

Análisis Avanzado - Espacios Métricos 4

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Repaso

Definición

CE

Decimos que $x \in E$ es un <u>punto de acumulación</u> de A si para todo r > o, el conjunto $A \cap B(x, r)$ es infinito.

Equivalentemente, $x \in E$ es punto de acumulación de A si cada entorno de x contiene un punto de A distinto de x.

Definición

El conjunto de puntos de acumulación de $A\subset E$ se denomina conjunto derivado de A,

 $A' \Rightarrow \{x \in E : x \text{ es un punto de acumulación de } A\}.$

 $\frac{1}{8} \frac{1}{(2, 1)} \frac{1}{(2$

DefiniciónDado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cap A = \{x\}$.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cap A = \{x\}$.

Ejemplo
$$E = IR$$
, $A = P = Todo punto all A saislado: $X \in \mathbb{Z}$, $B(N_1 1/1 | N E = \{X\})$ $\frac{(H(H)H(H)A)}{2-10}$ $A = B$, $A =$$

Dado $A \subset E$, un punto $\underline{x \in A}$ se dice aislado si existe r > 0 tal que $B(x,r) \cap A = \{x\}$.

Observación

Un punto aislado de \underline{A} pertenece a \underline{A} . Un punto de acumulación de \underline{A} no tiene por qué (siempre está en \overline{A}).

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cap A = \{x\}$.

Observación

Un punto aislado de A pertenece a A. Un punto de acumulación de A no tiene por qué (siempre está en \bar{A}).

Pensar

En \overline{A} están todos los puntos de acumulación de A y todos los puntos aislados de A.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cap A = \{x\}$.

Observación

Un punto aislado de A pertenece a A. Un punto de acumulación de A no tiene por qué (siempre está en \bar{A}).

Pensar

En A están todos los puntos de acumulación de A y todos los puntos aislados de A. ¿Será cierto que \bar{A} es la unión de los puntos de acumulación de A y los puntos aislados de A?

Sucesiones y clausura

Definición

Decimos que una sucesión $(x_n)_{n\in\mathbb{N}}\subset E$ converge $\underline{a}\ \underline{x}\in E$ si dado cualquier $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $d(x_n,x)<\varepsilon$ para todo $n\geq n_0$.

$$\mathcal{X}_{\eta} \in \beta(\mathcal{X}, \mathcal{E})$$

$$\mathcal{Y}_{\eta} \geq u_{2}$$

$$0b^{q}: \mathcal{H}_{n} \longrightarrow \mathcal{H} \quad e_{n}(E, d) \stackrel{\longleftarrow}{\longleftarrow} \\ d(\mathcal{H}_{m}, \mathcal{H}) \longrightarrow 0 \quad e_{n} \mid R.$$

,

+ EIT

Sucesiones y clausura

Proposició

Sea (E, d) un espacio métrico, $A \subset E$ y $x \in E$. Entonces:

(i)
$$x \in \overline{A}$$
 si y sólo si existe $(a_n)_n \subset \underline{A}$ tal que $\lim_{n \to \infty} a_n = \emptyset$. \times
(ii) $x \in A'$ si y sólo si existe una sucesión $(a_n)_n \subset A$ de elementos distintos tal que $\lim_{n \to \infty} a_n = \emptyset$. \times

DEM: (i) =)
$$x \in A$$
 = $\forall \pi > 0$ $B(x_1, \pi) \cap A \neq \emptyset$.
 $P(c) = M$, $B(x_1, \pi) \cap A \neq \emptyset$ => $\partial = G(x_1, \pi) \cap A$
 $(G_m) = CA$, $d(G_m, \pi) \geq 1/m$ => $O(p(c/m))$.

(=) Salems que 3 (Gn In CA) lim on - x

Dado 170 7 mo/ (d(Cn, x/L) Vn 2 no.

= 1 ano EA OB(n, n) + 0)

4/11

i. XEA

Sucesiones y clausura

Proposición

Sea (E, d) un espacio métrico, $A \subset E$ y $x \in E$. Entonces:

- $\sqrt{\text{(i)}} \ x \in \overline{A} \text{ si y sólo si existe } (a_n)_n \subset A \text{ tal que } \lim_{n \to \infty} a_n = a.$
- (ii) $x \in A'$ si y sólo si existe una sucesión $(a_n)_n \subset A$ de elementos distintos tal que $\lim_{n\to\infty} a_n = a$.

Ejercicio

Sea (E, d) un espacio métrico, $A \subset E$. Son equivalentes:

- (a) A es cerrado
- (b) Para toda sucesión $(a_n)_n \subset A$ que converge a un $x \in E$ se tiene que x pertenece a A.

A CERRADO ES SUC. DE ELEM DE A GOÉS
PUEDON CONV. A ELEM DE A.

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > o tal que $A \subset B(x, r)$.

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > o tal que $A \subset B(x, r)$.

Definición

Una sucesión $(x_n)_n$ se dice es acotada si existen $x \in E$, r > 0tal que $x_n \in B(x,r)$ para todo $n \in \mathbb{N}$.

{ x_: n & NU} & and. 055: (Mn) CONVERGENTE - 7). 6 PODEMOS SARER SI MIRANDO SOLAMENTE LA SUC ?

5/11

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > o tal que $A \subset B(x, r)$.

Definición

Una sucesión $(x_n)_n$ se dice es acotada si existen $x \in E$, r > 0 tal que $x_n \in B(x,r)$ para todo $n \in \mathbb{N}$.

Definición

Una sucesión $(x_n)_n$ se <u>dice de Cauchy</u> si para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ (que depende de ε) tal que si $n, m \ge n_0$, entonces $d(x_n, x_m) < \varepsilon$.

 $E \int E M P(Q) S : 1) \frac{SUC - CON V C P G E N T E S}{V E M O S} (PA W V E M O S)$ 2) EN IR , CAUCHY = CONVERGENTE (LO VAMOS A V LOS) M

Teorema
Sea
$$(E, d)$$
 un e.m. $y(x_n)_n \subset E$.

(1) Si $(x_n)_n$ es de Cauchy, entonces es acotada.

(2) Si $(x_n)_n$ es convergente, entonces es de Cauchy.

(3) Si $(x_n)_n$ es de Cauchy y tiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.

3 $(x_n)_n = x_n =$

(en part,
$$d(N_m, N_{no}) \angle 1 \forall n \geq n_0$$
.

$$d = man \left\{ d(N_m, N_{no}) : 1 \leq n \leq n_0 \right\}$$

$$10.5 \forall n \leq 1 \leq n \leq n_0$$

$$10.5 \forall n \leq 1 \leq n_0$$

M7, Mo. Ted (Mm, Mas 2 1 LD) (M7, ns) (ML MO.

d(xn, No Ld L 1)

Sea (E, d) un e.m. $y(x_n)_n \subset E$.

- (1) Si $(x_n)_n$ es de Cauchy, entonces es acotada.
- $\frac{1}{(2)}$ Si $(x_n)_n$ es convergente, entonces es de Cauchy.
- (3) Si $(x_n)_n$ es de Cauchy y tiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.

DEM (2): SOR
$$x = \lim_{n \to +\infty} x_n$$
. Dado $\xi > 0$, $\exists x_0 \in \mathbb{N} / \mathbb{N}$
 $d(x_n, x) \leq \xi/2 = 0$ $\exists x_1, x_1 \neq x_0$,
 $d(x_n, x_n) \leq d(x_n, x_1) + d(x_1, x_m) \leq \xi$.
 $\xi \leq \xi/2$
 $\xi \leq \xi/2$

Sea (E,d) un e.m. y $(x_n)_n \subset E$.

- (1) Si $(x_n)_n$ es de Cauchy, entonces es acotada.
- (2) Si $(x_n)_n$ es convergente, entonces es de Cauchy.
 - (3) Si $(x_n)_n$ es de Cauchy y tiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.

Sin > Mo: d(Nm, x/2 d(Nm, Ng,) + d(Nmg, 1 x/2)

i. (Mm) on converge

LΕ/2 (m, ma, 7, mo) / Ε/2 8/11

Ejemplo ; hay rue de Canely vo com? E=Q: | 7 = 3,14 ... 0000... primer or digitor de T $(x_n) \subset \mathbb{R}$, $m \geq m$, $d(u_m, x_m) \leq \frac{1}{10^m}$ Los treva al menos (UER) ES DE CALCUY. PERO (7m) CQ NO CONVERGE PUGS E = Q

Ejemplo E = C [91] on d, (21) = 5 | 20(1) - g(1) | d1 1DEA (SIN CUENTAG NI DEMO). (Mm (K) d(nm, nm) = 7 Um = area de / LE N M. m 7, no 1/2 x 1/m (SE PUEDE (i. (Man la cle Barrely.) NO CONV.) CUAZQUIER "CANDIDAN" 4 LIM ES DISONTINUO.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Idea: Si $(x_n)_n$ es una sucesión de Cauchy, entonces por la parte (1) del Teorema es acotada.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Idea: Si $(x_n)_n$ es una sucesión de Cauchy, entonces por la parte (1) del Teorema es acotada. Veremos que toda sucesión acotada en \mathbb{R} tiene una subsucesión convergente.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Idea: Si $(x_n)_n$ es una sucesión de Cauchy, entonces por la parte (1) del Teorema es acotada. Veremos que toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente. Entonces, $(x_n)_n$ es de Cauchy y tiene subsucesión convergente.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Idea: Si $(x_n)_n$ es una sucesión de Cauchy, entonces por la parte (1) del Teorema es acotada. Veremos que toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente. Entonces, $(x_n)_n$ es de Cauchy y tiene subsucesión convergente. Por la parte (3) del Teorema, $(x_n)_n$ converge.

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

Ejemplo

 \mathbb{R} es completo (y también \mathbb{R}^n)

Idea: Si $(x_n)_n$ es una sucesión de Cauchy, entonces por la parte (1) del Teorema es acotada. Veremos que toda sucesión acotada en \mathbb{R} tiene una subsucesión convergente. Entonces, $(x_n)_n$ es de Cauchy y tiene subsucesión convergente. Por la parte (3) del Teorema, $(x_n)_n$ converge.

Ejercicio

Consideremos un conjunto no vacío E con la métrica

discreta δ . ¿Es (E, δ) completo?

(2,1-1) es completo