WYKŁAD 4 Twierdzenie 12
$$\lim_{n\to\infty} a_n = A$$
, sa zbieżne oraz z

Twierdzenie 12. [Arytmetyka granic] Załóżmy, że a_n i b_n są ciągami zbieżnymi oraz $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$. Wtedy ciągi po lewej stronie poniższych nierówności sa zbieżne oraz zachodzi:

$$\lim_{n \to \infty} (a_n + b_n) = A + B,$$

$$\lim_{n\to\infty}(a_n\cdot b_n)=A\cdot B,$$

(c)
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{A}{B} \quad (pod \ warunkiem, \ \dot{z}e \ B \neq 0).$$

$$\frac{\beta}{N_1} = \frac{1}{N_2}$$

d-d olle donard

Wysteray pohorać, ie $\frac{1}{6m} \rightarrow \frac{1}{8}$ olle $B \neq 0$.

Ustalny $\xi > 0$. Z olef. granicy $f N_z$ $\frac{1}{8} \frac{1}{8} \frac{1}{8$

[Wedy
$$\frac{Q_m}{b_m} = Q_m \cdot \frac{1}{b_m} \xrightarrow{(b)} A \cdot \frac{1}{8}$$
]

$$\longrightarrow A \cdot \overline{B}$$

2 def.
$$b_m \rightarrow B$$
 alle $\left(\varepsilon = \frac{B}{2} \right)$ many $\exists N_1$
 $\forall m \ge N_1 \quad |b_m - B| < \frac{B}{2} \quad \Longrightarrow \quad b_m > B - |b_m - B|$

$$b_{m} \in (B - \frac{B}{2}, B + \frac{B}{2})$$

$$B - \frac{B}{2} = \frac{B}{2}$$

Dhe
$$n > N$$
 many:
$$\left|\frac{1}{2} - \frac{1}{2}\right| = \frac{|B-b_n|}{2} = \frac{|b_n - B|}{2}$$

$$\frac{1}{6m} \longrightarrow \frac{1}{3}$$

$$P - d \lim_{m \to \infty} \frac{3^{m} + m^{2} + 1}{3^{m} + m^{2} + 1} = \lim_{m \to \infty} \frac{1 + \frac{1}{3^{m}} + \frac{1}{3^{m}}}{1 + \frac{1}{3^{m}} + \frac{1}{3^{m}}}$$

$$\lim_{m \to \infty} \frac{m^{2}}{3^{m}} = 0$$

$$\lim_{m \to \infty} \frac{m^{2}}{3^$$

Uwaga 13. Jeśli $c \in \mathbb{R}$ oraz ciągi a_n i b_n są zbieżne, to:

$$\lim_{n \to \infty} (ca_n) = c \cdot \lim_{n \to \infty} a_n,$$

$$\left| \lim_{n \to \infty} a_n \right| = \lim_{n \to \infty} |a_n|,$$

()
$$je\acute{s}li\ a_n \geq 0$$
, to $\lim_{n\to\infty} a_n \geq 0$,

d)
$$jeśli \ a_n \leq b_n$$
, to $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

b)
$$\lim_{n \to \infty} a_n = A$$
 $\left| |a_n| - |A| \right| \leq |a_n - A|$

$$\lim_{m \to \infty} a_m = \lim_{m \to \infty} |a_m| = \lim_{m \to \infty} |a_m| \ge 0$$

$$b_{m}-a_{m} \geq 0 \qquad \Longrightarrow \qquad \lim_{m \to \infty} \left(b_{m}-a_{m}\right) \geq 0$$

im by > limen

Twierdzenie 14. [Twierdzenie o trzech ciągach.] Jeśli dla wszystkich $n \in \mathbb{N}$ zachodzi $a_n \le c_n \le b_n$ oraz $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = g$, to c_n jest zbieżny oraz $\lim_{n\to\infty} c_n = g$.

$$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0$$

$$\frac{1}{2} - \frac{1}{2} = 0$$

Zetem:
$$0 \le c_m \le b_m$$
 i $\lim_{m \to \infty} b_m = 0$

Wisc dle
$$m > N - \epsilon < 0 < c_m \leq b_m < \epsilon => |c_m - 0| < \epsilon$$

dleaego maine przyjęć
$$a_n = 0$$
.
 $a_n \le c_n \le b_n$ i $b_m a_n = bin b_n = g$
Wheely $0 \le c_n - a_n \le b_n - a_n$ oner 0
 $bin (b_n - a_n) = g - g = 0$. 2 przypeoblin $bin(a_n - a_n)$
scaegóbiego: $bin (c_n - a_n) = 0$ (=> $bin c_n = +$ $bin (a_n)$

Uwaga 15. W założeniu poprzedniego twierdzenia można wymagać, by założenie $a_n \le b_n$ było spełnione jedynie dla wszystkich $n > n_0$ (przy pewnym n_0).

Twierdzenie 16. Jeśli ciąg a_n jest zbieżny do liczby g, to ciąg

$$b_n = \frac{1}{n} (a_1 + a_2 + \dots + a_n)$$

jest również zbieżny do g.

20d. ne caraline.

GRANICE NIEWŁAŚCIWE

Definicja 20. [Granice niewłaściwe] Mówimy, że ciąg a_n jest rozbieżny do nieskończoności (∞) , jeśli dla dowolnej liczby M istnieje N takie, że dla n>N mamy $a_n>M$. Piszemy wtedy $\lim_{n\to\infty}a_n=\infty$. Analogicznie definiujemy rozbieżność do $-\infty$.

YM JN Ym>N an>M

a)
$$\lim_{n \to \infty} \ln n = \infty$$
, b) $\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \infty$.

a) being
$$M > 0$$
. Wedy dla $N = e^{M}$ over $M > N$

$$b_{2k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{8} + \frac{1}{9} + \dots + \frac{1}{2^k}$$

$$= 1 + b_2 - b_1 + b_4 - b_2 + b_8 - b_4 + \dots + b_{2k} - b_{2k-1}$$

$$> 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + (k-1) \cdot \frac{1}{2}$$

$$(*)$$
 $b_{2i} - b_{2j-2} = \frac{1}{2^{j-1}+1} + \frac{1}{2^{j-1}+2} + \dots + \frac{1}{2^{j}} > 2^{j-1} \cdot \frac{1}{2^{j}} = \frac{1}{2^{j}}$

2i-2i-1 = 2j-1 stadhikd by jest niegge.

$$2^{j}-2^{j-1}=2^{j-1}$$

Twierdzenie 23. Jeśli $a_n > 0$, to $\lim_{n\to\infty} a_n = \infty$ wtedy i tylko wtedy gdy $\lim_{n\to\infty} 1/a_n = 0$.

$$d-d$$
 (=) $2al$ te $\lim_{n\to\infty} a_n = \infty$ Polisienz, ie $\lim_{n\to\infty} \frac{1}{a_n} = 0$.

Ustoly $\varepsilon > 0$. Z det. $a_n \to \infty$ istnieje $N \quad \forall m > N \quad a_m > \frac{1}{\varepsilon}$.

Wedy: dle n > N:

$$\left|\frac{1}{\alpha_{m}} - O\right| = \frac{1}{\alpha_{m}} < \varepsilon \qquad \text{Wight} \qquad \frac{1}{\alpha_{m}} \rightarrow O$$

$$\frac{1}{\varepsilon} < \alpha_{m}$$

(=) Ewicenie

Twierdzenie 23. Zafóżmy, $\dot{z}e$ (a_n) jest ciągiem o wyrazach dodatnich.

- **1.** $Je\acute{s}li \lim_{n\to\infty} \int_{a_n}^{\frac{n-1}{a_n+1}} = g \in [0,1), \ to \lim_{n\to\infty} a_n = 0.$
- **2.** Jeśli $\lim_{n\to\infty}\frac{a_n+1}{a_n}=g\in(1,\infty]$, to $\lim_{n\to\infty}a_n=\infty$.
 - 3. $Je\acute{s}li \lim_{n\to\infty} \sqrt[n]{a_n} = g \in [0,1), \ to \lim_{n\to\infty} a_n = 0.$

y. $Jeśli \lim_{n\to\infty} \sqrt[n]{a_n} = g \in (1,\infty], \text{ to } \lim_{n\to\infty} a_n = \infty.$

Cuyli 0 < an < A. G-N. G^m

2 tw. 0 3 aigsadi 2 n -> 0.

$$a_{m} = m \qquad \frac{a_{m+1}}{a_{m}} = \frac{n+1}{m} \longrightarrow 1$$

$$Q_{M} = \frac{1}{M} \qquad \frac{Q_{M+1}}{Q_{M}} = \frac{M}{M+1} \longrightarrow 1$$

$$Q_{m}=1 \qquad \frac{q_{m+1}}{q_{m}}=1$$

Twierdzenie 23. Załóżmy, że (a_n) jest ciągiem o wyrazach dodatnich.

- **1.** $Je\acute{s}li \lim_{n\to\infty} \frac{a_n+1}{a_n} = g \in [0,1), \ to \lim_{n\to\infty} a_n = 0.$
- **2.** Jeśli $\lim_{n\to\infty} \frac{a_n+1}{a_n} = g \in (1,\infty]$, to $\lim_{n\to\infty} a_n = \infty$.

Jeśli
$$\lim_{n\to\infty} \sqrt[n]{a_n} = g \in [0,1)$$
, to $\lim_{n\to\infty} a_n = 0$.
Jeśli $\lim_{n\to\infty} \sqrt[n]{a_n} = g \in (1,\infty]$, to $\lim_{n\to\infty} a_n = \infty$.

JN V~>N

$$\frac{M_{9n} \in \left(g - \frac{1-g}{2}, \frac{g + \left(1-g\right)}{2}\right)}{gn < G}$$

Twierdzenie 24. Ważne granice:

$$\lim_{n\to\infty}q^n=0, \qquad q\in(0,1),$$

$$\lim_{n\to\infty}q^n=\infty, \qquad q>1,$$

$$\lim_{n\to\infty} \sqrt[n]{a} = 1, \qquad a > 0,$$

d)
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
,

e)
$$\lim_{n \to \infty} \frac{n^k}{q^n} = 0, \qquad q > 1, k \in \mathbb{N},$$

$$\lim_{n \to \infty} \frac{q^n}{n!} = 0, \qquad q > 0,$$

$$\times$$
t $m(q-1) \rightarrow \infty$

e)
$$\lim_{n\to\infty} \frac{m^n}{q^n}$$

$$Q_{m} = \frac{n^{n}}{\sqrt{n}}$$

$$\frac{Q_{n+1}}{Q_n} = \frac{Q_n}{Q_n}$$

$$\frac{q}{m^{k}} = \left(\frac{m+1}{m}\right)^{k} \cdot \frac{q}{q}$$

$$\frac{n}{\sqrt{n}} = 0$$

$$\frac{1}{q} \in (0,1)$$

Twierdzenie 25. Twierdzenie 12 o arytmetyce granic w szczególnych przypadkach zachodzi dla granic niewłaściwych, np.

$$\lim_{n \to \infty} a_n = -2, \lim_{n \to \infty} b_n = -\infty \qquad \Longrightarrow \lim_{n \to \infty} (a_n + b_n) = -\infty, \lim_{n \to \infty} (a_n b_n) = \infty,$$

$$\lim_{n \to \infty} a_n = -1, \lim_{n \to \infty} b_n = 0^+ \qquad \Longrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = -\infty.$$

Przez 0⁺ powyżej rozumiemy, że granicą jest zero i wyrazy są dodatnie. Arytmetyka granic nie daje odpowiedzi w następujących sytuacjach:

$$\infty + (-\infty), \qquad \frac{0}{0}, \qquad \frac{\infty}{\infty}.$$

Twierdzenie 26. [Twierdzenie o dwóch ciągach / kryterium porównawcze] Jeśli dla wszystkich n zachodzi $a_n \leq b_n$ oraz $\lim_{n\to\infty} a_n = \infty$, to również $\lim_{n\to\infty} b_n = \infty$.

$$\infty \subset M + \left(m \sin(n) \right) = m \left(1 + \frac{\sin(n)}{m} \right) > m \cdot \frac{1}{2} = \infty$$