ER-Relational Mapping

政治大學 資訊科學系 沈錳坤

Data Models

Entity-Relationship Model

ER to Relational Mapping

Relational Data Model SQL, Relational Algebra Normalization

EMPLOYEE

THE MILE SOIL DEVILE PROPERTY OF ENGLISHING		FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
---	--	-------	-------	-------	-----	-------	---------	-----	--------	----------	-----

DEPARTMENT

DNAME <u>DNUMBER</u> MGRSSN MGRSTARTDATE
--

DEPT_LOCATIONS

DNUMBER DL	OCATION
------------	---------

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM
2012/2004/2012/2013		to the transfer to the transfe	A311000000000

WORKS_ON

ESSN	PNO	HOURS
------	-----	-------

DEPENDENT

ESSN DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
---------------------	-----	-------	--------------

ER-to-Relational Mapping Algorithm

- Step 1: for each regular entity type E
- ♦ Step 2: for each weak entity type W
- ♦ Step 3: for each binary 1:1 relationship type R
- ♦ Step 4: for each binary 1:N relationship type R
- ♦ Step 5: for each binary M:N relationship type R
- ◆ Step 6: for each multivalued attribute A
- ♦ Step 7: for each n-ary relationship type, n>2

- ◆ Step 1: for each regular entity type E
 - Create a relation R
 - Include all simple attributes of E: break composite into simple
 - Include only the simple component attributes of a composite attribute
 - Choose one of key attributes of E as primary key for R
- ◆ Ex.
 - Create relation employee, primary key SSN
 - Create relation department, primary key Dnumber
 - Create relation project, primary key Pnumber

EMPLOYEE

FNAME MINIT LNAME <u>SSN</u> BDATE ADDRESS SEX SALARY SUPERSSN DNO
--

DEPARTMENT

DNAME <u>DNUMBER</u>	MGRSSN	MGRSTARTDATE	
----------------------	--------	--------------	--

DEPT_LOCATIONS

DNUMBER DLO	OCATION
-------------	---------

PROJECT

WORKS_ON

ESSN	PNO	HOURS
187	78.	

DEPENDENT

ESSN DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
---------------------	-----	-------	--------------

- Step 2: for each weak entity type W with owner E
 - Create relation R
 - Include all simple attributes of W as attributes of R
 - Include primary key of relations that correspond to owner entity type as foreign key of R
 - Primary key of R = (primary key of owner, partial key of W)
- ♦ Ex.
 - Create relation Dependent
 - Include SSN as foreign key of Dependent
 - Primary key of Dependent (ESSN, Dependent_Name)
 - Choose Cascade option for the referential constraint on this foreign key

EMPLOYEE

FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	1700120011000000		The state of the state of the	C.340C.413C.613.110.110.	7.11.74 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	and the second of	6.000.000.000.000.000		

DEPARTMENT

DEPT_LOCATIONS

DNUMBER	DLOCATION

PROJECT

WORKS_ON

ESSN	PNO	HOURS
187	78.	

DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
------	----------------	-----	-------	--------------

ER-to-Relational Mapping Algorithm

- Step 1: for each regular entity type E
- Step 2: for each weak entity type W
- Step 3: for each binary 1:1 relationship type R
- Step 4: for each binary 1:N relationship type R
- Step 5: for each binary M:N relationship type R
- Step 6: for each multivalued attribute A
- Step 7: for each n-ary relationship type, n>2

EMPLOYEE

SSN	•••	ENo	DNo
123456789		e ₁	
999887777		e ₂	
333445555		e ₃	d ₁
666884444		e ₄	
888665555		e ₅	d_3
987654321		e ₆	d_2
453453453		e ₇	

 $r_1 - (e_3, d_1)$ $r_2 = (e_6, d_2)$

$$r_3 = (e_5, d_3)$$

DEPARTMENT

ENo	DNo	•••	Dname
e ₃	d_1		Research
e ₅	d_3		Administration
e ₆	d_2		Headquarters

- ♦ Step 3: for each binary 1:1 relationship type R
 - Identify relation S with total participation
 - Include the primary key of T as foreign key in S
 - Include all simple attributes of R as attributes of S

DEPARTMENT

Dname <u>Dnumber</u>	Mgr_ssn	Mgr_start_date
----------------------	---------	----------------

EMPLOYEE

name Minit Lname S	n Bdate Address	Sex Salary	Super_ssn Dnc	0
--------------------	-----------------	------------	---------------	---

SSN	• • •	ENo	DNo
123456789		e ₁	d_1
999887777		e ₂	d_2
333445555		e ₃	d ₁
666884444		e ₄	d_2
888665555		e ₅	d_3
987654321		e ₆	d_1
453453453		e ₇	d_3

r1 = (e1, d1)
r2 = (e2, d2)
r3 = (e3, d1)
r4 = (e4, d2)
r5 = (e5, d3)
r6 = (e6, d1)
r7 = (e7, d3)

DEPARTMENT

DNo	ENo	•••	Dname
d_1	$e_{1,}e_{3,}e_{6}$		Research
d_3	e _{5,} e ₇		Administration
d_2	e _{2,} e ₄		Headquarters

18

- ◆ Step 4: for each binary 1:N relationship type R
 - Identify relation S at the N-side of relationship
 - Include primary key of relation T (the other side) as foreign key in S
 - Include any simple attributes of R as attributes of S

EMPLOYEE

				_				- 1	_	_
Fr	name	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
-------	---------	---------	----------------

- ◆ Step 5: for each binary M:N relationship type R
 - Create a new relation S to represent R
 - Include primary keys of participating relations as foreign key of S
 - Their combination form primary key of S
 - Include any simple attributes of R as attributes of S

PROJECT

Pname Pnumber	Plocation	Dnum
---------------	-----------	------

ER-to-Relational Mapping Algorithm

- Step 1: for each regular entity type E
- Step 2: for each weak entity type W
- Step 3: for each binary 1:1 relationship type R
- Step 4: for each binary 1:N relationship type R
- Step 5: for each binary M:N relationship type R
- Step 6: for each multivalued attribute A
- Step 7: for each n-ary relationship type, n>2

- ◆ Step 6: for each multivalued attribute A of relation S
 - Create a new relation R
 - Include an attribute corresponding to A
 - Include primary key K (as a foreign key of R) of relation S as an attribute
 - Primary key of R = (A, K)
 - If A is composite, include its simple components

- ◆ Step 7: for each *n*-ary relationship type *R*, where *n*>2
 - Create a new relation S to represent R
 - Include primary key of participating relations as foreign key
 - Include any simple attributes of R as attributes of S
 - Primary key of S = all foreign keys that references participating R

Conclusions

ER Model	Relational Model	
Entity type	Entity relation	
1:1 or 1:N relationship type	Foreign key (or relationship relation)	
M:N relationship type	Relationship relation & 2 foreign keys	
N-ary relationship type	Relationship relation & n foreign keys	
Simple attribute	Attribute	
Composite attribute	Set of simple component attributes	
Multivalued attribute	Relation & foreign key	
Value set	Domain	
Key attribute	Primary (or secondary) key	

Summary ER-to-Relational Mapping Algorithm

Step 1: for each regular entity type E

Step 2: for each weak entity type W

Step 3: for each binary 1:1 relationship type R

Step 4: for each binary 1:N relationship type R

Step 5: for each binary M:N relationship type R

Step 6: for each multivalued attribute A

Step 7: for each n-ary relationship type, n>2