Universidade Federal do Paraná

Departamento de Economia

Professor: Victor Oliveira

Economia Matemática

Lista de Exercícios II – B

1) Otimização com Restrição de Igualdade

a) Considere o problema de otimização

(1)
$$\max_{x,y} xy$$
 sujeito a $x + y = 6$

Resolva.

b) Considere o problema de otimização

(2)
$$\max_{x,y} x^2 y$$
 sujeito a $2x^2 + y^2 = 3$

Resolva.

c) Considere o problema de otimização

$$\max_{x,y} x^a y^b$$
 sujeito a $px + y = m$

em que $a>0,\,b>0,\,p>0,\,m>0$ e x>0 e y>0. Justifique os sinais dos parâmetros e das variáveis. Resolva.

d) Considere o problema de otimização

(4)
$$\max_{x,y} x$$
 sujeito a $x^2 = 0$

Resolva.

e) Considere o problema de otimização

(5)
$$\max_{x,y,z} x^2 + y^2 + z^2$$
 sujeito a $x + 2y + z = 1$
$$2x - y - 3z = 4$$

Resolva.

2) Otimização com Restrição de Desigualdade

a) Considere o problema de otimização

(6)
$$\max_{x,y} \left[-(x-1)^2 - (y+2)^2 \right]$$
 sujeito a $0 \le x \le 2$
$$-1 \le y \le 3$$

Resolva.

b) Considere o problema de otimização

(7)
$$\max_{x,y} x^2 + y^2 + y - 1$$
 sujeito a $x + y \le 1$

Resolva.

c) Considere o problema de otimização

(8)
$$\min_{x,y} x^2 + y^2 + y - 1$$
 sujeito a $x + y \le 1$

Resolva.

d) Considere o problema de otimização

(9)
$$\max_{x,y} \left[-(x-4)^2 - (y-4)^2 \right]$$
 sujeito a $x+y \le 4$
$$x+3y \le 9$$

Resolva e ilustre graficamente o problema.

LISTA II – B

e) Considere o problema de otimização

(10)
$$\max_{x,y} x$$
 sujeito a $y - (1-x)^3 \le 0$
$$y \ge 0$$

Resolva.

f) Considere o problema de otimização

(11)
$$\max_{x} x$$
 sujeito a $x^2 \le 0$

Resolva.

g) Considere o problema de otimização

(12)
$$\max_{x} \left[-(x-2)^2 \right]$$
 sujeito a $x \ge 1$

Resolva.

h) Considere o problema de otimização

(13)
$$\max_{x,y} \left[-(x-2)^2 - (y-2)^2 \right]$$
 sujeito a $x+y \leq 6$
$$x \geq 0$$

$$y \geq 0$$

Resolva.

i) Considere o problema de otimização

(14)
$$\max_{x,y} x^{1/2} + y$$
 sujeito a $px + y \le I$
$$x \ge 0$$

$$y \ge 0$$

Resolva.