CHEMICAL REACTION TYPES - #1

Write balanced chemical equations for...

- ¹ Hydrogen gas and chlorine gas explode when exposed to light.
- ² Sulphuric acid is reacted with sodium hydrogen carbonate.
- ^{3.} Solutions of barium nitrate and sodium sulphate react.
- ^{4.} Ethane gas (C₂H₆) burns completely in air.
- ^{5.} Nitrogen gas and hydrogen gas combine.
- ^{6.} Lead(IV) oxide is decomposed by heat.
- ⁷ Silver nitrate solution reacts with sodium chloride solution.
- 8. Potassium metal reacts on cold water.
- ^{9.} Aluminum oxide is dissolved in water.
- ¹⁰.Zinc metal reacts in a solution of copper(II) nitrate.
- ¹¹Chlorine gas is bubbled through a solution of sodium iodide.
- ¹² Molten sodium chloride is decomposed by electrolysis.
- ¹³.Nitric acid solution is added to sodium hydroxide solution.
- ¹⁴ Sulphur dioxide gas is bubbled into water.
- ¹⁵Phosphoric acid neutralized a solution of magnesium hydroxide.
- ¹⁶. Magnesium metal reacts slowly in cold water.
- ¹⁷ Calcium carbonate is etched by hydrochloric acid solution.
- ¹⁸.Gasoline (C₈H₁₈) burns incompletely in air. No solid products are formed.
- ¹⁹ Iron(III) chloride solution reacts with calcium metal.
- ²⁰.Copper metal reacts is sulphur vapour.
- ²¹ Hydrogen sulphide gas is bubbled through arsenic(III) chloride solution.
- ^{22.} Aluminum iodide is heated strongly in the absence of air.
- ²³.Calcium hydrogen carbonate is added to sulphuric acid solution.
- ²⁴ Sulphuric acid reacts with potassium hydroxide solution.
- ²⁵ Iron forms rust in damp air.

CHEMICAL REACTION TYPES - #2

Write balanced chemical equations for the following reactions.

- ^{1.} Lead reacts with aqueous hydrobromic acid. (assume a lead(II) product).
- ^{2.} Propane from your barbque tank burns completely.
- ³ Solid aluminum reacts with liquid bromine.
- ^{4.} Hydrogen peroxide naturally decomposes.
- ^{5.} Barium is added to water.
- ⁶. Bromine and calcium iodide solutions are mixed.
- ^{7.} Butane (C_4H_{10}) burns completely in oxygen.
- ^{8.} Sodium oxide is added to water.
- 9. Solid magnesium is mixed with phosphoric acid.
- ¹⁰.Calcium hydroxide and nitric acid solutions are mixed.

- ¹¹ Silver oxide decomposes.
- ¹² Diphosphorus trioxide is added to water.
- ¹³·Arsenic(III) oxide decomposes when heated.
- ¹⁴.Calcium is added to water.
- ¹⁵.Aluminium and sulphuric acid are reacted.
- ¹⁶.Tin(IV) nitrate and sodium hydroxide are mixed.
- ¹⁷ Hydrogen gas and copper(II) oxide combine.
- ¹⁸ Sulphuric acid and magnesium hyrdrogencarbonate react.
- ¹⁹ Ethane (C₂H₆) burns incompletely in oxygen.
- ²⁰.Sodium is added to water.
- ²¹·Hydrochloric acid is poured over iron.
- ²² Solution of calcium chloride and potassium carbonate react.
- ²³.Potassium chlorate is decomposed.
- ²⁴.Nitrogen dioxide gas is bubbled through water.
- ²⁵.Calcium and chloric acid mix.

CHEMICAL REACTION TYPES - #3

Write balanced chemical equations for the following reactions.

- ^{1.} Solutions of ferric sulphate and calcium nitrate mix.
- ² Aqueous chlorine is poured into ammonium iodide solution.
- ^{3.} Hot sodium metal reacts in iodine vapour.
- ^{4.} Metallic zinc reacts in copper(II) sulphate solution.
- ⁵. Hydrochloric acid and potassium hydroxide solutions react.
- ^{6.} Methane gas burns completely in air.
- ⁷ Water is added to metallic lithium.
- ^{8.} Iron sheet is cleaned with dilute hydrochloric acid.
- ^{9.} Mercuric oxide is heated strongly.
- ¹⁰Kettle scale (calcium carbonate) is removed by acetic acid (vinegar CH₃COOH)
- ¹¹.Dinitrogen pentoxide dissolves in water.
- ¹² Sodium bicarbonate is used to counteract excess stomach acid (HCl)
- ¹³. Hydrogen gas burns in air.
- ¹⁴ Ammonium sulphate and barium nitrate solution s are mixed.
- ¹⁵.Sulphuric acid neutralized aluminum hydroxide solution.
- ^{16.}Acetylene gas (C₂H₂) and oxygen explode when ignited.
- ¹⁷ Steam is passed over hot magnesium.

Solubility Rules

(for predicting whether a precipitate will form)

SOLUBLE

1. all nitrates, chlorates, acetates

- 2. all alkali metals and ammonium salts
- 3. all chlorides, bromides and iodides (except silver, mercury (I) and lead (II). Note: PbCl₂ and PbBr₂ a soluble in hot water.
- 4. all sulfates (except Ca, Ba, Sr, an Pb(II)). Note: Ag₂SO₄ and Hg₂SO₄ are slightly soluble .

INSOLUBLE

- 1. all hydroxides (except alkali metals, barium and ammonium). Note: Sr(OH)₂ is slightly soluble.
- 2. all carbonates and phosphates (except alkali metals and ammonium).
- 3. all sulfides (except alkali metals, alkaline earth metals and ammonium).
 - 1. Synthesis (marriage) two substances combine. MgO + O, à MgO
 - Decomposition (divorce) one substance breaks into two.
 Na₂CO₃ heat Na₂O + CO₂
 - 3. Single Displacement (cheating) one substance gets replaced. CuSO₄ + Fe **à** FeSO₄ + Cu
 - 4. Double displacement (swapping) substances switch. Pb(NO₃)₂ + KI **à** PbI₂ + KNO₃
 - 5. Complete Combustion (blaze of glory) methane bubbles. $CH_4 + O_2 \grave{a} CO_2 + H_2O$
 - 6. Incomplete Combustion (low O_2 levels; difficult to predict products) $CH_4 + O_2$ **à** $CO_2 + H_2O + CO + C$
 - 7. Reaction of a <u>metal oxide with water</u> produces a <u>metal hydroxide</u> MgO + H₂O --->Mg(OH)₂
 - 8. Reaction of a <u>nonmetal oxide with water</u> produces an <u>oxyacid</u> SO₂ + H₂O \longrightarrow H₂SO₃
 - 9. Reaction of a metal oxide with a nonmetal oxide gives an oxysalt; reaction of a metal hydroxide with a nonmetal oxide produces a "hydrogen" oxysalt CaO(s) + SO₃(g) → CaSO₄(s)
 NaOH(s) + CO₂(g) → NaHCO₃(s)

10. Reaction of an acid with a base gives a salt plus water

$$\begin{aligned} &HCl(aq) + Ca(OH)_2(aq) & \longrightarrow CaCl_2(aq) + H_2O(l) \\ &H_2SO_4(aq) + Fe(OH)_3(s) & \longrightarrow Fe_2(SO_4)_3(aq) + H_2O(l) \end{aligned}$$

11. <u>Ammonium salts</u> react with <u>metal hydroxides and oxides in</u> an acid-base

reaction to produce ammonia

$$NH_4Cl(aq) + KOH(aq) \longrightarrow NH_3(g) + H_2O(l) + KCl(aq)$$

 $NH_4NO_3(s) + CaO(s) \longrightarrow NH_3(g) + H_2O(l) + Ca(NO_3)_2(s)$

12. <u>Heating an oxysalt</u> produces a <u>metal oxide plus a nonmetal oxide</u> or a <u>metal salt plus oxygen</u>

$$\frac{}{\text{KClO}_3(s)} \xrightarrow{\Delta} \text{KCl}(s) + O_2(g)$$

$$CaCO_3(s) \xrightarrow{\Delta} \text{CaO}(s) + CO_3(g)$$

13. Reaction of a carbonate with a strong acid produces carbonic acid and a salt. The carbonic acid decomposes to form CO₂ and H₂O.

$$\begin{split} &BaCO_3(s) + HBr(aq) \xrightarrow{\hspace{0.5cm}} BaBr_2(aq) + H_2O(l) + CO_2(g) \\ &NaHCO_3(aq) + H_2SO_4(aq) \xrightarrow{\hspace{0.5cm}} Na_2SO_4(aq) + CO_2(g) + H_2O(l) \\ &2HNO_3 + Na_2CO_3 \stackrel{\ref{a}}{a} 2NaNO_3 + CO_2 + H_2O \\ &H_2SO_4 + CaCO_3 \stackrel{\ref{a}}{a} CaSO_4 + CO_2 + H_2O \end{split}$$

14. A reaction between an acid and a metal oxide to form a salt and water as the only products.

15. A reaction between an acid and a metal, forming a metal salt and hydrogen as the only products.

$$2HCl + Zn \stackrel{\red}{a} ZnCl_2 + H_2$$

 $H_2SO_4 + Mg \stackrel{\red}{a} MgSO_4 + H_2$