УТВЕРЖДЕНО Проректор по учебной работе А. А. Воронов 15 июня 2022 г.

ПРОГРАММА

по дисциплине: Общая физика: квантовая физика

по направлению подготовки: 03.03.01 «Прикладные математика и физика»

физтех-школа: для всех физтех-школ

кафедра: общей физики

курс: $\frac{3}{5}$ семестр: $\frac{5}{100}$ лекции – 30 часов

практические (семинарские)

занятия – 30 часов

<u>лабораторные занятия – 60 часов</u> <u>Диф. зачёт – 5 семестр</u>

ВСЕГО АУДИТОРНЫХ ЧАСОВ – 120 Самостоятельная работа:

теор. курс – 30 часов физ. практикум – 75 часов

Программу и задание составили:

к.ф.-м.н., доц. В. Н. Глазков к.ф.-м.н., доц. А. С. Кобякин к.т.н., доц. В. А. Овчинкин д.ф.-м.н., проф. Ю. В. Петров к.ф.-м.н., доц. А. О. Раевский

Программа принята на заседании кафедры общей физики 20 мая 2022 г.

Заведующий кафедрой д.ф.-м.н., профессор

А. В. Максимычев

КВАНТОВАЯ ФИЗИКА

- 1. Ультрафиолетовая катастрофа. Гипотеза Планка. Законы излучения АЧТ. Основные нерешенные проблемы классической физики на рубеже XIX—XX веков. Подсчет числа состояний поля в заданном объеме; фазовый объём, приходящийся на одно квантовое состояние, плотность состояний. Формула Рэлея—Джинса и ультрафиолетовая катастрофа, формула Вина. Гипотеза Планка, распределение Планка. Закон смещения Вина. Равновесное излучение как идеальный газ фотонов. Абсолютно черное тело. Законы Кирхгофа, Ламберта и Стефана—Больцмана.
- 2. Корпускулярные свойства электромагнитных волн. Основные экспериментальные результаты по внешнему фотоэффекту. Гипотеза Эйнштейна относительно квантов света Уравнение Эйнштейна и объяснение фотоэффекта. Импульс фотона. Эксперимент Комптона по рассеянию рентгеновских лучей на лёгких ядрах, формула для изменения длины волны фотонов при рассеянии на свободных электронах, комптоновская длина волны.
- 3. Волновые свойства частиц. Соотношение неопределенностей. Гипотеза де Бройля о волновых свойствах материальных частиц корпускулярно-волновой дуализм. Длина волны де Бройля нерелятивистской частицы. Опыты Девиссона—Джермера и Томсона по дифракции электронов. Критерий квантовости системы. Соотношения неопределенностей (координата-импульс; энергия-время). Виртуальные частицы. Радиус взаимодействия при обмене виртуальными частицами (фундаментальными бозонами). Волновая функция свободной частицы (волна де Бройля). Вероятностная интерпретация волновой функции, выдвинутая Борном. Понятие о скрытых параметрах (гипотеза Эйнштейна) и неравенствах Белла.
- 4. Формализм квантовой механики. Понятие об операторах физических величин. Операторы координаты, импульса, потенциальной и кинетической энергии системы, гамильтониан. Собственные функции и собственные значения. Уравнение Шредингера. Свойства волновой функции стационарных задач: непрерывность, конечность, однозначность, непрерывность производной. Принцип суперпозиции квантовых состояний. Формула для среднего значения физической величины в заданном состоянии. Закон сохранения вероятности, вектор плотности потока вероятности. Процесс квантового измерения физической величины возможность получения только ее собственных значений в процессе идеального измерения. Редук-

ция волновой функции в процессе измерения. Необходимость серии идентичных измерений. Критерий возможности одновременного измерения нескольких физических величин.

- **5. Потенциальные барьеры. Потенциальные ямы. Осциллятор.** Рассеяние частиц на потенциальной ступеньке конечной высоты, прохождение частицы над ямами и барьерами конечной ширины, эффект Рамзауэра. Прохождение частицы через прямоугольный потенциальный барьер конечной ширины (туннельный эффект), вывод формулы для прозрачности барьера произвольной формы в квазиклассическом приближении. Бесконечно глубокая потенциальная яма. Связанные состояния частицы в одномерной симметричной потенциальной яме конечной глубины. Уровни энергии одномерного гармонического осциллятора (без вывода).
- 6. Движение в центральном поле. Колебательные и вращательные спектры молекул. Оператор момента импульса. Квантование собственных значений проекции момента на выделенную ось и квадрата момента импульса, сложение моментов. Движение в центральном поле, центробежная энергия, радиальное квантовое число, кратность вырождения. *s*-состояния в трёхмерной сферически симметричной яме конечной глубины, условие существования связанного состояния. Адиабатическое приближение в теории молекул. Вращательный и колебательный спектры, энергетические масштабы соответствующих возбуждений.
- **7. Водородоподобные атомы. Магнитный момент. Спин.** Закономерности оптических спектров атомов. Движение в кулоновском поле. Спектр атома водорода и водородоподобных атомов, главное квантовое число, кратность вырождения. Изотопический сдвиг, модель атома Бора. Мезоатомы. Волновая функция основного состояния атома водорода. Качественный характер поведения радиальной и угловой частей волновых функций возбужденных состояний. Магнитный орбитальный момент электронов, гиромагнитное отношение, магнетон Бора. Опыт Штерна—Герлаха, гипотеза о спине электрона, спиновый *g*-фактор. Опыт Эйнштейна—де Гааза. Оператор полного момента импульса, *g*-фактор Ланде. Тонкая и сверхтонкая структура спектра атома водорода.
- **8.** Тождественность частиц. Обменное взаимодействие. Сложные атомы. Тождественность частиц, симметрия волновой функции относительно перестановки частиц, бозоны и фермионы, принцип Паули. Обменное взаимодействие. Самосогласованное поле в сложных атомах, электронная конфигурация атома. Правило Маделунга—Клечковского. Таблица

Менделеева. Атомные термы, метод нахождения термов для заданной электронной конфигурации, спектроскопическая запись состояния атома. Правила Хунда. Характеристическое рентгеновское излучение (закон Мозли).

- 9. Спин-орбитальное и сверхтонкое взаимодействие. Атом в магнитном поле. Эффект Зеемана. Излучение, правила отбора. Спин-орбитальное взаимодействие. Типы связи: Рассела—Саундерса (LS) и *j-j*. Сверхтонкое взаимодействие. Тонкая структура терма для случая LS-связи. Эффект Зеемана для случаев слабого и сильного магнитных полей на примере 3P—3S-переходов. Сверхтонкое взаимодействие. Классификация фотонов по полному моменту и чётности (Е- и М-фотоны). Интенсивность электродипольного излучения, соотношение интенсивностей излучения фотонов различных типов и мультипольностей. Естественная ширина уровня.
- 10. ЭПР и ЯМР. Спонтанное и вынужденное излучение. Лазеры. Ядерный и электронный магнитный резонанс (квантовомеханическая трактовка). Строгие и нестрогие правила отбора при поглощении и испускании фотонов атомами (на примере эффекта Зеемана и ЯМР). Двухуровневая квантовая система в поле равновесного излучения, принцип детального равновесия, спонтанные и индуцированные переходы, соотношения Эйнштейна. Прохождение излучения через среду, условие усиления (инверсная заселённость уровней). Принцип работы лазера.
- 11. Ядерные модели. Открытие ядра атома (опыты Резерфорда, Гейгера и Марсдена) и его строения (опыты Блэкетта и Чедвика). Энергия связи ядра, экспериментальная зависимость удельной энергии связи ядра от массового числа А. Свойства ядерных сил: радиус действия, глубина потенциала, насыщение ядерных сил, спиновая зависимость. Ядерные силы как проявление сильного взаимодействия. Модель Юкавы. Модель жидкой заряженной капли. Формула Вайцзеккера для энергии связи ядра. Оболочечная модель и магические числа в осцилляторном потенциале. Одночастичные и коллективные возбуждённые состояния ядра.
- 12. Радиоактивность. Альфа-, бета-, гамма-распады. Радиоактивность. Закон радиоактивного распада, константа распада, период полураспада, среднее время жизни, вековое уравнение. Альфа-распад, закон Гейгера—Нэттола и его вывод (формула Гамова). Бета-распад, энергетический спектр бета-распада, гипотеза нейтрино и его опытное обнаружение, внутренняя конверсия электронов, *К*-захват. Гамма-излучение, изомерия ядер. Спонтанное деление ядер, механизм формирования барьера деления зависимость кулоновской и поверхностной энергии от деформации, параметр делимости, энергия, выделяемая при делении ядер, предел стабильности ядер относительно деления.

- 13. Ядерные реакции. Оценка сечений. Ядерные реакции: экзотермические и эндотермические реакции, порог реакции, сечение реакции (полное и парциальные сечения), каналы реакции, ширины каналов. Модель составного ядра Бора: классическое геометрическое сечение, поправки на волновой характер движения частиц, закон Бете. Резонансные реакции, формула Брейта—Вигнера. Деление ядер под действием нейтронов, мгновенные и запаздывающие нейтроны, цепная реакция деления. Роль запаздывающих нейтронов в работе ядерного реактора. Схема реактора на тепловых нейтронах.
- 14. Фундаментальные взаимодействия и частицы. Элементарные частицы. Методы регистрации элементарных частиц. Стандартная модель. Законы сохранения и внутренние квантовые числа. Кварковая структура адронов мезоны и барионы. Новое квантовое число «цвет», обобщенный принцип Паули. Магнитные моменты протона и нейтрона. Резонансы. Адронные струи. Элементы квантовой хромодинамики: асимптотическая свобода, гипотеза конфайнмента кварков и глюонов, кварковый потенциал. Оценка адронных сечений при высоких энергиях. Несохранение чётности при слабом взаимодействии, опыт Ву. Проблема солнечных нейтрино, нейтринные осцилляции.

Литература

Основная

- 1. *Сивухин Д.В.* Общий курс физики. Т.5. Ч.І. Ч.ІІ. Москва : Наука, 1989.
- 2. *Ишханов Б.С., Капитонов И.М., Юдин Н.П.* Частицы и атомные ядра. Москва : URSS, 2013.
- 3. Ципенюк Ю.М. Квантовая микро- и макрофизика. Москва: Физматкнига, 2019.
- 4. *Фаддеев М.А., Чупрунов Е.В.* Лекции по атомной физике. Москва : Физматлит, 2008.
- Карлов Н.В., Кириченко Н.А. Начальные главы квантовой механики. Москва: Физматлит, 2006.
- 6. *Белонучкин В.Е., Заикин Д.А., Ципенюк Ю.М.* Основы физики. Т.II / под ред. Ю.М. Ципенюка. Москва : Физматлит, 2006.

Дополнительная

- 1. *Гольдин Л.Л., Новикова Г.И.* Введение в квантовую физику. Москва : Наука, 1988.
- Крылов И.П. Основы квантовой физики и строение вещества: учебное пособие. Москва: МФТИ, 1989.
- 3. *Рубаков В.А.* К открытию на Большом адронном коллайдере новой частицы со свойствами бозона Хиггса // УФН. 2012. Т. 182, № 10. С.1017.
- Казаков Д.И. Хиггсовский бозон открыт: что дальше? // УФН. 2014. Т. 184, № 10. С. 1004.
- Казаков Д.И. Перспективы физики элементарных частиц // УФН. 2019. Т. 189, № 4. С. 387.

ЗАДАНИЕ ПО ФИЗИКЕ для студентов 3-го курса на осенний семестр 2022-2023 учебного года

№	П	Темы	Задачи	
сем.	Даты	семинарских занятий	0	1
1	1 – 7	Законы излучения АЧТ.	0-1-1,	1.26*, 1.32*, 1.38*,
	сен.	Законы излучения А 11.	0-1-2	1.44*, 1.50*, T.1
2	8 – 14 сен.	Фотоэффект. Эффект Комптона.	0-2-1, 0-2-2	1.7, 1.18, 1.23, 1.35, 1.39, 1.48
3	15 – 21 сен.	Волны де Бройля. Соотношение неопределенностей.	0-3-1, 0-3-2	2.10, 2.15, 2.26, 2.30, 2.38. 2.44
4	22 – 28 сен.	Уравнение Шредингера. Потенциальные барьеры. Туннельный эффект.	0-4-1, 0-4-2	3.27, 3.33, 3.35, 3.45, T.2, T.3
5	29 сен. – 5 окт.	Потенциальные ямы. Квазиклассическое приближение.	0-5-1, 0-5-2	3.5, 3.6, 3.14, 3.21, 3.23, 3.49
	6 – 12	Колебательные и вращательные	0-5-2	4.29, 4.38, 4.45,
6	0 – 12 0KT.	уровни. Водородоподобные атомы.	0-6-1,	5.16, 5.25, 5.51
7	13 – 19	Магнитный момент. Спин. Обмен-	0-7-1,	6.8. 6.10, 6.15,
	окт.	ное взаимодействие.	0-7-2	6.66, 6.68, 6.78
8	20 – 26 окт.	Контрольная работа		
9	27 окт. – 2 нояб.	Сдача 1-го задания		
10	3 – 9 нояб.	Сложные атомы. Тонкая и сверхтонкая структуры. Эффект Зеемана.	0-10-1, 0-10-2	6.20, 6.48, 6.75, 6.77, 6.80, T.4
11	10 – 16 нояб.	Излучение, правила отбора. ЭПР и ЯМР.	0-11-1, 0-11-2	6.21, 6.34, 6.56, 1.56*, 1.57*, T.5, T.6
12	17 – 23 нояб.	Ядерные модели. Радиоактив- ность.	0-12-1, 0-12-2	7.5, 7.16, 7.20, 7.51, 7.58, 7.64
13	24 – 30 нояб.	Ядерные реакции.	0-13-1, 0-13-2	7.10, 8.45, 8.62, 8.68, 9.4, 9.11
14	1 – 7 дек.	Фундаментальные взаимодействия и частицы. Сильное взаимодействие.	0-14-1, 0-14-2	10.7, 10.24, 10.62, 10.70, T.7, T.8
15	8 – 14 дек.	Фундаментальные взаимодействия и частицы. Слабое взаимодей- ствие.	0-15-1, 0-15-2	10.52, 10.73, 10.75, 10.85, 10.92, T.9
16	15 – 21 дек.	Сдача 2-го задания		

Номера задач указаны по задачнику «Сборник задач по общему курсу физики. Ч. III. Атомная и ядерная физика. Строение вещества» / под ред. В. А. Овчинкина. — Москва: Физматкнига, 2009. Задачи, отмеченные «*», — из раздела 2 этого задачника.

В каждой теме семинара имеются задачи 2-х групп:

- 0 задачи для самостоятельного решения студентами к предстоящему семинару. При необходимости эти задачи разбираются на семинаре.
- 1 задачи, рекомендованные для обсуждения на семинаре и для самостоятельного решения после него.

Все задачи должны быть решены и оформлены в тетради для сдачи задания. Преподаватель по своему усмотрению разбирает часть задач на семинаре. Возможен разбор и других равноценных задач.

Задачи группы 0

- **0-1-1.** Вследствие повышения температуры положение максимума спектральной энергетической светимости абсолютно черного тела переместилось с 2 мкм на 1 мкм. Во сколько раз изменилась его интегральная энергетическая светимость?
- **0-1-2.** Оценить давление теплового излучения во внутренней области Солнца, где температура равна $1,3 \cdot 10^7$ К.
- **0-2-1.** В опытах П. Н. Лебедева, доказавшего существование светового давления, падающий световой поток составлял 6 Вт/см². Вычислить давление, которое испытывали зачернённые и зеркальные лепестки его измерительной установки.
- **0-2-2.** Монохроматическое гамма-излучение рассеивается на покоящихся электронах. Найти частоту излучения, рассеиваемого назад, если энергия налетающего фотона равна энергии покоя электрона.
- **0-3-1.** Определить кинетическую энергию электрона, при которой его дебройлевская и комптоновская длины волн равны между собой.
- **0-3-2.** Исходя из соотношения неопределенностей, оцените минимальную энергию осциллятора с частотой ω .
- **0-4-1.** Найти минимальную кинетическую энергию электрона, при которой он без отражения пройдёт над одномерной прямоугольной потенциальной ямой глубиной U = 2.5 эВ размером $a = 2r_{\rm b}$, $r_{\rm b}$ боровский радиус.

- **0-4-2.** Электрон с энергией 3 эВ проходит через прямоугольный потенциальный барьер высотой 5 эВ и шириной 3 Å. Во сколько раз должна возрасти высота барьера, чтобы вероятность прохождения через барьер упала в 10 раз?
- **0-5-1.** Частица массы m заключена в одномерном потенциальном ящике шириной l с непроницаемыми стенками. Найти работу, которую надо затратить на квазистатическое сжатие ящика вдвое, если частица находится в основном состоянии.
- **0-5-2.** Частица массы *т* заключена в одномерном потенциальном ящике с непроницаемыми стенками. Какова масса частицы, если при ширине ящика 3 Å. расстояние между первым и третьим уровнями частицы в яме составляет 5 эВ?
- **0-6-1.** При какой температуре средняя энергия поступательного движения молекулы O₂ равна энергии, необходимой для возбуждения ее на первый вращательный уровень? Межъядерное расстояние в молекуле равно 1,2 Å.
- **0-6-2.** Электрон с энергией 12,5 эВ сталкивается с неподвижным атомом водорода, находящимся в основном состоянии. Найдите минимально возможную энергию рассеянного электрона. Энергию отдачи атома не учитывать.
- **0-7-1.** Найти возможные значения полного спина атома водорода в основном состоянии.
- **0-7-2.** Оценить энергетическое расщепление состояний, найденных в предыдущей задаче, при учете магнитного взаимодействия протона и электрона, рассматриваемых, как точечные магнитные диполи.
- **0-10-1.** Определить возможные значения полного углового момента электрона и его проекции на выделенную ось в атоме водорода, находящемся в возбужденном состоянии с главным квантовым числом n=3.
- **0-10-2.** Атом водорода находится в 2p-состоянии. Определить возможные значения полного момента количества движения.
- **0-11-1.** Для получения тепловых нейтронов (с максвелловским распределением скоростей, отвечающим температуре $T=300~{\rm K}$) поток нейтронов из реактора направляют в сосуд с тяжёлой водой (модератор), размер которого много больше длины пробега нейтрона в воде. Избавляясь от избытка энергии в столкновениях с ядрами дейтерия, нейтроны термализуются после нескольких десятков столкновений. Найти, чему будет равна относительная разность чисел тепловых нейтронов, магнитные моменты которых

- направлены по полю или против поля, если модератор поместить в магнитное поле индукцией B = 10 Тл. g-фактор нейтрона равен -3.8.
- **0-11-2.** При какой температуре абсолютно черного тела вероятность индуцированного излучения в видимой области превосходит вероятность спонтанного излучения?
- **0-12-1.** Свободное покоившееся ядро 191 Ir с энергией возбуждения 129 кэВ перешло в основное состояние, испустив γ -квант. Вычислить относительное изменение энергии γ -кванта, возникающее в результате отдачи ядра.
- **0-12-2.** Препарат полония активностью $3,7\cdot10^9$ распад/с помещен в калориметр теплоёмкостью 1 кал/К. Найти повышение температуры калориметра за 1 час, если известно, что полоний испускает α -частицы с энергией 5,3 МэВ. Считать период полураспада полония много большим времени эксперимента.
- **0-13-1.** В реакции синтеза ядер дейтерия и трития $d+t \to \alpha + n + Q$ выделяется энергия Q=17,8 МэВ. Какова энергия, уносимая нейтроном?
- **0-13-2.** Сечение поглощения нейтрино с энергией более 5 МэВ ядром железа составляет $\sigma = 10^{-42}$ см². Какова вероятность поглотиться для такого нейтрино, двигающегося по диаметру в ядре Земли? Считать, что ядро состоит из железа (A = 56 а.е.м., $\rho = 7.8$ г/см³), его радиус R = 3000 км.
- **0-14-1.** Определите минимальную кинетическую энергию протона, налетающего на неподвижный протон, необходимую для рождения пары протонантипротон.
- **0-14-2.** Оценить среднюю длину свободного пробега и среднее время между двумя соударениями протонов в галактических космических лучах. Считать, что их концентрация $n=10^5~{\rm M}^{-3}$, скорость хаотического движения $v\approx c$, радиус протона $R_p=10^{-13}~{\rm cm}$.
- **0-15-1.** Определить энергию релятивистского электрона, если радиус кривизны его следа в камере Вильсона, помещенной в магнитное поле $B=10^5$ Гс, составляет 2 м.
- **0-15-2.** Какой минимальной энергией должен обладать γ -квант, чтобы он смог родить электрон-позитронную пару? Возможен ли данный процесс в вакууме?

Текстовые задачи

Т1. Средняя температура поверхности Земли составляет 15°С. В результате природных процессов или влияния промышленных выбросов прозрачность атмосферы может измениться. Оценить, как изменится равновесная температура земной поверхности если прозрачность атмосферы уменьшится на 5% для излучения: а) с длиной волны меньше $\lambda_0 = 20~000~\text{Å}$; б) с длиной волны более $\lambda_0 = 20~000~\text{Å}$. Под прозрачностью понимается доля излучения, преодолевающая расстояние от верхних слоёв атмосферы до поверхности. Считать для оценки, что прозрачность атмосферы постоянна для $\lambda > \lambda_0$ и $\lambda < \lambda_0$.

Ответ: случай а): «ядерная осень», температура понизится на 4 °C; случай б): «глобальное потепление», температура повысится на 4 °C.

Т2. На одномерную прямоугольную потенциальную ступеньку высотой $U_0 > 0$, расположенную в точке x = 0, из области x < 0 падают микрочастицы с энергией $E = U_0/4$. На каком наименьшем расстоянии слева от ступеньки (в длинах волн де Бройля) плотность вероятности обнаружения частицы будет максимальна и на каком — минимальна?

Omeem:
$$|x|_{\text{max}} = \lambda/6$$
, $|x|_{\text{min}} = 5\lambda/12$.

Т3. Какая доля электронов с энергией E = 1 эВ, падающих слева на показанный на рисунке несимметричный потенциальный барьер, сможет его преодолеть? Ширина барьера l = 7.8 Å.

Ответ: 8/73.

Т4. Найти все термы невозбужденного атома углерода, на внешней оболочке 2p оболочке которого находятся два электрона (электронная конфигурация $1s^22s^22p^2$).

Ответ: ¹D, ³P, ¹S.

Т5. В спектре полярных сияний самая интенсивная желто-зеленая линия с $\lambda=5577$ Å (aurora borealis) соответствует переходу между состояниями 1S_0 и 1D_2 нейтрального атома кислорода. Определить тип перехода и оценить время жизни возбужденного состояния, считая, что размер атома кислорода равен a=1,25 Å, а время электрических дипольных переходов составляет порядка $\tau_1 \sim 10^{-7}$ с.

Ответ: испускается фотон *E*2, время жизни состояния 1S_0 составляет примерно $\tau_2 \sim \tau_1/(ka)^2 = \tau_1\lambda^2/(2\pi a)^2 = 0.5 \cdot 10^6 \cdot 10^{-7}$ с = 0.05 с (точный ответ: $\tau_2 = 0.7$ с).

- **Т6.** Ион меди Cu^{2+} , входящий в состав многих магнитных солей, имеет электронную конфигурацию внешней незаполненной оболочки $3d^9$.
- 1) Определить квантовые числа свободного иона меди Cu^{2+} ; записать его спектроскопический символ и вычислить g-фактор.
- 2) В ионных кристаллах магнитный ион взаимодействует с электрическим полем своих соседей, поэтому его более нельзя считать свободным и формула Ланде становится неприменимой. В соли $CuGeO_3$ (магнитным моментом в этом соединении обладает только ион Cu^{2+}) в одной из ориентаций магнитного поля относительно кристалла резонансное поглощение наблюдается на частоте v=36,5 ГГц в поле H=11,48 кЭ. Определить по этим данным эффективный g-фактор иона меди в этом кристалле.

Ответ: 1)
$$L=2$$
, $S=1/2$, $J=L+S=5/2$; $^2D_{5/2}$, $g=6/5=1,2$.
2) $g_{3\varphi}=h\nu/(\mu_{\rm B}B)=2,27$.

Т7. В августе 2008 г. группа ВАВАR Collaboration сообщила о регистрации $\eta_b(1S)$ -мезона — основного состояния боттомониума, соответствующего антипараллельной ориентации спинов пары $(b\tilde{b}\)$ (так называемый *паработтомониум* в состоянии 1 1S_0 . На встречных (e^-,e^+) -пучках при суммарной энергии E=10 355 МэВ рождался $\Upsilon(3S)$ -мезон, соответствующий возбужденному состоянию пары $(b\tilde{b}\)$ с параллельными спинами (так называемый *ортоботтомониум* в состоянии 3 3S_0). Рожденный мезон распадался на мезон $\eta_b(1S)$ и γ -квант: $\Upsilon(3S) \to \eta_b(1S) + \gamma$. Определить массу $\eta_b(1S)$ -мезона и тип испускаемого γ -кванта, если энергия γ -кванта $E_\gamma=921,2$ МэВ. Какова разница в энергиях основных состояний орто- и паработтомониума, определяемая переворотом спинов одного из кварков. Масса основного состояния ортоботтомония $m_{\Upsilon(1S)}=9460,4$ МэВ/ c^2 .

Ответ:
$$m_{\eta_b(1S)}c^2=E\sqrt{1-2E_\gamma/E}=9388,7$$
 МэВ,
$$\Delta mc^2=\left(m_{{\rm Y}(1S)}-m_{\eta_b(1S)}\right)c^2=71,7$$
 МэВ , испускается магнитный дипольный γ -квант ($M1$).

Т8. В экспериментах 2011—2012 гг. на Большом адронном коллайдере (ЦЕРН, Женева) в протон-протонных столкновениях была открыта частица, напоминающая по своим свойствам бозон Хиггса (хигтсон), предсказанный в 1964 г. В соответствии с выводами Стандартной модели был обнаружен распад предполагаемого бозона Хиггса на два фотона, причем энергии фотонов оказались равными $E_1 = 70$ ГэВ и $E_2 = 92$ ГэВ, а угол разлета фотонов — $\alpha = 103^\circ$. Найти массу распавшейся частицы.

Ответ:
$$m_{\rm H}c^2 = [2E_1E_2 (1-\cos\alpha)]^{1/2} = 130$$
 ГэВ.

Т9. Мюонное нейтрино, попав в жидководородную камеру, рождает промежуточный бозон W^+ ($m_Wc^2=81~\Gamma \mbox{pB}$). Найти минимальную энергию нейтрино.

Ответ: $E \approx (m_W)^2 c^2 / (2m_p) = 3500 \ \Gamma \ni B$.