

Fundamentos Computacionais

Fundamentos Computacionais

Aula anterior – revisão

Introdução

Artigo: Em paz com os números

Exemplo de Questões

Se Angelo mentiu, então ele é culpado. Logo:

- a) Se Angelo não é culpado, então ele não mentiu.
- b) Angelo é culpado;
- c) Se Angelo não mentiu, então ele não é culpado;
- d) Angelo mentiu;
- e) Se Angelo é culpado, então ele mentiu.

Exemplo de Questões

Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim:

- a) estudo e fumo;
- b) não fumo e surfo
- c) não velejo e não fumo;
- d) estudo e não fumo;
- e) fumo e surfo.

Exemplo de Questões

Considere verdadeira a declaração: "Toda criança gosta de brincar". Com relação a essa declaração, assinale a opção que corresponde a uma argumentação correta.

- a) Como Marcelo não é criança, não gosta de brincar.
- b) Como Marcelo não é criança, gosta de brincar.
- c) Como João não gosta de brincar, então não é criança.
- d) Como João gosta de brincar, então é criança.

Lógica Formal (Lógica Matemática)

Conceitos importantes:

- Proposição
- Conectivos
- Tabela-verdade
- Tautologia
- Contradição

Proposição

Pode ser afirmativa ou negativa Deve ser possível classificar a frase como verdadeira ou falsa

Não são proposições:

- Frases interrogativas
- Frases exclamativas

Proposição

É uma oração declarativa que pode ser classificada como verdadeira ou falsa, mas não as duas.

Quais são proposições?

- Dez é maior que sete.
- Como está você?
- Buenos Aires é a capital do Chile.
- \cdot 1 + 2 = 3 ou 2 + 3 = 5
- Compre 2 aspirinas.

Conectivos

- Negação (não)
- Conjunção (e)
- Disjunção (ou)
- Condicional (se... então)
- Bicondicional (se, somente se, então)

Tabela-Verdade

- Uma tabela-verdade é uma tabela que descreve os valores lógicos de uma proposição em termos das possíveis combinações dos valores lógicos das proposições componentes e dos conectivos usados.
- Para cada combinação de valores-verdade e de conectivos, a tabela-verdade fornece o valor-verdade da expressão resultante.

Negação (não)

Reflete uma negação da proposição

Representada por: ¬p, ~p, p' (lê-se "não p")

р	¬р
V	F
F	V

Conjunção (e)

Reflete uma noção de simultaneidade para ser verdadeira Representada por: p ^ q (lê-se p e q)

p	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Verdadeira, apenas quando p e q são simultaneamente verdadeiras **Falsa**, em qualquer outro caso

Disjunção (ou)

Reflete uma noção de que pelo menos uma das proposições deve ocorrer para a resultante ser verdadeira

Representada por: p v q (lê-se p ou q)

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

Verdadeira, quando pelo menos uma das proposições é verdadeira **Falsa**, somente quando as proposições são simultaneamente falsas

Disjunção (ou)

- Reflete uma noção de que pelo menos uma das proposições deve ocorrer para a resultante ser verdadeira
- ▶ Representada por: p ∨ q (lê-se p ou q)

p	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

- Verdadeira, quando pelo menos uma das proposições é verdadeira
- ▶ Falsa, somente quando as proposições são simultaneamente falsas

Hoje

Livro: Matemática Discreta e Suas Aplicações

Capítulo I

Ordem de precedência

- 1. Conectivos entre parênteses, dos mais internos para os mais externos
- 2. Negação (¬)
- 3. Conjunção (∧) e Disjunção (∨)
- 4. Condição (→)
- 5. Bicondição (\leftrightarrow)

Fórmulas (fórmulas bem formadas – fbf)

Sentença lógica corretamente construída sobre o alfabeto cujos símbolos são conectivos (\neg, \land, \lor) , parênteses, identificadores (p, q, r).

Exemplos de fórmulas:

- $p \vee (\neg q)$
- $(p \wedge q) \vee \neg q$
- (p ∨ ¬q) ^ (p ∧ q) ○

Condição (se... então)

Reflete uma noção de que, a partir de uma premissa verdadeira, obrigatoriamente deve-se chegar a uma conclusão verdadeira.

Entretanto, partindo de uma premissa falsa, qualquer conclusão pode ser considerada.

Representada por: $p \rightarrow q$ ("se p então q" ou "p implica q")

Condição (se... então)

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Falsa, quando p é verdadeira e q é falsa.

Verdadeira, caso contrário.

Dica: utilize uma das frases:

Se eu for eleito, então aqui será construída uma ponte. Se é pelotense, então é gaúcho.

Condição (se... então)

Antecedente (p) e Consequente (q):

Expressões Utilizadas	Representação
Se p , então q	
p implica q	
p, logo q	$p \rightarrow q$
p somente se q	
p segue de q	
p é uma condição suficiente para q	
q é uma condição necessária para p	

Exemplos:

- Se a chuva continuar, então o rio vai transbordar.
- O fogo é uma condição necessária para a fumaça.

Bicondição (se e somente se)

Reflete uma noção de condição "nos dois sentidos".

Representada por: $p \leftrightarrow q$ ("p se e somente se q")

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Verdadeira, quando p e q são ambas verdadeiras ou falsas **Falsa**, quando as proposições possuem valores distintos

Dica: utilize a frase:

• Se e somente se chover levarei o guarda-chuva.

Bicondição (se e somente se)

Proposição	Equivalência	
$p \leftrightarrow q$	p é necessário e suficiente para q	

Exemplo:

Se Penso, logo existo.

Tabelas-Verdade – Fórmulas

Uma tabela-verdade deve explicitar todas as combinações possíveis de valores lógicos

- Cada fórmula atômica pode assumir dois valores lógicos: V ou F
- Tabela-Verdade da Negação: 2 linhas (2¹)
- Tabela-Verdade da Conjunção, Disjunção, Condição: 4 linhas (2²)
- n fórmulas atômicas: 2ⁿ linhas (2ⁿ)

Tabelas-Verdade – Fórmulas

Exemplo: Tabela-Verdade da fórmula: $p \vee (q \wedge r)$

р	q	r	q∧r	p ∨ (q ∧ r)
V	V	٧	٧	V
V	V	F	F	V
V	F	V	F	V
V	F	F	F	V
F	V	V	V	V
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

Tautologia ou Contradição

Seja w uma fórmula. Então:

- w é dita uma tautologia se w é verdadeira, ou seja, se for verdadeira para todas as combinações possíveis de valores de sentenças variáveis.
- w é dita uma contradição se w é falsa, ou seja, se for falsa para todas as combinações possíveis de valores de sentenças variáveis.

Tautologia ou Contradição

Exemplos:

A fórmula p $\vee \neg p$ é uma tautologia.

Vai chover amanhã ou não vai chover amanhã.

A fórmula p $\land \neg p$ é uma contradição.

Hoje é terça-feira e hoje não é terça-feira.

р	¬р	p ∨ ¬ p	p ∧ ¬ p
V	F	V	F
F	V	V	F

Referências Bibliográficas:

Matemática Discreta e Suas Aplicações. Rosen, Kenneth H. [tradução João G. Giudice]. 6ª edição. São Paulo. Mc Graw-Hill. 2009. 986p.

Fundamentos Matemáticos para Ciência da Computação. GERSTING, Judith L. 4ª edição. Rio de Janeiro. LTC. 2001

Matemática Discreta para computação e informática. MENEZES, Paulo Blauth. Porto Alegre. Sagra Luzzato. 2004

Exercícios

Exercícios de prática: Estes são exercícios não avaliativos disponíveis no Blackboard.

Submissão: Não é necessário enviar as respostas.

Correção: Os exercícios serão corrigidos e discutidos na próxima aula.

