BCC202 - Estruturas de Dados I

Aula 20: Árvores de Pesquisa

Pedro Silva

Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Email: silvap@ufop.edu.br

2021

Abordagens de pesquisa em Memória Primária

- Pesquisa Sequencial.
- Pesquisa Binária.
- Árvores de Pesquisa:
 - Árvores Binárias de Pesquisa.
 - Árvores AVI
- ► Transformação de Chave (*Hashing*):
 - Listas Encadeadas.
 - Enderecamento Aberto.
 - Hashing Perfeito.

Conteúdo

Introdução

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Considerações Finais

Bibliografia

Conteúdo

Introdução

Introdução

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Considerações Finais

Bibliografia

Introdução 0000

Classificação de Árvores

- Árvore Estritamente Binária.
 - Se cada nó não-folha em uma árvore binária não tem subárvores esquerda e direita vazias.

Introdução

Classificação de Árvores

- Árvore Binária Completa.
 - Uma árvore binária completa de nível n é a árvore estritamente binária, onde todos os nós folhas estão no nível n.

Introdução 0000

Classificação de Árvores

- Árvore Binária Quase Completa
 - ▶ Uma árvore binária de nível n é uma árvore binária quase completa se:
 - \triangleright Cada nó folha na árvore esta no nível n ou no nível n-1.
 - Para cada nó n_d na árvore com um descendente direito no nível n_i todos os descendentes esquerdos de n_d que são folhas estão também no nível n.

Conteúdo

Árvores de Pesquisa

Árvores de Pesquisa

Caminhamento em Árvores

Análise

- A árvore de pesquisa é uma estrutura de dados muito eficiente para armazenar informação.
- Particularmente adequada quando existe necessidade de considerar todos ou alguma combinação de:
 - 1. Acesso direto e sequencial eficientes.
 - 2. Facilidade de inserção e retirada de registros.
 - 3. Boa taxa de utilização de memória.
 - 4. Utilização de memória primária e secundária.

Árvores Binárias de Pesquisa

Árvores de Pesquisa

Para qualquer nó que contenha um registro.

► Temos a relação invariante.

- Os registros com chaves menores estão na subárvore à esquerda.
- Os registros com chaves maiores estão na subárvore à direita.

Árvores Binárias de Pesquisa

- O nível do nó raiz é 0.
 - Se um nó está no nível i então a raiz de suas subárvores estão no nível i + 1.
 - A altura de um nó é o comprimento do caminho mais longo deste nó até um nó folha.
 - A altura de uma árvore é a altura do nó raiz.


```
typedef long TChave;

typedef struct {
    /* outros componentes */
    TChave Chave;
} TItem;

typedef struct No {
    Titem item;
    struct No *pEsq, *pDir;
} TNo;

typedef TNo * TArvore;
```

Árvores Binárias de Pesquisa

- ▶ Para encontrar um registro com uma chave x:
 - Compare-a com a chave que está na raiz.
 - Se x é menor, vá para a subárvore esquerda.
 - Se x é maior, vá para a subárvore direita.
 - Repita o processo recursivamente, até que a chave procurada seja encontrada ou um nó folha seja atingido.
 - Se a pesquisa tiver sucesso então o conteúdo do registro retorna no próprio registro x.

Árvores de Pesquisa

Pesquisa na Árvore

```
int TArvore_Pesquisa(TArvore *pRaiz, TChave c, TItem *pX) {
      if (pRaiz == NULL)
2
           return 0;
4
      if (c < pRaiz->item.chave)
5
           return TArvore_Pesquisa(pRaiz->pEsq, c, pX);
6
      if (c > pRaiz->item.chave)
           return TArvore_Pesquisa(pRaiz->pDir, c, pX);
8
9
      *pX = pRaiz->item;
10
      return 1:
12
```

Pesquisa na Árvore (não recursiva)

```
int TArvore_Pesquisa(TArvore *pRaiz, TChave c, TItem *pX) {
       TNo *pAux;
2
3
4
       pAux = pRaiz;
       while (pAux != NULL) {
5
           if (c == pAux->item.chave) {
6
7
               *pX = pAux -> item;
               return 1:
8
9
           else if (c > pAux->item.chave)
10
               pAux = pAux->pDir;
           else
12
13
               pAux = pAux -> pEsq;
14
15
       return 0; // não encontrado!
16
```

Procedimento para Inserir na Árvore

- Onde inserir?
 - Atingir um ponteiro nulo em um processo de pesquisa significa uma pesquisa sem sucesso.
 - O ponteiro nulo atingido é o ponto de inserção.
- Como inserir?
 - 1. Cria célula contendo registro.
 - 2. Procurar o lugar na árvore.
 - 3. Se registro não tiver na árvore, insere-o.

Inserir na Árvore

```
int TArvore Insere(TNo** ppR, TItem x) {
       if (*ppR == NULL) {
2
           *ppR = TNo Cria(x);
3
           return 1:
4
5
6
       if (x.chave < (*ppR)->item.chave)
           return TArvore_Insere(&((*ppR)->pEsq), x);
       if (x.chave > (*ppR)->item.chave)
9
           return TArvore_Insere(&((*ppR)->pDir), x);
10
       return 0; // elemento jah existe
12
13
```

```
int TArvore_Insere(TNo *pRaiz, TItem x) {
2
       if (pRaiz == NULL) return -1; // arvore vazia
3
       if (x.chave < pRaiz->item.chave) {
4
           if (pRaiz->pEsq == NULL) {
5
               pRaiz->pEsq = TNo_Cria(x);
6
               return 1:
8
           return TArvore_Insere(pRaiz->pEsq, x);
9
       }
10
       if (x.chave > pRaiz->item.chave) {
           if (pRaiz->pDir == NULL) {
13
               pRaiz->pDir = TNo Cria(x):
               return 1:
14
15
           return TArvore_Insere(pRaiz->pDir, x);
16
17
      return 0; // elemento jah existe
18
19
```

Caminhamento em Árvores Análise Considerações Finais Bibliografia

Inserir na Árvore

```
1 void TArvore_Insere_Raiz(TNo **ppRaiz, TItem x) {
2    if (*ppRaiz == NULL) {
3        *ppRaiz = TNo_Cria(x);
4         return;
5    }
6
7    TArvore_Insere(*ppRaiz, x);
8 }
```

Inserir na Árvore (não recursivo)

```
int TArvore_Insere(TNo **ppRaiz, TItem x) {
       TNo **ppAux;
       ppAux = ppRaiz;
3
4
       while (*ppAux != NULL) {
5
           if (x.chave < (*ppAux)->item.chave)
6
               ppAux = &((*ppAux)->pEsq);
7
           else if (x.chave > (*ppAux)->item.chave)
8
               ppAux = &((*ppAux)->pDir);
9
           else
10
               return 0:
12
13
       *ppAux = TNo_Cria(x);
       return 1:
14
15
```

Procedimento que Cria um Nó

```
TNo *TNo_Cria(TItem x) {
    TNo *pAux = (TNo*)malloc(sizeof(TNo));
    pAux->item = x;
    pAux->pEsq = NULL;
    pAux->pDir = NULL;
    return pAux;
}
```

Caminhamento em Árvores Análise Considerações Finais Bibliografia 00000000 00 00

```
void TArvore_Inicia(TNo **pRaiz) {
    *pRaiz = NULL;
}
```

Retirada de um Registro da Árvore

Árvores de Pesquisa

Como retirar?

- ► Folha?
- Nó interno, contendo um filho?
- Raiz da árvore ou subárvore?

Retirada de um Registro da Árvore

- Alguns comentários:
 - 1. A retirada de um registro não é tão simples quanto a inserção.
 - 2. Se o nó que contém o registro a ser retirado possuir no máximo um descendente ⇒ a operação é simples.
 - 3. No caso do nó conter dois descendentes o registro a ser retirado deve ser primeiro:
 - substituído pelo registro mais à direita na subárvore esquerda.
 - ou pelo registro mais à esquerda na subárvore direita.

Retirada de um Registro da Árvore

Árvores de Pesquisa

▶ Assim: para retirar o registro com chave 5 da árvore basta trocá-lo pelo registro com chave 4 ou pelo registro com chave 6, e então retirar o nó que recebeu o registro com chave 6.

Remoção de um N

Remoção de um No

Remoção de um N

Remoção de um N

Remoção de um N

Remoção de um N

Árvores de Pesquisa Caminhamento em Árvores Análise Considerações Finais Bibliografia Exercício ooooooooooooooooooo oo oo oo oo

Remoção de um N

Remoção de um N

Remoção de um N

Remoção de um No

Remoção de um N

Retirada de Nó da Árvore

```
int TArvore_Retira(TNo **p, TItem x)
2
3
       TNo *pAux;
       if (*p == NULL)
4
5
           return 0:
6
       if (x.chave < (*p)->item.chave)
7
           return TArvore_Retira(&((*p)->pEsq), x);
       if (x.chave > (*p)->item.chave)
9
           return TArvore_Retira(&((*p)->pDir), x);
10
       if ((*p)-pEsq == NULL && (*p)-pDir == NULL) { // no eh folha}
13
           free(*p);
           *p = NULL;
14
           return 1:
15
16
17
18
       . . .
```

Retirada de Nó da Árvore

```
19
       . . .
20
       if ((*p)->pEsq != NULL && (*p)->pDir == NULL) { // esq
21
           pAux = *p;
           *p = (*p) -> pEsq;
           free(pAux);
24
           return 1:
25
26
       if ((*p)->pDir != NULL && (*p)->pEsq == NULL) { // dir
           pAux = *p;
28
           *p = (*p) -> pDir;
29
           free(pAux);
30
           return 1;
31
32
33
34
       // no possui dois filhos
       TArvore_Sucessor(*p, &((*p)->pDir));
35
36
       // equivalente a TArvore Antecessor(*p, &((*p)->pEsq));
37
       return 1:
38
```

Retirada de Nó da Árvore

```
void TArvore Sucessor (TNo *q, TNo **r) {
       TNo *pAux;
       if ((*r)->pEsq != NULL) {
3
            TArvore_Sucessor(q, &(*r)->pEsq);
4
5
            return:
       q \rightarrow item = (*r) \rightarrow item:
       pAux = *r;
8
       *r = (*r) - pDir;
9
       free(pAux);
10
11
```

Conteúdo

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Caminhamento em Árvores

0000000

Caminhamento

- A ordem dos filhos dos nós em uma árvore pode ser ou não significativa.
 - Exemplos, no heap, a ordem dos filhos não tem significado.
 - Outros casos, pode se ter um significado (como é o caso em pesquisa em árvores binárias)
- Diversas formas de percorrer ou caminhar em uma árvore listando seus nós, as principais:
 - Pré-ordem (Pré-fixa).
 - Central (Infixa).
 - Pós-ordem (Pós-fixa).

Caminhamento em Arvore

Pré-Ordem

Pré-ordem: lista o nó raiz, seguido de suas subárvores (da esquerda para a direita), cada uma em pré-ordem.

```
Algorithm: PRE_ORDEM
Input: TNo n
begin

Lista(n)
for each child f of n from left to right do

PRE_ORDEM(f)
end

end
```

Pós-Ordem

 Pós-ordem: Lista os nós das subárvores (da esquerda para a direita) cada uma em pós-ordem, lista o nó raiz.

```
1 Algorithm: POS_ORDEM
  Input: TNo n
2 begin
      for each child f of n from left to right do
          POS_ORDEM(f)
      end
      Lista(n)
7 end
```

Caminhamento Pré-Ordem e Pós-Ordem

```
void PreOrdem(TNo *p) {
       if (p == NULL)
2
           return:
       printf("%ld\n", p->item.chave);
       PreOrdem(p->pEsq);
5
       PreOrdem(p->pDir);
8
9
  void PosOrdem(TNo *p) {
       if (p == NULL)
12
           return:
13
       PosOrdem(p->pEsq);
       PosOrdem(p->pDir);
14
15
       printf("%ld\n", p->item.chave);
16
```

- ► Em árvores de pesquisa a ordem de caminhamento mais útil é a chamada ordem de caminhamento central.
- ▶ O caminhamento central é mais bem expresso em termos recursivos:
 - 1. Caminha na subárvore esquerda na ordem central.
 - 2. Visita a raiz.
 - 3. Caminha na subárvore direita na ordem central.

Central

Percorrer a árvore:

► Em que ordem chaves são recuperadas (usando caminhamento central)? 1, 2, 3, 4, 5, 6 e 7.

 Caminhamento em Árvores
 Análise
 Considerações Finais
 Bibliografia

 ○000000
 000
 000
 00

Caminhamento Central

```
void Central(TNo *p) {
   if (p == NULL)
        return;

Central(p->pEsq);
   printf("%ld\n", p->item.chave);

Central(p->pDir);

}
```

Conteúdo

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Análise

- Comparações em uma pesquisa com sucesso:
 - ▶ Melhor caso: C(n) = O(1).
 - Pior caso: C(n) = O(n).
 - ► Caso médio: $C(n) = O(\log n)$.
- O tempo de execução dos algoritmos para árvores binárias de pesquisa dependem muito do formato das árvores, ou seja, se ela está balanceada ou não.

- Para obter o pior caso basta que as chaves sejam inseridas em ordem crescente ou decrescente. Neste caso a árvore resultante é uma lista linear, cujo número médio de comparações é (n+1)/2.
- Para uma árvore de pesquisa aleatória o número esperado de comparações para recuperar um registro qualquer é cerca de $1.39\log n$, apenas 39% pior que a árvore completamente balanceada.

Vantagens e Desvantagens

- Vantagens:
 - ightharpoonup Custo de pesquisa $O(\log n)$ para o caso médio.
 - Custo de inserção e remoção: $O(\log n)$ para o caso médio.
 - Custo para obter os registros em ordem: O(n).
- Desvantagens:
 - Pior caso é O(n) tanto para **pesquisa** quanto para **inserção** e **remoção**.

Conteúdo

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Considerações Finais

Conclusão

- ▶ O uso de árvores favorecem pesquisas mais eficientes.
- O pior caso das árvores devem ser tratados.

Árvores de Pesquisa AVL

•0

Conteúdo

Árvores de Pesquisa

Caminhamento em Árvores

Análise

Bibliografia

Bibliografia

Os conteúdos deste material, incluindo figuras, textos e códigos, foram extraídos ou adaptados de:

Cormen, Thomas H. and Leiserson, Charles E. and Rivest, Ronald L. and Stein, Clifford.

Introduction to Algorithms.

The MIT Press. 2011.

Exercício

- Dada a sequência de números: 10, 20, 5, 8, 12, 22, 23, 24, 11, 13, 18.
- Mostre (desenhe) uma árvore binária de pesquisa após a inserção de cada um dos elementos acima.
- Mostre como ficará a árvore criada após a remoção dos seguintes elementos na seguinte ordem: 22, 11, 10.