = (-1, 3, 2)$.

Solution (a) To find (v)_S we must first express v as a linear combination of the vectors in S; that is, we must find values of c_1 , c_2 , and c_3 such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

or, in terms of components,

$$(5,-1,9) = c_1(1,2,1) + c_2(2,9,0) + c_3(3,3,4)$$

Equating corresponding components gives

$$c_1 + 2c_2 + 3c_3 = 5$$

$$2c_1 + 9c_2 + 3c_3 = -1$$

$$c_1 + 4c_3 = 9$$

Solving this system we obtain $c_1=1,\,c_2=-1,\,c_3=2$ (verify). Therefore,

$$(\mathbf{v})_S = (1, -1, 2)$$

Solution (b) Using the definition of $(\mathbf{v})_S$, we obtain

$$\mathbf{v} = (-1)\mathbf{v}_1 + 3\mathbf{v}_2 + 2\mathbf{v}_3$$

= (-1)(1,2,1) + 3(2,9,0) + 2(3,3,4) = (11,31,7)

Question:

2. Use the method of Example 3 to show that the following set of vectors forms a basis for \mathbb{R}^3 .

$$\{(3,1,-4),(2,5,6),(1,4,8)\}$$

Solution:

Vectors (3,1,-4), (2,5,6), and (1,4,8) are linearly independent if the vector equation

$$c_1(3,1,-4)+c_2(2,5,6)+c_3(1,4,8)=(0,0,0)$$

has only the trivial solution. For these vectors to span R^3 , it must be possible to express every vector $\mathbf{b} = (b_1, b_2, b_3)$ in R^3 as.

$$c_1(3,1,-4)+c_2(2,5,6)+c_3(1,4,8)=(b_1,b_2,b_3)$$

These two equations can be rewritten as linear systems

$$3c_1 + 2c_2 + 1c_3 = 0$$
 $3c_1 + 2c_2 + 1c_3 = b_1$
 $1c_1 + 5c_2 + 4c_3 = 0$ and $1c_1 + 5c_2 + 4c_3 = b_2$
 $-4c_1 + 6c_2 + 8c_3 = 0$ $-4c_1 + 6c_2 + 8c_3 = b_3$

Since the coefficient matrix of both systems has determinant $\begin{vmatrix} 3 & 2 & 1 \\ 1 & 5 & 4 \\ -4 & 6 & 8 \end{vmatrix} = 26 \neq 0$, it follows from

parts (b), (e), and (g) of Theorem 2.3.8 that the homogeneous system has only the trivial solution and the nonhomogeneous system is consistent for all real values b_1 , b_2 , and b_3 . Therefore the vectors (3,1,-4), (2,5,6), and (1,4,8) are linearly independent and span R^3 so that they form a basis for R^3 .

Question:

- 13. Find the coordinate vector of \mathbf{v} relative to the basis $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ for R^3 .
 - **a.** $\mathbf{v} = (2, -1, 3); \ \mathbf{v}_1 = (1, 0, 0), \ \mathbf{v}_2 = (2, 2, 0), \ \mathbf{v}_3 = (3, 3, 3)$
 - **b.** $\mathbf{v} = (5, -12, 3); \ \mathbf{v}_1 = (1, 2, 3), \ \mathbf{v}_2 = (-4, 5, 6), \ \mathbf{v}_3 = (7, -8, 9)$

Solution:

(a) Expressing \mathbf{v} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 we obtain

$$(2,-1,3) = c_1(1,0,0) + c_2(2,2,0) + c_3(3,3,3)$$

Equating corresponding components on both sides yields the linear system

$$c_1 + 2c_2 + 3c_3 = 2$$

 $2c_2 + 3c_3 = -1$
 $3c_3 = 3$

which can be solved by back-substitution to obtain $c_3 = 1$, $c_2 = -2$, and $c_1 = 3$. The coordinate vector is $(\mathbf{v})_S = (3, -2, 1)$.

(b) Expressing \mathbf{v} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 we obtain

$$(5,-12,3) = c_1(1,2,3) + c_2(-4,5,6) + c_3(7,-8,9)$$

Equating corresponding components on both sides yields the linear system

$$1c_1 - 4c_2 + 7c_3 = 5
2c_1 + 5c_2 - 8c_3 = -12
3c_1 + 6c_2 + 9c_3 = 3$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. The solution of the

linear system is $c_1 = -2$, $c_2 = 0$, and $c_3 = 1$. The coordinate vector is $(\mathbf{v})_S = (-2,0,1)$.

Question:

19. In words, explain why the sets of vectors in parts (a) to (d) are not bases for the indicated vector spaces.

a.
$$\mathbf{u}_1 = (1, 2)$$
, $\mathbf{u}_2 = (0, 3)$, $\mathbf{u}_3 = (1, 5)$ for \mathbb{R}^2

b.
$$\mathbf{u}_1 = (-1, 3, 2), \ \mathbf{u}_2 = (6, 1, 1) \text{ for } \mathbb{R}^3$$

c.
$$\mathbf{p}_1 = 1 + x + x^2$$
, $\mathbf{p}_2 = x$ for P_2

d.
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 0 \\ -1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 0 \\ 1 & 7 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 \\ 4 & 2 \end{bmatrix}$ for M_{22}

Solution:

- (a) The third vector is a sum of the first two. This makes the set linearly dependent, hence it cannot be a basis for \mathbb{R}^2 .
- **(b)** The two vectors generate a plane in R^3 , but they do not span all of R^3 . Consequently, the set is not a basis for R^3 .
- (c) For instance, the polynomial p = 1 cannot be expressed as a linear combination of the given two polynomials. This means these two polynomials do not span P_2 , hence they do not form a basis for P_2 .
- (d) For instance, the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ cannot be expressed as a linear combination of the given four matrices. This means these four matrices do not span M_{22} , hence they do not form a basis for M_{22} .