Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-2, 4, 6-25, 49-64, and 66-70 (Canceled)

1	71. (New) An integrated circuit package comprising:
2	a silicon die having a first thickness;
3	a substrate having a first side and a second side;
4	a transition medium disposed between the silicon die and the first side of the
5	substrate; and
6	a mold cap which encapsulates the silicon die and the transition medium, wherein
7	the transition medium and the mold cap expand and contract at approximately the same rate in
8	response to temperature changes so as to reduce thermal stress on the silicon die during thermal
9	cycling.
1	72. (New) The integrated circuit package of claim 71, wherein the
2	transition medium and the mold cap have approximately equal coefficients of thermal expansion.
1	73. (New) The integrated circuit package of claim 71, wherein the
2	mold cap and transition medium have coefficients of thermal expansion between approximately
3	7×10^{-6} /°C and 15×10^{-6} /°C.
1	74. (New) The integrated circuit package of claim 71, wherein the
2	transition medium has a second thickness, and the first thickness of the silicon die is less than the
3	second thickness of the transition medium.

1

2

3

4

- The integrated circuit package of claim 71, wherein a first edge of the transition medium is coincident with a first edge of the silicon die, and a second edge of the transition medium is coincident with a second edge of the silicon die.
- The integrated circuit package of claim 71 wherein a thickness of the substrate and a thickness of the mold cap define a package thickness, wherein the silicon die is disposed at a location approximately equally spaced from the bottom of the substrate and the top of the mold cap.
- The integrated circuit package of claim 76 wherein the mold cap has a coefficient of thermal expansion similar to a coefficient of thermal expansion of the transition medium such that the die remains relatively motionless within the integrated circuit package during thermal cycling.
- The integrated circuit package of claim 71 wherein the 1 78. (New) 2 coupled the transition medium through adhesive. silicon die is to an
- 1 79. (New) The integrated circuit package of claim 78, wherein a coefficient of thermal expansion for the adhesive is approximately 58 x 10⁻⁶/°C.
- 1 80. (New) The integrated circuit package of claim 71 wherein the 2 substrate is a tape carrier having a dielectric layer and a conductive layer.
 - 81. (New) The integrated circuit package of claim 80 comprising solder balls mounted to the second side of the substrate, the solder balls electrically contacting an etched circuit in a conductive layer of the tape carrier and adapted to electrically connect the integrated circuit package to a printed circuit board.
- 1 82. (New) The integrated circuit package of claim 81, wherein the 2 transition medium and the mold cap have coefficients of thermal expansion less than a 3 coefficient of thermal expansion of the printed circuit board to which the integrated circuit

4	package is capable of being coupled with and greater than a coefficient of thermal expansion of
5	the silicon die.
1	83. (New) An integrated circuit package comprising:
2	a silicon die having a first thickness;
3	a metallized polymer layer having a first side and a second side;
4	a transition medium having a second thickness and disposed between the silicon
5	die and the first side of the metallized polymer layer; and
6	a mold cap which encapsulates the silicon die and the transition medium, wherein
7	the mold cap and transition medium expand and contract in response to temperature changes
8	such that the die remains relatively motionless within the integrated circuit package during
9	thermal cycling.
1	84. (New) The integrated circuit package of claim 83, wherein the
2	mold cap defines a third thickness and the metallized polymer layer defines a fourth thickness,
3	wherein the third thickness and fourth thickness define a package thickness, and wherein the
4	silicon die is disposed near the middle of the package thickness so as to reduce warping of the
5	integrated circuit package in response to thermal expansion of the die.
1	85. (New) The integrated circuit package of claim 83, wherein the first
2	thickness is less than the second thickness.
1	86. (New) The integrated circuit package of claim 83, wherein the
2	mold cap and the transition medium each comprise a first mold compound, such that coefficients
3	of thermal expansion of the transition medium and mold cap are approximately equal.
1	87. (New) The integrated circuit package of claim 83, wherein the
2	mold cap and transition medium have coefficients of thermal expansion between approximately
3	7×10^{-6} /°C and 15×10^{-6} /°C.

3

4

1 88. (New) The integrated circuit package of claim 83, wherein a first 2 edge of the transition medium is coincident with a first edge of the silicon die, and a second edge of the transition medium is coincident with a second edge of the silicon die. 3 89. 1 (New) The integrated circuit of claim 83, wherein the metallized 2 polymer layer is a tape carrier comprising solder balls mounted to the second side of the 3 metallized polymer layer, the solder balls electrically contacting an etched circuit in a conductive 4 layer of the tape carrier and adapted to electrically connect the integrated circuit package to a 5 printed circuit board. 90. The integrated circuit of claim 89, wherein the transition 1 (New) 2 medium and the mold cap have coefficients of thermal expansion less than a coefficient of

thermal expansion of the printed circuit board to which the integrated circuit package is capable

of being coupled with and greater than a coefficient of thermal expansion of the silicon die.