Claims

- 1. A thermoplastic resin composition comprising a thermoplastic resin (1) in an amount of 0.1 to 99.9% by mass and a higher α -olefin polymer (3) containing 50 mol% or more of an α -olefin having 10 or more carbon atoms in an amount of 0.1 to 99.9% by mass.
- 2. A thermoplastic resin composition comprising a thermoplastic resin (1) in an amount of 0.1 to 99.9% by mass, an elastomer (2) in an amount of exceeding 0% by mass and up to 99.8% by mass, and a higher α -olefin polymer (3) containing 50 mol% or more of an α -olefin having 10 or more carbon atoms in an amount of 0.1 to 99.9% by mass.
- 3. The thermoplastic resin composition according to claim 1 or 2, wherein the higher α -olefin polymer (3) has a stereoregularity index M2 of 50 mol% or more.
- 4. The thermoplastic resin composition according to claim 1 or 2, wherein the higher α -olefin polymer (3) has a weight average molecular weight (Mw) of 1,000 to 10,000,000 and a molecular weight distribution (Mw/Mn) of 4.0 or less, measured by the GPC method.
- 5. The thermoplastic resin composition according to claim 1 or 2, wherein the higher α -olefin polymer (3) has one melting point (Tm) of 0 to 100°C.
- 6. The thermoplastic resin composition according to claim

1 or 2, wherein the higher α -olefin polymer (3) is obtained by polymerizing the α -olefin having 10 or more carbon atoms in the presence of a polymerization catalyst component comprising a transition metal compound (A) represented by the following general formula (I) and at least one component (B) selected from a compound (B-1) capable of reacting with the transition metal compound (A) or a derivative thereof to form an ionic complex and an aluminoxane compound (B-2):

wherein M represents a metal atom among Groups 3 to 10 and the lanthanum series of the Periodic Table; E^1 and E^2 are ligands selected from the group of a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a heterocyclopentadienyl group, a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group, or a silicon-containing group which form a structure cross-linked through ${\tt A}^1$ and ${\tt A}^2$ and they may be the same or different; X represents a σ -bonding ligand which may be a plurality of the same or different X's, and X may be cross-linked with another X, E^1 , E^2 , or Y;

Y represents a Lewis base, which may be a plurality of the same or different Y's, and Y may be cross-linked with another Y, E^1 , E^2 , or X; A^1 and A^2 are the same or different divalent cross-linking groups for linking the 2 ligands, and independently represent a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group, $-O^-$, $-CO^-$, $-S^-$, $-SO_2^-$, $-Se^-$, $-NR^1^-$, $-PR^1^-$, $-P(O)R^1^-$, $-BR^1^-$, or $-A1R^1^-$, in which R^1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms which may be the same or different;

 \mathbf{q} represents an integer of 1 to 5 of [(valence of M)-2]; and \mathbf{r} represents an integer of 0 to 3.

- 7. A molded article comprising the thermoplastic resin composition according to claim 1 or 2.
- 8. A sheet or a film comprising the thermoplastic resin composition according to claim 1 or 2.