

Apr 30, 2024

O Differentiation of hPSCs into Dopamine neurons

DOI

dx.doi.org/10.17504/protocols.io.q26g71849gwz/v1

Beatrice Weykopf^{1,2}

¹1Stephen and Denise Adams Center for Parkinson's Disease Research of Yale School of Medicine, New Haven, CT 06511, USA;

²Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, USA

ASAP Collaborative Rese...

Beatrice Weykopf

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.q26g71849gwz/v1

Protocol Citation: Beatrice Weykopf 2024. Differentiation of hPSCs into Dopamine neurons. protocols.io

https://dx.doi.org/10.17504/protocols.io.q26g71849gwz/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: April 22, 2024

Last Modified: April 30, 2024

Protocol Integer ID: 98607

Keywords: ASAPCRN

Abstract

This protocol describes the differentiation of hPSCs into dopaminergic neurons modified from Kriks et al., 2011 and Ryan et al., 2013

Materials

SRM Medium

Dopa Mat Basal medium

79%	Knockout DMEM	100%	Neurobasal
20%	KOSR	1x	B27 w/o vitamin A
1%	L-GlutaMAX	1%	L-GlutaMAX
1%	Pen/Strep	1%	Pen/Strep

Dopa Mat Medium

Dopa mat basal medium 100%

BDNF 20 ng/ml 20 ng/ml **GDNF** 10 µM DAPT 221 µM LAAP 0.5 mM dbcAMP 1 ng/ml TGF-ß-III

Reagent	Concentration	Vendor
Y-27632	10μΜ	Stem cell Technologies #72304
TGFß-III	2 μg/ml	Peprotech #100-36E
Shh (C25II)	100 ng/ml	R&D Systems #464-SH-200
SB431542	10 μΜ	Stemcell Technologies #72232
Purmorphamine	2 μΜ	Emdmillipore #540220-5MG
Poly-D-Lysine hydrobromide	100 μg/ml	Sigma-Aldrich #P1024- 50MG
Matrigel	1:20 - 1:30	Corning #354234
LDN-1931189	200 nM	Stemgent #04-0046
Laminin	10μg/ml	R&D Systems #3400-010-02
LAAP	221 µM	Sigma-Aldrich #A8960-5G
GDNF	10 μg/ml	Peprotech #450-10
FGF-8b	100 μg/ml	Peprotech #100-18B-50UG
dbcAMP	0.5 mM	Enzo BML-CN125-0100
DAPT	10 μΜ	Tocris #2634
CHIR99021	3 μΜ	Milteniy Biotec #130-103- 926

Reagent	Concentration	Vendor
AraC Cytosine ß-D- arabinofuranoside	ЗμМ	Sigma-Aldrich #C1768
Accutase	1x	Gibco #A1110501
mTeSR plus	1x	Stemcell Technologies #100-027
Knockout Serum Replacement	n/a	Gibco #10828028
KnockOut DMEM	n/a	Gibco #10829018
Neurobasal	n/a	Gibco #21103049
B27 w/o vitamin A	n/a	Gibco #12587010
L-GlutaMAX	n/a	Gibco #35050
Penicillin-Streptomycin	n/a	Gibco #15140122

- 1 Day -1: seed 200K cell/cm² in mTeSR⁺ medium supplemented with 10µM Rock inhibitor (RI) onto Martigel coated TC plates
- 2 Day 0: Differentiation initiation. Aspirate mTeSR⁺ medium and add SRM media supplemented with 200nM LDN193189 + 10µM SB431542
- 3 Day 1: SRM + LDN + SB supplemented with 100 ng/ml FGF8b, 100 ng/ml ShhC25II and 2µM Purmorphamine
- 4 Day 2: SRM + LDN + SB+ FGF8b + ShhC25II + Pur
- 5 Day 3: SRM + LDN + SB+ FGF8b + ShhC25II + Pur +3 μM CHIR99021
- 6 Day 4: no feed if medium is not consumed
- 7 Day 5: 75% SRM + 25% Neurobasal + LDN + SB+ FGF8b + ShhC25II + Pur +CHIR
- 8 Day 6: no feed if medium is not consumed
- 9 Day 7: 50% SRM + 50% Neurobasal + LDN + CHIR
- 10 Day 8: no feed if medium is not consumed
- 11 Day 9: 25% SRM + 75% Neurobasal + LDN + CHIR
- 12 Day 10: no feed if medium is not consumed
- 13 Day 11: 100% Dopa mat basal medium + CHIR

- 14 Day 12: no feed
- Day 13: Passage cells in a ratio of 1:1 onto matrigel-coated dishes with 30-60min Accutase treatment. Spin down the cells in Dopa mat basal and resuspend in Dopa mat medium supplemented with 10µM Y27632 and CHIR.
- Day 20-24: Cells are plated on Poly-D-lysine and laminin coated plates in a density of 2-2.5M cells / 6 well. Cells are dissociated using 60-90min Accutase supplemented with 10μM Y27632.
- 17 Day 25-27: 3µM cytosine arabinoside is added to Dopa mat media. Day 27 cells are washed twice with Dopa mat basal medium to remove any cytosine arabinoside residues.
- Around Day 30: Cells are dissociated using Accutase supplemented with 10µM Y27632 and plated in onto Poly-D-lysine and laminin coated dishes. The final density depends on the assay.

Protocol references

Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011 Nov 6;480(7378):547-51. doi: 10.1038/nature10648. PMID: 22056989; PMCID: PMC3245796.

Ryan, S. D., Dolatabadi, N., Chan, S. F., Zhang, X., Akhtar, M. W., Parker, J., ... Lipton, S. A. (2013). Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. *Cell*, 155, 1351–1364.

Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu GH, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci. 2019 Feb;49(4):561-589. doi: 10.1111/ejn.14345. PMID: 30656775; PMCID: PMC7114274.

Fonseca-Ornelas L, Stricker JMS, Soriano-Cruz S, Weykopf B, Dettmer U, Muratore CR, Scherzer CR, Selkoe DJ. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α -synuclein in human neurons. NPJ Parkinsons Dis. 2022 Sep 16;8(1):118. doi: 10.1038/s41531-022-00380-1. PMID: 36114228; PMCID: PMC9481630.