1.

a) Devrenin çalışma sınıfını belirtiniz. Çalışma prensibini kısaca anlatınız.

Ödev-4

- b) Sinusoidal bir giriş gerilimi için yüke aktarılabilecek maksimum gücü hesaplayınız.
- c) Her bir tranzistorun dayanması gereken maksimum I_C ve V_{CE} değerlerini bulunuz.

Şekil.1

2.

Yandaki şekilde gösterilen B-sınıfı çıkış katında:

 $V_{CEDmin}=2V$, $|V_{BE}|\approx 0.7V$ almabilir.

a) P_{Lmax} =40W elde edildiğine göre yük direncinin (R_L) değeri nedir?

Teslim tarihi: 13.05.2016

- **b)** U_A nın değeri ne olmalıdır ve V_{BE} çoğaltıcı ile nasıl sağlanabilir? Çizerek gösteriniz.
- c) T_6 ve T_7 'den oluşan NPN akım aynası I_o =5mA akım akıtacak şekilde tasarlandığına göre P_{Lmax} =40W elde edebilmek için β_{F3} ve β_{F4} 'ün değerleri en az ne olmalıdır? (β_{F1} = β_{F2} =20)
- **d)** I₀=5mA olması için gerekli R direncini hesaplayınız.
- e) T₅ de harcanan gücü hesaplayınız.
- **3.** B-sınıfı çıkış katında: V_{CEDmin}=2V, |V_{BE}|≈0.7V alınabilir.
- a) NPN ve PNP Darlington transistorlar kullanarak simetrik kaynaklarla beslenen, VBE çoğaltıcı ile B-sınıfı çalışacak şekilde kutuplanmış bir çıkış katı çiziniz.
- **b)** Yük direnci Ry= 4Ω için, azami sinüsoidal çıkış gücünün P_{ymax} =50W olması isteniyor. Besleme gerilimi değerlerini belirleyiniz.
- c) Darlington transistorların minimum akım kazançları en kötü halde β_D =1000 dir. Çıkışın tam güce sürülebilmesi için A-sınıfı sürücü katın DC kolektör akımı ne olmalıdır?
- d) Çıkış transistorlarında i) azami çıkış gücünde, ii) en kötü halde ısıya dönüşen güç değerlerini hesaplayınız.

e-posta ile gönderilen ödevler kabul edilmeyecektir. Soru çözümleri ayrıntılı bir şekilde verilmelidir. Kullanılan değişkenler ve birimler standart olmalıdır. Sadece sonuç içeren, çok kısa çözümler puanlandırılmayacaktır. Birimlere dikkat etmeyi unutmayınız.