Markov Decision Processes (MDP)

Prof. Subrahmanya Swamy

RL Framework

- 1. Agent observes the state
- 2. Takes an action
- 3. Environment puts the agent in a new state &
- 4. Also gives a reward based on taken action

Goal:

Learn policy to maximize the cumulative reward $\sum_{t} R_{t}$

How do we mathematically model the State transitions and Rewards?

Independent Random Variables

• A sequence of coin tosses $X_1, X_2, X_3, ...$

• Head: 1, Tail: 0, Bias of coin: p_h

• Knowledge of X_1 does not help in predicting X_2

- $\mathbb{P}(X_2 = 1 | X_1 = 0) = p_h$
- $\mathbb{P}(X_2 = 1 | X_1 = 1) = p_h$

Markov Chain

- A sequence of coin tosses $X_1, X_2, X_3, ...$
- If coin lands in
 - Head: Win 1 rupee
 - Tail: Lose 1 rupee
- Define Y_t = total money accumulated till time t
- *Y*₁, *Y*₂, *Y*₃, ... are dependent RVs

 - $\mathbb{P}(Y_5 = 1 | Y_4 = 3) = 0$ $\mathbb{P}(Y_5 = 1 | Y_4 = 0) = \frac{1}{2}$

Markov Chain

• Y_1, Y_2, Y_3, \dots satisfy Markov property!

- Markov Property: Given the present, the future is independent of the past!
 - $\mathbb{P}(Y_5 = 1 | Y_4 = 2, Y_3 = 3) = \frac{1}{2}$ $\mathbb{P}(Y_5 = 1 | Y_4 = 2, Y_3 = 1) = \frac{1}{2}$

Markov Chain Specification (S, P_{SS})

• $S \rightarrow State space \{E, A\}$

• $P_{SS'} \rightarrow Transition\ probabilty$

$$\bullet \ \mathbb{P}(S_{t+1} = s' \mid S_t = s)$$

Markov Decision Process (MDP)

Introduce action to convert Markov Chain into MDP

- Actions: How much money to bet (A_t) in the game when I have Y_t money?
- If $Y_t = 3$, then possible actions are $\{1,2,3\}$.

Episodic and Continuing MDPs

Episodic

- There exists a special state called the terminal state
- The episode ends at the terminal state
- Eg: Board games

Terminal state in Tic-Tac-Toe

Continuous

- No terminal state exists
- The task continues forever
- Eg: Portfolio management
 - Every day, decide which shares to buy/sell

Discount Factor in MDP

- Episodic task:
- Total Reward (Return): $G_t = R_{t+1} + R_{t+2} + ... + R_T$
- Bounded Returns if each $R_i \leq M$
- Continuing task:
- $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots$
- $G_t = \sum_{i=t+1}^{\infty} R_i$ could become unbounded even if each $R_i \leq M$
- Solution: Discount factor $\gamma \in (0,1)$
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$
- $G_t = \sum_{i=0}^{\infty} \gamma^i R_{t+1+i} \le \frac{M}{1-\gamma}$ (Bounded)
- High $\gamma \sim 1 \Rightarrow$ Long-term planning
- Low $\gamma \sim 0 \Rightarrow$ Short-term planning

MDP Specification $(S, A, R_s^a, P_{ss'}^a, \gamma)$

- $S \rightarrow State\ space\ (incl.\ terminal\ states\ if\ any)$
- $A \rightarrow Action space$
- $R_s^a \rightarrow Expected Rewards$
- $\mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

- $\mathbb{P}(S_{t+1} = s' | S_t = s, A_t = a)$
- $\gamma \in (0,1) \rightarrow Discount\ factor$

Optimal Policy

- Policy:
 - Deterministic: $\pi(s)$: $S \to \mathcal{A}$ Which action to take in state s
 - Stochastic: $\pi(a \mid s)$ In state s, with what probability to take action a
- Why stochastic policies?
 - Partially observed states
 - Exploration

- Optimal Policy:
 - π that maximizes the expected return $\mathbb{E}_{\pi}[G_t \mid S_t = s]$ from any state s

How to model your problem as an MDP?

Maze Solving Problem: To reach the goal in the shortest path!

- How to formulate this maze-solving problem as an MDP?
 - States?
 - Actions?
 - Rewards?
 - Transition Probabilities?
 - Discount factor?

How to model your problem as an MDP?

Rewards

 $R_t = -1$ on all transitions

Discount Factor

$$\gamma = 1$$

Deterministic State transitions : $\mathbb{P}(S_{t+1} = 2 \mid S_t = 6, A_t = Up) = 1$

Verify that optimal policy = shortest path

Exercise

- Alternate MDP formulation for the Maze problem
- Instead of giving -1 reward per each step, can we give 0 reward for every action except for the final action that leads us to the Goal State?
- Does the optimal policy of this alternate MDP learn the shortest path?
- Hint: What discount factor will help here?