Solution & Grading

Ryerson University

Department of Electrical and Computer Engineering

ELE404 (Electronic Circuits I)

Midterm Examination (W2014)

February 2014
Duration: 100 minutes

Examiner: Prof. A. Yazdani

NOTES

- 1. This is a closed-book examination. No aids other than basic calculators are permitted.
- 2. The examination paper is comprised of <u>FIVE QUESTIONS</u>, each question is worth as indicated in the following Table. The entire examination is worth 100 marks.

Question #	Maximum Mark	Mark Earned
1	30	
2	15	
3	20	
4	15	8
5	20	
Total	100	

- 3. Answer all questions in the booklet, within the blank spaces provided under each question in this booklet. Use the reverse if needed.
- 4. <u>No Questions to be asked during the examination</u>. If in doubt about any question, clearly state your assumptions in answering the question.
- 5. Part marks for an answer will only be given if the *correct methodology* is clearly shown.
- 6. **DO NOT DETACH** any pages from this booklet.

- Q1: In the diode circuit of Fig. 1, D_1 is a regular diode whose forward voltage drop is assumed to be 0.7 V, whereas D_2 is an LED that starts to glow when its forward voltage drop reaches about 2.2 V. Further, $R_1=1.0~k\Omega,~R_2=2.0~k\Omega,~{\rm and}~I_x=4.0~mA.$ It is assumed that neither diode enters the breakdown region.
- 1a) If the voltage V_x is so negative that the LED is dirk, determine the conduction state ("on" or "off") of D_1 , and calculate the voltages V_3 and V_4 . Summarize your findings in **Table 1a**.

Table 1a: Results of the diode circuit of Q1.

State of D ₁	$V_3[V]$	$V_4[V]$
ON	-8.7	-8

Each item 5 marks

DZ: OFF => DI: ON Since DI is the only remaining Path
for the current Ix which is impressed.

1b) Starting from a very negative voltage, as in Part (a), V_x is gradually raised until D_2 starts to glow. For this operating condition, calculate V_x , V_1 , and V_2 . Complete **Table 1b**.

Table 1b: voltage values corresponding to state transition of D_2 from "dim" to "glowing".

$V_{x}[V]$	$V_1[V]$	$V_2[V]$
-6.5	-6.5	-6.5

marks

The same circuit applies here:

$$V_{3} = -8.7$$
 $V_{1} = V_{X}$
 $V_{1} = V_{X}$
 $V_{3} = -8.7$
 $V_{1} = V_{X}$
 $V_{1} = V_{X}$
 $V_{2} = V_{3}$
 $V_{3} = -8.7$
 $V_{3} = -8.7$
 $V_{4} = V_{2}$
 $V_{1} = V_{X}$
 $V_{5} = V_{5}$
 $V_{5} = V_{5}$

$$v_{02} = v_2 - v_3 = v_x - (-8.7)$$

The LED turns on when UDZ reaches 2.2

$$\Rightarrow$$
 2.2 = $V_X + 8.7 \Rightarrow V_X = -6.5^V$

$$\Rightarrow V_1 = -6.5 \text{ V}$$

Q2: In the circuit of Fig. 2, $V_s = -9 V$. If $V_0 = -8 V$ is at a temperature of 20 °C, what will V_0 be the 40 Celsius? At 0 Celsius? At 80 Celsius? Explain why and/or show the calculations. Summarize your results in **Table 2**. [Hint: the voltage drop across the resistor is proportional to the reverse current of the diode].

Fig. 2: Diode circuit of Q2.

Table 2: Results of the diode circuit of O2

T [°C]	20	40	0	80
$V_o[V]$	-8	-5	-8.75	0

The diode is reverse-biased. Therefore, its current, the reverse current, flows To town and results in a proportional voltage drop across the resistor:

 $V_0-(-9) \propto I_S \Rightarrow V_0+9 \propto I_S$

On the other hand, Is doubles for every 10°C temperature rise.

$$\theta = 40^{\circ} = \frac{\sqrt{6+9}}{-8+9} = 2^{\frac{10-20}{10}} = 4 = \sqrt{6=-5^{\circ}}$$

$$\theta = 0$$
 = $\frac{\sqrt{6+9}}{-8+9} = 2$ $\frac{\sqrt{6-20}}{\sqrt{9}} = \frac{1}{4} \Rightarrow \sqrt{\sqrt{6} = -8.75}$

$$\theta = 70c$$
 = $\frac{1}{-8+9} = 2$ = $\frac{7}{-8+9} = 2$ = $\frac{7}{9} = 2$ = $\frac{7}{$

to conduct and current would flow from the negative source to the ground, which is impossible => 1220

- Q3: In the bridge rectifier of Fig. 3, the diodes are assumed to be ideal, and the source voltage v_I is a 60-Hz, 20-Vrms sinusoid. Determine the reading of a DC voltmeter of the output voltage v_0 , under each of the following conditions:
 - (3a) Only the load R_L is connected (the smoothing capacitor C has been removed);
 - (3b) Only C is connected (R_L has been removed);
 - (3c) $R_L = 1.0 kΩ$ and C = 150 μF; and
 - (3d) $R_L = 1.0 k\Omega$ and $C = \infty$.

Support your answers by calculations and/or explanations. Complete **Table 3**.

Table 3: results of the circuit of O3.

Answer to (3a)	Answer to (3b)	Answer to (3c)	Answer to (3d)
18	28.3	27.5	28.3

Fig. 3: Bridge rectifier of Q3.

3a) Full-wave rectifier $\frac{V_{m}=20\times\sqrt{2}=28.3}{V_{0}=\frac{2V_{m}}{1}=\frac{2\times28.3}{1}=18V}$

capacitor VVVV $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{V}{C} = \frac{(28.3/600) \times 8.3 \times 10^{-3}}{(28.3/600) \times 8.3 \times 10^{-3}} V$ $VV = \frac{V}{C} = \frac{V}{C}$

Alternative solution to (30)

$$V_{m} = \frac{\text{exponential drop with } T = RC}{\text{w} U_{m} - V_{r}}$$

$$V_{0}(t) = V_{0}(\infty) + \left[V_{0}(0) - V_{0}(\infty)\right]e^{-t/T}$$

$$V_{0}(t) = 0 + \left[U_{m} - 0\right] e^{-t/T}$$

$$T = R(= 1000 \times 150 \times 10^{6} = 0.15 \text{ s}$$

$$t = T_{2} = \frac{1}{2f} = \frac{1}{2 \times 60} = 8.3 \times 10^{3} \text{ s}$$

$$V_{0}(t = T_{2}) = V_{m} - V_{r}$$

$$V_{m} - V_{r} = V_{m} e^{\frac{8.3 \times 10^{3}}{0.15}} \Rightarrow V_{r} = \left[1 - e^{\frac{8.3 \times 10^{3}}{0.15}}\right] \times 28.3$$

$$V_{r} = 1.5V$$

$$V_{0} = V_{m} - \frac{1}{2}V_{r} = 28.3 - \frac{1}{2} \times 1.5 = 27.5V$$

Very large capacitor results in very small ripple, Vr. Therefore

$$V_0 \approx V_m$$
 (since $V_r \approx 0$)
 $\Rightarrow [V_0 = 28.3^{\circ}]$

Q4: In the shunt voltage regulator of Fig. 4, $R_L = 1.0 \ k\Omega$ and $R = 820 \ \Omega$. According to the manufacturer, the Zener diode gives a voltage of $v_Z = V_{ZT} = 5.1 \ V$ at a test current of $i_Z = I_{ZT} = 20 \ mA$. Further, $r_Z = 10 \ \Omega$ and $I_{ZK} = 1.5 \ mA$.

Fig. 4: Shunt regulator of Q4.

(4a) Assuming that the switch is open, determine the peak-to-peak ripple of the output voltage v_0 if the unregulated voltage v_{rec} has a peak-to-peak ripple of 2.0 V. Show all the work.

$$\frac{\Delta V_{\text{rec}}}{\sqrt{2}}$$

$$\frac{\Delta V_{\text{o}}}{\sqrt{2}} = \frac{\Delta V_{\text{rec}}}{R + \Gamma_{Z}} \times \Gamma_{Z}$$

$$\Rightarrow \Delta V_{\text{o}} = \frac{2}{820 + 10} \times 10 = 0.024$$

$$\Rightarrow \Delta V_{\text{o}} = \frac{2}{820 + 10} \times 10 = 0.024$$

$$\Rightarrow \Delta V_{\text{o}} = \frac{2}{820 + 10} \times 10 = 0.024$$

$$\Rightarrow \Delta V_{\text{o}} = \frac{2}{820 + 10} \times 10 = 0.024$$

(4b) Assuming that the switch is closed, calculate the minimum permissible value of the unregulated voltage v_{rec} . Show all the work.

The minimum value The boundary condition,

The boundary condition,

The boundary condition,

Therefore, is when i= Izk

Otvao

Connected. of Urec Should be

First calculate 1/20 using test datas U7= V7n+ 1272 5.1= Vz0+0.01x20 => 1/20=4.9V Then, $I_{Z}=I_{ZK}=1.5 \implies V_{Z}=4.9+0.01\times1.5=4.915$ Vo=Vz=4.915V=> J=Vo=4.915 = 4.915 mA I= I+IZ=4.915+1.5=6.415mA Urec= VZ+ RI= 4.915+0.820x6.415~10.2 Vrec= 10,2 (10) marks

Q5: In the transistor circuit of **Fig. 5**, determine the mode of operation of the transistor and the node voltages, if $V_{CC}=10~V$, $R_1=R_2=1.0~k\Omega$, $R_C=100~\Omega$, and $R_E=220~\Omega$. Assume that $V_{BEon}=0.7~V$, $V_{CEsat}=0.3~V$, and $\beta=100$.

Show all the work, and complete Table 5.

Fig. 5: Transistor circuit of Q5.

Table 5: transistor's mode of operation and the node voltages in the circuit of Q5.

Mode of Q1	$v_B[V]$	$v_C[V]$	$v_E[V]$
active	4.9	8.1	4.2

Blank Page

$$10^{\circ}$$
 10°
 10

KUL: 5-0.5
$$I_B$$
-0.7-0.22 I_E =0
Assuming active mode: I_B = $\frac{1}{\beta}I_C$, I_E = $\frac{\beta+1}{\beta}I_C$

$$\Rightarrow 5 - \frac{0.5}{100} = 0.7 - 0.22 \times \frac{101}{100} = 0$$

$$\Rightarrow T_{C} = \frac{4.3 \times 100}{0.5 + 0.22 \times 101} = 18.9^{mA}$$

$$\Rightarrow V_{C} = 10 - 0.1 \times 18.9 = 8.11^{V}$$

$$T_{E} = \frac{3+1}{B} = \frac{101}{100} \times 18.9 = 19.1 \text{ mA}$$

$$\Rightarrow V_{E} = 0 + 0.22 \times 19.1 = 4.2^{V}$$

$$\Rightarrow V_{B} = V_{E} + 0.7 = 4.2 + 0.7 = 4.9^{V}$$

check to see whether the "active mode" assumption was right: