MV011 Statistika I

Pro řešení lineárního regresního modelu $Y_i = m(x_i) + \varepsilon_i$, i = 1, ..., n, v R slouží příkaz **lm** (*linear model*):

model <- lm (formule, data = DatováTabulka), příp.

model <- lm (formule, data = DatováTabulka, weights = VektorVah).

Pro tzv. formuli se používá speciální syntaxe, kde Y je název sloupce závisle proměnné, x je název sloupce nezávisle proměnné:

$$m(x)$$
 formule
$$\beta_0 + \beta_1 x$$
 Y ~ x nebo Y ~ 1 + x, člen β_0 je totiž vkládán implicitně
$$\beta_1 x$$
 Y ~ 0 + x, odstranění členu β_0 nutno zapsat explicitně
$$\beta_0 + \beta_1 x + \beta_2 x^2$$
 Y ~ x + I(x^2)
$$\beta_2 x^2$$
 Y ~ 0 + I(x^2)
$$\beta_1 |x|$$
 Y ~ 0 + I(abs(x))
$$\beta_0 + \beta_1 e^x$$
 Y ~ I(exp(x))
$$\beta_0 + \beta_1 \ln x$$
 Y ~ I(log(x))
$$\beta_0 + \beta_1 \sqrt{x}$$
 Y ~ I(sqrt(x))

Detailní výsledky a další číselné charakteristiky získáme příkazem prehled <- summary (model),</pre>

příp. prehled <- summary (model, correlation=TRUE) pro výběrovou korelační matici parametrů.

$\widehat{oldsymbol{eta}}$	MNČ-odhady parametrů	<pre>model\$coefficients coef(model)</pre>
$(\widehat{\beta}_j, SD(\widehat{\beta}_j), T_j, p_j)$	odhady, směrodatné odchylky, testy významnosti, p-hodnoty	<pre>prehled\$coefficients coef(prehled)</pre>
$\widehat{\mathbf{Y}}$	aproximované hodnoty	<pre>model\$fitted.values fitted.values(model)</pre>
r	rezidua	model\$residuals residuals(model)
n-k	stupně volnosti modelu: # měření = $n > k = $ # parametrů	model\$df.residual
X	matice plánu	model.matrix(model)
w	váhy	model\$weights
S	odhad sm. odchylky chyb $arepsilon_i$	prehled\$sigma
R^2	index determinace	prehled\$r.squared
\overline{R}^2	korigovaný index determinace	prehled\$adj.r.squared
(F, k-1, n-k)	celkový F-test	prehled\$fstatistic
(k, n-k, k)	stupně volnosti	prehled\$df
$R(\widehat{oldsymbol{eta}})$	korelační matice odhadů $\widehat{oldsymbol{eta}}$	prehled\$correlation

MV011 Statistika I

- $\widehat{\beta}$ MNČ-odhady parametrů $\widehat{\beta}$ regresní funkce m(x), sledujte jejich významnost $\stackrel{\bullet}{\triangleright}$ zapište matematický tvar regresní funkce m(x) $\stackrel{\bullet}{ extbf{ extbf{th}}}$ reziduální součet čtverců S_e a odhad směrodatné odchylky s náhodných chyb $\stackrel{\bullet}{\triangleright}$ index determinace R^2 , proved te celkový F-test
- 🔥 vykreslete data a grafy regresních funkcí (predict), příp. s pásy spolehlivosti
- 📂 modely porovnejte (mj. 🛮 anova), zvolte z nich nejvhodnější
 - Datový soubor cv11-01.csv: zkoumejte závislost množství kyseliny mléčné u novorozence na množství stejné látky u matky-prvorodičky (v mg ve 100 ml krve) pomocí regresní přímky a paraboly.
 - Datový soubor cv11-02.csv: zkoumejte závislost prodloužení měděné trubky v závislosti teplotním rozdílu Δt od referenční hodnoty $t_0 = 20$ °C pomocí vhodné regresní přímky a paraboly. Dle fyzikálních zákonů by při $\Delta t = 0$ prodloužení mělo být nulové.

MV011 Statistika I

- Datový soubor cv11-03.csv: zkoumejte závislost spotřeby paliva motorového vozidla (v l/100 km) na rychlosti (v km/h) pomocí regresní přímky a paraboly.
- Datový soubor cv11-04.csv: zkoumejte závislost koncentrace CO₂ (v ppm) v atmosféře v letech 1764–1995 pomocí několika polynomických regresních funkcí.
- Datový soubor cv11-05.csv: zkoumejte závislost uhlíkových emisí (v milionech tun) v letech 1950–1995 pomocí několika polynomických regresních funkcí.
- Datový soubor cv11-06.csv: zkoumejte závislost průměrné teploty (ve °C) v letech 1866–1996 pomocí několika polynomických regresních funkcí.
- Datový soubor cv11-07.csv: zkoumejte závislost logaritmu objemu vytěžené ropy (v tisících barelů) v letech 1880–1988 pomocí několika polynomických regresních funkcí, grafy vykreslete i pro nelogaritmované hodnoty.
- Vyřešte Příklady zadané na přednášce.

