Cheatsheet MVaP (version 3.1)

Opérations sur la pile

Opcode	Pile	sp	рс	Condition
PUSHI n	P[sp] := n	sp+1	pc+2	
POP		sp-1	pc+1	1 ≤ sp
DUP	P[sp]:=P[sp-1]	sp+1	pc+1	1 ≤ sp
ADD (SUB, MUL, DIV)	P[sp-2]:=P[sp-2] + P[sp-1]	sp-1	pc+1	2 ≤ sp
SUP (SUPEQ, INF, INFEQ, EQUAL, NEQ)	P[sp-2]:= 1 si P[sp-2] > P[sp-1], 0 sinon	sp-1	pc+1	2 ≤ sp

Données

Opcode	Pile	sp	рс	Condition
PUSHG n	P[sp] := P[n]	sp+1	pc+2	$0 \le n < \mathrm{sp}$
PUSHL n	P[sp] := P[fp+n]	sp+1	pc+2	$0 \le \mathrm{fp} + n < \mathrm{sp}$
STOREG n	P[n] := P[sp-1]	sp-1	pc+2	$1 \le \operatorname{sp} et 0 \le n < \operatorname{sp}$
STOREL n	P[fp+n] := P[sp-1]	sp-1	pc+2	$1 \le \operatorname{sp} et \ 0 \le \operatorname{fp} + n < \operatorname{sp}$
READ	P[sp] := entier lu	sp+1	pc+1	un entier sur l'entrée standard
WRITE		sp	pc+1	$1 \le sp$

Contrôle de flot

Opcode	Pile	sp	рс	fp	Condition
JUMP Label		sp	instr(Label)		
JUMPF Label		sp-1	instr(Label) si P[sp-1]=0, pc+2 sinon		1 ≤ sp
CALL Label	P[sp] := pc+2 , P[sp+1] := fp	sp+2	instr(Label)	sp+2	
RETURN		fp-2	P[fp-2]	P[fp-1]	2 ≤ sp

Note: avant assemblage, les *Label* font référence à des marques LABEL *Label* présentes dans le code. Lors de l'assemblage, ils sont remplacés par l'adresse **instr**(*Label*) dans le code.

Flottants

Opcode	Pile	sp	рс	Condition
PUSHF f	(P[sp], P[sp+1]) := f	sp+2	pc+3	
FADD (FSUB,FMUL,FDIV)	(P[sp-4], P[sp-3]):=(P[sp-4], P[sp-3]) + (P[sp-2], P[sp-1])	sp-2	pc+1	4 ≤ sp
FSUP (FSUPEQ,FINF,FINFEQ,FEQUAL,FNEQ)	P[sp-4]:= 1 si (P[sp-4], P[sp-3]) > (P[sp-2], P[sp-1]), 0 sinon	sp-3	pc+1	$4 \le sp$
READF	(P[sp], P[sp+1]) := réel lu	sp+2	pc+1	un nombre flottant sur l'entrée standard
WRITEF		sp	pc+1	2 ≤ sp
ITOF	(P[sp-1], P[sp]):=double(P[sp-1])	sp+1	pc+1	1 ≤ sp
FTOI	P[sp-2]:=int (P[sp-2], P[sp-1])	sp-1	pc+1	2 ≤ sp

Note: Les nombres flottants sont stockés sur deux mots mémoire.

Opérations supplémentaires

Opcode	Pile	sp	рс	Condition
FREE n		sp-n	pc+2	<i>n</i> ≤ sp
ALLOC n	$P[x] := 0 \text{ pour } sp \le x < sp+n$	sp+n	pc+2	
PUSHR n	P[sp-1] := P[P[sp-1] + n]	sp	pc+2	$1 \le \text{sp } et \ 0 < P[\text{sp-1}] + n < \text{sp}$
STORER n	P[P[sp-2] + n] := P[sp-1]	sp-2	pc+2	$1 \le \text{sp } et \ 0 < P[\text{sp-1}] + n < \text{sp}$
JUMPR Label		sp-1	<pre>instr(Label)+P[sp-1]</pre>	1 ≤ sp
PUSHSP	P[sp] := sp	sp+1	pc+1	
PUSHFP	P[sp] := fp	sp+1	pc+1	