Workspace 'Workspace' in 'Lec4' Page 1 (row 1, column 1)

Module 3: Linear Regression

Lecture 4 Jan 19th, 2023

grode (a)=E(Y(X=x)

Recap.

Fig. 2 0.78 f 0.52

MICHIGAN STATE

PROBLEM FOR STATE

WITH STATE

REstimating
$$f$$
: non-parametric vs parametric

Assessing Model Accuracy: Training MSE and Test

MSE

WING: EUX-EXT

Bias-Variance Trade-off

To E(Y(X=4))

EX = 0

E(F(X) - E(F(X))^2)

Estimating *f*: non-parametric vs parametric

Assessing Model Accuracy: Training MSE and Test MSE

Simple Linear Regression

We have only one feature

$$Y = f(X) + \epsilon = \beta_0 + \beta_1 X + \epsilon$$

Where β_0 and β_1 are two unknown constants also known as coefficient or parameters.

• Example:

Sales
$$\approx \beta_0 + \beta_1 \times TV$$

Topics

- Least squares coefficient estimates for linear regression
- Residual sum of squares (RSS)
- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared

Simple Linear Regression

We have only one feature

$$Y = f(X) + \epsilon = \beta_0 + \beta_1 X + \epsilon$$

Where β_0 and β_1 are two unknown constants also known as coefficient or parameters.

• Given the training data, we can estimate $(\hat{\beta}_0)$ and $(\hat{\beta}_1)$ for the model coefficients and predict future Y using

$$(\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x,$$

Where \hat{y} indicates a prediction of Y on the basis of X = x. The hat symbol denotes an estimated value.

	U	<u> </u>		(
	TV	Radio	Newspaper	Sales
1	230.1	37.8	68.2	22.1
2	44.5	69.3	45.7	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
6	8.7	48.9	15	7.2
7	57.5	32.8	23.5	11.8
8	120.2	19.6	1.6	13.2
9	8.6	2.1	K	4.8
10	199.8	2.6	21.2	10.6
11	66.1	5.8	24,2	8.6
		7		

$$e_1 = (y_1 - y_1)$$

$$e_2 = (y_1 - y_1)$$

$$e_3 = (y_1 - y_1)$$

sales
$$\approx \beta_0 + \beta_1 TV$$

- β_0 intercept; β_1 slope
- Coefficients or parameters : $\{\beta_0, \beta_1\}$
- Once we have good guesses for $\hat{\beta}_i$, model is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

• Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction of X based on the ith value of X.

How to estimate?

Residual Sum of Squares

RSS =
$$e_1^2 + e_2^2 + e_3^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2$$

min RSS =
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

How to estimate?

Minimizing RSS to find the best estimates.

$$\min_{\beta_{0},\beta_{1}} RSS = \min_{\beta_{0},\beta_{1}} \sum_{i=1}^{n} e_{i}^{2} = \min_{\beta_{0},\beta_{1}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}$$

$$\min_{\beta_0, \beta_1} RSS = \min_{\beta_0, \beta_1} \sum_{i=1}^n e_i^2 = \min_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving for minimal RSS

$$\min_{\beta_0, \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

- RSS is a **convex** function of β_0, β_1
- Minimum achieved when (recall the chain rule):

$$\frac{\partial RSS}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\min_{\beta_0,\beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solution:

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y})}{\sum_{i=1}^{n} x_{i}(x_{i} - \bar{x})}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Linear Regression Coefficients

$$RSS = (Y - XB)^{T} (Y - XB) = (Y^{T}Y) - B^{T}X^{T}XB - 2$$

$$RSS = (Y - XB)^{T} (Y - XB) = (Y^{T}Y) - B^{T}X^{T}XB - 2$$

$$RSS = (Y - XB)^{T} (Y - XB) = (Y^{T}Y) - B^{T}X^{T}XB - 2$$

$$RSS = (Y - XB)^{T} (Y - XB) = (Y^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}X^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (Y - XB)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y - XB) = (X^{T}X)^{T}Y = 0$$

$$RSS = (X^{T}X)^{T} (Y -$$

Why Minimizing RSS?

It has closed form!!

• Best Linear Unbiased Estimator (BLUE): Gauss-Markov Theorem.

Bias in Estimation

- Assume a true value μ^*
- An estimate from training data μ
- The estimate is unbiased if $E(\hat{\mu}) = \mu^*$

• Sample mean is unbiased for population mean

$$E(\hat{\mu}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \mu$$

Standard variance estimate is biased

$$V_{A}(X) = \sigma^{2}$$

$$E(\hat{\sigma}^{2}) = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}\right] \neq \sigma^{2}$$

$$\tilde{\sigma}^{2} = \left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}\right)^{2}$$

mean
$$S = \frac{X_1 + X_2 + \cdots + X_h}{n}$$

$$E(S) = E\left(\frac{X_1 + \cdots + X_h}{n}\right)$$

$$= EX_1 + EX_1 + EX_2 + \cdots + EX_h$$

$$= \frac{n}{n} = M^*$$

Variance of the estimates

Assume a true value μ^*

- An estimate from training data
 - The variance of sample mean is: $Var(\hat{\mu}) = \frac{\sigma^2}{n}$

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma^2}{n}$$

The variances of the linear regression estimates are

$$SE(\hat{\beta}_{1})^{2} = \frac{\left(\sigma^{2}\right)}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}, \quad SE(\hat{\beta}_{0})^{2} = \sigma^{2}\left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\right]$$
where $\sigma^{2} = Var(\epsilon)$

$$\hat{\sigma}^{2} = \frac{RS8}{n(2)}$$

$$155 = \frac{1}{2}$$

We then can calculate the confidence intervals. The 95% confidence interval for β_1 approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \operatorname{SE}(\hat{\beta}_1)$$

Confidence Interval

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β_1 is [0.042, 0.053]

Hypothesis Testing

• Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y

versus the alternative hypothesis

 H_A : There is some relationship between X and Y.

Mathematically, it is

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0,$$

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

Hypothesis Testing

Mathematically, it is

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0,$$

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

• We have far?

 $\hat{\beta}_1$ from data and want to test whether it is far from 0. But how

• This will have a t-distribution with n-2 degrees of freedom, assuming

HI

- Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.
- We will specify an alpha value (0.05) before Hypothesis testing. If p-value less than the alpha value, we will reject the null hypothesis.

Results for the Advertising Data

4		Coefficient	Std. Error	t-statistic	p-value
6	Intercept	7.0325	0.4578		< 0.0001
B	TV	0.0475	0.0027	$(17.\overline{67})$	< 0.0001

<< 0.05

• Since p-value < 0.05, we reject the null hypothesis and conclude that TV is related to sale.