

PYTHON

Módulo 9 – Módulo matemático

- Permite acceder a las funciones matemáticas
- https://docs.python.org/3/library/math.html
- import math
- Se invocan sobre la clase math
- Funciones:
 - ceil()→Obtiene el entero más próximo superior.
 - comb()→Proporciona el número de combinaciones de n elementos tomados de m en m (coeficiente binomial)
 - fabs()→Proporciona el valor absoluto de un elemento
 - factorial()→Obtiene el factorial de un número
 - floor()→Obtiene el entero más próximo inferior.
 - fsum()→Obtiene la suma de todos los elementos de un iterable.

- Funciones (continuación):
 - gcd()→Máximo común divisor de un conjunto de números.
 - isclose()→Determina si dos valores son próximos dada una tolerancia.
 - isfinite()→Indica si un número es finito.
 - isinf()→Indica si un número es infinito (positivo o negativo)
 - isnan()→Indica si el parámetro NO es un número (para saber si es la constante nan)
 - isqrt()→Obtiene la raíz cuadrada de un número entero.
 - lcm()→Mínimo común múltiplo.
 - modf()→Separa la parte entera de la fraccionaria de un número.
 - >>> math.modf(24.3)
 - (0.30000000000007, 24.0)#Usar función round para resolver floatint point error
 - nextafter $(n,+-\text{math.inf}) \rightarrow \text{Proporciona el siguiente valor flotante a un número dado en una dirección.}$
 - perm()→ Calcula el número de permutaciones de n elementos tomados de m en m.

- Funciones (continuación):
 - prod()→Calcula el producto de todos los elementos de un iterable.
 - remainder()→Obtiene el resto de una división.
 - trunc()→Trunca un número.
- Funciones logarítmicas y exponenciales.
 - $\exp()\rightarrow Calcula$ el resultado de elevar e a x.
 - log()→Logaritmo
 - pow()→Potencia.
 - sqrt()→Raíz cuadrada.
- Funciones trigonométricas.
 - acos(),asin(),atan(),cos(),dist(),sin(),tan()
- Funciones de conversión angular.

- Funciones hiperbólicas.
- Funciones especiales.
- Constantes:
 - math.pi
 - math.e
 - math.tau
 - math.inf
 - math.nan

Módulo random

- Implementa funciones de generación de números pseudoaleatorios.
- https://docs.python.org/es/3/library/random.html
- import random
- random.random() \rightarrow Genera un número en el rango [0.0 y 1.0).
- random.seed()→Asigna una semilla
- random.randbytes()→Genera un número aleatorio de bytes
- random.randrange()→Genera enteros aleatorios dentro de un rango pudiendo indicar el paso.
- random.randint()→Genera un entero aleatorio en un intervalo.
- random.choice(seq) \rightarrow Devuelve un elemento aleatorio de la secuencia.
- random.choices()→Devuelve una lista de elementos aleatorios.
- random.sample()→Devuelve una lista de elementos únicos aleatorios.
- La clase Random → Permite crear un generador de números aleatorios.

 NumPy → Biblioteca para el manejo de vectores y matrices de grandes dimensiones

https://numpy.org/

pip install numpy

- NumPy
 - Rápido
 - Eficiente
 - Maneja vectores y matrices
 - Realiza cálculos estadísticos
 - Tipos de datos:

https://numpy.org/doc/stable/user/basics.types.html

- NumPy
 - import numpy as np
 - np.zeros(n, dtype=tipo) \rightarrow Crea un array con n ceros.
 - np.ones(n, dtype=tipo) \rightarrow Crea un array con n unos.
 - np.full(n,d, dtype=tipo)→Crea una array con n elementos con valor d.
 - np.array(iterador, dtype=tipo) → Crea un array con los elementos del iterador.
 - np.arange(rango, dtype=tipo))→Crea un array con los números dentro de un rango. Rangos:
 - **1**0
 - **1**0,20
 - **1**0,20,2

NumPy

- np.zeros((filas,columnas),dtype=tipo) \rightarrow Matriz
- np.ones($(filas, columnas), dtype=tipo) \rightarrow Matriz$
- np.full((filas, columnas, d),dtype=tipo) \rightarrow Matriz
- np.linspace(inicio, fin, n) \rightarrow Devuelve n números entre inicio y fin espaciados homogénamente.

```
>>> np.linspace(0,10,21)
array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,
5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5, 10. ])
```

- NumPy
 - np.random.random(dimensión)
 - np.random.normal(media, desviación, dimensión)
 - np.random.randint(lim_inferior, lim_superior, dimensión)
 - np.eye(dimensión) → Matriz identidad
 - np.empty(dimensión)→Matriz sin inicializar con valores de memoria.

- Atributos de los arrays:
 - ndim→Número de dimensiones
 - shape → tamaño de cada dimensión (figura)
 - size→Número de elementos
 - itemsize → Tamaño en bytes de item
 - nbytes → Tamaño en bytes de la estructura

- Acceso a los elementos individuales:
 - A través de índices, dependiendo de las dimensiones:
 - array[i][j][z]

- Acceso a los elementos individuales:
 - Admite slicing:

- Acceso a los elementos individuales:
 - Admite slicing:

- Acceso a los elementos individuales:
 - El slicing genera referencias (no copias):

```
>>> x
array([[7, 9, 5],
    [3, 8, 7],
     [2, 6, 4]])
>>> y = x[0:2,0:2]
>>> y
array([[7, 9],
     [3, 8]])
>>> y[0,0]=15
>>> y
array([[15, 9],
       [ 3, 8]])
>>> x
array([[15, 9, 5],
      [ 3, 8, 7],
       [ 2, 6, 4]])
```

- Acceso a los elementos individuales:
 - Creación de copias.
 - Función copy()

```
>>> x
array([[15, 9, 5],
      [ 3, 8, 7],
      [ 2, 6, 4]])
>>> y = x[0:2,0:2].copy()
>>> y
array([[15, 9],
  [ 3, 8]])
>>> y[0,0]=18
>>> y
array([[18, 9],
      [ 3, 8]])
>>> x
array([[15, 9, 5],
      [ 3, 8, 7],
      [ 2, 6, 4]])
```

- NumPy
 - Otras funciones:
 - np.reshape() → Redimensionamiento.
 - np.concatenate() -> Concatenación.
 - np.split()→Disgregación.
 - np.vsplit()→Disgregación.
 - np.hsplit() → Disgregación.

- NumPy
 - UFuncs→Funciones universales:
 - Incorporan operaciones sobre las matrices y vectores.
 - https://numpy.org/doc/stable/reference/ufuncs.html
 - Operadores
 - Valores absolutos
 - np.abs
 - np.absolute
 - Funciones trigonométricas
 - Funciones de agregación

- NumPy
 - UFuncs → Funciones universales:
 - Redirección de salida:
 - Ejemplo:

NumPy

- Operadores y funciones:
 - Aplicados array + número → aplican a cada elemento del array.
 - Aplicados a dos arrays → aplican entre elementos de los arrays.
 - Exigen equivalencia en longitud.

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., 3 / 2 = 1.5)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., $9\% 4 = 1$)

- NumPy
 - Funciones de agregación:

Table 2-3. Aggregation functions available in NumPy

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute median of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

- NumPy
 - Funciones de ordenación:
 - np.sort(matriz)→Ordena contenidos.
 - np.argsort(matriz) → Ordena indices.
 - np.sort(matriz, x=0) \rightarrow Ordena matriz por columnas.
 - np.sort(matriz, x=1) \rightarrow Ordena matriz por filas.