Universidade federal do maranhão		Departamento de Informática - DEINS		3a AVALIAÇÃO)
Centro de Ciências Exata	Centro de Ciências Exatas e Tecnologia		Internet: www.deinf.ufma.br		
Disciplina: Teoria da Compu	tação	Curso: CIÊNO	IA DA COMPUTAÇÃO	T	
Código 5607.5	Carga Horária: 6	60 horas	Créditos: 4.0.0	MEDIA	
Professor: Luciano Reis Cou	itinho	Email: <u>lrc@deir</u>		Ti	>_
Terceira Avaliação: I	Prova Escrita	1	Data: 05 j	aneiro de 2015.	
Aluno: Mauson	Vascime	nto	Código:		
INSTRUÇÕES 🖔					
A prova deve ser realiz	zada individualmente	e sem consulta a li	vros, anotações, etc.	c 11	Ja
 A interpretação das que resposta sua interpretace 	iestões faz parte da a	ivaliação. Caso ach	e um enunciado ambíguo ou imp	preciso escreva na folh	a de
			folha de respostas (papel almaço)	que foi entregue junto	com
esta folha de enunciad	 Use obrigatoriame 	nte caneta para esc	rever as respostas. Respostas que	não se encontram na	folha
de respostas não serão		eção.			
O tempo total de prova	i e de 100 mm.				
QUESTÕES					
	recursivas de K	leene. As func	ões recursivas de KLEENI	E são funções paro	ciais
definidas a partir de tré	ès funções básicas	s – a função con	stante zero $\mathbf{Z}(x)=0$, a funçã	io sucessor $S(x)=x^{-1}$	+1 e
			ada $n, i \in \mathbb{N}$) – utiliza		
		mização de fun	ções. Por exemplo, a funçã	o soma(x,y) pode	ser
obtida a partir da segui					
1) $S(x)=x+1$	– função bási	ca sucessor			
2) $U_3(x,y,z)=z$	- função básic	ca <i>projeçao</i> n=3	e i=3		
3) $g_s(x,y,z)=S(U^3_3(x,y,4) U^1_1(x)=x$		o de 1) com 2) ca <i>projeção</i> n=1	o i=1		
5) $soma(x, 0)=U_1^1(x)$		ca projeçuo 11–1	1 6 1-1	,	
		cursão primitiv	a usando 4) e 3) no papel de	$f(x) \in g(x)$, resp.	
93(11)		out prima	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Um outro exemplo é a	definição da funç	ção mult(x,y):	7		
6) Z (x)=0	 função básio 				
7) $U_{1}^{3}(x,y,z)=x$		ca <i>projeçao</i> n=3			
) – composiçã	o de 5) com 7) e com 2)		
9) $mult(x, 0)=\mathbf{Z}(x)$	6 (8)		usando 8) e 6) no papel de	$f(x) \circ g(x)$	
$mult(x,y+1)=g_{m}(x,y,$	mull(x,y)) - rec	ursao primitiva	usando 8) e 8) no paper de	$f(x) \in g(x)$, resp.	
Dando continuidade	MOSTRE nasso	a passo como		()=x! e exponenci	acão
$exp(x,v)=x^y$ podem ser		Puodo Collin	as funções fatorial <i>fat</i> (x		-,40
podem ser			o as <u>funções fatorial <i>fat</i>(x</u> vas de KLEENE.		
2 (4 5 .) 77 1					
2. (1,5 pontos) Usando as	definidas como f	funções recursiv			rior,
mostre passo a passo c	definidas como f	funções recursiv ivas das funçõe	as de KLEENE. s soma(x,y) e mult(x,y) dad		rior,
mostre passo a passo c	definidas como f definições recurs omo é calculado	funções recursivivas das funçõe o valor <i>mult</i> (5,	ras de KLEENE. s soma(x,y) e mult(x,y) dao 3).	das na questão ante	
mostre passo a passo c 3. (1,5 pontos) Linguage	definidas como f definições recurs omo é calculado em lambda. Seja	funções recursivivas das funçõe o valor <i>mult</i> (5,	ras de KLEENE. s <i>soma</i> (x,y) e <i>mult</i> (x,y) dad 3). to infinito de variáveis. A	das na questão ante . linguagem de ter	mos
mostre passo a passo c 3. (1,5 pontos) Linguage lambda é o menor con	definidas como f definições recurs omo é calculado m lambda. Seja junto Λ definido	funções recursivivas das funçõe o valor <i>mult</i> (5, o V um conjunindutivamente	ras de KLEENE. s soma(x,y) e mult(x,y) dao 3).	das na questão ante . linguagem de ter de x é uma variáve	mos l em

sejam observadas. Para os termos lambda abaixo, reescreva-os tornando explícitos os parênteses que foram omitidos usando as conveções de notação discutidas em sala de aula a) $(x \times (x \times x) \times b)$ $(w \times (\lambda x) \times (\lambda x) \times b)$

a) $((x \times (x \times x) \times b)) ((w (\lambda x yz. (x x y z))) u) v) ((\omega (\lambda x . (\lambda y . (\lambda y$ contraído) ao termo resultante da substituição de x por N dentro do termo M, ou seja,

 $(\lambda x.M) N \triangleright_{\beta} M [x \leftarrow N]$

Esta reescrita é conhecida como regra de redução β, ou β-redução. Aplicando a regra de β-redução (renomeado variáveis quando necessário) reduza os termos abaixo, passo a passo, a um termo mínimo (forma normal β):

a) (λxy.x) (λu.u)

b) (λxy,y x) (u v) z w