

Author(s)	Bleick, Willard Evan.
Title	Orbital transfer in minimum time
Publisher	Monterey, California. Naval Postgraduate School
Issue Date	1962 08
URL	http://hdl.handle.net/10945/31838

This document was downloaded on April 28, 2015 at 03:54:44

<http://www.nps.edu/library>

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

<http://www.nps.edu/>

Willard E. Bleick

ORBITAL TRANSFER IN MINIMUM TIME

TA7
.U6
no. 34

UNITED STATES NAVAL POSTGRADUATE SCHOOL

ORBITAL TRANSFER IN MINIMUM TIME

by

Willard E. Bleick

Professor of Mathematics and Mechanics

RESEARCH PAPER NO. 34

August 1962

ORBITAL TRANSFER IN MINIMUM TIME

by

WILLARD E. BLEICK

Professor of Mathematics and Mechanics

Research Paper No. 34

UNITED STATES NAVAL POSTGRADUATE SCHOOL

Monterey, California

August 1962

ORBITAL TRANSFER IN MINIMUM TIME

W. E. BLEICK,* U. S. Naval Postgraduate School

1. Introduction. The problem of orbital transfer discussed here is that of scheduling the direction ρ of constant momentum thrust of a rocket, which loses mass at a constant rate, so that it transfers to an earth satellite orbit, with known elements of time, position and velocity, in a minimum time T after launching of the rocket. The launching conditions are assumed to be fixed. This situation is illustrated in Figure 1 for the case of a circular orbit. The sector angle B at which the rocket enters orbit will be called the rendezvous angle. To aid the discussion imaginary physical rendezvous of the rocket and satellite is assumed to occur at this angle. The time of rocket launch to achieve actual physical rendezvous can be determined, of course, only after both of the unknowns T and B have been found. The problem is set up as a calculus of variations problem of the Lagrange type, and is solved by an iterative process in which an initial approximation to the angle B is estimated.

A non-rotating Oxy rectangular coordinate system with origin at the earth's center is used. The coordinates and velocity components of the rocket and target satellite are denoted by x, y, u, v and X, Y, U, V respectively. For simplicity the equations of motion of rocket and target will be written in a "non-dimensional" form by the use of suitable units. The unit of length is taken as the

* Supported by the Office of Naval Research.

Fig. 1. Orbital transfer.

earth's equatorial radius, $R_e = 20,925,000$ feet. The unit taken for time t is the time required by a hypothetical earth satellite, in equatorial, circular, vacuum, sea level orbit, to traverse a sector of one radian. This unit of time is $\sqrt{R_e/g} = 13.459$ minutes, where $g = 32.086 \text{ ft./sec.}^2$ is the acceleration of gravity at the equator. The unit of velocity is then the speed of this hypothetical satellite. These units of length and time will always be understood, unless other, more conventional units are specifically mentioned.

2. Statement of the problem. The equations of motion of the rocket, in terms of the specified units of length and time, are

$$(1) \quad \begin{aligned}\varphi_1 &= \dot{u} - g_1 - a \cos p = 0 \\ \varphi_2 &= \dot{v} - g_2 - a \sin p = 0 \\ \varphi_3 &= \dot{x} - u = 0 \\ \varphi_4 &= \dot{y} - v = 0\end{aligned}$$

where $g_1 = -x/r^3$, $g_2 = -y/r^3$, $r^2 = x^2 + y^2$, $a = cm/g(1 - mt)$, where m is the constant fraction of initial gross rocket mass lost per unit of time, c is the constant speed of the emitted rocket gases, and g is the acceleration of gravity at the equator. The fixed initial conditions of the rocket trajectory are taken as

$$(2) \quad \begin{aligned}x(0) &= 0, \quad u(0) = v_1 = v_0 \cos \theta \\ y(0) &= 1, \quad v(0) = v_2 = v_0 \sin \theta.\end{aligned}$$

The terminal point of the rocket trajectory is variable with

$$(3) \quad x(T) = X(T), \quad y(T) = Y(T), \quad u(T) = U(T), \quad v(T) = V(T).$$

It is also assumed that the rocket thrust is turned off abruptly at time T . This discontinuity will lead to a trivial steering corner in the calculus of variations problem. Note that (1) and (3) imply that $\dot{U}(T) = -[X/R^3]_T = g_1(T)$ and $\dot{V}(T) = -[Y/R^3]_T = g_2(T)$ where $R = |\vec{x} X + \vec{y} Y|$.

The problem is to choose the control variable p to effect orbital transfer with $\int_0^T dt$ minimized, and to determine the corresponding rocket trajectory. This problem is equivalent to the Lagrange calculus of variations problem of requiring the integral

$$(4) \quad I = \int_0^T (1 + \lambda\varphi_1 + \mu\varphi_2 + \pi\varphi_3 + \rho\varphi_4) dt$$

to be stationary. In (4) the equations (1) are regarded as constraints with $\lambda(t)$, $\mu(t)$, $\pi(t)$, $\rho(t)$ introduced as continua of Lagrangian multipliers [1]. If the time coordinate of the varied terminal point is taken as $T + \Delta T$, the vanishing first variation [2] of I is

$$(5) \quad \delta I = \int_0^T [\lambda(\delta\dot{u} - g_{1x}\delta x - g_{1y}\delta y + a \sin p \delta p) + \pi(\delta\dot{x} - \delta u) + \mu(\delta\dot{v} - g_{2x}\delta x - g_{2y}\delta y - a \cos p \delta p) + \rho(\delta\dot{y} - \delta v)] dt + \int_T^{T+\Delta T} [1 + \lambda\delta\dot{u} + \mu\delta\dot{v} - (\lambda \cos p + \mu \sin p)\delta a] dt = 0$$

where the finite variation δa , $\delta \dot{u}$, $\delta \dot{v}$ terms in the integral from T to $T + \Delta T$, created by thrust termination at time T on the unvaried trajectory and at $T + \Delta T$ on the varied trajectory, cancel. On integrating by parts one obtains

$$(6) \quad \delta I = [\lambda \delta u + \mu \delta v + \pi \delta x + \rho \delta y]_T - \int_0^T [(\dot{\lambda} + \pi) \delta u + (\dot{\mu} + \rho) \delta v \\ + (\dot{\pi} + g_{1x} \lambda + g_{2x} \mu) \delta x + (\dot{\rho} + g_{1y} \lambda + g_{2y} \mu) \delta y \\ + a(\mu \cos p - \lambda \sin p) \delta p] dt + \Delta T = 0.$$

The variations of the dependent coordinates at the variable terminal point must be taken [2] as

$$(7) \quad \delta u(T) = (\dot{U} - \dot{u})_T \Delta T = -(a \cos p)_T \Delta T, \quad \delta x(T) = (\dot{X} - \dot{x})_T \Delta T = 0 \\ \delta v(T) = (\dot{V} - \dot{v})_T \Delta T = -(a \sin p)_T \Delta T, \quad \delta y(T) = (\dot{Y} - \dot{y})_T \Delta T = 0.$$

Substitution of (7) into (6), and application of the fundamental lemma of the calculus of variations and the theory of ordinary extrema, gives the Euler equations

$$(8) \quad \begin{aligned} \dot{\lambda} + \pi &= 0 \\ \dot{\mu} + \rho &= 0 \\ \dot{\pi} + g_{1x} \lambda + g_{2x} \mu &= 0 \\ \dot{\rho} + g_{1y} \lambda + g_{2y} \mu &= 0 \\ \tan p &= \mu/\lambda \end{aligned}$$

and the transversality condition

$$[a(\lambda \cos p + \mu \sin p)]_T = 1.$$

The first four homogeneous equations of the Euler equations (8) constitute the adjoint system [3] of the system of variation equations

$$(10) \quad \delta\varphi_1 = \delta\varphi_2 = \delta\varphi_3 = \delta\varphi_4 = 0$$

which are the coefficients of λ , μ , π , ρ in (5) equated to zero. The adjoint system has a matrix of coefficients which is the negative transpose of that of (10). The last of the Euler equations (8) requires that the control variable p be adjusted so that $\vec{a} = a(\vec{i} \cos p + \vec{j} \sin p)$, which is proportional to the rocket thrust, is continually parallel to the adjoint vector $\vec{\lambda} = \vec{i} \lambda + \vec{j} \mu$. The transversality condition (9), which may be written $(\vec{a} \cdot \vec{\lambda})_T = 1 > 0$, requires that \vec{a} and $\vec{\lambda}$ have the same sense. Since it is only the ratio of μ to λ which determines p , it is a trivial matter to scale them to satisfy the magnitude requirement of (9).

A solution of the problem obtained from (1) and (8) guarantees a stationary time of transfer. The nature of the problem is such that this stationary time is a minimum time.

3. Numerical solution. There is a constructive aspect of a modification of equation (6), first used by Bliss [4] in his work on differential corrections in ballistics, and applied recently by Faulkner [5] in an iterative fashion in optimum control problems. To find the desired modification of (6), assume that a solution of the systems (1) and (8) has been obtained, which does not necessarily satisfy the terminal conditions (3). Using this

solution and holding T constant, consider the variation of the vanishing integral

$$(11) \quad \int_0^T (\lambda\varphi_1 + \mu\varphi_2 + \pi\varphi_3 + \rho\varphi_4) dt = 0$$

with the terminal constraints (3) removed, so that the terminal variations $\delta u(T)$, $\delta v(T)$, $\delta x(T)$ and $\delta y(T)$ become free. Since λ , μ , π , ρ satisfy the adjoint system, and since there is now no steering corner due to thrust termination, one obtains

$$(12) \quad [\lambda\delta u + \mu\delta v + \pi\delta x + \rho\delta y]_T = \int_0^T a(-\lambda \sin p + \mu \cos p) \delta p dt \\ = \int_0^T \vec{\lambda} \cdot (\partial \vec{a} / \partial p) \delta p dt$$

where $\vec{a} = a(\vec{i} \cos p + \vec{j} \sin p)$. Equation (12), which is the desired modification of (6), is called the fundamental formula by Bliss [4], but is also known under the generic name of Green's formula [3]. By the use of (12) it is possible to generate the control parameters of a varied trajectory which, hopefully, comes closer to satisfying the desired terminal conditions (3). To do this, assume that the adjoint system has been solved to obtain a fundamental set of four linearly independent solutions given by the rows of

$$(13) \quad \text{Transpose of } B(t) = [\lambda_i(t) \ \mu_i(t) \ \pi_i(t) \ \rho_i(t)] \quad i = 1, 2, 3, 4$$

where $B(0) = I$ is the identity matrix. The solution $\vec{\lambda} = \vec{i} \lambda + \vec{j} \mu$ of the adjoint system, required to satisfy the last of the Euler

equations (8), is taken as the linear combination

$$(14) \quad \begin{aligned} \lambda &= \lambda_1 + l\lambda_2 + m\lambda_3 + n\lambda_4 \\ \mu &= \mu_1 + l\mu_2 + m\mu_3 + n\mu_4 \end{aligned}$$

so that the control angle p is determined by

$$(15) \quad \tan p = (\mu_1 + l\mu_2 + m\mu_3 + n\mu_4)/(\lambda_1 + l\lambda_2 + m\lambda_3 + n\lambda_4)$$

and its variation by

$$(16) \quad \delta p = [(\lambda\mu_2 - \mu\lambda_2)\delta l + (\lambda\mu_3 - \mu\lambda_3)\delta m + (\lambda\mu_4 - \mu\lambda_4)\delta n]/(\lambda^2 + \mu^2).$$

When (13) and (16) are substituted into (12) there results the system of Green's formulae

$$(17) \quad [\delta u \quad \delta v \quad \delta x \quad \delta y]_T B(T) = [0 \quad \delta l \quad \delta m \quad \delta n] A$$

where the elements of the matrix A are

$$(18) \quad a_{ij} = \int_0^T a(\lambda\mu_i - \mu\lambda_i)(\lambda\mu_j - \mu\lambda_j) dt / (\lambda^2 + \mu^2)^{3/2}.$$

The coordinates of the terminal point of the varied trajectory at time $T + \Delta T$ may be taken as $[u + \Delta u \quad v + \Delta v \quad x + \Delta x \quad y + \Delta y]_T$ where

$$(19) \quad [\Delta u \quad \Delta v \quad \Delta x \quad \Delta y]_T = [\delta u \quad \delta v \quad \delta x \quad \delta y]_T + [\dot{u} \quad \dot{v} \quad \dot{x} \quad \dot{y}]_T \Delta T.$$

In an effort to make this new terminal point come closer to satisfying the terminal conditions (3), one may take

$$(20) \quad [\Delta u \quad \Delta v \quad \Delta x \quad \Delta y]_T = [U - u \quad V - v \quad X - x \quad Y - y]_T + [\dot{U} \quad \dot{V} \quad \dot{X} \quad \dot{Y}]_T \Delta T.$$

Substitute (19) and (20) into (17) to obtain

$$(21) \quad [\dot{U} - \dot{u} \quad \dot{V} - \dot{v} \quad \dot{X} - \dot{x} \quad \dot{Y} - \dot{y}]_{T^{\Delta T}} + [0 \ \delta_1 \ \delta_m \ \delta_n] AB^{-1}(T) = [U - u \quad V - v \quad X - x \quad Y - y]_T$$

as the system of equations for the determination of ΔT , δ_1 , δ_m , δ_n on the varied trajectory. The Faulkner [5] scheme for the numerical solution of optimum control problems may now be stated: Make an initial guess for the values of T , l , m , n ; carry out a simultaneous numerical integration of the systems (1), (8) and (18) using the control variable of (15); solve the system (21) for ΔT and the changes in the control parameters; iterate until convergence is obtained. This program may be carried out in a matter of seconds on modern digital computers.

To give an example of this control optimization in the present problem a circular satellite orbit was assumed of radius $R = |\vec{i} X + \vec{j} Y| = 1.075699$, corresponding to an altitude of 300 statute miles above sea level. For this orbit $|\vec{i} U + \vec{j} V| = 1/\sqrt{R}$ and $|\vec{i} \dot{U} + \vec{j} \dot{V}| = 1/R^2$. The assumed rocket launching velocity was $v_0 = |\vec{i} V_1 + \vec{j} V_2| = 0.585402$, launch angle $\theta = 0.928084$ and rendezvous sector $B = 0.153840$ as in Figure 1. Also assumed were $c = 10000.9$ ft./sec. and $\dot{m} = 0.00360583$ sec.⁻¹. The odd appearance of these figures is related to the difficulty, explained in the next section, of obtaining the initial "guesses" $T = 0.289725$, $l = -0.223125$, $m = -29.9875$ and $n = 19.0847$. With this input the process converged in four iterations to the seven significant

Fig. 2. Trajectory and thrust directions.

figure results $T = 0.2894592$, $l = 0.1840054$, $m = -108.94383$, $n = 67.95886$ and $B = 0.1536015$. Figure 2 shows the resulting trajectory and rocket thrust directions for equal time intervals, excepting the interval terminating in transfer, which is reduced by one half.

4. The initial guesses. The domain of convergence of the iteration scheme of the last section appears to be rather limited in the present control problem, requiring initial guesses for T , l , m , n which make $[U-u \ V-v \ X-x \ Y-y]_T$ small in (21). In the numerical example given here, where the angle B is small and radius R nearly unity, the equations (1) can be linearized and an exact solution of the linearized transfer problem used to supply the input guesses required to solve the non-linear problem. The gravitational terms g_1 and g_2 of (1) were replaced by the linear terms in their Taylor expansions at $x = 0$, $y = 1$. The systems (1) and (8) then become uncoupled. Their solutions, using (2), are

(22)

$$\begin{aligned} x &= \int_0^t a \cos p \sin (t-w) dw + v_1 \sin t \\ u &= \int_0^t a \cos p \cos (t-w) dw + v_1 \cos t \\ \sqrt{2}y &= \int_0^t a \sin p \sinh \sqrt{2}(t-w) dw + v_2 \sinh \sqrt{2}t - (1/\sqrt{2}) \cosh \sqrt{2}t + 3/\sqrt{2} \\ v &= \int_0^t a \sin p \cosh \sqrt{2}(t-w) dw + v_2 \cosh \sqrt{2}t - (1/\sqrt{2}) \sinh \sqrt{2}t \\ \tan p &= [l \cosh \sqrt{2}t - (n/\sqrt{2}) \sinh \sqrt{2}t]/(\cos t - m \sin t). \end{aligned}$$

It will be of no avail to attempt to solve (22) and (3) for T , l , m , n by the Newton-Raphson method, since the Newton-Raphson equations are in fact the system (21) of the poorly convergent iterative routine of the last section. A substitute procedure of solving (22) and (3) for V_1 , V_2 , \dot{m} and B was used. When the transfer problem has been solved for a sufficient number of such sets (V_1, V_2, \dot{m}, B) , a basis will be at hand for obtaining desired rocket launching conditions by interpolation or extrapolation.

It can now be revealed that the numerical example of the last section really had its genesis in the assumptions $B = \pi/16$, $\theta = \pi/4$, $V_0 = 0.65$, $\dot{m} = 0.0025 \text{ sec.}^{-1}$ and $c = 10000 \text{ ft./sec.}$ It was estimated that $T = 0.3$, $l = 1.25$, $m = -1.0$ and $n = 9.5$ would satisfy (22) and (3). Using a cluster of five closely spaced points around (T, l, m, n) , a single application of regula falsi [6] was made in the hope of improving these values of T , l , m , n . The particular cluster chosen gave the output values $T = 0.289725$, $l = -0.223125$, $m = -29.9875$, $n = 19.0847$, which will be recognized as the initial guesses of the last section. The output residuals were $[X-x, Y-y, U-u, V-v]_T = [0.041389, -0.020160, 0.212093, -0.221912]$.

These residuals were then processed by the linear system

$$(23) \quad \begin{aligned} (X-x)_T &= \Delta V_1 \sin T - Y(T)dB + \Delta c \int_0^T a \cos p \sin (T-w)dw/c \\ (U-u)_T &= \Delta V_1 \cos T - V(T)dB + \Delta c \int_0^T a \cos p \cos (T-w)dw/c \\ \sqrt{2}(Y-y)_T &= \Delta V_2 \sinh \sqrt{2}T + \sqrt{2}X(T)dB + \Delta c \int_0^T a \sin p \sinh \sqrt{2}(T-w)dw/c \\ (V-v)_T &= \Delta V_2 \cosh \sqrt{2}T + U(T)dB + \Delta c \int_0^T a \sin p \cosh \sqrt{2}(T-w)dw/c, \end{aligned}$$

derived from (22) and (3) for the case of a circular orbit, to obtain $c + \Delta c$, launching conditions $V_1 + \Delta V_1$ and $V_2 + \Delta V_2$, and rendezvous sector $B + dB$ which will give small residuals. The value of $c + \Delta c$ turned out to be far from the desired 10000 ft./sec.

Instead of changing the value of c , the transformation

$$(24) \quad 10000 \ln [1 - (\dot{m} + \Delta \dot{m})T] = (c + \Delta c) \ln (1 - \dot{m}T),$$

which leaves the integral $\int_0^T \dot{m} dt$ invariant, was used to change \dot{m} and cause $c + \Delta c$ to approach 10000 ft./sec. on iterating (24), (22) and (23). Seven iterations produced the input values of V_1 , V_2 , c , \dot{m} and B used in the last section.

5. The problem of two fixed end points. The problem in which the conditions at both ends of the rocket trajectory are fixed, or the problem in which rocket and target satellite achieve actual physical rendezvous at a specified angle B , can also be solved by the methods presented here, but with greater convergence difficulties.

Acknowledgement. I am indebted to my colleague, Prof. Frank D. Faulkner, for suggesting the problem of this paper and for discussions of difficulties encountered.

References

1. R. Weinstock, Calculus of Variations, McGraw-Hill, New York, 1952, pp. 57-60.
2. H. Lass, Elements of Pure and Applied Mathematics, McGraw-Hill, New York, 1957, pp. 293-294.

3. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955, pp. 84-86.
4. G. A. Bliss, Mathematics for Exterior Ballistics, Wiley, New York, 1944, p. 68.
5. G. Leitman, editor, Optimization Techniques, Academic Press, New York, 1962, chap. 2.
6. A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960, pp. 146-147.

CDC-1604 ASSEMBLY LANGUAGE COMPUTER PROGRAM

Set content of K100+1 = SLJ 0 L3440 ZRO 0 00000

	REM	COMPUTE LINEARIZED TRAJECTORY
	REM	(B1) = NUMBER OF TRAJECTORIES
	REM	(B4) = NUMBER OF FALSE ITERATIONS LESS ONE
	REM	(A) = FIRST DEPARTURE ANGLE
	REM	(Q) = DELTA DEPARTURE ANGLE
K0	SIL 1 NT	STORE NO. OF TRAJS.
	STA 0 THETATEM	STORE 1ST DEPART ANGLE
	STQ 0 DELTHETA	STORE DELTA DEPART ANGLE
	LDA 0 UNITY	
	FDV 0 R	RECIP. ORBIT RADIUS
	SLJ 4 SQROOT	RET.JUMP TO SQUARE ROOT
	STA 0 V	STORE TARGET SPEED
	FMU 0 V	
	FDV 0 R	
	STA 0 VSQDR	STORE TARGET ACCEL.
	LDA 0 B	TARGET SECTOR AT RENDEVOUS
	SLJ 4 TRIG+70	RET.JUMP TO TRIGONOMETRIC SR.
	STA 0 COSB	
	FMU 0 R	
	STA 0 CAPYFIN	TARGET COOR. AT RENDEVOUS
K10	LDA 0 B	
	SIU 4 K20+6	STORE B4
	SLJ 4 TRIG	
	STA 0 SINB	
	FMU 0 R	
	STA 0 CAPXFIN	TARGET COOR. AT RENDEVOUS
	LDA 0 COSB	
	FMU 0 V	
	STA 0 CAPUFIN	TARGET VEL.COMP. AT RENDEVOUS
	LAC 0 SINB	
	FMU 0 V	
	STA 0 CAPVFIN	TARGET VEL.COMP. AT RENDEVOUS
	LAC 0 COSB	
	FMU 0 VSQDR	
	STA 0 CAPVDFN	TARGET ACC.COMP. AT RENDEVOUS
	LAC 0 SINB	
	FMU 0 VSQDR	
K20	STA 0 CAPUDFN	TARGET ACC.COMP. AT RENDEVOUS
	LDA 0 REARTH	EARTH RADIUS AT EQUATOR
	FDV 0 GACCEL	ACCEL.GRAVITY AT EQUATOR
	SLJ 4 SQROOT	RECIPROCAL SHULER FREQ.
	FMU 0 MDOT	
	STA 0 OMEGA	NON-DIMEN. MASS LOSS RATE
	LDA 0 C	ROCKET NOZZLE VELOCITY
	FMU 0 MDOT	C MDOT
	FDV 0 GACCEL	
	STA 0 A	
	LDA 0 THETATEM	NON-DIMEN. ACCELERATION
	STA 0 THETA	BEGIN OUTER LOOP
	ENI 4 0	SET DEPARTURE ANGLE
	SLJ 4 TRIG+70	SET NO. OF FALSE ITERATES
	FMU 0 VSTART	COSINE THETA
K30	STA 0 VI	INITIAL HORIZONTAL VELOC.
	LDA 0 THETA	SINE THETA
	SLJ 4 TRIG	
	FMU 0 VSTART	INITIAL VERTICAL VELOC.
	STA 0 V2	
	ENI 3 23	
	ENI 0 0	
	LDA 3 EL1INIT	SET FALSE COOR. QUINTUPLE
	STA 3 EL1	
	IJP 3 /-1	
	SLJ 4 70007	PRINT COORS. DECIMAL. B3=0
	STA 0 EL1INIT	PARAMETER WORD

ZRO	0	T5INIT	
ENI	5	0	SET B5=0 FOR K40+3
SLJ	4	70007	PRINT COORDINATES OCTAL
ZRO	0	EL1INIT	PARAMETER WORD
ZRO	0	T5INIT	
K40		XYUV	SET FALSI FUNC. QUINTUPLE
ZRO	0	0	
SLJ	4	70007	PRINT FUNCTIONS DECIMAL
ZRO	0	0	
STA	0	DELXFIN	PARAMETER WORD
ZRO	0	DELVFIN	
LDA	0	DELXFIN	
STA	5	DELX1	
LDA	0	DELYFIN	
STA	5	DELY1	
LDA	0	DELUFIN	
STA	5	DELU1	
LDA	0	DELVFIN	
STA	5	DELV1	
INI	5	5	
INI	3	3	
K50		ISK 3 23	
		SLJ 0 K40	BEGIN INNER LOOP OR SLJ.0 K101 OR L3440
ENI	0	0	INVERT DELXYUV MATRIX
SLJ	4	MATRIX	SINGULAR MATRIX ALARM HALT
SLS	0	K50+2	
ZRO	0	0	
ZRO	0	0	
ZRO	0	5	CODE TO INVERT = 5
ZRO	0	5	L = 5 ROWS IN DELXYUV MATRIX
ZRO	0	DELX1-1	ADD. OF DELXYUV MATRIX = DELX1-1
ZRO	0	0	N=0. WORD NOT USED
ZRO	0	0	
ZRO	0	0	M=0
ZRO	0	DELX1+174	ADD. OF INVERSE = DELX1+174
ENI	0	0	
K60		SLJ 4 MATRIX	INVERSE TIMES LMNT MATRIX
		ZRO 0 K60	WORD NOT USED
ZRO	0	0	
ZRO	0	0	
ZRO	0	4	MATRIX MULT. CODE = 4
ZRO	0	5	L = 5 ROWS IN INVERSE
ZRO	0	DELX1+174	ADD. OF INVERSE = DELX1+174
ZRO	0	5	N=5 COLUMNS IN INVERSE
ZRO	0	EL1	ADDRESS OF LMNT MATRIX = EL1
ZRO	0	4	M=4 COLS. IN MATRIX PRODUCT
ZRO	0	EL1+24	ADDRESS OF PROD. = EL1+24
LDA	3	EL2	SHIFT COORS. AND FUNCS. B3=0
STA	3	EL1	
LDA	3	DELX2-1	
STA	3	DELX1-1	
ISK	3	23	
K70		SLJ 0 /-2	
ENI	3	20	
ENI	5	3	FOR USE IN K70+2
SLJ	4	XYUV	COMPUTE NEW DELXYUV FUNCS.
ZRO	0	0	
LDA	5	DELXFIN	STORE NEW FUNCS.
STA	5	DELX5	
IJP	5	/-1	
SLJ	4	70007	PRINT NEW COORS. DEC. WITH PANEL
SAU	0	ELS	PARAMETER WORD
ZRO	0	T5	
EXF	0	70	CLEAR ARITHMETIC ERRORS
SLJ	4	70007	PRINT NEW COORS. OCTAL
ZRO	0	ELS	PARAMETER WORD
ZRO	0	T5	
ENI	3	0	CLEAR B3
SLJ	4	70007	PRINT NEW FUNCS. DECIMAL
STA	0	DELXFIN	PARAMETER WORD

ZRO	0	DELVFIN	
IJP	4	K50+1	END INNER LOOP (OR SLJ 0 L3440)
LDQ	0	ELS	
LDA	0	UNITY	
SLJ	4	POLAR+130	
STQ	0	QQ	DEPARTURE THRUST ANGLE
ENI	1	2	
LDA	1	ELS	MOVE ELS, EM5 AND ENS
STA	1	EL	
IJP	1	/-1	
LAC	0	V	(-V)
FMU	0	TAUFIN	(-VT)
FDV	0	R	(-VT/R)
FAD	0	B	B-(VT/R)
STA	0	S	S = INITIAL TARGET SECTOR
SLJ	4	70007	ALARM REENTRY FROM LOG S.R.
ZRO	0	0	DECIMAL DUMP WITH PANEL
SAU	0	CAPXFIN	PARAMETER WORD
ZRO	0	LAM	
SLJ	4	70007	DECIMAL DUMP
ZRO	0	0	
STA	0	NT	PARAMETER WORD
ZRO	0	S	
SLJ	4	70007	OCTAL DUMP
ZRO	0	0	
ZRO	0	NT	PARAMETER WORD
ZRO	0	DEL THETA	
LDA	0	THETA	
FAD	0	DEL THETA	
STA	0	THETATEM	SET NEW THETA
RSO	0	NT	
AJP	1	K20+5	END OUTER LOOP. (SEE K440)
SLS	0	BEGIN	HALT. START RENDEVOUS PROG.
XYUV	0	0	ENTER DELXYUV SUBROUTINE
LDA	3	T1	
STA	0	TAUFIN	
LAC	0	OMEGA	(-W)
FMU	0	TAUFIN	(-WT)
FAD	0	UNITY	
STA	0	STOR1	
FDV	0	OMEGA	(STOR1) = 1 - WT
STA	0	STOR2	
FMU	0	STOR2	(STOR2) = (1-WT)/W
FMU	0	STOR2	SQUARE
FMU	0	STOR2	CUBE
FMU	0	STOR2	FOURTH
FMU	0	STOR2	FIFTH
FMU	0	ERRCOF	MULT. BY -15.B-12
FDV	0	TAUFIN	
STA	0	STOR3	
LDA	0	STOR1	
SLJ	4	LOG+66	1-WT
FMU	0	STOR3	LOG(1-WT) TO BASE E
SLJ	4	SQRROOT	
SLJ	4	SQRROOT	
ZRO	0	0	
STA	0	DELTAU	COMPUTED TAU INCREMENT
SLJ	4	EQUAL	EQUALIZE DELTAU AND SET B2
STA	0	DELT1	SET EQUALIZED DELT1
ENA	0	4	
STA	0	RUNKT1	SET GILL FOR 4 INTEGRALS
ENI	1	14	
ENA	0	0	
STA	1	TAU1	CLEAR RUNKT1 AREA
IJP	1	/-1	
ENI	0	0	
LDA	0	TAUFIN	
SLJ	4	TRIG	SIN T
STA	0	SINT	
FMU	0	V1	V1 SINT
FSB	0	CAPXFIN	V1 SINT - X

	STA 0	DELXFIN	
	LDA 0	TAUFIN	
	SLJ 4	TRIG+70	COS T
	STA 0	COST	
	FMU 0	V1	V1 COST
	FSB 0	CAPUFIN	V1 COST - U
	STA 0	DELUFIN	
	LDA 0	TAUFIN	
	FMU 0	ROOT2	T TIMES SQ. ROOT 2
K150	SLJ 4	EXP+107	
	ZRO 0	0	
	STA 0	COSHTR2	STORE HYP. COSINE
	FMU 0	ROOTHALF	COSHTR2/SQ.ROOT 2
	STA 0	STOR1	
	LDA 0	TAUFIN	
	FMU 0	ROOT2	
	SLJ 4	EXP+71	
	STA 0	SINHTR2	STORE HYP. SINE
	FMU 0	V2	V2 SINHTR2
	FSB 0	STOR1	
	FAD 0	THREDR2	ADD (3/SQ.ROOT 2)
	STA 0	STOR1	
	LAC 0	CAPYFIN	(-Y)
	FMU 0	ROOT2	
	FAD 0	STOR1	
K160	STA 0	DELYFIN	
	LDA 0	COSHTR2	
	FMU 0	V2	
	STA 0	STOR1	(STOR1) = V2 COSHTR2
	LAC 0	SINHTR2	(-SINHTR2)
	FMU 0	ROOTHALF	
	FAD 0	STOR1	
	FSB 0	CAPVFIN	
	STA 0	DELVFIN	
	LDA 3	EL1	
	FMU 3	EL1	EL1 SQUARED
	FAD 0	UNITY	1 + EL1 SQ.
	SLJ 4	SQRROOT	
	ZRO 0	0	
	STA 0	HYP	
	LDA 0	A	
K170	FDV 0	HYP	
	STA 0	STOR1	(STOR1) = A/HYP = A COS P
	FMU 0	SINT	
	STA 0	SINDOT	A COSP SINT
	LDA 0	STOR1	A COSP
	FMU 0	COST	
	STA 0	COSDOT	A COSP COST
	LDA 0	STOR1	A/HYP
	FMU 3	EL1	A SINP
	FMU 0	SINHTR2	
	STA 0	SINHDOT	A SINP SINHTR2
	LDA 0	STOR1	A/HYP
	FMU 3	EL1	A SINP
	FMU 0	COSHTR2	
	STA 0	COSHDOT	A SINP COSHTR2
K200	SLJ 4	ALPHA	SET UP GILL ROUTINE
	ZRO 0	RUNKT1	PARAMETER WORD
	ZRO 0	DERIV1	
	IJP 2	/+1	JUMP IF B2 NOT = ZERO
	SLJ 0	/+3	B2=0. END OF INTEGRATION
	ENI 0	0	B2 NOT = ZERO
	SLJ 4	ALPHA+1	INTEGRATE AGAIN
	ENI 0	0	
	SLJ 0	/-2	JUMP TO TEST B2
	LDA 0	DELXFIN	
	FAD 0	SIN	
	STA 0	DELXFIN	
	LDA 0	DELUFIN	
	FAD 0	COS	

	STA 0 DELUFIN	
	LDA 0 DELYFIN	
	FAD 0 SINH	
K210	FDV 0 ROOT2	
	STA 0 DELYFIN	
	LDA 0 DELVFIN	
	FAD 0 COSH	
	STA 0 DELVFIN	
	SLJ 0 XYUV	TO EXIT OF SUBROUTINE
DERIV1	LAC 0 TAU1	
	FMU 0 OMEGA	(-WT)
	FAD 0 UNITY	
	STA 0 UNMINWT	1-WT
	LDA 0 A	
	FDV 0 UNMINWT	
	STA 0 ADOMINWT	A/(1-WT)
	LDA 0 TAUFIN	
	FSB 0 TAU1	
	STA 0 STOR1	(STOR1) = TAUFIN - TAU1
K220	ENI 0 0	
	SLJ 4 TRIG	
	STA 0 SINT	(SINT) = SINE OF (STOR1)
	LDA 0 STOR1	
	SLJ 4 TRIG+70	
	ZRO 0 0	
	STA 0 COST	
	LDA 0 STOR1	
	FMU 0 ROOT2	
	SLJ 4 EXP+71	
	STA 0 SINHTR2	
	LDA 0 STOR1	
	FMU 0 ROOT2	
	SLJ 4 EXP+107	
	STA 0 COSHTR2	
K230	LDA 0 TAU1	
	SLJ 4 TRIG	SIN TAU1 = -LAM3
	ZRO 0 0	
	FMU 3 EM1	
	STA 0 STOR2	(STOR2) = - EM1 LAM3
	LDA 0 TAU1	
	SLJ 4 TRIG+70	COS TAU1 = LAM1
	FSB 0 STOR2	LAM1 + EM1 LAM3
	STA 0 LAM	LAM = LAM1 + EM1 LAM3
	FMU 0 LAM	
	STA 0 STOR3	(STOR3) = LAM SQUARED
	LDA 0 TAU1	
	FMU 0 ROOT2	
	SLJ 4 EXP+71	SINH TAU1R2
	ZRO 0 0	
	FMU 3 EN1	
K240	FDV 0 ROOT2	(- EN1 MU4)
	STA 0 STOR2	(STOR2) = - EN1 MU4
	LDA 0 TAU1	
	FMU 0 ROOT2	
	SLJ 4 EXP+107	COSH TAU1R2 = MU2
	FMU 3 EL1	EL1 MU2
	FSB 0 STOR2	EL1 MU2 + EN1 MU4 = MU
	STA 0 MU	
	FMU 0 MU	
	FAD 0 STOR3	LAM SQ. + MU SQ.
	SLJ 4 SQROOT	
	STA 0 HYP	
	LDA 0 MU	
	FDV 0 HYP	
	STA 0 STOR3	(STOR3) = SINP
	LDA 0 LAM	
	FDV 0 HYP	
K250	STA 0 STOR4	(STOR4) = COSP
	FMU 0 SINT	COSP SINT
	FMU 0 ADOMINWT	

	STA 0 SINDOT	
	LDA 0 STOR4	COSP
	FMU 0 COST	COSP COST
	FMU 0 ADOMINWT	
	STA 0 COSDOT	
	LDA 0 STOR3	SINP
	FMU 0 SINHTR2	SINP SINHTR2
	FMU 0 ADOMINWT	
	STA 0 SINHDOT	
	LDA 0 STOR3	SINP
	FMU 0 COSHTR2	SINP COSHTR2
	FMU 0 ADOMINWT	
	STA 0 COSHDOT	
K260	SLJ 0 ALPHA+2	EXIT FROM DERIVI
	ZRO 0 0	
EQUAL	SLJ 0 0	S.R. TO EQUALIZE DELTAU
	LDA 0 TAUFIN	
	FDV 0 DELTAU	
	SLJ 4 FIXIT	CONVERT DELTAU TO FIXED PT.
	STA 0 INTSIGN	STORE INTEGRAL PART
	STQ 0 FRACSIGN	STORE FRACTIONAL PART
	AJP 1 /+5	JUMP IF A NOT = ZERO
	QJP 0 /+3	A=0. JUMP IF Q = 0
	LDA 0 TAUFIN	A=0. Q NOT = 0
	STA 0 DELTFLSG	
	ENI 2 1	
	SLJ 0 /+12	
	ENA 0 0	A = Q = 0
K270	STA 0 DELTFLSG	
	ENI 2 0	
	SLJ 0 /+10	
	AJP 2 /+1	A NOT 0. JUMP IF A GREATER THAN 0
	SCM 0 MASK	A LESS THAN 0. ABSO INTEGER TO A
	INA 0 1	ABSO. INTEGER + 1 TO A
	SAU 0 /+1	
	ENI 2 0	ABSO. INTEGER + 1 TO B2
	SCA 1 2057	
	LRS 0 57	
	ENA 1 0	
	LLS 0 44	
	STA 0 FLOIPLON	
	LDA 0 TAUFIN	
	FDV 0 FLOIPLON	
	STA 0 DELTFLSG	
K300	ENI 0 0	
	SIL 2 FIXIPLON	USED IN FINAL PROG.
	LDA 0 DELTFLSG	
	SLJ 0 EQUAL	TO EXIT OF S.R.
	ZRO 0 0	
FIXIT	BSS 44	B1=5 B6=65302 P=460
R	DEC 1.075698925	NON-DIMEN. ORBIT RADIUS
V	BSS 1	NON-DIMEN. TARGET SPEED
VSQDR	BSS 1	NON-DIMEN. TARGET ACCEL.
B	OCT 1775622077325042	TARGET SECTOR AT RENDEVOUS = PI/16
COSB	BSS 1	
SINB	BSS 1	
REARTH	DEC 20925000.	EARTH EQUATOR RAD. IN FT.
GACCEL	DEC 32.086	EQUATOR GRAVITY IN FT/SEC/SEC
RMS	BSS 1	
OMEGA	BSS 1	NON-DIMEN. MASS LOSS RATE
THETATEM	BSS 1	
V1	BSS 1	NON-DIMEN. INIT. HORIZONTAL VEL.
V2	BSS 1	NON-DIMEN. INIT. VERTICAL VEL.
ERRCOF	DEC -15.8-12	(-15/4096 DEC.) USED TO FIND DELTAU
ROOTHALF	OCT 2000552023631500	
SINT	BSS 1	
COST	BSS 1	
SINHTR2	BSS 1	
COSHTR2	BSS 1	
UNMINWT	BSS 1	STORE FOR (1-WT)

	BSS	2				
EL1INIT	OCT	2001500400000000	DEC.VALUE	=	+1.251953125	
EM1INIT	OCT	5776377777777777	DEC.VALUE	=	-1.0000000000	
EN1INIT	OCT	2004460000000000	DEC.VALUE	=	+9.5000000000	
T1INIT	OCT	1776463146314631	DEC.VALUE	=	+0.3000000000	
EL2INIT	OCT	2001500300000010	DEC.VALUE	=	+1.251464844	
EM2INIT	OCT	5776377777777777	DEC.VALUE	=	-1.0000000000	
EN2INIT	OCT	2004460100000000	DEC.VALUE	=	+9.503906250	
T2INIT	OCT	1776461700000000	DEC.VALUE	=	+0.2987060547	
EL3INIT	OCT	2001500200000000	DEC.VALUE	=	+1.250976562	
EM3INIT	OCT	5776377777777777	DEC.VALUE	=	-1.0000000000	
EN3INIT	OCT	2004460200000000	DEC.VALUE	=	+9.507812500	
T3INIT	OCT	1776462000000000	DEC.VALUE	=	+0.2988281250	
EL4INIT	OCT	2001500100000000	DEC.VALUE	=	+1.250488281	
EM4INIT	OCT	5776377707007777	DEC.VALUE	=	-1.000434756	
EN4INIT	OCT	2004460300000000	DEC.VALUE	=	+9.511718750	
T4INIT	OCT	1776464300000000	DEC.VALUE	=	+0.3011474609	
EL5INIT	OCT	2001500000000000	DEC.VALUE	=	+1.2500000000	
EM5INIT	OCT	5776377777077077	DEC.VALUE	=	-1.000006689	
EN5INIT	OCT	2004460400000000	DEC.VALUE	=	+9.515625000	
T5INIT	OCT	1776465000000000	DEC.VALUE	=	+0.3017578125	
RUNKT1	BSS	1				
DELT1	BSS	1				
TAU1	BSS	1				
SINDOT	BSS	1				
SIN	BSS	2				
COSDOT	BSS	1				
COS	BSS	2				
SINHDOT	BSS	1				
SINH	BSS	2				
COSHDOT	BSS	1				
COSH	BSS	3				
K440	ENI	3 23	RESET LMNT INIT. (SEE K120)			
	ENI	0 0				
	LDA	3 EL1				
	STA	3 EL1INIT				
	IJP	3 /-1				
	LDA	0 NT				
	AJP	1 K20+5				
	SLS	0 BEGIN	HALT. START RENDEVOUS PROG.			
	BSS	3				
EXP	BSS	117	B1=3	B6=65447	P=460	
SQROOT	BSS	65	B1=6	B6=65566	P=460	
TRIG	BSS	116	B1=7	B6=65653	P=460	
ADMINWT	BSS	1	STORE FOR A/(1-WT)			
ROOT2	OCT	2001552023631500				
TWO	OCT	2002400000000000				
THREE	OCT	2002600000000000				
MASK	OCT	7777777777777777				
TENGRAND	DEC	100C0				
COMPRMS	OCT	1754400000000000				
	REM	RENDEVOUS PROG. STARTS HERE				
BEGIN	ENI	6 12	SET NUMBER OF ITERATIONS			
	ENI	0 0				
	ENI	0 0				
	ENI	0 0				
	LDA	V				
	FDV	0 R	V/R = W			
	STA	0 W	STORE TARGET ANGULAR VEL.			
	ENI	0 0				
	ENI	0 0				
	ENI	0 0				
	ENI	0 0				
	ENA	0 35				
	STA	0 RUNKT	SET GILL S.R. FOR 29 DIFF.EQUS.			
	ENI	0 0				
	ENI	0 0				
	ENI	1 0				
L10	ENA	0 0	CLEAR RUNKT+17 AREA			
	STA	1 RUNKT+17				

	STA	1	RUNKT+20	
	INI	1	2	
	ISK	1	112	
	SLJ	0	/-2	
	LDA	0	UNITY	
	STA	0	RUNKT+20	SET LAM1(0)=1
	STA	0	RUNKT+37	SET MU2(0)=1
	STA	0	RUNKT+56	SET PI3(0)=1
	STA	0	RUNKT+75	SET RH04(0)=1
	STA	0	RUNKT+25	SET PI1DOT(0)=1
	LAC	0	UNITY	
	STA	0	RUNKT+47	SET LAM3DOT(0)=-1
	STA	0	RUNKT+66	SET MU4DOT(0)=-1
	LAC	0	TWO	
L20	STA	0	RUNKT+44	SET RH02DOT(0)=-2
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
	ENA	0	0	
	STA	0	RUNKT+2	SET TAU = 0
	STA	0	RUNKT+4	SET X(0)=0
	LDA	0	V1	
	STA	0	RUNKT+3	SET XDOT(0)=V1
	STA	0	RUNKT+12	SET U(0)=V1
	LDA	0	V2	
	STA	0	RUNKT+6	SET YDOT(0)=V2
	STA	0	RUNKT+15	SET V(0)=V2
	LDA	0	UNITY	
	STA	0	RUNKT+7	SET Y(0)=1
L30	ENI	0	0	
	SLJ	0	/+5	BYPASS
RECUR	SIU	6	/+1	
	SLS	1	/+1	STOP SWITCH
	ENI	6	0	
	ENI	1	147	
	LDA	1	SAVE	
	STA	1	RUNKT	
	IJP	1	/-1	
	ENI	0	0	
	SLJ	4	EQUAL	
	ZRO	0	0	
	STA	0	RUNKT+1	STORE EQUALIZED DELTAU
	SLJ	4	LAMMU	RET.JUMP TO OBTAIN LAM AND MU
	SLJ	0	L70	BYPASS LAMMU
	ZRO	0	0	
LAMMU	SLJ	0	0	ENTRANCE TO S.R.
	SIL	1	L60+3	SAVE B1
	SIU	3	L60+4	SAVE B3
	LDA	0	RUNKT+20	LOAD LAM1
	STA	0	STOR3	LAM1 TO STOR3
	ENI	0	0	
	ENI	1	0	SET B1=0
	ENI	3	0	SET B3=0
	LDA	1	EL	
	FMU	3	RUNKT+34	EL(LAM2)
	FAD	0	STOR3	
	STA	0	STOR3	
	INI	3	14	
	ENI	0	0	
	ISK	1	2	
	SLJ	0	/-3	
L50	STA	0	LAM	STORE LAMBDA
	FMU	0	LAM	LAM SQUARED
	STA	0	STOR1	LAM SQUARE TO STOR 1
	LDA	0	RUNKT+23	LOAD MU1
	STA	0	STOR3	
	ENI	3	0	
	LDA	1	EL	
	FMU	3	RUNKT+37	EL(MU2)

FAD	0	STOR3		
STA	0	STOR3		
INI	3	14		
ENI	0	0		
ISK	1	2		
SLJ	0	/-3		
STA	0	MU	STORE MU	
FMU	0	MU	MU SQUARED	
L60	FAD	0	STOR1	LAM SQ + MU SQ
	STA	0	HYP2	HYP2 = LAM SQ + MU SQ
	SLJ	4	SQR00T	
	ZRO	0	0	
	STA	0	HYP	HYP = SQ ROOT OF HYP2
	FMU	0	HYP2	
	STA	0	HYP3	HYP3 = HYP2 TIMES HYP
	ENI	1	0	RESTORE B1
	ENI	3	0	RESTORE B3
	SLJ	0	LAMMU	TO EXIT OF S.R.
L70	BSS	3		
	LDA	0	A	ENTER FROM L30+7
	FMU	0	LAM	
	FDV	0	HYP	
	STA	0	RUNKT+11	SET UDOT(0) = A(LAM)/HYP
	LDA	0	A	
	FMU	0	MU	
	FDV	0	HYP	
	FSB	0	UNITY	
	STA	0	RUNKT+14	SET VDOT(0)
	ENA	0	/+2	CURRENT ADDRESS+2 TO A
	SAL	0	L220-4	SET EXIT FROM DERIV. PROG.
	SLJ	0	L150-3	JUMP TO SET AIJDOT(0)
	ENA	0	ALPHA+2	
	SAL	0	L22C-4	REPAIR EXIT FROM DERIV.PROG.
	ENI	0	0	
DERIV	SLJ	0	L220-3	BYPASS DERIV. PROG.
	LAC	0	OMEGA	
	FMU	0	RUNKT+2	(-WT)
	FAD	0	UNITY	1-WT
	STA	0	UNMINWT	STORE (1-WT)
	LDA	0	A	
	FDV	0	UNMINWT	
	STA	0	ADOMINWT	STORE A/(1-WT)
	ENI	0	0	
	LDA	0	RUNKT+12	
	STA	0	RUNKT+3	SET XDOT = U
	LDA	0	RUNKT+15	
	STA	0	RUNKT+6	SET YDOT = V
	LDA	0	RUNKT+4	LOAD X
	FMU	0	RUNKT+4	X SQUARED
	STA	0	STOR2	X SQ TO STOR2
	LDA	0	RUNKT+7	LOAD Y
L110	FMU	0	RUNKT+7	Y SQUARED
	FAD	0	STOR2	X SQ + Y SQ
	STA	0	STOR1	(X SQ + Y SQ) TO STOR1
	SLJ	4	SQR00T	
	FMU	0	STOR1	
	STA	0	R32	STORE RADIUS CUBED
	FMU	0	STOR1	
	STA	0	R52	STORE RADIUS FIFTH
	ENI	1	0	
	SLJ	4	LAMMU	NOTE B1 SAVED BY LAMMU
	LAC	1	RUNKT+4	(-X) TO A
	FDV	0	R32	
	STA	0	STOR1	(-X/R32) TO STOR1
	LDA	0	ADOMINWT	
	FMU	1	LAM	
	FDV	0	HYP	
L120	FAD	0	STOR1	
	STA	1	RUNKT+11	SET UDOT(T)
	INI	1	2	

ENI 0 0
 ISK 1 5
 SLJ 0 L120-3
 ENI 0 0
 ENI 3 0
 LAC 3 RUNKT+26 (-PI1)
 STA 3 RUNKT+17 SET LAM1DOT = -PI1
 LAC 3 RUNKT+31 (-RHO1)
 STA 3 RUNKT+22 SET MU1DOT = -RH01
 LDA 0 RUNKT+7 Y
 FMU 0 RUNKT+7 Y SQUARED
 FSB 0 STOR2 Y SQ - X SQ
 FSB 0 STOR2 Y SQ - 2(X SQ)
 FMU 3 RUNKT+20 (Y SQ - 2 X SQ)LAM1
 STA 0 STOR1
 LAC 0 THREE MINUS THREE
 FMU 0 RUNKT+4 (-3X)
 FMU 0 RUNKT+7 (-3XY)
 FMU 3 RUNKT+23 (-3XY MU1)
 FAD 0 STOR1
 FDV 0 R52
 STA 3 RUNKT+25 SET PI1DOT
 LAC 0 RUNKT+7 (-Y)
 FMU 0 RUNKT+7 (- Y SQUARED)
 FMU 0 TWO (-2 Y SQUARED)
 FAD 0 STOR2 X SQ - 2 Y SQ
 FMU 3 RUNKT+23 (X SQ - 2 Y SQ)MU1
 STA 0 STOR1
 LAC 0 THREE MINUS THREE
 FMU 0 RUNKT+4 (-3X)
 FMU 0 RUNKT+7 (-3XY)
 FMU 3 RUNKT+20 (-3XY LAM1)
 FAD 0 STOR1
 FDV 0 R52
 STA 3 RUNKT+30 SET RH01DOT
 INI 3 13
 ENI 0 0
 ISK 3 57
 SLJ 0 L130-4
 LAC 0 OMEGA (-W). ENTER FROM L70+5
 FMU 0 RUNKT+2 (-WT)
 FAD 0 UNITY 1-WT
 STA 0 UNMINWT
 LDA 0 A LOAD INITIAL ACCEL.
 FDV 0 UNMINWT A/(1-WT)
 STA 0 ADOMINWT
 ENI 0 0
 LAC 0 MU
 FMU 0 RUNKT+20 (-MU LAM1)
 STA 0 STOR1
 LDA 0 LAM
 FMU 0 RUNKT+23 LAM MU1
 FAD 0 STOR1
 STA 0 A1 A1 = LAM MU1 - MU LAM1
 LAC 0 MU
 FMU 0 RUNKT+34 (-MU LAM2)
 STA 0 STOR1
 LDA 0 LAM
 FMU 0 RUNKT+37 LAM MU2
 FAD 0 STOR1
 STA 0 A2 A2 = LAM MU2 - MU LAM2
 FMU 0 A1 A1 TIMES A2
 FMU 0 ADOMINWT (A/1-WT)A1A2
 FDV 0 HYP3
 STA 0 RUNKT+77 SET A12DOT
 LAC 0 MU
 FMU 0 RUNKT+50 (-MU LAM3)
 STA 0 STOR1
 LDA 0 LAM
 FMU 0 RUNKT+53 LAM MU3

FAD 0 STOR1
 STA 0 A3 A3 = LAM MU3 - MU LAM3
 FMU 0 A1 A1 TIMES A3
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+102 SET A13DOT
 LAC 0 MU
 FMU 0 RUNKT+64 (-MU LAM4)
 STA 0 STOR1
 LDA 0 LAM
 FMU 0 RUNKT+67 LAM MU4
 FAD 0 STOR1
 STA 0 A4 A4 = LAM MU4 - MU LAM4
 FMU 0 A1 A1 TIMES A4
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+105 SET A14DOT
 LDA 0 A2
 FMU 0 A2 A2 SQUARED
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+110 SET A22DOT
 LDA 0 A2
 FMU 0 A3 A2 TIMES A3
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+113 SET A23DOT
 LDA 0 A2
 FMU 0 A4 A2 TIMES A4
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+116 SET A24DOT
 LDA 0 A3
 FMU 0 A3 A3 SQUARED
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+121 SET A33DOT
 LDA 0 A3
 FMU 0 A4 A3 TIMES A4
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+124 SET A34DOT
 LDA 0 A4
 FMU 0 A4 A4 SQUARED
 FMU 0 ADOINWT
 FDV 0 HYP3
 STA 0 RUNKT+127 SET A44DOT
 ENI 0 0
 SLJ 0 ALPHA+2 END OF DERIV PROG.
 ENI 0 0 ENTER FROM L70+7
 ENI 1 147
 LDA 1 RUNKT STORE INIT. CONDITIONS
 STA 1 SAVE FOR NEXT ITERATE
 IJP 1 /-1
 SLJ 4 ALPHA SET UP GILL ROUTINE
 ZRO 0 RUNKT PARAMETER WORD
 ZRO 0 DERIV
 IJP 2 /+1 JUMP IF B2 NOT = ZERO
 SLJ 0 /+3 B2=0. JUMP TO RMS COMP.
 ENI 0 0 B2 NOT = ZERO
 SLJ 4 ALPHA+1 INTEGRATE AGAIN
 ENI 0 0
 SLJ 0 /-2 JUMP TO TEST B2
 LDA 0 CAPXFIN BEGIN R.M.S. COMPUTATION
 FSB 0 RUNKT+4 CAPXFIN - XFIN
 STA 0 C3
 FMU 0 C3
 STA 0 STOR2
 LDA 0 CAPYFIN
 FSB 0 RUNKT+7 CAPYFIN - YFIN

STA 0 C4
 FMU 0 C4
 FAD 0 STOR2
 STA 0 STOR2
 LDA 0 CAPUFIN
 FSB 0 RUNKT+12 CAPUFIN - UFIN
 STA 0 C1
 FMU 0 C1
 FAD 0 STOR2
 STA 0 STOR2
 LDA 0 CAPVFIN
 FSB 0 RUNKT+15 CAPVFIN - VFIN
 STA 0 C2
 FMU 0 C2
 FAD 0 STOR2
 SLJ 4 SQRROOT
 ZRO 0 0
 L230 FDV 0 TWO
 STA 0 RMS STORE ROOT MEAN SQUARE
 ENI 1 17
 ENI 3 55
 LDA 3 RUNKT+20 SET 4 BY 4 MATRIX
 STA 1 BB11 LAMIMUIPIIRHOI = B
 INI 3 -3 (I=1,2,3,4) AT TAUFIN
 IJP 1 /-1
 SLJ 4 MATRIX INVERT THE MATRIX
 ZRO 0 0
 SLS 0 L250-3 SINGULAR MATRIX ALARM HALT
 ZRO 0 0
 ZRO 0 0
 ZRO 0 5 CODE TO INVERT = 5
 ZRO 0 4 L = 4
 ZRO 0 BB11 BB11 = ADDRESS OF B MATRIX
 ZRO 0 0 N=0 NOT USED IN INVERT
 ZRO 0 0
 ZRO 0 0 M=0 NOT USED IN INVERT
 ZRO 0 BB11+120 BB11+120 = ADDRESS OF INVERSE
 LDA 0 RUNKT+100 A12 TO SET 4 BY 3 D MATRIX
 STA 0 BB11+100 SET D11 = A12
 LDA 0 RUNKT+103 A13
 STA 0 BB11+101 SET D12 = A13
 LDA 0 RUNKT+106 A14
 STA 0 BB11+102 SET D13 = A14
 LDA 0 RUNKT+111 A22
 STA 0 BB11+103 SET D21 = A22
 LDA 0 RUNKT+114 A23
 STA 0 BB11+104 SET D22 = A23
 STA 0 BB11+106 SET D31 = A32
 LDA 0 RUNKT+117 A24
 STA 0 BB11+105 SET D23 = A24
 STA 0 BB11+111 SET D41 = A42
 LDA 0 RUNKT+122 A33
 STA 0 BB11+107 SET D32 = A33
 LDA 0 RUNKT+125 A34
 STA 0 BB11+110 SET D33 = A34
 STA 0 BB11+112 SET D42 = A43
 LDA 0 RUNKT+130 A44
 STA 0 BB11+113 SET D43 = A44
 ENI 0 0
 ENI 3 2 FOR USE 6TH WORD HENCE
 SLJ 4 MATRIX MULT. B INVERSE BY D
 ZRO 0 L270-2 THIS WORD NOT USED
 ZRO 0 0
 ZRO 0 0
 L260 ZRO 0 4 4 = CODE TO MATRIX MULTIPLY
 ZRO 0 4 L = 4 ROWS IN B INVERSE
 ZRO 0 BB11+120 BB11+120 = ADDRESS OF B INVERSE
 ZRO 0 4 N = 4 COLUMNS IN B INVERSE
 ZRO 0 BB11+100 BB11+100 = ADDRESS OF D MATRIX
 ZRO 0 3 M = 3 COLS. IN THE MATRIX PROD.

ZRO 0 BB11+1 BB11+1 = ADDRESS OF MATRIX PROD.
 REM
 REM
 LDA 3 BB11+12 L273-306 SETS UP MATRIX OF SYSTEM TO BE
 STA 3 B42
 IJP 3 /-1
 ENI 3 2
 LDA 3 BB11+7
 STA 3 B32
 IJP 3 /-1
 ENI 3 2
 LDA 3 BB11+4
 STA 3 B22
 IJP 3 /-1
 L300 LDA 0 RUNKT+11 UDOTFIN
 FSB 0 CAPUDFN UDOTFIN - CAPUDFN (OR PASS IF REND. POINT FIXED)
 STA 0 BB11
 LDA 0 RUNKT+14 VDOTFIN
 FSB 0 CAPVDFN VDOTFIN - CAPVDFN (OR PASS IF REND. POINT FIXED)
 STA 0 B21
 LDA 0 RUNKT+12 UFIN
 FSB 0 CAPUFIN UFIN - CAPUFIN (OR PASS IF REND. POINT FIXED)
 STA 0 B31
 LDA 0 RUNKT+15 VFIN
 FSB 0 CAPVFIN VFIN - CAPVFIN (OR PASS IF REND. POINT FIXED)
 STA 0 B41
 SLJ 0 L310 BYPASS PRINT OUT
 STA 0 BB11 PARAMETER WORD TO PRINT
 ZRO 0 C4
 ENI 0 0
 L310 SLJ 4 MATRIX INVERT SYSTEM MATRIX
 SLS 0 L310+1 SINGULAR MATRIX ALARM HALT
 ZRO 0 0
 ZRO 0 0
 ZRO 0 5 S = CODE TO INVERT
 ZRO 0 4 L = 4
 ZRO 0 BB11 BB11 = ADDRESS OF MATRIX
 ZRO 0 0 N=0 NOT USED
 ZRO 0 0
 ZRO 0 0 M=0 NOT USED
 ZRO 0 BB11+120 BB11+120 = ADDRESS OF INVERSE
 ENI 0 0
 SLJ 4 MATRIX MULT. INVERSE BY COL. MATRIX
 ZRO 0 L320-1 THIS WORD NOT USED
 ZRO 0 0
 L320 ZRO 0 0
 ZRO 0 4 4 = CODE TO MATRIX MULTIPLY
 ZRO 0 4 L = 4 ROWS IN INVERSE
 ZRO 0 BB11+120 BB11+120 = ADDRESS OF INVERSE
 ZRO 0 4 N = 4 COLS. IN INVERSE
 ZRO 0 C1 C1 = ADDRESS OF COLUMN MATRIX
 ZRO 0 C1 M=1 COL. IN THE COL. MATRIX
 ZRO 0 C1+4 C1+4= ADD. OF COL. MATRIX RESULT
 ENI 0 0
 SLJ 0 /+2 BYPASS PRINT OUT
 STA 0 BB11 PARAMETER WORD TO PRINT
 ZRO 0 C1+7
 ENI 0 0
 ENI 0 0
 ENI 0 0
 ENI 0 0
 L330 ENI 0 0
 ENI 0 0
 ENI 0 0
 ENI 0 0
 IJP 6 /+1 JUMP IF B6 NOT = ZERO
 SLJ 0 FINAL B6 = 0. JUMP TO FINAL PROG.
 SIZU 6 /+1
 SLS 2 /+1
 ENI 6 0 STOP SWITCH
 RESET B6

	ENI	1	3	
	LDA	1	C1+4	
	STA	1	VARTAU	STORE DELTAUFIN, VAREL, VAREM, VAREN
	IJP	1	/-1	
	FAD	0	TAUFIN	NEW TAUFIN FOR NEXT ITERATE
	STA	0	SAVE+143	STORE NEW TAUFIN (NOTE L30+3)
L340	ENI	0	0	OR SLJ 0 L350+5 IF REND. POINT FIXED
	FMU	0	W	
	FAD	0	S	
	STA	0	SPWT	
	SLJ	4	TRIG+70	
	STA	0	COSSPWT	
	FMU	0	R	
	STA	0	SAVE+136	NEW CAPYFIN
	LDA	0	SPWT	
	SLJ	4	TRIG	
	ZRO	0	0	
	STA	0	SINSPWT	
	FMU	0	R	
	STA	0	SAVE+135	NEW CAPXFIN
	LDA	0	COSSPWT	
	FMU	0	V	
L350	STA	0	SAVE+137	NEW CAPUFIN
	LAC	0	SINSPWT	
	FMU	0	V	
	STA	0	SAVE+140	NEW CAPVFIN
	LAC	0	COSSPWT	
	FMU	0	VSQDR	
	STA	0	SAVE+142	NEW CAPVDFN
	LAC	0	SINSPWT	
	FMU	0	VSQDR	
	STA	0	SAVE+141	NEW CAPUDFN
	ENI	0	0	
	ENI	0	0	
	ENI	1	2	
	LDA	1	C1+5	
	FAD	1	EL	
	STA	1	EL	STORE NEW EL, EM AND EN
	IJP	1	/-1	
L360	SLJ	4	70007	PRINT
	ZRO	0	0	
	SAU	0	MDOT	DECIMAL DUMP WITH PANEL
	ZRO	0	S	
	EXF	0	70	CLEAR ARITH. ERRORS
	SLJ	4	70007	PRINT
	STA	0	CAPXFIN	DEC. DUMP
	ZRO	0	LAM	
	SLJ	0	RECUR	TO NEXT ITERATION
	ZRO	0	0	
POLAR	BSS	3		
	BSS	200		B1=33 B6=66370 P=460
EL1	BSS	1		
EM1	BSS	1		
EN1	BSS	1		
T1	BSS	1		
EL2	BSS	1		
EM2	BSS	1		
EN2	BSS	1		
T2	BSS	1		
EL3	BSS	1		
EM3	BSS	1		
EN3	BSS	1		
T3	BSS	1		
EL4	BSS	1		
EM4	BSS	1		
EN4	BSS	1		
T4	BSS	1		
EL5	BSS	1		
EM5	BSS	1		
EN5	BSS	1		

T5	BSS 1	
FINAL	BSS 26	STORE FOR MATRIX PRODUCT
	ENI 1 147	COMPUTES POINTS ON FINAL TRAJ.
	LIL 2 FIXIPON	
	LDA 1 SAVE	
	STA 1 RUNKT	RESET INITIAL CONDITIONS
	IJP 1 /-1	
	SLJ 4 ALPHA	SET UP GILL ROUTINE
	ZRO 0 RUNKT	PARAMETER WORD
	ZRO 0 DERIV	
	ENI 0 0	
	SLJ 4 /+4	RET.JUMP TO DUMP SUBROUTINE
	IJP 2 /+1	JUMP IF B2 NOT = ZERO
	SLJ 0 L700+1	B2=0. JUMP TO REMAINDER OF FINAL PROG.
L650	ENI 0 0	
	SLJ 4 ALPHA+1	INTEGRATE AGAIN
	ENI 0 0	
	SLJ 0 /-3	
	SLJ 0 0	ENTRY TO DUMP SUBROUTINE
	LDA 0 RUNKT+2	TAU
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP	(DUMP) = TAU
	LDA 0 RUNKT+4	X
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP+4	(DUMP+4) = X
	LDA 0 RUNKT+7	Y
	ENI 0 0	
L660	ENI 0 0	
	STA 0 DUMP+5	(DUMP+5) = Y
	LDA 0 RUNKT+12	U
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP+6	(DUMP+6) = U
	LDA 0 RUNKT+15	V
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP+7	(DUMP+7) = V
	LDA 0 RUNKT+11	UDOT
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP+10	(DUMP+10) = UDOT
	LDA 0 RUNKT+14	VDOT
	ENI 0 0	
	ENI 0 0	
L670	STA 0 DUMP+11	(DUMP+11) = VDOT
	LDA 0 RUNKT+12	U
	LDQ 0 RUNKT+15	V
	SLJ 4 POLAR+130	
	ENI 0 0	
	ENI 0 0	
	STQ 0 DUMP+12	(DUMP+12) = ARCTAN(V/U)
	LDA 0 LAM	
	LDQ 0 MU	
	SLJ 4 POLAR+130	
	ENI 0 0	
	ENI 0 0	
	STQ 0 DUMP+13	(DUMP+13) = ARCTAN(MU/LAM)
	SLJ 4 70007	PRINT
	STA 0 DUMP	PARAMETER WORD
L700	ZRO 0 DUMP+13	
	SLJ 0 L650+2	TO EXIT OF DUMP S.R.
	ZRO 0 0	
	LDA 0 C3	C3 = CAPXFIN - XFIN
	ENI 0 0	
	ENI 0 0	
	STA 0 DUMP+14	(DUMP+14) = CAPXFIN - XFIN
	LDA 0 C4	C4 = CAPYFIN - YFIN
	ENI 0 0	

	ENI	0	0	
	STA	0	DUMP+15	(DUMP+15) = CAPYFIN - YFIN
	LDA	0	C1	C1 = CAPUFIN - UFIN
	ENI	0	0	
	ENI	0	0	
	STA	0	DUMP+16	(DUMP+16) = CAPUFIN - UFIN
	LDA	0	C2	C2 = CAPVFIN - VFIN
	ENI	0	0	
L710	ENI	0	0	
	STA	0	DUMP+17	(DUMP+17) = CAPVFIN - VFIN
	SLJ	4	70007	PRINT
	ZRO	0	0	
	STA	0	DUMP+14	PARAMETER WORD
	ZRO	0	DUMP+17	
	SLJ	0	L3570+5	JUMP TO PRINT B FINAL
	ZRO	0	0	
	STOR1	BSS	1	
	STOR2	BSS	1	
	STOR3	BSS	1	
	STOR4	BSS	1	
	L720	DEC	1	.
	DELX1	BSS	1	
	DELY1	BSS	1	
	DELU1	BSS	1	
	DELV1	BSS	1	
		DEC	1	.
	DELX2	BSS	1	
	DELY2	BSS	1	
	DELU2	BSS	1	
	DELV2	BSS	1	
		DEC	1	.
	DELX3	BSS	1	
	DELY3	BSS	1	
	DELU3	BSS	1	
	DELV3	BSS	1	
		DEC	1	.
	DELX4	BSS	1	
	DELY4	BSS	1	
	DELU4	BSS	1	
	DELV4	BSS	1	
		DEC	1	.
	DELX5	BSS	1	
	DELY5	BSS	1	
	DELU5	BSS	1	
	SAVE	BSS	150	ALSO DELV5 STORE
	RUNKT	BSS	135	
	CAPXFIN	BSS	1	
	CAPYFIN	BSS	1	
	CAPUFIN	BSS	1	
	CAPVFIN	BSS	1	
	CAPUDFN	BSS	1	
	CAPVDFN	BSS	1	
	TAUFIN	BSS	1	
	LAM	BSS	1	
	HYP	BSS	1	
	HYP3	BSS	1	
	MU	BSS	1	
	HYP2	BSS	1	
	UNITY	DEC	1	.
	W	BSS	1	
	DELTAU	BSS	1	
	SPWT	BSS	1	
	COSSPWT	BSS	1	
	SINSPWT	BSS	1	
	R32	BSS	1	
	R52	BSS	1	
	INTSIGN	BSS	1	
	FRACSIGN	BSS	1	
	FLOIPLON	BSS	1	
	FIXIPLON	BSS	1	

THREDR2	OCT	2002417416663160	THREE/ROOT2
TREHALF	DEC	1.5	
DELTFLSG	BSS		
NT	BSS		
THETA	BSS		
VSTART	DEC	.65	NON-DIMEN. INITIAL SPEED
DELTHETA	BSS		
DELXFIN	BSS		
DELYFIN	BSS		
DELUFIN	BSS		
DELVFIN	BSS		
MDOT	DEC	0025	FRACTIONAL MASS LOSS PER SEC.
A	BSS		
QQ	BSS		
C	DEC	0000.	ROCKET NOZZLE VEL. IN FT./SEC.
EL	BSS		
EM	BSS		
EN	BSS		
S	BSS		INIT. TARGET SECTOR ANGLE
A1	BSS		
A2	BSS		
A3	BSS		
A4	BSS		
VARTAU	BSS		
VAREL	BSS		
VAREM	BSS		
VAREN	BSS		
ALPHA	BSS	134	B1=30 B6=67340 P=460
	BSS	14	
DUMP	BSS	20	
BB11	BSS		
B12	BSS		
B13	BSS		
B14	BSS		
B21	BSS		
B22	BSS		
B23	BSS		
B24	BSS		
B31	BSS		
B32	BSS		
B33	BSS		
B34	BSS		
B41	BSS		
B42	BSS		
B43	BSS		
B44	BSS		
	BSS	20	5 TIMES L SQUARED CELLS
C1	BSS	1	
C2	BSS	1	
C3	BSS	1	
C4	BSS	1	
	BSS	4	STORE FOR MATRIX PRODUCT
LOG	BSS	100	B1=12 B6=67700 P=460
	REM		LOG S.R. ALARM EXIT TO K110
	REM		(67703) = 750 65110 000 00000
L2000	BSS	1440	USNPGS GEN. DUMP B1=32 P=21
	REM		AID TO LINEARIZED TRAJECTORY PROG.
L3440	ENA	0 0	
	ENI	1 17	
	STA	1 BB11	CLEAR BB11 MATRIX AREA
	IJP	1 /	
	LDA	0 TAUFIN	
	SLJ	4 TRIG	
	STA	0 BB11	(BB11) = SINT
	LDA	0 TAUFIN	
	SLJ	4 TRIG+70	
	ZRO	0 0	
	STA	0 B21	(B21) = COST
	LDA	0 TAUFIN	
	FMU	0 ROOT2	

	SLJ 4 EXP+71	
	STA 0 B32	(B32) = SINHTR2
L3450	LDA 0 TAUFIN	
	FMU 0 ROOT2	
	SLJ 4 EXP+107	
	STA 0 B42	(B42) = COSHTR2
	LDA 0 SIN	SINE IMPULSE INTEGRAL
	FDV 0 C	
	STA 0 B13	
	LDA 0 COS	COSINE IMPULSE INTEGRAL
	FDV 0 C	
	STA 0 B23	
	LDA 0 SINH	SINH IMPULSE INTEGRAL
	FDV 0 C	
	STA 0 B33	
	LDA 0 COSH	COSH IMPULSE INTEGRAL
	FDV 0 C	
L3460	STA 0 R43	
	LAC 0 CAPYFIN	
	STA 0 B14	
	LAC 0 CAPVFIN	
	STA 0 B24	
	SLJ 0 L357C+3	JUNMP TC PATCH
	STA 0 B34	
	LDA 0 CAPUFIN	
	STA 0 B44	
	LAC 0 DELXFIN	
	STA 0 C1	C1 = ADD. OF MATRIX COL.
	LAC 0 DELUFIN	
	STA 0 C2	
	LAC 0 DELYFIN	
	FMU 0 ROOT2	
	STA 0 C3	
	LAC 0 DELVFIN	
L3470	STA 0 C4	
	ENA 0 /+2	
	SAL 0 L320+4	CREATE LINEAR EQU. ROUTINE EXIT
	SLJ 0 L310	JUMP TO LINEAR EQU. ROUTINE
	ZRO 0 0	
	ENA 0 L320+6	
	SAL 0 L320+4	REBUILD RENDEVOUS PROGRAM
	LDA 0 C1+4	DEL V1
	FAD 0 V1	
	STA 0 STOR1	(STOR1) = NEW V1
	FMU 0 STOR1	
	STA 0 STOR2	(STOR2) = NEW V1 SQUARED
	LDA 0 C2+4	DEL V2
	FAD 0 V2	
	STA 0 STOR3	(STOR3) = NEW V2
	FMU 0 STOR3	
	FAD 0 STOR2	NEW V1 SQ. + NEW V2 SQ.
L3500	SLJ 4 SQROOT	
	ZRO 0 0	
	STA 0 VSTART1	NEW VSTART
	LDA 0 STORT	NEW V1
	FDV 0 VSTART1	COSINE NEW THETA
	SLJ 4 POLAR	TO INVERSE COSINE S.R.
	STA 0 THETA1	NEW THETA
	LDA 0 C3+4	DEL C
	FAD 0 C	NEW C
	STA 0 EJECT	(EJECT) = NEW C
	LDA 0 C4+4	DIFFERENTIAL OF B
	FAD 0 B	NEW B
	STA 0 SECTOR	(SECTOR) = NEW B
	SLJ 4 70007	PRINT RESULTS DECIMAL
	STA 0 VSTART1	PARAMETER WORD
	ZRO 0 SECTOR	
L3510	SLJ 4 70007	PRINT RESULTS OCTAL
	ZRO 0 0	
	ZRO 0 VSTART1	PARAMETER WORD

ZRO	0	SECTOR	
ENI	0		
ENI	0		
LDA	0	VSTART1	RESUME COMP. OF INIT. CONDITIONS
STA	0	VSTART	SET NEW VSTART
LDA	0	THETA1	
STA	0	THETA	SET NEW THETA
LDA	0	EJECT	
STA	0	C	SET NEW C
LDA	0	SECTOR	
STA	0	B	SET NEW B
SLJ	4	TRIG+70	
ZRO	0	0	
L3520			
STA	0	COSB	
FMU	0	R	
STA	0	CAPYFIN	TARGET COOR. AT RENDEVOUS
LDA	0	B	
SLJ	4	TRIG	
ZRO	0	0	
STA	0	SINB	
FMU	0	R	
STA	0	CAPXFIN	TARGET COOR. AT RENDEVOUS
LDA	0	COSB	
FMU	0	V	
STA	0	CAPUFIN	TARGET VEL. COMP. AT RENDEVOUS
LAC	0	SINB	
FMU	0	V	
STA	0	CAPVFIN	TARGET VEL. COMP. AT RENDEVOUS
LAC	0	COSB	
FMU	0	VSQDR	
STA	0	CAPVDFN	TARGET ACC. COMP. AT RENDEVOUS
LAC	0	SINB	
FMU	0	VSQDR	
STA	0	CAPUDFN	TARGET ACC. COMP. AT RENDEVOUS
LDA	0	THETA	
SLJ	4	TRIG+70	COSINE THETA
ZRO	0	0	
FMU	0	VSTART	
STA	0	V1	INITIAL HORIZONTAL VEL.
LDA	0	THETA	
SLJ	4	TRIG	SINE THETA
FMU	0	VSTART	
STA	0	V2	INITIAL VERTICAL VEL.
LDA	0	C	ROCKET NOZZLE VEL.
FSB	0	TENGRAND	NOZZLE VEL. DIFFERENCE
AJP	2	/+1	JUMP IF DIFF. IS POS.
SCM	0	MASK	ABSO. VALUE OF DIFF.
THS	0	UNITY	EXIT IF ONE GREATER THAN DIFF.
SLJ	0	SECTOR+2	NO. JUMP TO ADJUST MDOT AND C
LDA	0	C	YES. LOAD ROCKET NOZZLE VEL.
FMU	0	MDOT	
FDV	0	GACCEL	
STA	0	A	NON-DIMEN. ACCELERATION
LDQ	0	ELS	
SLJ	0	K100+2	RETURN TO LIN. TRAJ. PROG.
BSS	1		TEMP. STORE FOR NEW VSTART
BSS	1		TEMP. STORE FOR NEW THETA
BSS	1		TEMP. STORE FOR NEW C
BSS	1		TEMP. STORE FOR NEW B
SLS	0	SECTOR+1	HALT IF 1-WT IS NEGATIVE
ZRO	0	0	
LAC	0	TAUFIN	(-T)
FMU	0	OMEGA	(-WT)
FAD	0	UNITY	(1-WT)
AJP	3	SECTOR+1	HALT IF 1-WT IS NEGATIVE
SLJ	4	LOG+66	LOG(1-WT) TO BASE E
ZRO	0	0	
FMU	0	C	
FDV	0	TENGRAND	
SLJ	4	EXP	
VSTART1			
THETA1			
EJECT			
SECTOR			

ZRO	0	0		
SCM	0	MASK		
FAD	0	UNITY		
L3560	FDV	0	TAUFIN	NEW OMEGA
	STA	0	OMEGA	STORE NEW OMEGA
	LDA	0	GACCEL	
	FDV	0	RARTH	
	SLJ	4	SQROOT	SHULER ANGULAR FREQ.
	ZRO	0	0	
	FMU	0	OMEGA	NEW MDOT
	STA	0	MDOT	STORE NEW MDOT
	LDA	0	TENGRAND	LOAD NEW C
	STA	0	C	STORE NEW C
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
	ENI	0	0	
L3570	LDA	0	MDOT	
	FMU	0	C	
	FDV	0	GACCEL	
	STA	0	A	STORE NEW A
	SLJ	0	K70	JUMP TO LIN. TRAJ. PROG.
	LDA	0	CAPXFIN	PATCH FCR L3460+1 L.I.
	FMU	0	RC0T2	
	SLJ	0	L3460+2	
	ZRO	0	0	
	SLJ	4	70007	ENTRY FROM L710+3
	ZRO	0	0	PRINT B FINAL DECIMAL
	STA	0	UNITY	PARAMETER WORD
	ZRO	0	SPWT	FINAL B = SPWT
	SLS	0	L3570+7	END OF NON-LINEAR PROGRAM
	ZRO	0	0	
	END			

genTA 7.U6 no.34
Orbital transfer in minimum time.

3 2768 001 61482 9
DUDLEY KNOX LIBRARY