Conclusion

Predicting User Retention in **Subscription Based Services**

The Data Incubator Finalist Interview

William Lewis

11/15/2017

Subscription Services: They're not just for magazines

- Wide range of products and services with subscription based consumption models
 - Music and Movies (Netflix, Spotify, Apple Music, Amazon Prime)
 - Online gaming (e.g. Xbox live, PlayStation Now)
 - Software (Adobe CS, Microsoft Office 365)
 - Consumer goods (Dollar shave club, BarkBox)
- Exhibit continued growth (below is about subscription box companies):
 In the month of April 2017, subscription company websites had about 37 million visitors. Since 2014, that number has grown by over 800%. [1]
 - Yet in the same article: "We are seeing a lot of volatility within various categories."
- Motivates: "Can user demographics and usage behavior be used to predict retention."

Predicting User Retention: Music Streaming Service

- Recently a music streaming service made 40GB (decompressed) of user demographics, transaction, and usage data available
 - https://www.kaggle.com/c/kkbox-churn-prediction-challenge/data
- Project demonstrates skills with
 - Working with large data
 - **Bottleneck Identification**
 - Data cleaning
 - Feature engineering
 - Model refinement and selection
- Includes an ~30GB user log file
 - previously analyzed only a small portion of that data
 - Created a SQLite database which may be queried by groups of users
 - In order to achieve results on timescale available:
 - Index creation
 - Fewer queries

Conclusion

Young users fleeing the nest?

The t-test for difference in mean age between churn and retained users gives: Ttest_indResult(statistic=-25.527175423464698, pvalue=2.1077667057649482e-142)

Exploratory Analysis

Auto renew is how they get you!

First pass with Logistic Regression and Random Forest

Random Forest 2-fold cross-validation estimates for:

Sensitivity is: 0.996036181218 Specificity is: 0.0827682303762

Positive Predictive Value is: 0.939481232685 Negative Predictive Value is: 0.593604263824

Accuracy is: 0.93632824599

Additional Remarks and Next Steps

- I tried undersampling (oversampling) the majority (minority) populations
 - For logistic regression saw improvement in specificity but overall accuracy dropped
- Need to return to feature engineering step
 - Initial run with only 20 features.
 - ~50% demographics
 - ~50% aggregated features from log file
 - One feature is the most recent auto-renew status
 - Many interesting features are possible
 - measurements for distributions of usage for each user
 - e.g. standard deviation
 - weighted averages rather than unweighted
 - weight later data more
 - total membership duration
 - total amount spent
 - average discount