

Vzense TOF Camera Android SDK User Guide

Version: V1.0.8

Date: 2020/03/20

About This Guide

This guide is mainly to introduce how to use Vzense TOF RGBD Camera and Vzense Android SDK.

Document Structure

Chapter	Title	Contents
1	Overview	Introduce general information of Vzense Android SDK
2	Products	Introduce general information of Vzense products
3	Installation	Introduce how to install Vzense TOF Depth Camera
		and Android SDK
4	SDK Instruction	Introduce how to use Vzense Android SDK
5	API Introduction	Introduce APIs of Vzense Android SDK
6	Update Firmware	Introduce how to update firmware

Release Records

Date	Version	Release Note
2019/07/24	V1.0.3	Release official version
2019/10/11	V1.0.4	Add upgrade and restart functions
2019/10/12	V1.0.5	Modify the upgrade API and SDK import method
2019/11/05	V1.0.6	Add 3.3.5; Add new API
2019/11/15	V1.0.7	Update related content about upgrade
2020/03/20	V1.0.8	Added upgrade instructions using SDK Sample APK

Contents

١.	Overvie	W	. 1
2.	Product	S	. 2
	2.1.	DCAM710 introduction	. 2
	2.2.	DCAM305 introduction	. 2
3.	Installat	ion	. 3
	3.1.	Recommended Development Environment	. 3
	3.2.	Installation Instruction	. 3
4.	SDK Inst	truction	. 4
	4.1.	SDK Structure	. 4
	4.2.	Application Installation and View Window	. 4
	4.2.	1. DCAM710 Sample	. 4
	4.2.	2. DCAM305 Sample	. 5
	4.3.	Development Process	. 6
	4.3.	1. Import Jar file	. 6
	4.3.	2. Import so file	. 6
	4.3.	3. Interface Invoke	. 7
	4.3.	4. Work Mode	. 8

5.	SDK API Int	troduction	10
	5.1. En	um type	10
	5.1.1.	FrameType	10
	5.1.2.	PixelFormat	10
	5.2. Cla	nss	10
	5.2.1.	CameraParameter	10
	5.2.2.	CameraExtrinsicParameter	11
	5.2.3.	PsFrame	11
	5.2.4.	IFrameCallback	11
	5.2.5.	IUpgradeStatusCallback	12
	5.2.6.	PsCamera	13
6.	Upgrade Fi	rmware	20
	6.1. DC	CAM305 upgrade firmware	20

1. Overview

Vzense TOF RGBD Camera is a 3D camera module developed by Vzense which uses TOF (Time of Flight) technology. It has the advantages of high precision, strong environmental adaptability, small size and so on. The depth information it outputs can be applied to the next generation of UI which is based on gesture recognition, TV and Game motion-sensitivity interaction, face recognition, robot obstacle avoidance, advanced automotive vision system, industrial control and other frontier creative technologies.

The Vzense android SDK is a development kit based on Vzense DCAM305 TOF RGBD Camera, which is currently applicable to single board or smart phone with android system. It provides a series of friendly APIs and simple application examples for developers.

Developers can get high precision depth image data, gray image data through the SDK. It is convenient for users to develop gesture recognition, projection touch, face recognition, fatigue detection, 3D modeling, navigation, obstacle avoidance and so on.

2. Products

2.1. DCAM710 introduction

Figure 2.1 Vzense TOF RGBD Camera: DCAM710

DCAM710 is a 3D camera module developed by Vzense which uses TOF (Time of Flight) technology. The depth information it outputs can be applied to the next generation of UI which is based on gesture recognition, TV and Game motion-sensitivity interaction, face recognition, robot obstacle avoidance, advanced automotive vision system, industrial control and other frontier creative technologies.

2.2. DCAM305 introduction

Figure 2.2 Vzense TOF RGBD Camera: DCAM305

DCAM305 is a 3D camera based on TOF technology specially developed by Vzense for face recognition scenarios. It has the features of easy installation and high reliability.

3. Installation

3.1. Recommended Development Environment

Item	Recommended Configuration
Development Environment	Android API 21 or above
Development Environment	JDK1.7.0_01 or above
Running Environment	Android 5.0 or above ARMv7a/ARMv8a @ 1.4GHz+ 512M RAM USB 2.0(OTG capable)

3.2. Installation Instruction

Connect the camera module to Android development board or smartphone USB interface through USB cable, as Figure 3.1.

▲ Figure 3.1 Hardware Installation

4. SDK Instruction

4.1. SDK Structure

Vzense Android SDK contains SDK, Sample, APK installation package, user guide document, etc. The directory structure is as follows:

▲ Figure 4.1 Android SDK directory

- Document: The document details the development and usage instructions of the SDK;
- > Sample: contains sample project developed using Vzense Android SDK;
- SDK: contains Vzense Android SDK jar and so;
- ➤ Tools: contains Sample APK, functions testing tool, image quality testing tool;
- ReleaseNotes.txt: introduces the main contents of this version update;

4.2. Application Installation and View Window

Connect the Vzense camera to the USB interface of Android device, copying the APK file to the device, double-clicking the APK to install.

4.2.1. DCAM710 Sample

Dcam710 sample will launch an interface including image preview and menu buttons, as shown in the following figure. Sample and APK enter Depth30_ RGB30 mode and display image, you can click the menu on the interface to switch mode.

▲ Figure 4.2 DCAM710 Sample

4.2.2. DCAM305 Sample

DCAM305 sample will launch an interface including image preview and menu buttons, as shown in the following figure. Sample and APK enter Depth15_ IR15_ RGB30 mode and display image, you can click the menu on the interface to switch mode.

▲ Figure 4.3 DCAM305 Sample

4.3. Development Process

4.3.1. Import Jar file

Create a new Android Studio project, copy the VzenseCamera.jar file to the app/libs directory, click File, select Project Structure in Lower Larry, and pop up the project component interface. As shown in the figure below, select the project under Modules, click the Dependencies menu on the right, and then click the '+' in the upper right corner. Select Jar Dependency in the pop-up menu, select VzenseCamera.jar.

▲ Figure 4.4 Import jar

4.3.2. Import so file

Copy the so file to the app / libs directory, open the build.gradle file of the project, add the following code, import so. After importing the library, the APIs can be invoked in the project for development, as shown in the following demo example:

▲ Figure 4.5 Import so

4.3.3. Interface Invoke

 Import Interface class import com.vzense.sdk.PsCamera;

2. Create PsCamera object and invoke init method

```
mVzenseCamera = new PsCamera();
if (mVzenseCamera != null) {
    mVzenseCamera .init(this, mOnVzenseCameraConnectLister);
}
```

3. Create image data callback

mFrameCallback = new FrameCallback();

4. Open camera, set working mode and frame callback

```
mVzenseCamera .setFrameCallback(mFrameCallback);
mVzenseCamera .setWorkMode(mWorkMode);
mVzenseCamera .start(this);
```

5. Get frame data in override callback function

```
public class FrameCallback implements IFrameCallback {
```

```
@Override
```

```
public void onFrame(PsFrame DepthFrame,PsFrame IrFrame,PsFrame
RgbFrame) {
```

```
//DataProcess
}
```

6. After the device starts and connect normally, read Sn, fwVer and other operations in the device state callback

```
@Override
```

}

```
public void onConnect() {
if (DEBUG) Log.i(TAG, "onConnect");
```



```
if(mVzenseCamera != null) {
    String sn = mVzenseCamera .getSn();
    String fwVer = mVzenseCamera .getFWVerion();
    String hwVer = mVzenseCamera .getHWVerion();
    String sdkVersion = mVzenseCamera .getSDKVerion();
    String deviceName = mVzenseCamera .getDeviceName();
}
```

4.3.4. Work Mode

4.3.4.1. DCAM710 supported work mode

DCAM710 currently supports the following modes, which can switch between modes.

- Depth30_RGB30: Output 30 Hz depth & RGB image, RGB resolution can be set.
- ➤ IR30_RGB30: output 30 Hz IR / RGB image, RGB resolution can be set.
- Depth30_ Ir30: 30 Hz depth / IR image is output.
- ➤ **Depth15_ IR15_ Rgb30:** output depth / IR / RGB and RGB alternately. The frame rate of depth / IR is 15Hz, and that of RGB is 30Hz. RGB resolution can be set.
- WDRDepth30_ Rgb30: output 30 Hz depth / RGB image, where depth is the fused image.

4.3.4.2. DCAM305 supported work mode

DCAM305 currently supports the following modes, which can switch between modes.

- ➤ **Depth15_ IR15_ Rgb30:** output depth / IR / RGB and RGB alternately. The frame rate of depth / IR is 15Hz, and that of RGB is 30Hz. RGB resolution can be set.
- > RGB30: Output 30 Hz RGB image. RGB resolution can be set.

Notes:

- The above mentioned depth / IR resolution is 640 * 480.
- RGB can set the resolution through the setRgbResolution function. The supported resolutions are: 640 * 360, 640 * 480, 1280 * 720, 1920 * 1080.

5. SDK API Introduction

5.1. Enum type

5.1.1. FrameType

Description:

Image data stream type

Enumerator:

> **DepthFrame**: 16bit depth image frame

> IRFrame: 16bit IR gray image frame

> RGBFrame: 24bit 3 channels RGB image frame

5.1.2. PixelFormat

Description:

Pixel type of image

Enumerator:

- ➤ PixelFormatDepthMM16: per pixel is a 16-bit depth value in millimeters
- > PixelFormatGray16: per pixel is a 16-bit gray value
- > PixelFormatGray8: per pixel is an 8-bit gray value
- ➤ PixelFormatRGB888: per pixel is a 24-bit RGB value
- ➤ PixelFormatBGR888: per pixel is a 24-bit BGR value
- ➤ PixelFormatRGBA8888: per pixel is a 32-bit RGBA value

5.2. Class

5.2.1. CameraParameter

Description:

Camera intrinsic and distortion parameters

Members:

Parameter	Description
fx, fy, cx, cy	Camera intrinsic parameters
k1, k2, k3, p1, p2	Camera distortion parameters

5.2.2. CameraExtrinsicParameter

Description:

Camera extrinsic parameters

Members:

Parameter	Description
rotation[1-9]	Rotation matrix from TOF camera to RGB camera
translation[1-3]	Translation matrix from TOF camera to RGB camera
e[1-9]	Essential matrix
f[1-9]	Fundamental matrix

5.2.3. PsFrame

Description:

Image information

Members:

Parameter	Description
frameIndex	Frame index
frameType	Type of frame
pixelFormat	Pixel format
frameData	Frame data
dataLength	Length of data(bytes)
timeStamp	Time stamp(ms)
fps	Frame rate
width	Image width in pixel
height	Image height in pixel
bytePerPixel	Bytes per pixel

5.2.4. IFrameCallback

Description:

Image callback interface

Instruction:

The application layer needs to create an interface object, which is set to native through the *setFrameCallback* interface. Native callbacks data to the application layer through the *OnFrame* method of the interface class.

5.2.5. IUpgradeStatusCallback

Description:

Upgrade status callback interface

Instruction:

The application layer needs to create an interface object, which is set to native through the *setUpgradeStatusCallback* interface. Native callbacks status to the application layer through the *OnUpgradeStatus* method of the interface class.

API	void onUpgradeStatus(int stage, int params)
Description	stage: upgrade status
	params: upgrade status result1 is failure
	DEVICE_PRE_UPGRADE_IMG_COPY:
	copy Firmware.img to Camera
	> DEVICE_UPGRADE_IMG_CHECK_DOING:
	check Firmware.img
	DEVICE_UPGRADE_IMG_CHECK_DONE:
	check Firmware.img finished
	DEVICE_UPGRADE_UPGRAD_DOING:
	upgrading firmware. Params now represents the percent-
	age of progress (0~100)
	> DEVICE_UPGRADE_RECHECK_DOING:
	recheck after upgrade
	> DEVICE_UPGRADE_RECHECK_DONE:
	recheck finished
	DEVICE_UPGRADE_UPGRAD_DONE: upgrade finished

5.2.6. PsCamera

Description:

Interface class, through which users can open, close, set parameters, obtain data and other operations.

Instruction:

API	void init(Context context, final ICameraConnectListener lis-
	tener)
Description	SDK init, this interface must be called first at startup, and lis-
	ten is the callback of device status. If you want to get the de-
	vice connection status, you need to pass in this callback, or
	set it to null if you don't need to get.

API	void destroy()
Description	Release SDK resource, call it after <i>stop</i> ().

API	void start(Context context)
Description	Start to capture image data, call it after init().

API	void stop()
Description	Stop capturing image data.

API	void setFrameCallback(final IFrameCallback callback)
Description	Set frame callback to get image data, call it before <i>start</i> ().

API	int setGmmGain(int gmmGain)
Description	Set GmmGain value to adjust the brightness of IR image
	Parameter:
	gmmGain: gmmGain value, value range is 0-4095.

Return:
> 0: Success
➤ Others: Failure

API	int getGmmGain()
Description	Get the current gmmgain value of IR image
	Return:
	Current gmmgain value of IR image

API	int setRgbResolution(int resolutionIndex)
Description	Set the RGB image resolution, and the parameter value
	range is 0-3
	Parameter:
	resolutionIndex:
	> 0: 1080x1920
	> 1: 720x1280
	> 2: 480x640
	> 3: 360x640
	Return:
	> 0: Success
	Others: Failure

API	void getDepthCameraParameter(CameraParameter
	mDepthParameter)
Description	Get the intrinsic parameters of TOF camera. For details refer
	to 5.2.1

API	void getRgbCameraParameter(CameraParameter mRgbPa-
	rameter)

Description	Get the intrinsic parameters of RGB camera. For details refer
	to 5.2.1

API	void getCameraExtrinsicParameter(CameraExtrinsicParam-
	eter mExtrinsicParameter)
Description	Get the extrinsic parameters of camera. For details refer to
	5.2.2

API	String getSn()
Description	Get SN of device, such as PD3051AGD5130013M

API	String getFWVersion()
Description	Get the firmware version number of device, such as
	2019.0518.02

API	String getHWVersion()
Description	Get hardware version number of device, such as R2

API	String getSDKVersion()
Description	Get SDK version number, such as 2.0.20

API	String getDeviceName()
Description	Get device name, such as Vzense RGBD DCAM305

API	int setWorkMode(int workMode)	l
Description	Set the work mode.	l
	Parameters:	1
	workMode: refer to 4.3.4 work mode switching process de-	l
	scription for details	l

Return: ➤ 0: Success ➤ Others: Failure

API	int setRgbAecEnabled(boolean bEnabled)
	(only for DCAM305)
Description	Set whether to turn on automatic exposure for RGB cameras,
	which defaults to true.
	Parameter:
	bEnabled:
	➤ True: Turn on automatic exposure for RGB camera
	➤ False: Turn off automatic exposure for RGB camera
	Return:
	> 0: Success
	➤ Others: Failure

API	int setTofFrameEnabled(boolean bEnabled)
	(only for DCAM305)
Description	Set whether to obtain TOF image data. The TOF is turned off
	by default in code mode. If you want to obtain TOF data, you
	need to call this API to set TOF status to true.
	Parameter:
	bEnabled:
	➤ True: Open TOF data
	➤ False: Close TOF data
	Return:
	> 0: Success
	Others: Failure

API	int setImageMirror(int mirrorValue)(only for DCAM305)
Description	Set image mirroring
	Parameter:
	mirrorValue:
	> 0: No mirroring
	➤ 1: Left and right mirroring
	2: Up and down mirroring
	➤ 3: Up, down, left and right mirroring(Rotate 180°)
	Return:
	> 0: Success
	Others: Failure

API	int setRgbExposureTimeAndGain(float exposureTime,
	float gain)
Description	Set the exposure duration and Gain value of RGB image.
	setRgbAecEnabled needs to be called to turn off automatic
	exposure before calling this API.
	Parameter:
	> exposureTime: RGB Image exposure duration, value
	range is [0.0015-0.03], unit is second.
	Gain: Gain value of RGB image, value range is [1.0-15.5]
	Return:
	> 0: Success
	➤ Others: Failure

API	int restartCamera()(only for DCAM305)
Description	Restart Camera
	Parameter:
	Null

Return: > 0: Success Others: Failure

API	int StartUpgradeFirmWare(String imagePath)
	(only for DCAM305)
Description	Start Camera upgrade
	Parameter:
	imagePath: The storage path of image file to be upgraded.
	Return:
	> 0: Success
	➤ 1: build version is the same and can be upgraded
	➤ -1: Do not repeat call during upgrade process
	→ -2: Firmware check failed
	➤ -3: Firmware version is too low to support upgrades

API	int setRgbFrameEnabled(boolean bEnabled)
	(only for DCAM305)
Description	Sets whether to get RGB image data. The Setting in Standby
	mode is invalid.
	Parameter:
	bEnabled:
	➤ True: Open RGB data
	➤ False: Close RGB data
	Return:
	> 0: Success
	Others: Failure

API	int setFramePixelFormat(PsFrame.FrameType type,
-----	---

	PsFrame.PixelFormat format)
Description	Set pixel format of image frame
	Parameter:
	type: image frame type. Now only support IRFrame
	format: pixel format. Now only support PixelFormatGray16,
	PixelFormatGray8
	Return:
	> 0: Success
	➤ Others: Failure

6. Upgrade Firmware

6.1. DCAM305 upgrade firmware

Copy the dcam305 firmware file to the sdcard root of the Android device and rename the firmware file to Firmware.img. Run sdk sample. After the image is displayed normally, click the [upgrade] button, and then wait for the upgrade to complete. The camera will restart several times during the upgrade process. Please do not manually unplug the camera. During the upgrade process, the upgrade progress will be displayed on the page.

▲ Figure 6.1 DCAM305 upgrade firmware