1. Le théorème d'inversion locale

1.1. Rappels sur les difféomorphismes

- 1. DÉFINITION. Soient E et F deux espaces vectoriels normés et $k \in \mathbb{N} \cup \{\infty\}$ un entier ou l'infini. Un \mathscr{C}^k -difféomorphisme entre deux ouverts $U \subset E$ et $V \subset F$ est une application bijective $f \colon U \longrightarrow V$ telle que cette dernière f et sa réciproque f^{-1} soient de classe \mathscr{C}^k .
- 2. EXEMPLE. L'application $x \mapsto x^2$ réalise un \mathscr{C}^{∞} -difféomorphisme de l'ouvert \mathbf{R}_+^* dans lui-même. Lorsque les espaces E et F sont de Banach, tout isomorphisme continu de E dans F est un \mathscr{C}^{∞} -difféomorphisme.
- 3. Proposition. Soient $U \subset E$ et $V \subset F$ deux ouverts. Soit $f: U \longrightarrow V$ un homéomorphisme différentiable en un point $a \in U$. On suppose que la différentielle df(a) est inversible. Alors l'application f^{-1} est différentiable au point a et

$$df(a)^{-1} = df^{-1}(f(a)).$$

- 4. Remarque. S'il existe un \mathscr{C}^1 -difféomorphisme de \mathbf{R}^n dans \mathbf{R}^p , alors n=p.
- 5. REMARQUE. Un \mathscr{C}^1 -difféomorphisme est un homéomorphisme, mais la réciproque est fausse : la fonction $x \longrightarrow x^3$ est un homéomorphisme de la droite réelle, mais ce n'est pas un \mathscr{C}^1 -difféomorphisme, mais ce n'est pas un \mathscr{C}^3 -difféomorphisme puisque sa réciproque $x \longmapsto \sqrt[3]{x}$ n'est pas de classe \mathscr{C}^1 .
- 6. Proposition. On suppose que les espaces E et F sont de Banach. Soient $U \subset E$ et $V \subset F$ deux ouverts. Soit $f \colon U \longrightarrow V$ une application. Alors les points suivants sont équivalents :
 - l'application f est un \mathscr{C}^1 -difféomorphisme;
 - c'est un homéomorphisme et ses différentielles df(a) avec $a \in U$ sont bijectives.

1.2. Le théorème et ses variantes

- 7. Théorème (d'inversion locale). Soient E et F deux espaces de Banach et $\Omega \subset E$ un ouvert. Soient $f \colon \Omega \longrightarrow F$ une application de classe \mathscr{C}^1 et $a \in \Omega$ un point. On suppose que la différentielle df(a) est inversible. Alors il existe un voisinage ouvert $U \subset \Omega$ du point a et un voisinage ouvert $V \subset F$ du point f(a) tels que la restriction $f \colon U \longrightarrow V$ soit un \mathscr{C}^1 -difféomorphisme.
- 8. Remarque. Lorsque les espaces E et F sont de dimension finie, il suffit de vérifier la condition det $df(a) \neq 0$ pour appliquer le théorème.
- 9. Remarque. Le théorème existe aussi en version \mathscr{C}^k avec $k \in \mathbb{N} \cup \{\infty\}$.
- 10. Exemple. L'application

$$\begin{vmatrix} \mathbf{R}_{+}^{*} \times \mathbf{R} \longrightarrow \mathbf{R}^{2}, \\ (r, \theta) \longmapsto (r \cos \theta, r \sin \theta) \end{vmatrix}$$

induit un \mathscr{C}^1 -difféomorphisme

$$\mathbf{R}_{+}^{*} \times]-\pi, \pi[\longrightarrow \mathbf{R}^{2} \setminus [\mathbf{R}_{-}^{*} \times \{0\}].$$

- 11. Théorème (d'inversion globale). Soient E et F deux espaces de Banach et $\Omega \subset E$ un ouvert. Soient $f: \Omega \longrightarrow F$ une application injective de classe \mathscr{C}^1 . On suppose que, pour tout point $x \in \Omega$, la différentielle df(x) est inversible. Alors l'image f(U) est un ouvert et la restriction $f: U \longrightarrow f(U)$ est un \mathscr{C}^1 -difféomorphisme.
- 12. Contre-exemple. L'injectivité est nécessaire : l'application

$$\begin{vmatrix} \mathbf{R}^2 \setminus \{(0,0)\} & \longrightarrow \mathbf{R}^2, \\ (x,y) & \longmapsto (x^2 - y^2, 2xy) \end{vmatrix}$$

est de classe \mathscr{C}^1 et ses différentielles sont inversibles, mais ce n'est pas un \mathscr{C}^1 -difféomorphisme.

- 13. THÉORÈME (Hadamard-Lévy). Soit $f: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ une application de classe \mathscr{C}^1 . Alors les points suivants sont équivalents :
 - l'application f est un \mathscr{C}^1 -difféomorphisme;
 - l'application f est *propre*, c'est-à-dire $f(x) \longrightarrow \infty$ lorsque $x \longrightarrow \infty$, et les différentielles df(x) avec $x \in \mathbb{R}^n$ sont inversibles.

1.3. Deux applications du théorème

14. LEMME. Soit $A_0 \in \mathscr{S}_n(\mathbf{R}) \cap \operatorname{GL}_n(\mathbf{R})$ une matrice symétrique inversible. Alors il existe un voisinage $V \subset \mathscr{S}_n(\mathbf{R})$ de la matrice A_0 et une application $\Phi \colon V \longrightarrow \operatorname{GL}_n(\mathbf{R})$ de classe \mathscr{C}^1 tels que

$$\forall A \in V, \qquad A = {}^{\mathsf{t}}\Phi(A)A_0\Phi(A).$$

- 15. THÉORÈME. Soient $\Omega \subset \mathbf{R}^n$ un ouvert contenant l'origine et $f \colon \Omega \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^3 . On suppose que
 - l'origine est un point critique, c'est-à-dire df(0) = 0;
 - la forme quadratique $d^2f(0)$ n'est pas dégénérée;
 - elle est de signature (p, n-p).

Alors il existe un voisinage $U \subset \Omega$ de 0 et un difféomorphisme $\varphi \colon U \longrightarrow \varphi(U) \subset \mathbf{R}$ de classe \mathscr{C}^1 vérifiant

- $\varphi(0) = 0;$
- pour tout point $x \in U$, on a

$$f(x) - f(0) = \varphi_1(x)^2 + \dots + \varphi_p(x)^2 - \varphi_{p+1}(x)^2 - \dots - \varphi_n(x)^2$$

où les réels $\varphi_i(x)$ sont les coordonnées du vecteurs $\varphi(x)$.

16. EXEMPLE. Pour tous $x, y \in \mathbf{R}$, on écrit $x - y = \varphi_1(x)^2 - \varphi_2(y)^2$ avec $\varphi_i(u) = \sqrt{u}$. 17. APPLICATION. Soit $f : \mathbf{R}^n \longrightarrow \mathbf{R}$ une application de classe \mathscr{C}^3 telle que df(0) = 0 et la hessienne $d^2f(0)$ soit définie positive. Alors le point 0 est un minimum local strict de l'application f.

19. PROPOSITION. Soit $A \in \mathcal{M}_n(\mathbf{C})$ une matrice à coefficients complexes. Alors l'exponentielle matricielle complexe induit une surjection

$$\exp \colon \mathbf{C}[A] \longrightarrow \mathbf{C}[A]^{\times}.$$

20. Théorème. L'exponentielle matricielle complexe réalise un surjection

$$\exp : \mathscr{M}_n(\mathbf{C}) \longrightarrow \mathrm{GL}_n(\mathbf{C}).$$

21. Contre-exemple. Le théorème est faux lorsqu'on se place sur le corps ${\bf R}$: la matrice diag(1,-1) n'est pas dans l'image de l'exponentielle.

22. COROLLAIRE. L'image de l'exponentielle matricielle réelle est l'ensemble

$$\exp \mathscr{M}_n(\mathbf{R}) = \operatorname{GL}_n(\mathbf{R})^{\times 2} := \{ A^2 \mid A \in \operatorname{GL}_n(\mathbf{R}) \}.$$

2. Le théorème des fonctions implicites

2.1. Le théorème

23. THÉORÈME. Soient E, F et G trois espaces de Banach et $\Omega \subset E \times F$ un ouvert. Soient $(a,b) \in \Omega$ un point et $f : \Omega \longrightarrow G$ une application de classe \mathscr{C}^k . On suppose que f(a,b) = 0 et la différentielle $\partial_u f(a,b)$ est bijective. Alors il existe

- un voisinage ouvert $U \subset E$ du point a;
- un voisinage ouvert $V \subset F$ du point b;
- une application $\varphi \colon U \longrightarrow V$ de classe \mathscr{C}^1

tels que $U \times V \subset \Omega$ et, pour tout point $(x, y) \in U \times V$, on ait

$$f(x,y) = 0 \iff y = \varphi(x).$$

24. EXEMPLE. Considérons la fonction

$$f: (x,y) \in \mathbf{R}^2 \longmapsto x^2 + y^2 - 1 \in \mathbf{R}.$$

Si y > 0, alors on prend (a, b) = (0, 1) et on trouve

$$\forall x \in]-1,1[, \quad f(x,y)=0 \iff y \coloneqq \varphi(x) \coloneqq \sqrt{1-x^2}$$

25. Proposition. On reprend les mêmes notations. Pour tout point $x \in U$, on a

$$d\varphi(x) = -\left(\frac{\partial f}{\partial b}(x,\varphi(x))\right)^{-1} \circ \frac{\partial f}{\partial x}(x,\varphi(x)).$$

26. EXEMPLE. On reprend le même exemple. Si $x \in]-1,1[$, alors

$$\varphi'(x) = -\frac{x}{\varphi(x)}.$$

2.2. Quelques applications

27. PROPOSITION (équation de Burger). Soient $a, f : \mathbf{R} \longrightarrow \mathbf{R}$ de fonction de classe \mathscr{C}^1 . On considère l'équation

$$a(u(\cdot))\partial_x u + \partial_y u = 0,$$

 $u(x,0) = f(x).$

Pour tout réel $x_0 \in \mathbf{R}$, il existe une fonction solution de l'équation sur un voisinage du point x_0 .

28. PROPOSITION. Soit $P_0 \in \mathbf{R}[X]_{\leq n}$ un polynôme et $x_0 \in \mathbf{R}$ une des ses racines simples. Alors il existe un voisinage $U \subset \mathbf{R}[X]_{\leq n}$ du polynôme P_0 , un voisinage $V \subset \mathbf{R}$ du réel x_0 et une application $\varphi \colon U \longrightarrow V$ de classe \mathscr{C}^{∞} telle que

$$\forall P \in U, \ \forall x \in V, \qquad x = \varphi(P) \iff P(x) = 0.$$

29. COROLLAIRE. L'ensemble des polynômes scindés simples de degré n est un ouvert de l'espace $\mathbf{R}[X]_{\leq n}$.

3. Introduction à la géométrie différentielle

3.1. Notion de sous-variété et formulations équivalentes

30. DÉFINITION. Soit $d \in \mathbb{N}$ un entier. Une partie $M \subset \mathbb{R}^n$ est une sous-variété de dimension d en un point $a \in M$ s'il existe

- un voisinage $U \subset \mathbf{R}^n$ du point a;
- un voisinage $V \subset \mathbf{R}^n$ de l'origine;
- un \mathscr{C}^1 -difféomorphisme $\varphi \colon U \longrightarrow V$

tels que

$$\varphi(M \cap U) = [\mathbf{R}^d \times \{0\}] \cap \varphi(U).$$

La partie M est une sous-variété si elle l'est en tout point de M.

31. Exemple. La parabole d'équation $y = x^2$ est une sous-variété de \mathbb{R}^2 .

32. THÉORÈME. Soient $M \subset \mathbf{R}^n$ une partie, $d \in \mathbf{N}$ un entier et $a \in M$ un point. Alors les points suivants sont équivalents :

- la partie V est une sous-variété de dimension d au point a;
- il existe un voisinage $U \subset \mathbf{R}^n$ du point a et une fonction $F \colon U \longrightarrow \mathbf{R}^{n-d}$ de classe \mathscr{C}^1 tels que

$$M \cap U = F^{-1}(\{0\}).$$

et les différentielles $df_i(a)$ soient indépendantes;

- il existe un voisinage $U \subset \mathbf{R}^n$ du point a, une application $u \colon \mathbf{R}^d \longrightarrow \mathbf{R}^{n-d}$ de classe \mathscr{C}^1 et une matrice $A \in \mathrm{GL}_n(\mathbf{R})$ tels que

$$M \cap U = \{A(z, u(z)) \mid z \in \mathbf{R}^d\} \cap U ;$$

– il existe un voisinage $U \subset \mathbf{R}^n$ du point a, un voisinage $V \subset \mathbf{R}^d$ de l'origine et une application $j \colon V \longrightarrow U$ tels que j(0) = a, la différentielle dj(0) soit injective et la restriction $j \colon V \longrightarrow M \cap U$ soit un homéomorphisme.

33. EXEMPLE. La sphère de \mathbf{R}^{n+1} est une sous-variété de dimension n. Le groupe spécial linéaire $\mathrm{SL}_n(\mathbf{R}) \subset \mathscr{M}_n(\mathbf{R}) \simeq \mathbf{R}^{n^2}$ est une sous-variété de dimension n-1.

3.2. L'espace tangent

34. DÉFINITION. Un vecteur $v \in \mathbf{R}^n$ est tangent à une partie $M \subset \mathbf{R}^n$ en un point $a \in M$ s'il existe un intervalle $I \subset \mathbf{R}$ contenant zéro et une fonction dérivable $\gamma \colon I \longrightarrow M$ telle que

$$\gamma(0) = a$$
 et $\gamma'(0) = v$.

On note $T_aM \subset \mathbf{R}^n$ l'ensemble des vecteurs tangentes à la partie M au point a. 35. Théorème. Soient $M \subset \mathbf{R}^n$ une sous-variété de dimension d en un point $a \in M$. Alors l'ensemble T_aM est un sous-espace vectoriel de dimension d. 36. Théorème. En reprenant les notations du théorème 32, on a

- $T_a M = d\varphi(a)^{-1} (\mathbf{R}^d \times \{0\});$
- $T_a M = \operatorname{Ker} dF(a);$
- $T_a M = \Gamma(dg(a_1, \dots, a_d))$ en notant $a = (a_1, \dots, a_n)$;
- $T_a M = \operatorname{Im} dj(0)$
- 37. EXEMPLE. Pour un point $a \in \mathbf{R}^{n+1}$ de la sphère unité \mathbf{S}^n , on a $\mathbf{T}_a \mathbf{S}^n = a^{\perp}$.

3.3. Le théorème des extrema liés

38. LEMME. Soient $\varphi_1, \dots, \varphi_m \in E^*$ des formes linéaires indépendantes et $f \in E^*$ une forme linéaire. Alors

$$f \in \operatorname{Vect}(\varphi_1, \dots, \varphi_m) \iff \bigcap_{i=1}^m \operatorname{Ker} \varphi_i \subset \operatorname{Ker} f.$$

- 39. COROLLAIRE. Deux formes linéaires non nulles sont de même noyau si et seulement si elles sont colinéaires.
- 40. THÉORÈME (des extrema liés). Soient $g_1, \ldots, g_m \colon \mathbf{R}^n \longrightarrow \mathbf{R}$ des fonctions de classe \mathscr{C}^1 . On considère l'ensemble

$$C := \{ x \in \mathbf{R}^n \mid g_1(x) = \dots = g_m(x) = 0 \}.$$

Soit $\Omega \subset \mathbf{R}^n$ un ouvert avec $C \subset \Omega$. Soit $f \colon \Omega \longrightarrow \mathbf{R}$ une fonction. On suppose que

- la fonction $f|_C$ admet un extremum local en un point $x^* \in \Omega$,
- la fonction f est différentiable en ce point x^* ,
- la famille $(dg_1(x^*), \ldots, dg_m(x^*))$ est libre.

Alors il existe des réels $\lambda_1, \ldots, \lambda_m \in \mathbf{R}$ tels que

$$df(x^*) = \lambda_1 dg_1(x^*) + \dots + \lambda_m dg_m(x^*). \tag{(*)}$$

41. Remarque. La condition (*) implique que la différentielle $df(x^*)$ est nulle sur l'espace tangent $T_{x^*}C$, c'est-à-dire

$$T_{x^*}C \subset \operatorname{Ker} df(x^*).$$

- 42. Contre-exemple. L'hypothèse d'indépendance est nécessaire. Le minimum de la fonction $x+y^2$ sous la contrainte x^3-y^2 se situe au point (0,0). Pourtant, la différentielle de la fonction x^3-y^2 en ce point est nulle : la relation (*) n'est pas vraie. 43. Application (théorème spectral). Soient E un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme symétrique. L'application $x \in E \longmapsto \langle u(x), x \rangle$ admet un maximum sur la sphère unité $S \subset E$ en un point $e_1 \in S$. Le théorème des extrema liés nous donne ensuite un réel $\lambda_1 \in \mathbf{R}$ tel que $u(e_1) = \lambda_1 e_1$. En raisonnant par récurrence, l'endomorphisme u est diagonalisable en base orthonormée.
- 44. APPLICATION (inégalité arithmético-géométrique). En optimisant la fonction $f(x_1, ..., x_n) = x_1 \cdots x_n$ sous la contrainte $x_1 + \cdots + x_n = s$ avec $x_i, s > 0$, on obtient

$$(x_1 \cdots x_n)^{1/n} \leqslant \frac{x_1 + \cdots + x_n}{n}.$$

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2° édition. H&K, 2005.

Zavier Gourdon. Analyse. 2^e édition. Ellipses, 2008.

³ Bertrand Hauchecorne. Les contre-exemples en mathématiques. 2º édition. Ellipses, 2007.

François Rouvière. Petit guide de calcul différentiel. Quatrième édition. Cassini, 2015.

^[5] Maxime Zavidovique. Un Max de Math. Calvage & Mounet, 2013.