Heaps (5) (6)

© 2010 Goodrich, Tamassia Heaps 1

Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority
 Queue ADT
 - insert(k, x)inserts an entry with key kand value x
 - removeMin()
 removes and returns the
 entry with smallest key

- Additional methods
 - min()
 returns, but does not
 remove, an entry with
 smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

© 2010 Goodrich, Tamassia

Heaps

2

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time
- Can we do better?

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence *S* sorted in increasing order according to *C*

 $P \leftarrow$ priority queue with comparator C

while $\neg S.isEmpty$ ()

 $e \leftarrow S.remove \ (S. \ first \ ())$

P.insertItem(e, e)

while ¬*P.isEmpty*()

 $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be
 the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

 The last node of a heap is the rightmost node of maximum depth

© 2010 Goodrich, Tamassia Heaps

© 2010 Goodrich, Tamassia

Heaps

3

Height of a Heap

- Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

© 2010 Goodrich, Tamassia

Heaps

5

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

© 2010 Goodrich, Tamassia

Heaps

6

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- f a After the insertion of a new key k, the heap-order property may be violated
- f a Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- □ Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

© 2010 Goodrich, Tamassia Heaps 7 © 2010 Goodrich, Tamassia Heaps

Removal from a Heap (§ 7.3.3)

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

© 2010 Goodrich, Tamassia Heaps

Heap-Sort

- Consider a priority queue with n items implemented by means of a heap

 - methods insert and time
 - and min take time O(1)

 Using a heap-based priority queue, we can sort a sequence of nelements in $O(n \log n)$

time

- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Updating the Last Node

- \Box The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

© 2010 Goodrich, Tamassia

heap-order property may be violated

Heaps

 \Box After replacing the root key with the key k of the last node, the

 \Box Upheap terminates when key k reaches a leaf or a node whose

 \Box Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root

children have keys greater than or equal to k

10

12

Downheap

- the space used is O(n)
- removeMin take $O(\log n)$
- methods size, isEmpty, time

11 © 2010 Goodrich, Tamassia Heaps © 2010 Goodrich, Tamassia Heaps

Vector-based Heap Implementation

- We can represent a heap with n
 keys by means of a vector of length n + 1
- For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- □ The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank n
- Yields in-place heap-sort

© 2010 Goodrich, Tamassia

Heaps

13

Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

© 2010 Goodrich, Tamassia

Heaps

1

16

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- □ In phase *i*, pairs of heaps with 2ⁱ−1 keys are merged into heaps with 2ⁱ⁺¹−1 keys

© 2010 Goodrich, Tamassia Heaps 15 © 2010 Goodrich, Tamassia Heaps

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- \Box Thus, bottom-up heap construction runs in O(n) time
- \Box Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

© 2010 Goodrich, Tamassia