

A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts

april

CODE

S. Bortolotti¹

E. Marconato^{1,2}

P. Morettin¹ T. Carraro^{4, 5}

E. v. Krieken³

A. Vergari³

¹University of Trento

²University of Pisa

³University of Edinburgh

⁴Fondazione Bruno Kessler

⁵University of Padova

REASONING SHORTCUTS

Goal: Study supervised models that classify samples correctly but for the wrong concepts.

Reasoning Shorcuts [1]: NeSy predictors [2], Concept-based Models [3] and VLMs like CLIP [4] solve Learning & Reasoning tasks by exploiting semantically misleading concepts.

L&R TASKS

	Task		DATA	Λ	P	ROPERT	TIES
		GEN	OOD	Cont	CPLX x	c CPLX	K Amb K
	MNMath (new)	√	√	√	X	√	X
$+/\times$	MNAdd-Half	X	//	X	X	X	_
·	MNAdd-EvenOdd	X			X	X	_
	MNLogic (<u>new</u>)	√	/	✓	X	√	X
\wedge/\vee	Kand-Logic				X		
	CLE4EVR					X	
	BDD-OIA	X	X	X		✓	
	SDD-OIA (<u>new</u>)	/	//				

FEATURES

- Challenging: the # of RSs can be chosen a priori and counted using countrss, allows to control task difficulty.
- 2 Configurable: data sets & generators can be easily configured with YAML/JSON files.
- 3 **Intuitive**: straightforward to use:

from rsbench import MNLOGIC

dataset = MNLOGIC(args) train(model, dataset) test(model, dataset)

EXAMPLES

Task	Example	Shortcut	OOD Pred.
SDD-0IA	STOP		GO
BDD-0IA	STOP		GO
	Knowledge K	= the traffic la	WS.

Task	EXAMPLE	SHORTCUT OOD PRED.		
MNMath	$ \begin{cases} 2 \cdot \mathbf{Z} + \mathbf{Z} = 6 \\ 3 + 4 = 7 \end{cases} $	$\begin{cases} \mathbf{Z} \to 2 \\ 3 \to 4 \\ 4 \to 3 \end{cases} \qquad \mathbf{Z} + 4 = 5$		
	Knowledge K = 0	equations must hold.		

ASSESSING RS

Task-level: countrss counts the # of potential RSs in any L&R task!

Example: with 3 concepts and an exhaustive training set, MNLogic has 6 RSs if K is a conjunction and 24 if K is a XOR. This grows **exponentially** with the # of concepts!

Model-level: rsbench tasks induce RSs in all models!

Table 1. (L) DPL and (R) NN concept confusion matrix on MNAdd-EvenOdd

Quantitatively: Concept F1, accuracy and collapse

REFERENCES

- [1] Marconato et al., Analysis and Mitigation of RSs, NeurIPS (2023)
- [2] Manhaeve et al., DeepProblog, NeurlPS (2018)
- [3] Pang Wei Koh *et al.*, Concept bottleneck models, ICML (2020)
- [4] Alec Radford et al., CLIP, ICML (2021)

