Approximating Class Posteriors With a Model Fusction whose Parameters Are Estimated Using Maximum Like lithood Estimation Mothod

Given dete set D= {(x,, l,), --, (xn, ln)} and model $h(x;\theta)$ for P(x|x)=i(x), use MLE to optimize (train) Q.

 $\hat{\theta}_{ML} = \underset{A}{\text{arg max}} p(D|\theta) = \underset{A}{\text{orpmax}} ln p(D|\theta)$ = orgnex en [p((x,,l,1),-,(x,,ln)/0)] Assume [$P((x_1,l_1),-,(x_n,l_n))$]

Somples = orgmox l_1 II $P(x_n,l_n)$ $P(x_n,l_n)$

= agenex \(\sum_{n=1}^{N} \ln p(\times_n, \ln 19) \)

Bayes (Rule = argnesx $\sum_{n=1}^{N} \left(\ln p(\ln | x_n \theta) + \ln p(x_n | \theta) \right)$ = argnesx $\sum_{n=1}^{N} \ln p(\ln | x_n \theta) + \sum_{n=1}^{N} \ln p(x_n | \theta)$ * TA ?

Now introduce the model p(ln(x,0) = her(x,0) $\theta_{ml} = apmex \sum_{n=1}^{N} l_n h_n(x_n, \theta)$ Our model h: Rd -> RC where x ERd

Tis a multi-input multi-output and l E \ 1,-, c \ 3 is a multi-input multi-output $\begin{array}{c} (x,y) & \approx P(1-1|x) \\ (x,y) & \approx P(1-1|x) \\ (x,y) & \approx P(1-1|x) \end{array}$ $\hat{\theta}_{ML} = \underset{N}{\operatorname{argmin}} - \frac{1}{N} \sum_{n=1}^{N} l_n h_{e_n}(x_n, \theta)$ de = organis -! E yelishe (xn, 0) Note that for the inner summation I only one term is non-zero. This expression warrents the phrese minimum-cross-entropy training, which is commonly used. It allows us to also use soft labels in y (e.g. if labels are incertain).

Simple MLP Model Consider the following simple multilager serception model nonlinear Activation Activery 1 Soft | Next het's denote it as h=m(v), j=1overall model 1...The softmex loge- produces hi = The overall model function is $h(x, \theta) = m(d+Ca(b+Ax))$ 15+ layer 2 nd layer soft mex dayer D= rectorize \{ b, A, d, C\} all parameters.

for sample (xn, ln) cross-entropy loss is this Cross-Entropy Loss One = organis - E (- E yelche (x, 0)) Jeto (= arguin - 5 (= yelly (x,0)) = organin ! \(\lambda \) \(\ = organs - E DKL (yllh(x, ,0)) KL-divergence between designed y and model output h So if y is a desired posterior distribution for x, it turns out, under the ossumptions we made, the model freshed with MIE IS minimizing average KLD between desired and model-output posteror values.

Approximating a function that maps X to y using Max likelihood parameter estimation under the additive Gravissian roise model.

Gives deteset D= } (x,,y,),--, (xn,yn) { where XERd, yERM; and model $y \approx h(x; \theta) + v$ with $v \sim N(0, E_v)$, ford due that moximizes the likelihood of). The = agree p(D/0) = agree le p(D/0) iid ξ :

complet = agence Σ ln $p(x_n, y_n | 0)$ Boyes ξ = agence Σ ln $p(y_n | x_n 0) + ln <math>p(x_n | 0)$ pule ξ and ξ ln ξ ln

Note that our model y = h(x,0)+v with
v~N(o, Ev) implies yn x, o~N(h(x,,o), E))
and we used this in the previous step.
Now simplify:
Now simplify: constant constant for = argmax Ntr(zti) + Ntr\Ev/2 N
$ \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{\text{arg min}} \frac{1}{2} \sum_{n=1}^{\infty} \left(y_n - h(x_n, \theta) \right) \\ = \underset{N}{arg mi$
(Now let's assume $E_v = \sigma_v^2 I$.
$\frac{1}{2} \frac{\partial^2}{\partial n_L} = \underset{\theta}{\operatorname{argmin}} \frac{1}{N_{\sigma_v}^2} \sum_{n=1}^{N} \left(y_n - h(x_n, \theta) \right)^{\frac{1}{2}} \left(y_n - h(x_n, \theta) \right)^{\frac{1}{2}} $
= organin $\frac{1}{2} \left(y_n - h(x_n, o) \right)^T \left(y_n - h(x_n, o) \right)$
= organis ! \\ \(\text{\subset} \langle \lang
Average (Mean) Squared Error

Simple MLP Model $h(x,\theta) = d + Ca(b + Ax)$ 1st layer

with nonlinear

activation a(.)

Linear 2nd layer

The number of perceptions in the

The number of perceptions in the 1st layer can be adjusted using model selection procedures (e.g. cross-velidation). For the activation function soft versions of Relucen be used (e.g. Elu).

If the values of y are known to be bounded, we can use a nonlinear activation function for the second layer, in order to make sure h (.) produces values in the appropriate range.

Fact If PXX (x, y) is the joint pdf of X and X, then $\hat{Y}(x) = E_{XY} [Y|X=x],$ the conditional expectation of X given X=X is the minimum-MSE estimator of X from X. So our MLE-model parameters yield a factor that approximates this conditional expectation.