Estrutura de Dados - 1o. período de 2015

Segunda Avaliação à Distância

- 1. (2,0) Considere o conjunto de chaves $S=\{1,2,3,4,5,6,7\}$. Pede-se responder às seguintes questões relativas a S:
 - (a) Desenhar uma árvore binária de busca cheia, contendo os nós de S. Denote por T_1 esta árvore. Resposta:

(b) Desenhar uma árvore binária de busca zigue-zague, contendo os nós de S. Denote por T_2 esta árvore. Resposta:

- (c) Escrever os nós de T_1 em pré-ordem, pós-ordem e ordem simétrica Resposta:
 - Pré-ordem: 4, 2, 1, 3, 6, 5, 7.
 - Pós-ordem: 1, 3, 2, 5, 7, 6, 4.
 - Ordem simétrica: 1, 2, 3, 4, 5, 6, 7.
- (d) Escrever os nós de T_2 em pré-ordem, pós-ordem e ordem simétrica. Resposta:
 - Pré-ordem: 1, 2, 3, 4, 5, 6, 7.
 - Pós-ordem: 7, 6, 5, 4, 3, 2, 1.
 - Ordem simétrica: 1, 2, 3, 4, 5, 6, 7.

2. (2,0) Seja o conjunto de chaves $S = \{1,2,3,4\}$, que irá formar uma árvore binária de busca T. Desenhe todas as configurações possíveis que T pode assumir de modo que T seja também uma árvore AVL. Resposta:

- 3. (2,0) Seja T uma árvore B de ordem 3 e altura 3. Dê exemplos de configurações que T poderia assumir, nos seguintes casos:
 - (a) T tem número mínimo de chaves. Resposta:

(b) T tem número máximo de chaves. Resposta:

(c) T tem número mínimo de páginas, mas não de chaves. Resposta:

(d) T tem número máximo de páginas, mas não de chaves. Resposta:

4. (2,0) Responda F ou V, justificando:

(a) Seja T_1 um heap cuja raiz r tem prioridade igual a p. Seja T_2 o heap obtido de T_1 pela remoção de r, e seja T_3 o heap obtido de T_2 pela inserção de um nó com prioridade p em T_2 . Então T_1 e T_3 são idênticos.

Resposta: falso. Veja um contra-exemplo na figura a seguir.

(b) O algoritmo de ordenação *Heapsort* é estável.

Observação: Um algoritmo de ordenação é dito estável quando a ordem relativa de dois elementos de mesmo valor se mantém após a ordenação. Isto é, se a lista L a ser ordenada contém dois elementos e_1 e e_2 tais que $e_1 = L[i], \ e_2 = L[j], \ e_1 = e_2$ e i < j, após a ordenação teremos e_1 e e_2 ocupando células L[i'] e L[j'] tais que i' < j'.

Resposta: falso. Veja um contra-exemplo na figura a seguir. Seja T o heap da lista que se deseja ordenar. Os elementos 2 e 3 têm prioridade igual a 5. Para identificarmos na lista ordenada em que posição eles estão, iremos escrever na árvore T as prioridades como sendo 5a e 5b, respectivamente. Podemos ver na figura os passos do Heapsort até os nós de prioridade 5a e 5b estarem nas suas posições finais na lista ordenada. Nesta podemos ver que a ordem relativa dos elementos de prioridade 5a e 5b não se manteve. Observe que antes da ordenação L[2] = 5a e L[3] = 5b, já após a ordenação L[6] = 5a e L[5] = 5b.

- 5. (2,0) Suponha um conjunto S de 6 chaves, dispostos em uma tabela de dispersão T de tamanho 9, segundo uma função de dispersão h, onde o tratamento de colisões se realiza pelo método do encadeamento exterior. Determinar valores que as chaves devem possuir, bem como, escolher a função de dispersão h e descrever a tabela T, em cada caso, para que T obedeça, respectivamente, às seguintes condições:
 - (a) Não existem colisões.

Resposta: Seja $S = \{1, 2, 3, 4, 5, 6\}$ e h(x) = x.

(b) Existe exatamente uma colisão.

Resposta: Seja $S = \{1, 2, 3, 4, 5, 10\}$ e $h(x) = x \mod 9$.

(c) Existem exatamente duas colisões.

Resposta: Seja $S = \{1, 2, 3, 4, 10, 11\}$ e $h(x) = x \mod 9$.

(d) Todas as inserções de chaves, a partir da segunda, geram colisões. Resposta: Seja $S=\{10,19,28,37,46,55\}$ e $h(x)=x\ mod\ 9.$

