Using Observations to Constrain the Yield Curve, Flow Rule and Mechanical Strength of Sea Ice

Bruno Tremblay

Damien Ringeisen, Mathieu Plante, Amelie Bouchat, Nils Hutter, Martin Losch

The Future of Earth System Modeling: Polar Climate Nov 28-30, 2018

Caltech, Keck Center, Pasadena

Funded by: ArcTrain - CanSISE

Sea Ice Momentum Equation

- Elastic
- Viscous (8 days)
- Plastic

Plasticity

Yield Curve and Flow Rules

Clay under shear deformation

Intersection of Fracture Lines

Stress State

$$\begin{bmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} \end{bmatrix}$$

Stress State

Stress State

Two Yield Curves

Experimental Set-Up

Prescribe Strain rate

8 km x 25 kmdx = 25 m

Control Run (e=2)

34 degrees

Increased Shear Strength (e=0.7)

61 degrees

Divergence along ice fracture is set by the shear strength of the ice

Shear resistance -- Dilatation

Shear resistance -- Dilatation

In a granular material: high shear resistance leads to divergence and

low shear resistance leads to convergence

Shear resistance -- Dilatation

Angle of Fracture vs Shear Strngth

Shear Strength

Angle of Fracture vs Shear Strngth

Shear Strength

Again contrary to the behavior of a granular material

Confining Pressure

Low confining pressure

High confining pressure

Divergence and angle of fracture depends on the confining pressure

Again contrary to a granular material

Boundary Conditions

This re-opens the question of boundary conditions

- Currently we use no-slip u=v=0
- A more natural boundary condition is set on the stresses:
 - open boundary: stress free
 - Closed boundary: stressfrom yield curve

Mohr-Coulomb

Angle of fracture is 23 deg in line with theory and RGPS observations

Conclusions

- The dependence of the fracture angle on shear strength is contrary to that of a granular material.
- The divergence along ice fracture is set by the shear strength contrary to granular material where shear strength and dilatation (divergence) evolve in time and are a function of the distribution of contact normals.
- The angle of fracture depends on the confining pressure contrary to granular material.
- The angle of fracture depends on the choice of boundary condition.

Way Forward

- Dissipation of energy with a Mohr-Coulomb rheology
- What is the implied flow rule in the when plastic deformation are simulated as elastic deformation with reduced elastic stiffness
- What is the fracture pattern simulated by the plastic constitute relation in the limit where eta and zeta reach their maximum values

Viscous Plastic

- Elastic deformation are simulated as highly viscous (ideal plastic plastic)
- Plastic constitutive relations.
- Macroscopic angle of friction, dilatation and shear strength are related and time evolving.

Elasto Brittle

- Elastic constitutive relations.
- Plastic deformation are simulated as elastic deformation with a small Elastic Modulus (or spring constant)

Viscous Plastic

- Elastic deformation are simulated as highly viscous (ideal plastic plastic)
- Plastic constitutive relations.
- Macroscopic angle of friction, dilatation and shear strength are related to one another time evolving.

Elasto Brittle

- Elastic constitutive relations.
- Plastic deformation are simulated as elastic deformation with a small Elastic Modulus (or spring constant)

Viscous Plastic

- Elastic deformation are simulated as highly viscous (ideal plastic plastic)
- Plastic constitutive relations.
- Macroscopic angle of friction, dilatation and shear strength are related to one another time evolving.

Elasto Brittle

- Elastic constitutive relations.
- Plastic deformation are simulated as elastic deformation with a small Elastic Modulus (or spring constant

Discretization (FEM or FD), advection scheme (Lagrangian or Eulerian), dilatation, variable macroscopic angle of friction are not model specific

Viscous Plastic

Elasto Brittle

characteristic time of ~6 hours (~2 x 10⁵ sec)

VP vs neXtSIM

Shear rate (/day)

VP, 1km, 2 OL, Hutter

neXtSIM (EB), Rampal et al. 2016

LKFs appear to be a fundamental property of plasticity theory

Intersection angle of Fracture Lines

Range of intersection angle in line with a MC yield curve with Dilatation and variable macroscopic angle of friction

Time scale associated with Viscous Deformation

Viscous time scale: 10⁻⁴ day⁻¹ (Hibler, 1979)

 \rightarrow ~30 years

Characteristic time scale for LKFs: hours or day

Outlook

- Important to continue to use multiple approach. We should encourage diversity rather than converging towards a single approach.
- It generates interesting questions and furthers our understanding all approaches used.

Outlook

- Use a sea ice rheology that includes all behavior of sea ice: elastic, viscous and plastic.
- Consider both thermal and mechanical stresses inside ice.
- Develop yield criteria based on the vertically dependent internal stress
- Move to Discrete Element Model and Lagrangian advection scheme