Cross-Correlation vs Convolution

Cross-Correlation

 $q = a \times r + b \times s + c \times t + d \times u + e \times v + f \times w + g \times x + h \times y + i \times z$

Convolution

 $q = i \times r + h \times s + g \times t + f \times u + e \times v + d \times w + c \times x + b \times y + a \times z$

Wow, so what was that convolution thing??

 $q = a \times r + b \times s + c \times t + d \times u + e \times v + f \times w + g \times x + h \times y + i \times z$

This is called box filter

Box filters have artifacts

Box filters: vertical + horizontal streaking

Box filters: vertical + horizontal streaking

Gaussians

2d Gaussian

Better smoothing with Gaussians

Wow, so what was that convolution thing??

 $q = a \times r + b \times s + c \times t + d \times u + e \times v + f \times w + g \times x + h \times y + i \times z$

Filters ••• ... ••• .40 •••

Highpass Kernel: finds edges

Identity Kernel: Does nothing!

Sharpen Kernel: sharpens!

Emboss Kernel: stylin'

Guess those kernels!

Sobel Kernels: edges and...

So what can we do with these convolutions anyway?

Mathematically: all the nice things

- Commutative
 - A*B = B*A
- Associative
 - A*(B*C) = (A*B)*C
- Distributes over addition
 - A*(B+C) = A*B + A*C
- Plays well with scalars
 - x(A*B) = (xA)*B = A*(xB)

So what can we do with these convolutions anyway?

This means some convolutions decompose:

- 2d gaussian is just composition of 1d gaussians
 - Faster to run 2 1d convolutions

So what can we do with these convolutions anyway?

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning
- ...

What's an edge?

- Image is a function
- Edges are rapid changes in this function

What's an edge?

- Image is a function
- Edges are rapid changes in this function

Finding edges

- Could take derivative
- Edges = high response

Image derivatives

- Recall: - $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

- Possibility: set h = 1
- What will that look like?

Image derivatives

- Recall: - $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

- Possibility: set h = 2
- What will that look like?

Images are noisy!

But we already know how to smooth

Smooth first, then derivative

Smooth first, then derivative

Sobel filter! Smooth & derivative

Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- But...

Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- But...
- Edges go both ways
- Want to find extrema

