

# 2K x 8 Static RAM

#### **Features**

- · Automatic power-down when deselected
- . CMOS for optimum speed/power
- · High speed
  - 15 ns
- Low active power
  - 660 mW (commercial)
- · Low standby power
  - 110 mW (20 ns)
- · TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- Available in Pb-free and non Pb-free 24-pin Molded SOJ, non Pb-free 24-pin (300-Mil) Molded DIP

### **Functional Description**

The CY7C128A is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), and active LOW Output Enable (OE) and tri-state drivers. The CY7C128A has an automatic power-down feature, reducing the power consumption by 83% when deselected.

Writing to the device is <u>acc</u>omplished when the Chip Enable (CE) and Write Enable (WE) inputs are both LOW.

Data on the eight I/O pins (I/O $_0$  through I/O $_7$ ) is written into the memory location specified on the address pins (A $_0$  through A $_{10}$ ).

Reading the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while Write Enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I/O pins.

The I/O  $\underline{pin}$ s remain in high-impedance state when Chip  $\underline{Enable}$  (CE) or Output Enable (OE) is HIGH or Write Enable (WE) is LOW.

The CY7C128A utilizes a die coat to insure alpha immunity.

## **Logic Block Diagram**



## **Pin Configurations**



C128A-2



## **Selection Guide**

|                                   | -15 | -20 | -35 | -45 |
|-----------------------------------|-----|-----|-----|-----|
| Maximum Access Time (ns)          | 15  | 20  | 35  | 45  |
| Maximum Operating Current (mA)    | 120 | 120 | 120 | 120 |
| Maximum CMOS Standby Current (mA) | 40  | 20  | 20  | 20  |

| <b>Maximum Ratings</b> (Above which the useful life may be impaired. For user guidelines, not tested.) |
|--------------------------------------------------------------------------------------------------------|
| Storage Temperature65°C to +150°C                                                                      |
| Ambient Temperature with Power Applied55°C to +125°C                                                   |
| Supply Voltage to Ground Potential (Pin 28 to Pin 14)0.5V to +7.0V                                     |
| DC Voltage Applied to Outputs in High Z State0.5V to +7.0V                                             |
| DC Input Voltage3.0V to +7.0V                                                                          |

| Output Current into Outputs (LOW)                      | 20 mA     |
|--------------------------------------------------------|-----------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V    |
| Latch-Up Current                                       | . >200 mA |

## **Operating Range**

| Range      | Ambient<br>Temperature | V <sub>CC</sub> |
|------------|------------------------|-----------------|
| Commercial | 0°C to +70°C           | 5V ± 10%        |

# **Electrical Characteristics** Over the Operating Range<sup>[2]</sup>

|                  |                                             |                                                                                                                                                                                                                                              | -    | 15              | -:   | 20              | -35, -45 |                 |      |
|------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------|-----------------|----------|-----------------|------|
| Parameter        | Description                                 | Test Conditions                                                                                                                                                                                                                              | Min. | Max.            | Min. | Max.            | Min.     | Max.            | Unit |
| V <sub>OH</sub>  | Output HIGH<br>Voltage                      | $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$                                                                                                                                                                                                    | 2.4  |                 | 2.4  |                 | 2.4      |                 | V    |
| V <sub>OL</sub>  | Output LOW<br>Voltage                       | $V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$                                                                                                                                                                                                     |      | 0.4             |      | 0.4             |          | 0.4             | V    |
| V <sub>IH</sub>  | Input HIGH<br>Voltage                       |                                                                                                                                                                                                                                              | 2.2  | V <sub>CC</sub> | 2.2  | V <sub>CC</sub> | 2.2      | V <sub>CC</sub> | V    |
| $V_{IL}$         | Input LOW<br>Voltage <sup>[3]</sup>         |                                                                                                                                                                                                                                              | -0.5 | 0.8             | -0.5 | 0.8             | -0.5     | 0.8             | V    |
| I <sub>IX</sub>  | Input Leakage<br>Current                    | $GND \le V_I \le V_{CC}$                                                                                                                                                                                                                     | -10  | +10             | -10  | +10             | -10      | +10             | μА   |
| I <sub>OZ</sub>  | Output Leakage<br>Current                   | $GND \le V_1 \le V_{CC}$<br>Output Disabled                                                                                                                                                                                                  | -10  | +10             | -10  | +10             | -10      | +10             | μА   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current | V <sub>CC</sub> = Max. I <sub>OUT</sub> = 0 mA                                                                                                                                                                                               |      | 120             |      | 120             |          | 120             | mA   |
| I <sub>SB1</sub> | Automatic CE<br>Power-Down<br>Current       | Max. V <sub>CC</sub> , CE ≥ V <sub>IH</sub> ,<br>Min. Duty Cycle = 100%                                                                                                                                                                      |      | 40              |      | 40              |          | 20              | mA   |
| I <sub>SB2</sub> | Automatic CE<br>Power-Down<br>Current       | $\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CE}}_1 \geq & \text{V}_{\text{CC}} - 0.3 \text{V}, \\ \text{V}_{\text{IN}} \geq & \text{V}_{\text{CC}} - 0.3 \text{V} \\ \text{or V}_{\text{IN}} \leq 0.3 \text{V} \end{array}$ |      | 40              |      | 20              |          | 20              | mA   |

- Notes:

  1. T<sub>A</sub> is the "instant on" case temperature.

  2. See the last page of this specification for Group A subgroup testing information.

  3. V<sub>IL</sub> (min.) = -3.0V for pulse durations less than 30 ns.



## Capacitance<sup>[4]</sup>

| Parameter        | Description        | Test Conditions                    | Max. | Unit |
|------------------|--------------------|------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1$ MHz, | 10   | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                    | 10   | pF   |

#### **AC Test Loads and Waveforms**



## Switching Characteristics Over the Operating Range<sup>[2, 5]</sup>

|                   |                                     | -    | 15   | -20  |      | -35  |      | -45  |      |      |
|-------------------|-------------------------------------|------|------|------|------|------|------|------|------|------|
| Parameter         | Description                         | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| READ CYCL         | E                                   | •    | ·    | U    |      | U    |      | U    | ·    |      |
| t <sub>RC</sub>   | Read Cycle Time                     | 15   |      | 20   |      | 35   |      | 45   |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid               |      | 15   |      | 20   |      | 35   |      | 45   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change       | 5    |      | 5    |      | 5    |      | 5    |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid                |      | 15   |      | 20   |      | 35   |      | 45   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid                |      | 10   |      | 10   |      | 15   |      | 20   | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z                     | 3    |      | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[6]</sup>    |      | 8    |      | 8    |      | 12   |      | 15   | ns   |
| t <sub>LZCE</sub> | CE LOW to Low Z <sup>[7]</sup>      | 5    |      | 5    |      | 5    |      | 5    |      | ns   |
| t <sub>HZCE</sub> | CE HIGH to High Z <sup>[6, 7]</sup> |      | 8    |      | 8    |      | 15   |      | 15   | ns   |
| t <sub>PU</sub>   | CE LOW to Power-Up                  | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>   | CE HIGH to Power-Down               |      | 15   |      | 20   |      | 20   |      | 25   | ns   |
| WRITE CYC         | L <b>E</b> <sup>[8]</sup>           | •    | •    | •    | •    | •    | •    | •    | •    |      |
| t <sub>WC</sub>   | Write Cycle Time                    | 15   |      | 20   |      | 25   |      | 40   |      | ns   |
| t <sub>SCE</sub>  | CE LOW to Write End                 | 12   |      | 15   |      | 25   |      | 30   |      | ns   |
| t <sub>AW</sub>   | Address Set-Up to Write End         | 12   |      | 15   |      | 25   |      | 30   |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End         | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start       | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                      | 12   |      | 15   |      | 20   |      | 20   |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End            | 10   |      | 10   |      | 15   |      | 15   |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End            | 0    |      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[6]</sup>     |      | 7    |      | 7    |      | 10   |      | 15   | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z                    | 5    |      | 5    |      | 5    |      | 5    |      | ns   |

- 4. Tested initially and after any design or process changes that may affect these parameters
  5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 30-pF load capacitance.

- 10/10H and 30-Ph load capacitarice.
   11/20E, t<sub>HZOE</sub>, t<sub>HZOE</sub>, and t<sub>HZWE</sub> are specified with C<sub>L</sub> = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given device.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given temperature and voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given temperature and voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given temperature and voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> is less than t<sub>LZOE</sub> for any given temperature and voltage.
   12/20E to any given temperature and voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> for any given temperature and voltage.
   12/20E to any given temperature and voltage condition, t<sub>HZOE</sub> to any given temperature and voltage and



## **Switching Waveforms**

## Read Cycle No. 1<sup>[9, 10]</sup>



# Read Cycle No. $\mathbf{2}^{[9, 11]}$



## Write Cycle No. 1 (WE Controlled)[8]



- Notes:

  9. WE is HIGH for read cycle.

  10. Device is continuously selected. OE, CE = V<sub>IL</sub>.

  11. Address valid prior to or coincident with CE transition LOW.



## Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[8, 12, 13]



#### Notes:

12. Data I/O pins enter high-impedance state, as shown, when  $\overline{\text{OE}}$  is held LOW during write.

13. If  $\overline{\text{CE}}$  goes HIGH simultaneously with  $\overline{\text{WE}}$  HIGH, the output remains in a high-impedance state.



## Typical DC and AC Characteristics





## **Ordering Information**

| Speed<br>(ns) | Ordering Code  | Package<br>Diagram | Package Type                | Operating<br>Range |
|---------------|----------------|--------------------|-----------------------------|--------------------|
| 15            | CY7C128A-15PC  | 51-85013           | 24-pin (300-Mil) Molded DIP | Commercial         |
|               | CY7C128A-15VC  | 51-85030           | 24-pin Molded SOJ           |                    |
|               | CY7C128A-15VXC |                    | 24-pin Molded SOJ           |                    |
| 20            | CY7C128A-20VXC | 51-85030           | 24-pin Molded SOJ (Pb-free) | Commercial         |
| 35            | CY7C128A-35VC  | 51-85030           | 24-pin Molded SOJ           | Commercial         |
| 45            | CY7C128A-45PC  | 51-85013           | 24-pin (300-Mil) Molded DIP | Commercial         |

Please contact local sales representative regarding availability of these parts

### **Package Diagrams**

## 24-pin (300-Mil) Molded DIP (51-85013)







## Package Diagrams (continued)

#### 24-pin (300-mil) SOJ (51-85030)



#### DIMENSIONS IN INCHES[MM]

MIN. MAX.

REFERENCE JEDEC MO-088
PACKAGE WEIGHT 0.75gms

| PART#                 |  |  |  |  |  |
|-----------------------|--|--|--|--|--|
| V24.3 STANDARD PKG.   |  |  |  |  |  |
| VZ24.3 LEAD FREE PKG. |  |  |  |  |  |





51-85030-\*B



# **Document History Page**

| Document Title: CY7C128A 2K x 8 Static RAM Document Number: 38-05028 |         |               |                 |                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------------------------------------------------------|---------|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| REV.                                                                 | ECN NO. | Issue<br>Date | Orig. of Change | Description of Change                                                                                                                                                                                                                                                                                     |  |  |
| **                                                                   | 106814  | 09/10/01      | SZV             | Change from Spec number: 38-00094 to 38-05028                                                                                                                                                                                                                                                             |  |  |
| *A                                                                   | 493543  | See ECN       | NXR             | Removed 25 ns speed bin Removed Military Operating Range Changed the description of I <sub>IX</sub> from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I <sub>OS</sub> parameter from DC Electrical Characteristics table Updated ordering Information Table |  |  |