

LEVEL

NUDS IN LABORATO (S CONTRACT Nonr-268(04)

MA072225

Approved for posteleased
Distribution United

10 to 00 146

DOC FILE COPY

CCLUMBIA UNIVERSITY
HUDS JU EASORATORIES
CONTRACT Non-266(84)

LOCKHEED MISSILE AND SPACE COMPANY, SUNNYVALE, CALIFORNIA

210 120

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

70 08 03 116

LOCKHEED MISSILES & SPACE COMPANY

JUL 23 1962

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT D	READ INSTRUCTIONS BEFORE COMPLETING FORM		
LMSC-801296		2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitle)			5. TYPE OF REPORT & PERIOD COVERE
AN EXPERIMENT IN	NUMERICAL FORE	CASTING OF	
DEEP WATER OCEAN	6. PERFORMING ORG. REPORT NUMBER		
AUTHOR(*)			S. CONTRACT OR GRANT NUMBER(*)
Baer, Ledoplh			NOnr 285(03)
			10111 205(03)
PERFORMING ORGANIZATIO			10. PROGRAM ELEMENT, PROJECT, TAS
Lockheed Missile	and Space Comp	pany	
Sunnyvale, CA			
CONTROLLING OFFICE NAI			12. REPORT DATE
Office of Naval R		220	
800 North Quincy Arlington, VA 22			13. NUMBER OF PAGES
MONITORING AGENCY NAM	E & ADDRESS(If differen	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
			UNCLASSIFIED
			TE- DECLASSIFICATION/DOWNSBARING
			SCHEDILLE
DISTRIBUTION STATEMENT Approved for publ		istribution unlim	ited.
Approved for publ	ic release; di		ited.
Approved for publ	ic release; di		ited.
Approved for publ	ic release; di		ited.
DISTRIBUTION STATEMENT Approved for publ DISTRIBUTION STATEMENT	ic release; di		ited.
Approved for publ	ic release; di		ited.
Approved for publ	ic release; di		ited.
Approved for publ	ic release; di		ited.
Approved for publ	ic release; di	d in Block 20, if different fro	ited.
Approved for publ	ic release; di	d in Block 20, if different fro	ited.
Approved for publ	ic release; di	d in Block 20, if different fro	ited.
Approved for publ	ic release; di	d in Block 20, if different fro	ited.
Approved for publ DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on rev	ic release; di	d in Block 20, if different fro	ited.
Approved for publ DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on rev	ic release; di	d in Block 20, if different fro	ited.
Approved for publ DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on rev	ic release; di	d in Block 20, if different fro	ited.
Approved for publ	ic release; di	d in Block 20, if different fro	ited.
Approved for publ DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on rev	ic release; di	d in Block 20, if different fro	ited.
Approved for publ DISTRIBUTION STATEMENT SUPPLEMENTARY NOTES KEY WORDS (Continue on rev	ic release; di	d in Block 20, if different fro	ited.

LLURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ALBY SEE YELD effecte by Sevent kersteren. Cols 820 820 Merzh Gotest Iorest COLLEGE VIN MISSING THE RESERVE bed in the askessing the present of the not selected IN THE PARTY CONTINUES AND AN INTERPRETARE The state of the s

SECURITY CLASSIFICATION OF THIS PAGE(When D

ABSTRACT

Many applications of wind-wave forecasting require
a completely objective, high-speed method of forecasting wave spectra for large areas simultaneously.
Consequently, a numerical model for forecasting wave
spectral fields was defined, programmed, and tested
in two sample situations.

The model uses the Neumann spectrum with angular dispersion as defined by the Stereo Wave Observation Project. The usual problems in defining fetch shapes and motions are eliminated by consideration of an equivalent Lagrangian duration.

In both test computations the method adequately forecasts the rise in significant height as the winds increase. However, the spectral frequencies forecast are too high and the swell does not decay fast enough.

FOREWORD

This research began under the sponsorship of the Office of Naval Research, Contract Nonr 285(03) in the Department of Meteorology and Oceanography, New York University. Some machine time and programming assistance was provided by the Numerical Weather Prediction Unit of U. S. Navy Fleet Weather Central which has since become the Fleet Numerical Weather Facility at Monterey, California. Machine time for the final programming and running was provided by the Lockheed Missiles and Space Company, a Division of Lockheed Aircraft Corporation, under Contract Nord 17017. All of these organizations, and people responsible for machine operation and programming, deserve recognition and appreciation.

Special recognition and appreciation are due Professor W. J. Pierson, Jr., who has encouraged this effort from its very inception and who has helped immeasurably through many discussions, letters, and criticisms. Appreciation is also accorded to Messers. Lionel Moskowitz and Masashi Murakami who scaled the winds from the synoptic charts for Case II.

This report is essentially a copy of a thesis submitted to the Department of Meteorology and Oceanography New York University.

CONTENTS

			Page
		Abstract	111
		Foreword	iv
		Illustrations	vii
		Tables	ix
Chapter	1	INTRODUCTION	1-1
	1-1	Importance of and Need for Ocean Wave Forecasting	1-1
	1-2	Present Techniques	1-3
Chapter	2	PHYSICAL MODEL	2-1
	2-1	Assumptions	2-1
	2-2	Description	2-2
Chapter	3	COMPUTING SCHEME	3-1
	3-1	Computing Philosophy and Equipment	3-1
	3-2	Coordinates	3-1
	3-3	Specification of the Spectrum	3-4
	3-4	Propagation	3-6
	3-5	Equations	3-8
	3-6	Computational Steps	3-9
	3-7	Initial Specification	3-11
	3-8	Illustrative Computation	3-12
Chapter	4	HINDCASTS AND VERIFICATION	4-1
	4-1	Discussion	4-1
	4-2	Case I, 8 through 10 September 1956	4-2
	4-3	Case II, 16 through 18 December 1959	4-20
Chapter	5	CONCLUSIONS	5-1
	5-1	Summary of Results	5-1
	5-2	Discussion of Errors	5-1
	5-3	Outlook	5-4

CONTENTS (Continued)

		Page
	References	1
Appendix A	MASTER FLOW DIAGRAM	A-3
Appendix B	PROGRAM	B-1
Appendix C	DATA: CASE I	C-3
Appendix D	DATA: CASE II	D-1
Appendix E	LETTER FROM DR. PIERSON	E-1

ILLUSTRATIONS

Figure	
3-1	Grid Used to Specify Wind and Wave Fields 3-2
3-2	Results of Propagating Wave Energy, Schematics 3-7
3-3	Illustrative Computation 3-13
4-1	Number Location Assigned to the Various Grid Points
4-2(a)	Surface Chart, 0630Z 8 September 1956 4-5
4-2(b)	Surface Chart, 1230Z 8 September 1956 4-6
4-2(c)	Surface Chart, 0030Z 9 September 1956 4-7
4-2(d)	Surface Chart, 1230Z 9 September 1956 4-8
4-2(e)	Surface Chart, 0030Z 10 September 1956 4-9
4-2(f)	Surface Chart, 1230Z 10 September 1956 4-10
4-3(a)	Sea Condition Chart, 1230Z 8 September 1956 4-11
4-3(b)	Sea Condition Chart, 1230Z 9 September 1956 4-12
4-3(c)	Sea Condition Chart, 1230Z 10 September 1956 4-13
4-4(a)	Forecast Map at the End of Time Step 0, 1230Z 8 September 1956
4-4(b)	Forecast Map at the End of Time Step 6, 0030Z 9 September 1956
4-4(c)	Forecast Map at the End of Time Step 12, 1230Z 9 September 1956
4-4(d)	Forecast Map at the End of Time Step 18, 0030Z 10 September 1956
4-4(e)	Forecast Map at the End of Time Step 24, 1230Z 10 September 1956
4-5	Case I, Verification Graphs 4-19
4-6	Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for
	Verification (a, b, c, d, e,)
4-7	Case II. Verification Graphs 4-3

ILLUSTRATIONS (Continued)

Figure		
4-8(a)	Comparison of Observed and Forecast Spectra,	4-33
	1200Z 17 December 1959	4-33
4-8(b)	Comparison of Observed and Forecast Spectra, 1800Z 17 December 1959	4-34
4-8(c)	Comparison of Observed and Forecast Spectra, OOOZ 18 December 1959	4-35
A-1	Master Flow Diagram	A-l

TABLES

Table		
2-1	Comparison of Lagrangian Travel Distance with Eulerian Fetch	2-3
3-1	Energy Growth in Feet ² of the Wave Spectrum per Two Hour Time Step	3-10
4-1	General Instructions for Preparing Input Data	4-1
4-2	Example of Forecast Directional Spectrum (a, b, c)	4-29
5-1	Forecasts of Significant Height in Feet for Grid Point 73 Assuming Special Conditions	5-4
B-1	Program	B-1
C-1	Data: Case I	C-1
D-1	Data: Case II	D-1

Chapter 1 INTRODUCTION

1-1 IMPORTANCE OF AND NEED FOR OCEAN WAVE FORECASTING

Accurate large-scale ocean wave forecasting is extremely important. High seas can damage large ships and be a real danger to smaller ones. Seaplanes can only land in relatively low seas. Hydrofoils and surface effect machines (ground effect machine) cannot operate in rough seas. Waves often force ships to change speed and heading. The design of ships and shore facilities, such as sea walls and docks, must consider the forces that are exerted by the extreme waves. Wave forecasting can allow ship operators to plan ahead, thus saving time and money, while also decreasing danger, damage, and discomfort.

There are many military applications in which wave forecasts are useful. Besides needing forecasts for problems that are similar to the commercial uses, there are many other needs. For example, rendezvous for refueling or transferring of men or equipment have a double need for wave forecasts. The speed of the ship toward the rendezvous is affected by sea conditions, then, at the rendezvous, high seas can hinder or halt the transfer. Waves are of critical importance to aircraft carrier operations because high seas cause large ship motions in which airplanes cannot land safely. Surface waves are important to submarines and anti-submarine crews because the noise generated by the waves can provide a perfect hiding place. Such things as antennas and snorkels can be hidden in the clutter on radar screens. The sea condition is one of the most important and critical environmental factors in almost any naval or marine operation.

Since it is difficult to make measurements of ocean waves, hindcasting techniques allow computation of wave statistics for design purposes. In order to

solve these and other practical problems, the entire spectrum of the sea and swell must be known and used. The reasons for this are now fairly well accepted and are also explained from a practical viewpoint by D.M. Aspinwall (Reference 1, 1960), among others.

Another more important, more basic, and longer-range problem exists. This is the problem of advancing our knowledge of how the wind transfers energy to the water and how different wave trains interact to transfer and dissipate energy. This problem has been studied most recently by O.M. Phillips (Reference 2, 1961), L.J. Tick (Reference 3, 1961), W.J. Pierson (Reference 4, 1961), O.M. Phillips and E.J. Katz (Reference 5, 1961), and K. Hasselmann (Reference 6, 1960), among others, from the theoretical viewpoint. Many others have attacked the air-sea boundary layer problems, such as wind stress. However, no one has yet established an empirical model by which this energy exchange can be studied objectively. Only by the establishment of objective models, such as the one proposed here, can the future theoretical approaches be verified (as yet none has reached the stage of readiness for verification). It is also hoped that this model will help with such theoretical problems as:

- 1. The interaction of opposing wave trains.
- 2. The proper fetch or duration needed for "full development."
- 3. The true shape (or shapes) of the spectrum.
- 4. The effect of wind on swell.
- 5. The importance of non-linear effects such as breakers.

Some of the more important practical problems in which a model, such as the one proposed, would be helpful:

- 1. Hindcasting of wave spectral statistics.
- 2. Hindcasting to learn the area distribution characteristics, i.e., the joint probability of sea conditions occurring with different intensities at several locations.

- 3. Forecasting for ship routing.
- 4. Forecasting for naval development.
- 5. Improving present graphical methods of wave forecasting.

Verification of a model such as this cannot be complete until two-dimensional spectra are available for waves measured on a synoptic basis. In the meantime, rough verification has been carried out, first, with the estimated significant heights from synoptic observations and, second, with the spectra of a particularly severe sea condition recorded by the O.W.S. Weather Reporter. If the National Institute of Oceanography in Great Britain had not developed ship-borne wave recorders (M.J. Tucker, Reference 7, 1956) and used them for systematic synoptic observations, even this much verification could not have been attempted.

1-2 PRESENT TECHNIQUES

Most of the important graphical methods of forecasting wave spectra were summarized and discussed by G. Neumann and W.J. Pierson, Jr. (Reference 8, 1957). Since that time, J. Darbyshire (Reference 9, 1959) has modified his method, and the C.L. Bretschneider (Reference 10, 1959) and the "Densites Spectro-Angulaires" (DSA) of R. Gelci, H. Cazale, J. Vassal (Reference 11, 1957) methods have been proposed. W.J. Pierson, Jr. (Reference 12, 1959), H. Walden (Reference 13, 1961), and others have compared several forecasting methods with inconclusive results. (See also W.J. Pierson, Jr. and G. Neumann, Reference 14, 1961). With the exception of a recent application by J. Darbyshire (Reference 15, 1961) and a third model of DSA (R. Gelci and P. Chavy, Reference 16, 1961), all of these methods are useful only for a limited number of points. Darbyshire, in opposition to others, maintains that duration and fetch are relatively unimportant. He can, therefore, easily use his method for computing a two-dimensional map of wave conditions. This work by Darbyshire was

carried out while the present study was in its final stages. The DSA numerical method, which is presently being studied in France, is quite similar in principle to the methods described herein, except for the simplification that the energy increment for each frequency component which is added does not depend on the complete initial spectrum, but only on the initial energy within the same component.

There has been a great deal of controversy as to which of the proposed theoretical spectra is best. No one method has been definitely proven to be best. Since the W.J. Pierson, Jr. - G. Neumann - R.W. James (Reference 17, 1955) method is widely accepted in this country, it was used in the present study.

The Pierson-Neumann-James system and most other wave forecasting methods use three basic parameters to forecast the sea conditions. These are: the wind speed, the area over which the high winds are fairly constant, called "fetch", and the time duration that the wind blows. Earlier methods did not consider the width of the fetch important; however, Pierson, Neumann, and James showed a necessity for measuring this width to define the swell filters. These filters are a simple way of keeping up with the energy content in the various frequency-directional increments in the spectrum. The Pierson-Neumann-James system was extended by L.S. Simpson (Reference 18, 1955) to allow for some movements of the fetch. He showed large effects on wave height caused by the movement of the fetches; however, the method is laborious and considers only simple motions of the fetch.

Since there is a great demand for a two-dimensional map of ocean waves, the techniques of Pierson-Neumann-James have been used by the United States Navy Hydrographic office and by others to forecast sea waves for many points from which plotted map contours can be drawn. However, in doing this work by hand, the volume of the work usually forces the analyst to neglect swell and other fine points. W.E. Hubert (Reference 19, 1957) has used an IBM 704; the co-cumulative spectra of Pierson, Neumann and James, and a large number of grid points, to make a forecast map of significant heights. He had also been forced

to neglect swell. Neither of these mapping methods considers moving fetches of changing wind fields.

Another difficult problem is in delineating a fetch. In most actual cases a fetch does not have clear-cut boundaries. The wind is not really constant within the fetch. Also, there is some finite transition zone around the edges. Two independent analysts will seldom define the same fetch. Therefore, in devising a method to make two-dimensional wave forecasts, it would be convenient if the measurement of fetch could be eliminated.

Chapter 2 PHYSICAL MODEL

2-1 ASSUMPTIONS

The method of forecasting used is based on certain physical assumptions that are similar to those used by Pierson, Neumann, and James. These assumptions are listed, with the differences from Pierson, Neumann, and James underlined. as follows:

- The wind generates the wave spectrum from high to low frequency. If there
 is a gap in the spectrum, this gap must be completely filled, starting at
 the high frequency end of the gap, before the rest of the spectrum will be
 developed.
- 2. The wind generates component waves according to Neumann's wave-generation graphs with angular dispersion as given by the results of Project SWOP,

 L.J. Cote et al, (Reference 20, 1960).
- 3. The annemometer-height wind velocity at a point in time and space is representative of the wind within a finite area surrounding the point in space and time. Further, in a practical application, this wind can be found with sufficient accuracy.
- 4. Wave conditions are approximately constant over a finite area around each gridpoint.
- 5. The linear theory of water waves in infinitely deep water holds, so that the speed of propagation of the component waves is a function of only the frequencies of the components. This implies a "linear" spectrum.
- 6. There is no dissipation of wave energy in deep water, also, there is no transfer of energy between components. Thus, for example, cross seas do not interact. These assumptions are not necessary to the development, but

follow Neumann because no relationships have yet been established that can be used with confidence.

- 7. The total energy increase in a unit time interval is a function of (a) the initial energy of the waves already moving within +90 degrees to the wind direction and (b) the wind speed. This particular assumption is also not necessary to the development and could be revised when the relationship is better understood.
- 8. Wave components, once generated, move along approximate great circle paths without spreading or changing direction.
- 9. Although turbulent pressure and momentum fluctuations in the air next to the surface are thought to be important, these and any other important parameters are assumed to be directly proportional to the "surface wind velocity" always.

the high frequency end in the mon, pergree the rest of the spectrum will

2-2 DESCRIPTION

The system developed in this paper permits one to dispense with an Eulerian Fetch if the duration is measured in "Lagrangian" coordinates. The term "Lagrangian" is used here to mean that the coordinates used in the forecast move with the group velocity of the component waves. The "Lagrangian" duration is, therefore, the length of time that the wind is adding energy to a particular moving energy packet or wave group. In other words, the distance that the coordinates themselves travel while the waves are growing is equal to the fetch distance if the fetch does not move. This is, therefore, a generalization of Simpson's (Reference 18) analysis for a moving fetch.

Thus, the speed with which the waves will move through the fetch actually limits the time that the wind can add energy to the waves. The same effect can be shown in a rough way by using the co-cumulative spectra (CCS), curves, developed by Neumann, and the integrated group velocity from classical linear wave theory: R = t/0.66f. Where R is the distance of travel in nautical miles,

t is time in hours, and f is frequency (reciprocal period) in sec. 1. To show this, one can calculate the distance that the leading edge of the energy will move in a finite time from Neumann's CCS curves as shown in Table 2-1. In this table, a very rough time-weighted average of the minimum frequencies was prepared by averaging the values of f at five points equally spaced in time. This has been used to compute an equivalent fetch which is quite close to the empirical value for the fetch. Neumann went through an equivalent process in establishing his curves, and O.M. Phillips (Reference 21, 1958), has described the process theoretically.

Table 2-1 Comparison of Lagrangian Travel Distance With Eulerian Fetch

Wind Speed (kts)	30	40	50
Minimum Duration (hrs)	23	42	69
Time-meaned Frequency *(sec -1)	0.1270	0.0857	0.0705
Distance Traveled (nm)	274	742	1483
Minimum Fetch From CCS Curves (nm)	280	711	1420
% Error	2.1	4.4	4.4

^{*}Average of five points equally spaced in time.

It should be stressed that no assumption was made regarding the shape or consistency of any "fetch". This is because in this model the actual irregular and changing wind field as a function of time is used. The method of specification alone limits the area and temporal irregularities allowed.

By considering the above, a method for allowing the wave groups to move through the wind field at their own propagation velocities has been devised. Thus, the measurement of fetch has been eliminated. Instead, the energy is transferred from the wind to the waves and the waves propagate in accordance with hydrodynamic theory.

Chapter 3 COMPUTING SCHEME

3-1 COMPUTING PHILOSOPHY AND EQUIPMENT

The section describing the physical model was purposely kept very brief because the usefulness and complexity of models of this nature must depend on available computing facilities. This problem was first attempted in 1958 with only a set of tables describing the spectrum and the intention of using graphical addition on a series of charts. Each chart was to represent a particular spectral component. This might have answered a few questions about the model, but could not have helped prepare for future advances. The volume and length of the work was already near the maximum that a person can be expected to perform. Thus, it was decided to program the problem for a large-scale electronic computer. The model has, therefore, been modified slightly by characteristics of the available computer. The scheme described here is that used on an IBM 7090 having 32,768 words of core storage. The problem was also programmed for an IBM 704, having 8,192 words of core storage plus drums, and a CDC 1604. Each was slightly different.

3-2 COORDINATES

The coordinate system must be described before proceeding further. A grid for the area spacing and individual time steps for the temporal coordinate was chosen as approximately square with 2 degrees of latitude on a side, and a time increment of two hours. The grid used is shown in Figure 3-1. These choices are consistent, since the motion of the fastest wave component is such that it will not travel to the next gridpoint. Implicit in the choice of this coordinate system is that forecasts will not be more accurate in space than

Figure 3-1 Grid Used to Specify Wind and Wave Fields

the gridpoint spacing. Ways to improve this were considered too complicated for a first model, but are discussed at the end of this paper. This spacing was also chosen to be consistent with the accuracy of wind reports. Wind reports, in general, are available only at six or twelve-hour increments; and the location of the reporting ship, allowing for an equivalent distance error instead of observational error, is normally less than two degrees latitude. The location of important phenomena, such as cold fronts, however, is often no better than two degrees latitude. Therefore, a compromise on two degrees and two hours is reasonable.

It was stated that the chosen grid was square and approximately two degrees of latitude on a side. The reasons for approximating deserve further discussion. Since waves travel along a great circle path, a Gnomonic projection would probably be useful. Since this projection is not equal in area, location effects must be considered, causing a further complexity. Wave trains leaving from one gridpoint at a direction of, say, 30 degrees will arrive at another gridpoint at perhaps 43 degrees. Thus, the computing system must keep up with all these variations. Because the model, as programmed, uses almost all of the capacity of the available computers, because this is only a first approximation and because the present program considers only the middle latitudes, a compromise on 30 - 60 Lambert Conformal mapping was made. On this projection, great circles are not quite straight, but for the purposes of this study, they can be treated as straight. In middle latitudes a location accuracy of only ±2 degrees latitude is claimed. The Lambert projection also has a variable spacing of the latitudinal grid, but this is only a minor effect.

The grid used is treated as if all squares were exactly the same size. All directions are referred to the coordinates of the grid rather than to the coordinates of the Earth. Thus, the waves follow approximately a great circle by moving in a constant direction on the grid. No consideration was given to the divergence caused by the curvature of the Earth. Ways to improve these assumptions are considered at the end of this report.

3-3 SPECIFICATION OF THE SPECTRUM

The second decision that must be made lies in specifying the spectrum. There are at least three possible ways to specify the spectrum in the memory of the machine. The first would be to remember all of the generating conditions in such a way that they would be carried along with the wave trains. This is, effectively, the method used for graphical computations. However, it seemed cumbersome when considering over 500 grid points simultaneously. A second approach might be to fit some polynomial to the spectrum at each gridpoint which would be changed as the wave conditions change. This approach appears much better but was not used because it is relatively complicated in comparison to the third approach. It should, certainly, be considered for future attempts. Instead, a simple, straightforward technique was used. Ten frequencyincrements and twelve directional-increments were chosen. The numerical value of the energy within each of these 120 increments is remembered. The midpoints of the frequency intervals were finally chosen as having equidistantly spaced periods of 2.85, 5.31, 7.77, 10.23, 12.69, 15.15, 17.61, 20.07, 22.53, and 25.00 seconds. The reasons for using constant period increments are explained later. Several other values were tried, but the above increments gave the best results without using refined integration techniques. In accordance with Pierson, Neumann, and James (Reference 17) and O.M. Phillips (Reference 27, 1961), it is especially important to have very high frequencies specified. This is because energy is added much more slowly to very small high frequency waves than to larger waves. Since these high frequency waves propagate so slowly, and because there is no dissipative force in the present model, the model ocean can be expected to become filled with high frequency wave components.

The directions were chosen in 30 degree increments (±15 degrees) because it was believed that the wave directions should be somewhat less accurate than the directions of the winds causing them. Surface winds are normally specified to 16 points of the compass (22.5 degrees) or to 10 degrees.

As stated above, discrete increments have been chosen to represent the spectrum. This causes certain errors that must be considered. After many time steps, swell will be separated so that no energy is at some intermediate grid point. In other words, the longer, faster waves will outrun the waves of the next discrete frequency band by more than the distance to the next grid point. For example, in the extreme case with a spectrum having energy at f = 0.04 and f = 0.06 the increments would separate at the rate of 0.19 spaces per time step and would be two spaces apart after about eleven time steps. Similarly, the discrete directions will keep energy from reaching intermediate grid points after moving only to the third diagonal grid point, which could be as rapid as six time steps. Even though these errors may be significant in some cases, they are not nearly as important in the practical case because fetches are normally larger than one grid point in length and width. With longer fetches these vacant intermediate grid points are filled from adjoining areas of the fetch. Since this does not allow the energy to spread out but keeps it concentrated along a given path and at a particular frequency, the model is biased toward higher swells. In the case of small classical fetches, this bias would cause the forecast field to be irregular with adjacent grid points being either too high or too low.

Specification of a map of the final forecast spectra is harder than that of the initial spectra. To present 120 values at each of 519 grid points would confuse the reader through mere volume. Area effects would not be apparent. It is, however, a simple matter to print any parameters of interest because all values are in the machine. It would be easy to present maps of total energy, significant height, most important direction, lowest frequency, frequency having the most energy, frequency and height of the largest swells, etc. The problem is presently, there is little data with which to verify these maps, and no use for most of them. Therefore, only significant height is presented in map form in this report. The complete spectra for selected grid points are printed separately. More detail on this is given in the section on results of this report.

3-4 PROPAGATION

This model depends upon allowing the wave energy to be propagated. Originally, a system similar to the Jacobian method, used in numerical weather prediction, was tried. This first system effectively took a gradient and multiplied it by a speed, although what was really programmed was an interpolation of the energy a distance upstream depending on the component group velocity. This does not work because in each future time step the energy spreads further and further as illustrated schematically by the solid vertical lines in Figure 3-2. Note, for instance, that these vertical lines decrease in amplitude during each time step, and new lines form further and further away from the hatched area, which is where they should be. Higher order interpolation does not help. The correct method must allow for discontinuities. These sharp changes are, of course, often observed with the passage of a cold front and with the onset of swell. This is a major difference between the present effort and that of Gelci and Chavy (Reference 16, 1961).

A simple approach was used to establish a method of propagation, though others can be devised with more accuracy. In principle, what was done was to keep track of how far past and to the side of an average grid point the wave components were, then when the component had moved far enough to reach the adjacent grid point, the energy was "jumped". Since the grid system, in use, is only approximate, this was simplified by keeping only one record for each component for all of the grid points, because at all grid points the same component moves in the same direction at the same speed. Thus, if it takes, say, three time steps for a particular component to travel to the adjacent grid point on every third step, the entire field will be jumped. That is to say the energy from grid point upstream replaces the energy at the adjacent grid point downstream.

Because of the grid shape, north-south and east-west components are very simple. However, in other directions it is necessary to remember how far the wave component exists to the sides as well as forward and backward. Here, the choice

ASSUME (I) PROPAGATION VELOCITY EQUALS 1/2
THE DISTANCE BETWEEN GRID POINTS
(2) NO CHANGE IN ENERGY OF THE COMPONENTS

Figure 3-2 Results of Propagating Wave Energy, Schematic

of 30 degrees directional increments was fortuitous. If an energy pocket travels the maximum distance within the chosen grid, it will only be off by one grid point if it is jumped alternately toward, say, West, then Southwest. What is actually programmed is that a jump is made in the cardinal or intermediate direction, depending on whether the time step number is even or odd when the energy packet has traveled an average distance. The method of propagation used can have a strong effect on the shape and size of the grid. With four individual distance markers for each frequency-directional component, it might be possible to increase the grid size and increase the accuracy of the computations at the same time.

3-5 EQUATIONS

The Neumann non-directional spectrum, along with the SWOP directional effects, were taken as the maximum spectrum for a given wind condition. This is defined as the finite difference equation:

$$\Delta E_{\text{max}}(\omega,\theta) = c\omega e^{-6-2(\frac{g}{\omega v})^2}$$

$$\left[1 + \left(0.50 + 0.82e^{-1/2} \left(\frac{\omega \ v}{g}\right)^{\frac{1}{4}} \cos 2\alpha\right) + 0.32e^{-1/2} \left(\frac{\omega \ v}{g}\right)^{\frac{1}{4}} \cos 4\alpha\right] \Delta \alpha \Delta \omega$$
(1)

for $-\frac{\pi}{2} < a < \frac{\pi}{2}$ and zero otherwise.

where $a = (\theta - \phi)$

0 = direction attached to the spectral component

ω = angular frequency attached to the spectral component

 $c = 1.528 \times 10^4 \text{ cm}^2 \text{ sec}^{-5}$

g = gravitational acceleration

v = wind speed

 $\Delta a =$ incremental direction = $\frac{\pi}{6}$ radians

Δω = incremental frequency

4E _ maximum energy in the increment.

The growth function from the CCS curves is also needed. No simple curve could be fitted, so this was tabulated as presented in Table 3-1 and used with linear interpolation for intermediate values. These values were read directly from the CCS curves presented in H.O. 603 for two hour increments, then smoothed slightly. Note that the increase in energy in each two hour time increment depends on both the wind speed and the initial energy state.

The definition of this initial energy state was made arbitrarily. To be consistent with the CCS curves for constant wind conditions, it was decided to find this initial total energy by adding all components within ±90 degrees from the direction of the wind. The consequences of this assumption are that long swell is added in the same way as local sea. This means that when swell is present with a similar direction, the sea will build up faster than otherwise. Another effect is that the more changeable the wind direction, the more slowly the waves will grow.

Instead of these assumptions, the second parameter of the growth function table could have been a mean frequency or an upper frequency. In this case, some more complicated assumptions would have been required regarding swell and wind direction changes.

3-6 COMPUTATIONAL STEPS

With all of the above methods, assumptions, and equations, it is possible to present the major individual steps of the computation. A master flow diagram and program listing are presented in Appendices A and B, respectively. These steps are repeated for each time step, as follows:

1. Given initial spectrum specified by the 120 components at each grid point.

Table 3-1 Energy Growth in Feet² of the Wave Spectrum
Per Two Hour Time Step

*E _O						Spee	d Knot	s			
(ft ²)	10	14	18	22	26	30	34	38	44	50	56
0	0.1	0.15	0.2	0.35	0.5	0.7	1.0	1.5	2.0	3.1	4.5
1	0.0	0.6	1.7	1.8	2.0	2.5	3.0	3.5	4.0	5.3	7.0
5		0.0	0.0	3.2	3.4	3.8	4.0		6.0	8.7	12.0
10				2.0	4.4	4.5	4.5	5.0	7.5	11.0	15.0
15				0.0	5.0	5.0	5.0	5.4	8.0	12.0	17.0
20					5.0	5.5	6.0	6.4	9.0	13.0	20.0
25					4.5	5.9	6.4	6.9	9.4	14.0	23.0
30					0.0	6.6	7.0	8.0	10.0	15.0	25.0
35						7.7	8.0	9.0	10.4	16.0	25.0
40						8.7	9.1	9.8	10.7	17.0	25.0
45						9.0	10.0	10.5	11.0	17.5	25.0
50						7.0	11.0	11.0	11.4	18.0	25.0
60						0.0	12.0	12.0	12.0	18.5	25.0
70							12.0	12.6	12.4	19.0	25.0
80							11.0	12.9	13.2	21.0	25.0
90							10.0	13.2	13.8	22.0	25.0
100							0.0	13.5	14.2	23.0	25.0
115							0.0	14.0	15.0	24.0	25.0
130 145								14.0	15.8	25.0	25.0
160								13.0	17.0	25.0	25.0
175								10.0	20.0	25.0	25.0
200								0.0	23.0	25.0	25.0
250									25.0	25.0	25.0
400									25.0	25.0	25.0

*E₀ = initial spectral energy =
$$\sum_{f=1}^{10} \sum_{\theta=1}^{12} \Delta E_{f\theta} \cdot \delta_{\theta\phi}$$

where

$$\delta_{\theta\phi} = \begin{cases} 1 \text{ for } |\theta - \phi| \le 90^{\circ} \\ 0 \text{ for } |\theta - \phi| > 90^{\circ} \end{cases}$$

 ϕ = wind direction

- 2. Given wind velocity at each grid point for the succeeding time interval.
- 3. Sum the total spectral energy at each grid point within ±90 degrees of the wind direction.
- 4. Look up the total allowable change in energy for each grid point from the growth function tabulation.
- 5. Find the maximum possible spectrum at each grid point from equation (1).
- 6. Compare the initial spectrum with the maximum spectrum for each grid point and note any gaps that can be filled in.
- 7. Spread the available growth energy into the available gaps starting with the high frequencies first for each grid point. Secondarily, the directions nearest to that of the wind are to be used first.

NOTE: This procedure finds the total energy growth to be expected, then splits it into component directions and frequencies. The method carefully includes any higher frequencies which may have been missing in the initial spectrum.

8. The final step is to allow each component of the spectrum to propagate in its own direction and at its own group velocity. The spectrum at each grid point is then the initial condition for the next time step.

3-7 INITIAL SPECIFICATION

In order to specify the spectrum for the initial conditions properly in the first time step, $120 \times 519 = 62,280$ ΔE values should be read into the computer. If all these numbers were available on maps, the task of scaling them off would be almost impossible. However, present spectral observations are so sparse that the initial spectral fields are not available. Instead,

a very rough first guess is used. Estimates of the significant height and earlier winds are used to get a rough estimate of the initial spectrum. This is accomplished by assuming for each grid point that the previous wind (at t = -1) had been constant long enough to raise the specified sea. If the wind was not high enough to raise the sea, the excess spectral energy was discarded.

There are so many errors in this process that they are not worth detailing. However, after many time steps, all of this initial energy will be dissipated or masked by the effects of later winds making the remaining errors insignificant. Thus, the first few time steps cannot give correct answers. This means that any forecast must begin with a hindcast to find the present spectral conditions. Present limited experience suggests about one day for this hindcast.

3-8 ILLUSTRATIVE COMPUTATION

In order to see how the model behaves with this computing scheme an artificial test case was run. The initial significant height to start the computation was assumed to be 20 feet. Then, a constant wind of 47 knots from 270 degrees was allowed to blow over only this same grid point for 9 time steps (18 hours) as well as for the initial step. The results of this experiment are shown in Figure 3-3 along with a tenth time step having no wind. For comparison, a 47 knot wind can generate waves having a significant height of 67 feet for infinite fetch and duration. For fetches of 120 nm, the significant height should be about 21 feet. It should also be pointed out that because of non-linear growth characteristics, the final forecast height is a function of the initial conditions.

This impossible case illustrates the possible accuracy of the model by showing the "minor" variations resulting from the discrete and discontinuous assumptions. When energy is propagated by jumps, the energy at the location

Figure 3-3. Illustrative Computation

it has left is decreased and vice-versa. If the propagation phase were to be carried out at the beginning of each time step instead of as the final phase, these variations would be more masked when the seas were near full development. But they would still affect the accuracy of succeeding steps in the same way.

This example shows what the system would predict near the rear boundary of a classical sharp edged fetch. However, in the real case, there are usually some smaller waves behind the fetch. The energy from these smaller waves also propagates into the fetch to replace the energy propagating out and decreasing the irregularities illustrated here. Also, any grid point within the fetch would receive energy from the surrounding grid points making these errors relatively insignificant.

Several other points are illustrated in this example. Note that the spectrum is not completely symmetrical because odd amounts of energy have not been split symmetrically but, rather, used in a particular order so that a slight bias toward one side exists. If later study shows this to be important, the program can be corrected easily. Another point of interest is the magnitude of the swell increments that move out. They are governed by the amount of spectral energy in each frequency-directional component. Thus, since spectra have their peaks near the low frequency cut off, smaller frequency increments must be used in the lower frequencies to keep the jumps from being too large. This was the reason the frequency intervals were chosen to have midpoints spaced at constant period increments. Experience may well show that even more drastic biasing toward low frequencies is better. Lastly, it should be pointed out that the swell shown is a function of the time step number on which the computation was begun. By starting at time step zero, no jumps took place until time step 4. Starting at some other step could have caused the jumps to take place sooner and in a different order. This is because the distance that the energy of the component has traveled past a grid point is treated as a function of the time step count only.

CHAPTER 4 HINDCASTS AND VERIFICATION

4-1 DISCUSSION

To maintain objectivity and mechanize preparation of the required input data for the IBM 7090, rules shown in Table 4-1 were established.

Table 4-1 General Instructions for Preparing Input Data

Item	Description
1	All surface wind speeds used are averages over the square centered at the grid point with sides of 120 nautical miles.
2	At time t=0, the significant wave height at every grid point is needed. Directions are not used.
3	Surface winds are needed from the 6-hourly map previous to t=0 up to at least t=48 hours in 6-hour or shorter steps. If information is available at less than 6-hourly steps, it can be used down to 2 hours.
4	Wind speeds less than 10 kts can be recorded as 0. All omissions are considered the same as 0.
5	Direction is to be recorded in relation to the grid, not true North. The top of the grid is North. These two values will be the same at 35° longitude.
6	Direction from the "North" can be recorded as either "000" or "360".
7	The speed is recorded first, then the direction in 3 digits, (as 27.020.).

Figure 4-1 gives the location number assigned to each of the gridpoints. These numbers are used for specifying the location where a complete spectrum is desired and for many operations internal to the machine. The IBM 7090 program required that the wind speeds or wave heights be punched into standard Hollerith cards with 18 four-place values per punch card. For winds, two four-place numbers are needed to specify each grid point having two values each for only nine grid points on each card. Thus, 58 cards are required to specify the winds at each two-hour time step.

When this study was begun, no adequate ocean wave spectra, from measured waves in severe sea conditions, were available. Therefore, use of synoptic maps of significant height was planned. In order to be as objective as possible, the U.S. Navy Hydrographic Office was asked to choose a severe storm condition and to provide copies of their regular synoptic wave charts. Careful streamline analyses were made of the ten six-hourly synoptic charts, but the wave charts were accepted without change to maintain objectivity. The period chosen was 8 through 10 September 1956. Later, during the course of this research, waves were measured for a severe sea condition during 16 December through 18 December 1959, from which spectra were computed. This case is presented here as a second, and perhaps more meaningful, test of the model established. The synoptic situations, input data, results and verifications of the two cases are presented and discussed in a succeeding separate section.

4-2 CASE I, 8 THROUGH 10 SEPTEMBER 1956

There were three important aspects of the synoptic situation for the North Atlantic Ocean at the beginning of this period. First, a cold front was roughly parallel to the East Coast of North America and had moved 200 to 300 miles into the ocean. This cold front extended from an occlusion and deep cyclone near the southern part of Greenland. On the southern extremity, the front was relatively weak and tending to become stationary with the remains of a hurricane approximately 400 miles ahead of the front. Another deep low

```
282 282
                                                                                         105
                                                                            6 5
                                                                                                                                             561 562 13 13
                                                                            88 50 17
                                                                                                                                           194
                                                                                                                                                                      250
                                                                                                                                                                                   280
                                                                                                                                                                                                 01 0 90 66 7 9
                                                                                                                   167
                                                                                                                                                                                               339
                                                              2 8 7
                                                                                                                                                                                               3 5
1 2 4 8 6 8 6 8 6 6 11 11 12 13 13 13 14 15
                                                                                                      3
                                                                                                                                                                                                 305
                                                                                                                                                                                              301
                                                                                                                                                         213
                                                                                                                                                                      142
                                                                                                                                                                                  27.1
                                                                                                                                                                                                                        359
                                                                                                                                                                                                                                      18 6
                                                   239
                                                                                                                                                                                                            359
                                                                                                                                                                                                                                       385
                                                                                                                                                        211
                                                                                                                                                                                                                          357
                                                   53 5 4 5 6 5 1 5 6 5 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 
                                                                                                                                                         510
                                                                                                                                                                     238
                                                                                                      109
                                                                                                                                                                                                             328
                                                                                                      154
                                                                                                                                                         500
                                                                                                                                                                      237
                                                                                                                                                                                                             327
                                                                                                                                                                                                                          355
                                                                                                                               153
180
180
296
296
326
326
                                                                                                                                                                                                                         354
                                                                                                                                                                                                                                      379
                                                                                                                                                       235
                                                                                                                                                                                  265
295
325
378
403
                                                                                                                                                                                              3 25 5
                                                                                                                                                         206
                                                                                                                                                                      234
                                                                                                                                                                                   564
                                                                                                                                                                                                                                                   405
                                                                                                                                                       322
                                                                                                                                                                                                                        350
                                                                                                                                                                                                            321
                                                                                                                                                                       231
                                                                                                                                                                                                 291
                                                                                                                                                                                               350 348 350 359 3598
                                                                                                                                                                                                                        347
                                                                                                                                                                                                            318
                                                                                                                                                                                                                         346
                                                                                                                                                                                                                                     371
                                                                                                                                                                                                                       345
                                                                                                                                                                                                            317
                                                                                                                                                                     353
```

Figure 4-1 Number Location Assigned to the Various Grid Points

was sitting about 500 miles off the coast of France, while the central part of the ocean was dominated by the usual anticyclone. The analysis made by the National Weather Analysis Center, is shown in Figure 4-2(a). The initial seacondition chart prepared by the U.S. Navy Fleet Weather Central is presented in Figure 4-3(a). The remaining parts of Figures 4-2(a) through 4-2(f) and Figures 4-3(a) through 4-3(c) show analyses for the succeeding times. During these succeeding periods, the cyclone off France deepened and remained fairly stationary, providing northerly winds of about 40 knots over what might be considered a 300 mile fetch and several days duration. In turn, the weak cyclone off Florida became a wave on the front and deepened to provide a complicated moving fetch with wind speeds up to 50 knots.

The initial significant height of the waves at each grid point was interpolated from the initial sea condition chart. Similarly, the synoptic charts were used to prepare surface streamline charts that were then scaled in accordance with the rules of Table 4-1. The data actually used is presented in Appendix C. Hindcasts were prepared from these winds and initial conditions and the significant height field for every time step was tabulated along with many individual spectra. An average of about two minutes per time step was required for the machine computation. However, only the initial field and results at 12-hour intervals are presented in Figure 4-4(a).

Comparison of the significant height fields in Figures 4-3(a) through 4-3(c), and Figures 4-4(a) through 4-4(e) show fairly good agreement except in the high wave area near the European coast. However, with respect to this area, a graphical forecast using the methods of H.O. 603 would have given values close to those found by the machine forecast. This and several ship wave reports confirmed the high wave area. Therefore, an independent verification was attempted using the estimated wave heights recorded by the ocean weather ships. In order to check the wave charts and get a large enough sample to provide a reasonable comparison, information from all available weather ships from the files of the National Weather Records Center of the U. S. Weather Bureau were used. Plots of the comparison for each ship are shown in Figure 4-5. Ship J,

Figure 4-2(a) Surface Chart, 0630Z 8 September 1956

Figure 4-2(b) Surface Chart, 1230Z 8 September 1956

Figure 4-2(c) Surface Chart, 0030Z 9 September 1956

Figure 4-2(d) Surface Chart, 1230Z 9 September 1956

Figure 4-2(e) Surface Chart, 0030Z 10 September 1956

Figure 4-2(f) Surface Chart, 1230Z 10 September 1956

4-10

Figure 4-3(a) Sea Condition Chart, 1230Z 8 September 1956

Figure 4-3(b) Sea Condition Chart, 1230Z 9 September 1956

Figure 4-3(c) Sea Condition Chart, 1230Z 10 September 1956

Figure 4-4(a) Forecast Map at the End of Time Step 0, 1230Z 8 September 1956

Figure 4-4(b) Forecast Map at the End of Time Step 6, 0030Z 9 September 1956

Figure 4-4(c) Forecast Map at the End of Time Step 12, 1230Z 9 September 1956

Figure 4-4(d) Forecast Map at the End of Time Step 18, 0030Z 10 September 1956

Figure 4-4(e) Forecast Map at the End of Time Step 24, 1230Z 10 September 1956

Figure 4-5 Case I, Verification Graphs

which was in the high wave region off Europe, confirmed the inadequacy of the operational wave charts for verification purposes. No comparison of the periods was made because of the well known inadequacy in the methods of observing and recording periods.

These verification graphs in Figure 4-5 show that the model forecast the heights about as well as the operational wave charts. The major failing of the model is the continued forecasting of high seas after the seas have lowered. This type of error also occurred in the Case II forecast and is discussed in detail in a separate section.

In this test, the method seems quite good except for this lack of dissipation. The important result is that large scale patterns can be represented easily.

4-3 CASE II, 16 THROUGH 18 DECEMBER 1959

All the data for both the wind fields and the waves for this case were provided through the courtesy of New York University,* as shown in Appendix 4. This particular storm is being studied by a number of other scientists, as described in Appendix 5. The synoptic situation and general forecast problem is described by L. Moskowitz as follows: (W.J. Pierson, Jr., 1961, Personal Communication)

"The week beginning on 15 December 1959 saw several frontal systems pass through that area of the North Atlantic with which this paper deals. Position J, situated at approximately 52°40'N and 20°W, lies far to the north of the subtropical anticyclone and lies south of the major tracks of the North Atlantic cyclones. Storms in this area of the North Atlantic are known for their persistence and intensity. The most impressive aspect of these storms is the development of the state of the sea.

^{*}See paragraph 2 of the Foreword.

"From the point of view of the wave forecaster the storm of 16 - 18 December is of interest. The storm developed from a wave cyclone which had formed on a cold front on 15 December at about 12Z. Between 18Z on the 15th and 00Z on the 16th, the storm had developed its own circulation and the central pressure dropped to 984mb at 00Z on the 16th. At this time the frontal system associated with the storm had partially occluded. The storm center moved rapidly towards the northeast and on the 16th, at about 18Z, had a central pressure of 960mb and was located at 57.5°N and 21°W. Winds behind the storm on the order of fifty knots had developed between 06 and 12Z on the 16th and persisted through 18Z on 17 December. At about 00Z on the 17th, the storm center began to stagnate at about 60°N and 20°W, however, the frontal system continued its rapid eastward movement. At about 18Z on the 17th the storm center had begun to fill. At 06Z on the 18th the central pressure had already increased to 972mb.

"At 18Z on 16 December, the OWS Weather Reporter passed through the occluded front associated with the storm center. At this time thirty knot winds were reported. Six hours later the winds had built up to 60 knots from the southwest. The significant wave height, $\overline{\mathrm{H}}_{1/3}$, jumped from 15.7' at 18Z on 16 December to 26.2' at 00Z on the 17th. Winds on the order of sixty knots (Beaufort 11) were not uncommon in the general area during the above times. It is to be noted that all wind data until 12Z on 17 December were Beaufort estimates. The maximum $\overline{\mathrm{H}}_{1/3}$ of 39.7' occurred at 18Z on 17 December. The wind speed at this time was 48 knots. The wave heights began to decrease steadily thereafter, except for a secondary maximum of 35.4' at 00Z on 18 December.

"When the data station (OWS in this case) is not stationary, the forecasting problem is further complicated. Such is this case. At OOZ on 15 December, the OWS at position J was already underway for its home port. The OWS "Weather Reporter", the relief ship, was also underway heading for position J at the same time. The two ships passed each other sometime between OOZ and O6Z on 16 December (presumed from synoptic charts). Since the wave records used were taken from the OWS "Weather Reporter", the fetches to be used in forecasts become even more critical. Not until 18Z on 17 December did the "Weather Reporter" reach position J even though she reported she was at position J as early as 12Z on 17 December."

Hindcasts were made for the entire area, but only the significant heights for the area near the observing ship are shown in Figures 4-6(a) through 4-6(f). The crosses on this Figure show the relative position of the observing ship at the respective times. The complete spectra for nearby grid points was also printed. Some examples of this are shown in Tables 4-2(a) through 4-2(c). Because of the slight difference in the reporting and computing intervals, a comparison chart for verification of significant heights was plotted and is presented as Figure 4-7.

There are three significant points shown in Figure 4-7 that require discussion. Inst of the 11 - 17 foot significant heights in the initial observations were due to swell, because the winds were only 11 - 17 knots. The forecasting model drops initial swell so that it automatically cut this to about two feet.

Despite this expected initial handicap and the rapidly rising sea, the fore-casting model caught up with the observed 35 foot sea after only one day of hindcasting, and followed the observed significant height in the succeeding twelve hours. As seen in Figure 4-7, the forecast rise in height is parallel to that observed with a time lag due to poor initial conditions. At this time, the winds dropped and changed direction and the sea was observed to lower rapidly to below 15 feet in twelve hours. The model did not predict this rapid decrease. Possible reasons for this error are discussed in the following section.

A comparison of the observed and forecast values of the frequency spectrum was made with disappointing, but not unsuspected results, as shown in Figures 4-8(a) through 4-8(c). In these figures, the plotted points represent the estimated spectra and the 90% confidence interval integrated over a frequency increment of 0.00555 sec⁻¹. The stippled regions show the forecasts on the same scale. The model forecasts do not have as much low frequency energy as the spectra computed from the observations of the OWS Weather Reporter. There are several possible causes for this discrepancy. They are discussed in the following section.

9.0	۰.0	8.0	6.3	1.6	0.	0.	9.0	10.7	9.6	7.5	2.3	1.1	0.
13.0	11.7	9.4	4.1	1.6	0.	0.	14.5	13.0	9.9	5.1	2.5	1.2	0.9
14.4	10.5	7.2	5.4	2.1	1	0.	15.8	11.8	8.2	5.8	3.0	2.5	1.2
14.4	10.3	7.3	5.4	2.7	2	1-8	15.3	11.1	e.5	7.1	4.9	4.9	3.6
17.1	10.3	7.2	6.4	5.5	5.5	3.9	17.6	12.0	9.4	1.8	7.6	6.6	4.7
29.4	22.5	14.4	11.7	8.2	7.2	1.2	33.0	24.5	16.5	13.9	8.5	7.9	8.3
26.0	25.0	10.0	15.0	6.0	7.0	7.0	29-0	28.2	19.4	17.5	8.6	9.0	8.8
19.0	15.0	9.0	0.3	5.0	6.0	8.G	21.1	16.3	11.7	10.6	7.8	8.1	9.4
	ST	EP 0: 1	Z, DECEM	BEH 16,	1959			STE	P 1: 14	Z, DECEN	BER 16,	1959	
9.0	12.3	11.3	8.9	3.5	1-8	0.	10.1	14.0	12.9	10.4	5.3	5.4	1.2
15.9	14.3	10.9	6.0	3.9	2.0	1.2	17.2	15.9	12.4	7.4	6.0	4.0	2.4
17.2	13.1	9.4	6.8	4.4	3.4	2.0	10.3	14.9	10.9	8.5	6.5	6.3	3.9
16.3	12.1	9.9	8.8	7.0	. 7.3	6.0 x	17.3	13.6	11.5	11.1	9.6	9.1	8.0
18.5	13.6	11.4	16.8	9.4	7.5	5.2	21.1	17.3	15.3	14.3	11.7	9.3	1.2
35.6	26.6	18.6	16.0	8.8	8.5	9.1	37.1	31.0	21.9	19.8	11.9	11.1	10.9
31.9	31.2	22.7	20.0	10.9	10.8	10.6	34.4	34.1	26.6	23.9	14.6	13.6	12.3
23.1	17.6	14.1	12.9	10.3	10.0	11.5	25.1	19.3	16.1	14.7	12.1	11.7	13.1
	ST	EP 2: 10	6Z, DECEM	BER 16,	1959			STE	P 3: 18	Z, DECE	BER 16,	1959	
11.0	15.6	14.4	11.6	7.0	5.2	2.1							
18.9	17.1	13.8	9.1	8.0	6.1	4.1							
19.7	16.9	12.5	10.3	8.7	8.4	5.9	n n	ATE	TIME	OBSER SIGNIF REIO	ICANT	90% CONT	
17.6	15.3	13.0	13.5	12.0	10.9	9.9	DECEMBE	R 16, 1959	12Z 18Z	13.	3 7	12.0 - 14.6 -	14.6
22.9	22.5	19.5	17.7	13.7	11.3	9.1	DECEMBE	R 17, 1959		15. 26.	i	23.6 -	
40.2	36.4	27.1	20.3	18.7	13.5	12.5							

ALL SIGNIFICANT HEIGHTS ARE IN FEET LOCATIONS OF THE GRID POINTS ARE SHOWN BY THE DECIMAL POINTS

Figure 4-6(a) Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for Verification

13.5 14.7

27.6 23.0 19.3

16.5

STEP 4: 20Z, DECEMBER 16, 1959

13.8

11.6	17.2	15.9	12.8	8.7	6.9	5.4	14.2	17.9	15.2	11.5	8.7	6.9
19.6	18.8	15.2	10.7	9.9	8.1	5.6	21.7	21.8	16.8	9.4	10.2	8.2
20.8	18.6	13.7	11.9	10.6	10.2	7.9	21.4	20.6	16.6	14.2	12.2	12.7
18.8	17.1	14.5	15.5	14.2	12.6	11.6	18.5	19.6	17.2	16.9	16.5	16.3
25.6	26.6	23.4	21.0	15.7	12.9	10.9	24.8	27.5	26.2	23.5	19.0	15.5
41.7	38.4	30.4	23.1	21.1	15.7	14.2	36.3	41.9	33.8	26.2	21.9	16.5
40.1	34.6	32.5	30.6	25.0	18.7	15.5	41.1	41.6	35.0	32.1	26.8	22.0
29.2	23.0	21.4	18.3	15.6	15.2	16.4	33.2	31.2	25.5	19.9	16.4	16.9
	ST	EP 5: 22	Z, DECEM	BER 16, :	1959			STEP	6: 00	Z, DECEM	BER 17,	1959
16.3	18.0	15.5	11.5	8.7	6.9	3.7	19.0	20.8	14.6	9.9	8.7	6.8
22.8	21.9	17.1	10.2	10.4	8.2	7.5	24.4	23.6	17.8	10.6	10./	o.1
23.5	22.7	21.5	16.8	13.8	14.2	12.0	24.3	24.7	25.9	20.3	15.0	15.8
18.5	21.3	21.5	20.2	18.5	19.1	16.7	18.5	21.9	24.5	23.5	17.6	24.3
26.6	28.4	25.4	27.5	23.2	17.3	* 15.1	28.6	28.6	26.9	28.6	24.9	21.1
39.6	45.4	38.5	34.0	26.5	18.6	21.9	41.2	45.0	34.9	35.1	27.1	22.5
39.9	42.5	37.0	32.7	28.5	25.7	21.4	41.0	45.3	39.1	35.0	30.0	24.7
33.6	33.5	21.7	25.0	21.5	20.3	11.7	53.7		31.1	26.2	22.4	21.0
	STI	SP 7: 02	Z, DECEM	BER 17, 1	1959			STEP	8: 04	Z, DECEM	BER 17,	1959
18.2	21.0	14.3	10.5	8.8	8.6	8.2						
24.2	24.1	19.7	14.4	12.5	13.0	12.5				OBSER SIGNIF	ICANT	90% CONF
22.8	23.9	24.6	22.0	17.2	18.3	16.6		TE	TDE	HEIG		INTER
19.5	22.5	26.1	25.6	26.8	25.9	20.6	DECEMBER	17, 1959	03Z 06Z	26. 32. 35.	9	23.6 - 1 29.6 - 31.8 -
28.7	30.8	29.9	\$1.8	28.6	24 .4:	× 21.7			09Z	34.		31.4 -

DATE	TDŒ	OBSERVED SIGNIFICANT REIGHT	90% CONFIDENCE INTERVAL		
DECEMBER 17, 1959	00Z	26.1	23.6 - 28.7		
	03Z	32.9	29.6 - 36.6		
	06Z	35.2	31.8 - 38.9		
	09Z	34.4	31.4 - 37.9		

ALL SIGNIFICANT HEIGHTS ARE IN FEET LOCATIONS OF THE GRID POINTS ARE SHOWN BY THE DECIMAL POINTS RELATIVE LOCATIONS OF THE OBSERVING SHIP ARE REPRESENTED BY THE CROSSES

3.7

9.7

16.4 18.0

4.7

d.2 13.6

11.7

21.6

19.4

Figure 4-6(b) Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for Verification

30.3 25.7 24.4

37.3 32.3 30.1 26.6

33.2 54.7 31.2 27.2 23.5 25.2 21.6

STEP 9: '06Z, DECEMBER 17, 1959

18.3	22.9	15.9	12.6	9.6	10.4	10.1	18.1	25.4	16.4	12.5	11.6	10.5	11.1
24.8	24.0	24.2	15.0	13.0	14.4	14.1	23.9	25.2	21.4	17.0	15.3	15.5	16.8
22.6	24.5	26.6	24.8	18.4	19.7	17.8	22.4	71. 1	17.6		10.2	21.6	•••
22.6	24.3	20.0	24.6	10.4	17.7		22./	24.1	27.0	27.3	19.3	21.5	20.1
19.4	22.0	26.4	21.5	22.9	28.4	23.3	20.5	23.5	26.1	30.3	24.4	31.0	26.0
28.5	51.3	32.6	35.1	31.6	27.5 ×	25.8	\$1.0	54.6	36.3	36.2	56.4	32.5	26.6
40./	1.7.2	46.8	4	33.7	28.0	24.3	34.6	44.6	45.3	43.8	39.4	35.3	29.4
37.4	45.9	43.2	36.6	35.5	52.E	24.3	34.4	41.7	44.0	41.5	39.4	33.4	29.1
35.0	50.3	33.8	27.5	24.5	25.1	21.0	34.6	35.9	38.9	52.Y	26.9	27.5	21.3
	STEE	10: 08	Z, DECEM	BER'17, 1	.959			STEP	11: 102	, DECEM	BER 17,	1959	
19.1	21.5	15.9	13.7	12.9	12.1	12.4	19.0	21.1	15.9	14.1	13.8	14.5	13.9
22.9	26.2	21.7	18.4	16.3	16.3	17.5	22.6	26.1	22.7	20.2	17.4.	17.2	17.9
22.7	24.4	25.5	27.2	22.3	21.6	21.6	22.5	24.0	26.0	29.1	23.7	23.3	22.0
20.9	23.9	36.1	31.9	26.9	36.4	26.0	20.8	24.1	31.3	34.6	29.0	31.7	26.4
30.2	53.8	35.9	37.7	37.4	35.3×	30.2	50.4	34.0	36.4	38.4	39.8	57.2×	32.1
34.1	44.0	44.1	45.0	41.8	57.1	30.4	32.1	42.2	43.4	46.3	45.0	39.3	35.2
35.0	40.9	44.6	41.3	41.6	35.4	30.6	31.5	40.5	43.H	41.8	43.9	38.3	33.4
34.1	36.5	36.9	34.6	27.9	26.7	23.9	33.2	35.3	58.4	33.6	28.5	25.4	26.4
	STEI	12: 12	Z, DECEM	BER 17, 1	959			STEP	13: 14Z	, DECEME	BER 17,	1959	
18.5	17.8	15.8	14.5	14.9	16.4	14.3							
22.8	24.3	19.9	18.7	17.7	18.4	17.7	DAS	np	TIME	OBSER SIGNIF HEIG	ICANT	90% CONF	
19.3	22.0	24.6	27.1	22.4	21.0	21.7		17, 1959	06Z			31.8 -	
23.0	26.9	32.2	55.0	26.5	29.2	27.9	Double	-1, ->>>	09Z 12Z 15Z	35. 34. 32. 33.	0	31.4 - 29.1 - 31.0 -	37.9
26.4	31.9	36.7	41.1	42.3	58.4 ^X	34.2			18z	39.	7	35.6 -	44.3
29.1	30.5	46.5	44.4	45.5	42.6	37.0							
33.4	54.7	42.8	41.6	45.8	41.1	35.2		•				HTS ARE IN	
									LC	CATIONS !	OF THE GR	ID POINTS A	RE

Figure 4-6(c) Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for Verification

32.7 36.7 36.8 35.7 41.0 28.5 29.1

STEP 14: 16Z, DECEMBER 1,, 1959

RELATIVE LOCATIONS OF THE OBSERVING SHIP ARE REPRESENTED BY THE CROSSES

18.5	17.9	15.8	14.5	15.0	16.7	15.8	16.1	15.9	15.7	14.4	14.3	20.2	18.0
22.8	24.3	21.9	20.5	19.5	22.9	20.3	20.6	21.5	23.9	22.5	19.9	26.4	22.1
20.3	23.6	26.4	29.0	24.9	25.3	24.8	22.0	27.1	26.9	28.6	26.8	27.4	26.0
24.0	24.4	32.2	37.5	30.2	52.1	24.6	23.8	26.1	10.5	36.4	31.3	33.6	30.3
28.4	31.9	36.8	41.1	42.6	40.8	34.6	27.7	30.8	37.9	39.9	41.7	41.8	33.8
29.7	38.5	40.5	44.4	45.5	44.1	30.6	28.4	35.8	39.0	45.1	45.5	46.7	39.8
33.4	39.7	42.8	41.6	45.8	41.5	36.9	32.7	35.7	40.4	41.4	45.1	41.6	38.6
33.2	36.7	38.8	35.7	31.0	29.0	29.1	32.5	36.6	39.1	36.1	32.2	51.0	28.4
	STE	P 15: 1	8Z, DECE	BER 17.	1959			STE	P 16:	20Z, DECE	MBER 17	, 1959	
16.1	16.0	15.5	14.4	14.4	19.6	19.0	15./	13.4	12.4	12.0	17.1	20.5	18.4
20.8	21.0	25.6	23.9	22.7	50.2	25.6	21.3	20.6	24.4	22.1	22.3	28.3	25.9
22.0	10.7	26.8	30.1	26.5	30.6	26.6	22.0	30.2	21.2	30.5	28.5	\$1.2	24.4
25.6	27.4	30.3	57.0	35.0	3 3. 3	34.9	25.5	27.8	36.8	36.8	36.9	35.1	36.7
24.8	21.5	34.5	38.6	42.5	45.5	40.2	26.3	28.5	34.5	36.7	44.8	43.6	41.3
29.4	32.4	30.5	42.6	44.7	49.1	41.5	29.6	32.9	38.5	42.1	44.4	49.2	41.2
31.5	54.6	36.0	39.3	42.6	42.4	40.2	33.5	56.1	39.1	39.2	42.5	42.2	40.3
28.6	34.5	35.6 P 17: 2	36.7 2Z, DECE	35.3	35.3	24.1	30.4	35.9	37.3	37.5 00Z. DECEM	35.8	33.3	30.2
	JIE	1	, DECE		-///			OLEF	20: (JOH, DECEM	Dan 10	-777	
15.6	14.5	12.4	12.2	17.8	20.6	19.2							
21.0	20.5	24.5	25.4	24.4	50.0	25.5				OBSERVE SIGNIFIC	ANT	90% CONFI	
22.0	30.2	26.7	30./	30.4	33.1	31.1	DECEMBER		TIME 18Z	39.7	+	35.58 - 4	4.25
26.9	27.8	31.0	35.8	37.1	36.0	31.0	DECEMBER		21Z 00Z 03Z	31.6 35.3 25.6		28.70 - 3 31.8 - 3 23.1 - 2	9.2
21.9	29.9	54.4	56.0	42.3	42.5	42.4							ات
31.2	35.7	37.2	41.6	44.4	48.1	44.4							
									OTES				

ALL SIGNIFICANT HEIGHTS ARE IN FEET LOCATIONS OF THE GRID POINTS ARE SHOWN BY THE DECIMAL POINTS RELATIVE LOCATIONS OF THE OBSERVING SHIP ARE REPRESENTED BY THE CROSSES

Figure 4-6(d) Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for Verification

32.0 37.0 34.8 37.9 35.3 31.4 32.3

STEP 19: 02Z, DECEMBER 18, 1959

	- 70												
14.9	15.4	12.7	13.1	18.7	21.5	19.5	13.5	16.8	13.3	11.8	17.7	20.2	18.4
21.6	21.5	23.8	22.1	24.7	27.8	28.3	18.5	20.4	16.2	20.9	24.5	23.2	24.7
22.5	26.8	26.9	30.3	51.7	34.0	55.8	24.3	26.6	28.1	30.8	30.4	52.8	34.7
27.2	24.2	30.9	35.3	39.1	34.5	37.1	27.1	29.8	32.5	36.5	41.0	59.6	30.1
29.3	31.1	33.5	36.2	44.2	4 1× 8	43.0	30.7	52.3	32.2	33.9	43.6	43.0	44.0
34.5	36.0	37.7	41.5	44.1	40.4	44.3	34.4	52.7	36.5	40.0	44.6	47.5	44.5
34.8	36.1	37.6	59.2	40.6	43.1	40.4	31.4	36.5	36.8	59.4	40.7	42.0	39.7
32.1	36.7	34.9	37.8	35.4	31.9	32.7	26.4	33.4	36.5	38.0	35.9	32.3	32.1
	OMPT	20: 04	Z, DECEM	DED 18 1	1050			STE	P 21: 06	Z, DECEM	DFD 18	1050	
	SIE	20: 04	Z, DECEM	BER 10, 1	1979			511	J 21: 00	E, DECEM	BER 10,	1979	
13.5	17.2	13.5	11.9	17.7	20.2	18.4	13.6	17.7	13.8	13.5	17.5	19.6	18.1
19.7	21.6	19.7	22.7	25.7	23.4	31.4	21.9	22.6	19.4	21.6	25.8	24.0	32.9
25.1	26.2	26.9	29.0	30.0	28.7	33.2	27.3	28.5	29.8	29.9	51.5	ا ،0د	33.6
30.2	24.2	33.5	35.4	40.4	38.6	36.7	31.9	30./	34.1	35.1	38.1	38.4	31.0
33.5	33.5	32.5	33.5	40.0	42.6	41.9	32.8	33.9	33.9	33.0	57.7	49.7	40.9
35.6	33.7	34.7	38-7	42.4	44.8	44.1	35.6	34.5	34.6	37.1	41.9	42.2	42.3
31.2	34.9	33.7	39.9	40.4	42.5	41.1	32.7	34.8	34.3	39.7	39.4	40.1	45.7
26.7	31.8	36.5	37.2	35.9	34.8	35.1	26.3	31.6	36.1	37.5	36.6	34.7	33.1
	STE	22: 08	Z, DECEM	BER 18,	1959			STE	P 23: 10	Z, DECEM	BER 18,	1959	
16.5	20.3	15.2	13.9	17.0	16.4	19.0							
23.8	24.2	22.0	21.8	24.9	24.5	31.3							
										OBSER		90% CONF	TDEMOR
29.0	31.1	31.0	29.2	29.3	29.3	33.1	DATE		TIME	HEIGH		INTER	
							DECEMBER 18	1950	032	25.0	6	23.1 -	28.3
32.6	29.0	35.2	36.3	36.8	38.9	37.0	DECEMBER 10	, 1979	062	20.	6	18.9 -	22.5
							42		09Z 12Z	17.		15.9 -	
34.3	35.4	35.1	34.0	39.4	#1.5	39.9			124	13.0		12.1 -	27.0
34.2	33.1	32.5	37.8	42.4	41.8	45.0							
32.7	34.6	35.2	39.4	40.3	41.0	45.3			HOTES				
27.9	32.2	36.7	37.8	37.2	36.0	34.4						GHTS ARE IN RID POINTS A AL POINTS	
	STEE	24: 12	Z, DECEM	BER 18. 1	1959					ELATIVE I	OCATION	OF THE OB	SERVING
	ULBE		-, DECEM	10, 1	-///				13,13,13	HIT ARE R	ETRESEN!	EO BT THE C	C2352

Figure 4-6(e) Forecast Maps at the End of the Respective Time Steps and the Observed Significant Heights for Verification

Table 4-2(a) Example Forecast Directional Spectrum

SPECIAL CASE 2

TIME = STEP

12.GRIDPOINT = 74

		1 1 1 2 2 2 2 2	0.311/27.03		
0 = 0	0.2203E-01	0.4306E-00	0.1447E 01	0.	0.
	0.	0.	0.	0.	0.
0 = 30	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 60	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 90	0.1196E-01	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 120	0.3515E-01	0.7476E-01	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 150	0.5865E-01	0.3076E-00	0.2273E 01	0.	0.
	0.	0.	0.	0.	0.
9 = 180	0.7055E-01	0.1543E-01	0.5062E 01	0.8767E 01	0.
	0.	0.	0.	0.	0.
0 = 210	0.9283E-01	0.1702E 01	0.5493E 01	0.6646E 01	0.8355E 00
	0.	0.	0.	0.	0.
0 = 240	0.1235E-00	0.2297E 01	0.6446E 01	0.1235E 02	0.1562E-01
	0.9765E-03	0.	0.	0.	0.
0 = 270	0.1291E-00	0.2515E 01	0.8537E 01	0.1826E 02	0.8789E-02
	0.9765E-03	0.	0.2691E-01	0.2990E-02	0.
θ = 300	0.1076E-00	0.2088E 01	0.6727E 01	0.1235E 02	0.
	0.	0.	0.	0.	0.
θ = 330	0.6250E-01	0.1248E 01	0.4189E 01	0.1318E-01	0.
350	0.	0.	0.	0.	0.

For each direction, frequency coordinates are as follows:

0.35

0.188

0.129

0.098

0.079

Units are (deg.), (sec-1), and (ft²/frequency interval), respectively.

Spectral energies are presented in standard machine language "floating point" format, in which the numbers and signs following the Es are the exponents of the base 10 by which the characteristics must be multiplied.

Table 4-2(b) Example Forecast Directional Spectrum

SPECIAL CASE 2

TIME = STEP

15.GRIDPOINT = 61

0 = 0	0.7910E-01	0.1621E 01	0.5275E 01	0.5420E 01	0.
	0.	0.	0.	0.	0.
0 = 30	0.2203E-01	0.6857E 00	0.1196E 01	0.	0.
,	0.	0.	0.	0.	0.
0 = 60	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 90	0.1977E-01	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 120	0.1977E-01	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 150	0.5865E-01	0.3076E-00	0.	0.	0.
	0.	0.	0.	0.	0.
0 = 180	0.7910E-01	0.8643E 00	0.1999E 01	0.	0.
	0.	0.	0.	0.	0.
0 = 210	0.1235E-00	0.1543E 01	0.4189E 01	0.1128E 01	0.6103E-04
	0.	0.	0	0.	0.
0 = 240	0.1235E-00	0.2226E 01	0.7097E 01	0.4785E 01	0.1562E-01
	0.2197E-02	0.	0.1406E-00	0.2441B-01	0.
0 = 270	0.1291E-00	0.2640E 01	0.6606E 01	0.1092E 02	0.
	0.1525E-02	0.	0.	0.	0.
0 = 300	0.1291E-00	0.2615E 01	0.8491E 01	0.1066E 02	0.1983E-02
	0.1763E-01	0.	0.2441E-03	0.	0.
e = 330	0.1235E-00	0.2465E 01	0.7998E 01	0.1714E 02	0.
	0.	0.	0.	0.	0.

For each direction, frequency coordinates are as follows:

0.35

0.188

0.129

0.098 0.044

0.079

Units are (deg.), sec-1), and (ft2/frequency interval), respectively.

Spectral energies are presented in standard machine language "floating point" format, in which the numbers and signs following the Es are the exponents of the base 10 by which the characteristics must be multiplied.

Table 4-2(c) Example Forecast Directional Spectrum

SPECIAL CASE 2

TIME = STEP

18.GRIDPOINT = 73

0.1112E 02	0.7097E 01
0.	0.
0.2226E 01	0.
	0.
	0.
	0.
0.	0.
0.	0.
0.2658E-00	0.
0.	0.
0.	0.
0.	0.
0.7793E 00	0.
0.	0.
0.2226E 01	0.1428E 01
0.	0.
0.1501E 02	0.9474E 01
0.	0.
0.1760E 02	0.1812E 02
	0.
	0.3315E 02
	0.
0.1235E 02	0.1839E 02
0.	0.
	0. 0.2226E 01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

For each direction, frequency coordinates are as follows:

0.35

0.188

0.129 0.050 0.098

0.079

Units are (deg.), sec-1), and (ft²/frequency interval), respectively.

Spectral energies are presented in standard machine language "floating point" format, in which the numbers and signs following the Es are the exponents of the base 10 by which the characteristics must be multiplied.

ABSCISSA SHOWS STEP NUMBER, VERIFICATION WAVE OBSERVATION USED, AND THE WIND OBSERVATION TIME USED IN THE STEP

Figure 4-7 Case II, Verification Graphs

Figure 4-8(a) Comparison of Observed and Forecast Spectra, 1200Z 17 December 1959

Figure 4-8(b) Comparison of Observed and Forecast Spectra, 1800Z 17 December 1959

Figure 4-8(c) Comparison of Observed and Forecast Spectra, OOOCZ 18 December 1959

CHAPTER 5 CONCLUSIONS

5-1 SUMMARY OF RESULTS

The results described in the preceding section are promising and would be excellent except for three conditions. They are: 1) too few low frequency waves in the spectrum, 2) two slow a decay for swell, and, 3) the lack of knowledge about the initial conditions.

It has been shown that, 1) numerical forecasts of sea and swell spectra for the entire ocean can be made, 2) wave forecasts can be made without defining a fetch, thus decreasing the subjectivity of the forecast, and 3) a completely objective model has been established which should be useful for testing hypotheses and upon which further research can be based. This model keeps track of all frequencies involved and propagates them with the correct group velocities.

5-2 DISCUSSION OF ERRORS

There are several possible causes for having too few low frequency waves in the spectrum, under the assumption that the observations are correct. Long swell, which the model would ignore, could have been present at some distance away in the initial sea. However, this is unlikely because of the smooth shapes of the observed spectra. It was assumed that the energy increment added was a function of the energy within ±90 degrees of the wind direction. If this is changed to consider energy in all directions, lower frequencies and higher waves will result. A more likely possibility is simply that the Neumann spectrum does not predict energy at low enough frequency. This has been pointed out in another study. (W. J. Pierson, Jr., Reference 12)

Another important consideration is the fact that the Neumann spectrum was not devised for this particular purpose. It assumes a constant wind throughout the length of the fetch. However, in the real case which the present model allows, the wind direction often has considerable variation in time. Such a changeable wind direction tends to spread the higher frequencies into other directions before allowing the lower frequencies to grow. A reasonable correction for this variation might be a small energy transfer function which acted to transfer energy from that established by previous wind directions to that which is consistent with the latest wind velocity.

Swell did not decay fast enough in either of the cases studied. This can be caused by either the lack of a dissipation function or by improper dispersion. Because of the discrete definition of the spectrum, with all of the energy within a 30 degree sector concentrated along the central direction, waves from a single grid point are not allowed to disperse properly. When the swell component has traveled a distance of about three grid points from the location of its generation the value of the component should have decreased by approximately one-half. The remaining half of the energy should have spread into the surrounding grid points which are in the triangle between the 30 degree radial lines. If the fetch is quite small, say containing only one or two grid points, and has sharp sides, this assumption will, thus, cause forecasts for some grid points to be much too high and for other grid points much too low. The total energy in the entire area, however, should be correct. The only way that this total energy can be decreased is through some type of dissipation. Because such small sharp edged fetches seldom occur and do not seem to have occurred in either of the cases studied, this assumption does not appear to be at fault. The edges of the fetch are poorly defined so that all the surrounding grid points should be trading part of their energy with each other if the model allowed it. These trades should not change the total energy at any one grid point by a large percentage. If this were the problem, the final significant height field would be quite irregular; instead, the field is very easy to contour with smooth maxima.

A second dispersion error is caused by not having forecast low enough frequencies to be present. These lower frequencies travel more rapidly, thus passing the observing station faster. Along with this is the fact that the model propagates waves in accordance with linear wave theory, which may be slightly too low. As a more complete test of the effects of dispersion, two test forecasts were prepared for Case II. In the first of these, the assumption was made that the wind was calm after step 18 (OOZ, December 18). A comparison of these results with the previous forecast is shown in Table 5-1 for grid point 73. This comparison shows that the changing wind direction was responsible for only a small part of the error. In the second test, besides the same assumption of a calm wind after step 18, the frequencies in step 17 were decreased by 1/4 of their value. This is a slight underestimate of the frequency shown in Figure 4-8(c) so that it results in a slight overestimate of the propagation velocity. These results are also shown in Table 5-1 and again account for another small part of the error. In both of these test forecasts the significant heights near grid point 73 decreased fairly evenly and regularly. Effectively, therefore, when high waves are experienced over a large area surrounding the location of interest, waves cannot propagate out of the region fast enough to cause the extremely rapid decays observed, although reasonably rapid decays, such as shown for ship J in Figure 4-5, can occur. One further test should be made in a final attempt to explain these errors in terms of dispersion. This would be to artificially decrease the frequencies throughout the entire computation. Until this is done dissipation cannot be proved conclusively.

Since the observed decay may not completely be explained by dispersion errors, the need for a dissipation function must be considered. As stated previously, the Neumann spectrum was not devised for this particular application. It already considers this dissipation term for the area of generation.

A simple dissipation function could be added very easily by increasing the tabulated values of the growth function and decreasing the various components. It should be noted that some dissipation function could be found which would reduce the errors in Case II to negligibility.

Table 5-1 Forecasts of Significant Height in feet for Grid Point 73 Assuming Special Conditions

Time Step	Observed	Regular Forecast	Calm Wind(1)	Calm Wind (1) (2) and Fast Propagation
18	35-3	43.6	43.6	42.1
19	28.8(3)	42.5	41.5	40.8
20	23.9(3)	41.8	40.7	40.7
21	20.6	43.0	42.0	39.9
22	19.5(3)	42.6	40.5	38.7
23	16.1(3)	41.7	39.3	38.7
24	13.6	41.5	38.9	37.8

⁽¹⁾ All winds after time step 18 are treated as calm.

5-3 OUTLOOK

One of the major objectives of the present paper is to define a numerical prediction model that will aid the future development of wind-wave forecasting through objectivity. It should be relatively easy to try other possible spectra besides the one used and conduct an extensive verification by comparison with observations. Addition of the effect of the sea-air temperature difference and other stability and atmospheric turbulence criteria on generating waves should be a worthwhile improvement. Dissipation functions can be easily tested.

⁽²⁾ All frequencies decreased by 25% after time step 17 to match forecast errors and increase propagation velocity.

^{(3)&}lt;sub>Interpolated</sub>

The problem of specifying the initial conditions is quite serious for short range forecasts. For example as shown in Figure 4-7, it took a day of forecasting to catch up with an initial 12 foot error in significant height. The energy that could not have come from a single particular wind speed should not be dropped. It might help if a check were made on the winds at surrounding grid points and earlier times and using one of these values to improve the initial estimate. Another simpler and possibly more promising solution might be to estimate the principal direction of the initial sea and use this with the lowest wind speed which would generate a fully developed spectrum having the estimated significant height. If this were tried, no initial wind conditions would be needed.

The various parameters of the model, such as grid size and shape, time step length, and the method of specifying the spectrum, should be studied in some detail. Perhaps the grid size should be increased (more space between points) and the extra memory space thereby saved used to provide two tags for each component so that the exact distance past and to the side of each grid point could be specified. This system might allow more accuracy in location. However, this increase in accuracy will be limited unless the curvature of the earth is also considered. As suggested previously, other methods of specifying the spectra should be considered.

Most of the possible practical applications of the model include either hind-cast statistics or forecasting. For these purposes, a self correcting system should be added so that all wave observations can be added as available. Other more complete methods of specifying the final forecast are needed. However, ship motions and other similar parameters which depend on the spectrum can be programmed so that the final output is the desired parameter directly.

LMSC-801296

REFERENCES

- 1. Aspinwall, D. M. (1960): "System Response to Ocean Waves." Technical Report No. 480532. Lockheed Missiles and Space Division, Sunnyvale, California.
- 2. Phillips, O. M. (1961a): "The Dynamics of Random Finite-amplitude Waves."

 Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 3. Tick, L. J. (1961): Comments on "The Dynamics of Random Finite Amplitude Gravity Waves" by O. M. Phillips. Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 4. Pierson, W. J., Jr. (1961): Comments on "The Dynamics of Random Finte Amplitude Waves" by O. M. Phillips. Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 5. Phillips, O. M. and E. J. Katz (1961): "The Low Frequency Components of the Spectrum of Wind-Generated Waves." J. Marine Research, Vol. 19, No. 2, p. 57 - 69.
- 6. Hasselmann K. (1960): "Grundgleichungen der Seegangsvoraussage." Schiffstechnik, Bd. 7, Heft 39, p. 191 - 195.
- 7. Tucker, M. J. (1956): "A Ship-Borne Wave Recorder." Trans. Inst. Naval Arch., London, Vol. 98, p. 236.
- 8. Neumann, G., and W. J. Pierson, Jr. (1957): "A Detailed Comparison of Theoretical Wave Spectra and Wave Forecasting Methods." Deut. Hydrog. Z., 'Bd. 10, Heft 3, p. 6 92 and Bd. 10, Heft 4, p. 134 146.
- 9. Darbyshire, J. (1959): "A Further Investigation of Wind-Generated Waves."
 Deut. Hydrog. Z. Bd. 12, Heft 1, p. 1-13.

REFERENCES (Continued)

- 10. Breitschneider, C. L. (1959): "Wave Variability and Wave Spectra for Wind-Generated Gravity Waves." Tech. Memo. No. 118, Beach Erosion Board, Corps of Engineers.
- 11. Gelci, R., H. Cazale', and J. Vassal (1957): "Prevision de la Houle, la Methode des Densites Spectro-angulaires." Bulletin d'Information du Comite Central d'Oceanographie et d'Etude des Cotes, Vol. 9, No. 8, p. 416 435.
- 12. Pierson, W. J., Jr. (1959): "A study of Wave Forecasting Methods and of the Height of a Fully Developed Sea on the Basis of Some Wave Records Obtained by the O. W. S. Weather Explorer During a Storm at Sea." Deut. Hydrog. Z. Bd. 12, Heft 6, p. 244 259.
- 13. Walden, H. (1961): "Comparison of One-Dimensional Wave Spectra Recorded in the German Bight with Various Theoretical Spectra." Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 14. Pierson, W. J., Jr. and G. Neumann (1961): "Known and Unknown Properties of the Frequency Spectrum of a Wind Generated Sea." Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 15. Darbyshire, J. (1961): "Simultaneous Forecasts for Ship Routing." Informal Presentation at Conference on Ocean Wave Spectra, Easton, Maryland.
- 16. Gelci R. and P. Chavy (1961): "Technical Aspects of Numerical Forecasting of Swell." Presented at Conference on Ocean Wave Spectra, Easton, Maryland.
- 17. Pierson, W. J., Jr., G. Neumann, and R. W. James (1955): "Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics." U. S. Navy Hydrographic Office. H. O. Publ. 603. 284 pages.

REFERENCES (Continued)

- 18. Simpson, L. S. (1955): "The Generation and Propagation of Short Crested Gaussian Waves in a Moving Fetch." Ph. D. Dissertation in the Department of Meteorology and Oceanography, New York University. 60 pages.
- 19. Hubert, W. E. (1957): "A Preliminary Report on Numerical Sea Condition Forecasts." Monthly Weather Review Vol. 85, No. 6, p. 200 204.
- 20. Cote, L. J., J. O. Davis, W. Marks, R. J. McGough, E. Mehr, W. J. Pierson, Jr., J. F. Ropek, G. Stephenson, and R. C. Vetter (1960): "The Directional Spectrum of a Wind Generated Sea Obtained by the Stereo Wave Observation Project." Meteorological Papers Vol. 2, No. 6, New York University, College of Engineering. 88 pages.
- 21. Phillips, O. M. (1958): "Wave Generation by Turbulent Wind Over a Finite Fetch." Proc. 3rd U. S. Congress of Applied Mechanics. p. 785 789.
- 22. Phillips, O. M. (1961): "Discussion on Papers During Session on One Dimensional Gravity Wave Spectrum." Presented at Conference on Ocean Wave Spectra, Easton, Maryland.

APPENDIX A

Figure A-1 Master Flow Diagram

APPENDIX B PROGRAM

I DECK STACKING

Monitor Cards

Program

Data Cards

1: Title Card: Case number ending in Col. 8

2: Print Interval: Interval for print-out time in Cols. 2 - 12*.

3: End Card: Number of final step in Col. 2 - 12*, number of

special cards ending in Col. 15. 4: Time: First time step number

5. thru 64: Wind Field: Card format specified below

65 thru X: Special Cards (if specified in Card 3) time step in Col 1-8*.

Grid point number in Col. 14 - 16

X thru X + 28: Initial wave fields (if time = 0): Card format specified below

X + 29: Time

X + 30 thru XX: Wind Field repeat for all time steps

II CARD FORMATS

CARD A. WIND FIELDS

CARD B. INITIAL WAVE FIELD

where:

vv. = wind speed in

ooo. = wind direction in degrees

es } at location N+M

нн. = significant wave height

N+M ≤ 519 = relative grid point number over water.

*Use decimal point.

Table B-1 Program

*	FORTRAN	2BAE0010
C	MAIN PROGRAM. L. BAER. WAVE FCSTG2	2BAE0020
	COMMON SPACE.BIGFLD.E.STORGE.EMAX.DIR.FREQ.DELTFQ.	2BAE0030
	2TABCOL, TABROW, TABLE, JUMP, TIME, MINDIS, NEVNTB, 2NODTAB	2BAE0040
	DIMENSION SPACE (864) . BIGFLD (864) . E (10.12) . EMAX (10.12) .	2BAE0050
	2STORGE(20760) DIR(12) FREQ(10) DELTFQ(10) TABCOL(25)	2BAE0060 2BAE0070
	2TABROW(11) +TABLE(25+11) +WINDDR(864) +WINDSP(864) +	2BAE0080
	2MINDIS(12) •NEVNTB(12) •NODTAB(12)	2BAE0090
	DIMENSION TIMEL(100) LOCGRD(100) FIRST(519)	2BAE0100
	EQUIVALENCE (WINDDR + SPACE) + (WINDSP + BIGFLD)	2BAE0110
	DIR(1)=0.	28AE0120
	DIR(2)=30.	28AE0130
	DIR(3)=60.	28AE0140
	DIR(4)=90.	28AE0150
	DIR(5)=120.	2BAE0160
	DIR(6)=150.	2BAE0170
	DIR(7)=180.	28AE0180
	DIR(8)=210.	28AE0190
	DIR(9)=240.	2BAE0200
	DIR(10)=270.	28AE0210
	DIR(11)=300.	2BAE0220
	DIR(12)=330.	2BAE0230
	FREQ(1)=.35	2BAE0240
	FREQ(2)=1./5.31	2BAE0250
	FREQ(3)=1.7.77	2BAE0260
	FREQ(4)=1./10.23	2BAE0270
	FREQ(5)=1./12.69	2BAE0280
	FREQ(6)=1./15.15	2BAE0290
	FREQ(7)=1./17.61	28AE0300
	FREQ(8)=1./20.07	28AE0310
	FREQ(9)=1./22.53	2BAE0320
	FREQ(10)=.04	2BAE0330
	DELTFQ(1)=.20 DELTFQ(2)=.5*(FREQ(1)-FREQ(3))	28AE0340 28AE0350
	DELTFQ(3)=.5*(FREQ(2)-FREQ(4))	2BAE0360
	DELTFQ(4)=+5*(FREQ(3)-FREQ(5))	28AE0370
	DELTFQ(5)=•5*(FREQ(4)-FREQ(6))	28AE0380
	DELTFQ(6)=•5*(FREQ(5)-FREQ(7))	2BAE0390
	DELTFQ(7)=-5*(FREQ(6)-FREQ(8))	28AE0400
	DELTFQ(8)=.5*(FREQ(7)-FREQ(9))	2BAE0410
	DELTFQ(9)=.5*(FREQ(8)-FREQ(10))	2BAE0420
	DELTFQ(10)=.5*(FREQ(9)-(1./27.46))	28AE0430
	TABCOL(1)=0.	2BAE0440
	TABCOL(2)=1.	28AE0450
	TABCOL(3)=5.	2BAE0460
	TABCOL(4)=10.	2BAE0470
	TABCOL(5)=15.	2BAE0480
	TABCOL(6)=20.	2BAE0490
	TABCOL (7)=25.	2BAE0500
	TABCOL(8)=30.	2BAE0510
	TABCOL (9)=35.	2BAE0520
	TABCOL(10)=40.	2BAE0530

Table B-1 Program (Continued)

	TABCOL(11)=45.		E0540
	TABCOL (12)=50.		E0550
	TABCOL(13)=60.		E0560
	TABCOL (14)=70.		E0570
	TABCOL (15)=80.		E0580
	TABCOL (16)=90.		E0590
	TABCOL(17)=100.		E0600
	TABCOL(18)=115.		E0610
	TABCOL(19)=130.		E0620
	TABCOL (20)=145.		E0630
	TABCOL (21)=160.		E0640
	TABCOL (22)=175.		E0650
	TABCOL (23) = 200 .		E0660
	TABCOL (24)=250.		E0670
	TABCOL (25)=400.		E0680
	TABROW(1)=16.88		E0690
	TABROW(2)=23.6		E0700
	TABROW(3)=30.4		E0710
	TABROW(4)=37.1		E0720
	TABROW(5)=43.9	28A	E0730
	TABROW(6)=50.6	28A	E0740
	TABROW(7)=57.4	2BA	E0750
	TABROW(8)=64.1	2BA	E0760
	TABROW(9)=74.3	2BA	E0770
	TABROW(10)=84.4	2BA	E0780
	TABROW(11)=94.5		AE0790
	DO 1 N=1 .25	2BA	4E0800
	DO 1 L=1.11		4E0810
1	TABLE(N.L)=0.	그는 그들은 그는	AE0820
	TABLE(1.1)=.1		AE0830
	TABLE(1.2)=.15		AE0840
	TABLE(1.3)=.2		AE0850
	TABLE(1.4)=.35		AE0860
	TABLE(1.5)=.5		AE0870
	TABLE(1.6)=.7		AE0880
	TABLE(1,7)=1.		AE0890
	TABLE(1,8)=1.5		AE0900
	TABLE(1.9)=2.0		AE0910
	TABLE(1,10)=3.1		AE0920
	TABLE(1,11)=4.5		AE0930
	TABLE(2.2)=.6	그 이 그 전에 그리고 있는데 그는 그리고 있는데 그리고 있다.	AE0940
	TABLE(2,3)=1.7		AE0950
	TABLE(2,4)=1.8		AE0960
	TABLE(2,5)=2.0		AE0970
	TABLE(2.6)=2.5		AE0980
	TABLE (2,7)=3.		AE0990
	TABLE(2.8)=3.5		AE1000
	TABLE(2.9)=4.0		AE1010
	TABLE(2.10)=5.3		AE1020
	TABLE (2 + 11) = 7 •		AE1030
	TABLE(3.4)=3.2		AE 1040
	TABLE(3.5)=3.4		AE 1050
	TABLE (3.6)=3.8		AE1060
	TABLE (3.7)=4.	287	AE1070

TABLE(3.8)=4.5	2BAE1080
TABLE(3.9)=6.	2BAE1090
TABLE(3.10)=8.7	2BAE1100
TABLE(3,11)=12.	2BAE1110
TABLE (4,4)=2.	2BAE1120
TABLE (4.5)=4.4	2BAE1130
TABLE (4.6)=4.5	2BAE1140
TABLE (4.7)=4.5	2BAE1150
TABLE(4,8)=5.	2BAE1160
TABLE(4.9)=7.5	2BAE1170
TABLE (4,10)=11.	2BAE1180
TABLE(4,11)=15.	2BAE1190
TABLE(5,5)=5.	2BAE1200
TABLE (5,6)=5.	2BAE1210
TABLE(5.7)=5.	2BAE1220
TABLE(5.8)=5.4	2BAE1230
TABLE(5,9)=8.	2BAE1240
TABLE(5,10)=12.	2BAE1250
TABLE(5,11)=17.	2BAE 1260
TABLE(6,5)=5.	2BAE 1270
TABLE (6.6)=5.5	2BAE1280
TABLE(6,7)=6.	2BAE 1290
TABLE(6.8)=6.4	2BAE1300
TABLE(6.9)=9.	2BAE1310
TABLE(6.10)=13.	2BAE1320
TABLE (6.11)=20.	2BAE1330
TABLE (7.5)=4.5	2BAE 1340
TABLE (7.6)=5.9	2BAE1350
TABLE (7,7)=6.4	2BAE1360
TABLE (7.8)=6.9	2BAE1370
TABLE (7.9) =9.4	2BAE1380
TABLE (7.10)=14.	2BAE 1390
TABLE(7.11)=23.	2BAE 1400
TABLE (8.6)=6.6	2BAE1410
TABLE (8.7)=7.	2BAE 1420
TABLE (8.8)=8.	2BAE1430
TABLE(8,9)=10.	2BAE1440
TABLE(8,10)=15.	2BAE1450
TABLE (8,11)=25.	2BAE1460
TABLE (9.6) = 7.7	2BAE1470
TABLE (9.7)=8.	2BAE 1480
TABLE (9,8)=9.	2BAE 1490
TABLE (9,9)=10.4	2BAE1500
TABLE (9.10)=16.	2BAE1510
TABLE (9.11)=25.	2BAE1520
TABLE (10.6)=8.7	2BAE1530
TABLE(10,7)=9.1	2BAE1540
TABLE(10.8)=9.8	2BAE1550
TABLE(10.9)=10.7	2BAE1560 2BAE1570
TABLE(10,10)=17.	
TABLE(10,11)=25.	2BAE1580
TABLE(11.6)=9.	2BAE1590 2BAE1600
TABLE(11,7)=10.	2BAE 1610
TABLE(11.8)=10.5	20451010

Table B-1 Program (Continued)

TABLE(11.9)=11.	2BAE1620
TABLE(11.10)=17.5	2BAE1630
TABLE(11.11)=25.	2BAE1640
TABLE(12.6)=7. TABLE(12.7)=11.	2BAE1650
	2BAE1660
TABLE(12.8)=11. TABLE(12.9)=11.4	2BAE1670
TABLE(12.10)=18.	2BAE1680
TABLE(12+11)=25.	2BAE1690 2BAE1700
TABLE(13.7)=12.	28AE1710
TABLE(13.8)=12.	2BAE1720
TABLE(13,9)=12.	2BAE1730
TABLE(13,10)=18,5	2BAE1740
TABLE(13,11)=25.	2BAE1750
TABLE(14.7)=12.	2BAE1760
TABLE(14,8)=12.4	2BAE1770
TABLE(14.9)=12.4	2BAE1780
TABLE(14.10)=19.	28AE1790
TABLE(14+11)=25.	2BAE1800
TABLE(15.7)=12.	2BAE1810
TABLE(15.8)=12.6	2BAE1820
TABLE(15.9)=12.8	2BAE1830
TABLE(15.10)=20. TABLE(15.11)=25.	2BAE1840
TABLE(16.7)=11.	2BAE1850
TABLE(16.8)=12.9	2BAE1860
TABLE (16,9)=13.2	2BAE1870 2BAE1880
TABLE (16 • 10) = 21 •	28AE1890
TABLE(16.11)=25.	2BAE1900
TABLE(17.7)=10.	2BAE1910
TABLE(17.8)=13.2	2BAE1920
TABLE(17.9)=13.8	2BAE 1930
TABLE(17.10)=22.	2BAE1940
TABLE(17,11)=25.	2BAE1950
TABLE(18.8)=13.5	2BAE 1960
TABLE(18.9)=14.2	2BAE1970
TABLE(18.10)=23.	2BAE1980
TABLE(18+11)=25.	2BAE1990
TABLE(19.8) -14.	2BAE2000
TABLE (19.9)=15.	2BAE2010
TABLE(19:10)=24. TABLE(19:11)=25.	2BAE 2020
TABLE(20.8)=14.	2BAE2030
TABLE (20.9)=15.8	2BAE2040 2BAE2050
TABLE(20+10)=25.	2BAE2060
TABLE(20,11)=25.	2BAE2070
TABLE(21.8)=13.	2BAE2080
TABLE(21.9)=17.	2BAE2090
TABLE(21+10)=25.	2BAE2100
TABLE(21.11)=25.	2BAE2110
TABLE(22.8)=10.	2BAE2120
TABLE(22.9)=20.	2BAE2130
TABLE(22.10)=25.	2BAE2140
TABLE(22,11)=25.	2BAE2150

	TABLE(23.9)=23.	2BAE2160
	TABLE(29.10)=25	2BAE2170
	TABLE(23.11)=25.	2BAE2180
	TABLE(24.9)-25.	2BAE2190
	TABLE(24.10)=25.	2BAE2200
	TABLE(24.11)=25.	2BAE2210
	TABLE(25.9)=25.	2BAE2220
	TABLE (25.10)=25.	2BAE2230
	TABLE (25.11)=25.	2BAE2240
	MINDIS(1)=120	2BAE2250
	MINDIS(2)=207.5	2BAE2260
	MINDIS(3)=207.5	2BAE2270
	MINDIS(4)=120	2BAE2280
	MINDIS(5)=207.5	2BAE2290
	MINDIS(6)=207.5	2BAE2300
	MINDIS(7)=120	2BAE2310
	MINDIS(8)=207.5	2BAE2320
	MINDIS(9)=207.5	2BAE2330
	MINDIS(10)=120	2BAE2340
	MINDIS(11)=207.5	2BAE2350
	MINDIS(12)=207.5	2BAE2360
		2BAE2370
	NEVNTB(1)=32	2BAE2380
	NEVNTB(2)=31	2BAE2390
	NEVNTB(3)=-1	2BAE2400
	NEVNTB(4)=-1	2BAE2410
	NEVNTB(5)=-33	2BAE2420
	NEVNTB(6)=-32	2BAE2430
	NEVNTB(7)=-32	
	NEVNTB(81=-31	2BAE2440
	NEVNTB(9)=1	2BAE2450
	NEVNTB(10)=1	2BAE2460
	NEVNTB(11)=33	2BAE2470
	NEVNTB(12)=32	2BAE2480
	NODTAB(1)=32	2BAE2490
	NODTAB(2)=32	2BAE2500
	NODTAB(3)=31	2BAE2510
	NODTAB(4)=-1	2BAE2520
	NODTAB(5)=-1	2BAE2530
	NODTAB(6)=-33	2BAE2540
	NODTAB(7)=-32	2BAE2550
	NODTAB(8)=-32	2BAE2560
	NODTAB(9)=-31	2BAE2570
	NODTAB(10)=1	2BAE2580
	NODTAB(11)=1	2BAE2590
	NODTAB(12)=33	2BAE2600
	READ INPUT TAPE 5.1000.NTITLE.TMPRNT.ENDTME.NSPECT.NTIME.	2BAE2610
	1(WINDSP(N), WINDDR(N), N=1,519)	2BAE 2620
1000	FORMAT(18/F12.0/F12.0.13/18/(18F4.0))	2BAE2630
	IF (NSPECT)4000+4000+4001	2BAE2640
4001	READ INPUT TAPE 5.4002. (TIMEL(K).LOCGRD(K).K=1.NSPECT)	2BAE2650
4002	FORMAT(F8.0.18)	2BAE2660
C	TO INSPECT COMPLETE SPECTRA, PUT NUMBER OF	2BAE2670
C	POINTS TO BE COVERED AS NSPECT AND ADD A CARD	2BAE2680
C	AFTER FIRST WINDFIELD FOR EACH POINT. MAX	2BAE2690

C	NUMBER OF POINTS=100. PRINTOUT TIME ONLY	2BAE2700
4000	CALL SDH(31)	2BAE2710
	REWIND 31	2BAE2720
	IF (NTIME)2,3,2	2BAE2730
3	READ INPUT TAPE 5,2000, (FIRST(N), N=1,519)	2BAE2740
	FORMAT(18F4.1)	2BAE2750
2000		
	TIME=0.	2BAE2760
	DO 2020 I=1,20760	2BAE2770
2020	STORGE (1) = 0.	2BAE2780
	DO 2009 NGRID=1.519	2BAE2790
	IF (WINDSP(NGRID)-10.)2009.2010.2010	2BAE2800
2010	IF (WINDSP(NGRID)-56.)2040.2041	2BAF2810
	WRITE OUTPUT TAPE 6.502.TIME.NGRID.WINDSP(NGRID)	2BAE2820
2041	WINDSP(NGRID)=56.	2BAE2830
2010		
2040	CALL SPREAD (NGRID NGRID O)	2BAE2840
	WINDSP(NGRID)=1.688944*WINDSP(.NGRID)	2BAE2850
	CALL COMPE(WINDSP(NGRID), WINDDR(NGRID), FIRST(NGRID))	2BAE2860
	CALL REPACK (NGRID, NGRID, 0)	2BAE2870
2009	CONTINUE	2BAE2880
	GO TO 2050	2BAE2890
2	PRINT 500	2BAE 2900
500	FORMAT(33H1 PLEASE MOUNT RESERVE TAPE ON C1)	2BAE2910
500		
	PAUSE	2BAE2920
	REWIND 31	2BAE2930
	DO 6 N=1+NTIME	2BAE2940
6	READ TAPE 31,TIME,STORGE	2BAE2950
100	TIME= TIME + 1.	2BAE2960
	IF(TIME-FLOATF(NTIME))7,8,7	2BAE2970
7	CALL POUMP	2BAE2980
	GO TO 25	2BAE2990
8	DO 9 NGRID=1,519	2BAE3000
	IF(WINDSP(NGRID)-10.) 9,10,10	2BAE3010
10	IF(WINDSP(NGRID)-56.) 40. 40.41	2BAE3020
41	WRITE OUTPUT TAPE 6,502,TIME,NGRID,WINDSP(NGRID)	2BAE3030
502	FORMAT(1HO/8HOTIME = F12.0.10HGRID PT = 18.8HSPEED = F12.2)	2BAE3040
	WINDSP(NGRID)=56.	2BAE3050
40	CALL SPREAD (NGRID • NGRID • O)	2BAE3060
40	WINDSP(NGRID)=1.688944*WINDSP(NGRID)	2BAE3070
	CALL COMPE(WINDSP(NGRID) .WINDDR(NGRID) .0)	
		2BAE3080
	CALL REPACK (NGRID, NGRID, 0)	2BAE3090
9	CONTINUE	2BAE3100
	CALL PRPAGT	2BAE3110
2050	WRITE TAPE 31.TIME.STORGE	2BAE3120
	IF(MODF(TIME.TMPRNT))13.12.13	2BAE3130
C	PRINT ROUTINE BEGINS AT LOCATION 12	2BAE3140
	DO 14 N=1,864	2BAE3150
	SPACE (N)=0.	
14		28AE3160
	DO 15 N=1+12	28AE3170
	DO 15 M=1+10	2BAE3180
	CALL SPREAD(M,N,1)	2BAE3190
	DO 15 L=1.864	2BAE3200
15	SPACE(L)=SPACE(L)+BIGFLD(L)	2BAE3210
	DO 16 L=1,864	2BAE3220
16	SPACE(L) = 2.83*SQRTF(SPACE(L))	2BAE3230
10	or many and a second se	CONCOLOG

DO 17 M=1.17.16 IF(M-1)19.19.18	2BAE3240 2BAE3250
19 WRITE OUTPUT TAPE 6.20.NTITLE	2BAE3260
20 FORMAT(34H1BAER WAVE FORECAST LEFT SECTION/6H CASE 18)	2BAE3270
GO TO 21	2BAE 3280
18 WRITE OUTPUT TAPE 6.22	2BAE3290
22 FORMAT(33H1BAER WAVE FORCAST RIGHT SECTION)	2BAE3300
21 WRITE OUTPUT TAPE 6,23,TIME,(SPACE(N),SPACE(N+1),	2BAE3310
1SPACE(N+2),SPACE(N+3),SPACE(N+4),SPACE(N+5),SPACE(N+6),	2BAE3320
1SPACE(N+7),SPACE(N+8),SPACE(N+9),SPACE(N+10),SPACE(N+11),	2BAE3330
1SPACE(N+12) , SPACE(N+13) , SPACE(N+14) , SPACE(N+15) , N=M, 864,	2BAE3340
132)	2BAE3350
23 FORMAT(1H010X+11HTIME STEP F12.0/(1H0/3X+16F7.1))	2BAE3360
17 CONTINUE IF (NSPECT)13,13,4009	2BAE3370 2BAE3380
4009 DO 4010 K=1+NSPECT	2BAE3390
1F (TIMEL(K)-TIME)4010,4012,4010	2BAE3400
4012 CALL SPREAD (LOCGRD(K) . LOCGRD(K) . 0)	2BAE 3410
NGRID=LOCGRD(K)	2BAE 3420
WRITE OUTPUT TAPE 6.4013.TIME.NGRID.((E(N.M).N=1.	2BAE3430
110),M=1,12)	2BAE3440
4013 FORMAT(8H1SPECIAL/8HOTIME = F15.0.12HGRIDPOINT = I8/(5E23.8))	2BAE3450
4010 CONTINUE	2BAE3460
13 WRITE OUTPUT TAPE 6.24.TIME	2BAE3470
24 FORMAT(1H0/1H0/11H0/11H0 STEP F12.0.8HFINISHED)	2BAE3480
IF (TIME-ENDTME) 30.25.25	2BAE3490
30 READ INPUT TAPE 5,31,NTIME, (WINDSP(N), WINDDR(N),N	2BAE3500
1=1+519)	2BAE3510
31 FORMAT(18/(18F4.0)) GO TO 100	2BAE3520 2BAE3530
25 CALL UNLOAD(31)	2BAE 3540
PRINT 501	2BAE 3550
501 FORMAT (32H1 PLEASE RESERVE TAPE ON UNIT C1)	2BAE3560
CALL EXIT	2BAE3570
END	2BAE3580
* FORTRAN	2BAE3590
SUBROUTINE COMPE(WINDSP, WINDDR, FIRST)	2BAE3600
C COMPE, SUBROUTINE TO COMPUTE ALL 120 NEW E VALUES	2BAE3610
COMMON SPACE, BIGFLD, E, STORGE, EMAX, DIR, FREQ, DELTFQ,	2BAE3620
2TABCOL + TABROW + TABL E + JUMP + TIME + MINDIS + NEVNTB +	2BAE3630
2NODTAB	2BAE3640
DIMENSION SPACE(864).BIGFLD(864).E(10.12).EMAX(10.12).	2BAE 3650
2STORGF(20760) DIR(12) FREQ(10) DELTFQ(10) TABCOL(25)	2BAE3660
2TABROW(11) .TABLE(25,11) .DWNDDR(864) .DWNDSP(864) .	2BAE3670
2MINDIS(12), NEVNTB(12), NODTAB(12)	2BAE3680 2BAE3690
EQUIVALENCE(DWNDDR,SPACE),(DWNDSP,BIGFLD) SIGMA=0.	2BAE 3700
DO 200 N=1.10	28AE3710
DO 200 M=1.12	2BAE 3720
200 EMAX(N+M)=0+	2BAE3730
DO 210 JDIR=1+12	2BAE3740
SIGDR=ABSF(WINDDR-DIR(JDIR))-90.	2BAE3750
IF(SIGDR)202+202+205	2BAE3760
205 SIGDR=ABSF(WINDDR-360DIR(JDIR))-90.	2BAE3770

0

	IF(SIGDR)202,202,206	2BAE3780
206	SIGDR=ABSF(WINDDR+360DIR(JDIR))-90.	2BAE3790
	IF(51GDR)202,202,210	2BAE3800
202	DO 204 I=1.10	2BAE3810
204	SIGMA=SIGMA+E(I.JDIR)	2BAE3820
	BETA=SIGDR+90.	2BAE3830
	IF(BETA-75.1215.215.216	2BAE3840
216	DELDIR=0.52359878*(BETA-75.)/30.	2BAE3850
	BETA=75.+(BETA-75.)/2.	2BAE3860
	GO TO 203	2BAE3870
	DELDIR=0.52359878	2BAE3880
	DO 201 JFREQ=1.10	2BAE3890
OTTO STATE OF THE	EMAX(JFREQ, JDIR) = (103. *EXPF(-2. *(32.16/(FREQ(JFREQ) *	2BAE3900
	16.2831853*WINDSP))**2)*DELTFQ(JFREQ)*DELDIR/(6.2831853	2BAE3910
	*FREQ(JFREQ))**6)*(1.+(.5+0.82*EXPF(-0.5*(2BAE3920
	6.2831853*FREQ(JFREQ)*WINDSP/32.16)**4))*COSF(0.034907	2BAE 3930
	* BETA)+0.32*EXPF(-0.5*(6.2831853*FREQ(JFREQ)	2BAE3940
	*WINDSP/32.16)**4)*COSF(0.069813*BETA))	2BAE3950
	CONTINUE	2BAE3960
210	CONTINUE	2BAE3970
	IF (FIRST)300,300,301	2BAE3980
301	TABVAL=(FIRST**2)/8.	2BAE3990
	60 10 302	2BAE4000
300	DO 221 KCOL=1+25	2BAE4010 2BAE4020
221	IF(TABCOL(KCOL)-SIGMA)221,222,222	2BAE4030
	CONTINUE DO 223 KROW=1,11	2BAE4040
222	IF(TABROW(KROW)-WINDSP)223,224,224	2BAE4050
223	CONTINUE	28AE4060
	COL1=(TABLE(KCOL,KROW-1)-TABLE(KCOL-1,KROW-1	2BAE4070
	1))*(SIGMA-TABCOL(KCOL-1))/(TABCOL(KCOL)-TABCOL	2BAE4080
	(KCOL-1))+TABLE(KCOL-1,KROW-1)	2BAE4090
	COL2=(TABLE(KCOL, KROW)-TABLE(KCOL-1, KROW))*	2BAE4100
	(SIGMA-TABCOL(KCOL-1))/(TABCOL(KCOL)-TABCOL	2BAE4110
1	(KCOL-1))+TABLE(KCOL-1,KROW)	2BAE4120
	TABVAL=(COL2-COL1)*(WINDSP-TABROW(KROW-1))/	2BAE4130
2	?(TABROW(KROW)-TABROW(KROW-1))+COL1	2BAE4140
302	DO 230 L=1,10	2BAE4150
	DO 230 K=1,12	2BAE4160
	$EMAX(L \cdot K) = EMAX(L \cdot K) - E(L \cdot K)$	2BAE4170
	IF (EMAX(L.K)) 231.230.230	2BAE4180
231	EMAX(L+K)=0.	2BAE4190
230	CONTINUE	2BAE4200
	SUM = 0.	2BAE4210
	CHOOSE DIR NEAR WINDDR	2BAE4220
	DO 240 JDIR=1+12	2BAE4230
240	IF(DIR(JDIR)-WINDDR)240,241,241	2BAE4240 2BAE4250
T	CONTINUE IF(JDIR-3)260+269+261	2BAE4250 2BAE4260
100000000000000000000000000000000000000	IF(JDIR-10)262,268,261	2BAE4260 2BAE4270
	IF(JDIR-2)264,265,265	2BAE4280
	IF(JDIR-11)266,266,267	2BAE4290
	KA=10	2BAE4300
200	KB=12	2BAE4310

Table B-1 Program (Continued)

	KC=9	2BAE4320
	KD=1	2BAE4330
	KE=8	2BAE4340
	KF=2	2BAE4350
267	GO TO 270 KA=11	2BAE4360
201		2BAE4370
	KB=1 KC=10	2BAE4380
	KD=2	2BAE4390
	KE=9	2BAE4400
	KF=3	2BAE4410
	GO TO 270	2BAE4420
262	KA=JDIR-1	2BAE4430
202	KB=JDIR+1	2BAE4440
	KC=JDIR-2	2BAE4450 2BAE4460
	KD=JDIR+2	2BAE4470
	KE=JDIR-3	2BAE4480
	KF=JD1R+3	2BAE4490
	GO TO 270	2BAE4500
265	KA=1	2BAE4510
	KB=3	2BAE4520
	KC=12	2BAE4530
	KD=4	2BAE4540
	KE=11	2BAE4550
	KF=5	2BAE4560
	GO TO 270 .	2BAE4570
264	KA=12	2BAE4580
	KB=2	2BAE4590
	KC=11	2BAE4600
	KD=3	2BAE4610
	KE=10	2BAE4620
	KF=4	2BAE4630
	GO TO 270	2BAE4640
268	KA=9	2BAE4650
	KB=11	2BAE4660
	KC=8	2BAE4670
	KD=12	2BAE4686
	KE=7	2BAE4690
	KF=1	2BAE4700
	GO TO 270	2BAE4710
269	KA=2	2BAE4720
	KB=4	2BAE4730
	KC=1	2BAE4740
	KD=5 KE=12	2BAE4750
	KF=6	2BAE4760 2BAE4770
270	DO 242 JFREQ=1•10	
210	SUM=SUM+EMAX(JFREQ.JDIR)	28AE4780 2BAE4790
	E(JFREQ,JDIR)=E(JFREQ,JDIR)+EMAX(JFREQ,JDIR)	2BAE4800
	IF(SUM-TABVAL)243,245,244	2BAE4810
243	SUM=SUM+EMAX(JFREQ.KA)	2BAE4820
-43	E(JFREQ.KA)=E(JFREQ.KA)+EMAX(JFREQ.KA)	2BAE4830
	IF(SUM-TABVAL)246,245,247	2BAE4840
246	SUM=SUM+EMAX(JFREQ.KB)	2BAE4850
		2524070

		E(JFREQ,KB)=E(JFREQ,KB)+EMAX(JFREQ,KB)	2BAE4860
		IF(SUM-TABVAL)248,245,249	2BAE4870
	248	SUM=SUM+EMAX(JFREQ.KC)	2BAE4880
		E(JFREQ,KC)=E(JFREQ,KC)+EMAX(JFREQ,KC)	2BAE4890
		IF(SUM-TABVAL)250,245,251	2BAE4900
	250	SUM=SUM+EMAX(JFREQ.KD)	2BAE4910
		E(JFREQ,KD)=E(JFREQ,KD)+EMAX(JFREQ,KD)	2BAE4920
		IF(SUM-TABVAL)252,245,253	2BAE4930
	252	SUM=SUM+EMAX(JFREQ.KE)	2BAE4940
		E(JFREQ.KE)=F(JFREQ.KE)+EMAX(JFREQ.KE)	2BAE4950
		IF(SUM-TABVAL)254,245,255	2BAE4960
	254	SUM=SUM+EMAX(JFREQ.KF)	2BAE4970
		E(JFREQ,KF)=E(JFREQ,KF)+EMAX(JFREQ,KF)	2BAE4980
		IF(SUM-TABVAL)242,245,257	2BAE4990
	244	E(JFREQ.JDIR)=E(JFREQ.JDIR)-(SUM-TABVAL)	2BAE5000
		GO TO 245	2BAE5010
	247	E(JFREQ.KA)=E(JFREQ.KA)-(SUM-TABVAL)	2BAE5020
		GO TO 245	2BAE5030
	249	E(JFREQ.KB)=E(JFREQ.KB)-(SUM-TABVAL)	2BAE5040
	24,	60 TO 245	2BAE5050
	251	E(JFREQ.KC)=E(JFREQ.KC)-(SUM-TABVAL)	2BAE5060
	231	GO TO 245	2BAE5070
	253	E(JFREQ,KD)=E(JFREQ,KD)-(SUM-TABVAL)	2BAE5080
	233	GO TO 245	2BAE5090
	255	E(JFREQ,KE)=E(JFREQ,KE)-(SUM-TABVAL)	2BAE5100
	233	GO TO 245	2BAE5110
	257	E(JFREQ,KF)=E(JFREQ,KF)-(SUM-TABVAL)	2BAE5120
	251	GO TO 245	2BAE5130
		CONTINUE	2BAE5140 2BAE5150
	245	RETURN	
		END	2BAE5160
*		FORTRAN	2BAE5170
		SUBROUTINE PRPAGT	2BAE5180
	190	COMMON SPACE, BIGFLD, E, STORGE, EMAX, DIR, FREQ, DELTFQ,	2BAE5190
		2TABCOL, TABROW, TABLE, JUMP, TIME, MINDIS, NEVNTB.	2BAE5200
		2NODTAB	2BAE5210
		DIMENSION SPACE(864) .BIGFLD(864) .E(10.12) .EMAX(10.12) .	2BAE5220
		2STORGE(20760) DIR(12) FREQ(10) DELTFQ(10) TABCOL(25)	
		2TABROW(11) . TABLE(25.11) . WINDDR(864) . WINDSP(864) .	2BAE5240
		2MINDIS(12) •NEVNTB(12) •NODTAB(12)	2BAE5250
		EQUIVALENCE (WINDDR + SPACE) + (WINDSP + BIGFLD)	2BAE5260
		EVEN=MODF(TIME+2.)	2BAE5270
		DO 601 MDIR=1.12	2BAE5280
		DO 602 MFREQ=1.10	2BAE5290
		CALL JUMPTM(FREQ(MFREQ), MINDIS(MDIR))	2BAE5300
		IF(JUMP)602,604,602	2BAE5310
	604	CALL SPREAD(MFREQ.MDIR.1)	2BAE5320
		IF(EVEN)609,608,609	2BAE5330
	608	LOCMOD=NEVNTB(MDIR)	2BAE5340
		GO TO 610	2BAE5350
	609	LOCMOD=NODTAB(MDIR)	2BAE5360
	610	DO 605 MGRID=1,864	2BAE5370
		NUGRID=MGRID-LOCMOD	2BAE5380
		SPACE(MGRID)=BIGFLD(NUGRID)	2BAE5390

```
605 CONTINUE
                                                                                     2BAE5400
       CALL REPACK (MFREQ, MDIR, 1)
                                                                                     2BAE5410
  602 CONTINUE
                                                                                     2BAE5420
  601 CONTINUE
                                                                                     2BAE5430
  611 RETURN
                                                                                     2BAE5440
       END
                                                                                     2BAE5450
                                                                                     2BAE5460
       FORTRAN
       SUBROUTINE JUMPTM(FREQCY.MNDIST)
IT IS TIME TO JUMP IF JUMP=0
COMMON SPACE, BIGFLD, E, STORGE, EMAX, DIR, FREQ, DELTFQ,
                                                                                     2BAE5470
                                                                                     2BAE5480
C
                                                                                     2BAE5490
      2TABCOL , TABROW , TABLE , JUMP , TIME , MINDIS , NEVNTE ,
                                                                                     2BAE5500
      2NODTAB
                                                                                     2BAE5510
      DIMENSION SPACE(864) . BIGFLD(864) . E(10.12) . EMAX(10.12) .
                                                                                     2BAE5520
      2STORGE(20760) .DIR(12) .FREQ(10) .DELTFQ(10) .TABCOL(25) .
                                                                                     2BAE5530
      2TABROW(11) , TABLE(25,11) , WINDDR(864) , WINDSP(864) ,
                                                                                     2BAE5540
      2MINDIS(12) .NEVNTB(12) .NODTAB(12)
                                                                                     2BAE5550
       EQUIVALENCE (WINDDR , SPACE) , (WINDSP , BIGFLD)
                                                                                     2BAE5560
       DISMIN=MNDIST
                                                                                     2BAE5570
                                                                                     2BAE5580
       TRAVDS=3./FREQCY
       DSLAST=(TIME-1.)*TRAVDS
PASTDS=MODF(DSLAST.DISMIN)
                                                                                     2BAF5590
                                                                                     2BAE5600
                                                                                     2BAE5610
       IF(PASTDS+TRAVDS-DISMIN)1001,1002,1002
 1001 JUMP=1
                                                                                     2BAE5620
       RETURN
                                                                                     2BAE5630
 1002 JUMP=0
                                                                                     2BAE5640
       RETURN
                                                                                     2BAE5650
       END
                                                                                     2BAE 5660
                                                                                     2BAE5670
       FORTRAN
       FUNCTION LANDSE (MCNT)
                                                                                     2BAE5680
       MWHOLE=MCNT/36
                                                                                     2BAE5690
       MPART = XMODF (MCNT , 36)
                                                                                     2BAE5700
                                                                                     2BAE5710
       LANDSE=LSHIFT (MWHOLE . MPART)
       RETURN
                                                                                     2BAE5720
                                                                                     2BAE5730
       END
                                                                                     2BAE5740
       FAP
        ENTRY SPREAD
                                                                                     2BAE5750
                                                                                     2BAE5760
        ENTRY REPACK
                                                                                     2BAE5770
        ENTRY LSHIFT
SPREAD SXA
                 RETURN . 1
                                         SAVE INDICES
                                                                                     2BAE 5780
        SXA
                  RETURN+1.2
                                                                                     2BAE5790
                  RETURN+2,4
                                                                                     2BAE5800
        SXA
        CLA#
                                                                                     2BAE5810
                  1,4
                  MFREQ
                                         MFREQ IF CODE 1, MGRID IF CODEO
                                                                                     2BAE5820
        STO
                                                                                     2BAE5830
        CLA#
                  2.4
        STO
                  MDIR
                                                                                     2BAE5840
        CLA#
                 3 . 4
                                         TEST CODE
                                                                                     2BAE5850
                  CODE 1
                                         DO BIG FLD ON TRA
                                                                                     2BAE 5860
        TNZ
                                  MGRID
                                                                                     2BAE 5870
                 MEREQ
        CLA
                                                                                     2BAE5880
        SUB
                 F1D
                                                                                     2BAE5890
        XCA
        MPY
                 F40A
                                                                                     2BAE 5900
                                                                                     2BAE5910
                                                                                     2BAE5920
2BAE5930
        STD
                  BASEO
                                         IR1 TO 40
```

Table B-1 Program (Continued)

BASEO	AXT	0,2 *+1,1,0	IR2 TO 120 DECR FROM #-3	2BAE5940 2BAE5950
SPR	CAL	STORGE . 1	PACKED WORD TO AC	2BAE5960
	ANA	MASKL	LEFT WORD IN AC LOGICAL	2BAE5970
	ARS	24	TO AC ADDR	2BAE5980
	TSX	FLOAT .4		2BAE5990
	SUB	OCTF		2BAE6000
	STO	E • 2		2BAE6010
	XCA			2BAE6020
	FMP	E • 2		2BAE6030
	STO	E • 2		2BAE6040
	CAL	STORGE • 1		2BAE6050
	ANA	MASKC	CENTER WORD	2BAE6060
	ARS	12		2BAE6070
	TSX	FLOAT . 4		2BAE6080
	SUB	OCTF		2BAE6090
	STO	E-1.2		2BAE6100
	XCA			2BAE6110
	EMP	E-1.2		2BAE6120
	STO	E-1.2		2BAE6130
	CAL	STORGE • 1		2BAE6140
	ANA	MASKR	RIGHT WORD	2BAE6150
	TSX	FLOAT +4		2BAE6160
	SUB	OCTF		2BAE6170
	STO	E-2.2		2BAE6180
	XCA			2BAE6190
	FMP	E-2,2		2BAE6200
	STO	E-2.2		2BAE6210
	TXI	*+1,1,1		2BAE6220
	TXI	*+1,2,3		2BAE6230
	TXL	SPR.2.119		2BAE6240
RETURN		0.1	ADDR FROM SPREAD OR REPACK	2BAE6250
	AXT	0.2	SPREAD+1	2BAE6260
	AXT	0.4	SPREAD+2	2BAE6270
	TRA	4,4	EXIT	2BAE6280
CODE1	CLA	MDIR	SPREAD 864	2BAE6290
	SUB	F1D		2BAE6300
	XCA			2BAE6310
	MPY	F10A		2BAE6320
	XCA			2BAE6330
	ADD	MFREQ		2BAE6340
	SUB	F1D	SUCCES WASK DOUTING	2BAE6350
	STZ	WORK	CHOOSE MASK ROUTINE	2BAE6360
	STD	WORK		2BAE6370
	CLM			2BAE6380
	LDQ	WORK		2BAE6390
	DVP	O OCT3D	REMAINDER IN AC DECR	2BAE6400
			KEMAINUER IN AC DECK	2BAE6410
	STO	WORK		2BAE6420
	CLM	18		2BAE6430
	LLS	16		2BAE6440
	XCA	0.000		2BAE6450
	STD	BASE1 WORK		2BAE6460 2BAE6470
	CLA	WORK		2040410

Table B-1 Program (Continued)

	ARS	18				2BAE6480
	TZE	LMASK	NO REMAINDE	R. CHOOSE	LEFT WORD	2BAE6490
	SUB	OCT1A				2BAE6500
	TNZ	RMASK	TRA IF REM=	2. CHOOSE	RIGHT WORD	2BAE6510
	CLA	ADMSKC	REM=1. CHOO	SE CENTER	WORD	2BAE6520
	STA	MSKPL				2BAE6530
	CLA	AD12				2BAE6540
	STA	SHFTPL				2BAE6550
	TRA	THENSP				2BAE6560
RMASK	CLA	ADMSKR				2BAE6570
	STA	MSKPL				2BAE6580
	CLA	ADO				2BAE6590
	STA	SHIFTPL				2BAE6600
	TRA	THENSP				2BAE6610
LMASK	CLA	ADMSKL				2BAE6620
	STA	MSKPL				2BAE6630
	CLA	AD24				2BAE6640
	STA	SHFTPL				2BAE6650
THENSP	AXT	0.1	FOR C	UTPUT TO	864	2BAE6660
	AXT	0.2	FOR I	NPUT TO 20	720	2BAE6670
BASE1	TXI	*+1,2,0	DECR	FROM CODE1	+13	2BAE6680
BIGSPR	SXD	INDEX .1				2BAE6690
	TSX	\$LANDSE . 4				2BAE6700
	TSX	INDEX.0				2BAE6710
	TNZ	BIGSEA	SEA I	F 1 IN AC		2BAE6720
	STZ	BIGFLD.1	LAND			2BAE6730
	TRA	TEST+1				2BAE6740
BIGSEA	CAL	STORGE . 2				2BAE6750
MSKPL	ANA	0	ADDR	OF MASK FR	OM RMASK-2,+1,0	OR LMASK2BAE5760
SHFTPL	ARS	0	ADDR FROM R	MASK+3 ETC		2BAE6770
	TSX	FLOAT,4				2BAE6780
	SUB	OCTF				2BAE6790
	STO	BIGFLD . 1				2BAE6800
	XCA					2BAE6810
	FMP	BIGFLD.1				2BAE6820
	STO	BIGFLD . 1				2BAE6830
TEST	TXI	*+1,2,40				2BAE6840
	TXI	*+1,1,1				2BAE6850
	TXL	BIGSPR . 1 . 863				2BAE6860
	TRA	RETURN				2BAE6870
REPACK	SXA	RETURN,1	SAVE	INDICES		2BAE6880
	SXA	RETURN+1.2				2BAE6890
	SXA	RETURN+2 . 4				2BAE6900
	CLA#	1.4				2BAE6910
	STO	MFREQ	MFREG	FOR CODE1	, MGRID FOR CODE	0 2BAE6920
	CLA#	2.4				2BAE6930
	STO	MDIR				2BAE6940
	CLA#	3.4	TEST	CODE		2BAE6950
	TNZ	RCODE 1	DO BI	G FLD ON T	RA	2BAE6960
	CLA	MFREQ	MGRID			2BAE6970
	SUB	F1D				2BAE6980
	XCA					2BAE6990
	MPY	F40A				2BAE7000
	XCA					2BAE7010

Table B-1 Program (Continued)

	STD	RBASEO		2BAE7020
	AXT	0.1	IR1 TO 40	2BAE7030
	AXT	0.2	IR2 TO 120	2BAE7040
RBASEO	TXI	*+1,1,0	DECR FROM #-3	2BAE7050
REP	CLA	E+2		2BAE 7060
	TSX	\$SQRT.4		2BAE7070
	ADD	OCTF		2BAE 7080
	TSX	FIX.4	BINARY PT AFTER BIT 5	2BAE7090
	STO	WORK		2BAE7100
	CAL	WORK		2BAE7110
	ANA	MASKR		2BAE7120
	ALS	24		2BAE7130
	SLW	WORK		2BAE7140
	CLA	E-1.2		2BAE7150
	TSX	SSGRT.4		2BAE7160
	ADD	OCTF		2BAE7170
	TSX	FIX.4		2BAE7180
	STO	WORK+1		2BAE7190
	CAL	WORK+1		2BAE7200
	ANA	MASKR		2BAE7210
	ALS	12		2BAE7220
	SLW	WORK+1		2BAE 7230
	CLA	WORK		2BAE 7240
	ADD	WORK+1		2BAE 7250
	STO	WORK		28AE7260
	CLA	E-2.2		2BAE 7270
	TSX	\$SQRT+4		2BAE7280
	ADD	OCTF		2BAE7290
	TSX	FIX.4		2BAE 7300
	STO	WORK+1		28AE7310
	CAL	WORK+1		2BAE 7320
	ANA	MASKR		2BAE 7330
	SLW	WORK+1		2BAE7340
	CLA	WORK		2BAE7350
	ADD	WORK+1		2BAE 7360
	STO	STORGE • 1	STO PACKED WORD CONTAINING 3 WORDS	2BAE 7370
		*+1.1.1	STO PACKED WORD CONTAINING 5 WORDS	2BAE7380
	TXI			2BAE 7390
	TXI	*+1,2,3 REP,2,119		2BAE7400
				2BAE7410
RCODE1	TRA	RETURN MDIR	REPACK 518 ROUTINE FROM 864 FIELD	2BAE 7410
KCODEI	SUB	F1D	REPACK 316 ROUTINE FROM 664 FILLS	2BAE7430
		F10		2BAE 7440
	MPY	FIOA		2BAE7450
		FIUA		2BAE7460
	XCA	MEDEO		2BAE7470
	ADD	MFREQ		
	SUB	F1D	SUBSECT MACK DOUGLAS	2BAE7480
	STZ	WORK	CHOOSE MASK ROUTINE	2BAE7490
	STD	WORK		28AE7500
	CLM			2BAE7510
	LDQ	WORK		2BAE7520
	LLS	0		2BAE7530
	DVP	OCT3D WORK	REMAINDER IN AC DECR	2BAE7540 2BAE7550

	CLM			28AE 7560
	LLS	18		2BAE7570
	XCA			2BAE7580
	STD	RBASE1		2BAE7590
	CLA	WORK		2BAE7600
	ARS	18		28AE7610
	TZE	RMASKL	NO REMAINDER, CHOOSE LEFT WORD	2BAE7620
	SUB	OCT1A		2BAE7630
	TNZ	RMASKR	TRA IF REM=2, CHOOSE RIGHT WORD	2BAE7640
	CLA	AD12	REMAINDER=1, CHOOSE CENTER	2BAE7650
	STA	RSFTPL		2BAE 7660
	CLA	ADMSKC		2BAE 7670
	STA	RMSKPL		2BAE 7680
	TRA	THENPK		2BAE7690
RMASKR		ADO		2BAE7700
	STA	RSFTPL		28AE7710
	CLA	ADMSKR		2BAE7720
	STA	RMSKPL		2BAE7730
	TRA	THENPK		2BAE7740
RMASKL	CLA	AD24		2BAE7750
	STA	RSFTPL		2BAE7760
	CLA	ADMSKL		2BAE7770
	STA	RMSKPL		2BAE7780
THENPK	AXT	0.1	FOR INPUT IR1 TO 864	2BAE7790
	AXT	0.2	FOR OUTPUT IR2 TO 20720	2BAE7800
RBASE1	TXI	*+1,2,0	DECR FROM RCODE+13	2BAE 7810
BIGPK	SXD	INDEX .1		2BAE7820
	TSX	\$LANDSE . 4		2BAE7830
	TSX	INDEX.0		2BAE7840
	TNZ	BGSEPK	SEA IF 1 IN AC	2BAE7850
	TRA	RTEST+1	LAND POINT	2BAE 7860
BGSEPK		SPACE .1	SEA POINT	2BAE 7870
	TSX	\$SQRT.4		2BAE7880
	ADD	OCTF		2BAE7890
	TSX	FIX.4		2BAE 7900
	STO	WORK		2BAE 7910
	CAL	WORK		2BAE7920
	ANA	MASKR		2BAE7930
RSFTPL		0	ADDR FROM RMASKR+1 ETC	2BAE7940
	SLW	WORK		2BAE 7950
RMSKPL	and the state of t	0	ADDR FROM RMASKR+3 ETC	2BAE7960
KINDKI L	COM		COMPLEMENT OF MASK	2BAE7970
	ANA	STORGE + 2	CLEAR PLACE FOR PACKED WORD	2BAE 7980
	ACL	WORK	CELAN PEACE FOR PACKED WORD	2BAE 7990
	SLW	STORGE • 2		2BAE8000
RTFST	TXI	*+1.2.40		2BAE8010
X11.31	TXI	*+1.1.1		2BAE8020
	TXL	BIGPK •1 •863		2BAE8030
	TRA	RETURN		2BAE8040
MFREQ	HTR	KETUKN		2BAE 8050
MDIR	HTR			2BAE8060
WORK	BSS	2		2BAE8070
OCT3D	OCT	+000003000000		2BAE8080
OCTIA	oci	+00000 1		2BAE8090
OCITA		.0000		EUNEUUTU

Table B-1 Program (Continued)

MASKL	OCT	-377700000000		2BAE8100
MASKC	OCT	+000077770000		2BAE8110
MASKR	OCT	+000000007777		2BAE8120
ADMSKL	HTR	MASKL		2BAE8130
ADMSKC	HTR	MASKC		2BAE8140
ADMSKR	HTR	MASKR		2BAE8150
INDEX	HTR	0		2BAE8160
AD12	HTR	12		2BAE8170
ADO	HTR	0		2BAE8180
AD24	HTR	24		2BAE8190
OCTF	OCT	007000000000	TO MODIFY FLOATING WORD, BINARY PT	
F40A	PZE	40		2BAE8210
FID	PZF	0.0.1		2BAE8220
FIOA	PZE	10		2BAE8230
FLOAT	ORA	C1	NBR TO BE FLOATED MUST BE IN AC ADDR	2BAE8240
	FAD	C1	FLOATED NBR STAYS IN AC	2BAE8250
	TRA	1 • 4	RETURN FOR FLOAT	2BAE8260
FIX	UFA	C1	NBR TO BE FIXED MUST BE IN AC	2BAE8270
	LRS	0		2BAE8280
	ANA	C1+1		2BAE8290
	LLS	0	FIXED NBR IN AC ADDR	2BAE8300
	TRA	1.4	RETURN FOR FIX	2BAE8310
CI	OCT	233000000000		2BAE8320
	OCT	77777		2BAE8330
LSHIFT	CLA*	1.4	MWHOLE (0 TO 23)	2BAE8340
	ARS	18		2BAE8350
	ADD	LCNST		2BAE8360
	STA	51	ADDRESS OF WORD TO BE CHOSEN	2BAE8370
	CLA#	2.4	MPART (0 TO 35)	2BAE8380
	ARS	18		2BAE8390
	STA	52	POSITION IN WORD	2BAE8400
51	CAL	0	ADDR FROM *-4	2BAE8410
S2	ALS	0	ADDR FROM *-2	2BAE8420
	PBT			2BAE8430
	TRA	53	O.LAND. PUT ZERO IN AC	2BAE8440
	CLA	10CTAD	1.SEA.PUT 1 IN AC	2BAE8450
	TOV	*+1		2BAE8460
	TRA	3 • 4	EXIT FOR SEA	2BAE8470
53	CLA	OOCTAD		2BAE8480
	TOV	#+1		2BAE8490
	TRA	3.4	EXIT FOR LAND	2BAE8500
LCNST	HTR	LSTABL		2BAE8510
10CTAD	OCT	000001000000		2BAE8520
OOCTAD	HTR	0		2BAE8530
LSTABL	OCT	+00000000000	BIT TABLE	2BAE8540
	OCT	+000301034000		2BAE8550
	OCT	+006071740000	BINARY ONES REPRESENT SEA	2BAE8560
	OCT	+143770400003	ZEROS FOR LAND	2BAE8570
	OCT	-077600000037		2BAE8580
	OCT	-374000000777	POINTS ARE NUMBERED WEST TO EAST	2BAE8590
	OCT	-300000017776	THEN NORTH TO SOUTH, IE SECOND	2BAE8600
	OCT	+000000377774	ROW BEGISN WITH NO 33	2BAE8610
	OCT	+000007777740		2BAE8620
	OCT	+000777774001		2BAE8630

Table B-1 Program (Continued)

	OCT	-377777700177	NOTE	SEA	=	51#9	2BAE8640
	OCT	-377776037777		LAND	=	3465	2BAE8650
	OCT	-377760777777		TOTAL	=	864	2BAE8660
	OCT	-377417777777					2BAE8670
	OCT	-37477777777					2BAE8680
	OCT	-31777777776					2BAE8690
	OCT	+377777777703					2BAE8700
	OCT	-377777774017					2BAE8710
	OCT	-377777700377					2BAE8720
	OCT	-377776007777					2BAE8730
	OCT	-377740177777					28AE8740
	OCT	-377003777777					2BAE8750
	OCT	-360077777777					2BAE8760
	OCT	-200000000000					2BAE8770
SPACE	COMMON	864					2BAE8780
BIGFLD	COMMON	864					2BAE8790
E	COMMON	120					2BAE8800
STORGE	COMMON	20760					2BAE8810
EMAX	COMMON	120					2BAE8820
DIR	COMMON	12					2BAE8830
FRFQ	COMMON	10					2BAE8840
DFLTFQ	COMMON	10					2BAE8850
TABCOL	COMMON	25					2BAE8860
TABROW	COMMON	11					2BAE8870
TABLE	COMMON	275					2BAE8880
JUMP	COMMON	864					2BAE8890
TIME	COMMON	864					28AE8900
MINDIS	COMMON	12					2BAE8910
NEVNTB	COMMON	12					2BAE8920
NODTAB	COMMON	12					2BAE8930
	END						2BAE8940

Table C-1 Data: Case I

TIME	CASE I O SECTION															
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	14 330	14 30
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	15 330	15 360
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	15 300	16 270								
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	15 300	16 270
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	16 300									
	-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	15 270
	-0 -0	- G - O	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	14 240
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	14 240
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	16 240
	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	-0 -0	-0 -0	-0 -0	15 210	16 240	16 210
	-0 -0	-0	-0 -0	-0	-0	-0	-0	13 360	13 360	12 360	13 150	14	15 210	16 210	15 210	14
	-0 -0	-0 -0	-0 -0	-0	-0	13 360	15 360	12 150	11 150	12 150	13 150	14 150	15 210	15 180	180	12 150
	-0 -0	-0 -0	13	13	13	13	11 150	12 150	110	12	12 150	13	180	180	180	11 150
	-0 -0	-0 -0	60	15	14	14 360	13 150	13 150	12 150	12 150	12 150	13 150	13 150	13 150	13 150	11 150
	-0 -0	-0 -0	15	15 30	15	15 120	150	13 150	120	12 150	12 150	12	13 150	13 150	12 150	11 150
	-0 -0	13 270	15	16	17 210	15 150	14 150	13 150	12 150	12 150	12 150	12 150	12	12 150	11 150	11 120
	-0 -0	13 240	14 240	15 240	16 210	180	13 150	12 150	11 150	11 150	11	11 150	11 150	11 150	11	11 150
	-0 -0	13 210	14 210	14 240	210	13	12	11 150	11 150	11 150	11 150	11 150	10 150	10 150	10 150	10 150
	-0 -0	-0 -0	13	13	13	12 180	11	10 150	10	10	150	10 150	10	10	10 150	1500
	-0 -0	-0 -0	-0	-0 -0	12	110	150	10	10	10	10 150	10	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	11	10 150	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0	10	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	:
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0		0	0.	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COTY FURNISHED TO DDC

Table C-1 Data: Case I (Continued)

BAER CASE TIME O RIGHT SECTIO	1 N														
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0 -0	-0 -0
-0 -0	-0	-0	-0 -0	0	0	0	-0 -0	-0 -0	0	0	0	0	0	-0 -0	-0 -0
-0 -0	-0	-0 -0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0	0	-0 -0
16 240	-0 -0	-0 -0	0	10 240	13	14	13 350	10 30	0	0	-0 -0	-0 -0	-0	-0 -0	-0 -0
270	15 240	13 210	210	15 270	17 330	18 530	18 330	160	12	10 90	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
16 270	15 270	14 240	13 210	16 270	19 330	21 330	22 550	20 350	15	12 60	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
15 270	16 240	15 240	15 240	18 270	21 300	23 330	25 330	25 530	19 30	60	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
15 240	16 240	15 240	270	20 270	22 300	24 330	27 530	28 350	24 360	16 30	90	16	150	-0 -0	-0 -0
16 210	15 240	14 240	15 270	20 270	22 300	24 330	28 550	31 350	26 3600	20 360	12 90	15	16	15 180	-0 -0
15 210	13 240	12 240	15 270	20 300	22 330	23 330	27 330	31 330	30 530	22 360	15 330	15 210	-0 -0	-0 -0	-0 -0
12 210	10 210	0	240	16 500	21 330	22 350	25 350	29 150	29 530	23 330	17 330	16 210	-0	-0 -0	-0 -0
16 180	0	0	0	10 530	16 360	21 330	22 530	24 530	25 330	22 330	18 530	240	-0 -0	-0 -0	-0 -0
10	0	0	0	0	10 360	15 360	17 330	18 330	330	18 350	18 300	2/0	210	-0 -0	-0 -0
16 150	0	0	0	0	0	0	10 360	10 550	12 330	14 330	15 300	270	13 240	-0 -0	-0 -0
10 120	10 120	10 90	10 120	0	0	0	0	0	0	0	300	270	10 240	10 210	-0 -0
11 90	90	11 90	10	0	0	0	0	0	0	0	0	0	0	0	-0
11	90	10 90	10 90	0	0	0	0	0	0	0	0	0	C	0	-0 -0
10 120	10 120	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
ů 0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	8 −0
C C	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
-0 -0	-0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER TIME LEFT	CASE 1 SECTION															
	-0 -0	-0 -0	-0	-0	-0	-0	-0 -0	-0	-0	-0 -0						
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	0	0							
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	0	0							
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10 270	0
	-0 -0	-0 -0	-0 -0	-0	-0 -0	15 270	273									
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	25 270
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	22 270
	-0 -0	-0 -0	-0 -0	-0 -0	-c -o	-0 -0	17 270									
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	12 240									
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	17 360	16 560	13 360	10 360	10 210	210	210	14 210	10 210
	-0 -0	-0 -0	-0 -0	-0 -0	-0	19 360	18 360	17 180	16 210	15 210	15 210	15 210	15 210	16 210	15 210	12 210
	-0 -0	-0 -0	20 360	22 30	20 60	120	18 150	17	16 210	16	15	15	16 210	17 210	15	10
	-0	-0 -0	20 30	20 30	21 60	19	16 120	16 120	16 150	15 150	140	14	15 180	16	15 150	10 150
	-0 -0	-0 -0	13 360	10 360	20	20 150	17 120	16	15	13 150	13 150	12 150	14 150	15 150	13 150	0
	-0 -0	0	0	0	20 180	19	16 150	14 120	12 120	11	11	11 150	11 150	0	0	0
	-0 -0	0	0	0	14 180	13 150	11 150	10 120	0	0	0	0	0	0	0	0
	-0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0
	-0	-0 -c	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-0	-0 -0	-0 -0	-0	0	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0	-0 -0	-0	0	0	0	0	0	0	0	0	0	0	0	0
	-0	-c -0	-0 -0	-0	0	0	0	0	0	0	0	0	0	0	0	10
	-0	-0 -0	-0	-0 -0	0	0	0	0	0	0	0	0	0	10	90	12 90
	-0 -0	-0 -0	-c -o	-0 -0	0	0	0	0	0	0	0	0	10	12 90	13	14
	-0 -0	-0 -0	-0	-0 -0	0	0	0	0	0	0	10	90	12 90	13 90	90	15
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 1 RIGHT SECTIO	l IN														
-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-c -0	-0 -0	-0 -0	-0 -0
-c -c	-0 -0	-0 -0	-0 -0	-0 -0	0	-0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0 -0	-0
-c -0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0	0	0	0	0	0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	-0 -0	-c -o	-0 -0	0	-0
12 240	-0 -0	-0 -0	0	0	0	0	0	0	0	0	-0 -0	-0	-0 -0	-0	-0
21 240	17 210	15 210	13	11 300	15	12	10	0	0	0	-0 -0	-0	-0 -0	-0 -0	-0
25 240	20	17 240	17	17 270	17 300	17 330	16 530	14	12 360	0	-0 -0	-0 -0	-0 -0	-0 -0	-0
18 240	17 240	17	18	19 270	20 270	21 300	22 550	21 530	28 330	14 30	-0 -0	-0 -0	-0	-0 -0	-0 -0
15	14 240	15 240	18 270	20	21 270	24 300	26 350	30 530	38 330	38 330	0	15 150	15	-0 -0	-0
0	11	14 240	18	20	20 270	100	24 130	28 350	38 550	42 330	15 270	15 180	16	16	-0
0	10 210	13	15	17 270	18 300	300	20 330	24 350	30 330	42 350	32 300	18 210	-0 -0	-0 -0	-0
10 210	210	10	10	15	16 300	17	18 330	20 550	24 530	31 300	33 300	19	-0 -0	-0 -0	-0
10 180	0	0	0	0	12	15 360	17 360	19 330	20 330	20 300	20 270	18 240	-0 -0	-0 -0	-0 -0
0 0	0	0	0	0	0	13	16	17 360	18 330	18 300	18	17 270	15 240	-0 -0	-0 -0
0	0	0	0	0	0	10 360	14 360	16	17 330	17 330	300	15 2/0	14 240	-0 -0	-0
0	0	0	0	0	0	0	12 360	15 360	16 360	16 350	15	14 300	13 2/0	12 240	-0
0	0	0	0	0	0	0	10 360	13 360	15 360	15 360	14 360	13 330	12 300	12 270	-0
0	0	0	0	0	0	0	0	11 50	14 360	13 360	13 360	13	13 330	12 300	-0 -0
0 6	0	0	0	0	0	0	0	11 30	15	14	14 30	360	360	-0	-0
0	0	0	0	0	0	0	10 30	13 30	15	15 30	15 30	15 50	-0 -0	-0 -0	-0
0	0	0	0	0	0	10	13 30	15 30	15 30	15 30	15 30	15	-0	-0	-0 -0
0	0	0	60	12 60	13	15 60	16	16 30	16 30	16 30	15 30	15	-0	-0	-0 -0
10 90	12 90	60	60	16	16 60	16	16	16 60	16 30	15 30	15 30	13 30	-0	-0	-0
13 90	15 90	60	16	16	16 60	16 60	16 60	16 60	16 60	15 30	14 30	12 30	-0 -0	-0	-0
15 90	16 90	16	16	17	17 60	17 60	17 60	16 60	15 60	14	12 30	10 30	-0 -0	-0 -0	-0 -0
16 90	16	000	17	17	17 60	16 60	16	15 60	14 60	12 60	10 600	0	0	-0 -0	-0
-0 -c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0

Table C-1 Data: Case I (Continued)

HAER CAS																
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	~0 ~0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	10 300	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	300	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	12 300	11 300
	-c -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	300
	-0 -0	-0 -C	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	15 300
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0 -0	15 330
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	16 330
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	17 360
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	14 360	15 210	17 210
	-c -c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	16 360	15 30	14 30	14 30	13 30	15 210	15 210	15 210	13 210
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	22 30	16	13 30	0	10 210	13 210	15 210	16 210	16 210	180	0
	-0 -0	-0 -0	22 30	27 30	25 60	18	14	10 90	0	10 180	180	15	16 180	15	14 150	0
	-0 -0	-0 -0	23 30	24 30	22 60	21 90	17	13	11	12	150	15 150	15 150	15 150	13 150	0
	-0	-0 -0	15 550	19 330	0	22 150	18 150	15 120	12 150	13 150	14	15	14	14	14	12 120
	-0 -0	0	11 300	23 270	26 240	180	17 150	150	13 150	12 150	12 150	14	14	14	16 120	15 120
	-0 -0	10 240	15 270	21	20 210	16 180	14	13	12	12 150	12	13	14	14	17	19 120
	-0	10 210	10 240	11 240	10 210	10 150	10 150	10 150	10 150	11 120	13 120	14 90	13 90	14	16 90	20 120
	-0 -e	-0 -0	0	0	0	0	0	0	0	11	14 120	15 90	13	120	14	17
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	10 120	14	15 90	13	10	10	11
	-0 -0	-0 -0	-0 -0	-0	0	0	0	0	0	10	90	16	90	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	13	16	90	10 90	0	0
	-e -0	-0 -0	-0 -0	-0	14	11	0	0	0	0	12	15	15	60	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	16 120	15 120	12 90	0	0	0	10	15	15	12 60	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	18	17	16 90	10	0	0	10	13	16	13	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0									

Table C-1 Data: Case I (Continued)

BAER CAS TIME 3 RIGHT SE																
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	-u -o	-0 -0	-0 -0	-0	-0 -0	0	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0	0	0	0	-0 -0	-0 -0	0	0	0	0	0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0	0	-0 -0
5	10	-0 -0	-0 -0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0	-0 -0	-0 -0
	14	300	12 270	12 270	11 330	0	0	0	0	0	0	-0 -0	-0	-0 -0	-0 -0	-0 -0
3	16	17 300	16 300	15 300	12 240	10 330	12 330	13 330	10 360	10 30	0	-0	-0	-0 -0	-0 -0	-0 -0
	19	19 330	20 100	18 240	13	13 270	19 530	24 350	22 330	19 560	16	-0	-0 -0	-0 -0	-0 -0	-0 -0
	20 30	24 240	30 240	25 240	15 270	19 270	26 330	31 350	32 350	31 530	25 30	17	0	10	-0 -0	-0 -0
	21	25 240	28	23 270	18 270	21 300	27 330	31 350	53 550	34 330	32 330	20 330	10	19	19	-0
	17	17 210	18 240	18 270	18 300	21 300	26 300	30 330	53 550	37 550	40 330	30 330	25	-0 -0	-0 -0	-0 -0
	10	0	10 240	12 270	15	17 300	20 300	25 300	30 530	35 350	40 330	36 300	28 270	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	12 300	16 330	19 530	25 300	31 300	34 300	34 300	28 270	-0 -0	-0	-0 -0
	0	0	0	0	0	0	12 360	15 360	20 330	25 330	26 300	26 300	25 270	22 270	-0 -0	-0 -0
	0	0	0	0	0	0	10 30	13 360	15 360	18 330	20 330	20 300	18 330	16 300	-0 -0	-0 -0
	0	0	0	0	0	0	11 30	13	14 30	14 360	330	14 550	13	12 300	11 300	-0 -0
	11 20	0	0	0	0	10	12 30	12 30	12 30	12 360	12 550	12 330	10 300	0	0	-0 -0
	15	11	0	0	10	69	11 30	11 30	11 30	10 30	10 360	0	0	0	0	-0 -0
	18	12 90	0	0	0	10 60	10 30	0	0	0	0	0	0	0	-0 -0	-0 -0
	15 20	10 120	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
	10	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER CASE 1 TIME 6 LEFT SECTION															
-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0						
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	14 300	17 300
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	17 300	20 300
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	17 270	19
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	16 270	17 270
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	15 270
-0 -c	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	12 300
-c -o	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
-0 -0	-0 -0	-0 -0	-c -0	-0 -0	-0 -0	-0 -0	-0 -e	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
-c -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	11 360
-0 -0	J ₀	-0	-0 -0	-0 -0	-0 -0	13 360	210	19 210							
-0 -c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	12 360	15 360	17 330	17 530	15 330	13 360	18 180	17 180	20 210
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	25 330	25 330	25 330	17 350	14 330	13 330	15	17	13	13	17
-0 -0	-0 -0	23 30	25 360	24 30	20 60	19	14	13	13	17	20 180	13	12	11	13
-0 -0	-0 -0	18 30	24 30	22 30	23 90	17 90	17 90	14 120	15 150	18 1500	14 150	10 150	0	0	0
-0 -0	-0 -0	18	10	0	22 120	24 150	18 150	14 150	12 150	12 150	0	0	0	0	0
-0 -0	0	0	0	15 240	22 180	21 180	15 150	10 150	0	0	0	0	0	0	0
-0 -0	0	0	13 240	20	20 210	14	0	0	0	0	0	0	0	0	0
-0 -0	0	0	12 180	13	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
-0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	11 90	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	12	11	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER TIME	CASE 6 SECTIO	l N														
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0	13	11	0	-0 -0	-0 -0	0	0	0	0	3	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	0	14	15 150	0	0	0	0	0	-0 -0	-0	-0 -0	0	-0 -0
	18 270	-0 -0	-0 -0	10 270	11 210	20 150	0	0	0	0	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	16 270	2/0	15 270	14 270	13 240	210	10	0	0	0	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	14 300	15 300	15 300	300	13 300	15 270	10 240	0	0	10 30	13	-0 -0	-0	-0 -0	-0 -0	-0 -0
	11 500	13 330	13 550	13 300	20 240	18 240	12 270	0	14	20 30	18	-0 -0	-c -c	-0 -0	-0	-0 -0
	10 330	12 360	20 240	21 240	20 240	15 240	13 270	14 350	27 330	25 360	25 30	60	10 90	0	-0 -0	-0 -0
	14 360	21 240	22 240	20 240	16 240	14 270	14 300	18 3.10	31 550	38 350	36 360	19 360	0	0	0	-0
	20 210	22	21 240	20 240	16 270	13 270	14 300	20 330	29 330	36 330	39 330	25 300	270	-0 -0	-0 -0	-0 -0
	20 210	20 210	19 240	16 270	13 300	11 550	12 330	17 550	23 330	30 350	36 330	35 300	23 270	-0 -0	-0 -0	-0 -0
	18 180	17	11	0	0	0	0	11 330	15 350	19 330	20 300	31 300	51 500	-0 -0	-0	-0 -0
	14	110	0	0	0	0	0	0	0	12 330	15 300	16 300	15	10 300	-0 -0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0
	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER TIME LEFT	CASE 1 2 SECTION															
	-0 -0	-6 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-c -c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	15 270	10 270
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	20	20 240
	-6 -0	-6 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	20 270	21 270
	-0 -0	-c -o	-n -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-c -o	-0 -0	-0 -0	15 270
	-0 -0	-0 -c	-0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-e -e	-6 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	0
	-0 -0	-0	-0	-0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	20 30
	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	14 300	0	20 210
	-0 -0	-c -c	-0 -0	-0	-0 -0	-0	-0 -0	19 50	20 30	21 50	24 30	22 360	20 330	15	210	210
	-0 -0	-c -o	-0	-0 -0	-0 -0	50 50	29 50	27 30	21 50	18	20 30	10 30	0	0	0	12
	-0 -0	-6	0	19	28 50	30 30	90	120	120	13	13 150	12 150	0	0	0	12
	-0 -0	-0	15 550	20 530	29 360	35 90	24 150	18	14	12 150	11	0	0	0	50	150
	-0 -c	-6	17 330	22 510	31 500	35 240	23 180	160	13	150	0	0	0	0	90	17
	-c	C	270	20 300	25 270	25 240	18	13	0	0	0	0	0	0	90	120
	-c -c	Ü	270	15 270	19 240	210	180	0	0	0	0	0	0	0	14	120
	-0 -0	0	0	240	210	10	0	0	0	0	0	0	0	0	180	20 150
	-0 -0	-0	c c	0	0	0	0	0	0	0	0	0	0	0	210	150
	-0 -0	-0	-0	-0	0	0	0	0	0	0	0	0	90	90	90	90
	-0	-0	-o	-0 -c	0	0	0	0	0	0	0	0	90	90	90	90
	-0 -0	-0	-0	-0	0	0	0	0	0	0	0	90	90	90	90	90
	-0 -0	-0	-0	-0	0	0	0	0	0	0	0	90	70	90	90	90
	-0 -0	-0	-0	-0	0	0	0	0	0	0	90	90	90	90	90	90
	-0 -0	-0	-0	-0	0	0	0	0	0	0	60	90	70	90	90	90
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table C-1 Data: Case I (Continued)

HAER CASE TIME 9 HIGHT SECTION															
-0 -0	-0 -6	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
-0	-6 -6	-9 -9	-0 -0	-n -e	0	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	-0 -0	-0 -0	-0 -0
- J	-0 -0	-0 -0	-0 -6	0	16	19	-0 -0	-0 -0	0	0	0	0	0	-0 -0	-0 -0
-c -3	-0	-0 -0	0	270	210	21 180	18 180	0	0	0	-6 -0	-0 -0	-c -0	0	-0 -0
210	-G -0	-0 -0	210	18	21	21 180	210	0	0	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
316	21	210	210	210	21	21	210	0	0	10	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
13	20 \$20	21	500	20 300	20	19 210	210	0	14 50	60	-0 -0	-0 -c	-0 -0	-0 -0	-0 -0
9 3	300	20 100	21 550	20 100	20	19 240	210	17	23 30	25 60	-0 -0	-c -o	-0 -0	-0	-0 -0
10	16	21 30	21	21 240	20 240	2/0	13 360	25 360	25 30	40 50	35 60	20 90	11	-0 -0	-0 -0
21 50	210	21 240	21	20 240	18	16 360	17 330	26 360	41 360	43 50	24 30	C	0	0	-0 -0
20 210	210	20	240	2/0	15 300	16 360	17 330	24 350	42 550	360	29 300	270	-0 -c	-0	-0 -0
21d	210	213	10	0	10 300	13 330	16 330	20 330	40 330	45 350	41 300	31 270	-0	-0 -0	-0 -0
180	15	13	0	0	0	10 330	13 330	17 330	30 330	40 300	38 300	27	-0 -0	-0 -0	-0 -0
13 150	13	100	0	0	0	0	12 330	15 350	22 530	30 300	300	210	13 270	-0 -0	-0 -0
15 150	14	12	0	0	0	0	10 330	13 350	17 530	25 330	22 300	270	270	-0	-0 -0
-18 120	170	15	0	0	0	0	0	12 360	14 330	17 330	15 330	300	0	0	-0 -0
120	120	120	0	0	° c	0	0	360	12 560	13 330	12 330	0	0	0	-0 -0
150	120	16	0	0	0	0	0	0	10 560	10 530	0	0	0	0	-0 -0
150	120	16	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0
120	18 125	90	90	60	0	0	C	0	0	0	0	0	-0	-0	-0 -0
19 90	70	90	60	60	60	60	0	0	0	30	10 30	360	-0	-0 -0	-0 -0
18 90	90	70	60	60	60	60	13 60	10 30	30	30	30	30	-0 -0	-0 -0	-0 -0
90	96	90	60	60	60	60	60	30	12 30	12 30	12 30	13 30	-0	-0	-0 -0
90	70	60	60	60	13	60	60	60	30	30	13	15	-0	-0	-0 -0
\$0	60	60	60	60	60	60	60	60	60	14 50	30	15 30	-0 -0	-0	-0 -0
90	60	60	60	60	60	60	60	60	60	15 30	15 30	16	16 30	-0 -0	-0 -0
-0	-0	-0	-0	-0	-c -0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0

Table C-1 Data: Case I (Continued)

BAER CAS TIME 12 LEFT SEC																
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0						
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	0	10 300
	-C -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-c -o	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-c -o	-0 -0	0
	-0 -0	-G -0	-0	-0 -0	-0	-0 -0	0									
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-c -0	-0 -0	~0 ~0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	18 30
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	17 360	20 30	20 60
	-0 -0	-c -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	24 30	24 30	30 30	16 30	14 30	0	20 360	20 210	21
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	30 50	30 30	29 30	27 50	24 30	22 30	16	0	20	20 210	18
	-0 -0	-0 -0	22 30	29 50	36 30	37 50	36 30	32 50	28 30	13 150	16 150	16 180	12 180	180	15	15 150
	-0 -0	-0 -0	24 30	28 50	36 360	30 30	35 120	32 120	30 150	21 150	18	16	13	13	13 150	14
	-0 -0	-0 -0	23 50	32 270	33 270	35 210	35 180	30 150	28 150	21 150	17	15 150	12	11	12 150	13
	-0 -0	0	0	22 270	33 240	31 210	24 180	18 180	160	14 150	12	10	10	0	10	12
	-0 -0	0	0	13	23 240	20 210	16 210	13 160	10	0	0	0	0	0	10	11
	-0 -0	0	0	0	10 240	11 210	210	0	0	0	0	0	0	10	11	10 150
	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	10	10	10
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	10	90	90	100	120
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	10	10 90	90	10	90	90	90
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	90	10	10	90	90	90	90	90
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	10 90	10	10 90	10 90	10 90	90	70	90	60
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 12 RIGHT SECTI	ION														
-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	12 90	-0 -0	-0 -0	-0	-0 -0	0	0	0	-0 -0	-0	-0 -0
-0 -0	-0 -0	-0 -0	-0 -0	0	2C 210	25 150	-0	-0	0	.0	0	0	0	-0	-0 -0
-0	-0 -0	-0	0	15 270	25 240	210	180	210	0	0	-0	-0	-0	0	-0 -0
12	-0 -0	-0	17 270	22	25	240	210	210	0	0	-0	-0	-0	-0	-0
13 270	270	270	210	25	2700	20	210	0	0	0	-0	-0	-0	-0	-0
0	270	2700	20	18 270	270	10	210	0	30	17	-0	-0	-0	-0	-0
0	C	210	13	11 270	0	15	210	13	25	30 30	-0	-0	-0	-0 -0	-0 -0
11 360	0	0	0	10	16	270	210	25 560	36	40 30	31 30	23	17	-0	-0
17 60	12	240	240	17	17 270	15	300	30 360	45 360	42 30	360	12	180	180	-0
20 210	210	210	16	15 270	15 270	17 300	350	30 350	530	350	35	32	-0	-0	-0
19 210	1/	16 210	210	10	270	300	350	48 430	38 350	300	500	32 240	-0	-0	-0
17	160	10 180	0	0	0	500	350	25 330	51 350	300	270	23	-0	-0	-0
15 150	110	0	0	0	0	13	350	330	330	300	500	270	13	-0	-0 -0
13 150	0	0	0	0	0	12 530	15 530	350	350	350	300	10 300	0	-0	-0 -0
12 120	0	0	0	0	C	360	14 330	350	330	10 330	0	0	0	0	-0 -0
11	0	0	0	0	0	10 30	13 360	330	12 330	0	0	0	0	0	-0
10 120	0	0	0	0	0	10	360	13 360	330	0	0	0	0	0	-0 -0
0	0	0	0	0	8	30	12	12 360	360	0	0	0	0	-0	-0
0	0	0	0	0	0	10	11	30	360	0	0	0	-0	-0	-0
C	0	0	0	10	10	30	30	11 50	10 30	0	0	0	-0	-0	-0
0 0	CO	0	10	10	10	30	30	10 30	10	10 30	10 360	10 360	-0	-0	-0
10	10	10 90	16	10	11	60	11 50	11 50	10 30	10 30	10 30	360	-0	-0	-0 -0
10	10	10	11	60	12	12	11	11	30	11 30	11	360	-0	-0	-0
11	11	11	12	12	12	12	12	60	60	11 30	11 50	11 30	-0 -0	-0	-0
11	12	12 60	12	12	12	12	12	60	60	60	11 30	30	11 360	-0	-0
-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0 -0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 15 LEFT SECTION	l N														
-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0										
-0 -0	-0 -0	-0 -0	-c -0	-0 -0	-0	-0 -0	0	0							
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
-6 -0	-c -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	11 240	0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	16 240	15 240
-0 -3	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	19 240
-0 -0	-0 -0	-c -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	13 270
-c -o	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10 330
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	18 360
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	11 560	11 30	10 30
-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	25 30	25 30	25 30	23 30	18 30	0	0	0	15 210
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	34 30	34 50	32 30	32 30	28 30	22 30	15 560	10	10 210	15 210	16 210
-c -o	-c -c	22 50	30	35 30	40 30	29 30	25 60	24	20 120	19	19	15	15 210	16 210	16
-0 -c	-0 -0	24 50	25 30	28 30	28 360	24 30	25 120	26 120	20 120	18 150	18	17 180	15	14 150	15 150
-c -c	-0 -0	14 50	16 30	16 300	20 300	22 210	26 180	22 150	18 150	17 150	16 150	150	15	60	15 150
-0	0	0	0	11 270	270	22 240	17	15 180	15 180	15 150	15 150	14 150	0	10 30	13 90
-0 -0	0	0	0	0	16 240	15 210	13 210	12 210	12 180	12 180	12 150	180	0	0	0
-6 -0	0	0	210	15 210	14 210	12 210	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	0	13	16	0	0	0	0	0	0	0	0	0	0	0
-0 -0	-0 -0	-0 -0	-c -o	150	0	0	0	0	0	0	0	90	120	13 90	15 90
-0 -0	-0 -0	+0 -0	-0	10	0	0	0	0	0	10	14 90	15	18	19	18
-0	-0 -0	-0 -0	-0	0	0	0	0	0	10	13	16	18	50	21	20 90
-0 -0	-0	-0 -0	-0 -0	0	0	0	0	10 90	11 90	13 60	15	16 60	60	18	18
-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	90	12	13	13 60	60	60	60	15
-0 -0	-0	-0 -0	-0 -0	0	0	10 90	10	11 90	12 60	12 60	60	12	12 50	13	13
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-n -0	-0 -0	-0 -0	-0 -0	-0 -0	-c -u	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER TIME RIGHT	CASE I															
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0								
	-0 -0	-0 -0	-0 -0	-0	-0 -0	0	-0 -0	-0 -0	-0 -0	-0 -0	0	0	C	-0 -0	-0 -0	-0 -0
	-0 -0	-0 -0	-0 -0	-0	13 300	270	15 210	-0 -0	-0 -0	16 210	0	0	0	0	-0 -0	-0 -0
	-0 -0	-0 -0	-0	21 300	20 270	20	20	20 240	18	15	0	-0 -0	-0	-0 -0	0	-0 -0
	13 270	-0 -0	-0	23	22	21	21	20	16 240	12 240	0	-0 -0	-0	-0 -0	-0 -0	-0 -0
	20 270	21	20 270	20	20 270	20	18	15 240	18 240	10 240	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	210	270	13	15 270	13 270	270	12 240	12 240	15 240	0	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
	0	0	0	0	0	0	0	0	0	0	15 30	-0 -0	-0 -0	-0 -0	-0 -0	-0
	13 360	15	60	0	0	10	10 240	0	0	15 360	24 50	18	0	0	-0	-0
	15 30	10 30	11 240	13	15 240	16	14 270	13 300	10 530	20 360	32 360	19 30	90	18	150	-0
	15 210	16 240	16 240	16 240	270	2/0	20 300	19 350	330	30 360	35 360	33 360	28 60	-0	-0	-0
	210	210	13 240	13	15 270	18 300	22 300	23 350	25 330	32 350	36 350	35 330	300	-0 -0	-0 -0	-0 -0
	210	100	0	0	0	300	22 530	25 330	3300	31	35 330	36 530	33 300	-0	-0 -0	-0
	15	0	0	0	0	0	19	25 330	330 330	30 330	32 330	33 330	32 300	30 270	-0	-0
	15 150	0	0	0	0	0	330	23 330	350 350	25 330	28 330	28 330	25 330	300	-0	-0
	15 150	C	0	0	0	0	10 330	350	330	330	20 330	20 350	16 350	0	0	-0
	11	0	0	0	0	0	0	12 330	3300	16 530	330	12 330	0	0	0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0
	0	C	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
	90	90	90	90	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0
	18 90	15	90	90	90	0	0	0	0	0	0	0	0	-0	-0 -0	-0
	90	60	60	13 90	60	10 60	10 60	0	0	0	0	0	0	-0	-0	-0
	60	00	60	60	60	60	60	60	60	60	0	0	0	-0	-0	-0
	60	60	60	60	60	60	60	60	60	60	60	30	30	-0	-0	-0
	60	60	60	60	60	60	60	60	60	60	50	30	30	300	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table C-1 Data: Case I (Continued)

TIME	CASE I 18 SECTION															
	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-c -0	-0	-0
	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-c -o	-0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	0	0
	-0 -0	-u -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	12	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	2/0	15
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	21 270
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	13 360
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-C -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-c -c	-0 -0	-0 -0	21 50
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	21 30	21 60	18 30
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	20 50	20 30	31 60	51 60	24 60	22 60	20 60	60	10 210
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	21 30	30 30	32 30	40 30	42 60	50 60	22 60	16	15	16	17 180
	-0 -0	-0 -0	25 30	26 10	31 360	3H 30	50 30	60	40	120	32 150	23 180	18	17	17 150	18 150
	-0 -0	-0 -0	26 30	50 50	37 360	48 360	36 360	30 60	36 120	32 150	24 150	19	15 180	13 150	15 150	18
	-0 -0	-c -6	20 30	22 360	28 130	28 330	22 300	25 210	31 180	24 180	180	15 180	0	0	0	17 150
	-0 -0	0	12 30	13 360	12 330	15 270	18 240	29 210	25 210	210	15 210	0	0	0	0	16 180
	-c -c	0	C	0	0	12 240	20 240	24 210	20 210	14 210	0	0	0	0	0	13 180
	-0	C	0	0	13 240	18 210	22 210	20	14 210	0	C	0	0	0	0	0
	-0 -0	-c -c	0	0	210	16 180	17	14 150	0	0	0	0	0	C 0	0	0
	-0	-0 -0	-0 -0	-0 -0	0	10	10	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0. -0	0	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0	-0	0	0	0	10	10	10	10 90	10 90	90	10 90	10	10
	-0 -0	-c -c	-0 -0	-0	0	0	0	10	10	11 90	11 90	10 90	10 90	10	10	10
	-0 -0	-0	-0 -0	-0 -0	0	0	0	10 90	10	11 90	11 90	11 90	11 90	11 90	60	11
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	10 90	10 90	10	10 90	11 90	11 90	60	11 60	11
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0 -0	-c -o	-0 -0	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 13 RIGHT SECTION	1 N														
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0							
-0 -c	-0 -0	-0 -0	-0 -0	-0 -0	0	-0 -0	-0 -0	-0 -0	-0 -0	10 210	0	C	-0 -0	-0 -0	-0 -0
-0 -3	-0	-0 -0	-0 -0	10 270	240	20 240	-0 -0	-0 -0	210	0	0	0	0	-0	-0 -0
-0 -0	-0 -0	-0 -0	16	19 270	26 240	25 240	19 240	210	210	0	-0 -0	-0	-0 -0	0	-0 -0
16 300	-0	-0 -0	500	31 270	28	240	18 240	15 240	13 210	0	-0 -0	-0	-0 -0	-0	-0
25 270	300	26 300	26 270	25 270	20	17 240	15 240	210	13 210	10 240	-c -o	-c -o	-0 -0	-0	-0 -0
0	10 270	2/0	0	10 270	10	12 240	12 240	210	210	0	-0 -0	-0	-0 -0	-0	-0
,	0	0	0	0	0	17 240	16 240	210	0	13	-0 -0	-0	-c -c	-c -c	-c -0
17 360	15 360	11 360	0	18	18	17 240	15 240	10 240	11 360	18	18	15 60	90	-0 -0	-0 -0
13 360	11 350	17 240	20	21 240	20 240	17 270	15 2/0	13 300	16 550	25 30	26	50	15	12	-0 -0
0	16 240	21	21	20 240	19 270	17 270	16 300	15 300	19 360	29 360	39 30	15	-0 -0	-0 -0	-0
17 210	21 240	20	16	15	16 270	16 550	17 330	17 350	19 330	30 360	46 530	0	-0	-0	-0 -0
21 180	210	13 210	10	10 270	13 330	15 330	17 350	18 350	19 530	23 340	55 550	30 300	-0 -0	-0 -0	-0 -0
20 180	17	10	0	0	0	14 330	16 330	17 350	18 350	19 330	21 550	300	18 270	-0 -0	-0 -0
18 150	15 150	0	0	0	0	13	15 360	16 350	16 530	17 530	17 300	16 300	15	-0	-0
16 150	150	150	0	0	10	12 360	15 360	15 360	15 330	15 330	14 300	300	12 300	0	-0
15 150	13 150	10	0	10	30	13 360	14 560	360	14 360	14 350	13 330	12 300	270	0	-0
12 180	11	0	0	60	12 30	13	360	360	14 360	13 350	12	350	10 360	0	-0
0	0	0	60	60	12 30	13	13 50	13	13 360	13 360	12 360	11 30	10 30	-0 -0	-0
0	0	0	10	60	60	13	13	13	13 30	12 30	12	60	-0	-0 -0	-0 -0
0	0	10	10	12 60	60	12 30	12 30	12 30	30	12 30	60	60	-c	-0 -0	-0 -0
10 90	10 60	1C 60	60	60	60	60	12 30	12 30	60	60	60	60	-0	-0	-0 -0
10	60	60	60	60	60	60	60	60	60	60	60	60	-0	-0	-0 -0
60	60	60	60	60	10 60	10	60	10	60	60	60	60	-0	-0 -0	-0 -0
60	60	60	10	10	10 60	60	10	10	10 60	10 60	10 60	10 60	-0 -0	-0 -0	-0 -0
10 60	60	60	60	60	0	0	0	0	0	0	0	0	0	-0	-0 -0
-0	-0 -0	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0

Table C-1 Data: Case I (Continued)

HAER CA	ASE 1 21 ECTION															
	-0 -0	-0 -0	-0 -0	-0 -0	-0 - 9	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0 -0	-0 -ù	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10 240	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	11 240	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	12 240	10
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	13
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10 270
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	13
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	20 60	21	16
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	19	20 30	28 30	31 60	29 60	29	26 60	20	13 150
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	27 30	31 30	33	40	41	40	30 60	0	0	0	13
	-0 -0	-0 -0	18	20	20 360	25 360	28 30	41	41	21	18	12	0	0	0	13
	-0 -0	-0 -0	15	14 360	15 330	22 360	40	23 330	21 30	25 150	21 150	14	0	0	0	13 120
	-0 -0	-0 -0	10	0	10	16	20 530	24 270	25 210	25 210	18	15 180	0	0	0	14
	-0 -c	0	0	0	, 12 300	16	19 270	21 240	20 210	19 210	17	14	12	12	15	17
	-0 -0	0	0	0	12 270	14 270	17	17 240	16 210	15 210	14 210	13	12	12	13 210	13
	-0 -0	0	0	0	10 240	12 240	13	13 240	13 210	12 210	12 210	11 210	10	0	0	0
	-0 -0	-0 -0	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	10	11
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	10	12	14	16	17
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	11	13	15	18	20	20
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	12	15	17	20	21	22
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	11	14	16	18	20	20
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	10	12	13	14	15
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 21 RIGHT SECT	1 ION														
-0 -0		-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
-0 -0		-0 -0	-0 -0	-0 -0	0	-0 -0	-0 -0	-0 -0	-0 -0	20 180	0	0	-0 -0	-0 -0	-0 -0
-0 -0		-0	-0 -0	0	12 240	20	-0 -0	-0	19 240	210	0	0	0	-0 -0	-0
-0		-0 -0	0	14 270	20	22 240	21 240	20 240	30 180	13 210	-0 -0	-0 -0	-0	0	-0 -0
0	-0	-0	15 270	22 240	21	22 240	20 240	17	210	0	-0 -0	-0 -0	-0	-0 -0	-0
15		17 500	19	20 270	21	20 240	15	30 210	18 210	0	-0	-0 -0	-0	-0 -0	-0 -0
13 2/0		16 270	270	18	15 240	10 240	23 210	210	210	0	-0 -0	-0	-0	-0 -0	-0 -0
3	0	0	270	10	0	17	17	210	10 210	0	-0	-0	-0	-0 -0	-0
0		0	0	0	20	20	1/	13	0	0	0	0	0	-0 -0	-0 -0
0		0	21 240	22	23	21	18 270	18 300	10 530	12 360	15 30	20 30	20	19	-0
0		21	22 240	22	22	21 270	20 300	17	16 330	17 360	20 360	21 360	-0	-0 -0	-0 -0
1/		210	20	20	20 270	20 300	21 350	20 330	20 330	20 330	21 360	21 550	-0 -0	-0	-0 -0
19 150		20	15	12	300	18 300	20 350	350	21 330	21 530	22 530	21 330	-0	-0	-0 -0
20 150		15 150	150	0	10 350	15	20 350	350	350	22 350	21 350	21 350	18 300	-0 -0	-0 -0
20 150	19	13	0	0	10 330	14 330	18	20 330	21 330	21 330	21 330	20 330	270	-0 -0	-0 -0
18 150		10	0	0	360	13	17 530	20 350	20 350	20 330	20 330	15 350	0	0	-0 -0
16		0	0	0	30	13 360	15 360	16 330	17 330	15 530	360	10 350	0	0	-0 -0
11		0	0	0	10	11	360	12 360	12 360	0	0	0	0	0	-0 -0
0		0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
0		0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
10		0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
16		0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
20 60		15 60	60	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
22 60		18	15	13	11	0	0	0	0	0	0	0	-0	-0	-0
20		17 60	16	14	11	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
. 15		13	13 60	11	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
-0 -0		-0 -0	-0	-0 -0	-0 -0	-0									

Table C-1 Data: Case I (Continued)

AER C	ASE 24 ECTION															
	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0 -0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	10 240	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	11 210	10 240
	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-u -0	-0 -0	13 240							
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	11 240						
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	0						
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0,	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	10
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	22 30	22 60	18
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	21 30	30 30	31 30	32 50	31 30	32 30	32 30	19 150	20 150
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	23 300	30 30	33 30	56 50	59 30	40 30	40 30	40 30	21 150	19	19 150
	-0 -0	-0 -0	25 30	27 30	30 30	31	34	38	45	47 30	43	28 180	26 180	20 150	18 180	19 150
	-0 -0	-0 -0	28 30	31 30	32 0	53	37	45	43	38 330	25 180	28 180	25 210	20 180	19 210	20 180
	-0 -0	-0 -0	18	24 30	27	29	30 330	28 330	34 330	28 240	28 210	25 210	21 210	19 210	22 210	31 210
	-0 -0	0	10 30	11 30	15	18	19 330	20 530	22 240	22	21	20 210	17 210	210	18 210	20 210
	-0 -0	0	0	0	C	15 330	20	20 240	16	15 210	15 210	15	14 210	15 180	17 150	18
	-0 -0	0	0	0	10 240	15 240	14 240	10 240	0	10 210	12 210	13	13 180	15 150	17 120	17
	-0 -0	-0 -0	0	0	0	0	0	0	0	10 210	12	13 150	14	15 120	17	17
	-0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	10 120	13 150	14	15 90	16 60	17	17 90
	-0 -0	-0	-0 -0	-0 -0	0	0	0	0	0	11	14	16	17	18	18	18
	-0	-0	-0	-0	0	0	0	0	0	10	13	16	17	18	20 90	20
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	11	13	15	15 90	20 90	21 90
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	10	12 60	13 90	15 90
	-0 -0	-0 -0	-0 -0	-0 -0	0	0	0	0	0	0	0	0	0	0	11 90	12
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0

Table C-1 Data: Case I (Continued)

BAER CASE TIME 24 RIGHT SECTION															
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	0	-0	-0 -0	-0 -0	-0 -0	14 210	19	10	-0 -0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	-0 -0	17 270	19	23 240	-0 -0	-0 -0	18 210	14 240	18 210	11 210	0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	22 270	13 270	25 240	26 240	26 210	24 210	19	18 210	-0 -0	-0 -0	-0 -0	0	-0 -0
0	-0 -0	-0 -0	24 270	25 270	27 240	27 240	26 240	24 240	17 210	17 210	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
15 240	18 270	21 270	25 270	25 270	25 240	25 240	24 270	17 210	16 210	16 210	-0 -0	-0	-0 -0	-0 -0	-0 -0
15 270	17 2/0	20 300	21 270	21 270	20 270	13 270	17	16 210	15 210	10 210	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
0	11 300	13 300	15	15 300	15 270	17 240	16 240	16 210	10 210	0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
0	0	0	0	0	10 300	17	15 240	15 240	0	0	0	0	0	-0 -0	-0 -0
0	0	0	0	17 240	16 240	16 240	15 240	12 270	11 270	0	0	0	0	10	-0 -0
15	18 180	18 210	17	16 240	14 240	13 240	13 270	14 300	15 330	13 0	10	10 30	-0 -0	-0 -0	-0 -0
22 150	20 180	17 210	15 240	12 240	11 240	12 270	13 300	15 330	16 330	13 330	15	16 50	-0 -0	-0 -0	-0 -0
23 150	19 180	14 210	11 210	0	0	10 300	12 330	14 330	15 330	16 330	17 330	16	-0 -0	-0 -0	-0 -0
25 150	18 150	13 210	3	0	0	0	10	13 330	15 330	16 330	16 350	16 330	17 300	-0 -0	-0 -0
26 150	17 150	12	0	0	0	0	0	12	14 0	15	15 330	15 330	15 300	-0 -0	-0 -0
23 180	15 150	12 150	0	0	0	0	0	11	13	13	13 330	13	12 330	0	-0 -0
18 180	14 150	10 150	0	0	0	0	0	11 30	12 30	12	11 330	10 330	0	0	-0 -0
150	12 120	0	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0
15 120	13	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
16 90	13 90	11 90	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
16 90	14 70	12 90	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
17 90	90	60	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
18 90	14 90	10	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0	-0 -0
17	15	10 60	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0 -0
14 90	12	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0	-0 -0
12 60	10	0	0	0	0	0	0	0	0	0	0	0	0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

APPENDIX D

Table D-1 Data: Case II

BAER TIME LEFT	CASE 2 0 SECTION															
	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0 -0	-0
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0 -0	-0 -0	-0	25 360	20 10
	-0 -0	-0	-0	-0	-G	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0 -0	-0 -0	-0	27 360	25 10
	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0 -0	-0 -0	-0 -0	-0	33 360	360
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	31 360	31 350
	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0	-c -0	25 350
	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0 -0	20 340
	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0 -0	20 340
	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	22 340
	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0 -0	-0 -0	25 330
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	15 270	22 330	26 330						
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	21 270	27 270	27	25 260	22	21 230	22 250	24 330	23 330
	-0 -0	-0 -0	-0	-0	-0 -0	20 310	22 320	24 270	22 260	19 250	19	19 250	20 260	20 280	20 290	15 230
	-0 -0	-0 -0	10 70	10	0	13 320	16 290	17 230	13 230	10 240	10 250	10 250	10 310	10	0	0
	-0 -0	-0	110	10 90	0	8	0	0	16 120	100	90	0	0	0	0	0
	-0	-0	110	110	10 90	10	10	10	10	10	10 80	10	0	0	0	0
	-0 -0	10	120	10 120	10	10	10 90	10	10	10	10 90	10 80	0	0	0	13 45
*	-0 -0	10	10 120	10	10 90	10 70	10	10	10	10	10 90	10 70	10	10	22 240	27 350
	-0	10 130	10	10 120	10	10	13 90	110	110	10	0	0	0	10	16 40	17
	-0 -0	-0 -0	10	110	10 120	10	10 90	100	0	0	0	0	0	0	C	0
	-0 -0	-0 -0	-0 -0	-0	10 120	0	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0	-0 -0	100	0	0	0	0	0	0	0	0	0	0	0
	-0	-0	-0	-0	10 90	10	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0	-0	110	110	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0	-0 -0	-0 -0	0	0	0	10	0	0	0	0	0	0	0	0
	-0 -0	-0	-0	-0 -0	0	0	0	0	0	0	0	0	0	0	0	8
	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0 -0	-0

Tahla	D-7	Doto.	0	TT	(Continued)
Table	D-T	Da Ga.	Case	11	(Continued)

BAER CASE TIME 0 RIGHT SECTION	2									(002		cuj			
-0 -0	-0 -0	-0 -0	-u -0	-c -0	-0 -0	-0 -0									
-0 -0	-0	-0	-0 -0	-0 -0	15 45	-0 -0	-0	-0 -0	-0	0	0	0	-0 -0	-0 -0	-0 -0
-0 -0	-0	-0	-0	17	22 45	23 45	-0	-0	0	0	0	0	15	-0 -0	-0 -0
-0	-0	-0 -0	20 60	315	25 10	350	18 360	270	0	0	-0 -0	-0	-0 -0	20 150	-0 -0
33 330	-0	-0	29 280	26 135	23 330	315	300	270	0	0	-0	-0	-0	-0	-0 -0
27 350	28 30	28 70	27 90	25 150	300	310	17 290	12 280	10 270	0	-0 -0	-0 -0	-0	-0 -0	-0 -0
24 340	25 360	25 45	100	25 180	160	19 315	17 290	13 270	13 270	270	-0	-0 -0	-0	-0 -0	-0 -0
25 320	28 330	28 360	28 20	27 250	190	235	18	17 270	270	15 280	-0	-0	-0 -0	-0 -0	-0 -0
29 330	34 330	35 320	36 315	34 260	30 210	25 225	23 240	20	200	19	19	21 280	15 280	-0 -0	-0 -0
31 330	37 320	42 315	270	270	45 240	220	240	29 270	25 270	23 270	23 270	25 280	10	10 250	-0 -0
31 320	35 300	39 300	39 290	260	240	38 240	31 250	28	23 260	23 270	28 270	210	-0	-0 -0	-0 -0
27 315	32 300	35 310	33 270	39 260	28 230	27 250	27 250	23 250	20 260	20 270	30	19	-0	-0	-0 -0
15 270	300	29 280	27	35 240	25 230	25 240	22	20 250	18	18 280	18 280	300	-0	-0 -0	-0 -0
0	0	14 225	20 240	32 225	22 250	22 240	19 230	235	16 270	16 280	16	15 330	20 300	-0	-0 -0
8	0	230	230	16 220	15 225	230	230	235	270	14 290	14 310	330	20 315	-0	-0 -0
8	200	13 220	14 225	216	0	0	0	200	270	12 350	12 340	15 360	20 340	13 315	-0
21 135	22 180	18 190	13 210	10 225	0	0	0	0	0	0	10 360	20 360	10	0	-0 -0
23 180	175	16	12	ç	0	0	0	0	0	0	0	20 360	0	0	-0 -0
17 180	16	170	10	0	0	0	0	0	0	0	0	20 60	0	-0 -0	-0 -0
10 170	10	0	0	CO	0	0	0	0	0	0	0	20 60	-0	-0	-0
10 150	10 150	8	10	0	0	0	0	0	0	0	0	20 360	-0	-0 -0	-0 -0
10 125	10	0	0	0	8	0	0	0	0	0	0	15 20	-0	-0	-0 -0
0	10	0	0	0	0	0	0	0	0	0	0	10 30	-0	-0	-0
0	0	0	0	9	0	0	0	0	0	0	0	0	-0	-c -0	-0 -0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0	-0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0 -0
-0	-0	-0 -0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0 -0	-0 -0

Table D-1 Data: Case II (Continued)

BARR TIME LEFT	CASE 2 1 SECTION															
	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	8	0
	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-9	-0	-0	-0		8
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0		
	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0		0
	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	10 340
	-0 I	-0	-0	-0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	11 840
	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	79	-0	-0	-0	-0	300
	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	300
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	18 225
	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	17 220	23	25 225
	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0	27 250	25 270	13 270	20	20	23	25 270	22 250	24 270
	-0 -0	-0	-0	-0	-0	11 250	17 270	20	25 250	23 270	23 220	28	43 70	29	10 270	23 270
	-0 -0	-0 -0	0		0	0	10 270	270	13 250	13 230	15 250	30 225	80 60	90	. 0	20
	-0 -0	-0	11	0	0	0	0	8	0	0	0	10 350	30 360	25 340	0	60
	-0 -0	-0	130	13	10	0	0	0	0	0	0	0	0	0	0	22
	-0 -0	10	0	10	10 90	10 70	10	10	10	10	8	0	0	0	21 100	100
	-0 -0	10 150	12	12 120	100	110	10	10	10	10	0	0	0	20 70	23 60	24 60
	-0	10	15	10	15	13	13	10	10	0	0	0	0	0	135	170
	-0	-0	0	10	0	0	0	8	13	0	0	0	0	0	0	0
	-0	-0	-0	-0	0	0	0	0	15 90	0	0	0	0	0	0	170
	-9	-0 -0	-0	-0	0	100	10	0	0	10	0	0	0	0	0	15
	-0 -0	-0	→0 -0	-0	0	0	10	10	0	0	0	0	0	0	0	10
	-3	-0	-0	-0	0	10	100	0	0	0	0	0	0	0	0	0
	-3	-0	-0	-0	100	0	0	0	0	0	0	0	0	0	0	
	=3	-0	-0	-0 -0	100	0	0	0	0	0	0	0	0	0	0	
	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

MARR CASE TIME 1 RIGHT SECTION	2 0N														
-0 -0	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	-0	-0 -0	12 80	-0 -0	-0 -0	-0 -0	-0	0	0	0	-0	-0 -0	-0
-0 -0	-0 -0	-0	-0 -0	19	24 80	23 80	-0 -0	-0 -0	15	10 150	0	0	0	-0 -0	-0 -0
-0 -0	-0 -0	-0 -0	60	17	32 80	28 80	100	130	15	0	-0 -0	-0	-0	10	-0 -0
0	-0 -0	-0 -0	18	29 80	32 90	100	110	21 150	160	10	-0 -0	-0	-0	-0	-0 -0
16 330	17 360	18 360	22 60	31 60	30 60	28 90	27 140	23 150	21 180	16 170	-0 -0	-0 -0	-0	-0 -0	-0
21 330	26 350	28 30	29 10	34 40	31 360	180	190	30 210	30 210	32 180	-0 -0	-0 -0	-0	-0 -0	-0 -0
23 330	35 330	38 350	41 315	400	38 290	38 270	38 260	31 225	20 210	15	-0 -0	-0	-0 -0	-0 -0	-0 -0
26 310	36 330	48 300	52 280	53 270	270	260	260	19 220	20 240	21 250	21 180	18 225	25 270	-0 -0	-0 -0
28 300	270	52 270	52 270	51 270	52 240	50 260	260	40 220	33 240	28 240	23 260	18 270	25 270	25 280	-0 -0
28 230	38 270	43 270	280	38 270	29 260	260	42 250	41 250	35 240	27 250	22 270	17 290	-0	-0 -0	-0
28 230	32 290	35 290	30 280	28 270	27 270	28 250	25 225	26 250	27 250	22 260	21 260	15 280	-0 -0	-0 -0	-0
25 270	28 280	35 350	28 315	23 10	24 60	25 225	23 225	210	220	19 280	19 270	15 290	-0	-0	-0
23 270	27 340	36 340	30 270	16	21 225	22 250	21 230	18	220	17 290	17 260	20 300	20 310	-0 -0	-0
25 60	28 60	60	0	0	0	260	13 225	15 200	15 220	15 280	15 300	20 310	20 310	-0 -0	-0
25 60	22 60	60	0	0	0	0	220	15	270	14 300	14 330	330	20 340	10 340	-0
24 140	22 60	18 210	200	0	0	111	13	180	12	12 360	12 360	10 360	20	10 360	-0
180 180	18 180	160	200	0	0	0	0	0	100	90	11 360	10 360	20 20	10	-0
21 180	18 160	160	150	0	0	0	0	0	0	0	0	0	20	-0	-0
0	20 160	15 130	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
0	160	15	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
0	8	8	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
135	8	0	0	0	0	0	0	8	8	0	0	8	-0	-0	-0
8	8	0	0	0	0	0	0	0	. 0	0	0	0	-0	-0	-0
8	8	0	8	0	0	0	0	0	0	0	0	0	-0	-0	-0
	8	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0
-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BAER TIME LEFT	CASE 2 3 SECTION															
	-c -c	-0	-0	-0 -0	-6	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0	-c	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-0 -c	-0	-6	-0	-6	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-c -c	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	0	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	:
	-0 -0	-0	-0 -0	-0	-6 -6	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	:
	-0	-0	-0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0 -0	110
	-c -c	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	17
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	22 210
	-0	-0	-0	-0	-0	-0	-0	-c -0	-0	-0	-0	-0	-0	-0	-0 -0	210
	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	18 210	17 225	210
	-c	-0 -0	-0	-0	-0	-0	-0	31 300	33	35 290	32 270	210	18	25	20 225	210
	-0 -0	-0	-0	-0 -0	-0	30 350	33 350	31 300	29	28 290	35 250	35 230	30 230	25 230	20 14C	15
	-0	-0	10	16 30	20 360	20 360	20 330	300	19	20 290	25 250	25 230	25 225	27 230	135	17
	-0	-0	0	0	0	0	0	0	0	10 270	15 225	18	20 225	135	20 135	12
	-0	-0	0	0	0	0	0	0	0	0	0	12 225	135	90	23 60	Q
	-0	130	10	100	100	12 70	0	0	0	0	0	0	13 90	17	20 60	17
	-0 -0	10	100	15	12 70	15	15	10	0	0	0	0	11	15	17	170
	-c	10 80	12	15 70	15	15	12 70	100	10	0	0	0	0	0	135	170
	-0	-0	10	10	100	100	0	0	0	10	0	0	0	0	0	0
	-0	-0	-0	-0	10	100	0	0	10	8	10	0	0	0	0	0
	-0	-0	-0	-0	ć	100	0	0	9	° c	0	8	0	0	0	0
	-9 -3	-0	-0	-0	0	0	0	0	0	0	0	8	0	0	0	10
	-0	-0	-0	-0	0	0	0	0	9	0	0	0	0	0	0	0
	-6	-0	-0	-0	ć	0	0	0	0	0	0	0	0	0	0	0
	-0 -c	-0	-0	-0	ć	10	15	110	110	0	0	0	0	120	0	0
	-6	-0	-0	-0	-6	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BAER CASE FIME 3 RIGHT SECTION	2 N														
-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0
-0	-0	-0	-0	-ç	15 70	-0 -c	-0	-0	-0	0	0	0	-0 -0	-0	-0
-0	-0	-0	-0	15	23 60	25 80	-0	-0	2C 120	11	0	0	0	-0	-0 -0
-0	-0	-0	10 30	25 30	31 60	30 70	25 90	25 120	23 120	17	-0 -0	-0 -0	-0 -0	0	-0 -0
0	-0	-0	15 20	28 30	34 30	29 60	27 80	30 120	135	180	-0 -0	-0	-0	-c -o	-0 -0
16 320	18 320	18 360	23	32 20	36 360	25 360	30 315	38 270	33 225	28 200	-0 -0	-0	-0	-0 -0	-0 -0
310	320	330	315	38 350	340	35 315	300	270	35 250	30 225	-0 -0	-0	-0	-0 -0	-0 -0
310	33 310	38 310	300	320	5G 310	51 290	270	270	35 260	30 250	-0 -0	-0	-0	-0 -0	-0 -0
30	36 310	300	290	280	54 300	56 280	270	45 270	260	35 220	23 230	20 230	250	-C -0	-0 -0
210	35 250	300	290	296	52 300	55 270	53 270	270	270	32 230	25 220	230	10 230	1C 230	-0 -0
210	28 250	270	300	36	30 300	300	36 290	35 270	35 270	32 230	25 230	0	-0	-0 -0	-0 -0
8	250	300	35 315	310	300	315	27	28 240	260	27 240	260	0	-0	-c -c	-0 -0
180	8	300	315	340	360	25 360	25 300	25 250	250	21 250	10 270	C	-0	-C	-0 -0
13	0	0	315	21 45	22 45	225	225	25	22 250	18 250	200	270	15 315	-c -o	-0 -0
11 60	70	60	22 45	60	230	6	225	210	20	250	270	270	15 315	-0 -c	-0 -0
0	0	60	230	22 235	15 220	0	0	180	225	225	270	10 320	330	1C 315	-0 -0
C	0	220	230	210	15 220	0	0	170	180	180	60	10 350	15 350	10 350	-0 -0
8	0	210	210	210	130	0	0	120	110	90	70	10 350	10	10 30	-0
C	0	0	0	° c	0	0	0	ç	0	0	0	90	0	-0	-0
0	0	0	°	C	0	0	0	0	0	0	100	90	-0	-c	-0
20 140	0	10	0	ç	0	0	0	C	0	100	20	30 90	-0	-0	-0
0	0	0	0	0	0	0	0	0	0	100	90	30 90	-0	-c -o	-0
0	0	0	0	CO	0	. 0	0	° c	0	0	90	90	-0	-c -0	-0
8	8	8	0	ő	8	0	0	0	0	0	0	90	-0	-0 -c	-0
0	8	0	ç	0	Ĉ	8	0	o	0	0	0	9	-0	-0	-0
0	0	0	0	ő	8	8	0	0	8	0	8	0	0	-0	-0
-c	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-c -c	-0

Table D-1 Data: Case II (Continued)

BAER TIME LEFT	CASE 2 6 SECTION															
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	0	8
	-c -c	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	0	0
	-0 -0	-0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	0	0
	-G -0	-0 -0	-0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	
	-0	-0	-0	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	:
	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0 -0	0
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0	8
	-0 -c	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	:
	-6	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	30 270	18 225	15
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	15 310	25 340	35 340	45 300	20 315	27	270	210	10
	-0 -0	-0	-0 -0	-0 -0	-0 -0	15 330	15 290	23 310	15 340	20 340	38 340	36 270	33	35	210	100
	-0 -0	-0 -0	0	0	300	10	21 300	32 300	27 330	340	45 330	53 240	42 225	22	200	110
	-0	-0 -0	C	0	0	0	19	25 300	30 330	40 340	40 350	30 240	18 270	0	0	10
	-0 -0	-0 -0	0	10	90	10 70	13 30	300	10 330	12 340	10 550	0	0	0	0	0
	-0	0	10	13 135	10 90	10	10 70	0	0	0	0	0	0	0	0	60
	-0	0	10	13 90	10	10	10 90	0	0	0	0	0	0	0	0	15
	-0 -0	15 120	110	15 70	10 70	12	15 70	0	0	0	0	0	0	0	0	8
	-0	-0	10	15 70	15	15	13	0	0	0	0	0	0	0	0	0
	-0 -0	-0	-0	-0 -0	10 70	0	10	0	0	0	8	0	0	0	0	0
	-0	-0 -0	-0	-0	15 70	0	10 80	0	0	0	0	0	0	0	0	10 150
	-0 -0	-0 -0	-0 -0	-0 -0	10 120	0	10 90	0	0	0	0	0	0	0	0	0
	-0 -0	-0	-0	-0 -0	0	0	10 90	0	0	0	0	0	0	0	0	0
	-0 -0	-0	-0	-0 -0	16 120	10	0	0	0	0	0	0	0	0	0	0
	-0 -0	-0 -0	-0 -0	-0 -0	ç	0	0	0	0	0	0	0	10	10	0	0
	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BAER CASE TIME 6 RIGHT SE	E 2															
3	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0 -0	-0	-0	-0 -0	10	-0	-0 -0	-0 -0	-0 -0	15 90	0	0	-0 -0	-0	-0
	-0	-0	-0	-0 -0	27 360	22 10	15 30	-0	-0 -0	0	12 135	0	0	0	-0 -c	-0
	-0	-0	-0	20 60	35 360	35 360	25 30	17 50	10	0	13 135	-0 -0	-0	-0	0	-0
	0	-0	-0	20 360	360	360	38 360	25 360	17 220	17	200	-0	-0 -0	-0	-0	-0
	0	0	0	12 300	35 360	45 360	52 340	40 340	30 220	28	30 210	-0	-0	-0	-0	-0
	0	0	8	10 300	10 330	27 350	48 330	50 330	40 270	48 225	250	-0	-0	-0	-0	-0
	0 2	17	25 270	29 270	25 330	30 250	\$2 320	47 320	51 270	35 250	40 250	-0	-0	-0	-0	-0
	10	20	30 270	270	52 270	53 330	50 320	315	27	25 270	250	34 210	21 225	0	-0	-0
2	10 10 2	18	27	32 300	42 310	50 510	53 310	290	290	52 270	250	32 225	23 225	0	0	-0
2	12 10 2	15	10 270	25 270	27 300	30 290	35 290	29	29	30 270	31 250	27 250	225	-0	-0	-0
2	15 10 2	13	270	15 270	19	20	22 280	22 270	10 290	0	12 250	19	10 270	-0	-0	-0
2	15 10 2	13	8	8	8	0	0	24 270	20 225	10 270	0	0	8	-0	-0	-0
2	12 10 2	15 25	12	10 350	0	0	0	20 225	22 225	16 250	10 270	0	8	0	-0	-0
	10	15	15	12 80	0	8	0	17	18	250	12 270	0	8	8	-0	-0
	18	19	15	12 70	0	8	0	200	15	225	270	0	8	0	6	-0
	25 90 1	19	170	111	8	0	8	110	180	100	11	10	8	8	6	-8
2	18 10 1	15	0	0	0	8	0	0	10	10	0	15	0	0	0	-0
	0	0	0	0	8	0	0	0	0	0	0	0	8	0	-0	-0
	0	0	0	0	0	8	0	0	0	0	0	0	8	-0	-0	-0
1	10	0	8	8	0	8	8	0	8	0	8	0	8	-0	-0	-0
,	20 50 1	10	0	8	0	8	0	0	8	0	0	0	8	-0	-0	-0
1	10	0	0	0	C	8	0	0	8	0	0	0	0	-0	-0	-0
	C	C	0	0	0	8	0	0	8	0	0	0	0	-0	-0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	0	0	6	0	0	0	0	10	10	10	0	0	-0	-0 -0
7. (O ₂₀)	-c -c	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0 -c	-0	-0 -0	-0	-0	-0 -0	-0

Table D-1 Data: Case II (Continued)

BAER CASE TIME 9 LEFT SECTION															
-0 -0	-0 -0	-0 -0	-0	-0 -c	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0		
-0 -0	-0 -0	-0	-c -c	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	:
-0 -0	-0	-0	-0	-0	-6	-0	-0	-0	-0	-0	-0	-0	-0	0	
-0 -0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
-0 -0	-0 -0	-0	-0 -0	-c	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	90
-c -o	-0 -0	-c -c	-0 -0	-6	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	120
-0 -0	-0	-0	-0 -0	-c -o	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	160
-0 -0	-0 -0	-0 -c	-0 -0	-0	-0 -0	-0 -0	-0	-6	-0	-0	-0	-0	-0	-0	19
-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	23 180
-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	270	25	28 180
-0 -c	-0 -0	-0	-0 -0	-0	-c -0	-0 -0	13 300	18 330	320	290	25 330	29 315	31 300	32 250	35 180
-0 -0	-0	-0	-0	-c -c	0	0	300	300	22 330	25 300	28 300	32 300	35 300	270	28 150
-0 -0	-0 -0	0	0	16	0	0	12 300	300	32 330	25 330	27 330	30 300	30 300	26 270	16
-0	-0 -0	0	0	ç	0	0	10 270	315	315	20 300	21 330	23 815	25 300	270	150
-0	-0 -0	0	0	180	0	0	0	0	315	12 530	330	330	0	17 360	360
-0	0	8	0	10	10	0	0	0	0	0	0	0	0	10 360	10
-0	15	10	0	10 126	15	15 30	0	0	0	0	0	0	0	0	8
-0	15	10	10	0	8	0	0	8	0	8	0	0	0	0	8
-0 -0	-0 -0	10	10	10	0	0	0	0	0	0	0	0	0	0	0
-0	-0	-0	-0	0	8	0	0	0	0	0	0	0	0	0	0
-0	-0 -0	-0	-0	15	10	0	0	0	0	0	0	0	0	0	0
-0	-0	-0	-0	ç	0	0	0	0	0	0	0	0	0		6
-0	-0	-0	-0 -0	0	0	0	0	0	0	8	0	0	0	0	8
-9	-0	-0	-0	0	0	0	0	8	0	8	0	8	0	0	8
-0	-0	-0	-0	0	0	0	0	9	0	0	0	10 90	10 120	0	0
-0 -0	-0	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BASA TIME RIGHT	CASE 9 SECT 10	2 N														
	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0
	-0 -0	-0	-0	-0 -0	-0	27 45	-0	-0 -0	-0 -0	-0 -0	15	15 120	20 135	-0	-0 -0	-0
	-0 -0	-0	-0	-0 -0	20 20	33 30	33 30	-0 -0	-0 -0	23 90	30 135	20 120	23 140	22 150	-0 -0	-0 -0
	-0	-0 -0	-0	10	25 10	33 360	35 20	33 20	21 60	30 90	33 180	-0 -0	-0 -0	-0 -0	20 180	-0
	0	-0	-0 -0	13 330	22 360	32 340	360	35 360	25 530	31 270	30 210	-0	-0	-0 -0	-0 -0	-0 -0
	11 90	210	12 220	15 315	-18 340	25 340	340	48 340	310	35 270	35 210	-0	-0	-0	-0 -0	-0
	17 90	22 210	16 225	18 300	18 320	20 320	37 330	60 315	300	50 270	50 270	-0	-0 -0	-0	-0	-0
	21 180	25 210	18 225	20 310	27 300	35 320	48 320	53 290	53 290	48 270	270	-0	-0 -0	-0	-0	-0
	27 160	29 160	20 225	18	28 300	\$2 315	52 310	61 290	58 290	270	35	25 250	20	20 225	-0	-0
	30 180	30 160	22 240	18 290	20 300	300	310	290	270	260	37 260	25 250	17	20 230	10	-0
	33 180	32 160	26	19 250	15 300	300	35 300	28	300	37	30 260	25	13	-0	-0	-0
	33 180	33 180	30 170	20 180	15 315	15 315	310	21 300	28 300	35 270	33 260	25 250	10 230	-0	-0	-0
	25 150	30 150	33 160	16	15	315	16 330	20 510	31	52 270	30 260	15 250	0	-0	-0 -0	-0
	20 250	15 150	160	130	15	100	18	23	215	200	270	290	0	10 330	-0	-0
	15 260	15 210	120	20 130	15	17	18	22	215	0	12	270	0	330	-0	-0
	10 150	150	120	22 160	23	210	12	15	210	0	270	10 300	0	15 340	0	-0
	10	12	20 120	23 160	21 200	12	0	0	0	0	0	0	0	120	10	-0
	0	13	21	22 160	0	0	8	0	0	0	0	0	0	20 30	10 30	-0
	0	0	13	15	0	0	0	0	0	0	0	0	0	15 30	-0 -0	-0
	0	0	0		0	0	0	0	0		0	0	0	-0 -0	-0	-0
	0		0	0	6	0	0	8	0	0	0.	0	0	-0	-0	-0
	0	0	0	0	3	0	0	0	0	0	0	0	0	-0	-0	-0 -0
	0	0	8	8	6	0	0	8	0	8	0	8	0	-0	-0	-0
	0	8	8		0	0	0	0	0	0	0	0	0	-0	-0	-0
	0	0	8	:	0	:	8	8	0	8	8	0	0	-0	-0	-0
	0	0	0		0	. 0	0	0	0	0	0		0	0	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BAER CAS TIME 12 LEFT SEC	E 2															
	-0 -0	-0	-0	-0	-6	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	C	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-0	-c -0	-0	-0 -0	-6 -6	-0	-0	-0	-0	-0	-0	-0	-0	-0	13 270	13 225
	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	28C	22 270
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	30 90
	-0	-0	-c	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	27 90
	-0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0 -0	-c	18
	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	12 225
	-6 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	~0 ~0	-0 -0	-0 -0	17 250
	-0 -0	-c -o	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	19 310	17 28C	25 270
	-0 -c	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	0	310	22 300	27 330	30 315	315	30 310	280	15 270
	-0 -0	-0 -0	-0	-0 -0	-0	0	G	10 310	315	20	30 300	35 315	35 315	35 300	35 300	10 290
	-0 -0	-0 -0	0	0	ç	0	12 300	18 310	22 315	28 300	30 330	30 315	30 315	30 300	30 300	32 190
	-3	-0 -0	C	0	0	0	s 10	310	315	330	24 315	25 315	25	23	270	180
	-0	-0 -0	0	0	0	0	0	0	0	0	15 330	20 330	270	15 270	270	15 340
	-0	10	10	0	10	0	10	0	6	0	8	360	300	8	15 30	20 360
	-0	10	10	0	10 90	10	10	8	8	0	8	0	8	8	18	360
	-0 -0	20	20	10	0	0	100	15	0	0	10	0	0	0	C	25 330
	-0 -c	-6 -0	15	15	0	0	0	0	0	0	10	0	0	0	0	0
	-0	-0	-0	-0	ç	16 120	3	0	0	0	0	0	0	0	0	0
	-c	-0	-0	-0	0	10 120	8	0	0	0	0	0	8	0	0	0
	-0 -0	-0	-0	-0	0	100	8	0	0	0	0	8	0	0	10 270	0
	-0	-0	-0	-0	0	0	8	0	0	0	0	0	0	0	0	0
	-0	-0	-0	-0	8	110	0	0	0	10	10	10	0	0	0	0
	-0	-0	-0	-0	15	0	15	0	0	10	10	10	0	0	0	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-c -0	-0

Table D-1 Data: Case II (Continued)

SAER TIME RIGHT	CASE 2															
	-c -c	-0 -0	-0	-0	-6	-0	-0	-0 -0	-0 -c	-0 -c	-0	-0	-0	-0	-0	-0
	-0	-0	-0	-0	-6	11 30	-0	-0	-0	-G	40	10 330	20 135	-0	-0 -0	-0 -0
	-0 -0	-0 -0	-0	-0	ò	16	23 10	-0 -0	-0	40 30	35 30	15 340	200	200	-0	-0 -0
	-c	-0	-0	0	C	18 360	25 360	25 10	25 10	*0 30	25 150	-0 -0	-0 -0	-0 -0	30 200	-0 -0
	- 20 110	-0	-0	C	ć	19	28 360	30 360	25 10	35 360	20 315	-0 -0	-0	-0 -0	-0	-0
	30 90	22 135	13 135	0	0	18 340	31 550	42 330	30 315	30 315	20 300	-0 -0	-0	-0	-0	-0 -0
	135	160	140	0	0	16 315	35 330	52 320	45 315	42 300	30 270	-0 -0	-0	-0	-c	-0 -0
	183	30 180	32 140	180	12 225	300	35 310	310	45 315	300	270	-0 -0	-0	-0	-0 -0	-0
	160	200	25 150	25 210	225	15 300	20 300	41 300	45 300	45 290	270	35 270	35 250	35 250	-c -o	-0 -0
	19	23 220	31 160	210	23	225	300	35 300	50 300	290	290	38 270	20 250	20 250	20 250	-0 -0
	180	35 225	35 170	210	210	20	33 290	300	300	290	33 290	33 270	30 270	-0	-0	-0 -0
	20 250	225	35 170	33 200	216	12 220	0	0	10 270	25 270	22 280	270	270	-0	-0 -0	-0
	290	30 160	3C 170	32 180	32 180	20 180	0	0	10 180	13 230	13	10 260	10 250	-0	-0	-0
	180	15	170	135	30 120	25	210	0	0	0	0	10 260	10 250	290	-0	-0 -0
	18 560	13	180	21 180	180	19	230	210	10 225	111	0	10 250	10 330	10 340	-0	-0 -0
	0	C	15	200	17 150	17	210	15 210	200	210	240	0	15	10 350	c 0	-0 -0
	15 20	200	190	190	150	150	12 180	15	0	15 180	15	0	10	10	° c	-0
	270	32 210	180	180	160	12	0	0	0	12	0	10	20 45	10	8	-0
	270	25 710	15	0	166	0	0	0	0	0	0	0	10	0	-0	-0
	200	0	15 180	0	0	8	0	8	0	0	0	0	0	-0	-0	-0
	200	0	160	8	0	C	8	0	0	0	0	0	0	-0	-6	-0
	200	0	0	0	0	0	0	8	0	0	0	0	0	-0	-0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
	8	0	0	8	8	8	8	8	0	0	0	8	0	-0	-6	-0
	8	0	9	0	8	8	8	0	0	8	0	0	0	-0	-0	-0
	0	8	0	8	8	8	0	0	0	0	0	0	0	0	-0	-0
	-0 -c	-0	-0	-0	-c	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0

			Te	ble	D-1	Dat	a:	Case	II	(Cont	tinue	d)					
TIME LEFT	ASE 2 15 SECTION																
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-c	-0	
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0	
	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0 -0	-0	8	0	
	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	8	0	
	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	10	20 70	
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	29 60	
	-0	-0	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	28 45	
	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-c -0	310	
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	15 290	
	-0	-8	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0 -0	20 270	
	-8	-0	-0	-0	-6	-0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	270	30 250	25 260	
	-0	-0	-0 -0	-0	-0	-0	-0	0	0	21 310	25 515	330	26 315	25 300	25 290	20 280	
	-0 -	-0	-0	-0 -0	-0	8	0	0	0	28 310	32 310	28 315	315 315	32 315	25 290	23 290	
	-0	-0	0	10	0	0	12 315	315	15 300	25 310	32 310	33 310	35 315	35 315	35 315	30 270	
	-0	-0 -0	10	10 135	10	0	12 315	12 315	19 315	23 315	26 310	310	32 300	32	32 315	27	
	-0 -0	-0	13	10	10	0	0	0	0	10 330	210	310	300	25	25	360	
	-0	15 130	13 120	10 120	10	10 135	0	0	8	0	0	0	16 315	15 320	15 280	15 330	
	-0	15 120	10	10	10	10 135	10	0	10	0	8	0	0	0	0	0	
	-0	15	10	10 120	120	10	10 120	110	0	10	20 60	10 30	0	0	6	0	
	-0	-0	10 120	15 120	10 120	10 120	100	100	10	15 70	20 60	10 45	10	10	0	0	
	-0	-0	-0	-0 -0	15 120	13 120	100	100	10	0	10 70	ô	10	10	0	0	
	-0 -0	-0	-0	-0	12 70	13	100	100	100	0	8	0	0	0	10	0	
	-8	-8	-0	-0	15 70	13	10	100	100	8	8	0	0	10	10	0	
	-0	-0	-0	-0 -0	12	0	8	0	10	10	10 70	8	0	0		0	
	-0	-0	-0	-0	10	10	8	100	10 90	10 70	10	0	0	0	0	0	
	-0	-0	-0	-0	0	10 120	10	10	10	8	0	0	0	0	8	0	
	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	

Table D-1 Data: Case II (Continued)

BAER TIME RIGHT	CASE 15 SECTIO	2 N														
	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0	-0	-0	-0	0	-0	-0	-0	-0	30 70	30 45	150	-0	-c	-0
	-0	-0	-0	-0	8	0	360	-0	-0	350	28 45	0	150	135	-0	-0
	-0	-0 -0	-0	9	0	0	27 340	16	25 360	350	360	-0	-0	-0	25 190	-0
	25 135	-0	-0	20	20 270	21 300	40 330	38 360	360	55 300	60 320	-0	-0	-0	-c	-0 -0
	40 60	160	140	43 200	37 270	35 300	35 320	43 330	340	53 310	300	-0 -0	-0	-0 -0	-0 -0	-0
	35 135	33 170	30 150	29 150	29 225	300	23 315	320	43 320	52 310	38 270	-c -0	-0 -0	-0	-0	-0
	270	27	27 160	25 160	21 180	20	315	320	39 315	300	35 270	-0	-0 -0	-0	-0	-0
	10 270	23 250	31 160	31 160	160	13	315	21 315	38 315	300	290	32 250	25	30 260	-0 -0	-0
	20 270	18 260	160	33 160	25 160	150	0	21 315	315	39	290	33 270	25 220	40 250	4C 250	-0
	23 260	18 250	35 150	35 160	27 150	20	100	315	315	32 300	30 290	31 290	30 230	-0	-0 -0	-0
	20 270	22 225	31 225	35 160	3G 150	21 150	13	25 150	31 315	300	20 270	25 290	30 250	-0	-0 -0	-0 -0
	23 225	16 225	30 230	33	27 150	19 150	110	15 150	19 300	13 300	15 280	18 270	20 300	-0	-0	-0
	23 270	13 250	25 230	32 250	120	17	13		0	0	0	13 290	15 290	0	-c -0	-0 -0
	270	8	10	30 160	200	15 270	15 270	210	0	0	0	0	0	10 270	-c -c	-0 -0
	18 30	0	10	19	180	170	13	15 180	12	0	0	8	0	10 340	10 340	-0 -0
	10	0	110	15	15	12	0	12	110	0	0	0	10	10	15 60	-0
	8	0	110	13	12	10 150	8	0	8	0	0	0	20 60	25 60	15	-0
	0	0	170	10	20 140	10	8	0	8	0	0	0	15 70	23 45	-0 -0	-0 -0
	0	0	.80	0	10	0	8	0	0	0	0	0	10 70	-0	-0 -0	-0
	8	8	8	0	0	0	8	0	8	0	0	0	0	-0	-0 -0	-0
	8	0	0	0	0	0	8	0	0	0	0	0	0	-0	-0 -0	-0
	:	0	8	0	0	0	8	0	0	8	0	0	0	-0	-0	-0
	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
	8	8	8	8	8	8	8	0	0	0	0	0	0	-0	-0	-0
	8	8	0		0	0	0	0	0	10	10 80	10 80	0	0	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

TIME	CASE 2 18 SECTION															
	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	-0	0	0
	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	8
	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	9	22
	-0	-0 -0	-0	-0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	25 10	31 90
	-0 -0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	35 70
	-0	-0	-8	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	35 860
	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	315
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	315
	-0	-0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	22 315
	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	25	280	31 270
	-0	-0	-0	-0	-0	-0	-0	0	300	330	330	300	320	20 315	330	20 270
	-6 -6	-0	-8	-0	-0	8	0	15 300	15 300	20 315	300	23 300	25	30	270	20
	-0	-0 -0	170	12 225	10 270	15 270	12 280	300	300	270	300	18	25 810	32 225	280	28 280
	-0	-0	0	0	0	0	0	10 230	10 270	13 270	13 250	13 315	18 310	300	30 300	26 280
	-0 -0	-0	8	0	15 225	0	0	0	0	0	10 225	10 30	12 360	15 310	290	315
	-0	0	10	15	100	8	0	0	0	0	0	0	0	330	300	12 300
	-0	110	10	10	0	0	0	0	0	0	0	0	0	0	0	8
	-0	100	100	8	10 120	8	0	0	0	0	10	10 30	0	0	0	8
	-0	-0	110	110	10 120	10	12	13	15	70 70	15	10 70	0	0	0	0
	-0	-0	-0	-0	10 135	0	110	15	100	10	10	10	10 80	10	8	10
	-0	-0	-8	-0	10 120	135	12	15 80	10	10 70	10	10	10	10	8	0
	-0	-0	-0	-0	10 90	0	10	10	0	10	10	15	12	10	0	0
780	-0	-0	-0	-0	100	10	0	0	0	10	15	15	100	100	0	0
	-0	-0	-0	-0	15 110	10	0	0	0	0	15 90	20 90	15 90	0	0	8
	-0	-0	-0	-0	10 90	10	10	10	0		10 90	15 90	10	0	0	8
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Conti	nued)
--------------------------------	-------

BAER CATTINE TO	8															
	-c	-0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0 -0	-0
	-0	-0	-0	-0 -0	-0	0	-0	-0 -0	-0 -0	-0 -0	15 10	15 75	20 225	-0	-0 -0	-0 -0
	-0 -0	-0	-0	-0	0	0	15 20	-0 -0	-0	20 30	15	20 330	20 330	20	-0	-0
	-0	-0 -0	-0	17	15	15	15 20	19 540	25 350	28 340	27 530	-0	-0	-0	20	-0
	35	-c -0	-0	23 150	17	0	0	29 330	38 350	80 325	33 320	-0	-0	-0	-0	-0
	42 110	135	135	32 150	170	0	0	32 315	350	320	38 315	-0	-0	-0	-0	-0
	42 270	180	135	150	32 160	21 180	225	35 315	41 315	320	315	-0	-0	-0	-0	-0
	35 240	45 270	225	45 135	150	38 150	31 210	35 280	45 315	38 315	38 315	-0 -0	-0 -0	-0 -0	-0	-0
	27 300	27	30 270	225	150	150	35 210	23	15	30 310	31 290	27	23 270	20	-0	-0
	25 300	25 250	32 250	37	200	180	100	170	15 270	12	23	25 270	23 270	15 250	15 250	-0
	28 300	25 250	28	27	250	225	25	15	0	0	18	22 270	20	-0	-0	-0
	3G 300	27 260	28 260	25 250	30 250	28	190	18 170	12	10 230	15 270	18	270	-0	-0	-0
	30 300	30 260	30 260	28 250	22 235	33 210	21 200	170	10 250	10 260	12 250	13 270	0	-0	-0	-0
	19 270	12 270	250	0	25	210	15	170	0	0	0	270	0	0	-0	-0
	15 270	0	0	30 180	32 225	180	170	100	0	0	0	0	0	10 315	-0	-0
	290	0	0	180	27	25 210	19	12	10	0	0	0	0	0	8	-0
	C	0	12	170	25	25 180	270	170	170	8	0	8	10 30	8	8	-0
	0	15 240	225	190	190	25 140	135	8	0	0	0	10	0	0	0	-0
	0	200	200	23 170	160	25 140	19	8	0	0	0	8	0	0	-0	-0
	10	10 270	10	20 140	23 135	135	0	8	0	0	0	8	0	-0	=0	-0
	0	90	15	0	0	0	0	8	8	0	0	8	8	-0	-8	-0
	0	0	0	0	0	0	0	8	0	8	0		0	-0	-0	-0
	0	0	0	0	0	0	0	8	0	9	0	8		-0	-0	-0
	0	0	0	0	0	8	8	8	0	0	8	8	8	-0	-8	-0
	C	0	8	8	8	8	0	8	0	8	0	0	0	-0	-0	-0
	0	0	0	8	0	0	0	8	8	8	:	0		:	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BASE TIME LEFT	CASE 2 21 SECTION															
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-6	-0	-0	-6	-0	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-0	-0	-0	-0	-0	-0	-0	0	-0	-0	-0	-0	-0	-0	10	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-6 -0	-0	10	0
	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0
	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	360
	-0 -0	-0 -0	-0	-0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-c -0	17 330
	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	22 300
	-0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	30 290
	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	30 300	33 300	35 270
	-0 -0	-0	-0	-0	c	-0 -c	-0 -0	15 30	0	90	22 330	22 315	27 330	33 315	35 300	38 270
	-0 -0	-0 -0	-0	-0	-6	0	0	0	10	20 160	25 300	25 315	27 330	30 320	32 315	32 290
-	-0	-0	0	0	0	0	14 270	22 270	90	25 240	270	22 315	20 300	20 330	21 290	25 290
	-0	-0 -0	0	0	0	210	15 240	315	300	18	300	290	290	17 300	290	18
	-0	-0	0	10 135	0	0	0	0	240	260	270	15 280	290	290	290	310
	-0	0	13	15	0	0	0	0	0	0	270	13 290	13	13 315	1C 290	10 290
	-0	0	10	10	0	0	0	0	0	8	0	0	10 360	10 360	0	0
	-0	120	110	10	10	0	0	0	0	C	0	0	0	0	C	0
	-0	-0	15 120	15 120	0	0	0	0	100	12	10	10	0	0	° c	0
	-0	-0	-0	-0	0	0	0	0	15	10	10	10	10 70	0	C	0
	-8	-0	-0	-0	6	0	0	100	100	10	10	15	15	0	0	0
	-8	-0	-0	-0	110	0	0	0	0	0	10	10 70	10	0	0	0
	-0	-0	-0	-0	0	0	10 70	0	8	0	8	8	10	0	0	0
	-0	-0	-0	-0	8	8	0	0	0	0	10	15	20 90	15	100	0
	-0	-0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Table D-1 Data: Case II (Continued)

BASE TIME RIGHT	CASE 21 SECT 10	2 N														
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
	-0	-0 -0	-0	-0	-0	100	-0	-0	-0	-0	18	30 330	15 30	-0	-0	-0
	-0	-0 -0	-0	-0	180	17	17 360	-0	-0	20 360	31 360	330	15 20	15	-0	-0
	-0	-0 -0	-0 -0	17	21 120	135	18	0	360	20 340	38 340	-0	-0	-0	15	-0 -0
	0	-0 -0	-0	25 225	3G 16C	31 170	20 150	10	32 300	30 300	42 360	-0	-0	-0	-0	-0 -0
	135	20 120	25 135	31 135	32 180	32 180	180	33 170	37	32 300	32 315	-0	-0	-0	-0 -0	-0
	18 140	25 280	31 150	35 160	35 160	35 180	32 180	28 170	20	18 300	315	-0	-0	-0	-0 -0	-0
	22 290	30 225	33	35 200	180	35	35 210	28	25	25 270	23 270	-0	-0	-0	-0 -0	-0
	29 315	55 240	35 230	33 210	33 200	33 200	35	33 210	160	21 270	22 270	30 290	35	30 290	-0 -0	-0
	33 300	35 290	33 240	31 250	30 140	30 200	28 190	32 180	18	10 250	13 270	32 290	35 290	10	10	-0
	38 270	38 290	31 270	20 250	18	23 210	28 180	33 170	20 160	0	0	30 290	32	-0	-0 -0	-0
	270	¥3 280	35	270	260	20 225	29 180	25 170	15	0	0	10 270	25 290	-0	-0 -0	-0
	38 290	290	270	270	0	225	32 200	17	0	0	0	0	c	-0	-0	-0
	29 290	35 270	30 300	18 300	g	210	200	17	0	0	0	0	0	270	-0 -0	-0
	300	23 250	23 270	240	c	0	170	20 170	10	0	0	0	0	10 330	-0 -0	-0
	14 315	15 250	17 270	210	0	0	170	170	20 180	0	0	0	0	10 350	360	-0
	0	10 270	10	0	0	0	0	10	10	0	0	0	0	10 360	15 30	-0
	8	0	0	0	6	0	0	0	0	0	0	0	0	15	10 30	-0
	0	0	0	10	ő	0	0	0	0	ç	0	0	8	10	-0	-0
	8	8	0	0	0	8	0	0	0	0	0	0	0	-0	-0	-0
	8	8	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
	0	8	0	0	0	0	0	8	0	0	0	0	0	-0	-0	-0
	8	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0
	9	9	0	0	0	8	0	0	0	0	0	8	8	-0	-0 -0	-0
	8	8	8	8	0	0	0	0	0	0	8	8	. 0	-0	-0	-0
	8	8	8	8	8	8	0	0	0	0	0	0	0	0	-0	-0
	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

				Tabl	e D-	1 D	ata:	Cas	e II	(Co	ntin	ued)					
BAER C TIME LEFT S	ASE 24 ECTION																
	-c -0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	
	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	0	10 340	
	-0	-0 -0	-0	-0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	0	10	
	-0 -0	-0 -c	-0	-0 -0	-c -c	-0 -0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0 -0	-0	10	8	
	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0	20	8	
	-0	-0 -0	-0	-0 -0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	:	
	-c -o	-0 -0	-0 -0	-0	-0 -c	-0 -0	-0 -0	-0	-0	-0 -0	-0	-0 -0	-0	-0	-c	20 360	
	-0 -0	-c -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0 -0	30 300	
	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	33 300	
	-0 -0	-0 -0	-0	-0	-0	-0	-0	-0	-0 -0	-0	-c -0	-0	-0	-0	-0 -0	35 290	
	-0	-0 -0	-0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	300	33	32 290	
	-0 -0	-0 -0	-0	-0	-0	-0 -0	-0 -0	10 70	0	10 360	15 330	25 315	31 330	33 315	33	20 300	
	-0 -0	-0 -0	-0	-0 -0	-0 -0	15 70	10	15 45	15 45	21 30	17	25 315	33 310	27 330	30 315	17 500	
	-0	-0	10	210	210	13 270	10 300	18	20 60	25 270	23 270	25	21 310	20 330	25 360	22 250	
	-0	-0	10	C	0	10 225	270	20	23 270	23	23	20	15 300	13 300	20	18 250	
	-0 -0	-0 -0	150	110	12	10 150	0	0	260	270	260	0	0	0	270	0	
	-0 -0	10	10	15	15	10	0	0	0	0	0	0	0	0	0		
	-0	15	12	135	15	10 135	135	0	0	0	0	0	0	0	0	360	
	-6 -0	100	15	10	155	10	135	0	0	0	0	10	0	0	0	10	
	-0 -0	-0	15	15	15	10 135	10 135	0	0	0	0	0	0	0	0	10	
	-0 -0	-0	-0	-0	210	120	15	10	15	15 70	20 60	10	0	0	0	10	
	-c -c	-0	-0	-0 -0	15	15	15	15	15	15	15	20	0	10 70	0	0	
	-0	-0	-0	-0	10	120	90	10	10	12	13 70	15	10	0	0	0	
	-0 -0	-0	-0 -0	-0 -0	00	0	10	0	10 70	12	15	10	15 70	0	0	0	
	-0	-0 -0	-0	-0	0	0	0	0	0	10	15	15	20 80	20	0	0	
	-0	-0	-0	-0	6	0	0	0	0	10	15	10	0	0	0	0	
	-0 -0	-0	-0	-0 -0	-0	-0	-0 -0	-0	-0	-0	-0	-0	-0	-0	-0	-0	

Table D-1 Data: Case II (Continued)

BARR (CASE	2
TIME	24	
BICHT	SECT	MOL

APPENDIX E

NEW YORK UNIVERSITY

COLLEGE OF ENGINEERING UNIVERSITY HEIGHTS, NEW YORK 53, N.Y.

DEPARTMENT OF METEOROLOGY AND OCEANOGRAPHY

3 November 1961

TELEPHONE: LUDLOW 4-0700

Mr. Ledolph Baer, 1020 Havre Court Sunnyvale, Calif.

Dear Mr. Baer:

The purpose of this letter is to describe to you the way in which the data that we have furnished you with reference to the storm over the North Atlantic in December 1959 were obtained. The collection of this data has been a cooperative effort of a number of people who are interested in the study of gravity waves. They are

> Dr. C.L. Bretschneider Dr. J. Darbyshire Dr. H.L. Crutcher Dr. H. Miche Dr. H. Walden Dr. B.W. Wilson Dr. W.J. Pierson, Jr. Dr. G. Neumann

The original data were supplied to me by the National Institute of Oceanography. They were digitized with funds made available by the Office of Naval Research on their contract Nonr 285(03). The spectra were computed at New York University by Emanuel Mehr. Supplementary wind data were searched at the National Weather Records Center by Dr. Harold Crutcher and provided to us to supplement the wind fields that were deduced from both the British Weather Maps and from our Northern Hemisphere 6 hourly surface charts.

It is the intent of the above named group to publish these data as a report on a particularly severe storm in the North Atlantic ocean. Just when this publication will appear is not yet known as the paper has not been written, but all of the data for the paper is now available. Perhaps at this time each of the interested parties will then prepare forecasts of the waves based on the techniques with which he is most familiar to see how well the various methods work out.

> Sincerely yours, Willand Wierson

Willard J. Pierson, Jr.

Professor of Meteorology

WJP:EM