RNA folding

RNA secondary structure prediction by dynamic programming algorithms

Yuzhen Ye
School of Informatics
Indiana University

RNAs have diverse functions

- Protein synthesis (rRNA and tRNA)
- RNA processing (snoRNA)
- Gene regulation
 - RNA interference (RNAi)
 - Andrew Fire and Craig Mello (2006 Nobel prize)
- DNA-like function
 - Virus
- RNA world

Riboswitch

- What's riboswitch
- Riboswitch mechanism

Image source: Curr Opin Struct Biol. 2005, 15(3):342-348

Structures are more conserved

 Structure information is important for alignment (and therefore gene finding)

Features of RNA

- RNA typically produced as a single stranded molecule (unlike DNA)
- Strand folds upon itself to form base pairs & secondary structures
- Structure conservation is important

RNA sequence analysis is different from DNA sequence

Canonical base pairing

Watson-Crick base pairing G/U (Wobble)

tRNA structure

RNA secondary structure

Complex folds

Pseudoknot

Kissing Hairpins

Hair-bulge interaction

Pseudoknots

?
$$i < i' < j' < j$$

 $i < j < i' < j'$

RNA secondary structure representation

- 2D
- Circle plot
- Dot plot
- Mountain
- Parentheses
- Tree model

Main approaches to RNA secondary structure prediction

- Energy minimization
 - dynamic programming approach
 - does not require prior sequence alignment
 - require estimation of energy terms contributing to secondary structure
- Comparative sequence analysis
 - using sequence alignment to find conserved residues and covariant base pairs.
 - most trusted
- Simultaneous folding and alignment (structural alignment)

Assumptions in energy minimization approaches

- Most likely structure similar to energetically most stable structure
- Energy associated with any position is only influenced by local sequence and structure
- Neglect pseudoknots

Base-pair maximization

- Find structure with the most base pairs
 - Only consider A-U and G-C and do not distinguish them
- Nussinov algorithm (1970s)
 - Too simple to be accurate, but stepping-stone for later algorithms

Nussinov algorithm

- Problem definition
 - Given sequence X=x₁x₂...x_L, compute a structure that has maximum (weighted) number of base pairings
- How can we solve this problem?
 - Remember: RNA folds back to itself!
 - S(i,j) is the maximum score when $x_i...x_i$ folds optimally
 - S(1,L)?
 - S(i,i)?

"Grow" from substructures

$$S(i,j) = max \begin{cases} S(i+1,j-1) + w(i,j) & (1) \\ S(i+1,j) & (2) \\ S(i,j-1) & (3) \\ max_{i < k < j} S(i,k) + S(k+1,j) & (4) \end{cases}$$

Dynamic programming

- Compute S(i,j) recursively (dynamic programming)
 - Compares a sequence against itself in a dynamic programming matrix
- Three steps

Initialization

	G	G	G	Α	Α	Α	U	С	С
G	0								
G	0	0							
G		0	0						
Α			0	0					
Α				0	0				
Α					0	0			
U						0	0		
С							0	0	
С								0	0

Example:

GGGAAAUCC

$$S(i,i) = 0 \quad \forall \quad 1 \leq i \leq L \quad o$$
 the main diagonal

$$S(i,i)=0 \quad \forall \quad 1\leq i\leq L \quad \longrightarrow \text{ the main diagonal}$$

$$S(i,i-1)=0 \quad \forall \quad 2\leq i\leq L \quad \longrightarrow \text{ the diagonal below}$$

L: the length of input sequence

Nussinov algorithm

Fill up the table (DP matrix) -- diagonal by diagonal

	G	G	G	Α	Α	Α	U	С	С
Ŋ	0	0	0	0					
G	0	0	0	0	0				
G		0	0	0	0	0			
Α			0	0	0	0	?		
Α				0	0	0	1		
Α					0	0	1	1	
C						0	0	0	0
С							0	0	0
С								0	0
	G A A U C	G 0 G 0 A A U C	G 0 0 0 G O O O O O O O O O O O O O O O	G 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0	G 0 0 0 0 0 0 G 0 G 0 0 0 0 0 0 0 0 0 0	G 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0	G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G O O O O O O O O O O O O O O O O O O O

$$S(i,j) = max \begin{cases} S(i+1,j-1) + w(i,j) & (1) \\ S(i+1,j) & (2) \\ S(i,j-1) & (3) \\ max_{i < k < j} S(i,k) + S(k+1,j) & (4) \end{cases} w(i,j) = \begin{cases} 1 & i, j \text{ are complementary} \\ 0 & otherwise \end{cases}$$

Traceback

	G	G	G	Α	Α	Α	U	С	С
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G		0	0	0	0	0	1	2	2
Α			0	0	0	0	1	1	1
Α				0	0	0	1	1	1
Α					0	ď	1	1	1
U						0	0	0	0
С							0	0	0
С								0	0

The structure is:

What are the other "optimal" structures?

Let's play

Please bring in your sheet (with your inputs) to the class on Wed!!

- Input: AUGACAU
- Fill up the table
- Trace back

	Α	U	G	Α	С	Α	U
Α							
U							
G							
Α							
С							
Α							
U							

- Give the optimal structure
- What's the size of the hairpin loop