

Calculus 3 Workbook

Introduction to vectors

VECTOR FROM TWO POINTS

■ 1. Find the vector \overrightarrow{CM} , if M is the midpoint of \overline{AB} .

■ 2. Find the coordinates of the point P, given $Q(-\sqrt{2},0,\sqrt{2})$ and $\overrightarrow{PQ} = \langle \sqrt{2},4,\sqrt{2} \rangle$.

■ 3. Find the coordinates of the point C, given the coordinates of the point A(-2,3,4), and the vectors $\overrightarrow{AB} = \langle 0,5,0 \rangle$ and $\overrightarrow{BC} = \langle 2,-3,6 \rangle$.

COMBINATIONS OF VECTORS

■ 1. Find the combination $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$.

■ 2. In the tetrahedron ABCD, find the resulting vector $\overrightarrow{DA} - \overrightarrow{DB} - \overrightarrow{BC}$.

■ 3. In tetrahedron ABCD, find the vector $\overrightarrow{AB} + \overrightarrow{DC} + \overrightarrow{BD} - \overrightarrow{BC}$.

SUM OF TWO VECTORS

■ 1. Find the sum $\overrightarrow{AB} + \overrightarrow{AC}$.

- 2. Find the vector $\overrightarrow{a} \overrightarrow{b} + 2\overrightarrow{c}$, if $\overrightarrow{a} = \langle 0,4,5 \rangle$, $\overrightarrow{b} = \langle -3,2,1 \rangle$, and $\overrightarrow{c} = \langle 6,0,2 \rangle$.
- 3. Find the sum of the vectors.

$$\sum_{k=1}^{100} \langle 5, k \rangle$$

COPYING VECTORS AND USING THEM TO DRAW COMBINATIONS

■ 1. In parallelogram ABDC, find the combination $\overrightarrow{AB} + \overrightarrow{AC}$

■ 2. In the cube ABCDEFGH, find the combination $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$.

■ 3. In the cube $\overrightarrow{ABCDEFGH}$, find the combination $\overrightarrow{AB} - \overrightarrow{AD} - \overrightarrow{AE}$.

UNIT VECTOR IN THE DIRECTION OF THE GIVEN VECTOR

- 1. Find the unit vector in the direction of the combination $\overrightarrow{a} + \overrightarrow{b}$, where $\overrightarrow{a} = \langle -2, -7 \rangle$ and $\overrightarrow{b} = \langle 5, 3 \rangle$.
- 2. The magnitude of the vector \overrightarrow{a} is three times larger than the unit vector in the same direction. Find the vector \overrightarrow{a} .

$$\overrightarrow{u_a} = \left\langle \frac{1}{3}, -\frac{2}{3}, -\frac{2}{3} \right\rangle$$

■ 3. Find the unit vector in the direction of \overrightarrow{AC} in the rectangle ABCD, if A(4,1), B(1,4), and D(9,6).

ANGLE BETWEEN A VECTOR AND THE X-AXIS

- 1. Find the clockwise angle in radians between the vector $\vec{a} = \langle \sqrt{3}, -1 \rangle$ and the negative direction of the *x*-axis.
- 2. Find the angle between the vector $\overrightarrow{OA} = \langle 4, -4, 2 \rangle$ and the positive direction of the *x*-axis.
- 3. Find the angle between the vectors $\overrightarrow{a} = \langle 3,4 \rangle$ and $\overrightarrow{b} = \langle -5,12 \rangle$.

MAGNITUDE AND ANGLE OF THE RESULTANT FORCE

- 1. Find the magnitude and angle of the resultant force \vec{f} of the vectors $\vec{a} = \langle 2, -1 \rangle$, $\vec{b} = \langle 5, 1 \rangle$, and $\vec{c} = \langle -3, 3 \rangle$.
- 2. Find the magnitude of the resultant force \vec{f} of the vectors $\vec{a} = \langle 4,0,0 \rangle$, $\vec{b} = \langle 0,4,0 \rangle$, and $\vec{c} = \langle 0,0,2 \rangle$, then find the angles between \vec{f} and each of the major coordinate axes.
- 3. The resultant force \vec{f} of the vectors \vec{a} and \vec{b} has a magnitude of 12 and an angle of $2\pi/3$. Find vector \vec{b} , if $\vec{a} = \langle -8, 5\sqrt{3} \rangle$.

W W W . KRISTAKING MATH. COM