

Agenda

- What is Persistent Memory
- Hardware Configuration Options
- Persistent Memory Operating Modes
- Linux Utilities
- Demos

Re-architecting the Memory /

HARDWARE

CPU, DRAM, and Intel® Optane™ DC Persistent Memory

NEXT GEN INTEL® XEON® SCALABLE PROCESSOR

Cascade Lake With Intel® OPTANE™ DC PERSISTENT MEMORY

Leadership Performance

Optimized Cache Hierarchy

Higher Frequencies

Security Mitigations

Intel Deep Learning Boost (VNNI)

Optimized Frameworks & Libraries

BUILDING ON 20 YEARS OF XEON INNOVATION

INTEL® OPTANE™ DC PERSISTENT MEMORY - PRODUCT OVERVIEW

MEMORY SLOT POPULATION EXAMPLES[†]

Refer to the Intel Optane DC Persistent Memory Population Matrix for full list of supported configuration options

^{*} No difference on functionality or performance when 2nd DIMM slot is in channel 0, 1 or 2 for that integrated memory controller (IMC)

[†] DIMM slots shown. While DRAM DIMMs can populate all slots shown, DCPMM is only populated in slot closest to CPU in each channel.

CHANNEL SHARING: MORE DIMMS IS A GOOD IDEA

Distributed DCPMM BW over more DIMMs help:

- Reduce the pressure on DRAM
- Provide more headroom for DCPMM BW

INTEL® OPTANE™ DC PERSISTENT MEMORY

DRAM Solution

3,072 GB 1,536 GB 128 DRAM 128 6,144 GB 3,072 GB 7,680 GB Storage

DRAM & PMEM Solution

PERSISTENT MEMORY OPERATING MODES

Memory Mode & AppDirect

INTEL® OPTANE™ DC PERSISTENT MEMORY - OPERATIONAL MODES

APP DIRECT MODE

MEMORY MODE

High capacity

Affordable

Ease of adoption[†]

Note that a BIOS update will be required before using Intel persistent memory

INTEL® OPTANE™ DC PERSISTENT MEMORY SUPPORT FOR BREADTH OF APPLICATIONS

APP DIRECT MODE PERSISTENT PERFORMANCE & MAXIMUM CAPACITY **APPLICATION** OPTANÉ PERSISTENT DRAM **MEMORY**

APP DIRECT MODE OPTIONS

- No Code Changes Required
- Operates in Blocks like SSD/HDD
 - Traditional read/write
 - Works with Existing File Systems
 - Atomicity at block level
 - Block size configurable
 - 4K, 512B*
- NVDIMM Driver required
 - Support starting Kernel 4.2
- Configured as Boot Device
- Higher Endurance than Enterprise SSDs
- High Performance Block Storage
 - Low Latency, higher BW, High IOPs

- Code changes may be required*
- Bypasses file system page cache
- Requires DAX enabled file system
 - XFS, EXT4, NTFS
- No Kernel Code or interrupts
- No interrupts
- Fastest IO path possible

^{*} Code changes required for load/store direct access if the application does not already support this.

^{*}Requires Linux

PROVISIONING PERSISTENT MEMORY

Memory Mode & AppDirect

PROVISIONING PERSISTENT MEMORY

I NOTICIONNO I ENGICIENTI I LELIGINI						
	PMEM (S	Socket0)	PMEM (S	Socket1)	DAX Filesystems:	Mount DAX-enabled file
	Filesystem		Filesystem		EXT4, XFS, NTFS	system onto DCPMMs
NVDIMM Driver (Kernel)	/dev/pmem0	/dev/dax0.1	/dev/pmem1	/dev/dax1.1	Persistent Memory Devices	Operating System defined software device representing the namespace
Hardware	Namespace0.0	Namespace0.1	Namespace1.0	Namespace1.1	Namespaces	ndctl (Linux): configures & manages namespaces
Volatile DRAM	Region 0		Region 1		Regions (Interleave Sets)	ipmctl (Linux or UEFI): configures & manages the regions on the DIMMs

DEMO'S

Memory Mode & AppDirect

Demo List

- Introduce ipmctl
- Configure Memory Mode
- Configure App Direct
- Introduce ndctl
- Create an FSDAX namespace
- Create a DEVDAX namespace
- Create a SECTOR namespace

Resources

- ipmctl: https://github.com/intel/ipmctl
- ndctl: https://github.com/pmem/ndctl
- https://docs.pmem.io
 - Quick Start Guides (Persistent Memory)
 - Getting Started Guides (Persistent Memory)
 - NDCTL User Guide
- Intel PMEM Developer Zone https://software.intel.com/pmem
 - Videos
 - Knowledge Articles
 - PMDK Code Examples

BACKUP

OUT-OF-BAND & IN-BAND PROVISIONING

- DCPMM can simultaneously support Memory and App Direct partitions, partitioning done at boot time
- Datacenter manager can communicate partitioning policy (in response to workload needs) to the platform agent
- Allocation within a partition under VMM/OS/CRNL controls
- BIOS to initializes DCPMM and sets up partitioning based on policy

MONITORING

DRAM as direct mapped cache

BYTE ADDRESSABLE STORAGE WITH MEMORY MAPPED FILES

Avoid Overhead of Paging/Context Switching into Kernel Leverage clflush for Cached Sequential Writes*

• LLC WB evictions lead to near random behavior (lower BW). SW recommendation: Do CLFLUSH often enough to avoid LLC evictions.

Application Responsibilities: Flushing

Application Responsibilities: Consistency

```
open(...);
mmap(...);
strcpy(pmem, "Hello, World!");
pmem_persist(pmem, 14);
Crash
```

```
pmem_persist() may be faster,
but is still not transactional
```

Result

```
    "\0\0\0\0\0\0\0\0\0\0\0..."
    "Hello, W\0\0\0\0\0\0..."
    "\0\0\0\0\0\0\0\0\0\0\0"
    "Hello, \0\0\0\0\0\0\0\0\0"
    "Hello, World!\0"
```


