27012022- Grammars

27 January 2022 12:57

Unit-2-

Slides

Grammar of a Language in the sense of Automata

Definition of a Grammar:

A grammar consists of four tuples: $G = (V_N, T, F)$

V_N: Set of non-terminal symbols

T: Set of terminal symbols

S: Start symbol

P: Set pf production rules

10/20

Dr. Lavanya Selvaganesh

CSO32

Grammar of a Language in the sense of Automata

Definition of a Grammar:

A grammar consists of four tuples: $G = (V_N, T, P, S)$

V_N: Set of non-terminal symbols

T: Set of terminal symbols

S: Start symbol

P: Set pf production rules

Non-terminal symbols are those symbols that can be replaced multiple times.

Grammar of a Language in the sense of Automata

Definition of a Grammar:

A grammar consists of four tuples: $G = (V_N, T, P, S)$

 V_N : Set of non-terminal symbols

T: Set of terminal symbols

S: Start symbol

P: Set pf production rules

Non-terminal symbols are those symbols that can be replaced multiple

Terminal symbols are those symbols that cannot be replaced further.

Dr. Lavanya Selvaganesh

Example

$$V_N = \{S, A\}, S - \text{ starting symbol }$$

$$T = \{a, b\},$$

$$\textit{P} = \{\textit{S} \rightarrow \textit{aA}, \textit{S} \rightarrow \textit{b}, \textit{A} \rightarrow \textit{aa}\}$$

Dr. Lavanya Selvaganesh

(ロ)(母)(さ)(き) き わなの

Example

$$V_N = \{S, A\}, S$$
 starting symbol

$$T=\{a,b\},$$

$$\textit{P} = \{\textit{S} \rightarrow \textit{aA}, \textit{S} \rightarrow \textit{b}, \textit{A} \rightarrow \textit{aa}\}$$

Language of this grammar

S o aA o aaa (obtained by replacing A o aa) or S o b. So, $L(G) = \{b, aaa\}$.

Dr. Lavanya Selvaganesh CSO322 11/20

Chomsky Classification of Grammar

Chomsky classified the grammar into four types depending on the production rules.

- Type-0 Grammar
- Type-1 Grammar
- Type-2 Grammar
- Type-3 Grammar

Dr. Lavanya Selvaganesh CSO322 12/20

Chomsky Classification of Grammar

Chomsky classified the grammar into four types depending on the production rules.

- Type-0 Grammar
- Type-1 Grammar
- Type-2 Grammar
- Type-3 Grammar

The Chomsky classification is called Chomsky Hierarchy.

- Type-0 Grammar
 - Phase-structured grammar without any restrictions.
 - All grammars are type-0.

101181 3 151131 3 000

Dr. Lavanya Selvaganesh

CSO32

3/20

Chomsky Hierarchy

- Type-0 Grammar
 - Phase-structured grammar without any restrictions.
 - All grammars are type-0.
 - Production rule format -

$$\{(L_c)(NT)(R_c)\} \rightarrow \alpha,$$

where L_c : left context, R_c : right context, $NT \in V_N$: non-terminal symbol and $\alpha \in (V_N \cup T)^*$ is a string of non-terminals or terminals or both.

Dr. Lavanya Selvaganesh CSO322 13/20

Chomsky Hierarchy

- Type-0 Grammar
 - Phase-structured grammar without any restrictions.
 - All grammars are type-0.
 - Production rule format -

$$\{(L_c)(NT)(R_c)\} \rightarrow \alpha,$$

where L_c : left context, R_c : right context, $NT \in V_N$: non-terminal symbol and $\alpha \in (V_N \cup T)^*$ is a string of non-terminals or terminals or both.

- Type-1 Grammar
 - Context-sensitive grammar
 - All production rules are in the format of context-sensitive if all rules

in P are of the form -

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$
,

where $A \in V_N$ i.e. A is single non-terminal symbol, $\alpha, \beta \in (V_N \cup T)^* = \Sigma^*$ are strings of non-terminals and terminals and $\gamma \in (V_N \cup T)^*$ is non empty string of non-terminals and terminals.

Dr. Lavanya Selvaganesh	CSO322	13/20

Chomsky Hierarchy

- Type-2 Grammar
 - Context-free grammar
 - In left hand side of production, there will be no left or right context.
 - Production rule format-

$$NT \rightarrow \alpha$$
.

where $NT \in V_N$ and $\alpha \in (V_N \cup T)^*$

Chomsky Hierarchy

- Type-2 Grammar
 - Context-free grammar
 - In left hand side of production, there will be no left or right context.
 - Production rule format-

$$NT \rightarrow \alpha$$
,

where $NT \in V_N$ and $\alpha \in (V_N \cup T)^*$

- Type-3 Grammar
 - Regular Grammar
 - Production rule format -

$$A \rightarrow \alpha$$
 or $A \rightarrow \alpha B$

where $A, B \in V_N$ and $\alpha \in T$.

Grammar	Language	Machine Format
Type-0	Unrestricted Language/ Recursively Enumerable	Turing Machine
Type-1	Context-Sensitive Language	Linear Bounded Automata
Type-2	Context-Free Language	(Non-deterministic) Push-down Automata
Type-3	Regular Language	Finite Automata

Dr. Lavanya Selvaganesh CSO322 15/20

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \to aSb | \epsilon\}$$

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ...$ or $S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$

Dr. Lavanya Selvaganesh

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ... \text{ or } S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$
 $L(G) = a^n b^n \text{ for } n \ge 0.$

(ロ)(母)(三)(三) 至 の(0

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ... \text{ or } S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$
 $L(G) = a^n b^n \text{ for } n \geq 0.$

Example 2:

$$P: \{S \rightarrow aCa, C \rightarrow aCa|b\}$$

Dr. Lavanya Selvaganesh

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow \text{or } S \rightarrow \epsilon$

So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$ $L(G) = a^n b^n$ for $n \ge 0$.

Example 2:

$$P: \{S \to aCa, C \to aCa|b\}$$

 $S \implies aCa \implies aaCaa \implies \cdots \implies a^nba^n$

101181121121 2 000

Dr. Lavanya Selvaganesh

CSO32

16/20

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ... \text{ or } S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$
 $L(G) = a^n b^n \text{ for } n \ge 0.$

Example 2:

$$P: \{S \to aCa, C \to aCa|b\}$$

 $S \Longrightarrow aCa \Longrightarrow aaCaa \Longrightarrow \cdots \Longrightarrow a^nba^n$
So, $L(G) = a^nba^n$, n>0
Note - $\epsilon \notin L(G)$.

1日11日11日1日1日 日 つなで

Dr. Lavanya Selvaganesh

CSO32

16/20

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a, b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ... \text{ or } S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$
 $L(G) = a^n b^n \text{ for } n \ge 0.$

Example 2:

$$P: \{S \rightarrow aCa, C \rightarrow aCa|b\}$$

 $S \implies aCa \implies aaCaa \implies \cdots \implies a^nba^n$
So, $L(G) = a^nba^n$, n>0
Note - $\epsilon \notin L(G)$.

Example 3:

$$S \rightarrow AbB, A \rightarrow aA|a, B \rightarrow aB|a$$

Examples- Grammar to Language

Example 1:

$$V_N = \{S\}, T = \{a,b\}, S = \{S\}, P = \{S \rightarrow aSb | \epsilon\}$$

 $S \rightarrow aSb \rightarrow aaSbb \rightarrow ... \text{ or } S \rightarrow \epsilon$
So, $L = \{\epsilon, ab, aabb, aaabbb, ...\}$
 $L(G) = a^n b^n \text{ for } n \ge 0.$

Example 2:

$$P: \{S \rightarrow aCa, C \rightarrow aCa|b\}$$

 $S \implies aCa \implies aaCaa \implies \cdots \implies a^nba^n$
So, $L(G) = a^nba^n$, n>0
Note - $\epsilon \notin L(G)$.

Example 3:

$$S \rightarrow AbB, A \rightarrow aA|a, B \rightarrow aB|a$$

 $L(G) = a^nba^m, n, m > 0.$

Dr. Lavanya Selvaganesh

CSO322

1日1 (日) (日) (日) (日) (日)

Examples- Grammar to Language

Example 4:

$$S \rightarrow aS|bS|\epsilon$$

Dr. Lavanya Selvaganesh

Examples- Grammar to Language

Example 4:

$$S o aS|bS|\epsilon$$

$$L(G) = \{a, D\}^{T}$$
.

Dr. Lavanya Selvaganesh CSO322 17/20

Examples- Grammar to Language

Example 4:

$$S \rightarrow aS|bS|\epsilon$$

 $L(G) = \{a, b\}^*$.

- Example 5:
 - $S \rightarrow aSa|bSb|c$ (c is also a terminal symbol)

Examples- Grammar to Language

Example 4:

$$S \rightarrow aS|bS|\epsilon$$

 $L(G) = \{a, b\}^*$.

- Example 5:
 - $S \to aSa|bSb|c$ (c is also a terminal symbol) $L(G) = WcW^R$, W is any string from $\{a,b\}^*$ and W^R is reverse of string W.

Examples- Language to Grammar

Example 1:

$$L(G) = a^n, n > 0$$

(ロ)(母)(き)(き) き りへひ

Examples- Language to Grammar

Example 1:

$$L(G)=a^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$$

Dr. Lavanya Selvaganesh CSO322 18/20

Examples- Language to Grammar

Example 1:

$$L(G) = a^n, n > 0$$

Grammar: $G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$

Example 2:

$$L(G) = (ab)^n, n > 0$$

Examples- Language to Grammar

Example 1:

$$L(G)=a^n, n>0$$

Grammar: $G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$

Example 2:

$$L(G)=(ab)^n, n>0$$

Grammar: $G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \to abS | ab\}\}.$

Dr. Lavanya Selvaganesi

CSO32

18/20

Examples- Language to Grammar

Example 1:

$$L(G) = a^n, n > 0$$

Grammar: $G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$

Example 2:

$$L(G) = (ab)^n, n > 0$$

Grammar: $G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \to abS | ab\}\}.$

Example 3:

$$L(G) = a^{n}b^{n}, n > 0$$

Examples- Language to Grammar

Example 1:

$$L(G)=a^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$$

Example 2:

$$L(G)=(ab)^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \to abS | ab\}\}.$$

Example 3:

$$L(G) = a^n b^n, n > 0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \rightarrow aSb|ab\}\}.$$

Dr. Lavanya Selvaganesh

CS0322

18/20

Examples- Language to Grammar

Example 1:

$$L(G)=a^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$$

Example 2:

$$L(G)=(ab)^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \rightarrow abS | ab\}\}.$$

Example 3:

$$L(G)=a^nb^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \rightarrow aSb|ab\}\}.$$

Example 4:

$$L(G)=a^nc^ib^n, n,i\geq 0$$

Dr. Lavanya Selvaganesh

CSO32

18/20

Examples- Language to Grammar

Example 1:

$$L(G) = a^n, n > 0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a\}, S, P = \{S \rightarrow aS | a\}\}.$$

Example 2:

$$L(G) = (ab)^n, n > 0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \to abS | ab\}\}.$$

Example 3:

$$L(G)=a^nb^n, n>0$$

Grammar:
$$G = \{V_N = \{S\}, T = \{a, b\}, S, P = \{S \rightarrow aSb|ab\}\}.$$

Example 4:

$$L(G) = a^n c^i b^n, n, i \ge 0$$

Grammar: $G = \{V_N = \{S, A\}, T = \{a, b, c\}, S, P\}$, where $P = \{S \rightarrow aSb|A, A \rightarrow Ac|\epsilon\}$.

Dr. Lavarrya Selvaganesh CSO322

Examples- Context-Sensitive Grammar

Example 1:

$$L(G) = a^n b^n c^n, n \ge 1$$

Examples- Context-Sensitive Grammar

Example 1:

$$L(G) = a^{n}b^{n}c^{n}, n \ge 1$$

Grammar: $G = \{V_{N} = \{S, A, B\}, T = \{a, b, c\}, S, P = \{S \rightarrow Abc | ABSc, BA \rightarrow AB, Bb \rightarrow bb, A \rightarrow a\}\}.$

Dr. Lavanya Selvaganesh CSO322 19/20

Example 1:

$$L(G) = a^n b^n c^n, n \ge 1$$

Grammar: $G = \{V_N = \{S, A, B\}, T = \{a, b, c\}, S, P = \{S \rightarrow Abc | ABSc, BA \rightarrow AB, Bb \rightarrow bb, A \rightarrow a\}\}.$

Example 2:

$$L(G) = xx, x \in \{a, b\}^*$$

Examples- Context-Sensitive Grammar

Example 1:

$$L(G) = a^n b^n c^n, n \ge 1$$

Grammar: $G = \{V_N = \{S, A, B\}, T = \{a, b, c\}, S, P = \{S \rightarrow Abc | ABSc, BA \rightarrow AB, Bb \rightarrow bb, A \rightarrow a\}\}.$

Example 2:

$$L(G) = xx, x \in \{a, b\}^*$$

Grammar: $G = \{V_N = \{S, A, B, Z\}, T = \{a, b\}, S, P = \{S \rightarrow aAS|bBS|aAZ|bBZ, Aa \rightarrow aA, Bb \rightarrow bB, AZ \rightarrow Za, BZ \rightarrow Zb, Z \rightarrow \epsilon\}\}.$

Dr. Lavanya Selvaganesh CSO322 19/20

DIY Exercise

- Construct a grammar that generates all even integers upto 998.
- Construct a grammar for palindrome of binary numbers.

- Construct a grammar that generates all even integers upto 998.
- Construct a grammar for palindrome of binary numbers.

Questions!!!

