Práctica 6: FORMAS DE JORDAN

1. Sea $T:V\to V$ una transformación lineal. Mostrar que cada uno de los siguientes subespacios son invariantes por T:

 $i)\{0\}$ ii)V iii)nul(T) iv)Img(T).

- 2. Sean $\{W_i\}$ una colección de subespacios de un espacio vectorial V invariantes por T. Mostrar que $W = \bigcap_i W_i$ también es invariante por T.
- 3. Hallar todos los subespacios invariantes de $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$ considerada como operador lineal sobre \mathbb{R}^2 .
- 4. Sea \hat{T} la restricción de un operador T a un subespacio invariante W, es decir $\hat{T}w = Tw$, $\forall w \in W$. Probar que para todo polinomio p(t), $f(\hat{T})w = f(T)w$.
- 5. Sea $T:V\to V$, $T\in\mathcal{L}(V)$. Supongamos que para todo $v\in V$ se tiene que $T^kv=0$ pero $T^{k-1}v\neq 0$. Probar que:
 - a) $S = \{T^{k-1}, \dots, Tv, v\}$ es linealmente independiente.
 - *b*) El subespacio $W = \langle X \rangle$ es invariante por T.
 - c) La restricción \hat{T} de T a W es nilpotente de índice k.
 - *d*) La matriz de \hat{T} relativa a la base ordenada de $W\{T^{k-1}, \cdots, Tv, v\}$ es de la forma

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

siendo esta matriz nilpotente de orden *k*.

6. Sea $T \in \mathcal{L}(V)$, probar que

a)
$$\{0\} = nul(T^0) \subset nul(T^1) \subset \cdots \subset nul(T^k) \subset nul(T^{k+1}) \subset \cdots$$

b)
$$nul(T^m) = nul(T^{m+1}) \Rightarrow nul(T^m) = nul(T^{m+1}) = nul(T^{m+2}) = \cdots$$

- c) Si dim V = n luego $nul(T^n) = nul(T^{n+1}) = \cdots$.
- 7. Sea $T \in \mathcal{L}(V)$, dim V = n, luego $V = nul(T^n) \oplus img(T^n)$.
- 8. Sea

- *a*) Mostrar que *A* es nilpotente de índice 2.
- b) Hallar la matriz nilpotente M en forma canónica que es semejante a A.
- 9. Determinar todas las posibles formas canónicas de Jordan para una matriz de orden 5 cuyo polinomio minimal es $m(t) = (t-2)^2$.

10. Mostrar que las siguientes matrices nilpotentes de orden n son semejantes

0	1	0	 0		0	0	 0	0
0	0	1	 0		1	0	 0	0
			 		0	1	 0	0
0	0	0	 1				 	
0	0	0	 0	П	0	0	 1	0