Day-ahead Electricity Demand Forecasting

Boylan Pardosi

Why day-ahead forecasting is important?

- Optimizing Energy Consumption
- Reducing Operational Costs
- Enhancing Grid Stability

Forecasting Horizon

- Short term Forecasting (Hourly, Daily)
- Medium term Forecasting (Weekly, Monthly)
- Long term Forecasting (Annual, Multi-year)

Common Approaches

•Statistical Methods :

Time Series Analysis (ARIMA, SARIMA)

•Machine Learning :

Linear Regression, Decision Trees, Random Forrest

LSTM, XGBoost

Why Using XGBoost Model?

- Handle complex relationship
- •High Predictive Performance
- Robustness to overfitting
- Efficiency

Analytical Workflow

Define Objective

Data Collection

Exploratory Analysis

Data Processing

Modelling

Evaluation

Log on Register (

Electricity Demand Data

HOME RETAIL - WHOLESALE - FORWARD MARKETS - ENVIRONMENT -

A fundamental requirement of competitive and efficient electricity markets is access to reliable data and performance metrics.

This Electricity Market Information website (EMI) is the Electricity Authority's avenue for publishing data, market performance metrics, and analytical tools to facilitate effective decision-making within the New Zealand electricity industry.

Quicklinks

*	My dashboards	<u>lal.</u>	Retail reports	<u>lu</u>	Wholesale reports
*	Public dashboards	I	Retail dashboards		Wholesale dashboards
	Glossary	<u>M</u>	Forward market reports		Wholesale datasets

Market insights

New report: scheduled generation outages

Weather Data

Some issues to address:

- Demand Null Values → Use the average of the same groups (use zoo)
- Lower time resolution in weather data → insert in between rows and interpolate

Feature Selection (1):

Lag features

Use correlation matrix

Feature Selection (2):

- Day of week
- Month
- Holiday flag
- Temperature
- Humidity

XGBoost Parameter selection:

- Use hyper parameter tuning with gridsearch cross validation
- Different parameters for 48 prediction target

Dut to potential inaccuracy of the weather data, we consider two models :

- With temperature data
- Without weather data

Prediction result

Error measurements

Model 1 (with weather features)

ape_1	se_1
Min.: 0.00	Min.: 0.00
1st Qu.: 0.02	1st Qu.: 0.26
Median: 0.05	Median: 1.66
Mean: 0.23	Mean: 29.02
3rd Qu.: 0.11	3rd Qu.: 9.17
Max. :59.38	Max. :1605.97
NA's :35040	NA's :35040

Model 2 (without weather features)

ape_2	se_2
Min.: 0.00	Min.: 0.00
1st Qu.: 0.02	1st Qu.: 0.23
Median: 0.04	Median: 1.40
Mean: 0.23	Mean: 29.31
3rd Qu.: 0.10	3rd Qu.: 8.25
Max. :60.61	Max. :1759.06
NA's :35040	NA's : 35040

Error measurements vs TP

Squared Error

Absolute Percentage Error

Feature Importance

TP =1

Feature	Gain	Cover	Frequency
time_lag_1	0.5716362	0.3978664	0.3421053
$time_lag_2$	0.3508768	0.3933362	0.2960526
Month	0.0602796	0.0673301	0.1052632
temp	0.0067493	0.0485289	0.1019737
humidity	0.0063271	0.0708627	0.0855263
Day_of_week	0.0036240	0.0219231	0.0625000
Is_holiday	0.0005069	0.0001526	0.0065789

TP =30

Feature	Gain	Cover	Frequency
time_lag_2	0.5356285	0.2661932	0.2452830
Day_of_week	0.2016390	0.1385776	0.1415094
$time_lag_1$	0.1551237	0.2885125	0.2232704
temp	0.0406069	0.1275923	0.1509434
humidity	0.0306791	0.1007975	0.1446541
Month	0.0227920	0.0344904	0.0628931
Is_holiday	0.0106729	0.0307937	0.0220126
Is_holiday_prev	0.0028579	0.0130429	0.0094340

Compare with other algorithm: LSTM

- Similar step with additional step: data transformation (one hot encoding and minmax scaling)
- Use 50 unit layer and 'relu' activation
- Use 50 epochs with 32 batch size

Result: LSTM

se	ape
Min.: 0.0000	Min.: 0.00000
1st Qu.: 0.4022	1st Qu.: 0.02418
Median: 2.5594	Median: 0.05599
Mean: 35.3817	Mean: 0.26275
3rd Qu.: 14.5196	3rd Qu.: 0.12859
Max. :2304.5917	Max. :56.49364

Conclusion:

- We can drop the weather features as it do not significantly improve performance
- Most of the time prediction is quite accurate but at very low occurrence error can drastically increased, increasing the error mean
- Comparable result with LSTM with slightly better performance