2

Re-Wind Analyse zum Produkt: sdf

Annahmen zu den Produkteigenschaften

Anzahl Re-Assemblys je linearem Lebenszyklus

Ökonomie spezifisch

Fußabdruck der 1. Re-Assembly bezogen auf den Fußabdruck einer Neuproduktion

Steigung des Fußabdrucks von einer Re-Assembly zur nächsten

Fußabdruck der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion

Steigung des Fußabdrucks von einer großen Re-Assembly zur nächsten

5 %-punkte

Fußabdruck der Nutzung bezogen auf den Fußabdruck der Neuproduktion

Stärke der vorzeitigen Effizienzsteigerung durch Re-Assembly

5 (0-10)

Kundennutzen spezifisch

Särke des Innovationsrückgangs 5 (0-10)

Ökologie spezifisch

Kosten der 1. kleinen Re-Assembly bezogen auf die Kosten einer Neuproduktion

Steigung der Kosten von einer kleinen Re-Assembly zur nächsten

Kosten der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion

Steigung der Kosten von einer großen Re-Assembly zur nächsten

10 %

40 %

Steigung der Kosten von einer großen Re-Assembly zur nächsten

5 %-punkte

Höhe der Subskriptionserlöse in einem linearen Lebenszyklus bezogen auf den Verkaufset 1268 Weines linearen Produkts Marge: Anteil der Herstellungskosten am Verkaufspreis 60 (0-10)

Gesamtergebnis in den drei Dimensionen				
	Unterer Grenze Or	timaler ■ Abbruchzeitpur	nkt Obere Grenze	
		-		
Ökologie	Var1	Var2	Var3	
Kundennutzen	Var4	Var5	Var6	
Ökonomie	Var7	Var8	Var9	