Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

11 (73)

Forest Service

Forest Pest Management

Davis, CA

Pesticide Precautionary Statement and Disclaimer

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

20 -1 -1 -1 -1

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Information contained in this report has been developed for the guidance of employees of the Forest Service, U.S. Department of Agriculture, its contractors, and its cooperating Federal and State agencies. The Department of Agriculture assumes no responsibility for the interpretation or use of this information by other than its own employees.

The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others which may be suitable.

A No

EFFECTS OF NALCO-TROL ON ATOMIZATION

Prepared by W.E. Yates R.E. Cowden and N.B. Akesson

Agricultural Engineering Department University of California Davis, CA 95616

Prepared for U.S. Department of Agriculture Forest Service Forest Pest Management Davis, CA 95616 (916) 758-4600

John W. Barry Project Leader

Purchase Order No. 40-91S8-4-1323 (Work under this purchase order was completed in December 1984)

PREFACE

The purpose of this wind tunnel test was to establish drop size characteristics of an 8006 and a D8-46 nozzle atomizing water and Nalco-Trol. Results will be used by the USDA Forest Service in developing prescriptions for applying pesticides, and in selecting nozzle types and position on spray booms. Data are used also as input to mathematical models which predict spray coverage, canopy penetration, and off-target drift. Wind tunnel tests help to provide these data to achieve optimum droplet spectra and application rates.

Funding was provided by USDA Forest Service, Forest Pest Management, Washington Office. Questions and comments should be directed to the Project Officer, John W. Barry, 2810 Chiles Rd., Davis, CA 95616, (916) 758-4600.

THEFT

The property and the pr

Pending.

Pendin

CONTENTS	PAGE NO.
PREFACE	1
INTRODUCTION	. 3
TABLE 1 - Summary of Drop Size Statistics of 40 psi	. 8
FIGURE 1	. 9
FIGURE 2	. 10
FIGURE 3	. 11
FIGURE 4	. 12
APPENDIX A	
8006 Water	
D8-46 Water	

INTRODUCTION:

A series of tests were conducted in a wind tunnel to measure the effect of Nalco-Trol adjuvant on the drop spectra from fan and cone nozzles that are commonly used on fixed wing and helicopter application of pesticides.

Equipment and Materials:

The nozzles were tested in a wind tunnel with a test section 8 ft. long and a 2x2 ft. cross-section. A Particle Measuring System laser probe (PMS OAP-2D-GA1) with a digital data acquisition system (PMS 11-C) was used to count and classify the drops into 62 size classes from 28 µm to 2062 µm. Five different concentrations (0, 3, 6, 9, 12 oz. per 100 gal H₂O) of the visco-elastic adjuvant Nalco-Trol were used in this study. An 80° flat fan nozzle (Spraying Systems 8006) was selected to represent a typical nozzle used with fixed wing applications. This nozzle was operated at 40 psi, at an angle of 135° (forward and down 45°) relative to the airstream and with an airspeed of 120 mph. A disc and core hollow cone nozzle (Spraying Systems D8-46) was selected to represent a typical nozzle used with helicopter applications. This nozzle was operated at 40 psi at 0° (straight back) relative angle to the airstream and with an airspeed of 50 mph.

Procedures:

The PMS software used for this series of tests was Version 123 with AVG set at 100. This version was helpful in obtaining an average weighting factor for each 100 drops measured. The slice rate was adjusted to give a minimum of 2 slices for the smallest detectable particle which was 4 MHz at 120 MPH and 1.5 MHz at 50 MPH. The horizontal distance from the laser beam to nozzle and gap width of laser beam was adjusted for each run to obtain an optimum spray sample density. The horizontal distance ranged from 12 to 75 inches (30 to

191 cm) from the nozzle and the sample gap ranged from 0.4 inches to 0.8 inches. The nozzle was mounted on an automatic x-y scanner which moved the nozzle through a series of parallel vertical passes. The system was controlled with a microprocessor and the length, width, and number of passes were adjusted to sample the entire spray pattern. The length of traverse was 15 inches with a spacing of 1 to 2 inches and a total number of 6 to 12 traverses. Each test was replicated two or more times.

Results:

Table 1 contains a summary of the drop size spectrums for the various concentrations of Nalco-Trol, nozzles, and test conditions. The nomenclature used is as follows:

D₃₀ = <u>Volume mean</u> <u>diameter</u>

 $D_{V \cdot 1}$ = Diameter that contains 10% of volume in drops of smaller size

 $^{\mathrm{D}}\mathrm{V.5}$ = Diameter that contains 50% of volume in drops of smaller size. Also defined as <u>volume median diameter</u>.

 $D_{V.9}$ = Diameter that contains 90% volume in drops of smaller size.

 $D_{V.9} - D_{V.1} = Range$. This represents the range in drop size that contains 80% of the spray volume.

 $\frac{D_{V.9} - D_{V.1}}{D_{V.5}} = \frac{\text{Relative Span.}}{\text{tive uniformity of drop spectra.}} \text{ The number represents a normalized value of the Range } (D_{V.9} - D_{V.1}) \text{ as a fraction of the volume median diameter.}} \text{ Thus, a smaller number indicates a smaller relative range and a more uniform drop spectra.}}$

8006 Nozzle:

The addition of Nalco-Trol produced a significant affect on the drop size spectrum from the 8006 nozzle positioned at 135° (forward and down 45°) rela-

tive to a 120 mph airstream. The general affect of Nalco-Trol on the drop size spectrum characteristics are shown in Appendix A, pages 15 through 22. The mass frequency histograms clearly show the development of a wider, bimodal distribution with an increase in Nalco-Trol. Table 1 provides a summary of the drop spectra statistics for all the tests with the 8006 nozzle. As shown, the addition of Nalco-Trol increased the $D_{V\cdot5}$ from 175 to 628 $\mu m\cdot 10^{-1}$ In addition, all tests with Nalco-Trol produced a wider drop size spectrum with a Relative Span of 1.2 to 1.89 compared to the water test with 0.9. The percent volume in drops less than 154 μm decreased from 37 to 9% as the amount of Nalco-Trol was increased from 0 to 12 oz/100 gal water.

Fig 1 illustrates the affect of Nalco-Trol on both the Range and volume median diameter ($D_{V.5}$). As shown, the increase in Nalco-Trol produces a significant increase in the largest drops produced ($D_{V.9}$) and an increase in the volume median diameter ($D_{V.5}$). However, Fig 1 clearly shows a small change in fine drops ($D_{V.1}$) and a large increase in the range of drop size produced ($D_{V.9} - D_{V.1}$) with an increase in Nalco-Trol.

Fig 2 provides a plot of the cumulative drop size distribution of all the tests with the 8006 nozzle. This plot shows the range of drop size and is useful to estimate the percent volume of spray that is in drops less than a desired size. For example, the curves can be used to estimate the percent volume in drops less than 100 μ m.

D8-46:

The addition of Nalco-Trol produced a significant affect on the drop size spectrum from a D8-46 nozzle positioned at 0° (straight back) relative to a 50 mph airstream. The general affect of Nalco-Trol on the drop size spectrum is shown in Appendix A, pages 26 through 37. The mass frequency histograms

clearly show an increase in the maximum size drop produced with an increase in Nalco-Trol. For example, the above nozzle produced a maximum drop diameter of 1370 μm with water and increased to 2063 μm with 9 oz of Nalco-Trol per 100 gal.

Table 1 provides a summary of the drop spectra statistics for the tests with the D8-46 nozzle. As shown, the addition of Nalco-Trol increased the D $_{V.5}$ from 501 to 1150 μ m. One major attribute for the use of Nalco-Trol in this series of tests was the significant reduction in percent of fine particles with an increase in Nalco-Trol. The percent volume <154 μ m was very low and decreased from 2.5 to 0.25% as the Nalco-Trol was increased to 12 oz/100 gal water. However, one should be cautious in the use at the highest concentrations because the very large drops may result in poor coverage of the target. Also, the drop size spectra for the high concentrations were approaching the upper limit of the probe (2062 μ m). Thus, since the probe would reject all particles >2062 μ m, the D $_{V.5}$ and D $_{V.9}$ for tests with 9 and 12 oz of Nalco-Trol may be somewhat larger than reported in Table 1.

Fig 3 illustrates the general affect of Nalco-Trol on drop size and uniformity of drop size spectrum. As shown, an increase in Nalco-Trol produced a general increase in $D_{V.9}$, $D_{V.5}$, $D_{V.1}$. Also the graph illustrates that the Range ($D_{V.9}$ - $D_{V.1}$) generally increased with an increase in Nalco-Trol.

Fig 4 provides a plot of the cumulative drop size distribution for the tests with the D8-46 nozzle. The graph shows the range of drop size and is useful to estimate the percent spray below a desired drop size.

It should be mentioned that changes in nozzle type and orientation is an alternative way of producing larger drops and a lower % volume <154 μm . For example, other low velocity jets, narrow angle fans, or low velocity cone nozzles may produce a similar drop size spectrum.

Appendix A:

This appendix contains the statistical data and graphs of the drop spectrum for each of 5 tests with the 8006 nozzle and 5 tests with the D8-46 nozzle.

Summary:

A series of tests were conducted to measure the affect of Nalco-Trol on the drop size spectra from an 8006 flat fan nozzle positioned at a 135° (45° forward and down) angle relative to a 120 mph airstream. An increase in Nalco-Trol produced the following:

- l. A substantial increase in the maximum size of drops produced; from 512 to 1568 $\mu\text{m}\text{.}$
- 2. A bi-modal volume frequency drop size distribution.
- 3. A large increase in the Range (D_{V.9} D_{V.1}); from 158 to 752 μm .
- 4. A very large increase in Relative Span; 0.9 to 1.89.
- 5. A large increase in $D_{V.5}$; from 175 to 628 μm .
- 6. A relatively small increase in $D_{V_{\bullet}1}$; from 100 to 164 μm_{\bullet}
- 7. The % volume <154 µm decreased from 37 to 9%.

Another series of tests were conducted with a D8-46 hollow cone nozzle directed at 0° (back) relative to the 50 mph airstream. An increase in Nalco-Trol produced the following:

- 1. An increase in maximum drop size; from 1400 to 2130 μ m.
- 2. An increase in Range (D_{V.9} D_{V.1}); from 660 to 1250 μm_{\bullet}
- 3. An increase in $D_{V.5}$; from 501 to 1150 μm .
- 4. An increase in $D_{V.1}$; from 245 to 545 μm .
- 5. A decrease in % volume <154 μm ; from 2.46 to 0.25%.

Table 1 Summary of Drop Size Statistics of 40 psi

Volume <154 µm %	37	25	19	13	6	2.46	1.35	0.87	0.42	0.25
Relative Span	06.0	1.74	1.89	1.62	1.20	1.31	1.16	1.23	1.18	1.09
Dv.9 = пп	258	553	691	799	916	903	1140	1443	1759	1801
Dv. 5	175	258	302	407	628	501	714	873	1099	1150
Dv.1 µм	100	105	119	138	164	245	309	374	457	548
_ Б30 µm	117	121	136	156	180	239	303	350	437	515
Air Velocity mph	120	120	120	120	120	20	20	20	50	20
Nozzle Angle Relative to Airstream	135°	135°	135°	135°	135°	°0	°0	0.0	°0	00
Flow Rate gpm	0.61	0.63	0.63	0.63	0.63	1.84	1.38	1.38	1.38	1.38
Oz. of Nalco-Trol Per 100 Gal Water	0	က	9	6	12	0	က	9	6	12
Nozzle Type	8006					D8-46				

Figure 1

CUMULATIVE VOLUME, %

10

8006,135 Degrees,40 psi,120 mph,WATER

DTG 84/08/23 11:28:00

DFM=1.0--4.0 MHz

UPPER						ACCU	MULATED
LIMIT	· N(RAW)	N/SEC	qm/SEC	8 N	% VOL.	<u>8 </u>	% VOL.
56	1103	1.35E 07	0.44	41.03	1.61	41.03	1.61
89	1798	6.18E 06	1.23	18.76	4.44	59.79	6.05
122	1798	5.21E 06	3.16	15.81	11.44	75.60	17.49
154	1800	3.85E 06	5.27	11.70	19.05	87.30	36.54
137	1708	2.25E 06	5.81	6.82	21.02	94.12	57.56
219	1312	1.11E 06	4.83	3.36	17.48	97.47	75.04
252	1088	544626	3.71	1.65	13.42	99.13	88.46
284	609	235623	2.37	0.72	8.56	99.84	97.02
318	162	43338	0.62	0.13	2.25	99.37	99.27
351	31	3764	0.07	0.01	0.27	99.99	99.54
332	18	378 7	0.10	0.01	0.35	100.00	99.83
414	5	504	0.02	0.00	0.05	100.00	99.94
447	3	224	0.01	0.00	0.03	100.00	99.93
479	1	59	0.00	0.00	0.01	100.00	99.99
512	1	44	0.00	0.00	0.01	100.00	100.00
545	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		3.29E 07	27.55				

FOTAL RAW PARTICLES.... | 11437/13949-- 31.99%

NUMBER MEAN DIAMETER... 87.37 MICROMETERS S.D.... 53.05

VOLUME MEAN DIAMETER... 117.09 MICROMETERS 5.D.... 145.52

SAUTER MEAN DIAMETER... 152.26 MICROMETERS

DNO.1... 0.00 MICROMETERS DVO.1... 100.34 MICROMETERS DVO.5... 175.40 MICROMETERS 3.3.... 0.00

D₁₁₀.9... 167.34 MICROMETERS D_{V0}.9... 257.73 MICROMETERS

9005,135 Degrees,40 psi,120 mph,3 oz Nalco-Trol/100 gal DTG 84/08/22 14:23:00

DFM=1.0--4.0 MHz

UPPER						ACCU	MULATED
LIMIT	N(RAW)	N/SEC	qm/SEC	8 N	% VOL.	<u>8 N</u>	% VOL.
56	2680	1.87E 07	0.61	53.60	1.91	53.60	1.91
89	5134	6.70E 06	1.33	19.25	4.14	72.86	6.05
122	3853	4.36E 06	2.65	12.54	3.24	85.39	14.30
154	3155	2.41E 06	3.30	6.92	10.25	92.31	24.55
187	2245	1.13E 06	. 2.94	3.26	9.14	95.57	33.63
219	1548	529248	2.31	1.52	7.20	97.09	40.38
252	1492	369760	2.52	1.06	7.83	98.15	48.71
284	1256	237096	2.38	0.58	7.41	93.84	56.12
318	376	122072	1.75	0.35	5.46	99.19	61.53
351	609	76128	1.49	0.22	4.63	99.40	56.21
382	422	53235	1.35	0.15	4.23	99.55	70.44
414	364	37524	1.24	0.11	3.85	99.67	74.29
447	309	32101	1.34	0.09	4.15	99.76	73.45
479	237	22031	1.14	0.05	3.55	93.32	32.00
512	231	20530	1.31	0.06	4.03	99.33	36.03
545	152	13710	1.06	0.04	3.23	99.92	39.37
57 8	115	8806	0.81	0.03	2.53	29.95	91.90
611	36	8594	0.94	0.02	2.93	99.97	94.83
644	56	4077	0.53	0.01	1.53	39.93	96.45
677	42	3492	0.53	0.01	1.63	99.99	93.09
710	17	1281	0.22	0.00	0.69	100.00	99.79
743	10	730	0.16	0.00	0.49	100.00	39.27
776	5	369	0.08	0.00	0.25	100.00	99.53
809	5 3 2	337	0.09	0.00	0.27	100.00	99.31
342		142	0.04	0.00	0.13	100.00	99.94
875	1	62	0.02	0.00	0.03	100.00	100.00
908	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		3.48E 07	32.15				

TOTAL RAW PARTICLES.... 24910/31317-- 79.54%

NUMBER MEAN DIAMETER... 75.40 MICROMETERS S.D.... 57.66

VOLUME MEAN DIAMETER... 120.87 MICROMETERS S.D.... 213.47

SAUTER MEAN DIAMETER... 196.02 MICROMETERS

D_{10.1}... 0.00 MICROMETERS D_{V0.1}... 104.74 MICROMETERS D_{V0.5}... 257.52 MICROMETERS R.S.... 1.74 D_{10.9}... 143.57 MICROMETERS D_{V0.9}... 552.77 MICROMETERS

8005,135 Degrees,40 psi,120 mph,6 oz Nalco-Trol/100 gal DTG 84/08/22 14:53:00

DFM=1.0--4.0 MHz

UPPER							MULATED
LIMIT	N(RAW)	NZSEC	qm/SEC	<u>8 N</u>	% VOL.	3 7	\$ VOL.
56	2243	1.51E 07	0.50	49.15	1.24	49.15	1.24
39	5502	5.82E 06	1.16	19.00	2.89	68.15	4.13
122	4343	4.22E 06	2.56	13.76	6.39	81.91	10.52
154	2970	2.52E 06	3.44	8.22	8.60	90.12	19.12
187	1877	1.23E 06	3.31	4.17	8.27	94.29	27.39
219	1347	659494	2.88	2.15	7.20	96.44	34.60
252	1267	419424	2.86	1.37	7.14	97.81	41.73
284	973	223394	2.24	0.73	5.60	93.54	47.34
313	710	136153	1.96	0.44	4.39	98.99	52.23
351	480	71718	1.40	0.23	3.50	99.22	55.73
332	379	53679	1.37	0.13	3.42	99.40	59.15
414	296	31357	1.03	0.10	2.58	99.50	61.73
447	242	23645	0.99	0.08	2.45	99.58	54.19
479	241	22429	1.16	0.07	2.90	99.55	57.10
512	197	16752	1.06	0.05	2.65	99.70	69.75
545	195	16512	1.27	0.05	3.13	99.75	72.93
573	213	16266	1.50	0.05	3.75	99.31	75.59
611	191	12934	1.42	0.04	3.54	99.35	30.23
644	136	12774	1.65	0.04	4.11	99.39	34.34
677	141	11313	1.70	0.04	4.25	99.93	33.59
710	112	7273	1.27	0.02	3.15	99.95	91.75
743	87	5543	1.11	0.02	2.77	99.07	94.52
776	56	3563	0.31	0.01	2.04	99.93	96.55
309	37	2498	0.65	0.01	1.52	99.99	93.18
842	21	1440	0.42	0.00	1.06	100.00	99.24
875	7	564	0.22	0.00	0.55	100.00	99.73
908	3	172	0.06	0.00	0.16	100.00	99.94
941	1	54	0.02	0.00	0.06	100.00	100.00
974	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		3.06E 07	40.04				

TOTAL RAW PARTICLES.... 24317/31063-- 78.28%

NUMBER MEAN DIAMETER... 81.70 MICROMETERS S.D.... 65.00

VOLUME MEAN DIAMETER... 135.68 MICROMETERS S.D.... 252.99

SAUTER MEAN DIAMETER... 229.15 MICROMETERS

D_{NO.5}... 57.74 MICROMETERS D_{VO.5}... 302.26 MICROMETERS R.S.... 1.39 D_{NO.9}... 154.12 MICROMETERS D_{VO.9}... 691.21 MICROMETERS

3006,135 Degrees,40 psi,120 mph,9 oz Nalco-Trol/100 gal DTG 84/08/22 16:16:00

DFM=1.0--4.0 MHz

UPPER						ACCU	MULATED
LIMIT	N(RAW)	N/SEC	qm/SEC	3 11	% VOL.	8 7	3 VOL.
56	4769	1.14E 07	0.38	45.34	0.75	45.34	0.75
89	13043	4.69E 06	0.93	18.57	1.85	63.91	2.60
122	11339	3.58E 06	2.17	14.18	4.32	78.09	6.92
154	7232	2.32E 06	3.18	9.21	6.32	87.30	13.25
137	3967	1.24E 06	3.21	4.91	6.33	92.21	19.63
219	2589	697128	3.05	2.76	6.06	94.97	25.69
252	2067	450504	3.07	1.78	6.10	96.75	31.30
284	1569	270362	2.72	1.07	5.41	97.32	37.21
313	1074	144310	2.07	0.57	4.13	93.40	41.34
351	793	91223	1.78	0.35	3.55	98.75	44.39
332	614	52596	1.34	0.21	2.67	93.97	47.55
414	454	48283	1.59	0.19	3.16	99.15	50.72
447	423	35653	1.53	0.15	3.04	99.30	53.76
479	363	25531	1.32	0.10	2.53	99.40	56.39
512	335	26357	1.71	0.11	3.40	39.51	59.79
545	322	13491	1.42	0.07	2.33	99.53	52.52
573	289	16071	1.48	0.06	2.95 3.01	99.65	55.57 53.53
611	279 234	13313 13742	1.51 1.77	0.05	3.52	99.70 99.76	72.11
644 677	269	11432	1.72	0.05	3.42	39.73	75.53
710	277	11319	1.97	0.04	3.92	99.35	79.45
743	273	10701	2.14	0.04	4.25	99.39	33.71
775	204	8914	2.04	0.04	4.05	99.92	37.76
809	165	6100	1.58	0.02	3.15	99.95	90.91
342	126	4350	1.42	0.02	2.83	99.97	33.75
875	78	3136	1.05	0.01	2.09	99.93	95.34
903	52	2271	0.34	0.01	1.57	99.39	97.51
941	23	1171	0.48	0.00	0.36	99.39	93.47
974	21	1093	0.50	0.00	1.00	100.00	93.47
1007	4	147	0.07	0.00	0.15	100.00	99.52
1040	3	96	0.05	0.00	0.11	100.00	99.73
1073	1	31	0.02	0.00	0.04	100.00	99.77
1106	2	60	0.04	0.00	0.08	100.00	99.35
1139	2	59	0.05	0.00	0.10	100.00	99.95
1172	1	32	0.03	0.00	0.05	100.00	100.00
1205	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		2.525 07	50.27				

```
TOTAL RAW PARTICLES... 53306/69852-- 76.31%

NUMBER MEAN DIAMETER... 39.43 MICROMETERS S.D... 76.01

VOLUME MEAN DIAMETER... 156.16 MICROMETERS S.D... 295.41

SAUTER MEAN DIAMETER... 276.43 MICROMETERS

DNO.1... 0.00 MICROMETERS DV0.1... 137.65 MICROMETERS
DNO.5... 54.54 MICROMETERS DV0.5... 407.46 MICROMETERS R.S.... 1.62
```

Date ... 172.45 ALCROMETERS

Dy0.9... 793.04 'HORO HERES

3305,135 Degrees,40 psi,120 mph,12 oz Nalco-Trol/100 gal DTG 84/08/23 10:35:00

DFM=1.0--4.0 MHz

UPPER						A CCIII	ULATED
LIMIT	N(RAW)	N/SEC	qm/SEC	8 N	% VOL.	8_¥	%_VOL.
5 6 8 9	3066 7620	7.24E 06	0.24	46.22	0.50	46.22	0.50
122	6746	2.68E 06 2.13E 06	0.53	17.09	1.11	63.31	1.61
154	4088	1.52E 06	2.08	13.59 9.68	4.34	76.90 86.58	4.32 8.67
187	1936	810444	2.10	5.17	4.39	91.75	13.06
219	1083	451317	1.97	2.88	4.13	94.63	17.19
252	655	260978	1.78	1.67	3.72	96.29	20.91
284	440	160775	1.61	1.03	3.38	97.32	24.29
318	295	80176	1.15	0.51	2.41	97.83	23.71
351	226	61373	1.20	0.39	2.51	93.22	29.22
382	187	45104	1.15	0.29	2.41	93.51	31.53
414	151	29010	0.96	0.19	2.00	93.70	33.53
447	127	21534	0.90	0.14	1.83	98.33	35.51
479	134	22262	1.15	0.14	2.42	93.93	37.93
512	126	21333	1.36	0.14	2.34	99.11	40.77
545	124	15025	1.23	0.10	2.53	99.21	43.35
578	115	12317	1.14	0.08	2.33	99.29	45.73
611	103	13150	1.44	0.03	3.02	99.33	43.75
644	109	3819	1.14	0.06	2.33	99.43	51.13
677	111 135	11480	1.73	0.07	3.61 4.71	99.51 99.59	54.75 59.46
710 743	128	12934 13244	2.25	0.03	5.55	99.57	55.01
775	115	11522	2.56	0.07	5.56	99.75	70.57
309	97	8367	2.17	0.07	4.55	99.30	75.13
842	67	5168	1.81	0.04	3.79	99.34	73.92
375	77	7124	2.35	0.05	4.93	99.89	33.35
903	56	5299	2.33	0.04	4.38	99.93	33.72
941	47	5430	2.26	0.03	4.73	99.95	33.46
974	22	3136	1.44	0.02	3.01	99.33	95.47
1007	11	1291	0.36	0.01	1.37	99.99	97.34
1040	7	1011	0.57	0.01	1.19	100.00	99.03
1073	0	0	0.00	0.00	0.00	100.00	99.03
1106	1	6 32	0.43	0.00	0.89	100.00	99.92
1139	0	0	0.00	0.00	0.00	100.00	99.92
1172	1	48	0.04	0.00	0.08	100.00	100.00
1205	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		1.57E 07	47.76				

```
TOTAL RAW PARTICLES... 28206/40650-- 69.39%

NUMBER MEAN DIAMETER... 92.54 MICROMETERS S.D... 33.32

VOLUME MEAN DIAMETER... 179.95 MICROMETERS S.D... 349.23

SAUTER MEAN DIAMETER... 356.12 MICROMETERS
```

D_{MO.1}... 0.00 MICROMETERS D_{VO.1}... 164.29 MICROMETERS D_{VO.5}... 627.80 MICROMETERS R.S.... 1.20 D_{MO.9}... 176.11 MICROMETERS D_{VO.9}... 916.39 MICROMETERS

D8-46,0 Degrees,40 psi,50 mph,Water

DTG 83/04/14 09:49:11

DFM=2.0--2.0 MHz

UPPER	*	N (000	4000				MULATED
LIMIT	N(RAW)	NZSEC	qm/SEC	<u>8 N</u>	% VOL.	8 N	\$ VOL.
56	2480	7.11E 06	0.23	44.71	0.21	44.71	0.21
89	4900	2.28E 06	0.45	14.34	0.40	59.04	0.61
122 154	4191 3848	1.05E 06 1.07E 06	0.64	6.58 6.70	0.56 1.29	65.62 72.32	1.17 2.46
187	3014	948596	2.46	5.96	2.17	78.29	4.63
219	2228	717337	3.14	4.51	2.77	82.80	7.41
252	1735	550981	3.75	3.46	3.32	86.26	10.73
284	1501	415550	4.17	2.61	3.69	88.87	14.42
318	1336	346889	4.99	2.18	4.41	91.05	18.83
351 382	1077 963	26 8 3 0 3 25 0 6 0 2	5.25 6.40	1.69	4.64 5.66	92.74	23.47 29.13
414	890	164700	5.42	1.04	4.80	95.35	33.93
447	692	153751	6.41	0.97	5.67	96.32	39.60
479	585	147612	7.65	0.93	6.77	97.25	46.37
512	414	96 1 96	6.11	0.60	5.41	97.85	51.78
545	398	79528	6.12	0.50	5.42	98.35	57.19
578 611	286 226	52871 50092	4.88 5.49	0.33	4.32	98.68 99.00	61.51 66.37
644	197	38478	4.96	0.24	4.39	99.24	70.76
677	161	35965	5.41	0.23	4.78	99.47	75.54
710	109	18163	3.16	0.11	2.80	99.58	78.34
743	96	12753	2.55	0.08	2.26	99.66	80.59
776	57	4625	1.06	0.03	0.94	99.69	81.53
809	56	9357	2.43 3.54	0.06 0.08	2.15 3.13	99.75 99.83	83.68
842 875	33 26	12038 3814	1.26	0.02	1.11	99.85	87.92
908	28	7373	2.73	0.05	2.41	99.90	90.33
941	20	4819	1.99	0.03	1.76	99.93	92.09
974	15	2488	1.14	0.02	1.01	99.94	93.10
1007	11	3072	1.56	0.02	1.38	99.96	94.48
1040	3	234	0.13	0.00	0.12	99.96 99.97	94.60 95.49
1073	6 2	1643 202	1.01	0.01	0.12	99.97	95.61
1106 1139	0	0	0.00	0.00	0.00	99.97	95.61
1172	ő	Õ	0.00	0.00	0.00	99.97	95.61
1205	0 2	433	0.38	0.00	0.34	99.98	95.95
1238	1	539	0.51	0.00	0.45	99.98	96.40
1271	0	0	0.00	0.00	0.00	99.98 99.98	96.40 96.69
1304	0 2 0	292 0	0.33	0.00	0.29 0.00	99.98	96.69
1337 1370	2	2889	3.74	0.02	3.31	100.00	100.00
1403	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		1.59E 07	113.05				

D8-46,0 Degrees,40 psi,50 mph,Water

DTG 83/04/14 09:49:11

DFM=2.0--2.0 MHz

TOTAL RAW PARTICLES 31591/37167	85.00%
NUMBER MEAN DIAMETER 126.12 MICROMET	TERS S.D 130.60
VOLUME MEAN DIAMETER 238.64.MICROMET	TERS S.D 397.59
SAUTER MEAN DIAMETER 412.31 MICROMET	ERS
	245.23 MICROMETERS 501.48 MICROMETERS R.S 1.3
	902.93 MICROMETERS

PAGE 2

D8-45,0 Degrees,40 psi,50 mph,3 oz Walco-Trol/100 gal DTG \$4/09/24 15:07:00

DFM=2.0--1.5 MHz

							TIT SIRES
UPPER			4				ULATED
LIUIT	N(RAW)	N/SEC	qm/SEC	3 N	% VOL.	3 7	a VOL.
56	630	1.74E 06	0.06	38.87	0.09	33.87	0.09
89	1490	510534	0.10	11.41	0.16	50.28	0.24
122	2138	315643	0.19	7.05	0.30	57.34	0.54
154	2458	383362	0.52	8.57	0.81	65.90 73.18	2.65
137	2045	325657 222250	0.84 0.97	7.28 4.97	1.30 1.50		4.15
219 252	1414 1113	167267	1.14	3.74	1.76	31.38	5.91
234	937	142425	1.43	3.18	2.21	35.07	3.11
313	790	113781	1.54	2.54	2.52	37.61	10.63
351	663	92203	1.30	2.05	2.78	39.57	13.42
382	553	77720	1.98	1.74	3.06	91.41	16.43
414	459	53197	1.92	1.30	2.95	92.71	19.43
447	404	52752	2.20	1.18	3.39	93.89 94.86	25.31
479	350	43662	2.25 1.97	0.93	3.49	95.55	29.35
512 545	256 2 23	3095 7 30115	2.32	0.67	3.53	95.23	32.92
578	166	19839	1.83	0.44	2.93	95.57	35.75
611	163	20167	2.21	0.45	3.41	97.12	39.16
544	118	15541	2.00	0.35	3.09	97.47	42.25
677	122	14634	2.20	0.33	3.39	97.80	45.64
710	102	14162	2.46		3.30	98.11	49.44
743	96	12436	2.50		3.85		53.30 57.54
775	85	12329 9202	2.82	0.23 0.21	4.35 3.69	23.37	51.33
809 8 42	8 3 76	3544	2.51	0.19	3.87		65.20
875	72	3453	2.79	0.19	4.31	39.25	
903	49	5910	2.19	0.13	3.37	99.38	
941	42	4738	1.98	0.11	3.05	39.49	
974	45	5151	2.36	0.12	3.54	33.51	79.57
1007	34	3272	1.66	0.07	2.56	99.68	32.13
1040	24	3052	1.71	0.07 0.04	2.64 1.77	99.75 99.79	
1073 1106	21 24	1866 2457	1.15 1.66	0.04	2.56	99.84	89.09
1139	9	723	0.53	0.02	0.82	99.36	89.92
1172	5	1054	0.85	0.02	1.31	99.88	91.23
1205	5	686	0.60	0.02	0.93	39.90	92.16
1233	9	2147	2.04	0.05	3.15	99.95	95.31
1271	4	321	0.33	0.01	0.51	99.95	95.32
1304	5 2	913	1.02	0.02	1.57	99.97	97.39
1337		139	0.17	0.00	0.26	99.98 99.93	97.65 97.72
1370	1	33 511	0.05	0.00	0.03 1.10	99.93	93.32
1403 1436	3 1	105	0.16	0.00	0.24	99.99	99.05
1459	1	220	0.35	0.00	0.54	100.00	99.51
1502	0	0	0.00	0.00	0.00	100.00	99.51
1535	0	0	0.00	0.00	0.00	100.00	99.61
1563	1	131	0.26	0.00	0.39	100.00	100.00
1501	0	0	0.00	0.00	0.00	100.00	100.00
TOTALS		4.472 06	54.34	26			

D8-46,0 Degrees,40 psi,50 mph,3 oz Nalco-Tro1/100 gal DTG 84/09/24 15:07:00 DFM=2.0--1.5 MHz

PAGE 2

TOTAL RAW PARTICLES 17291,	/19526 88.55%	
NUMBER MEAN DIAMETER 153.69	MICROMETERS S.D 166.31	
VOLUME MEAN DIAMETER 302.59	MICROMETERS S.D 497.45	
SAUTER MEAN DIAMETER 540.27	MICROMETERS	
DNO.1 0.00 MICROMETERS	DV0.1 309.00 MICROMETERS	
D _{NO.5} 88.45 MICROMETERS	D _{V0.5} 714.27 MICROMETERS	R.S 1.16
D _{110.9} 357.21 MICROMETERS	Dv0.91140.54 MICROMETERS	

D3-46,0 Degrees,40 psi,50 mph,5 oz Nalco-Trol/100 gal DTG 84/09/25 13:18:00

DFM=2.0--1.5 MHz

מבחמיז							
UPPER LIMIT	JIDAIJI	VI/CEC	an/SEC	9. 37	9 T2OF		ULATED
	N(RAW)	NISEC		<u>₹ 7</u>	% VOL.	<u>3 - 7</u>	& VOL.
56	282	374607	0.03	37.13	0.05	37.13	0.05
39	647	256290	0.05	10.83	0.10	43.01	0.15
122 154	1021	172143	0.10	7.31	0.20	55.31	0.35
137	1180 1069	200009 159038	0.27 0.44	8.49 7.18	0.52 0.83	63.30	
219	719	113834	0.50	4.83	0.94	70.98 75.81	
252	614	89333	0.61	3.79		79.61	
284	510	79232		3.36	1.51	32.07	
313	410	56627		2.40	1.54	35.37	
351	351	49460	0.97	2.10	1.33		
332	285	40243	1.03	1.71	1.94		
414	25 7	35522	1.17	1.51	2.21	90.59	12.32
447	225	23874	1.20	1.23			15.10
479	136	27510	1.43	1.17	2.70	93.03	17.79
512	172	24386	1.55	1.04	2.73	34.12	20.73
545	154	21407	1.35	0.91	3.12	95.03	23.34
573 511	119 79	17917	1.35	0.75	3.13		25.97
544	30	10054 10350	1.10	0.43	2.03 2.52	96.21 95.55	29.06 31.53
677	71	7972	1.20	0.34	2.27	95.99	33.85
710	53	7743	1.35	0.33	2.55	07.32	35.40
743	47	7333	1.43	0.31	2.30	37.53	39.17
775	35	4364	1.00	0.19	1.39	97.32	41.03
608	32	5034	1.31	0.21	2.47	93.03	43.55
342	41	7115	2.09	0.30	3.95	93.33	47.51
375	27	4225	1.40	0.18	2.54)3.51	
903	34	3896	1.44	0.17	2.73	23.53	
941	32	4353	1.30	0.13	3.40 1.33	93.36 93.95	
974 100 7	21 28	2112 3804	0.97 1.93	0.15	3.35		
1040	21	3147	1.76	0.13			
1073	11	703	0.43	0.03			
1103	22	5009	3.38	0.21	6.40		
1139	12	1366	1.01	0.06	1.91	99.55	74.22
1172	11	837	0.67	0.04	1.23	99.58	75.49
1205	13	1862	1.63	0.03	3.09	99.66	73.53
1238	7	1137	1.13	0.05	2.14	99.71	30.72
1271	8	388	0.92	0.04	1.73	99.75	32.45
1304	6	419	0.47	0.02	0.88	99.77	83.34
1337	6	786	0.95	0.03	1.79	99.80 99.82	35.13 36.02
1370	3	363	0.47	0.02	0.39 3.62	99.83	39.54
1403	5	1375 39	1.91	0.06	0.11	99.33	39.75
1436 1469	5	365	0.58	0.00	1.11	99.39	90.85
1502	6 1 5 2 3	290	1.70	0.04	3.21	99.94	94.05
1535	3	1005	1.34	0.04	3.43	99.23	97.54
1563	Ö	Ü	0.00	0.00	0.00	39.13	97.54
1601	0	0	0.00	0.00	0.00	99.98	37.54
1634	0	0	0.00	0.00	0.00	39.98	97.54
				0.0			

PAGE 2

R.3.... 1.23

ACCUMULATED

D8-46,0 Degrees,40 psi,50 mph,6 oz Nalco-Trol/100 gal

DTG 84/09/25 13:18:00

DFM=2.0--1.5 MHz

UPPER

DNO.1... 0.00 MICROMETERS

D_{NO.5}... 97.94 MICROMETERS

710.9... 399.90 MICROMETERS

LIMIT	N(RAW)	NZSEC	qm/SEC	8 N	3 VOL.	<u>₹ 7</u>	# AOF	
1667	1	203	0.49	0.01	0.92		98.46	
1700	0	0	0.00	0.00		99.99		
1733 1766	1	208 94	0.55 0.26			100.00		
1799	ō	0			0.00			
TOTALS		2.36E 05	52.36					
TOTAL R	AW PARTI	CLES	8936/1029	3 36.8	23			
HUMBER :	MEAN DIA	AMETER 16	8.88 MICR	OMETERS	S.D	192.34		
VOLUME :	MEAN DIA	AMETER 35	0.09 MICR	OMETERS	S.D	595.07		
SAUTER :	MEAN DI	AMETER 65	32.96 MICR	OMETERS				

D_{V0.1}... 373.65 MICROMETERS
D_{V0.5}... 872.63 MICROMETERS

Dy0.9...1443.02 MICROMETERS

DS-46,0 Degrees,40 psi,50 mph,3 oz Walco-Prol/100 gal DTG 84/09/25 08:14:00

DFM=2.0--1.5 MHz

UPPER							ULATED
LIMIT	N(RAW)	N/SEC	gm/SEC	8 N	% VOL.	<u>8 N</u>	\$ VOL.
56	272	554797	0.02	31.61	0.02	31.61	0.02
39	664	170082	0.03	9.69	0.04	41.30	0.07
122	1160	112425	0.07	6.41	0.09	47.70	0.15
154	1474	147215	0.20	9.39	0.26	56.09	0.42
137	1407	135058	0.35	7.69	0.45	63.73	0.88
219	1032	38011	0.38	5.01	0.50	68.80	1.38
252	898	79603	0.54	4.54	0.71	73.33	2.09
234	713	60423	0.61	3.44	0.79	75.73 79.36	3.90
313	674	54100	0.78	3.03	1.02 1.13	32.43	5.07
351	615	46022	0.90	2.52 2.16	1.13	34.54	6.34
332	515	37957	0.97 1.19	2.10	1.56	36.71	7.90
414	473	36249 23459	1.19	1.62	1.55	33.33	9.45
447	414 350	25403	1.32	1.45	1.72	39.73	11.17
479 512	313	21857	1.39	1.25	1.32	31.02	12.39
545	252	13242	1.40	1.04	1.34	92.05	14.32
573	227	16741	1.35	0.95	2.02	93.02	15.34
611	133	11950	1.31	0.68	1.71	93.70	13.55
644	139	9321	1.27	0.55	1.35	94.25	20.21
577	144	11102	1.67	0.33	2.13	94.39	22.39
710	130	9568	1.67	0.55	2.13	95.43	24.57
743	· 113	7581	1.52	0.43	1.98	95.37	26.55
776	81	6537	1.49	0.37	1.95	95.24 96.63	23.50
809	75	6863	1.78	0.39	2.33	96.91	32.72
342	54	4928	1.45	0.28	1.89 1.35	97.09	34.07
875	46	3131	1.03 1.65	0.25	2.15	97.34	35.23
903	63	4450 2733	1.13	0.16	1.43	97.50	37.70
941	42 46	3951	1.81	0.23	2.37	97.72	40.07
974 1007	40	3462	1.76	0.20	2.30	97.92	42.36
1040	34	2753	1.54	0.16	2.01	98.08	44.33
1073	45	4117	2.54	0.23	3.31	93.31	47.69
1106	36	3303	2.23	0.19	2.91	93.50	50.61
1139	40	3591	2.65	0.20	3.47	93.70	54.07
1172	24	1535	1.24	0.09	1.62	98.79	55.69
1205	23	2166	1.90	0.12	2.43	93.91	53.17
1233	30	2515	2.40	0.14	3.13	99.06	61.30
1271	13	2025	2.09	0.12	2.73	99.17 99.27	64.03 56.42
1304	18	1640	1.83	0.09	2.39	99.27	58.74
1337	18	1473	1.77	0.08	2.32 2.02	99.42	70.75
1370	3	1195	1.55	0.10	3.11	99.52	73.37
1403	15	1712 1449	2.33 2.17	0.03	2.33	39.50	75.73
1436	10 11	1190	1.91	0.03	2.49	99.67	79.19
1459	5	552	1.12	0.04	1.45	09.70	30.55
1502 1535	7	543	1.13	0.04	1.54	99.74	32.19
1563	7	561	1.09	0.03	1.43	99.77	33.52
1501	2	238	0.49	0.01	0.35	99.79	34.27
1634	3	517	1.36	0.04	1.73	99.32	35.05
T034				32			

PAGE 2

D3-46,0 Degrees,40 psi,50 mph,9 oz Nalco-Trol/100 gal DTG 84/09/25 08:14:00

DFM=2.0--1.5 MHz

UPPER						ACCU:	CETAJUN
LIMIT	N(RAW)	N/SEC	qm/SEC	8 N	% VOL.	<u>8 N</u>	% VOL.
1667	3	306	0.72	0.02	0.94	99.34	86.99
1700	2	443	1.10	0.03	1.44	99.86	88.43
1733	0	0	0.00	0.00	0.00	99.85	38.43
1766	3	542	1.52	0.03	1.93	99.89	90.41
1799	1	89	0.26	0.01	0.34	99.90	90.76
1332	0	0	0.00	0.00	0.00	99.90	90.76
1865	1	387	1.28	0.02	1.57	99.92	92.42
1893	0	3	0.00	0.00	0.00	99.92	92.42
1931	1	4 3 3	1.53	0.02	2.05	99.95	04.43
1954	0	0	0.00	0.00	0.00	39.35	94.43
1997	0	0	0.00	0.00	0.00	99.95	94.48
2030	ũ	Ú	0.00	0.00	0.00	99.95	94.43
2053	1	942	4.22	0.05	5.52	100.00	100.00
2096	0	<u> </u>	0.00	0.00	0.00	100.00	100.00
TOTALS		1.76€ 06	76.53				

TOTAL RAJ PARTICLES.... 13007/14051-- 92.57%

NUMBER MEAN DIAMETER... 203.59 HICROMETERS S.D.... 241.73

VOLUME MEAN DIAMETER... 436.34 MICROMETERS S.D.... 742.00

SAUTER MEAN DIAMETER... 817.43 MICROMETERS

D_{NO.1}... 0.00 MICROMETERS D_{VO.1}... 457.36 MICROMETERS D_{VO.5}...1093.64 MICROMETERS D_{VO.5}...1093.64 MICROMETERS D_{VO.9}...1758.61 MICROMETERS

03-45,0 Degrees,40 psi,50 mph,12 oz Nalco-Trol/100 gal DTG 80/09/02 13:42:00

DFM=1.0--1.5 MHz

		וט	m=1.01.	5 MHZ			
UPPER						ACCIT	ULATED
LIMIT	N(RAW)	N/SEC	qm/SEC	8 N	3 VOL.	<u>8_1</u>	% VOL.
56	647	126234	0.00	30.69	0.01	30.69	0.01
39	1445	38010	0.01	9.24	0.01	39.93	0.01
122	1543	35441	0.02	8.62	0.07	43.55	0.11
154	1288	28822	0.04	7.01	0.13	55.55	0.25
187	992	21089	0.05	5.13	0.19	60.63	0.43
219	727	15969	0.07	3.83	0.24	64.56	0.67
252	58 7	13614	0.09	3.31	0.31	67.37	0.93
284	430	12533	0.13	3.05	0.43	70.02	1.41
313 351	416 372	93 7 5 10294	0.14	2.40 2.50	0.43 0.58	73.32 75.32	1.87 2.53
332	365	11229	0.29	2.73	0.97	73.55	3.55
414	294	8053	0.27	1.96	0.90	30.51	4.45
447	234	3445	0.35	2.05	1.20	32.56	5.55
479	242	3451		2.05	1.49	34.52	7.14
512	215	5997		1.45		36.07	3.43
545	136	5375	0.41	1.31	1.41	37.33	
573	152	4925	0.45	1.20	1.54	33.53	
511 644	127 105	3732 4156	0.41	0.92	1.41	99.50 99.51	12.79
377	113	3538	0.53	0.36	1.32	91.37	15.41
710	79	2713	0.47	0.35	1.50	02.03	13.02
743	70	1745	0.35	0.42	1.19	32.45	19.20
776	79	4590	1.05	1.12	3.55	93.57	22.77
809	54	2325	0.60	0.57	2.05	94.13	24.32
342	43	1143	0.34	0.28	1.14	94.41	25.76
375	43	2090	0.59	0.51	2.34	94.92	23.31
903 941	34 34	1338 2942	0.68 1.21	0.45 0.72	2.31 4.12	95.37 96.03	30.52 34.74
974	26	791	0.36	0.19	1.23	96.27	35.97
1007	23	709	0.36	0.17	1.22	96.45	37.19
1040	17	566	0.32	0.14		96.58	33.27
1073	18	631	0.39	0.15	1.32	96.74	39.59
1106	17	1826	1.23	0.44	4.19	97.13	43.77
1139	19	1390	1.40	0.46	4.74	97.54	48.51
1172	8	1559	1.26	0.38	4.27 1.35	93.02 93.13	52.73 54.12
1205 1238	13 15	452 623	0.40	0.11 0.15	2.01	98.28	56.14
1271	10	374	0.39	0.09	1.31	93.37	57.45
1304	9	1759	1.96	0.43	6.66	93.30	64.11
1337	11	435	0.52	0.11	1.73	93.90	65.39
1370	8	313	0.41	0.03	1.33	93.93	57.26
1403	9 .	392	0.55	0.10	1.85	99.08	69.12
1436	7	420	0.63	0.10	2.13	99.13	71.25
1469	4	200	0.32	0.05	1.09	99.23 99.29	72.33
1502	6	255 35 4	0.44	0.06	2.20	99.29	76.02
153 5 1568	4 5	282	0.55	0.07	1.37	99.44	77.39
1500	1	104	0.22	0.03	0.74	99.47	73.63
1634	3	191	0.42	0.05	1.43	39.52	30.05

PAGE 2

D8-45,0 Degrees,40 psi,50 moh,12 oz Nalco-Trol/100 gal DTG 80/09/02 13:42:00

DFM=1.0--1.5 MHz

UPPER						ACCU	AULATED
LIMIT	N(RAW)	NZSEC	qm/SEC	8 N	% VOL.	<u>8 .4</u>	% VOL.
1667	2	193	0.45	0.05	1.54	99.56	81.51
1700	4	296	0.74	0.07	. 2.51	99.53	84.11
1733	4	280	0.74	0.07	2.51	99.70	86.63
1765	2	199	0.56	0.05	1.89	99.75	33.52
1799	1	113	0.33	0.03	1.13	99.78	89.65
1332	4	416	1.30	0.10	4.42	99.88	94.07
1355	0	0	0.00	0.00	0.00	99.83	24.07
1393	2	362	1.25	0.09	4.23	99.97	38.35
1931	1	132	0.49	0.03	1.55	100.00	100.00
1964	O	0	0.00	0.00	0.00	100.00	100.00
TOTALS		4.11E 05	29.45				

TOTAL RAW PARTICLES 11279/	/12736 88.56%	
NUMBER MEAN DIAMETER 247.73	MICROMETERS S.D 294.73	
VOLUME MEAN DIAMETER 515.36	MICROMETERS S.D 312.70	
SAUTER MEAN DIAMETER 923.37	MICPOMETERS	
DHO.1 0.00 MICROHETERS DHO.5 123.46 MICROHETERS DHO.9 626.90 MICROHETERS	Dv0.1 548.02 MICROMETERS Dv0.51150.00 MICROMETERS Dv0.91301.11 MICROMETERS	R.3 1.0)

Nozzle Type	N N N N N N N N N N N N N N N N N N N
Time	Ø. 1 1 10 50 90 99 99. 9 CUMULATIVE PROBABILITY
88 75 78 65 68 65 55 50 45 40 45 40 45 15 10 15	45 48 35 38 38 25 28 28 28 28 28 28 28 28 28 28 28 28 28
80 75 70 65 65 65 65 65 65 65 65 65 65 65 65 65	45 48 35 38 25 10 5 DROPLET DIAMETER (miorometere)

