Computational Microelectronics Lecture 22 Transient

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

RC Circuit

Euler schemes (Copied from L4)

- Forward Euler scheme
 - In the forward Euler scheme, the time derivative is calculated by taking the difference between the *future* and *present* values:

$$\left. \frac{\partial C(x_i)}{\partial t} \right|_{t_k} \approx \frac{C(t_{k+1}) - C(t_k)}{t_{k+1} - t_k}$$

- Backward Euler scheme
 - In the backward Euler scheme, the time derivative is calculated by taking the difference between the present and past values:

$$\left. \frac{\partial C(x_i)}{\partial t} \right|_{t_k} \approx \frac{C(t_k) - C(t_{k-1})}{t_k - t_{k-1}}$$

RC circuit

- Consider a series RC circuit.
 - It is driven by a voltage source, $V_{in}(t)$. For t < 0, it was zero.

$$\frac{V_X - V_{in}(t)}{R} + C \frac{dV_X}{dt} = 0$$

Analytic solution

First-order differential equation

-At
$$t=0$$
, $V_{in}(t)$ is suddenly ramped up to V_{DD} , $V_X(t)=V_{DD}\left[1-\exp\left(-\frac{t}{RC}\right)\right]$

Backward Euler

- Let us assume a constant time step, Δt .
 - -At $t_i = i\Delta t$ $(i \ge 1)$, the KCL can be discretized as

$$\frac{V_X(t_i) - V_{in}(t_i)}{R} + C \frac{V_X(t_i) - V_X(t_{i-1})}{\Delta t} = 0$$

After a simple manipulation,

$$\left(1 + \frac{\Delta t}{RC}\right) V_X(t_i) = V_X(t_{i-1}) + \frac{\Delta t}{RC} V_{in}(t_i)$$

– For our present example, $V_{in}(t_i)$ is always V_{DD} .

GIST Lecture

6

Impact of Time Step

$R = C = V_{DD} = 1$ with their own dimensions

- It means that R is 1 Ω , C is 1 F, and V_{DD} is 1 V.
 - In this case, the equation is simply written as

$$(1 + \Delta t)V_X(t_i) = V_X(t_{i-1}) + \Delta t$$

Its analytic solution is

$$V_X(t_i) = 1 - \exp(-t_i)$$

- Run the simulation up to 10 sec.
 - Exact solution (blue curve in left figure), numerical solution (red cruve in left figure), and error (right figure)

- Ten times shorter time spacing
 - It looks much better.
 - -Still, we have the maximum difference larger than 0.01 V.

- Ten times shorter time spacing, again
 - -The difference becomes almost invisible.
 - -Still, we have the maximum difference larger than 0.01 V.

Another method

- Gear's 2nd order method
 - -Assume a constant time spacing, Δt .
 - -Then, for $i \geq 2$,

$$\left. \frac{\partial f}{\partial t} \right|_{t_i} \approx \frac{1.5 f(t_i) - 2 f(t_{i-1}) + 0.5 f(t_{i-2})}{\Delta t}$$

- For i = 1, just use the backward Euler method.
- It means that

$$\frac{V_X(t_i) - V_{in}(t_i)}{R} + C \frac{1.5V_X(t_i) - 2V_X(t_{i-1}) + 0.5V_X(t_{i-2})}{\Delta t} = 0$$

After re-arranging terms,

- A slightly different expression for $V_X(t_i)$
 - Compare it against the backward Euler:

$$(1.5 + \Delta t)V_X(t_i) = 2V_X(t_{i-1}) - 0.5V_X(t_{i-2}) + \Delta t$$
$$(1 + \Delta t)V_X(t_i) = V_X(t_{i-1}) + \Delta t$$

Case study) $\Delta t = 1$ with Gear's method

- Run the simulation up to 10 sec, again.
 - -The maximum error is determined by the first backward Euler step.

Case study) $\Delta t = 0.1$ with Gear's method

- Ten times shorter time spacing
 - -The difference becomes almost invisible.
 - -The maximum difference is smaller than that of the backward Euler.

- Ten times shorter time spacing, again
 - Much smaller difference is obtained.
- In summary, the error is rapidly decreasing with a smaller Δt .

Sinusoidal voltage source

- Apply a sine wave with its amplitude of 1 V.
 - -The frequency is 1 Hz.
 - -Then, the amplitude of V_X should be $\frac{1}{\sqrt{1+(2\pi)^2}}$ V. (0.15718 V)
 - Investigate the amplitude with various Δt values.

$$(1.5 + \Delta t)V_X(t_i) = 2V_X(t_{i-1}) - 0.5V_X(t_{i-2}) + \Delta t \sin 2\pi t$$

$$(1 + \Delta t)V_X(t_i) = V_X(t_{i-1}) + \Delta t \sin 2\pi t$$

- Only ten points in a period
 - -20 cycles are passed. (Sufficiently stabilized)
 - -Gear's method predicts a larger amplitude, close to 0.15718 V.

Thank you!