Московский физико-технический институт Физтех-школа прикладной математики и информатики

АЛГЕБРА И ГЕОМЕТРИЯ

I CEMECTP

Лектор: Богданов Илья Игоревич

Автор: Даниил Дрябин $\Pi poe \kappa m \ \, ha \, \, Github$

Содержание

1	\mathbf{Ma}	Матрицы и векторы				
	1.1	Матрицы	3			
	1.2	Векторы и линейная зависимость	5			
	1.3	Базисы и координаты	9			
2	Произведения векторов 12					
	2.1	Скалярное произведение	12			
	2.2	Ориентированные площадь и объем	15			
	2.3	Векторное произведение	19			
3	Уравнения прямых и плоскостей 2					
	3.1	Прямая в плоскости	21			
	3.2	Плоскость в пространстве	24			
	3.3	Прямая в пространстве	29			
4	Алгебраические кривые 30					
	4.1	Многочлены	30			
	4.2	Кривые второго порядка	33			
	4.3	Эллипс, гипербола и парабола	36			
	4.4	Сопряженные диаметры и касательные	39			
5	Алгебраические структуры 4					
	5.1	Группы	41			
	5.2	Кольца	42			
	5.3	Поля	43			
6	Лиі	нейные пространства	4 6			
	6.1	Пространства и подпространства	46			
	6.2	Базисы и изоморфизмы	48			
	6.3	Системы линейных уравнений	49			
	6.4	Размерности и ранги	54			
	6.5	Сумма и пересечение подпространств	59			
7	Линейные функционалы и отображения 63					
	7.1	Сопряженное пространство	63			
	7.2	Аннуляторы	65			
	7.3	Линейные отображения	67			

	7.4	Алгебры	71
8	Опр	ределитель	72
	8.1	Перестановки	72
	8.2	Полилинейность и кососимметричность	74
	8.3	Свойства определителя	76
9 Основы теории групп			
	9.1	Изоморфизмы групп	81
	9.2	Циклические группы	82
	9.3	Смежные классы	85

1 Матрицы и векторы

1.1 Матрицы

Определение 1.1. *Матрицей размера* $n \times k$ называется таблица из n строк и k столбцов, заполненная числами (или другими элементами):

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} = (a_{ij})$$

Обозначение множества числовых матриц данного размера — $M_{n \times k}$, множества квадратных числовых матриц размера $n \times n - M_n$

Определение 1.2. Строкой длины k называется матрица размера $1 \times k$, столбиом высоты n — матрица размера $n \times 1$. Если $A = (a_{ij}) \in M_{n \times k}$, то строка матрицы A с номером d обозначается через a_{d*} , столбец с номером d — через a_{*d} .

Определение 1.3. Подматрицей матрицы $A \in M_{n \times k}$ называется матрица, полученная из A удалением некоторых ее строк или столбцов.

Определение 1.4. Ниже перечислены основные операции над матрицами:

1. Пусть $A = (a_{ij}), B = (b_{ij}) \in M_{n \times k}$. Суммой матриц $A \ u \ B$ называется матрица $A + B \in M_{n \times k}$ следующего вида:

$$A+B:=(a_{ij}+b_{ij})$$

2. Пусть $A = (a_{ij}) \in M_{n \times k}, A, \lambda \in \mathbb{R}$. Матрицей, полученной из A умножением на cкаляр λ , называется матрица $\lambda A \in M_{n \times k}$ следующего вида:

$$\lambda A := (\lambda a_{ij})$$

3. Пусть $A = (a_{ij}) \in M_{n \times k}$. Матрицей, полученной из A транспонированием, называется матрица $A^T \in M_{k \times n}$ следующего вида:

$$A^{T} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \dots & a_{nk} \end{pmatrix} = (a_{ji})$$

4. Пусть $a_{1*} \in M_{1 \times n}$ — строка длины $n, b_{*1} \in M_{n \times 1}$ — столбец высоты n. Произведением строки A и столбиа B называется следующая величина:

$$a_{1*}b_{*1} := \sum_{i=1}^{n} a_{1i}b_{i1}$$

Величину AB можно считать как числом, так и матрицей размера 1×1 .

5. Пусть $A = (a_{ij}) \in M_{n \times k}, B = (b_{ij}) \in M_{k \times m}$. Произведением матриц $A \ u \ B$ называется матрица $AB \in M_{n \times m}$ следующего вида:

$$AB := (a_{i*}b_{*j}) = \left(\sum_{t=1}^{k} a_{it}b_{tj}\right)$$

Утверждение 1.1. Сложение матриц обладают следующими свойствами:

- $\triangleright \ \forall A, B \in M_{n \times k} : A + B = B + A \ (\kappaommymamushocmb)$
- $\triangleright \forall A, B, C \in M_{n \times k} : (A + B) + C = A + (B + C) \ (accognamus + accomb)$
- $\triangleright \exists 0 \in M_{n \times k} : \forall A \in M_{n \times k} : A + 0 = A$ (существование нейтрального элемента)
- $\forall A \in M_{n \times k} : \exists (-A) \in M_{n \times k} : A + (-A) = 0$ (существование противоположного элемента)

Доказательство производится непосредственной проверкой. Отметим только, что $0 \in M_{n \times k}$ — это матрица из нулей, а $(-A) \in M_{n \times k}$ — матрица, каждый элемент которой является противоположным соответствующему элементу A.

Утверждение 1.2. Умножение матрицы на число обладает следующими свойствами:

- $\forall \lambda \in \mathbb{R} : \forall A, B \in M_{n \times k} : \lambda(A+B) = \lambda A + \lambda B$ (дистрибутивность умножения матрицы на число относительно сложения)
- $\forall \lambda, \mu \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda + \mu)A = \lambda A + \mu A$ (дистрибутивность умножения матриц относительно сложения)
- $\forall \lambda, \mu \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda \mu) A = \lambda(\mu A)$
- $\triangleright \ \forall A \in M_{n \times k} : 1A = A$

Доказательство. Доказательство производится непосредственной проверкой.

Утверждение 1.3. Транспонирование обладает следующими свойствами:

- $\triangleright \forall A, B \in M_{n \times k} : (A+B)^T = A^T + B^T \ (\partial u cmpu бутивность транспонирования относи$ тельно сложения матрии)
- $\forall \lambda \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda A)^T = \lambda A^T$
- $\forall A \in M_{n \times k} : (A^T)^T = A$
- $\, \triangleright \, \, \forall A,B \in M_{n \times k} : (AB)^T = B^T A^T$

Доказательство производится непосредственной проверкой.

Утверждение 1.4. Умножение матрии обладает следующими свойствами:

 $\triangleright \forall A \in M_{n \times k} : \forall B \in M_{k \times m} : \forall C \in M_{m \times l} : (AB)C = A(BC) \ (accognamus Hocmb)$

- $ightarrow \exists E_n \in M_n : \exists E_k \in M_k : \forall A \in M_{n \times k} : E_n A = A E_k = A$ (существование нейтрального элемента)
- $\triangleright \forall A, B \in M_{n \times k} : \forall C \in M_{k \times m} : \forall D \in M_{m \times n} : (A+B)C = AC+BC \ u \ D(A+B) = DA+DB$ (дистрибутивность относительно сложения матриц)
- $\triangleright \ \forall \lambda \in \mathbb{R} : \forall A \in M_{n \times k} : \forall B \in M_{k \times m} : \lambda(AB) = (\lambda A)B = A(\lambda B)$

Доказательство. Доказательство производится непосредственной проверкой. Отметим только, что матрица $E_m \in M_m$ имеет следующий вид:

$$E_m := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Определенная таким образом единичная матрица произвольного размера удовлетворяет условию. \Box

Определение 1.5. Линейной комбинацией элементов v_1, \ldots, v_n (для которых определено сложение и умножение на числа) с коэффициентами $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ называется следующая величина:

$$\sum_{i=1}^{n} \alpha_i v_i = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Утверждение 1.5. Пусть $A \in M_{n \times k}, B \in M_{k \times m}, C := AB \in M_{n \times m}$. Тогда:

- ightharpoonup Столбиы матрицы C являются линейными комбинациями столбиов матрицы A
- ightharpoonup Cтроки матрицы C являются линейными комбинациями строк матрицы B

Доказательство. Докажем первую часть утверждения, поскольку вторая доказывается аналогично. Представим A в виде $(a_{*1} \dots a_{*k})$, тогда столбцы C имеют следующий вид:

$$c_{*i} = \sum_{t=1}^{k} a_{*t} b_{ti}$$

Каждый столбец c_{*i} матрицы C является линейной комбинацией столбцов a_{*1}, \ldots, a_{*k} с коэффициентами b_{1i}, \ldots, b_{ki} , что и требовалось.

1.2 Векторы и линейная зависимость

Определение 1.6. Направленным отрезком называется отрезок (на прямой, на плоскости или в пространстве), концы которого упорядоченны. Обозначение — \overline{AB} . Направленные отрезки \overline{AB} и \overline{CD} называются равными, если они сонаправленны и их длины равны.

Замечание. Равенство является отношением эквивалентности на множестве всех направленных отрезков на прямой, на плоскости или в пространстве.

Определение 1.7. Вектором называется класс эквивалентности направленных отрезков. Формально, если \overline{AB} — представитель класса \overline{v} , то \overline{AB} $\in \overline{v}$, но в дальнейшем это будет обозначаться как $\overline{AB} = \overline{v}$.

Определение 1.8. Ниже перечислены обозначения множеств векторов и точек:

- $\triangleright V_0$ нулевое пространство, состоящее только из нулевого вектора $\overline{0}$
- $\triangleright V_1, P_1$ множества всех векторов и всех точек на прямой
- $\triangleright V_2, P_3$ множества всех векторов и всех точек на плоскости
- $\triangleright V_3, P_3$ множества всех векторов и всех точек в пространстве

Всегда можно считать, что $V_0 \subset V_1 \subset V_2 \subset V_3$ и $P_1 \subset P_2 \subset P_3$.

Замечание. Вектор отличается от направленного отрезка тем, что его можно отложить от заданной точки: для любой точки $A \in P_n$ и вектора $\overline{v} \in V_n$ существует единственная точка $B \in P_n$ такая, что $\overline{AB} = \overline{v}$.

Определение 1.9. Основные операции с векторами:

- 1. Пусть $\overline{u}, \overline{v} \in V_n$. Отложим вектор \overline{u} от некоторой точки $A \in P_n$, получим $\overline{AB} = \overline{u}$. Теперь отложим \overline{v} от точки $B \in P_n$, получим \overline{BC} . Суммой векторов \overline{u} u \overline{v} называется такой класс $\overline{u} + \overline{v}$ с представителем \overline{AC} .
- 2. Пусть $\overline{u} \in V_n$. Отложим вектор \overline{u} от некоторой точки $A \in P_n$, получим $\overline{AB} = \overline{v}$. Вектором, полученным из \overline{u} *умножением на скаляр* λ , называется следующий класс эквивалентности $\lambda \overline{u}$:
 - \triangleright Если $\lambda=0$, то $\lambda\overline{u}=\overline{0}$
 - ightharpoonup Если $\lambda>0$, то $\lambda\overline{u}$ это класс с представителем \overline{AC} таким, что $AC=\lambda AB$ и $\overline{AC}\uparrow\uparrow\overline{AB}$
 - $\,\rhd\,$ Если $\lambda<0,$ то $\lambda\overline{u}$ это класс с представителем \overline{AC} таким, что $AC=|\lambda|AB$ и $\overline{AC}\uparrow\downarrow\overline{AB}$

Утверждение 1.6. Операции с векторами обладают следующими свойствами:

- $\triangleright \ \forall \overline{u}, \overline{v} \in V_n : \overline{u} + \overline{v} = \overline{v} + \overline{u}$
- $\forall \overline{u}, \overline{v}, \overline{w} \in V_n : (\overline{u} + \overline{v}) + \overline{w} = \overline{u} + (\overline{v} + \overline{w})$
- $\Rightarrow \exists \overline{0} \in V_n : \forall \overline{u} \in V_n : \overline{u} + \overline{0} = \overline{u}$
- $\forall \overline{u} \in V_n : \exists (-\overline{u}) \in V_n : \overline{u} + (-\overline{u}) = \overline{0}$
- $\forall \lambda, \mu \in \mathbb{R} : \forall \overline{u} \in V_n : (\lambda + \mu)\overline{u} = \lambda \overline{u} + \mu \overline{u}$
- $\forall \lambda \in \mathbb{R} : \forall \overline{u}, \overline{v} \in V_n : \lambda(\overline{u} + \overline{v}) = \lambda \overline{u} + \lambda \overline{v}$
- $\triangleright \ \forall \lambda, \mu \in \mathbb{R} : \forall \overline{u} \in V_n : (\lambda \mu) \overline{u} = \lambda(\mu \overline{u})$
- $\triangleright \ \forall \overline{u} \in V_n : 1\overline{u} = \overline{u}$

Доказательство. Доказательство производится непосредственной проверкой. Приведем указания к доказательству некоторых из свойств:

Первое свойство сводится к использованию свойств параллелограмма.

- ▶ Для доказательства второго свойства достаточно показать, что оба случая представляют собой последовательное откладывание следующего вектора от конца предыдущего.
- ⊳ Свойства, связанные с умножением на число, требуют рассмотрения всех случаев выбора знаков у чисел и во всех случаях очевидно выполняются.

Замечание. Используя свойства операций с векторами как аксиомы, можно показать, что $0\overline{u} = \overline{0}$ для любого $\overline{u} \in V_n$, не требуя этого равенства по определению:

$$0\overline{u} + 0\overline{u} = (0+0)\overline{u} = 0\overline{u} \Rightarrow 0\overline{u} + 0\overline{u} + (-0\overline{u}) = 0\overline{u} + (-0\overline{u}) \Rightarrow 0\overline{u} = \overline{0}$$

Определение 1.10. Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется линейно независимой, если для любых $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ выполнено следующее условие:

$$\sum_{i=1}^{n} \alpha_i \overline{v_i} = \overline{0} \Leftrightarrow \alpha_1 = \dots = \alpha_n = 0$$

Замечание. Условие выше эквивалентно тому, что любая ее *нетривальная* (имеющая ненулевой коэффициент) линейная комбинация отлична от нулевого вектора.

Определение 1.11. Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется линейно зависимой, если существует ее нетривиальная линейная комбинация, равная $\overline{0}$.

Утверждение 1.7.

- 1. Если система линейно независима, то любая ее подсистема тоже линейно независима.
- 2. Если система линейно зависима, то любая ее надсистема тоже линейно зависима.

Доказательство.

- 1. Пусть без ограничения общности у линейно независимой системы $(\overline{v_1}, \dots, \overline{v_n})$ есть линейно зависимая подсистема $(\overline{v_1}, \dots, \overline{v_k})$. Тогда существует нетривиальная линейная комбинация $\alpha_1 \overline{v_1} + \dots + \alpha_k \overline{v_k}$. Но если эту линейную комбинацию дополнить линейной комбинацией $0\overline{v_{k+1}} + \dots + 0\overline{v_n}$, то получится нетривиальная линейная комбинация векторов $(\overline{v_1}, \dots, \overline{v_n})$, равная $\overline{0}$ —противоречие.
- 2. Если система $(\overline{v_1}, \dots, \overline{v_n})$ линейно зависима, то ее нетривиальную линейную комбинацию, равную $\overline{0}$, можно аналогично дополнить до нетривиальной линейной комбинации любой ее надсистемы.

Определение 1.12. Пусть $\overline{u} \in V_n$, $(\overline{v_1}, \dots, \overline{v_n})$ — система векторов из V_n . Вектор \overline{u} выражается через $(\overline{v_1}, \dots, \overline{v_n})$, если \overline{u} является линейной комбинацией этой системы.

Утверждение 1.8. Система $(\overline{v_1}, \ldots, \overline{v_n})$ линейно зависима \Leftrightarrow один из ее векторов выражается через остальные.

Доказательство.

 \Leftarrow Пусть без ограничения общности $\overline{v_n}$ выражается через остальные векторы системы, тогда существуют коэффициенты $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$ такие, что:

$$\overline{v_n} = \sum_{i=1}^{n-1} \alpha_i \overline{v_i}$$

Преобразуем это равенство:

$$\sum_{i=1}^{n-1} \alpha_i \overline{v_i} + (-1)\overline{v_n} = \overline{0}$$

Значит, система $(\overline{v_1}, \dots, \overline{v_n})$ линейно зависима.

 \Rightarrow Пусть без ограничения общности в нетривиальной линейной комбинации, равной $\overline{0}$, коэффициент α_n отличен от нуля. Тогда:

$$\sum_{i=1}^{n-1} \alpha_i \overline{v_i} + \alpha_n \overline{v_n} = \overline{0} \Rightarrow \overline{v_n} = \sum_{i=1}^{n-1} \left(-\frac{\alpha_i}{\alpha_n} \right) \overline{v_i}$$

Таким образом, вектор $\overline{v_n}$ выражается через остальные векторы системы. \square

Утверждение 1.9. Пусть система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n линейно независима, а система $(\overline{v_1}, \dots, \overline{v_{n+1}})$ — линейно зависима. Тогда вектор $\overline{v_{n+1}}$ выражается через $(\overline{v_1}, \dots, \overline{v_n})$.

Доказательство. Так как система $(\overline{v_1}, \dots, \overline{v_{n+1}})$ линейно зависима, то существует нетривиальная линейная комбинация, равная $\overline{0}$, то есть существуют коэффициенты $\alpha_1, \dots, \alpha_{n+1} \in \mathbb{R}$ такие, что:

$$\sum_{i=1}^{n+1} \alpha_i \overline{v_i} = \overline{0}$$

Если $\alpha_{n+1}=0$, то у $(\overline{v_1},\ldots,\overline{v_n})$ также существует равная $\overline{0}$ нетривиальная линейная комбинация, что противоречит условию линейной независимости. Значит, $\alpha_{n+1}\neq 0$, тогда:

$$\overline{v_{n+1}} = \sum_{i=1}^{n} \left(-\frac{\alpha_i}{\alpha_{n+1}} \right) \overline{v_i}$$

Определение 1.13. Система векторов из V_n называется:

- ▶ Коллинеарной, если все ее векторы параллельны одной прямой
- ▶ Компланарной, если все ее векторы параллельны одной плоскости

Векторы, образующие коллинеарную или компланарную систему, тоже называются *коллинеарными* или *компланарными* соответственно.

Утверждение 1.10. Пусть $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in V_n$. Выполнены следующие свойства:

- 1. Если $\overline{a} \neq \overline{0}$ и вектор \overline{b} коллинеарен вектору \overline{a} , то \overline{b} выражается через \overline{a}
- 2. Если $\overline{a},\overline{b}$ неколлинеарные векторы и вектор \overline{c} компланарен системе $(\overline{a},\overline{b}),$ то \overline{c} выражается через $\overline{a},\overline{b}$.
- 3. Если $\overline{a}, \overline{b}, \overline{c}$ некомпланарные векторы, то \overline{d} выражается через $\overline{a}, \overline{b}, \overline{c}$.

 \mathcal{A} оказательство. Отложим векторы $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ от точки $O \in P_n$ и получим направленные отрезки $\overline{OA}, \overline{OB}, \overline{OC}, \overline{OD}$. Произведем следующие построения:

- 1. Если $\overline{a} \uparrow \uparrow \overline{b}$, то домножим \overline{OA} на $\frac{|\overline{b}|}{|\overline{a}|}$, иначе на $\left(-\frac{|\overline{b}|}{|\overline{a}|}\right)$, и получим \overline{OB} .
- 2. Проведем через C прямую l, параллельную \bar{b} . Пусть эта прямая пересекает OA в точке X. Тогда $\overline{OC} = \overline{OX} + \overline{XC}$, и по пункту (1) имеем, что \overline{OX} выражается через \bar{a} , а \overline{XC} через \bar{b} .
- 3. Проведем через D плоскость α , параллельную $(\overline{a},\overline{b})$. Пусть эта плоскость пересекает OC в точке X. Тогда $\overline{OD} = \overline{OX} + \overline{XD}$, и по пунктам (1) и (2) имеем, что \overline{OX} выражается через \overline{c} , а \overline{XD} через $\overline{a},\overline{b}$.

Теорема 1.1. Пусть $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in V_n$. Выполнены следующие свойства:

- 1. Система (\overline{a}) линейно независима $\Leftrightarrow \overline{a} \neq \overline{0}$
- 2. Cистема $(\overline{a},\overline{b})$ линейно независима \Leftrightarrow она неколлинеарна
- 3. Система $(\overline{a},\overline{b},\overline{c})$ линейно независима \Leftrightarrow она некомпланарна
- 4. Cucmema $(\overline{a}, \overline{b}, \overline{c}, \overline{d})$ всегда линейно зависима

Доказательство.

- 1. \Rightarrow Пусть $\overline{a} = \overline{0}$, тогда $1\overline{a} = \overline{0}$, и система (\overline{a}) линейно зависима.
 - \Leftarrow Если $\overline{a} \neq \overline{0}$, то при умножении этого вектора на любое число $\alpha \neq 0$ снова получится ненулевой вектор, то есть система (\overline{a}) линейно независима.
- 2. \Rightarrow Пусть система $(\overline{a}, \overline{b})$ коллинеарна. Если $\overline{a} = \overline{0}$, то вся система линейно зависима по пункту (1), иначе $-\overline{b}$ выражается через \overline{a} , тогда система тоже линейно зависима.
 - \Leftarrow Пусть система $(\overline{a},\overline{b})$ линейно зависима, тогда без ограничения общности \overline{b} выражается через \overline{a} , то есть эти векторы коллинеарны.
- 3. \Rightarrow Пусть система $(\overline{a}, \overline{b}, \overline{c})$ компланарна. Если система $(\overline{a}, \overline{b})$ коллинеарна, то вся система линейно зависима по пункту (2), иначе \overline{c} выражается через $\overline{a}, \overline{b}$, тогда система тоже линейно зависима.
 - \Leftarrow Пусть система $(\overline{a}, \overline{b}, \overline{c})$ линейно зависима, тогда без ограничения общности \overline{c} выражается через $\overline{a}, \overline{b}$, то есть эти векторы компланарны.
- 4. Если система $(\overline{a}, \overline{b}, \overline{c})$ компланарна, то вся система линейно зависима по пункту (3), иначе \overline{d} выражается через $\overline{a}, \overline{b}, \overline{c}$, тогда система тоже линейно зависима.

1.3 Базисы и координаты

Определение 1.14. *Базисом* в V_n называется линейно независимая система векторов, через которую выражаются все векторы V_n .

Утверждение 1.11. Пусть $e=(\overline{e_1},\ldots,\overline{e_n})$ — базис в V_n . Тогда для любого вектора $\overline{v}\in V_n$ существует единственный столбец коэффициентов α такой, что $\overline{v}=e\alpha$.

Доказательство. По определению базиса, такой столбец α существует. Если также существует столбец $\alpha' \neq \alpha$, удовлетворяющий условию, то:

$$\overline{v} = e\alpha = e\alpha' \Rightarrow e(\alpha - \alpha') = \overline{0}$$

Так как e — линейно независимая система, то линейная комбинация $e(\alpha - \alpha')$ должна быть тривиальной, откуда $\alpha = \alpha'$.

Определение 1.15. Пусть e — базис в V_n , $\overline{v} = \alpha e \in V_n$. Столбец коэффициентов α называется $\kappa oop \partial u hamhым <math>cmon \delta u om$ вектора \overline{v} в базисе e. Обозначение — $\overline{v} \leftrightarrow_e \alpha$.

Утверждение 1.12 (линейность сопоставления координат). Для любых $\overline{u}, \overline{v} \in V_n$ таких, что $\overline{u} \leftrightarrow_e \alpha$, $\overline{v} \leftrightarrow_e \beta$, выполнено следующее:

- 1. $\overline{u} + \overline{v} \leftrightarrow_e \alpha + \beta$
- 2. $\forall \lambda \in \mathbb{R} : \lambda \overline{u} \leftrightarrow_e \lambda \alpha$

Доказательство.

1.
$$\overline{u} + \overline{v} = e\alpha + e\beta = e(\alpha + \beta)$$
.

2.
$$\lambda \overline{u} = \lambda e \alpha = e(\lambda \alpha)$$
.

Теорема 1.2.

- 1. Базис в V_0 не существует.
- 2. Базис в V_1 это система из одного ненулевого вектора.
- 3. Базис в V_2 это система из двух неколлинеарных векторов.
- 4. Базис в V_3 это система из трех некомпланарных векторов.

Доказательство.

- 1. Единственный вектор в V_0 это $\overline{0}$, и он образует линейно зависимую систему.
- 2. В V_1 любая система из ≥ 2 векторов коллинеарна и потому линейно зависима. При этом вектор $\overline{a} \neq \overline{0}$ образует линейно независимую систему, и через него выражаются все векторы V_1 . Если же $\overline{a} = \overline{0}$, то он образует линейно зависимую систему.
- 3. В V_2 любая система из $\geqslant 3$ векторов компланарна и потому линейно зависима, а система из одного вектора коллинеарна и потому выражает не все векторы из V_2 . При этом неколлинеарная система $(\overline{a}, \overline{b})$ линейно независима, и через нее выражаются все векторы из V_2 . Если же система $(\overline{a}, \overline{b})$ коллинеарна, то она линейно зависима.
- 4. В V_3 любая система из ≥ 4 векторов линейно зависима, а система из ≤ 2 векторов компланарна и потому выражает не все векторы из V_3 . При этом некомпланарная система $(\overline{a}, \overline{b}, \overline{c})$ линейно независима, и через нее выражаются все векторы из V_3 . Если же система $(\overline{a}, \overline{b}, \overline{c})$ компланарна, то она линейно зависима.

Замечание. Из теоремы выше, в частности, следует, что базис в V_n состоит ровно из n векторов при $n \in \{1, 2, 3\}$.

Определение 1.16. Пусть e, e' — базисы в V_n . Тогда каждый вектор из e' раскладывается по базису e, то есть имеет место представление e' = eS для некоторой матрицы $S \in M_i$. Матрица S называется матрицей перехода от базиса e к базису e'.

Теорема 1.3. Пусть e, e' -базисы в $V_n, e' = eS, u$ пусть $\overline{v} \in V_n, \overline{v} \leftrightarrow_e \alpha, \overline{v} \leftrightarrow_{e'} \alpha'$. Тогда:

$$\alpha = S\alpha'$$

Доказательство. Заметим, что выполнены равенства $\overline{v} = e\alpha = e'\alpha' = eS\alpha'$. Значит, вектор \overline{v} имеет в базисе e координатные столбцы α и $S\alpha'$, но разложение вектора по базису единственно, поэтому $\alpha = S\alpha'$.

Утверждение 1.13. Пусть e, e' и e'' — базисы e V_n , а матрицы перехода S_1 , S_2 и S_3 таковы, что $e' = eS_1$, $e'' = e'S_2$, $e'' = eS_3$. Тогда:

$$S_3 = S_1 S_2$$

Доказательство. Выполнены равенства $e'' = \underline{e'}S_2 = eS_1S_2$, и при этом $e'' = eS_3$, но каждый из координатных столбцов векторов $\overline{e''_1}, \dots, \overline{e''_i}$ в базисе e единственен, поэтому $S_1S_2 = S_3$.

Определение 1.17. Базис в V_n называется:

- ▶ Ортогональным, если его векторы попарно ортогональны
- ▶ Ортонормированным, если он ортогонален и все его векторы имеют длину 1

Определение 1.18. Декартовой системой координат в P_n называется набор (O,e), где $O \in P_n$ —начало системы координат, e—базис в V_n . Точка $A \in P_n$ имеет координатный столбец α в данной системе координат, если $\overline{OA} \leftrightarrow_e \alpha$. Обозначение— $A \leftrightarrow_{(O,e)} \alpha$. Декартова система координат называется npsmoyeonbhoй, если базис e—ортонормированный.

Утверждение 1.14. Пусть $A \leftrightarrow_{(O,e)} \alpha$, $B \leftrightarrow_{(O,e)} \beta$. Тогда:

$$\overline{AB} \leftrightarrow_e \beta - \alpha$$

Доказательство. Выполнены равенства $\overline{AB} = \overline{OB} - \overline{OA} = e\beta - e\alpha = e(\beta - \alpha)$.

Утверждение 1.15. Пусть $A \leftrightarrow_{(O,e)} \alpha$, $B \leftrightarrow_{(O,e)} \beta$, $u \ C \in AB$ — такая точка на отрезке AB, что $AC : BC = \lambda : (1 - \lambda)$ для некоторого $\lambda \in (0,1)$. Тогда:

$$C \leftrightarrow_{(O,e)} (1-\lambda)\alpha + \lambda\beta$$

 $\ensuremath{\mathcal{A}oka3ameльcm6o}$. По условию, $\overline{AC}=\lambda\overline{AB}$, тогда:

$$\overline{OC} = \overline{OA} + \overline{AC} = \overline{OA} + \lambda \overline{AB} = e\alpha + \lambda e(\beta - \alpha) = e((1 - \lambda)\alpha + \lambda\beta)$$

Теорема 1.4. Пусть (O,e), (O',e') — декартовы системы координат в P_n такие, что e'=eS и $O'\leftrightarrow_{(O,e)}\gamma$. Тогда, если $A\leftrightarrow_{(O,e)}\alpha$ и $A\leftrightarrow_{(O',e')}\alpha'$, то:

$$\alpha = S\alpha' + \gamma$$

Доказательство. Выполнены равенства $\overline{OA}=e\alpha=\overline{OO'}+\overline{O'A}=e\gamma+e'\alpha'=e\gamma+eS\alpha'.$ Тогда, в силу единственности координатного столбца вектора \overline{OA} в базисе e, получим, что $\alpha=S\alpha'+\gamma.$

2 Произведения векторов

2.1 Скалярное произведение

Определение 2.1. *Скалярным произведением* ненулевых векторов $\bar{a}, \bar{b} \in V_n$ называется следующая величина:

$$(\overline{a}, \overline{b}) := |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$$

Если один из векторов $\overline{a}, \overline{b}$ — нулевой, то скалярное произведение $(\overline{a}, \overline{b})$ считается равным 0. Другое обозначение скалярного произведения — $\overline{a} \cdot \overline{b}$.

Определение 2.2. Векторы $\overline{a}, \overline{b} \in V_n$ называются $nepnen \partial u \kappa y$ лярными, если $(\overline{a}, \overline{b}) = 0$. Обозначение — $\overline{a} \perp \overline{b}$.

Замечание. Векторы $\overline{a}, \overline{b} \in V_n$ перпендикулярны \Leftrightarrow либо один из векторов — нулевой, либо $\angle(\overline{a}, \overline{b}) = \frac{\pi}{2}$. Кроме того, $\forall \overline{a} \in V_n : (\overline{a}, \overline{a}) = |\overline{a}|^2$.

Определение 2.3. Пусть $\overline{a}, \overline{b} \in V_n$, $\overline{b} \neq \overline{0}$, от точки $O \in P_n$ отложены направленные отрезки $\overline{OA} = \overline{a}$ и $\overline{OB} = \overline{b}$. Проекцией вектора \overline{a} на вектор \overline{b} называется такой класс эквивалентности, представителем которого является вектор $\overline{OA'}$, где A' — ортогональная проекция точки A на прямую OB.

Обозначение — $\operatorname{pr}_{\overline{h}} \overline{a}$.

Утверждение 2.1 (линейность проекции). Для любых $\overline{a}, \overline{b} \in V_n, \ \overline{b} \neq \overline{0}$, выполнено следующее:

1.
$$\operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2}) = \operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}$$

2.
$$\forall \lambda \in \mathbb{R} : \operatorname{pr}_{\overline{b}}(\lambda \overline{a}) = \lambda \operatorname{pr}_{\overline{b}} \overline{a}$$

Доказательство.

- 1. Пусть $\overline{OA_1} = \overline{a_1}$, $\overline{A_1A_2} = \overline{a_2}$, $\overline{OB} = \overline{b}$. Проведем через A_1 прямую l, параллельную отрезку OB. Пусть A'_1 ортогональная проекция точки A_1 на OB, A'_2 ортогональная проекция точки A'_2 на l, A''_2 ортогональная проекция точки A'_2 на OB. Тогда $l \perp (A_2A'_2A''_2)$, и, следовательно, $OB \perp A_2A''_2$. Значит, $\overline{OA''_2} = \operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2})$, при этом $\overline{OA''_2} = \overline{OA_1} + \overline{A_1A''_2} = \overline{OA'_1} + \overline{A_1A'_2} = \operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}$.
- 2. Если $\lambda = 0$, то утверждение, очевидно, верно. Пусть теперь $\lambda \neq 0$, тогда рассмотрим направленные отрезки $\overline{OA_1} = \overline{a}$, $\overline{OA_2} = \lambda \overline{a}$, $\overline{OB} = \overline{b}$. Пусть A_1' ортогональная проекция точки A_1 на OB, A_2' ортогональная проекция точки A_2 на OB. По определению умножения вектора на скаляр, $\triangle A_1OA_1' \sim \triangle A_2OA_2'$, причем коэффициент подобия равен $|\lambda|$, откуда $\overline{OA_2'} = \lambda \overline{OA_1'}$, то есть $\operatorname{pr}_{\overline{b}}(\lambda \overline{a}) = \lambda \operatorname{pr}_{\overline{b}} \overline{a}$.

Замечание. Для любых $\overline{a},\overline{b}\in V_n,\ \overline{b}\neq \overline{0},$ выполнены следующие равенства:

$$(\overline{a},\overline{b}) = |\overline{a}||\overline{b}|\cos\angle(\overline{a},\overline{b}) = \begin{cases} |\overline{b}||\operatorname{pr}_{\overline{b}}\overline{a}|, & \operatorname{если}\angle(\overline{a},\overline{b}) < \frac{\pi}{2} \\ 0, & \operatorname{если}\angle(\overline{a},\overline{b}) = \frac{\pi}{2} \\ -|\overline{b}||\operatorname{pr}_{\overline{b}}\overline{a}|, & \operatorname{если}\angle(\overline{a},\overline{b}) > \frac{\pi}{2} \end{cases}$$

В каждом из случаев выполнено равенство $(\overline{a}, \overline{b}) = (\operatorname{pr}_{\overline{b}} \overline{a}, \overline{b}).$

Утверждение 2.2. Для любых $\bar{a}, \bar{b} \in V_n, \bar{b} \neq \bar{0}$, выполнено следующее равенство:

$$\operatorname{pr}_{\overline{b}}\overline{a} = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^2}\overline{b}$$

 \mathcal{A} оказательство. Поскольку $\operatorname{pr}_{\overline{b}}\overline{a}\parallel\overline{b}$, то $\operatorname{pr}_{\overline{b}}\overline{a}$ выражается через \overline{b} , то есть $\operatorname{pr}_{\overline{b}}\overline{a}=\lambda\overline{b}$ для некоторого $\lambda\in\mathbb{R}$. Тогда:

$$(\overline{a}, \overline{b}) = (\operatorname{pr}_{\overline{b}} \overline{a}, \overline{b}) = (\lambda \overline{b}, \overline{b}) = \lambda |\overline{b}|^2 \Rightarrow \lambda = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^2}$$

Таким образом, $\operatorname{pr}_{\overline{b}}\overline{a}=\lambda\overline{b}=\frac{(\overline{a},\overline{b})}{|\overline{b}|^2}\overline{b}.$

Теорема 2.1. Скалярное произведение обладает следующими свойствами:

- 1. $\forall \overline{a} \in V_n : \overline{a} \neq \overline{0} \Leftrightarrow (\overline{a}, \overline{a}) > 0$
- 2. $\forall \overline{a}, \overline{b} \in V_n : (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$ (симметричность)
- 3. $\forall \overline{a_1}, \overline{a_2}, \overline{b} \in V_n : (\overline{a_1} + \overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$ $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b} \in V_n : (\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$ (линейность по первому аргументу)

Доказательство.

- 1. $\overline{a} \neq \overline{0} \Leftrightarrow |\overline{a}| > 0 \Leftrightarrow (\overline{a}, \overline{a}) = |\overline{a}|^2 > 0$
- 2. $(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$
- 3. Для случаев, когда $\overline{b}=\overline{0}$ или $\overline{a_1}\parallel\overline{a_2}\parallel\overline{b}$, утверждение, очевидно, верно. В других случаях воспользуемся следующими равенствами:

$$(\overline{a_1} + \overline{a_2}, \overline{b}) = (\operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2}), \overline{b}) = (\operatorname{pr}_{\overline{b}} \overline{a_1} + \operatorname{pr}_{\overline{b}} \overline{a_2}, \overline{b})$$

Так как $\operatorname{pr}_{\overline{b}}\overline{a_1} \parallel \operatorname{pr}_{\overline{b}}\overline{a_2} \parallel \overline{b}$, то:

$$(\operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}, \overline{b}) = (\operatorname{pr}_{\overline{b}}\overline{a_1}, \overline{b}) + (\operatorname{pr}_{\overline{b}}\overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$$

Доказательство второй части свойства аналогично.

Замечание. Линейность скалярного произведения относительно второго аргумента также верна в силу симметричности.

Утверждение 2.3. Пусть e — ортонормированный базис в V_n , $\overline{v} \in V_n$, $\overline{v} \leftrightarrow_e \alpha$. Тогда для любого $i \in \{1, \ldots, n\}$ выполнено равенство $\alpha_i = (\overline{e_i}, \overline{v})$.

Доказательство. В силу линейности скалярного произведения, имеем:

$$(\overline{e_i}, \overline{v}) = \left(\overline{e_i}, \sum_{j=1}^n \alpha_j \overline{e_j}\right) = \sum_{j=1}^n \alpha_j (\overline{e_i}, \overline{e_j})$$

Так как для любых $i,j\in\{1,\ldots,n\}$ верно, что $(\overline{e_i},\overline{e_j})=0$ при $i\neq j$ и $(\overline{e_i},\overline{e_j})=1$ при i=j, то выполнены следующие равенства:

$$(\overline{e_i}, \overline{v}) = \sum_{j=1}^n \alpha_j(\overline{e_i}, \overline{e_j}) = \alpha_i$$

Получено требуемое.

Утверждение 2.4. Пусть e- ортонормированный базис в V_n , \overline{a} , $\overline{b} \in V_n$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

$$(\overline{a}, \overline{b}) = \alpha^T \beta = \sum_{i=1}^n \alpha_i \beta_i$$

Доказательство. Аналогично предыдущему утверждению, выполнено следующее:

$$(\overline{a}, \overline{b}) = \left(\sum_{i=1}^{n} \alpha_i \overline{e_i}, \sum_{j=1}^{n} \beta_j \overline{e_j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j (\overline{e_i}, \overline{e_j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j (\overline{e_i}, \overline{e_j}) = \sum_{i=1}^{n} \alpha_i \beta_i (\overline{e_i}, \overline{e_i}) = \sum_{i=1}^{n} \alpha_i (\overline{e_i}, \overline{e_i}) = \sum_{i=1$$

Получено требуемое.

Определение 2.4. Пусть $e = (\overline{e_1}, \dots, \overline{e_n})$ — базис в V_n . Матрицей Грама называется следующая матрица:

$$\Gamma := ((\overline{e_i}, \overline{e_j})) = \begin{pmatrix} (\overline{e_1}, \overline{e_1}) & (\overline{e_1}, \overline{e_2}) & \dots & (\overline{e_1}, \overline{e_n}) \\ (\overline{e_2}, \overline{e_1}) & (\overline{e_2}, \overline{e_2}) & \dots & (\overline{e_2}, \overline{e_n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\overline{e_n}, \overline{e_1}) & (\overline{e_n}, \overline{e_2}) & \dots & (\overline{e_n}, \overline{e_n}) \end{pmatrix}$$

Утверждение 2.5. Пусть e-базис в $V_n, \ \overline{a}, \overline{b} \in V_n, \ \overline{a} \leftrightarrow_e \alpha, \ \overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

$$(\overline{a}, \overline{b}) = \alpha^T \Gamma \beta$$

Доказательство. Выполнены следующие равенства:

$$\alpha^{T}(\Gamma\beta) = \alpha^{T} \begin{pmatrix} \sum_{j=1}^{n} \beta_{j}(\overline{e_{1}}, \overline{e_{j}}) \\ \sum_{j=1}^{n} \beta_{j}(\overline{e_{2}}, \overline{e_{j}}) \\ \vdots \\ \sum_{j=1}^{n} \beta_{j}(\overline{e_{n}}, \overline{e_{j}}) \end{pmatrix} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}\beta_{j}(\overline{e_{i}}, \overline{e_{j}}) = \left(\sum_{i=1}^{n} \alpha_{i}\overline{e_{i}}, \sum_{j=1}^{n} \beta_{j}\overline{e_{j}}\right) = (\overline{a}, \overline{b})$$

Получено требуемое.

Утверждение 2.6. Пусть e — ортонормированный базис в V_n , \overline{a} , $\overline{b} \in V_n$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

1.
$$|\overline{a}| = \sqrt{\alpha^T \alpha}$$

2. Если
$$\overline{a}, \overline{b} \neq \overline{0}, \ mo \cos \angle (\overline{a}, \overline{b}) = \frac{\alpha^T \beta}{|\overline{a}| |\overline{b}|}$$

Доказательство.

1.
$$|\overline{a}|^2 = (\overline{a}, \overline{a}) \Rightarrow |\overline{a}| = \sqrt{(\overline{a}, \overline{a})} = \sqrt{\alpha^T \alpha}$$

2.
$$(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b}) \Rightarrow \cos \angle (\overline{a}, \overline{b}) = \frac{(\overline{a}, \overline{b})}{|\overline{a}| |\overline{b}|} = \frac{\alpha^T \beta}{|\overline{a}| |\overline{b}|}$$

Утверждение 2.7. Пусть (O, e) — прямоугольная декартова система координат в P_n , $A, B \in P_n$, $A \leftrightarrow_{(O,e)} \alpha$, $B \leftrightarrow_{(O,e)} \beta$. Тогда:

$$AB = \sqrt{(\beta - \alpha)^T (\beta - \alpha)}$$

Доказательство. Заметим, что $\overline{AB} \leftrightarrow_e \beta - \alpha$, тогда:

$$AB = \sqrt{(\overline{AB}, \overline{AB})} = \sqrt{(\beta - \alpha)^T (\beta - \alpha)}$$

Определение 2.5. Матрица $S \in M_n$ называется *ортогональной*, если $S^TS = E$.

Утверждение 2.8. Пусть e — ортонормированный базис в V_n , e' — произвольный базис в V_n , e' = eS. Тогда базис e' — ортонормированный \Leftrightarrow матрица S — ортогональная.

Доказательство. Столбцы S—это координатные столбцы векторов e' в базисе e. Так как e—ортонормированный, то S^TS —это матрица Грама для e'. Значит, e'—ортонормированный $\Leftrightarrow \Gamma = S^TS = E \Leftrightarrow S$ —ортогональная.

2.2 Ориентированные площадь и объем

Определение 2.6. Пусть плоскость P_2 вложена в пространство P_3 , и выделено одно из полупространств в P_3 относительно этой плоскости. Базис $(\overline{a}, \overline{b})$ в V_2 называется положительно ориентированным, если поворот на кратчайший угол, который переводит вектор \overline{a} в вектор $\overline{a'} \parallel \overline{b}$, происходит против часовой стрелки при взгляде из выделенного полупространства. В противном случае базис называется отрицательно ориентированным.

Замечание. Базисы $(\overline{a},\overline{b})$ и $(\overline{b},\overline{a})$ всегда ориентированы по-разному.

Определение 2.7. Базис $(\overline{a}, \overline{b}, \overline{c})$ в V_3 называется *правой тройкой*, если базис $(\overline{a}, \overline{b})$ в плоскости V_2 , содержащей эти два вектора, ориентирован положительно относительно полупространства, содержащего вектор \overline{c} , отложенный от точки в P_2 . В противном случае базис называется *левой тройкой*.

Утверждение 2.9.

- 1. Базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ в V_3 всегда ориентированы по-разному.
- 2. Базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{a}, \overline{c}, \overline{b})$ в V_3 всегда ориентированы по-разному.

Доказательство.

1. Так как базисы $(\overline{a}, \overline{b})$ и $(\overline{b}, \overline{a})$ ориентированы по-разному, то базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ тоже ориентированы по-разному.

2. Пусть $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$, $\overline{OC} = \overline{c}$. Будем поворачивать направленный отрезок \overline{OC} в плоскости (BOC), пока он не перейдет в такой направленный отрезок $\overline{OC'}$, что C и C' лежат по разные стороны от OB. Ориентация базиса $(\overline{a}, \overline{b}, \overline{c'})$ противоположна ориентации $(\overline{a}, \overline{b}, \overline{c})$, но совпадает с ориентацией $(\overline{a}, \overline{c}, \overline{b})$.

Замечание. В силу утверждения выше, всевозможные перестановки базиса $(\overline{a}, \overline{b}, \overline{c})$ делятся на два класса противоположной ориентации:

$$ightharpoonup (\overline{a}, \overline{b}, \overline{c}), (\overline{c}, \overline{a}, \overline{b})$$
 и $(\overline{b}, \overline{c}, \overline{a})$

$$\triangleright (\overline{b}, \overline{a}, \overline{c}), (\overline{c}, \overline{b}, \overline{a})$$
 и $(\overline{a}, \overline{c}, \overline{b})$

Определение 2.8. Пусть $\bar{a}, \bar{b} \in V_2$, и в плоскости V_2 задана ориентация. *Ориентированной площадью* $S(\bar{a}, \bar{b})$ называется площадь параллелограмма, построенного на этих векторах, взятая со знаком, соответствующим ориентации (\bar{a}, \bar{b}) .

Определение 2.9. Пусть $\bar{a}, \bar{b}, \bar{c} \in V_3$. Ориентированным объемом $V(\bar{a}, \bar{b}, \bar{c})$ называется объем параллелепипеда, построенного на этих векторах, взятая со знаком, соответствующим ориентации $(\bar{a}, \bar{b}, \bar{c})$. Эта величина также называется *смешанным произведением* векторов $\bar{a}, \bar{b}, \bar{c}$ и обозначается через $(\bar{a}, \bar{b}, \bar{c})$.

Замечание. Определения выше корректны, поскольку в них не требуется определять ориентацию набора векторов, не являющегося базисом:

- 1. $S(\overline{a}, \overline{b}) = 0 \Leftrightarrow \overline{a}$ и \overline{b} коллинеарны.
- 2. $V(\overline{a}, \overline{b}, \overline{c}) = 0 \Leftrightarrow \overline{a}, \overline{b}$ и \overline{c} компланарны.

Утверждение 2.10.

- 1. Если базис $e=(\overline{e_1},\overline{e_2})$ в $V_2-ортонормированный, то <math>S(\overline{e_1},\overline{e_2})=\pm 1$.
- 2. Если базис $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ в $V_3-ортонормированный, то <math>V(\overline{e_1},\overline{e_2},\overline{e_3})=\pm 1$.

Доказательство.

- 1. Параллелограмм, образованный векторами $\overline{e_1}$ и $\overline{e_2},-$ это квадрат со стороной 1, поэтому $|S(\overline{e_1},\overline{e_2})|=1.$
- 2. Параллелепипед, образованный векторами $\overline{e_1}$, $\overline{e_2}$ и $\overline{e_3}$, это куб со стороной 1, поэтому $|V(\overline{e_1},\overline{e_2},\overline{e_3})|=1$.

Теорема 2.2. Ориентированный объем обладает следующими свойствами:

1.
$$\forall \overline{a}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \overline{c}) = -V(\overline{b}, \overline{a}, \overline{c}) = -V(\overline{a}, \overline{c}, \overline{b})$$
 (кососимметричность)

2.
$$\forall \overline{a_1}, \overline{a_2}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \overline{c_1} + \overline{c_2}) = V(\overline{a}, \overline{b}, \overline{c_1}) + V(\overline{a}, \overline{b}, \overline{c_2})$$
 $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \lambda \overline{c}) = \lambda V(\overline{a}, \overline{b}, \overline{c})$ (линейность по третьему аргументу)

Доказательство.

1. Если \overline{a} , \overline{b} и \overline{c} компланарны, то утверждение очевидно. Иначе — объем параллепипеда при перестановке векторов базиса не меняется по модулю, но меняет знак при смене ориентации.

2. Если \overline{a} и \overline{b} коллинеарны, то утверждение очевидно. Пусть теперь это не так, тогда рассмотрим направленные отрезки $\overline{OA} = \overline{a}, \ \overline{OB} = \overline{b}, \ \overline{OC} = \overline{c}$. Обозначим через \overline{d} вектор такой, что $|\overline{d}| = 1, \ \overline{d} \perp (AOB)$ и $(\overline{a}, \overline{b}, \overline{d})$ —правая тройка, и пусть $\overline{OD} = \overline{d}$. Заметим теперь, что $\forall \overline{c} \in V_n : V(\overline{a}, \overline{b}, \overline{c}) = |S(\overline{a}, \overline{b})|(\overline{c}, \overline{d})$, поскольку выполнены равенства $(\overline{c}, \overline{d}) = (\operatorname{pr}_{\overline{d}} \overline{c}, \overline{d}) = \pm |\operatorname{pr}_{\overline{d}} \overline{c}| = \pm h$, где h—высота параллелепипеда, а знак соответствует ориентации базиса $(\overline{a}, \overline{b}, \overline{c})$. Тогда линейность ориентированного объема следует из линейности скалярного произведения.

Замечание. Линейность ориентированного объема по первому и второму аргументам также верна в силу кососимметричности. Кроме того, как было отмечено в доказательстве, свойство кососимметричности можно записать следующим образом: при любой перестановке тройки векторов ее ориентированный объем сохраняется по модулю, но меняет знак при смене ориентации.

Замечание. Аналогичным образом доказываются свойства кососимметричности и линейности ориентированной площади.

Определение 2.10. Пусть $A = (a_{ij}) \in M_n$, $n \in \{1, 2, 3\}$. Определителем, или детерминантом, матрицы A называется следующая величина:

 $\triangleright \det A := a_{11}$ при n = 1

 $\triangleright \det A := a_{11}a_{22} - a_{12}a_{21}$ при n = 2

 \triangleright det $A := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$ при n = 3

Другое обозначение для определителя имеет следующий вид:

$$\det A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

Замечание. Более общее определение определителя для произвольного $n \in \mathbb{N}$ будет дано далее в курсе.

Теорема 2.3. Пусть $e=(\overline{e_1},\overline{e_2})-$ базис в $V_2,\ \overline{a},\overline{b}\in V_2,\ \overline{a}\leftrightarrow_e\alpha,\ \overline{b}\leftrightarrow_e\beta.$ Тогда верно следующее равенство:

$$S(\overline{a}, \overline{b}) = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$

Доказательство. В силу линейности ориентированной площади, имеем:

$$S(\overline{a}, \overline{b}) = S\left(\sum_{i=1}^{2} \alpha_{i} \overline{e_{i}}, \sum_{j=1}^{2} \beta_{j} \overline{e_{j}}\right) = \sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{i} \beta_{j} S(\overline{e_{i}}, \overline{e_{j}})$$

Поскольку для любого $i \in \{1, 2\}$ выполнено $S(\overline{e_i}, \overline{e_i}) = 0$, то:

$$S(\overline{a}, \overline{b}) = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$

Получено требуемое.

Теорема 2.4. Пусть $e = (\overline{e_1}, \overline{e_2}, \overline{e_3}) - \textit{базис в } V_3, \, \overline{a}, \overline{b}, \overline{c} \in V_3, \, \overline{a} \leftrightarrow_e \alpha, \, \overline{b} \leftrightarrow_e \beta, \, \overline{c} \leftrightarrow_e \gamma.$ Тогда верно следующее равенство:

$$V(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} V(\overline{e_1}, \overline{e_2}, \overline{e_3})$$

Доказательство. В силу линейности ориентированного объема, имеем:

$$V(\overline{a}, \overline{b}, \overline{c}) = V\left(\sum_{i=1}^{3} \alpha_{i} \overline{e_{i}}, \sum_{j=1}^{3} \beta_{j} \overline{e_{j}}, \sum_{k=1}^{3} \gamma_{k} \overline{e_{k}}\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \alpha_{i} \beta_{j} \gamma_{k} V(\overline{e_{i}}, \overline{e_{j}}, \overline{e_{k}})$$

Поскольку для любых $i,j,k\in\{1,2,3\}$ таких, что $i=j,\,i=k$ или j=k, выполнено $V(\overline{e_i},\overline{e_j},\overline{e_k})=0,$ то:

$$V(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} V(\overline{e_1}, \overline{e_2}, \overline{e_3})$$

Получено требуемое.

Замечание. Из теорем выше следуют, в частности, такие свойства:

- ightharpoonup Если e положительно ориентированный ортонормированный базис в V_2 , то для любых $\overline{a}, \overline{b} \in V_2$ таких, что $\overline{a} \leftrightarrow_e \alpha$ и $\overline{b} \leftrightarrow_e \beta$, верно равенство $S(\overline{a}, \overline{b}) = |\alpha\beta|$.
- ightharpoonup Если e правый ортонормированный базис в V_3 , то для любых $\overline{a}, \overline{b}, \overline{c} \in V_3$ таких, что $\overline{a} \leftrightarrow_e \alpha, \overline{b} \leftrightarrow_e \beta$ и $\overline{c} \leftrightarrow_e \gamma$, верно равенство $V(\overline{a}, \overline{b}, \overline{c}) = |\alpha\beta\gamma|$.
- ightharpoonup Если e-базис в $V_2, \ \overline{a}, \overline{b} \in V_2, \ \overline{a} \leftrightarrow_e \alpha, \ \overline{b} \leftrightarrow_e \beta,$ то векторы \overline{a} и \overline{b} коллинеарны $\Leftrightarrow |\alpha\beta| = 0.$
- ightharpoonup Если e базис в $V_3, \, \overline{a}, \overline{b}, \overline{c} \in V_3, \, \overline{a} \leftrightarrow_e \alpha, \, \overline{b} \leftrightarrow_e \beta, \, \overline{c} \leftrightarrow_e \gamma,$ то векторы $\overline{a}, \, \overline{b}$ и \overline{c} компланарны $\Leftrightarrow |\alpha\beta\gamma| = 0.$

Определение 2.11. Пусть $A = (a_{ij}) \in M_3$, $b = (b_i) \in M_{3\times 1}$. Системой линейных уравнений Ax = b называется следующая система:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

Теорема 2.5 (правило Крамера). Пусть $A \in M_3$, причем $\Delta := \det A \neq 0$. Обозначим через $\Delta_x, \Delta_y, \Delta_z$ определители матриц, полученных заменой столбца коэффициентов при соответствующей переменной на столбец b. Тогда система Ax = b имеет единственное решение (x, y, z), и это решение имеет следующий вид:

$$(x, y, z) := \left(\frac{\Delta_x}{\Delta}, \frac{\Delta_y}{\Delta}, \frac{\Delta_z}{\Delta}\right)$$

 $Ax = b \Leftrightarrow x\overline{v_1} + y\overline{v_2} + z\overline{v_3} = \overline{u}$. Поскольку $\Delta \neq 0$, то векторы $\overline{v_1}$, $\overline{v_2}$ и $\overline{v_3}$ некомпланарны и потому образуют базис в V_3 . Значит, существует единственное решение (x,y,z) уравнения $x\overline{v_1} + y\overline{v_2} + z\overline{v_3} = \overline{u}$, и это решение имеет следующий вид:

$$\begin{split} &\Delta_x = V(\overline{u}, \overline{v_2}, \overline{v_3}) = V(x\overline{v_1} + y\overline{v_2} + z\overline{v_3}, \overline{v_2}, \overline{v_3}) = xV(\overline{v_1}, \overline{v_2}, \overline{v_3}) \\ &\Delta_y = V(\overline{v_1}, \overline{u}, \overline{v_3}) = V(\overline{v_1}, x\overline{v_1} + y\overline{v_2} + z\overline{v_3}, \overline{v_3}) = yV(\overline{v_1}, \overline{v_2}, \overline{v_3}) \\ &\Delta_z = V(\overline{v_1}, \overline{v_2}, \overline{u}) = V(\overline{v_1}, \overline{v_2}, x\overline{v_1} + y\overline{v_2} + z\overline{v_3}) = zV(\overline{v_1}, \overline{v_2}, \overline{v_3}) \end{split}$$

Следовательно,
$$x = \frac{\Delta_x}{\Lambda}$$
, $y = \frac{\Delta_y}{\Lambda}$ и $z = \frac{\Delta_z}{\Lambda}$.

Замечание. Аналогичное правило для произвольного $n \in \mathbb{N}$ будет сформулировано далее в курсе. Отметим также, что если $\det A = 0$, то система $(\overline{v_1}, \overline{v_2}, \overline{v_3})$ из доказательства выше линейно зависима, тогда решений либо нет, либо их бесконечно много.

2.3 Векторное произведение

Определение 2.12. Пусть $\bar{a}, \bar{b} \in V_3$. векторным произведением векторов \bar{a} и \bar{b} называется единственный вектор $\bar{c} := [\bar{a}, \bar{b}]$ такой, что выполнены следующие условия:

- 1. $\overline{c} \perp \overline{a}$, $\overline{c} \perp \overline{b}$
- 2. $|\overline{c}| = |S(\overline{a}, \overline{b})|$
- 3. $(\overline{a}, \overline{b}, \overline{c})$ правая тройка

Другое обозначение — $\overline{a} \times \overline{b}$.

Замечание. Выполнены следующие равносильности:

$$\overline{a} \parallel \overline{b} \Leftrightarrow S(\overline{a}, \overline{b}) = 0 \Leftrightarrow |[\overline{a}, \overline{b}]| = 0 \Leftrightarrow [\overline{a}, \overline{b}] = \overline{0}$$

Теорема 2.6. Для любых $\overline{a}, \overline{b}, \overline{c} \in V_3$ выполнены равенства $(\overline{a}, \overline{b}, \overline{c}) = ([\overline{a}, \overline{b}], \overline{c}) = (\overline{a}, [\overline{b}, \overline{c}]).$

Доказательство. Докажем первое равенство. Если $\overline{a}\parallel \overline{b}$, то $(\overline{a},\overline{b},\overline{c})=([\overline{a},\overline{b}],\overline{c})=0$. Если же $\overline{a}\not\parallel \overline{b}$, то выберем такой вектор \overline{d} , что $[\overline{a},\overline{b}]=|S(\overline{a},\overline{b})|\overline{d}$. Тогда, как уже доказывалось, $(\overline{a},\overline{b},\overline{c})=|S(\overline{a},\overline{b})|(\overline{c},\overline{d})$, откуда:

$$(\overline{a},\overline{b},\overline{c})=(|S(\overline{a},\overline{b})|\overline{d},\overline{c})=([\overline{a},\overline{b}],\overline{c})$$

Для доказательства второго равенства заметим следующее:

$$(\overline{a},[\overline{b},\overline{c}])=([\overline{b},\overline{c}],\overline{a})=(\overline{b},\overline{c},\overline{a})=(\overline{a},\overline{b},\overline{c})$$

Получено требуемое.

Утверждение 2.11. Пусть $\overline{x}, \overline{y} \in V_3$ — векторы такие, что для любого вектора $\overline{c} \in V_3$ выполнено $(\overline{x}, \overline{c}) = (\overline{y}, \overline{c})$. Тогда $\overline{x} = \overline{y}$.

Доказательство. Для любого $\overline{c} \in V_3$ выполнено, что $(\overline{x}, \overline{c}) = (\overline{y}, \overline{c}) \Leftrightarrow (\overline{x} - \overline{y}, \overline{c}) = 0$. В частности, это верно для вектора $\overline{c} := \overline{x} - \overline{y}$, тогда $(\overline{x} - \overline{y}, \overline{x} - \overline{y}) = 0 \Leftrightarrow \overline{x} - \overline{y} = \overline{0} \Leftrightarrow \overline{x} = \overline{y}$. \square

Замечание. Пусть $\overline{a}, \overline{b}, \overline{v} \in V_3$. Утверждение выше гарантирует, что если для некоторого вектора $\overline{v} \in V_3$ и всех $\overline{c} \in V_3$ выполнено равенство $(\overline{a}, \overline{b}, \overline{c}) = (\overline{v}, \overline{c})$, то $\overline{v} = [\overline{a}, \overline{b}]$.

Теорема 2.7. Векторное произведение обладает следующими свойствами:

- 1. $\forall \overline{a}, \overline{b} \in V_3 : [\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$ (кососимметричность)
- 2. $\forall \overline{a_1}, \overline{a_2}, \overline{b}, \overline{c} \in V_3 : [\overline{a_1} + \overline{a_2}, \overline{b}] = [\overline{a_1}, \overline{b}] + [\overline{a_2}, \overline{b}]$ $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b}, \overline{c} \in V_3 : [\lambda \overline{a}, \overline{b}] = \lambda [\overline{a}, \overline{b}]$ (линейность по первому аргументу)

Доказательство.

- 1. Это свойство следует из определения векторного произведения.
- 2. Для доказательства первого равенства достаточно проверить, что для любого $\overline{c} \in V_3$ выполнено $([\overline{a_1} + \overline{a_2}, \overline{b}], \overline{c}) = ([\overline{a_1}, \overline{b}], \overline{c}) + ([\overline{a_2}, \overline{b}], \overline{c})$:

$$([\overline{a_1} + \overline{a_2}, \overline{b}], \overline{c}) = (\overline{a_1} + \overline{a_2}, \overline{b}, \overline{c}) = (\overline{a_1}, \overline{b}, \overline{c}) + (\overline{a_2}, \overline{b}, \overline{c}) = ([\overline{a_1}, \overline{b}], \overline{c}) + ([\overline{a_2}, \overline{b}], \overline{c})$$

Для доказательства второго равенства достаточно проверить, что для любого $\overline{c} \in V_3$ выполнено $([\lambda \overline{a}, \overline{b}], \overline{c}) = (\lambda [\overline{a}, \overline{b}], \overline{c})$:

$$([\lambda \overline{a}, \overline{b}], \overline{c}) = (\lambda \overline{a}, \overline{b}, \overline{c}) = \lambda(\overline{a}, \overline{b}, \overline{c}) = \lambda([\overline{a}, \overline{b}], \overline{c}) = (\lambda[\overline{a}, \overline{b}], \overline{c}) = (\lambda[\overline{a$$

Замечание. Линейность векторного произведения по второму аргументу также верна в силу кососимметричности.

Теорема 2.8. Пусть $e=(\overline{e_1},\overline{e_2},\overline{e_3})-$ базис в $V_3,\ \overline{a},\overline{b}\in V_3,\ \overline{a}\leftrightarrow_e\alpha,\ \overline{b}\leftrightarrow_e\beta.$ Тогда верно следующее равенство:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{[e_2, \overline{e_3}]} & \overline{[e_3, \overline{e_1}]} & \overline{[e_1, \overline{e_2}]} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix} = \begin{vmatrix} \alpha_2 & \alpha_3 \\ \beta_2 & \beta_3 \end{vmatrix} [\overline{e_2}, \overline{e_3}] + \begin{vmatrix} \alpha_3 & \alpha_1 \\ \beta_3 & \beta_1 \end{vmatrix} [\overline{e_3}, \overline{e_1}] + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} [\overline{e_1}, \overline{e_2}]$$

Доказательство. В силу линейности векторного произведения, имеем:

$$[\overline{a}, \overline{b}] = \left[\sum_{i=1}^{3} \alpha_i \overline{e_i}, \sum_{j=1}^{3} \beta_j \overline{e_j}\right] = \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_i \beta_j [\overline{e_i}, \overline{e_j}]$$

Поскольку для любого $i\in\{1,2,3\}$ выполнено $[\overline{e_i},\overline{e_i}]=\overline{0},$ то:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \alpha_2 & \alpha_3 \\ \beta_2 & \beta_3 \end{vmatrix} [\overline{e_2}, \overline{e_3}] + \begin{vmatrix} \alpha_3 & \alpha_1 \\ \beta_3 & \beta_1 \end{vmatrix} [\overline{e_3}, \overline{e_1}] + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} [\overline{e_1}, \overline{e_2}]$$

Получено требуемое.

Замечание. Если $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ — правый ортонормированный базис в V_3 , то выполнены равенства $[\overline{e_1},\overline{e_2}]=\overline{e_3}, [\overline{e_2},\overline{e_3}]=\overline{e_1}, [\overline{e_3},\overline{e_1}]=\overline{e_2}$. Значит, в таком базисе для любых $\overline{a},\overline{b}\in V_3$, $\overline{a}\leftrightarrow_e \alpha,\overline{b}\leftrightarrow_e \beta$, верно следующее равенство:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$

Теорема 2.9. Для любых $\bar{a}, \bar{b}, \bar{c} \in V_3$ верно следующее равенство:

$$[\overline{a}, [\overline{b}, \overline{c}]] = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b})$$

Доказательство. Для упрощения проверки выберем такой правый ортонормированный базис $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ в V_3 , что $\overline{e_1}\parallel \overline{a}$, а векторы \overline{b} , $\overline{e_1}$ и $\overline{e_2}$ компланарны. Тогда координатные столбцы векторов $\overline{a},\overline{b},\overline{c}$ имеют вид $(\alpha,0,0)^T,(\beta_1,\beta_2,0)^T,(\gamma_1,\gamma_2,\gamma_3)^T$. Найдем координатный столбец вектора $[\overline{b},\overline{c}]$:

$$[\overline{b}, \overline{c}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \beta_1 & \beta_2 & 0 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = (\beta_2 \gamma_3) \overline{e_1} + (-\beta_1 \gamma_3) \overline{e_2} + (\beta_1 \gamma_2 - \beta_2 \gamma_1) \overline{e_3} \leftrightarrow_e \begin{pmatrix} \beta_2 \gamma_3 \\ -\beta_1 \gamma_3 \\ \beta_1 \gamma_2 - \beta_2 \gamma_1 \end{pmatrix}$$

Положим $\delta_1 := \beta_2 \gamma_3, \, \delta_2 := -\beta_1 \gamma_3, \, \delta_3 := \beta_1 \gamma_2 - \beta_2 \gamma_1, \, \text{тогда}$:

$$[\overline{a}, [\overline{b}, \overline{c}]] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha & 0 & 0 \\ \delta_1 & \delta_2 & \delta_3 \end{vmatrix} = 0\overline{e_1} + (-\alpha\delta_3)\overline{e_2} + (\alpha\delta_2)\overline{e_3} \leftrightarrow_e \begin{pmatrix} 0 \\ -\alpha\delta_3 \\ \alpha\delta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha(\beta_2\gamma_1 - \beta_1\gamma_2) \\ -\alpha\beta_1\gamma_3 \end{pmatrix}$$

С другой стороны:

$$\overline{b}(\overline{a},\overline{c}) - \overline{c}(\overline{a},\overline{b}) \leftrightarrow_e \begin{pmatrix} \alpha\beta_1\gamma_1 \\ \alpha\beta_2\gamma_1 \\ 0 \end{pmatrix} - \begin{pmatrix} \alpha\beta_1\gamma_1 \\ \alpha\beta_1\gamma_2 \\ \alpha\beta_1\gamma_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha(\beta_2\gamma_1 - \beta_1\gamma_2) \\ -\alpha\beta_1\gamma_3 \end{pmatrix}$$

Таким образом, $[\overline{a}, [\overline{b}, \overline{c}]] = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b}).$

3 Уравнения прямых и плоскостей

3.1 Прямая в плоскости

Определение 3.1. Направляющим вектором прямой $l \subset P_3$ называется вектор $\overline{a} \in V_3$, $\overline{a} \neq \overline{0}$, представителем которого является направленный отрезок, лежащий в l.

Определение 3.2. Пусть $l \subset P_2$ —прямая с направляющим вектором $\overline{a} \in V_2$, $M \in l$, и в декартовой системе координат (O,e) в P_2 выполнены соотношения $\overline{a} \leftrightarrow_e (\alpha_1,\alpha_2)^T$, $M \leftrightarrow_{(O,e)} (x_0,y_0)^T$, $\overline{r_0} := \overline{OM}$.

Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}$$

⊳ Параметрическим уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2 \end{cases}, t \in \mathbb{R}$$

▶ Каноническим уравнением прямой называется следующее уравнение:

$$\frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2}$$

Замечание. Множество точек $X \in P_2$ таких, что $X \leftrightarrow_{(O,e)} (x,y)^T$, $\overline{r} := \overline{OX}$, являющихся решениями любого из уравнений прямой выше, совпадает с прямой l. Действительно, $X \in l \Leftrightarrow MX \parallel l \Leftrightarrow \overline{MX} \parallel \overline{a}$.

Замечание. В случае канонического уравнения прямой, если без ограничения общности $\alpha_1 = 0$, то тогда $\alpha_2 \neq 0$, и следует считать, что исходное уравнение эквивалентно условию $x = x_0$. Отметим также, что каноническое уравнение прямой эквивалентно следующему такому уравнению:

$$\alpha_2 x - \alpha_1 y + (\alpha_1 y_0 - \alpha_2 x_0) = 0$$

Определение 3.3. Пусть $A, B, C \in \mathbb{R}, A^2 + B^2 \neq 0$. Общим уравнением прямой называется следующее уравнение:

$$Ax + By + C = 0$$

Утверждение 3.1. Пусть прямая l задана в декартовой системе координат (O, e) в P_2 общим уравнением прямой Ax + By + C = 0, $\bar{b} \in V_2$, $\bar{b} \leftrightarrow_e \beta$. Тогда выполнена равносильность $\bar{b} \parallel l \Leftrightarrow A\beta_1 + B\beta_2 = 0$.

Доказательство. Пусть $M \in l$, точка $N \in P_2$ такова, что $\overline{MN} = \overline{b}$, и $M \leftrightarrow_{(O,e)} (x_0,y_0)^T$, тогда $N \leftrightarrow_{(O,e)} (x_0+\beta_1,y_0+\beta_2)^T$. Поскольку $M \in l$, выполнены следующие эквивалентности:

$$\bar{b} \parallel l \Leftrightarrow N \in l \Leftrightarrow A(x_0 + \beta_1) + B(y_0 + \beta_2) + C = 0 \Leftrightarrow A\beta_1 + B\beta_2 = 0$$

Следствие. Пусть прямая $l \subset P_2$ задана в декартовой системе координат (O,e) общим уравнением прямой Ax + By + C = 0, $\bar{b} \in V_2$, $\bar{b} \leftrightarrow_e \beta$. Тогда направляющим вектором прямой l является вектор $\bar{a} \in V_2$ такой, что $\bar{a} \leftrightarrow_e (-B, A)^T$.

Определение 3.4. Вектором нормали прямой $l \subset P_3$ называется вектор $\overline{n} \in V_3$, $\overline{n} \neq \overline{0}$, представителем которого является направленный отрезок, ортогональный прямой l.

Следствие. Пусть прямая $l \subset P_2$ задана в декартовой системе координат (O,e) общим уравнением прямой Ax + By + C = 0, $\bar{b} \in V_2$, $\bar{b} \leftrightarrow_e \beta$. Тогда вектором нормали прямой l является вектор $\bar{n} \in V_2$ такой, что $\bar{n} \leftrightarrow_e (A,B)^T$.

Определение 3.5. Пусть $l \subset P_2$ —прямая с вектором нормали $\overline{n} \in V_2$, и пусть $M \in l$, $\overline{r_0} := \overline{OM}$. Нормальным уравнением прямой называется следующее уравнение:

$$(\overline{r} - \overline{r_0}, \overline{n}) = 0$$

Замечание. Множество точек $X \in P_2$, $\overline{r} := \overline{OX}$, являющихся решениями нормального уравнения прямой, совпадает с прямой l. Кроме того, это уравнение можно переписать в следующем виде при $\gamma := (\overline{r_0}, \overline{n})$:

$$(\overline{r},\overline{n})=\gamma$$

Замечание. Уравнения различного типа, задающие прямую, эквивалентны: из каждого из них можно получить любое другое.

Замечание. Рассмотренные способы задания прямой позволяют определить *взаимное* расположение прямых на плоскости. Пусть прямые l_1, l_2 заданы векторно-параметрическими уравнениями $\overline{r} = \overline{r_1} + t\overline{a_1}, \ \overline{r} = \overline{r_2} + t\overline{a_2}$. Тогда:

$$ightharpoonup l_1 \cap l_2
eq \emptyset$$
 и $l_1
eq l_2 \Leftrightarrow \overline{a_1}
subseteq \overline{a_2}$

$$ightharpoonup l_1 \parallel l_2$$
 и $l_1 \neq l_2 \Leftrightarrow \overline{a_1} \parallel \overline{a_2}$ и $(\overline{r_1} - \overline{r_2}) \not \parallel \overline{a_1}$

$$\triangleright l_1 = l_2 \Leftrightarrow (\overline{r_1} - \overline{r_2}) \parallel \overline{a_1} \parallel \overline{a_2}$$

Замечание. Прямая $l \subset P_2$ в плоскости делит ее на две полуплоскости. Выделим одну из открытых полуплоскостей $S \subset P_2$. Пусть прямая l задана нормальным уравнением $(\overline{r} - \overline{r_0}, \overline{n}) = 0$, причем вектор нормали \overline{n} направлен в полуплоскость S. Тогда точка $X \in P_2$, $\overline{r} := \overline{OX}$, лежит в $S \Leftrightarrow (\overline{r} - \overline{r_0}, \overline{n}) > 0$. Противоположная полуплоскость задается противоположным неравенством.

Определение 3.6. Пучком прямых называется либо множество всех прямых в P_2 , проходящих через фиксированную точку $P \in P_2$, либо множество всех прямых, параллельных фиксированной прямой $l \subset P_2$.

Замечание. Любые две прямые в P_2 лежат ровно в одном пучке.

Теорема 3.1. Пусть в декартовой системе координат (O, e) в P_2 различные прямые l_1, l_2 заданы уравнениями $A_1x + B_1y + C_1 = 0$, $A_2x + B_2y + C_2 = 0$. Тогда прямая $l \subset P_2$ лежит в одном пучке с прямыми l_1 и $l_2 \Leftrightarrow$ прямая l задается уравнением следующего вида при некоторых $\alpha_1, \alpha_2 \in \mathbb{R}$:

$$\alpha_1(A_1x + B_1y + C_1) + \alpha_2(A_2x + B_2y + C_2) = 0$$

Доказательство.

- ⇐ Возможны два случая:
 - 1. Если $l_1 \cap l_2 = \{P\}$, $P \in P_2$, то координаты точки P удовлетворяют требуемому уравнению, то есть $P \in l$.
 - 2. Если $l_1 \parallel l_2$, то из требуемого уравнения направляющий вектор прямой l параллелен направляющим векторам l_1 и l_2 . В этом случае уравнение задает прямую не при всех $\alpha_1, \alpha_2 \in \mathbb{R}$, но если задает, то лежащую в данном пучке.
- ⇒ Возможны два случая:
 - 1. Если $l \cap l_1 \cap l_2 = \{P\}$, $P \in P_2$, то выберем на l точку $Q \neq P$, $Q \leftrightarrow_{(O,e)} (x_0, y_0)^T$. Тогда Q удовлетворяет уравнению с коэффициентами $\alpha_1 := A_2 x_0 + B_2 y_0 + C_2$, $\alpha_2 := -(A_1 x_0 + B_1 y_0 + C_1)$. Хотя бы один из коэффициентов ненулевой, поскольку Q лежит не более, чем на одной из прямых l_1 , l_2 . Значит, такое уравнение задает l, так как ему удовлетворяют две различных точки этой прямой.
 - 2. Если $l \parallel l_1 \parallel l_2$, то аналогичным образом выберем любую точку $Q \in l$ и соответствующие коэффициенты, тогда полученное уравнение задает l при условии, что оно задает прямую. Но оно всегда задает прямую, поскольку множество его решений непусто и не содержит хотя бы одну из прямых l_1, l_2 .

Утверждение 3.2. Пусть в прямоугольной декартовой системе координат (O, e) в P_2 прямые l_1, l_2 заданы уравнениями $A_1x + B_1y + C_1 = 0$, $A_2x + B_2y + C_2 = 0$. Тогда угол φ между ними удовлетворяет следующему равенству:

$$\cos \varphi = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$

Доказательство. Пусть $\overline{n_1}, \overline{n_2} \in V_2$, $\overline{n_1} \leftrightarrow_e (A_1, B_1)^T$, $\overline{n_2} \leftrightarrow_e (A_2, B_2)^T$, — нормальные векторы прямых l_1, l_2 , $\alpha := \angle(\overline{n_1}, \overline{n_2})$. Тогда угол φ равен меньшему из углов α и $\pi - \alpha$. В каждом из случаев выполнено следующее:

$$\cos \varphi = |\cos \alpha| = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$

Утверждение 3.3. Пусть в прямоугольной декартовой системе координат (O, e) в P_2 прямая l задана уравнением Ax+By+C=0, $M\in P_2$, $M\leftrightarrow_{(O,e)}(x_0,y_0)^T$. Тогда расстояние ρ от точки M до прямой l равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Доказательство. Пусть $\overline{n} \in V_2$, $\overline{n} \leftrightarrow_e (A,B)^T$ — вектор нормали прямой $l, \overline{r_0} := \overline{OM}$, и пусть $X \in l, \overline{r} := \overline{OX}$. Тогда:

$$\rho = |\operatorname{pr}_{\overline{n}}(\overline{r_0} - \overline{r})| = \left| \frac{(\overline{r_0} - \overline{r}, \overline{n})}{|\overline{n}|^2} \overline{n} \right| = \frac{|(\overline{r_0} - \overline{r}, \overline{n})|}{|\overline{n}|} = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

3.2 Плоскость в пространстве

Определение 3.7. Пусть $\nu \subset P_3$ — плоскость, $\overline{a}, \overline{b} \in V_3$ — неколлинеарные векторы, представители которых лежат в ν , $M \in l$, и в декартовой системе координат (O, e) в P_3 выполнены соотношения $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$, $M \leftrightarrow_{(O,e)} (x_0, y_0, z_0)^T$, $\overline{r_0} := \overline{OM}$.

Векторно-параметрическим уравнением плоскости называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a} + s\overline{b}, \, t, s \in \mathbb{R}$$

⊳ Параметрическим уравнением плоскости называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 + s\beta_1 \\ y = y_0 + t\alpha_2 + s\beta_2, s, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 + s\beta_3 \end{cases}$$

Замечание. Множество точек $X \in P_3$ таких, что $X \leftrightarrow_{(O,e)} (x,y,z)^T$, $\overline{r} := \overline{OX}$, являющихся решениями любого из уравнений прямой выше, совпадает с плоскостью ν . Действительно, $X \in \nu \Leftrightarrow MX \parallel \nu \Leftrightarrow \overline{MX}$ компланарен системе $(\overline{a},\overline{b}) \Leftrightarrow \overline{MX}$ выражается через $\overline{a},\overline{b}$.

Замечание. Векторно-параметрическое уравнение плоскости можно также переписать в следующем виде:

$$(\overline{r} - \overline{r_0}, \overline{a}, \overline{b}) = 0$$

Перепишем это уравнение, положив $\gamma := (\overline{r_0}, \overline{a}, \overline{b})$:

$$(\overline{r}, \overline{a}, \overline{b}) = \gamma$$

Если расписать смешанное произведение $(\overline{r}, \overline{a}, \overline{b})$ как определитель соответствующей матрицы, можно получить еще одно уравнение плоскости, определенное ниже.

Определение 3.8. Пусть $A, B, C, D \in \mathbb{R}$, $A^2 + B^2 + C^2 \neq 0$. Общим уравнением плоскости называется следующее уравнение:

$$Ax + By + Cz + D = 0$$

Утверждение 3.4. Пусть плоскость ν задана в декартовой системе координат (O, e) в P_3 общим уравнением плоскости Ax + By + Cz + D = 0, $\bar{b} \in V_3$, $\bar{b} \leftrightarrow_e \beta$. Тогда выполнена равносильность $\bar{b} \parallel \nu \Leftrightarrow A\beta_1 + B\beta_2 + C\beta_3 = 0$.

Доказательство. Пусть $M \in \nu$, точка $N \in P_3$ такова, что $\overline{MN} = \overline{b}$, и $M \leftrightarrow_{(O,e)} (x_0,y_0,z_0)^T$, тогда $N \leftrightarrow_{(O,e)} (x_0+\beta_1,y_0+\beta_2,z_0+\beta_3)^T$. Поскольку $M \in \nu$, выполнены следующие эквивалентности:

$$\overline{b} \parallel \nu \Leftrightarrow N \in \nu \Leftrightarrow A(x_0 + \beta_1) + B(y_0 + \beta_2) + C(z_0 + \beta_3) + D = 0 \Leftrightarrow A\beta_1 + B\beta_2 + C\beta_3 = 0 \quad \Box$$

Утверждение 3.5. Пусть $A, B, C, D \in \mathbb{R}$, $A^2 + B^2 + C^2 \neq 0$. Тогда общее уравнение плоскости Ax + By + Cz + D = 0 действительно задает плоскость в декартовой системе координат (O, e) в P_3 .

Доказательство. Пусть без ограничения общности $A \neq 0$. Зафиксируем векторы $\overline{a}, \overline{b} \in V_3$, $\overline{a} \leftrightarrow_e (-B, A, 0)^T$, $\overline{b} \leftrightarrow_e (-C, 0, A)^T$, и точку $M \in P_3$, $M \leftrightarrow_{(O,e)} \left(-\frac{D}{A}, 0, 0\right)^T$. Векторы \overline{a} и \overline{b} неколлинеарны, поскольку их координаты непропорциональны. Рассмотрим плоскость $\nu \subset P_3$, содержащую точку M и векторы $\overline{a}, \overline{b}$, отложенные от точки M. Тогда для произвольной точки $X \in P_3$, $X \leftrightarrow_{(O,e)} (x,y,z)^T$, $\overline{r} := \overline{OX}$, выполнено $X \in \nu \Leftrightarrow (\overline{r} - \overline{r_0}, \overline{a}, \overline{b}) = 0$. Вычислим смешанное произведение $(\overline{r} - \overline{r_0}, \overline{a}, \overline{b})$:

$$(\overline{r} - \overline{r_0}, \overline{a}, \overline{b}) = \begin{vmatrix} x + \frac{D}{A} & -B & -C \\ y & A & 0 \\ z & 0 & A \end{vmatrix} = \left(x + \frac{D}{A}\right)A^2 - y(-B)A - z(-C)A =$$
$$= A^2x + ABy + ACz + AD = A(Ax + By + Cz + D)$$

Таким образом, $X \in \nu \Leftrightarrow Ax + By + Cz + D = 0$, что и требовалось.

Определение 3.9. Вектором нормали плоскости $\nu \subset P_3$ называется вектор $\overline{n} \in V_3$, $\overline{n} \neq \overline{0}$, представителем которого является направленный отрезок, ортогональный плоскости ν .

Определение 3.10. Пусть $\nu \subset P_3$ — плоскость с вектором нормали $\overline{n} \in V_3$, и пусть $M \in \nu$, $\overline{r_0} := \overline{OM}$. Нормальным уравнением плоскости называется следующее уравнение:

$$(\overline{r} - \overline{r_0}, \overline{n}) = 0$$

Замечание. Множество точек $X \in P_3$, $\overline{r} := \overline{OX}$, являющихся решениями нормального уравнения плоскости, совпадает с плоскостью ν . Кроме того, это уравнение можно переписать в следующем виде при $\gamma := (\overline{r_0}, \overline{n})$:

$$(\overline{r}, \overline{n}) = \gamma$$

Замечание. Уравнения различного типа, задающие плоскость, эквивалентны: из каждого из них можно получить любое другое.

Замечание. В прямоугольной декартовой системе координат (O, e) в P_3 нормальное уравнение плоскости преобразуется к виду Ax + By + Cz + D = 0, поэтому вектором нормали этой плоскости является вектор $\overline{n} \in V_3$ такой, что $\overline{n} \leftrightarrow_e (A, B, C)^T$.

Определение 3.11. Пусть в декартовой системе координат (O,e) в P_3 плоскость ν задана уравнением Ax + By + Cz + D = 0. Сопутствующим вектором плоскости ν в данной системе координат называется вектор $\overline{n} \in V_3$ такой, что $\overline{n} \leftrightarrow_e (A,B,C)^T$.

Утверждение 3.6. Пусть в декартовой системе координат (O, e) в P_3 плоскости ν_1, ν_2 заданы общими уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда:

- $\triangleright \nu_1 \cap \nu_2 \neq \emptyset \ u \ \nu_1 \neq \nu_2 \Leftrightarrow \overline{n_1} \not \parallel \overline{n_2}$
- $\triangleright \nu_1 \parallel \nu_2 \ u \ \nu_1 \neq \nu_2 \Leftrightarrow \overline{n_1} \parallel \overline{n_2}$, но уравнения плоскостей непропорциональны
- $\triangleright \nu_1 = \nu_2 \Leftrightarrow y$ равнения плоскостей пропорциональны

Доказательство.

ightharpoonup Пусть $\overline{n_1} \not | \overline{n_2}$, тогда без ограничения общности столбцы $(A_1, B_1)^T$ и $(A_2, B_2)^T$ непропорциональны. Рассмотрим следующую систему уравнений относительно x и y:

$$\begin{cases} A_1 x + B_1 y = -C_1 z - D_1 \\ A_2 x + B_2 y = -C_2 z - D_2 \end{cases}$$

По правилу Крамера, эта система имеет единственное решение при любом $z \in \mathbb{R}$. Значит, плоскости имеют общие точки, но не все их точки общие, и это означает, что они пересекаются.

- ightharpoonup Пусть $\overline{n_1} \parallel \overline{n_2}$ и уравнения непропорциональны. Поскольку столбцы $(A_1, B_1, C_1)^T$ и $(A_2, B_2, C_2)^T$ пропорциональны из коллинеарности векторов $\overline{n_1}$ и $\overline{n_2}$, можно без ограничения общности считать, что $A_1 = A_2$, $B_1 = B_2$, $C_1 = C_2$, но $D_1 \neq D_2$. Тогда уравнения плоскостей не имеют общих решений, откуда $\nu_1 \parallel \nu_2$ и $\nu_1 \neq \nu_2$.
- \triangleright Пусть уравнения плоскостей пропорциональны, тогда можно считать, что они совпадают. Тогда совпадают и множества их решений, то есть $\nu_1 = \nu_2$.

Утверждение 3.7. Пусть в декартовой системе координат (O,e) пересекающиеся плоскости ν_1, ν_2 заданы уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда направляющим вектором прямой их пересечения является вектор $\overline{v} \in V_3$ такой, что:

$$\overline{v} \leftrightarrow_e \left(\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}, \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \right)^T$$

Доказательство.

- 1. Поскольку $\nu_1 \not \mid \nu_2$, то хотя бы один из определителей, указанных в координатном столбце вектора \overline{v} , ненулевой, откуда $\overline{v} \neq \overline{0}$.
- 2. Заметим, что выполнено следующее равенство:

$$A_1 \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} + B_1 \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} + C_1 \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$

Поскольку определитель матрицы не меняется при транспонировании, выполнено следующее:

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} = \begin{vmatrix} A_1 & A_1 & A_2 \\ B_1 & B_1 & B_2 \\ C_1 & C_1 & C_2 \end{vmatrix} = 0$$

Определитель в правой части равенства равен 0, поскольку он соответствует ориентированному объему от тройки векторов, среди которых есть два одинаковых. Получено следующее равенство:

$$A_1 \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} + B_1 \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} + C_1 \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0$$

Значит, по критерию параллельности вектора и плоскости, $\overline{v} \parallel \nu_1$.

3. Аналогично пункту (2), выполнено $\overline{v} \parallel \nu_2$.

Замечание. Плоскость $\nu \subset P_3$ в пространстве делит его на два полупространства. Выделим одно из открытых полупространств $S \subset P_3$. Пусть плоскость ν задана нормальным уравнением $(\overline{r} - \overline{r_0}, \overline{n}) = 0$, причем вектор нормали \overline{n} направлен в полупространство S. Тогда точка $X \in P_3$, $\overline{r} := \overline{OX}$, лежит в $S \Leftrightarrow (\overline{r} - \overline{r_0}, \overline{n}) > 0$. Противоположное полупространство задается противоположным неравенством.

Определение 3.12. Пучком плоскостей называется либо множество всех плоскостей в P_3 , проходящих через фиксированную прямую $l \subset P_3$, либо множество всех плоскостей, параллельных фиксированной плоскости $\nu \subset P_3$.

Замечание. Любые две плоскости в P_3 ровно в одном пучке.

Теорема 3.2. Пусть в декартовой системе координат (O, e) в P_3 различные плоскости ν_1, ν_2 заданы уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда плоскость $\nu \subset P_2$ лежит в одном пучке с плоскостями ν_1 и $\nu_2 \Leftrightarrow$ плоскость ν задается уравнением следующего вида при некоторых $\alpha_1, \alpha_2 \in \mathbb{R}$:

$$\alpha_1(A_1x + B_1y + C_1z + D_1) + \alpha_2(A_2x + B_2y + C_2z + D_2) = 0$$

Доказательство.

- ← Возможны два случая:
 - 1. Если $\nu_1 \cap \nu_2 = l \subset P_3$, то координаты каждой точки P на прямой l удовлетворяют требуемому уравнению, откуда $l \subset \nu$.
 - 2. Если $\nu_1 \parallel \nu_2$, то из требуемого уравнения сопутствующий вектор плоскости ν параллелен сопутствующим векторам плоскостей ν_1 и ν_2 . В этом случае уравнение задает плоскость не при всех $\alpha_1, \alpha_2 \in \mathbb{R}$, но если задает, то лежащую в данном пучке.
- ⇒ Возможны два случая:
 - 1. Если $\nu \cap \nu_1 \cap \nu_2 = l \subset P_3$, то выберем на ν точку $Q \notin l$, $Q \leftrightarrow_{(O,e)} (x_0, y_0, z_0)^T$. Тогда Q удовлетворяет уравнению с коэффициентами $\alpha_1 := A_2x_0 + B_2y_0 + C_2z_0 + D_2$, $\alpha_2 := -(A_1x_0 + B_1y_0 + C_1z_0 + D_1)$. Хотя бы один из коэффициентов ненулевой,

поскольку Q лежит не более, чем на одной из плоскостей ν_1, ν_2 . Значит, такое уравнение задает ν , так как ему удовлетворяют все точки прямой l и точка, не лежащая на l.

2. Если $\nu \parallel \nu_1 \parallel \nu_2$, то аналогичным образом выберем любую точку $Q \in \nu$ и соответствующие коэффициенты, тогда полученное уравнение задает ν при условии, что оно задает плоскость. Но оно всегда задает плоскость, поскольку множество его решений непусто и не содержит хотя бы одну из плоскостей ν_1, ν_2 .

Утверждение 3.8. Пусть в прямоугольной декартовой системе координат (O, e) в P_3 плоскости ν_1, ν_2 заданы уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда угол φ между ними удовлетворяет равенству:

$$\cos \varphi = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

Доказательство. Пусть $\overline{n_1}, \overline{n_2} \in V_3$, $\overline{n_1} \leftrightarrow_e (A_1, B_1, C_1)^T$, $\overline{n_2} \leftrightarrow_e (A_2, B_2, C_2)^T$, — нормальные векторы плоскостей $\nu_1, \nu_2, \alpha := \angle(\overline{n_1}, \overline{n_2})$. Тогда угол φ равен меньшему из углов α и $\pi - \alpha$. В каждом из случаев выполнено следующее:

$$\cos \varphi = |\cos \alpha| = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \qquad \Box$$

Утверждение 3.9. Пусть в прямоугольной декартовой системе координат (O, e) в P_3 плоскость ν задана уравнением Ax + By + Cz + D = 0, $M \in P_3$, $M \leftrightarrow_{(O,e)} (x_0, y_0, z_0)^T$. Тогда расстояние ρ от точки M до плоскости ν равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Доказательство. Пусть $\overline{n} \in V_3$, $\overline{n} \leftrightarrow_e (A,B,C)^T$ — вектор нормали плоскости ν , $\overline{r_0} := \overline{OM}$, и пусть $X \in \nu$, $\overline{r} := \overline{OX}$. Тогда:

$$\rho = |\operatorname{pr}_{\overline{n}}(\overline{r_0} - \overline{r})| = \left| \frac{(\overline{r_0} - \overline{r}, \overline{n})}{|\overline{n}|^2} \overline{n} \right| = \frac{|(\overline{r_0} - \overline{r}, \overline{n})|}{|\overline{n}|} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \qquad \Box$$

Утверждение 3.10. Пусть в прямоугольной системе координат (O, e) в P_3 параллельные плоскости ν_1, ν_2 заданы уравнениями $Ax + By + Cz + D_1 = 0$, $Ax + By + Cz + D_2 = 0$. Тогда расстояние ρ между ними равно следующей величине:

$$\rho = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$$

Доказательство. Пусть $M_1 \in \nu_1, \ M_2 \in \nu_2, \ \overline{r_1} := \overline{OM_1}, \ \overline{r_2} := \overline{OM_2}$. Плоскости ν_1, ν_2 имеют общий вектор нормали $\overline{n} \in V_3, \ \overline{n} \leftrightarrow_e (A,B,C)^T$, и выполнены равенства $(\overline{r_1},\overline{n_1}) = -D_1, (\overline{r_2},\overline{n_2}) = -D_2$, тогда:

$$\rho = |\operatorname{pr}_{\overline{n}}(\overline{r_1} - \overline{r_2})| = \left| \frac{(\overline{r_1}, \overline{n_1}) - (\overline{r_2}, \overline{n_2})}{|\overline{n}|} \right| = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}} \qquad \Box$$

3.3 Прямая в пространстве

Определение 3.13. Пусть $l \subset P_3$ —прямая с направляющим вектором $\overline{a} \in V_3$, $M \in l$, и в декартовой системе координат (O, e) в P_3 выполнены соотношения $\overline{a} \leftrightarrow_e \alpha$, $M \leftrightarrow_{(O, e)} (x_0, y_0, z_0)^T$, $\overline{r_0} := \overline{OM}$.

Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}$$

⊳ Параметрическим уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 \end{cases}$$

▶ Каноническим уравнением прямой называется следующая система уравнений:

$$\frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2} = \frac{z - z_0}{\alpha_3}$$

Замечание. Множество точек $X \in P_3$ таких, что $X \leftrightarrow_{(O,e)} (x,y,z)^T$, $\overline{r} := \overline{OX}$, являющихся решениями любого из уравнений прямой выше, совпадает с прямой l. Действительно, $X \in l \Leftrightarrow MX \parallel l \Leftrightarrow \overline{MX} \parallel \overline{a}$.

Замечание. Для канонического уравнения прямой имеют место следующие соглашения:

- \triangleright Если без ограничения общности $\alpha_1 = 0$ и $\alpha_2, \alpha_3 \neq 0$, то следует считать, что исходное уравнение эквивалентно системе уравнений $x = x_0$ и $\frac{y-y_0}{\alpha_2} = \frac{z-z_0}{\alpha_3}$.
- \triangleright Если без ограничения общности $\alpha_1 = \alpha_2 = 0$, то тогда $\alpha_3 \neq 0$, и следует считать, что исходное уравнение эквивалентно системе уравнений $x = x_0$ и $y = y_0$.

Определение 3.14. Пусть $l \subset P_3$ — прямая с направляющим вектором \overline{a} , и пусть $M \in l$, $\overline{r_0} := \overline{OM}$. Векторным уравнением прямой называется следующее уравнение:

$$[\overline{r} - \overline{r_0}, \overline{a}] = \overline{0}$$

Замечание. Множество точек $X \in P_3$, $\overline{r} := \overline{OX}$, являющихся решениями векторного уравнения прямой, совпадает с прямой l. Кроме того, это уравнение можно переписать в следующем виде при $\overline{b} := [\overline{r_0}, \overline{a}]$:

$$[\overline{r},\overline{a}]=\overline{b}$$

Отметим также, что пространстве прямую также можно задать как пересечение двух плоскостей.

Замечание. Рассмотренные способы задания прямой позволяют определить *взаимное* расположение прямых в пространстве. Пусть прямые l_1, l_2 заданы векторно-параметрическими уравнениями $\overline{r} = \overline{r_1} + t\overline{a_1}, \ \overline{r} = \overline{r_2} + t\overline{a_2}$. Тогда:

$$\vartriangleright \ l_1 \parallel l_2 \bowtie l_1 \neq l_2 \Leftrightarrow \overline{a_1} \parallel \overline{a_2} \bowtie \overline{a_1} \not \parallel (\overline{r_2} - \overline{r_1}) \Leftrightarrow [\overline{a_1}, \overline{a_2}] = \overline{0} \bowtie [\overline{a_1}, \overline{r_2} - \overline{r_1}] \neq \overline{0}$$

Замечание. Рассмотренные способы задания прямой и плоскости позволяют определить взаимное расположение прямой и плоскости в пространстве. Пусть в декартовой системе координат (O,e) в P_3 плоскость ν задана общим уравнением Ax+By+Cz+D=0, и пусть прямая l задана векторно-параметрическим уравнением $\overline{r}=\overline{r_0}+t\overline{a},\ \overline{r_0}\leftrightarrow_e (x_0,y_0,z_0)^T,$ $\overline{a}\leftrightarrow_e \alpha$. Тогда:

$$\triangleright l \cap \nu \neq \emptyset$$
 и $l \not\subset \nu \Leftrightarrow \overline{a} \not\parallel \nu \Leftrightarrow A\alpha_1 + B\alpha_2 + C\alpha_3 \neq 0$

$$\triangleright l \parallel \nu \text{ и } l \not\subset \nu \Leftrightarrow \begin{cases} A\alpha_1 + B\alpha_2 + C\alpha_3 = 0 \\ Ax_0 + By_0 + Cz_0 + D \neq 0 \end{cases}$$

 $\triangleright l_1, l_2$ скрещиваются $\Leftrightarrow (\overline{a_1}, \overline{a_2}, \overline{r_2} - \overline{r_1}) \neq 0$

$$\triangleright l \subset \nu \Leftrightarrow \begin{cases} A\alpha_1 + B\alpha_2 + C\alpha_3 = 0\\ Ax_0 + By_0 + Cz_0 + D = 0 \end{cases}$$

Утверждение 3.11. Пусть прямая $l \subset P_3$ задана векторно-параметрическим уравнением $\overline{r} = \overline{r_0} + \overline{a}t$, $A \in P_3$, $\overline{r_A} := \overline{OA}$. Тогда расстояние ρ от точки A до прямой l равно следующей величине:

$$\rho = \frac{|[\overline{r_A} - \overline{r_0}, \overline{a}]|}{|\overline{a}|}$$

Доказательство. Искомое расстояние ρ является длиной высоты параллелограмма, построенного на векторах \overline{a} и $\overline{r_A} - \overline{r_0}$, проведенной к стороне, образованной вектором \overline{a} и имеющей длину $|\overline{a}|$, из чего и следует требуемое.

Утверждение 3.12. Пусть скрещивающиеся прямые $l_1, l_2 \subset P_3$ заданы уравнениями $\overline{r} = \overline{r_1} + \overline{a_1}t, \ \overline{r} = \overline{r_2} + \overline{a_2}t.$ Тогда расстояние ρ между ними равно следующей величине:

$$\rho = \frac{|(\overline{a_1}, \overline{a_2}, \overline{r_1} - \overline{r_2})|}{|[\overline{a_1}, \overline{a_2}]|}$$

Доказательство. Искомое расстояние ρ является длиной высоты параллелепипеда, построенного на векторах $\overline{a_1}$, $\overline{a_2}$ и $\overline{r_1} - \overline{r_2}$, проведенной к грани, образованной векторами $\overline{a_1}$, $\overline{a_2}$ и имеющей площадь $|\overline{a_1}||\overline{a_2}|\sin\angle(\overline{a_1},\overline{a_2}) = |[\overline{a_1},\overline{a_2}]|$, из чего и следует требуемое.

4 Алгебраические кривые

4.1 Многочлены

Определение 4.1. Одночленом, или мономом, от переменных x_1, \ldots, x_n называется выражение вида $\alpha x_1^{k_1} \cdots x_n^{k_n}$, где $\alpha \in \mathbb{R}, k_1, \ldots, k_n \in \mathbb{N} \cup \{0\}$. Многочленом, или полиномом, от переменных x_1, \ldots, x_n называется линейная комбинация одночленов от x_1, \ldots, x_n .

Определение 4.2. *Несократимой записью* многочлена $P(x_1,\ldots,x_n)$ называется представление этого многочлена в виде линейной комбинации одночленов $\alpha x_1^{k_1}\cdots x_n^{k_n}$ с ненулевыми коэффициентами α и попарно различными наборами степеней k_1,\ldots,k_n .

Утверждение 4.1. Если несократимая запись многочлена $P(x_1, ..., x_n)$ содержит хотя бы один моном, то $P \neq 0$.

Доказательство. Проведем индукцию по n. База, n=1, тривиальна: ненулевой многочлен $P(x_1)$ имеет лишь конечное число корней. Докажем переход. Для этого сгруппируем в $P(x_1, \ldots, x_n)$ мономы с одинаковой степенью при x_n :

$$P(x_1, \dots, x_n) = \sum_{j=0}^{d} Q_j(x_1, \dots, x_{n-1}) x_n^j$$

Хотя бы один многочлен Q_t имеет ненулевую несократимую запись. Тогда, по предположению индукции, существуют $a_1, \ldots, a_{n-1} \in \mathbb{R}$ такие, что $Q_t(a_1, \ldots, a_{n-1}) \neq 0$. Тогда:

$$P(a_1, \dots, a_{n-1}, x_n) = \sum_{j=0}^{d} Q_j(a_1, \dots, a_{n-1}) x_n^j$$

Полученное выражение — это многочлен от одной переменной x_n с ненулевой несократимой записью. Он имеет конечное число корней, поэтому существует $a_n \in \mathbb{R}$ такое, что $P(a_1, \ldots, a_{n-1}, a_n) \neq 0$.

Следствие. Несократимая запись многочлена $P(x_1, ..., x_n)$ единственна.

Доказательство. Предположим, что у $P(x_1, \ldots, x_n)$ есть две различных несократимых записи P_1 и P_2 . Тогда несократимая запись разности $P_1 - P_2$ содержит хотя бы один моном, но эта же запись должна быть тождественно нулевой, что невозможно по утверждению выше.

Определение 4.3. Степенью одночлена $\alpha x_1^{k_1} \cdots x_n^{k_n}$ с ненулевым коэффициентом α называется число $k_1 + \cdots + k_n$. Степенью многочлена называется наибольшая из степеней одночленов, входящих в его несократимую запись. Обозначение — $\deg P$. Считается также, что $\deg 0 = -\infty$.

Утверждение 4.2. Для любых многочленов P,Q выполнено следующее неравенство:

$$\deg (P+Q) \leqslant \max\{\deg P, \deg Q\}$$

Доказательство. Сложим несократимые записи многочленов P и Q. Приводя подобные слагаемые, получим несократимую запись многочлена P+Q. В ней не будет мономов степени, превосходящей $\max\{\deg P,\deg Q\}$.

Утверждение 4.3. Для любых многочленов P,Q выполнено следующее равенство:

$$\deg PQ = \deg P + \deg Q$$

Доказательство. Перемножим несократимые записи многочленов P и Q, получим сумму мономов со степенями, не превосходящими $\deg P + \deg Q$, поэтому $\deg (PQ) \leqslant \deg P + \deg Q$. Далее рассмотрим в несократимой записи P моном $ax_1^{\alpha_1} \cdots x_n^{\alpha_n}, \ a \neq 0$, удовлетворяющий следующим условиям:

 $\triangleright \alpha_1 + \cdots + \alpha_n = \deg P$, то есть моном имеет наибольшую степень

- \triangleright Среди всех мономов, удовлетворяющих предыдущему пункту, показатель степени α_1 у данного монома наибольший
- \triangleright Среди всех мономов, удовлетворяющих предыдущему пункту, показатель степени α_2 у данного монома наибольший, и так далее

Аналогичным образом выберем в Q моном $bx_1^{\beta_1}\cdots x_n^{\beta_n},\ b\neq 0$. Произведение выбранных мономов дает моном $abx_1^{\alpha_1+\beta_1}\dots x_n^{\alpha_n+\beta_n},\ ab\neq 0$. Пусть моном с такими же показателями степеней появился как произведение мономов $cx_1^{\gamma_1}\dots x_n^{\gamma_n},\ c\neq 0$, из P и $dx_1^{\delta_1}\dots x_n^{\delta_n},\ d\neq 0$, из Q, тогда:

- $\triangleright \gamma_1 + \cdots + \gamma_n \leqslant \alpha_1 + \cdots + \alpha_1$ и $\delta_1 + \cdots + \delta_n \leqslant \beta_1 + \cdots + \beta_1$, поэтому в обоих неравенствах имеет место равенство
- $\triangleright \gamma_1 \leqslant \alpha_1$ и $\delta_1 \leqslant \beta_1$, поэтому в обоих неравенствах имеет место равенство
- $hd \gamma_2\leqslant \alpha_2$ и $\delta_2\leqslant \beta_2$, поэтому в обоих неравенствах имеет место равенство, и так далее

Таким образом, все степени в данных парах мономов совпадают, тогда, в силу несократимости записей, совпадают и эти мономы. Значит, после приведения подобных слагаемых моном $abx_1^{\alpha_1+\beta_1}\dots x_n^{\alpha_n+\beta_n},\ ab\neq 0$, степени $\deg P+\deg Q$ сократиться не мог, откуда $\deg (PQ)=\deg P+\deg Q.$

Теорема 4.1. Пусть P(x,y,z) — многочлен от координат точки в декартовой системе координат в P_3 , и пусть при замене координат в P_3 из функции P(x,y,z) была получена функция Q(x',y',z'). Тогда Q — тоже многочлен, причем $\deg Q = \deg P$.

Доказательство. Формула замены координат имеет вид $(x,y,z)^T = S(x',y',z')^T + \gamma$ для некоторой матрицы $S \in M_3$ и столбца $\gamma \in M_{3\times 1}$. Значит, каждая из переменных x,y,z заменяется на линейную комбинацию выражений x',y',z',1. При подстановке этих выражений в P(x,y,z) получится многочлен, причем, очевидно, $\deg Q \leqslant \deg P$. Наконец, поскольку возможен обратный переход к переменным x,y,z, переводящий Q(x',y',z') в P(x,y,z), то $\deg P \leqslant \deg Q$. Значит, $\deg P = \deg Q$.

Замечание. Аналогичное утверждение верно и для пространства P_2 .

Определение 4.4. Алгебраической кривой называется множество всех точек в P_2 , координаты которых в некоторой декартовой системе координат удовлетворяют уравнению P(x,y)=0, где P—многочлен. Порядком кривой называется наименьшая степень многочлена, задающего данную кривую.

Замечание. Порядок алгебраической кривой не зависит от выбора системы координат.

Замечание. Аналогичным образом можно определить *алгебраические поверхности* и их порядок в P_3 . Понятно также, что алгебраическая кривая первого порядка—это прямая, а алгебраическая поверхность первого порядка—это плоскость.

Утверждение 4.4. Объединение и пересечение алгебраических кривых также являются алгебраическими кривыми.

Доказательство. Пусть две кривые задаются многочленами $P_1(x,y)$ и $P_2(x,y)$ соответственно. Тогда объединение кривых задается следующим уравнением:

$$P_1(x,y)P_2(x,y) = 0$$

Пересечение кривых задается следующим уравнением:

$$(P_1(x,y))^2 + (P_2(x,y))^2 = 0$$

Видно, что оба полученных выражения также являются многочленами.

Утверждение 4.5. Сечение алгебраической поверхности плоскостью является алгебраической кривой в этой плоскости.

Доказательство. Перейдем в такую систему координат в P_3 , в которой плоскость будет задаваться уравнением z=0. Пусть алгебраическая поверхность в этой системе задается многочленом P(x,y,z), тогда уравнение сечения имеет вид P(x,y,0)=0. Значит, сечение является алгебраической кривой.

4.2 Кривые второго порядка

Определение 4.5. Пусть $A, B, C, D, E, F \in \mathbb{R}$, $A^2 + B^2 + C^2 \neq 0$. *Кривой второго порядка* называется алгебраическая кривая, которая в некоторой прямоугольной декартовой системе координат в P_2 задается следующим уравнением:

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$

Теорема 4.2. Любое уравнение кривой второго порядка в некоторой прямоугольной декартовой системой координат в P_2 имеет один из девяти канонических видов:

⊳ Кривые эллиптического типа:

$$\begin{array}{l} -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,\ a\geqslant b>0,\ -\text{эллипс}\\ -\frac{x^2}{a^2}+\frac{y^2}{b^2}=0,\ a\geqslant b>0,\ -\text{точкa}\\ -\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1,\ a\geqslant b>0,\ -\text{мнимый эллипс} \end{array}$$

▶ Кривые гиперболического типа:

$$-\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,\ a,b>0,$$
 — гипербола $-\frac{x^2}{a^2}-\frac{y^2}{b^2}=0,\ a,b>0,$ — пара пересекающихся прямых

▶ Кривые параболического типа:

$$-y^2=2px,\ p>0,\ -napa$$
бола
$$-\frac{y^2}{a^2}=1,\ a>0,\ -napa\ napaллельных\ прямых \\ -\frac{y^2}{a^2}=0,\ a>0,\ -napa\ cosnadaющих\ прямых \\ -\frac{y^2}{a^2}=-1,\ a>0,\ -napa\ мнимых\ пapaллельных\ пpямых$$

Доказательство. Пусть в исходной прямоугольной декартовой системе координат в P_2 кривая второго порядка задается уравнением $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$. Процесс перехода в искомую систему координат происходит в три этапа:

1. Если $B \neq 0$, избавимся от монома 2Bxy. Для этого произведем поворот системы координат на угол α против часовой стелки. Матрица перехода S при таком преобразовании имеет следующий вид:

$$S = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Тогда, по свойству замены координат:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

Определим значение α , при котором коэффициент при x'y' обращается в 0:

$$-2A\sin\alpha\cos\alpha + 2B(\cos^2\alpha - \sin^2\alpha) + 2C\sin\alpha\cos\alpha = 0 \Rightarrow 2B\cos2\alpha = (A - C)\sin2\alpha$$

Если A=C, то выберем $\alpha=\frac{\pi}{4}$, иначе — такой α , что tg $2\alpha=\frac{2B}{A-C}$. В новой системе координат получим выражение вида $A'x'^2+C'y'^2+2D'x'+2E'y'+F'=0$.

2. Если $A' \neq 0$, избавимся от монома 2D'x'. Для этого произведем следующий сдвиг системы координат:

$$\begin{cases} x' = x'' + \frac{D'}{A'} \\ y' = y'' \end{cases}$$

После этого получим выражение $A''x''^2 + C''y''^2 + 2E''y'' + F'' = 0$.

3. Если $C'' \neq 0$, избавимся от монома 2E''y'', аналогично пункту (2).

Опустим штрихи в записи уравнения в полученной системе координат. После того, как произведены операции выше, могут быть получены три различных результата:

1. Если AC>0, то ни один из мономов x^2 , y^2 не сократился, и полученное уравнение имеет вид $Ax^2+Cy^2+F=0$. Если A,C<0, домножим уравнение на -1. Перенесем F в другую часть и, если $F\neq 0$, разделим уравнение на |F|. После данных операций получим уравнение следующего вида:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \varepsilon, \ a, b > 0, \ \varepsilon \in \{-1, 0, 1\}$$

Если a < b, то поменяем координаты местами. Получено уравнение кривой эллиптического типа.

2. Если AC<0, то ни один из мономов x^2 , y^2 не сократился, и полученное уравнение имеет вид $Ax^2+Cy^2+F=0$. Аналогичными описанным в предыдущем пункте преобразованиями, получим уравнение следующего вида:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \varepsilon, \ a, b > 0, \ \varepsilon \in \{0, 1\}$$

Получено уравнение кривой гиперболического типа.

3. Если AC=0, то одно из чисел A,C осталось ненулевым, поскольку многочлен в уравнении должен иметь степень 2. Заменой системы координат можно добиться того,

чтобы это было число C. Тогда полученное уравнение имеет вид $Cy^2 + 2Dx + F = 0$. Если $D \neq 0$, то сдвиг системы координат позволяет избавиться от F и получить уравнение следующего вида:

$$y^2 = 2px, \, p > 0$$

Если же D = 0, то уравнение можно привести к следующему виду:

$$\frac{y^2}{a^2}\varepsilon, \ a > 0, \ \varepsilon \in \{-1, 0, 1\}$$

Получено уравнение кривой параболического типа.

Определение 4.6. *Канонической системой координат* для кривой второго порядка называется такая прямоугольная декартова система координат, в которой данная кривая имеет уравнение канонического вида.

Определение 4.7. *Центром многочлена* P(x,y) в декартовой системе координат (O,e) в P_2 называется такая точка $A \in P_2$, $A \leftrightarrow_{(O,e)} \alpha$, что для любых чисел $x,y \in \mathbb{R}$ выполнено равенство $P(\alpha_1 - x, \alpha_1 - y) = P(\alpha_1 + x, \alpha_2 + y)$.

Утверждение 4.6. Если в декартовой системе координат (O,e) в P_2 точка $A \in P_2$, $A \leftrightarrow_{(O,e)} \alpha$, является центром многочлена P(x,y), то A — центр симметрии кривой, заданной уравнением P(x,y)=0.

Доказательство. По условию, любые две точки в P_2 , симметричные относительно точки A, или одновременно принадлежат кривой, или одновременно не принадлежат ей.

Замечание. Можно показать, что верно и такое утверждение: если точка $A \in P_2$ является центром симметрии непустой кривой второго порядка, задаваемой многочленом P(x,y), то A также является центром симметрии многочлена P(x,y).

Замечание. Начало координат в канонической системе координат любой кривой второго порядка является ее центром симметрии, если эта кривая имеет хотя бы один центр симметрии.

Утверждение 4.7. Пусть $A \in P_2$, в декартовой системе координат (O, e) в P_2 выполнено $A \leftrightarrow_{(O, e)} \alpha$, и пусть $P(x, y) = Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$. Тогда:

$$A-$$
центр многочлена $P(x,y)\Leftrightarrow egin{cases} Alpha+Beta+D=0\ Blpha+Ceta+E=0 \end{cases}$

Доказательство производится непосредственной проверкой.

Определение 4.8. Кривая второго порядка называется *центральной*, если у нее существует единственный центр симметрии.

Замечание. Если кривая задана уравнением $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$, то, согласно правилу Крамера, она центральна $\Leftrightarrow AC \neq B^2$.

Замечание. Из непустых кривых второго порядка центральными являются только кривые эллиптического и гиперболического типа.

4.3 Эллипс, гипербола и парабола

Определение 4.9. Эллипсом называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a \geqslant b > 0$$

- \triangleright Вершинами эллипса называются точки с координатами $(\pm a, 0)^T$, $(0, \pm b)^T$ в системе (O, e). Число a называется ∂ линой большой полуоси эллипса, число $b \partial$ линой малой полуоси эллипса.
- ightharpoonup Фокусным расстоянием эллипса называется величина $c:=\sqrt{a^2-b^2}$. Фокусами эллипса называются точки $F_1,F_2\in P_2$ такие, что $F_1\leftrightarrow_{(O,e)}(c,0)^T,\,F_2\leftrightarrow_{(O,e)}(-c,0)^T.$
- ightarrow Эксиентриситетом эллипса называется величина $\varepsilon:=rac{c}{a}=rac{\sqrt{a^2-b^2}}{a}.$
- $ightharpoonup \mathcal{A}$ иректрисами эллипса называются прямые d_1, d_2 , задаваемые в системе (O, e) уравнениями $x = \pm \frac{a}{\varepsilon}$.

Теорема 4.3. Пусть эллипс задан в канонической системе координат (O, e), $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$.

Доказательство. Докажем, что A лежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x|$. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$

Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на эллипсе. Аналогично доказывается, что $AF_2 = |a + \varepsilon x| \Leftrightarrow A$ лежит на эллипсе.

Теорема 4.4. Пусть эллипс задан в канонической системе координат (O, e). Тогда он является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнены следующие равенства:

$$\frac{AF_1}{\rho(A, d_1)} = \frac{AF_2}{\rho(A, d_2)} = \varepsilon$$

Доказательство. Заметим, что выполнены следующие равенства:

$$\rho(A, d_1) = \left| x - \frac{a}{\varepsilon} \right| = \frac{1}{\varepsilon} |a - \varepsilon x|$$

Значит, A лежит на эллипсе $\Leftrightarrow |a - \varepsilon x| = AF_1 \Leftrightarrow \varepsilon \rho(A, d_1) = AF_1$. Аналогично доказывается, что A лежит на эллипсе $\Leftrightarrow \varepsilon \rho(A, d_2) = AF_2$.

Теорема 4.5. Пусть эллипс задан в канонической системе координат (O, e). Тогда он является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнено равенство $AF_1 + AF_2 = 2a$.

Доказательство.

 \Rightarrow Пусть A лежит на эллипсе, тогда $AF_1=a-\varepsilon x$ и $AF_2=a+\varepsilon x$, откуда $AF_1+AF_2=2a$.

- \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2$, $X \leftrightarrow_{(O,e)} (x_0,0)^T$ вдоль прямой $x=x_0$ вверх или вниз величина XF_1+XF_2 строго возрастает. Рассмотрим возможные случаи:
 - 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.
 - 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
 - 3. Если $|x_0| > a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ нет.

Полученное точек совпадает с множеством точек эллипса.

Определение 4.10. *Гиперболой* называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a, b > 0$$

- \triangleright Вершинами гиперболы называются точки с координатами $(\pm a, 0)^T$ в системе (O, e). Число a называется ∂ линой ∂ ействительной полуоси гиперболы, число $b \partial$ линой мнимой полуоси гиперболы.
- \triangleright Фокусным расстоянием гиперболы называется величина $c := \sqrt{a^2 + b^2}$. Фокусами гиперболы называются точки $F_1, F_2 \in P_2$ такие, что $F_1 \leftrightarrow_{(O,e)} (c,0)^T, F_2 \leftrightarrow_{(O,e)} (-c,0)^T$.
- ightarrow $9\kappa c$ иeнтpиeитерболы называется величина $\varepsilon:=\frac{c}{a}=\frac{\sqrt{a^2+b^2}}{a}.$
- ightharpoonup Директрисами гиперболы называются прямые $d_1, d_2,$ задаваемые в системе (O, e) уравнениями $x = \pm \frac{a}{\varepsilon}$.

Теорема 4.6. Пусть гипербола задана в канонической системе координат (O, e), $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$. Доказательство. Докажем, что A лежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x|$. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1\right)$$

Значит, $AF_1=|a-\varepsilon x|\Leftrightarrow \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\Leftrightarrow A$ лежит на гиперболе. Аналогично доказывается, что $AF_2=|a+\varepsilon x|\Leftrightarrow A$ лежит на гиперболе.

Теорема 4.7. Пусть гипербола задана в канонической системе координат (O, e). Тогда она является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнены следующие равенства:

$$\frac{AF_1}{\rho(A, d_1)} = \frac{AF_2}{\rho(A, d_2)} = \varepsilon$$

Доказательство. Заметим, что выполнены следующие равенства:

$$\rho(A, d_1) = \left| x - \frac{a}{\varepsilon} \right| = \frac{1}{\varepsilon} |a - \varepsilon x|$$

Значит, A лежит на гиперболе $\Leftrightarrow |a - \varepsilon x| = AF_1 \Leftrightarrow \varepsilon \rho(A, d_1) = AF_1$. Аналогично доказывается, что A лежит на эллипсе $\Leftrightarrow \varepsilon \rho(A, d_2) = AF_2$.

Теорема 4.8. Пусть гипербола задана в канонической системе координат (O, e). Тогда она является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнено равенство $|AF_1 - AF_2| = 2a$.

Доказательство.

- \Rightarrow Пусть A лежит на гиперболе. Если без ограничения общности точка A лежит на правой ее ветви, то тогда $AF_1 = \varepsilon x a$ и $AF_2 = a + \varepsilon x$, тогда $|AF_1 AF_2| = 2a$.
- \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2$, $X \leftrightarrow_{(O,e)} (x_0,0)^T$ вдоль прямой $x=x_0$ вверх или вниз величина $|XF_1-XF_2|$ строго убывает. Рассмотрим возможные случаи:
 - 1. Если $|x_0| > a$, то таких точек, что $|XF_1 XF_2| = 2a$, на прямой $x = x_0$ две.
 - 2. Если $|x_0|=a$, то такая точка, что $|XF_1-XF_2|=2a$, на прямой $x=x_0$ одна.
 - 3. Если $|x_0| < a$, то таких точек, что $|XF_1 XF_2| = 2a$, на прямой $x = x_0$ нет.

Полученное точек совпадает с множеством точек гиперболы.

Определение 4.11. Пусть гипербола задана в канонической системе координат (O, e). Aсимптотами гиперболы называются прямые l_1, l_2 , задаваемые в этой же системе уравнениями $\frac{x}{a} \pm \frac{y}{b} = 0$.

Утверждение 4.8. Пусть гипербола задана в канонической системе координат (O, e), $A \in P_2$ — точка на гиперболе. Тогда выполнено следующее равенство:

$$\rho(A, l_1)\rho(A, l_2) = \frac{a^2b^2}{a^2 + b^2}$$

Доказательство. Пусть $A \leftrightarrow_{(O,e)} (x,y)^T$. По формуле расстояния от точки до прямой в плоскости, имеем:

$$\rho(A, l_1)\rho(A, l_2) = \frac{\left|\frac{x}{a} - \frac{y}{b}\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \frac{\left|\frac{x}{a} + \frac{y}{b}\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{b^2x^2 - a^2y^2}{a^2 + b^2} = \frac{a^2b^2\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)}{a^2 + b^2} = \frac{a^2b^2}{a^2 + b^2}$$

Получено требуемое.

Следствие. Пусть гипербола задана в канонической системе координат (O, e). Если точка $A \in P_2, A \leftrightarrow_{(O,e)} (x,y)^T$, движется по одной полуветви гиперболы так, что $x \to \infty$, то расстояние от A до одной из асимптот стремится к 0.

Доказательство. Пусть без ограничения общности точка A движется так, что $x \to +\infty$ и $y \to +\infty$, тогда $\rho(A, l_2) \to +\infty$. Но величины $\rho(A, l_1)$ и $\rho(A, l_2)$ обратно пропорциональны, поэтому $\rho(A, l_1) \to 0$.

Определение 4.12. *Параболой* называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$y^2 = 2px, \, p > 0$$

ightharpoonup параболы называется точка с координатами $(0,0)^T$ в системе (O,e).

- \triangleright Фокусом параболы называется точка F такая, что $F \leftrightarrow_{(O,e)} \left(\frac{p}{2},0\right)^T$.
- \triangleright Эксцентриситетом параболы называется величина $\varepsilon:=1.$
- $ightharpoonup \mathcal{A}$ параболы называется прямая d, задаваемая в системе (O,e) уравнением $x=-rac{p}{2}.$

Теорема 4.9. Пусть парабола задана в канонической системе координат (O, e), $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на параболе $\Leftrightarrow AF = \rho(A,d)$.

Доказательство. Заметим, что выполнены следующие равенства:

$$AF^{2} - \rho^{2}(A, d) = \left(x - \frac{p}{2}\right)^{2} + y^{2} - \left(x + \frac{p}{2}\right)^{2} = y^{2} - 2px$$

Значит, $AF = \rho(A,d) = |x + \frac{p}{2}| \Leftrightarrow y^2 = 2px \Leftrightarrow A$ лежит на параболе.

4.4 Сопряженные диаметры и касательные

Теорема 4.10. Пусть C — эллипс, гипербола или парабола, C задана в канонической системе координат $(O,e), \ \overline{v} \in V_2, \ \overline{v} \neq \overline{0}$ — вектор направления, $\overline{v} \leftrightarrow_e \alpha$. Тогда центры всех хорд кривой C, параллельных вектору \overline{v} , лежат на одной прямой.

Доказательство. Рассмотрим случай, когда C—гипербола, поскольку в остальных случаях доказательство аналогично. Пусть $A \leftrightarrow_{(O,e)} (x_0,y_0)^T$ —середина некоторой хорды, параллельной вектору \overline{v} . Точки пересечения прямой, содержащей данную хорду, с гиперболой C удовлетворяет следующему уравнению:

$$\frac{(x_0 + \alpha_1 t)^2}{a^2} - \frac{(y_0 + \alpha_2 t)^2}{b^2} = 1$$

Так как точка A является серединой хорды, то значения параметра t, удовлетворяющие уравнению, должны быть противоположными числами. Приведем данное уравнение к виду квадратного уравнения относительно t, тогда, по теореме Виета, коэффициент при t должен быть равен нулю, то есть:

$$\alpha_1 b^2 x_0 - \alpha_2 a^2 y_0 = 0$$

Таким образом, центры всех хорд, параллельных вектору \overline{v} , удовлетворяют следующему уравнению прямой:

$$\frac{\alpha_1 x}{a^2} - \frac{\alpha_2 y}{b^2} = 0 \qquad \Box$$

Определение 4.13. Пусть C—эллипс, гипербола или парабола, $\overline{v} \in V_2$, $\overline{v} \neq \overline{0}$ —вектор направления. Диаметром, сопряженным к направлению \overline{v} относительно кривой C, называется прямая, содержащая середины всех хорд C, параллельных вектору \overline{v} .

Замечание. Пусть C — эллипс, гипербола или парабола, C задана в канонической системе координат $(O,e), \overline{v} \in V_2, \overline{v} \neq \overline{0}$ — вектор направления, $\overline{v} \leftrightarrow_e \alpha$. Тогда уравнения диаметров, сопряженных к направлению \overline{v} , имеют следующий вид:

ightharpoonup Если C — эллипс, то прямая задается уравнением $\frac{\alpha_1 x}{a^2} + \frac{\alpha_2 y}{b^2} = 0$ и имеет направляющий вектор $\overline{a} \in V_2, \ \overline{a} \leftrightarrow_e (\frac{\alpha_2}{b^2}, -\frac{\alpha_1}{a^2})^T$

- ightharpoonup Если C гипербола, то прямая задается уравнением $\frac{\alpha_1 x}{a^2} \frac{\alpha_2 y}{b^2} = 0$ и имеет направляющий вектор $\overline{a} \in V_2$, $\overline{a} \leftrightarrow_e \left(\frac{\alpha_2}{b^2}, \frac{\alpha_1}{a^2}\right)^T$
- ightharpoonup Если C парабола, то прямая задается уравнением $\alpha_2 y = \alpha_1 p$ и имеет направляющий вектор $\overline{a} \in V_2$, $\overline{a} \leftrightarrow_e (1,0)^T$

Утверждение 4.9. Пусть C – эллипс или гипербола, $\overline{v} \in V_2$, $\overline{v} \neq \overline{0}$ – вектор направления. Тогда если диаметр, сопряженный к \overline{v} , имеет направляющий вектор \overline{u} , то диаметр, сопряженный к \overline{u} , имеет направляющий вектор \overline{v} .

Доказательство. Рассмотрим случай, когда C—гипербола, поскольку в случае эллипса доказательство аналогично. Пусть C задана в канонической системе координат (O,e), и пусть $\overline{v} \leftrightarrow_e \alpha$. Диаметр, сопряженный к направлению \overline{v} , имеет направляющий вектор $\overline{u} \in V_2, \ \overline{u} \leftrightarrow_e (\frac{\alpha_2}{b^2}, \frac{\alpha_1}{a^2})^T$. Диаметр, сопряженный к направлению \overline{u} , имеет направляющий вектор $\overline{w} \in V_2, \ \overline{w} \leftrightarrow_e (\frac{\alpha_1}{a^2b^2}, \frac{\alpha_2}{a^2b^2})^T$. Остается заметить, что $\overline{w} \parallel \overline{v}$.

Определение 4.14. *Касательной* к кривой C в точке $A \in C$ называется предельное положение секущей $AB, B \in C$, при $B \to A$.

Утверждение 4.10. Пусть C – эллипс, гипербола или парабола. Тогда диаметр, сопряженный к направлению касательной к C в точке $A \in C$, проходит через A.

Доказательство. Пусть кривая C задана в канонической системе координат (O, e), и пусть $A \leftrightarrow_{(O,e)} (x_0,y_0)^T$. Когда точка B на гиперболе стремится к A, середина хорды AB также стремится к A, поэтому диаметр, содержащий середину хорды AB, в предельном случае проходит через A.

Следствие. Пусть C — эллипс или гипербола, C задана в канонической системе координат $(O,e), A \in C, A \leftrightarrow_{(O,e)} (x_0,y_0)^T$. Тогда уравнения касательных к C в точке A имеют следующий вид:

- \triangleright Если C эллипс, то прямая задается уравнением $\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1$
- \triangleright Если C гипербола, то прямая задается уравнением $\frac{x_0x}{a^2}-\frac{y_0y}{b^2}=1$

Доказательство.

- ⊳ Пусть C эллипс, тогда диаметр, проходящий через точку A, задается уравнением $y_0x-x_0y=0$ и имеет направляющий вектор с координатами $(x_0,y_0)^T$. Тогда сопряженный к нему диаметр и касательная в точке A имеют направляющий вектор с координатами $(\frac{y_0}{b^2},-\frac{x_0}{a^2})^T$. С учетом того, что касательная проходит через точку A, получаем уравнение прямой $\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1$.
- ⊳ Пусть C гипербола, тогда диаметр, проходящий через точку A, задается уравнением $y_0x-x_0y=0$ и имеет направляющий вектор с координатами $(x_0,y_0)^T$. Тогда сопряженный к нему диаметр и касательная в точке A имеют направляющий вектор с координатами $(\frac{y_0}{b^2},\frac{x_0}{a^2})^T$. С учетом того, что касательная проходит через точку A, получаем уравнение прямой $\frac{x_0x}{a^2}-\frac{y_0y}{b^2}=1$.

Утверждение 4.11. Пусть C — парабола, заданная в канонической системе координат (O, e), $A \in C$, $A \leftrightarrow_{(O, e)} (x_0, y_0)^T$. Тогда уравнение касательной к C в точке A имеют следующий вид:

$$y_0 y = p(x_0 + x)$$

Доказательство. Диаметр, проходящий через A, задается уравнением $y=y_0$, и при этом является сопряженным к направлению $\overline{v} \in V_2$, $\overline{v} \leftrightarrow_e \alpha$, касательной в точке A. Тогда имеет место равенство $\alpha_2 y_0 = \alpha_1 p$, поэтому можно считать, что $\alpha = (y_0, p)^T$. Значит, касательная в точке A задается следующим уравнением:

$$\frac{x - x_0}{y_0} = \frac{y - y_0}{p}$$

Преобразуя это уравнение с учетом того, что $y_0^2 = 2px_0$, получим следующее уравнение:

$$y_0 y = p(x_0 + x)$$

5 Алгебраические структуры

5.1 Группы

Определение 5.1. Группой называется множество G с определенной на нем бинарной операцией умножения $\cdot: G \times G \to G$, удовлетворяющей следующим условиям:

- $\triangleright \forall a, b, c \in G : (ab)c = a(bc)$ (ассоциативность)
- $ightharpoonup \exists e \in G : \forall a \in G : ae = ea = a$ (существование нейтрального элемента)
- $\forall a \in G : \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$ (существование обратного элемента)

Утверждение 5.1. Нейтральный элемент е в группе (G,\cdot) единственен.

Доказательство. Пусть е и e' — нейтральные элементы в G. Тогда e = ee' = e'.

Утверждение 5.2. Обратный элемент к каждому элементу группы (G, \cdot) единственен.

Доказательство. Пусть для некоторых $b,c\in G$ выполнены равенства ba=ac=e. Тогда b=be=b(ac)=(ba)c=ec=c.

Утверждение 5.3. В группе (G,\cdot) можно «сокращать», то есть для любых $a,b,c\in G$ таких, что ab=ac, выполнено b=c.

Доказательство. Домножив обе части равенства ab = ac на a^{-1} , получим требуемое. \square

Определение 5.2. Группа называется (G, \cdot) абелевой, если умножение в ней коммутативно, то есть для любых $a, b \in G$ выполнено ab = ba.

Пример. Рассмотрим несколько примеров абелевых групп:

- \triangleright ($\mathbb{Z},+$), ($\mathbb{Q},+$), ($\mathbb{R},+$), ($\mathbb{C},+$) являются абелевыми группами, при этом ($\mathbb{N},+$) нет, поскольку в \mathbb{N} нет обратных элементов
- $\triangleright (M_{n \times k}, +), (V_i, +)$ являются абелевыми группами
- ho (\mathbb{Q}^*,\cdot) := ($\mathbb{Q}\setminus\{0\},\cdot$), (\mathbb{R}^*,\cdot) := ($\mathbb{R}\setminus\{0\},\cdot$), (\mathbb{C}^*,\cdot) := ($\mathbb{C}\setminus\{0\},\cdot$) являются абелевыми группами

Пример. Группа перестановок (S_n, \circ) , где $S_n = \{\sigma : \{1, \dots, n\} \to \{1, \dots, n\} : \sigma$ — биекция $\}$, является неабелевой при $n \geqslant 3$. Эта группа будет изучена подробнее далее в курсе.

Определение 5.3. Суммой множество А и В называется следующее множество:

$$A + B := \{a + b : a \in A, b \in B\}$$

Определение 5.4. Пусть $n \in \mathbb{N}$, $n \geqslant 2$. Числа $a, b \in \mathbb{Z}$ называются *сравнимыми по модулю* n, если $n \mid (a-b)$. Обозначение — $a \equiv_n b$. Сравнимость является отношением эквивалентности. Множество классов эквивалентности обозначается через \mathbb{Z}_n . Класс, которому принадлежит число $a \in \mathbb{Z}$, обозначается через \overline{a} .

Замечание. Для любого числа $a \in \mathbb{Z}$ выполнено равенство $\overline{a} = \{a + nk : k \in \mathbb{Z}\}$, поэтому класс \overline{a} также обозначают через $a + n\mathbb{Z}$.

Пример. Для любых классов $\bar{a}, \bar{b} \in \mathbb{Z}_n$ их *сумма* определяется как сумма множеств, то есть $\bar{a} + \bar{b} := \overline{a+b}$. Тогда $(\mathbb{Z}_n, +)$ является абелевой группой. Ассоциативность, коммутативность, существование нейтрального и обратного элементов в \mathbb{Z}_n выполнены как следствия соответствующих свойств сложения в \mathbb{Z} .

Определение 5.5. Пусть (G,\cdot) —группа. Ее *подгруппой* называется такое ее непустое подмножество $H\subset G$, что выполнены следующие условия:

- $\triangleright \ \forall a,b \in H : ab \in H$
- $\triangleright \forall a \in H : a^{-1} \in H$

Замечание. Имеет место эквивалентное определение подгруппы, согласно которому подгруппой группы (G,\cdot) называется такое ее непустое подмножество $H\subset G$, что (H,\cdot) тоже является группой.

5.2 Кольца

Определение 5.6. *Кольцом* называется множество R с определенными на нем бинарными операциями *сложения* $+: R \times R \to R$ и *умножения* $\cdot: R \times R \to R$, удовлетворяющими следующим условиям:

- $\triangleright (R, +)$ абелева группа, нейтральный элемент в которой обозначается через 0
- $ightharpoonup orall a, b, c \in R : (ab)c = a(bc)$ (ассоциативность умножения)
- $\forall a,b,c \in R: a(b+c) = ab + ac$ и (a+b)c = ac + bc (дистрибутивность умножения относительно сложения)
- $ightharpoonup \exists 1 \in R : \forall a \in R : a1 = 1a = a$ (существование нейтрального элемента относительно умножения)

Определение 5.7. Кольцо называется $(R, +, \cdot)$ *коммутативным*, если умножение в нем коммутативно, то есть для любых $a, b \in R$ выполнено ab = ba.

Утверждение 5.4. Пусть $(K, +, \cdot)$ — кольцо. Тогда для любого $a \in R$ выполнены равенства a0 = 0a = 0.

Доказательство. Докажем, что a0 = 0:

$$a0 + a0 = a(0 + 0) = a0 \Rightarrow a0 + a0 + (-a0) = a0 + (-a0) \Rightarrow a0 = 0$$

Аналогично доказывается, что 0a = 0.

Пример. Рассмотрим несколько примеров коммутативных колец:

- \triangleright ($\mathbb{Z},+,\cdot$), ($\mathbb{Q},+,\cdot$), ($\mathbb{R},+,\cdot$), ($\mathbb{C},+,\cdot$) являются коммутативными кольцами, при этом ($\mathbb{N},+,\cdot$) нет
- $\triangleright (\mathbb{Z}[\sqrt{2}], +, \cdot)$, где $\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$, является коммутативным кольцом
- ho ($\mathbb{R}[x_1,\ldots,x_n],+,\cdot$), где $\mathbb{R}[x_1,\ldots,x_n]:=\{P:P$ многочлен от переменных $x_1,\ldots,x_n\},$ является коммутативным кольцом

Пример. Кольцо $(M_n, +, \cdot)$ является некоммутативным кольцом при $n \ge 2$. Более того, некоммутативным кольцом также является $(M_n(R), +, \cdot)$, где $M_n(R)$ — множество матриц с элементами из произвольного кольца $(R, +, \cdot)$.

Утверждение 5.5. Определим для любых классов $\overline{a}, \overline{b} \in \mathbb{Z}_n$ их произведение как $\overline{a}\overline{b} := \overline{ab}$. Тогда $(\mathbb{Z}_n, +, \cdot)$ является коммутативным кольцом.

Доказательство. Проверим, что определение умножения корректно. Пусть $a' \in \overline{a}, b' \in \overline{b},$ тогда a' = a + kn, b' = b + ln для некоторых $k, l \in \mathbb{Z}$, и, следовательно:

$$a'b' = ab + n(la' + kb' + kln) \Rightarrow a'b' \in \overline{ab}$$

Ассоциативность и коммутативность умножения, дистрибутивность и существование нейтрального элемента относительно умножения в \mathbb{Z}_n выполнены как следствия соответствующих свойств в \mathbb{Z} .

Определение 5.8. Подкольцом кольца $(R, +, \cdot)$ называется такое его непустое подмножество $S \subset R$, что выполнены следующие условия:

- $\triangleright (S, +)$ подгруппа в (R, +)
- $\triangleright \ \forall a,b \in S : ab \in S$
- $\triangleright 1 \in S$

Замечание. Имеет место эквивалентное определение подкольца, согласно которому подкольцом кольца $(R,+,\cdot)$ называется такое его непустое подмножество $S\subset R$, что $(S,+,\cdot)$ тоже является кольцом.

5.3 Поля

Определение 5.9. Пусть $(R,+,\cdot)$ — кольцо. Элемент $a\in R$ называется *обратимым*, если существует $a^{-1}\in R$ такой, что $aa^{-1}=a^{-1}a=1$. Группой обратимых элементов кольца $(R,+,\cdot)$ называется множество R^* его обратимых элементов.

Утверждение 5.6. Пусть $(R, +, \cdot) -$ кольцо. Тогда (R^*, \cdot) является группой.

Доказательство. Множество R^* непусто, поскольку $1 \in R^*$. Умножение в R^* определено корректно, поскольку если $a,b \in R^*$, то и $ab \in R^*$, причем обратный к ab элемент имеет вид $(ab)^{-1} = b^{-1}a^{-1}$. Свойства группы, очевидно, выполнены:

$$\triangleright \forall a, b, c \in R^* : (ab)c = a(bc)$$

$$\triangleright \exists 1 \in R^* : \forall a \in R^* : a1 = 1a = a$$

$$\forall a \in R^* : \exists a^{-1} \in R^* : aa^{-1} = a^{-1}a = 1$$

Определение 5.10. Полем называется такое коммутативное кольцо $(F, +, \cdot)$, для которого выполнено равенство $F^* = F \setminus \{0\}$.

Пример. Рассмотрим несколько примеров полей:

$$\triangleright (\mathbb{Q},+,\cdot), (\mathbb{R},+,\cdot), (\mathbb{C},+,\cdot)$$
 являются полями

$$ightharpoons$$
 ($\mathbb{Q}[\sqrt{2}],+,\cdot$), где $\mathbb{Q}[\sqrt{2}]=\{a+b\sqrt{2}:a,b\in\mathbb{Q}\}$, является полем

Утверждение 5.7. Пусть $n \in \mathbb{N}$, $n \geqslant 2$. Тогда кольцо $(\mathbb{Z}_n, +, \cdot)$ является полем \Leftrightarrow число n является простым.

Доказательство.

- ⇒ Предположим, что n- составное число, то есть n=ab для некоторых $a,b\in\mathbb{N}$ таких, что a,b>1. Тогда $\overline{a},\overline{b}\neq\overline{0}$, при этом $\overline{a}\overline{b}=\overline{0}$. Покажем, что тогда $\overline{a}\notin\mathbb{Z}_n^*$. Пусть это не так, тогда, умножая обе части равенства $\overline{a}\overline{b}=\overline{0}$ на \overline{a}^{-1} , получим, что $\overline{b}=\overline{0}$, что неверно. Значит, \mathbb{Z}_n^* не является полем противоречие.
- \Leftarrow Пусть n- простое число. Зафиксируем произвольный класс $\overline{a} \in \mathbb{Z}_n \setminus \{\overline{0}\}$ и рассмотрим числа $a, 2a, \ldots, na$. Покажем, что все они дают разные остатки при делении на n. Действительно, если для некоторых $k, l \in \{1, \ldots, n\}$ выполнено $n \mid (k-l)a$, то либо $n \mid a$, что неверно, либо $n \mid (k-l)$, откуда k = l. Значит, существует $m \in \{1, \ldots, n\}$ такое, что $am \equiv_n 1$, то есть обратным к элементу \overline{a} является элемент \overline{m} .

Определение 5.11. *Подполем* поля $(F, +, \cdot)$ называется такое его непустое подмножество $S \subset F$, что выполнены следующие условия:

$$ightarrow$$
 $(S,+,\cdot)$ — подкольцо в $(F,+,\cdot)$

$$\, \triangleright \, \, \forall a \in S \backslash \{0\} : a^{-1} \in S$$

Замечание. Имеет место эквивалентное определение подполя, согласно которому подполем поля $(F, +, \cdot)$ называется такое его непустое подмножество $S \subset F$, что $(S, +, \cdot)$ тоже является полем.

Замечание. Далее в курсе при рассмотрении групп, колец и полей указание операций в них часто будет опускаться, если выбор операций понятен из контекста.

Определение 5.12. Изоморфизмом полей $(F_1,+,\cdot)$ и $(F_2,+,\cdot)$ называется такое биективное отображение $\varphi: F_1 \to F_2$, что для любых элементов $a,b \in F$ выполнены равенства $\varphi(a+b) = \varphi(a) + \varphi(b)$ и $\varphi(ab) = \varphi(a)\varphi(b)$. Поля F_1 и F_2 называются изоморфными, если между ними существует изоморфизм. Обозначение — $F_1 \cong F_2$.

Утверждение 5.8. Изоморфизм полей $\varphi: F_1 \to F_2$ обладает следующими свойствами:

$$\triangleright \varphi(0) = 0$$

$$\triangleright \varphi(1) = 1$$

$$\Rightarrow \forall a \in F_1 : \varphi(-a) = -\varphi(a)$$

$$\triangleright \forall a \in F_1^* : \varphi(a^{-1}) = (\varphi(a))^{-1}$$

Доказательство.

$$\triangleright \varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0) \Rightarrow \varphi(0) = 0$$

 \triangleright В силу биективности и предыдущего пункта, $\varphi(1) \neq 0$, то есть элемент $\varphi(1)$ обратим, поэтому $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1)\varphi(1) \Rightarrow \varphi(1) = 1$

$$\triangleright \varphi(0) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a) \Rightarrow \varphi(-a) = -\varphi(a)$$

$$\triangleright \varphi(1) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1}$$

Замечание. В любом поле F можно определить целое число n, отличное от 0 и 1:

- \triangleright Если n>0, то в поле F число n- это сумма n элементов 1
- \triangleright Если n<0, то в поле F число n—это сумма |n| элементов -1

Арифметические операции с целыми числами в F согласованы с обычными арифметическими операциями.

Определение 5.13. Пусть F — поле. Его xapaкmepucmukoŭ называется наименьшее число $k \in \mathbb{N}$ такое, что в поле F выполнено равенство k=0. Если такого k не существует, то характеристика поля считается равной 0. Обозначение — char F.

Утверждение 5.9. Пусть F- поле. Тогда если $\operatorname{char} F>0$, то $\operatorname{char} F-$ простое число.

Доказательство. Пусть char F=n. Если n=1, то элементы 0 и 1 в F совпадают, откуда $F^*=F$, что невозможно. Пусть теперь n—составное число, то есть n=ab для некоторых $a,b\in\mathbb{N}$ таких, что a,b>1. Тогда в поле F числа a,b отличны от нуля, но ab=0. Умножая обе части равенства на a^{-1} , получим, что b=0, — противоречие. Значит, возможен только случай простого числа n.

Определение 5.14. Поле называется *простым*, если оно не имеет подполей, отличных от него самого.

Теорема 5.1 (о простом подполе). Пусть F — поле. Тогда:

- 1. Если char F=p>0, то в F существует подполе, изоморфное \mathbb{Z}_p
- 2. Если char F=0, то в F существует подполе, изоморфное $\mathbb Q$

Доказательство.

1. Пусть char F = p. Определим K как множество всех целых чисел в F, и зададим отображение $\varphi : \mathbb{Z}_p \to K$ как $\varphi(\overline{a}) := a$ для каждого $\overline{a} \in \mathbb{Z}_p$. Покажем, что отображение определено корректно. Пусть $\overline{a} = \overline{a'}$ для некоторых $a, a' \in \mathbb{Z}$, тогда a' = a + kp для некоторого $k \in \mathbb{Z}$, откуда в поле F выполнены равенства a' = a + kp = a. Ясно, что определенное таким образом отображение φ сохраняет операции сложения и умножения.

Сюръективность отображения φ очевидна, проверим его инъективность. Пусть для некоторых $\overline{a}, \overline{b} \in Z_p$ выполнено $\varphi(\overline{a}) = \varphi(\overline{b})$. Без ограничения общности можно считать, что $a, b \in \{0, \dots, p-1\}$ и $a \geqslant b$, тогда $\varphi(\overline{a-b}) = \varphi(\overline{a}) - \varphi(\overline{b}) = 0$. Но это возможно только в том случае, когда $p \mid (a-b)$, откуда a = b.

Из доказанного также следует, что K — подполе в F. Например, замкнутость относительно взятия обратного элемента по умножению можно показать, используя свойства отображения φ . Пусть $a \in K \setminus \{0\}$, тогда обратным к нему является элемент $\varphi(\overline{a}^{-1})$:

$$\varphi(\overline{a}^{-1})a = \varphi(\overline{a}^{-1})\varphi(\overline{a}) = \varphi(\overline{1}) = 1$$

Проверка остальных свойств подполя позволяет убедиться, что K является полем, тогда отображение φ является изоморфизмом полей.

2. Пусть char F=0. Определим K как множество всех выражений вида $\frac{a}{b}=ab^{-1}$, где $a,b\in F$ —целые числа в поле $F,b\neq 0$, и зададим $\varphi:\mathbb{Q}\to K$ как $\varphi(\frac{a}{b}):=\frac{a}{b}$ для каждого $\frac{a}{b}\in\mathbb{Q}$. Покажем, что отображение определено корректно. Пусть $\frac{a}{b}=\frac{a'}{b'}$ для некоторых $a,a',b,b'\in\mathbb{Z},\,b,b'\neq 0$, тогда a'b=ab', откуда в поле F выполнены равенства $ab^{-1}=(aa')(a'b)^{-1}=(aa')(ab')^{-1}=a'b'^{-1}$. Ясно, что определенное таким образом отображение φ сохраняет операции сложения и умножения.

Сюръективность отображения φ очевидна, проверим его инъективность. Пусть для некоторых $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ выполнено $\varphi(\frac{a}{b}) = \varphi(\frac{c}{d})$, тогда $\varphi(\frac{ad-bc}{bd}) = \varphi(\frac{a}{b}) - \varphi(\frac{c}{d}) = 0$. Но это возможно только в том случае, когда ad-bc=0, откуда $\frac{a}{b}=\frac{c}{d}$.

Из доказанного также следует, что K — подполе в F. Например, замкнутость относительно взятия обратного элемента по умножению можно показать, используя свойства отображения φ . Пусть $\frac{a}{b} \in K \setminus \{0\}$, тогда $a \neq 0$, и обратным к элементу $\frac{a}{b}$ является элемент $\varphi(\frac{b}{a})$:

$$\frac{a}{b}\varphi\left(\frac{b}{a}\right) = \varphi\left(\frac{a}{b}\right)\varphi\left(\frac{b}{a}\right) = \varphi(1) = 1$$

Проверка остальных свойств подполя позволяет убедиться, что K является полем, тогда отображение φ является изоморфизмом полей.

6 Линейные пространства

6.1 Пространства и подпространства

Определение 6.1. Линейным пространством, или векторным пространством, над полем F называется абелева группа (V, +), на которой определено умножение на элементы $nons \cdot : F \times V \to V$, удовлетворяющее следующим условиям:

$$\, \triangleright \, \, \forall \alpha, \beta \in F : \forall \overline{v} \in V : (\alpha + \beta) \overline{v} = \alpha \overline{v} + \beta \overline{v}$$

$$\, \triangleright \, \, \forall \alpha \in F : \forall \overline{u}, \overline{v} \in V : \alpha(\overline{u} + \overline{v}) = \alpha \overline{u} + \alpha \overline{v}$$

$$\forall \alpha, \beta \in F : \forall \overline{v} \in V : (\alpha \beta) \overline{v} = \alpha(\beta \overline{v})$$

$$\, \triangleright \, \, \forall \overline{v} \in V : 1\overline{v} = \overline{v}$$

Элементы поля F называются cкалярами, элементы группы V- векторами.

Пример. Рассмотрим несколько примеров линейных пространств:

- ho $V_1,\,V_2,\,V_3$ являются линейными пространствами над $\mathbb R$
- $ightharpoonup F^n := M_{n imes 1}(F)$ является линейным пространством над полем F
- $\triangleright M_{n \times k}(F)$ является линейным пространством над полем F
- $\triangleright F[x]$ множество многочленов от переменной x с коэффициентами из F является линейным пространством над полем F
- \triangleright Поле F является линейным пространством над своим подполем K

Утверждение 6.1. Пусть V — линейное пространство над F. Тогда выполнены следующие свойства:

$$\forall \overline{v} \in V : 0\overline{v} = \overline{0}$$

$$\triangleright \ \forall \alpha \in F : \alpha \overline{0} = \overline{0}$$

$$\triangleright \ \forall \overline{v} \in V : (-1)\overline{v} = -\overline{v}$$

Доказательство.

$$\triangleright 0\overline{v} + 0\overline{v} = (0+0)\overline{v} = 0\overline{v} \Rightarrow 0\overline{v} = \overline{0}$$

$$\Rightarrow \alpha \overline{0} + \alpha \overline{0} = \alpha (\overline{0} + \overline{0}) = \alpha \overline{0} \Rightarrow \alpha \overline{0} = \overline{0}$$

$$(-1)\overline{v} + 1\overline{v} = (-1+1)\overline{v} = 0\overline{v} = \overline{0} \Rightarrow (-1)\overline{v} = -1\overline{v} = -\overline{v}$$

Определение 6.2. Подпространством линейного пространства V над полем F называется такое его непустое подмножество $U \subset V$, что выполнены следующие условия:

$$\triangleright (U, +)$$
 — подгруппа в $(V, +)$

$$\triangleright \ \forall \alpha \in F : \forall \overline{u} \in U : \alpha \overline{u} \in U$$

Обозначение — $U \leqslant V$.

Замечание. Имеет место эквивалентное определение подпространства, согласно которому подпространством линейного пространства V над полем F называется такое его непустое подмножество $U \subset V$, которое тоже является линейным пространством над F.

Пример. Рассмотрим несколько примеров подпространств в соответствующих линейных пространствах:

$$\triangleright U := \{(x_1, \dots, x_n)^T \in F^n : x_1 + \dots + x_n = 0\} \leqslant F^n$$

$$\triangleright U := \{A = (a_{ij}) \in M_{n \times k} : a_{11} = 0\} \leqslant M_{n \times k}$$

$$\, \triangleright \, \, U := \{P \in \mathbb{R}[x] : P(0) = 0\} \leqslant \mathbb{R}[x]$$

Определение 6.3. Пусть V — линейное пространство над $F, \overline{v_1}, \dots, \overline{v_k} \in V$. Линейной оболочкой векторов $\overline{v_1}, \dots, \overline{v_k}$ называется множество линейных комбинаций этих векторов:

$$\langle \overline{v_1}, \dots, \overline{v_k} \rangle := \left\{ \sum_{i=1}^k \alpha_i \overline{v_i} : \alpha_1, \dots, \alpha_k \in F \right\}$$

Замечание. Линейную оболочку можно определить и для бесконечного набора векторов. В этом случае следует брать всевозможные линейные комбинации конечного числа векторов из набора.

Утверждение 6.2. Пусть V — линейное пространство, $\overline{v_1}, \ldots, \overline{v_k} \in V$, $U := \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$. Тогда $U \leq V$, u, более того, U является наименьшим по включению подпространством в V, содержащим все векторы $\overline{v_1}, \ldots, \overline{v_k}$.

- \triangleright Множество U замкнуто относительно сложения и взятия обратного элемента п осложению, поэтому (U, +) подгруппа в (V, +)
- $\triangleright U$ замкнуто относительно умножения на скаляр

Наконец, если $W \leqslant V$ и $\overline{v_1}, \dots, \overline{v_k} \in W$, то и $U = \langle \overline{v_1}, \dots, \overline{v_k} \rangle \subset W$.

6.2 Базисы и изоморфизмы

Определение 6.4. Базисом в линейном пространстве V называется такая линейно независимая система $(\overline{v_1}, \ldots, \overline{v_n})$ векторов из V, что $\langle \overline{v_1}, \ldots, \overline{v_n} \rangle = V$.

Замечание. В пространстве $\mathbb{R}[x]$ конечного базиса нет. Действительно, если (P_1, \dots, P_n) — конечная система многочленов из $\mathbb{R}[x]$, то через нее не выражаются многочлены степени большей, чем $\max\{\deg P_1, \dots, \deg P_n\}$.

Определение 6.5. Линейное пространство V называется конечнопорожденным, если существуют векторы $\overline{v_1}, \ldots, \overline{v_n} \in V$ такие, что $\langle \overline{v_1}, \ldots, \overline{v_n} \rangle = V$.

Утверждение 6.3. Любое конечнопорожденное пространство V обладает базисом.

Доказательство. Выберем набор из минимального количества векторов $(\overline{u_1},\ldots,\overline{u_k})$ такой, что $\langle \overline{u_1},\ldots,\overline{u_k}\rangle=V$. Предположим, что он линейно зависим. Тогда без ограничения общности можно считать, что вектор $\overline{u_k}$ выражается через остальные векторы набора, то есть $\langle \overline{u_1},\ldots,\overline{u_k}\rangle\subset \langle \overline{u_1},\ldots,\overline{u_{k-1}}\rangle$. Тогда $\langle \overline{u_1},\ldots,\overline{u_{k-1}}\rangle=\langle \overline{u_1},\ldots,\overline{u_k}\rangle=V$ — противоречие с минимальностью.

Пример. Базисами в соответствующих линейных пространствах являются:

$$\triangleright \ \mathbf{B} \ F^n - \left\{ (1,0,\dots,0)^T, (0,1,\dots,0)^T, \dots, (0,0,\dots,1)^T \right\}$$

ho В $M_{n \times k} - \{E_{ij}: i, j \in \{1, \dots, n\}\}$, где E_{ij} — матрица из нулей с единственной единицей на позиции (i, j)

Замечание. Пусть e — базис в линейном пространстве V над полем F. Аналогично случаю V_n , для любого вектора $\overline{v} \in V$ определяется его координатный столбец в базисе e: если $\overline{v} = e\alpha$ для некоторого $\alpha \in F^n$, то $\overline{v} \leftrightarrow_e \alpha$. Координатный столбец каждого вектора существует и единственен, а сопоставление координат линейно.

Определение 6.6. Изоморфизмом линейных пространств U и V над полем F называется биективное отображение $\varphi: U \to V$, удовлетворяющее следующим условиям:

$$\, \triangleright \, \, \forall \overline{u_1}, \overline{u_2} \in U : \varphi(\overline{u_1} + \overline{u_2}) = \varphi(\overline{u_1}) + \varphi(\overline{u_2})$$

$$\triangleright \ \forall \alpha \in F : \forall \overline{u} \in U : \varphi(\alpha \overline{u}) = \alpha \varphi(\overline{u})$$

Пространства U и V называются uзомор ϕ нымu, если между ними существует изоморфизм. Обозначение — $U\cong V$.

Замечание. Если для некоторых линейных пространств U, V, W над одним выполнены соотношения $U \cong V$ и $V \cong W$, то $U \cong W$.

Утверждение 6.4. Пусть V — линейное пространство с базисом из n элементов. Тогда $V \cong F^n$.

Доказательство. Пусть $e=(\overline{e_1},\dots,\overline{e_n})$ — базис в пространстве V. Зададим отображение $\varphi:V\to F^n$ как $\varphi(\overline{v}):=\alpha$ для каждого $\overline{v}\in V$, где α — координатный столбец вектора \overline{v} в базисе e. Уже было доказано, что отображение φ линейно. Кроме того, φ инъективно, поскольку разным векторам соответствуют разные координатные столбцы, и сюръективно, поскольку каждый столбец $\alpha\in F^n$ может быть получен как соответствующая линейная комбинация базисных векторов, поэтому φ — биекция.

Следствие. Пусть V — линейное пространство над полем F, |F|=k, и базис в V состоит из n векторов. Тогда $|V|=|F^n|=k^n$.

Следствие. Пусть F — поле, |F| = k и char F = p > 0. Тогда $k = p^d$ для некоторого числа $d \in \mathbb{N}$.

Доказательство. Пусть $K \cong \mathbb{Z}_p$ — простое подполе в F, |K| = p, тогда F является линейным пространством над K. Поскольку F конечно, то оно является конечнопорожденным пространством, тогда в нем есть базис из d элементов для некоторого $d \in \mathbb{N}$, откуда $|F| = p^d$.

6.3 Системы линейных уравнений

Определение 6.7. Пусть $A = (a_{ij}) \in M_{k \times n}(F)$, $b = (b_i) \in F^n$. Системой линейных уравнений Ax = b называется следующая система:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k \end{cases}$$

Матрица A называется матрицей системы, матрица (A|b) — pасширенной матрицей системы.

Определение 6.8. Система линейных уравнений Ax = b называется:

- \triangleright Однородной, если b=0
- ▷ Соєместной, если множество ее решений непусто

Утверждение 6.5. Множество решений однородной системы Ax = 0 является линейным пространством.

Доказательство. Пусть V — множество решений. Оно непусто, поскольку $0 \in V$. Про-

верим замкнутость относительно сложения, взятия обратного элемента по сложению и умножения на скаляры:

- \triangleright Если $v_1, v_2 \in V$, то $A(v_1 + v_2) = Av_1 + Av_2 = 0$, то есть $v_1 + v_2 \in V$
- \triangleright Если $v \in V$, то для любого $\alpha \in F$ выполнено $A(\alpha v) = \alpha Av = 0$, то есть $\alpha v \in V$
- ightharpoonup Из предыдущего пункта следует, что если $v\in V$, то $-v=(-1)v\in V$

Замечание. Чтобы найти все решения однородной системы линейных уравнений, достаточно найти базис пространства решений.

Утверждение 6.6. Пусть Ax = b - coвместная система, $x_0 \in F^n - peшение$ системы, V - npocmpaнcmво решений однородной системы Ax = 0. Тогда множество решений системы Ax = b имеет вид $x_0 + V = \{x_0 + v : v \in V\}$.

Доказательство. Пусть U — множество решений системы Ax = b.

$$ightharpoonup$$
 Если $v\in V$, то $A(x_0+v)=Ax_0+Av=b$, откуда $x_0+v\in U$

$$\triangleright$$
 Если $u \in U$, то $A(u - x_0) = 0$, откуда $u - x_0 \in V$

Таким образом,
$$U = x_0 + V$$
.

Определение 6.9. Системы Ax = b и A'x = b' называются *эквивалентными*, если множества их решений совпадают.

Определение 6.10. Элементарными преобразованиями строк матрицы $A \in M_{n \times k}(F)$ называются следующие операции:

- ightharpoonup Прибавление к i-й строке j-й строки, умноженной на скаляр $\alpha \in F, i, j \in \{1, \dots, n\},$ $i \neq j$
- \triangleright Умножение i-й строки на скаляр $\lambda \in F^*, i \in \{1, \dots, n\}$
-
 Перестановка i-й и j-й строк местами,
 $i,j\in\{1,\ldots,n\},\,i\neq j$

Определение 6.11. Элементарными матрицами порядка $n \in \mathbb{N}$ называются матрицы, умножение слева на которые приводит к осуществлению соответствующего элементарного преобразования строк над матрицей с n строками:

$$\triangleright D_{ij}(\alpha) := E + \alpha E_{ij}, i, j \in \{1, \dots, n\}, i \neq j$$

$$\triangleright T_i(\lambda) := E + (\lambda - 1)E_{ii}, i \in \{1, \dots, n\}$$

$$P_{ij} := E - (E_{ii} + E_{jj}) + (E_{ij} + E_{ji}), i, j \in \{1, \dots, n\}, i \neq j$$

Замечание. Аналогично определяются элементарные преобразования столбцов. Они осуществляются умножением на элементарные матрицы справа.

Определение 6.12. Матрица $A \in M_n(F)$ называется *обратимой*, если существует матрица $A^{-1} \in M_n(F)$ такая, что $AA^{-1} = A^{-1}A = E$.

Утверждение 6.7. Элементарные матрицы любого порядка п обратимы.

Доказательство. Обратными к данным элементарным матрицам будет такие элементарные матрицы, которым соответствуют преобразования, обратные к данным, то есть такие, которые возвращают матрицу, к которой применено преобразование, в исходный вид:

$$\triangleright (D_{ij}(\alpha))^{-1} = D_{ij}(-\alpha)$$

$$\triangleright (T_i(\lambda))^{-1} = T_i(\lambda^{-1})$$

$$\triangleright (P_{ij})^{-1} = P_{ij}$$

Следствие. Рассмотрим расширенную матрицу (A|b) системы Ax=b. Тогда элементарные преобразования строк этой матрицы переводят ее в расширенную матрицу эквивалентной системы.

Доказательство. Пусть L — элементарная матрица, тогда L(A|b)=(LA|Lb). Зафиксируем произвольный столбец $x\in F^n$, тогда:

$$\triangleright$$
 Если $Ax = b$, то и $LAx = Lb$

$$\triangleright$$
 Если $LAx = Lb$, то $L^{-1}LAx = L^{-1}Lb \Leftrightarrow Ax = b$

Определение 6.13. *Главным* элементом строки называется ее первый ненулевой элемент. Нулевая строка не имеет главного элемента

Определение 6.14. Матрица $A \in M_{n \times k}(F)$ имеет *ступенчатый вид*, если номера главных элементов ее строк строго возрастают. При этом если в матрице есть нулевые строки, то они расположены внизу матрицы.

Теорема 6.1 (метод Гаусса). Любую матрицу $A \in M_{n \times k}(F)$ элементарными преобразованиями строк можно привести к ступенчатому виду.

Доказательство. Предъявим алгоритм приведения к ступенчатому виду:

- 1. Если A=0, то она уже имеет ступенчатый вид, тогда завершим процедуру.
- 2. Пусть $j \in \{1, \dots, k\}$ наименьший номер ненулевого столбца. Переставим строки так, чтобы a_{1j} стал ненулевым.
- 3. Для всех $i \in \{2, \ldots, n\}$ к i-й строке прибавим первую, умноженную на $-a_{ij}(a_{1j})^{-1}$. Тогда все элементы a_{2j}, \ldots, a_{nj} станут нулевыми.
- 4. Пусть матрица A была приведена к виду A'. Повторим шаги $(1), \ldots, (4)$ для подматрицы B, расположенной на пересечении строк с номерами $2, \ldots, n$ и столбцом с номерами $j+1,\ldots,k$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Определение 6.15. Алгоритм приведения матрицы $A \in M_{n \times k}(F)$ к ступенчатому виду называется *прямым ходом метода Гаусса*.

Определение 6.16. В системе Ax = b переменная x_i называется главной, если в матрице (A|b), приведенной к ступенчатому виду, есть строка, где i-й элемент является главным. В противном случае x_i переменная называется $c 6060 \partial n o u$.

Теорема 6.2. Пусть (A|b) — расширенная матрица системы Ax = b, приведенная к ступенчатому виду. Тогда система совместна \Leftrightarrow в (A|b) нет «ступеньки», начинающейся в столбце b.

Доказательство.

- \Rightarrow Пусть в (A|b) есть ступенька, начинающаяся в b. Тогда она соответствует уравнению $0x_1 + \ldots + 0x_n = b_i \neq 0$, поэтому система несовместна противоречие.
- \Leftarrow Присвоим свободным переменным произвольные значения. Тогда, двигаясь по матрице (A|b) снизу вверх, выразим каждую главную переменную через свободные и предыдущие главные, и получим частное решение системы.

Замечание. Каждому набору значений свободных переменных в совместной системе соответствует единственное решение, и его можно получить описанным выше способом.

Определение 6.17. Матрица $A \in M_{n \times k}(F)$ имеет *упрощенный вид*, если она является ступенчатой, и всякий ее столбец, содержащий главный элемент, состоит из одной единицы, соответствующей главному элементу, и нулей.

Теорема 6.3. Любую матрицу $A \in M_{n \times k}(F)$ элементарными преобразованиями строк можно привести к упрощенному виду.

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

- \triangleright Если A = 0, она уже имеет упрощенный вид.
- \triangleright Пусть $i \in \{1, ..., n\}$ наибольший номер ненулевой строки, a_{ik} главный элемент в ней. Умножим i-ю строку на $(a_{ik})^{-1}$, чтобы коэффициент a_{ik} стал равным 1.
- \triangleright Для всех $j \in \{1, \dots, i-1\}$ к j-й строке прибавим i-ю, умноженную на $-a_{jk}$. Тогда все элементы $a_{1k}, \dots, a_{(i-1)k}$ станут нулевыми.
- ightharpoonup Пусть матрица A была приведена к виду A'. Повторим шаги $(1), \ldots, (4)$ для подматрицы B, расположенной на пересечении строк $1, \ldots, i-1$ и столбцов $1, \ldots, k-1$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Определение 6.18. Алгоритм приведения ступенчатой матрицы $A \in M_{n \times k}(F)$ к упрощенному виду называется *обратным ходом метода Гаусса*.

Замечание. Перестановка столбцов матрицы системы Ax=b соответствует перестановке переменных. Такой перестановкой из упрощенного вида расширенной матрицы совместной системы Ax=b можно получить следующую матрицу:

$$\left(\frac{E \mid C \mid b}{0 \mid 0 \mid 0}\right) = \begin{pmatrix}
1 & \dots & 0 \mid \alpha_1 & \dots & \xi_1 \mid b_1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \dots & 1 \mid \alpha_m & \dots & \xi_m \mid b_m \\
0 & \dots & 0 \mid 0 & \dots & 0 \mid 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \dots & 0 \mid 0 & \dots & 0 \mid 0
\end{pmatrix}$$

Это позволяет непосредственно выразить главные переменные через свободные. Нулевые строки при этом не влияют на множество решений системы, и их можно отбросить.

Определение 6.19. Фундаментальной системой решений однородной системы Ax=0 называется базис пространства ее решений. Матрица, образованная столбцами фундаментальной системы решений, называется фундаментальной матрицей системы и обозначается через Φ .

Замечание. В силу уже доказанного, любое решение $v \in F^n$ системы Ax = b может быть представлено в виде $v = x_0 + \Phi \gamma$, где $x_0 \in F^n$ — частное решение системы Ax = b, $\Phi \in M_{n \times m}(F)$ — фундаментальная матрица однородной системы Ax = 0, $\gamma \in F^m$ — произвольный столбец коэффициентов.

Теорема 6.4. Пусть расширенная матрица системы Ax = b имеет упрощенный вид $A = (E_k|B|b)$. Тогда фундаментальная матрица Φ однородной системы Ax = 0 и частное решение x_0 системы Ax = b имеют следующий вид:

$$\Phi = \left(\frac{-B}{E_{n-k}}\right), \ x_0 = \left(\frac{b}{0}\right)$$

Доказательство. Покажем сначала, что каждый столбец матрицы Φ является решением системы Ax=0:

$$A\Phi = (E_k|B)\left(\frac{-B}{E_{n-k}}\right) = E_k(-B) + BE_{n-k} = 0$$

Теперь покажем, что столбцы матрицы Φ линейно независимы. Любая их линейная комбинация имеет следующий вид при некотором $\gamma \in F^k$:

$$\Phi\gamma = \left(\frac{-B\gamma}{E_{n-k}\gamma}\right) = \left(\frac{-B\gamma}{\gamma}\right)$$

Значит, что $\Phi \gamma = 0 \Leftrightarrow \gamma = 0$, что и означает требуемое. Наконец, пусть α — решение системы Ax = 0. Перепишем его в виде $\alpha = (\beta^T | \gamma^T)^T$, $\beta \in F^k$, $\gamma \in F^{n-k}$, и рассмотрим линейную комбинацию $\Phi \gamma$. Эта комбинация является решением системы Ax = 0, причем с теми же значениями свободных переменных, что и в α . Но главные переменные однозначно выражаются через свободные, поэтому $\Phi \gamma = \alpha$. Таким образом, матрица Φ является фундаментальной матрицей системы Ax = 0. Остается проверить, что x_0 является частным решением системы Ax = b:

$$Ax_0 = (E_k|B)\left(\frac{b}{0}\right) = E_k b + B0 = b$$

Замечание. Каждый из столбцов матрицы Φ получается следующим образом: одна из n-k свободных переменных полагается равной единице, остальные — нулю, и главные переменные выражаются через ненулевую свободную.

Замечание. На практике, при решении систем можно предварительно не переставлять столбцы в расширенной матрице упрощенного вида, поскольку перестановке переменных соответствует перестановка строк Φ и x_0 .

Утверждение 6.8. Пусть Ax = 0 — однородная система, в которой $A \in M_{k \times n}(F)$, n > k. Тогда у этой системы есть нетривиальное решение.

Доказательство. Приведем A к упрощенному виду A'. Главных переменных в полученной матрице не больше, чем k, значит, есть свободные переменные. Каждому набору свободных

переменных соответствует единственное решение, значит, выбирая нетривиальный набор свободных переменных, получим нетривиальное решение. \Box

6.4 Размерности и ранги

Теорема 6.5 (основная лемма о линейной зависимости). Пусть V — линейное пространство над полем F, u $V = \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$ для некоторых $\overline{v_1}, \ldots, \overline{v_k} \in V$. Тогда для любых векторов $\overline{u_1}, \ldots, \overline{u_n} \in V$, n > k, система $(\overline{u_1}, \ldots, \overline{u_n})$ линейно зависима.

Доказательство. Векторы $\overline{u_1}, \ldots, \overline{u_n}$ выражаются через $\overline{v_1}, \ldots, \overline{v_k}$, поскольку лежат в их линейной оболочке $\langle \overline{v_1}, \ldots, \overline{v_k} \rangle = V$. Следовательно, $(\overline{u_1}, \ldots, \overline{u_n}) = (\overline{v_1}, \ldots, \overline{v_k}) A$ для некоторой матрицы $A \in M_{k \times n}(F)$. Но n > k, поэтому существует такой ненулевой столбец $\gamma \in F^n$, что $A\gamma = 0$, тогда $(\overline{u_1}, \ldots, \overline{u_n})\gamma = (\overline{v_1}, \ldots, \overline{v_k})A\gamma = \overline{0}$. Значит, система линейно зависима.

Следствие. Пусть V- линейное пространство с базисом из n векторов. Тогда любая система из n+1 вектора из V линейно зависима.

 \mathcal{A} оказательство. Пусть $e=(\overline{e_1},\ldots,\overline{e_n})$ — базис в V, тогда $V=\langle \overline{e_1},\ldots,\overline{e_n}\rangle$. Поэтому любая система из n+1 вектора из V линейно зависима.

Следствие. Любые два базиса в конечнопорожденном линейном пространстве V равномошны.

Доказательство. Пусть e_1, e_2 — базисы в V. Если без ограничения общности $|e_1| < |e_2|$, то $e_2 \subset \langle e_1 \rangle$ и e_2 состоит из большего числа векторов, чем e_1 , поэтому система e_2 линейно зависима — противоречие.

Замечание. Для пространств, не являющихся конечнопорожденными, утверждение о равномощности базисов также справедливо.

Определение 6.20. Пусть V — конечнопорожденное линейное пространство. Его *размерностью* называется количество векторов в любом его базисе. Обозначение — $\dim V$.

Теорема 6.6. Пусть U и V — конечнопорожденные линейные пространства над полем F. Тогда $U \cong V \Leftrightarrow \dim U = \dim V$.

Доказательство.

 \Rightarrow Пусть $(\overline{e_1},\ldots,\overline{e_n})$ — базис в U. Рассмотрим изоморфизм $\varphi:U\to V$ и покажем, что система $(\varphi(\overline{e_1}),\ldots,\varphi(\overline{e_n}))$ образует базис в V. Проверим, что она линейно независима. Действительно, для любого $\gamma\in F^n,\,\gamma\neq\overline{0}$, выполнено следующее:

$$(\varphi(\overline{e_1}),\ldots,\varphi(\overline{e_n}))\gamma=\varphi((\overline{e_1},\ldots,\overline{e_n})\gamma)\neq\varphi(\overline{0})=\overline{0}$$

Кроме того, для любого вектора $\overline{v} \in V$ существует $\overline{u} \in U$ такой, что $\varphi(\overline{u}) = \overline{v}$, и существуют $\alpha_1, \ldots, \alpha_n \in F$ такие, что $\overline{u} = \sum_{i=1}^n \alpha_i \overline{e_i}$, тогда:

$$\overline{v} = \varphi(\overline{u}) = \varphi\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i \varphi(\overline{e_i})$$

Таким образом, $(\varphi(\overline{e_1}),\dots,\varphi(\overline{e_n}))$ — базис в V, поэтому $\dim U=\dim V=n.$

 \Leftarrow Пусть $n:=\dim U=\dim V$, тогда $U\cong F^n$ и $V\cong F^n$, откуда $U\cong V$.

Утверждение 6.9. Пусть V — линейное пространство, $\dim V = n$. Тогда:

- 1. Если $V = \langle \overline{v_1}, \dots, \overline{v_n} \rangle$, то система $(\overline{v_1}, \dots, \overline{v_n})$ является базисом
- 2. Если система $(\overline{v_1}, \ldots, \overline{v_n})$ линейно независима, то она является базисом

Доказательство.

- 1. Пусть $(\overline{v_1}, \dots, \overline{v_n})$ не является базисом. Тогда она линейно зависима, и без ограничения общности вектор $\overline{v_n}$ выражается через $(\overline{v_1}, \dots, \overline{v_{n-1}})$. Значит, $V = \langle \overline{v_1}, \dots, \overline{v_{n-1}} \rangle$, но тогда в V нет линейно независимых систем из n векторов противоречие с тем, что $\dim V = n$.
- 2. Предположим $(\overline{v_1}, \dots, \overline{v_n})$ не является базисом. Следовательно, она выражает не все векторы пространства V, то есть существует $\overline{v} \in V$ такой, что $\overline{v} \notin \langle \overline{v_1}, \dots, \overline{v_n} \rangle$. Но тогда система $(\overline{v_1}, \dots, \overline{v_n}, \overline{v})$ тоже линейно независима противоречие с тем, что $\dim V = n$.

Утверждение 6.10. Пусть V — конечнопорожденное линейное пространство, $U \leqslant V$. Тогда пространство U — тоже конечнопорожденное, причем $\dim U \leqslant \dim V$.

Доказательство. Будем выбирать из U векторы $\overline{u_1}, \overline{u_2}, \dots$ так, чтобы система $(\overline{u_1}, \overline{u_2}, \dots)$ оставалась линейно независимой. Процесс закончится не позднее, чем за $n := \dim V$ шагов, поскольку в V нет линейно независимой системы из n+1 вектора. Пусть полученная система $-(\overline{u_1}, \dots, \overline{u_k}), k \leqslant n$. Она линейно независима по построению, и для любого $\overline{u} \in U$ система $(\overline{u_1}, \dots, \overline{u_k}, \overline{u})$ уже линейно зависима, откуда $U = \langle \overline{u_1}, \dots, \overline{u_k} \rangle$. Значит, полученная система образует базис в U.

Замечание. Если в доказательстве выше k=n, то $(\overline{u_1},\ldots,\overline{u_n})$ —линейно независимая система из n векторов в V, поэтому она также является базисом в V, то есть U=V. Значит, если $U\neq V,$ то $\dim U<\dim V.$

Утверждение 6.11. Пусть V — конечнопорожденное линейное пространство размерности n, векторы $\overline{v_1}, \ldots, \overline{v_k} \in V$, k < n, образуют линейно независимую систему. Тогда систему $(\overline{v_1}, \ldots, \overline{v_k})$ можно дополнить до базиса в V.

Доказательство. Выберем вектор $\overline{v_{k+1}} \in V$ такой, что $\overline{v_{k+1}} \not\in \langle \overline{v_1}, \dots, \overline{v_k} \rangle$, тогда система $(\overline{v_1}, \dots, \overline{v_{k+1}})$ остается линейно независимой. Затем аналогично выберем вектор $\overline{v_{k+2}} \in V$ такой, что $\overline{v_{k+2}} \not\in \langle \overline{v_1}, \dots, \overline{v_{k+1}} \rangle$, и так далее. Процесс будет продолжаться, пока не будет получена система $(\overline{v_1}, \dots, \overline{v_n})$, которая и является базисом. Он не может остановиться раньше, потому что пока в системе менее n векторов, она не выражает все пространство V, и не может продолжиться дольше, потому что в V нет линейно независимой системы из n+1 вектора.

Определение 6.21. Пусть V- конечнопорожденное линейное пространство, $X\subset V.$ *Рангом* системы X называется наибольший размер линейно независимой подсистемы в X. Обозначение — $\operatorname{rk} X$.

Утверждение 6.12. Пусть V — конечнопорожденное линейное пространство, $X \subset V$. Тогда $\operatorname{rk} X = \dim \langle X \rangle$.

Доказательство. Пусть $k := \operatorname{rk} X$ и $(\overline{v_1}, \ldots, \overline{v_k})$ — линейно независимая система в X. Тогда для любого $\overline{v} \in X$ система $(\overline{v_1}, \ldots, \overline{v_k}, \overline{v})$ линейно зависима, откуда $X \subset \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$. Но тогда $\langle X \rangle \subset \langle \overline{v_1}, \ldots, \overline{v_k} \rangle \subset \langle X \rangle$, откуда $\langle X \rangle = \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$. Значит, $(\overline{v_1}, \ldots, \overline{v_k})$ — базис в $\langle X \rangle$, поэтому $\dim \langle X \rangle = k = \operatorname{rk} X$.

Замечание. Аналогично случаю V_n , для базисов e и e' векторного пространства V над полем F определяется матрица перехода от e к e', то есть такая матрица $S \in M_n(F)$, что e' = eS. Если для некоторого вектора $\overline{v} \in V$ выполнено $\overline{v} \leftrightarrow_{e'} \alpha'$ и $\overline{v'} \leftrightarrow_{e'} \alpha'$, то $\alpha = S\alpha'$.

Утверждение 6.13. Пусть V — линейное пространство над полем F, e, e' — базисы в V. Тогда матрица перехода $S \in M_n(F)$ от e κ e' обратима.

Доказательство. Поскольку возможен также обратный переход от e' к e, то существует матрица $T \in M_n(F)$ такая, что e = e'T = e(ST), откуда ST = E в силу единственности координатных столбцов векторов из в базисе e. Аналогично, e' = eS = e'(TS), откуда ST = TS = E.

Утверждение 6.14. Пусть V — линейное пространство над полем F, $n := \dim V$, система e — базис в V, $S \in M_n(F)$ — обратимая матрица. Тогда система e' = eS — тоже базис в V.

Доказательство. $e' = eS \Leftrightarrow e = e'S^{-1}$, поэтому $e \subset \langle e' \rangle$, откуда $V \subset \langle e' \rangle$. Но в системе e' ровно n векторов, поэтому она образует базис в V.

Определение 6.22. Пусть $A \in M_{n \times k}(F)$.

- \triangleright Строчным рангом матрицы A называется ранг $\operatorname{rk}_r A$ системы ее строк
- \triangleright Столбиовым рангом матрицы A называется ранг $\operatorname{rk}_c A$ системы ее столбцов

Утверждение 6.15. Для любых матриц $A \in M_{n \times k}(F)$ и $B \in M_{k \times m}(F)$ выполнены неравенства $\operatorname{rk}_c AB \leqslant \operatorname{rk}_c A$ и $\operatorname{rk}_r AB \leqslant \operatorname{rk}_r B$.

Доказательство. Докажем первое неравенство, поскольку второе неравенство доказывается аналогично. Пусть U- линейная оболочка столбцов матрицы $A,\ V-$ линейная оболочка столбцов матрицы AB. Уже было доказано, что столбцы матрицы AB являются линейными комбинациями столбцов матрицы A, поэтому $V\leqslant U$. Следовательно, $\mathrm{rk}_r(AB)=\dim V\leqslant \dim U=\mathrm{rk}_r\,A$.

Теорема 6.7 (о ранге матрицы). Для любой матрицы $A \in M_{n \times k}(F)$ выполнено следующее равенство:

$$\operatorname{rk}_r A = \operatorname{rk}_c A$$

Доказательство. Пусть $r := rk_cA$, тогда столбцы матрицы A выражаются через некоторые r столбцов. Составим из этих r столбцов матрицу B, тогда каждый столбец матрицы A имеет вид $B\gamma$ для некоторого $\gamma \in F^r$. Следовательно, A можно представить в виде $B(\gamma_1|\dots|\gamma_k)$. По уже доказанному, $\operatorname{rk}_r A \leqslant \operatorname{rk}_r(\gamma_1|\dots|\gamma_k) \leqslant r$, поскольку в матрице $(\gamma_1|\dots|\gamma_k)$ ровно r строк. Аналогично показывается, что $\operatorname{rk}_c A \leqslant \operatorname{rk}_r A$. Таким образом, $\operatorname{rk}_r A = \operatorname{rk}_c A$.

Определение 6.23. Рангом матрицы $A \in M_{n \times k}(F)$ называется ее строчный или столбцовый ранг. Обозначение — rk A.

Утверждение 6.16. Пусть $A \in M_{n \times k}(F)$, $B \in M_{k \times m}(F)$, причем столбцы матрицы A линейно независимы. Тогда $\operatorname{rk} AB = \operatorname{rk} B$.

Доказательство. Пусть $r := \operatorname{rk} B, \gamma_1, \ldots, \gamma_r$ —столбцы матрицы B, образующие линейно независимую систему. Тогда $A\gamma_1, \ldots, A\gamma_r$ —столбцы с теми же номерами в матрице AB. Докажем, что они тоже образуют линейно независимую систему. Действительно, для любого нетривиального набора коэффициентов $\alpha_1, \ldots, \alpha_n$ в силу линейной независимости столбцов A и системы $(\gamma_1, \ldots, \gamma_r)$ имеем:

$$\sum_{i=1}^{r} \alpha_i A \gamma_i = A \left(\sum_{i=1}^{r} \alpha_i \gamma_i \right) \neq A0 = 0$$

Таким образом, система $(A\gamma_1, \dots, A\gamma_r)$ линейно независима, откуда rk $AB \geqslant \operatorname{rk} B$, тогда, по уже доказанному, rk $AB = \operatorname{rk} B$.

Утверждение 6.17. Пусть V — линейное пространство над полем F, e — базис в V, $\overline{v_1}, \ldots, \overline{v_m} \in V$, u ($\overline{v_1}, \ldots, \overline{v_m}$) = eA, $A \in M_{n \times m}(F)$. Тогда $\operatorname{rk}(\overline{v_1}, \ldots, \overline{v_m}) = \operatorname{rk} A$.

Доказательство. Изоморфизм $\varphi: V \to F^n$, сопоставляющий векторам из V их координатные столбцы в базисе e, переводит линейно независимые системы в линейно независимые, поэтому $\operatorname{rk}(\overline{v_1}, \ldots, \overline{v_m}) \leqslant \operatorname{rk} A$. Аналогично, $\operatorname{rk}(\overline{v_1}, \ldots, \overline{v_m}) \geqslant \operatorname{rk} A$.

Теорема 6.8 (о базисном миноре). Пусть $A \in M_{n \times k}(F)$, $\operatorname{rk} A = r$. Тогда в A найдется подматрица размера $r \times r$ ранга r. Более того, если выбрать линейно независимую систему из r столбцов матрицы A и линейно независимую систему из r столбцов матрицы A, то искомая матрица будет расположена на их пересечении.

Доказательство. Докажем сразу вторую часть утверждения. Без ограничения общности можно считать, что подматрица M на пересечении r линейно независимых строк и столбцов расположена в левом верхнем углу матрицы A. Пусть $R \in M_{r \times k}$ —подматрица из первых r строк A, $C \in M_{n \times r}$ —подматрица из первых r столбцов A.

Столбцы матрицы A выражаются через столбцы матрицы C, поэтому A = CB для некоторой $B \in M_{r \times n}(F)$. Но тогда столбцы матрицы R выражаются через столбцы матрицы M с теми же коэффициентами, то есть R = MB. Кроме того, строки матрицы A выражаются через строки матрицы R, то есть A = SR для некоторой $S \in M_{n \times r}(F)$. Таким образом, A = SMB, тогда $r = \operatorname{rk} A \leqslant \operatorname{rk} M \leqslant r$, откуда $\operatorname{rk} M = r$.

Утверждение 6.18. Пусть $A \in M_{n \times k}(F)$, $u \ D \in M_n(F)$ — обратимая матрица. Тогда $\operatorname{rk}(DA) = \operatorname{rk}(A)$.

Доказательство. Выполнены неравенства $rkA \geqslant \operatorname{rk}(DA) \geqslant \operatorname{rk}(D^{-1}DA) = \operatorname{rk} A$.

Утверждение 6.19. Пусть $A \in M_{n \times k}(F)$, и $D \in M_n(F)$ — обратимая матрица. Тогда столбцы матрицы A c некоторыми номерами линейно зависимы \Leftrightarrow столбцы матрицы DA c теми же номерами линейно зависимы.

Доказательство. Пусть $\gamma \in F^k$, тогда:

$$A\gamma = 0 \Rightarrow DA\gamma = 0$$
$$DA\gamma = 0 \Rightarrow D^{-1}DA\gamma = 0 \Rightarrow A\gamma = 0$$

Значит, столбцы с одинаковыми номерами в A и DA образуют или не образуют линейно зависимую систему одновременно. \square

Следствие. При элементарных преобразованиях строк матрицы $A \in M_{n \times k}(F)$ не меняется ее ранг и линейная зависимость столбцов.

Утверждение 6.20. Ранг ступенчатой матрицы $A \in M_{n \times k}(F)$ равен числу ступеней.

Доказательство. Если в A всего r ступеней, то в ней всего r ненулевых строк, значит, $\operatorname{rk} A \leqslant r$. С другой стороны, эти строки образуют линейно независимую систему. Предположим, что это не так, тогда существует их нетривиальная линейная комбинация с коэффициентами $\alpha_1, \ldots, \alpha_r \in F$, равная нулю:

$$\sum_{i=1}^{r} \alpha_i a_{i*} = 0$$

Пусть j — наименьший индекс такой, что $\alpha_j \neq 0$, k — индекс главного элемента в строке a_{j*} , тогда на k-й позиции в данной линейной комбинации стоит элемент $\alpha_j a_{jk} \neq 0$. Получено противоречие. Значит, система из этих r строк линейно независима, и $\mathrm{rk}\,A = r$. \square

Следствие. Для нахождения ранга матрицы $A \in M_{n \times k}(F)$ следует привести ее к ступенчатому виду, и число ступеней в полученной матрице будет равно искомому рангу.

Теорема 6.9. Пусть $A \in M_{n \times k}(F)$, и U-пространство решений однородной системы Ax = 0. Тогда $\dim U = n - \operatorname{rk} A$.

Доказательство. Приведем матрицу A к упрощенному виду A', тогда $\mathrm{rk}\,A' = \mathrm{rk}\,A = r$. В полученной матрице r ненулевых строк, поэтому в системе r главных переменных и n-r свободных переменных. Тогда фундаментальная матрица Φ данной системы состоит из n-r столбцов, откуда $\dim U = n-r = n-\mathrm{rk}\,A$.

Теорема 6.10 (Кронекера-Капелли). $Cucmema\ Ax = b\ coemecmna \Leftrightarrow \operatorname{rk} A = \operatorname{rk}(A|b).$

Доказательство. Приведем расширенную матрицу системы (A|b) к упрощенному виду (A'|b'). Поскольку перестановки столбцов не происходит, то матрица A' — это упрощенный вид матрицы A. Тогда система совместна \Leftrightarrow в (A'|b') нет ступеньки, начинающейся в столбце b', \Leftrightarrow у A' и (A'|b') одно и то же число ступенек \Leftrightarrow rk $A = \operatorname{rk}(A|b)$.

Определение 6.24. Матрица $A \in M_n(F)$ называется невырожеденной, если $\operatorname{rk} A = n$.

Теорема 6.11. Пусть $A \in M_n(F)$. Тогда следующие условия эквивалентны:

- 1. Матрица А невырожденна
- $2. \ \ Mampuua \ A$ элементарными преобразованиями строк приводится к E
- 3. Матрица А является произведением элементарных матриц
- 4. Матрица А обратима
- 5. Матрица A обратима слева, то есть существует матрица $B \in M_n(F)$ такая, что BA = E, или справа

Доказательство.

 $ightarrow (1 \Rightarrow 2)$ Приведем A к упрощенному виду A'. Так как $\operatorname{rk} A' = \operatorname{rk} A = n$, то A' = E.

 \triangleright (2 \Rightarrow 3) Пусть последовательности преобразований, приводящих A к E, соответствует последовательность элементарных матриц $M_1, \ldots, M_k \in M_n(F)$, тогда:

$$M_k \dots M_1 A = E \Rightarrow A = M_1^{-1} \dots M_k^{-1}$$

- $\triangleright (3 \Rightarrow 4)$ Если $A = M_1^{-1} \dots M_k^{-1}$, то A обратима, причем $A^{-1} = M_k \dots M_1$.
- \triangleright (4 \Rightarrow 5) Если A обратима, то, в частности, A обратима слева или справа.
- \triangleright (5 \Rightarrow 1) Пусть без ограничения общности A обратима слева, тогда существует матрица $B \in M_n(F)$ такая, что BA = E. Тогда $n = \operatorname{rk} E = \operatorname{rk} BA \leqslant \operatorname{rk} A$, откуда $\operatorname{rk} A = n$.

Следствие. Пусть A — невырожденная матрица, и матрица (A|E) приводится к упрощенному виду (E|C). Тогда матрица C является обратной к A.

Доказательство. Пусть последовательности преобразований, приводящих (A|E) к (E|C), соответствует последовательность элементарных матриц $M_1, \ldots, M_k \in M_n(F)$, то есть $M_k \ldots M_1(A|E) = (E|C)$. Тогда:

$$M_k \dots M_1(A|E) = (M_k \dots M_1 A | M_k \dots M_1 E) = (M_k \dots M_1 A | M_k \dots M_1)$$

Следовательно,
$$M_k \dots M_1 = C$$
 и $CA = E$.

Замечание. В общем случае, для матрицы $A \in M_{n \times k}(F)$ при $n \neq k$ не существует матрицы $B \in M_{k \times n}(F)$ такой, что AB = BA = E. Действительно, $\operatorname{rk} AB, \operatorname{rk} BA \leqslant \min\{n, k\}$, поэтому ни один из рангов не может равняться $\operatorname{rk} E_{\max\{n, k\}} = \max\{n, k\}$.

6.5 Сумма и пересечение подпространств

Утверждение 6.21. Пусть V — линейное пространство, $U_1, U_2 \leqslant V$. Тогда $U_1 \cap U_2 \leqslant V$. Доказательство.

- $ightharpoonup U_1 \cap U_2
 eq \varnothing$, поскольку $\overline{0} \in U_1 \cap U_2$
- ightarrow Если $\overline{u},\overline{v}\in U_1\cap U_2$, то $\overline{u}\in U_1,U_2$ и $\overline{v}\in U_1,U_2$, откуда $\overline{u}+\overline{v}\in U_1,U_2$
- ightharpoonup Если $\overline{u}\in U_1\cap U_2$, то $\overline{u}\in U_1,U_2$, откуда $\forall \alpha\in F: \alpha\overline{u}\in U_1,U_2$

Определение 6.25. Пусть V — линейное пространство, $U_1, U_2 \leqslant V$. Суммой подпространств U_1, U_2 называется следующее множество:

$$U_1 + U_2 := \{ \overline{u_1} + \overline{u_2} : \overline{u_1} \in U_1, \overline{u_2} \in U_2 \}$$

Аналогично определяется сумма k подпространств $U_1, \ldots, U_k \leqslant V$.

Утверждение 6.22. Пусть V — линейное пространство над полем F, $U_1, \ldots, U_k \leqslant V$. Тогда $U_1 + \cdots + U_k \leqslant V$.

Доказательство. Сначала докажем справедливость утверждения для $U_1 + U_2$:

$$\triangleright U_1 + U_2 \neq \emptyset$$
, поскольку $\overline{0} \in U_1 + U_2$

- ightharpoonup Если $\overline{u_1} + \overline{u_2}, \overline{v_1} + \overline{v_2} \in U_1 + U_2$, то $\overline{u_1} + \overline{u_2} + \overline{v_1} + \overline{v_2} = (\overline{u_1} + \overline{v_1}) + (\overline{u_2} + \overline{v_2}) \in U_1 + U_2$
- ightharpoonup Если $\overline{u_1} + \overline{u_2} \in U_1 + U_2$, то $\forall \alpha \in F : \alpha(\overline{u_1} + \overline{u_2}) = \alpha \overline{u_1} + \alpha \overline{u_2} \in U_1 + U_2$

Чтобы обобщить утверждение на $U_1, \ldots, U_k \leq V$, заметим, что сложение подпространств ассоциативно в силу ассоциативности сложения в V. Тогда, по индукции, сумма любого числа подпространств образует подпространство в V.

Замечание. Определить сумму $U_1 + \cdots + U_k$ можно и другим эквивалентным способом:

$$U_1 + \cdots + U_k = \langle U_1 \cup \cdots \cup U_k \rangle$$

Утверждение 6.23. Пусть V — линейное пространство над полем F, $U_1, \ldots, U_k \leqslant V$, причем $U_1 = \langle A_1 \rangle, \ldots, U_k = \langle A_k \rangle$. Тогда:

$$U_1 + \ldots + U_k = \langle A_1 \cup \cdots \cup A_k \rangle$$

Доказательство.

- \subset Если $\overline{u_1} + \cdots + \overline{u_k} \in U_1 + \ldots + U_k$, то для каждого $i \in \{1, \ldots, k\}$ вектор $\overline{u_i}$ выражается через A_i , тогда $\overline{u_1} + \cdots + \overline{u_k} \in \langle A_1 \cup \cdots \cup A_k \rangle$
- \supset Для каждого $i \in \{1, ..., k\}$ выполнено $A_i \subset U_i \subset U_1 + \cdots + U_k$, поэтому имеет место включение $A_1 \cup \cdots \cup A_k \subset U_1 + \cdots + U_k$, но сумма подпространств— это линейное пространство, тогда $\langle A_1 \cup \cdots \cup A_k \rangle \subset U_1 + \cdots + U_k$

Следствие. Пусть V — линейное пространство над полем $F, U_1, \ldots, U_k \leqslant V$. Тогда:

$$\dim (U_1 + \cdots + U_k) \leq \dim U_1 + \cdots + \dim U_k$$

Доказательство. Возьмем в качестве A_1, \ldots, A_k из утверждения выше базисы в соответствующих подпространствах. Тогда подпространство $U_1 + \cdots + U_k$ порождено системой из не более, чем $\dim U_1 + \cdots + \dim U_k$ векторов.

Замечание. Если для подпространств $U_1, U_2, U_3 \leq V$ в пространстве V выполнено равенство $U_1 + U_2 = U_1 + U_3$, то необязательно $U_2 = U_3$. Например, любые два пересекающиеся прямые в плоскости V_2 в сумме дают всю плоскость V_2 .

Определение 6.26. Пусть V — линейное пространство, $U_1, \ldots, U_k \leqslant V$. Сумма подпространств $U := U_1 + \cdots + U_k$ называется $npsmo\ddot{u}$, если для любого вектора $\overline{u} \in U$ существует единственный набор векторов $\overline{u_1} \in U_1, \ldots, \overline{u_k} \in U_k$ такой, что $\overline{u} = \overline{u_1} + \cdots + \overline{u_k}$. Обозначение — $U = U_1 \oplus \cdots \oplus U_k$.

Утверждение 6.24. Пусть V — линейное пространство, $U_1, \ldots, U_k \leqslant V$. Тогда сумма $U_1 + \cdots + U_k$ — прямая \Leftrightarrow существует единственный набор векторов $\overline{u_1} \in U_1, \ldots, \overline{u_k} \in U_k$ такой, что $\overline{u_1} + \cdots + \overline{u_k} = \overline{0}$.

Доказательство.

 \Rightarrow По определению прямой суммы, вектор $\overline{0}$ имеет единственное представление в виде суммы векторов из U_1, \dots, U_k , и оно имеет вид $\overline{0} = \overline{0} + \dots + \overline{0}$.

 \Leftarrow Пусть для вектора $\overline{u} \in U$ и наборов $\overline{u_1} \in U_1, \dots, \overline{u_k} \in U_k$ и $\overline{w_1} \in U_1, \dots, \overline{w_k} \in U_k$ выполнены следующие равенства:

$$\overline{u} = \overline{u_1} + \cdots + \overline{u_k} = \overline{w_1} + \cdots + \overline{w_k}$$

Вычитая третью часть равенства из выше из второй, получим:

$$\overline{0} = (\overline{u_1} - \overline{w_1}) + \dots + (\overline{u_k} - \overline{w_k})$$

Но вектор $\overline{0}$ имеет единственное представление в виде суммы векторов из U_1, \ldots, U_k , поэтому $\overline{u_1} = \overline{w_1}, \ldots, \overline{u_k} = \overline{w_k}$.

Теорема 6.12. Пусть V — линейное пространство над F, $U_1, \ldots, U_k \leqslant V$. Тогда сумма $U_1 + \cdots + U_k$ — прямая \Leftrightarrow для любого $i \in \{1, \ldots, k\}$ выполнено следующее равенство:

$$U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = {\overline{0}}$$

Доказательство.

 \Rightarrow Предположим, что существует $i \in \{1, \dots, k\}$ и вектор $\overline{u_i} \in U_i$, $\overline{u_i} \neq \overline{0}$, такой, что $\overline{u_i} = \overline{u_1} + \dots + \overline{u_{i-1}} + \overline{u_{i+1}} + \dots + \overline{u_k} \in U_1 + \dots + U_{i-1} + U_{i+1} + U_k$. Но тогда выполнено следующее:

$$\overline{0} = \overline{u_1} + \dots + \overline{u_{i-1}} - \overline{u_i} + \overline{u_{i+1}} + \dots + \overline{u_k}$$

Получено нетривиальное разложение нуля — противоречие.

 \Leftarrow Предположим, что сумма не прямая, то есть существует нетривиальное разложение нуля $\overline{u_1} + \cdots + \overline{u_k} = \overline{0}$. Тогда существует $i \in \{1, \dots, k\}$ такое, что $\overline{u_i} \neq 0$, причем выполнено следующее:

$$\overline{u_i} = -(\overline{u_1} + \dots + \overline{u_{i-1}} + \overline{u_{i+1}} + \dots + \overline{u_k}) \in U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k)$$

Получено противоречие.

Замечание. Можно по индукции показать, что вместо набора условий из теоремы выше достаточно проверять, что для любого $i \in \{1, \dots, k-1\}$ выполнено следующее равенство:

$$U_{i+1} \cap (U_1 + \cdots + U_i) = \{\overline{0}\}\$$

Замечание. Если для подпространств $U_1, U_2, U_3 \leq V$ в пространстве V выполнено равенство $U_1 \oplus U_2 = U_1 \oplus U_3$, то тоже необязательно $U_2 = U_3$. Контрпример аналогичен случаю обычной суммы.

Теорема 6.13. Пусть V — линейное пространство, $U_1, \ldots, U_k \leqslant V$. Тогда следующие условия эквивалентны:

- 1. Сумма $U := U_1 + \dots U_k n$ рямая
- 2. $\dim (U_1 + \cdots + U_k) = \dim U_1 + \cdots + \dim U_k$
- 3. Для любого набора базисов e_1, \ldots, e_k в U_1, \ldots, U_k система (e_1, \ldots, e_k) образует базис в пространстве U

4. Существует такой набор базисов e_1, \ldots, e_k в U_1, \ldots, U_k , что система (e_1, \ldots, e_k) образует базис в пространстве U

Доказательство. Пусть e_1, \ldots, e_k —базисы в U_1, \ldots, U_k , тогда $U = \langle e_1, \ldots, e_k \rangle$. Докажем, что сумма прямая \Leftrightarrow система (e_1, \ldots, e_k) линейно независима, то есть образует базис в U.

- \Leftarrow Предположим, что сумма U не прямая, тогда существует нетривиальное разложение нуля $\overline{u_1} + \cdots + \overline{u_k} = \overline{0}$. Выразив каждый из векторов в соответствующем базисе, получим нетривиальную линейную комбинацию, равную нулю. Значит, система линейно зависима противоречие.
- \Rightarrow Предположим, что система (e_1,\ldots,e_k) линейно зависима. Сгруппируем нетривиальную линейную комбинацию, равную нулю, по базисам в подпространствах, и получим нетривиальное разложение нуля $\overline{u_1}+\cdots+\overline{u_k}=\overline{0}$. Значит, сумма не прямая противоречие.

Теперь докажем, что $\dim (U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k \Leftrightarrow \text{система } (e_1, \dots, e_k)$ линейно независима, то есть образует базис в U.

- \Leftarrow Если (e_1,\ldots,e_k) базис в U, то $\dim U = \dim U_1 + \cdots + \dim U_k$.
- \Rightarrow Предположим, что система $(\overline{e_1},\ldots,\overline{e_k})$ линейно зависима, тогда, так как она выражает все пространство U, $\dim U < \dim U_1 + \cdots + \dim U_k$ снова противоречие.

Определение 6.27. Пусть V — линейное пространство над полем $F,\ U\leqslant V$. Подпространство $W\leqslant V$ называется *прямым дополнением* подпространства U в пространстве V, если сумма U+W — прямая и $U\oplus W=V.$

Замечание. По уже доказанному, $\dim U + \dim W = \dim V$.

Утверждение 6.25. Пусть V — линейное пространство, $U \leqslant V$. Тогда существует прямое дополнение подпространства U в пространстве V.

Доказательство. Выберем базис $(\overline{e_1},\dots,\overline{e_k})$ — базис в U. Линейно независимую систему e можно дополнить до базиса в V. Обозначим через $\overline{e_{k+1}},\dots,\overline{e_n}\in V$ векторы, дополняющие e до базиса, и рассмотрим $W:=\langle \overline{e_{k+1}},\dots,\overline{e_n}\rangle$. Тогда U+W=V, и объединение базисов U и W является базисом в V, поэтому сумма $U\oplus W$ — прямая.

Теорема 6.14. Пусть $U_1, U_2 \leqslant V$. Тогда выполнено следующее равенство:

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Доказательство. Пусть $U:=U_1\cap U_2\leqslant U_1, U_2$. Выберем W_1,W_2 —прямые дополнения подпространства U в U_1,U_2 соответственно, тогда выполнены следующие равенства:

$$\dim U + \dim W_1 = \dim U_1$$

$$\dim U + \dim W_2 = \dim U_2$$

Докажем, что $U_1+U_2=U\oplus W_1\oplus W_2$. Равенство $U_1+U_2=U+W_1+W_2$ очевидно, поэтому достаточно проверить, что эта сумма—прямая. Пусть $\overline{0}=\overline{u}+\overline{w_1}+\overline{w_2}$ для некоторых $\overline{w_1}\in W_1, \overline{w_2}\in W_2, \overline{u}\in U$, тогда:

$$-\overline{w_1} = \overline{u} + \overline{w_2} \Rightarrow \overline{w_1} \in W_1 \cap U_2 = W_1 \cap U \Rightarrow \overline{w_1} = \overline{0}$$
$$-\overline{w_2} = \overline{u} + \overline{w_1} \Rightarrow \overline{w_2} \in W_2 \cap U_1 = W_2 \cap U \Rightarrow \overline{w_2} = \overline{0}$$

Значит, и $\overline{u} = \overline{0}$, поэтому сумма $U + W_1 + W_2 -$ прямая. Тогда:

$$\dim (U_1 + U_2) = \dim U + \dim W_1 + \dim W_2 = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Замечание. В общем случае, по размерностям попарных пересечений подпространств $U_1, \ldots, U_k \leqslant V$ уже нельзя восстановить $\dim(U_1 + \cdots + U_k)$.

Определение 6.28. Пусть V — линейное пространство, $U, W \leqslant V$ и $V = U \oplus W$. Для любого вектора $\overline{v} \in V$ существует единственное разложение $\overline{v} = \overline{u} + \overline{w}, \ \overline{u} \in U, \overline{w} \in W$.

- ightharpoonup Вектор \overline{u} называется проекцией \overline{v} на U вдоль W
- ightharpoonup Вектор \overline{w} называется $\mathit{npoekuue}\ \overline{v}$ на W вдоль U

Замечание. Пусть V_1, V_2 — линейные пространства. Их внешней прямой суммой называется множество $V = V_1 \oplus V_2 := \{(\overline{v_1}, \overline{v_2v_1} \in V_1, \overline{v_2} \in V_2)\}$. Если определить сложение и умножение на скаляр покоординатно, то V становится линейным пространством, причем выполнены следующие свойства:

- $\triangleright U_1 := \{(\overline{v_1}, \overline{0}) : \overline{v_1} \in V_1\} \cong V_1$
- $\triangleright U_2 := \{ (\overline{0}, \overline{v_2}) : \overline{v_2} \in V_2 \} \cong V_2$
- $\triangleright V = U_1 \oplus U_2$

7 Линейные функционалы и отображения

7.1 Сопряженное пространство

Определение 7.1. Пусть V — линейное пространство над полем F. Линейной функцией на V, или линейным функционалом на V, называется отображение $f:V\to F$, обладающее свойством линейности:

- $\forall \overline{v_1}, \overline{v_2} \in V : f(\overline{v_1} + \overline{v_2}) = f(\overline{v_1}) + f(\overline{v_2})$
- $\, \triangleright \, \, \forall \alpha \in F : \forall \overline{v} \in V : f(\alpha \overline{v}) = \alpha f(\overline{v})$

Определение 7.2. Пусть V — линейное пространство над полем F. Множество линейных функционалов на V называется *пространством*, *сопряженным* κ V. Обозначение — V^* . На определены операции сложения и умножения на скаляр:

$$\triangleright \forall \overline{f_1}, \overline{f_2} \in V^* : \forall \overline{v} \in V : (f_1 + f_2)(\overline{v}) := f_1(\overline{v}) + f_2(\overline{v})$$

$$\, \triangleright \, \, \forall \alpha \in F : \forall \overline{f} \in V^* : \forall \overline{v} \in V : (\alpha f)(\overline{v}) = \alpha f(\overline{v})$$

Утверждение 7.1. Пусть V — линейное пространство над полем F. Тогда сопряженное пространство V^* тоже является линейным пространством над F.

Доказательство. Покажем сначала, что $(V^*, +)$ — абелева группа:

- \triangleright Ассоциативность и коммутативность следуют из соответствующих свойств в (F, +)
- ightharpoonup Нейтральный элемент нулевой функционал 0 такой, что $\forall \overline{v} \in V : 0(\overline{v}) = \overline{0}$.

ightharpoonup Обратный к $f \in V^*$ элемент — это (-1)f.

Свойства линейного пространства проверяются непосредственно.

Определение 7.3. Пусть V — линейное пространство, $e = (e_1, \ldots, e_n)$ — базис в V. Тогда для каждого $i \in \{1, \ldots, n\}$ определим $f_i \in V^*$ следующим образом: для любого $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$, положим $f_i(\overline{v}) := \alpha_i$.

Утверждение 7.2. Пусть V — линейное пространство, $e = (e_1, \ldots, e_n)$ — базис в V. Тогда (f_1, \ldots, f_n) — базис в V^* .

Доказательство. Сначала докажем, что система (f_1, \ldots, f_n) линейно независима. Действительно, если существует нетривиальная линейная комбинация $\lambda_1 f_1 + \cdots + \lambda_n f_n$, равная нулю, то, в частности, она принимает нулевое значение на базисных векторах e. Но для любых $i, j \in \{1, \ldots, n\}$ выполнено следующее:

$$f_i(\overline{e_j}) = \delta_{ij} = egin{cases} 1, & ext{если } i = j \ 0, & ext{если } i
et j \end{cases}$$

Значит, $\lambda_1 = \cdots = \lambda_n = 0$, поэтому система линейно независима. Теперь покажем, что $\langle f_1, \ldots, f_n \rangle = V^*$. Выберем произвольный функционал $f \in V^*$ и вектор $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$, тогда выполнены следующие равенства:

$$f(\overline{v}) = f\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i f(\overline{e_i}) = \sum_{i=1}^{n} f(\overline{e_i}) f_i(\overline{v}) = \left(\sum_{i=1}^{n} f(\overline{e_i}) f_i\right) (\overline{v})$$

Для каждого функционала f значения $f(\overline{e_i})$ фиксированы, поэтому каждый функционал f представим в виде линейной комбинации функционалов f_1, \ldots, f_n . Таким образом, (f_1, \ldots, f_n) — базис в V^* .

Замечание. Из доказательства выше, в частности, следует, что функционал $f \in V^*$ в базисе (f_1, \ldots, f_n) имеет координаты $(f(\overline{e_1}), \ldots, f(\overline{e_n}))$.

Следствие. Если V — линейное пространство, то $\dim V^* = \dim V$.

Определение 7.4. Пусть V — линейное пространство, $e = (\overline{e_1}, \dots, \overline{e_n})$ — базис в V. Базис $\mathcal{F} = (f_1, \dots, f_n)^T$ в V^* называется взаимным, или (сопряженным, к базису e в V.

Замечание. Если в пространстве V базисные векторы записываются в строку, а координаты — в столбец, то в пространстве V^* удобнее делать это наоборот.

Утверждение 7.3. Пусть V — линейное пространство над полем F, e, e' — базисы в V, \mathcal{F} , \mathcal{F}' — взаимные κ ним базисы в V^* , u e' = eS, $S \in M_n(F)$. Тогда $\mathcal{F} = S\mathcal{F}'$.

Доказательство. Рассмотрим произвольный вектор $\overline{v} \in V$ с координатными столбцами α, α' в базисах e, e' соответственно, тогда $\overline{v} = e\alpha = e'\alpha', \ \alpha = S\alpha'$. Тогда:

$$\mathcal{F}(\overline{v}) = (f_1(\overline{v}), \dots, f_n(\overline{v}))^T = (\alpha_1, \dots, \alpha_n)^T = \alpha$$
$$(S\mathcal{F}')(\overline{v}) = S(f_1'(\overline{v}), \dots, f_n'(\overline{v}))^T = S(\alpha_1', \dots, \alpha_n')^T = S\alpha' = \alpha$$

Значения функционалов из \mathcal{F} и $S\mathcal{F}'$ на любом векторе совпадают, поэтому выполнено равенство $\mathcal{F}=S\mathcal{F}'$.

Определение 7.5. Пусть V — линейное пространство над полем F. Пространством, $\partial \epsilon a$ - $\partial \epsilon c \partial u$ сопряженным к V, называется пространство $V^{**} := (V^*)^*$.

Определение 7.6. Пусть V — линейное пространство над полем $F, \overline{v} \in V$. Определим $v^{**} \in V^{**}$ следующим образом: для любого $f \in V^{*}$ положим $v^{**}(f) := f(\overline{v})$.

Замечание. Определение выше корректно, поскольку v^{**} действительно является линейным функционалом:

$$\forall f_1, f_2 \in V^* : v^{**}(f_1 + f_2) = (f_1 + f_2)(\overline{v}) = f_1(\overline{v}) + f_2(\overline{v}) = v^{**}(f_1) + v^{**}(f_2)$$

$$\forall \alpha \in F : \forall f \in V^* : v^{**}(\alpha f) = (\alpha f)(\overline{v}) = \alpha f(\overline{v}) = \alpha v^{**}(f)$$

Теорема 7.1. Пусть V — линейное пространство над полем F. Тогда отображение φ : $V \to V^{**}$ такое, что $\varphi(\overline{v}) := v^{**}$ для любого $\overline{v} \in V$, является изоморфизмом линейных пространств V и V^{**} .

Доказательство. Линейность отображения проверяется непосредственно. Докажем, что φ — биекция. Зафиксируем базис $e = (\overline{e_1}, \dots, \overline{e_n})$ в V и проверим, что система $(e_1^{**}, \dots, e_n^{**})$ линейно независима. Если ее линейная комбинация с коэффициентами $\alpha_1, \dots, \alpha_n \in F$ равна нулю, то для любого $f \in V^*$ выполнены равенства:

$$0 = \left(\sum_{i=1}^{n} \alpha_i e_i^{**}\right)(f) = f\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i f(\overline{e_i})$$

Равенство должно выполняться, в частности, для функционалов из базиса \mathcal{F} , взаимного к e, поэтому $\alpha_1 = \cdots = \alpha_n = 0$, и система линейно независима. Но $\dim V = \dim V^* = \dim (V^*)^* = n$, поэтому $(e_1^{**}, \ldots, e_n^{**})$ —базис в V^{**} . Наконец, φ отображает вектор $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$ в вектор $v^{**} \in V^{**}$, $v^{**} \leftrightarrow_{e^{**}} \alpha$, поэтому φ —биекция.

Определение 7.7. Пусть V — линейное пространство. Изоморфизм V и V^{**} такой, что $\overline{v} \mapsto v^{**}$, называется *каноническим изоморфизмом* пространств V и V^{**} .

Замечание. Изоморфизм φ называется каноническим потому, что он построен инвариантно, то есть не опирается на выбор базиса. Благодаря каноническому изоморфизму, можно отождествить вектор $\overline{v} \in V$ с вектором $v^{**} \in V^{**}$, тогда для любого $f \in V^{*}$ выполнены следующие равенства:

$$f(\overline{v}) = v^{**}(f) = \overline{v}(f)$$

Утверждение 7.4. Пусть V — линейное пространство. Тогда любой базис \mathcal{F} в V^* взаимен некоторому базису е в V.

Доказательство. Пусть $\mathcal{F} = (f_1, \dots, f_n)$. У него есть взаимный базис $e^{**} = (e_1^{**}, \dots, e_n^{**})$ в V^{**} , тогда базис \mathcal{F} является взаимным к соответствующему базису $e = (\overline{e_1}, \dots, \overline{e_n})$ в V, в который базис e^{**} переходит при каноническом изоморфизме.

7.2 Аннуляторы

Определение 7.8. Пусть $f: A \to B$ — отображение, $A' \subset A$. Образом подмножества A' при отображении f называется $f(A') := \{f(a) : a \in A'\} \subset B$.

Определение 7.9. Пусть V — линейное пространство над полем F.

 \triangleright Аннулятором подпространства $W \leqslant V$ называется следующее множество:

$$W^0 := \{ f \in V^* : f(W) = \{0\} \}$$

 \triangleright Аннулятором подпространства $U \leqslant V^*$ называется следующее множество:

$$U^0 := \{ v^{**} \in V^{**} : v^{**}(U) = \{0\} \} = \{ \overline{v} \in V : \forall f \in V^* : f(\overline{v}) = 0 \}$$

Замечание. Аннуляторы $W^0 \leqslant V^*$ и $U^0 \leqslant V$ являются подпространствами в соответствующих пространствах как пространства решений однородных систем линейных уравнений. Однако их замкнутость относительно сложения и умножения на скаляры можно проверить и непосредственно.

Теорема 7.2. Пусть V — линейное пространство, $\dim V = n$, $W \leqslant V$. Тогда выполнено следующее равенство:

$$\dim W + \dim W^0 = n$$

Доказательство. Пусть $\dim W = k$, и $(\overline{e_1}, \dots, \overline{e_k})$ — базис в W. Дополним его до базиса $e = (\overline{e_1}, \dots, \overline{e_n})$ в V и выберем взаимный к нему базис $\mathcal{F} = (f_1, \dots, f_n)$ в V^* . Пусть $f \in V^*$, $f \leftrightarrow_{\mathcal{F}} \alpha$. Тогда:

$$f \in W^0 \Leftrightarrow f(\overline{e_1}) = \dots = f(\overline{e_k}) = 0 \Leftrightarrow \alpha_1 = \dots = \alpha_k = 0 \Leftrightarrow f \in \langle f_{k+1}, \dots, f_n \rangle$$

Таким образом, $W^0 = \langle f_{k+1}, \dots, f_n \rangle$, причем система (f_{k+1}, \dots, f_n) образует базис в W^0 , тогда dim $W^0 = n - k$.

Теорема 7.3. Пусть V — линейное пространство, $W, W_1, W_2 \leqslant V$. Тогда выполнены следующие свойства:

- 1. $(W^0)^0 = W$
- 2. $W_1 \leqslant W_2 \Leftrightarrow W_2^0 \leqslant W_1^0$
- $3. (W_1 + W_2)^0 = W_1^0 \cap W_2^0$
- 4. $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$

Доказательство.

1. С одной стороны, если $\overline{v} \in W$, то для любого $f \in W^0$ выполнено $f(\overline{v}) = 0 \Leftrightarrow \overline{v}(f) = 0$, поэтому $\overline{v} \in (W^0)^0$. Значит, $W \subset (W^0)^0$. С другой стороны, выполнено следующее:

$$\dim W + \dim W^{0} = \dim V = \dim V^{*} = \dim W^{0} + \dim (W^{0})^{0} \Rightarrow \dim W = \dim (W^{0})^{0}$$

Значит, имеет место равенство $W = (W^0)^0$.

- 2. \Rightarrow Пусть $W_1\leqslant W_2$, тогда для любого $f\in W_2^0$ выполнено $f(W_1)\subset f(W_2)=\{0\},$ откуда $f\in W_1^0$, то есть $W_2^0\leqslant W_1^0$
 - \Leftarrow Пусть $W_2^0 \leqslant W_1^0$, тогда $W_1 = (W_1^0)^0 \leqslant (W_2^0)^0 = W_2$.

- 3. \leqslant Поскольку $W_1 \leqslant W_1 + W_2$, то, в силу пункта (2), выполнено $(W_1 + W_2)^0 \leqslant W_1^0$. Аналогично, $(W_1 + W_2)^0 \leqslant W_2^0$, поэтому $(W_1 + W_2)^0 \leqslant W_1^0 \cap W_2^0$
 - \geqslant Если $f \in W_1^0 \cap W_2^0$, то для любых $\overline{w_1} \in W_1$, $\overline{w_2} \in W_2$ выполнены равенства $f(\overline{w_1}) = f(\overline{w_2}) = \overline{0}$, откуда $f(\overline{w_1} + \overline{w_2}) = 0$, тогда $f \in (W_1 + W_2)^0$. Следовательно, $W_1^0 \cap W_2^0 \leqslant (W_1 + W_2)^0$.
- 4. Выполнены равенства $W_1^0 + W_2^0 = ((W_1^0 + W_2^0)^0)^0 = ((W_1^0)^0 \cap (W_2^0)^0)^0 = (W_1 \cap W_2)^0$. \square

Замечание. Из пункта (1) теоремы выше следует, что любое подпространство можно задать однородной системой линейных уравнений. Из пунктов (3) и (4) следует, что поиск суммы подпространств можно свети к поиску пересечения, и наоборот. Отметим также, что в случае пространств, не являющихся конечнопорожденными, не все утверждения данного раздела остаются справедливыми.

7.3 Линейные отображения

Определение 7.10. Пусть U, V — линейные пространства над полем F. Линейным отображением, или линейным оператором, называется отображение $\varphi: U \to V$, обладающее свойством линейности:

- $\triangleright \forall \overline{u_1}, \overline{u_2} \in U : \varphi(\overline{u_1} + \overline{u_2}) = \varphi(\overline{u_1}) + \varphi(\overline{u_2})$
- $\forall \alpha \in F : \forall \overline{u} \in U : \varphi(\alpha \overline{u}) = \alpha \varphi(\overline{u})$

Линейное отображение $\varphi:V\to V$ называется линейным преобразованием.

Пример. Рассмотрим несколько примеров линейных отображений:

- \triangleright Поворот вокруг точки, отражение относительно прямой, проекция на прямую в V_2
- \triangleright Поворот вокруг прямой, отражение относительно плоскости, проекция на плоскость в V_3
- \triangleright Линейные функционалы на произвольном линейном пространстве V
- ⊳ Изоморфизм линейных пространств
- ightharpoonup Отображение $\varphi: F^n \to F^k$, заданное на каждом $\alpha \in F^n$ как $\varphi(\alpha) := A\alpha$ для некоторой фиксированной матрицы $A \in M_{k \times n}(F)$

Замечание. Пусть $\varphi: U \to V$ — линейное отображение. Тогда:

$$\forall \alpha_1, \dots, \alpha_n \in F : \forall \overline{v_1}, \dots, \overline{v_n} \in V : \varphi(\alpha_1 \overline{v_1} + \dots + \alpha_n \overline{v_n}) = \alpha_1 \varphi(\overline{v_1}) + \dots + \alpha_n \varphi(\overline{v_n})$$

- $\triangleright \varphi(\overline{0}) = \overline{0}$
- \triangleright Если система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из U линейно зависима, то система $(\varphi(\overline{v_1}), \dots, \varphi(\overline{v_n}))$ тоже линейно зависима, причем с теми же коэффициентами

Утверждение 7.5. Пусть U, V — линейные пространства над F, $(\overline{e_1}, \ldots, \overline{e_k})$ — базис в U, $\overline{v_1}, \ldots, \overline{v_n} \in V$. Тогда существует единственное линейное отображение $\varphi: U \to V$ такое, что для любого $i \in \{1, \ldots, k\}$ выполнено $\varphi(\overline{e_i}) = \overline{v_i}$.

Доказательство. С одной стороны, если некоторое отображение φ удовлетворяет условию, то вектор $\overline{u} \in U$ с координатами $\alpha \in F^n$ оно переводит в $(\overline{v_1}, \dots, \overline{v_k})\alpha$ в силу линейности. С другой стороны, заданное таким образом отображение линейно.

Определение 7.11. Пусть $\varphi: U \to V$ — линейное отображение.

- \triangleright Образом отображения φ называется $\operatorname{Im} \varphi := \varphi(U)$.
- \triangleright Ядром отображения φ называется $\operatorname{Ker} \varphi := \{\overline{u} \in U : \varphi(\overline{u}) = \overline{0}\}$

Утверждение 7.6. Пусть $\varphi: U \to V$ — линейное отображение, $U' \leqslant U$, $V' \leqslant V$. Тогда:

1.
$$\varphi(U') \leqslant V$$

2.
$$\varphi^{-1}(V') = \{\overline{u} \in U : \varphi(\overline{u}) \in V'\} \leqslant U$$

Доказательство.

- 1. Проверим свойства подпространства:
 - $\triangleright \varphi(U') \neq \emptyset$, поскольку $\overline{0} \in \varphi(U')$
 - ightharpoonup Если $\overline{v_1}, \overline{v_2} \in \varphi(U')$, то для некоторых $\overline{u_1}, \overline{u_2} \in U'$ выполнены равенства $\varphi(\overline{u_1}) = \overline{v_1},$ $\varphi(\overline{u_2}) = \overline{v_2},$ тогда $\overline{v_1} + \overline{v_2} = \varphi(\overline{u_1} + \overline{u_2}) \in \varphi(U')$
 - ightharpoonup Аналогично предыдущему пункту, если $\overline{v} \in \varphi(U')$, то и для любого $\alpha \in F$ выполнено $\alpha \overline{v} \in \varphi(U')$
- 2. Проверим свойства подпространства:
 - > $\varphi^{-1}(V') \neq \varnothing$, поскольку $\overline{0} \in \varphi^{-1}(V')$
 - ightharpoonup Если $\overline{u_1},\overline{u_2}\in arphi^{-1}(V'),$ то $arphi(\overline{u_1}),arphi(\overline{u_2})\in V',$ тогда $arphi(\overline{u_1}+\overline{u_2})=arphi(\overline{u_1})+arphi(\overline{u_2})\in V'$
 - ▶ Аналогично предыдущему пункту, если $\overline{u} \in \varphi^{-1}(V')$, то и для любого $\alpha \in F$ выполнено $\alpha \overline{u} \in \varphi^{-1}(V')$

Следствие. Пусть $\varphi:U\to V$ — линейное отображение, тогда $\operatorname{Im}\varphi\leqslant V$ и $\operatorname{Ker}\varphi\leqslant U$.

Утверждение 7.7. Пусть $\varphi: U \to V$ — линейное отображение, $e = (\overline{e_1}, \dots, \overline{e_k})$ — базис в пространстве U. Тогда $\operatorname{Im} \varphi = \langle \varphi(\overline{e_1}), \dots, \varphi(\overline{e_k}) \rangle$.

Доказательство.

- \subset Любой вектор $\overline{u}\in U$ представляется в виде линейной комбинации базисных векторов, поэтому $\varphi(\overline{u})\in \langle \varphi(\overline{e_1}),\dots,\varphi(\overline{e_k})\rangle$
- \supset Все векторы $\varphi(\overline{e_1}), \ldots, \varphi(\overline{e_k})$ лежат в $\operatorname{Im} \varphi$, и $\operatorname{Im} \varphi$ линейное пространство, поэтому $\langle \varphi(e) \rangle \subset \operatorname{Im} \varphi$

Утверждение 7.8. Пусть $\varphi: U \to V$ — линейное отображение. Тогда отображение φ инъективно $\Leftrightarrow \operatorname{Ker} \varphi = \{\overline{0}\}.$

Доказательство.

 \Rightarrow Если φ инъективно, то существует единственный вектор $\overline{0}\in U$, для которого $\varphi(\overline{u})=\overline{0}$

$$\Leftarrow$$
 Пусть для некоторых $\overline{u_1}, \overline{u_2} \in U$ выполнено $\varphi(\overline{u_1}) = \varphi(\overline{u_2})$, тогда $\varphi(\overline{u_1} - \overline{u_2}) = \overline{0}$, откуда $\overline{u_1} - \overline{u_2} = \overline{0} \Rightarrow \overline{u_1} = \overline{u_2}$

Замечание. Можно также показать, что верен следующий критерий: линейное отображение $\varphi:U\to V$ инъективно $\Leftrightarrow \varphi$ переводит линейно независимые системы в линейно независимые.

Утверждение 7.9. Пусть $\varphi: U \to V$ — линейное отображение, W — прямое дополнение подпространства $\operatorname{Ker} \varphi$ в U. Тогда сужение $\varphi|_W: W \to V$ осуществляет изоморфизм между W и $\operatorname{Im} \varphi$.

Доказательство. Отображение $\varphi|_W$ линейно в силу линейности отображения φ , проверим его биективность. Оно инъективно, поскольку $\operatorname{Ker} \varphi|_W = \operatorname{Ker} \varphi \cap W = \{\overline{0}\}$. Докажем, что оно также сюръективно. Пусть $\overline{v} \in \operatorname{Im} \varphi$, тогда для некоторого $\overline{u} \in U$ выполнено равенство $\varphi(\overline{u}) = \overline{v}$, при этом вектор \overline{u} можно представить в виде $\overline{u} = \overline{k} + \overline{w}$, где $\overline{k} \in \operatorname{Ker} \varphi$, $\overline{w} \in W$. Тогда $\varphi(\overline{u}) = \varphi(\overline{k}) + \varphi(\overline{w}) = \varphi(\overline{w})$, поэтому $\overline{v} = \varphi(\overline{w})$, что и требовалось.

Теорема 7.4. Пусть $\varphi: U \to V$ — линейное отображение. Тогда выполнено следующее равенство:

$$\dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = \dim U$$

Доказательство. Выберем $W \leqslant U$ такое, что $\operatorname{Ker} \varphi \oplus W = U$, тогда $W \cong \operatorname{Im} \varphi$. По свойству прямой суммы, $\dim U = \dim \operatorname{Ker} \varphi + \dim W = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.

Утверждение 7.10. Пусть $\varphi: U \to V$ — линейное отображение, $\overline{u_0} \in U$, $u \ \overline{v_0} = \varphi(\overline{u_0})$. $Tor\partial a \ \varphi^{-1}(\overline{v_0}) = \overline{u_0} + \operatorname{Ker} \varphi$.

Доказательство. Если для некоторого вектора $\overline{u} \in U$ выполнено равенство $\varphi(\overline{u}) = \overline{v_0}$, то $\varphi(\overline{u}) = \varphi(\overline{u_0})$, откуда $\varphi(\overline{u} - \overline{u_0}) = \overline{0}$, то есть $(\overline{u} - \overline{u_0}) \in \operatorname{Ker} \varphi$, тогда $\overline{u} \in \overline{u_0} + \operatorname{Ker} \varphi$.

Замечание. Данное утверждение аналогично тому, что общее решение системы Ax = b имеет вид $x_0 + \Phi \gamma$, $\gamma \in F^m$, где x_0 — частное решение системы, Φ — фундаментальная матрица однородной системы Ax = 0.

Определение 7.12. Пусть $\varphi: U \to V$ — линейное отображение, $e = (\overline{e_1}, \dots, \overline{e_k})$ — базис в $U, \mathcal{F} = (\overline{f_1}, \dots, \overline{f_n})$ — базис в V. Матрицей отображения φ в базисах e и \mathcal{F} называется матрица $A \in M_{n \times k}(F)$ такая, что $(\varphi(\overline{e_1}), \dots, \varphi(\overline{e_k})) = \mathcal{F}A$. Обозначение — $\varphi \leftrightarrow_{e,\mathcal{F}} A$.

Замечание. Матрица линейного преобразования определяется в одном базисе, а не в паре различных базисов в одном пространстве.

Замечание. Сопоставление линейным отображениям их матриц в фиксированной паре базисов взаимно однозначно: каждому отображению соответствует некоторая матрица, различным отображениям — различные матрицы, и, более того, каждой матрице соответствует некоторое отображение.

Определение 7.13. Множество линейных отображений из U в V обозначается через $\mathcal{L}(U,V)$. Множество линейных преобразований пространства V обозначается через $\mathcal{L}(V)$.

Утверждение 7.11. Пусть U, V — линейные пространства над полем F. Тогда множество $\mathcal{L}(U, V)$ тоже является линейным пространством над F.

Доказательство. Проверка свойств линейного пространства аналогична проверке для случая линейных функционалов. \Box

Утверждение 7.12. Пусть U, V — линейные пространства над полем F, e — базис в U, \mathcal{F} — базис в V. Тогда сопоставление $\varphi \mapsto A$, $\varphi \leftrightarrow_{e,\mathcal{F}} A$, осуществляет изоморфизм между линейными пространствами $\mathcal{L}(U,V)$ и $M_{n\times k}(F)$.

Доказательство. Уже доказано, что отображение $\psi : \mathcal{L}(U,V) \to M_{n \times k}(F)$ биективно. Его линейность следует из линейности сопоставления координат в линейном пространстве. \square

Утверждение 7.13. Пусть $\varphi: U \to V$ — линейное отображение пространств над F, e — базис в U, \mathcal{F} — базис в V, $\varphi \leftrightarrow_{e,\mathcal{F}} A$, $u \overline{u} \in U$, $\overline{u} \leftrightarrow_{e} \alpha$. Тогда $\varphi(\overline{u}) \leftrightarrow_{\mathcal{F}} A\alpha$.

Доказательство. Выполнены равенства $\varphi(\overline{u}) = \varphi(e\alpha) = \varphi(e)\alpha = \mathcal{F}A\alpha$, поэтому справедливо соотношение $\varphi(\overline{u}) \leftrightarrow_{\mathcal{F}} A\alpha$.

Утверждение 7.14. Пусть $\varphi: U \to V$ — линейное отображение, $e = (\overline{e_1}, \dots, \overline{e_k})$ — базис в $U, \mathcal{F} = (\overline{f_1}, \dots, \overline{f_n})$ — базис в $V, \varphi \leftrightarrow_{e,\mathcal{F}} A$. Тогда $\operatorname{rk} A = \dim \operatorname{Im} \varphi$.

Доказательство. Пусть $\varphi(\overline{e_1}) \leftrightarrow_{\mathcal{F}} \alpha_1, \ldots, \varphi(\overline{e_k}) \leftrightarrow_{\mathcal{F}} \alpha_k$. Тогда, поскольку пространства V и F^n изоморфны, то $\mathrm{rk} A = \dim \langle \alpha_1, \ldots, \alpha_k \rangle = \dim \langle \varphi(\overline{e_1}), \ldots, \varphi(\overline{e_k}) \rangle = \dim \mathrm{Im} \varphi$.

Определение 7.14. Пусть $\varphi:U\to V$ — линейное отображение. Рангом отображения φ называется величина $\operatorname{rk}\varphi:=\dim\operatorname{Im}\varphi$

Утверждение 7.15. Пусть U, V — линейные пространства над полем F, e, e' — два базиса в $U, e' = eS, S \in M_k(F), \mathcal{F}, \mathcal{F}'$ — два базиса в $V, \mathcal{F}' = \mathcal{F}T, T \in M_n(F)$. Пусть также $\varphi : U \to V$ — линейное отображение, $\varphi \leftrightarrow_{e,\mathcal{F}} A, \varphi \leftrightarrow_{e',\mathcal{F}'} A'$. Тогда выполнено следующее равенство:

$$A' = T^{-1}AS$$

Доказательство. Уже известно, что $\varphi(e) = \mathcal{F}A$, $\varphi(e') = \mathcal{F}'A'$. С другой стороны, в силу линейности выполнены равенства $\varphi(e') = \varphi(eS) = \varphi(e)S$, тогда $\varphi(e') = \mathcal{F}AS = \mathcal{F}'T^{-1}AS$, значит, $A' = T^{-1}AS$.

Следствие. Если V — линейное пространство над полем F, e, e' — два базиса в V, e' = eS, $S \in M_n(F)$. Пусть также $\varphi: V \to V$ — линейное преобразование пространства, $\varphi \leftrightarrow_e A$, $\varphi \leftrightarrow_{e'} A'$. Тогда выполнено следующее равенство:

$$A' = S^{-1}AS$$

Теорема 7.5. Пусть $\varphi: U \to V$ — линейное отображение. Тогда существуют базисы е в U и \mathcal{F} в V такие, что выполнено следующее:

$$\varphi \leftrightarrow_{e,\mathcal{F}} \left(\frac{E \mid 0}{0 \mid 0} \right)$$

Доказательство. Рассмотрим $\operatorname{Ker} \varphi \leqslant U$ и выберем W—прямое дополнение подпространства $\operatorname{Ker} \varphi$ в U. Пусть $(\overline{e_1}, \ldots, \overline{e_s})$ —базис в W, $(\overline{e_{s+1}}, \ldots, \overline{e_k})$ —базис в $\operatorname{Ker} \varphi$, тогда $e = (\overline{e_1}, \ldots, \overline{e_k})$ —базис в U. Уже было доказано, что $\varphi|_W$ — изоморфизм между W и $\operatorname{Im} \varphi$, тогда $(\varphi(\overline{e_1}), \ldots \varphi(\overline{e_s})) = (\overline{f_1}, \ldots, \overline{f_s})$ —базис в $\operatorname{Im} \varphi$. Дополним его до базиса $\mathcal{F} = (\overline{f_1}, \ldots, \overline{f_n})$ в V. Тогда базисы e и \mathcal{F} и являются искомыми.

Замечание. Если $\varphi \in \mathcal{L}(V)$, то базисы уже нельзя выбрать независимо друг от друга, поэтому аналогичная теорема неверна.

7.4 Алгебры

Определение 7.15. Пусть $f:A\to B,\ g:B\to C$ — отображения. Композицей отображений f,g называется отображение $g\circ f:A\to C$ такое, что для любого $a\in A$ выполнено $(g\circ f)(a)=g(f(a)).$

Утверждение 7.16. Пусть U, V, W — линейные пространства над полем F с базисами $e, \mathcal{F}, \mathcal{G}. \ \varphi : U \to V \ u \ \psi : V \to W$ — линейные отображения. Тогда $\psi \circ \varphi$ — тоже линейное отображение, причем если $\varphi \leftrightarrow_{e,\mathcal{F}} A, \ \psi \leftrightarrow_{\mathcal{F},\mathcal{G}} B, \ mo \ \psi \circ \varphi \leftrightarrow_{e,\mathcal{G}} BA$.

Доказательство. Линейность композиции очевидна. Поскольку $\varphi(e) = \mathcal{F}A, \ \psi(\mathcal{F}) = \mathcal{G}B,$ выполнены следующие равенства:

$$(\psi \circ \varphi)(e) = \psi(\varphi(e)) = \psi(\mathcal{F}A) = \psi(\mathcal{F})A = \mathcal{G}BA \qquad \Box$$

Следствие. Если $\varphi, \psi \in \mathcal{L}(V)$, e — базис $V, \varphi \leftrightarrow_e A, \psi \leftrightarrow_e B$, то $\psi \circ \varphi \leftrightarrow_e BA$.

Следствие. Пусть V — линейное пространство над полем F, dim V = n. Тогда ($\mathcal{L}(V), +, \circ$) является кольцом, изоморфным кольцу ($M_n(F), +, \cdot$).

Доказательство. Зафиксируем базис e в V и рассмотрим отображение $\Theta: \mathcal{L}(V) \to M_n(F)$, сопоставляющее каждому отображению $\varphi \in \mathcal{L}(V)$ его матрицу в базисе e. Как уже было доказано, Θ — изоморфизм линейных пространств, значит, в частности, биекция. Кроме того, для любых операторов $\varphi, \psi \in \mathcal{L}(V)$ выполнено равенство $\Theta(\psi \circ \varphi) = \Theta(\psi)\Theta(\varphi)$. Следовательно, $\mathcal{L}(V)$ — кольцо, поскольку выполнение свойств кольца в нем равносильно выполнению этих свойств в $M_n(F)$. Например, для произвольных $\varphi_1, \varphi_2, \psi \in \mathcal{L}(V)$ выполнено следующее:

$$\Theta(\psi \circ (\varphi_1 + \varphi_2)) = \Theta(\psi)\Theta(\varphi_1 + \varphi_2) = \Theta(\psi)(\Theta(\varphi_1) + \Theta(\varphi_2)) =$$

$$= \Theta(\psi)\Theta(\varphi_1) + \Theta(\psi)\Theta(\varphi_2) = \Theta(\psi \circ \varphi_1) + \Theta(\psi \circ \varphi_2) = \Theta(\psi \circ \varphi_1 + \psi \circ \varphi_2)$$

Тогда, поскольку Θ — биекция, имеем $\psi \circ (\varphi_1 + \varphi_2) = \psi \circ \varphi_1 + \psi \circ \varphi_2$, и получена дистрибутивность в $\mathcal{L}(V)$. Таким образом, $\mathcal{L}(V)$ — кольцо, а Θ — изоморфизм колец.

Определение 7.16. Кольцо $(R, +, \cdot)$ называется *алгеброй* над полем F, если на нем определено умножение на элементы поля F, удовлетворяющее следующим свойствам:

ightarrow (R,+) — линейное пространство над F

$$\forall r_1, r_2 \in R : \forall \alpha \in F : \alpha(r_1 r_2) = (\alpha r_1) r_2 = r_1(\alpha r_2)$$

Определение 7.17. *Изоморфизмом алгебр* называется такое отображение, которое одновременно является изоморфизмом колец и линейных пространств.

Замечание. Построенный ранее изоморфизм $\Theta : \mathcal{L}(V) \to M_n(F)$ является также изоморфизмом алгебр.

Пример. Рассмотрим несколько примеров алгебр

- ightharpoonup Кольца $\mathcal{L}(V)$ и $M_n(F)$ являются алгербами над полем F
- \triangleright Поле F является алгеброй над самим собой
- \triangleright Кольцо $\mathbb{R}[x]$ является алгеброй над \mathbb{R}

8 Определитель

8.1 Перестановки

Определение 8.1. Группой перестановок S_n называется следующее множество:

$$S_n := \{\sigma: \{1,\ldots,n\}
ightarrow \{1,\ldots,n\}: \sigma$$
— биекция $\}$

Данное множество является группой с операцией композиции \circ . Элементы группы S_n называются nepecmanos kamu.

Замечание. Перестановку $\sigma \in S_n$ можно записывать в следующем виде:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Определение 8.2. Пусть $a_1, \ldots, a_k \in \{1, \ldots, n\}$ — различные числа. *Циклом* (a_1, \ldots, a_k) называется такая перестановка $\sigma \in S_n$, что выполнены следующие условия:

$$\triangleright \ \sigma(a_1) = a_2, \ \sigma(a_2) = a_3, \ \dots, \ \sigma(a_k) = a_1$$

$$\triangleright \sigma|_{\{1,\ldots,n\}\setminus\{a_1,\ldots,a_k\}} = \mathrm{id}$$

Транспозицией называется цикл длины 2.

Определение 8.3. Циклы $(a_1, \ldots, a_k), (b_1, \ldots, b_l) \in S_n$ называются *независимыми*, если выполнено равенство $\{a_1, \ldots, a_k\} \cap \{b_1, \ldots, b_l\} = \emptyset$.

Замечание. Композиция перестановок в группе S_n некоммутативна, однако независимые циклы коммутируют друг с другом.

Утверждение 8.1. Любая перестановка $\sigma \in S_n$ может быть представлена в виде произведения попарно независимых циклов.

Доказательство. Рассмотрим граф перестановки σ с множеством вершин $\{1,\ldots,n\}$ и множеством ребер $\{(i,j):\sigma(i)=j\}$. Исходящая и входящая степень каждой вершины в графе равна 1. Покажем, что тогда граф разбивается на циклы. Начнем обходить вершины в следующем порядке: $a_1:=1,\ a_2:=\sigma(a_1),\ a_3:=\sigma(a_2),\$ и так далее. Процесс рано или поздно должен зациклиться. Пусть a_k — первая вершина такая, что $\sigma(a_k)$ уже попадала в обход. Тогда единственная вершина, которая может совпадать с $\sigma(a_k)$ — это a_1 , потому что в остальные вершины уже входит некоторое ребро. Таким образом, получен независимый цикл (a_1,\ldots,a_k) . Повторяя процедуру для оставшейся части графа перестановки, получим требуемое.

Утверждение 8.2. Любая перестановка $\sigma \in S_n$ может быть представлена в виде произведения транспозиций, и даже в виде произведения транспозиций вида (i, i+1).

Доказательство. Докажем первую часть утверждения индукцией по n. База, n=1, тривиальна, докажем переход. Зафиксируем перестановку $\sigma \in S_n$. Если $\sigma(n)=n$, то $\sigma|_{\{1,\ldots,n-1\}}$ —перестановка n-1 элемента, и для нее утверждение верно по предположению индукции. Иначе — $\sigma(n)=i\in\{1,\ldots,n-1\}$, тогда рассмотрим перестановку $\tau:=(i,n)\sigma$. Поскольку $\tau(n)=n$, для τ утверждение верно, следовательно, и $\sigma=(i,n)^{-1}\tau=(i,n)\tau$.

Для доказательства второй части достаточно показать, что любая транспозиция представима в виде произведения транспозиций вида (i, i+1). Это действительно так в силу следующего равенства для произвольных $i, k \in \{1, \ldots, n\}$:

$$(i,k) = (i,i+1)(i+1,i+2)\dots(k-1,k)\dots(i+1,i+2)(i,i+1)$$

Замечание. Вторую часть утверждения можно также доказать, используя понятие сортировки пузырьком или независимых циклов.

Определение 8.4. Беспорядком, или инверсией, в перестановке $\sigma \in S_n$ называется пара индексов $(i,j), i,j \in \{1,\ldots,n\}$ такая, что i < j, но $\sigma(i) > \sigma(j)$. Числа беспорядков в σ обозначается через $N(\sigma)$. Знаком перестановки $\sigma \in S_n$ называется величина $(-1)^{N(\sigma)}$. Обозначения — $\operatorname{sgn} \sigma, (-1)^{\sigma}$.

Определение 8.5. Перестановка $\sigma \in S_n$ называется:

- ightharpoonup Четной, если $\operatorname{sgn} \sigma = 1$
- \triangleright *Нечетной*, если $\operatorname{sgn} \sigma = -1$

Утверждение 8.3. Пусть $\sigma \in S_n$. Тогда для любых $i, j \in \{1, ..., n\}$ таких, что i < j, выполнено равенство $\operatorname{sgn} \sigma = -\operatorname{sgn}(\sigma(i, j))$.

Доказательство. Рассмотрим сначала случай, когда j=i+1. Положим $\tau:=\sigma(i,i+1)$, тогда $\tau(i+1)=\sigma(i),\ \tau(i)=\sigma(i+1)$ и для любого $k\in\{1,\ldots,n\}\backslash\{i,i+1\}$ выполнено $\tau(k)=\sigma(k)$. Тогда:

- > (i,i+1) беспорядок в $\sigma\Leftrightarrow (i,i+1)$ не беспорядок в τ
- \triangleright (i,k) при $k \notin \{i,i+1\}$ беспорядок в $\sigma \Leftrightarrow (i+1,k)$ беспорядок в τ
- $\triangleright (i+1,k)$ при $k \not\in \{i,i+1\}$ беспорядок в $\sigma \Leftrightarrow (i,k)$ беспорядок в τ
- $\triangleright (k,l)$ при $k,l \not\in \{i,i+1\}$ беспорядок в $\sigma \Leftrightarrow (k,l)$ беспорядок в τ

Таким образом, $N(\tau) = N(\sigma) \pm 1$, и утверждение доказано. Если же $j \neq i+1$, то разложим (i,j) в произведение нечетного числа транспозиций вида (k,k+1), тогда, применяя утверждение нечетное число раз, снова получим требуемое.

Следствие. Если перестановка $\sigma \in S_n$ представима в виде произведения k транспозиций, то $\operatorname{sgn} \sigma = (-1)^k$.

Следствие. При $n \geqslant 2$ число четных и нечетных перестановок в S_n одинаково.

Доказательство. Отображение $\sigma \mapsto (1,2)\sigma$ биективно отображает четные перестановки в нечетные.

Утверждение 8.4. Для любых $\sigma, \tau \in S_n$ выполнено следующее равенство:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}\sigma\operatorname{sgn}\tau$$

Доказательство. Разложим σ и τ в произведения k и l транспозиций соответственно. Тогда выполнены равенства $\operatorname{sgn} \sigma = (-1)^k, \operatorname{sgn} \tau = (-1)^l$ и $\operatorname{sgn}(\sigma \tau) = (-1)^{k+l}$.

Следствие. Множество A_n всех четных перестановок образует подгруппу в S_n .

Доказательство. Проверим свойства подгруппы для A_n :

- $\triangleright A_n \neq \emptyset$, поскольку id $\in A_n$
- \triangleright Если $\sigma, \tau \in A_n$, то $\sigma \tau \in A_n$
- ightharpoonup Если $\sigma \in A_n$, то $\sigma^{-1} \in A_n$, поскольку $\operatorname{sgn} \sigma \operatorname{sgn} \sigma^{-1} = \operatorname{sgn} \operatorname{id} = 1$

8.2 Полилинейность и кососимметричность

Определение 8.6. Пусть V — линейное пространство над F. Отображение $g:V^n\to F$ называется *полилинейным*, если оно линейно по каждому из n аргументов.

Определение 8.7. Пусть V — линейное пространство над F. Отображение $g:V^n \to F$ называется кососимметричным, если для любых позиций аргументов $i,j \in \{1,\ldots,n\},$ i < j, выполнены следующие условия:

1.
$$\forall \overline{v_i}, \overline{v_j} \in V : g(\dots, \overline{v_i}, \dots, \overline{v_j}, \dots) = -g(\dots, \overline{v_j}, \dots, \overline{v_i}, \dots)$$

2.
$$\forall \overline{v} \in V : g(\ldots, \overline{v}, \ldots, \overline{v}, \ldots) = 0$$

Замечание. Если свойство (1) выполнено, то свойство (2) выполняется автоматически при char $F \neq 2$. При этом свойство (1) следует из свойства (2), если отображение g полилинейно. Зафиксируем произвольные $\overline{v_i}, \overline{v_j} \in V$, тогда, опуская многоточия в записях вида $g(\ldots, \overline{v_i}, \ldots, \overline{v_j}, \ldots)$, имеем:

$$0 = g(\overline{v_i} + \overline{v_j}, \overline{v_i} + \overline{v_j}) = g(\overline{v_i}, \overline{v_i}) + g(\overline{v_i}, \overline{v_j}) + g(\overline{v_j}, \overline{v_i}) + g(\overline{v_j}, \overline{v_j}) = g(\overline{v_i}, \overline{v_j}) + g(\overline{v_j}, \overline{v_i})$$

Значит, $g(\overline{v_i}, \overline{v_j}) = -g(\overline{v_j}, \overline{v_i}).$

Утверждение 8.5. Пусть отображение $g: V^n \to F$ кососимметрично. Тогда для любой перестановки $\sigma \in S_n$ и любых векторов $\overline{v_1}, \ldots, \overline{v_n} \in V$ выполнено следующее равенство:

$$g(\overline{v_{\sigma(1)}}, \dots, \overline{v_{\sigma(n)}}) = (-1)^{\sigma} g(\overline{v_1}, \dots, \overline{v_n})$$

Доказательство. Разложим σ в произведение k транспозиций, тогда при применении транспозиций последовательно и значение функции, и перестановка будут каждый раз менять знак.

Теорема 8.1. Пусть V — линейное пространство над F, $e = (\overline{e_1}, \dots, \overline{e_n})$ — базис в V, $C \in F$. Тогда существует единственное полилинейное кососимметричное отображение $g: V^n \to F$ такое, что $g(\overline{e_1}, \dots, \overline{e_n}) = C$. Более того, если $(\overline{v_1}, \dots, \overline{v_n}) = (\overline{e_1}, \dots, \overline{e_n})A$ для некоторой матрицы $A = (a_{ij}) \in M_n(F)$, то выполнено следующее равенство:

$$g(\overline{v_1}, \dots, \overline{v_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Доказательство. Покажем сначала, что отображение задается не более, чем однозначно. Действительно, если g удовлетворяет условиям теоремы, то для любого набора $(\overline{v_1}, \ldots, \overline{v_n})$

такого, что $(\overline{v_1},\ldots,\overline{v_n})=(\overline{e_1},\ldots,\overline{e_n})A,\ A=(a_{ij})\in M_n(F)$, выполнены следующие равенства:

$$g(\overline{v_1}, \dots, \overline{v_n}) = g\left(\sum_{i=1}^n a_{i1}\overline{e_i}, \sum_{i=1}^n a_{i2}\overline{e_i}, \dots, \sum_{i=1}^n a_{in}\overline{e_i}\right) =$$

$$= \sum_{i_1, \dots, i_n \in \{1, \dots, n\}} a_{i_11}a_{i_22} \dots a_{i_nn}g(\overline{e_{i_1}}, \overline{e_{i_2}}, \dots, \overline{e_{i_n}})$$

В силу кососимметричности, слагаемые, в которых у g совпадают хотя бы два аргумента, обращаются в 0, значит, остаются только слагаемые, где все i_1, \ldots, i_n различны. Каждому такому набору индексов соответствует перестановка $\sigma \in S_n$ такая, что $\sigma(i_j) = j$ для всех $j \in \{1, \ldots, n\}$, и это соответствие биективно. Тогда:

$$g(\overline{v_1}, \dots, \overline{v_n}) = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} g(\overline{e_{\sigma^{-1}(1)}}, \overline{e_{\sigma^{-1}(2)}}, \dots, \overline{e_{\sigma^{-1}(1)}}) =$$

$$= \sum_{\sigma \in S_n} (-1)^{\sigma^{-1}} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} g(\overline{e_1}, \dots, \overline{e_n})$$

Итак, если искомое отображение g существует, то обязано следующий вид:

$$g(\overline{v_1}, \dots, \overline{v_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Проверим, что полученное отображение удовлетворяет всем условиям:

⊳ Проверим линейность g только по первому аргументу, поскольку линейность по остальным аргументам проверяется аналогично. Для этого заметим, что для любого набора $(\overline{v_1}, \ldots, \overline{v_n})$ такого, что $(\overline{v_1}, \ldots, \overline{v_n}) = (\overline{e_1}, \ldots, \overline{e_n})A$, $A = (a_{ij}) \in M_n(F)$, выполнено следующее равенство:

$$g(\overline{v_1},\ldots,\overline{v_n}) = \sum_{i=1}^n a_{i1}U_i$$

Значения U_1, \ldots, U_n не зависит от первого столбца матрицы A, тогда, в силу линейности сопоставления координат, отображение g линейно по первому столбцу A.

- \triangleright Уже было доказано, что в случае, если g полилинейно, достаточно проверять свойство (2) из определения кососимметричности. Пусть в матрице A совпадают столбцы a_{*i} и a_{*j} , $i, j \in \{1, \ldots, n\}$, $i \neq j$. Разобьем все перестановки в S_n на пары $(\sigma, (i, j)\sigma)$ и заметим, что значения слагаемых, соответствующих таким перестановкам, равны по модулю и противоположны по знаку, поэтому их сумма равна нулю.
- \triangleright Проверим, что $g(\overline{e_1}, \dots, \overline{e_n}) = C$. Поскольку e = eE, то, поэтому единственная перестановка, которой будет соответствовать ненулевое слагаемое в определении отображения q— это id, тогда:

$$g(\overline{e_1}, \dots, \overline{e_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} = C(-1)^{id} a_{11} a_{22} \dots a_{nn} = C$$

Получено требуемое.

Определение 8.8. Пусть $A = (a_{ij}) \in M_n(F)$. Определителем, или детерминантом, матрицы A называется следующая величина:

$$\det A := \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Замечание. Определитель полилинеен и кососимметричен как функция столбцов матрицы. Отметим также, что отображение g из теоремы выше можно переписать в виде $g(\overline{v_1}, \ldots, \overline{v_n}) = C \det A$, где $(\overline{v_1}, \ldots, \overline{v_n}) = (\overline{e_1}, \ldots, \overline{e_n})A$, $A \in M_n(F)$, причем C = g(E).

8.3 Свойства определителя

Теорема 8.2. Для любой матрицы $A \in M_n(F)$ выполнено равенство $\det A^T = \det A$. Доказательство. Имеют место следующие равенства:

$$\det A = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$
$$\det A^T = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$$

Заменим в выражении для $\det A^T$ переменную суммирования σ на $\tau := \sigma^{-1}$, тогда:

$$\det A^T = \sum_{\tau \in S_n} (-1)^{\tau^{-1}} a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)} = \sum_{\tau \in S_n} (-1)^{\tau} a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)} = \det A \qquad \Box$$

Следствие. Определитель полилинеен и кососимметричен как функция строк матрицы.

Утверждение 8.6. Пусть $A \in M_n(F)$ — верхнетреугольная матрица, имеющая следующий вид:

$$A = \begin{pmatrix} a_{11} & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$

 $Tor \partial a \det A = a_{11}a_{22}\dots a_{nn}.$

Доказательство. Если в перестановке $\sigma \in S_n$ существует такой индекс $i \in \{1, \dots, n\}$, что $\sigma(i) < i$, то соответствующее слагаемое в формуле определителя равно нулю, поскольку $a_{i\sigma(i)} = 0$. Единственная перестановка, в которой нет такого индекса, — это id, поэтому $\det A = a_{11}a_{22}\dots a_{nn}$.

Замечание. Поскольку определитель не меняется при транспонировании, для нижнетреугольных матриц верно аналогичное утверждение.

Утверждение 8.7. Пусть $A \in M_n(F)$, $L \in M_n(F)$ – элементарная матрица. Тогда выполнено равенство $\det AL = \det A \det L$.

Доказательство. Рассмотрим все три случая:

 \triangleright Если $L = D_{ij}(\alpha) = E + \alpha E_{ji}$ — матрица прибавления к *i*-му столбцу *j*-го, умноженного на α , то det L = 1, и, в силу полилинейности определителя:

$$\det AL = \det (a_{*1}, \dots, a_{*i} + \alpha a_{*j}, \dots, a_{*j}, \dots a_{*n}) =$$

$$= \det (a_{*1}, \dots, a_{*i}, \dots, a_{*j}, \dots a_{*n}) + \alpha \det (a_{*1}, \dots, a_{*j}, \dots a_{*j}, \dots a_{*n}) = \det A \det L$$

 $E > L = T_i(\lambda) = E + (\lambda - 1)E_{ii}$ — матрица умножения *i*-го столбца на λ , тогда det $L = \lambda$, и, в силу полилинейности определителя:

$$\det AL = \det (a_{*1}, \dots, \lambda a_{*i}, \dots a_{*n}) = \lambda \det (a_{*1}, \dots, a_{*i}, \dots a_{*n}) = \det A \det L$$

 $P_{ij} = E - (E_{ii} + E_{jj}) + (E_{ij} + E_{ji})$ — матрица перестановки *i*-го и *j*-го столбца местами, тогда det L = -1, и, в силу кососимметричности определителя:

$$\det AL = -\det A = \det A \det L$$

Во всех трех случаях требуемое равенство выполнено.

Замечание. Поскольку определитель не меняется при транспонировании, аналогичное утверждение справедливо для элементарных преобразований строк.

Следствие. Получен алгоритм вычисления определителя: следует привести матрицу к ступенчатому виду, то есть, в частности, верхнетреугольному виду, найти определитель полученной матрицы и матриц элементарных преобразований, тогда результатом будет произведение найденных определителей.

Теорема 8.3. Пусть $A \in M_n(F)$. Тогда A невырожденна $\Leftrightarrow \det A \neq 0$.

Доказательство. Приведем матрицу к ступенчатому виду A'. Поскольку определители элементарных матриц отличны от нуля, то det $A \neq 0 \Leftrightarrow \det A' \neq 0$. Если A невырожденна, то в A' ровно n ступенек, и det $A' \neq 0$. Если же A вырожденна, то в A' менее n ступенек, значит, в A' есть нулевой элемент на главной диагонали, и det A' = 0.

Теорема 8.4. Для любых матриц $A, B \in M_n(F)$ выполнено следующее равенство:

$$\det AB = \det A \det B$$

Первый способ доказательства. Если хотя бы одна из матриц A, B вырожденна, то ее определитель равен нулю, и, кроме того, $\operatorname{rk} AB < n$, тогда $\det AB = 0 = \det A \det B$. Если же A и B невырожденны, то они представимы в виде произведений элементарных матриц. Пусть $A = U_1 \dots U_k, \ B = S_1 \dots S_l,$ тогда:

$$\det AB = \prod_{i=1}^{k} \det U_i \prod_{i=1}^{l} \det S_i = \det A \det B$$

Второй способ доказательства. Зафиксируем матрицу $A \in M_n(F)$ и рассмотрим функцию $f: M_n(F) \to F$ такую, что $f(X) := \det AX$ для любой матрицы $X \in M_n(F)$. Тогда f является полилинейной и кососимметричной функцией от столбцов матрицы X, и, по теореме о полилинейной и кососимметричной функции, $f(X) = f(E) \det X = \det A \det X$. \square

Теорема 8.5 (об определителе с углом нулей). Пусть матрица $A \in M_n(F)$ имеет следующий вид:

$$A = \begin{pmatrix} B & C \\ \hline 0 & D \end{pmatrix}, B \in M_k(F), D \in M_{n-k}(F)$$

 $Tor \partial a \det A = \det B \det D.$

Доказательство. Рассмотрим функцию $f: M_k(F) \to F$ такую, что для любой матрицы $X \in M_k(F)$ выполнено следующее равенство:

$$f(X) := \left| \frac{X \mid C}{0 \mid D} \right|$$

Заметим, что функция f является полилинейной и кососимметричной функцией от столбцов матрицы X, тогда:

$$f(X) = f(E) \det X = \left| \frac{E \mid C}{0 \mid D} \right| \det X$$

Аналогично, рассмотрим функцию $g:M_{n-k}(F)\to F$ такую, что для любой матрицы $Y\in M_{n-k}(F)$ выполнено следующее равенство:

$$g(Y) := \left| \frac{E \mid C}{0 \mid Y} \right|$$

Заметим, что функция g является полилинейной и кососимметричной функцией от строк матрицы Y, тогда:

$$g(X) = g(E) \det Y = \left| \frac{E \mid C}{0 \mid E} \right| \det Y = \det Y$$

Итак, $\det A = f(B) = \det Bg(D) = \deg B \det D$.

Определение 8.9. Пусть $A \in M_n(F)$. *Минором* порядка k матрицы A называется определитель некоторой ее подматрицы размера $k \times k$.

Замечание. Теорему о базисном миноре можно переформулировать так: ранг матрицы $A \in M_{n \times k}(F)$ равен наибольшему из порядков его ненулевых миноров.

Определение 8.10. Пусть $A = (a_{ij}) \in M_n(F), i, j \in \{1, \dots, n\}.$

- ightharpoonup Минором, ∂ ополнительным к элементу a_{ij} , называется величина $M_{ij} := \det A'$, где матрица A' получена из A удалением i-й строки и j-го столбца
- ightharpoonup Алгебраическим дополнением к элементу a_{ij} называется величина $A_{ij}:=(-1)^{i+j}M_{ij}$

Утверждение 8.8. Пусть матрица $A \in M_n(F)$ имеет следующий вид:

$$A = \begin{pmatrix} * & * & * \\ \hline 0 & a_{ij} & 0 \\ \hline * & * & * \end{pmatrix}$$

 $Tor \partial a \det A = a_{ij} A_{ij}$.

$$A' = \begin{pmatrix} a_{ij} & 0 \\ * & M'_{ij} \end{pmatrix}, M'_{ij}$$
— подматрица, дополнительная к a_{ij}

Такого результата можно добиться с помощью i-1 транспозиции строк и j-1 транспозиции столбцов. Значит, $\det A = (-1)^{i+j-2} \det A' = (-1)^{i+j} \det A'$. Тогда, по теореме об определителе с углом нулей, $\det A = (-1)^{i+j} a_{ij} M_{ij} = a_{ij} A_{ij}$.

Теорема 8.6 (о разложении по строке или столбцу). Пусть $A = (a_{ij}) \in M_n(F)$. Тогда выполнены следующие равенства:

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Доказательство. Докажем без ограничения общности вторую формулу, поскольку первая может быть получена из второй транспонированием. Представим i-ю строку матрицы A в следующем виде:

$$a_{i*} = (a_{i1}, a_{i2}, \dots, a_{in}) = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, \dots, 0) + \dots + (0, 0, \dots, a_{in})$$

Тогда, в силу линейности определителя как функции от строк A и предыдущего утверждения, получим:

$$det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

Теорема 8.7 (правило Крамера). Пусть $A \in M_n(F)$, причем $\Delta := \det A \neq 0$, $b \in F^n$. Для кажедого $i \in \{1, \ldots, n\}$ положим $\Delta_i := \det(a_{*1}, \ldots, a_{*i-1}, b, a_{*i+1}, \ldots, a_{*n})$. Тогда система Ax = b имеет единственное решение x, и это решение имеет следующий вид:

$$x = \left(\frac{\Delta_1}{\Delta}, \dots, \frac{\Delta_n}{\Delta}\right)^T$$

Доказательство. Матрица A невырожденна и потому обратима, тогда $x:=A^{-1}b$ — единственное решение системы. Заметим, что для этого решения и каждого $i\in\{1,\ldots,n\}$ выполнены следующие равенства:

$$\Delta_{i} = \det \left(a_{*1}, \dots, a_{*i-1}, \sum_{j=1}^{n} x_{j}(a_{*j}), a_{*i+1}, \dots, a_{*n} \right) =$$

$$= \sum_{j=1}^{n} x_{j} \det \left(a_{*1}, \dots, a_{*i-1}, a_{*j}, a_{*i+1}, \dots, a_{*n} \right) =$$

$$= x_{i} \det \left(a_{*1}, \dots, a_{*i-1}, a_{*i}, a_{*i+1}, \dots, a_{*n} \right) = x_{i} \Delta$$

Таким образом, для любого $i \in \{1, \dots, n\}$ выполнено $x_i = \frac{\Delta_i}{\Delta}$.

Утверждение 8.9. Пусть $A \in M_n(F)$, $\Delta := \det A = 0$, но существует $i \in \{1, ..., n\}$ такое, что $\Delta_i \neq 0$. Тогда система несовместна.

Доказательство. Поскольку $\Delta = 0$, то A вырожденна, то есть $\mathrm{rk}\, A < n$. При этом существует $i \in \{1,\ldots,n\}$ такой, что $\Delta_i \neq 0$, поэтому в (A|b) существует система из n линейно независимых столбцов, тогда $\mathrm{rk}(A|b) > \mathrm{rk}\, A$. Значит, по теореме Кронекера-Капелли, система несовместна.

Следствие (формула Крамера). Пусть $A = (a_{ij}) \in M_n(F)$ — обратимая матрица, и пусть $B = (b_{ij}) \in M_n(F)$ — обратная к ней матрица. Тогда для любых $i, j \in \{1, \dots, n\}$ выполнено

следующее равенство:

$$b_{ij} = \frac{A_{ji}}{\det A}$$

Доказательство. Каждый столбец b_{*j} матрицы B является единственным решением системы линейных уравнений $Ab_{*j}=e_{*j}$, где $e_{*j}-j$ -й столбец единичной матрицы. Тогда:

$$b_{ij} = \frac{\det(a_{*1}, \dots, a_{*i-1}, e_{*j}, a_{*i+1}, \dots, a_{*n})}{\det A}$$

По уже доказанному утверждению, определитель в выражении выше равен A_{ii} .

Теорема 8.8. Пусть F — поле, причем для любого элемента $\alpha \in F$ выполнено $\alpha^2 \neq -1$. Рассмотрим следующее множество матрии:

$$K := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in M_2(F) \right\}$$

Тогда K является полем, в которм существует $i \in K$ такое, что $i^2 = -1$. Кроме того, K содержит подполе, изоморфное F.

Доказательство.

- 1. Непосредственная проверка позволяет убедиться, что (K,+) является подгруппой в $(M_2(F),+)$, причем K замкнуто относительно умножения и содержит нейтральный относительно умножения элемент матрицу $E \in M_2(F)$. Значит, K является подкольцом в $M_2(F)$.
- 2. Покажем теперь, что K- поле. Для этого следует проверить, что $K^*=K\backslash\{0\}$. Действительно, если $a,b\in F$, и эти элементы не равны нулю одновременно, то без ограничения общности $b\neq 0$, тогда:

$$\begin{vmatrix} a & b \\ -b & a \end{vmatrix} = a^2 + b^2 = b^2(1 + (ab^{-1})^2) \neq 0$$

Итак, согласно формуле Крамера, матрица выше обратима, причем выполнено следующее равенство:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in K$$

- 3. Поле K содержит подполе $F' := \{aE : a \in F\}$, изоморфное полю F. Легко проверить, что операции с его элементами этого подполя соответствуют операциям с элементами поля F.
- 4. В поле K есть элемент i следующего вида:

$$i := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in K$$

Тогда $i^2 = (-1)E$, и матрица (-1)E соответствует числу -1 в подполе F'.

Получено требуемое.

Следствие. Если $F = \mathbb{R}$, то полученное поле изоморфно \mathbb{C} , причем изоморфизм имеет следующий вид:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$$

Замечание. В теореме выше можно считать поле F подполем в K, тогда K-алгебра над F, причем $\dim K=2$.

9 Основы теории групп

9.1 Изоморфизмы групп

Утверждение 9.1. Невырожденные матрицы порядка n над полем F образуют группу по умножению.

Доказательство. Проверим непосредственно свойства группы:

- \triangleright Умножение матриц в $M_n(F)$ ассоциативно.
- ightharpoonup Матрица $E_n \in M_n(F)$ невырожденная, и она является нейтральным элементом по умножению.
- ⊳ Если A, B невырожденные матрицы порядка n, то AB тоже, поскольку $\det AB = \det A \det B \neq 0$. Кроме того, матрицы A и B обратимы, и матрицы A^{-1}, B^{-1} тоже невырожденные.

Определение 9.1. Пусть F — поле, $n \in \mathbb{N}$.

- \triangleright Группа невырожденных матриц порядка n над F обозначается через $\mathrm{GL}_n(F)$
- \triangleright Группа невырожденных матриц порядка n над F с определителем, равным 1, обозначается через $\mathrm{SL}_n(F)$

Утверждение 9.2. $\mathrm{GL}_n(\mathbb{Z}):=\{A\in M_n(\mathbb{Z}):\exists A^{-1}\in M_n(\mathbb{Z})\}$ — это группа матриц из $M_n(\mathbb{Z})$ с определителем, равным ± 1 .

Доказательство.

- ightharpoonup Если $A,A^{-1}\in \mathrm{GL}_n(\mathbb{Z}),$ то $\det A\det A^{-1}=\det E=1,$ откуда $\det A=\det A^{-1}=\pm 1$
- ightharpoonup Если $\det A=\pm 1$, то, по формуле Крамера, $A^{-1}\in M_n(\mathbb{Z})$, и, аналогично, $\det A^{-1}=\pm 1$, тогда $A^{-1}\in \mathrm{GL}_n(\mathbb{Z})$

Определение 9.2. Порядком группы G называется мощность множества G.

Определение 9.3. Гомоморфизмом групп G и H называется отображение $\varphi: G \to H$ такое, что для любых $a,b \in G$ выполнено равенство $\varphi(ab) = \varphi(a)\varphi(b)$. Изоморфизмом групп G и H называется биективный гомоморфизм $\varphi: G \to H$. Пространства G и H называются изоморфными, если между ними существует изоморфизм. Обозначение $-G \cong H$.

Замечание. Аналогичным образом можно определить изоморфизм и для других алгебраических структур, таких как кольцо или алгебра.

Утверждение 9.3. Пусть $\varphi: G \to H$ — гомоморфизм групп, тогда:

$$\triangleright \varphi(e) = e$$

$$\forall a \in G : \varphi(a^{-1}) = (\varphi(a))^{-1}$$

Доказательство.

$$\triangleright \varphi(e) = \varphi(ee) = \varphi(e)\varphi(e) \Rightarrow \varphi(e) = e$$

$$\triangleright \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1}\varphi(e) = (\varphi(a))^{-1}$$

Пример. Гомоморфизмом групп $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+)$ является отображение $\varphi:\mathbb{Z}\to\mathbb{Z}_n$ такое, что для любого $a\in\mathbb{Z}$ выполнено $\varphi(a):=\overline{a}$.

Теорема 9.1 (Кэли). Пусть G — конечная группа, |G| = n. Тогда существует подгруппа $H \leq S_n$ такая, что $H \cong G$, то есть группа G вкладывается в группу S_n .

Доказательство. Рассмотрим группу S(G) перестановок множества G, тогда $S(G) \cong S_n$, поскольку имеет место биекция между G и $\{1,\ldots,n\}$. Найдем требуемую подгруппу в S(G). Для каждого элемента $a \in G$ определим перестановку $\sigma_a \in S(G)$ такую, что для любого $b \in G$ выполнено $\sigma_a(b) := ab$. Положим $H := \{\sigma_a \in S(G) : a \in G\}$. Проверим, что $H \leq S(G)$:

- $\triangleright H \neq \emptyset$, поскольку $\sigma_e = \mathrm{id} \in H$
- $\triangleright \ \forall a, b \in G : \sigma_a \circ \sigma_b = \sigma_{ab} \in H$
- $\triangleright \forall a \in G : (\sigma_a)^{-1} = \sigma_{a^{-1}} \in H$

Определим отображение $\varphi: G \to H$ для каждого $a \in G$ как $\varphi(a) := \sigma_a$. Очевидно, это гомоморфизм, причем сюръективный. Он также инъективен, поскольку для различных $a,b \in G$ выполнено $\sigma_a(e) \neq \sigma_b(e)$. Таким образом, $G \cong H \leqslant S(G) \cong S_n$.

9.2 Циклические группы

Утверждение 9.4. Пусть G — группа, $\{H_{\alpha}\}_{{\alpha}\in A}$ — произвольное семейство подгрупп в G . Тогда:

$$\bigcap_{\alpha \in A} H_{\alpha} \leqslant G$$

Доказательство. Положим $K:=\bigcap_{\alpha}H_{\alpha}$ и проверим свойства подгруппы:

- $\triangleright K \neq \emptyset$, поскольку $e \in K$
- ightharpoonup Если $a,b\in K$, то $a,b\in H_{\alpha}$ для любого $\alpha\in A$, тогда $ab\in H_{\alpha}$ для любого $\alpha\in A$, откуда $ab\in K$
- ightharpoonup Аналогично предыдущему пункту, если $a \in K$, то $a^{-1} \in K$

Определение 9.4. Пусть G—группа, $X \subset G$. Подгруппой, порожеденной множеством X, называется следующая подгруппа:

$$\langle X \rangle := \bigcap_{H \leqslant G, X \subset H} H$$

Замечание. $\langle X \rangle$ — наименьшая по включению подгруппа в G, содержащая множество X.

Пример. Рассмотрим несколько примеров порождающих множеств групп:

$$\triangleright \mathbb{Z} = \langle 1 \rangle$$

$$\triangleright 2\mathbb{Z} = \langle 2 \rangle$$

 $\triangleright \{e\} = \langle \varnothing \rangle$ для любой группы G с нейтральным элементом e

Утверждение 9.5. Для любого $n \in \mathbb{N}$ выполнено равенство $S_n = \langle (1,2), (1,\ldots,n) \rangle$.

Доказательство. Уже было доказано, что любую перестановку $\sigma \in S_n$ можно представить в виде произведения транспозиций вида (i,i+1). В то же время, любую такую транспозицию можно представить в виде произведения двух перестановок из условия. Для этого сначала циклическими сдвигами следует поместить элементы i,i+1 на позиции 1,2, затем поменять их местами и циклическими сдвигами вернуть на свои позиции.

Утверждение 9.6. Пусть G — группа, $X \subset G$. Тогда выполнено следующее равенство:

$$\langle X \rangle = \{x_1 \dots x_n : x_i \in X \text{ usu } x_i^{-1} \in X\}$$

Доказательство. Обозначим правую часть равенства через K.

- \supset Для любой подгруппы $H \leqslant G$, такой, что $X \subset H$, каждый из множителей x_i содержится в H, поэтому и $x_1 \dots x_n \in H$. Значит, $K \subset \langle X \rangle$.
- С Множество K непусто потому, что пустым произведением считается элемент e, а свойства замкнутости множества K относительно умножения и взятия обратного элемента, очевидно, выполнены. Значит, $K \leq G$, причем $X \subset K$, поэтому $\langle X \rangle \subset K$.

Замечание. В любой группе G можно определить степень $n \in \mathbb{Z}$ произвольного элемента $a \in G$, отличную от нулевой и первой:

- \triangleright Если n>0, то a^n- это произведение n элементов a
- $\,\rhd\,$ Если n<0, то a^n это произведение |n| элементов a^{-1}

Справедливо свойство, что для любых $k, n \in \mathbb{Z}$ выполнено $a^k a^n = a^{k+n}$. В этом можно убедиться непосредственной проверкой, перебрав все случаи знаков чисел k и n.

Определение 9.5. Порядком элемента a называется наименьшее $n \in \mathbb{N}$ такое, что $a^n = e$. Если такого n не существует, то порядок считается равным ∞ . Обозначение — ord a.

Утверждение 9.7. Пусть $G-\mathit{rpynna},\ a\in G,\ \mathrm{ord}\ a=n.$ Тогда $a^k=e\Leftrightarrow n\mid k.$

Доказательство. Разделим k на n с остатком, то есть представим его в виде k = qn + r, $q \in \mathbb{Z}, r \in \{0, \ldots, n-1\}$. Тогда $a^k = a^{qn+r} = (a^n)^q a^r = a^r$. Если $r \neq 0$, то $a^r \neq e$, иначе бы порядок a был меньше n, что противоречит условию. Значит, $a^k = e \Leftrightarrow r = 0 \Leftrightarrow n \mid k$. \square

Утверждение 9.8. Пусть $G - \epsilon pynna, a \in G$. Тогда ord $a = |\langle a \rangle|$.

Доказательство. Если ord $a=n\in\mathbb{N},$ то $\langle a\rangle=\{a^k:k\in\mathbb{Z}\}=\{e,a,\ldots,a^{n-1}\},$ поэтому $|\langle a\rangle|\leqslant n.$ Кроме того, все элементы различны e,a,\ldots,a^{n-1} . Действительно, если для

некоторых $r, s \in \{1, ..., n-1\}$, r < s выполнено $a^r = a^s$, то $a^{s-r} = e$, откуда s - r = 0 в силу минимальности порядка n. Значит, $|\langle a \rangle| = n$. Если же ord $a = \infty$, то для любых $\forall r, s \in \mathbb{Z}, r < s$, выполнено $a^r \neq a^s$ из аналогичных соображений, тогда $|\langle a \rangle| = \infty$.

Определение 9.6. Группа G называется $\mathit{циклической}$, если существует элемент $\exists a \in G$ такой, что $\langle a \rangle = G$.

Пример. Рассмотрим несколько примеров циклических групп:

- $\triangleright \mathbb{Z} = \langle 1 \rangle$
- $\triangleright \mathbb{Z}_n = \langle \overline{1} \rangle$

Теорема 9.2. Любые две циклических группы одного порядка изоморфны.

Доказательство. Пусть G — циклическая группа, $a \in G$, $G = \langle a \rangle$.

- $ightharpoonup \Pi$ усть $|G|=\infty$. Докажем, что тогда $G\cong \mathbb{Z}$. Рассмотрим отображение $\varphi:\mathbb{Z}\to G$, для каждого $k\in \mathbb{Z}$ имеющее вид $\varphi(k):=a^k$. Очевидно, это гомоморфизм, причем сюръективный. Докажем его инъективность. Пусть для некоторых $k,l\in \mathbb{Z}$ выполнено равенство $a^k=a^l$, тогда $a^{k-l}=e$, что возможно только при k=l. Таким образом, получен изоморфизм между \mathbb{Z} и G.
- ⊳ Пусть $|G| = n \in \mathbb{N}$. Докажем, что тогда $G \cong \mathbb{Z}_n$. Рассмотрим отображение $\varphi : \mathbb{Z}_n \to G$, для каждого $\overline{k} \in \mathbb{Z}_n$ имеющее вид $\varphi(\overline{k}) := a^k$. Отображение φ определено корректно, поскольку если $a^k = a^l$ для некоторых $k, l \in \mathbb{Z}$, то $a^{k-l} = e$, откуда $n \mid (k-l)$ и $\overline{k} = \overline{l}$. Очевидно тогда, что это гомоморфизм, причем инъективный в силу уже доказанного и сюръективный.

Замечание. Циклическая группа не более, чем счетна. Более того, любая конечнопорожденная группа не более, чем счетна, поскольку \mathbb{N}^k равномощно \mathbb{N} .

Теорема 9.3. Подгруппа циклической группы тоже является циклической группой.

Докажем более сильное утверждение и сразу опишем все возможные подгруппы циклической группы G.

- ⊳ Пусть $|G| = \infty$, тогда можно считать, что $G = \mathbb{Z}$. Пусть $H \leq \mathbb{Z}$. Если $H = \{0\}$, то группа H циклическая. Иначе H содержит ненулевые и, в частности, положительные числа. Пусть n наименьшее положительное число в H. Тогда, поскольку H группа, $\langle n \rangle = n\mathbb{Z} \leqslant H$. Теперь рассмотрим $k \in H$. Разделим k на n с остатком, то есть представим его в виде $k = qn + r, q \in \mathbb{Z}, r \in \{0, \dots, n-1\}$, тогда $r = k qn \in H$, и, в силу минимальности числа n, r = 0, то есть $n \mid k$. Значит, $H = n\mathbb{Z}$.
- ⊳ Пусть $|G| = n \in \mathbb{N}$, тогда можно считать, что $G = \mathbb{Z}_n$. Если $H = \{\overline{0}\}$, то группа H циклическая. Иначе H содержит ненулевые элементы. Пусть l наименьшее положительное число такое, что $\overline{l} \in H$. Тогда поскольку H группа, $\langle \overline{l} \rangle = l\mathbb{Z}_n \leqslant H$. Разделим n на l с остатком, то есть представим его в виде n = ql + r, где $q \in \mathbb{Z}$, $r \in \{0, \ldots, l-1\}$, тогда $r = n ql \in H$, и, в силу минимальности числа l, r = 0, то есть $l \mid n$. Из аналогичных соображений деления с остатком получим, что $H = l\mathbb{Z}_n$. \square

Утверждение 9.9. Пусть G — группа, $a \in G$, ord a = n. Тогда для любого $k \in \mathbb{N}$ выполнено следующее равенство:

$$\operatorname{ord} a^k = \frac{n}{(n,k)}$$

Доказательство. Пусть для некоторого $l \in \mathbb{N}$ выполнено $(a^k)^l = a^{kl} = e$. Разделим kl с остатком на n, то есть представим его в виде $kl = qn + r, \ q \in \mathbb{Z}, \ r \in \{0, \dots, n-1\},$ тогда $a^{kl} = (a^n)^q a^r = a^r$, поэтому если $r \neq 0$, то порядок ord a < n, что неверно. Значит, r = 0 и $n \mid kl$. Наименьшее число, одновременно кратное числам n и k—это [n,k], тогда $l = \frac{[n,k]}{k} = \frac{n}{(n,k)}$.

Замечание. Одна и та же группа может быть порождена множествами различной мощности. Например, $\mathbb{Z} = \langle 1 \rangle = \langle 2, 3 \rangle = \langle 6, 10, 15 \rangle$.

9.3 Смежные классы

Определение 9.7. Пусть G — группа, $A, B \subset G$. Определим следующие операции с множествами:

$$\triangleright AB := \{ab :\in A, b \in B\}$$

$$\triangleright A^{-1} := \{a^{-1} : a \in A\}$$

Замечание.

- ▶ Умножение множеств ассоциативно в силу ассоциативности умножения в G.
- ightharpoonup В общем случае неверно, что множество A^{-1} обратное к A, поскольку не всегда $AA^{-1}=\{e\}.$

Определение 9.8. Пусть G – группа, $H \leq G$, $a \in G$.

- \triangleright Левым смежсным классом элемента a по подгруппе H называется множество aH
- \triangleright Правым смежным классом элемента a по подгруппе H называется множество Ha

Множество левых смежных классов по подгруппе H в группе G обозначается через G/H, множество правых смежных классов — через $H\backslash G$.

Замечание. Если $a \in H$, то aH = H, поскольку H — группа.

Утверждение 9.10. Пусть G — группа, $H \leqslant G$, $a,b \in G$. Тогда следующие утверждения эквивалентны:

- 1. $aH \cap bH \neq \emptyset$
- 2. $b^{-1}a \in H$
- 3. aH = bH
- 4. $a \in bH$

Доказательство.

$$ho$$
 (1 \Rightarrow 2) По условию, $\exists h_1,h_2\in H: ah_1=bh_2$, откуда $b^{-1}a=h_2h_1^{-1}\in H$

- > (2 \Rightarrow 3) Поскольку H группа и $b^{-1}a \in H$, то $(b^{-1}a)H = H$, откуда aH = bH
- \triangleright (3 \Rightarrow 4) Заметим, что a=ae, поэтому $a\in aH=bH$
- \triangleright (4 \Rightarrow 1) Поскольку a=ae и $a\in bH$, то $a\in aH\cap bH$, следовательно, $aH\cap bH\neq\varnothing$

Замечание. Аналогичное утверждение для правых смежных классов будет верно, если заменить в формулировке второго пункта $b^{-1}a \in H$ на $ab^{-1} \in H$.

Теорема 9.4 (Лагранжа). Пусть G — конечная группа, $H \leqslant G$. Тогда выполнены следующие равенства:

$$|G| = |H||G/H| = |H||H\backslash G|$$

Доказательство. Если смежные классы в G пересекаются хотя бы по одному элементу, то они совпадают. Тогда, поскольку для любого $a \in G$ выполнено $a \in aH$, вся группа G разбивается на непересекающиеся смежные классы порядка |H|, откуда и следует требуемое равенство.

Замечание. Из аналогичных соображений можно показать, что $|G| = |H| \cdot |H \setminus G|$, тогда в случае, когда G — конечная группа, верно, что $|G/H| = |H \setminus G|$.

Следствие. Пусть G — конечная группа, $a \in G$. Тогда:

- 1. ord $a \mid |G|$
- 2. $a^{|G|} = e$

Доказательство.

- 1. По теореме Лагранжа, ord $a = |\langle a \rangle| ||G|$
- 2. Пусть ord a=k, тогда $k\mid |G|$ в силу пункта (1), откуда $a^{|G|}=e$

Следствие (малая теорема Ферма). Пусть p — простое число, $a \in \mathbb{Z}, p \nmid a$. Тогда $a^{p-1} \equiv_p 1$.

Доказательство. Рассмотрим группу $(\mathbb{Z}_p \setminus \{\overline{0}\}, \cdot), |\mathbb{Z}_p \setminus \{\overline{0}\}| = p-1,$ и применим пункт (2) следствия выше. Получим, что $\overline{a}^{p-1} = \overline{1}$.

Определение 9.9. Функцией Эйлера следующая функция $\varphi : \mathbb{N} \to \mathbb{N}$, для любого $n \in \mathbb{N}$ определенная следующим образом как $\varphi(n) := |\{a \in \mathbb{N} : a \leqslant n, (a, n) = 1\}|$

Замечание. Если $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$ — каноническое разложение числа $n\in\mathbb{N},\ n\geqslant 2,$ на простые множители, то выполнено равенство $\varphi(n)=n\big(1-\frac{1}{p_1}\big)\dots \big(1-\frac{1}{p_k}\big).$

Теорема 9.5 (Эйлера). Пусть $n \in \mathbb{N}$, $a \in \mathbb{Z}$, (a, n) = 1. Тогда $a^{\varphi(n)} \equiv_n 1$.

 \mathcal{A} оказательство. Рассмотрим группу (\mathbb{Z}_n^* , ·), тогда $\mathbb{Z}_n^* = \{\overline{b} \in \mathbb{Z}_n : b \in \mathbb{Z}, (b,n) = 1\}$ и $|\mathbb{Z}_n^*| = \varphi(n)$. Применим пункт (2) следствия выше и получим, что $\overline{a}^{|\mathbb{Z}_n^*|} = \overline{a}^{\varphi(n)} = \overline{1}$.

Утверждение 9.11. Пусть G — группа. Тогда $\forall H \leqslant G : |G/H| = |H \backslash G|$.

Доказательство. Сопоставление $aH \mapsto (aH)^{-1} = Ha^{-1}$ является биекцией, поскольку оно обратимо, из чего следует и сюръективность, и инъективность.

Определение 9.10. Пусть G — группа, $H \leq G$. Индексом подгруппы H в G называется величина $|G:H|:=|G/H|=|H\backslash G|$.