Experiment 4

Student Name: Jayaprakash UID: 23BAI70240

Branch: BE-AIT-CSE Section/Group: 23AIT-KRG-G2

Semester: 5th Date of Performance: 8th Sept, 2025

Subject Name: ADBMS Subject Code: 23CSP-333

1. Consider a relation R having attributes as R(ABCD), functional dependencies are given below:

AB->C, C->D, D->A

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$AB + = \{A, B, C, D\}$$

$$BC + = \{B, C, D, A\}$$

$$AC + = \{A, C, D\}$$

$$BD+=\{B, D, C, A\}$$

$$C+=\{C,D,A\}$$

$$D+=\{D,\,A\}$$

Thus, Candidate Keys = $\{AC, BC, BD\}$

Prime Attributes = $\{A, B, C, D\}$

Non-Prime Attributes = $\{Phi\}$

This is in 3NF form because every dependent (RHS) is a prime attribute, but not BCNF because attribute C, D are not SuperKey.

2. Relation R(ABCDE) having functional dependencies as:

A->D, B->A, BC->D, AC->BE

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$AC + = \{A, C, B, E, D\}$$

$$AB+=\{A, B, D\}$$

$$BC + = \{B, C, D, A, E\}$$

$$A+=\{A,D\}$$

 $B+=\{B,A\}$
Thus, Candidate Keys = $\{AC,BC\}$
Prime Attributes = $\{A,C,B\}$
Non-Prime Attributes = $\{D,E\}$

This is a 1NF because the attribute non-multivalued. It's not a 2NF because the dependent D (non-prime) is determined by a prime.

3. Consider a relation R having attributes as R(ABCDE), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: - $B+=\{B, A, C, E, D\}$ $A+=\{A, C, B, E, D\}$

Thus, Candidate Keys = $\{A, B\}$ Prime Attributes = $\{A, B\}$ Non-Prime Attributes = $\{C, D, E\}$

This is a BCNF because the attributes A, B are single attribute Candidate Keys, thus any other attribute forming a key with them will become a SuperKey.

4. Consider a relation R having attributes as R(ABCDEF), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

 $A+ = \{A, B, C, D, E\}$ $B+ = \{B, C, D, E, A\}$ $D+ = \{D, A, B, C, E\}$

Thus, Candidate Keys = $\{A, B, D\}$ Prime Attributes = $\{A, B, D\}$ Non-Prime Attributes = $\{C, E\}$

This is a BCNF because the A, B, D are Candidate Keys, thus, any other attribute forming a key with them will eventually make the it a SuperKey.