Higher gerbes, loop spaces, and transgression

Chris Kottke, with R. Melrose

New College of Florida

Geometric and Spectral Methods in PDE CMO-BIRS Oaxaca, December 2016

Gerbes

Higher gerbes

Relation to loop spaces

Line bundles : $H^2(X; \mathbb{Z})$

- ▶ A complex line bundle $L \longrightarrow X$ has a Chern class $c_1(L) \in H^2(X; \mathbb{Z})$.
- Naturality:

$$c_1(\mathbb{C} \times X) = 0,$$
 $c_1(L \otimes L') = c_1(L) + c_1(L'),$
 $c_1(L^{-1}) = -c_1(L),$ $c_1(f^*L) = f^*c_1(L)$

• $c_1(L) = c_2(L')$ if and only if $L \cong L'$.

Line bundles : $H^2(X; \mathbb{Z})$

- ▶ A complex line bundle $L \longrightarrow X$ has a Chern class $c_1(L) \in H^2(X; \mathbb{Z})$.
- Naturality:

$$c_1(\mathbb{C} \times X) = 0,$$
 $c_1(L \otimes L') = c_1(L) + c_1(L'),$
 $c_1(L^{-1}) = -c_1(L),$ $c_1(f^*L) = f^*c_1(L)$

- $c_1(L) = c_2(L')$ if and only if $L \cong L'$.
- ▶ Seen by Čech cohomology: $[L] \in \check{C}^1(X; \mathbb{C}^*)$ satisfies d[L] = 1, unique up to dh, $h \in \check{C}^0(X; \mathbb{C}^*)$, so

$$[L] \in \check{H}^1(X; \mathbb{C}^*) \cong H^2(X; \mathbb{Z}).$$

▶ Various versions: Giraud, Brylinski, Hitchin and Chattergee, Murray.

- ▶ Various versions: Giraud, Brylinski, Hitchin and Chattergee, Murray.
- ▶ Murray: a bundle gerbe (L, Y, X) is
 - a fiber bundle (more generally: locally split, i.e., surjective map admitting local sections)

$$p: Y \longrightarrow X$$
,

a line bundle

$$L \longrightarrow Y^{[2]} = Y \times_X Y = \{(y_1, y_2) : p(y_1) = p(y_2) \in X\}$$

with a product

$$\phi: L_{(y_1,y_2)} \otimes L_{(y_2,y_3)} \xrightarrow{\cong} L_{(y_1,y_3)}, \quad (y_1,y_2,y_3) \in Y^{[3]}$$

satisfying associativity:

$$\phi \circ (1 \otimes \phi) = \phi \circ (\phi \otimes 1) : L_{(y_1, y_2)} \otimes L_{(y_2, y_3)} \otimes L_{(y_3, y_4)} \cong L_{(y_1, y_4)},$$
$$(y_1, y_2, y_3, y_4) \in Y^{[4]}$$

▶ (L, Y, X) has a Dixmier Douady class $DD(L, Y, X) \in H^3(X; \mathbb{Z})$.

▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some $Q \longrightarrow Y$.

$$X \xleftarrow{p} Y \xleftarrow{p_1} Y^{[2]}$$

- ▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some $Q \longrightarrow Y$.
- ► Inverse: $(L, Y, X)^{-1} = (L^{-1}, Y, X)$.
- ▶ Product: $(L, Y, X) \otimes (L', Y', X) = (\pi_1^* L \otimes \pi_2^* L', Y \times_X Y', X)$
- ▶ Pullback: $f^*(L, Y, X) = (f^*L, f^*Y, X')$

- ▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some $Q \longrightarrow Y$.
- ► Inverse: $(L, Y, X)^{-1} = (L^{-1}, Y, X)$.
- ▶ Product: $(L, Y, X) \otimes (L', Y', X) = (\pi_1^* L \otimes \pi_2^* L', Y \times_X Y', X)$
- ▶ Pullback: $f^*(L, Y, X) = (f^*L, f^*Y, X')$
- Relation with DD class:
 - ▶ DD(L) = 0 if and only if L is trivial.
 - $DD(L^{-1}) = -DD(L)$
 - $DD(L \otimes L') = DD(L) + DD(L')$
 - $DD(f^*L) = f^*DD(L).$
 - ▶ DD(L) = DD(L') if and only if L and L' are stably isomorphic, i.e., $L \otimes Q \cong L' \otimes Q'$ for trivial gerbes Q and Q'.

Example: lifting bundle gerbes

 $ightharpoonup E \longrightarrow X$ principal G bundle, where G has a central extension

$$1 \longrightarrow \mathbb{C}^* \longrightarrow \widehat{\mathsf{G}} \longrightarrow \mathsf{G} \longrightarrow 1$$

- ▶ $\widehat{G} \longrightarrow G$ defines an associated line bundle $L = \widehat{G} \times_{\mathbb{C}^*} \mathbb{C} \longrightarrow G$
- ▶ Difference map $u: E^{[2]} \longrightarrow G$, where " $u(y_0, y_1) = y_0^{-1} y_1$ " i.e., $u(y_0, y_1) = g$ such that $y_1 = y_0 g$.
- (u^*L, E, X) is the *lifting bundle gerbe* for E.

$$\begin{array}{ccc}
u^*L & L \\
\downarrow & \downarrow \\
E^{[2]} & \xrightarrow{u} & G \\
\downarrow & \chi
\end{array}$$

▶ $DD(u^*L, E, X) \in H^3(X; \mathbb{Z})$ is the obstruction to lifting E to a \widehat{G} bundle $\widehat{E} \longrightarrow X$.

$$X \longleftarrow Y \longleftarrow Y^{[2]} \longleftarrow Y^{[3]} \longleftarrow Y^{[4]} \cdots$$

$$X \longleftarrow Y \longleftarrow Y^{[2]} \longleftarrow Y^{[3]} \longleftarrow Y^{[4]} \cdots$$

▶ A simplicial space (over X) is a sequence $\{Y_n : n \in \mathbb{N}_0\}$ of spaces with face maps $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and degeneracy maps $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (commuting with maps to X), satisfying relations derived from those of standard simplices.

$$X \longleftarrow Y_0 \Longleftarrow Y_1 \oiint Y_2 \oiint Y_3 \cdots$$

▶ A simplicial space (over X) is a sequence $\{Y_n : n \in \mathbb{N}_0\}$ of spaces with face maps $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \dots, n$ and degeneracy maps $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \dots, n-1$ (commuting with maps to X), satisfying relations derived from those of standard simplices.

- ▶ A simplicial space (over X) is a sequence $\{Y_n : n \in \mathbb{N}_0\}$ of spaces with face maps $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and degeneracy maps $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (commuting with maps to X), satisfying relations derived from those of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^*L \otimes p_1^*L^{-1} \otimes p_2^*L$ pulling back to the canonical trivialization of $\delta \delta L$.

- ▶ A simplicial space (over X) is a sequence $\{Y_n : n \in \mathbb{N}_0\}$ of spaces with face maps $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and degeneracy maps $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (commuting with maps to X), satisfying relations derived from those of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^*L \otimes p_1^*L^{-1} \otimes p_2^*L$ pulling back to the canonical trivialization of $\delta \delta L$.
- ▶ In case Y_{\bullet} consists of fiber products $Y^{[\bullet-1]}$ of a locally split map $Y \longrightarrow X$, this recovers the definition of a bundle gerbe.

- ▶ A simplicial space (over X) is a sequence $\{Y_n : n \in \mathbb{N}_0\}$ of spaces with face maps $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and degeneracy maps $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (commuting with maps to X), satisfying relations derived from those of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^*L \otimes p_1^*L^{-1} \otimes p_2^*L$ pulling back to the canonical trivialization of $\delta \delta L$.
- ▶ In case Y_{\bullet} consists of fiber products $Y^{[\bullet-1]}$ of a locally split map $Y \longrightarrow X$, this recovers the definition of a bundle gerbe.

 $Y \longrightarrow X$ locally split induces a double complex

which is vertically exact.

 $Y \longrightarrow X$ locally split induces a double complex

$$\begin{array}{cccc}
\delta \uparrow & \delta \uparrow & \delta \uparrow \\
\check{C}^{0}(Y^{[2]}; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{1}(Y^{[2]}; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{2}(Y^{[2]}; \mathbb{C}^{*}) \stackrel{d}{\to} \cdots \\
\delta \uparrow & \delta \uparrow & \delta \uparrow \\
\check{C}^{0}(Y; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{1}(Y; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{2}(Y; \mathbb{C}^{*}) \stackrel{d}{\to} \cdots \\
\delta \uparrow & \delta \uparrow & \delta \uparrow \\
\check{C}^{0}(X; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{1}(X; \mathbb{C}^{*}) \stackrel{d}{\to} \check{C}^{2}(X; \mathbb{C}^{*}) \stackrel{d}{\to} \cdots
\end{array}$$

which is vertically exact. The Dixmier-Douady class is just a diagram chase:

 $Y \longrightarrow X$ locally split induces a double complex

which is vertically exact. The Dixmier-Douady class is just a diagram chase:

$$\begin{array}{c}
1\\
\uparrow\\
[L] \longrightarrow 1\\
\uparrow\\
\beta \longrightarrow d\beta \longrightarrow 1\\
\uparrow\\
\alpha \longrightarrow 1
\end{array}$$

Then $DD(L) = [\alpha] \in \check{H}^2(X; \mathbb{C}^*) \cong H^3(X; \mathbb{Z}).$

 $Y \longrightarrow X$ locally split induces a double complex

which is vertically exact. The Dixmier-Douady class is just a diagram chase:

$$\begin{array}{c}
1 \\
\uparrow \\
[L] \to 1 \\
\uparrow & \uparrow \\
\beta \to d\beta \to 1 \\
\uparrow & \uparrow \\
\alpha \to 1
\end{array}$$

Then $DD(L) = [\alpha] \in \check{H}^2(X; \mathbb{C}^*) \cong H^3(X; \mathbb{Z})$. Also Y supports a bundle gerbe with class $[\alpha] \in H^3(X; \mathbb{Z})$ iff $\delta[\alpha] = 0 \in H^3(Y; \mathbb{Z})$.

► Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

- ► Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.
- \blacktriangleright A bundle 2-gerbe (L, Z, Y, X) is a "simplicial bundle gerbe"

- ▶ A fiber bundle $Y \longrightarrow X$,
- A gerbe $\mathbb{L} = (L, Z, Y^{[2]}),$
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,

- Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.
- ▶ A bundle 2-gerbe (L, Z, Y, X) is a "simpicial bundle gerbe"

- A fiber bundle $Y \longrightarrow X$,
- A gerbe $\mathbb{L} = (L, Z, Y^{[2]})$,
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- ▶ A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2\mathbb{L}$ to the canonical one,
- A coherency condition on pulled back 2-morphisms over Y^[5].

- Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.
- ▶ A bundle 2-gerbe (L, Z, Y, X) is a "simplicial bundle gerbe"

- A fiber bundle $Y \longrightarrow X$,
- A gerbe $\mathbb{L} = (L, Z, Y^{[2]})$,
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- ▶ A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2\mathbb{L}$ to the canonical one,
- A coherency condition on pulled back 2-morphisms over Y^[5].
- ▶ (L, Z, Y, X) has a well-defined class $DD(L, Z, Y, X) \in H^4(X; \mathbb{Z})$.

- Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.
- ▶ A bundle 2-gerbe (L, Z, Y, X) is a "simpicial bundle gerbe"

- ightharpoonup A fiber bundle $Y \longrightarrow X$,
- ▶ A gerbe $\mathbb{L} = (L, Z, Y^{[2]}),$
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2\mathbb{L}$ to the canonical one,
- ► A coherency condition on pulled back 2-morphisms over Y^[5].
- ▶ (L, Z, Y, X) has a well-defined class $DD(L, Z, Y, X) \in H^4(X; \mathbb{Z})$.
- ▶ For higher gerbes $(H^{\geq 5}(X; \mathbb{Z}))$, higher and more complicated coherency conditions will appear.
- Y and Z are not on equal footing.

$$Z \longleftarrow W_{00}$$
 \downarrow
 $X \longleftarrow Y$

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ fiber bundles (or locally split).
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ fiber bundles forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger. Set $W_{00} = W$.

$$Z \longleftarrow W_{00}$$
 \downarrow
 $X \longleftarrow Y$

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ fiber bundles (or locally split).
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ fiber bundles forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger. Set $W_{00} = W$.
- ▶ Fill out the diagram by fiber products.

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ fiber bundles (or locally split).
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ fiber bundles forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger. Set $W_{00} = W$.
- Fill out the diagram by fiber products.

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ fiber bundles (or locally split).
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ fiber bundles forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger. Set $W_{00} = W$.
- Fill out the diagram by fiber products.

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ fiber bundles (or locally split).
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ fiber bundles forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger. Set $W_{00} = W$.
- ▶ Fill out the diagram by fiber products.
- \blacktriangleright $W_{\bullet\bullet}$ forms a bisimplicial space over X.

Definition

A bundle bigerbe is a "bisimplicial line bundle" over $W_{\bullet \bullet}$, i.e., a line bundle L over W_{11} , with trivializations of $\delta_0 L$ and $\delta_1 L$, such that the induced trivializations of $\delta_0 \delta_1 L$ agree and which induce the canonical trivializations of $\delta_1^2 L$ and $\delta_0^2 L$.

Definition

A bundle bigerbe is a "bisimplicial line bundle" over $W_{\bullet\bullet}$, i.e., a line bundle L over W_{11} , with trivializations of $\delta_0 L$ and $\delta_1 L$, such that the induced trivializations of $\delta_0 \delta_1 L$ agree and which induce the canonical trivializations of $\delta_1^2 L$ and $\delta_0^2 L$.

- Products, inverses, pull backs straightforward to define.
- ▶ A *trivialization* is an isomorphism $L \cong \delta_0 \delta_1 Q$ for a line bundle Q over W_{00} .

Theorem

A bundle bigerbe (L,W,X) has a well-defined Dixmier-Douady class $DD(L) \in H^4(X;\mathbb{Z})$, with

$$DD(L^{-1}) = -DD(L),$$

$$DD(L \otimes L') = DD(L) + DD(L'),$$

$$DD(f^*L) = f^*DD(L).$$

DD(L) = 0 if and only if L is trivial. DD(L) = DD(L') if and only if L and L' are stably isomorphic.

Theorem

A bundle bigerbe (L,W,X) has a well-defined Dixmier-Douady class $DD(L) \in H^4(X;\mathbb{Z})$, with

$$DD(L^{-1}) = -DD(L),$$

$$DD(L \otimes L') = DD(L) + DD(L'),$$

$$DD(f^*L) = f^*DD(L).$$

DD(L) = 0 if and only if L is trivial. DD(L) = DD(L') if and only if L and L' are stably isomorphic.

 Definition generalizes in a straightforward manner to higher degree (Exercise).

Theorem

A bundle multigerbe L of degree n has a well-defined Dixmier-Douady class $DD(L) \in H^{2+n}(X;\mathbb{Z})$, with

$$DD(L^{-1}) = -DD(L),$$

$$DD(L \otimes L') = DD(L) + DD(L'),$$

$$DD(f^*L) = f^*DD(L).$$

DD(L) = 0 if and only if L is trivial. DD(L) = DD(L') if and only if L and L' are stably isomorphic.

 Definition generalizes in a straightforward manner to higher degree (Exercise).

- ▶ Suppose *X* is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .

- ▶ Suppose *X* is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".

- ▶ Suppose *X* is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".
- Likewise, if X is simply connected, with $Y = Z = \mathcal{P}_*X$ and $W_{00} = \mathcal{P}_*\mathcal{P}_*X$, Then $W_{11} = \Omega^2X$, the double based loop space of X.
- ▶ Every class in $H^4(X; \mathbb{Z})$ is represented by a bisimplicial (or doubly fusion) line bundle $L \longrightarrow \Omega^2 X$.

- ▶ Suppose *X* is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".
- ▶ Likewise, if X is simply connected, with $Y = Z = \mathcal{P}_*X$ and $W_{00} = \mathcal{P}_*\mathcal{P}_*X$, Then $W_{11} = \Omega^2X$, the double based loop space of X.
- ▶ Every class in $H^4(X; \mathbb{Z})$ is represented by a bisimplicial (or doubly fusion) line bundle $L \longrightarrow \Omega^2 X$.

Proposition

If X is k-connected, then every class in $H^{3+k}(X; \mathbb{Z})$ is represented by a multisimplicial line bundle on $\Omega^{2+k}X$.

Existence: free loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.

Existence: free loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a simplicial line bundle $L = (L, \mathcal{P}X, X^2)$ on $\mathcal{L}X$, with the additional condition of a trivialization of the alternating product of pullbacks to the "figure-of-eight" loop space [K-Melrose, 2013].
- ► Figure-of-eight is yet another simplicial condition "over" the simplicial space

$$X \longleftarrow X^2 \longleftarrow X^3 \cdots$$

guaranteeing that the class in $H^3(X^2; \mathbb{Z})$ comes from $H^3(X; \mathbb{Z})$.

Existence: free loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a simplicial line bundle $L = (L, \mathcal{P}X, X^2)$ on $\mathcal{L}X$, with the additional condition of a trivialization of the alternating product of pullbacks to the "figure-of-eight" loop space [K-Melrose, 2013].
- Figure-of-eight is yet another simplicial condition "over" the simplicial space

$$X \longleftarrow X^2 \longleftarrow X^3 \cdots$$

guaranteeing that the class in $H^3(X^2; \mathbb{Z})$ comes from $H^3(X; \mathbb{Z})$.

Proposition

Every class in $H^{3+k}(X;\mathbb{Z})$ is represented by a multisimplicial (and multi figure-of-eight) line bundle on $\mathcal{L}^{2+k}X$.

- ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.
- ▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

$$H^k(X;\mathbb{Z}) \xrightarrow{\operatorname{ev}^*} H^k(\mathbb{S}^1 \times \mathcal{L}X;\mathbb{Z})$$

$$\downarrow^{\int_{\mathbb{S}^1}} H^{k-1}(\mathcal{L}X;\mathbb{Z})$$

▶ Loses information since it forgets the simplicial properties of *L*.

- ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.
- ▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

$$H^k(X;\mathbb{Z}) \xrightarrow{\operatorname{ev}^*} H^k(\mathbb{S}^1 \times \mathcal{L}X;\mathbb{Z})$$

$$\downarrow^{\int_{\mathbb{S}^1}} H^{k-1}(\mathcal{L}X;\mathbb{Z})$$

- ► Loses information since it forgets the simplicial properties of *L*.
- ▶ [K.-Melrose, 2015]: "Loop-fusion" Čech cohomology $H^{\bullet}_{\mathrm{lf}}(\mathcal{L}X;\mathbb{Z})$ such that transgression factors through an isomorphism

$$H^k(X;\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H^{k-1}_{\mathrm{lf}}(\mathcal{L}X;\mathbb{Z}) \longrightarrow H^{k-1}(\mathcal{L}X;\mathbb{Z}).$$

- ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.
- ▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

$$H^{k}(X;\mathbb{Z}) \xrightarrow{\operatorname{ev}^{*}} H^{k}(\mathbb{S}^{1} \times \mathcal{L}X;\mathbb{Z})$$

$$\downarrow^{\int_{\mathbb{S}^{1}}}$$

$$H^{k-1}(\mathcal{L}X;\mathbb{Z})$$

- ▶ Loses information since it forgets the simplicial properties of *L*.
- ▶ [K.-Melrose, 2015]: "Loop-fusion" Čech cohomology $H^{\bullet}_{lf}(\mathcal{L}X;\mathbb{Z})$ such that transgression factors through an isomorphism

$$H^k(X;\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H^{k-1}_{\mathrm{lf}}(\mathcal{L}X;\mathbb{Z}) \longrightarrow H^{k-1}(\mathcal{L}X;\mathbb{Z}).$$

Theorem

On $\mathcal{L}^{\ell}X$ there is a well-defined loop-fusion cohomology $\check{H}^{\bullet}_{lf}(\mathcal{L}^{\ell}X;\mathbb{Z})$ through which iterated transgression factors as an isomorphism:

$$H_{\mathrm{lf}}^{k}(\mathcal{L}^{\ell}X;\mathbb{Z}) \xrightarrow{\cong} H_{\mathrm{lf}}^{k-n}(\mathcal{L}^{\ell+n}X;\mathbb{Z}).$$

Spin structures on loop space

- ▶ Let X be a spin manifold and $E \longrightarrow X$ the principal $G = \operatorname{Spin}_n$ bundle.
- ▶ Then $LE \longrightarrow LX$ is a LG bundle, and LG has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}G} \longrightarrow \mathcal{L}G \longrightarrow 1$$

Spin structures on loop space

- ▶ Let X be a spin manifold and $E \longrightarrow X$ the principal $G = \operatorname{Spin}_n$ bundle.
- ▶ Then $LE \longrightarrow LX$ is a LG bundle, and LG has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}G} \longrightarrow \mathcal{L}G \longrightarrow 1$$

▶ A lift of $\mathcal{L}E$ to a $\widehat{\mathcal{L}G}$ -bundle is a "spin structure" on loop space [Atiyah, Witten].

Spin structures on loop space

- ▶ Let X be a spin manifold and $E \longrightarrow X$ the principal $G = \operatorname{Spin}_n$ bundle.
- ▶ Then $LE \longrightarrow LX$ is a LG bundle, and LG has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}G} \longrightarrow \mathcal{L}G \longrightarrow 1$$

▶ A lift of $\mathcal{L}E$ to a $\widehat{\mathcal{L}G}$ -bundle is a "spin structure" on loop space [Atiyah, Witten].

Proposition

The lifting bundle gerbe $(u^*\widehat{\mathcal{L}G},\mathcal{L}E,\mathcal{L}X)$ is a bundle bigerbe associated to the bisimplicial space generated by

$$\begin{array}{ccc}
E^2 & \longleftarrow & \mathcal{P}E \\
\downarrow & & \downarrow \\
X^2 & \longleftarrow & \mathcal{P}X
\end{array}$$

with Dixmier-Douady class $\frac{1}{2}p_1(X) \in H^4(X; \mathbb{Z})$.

c.f. McLaughlin, Redden, Waldorf, K.-Melrose.

Questions and future directions

- ▶ Connection structures, representations of differential cohomology.
- ▶ On $\mathcal{L}X$ (and generally \mathcal{L}^kX), equivariance of L with respect to action of $\operatorname{Diffeo}^+(\mathbb{S}^1)$ (and its central extension) [c.f. Brylinski]. This may have an important role to play in elliptic cohomology theories.
- ▶ Loop-fusion K-theory of $\mathcal{L}X$ and $\mathcal{L}^{\ell}X$.