Corte Mínimo

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Seja G = (V, E) um grafo conexo ponderado tal que o peso da aresta $e_i \in E$ é dado por w_i .

Definimos o **corte** de um subconjunto S dos vértices e seu peso como

$$C(S) = \{\{x, y\} : x \in S \land y \notin S\} \qquad W(S) = \sum_{e_i \in C(S)} w_i.$$

Definimos o corte mínimo do grafo como

$$\min_{S\subset V}W(S).$$

Encontre um subconjunto não vazio S dos vértices que atinge o corte mínimo do grafo.

Input

A primeira linha da entrada contém dois inteiros separados por espaços, n e m, o número de vértices do grafo e o número de arestas entre eles. Seguem m linhas, cada uma com três inteiros, u_i , v_i e w_i , indicando que existe uma aresta de peso w_i entre os vértices v_i e w_i . Você deve considerar que nesse grafo não há arestas paralelas nem laços.

Output

A primeira linha da saída deve conter a quantidade de vértices do conjunto S. A segunda linha da saída deve conter o índice dos vértices de S, separados por espaços. A última linha deve conter W(C(S)).

Como a resposta pode não ser única, você deve escrever qualquer conjunto S, desde que W(S) seja mínimo.

Examples

standard input	standard output
4 6	1
0 1 1	0
0 2 1	3
0 3 1	
1 2 1	
1 3 1	
2 3 1	
4 3	3
0 1 1	0 2 3
0 2 1	1
0 3 1	
5 7	2
0 4 10	0 4
1 2 10	4
2 3 10	
0 1 1	
0 2 1	
4 2 1	
4 3 1	