

COLUMBIA LIBRARIES OFFSITE

CU08760721

Go
STARRETT
DATA BOOK
for
MACHINISTS

STARRETT Books
VOLUME 11

Digitized by Google

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google™ books

<https://books.google.com>

ENGINEERING

D621.9 F 16

Columbia University
in the City of New York

LIBRARY

GIVEN BY

Publisher

Pages 7, 9, 10, 12, 16, 17, 30 (lower half), 32, 33, 35, 37, 38, 41, 42, 43, 50 (lower half), 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 72, 73, 74, 88, 99, 114, 115, 118 (lower half) 119, 121, 136, 156, 157, and 168 in this book are copyrighted by THE INDUSTRIAL PRESS, Publishers of MACHINERY'S Handbook, and reprinted with their permission.

Pages 50 (lower part), 72, 73, and 74 should have been credited to MACHINERY'S Handbook instead of to the "American Machinist's" Handbook.

THE STARRETT DATA BOOK *for* MACHINISTS

Volume II of The Starrett Books

COLLABORATING EDITORS

H. P. FAIRFIELD

*Assistant Professor of Machine Construction
Worcester Polytechnic Institute*

J. N. BETHEL

*Production Manager, The Taft-Peirce Mfg. Co.
Woonsocket, R. I.*

H. H. EDGE

*Factory Manager, The Locomobile Company
Bridgeport, Conn.*

J. C. SPENCE

*Superintendent, Norton Company
Worcester, Mass.*

PRICE, 75 CENTS.

PRICE, 75 CENTS

THE L. S. STARRETT COMPANY

The World's Greatest Toolmakers

ATHOL, MASSACHUSETTS

621.9

E. 13-17

Eugene R. R.

Gift of Mr. H. C. Starrett
Copyright 1918

THE L. S. STARRETT COMPANY

D

621.9
F 16

P R E F A C E

IT HAS been our endeavor to restrict this volume to a tabular presentation of information regarding machine-shop practice and the materials of manufacture. Little or no attempt has been made to explain the "why" or "how" of a statement.

We have assumed that the reader is already familiar with machines and tools and their uses, and the book is designed to help the machinist to a greater degree of efficiency. In this respect this work differs radically from Volume I of The Starrett Books, the Starrett Book for Machinists' Apprentices, which is essentially a book on "How to do it."

The collaborating editors were selected, not only because of the positions they hold and their knowledge of machine-shop work, but because each represents a different field with its own peculiar problems and methods, the aim of the publishers being to make the book of the greatest value to the largest possible number of practical machinists throughout the country.

THE L. S. STARRETT COMPANY

ATHOL, MASS.

THIS is a companion volume, or in a sense
a sequel, to The Starrett Book for Machinists'
Apprentices, a condensed index of which
will be found at the end of this book.

T H E S T A R R E T T D A T A B O O K
 Belting and Shafting

HORSEPOWER TRANSMITTED

Based on 180° arc of contact, using the best oak tanned leather

SINGLE BELT

Width of Belt in Inches	Speed in Feet per Minute									
	600	1200	1800	2400	3000	3600	4200	4800	5400	6000
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100
12	12	24	36	48	60	72	84	96	108	120
14	14	28	42	56	70	84	98	112	126	140
16	16	32	48	64	80	96	112	128	144	160

DOUBLE BELT

Width of Belt in Inches	Speed in Feet per Minute										
	400	800	1200	1600	2000	2400	2800	3200	3600	4000	5000
4	4	8	13	17	21	25	30	34	38	42	53
6	6	13	19	25	32	38	45	51	57	64	80
8	8	17	25	34	42	51	60	68	77	85	106
10	10	21	32	42	53	64	74	85	96	106	133
12	13	25	38	51	64	76	89	102	115	128	160
16	17	34	51	68	85	102	119	136	153	170	213
20	21	42	64	85	106	128	149	170	192	213	266
24	25	51	76	102	128	153	179	205	230	256	320
30	32	64	96	128	160	192	224	256	288	320	400
36	38	76	115	153	192	230	269	307	345	384	480
40	42	85	128	170	213	256	298	341	384	426	533

BELT LACES AND HOLES FOR LACED JOINTS

Light Lace

Width of Belt, Inches	Width of Light Lace, Inches	Number of Holes	Punch		Distance of Holes from End	
			Number	Diameter	First Row, Inches	Second Row, Ins.
1 -1 $\frac{3}{4}$	$\frac{1}{4}$	2 or 3	6	$\frac{11}{16}$	$\frac{3}{8}$	$\frac{3}{8}$
2 -2 $\frac{1}{2}$	$\frac{1}{8}$	3	6-7	$\frac{11}{16}-\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$
2 $\frac{3}{4}$ -3 $\frac{1}{4}$	$\frac{1}{8}$	5	7-8	$\frac{11}{16}-\frac{1}{4}$	$\frac{1}{2}$	1
3 $\frac{1}{2}$ -4 $\frac{1}{2}$	$\frac{3}{8}$	5	9	$\frac{11}{16}$	$\frac{3}{8}$	$1\frac{1}{8}$
5	$\frac{3}{8}$	7	9	$\frac{11}{16}$	$\frac{5}{8}$	$1\frac{1}{8}$

Medium Lace

Width of Belt, Inches	Width of Medium Lace, Ins.	Number of Holes	Punch		Distance of Holes from End	
			Number	Diameter	First Row, Inches	Second Row, Ins.
6	$\frac{3}{8}$	9	9-10	$\frac{11}{16}-\frac{1}{4}$	$\frac{3}{8}$	$1\frac{1}{4}$
8	$\frac{1}{2}$	11	11	$\frac{3}{8}$	$\frac{3}{4}$	$1\frac{3}{8}$
10	$\frac{1}{2}$	13	11	$\frac{3}{8}$	1	$1\frac{1}{4}$
12	$\frac{1}{2}$	15	11	$\frac{3}{8}$	1	$1\frac{1}{4}$
14	$\frac{1}{2}$	17	12	$\frac{11}{16}$	$1\frac{1}{4}$	2

Courtesy of The Graton & Knight Mfg. Co.

CIRCUMFERENTIAL SPEEDS OF PULLEYS IN FEET PER MINUTE

Diam. of Pulley in Inches	Revolutions per Minute											
	75	100	125	150	175	200	225	250	275	300	325	350
4	78	105	131	157	183	209	236	262	288	314	340	367
5	98	131	164	196	229	262	295	327	360	393	425	458
6	118	157	196	236	275	314	353	393	432	471	511	550
7	138	183	229	275	320	367	412	458	504	550	596	641
8	157	209	262	314	367	419	471	524	576	628	681	733
9	177	236	295	353	412	471	530	589	648	707	766	825
10	196	262	327	393	458	524	589	654	720	785	851	916
12	236	314	393	471	550	628	707	785	864	942	1021	1100
14	275	367	458	550	641	733	825	916	1008	1100	1191	1283
15	295	393	491	589	687	785	884	982	1080	1178	1276	1375
16	314	419	524	628	733	838	942	1047	1152	1257	1361	1466
18	353	471	589	707	825	942	1060	1178	1296	1414	1531	1649
20	393	524	654	785	916	1047	1178	1309	1440	1571	1702	1851
22	432	576	720	864	1008	1152	1296	1440	1584	1728	1872	2016
24	471	628	785	942	1100	1257	1414	1571	1728	1885	2042	2199
26	511	681	851	1021	1191	1361	1531	1702	1872	2042	2212	2382
28	550	733	916	1100	1283	1466	1649	1833	2016	2199	2382	2553
30	589	785	982	1178	1375	1571	1767	1964	2151	2356	2553	2752
32	628	838	1047	1257	1466	1675	1885	2094	2304	2513	2723	2932
34	668	900	1113	1335	1558	1780	2003	2225	2448	2670	2893	3115
36	707	942	1178	1414	1649	1885	2121	2356	2592	2827	3063	3299
38	746	995	1244	1492	1741	1990	2238	2487	2736	2985	3233	3482
40	785	1047	1309	1571	1833	2094	2356	2618	2880	3142	3403	3665

Courtesy of The
Graton & Knight Mfg. Co.

HORSEPOWER TRANSMITTED BY TURNED
STEEL LINESHAFTING

Diam. of Shaft in Inches	Number of Revolutions per Minute												
	100	125	150	175	200	225	250	300	350	400	450	500	600
1 1/2	3.7	4.7	5.6	6.6	7.5	8.4	9.4	11.2	13.1	15.0	16.9	18.8	22
1 5/8	4.2	5.3	6.4	7.4	8.5	9.5	10.6	12.7	14.8	17.0	19.0	21	25
1 7/8	4.8	5.9	7.1	8.3	9.5	10.7	11.9	14.3	16.6	19.0	21	24	28
1 9/16	5.3	6.7	8.0	9.3	10.7	12.0	13.4	16.0	18.7	21	24	27	32
1 1/4	5.9	7.4	8.9	10.4	11.9	13.4	14.9	17.9	21	24	27	30	36
1 1/2	6.6	8.2	9.9	11.5	13.2	14.8	16.5	19.8	23	26	30	33	40
1 5/16	7.3	9.1	11.0	12.8	14.7	16.5	18.3	22	26	29	33	37	44
1 11/16	8.1	10.0	12.1	14.1	16.1	18.2	20	24	28	32	36	40	48
2	8.9	11.1	13.3	15.6	17.8	20	22	27	31	35	40	44	53
2 1/16	9.8	12.3	14.7	17.2	19.6	22	24	29	34	39	44	49	59
2 1/8	10.6	13.3	16.0	18.6	21	24	27	32	37	43	48	53	64
2 3/16	11.6	14.6	17.5	20.0	23	26	29	35	41	47	52	58	70
2 1/4	12.6	15.8	19.0	22.0	25	28	32	38	44	51	57	63	76
2 5/16	13.7	17.2	21	24	27	31	34	41	48	55	62	69	82
2 3/8	14.9	18.6	22	26	30	33	37	45	52	60	67	74	89
2 7/16	16.0	20	24	28	32	36	40	48	56	64	72	80	96
2 1/2	17.4	22	26	30	35	39	43	52	61	69	78	87	104
2 9/16	18.7	23	28	33	37	42	47	56	66	75	84	94	112
2 5/8	20	25	30	35	40	45	50	60	71	80	90	100	120
2 11/16	21	27	32	38	43	48	54	65	76	86	97	108	129
2 3/4	23	29	35	40	46	52	58	69	81	92	104	115	138
2 7/16	25	31	37	43	49	56	62	74	87	99	111	124	148
2 1/8	26	33	40	46	53	59	66	79	92	105	119	132	158
2 13/16	28	35	42	49	56	63	70	84	99	113	127	141	169
3	30	37	45	52	60	67	75	90	105	120	135	150	180
3 1/8	34	42	51	59	68	76	85	102	119	136	152	170	203
3 3/16	38	48	57	67	76	86	95	114	134	153	172	191	229
3 5/8	43	53	64	75	85	96	107	128	150	171	192	213	256
3 1/4	48	60	72	83	95	107	119	143	167	190	214	238	286
3 5/16	53	66	79	93	106	119	132	159	185	211	238	265	317
3 3/4	59	73	88	103	117	132	146	176	205	234	264	293	351
3 7/16	65	81	97	113	129	145	161	194	226	258	291	322	387
4	71	89	107	125	142	160	178	213	249	284	320	356	427
4 1/8	78	98	117	136	156	176	195	235	273	312	351	390	468
4 1/4	85	107	128	149	170	192	213	256	298	341	385	426	511
4 3/8	93	116	139	163	186	210	233	279	326	372	419	466	559
4 1/2	102	127	152	178	203	228	253	305	356	405	456	507	610
4 5/8	110	138	165	193	220	247	275	330	385	440	495	550	660
4 3/4	119	149	179	209	238	268	298	357	416	476	537	595	714
4 7/8	129	161	193	226	258	290	322	387	452	516	581	646	775
5	139	174	208	244	278	313	347	417	486	557	625	695	835

STARRETT TOOLS FOR USE IN CONNECTION WITH BELTING AND SHAFTING

Steel Measuring Tape

In steel or leather cases, flush handle with push button release on opposite side. Graduated in English or Metric systems, as desired. Finished in black background, with bright steel figures and graduations with the foot figures before each inch mark, insuring quick and accurate reading. Bright background and black figures if desired. Lengths from 25 to 100 feet.

Improved Mercury Plumb Bob

Made from solid steel, bored and filled with mercury. Nickel plated and knurled. Points hardened and ground. Patented slotted neck for fastening string without knots, allowing bob to hang perfectly true.

Improved Level

In addition to regular parallel vial, the base has a cross level, insuring the accuracy of the level when in a canted position. The concave groove running the length of the base, with flat margin on either side, improves the seat for flat work and gives an absolutely true seat for shafting, etc.

Leveling Instrument

Light in weight and of simple construction. Tripod of iron, with telescoping extension legs, adjustable to any length. Light tube fitted with eye aperture and cross wires. Head is held to tripod with bolt and nut, so as to make it stationary at any given point.

For further information concerning these and other tools which may be used to advantage with Belting and Shafting, see pages 51 and 158 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

DIMENSIONS OF TWIST DRILLS AND GROOVING CUTTERS

Diam. <i>D</i>	Total Length <i>A</i>	No. of M.T. Shank	Length Flutes, <i>B</i>	Thick- ness at <i>C</i>	Width of Land, <i>E</i>	Total Clear- ance, <i>2T</i>	Cutter Dimensions			
							<i>W</i>	<i>r</i>	<i>R</i>	<i>F</i>
$\frac{1}{8}$	6 $\frac{1}{2}$	1	4	0.038	0.040	0.017	0.200	0.131	0.168	0.119
$\frac{1}{8}$	6 $\frac{1}{2}$	1	4	0.042	0.045	0.019	0.225	0.147	0.189	0.133
$\frac{1}{8}$	6 $\frac{1}{2}$	1	4 $\frac{1}{8}$	0.045	0.050	0.021	0.250	0.164	0.211	0.148
$\frac{1}{8}$	6 $\frac{1}{2}$	1	4 $\frac{1}{8}$	0.048	0.050	0.023	0.275	0.180	0.232	0.163
$\frac{3}{16}$	6 $\frac{1}{4}$	1	4 $\frac{1}{4}$	0.051	0.055	0.025	0.300	0.197	0.253	0.178
$\frac{3}{16}$	7	1	4 $\frac{3}{8}$	0.054	0.055	0.027	0.325	0.213	0.274	0.193
$\frac{3}{16}$	7 $\frac{1}{4}$	1	4 $\frac{3}{8}$	0.058	0.060	0.029	0.350	0.230	0.295	0.208
$\frac{3}{16}$	7 $\frac{1}{2}$	1	4 $\frac{7}{8}$	0.062	0.060	0.031	0.375	0.246	0.316	0.223
$\frac{1}{4}$	7 $\frac{3}{4}$	1	5	0.066	0.060	0.033	0.400	0.262	0.337	0.238
$\frac{1}{4}$	8 $\frac{1}{4}$	1	5 $\frac{3}{8}$	0.074	0.065	0.037	0.450	0.295	0.379	0.267
$\frac{1}{4}$	8 $\frac{3}{4}$	2	5 $\frac{3}{8}$	0.082	0.065	0.041	0.500	0.328	0.422	0.297
$\frac{1}{4}$	9 $\frac{1}{4}$	2	6	0.090	0.070	0.045	0.550	0.361	0.464	0.327
$\frac{5}{16}$	9 $\frac{3}{4}$	2	6 $\frac{3}{8}$	0.098	0.075	0.049	0.600	0.394	0.506	0.356
$\frac{5}{16}$	10	2	6 $\frac{3}{8}$	0.106	0.080	0.051	0.650	0.426	0.548	0.386
$\frac{5}{16}$	10 $\frac{1}{2}$	2	7	0.114	0.085	0.053	0.700	0.459	0.590	0.416
$\frac{5}{16}$	10 $\frac{1}{4}$	3	7	0.122	0.090	0.055	0.750	0.492	0.632	0.445
1	11	3	7 $\frac{1}{8}$	0.128	0.090	0.057	0.800	0.525	0.675	0.475
1 $\frac{1}{16}$	11 $\frac{1}{4}$	3	7 $\frac{3}{8}$	0.134	0.095	0.059	0.850	0.558	0.717	0.504
1 $\frac{1}{16}$	11 $\frac{1}{4}$	3	7 $\frac{7}{8}$	0.140	0.095	0.061	0.900	0.591	0.759	0.534
1 $\frac{1}{16}$	12	3	8 $\frac{1}{8}$	0.146	0.100	0.063	0.950	0.623	0.801	0.564
1 $\frac{1}{8}$	12 $\frac{1}{2}$	3	8 $\frac{1}{2}$	0.152	0.100	0.065	1.000	0.656	0.844	0.594
1 $\frac{1}{8}$	14 $\frac{1}{2}$	4	9 $\frac{1}{4}$	0.158	0.105	0.066	1.050	0.689	0.886	0.623
1 $\frac{1}{8}$	14 $\frac{1}{2}$	4	9 $\frac{1}{2}$	0.164	0.105	0.067	1.100	0.722	0.928	0.653
1 $\frac{1}{8}$	14 $\frac{1}{2}$	4	9 $\frac{3}{8}$	0.170	0.110	0.068	1.150	0.754	0.970	0.683
1 $\frac{1}{8}$	15	4	9 $\frac{3}{8}$	0.176	0.110	0.069	1.200	0.788	1.012	0.713
1 $\frac{1}{8}$	15 $\frac{1}{2}$	4	10	0.188	0.115	0.071	1.300	0.853	1.097	0.772
1 $\frac{1}{8}$	16	4	10 $\frac{1}{2}$	0.200	0.120	0.073	1.400	0.919	1.181	0.831
1 $\frac{1}{8}$	16 $\frac{1}{2}$	4	11	0.212	0.125	0.075	1.500	0.984	1.265	0.891
2	16 $\frac{1}{4}$	4	11	0.224	0.130	0.075	1.600	1.050	1.350	0.950
2 $\frac{1}{16}$	17	5	10 $\frac{1}{8}$	0.236	0.130	0.075	1.700	1.115	1.434	1.009
2 $\frac{1}{16}$	17 $\frac{1}{2}$	5	10 $\frac{1}{4}$	0.244	0.135	0.075	1.800	1.181	1.518	1.069
2 $\frac{1}{16}$	18	5	10 $\frac{3}{8}$	0.252	0.135	0.075	1.900	1.247	1.603	1.128
2 $\frac{1}{16}$	19	5	11 $\frac{1}{8}$	0.260	0.140	0.075	2.000	1.313	1.687	1.187
2 $\frac{1}{16}$	19 $\frac{1}{4}$	5	11 $\frac{3}{8}$	0.268	0.145	0.080	2.100	1.378	1.772	1.247
2 $\frac{1}{16}$	20 $\frac{1}{2}$	5	12 $\frac{1}{8}$	0.276	0.150	0.080	2.200	1.444	1.856	1.306
2 $\frac{1}{16}$	21	5	13 $\frac{1}{8}$	0.284	0.155	0.080	2.300	1.509	1.940	1.365
3	22	5	14	0.292	0.160	0.085	2.400	1.575	2.025	1.425

From "Machinery's" Handbook,
The Industrial Press, New York

**DIMENSIONS OF TWIST DRILLS AND GROOVING
CUTTERS, WIRE GAGE SIZES**

See illustrations with table on previous page.

Drill Gage No.	Diam. in Inches, <i>D</i>	Total Length <i>A</i>	Length of Flute <i>B</i>	Thick- ness of Web at Point, <i>C</i>	Width of Land, <i>E</i>	Total Clear- ance, <i>2T</i>	Cutter Dimensions			
							<i>W</i>	<i>r</i>	<i>R</i>	<i>F</i>
80	0.0135	¾	⅜	0.003	No clearance	0.013	0.008	0.011	0.007	
76	0.0200	1	⅔	0.004	No clearance	0.018	0.011	0.014	0.010	
72	0.0250	1¼	⅔	0.005	No clearance	0.022	0.015	0.017	0.012	
68	0.0310	1½	⅔	0.006		0.027	0.017	0.021	0.015	
64	0.0360	1¾	⅔	0.007	0.015	0.003	0.030	0.019	0.025	0.018
60	0.0400	1⅓	⅔	0.008	0.015	0.003	0.033	0.022	0.028	0.020
56	0.0465	1⅔	⅔	0.009	0.015	0.0035	0.043	0.027	0.035	0.025
52	0.0635	1½	⅔	0.010	0.015	0.004	0.055	0.035	0.046	0.032
48	0.0760	2 ⅕	1 ⅖	0.012	0.020	0.0045	0.064	0.041	0.053	0.037
44	0.0860	2 ⅖	1 ⅖	0.014	0.020	0.0055	0.073	0.017	0.061	0.042
40	0.0980	2 ⅗	1 ⅖	0.016	0.020	0.0065	0.081	0.052	0.068	0.047
36	0.1065	2 ⅘	1 ⅖	0.017	0.025	0.007	0.088	0.055	0.073	0.051
32	0.1160	2 ⅙	1 ⅖	0.019	0.025	0.008	0.101	0.065	0.085	0.059
28	0.1405	2 ⅛	1 ⅖	0.021	0.025	0.009	0.116	0.075	0.097	0.068
24	0.1520	3 ⅕	1 ⅖	0.023	0.030	0.0095	0.124	0.081	0.104	0.073
20	0.1610	3 ⅖	2 ⅖	0.025	0.030	0.0105	0.133	0.087	0.112	0.079
16	0.1770	3 ⅗	2 ⅖	0.027	0.030	0.0115	0.143	0.094	0.119	0.085
12	0.1890	3 ⅘	2 ⅖	0.029	0.030	0.0125	0.152	0.100	0.128	0.090
8	0.1990	3 ⅙	2 ⅖	0.031	0.035	0.0135	0.160	0.105	0.135	0.096
4	0.2090	3 ⅛	2 ⅖	0.033	0.035	0.014	0.173	0.114	0.146	0.103
1	0.2280	4	2 ⅖	0.035	0.035	0.015	0.187	0.123	0.157	0.111

CUTTING LUBRICANTS

Mixture is one third Crude Petroleum, two thirds Lard Oil. Oil is Lard. When two lubricants are mentioned the first is preferable.

Material	Drilling Milling	Turning	Chuckling	Reaming	Tapping
Tool Steel	Oil	Dry or Oil	Oil or Soda Water	Lard Oil	Oil
Soft Steel	Oil or Soda Water	Dry or Soda Water	Soda Water	Lard Oil	Oil
Wrought Iron	Oil or Soda Water	Dry or Soda Water	Soda Water	Lard Oil	Oil
Cast Iron	Dry	Dry	Dry	Dry	Oil
Brass	Dry	Dry	Dry	Dry	Oil
Copper	Oil	Dry	Oil	Mixture	Oil
Babbitt	Dry	Dry	Dry	Dry	Oil
Glass	Turpentine			or Kerosene	

SPEED OF DRILLS

A feed per revolution of .004 to .007 for drills $\frac{1}{4}$ inch and smaller, and from .007 to .015 for larger is about all that should be required.

This feed is based on a peripheral speed of a drill equal to:

30 feet per minute for steel; 35 feet per minute for iron; 60 feet per minute for brass.

It may also be found advisable to vary the speed somewhat according as the material to be drilled is more or less refractory.

We believe that these speeds should not be exceeded under ordinary circumstances.

TABLE OF CUTTING SPEEDS

Feet per Min.	15'	20'	25'	30'	35'	40'	45'	50'	60'	70'	80'
Dia.	REVOLUTIONS PER MINUTE										
$\frac{1}{16}$ in.	917.	1223.	1528.	1834.	2140.	2445.	2751.	3057.	3668.	4280.	4891.
$\frac{1}{8}$	459.	611.	764.	917.	1070.	1222.	1375.	1528.	1834.	2139.	2445.
$\frac{5}{16}$	306.	408.	509.	611.	713.	815.	917.	1019.	1222.	1426.	1630.
$\frac{1}{4}$	229.	306.	382.	458.	535.	611.	688.	764.	917.	1070.	1222.
$\frac{9}{16}$	183.	245.	306.	367.	428.	489.	550.	611.	733.	856.	978.
$\frac{3}{8}$	153.	204.	255.	306.	357.	408.	458.	509.	611.	713.	815.
$\frac{7}{16}$	131.	175.	218.	262.	306.	349.	393.	437.	524.	611.	699.
$\frac{1}{2}$	115.	153.	191.	229.	268.	306.	344.	382.	459.	535.	611.
$\frac{5}{8}$	91.8	123.	153.	184.	214.	245.	276.	306.	367.	428.	489.
$\frac{3}{4}$	76.3	102.	127.	153.	178.	203.	229.	254.	306.	357.	408.
$\frac{7}{8}$	65.5	87.3	109.	131.	153.	175.	196.	219.	262.	306.	349.
1	57.3	76.4	95.5	115.	134.	153.	172.	191.	229.	267.	306.
$1\frac{1}{8}$	51.0	68.0	85.0	102.	119.	136.	153.	170.	204.	238.	272.
$1\frac{3}{8}$	45.8	61.2	76.3	91.8	107.	123.	137.	153.	183.	214.	245.
$1\frac{5}{8}$	41.7	55.6	69.5	83.3	97.2	111.	125.	139.	167.	195.	222.
$1\frac{1}{2}$	38.2	50.8	63.7	76.3	89.2	102.	115.	127.	153.	178.	204.
$1\frac{5}{8}$	35.0	47.0	58.8	70.5	82.2	93.9	106.	117.	141.	165.	188.
$1\frac{3}{4}$	32.7	43.6	54.5	65.5	76.4	87.3	98.2	109.	131.	153.	175.
$1\frac{7}{8}$	30.6	40.7	50.9	61.1	71.3	81.5	91.9	102.	122.	143.	163.
2	28.7	38.2	47.8	57.3	66.9	76.4	86.0	95.5	115.	134.	153.
$2\frac{1}{4}$	25.4	34.0	42.4	51.0	59.4	68.0	76.2	85.0	102.	119.	136.
$2\frac{1}{2}$	22.9	30.6	38.2	45.8	53.5	61.2	68.8	76.3	91.7	107.	122.
$2\frac{3}{4}$	20.8	27.8	34.7	41.7	48.6	55.6	62.5	69.5	83.4	97.2	111.
3	19.1	25.5	31.8	38.2	44.6	51.0	57.3	63.7	76.4	89.1	102.

For more general information on Drills, Sizes, etc., see Vol. I of The Starrett Books.

SPEEDS AND FEEDS FOR DRILLING*

HIGH-SPEED STEEL DRILLS

Size of Drill	Feed per Rev.	Bronze Brass, 300 Feet	Cast Iron, An- nealed, 170 Feet	Cast Iron, Hard, 80 Feet	Mild Steel, 120 Feet	Drop Forg., 60 Feet	Mal. Iron, 90 Feet	Tool Steel, 60 Feet	Cast Steel, 40 Feet
Ins.	Inches	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.
1/8	0.003	18300	10370	4880	7320	3660	3490	3660	2440
1/8	0.004	9150	5185	2440	3660	1830	2745	1830	1220
1/16	0.005	6100	3456	1626	2440	1210	1830	1220	807
1/16	0.006	4575	2593	1220	1830	915	1375	915	610
1/16	0.007	3660	2074	976	1464	732	1138	732	490
1/16	0.008	3050	1728	813	1220	610	915	610	407
1/16	0.009	2614	1482	698	1046	522	784	522	348
1/16	0.010	2287	1296	610	915	458	636	458	305
1/16	0.011	1830	1037	488	732	366	569	366	245
1/16	0.012	1525	864	407	610	305	458	305	203
1/8	0.013	1307	741	349	523	261	392	261	174
1	0.014	1143	648	305	458	229	349	229	153
1 1/16	0.016	915	519	244	366	183	275	183	122
1 1/16	0.016	762	432	204	305	153	212	153	102
1 1/16	0.016	654	371	175	262	131	196	131	87
2	0.016	571	323	153	229	115	172	115	77

CARBON STEEL DRILLS

Size of Drill	Feed per Rev.	Bronze Brass, 150 Feet	Cast Iron, An- nealed, 85 Feet	Cast Iron, Hard, 40 Feet	Mild Steel, 60 Feet	Drop Forg., 30 Feet	Mal. Iron, 45 Feet	Tool Steel, 30 Feet	Cast Steel, 20 Feet
Ins.	Ins.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.	R.P.M.
1/8	0.003	9150	5185	2440	3660	1830	2745	1830	1220
1/8	0.004	4575	2593	1220	1840	915	1375	915	610
1/16	0.005	3050	1728	813	1220	610	915	610	407
1/16	0.006	2287	1296	610	915	458	636	458	305
1/16	0.007	1830	1037	488	732	366	569	366	245
1/16	0.008	1525	864	407	610	305	458	305	203
1/16	0.009	1307	741	349	523	261	392	261	174
1/16	0.010	1143	648	305	458	229	343	229	153
1/16	0.011	915	519	244	366	183	275	183	122
1/16	0.012	762	432	204	305	153	212	153	102
1/16	0.013	654	371	175	262	131	196	131	87
1	0.014	571	323	153	229	115	172	115	77
1 1/16	0.016	458	260	122	183	92	138	92	61
1 1/16	0.016	381	216	102	153	77	106	77	51
1 1/16	0.016	327	186	88	131	66	98	66	44
2	0.016	286	162	77	115	58	86	58	39

**STARRETT TOOLS FOR USE IN CONNECTION
WITH DRILLING**

Steel Drill Blocks and Clamp

Of case hardened steel. May be used singly or in pairs, close together or separated, and are kept in line by a spindle passing through friction bushings. The blocks are $1\frac{1}{4}$ inch square and will hold round stock to $1\frac{1}{4}$ inch diameter.

Machinists' Center Punch

Of fine tool steel, knurled, tempered ends, and points carefully ground. Made in five sizes.

Time Saver Tap and Drill Gage

Gage shows right sized drill to suit machine screw tap, leaving just enough stock for tap to cut as near a full thread as is practicable for one tap without breaking. Tested after hardening and warranted accurate.

Toolmakers' Steel Clamps

Made from drop forgings, case hardened. Take-up blocks slip on and off end of screw. A hole in the block permits the insertion of a screw so that clamp may be fastened to bench and used as small vise.

For further information concerning these and other tools which may be used to advantage in Drilling, see pages 51, 61-62-63 and 122 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

ALLOWANCES FOR RUNNING FITS

A = allowance in thousandths of an inch. D = nominal diameter of fit.

$$\text{For running fits } \frac{A}{1000} = \frac{5}{16} D + .5$$

TABLE OF LIMITS FOR LIMIT GAGES

L = total limit. D = nominal diameter of fit

$$\frac{\frac{3}{4}L + or -}{1000} = \frac{3}{16} D + .3$$

Allowances for Shrinking Fits adopted by The American Master Mechanics' Association

Diameter of tire, in inches...	38	44	50	56	62	66
Shrinkage allowance, in inches	.040	.047	.053	.060	.066	.070

ALLOWANCES FOR FORCING, SHRINKING, AND DRIVING FITS

A = allowance in thousandths of an inch.

D = nominal diameter of fit.

$$\text{For forcing fits } \frac{A}{1000} = 2 D + .5 \qquad \qquad \qquad \text{For shrinking fits } \frac{A}{1000} = \frac{17}{16} D + .5$$

$$\text{For driving fits } \frac{A}{1000} = \frac{1}{2} D + .5$$

NOTE. — While the data given in the above table is the result of an investigation of the practice of a large number of shops, the allowances for the large diameters is considered excessive, as they give results which require presses of more than ordinary power to make the fits. It is the practice in a large number of shops to decrease the allowance per inch as the diameter increases. The general rule of .001 inch per inch of diameter has been found very satisfactory for sizes above 6 inches, while the allowances for the smaller sizes correspond more nearly to those given above.

For more general data on allowances and tolerances for forcing, shrinking, driving, and running fits, see Vol. I of The Starrett Books.

ALLOWANCES AND TOLERANCES FOR RUNNING FITS

Nominal Diameter	Shaft			Allowance (Minimum difference between shaft and hole)	Hole		
	Minimum Diameter	Tolerance Difference	Maximum Diameter		Minimum Diameter	Tolerance Difference	Maximum Diameter
Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches
$\frac{1}{4}$	0.2495	0.0005	0.25	0.0005	0.2505	0.0003	0.2508
$\frac{1}{2}$	0.4993	0.0007	0.50	0.0007	0.5007	0.0007	0.5014
$\frac{3}{4}$	0.7491	0.0009	0.75	0.0008	0.7508	0.0009	0.7517
1	0.9990	0.0010	1.00	0.0010	1.0010	0.0010	1.0020
$1\frac{1}{2}$	1.4988	0.0012	1.50	0.0012	1.5012	0.0013	1.5025
2	1.9985	0.0015	2.00	0.0015	2.0015	0.0015	2.0030
3	2.9982	0.0018	3.00	0.0018	3.0018	0.0017	3.0035
4	3.9980	0.0020	4.00	0.0020	4.0020	0.0020	4.0040
5	4.9980	0.0020	5.00	0.0020	5.0020	0.0020	5.0040
6	5.9975	0.0025	6.00	0.0025	6.0025	0.0025	6.0050
7	6.9975	0.0025	7.00	0.0025	7.0025	0.0025	7.0050
8	7.9975	0.0025	8.00	0.0025	8.0025	0.0025	8.0050
9	8.9970	0.0030	9.00	0.0030	9.0030	0.0030	9.0060
10	9.9970	0.0030	10.00	0.0030	10.0030	0.0030	10.0060
11	10.9970	0.0030	11.00	0.0030	11.0030	0.0030	11.0060
12	11.9970	0.0030	12.00	0.0030	12.0030	0.0030	12.0060

Note: The above allowances and tolerances for running fits are recommended by the Engineering Standards Committee of Great Britain, for first-class work. For second and third class work, multiply the tolerances by 2 and 3, respectively. For extra fine quality of work, about two fifths the above allowances for first-class work are recommended. The maximum diameter of the shaft is the nominal diameter in all grades of work.

ALLOWANCES FOR DIFFERENT CLASSES OF FITS

These allowances are intended for average machine work. If the bearings are long, the allowances for running fits may have to be increased.

Diameter, Inches	Running Fits	Push Fits
Up to $\frac{1}{4}$	— 0.00075 to — 0.0015	— 0.00025 to — 0.00075
$\frac{1}{2}$ to 1	— 0.001 to — 0.002	— 0.0005 to — 0.001
1 to 2	— 0.0015 to — 0.0025	— 0.0005 to — 0.0015
2 to 3	— 0.0015 to — 0.003	— 0.0005 to — 0.0015
3 to 4	— 0.002 to — 0.0035	— 0.00075 to — 0.002
4 to 5	— 0.0025 to — 0.004	— 0.00075 to — 0.002
5 to 6	— 0.0025 to — 0.0045	— 0.00075 to — 0.002
Diameter, Inches	Driving Fits	Forced Fits
Up to $\frac{1}{4}$	+ 0.0004 to + 0.0006	+ 0.0005 to + 0.001
$\frac{1}{2}$ to 1	+ 0.0005 to + 0.001	+ 0.001 to + 0.003
1 to 2	+ 0.00075 to + 0.002	+ 0.002 to + 0.004
2 to 3	+ 0.0015 to + 0.003	+ 0.003 to + 0.006
3 to 4	+ 0.002 to + 0.004	+ 0.005 to + 0.008
4 to 5	+ 0.002 to + 0.0045	+ 0.006 to + 0.010
5 to 6	+ 0.003 to + 0.005	+ 0.008 to + 0.012

ALLOWANCES FOR DIFFERENT CLASSES OF FITS

Class	Nominal Diameters	Tolerances in Standard Holes*					
		Up to $\frac{3}{8}$ "	$\frac{1}{8}" - 1"$	$1\frac{1}{8}" - 2"$	$2\frac{1}{8}" - 3"$	$3\frac{1}{8}" - 4"$	$4\frac{1}{8}" - 5"$
A	High Limit	+0.0002	+0.0005	+0.0007	+0.0010	+0.0010	+0.0010
	Low Limit	-0.0002	-0.0002	-0.0002	-0.0005	-0.0005	-0.0005
	Tolerance	0.0004	0.0007	0.0009	0.0015	0.0015	0.0015
B	High Limit	+0.0005	+0.0007	+0.0010	+0.0012	+0.0015	+0.0017
	Low Limit	-0.0005	-0.0005	-0.0005	-0.0007	-0.0007	-0.0007
	Tolerance	0.0010	0.0012	0.0015	0.0019	0.0022	0.0024

Allowances for Forced Fits

F	High Limit	+0.0010	+0.0020	+0.0040	+0.0060	+0.0080	+0.0100
	Low Limit	+0.0005	+0.0015	+0.0030	+0.0045	+0.0060	+0.0080
	Tolerance	0.0005	0.0005	0.0010	0.0015	0.0020	0.0020

Allowances for Driving Fits

D	High Limit	+0.0005	+0.0010	+0.0015	+0.0025	+0.0030	+0.0035
	Low Limit	+0.0002	+0.0007	+0.0010	+0.0015	+0.0020	+0.0025
	Tolerance	0.0003	0.0003	0.0005	0.0010	0.0010	0.0010

Allowances for Push Fits

P	High Limit	-0.0002	-0.0002	-0.0002	-0.0005	-0.0005	-0.0005
	Low Limit	-0.0007	-0.0007	-0.0007	-0.0010	-0.0010	-0.0010
	Tolerance	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005

Allowances for Running Fits†

X	High Limit	-0.0010	-0.0012	-0.0017	-0.0020	-0.0025	-0.0030
	Low Limit	-0.0020	-0.0027	-0.0035	-0.0042	-0.0050	-0.0057
	Tolerance	0.0010	0.0015	0.0018	0.0022	0.0025	0.0027
Y	High Limit	-0.0007	-0.0010	-0.0012	-0.0015	-0.0020	-0.0022
	Low Limit	-0.0012	-0.0020	-0.0025	-0.0030	-0.0035	-0.0040
	Tolerance	0.0005	0.0010	0.0013	0.0015	0.0015	0.0018
Z	High Limit	-0.0005	-0.0007	-0.0007	-0.0010	-0.0010	-0.0012
	Low Limit	-0.0007	-0.0012	-0.0015	-0.0020	-0.0022	-0.0025
	Tolerance	0.0002	0.0005	0.0008	0.0010	0.0012	0.0013

*Tolerance is provided for holes, which ordinary standard reamers can produce, in two grades, Classes A and B, the selection of which is a question for the user's decision and dependent upon the quality of the work required; some prefer to use Class A as working limits and Class B as inspection limits.

†Running fits, which are the most commonly required, are divided into three grades: Class X for engine and other work where easy fits are wanted; Class Y for high speeds and good average machine work; Class Z for fine tool work.

STARRETT TOOLS FOR USE IN CONNECTION WITH FITTING

Micrometer Caliper

The use of a thin graduated sleeve on the barrel carrying the base or zero line, instead of putting it on the barrel itself and using the old style movable anvil, is the characteristic feature of Starrett Micrometers.

Large Micrometer Sets

For Micrometer Sets, Special Purpose Micrometers, etc., see the Starrett Catalogue.

Inside Micrometer Calipers

The micrometer screw in the head has a movement varying from $\frac{1}{2}$ to 1 inch. The extension rods are provided with a collar against which the rods are set in the micrometer head. All contact surfaces are hardened.

Vernier Calipers

Graduated in either or both English and Metric divisions for outside and inside measuring. Points are placed on the beams and slides for setting dividers to transfer distances. Full directions for use are sent with each caliper.

For further information concerning these and other tools which may be used to advantage in Fitting see pages 40 and 93 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

WIRE GAGE STANDARDS

Different Standards in Use in the United States
Dimensions of Sizes in Decimal Parts of an inch

Number of Wire Gage	American or Brown & Sharpe	Birmingham or Stubb's Iron Wire	Washburn & Moen Mfg. Co., Worcester, Mass.	Imperial Wire Gage	Stubb's Steel Wire	U. S. Standard for Plate	Number of Wire Gage
00000004900	.500500	0000000
0000004615	.46446875	000000
000004305	.4324375	00000
0000	.46	.454	.3938	.40040625	0000
000	.40964	.425	.3625	.372375	000
00	.3648	.38	.3310	.34834375	00
0	.32486	.34	.3065	.3243125	0
1	.2893	.3	.2830	.300	.227	.28125	1
2	.25763	.284	.2625	.276	.219	.265625	2
3	.22942	.259	.2437	.252	.212	.25	3
4	.20431	.238	.2253	.232	.207	.234375	4
5	.18194	.22	.2070	.212	.204	.21875	5
6	.16202	.203	.1920	.192	.201	.203125	6
7	.14428	.18	.1770	.176	.199	.1875	7
8	.12849	.165	.1620	.160	.197	.171875	8
9	.11443	.148	.1483	.144	.194	.15625	9
10	.10189	.134	.1350	.128	.191	.140625	10
11	.090742	.12	.1205	.116	.188	.125	11
12	.080808	.109	.1055	.104	.185	.109375	12
13	.071961	.095	.0915	.092	.182	.09375	13
14	.064084	.083	.0800	.080	.180	.078125	14
15	.057068	.072	.0720	.072	.178	.0703125	15
16	.05082	.065	.0625	.064	.175	.0625	16
17	.045257	.058	.0540	.056	.172	.05625	17
18	.040303	.049	.0475	.048	.168	.05	18
19	.03589	.042	.0410	.040	.164	.04375	19
20	.031961	.035	.0348	.036	.161	.0375	20
21	.028462	.032	.03175	.032	.157	.034375	21
22	.025347	.028	.0286	.028	.155	.03125	22
23	.022571	.025	.0258	.024	.153	.028125	23
24	.0201	.022	.0230	.022	.151	.025	24
25	.0179	.02	.0204	.020	.148	.021875	25
26	.01594	.018	.0181	.018	.146	.01875	26
27	.014195	.016	.0173	.0164	.143	.0171875	27
28	.012641	.014	.0162	.0149	.139	.015625	28
29	.011257	.013	.0150	.0136	.134	.0140625	29
30	.010025	.012	.0140	.0124	.127	.0125	30
31	.008928	.01	.0132	.0116	.120	.0109375	31
32	.00795	.009	.0128	.0108	.115	.01015625	32
33	.00708	.008	.0118	.0100	.112	.009375	33
34	.006304	.007	.0104	.0092	.110	.00859375	34
35	.005614	.005	.0095	.0084	.108	.0078125	35
36	.005	.004	.0090	.0076	.106	.00703125	36
37	.0044530068	.103	.006640625	37
38	.0039650060	.101	.00625	38
39	.0035310052	.099	39
40	.0031440048	.097	40

See also table in Starrett Catalogue

STEEL MUSIC WIRE GAGE
(Washburn & Moen Standard)

No. of Gage	Size of each No. in decimal parts of an inch	No. of Gage	Size of each No. in decimal parts of an inch
8-0	.0083"	12	.0296"
7-0	.0087	13	.0314
6-0	.0095	14	.0326
5-0	.010	15	.0345
4-0	.011	16	.036
3-0	.012	17	.0377
2-0	.0133	18	.0395
1-0	.0144	19	.0414
1	.0156	20	.0434
2	.0166	21	.046
3	.0178	22	.0483
4	.0188	23	.051
5	.0202	24	.055
6	.0215	25	.0586
7	.023	26	.0626
8	.0243	27	.0658
9	.0256	28	.072
10	.027	29	.076
11	.0284	30	.080

MUSIC WIRE GAGES
New Am. S. & W. Co., Standard

No. of Wire Gage	Size of Each No. in Deci- mal Parts of an Inch	No. of Wire Gage	Size of Each No. in Deci- mal Parts of an Inch	No. of Wire Gage	Size of Each No. in Deci- mal Parts of an Inch
6-0	.004	8	.020	21	.047
5-0	.005	9	.022	22	.049
4-0	.006	10	.024	23	.051
3-0	.007	11	.026	24	.055
00	.008	12	.029	25	.059
0	.009	13	.031	26	.063
1	.010	14	.033	27	.067
2	.011	15	.035	28	.071
3	.012	16	.037	29	.075
4	.013	17	.039	30	.080
5	.014	18	.041	31	.085
6	.016	19	.043	32	.090
7	.018	20	.045	33	.095

Wire and Sheet Gages for all standards tested after hardening and warranted.

For further information on tools used in gaging wire and sheets see the Starrett Catalogue.

STARRETT TOOLS FOR USE IN CONNECTION WITH GAGING

Micrometer Caliper Sheet Metal Gage

This gage has 2 inch depth of throat. Has $\frac{1}{2}$ inch movement of screw. Solid anvil. Patent ratchet friction feed insures uniform pressure on work without springing frame. Lock nut makes solid gage if desired. Decimal equivalents stamped on frame. Metric or English measure.

Drill and Steel Wire Gage

Of hardened steel, tested and warranted. Gives the number of drill to fit each hole, and the size of the hole in thousandths of an inch.

Caliper Square

Made with firm and adjustable jaw. The adjusting screw permits setting the sliding head most accurately to the graduations. Beam is graduated on one side in 64ths and on the other in 100ths of an inch. Also made in Metric and Metric and English.

Yankee One Inch Micrometer Caliper

Made from drop forged steel, nickel plated, dull finish. Frame and sleeve in one piece. Has improved speeded screw. For measurements by thousandths up to one inch. Made with or without ratchet stop.

For other gages, see pages 34, 40, 95, 96, 122, 155 and 158 of this volume; also Vol. 1 of The Starrett Books, and the Starrett Catalogue.

RULES AND FORMULÆ FOR INTERNAL SPUR GEARS

(Where rules and formulæ are not given, they are the same as for external gears)

To Find	Rule	Formula
Center Distance	Subtract the number of teeth in the pinion from the number of teeth in the gear and divide the remainder by two times the diametral pitch.	$C = \frac{Ng - Np}{2P}$
Center Distance	Multiply the difference of the numbers of teeth in the gear and pinion by the circular pitch and divide the product by 6.2832.	$C = \frac{(Ng - Np) P'}{6.2832}$
Inside Diameter	Subtract 2 from the number of teeth and divide the remainder by the diametral pitch.	$I = \frac{N - 2}{P}$
Inside Diameter	Subtract 2 from the number of teeth, multiply the remainder by the circular pitch, and divide the product by 3.1416.	$I = \frac{(N - 2) P'}{3.1416}$
Pitch Diameter	Add twice the addendum to the inside diameter.	$D = I + 2S$
Inside Diameter	Subtract twice the addendum from the pitch diameter.	$I = D - 2S$

The circular pitch is defined as the distance from center to center of two adjacent teeth along the pitch circle. The diametral pitch is a number found by dividing the number of teeth by the pitch diameter. In other words, it gives the number of teeth for each inch of pitch diameter.

RULES AND FORMULÆ FOR DIMENSIONS OF SPUR GEARS

In these tables the following notation is used:

P = diametral pitch.

P' = circular pitch.

N = number of teeth; (if the number of teeth in both gear and pinion are referred to, Ng = number of teeth in gear, and Np = number of teeth in pinion).

D = pitch diameter.

C = center distance.

S = addendum.

F = clearance.

W = whole depth of tooth.

T = thickness of tooth.

O = outside diameter of gear.

RULES AND FORMULÆ FOR DIMENSIONS OF SPUR GEARS MADE TO DIAMETRAL PITCH

To Find	Rule	Formula
Diametral Pitch	Divide number of teeth by pitch diameter.	$P = \frac{N}{D}$
Number of Teeth	Multiply pitch diameter by diametral pitch.	$N = P \times D$
Number of Teeth	Multiply the outside diameter by the pitch and subtract 2.	$O \times P - 2$
Total Number of Teeth in a Pair of Gears	Multiply the center distance by the diametral pitch times 2.	$C \times P \times 2$
Pitch Diameter	Subtract two times the addendum from outside diameter.	$D = O - 2S$
Pitch Diameter	Divide number of teeth by diametral pitch.	$D = \frac{N}{P}$
Outside Diameter	Add two times the addendum to the pitch diameter.	$O = D + 2S$
Outside Diameter	Add 2 to the number of teeth and divide the sum by diametral pitch.	$O = \frac{N + 2}{P}$
Whole Depth of Tooth	Divide 2.157 by diametral pitch.	$W = \frac{2.157}{P}$
Addendum	Divide 1 by diametral pitch.	$S = \frac{1}{P}$
Dedendum	Divide 1 by diametral pitch.	$\frac{1}{P}$
Clearance	Divide 0.157 by diametral pitch.	$F = \frac{0.157}{P}$
Thickness of Tooth	Divide 1.5708 by diametral pitch.	$T = \frac{1.5708}{P}$
Center Distance	Add the number of teeth in both gears and divide the sum by two times the diametral pitch.	$C = \frac{Ng + Np}{2P}$
Center Distance	Divide the sum of the pitch diameters of a pair of gears by 2.	$\frac{D + D}{2}$
Length of Rack	Multiply number of teeth in rack by 3.1416 and divide by diametral pitch.	$L = \frac{3.1416 N}{P}$

RULES AND FORMULÆ FOR DIMENSIONS OF SPUR GEARS MADE TO CIRCULAR PITCH

To Find	Rule	Formula
Diametral Pitch	Divide 3.1416 by circular pitch.	$P = \frac{3.1416}{P'}$
Circular Pitch	Divide 3.1416 by diametral pitch.	$P' = \frac{3.1416}{P}$
Pitch Diameter	Multiply number of teeth by circular pitch and divide the product by 3.1416.	$D = \frac{NP'}{3.1416}$
Center Distance	Multiply the sum of the number of teeth in both gears by circular pitch and divide the product by 6.2832.	$C = \frac{(Ng + Np) P'}{6.2832}$
Addendum	Divide circular pitch by 3.1416.	$S = \frac{P'}{3.1416}$
Clearance	Divide circular pitch by 20.	$F = \frac{P'}{20}$
Whole Depth of Tooth	Multiply 0.6866 by circular pitch.	$W = 0.6866 P'$
Thickness of Tooth	Divide circular pitch by 2	$T = \frac{P'}{2}$
Outside Diameter	Multiply the sum of the number of teeth plus 2 by circular pitch and divide the product by 3.1416.	$O = \frac{(N + 2) P'}{3.1416}$
Circular Pitch	Multiply pitch diameter by 3.1416 and divide by number of teeth.	$P = \frac{3.1416 D}{N}$
Pitch Diameter	Subtract two times the addendum from outside diameter.	$D = O - 2S$
Number of Teeth	Multiply pitch diameter by 3.1416 and divide the product by circular pitch.	$N = \frac{3.1416 D}{P'}$
Outside Diameter	Add two times the addendum to the pitch diameter.	$O = D + 2S$
Length of Rack	Multiply the number of teeth in the rack by circular pitch.	$L = NP'$

TABLE OF TOOTH PARTS

The "whole depth of tooth" is the depth to be cut in gear.

Diametral Pitch	Circular Pitch	Whole Depth of Tooth	Thickness at Pitch Line	Addendum	Working Depth of Tooth
1½	2.5133	1.726	1.257	.8000	1.600
1¾	2.094	1.438	1.047	.6666	1.333
1¼	1.795	1.233	.898	.5714	1.1429
2	1.570	1.078	.785	.5000	1.000
2¼	1.396	.959	.698	.4444	.888
2½	1.256	.863	.628	.4000	.800
2¾	1.142	.784	.571	.3636	.727
3	1.047	.719	.524	.3333	.666
3½	.897	.616	.449	.2857	.571
4	.785	.539	.393	.2500	.500
5	.628	.431	.314	.2000	.400
6	.523	.360	.262	.1666	.333
7	.448	.308	.224	.1429	.285
8	.392	.270	.196	.1250	.250
9	.349	.240	.175	.1111	.222
10	.314	.216	.157	.1000	.200
11	.285	.196	.143	.0909	.181
12	.261	.180	.131	.0833	.166
14	.224	.154	.112	.0714	.142
16	.196	.135	.098	.0625	.125
18	.174	.120	.087	.0555	.111
20	.157	.108	.079	.0500	.100
22	.142	.098	.071	.0455	.090
24	.130	.090	.065	.0417	.083
26	.120	.083	.060	.0385	.076
28	.112	.077	.056	.0357	.071
30	.104	.072	.052	.0312	.066
32	.098	.067	.049	.0294	.062

METRIC OR MODULE SYSTEM OF GEAR TEETH

The metric system of measurement does not use diametral pitches. In this system the dimensions of the teeth are expressed by reference to the MODULE of the Gear. The module is equal to the pitch diameter in millimeters divided by the number of teeth in the gear. For example, if the pitch diameter of a gear is 50 millimeters and the number of teeth 25, then the module equals $50 \div 25 = 2$. The following table gives a comparison between diametral, circular, and metric pitches, together with their decimal equivalents. To convert module or metric (for example M 2) into the equivalent diametral pitch, proceed as follows:

M 2 = .247", or in other words, it is the same as a circular pitch of .247".

$$P = \frac{3.1416}{P' \text{ in inches}}$$

$$\text{Therefore, } P = \frac{3.1416}{.247} = 12.70$$

COMPARATIVE TABLE OF DIAMETRAL, METRIC AND CIRCULAR PITCHES, WITH DECIMAL EQUIVALENTS

Diametral Pitch, $P = \frac{\text{Number of Teeth}}{\text{Pitch Diameter in Inches}}$				Circular Pitch in Inches = $3.1416 \times \frac{\text{Pitch Diameter in Millimeters}}{\text{Circular Pitch in Millimeters}}$			
Module = $\frac{\text{Number of Teeth}}{\text{Pitch Diameter in Millimeters}}$				Circular Pitch in Millimeters = $3.1416 \times \frac{\text{Pitch Diameter in Inches} \times 3.1416}{\text{Number of Teeth}}$			
Circular Pitch, $P' = \frac{\text{Number of Teeth}}{\text{Diametral Pitch in Inches}}$				Diametral Pitch in Inches			
Diametral Pitch	Module	Circular Pitch	Decimal Equivalent	Diametral Pitch	Module	Circular Pitch	Decimal Equivalent
26121	...	2 $\frac{3}{4}$340
...	1124	$\frac{11}{12}$.344
...	...	$\frac{1}{8}$.125	9349
24131	...	3371
22143	$\frac{3}{8}$.375
...	1 $\frac{1}{4}$155	8393
...	...	$\frac{5}{12}$.156	...	3 $\frac{1}{2}$433
20157	$\frac{7}{16}$.437
18175	7449
...	1 $\frac{1}{2}$185	...	4495
...	...	$\frac{3}{8}$.187	$\frac{1}{2}$.500
16196	6524
...	1 $\frac{3}{4}$216	...	4 $\frac{1}{2}$556
...	...	$\frac{7}{12}$.219	$\frac{9}{16}$.562
14224	5 $\frac{1}{2}$571
...	2247	...	5618
...	...	$\frac{1}{4}$.250	$\frac{5}{8}$.625
12262	5628
...	2 $\frac{1}{4}$278	...	5 $\frac{1}{2}$680
...	...	$\frac{9}{12}$.281	$\frac{11}{16}$.687
11286	4 $\frac{1}{2}$698
...	2 $\frac{1}{2}$309	...	6742
...	...	$\frac{5}{16}$.312	$\frac{3}{4}$.750
10314	4785

TURNING AND CUTTING GEAR BLANKS

For Standard Length Tooth

Pitch	16	12	10	8	Pitch	16	12	10	8
Depth of Tooth	.135	.180	.216	.270	Depth of Tooth	.135	.180	.216	.270
No. of Teeth	Outside Diameter				No. of Teeth	Outside Diameter			
10	$\frac{3}{4}$	1	$1\frac{1}{2}$	$1\frac{1}{2}$	51	$3\frac{1}{4}$	$4\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{2}$
11	$\frac{4}{5}$	$1\frac{1}{4}$	$1\frac{1}{2}$	$1\frac{1}{2}$	52	$3\frac{1}{2}$	$4\frac{1}{4}$	$5\frac{1}{2}$	$6\frac{1}{4}$
12	$\frac{5}{6}$	$1\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	53	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{2}$
13	$\frac{6}{7}$	$1\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	54	$3\frac{1}{2}$	$4\frac{1}{4}$	$5\frac{1}{2}$	7
14	$\frac{7}{8}$	$1\frac{1}{4}$	$1\frac{1}{2}$	2	55	$3\frac{1}{4}$	$4\frac{1}{2}$	$5\frac{1}{2}$	$7\frac{1}{2}$
15	$1\frac{1}{16}$	$1\frac{1}{4}$	$1\frac{1}{2}$	$2\frac{1}{8}$	56	$3\frac{1}{8}$	$4\frac{1}{8}$	$5\frac{1}{8}$	$7\frac{1}{4}$
16	$1\frac{1}{8}$	$1\frac{1}{4}$	$1\frac{1}{2}$	$2\frac{1}{4}$	57	$3\frac{1}{4}$	$4\frac{1}{4}$	$5\frac{1}{2}$	$7\frac{1}{2}$
17	$1\frac{1}{16}$	$1\frac{1}{2}$	$1\frac{1}{2}$	$2\frac{1}{8}$	58	$3\frac{1}{4}$	5	$6\frac{1}{2}$	$7\frac{1}{2}$
18	$1\frac{1}{8}$	$1\frac{1}{4}$	2	$2\frac{1}{4}$	59	$3\frac{1}{4}$	$5\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$
19	$1\frac{1}{16}$	$1\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{8}$	60	$3\frac{1}{8}$	$5\frac{1}{2}$	$6\frac{1}{2}$	$7\frac{1}{4}$
20	$1\frac{1}{8}$	$1\frac{1}{4}$	$2\frac{1}{2}$	$2\frac{1}{4}$	61	$3\frac{1}{4}$	$5\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{8}$
21	$1\frac{1}{16}$	$1\frac{1}{4}$	$2\frac{1}{2}$	$2\frac{1}{8}$	62	4	$5\frac{1}{4}$	$6\frac{1}{2}$	8
22	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	63	$4\frac{1}{4}$	$5\frac{1}{4}$	$6\frac{1}{2}$	$8\frac{1}{2}$
23	$1\frac{1}{16}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$3\frac{1}{8}$	64	$4\frac{1}{8}$	$5\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{4}$
24	$1\frac{1}{8}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$3\frac{1}{4}$	65	$4\frac{1}{4}$	$5\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{2}$
25	$1\frac{1}{16}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$3\frac{1}{8}$	66	$4\frac{1}{4}$	$5\frac{1}{4}$	$6\frac{1}{2}$	$8\frac{1}{2}$
26	$1\frac{1}{8}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$3\frac{1}{2}$	67	$4\frac{1}{4}$	$5\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{8}$
27	$1\frac{1}{16}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$3\frac{1}{8}$	68	$4\frac{1}{8}$	$5\frac{1}{4}$	$6\frac{1}{2}$	$8\frac{1}{4}$
28	$1\frac{1}{8}$	$2\frac{1}{2}$	3	$3\frac{1}{4}$	69	$4\frac{1}{4}$	$5\frac{1}{2}$	$7\frac{1}{2}$	$8\frac{1}{2}$
29	$1\frac{1}{16}$	$2\frac{1}{2}$	$3\frac{1}{2}$	$3\frac{1}{8}$	70	$4\frac{1}{4}$	6	$7\frac{1}{2}$	9
30	2	$2\frac{1}{2}$	$3\frac{1}{2}$	4	71	$4\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$
31	$2\frac{1}{16}$	$2\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{8}$	72	$4\frac{1}{8}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{4}$
32	$2\frac{1}{8}$	$2\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{4}$	73	$4\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{8}$
33	$2\frac{1}{16}$	$2\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{8}$	74	$4\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$
34	$2\frac{1}{8}$	3	$3\frac{1}{2}$	$4\frac{1}{4}$	75	$4\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{4}$
35	$2\frac{1}{16}$	$3\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{8}$	76	$4\frac{1}{8}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$
36	$2\frac{1}{8}$	$3\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{4}$	77	$4\frac{1}{4}$	$6\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{8}$
37	$2\frac{1}{16}$	$3\frac{1}{2}$	$3\frac{1}{2}$	$4\frac{1}{8}$	78	5	$6\frac{1}{2}$	$7\frac{1}{2}$	10
38	$2\frac{1}{2}$	$3\frac{1}{2}$	4	5	79	$5\frac{1}{4}$	$6\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{2}$
39	$2\frac{1}{16}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{8}$	80	$5\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{2}$
40	$2\frac{1}{8}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{4}$	81	$5\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{4}$
41	$2\frac{1}{16}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{8}$	82	$5\frac{1}{4}$	7	$8\frac{1}{2}$	$10\frac{1}{2}$
42	$2\frac{1}{8}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{2}$	83	$5\frac{1}{4}$	$7\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{8}$
43	$2\frac{1}{16}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{8}$	84	$5\frac{1}{8}$	$7\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{4}$
44	$2\frac{1}{8}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{4}$	85	$5\frac{1}{4}$	$7\frac{1}{2}$	$8\frac{1}{2}$	$10\frac{1}{8}$
45	$2\frac{1}{16}$	$3\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{8}$	86	$5\frac{1}{2}$	$7\frac{1}{2}$	$8\frac{1}{2}$	11
46	3	4	$4\frac{1}{2}$	6	87	$5\frac{1}{4}$	$7\frac{1}{2}$	$8\frac{1}{2}$	$11\frac{1}{8}$
47	$3\frac{1}{16}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$6\frac{1}{8}$	88	$5\frac{1}{2}$	$7\frac{1}{2}$	9	$11\frac{1}{4}$
48	$3\frac{1}{8}$	$4\frac{1}{2}$	5	$6\frac{1}{4}$	89	$5\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$	$11\frac{1}{8}$
49	$3\frac{1}{16}$	$4\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{8}$	90	$5\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$	$11\frac{1}{4}$
50	$3\frac{1}{8}$	$4\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{2}$	91	$5\frac{1}{2}$	$7\frac{1}{2}$	$9\frac{1}{2}$	$11\frac{1}{8}$

TURNING AND CUTTING GEAR BLANKS—*Continued*

For Standard Length Tooth

Pitch	16	12	10	8	Pitch	16	12	10	8
Depth of Tooth	.135	.180	.216	.270	Depth of Tooth	.135	.180	.216	.270
No. of Teeth	Outside Diameter				No. of Teeth	Outside Diameter			
92	5 $\frac{7}{8}$	7 $\frac{1}{2}$	9 $\frac{1}{16}$	11 $\frac{1}{4}$	133	8 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{7}{8}$
93	5 $\frac{11}{16}$	7 $\frac{11}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{8}$	134	8 $\frac{1}{2}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	17
94	6	8	9 $\frac{1}{16}$	12	135	8 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	17 $\frac{1}{8}$
95	6 $\frac{1}{16}$	8 $\frac{1}{16}$	9 $\frac{1}{16}$	12 $\frac{1}{8}$	136	8 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	17 $\frac{1}{4}$
96	6 $\frac{1}{8}$	8 $\frac{1}{16}$	9 $\frac{1}{16}$	12 $\frac{1}{4}$	137	8 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	17 $\frac{3}{8}$
97	6 $\frac{1}{16}$	8 $\frac{1}{16}$	9 $\frac{1}{16}$	12 $\frac{1}{8}$	138	8 $\frac{1}{16}$	11 $\frac{1}{16}$	14	17 $\frac{1}{4}$
98	6 $\frac{1}{4}$	8 $\frac{1}{16}$	10	12 $\frac{1}{2}$	139	8 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{5}{8}$
99	6 $\frac{1}{16}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{8}$	140	8 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{1}{4}$
100	6 $\frac{3}{8}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{4}$	141	8 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{3}{8}$
101	6 $\frac{1}{16}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{8}$	142	9	12	14 $\frac{1}{16}$	18
102	6 $\frac{1}{2}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	13	143	9 $\frac{1}{16}$	12 $\frac{1}{16}$	14 $\frac{1}{16}$	18 $\frac{1}{8}$
103	6 $\frac{1}{16}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	13 $\frac{1}{8}$	144	9 $\frac{1}{16}$	12 $\frac{1}{16}$	14 $\frac{1}{16}$	18 $\frac{1}{4}$
104	6 $\frac{1}{8}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	13 $\frac{1}{4}$	145	9 $\frac{1}{16}$	12 $\frac{1}{16}$	14 $\frac{1}{16}$	18 $\frac{1}{8}$
105	6 $\frac{11}{16}$	8 $\frac{1}{16}$	10 $\frac{1}{16}$	13 $\frac{1}{8}$	146	9 $\frac{1}{4}$	12 $\frac{1}{16}$	14 $\frac{1}{16}$	18 $\frac{1}{2}$
106	6 $\frac{3}{4}$	9	10 $\frac{1}{16}$	13 $\frac{1}{2}$	147	9 $\frac{1}{16}$	12 $\frac{1}{16}$	14 $\frac{1}{16}$	18 $\frac{5}{8}$
107	6 $\frac{1}{16}$	9 $\frac{1}{16}$	10 $\frac{1}{16}$	13 $\frac{1}{8}$	148	9 $\frac{1}{8}$	12 $\frac{1}{16}$	15	18 $\frac{1}{4}$
108	6 $\frac{1}{8}$	9 $\frac{1}{16}$	11	13 $\frac{1}{4}$	149	9 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{16}$	18 $\frac{1}{8}$
109	6 $\frac{1}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{8}$	150	9 $\frac{1}{2}$	12 $\frac{1}{16}$	15 $\frac{1}{16}$	19
110	7	9 $\frac{1}{16}$	11	14	151	9 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{1}{2}$
111	7 $\frac{1}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{8}$	152	9 $\frac{1}{8}$	12 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{1}{4}$
112	7 $\frac{1}{8}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{4}$	153	9 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{1}{8}$
113	7 $\frac{1}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{8}$	154	9 $\frac{1}{4}$	13	15 $\frac{1}{16}$	19 $\frac{1}{2}$
114	7 $\frac{1}{2}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{2}$	155	9 $\frac{1}{16}$	13 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{5}{8}$
115	7 $\frac{1}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{8}$	156	9 $\frac{1}{8}$	13 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{1}{4}$
116	7 $\frac{1}{8}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{4}$	157	9 $\frac{1}{16}$	13 $\frac{1}{16}$	15 $\frac{1}{16}$	19 $\frac{1}{8}$
117	7 $\frac{1}{16}$	9 $\frac{1}{16}$	11 $\frac{1}{16}$	14 $\frac{1}{8}$	158	10	13 $\frac{1}{16}$	16	20
118	7 $\frac{1}{2}$	10	12	15	159	10 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{16}$	20 $\frac{1}{8}$
119	7 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{8}$	160	10 $\frac{1}{8}$	13 $\frac{1}{2}$	16 $\frac{1}{16}$	20 $\frac{1}{4}$
120	7 $\frac{1}{8}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{4}$	161	10 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{16}$	20 $\frac{1}{8}$
121	7 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{8}$	162	10 $\frac{1}{4}$	13 $\frac{1}{16}$	16 $\frac{1}{16}$	20 $\frac{1}{2}$
122	7 $\frac{1}{2}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{2}$	163	10 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{16}$	20 $\frac{5}{8}$
123	7 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{8}$	164	10 $\frac{1}{8}$	13 $\frac{1}{2}$	16 $\frac{1}{16}$	20 $\frac{1}{4}$
124	7 $\frac{1}{8}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{4}$	165	10 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{16}$	20 $\frac{1}{8}$
125	7 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	15 $\frac{1}{8}$	166	10 $\frac{1}{2}$	14	16 $\frac{1}{16}$	21
126	8	10 $\frac{1}{16}$	12 $\frac{1}{16}$	16	167	10 $\frac{1}{16}$	14 $\frac{1}{16}$	16 $\frac{1}{16}$	21 $\frac{1}{8}$
127	8 $\frac{1}{16}$	10 $\frac{1}{16}$	12 $\frac{1}{16}$	16 $\frac{1}{8}$	168	10 $\frac{1}{8}$	14 $\frac{1}{16}$	17	21 $\frac{1}{4}$
128	8 $\frac{1}{8}$	10 $\frac{1}{16}$	13	16 $\frac{1}{4}$	169	10 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{1}{16}$	21 $\frac{1}{8}$
129	8 $\frac{1}{16}$	10 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{8}$	170	10 $\frac{1}{2}$	14 $\frac{1}{16}$	17 $\frac{1}{16}$	21 $\frac{1}{2}$
130	8 $\frac{1}{2}$	11	13 $\frac{1}{16}$	16 $\frac{1}{2}$	171	10 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{1}{16}$	21 $\frac{5}{8}$
131	8 $\frac{1}{16}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{8}$	172	10 $\frac{1}{8}$	14 $\frac{1}{16}$	17 $\frac{1}{16}$	21 $\frac{1}{4}$
132	8 $\frac{1}{8}$	11 $\frac{1}{16}$	13 $\frac{1}{16}$	16 $\frac{1}{4}$	173	10 $\frac{1}{16}$	14 $\frac{1}{16}$	17 $\frac{1}{16}$	21 $\frac{1}{8}$

DIAGRAM AND FORMULA FOR THE SELECTION OF BEVEL GEAR CUTTERS

N_a = Number of teeth in gear.

N_b = Number of teeth in pinion.

a = Center angle of gear.

Measure the back cone radius A for the gear or B for the pinion. This is equal to the radius of a spur gear, the number of teeth in which would determine the cutter to use. Hence twice A times the diametral pitch equals the number of teeth for which the cutter should be selected for the gear. Looking in the list on page 31 the proper number for the cutter can be found.

Thus, let the back cone radius A be 3 inches and the diametral pitch be 6. Twice 3 is 6 and 6×6 is 36, from which it can be seen that the cutter must be of shape No. 3, as 36 is between 35 and 54, the range covered by a No. 3 cutter.

FORMULA FOR THE SELECTION OF BEVEL GEAR CUTTERS — *Continued*

The number of teeth for which the cutter should be selected can also be found by following formula:

$$\tan. \alpha = \frac{N_a}{N_b}$$

$$\text{No. of teeth to select cutter for gear} = \frac{N_a}{\cos. \alpha}$$

$$\text{No. of teeth to select cutter for pinion} = \frac{N_a}{\sin. \alpha}$$

If the gears are mitres or alike, only one cutter is needed; if one gear is larger than the other, two may be needed.

COMPUTING THE OFFSET

The formula quite generally used is:

$$O = \frac{T}{2} - \frac{R}{P}$$

in which O is the amount of offset.

T is the thickness of cutter tooth at the pitch line corresponding to the large end of the tooth.

R is the factor selected from the table.

P is the pitch of the gear.

The factor R is taken from the table for set-over.

First find the value $\left(\frac{C}{F}\right)$ which is the ratio between the pitch cone radius and the face of tooth.

TABLE FOR OBTAINING SET-OVER FOR CUTTING BEVEL GEARS

No. of Cutter	Ratio of Pitch Cone Radius to Width of Face $\left(\frac{C}{F}\right)$												
	3	3 1/4	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/2	6	7	8
	1	1	1	1	1	1	1	1	1	1	1	1	1
1	.254	.254	.255	.256	.257	.257	.257	.258	.258	.259	.260	.262	.264
2	.266	.268	.271	.272	.273	.274	.274	.275	.277	.279	.280	.283	.284
3	.266	.268	.271	.273	.275	.278	.280	.282	.283	.286	.287	.290	.292
4	.275	.280	.285	.287	.291	.293	.296	.298	.298	.302	.305	.308	.311
5	.280	.285	.290	.293	.295	.296	.298	.300	.302	.307	.309	.313	.315
6	.311	.318	.323	.328	.330	.334	.337	.340	.343	.348	.352	.356	.362
7	.289	.298	.308	.316	.324	.329	.334	.338	.343	.350	.360	.370	.376
8	.275	.286	.296	.309	.319	.331	.338	.344	.352	.361	.368	.380	.386

NOTE: For obtaining set-over by above table, use this formula:

$$\text{Set-over} = \frac{T}{2} - \frac{P}{F}$$

P = diametral pitch of gear to be cut.

T = thickness of cutter used, measured at pitch line.

INVOLUTE GEAR CUTTERS

Eight cutters are required for each pitch and are interchangeable with half number cutters where a finer division of teeth is required. Gears cut with the half number cutters, on account of the smaller range covered are more accurate and better running. The cutters are adapted to cut from a pinion of 12 teeth to a rack and are numbered as shown in the table below, the range being the number of teeth.

No. Cutter	Range	No. Cutter	Range	No. Cutter	Range
1	135 to a rack	3½	30 to 34	6	17 to 20
1½	80 to 134	4	26 to 34	6½	15 to 18
2	55 to 134	4½	23 to 25	7	14 to 18
2½	42 to 54	5	21 to 25	7½	13
3	35 to 54	5½	19 to 20	8	12 to 13

COMPARATIVE CURVES OF INVOLUTE TOOTH SHAPES

The diagram will illustrate how the curves vary in the eight different cutters necessary to make a complete set of one pitch.

It will be noticed that there is a gradual increase in the curve of the tooth outline from the No. 1 to the No. 8 cutter, which will make it clear that one cutter cannot be suitable for cutting all sizes of gears.

It has been found by experiment that the set of eight cutters will cut gears from 12 teeth to a rack and give very good results, but a cutter should never be used for any gear other than those included in the range which it is designed to cut.

All gears of the same pitch cut with these cutters will be interchangeable.

The above cutters represent eight Diametral Pitch

FEEDS FOR GEAR CUTTING — 1

The gears are assumed to be of substantial design, and the belts on the machine to be in good condition. For steel gears, a lard oil lubricant is used. For teeth coarser than $1\frac{3}{4}$ diametral pitch, feeds are not given for finishing in one cut, because satisfactory results cannot be obtained with a single cut on the No. 7 machine.

For Carbon-steel Cutters with a peripheral speed on cast iron of 35 feet per minute, and on steel of 30 feet per minute.

Diametral Pitch of Gear	Cast Iron Gears	Soft Steel Gears	High Carb'n Steel	Nickel Steel Alloy	Cast Iron Gears	Soft Steel Gears	High Carb'n Steel	Nickel Steel Alloy	Arrows Indicate Range of Different Sizes of Machines
	Feed, inches per minute, when Finishing in One Cut				Feed, inches per minute, for Roughing Cut, leaving 0.010 to 0.030 inch for Finishing				
1	$1\frac{5}{8}$	$1\frac{1}{4}$	1	1	
$1\frac{1}{4}$	$1\frac{5}{8}$	$1\frac{1}{4}$	1	1	
$1\frac{1}{2}$	$2\frac{1}{8}$	$1\frac{1}{4}$	$1\frac{1}{8}$	1	$2\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{1}{4}$	1	
$1\frac{3}{4}$	$3\frac{3}{8}$	$2\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{1}{4}$	
2	$2\frac{1}{8}$	2	$1\frac{1}{4}$	$1\frac{1}{4}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
$2\frac{1}{2}$	$2\frac{1}{2}$	2	$1\frac{1}{4}$	$1\frac{1}{4}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
3	$3\frac{1}{8}$	$2\frac{1}{4}$	$1\frac{5}{8}$	$1\frac{1}{4}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
4	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$1\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
5	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$1\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
6	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$1\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
7	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$1\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	
8	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$1\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	
9	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	No. 3
10	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	2	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	No. 4
	When using Shearing Tooth Cutter for Roughing Cut				Finishing Cut				
1	$2\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{1}{4}$	$1\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	$1\frac{1}{4}$	
$1\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{1}{4}$	$1\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	$1\frac{1}{4}$	
$1\frac{1}{2}$	$2\frac{1}{4}$	$2\frac{1}{4}$	$1\frac{5}{8}$	$1\frac{1}{4}$	$2\frac{1}{4}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$1\frac{5}{8}$	
$1\frac{3}{4}$	$4\frac{3}{8}$	$4\frac{3}{8}$	$3\frac{3}{8}$	$2\frac{1}{8}$	$4\frac{3}{8}$	$3\frac{3}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	
2	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
$2\frac{1}{2}$	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
3	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
4	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
5	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
6	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
7	$5\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$	2	
8	$6\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	No. 3
9	$6\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	No. 4
10	$6\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$5\frac{1}{8}$	$4\frac{1}{4}$	$3\frac{1}{8}$	$2\frac{1}{2}$	No. 5

FEEDS FOR GEAR CUTTING — 2

The gears are assumed to be of substantial design, and the belts on the machine to be in good condition. For steel gears, a lard oil lubricant is used. For teeth coarser than $1\frac{3}{4}$ diametral pitch, feeds are not given for finishing in one cut, because satisfactory results cannot be obtained with a single cut on the No. 7 machine.

For High-Speed Steel Cutters with a peripheral speed on cast iron of 55 feet per minute and 80 feet per minute on steel.

Dia-metral Pitch of Gear	Cast Iron Gears	Soft Steel Gears	High Carbon Steel	Nickel Steel Alloy	Cast Iron Gears	Soft Steel Gears	High Carbon Steel	Nickel Steel Alloy	Arrows Indicate Range of Different Sizes of Machines
Feed, inches per minute, when Finishing in One Cut					Feed, inches per minute, for Roughing Cut, leaving 0.010 to 0.030 inch for Finishing				
1	2	1 $\frac{1}{8}$	1 $\frac{1}{8}$	1 $\frac{1}{4}$
1 $\frac{1}{4}$	2 $\frac{1}{2}$	2	2	1 $\frac{1}{8}$
1 $\frac{3}{4}$	2 $\frac{1}{8}$	2 $\frac{1}{8}$	2 $\frac{1}{8}$	1 $\frac{1}{8}$	3 $\frac{3}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$
1 $\frac{1}{2}$	2 $\frac{1}{8}$	2 $\frac{1}{8}$	2 $\frac{1}{8}$	1 $\frac{1}{8}$	4 $\frac{3}{8}$	3 $\frac{3}{8}$	3 $\frac{3}{8}$	2 $\frac{1}{8}$
2	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	1 $\frac{1}{8}$	5 $\frac{1}{8}$	4	4	3 $\frac{1}{8}$
2 $\frac{1}{2}$	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	1 $\frac{1}{8}$	5 $\frac{1}{8}$	4	4	3 $\frac{1}{8}$
3	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	2	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
4	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	2	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
5	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{4}$	2	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
6	4 $\frac{1}{4}$	3 $\frac{1}{8}$	3 $\frac{1}{8}$	2 $\frac{1}{2}$	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
7	4 $\frac{1}{4}$	3 $\frac{1}{8}$	3 $\frac{1}{8}$	2 $\frac{1}{2}$	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
8	4 $\frac{1}{4}$	3 $\frac{1}{8}$	3 $\frac{1}{8}$	2 $\frac{1}{2}$	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$
9	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$	6 $\frac{1}{4}$	5 $\frac{1}{4}$	5 $\frac{1}{4}$	4 $\frac{1}{4}$	No. 3 No. 4 No. 5 No. 6 No. 7
10	5 $\frac{1}{4}$	4 $\frac{1}{4}$	4 $\frac{1}{4}$	3 $\frac{1}{8}$	6 $\frac{1}{4}$	5 $\frac{1}{4}$	5 $\frac{1}{4}$	4 $\frac{1}{4}$
When using Shearing Tooth Cutter for Roughing Cut					Finishing Cut				
1	2 $\frac{1}{2}$	2	2	1 $\frac{1}{8}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$
1 $\frac{1}{4}$	3 $\frac{1}{8}$	2 $\frac{1}{4}$	2 $\frac{1}{2}$	2	3 $\frac{1}{8}$	3 $\frac{1}{8}$	3 $\frac{1}{8}$	2 $\frac{1}{2}$
1 $\frac{1}{2}$	4 $\frac{1}{8}$	4 $\frac{1}{8}$	3 $\frac{3}{8}$	3 $\frac{3}{8}$	4 $\frac{3}{8}$	4 $\frac{1}{8}$	4 $\frac{1}{8}$	3 $\frac{3}{8}$
1 $\frac{3}{4}$	5 $\frac{1}{8}$	5 $\frac{1}{8}$	4 $\frac{1}{8}$	4 $\frac{1}{8}$	5 $\frac{1}{8}$	5 $\frac{1}{8}$	5 $\frac{1}{8}$	4 $\frac{1}{8}$
2	6 $\frac{1}{8}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	4 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$
2 $\frac{1}{2}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	4 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$
3	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$
4	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$
5	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$
6	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$
7	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	5 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$
8	10 $\frac{1}{8}$	10 $\frac{1}{8}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	6 $\frac{1}{8}$	No. 3 No. 4 No. 5 No. 6 No. 7
9	10 $\frac{1}{8}$	10 $\frac{1}{8}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$
10	10 $\frac{1}{8}$	10 $\frac{1}{8}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$	8 $\frac{1}{2}$

**STARRETT TOOLS FOR USE IN CONNECTION
WITH GEARS AND GEARING**

Micrometer Depth Gage

Has $\frac{1}{2}$ inch movement of the screw reading in thousandths; with two $\frac{1}{2}$ inch and one 1 inch standard collars to slip on or off the spindle, $2\frac{1}{2}$ inches, reading in thousandths can be obtained. The head and the point of the measuring rod are hardened. May also be had in metric measurements.

Vernier Depth Gage

Blade is 6 inches long, $\frac{9}{16}$ inch wide and will measure to $3\frac{1}{2}$ inches in depth. The blade is graduated to read by means of a vernier to thousandths of an inch on one edge and to 64ths on the other. Also made in metric graduations.

Spring-Tempered Rule

A high grade rule graduated into parts of an inch as follows: first corner, 10, 20, 50, 100; second corner, 12, 24, 48; third corner, 16, 32, 64; fourth corner, 14, 28. Light and thin. Waranted to agree with the U. S. Government Standards.

For further information concerning these and other tools which may be used to advantage with Gears and Gearing, see page 98 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

GRADE AND GRAIN OF GRINDING WHEELS FOR DIFFERENT MATERIALS

The information contained in this table is general and intended only to give an approximate idea of the grade used under ordinary conditions.

Class of Work	Alundum		Crystolon	
	Grain	Grade	Grain	Grade
Aluminum castings.....	36 to 46	3 to 4 Elas	20 to 24	P to R
Brass or bronze castings (large)....	20 to 24	Q to R
Brass or bronze castings (small)	24 to 36	P to R
Car wheels, cast iron.....	16 to 24	P to R
Car wheels, chilled.....	20	Q	16 to 24	O to Q
Cast iron, cylindrical.....	24 comb.	J to K	30 to 46	J to L
Cast iron, surfacing.....	20 to 46	H to K	16 to 30	J to L
Cast iron (small) castings.....	24 to 30	P to R	20 to 30	Q to S
Cast iron (large) castings.....	16 to 20	Q to R	16 to 24	Q to S
Chilled iron castings.....	20 to 30	P to U	20 to 30	Q
Dies, chilled iron.....	20 to 30	O to Q
Dies, steel.....	36 to 60
Drop-forgings.....	20 to 30	P to R
Internal cylinder grinding.....	30 to 60	I to L
Internal grinding, hardened steel.....	46 to 60	J to M
Machine shop use, general.....	20 to 36	O to Q
Malleable iron castings (large).....	14 to 20	P to U	16 to 20	R to S
Malleable iron castings (small).....	20 to 30	P to R	20 to 30	Q to S
Milling cutters, machine grinding.....	46 to 60	H to M
Milling cutters, hand grinding.....	46 to 60	J to M
Nickel castings.....	20 to 24	P to Q	20 to 25	R
Pulleys, surfacing cast iron.....	30 to 36	K to L
Reamers, taps, etc., hand grinding.....	46 to 60	K to O
Reamers, taps, special machines.....	46 to 60	J to M
Rolls (cast iron), wet.....	24 to 36	J to M	24 to 36	J to M
Rolls (chilled iron), finishing.....	70	1½ to 2 Elas.	70 to 80	1½ to 2 Elas.
Rolls (chilled iron), roughing.....	30 to 46	2 to 3 Elas.
Rubber.....	30 to 50	J to K	30 to 50	K to M
Saws, gumming and sharpening.....	36 to 50	M to N
Saws, cold cutting-off.....	60	O to Q
Steel (soft), cylindrical grinding	24 comb.	L to N
Steel (soft), surface grinding.....	46 to 60	L to N
Steel (hardened), cylindrical grinding.....	24 to 36	H to K
Steel (hardened), surface grinding.....	24 comb.	K
Steel (hardened), large castings.....	46 to 60	J to L
Steel, small castings.....	36 to 46	H to K
Steel (manganese), safe work.....	12 to 20	Q to U
Steel, small castings.....	20 to 30	P to R
Structural steel.....	16 to 46	L to P
Structural steel.....	16 to 24	P to R
Twist drills, hand grinding.....	46 to 60	M
Twist drills, special machines.....	36 to 60	K to M
Wrought iron.....	12 to 30	P to U
Woodworking tools.....	46 to 60	K to M

GRAIN NUMBERS COMMONLY USED IN VARIOUS POLISHING OPERATIONS*

Aluminum — 120-150-180.
 Auto Parts — 24-36-60-70-80-90-120-150.
 Auto Springs — 36-54-70.
 Axes — 46-54-60-70-80-120-150.
 Bicycle Parts — 70-80-90-120-150.
 Brass (Plumbers' Supplies) — 36-60-70-80-90-120-150.
 Builders' Hardware — 46-80-90-120-180.
 Carriage Hardware — 36-46-54.
 Cast Iron — 54-60-70-80-200-F-FFF.
 Cleaning Lithograph Stones — 60-90.
 Cultivator Parts — 24-36-80.
 Cutlery — 24-30-36-46-60-70-80-90-180-XF.
 Dies — 60-80-90.
 Edge Tools — 36-54-60-70-80-90-120-150-180.
 Electric Irons — 80.
 Electric Starter Parts — 24-36-60-90-120-150-180.
 Fence Tools — 70-100-120.
 Fireplace Fronts (Cast Iron) — 36-46-60-70-80-90-100-120.
 forgings — 36-46-54-60-70-80-90.
 Forks — 36-46-54-60-90-100-150.
 Glass — 60-70-80-90-100-120-150-180-200-F-FFF-65F.
 Glass (beveling) — 90-120-150.
 German Silver — 100-F.
 Granite — 60-70-80-90.
 Hame Parts — 54-100.
 Hammers — 46-54-60-70-80-90-120-180.
 Heat Registers — 60.
 High Speed Steel — 36-70-80.
 Hoes — 30-36-46-54-60-70-90-100.
 Iron Beds — 60.
 Knives — 12-14-20-36-46-54-60-70-80-90-120.

Lapping Bushings — 90-150-180-FFF.
 Lapping Gages — 65F.
 Lapping Machine Parts — 200-FFF.
 Lapping Steel Balls and Bushings — F-FFF.
 Lapping Valves — FFF.
 Lenses — 60-70-80-90-120-150-200-FF-FFF-65F.
 Mattocks — 46-60-70-120.
 Microscopic Specimens — 65F.
 Monel Metal — F.
 Machine Parts — 54-60-70-100-120-150-F.
 Piano Parts — 60-90-120-150.
 Picks — 46-54-60-70-80-90-120.
 Pliers — 46-54-60-70-80-90-100-120.
 Plows — 16-20-24-30-36-70-80-120-180-F.
 Renewing Files — 36.
 Sad Irons — 60-70-80-90-120-150.
 Safes, Safe Deposit Boxes — 8-10-12-14-16.
 Saws — 60-70-80-90-120-F-FF-FFF.
 Scales — 36-46-54-60-70-80-90-120.
 Screws — 46-60-70-80-90.
 Shears — 54-60-70-80-90.
 Shovels — 30-36-46-60-70-80-90-120.
 Skates — 60-70-80-90-120-180-F.
 Spark Plugs — 80-120-F.
 Stoneware — 24-60.
 Stove Parts — 36-46-54-60-70-80-90-120-150-180.
 Tools — 46-54-60-70-80-90-100-120-190.
 Typewriter Parts — 60-90-120-180.
 Vises — 36-46-54-60-70-80-90.
 Wood Barrels and Kegs — 20.
 Wrenches — 36-46-54-60-70-80-90-100-120.

GRADES OF GRINDING WHEELS **

Grades	Vitrified Process	Silicate Process	Grades	Vitrified Process	Silicate Process
Very Soft	E F G H	¾ 1 1½ 1¾	Medium	M N O P	3 3½ 4 4½
Soft	I J K L	1¾ 2 2½ 2¾	Hard	Q R S T	5 5½ 6 6½
			Very Hard ..	U	7

*Courtesy of The Norton Company

**Courtesy of the Landis Tool Co.

D A T A B O O K

Grinding

GRADES OF GRINDING WHEELS

From "Machinery's" Handbook,
The Industrial Press, New York

GRADES OF GRINDING WHEELS

American Emery Wheel Works				Monarch Grinding Wheel Co.			
Grade	Grade Mark			Grade	Grade Mark		
	Vitri-fied	Sili-cate	Ela-stic		Vitri-fied	Sili-cate	Ela-stic
Very Soft	G	½	½ E	Very Soft	{ 1½	· · · · ·	· · · · ·
	H	¾	¾ E		{ 1¾	· · · · ·	A
	I	1	1 E		2	1	F
Soft	J	1½	1½ E	Soft	2½	1½	I
	K	2	2 E		2½	1½	N
	L	2½	2½ E		2¾	1¾	E
Medium	M	3	3 E	Medium	3	2	P
	N	3½	3½ E		3½	2½	R
Medium Hard	O	4	4 E	Hard	3½	2½	O
	P	4½	4½ E		3¾	3	D
Very Hard	Q	5	5 E	Very Hard	4	4	U
	R	6	6 E		4½	5	C
Extra Hard	S	7	7 E		4¾	6	T
	U	· · · · ·	· · · · ·		5	· · · · ·	· · · · ·
	V	· · · · ·	· · · · ·		6	· · · · ·	· · · · ·

ALLOWANCES FOR GRINDING

Diameter. Inches	Length, Inches										
	3	6	9	12	15	18	24	30	36	42	48
Allowance, Inches											
½	0.010	0.010	0.010	0.010	0.015	0.015	0.015	0.020	0.020	0.020	0.020
¾	0.010	0.010	0.010	0.010	0.015	0.015	0.015	0.020	0.020	0.020	0.020
1	0.010	0.010	0.010	0.015	0.015	0.015	0.015	0.020	0.020	0.020	0.020
1½	0.010	0.010	0.015	0.015	0.015	0.015	0.015	0.020	0.020	0.020	0.020
1½	0.010	0.015	0.015	0.015	0.015	0.015	0.020	0.020	0.020	0.020	0.020
2	0.015	0.015	0.015	0.015	0.015	0.020	0.020	0.020	0.020	0.020	0.025
2½	0.015	0.015	0.015	0.020	0.020	0.020	0.020	0.020	0.020	0.025	0.025
3	0.015	0.015	0.020	0.020	0.020	0.020	0.020	0.025	0.025	0.025	0.025
3½	0.015	0.020	0.020	0.020	0.020	0.020	0.025	0.025	0.025	0.025	0.025
4	0.020	0.020	0.020	0.020	0.025	0.025	0.025	0.025	0.025	0.025	0.030
4½	0.020	0.020	0.020	0.020	0.025	0.025	0.025	0.025	0.025	0.025	0.030
5	0.020	0.020	0.020	0.025	0.025	0.025	0.025	0.025	0.030	0.030	0.030
6	0.020	0.020	0.025	0.025	0.025	0.025	0.025	0.030	0.030	0.030	0.030
7	0.020	0.025	0.025	0.025	0.025	0.030	0.030	0.030	0.030	0.030	0.030
8	0.025	0.025	0.025	0.025	0.025	0.030	0.030	0.030	0.030	0.030	-0.030
.9	0.025	0.025	0.025	0.025	0.030	0.030	0.030	0.030	0.030	0.030	0.030
10	0.025	0.025	0.025	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
11	0.025	0.025	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
12	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030

TABLE OF GRINDING WHEEL SPEEDS

The R. P. M. at which wheels are run is dependent on conditions and style of machine and the work to be ground.

Wheels are run in actual practice from 4,000 to 6,000 feet per minute; in some instances as high as 7,500 feet.

Great care must be taken in operating at these higher speeds and precaution taken against bursting wheels.

Diameter Wheel Millimeters	Rev.per Minute for Surface Speed of 4,000 Feet, or 1,200 Meters	Rev.per Minute for Surface Speed of 5,000 Feet, or 1,500 Meters	Rev.per Minute for Surface Speed of 5,000 Feet, or 1,800 Meters
1 inch	about 25	15,279	19,099
2 "	" 50	7,639	9,549
3 "	" 75	5,093	6,366
4 "	" 100	3,820	4,775
5 "	" 125	3,056	3,820
6 "	" 150	2,546	3,183
7 "	" 175	2,183	2,728
8 "	" 200	1,910	2,387
10 "	" 250	1,528	1,910
12 "	" 305	1,273	1,592
14 "	" 355	1,091	1,364
16 "	" 405	955	1,194
18 "	" 455	849	1,061
20 "	" 505	764	955
22 "	" 515	694	868
24 "	" 610	637	796
26 "	" 660	586	733
28 "	" 710	546	683
30 "	" 760	509	637
32 "	" 810	477	596
34 "	" 860	449	561
36 "	" 910	424	531
38 "	" 965	402	503
40 "	" 1,015	382	478
42 "	" 1,065	364	455
44 "	" 1,115	347	434
46 "	" 1,165	332	415
48 "	" 1,220	318	397
50 "	" 1,270	306	383
52 "	" 1,320	294	369
54 "	" 1,370	283	354
56 "	" 1,420	273	341
58 "	" 1,470	264	330
60 "	" 1,520	255	319

**STARRETT TOOLS FOR USE IN CONNECTION
WITH GRINDING**

Heavy One Inch Micrometers

These calipers are made with frame and other parts much heavier than the regular one inch micrometer. Measuring surfaces and bearing parts are hardened. Have ratchet stop and lock nut. Decimal equivalents stamped on the frame measure by thousandths to one inch. Also made in Metric Measure.

**U. S. Government Micrometer
Caliper Gages**

Frames are cut from steel plates. Sides are covered with hard rubber held by brass screws. The Micrometer screw adjusts one inch, reading in thousandths, and has lock nut. The different length tail spindles, forming anvils, are interchangeable. Micrometers are furnished with ratchet stop or speeded screw thumb piece as desired and are made in Metric as well as English Measure.

Toolmakers' Calipers

Made from round stock, with legs drawn down. The fulcrum stud is hardened, bows extra strong. Made with solid nut only.

For further information concerning these and other tools which may be used to advantage in connection with Grinding, see pages 18, 34, 38, 93 and 122 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

HEAT TREATMENT OF HIGH SPEED STEEL

If common forge is used for heating, have a deep fire, plenty of coke, and light blast. In general, an oil, gas, or coke furnace is preferred.

Kind of Steel	Method of Cutting-off Unannealed Bars	Forging Heat*	Directions for Annealing			
			Packing and Packing Material	Time Required for Heating	Temperature Required	Manner of Cooling
Burgess No. 4 and No. 5	Cut off hot	Even cherry-red	3 parts sand, 1 part lime	2 to 3 hours	Bright red	Very slowly
Ark	Cut off hot	Canary color
Midvale Special Self-hardening	Nick on wheel break cold	Dull orange	1 part lime, 1 part charcoal	Light cherry-red	Slowly
Capital High Speed	Full bright red	Heat in air-tight box lined with fire brick	1 to 4 hours	1650°F.	Very slowly
Heller's Alloy High Speed	Bright yellow	Powdered charcoal; airtight box	Bright yellow (2000°F.)	Slowly
Blue Chip	Cherry-red	Lime; airtight box	Bright red or dark yellow	Very slowly
Allen's Air Hardening	Bright red	Lime; airtight box	Bright red	Very slowly
Bethlehem Self-hardening	Cut off hot	Between bright cherry-red and full yellow	Heat and bury in lime	Bright cherry-red	Slowly
Rex High Speed	Cut off hot	Bright red	Charcoal, lime, or sand; airtight box	2 to 8 hours	Full red	Very slowly
Novo	Cut off hot	High lemon color	Lime; airtight box	12 to 18 hours; soaking heat	Full red	Very slowly
Bohler's Styrian High Speed	Nick hot, break cold	Bright yellow	Charcoal; airtight box	4 to 6 hours	1830°F.	Slowly
McInnes Extra High Speed	Full red	Ashes or lime; airtight box	Cherry-red	Slowly

HEAT TREATMENT OF HIGH SPEED STEEL — *Continued*

Kind of Steel	Hardening Heat, Cooling Medium, Temper and Grinding					
	Lathe and Planer Tools, etc.			Taps, Milling Cutters, etc.		
Tempera-ture	Cooling Medium	Condition of Wheel used for Grinding	Tempera-ture	Cooling Medium	Temper Required	
Burgess No. 4 and No. 5	White weld-ing heat on point	Cold air blast or fish oil†	Dry wheel (grind slowly)
Ark	Fusing heat on point	Cold air blast or thin oil†	Very wet wheel	Light yellow heat	Oil†
Midvale Special Self-hardening	White heat	Cold air blast	Dark cherry heat; then heat in white hot lead	Oil, cool until color disappears
Capital High Speed	White heat	Cold air blast	Wet sandstone	Full white heat	Cold air blast	No temper
Heller's Alloy High Speed	Bright yellow heat	Air blast or fish oil†	Wet stone	Bright yellow heat*	Air blast†	Temper seldom required
Blue Chip	Clear white heat on point	Air blast or oil	Dry wheel	White heat just below fusing	Oil	Straw color
Allen's Air Hardening	White heat on point	Cold air blast or water at 150°F.	Wet stone
Bethlehem Self-hardening	White heat on point	Dry, cold air blast	As hot as possible without fusing	Oil
Rex High Speed	Fusing heat on point	Cold air blast (cool until tool can be held in the hand)†	Wet or dry	As hot as possible without fusing	Oil†	Temper if necessary
Novo	Fusing heat on point	Cold air blast or running lard or fish oil†	Wet wheel (grind slowly)	Red heat; then white heat in furnace	Thin fish or cotton-seed oil†	According to use of tool
Bohler's Styrian High Speed	White heat (not fusing)	Cold air blast	White heat just below fusing	Fish oil
McInnes Extra High Speed	Fusing heat on point	Air blast or fish oil	Dry stone	Light cherry-red heat	Air blast or fish oil

*Do not use gas fire.

†Steel must not be dipped in water while hot.

HIGH TEMPERATURE JUDGED BY COLOR AND COLORS FOR TEMPERING

De-grees Centi-grade	De-grees Fah-renheit	High Temperatures Judged by Color	De-grees Centi-grade	De-grees Fah-renheit	Colors for Tempering
400	752	Red heat, visible in the dark	221.1	430	Very pale yellow
474	885	Red heat, visible in the twilight	226.7	440	Light yellow
525	975	Red heat, visible in the daylight	232.2	450	Pale straw-yellow
581	1077	Red heat, visible in the sunlight	237.8	460	Straw-yellow
700	1292	Dark red	243.3	470	Deep straw-yellow
800	1472	Dull cherry-red	248.9	480	Dark yellow
900	1652	Cherry-red	254.4	490	Yellow-brown
1000	1832	Bright cherry-red	260.0	500	Brown-yellow
1100	2012	Orange-red	265.6	510	Spotted red-brown
1200	2192	Orange-yellow	271.1	520	Brown-purple
1300	2372	Yellow-white	276.7	530	Light purple
1400	2552	White welding heat	282.2	540	Full purple
1500	2732	Brilliant white	287.8	550	Dark purple
1600	2912	Dazzling white (bluish-white)	293.3	560	Full blue
			298.9	570	Dark blue

TEMPERING TEMPERATURES FOR VARIOUS TOOLS

Degrees F.	Class of Tool
495 to 500	Taps $\frac{1}{2}$ inch or over, for use on automatic screw machines.
490 to 495	Taps $\frac{1}{2}$ inch or over, for use on screw machines where they pass through the work.
495 to 500	Nut taps $\frac{1}{2}$ inch and under.
515 to 520	Taps $\frac{1}{4}$ inch and under, for use on automatic screw machines.
525 to 530	Thread dies to cut thread close to shoulder.
500 to 510	Thread dies for general work.
495	Thread dies for tool steel or steel tube.
440 to 445	Circular thread chaser for use on lathes.
525 to 540	Dies for bolt threader threading to shoulder.
460 to 470	Thread rolling dies.
430 to 435	Hollow mills (solid type) for roughing on automatic screw machine work.
450 to 455	Hollow mills (solid type) for use on the drill press.
485	Knurls.
450	Twist drills for hard service.
450	Centering tools for automatic screw machine.
430	Forming tools for automatic screw machine.
430 to 435	Cut-off tools for automatic screw machine.
440 to 450	Profile cutters for milling machine.
430	Formed milling cutters.
435 to 440	Milling cutters.
430 to 440	Reamers.
460	Counterbores and countersinks.
440 to 450	Fly-cutters for use on the drill press.
480	Cutters for tube or pipe-cutting machine.
430 to 440	Dies for heading bicycle spokes.
430	Punches for heading bicycle spokes.
430	Backer blocks for spoke drawing dies.
400	Drawing dies for bicycle spokes.
800	Leaf or carriage springs.
460 and 520	Snaps for pneumatic hammers — harden full length, temper to 460 degrees, then bring point to 520 degrees.

STARRETT TOOLS FOR PATTERN, TOOL, AND DIE MAKERS**Combination Square**

The same as the standard Starrett Combination Square with hardened blade, except that the blades are graduated the same as Shrink Rules, with $\frac{1}{8}$ or $\frac{1}{16}$ inch shrinkage to the foot.

Tool and Die Makers' Square

Blade can be adjusted to an angle with the beam. The rule is narrow and adjustable to any lengths. Comprises 2 $\frac{1}{2}$ inch sliding scale, graduated in 32ds and 64ths, very narrow straight blade and a bevel blade.

Combination Bevel

Bevel has stud in straightedge stock on which its split blade is hinged, permitting it to be set at any angle. Slotted auxiliary blade with clamp bolt slips onto split blade and may be set at any angle. Tool will lie flat on work.

Toolmakers' Buttons

Hardened and ground to standard size. The buttons furnished screwed to a small plate, which makes a convenient holder for them when not in use.

Ground Flat Stock

Ground to within .001 inch of the given thickness and of fine quality. Annealed. Furnished in $\frac{1}{16}$, $\frac{3}{32}$, $\frac{1}{8}$, $\frac{3}{16}$, $\frac{1}{4}$, $\frac{5}{16}$, and $\frac{3}{8}$ inch.

For other tools especially adapted to the needs of tool, pattern, and die makers, see pages 13, 18, 21, 51, 58, 61, 62, 63, 89, 95 and 98 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

DIMENSIONS OF KEYS AND KEY-SEATS

Size of Hole	Decimal Equivalent	Preferred Width of Key-Seat	Nearest Size of Cutter	Preferred Thickness of Key	Nearest Fractional Thickness	Depth to be Cut in Hub for Straight Key	Depth at Large End for Taper Key
1	1.	.25	$\frac{1}{4}$.166	$\frac{1}{8}$.093	.112
$1\frac{1}{8}$	1.062	.265	$\frac{1}{4}$.177	$\frac{1}{8}$.093	.112
$1\frac{1}{16}$	1.125	.281	$\frac{1}{4}$.187	$\frac{1}{8}$.093	.112
$1\frac{1}{32}$	1.187	.296	$\frac{1}{4}$.198	$\frac{1}{8}$.109	.131
$1\frac{1}{64}$	1.25	.312	$\frac{1}{4}$.208	$\frac{1}{8}$.109	.131
$1\frac{1}{128}$	1.312	.328	$\frac{1}{4}$.219	$\frac{1}{8}$.109	.131
$1\frac{1}{256}$	1.375	.343	$\frac{1}{4}$.229	$\frac{1}{4}$.125	.15
$1\frac{1}{512}$	1.437	.359	$\frac{1}{4}$.239	$\frac{1}{4}$.125	.15
$1\frac{1}{1024}$	1.5	.375	$\frac{1}{4}$.25	$\frac{1}{4}$.125	.15
$1\frac{1}{2048}$	1.562	.39	$\frac{1}{4}$.26	$\frac{1}{4}$.125	.15
$1\frac{1}{4}$	1.625	.406	$\frac{1}{2}$.271	$\frac{1}{8}$.141	.168
$1\frac{1}{8}$	1.687	.421	$\frac{1}{2}$.281	$\frac{1}{8}$.141	.168
$1\frac{1}{16}$	1.75	.437	$\frac{1}{2}$.292	$\frac{1}{8}$.141	.168
$1\frac{1}{32}$	1.812	.453	$\frac{1}{2}$.302	$\frac{1}{8}$.141	.168
$1\frac{1}{64}$	1.875	.468	$\frac{1}{2}$.312	$\frac{1}{8}$.171	.206
$1\frac{1}{128}$	1.937	.484	$\frac{1}{2}$.323	$\frac{1}{8}$.171	.206
2	2.	.5	$\frac{1}{2}$.333	$\frac{1}{8}$.171	.206
$2\frac{1}{8}$	2.062	.515	$\frac{1}{2}$.344	$\frac{1}{8}$.171	.206
$2\frac{1}{16}$	2.125	.531	$\frac{1}{2}$.354	$\frac{1}{8}$.171	.206
$2\frac{1}{32}$	2.187	.547	$\frac{1}{2}$.364	$\frac{1}{8}$.171	.206
$2\frac{1}{64}$	2.25	.563	$\frac{1}{2}$.375	$\frac{1}{8}$.171	.206
$2\frac{1}{128}$	2.312	.578	$\frac{1}{2}$.385	$\frac{1}{8}$.171	.206
$2\frac{1}{256}$	2.375	.593	$\frac{1}{2}$.396	$\frac{1}{8}$.218	.262
$2\frac{1}{512}$	2.437	.609	$\frac{1}{2}$.406	$\frac{1}{8}$.218	.262
$2\frac{1}{1024}$	2.5	.625	$\frac{1}{2}$.416	$\frac{1}{8}$.218	.262
$2\frac{1}{2048}$	2.562	.641	$\frac{1}{2}$.427	$\frac{1}{8}$.218	.262
$2\frac{1}{4096}$	2.625	.656	$\frac{1}{2}$.437	$\frac{1}{8}$.218	.262
$2\frac{1}{8192}$	2.687	.672	$\frac{1}{2}$.448	$\frac{1}{8}$.218	.262
$2\frac{1}{16384}$	2.75	.687	$\frac{1}{2}$.458	$\frac{1}{8}$.218	.262
$2\frac{1}{32768}$	2.812	.703	$\frac{1}{2}$.469	$\frac{1}{8}$.218	.262
$2\frac{1}{65536}$	2.875	.719	$\frac{1}{2}$.479	$\frac{1}{2}$.25	.3
$2\frac{1}{131072}$	2.937	.734	$\frac{1}{2}$.49	$\frac{1}{2}$.25	.3
3	3.	.75	$\frac{1}{2}$.5	$\frac{1}{2}$.25	.3
$3\frac{1}{8}$	3.125	.781	$\frac{1}{2}$.521	$\frac{1}{2}$.25	.3
$3\frac{1}{16}$	3.187	.797	$\frac{1}{2}$.531	$\frac{1}{2}$.25	.3
$3\frac{1}{32}$	3.25	.812	$\frac{1}{2}$.542	$\frac{1}{2}$.25	.3
$3\frac{1}{64}$	3.375	.844	$\frac{1}{2}$.562	$\frac{1}{8}$.312	.375
$3\frac{1}{128}$	3.437	.859	$\frac{1}{2}$.573	$\frac{1}{8}$.312	.375
$3\frac{1}{256}$	3.5	.875	$\frac{1}{2}$.583	$\frac{1}{8}$.312	.375
$3\frac{1}{512}$	3.625	.906	$\frac{1}{2}$.604	$\frac{1}{8}$.312	.375
$3\frac{1}{1024}$	3.687	.923	$\frac{7}{8}$.614	$\frac{5}{8}$.312	.375
$3\frac{1}{2048}$	3.75	.937	$\frac{7}{8}$.625	$\frac{5}{8}$.312	.375
$3\frac{1}{4096}$	3.875	.969	1	.646	$\frac{11}{16}$.343	.412
$3\frac{1}{8192}$	3.937	.984	1	.656	$\frac{11}{16}$.343	.412
4	4.	1.	1	.666	$\frac{11}{16}$.343	.412

DIMENSIONS OF STRAIGHT KEYS

Diameter of Shaft	Width of Key	Thickness of Key	Diameter of Shaft	Width of Key	Thickness of Key	Diameter of Shaft	Width of Key	Thickness of Key	Diameter of Shaft	Width of Key	Thickness of Key
0			1 1/4	5/16	5/16	2 1/2	1/2	7/16	3 3/4	3/4	11/16
1/16			1 5/8	5/16	5/16	2 9/16	1/2	1/2	3 13/16	3/4	11/16
3/16			1 3/8	5/16	5/16	2 5/8	1/2	1/2	3 7/8	11/16	3/4
5/16			1 7/16	5/16	5/16	2 11/16	9/16	1/2	3 15/16	11/16	3/4
1/4			1 1/2	5/16	5/16	2 3/4	9/16	1/2	4	11/16	3/4
1/8	3/2	3/2	1 9/16	3/8	3/8	2 13/16	9/16	1/2	4 1/8	11/16	3/4
3/8	3/2	3/2	1 5/8	3/8	3/8	2 7/8	9/16	1/2	4 1/4	7/8	3/4
1/16	1/8	1/8	1 11/16	3/8	3/8	2 15/16	5/8	9/16	4 3/8	7/8	3/4
1/2	1/8	1/8	1 3/4	3/8	3/8	3	5/8	9/16	4 1/2	11/16	11/16
9/16	1/8	1/8	1 11/16	3/8	3/8	3 1/16	5/8	9/16	4 3/4	11/16	11/16
5/8	3/16	3/16	1 7/8	7/16	3/8	3 1/8	5/8	9/16	4 7/8	1	7/8
11/16	3/16	3/16	1 11/16	7/16	3/8	3 3/16	5/8	9/16	5	1	7/8
3/4	3/16	3/16	2	7/16	3/8	3 1/4	11/16	5/8	5 1/8	1 1/16	7/8
11/16	3/16	3/16	2 1/16	7/16	3/8	3 5/16	11/16	5/8	5 1/4	1 1/16	7/8
7/8	3/16	3/16	2 1/8	7/16	3/8	3 3/8	11/16	5/8	5 3/8	1 1/16	7/8
11/16	1/4	1/4	2 3/16	1/2	7/16	3 1/16	11/16	5/8	5 1/2	1 1/8	11/16
1	1/4	1/4	2 1/4	1/2	7/16	3 1/2	11/16	5/8	5 5/8	1 1/8	11/16
1 1/16	1/4	1/4	2 5/16	1/2	7/16	3 9/16	3/4	11/16	5 3/4	1 1/8	11/16
1 1/8	1/4	1/4	2 3/8	1/2	7/16	3 5/8	3/4	11/16	5 7/8	1 1/16	1
1 3/16	1/4	1/4	2 1/16	1/2	7/16	3 11/16	3/4	11/16	6	1 1/16	1

DIMENSIONS OF KEYS AND KEY-SEATS

The following rules by Baker Bros., Toledo, Ohio, give dimensions of keys and key-seats:

The width of the key should equal one quarter, and the thickness of the key one sixth the diameter of the shaft. The depth in the hub for a straight key-seat should be one half the thickness of the key. For a taper key-seat, the depth in the hub at the large end should be three fifths the thickness of the key. The taper for key-seats should be $\frac{1}{16}$ in. in one foot of length. The depth to be cut in the hub for taper key-seats, at the larger end, is greater than those cut straight, as otherwise the depth in the hub at the small end will not be sufficient, especially in long key-seats.

SQUARE FEATHER KEY SIZES

Diameter of Shaft	Size of Key	Diameter of Shaft	Size of Key
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{1}{4} \times \frac{1}{4}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{1}{8} \times \frac{1}{8}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{3}{8} \times \frac{3}{8}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{4}$ to 1 $\frac{1}{8}$	$\frac{1}{8} \times \frac{1}{8}$	3 $\frac{1}{8}$ to 4 $\frac{1}{8}$	1 $\frac{1}{8} \times 1$
1 $\frac{1}{4}$ to 2 $\frac{1}{8}$	$\frac{1}{2} \times \frac{1}{8}$	4 $\frac{1}{16}$ to 4 $\frac{3}{8}$	1 $\frac{1}{8} \times 1 \frac{1}{8}$
2 $\frac{1}{16}$ to 2 $\frac{1}{8}$	$\frac{1}{8} \times \frac{1}{8}$	4 $\frac{1}{16}$ to 4 $\frac{3}{8}$	1 $\frac{1}{8} \times 1 \frac{1}{8}$
2 $\frac{1}{8}$ to 2 $\frac{5}{8}$	$\frac{5}{8} \times \frac{5}{8}$	4 $\frac{1}{8}$ to 5 $\frac{1}{4}$	1 $\frac{1}{4} \times 1 \frac{1}{4}$
2 $\frac{1}{8}$ to 2 $\frac{5}{8}$	$\frac{1}{8} \times \frac{1}{8}$	5 $\frac{1}{16}$ to 5 $\frac{3}{8}$	1 $\frac{3}{8} \times 1 \frac{1}{8}$
2 $\frac{1}{8}$ to 3 $\frac{1}{8}$	$\frac{3}{4} \times \frac{3}{4}$	5 $\frac{1}{16}$ to 6 $\frac{1}{4}$	1 $\frac{1}{2} \times 1 \frac{1}{2}$

STRAIGHT KEY SIZES

Diameter of Shaft	Size of Key	Diameter of Shaft	Size of Key
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{1}{4} \times \frac{3}{16}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{1}{8} \times \frac{3}{16}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{8}$ to 1 $\frac{1}{8}$	$\frac{3}{8} \times \frac{3}{16}$	3 $\frac{1}{16}$ to 3 $\frac{3}{8}$	$\frac{1}{8} \times \frac{3}{8}$
1 $\frac{1}{4}$ to 1 $\frac{1}{8}$	$\frac{1}{8} \times \frac{3}{16}$	3 $\frac{1}{8}$ to 4 $\frac{1}{8}$	1 $\frac{1}{8} \times \frac{1}{8}$
1 $\frac{1}{4}$ to 2 $\frac{1}{8}$	$\frac{1}{2} \times \frac{3}{16}$	4 $\frac{1}{16}$ to 4 $\frac{3}{8}$	1 $\frac{1}{8} \times 1 \frac{1}{8}$
2 $\frac{1}{16}$ to 2 $\frac{1}{8}$	$\frac{1}{8} \times \frac{3}{16}$	4 $\frac{1}{16}$ to 4 $\frac{3}{8}$	1 $\frac{1}{8} \times \frac{3}{8}$
2 $\frac{1}{8}$ to 2 $\frac{5}{8}$	$\frac{5}{8} \times \frac{3}{16}$	4 $\frac{1}{8}$ to 5 $\frac{1}{4}$	1 $\frac{1}{4} \times \frac{3}{16}$
2 $\frac{1}{8}$ to 2 $\frac{5}{8}$	$\frac{1}{8} \times \frac{3}{16}$	5 $\frac{1}{16}$ to 5 $\frac{3}{8}$	1 $\frac{3}{8} \times \frac{3}{16}$
2 $\frac{1}{8}$ to 3 $\frac{1}{8}$	$\frac{3}{4} \times \frac{3}{16}$	5 $\frac{1}{16}$ to 6 $\frac{1}{4}$	1 $\frac{1}{2} \times 1$

THE BARTH KEY

No. of Key	w	W	D
1	$\frac{1}{8}$.132	$\frac{1}{8}$
2	$\frac{1}{16}$.165	$\frac{1}{16}$
3	$\frac{1}{16}$.199	$\frac{1}{16}$
4	$\frac{1}{4}$.264	$\frac{1}{4}$
5	$\frac{1}{16}$.329	$\frac{1}{16}$

WHITNEY KEYS AND CUTTERS. Nos. 1 to 26

(Woodruff's Patent)

No. of Key and Cutter	Diam. of Cutter	Thickness of Key and Cutter	Length of Key	Key Cut Below Center	No. of Key and Cutter	Diam. of Cutter	Thickness of Key and Cutter	Length of Key	Key Cut Below Center
	A	B	C	D		A	B	C	D
1	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$	16	$1\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$
2	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{1}{8}$	17	$1\frac{1}{8}$	$\frac{3}{16}$	$1\frac{1}{8}$	$\frac{3}{16}$
3	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$	18	$1\frac{1}{8}$	$\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$
4	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	C	$1\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$
5	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	19	$1\frac{1}{4}$	$\frac{1}{8}$	$1\frac{1}{4}$	$\frac{1}{8}$
6	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	20	$1\frac{1}{4}$	$\frac{3}{16}$	$1\frac{1}{4}$	$\frac{3}{16}$
7	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{3}{4}$	$\frac{1}{8}$	21	$1\frac{1}{4}$	$\frac{1}{4}$	$1\frac{1}{4}$	$\frac{1}{8}$
8	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{3}{4}$	$\frac{1}{8}$	D	$1\frac{1}{4}$	$\frac{1}{8}$	$1\frac{1}{4}$	$\frac{1}{8}$
9	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{3}{4}$	$\frac{1}{8}$	E	$1\frac{1}{4}$	$\frac{3}{8}$	$1\frac{1}{4}$	$\frac{1}{8}$
10	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{7}{8}$	$\frac{1}{8}$	22	$1\frac{3}{8}$	$\frac{1}{4}$	$1\frac{3}{8}$	$\frac{1}{8}$
11	$\frac{3}{4}$	$\frac{1}{8}$	$\frac{7}{8}$	$\frac{1}{8}$	23	$1\frac{3}{8}$	$\frac{1}{8}$	$1\frac{3}{8}$	$\frac{1}{8}$
12	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{7}{8}$	$\frac{1}{8}$	F	$1\frac{3}{8}$	$\frac{3}{8}$	$1\frac{3}{8}$	$\frac{1}{8}$
A	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{7}{8}$	$\frac{1}{8}$	24	$1\frac{1}{2}$	$\frac{1}{4}$	$1\frac{1}{2}$	$\frac{1}{8}$
13	1	$\frac{1}{8}$	1	$\frac{1}{8}$	25	$1\frac{1}{2}$	$\frac{1}{8}$	$1\frac{1}{2}$	$\frac{1}{8}$
14	1	$\frac{1}{8}$	1	$\frac{1}{8}$	G	$1\frac{1}{2}$	$\frac{3}{8}$	$1\frac{1}{2}$	$\frac{1}{8}$
15	1	$\frac{1}{4}$	1	$\frac{1}{8}$
B	1	$\frac{1}{8}$	1	$\frac{1}{8}$

NOTE: Refer to table at top of page 49 for values of dimension E.

WHITNEY KEYS AND CUTTERS. Nos. 26 to 36

(See Cut on page 48)

No. of Key and Cutter	Diameter of Cutter	Thickness of Key and Cutter		Length of Key		Key Cut Below Center	Flat at End of Key	No. of Key and Cutter	Diameter of Cutter	Thickness of Key and Cutter		Length of Key	Key Cut Below Center	Flat at End of Key
		A	B	C	D					A	B			
26	$2\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$			30	$3\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{8}$	$2\frac{7}{8}$		
27	$2\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$			31	$3\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{8}$	$2\frac{7}{8}$		
28	$2\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$			32	$3\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{8}$	$2\frac{7}{8}$		
29	$2\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$1\frac{1}{8}$	$\frac{1}{8}$			33	$3\frac{1}{2}$	$\frac{5}{8}$	$\frac{1}{8}$	$2\frac{7}{8}$		
R	$2\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$\frac{1}{8}$			34	$3\frac{1}{2}$	$\frac{5}{8}$	$\frac{1}{8}$	$2\frac{7}{8}$		
S	$2\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$\frac{1}{8}$			35	$3\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{7}{8}$		
T	$2\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$\frac{1}{8}$			36	$3\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{7}{8}$		
U	$2\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$\frac{1}{8}$									
V	$2\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$\frac{1}{8}$									

PROPORTIONS OF KEY HEADS

(Standard Gage Steel Co.)

A	B	C	D	A	B	C	D
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	$2\frac{3}{4}$	$1\frac{7}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	3	$2\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	$3\frac{1}{8}$	$2\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$1\frac{5}{8}$	$1\frac{5}{8}$	$3\frac{5}{8}$	$2\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	2	2	$3\frac{3}{4}$	$2\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$3\frac{7}{8}$	$2\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	4	$2\frac{1}{2}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{8}$	$2\frac{1}{2}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{1}{4}$	$2\frac{1}{2}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$4\frac{5}{8}$	$2\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	5	$2\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	5	$3\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$5\frac{1}{8}$	$3\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$5\frac{1}{4}$	$3\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	$5\frac{5}{8}$	$3\frac{1}{2}$
$1\frac{1}{8}$	$1\frac{1}{8}$	2	$1\frac{1}{8}$	$2\frac{3}{8}$	$2\frac{3}{8}$	$5\frac{1}{8}$	$3\frac{1}{8}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{3}{8}$	$2\frac{3}{8}$	$5\frac{1}{8}$	$3\frac{1}{8}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{3}{8}$	$2\frac{3}{8}$	$5\frac{1}{4}$	$3\frac{1}{4}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{3}{8}$	$2\frac{3}{8}$	$5\frac{1}{4}$	$3\frac{1}{4}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{1}{8}$	$1\frac{1}{8}$	$2\frac{3}{8}$	$2\frac{3}{8}$	$5\frac{5}{8}$	$3\frac{1}{2}$

STANDARD KEYWAYS FOR CUTTERS AND ARBORS*

Fig. 80

Diameter of Hole (D) in Cutter, Inches	Width (W), Inches	Depth (A), Inches	Radius (R), Inches
$\frac{5}{8}$ to $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$.020
$\frac{5}{8}$ to $\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$.030
$\frac{1}{2}$ to $1\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$.035
$1\frac{1}{8}$ to $1\frac{3}{8}$	$\frac{1}{2}$	$\frac{1}{8}$.040
* $1\frac{1}{8}$ to $1\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{8}$.050
* $1\frac{1}{8}$ to 2	$\frac{1}{2}$	$\frac{1}{8}$.060
$2\frac{1}{8}$ to 2	$\frac{3}{8}$	$\frac{1}{8}$.060
$2\frac{1}{8}$ to 3	$\frac{1}{2}$	$\frac{1}{8}$.060

*For all Gear Cutters of $1\frac{1}{2}$ inch, $1\frac{3}{4}$ inch, 2 inch diameters, use $\frac{1}{2}$ inch, $\frac{3}{8}$ inch, $\frac{1}{2}$ inch keys, respectively.

PROPORTIONS OF SUNK KEYS (U. S. NAVY
STANDARD)**

Diam. of Shaft	Width of Key	Thickness of Key									
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$2\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	5	$1\frac{1}{8}$	$\frac{1}{8}$	$7\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$
$\frac{5}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$2\frac{1}{2}$	$\frac{5}{8}$	$\frac{1}{8}$	$5\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$	8	$1\frac{1}{8}$	$\frac{1}{8}$
$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	$2\frac{3}{4}$	$\frac{5}{8}$	$\frac{1}{8}$	$5\frac{1}{2}$	$1\frac{1}{8}$	$\frac{1}{8}$	$8\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$
$\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{8}$	3	$\frac{1}{2}$	$\frac{1}{8}$	$5\frac{3}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$	$8\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$
1	$\frac{1}{2}$	$\frac{1}{8}$	$3\frac{1}{4}$	$\frac{5}{8}$	$\frac{1}{8}$	6	$1\frac{1}{4}$	$\frac{1}{8}$	$8\frac{3}{4}$	$1\frac{1}{4}$	$\frac{1}{8}$
$1\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	$3\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$6\frac{1}{4}$	$1\frac{1}{8}$	$\frac{1}{8}$	9	$1\frac{1}{4}$	1
$1\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$3\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$6\frac{1}{2}$	$1\frac{1}{8}$	$\frac{1}{8}$	$9\frac{1}{4}$	$1\frac{1}{8}$	1
$1\frac{3}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	4	$\frac{1}{2}$	$\frac{1}{2}$	$6\frac{3}{4}$	$1\frac{3}{8}$	$\frac{1}{8}$	$9\frac{1}{4}$	$1\frac{1}{8}$	$1\frac{1}{8}$
$1\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$4\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	7	$1\frac{1}{8}$	$\frac{1}{8}$	$9\frac{3}{4}$	2	$1\frac{1}{8}$
$1\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	$4\frac{1}{2}$	1	$\frac{1}{8}$	$7\frac{1}{4}$	$1\frac{1}{2}$	$\frac{1}{8}$	10	2	$1\frac{1}{8}$
2	$\frac{1}{2}$	$\frac{1}{8}$	$4\frac{3}{4}$	1	$\frac{1}{8}$	$7\frac{1}{2}$	$1\frac{1}{8}$	$\frac{1}{8}$

*Courtesy of The Cincinnati Milling Machine Company

**From American Machinists' Handbook by F. N. Colvin and F. A. Stanley, New York. McGraw-Hill Book Company, Inc.

**STARRETT TOOLS FOR USE IN CONNECTION
WITH KEYS**

Key-Seat Rule

Consists of machinists' scale and an auxiliary straightedge held together to form a box square. The auxiliary straightedge is either plain or graduated in 32ds or 64ths, as desired. Is also made with graduations in the Metric system.

Improved Scriber

Points are made of fine grade steel, well tempered. Stock is knurled and nickelized and of sufficient size to be easily held without cramping or turning in the fingers. All parts are interchangeable.

Made of light or heavy spring-tempered steel, flexible and semi-flexible, graduated in the English or Metric systems.

Key-Seat Clamps

Of case hardened steel and ground accurate; will transform any common scale into a Key-Seat Rule. May be used with Starrett Combination Square Blades or any straight rule.

For further information concerning these and other tools which may be used to advantage with Keys, see pages 13, 61, 62, 63 and 122 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

GEOMETRIC PROBLEMS

To divide a line into two equal parts. With the ends A and B as centers, and a radius greater than one half the line, draw intersecting arcs. Through the intersections C and D draw the line CD, which bisects the line AB and is also perpendicular to it.

To erect a perpendicular at a given point. With the point A as a center and any radius, draw arcs intersecting the given line at B and C. With B and C as centers and a radius greater than AB, draw arcs intersecting at D. DA is perpendicular to BC at A.

To erect a perpendicular at the end of a line. Take any point D outside the line and with the distance from this point to the end of the line A, as a radius draw an arc intersecting the line AB at E. Draw a line through E and D intersecting the arc at C. AC is the required perpendicular.

To erect a perpendicular to a line from a point outside it. With the point C as a center, draw an arc intersecting the given line at E and F. With E and F as centers and a radius greater than one half the distance EF, draw arcs intersecting at D. CD is the required perpendicular.

GEOMETRIC PROBLEMS

To draw a line parallel to a given line at a given distance, take any points, as C and D, on the line as centers and draw arcs with the given distance as a radius. The line EF tangent to these arcs is the required parallel.

To bisect an angle. With the vertex of the angle A as a center and any radius, draw an arc DE. With D and E as centers and a radius greater than one-half DE, draw arcs intersecting at F. Line AF bisects the angle.

To draw an angle on a line equal to a given angle FGH. With G as a center and any radius, draw arc KL. With the point A on the given line the vertex of the desired angle as a center and with the same radius draw the arc DE. With D as a center and a radius equal to the distance KL, strike an arc intersecting DE and draw the line AC through E. Angle BAC equals angle FGH.

To lay out a 60° angle. With A as a center and any radius, draw the arc BC. With B as a center and AB as a radius draw an arc intersecting BC at E. EAB is a 60° angle.

To obtain a 30° angle bisect the angle EAB by taking A as a center and any convenient radius as AB, draw the arc BE. With B and E as centers and any radius greater than one-half BE, draw arcs intersecting at D. Draw line AD. BAD is 30° .

GEOMETRIC PROBLEMS

To draw a 45° angle. From point A on the line, lay off any distance, AC. Erect a perpendicular, DC, and lay off distance CE equal to AC. Draw AE. $\angle EAC$ is a 45° angle.

To find the center of a circle. Select three points on the circumference of the circle or an arc, as A, B, and C. With each of these points as a center and the same radius describe arcs intersecting each other. Through the intersections of these arcs draw the line DE and FG. Point H, the intersection of the prolongation of these lines, is the center of the circle.

To bisect the arc of a circle. With A and B as centers and a radius greater than one-half the distance AB, draw arcs intersecting at C and D. Line CD bisects the arc AB.

GEOMETRIC PROBLEMS

To inscribe a hexagon in a circle. Draw a diameter at AB. With A and B as centers and the radius of the circle as a radius, describe arcs intersecting the circle at D, E, F, and G. Connect these intersections by lines AD, DE, EB, etc., forming the hexagon.

To describe a hexagon without a circle. Draw a diameter AB with A as a center and the radius of the circle as a radius. Strike an arc cutting the circumference of the circle at D. Join AD and bisect it with radius CE. Through E draw FG parallel to AD, intersecting line AB at F. With C as a center and CF as a radius, draw a circle and inscribe a hexagon as previously explained.

To describe an ellipse given the axes AB and CD. With O, the intersection of AB and CD as a center, describe circles with AB and CD as diameters. From a number of points, E, F, G, etc., on the outer circle draw radii intersecting the inner circle at e, f, g. From E, F, and G draw lines perpendicular to AB and from e, f, g, draw lines parallel to AB. The intersections of these perpendicular and parallel lines are points on the curve of the ellipse.

GEOMETRIC PROBLEMS

To construct an involute. Divide the circumference of the base circle ABC into any number of equal parts. Through the division points 1, 2, 3, etc., draw tangents to the circle, making the length of these tangents equal to the length of the corresponding arcs. Thus D₁ equals A₁, D₂ equals A₂, etc.

To construct a helix. Divide half the circumference of the cylinder on the surface of which the helix is to be described, into any number of equal parts. Divide half the lead of the helix into the same number of equal parts. From the division points on the circle representing the cylinder, draw vertical lines and from the division points on the lead draw horizontal lines. The intersections of the lines bearing corresponding numbers are points on the helix.

LENGTHS OF CHORDS FOR SPACING OFF THE CIRCUMFERENCE OF CIRCLES

On the following pages are given tables of the lengths of chords for spacing off the circumference of circles. The object of these tables is to make possible the division of the periphery into a number of equal parts without trials with the dividers. The first table is calculated for circles having a diameter equal to 1. For circles of other diameters, the length of chord given in the table should be multiplied by the diameter of the circle. Assume that it is required to divide the periphery of a circle of 20 inches diameter into thirty-two equal parts. This may be required, for example, when spacing the centers for the bolt holes in a cylinder flange. From the table the length of the chord is found to be 0.098 inch, if the diameter of the circle were 1 inch. With a diameter of 20 inches the length of the chord for one division would be $20 \times 0.098 = 1.96$ inch.

The following pages give an additional table for the spacing off of circles, the table in this case being worked out for diameters from $\frac{1}{16}$ inch to 14 inches. As an example, assume that it is required to divide a circle having a diameter of $6\frac{1}{2}$ inches into seven equal parts. Find first, in the column headed "6" and in line with 7 divisions, the length of the chord for a 6 inch circle, which is 2.604 inches. Then find the length of the chord for a $\frac{1}{2}$ inch diameter circle, 7 divisions, which is 0.217. The sum of these two values, $2.604 + 0.217 = 2.821$ inches, is the length of the chord required for spacing off the circumference of a $6\frac{1}{2}$ inch circle into seven equal divisions.

As another example, assume that it is required to divide a circle having a diameter of $9\frac{3}{4}$ inches into 15 equal divisions. First find the length of the chord for a 9 inch circle, which is 1.871 inch. The length of the chord for a $\frac{3}{4}$ inch circle can easily be estimated from the table by taking the value that is exactly between those given for $\frac{1}{8}$ inch and $\frac{3}{4}$ inch. The value for $\frac{1}{8}$ inch is 0.143, and for $\frac{3}{4}$ inch, 0.156. Hence for $\frac{3}{4}$, the value would be 0.150. Then, $1.871 + 0.150 = 2.021$ inches.

TABLE FOR SPACING OFF THE CIRCUMFERENCE OF CIRCLES

(See page 57 for explanatory matter)

No. of Degrees in Arc Divi- sions	Diameter of Circle to be Spaced Off															
	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	
Length of Chord																
3	120	0.054	0.108	0.162	0.216	0.270	0.324	0.378	0.432	0.486	0.541	0.595	0.649	0.703	0.757	0.811
4	90	0.044	0.088	0.132	0.176	0.221	0.265	0.309	0.353	0.397	0.442	0.486	0.530	0.574	0.618	0.662
5	72	0.037	0.073	0.110	0.146	0.183	0.220	0.257	0.293	0.330	0.367	0.403	0.440	0.477	0.514	0.551
6	60	0.031	0.063	0.094	0.125	0.156	0.188	0.219	0.250	0.281	0.312	0.343	0.375	0.406	0.438	0.469
7	51 $\frac{1}{2}$	0.027	0.054	0.081	0.108	0.135	0.162	0.189	0.217	0.244	0.271	0.298	0.325	0.352	0.379	0.406
8	45	0.024	0.048	0.072	0.096	0.120	0.143	0.167	0.191	0.215	0.239	0.263	0.287	0.311	0.335	0.359
9	40	0.021	0.043	0.064	0.086	0.107	0.128	0.149	0.171	0.192	0.214	0.235	0.257	0.278	0.298	0.320
10	36	0.019	0.039	0.058	0.077	0.097	0.116	0.135	0.155	0.174	0.193	0.212	0.232	0.251	0.270	0.290
11	32 $\frac{1}{2}$	0.018	0.035	0.053	0.070	0.088	0.105	0.123	0.141	0.158	0.176	0.193	0.211	0.223	0.246	0.264
12	30	0.016	0.032	0.048	0.065	0.081	0.097	0.114	0.130	0.146	0.162	0.178	0.194	0.211	0.227	0.243
13	27 $\frac{1}{2}$	0.015	0.030	0.045	0.059	0.074	0.089	0.104	0.119	0.134	0.149	0.164	0.179	0.194	0.209	0.224
14	25 $\frac{1}{2}$	0.014	0.028	0.042	0.056	0.069	0.083	0.097	0.111	0.125	0.139	0.153	0.167	0.181	0.194	0.208
15	24	0.013	0.026	0.039	0.052	0.065	0.078	0.091	0.104	0.117	0.130	0.143	0.156	0.169	0.182	0.195
16	22 $\frac{1}{2}$	0.012	0.024	0.037	0.051	0.061	0.073	0.085	0.098	0.109	0.122	0.134	0.146	0.158	0.170	0.183
17	21 $\frac{1}{2}$	0.011	0.023	0.034	0.046	0.057	0.069	0.080	0.092	0.103	0.115	0.126	0.138	0.149	0.160	0.172
18	20	0.011	0.022	0.032	0.043	0.054	0.065	0.076	0.087	0.097	0.108	0.119	0.130	0.141	0.152	0.163
19	18 $\frac{1}{2}$	0.010	0.021	0.031	0.041	0.051	0.062	0.072	0.082	0.092	0.103	0.113	0.123	0.133	0.144	0.154
20	18	0.010	0.020	0.029	0.039	0.049	0.059	0.068	0.078	0.088	0.098	0.107	0.117	0.127	0.136	0.146
21	17 $\frac{1}{2}$	0.009	0.019	0.028	0.037	0.047	0.056	0.065	0.075	0.084	0.093	0.102	0.112	0.121	0.130	0.139
22	16 $\frac{1}{2}$	0.009	0.018	0.027	0.036	0.045	0.053	0.062	0.071	0.080	0.089	0.098	0.107	0.115	0.124	0.133
23	15 $\frac{1}{2}$	0.009	0.017	0.026	0.034	0.043	0.051	0.059	0.068	0.077	0.085	0.094	0.102	0.111	0.119	0.128
24	15	0.008	0.016	0.024	0.033	0.041	0.049	0.057	0.065	0.073	0.082	0.090	0.098	0.106	0.114	0.122
25	14 $\frac{1}{2}$	0.008	0.016	0.023	0.031	0.039	0.047	0.055	0.063	0.070	0.078	0.086	0.094	0.102	0.109	0.117
26	13 $\frac{1}{2}$	0.008	0.015	0.023	0.030	0.038	0.045	0.053	0.060	0.068	0.075	0.083	0.090	0.098	0.105	0.113
28	12 $\frac{1}{2}$	0.007	0.014	0.021	0.028	0.035	0.042	0.049	0.056	0.063	0.070	0.077	0.084	0.091	0.098	0.105
30	12	0.007	0.013	0.019	0.026	0.033	0.039	0.046	0.052	0.059	0.065	0.072	0.078	0.085	0.091	0.098
32	11 $\frac{1}{2}$	0.006	0.012	0.018	0.024	0.031	0.037	0.043	0.049	0.055	0.061	0.067	0.074	0.080	0.086	0.092

D A T A B O O K

Laying Out

TABLE FOR SPACING OFF THE CIRCUMFERENCE OF CIRCLES—*Continued*

No. of Divi- sions	Degrees in Arc	Diameter of Circle to be Spaced Off											
		1	2	3	4	5	6	7	8	9	10	11	12
3	120	0.866	1.732	2.598	3.464	4.330	5.196	6.062	6.928	7.794	8.660	9.526	10.392
4	90	0.707	1.414	2.121	2.828	3.536	4.243	4.950	5.657	6.364	7.071	7.778	8.485
5	72	0.588	1.176	1.763	2.351	2.939	3.527	4.115	4.702	5.290	5.877	6.465	7.053
6	60	0.500	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000	5.500	6.000
7	51 $\frac{1}{3}$	0.434	0.868	1.302	1.736	2.170	2.604	3.037	3.471	3.905	4.339	4.773	5.207
8	45	0.383	0.765	1.148	1.531	1.913	2.296	2.679	3.061	3.444	3.827	4.210	4.592
9	40	0.342	0.684	1.026	1.368	1.710	2.052	2.394	2.736	3.078	3.420	3.762	4.104
10	36	0.309	0.618	0.927	1.236	1.545	1.854	2.163	2.472	2.781	3.090	3.399	3.708
11	32 $\frac{1}{3}$	0.282	0.564	0.845	1.127	1.409	1.691	1.973	2.254	2.536	2.818	3.100	3.381
12	30	0.259	0.518	0.776	1.035	1.294	1.553	1.812	2.070	2.329	2.588	2.847	3.106
13	27 $\frac{1}{3}$	0.239	0.479	0.718	0.958	1.197	1.436	1.676	1.915	2.154	2.393	2.633	2.873
14	25 $\frac{1}{3}$	0.222	0.445	0.667	0.890	1.112	1.334	1.557	1.779	2.001	2.224	2.446	2.668
15	24	0.208	0.416	0.624	0.832	1.040	1.247	1.455	1.663	1.871	2.079	2.287	2.495
16	22 $\frac{1}{3}$	0.195	0.390	0.585	0.780	0.975	1.171	1.366	1.561	1.756	1.951	2.146	2.341
17	21 $\frac{1}{3}$	0.184	0.367	0.551	0.735	0.918	1.102	1.286	1.469	1.653	1.837	2.020	2.204
18	20	0.174	0.347	0.521	0.695	0.868	1.041	1.215	1.389	1.563	1.736	1.910	2.084
19	18 $\frac{1}{3}$	0.165	0.320	0.493	0.658	0.822	0.987	1.151	1.316	1.480	1.645	1.809	1.974
20	18	0.156	0.313	0.469	0.626	0.782	0.938	1.095	1.251	1.405	1.564	1.721	1.877
21	17 $\frac{1}{3}$	0.149	0.298	0.447	0.596	0.745	0.894	1.043	1.192	1.341	1.490	1.639	1.788
22	16 $\frac{1}{3}$	0.142	0.286	0.428	0.570	0.712	0.855	0.997	1.139	1.281	1.423	1.566	1.708
23	15 $\frac{1}{3}$	0.136	0.273	0.409	0.545	0.681	0.818	0.954	1.091	1.227	1.362	1.499	1.635
24	15	0.131	0.261	0.391	0.522	0.653	0.783	0.914	1.044	1.175	1.305	1.436	1.566
25	14 $\frac{1}{3}$	0.125	0.251	0.376	0.501	0.627	0.752	0.877	1.003	1.128	1.253	1.379	1.504
26	13 $\frac{1}{3}$	0.120	0.241	0.361	0.482	0.602	0.723	0.843	0.964	1.084	1.205	1.325	1.445
28	12 $\frac{1}{3}$	0.112	0.224	0.336	0.448	0.560	0.672	0.784	0.896	1.008	1.120	1.232	1.344
30	12	0.105	0.209	0.314	0.418	0.523	0.627	0.732	0.836	0.941	1.045	1.150	1.254
32	11 $\frac{1}{3}$	0.098	0.196	0.294	0.392	0.490	0.588	0.686	0.784	0.882	0.980	1.078	1.176

From "Machinery's" Handbook, The Industrial Press, New York

**LENGTH OF CHORDS FOR SPACING OFF THE
CIRCUMFERENCE OF CIRCLES WITH A
DIAMETER EQUAL TO 1**

For circles of other diameters multiply length given in table by diameter of circle.

No. of Spaces	Length of Chord						
3	0.8660	28	0.1120	53	0.0592	78	0.0403
4	0.7071	29	0.1081	54	0.0581	79	0.0398
5	0.5878	30	0.1045	55	0.0571	80	0.0393
6	0.5000	31	0.1012	56	0.0561	81	0.0388
7	0.4339	32	0.0980	57	0.0551	82	0.0383
8	0.3827	33	0.0951	58	0.0541	83	0.0378
9	0.3420	34	0.0923	59	0.0532	84	0.0374
10	0.3090	35	0.0896	60	0.0523	85	0.0370
11	0.2818	36	0.0872	61	0.0515	86	0.9365
12	0.2588	37	0.0848	62	0.0507	87	0.0361
13	0.2393	38	0.0826	63	0.0499	88	0.0357
14	0.2224	39	0.0805	64	0.0491	89	0.0353
15	0.2079	40	0.0785	65	0.0483	90	0.0349
16	0.1951	41	0.0765	66	0.0476	91	0.0345
17	0.1837	42	0.0747	67	0.0469	92	0.0341
18	0.1736	43	0.0730	68	0.0462	93	0.0338
19	0.1645	44	0.0713	69	0.0455	94	0.0334
20	0.1564	45	0.0698	70	0.0449	95	0.0331
21	0.1490	46	0.0682	71	0.0442	96	0.0327
22	0.1423	47	0.0668	72	0.0436	97	0.0324
23	0.1362	48	0.0654	73	0.0430	98	0.0321
24	0.1305	49	0.0641	74	0.0424	99	0.0317
25	0.1253	50	0.0628	75	0.0419	100	0.0314
26	0.1205	51	0.0616	76	0.0413
27	0.1161	52	0.0604	77	0.0408

**STARRETT TOOLS FOR USE IN CONNECTION
WITH LAYING OUT**

Universal Bevel Protractor with Vernier

Made from sheet steel. The blade is either 7 or 12 inches long by $\frac{1}{2}$ inch wide and the stock is 4 inches long. The disc is graduated from zero to 90° each way and rotates the entire circle on a central stud. Made with verniers reading to five minutes, or one-twelfth of a degree, the vernier being so placed that the protractor is readable by vernier in any position.

Combination Square

Consists of the rule on which slide the square-, center-, and protractor heads. The reversible protractor head reads from zero to 180° both ways. All parts are of hardened, drop forged steel. Graduated in English or Metric systems.

Toolmakers' Dividers

Made of round tool steel with legs drawn down, making them hard and stiff. The fulcrum nut is hardened, bows made extra strong. Made with solid nut only.

Automatic Center Punch

A knurled adjustable screw cap working in conjunction with a spring regulates the stroke, which may be made light or heavy. Made of tool steel, carefully hardened, with ground, renewable points.

For further information concerning these and other tools which may be used to advantage in Laying Out, see pages 51, 62, 63, and 158 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

**STARRETT TOOLS FOR USE IN CONNECTION
WITH LAYING OUT**

Trammels

These trammels are designed to be fastened to a wooden beam, which may be of any size from $\frac{3}{4}$ inch to $1\frac{1}{8}$ inches wide and any desired thickness, adapting them to large or small work. Trammels are also made for use with sectional extension steel beam, made of $\frac{1}{8}$ inch round stock with one side flattened. The auxiliaries designed to go with the trammel heads are inside and outside caliper legs, extra pair of long points and a set of four ball points with holder, making possible the scribing of a circle from the center of any hole up to $1\frac{1}{2}$ inches in diameter. A lead pencil may be substituted for either of the steel points.

**Spacing Attachment for Center
Punches**

Designed for use with the Automatic Center Punches, the locating point is on the principle of a spring plunger, held in its lowest position by a light spiral spring. The attachment has a capacity of from $\frac{1}{16}$ inch to $1\frac{3}{4}$ inches.

For further information concerning these and other tools which may be used to advantage in Laying Out, see pages 51, 61, 63 and 158 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

**STARRETT TOOLS FOR USE IN CONNECTION
WITH LAYING OUT**

Improved Adjustable Sleeve Scriber

Made of fine steel, carefully tempered; the knurled sleeve has a hole running through it with a clamping device at one end, adapting it for slipping on or off different tools, securely holding them near to or away from the marking point. The sleeve is nickel plated and of sufficient size to be easily held without cramping or turning in the fingers.

Graduated Steel Straightedge

Accurately ground and hardened edges, not beveled, graduated on one side only, one edge reading in 16ths and the other 8ths of an inch. Made in lengths of from 12 to 48 inches. Other styles are made plain, beveled, and not beveled, and with different graduations.

Vernier Height Gage

The bar is 10 inches long, graduated to read by means of the vernier to $1/1000$ inch and measures to 8 inches in height. The hardened base is $2\frac{3}{4}$ inches by 1 inch wide, recessed on the bottom and ground square, allowing it to stand upright. An extension for the movable jaws permits reverse measurements being taken from the top or bottom side of the jaw. An attachment is also provided for the taking of measurements inside the frame of a jig, ascertaining the depth of recesses, etc. Made in English, Metric, and English and Metric measures.

For further information concerning these and other tools which may be used to advantage in Laying Out, see pages 51, 61, 62 and 158 of this volume; also, Vol. I of The Starrett Books, and the Starrett Catalogue.

COMPOSITION OF MISCELLANEOUS ALLOYS

Alloys	Antimony	Bismuth	Copper	Iron	Lead	Nickel	Tin	Zinc
Bell metal.....			4				1
Brass castings, common.....			20				2.5	1.25
Brass, common yellow.....			61.6		2.9		0.2	35.3
Brass, to be rolled.....			32				1.5	10
Britannia metal.....	50	25					25
Bronze Statuary.....			91.4		1.37		1.7	5.53
Chinese gongs.....			40.5				9.2
Chinese white copper.....			20.2			15.8	1.3	12.7
Copper flanges.....			9				0.26	1
German Silver.....			2	6.5		7.9		6.3
Gun metal.....			8				1
Pattern letters.....	15	15			70		
Spelter.....			1					1
Type metal.....	1				3-7		
White metal, ordinary.....	28.4		3.7				14.2	3.7

SHRINKAGE OF CASTINGS*

Shrinkage of Castings	Inch per foot
Aluminum, Pure.....	.2031
Aluminum, Nickel Alloy.....	.1875
Aluminum, Special Alloy.....	.1718
Iron, Small Cylinders.....	.0625
Iron Pipes.....	.125
Iron Girders and Beams.....	.100
Iron, Large Cylinders, Contraction of Diameter at Top.....	.625
Iron, Large Cylinders, Contraction of Diameter at Bottom.....	.083
Iron, Large Cylinders, Contraction of Length.....	.094
Brass, Thin.....	.167
Brass, Thick.....	.150
Copper.....	.1875
Bismuth.....	.1563
Lead.....	.3125
Zinc.....	.3125

SPECIFIC GRAVITY AND PROPERTIES OF METALS

Metal or Composition	Specific Gravity	Weight per Cubic inch, Pounds	Melting Point, Deg. F.	Linear Expansion per Unit Length per Deg. F.
Aluminum.....	2.56	0.0924	1200	0.00001234
Antimony.....	6.71	0.2422	1150	0.00000627
Barium.....	3.75	0.1354	1560	
Bismuth.....	9.80	0.3538	500	0.00000975
Boron.....	2.60	0.0939		
Brass: 80 C., 20 Z.....	8.60	0.3105		
70 C., 30 Z.....	8.40	0.3032	1700-1850	0.00000957
60 C., 40 Z.....	8.36	0.3018		
50 C., 50 Z.....	8.20	0.2960		
Bronze.....	8.85	0.3195	1675	0.00000986
Cadmium.....	8.60	0.3105	610	
Calcium.....	1.57	0.0567	1450	
Chromium.....	6.50	0.2347	2740	
Cobalt.....	8.65	0.3123	2700	
Copper.....	8.82	0.3184	1940	0.00000887
Gold.....	19.32	0.6975	1930	0.00000786
Iridium.....	22.42	0.8094	4100	0.00000358
Iron, cast.....	7.20	0.2600	2300	0.00000556
Iron, wrought.....	7.85	0.2834	2900	0.00000648
Lead.....	11.37	0.4105	620	0.00001571
Magnesium.....	1.74	0.0628	1200	
Manganese.....	7.42	0.2679	2200	
Mercury (60° F.).....	13.58	0.4902	-39	
Molybdenum.....	8.56	0.3090	4500	
Nickel.....	8.80	0.3177	2600	0.00000695
Platinum, rolled.....	22.67	0.8184		
Platinum, wire.....	21.04	0.7595	3200	0.00001479
Potassium.....	0.87	0.0314	144	
Silver.....	10.53	0.3802	1740	0.00001079
Sodium.....	0.98	0.0354	200	
Steel.....	7.80	0.2816	2500	0.00000636
Tellurium.....	6.25	0.2256	840	
Tin.....	7.29	0.2632	446	0.00001163
Titanium.....	3.54	0.1278	3360	
Tungsten.....	18.77	0.6776	5400	
Vanadium.....	5.50	0.1986	3200	
Zinc, cast.....	6.86	0.2476		
Zinc, rolled.....	7.15	0.2581	785	0.00001407

WEIGHTS OF SHEET COPPER

Per Square Foot and Thickness, per Stubbs's Wire Gage

Stubbs's Wire Gage No.	Thickness Decimal Parts of an inch	Ounces per sq. foot	Sheets 24" x 48" Weight in pounds	Sheets 30" x 60" Weight in pounds	Sheets 36" x 72" Weight in pounds	Sheets 48" x 72" Weight in pounds
35	.005	4	2	3.12	4.5	6
33	.008	6	3	4.68	6.75	9
31	.010	8	4	6.25	9.00	12
29	.013	10	5	7.81	11.25	15
27	.016	12	6	9.37	13.50	18
26	.018	14	7	10.93	15.75	21
24	.022	16	8	12.5	18.00	24
23	.025	18	9	14.06	20.25	27
22	.021	20	10	15.62	22.50	30
21	.032	24	12	18.75	27	36
19	.042	32	16	25.00	36	48
18	.049	40	20	31.25	45	60
16	.065	48	24	37.50	54	72
15	.072	56	28	43.75	63	84
14	.083	64	32	50	72	96
13	.095	70	35	55	79	105
12	.109	81	40½	63	91	122
11	.120	89	44½	70	100	134
10	.134	100	50	78	112	150
9	.148	110	55	86	124	165
8	.165	123	61	96	138	184
7	.180	134	67	105	151	201
6	.203	151	75½	118	170	227
5	.220	164	82	128	184	246
4	.238	177	88½	138	199	266
3	.259	193	96	151	217	289
2	.284	211	105½	165	238	317
1	.300	233	111½	174	251	335
0	.340	253	126½	198	285	380

WEIGHT OF FLAT-BAR STEEL PER LINEAL FOOT

Weight of one cubic inch = .2836 lb.

WIDTH

Weight of one cubic foot = 490 lbs.

Thickness	Width										Weight of one cubic foot = 490 lbs.									
	1/2	5/8	3/4	7/8	1	1 1/8	1 1/4	1 1/2	1 5/8	1 3/4	1 7/8	2	2 1/4	2 1/2	2 3/4	3	3 1/2	4	5	
1/16	.106	.133	.160	.186	.213	.239	.265	.292	.320	.349	.372	.399	.425	.477	.53	.59	.64	.74	.85	1.06
1/8	.213	.266	.320	.372	.426	.479	.530	.585	.640	.698	.745	.798	.850	.955	1.07	1.18	1.28	1.49	1.70	2.13
3/16	.319	.399	.480	.558	.639	.718	.790	.878	.960	1.04	1.12	1.20	1.28	1.43	1.60	1.76	1.92	2.24	2.55	3.20
5/16	.425	.533	.640	.743	.832	.958	1.06	1.17	1.28	1.39	1.49	1.60	1.70	1.91	2.13	2.34	2.56	3.40	4.26	
1/4																				
3/8	.531	.665	.800	.929	1.06	1.20	1.33	1.46	1.61	1.73	1.86	1.99	2.13	2.39	2.66	2.92	3.19	3.72	4.25	5.32
7/16	.638	.798	.960	1.12	1.28	1.43	1.59	1.75	1.91	2.07	2.23	2.39	2.55	2.87	3.20	3.51	3.83	4.46	5.10	6.40
1/2	.744	.931	1.12	1.30	1.49	1.67	1.86	2.05	2.23	2.42	2.60	2.98	3.25	3.72	4.09	4.46	5.21	5.95	7.44	
5/8																				
13/16																				
1/4																				
3/4																				
1																				
11/16																				
13/16																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				
1 1/2																				
1 1/8																				
1 1/4																				

WEIGHTS OF SHEET STEEL AND IRON

United States Standard Gage

(Adopted by U. S. Government July 1, 1893)

Number of Gage	App. Thickness	Weight per Sq. Ft.		No. of Gage	App. Thickness	Weight per Sq. Ft.	
		Steel	Iron			Steel	Iron
0000000	.5	20.320	20.00	17	.05625	2.286	2.25
000000	.46875	19.050	18.75	18	.05	2.032	2.
00000	.4375	17.780	17.50	19	.04375	1.778	1.75
0000	.40625	16.510	16.25	20	.0375	1.524	1.50
000	.375	15.240	15.00	21	.03437	1.397	1.375
00	.34375	13.970	13.75	22	.03125	1.270	1.25
0	.3125	12.700	12.50	23	.02812	1.143	1.125
1	.28125	11.430	11.25	24	.025	1.016	1.
2	.26562	10.795	10.625	25	.02187	1.389	.875
3	.25	10.160	10.00	26	.01875	.762	.75
4	.23437	9.525	9.375	27	.01718	.698	.687
5	.21875	8.890	8.75	28	.01562	.635	.623
6	.20312	8.255	8.125	29	.01406	.571	.562
7	.1875	7.620	7.5	30	.0125	.508	.5
8	.17187	6.985	6.875	31	.01093	.494	.437
9	.15625	6.350	6.25	32	.01015	.413	.406
10	.14062	5.715	5.625	33	.00937	.381	.375
11	.125	5.080	5.00	34	.00859	.349	.343
12	.10937	4.445	4.375	35	.00781	.317	.312
13	.09375	3.810	3.75	36	.00703	.285	.281
14	.07812	3.175	3.125	37	.00664	.271	.265
15	.07031	2.857	2.812	38	.00625	.254	.25
16	.0625	2.540	2.50				

Weight of 1 cubic foot is assumed to be 487.7 lbs. for steel plates and 480 lbs. for iron plates.

68 From American Machinists' Handbook by F. N. Covlin and F. A. Stanley, New York, McGraw-Hill Book Company Inc.

DATA BOOK

Materials

WEIGHTS OF SEAMLESS BRASS TUBING PER LINEAR FOOT ($\frac{1}{8}$ to $2\frac{1}{2}$ outside diameter. Nos. 1 to 25 Stubbs's gage.)

No. of Gage	Thickness in Inches	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1\frac{1}{4}$	$1\frac{1}{2}$	$1\frac{3}{4}$	2	$2\frac{1}{4}$	$2\frac{1}{2}$	
1	.300	2.42	3.28	4.10	5.03	5.88	6.75	7.62
2	.284	2.35	3.16	4.03	4.80	5.57	6.45	7.26
3	.259	2.22	2.98	3.72	4.48	5.23	5.96	6.72
4	.238	1.76	2.10	2.79	3.49	4.18	4.82	5.51
5	.220	1.68	1.99	2.60	3.26	3.89	4.53	5.14
6	.203	1.58	1.88	2.46	3.04	3.60	4.20	4.80
7	.180	1.00	1.29	1.71	2.23	2.77	3.28	3.78
8	.16590	1.19	1.44	1.71	2.07	2.54	3.02
9	.14864	.77	1.11	1.35	1.59	1.89	2.32
10	.13461	.71	.82	1.04	1.25	1.46	1.75
11	.12038	.46	.58	.77	1.16	1.35	1.54
12	.10936	.43	.53	.70	.87	1.05	1.22
13	.095170	.237	.306	.377	.445	.514	.580
14	.083160	.220	.280	.340	.400	.460	.520
15	.072096	.144	.201	.251	.303	.355	.409
16	.065045	.092	.138	.186	.232	.279	.326
17	.058044	.087	.128	.169	.212	.255	.295
18	.049043	.078	.113	.150	.183	.220	.255
19	.042040	.070	.101	.130	.161	.193	.221
20	.035036	.062	.086	.113	.136	.163	.188
21	.032034	.057	.081	.104	.128	.151	.173
22	.028031	.051	.072	.093	.112	.133	.152
23	.025029	.047	.066	.082	.102	.119	.136
24	.022026	.042	.058	.074	.090	.107	.121
25	.020024	.039	.052	.068	.081	.096	.110

From American Machinist's Handbook by F. N. Colvin and P. A. Stanley, New York. McGraw-Hill Book Company, Inc. 69

For weights of seamless copper tubing, add 5 per cent to the weights above.

**WEIGHTS OF STEEL, WROUGHT IRON, BRASS
AND COPPER PLATES**

BIRMINGHAM OR STUBBS'S GAGE

No. of Gage	Thickness in Inches	Weight in Lbs. per Square Foot			
		Steel	Iron	Brass	Copper
0000	.454	18.52	18.16	19.431	20.556
000	.425	17.34	17.00	18.190	19.253
00	.380	15.30	15.20	16.264	17.214
0	.340	13.87	13.60	14.552	15.402
1	.300	12.24	12.00	12.840	13.590
2	.284	11.59	11.36	12.155	12.865
3	.259	10.57	10.36	11.085	11.733
4	.238	9.71	9.52	10.186	10.781
5	.220	8.98	8.80	9.416	9.966
6	.203	8.28	8.12	8.689	9.196
7	.180	7.34	7.20	7.704	8.154
8	.165	6.73	6.60	7.062	7.475
9	.148	6.04	5.92	6.334	6.704
10	.134	5.47	5.36	5.735	6.070
11	.120	4.90	4.80	5.137	5.436
12	.109	4.45	4.36	4.667	4.938
13	.095	3.88	3.80	4.066	4.303
14	.083	3.39	3.32	3.552	3.769
15	.072	2.94	2.88	3.081	3.262
16	.065	2.65	2.60	2.782	2.945
17	.058	2.37	2.32	2.482	2.627
18	.049	2.00	1.96	2.097	2.220
19	.042	1.71	1.68	1.797	1.902
20	.035	1.43	1.40	1.498	1.585
21	.032	1.31	1.28	1.369	1.450
22	.028	1.14	1.12	1.198	1.270
23	.025	1.02	1.00	1.070	1.132
24	.022	.898	.88	.941	.997
25	.020	.816	.80	.856	.906
26	.018	.734	.72	.770	.815
27	.016	.653	.64	.685	.725
28	.014	.571	.56	.599	.634
29	.013	.530	.52	.556	.589
30	.012	.490	.48	.514	.544
31	.010	.408	.40	.428	.453
32	.009	.367	.36	.385	.408
33	.008	.326	.32	.342	.362
34	.007	.286	.28	.2996	.317
35	.005	.204	.20	.214 -	.227
36	.004	.163	.16	.171	.181

TABLES FOR COMPUTING WEIGHT OF CAST STEEL

Weight in pounds of a lineal foot of round, square, and octagon steel.

Size in Inches	Round	Octagon	Square	Size in Inches	Round	Octagon	Square
$\frac{1}{16}$.010	.011	.013	$2\frac{1}{4}$	16.79	17.71	21.37
$\frac{1}{8}$.042	.044	.053	$2\frac{5}{8}$	18.51	19.52	23.56
$\frac{5}{16}$.094	.099	.120	$2\frac{3}{4}$	20.31	21.42	25.86
$\frac{3}{8}$.168	.177	.214	$2\frac{7}{8}$	22.20	23.41	28.27
$\frac{7}{16}$.262	.277	.334	3	24.17	25.50	30.78
$\frac{1}{4}$.378	.398	.481	$3\frac{1}{8}$	26.23	27.66	33.40
$\frac{9}{16}$.514	.542	.655	$3\frac{1}{4}$	28.37	29.92	36.12
$\frac{5}{8}$.671	.708	.855	$3\frac{3}{8}$	30.59	32.27	38.95
$\frac{11}{16}$.850	.896	1.082	$3\frac{1}{2}$	32.90	34.70	41.89
$\frac{3}{5}$	1.049	1.107	1.336	$3\frac{5}{8}$	35.29	37.23	44.94
$\frac{13}{16}$	1.270	1.339	1.618	$3\frac{3}{4}$	37.77	39.84	48.09
$\frac{7}{8}$	1.511	1.594	1.924	$3\frac{7}{8}$	40.33	42.54	51.35
$\frac{15}{16}$	1.773	1.870	2.258	4	42.97	45.33	54.72
$\frac{1}{2}$	2.056	2.169	2.618	$4\frac{1}{4}$	48.51	51.17	61.77
$\frac{17}{16}$	2.361	2.490	3.006	$4\frac{1}{2}$	54.39	57.37	69.25
1	2.686	2.833	3.420	$4\frac{3}{4}$	60.60	63.92	77.16
$1\frac{1}{16}$	3.399	3.585	4.328	5	67.15	70.83	85.50
$1\frac{1}{8}$	4.197	4.427	5.344	$5\frac{1}{4}$	74.03	78.08	94.26
$1\frac{3}{8}$	5.078	5.356	6.466	$5\frac{3}{4}$	81.25	85.70	103.45
$1\frac{1}{2}$	6.044	6.374	7.695	$5\frac{7}{8}$	88.80	93.67	113.07
$1\frac{5}{16}$	7.093	7.481	9.031	6	96.69	101.99	123.12
$1\frac{1}{4}$	8.226	8.674	10.474	7	131.61	138.82	167.58
$1\frac{7}{16}$	9.443	9.960	12.023	8	171.90	181.32	218.88
2	10.744	11.332	13.680	9	217.57	229.48	277.02
$2\frac{1}{8}$	12.129	12.793	15.443	10	268.60	283.31	342.00
$2\frac{1}{4}$	13.598	14.343	17.314	11	325.01	342.80	413.82
$2\frac{5}{8}$	15.151	15.981	19.291	12	386.79	407.97	492.48

AVERAGE ULTIMATE STRENGTH OF COMMON MATERIALS
OTHER THAN METALS

(Pounds per square inch)

Material	Compression	Tension
Bricks, best hard	12,000	400
Bricks, light red	1,000	40
Brickwork, common	1,000	50
Brickwork, best	2,000	300
Cement, Portland, one month old.	2,000	400
Cement, Portland, one year old.	3,000	500
Concrete, Portland	1,000	200
Concrete, Portland, one year old.	2,000	400
Hemlock	4,000	6,000
Pine, shortleaf yellow	6,000	9,000
Pine, Georgia	8,000	12,000
Pine, white	5,500	7,000
White oak	7,000	10,000

DIAMETER, STRENGTH, AND WEIGHT OF STEEL WIRE

The breaking stress of the wire is based on a tensile strength of 100,000 pounds per square inch. For wire of greater or less strength, simply multiply the values in the table by the ratio between actual strength per square inch and 100,000. Example: A No. 15 wire is made of material having a tensile strength of 150,000 pounds per square inch. Then, breaking stress of wire = $(150,000 \div 100,000) \times 407 = 610$ pounds.

No. Wash- burn & Moen, Am. Steel & Wire Co. and Roeb- ling Gage	Diam., Inches	Area, Sq. Ins.	Breaking Stress of Wire, based on 100,000 Lbs. Stress per Sq. In.	Weight in Pounds		Number of Feet in 2,000 Pounds
				Per 1000 Ft.	Per Mile	
000000	0.460	0.166191	16,620.0	558.4	2948.0	3,582
00000	0.430	0.145221	14,520.0	487.9	2576.0	4,099
0000	0.393	0.121304	12,130.0	407.6	2152.0	4,907
000	0.362	0.102922	10,290.0	345.8	1826.0	5,783
00	0.331	0.086049	8,605.0	289.1	1527.0	6,917
0	0.307	0.074023	7,400.0	248.7	1313.0	8,041
1	0.283	0.062902	6,290.0	211.4	1116.0	9,463
2	0.263	0.054325	5,430.0	182.5	964.0	10,957
3	0.244	0.046760	4,680.0	157.1	830.0	12,730
4	0.225	0.039761	3,980.0	133.6	705.0	14,970
5	0.207	0.033654	3,365.0	113.1	597.0	17,687
6	0.192	0.028953	2,895.0	97.3	514.0	20,559
7	0.177	0.024606	2,460.0	82.7	437.0	24,191
8	0.162	0.020612	2,060.0	69.3	366.0	28,878
9	0.148	0.017203	1,720.0	57.8	305.0	34,600
10	0.135	0.014314	1,430.0	48.1	254.0	41,584
11	0.120	0.011310	1,130.0	38.0	201.0	52,631
12	0.105	0.008659	866.0	29.1	154.0	68,752
13	0.092	0.006648	665.0	22.3	118.0	89,525
14	0.080	0.005027	503.0	16.9	89.2	118,413
15	0.072	0.004071	407.0	13.7	72.2	146,198
16	0.063	0.003117	312.0	10.5	55.3	191,022
17	0.054	0.002290	229.0	7.70	40.6	259,909
18	0.047	0.001735	174.0	5.83	30.8	343,112
19	0.041	0.001320	132.0	4.44	23.4	450,856
20	0.035	0.000962	96.0	3.23	17.1	618,620
21	0.032	0.000804	80.0	2.70	14.3	740,193
22	0.028	0.000616	62.0	2.07	10.9	966,651
23	0.025	0.000491	49.0	1.65	8.71
24	0.023	0.000415	42.0	1.40	7.37
25	0.020	0.000314	31.0	1.06	5.58
26	0.018	0.000254	25.0	0.855	4.51
27	0.017	0.000227	23.0	0.763	4.03
28	0.016	0.000201	20.0	0.676	3.57
29	0.015	0.000177	18.0	0.594	3.14
30	0.014	0.000154	15.0	0.517	2.73
31	0.0135	0.000143	14.0	0.481	2.54
32	0.013	0.000133	13.0	0.446	2.36
33	0.011	0.000095	9.5	0.319	1.69
34	0.010	0.000079	7.9	0.264	1.39
35	0.0095	0.000071	7.1	0.238	1.26
36	0.009	0.000064	6.4	0.214	1.13

AVERAGE ULTIMATE STRENGTH OF COMMON METALS

Pounds per Square Inch

Material	Tension	Com- pression	Shear	Modulus of Elasticity
Aluminum.....	15,000	12,000	12,000	11,000,000
Brass, cast.....	24,000	30,000	36,000	9,000,000
Bronze, gun metal.....	32,000	20,000	10,000,000
Bronze, manganese.....	60,000	120,000
Bronze, phosphor.....	50,000	14,000,000
Copper, cast.....	24,000	40,000	30,000	10,000,000
Copper wire, annealed.....	36,000	15,000,000
Copper wire, unannealed.....	60,000	18,000,000
Iron, cast.....	15,000	80,000	18,000	12,000,000
Iron wire, annealed.....	60,000	15,000,000
Iron wire, unannealed.....	80,000	25,000,000
Iron, wrought.....	48,000	46,000	40,000	27,000,000
Lead, cast.....	2,000	1,000,000
Steel castings.....	70,000	70,000	60,000	30,000,000
Steel, plow.....	270,000
Steel, structural.....	60,000	60,000	50,000	29,000,000
Steel wire, annealed.....	80,000	29,000,000
Steel wire, unannealed.....	120,000	30,000,000
Steel wire, crucible.....	180,000	30,000,000
Steel wire, susp. bridge.....	200,000	30,000,000
Steel wire, piano.....	300,000
Tin, cast.....	3,500	6,000	4,000,000
Zinc, cast.....	5,000	20,000	13,000,000

STRENGTH OF BRONZES *

Copper per cent	Tin, per cent	Tensile Strength lbs. per sq. in.	Yield- point, lbs. per sq. in.	Com- pressive Strength, lbe. per sq. in.	Elonga- tion, per cent	Com- pression, per cent
100	27,000	14,000	41,000	8.0	44
95	5	31,000	17,000	46,000	10.0	41
90	10	29,000	21,000	54,000	4.0	31
85	15	33,000	26,000	74,000	1.6	24
80	20	32,000	28,000	124,000	0.5	14
75	25	18,000	18,000	150,000	8
70	30	6,500	6,500	143,000	2
65	35	2,800	2,800	75,000	4

STRENGTH OF BRASSES *

Copper, per cent	Zinc, per cent	Tensile Strength, lbs. per sq. in.	Yieldpoint, lbs. per sq. in.	Compressive Strength, lbs. per sq. in.	Elongation, per cent
100	27,000	14,000	41,000	7
95	5	28,000	12,000	28,000	12
90	10	30,000	10,000	29,000	18
85	15	32,000	9,000	33,000	25
80	20	34,000	8,000	39,000	33
75	25	37,000	9,000	46,000	38
70	30	41,000	10,000	54,000	38
65	35	46,000	13,000	63,000	33
60	40	49,000	17,000	74,000	19
55	45	44,000	20,000	90,000	10
50	50	30,000	24,000	116,000	4
45	55	14,000	14,000	126,000	..

PERCENTAGE OF CARBON IN CARBON STEEL TOOLS

Name of Tool Machinists' Tools	Carbon, Per Cent	Name of Tool Blacksmiths' Tools	Carbon, Per Cent
Turning and Planing Tools	1.15	Cold Chisel	0.75
Chipping Chisels	0.85	Hot Chisel	0.85
Saw Arbor	0.75	Hot Punch	0.85
Lathe Center	1.05	Flatter	0.85
Chuck Jaw	0.85	Anvil Facing	0.75
Milling Cutters	1.15	Hammer	0.75
Twist Drills	1.15		
Ordinary Files	1.25	Miscellaneous	
Machinists' Hammer	0.95	Rivet Set	0.70
Mandrel	1.05	Roll Expander	1.05
Pliers	0.75	Beading Tool	0.80
Reamer Blades	1.10	Threading Dies	1.05
Hand Reamers	1.05	Wire Drawing Dies	1.40
Saw for Steel	1.60	Drop-forging Dies	0.70
Screwdriver	0.65	Pipe Cutter	1.15
Taps	1.10	Circular Saw	0.85
Vise Jaws	0.75	Band Saw	0.75
Wrenches	0.75	Ball Bearing Races	1.15
		Crowbar	0.75

The above table is intended as an approximate guide in selecting steels for various purposes. Average figures are given; the percentage of carbon might vary 0.05 per cent either way, in most cases, without seriously affecting the quality of the tool.

THE TEMPER OF STEEL

The term "temper" or "carbon-temper" is used by steel makers to designate the proportion of carbon in the steel. The temper marks or numbers are arbitrarily selected, their relation to the percentage of carbon varying with different makers. The following list of tempers and the purpose for which the various steels are adapted is given by Joseph T. Ryerson & Son:

Per Cent Carbon	Tools for which Steel is Adapted
0.65 to 0.75	{ Blacksmiths' hammers, table knives, dies for drop hammers, large hot forgings, flatters, fullers, track chisels, and tools.
0.75 to 0.85	{ Large shear knives, punches, chisels, hammers, boilers, boiler makers' tools, lathe centers, etc.
0.85 to 0.95	Punches and dies, hand chisels, mining tools, shear blades, etc.
0.95 to 1.05	{ Drills, large milling cutters, axes, taps, reamers, bolt header dies, and similar tools.
1.05 to 1.15	{ Granite chisels, milling cutters, taps, reamers, mill picks, threading dies, cups, cones, etc.
1.15 to 1.25	{ Milling cutters, small taps, threading dies, twist drills, forming and boring tools, mandrels, razors.
1.25 to 1.35	{ Inserted milling cutter teeth, lathe, planer and slotter tools, and tools requiring great hardness.
1.35 to 1.45	{ Cutting discs, granite lathe tools, paper knives, engravers' tools, roll corrugating, and chilled roll turning tools.
1.45 to 1.55	Steel for turning chilled rolls, etc., requiring great hardness.

COPPER WIRE TABLE

Of the American Institute of Electrical Engineers

(Condensed. Calculated for temperature of 20°C.)

For resistance at 0°C., multiply values by 0.9262; at 50°C., by 1.11723; and at 80°C. by 1.23815.

Gage B & S	Area, Circular mils.	Weight lb. per 1,000 ft.	Length ft. per ohm	Resistance ohms per 1,000 ft.	Gage B & S
0000	211,600.0	640.5	20440.0	0.04893	0000
000	187,800.0	508.0	16210.0	0.06170	000
00	133,100.0	402.8	12850.0	0.07780	00
0	105,500.0	319.5	10190.0	0.09811	0
1	83,690.0	253.3	8083.0	0.1237	1
2	66,370.0	200.9	6410.0	0.1560	2
3	52,630.0	159.3	5084.0	0.1967	3
4	41,740.0	126.4	4031.0	0.2480	4
5	33,100.0	100.2	3197.0	0.3128	5
6	26,250.0	79.46	2535.0	0.3944	6
7	20,820.0	63.02	2011.0	0.4973	7
8	16,510.0	49.98	1565.0	0.6271	8
9	13,090.0	39.63	1265.0	0.7908	9
10	10,380.0	31.43	1003.0	0.9972	10
11	8,234.0	24.93	795.3	1.257	11
12	6,530.0	19.77	630.7	1.586	12
13	5,178.0	15.68	500.1	1.999	13
14	4,107.0	12.43	396.6	2.521	14
15	3,257.0	9.858	314.5	3.179	15
16	2,583.0	7.818	249.4	4.009	16
17	2,048.0	6.200	197.8	5.055	17
18	1,624.0	4.917	156.9	6.374	18
19	1,288.0	3.899	124.4	8.038	19
20	1,022.0	3.092	98.66	10.14	20
21	810.1	2.452	78.24	12.78	21
22	642.4	1.945	62.05	16.12	22
23	509.5	1.542	49.21	20.32	23
24	404.0	1.223	39.02	25.63	24
25	320.4	0.9699	30.95	32.31	25
26	254.1	0.7692	24.54	40.75	26
27	201.5	0.6100	19.46	51.38	27
28	159.8	0.4837	15.43	64.79	28
29	126.7	0.3836	12.24	81.7	29
30	100.5	0.3042	9.707	103.0	30
31	79.7	0.2413	7.698	129.9	31
32	63.21	0.1913	6.105	163.8	32
33	50.13	0.1517	4.841	206.6	33
34	39.75	0.1203	3.839	260.5	34
35	31.52	0.09543	3.045	328.4	35
36	25.0	0.07568	2.414	414.2	36
37	19.83	0.06001	1.915	522.2	37
38	15.72	0.04759	1.519	658.5	38
39	12.47	0.03774	1.204	830.4	39
40	9.888	0.02993	0.955	1047.0	40

SPARK METHOD OF SELECTING IRON AND STEELS

By Prof. JOHN F. KELLER, Instructor
in Forging at Purdue University

See Chart on Pages 41-42.

The spark method is based upon the action of the oxygen in the air upon the combustible elements in iron and especially on many of the alloying elements contained in different steels and which act explosively when heated to the temperature necessary for combustion. If a piece of iron or steel is touched with some pressure to a high-speed revolving emery wheel it will throw out a great number of sparks characteristic of the combustible elements in the metal. By the quantity and characteristics of the different sparks we are able to analyze and determine to a reasonable degree of accuracy the grade of iron or steel under investigation. For the Spark Method of selection there are three essentials. First: clean cutting emery wheel turning at 7,000 ft. per minute. Second: remember that iron is the base of all steels except "Stelite." Third: enough pressure on the wheel to throw a few sparks only.

Figure 1. A piece of wrought iron free from carbon. If held against the emery wheel the end of the bar will be heated by friction; as the small particles are thrown from the wheel they will follow a straight line which becomes broader and more luminous some distance from the source of heat, and then disappears. This is probably due to the action of oxygen of the air on the heated particles requiring some time to act. NOTE: Touch material lightly on wheel; observe individual spark. All commercial iron contains a small percentage of carbon which will be indicated by branching or forking of the luminous streak.

Figure 2. Mild steel which contains a small percentage of carbon. A division of forking of the luminous streak is at once noticeable; this is owing to the presence of carbon, which is acted upon by the maximum heat of the iron spark, which burns explosively, causing a break in the original heavy lines.

Figure 3. The lower grades of tool steel which contain from .50 to 1.00% carbon. The iron lines become less and less conspicuous, the forking of the luminous streak occurring very much more frequently, often subdividing; the lower the carbon content the less sparks and further they occur from the source of heat.

Figure 4. In the higher grades of carbon steels the iron lines are practically eliminated, with an increase of the star-like explosions which often divide and subdivide, causing a beautiful display of figures. This is probably due to the iron and carbon becoming so united that they are most easily attacked by the oxygen. Hence the great danger of burning the steel in the fire or when grinding. The higher the percentage of carbon the more profuse the explosions and the shorter the distance from the source of heat.

Figure 5. Chromium and tungsten high speed steels are very easily determined by the spark test. The particles seem to follow a

SPARK METHOD OF SELECTING IRON AND STEELS

SPARK METHOD OF SELECTING IRON AND STEELS*(Continued)*

broken line with a very slight explosion; just before they disappear the color is of chrome yellow and shows no trace of a carbon spark. Note that while this class of steel contains .65% carbon, the particles show no trace of a carbon spark whatever and considerable pressure on the emery wheel is required to ignite the spark.

Figure 6. The characteristic difference of the manganese spark from that of the carbon spark is that it seems to shoot or explode at right angles to its line of force. Each dart is divided and subdivided into a number of white globules, the re-explosions being very distinct.

Figure 7. Mushet steel, air hardening or high speed steel. It is very easy to distinguish from other steels, as the particles follow a broken line and are a very, very dark red, with an occasional manganese spark. This is the old grade of Mushet, not the modern high speed steel, and requires considerable pressure on the wheel.

Figure 8. Represents a spark thrown from a special steel manufactured for use in magnet and known as magnet steel. The sparks are similar to those of high speed steel with the exception that they are of a lighter color with a more profuse quantity of abrupt luminous explosions and an occasional branching manganese spark. The explosions, however, occur at a shorter distance from the source of heat than those of high speed steel.

Cast iron is very difficult to determine by this method owing to the state and combination of the carbon present; the material being very seldom of standard quality, will often show scarcely any luminous sparks at all. If the carbon is in the combined state, the sparks will appear similar to those of steel proportional to the percentage of carbon so combined. Sometimes it is rich in manganese and the bright manganese darts appear at varying distances from the wheel.

The Spark Method may also be used to advantage to detect the decarbonizing of the surface of a piece of steel in an annealing or similar process. Such a surface is indicated by an iron spark, as in Fig. 1. The method also will show how much of the metal must be removed from the surface of annealed tool steel in order to reach metal containing sufficient carbon for hardening. In carbonizing or case hardening if the metal has been properly treated, the spark will be proportional to the percentage of carbon present and combined with the softer stock and will appear as Fig. 3 or 4. The depth of penetration of the slightly carbonized portion may also be determined. It may also be used to advantage in determining the quality of the metal in welded parts, the spark indicating whether an excess or deficiency of carbon is present. "Stelite," being composed of non-combustible elements, at grinding temperature throws no sparks and a very short red streak of fire is developed only when the sample is pressed with some considerable force against the emery wheel. This method of testing may also be used to advantage in the sorting out of mixed stocks and unmarked steel.

SPARK METHOD OF SELECTING IRON AND STEELS

STARRETT TOOLS FOR THE USE OF EXPERT MACHINISTS

Slide Rule Caliper and Circumference Gage

Graduated to read the circumference as well as the diameter of the thing measured. Capacity $3\frac{1}{2}$ inches in diameter, about 11 inches circumference. Jaws $1\frac{5}{8}$ inches deep. Graduated in 32ds of an inch standard and 16ths of an inch circumference.

Rules with Thumb Slide

The slide may be used on either edge of rule or removed and the rule used alone. Rules are furnished in different graduations.

Inspectors' Gages

Graduated on two sides, one reading in 32ds and the other in 40ths of an inch. A knurled friction slide on the measuring rod slips down against the top, registering the measure, permitting the measuring rod to be withdrawn and the gage removed for easy reading. Width 1 inch. Also made $\frac{1}{16}$ inch wide.

Improved Speed Indicator and Surface Speed Attachment

All working parts are enclosed. The graduations show every revolution, two rows of figures read right or left, as the shaft may revolve. The spindle is of hardened steel and is provided with rubber tips for both pointed and centered shafts. The Surface Speed Attachment registers on the dial.

Crank Shaft Calipers

Designed for use in turning automobile crank shafts and for reaching into difficult places. Made in 6 inch size only, either spring or solid nut.

For further information concerning Starrett Tools see other tool pages in this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

**TABLE OF CHANGE GEARS, APPROXIMATE ANGLES AND LEADS
FOR CUTTING SPIRALS**

Twelve Change Gears are furnished with each Universal Mill as follows: 24, 24, 28, 32, 40, 44, 48, 56, 64, 72, 86, and 100 teeth.

Lead of Spiral, Inches	Gear on Worm	1st Intermediate Gear	2d Intermediate Gear	Driver	Driven	Driver	Driven	Diameter of Work										Approximate Angle in Degrees for Setting Milling Machine Table.
								$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$1\frac{1}{4}$	$1\frac{1}{2}$	$2\frac{1}{4}$	$2\frac{3}{4}$	3	
.67	24	86	24	Driver	Driver	100	30 ¹	100	26	44 ¹								
.78	24	86	28	Driver	Driven	100	28	100	23 ¹	41								
.89	24	86	32	Driver	Driven	100	32	100	19	34 ¹								
1.12	24	86	40	Driver	Driven	100	19	100	16	30 ¹	41 ¹							
1.34	24	86	48	Driver	Driven	100	16	100	14 ¹	28	33 ¹							
1.46	24	64	48	Driver	Driven	72	72	100	13 ¹	26 ¹	37							
1.56	28	86	48	Driver	Driven	32	72	100	12 ¹	25	33 ¹	43 ¹						
1.67	24	64	32	Driver	Driven	72	72	114	21 ¹	31	39	45						
1.94	28	64	32	Driver	Driven	72	72	114	21 ¹	31	39	45						
2.08	24	64	40	Driver	Driven	72	72	101	20 ¹	37	43 ¹							
2.22	32	56	40	Driver	Driven	72	72	9	19 ¹	27 ¹	35	41 ¹						
2.50	24	64	48	Driver	Driven	72	72	8	17 ¹	25	32	38	43 ¹					
2.78	32	64	40	Driver	Driven	72	8	15 ¹	23	29 ¹	35 ¹	40 ¹	44 ¹					
2.92	32	56	44	Driver	Driven	72	8	15 ¹	21 ¹	28 ¹	34	39	43 ¹					
3.24	28	48	40	Driver	Driven	72	6 ¹	13 ¹	19 ¹	25 ¹	31 ¹	36	40 ¹	44 ¹				
3.70	32	48	40	Driver	Driven	72	6 ¹	11	17 ¹	23	28	32 ¹	36 ¹	40 ¹				
3.89	32	64	56	Driver	Driven	72	5 ¹	11	16 ¹	22	26 ¹	31 ¹	35 ¹	39	43 ¹			
4.17	40	64	48	Driver	Driven	72	5 ¹	10	15 ¹	20 ¹	25 ¹	29	33 ¹	37	43 ¹			
4.46	32	40	48	Driver	Driven	72	5 ¹	10	15 ¹	20 ¹	25 ¹	29	33 ¹	37	43 ¹			
4.86	40	64	56	Driver	Driven	72	4 ¹	9 ¹	14 ¹	19 ¹	23 ¹	27 ¹	31 ¹	35	41 ¹			
5.33	32	40	48	Driver	Driven	72	4 ¹	9 ¹	13 ¹	17 ¹	22	25 ¹	29 ¹	33	39	44 ¹		
5.44	56	40	28	Driver	Driven	72	4 ¹	8 ¹	12 ¹	16	20	23 ¹	27 ¹	30 ¹	36	41 ¹		
6.12	56	40	28	Driver	Driven	72	3 ¹	7 ¹	11	14 ¹	17 ¹	21	24 ¹	27	33	37 ¹	42	

Courtesy of The Cincinnati Milling Machine Company

**TABLE OF CHANGE GEARS, APPROXIMATE ANGLES AND LEADS
FOR CUTTING SPIRALS—Continued**

Twelve Change Gears are furnished with each Universal Milling Machine as follows: 24, 24, 28, 32, 40, 44, 48, 56, 64, 72, 86 and 100 teeth

Lead of Spiral, Inches	Gear on Worm	Gear on Change Gear	Gear on 2d Intermediate Gear	Gear on Driver	DIAMETER OF WORK													
					1	1 1/4	1 1/2	1 1/2 1/2	1 1/2 1/4	1 1/4 1/4	1 1/4 1/2	1 1/2 1/2 1/2	1 1/2 1/2 1/4	1 1/2 1/4 1/4	1 1/2 1/4 1/2	1 1/2 1/2 1/2 1/2		
6.22	64	40	28	Driver	72	3 1/2	7	10 1/2	14 1/2	17 1/2	20 1/2	23	26 1/2	32 1/2	37 1/2	41 1/2	44 1/2	
6.48	40	56	48	Driver	72	3 1/4	6 1/2	10 1/4	13 1/4	16 1/4	19 1/4	22	25 1/4	31 1/4	36 1/4	40 1/4	44 1/4	
6.67	64	56	28	Driver	72	4 1/2	4 1/2	6 1/2	9 1/2	12 1/2	15 1/2	18	20 1/2	23 1/2	28 1/2	33 1/2	39 1/2	
7.29	56	64	40	Driver	72	3	6 1/2	9	12	14 1/2	17 1/2	20 1/2	22	28 1/2	32 1/2	36 1/2	40 1/2	
7.41	40	48	64	Driver	72	3	5 1/2	8 1/2	11 1/2	14 1/2	17 1/2	20 1/2	22	28 1/2	32 1/2	36 1/2	40 1/2	
7.62	48	56	64	72	2 1/2	5 1/2	8	10 1/2	13 1/2	15 1/2	18 1/2	20 1/2	22	27 1/2	32	36	39 1/2	
8.33	48	32	40	72	2 1/2	5 1/2	8	10 1/2	13 1/2	15 1/2	18 1/2	20 1/2	22	25 1/2	29	32	36	
8.95	86	48	28	72	2 1/2	5 1/2	7 1/2	10	12 1/2	14 1/2	17	19 1/2	24	28	31 1/2	35 1/2	38 1/2	
9.33	48	40	56	72	2 1/2	4 1/2	7 1/2	9 1/2	11 1/2	14	16 1/2	18 1/2	23	27	30 1/2	34	37 1/2	
9.52	64	56	40	48	2 1/2	4 1/2	7	9 1/2	11 1/2	13 1/2	16	18 1/2	22	26 1/2	30	33 1/2	36 1/2	
10.29	72	40	32	56	2	4 1/2	6 1/2	8 1/2	10 1/2	12 1/2	15	17 1/2	21	24 1/2	28 1/2	31 1/2	34 1/2	
10.37	56	48	64	72	2	4 1/2	6 1/2	8 1/2	10 1/2	12 1/2	15	17 1/2	20	24 1/2	27 1/2	31 1/2	34 1/2	
10.50	56	64	48	40	2	4 1/2	6 1/2	8 1/2	10 1/2	12 1/2	15	17 1/2	20	24 1/2	27 1/2	31 1/2	34 1/2	
10.67	48	40	64	72	2	4 1/2	6 1/2	8 1/2	10 1/2	12 1/2	15	17 1/2	20	24 1/2	27 1/2	31 1/2	34 1/2	
10.94	56	32	40	64	2	4	6	8 1/2	10 1/2	12 1/2	15	17 1/2	20	23 1/2	26 1/2	30	33 1/2	
11.11	64	32	40	72	2	4	6	8	10	11 1/2	13 1/2	16	19 1/2	23	26 1/2	29 1/2	32 1/2	
11.66	56	32	48	72	2	3 1/2	5 1/2	7	8	10	11 1/2	13 1/2	15	18 1/2	22	25 1/2	28 1/2	
12.00	72	40	32	48	2	3 1/2	5 1/2	7	9 1/2	11 1/2	14 1/2	17	19 1/2	24	27 1/2	30 1/2	33 1/2	
13.12	56	32	48	64	1 1/2	3 1/2	5 1/2	6 1/2	8 1/2	10 1/2	12 1/2	15	18 1/2	22	25 1/2	28 1/2	31 1/2	
13.33	64	32	48	72	1 1/2	3 1/2	5 1/2	6 1/2	8 1/2	10	11 1/2	13 1/2	16	19 1/2	22	25 1/2	28 1/2	31 1/2
13.71	64	56	48	40	1 1/2	3 1/2	4 1/2	6 1/2	8 1/2	9 1/2	11 1/2	13 1/2	16	19 1/2	22	24 1/2	27 1/2	30 1/2
15.24	64	28	48	72	1 1/2	3 1/2	4 1/2	5 1/2	7 1/2	8 1/2	10 1/2	14 1/2	17 1/2	20	22 1/2	25 1/2	29 1/2	31 1/2
15.56	64	32	56	72	1 1/2	3 1/2	4 1/2	5 1/2	7 1/2	8 1/2	10 1/2	14 1/2	17 1/2	20	22 1/2	25 1/2	29 1/2	31 1/2

**TABLE OF CHANGE GEARS, APPROXIMATE ANGLES AND LEADS
FOR CUTTING SPIRALS—Continued**

Twelve Change Gears are furnished with each Universal Mill as follows: 24, 24, 28, 32, 40, 44, 48, 56, 64, 72, 86 and 100 teeth

DIAMETER OF WORK											
1st Intermediate Gear Drives the Gear on Worm											
2d Intermediate Gear Drives the Gear for Screw											
Lead of Spira. inches	Gear on Worm	1st Intermediate Gear	2d Intermediate Gear	Gear Driver	Gear Driver						
1/8	1/4	3/8	1/2	5/8	3/4	7/8	1	1 1/4	1 1/2	2 1/4	2 1/2
15.75	72	64	40	1 1/4	2 3/4	4 1/4	5 1/2	7	8 1/2	9 1/2	11 1/4
16.87	72	32	48	1 1/4	2 1/4	4 1/4	5 1/4	6 1/2	7 1/2	9 1/4	10 1/4
17.14	72	56	48	1 1/4	2 1/4	4 1/4	5 1/4	6 1/2	7 1/2	9 1/4	10 1/4
18.75	72	32	40	1 1/4	2 1/4	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4	9 1/4
19.29	72	32	48	1 1/4	2 1/4	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4	9 1/4
19.59	64	28	48	56	1	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
19.69	72	32	56	64	1	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
21.43	72	28	40	48	1	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
22.50	72	28	56	64	1	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
23.33	64	32	56	32	1	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
26.25	72	48	56	32	1	1 1/4	2 1/4	3 1/4	4 1/2	5 1/2	8 1/4
26.67	64	28	56	48	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
28.00	64	40	56	32	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
30.86	72	28	48	40	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
31.50	72	40	56	32	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
36.00	72	40	64	32	1 1/4	2 1/4	3 1/4	4 1/2	5 1/2	6 1/2	8 1/4
41.14	72	28	64	40	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
45.00	72	24	56	32	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
48.00	72	24	64	40	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
51.43	72	28	64	32	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4
60.00	72	24	64	32	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2	8 1/4

Courtesy of The Cincinnati
Milling Machine Company

STANDARD INDEX TABLE

For the Standard Index Plate Used with Dividing Head

INDEXES ALL NUMBERS UP TO AND INCLUDING 60; ALL EVEN NUMBERS AND THOSE DIVISIBLE BY 5 UP TO 120, AND ALL DIVISIONS OBTAINABLE UP TO 400.

This Plate is drilled on both sides and has holes as follows:

FIRST SIDE — 24-25-28-30-34-37-38-39-41-42-43

SECOND SIDE — 46-47-49-51-53-54-57-58-59-62-66

No. of Divisions	Circle	Turns	Holes	No. of Divisions	Circle	Holes	No. of Divisions	Circle	Holes	No. of Divisions	Circle	Holes
2	ANY	20	..	44	66	60	104	39	15	205	41	8
3	24	13	8	45	54	48	105	42	16	210	42	8
4	ANY	10	..	46	46	40	106	53	20	212	53	10
5	ANY	8	..	47	47	40	108	54	20	215	43	8
6	24	6	16	48	24	20	110	66	24	216	54	10
7	28	5	20	49	49	40	112	28	10	220	66	12
8	ANY	5	..	50	25	20	114	57	20	224	28	5
9	54	4	24	51	51	40	115	46	16	228	57	10
10	ANY	4	..	52	39	30	116	58	20	230	46	8
11	66	3	42	53	53	40	118	59	20	232	58	10
12	24	3	8	54	54	40	120	66	22	235	47	8
13	39	3	3	55	66	48	124	62	20	236	59	10
14	49	2	42	56	28	20	125	25	8	240	66	11
15	24	2	16	57	57	40	130	39	12	245	49	8
16	24	2	12	58	58	40	132	66	20	248	62	10
17	34	2	12	59	59	40	135	54	16	250	25	4
18	54	2	12	60	42	28	136	34	10	255	51	8
19	38	2	4	62	62	40	140	28	8	260	39	6
20	ANY	2	..	64	24	15	144	54	15	264	66	10
21	42	1	38	65	39	24	145	58	16	270	54	8
22	66	1	54	66	66	40	148	37	10	272	34	5
23	46	1	34	68	34	20	150	30	8	280	28	4
24	24	1	16	70	28	16	152	38	10	290	58	8
25	25	1	15	72	54	30	155	62	16	296	37	5
26	39	1	21	74	37	20	156	39	10	300	30	4
27	54	1	26	75	30	16	160	28	7	304	38	5
28	42	1	18	76	38	20	164	41	10	310	62	8
29	58	1	22	78	39	20	165	66	16	312	39	5
30	24	1	8	80	34	17	168	42	10	320	24	3
31	62	1	18	82	41	20	170	34	8	328	41	5
32	28	1	7	84	42	20	172	43	10	330	66	8
33	66	1	14	85	34	16	176	66	15	336	42	5
34	34	1	6	86	43	20	180	54	12	340	34	4
35	28	1	4	88	66	30	184	46	10	344	43	5
36	54	1	6	90	54	24	185	37	8	360	54	6
37	37	1	3	92	46	20	188	47	10	368	46	5
38	38	1	2	94	47	20	190	38	8	370	37	4
39	39	1	1	95	38	16	192	24	5	376	47	5
40	ANY	1	..	96	24	10	195	39	8	380	38	4
41	41	..	40	98	49	20	196	49	10	390	39	4
42	42	..	40	100	25	10	200	30	6	392	49	5
43	43	..	40	102	51	20	204	51	10	400	30	3

CUTTING SPEEDS OF MILLING CUTTERS

Diam. Ins.	Feet per Minute					Diam. Ins.	Feet per Minute				
	5	10	15	20	25		5	10	15	20	25
	Revolutions per Minute						Revolutions per Minute				
$\frac{1}{2}$	38.2	76.4	114.6	152.9	191.1	8	2.4	4.8	7.2	9.6	11.9
$\frac{5}{8}$	30.6	61.2	91.8	122.5	153.1	9	2.1	4.2	6.4	8.5	10.6
$\frac{3}{4}$	25.4	50.8	76.3	101.7	127.1	10	1.9	3.8	5.7	7.6	9.6
$\frac{7}{8}$	21.8	43.6	65.5	87.3	109.1	11	1.7	3.5	5.2	6.9	8.7
1	19.1	38.2	57.3	76.4	95.5	12	1.6	3.2	4.8	6.4	8.0
$1\frac{1}{8}$	17.0	34.0	51.0	68.0	85.0	13	1.5	2.9	4.4	5.9	7.3
$1\frac{1}{4}$	15.3	30.6	45.8	61.2	76.3	14	1.4	2.7	4.1	5.5	6.8
$1\frac{3}{8}$	13.9	27.8	41.7	55.6	69.5	15	1.3	2.5	3.8	5.1	6.4
$1\frac{1}{2}$	12.7	25.4	38.2	50.8	63.7	16	1.2	2.4	3.6	4.8	6.0
$1\frac{5}{8}$	11.8	23.5	35.0	47.0	58.8	17	1.1	2.2	3.4	4.5	5.6
$1\frac{1}{4}$	10.9	21.8	32.7	43.6	54.5	18	1.1	2.1	3.2	4.2	5.3
$1\frac{1}{8}$	10.2	20.4	30.6	40.7	50.9	19	1.0	2.0	3.0	4.0	5.0
2	9.6	19.1	28.7	38.2	47.8	20	1.0	1.9	2.9	3.8	4.8
$2\frac{1}{4}$	8.5	17.0	25.4	34.0	42.4	21	.9	1.8	2.7	3.6	4.5
$2\frac{1}{2}$	7.6	15.3	22.9	30.6	38.2	22	.9	1.7	2.6	3.5	4.3
$2\frac{3}{4}$	6.9	13.9	20.8	27.8	34.7	23	.8	1.7	2.5	3.3	4.1
3	6.4	12.7	19.1	25.5	31.8	24	.8	1.6	2.4	3.2	4.0
$3\frac{1}{2}$	5.5	10.9	16.4	21.8	27.3	25	.8	1.5	2.3	3.1	3.8
4	4.8	9.6	14.3	19.1	23.9	26	.7	1.5	2.2	2.9	3.7
$4\frac{1}{2}$	4.2	8.5	12.7	16.9	21.2	27	.7	1.4	2.1	2.8	3.5
5	3.8	7.6	11.5	15.3	19.1	28	.7	1.4	2.0	2.7	3.4
$5\frac{1}{2}$	3.5	6.9	10.4	13.9	17.4	29	.7	1.3	2.0	2.6	3.3
6	3.2	6.4	9.6	12.7	15.9	30	.6	1.3	1.9	2.5	3.2
7	2.7	5.5	8.1	10.9	13.6						

The above table will be convenient for finding the number of revolutions per minute required to give a periphery speed from 5 to 50 feet per minute of diameters from $\frac{1}{2}$ to 30 inches.

Examples: A mill 2 inches in diameter, to have a periphery speed of 35 feet per minute, should make about 67 revolutions, while $1\frac{1}{8}$ inch mill should make 119 revolutions to have the same periphery speed. If a $\frac{3}{4}$ inch mill makes 250 revolutions per minute, the periphery speed is about 50 feet.

(Concluded on next page)

CUTTING SPEEDS OF MILLING CUTTERS*—*Continued*

Diam. Ins.	Feet per Minute					Diam. Ins.	Feet per Minute				
	30	35	40	45	50		30	35	40	45	50
	Revolutions per Minute						Revolutions per Minute				
1/2	229.3	267.5	305.7	344.0	382.2	8	14.3	16.7	19.1	21.1	23.9
5/8	183.7	214.3	244.9	275.5	306.1	9	12.7	14.9	17.0	19.1	21.2
3/4	152.5	178.0	203.4	228.8	254.2	10	11.5	13.4	15.3	17.2	19.1
7/8	130.9	152.7	174.5	196.3	218.9	11	10.4	12.2	13.9	15.6	17.4
1	114.6	133.8	152.9	172.0	191.1	12	9.6	11.1	12.7	14.3	15.9
1 1/8	102.0	119.0	136.0	153.0	170.0	13	8.8	10.3	11.8	13.2	14.7
1 1/4	91.8	106.9	122.5	137.4	153.1	14	8.1	9.6	10.9	12.3	13.6
1 3/8	83.3	97.2	111.1	125.0	138.9	15	7.6	8.9	10.2	11.5	12.7
1 1/2	76.3	89.2	101.7	114.6	127.1	16	7.2	8.4	9.6	10.7	11.9
1 5/8	70.5	82.2	93.9	105.7	117.4	17	6.7	7.9	9.0	10.1	11.2
1 3/4	65.5	76.4	87.3	98.2	109.1	18	6.4	7.4	8.5	9.6	10.6
1 7/8	61.1	71.3	81.5	91.9	101.9	19	6.0	7.0	8.0	9.1	10.1
2	57.3	66.9	76.4	86.0	95.5	20	5.7	6.7	7.6	8.6	9.6
2 1/4	51.0	59.4	68.0	76.2	85.0	21	5.5	6.4	7.3	8.1	9.1
2 1/2	45.8	53.5	61.2	68.8	76.3	22	5.2	6.1	6.9	7.8	8.7
2 3/4	41.7	48.6	55.6	62.5	69.5	23	5.0	5.8	6.6	7.5	8.3
3	38.2	44.6	51.0	57.3	63.7	24	4.8	5.6	6.4	7.2	8.0
3 1/2	32.7	38.2	43.6	49.1	54.5	25	4.6	5.3	6.1	6.9	7.6
4	28.7	33.4	38.2	43.0	47.8	26	4.4	5.1	5.9	6.6	7.3
4 1/2	25.4	29.6	34.0	38.1	42.4	27	4.2	5.0	5.7	6.4	7.1
5	22.9	26.7	30.6	34.4	38.2	28	4.1	4.8	5.5	6.1	6.8
5 1/2	20.8	24.3	27.8	31.3	34.7	29	4.0	4.6	5.3	5.9	6.6
6	19.1	22.3	25.5	28.7	31.8	30	3.8	4.5	5.1	5.7	6.4
7	16.4	19.1	21.8	24.6	27.3						

CUTTING SPEEDS OF SPIRAL AND FACE MILLS**

SPIRAL MILL		FACE MILL	
Cast Iron		Cast Iron	
Rough Milling	65-75 ft.	Rough Milling	65 ft.
Finish Milling	80-120 ft.	Finish Milling	80-110 ft.
Machine Steel		Machine Steel	
Rough Milling	70-75 ft.	Rough Milling	60-85 ft.
Finish Milling	100-140 ft.	Finish Milling	90-110 ft.
Tool Steel—Annealed		.	
Rough Milling	50 ft.
Finish Milling	70-80 ft.
Tobin Bronze — With Lubricant		.	
Rough Milling	90 ft.
Finish Milling	125-150 ft.

Chrome Nickel Steel .130 to .40 carbon drop forgings

Brass . . . 200 ft. Rough Milling . . . 45 ft. Aluminum . . . 600-1,000 ft.

*Courtesy of Society of
Automotive Engineers**Courtesy of The Cincinnati
Milling Machine Company

EMERY WHEEL CLEARANCE TABLES

Cup Wheel Clearance Table

For setting tooth rest to obtain 5° or 7° clearance when grinding peripheral teeth of milling cutters with cup-shaped wheel. Tooth rest is set below work centers as at A, the distance being found in the table below.

Disk Wheel Clearance Table

Giving distance B for setting work centers and tooth rest below center of wheel spindle to obtain 5° or 7° clearance with wheels of different diameters when grinding with periphery of disk wheel.

Dia. Cutter inches	For 5° Clearance A =	For 7° Clearance A =	Dia. of Emery Wheel inches	For 5° Clearance B =	For 7° Clearance B =
$\frac{1}{4}$.011	.015	2	.0937	.125
$\frac{3}{8}$.015	.022	$2\frac{1}{4}$.099	.141
$\frac{1}{2}$.022	.030	$2\frac{1}{2}$.110	.156
$\frac{5}{8}$.028	.037	$2\frac{3}{4}$.125	.172
$\frac{3}{4}$.033	.045	3	.132	.187
$\frac{7}{8}$.037	.052	$3\frac{1}{4}$.143	.203
1	.044	.060	$3\frac{1}{2}$.154	.219
$1\frac{1}{4}$.055	.075	$3\frac{3}{4}$.165	.234
$1\frac{1}{2}$.066	.090	4	.176	.250
$1\frac{3}{4}$.077	.105	$4\frac{1}{4}$.187	.265
2	.088	.120	$4\frac{1}{2}$.198	.281
$2\frac{1}{4}$.099	.135	$4\frac{3}{4}$.209	.297
$2\frac{1}{2}$.110	.150	5	.220	.312
$2\frac{3}{4}$.121	.165	$5\frac{1}{4}$.231	.328
3	.132	.180	$5\frac{1}{2}$.242	.344
$3\frac{1}{2}$.154	.210	$5\frac{3}{4}$.253	.359
4	.176	.240	6	.264	.375
$4\frac{1}{2}$.198	.270	$6\frac{1}{4}$.275	.390
5	.220	.300	$6\frac{1}{2}$.286	.406
$5\frac{1}{2}$.242	.330	$6\frac{3}{4}$.297	.421
6	.264	.360	7	.308	.437

NUMBER OF TEETH IN PLAIN ROUGHING MILLING CUTTERS WITH COARSE PITCH

Diam. of Cutter	No. of Teeth								
2	8	3	8	5	10	7	14	9	18
2 $\frac{1}{4}$	8	3 $\frac{1}{2}$	9	5 $\frac{1}{2}$	11	7 $\frac{1}{2}$	14	9 $\frac{1}{2}$	18
2 $\frac{1}{2}$	8	4	9	6	12	8	16	10	20
2 $\frac{3}{4}$	8	4 $\frac{1}{2}$	10	6 $\frac{1}{2}$	12	8 $\frac{1}{2}$	16

PLAIN AND SIDE MILLING CUTTERS

Diameter of Cutter	Plain Milling Cutter			Side Milling Cutter			Plain Milling Cutter			Side Milling Cutter		
	Number of Teeth	Radius of Point of Fluting Cutter	Number of Teeth	Angle of Cutter for Side Teeth	Width of Land on Teeth	Diameter of Cutter	Number of Teeth	Radius of Point of Fluting Cutter	Number of Teeth	Angle of Cutter for Side Teeth	Width of Land on Teeth	
2	14	$\frac{5}{8}$	22		$\frac{1}{2}$	5 $\frac{1}{2}$	22	$\frac{5}{8}$	28	$\frac{5}{8}$	$\frac{5}{8}$	
2 $\frac{1}{4}$	14	$\frac{5}{8}$	22		$\frac{1}{2}$	6	24	$\frac{5}{8}$	30	$\frac{5}{8}$	$\frac{5}{8}$	
2 $\frac{1}{2}$	16	$\frac{3}{4}$	24		$\frac{1}{2}$	6 $\frac{1}{2}$	24	$\frac{5}{8}$	30	$\frac{5}{8}$	$\frac{5}{8}$	
2 $\frac{3}{4}$	16	$\frac{3}{4}$	24		$\frac{1}{2}$	7	26	$\frac{5}{8}$	30	$\frac{5}{8}$	$\frac{5}{8}$	
3	18	$\frac{7}{8}$	24		$\frac{1}{2}$	7 $\frac{1}{2}$	26	$\frac{7}{8}$	30	$\frac{7}{8}$	$\frac{7}{8}$	
3 $\frac{1}{2}$	18	$\frac{7}{8}$	24		$\frac{1}{2}$	8	28	$\frac{7}{8}$	30	$\frac{7}{8}$	$\frac{7}{8}$	
4	20	$\frac{7}{8}$	26		$\frac{1}{2}$	8 $\frac{1}{2}$	28	$\frac{7}{8}$	32	$\frac{7}{8}$	$\frac{7}{8}$	
4 $\frac{1}{2}$	20	$\frac{1}{2}$	26		$\frac{1}{2}$	9	30	$\frac{1}{2}$	32	$\frac{1}{2}$	$\frac{1}{2}$	
5	22	$\frac{1}{2}$	28		$\frac{1}{2}$	10	30	$\frac{1}{2}$	32	$\frac{1}{2}$	$\frac{1}{2}$	
				For wide cutters, use 70- or 75-degree angle cutter. For thin cutters, use 80-, and in extreme cases 85-degree cutter.					For wide cutters, use 70- or 75-degree angle cutter. For thin cutters, use 80-, and in extreme cases 85-degree cutter.			

STANDARD KEYWAYS FOR MILLING CUTTERS

Diameter of Hole	Width of Key-way	Depth of Key-way	Radius of Corners	Diameter of Hole	Width of Key-way	Depth of Key-way
$\frac{5}{8}$ to $\frac{7}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.020	$\frac{5}{8}$ to $\frac{5}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{5}{8}$ to $\frac{7}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.030	$\frac{5}{8}$ to $\frac{5}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{11}{16}$ to $1\frac{1}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.035	$\frac{11}{16}$ to $1\frac{1}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$
$1\frac{1}{8}$ to $1\frac{1}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.040	$1\frac{1}{8}$ to $1\frac{1}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$
$1\frac{1}{8}$ to $1\frac{1}{4}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.050	$1\frac{1}{8}$ to 2 inch	$\frac{1}{8}$	$\frac{1}{8}$
$1\frac{1}{8}$ to 2 inch	$\frac{1}{8}$	$\frac{1}{8}$	0.060	$2\frac{1}{8}$ to $2\frac{1}{8}$ inch	$\frac{1}{8}$	$\frac{1}{8}$
$2\frac{1}{8}$ to $2\frac{1}{2}$ inch	$\frac{1}{8}$	$\frac{1}{8}$	0.060	$2\frac{1}{2}$ to 3 inch	$\frac{1}{8}$	$\frac{1}{8}$
$2\frac{1}{8}$ to 3 inch	$\frac{1}{8}$	$\frac{1}{8}$	0.060

STARRETT TOOLS FOR USE IN CONNECTION WITH MILLING

Adjustable Parallels

Made of good steel, carefully ground, dovetailed and adjusted by set screw inside. Have ranging height from $\frac{3}{8}$ in. to $2\frac{1}{4}$ in.

Fillet or Radius Gage

Made in two sizes. One has thirty leaves stamped to indicate radii by 64ths, from $\frac{1}{2}$ to $\frac{1}{4}$ in. (one half diametric size). Diameters are from $\frac{1}{16}$ to $\frac{1}{2}$ in., varying by 32ds. The other size has thirty-two leaves stamped to indicate radii by 64ths from $\frac{17}{64}$ to $\frac{1}{2}$ in. Diameters are from $\frac{1}{2}$ to 1 in., varying by 32ds.

Pocket Slide Calipers

Accurate and convenient. Graduated in 32ds and 64ths; also made graduated in 32ds on the stock and 100ths on the slide and in the Metric system.

Toolmakers' Universal Surface Gage

Specially adapted to light work. Base of case-hardened steel with V-shaped groove in end and bottom, adapting it for use on cylindrical work. Spindle may be set rigidly in any position from vertical to horizontal and scribe placed so as to be used for depth gage or scribing gage.

For further information concerning these and other tools which may be used to advantage in Milling, see pages 34, 38, 61, 62, 63, 95, 96, and 158 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

STANDARD PIPE AND PIPE THREADS

A = Outside diameter of perfect thread
B = Inside diameter of pipe
C = Root diameter of thread at end of pipe
D = Outside diameter of thread at end of pipe
E = Length of perfect thread
F = Total length of thread
G = Length of perfect thread plus two threads

Briggs's Formula

$$E = \text{Perfect thread} = (4.8 + 0.8A) P.$$

$$P = \text{Pitch of thread} = \frac{1}{N}$$

N = Number of threads

F = Length of taper at top
Taper $\frac{3}{4}$ inch to 1 foot

$$\text{Height of thread} = 8 \frac{1}{N}$$

G = Length of taper at bottom

Size	Thread	A	B	C	D	E	F	G
$\frac{1}{8}$	27	.405	.270	.334	.393	.19	.41	.264
$\frac{1}{4}$	18	.540	.364	.433	.522	.29	.62	.402
$\frac{3}{8}$	18	.675	.494	.567	.656	.30	.63	.408
$\frac{1}{2}$	14	.840	.623	.702	.816	.39	.82	.534
$\frac{3}{4}$	14	1.050	.824	.911	1.025	.40	.83	.546
1	$11\frac{1}{2}$	1.315	1.048	1.144	1.283	.51	1.03	.683
$1\frac{1}{4}$	$11\frac{1}{2}$	1.660	1.380	1.488	1.627	.54	1.06	.707
$1\frac{1}{2}$	$11\frac{1}{2}$	1.900	1.611	1.727	1.866	.55	1.07	.724
2	$11\frac{1}{2}$	2.375	2.067	2.200	2.339	.58	1.10	.757
$2\frac{1}{2}$	8	2.875	2.468	2.618	2.818	.89	1.64	1.138
3	8	3.500	3.067	3.243	3.443	.95	1.70	1.200
$3\frac{1}{2}$	8	4.000	3.548	3.738	3.936	1.00	1.75	1.250
4	8	4.500	4.026	4.233	4.443	1.05	1.80	1.300
4	8	5.000	4.508	4.733	4.933	1.10	1.85	1.350
5	8	5.663	5.045	5.289	5.489	1.16	1.91	1.406
6	8	6.625	6.065	6.347	6.547	1.26	2.01	1.513
7	8	7.625	7.023	7.340	7.540	1.36	2.11	1.612
8	8	8.625	7.981	8.332	8.532	1.46	2.21	1.712
9	8	9.625	8.937	9.324	9.524	1.56	2.31	1.812
10	8	10.750	10.019	10.445	10.645	1.675	2.425	1.925
11	8	12.000	11.224	11.694	11.894	1.80	2.55	2.050
12	8	13.000	12.180	12.685	12.885	1.90	2.65	2.150

For dimensions which call for machine work, flanges, etc., see Vol. I of The Starrett Books.

DATA BOOK

Pipes
and Fitting

DOUBLE EXTRA STRONG WROUGHT PIPE

Standard Dimensions

Diameter	External		Internal		Transverse Areas		Length of Pipe per Sq. Foot of Internal Surface		Length of Pipe per Sq. Foot of External Surface		Normal Weight Per Foot of Pipe	
	Ins.	Ins.	Ins.	Ins.	Sq. Ins.	Sq. Ins.	Feet	Feet	Feet	Feet	One Cubic Foot of Pipe	One Cubic Foot of Pipe
$\frac{1}{2}$.840	.252	.294	.2639	.792	.554	.504	4.547	15.157	2887.164	1.714	
$\frac{3}{4}$	1.050	.434	.308	.3299	1.363	.866	.148	3.637	8.801	973.404	2.440	
1	1.315	.599	.358	4.131	1.882	1.358	.282	1.076	2.904	6.376	3.659	
$\frac{5}{8}$	1.660	.896	.382	5.215	2.815	2.164	.630	1.534	2.301	4.263	5.214	
$\frac{1}{2}$	1.900	1.100	.400	5.969	3.456	2.835	.950	1.885	2.010	3.472	151.526	
2	2.375	1.503	.436	7.461	4.722	4.430	1.774	2.656	1.608	2.541	81.162	
$\frac{3}{4}$	2.875	1.771	.552	9.032	5.584	6.492	2.464	4.028	1.328	2.156	58.457	
3	3.500	2.300	.600	10.996	7.226	9.621	4.155	5.466	1.091	1.660	34.659	
$\frac{3}{4}$	4.000	2.728	.636	12.566	8.570	12.566	5.845	6.721	.954	1.400	24.637	
4	4.500	3.152	.674	14.137	9.902	15.904	7.803	8.101	.848	1.211	18.454	
$\frac{5}{8}$	5.000	3.580	.710	15.708	11.247	19.635	10.066	9.569	.763	1.066	14.306	
5	5.563	4.063	.750	17.477	12.764	24.306	12.966	11.340	.686	.940	11.107	
6	6.625	4.897	.864	20.813	15.384	34.472	18.835	15.637	.576	.780	7.646	
7	7.625	5.875	.875	23.955	18.457	45.664	27.109	18.555	.500	.650	5.312	
8	8.625	6.875	.875	27.096	21.598	58.426	37.122	21.304	.442	.555	3.879	

Courtesy of the Greenfield Tap and Die Corporation

STANDARD WROUGHT STEAM, GAS, AND WATER PIPE

Standard Dimensions

Diameter	Circumference		Transverse Areas		Length of Pipe per sq. ft. of Internal Surface	Length of Pipe per sq. ft. of External Surface	Nominal Weight per Foot	Number of Threads per Inch of Drawn End
	External	Internal	External	Internal				
Ins.	Ins.	Ins.	Ins.	Sq. Ins.	Sq. Ins.	Feet	Feet	Feet
1/8	.405	.269	.068	1.272	.845	.129	.057	.072
1/8	.540	.364	.088	1.696	1.144	.229	.104	.125
1/8	.675	.493	.091	2.121	1.549	.358	.191	.167
1/8	.840	.622	.109	2.639	1.954	.554	.304	.250
1/8	1.050	.824	.113	3.299	2.589	.866	.533	.333
1	1.315	1.049	.133	4.131	3.296	1.358	.864	.494
1 1/8	1.660	1.380	.140	5.215	4.335	2.164	1.495	.669
1 1/8	1.900	1.610	.145	5.969	5.053	2.835	2.036	.799
2	2.375	2.375	.154	7.461	6.494	4.430	3.355	1.075
2 1/8	2.875	2.469	.203	9.032	7.757	6.492	4.788	1.704
3	3.500	3.068	.216	10.996	9.638	9.621	7.393	2.228
3 1/8	4.000	3.548	.226	12.566	11.146	12.566	9.886	2.680
4	4.500	4.026	.237	14.137	12.648	15.904	12.730	3.174
4 1/8	5.000	4.506	.247	15.708	14.156	19.635	15.947	3.688
5	5.563	5.047	.258	17.477	15.856	24.306	20.006	4.300
6	6.625	6.065	.280	20.813	19.054	34.472	28.891	5.581
7	7.625	7.023	.301	23.955	22.063	45.664	38.738	6.926
8	8.625	8.071	.327	27.096	25.350	58.426	51.161	7.265
8	8.625	7.981	.322	27.066	25.073	58.426	50.027	8.399
9	9.625	8.941	.342	30.238	28.089	72.760	62.786	9.974
10	10.750	10.192	.379	33.772	32.019	90.763	81.585	9.178
10	10.750	10.136	.307	33.772	31.843	90.763	80.691	10.072
10	10.750	10.020	.365	33.772	31.479	90.763	78.855	11.908
10	10.750	10.020	.365	33.772	31.479	90.763	78.855	11.908

**STARRETT TOOLS FOR USE IN CONNECTION
WITH PIPES AND FITTING****Lock Joint Transfer Calipers**

Consists of the usual arms and an auxiliary leaf bound to the arm by a nut which when loosened permits the arm to be swung in or out to clear any obstruction, as a flange, etc., without losing the size calipered. Sensitive adjustment, light, stiff, large capacity, instantly opened, closed, or locked, points nicely tempered. Made in both inside and outside calipers, also lock-joint dividers.

Expansion Pliers

The jaws are adjustable from zero to $1\frac{1}{4}$ inches, the adjustment being made by a small worm screw. The device keeps the jaws parallel with the surface of the piece held and affords a strong grip on any object within the limits of the pliers. Made plain or nickelized.

Yankee Thread Calipers

Made with either spring or solid nut. Stiff bow. A light, well made tool.

For further information concerning these and other tools which may be used to advantage with Pipes and Fitting, see page 8 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

PRACTICAL CUTTING SPEEDS FOR PLANING

Cast iron, roughing.....	40 to 50 feet per minute
Cast iron, finishing.....	20 to 25 feet per minute
Steel castings, roughing.....	30 to 35 feet per minute
Wrought iron, roughing.....	30 to 45 feet per minute
Steel castings, finishing.....	20 feet per minute
Wrought iron, finishing.....	20 feet per minute
Bronze and brass.....	50 to 60 feet per minute
Machinery steel.....	30 to 35 feet per minute

NUMBER OF FEET TABLE TRAVELS PER HOUR ON CUT

Speed of Cut	Speed of return per minute							
	50	60	70	80	90	100	120	150
20	857.14	900.	933.33	960.	981.81	1000.	1028.57	1058.82
25	1000.	1058.82	1105.26	1142.86	1173.91	1200.	1241.38	1285.71
30	1125.	1200.	1260.	1309.09	1350.	1384.6	1440.	1500.
35	1235.29	1321.31	1400.	1460.87	1512.	1555.55	1625.80	1702.702
40	1333.33	1440.	1527.27	1600.	1661.54	1714.28	1800.	1894.74
45	1421.05	1542.85	1643.47	1728.	1800.	1862.06	1863.63	2076.92
50	1500.	1636.36	1750.	1846.15	1928.57	2000.	2117.64	2250.

Divide by length of stroke to get number of strokes per hour.

TIME OF PLANER TRAVEL PER FOOT

Travel feet per minute	Time one foot	Travel feet per minute	Time one foot
.		.	
10	.6 sec.	105	.571
15	.4	110	.545
20	.3	120	.5
25	.24	130	.461
30	.2	140	.428
35	.172	150	.4
40	.15	160	.375
45	.1333	170	.353+
50	.12	180	.333
55	.109	190	.316
60	.1	200	.3
65	.0923	220	.273
70	.0857	240	.25
75	.08	260	.23
80	.075	280	.214
85	.0705	300	.2
90	.0666		
95	.0631		
100	.06		

STARRETT TOOLS FOR USE IN CONNECTION WITH PLANING

Planer and Shaper Gage

By setting the gage with a caliper, micrometer, or surface gage and bringing the planer tool in contact with it the accuracy of the first cut is assured. A level in the base of the gage makes it convenient for leveling pieces on the platen of a planer or the bed of a milling machine. The gage with extensions will give any height between $\frac{1}{2}$ and $5\frac{1}{2}$ inches.

New Universal Surface Gage

Has a heavy base, grooved through the bottom and end, adapting it for use on or against circular work as well as flat surfaces. The spindle passes through a rotating head, jointed to a rocking bracket, pivoted in the base, the bracket being adjusted by a knurled screw in one end against a stiff spring in the other. The spindle may be set and sensitively adjusted to any position. By loosening the clamp nut the whole may be freely set in any position, being held by friction springs until locked by a slight turn of the clamp nut.

Little Giant Jackscrews

From 1 to $1\frac{1}{4}$ inches diameter at the base, with a lifting range from $1\frac{1}{2}$ to $3\frac{5}{8}$ inches. Extension bases increase the range to $6\frac{1}{2}$ inches. An auxiliary pointed screw and base of special shape are also furnished. The lifting capacity is in excess of 1,000 pounds.

For further information concerning these and other tools which may be used to advantage in Planing, see pages 8, 89, 96 and 98 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

STARRETT TOOLS FOR USE IN CONNECTION WITH PLANING

Engineers' Taper, Wire and Thickness Gage

Shows thicknesses in 64ths to $\frac{1}{16}$ of an inch on one side, the reverse being graduated for 3 inches of its length as a rule, reading in 8ths and 16ths of an inch. The wire gage, English Standard, shows on one side sizes numbered from 19 to 36, with two extra slots, one $\frac{1}{16}$, the other $\frac{1}{8}$ of an inch, and on the reverse side the decimal equivalents in thousandths.

Steel Square

Hardened edge, solid steel square, not graduated, made in sizes from 1 inch to 24 inches inside beam. The 18 and 24 inch sizes are equipped with a stock support which projects beyond the side of the stock, or, when not in use, is contained wholly within the stock and may be clamped firmly in either position. Also special squares for fine tool and die makers, these being fitted with sliding scale, extra bevel blade, and special narrow blade for squaring small holes, etc.

Attachment for Combination Squares

Clamps to a 12 inch blade of any of The Starrett Combination Squares. Can be used on a height gage, for scribing lines, leveling planer work, etc.

For further information concerning these and other tools which may be used to advantage in Planing, see pages 8, 89, 93 and 95 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

Precision Measurements

"Interchangeability," "Duplication of Parts," and similar expressions, mean to the machinist a definite thing, that of being able to machine and finish the separate parts of a mechanism so closely to the figured dimensions that they can be assembled into a complete unit without further fitting. This is the exact ideal always before the modern constructor.

The assembling machinist soon realizes that a minute error in dimension may make it necessary for him to do a certain amount of fitting as he assembles the various parts into a complete machine unit. If such fitting is necessary, the parts cannot be said to be truly interchangeable. In general practice certain error allowances, minute or otherwise, are tolerated, and these allowed errors in measurements are for this reason termed "tolerances." Where the given measurement needs to be exact to the one-thousandth part of an inch or to a fraction thereof, it is known as a precision measurement and the tools used to determine such a measurement to the required accuracy are known as precision tools. Precision tools are designed and constructed in such manner that *direct readings* may be made of errors in dimension as minute as a thousandth part of an inch or a fraction of a thousandth thereof. Such tools are sold under the names of micrometers, verniers, etc., for the direct reading of minute measurements, of lengths, of diameters, of depths, and of heights; when the measurement is one of angles, direct reading of such is provided for by precision protractors, usually termed "Universal Bevel Protractors with Vernier." All the above-mentioned tools are tested to an exactness much less than a ten-thousandth part of an inch and are sold to read directly to one ten-thousandth part of an inch. It will assist the machinist in using precision tools if he clearly understands that his work must be exact within a certain limiting error of dimension and that he is using his precision tool,—for example, a micrometer caliper,—to learn by a direct reading tool how small an error of dimension he has in his work at the time the measurement is made. In certain classes of work, as, for example, precision holes, solid or fixed gages may be provided having the tolerated error an inherent part of their construction. These are often termed Limiting Gages, built so that a certain part of the gage will go into the hole, while another part of the gage will not go into the hole. The machinist usually knows such tools as "go" and "not go" gages. In all precision measurements, the direct reading micrometer and the direct reading vernier tools are at the head in the machinist's kit of tools.

STARRETT INSTRUMENTS FOR PRECISION MEASUREMENTS

Universal Test Indicator

Clamps on any flat or round support up to three eighths inch. A special holder is designed to go in the tool post of a lathe. The head of the needle has three working points, equally distant from its fulcrum, so that the telltale needle will vibrate, reading in thousandths, when the work is in contact with any point. The working parts of the head are hardened.

Half Inch .0001 Micrometer Caliper

Has lock nut and ratchet stop, measuring by ten thousandths of an inch up to one half inch. Made, as are all Starrett Micrometers, with a solid anvil and a thin, graduated sleeve over the barrel, carrying the base or zero line. The anvil and spindle are hardened, ground, and lapped.

Universal Dial Test Indicators

Simple, reliable, easily read, and very sensitive. Slightest pressure upon contact point produces a movement of the hand on the dial. Circumference of dial divided into one hundred equal spaces, each representing a movement of the contact point of one thousandth of an inch. One revolution of the hand indicates one tenth inch, the capacity of the instrument being two tenths. Each indicator is fitted with three hardened contact points for different classes of work. The special tool post and sleeve are useful in lathe work.

The clamp G permits attaching the indicator to large lathe and planer tools, milling arbors, etc. The attachment F adapts it for use inside of holes, to reach over blockings on faceplates, etc.

For further information concerning these and other tools which may be used to advantage in Precision Measurements, see especially pages 18, 34, 40, 61, 62, 63, and 158 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

TAPER REAMERS FOR MORSE, JARNO, AND BROWN & SHARPE STANDARD TAPER SOCKETS

Number of Taper	Diameter at Small End	Diameter at Large End	Diameter of Shank	Size of Square	Length of Square	Length of Flute	Total Length	Width at Bottom of Groove	Depth of Groove	Taper per Foot	Number of Nicks per Inch	Number of Flutes Fin. Reamer	No. of Flutes Roughing Reamer
0	0.252	0.369	1/2	1/4	1/8	2 1/4	3 3/4	1/8	1/8	0.025	0.625	3 1/2	4
1	0.369	0.510	1 1/2	1 1/4	1 1/2	2 1/4	4 1/4	1/8	1/8	0.025	0.600	3 1/2	6
2	0.572	0.741	2 1/2	2 1/2	2 1/2	3 3/8	5 5/8	1/8	1/8	0.025	0.602	3	4
3	0.778	0.979	3 1/2	3 1/4	3 1/2	4	6 1/8	1/8	1/8	0.025	0.602	3	5
4	1.020	1.280	5 1/8	5 1/4	5	5	8	1/8	1/8	0.025	0.623	2 1/2	8
5	1.475	1.790	7 1/2	7 1/4	6	9 3/8	12 1/4	1/8	1/8	0.025	0.630	2 1/2	10
6	2.116	2.559	10 1/2	10 1/4	8 1/2	12 1/4	16 1/8	1/8	1/8	0.025	0.626	2 1/2	14
7	2.750	3.375	12 1/2	12 1/4	12	16 1/8	16 1/8	1/8	1/8	0.025	0.625	2 1/2	8

JARNO

1	0.100	0.144	1/8	1/8	1/8	7/8	1 1/4	1/8	1/8	0.025	0.600	3 1/2	6
2	0.200	0.269	1/4	1/4	1/4	1 1/8	2 5/8	1/8	1/8	0.025	0.600	3 1/2	6
3	0.300	0.400	3/8	3/8	3/8	2	3 1/2	1/8	1/8	0.025	0.600	3 1/2	6
4	0.400	0.531	1/2	1/2	1/2	2 5/8	4 3/8	1/8	1/8	0.025	0.600	3 1/2	4
5	0.500	0.659	5/8	5/8	5/8	3 1/8	5 1/8	1/8	1/8	0.025	0.600	3	5
6	0.600	0.787	6/8	6/8	6/8	3 3/4	5 7/8	1/8	1/8	0.025	0.600	3	8
7	0.700	0.916	7/8	7/8	7/8	4 1/8	6 5/8	1/8	1/8	0.025	0.600	3	8
8	0.800	1.044	1 1/8	1 1/8	1 1/8	4 1/8	7 3/8	1/8	1/8	0.025	0.600	3	5
9	0.900	1.169	1 1/8	1 1/8	1 1/8	5 3/8	8 1/8	1/8	1/8	0.025	0.600	3	8
10	1.000	1.297	1 1/8	1 1/8	1	6 1/8	8 7/8	1/8	1/8	0.025	0.600	2 1/2	8
11	1.100	1.422	1 1/8	1 1/8	1	7	9 1/2	1/8	1/8	0.025	0.600	2 1/2	8
12	1.200	1.550	1 1/8	1 1/8	7	10 1/8	1/8	1/8	1/8	0.025	0.600	2 1/2	6
13	1.300	1.675	1 1/8	1 1/8	1 1/8	7 1/2	10 3/4	1/8	1/8	0.025	0.600	2 1/2	10
14	1.400	1.800	1 1/8	1 1/8	1 1/8	8	11 3/8	1/8	1/8	0.025	0.600	2 1/2	10
15	1.500	1.928	1 1/8	1 1/8	1 1/8	8 7/8	12	1/8	1/8	0.025	0.600	2 1/2	10
16	1.600	2.053	1 1/8	1 1/8	1 1/8	9 7/8	12 5/8	1/8	1/8	0.025	0.600	2 1/2	10
17	1.700	2.181	1 1/8	1 1/8	1 1/8	9 5/8	13 3/8	1/8	1/8	0.025	0.600	2 1/2	10
18	1.800	2.306	1 1/8	1 1/8	1 1/8	10 1/8	14	1/8	1/8	0.025	0.600	2 1/2	12
19	1.900	2.431	1 1/8	1 1/8	1 1/8	10 5/8	14 5/8	1/8	1/8	0.025	0.600	2 1/2	12
20	2.000	2.556	2	1 1/8	1 1/8	11 1/8	15 1/4	1/8	1/8	0.025	0.600	2 1/2	6

BROWN & SHARPE

1	0.200	0.252	1/2	1/2	1/4	1 1/4	2 1/4	1/8	1/8	0.025	1/2	3 1/2	6
2	0.250	0.318	1 1/2	1 1/2	1 1/2	1 5/8	3	1/8	1/8	0.025	1/2	3 1/2	6
3	0.312	0.416	2 1/2	2 1/2	2 1/2	2 1/2	4 1/4	1/8	1/8	0.025	1/2	3 1/2	6
4	0.350	0.444	3 1/2	3 1/2	3 1/2	2 1/4	3 3/4	1/8	1/8	0.025	1/2	3 1/2	6
5	0.450	0.564	5/2	5/2	5/2	2 3/4	4 3/4	1/8	1/8	0.025	1/2	3	4
6	0.500	0.667	7/8	7/8	7/8	4	6 1/2	1/8	1/8	0.025	1/2	3	6
7	0.600	0.803	1 1/8	1 1/8	1 1/8	4 7/8	8	1/8	1/8	0.025	1/2	3	8
8	0.750	0.958	1 1/8	1 1/8	1 1/8	5	8 1/4	1/8	1/8	0.025	1/2	3	8
9	0.900	1.119	1	1	1	5 1/4	8 5/8	1/8	1/8	0.025	1/2	3	5
10	1.045	1.346	1 1/8	1 1/8	1	7 1/4	10 3/4	1/8	1/8	0.025	0.5161	2 1/2	6
11	1.250	1.573	1 1/8	1 1/8	1 1/8	7 3/4	11 1/2	1/8	1/8	0.025	1/2	2 1/2	8
12	1.500	1.838	1 1/8	1 1/8	1 1/8	8 1/8	12	1/8	1/8	0.025	1/2	2 1/2	10
13	1.750	2.114	1 1/8	1 1/8	1 1/8	8 3/4	12 3/4	1/8	1/8	0.025	1/2	2 1/2	10
14	2.000	2.385	2 1/8	2 1/8	1 1/8	9 3/4	13 3/8	1/8	1/8	0.025	1/2	2 1/2	10
15	2.250	2.656	2 1/8	2 1/8	1 1/2	9 3/4	14	1/8	1/8	0.025	1/2	2 1/2	14
16	2.500	2.927	2 1/8	2 1/8	1 1/2	10 1/4	14 1/2	1/8	1/8	0.025	1/2	2 1/2	14
17	2.750	3.198	2 1/8	2 1/8	1 1/2	10 3/4	15 1/4	1/8	1/8	0.025	1/2	2 1/2	14
18	3.000	3.469	3 1/8	2 1/8	1 1/8	11 1/4	15 3/4	1/8	1/8	0.025	1/2	2 1/2	8

REAMER CLEARANCES

Ground with Cup Wheel 3 in. Dia.—Tooth rest to be set central with emery wheel spindle. Set work holding centers above emery wheel center by amount given below in Tables No. 1, 2 and 3

Set tooth rest below work holding centers. Amount given below in Table No. 4

Table 1
Hand Reamer for Steel
Cutting Clearance Land
.006 Wide

Table 2
Hand Reamer
for Cast Iron and
Bronze Cut'g
Clearance Land
.025 Wide

Table 3
Chucking Reamer for Cast
Iron and Bronze
Cut'g Clearance
Land .025 Wide

Table 4
Chucking Reamers for Steel Circular Round

Size of Reamer Inches	For Cutting Clearance		For Second Clearance		For Cutting Clearance		For Second Clearance		Angle on End of Blade	For Cutting Clearance on Angle
	For Cutting Clearance	For Second Clearance								
1/8	.012	.052	.032	.072	.040	.080	45 degrees	.080		
5/16	.012	.057	.032	.072	.040	.080*	45 "	.080		
3/8	.012	.062	.032	.072	.040	.090	45 "	.090		
11/16	.012	.067	.035	.095	.040	.100	45 "	.100		
5/4	.012	.072	.035	.095	.040	.100	45 "	.100		
13/16	.012	.077	.037	.095	.045	.125	45 "	.125		
7/8	.012	.082	.040	.120	.045	.125	45 "	.125		
15/16	.012	.087	.040	.120	.045	.125	45 "	.125		
1	.012	.092	.040	.120	.045	.125	45 "	.125		
1 1/16	.012	.097	.040	.120	.045	.125	45 "	.125		
1 1/8	.012	.102	.040	.120	.045	.125	45 "	.125		
1 1/16	.012	.106	.042	.122	.045	.125	45 "	.125		
1 1/4	.012	.112	.045	.145	.050	.160	45 "	.160		
1 1/16	.012	.118	.045	.145	.050	.160	45 "	.160		
1 1/8	.012	.122	.045	.145	.050	.160	45 "	.175		
1 1/16	.012	.127	.045	.145	.055	.175	45 "	.175		
1 1/2	.012	.132	.048	.168	.055	.175	45 "	.175		
1 1/16	.012	.137	.050	.170	.055	.175	45 "	.175		
1 5/8	.012	.142	.050	.170	.060	.200	45 "	.200		
1 1/16	.012	.147	.050	.170	.060	.200	45 "	.200		
1 3/4	.012	.152	.052	.192	.060	.200	45 "	.200		
1 1/16	.012	.157	.052	.192	.060	.200	45 "	.200		
1 1/8	.012	.162	.056	.196	.060	.200	45 "	.200		
1 1/16	.012	.167	.056	.196	.064	.200	45 "	.200		
2	.012	.172	.056	.216	.064	.224	45 "	.225		
2 1/16	.012	.172	.056	.216	.064	.224	45 "	.225		
2 1/8	.012	.172	.059	.219	.064	.224	45 "	.225		
2 1/16	.012	.172	.059	.219	.064	.224	45 "	.225		
2 1/4	.012	.172	.063	.223	.064	.224	45 "	.225		
2 1/16	.012	.172	.063	.223	.064	.224	45 "	.225		
2 3/8	.012	.172	.063	.223	.068	.228	45 "	.230		
2 1/16	.012	.172	.063	.223	.068	.228	45 "	.230		
2 1/2	.012	.172	.065	.225	.072	.232	45 "	.230		
2 1/16	.012	.172	.065	.225	.072	.232	45 "	.230		
2 5/8	.012	.172	.065	.225	.075	.235	45 "	.235		
2 1/4	.012	.172	.065	.225	.075	.235	45 "	.235		
2 3/4	.012	.172	.065	.225	.077	.237	45 "	.240		

Mount tooth rest on emery wheel head

Mount tooth rest on table of machine

REAMER CLEARANCES—Continued

Ground with Cup Wheel 3 in. Dia.—Tooth rest to be set central with emery wheel spindle. Set work holding centers above emery wheel center by amount given below in Tables No. 1, 2 and 3

Set tooth rest below work holding centers. Amount given below in Table No. 4

Table 1
Hand Reamer for Steel
Cutting Clearance Land
.006 Wide

Table 2
Hand Reamer
for Cast Iron and
Bronze Cutting
Clearance Land
.025 Wide

Table 3
Chucking
Reamer for Cast
Iron and Bronze
Cut'g Clearance
Land .025 Wide

Table 4
Chuck Reamers for Steel Circular Ground

Size of Reamer Inches	For Cutting Clearance	For Second Clearance	For Cutting Clearance	For Second Clearance	For Cutting Clearance	For Second Clearance	Angle on End of Blade	For Cutting Clearance on Angle
2 $\frac{1}{4}$.012	.172	.065	.225	.077	.237	45 degrees	.240
2 $\frac{1}{2}$.012	.172	.070	.230	.080	.240	45 "	.240
2 $\frac{5}{8}$.012	.172	.070	.230	.080	.240	45 "	.240
3	.012	.172	.072	.232	.080	.240	45 "	.240
3 $\frac{1}{8}$.012	.172	.072	.232	.080	.240	45 "	.240
3 $\frac{1}{4}$.012	.172	.075	.235	.083	.240	45 "	.240
3 $\frac{3}{8}$.012	.172	.075	.235	.083	.243	45 "	.240
3 $\frac{5}{8}$.012	.172	.078	.238	.083	.243	45 "	.245
3 $\frac{7}{8}$.012	.172	.078	.238	.087	.243	45 "	.245
3 $\frac{9}{16}$.012	.172	.081	.241	.087	.247	45 "	.245
3 $\frac{11}{16}$.012	.172	.081	.241	.090	.247	45 "	.245
3 $\frac{13}{16}$.012	.172	.084	.244	.090	.250	45 "	.250
3 $\frac{15}{16}$.012	.172	.084	.244	.090	.250	45 "	.250
3 $\frac{17}{16}$.012	.172	.087	.247	.093	.253	45 "	.250
3 $\frac{19}{16}$.012	.172	.087	.247	.093	.253	45 "	.250
3 $\frac{21}{16}$.012	.172	.090	.250	.097	.257	45 "	.255
3 $\frac{23}{16}$.012	.172	.090	.250	.097	.257	45 "	.255
3 $\frac{25}{16}$.012	.172	.093	.253	.100	.260	45 "	.255
3 $\frac{27}{16}$.012	.172	.093	.253	.100	.260	45 "	.255
4	.012	.172	.096	.256	.104	.264	45 "	.260
4 $\frac{1}{8}$.012	.172	.096	.256	.104	.264	45 "	.260
4 $\frac{3}{16}$.012	.172	.096	.256	.106	.266	45 "	.260
4 $\frac{5}{16}$.012	.172	.096	.256	.106	.266	45 "	.265
4 $\frac{7}{16}$.012	.172	.096	.256	.106	.266	45 "	.265
4 $\frac{9}{16}$.012	.172	.096	.256	.108	.268	45 "	.265
4 $\frac{11}{16}$.012	.172	.096	.256	.108	.268	45 "	.265
4 $\frac{13}{16}$.012	.172	.100	.260	.108	.268	45 "	.265
4 $\frac{15}{16}$.012	.172	.100	.260	.108	.268	45 "	.265
4 $\frac{17}{16}$.012	.172	.100	.260	.110	.270	45 "	.270
4 $\frac{19}{16}$.012	.172	.100	.260	.110	.270	45 "	.270
4 $\frac{21}{16}$.012	.172	.104	.264	.114	.274	45 "	.275
4 $\frac{23}{16}$.012	.172	.104	.264	.114	.274	45 "	.275
4 $\frac{25}{16}$.012	.172	.106	.266	.116	.276	45 "	.275
4 $\frac{27}{16}$.012	.172	.106	.266	.116	.276	45 "	.275
5	.012	.172	.110	.270	.118	.278	45 "	.275
5 $\frac{1}{8}$.012	.172	.118	.278

Mount tooth rest on emery wheel head

Mount tooth rest on table of machine

**STARRETT TOOLS FOR THE USE OF
ENGINEERS**

Simplified Transit

The upper plate, which can be leveled by the leveling screws, contains a graduated arc for taking angles. On the plate rests a triangular frame to which are attached a level, graduated arc for vertical angles, and sight tube or telescope fitted with cross lines. Free from complicated and confusing adjustments found on the regular engineer's transit.

Steel Measuring Tape

Tape is $\frac{3}{8}$ inch wide in metal-lined leather case, with extension push button handle which is flush with case when closed. Quick reading graduations. Black finish with bright figures or vice versa, as desired.

Engineers' Level

Instrument consists of adjustable incline level, a fixed level, and a plumb. The hinged tube working inside the frame, carrying a level, is adjustable to graduated scale, showing incline by 32ds (or less) to 2 inches to the foot. Longitudinal groove in seat of frame adapts tool to use on cylindrical surfaces.

For further information concerning these and other tools of interest to engineers see pages 8 and 113 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

STARRETT HACK SAW CHART
FOR MOST SATISFACTORY RESULTS USE SAWS REFERRED
TO BELOW

Numbers refer to the blade numbers in The Starrett Catalogue

Material to be Cut	No. of Blade for Hand Frame		No. of Blade for Power Machine			
	All Hard	Flexible or Soft Back	Light Machine	Medium Machine	Heavy Machine	Extra Heavy Machine
Light Angles						
Light Channels						
Light Tee Iron						
Light Ornamental						
Heavy Angles						
Heavy Channels						
Heavy Tee Iron						
Light Structural	112-B			255	254	256
Heavy Structural	112-B			255-B	254-B	256-B
Iron Pipe						
Conduit Pipe						
Brass Pipe	102	252	115	262	259	
Solid Stock						
Cold Rolled						
Machine Steel	103-B 112-B	250 250-B	114	255-B 255-C	254-B 254-C	256-B 256-C
Tool Steel						
Cast Iron	103 112		114	255	254	256
Brass	103 112		115	262	259	
Sheet Metal						
Less than 18 gage	253	258				
Over 18 gage	102	252				

SUGGESTIONS AS TO SPEED

The speed of saws varies largely according to the material being cut. Saws used in machines can be run to good advantage on soft steel about 100 strokes per minute; on annealed tool steel, about 65 strokes per minute; on unannealed tool steel, about 60 strokes per minute; that is, when compound or water is used; when not used, run about 50 strokes per minute.

SAWS USED IN HAND FRAMES

Strain the blade well in frame with the rake of teeth forward. Bear down on forward stroke so that blade will not slip, and ease the pressure on the return stroke. Do not bend sidewise. Use at about 50 strokes per minute.

HACK SAW DON'TS

Don't use a coarse blade on light sheet metal, tubing, or very hard steel.
 Don't use a coarse blade on solid brass, copper, or gas pipe.

Don't let blades slip or slide without cutting.

Don't run blades too fast in power machines. We suggest that for dry cutting about 50 strokes per minute will give the best results, whereas if a compound is used, 65 to 100 strokes may be applied, according to conditions.

Don't put too much weight on a new saw. Nothing is gained in trying to force the saw. Too much weight dulls the saw quickly.

CUTS PER HOUR CORRESPONDING TO GROSS TIME PER CUT

Minutes per Cut	Seconds per Cut										Number of Cuts per Hour		
	0	5	10	15	20	25	30	35	40	45	50	55	60
1	60.	55.	52.6	48.	45.	42.2	40.	38.2	36.1	34.3	32.8	31.4	30.
2	30.	28.8	27.6	26.6	25.8	24.8	24.	23.3	22.5	21.9	20.8	20.5	20.
3	20.	19.4	18.9	18.6	18.	17.6	17.	16.7	16.3	16.	15.7	15.3	15.
4	15.	14.7	14.4	14.1	13.85	13.37	13.3	13.	12.8	12.6	12.4	12.2	12.
5	12.	11.8	11.6	11.4	11.25	11.	10.9	10.7	10.6	10.4	10.3	10.2	10.
6	10.	9.87	9.7	9.5	9.47	9.36	9.2	9.12	9.	8.88	8.81	8.76	8.6
7	8.6	8.47	8.38	8.3	8.19	8.09	8.	7.9	7.83	7.74	7.68	7.59	7.5
8	7.5	7.42	7.35	7.27	7.2	7.13	7.1	7.	6.92	6.9	6.8	6.75	6.7
9	6.7	6.6	6.55	6.48	6.43	6.36	6.3	6.26	6.21	6.2	6.1	6.07	6.
10	6.	5.95	5.87	5.85	5.8	5.76	5.7	5.67	5.62	5.6	5.56	5.55	5.5
11	5.5	5.41	5.37	5.36	5.29	5.25	5.2	5.18	5.14	5.1	5.08	5.04	5.
12	5.	4.96	4.94	4.93	4.86	4.83	4.8	4.76	4.73	4.7	4.68	4.64	4.6
13	4.6	4.58	4.57	4.56	4.5	4.47	4.4	4.41	4.38	4.36	4.34	4.32	4.3
14	4.3	4.26	4.24	4.23	4.18	4.16	4.14	4.11	4.08	4.07	4.05	4.02	4.
15	4.	3.9	3.9	3.95	3.92	3.9	3.89	3.86	3.83	3.81	3.79	3.76	3.73

**STARRETT TOOLS FOR USE IN CONNECTION
WITH SAWING**

Solid Saw Frame

This solid steel frame is very stiff. The stock is wider than that commonly used and cannot be cramped by straining the blade. The saw may be set to cut in any one of four directions and tightened by turning the handle.

Hack Saw Frame

On this type of frame, spring plungers overlap the ends of the saw, automatically holding it home. By slightly pushing them back the saw may be instantly removed. A nut within the tool handle, turning with it, gives the desired tension to the blade. The adjustable or extension back frames have improved spring pawls, adapting the frame to blades of different lengths. Frames are nickel plated.

Heavy Hack Saw Frame

Takes 12 inch blade only. Depth of frame from teeth of saw to inside edge of frame, $5\frac{1}{4}$ inches. A nut within the hardwood tool handle gives the required tension to the blade. Frame is nickel plated. Made also $7\frac{1}{4}$ and $10\frac{1}{4}$ inches in depth.

Starrett Hack Saws

Made of the finest grade steel. Teeth are sharp, with square cutting points, and set so that every tooth cuts. The set is just enough to insure free, smooth, and rapid cut.

For further information concerning these and other tools which may be used to advantage in connection with Sawing, see Vol. I of The Starrett Books, and the Starrett Catalogue.

**STARRETT TOOLS FOR USE IN CONNECTION
WITH SAWING****Starrett Hack Saw Machine**

Has a capacity of from 0 to 6 inch stock. Designed for 14 inch blades, 12 or 13 inch saws may be used if desired. Belt driven by 16 inch pulley with 3 inch face. Dimensions 14 by 32 on floor, by 48 inches high. Weight 470 pounds. Cuts on draw stroke with quick return. Automatic locking device prevents saw dragging on return stroke and holds saw frame at any height

when the machine is stopped for setting work. Saw frame mounted on rectangular slide with $1\frac{1}{2}$ inch bearing. Quick acting Saw Tightener holds blades square. Stroke adjustable for stock from 1 inch to 6 inches diameter. Oil Dash Pot allows machine to be started when frame is up without dropping and breaking the saw. Also protects saw teeth from stripping. Frame is lifted by operator's weight on foot treadle. Pump and Lubricant Tank are inside base and easily accessible. Main shaft is $1\frac{1}{4}$ inch diameter, running in special hard cast iron 7 inch bushing. Crank is keyed and taper pinned to shaft. Drive is through a positive clutch, automatically released and stopping saw when stock is cut off. Vise is made exceptionally strong. Studs and Rolls are hardened, ground, and accurately fitted.

Starrett Hack Saw Blades

Tempered by our improved process, the blades are hard, tough, and uniform in temper and will not "shell off." With the exception of the flexible back saws all blades are hardened throughout. Each saw is guaranteed for the work for which it is intended.

For further information concerning these and other tools which may be used to advantage in connection with Hack Saws, see Vol. I of The Starrett Books, and the Starrett Catalogue.

SCREW MACHINE FEEDS AND SPEEDS

The first three of the following tables are taken from data furnished by a prominent manufacturer of high-class screw machines, and in common with the other tables refer to good general practice. It must, however, be recognized that no table is applicable to all conditions. The speeds given should, as a rule, be easily maintained.

SURFACE SPEEDS FOR EXTERNAL CUTTING TOOLS

Table 1

Material	Surface Speed in Feet per Min.	
	Carbon Steel	High Speed Steel
Brass.....	170-200	225-300
Gun Screw Iron.....	80- 90	105-120
Drill Rod.....	50- 60	65- 80
Soft Machinery Steel.....	75- 80	100-120
Zinc.....	170-200	225-300

SURFACE SPEEDS FOR THREADING

Table 2

Material	Surface Speed in Feet per Min. Carbon Steel Tools
Gun Screw Iron.....	25-30
Drill Rod.....	12-15
Soft Machinery Steel.....	20-30

FEED PER REVOLUTION IN INCHES

Table 3

Tool	Brass	Gun Screw Iron	Machine Steel	Drill Rod
Hollow Mills..	.006-.015	.004-.012	.004-.012
Cutting off Tools.....	.0015-.002	.0012-.00176	.0012-.00176
Box Tools....	.010	.010-.012	.010-.012	From .003-.007
Forming Tools	.0018-.0015	.0002-.001	.0002-.001
Drills.....	$\frac{1}{4}$ in. to $\frac{1}{8}$ in. .003-.006 Less $\frac{1}{8}$ in. .0015-.003	.001-.002	.001-.002

BOX TURNING TOOLS AND HOLLOW MILLS

Where cold drawn stock and brass are to be rough turned, using a single tool roughing box, Tables 4 and 5 may be used. These are adaptable for rough turning with hollow mills. Using hollow mills the feed per revolution may be increased from 20 to 30 per cent. Table 6 indicates good practice when the finish box tool is used.

CUTTING SPEEDS AND FEEDS FOR ROUGHING COLD ROLLED STOCK

Table 4

If using high speed steel tools increase speed 25 to 50%. Increase feed 15%.

$\frac{1}{8}$ Inch Chip				$\frac{1}{16}$ Inch Chip				$\frac{1}{32}$ Inch Chip			
Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.	Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.	Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.
$\frac{1}{8}$	80	2445	.002	$\frac{1}{4}$	60	916	.0035	$\frac{1}{8}$	55	560	.004
$\frac{1}{4}$	70	1426	.003	$\frac{1}{8}$	60	611	.004	$\frac{1}{16}$	55	420	.005
$\frac{1}{2}$	70	1069	.004	$\frac{1}{16}$	60	458	.005	$\frac{1}{32}$	55	280	.006
$\frac{3}{8}$	70	713	.005	$\frac{1}{32}$	55	280	.006	$\frac{1}{64}$	50	191	.007
$\frac{1}{2}$	60	458	.006	$\frac{1}{64}$	55	210	.007	$\frac{1}{128}$	50	152	.007
$\frac{3}{16}$	60	305	.007	$\frac{1}{128}$	55	168	.007	$\frac{1}{256}$	45	114	.007
$\frac{1}{4}$	60	229	.008	$\frac{1}{256}$	50	127	.008	$\frac{1}{512}$	45	98	.008
$1\frac{1}{16}$	60	183	.008	$1\frac{1}{16}$	50	109	.008	$2\frac{1}{16}$	40	76	.006
								$2\frac{1}{32}$	40	68	.007
								$2\frac{1}{64}$	40	61	.007

CUTTING SPEEDS AND FEEDS FOR ROUGHING BRASS SCREW STOCK

Table 5

If using high speed steel tools increase speed 25 to 50%. Increase speed 15%.

$\frac{1}{8}$ Inch Chip				$\frac{1}{16}$ Inch Chip				$\frac{1}{32}$ Inch Chip			
Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.	Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.	Diam. of Stock	Feet Surface Speed	Rev. per Min.	Feed per Rev.
$\frac{1}{8}$	180	5500	.003	$\frac{1}{4}$	180	2748	.004	$\frac{1}{8}$	165	1680	.004
$\frac{1}{4}$	180	3668	.004	$\frac{1}{8}$	180	1833	.005	$\frac{1}{16}$	165	1260	.006
$\frac{1}{2}$	180	2748	.005	$\frac{1}{16}$	180	1374	.0065	$\frac{1}{32}$	165	840	.007
$\frac{3}{8}$	180	1833	.006	$\frac{1}{32}$	165	840	.0075	$\frac{1}{64}$	150	573	.008
$\frac{1}{2}$	180	1374	.008	$1\frac{1}{4}$	165	630	.0085	$1\frac{1}{8}$	150	456	.009
$\frac{3}{16}$	180	915	.010	$1\frac{1}{4}$	165	504	.010	$1\frac{1}{16}$	135	342	.010
$1\frac{1}{16}$	180	687	.012	$1\frac{1}{4}$	150	381	.012	$1\frac{1}{8}$	135	294	.011
				$1\frac{1}{16}$	150	327	.012	$2\frac{1}{16}$	120	228	.011
								$2\frac{1}{32}$	120	204	.010
								$2\frac{1}{64}$	120	183	.010

SPEEDS AND FEEDS FOR FINISH BOX TOOL

Table 6

If using high speed tools increase speed 25 to 50%.

Finished Diameter of Work	Screw Stock			Brass Rod			Amount Advisable to Remove on a Side
	Feet Surface Speed	Rev. per Min.	Feed per Rev.	Feet Surface Speed	Rev. per Min.	Feed per Rev.	
$\frac{3}{8}$	80	2445	.0045	180	5500	.0045	.0025
$\frac{5}{16}$	70	1426	.0055	180	3668	.0055	.0025
$\frac{3}{16}$	65	993	.0075	180	2750	.0075	.0045
$\frac{1}{2}$	60	458	.011	180	1375	.011	.006
$\frac{5}{8}$	60	305	.012	180	917	.012	.006
1	60	229	.012	175	668	.012	.0065
$1\frac{1}{2}$	55	140	.014	170	433	.014	.007
2	50	95	.014	170	325	.014	.008

SPEEDS FOR FORMING

Table 7

25 to 50% increase for high speed tools.

Diam. of Work	Screw Stock		Brass Rod		Diam. of Work	Screw Stock		Brass Rod	
	Feet Surface Speed	Rev. per Min.	Feet Surface Speed	Rev. per Min.		Feet Surface Speed	Rev. per Min.	Feet Surface Speed	Rev. per Min.
$\frac{3}{8}$	75	2292	200	6112	$\frac{5}{8}$	60	360	175	1050
$\frac{5}{16}$	75	1528	200	4074	$\frac{3}{4}$	60	305	175	882
$\frac{3}{16}$	70	1069	185	2827	1	60	229	175	667
$\frac{5}{8}$	65	662	185	1885	$1\frac{1}{2}$	60	153	170	432
$\frac{1}{2}$	65	497	185	1414	2	50	96	170	324

FEEDS FOR FORMING TOOLS

Table 8

15% increase of feed for high speed tools.

Width of Form	Smallest Diameter of Form							
	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	$1\frac{1}{2}$
$\frac{1}{16}$.0007	.0008	.001	.0012	.0012	.0012	.0012	.0012
$\frac{1}{8}$.0005	.0008	.001	.0012	.0015	.0020	.0025	.0025
$\frac{3}{16}$0007	.001	.001	.0015	.0015	.0018	.0018
$\frac{5}{16}$0009	.001	.001	.0012	.0015	.0015
$\frac{1}{4}$0008	.0009	.001	.001	.0015	.0015
$\frac{5}{8}$0008	.0009	.001	.0011	.0012
$\frac{1}{2}$0008	.0009	.001	.0012
$1\frac{1}{2}$0007	.0009	.0011
20007	.001

SPEEDS FOR DIES AND TAPS

Table 9

Run high speed steel tools 25% faster.

Diam. of Thread	Screw Stock		Brass Rod		Diam. of Thread	Screw Stock		Brass Rod	
	Feet Surface Speed	Rev. per Min.	Feet Surface Speed	Rev. per Min.		Feet Surface Speed	Rev. per Min.	Feet Surface Speed	Rev. per Min.
$\frac{1}{8}$	25	764	100	3056	$\frac{3}{4}$	20	102	80	408
$\frac{3}{16}$	25	382	90	1376	1	20	76	80	306
$\frac{5}{32}$	20	204	80	815	$1\frac{1}{4}$	20	67	80	245
$\frac{3}{16}$	20	153	80	611	$1\frac{1}{2}$	15	38	70	178
$\frac{7}{32}$	20	123	80	489	2	15	29	70	134

FEEDS AND SPEEDS FOR REAMING

Table 10

Run high speed tools 25% faster.

Diam. of Reamer	Feed per Rev.	Amt. to Re- move on Diam.	Rev. per Min.		Diam. of Reamer	Feed per Rev.	Amt. to Re- move on Diam.	Rev. per Min.	
			Screw Stock at 40 Ft.	Brass Rod at 130 Ft.				Screw Stock at 40 Ft.	Brass Rod at 130 Ft.
$\frac{1}{8}$.005	.0045	1222	3972	$1\frac{1}{4}$.018	.010	122	397
$\frac{5}{32}$.006	.0045	815	2648	$1\frac{1}{2}$.020	.010	102	331
$\frac{3}{16}$.007	.006	611	1986	$1\frac{3}{4}$.022	.010	87	284
$\frac{7}{32}$.0085	.006	407	1324	2	.024	.013	76	248
$\frac{1}{4}$.0105	.008	306	993	$2\frac{1}{4}$.026	.013	68	220
$\frac{9}{32}$.012	.008	245	795	$2\frac{1}{2}$.028	.013	61	199
$\frac{5}{16}$.014	.008	204	662	$2\frac{3}{4}$.030	.013	56	181
1	.016	.010	153	497	3	.032	.013	51	165

FEEDS AND SPEEDS FOR DRILLS

Table 11

25 to 50% increase of speed for high speed tools. Some operators allow a 25% clearance on all work where the wall diameter is not an important consideration.

Diam. of Drill	Screw Stock		Brass Rod		Diam. of Drill	Screw Stock		Brass Rod	
	Feed per Drill	R.P.M. at 60 Ft. Periph- eral Speed	Feed per Rev.	R.P.M. at 175 Ft. Periph- eral Speed		Feed per Rev.	R.P.M. at 55 Ft. Periph- eral Speed	Feed per Rev.	R.P.M. at 165 Ft. Periph- eral Speed
$\frac{1}{8}$.0013	3667	.0017	10696	$\frac{3}{16}$.005	420	.0065	1260
$\frac{3}{16}$.0016	2093	.002	8555	$\frac{1}{4}$.0057	373	.0074	1120
$\frac{5}{32}$.0018	2445	.0023	7130	$\frac{5}{16}$.0059	336	.0077	1008
$\frac{1}{8}$.0025	1833	.0033	5348	$\frac{1}{2}$.006	305	.0078	917
$\frac{9}{64}$.003	1421	.0039	4144	$\frac{3}{8}$.0065	280	.0084	84
$\frac{1}{16}$.004	1222	.0052	3565	$\frac{7}{16}$.0075	240	.0097	702
$\frac{1}{16}$.004	1043	.0052	3050	50 Ft.	...	150 Ft.
$\frac{1}{8}$.0045	916	.0053	2674	1	.0085	191	.0110	573
$\frac{11}{64}$.0045	815	.0058	2377	$1\frac{1}{4}$.0095	152	.0123	458
$\frac{1}{16}$.0045	733	.0058	2139	$1\frac{1}{2}$.011	127	.0143	382
$\frac{3}{32}$.0045	611	.0061	1783	$1\frac{3}{4}$.013	109	.0169	327
$\frac{1}{8}$.005	521	.0065	1528	2	.014	96	.0182	294

CLEARANCES FOR THREADING IN THE SCREW MACHINE

Threads per Inch	External Work Turn Undersize	Internal Work Increase Over Theoretical Bottom of Thread
28	0.002	0.004
24	0.002	0.0045
22	0.0025	0.005
20	0.0025	0.0055
16	0.003	0.006
14	0.003	0.0065
13	0.0035	0.007
12	0.0035	0.007
11	0.0035	0.0075
10	0.004	0.008
9	0.004	0.0085
8	0.0045	0.009
7	0.0045	0.0095
6	0.005	0.010

From American Machinists' Handbook by F. N. Colvin and F. A. Stanley, New York. McGraw-Hill Book Company Inc.

TABLE OF FEEDS AND SPEEDS FOR SCREW MACHINE

Out-side Dia- meter of Stock	Revolutions per Min.	Radial Depth of Chip												
		$\frac{1}{8}$ Inch			$\frac{1}{4}$ Inch			$\frac{3}{8}$ Inch			$\frac{1}{2}$ Inch			
		Feet	Peripheral Speed Feet per Min.	Rev. per Min.										
.14	.004	90	85	80	75	85	80	75	70	65	85	80	75	70
.14	.005
.14	.006
.14	.007
.14	.008
.14	.009
.14	.010
1	1 $\frac{1}{8}$.011	289	.010	...	289	.010	...	289	.009	...	289	.006	...
1	1 $\frac{1}{8}$.012	244	.011	...	244	.011	...	244	.010	...	244	.009	...
1	1 $\frac{1}{8}$.013	204	.011	...	204	.011	...	204	.010	...	204	.009	...
1	1 $\frac{1}{8}$.014	175	.011	...	175	.011	...	175	.010	...	175	.009	...
2	2 $\frac{1}{4}$.012	153	.011	...	153	.011	...	153	.010	...	153	.009	...
2	2 $\frac{1}{4}$.013	127	.012	...	127	.012	...	127	.011	...	127	.010	...
2	2 $\frac{1}{4}$.014	115	.012	...	115	.012	...	115	.011	...	115	.010	...
3	2 $\frac{1}{4}$.013	104	.012	...	104	.012	...	104	.011	...	104	.010	...
3	2 $\frac{1}{4}$.014	95	.012	...	95	.012	...	95	.011	...	95	.010	...
3 $\frac{1}{2}$	3 $\frac{1}{2}$.014	82	014	76	...	014	76	...	013	76	...
4	4 $\frac{1}{2}$.014	72	014	67	...	014	67	...	013	67	...
4	4 $\frac{1}{2}$.014	64	014	59	...	014	59	...	013	59	...

Above Table is for Turret Lathe Work, Turning Bright Drawn Machinery Steel.
Stock with scale should use same feeds but 20 per cent lower speeds.

STARRETT INSTRUMENTS FOR USE OF DRAFTSMEN

Draftsmen's Scales

This scale has tilting studs so placed that each of its four corners, with different graduations, will come in contact with the paper by its own weight when resting on the studs, with the back edge raised at an angle of 30°. Graduated on corners in 10ths, 40ths, 50ths, 100ths, or in 8ths, 16ths, 32ds, and 64ths. Also made in Metric system.

Combination Straightedges

The needle carriers at each end swing on taper studs carrying needle-pointed brads. A turn of the nut brads the straightedge to the paper. The straightedge may be had either graduated or plain.

T Square

Made either graduated or plain. Nickel plated with spring-tempered blade and aluminum head; weight about 5 oz. Automatic clasing device holds it by spring pressure against metal straightedge of a drafting board or table and can be locked firm.

Section Liner

Can be set at any angle either way and the joint leveled by slight turn of knurled disc. Button-head screen may be adjusted to fine or coarse movement.

Draftsmen's Protractor

Made of sheet steel, nickel plated, graduated in degrees to read from either right or left with vernier to read in five minutes. The three straightedges are graduated in 16ths. Will lie flat on paper. Provided with locking nut.

For further information concerning these and other tools of interest to the draftsman see page 102 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

MORSE STANDARD TAPER SHANKS

Number of Taper	Diameter of Plug at Small End	Diameter at End of Socket	Standard Plug Depth	Whole Length of Shank	Depth of Hole	End of Socket to Keyway	Length of Keyway	Length of Tongue	Thickness of Tongue	Width of Keyway	Shank Depth	Taper per Foot
	D	A	P	B	H	K	L	T	t	W	S	
0	0.252	0.356	2	2 1/2	2 1/2	1 1/6	9/16	1/4	3/2	0.160	2 7/8	.625
1	0.369	0.475	2 1/8	2 1/8	2 1/8	2 1/6	3/4	1 1/4	0.213	2 3/8	.600	
2	0.572	0.700	2 9/16	3 1/16	2 9/16	2 1/2	7/8	1/4	0.260	2 7/8	.602	
3	0.778	0.938	3 1/8	3 3/4	3 1/4	3 1/6	1 1/16	7/16	5/16	0.322	3 9/16	.602
4	1.020	1.231	4 1/8	4 3/4	4 1/8	3 7/8	1 1/4	1/2	0.478	4 1/2	.623	
5	1.475	1.748	5 1/8	6	5 1/4	4 1/6	1 1/2	5/8	5/8	0.635	5 3/4	.630
6	2.116	2.494	7 1/4	8 5/16	7 3/8	7	1 3/4	7/8	3/4	0.760	8	.626
7	2.750	3.270	10	11 5/8	10 1/8	9 1/2	2 5/8	1 3/8	1 1/8	1.135	11 1/4	.625

Short Shanks

0	0.271	0.356	1 5/8	1 11/16	1 11/16	5/8	1/4	1/8	0.195	1 11/16	.625	
1	0.388	0.475	1 1/4	2 1/16	1 11/16	1 11/16	1/4	1/4	0.260	2	.600	
2	0.600	0.700	2	2 1/16	2 1/16	1 1/16	1/8	3/8	0.387	2 3/8	.602	
3	0.816	0.938	2 1/16	3 1/8	2 1/2	2 1/16	1 1/16	1/2	0.514	2 11/16	.602	
4	1.062	1.231	3 1/4	4 1/16	3 1/8	2 1/2	1 1/2	5/8	0.639	3 1/16	.623	
5	1.532	1.748	4 1/8	5 1/16	4 1/16	3 1/2	2	1	1.014	4 1/16	.630	
6	2.201	2.494	5 5/8	7 1/16	5 1/4	5 1/16	2 3/4	1 1/8	1 1/4	1.206	6 3/4	.626
7	2.857	3.270	7 11/16	9 9/16	8 1/16	7 3/8	3 5/8	1 1/2	1 5/8	1.642	9 11/16	.625

The dimensions given above for regular (full length) Morse taper shanks are those which have been accepted as standard and are used by most manufacturers. In a recent catalogue of the Morse Twist Drill & Machine Co., however, a table is given in which the length of the tang and, consequently, the whole length of the shank is slightly increased. The increase in length, however, is so slight that it does not prevent the shank from fitting into the ordinary standard taper socket.

BROWN & SHARPE TAPER SHANKS

Taper per ft. is $\frac{1}{2}$ in., except for No. 10 shank, where the taper is 0.5161 in. per ft.

Number of Taper	Diameter at End of Socket	Whole Length of Shank	Shank Depth	Diameter of Plug at Small End	Standard Plug Depth	Depth of Hole	End of Socket to Keyway	Length of Keyway	Width of Keyway	Length of Tongue	Thickness of Tongue
	A	B	C	D	E	F	G	H	K	L	M
1	0.239	1 $\frac{1}{16}$	1 $\frac{1}{16}$	0.200	$\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{1}{16}$	$\frac{3}{16}$	0.135	$\frac{3}{16}$	$\frac{1}{8}$
2	0.299	1 $\frac{1}{16}$	1 $\frac{1}{16}$	0.250	$\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{2}$	0.166	$\frac{3}{16}$	$\frac{1}{8}$
3	0.375	1 $\frac{1}{16}$	1 $\frac{1}{16}$	0.312	$\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{1}{2}$	$\frac{5}{16}$	0.197	$\frac{3}{16}$	$\frac{1}{8}$
3	0.385	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.312	$\frac{1}{4}$	2 $\frac{1}{16}$	$\frac{1}{2}$	$\frac{5}{16}$	0.197	$\frac{3}{16}$	$\frac{1}{8}$
3	0.395	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.312	2	2 $\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{5}{16}$	0.197	$\frac{3}{16}$	$\frac{1}{8}$
4	0.402	2 $\frac{1}{16}$	1 $\frac{1}{16}$	0.350	$\frac{1}{4}$	1 $\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{1}{2}$	0.228	$\frac{3}{16}$	$\frac{1}{8}$
4	0.420	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.350	$\frac{1}{4}$	1 $\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{1}{2}$	0.228	$\frac{3}{16}$	$\frac{1}{8}$
5	0.523	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.450	$\frac{3}{4}$	1 $\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{3}{4}$	0.260	$\frac{3}{16}$	$\frac{1}{4}$
5	0.533	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.450	2	2 $\frac{1}{16}$	1 $\frac{1}{16}$	$\frac{3}{4}$	0.260	$\frac{3}{16}$	$\frac{1}{4}$
5	0.539	2 $\frac{1}{16}$	2 $\frac{1}{16}$	0.450	$\frac{3}{4}$	2 $\frac{1}{16}$	2 $\frac{1}{16}$	$\frac{3}{4}$	0.260	$\frac{3}{16}$	$\frac{1}{4}$
6	0.599	2 $\frac{1}{16}$	2 $\frac{7}{16}$	0.500	$2\frac{1}{8}$	2 $\frac{1}{16}$	2 $\frac{1}{16}$	$\frac{7}{16}$	0.291	$\frac{7}{16}$	$\frac{3}{8}$
6	0.635	3 $\frac{1}{16}$	3 $\frac{3}{16}$	0.500	$3\frac{1}{4}$	3 $\frac{1}{16}$	3 $\frac{1}{16}$	$\frac{7}{16}$	0.291	$\frac{7}{16}$	$\frac{3}{8}$
7	0.704	3 $\frac{1}{16}$	3 $\frac{3}{16}$	0.600	$2\frac{1}{2}$	2 $\frac{7}{16}$	2 $\frac{1}{16}$	$\frac{11}{16}$	0.322	$\frac{11}{16}$	$\frac{5}{8}$
7	0.720	3 $\frac{1}{16}$	3 $\frac{3}{16}$	0.600	$2\frac{1}{8}$	3	2 $\frac{1}{16}$	$\frac{11}{16}$	0.322	$\frac{11}{16}$	$\frac{5}{8}$
7	0.725	3 $\frac{1}{16}$	3 $\frac{3}{16}$	0.600	3	3 $\frac{1}{16}$	2 $\frac{1}{16}$	$\frac{11}{16}$	0.322	$\frac{11}{16}$	$\frac{5}{8}$
7	0.767	$4\frac{5}{16}$	$4\frac{1}{16}$	0.600	4	$4\frac{1}{16}$	$3\frac{1}{16}$	$3\frac{1}{16}$	0.322	$\frac{11}{16}$	$\frac{5}{8}$
8	0.898	$4\frac{1}{16}$	$4\frac{1}{16}$	0.750	$3\frac{1}{16}$	$3\frac{1}{16}$	$3\frac{1}{16}$	1	0.353	$\frac{1}{2}$	$\frac{3}{8}$
8	0.917	$4\frac{1}{16}$	$4\frac{1}{16}$	0.750	4	$4\frac{1}{16}$	$3\frac{1}{16}$	1	0.353	$\frac{1}{2}$	$\frac{3}{8}$
9	1.067	$4\frac{3}{4}$	$4\frac{5}{16}$	0.900	4	$4\frac{1}{16}$	$3\frac{1}{16}$	$1\frac{1}{16}$	0.385	$\frac{1}{2}$	$\frac{3}{8}$
9	1.077	5	$4\frac{7}{16}$	0.900	$4\frac{1}{4}$	$4\frac{1}{8}$	$4\frac{1}{8}$	$1\frac{1}{8}$	0.385	$\frac{1}{2}$	$\frac{3}{8}$
10	1.260	5 $\frac{1}{16}$	6 $\frac{1}{16}$	1.0446	5	$5\frac{1}{16}$	$4\frac{1}{16}$	$1\frac{1}{16}$	0.447	$\frac{1}{2}$	$\frac{1}{8}$
10	1.289	6 $\frac{1}{16}$	6 $\frac{1}{16}$	1.0446	$5\frac{1}{16}$	$5\frac{1}{16}$	$5\frac{1}{16}$	$1\frac{1}{16}$	0.447	$\frac{1}{2}$	$\frac{1}{8}$
10	1.312	7 $\frac{1}{16}$	6 $\frac{1}{16}$	1.0446	$6\frac{1}{16}$	$6\frac{1}{16}$	$6\frac{1}{16}$	$1\frac{1}{16}$	0.447	$\frac{1}{2}$	$\frac{1}{8}$
11	1.498	6 $\frac{1}{16}$	6 $\frac{1}{16}$	1.250	$5\frac{1}{16}$	$6\frac{1}{16}$	$5\frac{1}{16}$	$1\frac{1}{16}$	0.447	$\frac{1}{2}$	$\frac{1}{8}$
11	1.531	7 $\frac{1}{16}$	7 $\frac{1}{16}$	1.250	$6\frac{1}{8}$	$6\frac{1}{8}$	$6\frac{1}{8}$	$1\frac{1}{16}$	0.447	$\frac{1}{2}$	$\frac{1}{8}$
12	1.797	$8\frac{1}{16}$	$7\frac{1}{16}$	1.500	$7\frac{1}{8}$	$7\frac{1}{4}$	$6\frac{1}{16}$	$1\frac{1}{2}$	0.510	$\frac{3}{4}$	$\frac{1}{2}$
13	2.073	$8\frac{1}{16}$	$8\frac{1}{16}$	1.750	$7\frac{3}{4}$	$7\frac{1}{2}$	$7\frac{1}{16}$	$1\frac{1}{2}$	0.510	$\frac{3}{4}$	$\frac{1}{2}$
14	2.344	$9\frac{1}{16}$	$9\frac{1}{16}$	2.000	$8\frac{1}{4}$	$8\frac{1}{2}$	$8\frac{1}{16}$	$1\frac{1}{16}$	0.572	$\frac{3}{4}$	$\frac{1}{2}$
15	2.615	$9\frac{3}{16}$	$9\frac{3}{16}$	2.250	$8\frac{1}{4}$	$8\frac{1}{2}$	$8\frac{1}{16}$	$1\frac{1}{16}$	0.572	$\frac{3}{4}$	$\frac{1}{2}$
16	2.885	$10\frac{3}{16}$	$10\frac{1}{4}$	2.500	$9\frac{1}{4}$	$9\frac{1}{8}$	9	$1\frac{1}{8}$	0.635	$\frac{3}{4}$	$\frac{5}{8}$
17	3.156	2.750	$9\frac{3}{4}$	$9\frac{7}{8}$
18	3.427	3.000	$10\frac{1}{4}$	$10\frac{3}{8}$

JARNO TAPERS

Used on Norton Grinding Machines, Pratt & Whitney, etc.

Taper per foot = 0.6 inch. Taper per inch = 0.05 inch, or 1 in 20

Number of Taper	Diam. of Large End	Diam. of Small End	Length of Taper	Number of Taper	Diam. of Large End	Diam. of Small End	Length of Taper
	A	B	C		A	B	C
1	.125	.10	.5	11	1.375	1.10	5.5
2	.250	.20	1.0	12	1.500	1.20	6.0
3	.375	.30	1.5	13	1.625	1.30	6.5
4	.500	.40	2.0	14	1.750	1.40	7.0
5	.625	.50	2.5	15	1.875	1.50	7.5
6	.750	.60	3.0	16	2.000	1.60	8.0
7	.875	.70	3.5	17	2.125	1.70	8.5
8	1.000	.80	4.0	18	2.250	1.80	9.0
9	1.125	.90	4.5	19	2.375	1.90	9.5
10	1.250	1.00	5.0	20	2.500	2.00	10.0

REED TAPERS

The taper is the same per foot as that of the Jarno, but the diameters are different and in most cases the lengths are somewhat less.

THE SELLERS TAPER

The system of tapers used by William Sellers & Co., Inc., of Philadelphia, Pa., in lathes, drilling, and boring machines, is given in the following table. The taper is $\frac{1}{4}$ inch per foot and each size of taper is splined as shown for a key the dimensions of which are included in the table. The pitch of the spiral for the drills used by the company is also included.

SELLERS TAPERS

Diameter of Drill	Diameter of Shank at Gage Point B	Length of Shank from Point B	Length of Drill Body from Point B	Total Length of Drill	Length of Shank Over All	Diameter at Reduced Portion of Shank	Length of Reduced Portion of Shank	Approximate Pitch of Spiral Grooves	Width of Spline in Shank	Depth of Spline in Shank	Width of Key	Height of Key
A	B	C	D	E	F	G	H	I	J	K	L	M
$\frac{1}{4}$	$\frac{1}{2}$	$2\frac{1}{4}$	$4\frac{1}{4}$	$6\frac{1}{2}$	$2\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{16}$	3.70	$\frac{3}{2}$	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{7}{16}$
$\frac{5}{16}$	$\frac{1}{2}$	$2\frac{1}{4}$	$4\frac{1}{4}$	$6\frac{1}{2}$	$2\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{16}$	3.70	$\frac{3}{2}$	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{7}{16}$
$\frac{3}{8}$	$\frac{1}{2}$	$2\frac{1}{4}$	$4\frac{1}{4}$	7	$2\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{16}$	3.70	$\frac{3}{2}$	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{7}{16}$
$\frac{7}{16}$	$\frac{1}{2}$	$2\frac{1}{4}$	$5\frac{1}{4}$	$7\frac{1}{2}$	$2\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{16}$	3.70	$\frac{3}{2}$	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{7}{16}$
$\frac{1}{2}$	$\frac{1}{2}$	$2\frac{1}{4}$	$5\frac{1}{4}$	8	$2\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{16}$	5.32	$\frac{3}{2}$	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{7}{16}$
$\frac{9}{16}$	$\frac{1}{2}$	$2\frac{1}{4}$	$6\frac{1}{4}$	8	$2\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	5.32	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{5}{8}$	$\frac{1}{2}$	$2\frac{1}{4}$	$6\frac{1}{4}$	$9\frac{1}{2}$	$2\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	5.32	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{11}{16}$	$\frac{1}{2}$	$2\frac{1}{4}$	$6\frac{1}{4}$	$9\frac{1}{2}$	$2\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	6.24	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{3}{4}$	$\frac{1}{2}$	$2\frac{1}{4}$	$7\frac{1}{4}$	10	$2\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	6.24	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{13}{16}$	$\frac{1}{2}$	$2\frac{1}{4}$	$7\frac{1}{4}$	10	$2\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	6.24	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{7}{8}$	$\frac{1}{2}$	$3\frac{1}{2}$	8	$11\frac{1}{2}$	$3\frac{1}{16}$	$\frac{5}{8}$	$\frac{1}{16}$	7.28	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$\frac{15}{16}$	$\frac{1}{2}$	$3\frac{1}{2}$	8	$11\frac{1}{2}$	$3\frac{1}{16}$	$\frac{5}{8}$	$\frac{1}{16}$	7.28	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
1	$\frac{1}{2}$	$3\frac{1}{2}$	$8\frac{1}{2}$	12	$3\frac{1}{16}$	$\frac{5}{8}$	$\frac{1}{16}$	9.50	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$1\frac{1}{16}$	$\frac{1}{2}$	$3\frac{1}{2}$	$8\frac{1}{2}$	12	$3\frac{1}{16}$	$\frac{5}{8}$	$\frac{1}{16}$	9.50	$\frac{1}{8}$	$\frac{3}{2}$	$\frac{7}{8}$	$\frac{11}{16}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$4\frac{1}{2}$	9	$13\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$4\frac{1}{2}$	9	$13\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{4}$	$1\frac{1}{8}$	$4\frac{1}{2}$	9	$13\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$4\frac{1}{2}$	9	$13\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$4\frac{1}{2}$	$9\frac{1}{2}$	14	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$4\frac{1}{2}$	$9\frac{1}{2}$	14	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{2}$	$1\frac{1}{8}$	$4\frac{1}{2}$	10	$14\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$4\frac{1}{2}$	10	$14\frac{1}{2}$	$4\frac{3}{4}$	$\frac{25}{32}$	$\frac{3}{8}$	9.50	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{11}{64}$	$\frac{11}{16}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$6\frac{1}{2}$	10	$16\frac{1}{2}$	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$6\frac{1}{2}$	10	$16\frac{1}{2}$	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$
$1\frac{1}{4}$	$1\frac{1}{8}$	$6\frac{1}{2}$	$10\frac{1}{2}$	17	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$
$1\frac{1}{16}$	$1\frac{1}{8}$	$6\frac{1}{2}$	11	$17\frac{1}{2}$	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$
$1\frac{1}{8}$	$1\frac{1}{8}$	$6\frac{1}{2}$	11	$17\frac{1}{2}$	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$
2	$1\frac{1}{8}$	$6\frac{1}{2}$	$11\frac{1}{2}$	18	$6\frac{3}{4}$	$1\frac{1}{8}$	$\frac{7}{16}$	13.72	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{15}{64}$	$\frac{21}{16}$

TAPER REAMERS AND PINS

(Pratt & Whitney Co.)

Taper = $\frac{1}{4}$ inch per foot or .0208 inch per inch.

Size No.	Diam. Sm. End Reamer	Diam. Lge. End Reamer	Length Flute	Length Reamer	Drill for Reamer	Longest Limit Length P'n	Diam. Lge. End Pin	Approx. Fractional Size Lge. End Pin
	Inch	Inch	Inch	Inch		Inch	Inch	Inch
0	.135	.162	1 $\frac{1}{8}$	2	28	1	.156	$\frac{1}{4}$
1	.146	.179	1 $\frac{1}{8}$	2 $\frac{3}{8}$	25	1 $\frac{1}{8}$.156	$\frac{1}{4}$
2	.162	.200	1 $\frac{1}{8}$	2 $\frac{1}{4}$	19	1 $\frac{1}{2}$.193	$\frac{3}{8}$
3	.183	.226	2 $\frac{1}{8}$	3	12	1 $\frac{1}{4}$.219	$\frac{5}{16}$
4	.208	.257	2 $\frac{1}{8}$	3 $\frac{1}{8}$	3	2	.250	$\frac{3}{8}$
5	.240	.300	2 $\frac{1}{8}$	4 $\frac{1}{8}$	$\frac{1}{8}$	2 $\frac{1}{4}$.289	$\frac{1}{2}$
6	.279	.354	3 $\frac{1}{8}$	5	$\frac{1}{8}$	3 $\frac{1}{4}$.341	$\frac{5}{16}$
7	.331	.423	4 $\frac{1}{8}$	6 $\frac{1}{8}$	$\frac{1}{8}$	3 $\frac{1}{4}$.409	$\frac{3}{8}$
8	.398	.507	5 $\frac{1}{4}$	7 $\frac{1}{8}$	$\frac{1}{8}$	4 $\frac{1}{2}$.492	$\frac{1}{2}$
9	.482	.609	6 $\frac{1}{8}$	8 $\frac{1}{8}$	$\frac{1}{8}$	5 $\frac{1}{4}$.591	$\frac{5}{16}$
10	.581	.727	7	9 $\frac{1}{2}$	$\frac{1}{8}$	6	.706	$\frac{3}{8}$
11	.706	.878	8 $\frac{1}{4}$	11 $\frac{1}{4}$	$\frac{1}{8}$	7 $\frac{1}{4}$.857	$\frac{1}{2}$
12	.842	1.050	10	13 $\frac{1}{8}$	$\frac{1}{8}$	8 $\frac{1}{4}$	1.013	$1 \frac{1}{16}$
13	1.009	1.259	12	16	1 $\frac{1}{8}$	10 $\frac{1}{4}$	1.233	$1 \frac{1}{16}$

These reamer sizes are so proportioned that each overlaps the size smaller about $\frac{1}{2}$ inch.

RULES FOR FIGURING TAPERS*

Given	To Find	Rule
The taper per foot.	The taper per inch.	Divide the taper per foot by 12.
The taper per inch.	The taper per foot.	Multiply the taper per inch by 12.
End diameters and length of taper in inches.	The taper per foot.	Subtract small diameter from large; divide by length of taper, and multiply quotient by 12.
Large diameter and length of taper in inches, and taper per foot	Diameter at small end in inches.	Divide taper per foot by 12; multiply by length of taper, and subtract result from large diameter.
Small diameter and length of taper in inches, and taper per foot.	Diameter at large end in inches.	Divide taper per foot by 12; multiply by length of taper, and add result to small diameter.
The taper per foot and two diameters in inches.	Distance between two given diameters in inches.	Subtract small diameter from large; divide remainder by taper per foot, and multiply quotient by 12.
The taper per foot.	Amount of taper in a certain length given in inches.	Divide taper per foot by 12; multiply by given length of tapered part.

AMOUNT OF TAPER IN A GIVEN LENGTH

When the Taper per foot is known

Length of Taper	Taper per Foot										
	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	0.600	$\frac{5}{8}$	$\frac{3}{4}$	1	$1\frac{1}{4}$	
$\frac{1}{16}$.0002	.0002	.0003	.0007	.0010	.0013	.0016	.0016	.0020	.0026	.0033
$\frac{1}{8}$.0003	.0005	.0007	.0013	.0020	.0026	.0031	.0033	.0039	.0052	.0065
$\frac{1}{4}$.0007	.0010	.0013	.0026	.0039	.0052	.0062	.0065	.0078	.0104	.0130
$\frac{3}{8}$.0010	.0015	.0020	.0039	.0059	.0078	.0094	.0098	.0117	.0156	.0195
$\frac{1}{2}$.0013	.0020	.0026	.0052	.0078	.0104	.0125	.0130	.0156	.0208	.0260
$\frac{5}{16}$.0016	.0024	.0033	.0065	.0098	.0130	.0156	.0163	.0195	.0260	.0326
$\frac{3}{8}$.0020	.0029	.0039	.0078	.0117	.0156	.0187	.0195	.0234	.0312	.0391
$\frac{7}{16}$.0023	.0034	.0046	.0091	.0137	.0182	.0219	.0228	.0273	.0365	.0456
$\frac{1}{4}$.0026	.0039	.0052	.0104	.0156	.0208	.0250	.0260	.0312	.0417	.0521
$\frac{9}{16}$.0029	.0044	.0059	.0117	.0176	.0234	.0281	.0293	.0352	.0469	.0586
$\frac{5}{8}$.0033	.0049	.0065	.0130	.0195	.0260	.0312	.0326	.0391	.0521	.0651
$\frac{11}{16}$.0036	.0054	.0072	.0143	.0215	.0286	.0344	.0358	.0430	.0573	.0716
$\frac{3}{4}$.0039	.0059	.0078	.0156	.0234	.0312	.0375	.0391	.0469	.0625	.0781
$\frac{13}{16}$.0042	.0063	.0085	.0169	.0254	.0339	.0406	.0423	.0508	.0677	.0846
$\frac{7}{8}$.0046	.0068	.0091	.0182	.0273	.0365	.0437	.0456	.0547	.0729	.0911
$\frac{15}{16}$.0049	.0073	.0098	.0195	.0293	.0391	.0469	.0488	.0586	.0781	.0977
1	.0052	.0078	.0104	.0208	.0312	.0417	.0500	.0521	.0625	.0833	.1042
2	.0104	.0156	.0203	.0417	.0625	.0833	.1000	.1042	.1250	.1667	.2083
3	.0156	.0234	.0312	.0625	.0937	.1250	.1500	.1562	.1875	.2500	.3125
4	.0208	.0312	.0417	.0833	.1250	.1667	.2000	.2083	.2500	.3333	.4167
5	.0260	.0391	.0521	.1042	.1562	.2083	.2500	.2604	.3125	.4167	.5208
6	.0312	.0469	.0625	.1250	.1875	.2500	.3000	.3125	.3750	.5000	.6250
7	.0365	.0547	.0729	.1458	.2187	.2917	.3500	.3646	.4375	.5833	.7292
8	.0417	.0625	.0833	.1667	.2500	.3333	.4000	.4167	.5000	.6667	.8333
9	.0469	.0703	.0937	.1875	.2812	.3750	.4500	.4687	.5625	.7500	.9375
10	.0521	.0781	.1042	.2083	.3125	.4167	.5000	.5208	.6250	.8333	.10417
11	.0573	.0859	.1146	.2292	.3437	.4583	.5500	.5729	.6875	.9167	.11458
12	.0625	.0937	.1250	.2500	.3750	.5000	.6000	.6250	.7500	1.0000	1.2500

TAPERS AND ANGLES

Taper per Foot	Included Angle			Angle with Center Line			Taper per Inch	Taper per Inch from Center Line
	Deg.	Min.	Sec.	Deg.	Min.	Sec.		
$\frac{1}{8}$	0	35	48	0	17	54	.010416	.005203
$\frac{1}{16}$	0	53	44	0	26	52	.015625	.007812
$\frac{1}{32}$	1	11	36	0	35	48	.020833	.010416
$\frac{1}{64}$	1	29	30	0	44	45	.026042	.013021
$\frac{3}{64}$	1	47	24	0	53	42	.031250	.015625
$\frac{1}{128}$	2	5	18	1	2	39	.036458	.018229
$\frac{1}{256}$	2	23	10	1	11	35	.041667	.020833
$\frac{1}{512}$	2	41	4	1	20	32	.046875	.023438
$\frac{3}{512}$	2	59	42	1	29	51	.052084	.026042
$\frac{1}{1024}$	3	16	54	1	38	27	.057292	.028646
$\frac{3}{1024}$	3	34	44	1	47	22	.062500	.031250
$\frac{1}{2048}$	3	52	38	1	56	19	.067708	.033854
$\frac{3}{2048}$	4	10	32	2	5	16	.072917	.036456
$\frac{1}{4096}$	4	28	24	2	14	12	.078125	.039063
1	4	46	18	2	23	9	.083330	.041667
$1\frac{1}{4}$	5	57	48	2	58	54	.104666	.052084
$1\frac{3}{4}$	7	9	10	3	34	35	.125000	.062500
$1\frac{7}{8}$	8	20	26	4	10	13	.145833	.072917
2	9	31	36	4	45	48	.166666	.083332
$2\frac{3}{4}$	11	53	36	5	56	48	.208333	.104166
3	14	15	0	7	7	30	.250000	.125000
$3\frac{1}{4}$	16	35	40	8	17	50	.291666	.145833
4	18	55	28	9	27	44	.333333	.166666
$4\frac{1}{2}$	21	14	2	10	37	1	.375000	.187500
5	23	32	12	11	46	6	.416666	.208333
6	28	4	2	14	2	1	.500000	.250000

TAPERS PER FOOT AND CORRESPONDING ANGLES

Taper per Foot	Included Angle	Angle with Center Line	Taper per Foot	Included Angle	Angle with Center Line
	Deg. Min. Sec.	Deg. Min. Sec.		Deg. Min. Sec.	Deg. Min. Sec.
1	0 4 28	0 2 14	1 $\frac{1}{8}$	8 56 2	4 28 1
1 $\frac{1}{8}$	0 8 58	0 4 29	1 $\frac{1}{4}$	9 13 50	4 36 55
1 $\frac{1}{4}$	0 17 54	0 8 57	2	9 31 36	4 45 48
1 $\frac{1}{2}$	0 26 52	0 13 26	2 $\frac{1}{8}$	10 7 10	5 3 35
1 $\frac{1}{4}$	0 35 48	0 17 54	2 $\frac{1}{4}$	10 42 42	5 21 21
1 $\frac{1}{8}$	0 44 44	0 22 22	2 $\frac{3}{8}$	11 18 10	5 39 5
1 $\frac{1}{8}$	0 53 44	0 26 52	2 $\frac{1}{2}$	11 53 36	5 56 48
1 $\frac{1}{4}$	1 2 34	0 31 17	2 $\frac{5}{8}$	12 29 2	6 14 31
1 $\frac{1}{4}$	1 11 36	0 35 48	2 $\frac{3}{4}$	13 4 24	6 32 12
1 $\frac{1}{8}$	1 20 30	0 40 15	2 $\frac{1}{8}$	13 39 42	6 49 51
1 $\frac{1}{8}$	1 29 30	0 44 45	3	14 15 0	7 7 30
1 $\frac{1}{8}$	1 38 22	0 49 11	3 $\frac{1}{8}$	14 50 14	7 25 7
1 $\frac{1}{4}$	1 47 24	0 53 42	3 $\frac{1}{4}$	15 25 24	7 42 42
1 $\frac{1}{4}$	1 56 24	0 58 12	3 $\frac{3}{8}$	16 0 34	8 0 17
1 $\frac{1}{8}$	2 5 18	1 2 39	3 $\frac{1}{2}$	16 35 40	8 17 50
1 $\frac{1}{8}$	2 14 16	1 7 8	3 $\frac{5}{8}$	17 10 40	8 35 20
1 $\frac{1}{8}$	2 23 10	1 11 35	3 $\frac{3}{4}$	17 45 40	8 52 50
1 $\frac{1}{4}$	2 32 4	1 16 2	3 $\frac{7}{8}$	18 20 34	9 10 17
1 $\frac{1}{4}$	2 41 4	1 20 32	4	18 55 28	9 27 44
1 $\frac{1}{8}$	2 50 2	1 25 1	4 $\frac{1}{8}$	19 30 18	9 45 9
1 $\frac{1}{8}$	2 59 42	1 29 51	4 $\frac{1}{4}$	20 5 2	10 2 31
1 $\frac{1}{8}$	3 7 56	1 33 58	4 $\frac{5}{8}$	20 39 44	10 19 52
1 $\frac{1}{4}$	3 16 54	1 38 27	4 $\frac{1}{2}$	21 14 2	10 37 1
1 $\frac{1}{4}$	3 25 50	1 42 55	4 $\frac{5}{8}$	21 48 54	10 54 27
1 $\frac{1}{8}$	3 34 44	1 47 22	4 $\frac{3}{4}$	22 23 22	11 11 41
1 $\frac{1}{8}$	3 43 44	1 51 52	4 $\frac{7}{8}$	22 57 48	11 28 54
1 $\frac{1}{8}$	3 52 38	1 56 19	5	23 32 12	11 46 6
1 $\frac{1}{4}$	4 1 36	2 0 48	5 $\frac{1}{8}$	24 6 28	12 3 14
1 $\frac{1}{4}$	4 10 32	2 5 16	5 $\frac{3}{4}$	24 40 42	12 20 21
1 $\frac{1}{8}$	4 19 34	2 9 47	5 $\frac{7}{8}$	25 14 48	12 37 24
1 $\frac{1}{8}$	4 28 24	2 14 12	5 $\frac{1}{2}$	25 48 48	12 54 24
1 $\frac{1}{8}$	4 37 20	2 18 40	5 $\frac{5}{8}$	26 22 52	13 11 26
1 $\frac{1}{4}$	4 46 18	2 23 9	5 $\frac{3}{4}$	26 56 46	13 28 23
1 $\frac{1}{4}$	5 4 12	2 32 6	5 $\frac{7}{8}$	27 30 34	13 45 17
1 $\frac{1}{8}$	5 21 44	2 40 52	6	28 4 2	14 2 1
1 $\frac{1}{8}$	5 39 54	2 49 57	6 $\frac{1}{8}$	28 37 58	14 18 59
1 $\frac{1}{4}$	5 57 48	2 58 54	6 $\frac{1}{4}$	29 11 34	14 35 47
1 $\frac{1}{4}$	6 15 38	3 7 49	6 $\frac{3}{8}$	29 45 18	14 52 39
1 $\frac{1}{8}$	6 33 26	3 16 43	6 $\frac{1}{2}$	30 18 26	15 9 13
1 $\frac{1}{8}$	6 51 20	3 25 40	6 $\frac{5}{8}$	30 51 48	15 25 54
1 $\frac{1}{4}$	7 9 10	3 34 35	6 $\frac{3}{4}$	31 25 2	15 42 31
1 $\frac{1}{4}$	7 26 58	3 43 29	6 $\frac{7}{8}$	31 58 10	15 59 5
1 $\frac{1}{8}$	7 44 48	3 52 24	7	32 31 12	16 15 36
1 $\frac{1}{8}$	8 2 38	4 1 19	7 $\frac{1}{8}$	33 4 8	16 32 4
1 $\frac{1}{4}$	8 20 26	4 10 13	7 $\frac{1}{4}$	33 36 40	16 48 20
1 $\frac{1}{4}$	8 38 16	4 19 8	7 $\frac{3}{8}$	34 9 50	17 4 55

STARRETT TOOLS FOR USE IN CONNECTION WITH TAPERS

Taper Gages

Of wide scope and general utility. Made from spring tempered stock .012 inch thick. From $2\frac{1}{2}$ to $2\frac{3}{4}$ inches long and reading from $\frac{1}{16}$ to 1 inch in thousandths of an inch. Eight and ten leaves. Gages are also made to read in Metric as well as English measure.

Two Inch Micrometer Calipers

Measure by thousandths from an inch to two inches with lock nut, ratchet stop and one inch test gage. Is also made with lock nut at end of frame. Decimal equivalents of thirty seconds, sixteenths and eighths of an inch are stamped on the frame. This micrometer may also be obtained for measurements in ten thousandths from one inch to two inches.

An attachment may be had by means of which a two inch Micrometer may be converted into a one inch tool.

Taper Gage

The thin leaves of this gage taper by $\frac{1}{16}$ inch to every $\frac{1}{4}$ inch of their length. Graduated in $\frac{1}{4}$ and figured to read in fractions of an inch from $\frac{1}{16}$ inch to $1\frac{1}{16}$ inch.

For further information concerning these and other tools which may be used to advantage in connection with Tapers, see pages 18 and 34 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

DIMENSIONS OF MACHINE SCREW TAPS

These are for the American Screw Company's Standard screws that have been in use for many years.

Number of Tap	Diameter of Tap	Number of Threads per Inch	Total Length	Length of Thread	Length of Neck	Length of Shank	Diameter of Shank	Length of Square	Size of Square	No. of Flutes
	A		B	C	D	E	F	G	H	
1	.071	64	1 3/4	9/16		1 3/16	.125	3/16	3/32	3
1 1/2	.081	56	1 3/4	19/32	1 3/16	1 3/16	.125	3/16	3/32	3
2	.089	56	1 3/4	19/32	1 3/16	1 3/16	.125	3/16	3/32	3
3	.101	48	1 7/8	5/8	1 1/4	1 1/4	.125	3/16	3/32	3
4	.113	36	2	1 1/16	1 5/16	.125	3/16	3/32	3	
5	.125	36	2 1/8	3/4	1 3/8	.125	7/32	3/32	3	
6	.141	32	2 1/8	3/4	1 3/8	.141	7/32	7/64	3	
7	.154	32	2 1/8	3/4	1 3/8	.154	7/32	7/64	3	
8	.166	32	2 1/4	1 3/16	1/8	1 5/16	.166	7/32	1/8	4
9	.180	30	2 1/4	1 1/8	1/8	1 1/4	.180	1/4	1/8	4
10	.194	24	2 1/4	7/8	1/8	1 1/4	.194	1/4	5/32	4
11	.206	24	2 3/8	7/8	1/8	1 1/4	.206	1/4	5/32	4
12	.221	24	2 3/8	1 5/16	1/8	1 5/16	.221	9/32	5/32	4
13	.234	22	2 1/2	1	3/16	1 5/16	.234	9/32	3/16	4
14	.246	20	2 5/8	1 1/16	1 3/16	1 3/8	.246	9/32	1/16	4
15	.261	20	2 3/4	1 1/8	3/16	1 7/16	.261	5/16	3/16	4
16	.272	18	2 3/4	1 1/8	3/16	1 7/16	.272	5/16	7/32	4
18	.298	18	2 3/4	1 1/8	3/16	1 1/16	.298	5/16	7/32	4
20	.325	16	3	1 1/4	1/4	1 1/2	.325	11/32	1/4	4
22	.350	16	3	1 1/4	1/4	1 1/2	.350	11/32	1/4	4
24	.378	16	3 1/4	1 1/4	5/16	1 11/16	.378	3/8	9/32	4
26	.404	16	3 1/4	1 1/4	5/16	1 11/16	.404	3/8	5/16	4
28	.430	14	3 1/2	1 3/8	5/16	1 1/16	.430	5/32	5/16	4
30	.456	14	3 1/2	1 3/8	5/16	1 1/16	.456	7/16	11/32	4

DIMENSIONS OF MACHINE SCREW TAPS

This table covers the sizes adopted by the American Society of Mechanical Engineers in June, 1907, and now known as the A.S.M.E. Standard for machine screw sizes.

No. of Tap	Dia. of Tap	Threads per Inch	Total Length	Length of Thread	Length of Neck	Length of Shank	Diameter of Shank	Length of Square	Size of Square	No. of Flutes
	A		B	C	D	E	F	G	H	
0	.060	80	1 $\frac{3}{4}$	$\frac{9}{16}$		1 $\frac{3}{16}$.125	$\frac{3}{16}$	$\frac{3}{16}$	3
1	.073	72	1 $\frac{3}{4}$	$\frac{15}{16}$		1 $\frac{1}{16}$.125	$\frac{3}{16}$	$\frac{3}{16}$	3
2	.086	64	1 $\frac{3}{4}$	$\frac{15}{16}$		1 $\frac{1}{16}$.125	$\frac{3}{16}$	$\frac{3}{16}$	3
3	.099	56	1 $\frac{7}{8}$	$\frac{5}{8}$		1 $\frac{1}{4}$.125	$\frac{3}{16}$	$\frac{3}{16}$	3
4	.112	48	2	$\frac{11}{16}$		1 $\frac{5}{16}$.125	$\frac{3}{16}$	$\frac{3}{16}$	3
5	.125	44	2 $\frac{1}{8}$	$\frac{3}{4}$		1 $\frac{3}{8}$.125	$\frac{7}{32}$	$\frac{3}{16}$	3
6	.138	40	2 $\frac{1}{8}$	$\frac{3}{4}$		1 $\frac{3}{8}$.138	$\frac{7}{32}$	$\frac{7}{32}$	3
7	.151	36	2 $\frac{1}{8}$	$\frac{3}{4}$		1 $\frac{3}{8}$.151	$\frac{7}{32}$	$\frac{7}{32}$	3
8	.164	36	2 $\frac{1}{4}$	$\frac{13}{16}$	$\frac{1}{8}$	1 $\frac{5}{16}$.164	$\frac{7}{32}$	$\frac{1}{8}$	4
9	.177	32	2 $\frac{1}{4}$	$\frac{7}{8}$	$\frac{1}{8}$	1 $\frac{1}{4}$.177	$\frac{1}{4}$	$\frac{1}{8}$	4
10	.190	30	2 $\frac{1}{4}$	$\frac{7}{8}$	$\frac{1}{8}$	1 $\frac{1}{4}$.190	$\frac{1}{4}$	$\frac{5}{32}$	4
12	.216	28	2 $\frac{3}{8}$	$\frac{7}{8}$	$\frac{1}{8}$	1 $\frac{1}{4}$.216	$\frac{1}{4}$	$\frac{5}{32}$	4
14	.242	24	2 $\frac{3}{8}$	$\frac{15}{16}$	$\frac{1}{8}$	1 $\frac{5}{16}$.242	$\frac{9}{32}$	$\frac{5}{32}$	4
16	.268	22	2 $\frac{1}{2}$	1	$\frac{3}{16}$	1 $\frac{5}{16}$.268	$\frac{9}{32}$	$\frac{1}{16}$	4
18	.294	20	2 $\frac{5}{8}$	1 $\frac{1}{16}$	$\frac{3}{16}$	1 $\frac{3}{8}$.294	$\frac{9}{32}$	$\frac{1}{16}$	4
20	.320	20	2 $\frac{3}{4}$	1 $\frac{1}{8}$	$\frac{3}{16}$	1 $\frac{7}{16}$.320	$\frac{5}{16}$	$\frac{3}{16}$	4
22	.346	18	2 $\frac{3}{4}$	1 $\frac{1}{8}$	$\frac{3}{16}$	1 $\frac{7}{16}$.346	$\frac{5}{16}$	$\frac{3}{16}$	4
24	.372	16	3	1 $\frac{1}{4}$	$\frac{1}{4}$	1 $\frac{1}{2}$.372	$\frac{11}{32}$	$\frac{1}{4}$	4
26	.398	16	3 $\frac{1}{4}$	1 $\frac{1}{4}$	$\frac{5}{16}$	1 $\frac{11}{16}$.398	$\frac{3}{8}$	$\frac{3}{16}$	4
28	.424	14	3 $\frac{1}{2}$	1 $\frac{3}{8}$	$\frac{15}{16}$	1 $\frac{13}{16}$.424	$\frac{11}{32}$	$\frac{1}{16}$	4
30	.450	14	3 $\frac{1}{2}$	1 $\frac{3}{8}$	$\frac{5}{16}$	1 $\frac{13}{16}$.450	$\frac{7}{16}$	$\frac{3}{16}$	4

DIMENSIONS OF HAND TAPS

Diameter of Tap A	Number of Threads per Inch		Total Length B	Length of Thread C	Length of Shank D	Diameter of Shank E		Length of Square F	Size of Square G	No. of Flutes
A	U.S. Std	V. Std	B	C	D	U.S. Std	V. Std	F	G	
$\frac{1}{8}$	32	24	$2\frac{1}{4}$	$1\frac{1}{8}$	$1\frac{1}{16}$	0.187	0.187	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{1}{4}$	20	20	$2\frac{3}{4}$	$1\frac{1}{8}$	$1\frac{1}{16}$	0.250	0.250	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{5}{16}$	18	18	3	$1\frac{1}{8}$	$1\frac{1}{16}$	0.225	0.200	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{3}{8}$	16	16	$3\frac{1}{4}$	$1\frac{1}{8}$	$2\frac{1}{16}$	0.280	0.250	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{7}{16}$	14	14	$3\frac{1}{2}$	$1\frac{1}{2}$	2	0.330	0.300	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{1}{2}$	13	12	$3\frac{3}{4}$	$1\frac{1}{8}$	$2\frac{1}{16}$	0.385	0.340	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{5}{8}$	12	12	4	$1\frac{1}{8}$	$2\frac{1}{16}$	0.440	0.400	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{3}{4}$	11	11	$4\frac{1}{4}$	$1\frac{1}{8}$	$2\frac{1}{16}$	0.490	0.455	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{7}{8}$	11	11	$4\frac{1}{2}$	$1\frac{1}{4}$	$2\frac{1}{16}$	0.555	0.515	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{9}{16}$	10	10	$4\frac{5}{8}$	2	$2\frac{1}{8}$	0.605	0.560	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{11}{16}$	10	10	$4\frac{7}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	0.670	0.625	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{1}{4}$	9	9	$5\frac{1}{8}$	$2\frac{1}{8}$	$2\frac{1}{8}$	0.715	0.675	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{13}{16}$	9	9	$5\frac{1}{4}$	$2\frac{1}{8}$	$2\frac{1}{8}$	0.780	0.730	$\frac{1}{8}$	$\frac{1}{8}$	4
$\frac{1}{2}$	8	8	$5\frac{1}{8}$	$2\frac{1}{8}$	$3\frac{1}{8}$	0.825	0.770	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{16}$	7	8	$5\frac{3}{8}$	$3\frac{1}{8}$	$3\frac{1}{8}$	0.860	0.830	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{8}$	7	7	$5\frac{7}{8}$	$2\frac{1}{8}$	$3\frac{1}{8}$	0.925	0.860	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{4}$	7	7	$5\frac{1}{8}$	$2\frac{1}{8}$	$3\frac{1}{8}$	0.980	0.920	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{2}$	7	7	$6\frac{1}{4}$	$2\frac{1}{8}$	$3\frac{1}{8}$	1.050	0.985	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{4}$	6	7	$6\frac{1}{4}$	$2\frac{1}{8}$	$3\frac{1}{8}$	1.080	1.050	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{8}$	6	6	$6\frac{1}{8}$	$2\frac{1}{8}$	$3\frac{1}{8}$	1.145	1.070	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{16}$	6	6	$6\frac{5}{8}$	$2\frac{1}{8}$	$3\frac{1}{8}$	1.20	1.130	1	$\frac{1}{8}$	4
$1\frac{1}{8}$	6	6	7	3	4	1.270	1.200	1	$\frac{1}{8}$	4
$1\frac{1}{16}$	5	5	$7\frac{1}{4}$	$3\frac{1}{8}$	$4\frac{1}{8}$	1.375	1.265	$\frac{1}{8}$	1	4
$1\frac{1}{8}$	5	5	$7\frac{1}{8}$	$3\frac{1}{8}$	$4\frac{1}{8}$	1.475	1.390	$\frac{1}{8}$	$\frac{1}{8}$	4
$1\frac{1}{16}$	5	$4\frac{1}{2}$	$7\frac{1}{8}$	$3\frac{1}{8}$	$4\frac{1}{8}$	1.600	1.475	$1\frac{1}{8}$	$1\frac{1}{8}$	6
2	$4\frac{1}{2}$	$4\frac{1}{2}$	$8\frac{1}{4}$	$3\frac{5}{8}$	$4\frac{5}{8}$	1.700	1.600	$1\frac{1}{8}$	$1\frac{1}{4}$	6
$2\frac{1}{8}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$8\frac{1}{4}$	$3\frac{5}{8}$	$4\frac{5}{8}$	1.810	1.710	$1\frac{1}{8}$	$1\frac{1}{8}$	6
$2\frac{1}{4}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$8\frac{1}{4}$	$3\frac{5}{8}$	$4\frac{5}{8}$	1.945	1.845	$1\frac{1}{8}$	$1\frac{1}{8}$	6
$2\frac{3}{4}$	4	$4\frac{1}{2}$	9	4	5	2.030	1.975	$1\frac{1}{8}$	$1\frac{1}{2}$	6
$2\frac{1}{2}$	4	4	$9\frac{1}{4}$	$4\frac{1}{8}$	$5\frac{1}{8}$	2.160	2.040	$1\frac{1}{8}$	$1\frac{1}{8}$	6
$2\frac{5}{8}$	4	4	$9\frac{1}{4}$	$4\frac{1}{8}$	$5\frac{1}{8}$	2.285	2.175	$1\frac{3}{8}$	$1\frac{1}{4}$	6
$2\frac{1}{4}$	4	4	$9\frac{1}{4}$	$4\frac{1}{8}$	$5\frac{1}{8}$	2.400	2.290	$1\frac{1}{8}$	$1\frac{1}{4}$	6
$2\frac{1}{8}$	4	4	10	$4\frac{1}{8}$	$5\frac{1}{8}$	2.485	2.425	$1\frac{1}{8}$	$1\frac{1}{4}$	6
3	$3\frac{1}{2}$	$3\frac{1}{2}$	$10\frac{1}{8}$	$4\frac{1}{8}$	$5\frac{1}{8}$	2.600	2.480	$1\frac{1}{2}$	$1\frac{1}{8}$	8

DIMENSIONS OF TAPPER TAPS

Regular Lengths over all
are 11, 12, 14 and 15 inches.

NOTE: Tapper taps differ from machine taps in not having a square on the end of the shank. They are used in nut tapping machines, the nuts being run over the tap on to the shank and when full the tap is removed and the nuts slid off. The tap is then replaced for another lot of nuts.

Diameter of Tap	Number of Threads per Inch		Length of Thread	Length of Straight Part	Length of Chamfered Part	Diameter of Shank E		Diameter of Point F		No. of Flutes
	U. S. St'd	V. St'd				U. S. St'd	V. St'd	U. S. St'd	V. St'd	
A	U. S. St'd	V. St'd	B	C	D	U. S. St'd	V. St'd	U. S. St'd	V. St'd	
$\frac{1}{4}$	20	20	$1\frac{3}{4}$	$1\frac{1}{8}$	$\frac{5}{8}$	0.170	0.150	0.179	0.158	4
$\frac{5}{16}$	18	18	2	$1\frac{1}{4}$	$\frac{3}{4}$	0.225	0.200	0.234	0.210	4
$\frac{3}{8}$	16	16	2	$1\frac{1}{4}$	$\frac{3}{4}$	0.280	0.250	0.287	0.261	4
$\frac{7}{16}$	14	14	$2\frac{1}{4}$	$1\frac{3}{8}$	$\frac{7}{8}$	0.330	0.300	0.338	0.307	4
$\frac{1}{2}$	13	12	$2\frac{1}{4}$	$1\frac{3}{8}$	$\frac{7}{8}$	0.385	0.340	0.393	0.348	4
$\frac{9}{16}$	12	12	$2\frac{1}{2}$	$1\frac{1}{2}$	1	0.440	0.400	0.446	0.411	4
$\frac{5}{8}$	11	11	$2\frac{1}{2}$	$1\frac{1}{2}$	1	0.490	0.455	0.499	0.462	4
$\frac{11}{16}$	11	11	$2\frac{1}{2}$	$1\frac{1}{2}$	1	0.555	0.515	0.561	0.523	4
$\frac{3}{4}$	10	10	$2\frac{3}{4}$	$1\frac{5}{8}$	$1\frac{1}{8}$	0.605	0.560	0.611	0.570	4
$\frac{13}{16}$	10	10	$2\frac{3}{4}$	$1\frac{5}{8}$	$1\frac{1}{8}$	0.670	0.625	0.673	0.631	4
$\frac{7}{8}$	9	9	3	$1\frac{3}{4}$	$1\frac{1}{4}$	0.720	0.675	0.722	0.675	4
$\frac{15}{16}$	9	9	3	$1\frac{3}{4}$	$1\frac{1}{4}$	0.780	0.730	0.783	0.736	4
1	8	8	$3\frac{1}{2}$	2	$1\frac{1}{2}$	0.820	0.770	0.828	0.775	4
$1\frac{1}{8}$	7	7	$3\frac{1}{2}$	2	$1\frac{1}{2}$	0.925	0.860	0.928	0.869	4
$1\frac{1}{4}$	7	7	$3\frac{1}{2}$	2	$1\frac{1}{2}$	1.050	0.985	1.053	0.993	4
$1\frac{3}{8}$	6	6	4	$2\frac{3}{8}$	$1\frac{5}{8}$	1.145	1.070	1.147	1.075	4
$1\frac{1}{2}$	6	6	4	$2\frac{3}{8}$	$1\frac{5}{8}$	1.270	1.195	1.272	1.200	4

BRIGGS'S STANDARD PIPE TAPS

Taper per Foot
= $\frac{1}{4}$ Inch
Taper per Inch
= $\frac{1}{16}$ Inch

Nominal Dia. of Tap	Threads per Inch	Dia. Large End	Dia. of Small End before Chamfering	Length of Thread	Length of Shank	Total Length	Diameter of Shank	Length of Square	Size of Square	Number of Flutes
		A	B	C	D	E	F	G	H	
$\frac{1}{8}$	27	.443	.381	1	$1\frac{1}{2}$	$2\frac{1}{2}$	$\frac{7}{16}$	$\frac{9}{16}$	$\frac{5}{16}$	4
$\frac{1}{4}$	18	.575	.505	$1\frac{1}{8}$	$1\frac{5}{8}$	$2\frac{3}{4}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{3}{8}$	4
$\frac{3}{8}$	18	.718	.640	$1\frac{1}{4}$	$1\frac{3}{4}$	3	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{7}{16}$	4
$\frac{1}{2}$	14	.887	.793	$1\frac{1}{2}$	$1\frac{7}{8}$	$3\frac{3}{8}$	$\frac{3}{4}$	$\frac{11}{16}$	$\frac{9}{16}$	4
$\frac{3}{4}$	14	1.104	.993	$1\frac{5}{8}$	$2\frac{1}{8}$	$3\frac{3}{4}$	$\frac{15}{16}$	$\frac{3}{4}$	$\frac{11}{16}$	4
1	$11\frac{1}{2}$	1.366	1.257	$1\frac{3}{4}$	$2\frac{3}{8}$	$4\frac{1}{8}$	$1\frac{1}{8}$	$\frac{13}{16}$	$\frac{13}{16}$	5
$1\frac{1}{4}$	$11\frac{1}{2}$	1.717	1.599	$1\frac{7}{8}$	$2\frac{5}{8}$	$4\frac{1}{2}$	$1\frac{5}{16}$	$\frac{15}{16}$	1	5
$1\frac{1}{2}$	$11\frac{1}{2}$	1.963	1.838	2	$2\frac{7}{8}$	$4\frac{7}{8}$	$1\frac{1}{2}$	1	$1\frac{1}{8}$	5
2	$11\frac{1}{2}$	2.453	2.312	$2\frac{1}{4}$	$3\frac{1}{2}$	$5\frac{3}{4}$	$1\frac{7}{8}$	$1\frac{3}{16}$	$1\frac{3}{8}$	7
$2\frac{1}{2}$	8	2.961	2.781	$2\frac{7}{8}$	4	$6\frac{7}{8}$	$2\frac{1}{4}$	$1\frac{3}{8}$	$1\frac{1}{16}$	8
3	8	3.605	3.402	$3\frac{1}{4}$	$4\frac{1}{2}$	$7\frac{3}{4}$	$2\frac{5}{8}$	$1\frac{1}{2}$	$1\frac{15}{16}$	9
$3\frac{1}{2}$	8	4.125	3.899	$3\frac{5}{8}$	$4\frac{9}{16}$	$8\frac{3}{16}$	$2\frac{13}{16}$	$1\frac{9}{16}$	$2\frac{1}{8}$	11
4	8	4.629	4.395	$3\frac{3}{4}$	$4\frac{5}{8}$	$8\frac{3}{8}$	3	$1\frac{5}{8}$	$2\frac{1}{4}$	11

STOVE BOLT TAPS

These have no fixed standard form of thread, being usually something like an Acme thread in general appearance.

	Diameters					
Threads per Inch	$\frac{5}{32}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$
Present Standard	28	24	22	18	18	16
Old Standard	30	24	24	18	18	18

DIMENSIONS OF TAPER DIE TAPS

Diam. of Shank Root Diam. less 0.015 in.

Diameter of Tap	Length of Shank	Length of Thread	Length of Straight Thread	Total Length	Length of Square	Size of Square	Number of Flutes
A	B	C	D	E	F	G	
$\frac{1}{4}$	$1\frac{1}{2}$	2	$\frac{1}{4}$	$3\frac{1}{2}$	$\frac{9}{16}$	$\frac{1}{8}$	5
$\frac{5}{16}$	$1\frac{1}{2}$	$2\frac{1}{2}$	$\frac{5}{16}$	4	$\frac{5}{8}$	$\frac{3}{16}$	5
$\frac{9}{16}$	$1\frac{1}{2}$	3	$\frac{9}{8}$	$4\frac{1}{2}$	$\frac{11}{16}$	$\frac{1}{16}$	5
$\frac{7}{16}$	$1\frac{3}{4}$	$3\frac{1}{4}$	$\frac{7}{16}$	5	$\frac{11}{16}$	$\frac{1}{4}$	5
$\frac{11}{16}$	2	$3\frac{1}{2}$	$\frac{1}{2}$	$5\frac{1}{2}$	$\frac{5}{8}$	$\frac{9}{16}$	5
$\frac{9}{16}$	$2\frac{1}{4}$	$3\frac{3}{4}$	$\frac{9}{16}$	6	$\frac{11}{16}$	$\frac{5}{16}$	5
$\frac{5}{8}$	$2\frac{1}{2}$	4	$\frac{5}{8}$	$6\frac{1}{2}$	$\frac{13}{16}$	$\frac{11}{16}$	5
$\frac{11}{16}$	$2\frac{3}{4}$	$4\frac{1}{4}$	$\frac{11}{16}$	7	$\frac{7}{8}$	$\frac{11}{16}$	6
$\frac{9}{16}$	3	$4\frac{1}{2}$	$\frac{3}{4}$	$7\frac{1}{2}$	$\frac{7}{8}$	$\frac{7}{16}$	6
$\frac{13}{16}$	$3\frac{1}{4}$	$4\frac{3}{4}$	$\frac{13}{16}$	8	$\frac{15}{16}$	$\frac{1}{2}$	6
$\frac{7}{8}$	$3\frac{1}{2}$	5	$\frac{7}{8}$	$8\frac{1}{2}$	1	$\frac{1}{2}$	6
$\frac{11}{16}$	$3\frac{1}{2}$	$5\frac{1}{4}$	$\frac{11}{16}$	$8\frac{3}{4}$	1	$\frac{9}{16}$	6
1	$3\frac{1}{2}$	$5\frac{1}{2}$	1	9	$1\frac{1}{16}$	$\frac{5}{8}$	6
$1\frac{1}{8}$	$3\frac{1}{2}$	$5\frac{3}{4}$	$1\frac{1}{8}$	$9\frac{1}{4}$	$1\frac{1}{8}$	$\frac{11}{16}$	6
$1\frac{1}{4}$	$3\frac{1}{2}$	6	$1\frac{1}{4}$	$9\frac{1}{2}$	$1\frac{3}{16}$	$\frac{3}{4}$	7
$1\frac{3}{8}$	$3\frac{5}{8}$	$6\frac{1}{8}$	$1\frac{3}{8}$	$9\frac{3}{4}$	$1\frac{5}{16}$	$\frac{13}{16}$	7
$1\frac{1}{2}$	$3\frac{5}{8}$	$6\frac{3}{8}$	$1\frac{1}{2}$	10	$1\frac{5}{8}$	$\frac{11}{16}$	7
$1\frac{5}{8}$	$3\frac{5}{8}$	$6\frac{5}{8}$	$1\frac{5}{8}$	$10\frac{1}{4}$	$1\frac{7}{16}$	1	7
$1\frac{3}{4}$	$3\frac{5}{8}$	$6\frac{7}{8}$	$1\frac{3}{4}$	$10\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{16}$	8
$1\frac{1}{8}$	$3\frac{5}{8}$	$7\frac{1}{8}$	$1\frac{1}{8}$	$10\frac{3}{4}$	$1\frac{5}{8}$	$1\frac{1}{8}$	8
2	$3\frac{5}{8}$	$7\frac{3}{8}$	2	11	$1\frac{11}{16}$	$1\frac{1}{4}$	8

DIMENSIONS OF SELLERS HOBS

The Sellers hob is designed to be run on centers, the work, such as hand or die chasers, being held against it and fed along by the lathe carriage.

Diameter of Hob	Number of Threads per Inch		Diameter of Pilot B	Length of Shank C	Length of Thread D	Length of Pilot E	Total Length F	Diameter of Shank G		Length of Square H	Size of Square J	No. of Flutes
	U. S. St'd	V. St'd						U. S. St'd	V. St'd			
A	U. S. St'd	V. St'd	B	C	D	E	F	G	H	J		
$\frac{1}{16}$	20	20	$\frac{3}{16}$	$\frac{5}{32}$	2	$1\frac{1}{8}$	$1\frac{1}{8}$	0.170	0.150	$\frac{3}{4}$	$\frac{1}{8}$	6
$\frac{5}{16}$	18	18	$\frac{3}{16}$	$\frac{3}{16}$	2	$1\frac{1}{4}$	$1\frac{1}{4}$	0.225	0.200	$\frac{3}{4}$	$\frac{5}{32}$	6
$\frac{3}{8}$	16	16	$\frac{1}{4}$	$\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{7}{16}$	$1\frac{7}{16}$	0.280	0.250	$\frac{3}{4}$	$\frac{3}{16}$	6
$\frac{7}{16}$	14	14	$\frac{5}{16}$	$\frac{1}{4}$	$2\frac{1}{8}$	$1\frac{9}{16}$	$1\frac{9}{16}$	0.330	0.300	$\frac{13}{16}$	$\frac{1}{4}$	6
$\frac{1}{2}$	13	12	$\frac{3}{8}$	$\frac{5}{16}$	$2\frac{1}{8}$	$1\frac{13}{16}$	$1\frac{13}{16}$	0.385	0.340	$\frac{13}{16}$	$\frac{9}{32}$	8
$\frac{9}{16}$	12	12	$\frac{3}{8}$	$\frac{3}{8}$	$2\frac{1}{4}$	$1\frac{7}{8}$	$1\frac{7}{8}$	0.440	0.400	$\frac{13}{16}$	$\frac{5}{16}$	8
$\frac{5}{8}$	11	11	$\frac{1}{2}$	$\frac{3}{8}$	$2\frac{1}{4}$	$2\frac{1}{8}$	$2\frac{1}{8}$	0.490	0.455	$\frac{7}{8}$	$\frac{11}{32}$	8
$\frac{11}{16}$	11	11	$\frac{1}{2}$	$\frac{1}{2}$	$2\frac{1}{4}$	$2\frac{3}{8}$	$2\frac{3}{8}$	0.555	0.515	$\frac{7}{8}$	$\frac{13}{32}$	8
$\frac{3}{4}$	10	10	$\frac{1}{2}$	$\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{2}$	0.605	0.560	$\frac{7}{8}$	$\frac{7}{16}$	8
$\frac{13}{16}$	10	10	$\frac{1}{2}$	$\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{3}{4}$	$2\frac{3}{4}$	0.670	0.625	$\frac{15}{16}$	$\frac{1}{2}$	8
$\frac{7}{8}$	9	9	$\frac{11}{16}$	$\frac{1}{2}$	$2\frac{1}{2}$	3	3	0.715	0.675	$\frac{15}{16}$	$\frac{1}{2}$	8
$\frac{15}{16}$	9	9	$\frac{11}{16}$	$\frac{11}{16}$	$2\frac{1}{2}$	$3\frac{1}{4}$	$3\frac{1}{4}$	0.780	0.730	1	$\frac{9}{16}$	10
1	8	8	$\frac{11}{16}$	$\frac{11}{16}$	$2\frac{5}{8}$	$3\frac{7}{16}$	$3\frac{7}{16}$	0.825	0.770	1	$\frac{5}{8}$	10
$1\frac{1}{8}$	7	7	$\frac{11}{16}$	$\frac{7}{8}$	$2\frac{5}{8}$	$3\frac{9}{16}$	$3\frac{9}{16}$	0.925	0.860	$1\frac{1}{16}$	$\frac{1}{16}$	10
$1\frac{1}{4}$	7	7	$\frac{11}{16}$	$\frac{7}{8}$	$2\frac{5}{8}$	$3\frac{11}{16}$	$3\frac{11}{16}$	1.050	0.985	$1\frac{1}{16}$	$\frac{3}{4}$	10
$1\frac{3}{8}$	6	6	$1\frac{1}{16}$	$\frac{7}{8}$	$2\frac{5}{8}$	$3\frac{15}{16}$	$3\frac{15}{16}$	1.145	1.070	$1\frac{1}{8}$	$\frac{13}{16}$	10
$1\frac{1}{2}$	6	6	$1\frac{1}{16}$	$1\frac{1}{16}$	$2\frac{5}{8}$	$4\frac{3}{16}$	$4\frac{3}{16}$	1.270	1.200	$1\frac{1}{16}$	$\frac{15}{16}$	10
$1\frac{5}{8}$	$5\frac{1}{2}$	5	$1\frac{1}{16}$	$1\frac{1}{8}$	$2\frac{3}{4}$	$4\frac{3}{8}$	$4\frac{3}{8}$	1.375	1.265	$1\frac{1}{4}$	1	12
$1\frac{3}{4}$	5	5	$1\frac{5}{16}$	$1\frac{5}{16}$	$2\frac{3}{4}$	$4\frac{5}{8}$	$4\frac{5}{8}$	1.475	1.390	$1\frac{1}{4}$	$1\frac{1}{16}$	12
$1\frac{1}{8}$	5	$4\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{5}{16}$	$2\frac{3}{4}$	$4\frac{7}{8}$	$4\frac{7}{8}$	1.600	1.475	$1\frac{5}{16}$	$1\frac{1}{8}$	12
2	$4\frac{1}{2}$	$4\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	$2\frac{3}{4}$	$5\frac{1}{8}$	$5\frac{1}{8}$	1.700	1.600	$1\frac{3}{8}$	$1\frac{1}{4}$	12

STANDARD SQUARE THREAD TAPS

NOTE: While in theory the thread and the space are both one half the pitch, in practice it is necessary to make the thread a little more than half in order to allow clearance for the screw that goes into the threaded hole. The amount of this clearance depends on the character of the work and varies from .001 inch up. Some also make the tap so that the screw will bear only on the top or bottom and the sides.

Size	A	B	C	D	E	F	G	H	I
Diameter $\frac{5}{8}''$ (1)	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$3\frac{5}{8}$	$3\frac{1}{4}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{7}{16}$
	(2)	$\frac{19}{32}$	$\frac{1}{2}$	$3\frac{5}{8}$	$3\frac{1}{4}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{7}{16}$
Pitch 8 (3)	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{1}{2}$	$3\frac{5}{8}$	$3\frac{1}{4}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{7}{16}$
Diameter $\frac{3}{4}''$ (1)	$\frac{4}{5}$	$\frac{5}{8}$	$\frac{3}{4}$	$3\frac{3}{4}$	$3\frac{3}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{7}{16}$
Pitch 6 (3)	$\frac{4}{5}$	$\frac{5}{8}$	$\frac{3}{4}$	$3\frac{3}{4}$	$3\frac{3}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{7}{16}$
	(2)	$\frac{3}{4}$	$\frac{11}{16}$	$3\frac{7}{8}$	$3\frac{3}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{7}{16}$
Diameter $\frac{7}{8}''$ (1)	$\frac{3}{4}$	$\frac{21}{32}$	$\frac{21}{32}$	4	$3\frac{3}{4}$	$\frac{1}{2}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{1}{2}$
	(2)	$\frac{13}{16}$	$\frac{3}{4}$	$2\frac{1}{2}$	4	$3\frac{3}{4}$	$\frac{1}{2}$	$\frac{13}{16}$	$\frac{7}{8}$
Pitch $4\frac{1}{2}$ (3)	$\frac{7}{8}$	$\frac{5}{4}$	$\frac{21}{32}$	4	$3\frac{3}{4}$	$\frac{1}{2}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{1}{2}$
	Diameter 1'' (1)	$\frac{5}{4}$	$\frac{5}{4}$	$5\frac{1}{4}$	$4\frac{1}{2}$	$4\frac{1}{4}$	$\frac{1}{2}$	$\frac{15}{16}$	1
Lead D'BL $\frac{2}{5}''$ (3)	(2)	$\frac{61}{64}$	$\frac{7}{8}$	$5\frac{1}{4}$	$4\frac{1}{2}$	$4\frac{1}{4}$	$\frac{1}{2}$	$\frac{15}{16}$	$\frac{5}{8}$
	1	$\frac{15}{16}$	$6\frac{1}{4}$	$4\frac{1}{2}$	$4\frac{1}{4}$	$\frac{1}{2}$	$\frac{15}{16}$	1	$\frac{5}{8}$
Diameter $1\frac{1}{8}''$ (1)	$\frac{61}{64}$	$\frac{5}{4}$	$5\frac{5}{8}$	$4\frac{3}{4}$	$4\frac{3}{8}$	$\frac{1}{2}$	1	$1\frac{1}{8}$	$\frac{11}{16}$
	(2)	$1\frac{1}{2}$	$1\frac{5}{8}$	$5\frac{5}{8}$	$4\frac{3}{4}$	$4\frac{3}{8}$	$\frac{1}{2}$	$1\frac{1}{8}$	$\frac{11}{16}$
Pitch $3\frac{1}{2}$ (4)	(3)	$1\frac{5}{4}$	$1\frac{1}{4}$	$5\frac{5}{8}$	$4\frac{3}{4}$	$4\frac{3}{8}$	$\frac{1}{2}$	1	$1\frac{1}{8}$
	(4)	$1\frac{1}{8}$	$1\frac{1}{16}$	$5\frac{5}{8}$	$4\frac{3}{4}$	$4\frac{3}{8}$	$\frac{1}{2}$	1	$1\frac{1}{8}$
Diameter $1\frac{3}{8}''$ (1)	$1\frac{13}{16}$	$1\frac{1}{8}$	$1\frac{1}{8}$	$5\frac{1}{4}$	$4\frac{5}{8}$	$\frac{5}{8}$	$1\frac{1}{8}$	$1\frac{3}{8}$	$\frac{7}{8}$
	(2)	$1\frac{9}{16}$	$1\frac{3}{16}$	$1\frac{1}{8}$	$5\frac{1}{4}$	$4\frac{5}{8}$	$\frac{5}{8}$	$1\frac{1}{8}$	$1\frac{3}{8}$
Lead D'BL $\frac{1}{2}''$ (4)	(3)	$1\frac{21}{64}$	$1\frac{1}{4}$	$1\frac{1}{8}$	$5\frac{1}{4}$	$4\frac{5}{8}$	$\frac{5}{8}$	$1\frac{1}{8}$	$1\frac{3}{8}$
	(4)	$1\frac{3}{8}$	$1\frac{1}{16}$	$1\frac{1}{8}$	$5\frac{1}{4}$	$4\frac{5}{8}$	$\frac{5}{8}$	$1\frac{1}{8}$	$1\frac{3}{8}$

STARRETT MICROMETERS FOR SPECIAL PURPOSES

Heavy Micrometer Calipers

The spindle and screw portion is of larger area than in the regular micrometer. Those from 2 inch to 6 inch are made from drop forgings and those from 7 to 12 inch from steel castings. Bearing parts and measuring surface are hardened. Made with lock nut and ratchet stop.

Micrometer Caliper Heads

Length from shoulder to lock nut $\frac{3}{4}$ inch, $\frac{1}{2}$ inch diameter. Easily attached to tools or machines. Ratchet stop and lock nut, unless desired without. Graduated to read to thousandths of an inch. Also made to read in ten thousandths and in the Metric system.

Hub Micrometer Caliper

The frame will easily pass through a $\frac{3}{4}$ inch hole. Graduated to read by thousandths up to 1 inch. Also made in Metric system. Has lock nut and ratchet stop.

Six-Inch Micrometer Caliper

Measures round work to $4\frac{1}{4}$ inches and flat work to 6 inches. Six independent holes through both movable part and the beam. Each hole bushed with hardened steel bushings ground and lapped to fit the plug which locates to exactness the various inch settings. Made also in Metric system.

Bench Micrometer Caliper

Measure by thousandths or ten thousandths of an inch up to 1 inch. Heavy base makes tool very rigid and accurate. Made with lock nut and ratchet stop. Also made in Metric system.

For other Starrett Micrometer Calipers see pages 18, 21, 40, 80, 122, and 155 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

S. A. E. SCREW STANDARD

B = Refers to all Nuts and Screw Heads

D \times 1.5 = Length of Threaded Portion

D = Diameter of Screw

P = Pitch of Thread

d = Diameter of Cotter Pin

 $\frac{P}{R}$ = Flat Top

R

D	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1\frac{1}{8}$	$1\frac{1}{4}$	$1\frac{3}{8}$	$1\frac{1}{2}$
P	28	24	24	20	20	18	18	16	16	14	14	12	12	12	12
A	$\frac{5}{16}$	$\frac{11}{32}$	$\frac{13}{32}$	$\frac{21}{32}$	$\frac{15}{32}$	$\frac{23}{32}$	$\frac{33}{32}$	$\frac{41}{32}$	$\frac{13}{16}$	$\frac{29}{32}$	1	$1\frac{5}{32}$	$1\frac{1}{4}$	$1\frac{13}{32}$	$1\frac{1}{2}$
A1	$\frac{7}{16}$	$\frac{17}{32}$	$\frac{21}{32}$	$\frac{33}{32}$	$\frac{7}{8}$	$\frac{41}{32}$	$\frac{55}{32}$	$\frac{63}{32}$	$\frac{21}{16}$	$\frac{41}{32}$	$\frac{7}{8}$	$\frac{63}{32}$	$1\frac{1}{32}$	$1\frac{13}{32}$	$1\frac{5}{16}$
B	$\frac{1}{16}$	$\frac{1}{2}$	$\frac{15}{32}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{15}{16}$	1	$1\frac{1}{16}$	$1\frac{1}{4}$	$1\frac{7}{16}$	$1\frac{5}{8}$	$1\frac{1}{8}$	2	$2\frac{1}{16}$
C	$\frac{3}{32}$	$\frac{3}{32}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{32}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{3}{8}$	$\frac{3}{8}$
E	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{7}{32}$	$\frac{7}{32}$	$\frac{1}{4}$	$\frac{1}{4}$
H	$\frac{1}{16}$	$\frac{11}{32}$	$\frac{13}{32}$	$\frac{21}{32}$	$\frac{3}{8}$	$\frac{63}{32}$	$\frac{71}{32}$	$\frac{81}{32}$	$\frac{15}{16}$	$\frac{81}{32}$	$\frac{3}{4}$	$\frac{63}{32}$	$\frac{15}{16}$	$1\frac{1}{32}$	$1\frac{1}{8}$
I	$\frac{3}{32}$	$\frac{7}{32}$	$\frac{1}{8}$	$\frac{7}{32}$	$\frac{7}{32}$	$\frac{1}{4}$	$\frac{1}{4}$								
K	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{3}{32}$	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{1}{16}$	$\frac{1}{16}$								
d	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{3}{32}$	$\frac{3}{32}$	$\frac{3}{32}$	$\frac{1}{8}$	$\frac{1}{8}$								

All castle nuts are to be case hardened.

It is assumed that where screws are to be used in soft material such as cast iron, brass, bronze, or aluminum, the United States standard pitches will be used.

Tolerance. The body diameter of the screws shall be one-thousandth (.001) inch less than the nominal diameter, with a plus tolerance of zero and a minus tolerance of two-thousandths (.002) inch.

The nuts shall be a good fit without perceptible shake.

CLEARANCE BETWEEN TOPS AND BOTTOMS
OF THREADS

The tap shall be between two-thousandths (.002) inch and three-thousandths (.003) inch large.

Sizes of Taps		Drill Sizes	Sizes of Taps		Drill Sizes
Inch	Threads		Inch	Threads	
$\frac{1}{4}$	28	$\frac{11}{32}$ *	$\frac{11}{32}$	16	$\frac{11}{32}$
$\frac{5}{16}$	24	$\frac{13}{32}$	$\frac{13}{32}$	16	$\frac{13}{32}$
$\frac{3}{8}$	24	$\frac{15}{32}$	$\frac{15}{32}$	14	$\frac{15}{32}$
$\frac{5}{16}$	20	$\frac{17}{32}$	1	14	$\frac{17}{32}$
$\frac{3}{8}$	20	$\frac{19}{32}$	$1\frac{1}{16}$	12	$1\frac{1}{16}$
$\frac{5}{16}$	18	$\frac{21}{32}$	$1\frac{1}{16}$	12	$1\frac{1}{16}$
$\frac{3}{8}$	18	$\frac{23}{32}$	$1\frac{1}{16}$	12	$1\frac{1}{16}$

*No. 5 Drill Gauge

COMPARISON OF ACME AND SQUARE THREADS

The various parts of the Acme Standard Thread are obtained as follows:
Width of Point of Tool for Screw or Tap Thread =

$$\frac{.3707}{.3707} = .0052$$

$$\text{No. of Threads per in. } \frac{.3707}{.3707} = .0052$$

$$\text{Width of Screw or Nut Thread} = \frac{\text{No. of Threads per in.}}{\text{No. of Threads per in.}}$$

$$\text{Diameter of Tap} = \text{Diameter of Screw} + .020.$$

$$\text{Diameter of Tap or Screw at Root} = \text{Diameter of Screw} -$$

$$\left(\frac{1}{\text{No. of Linear Threads per in.} + .020} \right)$$

$$\text{Depth of Thread} = \frac{1}{2 \times \text{No. of Threads per in.}} + .010$$

TABLE OF THREAD PART

No. of Threads per inch	Depth of Thread	Width at Top of Thread	Width at Bottom of Thread	Space at Top of Thread	Thickness at Root of Thread
1	.5100	.3707	.3655	.6293	.6345
$1\frac{1}{2}$.3850	.2780	.2728	.4720	.4772
2	.2600	.1853	.1801	.3147	.3199
3	.1767	.1235	.1183	.2098	.2150
4	.1350	.0927	.0875	.1573	.1625
5	.1100	.0741	.0689	.1259	.1311
6	.0933	.0618	.0566	.1049	.1101
7	.0814	.0529	.0478	.0899	.0951
8	.0725	.0463	.0411	.0787	.0839
9	.0655	.0413	.0361	.0699	.0751
10	.0600	.0371	.0319	.0629	.0681

METRIC STANDARD SCREW THREADS

Formula

$$\left\{ \begin{array}{l} p = \text{pitch} \\ d = \text{depth} = \text{pitch} \times .64952 \\ f = \text{flat} = \frac{\text{pitch}}{8} \end{array} \right.$$

Diam. Screw, mm.	Pitch, mm.	Diam. at Root, mm.	Width of Flat mm.
3	0.5	2.35	.06
4	0.75	3.03	.09
5	0.75	4.03	.09
6	1.0	4.70	.13
7	1.0	5.70	.13
8	1.0	6.70	.13
8	1.25	6.38	.16
9	1.0	7.70	.13
9	1.25	7.38	.16
10	1.5	8.05	.19
11	1.5	9.05	.19
12	1.5	10.05	.19
12	1.75	9.73	.22
14	2.0	11.40	.25
16	2.0	13.40	.25
18	2.5	14.75	.31
20	2.5	16.75	.31
22	2.5	18.75	.31
24	3.0	20.10	.38
26	3.0	22.10	.38
27	3.0	23.10	.38
28	3.0	24.10	.38
30	3.5	25.45	.44
32	3.5	27.45	.44
33	3.5	28.45	.44
34	3.5	29.45	.44
36	4.0	30.80	.5
38	4.0	32.80	.5
39	4.0	33.80	.5
40	4.0	34.80	.5
42	4.5	36.15	.56
44	4.5	38.15	.56
45	4.5	39.15	.56
46	4.5	40.15	.56
48	5.0	41.51	.63
50	5.0	43.51	.63
52	5.0	45.51	.63
56	5.5	48.86	.69
60	5.5	52.86	.69
64	6.0	56.21	.75
68	6.0	60.21	.75
72	6.5	63.56	.81
76	6.5	67.56	.81
80	7.0	70.91	.88

UNITED STATES STANDARD SCREW THREAD

Formula

$$P = \text{pitch} = \frac{1}{\text{No. of threads per inch}}$$

$$d = \text{depth} = \text{pitch} \times .6495 \text{ or } \frac{.6495}{n}$$

$$f = \text{flat} = \frac{\text{pitch}}{8}$$

$n = \text{threads}$

Fractional Size	Decimal Equivalent Outside Diameter	Threads per Inch	Basic Pitch Diameter	Root Diameter	$\frac{(d)}{n}$ Depth of Thread $.6495$
$\frac{1}{4}$.2500	20	.2175	.850	.0325
$\frac{5}{16}$.3125	18	.2764	.2403	.0361
$\frac{3}{8}$.3750	16	.3344	.2938	.0406
$\frac{7}{16}$.4375	14	.3911	.3447	.0464
$\frac{1}{2}$.5000	13	.4501	.4001	.0499
$\frac{9}{16}$.5625	12	.5084	.4542	.0541
$\frac{5}{8}$.6250	11	.5660	.5069	.0591
$\frac{11}{16}$.6875	11	.6290	.5694	.0591
$\frac{3}{4}$.7500	10	.6851	.6201	.0649
$\frac{13}{16}$.8125	10	.7480	.6826	.0649
$\frac{7}{8}$.8750	9	.8029	.7307	.0721
$\frac{15}{16}$.9375	9	.8650	.7932	.0721
1	1.0000	8	.9188	.8376	.0812
$1\frac{1}{8}$	1.1250	7	1.0322	.9394	.0928
$1\frac{1}{4}$	1.2500	7	1.1572	1.0644	.0928
$1\frac{3}{8}$	1.3750	6	1.2668	1.1585	.1082
$1\frac{1}{2}$	1.5000	6	1.3918	1.2835	.1082
$1\frac{5}{8}$	1.6250	$5\frac{1}{2}$	1.5070	1.3888	.1181
$1\frac{3}{4}$	1.7500	5	1.6201	1.4902	.1299
$1\frac{7}{8}$	1.8750	5	1.7451	1.6152	.1299
2	2.0000	$4\frac{1}{2}$	1.8557	1.7113	.1444

UNITED STATES STANDARD SCREW THREADS

Diameter	No. of Threads per Inch	Diameter at Root of Thread	Diameter of Tap Drill	Area in Sq. Inches		Dimensions of Nuts and Bolt Heads				
				Of Bolt	At Root of Thread					
$\frac{1}{4}$	20	0.185	$\frac{5}{16}$	0.049	0.026	$\frac{1}{2}$	0.578	0.707	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{5}{16}$	18	0.240	$\frac{13}{32}$	0.076	0.045	$\frac{13}{32}$	0.686	0.840	$\frac{5}{16}$	$\frac{13}{32}$
$\frac{3}{8}$	16	0.294	$\frac{15}{32}$	0.110	0.068	$\frac{15}{32}$	0.794	0.972	$\frac{3}{8}$	$\frac{11}{32}$
$\frac{7}{16}$	14	0.345	$\frac{21}{32}$	0.150	0.093	$\frac{21}{32}$	0.902	1.105	$\frac{7}{16}$	$\frac{25}{64}$
$\frac{1}{2}$	13	0.400	$\frac{27}{32}$	0.196	0.126	$\frac{27}{32}$	1.011	1.237	$\frac{1}{2}$	$\frac{7}{16}$
$\frac{9}{16}$	12	0.454	$\frac{33}{32}$	0.248	0.162	$\frac{33}{32}$	1.119	1.370	$\frac{9}{16}$	$\frac{31}{64}$
$\frac{5}{8}$	11	0.507	$\frac{39}{32}$	0.307	0.202	$1\frac{1}{16}$	1.227	1.502	$\frac{5}{8}$	$\frac{17}{32}$
$\frac{3}{4}$	10	0.620	$\frac{45}{32}$	0.442	0.302	$1\frac{1}{4}$	1.444	1.768	$\frac{3}{4}$	$\frac{5}{8}$
$\frac{7}{8}$	9	0.731	$\frac{51}{32}$	0.601	0.419	$1\frac{1}{16}$	1.660	2.033	$\frac{7}{8}$	$\frac{23}{32}$
1	.8	0.838	$\frac{57}{32}$	0.785	0.551	$1\frac{5}{8}$	1.877	2.298	1	$1\frac{1}{16}$
$1\frac{1}{8}$	7	0.939	$\frac{63}{32}$	0.994	0.694	$1\frac{13}{16}$	2.093	2.563	$1\frac{1}{8}$	$\frac{23}{32}$
$1\frac{1}{4}$	7	1.064	$1\frac{1}{16}$	1.227	0.893	2	2.310	2.828	$1\frac{1}{4}$	1
$1\frac{3}{8}$	6	1.158	$1\frac{15}{32}$	1.485	1.057	$2\frac{1}{16}$	2.527	3.093	$1\frac{3}{8}$	$1\frac{3}{8}$
$1\frac{1}{2}$	6	1.283	$1\frac{1}{2}$	1.767	1.295	$2\frac{3}{8}$	2.743	3.358	$1\frac{1}{2}$	$1\frac{1}{16}$
$1\frac{5}{8}$	$5\frac{1}{2}$	1.389	$1\frac{21}{32}$	2.074	1.515	$2\frac{9}{16}$	2.960	3.623	$1\frac{5}{8}$	$1\frac{9}{32}$
$1\frac{3}{4}$	5	1.490	$1\frac{23}{32}$	2.405	1.746	$2\frac{3}{4}$	3.176	3.889	$1\frac{3}{4}$	$1\frac{3}{8}$
$1\frac{1}{8}$	5	1.615	$1\frac{25}{32}$	2.761	2.051	$2\frac{15}{16}$	3.393	4.154	$1\frac{7}{8}$	$1\frac{15}{32}$
2	$4\frac{1}{2}$	1.711	$1\frac{27}{32}$	3.142	2.302	$3\frac{1}{8}$	3.609	4.419	2	$1\frac{9}{16}$
$2\frac{1}{4}$	$4\frac{1}{2}$	1.961	$2\frac{1}{4}$	3.976	3.023	$3\frac{1}{2}$	4.043	4.949	$2\frac{1}{4}$	$1\frac{3}{4}$
$2\frac{1}{2}$	4	2.175	$2\frac{13}{32}$	4.909	3.719	$3\frac{7}{8}$	4.476	5.479	$2\frac{1}{2}$	$1\frac{15}{16}$
$2\frac{3}{4}$	4	2.425	$2\frac{31}{32}$	5.940	4.620	$4\frac{1}{4}$	4.909	6.010	$2\frac{3}{4}$	$2\frac{1}{8}$
3	$3\frac{1}{2}$	2.629	$2\frac{15}{16}$	7.069	5.428	$4\frac{5}{8}$	5.342	6.540	3	$2\frac{5}{16}$
$3\frac{1}{4}$	$3\frac{1}{2}$	2.879	$2\frac{17}{16}$	8.296	6.510	5	5.775	7.070	$3\frac{1}{4}$	$2\frac{1}{2}$
$3\frac{1}{2}$	$3\frac{1}{4}$	3.100	$3\frac{1}{4}$	9.621	7.548	$5\frac{3}{8}$	6.208	7.600	$3\frac{1}{4}$	$2\frac{11}{16}$
$3\frac{3}{4}$	3	3.317	$3\frac{3}{8}$	11.045	8.641	$5\frac{3}{4}$	6.641	8.131	$3\frac{3}{4}$	$2\frac{7}{8}$
4	3	3.567	$3\frac{5}{8}$	12.566	9.963	$6\frac{1}{8}$	7.074	8.661	4	$3\frac{1}{16}$
$4\frac{1}{4}$	$2\frac{7}{8}$	3.798	$3\frac{13}{16}$	14.186	11.340	$6\frac{1}{2}$	7.508	9.191	$4\frac{1}{4}$	$3\frac{1}{4}$
$4\frac{1}{2}$	$2\frac{3}{4}$	4.028	$4\frac{1}{2}$	15.904	12.750	$6\frac{7}{8}$	7.941	9.721	$4\frac{1}{2}$	$3\frac{1}{16}$
$4\frac{3}{4}$	$2\frac{5}{8}$	4.255	$4\frac{5}{16}$	17.721	14.215	$7\frac{1}{4}$	8.374	10.252	$4\frac{3}{4}$	$3\frac{5}{8}$
5	$2\frac{1}{2}$	4.480	$4\frac{9}{16}$	19.635	15.760	$7\frac{5}{8}$	8.807	10.782	5	$3\frac{13}{16}$
$5\frac{1}{4}$	$2\frac{1}{2}$	4.730	$4\frac{13}{16}$	21.648	17.570	8	9.240	11.312	$5\frac{1}{4}$	4
$5\frac{1}{2}$	$2\frac{3}{8}$	4.953	$5\frac{1}{32}$	23.758	19.260	$8\frac{3}{8}$	9.673	11.842	$5\frac{1}{2}$	$4\frac{3}{16}$
$5\frac{3}{4}$	$2\frac{3}{8}$	5.203	$5\frac{9}{32}$	25.967	21.250	$8\frac{3}{4}$	10.106	12.373	$5\frac{3}{4}$	$4\frac{3}{8}$
6	$2\frac{1}{4}$	5.423	$5\frac{1}{2}$	28.274	23.090	$9\frac{1}{8}$	10.539	12.903	6	$4\frac{9}{16}$

WHITWORTH STANDARD THREAD

Formula

$$P = \text{pitch} = \frac{1}{\text{No. threads per inch}}$$

$$d = \text{depth} = \text{pitch} \times .64033$$

$$r = \text{radius} = \text{pitch} \times .1373$$

Full Diameter	Decimal Equivalent Outside Diameter	No. of Thds. per Inch	Pitch	Standard Depth of Thread	Effective Diameter	Core Diameter	Cross Sectional Area at Bottom of Thread
$\frac{1}{4}$.25	20	.0500	.0320	.2180	.1860	.0272
$\frac{5}{16}$.3125	18	.0556	.0356	.2769	.2414	.0458
$\frac{3}{8}$.375	16	.0625	.0400	.3350	.2950	.0683
$\frac{7}{16}$.4375	14	.0714	.0457	.3918	.3460	.0940
$\frac{1}{2}$.5	12	.0833	.0534	.4466	.3933	.1215
$\frac{9}{16}$.5625	12	.0833	.0534	.5091	.4558	.1632
$\frac{5}{8}$.625	11	.0909	.0582	.5668	.5086	.2032
$\frac{11}{16}$.6875	11	.0909	.0582	.6293	.5711	.2562
$\frac{3}{4}$.75	10	.1000	.0640	.6860	.6219	.3038
$\frac{13}{16}$.8125	10	.1000	.0640	.7485	.6844	.3679
$\frac{7}{8}$.875	9	.1111	.0711	.8039	.7327	.4216
1	1.000	8	.1250	.0800	.9200	.8399	.5540
$1\frac{1}{8}$	1.125	7	.1429	.0915	1.0335	.9420	.6969
$1\frac{1}{4}$	1.25	7	.1429	.0915	1.1585	1.0670	.8942
$1\frac{3}{8}$	1.375	6	.1667	.1067	1.2683	1.1616	1.0597
$1\frac{1}{2}$	1.5	6	.1667	.1067	1.3933	1.2866	1.3001
$1\frac{5}{8}$	1.625	5	.2000	.1281	1.4969	1.3689	1.4718
$1\frac{3}{4}$	1.75	5	.2000	.1281	1.6219	1.4939	1.7528
2	2.000	$4\frac{1}{2}$.2222	.1423	1.8577	1.7154	2.3111
$2\frac{1}{4}$	2.25	4	.2500	.1601	2.0899	1.9298	2.9249
$2\frac{1}{2}$	2.5	4	.2500	.1601	2.3399	2.1798	3.7318
$2\frac{3}{4}$	2.75	$3\frac{1}{2}$.2857	.1830	2.5670	2.3841	4.4641
3	3.000	$3\frac{1}{2}$.2857	.1830	2.8170	2.6341	5.4496
$3\frac{1}{4}$	3.25	$3\frac{1}{4}$.3077	.1970	3.0530	2.8560	6.4063
$3\frac{1}{2}$	3.5	$3\frac{1}{4}$.3077	.1970	3.3030	3.1060	7.5769
$3\frac{3}{4}$	3.75	3	.3333	.2134	3.5366	3.3231	8.6732
4	4.000	3	.3333	.2134	3.7866	3.5731	10.0272

Courtesy of the Greenfield Tap and Die Corporation

TABLE OF DIAMETERS WITH CORRESPONDING PITCH

Diam. in.	Pitch			Diam. in.	Pitch			Diam. in.	Pitch		
	U.S. Stan.	"V"	Whit- worth		U.S. Stan.	"V"	Whit- worth		U.S. Stan.	"V"	Whit- worth
$\frac{1}{4}$	20	20	20	$1\frac{1}{4}$	7	7	7	$2\frac{1}{4}$	4	4	$3\frac{1}{4}$
$\frac{5}{16}$	18	18	18	$1\frac{1}{8}$	7	7	7	$2\frac{7}{8}$	$3\frac{1}{2}$	4	$3\frac{1}{2}$
$\frac{3}{8}$	16	16	16	$1\frac{3}{8}$	6	6	6	3	$3\frac{1}{2}$	$3\frac{1}{2}$	$3\frac{1}{2}$
$\frac{7}{16}$	14	14	14	$1\frac{1}{2}$	6	6	6	$3\frac{1}{4}$	$3\frac{1}{2}$	$3\frac{1}{2}$	$3\frac{1}{4}$
$\frac{9}{16}$	13	12	12	$1\frac{5}{8}$	$5\frac{1}{2}$	5	5	$3\frac{1}{4}$	$3\frac{1}{2}$	$3\frac{1}{2}$	$3\frac{1}{4}$
$\frac{11}{16}$	12	12	12	$1\frac{3}{4}$	5	5	5	$3\frac{3}{8}$	$3\frac{1}{4}$	$3\frac{1}{4}$	$3\frac{1}{4}$
$\frac{13}{16}$	11	11	11	$1\frac{7}{8}$	5	$4\frac{1}{2}$	$4\frac{1}{2}$	$3\frac{1}{4}$	$3\frac{1}{4}$	$3\frac{1}{4}$	$3\frac{1}{4}$
$\frac{15}{16}$	11	11	11	2	$4\frac{1}{2}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$3\frac{5}{8}$	$3\frac{1}{4}$	$3\frac{1}{4}$	$3\frac{1}{4}$
$\frac{17}{16}$	10	10	10	$2\frac{1}{8}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$3\frac{1}{4}$	3	3	3
$\frac{19}{16}$	10	10	10	$2\frac{1}{4}$	$4\frac{1}{2}$	$4\frac{1}{2}$	4	$3\frac{7}{8}$	3	3	3
$\frac{21}{16}$	9	9	9	$2\frac{5}{8}$	4	$4\frac{1}{2}$	4	4	3	3	3
$\frac{23}{16}$	9	9	9	$2\frac{1}{2}$	4	4	4	4	3	3	3
1	8	8	8	$2\frac{5}{6}$	4	4	4	4	3	3	3

CONSTANTS FOR FINDING DIAMETER
AT BOTTOM OF THREAD

Threads per inch	U.S. Standard Constant	"V" Thread Constant	Threads per inch	U.S. Standard Constant	"V" Thread Constant
64	.02030	.02706	16	.08119	.10825
60	.02165	.02887	14	.09279	.12372
56	.02320	.03093	13	.09993	.13323
50	.02598	.03464	12	.10825	.14434
48	.02706	.03608	11	.11809	.15746
44	.02952	.03936	10	.12990	.17321
40	.03248	.04330	9	.14434	.19245
36	.03608	.04811	8	.16238	.21651
32	.04059	.05413	7	.18558	.24744
30	.04330	.05773	6	.21651	.28868
28	.04639	.06186	$5\frac{1}{2}$.23619	.31492
26	.04996	.06662	5	.25981	.34641
24	.05413	.07217	$4\frac{1}{2}$.28868	.38490
22	.05905	.07873	4	.32476	.43301
20	.06495	.08660	$3\frac{1}{2}$.37115	.49487
18	.07217	.09623	3	.43301	.57733

 C = Constant for number of threads per inch. D = Outside diameter. D^1 = Diameter at bottom of thread.

$$D^1 = D - C.$$

EXAMPLE

Given outside diameter of U. S. S. screw thread, 2 inches. $4\frac{1}{2}$ threads per inch; find diameter at bottom of thread; $D = 2$ inches; for $4\frac{1}{2}$ threads U. S. S., constant, $C = .2886$; then diameter at bottom of thread, $D^1 = 2 - .2886 = 1.7114$ inches.

DOUBLE DEPTH OF THREADS

Threads per in.	V Threads DD	U.S. St'd DD	Whit. St'd DD	Threads per in.	V Threads DD	U.S. St'd DD	Whit. St'd DD
2	.86650	.64950	.64000	28	.06185	.04639	.04571
2½	.77022	.57733	.56888	30	.05773	.04330	.04286
2¾	.72960	.54694	.53894	32	.05412	.04059	.04000
2½	.69320	.51960	.51200	34	.05097	.03820	.03784
2¾	.66015	.49485	.48761	36	.04811	.03608	.03555
2¾	.63019	.47236	.46545	38	.04560	.03418	.03388
2½	.60278	.45182	.44521	40	.04330	.03247	.03200
3	.57733	.43300	.42666	42	.04126	.03093	.03047
3¼	.53323	.39966	.39384	44	.03936	.02952	.03136
3½	.49485	.37114	.36571	46	.03767	.02823	.02782
4	.43300	.32475	.32000	48	.03608	.02706	.02666
4½	.38488	.28869	.28444	50	.03464	.02598	.02560
5	.34660	.25980	.25600	52	.03332	.02498	.02461
5½	.31490	.23618	.23272	54	.03209	.02405	.02370
6	.28866	.21650	.21333	56	.03093	.02319	.02285
7	.24742	.18557	.18285	58	.02987	.02239	.02206
8	.21650	.16237	.16000	60	.02887	.02165	.02133
9	.19244	.14433	.14222	62	.02795	.02095	.02064
10	.17820	.12990	.12800	64	.02706	.02029	.02000
11	.15745	.11809	.11636	66	.02625	.01968	.01939
11½	.15069	.11295	.11121	68	.02548	.01910	.01882
12	.14433	.10825	.10666	70	.02475	.01855	.01728
13	.13323	.09992	.09846	72	.02407	.01804	.01782
14	.12357	.09278	.09142	74	.02341	.01752	.01729
15	.11555	.08660	.08533	76	.02280	.01714	.01673
16	.10825	.08118	.08000	78	.02221	.01665	.01641
18	.09622	.07216	.07111	80	.02166	.01623	.01600
20	.08660	.06495	.06400	82	.02113	.01584	.01560
22	.07872	.05904	.05818	84	.02063	.01546	.01523
24	.07216	.05412	.05333	86	.02015	.01510	.01476
26	.06661	.04996	.04923	88	.01957	.01476	.01454
27	.06418	.04811	.04740	90	.01925	.01443	.01422

$$D^2 \frac{1.733}{N} \text{ For V Thread.}$$

$$D^2 \frac{1.299}{N} \text{ For U.S. Standard.}$$

$$D^2 \frac{1.28}{N} \text{ For Whitworth Standard.}$$

TAP DRILLS FOR A. S. M. E. STANDARD AND SPECIAL
MACHINE SCREW TAPS

The diameter given for each hole to be tapped allows for a practical clearance at the root of the thread of the screw and will not impose undue strain upon the tap in service.

Size of Tap	No. of Threads	Size of Drill	Size of Tap	No. of Threads	Size of Drill
0	80	.0465	9	32	.1405
1	64	.055	10	24	.140
1	72	.0595	10	30	.152
2	56	.0670	10	32	.154
2	64	.070	12	24	.166
3	48	.076	12	28	.173
3	56	.0785	14	20	.182
4	36	.080	14	24	.1935
4	40	.082	16	20	.209
4	48	.089	16	22	.213
5	36	.0935	18	18	.228
5	40	.098	18	20	.234
5	44	.0995	20	18	.257
6	32	.1015	20	20	.261
6	36	.1065	22	16	.272
6	40	.110	22	18	.281
7	30	.113	24	16	.295
7	32	.116	24	18	.302
7	36	.120	26	14	.316
8	30	.1285	26	16	.323
8	32	.1285	28	14	.339
8	36	.136	28	16	.348
9	24	.1285	30	14	.368
9	30	.136	30	16	.377

NOTE: Special Taps are in Boldface Type.

TAP DRILLS FOR MACHINE SCREWS

Size of Tap	American Standard Diam. in inches	Size of Drill for Outside Diam. of Screw Number	Size of Drill for Tapping Hole Number	Size of Tap	American Standard Diam. in inches	Size of Drill for Outside Diam. of Screw Number	Size of Drill for Tapping Hole Number
2 x 48			50	13 x 20			17
2 x 56	.25763	44	49	13 x 22	.071961	11	17
2 x 64			48	13 x 24			15
3 x 40			49	14 x 20			15
3 x 48	.22942	39	47	14 x 22	.064084	1/4	11
3 x 56			45	14 x 24			10
4 x 32			46	15 x 18			12
4 x 36	.20431	33	44	15 x 20			10
4 x 40			43	15 x 22	.057068	F	8
				15 x 24			7
5 x 30			43				12
5 x 32	.18194	1/8	42	16 x 16			8
5 x 36			41	16 x 18	.05082	I	7
5 x 40			38	16 x 20			
6 x 30			38	17 x 16			8
6 x 32	.16202	28	37	17 x 18	.045257	L	4
6 x 36			36	17 x 20			3
6 x 40			35				
7 x 28			34	18 x 16			2
7 x 30	.14428	24	33	18 x 18	.040303	H	1
7 x 32			32	18 x 20			
8 x 24			31	19 x 16			1
8 x 30	.12849	19	31	19 x 18	.03589	R	C
8 x 32			30	19 x 20			
9 x 24			30				
9 x 28	.11443	16	28	20 x 16			F
9 x 30			28	20 x 18	.031961	P	E
9 x 32			26	20 x 20			J
10 x 24			26	22 x 16			
10 x 30	.10189	11	24	22 x 18	.025347	S	H
10 x 32			24				
11 x 24			21	24 x 14			O
11 x 28	.090742	6	20	24 x 16	.01594	H	P
11 x 30			19	24 x 18			
12 x 20			24	26 x 14			R
12 x 22	.080808	1/8	20	26 x 16	.012641	R	S
12 x 24			19	30 x 14	.010025	H	U
12 x 28			18	30 x 16			V

TABLE OF TAPPED HOLE LIMITS FOR U. S. S. TAPS

CLOSE FIT LIMITS

Size in Inches	P Basic or P. D. of Max. Sc.	Min. Sc. P. D. Proposed	Max. Sc. over Min. Sc.	Tapped Hole Pitch Diam.		GAGE Pitch Diam.		Gage P. D. Diff.	Min. Gage over Max. Sc.
				Min.	Max.	Min.	Max.		
$\frac{1}{4}$.20	.2175	.2160	.0015	.0005	.2190	.0010	.21775	.0015
$\frac{5}{16}$.18	.2764	.2745	.0019	.0006	.2770	.0010	.27675	.0015
$\frac{3}{8}$.16	.3344	.3325	.0019	.0006	.3350	.0015	.33475	.0020
$\frac{7}{16}$.14	.3911	.38915	.00195	.0009	.3920	.0015	.39175	.0020
$\frac{1}{2}$.13	.4501	.4481	.0020	.0009	.4510	.0015	.45075	.0020
$\frac{9}{16}$.12	.5084	.5064	.0020	.0011	.5095	.0020	.50925	.0025
$\frac{5}{8}$.11	.5660	.5635	.0025	.0010	.5670	.0020	.56675	.0025
$\frac{11}{16}$.11	.6285	.6260	.0025	.0010	.6295	.0020	.62925	.0025
$\frac{3}{4}$.10	.6851	.6821	.0030	.0009	.6850	.0020	.68575	.0025
$\frac{13}{16}$.10	.7475	.7445	.0030	.0009	.7484	.0025	.74815	.0030
$\frac{7}{8}$.9	.8028	.7996	.0032	.0011	.8039	.0025	.80365	.0030
$1\frac{1}{16}$	9	.8653	.8621	.0032	.0011	.8664	.0025	.86615	.0030
1	8	.9188	.9155	.0033	.0012	.9200	.0025	.91975	.0030
$1\frac{1}{8}$	7	1.0322	1.0280	.0042	.0013	1.0335	.0025	1.03325	.0030
$1\frac{1}{4}$	7	1.1572	1.1530	.0042	.0013	1.1585	.0025	1.15825	.0030
$1\frac{1}{4}$	6	1.2668	1.2625	.0043	.0012	1.2680	.0030	1.26775	.0035
$1\frac{1}{2}$	6	1.3918	1.3875	.0043	.0012	1.3930	.0030	1.39275	.0035

142

Courtesy of the Greenfield
Tap and Die Corporation

Table for Loose Fit Limits, page 143; for S. A. E. Taps, page 145; for Machine Screw Taps, page 141.

TABLE OF TAPPED HOLE LIMITS FOR U. S. S. TAPS

LOOSE FIT LIMITS

Size in Inches	P	Basic or P.D. of Max. Sc.	Min. Sc. P.D. Proposed	Max. Sc. over Min. Sc.	Min. Tap over Basic	Tapped Hole Pitch Diams.		Tapped Hole Diff.	GAGE Pitch Diams.		Gage P.D. Diff.	Min. Gage over Max. Sc.
						Min.	Max.		Min.	Max.		
$\frac{1}{4}$	20	.2175	.2160	.0015	.0005	.2180	.2200	.0020	.21775	.22025	.0025	.00025
$\frac{5}{16}$	18	.2764	.2745	.0019	.0006	.2770	.2790	.0020	.27675	.27925	.0025	.00035
$\frac{3}{8}$	16	.3344	.3325	.0019	.0008	.3350	.3380	.0030	.33475	.33825	.0035	.00035
$\frac{7}{16}$	14	.3911	.38915	.00195	.0009	.3920	.3950	.0030	.39175	.39525	.0035	.00065
$\frac{9}{16}$	13	.4501	.4481	.0020	.0009	.4510	.4540	.0030	.45075	.45425	.0035	.00076
$\frac{11}{16}$	12	.5084	.5064	.0020	.0011	.5095	.5135	.0040	.50925	.51375	.0045	.00085
$\frac{3}{4}$	11	.5660	.5635	.0025	.0010	.5670	.5710	.0040	.56675	.57125	.0045	.00075
$\frac{5}{4}$	11	.6285	.6260	.0025	.0010	.6295	.6335	.0040	.62925	.63675	.0045	.00075
$\frac{7}{4}$	10	.6851	.6821	.0030	.0009	.6860	.6900	.0040	.68575	.69025	.0045	.00075
$\frac{9}{4}$	10	.7475	.7445	.0030	.0009	.7484	.7534	.0050	.74815	.75375	.0055	.00065
$\frac{11}{4}$	9	.8028	.7996	.0032	.0011	.8039	.8089	.0050	.80365	.80915	.0055	.00085
$\frac{13}{4}$	9	.8653	.8621	.0032	.0011	.8664	.8714	.0050	.86615	.87165	.0055	.00086
1	8	.9188	.9155	.0033	.0012	.9200	.9250	.0050	.91975	.92525	.0055	.00095
$1\frac{1}{4}$	7	1.0322	1.0280	.0042	.0013	1.0335	1.0385	.0050	1.03325	1.03875	.0055	.00105
$1\frac{1}{2}$	7	1.1572	1.1530	.0042	.0013	1.1585	1.1635	.0050	1.15525	1.16375	.0055	.00105
$1\frac{3}{4}$	6	1.2668	1.2625	.0043	.0012	1.2680	1.2740	.0050	1.26775	1.27425	.0065	.00085
$1\frac{5}{8}$	6	1.3918	1.3875	.0043	.0012	1.3930	1.3990	.0060	1.39275	1.39925	.0065	.00085

Courtesy of the Greenfield
Tap and Die Corporation

BRITISH ASSOCIATION SCREW THREADS*

Size of Tap	Outside Diameter mm.	Core Diameter mm.	Nearest Commercial Drill to produce 75% depth of thread	
			Inch Decimals	Commercial Designation
0	6.0	4.80	.201	No. 7
1	5.3	4.22	.177	16
2	4.7	3.73	.156	22
3	4.1	3.22	.135	29
4	3.6	2.81	.118	31
5	3.2	2.49	.105	37
6	2.8	2.16	.091	43
7	2.5	1.92	.081	46
8	2.2	1.68	.075	48
9	1.9	1.43	.061	$\frac{1}{16}$ in.
10	1.7	1.28	.055	No. 54
11	1.5	1.13	.048	56
12	1.3	.96	.041	59

NOTE: A common nut drilled out so that it contains only 50% of a full depth thread will break the bolt before it will strip.

A 75% depth of thread yields an ample margin of safety (2 to 1) and is economical in tapping.

A full depth of thread in a common nut is only about 5% stronger than a 75% depth of thread, yet it requires three times the power to tap.

ADAPTING LATHE TO CUT SCREW THREADS IN METRIC SYSTEM

Metric screw threads are usually expressed in a certain number of threads per centimeter. Metric threads may be cut on any engine lathe that is arranged for compound gearing as follows:

For example: To cut 10 threads per centimeter, gear up the lathe to cut 10 threads per inch, using the gears prescribed on the index plate in the usual manner for cutting 10 threads per inch, but instead of using the usual intermediate gears on the lathe, use two gears, one of 50 teeth and one of 127 teeth respectively on the intermediate stud. These gears should run loose on the stud. The gear of 50 teeth meshing in on gear on screw, and gear of 127 teeth meshing in on gear on the stud.

It is easily understood how the English or American system is converted into the Metric system; by the use of two gears, one of 50 and one of 127, the ratio of these two gears is .3937; that is, 50 divided by 127 equals .3937, the length in inches of one centimeter.

LETTER SIZES OF DRILLS

Diameter Inches	Decimals of 1 Inch	Diameter Inches	Decimals of 1 Inch
A $\frac{15}{64}$.234	N	.302
B	.238	O $\frac{15}{64}$.316
C	.242	P $\frac{21}{64}$.323
D	.246	Q	.332
E $\frac{13}{64}$.250	R $\frac{11}{32}$.339
F	.257	S	.348
G	.261	T $\frac{23}{64}$.358
H $\frac{11}{32}$.266	U	.368
I	.272	V $\frac{3}{8}$.377
J	.277	W $\frac{25}{64}$.386
K $\frac{9}{32}$.281	X	.397
L	.290	Y $\frac{13}{32}$.404
M $\frac{19}{64}$.295	Z	.413

SIZES OF TAP DRILLS

Tap Diameter	Threads per Inch	Drill for V Thread	Drill for U. S. Standards	Drill for Whitworth
$\frac{1}{4}$	16, 18, 20	$\frac{5}{32}$ $\frac{5}{32}$ $\frac{11}{64}$	$\frac{7}{16}$	$\frac{7}{16}$
$\frac{9}{32}$	16, 18, 20	$\frac{3}{16}$ $\frac{11}{64}$ $\frac{11}{64}$		
$\frac{15}{64}$	16, 18	$\frac{3}{16}$ $\frac{11}{64}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{11}{32}$	16, 18	$\frac{1}{4}$ $\frac{11}{64}$		
$\frac{3}{8}$	14, 16, 18	$\frac{1}{4}$ $\frac{3}{32}$ $\frac{3}{32}$	$\frac{9}{32}$	$\frac{9}{32}$
$\frac{5}{32}$	14, 16, 18	$\frac{1}{8}$ $\frac{21}{64}$ $\frac{21}{64}$		
$\frac{7}{32}$	14, 16	$\frac{3}{16}$ $\frac{3}{16}$	$\frac{11}{32}$	$\frac{11}{32}$
$\frac{11}{64}$	14	$\frac{3}{16}$ $\frac{3}{16}$		
$\frac{1}{2}$	12, 13, 14	$\frac{3}{8}$ $\frac{21}{64}$ $\frac{21}{64}$	$\frac{13}{32}$	$\frac{13}{32}$
$\frac{13}{64}$	12, 14	$\frac{7}{16}$ $\frac{21}{64}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{5}{16}$	10, 11, 12	$\frac{11}{32}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{11}{64}$	11, 12	$\frac{11}{32}$ $\frac{1}{2}$		
$\frac{3}{4}$	10, 11, 12	$\frac{11}{32}$ $\frac{5}{8}$ $\frac{5}{8}$	$\frac{5}{8}$	$\frac{5}{8}$
$\frac{13}{64}$	10	$\frac{11}{32}$		
$\frac{7}{32}$	9, 10	$\frac{11}{32}$ $\frac{11}{32}$	$\frac{11}{32}$	$\frac{11}{32}$
$\frac{11}{64}$	9	$\frac{11}{32}$		
1	8	$\frac{11}{32}$	$\frac{11}{32}$	$\frac{11}{32}$

TAP DRILL SIZES FOR S. A. E. STANDARD THREADS

Diam. of Tap	No. of Threads	Diam. of Tap Drill	Diam. of Tap	No. of Threads	Diam. of Tap Drill	Diam. of Tap	No. of Threads	Diam. of Tap Drill
$\frac{1}{4}$	28	0.213	$\frac{5}{16}$	18	0.500	$1\frac{1}{16}$	14	0.921
$\frac{13}{64}$	24	0.272	$\frac{7}{16}$	18	0.562	$1\frac{1}{4}$	12	1.031
$\frac{9}{32}$	24	0.332	$\frac{11}{32}$	16	0.625	$1\frac{1}{4}$	12	1.156
$\frac{11}{64}$	20	0.386	$\frac{3}{4}$	16	0.687	$1\frac{1}{8}$	12	1.281
$\frac{15}{64}$	20	0.437	$\frac{11}{32}$	14	0.796	$1\frac{1}{2}$	12	1.406

TAPS FOR A. S. M. E. STANDARD MACHINE SCREWS

No.	Size Outside Diameter	Outside Diameters				Pitch Diameters				Root Diameters		
		Thds. P.I.	Minimum	Maximum	Difference	Minimum	Maximum	Difference	Minimum	Maximum	Difference	
0	.060	.80	.0600	.0632	.0023	.0528	.0538	.0010	.0447	.0466	.0019	
1	.073	.72	.0740	.0765	.0025	.0650	.0660	.0010	.0560	.0580	.0020	
2	.086	.64	.0871	.0898	.0027	.0770	.0781	.0011	.0668	.0689	.0021	
3	.099	.56	.1002	.1033	.0031	.0886	.0897	.0011	.0770	.0793	.0023	
4	.112	.48	.1133	.1168	.0035	.0998	.1010	.0013	.0862	.0887	.0025	
5	.125	.44	.1263	.1301	.0038	.1116	.1129	.0013	.0968	.0995	.0027	
6	.138	.40	.1394	.1435	.0041	.1232	.1246	.0014	.1069	.1097	.0028	
7	.151	.36	.1525	.1569	.0044	.1345	.1359	.0014	.1164	.1193	.0029	
8	.164	.36	.1655	.1699	.0044	.1475	.1489	.0014	.1294	.1323	.0030	
9	.177	.32	.1786	.1835	.0049	.1583	.1598	.0015	.1380	.1411	.0031	
10	.190	.30	.1916	.1968	.0052	.1700	.1716	.0016	.1483	.1515	.0032	
12	.216	.28	.2176	.2232	.0056	.1944	.1961	.0017	.1712	.1745	.0033	
14	.242	.24	.2438	.2500	.0062	.2167	.2184	.0017	.1897	.1932	.0035	
16	.268	.22	.2698	.2765	.0067	.2403	.2421	.0018	.2108	.2144	.0036	
18	.294	.20	.2959	.3031	.0072	.2634	.2652	.0018	.2309	.2346	.0037	
20	.320	.20	.3219	.3291	.0072	.2894	.2912	.0018	.2569	.2606	.0037	
22	.346	.18	.3479	.3559	.0080	.3118	.3138	.0020	.2757	.2796	.0039	
24	.372	.16	.3740	.3828	.0088	.3334	.3354	.0020	.2928	.2968	.0040	
26	.398	.16	.4000	.4088	.0088	.3594	.3614	.0020	.3188	.3228	.0040	
28	.424	.14	.4261	.4359	.0098	.3797	.3818	.0021	.3333	.3374	.0041	
30	.450	.14	.4619	.4621	.0098	.4057	.4078	.0021	.3593	.3634	.0041	

D A T A B O O K

**Threads
and Screws**

TAPS FOR A. S. M. E. SPECIAL MACHINE SCREWS

No.	Size Outside Diameter	Outside Diameters				Pitch Diameters				Root Diameters	
		Minimum	Maximum	Difference	Minimum	Maximum	Difference	Minimum	Maximum	Difference	
1	.073	.64	.0741	.0768	.0027	.0640	.0651	.0011	.0538	.0559	.0021
2	.086	.56	.0772	.0903	.0031	.0756	.0767	.0011	.0640	.0663	.0023
3	.099	.48	.1003	.1038	.0035	.0868	.0880	.0012	.0732	.0757	.0025
4	.112	.40	.1134	.1175	.0041	.0972	.0986	.0014	.0809	.0837	.0028
		36	.1135	.1179	.0044	.0955	.0969	.0014	.0774	.0803	.0029
5	.125	.40	.1264	.1305	.0041	.1102	.1116	.0014	.0939	.0967	.0028
		36	.1265	.1309	.0044	.1085	.1099	.0014	.0904	.0933	.0029
6	.138	.36	.1395	.1439	.0044	.1215	.1229	.0014	.1034	.1063	.0029
		32	.1396	.1445	.0049	.1193	.1208	.0015	.0990	.1021	.0031
7	.151	.32	.1526	.1575	.0049	.1323	.1338	.0015	.1120	.1151	.0031
		30	.1526	.1578	.0052	.1310	.1326	.0016	.1093	.1125	.0032
8	.164	.32	.1656	.1705	.0049	.1453	.1468	.0015	.1250	.1281	.0031
		30	.1656	.1708	.0052	.1440	.1456	.0016	.1223	.1255	.0032
9	.177	.30	.1786	.1838	.0052	.1569	.1585	.0016	.1353	.1385	.0032
		24	.1788	.1850	.0062	.1517	.1534	.0017	.1247	.1282	.0035
10	.190	.32	.1916	.1965	.0049	.1713	.1728	.0015	.1510	.1541	.0031
		24	.1918	.1950	.0062	.1647	.1684	.0017	.1377	.1412	.0035
12	.216	24	.2178	.2240	.0062	.1907	.1924	.0017	.1637	.1672	.0035
14	.242	20	.2439	.2511	.0072	.2114	.2132	.0018	.1789	.1826	.0037
16	.268	20	.2699	.2771	.0072	.2374	.2392	.0018	.2049	.2086	.0037
18	.294	18	.2959	.3039	.0080	.2598	.2618	.0020	.2237	.2276	.0039
20	.320	18	.3219	.3299	.0080	.2858	.2878	.0020	.2497	.2536	.0039
22	.346	16	.3450	.3568	.0088	.3074	.3094	.0020	.2668	.2708	.0040
24	.372	18	.3739	.3819	.0080	.3378	.3398	.0020	.3017	.3056	.0039
26	.398	14	.4001	.4099	.0098	.3537	.3558	.0021	.3073	.3114	.0041
28	.424	16	.4260	.4348	.0088	.3854	.3874	.0020	.3448	.3488	.0040
30	.450	16	.4520	.4608	.0088	.4114	.4134	.0020	.3708	.3748	.0010

Courtesy of the Greenfield
Tap and Die Corporation

BRIGGS'S STANDARD TAPER PIPE THREAD

Taper of thread = $\frac{3}{4}$ in. per foot = $\frac{1}{16}$ in. per inch

$$\text{Depth of thread at (E)} = \frac{8}{\text{threads per inch}}$$

N = number of threads per inch

Pipe Diameters		Nominal Size	Actual Inch Size	Actual Outside	Depth of Thread	No. Threads per Inch	Length of Thread Inches	No. Turns Pipe Screws into Fitting by Hand	No. Turns to be Made with Wrench	Distance Pipe Screws into Fitting	No. of Turns Pipe Screws into Fitting
$\frac{1}{8}$	0.270	0.405	.029	27	.412	4	1.13	0.19	5.13		
$\frac{1}{4}$	0.364	0.540	.044	18	.624	4	1.22	0.29	5.22		
$\frac{3}{8}$	0.494	0.675	.044	18	.634	4	1.40	0.30	5.40		
$\frac{1}{2}$	0.623	0.840	.057	14	.818	4	1.46	0.40	5.46		
$\frac{3}{4}$	0.824	1.050	.057	14	.828	4	1.60	0.51	5.78		
1	1.048	1.315	.069	$11\frac{1}{2}$	1.03	$4\frac{1}{2}$	1.37	0.55	6.21		
$1\frac{1}{4}$	1.380	1.660	.069	$11\frac{1}{2}$	1.06	5	1.21	0.58	6.33		
$1\frac{1}{2}$	1.610	1.900	.069	$11\frac{1}{2}$	1.07	5	1.33	0.89	6.67		
2	2.067	2.375	.069	$11\frac{1}{2}$	1.10	5	1.67	0.95	7.12		
$2\frac{1}{2}$	2.468	2.875	.100	8	1.64	5	2.12	1.00	7.60		
3	3.067	3.500	.100	8	1.70	5	2.60	1.05	8.00		
$3\frac{1}{2}$	3.548	4.000	.100	8	1.75	5	3.00	1.05	8.40		
4	4.026	4.500	.100	8	1.80	$5\frac{1}{2}$	2.90	1.10	8.80		
$4\frac{1}{2}$	4.508	5.000	.100	8	1.85	$5\frac{1}{2}$	3.30	1.10	8.80		
5	5.045	5.563	.100	8	1.91	$5\frac{1}{2}$	3.78	1.16	9.28		
6	6.065	6.625	.100	8	2.01	6	4.08	1.26	10.08		
7	7.023	7.625	.100	8	2.11	7	3.88	1.36	10.88		
8	7.981	8.625	.100	8	2.21	8	3.68	1.46	11.68		
9	8.941	9.625	.100	8	2.32	9	3.56	1.57	12.56		
10	10.020	10.750	.100	8	2.43	10	3.44	1.68	13.44		

BRITISH STANDARD WHITWORTH PIPE THREAD

Taper $\frac{1}{2}$ inch per foot

Nominal Size	Approx. Outside Diam.	*Gage Diam.	Depth of Thread	No. of Threads per Inch	Length of Thread		Distance of Gage Diam'r from Pipe end on taper screws Std.
					On Pipe End	In Coupler	
					Min.	Min.	
$\frac{1}{8}$	$\frac{11}{16}$.383	.0230	28	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{1}{8}$
$\frac{3}{16}$	$\frac{11}{16}$.518	.0335	19	$\frac{15}{16}$	$\frac{7}{8}$	$\frac{1}{16}$
$\frac{5}{16}$	$\frac{11}{16}$.656	.0335	19	$\frac{1}{2}$	1	$\frac{1}{16}$
$\frac{7}{16}$	$\frac{11}{16}$.825	.0455	14	$\frac{5}{8}$	$1\frac{1}{4}$	$\frac{1}{16}$
$\frac{9}{16}$	$\frac{11}{16}$.902	.0455	14	$\frac{5}{8}$	$1\frac{1}{4}$	$\frac{1}{16}$
$\frac{11}{16}$	$1\frac{1}{16}$	1.041	.0455	14	$\frac{3}{4}$	$1\frac{1}{2}$	$\frac{1}{16}$
$\frac{13}{16}$	$1\frac{1}{16}$	1.189	.0455	14	$\frac{3}{4}$	$1\frac{1}{2}$	$\frac{1}{16}$
1	$1\frac{1}{16}$	1.309	.0580	11	$\frac{7}{8}$	$1\frac{1}{4}$	$\frac{1}{16}$
$1\frac{1}{4}$	$1\frac{1}{16}$	1.650	.0580	11	1	2	$\frac{1}{16}$
$1\frac{1}{2}$	$1\frac{1}{16}$	1.882	.0580	11	1	2	$\frac{1}{16}$
$1\frac{3}{4}$	$2\frac{1}{16}$	2.116	.0580	11	$1\frac{1}{8}$	$2\frac{1}{4}$	$\frac{1}{16}$
2	$2\frac{1}{16}$	2.347	.0580	11	$1\frac{1}{4}$	$2\frac{1}{4}$	$\frac{1}{16}$
$2\frac{1}{4}$	$2\frac{1}{16}$	2.587	.0580	11	$1\frac{1}{4}$	$2\frac{1}{2}$	$\frac{1}{16}$
$2\frac{3}{4}$	3	2.960	.0580	11	$1\frac{1}{4}$	$2\frac{1}{2}$	$\frac{1}{16}$
$2\frac{7}{8}$	$3\frac{1}{16}$	3.210	.0580	11	$1\frac{5}{8}$	$2\frac{1}{4}$	$\frac{1}{16}$
3	$3\frac{1}{16}$	3.460	.0580	11	$1\frac{5}{8}$	$2\frac{3}{4}$	$\frac{1}{16}$
$3\frac{1}{2}$	$3\frac{3}{16}$	3.700	.0580	11	$1\frac{1}{2}$	3	$\frac{1}{16}$
$3\frac{3}{4}$	4	3.950	.0580	11	$1\frac{1}{2}$	3	$\frac{1}{16}$
$3\frac{1}{4}$	$4\frac{1}{16}$	4.200	.0580	11	$1\frac{1}{2}$	3	$\frac{1}{16}$
4	$4\frac{1}{16}$	4.450	.0580	11	$1\frac{5}{8}$	$3\frac{1}{4}$	1
$4\frac{1}{2}$	5	4.950	.0580	11	$1\frac{5}{8}$	$3\frac{1}{4}$	1
5	$5\frac{1}{2}$	5.450	.0580	11	$1\frac{1}{4}$	$3\frac{1}{2}$	$1\frac{1}{16}$
$5\frac{1}{2}$	6	5.950	.0580	11	$1\frac{7}{8}$	$3\frac{3}{4}$	$1\frac{1}{16}$
6	$6\frac{1}{2}$	6.450	.0580	11	2	4	$1\frac{1}{16}$

*Gage Diameter is the full diameter of the Standard Male Parallel Screw Gage which the Parallel Coupler, to be used with a pipe of that size, is required to fit.

DRILL SIZES FOR PIPE TAP

Size Tap Inches	Briggs Standard		British Standard		Size Tap Inches	Briggs Standard		British Standard	
	Thread	Drill	Thread	Drill		Thread	Drill	Thread	Drill
$\frac{1}{8}$	27	$\frac{11}{16}$	28	$\frac{5}{8}$	$\frac{1}{2}$..	$2\frac{1}{8}$	11	$2\frac{1}{16}$
$\frac{3}{16}$	18	$\frac{11}{16}$	19	$\frac{15}{16}$	$\frac{1}{2}$	8	$2\frac{1}{8}$	11	$2\frac{1}{16}$
$\frac{5}{16}$	18	$\frac{11}{16}$	19	$\frac{15}{16}$	$2\frac{1}{4}$..	$3\frac{1}{16}$	11	$3\frac{1}{16}$
$\frac{3}{8}$	14	$\frac{11}{16}$	14	$\frac{11}{16}$	3	8	$3\frac{1}{16}$	11	$3\frac{1}{16}$
$\frac{7}{16}$	14	$\frac{11}{16}$	14	$\frac{11}{16}$	$3\frac{1}{4}$	8	$3\frac{1}{16}$	11	$3\frac{1}{16}$
$\frac{9}{16}$	14	$\frac{11}{16}$	14	$\frac{11}{16}$	$3\frac{3}{4}$..	$3\frac{1}{16}$	11	$3\frac{1}{16}$
1	$11\frac{1}{2}$	$1\frac{1}{8}$	11	$1\frac{1}{8}$	4	8	$4\frac{1}{16}$	11	$4\frac{1}{16}$
$1\frac{1}{4}$	$11\frac{1}{2}$	$1\frac{1}{8}$	11	$1\frac{1}{2}$	$4\frac{1}{2}$	8	$4\frac{1}{16}$	11	$4\frac{1}{16}$
$1\frac{1}{2}$	$11\frac{1}{2}$	$1\frac{1}{8}$	11	$1\frac{1}{2}$	5	8	$5\frac{1}{4}$	11	$5\frac{1}{4}$
$1\frac{3}{4}$	11	$1\frac{1}{2}$	$5\frac{1}{2}$	11	$5\frac{1}{2}$
2	$11\frac{1}{2}$	$2\frac{1}{8}$	11	$2\frac{1}{8}$	6	8	$6\frac{1}{16}$	11	$6\frac{1}{16}$

MICROMETER READINGS (PITCH DIAMETER)

for U. S. Form Threads = D — $\frac{.6495}{P}$

United States Standard Threads

Diam.	Threads per Inch	Micro. Reading or Pitch Diam.		Diam.	Threads per Inch	Micro. Reading or Pitch Diam.	
D	P	.6495	.6495	D	P	.6495	.6495
		D — P	P			D — P	P
	64		.0101	$\frac{1}{4}''$	20	.2175	.0325
	62		.0105	$\frac{5}{16}$	18	.2764	.0361
	60		.0108	$\frac{3}{8}$	16	.3344	.0406
	58		.0112	$\frac{7}{16}$	14	.3911	.0464
	56		.0116	$\frac{1}{2}$	13	.4501	.0499
	54		.0120	$\frac{9}{16}$	12	.5084	.0541
	52		.0125	$\frac{5}{8}$	11	.566	.0590
	50		.0130	$\frac{3}{4}$	10	.6851	.0649
	48		.0135	$\frac{7}{8}$	9	.8029	.0721
	46		.0141	1	8	.9188	.0812
	44		.0148	$1\frac{1}{8}$	7	1.0322	.0928
	42		.0155	$1\frac{1}{4}$	7	1.1572	.0928
	40		.0162	$1\frac{3}{8}$	6	1.2668	.1082
	38		.0171	$1\frac{1}{2}$	6	1.3918	.1082
	36		.0180	$1\frac{5}{8}$	$5\frac{1}{2}$	1.507	.1180
	34		.0191	$1\frac{1}{4}$	5	1.6201	.1299
	32		.0203	$1\frac{7}{8}$	5	1.7451	.1299
	30		.0217	2	$4\frac{1}{2}$	1.8557	.1443
	28		.0232	$2\frac{1}{2}$	4	2.3376	.1624
	26		.0250	3	$3\frac{1}{2}$	2.8145	.1855
	24		.0271	$3\frac{1}{2}$	$3\frac{3}{4}$	3.3002	.1998
	22		.0295	4	3	3.7835	.2165

As there is no standard of diameter for the finer pitches, the columns for diameter and micrometer reading, or pitch diameter, are left blank. The fourth and eighth columns give the numbers to be subtracted from the diameter to obtain the micrometer reading or pitch diameter.

S. A. E. Standard Threads

Diam.	Threads per Inch	Micro. Reading or Pitch Diam.		Diam.	Threads per Inch	Micro. Reading or Pitch Diam.	
D	P	.6495	.6495	D	P	.6495	.6495
		D — P	P			D — P	P
$\frac{1}{4}$	28	.2268	.0232	$\frac{1}{4}$	16	.7094	.0406
$\frac{5}{16}$	24	.2855	.0270	$\frac{5}{16}$	14	.8285	.0465
$\frac{3}{8}$	24	.3480	.0270	$\frac{3}{8}$	18	.8389	.0361
$\frac{7}{16}$	20	.4050	.0325	1	14	.9535	.0465
$\frac{1}{2}$	20	.4675	.0325	$1\frac{1}{8}$	12	1.0709	.0541
$\frac{5}{8}$	18	.5264	.0361	$1\frac{1}{4}$	12	1.1959	.0541
$\frac{3}{4}$	18	.5889	.0361	$1\frac{3}{8}$	12	1.3209	.0541
$\frac{7}{8}$	16	.6469	.0406	$1\frac{1}{2}$	12	1.4459	.0541

MICROMETER READINGS (PITCH DIAMETER)

Caliper Reading or Pitch Diameter, Whitworth Threads = $D - \frac{.640}{N}$

Whitworth Standard Threads

Diameter	Threads per Inch	Caliper Reading or Pitch Diameter	$\frac{.640}{N}$
D	N	$D - \frac{.640}{N}$	$\frac{.640}{N}$
$\frac{1}{4}$	20	.2180	.0320
$\frac{3}{16}$	18	.2769	.0355
$\frac{5}{32}$	16	.3350	.0400
$\frac{7}{32}$	14	.3918	.0457
$\frac{9}{32}$	12	.4467	.0533
$\frac{11}{32}$	12	.5092	.0533
$\frac{13}{32}$	11	.5668	.0582
$\frac{15}{32}$	11	.6293	.0582
$\frac{17}{32}$	10	.6860	.0640
$\frac{19}{32}$	10	.7485	.0640
$\frac{21}{32}$	9	.8039	.0711
$\frac{23}{32}$	9	.8664	.0711
1	8	.9200	.0800
$1\frac{1}{16}$	7	1.0336	.0914
$1\frac{3}{16}$	7	1.1586	.0914
$1\frac{5}{16}$	6	1.2684	.1066
$1\frac{7}{16}$	6	1.3934	.1066
$1\frac{9}{16}$	5	1.4970	.1280
$1\frac{11}{16}$	5	1.6220	.1280
$1\frac{13}{16}$	$4\frac{1}{2}$	1.7328	.1422
2	$4\frac{1}{2}$	1.8578	.1422
$2\frac{1}{8}$	$4\frac{1}{2}$	1.9828	.1422

Caliper Reading or Pitch Diameter, A. S. M. E. Standard = $D - \frac{.6495}{N}$
Same form of thread as the U. S. Standard

A. S. M. E. Standard Threads

No.	Basic and Maximum Outside Diam.	Threads per Inch	Caliper Reading or Maximum Pitch Diameter	
		D	$D - \frac{.6495}{N}$	$\frac{.6495}{N}$
0	.060	80	.0519	.0081
1	.073	72	.064	.0090
2	.086	64	.0759	.0101
3	.099	56	.0874	.0116
4	.112	48	.0985	.0135
5	.125	44	.1102	.0148
6	.138	40	.1218	.0162
7	.151	36	.1330	.0180
8	.164	36	.146	.0180
9	.177	32	.1567	.0203
10	.190	30	.1684	.0217
12	.216	28	.1928	.0232
14	.242	24	.2149	.0271
16	.268	22	.2385	.0295
18	.294	20	.2615	.0325
20	.320	20	.2875	.0325
22	.346	18	.3099	.0361
24	.372	16	.3314	.0406
26	.398	16	.3574	.0406
28	.424	14	.3776	.0464
30	.450	14	.4036	.0464

See also Tables in Starrett Catalogue.

DIMENSIONS FOR STANDARD SCREW THREADS

Coarse Threads

Threads per Inch	h Single Depth	$2h$ Double Depth	Width of Flat		Pitch
4	0.1624	0.3248	0.0312	0.02702	0.2500
5	0.1299	0.2598	0.0250	0.02165	0.2000
6	0.1083	0.2165	0.0208	0.01801	0.1667
7	0.0928	0.1856	0.0179	0.01550	0.1430
8	0.0812	0.1624	0.0156	0.01351	0.1250
9	0.0722	0.1443	0.0139	0.01204	0.1111
10	0.0650	0.1299	0.0125	0.01082	0.1000
11	0.0590	0.1181	0.0114	0.00987	0.0909
12	0.0541	0.1083	0.0104	0.00900	0.0833
13	0.0500	0.0999	0.0096	0.00831	0.0769
14	0.0464	0.0928	0.0089	0.00770	0.0714
16	0.0406	0.0812	0.0078	0.00675	0.0625
18	0.0361	0.0722	0.0069	0.00597	0.0556

Fine Threads

Threads per Inch	h Single Depth	$2h$ Double Depth	Width of Flat		Pitch
20	0.0325	0.0650	0.0062	0.00537	0.0500
22	0.0295	0.0590	0.0057	0.00493	0.0454
24	0.0271	0.0541	0.0052	0.00456	0.0417
28	0.0232	0.0464	0.0045	0.00389	0.0357
30	0.0217	0.0433	0.0042	0.00363	0.0333
32	0.0203	0.0406	0.0039	0.00337	0.0312
36	0.0180	0.0361	0.0035	0.00303	0.0278
40	0.0162	0.0325	0.0031	0.00268	0.0250
44	0.0148	0.0295	0.0028	0.00242	0.0227
48	0.0135	0.0271	0.0026	0.00225	0.0208
56	0.0116	0.0232	0.0022	0.00190	0.0179
64	0.0101	0.0203	0.0020	0.00173	0.0156
72	0.0090	0.0180	0.0017	0.00147	0.0139
80	0.0081	0.0162	0.0016	0.00138	0.0125

TOLERANCES

The subject of dimensions and tolerances for screw threads is of great importance. The data in the accompanying tables represents the tolerances established by the Ordnance Department of the United States Army for use in the manufacture of artillery ammunition, trench warfare material, and gun parts. Figs. 1, 2, and 3 (page 153) show how the Ordnance Department drawings will be prepared. The class of tolerance applying to any nut and screw depends upon the function of the part. The percentage of strength of full thread required should be duly considered, also the accuracy required should be taken account of. When the two factors are fully appreciated then the class of tolerance, such as close, medium, or loose fit, can be selected as best suits these conditions.

Fig. 1. Key to Symbols used in Tables

SCREW AND NUT TOLERANCES FOR CLOSE FITS

Thds. per Inch	Tolerances on Screws			Neutral Space between Max. Screw and Min. Nut	Tolerances on Nuts			Mini- mum per Cent Strength (Ap- prox.)
	D Full Diam.	E Effect. Diam.	K Core Diam.		D' Full Diam.	E' Effect. Diam.	K' Core Diam.	
4-6	+0.000	+0.000	+0.000	0.008	-0.000	-0.000	-0.000	87
	-0.008	-0.008	-0.025		+0.025	+0.008	+0.008	
7-10	+0.000	+0.000	+0.000	0.006	-0.000	-0.000	-0.000	84
	-0.006	-0.006	-0.016		+0.016	+0.006	+0.006	
11-18	+0.000	+0.000	+0.000	0.005	-0.000	-0.000	-0.000	76
	-0.005	-0.005	-0.010		+0.010	+0.005	+0.005	
20-28	+0.000	+0.000	+0.000	0.004	-0.000	-0.000	-0.000	70
	-0.004	-0.004	-0.008		+0.008	+0.004	+0.004	
30-40	+0.000	+0.000	+0.000	0.003	-0.000	-0.000	-0.000	68
	-0.003	-0.003	-0.006		+0.006	+0.003	+0.003	
44-56	+0.000	+0.000	+0.000	0.002	-0.000	-0.000	-0.000	70
	-0.002	-0.002	-0.004		+0.004	+0.002	+0.002	
64-80	+0.000	+0.000	+0.000	0.001	-0.000	-0.000	-0.000	70
	-0.0015	-0.0015	-0.003		+0.003	+0.0015	+0.0015	

Figs. 2 and 3. Ordnance Department Drawing Practice for Screws and Nuts

SCREW AND NUT TOLERANCES FOR MEDIUM FITS

Thds. per Inch	Tolerances on Screws			Neutral Space between Max. Screw and Min. Nut	Tolerances on Nuts			Mini- mum per Cent Strength (Ap- prox.)
	D Full Dia.	E Effect. Diam.	K Core Diam.		D' Full Dia.	E' Effect. Diam.	K' Core Diam.	
4-6	+0.000 -0.016	+0.000 -0.016	+0.000 -0.035	0.008	-0.000 +0.035	-0.000 +0.016	-0.000 +0.016	78
7-10	+0.000 -0.012	+0.000 -0.012	+0.000 -0.022	0.006	-0.000 +0.022	-0.000 +0.012	-0.000 +0.012	72
11-18	+0.000 -0.008	+0.000 -0.008	+0.000 -0.014	0.005	-0.000 +0.014	-0.000 +0.008	-0.000 +0.008	65
20-28	+0.000 -0.006	+0.000 -0.006	+0.000 -0.010	0.004	-0.000 +0.010	-0.000 +0.006	-0.000 +0.006	60
30-40	+0.000 -0.004	+0.000 -0.004	+0.000 -0.007	0.003	-0.000 +0.007	-0.000 +0.004	-0.000 +0.004	60
44-56	+0.000 -0.003	+0.000 -0.003	+0.000 -0.005	0.002	-0.000 +0.005	-0.000 +0.003	-0.000 +0.003	59
64-80	+0.000 -0.002	+0.000 -0.002	+0.000 -0.003	0.001	-0.000 +0.003	-0.000 +0.002	-0.000 +0.002	63

SCREW AND NUT TOLERANCES FOR LOOSE FITS

Thds. per Inch	Tolerances on Screws			Neutral Space between Max. Screw and Min. Nut	Tolerances on Nuts			Mini- mum per Cent Strength (Ap- prox.)
	D Full Dia.	E Effect. Diam.	K Core Diam.		D' Full Dia.	E' Effect. Diam.	K' Core Diam.	
4-6	+0.000 -0.030	+0.000 -0.030	+0.000 -0.045	0.008	-0.000 +0.045	-0.000 +0.030	-0.000 +0.030	61
7-10	+0.000 -0.020	+0.000 -0.020	+0.000 -0.030	0.006	-0.000 +0.030	-0.000 +0.020	-0.000 +0.020	56
11-18	+0.000 -0.012	+0.000 -0.012	+0.000 -0.018	0.005	-0.000 +0.018	-0.000 +0.012	-0.000 +0.012	51
20-28	+0.000 -0.008	+0.000 -0.008	+0.000 -0.012	0.004	-0.000 +0.012	-0.000 +0.008	-0.000 +0.008	48
30-40	+0.000 -0.006	+0.000 -0.006	+0.000 -0.008	0.003	-0.000 +0.008	-0.000 +0.006	-0.000 +0.006	45
44-56	+0.000 -0.004	+0.000 -0.004	+0.000 -0.006	0.002	-0.000 +0.006	-0.000 +0.004	-0.000 +0.004	48
64-80	+0.000 -0.003	+0.000 -0.003	+0.000 -0.004	0.001	-0.000 +0.004	-0.000 +0.003	-0.000 +0.003	47

Tables refer to illustrations on page 153

STARRETT TOOLS FOR USE IN CONNECTION WITH THREADS AND SCREWS

Screw Thread Micrometer Calipers

In Starrett Screw Thread Micrometers, the movable spindle is pointed and the end of the anvil is of the same form as the thread to be measured. The reading of the caliper indicates the pitch diameter or the full size of the thread, less the depth of one thread. Made in one and two inch capacities, with a range of from 8 to 30 threads and in V, U. S., and Whitworth standards. Also furnished in corresponding Metric sizes.

Inside and Outside Thread Calipers

These calipers are designed for measuring diameters at the bottom of threads. Made with spring or solid nut, hardened points, and fulcrum stud and extra strong bow.

Positive Stop Thread Gages

Gage has positive stop which holds blade in fixed and convenient position for use. 30 pitches from 6 to 60 inclusive, the number of the pitches being stamped on the right side of each blade. Made in V and Whitworth standards.

Center Gages

Graduated one corner each in 32ds, 24ths, and 20ths. Angles are 60° , except the Whitworth standard, where they are 55° .

A Center Gage Attachment may be had which by means of a flat spring frictionally holds the center gage parallel with the V block of the attachment, permitting a threading tool to be adjusted to line to cut both sides of the thread to the proper angle.

For further information concerning these and other tools which may be used to advantage in connection with Threads and Screws, see pages 18 and 93 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

CUTTING SPEEDS AND FEEDS FOR TURNING TOOLS

Tools of a good grade of high speed steel, properly ground and heat-treated

Steel — Standard $\frac{1}{8}$ inch Tool			Cast Iron — Standard $\frac{1}{8}$ inch Tool					
Depth of Cut in inches	Feed in inches	Speed in Feet per Minute for a Tool which is to last $1\frac{1}{2}$ Hours before Regrinding			Speed in Feet per Minute for a Tool which is to last $1\frac{1}{2}$ Hours before Regrinding			
		Soft Steel	Medium Steel	Hard Steel				
$\frac{1}{16}$	$\frac{1}{16}$	476	238	108	$\frac{1}{16}$	122	61.2	35.7
	$\frac{1}{8}$	325	162	73.8		86.4	43.2	25.2
	$\frac{1}{4}$	222	111	50.4		70.1	35.1	20.5
	$\frac{1}{2}$	177	88.4	40.2				
$\frac{1}{8}$	$\frac{1}{16}$	420	210	95.5	$\frac{1}{8}$	156	77.8	45.4
	$\frac{1}{8}$	286	143	65.0		112	56.2	32.8
	$\frac{1}{4}$	195	97.6	44.4		79.3	39.7	23.2
	$\frac{1}{2}$	133	66.4	30.2		64.3	32.2	18.8
$\frac{1}{4}$	$\frac{1}{16}$	352	176	80.0	$\frac{1}{4}$	137	68.6	40.1
	$\frac{1}{8}$	240	120	54.5		99.4	49.7	29.0
	$\frac{1}{4}$	164	82	37.3		70.1	35.0	20.5
	$\frac{1}{2}$	112	56	25.5		56.8	28.4	16.6
$\frac{1}{2}$	$\frac{1}{16}$	312	156	70.9	$\frac{1}{2}$	126	62.9	36.7
	$\frac{1}{8}$	213	107	48.4		90.8	45.4	26.5
	$\frac{1}{4}$	145	72.6	33.0		64.1	32.0	18.7
	$\frac{1}{2}$	116	58.1	26.4		52	26.0	15.2
$\frac{3}{8}$	$\frac{1}{16}$	264	132	60.0	$\frac{3}{8}$	111	55.4	32.3
	$\frac{1}{8}$	180	90.2	41.0		80	40.0	23.4
	$\frac{1}{4}$	122	61.1	27.8		56.4	28.2	16.5
	$\frac{1}{2}$	237	118	53.8		104	52.1	30.4
$\frac{1}{2}$	$\frac{1}{16}$	162	80.8	36.7	$\frac{1}{2}$	75.2	37.6	22.0

Steel — Standard $\frac{1}{8}$ inch Tool			Cast Iron — Standard $\frac{1}{8}$ inch Tool						
Depth of Cut	Feed	Soft Steel	Medium Steel	Hard Steel	Depth of Cut	Feed	Soft Cast Iron	Medium Cast Iron	Hard Cast Iron
$\frac{1}{16}$	$\frac{1}{16}$	548	274	125	$\frac{1}{16}$	$\frac{1}{16}$	160	80.0	46.6
	$\frac{1}{8}$	358	179	81.6		$\frac{1}{8}$	110	55.0	32.2
	$\frac{1}{4}$	235	117	53.3		$\frac{1}{2}$	75.4	37.7	22.0
	$\frac{1}{2}$	467	234	106					
$\frac{1}{8}$	$\frac{1}{16}$	306	153	69.5	$\frac{1}{8}$	$\frac{1}{16}$	148	74.0	43.3
	$\frac{1}{8}$	200	100	45.5		$\frac{1}{8}$	104	51.8	32.0
	$\frac{1}{4}$	156	78	35.5		$\frac{1}{2}$	69.6	34.8	20.3
	$\frac{1}{2}$	417	209	94.8					
$\frac{1}{4}$	$\frac{1}{16}$	273	136	62.0	$\frac{1}{4}$	$\frac{1}{16}$	183	91.6	68.0
	$\frac{1}{8}$	179	89.3	40.6		$\frac{1}{8}$	135	67.5	39.4
	$\frac{1}{4}$	140	69.8	31.7		$\frac{1}{2}$	94	47.0	27.4
	$\frac{1}{2}$	362	181	82.2		$\frac{1}{2}$	64.3	32.2	18.8
$\frac{3}{8}$	$\frac{1}{16}$	236	118	53.8	$\frac{3}{8}$	$\frac{1}{16}$	171	85.7	50.1
	$\frac{1}{8}$	155	77.4	35.2		$\frac{1}{8}$	126	63.2	36.9
	$\frac{1}{4}$	328	164	74.5		$\frac{1}{2}$	87.8	43.9	25.6
	$\frac{1}{2}$	215	107	48.8		$\frac{1}{2}$	70.4	35.2	20.6
$\frac{1}{2}$	$\frac{1}{16}$	286	143	65.0	$\frac{1}{2}$	$\frac{1}{16}$	156	77.8	45.4

**TIME REQUIRED FOR CUTTING TOOL TO TRAVEL
1 INCH, WHEN THE FEED IS $\frac{1}{16}$ INCH
PER REVOLUTION**

Dia. Ins.	Surface Speeds in Feet per Minute							
	20 Feet	25 Feet	30 Feet	35 Feet	40 Feet	45 Feet	50 Feet	60 Feet
min. sec.	min. sec.	min. sec.	min. sec.	min. sec.	min. sec.	min. sec.	min. sec.	min. sec.
1	0 25	0 20	0 17	0 14	0 12	0 11	0 10	0 8
2	0 50	0 40	0 33	0 29	0 25	0 22	0 20	0 17
3	1 15	1 0	0 50	0 43	0 38	0 33	0 30	0 25
4	1 40	1 20	1 7	0 57	0 50	0 45	0 40	0 33
5	2 6	1 41	1 24	1 12	1 3	0 56	0 50	0 42
6	2 31	2 1	1 41	1 26	1 15	1 7	1 0	0 50
7	2 56	2 21	1 57	1 41	1 28	1 18	1 10	0 58
8	3 21	2 41	2 14	1 35	1 40	1 29	1 20	1 7
9	3 46	3 1	2 31	2 9	1 53	1 41	1 30	1 15
10	4 11	3 21	2 48	2 24	2 6	1 52	1 41	1 24
11	4 36	3 41	3 4	2 38	2 18	2 3	1 51	1 32
12	5 2	4 1	3 21	2 52	2 31	2 14	2 1	1 41
13	5 27	4 21	3 38	3 7	2 43	2 25	2 11	1 49
14	5 52	4 41	3 55	3 21	2 56	2 36	2 21	1 57
15	6 17	5 2	4 11	3 35	3 8	2 48	2 31	2 6
16	6 42	5 22	4 28	3 50	3 21	2 59	2 41	2 14
17	7 7	5 42	4 45	4 4	3 34	3 10	2 51	2 22
18	7 32	6 2	5 2	4 18	3 46	3 21	3 1	2 31
19	7 57	6 22	5 18	4 33	3 59	3 32	3 11	2 39
20	8 22	6 42	5 35	4 47	4 11	3 43	3 21	2 48
21	8 48	7 2	5 52	5 2	4 24	3 55	3 31	2 56
22	9 13	7 22	6 9	5 16	4 36	4 6	3 41	3 4
23	9 38	7 42	6 25	5 30	4 49	4 17	3 51	3 12
24	10 3	8 3	6 42	5 45	5 2	4 28	4 1	3 21
25	10 28	8 23	6 59	5 59	5 15	4 39	4 11	3 30
26	10 53	8 43	7 16	6 13	5 27	4 50	4 21	3 38
27	11 19	9 3	7 32	6 28	5 39	5 2	4 31	3 46
28	11 44	9 23	7 49	6 42	5 52	5 13	4 41	3 55
29	12 9	9 43	8 6	6 56	6 4	5 24	4 51	4 3
30	12 34	10 3	8 23	7 11	6 17	5 35	5 2	4 11
31	12 59	10 23	8 39	7 25	6 30	5 46	5 12	4 19
32	13 24	10 43	8 56	7 40	6 42	5 57	5 22	4 28
33	13 49	11 3	9 13	7 54	6 55	6 9	5 32	4 36
34	14 15	11 24	9 30	8 8	7 7	6 20	5 42	4 45
35	14 40	11 44	9 46	8 23	7 20	6 31	5 52	4 53
36	15 5	12 4	10 3	8 37	7 32	6 42	6 2	5 2
37	15 30	12 24	10 20	8 51	7 45	6 53	6 12	5 10
38	15 55	12 44	10 37	9 6	7 57	7 4	6 22	5 18
39	16 20	13 4	10 53	9 20	8 10	7 16	6 32	5 27
40	16 45	13 24	11 11	9 34	8 22	7 27	6 42	5 35

**STARRETT TOOLS FOR USE IN CONNECTION
WITH TURNING AND BORING**

Telescoping Inside Gages

The ends of the telescope head are hardened and are made on a radius of the smallest hole the head will enter. A knurled screw in the end of the handle locks the head when compressed for insertion and when expanded across the hole to a fit. Made to enter holes from $\frac{1}{2}$ inch to 6 inches.

Yankee Outside and Inside Calipers

Made with either solid or quick adjusting nut. The bow is stiff, making the caliper reliable. Ranging sizes from $2\frac{1}{2}$ to 12 inches.

Center Tester

The indicating needle is adjustable to any length. The ball, which holds the needle as a chuck, forms a universal joint, but may be converted to a single joint for tilting motion by tightening the knurled nut, adapting it for inside or outside surface contact. The instrument is joined to a tool post shank by a flexible steel ribbon.

For further information concerning these and other tools which may be used to advantage in connection with Turning and Boring, see pages 13, 18, 40, 75, 93, 98, and 122 of this volume; also Vol. I of The Starrett Books, and the Starrett Catalogue.

RULES RELATIVE TO THE CIRCLE, ETC.

To Find Circumference

Multiply diameter by 3.1416.
Or divide " " 0.3183.

To Find Side of an Inscribed Square

Multiply diameter by 0.7071.
Or multiply circumference by 0.2251.
Or divide " " 4.4428.

To Find Diameter

Multiply circumference by 0.3183.
Or divide " " 3.1416.

To Find Side of an Equal Square

Multiply diameter by 0.8862.
Or divide " " 1.1284.
Or multiply circumference by 0.2821.

To Find Radius

Multiply circumference by 0.15915.
Or divide " " 6.28318.

Or divide " " 3.545.

SQUARE

A side multiplied by 1.4142 equals diameter of its circumscribing circle.
A side multiplied by 4.443 equals circumference of its circumscribing circle.
A side multiplied by 1.128 equals diameter of an equal circle.
A side multiplied by 3.547 equals circumference of an equal circle.
Square inches multiplied by 1.273 equal circle inches of an equal circle.

To Find the Area of a Circle

Multiply circumference by one quarter of the diameter.
Or multiply the square of diameter by 0.7854.
Or multiply the square of circumference by .07958.
Or multiply the square of one half the diameter by 3.1416.

To Find the Surface of a Sphere or Globe

Multiply the diameter by the circumference.
Or multiply the square of diameter by 3.1416.
Or multiply four times the square of radius by 3.1416.

To Find the Weight of Brass and Copper Sheets, Rods, and Bars

Ascertain the number of cubic inches in piece and multiply same by weight per cubic inch.

Brass, 0.2972. Copper, 0.3212.

Or multiply the length by the breadth (in feet) and product by weight in pounds per square foot.

EQUIVALENTS OF VARIOUS MEASURES AND WEIGHTS

	U. S. Gallon	Imperial Gallon	Cubic Inch	Cubic Foot	Pound	Cwt.	Ton	Liter	Cubic Meter
U. S. Gal.	1.	.83	231.	.133	8.33	.0746	.0037	3.8	.0038
Imp'l Gal.	1.2	1.	277.274	.16	10.	.0892	.0045	4.537	.0045
Cubic In.	.0043	.0036	1.	.0006	.03610163
Cubic Ft.	7.48	6.23	1728.	1.	62.35	.557	.028	28.375	.0283
Pound ..	.083	.10	27.72	.016	1.	112.	2240.
Cwt.....	13.44	11.2	1.8	1.	20.
Ton	268.8	224.	35.905	1.	1000.	1.
Liter264	.22	61.	.0353001	1.	.001
Cu. Meter	264.	220.	61028.	35.31	1.	1000.	1.

THE METRIC SYSTEM OF MEASUREMENT

Measures of Length

1 Millimeter (mm.) = 0.03937079 inch, or about $\frac{1}{5}$ inch
 10 Millimeters = 1 Centimeter (cm.) = 0.3937079 "
 10 Centimeters = 1 Decimeter (dm.) = 3.937079 "
 10 Decimeters = 1 Meter (m.) = 39.37079 inches, 3.2808992 feet, or 1.09361 yards
 10 Meters = 1 Decameter (Dm.) = 32.808992 feet
 10 Decameters = 1 Hectometer (Hm.) = 19.927817 rods
 10 Hectometers = 1 Kilometer (Km.) = 1093.61 yards, or 0.6213824 mile
 10 Kilometers = 1 Myriameter (Mm.) = 6.213824 miles
 1 inch = 2.54 cm., 1 foot = 0.3048 m., 1 yard = 0.9144 m., 1 rod = 0.5029 dm., 1 mile = 1.6093 km.

Measures of Weight

1 Gramme (g.) = 15.4324874 gr. troy, or 0.03215 oz. troy, or 0.03527398 oz. avoirdupois.
 10 Grammes = 1 Decagramme (Dg.) = 0.3527398 " "
 10 Decagrammes = 1 Hectogramme (Hg.) = 3.527398 " "
 10 Hectogrammes = 1 Kilogramme (Kg.) = 2.20462125 lbs.
 1,000 Kilogrammes = 1 Tonne (T.) = 2204.62125 lbs., or 1.1023 tons of 2,000 lbs., or 0.9842 ton of 2,240 lbs., or 19.68 cwts.
 1 grain = 0.0648 g., 1 oz. avoirdupois = 28.35 g., 1 lb. = 0.4536 Kg., 1 ton 2,000 lbs. = 0.9072 T., 1 ton 2,240 lbs. = 1.016 T., or 1,016 Kg.

Measures of Capacity

1 Liter (l.) = 1 Cubic Decimeter = 61.0270515 cubic in., or 0.03531 cu. ft., or 1.0567 liquid qts., or 0.908 dry qt., or 0.26417 Amer. gal.
 10 Liters = 1 Decaliter (Dl.) = 2.6417 gal., or 1.135 pk.
 10 Decaliters = 1 Hectoliter (Hl.) = 2.8375 bu.
 10 Hectoliters = 1 Kiloliter (Kl.) = 61027.0515 cu. in., or 28.375 bu.
 1 cu. foot = 28.317 l., 1 gallon, Amer. = 3.785 l., 1 gallon Brit. = 4.543 l.

**TABLE OF DECIMAL EQUIVALENTS
OF MILLIMETERS AND FRACTIONS OF MILLIMETERS**

$\frac{1}{100}$ mm. = .0003937 inch

mm.	inches	mm.	inches	mm.	inches
$\frac{1}{50}$.00079	$\frac{2}{50}$.02047	2	.07874
$\frac{3}{50}$.00157	$\frac{27}{50}$.02126	3	.11811
$\frac{8}{50}$.00236	$\frac{28}{50}$.02205	4	.15748
$\frac{4}{50}$.00315	$\frac{29}{50}$.02283	5	.19685
$\frac{5}{50}$.00394	$\frac{30}{50}$.02362	6	.23622
$\frac{6}{50}$.00472	$\frac{31}{50}$.02441	7	.27559
$\frac{7}{50}$.00551	$\frac{32}{50}$.02520	8	.31496
$\frac{8}{50}$.00630	$\frac{33}{50}$.02598	9	.35433
$\frac{9}{50}$.00709	$\frac{34}{50}$.02677	10	.39370
$\frac{10}{50}$.00787	$\frac{35}{50}$.02756	11	.43307
$\frac{11}{50}$.00866	$\frac{36}{50}$.02835	12	.47244
$\frac{12}{50}$.00945	$\frac{37}{50}$.02913	13	.51181
$\frac{18}{50}$.01024	$\frac{38}{50}$.02992	14	.55118
$\frac{14}{50}$.01102	$\frac{39}{50}$.03071	15	.59055
$\frac{15}{50}$.01181	$\frac{40}{50}$.03150	16	.62992
$\frac{16}{50}$.01260	$\frac{41}{50}$.03228	17	.66929
$\frac{17}{50}$.01339	$\frac{42}{50}$.03307	18	.70866
$\frac{18}{50}$.01417	$\frac{43}{50}$.03386	19	.74803
$\frac{19}{50}$.01496	$\frac{44}{50}$.03465	20	.78740
$\frac{20}{50}$.01575	$\frac{45}{50}$.03543	21	.82677
$\frac{21}{50}$.01654	$\frac{46}{50}$.03622	22	.86614
$\frac{22}{50}$.01732	$\frac{47}{50}$.03701	23	.90551
$\frac{23}{50}$.01811	$\frac{48}{50}$.03780	24	.94488
$\frac{24}{50}$.01890	$\frac{49}{50}$.03858	25	.98425
$\frac{25}{50}$.01969	1	.03937	26	1.02362

10 mm. = 1 centimeter = 0.3937 inch

10 cm. = 1 decimeter = 3.937 inches

10 dm. = 1 meter = 39.37 inches

25.4 mm. = 1 English inch

METRIC CONVERSION TABLE

The following metric conversion table has been compiled by C. W. Hunt, and is most convenient in dealing with metric weights and measures:

Millimeters $\times 0.03937$	= inches
Millimeters $\div 25.4$	= inches
Centimeters $\times 0.3937$	= inches
Centimeters $\div 2.54$	= inches
Meters $\times 39.37$	= inches (Act of Congress)
Meters $\times 3.281$	= feet
Meters $\times 1.094$	= yards
Kilometers $\times 0.621$	= miles
Kilometers $\div 1.6093$	= miles
Kilometers $\times 3280.7$	= feet
Square millimeters $\times 0.0155$	= square inches
Square millimeters $\div 645.1$	= square inches
Square centimeters $\times 0.155$	= square inches
Square centimeters $\div 6.451$	= square inches
Square meters $\times 10.764$	= square feet
Square kilometers $\times 247.1$	= acres
Hectares $\times 2.471$	= acres
Cubic centimeters $\div 16.383$	= cubic inches
Cubic centimeters $\div 3.69$	= fluid drachms (U.S. Pharmacopœia)
Cubic centimeters $\div 29.57$	= fluid ounce (U.S. Pharmacopœia)
Cubic meters $\times 35.315$	= cubic feet
Cubic meters $\times 1.308$	= cubic yards
Cubic meters $\times 264.2$	= gallons (231 cubic inches)
Liters $\times 61.022$	= cubic inches (Act of Congress)
Liters $\times 33.84$	= fluid ounces (U.S. Pharmacopœia).
Liters $\times 0.2642$	= gallons (231 cubic inches)
Liters $\div 3.78$	= gallons (231 cubic inches)
Liters $\div 28.316$	= cubic feet
Hectoliters $\times 3.531$	= cubic feet
Hectoliters $\times 2.84$	= bushels (2,150.42 cubic inches)
Hectoliters $\times 0.131$	= cubic yards
Hectoliters $\times 26.42$	= gallons (231 cubic inches)
Grams $\times 15.432$	= grains (Act of Congress)
Grams $\times 981$	= dynes
Grams (water) $\div 29.57$	= fluid ounces
Grams $\div 28.35$	= ounces avoirdupois
Grams per cubic centimeter $\div 27.7$	= pounds per cubic inch
Joule $\times 0.7373$	= foot-pounds
Kilograms $\times 2.2046$	= pounds
Kilograms $\times 35.3$	= ounces avoirdupois
Kilograms $\div 1102.3$	= tons (2,000 pounds)
Kilograms per sq. cm. $\times 14.223$	= pounds per square inch
Kilogrammeters $\times 7.233$	= foot-pounds
Kilograms per meter $\times 0.672$	= pounds per square foot
Kilograms per cubic meter $\times 0.062$	= pounds per cubic foot
Kilograms per cheval-vapeur $\times 2.235$	= pounds per horsepower
Kilowatts $\times 1.34$	= horsepower
Watts $\div 746$	= horsepower
Watts $\times 0.7373$	= foot-pounds per second
Calorie $\times 3.968$	= British thermal units (B. T. U.)
Cheval-vapeur $\times 0.9863$	= horsepower
(Centigrade $\times 1.8$) $+ 32$	= degrees Fahrenheit
Francs $\times 0.193$	= dollars
Gravity, Paris	= 980.94 centimeter per second

TABLES OF DECIMAL EQUIVALENTS

Of 8ths, 16ths, 32ds, and 64ths of an inch

8ths.	$\frac{1}{8} = .5625$	$\frac{11}{8} = .53125$	$\frac{9}{8} = .140625$	$\frac{13}{8} = .578125$
$\frac{1}{8} = .125$	$\frac{11}{8} = .6875$	$\frac{13}{8} = .59375$	$\frac{11}{8} = .171875$	$\frac{13}{8} = .609375$
$\frac{1}{4} = .250$	$\frac{13}{8} = .8125$	$\frac{21}{8} = .65625$	$\frac{13}{8} = .203125$	$\frac{21}{8} = .640625$
$\frac{3}{8} = .375$	$\frac{21}{8} = .9375$	$\frac{23}{8} = .71875$	$\frac{21}{8} = .234375$	$\frac{23}{8} = .671875$
$\frac{1}{2} = .500$	32ds.	$\frac{23}{8} = .78125$	$\frac{15}{8} = .265625$	$\frac{23}{8} = .703125$
$\frac{5}{8} = .625$	$\frac{27}{32} = .84375$	$\frac{29}{32} = .296875$	$\frac{27}{32} = .734375$	
$\frac{3}{4} = .750$	$\frac{31}{32} = .03125$	$\frac{29}{32} = .90625$	$\frac{21}{32} = .328125$	$\frac{29}{32} = .765625$
$\frac{7}{8} = .875$	$\frac{35}{32} = .09375$	$\frac{31}{32} = .96875$	$\frac{23}{32} = .359375$	$\frac{31}{32} = .796875$
	$\frac{39}{32} = .15625$	$\frac{35}{32} = .4375$	$\frac{25}{32} = .390625$	$\frac{35}{32} = .828125$
16ths.	$\frac{7}{16} = .21875$	64ths.	$\frac{27}{64} = .421875$	$\frac{39}{64} = .859375$
$\frac{1}{16} = .0625$	$\frac{9}{16} = .28125$	$\frac{1}{64} = .015625$	$\frac{29}{64} = .453125$	$\frac{31}{64} = .890625$
$\frac{3}{16} = .1875$	$\frac{11}{16} = .34375$	$\frac{3}{64} = .046875$	$\frac{31}{64} = .484375$	$\frac{33}{64} = .921875$
$\frac{5}{16} = .3125$	$\frac{13}{16} = .40625$	$\frac{5}{64} = .078125$	$\frac{33}{64} = .515625$	$\frac{35}{64} = .953125$
$\frac{7}{16} = .4375$	$\frac{15}{16} = .46875$	$\frac{7}{64} = .109375$	$\frac{35}{64} = .546875$	$\frac{37}{64} = .984375$

Of 6ths, 12ths, and 24ths of an inch*

$\frac{1}{k} = .041667$	$\frac{1}{k} = .25$	$\frac{1}{k} = .458333$	$\frac{1}{k} = .666667$	$\frac{1}{k} = .875$
$\frac{1}{k} = .083333$	$\frac{1}{k} = .291667$	$\frac{1}{k} = .5$	$\frac{1}{k} = .708333$	$\frac{1}{k} = .916667$
$\frac{1}{k} = .125$	$\frac{1}{k} = .333333$	$\frac{1}{k} = .541667$	$\frac{1}{k} = .75$	$\frac{1}{k} = .958333$
$\frac{1}{k} = .166667$	$\frac{1}{k} = .375$	$\frac{1}{k} = .583333$	$\frac{1}{k} = .791667$
$\frac{1}{k} = .208333$	$\frac{1}{k} = .416667$	$\frac{1}{k} = .625$	$\frac{1}{k} = .833333$

Of 7ths, 14ths, and 28ths of an inch*

$\frac{y_1}{x} = .035714$	$\frac{y_2}{x} = .25$	$\frac{y_3}{x} = .464286$	$\frac{y_4}{x} = .678571$	$\frac{y_5}{x} = .892857$
$\frac{y_1}{x} = .071429$	$\frac{y_2}{x} = .285714$	$\frac{y_3}{x} = .5$	$\frac{y_4}{x} = .714286$	$\frac{y_5}{x} = .928571$
$\frac{y_1}{x} = .107143$	$\frac{y_2}{x} = .321429$	$\frac{y_3}{x} = .535714$	$\frac{y_4}{x} = .75$	$\frac{y_5}{x} = .964286$
$\frac{y_1}{x} = .142857$	$\frac{y_2}{x} = .357143$	$\frac{y_3}{x} = .571429$	$\frac{y_4}{x} = .785714$
$\frac{y_1}{x} = .178571$	$\frac{y_2}{x} = .392857$	$\frac{y_3}{x} = .607143$	$\frac{y_4}{x} = .821429$
$\frac{y_1}{x} = .214286$	$\frac{y_2}{x} = .428571$	$\frac{y_3}{x} = .642867$	$\frac{y_4}{x} = .857143$

*From "Machinery's" Handbook,
The Industrial Press, New York

WEIGHTS AND MEASURES

Troy Weight

24 grains = 1 pwt. 20 pwts. = 1 ounce 12 ounces = 1 pound
Used for weighing gold, silver, and jewels

Apothecaries' Weight

20 grains = 1 scruple 8 drams = 1 ounce
3 scruples = 1 dram 12 ounces = 1 pound
The ounce and pound in this are the same as in troy weight

Avoirdupois Weight

27 $\frac{1}{2}$ grains = 1 dram 4 quarters = 1 cwt.
16 drams = 1 ounce 2,000 pounds = 1 short ton
16 ounces = 1 pound 2,240 pounds = 1 long ton
25 pounds = 1 quarter

Dry Measure

2 pints = 1 quart 4 pecks = 1 bushel
8 quarts = 1 peck 36 bushels = 1 chaldron

Liquid Measure

4 gills = 1 pint 3 $\frac{1}{2}$ gallons = 1 barrel
2 pints = 1 quart 2 barrels = 1 hogshead

Measure of Solidity

1,728 cubic inches = 1 cubic foot 27 cubic feet = 1 cubic yard

Time Measure

60 seconds = 1 minute 24 hours = 1 day
60 minutes = 1 hour 7 days = 1 week
28, 29, 30, or 31 days = 1 calendar month (30 days = 1 month in computing interest)
365 days = 1 year 366 days = 1 leap year

Circular Measure

60 seconds = 1 minute 30 degrees = 1 sign
60 minutes = 1 degree 90 degrees = 1 quadrant
4 quadrants = 12 signs, or 360 degrees = 1 circle

Long Measure

12 inches = 1 foot 40 rods = 1 furlong
3 feet = 1 yard 8 furlongs = 1 statute mile
5 $\frac{1}{2}$ yards = 1 rod 3 miles = 1 league

Cloth Measure

2 $\frac{1}{2}$ inches = 1 nail 4 nails = 1 quarter 4 quarters = 1 yard

Mariner's Measure

6 feet = 1 fathom 5,280 feet = 1 statute mile
120 fathoms = 1 cable length 6,085 feet = 1 nautical mile
7 $\frac{1}{2}$ cable lengths = 1 mile

Square Measure

144 sq. inches = 1 sq. foot 30 $\frac{1}{4}$ sq. yards = 1 sq. rod 4 roods = 1 acre
9 sq. feet = 1 sq. yd. 40 sq. rods = 1 rood 640 acres = 1 sq. mile

Weights

The Gram is the primary unit of weights, in the metric system, and is the weight in a vacuum of a cubic centimeter of distilled water at the temperature of 39.2° F.

10 milligrams (mg.)	= 1 centigram (cg.)	= 0.1543 troy grain
10 centigrams	= 1 decigram (dg.)	= 1.543 troy grains
10 decigrams	= 1 gram (g.)	= 15.432 troy grains
10 grams	= 1 decagram	= 0.3527 avoirdupois ounce
10 decagrams	= 1 hectogram	= 3.5274 avoirdupois ounces
10 hectograms	= 1 kilogram (kg.)	= 2.2046 avoirdupois pounds
10 kilograms	= 1 myriagram	= 22.046 avoirdupois pounds
10 myriagrams	= 1 quintal (q.)	= 220.46 avoirdupois pounds
10 quintals	= 1 tonneau (t.)	= 2204.6 avoirdupois pounds
1 kilogram per kilometer	= 0.67195 pound per thousand feet	
1 pound per thousand feet	= 1.4882 kilograms per kilometer	
1 kilogram per square millimeter	= 1.423 pounds per square inch	
1 pound per square inch	= 0.000743 kilogram per square millimeter	

**INCHES AND SIXTEENTHS CONVERTED
INTO MILLIMETERS**

Inches	0	1	2	3	4	5
..	25.400	50.799	76.199	101.60	127.00
$\frac{1}{16}$	1.5875	26.987	52.387	77.786	103.19	128.59
$\frac{3}{16}$	3.1749	28.574	53.974	79.374	104.77	130.17
$\frac{5}{16}$	4.7624	30.162	55.561	80.961	106.36	131.76
$\frac{7}{16}$	6.3499	31.749	57.149	82.549	107.95	133.35
$\frac{9}{16}$	7.9374	33.337	58.736	84.136	109.54	134.94
$\frac{1}{8}$	9.5248	34.924	60.324	85.723	111.12	136.52
$\frac{3}{16}$	11.112	36.512	61.911	87.311	112.71	138.11
$\frac{5}{16}$	12.700	38.099	63.499	88.898	114.30	139.70
$\frac{7}{16}$	14.287	39.687	65.086	90.486	115.89	141.28
$\frac{9}{16}$	15.875	41.274	66.674	92.073	117.47	142.87
$\frac{11}{16}$	17.462	42.862	68.261	93.661	119.06	144.46
$\frac{1}{4}$	19.050	44.449	69.849	95.248	120.65	146.05
$\frac{3}{8}$	20.637	46.037	71.436	96.836	122.24	147.63
$\frac{5}{8}$	22.225	47.624	73.024	98.423	123.82	149.22
$\frac{7}{8}$	23.812	49.212	74.611	100.01	125.41	150.81

Inches	6	7	8	9	10	11
..	152.40	177.80	203.20	228.60	254.00	279.39
$\frac{1}{16}$	153.98	179.38	204.78	230.18	255.58	280.98
$\frac{3}{16}$	155.57	180.97	206.37	231.77	257.17	282.57
$\frac{5}{16}$	157.16	182.56	207.96	233.36	258.76	284.16
$\frac{7}{16}$	158.75	184.15	209.55	234.95	260.35	285.74
$\frac{9}{16}$	160.33	185.73	211.13	236.53	261.93	287.33
$\frac{1}{8}$	161.92	187.32	212.72	238.12	263.52	288.92
$\frac{3}{16}$	163.51	188.91	214.31	239.71	265.11	290.51
$\frac{5}{16}$	165.10	190.50	215.90	241.30	266.70	292.09
$\frac{7}{16}$	166.68	192.08	217.48	242.88	268.28	293.68
$\frac{9}{16}$	168.27	193.67	219.07	244.47	269.87	295.27
$\frac{11}{16}$	169.86	195.26	220.66	246.06	271.46	296.86
$\frac{1}{4}$	171.45	196.85	222.25	247.65	273.05	298.44
$\frac{3}{8}$	173.03	198.43	223.83	249.23	274.63	300.03
$\frac{5}{8}$	174.62	200.02	225.42	250.82	276.22	301.62
$\frac{7}{8}$	176.21	201.61	227.01	252.41	277.81	303.21

For meters, move the decimal point THREE figures forward.

EXAMPLE: $8\frac{1}{16}$ inches = 207.96 millimeters = 20.796 centimeters = 2.0796 decimeters = 0.20796 meter.

**DECIMAL EQUIVALENTS, SQUARES, SQUARE ROOTS, CUBES, AND
CUBE ROOTS OF FRACTIONS; CIRCUMFERENCES AND
AREAS OF CIRCLES FROM $\frac{1}{2}$ TO 1 INCH**

Frac-tion	Dec. Equiv.	Square	Sq. Root	Cube	Cube Root	Circum. Circle	Area Circle
$\frac{1}{2}$.015625	.000244	.1250	.000003815	.2500	.4909	.000192
$\frac{1}{3}$.03125	.0009765	.1768	.00003052	.3150	.9818	.000767
$\frac{1}{4}$.046875	.002197	.2165	.000103	.3606	.1473	.001726
$\frac{1}{5}$.0625	.003906	.2500	.0002442	.3968	.1963	.003068
$\frac{1}{6}$.078125	.006104	.2795	.0004768	.4275	.2455	.004794
$\frac{1}{7}$.09375	.008789	.3062	.0008240	.4543	.2945	.006903
$\frac{1}{8}$.109375	.01196	.3307	.001308	.4782	.3436	.009396
$\frac{1}{9}$.1250	.01563	.3535	.001953	.5000	.3927	.01228
$\frac{1}{10}$.140625	.01978	.3750	.002781	.5200	.4438	.01553
$\frac{1}{11}$.15625	.02441	.3953	.003815	.5386	.4909	.01916
$\frac{1}{12}$.171875	.02954	.4161	.005078	.5560	.5400	.02321
$\frac{1}{13}$.1875	.03516	.4330	.006592	.5724	.5890	.02761
$\frac{1}{14}$.203125	.04126	.4507	.008381	.5878	.6381	.03241
$\frac{1}{15}$.21875	.04786	.4677	.01047	.6025	.6872	.03758
$\frac{1}{16}$.234375	.05493	.4841	.01287	.6166	.7363	.04314
$\frac{1}{17}$.2500	.0625	.5000	.01562	.6300	.7854	.04909
$\frac{1}{18}$.265625	.07056	.5154	.01874	.6428	.8345	.05541
$\frac{1}{19}$.28125	.07910	.5303	.02225	.6552	.8836	.06213
$\frac{1}{20}$.296875	.08813	.5449	.02616	.6671	.9327	.06922
$\frac{1}{21}$.3125	.09766	.5590	.03052	.6786	.9817	.07670
$\frac{1}{22}$.328125	.1077	.5728	.03533	.6897	1.031	.08456
$\frac{1}{23}$.34375	.1182	.5863	.04062	.7005	1.080	.09281
$\frac{1}{24}$.359375	.12913	.5995	.04641	.7110	1.129	.1014
$\frac{1}{25}$.3750	.1406	.6124	.05273	.7211	1.178	.1104
$\frac{1}{26}$.390625	.1526	.6250	.05960	.7310	1.227	.1226
$\frac{1}{27}$.40625	.1650	.6374	.06705	.7406	1.276	.1296
$\frac{1}{28}$.421875	.17800	.6495	.07508	.7500	1.325	.1398
$\frac{1}{29}$.4375	.1914	.6614	.08374	.7592	1.374	.1503
$\frac{1}{30}$.453125	.2053	.6732	.09304	.7681	1.424	.1613
$\frac{1}{31}$.46875	.2197	.6847	.1030	.7768	1.473	.1726
$\frac{1}{32}$.484375	.2346	.6960	.1136	.7853	1.522	.1843
$\frac{1}{33}$.5000	.2500	.7071	.1250	.7937	1.571	.1963

From American Machinist's Handbook by F. N. Colvin and E. A. Stanley, New York. McGraw-Hill Book Company, Inc.

**DECIMAL EQUIVALENTS, SQUARES, SQUARE ROOTS, CUBES, AND
CUBE ROOTS OF FRACTIONS; CIRCUMFERENCES AND
AREAS OF CIRCLES FROM $\frac{1}{16}$ TO 1 INCH - (continued)**

Frac-tion	Dec. Equiv.	Square	Sq. Root	Cube	Cube Root	Circum. Circle	Area Circle
$\frac{1}{16}$.515625	.2659	.7181	.1371	.8019	1.620	.2088
$\frac{3}{16}$.53125	.2822	.7289	.1499	.8099	1.669	.2217
$\frac{5}{16}$.546875	.2991	.7395	.1636	.8178	1.718	.2349
$\frac{7}{16}$.5625	.3164	.7500	.1780	.8255	1.767	.2485
$\frac{9}{16}$.578125	.3342	.7603	.1932	.8331	1.816	.2625
$\frac{11}{16}$.59375	.3525	.7706	.2093	.8405	1.865	.2769
$\frac{13}{16}$.609375	.3713	.7806	.2263	.8478	1.914	.2916
$\frac{15}{16}$.6250	.3906	.7906	.2441	.8550	1.963	.3068
$\frac{17}{16}$.640625	.4104	.8004	.2629	.8621	2.013	.3223
$\frac{19}{16}$.65625	.4307	.8101	.2826	.8690	2.062	.3382
$\frac{21}{16}$.671875	.4514	.8197	.3033	.8758	2.111	.3545
$\frac{23}{16}$.6875	.4727	.8292	.3250	.8826	2.160	.3712
$\frac{25}{16}$.703125	.4944	.8385	.3476	.8892	2.209	.3883
$\frac{27}{16}$.71875	.5166	.8478	.3713	.8958	2.258	.4057
$\frac{29}{16}$.734375	.5393	.8569	.3961	.9022	2.307	.4236
$\frac{31}{16}$.7500	.5625	.8660	.4219	.9086	2.356	.4418
$\frac{33}{16}$.765625	.5862	.8750	.4488	.9148	2.405	.4604
$\frac{35}{16}$.78125	.6104	.8839	.4768	.9210	2.454	.4794
$\frac{37}{16}$.796875	.6350	.8927	.5060	.9271	2.503	.4987
$\frac{39}{16}$.8125	.6602	.9014	.5364	.9331	2.553	.5185
$\frac{41}{16}$.828125	.6858	.9100	.5679	.9391	2.602	.5386
$\frac{43}{16}$.84375	.7119	.9186	.6007	.9449	2.651	.5592
$\frac{45}{16}$.859375	.7385	.9270	.6347	.9507	2.700	.5801
$\frac{47}{16}$.8750	.7656	.9354	.6699	.9565	2.749	.6013
$\frac{49}{16}$.890625	.7932	.9437	.7064	.9621	2.798	.6230
$\frac{51}{16}$.90625	.8213	.9520	.7443	.9677	2.847	.6450
$\frac{53}{16}$.921875	.8499	.9601	.7835	.9732	2.896	.6675
$\frac{55}{16}$.9375	.8789	.9682	.8240	.9787	2.945	.6903
$\frac{57}{16}$.953125	.9084	.9763	.8659	.9841	2.994	.7135
$\frac{59}{16}$.96875	.9385	.9843	.9091	.9895	3.043	.7371
$\frac{61}{16}$.984375	.9690	.9922	.9539	.9948	3.093	.7610
1	1	1	1	1	1	3.1416	.7854

**DISTANCE ACROSS CORNERS OF SQUARES AND
HEXAGONS**

$$D = 1.1547 d$$

$$E = 1.4142 d$$

<i>d</i>	<i>D</i>	<i>E</i>	<i>d</i>	<i>D</i>	<i>E</i>	<i>d</i>	<i>D</i>	<i>E</i>
$\frac{1}{4}$	0.2886	0.3535	$1\frac{1}{4}$	1.4434	1.7677	$2\frac{1}{4}$	2.6702	3.2703
$\frac{3}{8}$	0.3247	0.3977	$1\frac{1}{2}$	1.4794	1.8119	$2\frac{1}{2}$	2.7424	3.3587
$\frac{5}{8}$	0.3608	0.4419	$1\frac{3}{4}$	1.5155	1.8561	$2\frac{3}{4}$	2.8145	3.4471
$\frac{7}{8}$	0.3968	0.4861	$1\frac{5}{8}$	1.5516	1.9003	$2\frac{1}{2}$	2.8867	3.5355
$\frac{9}{16}$	0.4329	0.5303	$1\frac{1}{8}$	1.5877	1.9445	$2\frac{5}{8}$	2.9589	3.6239
$\frac{11}{16}$	0.4690	0.5745	$1\frac{3}{8}$	1.6238	1.9887	$2\frac{3}{8}$	3.0311	3.7123
$\frac{13}{16}$	0.5051	0.6187	$1\frac{5}{16}$	1.6598	2.0329	$2\frac{1}{4}$	3.1032	3.8007
$\frac{15}{16}$	0.5412	0.6629	$1\frac{7}{8}$	1.6959	2.0771	$2\frac{1}{2}$	3.1754	3.8891
$\frac{17}{16}$	0.5773	0.7071	$1\frac{1}{2}$	1.7320	2.1213	$2\frac{3}{4}$	3.2476	3.9794
$\frac{19}{16}$	0.6133	0.7513	$1\frac{9}{16}$	1.7681	2.1655	$2\frac{5}{8}$	3.3197	4.0658
$\frac{21}{16}$	0.6494	0.7955	$1\frac{11}{16}$	1.8042	2.2097	$2\frac{7}{8}$	3.3919	4.1542
$\frac{23}{16}$	0.6855	0.8397	$1\frac{13}{16}$	1.8403	2.2539	3	3.4641	4.2426
$\frac{25}{16}$	0.7216	0.8839	$1\frac{1}{8}$	1.8764	2.2981	$3\frac{1}{8}$	3.5362	4.3310
$\frac{27}{16}$	0.7576	0.9281	$1\frac{3}{8}$	1.9124	2.3423	$3\frac{3}{8}$	3.6084	4.4194
$\frac{29}{16}$	0.7937	0.9723	$1\frac{5}{8}$	1.9485	2.3865	$3\frac{5}{8}$	3.6806	4.5078
$\frac{31}{16}$	0.8298	1.0164	$1\frac{7}{8}$	1.9846	2.4306	$3\frac{7}{8}$	3.7527	4.5962
$\frac{33}{16}$	0.8659	1.0606	$1\frac{1}{4}$	2.0207	2.4708	$3\frac{1}{4}$	3.8249	4.6846
$\frac{35}{16}$	0.9020	1.1048	$1\frac{9}{16}$	2.0568	2.5190	$3\frac{3}{4}$	3.8971	4.7729
$\frac{37}{16}$	0.9380	1.1490	$1\frac{11}{16}$	2.0929	2.5632	$3\frac{5}{8}$	3.9692	4.8613
$\frac{39}{16}$	0.9741	1.1932	$1\frac{13}{16}$	2.1289	2.6074	$3\frac{1}{2}$	4.0414	4.9497
$\frac{41}{16}$	1.0102	1.2374	$1\frac{1}{8}$	2.1650	2.6516	$3\frac{1}{8}$	4.1136	5.0381
$\frac{43}{16}$	1.0463	1.2816	$1\frac{3}{8}$	2.2011	2.6958	$3\frac{3}{8}$	4.1857	5.1265
$\frac{45}{16}$	1.0824	1.3258	$1\frac{5}{8}$	2.2372	2.7400	$3\frac{5}{8}$	4.2579	5.2149
$\frac{47}{16}$	1.1184	1.3700	$1\frac{7}{8}$	2.2733	2.7842	$3\frac{7}{8}$	4.3301	5.3033
1	1.1547	1.4142	2	2.3094	2.8284	$3\frac{1}{4}$	4.4023	5.3917
$1\frac{1}{16}$	1.1907	1.4584	$2\frac{1}{8}$	2.3453	2.8726	$3\frac{3}{8}$	4.4744	5.4801
$1\frac{3}{16}$	1.2268	1.5026	$2\frac{3}{8}$	2.3815	2.9168	$3\frac{5}{8}$	4.5466	5.5684
$1\frac{5}{16}$	1.2629	1.5468	$2\frac{5}{8}$	2.4176	2.9610	4	4.6188	5.6568
$1\frac{1}{4}$	1.2990	1.5910	$2\frac{1}{4}$	2.4537	3.0052	$4\frac{1}{8}$	4.7631	5.8336
$1\frac{5}{8}$	1.3351	1.6352	$2\frac{3}{4}$	2.4898	3.0494	$4\frac{3}{4}$	4.9047	6.0104
$1\frac{11}{16}$	1.3712	1.6793	$2\frac{5}{8}$	2.5259	3.0936	$4\frac{5}{8}$	5.0518	6.1872
$1\frac{13}{16}$	1.4073	1.7235	$2\frac{7}{8}$	2.5981	3.1820	$4\frac{1}{2}$	5.1961	6.3689

HANDY EQUIVALENT TABLES**Made from Spring Steel**

Ready Reference tables that are accurate, can be carried in pocket or used around bench. Do not soil and will wear well.

Tap Drills**Decimal Equivalents**THE L.S. STARRETT CO.
ATHOL, MASS. U.S.A.**DECIMAL
EQUIVALENTS**

32	64	128	256	512	1024	2048	4096	8192	16384	32768	65536	131072	262144	524288	1048576	2097152	4194304	8388608	16777216	33554432	67108864	134217728	268435456	536870912	1073741824	2147483648	4294967296	8589934592	1717986944	3435973888	6871947776	1374389552	2748778104	5497556208	1099511216	21990224	4398048	8796096	17592192	35184384	70368768	140737536	281475072	562950144	1125800288	2251600576	4503201152	9006402304	1801280464	3602560928	7205121856	1441023712	2882047424	5764094848	1152819296	2305638592	4611277184	9222554368	1844510832	3689021664	7378043328	1475608664	2951217328	5902434656	1180486912	2360973824	4721947648	9443895296	1888779056	3777558112	7555116224	1511032448	3022064896	6044129792	1208825952	2417651888	4835303776	9670607552	1934121504	3868243008	7736486016	1547293232	3094586464	6189172928	1237834576	2475669152	4951338304	9902676608	19805353216	39610706432	79221412864	15844282568	31688565136	63377130272	126754260544	253508521088	507017042176	101403408352	202806816704	405613633408	811227266816	1622444533632	3244889067264	6489778134528	12979556269056	25959112538112	51918225076224	10383645015248	20767290030496	41534580060992	83069160121984	16613832024392	33227664048784	66455328097568	132910656195136	265821312380272	531642624760544	106328524931088	212657049862176	425314099724352	850628199448704	1701256398897088	3402512797794176	6805025595588352	1361005119176672	2722010238353344	5444020476706688	1088804095341376	2177608190682752	4355216381365504	8710432762731008	17420865525462016	34841731050924032	69683462101848064	139366924203696128	278733848407392256	557467696814784512	111493393362956904	222986786725913808	445973573451827616	891947146903655232	178389429380730464	356778858761460928	713557717522921856	142711543505584372	285423087011168744	570846174022337488	114169234804467976	228338469608935952	456676939217871904	913353878435743808	1826707556875477616	3653415113750955232	7306830227501910464	1461366045003820928	2922732090007641856	5845464180015283712	11690928360030567424	23381856720061134848	46763713440122269696	93527426880244539392	18705485376048907872	37410970752097815744	74821941504195631488	14964388300838866296	29928776601677732592	59857553203355465184	11971510640671093032	23943021281342186064	47886042562684372128	95772085125368744256	191544170406737488512	383088340813474977024	766176681626949954048	153235336325389988096	306470672650779976192	612941345301559952384	1225882806023119904768	2451765612046239809536	4903531224092479619072	9807062448184959238144	1961412488369491847628	3922824976738983695256	7845649953477967385512	1569129990795593477024	3138259981591186954048	6276519963182373908096	12553039263646547816928	25106078527293095633856	50212157054586191267712	10042434410917238253424	20084868821834476506848	40169737643668953013696	80339475287337906027392	16067895056467912054480	32135790112895824108960	64271580225791648217920	12854316045158321643840	25708632080316643287680	51417264160633286575360	102834528321265613150720	205668656642531226301440	411337313285062452602880	822674626560124855205760	1645349253120249710411520	3290698506240499420823040	6581397012480998841646080	1316279402496199768329160	2632558804992399536658320	5265117609984799073316640	10530235219969598146633280	2106047043993919629326640	4212094087987839258653280	8424188175975678517306560	1684837635195135703461320	3369675270387571406922640	6739350540775142813845280	13478701081550285627690560	26957402163050571255381120	53914804326101142510762240	10782960864202284502152480	2156592172840456900430480	4313184345680913800860960	8626368691361827601721920	17252737382723655203443840	34505474765447310406887680	69010949530894620813775360	13802189906178944162755040	27604379812357888325510080	55208759624715776651020160	11041751924731555310200320	22083503849463110620400640	44167007698926221240801280	88334015397852442481602560	176668030795704884963205120	353336061591409769926410240	706672123182819539852820480	1413344246365639079705640960	2826688492731278159411281920	5653376985462556318822563840	1130675397092512663764512720	2261350794185025327529025440	4522701588370050655058050880	9045403176740025310116101760	18090806353480499620232203520	36181612706960999240464407040	72363225413921998480928814080	14472645082743997696185628160	28945290165487995392371256320	57890580330975990784742512640	11578116066195980156948502520	23156232132391970313897005040	46312464264783940627794010080	92624928529567881255588020160	185249857058135762511170402320	370499714116271525022340804640	740999428232543050044681609280	1481998856465865100089363208560	2963997712931730200178726417120	5927995425863460400357452834240	1185598885172830800714895668480	2371197770345661601437791336960	4742395540691323202875582673920	9484791081382646405751165347840	1896958216275329281150231069560	3793916432550658562300462139120	7587832865101317124600924278240	1517566571020263428920848455680	3035133142040526857841696911360	6070266284081053715683393822720	12140532561621107431366777645440	24281065123242214862733555290880	48562130246484429725467110581760	97124260492968859450934221163520	19424852095937711891868442232640	38849704191875423783736884465280	77699408383750847567473768930560	155398816665001695134947357861120	310797633330003390269494715722240	621595266660006780538989431444480	124319053330001356107897886288960	248638106660002712215757772577920	497276213320005424431555545155840	994552426640001088467111105311680	198910485320002176934222210263360	397820970640004353868444420526720	795641941280008707736888841053440	159128382560001741547377768210680	318256765120003483094755536421360	636513530240006966189511072842720	1273027060480013933378522145685440	254605412096002786675704429371080	509210824192005573351408845742160	101842164838401114670817769488320	203684329676802222941635538976640	407368659353604445883271077953280	814737318707208891766542155906560	162947463741441782353304231181320	325894927482883564706608462362640	651789854965767129413216924725280	1303579709931534258826438449450560	2607159419863068517652876898901120	5214318839726137035305753797802240	1042867679453267407061506795604480	2085735358906534814123013591208960	4171470717813069628246027182417920	8342941435626139256492054464835840	166858828724522785128401891771680	333717657449045570256803783553760	667435314898091140513607576707520	133487063797618228027215153415040	266974127595236456054423030680080	533948255190472912108846061360160	106789651038094582421768122672320	213579302076189164843536245344640	427158604152378329687072490689280	854317208304756659374144981378560	170863416669511331878828969275120	341726833339022663757657938550240	683453666678045327515315877100480	138690733356085655030631754200960	277381466712171310060315508401920	554762933424342620120671016803840	1109525866848685240241340233607680	221905173369737048048268046721520	443810346739474096096536093443040	887620693478948192193072186886080	177524138897896384038145618372160	355048277795792768076288316744320	710096555591585536152576633488640	142019311118317107234153212681280	284038622226634214468266425362560	568077244453268428936532850725120	113615444886533685787306570447240	227230889773067371575413140884480	454461779546134743150826281768960	908923559092269486301652563537920	1817851181845389772603305127075840	3635702363690779545206610254151680	7271404727381559090413220508303360	1454280945476318180826441016660720	2908561890952636361652882033321440	581712378190526372325576406672080	1163424763810526744651152813344160	232684952762105348930230562668320	465369905524210697860461125336640	930739811048421395720922250673280	1861479622096842790418445013446560	372295924419368558083689002689320	744591848838737116167378005378640	1489183697677474232334760026757280	2978367395354948464669520053514560	5956734790709896929339040026753120	1191346958141979385867880053306240	2382693916283958771735560026653120	4765387832567917543531120053306480	9530775665135835087067760026653240	1906154933027167017413520053306880	3812309866054340034827040026653360	7624619732108680069654080026653720	15249235642173600139308160026653440	30498471284171200278616320026653840	60996943568342400557232640026653680	12199388713668800114616520026653360	24398777427337600229233040026653720	48797554854675200458466080026653440	97595109099350400916932160026653840	19518520898700080183386320026653680	3903704179740016036677280026653360	7807408359480032073354560026653720	1561481678960064146709120026653440	312296335892001283358240026653840	62459267178400256671680026653680	124918534356800513334320026653360	249837068713600256671680026653720	499674137427200513334320026653440	999348274854400256671680026653840	199869654910800513334320026653680	399737349821600256671680026653360	799438599643200513334320026653720	159887719846400256671680026653440	319775439692800513334320026653840	639554879385600256671680026653680	127910875777200513334320026653360	255821751554400256671680026653720	511643503108800513334320026653440	102328706217600513334320026653840	204657412435200513334320026653680	409314824870400513334320026653360	818629649740800513334320026653720	1637257294801600513334320026653440	3274514589603200513334320026653840	6544029179206400513334320026653680	1308805839212800513334320026653360	2617611678403200513334320026653720	5215223356806400513334320026653440	10432446733612800513334320026653840	20864893467225600513334320026653680	41729786934451200513334320026653360	83459573868902400513334320026653720	166919147337804800513334320026653440	333838296355609600513334320026653840	667676592711219200513334320026653680	133535393543218400513334320026653360	267070787086436800513334320026653720	534640785172873600513334320026653440	106834157345744800513334320026653840	21366831069148800513334320026653680	42733662138297600513334320026653360	85467324276595200513334320026653720	170734648531190400513334320026653440	341469297062380800513334320026653840	681538594124761600513334320026653680	1329077182495323200513334320026653360	265815436498964800513334320026653720	515814821997929600513334320026653440	103163164399585600513334320026653840	206326328799171200513334320026653680	412652657598342400513334320026653360	825905315196684800513334320026653720	165181063038337600513334320026653440	33036212607667520051333432002665384

THE STARRETT DATA BOOK

Pocket Tools

STARRETT POCKET TOOLS

Pocket Steel Tape

Tape is $\frac{1}{4}$ inch wide, in well-finished nickel-plated case with rounded edges. Spring wind with center stop. Graduated in inches and sixteenths. Quick reading. Also made graduated in inches and sixteenths on one side; feet, tenths, and hundredths on the other.

Magazine Screwdriver

Blades are $\frac{3}{16}$, $\frac{5}{32}$, $\frac{1}{4}$ and $\frac{3}{8}$ in. Carried in handle. When in use blade locks automatically. Steel throughout. Knurled grip.

Pocket Scriber

Made from steel tubing, knurled and nickel plated. Scriber is made from best steel, nicely tempered, held by knurled chuck. Reversible. Telescopes into stock and is held there by a turn of the chuck.

Adjustable Jaw Cut Nippers

Jaws are detachable so that they can be removed, ground, and adjusted. Head and handle are of drop-forged steel. All parts, except jaws, are case hardened.

Pin Vises

Have hardened jaws with chucks that will hold firmly anything inserted in them. The hole extends through the full length of the handle. Knurled and nickelized.

For further information concerning these and other convenient pocket tools see Vol. I of The Starrett Books, and the Starrett Catalogue.

INDEX

For Additional Machinists' Data see Starrett Book for Machinists' Apprentices,
Volume I of The Starrett Books

ABRASIVES, Grade of, 35, 36, 37, 38
Grain of, 35, 36
Acme and Square Threads, Comparison of, 133
Adjustable Parallels, 89
Alloys, Miscellaneous, Composition of, 64
American Wire Gage, 19
Angles and Tapers, 120
Angles Corresponding to Taper, per foot, 121
to bisect, 53
to draw an — equal to, 53
to lay out 30°, 53
to lay out 45°, 54
to lay out 60°, 53
Aluminum, Average Ultimate Strength of, 73
Cutting Speed for Milling, 86
Annealing, Steel, 41, 42
Apothecaries' Weight, 164
Approximate Angles for Cutting Spirals, 81, 82, 83
Arbors, Standard Keyways for, 50
A. S. M. E. Standard Screws, Tap Drills for, 140
Threads, Micrometer Readings, 151
Automatic Screw Machine Tools, Tempering Temperatures for, 43
Avoirdupois Weight, 164

BELTING, 5-8
Laces, 5
Laced Joints, Holes for, 5
Tools for, 8
Bench Micrometer Calipers, 131
Birmingham Wire Gage, 19
Boring, Tools for, 158
Box Tool, Speeds and Feeds for, 109
Finish, Speeds and Feeds for, 109
Turning Tools, Cutting Speeds and Feeds for, 107
Brass, Average Ultimate Strength of, 73
Cutting Speed for Milling, 86
Plates, Weight of, 70
Screw Stock, Speeds and Feeds for Cutting, 108
Sheets, Rods and Bars, to find weight of, 159
Tubing, Seamless, Thickness, 69
Weights of, 69
Brasses, Strength of, 73
Bricks, Average Ultimate Strength of, 71
Brickwork, Average Ultimate Strength of, 71
Briggs' Formula, 90
Standard Pipe Taps, 127
Taper Pipe Threads, 148

British Association Screw Threads, 144
Standard Whitworth Pipe Thread, 149
Bronze, Gun Metal, Average Ultimate Strength of, 73
Manganese, Average Ultimate Strength of, 73
Phosphor, Average Ultimate Strength of, 73
Tobin, Cutting Speed for Milling, 86
Bronzes, Strength of, 73
Brown & Sharpe Standard Taper Sockets, Reamers for, 99
Taper Shanks, 115
Wire Gage, 19

CALIPER SQUARE, 21
Calipers, Crank Shaft, 80
Gages, U. S. Govt. Micrometer, 40
Inside, 158
Outside, 158
Pocket Slide, 89
Slide Rule, 80
Thread, 93, 155
Toolmakers, 40
Transfer Lock Joint, 93
Vernier, 18
Castings, Shrinkage of, 64
Cement, Portland, Average Ultimate Strength of, 71
Center Punch, Automatic, 61
Machinists', 13
Spacing Attachment for, 62
Center Tester, 158
Change Gears for Cutting Spirals, 81, 82, 83
Chords, Length of, for Spacing off Circumference of Circles, 57, 58, 59
Length of, for Spacing off Circumference of Circles with Diameter equal to 1, 60
Chrome Nickel Steel, Cutting Speed for Milling, 86
Chuckling, Lubricants, 10
Circle, to bisect an arc of, 54
to describe a hexagon without, 55
to find area of, 159
to find the center of, 54
to find circumference, 159
to find diameter, 159
to find radius, 159
to inscribe a hexagon in, 55
length of chords for spacing off circumference of, 57, 58, 59
rules relative to the, 159
Circles, Areas of — from $\frac{1}{4}$ to 1 inch, 166, 167

INDEX

- with diameter equal to 1, Length of chords for spacing off of circumference, 60
- Circular Measure**, 164
- Circumference Gage and Slide Rule Caliper**, 80
- Clamps, Key-Seat**, 51
- Tool Makers' Steel**, 13
- Clearance between Top and Bottom of Threads**, 133
- Cloth Measure**, 164
- Cold Rolled Stock, Speeds and Feeds for Cutting**, 108
- Comparison of Acme and Square Threads**, 133
- Concrete, Portland, Average Ultimate Strength of**, 71
- Copper, Cast, Average Ultimate Strength of**, 73
- Plates, Weights of, 70
- Sheet, Approximate Thickness**, 66
- Gage Nos., 66
- Rods and Bars, to find weight of, 159
- Weights of, 66
- Wire, Annealed, Average Ultimate Strength of**, 73
- Unannealed, Average Ultimate Strength of, 73
- Crank Shaft Calipers**, 80
- Cutters, Grooving, Dimensions of**, 9
- Milling, Clearance for Grinding, 87
- Plain, Number of Teeth in, 88
- Side, Number of Teeth in, 88
- Standard Keyways for**, 50
- Whitney, Dimensions of**, 48, 49
- Cutting Lubricants**, 10
- Feeds and Speeds for Turning Tools**, 156
- Speeds, 11
- for Face Mills, 86
- Milling Aluminum, 86
- Brass, 86
- Cast Iron, 86
- Chrome Nickel Steel, 86
- Milling Cutters, 85, 86
- Machine Steel, 86
- Tobin Bronze, 86
- Tool Steel, 86
- Planing, 94
- Spiral Mills, 86
- Cutting Speeds and Feeds for Box Turning Tools**, 107
- Hollow Mills, 107
- Roughing Brass Screw Stock, 108
- Cold Rolled Stock, 108
- Cutting Spirals, Approximate Angles for**, 81, 82, 83
- Change Gears for, 81, 82, 83
- Leads for, 81, 82, 83
- Cutting Tools, External, Surface Speeds for**, 107
- Time of Travel, 157
- DECIMAL EQUIVALENTS, Handy Table of**, 169
- of Fractions, 166, 167
- of Fractions of an Inch, 163
- of Millimeters, 161
- Depth Gage, Micrometer**, 34
- Vernier, 34
- Dial Test Indicator**, 98
- Die Makers, Tools for**, 44
- Dies, Speeds for**, 110
- Die Taps, Dimensions of**, 128
- Dividers, Toolmakers'**, 61
- Draftsmen's Instruments**, 113
- Scales, 113
- Drills, Blocks**, 13
- Carbon Steel, 12
- Speeds and Feeds for, 111
- Gages, 13
- High Speed Steel, 12
- Letter Sizes of, 145
- Sizes, Handy Table of, 169
- for Pipe Taps, 149
- Speed of, 11
- Tap, Sizes of**, 145
- Twist, Dimensions of**, 9
- Wire Gage Sizes, Dimensions of, 10
- DRILLING**, 9-13
- Lubricants, 10
- Speeds and Feeds, 12
- Tools for, 13
- Dry Measure**, 164
- ENGINEERS' TOOLS**, 102
- Ellipse, to Describe an, 55
- FEEDS, Cutting, for Box Turning Tools**, 107
- for Hollow Mills, 107
- Roughing Brass Screw Stock, 108
- Cold Rolled Stock, 108
- Turning Tools, 156
- Drills, 111
- Finish Box Tool, 109
- Forming, 109
- Reaming, 110
- Screw Machines, 107, 112
- Fillet Gage, 89
- Fitting, 14-18
- Tools for, 18
- FITS, Driving, Allowances for**, 15, 16, 17
- Forcing, Allowances for, 15, 16, 17
- Push, Allowances for, 16, 17
- Running, Allowances for, 14, 16, 17
- Shrinking, Allowances for, 14, 15
- Fits, Driving, Tolerance Limits**, 17
- Forced, Tolerance Limits, 17
- Push, Tolerance Limits, 17
- Running, Tolerance Limits, 17
- Running, Tolerances and Allowances for, 16
- Forming, Feeds for, 109
- Speeds for, 109
- GAGES, 19-21**
- Center, 155
- Circumference, 80
- Depth, Vernier, 34

INDEX

- Drill, 13, 21
Fillet, 89
Height, Vernier, 63
Inspector's, 80
Limit, Table of Limits for, 14
Micrometer Caliper, Sheet Metal, 21
Planer and Shaper, 95
Plate, U. S. Standard, 19
Radius, 89
Standards, Wire, 19
Steel, 21
Steel Wire, 21
Surface, 89, 95
Tap, 18
Steel, 21
Taper, 96, 122
Telescoping Inside, 158
Thickness, 96
Thread, 155
Wire, 96
Gaging, Tools for, 20, 21
Gas Pipe, Wrought, Dimensions of, 92
Weight per Foot, 92
- GEARS — GEARING, 22-34**
Blanks, Turning and Cutting, 27, 28
Change for Cutting Spirals, 81, 82, 83
Diametral, Metric, and Circular
Pitches, Comparative Table of, 26
Internal Spur, Rules and Formulae
for Dimensions of, 22
Spur, Circular Pitch, Rules and
Formulae for Dimensions of, 24
Diametral Pitch, Rules and
Formulae for Dimensions of, 23
Teeth, Metric or Module System of,
25
Tools for, 34
Tooth Parts, 22
Table of, 25
Gear Cutters, Bevel, Diagram, and
Formula for the Selection of, 29,
30
Offset, 30
Set-Over, 30
Carbon Steel, Feed for, 32
High Speed Steel, Feed for, 33
Involute, 31
Comparative Curves of Tooth
Shapes, 31
Gear Cutting, Feeds for, 32, 33
- GEOMETRIC PROBLEMS, 52-56**
Bisecting a Line, 52
Bisecting Angles, 53
Constructing Angles, 53
Drawing Parallel Lines, 53
Erecting Perpendiculars, 52
Laying out 30° Angle, 53
Laying out 45° Angle, 54
Laying out 60° Angle, 53
To Bisect Arc of Circle, 54
To Construct a Helix, 56
To Construct an Involute, 56
- To Describe an Ellipse, 55
To Describe a Hexagon, 55
To Find Center of Circle, 54
To Inscribe a Hexagon, 55
- GRINDING, 35-40**
Allowances for, 38
Clearances for—Milling Cutters, 87
Grain Numbers, 36
Tools for, 40
Wheels for Different Materials, 85
Grade of, 35, 36, 37
Grain of, 36
Speeds of, 39
- HACK SAWS, 103-106**
Cuts per Hour Corresponding to
Gross Time per Cut, 104
Speeds, 103
Starrett Chart, 103
Hack Saw Blades, 105, 106
Machines, 106
Hack Saw Frame, 105
Heavy, 105
Solid, 105
Hack Sawing, Tools for, 105
Hand Taps, Dimensions of, 125
Handy Equivalent Tables, 169
- HEAT, Treatment of High Speed Steel,**
41, 42
Height Gage, Vernier, 63
Helix, to Construct a, 56
Hexagon, to Describe a — Without a
Circle, 55
Distance Across Corners, 168
To Inscribe a — in a Circle, 55
High Temperatures, Colors of, 43
Holes, Standard, Tolerances in, 17
Hobs, Sellers, Dimensions of, 129
Hollow Mills, Tempering Temperatures,
43
Horsepower, Transmitted by Single
Belt, 5
Double Belt, 5
Turned Steel Line Shafting, 7
Hub Micrometer Calipers, 131
- IMPERIAL WIRE GAGE, 19**
Inches and Sixteenths in Millimeters,
165
Index, Milling Standard Table for, 84
Instruments for Draftsmen, 113
Involute, to Construct an, 56
Iron, Cast, Average Ultimate Strength
of, 73
Cutting Speed for Milling, 86
Iron, Selecting by Spark Method, 76,
77, 78, 79
Iron, Sheet, Approximate Thicknesses, 68
Gage Nos., 68
Weights of, 68
Iron, Wire Annealed, Average Ultimate
Strength of, 73
Unannealed, Average Ultimate
Strength of, 73

INDEX

- Iron, Wrought, Average Ultimate Strength of, 73
Plates, Weights of, 70
- JACK SCREWS, 95
Jarno Standard Taper Sockets, Taper Reamers for, 99
Jarno Tapers, 116
- KEYS, 45-51
Barth, Dimensions of, 47
Dimensions of, 45, 46, 47, 48, 49, 50
Heads, Proportions of, 49
Square Feather, Sizes of, 47
Straight, Dimensions of, 46, 47
Sunk, Proportions of, 50
Tools for, 51
U. S. Navy Standard, Proportions of, 50
Whitney, Cutters, No. of, 48, 49
Dimensions of, 48, 49
No. of, 48
- Key-Seat Clamps, 51
Rule, 51
- Key-Seats, Dimensions of, 45, 46, 47, 48, 49, 50
Nearest Size of Cutter for, 45
- Keyways, Standard Arbors, 50
Standard for Cutters, 50
Standard — for Milling Cutters, 88
- Knurls, Tempering Temperatures, 43
- LAYING OUT, 52-63
Tools for, 61, 62, 63
- Lathe Tools, Cooling Medium, 42
Grinding, 42
Hardening Heat, 42
- Lead, Cast, Average Ultimate Strength of, 73
- Leads for Cutting Spirals, 81, 82, 83
- Letter Sizes of Drills, 145
- Level, 8
Engineers', 102
- Leveling Instrument, 8
- Line, to Bisect a, 52
To Draw a — Parallel to, 53
- Liquid Measure, 164
- Long Measure, 164
- Lubricants, Chucking, 10
Cutting, 10
Drilling, 10
Reaming, 10
Tapping, 10
Turning, 10
- MACHINE SCREWS, A. S. M. E.
Standard, Taps for, 146
A. S. M. E. Special, Taps for, 147
Taps, Dimensions of, 123, 124
Tap Drills for, 141
Steel, Cutting Speed for Milling, 86
- Mariner's Measure, 164
- Materials, 64-79
Average Ultimate Strength of, 71
• Grinding Wheels for, 25
- MEASURES, 159-168
and Weights, 164
Equivalents of Various, 159
of Capacity, Metric, 160
Length, Metric, 160
Mariners', 164
Solidity, 164
of Weight, Metric, 160
- Metals, Average Ultimate Strength of, 73
- Common Modulus of Elasticity, 72
- Linear Expansion, 65
- Melting Points, 65
- Proper Hack Saw Blades for, 103
- Properties of, 65
- Specific Gravity of, 65
- Metric, Conversion Table, 161
- Standard Screw Threads, 134
- System of Measurement, 160
- Micrometer Calipers, 18, 21, 40, 98, 122
Bench, 131
Heads, 131
Heavy, 131
Hub, 131
Inside, 18
Large, Sets, 18
Paper Gage, 131
Screw Thread, 155
- Micrometer Depth Gage, 34
- Micrometers for Special Purposes, 131
- U. S. Government, 40
- MILLING, 81-89
Tools for, 89
- Cutting Spirals, Approximate Angles for, 81, 82, 83
Change Gears for, 81, 82, 83
Leads for, 81, 82, 83
- Standard Index Table, 84
- Milling Cutters, Cooling Medium, 42
Cutting Speeds, 85
Grinding Clearances, 87
Hardening Heat, 42
Number of Teeth in Plain, 88
Number of Teeth in Side, 88
Standard Keyways for, 88
Temper, 42
Tempering Temperatures, 43
- Millimeters, Decimal Equivalents of, 161
- Mills, Face, Cutting Speeds, 86
Hollow, Cutting Speeds and Feeds for, 107
- Spiral, Cutting Speeds, 86
- Morse Standard Taper Shanks, 114
- Sockets, Taper Reamers for, 99
- NIPPERS, Adjustable Jaw, 170
- OAK, White, Average Ultimate Strength of, 71
- PATTERN MAKERS, Tools for, 44
Paper Gage, Micrometer Calipers, 131
Perpendicular, to Erect, 52

INDEX

- Pine, Georgia, Average Ultimate Strength of, 71
Yellow, Average Ultimate Strength of, 71
White, Average Ultimate Strength of, 71
Pipes and Fitting, 90-93
Tools for, 93
- PIPE, Standard, Briggs's Formula, 90
Standard — and Pipe Threads, 90
Taps, Briggs's Standard, 127
Drill Sizes for, 149
Wrought, Dimensions of, 91
Weight per Foot, 91
Gas, Dimensions of, 92
Gas, Weight per Foot, 92
Steam, Dimensions of, 92
Steam, Weight per Foot, 92
Water, Dimensions of, 92
Weight per Foot, 92
- Planer and Shaper Gage, 95
Planer, Time of Travel per Foot, 94
Table, No. ft. of Travel per Hour, 94
Tools, Cooling Medium, 42
Tools, Grinding, 42
Tools, Hardening Heat, 42
- PLANING, Practical Cutting Speeds for, 94
Tools for, 95, 96
- Pliers, Expansion, 93
- Plumb Bob, Mercury, 8
- PRECISION MEASUREMENTS, 97, 98
Tools for, 98
- Protractor, Draftsmen's, 113
Universal Bevel, 61
- Pulleys, Circumferential Speeds of, 6
- RADIUS GAGE, 89
- REAMING, Lubricants, 10
Feeds and Speeds, 110
- Reamers, 99-101
Clearances, Chucking, 100, 101
Hand, 100, 101
Taper, and Pins, 118
Taper for Brown & Sharpe Standard Taper Sockets, 99
Jarno Standard Taper Sockets, 99
Morse Standard Taper Sockets, 99
- Reed Tapers, 116
Rules for Figuring Tapers, 118
Key-Seat, 51
Slide, 80
Spring Tempered, 34
Steel, 51
- SAWING, Tools for, 105
S.A.E. Screw Standard, Dimensions, 132
Threads, Micrometer Readings, 150
Tolerances, 132
- Saws, Hack, 103-106
Blades for, 105, 106
Cuts per Hour Corresponding to Gross Time per Cut, 104
Proper Blade for Different Metals, 103
- SCREWS AND THREADS, 132-155
Tools for, 155
Screw and Nut Tolerances, for close fits, 153
for Loose fits, 154
for Medium fits, 154
- Screwdriver, Magazine, 170
- Screw Machines, 107-112
Clearances for Threading, 111
Feed per Revolution, 107
Feeds and Speeds, 107, 112
- Screw Threads, Adapting Lathe to Cut — in Metric System, 144
British Association Drills for, 144
Constants for Finding Diameter at Bottom of Thread, 138
Double Depth of, 139
formula for, 139
Formula for Finding Diameter at Bottom of Thread, 138
Metric Standard, 134
Pitch, U. S., 138
V, 138
Whitworth, 138
- S. A. E. Tap Drill, Sizes for, 145
- Table of Diameters with Corresponding Pitch, 138
- Tap Drills for A.S.M.E. Standard Screws, 140
for Special Machine Screws, 140
- Tolerances, 152
- U. S. Standard, 135, 136
- Whitworth Standard, 137
Formula, 137
- Scribers, 51
Adjustable Sleeve, 63
Pocket, 170
- Section Liner, 113
- Sellers Hobs, Dimensions of, 129
- Tapers, 116, 117
- SHAFTING, 5-8
Tools for, 8
- Shaper and Planer Gage, 95
- Shrinkage of Castings, 64
- Sizes of Tap Drills, 145
- Special Purpose Micrometers, 131
Special Machine Screws, Tap Drills for, 140
- Speed Indicator, 80
Surface Speed Attachment to, 80
- Speeds and Feeds for Finish Box Tool, 109
Cutting for Box Turning Tools, 107
Face Mills, 86
Hollow Mills, 107
Milling Cutters, 85, 86
Roughing Brass Screw Stock, 108
Cold Rolled Stock, 108

INDEX

- Spiral Mills, 86
For Turning Tools, 156
for Dies, 110
Drills, 111
Forming, 109
Hack Saws, 103
for Reaming, 110
Screw Machines, 107, 112
Surface, for External Cutting Tools,
107
for Taps, 110
Surface for Threading, 107
Sphere, to Find Surface of, 159
Squares, Combination, 61
Attachment for, 96
Cubes, Roots, etc., of Fractions, 166,
167
Distance Across Corners, 168
Equal, to Find Side of, 159
Inscribed to Find Side of, 159
Rules Relative to, 159
T, 113
Steel, 96
Square and Acme Threads, Comparison
of, 133
Square Measure, 164
Square Thread Taps, 130
Stock, Brass Screw, Speeds and Feeds
for Cutting, 108
Cold Rolled, Speeds and Feeds for
Cutting, 108
Standard Pipe and Pipe Threads, 90
Starrett Hack Saw Chart, 103
Steam Pipe, Wrought, Dimensions of, 92
Weight per Foot, 92
- STEEL, Carbon, Percentage of Carbon
in — Tools, 74
Temper of, 74
Tools to Which is Adapted, 74
Cast, Average Ultimate Strength of,
73
Table for Computing Weight, 71
Flat-Bar, Weight per Lineal Foot, 67
Forging Heat, 41, 42
Heat Treatment of High Speed, 41, 42
Plates, Weights of, 70
Plow, Average Ultimate Strength of,
73
Rule, 51
Selecting Spark Method, 76, 77, 78, 79
Sheet, Approximate Thicknesses, 68
Gage Nos., 68
Weights of, 68
Structural, Average Ultimate
Strength of, 73
Tool, Cutting Speed for Milling, 86
Wire. Diameter of, 72
Strength of, 72
Weight of, 72
Crucible, Average Ultimate
Strength of, 73
Piano, Average Ultimate Strength
of, 73
Suspension Bridge, Average Ulti-
mate Strength of, 73
- Annealed, Average Ultimate
Strength of, 73
Unannealed, Average Ultimate
Strength of, 73
Stovebolt Taps, 127
Straightedge, Steel, 63, 113
Stubbs's Steel Wire Gage, 19
Surface Gage, 89, 95
- TAPE, measuring Steel, 8, 102
Steel, 170
- TAPERS, 114-122
Amount of — in a Given Length, 119
and Angles, 120
Brown & Sharpe Taper Shanks, 115
Jarno, 116
Morse Standard — Shanks, 114
Per Foot and Corresponding Angles,
121
Reamers and Pins, 118
Reed, 116
Rules for Figuring, 118
Sellers, 116, 117
Tools, 122
Wire and Thickness Gage, 96
Tap Drills, Handy Table of, 169
for Machine Screws, 141
Sizes for S. A. E. Standard Screw
Threads, 145
Tap Gages, 13
- TAPS, 123-130
A.S.M.E. Special Machine Screws, 147
A.S.M.E. Standard Machine Screws,
146
Briggs's Standard Pipe, 127
Cooling Medium, 42
Die, Dimensions of, 123
Hand, Dimensions of, 125
Hardening Heat, 42
Machine Screw, Dimensions of, 123,
124
Pipe, Drill Sizes for, 149
Speeds for, 110
Square Thread, 130
Stove Bolt, 127
Tapper, Dimensions of, 126
Temper, 42
Tempering Temperatures, 43
Tapped Hole Limits, U.S.S. Taps, 142,
143
Tapper Taps, Dimensions of, 126
Tapping, Lubricants, 10
Tempering, Colors of High Tempera-
tures for, 43
Temperatures for Tool, 43
Test Indicator, 98
Thread Dies, Tempering Temperatures,
43
Threads and Screws, 132-155
A. S. M. E. Standard, Micrometer
Readings, 151
Calipers, 155
Clearance between Top and Bottom
of, 133

INDEX

- Sizes of Drills, 133
Sizes of Taps, 133
Parts, Tables of, 133
Pipe, Briggs's Standard Taper, 148
 British Standard Whitworth, 149
Standard, Coarse, Dimensions for, 152
Standard, Fine, Dimensions for, 152
S.A.E. Standard, Micrometer Readings, 150
Tools for, 155
U.S. Standard, Micrometer Readings, 150
Whitworth Standard, Micrometer Readings, 151
Threading, Screw Machine, Clearance for, 111
 Surface Speeds for, 107
Time Measure, 164
Tin, Cast, Average Ultimate Strength of, 73
Tolerances, Driving Fits, 17
 Forced Fits, 17
 Push Fits, 17
 Running Fits, 17
Screw and Nut for Close Fits, 153
 in Loose Fits, 154
 for Medium Fits, 154
Screw Threads, 152
Standard Holes, 17
Tool Makers' Steel Clamps, 13
Tools for, 44
Tools, Box, Speeds and Feeds for, 109
Carbon Steel, Percentage of Carbon in, 74
Tempering Temperatures for, 43
- TOOLS
 Belting, 8
 Boring, 158
 Die Makers', 44
 Drilling, 13
 Engineers, 102
 Fitting, 18
 Gaging, 20-21
 Gears, 34
 Grinding, 40
 Hack Sawing, 105
 Keys, 51
 Layout, 61
 Milling, 89
 Pattern Makers', 44
 Pipes and Fitting, 93
- Planing, 95, 96
Pocket, 170
Precision Measurements, 98
Sawing, 105
Tapers, 122
Threads and Screws, 155
Tool Makers', 44
Turning, 158
Tooth Parts, Table of, 25
Trammels, 62
Transit, 102
T Square, 113
Twist Drills, Tempering Temperatures, 43
Troy Weight, 164
- TURNING AND BORING, 156-158
Turning, Tools for, 158
Turning and Cutting, Gear Blanks, 27-28
 Lubricants, 10
Turning Tools, Cutting Feeds and Speeds for, 156
- U. S. STANDARD SCREW THREADS, 135, 136
 Tapped Hole Limits, 142, 143
- VERNIER CALIPERS, 18
 Depth Gage, 34
 Height Gage, 63
Vises, Pin, 170
- WASBURN & MOEN WIRE GAGE, 19-21
Water Pipe, Wrought, Dimensions of, 92
 Weight per foot, 92
Weights and Measures, 164
 Equivalents of Various, 159
Whitworth Standard Thread, 137
 Micrometer Readings, 151
Wire, Copper, Area Circular Mils, 75
 Length, Foot per Ohm, 75
 Resistance Ohms, per 1,000 feet, 75
 Weight, per 1,000 feet, 75
 Gage Standards, 19
 Gage, Steel Music, 20
Wrought Iron Plates, Weights of, 70
- ZINC, Cast, Average Ultimate Strength of, 73

For Machine Shop Data for the Apprentice Machinist, see the Starrett Book for Machinists' Apprentices, Vol. I of the Starrett Books. Sold by hardware dealers, 50 cents.

**DIGEST OF CONTENTS OF
THE STARRETT BOOK
FOR MACHINISTS' APPRENTICES**
Vol. I of The Starrett Books

ABRASIVES , Grain of Algebra, Elementary Equations Algebraic Coefficients Signs Aligning Shafting Angle, Measurement of	EMERY , Grades of Engineering Formulae Equations Equivalent Tables Exponents
BELTS , Lengths, Formulae for Bench Work	FILES , Kinds Filing Draw Testing Surface
CALIPERS , Hermaphrodite Inside Micrometer Outside Spring Testing Screw Threads Verniers Carbon Steel Drills, Speed of Change Gears Chipping Chisels for	FITS , Amounts to Leave Forced Fittings, Flanged Forces Formulae, Shop and Engineering
CHUCKING Tools for Contact Measuring Counterboring Cup Wheels Cutters, Milling Grinding Compounds for Drills Lips of Drills Screw Threads Thread, Compound Gears for	GEARS , Compound, for Thread Cutting Speed of Thread Cutting Trains Gear Speeds, Formulas for Grades of Emery
DIVIDERS , Spring Drawings, Abbreviations for Detail	GRINDING Allowances for Amounts to Leave Cylindrical Flat Surfaces Measuring Work Milling Cutters Speeds for Wheels, Grade and Grain Wheels, Grading Mounting
DRILLING Deep Hole Holding Work Large Holes Laying Out for for Reaming Starting Drill for Tapping Templets	HACK SAWS Choice of Cutting Speeds Machines
Drills, Cutting Compound Cutting Lips Drawing Kinds Letter, Sizes of Making Speed Testing	INVOLUTES
	JIGS , Boring Holes in — Body Bushings for Drilling Cylinder Flange and Fixtures Types
	KNURLING
	LAPPING Lathes Centers Gearing Grinding Setting Tools

INDEX

Lathe Work, Measuring	Shop Formulæ
Laying Out, for Drilling	Specific Gravity of Gases
Plate for	Liquids
Preparing Surface for	Metals
Scribing for	Substances
Leveling Instrument, How to Set Up	Heat of Substances
Levers	Stellite
Limits	
Lubricants	
MANDRELS, Use of	TABLES, Allowances for Different
Measuring Lathe Work	Classes of Fits
Screw Thread	Grinding
Tools	Brown & Sharpe Taper Shanks
Work, Grinding	Composition of Alloys
Mechanics	Grinding Wheel Speeds
Mensuration	Letter Sizes of Drills
Metals, Expansion of	Morse Taper Shanks
Melting Point of	Sizes of Tap Drills
MICROMETER, Adjusting Buttons	Speeds and Feeds for Drilling
with	Specific Gravity of Gases
Adjustment for Wear	Liquids
As a Gage	and Properties of Metals
Calipers	of Substances
How to Read	Tap Drills A.S.M.E. Standard
Quick Adjustment	Machine Screws
Screw Thread	Tapers
Milling, Cutters	Templets for Drilling
Milling Cutters, Grinding	U.S.S. Screw Threads
PLANE FIGURES	Tap Drills, Sizes of
Polishing	TAPER in Given Length
Pulleys	Shanks
Pulleys, Diameter, Speeds, Formulæ for	Testing
REAMERS, Making	Turning
SCREW THREAD	Offset of Centers
Measuring	Targets
Pitch	Thread Tools
Properties of U. S. S.	Tolerance, Limits
Section Lines	TOOL MAKING
Shafting, Aligning	Turning, Eccentric
Leveling	Work Centers
VERNIER, How to Read	
Micrometer, How to Read	
WORK CENTERS, Locating	

JUN 20 1939

ENGINEERING

D 621.9

F16

Fairfield

standard data book for engineers

This book must be returned to the
desk at which it was borrowed.

