Fashion Recommender System Based on Texts

Introduction to Recommender Systems Term Project Proposal

Table of Contents

Background & Motivation

Problem & Goal of the project

3 Model Pipeline

4 Dataset & Evaluation

5 Project Schedule

1. Background & Motivation

Fashion Domain

ANNUAL REVENUE OF THE FASHION ECOMMERCE MARKET IN ASIA, 2018-2028 in billion US\$

The global fashion e-commerce market has rapidly grown. In addition, the market is expected to grow faster in the future.

1. Background & Motivation

Components of ML

2. Problem & Goal of the Project

Problem & Goal

3. Model Pipeline

3. Model Pipeline

LLM Processing Example

Input:

My son is a big Ninjago fan and these are perfect! The color is vibrant and hasn't faded in the wash. It also is made well and the pocket inserts and filters made it perfect! It looked a bit bigger than expected but once the filter was it, it was perfect to show off the entire design and was a good size for my 6 year old who is closer to the size of an 8/9 year old.

Output:

I like the vibrant color that hasn't faded in the wash. I want a well-made product with pocket inserts and filters. I expect the product to be a good size for my 6-year-old child who is closer to the size of an 8/9-year-old.

4. Dataset & Evaluation

Datasets

Evaluation

amazon

Recall@k

Amazon Reviews'23

MAP@k

5. Project Schedule

Timeline

November December

Data Preprocessing Model Building Evaluation Study
Ablation Study

Member's role

Lee Sangyun NGCF Modeling, evaluation

Han Youngtae Data Preprocessing, NLP with BLaIR, LLM, evaluation

Fashion Recommender System Based on Texts

Introduction to Recommender Systems Term Project Final Presentation

Table of Contents

Research Environment

Experiments

3 Experiment Results

4 Conclusion and Limitations

1. Research Environment

Nvidia Quadro RTX 6000

```
work@main1[Member_Server]:~/default/DO_NOT_ACCESS$ lspci | grep -i nvidia
06:00.0 3D controller: NVIDIA Corporation TU102GL [Quadro RTX 6000/8000] (rev a1)
2f:00.0 3D controller: NVIDIA Corporation TU102GL [Quadro RTX 6000/8000] (rev a1)
86:00.0 3D controller: NVIDIA Corporation TU102GL [Quadro RTX 6000/8000] (rev a1)
d8:00.0 3D controller: NVIDIA Corporation TU102GL [Quadro RTX 6000/8000] (rev a1)
```

2. Experiments

Preprocessing

4

Drop unnecessary columns and NaNs

2 Drop users and items that the number of purchase is less than 3

Sentiment Analysis: positive(0~1), negative(-1~0)

Train / Test split -> 0.8 / 0.2

2. Experiments

Parameters

Baseline

1. edge = [rating, sent, blend]

2. k = [50, 100]

 $3 \times 2 = 6$ models

Ours

1. edge = [rating, sent, blend]

2. n = [100, 500, 1000]

3. beta = [0.25, 0.5, 0.75]

4. k = [50, 100]

5. LLM = [with, w/o]

 $3 \times 3 \times 3 \times 2 \times 2 = 108$ models

3. Experiments Results

Evaluation

(unit: %)

edge	n	Recall@ k						MAP@k					
		β=0.25		β=0.5		β=0.75		β=0.25		β=0.5		β=0.75	
		k=50	k=100	k =50	k = 100	k=50	k=100	k =50	k=100	k=50	k = 100	k=50	k=100
rating	100	1.1793	1.4976	1.1606	1.4976	1.1606	1.4976	0.0755	0.0530	0.0589	0.0447	0.0497	0.0401
	500	3.2011	4.1558	3.0700	4.0996	3.0326	4.0809	0.1949	0.1393	0.1457	0.1140	0.1154	0.0984
	1000	4.5676	5.9716	4.3804	5.8967	4.1932	5.8405	0.2700	0.1948	0.2034	0.1602	0.1587	0.1370
sent	100	1.7971	2.0217	1.7784	2.0217	1.6848	2.0217	0.1144	0.0788	0.9942	0.0713	0.0724	0.0575
	500	3.5380	4.6799	3.2572	4.3429	1.9281	3.3321	0.1903	0.1418	0.1410	0.1129	0.0777	0.0682
	1000	4.2868	6.0090	3.7626	5.2415	1.9468	3.4259	0.2348	0.1761	0.1562	0.1275	0.0779	0.0688
blend	100	1.0483	1.2729	0.8986	1.2729	0.5616	1.2729	0.0499	0.0383	0.0265	0.0260	0.0149	0.0185
	500	2.6769	4.3617	1.3104	2.9015	0.5616	1.8532	0.1038	0.0927	0.0302	0.0393	0.0149	0.0200
	1000	3.1823	5.5410	1.3104	2.9951	0.5616	1.8532	0.1193	0.1092	0.0302	0.0398	0.0149	0.0200

[Best Parameters] edge: (rating or sent), n: 1000, beta: 0.25

3. Experiments Results

Result by parameters

Baseline – by edge

recall map

edge

blend 0.842381 0.012696

rating 1.244852 0.033058

sent 1.544365 0.038745

Ours – by n

recall map

n

100.0 1.424768 0.054987

500.0 3.132410 0.102243

1000.0 3.942552 0.127693

Ours – by edge

recall map

edge

blend 1.909397 0.043203

rating 3.248832 0.120353

sent 3.085282 0.110818

Ours – by beta

recall map

beta

0.25 3.388244 0.132048

0.50 2.844336 0.090389

0.75 2.267149 0.062485

3. Experiments Results

Ablation Study

(unit: %)

a daa	A	blation Setting	gs	Recall@50	Recall@100	MAP@50	MAP@100	Recall@100
edge	NGCF	LLM	BLaIR		Recail@100	MAP@SU	MAP@100	Delta
	×	×	×	0.037439	0.037439	0.000475	0.000664	-
roting	~	×	×	0.992138	1.497567	0.034915	0.031201	39x
rating	~	×	~	4.567578	5.971546	0.270034	0.194770	158.5x
	~	~	~	4.567578	5.971546	0.270034	0.194770	158.5x
	×	×	×	0.037439	0.037439	0.000475	0.000664	-
sentiment	~	×	×	1.067016	2.021715	0.040268	0.037221	53x
semiment	~	×	~	4.286784	6.008985	0.234762	0.176141	159.5x
	~	~	~	4.286784	6.008985	0.234762	0.176141	159.5x

4. Conclusion and Limitations

Conclusion

- 1. Our model showed approximately 3-4 times better performance than the baseline and about 160 times better than random recommendation in terms of recall@100.
- 2. The noise removal process using LLM was unnecessary.

 The natural language embedding model had already learned enough to handle the noise.

Limitations and further study proposal

- 1. The dataset was too sparse because we used explicit feedback dataset.
- 2. We tested only one natural language embedding model (BLaIR).
- 3. Among diverse user inputs, we could only use reviews. i.e. we could NOT use other data like search histories.