杭州电子科技大学信息工程学院(2014级)学生考试卷(期末)A卷

课程名称	微积分 1	考试日期	2015年1月	时间共 120 分银		
请学生们注意	:					
所有结果都要写在答题纸的相应位置上,写在其它地方包括试卷上不计分。						

一、判断题(每小题2分,共计10分)

- 1. 函数 $f(x) = \frac{\sqrt{x+2}}{|x|-x}$ 定义域为 [-2,0)。 ()
- 2. $\int_{-1}^{1} \frac{1}{x} dx = 0. \quad ()$
- 3. 设 $y = x^2 \sin x$,则当 $x \to \infty$ 时,y是无穷大量。()
- 4. 函数 $y = \sin(x^3 + 1)$ 为奇函数。()
- 5. 可导的周期函数的导数为周期函数。(
- 二、单项选择题(每小题3分,共计30分)
- 1. 设f(x)为奇函数,g(x)为偶函数,则()为奇函数。
- (A) f[g(x)]
- (B) g[f(x)]
- (C) f[f(x)] (D) g[g(x)]
- 2. $x = 0 \not\equiv f = \arctan \frac{1}{r}$ in ()
 - (A) 连续点 (B) 可去间断点 (C) 跳跃间断点 (D) 第二类间断点
- 3. 设*n* 是曲线 $y = \frac{x^2}{x^2 2}$ 的渐近线的条数,则 n = ()
 - (A) 1 (B) 2 (C) 3 (D) 4

- 4. 设 $f(x) = 1 \cos(x^2)$, $g(x) = x \sin x^2$, 则当 $x \to 0$ 时, f(x) 是 g(x) 的()
 - (A) 同阶无穷小, 但不等价
- (B) 等价无穷小
- (C) 低阶无穷小
- (D) 高阶无穷小
- 5. 函数 $f(x) = x^3 + 2x 1$ 在 (0, +∞) 内的零点个数为 ()
 - A. 0 B. 1 C. 2 D. 3
- 6. 下列反常积分中发散的是()
- (A) $\int_{2}^{+\infty} \frac{dx}{r \ln^{2} x}$ (B) $\int_{1}^{+\infty} \frac{dx}{1+r^{2}}$ (C) $\int_{1}^{+\infty} \frac{dx}{r(1+r)}$ (D) $\int_{0}^{+\infty} \frac{dx}{r^{2}}$
- 7. $\lim_{x \to \infty} \frac{x + \sin x}{x + 1} = ()$
- (A) 1. (B) 0. (C) 不存在. (D) ∞.
- 8. 设 f(x) 的一个原函数为 $ln(x^2)$,则 f'(x) =
- (A) $e^{x^2/2}$ (B) $x(\ln x 1) + C$ (C) $-\frac{2}{x^2}$ (D) $\frac{1}{x}$
- 9. 曲线 $y = \cos x$ $\left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$ 与 x 轴旋转一周所得立体体积为()

 - (A) $\pi/2$ (B) $\pi^2/2$ (C) $\frac{1}{2}$ (D) π^2
- 10. $f(x) = x^3 3x + 1$ 在区间[0,2]上的最小值为(

 - (A) 1 (B) -1 (C) 3 (D) 0

三、填空题(每空格3分,共计30分)

1. 函数
$$y = \frac{\sqrt[3]{x} - 1}{x^2 + x - 2}$$
 的可去间断点为______.

2. 设函数
$$y = \sin \sqrt{x}$$
 ,则 $dy =$ _____.

3. 设
$$y = e^{2x}$$
,则 $y^{(5)}(x) =$ ______.

4. 设
$$\begin{cases} y = 4t^3 + t^2 \\ x = t^2 + 1 \end{cases}$$
 , 则 $y'(x) =$ ______.

5.
$$\int_{-1}^{1} (1+x)\sqrt{1-x^2} \, dx = \underline{\qquad}.$$

6. 设
$$y = \int_0^{x^2} \sin(t^2 + 1) dt$$
,则 $y'(x) =$ ______.

7. 函数
$$y = e^{x^2 - x}$$
 的极值为______.

8.
$$\int_0^1 \frac{dx}{\sqrt{x}(1+x)} = \underline{\hspace{1cm}}$$

10. 函数
$$y = xe^{-x}$$
 的单调增加区间为______.

四、计算题 (每小题 6 分, 共 24 分)

2. 设
$$f(x) = \begin{cases} \frac{1}{1+x^2}, & x \le 0 \\ a+bx-x^2, & x > 0 \end{cases}$$
, 确定参数 a,b , 使 $f(x)$ 在 $x = 0$ 可导。

3. 求积分
$$\int e^{\sqrt{x}} dx$$

4. 过 P(1,0) 作 $y = \sqrt{x-2}$ 的切线,该切线与抛物线、x 轴围成一平面图形,求平面图形的面积。

五、证明题(本题6分)

设函数 f(x) 在[0,1] 上连续,在(0,1) 内可导,证明至少存在一点 $\xi \in (0,1)$,使 得 $f(1) = 2\xi f(\xi) + \xi^2 f'(\xi)$.

2. 解

2014-2015 第 1 学期微积分 1 期末考试 A 卷

答 题 纸

课程名称	微积分 1	考试日期	2015年1月		成绩	
考生姓名		任课教师姓名				
学号		班级			专业	

3. 解

4.解

请学生们注意:所有结果都要写在答题纸的相应位置上,写在其它地方包括试卷上不计分。

一、判断题

1	2	3	4	5

二 选择题

1	2	3	4	5	6	7	8	9	10

三、填空题

1	2	3
<u>4</u>	<u>5</u>	<u>6</u>
<u>7</u>	<u>8</u>	9
10		

五、证明题

四、计算题

1. 解