Linear Algebra cheat sheet

Vectors

$$\begin{aligned} &\text{dot product: } u*v = ||u||*||v||*cos(\phi) = u_xv_x + u_yv_y \\ &\text{cross product: } u\times v = \left(\begin{array}{c} u_yv_z - u_zv_y \\ u_zv_x - u_xv_z \\ u_xv_y - u_yv_x \end{array} \right) \end{aligned}$$

enclosed angle:

$$cos\phi = \frac{u*v}{||u||*||v||}$$

$$||u||*||v|| = \sqrt{(u_x^2 + u_y^2)(v_x^2 + v_y^2)}$$

Matrices

basic operations

transpose: $[A^{\mathrm{T}}]_{ij} = [A]_{ji}$: "mirror over main diagonal"

multiply: $A_{N \times M} * B_{R \times K} = M_{N \times K}$

invert:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

norm:

condition:

determinants

 $\begin{aligned} det(A \cdot B) &= det(A) \cdot det(B) \\ \text{TODO: other rules} \end{aligned}$

eigenvalues/vectors

definiteness

common properties

square: $N \times N$ symmetric: $A = A^T$ orthogonal: $A^T = A^{-1}$ diagonal: 0 except a_{kk}

⇒ Eigenvalues on main diagonale

nonsingular

A is nonsingular = invertible = regular iff:

There is a matrix $B := A^{-1}$ such that AB = I = BA.

 $det(A) \neq 0$

TAx = b has exactly one solution for each b.

The columns of A are linearly independent.

$$\Rightarrow det(A)^{-1} = det(A^{-1})$$

$$\Rightarrow (A^{-1})^{-1} = A$$

$$\Rightarrow (A^T)^{-1} = (A^{-1})^T$$

diagonalizable

 $A^{N\times N}$ can be diagonalized iff it has n linear independant eigenvectors. Then, there is an invertible T, such that:

$$D := T^{-1}AT = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

$$A = T^{-1}DT$$
 and $AT = T \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$

T can be created with eigenvectors of A.

diagonally dominant matrix

$$\forall i. |a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$

Hermitian matrix

triangular

 \Rightarrow Eigenvalues on main diagonale

rank / kernel / trance