What is claimed is:

4

5

1

3

5

6

1	1. A method for identifying a defocus wafer, comprising the steps of:		
2	collecting data by mapping a topography of each wafer in a first wafer batch;		
3	calculating a focus spot deviation from the data, the focus spot deviation corresponding to		
4	a height by which a focus spot of a photo exposure module would be defocused by the		
5	topography;		
6	updating a process control chart with the focus spot deviation;		
7	converting the focus spot deviation to a corresponding wafer stage set point to which the		
8	photo exposure module is set, to focus the focus spot on each wafer in a present or current wa		
9	batch; and		
10	identifying a defocus wafer in the present or current wafer batch, as a wafer having a		
11	topography that would defocus the focus spot, even when the photo exposure module is set to th		
12	wafer stage set point that corresponds with the focus spot deviation.		
1	2. The method of claim 1, further comprising the step of:		
2	resetting the photo exposure module to a corrected wafer stage set point to focus the		
3	focus spot on the defocus wafer.		
1	3. The method of claim 1, further comprising the steps of:		
2	resetting the photo exposure module to a corrected wafer stage set point to focus the		
3	focus spot on the defocus wafer; and		

4. The method of claim 1, further comprising the steps of:

reset to the corrected wafer stage set point.

2 resetting the photo exposure module to a corrected wafer stage set point to focus the

focus spot on the defocus wafer, during a process of photo exposing the topography of the wafers

photo exposing the topography of the defocus wafer by the photo exposure module that is

4 in the next succeeding batch by the photo exposure module; and

photo exposing the topography of the defocus wafer by the photo exposure module that is reset to a corrected wafer stage set point.

PH1\1125028.5

1	5.	The method of claim 4, further comprising the step of:
2		calculating an updated focus spot deviation that corresponds to a height by which a focus

spot of a photo exposure module would be defocused by the topography of the wafers in the next

4 succeeding batch; and

3

- 5 updating the process control chart with the updated focus spot deviation.
- 1 6. The method of claim 1, further comprising the step of:
- 2 supplying the focus spot deviation as a wafer gating signal identifying the defocus wafer
- 3 to a gating mechanism of the photo exposure module.
- 1 7. The method of claim 1, further comprising the steps of:
- 2 scanning the topography of each wafer in the first wafer batch to obtain scan data in the
- 3 form of height measurements per unit area of each wafer in the first wafer batch; and
- 4 calculating the focus spot deviation from the scan data.
- 1 8. The method of claim 1, further comprising the steps of:
- 2 scanning the topography of each wafer in the first wafer batch with a level sensor
- 3 apparatus to obtain scan data in the form of height measurements per unit area of each wafer in
- 4 the first wafer batch:
- 5 assembling the scan data in a database; and
- 6 calculating the focus spot deviation from the scan data.
- 1 9. The method of claim 1, further comprising the steps of:
- 2 scanning the topography of each wafer in the present or current wafer batch to obtain
- 3 scan data in the form of height measurements per unit area;
- 4 identifying the defocus wafer by its scan data; and
- 5 resetting the photo exposure module to a corrected wafer stage set point to focus the
- 6 focus spot on the defocus wafer.

1

10. The method of claim 1, further comprising the steps of:

PH1\1125028.5

2	scanning the topography of each wafer in the present or current wafer batch with a level		
3	sensor apparatus to obtain scan data in the form of height measurements per unit area;		
4	identifying the defocus wafer by its scan data; and		
5	resetting the photo exposure module to a corrected wafer stage set point to focus the		
6	focus spot on the defocus wafer.		
1	11. The method of claim 1, further comprising the steps of:		
2	scanning the topography of each wafer in the next succeeding wafer batch to obtain scan		
3	data in the form of height measurements per unit area of each wafer in the next succeeding wafe		
4	batch;		
5	identifying the defocus wafer by its scan data;		
6	resetting the photo exposure module to a corrected wafer stage set point to focus the		
7	focus spot on the defocus wafer, during a process of photo exposing the topography of the wafers		
8	in the next succeeding batch; and		
9	photo exposing the topography of the defocus wafer by the photo exposure module that is		
10	reset to a corrected wafer stage set point.		
1	12. The method of claim 11, further comprising the step of:		
2	calculating an updated focus spot deviation that corresponds to a height by which a focus		
3	spot of a photo exposure module would be defocused by the topography of the wafers in the next		
4	succeeding batch; and		
5	updating the process control chart with the updated focus spot deviation.		
1	13. The method of claim 1, further comprising the steps of:		
2	scanning the topography of a photo resist material covering patterned dies on the wafers		
3	in the present or current wafer batch to obtain scan data in the form of height measurements per		
4	unit area;		
5	identifying the defocus wafer by its scan data; and		
6	resetting the photo exposure module to a corrected wafer stage set point to focus the		
7	focus spot on the defocus wafer.		

PHIM125028.5 12

1	14.	The method of claim 13, further comprising the steps of:		
2		scanning the topography of the photo resist material covering the patterned dies with a		
3	scanner having multiple sensors; and			
4		obtaining valid scan data only when all of the multiple scanning sensors simultaneously		
5	cover the patterned dies.			
1	15.	The method of claim 14, further comprising the steps of:		
2		calculating an updated focus spot deviation corresponding to a height amount by which a		
3	further wafer batch would defocus the focus spot;			
4		updating the process control chart with the updated focus spot deviation.		
1	16.	A method of using a level sensor apparatus to identify a defocus wafer, comprising the		
2	steps of:			
3		scanning a topography of each wafer in the first wafer batch with a level sensor apparatus		
4	to obtain scan data in the form of height measurements per unit area of each wafer in the first			
5	wafer batch;			
6		calculating a focus spot deviation from the scan data;		
7		updating a process control chart with the focus spot deviation;		
8		converting the focus spot deviation to a corresponding wafer stage set point to which the		
9	photo exposure module is set, to focus the focus spot on each wafer in a present or current wafer			
10	batch;			
11		scanning the topography of each wafer in a next succeeding wafer batch with the level		
12	sensor	apparatus to obtain scan data in the form of height measurements per unit area of each		
13	wafer i	n the next succeeding wafer batch;		
14		identifying a defocus wafer by its scan data;		
15		resetting the photo exposure module to a corrected wafer stage set point to focus the		
16	focus s	pot on the defocus wafer, during a process of photo exposing the topography of the wafers		
17	in the n	ext succeeding batch; and		
18	photo exposing the topography of the defocus wafer by the photo exposure module that is			
19	reset to a corrected wafer stage set point.			

13

PH1\1125028.5

- 1 17. The method of claim 16, further comprising the steps of:
- 2 assembling the scan data in a database that calculates the focus spot deviation as a
- 3 statistical deviation from a high frequency occurrence of the height measurements per unit area.
- 1 18. The method of claim 16, further comprising the steps of:
- 2 scanning the topography of a photo resist material covering patterned dies on the wafers
- 3 in a present or current wafer batch with the level sensor apparatus to obtain scan data in the form
- 4 of height measurements per unit area;
- 5 identifying the defocus wafer by its scan data; and
- 6 resetting the photo exposure module to a corrected wafer stage set point to focus the
- 7 focus spot on the defocus wafer.
- 1 19. The method of claim 18, further comprising the steps of:
- 2 scanning the topography of the photo resist material covering the patterned dies with the
- 3 level sensor apparatus having multiple sensors; and
- 4 obtaining valid scan data only when all of the multiple scanning sensors simultaneously
- 5 cover the patterned dies under the photo resist material.
- 1 20. The method of claim 19, further comprising the steps of:
- 2 resetting the photo exposure module to a corrected wafer stage set point to focus the
- 3 focus spot on the defocus wafer, during a process of photo exposing the topography of the wafers
- 4 in the next succeeding batch; and
- 5 photo exposing the topography of the defocus wafer by the photo exposure module that is
- 6 reset to a corrected wafer stage set point.
- 1 21. A system for identifying a defocus wafer, comprising:
- a level sensor creating mapping data of a topography of each wafer in a first wafer batch;
- a process control chart updated with a focus spot deviation calculated from the mapping
- 4 data, the focus spot deviation corresponding to a height by which a focus spot of a photo
- 5 exposure module would be defocused by the topography;

PHI\1125028.5 14

- a photo exposure module set to a corresponding wafer stage set point corresponding to
 the focus spot deviation, to focus the focus spot on each wafer in a present or current wafer
 batch; and
- means for identifying a defocus wafer in the present or current wafer batch, as a wafer
 having a topography that would defocus the focus spot, even when the photo exposure module is
 set to the wafer stage set point that corresponds with the focus spot deviation.
- 1 22. The system of claim 21, wherein, the photo exposure module is resettable to a corrected 2 wafer stage set point to focus the focus spot on the defocus wafer.
- 1 23. The system of claim 21, wherein, the level sensor has multiple topography scanners.
- 1 24. The system of claim 21, wherein, the topography each wafer corresponds to the
- 2 topography of patterned dies on each wafer.

PH1\1125028.5 15