

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	M.I. Marco Antonio Martínez Quintana
Asignatura:	Fundamentos de Programación
Grupo:	3
No de Práctica(s):	#04
Integrante(s):	Cuevas Antunez Samantha
No. de Equipo de cómputo empleado:	No aplica
No. de Lista o Brigada:	12
Semestre:	Primer semestre
Fecha de entrega:	30/10/2020
Observaciones:	
_	
(CALIFICACIÓN:

OBJETIVOS

Elaborar diagramas de flujo que representen solucione algorítmicas vistas como una serie de acciones que comprendan un proceso.

ACTIVIDADES

☐ Elaborar un diagrama de flujo que represente la solución algorítmica de un problema, en el cual requiera el uso de la estructura de control condicional.

□ Elaborar la representación gráfica de la solución de un problema, a través de un diagrama de flujo, en el cual requiera el uso de la estructura de control iterativa.

INTRODUCCIÓN

FORMAS

Elementos que conforman el lenguaje gráfico (símbolos que estructuran la solución).

- Debe tener un inicio y un fin.
- Las líneas utilizadas para indicar la dirección del flujo del diagrama deben ser rectas.
- Todas las líneas utilizadas para indicar la dirección del flujo del diagrama deben estar conectadas a un símbolo.
- Debe construirse de arriba hacia abajo (top-down) y de izquierda a derecha (left to right).
- La notación utilizada en el diagrama de flujo debe ser independiente del lenguaje de programación en el que se va a codificar la solución.
- Se recomienda poner comentarios que expresen o ayuden a entender un bloque de símbolos.
- Si la extensión de un diagrama de flujo ocupa más de una página, es necesario utilizar y numerar los símbolos adecuados.
- A cada símbolo solo le puede llegar una línea de dirección de flujo.
- Notación de camello. Para nombrar variables y nombres de funciones se debe hacer uso de la notación de camello

SÍMBOLOS			
"Nombre"	Función	Símbolo	
Representa el inicio o el fin del diagrama de flujo.			
Datos de entrada.	Expresa lectura de datos.		
Proceso.	En su interior se expresan asignaciones u op.		
Decisión.	Valida una condición y toma uno u otro camino.	sí	

Escritura.	Impresión del o los resultados.	
Dirección de flujo del diagrama.		$\downarrow \uparrow \longleftarrow \rightarrow$
Conexión dentro de la misma página		0
Conexión entre diferentes páginas		
Módulo de un problema	Llamada a otros módulos o funciones	
Decisión múltiple	Almacena un selector que determina la rama por la que sigue el flujo	

Diagrama de flujo para la **construcción** de un diagrama de flujo

ESTRUCTURAS DEL CONTROL DE FLUJO

Permiten la ejecución condicional y la repetición de un conjunto de instrucciones Estructura de Estructuras de control condicionales (o Estructuras de control secuencial selectivas) control iterativas o repetitivas (o Son las sentencias o Permiten evaluar una expresión lógica cíclicas) declaraciones que (condición que puede ser verdadera o se realizan una a falsa) y, dependiendo del resultado, se Permiten ejecutar continuación de realiza uno u otro flujo de instrucciones. una serie de otra en el orden en instrucciones están el aue O se ejecuta una acción o se ejecuta mientras se cumpla escritas. la otra. la expresión lógica. Estructura condicional SI (IF) Estructura MIENTRAS Se evalúa la expresión lógica y si la condición es verdadera se ejecutan las instrucciones del Primero valida la condición y si es verdadera bloque. ejecuta el bloque de instrucciones de la Si no se cumple, se continúa con estructura. el flujo normal del programa. Sino es verdadero rompe el ciclo y continúa el flujo normal del programa. SI-DE LO CONTRARIO Se evalúa la expresión lógica y Estructura HACER-MIENTRAS si la condición es verdadera se ejecutan las instrucciones del bloque Sí. Si no se cumple la condición se Si la condición se cumple vuelve a ejecutar eiecutan las instrucciones del las instrucciones de la estructura. bloque No. Al final el programa Si no se cumple, rompe el ciclo y sigue el sigue su flujo normal. flujo del algoritmo.

RESULTADOS

Realizar un diagrama de flujo que calcule dado un número el cálculo de su factorial:

Ejemplo:

1! = 1

2! = 2

3! = 6

4! = 24

CONCLUSIONES

Los diagramas de flujo son una herramienta muy útil para representar algún procedimiento de forma más gráfica, eficaz y organizada.

A pesar de que en muchas ocasiones elaboramos estos diagramas en diversas áreas, proyectos, no los elaboramos correctamente por ello es indispensable conocer las formas que contiene (elementos, símbolos) y sus estructuras para emplear el que nos sea auxilie más.

Estos diagramas al presentarnos de forma gráfica soluciones a problemas (por medio de algoritmos, los cuales son pasos organizados para resolver un problema) son más fáciles de entender, nos explica los pasos logarítmicos que realizaremos y las limitantes/condiciones de estas por medio de diversas estructuras: (si, si de lo contrario, hacer-mientras, mientras, etc.) las cuales nos ayudan a entender de una forma más práctica en qué ocasiones se repetirán los pasos, cuando acabarán, cuando llevará a cabo determinada acción, etcétera, dichas estructuras mencionadas se emplearán dependiendo del cuál se acople mejor a nuestro algoritmo o la acción que deseemos realizar.