Algorithmic Game Theory Assignment 11

Palash Dey Indian Institute of Technology, Kharagpur

1.	Suppose we have at least 2 players. Let X be the set of all dominant strategy incentive compati-
	ble social choice functions in the quasi-linear environment and \mathcal{Y} the set of all dominant strategy
	incentive compatible social choice functions in the single-parameter environment. Then, which
	one of the following is true?

(c) $\mathfrak{X} = \mathfrak{Y}$

(d) $\mathfrak{X} \cap \mathfrak{Y} = \emptyset$

The correct answer is (b). Refer to Lecture 11.1.

- 2. Which one of the following is not a single-parameter domain?
 - (a) Auction of one item with one seller more than one buyer
 - (b) Auction of one item with one buyer more than one seller
 - (c) Auction of two identical items with one seller and one buyer
 - (d) Auction of two different items with one seller and one buyer

The correct answer is (d). Refer to Lecture 11.1.

- 3. What is the domain of critical value function?
 - (a) The set of all type profiles of all the players.
 - (b) The set of all strategy profiles of all the players.
 - (c) The set of all type profiles of all the other players.
 - (d) The set of all strategy profiles of all the other players.

The correct answer is (c). Refer to Lecture 11.2.

4. Suppose we have at least 2 players. Let \mathcal{X} be the set of all monotone allocation rules in the single-parameter domain and \mathcal{Y} the set of all affine maximizers in the quasi-linear domain. Then, which one of the following is true?

```
(a) \mathfrak{X} \subsetneq \mathfrak{Y}
```

(b)
$$y \subseteq x$$

(c)
$$X = Y$$

(d)
$$\mathfrak{X} \cap \mathfrak{Y} = \emptyset$$

The correct answer is (b). Refer to Lecture 11.2.

- 5. In which of the following domains, the critical value function is well-defined?
 - (a) Single-parameter domain
 - (b) Quasi-linear domain
 - (c) Convex domain

(d) Any domain

The correct answer is (a). Refer to Lecture 11.2.

- 6. Which of the following conditions the allocation rule of a DSIC mechanism in a single-parameter domain must satisfy?
 - (a) continuity
 - (b) strictly increasing
 - (c) non-decreasing
 - (d) non-increasing

The correct answer is (c).

- 7. What does Myerson lemma characterizes?
 - (a) Allocation rules which are implementable in a dominant strategy equilibrium in a quasilinear environment.
 - (b) Allocation rules which are implementable in a dominant strategy equilibrium in a single-parameter environment.
 - (c) Allocation rules which are implementable in a Bayesian Nash equilibrium in a quasi-linear environment.
 - (d) Allocation rules which are implementable in a Bayesian Nash equilibrium in a single-parameter environment.

The correct answer is (b). Refer to Lecture 11.4.

- 8. Which one of the following is a single-parameter domain?
 - (a) Sponsored search auction
 - (b) Auction of two different items with one buyer and two sellers
 - (c) Auction of two different items with one seller and one buyer
 - (d) Auction of two different items each having two copies with one seller and two buyer

The correct answer is (a). Refer to Lecture 11.5.

- 9. What property the allocation rule in the sponsored search auction satisfies?
 - (a) Each component is strictly increasing.
 - (b) Each component is strictly decreasing.
 - (c) Each component is non-increasing.
 - (d) Each component is non-decreasing.

The correct answer is (d). Refer to Lecture 11.5.

- 10. In a sponsored search auction, suppose there are 10 slots for the advertisements. How will the payment function of any player will look like?
 - (a) step function having discontinuity at 9 points
 - (b) step function having discontinuity at 11 points
 - (c) step function having discontinuity at 10 points
 - (d) arbitrary function having discontinuity at 9 points

The correct answer is (c). Refer to Lecture 11.5.