CS720

Logical Foundations of Computer Science

Lecture 4: Polymorphism

Tiago Cogumbreiro

We now have...

- A reasonable understanding of proof techniques (through tactics)
- A reasonable understanding of functional programming (today's class mostly concludes this part)
- A minimal understanding of **logic programming** (next class)

Why are we learning Coq?

Logical Foundations of CS

This course of CS 720 is divided into two parts:

- 1. The first part: Coq as a workbench to express the logical foundation of CS
- 2. **The second part:** use this workbench to formalize a programming language *I will give you other examples of how Coq is being used to formalize CS*

List.v: data structures

A good chapter to exercise what you have learned so far.

Partial functions

How declare a function that is not defined for empty lists?

Optional results

```
Inductive natoption : Type :=
    | Some : nat → natoption
    | None : natoption.
```



```
Fixpoint indexof n (1:natlist) : natoption :=
```


The term "indexof n t" has type "natoption" while it is expected to have type "nat".


```
Fixpoint indexof (n:nat) (1:natlist) : natoption :=
 match 1 with
   h :: t ⇒
   match beq_nat h n with
                            (* element found at the head *)
     true ⇒ Some 0
    false ⇒
     match indexof n t with (* check for error *)
      Some i \Rightarrow Some (S i) (* increment successful result *)
      None \Rightarrow None (* propagate error *)
     end
   end
 end.
```

Poly.v: Polymorphism

Recall natlist from lecture 3

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

Recall natlist from lecture 3

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

```
Inductive boollist : Type :=
   | bool_nil : boollist
   | bool_cons : nat → boollist → boollist.
```

How to migrate the code that targeted natlist to boollist? What is missing?

Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in C++ templates).

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
```

What is the type of list? How do we print list?

Constructors of a polymorphic list

```
Check list.
yields
list
   : Type → Type
```

What does $Type \rightarrow Type$ mean? What about the following?

```
Search list.
Check list.
Check nil nat.
Check nil 1.
```


How do we encode the list [1; 2]?

How do we encode the list [1; 2]?

cons nat 1 (cons nat 2 (nil nat))

Implement concatenation

Recall app:

```
Fixpoint app (11 12 : natlist) : natlist :=

match 11 with

| nil ⇒ 12

| h :: t ⇒ h :: (app t 12)

end.
```

How do we make app polymorphic?

Implement concatenation

Recall app:

How do we make app polymorphic?

```
Fixpoint app (X:Type) (11 12 : list X) : list X :=
match 11 with
    | nil _ ⇒ 12
    | cons _ h    t ⇒ cons X h (app X t 12)
end.
```

What is the type of app?

Implement concatenation

Recall app:

How do we make app polymorphic?

What is the type of app? forall X : Type, list $X \rightarrow list X \rightarrow list X$

Type inference (1/2)

Coq infer type information:

```
Fixpoint app X 11 12 :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h t ⇒ cons X h (app X t 12)
  end.

Check app.

outputs

app
  : forall X : Type, list X → list X → list X
```


Type inference (2/2)

```
Fixpoint app X (11 12:list X) :=
  match 11 with
   nil \implies 12
  | cons _ h t \Rightarrow cons _ h (app _ t 12)
  end.
Check app.
 app
      : forall X : Type, list X \rightarrow list X \rightarrow list X
Let us look at the output of
 Compute cons nat 1 (cons nat 2 (nil nat)).
 Compute cons _ 1 (cons _ 2 (nil _)).
```


Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

```
Fixpoint app {X:Type} (11 12:list X) : list X :=
  match 11 with
  | nil ⇒ 12
  | cons h t ⇒ cons h (app t 12)
  end.
```

Alternatively, use Arguments after a definition:

```
Arguments nil {X}. (* braces should surround argument being inferred *)

Arguments cons {_} _ _ .. (* you may omit the names of the arguments *)

Arguments app {X} 11 12. (* if the argument has a name, you *must* use the *same* name *)
```


Try the following

```
Inductive list (X:Type) : Type :=
   | nil : list X
   | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Prefix a definition with $\hat{\mathbf{0}}$. Example: $\hat{\mathbf{0}}$ nil nat.

Recall natprod and fst (lec 3)

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.
Notation "( x , y )" := (pair x y).
```

How do we make pair polymorphic with implicit type arguments?

Recall natprod and fst (lec 3)

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.
Notation "( x , y )" := (pair x y).
```

How do we make pair polymorphic with implicit type arguments?

```
Inductive prod (X Y : Type) : Type :=
| pair : X \Rightarrow Y \Rightarrow prod X Y.
Arguments pair {_} {__} {__} {__}.
Notation "( x , y )" := (pair x y).

Definition fst {X Y:Type} (p : prod X Y) : X :=
   match p with
   | pair x y \Rightarrow x
   end.
```

UMass Boston

Should we make the arguments of prod implicit? Why?

Recall natprod

```
Theorem surjective_pairing : forall (p : natprod),
  p = (fst p, snd p).
```

How does polymorphism affect our theorems? What about the proof?

Recall natprod

```
Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).
```

How does polymorphism affect our theorems? What about the proof?

```
Theorem surjective_pairing : forall (X Y:Type) (p : prod X Y),
p = (fst p, snd p).
```

Low impact in proofs (usually, intros).

Recall indexof (lecture 3)

How do we make this function polymorphic?

```
Fixpoint indexof (n:nat) (1:natlist) : natoption :=
 match 1 with
   nil \Rightarrow None
   h :: t ⇒
    match beg_nat h n with
     true \Rightarrow Some 0 (* element found at the head *)
     false ⇒
      match indexof n t with (* check for error *)
      Some i \Rightarrow Some (S i) (* increment successful result *)
      None \Rightarrow None (* propagate error *)
      end
    end
 end.
```

Higher-order functions

```
Require Import Coq.Lists.List. Import ListNotations.
  Fixpoint index of \{X: Type\} (beq: X \to X \to bool) (v:X) (1:list X) : option nat :=
   match 1 with
    nil \Rightarrow None
    cons h t \Rightarrow
    match beg h v with
     true ⇒ Some 0
                             (* element found at the head *)
      false ⇒
       match indexof beq v t with (* check for error *)
       Some i \Rightarrow Some (S i) (* increment successful result *)
       None \Rightarrow None (* propagate error *)
       end
     end
   end.
(* A couple of unit tests to ensure indexof is behaving as expected. *)
                                                                                      UMass
Goal indexof beq_nat 20 [10; 20; 30] = Some 1. Proof. reflexivity. Qed.
                                                                                      Boston
Goal indexof beq_nat 100 [10; 20; 30] = None. Proof. reflexivity. Qed.
```

Filter

What is the type of this function?

Filter

What is the type of this function?

```
forall X: Type \rightarrow (X \rightarrow bool) \rightarrow list X \rightarrow list \rightarrow X
```

What does this function do?

Filter

What is the type of this function?

```
forall X: Type \rightarrow (X \rightarrow bool) \rightarrow list X \rightarrow list \rightarrow X
```

What does this function do?

Retains all elements that succeed test.

How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```
filter ??? [10; 1; 3; 4]
```


How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```
filter ??? [10; 1; 3; 4]
Answer 1:
 Definition keep_1_3 (n:nat) : bool :=
 match n with
   1 \Rightarrow \text{true}
   3 \Rightarrow \text{true}
  _ ⇒ false
 end.
 (* Assert that the output makes sense: *)
 Goal filter keep_1_3 [10; 1; 3; 4] = [1; 3].
 Proof.
   reflexivity.
 Qed.
```


Revisit keep_1_3

Can we rewrite keep_1_3 by only using beq_nat and orb?

Revisit keep_1_3

```
Definition keep_1_3 (n:nat) : bool :=
  match n with
  | 1 ⇒ true
  | 3 ⇒ true
  | _ ⇒ false
  end.
```

Can we rewrite keep_1_3 by only using beq_nat and orb?

```
Open Scope bool. (* ensure the || operator is loaded *)
Definition keep_1_3_v2 (n:nat) : bool :=
   beq_nat 1 n || beq_nat 3 n.
```


Anonymous functions

Are we ever going to use keep_1_3 again?

```
Definition keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n | | beq_nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
```


Anonymous functions

Are we ever going to use keep_1_3 again?

```
Definition keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n || beq_nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
```

If you are not, consider using anonymous functions:

```
Goal filter (fun (n:nat) : nat ⇒ beq_nat 1 n || beq_nat 3 n) [10; 1; 3; 4] = [1; 3].
Proof.
   reflexivity.
Qed.
```

Anonymous functions are helpful as one-shoot usages (like anonymous classes in Java and C#).

Boston

Currying

Let us retain only 3's

With an anonymous function:

```
Goal filter (fun n ⇒ match n with | 3 ⇒ true | _ ⇒ false) [10; 1; 3; 4] = [3].
Proof.
reflexivity.
Qed.
```

What about Check (beq_nat 3)? Coq is an expression-based language, so beq_nat 3 is an expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

Currying

Let us retain only 3's

With an anonymous function:

```
Goal filter (fun n ⇒ match n with | 3 ⇒ true | _ ⇒ false) [10; 1; 3; 4] = [3].
Proof.
  reflexivity.
Qed.
```

What about Check (beq_nat 3)? Coq is an expression-based language, so beq_nat 3 is an expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

```
Goal filter (beq_nat 3) [10; 1; 3; 4] = [1; 3]. (* filter all elements that are equal to 3
Proof.
    reflexivity.
Qed.
```