Examples III for Time Series

"Stationary" is meant to mean second order stationary unless explicitly stated otherwise.

1. Determine whether the following process is stationary, giving your reasons.

$$X_t + \frac{1}{12}X_{t-1} = \frac{1}{24}X_{t-2} + \epsilon_t.$$

2. Define a real-valued deterministic sequence $\{y_t\}$ by

$$y_t = \begin{cases} +1, & \text{if } t = 0, -1, -2, \dots, \\ -1, & \text{if } t = 1, 2, 3, \dots \end{cases}$$

Now define a stochastic process by $X_t = y_t I$, where I is a random variable taking on the values +1 and -1 with probability 1/2 each.

Find the mean, variance and autocovariance of $\{X_t\}$ and determine, with justification, whether this process is stationary.

3. (a) Consider the following MA(2) process

$$X_t = \epsilon_t - \frac{9}{4}\epsilon_{t-1} + \frac{1}{2}\epsilon_{t-2}.$$

- i. What condition must hold on the roots of the characteristic polynomial of an MA(q) process in order that the process is invertible?
- ii. Is this MA(2) process invertible?
- (b) Consider the MA(1) process defined by

$$X_t = \epsilon_t - \theta \epsilon_{t-1}.$$

i. Show that $\{X_t\}$ can be written in terms of previous values of the process as

$$X_t = \epsilon_t - \sum_{j=1}^p \theta^j X_{t-j} - \theta^{p+1} \epsilon_{t-p-1}$$

for any positive integer p.

- ii. With respect to the formula in (b)(i), what condition on θ must hold in order that X_t can be expressed as an infinite-order autoregressive process? Is this consistent with 5(a)(i)?
- 4. (a) Let $\{X_t\}$ be a stationary process with acvs $\{s_\tau\}$ and spectral density function S(f). Show $S(f) \leq S(0)$ for all $f \in [-1/2, 1/2]$ if $s_\tau \geq 0$ for all $\tau \in \mathbb{Z}$.
 - (b) Let $\{X_t\}$ be the AR(1) process

$$X_t = \phi X_{t-1} + \epsilon_t$$

where $0 < \phi < 1$ and $\{\epsilon_t\}$ is zero mean white noise process with variance σ_{ϵ}^2 , and let S(f) be its spectral density function. Show

$$\max_{f \in [-1/2, 1/2]} S(f) = \frac{\sigma_{\epsilon}^2}{(1 - \phi)^2}.$$

5. A (very) simple signal + noise model for an astronomical times series $\{X_t\}$ is

$$X_t = \epsilon_t + \sum_{k=1}^K A_k \cos(2\pi f_k t + C_k)$$

where $f_1,...,f_K$ are fixed frequencies in [0,1/2). Here, $A_1,A_2,...,A_K$ are i.i.d random variables with mean zero and variance $\sigma_A^2,C_1,C_2,...,C_K$ and i.i.d. random variables uniformly distributed on $[0,2\pi)$ and independent of A_i for all i=1,...,K. Furthermore, $\{\epsilon_t\}$ is a white noise process with mean zero and variance σ_ϵ^2 which is independent of $A_1,A_2,...,A_K,C_1,C_2,...,C_K$.

(a) Show

$$S^{(I)}(f) = \sigma_{\epsilon}^{2}(f+1/2) + \frac{\sigma_{A}^{2}}{4} \sum_{k=1}^{K} (\mathbb{1}_{[-f_{k},1/2]}(f) + \mathbb{1}_{[f_{k},1/2]}(f)) - 1/2 \le f \le 1/2.$$

is the integrated spectrum for $\{X_t\}$, where

$$\mathbb{1}_B(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in B \\ 0 & \text{otherwise.} \end{array} \right.$$

- (b) Sketch $S^{(I)}(f)$ for K=2 with $f_1=1/4,\,f_2=1/3$ and $\sigma_A^2=\sigma_\epsilon^2=1.$
- 6. (a) A complex-valued time series Z_t is given by $Z_t = Ce^{i(2\pi f_0 t + \theta)}$, where f_0 and C are finite real-valued constants and θ is uniformly distributed over $[-\pi, \pi]$.

Determine, with justification, whether this process is stationary. [The autocovariance for a complex-valued time series is given by $\operatorname{cov}\{Z_t, Z_{t+\tau}\} = E\{Z_t^* Z_{t+\tau}\} - E\{Z_t^*\} E\{Z_{t+\tau}\}$, where * denotes complex conjugate.]

- (b) Let $\{X_t\}$ be a real-valued zero mean stationary process with autocovariance sequence $\{s_{X,\tau}\}$ and spectral density function $S_X(f)$.
 - i. Define the complex-valued process $\{Z_t\}$ by

$$Z_t = X_t e^{-i2\pi f_0 t},$$

where f_0 is a fixed frequency such that $0 < f_0 \le 1/2$. Show that $\{Z_t\}$ has spectral density function given by $S_Z(f) = S_X(f_0 + f)$.

ii. Now define $\{Z_t\}$ as

$$Z_t = X_t + iX_{t+k},$$

for some integer k. Find the autocovariance sequence $\{s_{Z,\tau}\}$ and hence show that

$$S_Z(f) = 2[1 - \sin(2\pi f k)]S_X(f).$$