

Análisis de Algoritmos Prof.Jorge Ernesto Lopez Arce Delgado Arroyo Moreno Elizabeth 221453749 Hernández Elizarrarás Karla Rebeca 223991977 Valencia Ignacio Jennifer Patricia 223991721

Algoritmo

Este algoritmo mete información en los bits menos importantes de las pixeles de una imagen y luego revisa si hay mensajes escondidos usando pruebas estadísticas en el canal rojo

Permite esconder mensajes en imagenes sin que se note y también detectar cambios o datos ocultos de manera rápida. Se puede usar en seguridad digital y en análisis forense de imágenes.

Explicación del código

{

El código tiene dos clases principales: EstreganografiaLSB y LSBDetectos. Ademas, incluye un menú interactivo que permite crear imágenes nuevas, esconder mensajes en imagenes existentes y analizarlos fácilmente

Bit menos significativo (LSB)

Es una técnica que agarra el último bit de cada pixel y lo cambia para esconder información. Funciona en imágenes con compresión sin pérdida, como PNG, JPG, TIFF, BMP.

Ocultando la información en los bits menos significativos.

Esteganografia

< Es una técnica que consiste en
ocultar información dentro de
otro archivo digital imagen,
audio, video, texto, de forma que
el mensaje secreto pase
desapercibido. >

\equiv

01 { ...

Clase LSBDetector

Clase LSBDetector

- load_image(): carga la imagen y la convierte a RGB.
- extraer_mensaje_lsb(): extrae un mensaje oculto en el canal rojo usando los bits menos significativos.
- chi_square_test(): prueba estadística para detectar anomalías en los valores de píxel.
- lsb_analysis(): calcula media, varianza, entropía y rachas de los bits LSB.
- spatial_correlation_analysis(): correlación horizontal y vertical entre píxeles vecinos.
- calculate_suspicion_score(): combina pruebas estadísticas para generar una puntuación de sospecha (0-1).
- analizar_imagen_completo(): ejecuta todos los análisis y muestra resultados.

```
02 { ...
 Clase
 EsteganografiaLSB
```


Clase EsteganografiaLSB

- crear_imagen_con_mensaje(): genera una imagen nueva y oculta un mensaje en LSB del canal rojo.
- ocultar_mensaje_en_imagen_existente(): oculta un mensaje en una imagen existente.

Menú interactivo

Permite al usuario elegir entre analizar, crear o modificar imágenes con mensajes ocultos.

- DETECTOR DE MSJS OCULTOS (LSB)
- 1. Analizar imagen
- Crear imagen con esteganografía (nueva)
- 3. Ocultar mensaje en imagen existente
- 4. Salir

Selecciona una opción:

Creación de imagen con esteganografía

Ocultar mensaje en imagen

```
DETECTOR DE MSJS OCULTOS (LSB)
1. Analizar imagen
2. Crear imagen con esteganografía (nueva)
3. Ocultar mensaje en imagen existente
4. Salir
Selecciona una opción: 3
Imágenes encontradas:
  1. perrito.jpg
  2. prueba2.png
  hola.png
  4. nise.png
Selecciona una imagen (1-4): 3
Ingresa el mensaje que desea ocultar: mensaje secreto
Nombre del archivo de salida (default: imagen_estego.png): alo
Mensaje oculto en: alo.png
Presiona Enter para continuar...
```

```
detector_lsb.py X shh.png

    detector_lsb.py > 
    LSBDetector > 
    analizar_imagen_completo

      def seleccionar imagen():
          for i, img in enumerate(imagenes, 1):
              print(f" {i}. {img}")
              opcion = int(input(f"\nSelecciona una imagen (1-{len(imagenes)}): "))
              if 1 <= opcion <= len(imagenes):
                  return imagenes[opcion - 1]
                  print("Opción no válida")
                  return None
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
Imágenes encontradas:

    perrito.jpg

  perrito impostor.png
  pruebal.png
  4. prueba2.png
  5. shh.png
Selecciona una imagen (1-5): 3
 ANÁLISIS COMPLETO DE: prueba1.png
 Imagen cargada: (200, 200, 3)
EXTRACCIÓN DE MENSAJE:
MENSAJE ENCONTRADO: 'HOLI'
ANÁLISIS (Canal Rojo):
RESULTADO DEL ANÁLISIS:
  Puntuación de sospecha: 0.40/1.0
  Estado: ESTEGANOGRAFÍA DETECTADA
  Mensaje oculto: 'HOLI'
Presiona Enter para continuar...
```


*Resultados de Análisis

Aplicación en la vida real

En el área de ciberseguridad, comunicaciones puede descifrar mensajes confidenciales ocultos en las imágenes como periodistas o activistas enviando información de manera segura.

En el área forense puede detectar la manipulación de imágenes digitales como encontrar si hay información alterada.

Complejidad computacional

O(n·m) en tiempo y espacio, ya que analiza cada píxel de la imagen. Es rápido y simple, pero menos seguro que métodos en dominios de frecuencia o con enmascaramiento aleatorio, que son más resistentes pero más lentos.

Conclusión

El algoritmo LSB es útil para detectar mensajes ocultos en imágenes pequeñas o medianas y en formatos sin compresión, siendo eficiente para mensajes cortos en el canal rojo. No es recomendable para imágenes muy grandes, mensajes extensos o formatos comprimidos, ya que puede generar errores o pérdida de información. Se podría mejorar analizando los tres canales, manejando mejor tipos de datos grandes y soportando mensajes más largos o imágenes comprimidas.

Gracias por su atención!

< Esperamos que les haya gustado >