Derivation of Softmax Random Walk Algorithm

Supplementary Method

Objective:

To compute the probability of moving from a current position (x, y) to a neighboring position (i, j) by blending terrain slope and movement inertia, considering valid data and avoiding immediate return to the last position.

Preliminaries and Definitions:

Notations:

• (x,y): Current Position

• (*i*, *j*): Neighboring Position

Parameters:

• ϕ : Weighting factor for slope.

• ψ : Weighting factor for inertia.

• ω : Blending factor between inertia and slope.

Cosine Similarity:

Given two vectors A and B, the cosine similarity, $cosine_similarity(A, B)$, is:

$$\text{cosine_similarity}(A,B) = \frac{A \cdot B}{\|A\|_2 \|B\|_2}$$

Softmax Transformation:

For a vector z with components $z_1, z_2, \dots z_k$, the softmax function, denoted as $\operatorname{softmax}(z)$, is defined as:

$$\operatorname{softmax}(z)_j = rac{e^{z_j}}{\sum_{l=1}^k e^{z_l}}$$

Elements Calculation:

Slope, $S_{i,j}$:

Given:

- e_c and e_n as elevations at current position and neighbor.
- dx and dy as absolute differences in x and y coordinates. The slope $S_{i,j}$ between positions is calculated as follows, considering the handling of invalid data and the distance for diagonal vs. orthogonal moves:

$$S_{i,j} = egin{cases} ext{np.NINF} & ext{if } e_c ext{ or } e_n ext{ is invalid or } e_c = e_n = ext{no_data_value} \ rac{e_c - e_n}{\sqrt{2}} & ext{if } dx = dy ext{ (diagonal move)} \ rac{e_c - e_n}{1} & ext{if } dx
eq dy ext{ (orthogonal move)} \end{cases}$$

Inertia, $I_{i,j}$:

Using the last movement vector $V_{last}=[dx_{last},dy_{last}]$ and the direction vector $V_{direction}=[i-x,j-y].$

$$I_{i,j} = \left(rac{1 + ext{cosine_similarity}(V_{last}, V_{direction})}{2}
ight)$$

Combining Slope and Inertia:

Raw Combined Weight:

Blend slope and inertia using:

$$W_{i,j}^{raw} = (1-\omega)\psi I_{i,j} + \omega \phi S_{i,j}$$

Probabilistic Decision Model:

Softmax Transformation:

Compute the transition probabilities by applying the softmax function to the combined weights directly:

$$P((x,y) o (i,j)) = \operatorname{softmax}(W^{raw})_{i,j} o rac{e^{W^{raw}_{i,j}}}{\sum_{(k,l) \in \operatorname{neighbors}} e^{W^{raw}_{k,l}}}$$

Here, (k,l) ranges over all positions neighboring (x,y) that are potential candidates for movement, excluding the current position itself and any positions that would constitute an immediate return to the last position.

Computation:

- 1. For (x, y), calculate $S_{i,j}$ and $I_{i,j}$ for all valid neighbors, excluding the immediate last position to prevent back-and-forth movement.
- 2. Compute the raw combined weight, $W_{i,j}^{raw}$, for each neighbor by blending inertia and slope.
- 3. Apply the softmax function to the combined weights to get probabilities for each neighbor.
- 4. Select a neighbor (i, j) based on these probabilities.
- 5. Update (x, y) to (i, j) and continue, ensuring to handle masked or invalid elevation data appropriately.

```
# Supplementary Note
# data dictionary
# blue color denotes icesat-2 measurement
For Supplementary Tables 1 and 2
Avulsion Name: name of the avulsion.
geometry: geometry of the avulsion (WKT point).
source: source of the avulsion data.
num icesat measurements: number of ICESat measurements used.
num_fabdem_measurements: number of FABDEM measurements used.
method_used: method used to calculate the channel depth based on the
relationship between A and B. 1 = A < B, 2 = 1 < A < 1.5B, 3 = A > 1.5B.
dist_mtn_front_to_avulsion_m: distance from the mountain front to the
avulsion point (m).
total_transport_distance_m: total transport distance from mountain-
valley exit to sink (m).
normalized_distance: X_N from the manuscript, calculated as
total_transport_distance_m / dist_mtn_front_to_avulsion_m (-)
sar1: alluvial ridge slope measurement 1 (m/m).
sar2: alluvial ridge slope measurement 2 (m/m).
sar3: alluvial ridge slope measurement 3 (m/m).
sar_mean: mean alluvial ridge slope (m/m).
sm1: main channel slope measurement 1 (m/m).
sm2: main channel slope measurement 2 (m/m).
sm3: main channel slope measurement 3 (m/m).
are1 m: alluvial ridge elevation measurement 1 (m).
fpe1 m: floodplain elevation measurement 1 (m).
wse1_m: water surface elevation measurement 1 (m).
are2 m: alluvial ridge elevation measurement 2 (m).
fpe2 m: floodplain elevation measurement 2 (m).
wse2 m: water surface elevation measurement 2 (m).
are3 m: alluvial ridge elevation measurement 3 (m).
fpe3 m: floodplain elevation measurement 3 (m).
wse3 m: water surface elevation measurement 3 (m).
width m: channel width (m).
discharge_min_cms: minimum yearly discharge from RiverATLAS (m3/s).
discharge_mean_cms: mean yearly discharge from RiverATLAS (m3/s).
discharge max cms: maximum yearly discharge from RiverATLAS (m3/s).
se_1: superelevation calculation from _1 measurements (m).
se_2: superelevation calculation from _2 measurements (m).
se 3: superelevation calculation from 3 measurements (m).
se_std: standard deviation of superelevation measurements (m).
sm mean: mean main channel slope (m/m).
gamma: ratio of alluvial ridge slope to main channel slope (-).
spr: slope position ratio X_N/S_M (-).
gamma_error_upper: upper bound of gamma error (-).
gamma_error_lower: lower bound of gamma error (-).
corrected discharge: RiverATLAS corrected discharge (m3/s).
xgb_depth: BASED depth estimate of channel depth (m).
```

```
har1 m: alluvial ridge height calculation from 1 measurements (m).
har2_m: alluvial ridge height calculation from _2 measurements (m).
har3_m: alluvial ridge height calculation from _3 measurements (m).
a: mean of (alluvial ridge elevation - water surface elevation) for
all three measurements (m).
b: same as xgb depth, repeated for clarity (m).
a1: (alluvial ridge elevation - water surface elevation) from 1
measurements (m).
b1: same as xgb_depth, repeated for clarity (m).
a2: (alluvial ridge elevation - water surface elevation) from _2
measurements (m).
b2: same as xgb_depth, repeated for clarity (m).
a3: (alluvial ridge elevation - water surface elevation) from _3
measurements (m).
b3: same as xgb_depth, repeated for clarity (m).
a_over_b: a / b (-).
beta: superelevation, calculated according to method used column, see
```

beta_sem: standard error of beta.

lambda: product of beta and gamma (-).

ab_flag: flag for whether or not a > b.

beta_uncertainty: uncertainty in beta from monte carlo simulation, see manuscript for details.

**For Supplementary Table 1

manuscript for details.

all the same as above apart from the USED_FLAG column which denotes whether or not the measurement was used in the beta and gamma analysis. 1 = used, 0 = not used.

For Supplementary Table 3

avulsion name: name of the river avulsion

IS2_har_m: Height of alluvial ridge in meters measured with ICESat-2 FABDEM_har_m: Height of alluvial ridge in meters measured with FABDEM IS2_sar: Slope of alluvial ridge (m/m) measured with ICESat-2 FABDEM sar: Slope of alluvial ridge (m/m) measured with FABDEM