

Columns

IDs & Labels (don't train on IDs)

• **kepid / EPIC / TIC** — Object ID (Kepler/K2/TESS).

Ex: TIC 12345678 \rightarrow use for grouping/splitting, not as a feature.

• koi_name / kepoi_name / toi — Candidate name.

Ex: KOI-1234.01 / TOI-700 b.

• **disposition** — Ground truth label.

KOI: koi_disposition (Confirmed / Candidate / False Positive)

TOI: tfopwg_disposition (PC / FP / KP / APC)

K2: archive_disposition (CANDIDATE / CONFIRMED / FP)

Transit Shape & Timing

• **period** (koi_period , toi_period) — Days between dips.

Ex: $3.52 d \rightarrow \text{short-period "hot" planet candidate.}$

• duration (koi_duration , toi_duration) — Hours the dip lasts.

Ex: $2.8 \text{ h} \rightarrow \text{helps judge geometry & sanity.}$

• **depth_ppm** (koi_depth , toi_depth) — Dip depth in parts-per-million.

Ex: 10,000 ppm (=1%) \rightarrow big planet signal.

 $\bullet \quad \textbf{epoch / t0} \; (\; {}_{\text{koi_time0bk}} \; , \; {}_{\text{toi_transit_epoch}} \;) \; -\! \; \text{When first transit happens}.$

Ex: $2457000.123 \text{ (BJD)} \rightarrow \text{for plotting/folding.}$

• **impact_parameter** (koi_impact) — How central the transit is (0 center, ~1 grazing).

Ex: b = 0.2 U-shaped; b = 0.9 V-shaped \rightarrow grazing, be cautious.

Signal Quality / Vetting Hints

• SNR / MES (koi_snr , koi_model_snr , mes) — Signal strength.

Ex: MES = $12 \rightarrow$ decent detectability.

• **num_transits** (koi_transit_count , sometimes derived) — How many dips observed.

Columns 1

Ex: $N=5 \rightarrow$ stronger confidence than single-transit.

• odd_even_test (various flags/columns) — Odd vs even depth difference.

Ex: "Odd \neq Even" \rightarrow eclipsing binary warning.

• secondary_depth / eclipse_flag — Dip at phase ~0.5.

Ex: clear secondary \rightarrow likely binary, not planet.

vshape / shape_flag — U vs V shape indicator (if present).

Ex: V-shaped \rightarrow grazing binary risk.

🜟 Star (host) Properties

• st_teff / koi_steff — Star temperature (K).

Ex: 5777 K Sun-like \rightarrow sets expected sizes/brightness.

st_logg / koi_slogg — Surface gravity (cgs).

Ex: $4.4 \rightarrow$ main-sequence star (good). Low values can mean giant star issues.

st_rad / koi_srad — Star radius (R⊙).

Ex: 1.0 RO \rightarrow depth translates cleanly to planet size.

st_mass / koi_smass — Star mass (M ⊙).

Ex: $0.9 \,\mathrm{M}\odot$ \rightarrow context for orbits.

• **[Fe/H] / metallicity** (st_metfe) — Star metal content.

Nice to have for trends; not critical for baseline.

• mag (kepmag , Tmag) — Brightness in mission band.

Ex: $T_{\text{mag}=10.5} \rightarrow \text{brighter} = \text{better follow-up}$.

🔪 Planet (if provided/derived)

• planet_radius_re (koi_prad) — Planet radius (Earth radii).

Ex: $11.2 \text{ R} + \text{ } \approx \text{ Jupiter-size } \rightarrow \text{ depth should be large.}$

• insolation_flux / teq (koi_insol , koi_teq) — Star energy / equilibrium temp.

Ex: $teq=1200 \text{ K} \rightarrow \text{hot world}$; sanity check with period.

Contamination & Quality

• crowding / contamination — Nearby starlight diluting transit.

Ex: $\frac{1}{2} \cos \frac{1}{2} = 0.7$ of light is from neighbors; depth underestimates size.

• centroid_offset / motion — Image center shifts during transit.

Ex: offset > 3σ \rightarrow background eclipsing binary likely.

• quality flags (data_quality , vetting_flags , disposition_score) — Pipeline/QA hints.

Ex: low score or bad flags \rightarrow treat prediction cautiously.

Minimal Feature Set to Start (tabular MVP)

- 1. period
- 2. duration
- 3. depth_ppm
- 4. impact_parameter
- 5. SNR/MES

Columns

- 6. num_transits (or derive)
- 7. st_teff
- 8. st_logg
- 9. st_rad
- 10. kepmag/Tmag
- 11. planet_radius_re (if present)
- 12. crowding/contamination
- 13. centroid_offset (if present)
- 14. odd_even_test
- 15. secondary_depth / eclipse_flag

Keep IDs for grouping/splits; don't feed them into the model. Use disposition as your label.

Tiny Examples (one-liners)

- depth_ppm=800 & st_rad=1.0 R⊙ → shallow dip → likely small planet.
- period=0.8 d, V-shape, odd_even mismatch → eclipsing binary suspect.
- SNR high, num_transits≥3, U-shape, no secondary, good centroid → planet-like.

Columns

3