#### Circle



Area =  $\pi r^2$ Circumference =  $2\pi r$ 

# Rectangle



Area = IwPerimeter = 2I + 2w

# **Trapezoid**



Area =  $\frac{1}{2}h(b_1 + b_2)$ 

#### **Triangle**



#### **Parallelogram**



Area = bh

#### Pythagorean Theorem



 $a^2 + b^2 = c^2$ 

#### Cube



Volume =  $s^3$ Surface Area =  $6s^2$ 

# Geometry Reference Sheet

#### Cylinder



Volume =  $\pi r^2 h$ Surface Area =  $2\pi r^2 + 2\pi rh$ Lateral Area =  $2\pi rh$ 

# Sphere



Volume =  $\frac{4}{3}\pi r^3$ Surface Area =  $4\pi r^2$ 

#### Cone



Volume =  $\frac{1}{3}\pi r^2 h$ Surface Area =  $\pi r^2 + \pi rs$ Lateral Area =  $\pi rs$ 

# **Right Pyramid**



Volume =  $\frac{1}{3}$  × base area × h Surface Area = base area + face areas

DISTANCE BETWEEN TWO POINTS:

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

MID-POINT BETWEEN TWO POINTS:

 $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ 

SUM OF INTERIOR ANGLES OF AN *n*-SIDED POLYGON:

180(n-2)

#### **Sector of Circle**



 $Arc \ Length = \frac{circumference \times central \ angle}{360^{\circ}}$   $Sector \ Area = \frac{total \ area \times central \ angle}{360^{\circ}}$ 

### **Right Prism**



Volume = base area  $\times h$ Surface Area = base areas + face areas Lateral Area = sum of face areas

# Rectangular Solid



Volume = lwhSurface Area = 2wl + 2lh + 2whLateral Area = 2(l + w)h

#### **Trigonometry Formulas**



Area =  $\frac{1}{2}ab \sin C$ 

Law of sines:  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

Law of cosines:  $b^2 = a^2 + c^2 - 2ac(\cos B)$