Eine Woche, ein Beispiel 3.26 double coset decomposition

Double coset decompositions are quite impressive!

This document follows and repeats 2022.09.04_Hecke_algebra_for_matrix_groups. Some new ideas come, so I have to write a

Ref:

Wiki: Symmetric space, Homogeneous space and Lorentz group

[JL18]: John M. Lee, Introduction to Riemannian Manifolds

[Gorodski]: Claudio Gorodski, An Introduction to Riemannian Symmetric Spaces https://www.ime.usp.br/~gorodski/ps/symmetric-spaces.pdf

[KWL10]: Kai-Wen Lan: An example-based introduction to Shimura varieties https://www-users.cse.umn.edu/~kwlan/articles/intro-sh-ex.pdf

[svd-notes]: Notes on singular value decomposition for Math 54 https://math.berkeley.edu/~hutching/teach/54-2017/svd-notes.pdf

https://www.mathi.uni-heidelberg.de/~pozzetti/References/Iozzi.pdf https://www.mathi.uni-heldelberg.de/~lee/seminarSS16.html

- 1. G-space
- 2. double coset decomposition schedule
- 3. examples (draw Table)
- 4. special case. v.b on 1P'.

In this document, stratification = disjoint union of sets

1. G-space

Recall: Group action $G \in X$ discrete \Rightarrow foundamental domain $\Lambda \in G$ $SL_1(Z) \in H$ non discrete \Rightarrow stratification by G/G_x $S' \in S^2$ $C^* \in CP'$

Rmk. Many familiar spaces are homogeneous spaces.

E.g.
$$Flag(V) \cong GL(V)/P$$
 e.p. Grassmannian, P^n
 $S^n \cong O(n+1)/O(n) \cong SO(n+1)/SO(n)$

O(N.=O(n/R) ~> Stiefel mfld [21,11,14] SO(n) := SO(n, IR)

$$\mathbb{A}^n = \mathbb{A}^n$$

→ Hermitian symmetric space

where
$$\mathcal{H}^{n} := \left\{ v = \left(v_{i} \right)_{i=1}^{n+1} \in \mathbb{R}^{n+1} \middle| \langle v, v \rangle = -1, \quad v_{n+1} > 0 \right\}$$
 $\langle v, \omega \rangle = v^{T} \Big(v_{i+1} - v_{i+$

$$O(n,1) = Aut(|R^{m'},<,>) \subseteq GL_{n+1}(|R)$$

 $O^{\dagger}(n,1) = geO(n,1) | gH^{n} \subset H^{n}$

For more informations about Hn, see [JL18, P62-67].

Fig. 3.3: Isometries among the hyperbolic models [JL18, 163]

 $https://math.stackexchange.com/questions/3\,340\,992/sl2-mathbbr-as-a-lorentz-group-o\,{\scriptstyle 1-2}$

Rmk. Sym spaces & Hermitian sym spaces are fully classified.

See [Gorodski, Thm 2.3.8] and [KWL10, §3] for the result.

Q: Can we define and classify sym spaces in p-adic world?

2. double coset decomposition schedule

usually, H, K are easier than G.

- comes from (usually) Gauss elimination

- I is the "foundamental domain"

- produces stratifications on G/K and H/G indexed by I.

To be exact,

$$G/K = \coprod_{\alpha \in I} H_{\alpha} K/K \cong \coprod_{\alpha \in I} H/_{H_{\alpha}K_{\alpha}} = \coprod_{\alpha \in I} H/_{H_{\alpha}K_{\alpha}^{-1}}$$

$$H/AAKa^{-1} = \# \left\{ \text{ single cosets [gK]} \right\} < +\infty$$

Therefore, the dec helps us to understand the geometry of

individually

- can be viewed as stack quotient.

[*/G] groupoid

$$H_{H}^{*}(G/K) \cong H^{*}(H^{V}G/K) \cong H_{K}^{*}(H^{V}G)$$

slogan the (equiv) cohomology of G/K and HG are connected.

- Hecke algebra $\mathcal{H}(H^{G/K})$ for H=K. You can also do $\mathcal{H}(H, G/H_{2}) \longleftrightarrow \overset{2}{\oplus} \mathcal{H}(H^{NG/H_{1}})$ $\mathcal{H}(H^{G/K})$: reasonable subspaces of

with reasonable convolution structure $* \mathcal{H}(H_1\backslash G/H_2) \times \mathcal{H}(H_1\backslash G/H_3) \longrightarrow \mathcal{H}(H_1\backslash G/H_3)$ which are often computable (but hard)

It encodes important informations of double coset decomposition.

Vague: $H(H)G/K) \sim H^*(H)G/K)$ should be a type of cohomology $H(G) \stackrel{G fin}{=} \mathbb{C}[G]$ $H(K)G/K) \cong (End (c-Ind_K^G 1_K))^{op}$ should be a type of base ring Generalize: $Ind_H^G \chi \approx H_\chi(H)G/K) \subseteq \int G \cap \mathbb{C}[f(hgk) = \chi(h)f(g)]$

Works over.

- list of possibilities
- moduli interretation
- typical examples

- moduli interretation $V = \kappa^{\oplus n}$

$$G/B = \begin{cases} cpl & flags & in V \end{cases}$$

$$G/T = \begin{cases} (V_i)_{i=1}^n \mid V = \bigoplus_{i=1}^n V_i, & dim V_i = 1 \end{cases}$$

$$G/N = \begin{cases} (F, m_i) \mid F_i = 0 = M_0 \subseteq M_1 \subseteq \dots \subseteq M_n = V \text{ cpl} \end{cases}$$

$$G/N = \begin{cases} flags & in V \end{cases}$$

$$G/P = \begin{cases} flags & in V \end{cases}$$

$$G/L = \begin{cases} (V_i)_{i \in I} \mid V = \bigoplus_{i \in I} V_i \end{cases}$$

$$G/M = \begin{cases} (F, B_i) \mid F_i = 0 = M_0 \subseteq M_1 \subseteq \dots \subseteq M_d = V \end{cases}$$

$$B_i = a \text{ basis of } M_i/M_{i-1}$$

Rmk. We have a fiber bundle

which makes
$$G/N$$
 a $A^{\Theta(\frac{n}{2})}$ - torsor over G/B
 G/N is not a $K^{\Theta(\frac{n}{2})}$ - torsor over G/B , so G/N can be affine space.

- E.g. Bruhat decomposition G = LI BWB

- · Gauss elimination gives "=", while the observation of process gives "L" (Something is invariant)
- · the "fundamental domain" W has a gp structure, and crsp to B-orbits of G/B. gp structure comes from Tits system
- · produces an affine paving of G/B, and the Zariski topo gives Bruhat order works also for Euclidean topo, K=R or C.
- $B G = [*B] \times_{[*G]} [*B]$, with $H_B^*(G/B) \cong H_T^*(G/B) \cong \bigoplus_{M} H_T^*(pt)$ [my master thesis]
- · H(G,B), see [22.09.04]
- · More: Schubert calculus a-equiv v.b. Borel - Weil - Both theorem

-possible exercise

· Work out

 $7\sqrt{9}/8$ $P_{\lambda}^{G}/P_{\lambda} = GL_{m} \times GL_{n} \times GL_{n} \times GL_{n} \times S_{m} \times S_{n} \times S_{n$

K=F,; GLn -> other gps

· Computation of cardinals.

- E.g. singular value decomposition (SVD) [svd-notes]

$$GL_n(\mathbb{R}) = \bigsqcup_{a_1 \ge a_2 - a_n \ge 0} O(n) \binom{a_1}{a_n} O(n)$$

$$GL_n(C) = \bigsqcup_{a_1 \ge a_2 = a_1 \ge 0} U(n) \binom{a_1}{a_2} U(n)$$

"E", lazy proof

When $A \in GL_n(\mathbb{R})$ is symmetric, $A \stackrel{O(n)\text{-conj}}{\longrightarrow} \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$ $\lambda_1 \in \mathbb{R}^{\times}$.

When $A \in GL_n(\mathbb{C})$ is normal matrix, $A \stackrel{U(n)\text{-conj}}{\longrightarrow} \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$ $\lambda_1 \in \mathbb{C}^{\times}$

One can then use polar dec to show SVD.

"". algorithm.

Suppose
$$A = U \Sigma V^T \in \mathcal{O}(n) \Sigma \mathcal{O}(n)$$
 $\Sigma = \binom{a_1}{a_2} \sum_{n=1}^{n} a_n \sum_$

$$A^{T}A = V \Sigma^{T} \Sigma V^{T} = V \begin{pmatrix} a^{T}, & a^{T} \end{pmatrix} V^{-1}$$

 \Rightarrow eigenvalues of $A^{T}A$ tell us Σ .

· "e", algorithm. [sud-notes, Thm 3.2]

$$A^{\mathsf{T}}A = \bigvee \begin{pmatrix} \alpha_1^{\mathsf{T}} & & & \\ & \ddots & & \\ & & \alpha_n^{\mathsf{T}} \end{pmatrix} \bigvee^{-1} \qquad \qquad \alpha_i \in \mathbb{R}_{\geq 0} \quad A^{\mathsf{T}}A \left(v_i, \dots, v_n \right) = \left(v_i, \dots, v_n \right) \begin{pmatrix} \alpha_1^{\mathsf{T}} & & \\ & \ddots & & \\ & & \alpha_n^{\mathsf{T}} \end{pmatrix}$$

Take
$$\Sigma = {a \choose a_n}$$
, $\mathcal{U} = AV\Sigma^{-1}$, then $\mathcal{U} \in O(n)$, $A = \mathcal{U}\Sigma V^{T}$.

· "L", geometry:

$$\alpha_1 = \max_{v \neq 0} \frac{\|Av\|}{\|v\|} \qquad \|\cdot\|_{2-norm}$$

$$a_k = \min_{\substack{V \subseteq \mathbb{C}^n \\ \text{dim } k^{-1}}} \max_{\substack{v \neq 0}} \frac{||A_v||}{||v||}$$

Compare with: https://en.wikipedia.org/wiki/Min-max_theorem (Courant-Fischer-Weyl min-max principle)

• the "fundamental domain" $I = \{(a_1, \dots, a_n) \in |R^{\oplus n} \mid a_1 \ge a_2 \ge \dots \ge a_n\} = \bigsqcup_{\substack{(k, (n_1, \dots, n_k)) \\ \sum n_1 \ge n}} I_{n_1, \dots, n_k}$ $I_{n_1, \dots, n_k} = \{(a_1, \dots, a_1, \dots, a_k, \dots a_k) \in |R^{\oplus n} \mid a_1 \ge a_2 \dots \ge a_k\}$

is an n-dim real mfld, with boundary I-I,.....

• produces a foliation of
$$GL_n(\mathbb{R})/O(n)$$
 or $GL_n(\mathbb{C})/U(n)$ indexed by I , with each piece iso to $O(n)/\sum_{\mathcal{O}(n)} \sum^{1} nO(n) \cong O(n)/O(n) \times O(n_k) \cong GL_n(\mathbb{R})/L$ $U(n)/\sum_{\mathcal{U}(n)} \sum^{-1} \cap U(n) \cong U(n)/U(n) \times U(n_k) \cong GL_n(\mathbb{C})/L$ ar dec

Space
$$dim_{IR}$$
 Space dim_{IR} $GL_n(IR)$ n^2 $GL_n(C)$ $2n^2$ $O(n)$ $\frac{h(n-1)}{2}$ $U(n)$ n^2 $GL_n(IR)/O(n)$ $\frac{n(n+1)}{2}$ $GL_n(C)/U(n)$ n^2 $GL_n(IR)/L$ **L $GL_n(C)/L$ **L ×2 I_{n_1, \dots, n_R} K I_{n_1, \dots, n_R} K

E.g. The SO(2)-orbit on H = SLz(IR)/SO(2) is as follows.

- · stack quotient: not discussed yet
- [Getz, 3.3] https://mathoverflow.net/questions/301410/what-is-the-archimedean-hecke-algebra

$$H(GL_n(IR), O(n)) := \begin{cases} f: GL_n(IR) \longrightarrow \mathbb{C} & \text{f distributions} \\ \sup_{f: GL_n(IR) \longrightarrow \mathbb{C}} & \text{f supp } f \subseteq O(n) \\ f: \text{bi } O(n) - \text{finite} \end{cases}$$

$$\neq \begin{cases} f: GL_n(IR) \longrightarrow \mathbb{C} & \text{f sm, supp } f \text{ cpt,} \\ f(k, gk_2) = f(g) & \forall k, k \in O(n) \end{cases}$$

$$\text{bi } O(n) - \text{finite:} & \text{f } f(o(n), O(n)) - \text{module} \subseteq \text{Distributions on } GL_n(IR) \end{cases}$$

$$\text{is of fin dim.}$$

- E.g. QR decomposition

We write "RQ dec" instead.

$$GL_n(\mathbb{R}) = B \cdot O(n) = \bigsqcup_{t_i \in f_{t_i}} N \begin{pmatrix} t_i \\ \vdots \\ t_n \end{pmatrix} O(n)$$

$$GL_n(C) = B \cdot U(n) = \bigsqcup_{\substack{t_i \in C \\ |t_i| = 1}} N \begin{pmatrix} t_i \\ t_i \end{pmatrix} U(n)$$

- · Gauss elemination by B. Gram Schmidt process Gauss elemination by Own, rotation s.t. Au e < e., e;

$$CL_n(\mathbb{C})/O(n) \cong B/B \cap O(n) \cong \mathbb{R}_{>0} \oplus \mathbb{C}^{\oplus \binom{n}{2}}$$

$$B \setminus GL_n(\mathbb{R}) \cong B \cap G_n \cap G_n \cong F_{\pm 1} \cap G_n \cap G_n$$

• the "fundamental domain" is a single pt
•
$$GL_n(IR)/O(n) \cong B/B \cap O(n) \cong IR^{O(n)} \oplus IR^{O(n)}$$
 $GL_n(C)/U(n) \cong B/B \cap U(n) \cong IR^{O(n)} \oplus IR^{O(n)}$
 $B \cap GL_n(R) \cong B \cap G(n) \cong IR^{O(n)} \oplus IR^{O(n)}$

is cpt
 $B \cap GL_n(C) \cong B \cap G(n) \cong IR^{O(n)} \oplus IR^{O(n)}$

is cpt

Rmk. As a Corrollary, we know the (higher) homotopy gp of RGLn(IR). It's foundamental gp is still hard to construct.

$$\pi_{i}\left(\beta^{i}, GL_{n}(\mathbb{R})\right) \cong \begin{cases} \text{fId} \\ \mathbb{Z} & n=2 \\ 1 \to \mathbb{Z}/22 \to ? \to (\mathbb{Z}/22)^{\oplus n} \to 1 & n>2 \end{cases}$$

The fundamental group of a real flag manifold https://www.researchgate.net/publication/222792895_The_fundamental_group_of_a_real_flag_manifold

From this ref [Thm 1.1 + § 5.2], we see

$$\pi_{I}(B\backslash GL_{n}(IR)) \cong \langle t_{a_{1}}, ... t_{a_{n-1}} \rangle / (t_{a_{1}}t_{a_{1}+1} = t_{a_{1}}t_{a_{1}}^{-1}, t_{a_{1}+1}t_{a_{1}+1}^{-1}, t_{a_{1}+1}t_{a_{1}+1}^{-1})$$

$$e.p. \ \pi_{I}(B\backslash GL_{1}(IR)) \cong \langle t \rangle$$

$$\pi_{I}(B\backslash GL_{3}(IR)) \cong \langle t, s \rangle / (tsts^{-1}, stst^{-1})$$

$$\cong \langle t, s \rangle / (t^{4} = 1, s^{2} = t^{2}, sts^{-1} = t^{-1}) \cong Q_{8}$$

cohomology rings of real flag manifolds are also well understood:

On the cohomology rings of real flag manifolds: Schubert cycles: https://link.springer.com/article/10.1007/s00208-021-02237-z

- Possible ex work out

 $SO(n) \setminus SL_n(IR) / SO(n)$ $O(n) \setminus GL_n(IR) / N$, $O(n) \setminus GL_n(IR) / P$, $GL_n(IR) \setminus GL_n(C) / B$, ... $O(n) \setminus GL_n(IR) / P$, $O(n) \setminus G$

https://math.stackexchange.com/questions/466998/what-are-the-borels-parabolics-of-the-orthogonal-or-symplectic-groups

4. special case: v.b on 1P'.

 $https://en.wikipedia.org/wiki/Birkhoff_factorization$