Slide-1

H clustering Hands-on:

The Hierarchical Clustering Algorithm:

Start with n clusters (record =cluster)

Step 1: Two closet records are merged into one cluster.

At every step, pair of clusters with smallest distance are merged.

At this point, the distance matrix is re-computed.

- Two rows+columns are merged into single row+column.
- Distance to the newly merged clusters are recalculated.
- Repeat the last step until a single cluster is formed.

Slide-2

Two variables, n= 5 items

item	v1	v2
1	1	1
2	2	1
3	4	5
4	7	7
5	5	7

Euclidean matrix

What happens next?

- . Merge 1&2 into cluster A.
- . Use single linkage to calculate distances from cluster A.

Slide-3

What happens next?

	Α	3	4	5			Α	3	4	5
Α	0.0					Α	0.0			
3	4.5	0.0				3	4.5	0.0		
4	7.8	3.6	0.0			4	7.8	3.6	0.0	
5	6.7	2.2	2.0	0.0	\rightarrow	5	6.7	2.2	2.0	0.0

Slide-4

Merge 4&5 (Cluster B)

Merge 3& B

Slide-5
Finally: Summarize process in a Dendrogram

SLIDE-6
Example k=2

			7.00
			5.00
item	v1	v2	5.00
1	1	1	4.00
2	2	1	3,00
3	4	5	2.00
4	7	7	1.00
5	5	7	1.00 2.00 3.00 4.00 5.00 6.00 7.00

Start with cluster A:1,2,3 and with cluster B: 4,5 Compute cluster centroids.

SLIDE-7
What are the centroids of the cluster A & B?

$$\begin{cases} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 5 \\ 4 & 7 & 7 \\ 5 & 5 & 7 \end{cases}$$

- 1) A=(1,1.5,4.5) and B=(7,6)
- 2) A=(2.33) and B=(6.5)
- 3) A=(2.33,2.33) and B=(6,7)

Slide-8

Compute Euclidean distance of each record of from each centroid, and re-assign to closest cluster.

	Cluster A	Cluster B
Item 1	$\sqrt{(1-2.33)^2+(1-2.33)^2}=1.89$	$\sqrt{(1-6)^2 + (1-7)^2} = 7.81$
Item 2	1.37	7.21
Item 3	$\sqrt{(4-2.33)^2+(5-2.33)^2}=3.14$	$\sqrt{(4-6)^2 + (5-7)^2} = 2.83$
Item 4	6.60	1
Item 5	5.37	1

Slide-9

First iteration results:

Cluster A:1,2 and Cluster B: 3,4,5

Re-Compute centroids:

Centroid(A) = (1.5,1) Centroid(B) = (5.33,6.33)

Slide-10
Re-compute distances of records to centroids

12	Cluster A	Cluster B
Item 1	$\sqrt{(1-1.5)^2 + (1-1)^2} = 0.5$	$\sqrt{(1-5.33)^2+(1-6.33)^2}=6.87$
Item 2	0.5	6.29
Item 3	$\sqrt{(4-1.5)^2+(5-1)^2}=4.72$	$\sqrt{(4-5.33)^2+(5-6.33)^2}=1.89$
Item 4	8.14	1.80
Item 5	6.95	0.75