Introduction to computing with finite difference methods

Hans Petter Langtangen^{1,2}

¹Center for Biomedical Computing, Simula Research Laboratory ²Department of Informatics, University of Oslo

Nov 29, 2013

Note: PRELIMINARY VERSION

Contents

Fin	ite difference methods	6
1.1	A basic model for exponential decay	6
1.2	The Forward Euler scheme	7
1.3	The Backward Euler scheme	11
1.4	The Crank-Nicolson scheme	12
1.5	The unifying θ -rule	13
1.6	Constant time step	14
1.7	Compact operator notation for finite differences	15
Imp	plementation	17
2.1	Making a solver function	18
2.2	Verifying the implementation	22
2.3	Computing the numerical error as a mesh function	25
2.4	Computing the norm of the numerical error	26
2.5	Plotting solutions	29
2.6	Creating command-line interfaces	34
2.7	Creating a graphical web user interface	37
2.8	Computing convergence rates	39
2.9	Memory-saving implementation	43
Soft	tware engineering	45
3.1	Making a module	46
3.2	Prefixing imported functions by the module name	48
3.3	Doctests	49
3.4	Unit testing with nose	51
3.5	Classical class-based unit testing	56

	3.6	Implementing simple problem and solver classes						
3.7 Improving the problem and solver classes								
4	Peri	forming scientific experiments						
	4.1	Software						
	4.2	Combining plot files						
	4.3	Interpreting output from other programs						
	4.4	Making a report						
	4.5	Publishing a complete project						
5	Exe	xercises and Problems						
6	Ana	Analysis of finite difference equations						
	6.1	Experimental investigation of oscillatory solutions						
	6.2	Exact numerical solution						
	6.3	Stability						
	6.4	Comparing amplification factors						
	6.5	Series expansion of amplification factors						
	6.6	The fraction of numerical and exact amplification factors						
	6.7	The global error at a point						
	6.8	Integrated errors						
	6.9	Truncation error						
		Consistency, stability, and convergence						
7	Exe	xercises						
8		del extensions						
	8.1	Generalization: including a variable coefficient						
	8.2	Generalization: including a source term						
	8.3	Implementation of the generalized model problem						
	8.4	Verifying a constant solution						
	8.5	Verification via manufactured solutions						
	8.6	Extension to systems of ODEs						
9	General first-order ODEs							
	9.1	Generic form						
	9.2	The θ -rule						
	9.3	An implicit 2-step backward scheme						
	9.4	Leapfrog schemes						
	9.5	The 2nd-order Runge-Kutta scheme						
	9.6	A 2nd-order Taylor-series method						
	9.7	The 2nd- and 3rd-order Adams-Bashforth schemes						
	9.8	4th-order Runge-Kutta scheme						
	9.9	The Odespy software						
	9.10	Example: Runge-Kutta methods						
	0.10	Example: Adaptive Runge-Kutta methods						

)	Exercises	110
L	Applications of exponential decay models	113
	11.1 Scaling	113
	11.2 Evolution of a population	114
	11.3 Compound interest and inflation	115
	11.4 Radioactive Decay	116
	11.5 Newton's law of cooling	118
	11.6 Decay of atmospheric pressure with altitude	119
	11.7 Compaction of sediments	120
	11.8 Vertical motion of a body in a viscous fluid	121
	11.9 Decay ODEs from solving a PDE by Fourier expansions $\ \ldots \ \ldots$	125
2	Exercises and Projects	126

List of Exercises, Problems, and Projects

		, .
Exercise	1	Derive schemes for Newton's law of cooling
Exercise	2	Implement schemes for Newton's law of cooling
Exercise	3	Find time of murder from body temperature
Exercise	4	Experiment with integer division
Exercise	5	Experiment with wrong computations
Exercise	6	Plot the error function
Exercise	7	Compare methods for a given time mesh
Exercise	8	Change formatting of numbers and debug
Problem	9	Write a doctest
Problem	10	Write a nose test
Problem	11	Make a module
Exercise	12	Make use of a class implementation
Exercise	13	Generalize a class implementation
Exercise	14	Generalize an advanced class implementation
Exercise	15	Visualize the accuracy of finite differences
Exercise	16	Explore the θ -rule for exponential
Exercise	17	Experiment with precision in tests and the
Exercise	18	Implement the 2-step backward scheme
Exercise	19	Implement the 2nd-order Adams-Bashforth scheme
Exercise	20	Implement the 3rd-order Adams-Bashforth scheme .
Exercise	21	Analyze explicit 2nd-order methods
Problem	22	Implement and investigate the Leapfrog scheme
Problem	23	Make a unified implementation of many schemes
Exercise	24	Simulate an oscillating cooling process
Exercise	25	Radioactive decay of Carbon-14
Exercise	26	Simulate stochastic radioactive decay
Exercise	27	Radioactive decay of two substances
Exercise	28	Simulate the pressure drop in the atmosphere
Exercise	29	Make a program for vertical motion in a fluid
Project	30	Simulate parachuting
Exercise	31	Formulate vertical motion in the atmosphere
Exercise	32	Simulate vertical motion in the atmosphere
Exercise	33	Compute $y = x $ by solving an ODE
Exercise	34	Simulate growth of a fortune with random interest .
Exercise	35	Simulate a population in a changing environment
Exercise	36	Simulate logistic growth
Exercise	37	Rederive the equation for continuous compound

Finite difference methods for partial differential equations (PDEs) employ a ange of concepts and tools that can be introduced and illustrated in the context f simple ordinary differential equation (ODE) examples. This is what we do in ne present document. By first working with ODEs, we keep the mathematical roblems to be solved as simple as possible (but no simpler), thereby allowing all focus on understanding the key concepts and tools. The choice of topics the forthcoming treatment of ODEs is therefore solely dominated by what arries over to numerical methods for PDEs.

Theory and practice are primarily illustrated by solving the very simple DE u' = -au, u(0) = I, where a > 0 is a constant, but we also address the eneralized problem u' = -a(t)u + b(t) and the nonlinear problem u' = f(u, t). he following topics are introduced:

- How to think when constructing finite difference methods, with special focus on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint) schemes
- How to formulate a computational algorithm and translate it into Python code
- How to make curve plots of the solutions
- How to compute numerical errors
- How to compute convergence rates
- How to verify an implementation and automate verification through nose tests in Python
- How to structure code in terms of functions, classes, and modules
- How to work with Python concepts such as arrays, lists, dictionaries, lambda functions, functions in functions (closures), doctests, unit tests, command-line interfaces, graphical user interfaces
- How to perform array computing and understand the difference from scalar computing
- \bullet How to conduct and automate large-scale numerical experiments
- How to generate scientific reports
- How to uncover numerical artifacts in the computed solution
- How to analyze the numerical schemes mathematically to understand why artifacts occur
- How to derive mathematical expressions for various measures of the error in numerical methods, frequently by using the <code>sympy</code> software for symbolic computation

- Introduce concepts such as finite difference operators, mesh (grid functions, stability, truncation error, consistency, and convergence
- Present additional methods for the general nonlinear ODE u' = which is either a scalar ODE or a system of ODEs
- How to access professional packages for solving ODEs
- How the model equation u' = -au arises in a wide range of phenophysics, biology, and finance

The exposition in a nutshell.

Everything we cover is put into a practical, hands-on context. All math ics is translated into working computing codes, and all the mathematheory of finite difference methods presented here is motivated fractions need to understand strange behavior of programs. Two fundam questions saturate the text:

- How to we solve a differential equation problem and produce num
- How to we trust the answer?

1 Finite difference methods

Goal.

We explain the basic ideas of finite difference methods using a strong ordinary differential equation u' = -au as primary example. Empha put on the reasoning when discretizing the problem and introduction key concepts such as mesh, mesh function, finite difference approximation averaging in a mesh, deriation of algorithms, and discrete operator notation.

1.1 A basic model for exponential decay

Our model problem is perhaps the simplest ordinary differential equation

$$u'(t) = -au(t),$$

Here, a>0 is a constant and u'(t) means differentiation with respect to This type of equation arises in a number of widely different phenomen some quantity u undergoes exponential reduction. Examples include rad decay, population decay, investment decay, cooling of an object, pressure in the atmosphere, and retarded motion in fluids (for some of these means be negative as well), see Section 11 for details and motivation. Vechosen this particular ODE not only because its applications are relevative even more because studying numerical solution methods for this simp

ives important insight that can be reused in much more complicated settings, particular when solving diffusion-type partial differential equations.

The analytical solution of the ODE is found by the method of separation of ariables, which results in

$$u(t) = Ce^{-at},$$

or any arbitrary constant C. To formulate a mathematical problem for which here is a unique solution, we need a condition to fix the value of C. This ondition is known as the *initial condition* and stated as u(0) = I. That is, we now the value I of u when the process starts at t = 0. The exact solution is hen $u(t) = Ie^{-at}$.

We seek the solution u(t) of the ODE for $t \in (0,T]$. The point t=0 is not icluded since we know u here and assume that the equation governs u for t>0. he complete ODE problem then reads: find u(t) such that

$$u' = -au, \ t \in (0, T], \quad u(0) = I.$$
 (1)

his is known as a continuous problem because the parameter t varies continuously om 0 to T. For each t we have a corresponding u(t). There are hence infinitely rany values of t and u(t). The purpose of a numerical method is to formulate corresponding discrete problem whose solution is characterized by a finite umber of values, which can be computed in a finite number of steps on a emputer.

.2 The Forward Euler scheme

olving an ODE like (1) by a finite difference method consists of the following our steps:

- 1. discretizing the domain,
- 2. fulfilling the equation at discrete time points,
- 3. replacing derivatives by finite differences,
- 4. formulating a recursive algorithm.

tep 1: Discretizing the domain. The time domain [0,T] is represented y a finite number of $N_t + 1$ points

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t - 1} < t_{N_t} = T.$$
 (2)

he collection of points $t_0, t_1, \ldots, t_{N_t}$ constitutes a mesh or grid. Often the resh points will be uniformly spaced in the domain [0,T], which means that respacing $t_{n+1} - t_n$ is the same for all n. This spacing is often denoted by Δt , this case $t_n = n\Delta t$.

We seek the solution u at the mesh points: $u(t_n)$, $n = 1, 2, ..., N_t$. Note that 0 is already known as I. A notational short-form for $u(t_n)$, which will be used

extensively, is u^n . More precisely, we let u^n be the numerical approx to the exact solution $u(t_n)$ at $t=t_n$. The numerical approximation is function, here defined only at the mesh points. When we need to distinguish between the numerical and the exact solution, we often subscript e on the exact solution, as in $u_e(t_n)$. Figure 1 shows the t_n points for $n=0,1,\ldots,N_t=7$ as well as $u_e(t)$ as the dashed line. The gnumerical method for ODEs is to compute the mesh function by solving set of algebraic equations derived from the original ODE problem.

Figure 1: Time mesh with discrete solution values.

Since finite difference methods produce solutions at the mesh points is an open question what the solution is between the mesh points. One methods for interpolation to compute the value of u between mesh point simplest (and most widely used) interpolation method is to assume that linearly between the mesh points, see Figure 2. Given u^n and u^{n+1} , the u at some $t \in [t_n, t_{n+1}]$ is by linear interpolation

$$u(t) \approx u^{n} + \frac{u^{n+1} - u^{n}}{t_{n+1} - t_{n}} (t - t_{n}).$$

Step 2: Fulfilling the equation at discrete time points. The supposed to hold for all $t \in (0, T]$, i.e., at an infinite number of points. relax that requirement and require that the ODE is fulfilled at a finit discrete points in time. The mesh points $t_1, t_2, \ldots, t_{N_t}$ are a natural c points. The original ODE is then reduced to the following N_t equations

igure 2: Linear interpolation between the discrete solution values (dashed arve is exact solution).

$$u'(t_n) = -au(t_n), \quad n = 1, \dots, N_t.$$
(4)

tep 3: Replacing derivatives by finite differences. The next and most sential step of the method is to replace the derivative u' by a finite difference approximation. Let us first try a one-sided difference approximation (see igure 3),

$$u'(t_n) \approx \frac{u^{n+1} - u^n}{t_{n+1} - t_n}$$
 (5)

iserting this approximation in (4) results in

$$\frac{u^{n+1} - u^n}{t_{n+1} - t_n} = -au^n, \quad n = 0, 1, \dots, N_t - 1.$$
 (6)

his equation is the discrete counterpart to the original ODE problem (1), and ften referred to as *finite difference scheme* or more generally as the *discrete quations* of the problem. The fundamental feature of these equations is that ney are *algebraic* and can hence be straightforwardly solved to produce the resh function, i.e., the values of u at the mesh points $(u^n, n = 1, 2, ..., N_t)$.

tep 4: Formulating a recursive algorithm. The final step is to identify no computational algorithm to be implemented in a program. The key obsertion here is to realize that (6) can be used to compute u^{n+1} if u^n is known.

Figure 3: Illustration of a forward difference.

Starting with n = 0, u^0 is known since $u^0 = u(0) = I$, and (6) gives an ϵ for u^1 . Knowing u^1 , u^2 can be found from (6). In general, u^n in (6) assumed known, and then we can easily solve for the unknown u^{n+1} :

$$u^{n+1} = u^n - a(t_{n+1} - t_n)u^n.$$

We shall refer to (7) as the Forward Euler (FE) scheme for our model I From a mathematical point of view, equations of the form (7) are kr difference equations since they express how differences in u, like $u^{n+1}-u^n$ with n. The finite difference method can be viewed as a method for tu differential equation into a difference equation.

Computation with (7) is straightforward:

$$u_0 = I,$$

$$u_1 = u^0 - a(t_1 - t_0)u^0 = I(1 - a(t_1 - t_0)),$$

$$u_2 = u^1 - a(t_2 - t_1)u^1 = I(1 - a(t_1 - t_0))(1 - a(t_2 - t_1)),$$

$$u^3 = u^2 - a(t_3 - t_2)u^2 = I(1 - a(t_1 - t_0))(1 - a(t_2 - t_1))(1 - a(t_3 - t_0))$$

and so on until we reach u^{N_t} . Very often, $t_{n+1} - t_n$ is constant for ϵ we can introduce the common symbol Δt for the time step: $\Delta t = t_n$ $n = 0, 1, \ldots, N_t - 1$. Using a constant time step Δt in the above calculates

$$u_0 = I,$$

 $u_1 = I(1 - a\Delta t),$
 $u_2 = I(1 - a\Delta t)^2,$
 $u^3 = I(1 - a\Delta t)^3,$
 \vdots
 $u^{N_t} = I(1 - a\Delta t)^{N_t}.$

his means that we have found a closed formula for u^n , and there is no need that a computer generate the sequence u^1, u^2, u^3, \ldots However, finding such formula for u^n is possible only for a few very simple problems, so in general nite difference equations must be solved on a computer.

As the next sections will show, the scheme (7) is just one out of many lternative finite difference (and other) methods for the model problem (1).

.3 The Backward Euler scheme

here are several choices of difference approximations in step 3 of the finite ifference method as presented in the previous section. Another alternative is

$$u'(t_n) \approx \frac{u^n - u^{n-1}}{t_n - t_{n-1}}$$
 (8)

ince this difference is based on going backward in time (t_{n-1}) for information, is known as the Backward Euler difference. Figure 4 explains the idea.

Figure 4: Illustration of a backward difference.

Inserting (8) in (4) yields the Backward Euler (BE) scheme:

$$\frac{u^n - u^{n-1}}{t_n - t_{n-1}} = -au^n \,.$$

We assume, as explained under step 4 in Section 1.2, that we have co $u^0, u^1, \ldots, u^{n-1}$ such that (9) can be used to compute u^n . For direct si with the Forward Euler scheme (7) we replace n by n+1 in (9) and s the unknown value u^{n+1} :

$$u^{n+1} = \frac{1}{1 + a(t_{n+1} - t_n)} u^n.$$

1.4 The Crank-Nicolson scheme

The finite difference approximations used to derive the schemes (7) and both one-sided differences, known to be less accurate than central (or m differences. We shall now construct a central difference at $t_{n+1/2} = \frac{1}{2}(t_n)$ or $t_{n+1/2} = (n+\frac{1}{2})\Delta t$ if the mesh spacing is uniform in time. The approx reads

$$u'(t_{n+\frac{1}{2}}) \approx \frac{u^{n+1} - u^n}{t_{n+1} - t_n}$$
.

Note that the fraction on the right-hand side is the same as for the I Euler approximation (5) and the Backward Euler approximation (8) replaced by n + 1). The accuracy of this fraction as an approximation derivative of u depends on where we seek the derivative: in the cente interval $[t_n, t_{n+1}]$ or at the end points.

With the formula (11), where u' is evaluated at $t_{n+1/2}$, it is not demand the ODE to be fulfilled at the time points between the mesh p

$$u'(t_{n+\frac{1}{2}}) = -au(t_{n+\frac{1}{2}}), \quad n = 0, \dots, N_t - 1.$$

Using (11) in (12) results in

$$\frac{u^{n+1} - u^n}{t_{n+1} - t_n} = -au^{n + \frac{1}{2}},$$

where $u^{n+\frac{1}{2}}$ is a short form for $u(t_{n+\frac{1}{2}})$. The problem is that we aim to u^n for integer n, implying that $u^{n+\frac{1}{2}}$ is not a quantity computed by our It must therefore be expressed by the quantities that we actually produce the numerical solution at the mesh points. One possibility is to approximately $u^{n+\frac{1}{2}}$ as an arithmetic mean of the u values at the neighboring mesh points.

$$u^{n+\frac{1}{2}} \approx \frac{1}{2}(u^n + u^{n+1}).$$

Using (14) in (13) results in

$$\frac{u^{n+1} - u^n}{t_{n+1} - t_n} = -a\frac{1}{2}(u^n + u^{n+1}). \tag{15}$$

igure 5 sketches the geometric interpretation of such a centered difference.

Figure 5: Illustration of a centered difference.

We assume that u^n is already computed so that u^{n+1} is the unknown, which e can solve for:

$$u^{n+1} = \frac{1 - \frac{1}{2}a(t_{n+1} - t_n)}{1 + \frac{1}{2}a(t_{n+1} - t_n)}u^n.$$
 (16)

he finite difference scheme (16) is often called the Crank-Nicolson (CN) scheme $\mathfrak r$ a midpoint or centered scheme.

.5 The unifying θ -rule

he Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formuted as one scheme with a varying parameter θ :

$$\frac{u^{n+1} - u^n}{t_{n+1} - t_n} = -a(\theta u^{n+1} + (1 - \theta)u^n).$$
(17)

Observe:

- $\theta = 0$ gives the Forward Euler scheme
- $\theta = 1$ gives the Backward Euler scheme, and
- $\theta = \frac{1}{2}$ gives the Crank-Nicolson scheme.

• We may alternatively choose any other value of θ in [0,1].

As before, u^n is considered known and u^{n+1} unknown, so we solve for the

$$u^{n+1} = \frac{1 - (1 - \theta)a(t_{n+1} - t_n)}{1 + \theta a(t_{n+1} - t_n)}.$$

This scheme is known as the θ -rule, or alternatively written as the "the

Derivation.

We start with replacing u' by the fraction

$$\frac{u^{n+1} - u^n}{t_{n+1} - t_n}$$

in the Forward Euler, Backward Euler, and Crank-Nicolson schemes. we observe that the difference between the methods concerns which this fraction approximates the derivative. Or in other words, at which we sample the ODE. So far this has been the end points or the midpo $[t_n, t_{n+1}]$. However, we may choose any point $\tilde{t} \in [t_n, t_{n+1}]$. The diffict that evaluating the right-hand side -au at an arbitrary point faces the problem as in Section 1.4: the point value must be expressed by the dis u quantities that we compute by the scheme, i.e., u^n and u^{n+1} . Folk the averaging idea from Section 1.4, the value of u at an arbitrary pcan be calculated as a weighted average, which generalizes the arithmean $\frac{1}{2}u^n + \frac{1}{2}u^{n+1}$. If we express \tilde{t} as a weighted average

$$t_{n+\theta} = \theta t_{n+1} + (1-\theta)t_n,$$

where $\theta \in [0, 1]$ is the weighting factor, we can write

$$u(\tilde{t}) = u(\theta t_{n+1} + (1 - \theta)t_n) \approx \theta u^{n+1} + (1 - \theta)u^n.$$

We can now let the ODE hold at the point $\tilde{t} \in [t_n, t_{n+1}]$, approxiu' by the fraction $(u^{n+1} - u^n)/(t_{n+1} - t_n)$, and approximate the right-side -au by the weighted average (19). The result is (17).

1.6 Constant time step

All schemes up to now have been formulated for a general non-uniform time: $t_0, t_1, \ldots, t_{N_t}$. Non-uniform meshes are highly relevant since one many points in regions where u varies rapidly, and save points in region u is slowly varying. This is the key idea of *adaptive* methods where the of the mesh points are determined as the computations proceed.

However, a uniformly distributed set of mesh points is very comm sufficient for many applications. It therefore makes sense to present the difference schemes for a uniform point distribution $t_n = n\Delta t$, where Δ constant spacing between the mesh points, also referred to as the *time st* resulting formulas look simpler and are perhaps more well known.

Summary of schemes for constant time step.

$$u^{n+1} = (1 - a\Delta t)u^n$$
 Forward Euler (20)

$$u^{n+1} = \frac{1}{1 + a\Delta t} u^n \qquad \text{Backward Euler}$$
 (21)

$$u^{n+1} = \frac{1 - \frac{1}{2}a\Delta t}{1 + \frac{1}{2}a\Delta t}u^n \qquad \text{Crank-Nicolson}$$
 (22)

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n \quad \text{The } \theta - \text{rule}$$
 (23)

Not surprisingly, we present these three alternative schemes because they are different pros and cons, both for the simple ODE in question (which can asily be solved as accurately as desired), and for more advanced differential quation problems.

Test the understanding.

At this point it can be good training to apply the explained finite difference discretization techniques to a slightly different equation. Exercise 1 is therefore highly recommended to check that the key concepts are understood.

.7 Compact operator notation for finite differences

inite difference formulas can be tedious to write and read, especially for differenal equations with many terms and many derivatives. To save space and help the eader of the scheme to quickly see the nature of the difference approximations, e introduce a compact notation. A forward difference approximation is denoted y the D_t^+ operator:

$$[D_t^+ u]^n = \frac{u^{n+1} - u^n}{\Delta t} \approx \frac{d}{dt} u(t_n).$$
 (24)

he notation consists of an operator that approximates differentiation with spect to an independent variable, here t. The operator is built of the symbol D, ith the variable as subscript and a superscript denoting the type of difference. he superscript $^+$ indicates a forward difference. We place square brackets round the operator and the function it operates on and specify the mesh point, here the operator is acting, by a superscript.

The corresponding operator notation for a centered difference and a backward ifference reads

$$[D_t u]^n = \frac{u^{n+\frac{1}{2}} - u^{n-\frac{1}{2}}}{\Delta t} \approx \frac{d}{dt} u(t_n),$$
 (25)

 nd

$$[D_t^- u]^n = \frac{u^n - u^{n-1}}{\Delta t} \approx \frac{d}{dt} u(t_n).$$
 (26)

Note that the superscript $\ ^-$ denotes the backward difference, while no sup implies a central difference.

An averaging operator is also convenient to have:

$$[\overline{u}^t]^n = \frac{1}{2}(u^{n-\frac{1}{2}} + u^{n+\frac{1}{2}}) \approx u(t_n)$$

The superscript t indicates that the average is taken along the time corner The common average $(u^n + u^{n+1})/2$ can now be expressed as $[\overline{u}^t]^{n+\frac{1}{2}}$. also spatial coordinates enter the problem, we need the explicit specific the coordinate after the bar.)

The Backward Euler finite difference approximation to u' = -au written as follows utilizing the compact notation:

$$[D_t^- u]^n = -au^n.$$

In difference equations we often place the square brackets around th equation, to indicate at which mesh point the equation applies, since ea is supposed to be approximated at the same point:

$$[D_t^- u = -au]^n.$$

The Forward Euler scheme takes the form

$$[D_t^+ u = -au]^n,$$

while the Crank-Nicolson scheme is written as

$$[D_t u = -a\overline{u}^t]^{n+\frac{1}{2}}.$$

Question.

Apply (25) and (27) and write out the expressions to see that (30) is in the Crank-Nicolson scheme.

The θ -rule can be specified by

$$[\bar{D}_t u = -a\bar{u}^{t,\theta}]^{n+\theta},$$

if we define a new time difference and a weighted averaging operator:

$$[\bar{D}_t u]^{n+\theta} = \frac{u^{n+1} - u^n}{t^{n+1} - t^n},$$
$$[\bar{u}^{t,\theta}]^{n+\theta} = (1-\theta)u^n + \theta u^{n+1} \approx u(t_{n+\theta}).$$

where $\theta \in [0, 1]$. Note that for $\theta = \frac{1}{2}$ we recover the standard centered di and the standard arithmetic mean. The idea in (31) is to sample the e at $t_{n+\theta}$, use a skew difference at that point $[\bar{D}_t u]^{n+\theta}$, and a skew mea An alternative notation is

$$[D_t u]^{n+\frac{1}{2}} = \theta[-au]^{n+1} + (1-\theta)[-au]^n.$$

Looking at the various examples above and comparing them with the undering differential equations, we see immediately which difference approximations nat have been used and at which point they apply. Therefore, the compact otation effectively communicates the reasoning behind turning a differential quation into a difference equation.

Implementation

Goal.

We want make a computer program for solving

$$u'(t) = -au(t), \quad t \in (0, T], \quad u(0) = I,$$

by finite difference methods. The program should also display the numerical solution as a curve on the screen, preferably together with the exact solution. We shall also be concerned with program testing, user interfaces, and computing convergence rates.

All programs referred to in this section are found in the src/decay¹ directory ve use the classical Unix term *directory* for what many others nowadays call older).

1athematical problem. We want to explore the Forward Euler scheme, the ackward Euler, and the Crank-Nicolson schemes applied to our model problem. rom an implementational point of view, it is advantageous to implement the rule

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n,$$

nce it can generate the three other schemes by various of choices of θ : $\theta = 0$ for orward Euler, $\theta = 1$ for Backward Euler, and $\theta = 1/2$ for Crank-Nicolson. Given , $u^0 = I$, T, and Δt , our task is to use the θ -rule to compute $u^1, u^2, \ldots, u^{N_t}$, here $t_{N_t} = N_t \Delta t$, and N_t the closest integer to $T/\Delta t$.

Somputer Language: Python. Any programming language can be used to enerate the u^{n+1} values from the formula above. However, in this document e shall mainly make use of Python of several reasons:

- Python has a very clean, readable syntax (often known as "executable pseudo-code").
- Python code is very similar to MATLAB code (and MATLAB has a particularly widespread use for scientific computing).
- Python is a full-fledged, very powerful programming language.
- Python is similar to, but much simpler to work with and results in more reliable code than C++.
- 1http://tinyurl.com/jvzzcfn/decay

- Python has a rich set of modules for scientific computing, and its po in scientific computing is rapidly growing.
- Python was made for being combined with compiled languages (C Fortran) to reuse existing numerical software and to reach high control performance of new implementations.
- Python has extensive support for administrative task needed whe large-scale computational investigations.
- Python has extensive support for graphics (visualization, user in web applications).
- FEniCS, a very powerful tool for solving PDEs by the finite element is most human-efficient to operate from Python.

Learning Python is easy. Many newcomers to the language will probab enough from the forthcoming examples to perform their own computer ments. The examples start with simple Python code and gradually mak more powerful constructs as we proceed. As long as it is not inconven the problem at hand, our Python code is made as close as possible to M code for easy transition between the two languages.

Readers who feel the Python examples are too hard to follow will p benefit from read a tutorial, e.g.,

- The Official Python Tutorial²
- Python Tutorial on tutorialspoint.com³
- Interactive Python tutorial site⁴
- A Beginner's Python Tutorial⁵

The author also has a book [4] that introduces scientific programmic Python.

2.1 Making a solver function

We choose to have an array **u** for storing the u^n values, $n=0,1,\ldots,l$ algorithmic steps are

- 1. initialize u^0
- 2. for $t = t_n$, $n = 1, 2, ..., N_t$: compute u_n using the θ -rule formula

²http://docs.python.org/2/tutorial/

³http://www.tutorialspoint.com/python/

⁴http://www.learnpython.org/

⁵http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial

unction for computing the numerical solution. The following Python inction takes the input data of the problem $(I, a, T, \Delta t, \theta)$ as arguments and sturns two arrays with the solution u^0, \ldots, u^{N_t} and the mesh points t_0, \ldots, t_{N_t} , espectively:

The numpy library contains a lot of functions for array computing. Most f the function names are similar to what is found in the alternative scientific omputing language MATLAB. Here we make use of

- zeros(Nt+1) for creating an array of a size Nt+1 and initializing the elements to zero
- linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uniformly distributed between 0 and T

he for loop deserves a comment, especially for newcomers to Python. The postruction range(0, Nt, s) generates all integers from 0 to Nt in steps of but not including Nt. Omitting s means s=1. For example, range(0, 6, 3) ives 0 and 3, while range(0, Nt) generates 0, 1, ..., Nt-1. Our loop implies ne following assignments to u[n+1]: u[1], u[2], ..., u[Nt], which is what we ant since u has length Nt+1. The first index in Python arrays or lists is always and the last is then len(u)-1. The length of an array u is obtained by len(u) tusize.

To compute with the solver function, we need to *call* it. Here is a sample all:

```
1, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
```

nteger division. The shown implementation of the solver may face problems nd wrong results if T, a, dt, and theta are given as integers, see Exercises 4 nd 5. The problem is related to *integer division* in Python (as well as in Fortran, C++, and many other computer languages): 1/2 becomes 0, while 1.0/2, /2.0, or 1.0/2.0 all become 0.5. It is enough that at least the nominator r the denominator is a real number (i.e., a float object) to ensure correct athematical division. Inserting a conversion dt = float(dt) guarantees that t is float and avoids problems in Exercise 5.

Another problem with computing $N_t=T/\Delta t$ is that we should roun the nearest integer. With Nt = int(T/dt) the int operation picks the integer smaller than T/dt. Correct mathematical rounding as known from is obtained by

```
Nt = int(round(T/dt))
```

The complete version of our improved, safer solver function then beco

```
from numpy import *
def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    dt = float(dt)
                             # avoid integer division
   Nt = int(round(T/dt))
                             # no of time intervals
                             # adjust T to fit time step dt
   T = Nt*dt
                             # array of u[n] values
    u = zeros(Nt+1)
    t = linspace(0, T, Nt+1) # time mesh
                             # assign initial condition
    for n in range(0, Nt): \# n=0,1,...,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
   return u. t
```

Doc strings. Right below the header line in the **solver** function the Python string enclosed in triple double quotes """. The purpose of this object is to document what the function does and what the arguments this case the necessary documentation do not span more than one line, it triple double quoted strings the text may span several lines:

```
def solver(I, a, T, dt, theta):
    """
    Solve
        u'(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
    (0,T]. The time interval is divided into time steps of
    length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
    to the Forward Euler scheme, and theta=0.5 to the Crank-
    Nicolson method.
    """
    ...
```

Such documentation strings appearing right after the header of a f are called $doc\ strings$. There are tools that can automatically produc formatted documentation by extracting the definition of functions a contents of doc strings.

It is strongly recommended to equip any function whose purpose obvious with a doc string. Nevertheless, the forthcoming text deviates fr rule if the function is explained in the text. **ormatting of numbers.** Having computed the discrete solution u, it is atural to look at the numbers:

```
# Write out a table of t and u values:
for i in range(len(t)):
    print t[i], u[i]
```

his compact print statement gives unfortunately quite ugly output because the and u values are not aligned in nicely formatted columns. To fix this problem, e recommend to use the *printf format*, supported most programming languages therited from C. Another choice is Python's recent *format string syntax*.

Writing t[i] and u[i] in two nicely formatted columns is done like this with ne printf format:

```
orint 't=%6.3f u=%g' % (t[i], u[i])
```

he percentage signs signify "slots" in the text where the variables listed at the 1 d of the statement are inserted. For each "slot" one must specify a format for 1 ow the variable is going to appear in the string: s for pure text, d for an integer, for a real number written as compactly as possible, 9.3E for scientific notation 1 ith three decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for 1 andard decimal notation with two decimals formatted with minimum width. he printf syntax provides a quick way of formatting tabular output of numbers 1 ith full control of the layout.

The alternative format string syntax looks like

```
print 't={t:6.3f} u={u:g}'.format(t=t[i], u=u[i])
```

s seen, this format allows logical names in the "slots" where t[i] and u[i] are be inserted. The "slots" are surrounded by curly braces, and the logical name followed by a colon and then the printf-like specification of how to format real umbers, integers, or strings.

tunning the program. The function and main program shown above must e placed in a file, say with name decay_v1.py⁶ (v1 stands for "version 1" - we nall make numerous different versions of this program). Make sure you write the ode with a suitable text editor (Gedit, Emacs, Vim, Notepad++, or similar). he program is run by executing the file this way:

```
erminal> python decay_v1.py
```

he text Terminal> just indicates a prompt in a Unix/Linux or DOS terminal indow. After this prompt, which will look different in your terminal window, epending on the terminal application and how it is set up, commands like

python decay_v1.py can be issued. These commands are interpreted operating system.

We strongly recommend to run Python programs within the IPythe First start IPython by typing ipython in the terminal window. Inst IPython shell, our program decay_v1.py is run by the command run dec

```
Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

In [2]:
```

The advantage of running programs in IPython are many: previous con are easily recalled with the up arrow, %pdb turns on debugging so that v can be examined if the program aborts due to an exception, output of con are stored in variables, programs and statements can be profiled, any of system command can be executed, modules can be loaded automatical other customizations can be performed when starting IPython – to make the few of the most useful features.

Although running programs in IPython is strongly recommended execution examples in the forthcoming text use the standard Python ship prompt >>> and run programs through a typesetting like

Terminal> python programname

The reason is that such type setting makes the text more compact in the direction than showing sessions with IPython syntax.

2.2 Verifying the implementation

It is easy to make mistakes while deriving and implementing numeric rithms, so we should never believe in the printed u values before they has thoroughly verified. The most obvious idea is to compare the computed with the exact solution, when that exists, but there will always be a disc between these two solutions because of the numerical approximation challenging question is whether we have the mathematically correct disc

⁶http://tinyurl.com/jvzzcfn/decay/decay_v1.py

r if we have another, maybe small, discrepancy due to both an approximation ror and an error in the implementation.

The purpose of *verifying* a program is to bring evidence for the property nat there are no errors in the implementation. To avoid mixing unavoidable pproximation errors and undesired implementation errors, we should try to take tests where we have some exact computation of the discrete solution or at east parts of it. Examples will show how this can be done.

tunning a few algorithmic steps by hand. The simplest approach to roduce a correct reference for the discrete solution u of finite difference equations to compute a few steps of the algorithm by hand. Then we can compare the and calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u^1 , u^2 , and u^3 . With I = 0.1, $\theta = 0.8$, and u = 0.8 we get

$$A \equiv \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t} = 0.298245614035$$
$$u^{1} = AI = 0.0298245614035,$$
$$u^{2} = Au^{1} = 0.00889504462912,$$
$$u^{3} = Au^{2} = 0.00265290804728$$

Comparison of these manual calculations with the result of the solver unction is carried out in the function

The main program, where we call the solver function and print u, is now ut in a separate function main:

```
lef main():
    u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
    # Write out a table of t and u values:
    for i in range(len(t)):
        print 't=%6.3f u=%g' % (t[i], u[i])
        # or print 't={t:6.3f} u={u:g}'.format(t=t[i], u=u[i])
```

The main program in the file may now first run the verification test a go on with the real simulation (main()) only if the test is passed:

```
if verify_three_steps():
    main()
else:
    print 'Bug in the implementation!'
```

Since the verification test is always done, future errors introduced acci in the program have a good chance of being detected.

Caution: choice of parameter values.

For the choice of values of parameters in verification tests one should away from integers, especially 0 and 1, as these can simplify formula much for test purposes. For example, with $\theta=1$ the nominator i formula for u^n will be the same for all a and Δt values. One should the choose more "arbitrary" values, say $\theta=0.8$ and I=0.1.

It is essential that verification tests can be automatically run at *any* ti this purpose, there are test frameworks and corresponding programming that allow us to request running through a suite of test cases (see Sectibut in this very early stage of program development we just implement the verification in our own code so that every detail is visible and under the verification in our own code so that every detail is visible and under the very detail is visible and under the very detail is visible.

The complete program including the verify_three_steps* function found in the file decay_verf1.py⁷ (verf1 is a short name for "veriversion 1").

Comparison with an exact discrete solution. Sometimes it is possible find a closed-form *exact discrete solution* that fulfills the discrete finite discrete finite discrete solutions. The implementation can then be verified against the exact solution. This is usually the best technique for verification.

Define

$$A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}.$$

Manual computations with the θ -rule results in

$$u^{0} = I,$$

 $u^{1} = Au^{0} = AI,$
 $u^{2} = Au^{1} = A^{2}I,$
 \vdots
 $u^{n} = A^{n}u^{n-1} = A^{n}I.$

We have then established the exact discrete solution as

$$u^n = IA^n$$
.

⁷http://tinyurl.com/jvzzcfn/decay/decay_verf1.py

Caution.

One should be conscious about the different meanings of the notation on the left- and right-hand side of (34): on the left, n in u^n is a superscript reflecting a counter of mesh points (t_n) , while on the right, n is the power in the exponentiation A^n .

Comparison of the exact discrete solution and the computed solution is done ι the following function:

he complete program is found in the file decay_verf2.py⁸ (verf2 is a short ame for "verification, version 2").

Local functions.

One can define a function inside another function, here called a *local function* (also known as *closure*) inside a *parent function*. A local function is invisible outside the parent function. A convenient property is that any local function has access to all variables defined in the parent function, also if we send the local function to some other function as argument (!). In the present example, it means that the local function exact_discrete_solution does not need its five arguments as the values can alternatively be accessed through the local variables defined in the parent function verify_exact_discrete_solution. We can send such an exact_discrete_solution without arguments to any other function and exact_discrete_solution will still have access to n, I, a, and so forth defined in its parent function.

.3 Computing the numerical error as a mesh function

ow that we have evidence for a correct implementation, we are in a position to empare the computed u^n values in the u array with the exact u values at the resh points, in order to study the error in the numerical solution.

Let us first make a function for the analytical solution $u_e(t) = Ie^{-at}$ of the iodel problem:

```
def exact_solution(t, I, a):
    return I*exp(-a*t)
```

A natural way to compare the exact and discrete solutions is to catheir difference as a mesh function:

```
e^n = u_e(t_n) - u^n, \quad n = 0, 1, \dots, N_t.
```

We may view $u_e^n = u_e(t_n)$ as the representation of $u_e(t)$ as a mesh f rather than a continuous function defined for all $t \in [0,T]$ (u_e^n is often a representative of u_e on the mesh). Then, $e^n = u_e^n - u^n$ is clearly the di of two mesh functions. This interpretation of e^n is natural when progra

The error mesh function e^n can be computed by

```
u, t = solver(I, a, T, dt, theta)  # Numerical sol.   
u_e = exact_solution(t, I, a)  # Representative of exact sol.  
e = u_e - u
```

Note that the mesh functions u and u_e are represented by arrays and as with the points in the array t.

Array arithmetics.

The last statements

```
u_e = exact_solution(t, I, a)
e = u_e - u
```

are primary examples of array arithmetics: t is an array of mesh p that we pass to exact_solution. This function evaluates -a*t, whic scalar times an array, meaning that the scalar is multiplied with each element. The result is an array, let us call it tmp1. Then exp(tmp1) r applying the exponential function to each element in tmp, resulting an say tmp2. Finally, I*tmp2 is computed (scalar times array) and u_e to this array returned from exact_solution. The expression u_e the difference between two arrays, resulting in a new array referred e.

2.4 Computing the norm of the numerical error

Instead of working with the error e^n on the entire mesh, we often w number expressing the size of the error. This is obtained by taking the the error function.

Let us first define norms of a function f(t) defined for all $t \in [0, T]$ common norms are

⁸http://tinyurl.com/jvzzcfn/decay/decay_verf2.py

$$||f||_{L^2} = \left(\int_0^T f(t)^2 dt\right)^{1/2},$$
 (36)

$$||f||_{L^1} = \int_0^T |f(t)|dt,$$
 (37)

$$||f||_{L^{\infty}} = \max_{t \in [0,T]} |f(t)|.$$
 (38)

he L^2 norm (36) ("L-two norm") has nice mathematical properties and is the lost popular norm. It is a generalization of the well-known Eucledian norm f vectors to functions. The L^{∞} is also called the max norm or the supremum orm. In fact, there is a whole family of norms,

$$||f||_{L^p} = \left(\int_0^T f(t)^p dt\right)^{1/p},$$
 (39)

ith p real. In particular, p=1 corresponds to the L^1 norm above while $p=\infty$ the L^∞ norm.

Numerical computations involving mesh functions need corresponding norms. Even a set of function values, f^n , and some associated mesh points, t_n , a umerical integration rule can be used to calculate the L^2 and L^1 norms defined bove. Imagining that the mesh function is extended to vary linearly between ne mesh points, the Trapezoidal rule is in fact an exact integration rule. A ossible modification of the L^2 norm for a mesh function f^n on a uniform mesh ith spacing Δt is therefore the well-known Trapezoidal integration formula

$$||f^n|| = \left(\Delta t \left(\frac{1}{2}(f^0)^2 + \frac{1}{2}(f^{N_t})^2 + \sum_{n=1}^{N_t - 1}(f^n)^2\right)\right)^{1/2}$$

common approximation of this expression, motivated by the convenience of aving a simpler formula, is

$$||f^n||_{\ell^2} = \left(\Delta t \sum_{n=0}^{N_t} (f^n)^2\right)^{1/2}.$$

his is called the discrete L^2 norm and denoted by ℓ^2 . The error in $||f||_{\ell^2}^2$ ompared with the Trapezoidal integration formula is $\Delta t((f^0)^2 + (f^{N_t})^2)/2$, hich means perturbed weights at the end points of the mesh function, and the ror goes to zero as $\Delta t \to 0$. As long as we are consistent and stick to one kind f integration rule for the norm of a mesh function, the details and accuracy of nis rule is not of concern.

The three discrete norms for a mesh function f^n , corresponding to the L^2 , and L^{∞} norms of f(t) defined above, are defined by

$$||f^{n}||_{\ell^{2}} \left(\Delta t \sum_{n=0}^{N_{t}} (f^{n})^{2} \right)^{1/2},$$

$$||f^{n}||_{\ell^{1}} \Delta t \sum_{n=0}^{N_{t}} |f^{n}|$$

$$||f^{n}||_{\ell^{\infty}} \max_{0 \le n \le N_{t}} |f^{n}|.$$

Note that the L^2 , L^1 , ℓ^2 , and ℓ^1 norms depend on the length of the of interest (think of f=1, then the norms are proportional to \sqrt{T} or some applications it is convenient to think of a mesh function as just a v function values and neglect the information of the mesh points. Then replace Δt by T/N_t and drop T. Moreover, it is convenient to divide total length of the vector, $N_t + 1$, instead of N_t . This reasoning gives ris vector norms for a vector $f = (f_0, \ldots, f_N)$:

$$||f||_2 = \left(\frac{1}{N+1} \sum_{n=0}^{N} (f_n)^2\right)^{1/2},$$

$$||f||_1 = \frac{1}{N+1} \sum_{n=0}^{N} |f_n|$$

$$||f||_{\ell^{\infty}} = \max_{0 \le n \le N} |f_n|.$$

Here we have used the common vector component notation with subscri and N as length. We will mostly work with mesh functions and use the ℓ^2 norm (40) or the max norm ℓ^{∞} (42), but the corresponding vector (43)-(45) are also much used in numerical computations, so it is impossible to the different norms and the relations between them.

A single number that expresses the size of the numerical error will be as $||e^n||_{\ell^2}$ and called E:

$$E = \sqrt{\Delta t \sum_{n=0}^{N_t} (e^n)^2}$$

The corresponding Python code, using array arithmetics, reads

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the element an array. Also the sqrt function is from numpy and computes the square each element in the array argument.

calar computing. Instead of doing array computing sqrt(dt*sum(e**2)) e can compute with one element at a time:

```
n = len(u)  # length of u array (alt: u.size)
1_e = zeros(m)
; = 0
for i in range(m):
    u_e[i] = exact_solution(t, a, I)
    t = t + dt
s = zeros(m)
for i in range(m):
    e[i] = u_e[i] - u[i]
s = 0  # summation variable
for i in range(m):
    s = s + e[i]**2
error = sqrt(dt*s)
```

uch element-wise computing, often called *scalar* computing, takes more code, less readable, and runs much slower than what we can achieve with array omputing.

.5 Plotting solutions

laving the t and u arrays, the approximate solution u is visualized by the stuitive command plot(t, u):

```
from matplotlib.pyplot import *
plot(t, u)
show()
```

lotting multiple curves. It will be illustrative to also plot $u_{\rm e}(t)$ for comarison. Doing a plot(t, u_e) is not exactly what we want: the plot function raws straight lines between the discrete points (t[n], u_e[n]) while $u_{\rm e}(t)$ aries as an exponential function between the mesh points. The technique for nowing the "exact" variation of $u_{\rm e}(t)$ between the mesh points is to introduce a ery fine mesh for $u_{\rm e}(t)$:

```
:_e = linspace(0, T, 1001)  # fine mesh
1_e = exact_solution(t_e, I, a)
>lot(t_e, u_e, 'b-')  # blue line for u_e
>lot(t, u, 'r--o')  # red dashes w/circles
```

With more than one curve in the plot we need to associate each curve ith a legend. We also want appropriate names on the axis, a title, and a file ontaining the plot as an image for inclusion in reports. The Matplotlib package <code>iatplotlib.pyplot</code>) contains functions for this purpose. The names of the mctions are similar to the plotting functions known from MATLAB. A complete lot session then becomes

```
t_e = linspace(0, T, 1001)  # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, 'r--o')  # red dashes w/circles
plot(t_e, u_e, 'b-')  # blue line for exact sol.
legend(['numerical', 'exact'])
xlabel('t')
ylabel('u')
title('theta=%g, dt=%g' % (theta, dt))
savefig('%s_%g.png' % (theta, dt))
show()
```

Note that savefig here creates a PNG file whose name reflects the val and Δt so that we can easily distinguish files from different runs with θ

A bit more sophisticated and easy-to-read filename can be gener mapping the θ value to acronyms for the three common schemes: FE (I Euler, $\theta = 0$), BE (Backward Euler, $\theta = 1$), CN (Crank-Nicolson, $\theta = 0$), Python dictionary is ideal for such a mapping from numbers to strings:

```
theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
savefig('%s_%g.png' % (theta2name[theta], dt))
```

Experiments with computing and plotting. Let us wrap up the tation of the error measure and all the plotting statements in a function ϵ This function can be called for various θ and Δt values to see how the varies with the method and the mesh resolution:

```
def explore(I, a, T, dt, theta=0.5, makeplot=True):
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions (if makeplot=True)
    u, t = solver(I, a, T, dt, theta)
                                           # Numerical solution
    u_e = exact_solution(t, I, a)
    e = u e - u
    E = sqrt(dt*sum(e**2))
    if makeplot:
        figure()
                                           # create new plot
        t_e = linspace(0, T, 1001)
                                           # fine mesh for u e
        u_e = exact_solution(t_e, I, a)
        plot(t, u, 'r--o')
                                           # red dashes w/circles
        plot(t_e, u_e, 'b-')
                                           # blue line for exact so
        legend(['numerical', 'exact'])
        xlabel('t')
        vlabel('u')
        title('theta=%g, dt=%g' % (theta, dt))
theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
        savefig('%s_%g.png' % (theta2name[theta], dt))
        savefig('%s_%g.pdf' % (theta2name[theta], dt))
        savefig('%s_%g.eps' % (theta2name[theta], dt))
        show()
    return E
```

The figure() call is key here: without it, a new plot command we the new pair of curves in the same plot window, while we want the compairs to appear in separate windows and files. Calling figure() ensure

The explore function stores the plot in three different image file formats: NG, PDF, and EPS (Encapsulated PostScript). The PNG format is aimed at eing included in HTML files, the PDF format in PDFLATEX documents, and the PS format in LATEX documents. Frequently used viewers for these image files n Unix systems are gv (comes with Ghostscript) for the PDF and EPS formats and display (from the ImageMagick) suite for PNG files:

```
erminal> gv BE_0.5.pdf
erminal> gv BE_0.5.eps
erminal> display BE_0.5.png
```

The complete code containing the functions above resides in the file decay_lot_mpl.py⁹. Running this program results in

```
srminal> python decay_plot_mpl.py
.0     0.40:     2.105E-01
.0     0.04:     1.449E-02
.5     0.40:     3.362E-02
.5     0.04:     1.887E-04
.0     0.40:     1.030E-01
.0     0.04:     1.382E-02
```

We also see that the combination of $\theta=0.5$ and a nall time step $\Delta t=0.04$ gives a much more accurate solution, and that $\theta=0$ and $\theta=1$ with $\Delta t=0.4$ result in the least accurate solutions.

Figure 6 demonstrates that the numerical solution for $\Delta t = 0.4$ clearly lies elow the exact curve, but that the accuracy improves considerably by reducing ne time step by a factor of 10.

Combining plot files. Mounting two PNG files, as done in the figure, is easily one by the montage¹⁰ program from the ImageMagick suite:

```
erminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png
erminal> convert -trim FE1.png FE1.png
```

he -geometry argument is used to specify the size of the image, and here we reserve the individual sizes of the images. The -tile HxV option specifies H nages in the horizontal direction and V images in the vertical direction. A series f image files to be combined are then listed, with the name of the resulting ombined image, here FE1.png at the end. The convert -trim command

Figure 6: The Forward Euler scheme for two values of the time ste

removes surrounding white areas in the figure (an operation usually ki cropping in image manipulation programs).

For LATEX reports it is not recommended to use montage and PNG file result has too low resolution. Instead, plots should be made in the PDF and combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/)

```
Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 tmp.pdf  # output in tmp-nup.pdf
Terminal> pdfcrop tmp-nup.pdf FE1.png  # output in FE1.png
```

Here, pdftk combines images into a multi-page PDF file, pdfnup comb images in individual pages to a table of images (pages), and pdfcrop white margins in the resulting combined image file.

The behavior of the two other schemes is shown in Figures 7 and 8. Nicolson is obviously the most accurate scheme from this visual point ϵ

Plotting with SciTools. The SciTools package¹¹ provides a unified interface, called Easyviz, to many different plotting packages, including plotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The synvery similar to that of Matplotlib and MATLAB. In fact, the plotting conshown above look the same in SciTool's Easyviz interface, apart from the statement, which reads

```
from scitools.std import *
```

This statement performs a from numpy import * as well as an import most common pieces of the Easyviz (scitools.easyviz) package, alo some additional numerical functionality.

⁹http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py

¹⁰http://www.imagemagick.org/script/montage.php

¹¹http://code.google.com/p/scitools

Figure 7: The Backward Euler scheme for two values of the time step.

Figure 8: The Crank-Nicolson scheme for two values of the time step.

With Easyviz one can merge several plotting commands into a single one sing keyword arguments:

```
plot(t, u, 'r--o',  # red dashes w/circles
   t_e, u_e, 'b-',  # blue line for exact sol.
   legend=['numerical', 'exact'],
   xlabel='t',
   ylabel='u',
   title='theta=%g, dt=%g' % (theta, dt),
   savefig='%s_%g.png' % (theta2name[theta], dt),
   show=True)
```

he ${\tt decay_plot_st.py}^{12}$ file contains such a demo.

By default, Easyviz employs Matplotlib for plotting, but $Gnuplot^{13}$ and $arce^{14}$ are viable alternatives:

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnupl Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The backend used for creating plots (and numerous other options) permanently set in SciTool's configuration file.

All the Gnuplot windows are launched without any need to kill one the next one pops up (as is the case with Matplotlib) and one can press 'q' anywhere in a plot window to kill it. Another advantage of Gnuple automatic choice of sensible and distinguishable line types in black-an PDF and PostScript files.

Regarding functionality for annotating plots with title, labels on t legends, etc., we refer to the documentation of Matplotlib and SciTools f detailed information on the syntax. The hope is that the programming explained so far suffices for understanding the code and learning more combination of the forthcoming examples and other resources such as bo web pages.

Test the understanding.

Exercise 2 asks you to implement a solver for a problem that is sli different from the one above. You may use the **solver** and **exp** functions explained above as a starting point. Apply the new solv Exercise 3.

2.6 Creating command-line interfaces

It is good programming practice to let programs read input from the use than require the user to edit the source code when trying out new values parameters. Reading input from the command line is a simple and flexi of interacting with the user. Python stores all the command-line argun the list <code>sys.argv</code>, and there are, in principle, two ways of programmi command-line arguments in Python:

- Decide upon a sequence of parameters on the command line at their values directly from the sys.argv[1:] list (sys.argv[0] is program name).
- Use option-value pairs (--option value) on the command line to default values of input parameters, and utilize the argparse. Argume tool to interact with the command line.

Both strategies will be illustrated next.

Reading a sequence of command-line arguments. The decay_pl py¹⁵ program needs the following input data: I, a, T, an option to turn on or off (makeplot), and a list of Δt values.

¹²http://tinyurl.com/jvzzcfn/decay/decay_plot_st.py

¹³http://www.gnuplot.info/

¹⁴http://plasma-gate.weizmann.ac.il/Grace/

¹⁵http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py

The simplest way of reading this input from the command line is to say that the first four command-line arguments correspond to the first four points in the stabove, in that order, and that the rest of the command-line arguments are the Δt values. The input given for makeplot can be a string among 'on', 'off', [rue', and 'False'. The code for reading this input is most conveniently put a function:

```
import sys

lef read_command_line():
    if len(sys.argv) < 6:
        print 'Usage: %s I a T on/off dt1 dt2 dt3 ...' % \
             sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
    a = float(sys.argv[2])
    T = float(sys.argv[3])
    makeplot = sys.argv[4] in ('on', 'True')
    dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, makeplot, dt_values</pre>
```

One should note the following about the constructions in the program above:

- Everything on the command line ends up in a *string* in the list sys.argv. Explicit conversion to, e.g., a float object is required if the string as a number we want to compute with.
- The value of makeplot is determined from a boolean expression, which becomes True if the command-line argument is either 'on' or 'True', and False otherwise.
- It is easy to build the list of Δt values: we simply run through the rest of the list, sys.argv[5:], convert each command-line argument to float, and collect these float objects in a list, using the compact and convenient list comprehension syntax in Python.

he loops over θ and Δt values can be coded in a main function:

```
lef main():
    I, a, T, makeplot, dt_values = read_command_line()
    for theta in 0, 0.5, 1:
        for dt in dt_values:
            E = explore(I, a, T, dt, theta, makeplot)
            print '%3.1f %6.2f: %12.3E' % (theta, dt, E)
```

he complete program can be found in decay_cml.py¹⁶.

Working with an argument parser. Python's ArgumentParser to argparse module makes it easy to create a professional command-line i to any program. The documentation of ArgumentParser 17 demonstration applications, so we shall here just list an example containing features. On the command line we want to specify option-value pairs and T, e.g., --a 3.5 --I 2 --T 2. Including --makeplot turns the and excluding this option turns the plot off. The Δt values can be § --dt 1 0.5 0.25 0.1 0.01. Each parameter must have a sensible defau so that we specify the option on the command line only when the defau is not suitable.

We introduce a function for defining the mentioned command-line of

```
def define_command_line_options():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument(',--I', ',--initial_condition', type=float,
                        default=1.0, help='initial condition, u(0
                        metavar='I')
    parser.add_argument('--a', type=float,
                        default=1.0, help='coefficient in ODE',
                        metavar='a')
    parser.add_argument('--T', '--stop_time', type=float,
                        default=1.0, help='end time of simulation
                        metavar='T')
    parser.add_argument('--makeplot', action='store_true',
                        help='display plot or not')
    parser.add_argument('--dt', '--time_step_values', type=float,
                        default=[1.0], help='time step values',
                        metavar='dt', nargs='+', dest='dt_values'
    return parser
```

Each command-line option is defined through the parser.add_ar method. Alternative options, like the short --I and the more explaining $--initial_condition$ can be defined. Other arguments are type for the object type, a default value, and a help string, which gets printed if the coline argument -h or --help is included. The metavar argument spectialue associated with the option when the help string is printed. For e the option for I has this help output:

```
Terminal> python decay_argparse.py -h
...
--I I, --initial_condition I
initial condition, u(0)
...
```

The structure of this output is

```
--I metavar, --initial_condition metavar help-string
```

¹⁶http://tinyurl.com/jvzzcfn/decay/decay_cml.py

¹⁷http://docs.python.org/library/argparse.html

The --makeplot option is a pure flag without any value, implying a true alue if the flag is present and otherwise a false value. The action='store_true' takes an option for such a flag.

Finally, the --dt option demonstrates how to allow for more than one value eparated by blanks) through the nargs='+' keyword argument. After the ommand line is parsed, we get an object where the values of the options are cored as attributes. The attribute name is specified by the dist keyword rgument, which for the --dt option is dt_values. Without the dest argument, ne value of an option --opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the alues for each option:

```
lef read_command_line():
    parser = define_command_line_options()
    args = parser.parse_args()
    print 'I={}, a={}, T={}, makeplot={}, dt_values={}'.format(
        args.I, args.a, args.T, args.makeplot, args.dt_values)
    return args.I, args.a, args.T, args.makeplot, args.dt_values
```

The main function remains the same as in the decay_cml.py code based on eading from sys.argv directly. A complete program featuring the demo above f ArgumentParser appears in the file decay_argparse.py¹⁸.

.7 Creating a graphical web user interface

he Python package Parampool¹⁹ can be used to automatically generate a eb-based *graphical user interface* (GUI) for our simulation program. Although ne programming technique dramatically simplifies the efforts to create a GUI, ne forthcoming material on equipping our decay_mod module with a GUI is uite technical and of significantly less importance than knowing how to make a pummand-line interface (Section 2.6). There is no danger in jumping right to ection 2.8.

Taking a compute function. The first step is to identify a function that erforms the computations and that takes the necessary input variables as rguments. This is called the *compute function* in Parampool terminology. We say start with a copy of the basic file decay_plot_mpl.py 20 , which has a main inction displayed in Section 2.5 for carrying out simulations and plotting for series of Δt values. Now we want to control and view the same experiments om a web GUI.

To tell Parampool what type of input data we have, we assign default values f the right type to all arguments in the main function and call it main_GUI:

The compute function must return the HTML code we want for disther esult in a web page. Here we want to show plots of the numerical at solution for different methods and Δt values. The plots can be organizable with θ (methods) varying through the columns and Δt varying throws. Assume now that a new version of the <code>explore</code> function not only the error E but also HTML code containing the plot. Then we can w <code>main_GUI</code> function as

```
def main_GUI(I=1.0, a=.2, T=4.0,
        dt_values=[1.25, 0.75, 0.5, 0.1],
        theta_values=[0, 0.5, 1]):
    # Build HTML code for web page. Arrange plots in columns
    # corresponding to the theta values, with dt down the rows
    theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
   html_text = '\n'
   for dt in dt values:
       html_text += '\n'
       for theta in theta_values:
           E, html = explore(I, a, T, dt, theta, makeplot=True)
           html text += """
<center><b>%s, dt=%g, error: %s</b></center><br>
""" % (theta2name[theta], dt, E, html)
       html text += '\n'
   html text += '\n'
   return html_text
```

Rather than creating plot files and showing the plot on the screen, version of the explore function makes a string with the PNG code of and embeds that string in HTML code. This action is conveniently per by Parampool's save_png_to_str function:

```
import matplotlib.pyplot as plt
...
# plot
plt.plot(t, u, r-')
plt.xlabel('t')
plt.ylabel('u')
...
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)
```

Note that we now write plt.plot, plt.xlabel, etc. The html_text s long and contains all the characters that build up the PNG file of the plot. The new explore function can make use of the above code snip return html_text along with E.

Generating the user interface. The web GUI is automatically ge by the following code, placed in a file decay_GUI_generate.py²¹

 $^{^{18} \}verb|http://tinyurl.com/jvzzcfn/decay/decay_argparse.py|$

¹⁹https://github.com/hplgit/parampool

²⁰http://tinvurl.com/jvzzcfn/decay/decay_plot_mpl.pv

²¹http://tinyurl.com/jvzzcfn/decay/decay_GUI_generate.py

unning the decay_GUI_generate.py program results in three new files whose ames are specified in the call to generate:

- decay_GUI_model.py defines HTML widgets to be used to set input data in the web interface.
- 2. templates/decay_GUI_views.py defines the layout of the web page,
- 3. decay_GUI_controller.py runs the web application.

/e only need to run the last program, and there is no need to look into these les.

tunning the web application. The web GUI is started by

erminal> python decay_GUI_controller.py

open a web browser at the location 127.0.0.1:5000. Input fields for I, a, dt_values, and theta_values are presented. Setting the latter two to 1.25, 0.5] and [1, 0.5], respectively, and pressing *Compute* results in four lots, see Figure 9. With the techniques demonstrated here, one can easily create tailored web GUI for a particular type of application and use it to interactively explore physical and numerical effects.

.8 Computing convergence rates

/e expect that the error E in the numerical solution is reduced if the mesh size t is decreased. More specifically, many numerical methods obey a power-law elation between E and Δt :

$$E = C\Delta t^r, (47)$$

here C and r are (usually unknown) constants independent of Δt . The formula 7) is viewed as an asymptotic model valid for sufficiently small Δt . How small normally hard to estimate without doing numerical estimations of r.

The parameter r is known as the *convergence rate*. For example, if the invergence rate is 2, halving Δt reduces the error by a factor of 4. Diminishing t then has a greater impact on the error compared with methods that have t = 1. For a given value of t, we refer to the method as of t-th order. First- and econd-order methods are most common in scientific computing.

Figure 9: Automatically generated graphical web interface.

Estimating r. There are two alternative ways of estimating C and on a set of m simulations with corresponding pairs $(\Delta t_i, E_i)$, $i = 0, \ldots$ and $\Delta t_i < \Delta t_{i-1}$ (i.e., decreasing cell size).

- 1. Take the logarithm of (47), $\ln E = r \ln \Delta t + \ln C$, and fit a straigh the data points $(\Delta t_i, E_i)$, $i = 0, \ldots, m-1$.
- 2. Consider two consecutive experiments, $(\Delta t_i, E_i)$ and $(\Delta t_{i-1}, E_i)$ viding the equation $E_{i-1} = C\Delta t_{i-1}^r$ by $E_i = C\Delta t_i^r$ and solvir yields

$$r_{i-1} = \frac{\ln(E_{i-1}/E_i)}{\ln(\Delta t_{i-1}/\Delta t_i)}$$

for i = 1, ..., m - 1.

The disadvantage of method 1 is that (47) might not be valid for the meshes (largest Δt values). Fitting a line to all the data points is then mis Method 2 computes convergence rates for pairs of experiments and allow see if the sequence r_i converges to some value as $i \to m-2$. The final r_i then be taken as the convergence rate. If the coarsest meshes have a crate, the corresponding time steps are probably too large for (47) to 1 That is, those time steps lie outside the asymptotic range of Δt value the error behaves like (47).

Implementation. It is straightforward to extend the main function program decay_argparse.py with statements for computing $r_0, r_1, ...$ from (47):

```
from math import log
lef main():
   I. a. T. makeplot. dt values = read command line()
   r = {} # estimated convergence rates
   for theta in 0, 0.5, 1:
       E_{values} = []
       for dt in dt values:
           E = explore(I, a, T, dt, theta, makeplot=False)
           E_values.append(E)
       # Compute convergence rates
       m = len(dt_values)
       r[theta] = [log(E_values[i-1]/E_values[i])/
                   log(dt_values[i-1]/dt_values[i])
                   for i in range(1, m, 1)]
   for theta in r:
       print '\nPairwise convergence rates for theta=%g:' % theta
       print ' '.join(['%.2f' % r_ for r_ in r[theta]])
   return r
```

he program containing this main function is called decay_convrate.py²².

The r object is a dictionary of lists. The keys in this dictionary are the θ alues. For example, r[1] holds the list of the r_i values corresponding to $\theta=1$. In the loop for theta in r, the loop variable theta takes on the values of the eys in the dictionary r (in an undetermined ordering). We could simply do a rint r[theta] inside the loop, but this would typically yield output of the envergence rates with 16 decimals:

```
[1.331919482274763, 1.1488178494691532, ...]
```

Instead, we format each number with 2 decimals, using a list comprehension turn the list of numbers, r[theta], into a list of formatted strings. Then we sin these strings with a space in between to get a sequence of rates on one line the terminal window. More generally, d.join(list) joins the strings in the st list to one string, with d as delimiter between list[0], list[1], etc.

Here is an example on the outcome of the convergence rate computations:

```
erminal> python decay_convrate.py --dt 0.5 0.25 0.1 0.05 0.025 0.01 ...
airwise convergence rates for theta=0:
...33 1.15 1.07 1.03 1.02
airwise convergence rates for theta=0.5:
..14 2.07 2.03 2.01 2.01
airwise convergence rates for theta=1:
..98 0.99 0.99 1.00 1.00
```

The Forward and Backward Euler methods seem to have an r valustabilizes at 1, while the Crank-Nicolson seems to be a second-order with r=2.

Very often, we have some theory that predicts what r is for a numethod. Various theoretical error measures for the θ -rule point to r $\theta=0.5$ and r=1 otherwise. The computed estimates of r are in very agreement with these theoretical values.

Why convergence rates are important.

The strong practical application of computing convergence rates is for fication: wrong convergence rates point to errors in the code, and convergence rates brings evidence that the implementation is correct. rience shows that bugs in the code easily destroy the expected convergate.

Debugging via convergence rates. Let us experiment with bugs the implication on the convergence rate. We may, for instance, forget to 1 by a in the denominator in the updating formula for u[n+1]:

```
u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt)*u[n]
```

Running the same <code>decay_convrate.py</code> command as above gives the e convergence rates (!). Why? The reason is that we just specified the Δ are relied on default values for other parameters. The default value c Forgetting the factor a has then no effect. This example shows how imposite to avoid parameters that are 1 or 0 when verifying implementations. I the code <code>decay_vo.py</code> with a=2.1 and I=0.1 yields

This time we see that the expected convergence rates for the Crank-N and Backward Euler methods are not obtained, while r=1 for the I Euler method. The reason for correct rate in the latter case is that θ : the wrong theta*dt term in the denominator vanishes anyway.

The error

²²http://tinyurl.com/jvzzcfn/decay/decay_convrate.py

```
1[n+1] = ((1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
```

vanifests itself through wrong rates $r \approx 0$ for all three methods. About the ame results arise from an erroneous initial condition, u[0] = 1, or wrong loop mits, range(1,Nt). It seems that in this simple problem, most bugs we can nink of are detected by the convergence rate test, provided the values of the uput data do not hide the bug.

A verify_convergence_rate function could compute the dictionary of list is main and check if the final rate estimates (r_{m-2}) are sufficiently close to the spected ones. A tolerance of 0.1 seems appropriate, given the uncertainty in stimating r:

```
lef verify_convergence_rate():
    r = main()
    tol = 0.1
    expected_rates = {0: 1, 1: 1, 0.5: 2}
    for theta in r:
        r_final = r[theta][-1]
        diff = abs(expected_rates[theta] - r_final)
        if diff > tol:
            return False
    return True # all tests passed
```

/e remark that r[theta] is a list and the last element in any list can be xtracted by the index -1.

.9 Memory-saving implementation

he computer memory requirements of our implementations so far consists tainly of the u and t arrays, both of length N_t+1 , plus some other temporary trays that Python needs for intermediate results if we do array arithmetics our program (e.g., I*exp(-a*t) needs to store a*t before - can be applied to it and then exp). The extremely modest storage requirements of simple DE problems put no restrictions on the formulations of the algorithm and applementation. Nevertheless, when the methods for ODEs used here are applied three-dimensional partial differential equation (PDE) problems, memory to the requirements suddenly become an issue.

The PDE counterpart to our model problem u'=-a is a diffusion equation $_t=a\nabla^2u$ posed on a space-time domain. The discrete representation of this omain may in 3D be a spatial mesh of M^3 points and a time mesh of N_t oints. A typical desired value for M is 100 in many applications, or even 1000. toring all the computed u values, like we have done in the programs so far, emands storage of some arrays of size M^3N_t , giving a factor of M^3 larger torage demands compared to our ODE programs. Each real number in the rray for u requires 8 bytes (b) of storage. With M=100 and $N_t=1000$, here is a storage demand of $(10^3)^3 \cdot 1000 \cdot 8=8$ Gb for the solution array. Ortunately, we can usually get rid of the N_t factor, resulting in 8 Mb of storage elow we explain how this is done, and the technique is almost always applied implementations of PDE problems.

Let us critically evaluate how much we really need to store in the commemory in our implementation of the θ method. To compute a new u^{n+1} need is u^n . This implies that the previous $u^{n-1}, u^{n-2}, \ldots, u^0$ values do r to be stored in an array, although this is convenient for plotting and data in the program. Instead of the u array we can work with two variables numbers, u and u_1, representing u^{n+1} and u^n in the algorithm, resp At each time level, we update u from u_1 and then set u_1 = u so t computed u^{n+1} value becomes the "previous" value u^n at the next tir The downside is that we cannot plot the solution after the simulation since only the last two numbers are available. The remedy is to store co values in a file and use the file for visualizing the solution later.

We have implemented this memory saving idea in the file decay_m py²³, which is a merge of the decay_plot_mpl.py²⁴ and decay_argpar programs, using module prefixes np for numpy and plt for matplotlib.

The following function demonstrates how we work with the two mos values of the unknown:

```
def solver_memsave(I, a, T, dt, theta, filename='sol.dat'):
    Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt.
    Minimum use of memory. The solution is stored in a file
    (with name filename) for later plotting.
    dt = float(dt)
                          # avoid integer division
    Nt = int(round(T/dt)) # no of intervals
    outfile = open(filename, 'w')
    # u: time level n+1. u 1: time level n
    t = 0
    u_1 = I
    outfile.write('%.16E %.16E\n' % (t, u_1))
   for n in range(1, Nt+1):
       u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u 1
        u_1 = u
        t += dt
        outfile.write('%.16E %.16E\n' % (t, u))
    outfile.close()
   return u, t
```

This code snippet serves as a quick introduction to file writing in Python. It the data in the file into arrays t and u are done by the function

```
def read_file(filename='sol.dat'):
    infile = open(filename, 'r')
    u = [];    t = []
    for line in infile:
        words = line.split()
        if len(words) != 2:
            print 'Found more than two numbers on a line!', words
            sys.exit(1) # abort
```

²³http://tinyurl.com/jvzzcfn/decay/decay_memsave.py

²⁴http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py

²⁵http://tinyurl.com/jvzzcfn/decay/decay_argparse.py

```
t.append(float(words[0]))
    u.append(float(words[1]))
return np.array(t), np.array(u)
```

This type of file with numbers in rows and columns is very common, and numpy as a function loadtxt which loads such tabular data into a two-dimensional rray, say with name data. The number in row i and column j is then data[i,j]. he whole column number j can be extracted by data[:,j]. A version of ead_file using np.loadtxt reads

```
lef read_file_numpy(filename='sol.dat'):
    data = np.loadtxt(filename)
    t = data[:,0]
    u = data[:,1]
    return t, u
```

The present counterpart to the explore function from decay_plot_mpl.py²⁶ ust run solver_memsave and then load data from file before we can compute a error measure and make the plot:

```
lef explore(I, a, T, dt, theta=0.5, makeplot=True):
    filename = 'u.dat'
    u, t = solver_memsave(I, a, T, dt, theta, filename)

    t, u = read_file(filename)
    u_e = exact_solution(t, I, a)
    e = u_e - u
    E = np.sqrt(dt*np.sum(e**2))
    if makeplot:
        plt.figure()
        ...
```

The decay_memsave.py²⁷ file also includes command-line options --I, --a, ·T, --dt, --theta, and --makeplot for controlling input parameters and making single run. For example,

```
erminal> python decay_memsave.py --T 10 --theta 1 --dt 2
```

sults in the output

```
I=1.0, a=1.0, T=10.0, makeplot=True, theta=1.0, dt=2.0 theta=1.0 dt=2 Error=3.136E-01
```

Software engineering

Goal.

Efficient use of differential equation models requires software that is to test and flexible for setting up extensive numerical experiments. section introduces three important concepts:

- Modules
- Testing frameworks
- Implementation with classes

The concepts are introduced using the differential equation problem -au, u(0) = I, as example.

3.1 Making a module

The DRY principle.

The previous sections have outlined numerous different programs, them having their own copy of the solver function. Such copies of same piece of code is against the important *Don't Repeat Yourself* (a principle in programming. If we want to change the solver function should be one and only one place where the change needs to be performant.

To clean up the repetitive code snippets scattered among the deca files, we start by collecting the various functions we want to keep for th in one file, now called decay_mod.py²⁸ (mod stands for "module"). The formations are copied to this file:

- solver for computing the numerical solution
- verify_three_steps for verifying the first three solution points hand calculations
- verify_discrete_solution for verifying the entire computed against an exact formula for the numerical solution
- explore for computing and plotting the solution
- define_command_line_options for defining option-value pairs command line
- read_command_line for reading input from the command line, tended to work both with sys.argv directly and with an Argument object
- main for running experiments with $\theta = 0, 0.5, 1$ and a series of Δa and computing convergence rates

²⁶http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py

²⁷http://tinyurl.com/jvzzcfn/decay/decay_memsave.py

²⁸http://tinvurl.com/jvzzcfn/decay/decay_mod.pv

- main_GUI for doing the same as the main function, but modified for automatic GUI generation
- verify_convergence_rate for verifying the computed convergence rates against the theoretically expected values

/e use Matplotlib for plotting. A sketch of the decay_mod.py file, with complete ersions of the modified functions, looks as follows:

```
from numpy import *
irom matplotlib.pyplot import *
import sys
lef solver(I, a, T, dt, theta):
lef verify_three_steps():
lef verify_exact_discrete_solution():
lef exact_solution(t, I, a):
lef explore(I, a, T, dt, theta=0.5, makeplot=True):
lef define_command_line_options():
lef read_command_line(use_argparse=True):
   if use_argparse:
       parser = define_command_line_options()
       args = parser.parse_args()
       print 'I={}, a={}, makeplot={}, dt_values={}'.format(
           args.I, args.a, args.makeplot, args.dt_values)
       return args.I, args.a, args.makeplot, args.dt_values
   else:
       if len(sys.argv) < 6:
           print 'Usage: %s I a on/off dt1 dt2 dt3 ...' % \
                 sys.argv[0]; sys.exit(1)
       I = float(sys.argv[1])
       a = float(sys.argv[2])
       T = float(sys.argv[3])
       makeplot = sys.argv[4] in ('on', 'True')
       dt_values = [float(arg) for arg in sys.argv[5:]]
       return I, a, makeplot, dt_values
lef main():
```

This decay_mod.py file is already a module such that we can import desired unctions in other programs. For example, we can in a file do

```
from decay_mod import solver
u, t = solver(I=1.0, a=3.0, T=3, dt=0.01, theta=0.5)
```

However, it should also be possible to both use decay_mod.py as a and execute the file as a program that runs main(). This is accompliending the file with a test block:

```
if __name__ == '__main__':
    main()
```

When decay_mod.py is used as a module, __name__ equals the modulecay_mod, while __name__ equals '__main__' when the file is run a gram. Optionally, we could run the verification tests if the word verify_rates is found on the command line. The verify_rates argume be removed before we read parameter values from the command line, of the read_command_line function (called by main) will not work proper

```
if __name__ == '__main__':
    if 'verify' in sys.argy:
        if verify_three_steps() and verify_discrete_solution():
            pass # ok
        else:
            print 'Bug in the implementation!'
    elif 'verify_rates' in sys.argv:
        sys.argv.remove('verify_rates')
        if not '--dt' in sys.argv:
            print 'Must assign several dt values'
            sys.exit(1) # abort
        if verify_convergence_rate():
        else:
            print 'Bug in the implementation!'
    else:
        # Perform simulations
        main()
```

3.2 Prefixing imported functions by the module nat

Import statements of the form from module import * import function variables in module.py into the current file. For example, when doing

```
from numpy import *
from matplotlib.pyplot import *
```

we get mathematical functions like sin and exp as well as MATLA functions like linspace and plot, which can be called by these well-known Unfortunately, it sometimes becomes confusing to know where a pa function comes from. Is it from numpy? Or matplotlib.pyplot? Or i own function?

An alternative import is

```
import numpy
import matplotlib.pyplot
```

nd such imports require functions to be prefixed by the module name, e.g.,

```
; = numpy.linspace(0, T, Nt+1)
1_e = I*numpy.exp(-a*t)
1atplotlib.pyplot.plot(t, u_e)
```

his is normally regarded as a better habit because it is explicitly stated from hich module a function comes from.

The modules numpy and matplotlib.pyplot are so frequently used, and neir full names quite tedious to write, so two standard abbreviations have volved in the Python scientific computing community:

```
import numpy as np
import matplotlib.pyplot as plt

: = np.linspace(0, T, Nt+1)
1_e = I*np.exp(-a*t)
plt.plot(t, u_e)
```

version of the decay_mod module where we use the np and plt prefixes is aund in the file decay_mod_prefix.py²⁹.

The downside of prefixing functions by the module name is that mathematical spressions like $e^{-at} \sin(2\pi t)$ get cluttered with module names,

```
numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
t or
np.exp(-a*t)*np.sin(2*np.pi*t)
```

uch an expression looks like exp(-a*t)*sin(2*pi*t) in most other programing languages. Similarly, np.linspace and plt.plot look less familiar to peole who are used to MATLAB and who have not adopted Python's prefix style. The hether to do from module import * or import module depends on personal aste and the problem at hand. In these writings we use from module import a shorter programs where similarity with MATLAB could be an advantage, and here a one-to-one correspondence between mathematical formulas and Python expressions is important. The style import module is preferred inside Python lodules (see Exercise 11 for a demonstration).

.3 Doctests

/e have emphasized how important it is to be able to run tests in the program at ny time. This was solved by calling various verify* functions in the previous camples. However, there exists well-established procedures and corresponding pols for automating the execution of tests. We shall briefly demonstrate two nportant techniques: doctest and unit testing. The corresponding files are the rodules decay_mod_doctest.py³⁰ and decay_mod_nosetest.py³¹.

A doc string (the first string after the function header) is used to do the purpose of functions and their arguments. Very often it is instruinclude an example on how to use the function. Interactive example Python shell are most illustrative as we can see the output resulting from the calls. For example, we can in the solver function include an example of this function and printing the computed u and t arrays:

```
def solver(I, a, T, dt, theta):
    """
    Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
>>> for t_n, u_n in zip(t, u):
    ...    print 't=%.1f, u=%.14f' % (t_n, u_n)
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972
t=2.5, u=0.03621291001985
t=3.0, u=0.01949925924146
t=3.5, u=0.01049960113002
t=4.0, u=0.00565363137770
"""
...
```

When such interactive demonstrations are inserted in doc strings, F doctest³² module can be used to automate running all commands in int sessions and compare new output with the output appearing in the do All we have to do in the current example is to write

```
Terminal> python -m doctest decay_mod_doctest.py
```

This command imports the doctest module, which runs all tests. No ad command-line argument is allowed when running doctests. If any test f problem is reported, e.g.,

 $^{^{29} \}verb|http://tinyurl.com/jvzzcfn/decay/decay_mod_prefix.py|$

 $^{^{30} \}verb|http://tinyurl.com/jvzzcfn/decay/decay_mod_doctest.py|$

³¹ http://tinyurl.com/jvzzcfn/decay/decay_mod_nosetest.py

³²http://docs.python.org/library/doctest.html

Note that in the output of t and u we write u with 14 digits. Writing all 16 igits is not a good idea: if the tests are run on different hardware, round-off rors might be different, and the **doctest** module detects that the numbers are ot precisely the same and reports failures. In the present application, where $\langle u(t) \leq 0.8$, we expect round-off errors to be of size 10^{-16} , so comparing 15 igits would probably be reliable, but we compare 14 to be on the safe side.

Doctests are highly encouraged as they do two things: 1) demonstrate how a unction is used and 2) test that the function works.

Here is an example on a doctest in the explore function:

his time we limit the output to 10 digits.

Caution.

Doctests requires careful coding if they use command-line input or print results to the terminal window. Command-line input must be simulated by filling sys.argv correctly, e.g., sys.argv = '--I 1.0 --a 5'.split. The output lines of print statements must be copied exactly as they appear when running the statements in an interactive Python shell.

.4 Unit testing with nose

he unit testing technique consists of identifying small units of code, usually inctions (or classes), and write one or more tests for each unit. One test should, leally, not depend on the outcome of other tests. For example, the doctest i function solver is a unit test, and the doctest in function explore as well, ut the latter depends on a working solver. Putting the error computation

and plotting in **explore** in two separate functions would allow independ tests. In this way, the design of unit tests impacts the design of functio recommended practice is actually to design and write the unit tests f then implement the functions!

In scientific computing it is not always obvious how to best perfotesting. The units is naturally larger than in non-scientific software. Ve the solution procedure of a mathematical problem identifies a unit.

Basic use of nose. The nose package is a versatile tool for implement tests in Python. Here is a short explanation of the usage of nose:

- 1. Implement tests in functions with names starting with test_. Su tions cannot have any arguments.
- 2. The test functions perform assertions on computed results using functions from the nose, tools module.
- 3. The test functions can be in the source code files or be collected in s files with names test*.py.

Here comes a very simple illustration of the three points. Assume that this function in a module mymod:

```
def double(n):
    return 2*n
```

Either in this file, or in a separate file test_mymod.py, we implement function whose purpose is to test that the function double works as interest.

```
import nose.tools as nt

def test_double():
    result = double(4)
    nt.assert_equal(result, 8)
```

Notice that test_double has no arguments. We need to do an import or from mymod import double if this test resides in a separate file. Ru

```
Terminal> nosetests -s mymod
```

makes the nose tool run all functions with names matching test mymod.py. Alternatively, if the test functions are in some test_mymod we can just write nosetests -s. The nose tool will then look for all finames matching test*.py and run all functions test_*() in these fil

When you have nose tests in separate test files with names test*. common to collect these files in a subdirectory tests, or *_tests if y several test subdirectories. Running nosetests -s will then recursively all tests and *_tests subdirectories and run all functions test_*() in

est_*.py in these directories. Just one command can then launch a series of ests in a directory tree!

An example of a tests directory with different types of test*.py files are and in src/decay/tests³³. Note that these perform imports of modules in the arent directory. These imports works well because the tests are supposed to be in by nosetests -s executed in the parent directory (decay).

Tip.

The -s option to nosetests assures that any print statement in the test_* functions appears in the output. Without this option, nosetests suppressed whatever the tests writes to the terminal window (standard output). Such behavior is annoying, especially when developing and testing tests.

The number of failed tests and their details are reported, or an OK is printed all tests passed.

The advantage with the nose package is two-fold:

- 1. tests are written and collected in a structured way, and
- 2. large collections of tests, scattered throughout a tree of directories, can be executed with one command nosetests. -s.

Iternative assert statements. In case the nt.assert_equal function finds nat the two arguments are equal, the test is a success, otherwise it is a failure nd an exception of type AssertionError is raised. The particular exception is ne indicator that a test has failed.

Instead of calling the convenience function nt.assert_equal, we can use ython's plain assert statement, which tests if a boolean expression is true and uses an AssertionError otherwise. Here, the statement is assert result == 8.

A completely manual alternative is to explicitly raise an AssertionError exception if the computed result is wrong:

```
if result != 8:
    raise AssertionError()
```

.pplying nose. Let us illustrate how to use the nose tool for testing key motions in the decay_mod module. Or more precisely, the module is called ecay_mod_unittest with all the verify* functions removed as these now are utdated by the unit tests.

We design three unit tests:

- 1. A comparison between the computed u^n values and the exact discrete solution.
- 2. A comparison between the computed u^n values and precomputed, verified reference values.

3. A comparison between observed and expected convergence rates.

These tests follow very closely the code in the previously shown verify* fu We start with comparing u^n , as computed by the function solver, to the for the exact discrete solution:

```
import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np
def exact_discrete_solution(n, I, a, theta, dt):
    """Return exact discrete solution of the theta scheme."""
    dt = float(dt) # avoid integer division
    factor = (1 - (1-\text{theta})*a*dt)/(1 + \text{theta}*dt*a)
    return I*factor**n
def test_exact_discrete_solution():
    Compare result from solver against
    formula for the discrete solution.
    theta = 0.8; a = 2; I = 0.1; dt = 0.8
    N = int(8/dt) # no of steps
    u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
    u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)
                     for n in range(N+1)])
    diff = np.abs(u_de - u).max()
    nt.assert_almost_equal(diff, 0, delta=1E-14)
```

The nt.assert_almost_equal is the relevant function for compar real numbers. The delta argument specifies a tolerance for the com Alternatively, one can specify a places argument for the number of places to be used in the comparison.

After having carefully verified the implementation, we may store c computed numbers in the test program or in files for use in future tests. an example on how the outcome from the solver function can be computed is considered to be correct results:

```
def test_solver():
   Compare result from solver against
    precomputed arrays for theta=0, 0.5, 1.
   I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters
   precomputed = {
       't': np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5,
                     3., 3.5, 4.]),
       0.5: np.arrav(
                      , 0.43076923, 0.23195266, 0.12489759,
           8.0
             0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
             0.005653631).
       0: np.array(
           [ 8.00000000e-01, 3.20000000e-01,
              1.28000000e-01, 5.12000000e-02,
              2.04800000e-02, 8.19200000e-03,
              3.27680000e-03, 1.31072000e-03,
```

³³http://tinyurl.com/jvzzcfn/decay/tests

he precomputed object is a dictionary with four keys: 't' for the time mesh, and three θ values for u^n solutions corresponding to $\theta = 0, 0.5, 1$.

Testing for special type of input data that may cause trouble constitutes common way of constructing unit tests. For example, the updating formula or u^{n+1} may be incorrectly evaluated because of unintended integer divisions. 7ith

```
theta = 1; a = 1; I = 1; dt = 2
```

ne nominator and denominator in the updating expression,

```
(1 - (1-theta)*a*dt)
(1 + theta*dt*a)
```

valuate to 1 and 3, respectively, and the fraction 1/3 will call up integer division nd consequently lead to u[n+1]=0. We construct a unit test to make sure olver is smart enough to avoid this problem:

The final test is to see that the convergence rates corresponding to $\theta = 0, 0.5, 1$ re 1, 2, and 1, respectively:

Nothing more is needed in the test_decay_nose.py³⁴ file where t reside. Running nosetests -s will report Ran 3 tests and an OK for Everytime we modify the decay_mod_unittest module we can run nos to quickly see if the edits have any impact on the verification tests.

Installation of nose. The nose package does not come with a stall Python distribution and must therefore be installed separately. The proc standard and described on Nose's web pages³⁵. On Debian-based Linux the command is sudo apt-get install python-nose, and with MacPirun sudo port install py27-nose.

Using nose to test modules with doctests. Assume that mod is the of some module that contains doctests. We may let nose run these docterport errors in the standard way using the code set-up

The call to doctest.testmod runs all doctests in the module file mod returns the number of failures (failure_count) and the total number (test_count). A real example is found in the file test_decay_doctest

3.5 Classical class-based unit testing

The classical way of implementing unit tests derives from the JUnit tool where all tests are methods in a class for testing. Python comes with a unittest for doing this type of unit tests. While nose allows simple function unit tests, unittest requires deriving a class Test* from unittest. To and implementing each test as methods with names test_* in that strongly recommend to use nose over unittest, because it is much simplement of the convenient, but class-based unit testing is a very classical subject computational scientists should have some knowledge about. That is why introduction to unittest is included below.

 $^{^{34} \}verb|http://tinyurl.com/jvzzcfn/decay/tests/test_decay_nose.py|$

³⁵http://nose.readthedocs.org/en/latest/

 $^{^{36} \}texttt{http://tinyurl.com/jvzzcfn/decay/tests/test_decay_doctest.py}$

Sasic use of unittest. We apply the double function in the mymod module stroduced in the previous section as example. Unit testing with the aid of the nittest module consists of writing a file test_mymod.py with the content

```
import unittest
import mymod

class TestMyCode(unittest.TestCase):
    def test_double(self):
        result = mymod.double(4)
        self.assertEqual(result, 8)

if __name__ == '__main__':
    unittest.main()
```

he test is run by executing the test file test_mymod.py as a standard Python rogram. There is no support in unittest for automatically locating and mning all tests in all test files in a directory tree.

Those who have experience with object-oriented programming will see that ne difference between using unittest and nose is minor.

Demonstration of unittest. The same tests as shown for the nose framework re reimplemented with the TestCase classes in the file test_decay_unittest. y^{37} . The tests are identical, the only difference being that with unittest we just write the tests as methods in a class and the assert functions have slightly ifferent names.

```
import unittest
import decay_mod_unittest as decay
import numpy as np
lef exact_discrete_solution(n, I, a, theta, dt):
   factor = (1 - (1-\text{theta})*a*dt)/(1 + \text{theta}*dt*a)
   return I*factor**n
class TestDecay(unittest.TestCase):
   def test_exact_discrete_solution(self):
       diff = np.abs(u_de - u).max()
       self.assertAlmostEqual(diff, 0, delta=1E-14)
   def test_solver(self):
       for theta in 0, 0.5, 1:
           self.assertAlmostEqual(diff, 0, places=8,
                                   msg='theta=%s' % theta)
   def test_potential_integer_division():
       self.assertAlmostEqual(diff, 0, delta=1E-14)
   def test_convergence_rates(self):
```

3.6 Implementing simple problem and solver classes

The θ -rule was compactly and conveniently implemented in a function in Section 2.1. In more complicated problems it might be beneficial classes and introduce a class Problem to hold the definition of the problem, a class Solver to hold the data and methods needed to num solve the problem, and a class Visualizer to make plots. This idea will illustrated, resulting in code that represents an alternative to the solvexplore functions found in the decay_mod module.

Explaining the details of class programming in Python is considered the scope of this text. Readers who are unfamiliar with Python class programould first consult one of the many electronic Python tutorials or texto come up to speed with concepts and syntax of Python classes before on. The author has a gentle introduction to class programming for sapplications in [4], see Chapter 7 and 9 and Appendix E. Other useful reare

- The Python Tutorial: http://docs.python.org/2/tutorial/c
- Wiki book on Python Programming: http://en.wikibooks.org Python_Programming/Classes
- tutorialspoint.com: http://www.tutorialspoint.com/python/pclasses_objects.htm

The problem class. The purpose of the problem class is to store ϵ mation about the mathematical model. This usually means all the parameters in the problem. In the current example with exponential d may also add the exact solution of the ODE to the problem class. The ϵ form of a problem class is therefore

```
from numpy import exp

class Problem:
    def __init__(self, I=1, a=1, T=10):
        self.T, self.I, self.a = I, float(a), T

    def exact_solution(self, t):
        I, a = self.I, self.a
        return I*exp(-a*t)
```

³⁷http://tinyurl.com/jvzzcfn/decay/tests/test_decay_nose.py

/e could in the exact_solution method have written self.I*exp(-self.a*t), ut using local variables I and a allows the formula I*exp(-a*t) which looks oser to the mathematical expression Ie^{-at} . This is not an important issue with ne current compact formula, but is beneficial in more complicated problems ith longer formulas to obtain the closest possible relationship between code and mathematics. My coding style is to strip off the self prefix when the code spresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any me later, e.g.,

```
problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5
```

Some programmers prefer set and get functions for setting and getting data in asses, often implemented via *properties* in Python, but I consider that overkill hen we just have a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the ommand line. To this end, we add a method for defining a set of command-line ptions and a method that sets the local attributes equal to what was found on a command line. The default values associated with the command-line options re taken as the values provided to the constructor. Class Problem now becomes

```
class Problem:
   def __init__(self, I=1, a=1, T=10):
       self.T, self.I, self.a = I, float(a), T
   def define_command_line_options(self, parser=None):
       if parser is None:
           import argparse
           parser = argparse.ArgumentParser()
       parser.add_argument(
           '--I', '--initial_condition', type=float,
           default=self.I, help='initial condition, u(0)',
           metavar='I')
       parser.add_argument(
           '--a', type=float, default=self.a,
           help='coefficient in ODE', metavar='a')
       parser.add_argument(
           '--T', '--stop_time', type=float, default=self.T,
           help='end time of simulation', metavar='T')
       return parser
   def init_from_command_line(self, args):
       self.I, self.a, self.T = args.I, args.a, args.T
   def exact_solution(self, t):
       I, a = self.I, self.a
       return I*exp(-a*t)
```

bserve that if the user already has an ArgumentParser object it can be supplied, ut if she does not have any, class Problem makes one. Python's None object is sed to indicate that a variable is not initialized with a proper value.

The solver class. The solver class stores data related to the numerical method and provides a function solve for solving the problem. A probler must be given to the constructor so that the solver can easily look up p data. In the present example, the data related to the numerical solution consists of Δt and θ . We add, as in the problem class, functionality for Δt and θ from the command line:

```
class Solver:
    def init (self, problem, dt=0.1, theta=0.5):
        self.problem = problem
        self.dt, self.theta = float(dt), theta
    def define_command_line_options(self, parser):
        parser.add_argument(
            '--dt', '--time_step_value', type=float,
            default=0.5, help='time step value', metavar='dt')
        parser.add_argument(
            '--theta', type=float, default=0.5,
           help='time discretization parameter', metavar='dt')
        return parser
    def init_from_command_line(self, args):
        self.dt, self.theta = args.dt, args.theta
    def solve(self):
       from decay_mod import solver
        self.u. self.t = solver(
            self.problem.I, self.problem.a, self.problem.T,
           self.dt, self.theta)
    def error(self):
        u_e = self.problem.exact_solution(self.t)
        e = u_e - self.u
       E = sqrt(self.dt*sum(e**2))
        return E
```

Note that we here simply reuse the implementation of the numerical meth the decay_mod module. The solve function is just a *wrapper* of the prdeveloped stand-alone solver function.

The visualizer class. The purpose of the visualizer class is to plot the ical solution stored in class Solver. We also add the possibility to plot the solution. Access to the problem and solver objects is required when plots so the constructor must hold references to these objects:

```
class Visualizer:
    def __init__(self, problem, solver):
        self.problem, self.solver = problem, solver

def plot(self, include_exact=True, plt=None):
    """
    Add solver.u curve to the plotting object plt,
    and include the exact solution if include_exact is True.
    This plot function can be called several times (if
        the solver object has computed new solutions).
    """
```

```
if plt is None:
    import scitools.std as plt # can use matplotlib as well
plt.plot(self.solver.t, self.solver.u, '--o')
plt.hold('on')
theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
name = theta2name.get(self.solver.theta, '')
legends = ['numerical %s' % name]
if include exact:
   t_e = linspace(0, self.problem.T, 1001)
   u_e = self.problem.exact_solution(t_e)
   plt.plot(t_e, u_e, 'b-')
    legends.append('exact')
plt.legend(legends)
plt.xlabel('t')
plt.ylabel('u')
plt.title('theta=%g, dt=%g' %
          (self.solver.theta, self.solver.dt))
plt.savefig('%s_%g.png' % (name, self.solver.dt))
return plt
```

The plt object in the plot method is worth a comment. The idea is that lot can add a numerical solution curve to an existing plot. Calling plot with plt object (which has to be a matplotlib.pyplot or scitools.std object this implementation), will just add the curve self.solver.u as a dashed ne with circles at the mesh points (leaving the color of the curve up to the lotting tool). This functionality allows plots with several solutions: just make loop where new data is set in the problem and/or solver classes, the solver's plve() method is called, and the most recent numerical solution is plotted by the plot(plt) method in the visualizer object Exercise 12 describes a problem exting where this functionality is explored.

Sombining the objects. Eventually we need to show how the classes Problem, olver, and Visualizer play together:

```
lef main():
   problem = Problem()
   solver = Solver(problem)
   viz = Visualizer(problem, solver)
   # Read input from the command line
   parser = problem.define_command_line_options()
   parser = solver. define_command_line_options(parser)
   args = parser.parse_args()
   problem.init_from_command_line(args)
   solver. init_from_command_line(args)
   # Solve and plot
   solver.solve()
   import matplotlib.pyplot as plt
   #import scitools.std as plt
   plt = viz.plot(plt=plt)
   E = solver.error()
   if E is not None:
       print 'Error: %.4E' % E
   plt.show()
```

The file ${\tt decay_class.py}^{38}$ constitutes a module with the three clasthe main function.

Test the understanding.

Implement the problem in Exercise 29 in terms of problem, solver visualizer classes. Equip the classes and their methods with doc st with tests. Also include nose tests.

3.7 Improving the problem and solver classes

The previous Problem and Solver classes containing parameters soon g repetitive code when the number of parameters increases. Much of this c be parameterized and be made more compact. For this purpose, we d collect all parameters in a dictionary, self.prms, with two associated dict self.types and self.help for holding associated object types and help Provided a problem, solver, or visualizer class defines these three diction the constructor, using default or user-supplied values of the parameters, create a super class Parameters with general code for defining comma options and reading them as well as methods for setting and getting a pa A Problem or Solver class will then inherit command-line functionality set/get methods from the Parameters class.

A generic class for parameters. A simplified version of the paramelooks as follows:

```
class Parameters:
    def set(self, **parameters):
        for name in parameters:
            self.prms[name] = parameters[name]
    def get(self, name):
        return self.prms[name]
    def define_command_line_options(self, parser=None):
        if parser is None:
           import argparse
           parser = argparse.ArgumentParser()
        for name in self.prms:
            tp = self.types[name] if name in self.types else str
           help = self.help[name] if name in self.help else None
           parser.add argument(
                '--' + name, default=self.get(name), metavar=name
                type=tp, help=help)
        return parser
    def init_from_command_line(self, args):
        for name in self.prms:
            self.prms[name] = getattr(args, name)
```

 $^{^{38} \}verb|http://tinyurl.com/jvzzcfn/decay/decay_class.py|$

he file class_decay_oo.py³⁹ contains a slightly more advanced version of class arameters where we in the set and get functions test for valid parameter names nd raise exceptions with informative messages if any name is not registered.

'he problem class. A class Problem for the problem u' = -au, u(0) = I, $\in (0,T]$, with parameters input a, I, and T can now be coded as

'he solver class. Also the solver class is derived from class Parameters nd works with the prms, types, and help dictionaries in the same way as lass Problem. Otherwise, the code is very similar to class Solver in the ecay_class.py file:

```
class Solver(Parameters):
   def __init__(self, problem):
       self.problem = problem
       self.prms = dict(dt=0.5, theta=0.5)
       self.types = dict(dt=float, theta=float)
       self.help = dict(dt='time step value',
                        theta='time discretization parameter')
   def solve(self):
       from decay mod import solver
       self.u, self.t = solver(
           self.problem.get('I'),
           self.problem.get('a'),
           self.problem.get('T'),
           self.get('dt'),
           self.get('theta'))
   def error(self):
       try:
           u_e = self.problem.exact_solution(self.t)
           e = u e - self.u
           E = np.sqrt(self.get('dt')*np.sum(e**2))
       except AttributeError:
           E = None
       return E
```

The visualizer class. Class Visualizer can be identical to the ondecay_class.py file since the class does not need any parameters. How few adjustments in the plot method is necessary since parameters are as, e.g., problem.get('T') rather than problem.T. The details are fithe file class_decay_oo.py.

Finally, we need a function that solves a real problem using the Problem, Solver, and Visualizer. This function can be just like main decay_class.py file.

The advantage with the Parameters class is that it scales to proble a large number of physical and numerical parameters: as long as the par are defined once via a dictionary, the compact code in class Paramethandle any collection of parameters of any size.

4 Performing scientific experiments

Goal.

This section explores the behavior of a numerical method for a differequation through computer experiments. In particular, it is shown scientific experiments can be set up and reported. We address the problem

$$u'(t) = -au(t), \quad u(0) = I, \quad t \in (0, T],$$

numerically discretized by the θ -rule:

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad u^0 = I.$$

Our aim is to plot u^0, u^1, \ldots, u^N together with the exact solution $u_e =$ for various choices of the parameters in this numerical problem: I, a and θ . We are especially interested in how the discrete solution com with the exact solution when the Δt parameter is varied and θ tak the three values corresponding to the Forward Euler, Backward Euler Crank-Nicolson schemes ($\theta = 0, 1, 0.5$, respectively).

4.1 Software

A verified implementation for computing the numerical solution u^n and it together with the exact solution u_e is found in the file decay_mod.py program admits command-line arguments to specify a series of Δt val will run a loop over these values and $\theta = 0, 0.5, 1$. We make a slight edit the plots are designed: the numerical solution is specified with line type (dashed red lines with dots at the mesh points), and the show() commemoved to avoid a lot of plot windows popping up on the computer screhardcopies of the plot are still stored in files via savefig). The slightly respectively.

³⁹http://tinyurl.com/jvzzcfn/decay/class_decay_oo.py

⁴⁰ http://tinyurl.com/jvzzcfn/decay/decay_mod.py

rogram has the name experiments/decay_mod.py⁴¹. All files associated with ne scientific investigation are collected in a subdirectory experiments.

Running the experiments is easy since the decay_mod.py program already as the loops over θ and Δt implemented. An experiment with $I=1,\,a=2,\,'=5,\,$ and dt=0.5,0.25,0.1,0.05 is run by

```
erminal> python decay_mod.py --I 1 --a 2 --makeplot \
    --T 5 --dt 0.5 0.25 0.1 0.05
```

.2 Combining plot files

he decay_mod.py program generates a lot of image files, e.g., FE_*.png, E_*.png, and CN_*.png. We want to combine all the FE_*.png files in a able fashion in one file, with two images in each row, starting with the largest t in the upper left corner and decreasing the value as we go to the right and own. This can be done using the montage⁴² program. The often occurring white reas around the plots can be cropped away by the convert -trim command. he remaining white can be made transparent for HTML pages with a non-white ackground by the command convert -transparent white.

Also plot files in the PDF format with names FE_*.pdf, BE_*.pdf, and N_*.pdf are generated and these should be combined using other tools: pdftk of combine individual plots into one file with one plot per page, and pdfnup of combine the pages into a table with multiple plots per page. The resulting nage often has some extra surrounding white space that can be removed by the dfcrop program. The code snippets below contain all details about the usage f montage, convert, pdftk, pdfnup, and pdfcrop.

Running manual commands is boring, and errors may easily sneak in. Both or automating manual work and documenting the operating system commands e actually issued in the experiment, we should write a *script* (little program). In alternative is to write the commands into an IPython notebook and use notebook as the script. A plain script as a standard Python program in a sparate text file will be used here.

Reproducible science.

A script that automates running our computer experiments will ensure that the experiments can easily be rerun by ourselves or others in the future, either to check the results or redo the experiments with other input data. Also, whatever we did to produce the results is documented in every detail in the script. Automating scripts are therefore essential to making our research reproducible, which is a fundamental principle in science.

The script takes a list of Δt values on the command line as input and takes three combined images, one for each θ value, displaying the quality of the umerical solution as Δt varies. For example,

Terminal> python decay_exper0.py 0.5 0.25 0.1 0.05

results in images FE.png, CN.png, BE.png, FE.pdf, CN.pdf, and BE.pc with four plots corresponding to the four Δt values. Each plot companumerical solution with the exact one. The latter image is shown in Fig.

Figure 10: Illustration of the Backward Euler method for four time step

Ideally, the script should be scalable in the sense that it works for any of Δt values, which is the case for this particular implementation:

```
import os, sys

def run_experiments(I=1, a=2, T=5):
    # The command line must contain dt values
    if len(sys.argv) > 1:
        dt_values = [float(arg) for arg in sys.argv[1:]]
    else:
        print 'Usage: %s dt1 dt2 dt3 ...' % sys.argv[0]
        sys.exit(1) # abort
```

⁴¹http://tinyurl.com/jvzzcfn/decay/experiments/decay_mod.py

⁴²http://www.imagemagick.org/script/montage.php

```
# Run module file as a stand-alone application
    cmd = 'python decay_mod.py --I %g --a %g --makeplot --T %g' % \
    dt_values_str = ' '.join([str(v) for v in dt_values])
    cmd += ' --dt %s' % dt values str
    print cmd
    failure = os.system(cmd)
    if failure:
        print 'Command failed:', cmd; sys.exit(1)
    # Combine images into rows with 2 plots in each row
    image commands = []
    for method in 'BE', 'CN', 'FE':
        pdf_files = ' '.join(['%s_%g.pdf' % (method, dt)
                             for dt in dt_values])
        png_files = ' '.join(['%s_%g.png' % (method, dt)
                             for dt in dt values])
        image_commands.append(
            'montage -background white -geometry 100%' +
            '-tile 2x %s %s.png' % (png_files, method))
        image_commands.append(
            'convert -trim %s.png %s.png' % (method, method))
        image_commands.append(
            convert %s.png -transparent white %s.png' %
            (method, method))
        image_commands.append(
            'pdftk %s output tmp.pdf' % pdf_files)
        num_rows = int(round(len(dt_values)/2.0))
        image_commands.append(
            'pdfnup --nup 2x%d tmp.pdf' % num_rows)
        image_commands.append(
            'pdfcrop tmp-nup.pdf %s.pdf' % method)
    for cmd in image_commands:
        print cmd
        failure = os.system(cmd)
        if failure:
            print 'Command failed:', cmd; sys.exit(1)
    # Remove the files generated above and by decay_mod.py
    from glob import glob
    filenames = glob('*_*.png') + glob('*_*.pdf') + \
                glob('*_*.eps') + glob('tmp*.pdf')
    for filename in filenames:
        os.remove(filename)
if __name__ == '__main__':
    run_experiments()
```

his file is available as experiments/decay_exper0.py⁴³.

We may comment upon many useful constructs in this script:

- [float(arg) for arg in sys.argv[1:]] builds a list of real numbers from all the command-line arguments.
- failure = os.system(cmd) runs an operating system command, e.g., another program. The execution is successful only if failure is zero.

- Unsuccessful execution usually makes it meaningless to continue gram, and therefore we abort the program with sys.exit(1). As ment different from 0 signifies to the computer's operating system to program stopped with a failure.
- ['%s_%s.png' % (method, dt) for dt in dt_values] builds filenames from a list of numbers (dt_values).
- All montage, convert, pdftk, pdfnup, and pdfcrop commands for composite figures are stored in a list and later executed in a loop.
- glob('*_*.png') returns a list of the names of all files in the directory where the filename matches the Unix wildcard notation⁴⁴ * (meaning any text, underscore, any text, and then .png).
- os.remove(filename) removes the file with name filename.

4.3 Interpreting output from other programs

Programs that run other programs, like decay_exper0.py does, will oft to interpret output from those programs. Let us demonstrate how this in Python by extracting the relations between θ , Δt , and the error E as to the terminal window by the decay_mod.py program, when being exed decay_exper0.py. We will

- read the output from the decay_mod.py program
- interpret this output and store the E values in arrays for each θ v
- plot E versus Δt , for each θ , in a log-log plot

The simple os.system(cmd) call does not allow us to read the outprunning cmd. Instead we need to invoke a bit more involved procedure:

```
from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:
    print 'Command failed:', cmd; sys.exit(1)
```

The command stored in cmd is run and all text that is written to the soutput and the standard error is available in the string output. Or is words, the text in output is what appeared in the terminal window while cmd.

Our next task is to run through the output string, line by line, an current line prints θ , Δt , and E, we split the line into these three pie

⁴³http://tinyurl.com/jvzzcfn/decay/experiments/decay_exper0.py

⁴⁴http://en.wikipedia.org/wiki/Glob_(programming)

fore the data. The chosen storage structure is a dictionary errors with keys to hold the Δt values in a list, and three θ keys to hold the corresponding E alues in a list. The relevant code lines are

ote that we do not bother to store the Δt values as we read them from output, ecause we already have these values in the dt_values list.

We are now ready to plot E versus Δt for $\theta = 0, 0.5, 1$:

```
import matplotlib.pyplot as plt
ilt.loglog(errors['dt'], errors[0], 'ro-')
ilt.hold('on')
ilt.loglog(errors['dt'], errors[0.5], 'b+-')
ilt.loglog(errors['dt'], errors[1], 'gx-')
ilt.legend(['FE', 'CN', 'BE'], loc='upper left')
ilt.xlabel('log(time step)')
ilt.ylabel('log(error)')
ilt.title('Error vs time step')
ilt.savefig('error.png')
ilt.savefig('error.pdf')
```

lots occasionally need some manual adjustments. Here, the axis of the log-log lot look nicer if we adapt them strictly to the data, see Figure 11. To this end, e need to compute $\min E$ and $\max E$, and later specify the extent of the axes:

```
# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:
    E_min = min(E_min, min(errors[theta]))
    E_max = max(E_max, max(errors[theta]))

plt.loglog(errors['dt'], errors[0], 'ro-')
...
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
...
```

The complete program, incorporating the code snippets above, is found in xperiments/decay_exper1.py⁴⁵. This example can hopefully act as template or numerous other occasions where one needs to run experiments, extract data om the output of programs, make plots, and combine several plots in a figure le. The decay_exper1.py program is organized as a module, and other files an then easily extend the functionality, as illustrated in the next section.

Figure 11: Default plot (left) and manually adjusted axes (right)

4.4 Making a report

The results of running computer experiments are best documented in report containing the problem to be solved, key code segments, and tl from a series of experiments. At least the part of the report contain plots should be automatically generated by the script that performs the experiments, because in that script we know exactly which input data the used to generate a specific plot, thereby ensuring that each figure is connected the right data. Take a look at an example at http://tinyurl.com/kiwriting_reports//sphinx-cloud/ to see what we have in mind.

Plain HTML. Scientific reports can be written in a variety of format we begin with the HTML⁴⁶ format which allows efficient viewing of experiments in any web browser. The program <code>decay_exper1_html.py decay_exper1.py</code> to perform the experiments and then runs statements ating an HTML file with a summary, a section on the mathematical prosection on the numerical method, a section on the solver function imple the method, and a section with subsections containing figures that sl results of experiments where Δt is varied for $\theta = 0, 0.5, 1$. The mentioned file contains all the details for writing this HTML report⁴⁸. You can view port on httml. html. html.

HTML with MathJax. Scientific reports usually need mathemat mulas and hence mathematical typesetting. In plain HTML, as used decay_exper1_html.py file, we have to use just the keyboard chara write mathematics. However, there is an extension to HTML, called Ma which allows formulas and equations to be typeset with LATEX syntax an

⁴⁵http://tinyurl.com/jvzzcfn/decay/experiments/decay_exper1.py

⁴⁶http://en.wikipedia.org/wiki/HTML

⁴⁷http://tinyurl.com/jvzzcfn/decay/experiments/decay_exper1_html.py

⁴⁸http://tinyurl.com/k3sdbuv/writing_reports//_static/report_html.html.ht

⁴⁹http://www.mathjax.org/

endered in web browsers, see Figure 12. A relatively small subset of LATEX avironments is supported, but the syntax for formulas is quite rich. Inline rmulas are look like \(u'=-au \) while equations are surrounded by \$\$ gns. Inside such signs, one can use \[u'=-au \] for unnumbered equations, r \begin{equation} and \end{equation} surrounding u'=-au for numbered quations, or \begin{align} and \end{align} for multiple aligned equations. ou need to be familiar with mathematical typesetting in LaTeX⁵⁰.

The file <code>decay_exper1_mathjax.py</code> contains all the details for turning the revious plain HTML report into web pages with nicely typeset mathematics. he corresponding HTML code 52 be studied to see all details of the mathematical resetting.

```
We address the initial-value problem
                                                                   u'(t) = -au(t), \quad t \in (0,T],
where a, I, and T are prescribed parameters, and u(t) is the unknown function to be estimated. This mathematical model is relevant for physical
phenomena featuring exponential decay in time.
Numerical solution method
We introduce a mesh in time with points 0 = t_0 < t_1 \cdots < t_N = T. For simplicity, we assume constant spacing \Delta t between the mesh points:
\Delta t = t_n - t_{n-1}, n = 1, \dots, N. Let u^n be the numerical approximation to the exact solution at t_n. The \theta-rule is used to solve (1) numerically
                                                                   u^{n+1} = rac{1-(1-	heta)a\Delta t}{1+	heta a\Delta t}\,u^n,
for n=0,1,\ldots,N-1 . This scheme corresponds to
     • The Forward Euler scheme when \theta = 0
    • The Backward Euler scheme when \theta = 1
    ullet The Crank-Nicolson scheme when 	heta=1/2
Implementation
The numerical method is implemented in a Python function:
def theta_rule(I, a, T, dt, theta):
    """Solve u'=-a'u, u(0)=I, for t in (0,T] with steps of dt."""
N = int(round(T/float(dt))) # no of intervals
     u = zeros(N+1)
t = linspace(0, T, N+1)
```

Figure 12: Report in HTML format with MathJax.

TEX. The de facto language for mathematical typesetting and scientific port writing is LaTeX⁵³. A number of very sophisticated packages have been dded to the language over a period of three decades, allowing very fine-tuned yout and typesetting. For output in the PDF format⁵⁴, see Figure 13 for n example, LaTeX is the definite choice when it comes to quality. The LaTeX inguage used to write the reports has typically a lot of commands involving ackslashes and braces⁵⁵. For output on the web, using HTML (and not the PDF irectly in the browser window), LaTeX struggles with delivering high quality pesetting. Other tools, especially Sphinx, give better results and can also

```
^{50} http://en.wikibooks.org/wiki/LaTeX/Mathematics \\ ^{51} http://tinyurl.com/jvzzcfn/decay/experiments/decay_exper1_html.py \\ ^{52} http://tinyurl.com/k3sdbuv/writing_reports//_static/report_mathjax.html.html \\ ^{53} http://en.wikipedia.org/wiki/LaTeX \\ ^{54} http://tinyurl.com/k3sdbuv/writing_reports//_static/report.pdf \\ ^{55} http://tinyurl.com/k3sdbuv/writing_reports//_static/report.tex.html \\ \\
```

produce nice-looking PDFs. The file decay_exper1_latex.py shows generate the LATEX source from a program.

3 Implementation

The numerical method is implemented in a Python function:

```
def theta_rule(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    N = int(round(T/float(dt)))  # no of intervals
    u = zeros(N+1)
    t = linspace(0, T, N+1)

u[0] = I
    for n in range(0, N):
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
```

4 Numerical experiments

We define a set of numerical experiments where I, a, and T are fixed, while Δt and θ are varied. In particular, I=1, a=2, $\Delta t=1.25, 0.75, 0.5, 0.1$.

Figure 13: Report in PDF format generated from LATEX source.

Sphinx. Sphinx⁵⁶ is a typesetting language with similarities to HTl L^ATEX, but with much less tagging. It has recently become very pop software documentation and mathematical reports. Sphinx can utilize L^a mathematical formulas and equations (via MathJax or PNG images). I nately, the subset of L^aTEX mathematics supported is less than in full M (in particular, numbering of multiple equations in an align type enviror not supported). The Sphinx syntax⁵⁷ is an extension of the reStructu language. An attractive feature of Sphinx is its rich support for fancy laweb pages⁵⁸. In particular, Sphinx can easily be combined with various themes that give a certain look and feel to the web site and that offers contents, navigation, and search facilities, see Figure 14.

Markdown. A recently popular format for easy writing of web pages down⁵⁹. Text is written very much like one would do in email, using space special characters to naturally format the code instead of heavily tage text as in LATEX and HTML. With the tool Pandoc⁶⁰ one can go from Mato a variety of formats. HTML is a common output format, but LATEX XML, OpenOffice, MediaWiki, and MS Word are some other possibiliti

Wiki formats. A range of wiki formats are popular for creating n the web, especially documents which allow groups of people to edit ε

⁵⁶http://sphinx.pocoo.org/

⁵⁷http://tinyurl.com/k3sdbuv/writing_reports//_static/report_sphinx.rst.l

⁵⁸http://tinyurl.com/k3sdbuv/writing_reports//_static/sphinx-cloud/index

⁵⁹http://daringfireball.net/projects/markdown/

⁶⁰http://johnmacfarlane.net/pandoc/

Figure 14: Report in HTML format generated from Sphinx source.

ontent. Apart from MediaWiki⁶¹ (the wiki format used for Wikipedia), wiki rmats have no support for mathematical typesetting and also limited tools for isplaying computer code in nice ways. Wiki formats are therefore less suitable or scientific reports compared to the other formats mentioned here.

Doconce. Since it is difficult to choose the right tool or format for writing a cientific report, it is advantageous to write the content in a format that easily anslates to LATEX, HTML, Sphinx, Markdown, and various wikis. Doconce⁶² is ich a tool. It is similar to Pandoc, but offers some special convenient features or writing about mathematics and programming. The tagging is modest⁶³, Dimewhere between LATEX and Markdown. The program decay_exper_do.py emonstrates how to generate (and write) Doconce code for a report.

Vorked example. The HTML, IATEX (PDF), Sphinx, and Doconce formats or the scientific report whose content is outlined above, are exemplified with purce codes and results at the web pages associated with this teaching material: ttp://tinyurl.com/k3sdbuv/writing_reports/.

.5 Publishing a complete project

report documenting scientific investigations should be accompanied by all the oftware and data used for the investigations so that others have a possibility to edo the work and assess the qualify of the results. This possibility is important or reproducible research and hence reaching reliable scientific conclusions.

One way of documenting a complete project is to make a directory tree with ll relevant files. Preferably, the tree is published at some project hosting site like

Bitbucket, GitHub, or Googlecode 64 so that others can download it as a zipfile, or clone the files directly using a version control system like M or Git. For the investigations outlined in Section 4.4, we can create a d tree with files

```
setup.py
./src:
    decay_mod.py
./doc:
    ./src:
    decay_exper1_mathjax.py
    make_report.sh
    run.sh
    ./pub:
    report.html
```

The src directory holds source code (modules) to be reused in other paths setup.py builds and installs such software, the doc directory control documentation, with src for the source of the documentation and pub for made, published documentation. The run.sh file is a simple Bash scrip the python command we used to run decay_exper1_mathjax.py to get the experiments and the report.html file.

5 Exercises and Problems

Exercise 1: Derive schemes for Newton's law of cooli

Show in detail how we can apply the ideas of the Forward Euler, Ba Euler, Crank-Nicolson, and θ -rule discretizations to derive explicit comput formulas for new temperature values in Newton's law of cooling (see Section

$$\frac{dT}{dt} = -k(T - T_s), \quad T(0) = T_0.$$

Here, T is the temperature of the body, T_s is the temperature of the surror t is time, k is the heat transfer coefficient, and T_0 is the initial temperature body.

Filename: schemes_cooling.pdf.

Exercise 2: Implement schemes for Newton's law of co

Formulate a θ -rule for the three schemes in Exercise 1 such that you the three schemes from a single formula by varying the θ parameter. Im the θ scheme in a function cooling(T0, k, T_s, t_end, dt, thet where T0 is the initial temperature, k is the heat transfer coefficient, T_temperature of the surroundings, t_end is the end time of the simulation the time step, and theta corresponds to θ . The cooling function should the temperature as an array T of values at the mesh points and the time Construct verification examples to check that the implementation work

⁶¹http://www.mediawiki.org/wiki/MediaWiki

⁶²https://github.com/hplgit/doconce

⁶³http://tinvurl.com/k3sdbuy/writing_reports//_static/report.do.txt.html

⁶⁴http://hplgit.github.com/teamods/bitgit/html/

lint. For verification, try to find an exact solution of the discrete equations. trick is to introduce $u = T - T_s$, observe that $u^n = (T_0 - T_s)A^n$ for some mplification factor A, and then express this formula in terms of T^n .

Filename: cooling.py.

Exercise 3: Find time of murder from body temperature

detective measures the temperature of a dead body to be 26.7 C at 2 pm. One our later the temperature is 25.8 C. The question is when death occurred.

Assume that Newton's law of cooling (120) is an appropriate mathematical nodel for the evolution of the temperature in the body. First, determine k (120) by formulating a Forward Euler approximation with one time steep om time 2 am to time 3 am, where knowing the two temperatures allows for nding k. Assume the temperature in the air to be 20 C. Thereafter, simulate ne temperature evolution from the time of murder, taken as t=0, when t=37 C, until the temperature reaches 25.8 C. The corresponding time allows or answering when death occurred. Filename: detective.py.

exercise 4: Experiment with integer division

xplain what happens in the following computations, where some are mathenatically unexpected:

```
>>> dt = 3

>>> T = 8

>>> Nt = T/dt

>>> Nt

2

>>> theta = 1; a = 1

>>> (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
```

ilename: pyproblems.txt.

exercise 5: Experiment with wrong computations

onsider the solver function in the decay_v1.py⁶⁵ file and the following call:

```
1, t = solver(I=1, a=1, T=7, dt=2, theta=1)
```

he output becomes

```
t= 0.000 u=1
t= 2.000 u=0
t= 4.000 u=0
t= 6.000 u=0
```

rint out the result of all intermediate computations and use type(v) to see the bject type of the result stored in v. Examine the intermediate calculations and splain why u is wrong and why we compute up to t=6 only even though we becified T=7. Filename: $decay_v1_err.py$.

Exercise 6: Plot the error function

Solve the problem u'=-au, u(0)=I, using the Forward Euler, Backwar and Crank-Nicolson schemes. For each scheme, plot the error function $u_{\rm e}(t_n)-u^n$ for Δt , $\frac{1}{4}\Delta t$, and $\frac{1}{8}\Delta t$, where $u_{\rm e}$ is the exact solution of the O u^n is the numerical solution at mesh point t_n . Filename: decay_plot_er

Exercise 7: Compare methods for a given time mesh

Make a program that imports the solver function from the decay_mod and offers a function compare(dt, I, a) for comparing, in a plot, the recorresponding to $\theta = 0, 0.5, 1$ and the exact solution. This plot shows the soft the methods for a given time mesh. Read input data for the problet the command line using appropriate functions in the decay_mod mod--dt option for giving several time step values can be reused: just use time step value for the computations). Filename: decay_compare_thet

Exercise 8: Change formatting of numbers and debu

The decay_memsave.py⁶⁶ program writes the time values and solution v a file which looks like

Modify the file output such that it looks like

```
0.000 1.00000
0.200 0.83333
0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908
```

Run the modified program

```
Terminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot
```

The program just prints Bug in the implementation! and does not so plot. What went wrong? Filename: decay_memsave_v2.py.

Problem 9: Write a doctest

Type in the following program and equip the roots function with a do

⁶⁵http://tinyurl.com/jvzzcfn/decay/decay_v1.py

⁶⁶http://tinyurl.com/jvzzcfn/decay/decay_memsave.py

```
import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
    """
    Return the roots of the quadratic polynomial
    p(x) = a*x**2 + b*x + c.

    The roots are real or complex objects.
    """
    q = b**2 - 4*a*c
    r1 = (-b + sqrt(q))/(2*a)
    r2 = (-b - sqrt(q))/(2*a)
    return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)</pre>
```

Iake sure to test both real and complex roots. Write out numbers with 14 digits r less. Filename: doctest_roots.py.

'roblem 10: Write a nose test

lake a nose test for the roots function in Problem 9. Filename: test_roots.py.

'roblem 11: Make a module

et

$$q(t) = \frac{RAe^{at}}{R + A(e^{at} - 1)}.$$

lake a Python module q_module containing two functions q(t) and dqdt(t) for emputing q(t) and q'(t), respectively. Perform a from numpy import * in this include. Import q and dqdt in another file using the "star import" construction rom q_module import *. All objects available in this file is given by dir(). rint dir() and len(dir()). Then change the import of numpy in q_module.py import numpy as np. What is the effect of this import on the number of bjects in dir() in a file that does from q_module import *?

Filename: q_module.py.

Exercise 12: Make use of a class implementation

/e want to solve the exponential decay problem u'=-au, u(0)=I, for several t values and $\theta=0,0.5,1$. For each Δt value, we want to make a plot where the ree solutions corresponding to $\theta=0,0.5,1$ appear along with the exact solution. /rite a function experiment to accomplish this. The function should import the asses Problem, Solver, and Visualizer from the decay_class 67 module and take use of these. A new command-line option $--dt_values$ must be added to llow the user to specify the Δt values on the command line (the options $--dt_values$ must be added to --theta implemented by the decay_class module have then no effect when mining the experiment function). Note that the classes in the decay_class to dule should not be modified. Filename: decay_class_exper.py.

Exercise 13: Generalize a class implementation

Consider the file decay_class.py 68 where the exponential decay proble -au, u(0) = I, is implemented via the classes Problem, Solver, and Visu Extend the classes to handle the more general problem

$$u'(t) = -a(t)u(t) + b(t), \quad u(0) = I, \ t \in (0, T],$$

using the θ -rule for discretization.

In the case with arbitrary functions a(t) and b(t) the problem cla longer guaranteed to provide an exact solution. Let the exact_solutions Problem return None if the exact solution for the particular problem available. Modify classes Solver and Visualizer accordingly.

Add test functions $test_*()$ for the nose testing tool in the modu add a demo example where the environment suddenly changes (modele abrupt change in the decay rate a):

$$a(t) = \begin{cases} 1, & 0 \le t \le t_p, \\ k, & t > t_p, \end{cases}$$

where t_p is the point of time the environment changes. Take $t_p = \max$ plots that illustrate the effect of having $k \gg 1$ and $k \ll 1$. Fidecay_class2.py.

Exercise 14: Generalize an advanced class implement

Solve Exercise 13 by utilizing the class implementations in decay_class_of Filename: decay_class3.py.

6 Analysis of finite difference equations

We address the ODE for exponential decay,

$$u'(t) = -au(t), \quad u(0) = I,$$

where a and I are given constants. This problem is solved by the θ -ru difference scheme, resulting in the recursive equations

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n$$

for the numerical solution u^{n+1} , which approximates the exact solution u_e point t_{n+1} . For constant mesh spacing, which we assume here, $t_{n+1} = (n - t_{n+1})$

Discouraging numerical solutions. Choosing I=1, a=2, and a experiments with $\theta=1,0.5,0$ for $\Delta t=1.25,0.75,0.5,0.1$, gives the refigures 15, 16, and 17.

The characteristics of the displayed curves can be summarized as fo

⁶⁷http://tinyurl.com/jvzzcfn/decay/decay_class.py

⁶⁸http://tinyurl.com/jvzzcfn/decay/decay_class.py

⁶⁹http://tinyurl.com/jvzzcfn/decay/decay_class_oo.py

Figure 15: Backward Euler.

- The Backward Euler scheme always gives a monotone solution, lying above the exact curve.
- The Crank-Nicolson scheme gives the most accurate results, but for $\Delta t = 1.25$ the solution oscillates.
- The Forward Euler scheme gives a growing, oscillating solution for $\Delta t = 1.25$; a decaying, oscillating solution for $\Delta t = 0.75$; a strange solution $u^n = 0$ for $n \ge 1$ when $\Delta t = 0.5$; and a solution seemingly as accurate as the one by the Backward Euler scheme for $\Delta t = 0.1$, but the curve lies below the exact solution.

ince the exact solution of our model problem is a monotone function, $u(t) = e^{-at}$, some of these qualitatively wrong results are indeed alarming!

Goal.

We ask the question

• Under what circumstances, i.e., values of the input data I, a, and Δt will the Forward Euler and Crank-Nicolson schemes result in undesired oscillatory solutions?

Figure 16: Crank-Nicolson.

The question will be investigated both by numerical experiments at precise mathematical theory. The latter will help establish general c on Δt for avoiding non-physical oscillatory or growing solutions.

Another question to be raised is

• How does Δt impact the error in the numerical solution?

For our simple model problem we can answer this question very prebut we will also look at simplified formulas for small Δt and touch important concepts such as *convergence rate* and *the order of a sc* Other fundamental concepts mentioned are stability, consistency, and vergence.

6.1 Experimental investigation of oscillatory solution

To address the first question above, we may set up an experiment we loop over values of I, a, and Δt . For each experiment, we flag the soli oscillatory if

$$u^n > u^{n-1}.$$

Figure 17: Forward Euler.

or some value of n, since we expect u^n to decay with n, but oscillations make u icrease over a time step. We will quickly see that oscillations are independent f I, but do depend on a and Δt . Therefore, we introduce a two-dimensional inction $B(a, \Delta t)$ which is 1 if oscillations occur and 0 otherwise. We can isualize B as a contour plot (lines for which B = const). The contour B = 0.5 presponds to the borderline between oscillatory regions with B = 1 and ionotone regions with B = 0 in the $a, \Delta t$ plane.

The B function is defined at discrete a and Δt values. Say we have given P a alues, a_0,\ldots,a_{P-1} , and Q Δt values, $\Delta t_0,\ldots,\Delta t_{Q-1}$. These a_i and Δt_j values, $=0,\ldots,P-1,\ j=0,\ldots,Q-1$, form a rectangular mesh of $P\times Q$ points in the lane. At each point $(a_i,\Delta t_j)$, we associate the corresponding value of $B(a_i,\Delta t_j)$, enoted B_{ij} . The B_{ij} values are naturally stored in a two-dimensional array. We an thereafter create a plot of the contour line $B_{ij}=0.5$ dividing the oscillatory nd monotone regions. The file decay_osc_regions.py⁷⁰ osc_regions stands or "oscillatory regions") contains all nuts and bolts to produce the B=0.5 line 1 Figures 18 and 19. The oscillatory region is above this line.

```
from decay_mod import solver
import numpy as np
import scitools.std as st
def non_physical_behavior(I, a, T, dt, theta):
   Given lists/arrays a and dt, and numbers I, dt, and theta,
   make a two-dimensional contour line B=0.5, where B=1>0.5
   means oscillatory (unstable) solution, and B=0<0.5 means
   monotone solution of u'=-au.
   a = np.asarray(a); dt = np.asarray(dt) # must be arrays
   B = np.zeros((len(a), len(dt)))
                                            # results
   for i in range(len(a)):
        for j in range(len(dt)):
            u, t = solver(I, a[i], T, dt[j], theta)
            # Does u have the right monotone decay properties?
            correct_qualitative_behavior = True
            for n in range(1, len(u)):
               if u[n] > u[n-1]: # Not decaying?
                    correct_qualitative_behavior = False
                    break # Jump out of loop
            B[i,j] = float(correct_qualitative_behavior)
   a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
   st.contour(a_, dt_, B, 1)
    st.grid('on')
    st.title('theta=%g' % theta)
    st.xlabel('a'); st.ylabel('dt')
    st.savefig('osc_region_theta_%s.png' % theta)
    st.savefig('osc_region_theta_%s.pdf' % theta)
non_physical_behavior(
   Ī=1,
   a=np.linspace(0.01, 4, 22),
   dt=np.linspace(0.01, 4, 22),
    theta=0.5)
```

By looking at the curves in the figures one may guess that $a\Delta t$ must than a critical limit to avoid the undesired oscillations. This limit seen about 2 for Crank-Nicolson and 1 for Forward Euler. We shall now e a precise mathematical analysis of the discrete model that can expl observations in our numerical experiments.

6.2 Exact numerical solution

Starting with $u^0 = I$, the simple recursion (52) can be applied repeatimes, with the result that

$$u^n = IA^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Solving difference equations.

Difference equations where all terms are linear in u^{n+1} , u^n , and n u^{n-1} , u^{n-2} , etc., are called *homogeneous*, *linear* difference equations

⁷⁰http://tinyurl.com/jvzzcfn/decay/decay_osc_regions.py

igure 18: Forward Euler scheme: oscillatory solutions occur for points above ne curve.

their solutions are generally of the form $u^n = A^n$. Inserting this expression and dividing by A^{n+1} gives a polynomial equation in A. In the present case we get

$$A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}.$$

This is a solution technique of wider applicability than repeated use of the recursion (52).

Regardless of the solution approach, we have obtained a formula for u^n . This rmula can explain everything what we see in the figures above, but it also ives us a more general insight into accuracy and stability properties of the three chemes.

.3 Stability

ince u^n is a factor A raised to an integer power n, we realize that A < 0 will n odd powers imply $u^n < 0$ and for even power result in $u^n > 0$. That is, the plution oscillates between the mesh points. We have oscillations due to A < 0 hen

$$(1 - \theta)a\Delta t > 1. (54)$$

Figure 19: Crank-Nicolson scheme: oscillatory solutions occur for point the curve.

Since A>0 is a requirement for having a numerical solution with the basic property (monotonicity) as the exact solution, we may say that A stability criterion. Expressed in terms of Δt the stability criterion read

$$\Delta t < \frac{1}{(1-\theta)a} \, .$$

The Backward Euler scheme is always stable since A<0 is impose $\theta=1$, while non-oscillating solutions for Forward Euler and Crank-N demand $\Delta t \leq 1/a$ and $\Delta t \leq 2/a$, respectively. The relation between Δ look reasonable: a smaller a means faster decay and hence a need for time steps.

Looking at Figure 17, we see that with $a\Delta t = 2\cdot 1.25 = 2.5$, A = -1 the solution $u^n = (-1.5)^n$ oscillates and grows. With $a\Delta t = 2\cdot 0.7$; A = -0.5, $u^n = (-0.5)^n$ decays but oscillates. The peculiar case Δ where the Forward Euler scheme produces a solution that is stuck on th corresponds to A = 0 and therefore $u^0 = I = 1$ and $u^n = 0$ for $n \ge 1$ decaying oscillations in the Crank-Nicolson scheme for $\Delta t = 1.25$ ar explained by the fact that A = -0.25.

The factor A is called the *amplification factor* since the solution at a n level is A times the solution at the previous time level. For a decay pro must obviously have $|A| \leq 1$, which is fulfilled for all Δt if $\theta \geq 1/2$. Arl large values of u can be generated when |A| > 1 and n is large enough

umerical solution is in such cases totally irrelevant to an ODE modeling decay rocesses! To avoid this situation, we must for $\theta < 1/2$ have

$$\Delta t \le \frac{2}{(1 - 2\theta)a},\tag{56}$$

hich means $\Delta t < 2/a$ for the Forward Euler scheme.

Stability properties.

We may summarize the stability investigations as follows:

- 1. The Forward Euler method is a conditionally stable scheme because it requires $\Delta t < 2/a$ for avoiding growing solutions and $\Delta t < 1/a$ for avoiding oscillatory solutions.
- 2. The Crank-Nicolson is unconditionally stable with respect to growing solutions, while it is conditionally stable with the criterion $\Delta t < 2/a$ for avoiding oscillatory solutions.
- 3. The Backward Euler method is unconditionally stable with respect to growing and oscillatory solutions any Δt will work.

Much literature on ODEs speaks about L-stable and A-stable methods. In our case A-stable methods ensures non-growing solutions, while L-stable methods also avoids oscillatory solutions.

.4 Comparing amplification factors

fter establishing how A impacts the qualitative features of the solution, we shall ow look more into how well the numerical amplification factor approximates 100 exact one. The exact solution reads $u(t) = Ie^{-at}$, which can be rewritten as

$$u_{\mathbf{e}}(t_n) = Ie^{-an\Delta t} = I(e^{-a\Delta t})^n.$$
(57)

rom this formula we see that the exact amplification factor is

$$A_{\rm e} = e^{-a\Delta t} \,. \tag{58}$$

We realize that the exact and numerical amplification factors depend on a and t through the product $a\Delta t$. Therefore, it is convenient to introduce a symbol or this product, $p=a\Delta t$, and view A and $A_{\rm e}$ as functions of p. Figure 20 shows nese functions. Crank-Nicolson is clearly closest to the exact amplification actor, but that method has the unfortunate oscillatory behavior when p>2.

.5 Series expansion of amplification factors

s an alternative to the visual understanding inherent in Figure 20, there is a rong tradition in numerical analysis to establish formulas for the approximation rors when the discretization parameter, here Δt , becomes small. In the present ase we let p be our small discretization parameter, and it makes sense to simplify

Figure 20: Comparison of amplification factors.

the expressions for A and $A_{\rm e}$ by using Taylor polynomials around p= Taylor polynomials are accurate for small p and greatly simplifies the con of the analytical expressions since we then can compare polynomials, term

Calculating the Taylor series for $A_{\rm e}$ is easily done by hand, but th versions of A for $\theta=0,1,\frac{1}{2}$ lead to more cumbersome calculations. No analytical computations can benefit greatly by symbolic computer algebra ware. The Python package sympy represents a powerful computer algebra not yet as sophisticated as the famous Maple and Mathematica syste free and very easy to integrate with our numerical computations in Pyt

When using sympy, it is convenient to enter the interactive Pytho where we can write expressions and statements and immediately see the Here is a simple example. We strongly recommend to use isympy (or i for such interactive sessions.

Let us illustrate sympy with a standard Python shell syntax (>>> procompute a Taylor polynomial approximation to e^{-p} :

```
>>> from sympy import *
>>> # Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + 0(p**6
```

ines with >>> represent input lines and lines without this prompt represents ne result of computations (note that isympy and ipython apply other prompts, ut in this text we always apply >>> for interactive Python computing). Apart om the order of the powers, the computed formula is easily recognized as the eginning of the Taylor series for e^{-p} .

Let us define the numerical amplification factor where p and θ enter the rmula as symbols:

```
>>> theta = Symbol('theta')
>>> A = (1-(1-theta)*p)/(1+theta*p)
```

o work with the factor for the Backward Euler scheme we can substitute the alue 1 for theta:

```
>>> A.subs(theta, 1)
L/(1 + p)
```

imilarly, we can replace theta by 1/2 for Crank-Nicolson, preferably using an eact rational representation of 1/2 in sympy:

```
>>> half = Rational(1,2)
>>> A.subs(theta, half)
L/(1 + (1/2)*p)*(1 - 1/2*p)
```

The Taylor series of the amplification factor for the Crank-Nicolson scheme an be computed as

```
>>> A.subs(theta, half).series(p, 0, 4)
l + (1/2)*p**2 - p - 1/4*p**3 + 0(p**4)
```

le are now in a position to compare Taylor series:

```
>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + 0(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + 0(p**4)
>>> CN
(1/12)*p**3 + 0(p**4)
```

rom these expressions we see that the error $A - A_e \sim \mathcal{O}(p^2)$ for the Forward nd Backward Euler schemes, while $A - A_e \sim \mathcal{O}(p^3)$ for the Crank-Nicolson theme. It is the *leading order term*, i.e., the term of the lowest order (polynomial egree), that is of interest, because as $p \to 0$, this term is (much) bigger than 10 higher-order terms (think of p = 0.01: p is a hundred times larger than p^2).

Now, a is a given parameter in the problem, while Δt is what we can vary. In therefore usually writes the error expressions in terms Δt . When then have

$$A - A_{e} = \begin{cases} \mathcal{O}(\Delta t^{2}), & \text{Forward and Backward Euler,} \\ \mathcal{O}(\Delta t^{3}), & \text{Crank-Nicolson} \end{cases}$$
 (59)

We say that the Crank-Nicolson scheme has an error in the ampli factor of order Δt^3 , while the two other schemes are of order Δt^2 in the quantity. What is the significance of the order expression? If we have the error in amplification factor at a time level will be reduced by a function of 4 in the Forward and Backward Euler schemes, and by a factor of 5 Crank-Nicolson scheme. That is, as we reduce Δt to obtain more a results, the Crank-Nicolson scheme reduces the error more efficiently the other schemes.

6.6 The fraction of numerical and exact amplification tors

An alternative comparison of the schemes is to look at the ratio $A/A_{\rm e}$ error $1-A/A_{\rm e}$ in this ratio:

```
>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + 0(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + 0(p**4)
>>> CN
(1/12)*p**3 + 0(p**4)
```

The leading-order terms have the same powers as in the analysis of A -

6.7 The global error at a point

The error in the amplification factor reflects the error when progressing time level t_n to t_{n-1} . To investigate the real error at a point, known global error, we look at $e^n = u^n - u_e(t_n)$ for some n and Taylor experimental expressions as functions of $p = a\Delta t$:

```
>>> n = Symbol('n')
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + 0(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + 0(p**4)
>>> CN
(1/12)*n*p**3 + 0(p**4)
```

For a fixed time t, the parameter n in these expressions increases as $p \to t = n\Delta t = \text{const}$ and hence n must increase like Δt^{-1} . With n substitutes by $t/\Delta t$ in the leading-order error terms, these become $\frac{1}{2}na^2\Delta t^2 = \frac{1}{2}tc$ the Forward and Backward Euler scheme, and $\frac{1}{12}na^3\Delta t^3 = \frac{1}{12}ta^3\Delta t^2$ Crank-Nicolson scheme. The global error is therefore of second order (in the latter scheme and of first order for the former schemes.

When the global error $e^n \to 0$ as $\Delta t \to 0$, we say that the scheme is *convergent*, means that the numerical solution approaches the exact solution as the mesh refined, and this is a much desired property of a numerical method.

.8 Integrated errors

is common to study the norm of the numerical error, as explained in detail in ection 2.4. The L^2 norm can be computed by treating e^n as a function of t in ympy and performing symbolic integration. For the Forward Euler scheme we ave

```
p, n, a, dt, t, T, theta = symbols('p n a dt t T 'theta')
l = (1-(1-theta)*p)/(1+theta*p)
l_e = exp(-p*n)
l_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
f Introduce t and dt instead of n and p
error = error.subs('n', 't/dt').subs(p, 'a*dt')
error = error.as_leading_term(dt) # study only the first term
error_L2 = sqrt(integrate(error**2, (t, 0, T)))
errint error_L2
```

he output reads

hich means that the L^2 error behaves like $a^2 \Delta t$.

Strictly speaking, the numerical error is only defined at the mesh points so it takes most sense to compute the ℓ^2 error

$$||e^n||_{\ell^2} = \sqrt{\Delta t \sum_{n=0}^{N_t} (u_e(t_n) - u^n)^2}.$$

/e have obtained an exact analytical expressions for the error at $t=t_n$, but ere we use the leading-order error term only since we are mostly interested in ow the error behaves as a polynomial in Δt , and then the leading order term ill dominate. For the Forward Euler scheme, $u_e(t_n) - u^n \approx \frac{1}{2}np^2$, and we have

$$||e^n||_{\ell^2}^2 = \Delta t \sum_{n=0}^{N_t} \frac{1}{4} n^2 p^4 = \Delta t \frac{1}{4} p^4 \sum_{n=0}^{N_t} n^2.$$

ow, $\sum_{n=0}^{N_t} n^2 \approx \frac{1}{3} N_t^3$. Using this approximation, setting $N_t = T/\Delta t$, and aking the square root gives the expression

$$||e^n||_{\ell^2} = \frac{1}{2} \sqrt{\frac{T^3}{3}} a^2 \Delta t.$$

alculations for the Backward Euler scheme are very similar and provide the ame result, while the Crank-Nicolson scheme leads to

$$||e^n||_{\ell^2} = \frac{1}{12} \sqrt{\frac{T^3}{3}} a^3 \Delta t^2.$$

Summary of errors.

Both the point-wise and the time-integrated true errors are of second in Δt for the Crank-Nicolson scheme and of first order in Δt for the For Euler and Backward Euler schemes.

6.9 Truncation error

The truncation error is a very frequently used error measure for finite di methods. It is defined as the error in the difference equation that aris inserting the exact solution. Contrary to many other error measures, etrue error $e^n = u_e(t_n) - u^n$, the truncation error is a quantity that i computable.

Let us illustrate the calculation of the truncation error for the Forwar scheme. We start with the difference equation on operator form,

$$[D_t u = -au]^n,$$

i.e.,

$$\frac{u^{n+1} - u^n}{\Delta t} = -au^n \,.$$

The idea is to see how well the exact solution $u_e(t)$ fulfills this equation $u_e(t)$ in general will not obey the discrete equation, error in the discrete e called a *residual*, denoted here by \mathbb{R}^n :

$$R^n = \frac{u_{\mathbf{e}}(t_{n+1}) - u_{\mathbf{e}}(t_n)}{\Delta t} + au_{\mathbf{e}}(t_n).$$

The residual is defined at each mesh point and is therefore a mesh functi a superscript n.

The interesting feature of \mathbb{R}^n is to see how it depends on the discreparameter Δt . The tool for reaching this goal is to Taylor expand u_e are point where the difference equation is supposed to hold, here $t=t_n$. Value

$$u_{e}(t_{n+1}) = u_{e}(t_{n}) + u'_{e}(t_{n})\Delta t + \frac{1}{2}u''_{e}(t_{n})\Delta t^{2} + \cdots$$

Inserting this Taylor series in (60) gives

$$R^{n} = u'_{e}(t_{n}) + \frac{1}{2}u''_{e}(t_{n})\Delta t + \ldots + au_{e}(t_{n}).$$

Now, u_e fulfills the ODE $u'_e = -au_e$ such that the first and last term and we have

$$R^n \approx \frac{1}{2} u_{\rm e}''(t_n) \Delta t$$
.

his \mathbb{R}^n is the truncation error, which for the Forward Euler is seen to be of rst order in Δt .

The above procedure can be repeated for the Backward Euler and the Crankicolson schemes. We start with the scheme in operator notation, write it out in etail, Taylor expand $u_{\rm e}$ around the point \tilde{t} at which the difference equation is efined, collect terms that correspond to the ODE (here $u_{\rm e}' + au_{\rm e}$), and identify remaining terms as the residual R, which is the truncation error. The ackward Euler scheme leads to

$$R^n \approx -\frac{1}{2}u_{\rm e}''(t_n)\Delta t,$$

hile the Crank-Nicolson scheme gives

$$R^{n+\frac{1}{2}} \approx \frac{1}{24} u_{\rm e}^{\prime\prime\prime}(t_{n+\frac{1}{2}}) \Delta t^2$$
.

The order r of a finite difference scheme is often defined through the leading $\operatorname{rm} \Delta t^r$ in the truncation error. The above expressions point out that the orward and Backward Euler schemes are of first order, while Crank-Nicolson of second order. We have looked at other error measures in other sections, ke the error in amplification factor and the error $e^n = u_e(t_n) - u^n$, and spressed these error measures in terms of Δt to see the order of the method ormally, calculating the truncation error is more straightforward than deriving the expressions for other error measures and therefore the easiest way to establish the order of a scheme.

.10 Consistency, stability, and convergence

hree fundamental concepts when solving differential equations by numerical aethods are consistency, stability, and convergence. We shall briefly touch these procepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through ne truncation error, goes to zero as $\Delta t \to 0$. Since the truncation error alls how well the exact solution fulfills the difference equation, and the exact plution fulfills the differential equation, consistency ensures that the difference quation approaches the differential equation in the limit. The expressions for the runcation errors in the previous section are all proportional to Δt or Δt^2 , hence new vanish as $\Delta t \to 0$, and all the schemes are consistent. Lack of consistency nplies that we actually solve a different differential equation in the limit $\Delta t \to 0$ and we aim at.

Stability means that the numerical solution exhibits the same qualitative roperties as the exact solution. This is obviously a feature we want the numerical plution to have. In the present exponential decay model, the exact solution is nontone and decaying. An increasing numerical solution is not in accordance ith the decaying nature of the exact solution and hence unstable. We can also

say that an oscillating numerical solution lacks the property of mono of the exact solution and is also unstable. We have seen that the Ba Euler scheme always leads to monotone and decaying solutions, regardles and is hence stable. The Forward Euler scheme can lead to increasing s and oscillating solutions if Δt is too large and is therefore unstable unle sufficiently small. The Crank-Nicolson can never lead to increasing solutions no problem to fulfill that stability property, but it can produce oscillations and is unstable in that sense, unless Δt is sufficiently small.

Convergence implies that the global (true) error mesh function $e^n = u^n \to 0$ as $\Delta t \to 0$. This is really what we want: the numerical solution close to the exact solution as we request by having a sufficiently fine m

Convergence is hard to establish theoretically, except in quite simple p like the present one. Stability and consistency are much easier to calcumajor breakthrough in the understanding of numerical methods for diffequations came in 1956 when Lax and Richtmeyer established equibetween convergence on one hand and consistency and stability on the ot Lax equivalence theorem⁷¹). In practice it meant that one can first estable a method is stable and consistent, and then it is automatically convergent is much harder to establish). The result holds for linear problems only the world of nonlinear differential equations the relations between constability, and convergence are much more complicated.

We have seen in the previous analysis that the Forward Euler, Ba Euler, and Crank-Nicolson schemes are convergent $(e^n \to 0)$, that t consistent $(R^n \to 0)$, and that they are stable under certain conditions size of Δt . We have also derived explicit mathematical expressions for truncation error, and the stability criteria.

7 Exercises

Exercise 15: Visualize the accuracy of finite difference e^{-at}

The purpose of this exercise is to visualize the accuracy of finite di approximations of the derivative of a given function. For any finite di approximation, take the Forward Euler difference as an example, and any function, take $u = e^{-at}$, we may introduce an error fraction specific

$$E = \frac{[D_t^+ u]^n}{u'(t_n)} = \frac{\exp\left(-a(t_n + \Delta t)\right) - \exp\left(-at_n\right)}{-a\exp\left(-at_n\right)} = -\frac{1}{a\Delta t} \left(\exp\left(-a\Delta t\right)\right)$$

and view E as a function of Δt . We expect that $\lim_{\Delta t \to 0} E = 1$, while deviate significantly from unit for large Δt . How the error depends on Δ visualized in a graph where we use a logarithmic scale on for Δt , so we can many orders of magnitude of that quantity. Here is a code segment createrary of 100 intervals, on the logarithmic scale, ranging from 10^{-6} to 1 a plotting E versus $p = a\Delta t$ with logarithmic scale on the Δt axis:

⁷¹http://en.wikipedia.org/wiki/Lax_equivalence_theorem

```
from numpy import logspace, exp
from matplotlib.pyplot import plot
p = logspace(-6, 1, 101)
r = -(exp(-p)-1)/p
semilog(p, y)
```

lustrate such errors for the finite difference operators $[D_t^+ u]^n$ (forward), $[D_t^- u]^n$ packward), and $[D_t u]^n$ (centered).

Perform a Taylor series expansions of the error fractions and find the leading rder r in the expressions of type $1+C\Delta t^r+\mathcal{O}(\Delta t^{r+1})$, where C is some constant. ilename: decay_plot_fd_exp_error.py.

Exercise 16: Explore the θ -rule for exponential growth

his exercise asks you to solve the ODE u' = -au with a < 0 such that the DE models exponential growth instead of exponential decay. A central theme to investigate numerical artifacts and non-physical solution behavior.

) Run experiments with θ and Δt to uncover numerical artifacts (the exact plution is a monotone, growing function). Use the insight to design a set of experiments that aims to demonstrate all types of numerical artifacts for different noices of Δt while a is fixed.

lint. Modify the decay_exper1.py code to suit your needs.

Filename: growth_exper.py.

) Write a scientific report about the findings.

lint. Use examples from Section 4.4 to see how scientific reports can be ritten.

Filenames: growth_exper.pdf, growth_exper.html.

) Plot the amplification factors for the various schemes together with the xact one for a<0 and use the plot to explain the observations made in the xperiments.

lint. Modify the decay_ampf_plot.py⁷² code.

Filename: growth_ampf.py.

Model extensions

is time to consider generalizations of the simple decay model u = -au and lso to look at additional numerical solution methods.

.1 Generalization: including a variable coefficient

1 the ODE for decay, u' = -au, we now consider the case where a depends on me:

$$u'(t) = -a(t)u(t), \quad t \in (0, T], \quad u(0) = I.$$
 (61)

A Forward Euler scheme consist of evaluating (61) at $t = t_n$ and approximating the derivative with a forward difference $[D_t^+ u]^n$:

$$\frac{u^{n+1} - u^n}{\Delta t} = -a(t_n)u^n.$$

The Backward Euler scheme becomes

$$\frac{u^n - u^{n-1}}{\Delta t} = -a(t_n)u^n.$$

The Crank-Nicolson method builds on sampling the ODE at $t_{n+\frac{1}{2}}$. evaluate a at $t_{n+\frac{1}{2}}$ and use an average for u at times t_n and t_{n+1} :

$$\frac{u^{n+1} - u^n}{\Delta t} = -a(t_{n+\frac{1}{2}}) \frac{1}{2} (u^n + u^{n+1}).$$

Alternatively, we can use an average for the product au:

$$\frac{u^{n+1} - u^n}{\Delta t} = -\frac{1}{2} (a(t_n)u^n + a(t_{n+1})u^{n+1}).$$

The θ -rule unifies the three mentioned schemes. One version is to evaluated at $t_{n+\theta}$,

$$\frac{u^{n+1} - u^n}{\Delta t} = -a((1 - \theta)t_n + \theta t_{n+1})((1 - \theta)u^n + \theta u^{n+1}).$$

Another possibility is to apply a weighted average for the product au,

$$\frac{u^{n+1} - u^n}{\Delta t} = -(1 - \theta)a(t_n)u^n - \theta a(t_{n+1})u^{n+1}.$$

With the finite difference operator notation the Forward Euler and Ba Euler schemes can be summarized as

$$[D_t^+ u = -au]^n,$$

$$[D_t^- u = -au]^n.$$

The Crank-Nicolson and θ schemes depend on whether we evaluate ϵ sample point for the ODE or if we use an average. The various versi written as

$$[D_t u = -a\overline{u}^t]^{n+\frac{1}{2}},$$

$$[D_t u = -\overline{a}\overline{u}^t]^{n+\frac{1}{2}},$$

$$[D_t u = -a\overline{u}^{t,\theta}]^{n+\theta},$$

$$[D_t u = -\overline{a}\overline{u}^{t,\theta}]^{n+\theta},$$

8.2 Generalization: including a source term

A further extension of the model ODE is to include a source term b(t):

$$u'(t) = -a(t)u(t) + b(t), \quad t \in (0, T], \quad u(0) = I.$$

⁷²http://tinyurl.com/jvzzcfn/decay/decay_ampf_plot.py

chemes. The time point where we sample the ODE determines where b(t) is valuated. For the Crank-Nicolson scheme and the θ -rule we have a choice of hether to evaluate a(t) and b(t) at the correct point or use an average. The nosen strategy becomes particularly clear if we write up the schemes in the perator notation:

$$[D_t^+ u = -au + b]^n, (75)$$

$$[D_t^- u = -au + b]^n, (76)$$

$$[D_t u = -a\overline{u}^t + b]^{n + \frac{1}{2}},\tag{77}$$

$$[D_t u = \overline{-au + b}^t]^{n + \frac{1}{2}},\tag{78}$$

$$[D_t u = -a\overline{u}^{t,\theta} + b]^{n+\theta}, \tag{79}$$

$$[D_t u = \overline{-au + b}^{t,\theta}]^{n+\theta}. \tag{80}$$

.3 Implementation of the generalized model problem

Deriving the \theta-rule formula. Writing out the θ -rule in (80), using (32) and (3), we get

$$\frac{u^{n+1} - u^n}{\Delta t} = \theta(-a^{n+1}u^{n+1} + b^{n+1}) + (1 - \theta)(-a^nu^n + b^n), \tag{81}$$

here a^n means evaluating a at $t = t_n$ and similar for a^{n+1} , b^n , and b^{n+1} . We olve for u^{n+1} :

$$u^{n+1} = ((1 - \Delta t(1 - \theta)a^n)u^n + \Delta t(\theta b^{n+1} + (1 - \theta)b^n))(1 + \Delta t\theta a^{n+1})^{-1}.$$
(82)

'he Python code. Here is a suitable implementation of (81) where a(t) and (t) are given as Python functions:

```
lef solver(I, a, b, T, dt, theta):
   Solve u'=-a(t)*u + b(t), u(0)=I,
   for t in (0,T] with steps of dt.
   a and b are Python functions of t.
   dt = float(dt)
                               # avoid integer division
   Nt = int(round(T/dt))
                              # no of time intervals
                              # adjust T to fit time step dt
   u = zeros(Nt+1)
                               # array of u[n] values
   t = linspace(0, T, Nt+1) # time mesh
                               # assign initial condition
   for n in range(0, Nt): \# n=0,1,...,Nt-1
       u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + ((1 - dt*(1-theta)*a(t[n]))*u[n])
                  dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/
                  (1 + dt*theta*a(t[n+1]))
   return u, t
```

his function is found in the file decay_vc.py⁷³ (vc stands for "variable coeffients").

Coding of variable coefficients. The solver function shown above d the arguments a and b to be Python functions of time t, say

```
def a(t):
    return a_0 if t < tp else k*a_0

def b(t):
    return 1</pre>
```

Here, a(t) has three parameters a0, tp, and k, which must be global v. A better implementation is to represent a by a class where the parame attributes and a *special method* $_call_$ evaluates a(t):

```
class A:
    def __init__(self, a0=1, k=2):
        self.a0, self.k = a0, k

    def __call__(self, t):
        return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)</pre>
```

For quick tests it is cumbersome to write a complete function or a classification construction in Python is then convenient. For examp

```
a = lambda t: a_0 if t < tp else k*a_0
```

is equivalent to the def a(t): definition above. In general,

```
f = lambda arg1, arg2, ...: expressin
```

is equivalent to

```
def f(arg1, arg2, ...):
    return expression
```

One can use lambda functions directly in calls. Say we want to solve u' = u(0) = 2:

```
u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)
```

A lambda function can appear anywhere where a variable can appear.

8.4 Verifying a constant solution

A very useful partial verification method is to construct a test proble a very simple solution, usually u= const. Especially the initial debug a program code can benefit greatly from such tests, because 1) all 1 numerical methods will exactly reproduce a constant solution, 2) man intermediate calculations are easy to control for a constant u, and 3) constant u can uncover many bugs in an implementation.

⁷³http://tinyurl.com/jvzzcfn/decay/decay_vc.py

The only constant solution for the problem u' = -au is u = 0, but too many ugs can escape from that trivial solution. It is much better to search for a roblem where $u = C = \text{const} \neq 0$. Then u' = -a(t)u + b(t) is more appropriate: ith u = C we can choose any a(t) and set b = a(t)C and I = C. An appropriate ose test is

```
import nose.tools as nt
lef test constant solution():
   Test problem where u=u const is the exact solution, to be
   reproduced (to machine precision) by any relevant method.
   def exact_solution(t):
       return u const
   def a(t):
       return 2.5*(1+t**3) # can be arbitrary
   def b(t):
       return a(t)*u_const
   u const = 2.15
   theta = 0.4; I = u_const; dt = 4
   Nt = 4 # enough with a few steps
   u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
   print u
   u_e = exact_solution(t)
   difference = abs(u_e - u).max() # max deviation
   nt.assert_almost_equal(difference, 0, places=14)
```

An interesting question is what type of bugs that will make the computed u^n eviate from the exact solution C. Fortunately, the updating formula and the utial condition must be absolutely correct for the test to pass! Any attempt to take a wrong indexing in terms like a(t[n]) or any attempt to introduce an roneous factor in the formula creates a solution that is different from C.

.5 Verification via manufactured solutions

ollowing the idea of the previous section, we can choose any formula as the cact solution, insert the formula in the ODE problem and fit the data a(t), b(t), and I to make the chosen formula fulfill the equation. This powerful technique or generating exact solutions is very useful for verification purposes and known the method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent ariable(s). The rationale behind such a simple variation is that almost any elevant numerical solution method for differential equation problems is able to eproduce the linear function exactly to machine precision (if u is about unity a size; precision is lost if u take on large values, see Exercise 17). The linear plution also makes some stronger demands to the numerical method and the nplementation than the constant solution used in Section 8.4, at least in more amplicated applications. However, the constant solution is often ideal for initial ebugging before proceeding with a linear solution.

We choose a linear solution u(t) = ct + d. From the initial condition it that d = I. Inserting this u in the ODE results in

$$c = -a(t)u + b(t).$$

Any function u = ct + I is then a correct solution if we choose

$$b(t) = c + a(t)(ct + I).$$

With this b(t) there are no restrictions on a(t) and c.

Let prove that such a linear solution obeys the numerical schemes. end, we must check that $u^n = ca(t_n)(ct_n + I)$ fulfills the discrete equation these calculations, and later calculations involving linear solutions institute difference schemes, it is convenient to compute the action of a disoperator on a linear function t:

$$[D_t^+ t]^n = \frac{t_{n+1} - t_n}{\Delta t} = 1,$$

$$[D_t^- t]^n = \frac{t_n - t_{n-1}}{\Delta t} = 1,$$

$$[D_t t]^n = \frac{t_{n+\frac{1}{2}} - t_{n-\frac{1}{2}}}{\Delta t} = \frac{(n + \frac{1}{2})\Delta t - (n - \frac{1}{2})\Delta t}{\Delta t} = 1.$$

Clearly, all three finite difference approximations to the derivative are e u(t) = t or its mesh function counterpart $u^n = t_n$.

The difference equation for the Forward Euler scheme

$$[D_t^+ u = -au + b]^n,$$

with $a^n = a(t_n)$, $b^n = c + a(t_n)(ct_n + I)$, and $u^n = ct_n + I$ then results

$$c = -a(t_n)(ct_n + I) + c + a(t_n)(ct_n + I) = c$$

which is always fulfilled. Similar calculations can be done for the Ba Euler and Crank-Nicolson schemes, or the θ -rule for that matter. In a $u^n=ct_n+I$ is an exact solution of the discrete equations. That is should expect that $u^n-u_{\rm e}(t_n)=0$ mathematically and $|u^n-u_{\rm e}(t_n)|$ is a small number about the machine precision for $n=0,\ldots,N_t$.

The following function offers an implementation of this verification ter on a linear exact solution:

```
def test_linear_solution():
    """
    Test problem where u=c*t+I is the exact solution, to be
    reproduced (to machine precision) by any relevant method.
    """
    def exact_solution(t):
        return c*t + I
```

```
def a(t):
    return t**0.5 # can be arbitrary

def b(t):
    return c + a(t)*exact_solution(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
print difference
# No of decimal places for comparison depend on size of c
nt.assert_almost_equal(difference, 0, places=14)
```

ny error in the updating formula makes this test fail!

.6 Extension to systems of ODEs

Inny ODE models involves more than one unknown function and more than ne equation. Here is an example of two unknown functions u(t) and v(t):

$$u' = au + bv, (86)$$

$$v' = cu + dv, (87)$$

or constants a, b, c, d. Applying the Forward Euler method to each equation sults in simple updating formula

$$u^{n+1} = u^n + \Delta t(au^n + bv^n), \tag{88}$$

$$v^{n+1} = u^n + \Delta t (cu^n + dv^n). \tag{89}$$

In the other hand, the Crank-Nicolson or Backward Euler schemes result in a \times 2 linear system for the new unknowns. The latter schemes gives

$$u^{n+1} = u^n + \Delta t (au^{n+1} + bv^{n+1}), \tag{90}$$

$$v^{n+1} = v^n + \Delta t (cu^{n+1} + dv^{n+1}). (91)$$

ollecting u^{n+1} as well as v^{n+1} on the left-hand side results in

$$(1 - \Delta ta)u^{n+1} + bv^{n+1} = u^n, (92)$$

$$cu^{n+1} + (1 - \Delta t d)v^{n+1} = v^n, (93)$$

hich is a system of two coupled, linear, algebraic equations in two unknowns.

9 General first-order ODEs

We now turn the attention to general, nonlinear ODEs and systems ODEs. Our focus is on numerical methods that can be readily reused f discretization PDEs, and diffusion PDEs in particular. The methods briefly listed, and we refer to the rich literature for more detailed desc and analysis - the books [6, 1, 2, 3] are all excellent resources on numerhods for ODEs. We also demonstrate the Odespy Python interfarance of different software for general first-order ODE systems.

9.1 Generic form

ODEs are commonly written in the generic form

$$u' = f(u, t), \quad u(0) = I,$$

where f(u,t) is some prescribed function. As an example, our most exponential decay model (74) has f(u,t) = -a(t)u(t) + b(t).

The unknown u in (94) may either be a scalar function of time t, or valued function of t in case of a system of ODEs with m unknown comp

$$u(t) = (u^{(0)}(t), u^{(1)}(t), \dots, u^{(m-1)}(t)).$$

In that case, the right-hand side is vector-valued function with m comp

$$f(u,t) = (f^{(0)}(u^{(0)}(t), \dots, u^{(m-1)}(t)),$$

$$f^{(1)}(u^{(0)}(t), \dots, u^{(m-1)}(t)),$$

$$\vdots,$$

$$f^{(m-1)}(u^{(0)}(t), \dots, u^{(m-1)}(t)))$$

Actually, any system of ODEs can be written in the form (94), but order ODEs then need auxiliary unknown functions to enable conversifirst-order system.

Next we list some well-known methods for u' = f(u,t), valid bot single ODE (scalar u) and systems of ODEs (vector u). The choice of r is inspired by the kind of schemes that are popular also for partial diffequations.

9.2 The θ -rule

The θ -rule scheme applied to u' = f(u, t) becomes

$$\frac{u^{n+1} - u^n}{\Delta t} = \theta f(u^{n+1}, t_{n+1}) + (1 - \theta) f(u^n, t_n).$$

Bringing the unknown u^{n+1} to the left-hand side and the known terms right-hand side gives

$$u^{n+1} - \Delta t \theta f(u^{n+1}, t_{n+1}) = u^n + \Delta t (1 - \theta) f(u^n, t_n).$$

or a general f (not linear in u), this equation is nonlinear in the unknown u^{n+1} nless $\theta=0$. For a scalar ODE (m=1), we have to solve a single nonlinear lgebraic equation for u^{n+1} , while for a system of ODEs, we get a system of pupled, nonlinear algebraic equations. Newton's method is a popular solution pproach in both cases. Note that with the Forward Euler scheme $(\theta=0)$ we onot have to deal with nonlinear equations, because in that case we have an explicit updating formula for u^{n+1} . This is known as an explicit scheme. With $\neq 1$ we have to solve systems of algebraic equations, and the scheme is said to e implicit.

.3 An implicit 2-step backward scheme

he implicit backward method with 2 steps applies a three-level backward ifference as approximation to u'(t),

$$u'(t_{n+1}) \approx \frac{3u^{n+1} - 4u^n + u^{n-1}}{2\Delta t},$$

hich is an approximation of order Δt^2 to the first derivative. The resulting theme for u' = f(u, t) reads

$$u^{n+1} = \frac{4}{3}u^n - \frac{1}{3}u^{n-1} + \frac{2}{3}\Delta t f(u^{n+1}, t_{n+1}).$$
 (97)

igher-order versions of the scheme (97) can be constructed by including more me levels. These schemes are known as the Backward Differentiation Formulas 3DF), and the particular version (97) is often referred to as BDF2.

Note that the scheme (97) is implicit and requires solution of nonlinear quations when f is nonlinear in u. The standard 1st-order Backward Euler 1ethod or the Crank-Nicolson scheme can be used for the first step.

.4 Leapfrog schemes

'he ordinary Leapfrog scheme. The derivative of u at some point t_n can e approximated by a central difference over two time steps,

$$u'(t_n) \approx \frac{u^{n+1} - u^{n-1}}{2\Delta t} = [D_{2t}u]^n \tag{98}$$

hich is an approximation of second order in Δt . The scheme can then be ritten as

$$[D_{2t}u = f(u,t)]^n,$$

ı operator notation. Solving for u^{n+1} gives

$$u^{n+1} = u^{n-1} + \Delta t f(u^n, t_n). (99)$$

bserve that (99) is an explicit scheme, and that a nonlinear f (in u) is trivial by handle since it only involves the known u^n value. Some other scheme must e used as starter to compute u^1 , preferably the Forward Euler scheme since it also explicit.

The filtered Leapfrog scheme. Unfortunately, the Leapfrog sche will develop growing oscillations with time (see Problem 22)[[[. A rem such undesired oscillations is to introduce a filtering technique. First, a s Leapfrog step is taken, according to (99), and then the previous u^n adjusted according to

$$u^n \leftarrow u^n + \gamma (u^{n-1} - 2u^n + u^{n+1}).$$

The γ -terms will effectively damp oscillations in the solution, especiall with short wavelength (like point-to-point oscillations). A common choic 0.6 (a value used in the famous NCAR Climate Model).

9.5 The 2nd-order Runge-Kutta scheme

The two-step scheme

$$u^* = u^n + \Delta t f(u^n, t_n),$$

$$u^{n+1} = u^n + \Delta t \frac{1}{2} \left(f(u^n, t_n) + f(u^*, t_{n+1}) \right),$$

essentially applies a Crank-Nicolson method (102) to the ODE, but the term $f(u^{n+1}, t_{n+1})$ by a prediction $f(u^*, t_{n+1})$ based on a Forwar step (101). The scheme (101)-(102) is known as Huen's method, but a 2nd-order Runge-Kutta method. The scheme is explicit, and the expected to behave as Δt^2 .

9.6 A 2nd-order Taylor-series method

One way to compute u^{n+1} given u^n is to use a Taylor polynomial. We mup a polynomial of 2nd degree:

$$u^{n+1} = u^n + u'(t_n)\Delta t + \frac{1}{2}u''(t_n)\Delta t^2.$$

From the equation u' = f(u, t) it follows that the derivatives of u can be exinterms of f and its derivatives:

$$u'(t_n) = f(u^n, t_n),$$

$$u''(t_n) = \frac{\partial f}{\partial u}(u^n, t_n)u'(t_n) + \frac{\partial f}{\partial t}$$

$$= f(u^n, t_n)\frac{\partial f}{\partial u}(u^n, t_n) + \frac{\partial f}{\partial t},$$

resulting in the scheme

$$u^{n+1} = u^n + f(u^n, t_n) \Delta t + \frac{1}{2} \left(f(u^n, t_n) \frac{\partial f}{\partial u}(u^n, t_n) + \frac{\partial f}{\partial t} \right) \Delta t^2.$$

More terms in the series could be included in the Taylor polynomial to methods of higher order than 2.

.7 The 2nd- and 3rd-order Adams-Bashforth schemes

he following method is known as the 2nd-order Adams-Bashforth scheme:

$$u^{n+1} = u^n + \frac{1}{2}\Delta t \left(3f(u^n, t_n) - f(u^{n-1}, t_{n-1})\right). \tag{104}$$

he scheme is explicit and requires another one-step scheme to compute u^1 (the orward Euler scheme or Heun's method, for instance). As the name implies, ne scheme is of order Δt^2 .

Another explicit scheme, involving four time levels, is the 3rd-order Adams-ashforth scheme

$$u^{n+1} = u^n + \frac{1}{12} \left(23f(u^n, t_n) - 16f(u^{n-1}, t_{n-1}) + 5f(u^{n-2}, t_{n-2}) \right). \tag{105}$$

he numerical error is of order Δt^3 , and the scheme needs some method for omputing u^1 and u^2 .

More general, higher-order Adams-Bashforth schemes (also called *explicit dams methods*) compute u^{n+1} as a linear combination of f at k previous time teps:

$$u^{n+1} = u^n + \sum_{j=0}^{k} \beta_j f(u^{n-j}, t_{n-j}),$$

here β_j are known coefficients.

.8 4th-order Runge-Kutta scheme

he perhaps most widely used method to solve ODEs is the 4th-order Rungelutta method, often called RK4. Its derivation is a nice illustration of common umerical approximation strategies, so let us go through the steps in detail.

The starting point is to integrate the ODE u' = f(u, t) from t_n to t_{n+1} :

$$u(t_{n+1}) - u(t_n) = \int_{t_n}^{t_{n+1}} f(u(t), t) dt$$
.

We want to compute $u(t_{n+1})$ and regard $u(t_n)$ as known. The task is to find approximations for the integral, since the integrand involves the unknown between t_n and t_{n+1} .

The integral can be approximated by the famous Simpson's rule⁷⁴:

$$\int_{t_{-}}^{t_{n+1}} f(u(t), t) dt \approx \frac{\Delta t}{6} \left(f^n + 4f^{n+\frac{1}{2}} + f^{n+1} \right) .$$

The problem now is that we do not know $f^{n+\frac{1}{2}} = f(u^{n+\frac{1}{2}}, t_{n+1/2})$ and (u^{n+1}, t_{n+1}) as we know only u^n and hence f^n . The idea is to use various imations for $f^{n+\frac{1}{2}}$ and f^{n+1} based on using well-known schemes for the the intervals $[t_n, t_{n+1/2}]$ and $[t_n, t_{n+1}]$. We split the integral approximat four terms:

$$\int_{t_n}^{t_{n+1}} f(u(t), t) dt \approx \frac{\Delta t}{6} \left(f^n + 2\hat{f}^{n+\frac{1}{2}} + 2\tilde{f}^{n+\frac{1}{2}} + \bar{f}^{n+1} \right),$$

where $\hat{f}^{n+\frac{1}{2}}$, $\tilde{f}^{n+\frac{1}{2}}$, and \bar{f}^{n+1} are approximations to $f^{n+\frac{1}{2}}$ and f^{n+1} that based on already computed quantities. For $\hat{f}^{n+\frac{1}{2}}$ we can apply an approx to $u^{n+\frac{1}{2}}$ using the Forward Euler method with step $\frac{1}{2}\Delta t$:

$$\hat{f}^{n+\frac{1}{2}} = f(u^n + \frac{1}{2}\Delta t f^n, t_{n+1/2})$$

Since this gives us a prediction of $f^{n+\frac{1}{2}}$, we can for $\tilde{f}^{n+\frac{1}{2}}$ try a Backwai method to approximate $u^{n+\frac{1}{2}}$:

$$\tilde{f}^{n+\frac{1}{2}} = f(u^n + \frac{1}{2}\Delta t \hat{f}^{n+\frac{1}{2}}, t_{n+1/2}).$$

With $\tilde{f}^{n+\frac{1}{2}}$ as a hopefully good approximation to $f^{n+\frac{1}{2}}$, we can for t term f^{n+1} use a Crank-Nicolson method to approximate u^{n+1} :

$$\bar{f}^{n+1} = f(u^n + \Delta t \hat{f}^{n+\frac{1}{2}}, t_{n+1}).$$

We have now used the Forward and Backward Euler methods as well Crank-Nicolson method in the context of Simpson's rule. The hope is the combination of these methods yields an overall time-stepping scheme from t_n+1 that is much more accurate than the $\mathcal{O}(\Delta t)$ and $\mathcal{O}(\Delta t^2)$ of the insteps. This is indeed true: the overall accuracy is $\mathcal{O}(\Delta t^4)$!

To summarize, the 4th-order Runge-Kutta method becomes

$$u^{n+1} = u^n + \frac{\Delta t}{6} \left(f^n + 2\hat{f}^{n+\frac{1}{2}} + 2\tilde{f}^{n+\frac{1}{2}} + \bar{f}^{n+1} \right),$$

where the quantities on the right-hand side are computed from (106 Note that the scheme is fully explicit so there is never any need to solv or nonlinear algebraic equations. However, the stability is condition depends on f. There is a whole range of implicit Runge-Kutta methods unconditionally stable, but require solution of algebraic equations involve each time step.

The simplest way to explore more sophisticated methods for OD: apply one of the many high-quality software packages that exist, as t section explains.

⁷⁴http://en.wikipedia.org/wiki/Simpson's_rule

.9 The Odespy software

wide range of the methods and software exist for solving (94). Many of methods re accessible through a unified Python interface offered by the Odespy⁷⁵ package. despy features simple Python implementations of the most fundamental schemes s well as Python interfaces to several famous packages for solving ODEs: DEPACK⁷⁶, Vode⁷⁷, rkc.f⁷⁸, rkf45.f⁷⁹, Radau5⁸⁰, as well as the ODE solvers 1 SciPy⁸¹, SymPy⁸², and odelab⁸³.

The usage of Odespy follows this setup for the ODE u' = -au, u(0) = I, $\in (0, T]$, here solved by the famous 4th-order Runge-Kutta method, using t = 1 and $N_t = 6$ steps:

```
def f(u, t):
    return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)
```

The previously listed methods for ODEs are all accessible in Odespy:

- the θ -rule: ThetaRule
- \bullet special cases of the θ -rule: ForwardEuler, BackwardEuler, CrankNicolson
- the 2nd- and 4th-order Runge-Kutta methods: RK2 and RK4
- The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda, lsoda_scipy
- The Leapfrog scheme: Leapfrog and LeapfrogFiltered

.10 Example: Runge-Kutta methods

ince all solvers have the same interface in Odespy, modulo different set of arameters to the solvers' constructors, one can easily make a list of solver bjects and run a loop for comparing (a lot of) solvers. The code below, found 1 complete form in decay_odespy.py⁸⁴, compares the famous Runge-Kutta 1 nethods of orders 2, 3, and 4 with the exact solution of the decay equation

```
75https://github.com/hplgit/odespy
76https://computation.llnl.gov/casc/odepack/odepack_home.html
77https://computation.llnl.gov/casc/odepack/odepack_home.html
78http://www.netlib.org/ode/rkc.f
79http://www.netlib.org/ode/rkf45.f
80http://www.unige.ch/ hairer/software.html
81http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
82http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
83http://olivierverdier.github.com/odelab/
84http://tinyurl.com/jyzzcfn/decay/decay.odespy.py
```

u'=-au. Since we have quite long time steps, we have included t relevant θ -rule for large time steps, the Backward Euler scheme ($\theta=1$), Figure 21 shows the results.

```
import numpy as np
import scitools.std as plt
import sys
def f(u, t):
    return -a*u
I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)
solvers = [odespy.RK2(f),
           odespy.RK3(f),
           odespv.RK4(f).
           odespy.BackwardEuler(f, nonlinear_solver='Newton')]
legends = []
for solver in solvers:
    solver.set_initial_condition(I)
    u, t = solver.solve(t)
    plt.plot(t, u)
    plt.hold('on')
    legends.append(solver.__class__.__name__)
# Compare with exact solution plotted on a very fine mesh
t_{fine} = np.linspace(0, T, 10001)
u = I*np.exp(-a*t fine)
plt.plot(t_fine, u_e, '-') # avoid markers by specifying line typ
legends.append('exact')
plt.legend(legends)
plt.title('Time step: %g' % dt)
plt.show()
```

Visualization tip.

We use SciTools for plotting here, but importing matplotlib.pypl plt instead also works. However, plain use of Matplotlib as done results in curves with different colors, which may be hard to distin on black-and-white paper. Using SciTools, curves are automatically colors and markers, thus making curves easy to distinguish on screen colors and on black-and-white paper. The automatic adding of mark normally a bad idea for a very fine mesh since all the markers get clut but SciTools limits the number of markers in such cases. For the solution we use a very fine mesh, but in the code above we specif line type as a solid line (-), which means no markers and just a col be automatically determined by the backend used for plotting (Matp

by default, but SciTools gives the opportunity to use other backends to produce the plot, e.g., Gnuplot or Grace).

Also note the that the legends are based on the class names of the solvers, and in Python the name of a the class type (as a string) of an object obj is obtained by obj.__class__.__name__.

Figure 21: Behavior of different schemes for the decay equation.

The runs in Figure 21 and other experiments reveal that the 2nd-order unge-Kutta method (RK2) is unstable for $\Delta t > 1$ and decays slower than 12 Backward Euler scheme for large and moderate Δt (see Exercise 21 for 13 nallysis). However, for fine $\Delta t = 0.25$ the 2nd-order Runge-Kutta method 14 pproaches the exact solution faster than the Backward Euler scheme. That is, 16 latter scheme does a better job for larger Δt , while the higher order scheme 15 superior for smaller Δt . This is a typical trend also for most schemes for rdinary and partial differential equations.

The 3rd-order Runge-Kutta method (RK3) has also artifacts in form of scillatory behavior for the larger Δt values, much like that of the Crankicolson scheme. For finer Δt , the 3rd-order Runge-Kutta method converges uickly to the exact solution.

The 4th-order Runge-Kutta method (RK4) is slightly inferior to the Backward uler scheme on the coarsest mesh, but is then clearly superior to all the other chemes. It is definitely the method of choice for all the tested schemes.

Remark about using the θ -rule in Odespy. The Odespy package that the ODE is written as u' = f(u, t) with an f that is possibly nonlin The θ -rule for u' = f(u, t) leads to

$$u^{n+1} = u^n + \Delta t \left(\theta f(u^{n+1}, t_{n+1}) + (1 - \theta) f(u^n, t_n) \right),$$

which is a nonlinear equation in u^{n+1} . Odespy's implementation of th (ThetaRule) and the specialized Backward Euler (BackwardEuler) and Nicolson (CrankNicolson) schemes must invoke iterative methods for the nonlinear equation in u^{n+1} . This is done even when f is linear in the model problem u' = -au, where we can easily solve for u^{n+1} to Therefore, we need to specify use of Newton's method to the equations. It allows other methods than Newton's to be used, for instance Picard it but that method is not suitable. The reason is that it applies the Forward scheme to generate a start value for the iterations. Forward Euler may go wrong solutions for large Δt values. Newton's method, on the other linear problems.)

9.11 Example: Adaptive Runge-Kutta methods

Odespy offers solution methods that can adapt the size of Δt with time t a desired accuracy in the solution. Intuitively, small time steps will be cl areas where the solution is changing rapidly, while larger time steps can where the solution is slowly varying. Some kind of *error estimator* is adjust the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormand Runge-Kutta method of order 4 and 5. The 5th-order method is us reference solution and the difference between the 4th- and 5th-order me used as an indicator of the error in the numerical solution. The Dormand method is the default choice in MATLAB's widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method how it selects the optimal time steps. To this end, we request only one ti from t=0 to t=T and ask the method to compute the necessary nontime mesh to meet a certain error tolerance. The code goes like

```
import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
    return -a*u

def exact_solution(t):
    return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)
```

```
Nt = 1  # just one step - let the scheme find its intermediate points
t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

# u and t will only consist of [I, u^Nt] and [0,T]
# solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, 'ko')
plt.hold('on')
plt.plot(t_fine, exact_solution(t_fine), 'b-')
plt.legend(['tol=%.0E' % tol, 'exact'])
plt.savefig('tmp_odespy_adaptive.png')
plt.show()
```

Running four cases with tolerances 10^{-1} , 10^{-3} , 10^{-5} , and 10^{-7} , gives the sults in Figure 22. Intuitively, one would expect denser points in the beginning f the decay and larger time steps when the solution flattens out.

igure 22: Choice of adaptive time mesh by the Dormand-Prince method for ifferent tolerances.

10 Exercises

Exercise 17: Experiment with precision in tests an size of u

It is claimed in Section 8.5 that most numerical methods will reproduce a li act solution to machine precision. Test this assertion using the nose test test_linear_solution in the decay_vc.py⁸⁵ program. Vary the para from very small, via c=1 to many larger values, and print out the maximu ence between the numerical solution and the exact solution. What is the value of the places (or delta) argument to nose.tools.assert_almost in each case? Filename: test_precision.py.

Exercise 18: Implement the 2-step backward scheme

Implement the 2-step backward method (97) for the model u'(t) = -a(b(t), u(0)) = I. Allow the first step to be computed by either the Ba Euler scheme or the Crank-Nicolson scheme. Verify the implementa choosing a(t) and b(t) such that the exact solution is linear in t (see Sect Show mathematically that a linear solution is indeed a solution of the equations.

Compute convergence rates (see Section 2.8) in a test case $a = \cos b = 0$, where we easily have an exact solution, and determine if the case a first-order scheme (Backward Euler) for the first step has any impact overall accuracy of this scheme. The expected error goes like $\mathcal{O}(\Delta t^2)$. Figure decay_backward2step.py.

Exercise 19: Implement the 2nd-order Adams-Basl scheme

Implement the 2nd-order Adams-Bashforth method (104) for the decay u' = -a(t)u + b(t), u(0) = I, $t \in (0,T]$. Use the Forward Euler method first step such that the overall scheme is explicit. Verify the implementation and exact solution that is linear in time. Analyze the scheme by set for solutions $u^n = A^n$ when a = const and b = 0. Compare this second secheme to the Crank-Nicolson scheme. Filename: decay_AdamsBashfor

Exercise 20: Implement the 3rd-order Adams-Basl scheme

Implement the 3rd-order Adams-Bashforth method (105) for the decay u' = -a(t)u + b(t), u(0) = I, $t \in (0, T]$. Since the scheme is explicit, allow started by two steps with the Forward Euler method. Investigate experir the case where b = 0 and a is a constant: Can we have oscillatory solut large Δt ? Filename: decay_AdamsBashforth3.py.

⁸⁵http://tinyurl.com/jvzzcfn/decay/decay_vc.py

Exercise 21: Analyze explicit 2nd-order methods

how that the schemes (102) and (103) are identical in the case f(u,t) = a, where a > 0 is a constant. Assume that the numerical solution reads $a = A^n$ for some unknown amplification factor A to be determined. Find and derive stability criteria. Can the scheme produce oscillatory solutions $a = a^n$ Plot the numerical and exact amplification factor. Filename: $a = a^n$ RK2_Taylor2.py.

'roblem 22: Implement and investigate the Leapfrog scheme

Leapfrog scheme for the ODE u'(t) = -a(t)u(t) + b(t) is defined by

$$[D_{2t}u = -au + b]^n.$$

separate method is needed to compute u^1 . The Forward Euler scheme is a ossible candidate.

-) Implement the Leapfrog scheme for the model equation. Plot the solution 1 the case $a=1, b=0, I=1, \Delta t=0.01, t \in [0,4]$. Compare with the exact plution $u_{\rm e}(t)=e^{-t}$.
-) Show mathematically that a linear solution in t fulfills the Forward Euler theme for the first step and the Leapfrog scheme for the subsequent steps. Use is linear solution to verify the implementation, and automate the verification rough a nose test.

lint. It can be wise to automate the calculations such that it is easy to redo not calculations for other types of solutions. Here is a possible sympy function not takes a symbolic expression u (implemented as a Python function of t), fits not be term, and checks if u fulfills the discrete equations:

```
import sympy as sp
lef analyze(u):
   t, dt, a = sp.symbols('t dt a')
   print 'Analyzing u_e(t)=%s' % u(t)
   print 'u(0)=%s' % u(t).subs(t, 0)
   # Fit source term to the given u(t)
   b = sp.diff(u(t), t) + a*u(t)
   b = sp.simplify(b)
   print 'Source term b:', b
   # Residual in discrete equations; Forward Euler step
   R_{step1} = (u(t+dt) - u(t))/dt + a*u(t) - b
   R_step1 = sp.simplify(R_step1)
   print 'Residual Forward Euler step:', R_step1
   # Residual in discrete equations; Leapfrog steps
   R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
   R = sp.simplify(R)
   print 'Residual Leapfrog steps:', R
lef u_e(t):
```

```
return c*t + I
analyze(u_e)
# or short form: analyze(lambda t: c*t + I)
```

- c) Show that a second-order polynomial in t cannot be a solution of the equations. However, if a Crank-Nicolson scheme is used for the first second-order polynomial solves the equations exactly.
- d) Create a manufactured solution $u(t) = \sin(t)$ for the ODE u' = -Compute the convergence rate of the Leapfrog scheme using this manufactured solution. The expected convergence rate of the Leapfrog scheme is $\mathcal{O}(\Delta t^2)$ the use of a 1st-order method for the first step impact the convergence
- **e)** Set up a set of experiments to demonstrate that the Leapfrog sche is associated with numerical artifacts (instabilities). Document the mair from this investigation.
- f) Analyze and explain the instabilities of the Leapfrog scheme (99):
 - 1. Choose a = const and b = 0. Assume that an exact solution of the equations has the form $u^n = A^n$, where A is an amplification fabe determined. Derive an equation for A by inserting $u^n = A^n$. Leapfrog scheme.
 - 2. Compute A either by hand and/or with the aid of sympy. The pol for A has two roots, A_1 and A_2 . Let u^n be a linear combinatio $C_1A_1^n + C_2A_2^n$.
 - 3. Show that one of the roots is the explanation of the instability.
 - 4. Compare A with the exact expression, using a Taylor series approx
 - 5. How can C_1 and C_2 be determined?
- g) Since the original Leapfrog scheme is unconditionally unstable grows, it demands some stabilization. This can be done by filtering we first find u^{n+1} from the original Leapfrog scheme and then replac $u^n + \gamma(u^{n-1} 2u^n + u^{n+1})$, where γ can be taken as 0.6. Implement the Leapfrog scheme and check that it can handle tests where the original I scheme is unstable.

Filenames: decay_leapfrog.py, decay_leapfrog.pdf.

Problem 23: Make a unified implementation of many s

Consider the linear ODE problem u'(t) = -a(t)u(t) + b(t), u(0) = I. Schemes for this problem can be written in the general form

$$u^{n+1} = \sum_{j=0}^{m} c_j u^{n-j},$$

or some choice of c_0, \ldots, c_m . Find expressions for the c_j coefficients in case of ne θ -rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order nuge-Kutta method, and the 3rd-order Adams-Bashforth scheme.

Make a class ExpDecay that implements the general updating formula (110). he formula cannot be applied for n < m, and for those n values, other schemes ust be used. Assume for simplicity that we just repeat Crank-Nicolson steps ntil (110) can be used. Use a subclass to specify the list c_0, \ldots, c_m for a articular method, and implement subclasses for all the mentioned schemes. erify the implementation by testing with a linear solution, which should be cactly reproduced by all methods. Filename: decay_schemes_oo.py.

1 Applications of exponential decay models

his section presents many mathematical models that all end up with ODEs of ne type u' = -au + b. The applications are taken from biology, finance, and hysics, and cover population growth or decay, compound interest and inflation, adioactive decay, cooling of objects, compaction of geological media, pressure ariations in the atmosphere, and air resistance on falling or rising bodies.

1.1 Scaling

eal applications of a model u'=-au+b will often involve a lot of parameters the expressions for a and b. It can be quite a challenge to find relevant values f all parameters. In simple problems, however, it turns out that it is not always ecessary to estimate all parameters because we can lump them into one or a few imensionless numbers by using a very attractive technique called scaling. It mply means to stretch the u and t axis is the present problem - and suddenly all arameters in the problem are lumped one parameter if $b \neq 0$ and no parameter hen b = 0!

Scaling means that we introduce a new function $\bar{u}(\bar{t})$, with

$$\bar{u} = \frac{u - u_m}{u_c}, \quad \bar{t} = \frac{t}{t_c},$$

here u_m is a characteristic value of u, u_c is a characteristic size of the range of u alues, and t_c is a characteristic size of the range of t_c where u varies significantly. hoosing u_m , u_c , and t_c is not always easy and often an art in complicated roblems. We just state one choice first:

$$u_c = I$$
, $u_m = b/a$, $t_c = 1/a$.

iserting $u = u_m + u_c \bar{u}$ and $t = t_c \bar{t}$ in the problem u' = -au + b, assuming a nd b are constants, results after some algebra in the scaled problem

$$\frac{d\bar{u}}{d\bar{t}} = -\bar{u}, \quad \bar{u}(0) = 1 - \beta,$$

here β is a dimensionless number

$$\beta = \frac{b}{Ia} \, .$$

That is, only the special combination of b/(Ia) matters, not what the invalues of b, a, and I are. Moreover, if b=0, the scaled problem is inder of a and I! In practice this means that we can perform one numerical sin of the scaled problem and recover the solution of any problem for a give I by stretching the axis in the plot: $u=I\bar{u}$ and $t=\bar{t}/a$. For $b\neq 0$, we state scaled problem for a few β values and recover the physical solutions and stretching the u axis and stretching the t axis.

The scaling breaks down if I = 0. In that case we may choose $u_c = b/a$, and $t_c = 1/b$, resulting in a slightly different scaled problem:

$$\frac{d\bar{u}}{d\bar{t}} = 1 - \bar{u}, \quad \bar{u}(0) = 0.$$

As with b=0, the case I=0 has a scaled problem with no physical para. It is common to drop the bars after scaling and write the scaled I as u'=-u, $u(0)=1-\beta$, or u'=1-u, u(0)=0. Any implementation problem u'=-au+b, u(0)=I, can be reused for the scaled problem by a=1, b=0, and $I=1-\beta$ in the code, if $I\neq 0$, or one sets a=1 and I=0 when the physical I is zero. Falling bodies in fluids, as described by Section 11.8, involves u'=-au+b with seven physical parameters. A vanish in the scaled version of the problem if we start the motion from

11.2 Evolution of a population

Let N be the number of individuals in a population occupying some domain. Despite N being an integer in this problem, we shall compute as a real number and view N(t) as a continuous function of time. The model assumption is that in a time interval Δt the number of newcomer populations (newborns) is proportional to N, with proportionality con The amount of newcomers will increase the population and result in to

$$N(t + \Delta t) = N(t) + \bar{b}N(t).$$

It is obvious that a long time interval Δt will result in more newcom hence a larger \bar{b} . Therefore, we introduce $b = \bar{b}/\Delta t$: the number of new per unit time and per individual. We must then multiply b by the lengt time interval considered and by the population size to get the total nu new individuals. $b\Delta tN$.

If the number of removals from the population (deaths) is also prop to N, with proportionality constant $d\Delta t$, the population evolves accord

$$N(t + \Delta t) = N(t) + b\Delta t N(t) - d\Delta t N(t).$$

Dividing by Δt and letting $\Delta t \to 0$, we get the ODE

$$N' = (b - d)N, \quad N(0) = N_0.$$

In a population where the death rate (d) is larger than then newborn a > 0, and the population experiences exponential decay rather than exp growth.

In some populations there is an immigration of individuals into the spatial omain. With I individuals coming in per time unit, the equation for the opulation change becomes

$$N(t + \Delta t) = N(t) + b\Delta t N(t) - d\Delta t N(t) + \Delta t I.$$

he corresponding ODE reads

$$N' = (b - d)N + I, \quad N(0) = N_0. \tag{112}$$

Some simplification arises if we introduce a fractional measure of the populaon: $u = N/N_0$ and set r = b - d. The ODE problem now becomes

$$u' = ru + f, \quad u(0) = 1,$$
 (113)

here $f = I/N_0$ measures the net immigration per time unit as the fraction of ne initial population. Very often, r is approximately constant, but f is usually function of time.

The growth rate r of a population decreases if the environment has limited esources. Suppose the environment can sustain at most N_{max} individuals. We say then assume that the growth rate approaches zero as N approaches N_{max} , e., as u approaches $M = N_{\text{max}}/N_0$. The simplest possible evolution of r is sen a linear function: $r(t) = r_0(1 - u(t)/M)$, where r_0 is the initial growth rate hen the population is small relative to the maximum size and there is enough sources. Using this r(t) in (113) results in the logistic model for the evolution $r(t) = r_0(1 - u(t)/M)$ approaches $r(t) = r_0(1 - u(t)/M)$.

$$u' = r_0(1 - u/M)u, \quad u(0) = 1.$$
 (114)

nitially, u will grow at rate r_0 , but the growth will decay as u approaches M, and then there is no more change in u, causing $u \to M$ as $t \to \infty$. Note that ne logistic equation $u' = r_0(1 - u/M)u$ is nonlinear because of the quadratic erm $-u^2r_0/M$.

1.3 Compound interest and inflation

ay the annual interest rate is r percent and that the bank adds the interest nce a year to your investment. If u^n is the investment in year n, the investment i year u^{n+1} grows to

$$u^{n+1} = u^n + \frac{r}{100}u^n \,.$$

1 reality, the interest rate is added every day. We therefore introduce a parameter ι for the number of periods per year when the interest is added. If n counts 11 periods, we have the fundamental model for compound interest:

$$u^{n+1} = u^n + \frac{r}{100m}u^n. (115)$$

his model is a difference equation, but it can be transformed to a continuous ifferential equation through a limit process. The first step is to derive a formula

for the growth of the investment over a time t. Starting with an investr and assuming that r is constant in time, we get

$$u^{n+1} = \left(1 + \frac{r}{100m}\right)u^n$$

$$= \left(1 + \frac{r}{100m}\right)^2 u^{n-1}$$

$$\vdots$$

$$= \left(1 + \frac{r}{100m}\right)^{n+1} u^0$$

Introducing time t, which here is a real-numbered counter for years, that n = mt, so we can write

$$u^{mt} = \left(1 + \frac{r}{100m}\right)^{mt} u^0.$$

The second step is to assume *continuous compounding*, meaning that the is added continuously. This implies $m \to \infty$, and in the limit one ξ formula

$$u(t) = u_0 e^{rt/100}$$

which is nothing but the solution of the ODE problem

$$u' = \frac{r}{100}u, \quad u(0) = u_0.$$

This is then taken as the ODE model for compound interest if r > 0. If the reasoning applies equally well to inflation, which is just the case One may also take the r in (117) as the net growth of an investemt, takes both compound interest and inflation into account. Note that applications we must use a time-dependent r in (117).

Introducing $a = \frac{r}{100}$, continuous inflation of an initial fortune I is process exhibiting exponential decay according to

$$u' = -au, \quad u(0) = I.$$

11.4 Radioactive Decay

An atomic nucleus of an unstable atom may lose energy by emitting particles and thereby be transformed to a nucleus with a different nu protons and neutrons. This process is known as radioactive decay⁸⁶. At the process is stochastic when viewed for a single atom, because it is im to predict exactly when a particular atom emits a particle. Neverthele a large number of atoms, N, one may view the process as determinis compute the mean behavior of the decay. Below we reason intuitively an ODE for the mean behavior. Thereafter, we show mathematically detailed stochastic model for single atoms leads the same mean behavior

⁸⁶http://en.wikipedia.org/wiki/Radioactive_decay

Peterministic model. Suppose at time t, the number of the original atom t pe is N(t). A basic model assumption is that the transformation of the atoms t the original type in a small time interval Δt is proportional to N, so that

$$N(t + \Delta t) = N(t) - a\Delta t N(t),$$

here a > 0 is a constant. Introducing u = N(t)/N(0), dividing by Δt and tting $\Delta t \to 0$ gives the following ODE:

$$u' = -au, \quad u(0) = 1.$$
 (118)

he parameter a can for a given nucleus be expressed through the half-life $t_{1/2}$, hich is the time taken for the decay to reduce the initial amount by one half, e., $u(t_{1/2}) = 0.5$. With $u(t) = e^{-at}$, we get $t_{1/2} = a^{-1} \ln 2$ or $a = \ln 2/t_{1/2}$.

tochastic model. We have originally N_0 atoms. Each atom may have ecayed or survived at a particular time t. We want to count how many original toms that are left, i.e., how many atoms that have survived. The survival of single atom at time t is a random event. Since there are only two outcomes, revival or decay, we have a Bernoulli trial⁸⁷. Let p be the probability of revival (implying that the probability of decay is 1-p). If each atom survives idependently of the others, and the probability of survival is the same for every tom, we have N_0 statistically Bernoulli trials, known as a binomial experiment om probability theory. The probability P(N) that N out of the N_0 atoms have revived at time t is then given by the famous binomial distribution

$$P(N) = \frac{N_0!}{N!(N_0 - N)!} p^N (1 - p)^{N_0 - N}.$$

he mean (or expected) value E[P] of P(N) is known to be N_0p .

It remains to estimate p. Let the interval [0,t] be divided into m small ibintervals of length Δt . We make the assumption that the probability of ecay of a single atom in an interval of length Δt is \tilde{p} , and that this probability proportional to Δt : $\tilde{p} = \lambda \Delta t$ (it sounds natural that the probability of ecay increases with Δt). The corresponding probability of survival is $1 - \lambda \Delta t$. elieving that λ is independent of time, we have, for each interval of length Δt , Bernoulli trial: the atom either survives or decays in that interval. Now, p nould be the probability that the atom survives in all the intervals, i.e., that e have m successful Bernoulli trials in a row and therefore

$$p = (1 - \lambda \Delta t)^m.$$

he expected number of atoms of the original type at time t is

$$E[P] = N_0 p = N_0 (1 - \lambda \Delta t)^m, \quad m = t/\Delta t.$$
(119)

To see the relation between the two types of Bernoulli trials and the ODE bove, we go to the limit $\Delta t \to t$, $m \to \infty$. One can show that

$$p = \lim_{m \to \infty} (1 - \lambda \Delta t)^m = \lim_{m \to \infty} \left(1 - \lambda \frac{t}{m} \right)^m = e^{-\lambda t}$$

This is the famous exponential waiting time (or arrival time) distribu a Poisson process in probability theory (obtained here, as often done limit of a binomial experiment). The probability of decay, $1-e^{-\lambda t}$, fol exponential distribution⁸⁸. The limit means that m is very large, henvery small, and $\tilde{p}=\lambda \Delta t$ is very small since the intensity of the even assumed finite. This situation corresponds to a very small probability atom will decay in a very short time interval, which is a reasonable mod same model occurs in lots of different applications, e.g., when waiting fo or when finding defects along a rope.

Relation between stochastic and deterministic models. With p we get the expected number of original atoms at t as $N_0p = N_0e^{-\lambda t}$ is exactly the solution of the ODE model $N' = -\lambda N$. This gives interpretation of a via λ or vice versa. Our important finding here is t ODE model captures the mean behavior of the underlying stochastic This is, however, not always the common relation between microscopic stemodels and macroscopic "averaged" models.

Also of interest is to see that a Forward Euler discretization of N' $N(0) = N_0$, gives $N^m = N_0(1 - \lambda \Delta t)^m$ at time $t_m = m\Delta t$, which is the expected value of the stochastic experiment with N_0 atoms and intervals of length Δt , where each atom can decay with probability λt interval.

A fundamental question is how accurate the ODE model is. The une stochastic model fluctuates around its expected value. A measure of t tuations is the standard deviation of the binomial experiment with N_0 which can be shown to be $Std[P] = \sqrt{N_0p(1-p)}$. Compared to the siz expectation, we get the normalized standard deviation

$$\frac{\sqrt{\text{Var}[P]}}{\text{E}[P]} = N_0^{-1/2} \sqrt{p^{-1} - 1} = N_0^{-1/2} \sqrt{(1 - e^{-\lambda t})^{-1} - 1} \approx (N_0 \lambda t)^{-1}$$

showing that the normalized fluctuations are very small if N_0 is very large is usually the case.

11.5 Newton's law of cooling

When a body at some temperature is placed in a cooling environment, ence shows that the temperature falls rapidly in the beginning, and t changes in temperature levels off until the body's temperature equals the surroundings. Newton carried out some experiments on cooling I and found that the temperature evolved as a "geometric progression at arithmetic progression", meaning that the temperature decayed expon

⁸⁷http://en.wikipedia.org/wiki/Bernoulli_trial

⁸⁸http://en.wikipedia.org/wiki/Exponential_distribution

ater, this result was formulated as a differential equation: the rate of change of ne temperature in a body is proportional to the temperature difference between ne body and its surroundings. This statement is known as *Newton's law of poling*, which can be mathematically expressed as

$$\frac{dT}{dt} = -k(T - T_s),\tag{120}$$

here T is the temperature of the body, T_s is the temperature of the surroundings, is time, and k is a positive constant. Equation (120) is primarily viewed as a empirical law, valid when heat is efficiently convected away from the surface t the body by a flowing fluid such as air at constant temperature T_s . The eat transfer coefficient t reflects the transfer of heat from the body to the irroundings and must be determined from physical experiments.

We must obviously have an initial condition $T(0) = T_0$ in addition to the poling law (120).

1.6 Decay of atmospheric pressure with altitude

ertical equilibrium of air in the atmosphere is governed by the equation

$$\frac{dp}{dz} = -\varrho g. (121)$$

Lere, p(z) is the air pressure, ϱ is the density of air, and $g = 9.807 \text{ m/s}^2$ is a candard value of the acceleration of gravity. (Equation (121) follows directly om the general Navier-Stokes equations for fluid motion, with the assumption 121 the air does not move.)

The pressure is related to density and temperature through the ideal gas law

$$\varrho = \frac{Mp}{R^*T},\tag{122}$$

here M is the molar mass of the Earth's air (0.029 kg/mol), R^* is the universal as constant (8.314 Nm/(mol K)), and T is the temperature. All variables p, ϱ , and T vary with the height z. Inserting (122) in (121) results in an ODE with a ariable coefficient:

$$\frac{dp}{dz} = -\frac{Mg}{R^*T(z)}p. (123)$$

fultiple atmospheric layers. The atmosphere can be approximately moded by seven layers. In each layer, (123) is applied with a linear temperature of ne form

$$T(z) = \bar{T}_i + L_i(z - h_i),$$

here $z = h_i$ denotes the bottom of layer number i, having temperature \bar{T}_i , and i is a constant in layer number i. The table below lists h_i (m), \bar{T}_i (K), and L_i ζ/m) for the layers $i = 0, \ldots, 6$.

i	h_i	\bar{T}_i	L_i
0	0	288	-0.0065
1	11,000	216	0.0
2	20,000	216	0.001
3	32,000	228	0.0028
4	47,000	270	0.0
5	51,000	270	-0.0028
6	71,000	214	-0.002

For implementation it might be convenient to write (123) on the form

$$\frac{dp}{dz} = -\frac{Mg}{R^*(\bar{T}(z) + L(z)(z - h(z)))}p,$$

where $\bar{T}(z)$, L(z), and h(z) are piecewise constant functions with values the table. The value of the pressure at the sea level z=0, $p_0=p(0)$, is Pa.

Simplification: L = 0. One commonly used simplification is to assu the temperature is constant within each layer. This means that L = 0.

Simplification: one-layer model. Another commonly used approx is to work with one layer instead of seven. This one-layer model⁸⁹ is b $T(z) = T_0 - Lz$, with sea level standard temperature $T_0 = 288$ K and temp lapse rate L = 0.0065 K/m.

11.7 Compaction of sediments

Sediments, originally made from materials like sand and mud, get conthrough geological time by the weight of new material that is deposited sea bottom. The porosity ϕ of the sediments tells how much void (fluid there is between the sand and mud grains. The porosity reduces with because the weight of the sediments above and causes the void space to and thereby increase the compaction.

A typical assumption is that the change in ϕ at some depth z is ne proportional to ϕ . This assumption leads to the differential equation properties of the differential equation of the

$$\frac{d\phi}{dz} = -c\phi, \quad \phi(0) = \phi_0,$$

where the z axis points downwards, z=0 is the surface with known I and c>0 is a constant.

The upper part of the Earth's crust consists of many geological layers on top of each other, as indicated in Figure 23. The model (125) can be for each layer. In layer number i, we have the unknown porosity functifulfilling $\phi'_i(z) = -c_i z$, since the constant c in the model (125) dependent type of sediment in the layer. From the figure we see that new be sediments are deposited on top of older ones as time progresses. The com as measured by ϕ , is rapid in the beginning and then decreases (exponential type) with depth in each layer.

⁸⁹http://en.wikipedia.org/wiki/Density_of_air

igure 23: Illustration of the compaction of geological layers (with different plors) through time.

When we drill a well at present time through the right-most column of ediments in Figure 23, we can measure the thickness of the sediment in (say) the ottom layer. Let L_1 be this thickness. Assuming that the volume of sediment mains constant through time, we have that the initial volume, $\int_0^{L_{1,0}} \phi_1 dz$, must qual the volume seen today, $\int_{\ell-L_1}^{\ell} \phi_1 dz$, where ℓ is the depth of the bottom of 12 sediment in the present day configuration. After having solved for ϕ_1 as a unction of z, we can then find the original thickness $L_{1,0}$ of the sediment from 12 nequation

$$\int_0^{L_{1,0}} \phi_1 dz = \int_{\ell-L_1}^{\ell} \phi_1 dz.$$

1 hydrocarbon exploration it is important to know $L_{1,0}$ and the compaction istory of the various layers of sediments.

1.8 Vertical motion of a body in a viscous fluid

body moving vertically through a fluid (liquid or gas) is subject to three ifferent types of forces: the gravity force, the drag force⁹⁰, and the buoyancy orce.

In Proof Solution Verview of forces. The gravity force is $F_g = -mg$, where m is the mass of the body and g is the acceleration of gravity. The uplift or buoyancy force Archimedes force") is $F_b = \varrho gV$, where ϱ is the density of the fluid and V is

90http://en.wikipedia.org/wiki/Drag_(physics)

the volume of the body. Forces and other quantities are taken as positiv upward direction.

The drag force is of two types, depending on the Reynolds number

$$\operatorname{Re} = \frac{\varrho d|v|}{\mu},$$

where d is the diameter of the body in the direction perpendicular to the is the velocity of the body, and μ is the dynamic viscosity of the fluid Re < 1, the drag force is fairly well modeled by the so-called Stokes' drag for a spherical body of diameter d reads

$$F_d^{(S)} = -3\pi d\mu v.$$

For large Re, typically Re $> 10^3$, the drag force is quadratic in the velo

$$F_d^{(q)} = -\frac{1}{2}C_D \varrho A|v|v,$$

where C_D is a dimensionless drag coefficient depending on the body's and A is the cross-sectional area as produced by a cut plane, perpendithe motion, through the thickest part of the body. The superscripts q a $F_d^{(S)}$ and $F_d^{(q)}$ indicate Stokes drag and quadratic drag, respectively.

Equation of motion. All the mentioned forces act in the vertical d Newton's second law of motion applied to the body says that the sum forces must equal the mass of the body times its acceleration a in the direction.

$$ma = F_g + F_d^{(S)} + F_b.$$

Here we have chosen to model the fluid resistance by the Stokes drag. It the expressions for the forces yields

$$ma = -mg - 3\pi d\mu v + \varrho gV.$$

The unknowns here are v and a, i.e., we have two unknowns but o equation. From kinematics in physics we know that the acceleration is t derivative of the velocity: a = dv/dt. This is our second equation. We call eliminate a and get a single differential equation for v:

$$m\frac{dv}{dt} = -mg - 3\pi d\mu v + \varrho gV.$$

A small rewrite of this equation is handy: We express m as $\varrho_b V$, where ℓ density of the body, and we divide by the mass to get

$$v'(t) = -\frac{3\pi d\mu}{\varrho_b V} v + g \left(\frac{\varrho}{\varrho_b} - 1\right).$$

le may introduce the constants

$$a = \frac{3\pi d\mu}{\varrho_b V}, \quad b = g\left(\frac{\varrho}{\varrho_b} - 1\right),$$
 (130)

that the structure of the differential equation becomes obvious:

$$v'(t) = -av(t) + b. (131)$$

he corresponding initial condition is $v(0) = v_0$ for some prescribed starting elocity v_0 .

This derivation can be repeated with the quadratic drag force $F_d^{(q)}$, leading the result

$$v'(t) = -\frac{1}{2}C_D \frac{\varrho A}{\varrho_b V} |v| v + g\left(\frac{\varrho}{\varrho_b} - 1\right). \tag{132}$$

efining

$$a = \frac{1}{2} C_D \frac{\varrho A}{\varrho_b V},\tag{133}$$

nd b as above, we can write (132) as

$$v'(t) = -a|v|v + b. (134)$$

'erminal velocity. An interesting aspect of (131) and (134) is whether v will pproach a final constant value, the so-called *terminal velocity* v_T , as $t \to \infty$. A postant v means that $v'(t) \to 0$ as $t \to \infty$ and therefore the terminal velocity v_T solves

$$0 = -av_T + b$$

nd

$$0 = -a|v_T|v_T + b.$$

he former equation implies $v_T = b/a$, while the latter has solutions $v_T = \sqrt{|b|/a}$ for a falling body $(v_T < 0)$ and $v_T = \sqrt{b/a}$ for a rising body $(v_T > 0)$.

Crank-Nicolson scheme. Both governing equations, the Stokes' drag nodel (131) and the quadratic drag model (134), can be readily solved by the orward Euler scheme. For higher accuracy one can use the Crank-Nicolson nethod, but a straightforward application this method results a nonlinear quation in the new unknown value v^{n+1} when applied to (134):

$$\frac{v^{n+1} - v^n}{\Delta t} = -a\frac{1}{2}(|v^{n+1}|v^{n+1} + |v^n|v^n) + b.$$
 (135)

lowever, instead of approximating the term -|v|v by an arithmetic average, we an use a geometric mean:

$$(|v|v)^{n+\frac{1}{2}} \approx |v^n|v^{n+1}$$
.

The error is of second order in Δt , just as for the arithmetic average centered finite difference approximation in (135). With this approximation the discrete equation

$$\frac{v^{n+1} - v^n}{\Delta t} = -a|v^n|v^{n+1} + b$$

becomes a *linear* equation in v^{n+1} , and we can therefore easily solve fo

$$v^{n+1} = \frac{v_n + \Delta t b^{n+\frac{1}{2}}}{1 + \Delta t a^{n+\frac{1}{2}} |v^n|}$$

Physical data. Suitable values of μ are $1.8 \cdot 10^{-5}$ Pa's for air and $8.9 \cdot 10$ for water. Densities can be taken as 1.2 kg/m^3 for air and as $1.0 \cdot 10^3$ kg water. For considerable vertical displacement in the atmosphere one sho into account that the density of air varies with the altitude, see Secti One possible density variation arises from the one-layer model in the me section.

Any density variation makes b time dependent and we need $b^{n+\frac{1}{2}}$ in To compute the density that enters $b^{n+\frac{1}{2}}$ we must also compute the position z(t) of the body. Since v=dz/dt, we can use a centered disapproximation:

$$\frac{z^{n+\frac{1}{2}} - z^{n-\frac{1}{2}}}{\Delta t} = v^n \quad \Rightarrow \quad z^{n+\frac{1}{2}} = z^{n-\frac{1}{2}} + \Delta t \, v^n \,.$$

This $z^{n+\frac{1}{2}}$ is used in the expression for b to compute $\varrho(z^{n+\frac{1}{2}})$ and then The drag coefficient⁹¹ C_D depends heavily on the shape of the body values are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0. long cylinder (when the center axis is in the vertical direction), 0.75 for a 1.0-1.3 for a man in upright position, 1.3 for a flat plate perpendicula flow, and 0.04 for a streamlined, droplet-like body.

Verification. To verify the program, one may assume a heavy bod such that the F_b force can be neglected, and further assume a small such that the air resistance F_d can also be neglected. This can be obtasetting μ and ϱ to zero. The motion then leads to the velocity v(t) = which is linear in t and therefore should be reproduced to machine p (say tolerance 10^{-15}) by any implementation based on the Crank-Nico-Forward Euler schemes.

Another verification, but not as powerful as the one above, can be be computing the terminal velocity and comparing with the exact expression advantage of this verification is that we can also the test situation $\varrho \neq$

⁹¹http://en.wikipedia.org/wiki/Drag_coefficient

As always, the method of manufactured solutions can be applied to test the nplementation of all terms in the governing equation, but the solution then has o physical relevance in general.

caling. Applying scaling, as described in Section 11.1, will for the linear case educe the need to estimate values for seven parameters down to choosing one alue of a single dimensionless parameter

$$\beta = \frac{\varrho_b g V \left(\frac{\varrho}{\varrho_b} - 1\right)}{3\pi d\mu I},$$

rovided $I \neq 0$. If the motion starts from rest, I=0, the scaled problem $'=1-\bar{u},\,\bar{u}(0)=0$, has no need for estimating physical parameters. This means nat there is a single universal solution to the problem of a falling body starting om rest: $\bar{u}(t)=1-e^{-\bar{t}}$. All real physical cases correspond to stretching the \bar{t} xis and the \bar{u} axis in this dimensionless solution. More precisely, the physical elocity u(t) is related to the dimensionless velocity $\bar{u}(\bar{t})$ through

$$u = \frac{\varrho_b g V \left(\frac{\varrho}{\varrho_b} - 1\right)}{3\pi d\mu} \bar{u}(t/(g(\varrho/\varrho_b - 1))).$$

1.9 Decay ODEs from solving a PDE by Fourier expansions

uppose we have a partial differential equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x, t),$$

ith boundary conditions u(0,t)=u(L,t)=0 and initial condition u(x,0)=(x). One may express the solution as

$$u(x,t) = \sum_{k=1}^{m} A_k(t)e^{ikx\pi/L},$$

or appropriate unknown functions A_k , $k=1,\ldots,m$. We use the complex sponential $e^{ikx\pi/L}$ for easy algebra, but the physical u is taken as the real art of any complex expression. Note that the expansion in terms of $e^{ikx\pi/L}$ is ampatible with the boundary conditions: all functions $e^{ikx\pi/L}$ vanish for x=0 and x=L. Suppose we can express I(x) as

$$I(x) = \sum_{k=1}^{m} I_k e^{ikx\pi/L} .$$

uch an expansion can be computed by well-known Fourier expansion techniques, ut the details are not important here. Also, suppose we can express the given (x,t) as

$$f(x,t) = \sum_{k=1}^{m} b_k(t)e^{ikx\pi/L}.$$

Inserting the expansions for u and f in the differential equations demar all terms corresponding to a given k must be equal. The calculations rethe follow system of ODEs:

$$A'_k(t) = -\alpha \frac{k^2 \pi^2}{L^2} + b_k(t), \quad k = 1, \dots, m.$$

From the initial condition

$$u(x,0) = \sum_{k} A_k(0)e^{ikx\pi/L} = I(x) = \sum_{k} I_k e^{(ikx\pi/L)},$$

it follows that $A_k(0) = I_k$, k = 1, ..., m. We then have m equations of t $A'_k = -aA_k + b$, $A_k(0) = I_k$, for appropriate definitions of a and b. The problems independent each other such that we can solve one problem at The outline technique is a quite common approach for solving partial diffequations.

Remark. Since a_k depends on k and the stability of the Forward Euler demands $a_k \Delta t \leq 1$, we get that $\Delta t \leq \alpha^{-1} L^2 \pi^{-2} k^{-2}$. Usually, quite values are needed to accurately represent the given functions I and f and needs to be very small for these large values of k. Therefore, the Crank-1 and Backward Euler schemes, which allow larger Δt without any growt solutions, are more popular choices when creating time-stepping algorit partial differential equations of the type considered in this example.

12 Exercises and Projects

Exercise 24: Simulate an oscillating cooling process

The surrounding temperature T_s in Newton's law of cooling (120) may time. Assume that the variations are periodic with period P and amp around a constant mean temperature T_m :

$$T_s(t) = T_m + a \sin\left(\frac{2\pi}{P}t\right)$$
.

Simulate a process with the following data: $k = 20 \text{ min}^{-1}$, T(0) = 5 C, C, a = 2.5 C, and P = 1 h. Also experiment with P = 10 min and I Plot T and T_s in the same plot. Filename: osc_cooling.py.

Exercise 25: Radioactive decay of Carbon-14

The Carbon- 14^{92} isotope, whose radioactive decay is used extensively ir organic material that is tens of thousands of years old, has a half-life $\mathfrak c$ years. Determine the age of an organic material that contains 8.4 perce initial amount of Carbon-14. Use a time unit of 1 year in the computatio uncertainty in the half time of Carbon-14 is ± 40 years. What is the corresuncertainty in the estimate of the age?

⁹²http://en.wikipedia.org/wiki/Carbon-14

lint. Use simulations with $5,730 \pm 40$ y as input and find the corresponding iterval for the result.

Filename: carbon14.py.

Exercise 26: Simulate stochastic radioactive decay

he purpose of this exercise is to implement the stochastic model described in ection 11.4 and show that its mean behavior approximates the solution of the orresponding ODE model.

The simulation goes on for a time interval [0,T] divided into N_t intervals of ength Δt . We start with N_0 atoms. In some time interval, we have N atoms at have survived. Simulate N Bernoulli trials with probability $\lambda \Delta t$ in this iterval by drawing N random numbers, each being 0 (survival) or 1 (decay), here the probability of getting 1 is $\lambda \Delta t$. We are interested in the number f decays, d, and the number of survived atoms in the next interval is then I-d. The Bernoulli trials are simulated by drawing N uniformly distributed eal numbers on [0, 1] and saving that 1 corresponds to a value less than $\lambda \Delta t$:

```
# Given lambda_, dt, N
import numpy as np
iniform = np.random.uniform(N)
Sernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)</pre>
l = Bernoulli trials.size
```

bserve that uniform < lambda_*dt is a boolean array whose true and false alues become 1 and 0, respectively, when converted to an integer array.

Repeat the simulation over [0,T] a large number of times, compute the verage value of N in each interval, and compare with the solution of the orresponding ODE model. Filename: stochastic_decay.py.

Exercise 27: Radioactive decay of two substances

onsider two radioactive substances A and B. The nuclei in substance A decay) form nuclei of type B with a half-life $A_{1/2}$, while substance B decay to form The A nuclei with a half-life $B_{1/2}$. Letting u_A and u_B be the fractions of the itial amount of material in substance A and B, respectively, the following stem of ODEs governs the evolution of $u_A(t)$ and $u_B(t)$:

$$\frac{1}{\ln 2}u'_A = u_B/B_{1/2} - u_A/A_{1/2},$$

$$\frac{1}{\ln 2}u'_B = u_A/A_{1/2} - u_B/B_{1/2},$$
(139)

$$\frac{1}{\ln 2}u_B' = u_A/A_{1/2} - u_B/B_{1/2},\tag{140}$$

ith $u_A(0) = u_B(0) = 1$.

Make a simulation program that solves for $u_A(t)$ and $u_B(t)$. Verify the nplementation by computing analytically the limiting values of u_A and u_B s $t \to \infty$ (assume $u_A', u_B' \to 0$) and comparing these with those obtained umerically.

Run the program for the case of $A_{1/2} = 10$ minutes and $B_{1/2} = 50$ minutes. se a time unit of 1 minute. Plot u_A and u_B versus time in the same plot. ilename: radioactive_decay_2subst.py.

Exercise 28: Simulate the pressure drop in the atmos

We consider the models for atmospheric pressure in Section 11.6. Make a p with three functions.

- one computing the pressure p(z) using a seven-layer model and va
- one computing p(z) using a seven-layer model, but with constant t ture in each layer, and
- one computing p(z) based on the one-layer model.

How can these implementations be verified? Should ease of verification how you code the functions? Compare the three models in a plot. Fi atmospheric_pressure.py.

Exercise 29: Make a program for vertical motion in a

Implement the Stokes' drag model (129) and the quadratic drag mod from Section 11.8, using the Crank-Nicolson scheme and a geometric n |v|v as explained, and assume constant fluid density. At each time level, ϵ the Reynolds number Re and choose the Stokes' drag model if Re < 1quadratic drag model otherwise.

The computation of the numerical solution should take place either in alone function (as in Section 2.1) or in a solver class that looks up a p class for physical data (as in Section 3.6). Create a module (see Section 3.6). equip it with nose tests (see Section 3.4) for automatically verifying the

Verification tests can be based on

- the terminal velocity (see Section 11.8).
- the exact solution when the drag force is neglected (see Section 1
- the method of manufactured solutions (see Section 8.5) combin computing convergence rates (see Section 2.8).

Use, e.g., a quadratic polynomial for the velocity in the method of manut solutions. The expected error is $\mathcal{O}(\Delta t^2)$ from the centered finite di approximation and the geometric mean approximation for |v|v.

A solution that is linear in t will also be an exact solution of the equations in many problems. Show that this is true for linear drag (by a source term that depends on t), but not for quadratic drag because geometric mean approximation. Use the method of manufactured solu add a source term in the discrete equations for quadratic drag such that function of t is a solution. Add a nose test for checking that the linear f is reproduced to machine precision in the case of both linear and quadra

Apply the software to a case where a ball rises in water. The buoyan is here the driving force, but the drag will be significant and balance the forces after a short time. A soccer ball has radius 11 cm and mass 0.43 k the motion from rest, set the density of water, ρ , to 1000 kg/m³, set the α viscosity, μ , to 10^{-3} Pa s, and use a drag coefficient for a sphere: 0.45. velocity of the rising ball. Filename: vertical motion.pv.

'roject 30: Simulate parachuting

he aim of this project is to develop a general solver for the vertical motion of a ody with quadratic air drag, verify the solver, apply the solver to a skydiver in ee fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be realized as ython functions and/or classes and collected in one module.

-) Set up the differential equation problem that governs the velocity of the lotion. The parachute jumper is subject to the gravity force and a quadratic rag force. Assume constant density. Add an extra source term be used for rogram verification. Identify the input data to the problem.
-) Make a Python module for computing the velocity of the motion. Also quip the module with functionality for plotting the velocity.
- **lint 1.** Use the Crank-Nicolson scheme with a geometric mean of |v|v in time plinearize the equation of motion with quadratic drag.
- lint 2. You can either use functions or classes for implementation. If you noose functions, make a function solver that takes all the input data in the roblem as arguments and that returns the velocity (as a mesh function) and ne time mesh. In case of a class-based implementation, introduce a problem lass with the physical data and a solver class with the numerical data and a plye method that stores the velocity and the mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula for the rag force.

-) Show that a linear function of t does not fulfill the discrete equations because f the geometric mean approximation used for the quadratic drag term. Fit source term, as in the method of manufactured solutions, such that a linear motion of t is a solution of the discrete equations. Make a nose test to check not this solution is reproduced to machine precision.
-) The expected error in this problem goes like Δt^2 because we use a cenered finite difference approximation with error $\mathcal{O}(\Delta t^2)$ and a geometric mean pproximation with error $\mathcal{O}(\Delta t^2)$. Use the method of manufactured solutions ombined with computing convergence rate to verify the code. Make a nose test or checking that the convergence rate is correct.
-) Compute the drag force, the gravity force, and the buoyancy force as a motion of time. Create a plot with these three forces.
- lint. You can either make a function forces(v, t, plot=None) that returns ne forces (as mesh functions) and t and shows a plot on the screen and also aves the plot to a file with name plot if plot is not None, or you can extend ne solver class with computation of forces and include plotting of forces in the isualization class.
- Compute the velocity of a skydiver in free fall before the parachute opens.

- **Hint.** Meade and Struthers [5] provide some data relevant to skydiving mass of the human body and equipment can be set to 100 kg. A sky spread-eagle formation has a cross-section of $0.5~\mathrm{m}^2$ in the horizontal pla density of air decreases varies altitude, but can be taken as constant, 1 for altitudes relevant to skydiving (0-4000 m). The drag coefficient for a upright position can be set to 1.2. Start with a zero velocity. A free fall t has a terminating velocity of $45~\mathrm{m/s}$. (This value can be used to tur parameters.)
- g) The next task is to simulate a parachute jumper during free fall at the parachute opens. At time t_p , the parachute opens and the drag co and the cross-sectional area change dramatically. Use the program to sir jump from z=3000 m to the ground z=0. What is the maximum acce measured in units of g, experienced by the jumper?

Hint. Following Meade and Struthers [5], one can set the cross-secti perpendicular to the motion to 44 m² when the parachute is open. that it takes 8 s to increase the area linearly from the original to the fin The drag coefficient for an open parachute can be taken as 1.8, but tune the known value of the typical terminating velocity reached before land m/s. One can take the drag coefficient as a piecewise constant function abrupt change at t_p . The parachute is typically released after $t_p = 6$ larger values of t_p can be used to make plots more illustrative.

Filename: skydiving.py.

Exercise 31: Formulate vertical motion in the atmosp

Vertical motion of a body in the atmosphere needs to take into account a air density if the range of altitudes is many kilometers. In this case, ϱ var the altitude z. The equation of motion for the body is given in Section 1 us assume quadratic drag force (otherwise the body has to be very, very A differential equation problem for the air density, based on the informathe one-layer atmospheric model in Section 11.6, can be set up as

$$p'(z) = -\frac{Mg}{R^*(T_0 + Lz)}p,$$
$$\varrho = p\frac{M}{R^*T}.$$

To evaluate p(z) we need the altitude z. From the principle that the ve the derivative of the position we have that

$$z'(t) = v(t),$$

where v is the velocity of the body.

Explain in detail how the governing equations can be discretized by ward Euler and the Crank-Nicolson methods. Filename: falling in var

⁹³http://en.wikipedia.org/wiki/Parachuting

exercise 32: Simulate vertical motion in the atmosphere

nplement the Forward Euler or the Crank-Nicolson scheme derived in Exerse 31. Demonstrate the effect of air density variation on a falling human, e.g., 12 famous fall of Felix Baumgartner 194. The drag coefficient can be set to 1.2.

temark. In the Crank-Nicolson scheme one must solve a 3×3 system of quations at each time level, since p, ϱ , and v are coupled, while each equation an be stepped forward at a time with the Forward Euler scheme. Filename: alling_in_variable_density.py.

lxercise 33: Compute y = |x| by solving an ODE

onsider the ODE problem

$$y'(x) = \begin{cases} -1, & x < 0, \\ 1, & x \ge 0 \end{cases} \quad x \in (-1, 1], \quad y(1-) = 1,$$

hich has the solution y(x) = |x|. Using a mesh $x_0 = -1$, $x_1 = 0$, and $x_1 = 1$, calculate by hand $x_2 = 1$, rank-Nicolson, and Leapfrog methods. Use all of the former three methods for omputing the $x_1 = 1$ value to be used in the Leapfrog calculation of $x_2 = 1$. Thereafter, is unlike how these schemes perform for a uniformly partitioned mesh with $x_1 = 10$ and $x_2 = 10$ and $x_3 = 11$ points. Filename: signum.py.

exercise 34: Simulate growth of a fortune with random atterest rate

he goal of this exercise is to compute the value of a fortune subject to inflation and a random interest rate. Suppose that the inflation is constant at i percent er year and that the annual interest rate, p, changes randomly at each time ep, starting at some value p_0 at t=0. The random change is from a value p^n t $t=t_n$ to $p_n+\Delta p$ with probability 0.25 and $p_n-\Delta p$ with probability 0.25. o change occurs with probability 0.5. There is also no change if p^{n+1} exceeds 5 or becomes below 1. Use a time step of one month, $p_0=i$, initial fortune called to 1, and simulate 1000 scenarios of length 20 years. Compute the mean volution of one unit of money and the corresponding standard deviation. Plot ne mean curve along with the mean plus one standard deviation and the mean ninus one standard deviation. This will illustrate the uncertainty in the mean urve.

lint 1. The following code snippet computes p^{n+1} :

```
import random
lef new_interest_rate(p_n, dp=0.5):
    r = random.random()  # uniformly distr. random number in [0,1)
    if 0 <= r < 0.25:
        p_np1 = p_n + dp
    elif 0.25 <= r < 0.5:</pre>
```

```
p_np1 = p_n - dp
else:
    p_np1 = p_n
return (p_np1 if 1 <= p_np1 <= 15 else p_n)</pre>
```

Hint 2. If $u_i(t)$ is the value of the fortune in experiment number $0, \ldots, N-1$, the mean evolution of the fortune is

$$\bar{u}(t) = \frac{1}{N} \sum_{i=0}^{N-1} u_i(t),$$

and the standard deviation is

$$s(t) = \sqrt{\frac{1}{N-1} \left(-(\bar{u}(t))^2 + \sum_{i=0}^{N-1} (u_i(t))^2 \right)}.$$

Suppose $u_i(t)$ is stored in an array u. The mean and the standard do of the fortune is most efficiently computed by using two accumulation $sum_u a$ and $sum_u a$, and performing $sum_u += u$ and $sum_u a += u**2$ aft experiment. This technique avoids storing all the $u_i(t)$ time series for conthe statistics.

Filename: random_interest.py.

Exercise 35: Simulate a population in a changing en ment

We shall study a population modeled by (113) where the environment, repriby r and f, undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death) time $t = t_r$, because of limited nutrition or food supply:

$$a(t) = \begin{cases} r_0, & t < t_r, \\ r_0 - A, & t \ge t_r, \end{cases}$$

This drop in population growth is compensated by a sudden net immigr time $t_f > t_r$:

$$f(t) = \begin{cases} 0, & t < t_f, \\ f_0, & t \ge t_a, \end{cases}$$

Start with r_0 and make $A > r_0$. Experiment with these and other part to illustrate the interplay of growth and decay in such a problem. Fi population_drop.py.

b) Now we assume that the environmental conditions changes periodica time so that we may take

$$r(t) = r_0 + A \sin\left(\frac{2\pi}{P}t\right) .$$

⁹⁴http://en.wikipedia.org/wiki/Felix_Baumgartner

hat is, the combined birth and death rate oscillates around r_0 with a maximum range of $\pm A$ repeating over a period of length P in time. Set f=0 and speriment with the other parameters to illustrate typical features of the solution. ilename: population_osc.py.

exercise 36: Simulate logistic growth

olve the logistic ODE (114) using a Crank-Nicolson scheme where $(u^{n+\frac{1}{2}})^2$ is pproximated by a geometric mean:

$$(u^{n+\frac{1}{2}})^2 \approx u^{n+1}u^n$$
.

his trick makes the discrete equation linear in u^{n+1} . Filename: logistic_CN.py.

exercise 37: Rederive the equation for continuous com-

he ODE model (117) was derived under the assumption that r was constant. erform an alternative derivation without this assumption: 1) start with (115);) introduce a time step Δt instead of m: $\Delta t = 1/m$ if t is measured in ears; 3) divide by Δt and take the limit $\Delta t \to 0$. Simulate a case where the iflation is at a constant level I percent per year and the interest rate oscillates: $= -I/2 + r_0 \sin(2\pi t)$. Compare solutions for $r_0 = I, 3I/2, 2I$. Filename: nterest_modeling.py.

References

- D. Griffiths, F. David, and D. J. Higham. Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, 2010.
- !] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, 1993.
- G. Hairer and E. Wanner. Solving Ordinary Differential Equations II. Springer, 2010.
- [] H. P. Langtangen. A Primer on Scientific Programming With Python. Texts in Computational Science and Engineering. Springer, third edition, 2012.
- D. B. Meade and A. A. Struthers. Differential equations in the new millenium: the parachute problem. *International Journal of Engineering Education*, 15(6):417–424, 1999.
- [5] L. Petzold and U. M. Ascher. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, volume 61. SIAM, 1998.

Index

θ -rule, 13, 14, 100	EPS plot, 30
	error
A-stable methods, 85	amplification factor, 88
Adams-Bashforth scheme, 2nd-order,	global, 88
103	norms, 28
Adams-Bashforth scheme, 3rd order,	explicit schemes, 100
103	exponential decay, 6
adaptive time stepping, 108	r
algebraic equation, 9	finite difference operator notat
amplification factor, 84	finite difference scheme, 9
argparse (Python module), 36	finite differences, 9
ArgumentParser (Python class), 36	backward, 11
array arithmetics, 26	centered, 12
array computing, 26	forward, 9
averaging	folder, 17
arithmetic, 12	format string syntax (Python)
	forward difference, 9
geometric, 123	Forward Euler scheme, 9
backward difference 11	For ward Edier scheme, 3
backward difference, 11	geometric mean, 123
Backward Euler scheme, 11	grid, 7
backward scheme, 1-step, 11	Sira, i
backward scheme, 2-step, 101	Heun's method, 102
BDF2 scheme, 101	,
contanad difference 12	implicit schemes, 100
centered difference, 12	importing modules, 48
command-line arguments, 34 command-line options and values, 36	
=	L-stable methods, 85
consistency, 91	lambda functions, 96
continuous function norms, 26	Leapfrog scheme, 101
convergence, 91	Leapfrog scheme, filtered, 101
convergence rate, 39	list comprehension, 35
Crank-Nicolson scheme, 12	logistic model, 115
cropping images, 31	
Jacob ODE 6	mesh, 7
decay ODE, 6	mesh function, 7
dictionary, 41	mesh function norms, 27
difference equation, 9	method of manufactured solution
directory, 17	MMS (method of manufactur
discrete equation, 9	tions), 97
discrete function norms, 27	modules, 46
doc strings, 20	montage program, 31
doctests, 49	_
Dormand-Prince Runge-Kutta 4-5 metho	
108	continuous, 26

discrete (mesh function), 27 ose testing of doctests, 56 ose tests, 51 umerical experiments, 64	unit testing, 51, 56 unittest, 56, 57 Unix wildcard notation, 67 user interfaces to programs, 34
de45, 108 perator notation, finite differences, 15 ption-value pairs (command line), 36 s.system, 67	verification, 42 viewing graphics files, 30 visualizer class, 60, 64 visualizing curves, 29
DF plot, 30 dfcrop program, 32 dfnup program, 32 dftk program, 32 lotting curves, 29 NG plot, 30 open (in subprocess module), 68 opulation dynamics, 114 rintf format, 21 roblem class, 58, 63	weighted average, 13 wildcard notation (Unix), 67 wrapper (code), 60
adioactive decay, 116 eading the command line, 34, 36 epresentative (mesh function), 26 K4, 103 unge-Kutta, 2nd-order scheme, 102 unge-Kutta, 4th-order scheme, 103	
calar computing, 28 caling, 125 cientific experiments, 64 cript, 65 oftware testing doctests, 49 nose, 51 nose w/doctests, 56 unit testing (class-based), 56 olver class, 60, 63 cability, 83, 91 ubprocess (Python module), 68 ys.argv, 35	
aylor-series methods (for ODEs), 102 erminal velocity, 123 est block (in Python modules), 48 estCase (class in unittest), 57 neta-rule, 13, 100	