

HOGE DRUK FIELD ENGINEERING HANDBOEK

Versie 2.0 NL

STONEAGE TRAINIG Voor professionals in industriële reiniging

INHOUD

23-26 Aantekeningen

Checklist – voorkomen van letsel door water onder hoge druk
Reactiekracht
"Hydraulic horsepower" vereist voor hoge druk reiniger
BHP/HHP
Maximum efficiënt debiet
Drukverlies in de slang, 3-25 mm
Nozzle debiet: Attack Tips
Nozzle debiet: Carbide Attack Tips
Nozzle debiet: OC8 Carbide Nozzles
Nozzle debiet: OCV & OCIH Carbide Nozzles
Nozzle debiet: Sapphire nozzles
Afmetingen van fittings
Inschroefdiepte
Buis specificaties
Aanbevolen aandraaimoment
Eenheden – afkortingen
Schroefdraadcodes
Omrekenfactoren
Druk- en debietformules

CHECKLIST – VOORKOMEN VAN LETSEL DOOR WATER ONDER HOGE DRUK

- ✓ Alle spuiters dragen de vereiste persoonlijke beschermingsmiddelen (PBM's).
- ✓ De spuiter begrijpt de procedure en is fysiek in staat het werk uit te voeren.
- ✓ Alle systemen hebben een dumpklep/afblaas die bediend wordt door de spuiter het dichtst bij de nozzle, en beschermd tegen onbedoelde bediening.
- ✓ Alle spuitpistolen hebben een lengte van minimaal 1,68 m, en een slanghoes van 1,8 m.
- ☑ Bij het werken met een kruipslang is een slangvanger vereist en (indien van toepassing) een voorloper om het boomerang effect te voorkomen.
- Alle beveiligingen zijn gecontroleerd voordat het systeem wordt opgestart.

REACTIEKRACHT

De onderstaande tabel geeft de geschatte reactiekracht bij het hoge druk reinigen.

	Deb	iet	GPM	L/ MIN														
	Dru	ık	5	9	10	38	15	57	20	76	25	95	30	114	35	132	40	151
	1000	70	8	36	16	71	25	111	33	147	41	182	49	218	58	258	66	294
	2000	140	12	53	23	102	35	156	47	209	58	258	70	311	81	360	93	414
	3000	210	14	62	29	129	43	191	57	254	71	316	85	378	100	445	114	507
	4000	275	16	71	33	147	49	218	66	294	82	365	99	440	115	512	132	587
	5000	340	18	80	37	165	55	245	74	329	92	409	110	489	129	574	147	654
9	6000	410	20	89	40	178	60	267	81	360	101	449	121	538	141	627	161	716
& N)	7000	480	22	98	44	196	65	289	87	387	109	485	131	583	152	676	174	774
(LB	8000	550	23	102	47	209	70	311	93	414	116	516	140	623	162	721	186	827
REACTIEKRACHT	9000	620	25	111	49	218	74	329	99	440	123	547	148	658	172	765	197	876
RAC	10.000	690	26	116	52	231	78	347	104	463	130	578	156	694	182	810	208	925
¥	11.000	760	27	120	55	245	82	365	110	489	136	605	164	730	191	850	218	970
ACT	12.000	830	29	129	57	254	85	378	114	507	142	632	171	761	199	885	228	1014
RE	13.000	900	30	133	59	262	89	396	119	529	148	658	178	792	207	921	237	1054
	14.000	970	31	138	62	276	92	409	123	547	154	685	185	823	215	956	246	1094
	15.000	1030	32	142	64	285	96	427	127	565	159	707	191	850	223	992	255	1134
	16.000	1100	33	147	66	294	99	440	132	587	164	730	197	876	230	1023	263	1170
	17.000	1170	34	151	68	302	102	454	136	605	170	756	203	903	237	1054	271	1205
	18.000	1240	35	156	70	311	104	463	140	623	174	774	209	930	244	1085	279	1241
	19.000	1300	36	160	72	320	108	480	143	636	179	796	215	956	251	1117	287	1277
	20.000	1380	37	165	74	329	110	489	147	654	184	818	221	983	257	1143	294	1307
	psi	bar																

"HYDRAULIC HORSEPOWER" VEREIST VOOR HOGE DRUK REINIGEN

Deb	iet	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
Dru	ık	38	76	114	151	189	227	265	303	341	379	416	454	492	530	568	606	644	681
1000	70	6	12	17	23	29	35	41	47	52	58	64	70	76	82	87	93	99	105
2000	140	12	23	35	47	58	70	82	93	105	117	128	140	152	163	175	187	198	210
3000	210	17	35	52	70	87	105	122	140	157	175	192	210	227	245	262	280	297	315
4000	275	23	47	70	93	117	140	163	187	210	233	257	280	303	327	350	373	397	420
5000	340	29	58	87	117	146	175	204	233	262	292	321	350	379	408	437	466	496	525
6000	410	35	70	105	140	175	210	245	280	315	350	385	420	455	490	525	560	595	630
7000	480	41	82	122	163	204	245	286	327	367	408	449	490	531	571	612	653	694	735
8000	550	47	93	140	187	233	280	327	373	420	466	513	560	606	653	700	746	793	840
9000	620	52	105	157	210	262	315	367	420	472	525	577	630	682	735	787	840	892	945
10000	690	58	117	175	233	292	350	408	466	525	583	641	700	758	816	875	933	991	1050
11000	760	64	128	192	257	321	385	449	513	577	641	706	770	834	898	962	1026	1090	1155
12000	830	70	140	210	280	350	420	490	560	630	700	770	840	910	980	1050	1120	1190	1259
13000	900	76	152	227	303	379	455	531	606	682	758	834	910	985	1061	1137	1213	1289	1364
14000	970	82	163	245	327	408	490	571	653	735	816	898	980	1061	1143	1224	1306	1388	1469
15000	1030	87	175	262	350	437	525	612	700	787	875	962	1050	1137	1224	1312	1399	1487	1574
16000	1100	93	187	280	373	466	560	653	746	840	933	1026	1120	1213	1306	1399	1493	1586	1679
17000	1170	99	198	297	397	496	595	694	793	892	991	1090	1190	1289	1388	1487	1586	1685	1784
18000	1240	105	210	315	420	525	630	735	840	945	1050	1155	1259	1364	1469	1574	1679	1784	1889
19000	1300	111	222	332	443	554	665	776	886	997	1108	1219	1329	1440	1551	1662	1773	1883	1994
20000	1380	117	233	350	466	583	700	816	933	1050	1166	1283	1399	1516	1633	1749	1866	1983	2099
psi	bar																		

HHP = druk (psi) * volume (gpm) / 1714 HHP = druk (bar) * volume (lpm) / 447

AANDRIJFVER- Mogen (BHP) – Ingaand	HYDRAULIC HORSEPOWER – UITGAAND
100	85
150	127,5
200	170
250	212,5
300	255
350	297,5
400	340
450	382,5
500	425
600	510

Door de mechanische verliezen is het gerealiseerde hydraulische vermogen iets lager dan het ingaande vermogen:

BHP = HHP / 0,85 HHP = BHP x 0,85

MAXIMUM EFFICIËNT DEBIET

De onderstaande tabel bevat de specificaties voor thermoplastische slang, en geeft het maximum efficiënt debiet aan.

SLAI	NG ID		PPELING D	BN/BT FITTING	MAX EFFICIËN	IMUM IT DEBIET	PER	EWICHT VOET BM)
in.	mm	in.	mm		GPM	L/MIN	lb	kg
0,12	3							
	3/2	0,35	9	P1			0,048	0,021
	3/4	0,48	12	MP4 L/R	4-5	15-19	0,091	0,041
	3/6	0,60	15	H4L of H6L				
0,16	4							
	4/2	0,40	10	P1			0,075	0,034
	4/4	0,58	16	MP4 L/R	6-7	23-26	0,157	0,071
	4/6	0,67	17	H4 of H6				
0,20	5							
	5/2	0,51	13	P2			0,084	0.038
	5/4	0,59	15	MP6 L/R	11	42	0,175	0,079
	5 UHP	0,81	21	H6L				
0,25	6							
133	6/2	0,55	14	P4	14	53	0,118	0,054
138	6/4	0,65	17	MP 6 L/R	14	33	0,198	0,090
0,375	8							
147	8/2	0,69	19	P6			0,134	0,061
151	8/4	0,80	20	MP9 L/R	20	76	0,262	0,119
156	8 UHP	0,91	23	H9L				
0,393	10							
	10/4	0,83	21	MP9	25	95	0,464	0,210
0,50	13							
	13/2	1,08	27	P 8	40	151	0,396	0,180
	13/4	1,16	29	TM 16	40	131	0,591	0,268

P 15k psi/1034 barMP 20k psi/1379 bar

H Hoger dan 20k psi/1379 bar

Het getal geeft de doorsnede aan in 1/16".

Voorbeeld: MP9 = 9/16 Medium Pressure/middendruk

DOORVOERAFSTAND =

KOPTREKKRACHT – KOPGEWICHT SLANGGEWICHT PER VOET X 1,2

DRUKVERLIES IN DE SLANG

DRUKVERLIES IN DE SLANG

DRUKVERLIES IN DE SLANG

ATTACK TIPS

StoneAge Attack Tips zijn de beste en meest duurzame nozzles voor inzet bij lage en middelhoge druk (max. 1500 bar). De stromingsgeleiders verminderen de turbulentie en verzekeren een effectieve reiniging.

AP2 1/8 NPT

APF4 1/4 NPT vlak

AP4 1/4 NPT

NOZZLE DEBIET

										D	RUK	(PS	I & B	AR)												
Noz diam in.	zzle neter mm	20			00 80	60 4	00 10	80 55			000 00		000 30	14. 97			000	16. 11	0 00 00		000	20. 14	000	22 .	000	#
0,018	0,46	0,4	2	0,6	2	0,7	3	0,8	3	0,9	3	1,0	4	1,0	4	1,1	4	1,1	4	1,2	5	1,2	5	1,3	5	0,6
0,020	0,51	0,5	2	0,7	3	0,8	3	1,0	4	1,1	4	1,2	5	1,3	5	1,3	5	1,5	6	1,5	6	1,5	6	1,6	6	0,7
0,022	0,56	0,6	2	0,8	3	1,0	4	1,2	5	1,3	5	1,4	5	1,5	6	1,6	6	1,6	6	1,7	6	1,8	7	1,9	7	0,8
0,024	0,61	0,7	3	1,0	4	1,2	5	1,4	5	1,6	6	1,7	6	1,8	7	1,9	7	2,0	8	2,1	8	2,2	8	2,3	9	1,0
0,026	0,66	0,8	3	1,2	5	1,4	5	1,6	6	1,8	7	2,0	8	2,1	8	2,2	8	2,3	9	2,4	9	2,6	10	2,7	10	1,1
0,029	0,74	1,0	4	1,4	5	1,7	6	2,0	8	2,3	9	2,5	10	2,7	10	2,8	11	2,9	11	3,0	11	3,2	12	3,4	13	1,4
0,032	0,81	1,2	5	1,7	6	2,1	8	2,5	10	2,8	11	3,0	11	3,3	13	3,4	13	3,5	13	3,7	14	3,9	15	4,1	16	1,7
0,035	0,89	1,5	6	2,1	8	2,6	10	3,0	11	3,3	13	3,6	14	3,9	15	4,0	15	4,2	16	4,4	17	4,7	18	4,9	19	2,1
0,038 0,042	0,97	1,7	6	2,5	10	3,0	11	3,5	13	3,9	15	4,3	16	4,6	18	4,8	18	4,9	19	5,2	20	5,5	21	5,7	22	2,5
5 0,042	1,07	2,1	8	3,0	11	3,7	14	4,2	16	4,7	18	5,2	20	5,6	21	5,8	22	6,0	23	6,4	24	6,7	26	7,0	27	3,0
0,047 0,052	1,19	2,7	10	3,8	14	4,6	18	5,3	20	5,9	22	6,5	25	7,0	27	7,3	28	7,5	29	8,0	30	8,4	32	8,8	34	3,8
0,052	1,32	3,3	13	4,6	18	5,6	21	6,5	25	7,3	28	8,0	30	8,6	33	8,9	34	9,2	35	9,8	37	10	38	11	42	4,6
0,057	1,45	3,9	15	5,5	21	6,8	26	7,8	30	8,7	33	9,6	37	10	38	11	42	11	42	12	46	12	46	13	50	5,5
0,063	1,60	4,8	18	6,8	26	8,3	32	9,6	37	11	42	12	46	13	50	13	50	14	53	14	53	15	57	16	61	6,8
0,069	1,78	5,7	22	8,1	31	9,9	38	12	46	13	50	14	53	15	57	16	61	16	61	17	65	18	69	19	72	8,1
0,075	1,91	6,8	26	9,6	37	12	46	13	50	15	57	17	65	18	69	19	72	19	72	20	76	21	80	23	88	9,6
0,082	2,08	7,2	27	10	38	13	50	14	53	16	61	18	69	19	72	20	76	20	76	22	83	23	88	24	91	10
0,090	2,29	8,7	33	12	46	15	57	17	65	19	72	21	80	23	88	24	91	25	95	26	98	27	102	29	110	12
0,098	2,49	10	38	15	57	18	69	21	80	23	88	25	95	27	102	28	106	29	110	31	117	33	125	34	129	15
0,106	2,69	12	46	17	65	21	80	24	91	27	102	29	110	32	121	33	125	34	129	36	136	38	144	40	151	17
0,115	2,92	14	53	20	76	25	95	28	106	32	121	35	132	37	140	39	148	40	151	42	159	45	170	47	178	20
0,125	3,18	17	65	24	91	29	110	33	125	37	140	41	155	44	167	46	174	47	178	50	189	53	201	55	208	24
0,135	3,43	20	76	28	106	34	129	39	148	44	167	48	182	52	197	53	201	55	208	58	220	62	235	65	246	28
0,145	3,68	23	88	32	121	39	148	45	170	50	189	55	208	60	227	62	235	64	242	68	257	71	269	75	284	32
0,155	3,94	26	98	36	136	45	170	51	193	57	216	63	238	68	257	70	265	73	276	77	291	81	307	85	322	36
0,165	4,19	29	110	41	155	50	189	58	220	65	246	71	269	77	291	80	303	82	310	87	329	92	348	97	367	41

Met de StoneAge Jetting App kunt u de optimale nozzle kiezen:

CARBIDE ATTACK TIPS

Carbide nozzles zijn een goede keuze bij water met vervuilingen. Ze leveren een uitstekende waterstraal op en zijn bijzonder goed bestand tegen erosie.

CNP2 1/8 NPT

NOZZLE DEBIET

											D	RUK	(PS	& B	AR)												
	Noz diam	eter		00 40		00 30	60	00 10	80 5!	00 50		000		000 30		000 70		000	16.0 11			000	20. 0			000	Cd
	in. 0.018	mm 0.46	0,4	2	0,6	2	0.7	3	0,8	3	0,9	3	1.0	4	1,0	4	1,1	4	1,1	4	1,2	5	1,2	5	1,3	5	0,6
	0.020	0,40	H-	2	0,0	3	0,7	3	<u> </u>		<u> </u>		1,0	5	1,0	5	1,1	5	1,1	6	1,5	6	1,5	6	1,6	6	0,0
	.,	0,51	0,5	2	0,7	3	1,0	4	1,0	<u>4</u> 5	1,1	<u>4</u> 5	1,4	5	1,5	6	1,6	6	1,6	6	1,7	6	1,8	7	1,0	7	0,7
	, i	0,50	0,0	3	1,0	4	1,0	5	1,4	5	1,6	6	1,7	6	1,8	7	1,0	7	2,0	8	2,1	8	2,2	8	2,3	9	1,0
	0.024	0,66	0,7	3	1,0	5	1,4	5	1,4	6	1,8	7	2,0	8	2,1	8	2,2	8	2,3	9	2,1	9	2,6	10	2,7	10	1,1
	0.029	0.74	1,0	4	1,4	5	1,7	6	2,0	8	2,3	9	2,5	10	2.7	10	2,8	11	2,9	11	3.0	11	3,2	12	3.4	13	1,4
	0.032	0.81	1,2	5	1,7	6	2,1	8	2,5	10	2,8	11	3,0	11	3,3	13	3,4	13	3,5	13	3,7	14	3,9	15	4,1	16	1,7
	0.035	0,89	1,5	6	2,1	8	2,6	10	3,0	11	3,3	13	3,6	14	3,9	15	4,0	15	4,2	16	4,4	17	4,7	18	4,9	19	2,1
Ê	0.038	0.97	1,7	6	2,5	10	3,0	11	3,5	13	3.9	15	4,3	16	4.6	18	4,8	18	4,9	19	5,2	20	5,5	21	5.7	22	2,5
L/MIN)	0,042	1.07	2,1	8	3,0	11	3,7	14	4,2	16	4,7	18	5,2	20	5,6	21	5,8	22	6,0	23	6,4	24	6,7	26	7,0	27	3,0
∞ŏ	0.047	1.19	2,7	10	3,8	14	4,6	18	5,3	20	5,9	22	6,5	25	7,0	27	7,3	28	7,5	29	8,0	30	8,4	32	8,8	34	3,8
(GPM	0.052	1,32	3,3	13	4,6	18	5.6	21	6,5	25	7,3	28	8,0	30	8.6	33	8.9	34	9,2	35	9.8	37	10	38	11	42	4,6
	0,057	1,45	3,9	15	5,5	21	6,8	26	7,8	30	8,7	33	9,6	37	10	38	11	42	11	42	12	46	12	46	13	50	5,5
DEBIE	0,063	1,60	4,8	18	6,8	26	8,3	32	9,6	37	11	42	12	46	13	50	13	50	14	53	14	53	15	57	16	61	6,8
	0,069	1,78	5,7	22	8,1	31	9,9	38	12	46	13	50	14	53	15	57	16	61	16	61	17	65	18	69	19	72	8,1
	0,075	1,91	6,8	26	9,6	37	12	46	13	50	15	57	17	65	18	69	19	72	19	72	20	76	21	80	23	88	9,6
	0,082	2,08	8,1	31	12	46	14	53	16	61	18	69	20	76	21	80	22	84	23	88	24	91	26	99	27	103	12
	0,090	2,29	9,8	37	14	53	17	65	20	76	22	84	24	91	26	99	27	103	28	107	29	111	31	118	32	122	14
	0,098	2,49	12	46	16	61	20	76	23	88	26	99	28	107	31	118	32	122	33	126	35	133	37	141	38	145	16
	0,106	2,69	14	53	19	72	23	88	27	103	30	114	33	126	36	137	37	141	38	145	41	156	43	164	45	171	19
	0,115	2,92	16	61	23	88	28	107	32	122	36	137	39	149	42	160	44	168	45	171	48	183	50	191	53	202	23
	0,125	3,18	17	65	27	103	33	126	38	145	42	160	46	175	50	191	52	198	53	202	56	213	60	229	62	236	27
	0,135	3,43	22	84	31	118	38	145	44	168	49	187	54	206	58	221	60	229	62	236	66	252	69	263	73	278	31
	0,145	3,68	25	95	36	137	44	168	51	194	57	217	62	236	67	255	69	263	72	274	76	290	80	305	84	320	36
	0,155	3,94	29	111	41	156	50	191	58	221	65	248	71	271	77	293	79	301	82	313	87	332	92	351	96	366	41
	0,165	4,19	33	126	46	175	57	217	66	252	73	278	80	305	87	332	90	343	93	354	98	373	104	396	109	415	46

Met de StoneAge Jetting App kunt u de optimale nozzle kiezen:

OC8 CARBIDE NOZZLES

Wij raden onze OC8 houders en OC8 carbide inserts aan als het water niet goed gefilterd is, bij aanwezigheid van slijtende stoffen en voor bijzonder hoge debieten. De vervangbare carbide inserts zijn beschikbare met grote diameters voor een hoog debiet en een lang taps toelopend kanaal voor een optimale straalkwaliteit.

De **OC8 P8** houder en OC Carbide inserts zijn geschikt voor 1000 bar, met een 1/2 NPT binnendraad.

De **OC8 P12** houder en OC Carbide inserts zijn geschikt voor 1000 bar, met een 3/4 NPT binnendraad.

De **OC8 P12** houder en OC Carbide inserts zijn geschikt voor 1500 bar, met een 3/4 NPT binnendraad.

NOZZLE DEBIET

											D	RUK	(PS	I & B	AR)												
	Noz diam in.			00 40		00 30		00 10		00 50		000 00		000 30		000 70		000		000 00		000		000		000	Cd
	0,063	1,60	4,8	18	6,7	26	8,2	31	9,5	36	11	42	12	46	13	50	13	50	14	53	14	53	15	57	16	61	7
	0,075	1,91	6,8	26	9,6	37	12	46	14	53	15	57	17	65	18	69	19	72	19	72	20	76	21	80	22	84	10
L/MIN)	0,085	2,16	8,7	33	12	46	15	57	17	65	19	72	21	80	23	88	24	91	25	95	26	99	28	107	129	492	12
	0,095	2,41	11	42	15	57	19	72	22	84	24	91	27	103	29	111	30	114	31	118	33	126	33	126	36	137	15
% M	0,105	2,67	13	50	19	72	23	88	27	103	30											168	19				
(GPM	0,125	3,18	19	72	27	103	33	126	38	145	42											236	27				
ᇤ	0,145	3,68	25	95	36	137	44	168	50	191	57	217	62	236	67	255	69	263	72	274	76	290	80	305	84	320	36
DEBI	0,165	4,19	33	126	46	175	56	213	66	252	73	278	80	305	87	332	90	343	93	354	98	373	104	396	109	415	46
	0,175	4,45	37	141	52	198	64	244	74	282	82	313	90	343	98	373	101	385									52
	0,190	4,83	43	164	61	232	75	286	87	332	97	370	370 106 404 115 438 119 454										61				
	0,200	5,08	48	183	68	259	83	316	96	366	108	412											68				
	0,215	5,46	56	213	79	301	96	366	111	423	124	473															78
	0,235	5,97	66	252	94	358	115	438	133	507	149	568															94
	0,250	6,35	75	286	106	404	130	495	150	572	168	640												106			

Met de StoneAge Jetting App kunt u de optimale nozzle kiezen:

OCV & OCIH CARBIDE NOZZLES

Wij raden carbide nozzles aan als het water niet goed gefilterd is, bij aanwezigheid van slijtende stoffen en voor bijzonder hoge debieten.

NOZZLE DEBIET

										DRUK	(PSI	& B/	AR)										
	Noz dian		20	00 40		00 80	60 4) 00 50		000		000 30	14. 9	000		000		000	20 .		#
	in.	mm	1.	+0			-		J.			JU		30	3		- ''		12	.00	14		
	0,024	0,61	0,7	3	1,0	4	1,2	4,5	1,4	5	1,6	6	1,7	6	1,8	7	2,0	8	2,1	8	2,2	8	1,0
	0,028	0,71	0,9	3	1,3	5	1,6	5	1,9	7	2,1	8	2,3	9	2,5	10	2,7	10	2,8	11	3,0	11	0,7
	0,031	0,79	1,2	5	1,6	6	2,0	8	2,3	9	2,6	10	2,8	11	3,1	12	3,3	13	3,5	13	3,7	14	1,6
	0,036	0,91	1,7	6	2,4	9	3,0	11	3,4	13	3,8	14	4,2	16	4,5	17	4,8	18	5,1	19	5,4	20	2,4
L/MIN)	0,039	0,99	1,8	7	2,6	10	3,2	12	3,7	14	4,1	16	4,5	17	4,9	19	5,2	20	5,5	21	5,8	22	2,6
	0,043	1,09	2,2	8	3,2	12	3,9	15	4,5	17	5,0	19	5,5	21	5,9	22	6,3	24	6,7	25	7,0	26	3,2
⊗ ⊠	0,047	1,19	2,7	10	3,8	14	4,6	18	5,3	20	6,0	23	6,5	25	7,0	26	7,5	28	8,0	30	8,4	32	3,8
(GPM	0,055	1,40	3,6	14	5,2	20	6,3	24	7,3	28	8,1	31	8,9	34	9,6	36	10	38	11	42	12	45	5,2
h	0,062	1,57	4,6	18	6,5	25	8,0	30	9,3	35	10	38	11	42	12	45	13	49	14	53	15	57	6,5
DEBIL	0,067	1,70	5,4	20	7,6	29	9,4	36	11	42	12	45	13	19	14	53	15	57	16	61	17	64	7,6
	0,073	1,85	6,4	24	9,1	34	11	42	13	49	14	53	16	61	17	64	18	68	19	72	20	76	9,1
	0,078	1,98	7,3	28	10	38	13	49	15	57	16	61	18	68	19	72	21	79	22	83	23	87	10
	0,089	2,26	9,5	36	14	53	16	61	19	72	21	79	23	87	25	95	27	102	29	110	30	114	14
	0,093	2,36	10	38	15	57	18	68	21	79	23	87	26	98	28	106	30	114	31	117	33	125	15
	0,106	2,69	14	53	19	72	23	87	27	102	30	114	33	125	36	136	38	144	41	155	43	163	19
	0,125	3,18	19	72	27	102	33	125	38	144	42	159	46	174	50	189	53	201	56	212	60	227	27
	0,140	3,56	24	91	33	125	41	155	47	178	53	201	58	220	62	235	67	254	71	269	75	284	33
	0,155	3,94	29	110	40	151	49	185	57	216	64	242	70	265	76	288	83	314	88	333	93	352	41

Met de StoneAge Jetting App kunt u de optimale nozzle kiezen:

SAPPHIRE NOZZLES

OS4 1/4-28 NF

OS6 3/8-24 NF

OS7 7/16-20 NF

NOZZLE DEBIET

												DR	UK (I	PSI 8	& BAI	R)											
	Noz diam		20. 0		22. 0		24. 0		26. 0		28. 0		30.0 21		32.0 22		34.0 23		36.0 25		38.0 26		40. 0		Le	verba	ar
	in.	mm	14	00	10	00	17	00	10	00	19	00	- 21	00			23	00	20	00	20	00	20	00	0S4	0S6	0S7
	0,009	0,23	0,2	1	0,2	1	0,2	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1		•	
	0,010	0,25	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,4	2	0,4	2	0,4	2	0,3	1	0,4	2	•	•	
	0,011	0,28	0,3	1	0,4	2	0,4	2	0,4	2	0,4	2	0,4	2	0,4	2	0,4	2	0,5	2	0,5	2	0,5	2		•	•
	0,012	0,30	0,4	2	0,4	2	0,4	2	0,4	2	0,5	2	0,5	2	0,5	2	0,5	2	0,5	2	0,6	2	0,6	2	•	•	•
	0,013	0,33	0,5	2	0,5	2	0,5	2	0,5	2	0,6	2	0,6	2	0,6	2	0,6	2	0,6	2	0,6	2	0,7	3	•	•	•
	0,014	0,36	0,5	2	0,6	2	0,6	2	0,6	2	0,6	2	0,7	3	0,7	3	0,7	3	0,7	3	0,7	3	0,8	3	•	•	•
	0,015	0,38	0,6	2	0,7	3	0,7	3	0,7	3	0,7	3	0,8	3	0,9	3	0,8	3	0,8	3	0,9	3	0,9	3	•	•	•
L/MIN)	0,016	0,41	0,7	3	0,7	3	0,8	3	0,8	3	0,8	3	0,9	3	0,9	3	0,9	3	1,0	4	1,0	4	1,0	4	•	•	•
	0,017	0,43	0,8	3	0,8	3	0,9	3	0,9	3	0,9	3	1,0	4	1,0	4	1,0	4	1,1	4	1,1	4	1,1	4	•	•	•
(GPM &	0,018	0,46	0,9	3	0,9	3	1,0	4	1,0	4	1,1	4	1,1	4	1,1	4	1,2	5	1,2	5	1,2	5	1,3	5	•	•	•
GP	0,019	0,48	1,0	4	1,0	4	1,1	4	1,1	4	1,2	5	1,2	5	1,3	5	1,3	5	1,3	5	1,4	5	1,4	5	•	•	•
百	0,020	0,51	1,1	4	1,2	5	1,2	5	1,3	5	1,3	5	1,4	5	1,4	5	1,4	5	1,5	6	1,5	6	1,6	6	•	•	•
盟	0,021	0,53	1,2	5	1,3	5	1,3	5	1,4	5	1,4	5	1,5	6	1,5	6	1,6	6	1,6	6	1,7	6	1,7	6	•	•	•
Q	0,022	0,56	1,3	5	1,4	5	1,5	6	1,5	6	1,6	6	1,6	6	1,7	6	1,7	6	1,8	7	1,8	7	1,9	7	•	•	•
	0,023	0,58	1,5	6	1,5	6	1,6	6	1,7	6	1,7	6	1,7	6	1,8	7	1,9	7	1,9	7	2,0	8	2,0	8	•	•	•
	0,024	0,61	1,6	6	1,7	6	1,7	6	1,8	7	1,9	7	1,9	7	2,0	8	2,1	8	2,1	8	2,2	8	2,2	8	•	•	•
	0,025	0,64	1,7	6	1,8	7	1,9	7	2,0	8	2,0	8	2,1	8	2,2	8	2,2	8	2,3	9	2,4	9	2,4	9	•	•	•
	0,026	0,66	1,9	7	1,9	7	2,0	8	2,1	8	2,2	8	2,3	9	2,3	9	2,4	9	2,5	10	2,6	10	2,6	10	•	•	
	0,027	0,69	2,0	8	2,1	8	2,2	8	2,3	9	2,4	9	2,5	10	2,5	10	2,6	10	2,7	10	2,8	11	2,8	11	•	•	
	0,028	0,71	2,2	8	2,3	9	2,4	9	2,5	10	2,6	10	2,5	10	2,7	10	2,8	11	2,9	11	3,0	11	3,1	12	•	•	•
	0,031	0,79	2,6	10	2,8	11	2,9	11	3,0	11	3,1	12	3,2	12	3,3	13	3,4	13	3,5	13	3,6	14	3,7	14	•	•	•
	0,033	0,84	3,0	11	3,1	12	3,3	13	3,4	13	3,5	13	3,7	14	3,8	14	3,9	15	4,0	15	4,1	16	4,2	16			•
	0,034	0,86	3,2	12	3,3	13	3,5	13	3,6	14	3,8	14	3,9	15	4,0	15	4,2	16	4,3	16	4,4	17	4,5	17	•	•	
	0,035	0,89	3,4	13	3,5	13	3,7	14	3,8	14	4,0	15	4,1	16	4,3	16	4,4	17	4,5	17	4,6	18	4,8	18	•		•

Met de StoneAge Jetting App kunt u de optimale nozzle kiezen:

AFMETINGEN VAN FITTINGS

NATIONAL PIPE TAPER (NPT)

WARE GROOTTE

TYPE M

AFMETINGEN VAN FITTINGS

AFMETINGEN VAN FITTINGS

HOGE DRUK (HP) WARE GROOTTE ÉÉNDELIG, BUITENDRAAD WARE GROOTTE 9/16" 3/8" 1/4" WARTELS EN DRUKRINGEN • WARE GROOTTE 3/8" 1/4" 9/16" **LANSEN** • WARE GROOTTE 9/16" 3/8" 1/4" 9/16" 3/8" 1/4" **RECHTSE DRAAD** LINKSE DRAAD

INSCHROEFDIEPTE

BUIS SPECIFICATIES

	Gauge		1	0	1	1	1	2	1	3	1-	4	1	5	1	6	
	Wanddikte		0,134	3,4	0,120	3,1	0,109	2,8	0,095	2,4	0,083	2,1	0,072	1,8	0,065	1,7	
		Buis OD		in.	mm												
	5/8"	0,625	19,1	0,357	9,1	0,385	9,8	0,407	10,3	0,435	11,0	0,459	11,7	0,481	12,2	0,495	12,6
	3/4"	0,750	21,2	0,482	12,2	0,510	12,6	0,532	13,5	0,560	14,2	0,584	14,8	0,606	15,4	0,620	15,7
S⊟	7/8"	0,875	22,2	0,607	15,4	0,635	16,1	0,657	16,7	0,685	17,4	0,709	18,0	0,731	18,6	0,745	18,9
BUIS	1"	1000	25,4	0,732	18,6	0,760	19.3	0,782	19,9	0,810	20,6	0,834	21,2	0,856	21,7	0,870	22,1
	1 1/8"	1,125	28,6	0,857	21,8	0,885	22,5	0,907	23,0	0,935	23,7	0,959	24,4	0,981	24,9	0,995	25,3
	1 1/4"	1,250	37,6	0,982	24,9	1,010	25,7	1,032	26,2	1,060	26,9	1,084	27,5	1,106	28,1	1,120	28,4
	1 1/2"	1,500	38,1	1,232	31,3	1,260	32,0	1,282	32,6	1,310	33,3	1,334	33,9	1,356	34,4	1,370	34,8
	1 3/4"	1,750	44,5	1,482	37,6	1,510	38,4	1,532	38,9	1,560	39,6	1,584	40,2	1,606	40,8	1,620	41,1
	2"	2000	50,8	1,732	44,0	1,760	44,7	1,782	45,3	1,810	46,0	1,834	46,6	1,856	47,1	1,870	47,5
	in. mm									•		•					

BUIS ID = OD (WANDDIKTE X 2)

AANBEVOLEN AANDRAAIMOMENT

AANSLUITING	SCHROEFDRAAD	AANBEVOL	EN MOMENT
High Pressure/Hoge	druk	ft-lb	Nm
1/4"	9/16" - 18thd	25	34
3/8"	3/4" - 16thd	50	68
9/16"	1 1/8" - 12thd	75	102
Medium Pressure/M	liddendruk	ft-lb	Nm
1/4"	7/16" - 20thd	20	27
3/8"	9/16" - 18thd	30	41
9/16"	13/16" - 16thd	85	115
3/4"	3/4" NPSM	90	122
1"	1 3/8" - 12thd	125	169
Type "M" Swivel		ft-lb	Nm
A9	9/16" - 18thd	25-30	34-41
A12	3/4" - 16thd	40-50	54-68
A14	7/8" - 14thd	50-60	68-81
A16	1" - 12thd	75-85	102-115
A21	1 5/16" - 12thd	100-120	136-163

EENHEDEN - AFKORTINGEN

DRUK	DEBIET	AFSTAND	GEWICHT	TEMPERATUUR
psi = pounds per square inch	gpm = gallons per minute	in. = inches	lb = pounds	°F = graden Fahrenheit
b = bar	I/min = liter per minuut	ft = feet	kg = kilogram	°C = graden Celsius
	Cv = doorstroomcoëfficiënt	mm = millimeter		
	Cd = uitstroomcoëfficiënt	cm = centimeter		
		m = meter		

SCHROEFDRAADCODES

NPT = National Pipe Thread	MP = Medium Pressure Cone & Thread Connection	G9 = 9/16 draad met O-ring in groef, oppervlakteafdichting			
NPTM = National Pipe Thread Male (buitendraad)	HP = High Pressure Cone & Thread Connection	G12 = 3/4" draad met 0-ring in groef, oppervlakteafdichting			
NPTF = National Pipe Thread Female (binnendraad)	LH = linkse draad op het uiteinde van de buis	G16 = 1-12 UNF draad met O-ring, oppervlakteafdichting			
BSPP = British Standard Parallel Pipe	RH = rechtse draad op het uiteinde van de buis	K = 1 1/8 draad met 0-ring in groef, oppervlakteafdichting			

OMREKENFACTOREN

VAN	NAAR	VERMENIGVULDIG MET
meter (m)	feet (ft)	3,281
feet (ft)	meter (m)	0,3048
millimeter (mm)	inch (in.)	0,0394
inches (in.)	millimeter (mm)	25,4
l/min	gpm (US)	0,2642
l/min	gpm (Brit)	0,2200
gpm (US)	l/min	3,785
gpm (Brit)	l/min	4,546
gpm (US)	gpm (Brit)	0,8327
gpm (Brit)	gpm (US)	1,201
bar	psi	14,5
psi	bar	0,0689
kilogram (kg)	pound (massa) (lb)	2,205
pound (massa) (lb)	kilogram (kg)	0,4536
newton (N)	pound (kracht) (lb)	0,2248
pound (kracht) (lb)	newton (N)	4,448
kilowatt (kW)	horsepower (hp)	1,341
horsepower (hp)	kilowatt (kW)	0,7457

DRUK- EN DEBIETFORMULES

Q = Debiet in gpm	$Q = 29,92 \times d^2 \times P^{1/2} \times Cd$
V = snelheid in ft/sec	$V = 12,186 \text{ x P}^{1/2} = \text{Cd x } 0,4085 \text{ x Q/d}^2$
P = Druk in psi	$P = 0.00112 \times Q^2/(d^4 \times Cd^2)$
Hp = Horsepower	$Hp = 0.0174 \text{ x d}^2 \text{ x } P^{3/2} \text{ x Cd}, \approx P \text{ x } Q/1714$
Cv = doorstroomcoëfficiënt	$Cv = Q/\Delta P^{1/2}$, = 53 x (D2,5/L ^{1/2})
ΔP = Drukverlies	$\Delta P = (Q/Cv)^2$
F = Stuwkracht in lb	$F = TT/2 \times d^2 \times P \times Cd$, = 0,052 x $P^{1/2} \times Q$, $\approx 0,0018 \times (Q/D)^2 \times Cd$
ΔT = Temperatuurverande- ring °F	$\Delta T = \Delta P/337,6$

In alle vergelijkingen:

- L = Lengte van de buis in feet
- D = Buis ID (binnendiameter) in inches
- d = Diameter uitstroommond, in inches
- Cd = uitstroomcoëfficiënt
 - ∘ Cd = 0,90 voor een uitstroommond met een lange kegelvorm
 - ∘ Cd = 0,70 voor een uitstroommond van geboord staal
 - Cd = 0,65 voor een uitstroommond van saffier

