

आपल्याला माहीत आहे की बंदिस्त बहुभुजाकृतीच्या बाजू सेंटिमीटर, मीटर, किलोमीटर या एककात दिलेल्या असतील तर त्यांची क्षेत्रफळे अनुक्रमे चौसेमी, चौमी, चौकिमी या एककांत दिली जातात, कारण क्षेत्रफळ चौरसांनी मोजले जाते.

- (1) चौरसाचे क्षेत्रफळ = बाजू 2
- (3) काटकोन त्रिकोणाचे क्षेत्रफळ = $\frac{1}{2}$ × काटकोन करणाऱ्या बाजूंचा गुणाकार
- (2) आयताचे क्षेत्रफळ = लांबी × रुंदी
- (4) त्रिकोणाचे क्षेत्रफळ = $\frac{1}{2}$ × पाया × उंची

समांतरभुज चौकोनाचे क्षेत्रफळ (Area of a parallelogram)

कृती:

 एका कागदावर एक पुरेसा मोठा समांतरभुज चौकोन ABCD काढा. A बिंदूतून बाजू BC वर लंब काढा. A AEB हा काटकोन त्रिकोण कापा. तो सरकवत दुसऱ्या आकृतीत दाखवल्याप्रमाणे ☐ ABCD च्या उरलेल्या भागाला जोडून ठेवा. तयार झालेली आकृती आयत आहे हे लक्षात घ्या.

- समांतरभुज चौकोनापासूनच हा आयत तयार झाला आहे, म्हणून दोन्हींचे क्षेत्रफळ समान आहे.
- समांतरभुज चौकोनाचा पाया म्हणजे आयताची एक बाजू (लांबी) व त्याची उंची म्हणजे आयताची
 दुसरी बाजू (रुंदी) होय.

∴ समांतरभुज चौकोनाचे क्षेत्रफळ = पाया × उंची

लक्षात घ्या की, समांतरभुज चौकोनाच्या समांतर भुजांपैकी एक भुजा पाया मानला तर त्या समांतर भुजांमधील अंतर ही त्या चौकोनाची त्या पाया संगत उंची असते.

☐ ABCD हा समांतरभुज चौकोन आहे.

रेख DP \perp बाजू BC, रेख AR \perp बाजू BC. बाजू BC हा पाया मानला तर उंची = l(AR) = l(DP) = h. जर रेख $CQ \perp$ बाजू AB असून जर AB ही बाजू पाया मानली, तर त्या पायाची संगत उंची म्हणजे l(QC) = kआहे.

$$\therefore$$
 A(\square ABCD) = l (BC) \times h = l (AB) \times k .

सोडवलेली उदाहरणे 🚦

उदा. (1) एका समांतरभुज चौकोनाचा पाया 8 सेमी व उंची 5 सेमी असेल तर त्या चौकोनाचे क्षेत्रफळ काढा.

उकल : समांतरभूज चौकोनाचे क्षेत्रफळ = पाया \times उंची = 8×5

$$= 40$$

∴ समांतरभुज चौकोनाचे क्षेत्रफळ = 40 चौसेमी

उदा. (2) एका समांतरभुज चौकोनाचे क्षेत्रफळ 112 चौसेमी असून त्याचा पाया 10 सेमी असेल तर त्याची उंची काढा.

उकल : समांतरभुज चौकोनाचे क्षेत्रफळ = पाया \times उंची ∴ $112 = 10 \times 3$ ंची

$$\frac{112}{10} = 3ंची$$

∴ समांतरभुज चौकोनाची उंची 11.2 सेमी

सरावसंच 15.1

- एका समांतरभुज चौकोनाचा पाया 18 सेमी व उंची 11 सेमी आहे, तर त्या चौकोनाचे क्षेत्रफळ काढा. 1.
- एका समांतरभुज चौकोनाचे क्षेत्रफळ 29.6 चौसेमी व पाया 8 सेमी आहे, तर त्या चौकोनाची उंची काढा. 2.
- एका समांतरभुज चौकोनाचे क्षेत्रफळ 83.2 चौसेमी आहे. त्याची उंची 6.4 सेमी असेल तर त्याचा पाया किती लांबीचा असेल ?

समभुज चौकोनाचे क्षेत्रफळ (Area of a rhombus)

कृती: आकृतीत दाखवल्याप्रमाणे एक समभुज चौकोन काढा. आपल्याला माहीत आहे की समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात.

$$l(AC) = d_1$$
 आणि $l(BD) = d_2$ मानू.

 \square ABCD हा समभुज चौकोन आहे. त्याचे कर्ण P बिंदूत छेदतात. त्यामुळे आपल्याला चार एकरूप काटकोन त्रिकोण मिळतात. प्रत्येक काटकोन त्रिकोणाच्या बाजू $\frac{1}{2}$ l(AC) व $\frac{1}{2}$ l(BD) एवढ्या आहेत. चारही त्रिकोणांची क्षेत्रफळे समान आहेत.

$$l(AP) = l(PC) = \frac{1}{2} l(AC) = \frac{d_1}{2},$$

तसेच $l(BP) = l(PD) = \frac{1}{2} l(BD) = \frac{d_2}{2}$

$$\therefore$$
 समभुज चौकोन ABCD चे क्षेत्रफळ = $4 \times A(\Delta \text{ APB})$ = $4 \times \frac{1}{2} \times l(\text{AP}) \times l(\text{BP})$ = $2 \times \frac{d_1}{2} \times \frac{d_2}{2}$ = $\frac{1}{2} \times d_1 \times d_2$

 \therefore समभुज चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ \times कर्णांच्या लांबींचा गुणाकार

🖁 सोडवलेली उदाहरणे 📙

उदा.(1) एका समभुज चौकोनाच्या दोन कर्णांची लांबी अनुक्रमे 11.2 सेमी व 7.5 सेमी आहे तर त्या चौकोनाचे क्षेत्रफळ काढा.

उकल : समभुज चौकोनाचे क्षेत्रफळ =
$$\frac{1}{2}$$
 × कर्णांच्या लांबींचा गुणाकार
$$= \frac{1}{2} \times \frac{11.2}{1} \times \frac{7.5}{1} = 5.6 \times 7.5$$
$$= 42 चौसेमी.$$

- **उदा.(2)** एका समभुज चौकोनाचे क्षेत्रफळ 96 चौसेमी आहे. त्याचा एक कर्ण 12 सेमी आहे तर त्या चौकोनाच्या बाजूची लांबी काढा.
- उकल : समजा, ☐ ABCD हा समभुज चौकोन आहे. त्याच्या कर्ण BD ची लांबी 12 सेमी आहे. त्या चौकोनाचे क्षेत्रफळ 96 चौसेमी आहे. यावरून प्रथम कर्ण AC ची लांबी काढू.

समभुज चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ × कर्णांच्या लांबींचा गुणाकार : $06 = \frac{1}{2}$ × $12 \times I(AC) = 6 \times I(AC)$

$$\therefore 96 = \frac{1}{2} \times 12 \times l(AC) = 6 \times l(AC)$$

$$l(AC) = 16$$

समजा कर्णांचा छेदनबिंदू E आहे. समभुज चौकोनाचे कर्ण परस्परांना काटकोनात दुभागतात.

 $\therefore \Delta$ ADE मध्ये, $m\angle$ E = 90°,

$$l(DE) = \frac{1}{2}l(DB) = \frac{1}{2} \times 12 = 6;$$
 $l(AE) = \frac{1}{2}l(AC) = \frac{1}{2} \times 16 = 8$ पायथागोरसच्या प्रमेयाने,

$$l(AD)^2 = l(AE)^2 + l(DE)^2 = 8^2 + 6^2$$

= 64 + 36 = 100

- $\therefore l(AD) = 10$
- ∴ समभुज चौकोनाची बाजू 10 सेमी.

सरावसंच 15.2

- 1. एका समभूज चौकोनाच्या दोन कर्णांची लांबी 15 व 24 सेमी आहे, तर त्याचे क्षेत्रफळ काढा.
- एका समभुज चौकोनाच्या दोन कर्णांची लांबी अनुक्रमे 16.5 सेमी व 14.2 सेमी आहे, तर त्या चौकोनाचे क्षेत्रफळ काढा.
- 3. एका समभुज चौकोनाची परिमिती 100 सेमी असून त्याच्या एका कर्णाची लांबी 48 सेमी आहे, तर त्या चौकोनाचे क्षेत्रफळ किती येईल ?
- 4^{*}. एका समभुज चौकोनाचा एक कर्ण 30 सेमी असून त्याचे क्षेत्रफळ 240 चौसेमी आहे. तर त्या चौकोनाची परिमिती काढा.

समलंब चौकोनाचे क्षेत्रफळ (Area of a trapezium)

कृती : रेख AB || रेख DC असेल असा □ ABCD हा समलंब चौकोन एका कागदावर काढा.

रेख AP \perp बाजू DC आणि रेख BQ \perp बाजू DC काढा. l(AP) = l(BQ) = h मानू.

समलंब चौकोनाची उंची h, म्हणजेच समांतर रेषांमधील अंतर,

लंब काढल्यामुळे ABCD या चौकोनी क्षेत्राचे 3 भाग झाले. त्यांपैकी Δ DPA व Δ BQC हे काटकोन त्रिकोण आहेत. ABQP हा आयत आहे. बिंदू P आणि Q हे रेख DC वर आहेत.

समलंब चौकोन ABCD चे क्षेत्रफळ = A(Δ APD) + A(\square APQB) + A(Δ BQC)

$$= A(\Delta \text{ APD}) + A(\Box \text{APQB}) + A(\Delta \text{BQC})$$

$$= \frac{1}{2} \times l(\text{DP}) \times h + l(\text{PQ}) \times h + \frac{1}{2} \quad l(\text{QC}) \times h$$

$$= h \left[\frac{1}{2} \text{ DP} + \text{PQ} + \frac{1}{2} \text{ QC} \right]$$

$$= \frac{1}{2} \times h \left[l(\text{DP}) + 2l(\text{PQ}) + l(\text{QC}) \right]$$

$$= \frac{1}{2} \times h \left[l(\text{DP}) + l(\text{PQ}) + l(\text{AB}) + l(\text{QC}) \right] \dots \quad l(\text{PQ}) = l(\text{AB})$$

$$= \frac{1}{2} \times h \left[l(\text{DP}) + l(\text{PQ}) + l(\text{QC}) + l(\text{AB}) \right]$$

$$= \frac{1}{2} \times h \left[l(\text{DC}) + l(\text{AB}) \right]$$

 $A(\square ABCD) = \frac{1}{2}$ (समांतर असलेल्या बाजूंच्या लांबींची बेरीज) $\times h$

 \therefore समलंब चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ imes समांतर बाजूंच्या लांबींची बेरीज imes उंची

🖁 सोडवलेले उदाहरण 🖁

उदा.(1) एका समलंब चौकोनाच्या संमुख भुजांची एक जोडी परस्परांना समांतर आहे. त्या भुजांमधील अंतर 6 सेमी आहे व समांतर बाजूंची लांबी अनुक्रमे 7 सेमी व 8 सेमी आहे, तर त्या चौकोनाचे क्षेत्रफळ काढा.

उकल : समांतर भुजांमधील अंतर = समलंब चौकोनाची उंची = 6 सेमी समलंब चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ (समांतर बाजूंच्या लांबींची बेरीज) \times उंची = $\frac{1}{2}$ (7 + 8) \times 6 = 45 चौसेमी

सरावसंच 15.3

1. चौकोन ABCD मध्ये l(AB) = 13 सेमी, l(DC) = 9 सेमी, l(AD) = 8 सेमी, π र \square ABCD चे क्षेत्रफळ काढा.

- 2. एका समलंब चौकोनाच्या समांतर बाजूंची लांबी अनुक्रमे 8.5 सेमी व 11.5 सेमी आहे. त्याची उंची 4.2 सेमी आहे तर त्या चौकोनाचे क्षेत्रफळ काढा.
- 3^* . \square PQRS हा समद्विभुज समलंब चौकोन आहे. l(PQ) = 7 सेमी, रेख PM \bot बाजू SR, l(SM) = 3 सेमी, समांतर बाजूंमधील अंतर 4 सेमी आहे, तर \square PQRS चे क्षेत्रफळ काढा.

त्रिकोणाचे क्षेत्रफळ (Area of a Triangle)

त्रिकोणाचे क्षेत्रफळ = $\frac{1}{2}$ पाया \times उंची हे आपल्याला माहीत आहे.

आता त्रिकोणाची उंची दिली नाही परंतु त्रिकोणाच्या तीन बाजूंची लांबी दिली आहे. तर त्या त्रिकोणाचे क्षेत्रफळ कसे काढतात ते पाहू.

 Δ ABC च्या बाजूंची लांबी a, b, c आहे. या त्रिकोणाची अर्धपरिमिती काढू. अर्धपरिमिती = $s = \frac{1}{2} (a + b + c)$ त्रिकोणाचे क्षेत्रफळ = $\sqrt{s(s-a)(s-b)(s-c)}$

या सूत्राला हिरोचे सूत्र (Heron's Formula) असे म्हणतात.

उदा. (1) एका त्रिकोणाच्या बाजू 17 सेमी, 25 सेमी व 26 सेमी आहेत तर त्या त्रिकोणाचे क्षेत्रफळ काढा.

उकल :
$$a = 17, b = 25, c = 26$$

अर्धपरिमिती = $s = \frac{a+b+c}{2} = \frac{17+25+26}{2} = \frac{68}{2} = 34$

त्रिकोणाचे क्षेत्रफळ =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{34(34-17)(34-25)(34-26)}$
= $\sqrt{34\times17\times9\times8}$
= $\sqrt{17\times2\times17\times3\times3\times2\times2\times2}$
= $\sqrt{17^2\times2^2\times2^2\times3^2}$

उदा. (2) एका भूखंडाची आकृती व मापे दिली आहेत.

$$l(LM) = 60$$
 मी. $l(MN) = 60$ मी. $l(LN) = 96$ मी. $l(OP) = 70$ मी. तर या भूखंडाचे क्षेत्रफळ काढा.

उकल : या आकृतीत Δ LMN व Δ LON तयार झालेले दिसतात. Δ LMN च्या सर्व बाजूंची लांबी माहीत आहे, म्हणून हिरोचे सूत्र वापरून त्याचे क्षेत्रफळ काढू. Δ LON मध्ये बाजू LN हा पाया आणि I(OP) ही उंची घेऊन Δ LON चे क्षेत्रफळ काढू.

 $= 17 \times 2 \times 2 \times 3 = 204$ चौसेमी

$$\Delta$$
 LMN ची अर्धपरिमिती, $s = \frac{60+60+96}{2} = \frac{216}{2} = 108$ मी

$$A(\Delta LMN) = 12 \times 3 \times 48 = 1728$$
 चौमी.

$$A(\Delta \text{ LNO}) = \frac{1}{2} \text{ पाया } \times 3 \text{ ची}$$

$$= \frac{1}{2} \times 96 \times 70$$

$$= 96 \times 35 = 3360 \text{ चौमी}$$

भूखंड LMNO चे क्षेत्रफळ =
$$A(\Delta \text{ LMN}) + A(\Delta \text{ LNO})$$

= $1728 + 3360$
= 5088 चौमी.

समांतरभुज चौकोनाचे क्षेत्रफळ = पाया × उंची

समभुज चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ \times कर्णांच्या लांबींचा गुणाकार

समलंब चौकोनाचे क्षेत्रफळ = $\frac{1}{2}$ \times समांतर बाजूंच्या लांबींची बेरीज \times उंची

 ABC त्रिकोणाच्या बाजू जर $a,\ b,\ c$ असतील तर त्या त्रिकोणाचे क्षेत्रफळ काढण्याचे हिरोचे सूत्र

$$A(\Delta ABC) = \sqrt{s(s-a)(s-b)(s-c)}; \quad s = \frac{a+b+c}{2}$$

सरावसंच 15.4

1. एका त्रिकोणाच्या बाजू 45 सेमी, 39 सेमी व 42 सेमी आहेत तर त्या त्रिकोणाचे क्षेत्रफळ काढा.

आकृतीत दाखवलेली मापे लक्षात घ्या व
 □ PQRS चे क्षेत्रफळ काढा.

3. शेजारी दिलेल्या आकृतीत काही मापे दर्शवली आहेत, त्यावरून □ABCD चे क्षेत्रफळ काढा.

अनियमित आकाराच्या जागेचे क्षेत्रफळ

भूखंड, शेतजिमनी यांचे आकार सामान्यपणे अनियमित आकाराचे बहुभुज असतात. त्यांचे विभाजन त्रिकोण किंवा विशिष्ट चौकोनांत करता येते. असे विभाजन करून त्यांचे क्षेत्रफळ कसे काढतात, हे पुढील उदाहरणांवरून समजून घ्या. उदा. शेजारील आकृतीत ABCDE ही बहुभुजाकृती आहे. आकृतीतील सर्व मापे मीटरमध्ये आहेत. या आकृतीचे क्षेत्रफळ काढा.

उकल : येथे Δ AQB, Δ ERD हे काटकोन त्रिकोण आहेत. \square AQRE हा समलंब चौकोन आहे.

 Δ BCD चा पाया BD व उंची PC दिली आहे. प्रत्येक आकृतीचे क्षेत्रफळ काढू.

$$A(\Delta AQB) = \frac{1}{2} \times l(BQ) \times l(AQ) = \frac{1}{2} \times 10 \times 13 = 65$$
 चौमी

$$A(\Delta \text{ ERD}) = \frac{1}{2} \times l(\text{RD}) \times l(\text{ER}) = \frac{1}{2} \times 16 \times 17 = 136$$
 चौमी

A(
$$\square$$
 AQRE) = $\frac{1}{2}$ [l (AQ) + l (ER)] × l (QR)
= $\frac{1}{2}$ [13 + 17] × (12 + 15)
= $\frac{1}{2}$ × 30 × 27 = 15 × 27 = 405 चौमी

$$l(BD) = l(BP) + l(PD) = 10 + 12 + 15 + 16 = 53$$
 मी

$$A(\Delta BCD) = \frac{1}{2} \times l(BD) \times l(PC) = \frac{1}{2} \times 53 \times 10 = 265$$
 चौमी

∴ बहुभुजाकृती ABCDE चे क्षेत्रफळ

=
$$A(\Delta AQB) + A(\Box AQRE) + A(\Delta ERD) + A(\Delta BCD)$$

$$= 65 + 405 + 136 + 265$$

सरावसंच 15.5

(2)

1. खालील भूखंडांच्या आराखड्यांवरून त्यांची क्षेत्रफळे काढा. (सर्व मापे मीटरमध्ये आहेत.)

वर्तुळाचे क्षेत्रफळ (Area of a circle)

कृती: एका जाड कागदावर एक वर्तुळ काढा. वर्तुळाकार भाग कापून वेगळा करा. घड्या घालून त्याचे 16 किंवा 32 समान भागांत विभाजन करा. किंवा 360° चे समान भाग करून वर्तुळाचे 18 किंवा 20 समान भाग करा. नंतर ते भाग त्रिज्यांवर कापून वेगवेगळ्या पाकळ्या मिळवा. आकृतीत दाखवल्याप्रमाणे त्या जोडा. आपल्याला जवळपास आयत तयार झालेला दिसेल. वर्तुळाच्या समान भागांची

संख्या जेवढी जास्त असेल तेवढी आकृती अधिकाधिक आयताकार होईल.

वर्तुळाचा परीघ = $2\pi r$

- \therefore आयताची लांबी πr , म्हणजे अर्धपरिघाएवढी, आणि रुंदी r एवढी आहे.
- \therefore वर्तुळाचे क्षेत्रफळ = आयताचे क्षेत्रफळ = लांबी imes रूंदी = $\pi r imes r$ = πr^2

井 सोडवलेली उदाहरणे 📙

उदा.(1) एका वर्तुळाची त्रिज्या 21 सेमी असेल तर त्या वर्तुळाचे क्षेत्रफळ काढा.

उकल : वर्तुळाचे क्षेत्रफळ = πr^2 = $\frac{22}{7} \times 21^2$ = $\frac{22}{7} \times \frac{21}{1} \times \frac{21}{1}$ = 66×21 = 1386 चौसेमी

उदा.(2) एका वर्तुळाकृती मैदानाचे क्षेत्रफळ 3850 चौमी आहे, तर त्या मैदानाची त्रिज्या काढा.

उकल : वर्तुळाचे क्षेत्रफळ = πr^2 $3850 = \frac{22}{7} \times r^2$ $r^2 = \frac{3850 \times 7}{22} \qquad r^2 = 1225 \qquad r = 35 \; \text{मी}.$

∴ मैदानाची त्रिज्या 35 मी आहे.

सरावसंच 15.6

- खाली वर्तुळांच्या त्रिज्या दिल्या आहेत. त्या वर्तुळांची क्षेत्रफळे काढा.
 - (1) 28 सेमी
- (2) 10.5 सेमी
- (3) 17.5 सेमी
- खाली काही वर्तुळांची क्षेत्रफळे दिली आहेत. त्या वर्तुळांचे व्यास काढा.
 - (1) 176 चौसेमी
- (2) 394.24 चौसेमी (3) 12474 चौसेमी
- एका वर्तुळाकार बागेचा व्यास 42 मी आहे. त्या बागेभोवती 3.5 मी रुंदीचा रस्ता आहे, तर त्या रस्त्याचे क्षेत्रफळ काढा.

एका वर्त्ळाचा परीघ 88 सेमी आहे, तर त्या वर्त्ळाचे क्षेत्रफळ काढा.

अनियमित आकाराच्या आकृतीचे अंदाजे क्षेत्रफळ काढणे.

आलेख कागदाच्या साहाय्याने कोणत्याही बंदिस्त आकृतीचे क्षेत्रफळ काढता येते. दिलेली आकृती किंवा वस्तूचे एखादे पृष्ठ आलेख कागदावर ठेवून त्याच्या कडेने पेन्सिल फिरवा. आलेख कागदावरील आकृतीचे क्षेत्रफळ काढण्यासाठी चौरसांची संख्या कशी मोजायची व क्षेत्रफळ कसे काढायचे ते खालील कृतीवरून समजून घ्या.

- (1) आकृतीतील 1 चौसेमी क्षेत्रफळ असणाऱ्या पूर्ण चौरसांची संख्या = 13
 - ∴ त्यांचे क्षेत्रफळ 13 चौसेमी.
- (2) आकृतीतील $\frac{1}{2}$ चौसेमी पेक्षा जास्त परंतु 1 चौसेमी पेक्षा कमी क्षेत्रफळ असणाऱ्या भागांची संख्या = 11
 - ∴ त्यांचे क्षेत्रफळ = अंदाजे 11 चौसेमी
- (3) आकृतीतील $\frac{1}{2}$ चौसेमी क्षेत्रफळ असणाऱ्या भागांची संख्या = 0
 - ∴ त्यांचे क्षेत्रफळ = 0 चौसेमी

- (4) आकृतीतील $\frac{1}{2}$ चौसेमी पेक्षा कमी क्षेत्रफळ असणाऱ्या भागाच्या क्षेत्रफळाचा विचार करायचा नाही.
 - ∴ त्यांचे एकूण क्षेत्रफळ = 0 चौसेमी
 - .. दिलेल्या आकृतीचे अंदाजे क्षेत्रफळ
 - = 13 + 11 + 0 + 0 = 24 चौसेमी

कृती: आलेख कागदावर 28 मिमी त्रिज्येचे एक वर्तुळ, कोणताही एक त्रिकोण आणि कोणताही एक समलंब चौकोन काढा. या तीनही आकृत्यांची क्षेत्रफळे आलेख कागदावरील लहान चौरस मोजून काढा. ती सूत्रांनी मिळणाऱ्या क्षेत्रफळांबरोबर पडताळून पाहा.

मोजण्यासाठी वापरलेले चौरस जेवढे लहान तेवढा क्षेत्रफळाचा अंदाज अधिक बरोबर असतो.

kkk

		उत्तरसूची		
सरावसंच 15.1	1. 198 चौसेमी	2. 3.7 सेमी	3. 13 सेमी	
सरावसंच 15.2	1. 180 चौसेमी	2. 117.15 चौसेमी	3. 336 चौसेमी	4. 68 सेमी
सरावसंच 15.3	1. 88 चौसेमी	2. 42 सेमी	3. 40 चौसेमी	
सरावसंच 15.4	1. 756 चौसेमी	2. 690 चौसेमी	3. 570 चौसेमी	
सरावसंच 15.5	1. 6,000 चौमी	2. 776 चौमी		
सरावसंच 15.6	1. (1) 2464 चौसेमी	(2) 346.5 चौसेमी	(3) 962.5 चौसेमी	
	2. (1) $2\sqrt{56}$ सेमी	(2) 22.4 सेमी	(3) 126 सेमी	
	3. 500.50 चौमी	4. 616 चौसेमी		

अधिक माहितीसाठी :

आपल्या देशाने मापनासाठी दशमान पद्धत स्वीकारली आहे.

शासकीय दस्तऐवजांत जिमनींची क्षेत्रफळे आर, हेक्टर या दशमान एककांत नोंदलेली असतात.

100 चौमी = 1 आर, 100 आर = 1 हेक्टर = 10,000 चौमी

व्यवहारात मात्र जिमनीचे क्षेत्रफळ गुंठा, एकर या एककांत मोजण्याची पद्धत अजूनही रूढ आहे. 1 गुंठा हे क्षेत्रफळ सुमारे 1 आर एवढे, म्हणजे सुमारे 100 चौमी असते. 1 एकर क्षेत्रफळ सुमारे 0.4 हेक्टर भरते.

