ගණිතය

11 ඉශ්ණිය I කොටස

අධාාපන පුකාශන දෙපාර්තමේන්තුව

සියලු ම පෙළපොත් ඉලෙක්ටොනික් මාධායෙන් ලබා ගැනීමට www.edupub.gov.lk වෙබ් අඩවියට පිවිසෙන්න.

පළමුවන මුදුණය 2015 දෙවන මුදුණය 2016 තුන්වන මුදුණය 2017 හතරවන මුදුණය 2018 පස්වන මුදුණය 2019 හයවන මුදුණය 2020

සියලු හිමිකම් ඇවිරිණි

ISBN 978-955-25-0409-9

අධාාපන පුකාශන දෙපාර්තමේන්තුව විසින් රජයේ මුදුණ නීතිගත සංස්ථාවේ මුදුණය කරවා පුකාශයට පත්කරන ලදි.

Published by: Educational Publications Department Printed by: State Printing Corporation, Panaluwa, Padukka.

ශීු ලංකා ජාතික ගීය

ශී ලංකා මාතා අප ශීූ ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා සුන්දර සිරිබරිනී, සුරැඳි අති සෝබමාන ලංකා ධානා ධනය නෙක මල් පලතුරු පිරි ජය භූමිය රමාා අපහට සැප සිරි සෙත සදනා ජීවනයේ මාතා පිළිගනු මැන අප භක්ති පූජා නමෝ නමෝ මාතා අප ශී ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා ඔබ වේ අප විදාහ ඔබ ම ය අප සතහා ඔබ වේ අප ශක්ති අප හද තුළ භක්ති ඔබ අප ආලෝකේ අපගේ අනුපුාණේ ඔබ අප ජීවන වේ අප මුක්තිය ඔබ වේ නව ජීවන දෙමිනේ නිතින අප පුබුදු කරන් මාතා ඥාන වීර්ය වඩවමින රැගෙන යනු මැන ජය භූමි කරා එක මවකගෙ දරු කැල බැවිනා යමු යමු වී නොපමා ජුම වඩා සැම භේද දුරැර ද නමෝ නමෝ මාතා අප ශී ලංකා, නමෝ නමෝ නමෝ නමෝ මාතා

අපි වෙමු එක මවකගෙ දරුවෝ එක නිවසෙහි වෙසෙනා එක පාටැති එක රුධිරය වේ අප කය තුළ දුවනා

එබැවිනි අපි වෙමු සොයුරු සොයුරියෝ එක ලෙස එහි වැඩෙනා ජීවත් වන අප මෙම නිවසේ සොඳින සිටිය යුතු වේ

සැමට ම මෙත් කරුණා ගුණෙනී වෙළී සමගි දමිනී රන් මිණි මුතු නො ව එය ම ය සැපතා කිසි කල නොම දිරනා

ආනන්ද සමරකෝන්

පෙරවදන

ලෝකය දිනෙන් දින සංවර්ධනය කරා පියමනින විට අධාාපන ක්ෂේතුය ද සැමවිටම අලුත් වෙයි. එබැවින් අනාගත අභියෝග සඳහා සාර්ථක ලෙස මුහුණ දිය හැකි ශිෂා පුජාවක් බිහිකරලීමට නම් අපගේ ඉගෙනුම් ඉගැන්වීම් කියාවලිය ද නිරතුරුව සාධනීය පුවේශ වෙත ළඟාවිය යුතු ය. එයට සවියක් වෙමින් නවලොව දනුම සමීප කරන අතරම, යහගුණයෙන් පිරිපුන් විශ්වීය පුරවැසියන් නිර්මාණය කිරීමට සහයවීම අපගේ වගකීම වේ. ඉගෙනුම් ආධාරක සම්පාදන කාර්යයෙහි සකිය ලෙස වාාවෘත වෙමින් අප දෙපාර්තමේන්තුව ඒ සඳහා දායක වනුයේ දැයේ දරුවන්ගේ නැණ පහන් දල්වාලීමේ උතුම් අදිටනෙනි.

පෙළපොතක් යනු දැනුම පිරි ගබඩාවකි. එය විටෙක අප වින්දතාත්මක ලොවකට කැඳවාගෙන යන අතරම තර්ක බුද්ධිය ද වඩවාලයි. සැඟවුණු විභවාතා විකසිත කරවයි. අනාගතයේ දිනෙක, මේ පෙළපොත් හා සබැඳි ඇතැම් මතක, ඔබට සුවයක් ගෙන දෙනු ඇත. මේ අනගි ඉගෙනුම් උපකරණයෙන් ඔබ නිසි පල ලබාගන්නා අතරම තව තවත් යහපත් දනුම් අවකාශ වෙත සමීප වීම ද අනිවාර්යයෙන් සිදු කළ යුතු ය. නිදහස් අධාාපනයේ මහරු තිළිණයක් ලෙස නොමිලේ මේ පොත ඔබේ දෝතට පිරිනැමේ. පාඨ ගුන්ථ වෙනුවෙන් රජය වැය කර ඇති සුවිසල් ධනස්කන්ධයට අගයක් ලබා දිය හැක්කේ ඔබට පමණි. මෙම පෙළපොත හොඳින් පරිශීලනය කර නැණ ගුණ පිරි පුරවැසියන් වී හෙට ලොව එළිය කරන්නට ඔබ සැමට දිරිය සවිය ලැබෙන්නැයි සුබ පතමි.

මෙම පෙළපොත් සම්පාදන සත්කාර්යය වෙනුවෙන් අපුමාණ වූ දායකත්වයක් සැපයූ ලේඛක, සංස්කාරක හා ඇගයුම් මණ්ඩල සාමාජික පිරිවරටත් අධාාපන පුකාශන දෙපාර්තමේන්තුවේ කාර්ය මණ්ඩලයටත් මාගේ පුණාමය පළකරමි.

ඩබ්ලිව්. එම්. ජයන්න විකුමනායක, අධාාපන පුකාශන කොමසාරිස් ජනරාල්, අධාාපන පුකාශන දෙපාර්තමේන්තුව, ඉසුරුපාය, බත්තරමුල්ල. 2020. 05. 26

නියාමනය හා අධීක්ෂණය

ඩබ්ලිව්.එම්. ජයන්ත විකුමනායක මයා - අධාාපන පුකාශන කොමසාරිස් ජනරාල් අධාාපන පුකාශන දෙපාර්තමේන්තුව

මෙහෙයවීම

ඩබ්ලිව්. ඒ. නිර්මලා පියසීලි මිය

- අධාාපන පුකාශන කොමසාරිස් (සංවර්ධන) අධාාපන පුකාශන දෙපාර්තමේන්තුව

සම්බන්ධීකරණය

තනුජා මෛතී විතාරණ මිය

- සහකාර කොමසාරිස්

අධාාපන පුකාශන දෙපාර්තමේන්තුව

චන්දිමා කුමාරි ද සොයිසා මිය

- නියෝජා කොමසාරිස් (2020 නැවත මුදුණය) අධාාපන පුකාශන දෙපාර්තමේන්තුව

සංස්කාරක මණ්ඩලය

ආචාර්ය ඩී.කේ. මල්ලව ආරච්චි මයා - ජොෂ්ඨ කථිකාචාර්ය, කැලණිය විශ්වවිදපාලය

ආචාර්ය රොමේන් ජයවර්ධන මිය - ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදාහලය

ආචාර්ය ශීූ ධරන් මයා

- ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදහාලය

බී.ඩී. චිත්තානන්ද බියන්විල මයා ජී.පී.එච්. ජගත් කුමාර මයා

තනුජා මෛතීු විතාරණ මිය

- අධානක්ෂ, ගණිතය අංශය, අධාාපන අමාතාාංශය - ජොෂ්ඨ කථිකාචාර්ය, ජාතික අධාාපන ආයතනය

- සහකාර කොමසාරිස්

අධාාපන පුකාශන දෙපාර්තමේන්තුව

ලේඛක මණ්ඩලය

එච්.එම්.ඒ. ජයසේන මයා

- ගුරු උපදේශක, (විශුාමික)

වයි.වී.ආර්. විතාරම මයා

- ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, දෙහිඕවිට

ඩබ්.එම්.ඩබ්.සී වලිසිංහ මයා අජිත් රණසිංහ මයා

- ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, කෑගල්ල - ගුරු උපදේශක, කලාප අධාාපන කාර්යාලය, හෝමාගම

අනුර ඩී. වීරසිංහ මයා

- ගුරු උපදේශක, (පිරිවෙන්), මාතර දිස්තිුක්කය ඩබ්ලිව්.එම්.ඩී. ලාල් විජේකාන්ත මයා - ගුරු සේවය, ශාන්ත තෝමස් විදාහලය, ගල්කිස්ස

ආචාර්ය රෝචනා මීගස්කුඹුර මිය

- ජොෂ්ඨ කථිකාචාර්ය, පේරාදෙණිය විශ්වවිදාහලය

ආචාර්ය ජේ. රත්නායක මයා

- ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදුහාලය

ආචාර්ය ජයන්ත සේනාධීර මයා

- ජොෂ්ඨ කථිකාචාර්ය, ශුී ලංකා විවෘත විශ්වවිදාහලය

ආචාර්ය ආර්. ටී. සමරතුංග මයා

- ජොෂ්ඨ කථිකාචාර්ය, කොළඹ විශ්වවිදහාලය

අයි.එන්. වාගීෂමූර්ති මයා

- අධාක්ෂ, (විශුමික)

ආර්.එස්.ඊ. පුෂ්පරාජන් මයා

- සහකාර අධානක්ෂ,කලාප අධාාපන කාර්යාලය, පුත්තලම

වී. මුරලි මයා

- ගුරු අධාාපනඥ සේවය, කලාප අධාාපන කාර්යාලය,වවුනියාව

භාෂා සංස්කරණය

ජයත් පියදසුන් මයා

- මාධාවේදී, කර්තෘ මණ්ඩලය - සිළුමිණ

සෝදුපත් කියවීම

ඩී.යූ. ශීකාන්ත එදිරිසිංහ මයා

- ගුරු සේවය, ගොඩගම සුභාරතී මහාමාතා මහා විදාහලය,

රූපසටහන් පිටකවර නිර්මාණය පරිගණක අක්ෂර සංයෝජනය

ආර්.ඩී. තිළිණි සෙව්වන්දි මෙය

- පරිගණක සහායක, අධාාපන පුකාශන දෙපාර්තමේන්තුව

බී.ටී. චතුරාණි පෙරේරා මිය

සම්පාදක මණ්ඩල සටහන

2015 වර්ෂයේ සිට කියාත්මක වන නව විෂය නිර්දේශයට අනුකූලව මෙම පෙළපොත රචනා කර ඇත.

පෙළපොත සම්පාදනය කෙරෙන්නේ සිසුන් වෙනුවෙනි. එබැවින්, ඔබට තනිව කියවා වුව ද තේරුම් ගත හැකි පරිදි සරල ව සහ විස්තරාත්මක ව එය රචනා කිරීමට උත්සාහ ගත්තෙමු.

විෂය සංකල්ප ආකර්ශනීය අන්දමින් ඉදිරිපත් කිරීම සහ තහවුරු කිරීම සඳහා, විස්තර කිරීම්, කිුිියාකාරකම්, සහ නිදසුන් වැනි විවිධ කුම අනුගමනය කළෙමු. තව ද, අභාගස කිරීමේ රුචිකත්වය වර්ධනය වන පරිදි ඒවා සරල සිට සංකීර්ණ දක්වා අනුපිළිවෙළින් පෙළ ගස්වා තිබේ.

ගණිත විෂයයට අදාළ සංකල්ප දැක්වෙන පද, රාජා භාෂා දෙපාර්තමේන්තුව සම්පාදනය කරන ගණිතය පාරිභාෂික පදමාලාවට අනුකූලව භාවිත කළෙමු.

විෂය නිර්දේශයේ 11 ශේණියට අදාළ විෂය කොටස් ඉගෙන ගැනීමට මින් පෙර ශේණිවල දී ඔබ උගත් යම් යම් විෂය කරුණු අවශා වේ. එබැවින් එම පෙර දැනුම සිහි කිරීම පිණිස පුනරීක්ෂණ අභාාස සෑම පරිච්ඡේදයකම ආරම්භයේ දැක්වෙයි. ඒවා මගින් 11 ශේණියට අදාළ විෂය කොටස් සඳහා ඔබව සූදානම් කෙරෙනු ඇත.

ඊට අමතරව 10 ශේුණියෙහි පෙළපොත සිසුන් ළඟ තිබෙන බැවින් පෙර දැනුම අවශා වන විටදී එය ද භාවිතයට ගනු ඇතැයි අපි බලාපොරොත්තු වෙමු.

පත්තියේ දී ගුරුවරයා විසිත් ඉගැත්වීමට පෙර, ඔබ මේ පරිච්ඡේද කියවීමෙන් සහ ඒ ඒ පරිච්ඡේදයේ එන පුනරීක්ෂණ අභනාස කිරීමෙන්, මේ පොත භාවිතයෙන් උපරිම ඵල ලැබිය හැකි ය.

ගණිත අධාාපනය පුීතිමත් සහ ඵලදායක වන්නැයි අපි පුාර්ථනා කරමු.

සම්පාදක මණ්ඩලය

		පිටුව
1.	තාත්වික සංඛාා	1
2.	දර්ශක හා ලසුගණක I	15
3.	දර්ශක හා ලසුගණක II	27
4.	ඝන වස්තුවල පෘෂ්ඨ වර්ගඵලය	48
5.	ඝන වස්තුවල පරිමාව	61
6.	ද්විපද පුකාශන	72
7.	වීජිය භාග	78
8.	සමාන්තර රේඛා අතර තල රූපවල වර්ගඵලය	85
	පුනරීක්ෂණ අභාගස	103
	ලසුගණක වගුව	106
	පාරිභාෂික ශබ්ද මාලාව	108
	පාඩම් අනුකුමය	110

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- සංඛාන කුලක විශ්ලේෂණය කිරීමට
- කරණි ආශිුත ව මූලික ගණිත කර්ම හැසිරවීමට

හැකියාව ලැබෙනු ඇත.

1.1 සංඛ්‍යා වර්ගීකරණය

සංඛාහ පිළිබඳ සංකල්පය මානව වර්ගයා තුළ ජනිත වූයේ මීට වසර $30\,000$ කට පමණ පෙර යැයි විශ්වාස කෙරේ. විවිධ ශිෂ්ටාචාර තුළ ස්වාධීන ව උත්පත්තිය හා වර්ධනය සිදු වූ මෙම සංකල්පය මුළු ලොව පුරා විකසනය වී, අද වන විට 'ගණිතය' නමැති පොදු විශ්වීය විෂය ක්ෂේතුයක් බවට පත් ව ඇත.

මුල් අවධියෙහි දී ශිෂ්ටාචාර තුළ සංඛන යොදා ගන්නට ඇත්තේ ගණන් කිරීම හා ගණන් තැබීම වැනි සරල කටයුතු සඳහා යැයි සිතිය හැකි ය. මුලින් ම පහළ වූ සංඛනාමය සංකල්ප "එක" හා "දෙක" බවට සැක නැත. ඉන් පසු එය, "තුන", "හතර" යනාදි ලෙස වර්ධනය වන්නට ඇත. මේ ආකාරයට තමන් "කැමති පුමාණයක්" නම් කිරීමට හැකි බව ද පසු කලෙක දී අවබෝධ කර ගන්නට ඇත. මෙම නම් කිරීම සඳහා විවිධ ශිෂ්ටාචාර තුළ විවිධ සංකේත යොදාගැනිණි.

ඓතිහාසික සාක්ෂි අනුව, අද අප භාවිත කරන 1,2,3 ආදි සංඛාහංක භාවිතයෙහි ආරම්භය ඉන්දියාව ලෙස පිළිගැනේ. එපමණක් නොව, ශූනාය නමැති සංකල්පය සංඛාහවක් ලෙස භාවිත කිරීමේත් ස්ථානීය අගය මත පදනම් වූ සංඛාහ පද්ධතියක් නිර්මාණය කිරීමේත් ගෞරවය ඉන්දියාවට හිමි වේ. මෙම සංඛාහ පද්ධතිය හින්දු - අරාබි සංඛාහ පද්ධතිය ලෙස අද හැඳින්වෙන අතර එහි භාවිතය වෙළෙඳුන් මාර්ගයෙන් මැද පෙරදිගටත්, එතැනින් යුරෝපයටත් පැතිරුණු බව නූතන පිළිගැනීම යි. වර්තමානය වන විට මෙම සංඛාහ පද්ධතිය සම්මත පොදු සංඛාහ පද්ධතිය ලෙස මුළු ලොවෙහි ම පිළිගැනේ.

සංඛාා භාවිතයට අදාළ ව මිනිස් පරිණාමයේ සිදු වූ මහත් පෙරළියක් ලෙස, සංඛාා භාවිතයෙන් මූලික ගණිත කර්ම සිදු කිරීම (එකතු කිරීම, අඩු කිරීම, ගුණ කිරීම හා බෙදීම) දැක්විය හැකි ය. අද වැනි තාක්ෂණික ලෝකයක සංඛාා හා ඒ මත සිදු කෙරෙන ගණිත කර්මවලින් තොර මානව පැවැත්මක් පිළිබඳ සිතා ගැනීමට පවා අසීරු ය.

මානව අවශාතා සඳහා මුලින් ම යොදා ගැනුණු සංඛාා ලෙස 1,2,3 යනාදිය දැක්විය හැකි වුවත් පසු කලෙක දී ශුනාය, භාග සංඛාා හා සෑණ සංඛාා ද ඊට ඇතුළත් විය. ගණිතය වෙනම ම විෂයක් ලෙස දියුණු වෙමින් පවතින කාලයේ දී තවත් විවිධාකාරයේ සංඛාා වර්ග (කුලක) පිළිබඳව ගණිතඥයන්ගේ අවධානය යොමු විය. මෙම පාඩම තුළ දී අප බලාපොරොත්තු වන්නේ එවැනි විවිධ සංඛාා කුලක පිළිබඳවත් ඒවායේ අංකන කුම හා ගුණ පිළිබඳවත් ඉගෙනීමට ය.

නිබිල කුලකය (\mathbb{Z})

ස්වභාවයෙන් ම, අප මුලින් ම හඳුනාගන්නේ 1, 2, 3, ... ලෙස අප කුඩා කල මුලින් ම ඉගෙනගත් සංඛාහ ය. මෙම සංඛාහ ගණින සංඛාහ ලෙස හැඳින්වෙන අතර, ඒවා සියල්ල අඩංගු කුලකය, කුලක අංකනයෙන් මෙසේ ලියනු ලැබේ.

$$\{1, 2, 3, ...\}$$

ගණින සංඛාා යන නම ලැබීමට හේතුව ඉතා පැහැදිලි ය. එසේ නමුත්, නූතන ගණිත වාවහාරයේ මෙම නම භාවිත වන්නේ වීරල වශයෙනි. මෙම කුලකය සඳහා බොහෝ වීට භාවිත වන නම වන්නේ "ධ**න නිඛිල කුලකය**" යන්න යි. එම කුලකය \mathbb{Z}^+ මගින් අංකනය කෙරේ. එනම්,

$$\mathbb{Z}^+ = \{1, 2, 3, ...\}$$

මේ අනුව, 1, 2, 3, ... සංඛ්යාවලට ධන නිඛිල යැයි කියනු ලැබේ.

සාණ නිඛිල ලෙස අර්ථ දැක්වෙන්නේ -1,-2,-3,... ආදි සංඛාා ය. මෙම කුලකය අංකනය කිරීම සඳහා සුලභව යෙදෙන සංකේතයක් නොමැති වුවත් සමහර ගණිතඥයන් විසින්, තම විෂය ක්ෂේතුයේ අවශාතා අනුව, ඒ සඳහා \mathbb{Z}^- යන සංකේතය භාවිත කෙරේ.

නිඛිල ලෙස හැඳින්වෙන්නේ ධන නිඛිල, ශූනාාය හා සෘණ නිඛිල යන සියලු සංඛාා ය. එම කුලකය $\mathbb Z$ මගින් අංකනය කෙරේ. මේ අනුව,

$$\mathbb{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$

ලෙස හෝ

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$$

ලෙස අංකනය කළ හැකි ය.

පුකෘති සංඛා කුලකය (N)

මීළඟට අප නැවතත් $1,\,2,\,3,\,...$ ආදි වශයෙන් වූ සංඛාහ කුලකය සලකමු. මෙම සංඛාහ කුලකය පු**කෘති සංඛා**හ කුලකය ලෙස ද හැඳින්වෙන අතර, එය $\,\mathbb{N}\,$ මගින් අංකනය කෙරේ. එනම්,

$$\mathbb{N} = \{1, 2, 3, ...\}.$$

සටහන: පුකෘති සංඛාහ ලෙස සලකනු ලබන්නේ කුමන සංඛාහ දැයි යන්න පිළිබඳව ගණිතඥයන් අතර පොදු එකඟතාවක් නොමැත. පුකෘති යන්නෙහි අදහස ස්වාභාවික" යන්න යි; ඒ අනුව, පුකෘති සංඛාහ යන යෙදුම 1, 2, 3, ... ආදි සංඛාහ සඳහා යෝගා බව පෙනේ. එහෙත්, සමහර ගණිතඥයන් විසින් (විශේෂයෙන්, කුලකවාදය පිළිබඳ විශේෂඥයන්) තම පොත්පත්වල, යම් හේතූන් නිසා, 0 ද පුකෘති සංඛාාවක් ලෙස සලකන ලදි. ශුනා හා ධන නිඛිල අඩංගු කුලකය අංකනය කිරීම සඳහා ඒ වන විට පිළිගත් නමක් හා සංකේතයක් නොතිබීම ද එයට හේතු වූවා විය හැකි ය. එහෙත් සංඛාාවාදය පිළිබඳ ව ලියැවුණු පොත්වල බොහෝ විට පුකෘති සංඛාා ලෙස 1, 2, 3, ... සංඛාා කුලකය සලකන බව පෙනේ. කෙසේ නමුත්, අද කාලයේ ලියැවෙන සෑම පොතපතක ම පාහේ කර්තෘන් විසින් තමන් පුකෘති සංඛාා ලෙස සලකනු ලබන්නේ කුමන සංඛාා ද යන්න මුලින් ම සඳහන් කෙරේ.

ig(පරිමේය සංඛ ${f x}$ ා කුලකය $({f Q})$

නිබිල මෙන් ම භාග ද සංඛාා ලෙස සැලකිය හැකි බවත් භාග සඳහා ද එකතු කිරීම, ගුණ කිරීම ආදී ගණිත කර්ම සිදු කළ හැකි බවත් අපි දැක ඇත්තෙමු. සෑම නිබිලයක් ම ද භාග සංඛාාවක් ලෙස ලිවිය හැකි ය (නිදසුනක් ලෙස $2=\frac{2}{1}$ ලෙස ලිවිය හැකි ය). එසේ ම, එක ම සංඛාාත්මක අගය සහිත භාග වෙනස් ආකාරවලින් ලිවිය හැකි ය (නිදසුනක් ලෙස $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}$). සෑණ භාග ද අපි දැක ඇත්තෙමු $(-\frac{2}{5},\,-\frac{11}{3}$ ආදිය). අප සාමානායෙන් භාග සංඛාාවක හරයේ හා ලවයේ නිබිල තිබිය යුතු යැයි සිතා සිටියත් එය එසේ නොවේ. නිදසුනක් ලෙස, $\frac{3}{\sqrt{2}}$ යන්න ද භාග සංඛාාවකි. එහෙත්, හරයේ හා ලවයේ <mark>නිබිල සහිත භාග</mark> (හරයේ 0 නොමැති විට) ගණිතයේ දී විශේෂ වැදගත්කමක් ගන්නා අතර, එම සංඛාා පරිමේය සංඛාා ලෙස හැඳින්වේ. එම සංඛාා කුලකය \mathbb{Q} මගින් අංකනය කෙරේ. කුලක ජනන ආකාරය යොදා ගනිමින්, පරිමේය සංඛාා කුලකය මෙසේ අර්ථ දැක්විය හැකි ය:

$$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ so } b \neq 0 \right\}.$$

පරිමේය සංඛාහ කුලකය අර්ථ දැක්විය හැකි තවත් ආකාර ද පවතී. ඉන් එක් ආකාරයක් නම්,

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}^+ \right\}.$$

මෙම අර්ථ දැක්වීම් දෙක ම එකිනෙකට තුලා වේ. එයට හේතුව (පරිමේය සංඛාාවක හරයේ 0 තිබිය නොහැකි නිසාත්, ඍණ පරිමේය සංඛාා සියල්ල ලවයේ ඍණ නිඛිලවලින් ලැබෙන නිසාත් ය.

අපරිමේය සංඛ $\mathfrak A$ ා කුලකය ($\mathfrak Q'$)

දැන්, අපරිමේය සංඛාහ යනු මොනවාදැයි හඳුනා ගනිමු. අප මීට ඉහත වසරවල දී සංඛාහ රේඛාවක් ඇඳ සංඛාහ පිළිබඳ ඉගෙනගත් ආකාරය ඔබට මතක ද? ඒ පිළිබඳ ව නැවතත් මතක් කර ගනිමු.

දෙපසට ම අවශා තරම් දික් කළ හැකි සරල රේඛාවක් සලකමු. එම රේඛාව මත කැමති ලක්ෂායක් 0 ලෙස නම් කරමු. එම 0න් එක් පසක (සාමානායෙන් දකුණු පසින්) සමාන දුරින් 1,2,3,... ආදි සියලු ධන නිඛිලවලට අදාළ ලක්ෂාත් අනෙක් පස -1,-2,-3,... ආදි සියලු සාණ නිඛිලවලට අදාළ ලක්ෂාත් ලකුණු කර ඇතැයි සිතමු. එනම්, නිඛිල සියල්ල මෙම රේඛාව මත ලක්ෂාවලින් දක්වා ඇත. ඉන් පසු සියලු පරිමේය සංඛාාවලට අදාළ ලක්ෂා ද මෙම රේඛාව මත ලකුණු කළේ යැයි සිතමු. පහත රූපයේ එසේ ලකුණු කළ ලක්ෂා ගණනාවක් දැක්වේ.

ඒ අනුව, මෙම රේඛාව මත සියලු පරිමේය සංඛාා (නිඛිල ද ඇතුළුව) ලකුණු කොට අවසන්ව ඇත. දැන් රේඛාව මත සෑම ලක්ෂායකට ම අනුරූප සංඛාාවක් ලකුණු වී ඇතැයි ඔබ සිතනවා ද? වෙනත් අයුරකින් ඇසුව හොත්, රේඛාව ඔස්සේ 0 සිට ඇති සෑම දුරක් ම පරිමේය සංඛාාවක් ලෙස ලිවිය හැකි යැයි ඔබ සිතනවා ද? ඇත්ත වශයෙන් ම තවත් ලක්ෂා ලකුණු නොවී ඉතිරි වී ඇත. එනම්, පරිමේය සංඛාාවකින් නිරූපණය කළ නොහැකි ලක්ෂා (සංඛාා) ද මෙම රේඛාව මත ඉතිරි වී ඇත. මෙම ලකුණු නොවී ඉතිරි වූ ලක්ෂා වන්නේ, a හා b නිඛිල වන, $\frac{a}{b}$ ආකාරයෙන් ලිවීමට නොහැකි ලක්ෂා බව පැහැදිලි ය. එසේ ලකුණු නොවී ඉතිරි වූ ලක්ෂා (සංඛාා) අපරිමේය සංඛාා ලෙස හැඳින්වේ.

අපරිමේය සංඛාා කුලකය නිරූපණය කිරීම සඳහා වෙන ම සංකේතයක් නොමැති අතර, එය සාමානාෳයෙන් ${f Q}$ හි අනුපූරක කුලකය වන ${f Q}'$ මගින් දැක්වේ.

අපරිමේය සංඛාහ සඳහා උදාහරණ ලෙස, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ යනාදි සංඛාහ දැක්විය හැකි ය.

ඇත්ත වශයෙන් ම පූර්ණ වර්ගයක් නොවන ඕනෑ ම ධන නිඛිලයක වර්ගමූලය අපරිමේය සංඛාාවක් වේ. මේ හැර, ඕනෑ ම වෘත්තයක පරිධිය එහි විෂ්කම්භයට දරන අනුපාතය වන π යන්න ද අපරිමේය සංඛාාවක් බව ගණිතඥයන් විසින් ඔප්පු කර ඇත. π හි අගය $\frac{22}{7}$ ලෙස ගනු ලබන්නේ ගණනය කිරීමේ පහසුව තකා ආසන්න අගයක් ලෙස ය.

තාත්වික සංඛ $oldsymbol{a}$ ා කුලක $oldsymbol{a}$ ($oldsymbol{\mathbb{R}}$)

ඉහත සාකච්ඡාවට අනුව, සංඛාා රේඛාව මත පිහිටි සියලු ලක්ෂා පරිමේය සංඛාා හෝ අපරිමේය සංඛාා ලෙස නිරූපණය කළ හැකි ය. මෙම පරිමේය හා අපරිමේය සංඛාා සියල්ලම, එනම් රේඛාව මත පිහිටි ලක්ෂා (සංඛාා) සියල්ලටම පොදුවේ **නාත්වික සංඛා**ා යැයි කියනු ලැබේ. එම තාත්වික සංඛාා කුලකය \mathbb{R} මගින් අංකනය කෙරේ.

සංඛ්‍යාවක දශම නිරූපණය

ඕනෑ ම තාත්වික සංඛාාවක් දශම නිරූපණයක් ලෙස දැක්විය හැකි ය. මුලින් ම, නිදසුනක් ලෙස පරිමේය සංඛාා කිහිපයක දශම නිරූපණය බලමු.

1. පරිමේය සංඛ්‍යාවක දශම නිරූපණය

$$4 = 4.000 \dots$$

$$\frac{1}{2} = 0.5 = 0.5000 \dots$$

$$\frac{11}{8} = 1.375 = 1.375000 \dots$$

$$\frac{211}{99} = 2.131313\dots$$

$$\frac{767}{150} = 5.11333\dots$$

$$\frac{37}{7} = 5.285714285714285714 \dots$$

මෙම දශම නිරූපණවලට ඇති පොදු ගුණයක් නම් දශම තිතෙන් යම් අවස්ථාවකට පසු (හෝ මුල සිට ම) එක ම සංඛාහංක ඛණ්ඩයක් (හෝ එක් සංඛාහංකයක්) සමාවර්තනය වීම යි.

සමාවර්තනය වීම යනු සම දුරින් නැවත නැවත යෙදීම යි.

නිදසුන් ලෙස, 4 හි 0 සංඛාහංකය පළමු දශමස්ථානයේ සිට ම සමාවර්තනය වේ; $\frac{1}{2}$ හි දශම නිරූපණයෙහි 0 සංඛාහංකය දෙවන දශමස්ථානයේ සිට සමාවර්තනය වේ; $\frac{211}{99}$ හි 13 සංඛාහංක ඛණ්ඩය මුල සිට ම සමාවර්තනය වේ; $\frac{37}{7}$ හි 285714 සංඛාහංක

ඛණ්ඩය මුල සිට ම සමාවර්තනය වේ. මෙම ගුණය, එනම්: යම් සංඛාාංක ඛණ්ඩයක් (හෝ කට්ටියක්) අඛණ්ඩව සමාවර්තනය වීම සෑම පරිමේය සංඛාාවකට ම පොදු ගුණයකි. මෙසේ සමාවර්තනය වන කොටස 0 නම්, එවැනි දශම අන්ත දශම ලෙස හැඳින්වෙන අතර, සමාවර්ත වන කොටස 0 නොවන දශම සමාවර්ත දශම ලෙස හැඳින්වේ. ඒ අනුව ඉහත නිදසුනේ ඇති 4, $\frac{1}{2}$ හා $\frac{11}{8}$ අන්ත දශම වන අතර, අනෙක්වා සියල්ල සමාවර්ත දශම වේ.

මේ අනුව, අපට පහත පුකාශය කළ හැකි ය:

සෑම පරිමේය සංඛ්යාවක් ම අන්ත දශමයක් හෝ සමාවර්ත දශමයක් ලෙස ලිවිය හැකි ය. පරිමේය සංඛාා පිළිබඳ අපූරු පුතිඵලයක් දැන් ඉගෙන ගනිමු. යම් $rac{a}{b}$ පරිමේය සංඛාාවක දශම නිරූපණය අන්ත දශමයක් යැයි සිතමු. a හා b හි පොදු සාධක නැතැයි ද ගනිමු. එවිට හරයේ (එනම් b හි) සාධක ලෙස ඇත්තේ 2 හෝ 5 (හෝ 2 හා 5 යන දෙක ම) පමණක් විය යුතු ය. ඒ අනුව, සමාවර්ත දශමයක් වන පරිමේය සංඛාාවක 2 හා 5 හැර වෙනත් පුථමක සංඛ්යාවක් හරයෙහි සාධකයක් ලෙස තිබිය යුතු ම ය.

සමාවර්ත දශම ලිවීමේ දී පහත නිදසුන්වල දැක්වෙන ආකාරයට, සමාවර්තනය වන සංඛෳාංකවලට ඉහළින් තිතක් තබා කැටි කර දක්වනු ලැබේ.

සමාවර්ත දශමය	කැටි කළ ආකාරයෙන් දැක්වීම
12.4444	12.4
2.131313	2.13
5.11333	5.113
5.285714285714285714	5.285714

1.1 අභනාසය

- 1. හරය පරීක්ෂා කිරීමෙන් පහත දී ඇති එක් එක් පරීමේය සංඛාාව අන්ත දශමයක් වේ ද, නැත හොත් සමාවර්ත දශමයක් වේ ද යන්න සඳහන් කරන්න. සමාවර්ත දශම වන භාග, දශම ආකාරයෙන් හා කැටි කළ ආකාරයෙන් දක්වන්න.

 - **a**. $\frac{3}{4}$ **b**. $\frac{5}{5}$ **c**. $\frac{5}{9}$ **d**. $\frac{3}{7}$ **e**. $\frac{5}{21}$ **f**. $\frac{7}{32}$

- $\mathbf{g} \cdot \frac{19}{33}$ $\mathbf{h} \cdot \frac{13}{50}$ $\mathbf{i} \cdot \frac{7}{64}$ $\mathbf{j} \cdot \frac{5}{18}$ $\mathbf{k} \cdot \frac{15}{128}$ $\mathbf{l} \cdot \frac{41}{360}$

2. අපරිමේය සංඛ්‍යාවක දශම නිරූපණය

දැන් අපි, අවසාන වශයෙන්, අපරිමේය සංඛෳාවක දශම නිරූපණය සලකා බලමු. අපරිමේය සංඛාාවක දශම නිරූපණය තුළ කිසිදු සංඛාහංක ඛණ්ඩයක සමාවර්තනයක් සිදු නො වේ. නිදසුනක් ලෙස, $\sqrt{2}$ හි අගය දශමස්ථාන 60ක් දක්වා ගණනය කළ විට මෙසේ ලැබේ.

1.414213562373095048801688724209698078569671875376948073176679

අපට නිතර හමු වන සංඛාාවක් වන π ද අපරිමේය සංඛාාවකි. π හි අගය දශමස්ථාන 60ක් දක්වා ගණනය කළ විට මෙසේ ය:

3 141592653589793238462643383279502884197169399375105820974944

අපරිමේය සංඛාහ පිළිබඳ ව පහත දැක්වෙන පුකාශය කළ හැකි ය:

අපරිමේය සංඛ්‍යාවක දශම නිරූපණයේ සමාවර්තනය වන සංඛ්‍යාංක ඛණ්ඩ නොමැත. දශම නිරූපණය අන්ත දශමයක් නොවන සංඛ්‍යාවල දශම නිරූපණවලට අනන්ත දශම නිරූපණ යැයි කියනු ලැබේ. ඒ අනුව සමාවර්ත දශම සහිත පරිමේය සංඛ්‍යාවලට හා අපරිමේය සංඛ්‍යාවලටත් අනන්ත දශම නිරූපණ ඇත. වෙනත් අයුරකින් පැවසුවහොත්, සමාවර්ත නොවන අනන්ත දශම නිරූපණ ඇත්තේ අපරිමේය සංඛ්‍යාවලට ය.

සටහන: අපරිමේය සංඛ්‍යාවල දශම නිරූපණය පිළිබඳ විස්තර කිරීමේ දී සිදු වන සුලභ දෝෂයක් නම් "අපරිමේය සංඛ්‍යාවක දශම නිරූපණයෙහි කිසිදු රටාවක් නොමැත" යන්න යි. 'රටාව' යන වචනය ගණිතයේ දී හොඳින් අර්ථ දැක්වී නොමැති වීම මෙහි ඇති ගැටලුව යි. නිදසුනක් ලෙස, පහත ලියා ඇති දශම සංඛ්‍යාවට පැහැදිලි රටාවක් ඇත.

0.101001000100001000001...

එසේ නමුත් මෙය අපරිමේය සංඛාාවක් වේ. මෙහි සමාවර්තනය වන සංඛාාංක ඛණ්ඩයක් නොමැති බව නිරීක්ෂණය කරන්න.

තාත්වික සංඛාා කුලකය, සර්වතු කුලකය ලෙස ගෙන, මෙතෙක් උගත් සංඛාා කුලක සියල්ල, එහි උපකුලක ලෙස පහත දැක්වෙන පරිදි වෙන් රූප සටහනක දැක්විය හැකි ය. තේරුම් ගැනීමේ පහසුව තකා උපකුලක තුළ තිබිය යුතු අවයව කිහිපය බැගින් ද ලියා ඇත.

1.2 අභනාසය

1. පහත දැක්වෙන සංඛාහ පරිමේය ද අපරිමේය ද යන්න නිර්ණය කරන්න.

a. $\sqrt{2}$

b. $\sqrt{25}$ c. $\sqrt{6}$

d. $\sqrt{11}$

e. 6.52

 $oldsymbol{2}$. පහත දැක්වෙන පුකාශනවල සතා අසතානාව නිර්ණය කරන්න.

(a) ඕනෑම තාත්වික සංඛාාවක් අන්ත දශමයක් හෝ අනන්ත දශමයක් වේ.

(b) අනන්ත දශම නිරූපණ සහිත පරිමේය සංඛාා පැවතිය හැකි ය.

(c) ඕනෑම තාත්වික සංඛාාවක් සමාවර්ත දශමයක් හෝ අනන්ත දශමයක් වේ.

(d) 0.010110111011110... යන්න පරිමේය සංඛ්‍යාවකි.

1.2 කරණි

ගණිතයේ දී මූල ලකුණ ලෙස හැඳින්වෙන " $\sqrt{}$ " යොදා ගනිමින් සංඛ $\mathfrak B$ ාත්මක (හා වීජීය) පුකාශන දැක්වූ අයුරු ඔබට මතක ඇතුවාට සැක නැත. නිදසුනක් ලෙස, $\sqrt{4}$ යන්න '4 හි ධන වර්ගමූලය" ලෙස හැඳින්වූ අතර, එමගින් දැක්වූයේ වර්ග කළ විට 4 ලැබෙන ධන සංඛ3ාව යි; එනම් 2 යි. ධන වර්ගමූලය යන්න සරලව වර්ගමූලය ලෙස ද හැඳින් වේ. යම්කිසි x ධන නිබිලයක වර්ගමූලය වන \sqrt{x} ද ධන නිබිලයක් වේ නම් එවිට x යනු පරිපූර්ණ වර්ගයක් යැයි කියනු ලැබේ. ඒ අනුව, 4 යනු පරිපූර්ණ වර්ගයකි. $\sqrt{4}$ යන්න 2ට සමාන වේ. එහෙත්, $\sqrt{2}$ යන්න නිඛිලයක් නොවේ. එය ආසන්න වශයෙන් 1.414 බව අපි මීට ඉහත දී දූටුවෙමු. තව ද, $\sqrt{2}$ යනු අපරිමේය සංඛාාවක් බව ද අපි මෙම පාඩමේ දී උගත්තෙමු. මෙම $\sqrt{}$ ලකුණ යොදාගැනෙන, එහෙත් අගය පරිමේය නොවන පුකාශන කරණි ලෙස හැඳින්වේ.

ඇත්ත වශයෙන් ම, $\sqrt{}$ ලකුණ යොදා ගනිමින් වර්ගමූල හැර වෙනත් මූල ද දැක්විය හැකි ය. නිදසුනක් ලෙස, $\sqrt[3]{2}$ මගින් දැක්වෙන්නේ 3 වන බලයට නැංවූ විට 2 ට සමාන වන ධන සංඛාාව යි. එයට 2හි ඝන මූලය යැයි කියනු ලැබේ. එය ද අපරිමේය සංඛාාවක් වන අතර, එහි අගය ආසන්න වශයෙන් 1.2599 වේ $(1.2599^3\,$ හි අගය සෙවීමෙන් ඔබට මෙය සනාථ කරගත හැකි ය). මේ ආකාරයෙන් ම, 2හි හතර වන මූලය, 2හි පස් වන මූලය ආදිය ද අර්ථ දැක්විය හැකි ය. වෙනත් ධන සංඛාා සඳහා ද මෙසේ අර්ථ දැක්වීම් කළ හැකි ය (නිදසුන් ලෙස $\sqrt[3]{5}$, $\sqrt[6]{8.24}$). එවැනි පුකාශන ද කරණි වේ. එහෙත් අපි මෙම පාඩමේ දී ධන නිඛිලවල වර්ගමුල සහිත කරණි පමණක් සලකා බලමු.

පරිපූර්ණ වර්ගයක් නොවන සංඛාාවක වර්ගමුලය අන්ත දශමයක් හෝ සමාවර්ත දශමයක් නො වේ. ඒ අනුව කරණි සෑමවිට ම අපරිමේය සංඛාහ වේ.

අප මෙහි දී විශේෂයෙන් සලකා බලන්නේ කරණි ආකාරයෙන් ඇති පුකාශන සුළු කිරීම පිළිබඳව යි. එවැනි සුළු කිරීම් වැදගත් වීමට හේතු ගණනාවක් ඇත. එක් හේතුවක් ලෙස දැක්විය හැක්කේ ගණනය කිරීම පහසු කර ගැනීමයි. නිදසුනක් ලෙස, $\frac{1}{\sqrt{2}}$ හි අගය

ගණනය කිරීමට ඇති විට, $\sqrt{2}$ සඳහා ආසන්න අගයක් ලෙස 1.414 යොදා ගත හොත්, $\frac{1}{1.414}$ හි අගය සෙවීමට සිදු වේ. මෙම බෙදීම තරමක් දීර්ඝය. එහෙත්, පහත දැක්වෙන ආකාරයට සුළු කරමින් ගණනය කිරීම වඩාත් පහසු ය:

$$\frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$$
 (භාගයෙහි හරය හා ලවය $\sqrt{2}$ න් ගුණ කිරීමෙන්) $= \frac{\sqrt{2}}{2}$ $= \frac{1.414}{2}$ $= 0.707$.

තවත් හේතුවක් ලෙස, ගණනය කිරීමේ දී වන දෝෂ අවම කර ගැනීම දැක්විය හැකි ය. ඒ සඳහා නිදසුනක් ලෙස, $\frac{\sqrt{20}}{2} - \sqrt{5}$ හි අගය සොයමු. මෙහි දී $\sqrt{20}$ සඳහා ආසන්න අගයක් ලෙස 4.5 ත් $\sqrt{5}$ සඳහා ආසන්න අගයක් ලෙස 2.2 ත් යොදා ගනිමු. එවිට,

$$\frac{\sqrt{20}}{2} - \sqrt{5} = \frac{4.5}{2} - 2.2 = 2.25 - 2.2 = 0.05$$

එහෙත්, මෙම පුකාශනයේ සැබෑ අගය වන්නේ 0 ය. මෙසේ වෙනස් පිළිතුරක් ලැබීමට එක් හේතුවක් වූයේ $\sqrt{20}$ හා $\sqrt{5}$ සඳහා ආසන්න අගයක් යොදා ගැනීම වුවත්, දී ඇති පුකාශනය වෙනස් ආකාරයකට සුළු කිරීමෙන් නිවැරදි අගය වන 0 ලබා ගත හැකි ය (අභාවාසයක් ලෙස මෙය යොදා ඇත).

කරණි සහිත පුකාශන විවිධ ආකාරයෙන් පවතී.

 $\sqrt{20}$ ආකාරයේ කරණියක ඇති විශේෂත්වය නම් මුළු සංඛාාව ම වර්ගමූල ලකුණ තුළ තිබීමයි. එවැනි කරණි, අබිල කරණි ලෙස හැඳින්වේ. $6\sqrt{15}$ ලෙස ලිවීමෙන් අදහස් වන්නේ $6\times\sqrt{15}$ යන්න යි. එය, කරණියක සහ පරිමේය සංඛාාවක (1ට අසමාන) ගුණිතය යි. මෙය අබිල කරණියක් නොවේ.

කරණියක් සරල ම ආකාරයෙන් ඇතැයි කියනු ලබන්නේ එය $a\sqrt{b}$ ආකාරයෙන් ලියා ඇති විට ය; මෙහි a යනු පරිමේය සංඛාාවක් වන අතර, b හි සාධක ලෙස පූර්ණ වර්ග නොමැති විය යුතු ය. නිදසුනක් ලෙස, $6\sqrt{15}$ යන්න සරල ම ආකාරයෙන් ඇති කරණියක් වන අතර $5\sqrt{12}$ සරල ම ආකාරයෙන් නොමැත; එයට හේතුව, 12හි සාධකයක් ලෙස පූර්ණ වර්ගයක් වන 4 තිබීම යි.

දැන්, විවිධාකාරයෙන් කරණි සහිත පුකාශන සුළු කළ හැකි අයුරු විමසා බලමු.

 $3\sqrt{5} + 6\sqrt{5}$ සුළු කරන්න.

මෙහි දී, $\sqrt{5}$ යන්න අඥාතයක් ලෙස සිතා සුළු කළ හැකි ය. ඒ අනුව,

$$3\sqrt{5} + 6\sqrt{5} = 9\sqrt{5}$$
.

මෙය, 3x + 6x = 9x ලෙස සුළු කිරීම වැනි ය. මෙම පුකාශය කරණි ආකාරයෙන් මීට වඩා සුළු කළ නොහැකි බව නිරීක්ෂණය කරන්න. $\sqrt{5}$ සඳහා ආසන්න අගයක් යොදා ගනිමින් සුළු කිරීම කරණි ආකාරයෙන් සුළු කිරීමක් නොවන වග මතක තබා ගන්න.

මතක තබා ගත යුතු තවත් වැදගත් කරුණක් වන්නේ $3\sqrt{2} + 8\sqrt{3}$ ආකාරයේ පුකාශන කරණි ලෙස මීට වඩා සුළු කළ නොහැකි බව යි.

දැන්, දර්ශක පිළිබඳ ගුණ භාවිතයෙන් කරණි සහිත පුකාශන සුළු කරන ආකාරය නිදසුන් මගින් සලකා බලමු.

නිදසුන 2

 $\sqrt{20}$ අබිල කරණීය, සරල ම ආකාරයෙන් (කරණීයක් ලෙස) දක්වන්න.

$$\sqrt{20} = \sqrt{4 \times 5}$$

$$= \sqrt{4} \times \sqrt{5} \qquad (\sqrt{ab} = \sqrt{a} \times \sqrt{b} \text{ Se})$$

$$= 2 \times \sqrt{5}$$

$$= 2\sqrt{5}$$

නිදසුන 3

 $4\sqrt{5}$ කරණිය, අඛිල කරණියක් ලෙස දක්වන්න.

$$4\sqrt{5} = \sqrt{16} \times \sqrt{5}$$
 $(4 = \sqrt{16})$ නිසා)
$$= \sqrt{16 \times 5}$$

$$= \sqrt{80}$$

දැන් කරණිවල ගුණ කිරීම් හා බෙදීම් සිදු කරන අයුරු විමසා බලමු.

නිදසුන 4

සුළු කරන්න: $5\sqrt{3} imes 4\sqrt{2}$

ගුණ කිරීමේ දී පරිමේය හා අපරිමේය සංඛාහ වෙන වෙන ම ගුණ කරමු.

$$5\sqrt{3} \times 4\sqrt{2} = 5 \times 4 \times \sqrt{3} \times \sqrt{2}$$
$$= 20 \times \sqrt{3 \times 2}$$
$$= 20\sqrt{6}$$

නිදසුන 5

සුළු කරන්න: $3\sqrt{20} \div 2\sqrt{5}$

 $3\sqrt{20}$ කරණිය $3\sqrt{4 imes 5}$ ලෙස ලිවිය හැකි ය.

තවදුරටත් සුළු කිරීමෙන් $3 \times 2\sqrt{5} = 6\sqrt{5}$ ලෙස ද දැක්විය හැකි ය. එවිට,

$$3\sqrt{20} \div 2\sqrt{5} = \frac{3\sqrt{20}}{2\sqrt{5}} = \frac{6\sqrt{5}}{2\sqrt{5}}$$

= $\frac{3}{2\sqrt{5}}$

මීළඟට අප විමසා බලන්නේ $\frac{a}{\sqrt{b}}$ ආකාරයේ පුකාශන සුළු කරන අයුරු යි. මෙවැනි භාග සඳහා $\frac{3}{\sqrt{2}}$, $\frac{4}{\sqrt{5}}$ ආදිය දැක්විය හැකි ය. මෙවැනි භාගවල හරයේ වර්ගමූල සහිත පුකාශනයක් ඇත. එම වර්ගමූල සහිත පුකාශනය වෙනුවට හරයෙහි නිබිල (හෝ පරිමේය) සංඛ්‍යාවක් ලැබෙන පරිදි ඒවා සකසන අයුරු දැන් සලකා බලමු.

 $\frac{3}{\sqrt{2}}$ සංඛාාව, හරයෙහි නිඛලයක් සහිත භාගයක් ලෙස දක්වන්න.

මෙහි දී යොදා ගන්නා උපකුමය නම්, $\frac{3}{\sqrt{2}}$ හි හරය හා ලවය $\sqrt{2}$ න් ගුණ කිරීම යි.

$$\frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \frac{3\sqrt{2}}{2}$$

මෙහි දී සිදු කළ කිුයාවලිය හරය පරිමේය කිරීම ලෙස හැඳින්වේ.

දැන් තවත් නිදසුනක් සලකා බලමු.

නිදසුන 7

 $\frac{a}{\sqrt{h}}$ හි හරය, පරිමේය කරන්න.

$$\frac{a}{\sqrt{b}} = \frac{a \times \sqrt{b}}{\sqrt{b} \times \sqrt{b}}$$
$$= \frac{a\sqrt{b}}{b}$$

දැන් තවත් කරණි සහිත ගැටලුවක් විසඳන අයුරු විමසා බලමු.

නිදසුන 8

සුළු කරන්න:
$$4\sqrt{63} - 5\sqrt{7} - 8\sqrt{28}$$

$$4\sqrt{63}=4\times\sqrt{9 imes7}=4 imes3\sqrt{7}$$

$$=12\sqrt{7}$$
 $8\sqrt{28}=8 imes\sqrt{4 imes7}=8 imes2\sqrt{7}$
$$=16\sqrt{7}$$
 එබැවින් $4\sqrt{63}-5\sqrt{7}-8\sqrt{28}=12\sqrt{7}-5\sqrt{7}-16\sqrt{7}$
$$=-9\sqrt{7}$$

අවසාන වශයෙන් කරණි සහිත වඩාත් සංකීර්ණ පුකාශනයක් සුළු කරන අයුරු සලකා බලමු.

නිදසුන 9

සුළු කරන්න:
$$\frac{2\sqrt{6}}{\sqrt{2}} + \sqrt{75} - \frac{3}{\sqrt{12}}$$

$$\frac{2\sqrt{6}}{\sqrt{2}} + \sqrt{75} - \frac{3}{\sqrt{12}} = \frac{2\sqrt{2 \times 3}}{\sqrt{2}} + \sqrt{25 \times 3} - \frac{3}{\sqrt{4 \times 3}}$$

$$= \frac{2\sqrt{2} \times \sqrt{3}}{\sqrt{2}} + \sqrt{25 \times 3} - \frac{3}{\sqrt{4} \times \sqrt{3}}$$

$$= 2\sqrt{3} + 5\sqrt{3} - \frac{3}{2\sqrt{3}}$$

$$= 7\sqrt{3} - \frac{3 \times \sqrt{3}}{2 \times 3}$$

$$= 7\sqrt{3} - \frac{3\sqrt{3}}{2 \times 3}$$

$$= 7\sqrt{3} - \frac{\sqrt{3}}{2}$$

$$= \frac{13\sqrt{3}}{2}$$

1.3 අභානසය

 ${f 1.}$ මෙම අඛිල කරණි, සරල ම ආකාරයෙන් (කරණි ලෙස) ලියන්න.

a.
$$\sqrt{20}$$

a.
$$\sqrt{20}$$
 b. $\sqrt{48}$ **c**. $\sqrt{72}$ **d**. $\sqrt{28}$

c.
$$\sqrt{72}$$

d.
$$\sqrt{28}$$

e.
$$\sqrt{80}$$

f.
$$\sqrt{45}$$

g.
$$\sqrt{75}$$

e.
$$\sqrt{80}$$
 f. $\sqrt{45}$ **g.** $\sqrt{75}$ **h.** $\sqrt{147}$

2. මෙම කරණි, අඛිල කරණි ලෙස දක්වන්න.

a.
$$2\sqrt{3}$$

b.
$$2\sqrt{5}$$

c.
$$4\sqrt{7}$$

d.
$$5\sqrt{2}$$

a.
$$2\sqrt{3}$$
 b. $2\sqrt{5}$ **c.** $4\sqrt{7}$ **d.** $5\sqrt{2}$ **e.** $6\sqrt{11}$

3. සුළු කරන්න.

a.
$$\sqrt{2} + 5\sqrt{2} - 2\sqrt{2}$$

b.
$$\sqrt{5} + 2\sqrt{7} + 2\sqrt{5} - 3\sqrt{7}$$

c.
$$4\sqrt{3} + 5\sqrt{2} + 3\sqrt{5} - 3\sqrt{2} + 3\sqrt{5} - 2\sqrt{3}$$

d.
$$6\sqrt{11} + 3\sqrt{7} - 2\sqrt{11} - 5\sqrt{7} + 4\sqrt{7}$$

e.
$$8\sqrt{3} + 7\sqrt{7} - 2\sqrt{3} + 3\sqrt{7} - 3\sqrt{7}$$

4. හරය පරිමේය කරන්න.

a.
$$\frac{2}{\sqrt{5}}$$

b.
$$\frac{5}{\sqrt{3}}$$

c.
$$\frac{5}{\sqrt{7}}$$

a.
$$\frac{2}{\sqrt{5}}$$
 b. $\frac{5}{\sqrt{3}}$ **c**. $\frac{5}{\sqrt{7}}$ **d**. $\frac{12}{2\sqrt{3}}$ **e**. $\frac{27}{3\sqrt{2}}$

e.
$$\frac{27}{3\sqrt{2}}$$

f.
$$\frac{3}{2\sqrt{5}}$$

$$\mathbf{g} \cdot \frac{3\sqrt{5}}{2\sqrt{7}}$$

h.
$$\frac{2\sqrt{3}}{3\sqrt{2}}$$

f.
$$\frac{3}{2\sqrt{5}}$$
 g. $\frac{3\sqrt{5}}{2\sqrt{7}}$ **h.** $\frac{2\sqrt{3}}{3\sqrt{2}}$ **i.** $\frac{3\sqrt{3}}{2\sqrt{5}}$

5. සුළු කරන්න.

a.
$$3\sqrt{2} \times 2\sqrt{3}$$

a.
$$3\sqrt{2} \times 2\sqrt{3}$$
 b. $5\sqrt{11} \times 3\sqrt{7}$ **c.** $\sqrt{5} \times 3\sqrt{3}$

c.
$$\sqrt{5} \times 3\sqrt{3}$$

d.
$$4\sqrt{7} \div 2\sqrt{14}$$

d.
$$4\sqrt{7} \div 2\sqrt{14}$$
 e. $6\sqrt{27} \div 3\sqrt{3}$ **f.** $\sqrt{48} \div 5\sqrt{3}$

f.
$$\sqrt{48} \div 5\sqrt{3}$$

6. සුළු කරන්න.

a.
$$2\sqrt{27} - 3\sqrt{3} + 4\sqrt{7} + 3\sqrt{28}$$

a.
$$2\sqrt{27} - 3\sqrt{3} + 4\sqrt{7} + 3\sqrt{28}$$
 b. $3\sqrt{63} - 2\sqrt{7} + 3\sqrt{27} + 3\sqrt{3}$

c.
$$2\sqrt{128} - 3\sqrt{50} + 2\sqrt{162} + \frac{4}{\sqrt{2}}$$
 d. $\sqrt{99} - 2\sqrt{44} + \frac{110}{\sqrt{44}}$

d.
$$\sqrt{99} - 2\sqrt{44} + \underbrace{110}_{\sqrt{44}}$$

e.
$$\sqrt{\frac{20}{2}} - \sqrt{5}$$

දර්ශක හා ලසුගණක I

මෙම පාඩම අධායනය කිරීමෙන් ඔබට,

දර්ශක හා ලසුගණක නීති ඇසුරෙන්,

- බල හා මූල ඇතුළත් පුකාශන සුළු කිරීමට
- සමීකරණ විසඳීමට

හැකියාව ලැබෙනු ඇත.

(දර්ශක

දර්ශක හා ලඝුගණක පිළිබඳ ව ඔබ මෙතෙක් උගත් කරුණු පුනරීක්ෂණය සඳහා පහත අභාාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාගාසය

1. සුළු කර අගය සොයන්න.

a.
$$2^2 \times 2^3$$
 b. $(2^4)^2$ **c.** 3^{-2}

b.
$$(2^4)^2$$

d.
$$\frac{5^3 \times 5^2}{5^5}$$
 e. $\frac{3^5 \times 3^2}{3^6}$ **f.** $(5^2)^2 \div 5^3$

e.
$$\frac{3^5 \times 3^2}{3^6}$$

f.
$$(5^2)^2 \div 5^2$$

g.
$$\frac{(2^2)^3 \times 2^4}{2^8}$$
 h. $\frac{5^{-3} \times 5^2}{5^0}$ **i.** $(5^2)^{-2} \times 5 \times 3^0$

h.
$$\frac{5^{-3} \times 5}{5^0}$$

i.
$$(5^2)^{-2} \times 5 \times 3^0$$

2. සුළු කරන්න.

a.
$$a^2 \times a^3 \times a$$
 b. $a^5 \times a \times a^0$ **c.** $(a^2)^3$

b.
$$a^5 \times a \times a^0$$

c.
$$(a^2)^3$$

d.
$$(x^2)^3 \times x^2$$
 e. $(xy)^2 \times x^0$ **f.** $(2x^2)^3$

e.
$$(xy)^2 \times x^0$$

f.
$$(2x^2)^3$$

$$\mathbf{g.} \quad \frac{2pq \times 3p}{6p^2}$$

$$h. 2x^{-2} \times 5xy$$

g.
$$\frac{2pq \times 3p}{6p^2}$$
 h. $2x^{-2} \times 5xy$ **i.** $\frac{(3a)^{-2} \times 4a^2b^2}{2ab}$

සුළු කරන්න.

a.
$$\lg 25 + \lg 4$$

b.
$$\log_2 8 - \log_2 4$$

c.
$$\log_5 50 + \log_5 2 - \log_5 4$$

$$\mathbf{d.} \quad \log_a 5 + \log_a 4 - \log_a 2$$

e.
$$\log_x 4 + \log_x 12 - \log_x 3$$

$$\mathbf{f.} \qquad \log_p a + \log_p b - \log_p c$$

4. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$\log_5 x = \log_5 4 + \log_5 2$$

a.
$$\log_5 x = \log_5 4 + \log_5 2$$
 b. $\log_5 4 - \log_5 2 = \log_5 x$

c.
$$\log_a 2 + \log_a x = \log_a 10$$

c.
$$\log_a 2 + \log_a x = \log_a 10$$
 d. $\log_3 x + \log_3 10 = \log_3 5 + \log_3 6 - \log_3 2$

e.
$$\lg 5 - \lg x + \lg 8 = \lg 4$$

e.
$$\lg 5 - \lg x + \lg 8 = \lg 4$$
 f. $\log_x 12 - \log_5 4 = \log_5 3$

2.1 බලයක භාගීය දර්ශක

4හි වර්ගමූලය යන්න මූල ලකුණ ඇසුරෙන් $\sqrt{4}$ ලෙස ද දර්ශක ඇසුරෙන් $4^{rac{1}{2}}$ ලෙස ද ලිවිය හැකි ය.

ඒ අනුව $\sqrt{4} = 4^{\frac{1}{2}}$ බව පැහැදිලි ය.

තවත් එවැනි අවස්ථාවක් සලකමු. $2=2^1$ නිසා

$$2 \times 2 \times 2 = 2^{1} \times 2^{1} \times 2^{1}$$

= 2^{3}
= 8

2හි තුන් වන බලය 8 වේ. එනම්, 8හි තුන්වන මූලය 2 වේ. එය සංකේත ඇසුරෙන්,

$$\sqrt[3]{8} = 2$$
 හෝ $8^{\frac{1}{3}} = 2$ ලෙස ලිවිය හැකි ය.
එනම් $\sqrt[3]{8} = 8^{\frac{1}{3}}$ බව පැහැදිලි ය.

තව ද, a යනු ධන තාත්වික සංඛාාවක් නම්,

$$\sqrt{a} = a^{\frac{1}{2}} \ \epsilon$$

 $\sqrt[3]{a} = a^{\frac{1}{3}} \ \epsilon$
 $\sqrt[4]{a} = a^{\frac{1}{4}} \ \epsilon$ ලෙස දැක්විය හැකි ය.

මේ අනුව මූල ලකුණ හා බලයෙහි දර්ශකය අතර පවතින සම්බන්ධය සාධාරණ වශයෙන් මෙසේ දක්වමු.

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

මෙම සම්බන්ධතාව දර්ශක පුකාශන සුළු කිරීම සඳහා යොදා ගන්නා අයුරු පහත නිදසුන් මගින් විමසා බලමු.

1. අගය සොයන්න.

(ii)
$$(\sqrt{25})^{-2}$$

(iii)
$$\sqrt[3]{3\frac{3}{8}}$$

(i)
$$\sqrt[3]{27} = 27^{\frac{1}{3}}$$

= $(3^3)^{\frac{1}{3}}$
= $3^{3 \times \frac{1}{3}}$
= $\underline{3}$

(ii)
$$(\sqrt{25})^{-2} = (25^{\frac{1}{2}})^{-2}$$

 $= \{(5^2)^{\frac{1}{2}}\}^{-2}$
 $= (5^2 \times \frac{1}{2})^{-2}$
 $= 5^{-2}$
 $= \frac{1}{5^2}$

 $=\frac{1}{25}$

(iii)
$$\sqrt[3]{3\frac{3}{8}} = \sqrt[3]{\frac{27}{8}}$$

$$= \left(\frac{27}{8}\right)^{\frac{1}{3}}$$

$$= \frac{\left(3^{3}\right)^{\frac{1}{3}}}{\left(2^{3}\right)^{\frac{1}{3}}}$$

$$= \frac{3^{3\times\frac{1}{3}}}{2^{3}\times\frac{1}{3}}$$

$$= \frac{3}{2}$$

$$= \frac{1}{2}$$

දර්ශක සහිත වීජීය පුකාශන සුළු කිරීම සඳහා, දර්ශක නීති යොදා ගන්නා ආකාරය පහත නිදසුන් ඇසුරෙන් තවදුරටත් වීමසා බලමු.

නිදසුන 2

සුළු කර පිළිතුර ධන දර්ශක සහිතව පුකාශ කරන්න.

$$(i)(\sqrt{x})^3$$

(ii)
$$\left(\sqrt[3]{a}\right)^{-\frac{1}{2}}$$

(iii)
$$\sqrt{\frac{1}{x^{-3}}}$$

$$(i)\left(\sqrt{x}\right)^{3} = \left(x^{\frac{1}{2}}\right)^{3}$$
$$= x^{\frac{1}{2} \times 3}$$
$$= \underline{x^{\frac{3}{2}}}$$

(ii)
$$(\sqrt[3]{a})^{-\frac{1}{2}} = (a^{\frac{1}{3}})^{-\frac{1}{2}}$$

$$= a^{\frac{1}{3} \times -\frac{1}{2}}$$

$$= a^{-\frac{1}{6}}$$

$$= \frac{1}{a^{\frac{1}{6}}}$$

(i)
$$(\sqrt{x})^3 = (x^{\frac{1}{2}})^3$$
 (ii) $(\sqrt[3]{a})^{-\frac{1}{2}} = (a^{\frac{1}{3}})^{-\frac{1}{2}}$ (iii) $\sqrt{\frac{1}{x}}$ = $\frac{1}{(x^{-3})^{\frac{1}{2}}}$ = $\frac{x^{\frac{1}{2} \times 3}}{2}$ = $\frac{x^{\frac{1}{3} \times -\frac{1}{2}}}{2}$ = $\frac{1}{x^{-3} \times \frac{1}{2}}$ = $\frac{1}{x^{-\frac{3}{2}}}$ = $\frac{1}{x^{-\frac{3}{2}}}$ = $\frac{1}{x^{-\frac{3}{2}}}$ = $\frac{x^{\frac{3}{2}}}{2}$

අගය සොයන්න. (i)
$$\left(\frac{27}{64}\right)^{\frac{2}{3}}$$

(ii)
$$\left(\frac{16}{81}\right)^{-\frac{3}{4}}$$

(i)
$$\left(\frac{27}{64}\right)^{\frac{2}{3}} = \left(\frac{3}{4^3}\right)^{\frac{2}{3}}$$
$$= \left[\left(\frac{3}{4}\right)^3\right]^{\frac{2}{3}}$$
$$= \left(\frac{3}{4}\right)^{3 \times \frac{2}{3}}$$
$$= \left(\frac{3}{4}\right)^2$$
$$= \frac{9}{\underline{16}}$$

(ii)
$$\left(\frac{16}{81}\right)^{-\frac{3}{4}} = \left(\frac{2^4}{3^4}\right)^{-\frac{3}{4}}$$
$$= \left(\frac{2}{3}\right)^{4 \times -\frac{3}{4}}$$
$$= \left(\frac{2}{3}\right)^{-3}$$
$$= \left(\frac{3}{2}\right)^3$$
$$= \frac{27}{8}$$
$$= 3\frac{3}{8}$$

දැන් තරමක් සංකීර්ණ පුකාශනයක් වන $\left(\frac{125}{64}\right)^{-\frac{1}{3}}$ imes $\sqrt[3]{32}$ \times $\sqrt[3]{3}$ \times \times $\sqrt[3]{30}$ හි අගය සොයන අයුරු විමසා බලමු.

$$\left(\frac{125}{64}\right)^{-\frac{1}{3}} \times \left(\sqrt[3]{32}\right)^{3} \times 3^{0} = \left(\frac{5^{3}}{2^{6}}\right)^{-\frac{1}{3}} \times \left(32^{\frac{1}{5}}\right)^{3} \times 1$$

$$= \left(\frac{2^{6}}{5^{3}}\right)^{\frac{1}{3}} \times \left(2^{5 \times \frac{1}{5}}\right)^{3}$$

$$= \frac{2^{6 \times \frac{1}{3}}}{5^{3 \times \frac{1}{3}}} \times 2^{3}$$

$$= \frac{2^{2}}{5} \times 2^{3}$$

$$= \frac{2^{5}}{5}$$

$$= \frac{32}{5}$$

$$= 6 \frac{2}{5}$$

$$\frac{\sqrt[3]{343x^{\frac{3}{2}}}}{x}$$
 සුළු කරන්න.

$$\frac{x}{\sqrt[3]{343x^{\frac{3}{2}}}} = (343x^{\frac{3}{2}})^{\frac{1}{3}} \div x$$

$$= 343^{\frac{1}{3}} \times (x^{\frac{3}{2}})^{\frac{1}{3}} \div x$$

$$= (7^3)^{\frac{1}{3}} \times (x^{\frac{3}{2}})^{\frac{1}{3}} \div x$$

$$= 7^1 \times x^{\frac{1}{2}} \div x$$

$$= 7 \times x^{\frac{1}{2}-1}$$

$$= 7 \times x^{-\frac{1}{2}}$$

$$= \frac{7}{x^{\frac{1}{2}}}$$

2.1 අභාගසය

1. මූල ලකුණ සහිතව ලියන්න.

a.
$$p^{\frac{1}{3}}$$

b.
$$a^{\frac{2}{3}}$$
 c. $x^{-\frac{2}{3}}$

$$c v^{-\frac{2}{3}}$$

d.
$$m^{\frac{4}{5}}$$

e.
$$y^{-\frac{3}{4}}$$

$$f_{x} = \frac{5}{3}$$

2. ධන දර්ශක සහිතව ලියන්න.

a.
$$\sqrt{m^{-1}}$$

b.
$$\sqrt[3]{\chi^{-1}}$$

c.
$$\sqrt[5]{p^{-2}}$$

a.
$$\sqrt{m^{-1}}$$
 b. $\sqrt[3]{x^{-1}}$ **c.** $\sqrt[5]{p^{-2}}$ **d.** $(\sqrt{a})^{-3}$ **e.** $\sqrt[4]{x^{-3}}$

e.
$$\sqrt[4]{x^{-3}}$$

f.
$$(\sqrt[3]{p})^{-5}$$

f.
$$(\sqrt[3]{p})^{-5}$$
 g. $\frac{1}{\sqrt{x^{-3}}}$ **h.** $\frac{1}{\sqrt[3]{a^{-2}}}$ **i.** $2\sqrt[3]{x^{-2}}$ **j.** $\frac{1}{3\sqrt{a^{-5}}}$

h.
$$\sqrt[3]{a^{-2}}$$

i.
$$2\sqrt[3]{x^{-2}}$$

j.
$$\frac{1}{3\sqrt{a^{-5}}}$$

3. අගය සොයන්න.

a. $\sqrt{25}$

1√16 b.

c. $(\sqrt{4})^5$

d. $(\sqrt[3]{27})^2$

 $\sqrt[4]{81^3}$

f. $\sqrt[3]{1000}^2$

g. $\left(\frac{27}{125}\right)^{\frac{2}{3}}$

h. $\left(\frac{81}{10000}\right)^{\frac{3}{4}}$

i. $\left(\frac{1}{64}\right)^{\frac{5}{6}}$

j. $\left(\frac{27}{64}\right)^{\frac{2}{3}}$

k. $(0.81)^{\frac{3}{2}}$

1. $(0.125)^{-\frac{2}{3}}$

m. $\left(\frac{4}{25}\right)^{\frac{1}{2}} \times \left(\frac{3}{4}\right)^{-1} \times 2^{0}$ **n.** $\left(\frac{9}{100}\right)^{\frac{3}{2}} \times \left(\frac{4}{25}\right)^{\frac{3}{2}}$ **o.** $(27)^{1\frac{1}{3}} \times (81)^{-1\frac{1}{4}}$

p. $\left(11\frac{1}{9}\right)^{-\frac{1}{2}} \times \left(6\frac{1}{4}\right)^{-\frac{3}{2}}$

q. $(0.125)^{\frac{1}{3}} \times (0.25)^{\frac{3}{2}}$ **r.** $(\sqrt[3]{8})^2 \times \sqrt[4]{16^3}$

4. සුළු කර ධන දර්ශක සහිතව ලියන්න.

a. $\sqrt[3]{a^{-1}} \div \sqrt[3]{a}$

b. $\sqrt[5]{a^{-3}} \div \sqrt[5]{a^7}$ **c.** $\sqrt[3]{a^2} \div \sqrt[3]{a^{-3}}$

 $\mathbf{d}. \left(\sqrt[3]{x^5}\right)^{\frac{1}{2}} \times \sqrt[6]{x^{-5}}$

e. $\{(\sqrt{a^3})^{-2}\}^{\frac{-1}{2}}$

f. $(\sqrt{x^2y^2})^{-6}$

g. $\sqrt{\frac{4a^{-2}}{9x^2}}$

h. $(\sqrt[3]{27x^3})^{-2}$

 $\left(\frac{xy^{-1}}{\sqrt{x^5}}\right)^{-2}$

$igl(2.2 egin{array}{c} 2.2 egin{array}{c} 2 \egin{array}{c} 2 \egin{array}{c} 2 \egin{array}{c} 2 \egin{array}{c} 2 \egin{array}{c}$

 $2^x=2^3$ යනු සමීකරණයකි. එහි සමාන ලකුණ දෙපස වූ බල දෙකේ ම පාද සමාන නිසා දර්ශක දෙක ද සමාන වේ. ඒ අනුව,

 $2^x = 2^3$ වන විට x = 3 වේ.

එසේ ම $x^5=2^5$ යන සමීකරණයේ ද සමාන ලකුණ දෙපස ඇත්තේ දර්ශක දෙක සමාන වූ බල දෙකකි. එම දර්ශක සමාන නිසා පාද දෙක ද සමාන වේ. ඒ අනුව,

 $x^5=2^5$ වන විට x=2 වේ. එහෙත් $x^2=3^2$ හි දර්ශක සමාන වන අතර ± 3 හා -3යන අගය දෙක ම x සඳහා විසඳුම් වේ. එසේ ධන හා සෘණ අගය දෙකක් ලැබෙන්නේ දර්ශකය වන 2 ඉරට්ට නිසා ය. එහෙත් මෙම පාඩම තුළ දී $x \geq 0$ වන අවස්ථා පමණක් සලකා බලමු.

1හි බල සතුව අපූරු ගුණාංගයක් පවතී. එනම් 1හි ඕනෑ ම බලයක් 1ට සමාන වේ. එනම් සියලු m සඳහා $1^m=1$ වේ.

සාධාරණ වශයෙන්, ඉහත මූලධර්මය මෙසේ දැක්විය හැකි ය.

$$x > 0, y > 0$$
 හා $x \neq 1, y \neq 1$ නම්

$$x \neq 0$$
 වන විට, $x^m = x^n$ නම් $m = n$ වේ. $m \neq 0$ වන විට, $x^m = y^m$ නම් $x = y$ වේ.

මෙම මූලධර්මය දර්ශක ඇතුළත් සමීකරණ විසඳීම සඳහා යොදා ගනිමු.

නිදසුන 1

විසඳන්න.

(i)
$$4^x = 64$$

(ii)
$$x^3 = 343$$

(iii)
$$3 \times 9^{2x-1} = 27^{-x}$$

(i)
$$4^x = 64$$

 $4^x = 4^3$

(ii)
$$x^3 = 343$$

 $x^3 = 7^3$

$$\therefore \underline{x=3}$$

$$\therefore \underbrace{x = 7}_{}$$

(iii)
$$3 \times 9^{2x-1} = 27^{-x}$$

$$3 \times (3^2)^{2x-1} = (3)^{3(-x)}$$

$$3 \times 3^{2} \, {}^{(2x-1)} = 3^{-3x}$$

$$3^{1+4x-2} = 3^{-3x}$$

$$1 + 4x - 2 = -3x$$

$$4x + 3x = 2 - 1$$

$$7x = 1$$
$$x = \frac{1}{7}$$

2.2 අභාගාසය

1. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$3^x = 9$$

b.
$$3^{x+2} = 243$$

c.
$$4^{3x} = 32$$

d.
$$2^{5x-2} = 8^x$$

e.
$$8^{x-1} = 4^x$$

f.
$$x^3 = 216$$

9.
$$2\sqrt{x} = 6$$

h.
$$\sqrt[3]{2x^2} = 2$$

2. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$2^x \times 8^x = 256$$

b.
$$8 \times 2^{x-1} = 4^{x-2}$$

c.
$$5 \times 25^{2x-1} = 125$$

d.
$$3^{2x} \times 9^{3x-2} = 27^{-3x}$$

e.
$$4^x = \frac{1}{64}$$

f.
$$(3^x)^{-\frac{1}{2}} = \frac{1}{27}$$

g.
$$3^{4x} \times \frac{1}{9} = 9^x$$

h.
$$x^2 = (\frac{1}{8})^{-\frac{2}{3}}$$

2.3 ලසුගණක නීති

 $\log_2{(16 \times 32)} = \log_2{16} + \log_2{32}$ හා $\log_2{(32 \div 16)} = \log_2{32} - \log_2{16}$ ලෙස ලසුගණක නීති ඇසුරෙන් ලිවිය හැකි බව අපි දනිමු. එම නීති, සාධාරණ වශයෙන්

$$\log_a(mn) = \log_a m + \log_a n$$
 ලෙස ද $\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$ ලෙස ද දැක්වේ.

එවැනි තවත් ලඝුගණක නීතියක් දැන් හඳුනා ගනිමු.

නිදසුනක් ලෙස $\log_s 125^4$ යන්න සලකමු.

$$\log_5 125^4 = \log_5 (125 \times 125 \times 125 \times 125)$$

= \log_5 125 + \log_5 125 + \log_5 125 + \log_5 125
= 4 \log_5 125

එලෙස ම,

$$\log_{10} 10^5 = 5 \log_{10} 10$$

 $\log_3 5^2 = 2 \, \log_3 5$ ද වේ. මෙය සාධාරණ වශයෙන්, ලසුගණක නීතියක් ලෙස මෙසේ දැක්විය හැකි ය.

$$\log_a m^r = r \log_a m$$

භාගමය දර්ශක සහිත පුකාශන සඳහා ද මෙම නීතිය සතා වන අතර, ඊට අදාළ නිදසුන් කිහිපයක් පහත දැක්වේ.

$$\log_2 3^{\frac{1}{2}} = \frac{1}{2} \log_2 3$$
$$\log_5 7^{\frac{2}{3}} = \frac{2}{3} \log_5 7$$

ඉහත හඳුනා ගත් ලසුගණක නීතියත් ඇතුළු ව සියලු ලසුගණක නීති යොදා ගන්නා ආකාරය පහත නිදසුන් මගින් දැක්වේ.

නිදසුන 1

අගය සොයන්න.

(i)
$$lg1000$$
 (ii) $log_4\sqrt[3]{64}$ (iii) $2log_2 2 + 3log_2 4 - 2log_2 8$

(i)
$$\lg 1000 = \lg 10^3$$

= 3 $\lg 10$
= 3 × 1 ($\lg 10 = 1$ නිසා)
= 3

(ii)
$$\log_4 \sqrt[3]{64} = \log_4 64^{\frac{1}{3}}$$

 $= \frac{1}{3} \log_4 64$
 $= \frac{1}{3} \log_4 4^3$
 $= \frac{1}{3} \times 3 \log_4 4$
 $= \log_4 4$
 $= \frac{1}{3}$

(iii)
$$2 \log_2 2 + 3 \log_2 4 - 2\log_2 8 = 2\log_2 2 + 3 \log_2 2^2 - 2\log_2 2^3$$

$$= \log_2 2^2 + \log_2 (2^2)^3 - \log_2 (2^3)^2$$

$$= \log_2 \left(\frac{2^2 \times (2^2)^3}{(2^3)^2}\right)$$

$$= \log_2 \left(\frac{2^2 \times 2^6}{2^6}\right)$$

$$= \log_2 2^2$$

$$= 2 \log_2 2$$

$$= 2$$

විසඳන්න.

(i)
$$2 \lg 8 + 2 \lg 5 = \lg 4^3 + \lg x$$

$$\therefore \lg x = 2\lg 8 + 2\lg 5 - \lg 4^{3}$$

$$= \lg 8^{2} + \lg 5^{2} - \lg 4^{3}$$

$$\therefore \lg x = \lg \left(\frac{8^{2} \times 5^{2}}{4^{3}}\right)$$

$$\therefore \lg x = \lg 25$$

$$\therefore \underline{x = 25}$$

(ii)
$$2 \log_b 3 + 3 \log_b 2 - \log_b 72 = \frac{1}{2} \log_b x$$

$$\therefore 2 \log_b 3 + 3 \log_b 2 - \log_b 72 = \frac{1}{2} \log_b x$$

$$\log_b 3^2 + \log_b 2^3 - \log_b 72 = \log_b x^{\frac{1}{2}}$$

$$\log_b \left(\frac{3^2 \times 2^3}{72}\right) = \log_b x^{\frac{1}{2}}$$

$$\therefore \frac{3^2 \times 2^3}{72} = x^{\frac{1}{2}}$$

$$\therefore 1^2 = (x^{\frac{1}{2}})^2$$

$$\therefore 1 = x^1$$

$$\therefore \underline{x = 1}$$

සතහාපනය කරන්න: $\log_5 75 - \log_5 3 = \log_5 40 - \log_5 8 + 1$

වම පැත්ත
$$\log_5 75 - \log_5 3 = \log_5 \left(\frac{75}{3}\right)$$
 $= \log_5 25$ $= \log_5 5^2$ $= 2$

දකුණු පැත්ත
$$\log_5 40 - \log_5 8 + 1 = \log_5 \left(\frac{40}{8}\right) + 1$$
$$= \log_5 5 + 1$$
$$= 1 + 1$$
$$= 2$$

$$\log_5 75 - \log_5 3 = \log_5 40 - \log_5 8 + 1$$

ලඝුගණක නීති පිළිබඳ ව උගත් කරුණු උපයෝගී කර ගෙන පහත අභාාසයේ යෙදෙන්න.

2.3 අභාගාසය

- 1. අගය සොයන්න.
 - a. $\log_2 32$

- **b.** lg 10000
- c. $\frac{1}{3} \log_3 27$

- **d.** $\frac{1}{2} \log_5 \sqrt{25}$
- **e.** $\log_3 \sqrt[4]{81}$
- **f.** $3 \log_2 \sqrt[3]{8}$

2. සුළු කර අගය සොයන්න.

a.
$$2 \log_2 16 - \log_2 8$$

c.
$$2 \lg 5 + 3 \lg 2 - \lg 2$$

e.
$$\lg 18 - 3 \lg 3 + \frac{1}{2} \lg 9 + \lg 5$$
 f. $4 \lg 2 + \lg \frac{15}{4} - \lg 6$

g.
$$\lg \frac{1}{256} - \lg \frac{125}{4} - 3 \lg \frac{1}{20}$$

i.
$$\lg \frac{12}{5} + \lg \frac{25}{21} - \lg \frac{2}{7}$$

b.
$$lg 80 - 3 lg 2$$

d.
$$\lg 75 - \lg 3 + \lg 28 - \lg 7$$

f.
$$4 \lg 2 + \lg \frac{15}{4} - \lg 6$$

h.
$$\log_3 27 + 2 \log_3 3 - \log_3 3$$

j.
$$\lg \frac{3}{4} - 2 \lg \frac{3}{10} + \lg 12 - 2$$

3. විසඳන්න.

a.
$$\lg x + \lg 4 = \lg 8 + \lg 2$$

b.
$$4 \lg 2 + 2 \lg x + \lg 5 = \lg 15 + \lg 12$$

c.
$$3 \lg x + \lg 96 = 2 \lg 9 + \lg 4$$

d.
$$\lg x = \frac{1}{2} (\lg 25 + \lg 8 - \lg 2)$$

e.
$$3 \lg x + 2 \lg 8 = \lg 48 + \frac{1}{2} \lg 25 - \lg 30$$

f.
$$\lg 125 + 2 \lg 3 = 2 \lg x + \lg 5$$

සාරාංශය

•
$$x>0, y>0$$
 හා $x\ne 1, y\ne 1$ නම් $x\ne 0$ වන විට, $x^m=x^n$ නම් $m=n$ වේ. $m\ne 0$ වන විට, $x^m=y^m$ නම් $x=y$ වේ.

•
$$\log_a m^r = r \log_a m$$

මිශු අභානාසය

1. අගය සොයන්න.

a.
$$(\sqrt[3]{8})^2 \times \sqrt[3]{27}$$

b.
$$(\sqrt{125})^3 \times \sqrt{\frac{1}{20}} \times 10$$

c.
$$\frac{32^{-\frac{2}{5}} \times 216^{\frac{2}{3}}}{81^{\frac{3}{4}} \times \sqrt[3]{8^0} \times \sqrt[3]{27^{-2}}}$$

d.
$$\sqrt{\frac{18 \times 5^2}{8}}$$

e.
$$\left(\frac{1}{8}\right)^{\frac{1}{3}} \times 5^{-2} \times 100$$

f.
$$27^{\frac{2}{3}} - 16^{\frac{3}{4}}$$

2. සුළු කර ධන දර්ශක සහිතව පුකාශ කරන්න.

a.
$$\sqrt{a^2b^{-\frac{1}{2}}}$$

b.
$$(x^{-4})^{\frac{1}{2}} \times \sqrt{\frac{1}{x^{-3}}}$$

c.
$$(x^{\frac{1}{2}} - x^{\frac{1}{2}}) (x^{\frac{1}{2}} + x^{\frac{1}{2}})$$

d.
$$(x \div \sqrt[n]{x})^n$$

d.
$$(x \div \sqrt[n]{x})^n$$
 e. $\left[\left(\sqrt{a^3} \right)^{-2} \right]^{\frac{1}{2}}$

3. සතහාපනය කරන්න.

a.
$$\lg \left(\frac{217}{38} \div \frac{31}{266} \right) = 2 \lg 7$$

b.
$$\frac{1}{2} \lg 9 + \lg 2 = 2 \lg 3 - \lg 1.5$$

c.
$$\log_3 24 + \log_3 5 - \log_3 40 = 1$$

d.
$$\lg 26 + \lg 119 - \lg 51 - \lg 91 = \lg 2 - \lg 3$$

e.
$$2\log_a 3 + \log_a 20 - \log_a 36 = \log_a 10 - \log_a 20$$

දර්ශක හා ලසුගණක II

මෙම පාඩම අධානයෙන් ඔබට,

- ලසුගණක වගුව යොදා ගනිමින් 0ත් 1ත් අතර සංඛ්‍යාවල බල හා මූල ඇතුළත් ගුණ කිරීම් හා බෙදීම් සහිත පුකාශන සුළු කිරීමටත්

ලසුගණක

 $10^3=1000$ වේ. එය $\log_{10}1000=3$ ලෙස ලසුගණක ආකාරයෙන් ලිවිය හැකි ය. සම්මුතියක් ලෙස \log_{10} වෙනුවට \log_{10} වෙණක් යොදා එය $\log_{10}\log$

$$5^2 = 25$$
 වන නිසා $\log_5 25 = 2$ ද

$$10^0 = 1$$
 වන නිසා, $\lg 1 = 0$ ද

$$10^1 = 10$$
 වන නිසා, $\lg 10 = 1$ ද වේ.

ඕනෑ ම ධන සංඛාාවක ලසුගණක ලබා ගැනීම, ලසුගණක වගුව ඇසුරෙන් කළ හැකි ය. ලසුගණක භාවිතයෙන්, ගුණ කිරීම හා බෙදීම ඇතුළත් සංඛාා සුළු කිරීම නැවත සිහිපත් කර ගැනීම පිණිස පහත අභාාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාගාසය

1. පහත දැක්වෙන වගු සම්පූර්ණ කරන්න.

(i)	සංඛ්‍යාව	විදාහත්මක අංකනය	ලඝුගණකය		ලඝුගණකය
			පූර්ණාංශය	දශමාංශය	
	73.45	7.345×10^{1}	1	0.8660	1.8660
	8.7				
	12.5				
	725.3				
	975				

(ii)	ලඝුගණකය	ලඝුගණකය		විදහාත්මක	සංඛ්යාව
	_	පූර්ණාංශය	දශමාංශය	අංකනය	
	1.5492				
	2.9059				
	1.4036				
	2.8798				
	3 4909				

2. ලසුගණක වගුව යොදා ගනිමින් හිස්තැන් සම්පූර්ණ කරන්න.

- $oldsymbol{3}$. හිස්තැන් සම්පූර්ණ කරමින් P හි අගය සොයන්න.
- (i) ලඝුගණක පුකාශනයක් ලෙස

$$P = \frac{27.32 \times 9.8}{11.5}$$

$$\lg P = \lg \dots + \lg \dots - \lg \dots$$

$$= \dots + \dots - \dots$$

$$= \dots$$

$$\therefore P = \text{antilog} \dots$$

$$P = \frac{27.32 \times 9.8}{11.5}$$

$$= \frac{10 - \times 10 - \times 10}{10 - \times 10}$$

$$= \frac{10 - \times 10}{10 - \times 10}$$

$$= 10 - \times 10 - \times 10$$

$$= \dots \times 10 - \times 10$$

$$= \dots \times 10 - \times 10$$

4. ලසුගණක ඇසුරෙන් සුළු කරන්න.

a. 14.3×95.2

b. $2.575 \times 9.27 \times 12.54$ **c.**

c. $\frac{9.87 \times 7.85}{4.321}$

3.1 එකට අඩු දශම සංඛ්‍යාවල ලසුගණක

ලසුගණක වගුවෙන් 1ට වැඩි සංඛාාවල ලසුගණක ලබා ගත් ආකාරය පිළිබඳ ව අවධානය යොමු කරමින් 0ත් 1ත් අතර සංඛාාවල ලසුගණක ලබා ගන්නා අයුරු දැන් සලකා බලමු. ඒ සඳහා පහත දැක්වෙන වගුව පරීක්ෂා කරන්න.

20.20	විදහාත්මක අංකනය	ලඝුගණකය		
සංඛ්යාව		පූර්ණාංශය	දශමාංශය	ලඝුගණකය
5432	5.432×10^{3}	3	0.7350	3.7350
543.2	5.432×10^{2}	2	0.7350	2.7350
54.32	5.432×10^{1}	1	0.7350	1.7350
5.432	5.432×10^{0}	0	0.7350	0.7350
0.5432	5.432×10^{-1}	- 1	0.7350	<u>1</u> .7350
0.05432	5.432×10^{-2}	- 2	0.7350	$\overline{2}.7350$
0.005432	5.432×10^{-3}	- 3	0.7350	3.7350
0.0005432	5.432×10^{-4}	-4	0.7350	4 .7350

ඉහත වගුව අනුව, පළමු තීරයේ 5.432න් පසු ඇති 0ත් 1ත් අතර වූ සංඛ්‍යාවල ලසුගණකයේ පූර්ණාංශය සෘණ අගයක් ගනී. පූර්ණාංශය සෘණ අගයක් වුව ද වගුවෙන් ලබාගත් ලසුගණකයේ දශමාංශය ධන අගයකි. පූර්ණාංශය පමණක් සෘණ වන බව දැක්වීමට ඊට ඉහළින් "—" යෙදීම කරනු ලැබේ. එය කියවනු ලබන්නේ ව්යුති ලෙස යි.

නිදසුනක් ලෙස $\overline{2}.3725$ යන්න ව්යුති දෙකයි දශම තුනයි හතයි දෙකයි පහ ලෙස කියවනු ලැබේ. තව ද, $\overline{2}.3725$ මගින් දැක්වෙන්නේ -2+0.3725 යන්න යි.

0ත් 1ත් අතර වූ සංඛාාවල ලසුගණකයේ පූර්ණාංශය සෘණ වේ. එවැනි සංඛාාවක පූර්ණාංශය ලබා ගැනීම විදාාත්මක අංකනයෙන් මෙන් ම දශම තිතට පසු එන බින්දු ගණනින් ද කළ හැකි ය. දශම තිතට පසුව (හා ඊට පසුව එන පළමු නිශ්ශනා ඉලක්කමට පෙර) ඇති බින්දු ගණනට එකක් එකතු කර, එහි සෘණ අගය ගත් විට ලැබෙන අගය ලසුගණකයේ පූර්ණාංශය වේ. ඒ බව ඉහත වගුව තුළින් ද නිරීක්ෂණය කළ හැකි ය.

උදා:- 0.004302 දශම තිතට පසුව පළමු නිශ්ශුනා ඉලක්කමට පෙර ඇති බින්දු ගණන 2; පූර්ණාංශය $\overline{3}$

0.04302 දශම තිතට පසුව බින්දු ගණන 1; පූර්ණාංශය $\overline{2}$ 0.4302 දශම තිතට පසුව බින්දු ගණන 0; පූර්ණාංශය $\overline{1}$

එවිට $\log 0.004302 = \overline{3}.6337$ ඉව්.

එය දර්ශක ආකාරයෙන් ලියූ විට;

 $0.004302 = 10^{\overline{3}.6337}$ වේ. වෙනත් අයුරකින් දක්වතොත්, $0.004302 = 10^{-3} \times 10^{0.6337}$ වේ. 0 ත් 1ත් අතර සංඛාාවල ලසුගණක ලබා ගැනීම හුරු වීම සඳහා පහත අභාාසයේ යෙදෙන්න.

(3.1 අභනාසය)

1. පහත දැක්වෙන එක් එක් සංඛහාවේ ලඝුගණකයේ පූර්ණාංශය ලියා දක්වන්න.

a. 0.9843

b. 0.05

c. 0.0725

d. 0.0019

e. 0.003141

f. 0.000783

2. අගය සොයන්න.

a. lg 0.831

b. lg 0.01175

c. lg 0.0034

d. lg 0.009

e. lg 0.00005 **f.** lg 0.00098

3. පහත දැක්වෙන සංඛහ, දහයේ බල ලෙස ලියා දක්වන්න.

a. 0.831

b. 0.01175

c. 0.0034

d. 0.009

e. 0.00005

f. 0.00098

[3.2 ලසුගණකයට අදාළ සංඛ්යාව (පුතිලසුගණකය - antilog)

මීට කලින් උගත් 1ට වැඩි සංඛාාවල පුතිලඝුගණකය ලබා ගත් අයුරු සිහිපත් කරමු.

antilog
$$2.7421 = 5.522 \times 10^2$$

= 552 2

සංඛාාවක් විදාාත්මක අංකනයෙන් ලියු විට ලැබෙන 10හි බලයෙහි දර්ශකය එම සංඛාාවේ ලසුගණකයේ පූර්ණාංශය වේ. පුතිලසුගණකය ලබා ගැනීමේ දී පූර්ණාංශයෙන් දැක්වෙන අගයට සමාන ස්ථාන ගණනින් දශම තිත ගමන් කළ යුතු ය. ඒ අනුව ඉහත 5.522 හි දශම තිත ස්ථාන දෙකක් දකුණත් පසට ගමන් කොට 552.2 ලැබී ඇත. එහෙත් සෘණ පූර්ණාංශයක් සහිත අවස්ථාවේ දී මෙම දශම තිත ගමන් කිරීම වමත් පසට සිදු වේ.

(දශම තිත වමත් පසට ස්ථාන දෙකක් යා යුතු යි) antilog $\overline{2}$. 7421 = 5.522 × 10⁻²

= 0.05522(වියුති 2 නිසා දශම තිතට පසු ඊළඟට බින්දු 1)

antilog $\overline{1}$. 7421 = $5.522 imes 10^{-1}$ (දශම තිත වමත් පසට ස්ථාන එකක් යා යුතු ය) = 0.5522(වියුති 1 නිසා දශම තිතට පසු ඊළඟට බින්දු නැත)

3.2 අභානාසය

1. විදාහත්මක අංකනයෙන් දී ඇති පහත දැක්වෙන එක් එක් සංඛ්යාව දශමය සංඛ්‍යාවක් ලෙස ලියා දක්වන්න.

a.
$$3.37 \times 10^{-1}$$

b. 5.99×10^{-3}

c. 6.0×10^{-2}

d.
$$5.745 \times 10^{\circ}$$

e.

 9.993×10^{-4} **f.** 8.777×10^{-3}

2. ලසුගණක වගුව ඇසුරෙන් අගය සොයන්න.

a. antilog
$$\overline{2}$$
. 5432

a. antilog $\bar{2}$. 5432 **b.** antilog $\bar{1}$. 9321 **c.** antilog 0 . 9972

d. antilog
$$\overline{4}$$
. 5330

d. antilog $\overline{4}$. 5330 **e.** antilog $\overline{2}$. 0000

f. antilog $\overline{3}$. 5555

$m{3.3}$ වියුති ඇතුළත් ලසුගණක එකතු කිරීම හා අඩු කිරීම

(a) එකතු කිරීම

ලසුගණකයක දශමාංශය, ලසුගණක වගුවෙන් ලබා ගන්නා අතර, එය සැම විට ම ධන අගයක් ම වේ. එහෙත්, පූර්ණාංශය ධන හෝ ඍණ හෝ ශූනා වන බව අපි දනිමු. $\overline{2}$. 5143 හි දශමාංශය වන .5143 ධන ද පූර්ණාංශය වන $\overline{2}$, ඍණ 2 ද වේ. මෙවැනි සංඛාහ එකතු කිරීමේ දී හෝ අඩු කිරීමේ දී, දශමාංශ කොටස් වෙනමත්, පූර්ණාංශ කොටස් වෙනමත් සුළු කළ යුතු වේ.

නිදසුන 1

සුළු කරන්න; පිළිතුර සෘණ අගයක් ලැබේ නම් එය වියුති ආකාරයෙන් තබන්න.

(i)
$$\overline{2}.5143 + \overline{1}.2375 = -2 + 0.5143 + (-1) + 0.2375$$

= $(-2 - 1) + (0.5143 + 0.2375)$
= $-3 + 0.7518$
= $\overline{3}.7518$

(ii)
$$\overline{3}$$
. 9211 + 2 . 3142 = -3 + 0.9211 + 2 + 0.3142
= (-3 + 2) + (0.9211 + 0.3142)
= -1 + 1 . 2353
= -1 + 1 + 0.2353
= $\overline{0.2353}$

(iii)
$$\overline{3}$$
 . 8753 + 1.3475 = -3 + 0.8753 + 1 + 0.3475
= (-3 + 1) + (0.8753 + 0.3475)
= -2 + 1.2228
= -2 + 1 + 0.2228
= $\overline{1}$. 2228

(b) අඩු කිරීම

එකතු කිරීමේ දී මෙන් ම, දශම කොටස ධන බව සැලකිල්ලට ගෙන දකුණත් පස සිට වමත් පසට පිළිවෙළින් අඩු කළ යුතු වේ.

නිදසුන 2

සුළු කරන්න; සෘණ අගයක් ලැබේ නම් එය වියුති ආකාරයෙන් තබන්න.

(i)
$$\overline{2}$$
. 5143 - 1.3143 = -2 + 0.5143 - (1 + 0.3143)
= -2 + 0.5143 - 1 - 0.3143
= -2 - 1 + 0.5143 - 0.3143
= -3 + 0 . 2000
= $\overline{3}$. 2000

(ii)
$$2.5143 - \overline{1}.9143 = 2 + 0.5143 - (-1 + 0.9143)$$

= $2 + 0.5143 + 1 - 0.9143$
= $3 - 0.4000$
= 2.6000

(iii)
$$0.2143 - \overline{1}$$
. $8143 = 0.2143 - (-1 + 0.8143)$
= $0.2143 + 1 - 0.8143$
= $1 - 0.6000$
= $\underline{0.4}$

(iv)
$$\overline{2}$$
. 5143 – $\overline{1}$. 9143 = –2 + 0.5143 – (–1 + 0.9143)
= –2 + 0.5143 + 1 – 0.9143
= –2 + 1 + 0.5143 – 0.9143
= –1 – 0.4000

මෙහි දී දශම කොටස ලෙස සෘණ අගයක් ලැබේ. එහෙත් ලසුගණකයක දශමාංශය ධන ලෙස තිබිය යුතු නිසා, පහත ආකාරයේ උපකුමයක් භාවිත කරමු.

$$-1-0.4=-1-1+1-0.4$$
 $(-1+1=0$ නිසා අගය වෙනස් නො වේ) $=-2+0.6$ $=\overline{2}$ 6

මෙහි දී සිදු කරනු ලැබුවේ පූර්ණාංශයට -1 ක් හා දශමාංශයට +1 ක් එකතු කිරීමයි.

සටහන: ඉහත (iv) හි තුන් වන පියවරේ දී ම මෙම සෘණ දශමාංශයක් ලැබීම මඟහරවා ගත හැකි ව තිබිණි. ඒ මෙසේ ය:

$$-2 + 0.5143 + 1 - 0.9143 = -2 + 1.5143 - 0.9143 = -2 + 0.6 = \overline{2}$$
. 6

3.3 අභානාසය

1. සුළු කරන්න.

a.
$$0.7512 + \overline{1}.3142$$

b.
$$\overline{1}.3072 + \overline{2}.2111$$
 c. $\overline{2}.5432 + \overline{1}.9513$

c.
$$\overline{2}.5432 + \overline{1}.9513$$

d
$$\overline{3}.9121 + \overline{1}.5431$$

$$0.7532 + \overline{3}.8542$$

d
$$\overline{3}.9121 + \overline{1}.5431$$
 e. $0.7532 + \overline{3}.8542$ **f.** $\overline{1}.8311 + \overline{2}.5431 + 1.3954$

g.
$$3.8760 - \overline{2}.5431$$

g.
$$3.8760 - \overline{2}.5431$$
 h. $\overline{2}.5132 - \overline{1}.9332$ **i.** $\overline{3}.5114 - \overline{2}.4312$

i.
$$\overline{3}.5114 - \overline{2}.4312$$

$$\bar{2}.9372 - 1.5449$$

k.
$$0.7512 + \overline{1}.9431$$
 l. $\overline{1}.9112 - \overline{3}.9543$

1.
$$\overline{1}.9112 - \overline{3}.9543$$

සුළු කරන්න.

a.
$$\overline{1}.2513 + 0.9172 - \overline{1}.514$$

c.
$$\overline{3}.2754 + \overline{2}.8211 - \overline{1}.4372$$

e.
$$\overline{3}.7512 - (0.2511 + \overline{1}.8112)$$

b.
$$\overline{3}.2112 + 2.5994 - \overline{1}.5004$$

d.
$$0.8514 - \overline{1}.9111 - \overline{2}.3112$$

f.
$$\overline{1}.2572 + 3.9140 - \overline{1}.1111$$

් 3.4 ලඝුගණක වගුව භාවිතයෙන් සංඛ්යාත්මක පුකාශන සුළු කිරීම

පහත දැක්වෙන ලඝුගණක නීති භාවිතයෙන් සංඛාහත්මක ගණනය කිරීම් කරන අයුරු පහත දැක්වෙන නිදසුන් කීපයක් මගින් විමසා බලමු.

1.
$$\log_a (P \times Q) = \log_a P + \log_a Q$$

$$2. \quad \log_a \left(\frac{P}{Q} \right) = \log_a P - \log_a Q$$

නිදසුන 1

ලසුගණක වගුව භාවිතයෙන් හා ලසුගණක නීති යොදා ගනිමින් සුළු කරන්න.

a.
$$43.85 \times 0.7532$$

b.
$$0.0034 \times 0.8752$$

c.
$$0.0875 \div 18.75$$

d.
$$0.3752 \div 0.9321$$

a.
$$43.85 \times 0.7532$$

මෙහි දී ආකාර දෙකකින් සුළු කිරීම කළ හැකි ය.

පළමු කුමය $P = 43.85 \times 0.7532$ ලෙස ගනිමු.

දෙවන කුමය

එවිට,
$$\lg P = \lg (43.85 \times 0.7532)$$

$$= \lg 43.85 + \lg 0.7532$$

$$= 1.6420 + \overline{1}.8769$$

$$= 1 + 0.6420 - 1 + 0.8769$$

$$= 1.5189$$

$$\therefore P = \text{antilog } 1.5189$$

$$= 33.03$$

දර්ශක ආකාරයෙන් සුළු කිරීම

 43.85×0.7532

$$= 10^{1.6420} \times 10^{\overline{1} \cdot 8769}$$

$$=10^{1.5189}$$

$$= 3.303 \times 10^{1}$$

$$= 33.03$$

b. 0.0034×0.8752

දර්ශක ආකාරයෙන් සුළු කිරීම
$$0.0034 \times 0.8752$$
 = $10^{\frac{1}{3}.5315} \times 10^{\frac{1}{1}.9421}$ = $10^{\frac{3}{3}.4736}$ = 2.975×10^{-3} = 0.002975

c. $0.0875 \div 18.75$

$$P = 0.0875 \div 18.75$$
 ලෙස ගතිමු.
එවිට, $\lg P = \lg (0.0875 \div 18.75)$
 $= \lg 0.0875 - \lg 18.75$
 $= \overline{2}.9420 - 1.2730$
 $= -2 + 0.9420 - 1 - 0.2730$
 $= -3 + 0.6690$
 $= \overline{3}.6690$
 $\therefore P = \operatorname{antilog} \overline{3}.6690$
 $= 0.004666$

දර්ශක ආකාරමයන් සුළු කිරීම
$$0.0875 \div 18.75$$
 $= 10^{\frac{7}{2} \cdot 9420} \div 10^{1.2730}$ $= 10^{\frac{7}{3} \cdot 6690}$ $= 4.666 \times 10^{-3}$ $= 0.004666$

d. $0.3752 \div 0.9321$

$$P=0.3752 \div 0.9321$$
 ලෙස ගතිමු.
එවිට, $\lg P = \lg (0.3752 \div 0.9321)$
 $= \lg 0.3752 - \lg 0.9321$
 $= \overline{1}.5742 - \overline{1}.9694$
 $= -1 + 0.5742 - (-1 + 0.9694)$
 $= -1 + 0.5742 + 1 - 0.9694$
 $= -1 + 0.5742 + 0.0306$
 $= -1 + 0.6048$
 $= \overline{1}.6048$
 $\therefore P = \text{antilog } \overline{1}.6048$
 $= 0.4026$

දර්ශක ආකාරමයන් සුළු කිරීම $0.3752 \div 0.9321$ = $10^{\frac{1}{1}.5742} \div 10^{\frac{1}{1}.9694}$ = $10^{\frac{1}{1}.6048}$ = 4.026×10^{-1} = 0.4026

නිදසුන 2

ලඝුගණක වගුව භාවිතයෙන් සුළු කරන්න.

$$8.753 \times 0.02203$$
 0.9321
 $P = \frac{8.753 \times 0.02203}{0.9321}$ ලෙස ගතිමු.
එවිට, $\lg P = \lg \left(\frac{8.753 \times 0.02203}{0.9321} \right)$
 $= \lg 8.753 + \lg 0.02203 - \lg 0.9321$
 $= 0.9421 + \overline{2}.3430 - \overline{1}.9694$
 $= 0.9421 - 2 + 0.3430 - \overline{1}.9694$
 $= \overline{1}.2851 - \overline{1}.9694$
 $= -1 + 0.2851 - (-1 + 0.9694)$
 $= -1 + 0.2851 + 1 - 0.9694$
 $= \overline{1}.3157$
 $\therefore P = \text{antilog } \overline{1}.3157$

= 0.2068

දර්ශක අාකාරමයන් සුළු කිරීම $\frac{8.753 \times 0.02203}{0.9321}$ $= \frac{10^{0.9421} \times 10^{\frac{1}{2}.3430}}{10^{\frac{1}{1}.9694}}$ $= \frac{10^{\frac{1}{1}.2851}}{10^{\frac{1}{1}.9694}}$ $= 10^{\frac{1}{1}.2851 - \frac{1}{1}.9694}$ $= 10^{\frac{1}{1}.3157}$ $= 2.068 \times 10^{-1}$ = 0.2068

3.4 අභාහාසය

ලසුගණක වගුව භාවිතයෙන් අගය සොයන්න.

1. a.
$$5.945 \times 0.782$$

1. a.
$$5.945 \times 0.782$$
 b. 0.7453×0.05921 **c.** 0.0085×0.0943

c.
$$0.0085 \times 0.0943$$

d.
$$5.21 \times 0.752 \times 0.0$$

d.
$$5.21 \times 0.752 \times 0.093$$
 e. $857 \times 0.008321 \times 0.457$ **f.** $0.123 \times 0.9857 \times 0.79$

f.
$$0.123 \times 0.9857 \times 0.79$$

2. a.
$$7.543 \div 0.9524$$

b.
$$0.0752 \div 0.8143$$

c.
$$0.005273 \div 0.0078$$

e.
$$0.0631 \div 0.003921$$

f.
$$0.0752 \div 0.0008531$$

3. a.
$$\frac{8.247 \times 0.1973}{0.9875}$$

b.
$$\frac{9.752 \times 0.0054}{0.09534}$$

$$\mathbf{c.} \quad \frac{79.25 \times 0.0043}{0.3725}$$

d.
$$\frac{0.7135 \times 0.4391}{0.0059}$$

e.
$$\frac{5.378 \times 0.9376}{0.0731 \times 0.471}$$

$$\mathbf{f.} \quad \frac{71.8 \times 0.7823}{23.19 \times 0.0932}$$

3.5 සංඛ්‍යාවක ලසුගණකය පූර්ණ සංඛ්‍යාවකින් ගුණ කිරීම හා බේදීම

එකට වැඩි සංඛාහවල ලඝුගණකවල පූර්ණාංශ ධන අගයක් ගන්නා බව අපි දනිමු. එවැනි ලසුගණකයක් තවත් සංඛාාවකින් ගුණකිරීමේ දී හෝ බෙදීමේ දී සාමානා කුමයට සුළු කළ හැකි ය. නමුත්, 0ත් 1ත් අතර සංඛාාවල ලසුගණකවල පූර්ණාංශ සෘණ අගයන් ගන්නා බව අපි දනිමු.

 $\overline{3}$. 8247 එවැනි ලඝුගණකයකි. මෙවැනි වියුති ඇතුළත් ලඝුගණකයක් තවත් සංඛාාවකින් ගුණ කිරීමේ දී හෝ බෙදීමේ දී පූර්ණාංශ හා දශමාංශ කොටස් වෙන වෙන ම සුළු කර ගත හැකි ය.

ලසුගණක පූර්ණ සංඛ්‍යාවකින් ගුණ කිරීම

නිදසුන 1

සුළු කරන්න.

b.
$$\overline{2}$$
. 7512 × 3

c.
$$\overline{1}$$
. 9217 × 3

a.
$$2.8111 \times 2$$
 $= \underbrace{5.6222}$

b.
$$\overline{2} \cdot 7512 \times 3$$

= 3 (-2 + 0.7512)
= -6 + 2 \cdot 2536
= -6 + 2 + 0 \cdot 2536
= -4 + 0.2536
= $\overline{4} \cdot 2536$

c.
$$\overline{1} \cdot 9217 \times 3$$

 $3(-1+0.9217)$
 $= -3+2.7651$
 $= -3+2+0.7651$
 $= -1+0.7651$
 $= \overline{1} \cdot 7651$

ලසුගණක පූර්ණ සංඛ්‍යාවකින් බේදීම

ලසුගණක, පූර්ණ සංඛ්‍යාවකින් බෙදන අයුරු දැන් සලකා බලමු. පූර්ණාංශය වියුති ගණනක් ලෙස පවතින ලඝුගණකයක් පූර්ණ සංඛාාවකින් බෙදීමේ දී පූර්ණාංශය හා දශමාංශය යන කොටස් දෙකේ සෘණ හා ධන අගයයන් පවතින නිසා බෙදීමේ දී ඍණ කොටස හා ධන කොටස වෙන වෙන ම බෙදිය යුතු ය. එවැනි අවස්ථා කීපයක් දැන් සලකා බලමු.

නිදසුන 2

සුළු කරන්න.

a.
$$2.5142 \div 2$$

b.
$$\overline{3}$$
. 5001 ÷ 3

c.
$$\overline{4}$$
. 8322 ÷ 2

= 1.2571

$$\overline{3} \div 3 = \overline{1}$$

$$0.5001 \div 3 = 0.1667$$

 $(-3 + 0.5001) \div 3$ නිසා

$$\overline{4} \div 2 = \overline{2}$$

$$0.8322 \div 2 = 0.4161$$

$$\therefore \ \overline{3}.5001 \div 3$$

$$= \overline{1}.1667$$

$$\therefore \ \overline{4}.8322 \div 2$$

$$= \overline{2}.4161$$

ඉහත නිදසුනෙහි ඇති ලසුගණකවල පූර්ණාංශය ඉතිරි නැති ව බෙදිණි. පූර්ණාංශය ඉතිරියක් සහිතව බෙදෙන අවස්ථාවල දී එම බෙදීම කරන ආකාරය පහත නිදසුන් මගින් විමසා බලමු.

නිදසුන 3

සුළු කරන්න.

a.
$$\overline{1}$$
. 5412 ÷ 2

b.
$$\overline{1}$$
. 3712 ÷ 3 **c.** $\overline{3}$. 5112 ÷ 2

c.
$$\overline{3}$$
. 5112 ÷ 2

a.
$$\overline{1}$$
. $5412 \div 2$ යන්න $(-1+0.5412)\div 2$ ලෙස ගත හැකි ය.

පූර්ණාංශයේ $\overline{1}$ යන්න 2 න් හරියට ම නොබෙදෙන නිසා, එය $\overline{2}+1$ ලෙස සකස් කර ගත හැකි ය. ඒ අනුව

$$\overline{1} \cdot 5412 \div 2 = (-1 + 0.5412) \div 2$$

= $(-2 + 1 + 0.5412) \div 2$
= $(-2 + 1 \cdot 5412) \div 2$
= $\overline{1} \cdot 7706$

b.
$$\overline{1} \cdot 3712 \div 3$$

= $(-1 + 0.3712) \div 3$ $(-1 = -3 + 2 \implies)$
= $(-3 + 2 + 0.3712) \div 3$
= $(\overline{3} + 2.3712) \div 3$
= $\overline{1} \cdot 7904$

c.
$$\overline{3} \cdot 5112 \div 2$$

= $(-3 + 0.5112) \div 2$
= $(-4 + 1 + 0.5112) \div 2$ $(-3 = -4 + 1 \text{ Seo})$
= $(\overline{4} + 1.5112) \div 2$
= $\overline{2} \cdot 7556$

ලසුගණක වගුව භාවිතයෙන් කරන සුළු කිරීම්වලදී, මෙම ගුණ කිරීම් හා බෙදීම් වැදගත් වන නිසා, එම දැනුම පුගුණ කර ගැනීම සඳහා පහත අභාාසයේ යෙදෙන්න.

(3.5 අභනාසය)

1. අගය සොයන්න.

a.
$$\overline{1}$$
. 5413 × 2

b.
$$\overline{2}$$
. 7321 × 3 **c.** 1. 7315 × 3

c. 1.
$$7315 \times 3$$

e.
$$\overline{3}$$
. 5111 × 2 **f.** $\overline{3}$. 8111 × 4

f.
$$\overline{3}$$
. 8111 × 4

2. අගය සොයන්න.

b. 0.
$$5512 \div 2$$
 c. $\overline{2}$. $4312 \div 2$

c.
$$\overline{2}$$
. 4312 ÷ 2

d.
$$\overline{3}$$
. 5412 ÷ 3

d.
$$\overline{3}$$
. 5412 ÷ 3 **e.** $\overline{2}$. 4712 ÷ 2 **f.** $\overline{4}$. 5321 ÷ 2

$$\mathbf{f} = \overline{4} \quad 5221 \div 2$$

g.
$$\overline{1}$$
. 5432 ÷ 2 **h.** $\overline{2}$. 9312 ÷ 3 **i.** $\overline{3}$. 4112 ÷ 2

h.
$$\frac{1}{2}$$
 9312 ÷ 3

i.
$$\frac{1}{3}$$
 4112 ÷ 2

j.
$$\overline{1}$$
. 7512 ÷ 3

k.
$$\overline{4}$$
. $1012 \div 3$ **l.** $\overline{5}$. $1421 \div 3$

1.
$$\overline{5}$$
. 1421 ÷ 3

3.6 ලසුගණක වගුව භාවිතයෙන් සංඛ්‍යාවක බල හා මූල සෙවීම.

 $\log_5 5^3 = 3 \log_5 5$ වේ. එය මීට කලින් උගත් ලසුගණක නීතියක් වන $\log_a m^r = r \log_a m$ මගින් ලැබෙන බව අපි දනිමු.

එසේ ම මූල ලකුණු සහිත සංඛාාවක ලසුගණකය ද එම නීතිය යටතේ පහත දැක්වෙන ආකාරයට ලිවිය හැකි ය.

(i)
$$\log_a \sqrt{5} = \log_a 5^{\frac{1}{2}}$$
 $(\sqrt{5} = 5^{\frac{1}{2}} \, \text{නිසා})$ $= \frac{1}{2} \log_a 5$ (ලසුගණක නීතිය යොදා ගැනීම)

(ii)
$$\lg \sqrt{25} = \lg 25^{\frac{1}{2}}$$

= $\frac{1}{2} \lg 25$

මේ අනුව සංඛාාවක බල හා මූල ලසුගණක වගුව භාවිතයෙන් ලබා ගන්නා අයුරු පහත නිදසුන් ඇසුරෙන් වීමසා බලමු.

නිදසුන 1

අගය සොයන්න.

b.
$$0.0275^3$$

a.
$$P = 354^2$$
 ලෙස ගතිමු.

 $\lg P = \lg 354^2$
 $= 2 \lg 354$
 $= 2 \lg 3.54 \times 10^2$
 $= 2 \times 2.5490$
 $= 5.0980$
 $\therefore P = \text{antilog } 5.0980$
 $= 1.253 \times 10^5$
 $= \underline{125300}$

c.
$$P = 0.9073^4$$
 ලෙස ගතිමු.

 $\lg P = \lg 0.9073^4$
 $= 4 \lg 0.9073$
 $= 4 \times \overline{1}.9577$
 $= 4 \times (-1 + 0.9577)$
 $= -4 + 3.8308$
 $= -4 + 3 + 0.8308$
 $= \overline{1}.8308$
 $\therefore P = \text{antilog } \overline{1}.8308$
 $= 6.773 \times 10^{-1}$
 $= 0.6773$

b.
$$P = 0.0275^3$$
 ඉලස ගනිමු.
 $\lg P = \lg 0.0275^3$
 $= 3 \lg 0.0275$
 $= 3 \times \overline{2}.4393$
 $= 3 \times (-2 + 0.4393)$
 $= -6 + 1.3179$
 $= -6 + 1 + 0.3179$
 $= -5 + 0.3179$
 $= \overline{5}.3179$
∴ $P = \text{antilog } \overline{5}.3179$
 $= 2.079 \times 10^{-5}$

= 0.00002079

දර්ශක ආකාරමයන් සුළු කිරීම.
$$0.9073^4 = \left(10^{\frac{1}{1}.9577}\right)^4 = 10^{\frac{1}{1}.9577 \times 4} = 10^{\frac{1}{1}.8308} = 6.773 \times 10^{-1} = 0.6773$$

නිදසුන 2

a.
$$\sqrt{8.75}$$

c.
$$\sqrt[3]{0.0549}$$

a.
$$P = \sqrt{8.75}$$
 ලෙස ගනිමු.

$$P = \sqrt{8.75}$$
 නම
 $P = 8.75^{\frac{1}{2}}$
 $\lg P = \lg 8.75^{\frac{1}{2}}$
 $= \frac{1}{2} \lg 8.75$
 $= \frac{1}{2} \times 0.9420$
 $= 0.4710$

$$P = \text{antilog } 0.4710$$
$$= \underline{2.958}$$

b. $P = \sqrt[3]{0.9371}$ ලෙස ගනිමු.

$$P = 0.9371^{\frac{1}{3}}$$

$$\lg P = \lg 0.9371^{\frac{1}{3}}$$

$$= \frac{1}{3} \lg 0.9371$$

$$= \frac{1}{3} \times \overline{1}.9717$$

$$= (\overline{1}.9717) \div 3$$

$$= (-1 + 0.9717) \div 3$$

$$= (-3 + 2 + 0.9717) \div 3$$

$$= (-3 + 2.9717) \div 3$$

$$= -1 + 0.9906$$

$$= \overline{1}.9906$$

$$\therefore P = \text{antilog } \overline{1}.9906$$

$$= 0.9786$$

$$\sqrt[3]{0.9371} = 0.9371^{\frac{1}{3}}$$

$$= (10^{\frac{1}{1}.9717})^{\frac{1}{3}}$$

$$= 10^{\frac{1}{1}.9717 \times \frac{1}{3}}$$

$$= 10^{\frac{1}{1}.9906}$$

$$= 9.786 \times 10^{-1}$$

$$= 0.9786$$

c.
$$P = \sqrt[3]{0.0549}$$
 ලෙස ගනිමු.

$$\lg P = \lg 0.0549^{\frac{1}{3}}$$

$$= \frac{1}{3} \lg 0.0549$$

$$= \frac{1}{3} \times \overline{2}.7396$$

$$= (\overline{2}.7396) \div 3$$

$$= (-2+0.7396) \div 3$$

$$= (-3+1+0.7396) \div 3$$

$$= (-3+1.7396) \div 3$$

$$= -1+0.5799$$

$$= \overline{1}.5799$$

$$\therefore P = \text{antilog } \overline{1}.5799$$

$$= \underline{0.3801}$$

දර්ශක ආකාරයෙන් සුළු කිරීම

$$\sqrt[3]{0.0549} = 0.0549^{\frac{1}{3}}$$

$$= (10^{\frac{7}{2} \cdot 7396})^{\frac{1}{3}}$$

$$= 10^{\frac{7}{2} \cdot 7396 \times \frac{1}{3}}$$

$$= 10^{\frac{7}{1} \cdot 5799}$$

$$= 3.801 \times 10^{-1}$$

$$= 0.3801$$

දැන් පහත අභාාසයේ යෙදෙන්න.

3.6 අභපාසය

- 1. ලඝුගණක වගුව භාවිතයෙන් අගය සොයන්න.
 - **a.** $(5.97)^2$

- **b.** $(27.85)^3$
- c. $(821)^3$

- **d.** $(0.752)^2$
- **e.** $(0.9812)^3$
- **f.** $(0.0593)^2$
- 2. ලඝුගණක වගුව භාවිතයෙන් අගය සොයන්න.
 - **a.** $\sqrt{25.1}$

- **b.** $\sqrt{947.5}$
- c. $\sqrt{0.0714}$

- **d.** $\sqrt[3]{0.00913}$
- **e.** $\sqrt[3]{0.7519}$
- **f.** $\sqrt{0.999}$

් 3.7 බල හා මූල ඇතුළත් පුකාශන ලසුගණක වගුව භාවිතයෙන් සුළු කිරීම

බල, මූල, ගුණිත හා බෙදීම් යන ගණිත කර්ම සියල්ල (හෝ සමහරක්) ඇතුළත් පුකාශනයක් ලසුගණක වගුව භාවිතයෙන් සුළු කරන අයුරු පහත නිදසුනෙන් දැක්වේ.

නිදසුන 1

සුළු කරන්න. පිළිතුර ආසන්න පළමු දශමස්ථානයට ලියන්න.

a.
$$\frac{7.543 \times 0.987^2}{\sqrt{0.875}}$$

b.
$$\frac{\sqrt{0.4537} \times 75.4}{0.987^2}$$

$${f a.}~~P={7.543 imes0.987^2\over\sqrt{0.875}}$$
 ලෙස ගනිමු.

එවිට
$$\lg P = \lg \left(\frac{7.543 \times 0.987^2}{\sqrt{0.875}} \right)$$

$$= \lg 7.543 + \lg 0.987^2 - \lg 0.875^{\frac{1}{2}}$$

$$= \lg 7.543 + 2 \lg 0.987 - \frac{1}{2} \times \overline{1}.9420$$

$$= 0.8776 + 2 \times \overline{1}.9943 - \frac{\overline{2} + 1.9420}{2}$$

$$= 0.8776 + \overline{1}.9886 - (\overline{1} + 0.9710)$$

$$= 0.8776 + \overline{1}.9886 - \overline{1}.9710$$

$$= 0.8662 - \overline{1}.9710$$

$$= 0.8952$$

$$\therefore P = \text{antilog } 0.8952$$

$$= 7.855$$

$$\therefore \frac{7.543 \times 0.987^2}{\sqrt{0.875}} \approx \underline{7.9} \qquad \text{(අහසන්න පළමු දශමස්ථානයට)}$$

මෙම සුළු කිරීම දර්ශක ආකාරයෙන් ද කළ හැකි ය. ඒ මෙසේ ය.

$$\frac{7.543 \times 0.987^{2}}{\sqrt{0.875}} = \frac{7.543 \times 0.987^{2}}{0.875^{\frac{1}{2}}}$$

$$= \frac{10^{0.8776} \times \left(10^{\frac{1}{1}.9943}\right)^{2}}{\left(10^{\frac{1}{1}.9420}\right)^{\frac{1}{2}}}$$

$$= \frac{10^{0.8776} \times 10^{\frac{1}{1}.9886}}{10^{\frac{1}{1}.9710}}$$

$$= \frac{10^{0.8662}}{10^{\frac{1}{1}.9710}}$$

$$= 10^{0.8662} - \frac{1}{1.9710}$$

$$= 10^{0.8952}$$

$$= 7.855 \times 10^{0}$$

$$= 7.855$$

$$\approx 7.9$$

b.
$$P = \frac{\sqrt{0.4537} \times 75.4}{0.987^2}$$
 ලෙස ගනිමු.
 $\lg P = \lg \left(\frac{0.4537^{\frac{1}{2}} \times 75.4}{0.987^2} \right)$

$$= \lg 0.4537^{\frac{1}{2}} + \lg 75.4 - \lg 0.987^2$$

$$= \frac{1}{2} \lg 0.4537 + \lg 75.4 - 2 \lg 0.987$$

$$= \frac{1}{2} \times \overline{1}.6568 + 1.8774 - 2 \times \overline{1}.9943$$

$$= \overline{1}.8284 + 1.8774 - \overline{1}.9886$$

$$= 1.7058 - \overline{1}.9886$$

$$= 1.7172$$

$$P = \operatorname{antilog} 1.7172$$

$$= \underline{52.15}$$

$$\frac{\sqrt{0.4537} \times 75.4}{0.987^2} \approx \frac{52.2}{2}$$
 (ආසන්න පළමු දශමස්ථානයට)

දර්ශක ආකාරයෙන් සුළු කිරීම පහත දැක්වේ.

$$\frac{\sqrt{0.4537} \times 75.4}{0.987^{2}} = \left(\frac{0.4537^{\frac{1}{2}} \times 75.4}{0.987^{2}}\right)$$

$$= \frac{\left(10^{\frac{1}{1}.6568}\right)^{\frac{1}{2}} \times 10^{1.8774}}{\left(10^{\frac{1}{1}.9943}\right)^{2}}$$

$$= \frac{10^{\frac{1}{1}.8284} \times 10^{1.8774}}{10^{\frac{1}{1}.9886}}$$

$$= 10^{1.7058 - \frac{1}{1}.9886}$$

$$= 10^{1.7172}$$

$$= 52.15$$

$$\approx 52.2$$

3.7 අභානාසය

ලසුගණක වගුව භාවිතයෙන් අගය සොයන්න.

a.
$$\frac{8.765 \times \sqrt[3]{27.03}}{24.51}$$

b.
$$\frac{\sqrt{9.18} \times 8.02^2}{9.83}$$

b.
$$\frac{\sqrt{9.18} \times 8.02^2}{9.83}$$
 c. $\frac{\sqrt{0.0945} \times 4.821^2}{48.15}$

d.
$$\frac{3 \times 0.752^2}{\sqrt{17.96}}$$

e.
$$\frac{6.591 \times \sqrt[3]{0.0782}}{0.9821^2}$$
 f. $\frac{3.251 \times \sqrt[3]{0.0234}}{0.8915}$

$$\mathbf{f.} \quad \frac{3.251 \times \sqrt[3]{0.0234}}{0.8915}$$

3.8 ලසුගණකවල භාවිත

සංඛාහ ගුණ කිරීම් හා බෙදීම් ඇතුළත් බොහෝ ගැටලු ලසුගණක භාවිතයෙන් පහසුවෙන් සුළු කළ හැකි ය. එවැනි නිදසුනක් පහත දැක්වේ.

නිදසුන 1

අරය r වන ගෝලයක V පරිමාව, $V=rac{4}{3}\pi r^3$ සූතුයෙන් ලබා දෙයි. $r=0.64~\mathrm{cm}$ නම්, $\pi=3.142$ ලෙස ගෙන ගෝලයේ පරිමාව ලසුගණක වගුව භාවිතයෙන් ආසන්න පළමු දශමස්ථානයට සොයන්න.

$$V = \frac{4}{3}\pi r^3$$
 $= \frac{4}{3} \times 3.142 \times 0.64^3$
 $\therefore \lg V = \lg \left(\frac{4}{3} \times 3.142 \times 0.64^3 \right)$
 $= \lg 4 + \lg 3.142 + 3 \lg 0.64 - \lg 3$
 $= 0.6021 + 0.4972 + 3 \times \overline{1.8062} - 0.4771$
 $= 0.6021 + 0.4972 + \overline{1.4186} - 0.4771$
 $= 0.5179 - 0.4771$
 $= 0.0408$
 $\therefore V = \text{antilog } 0.0408$
 $= 1.098$
 $\approx 1.1 \quad (පළමු දශමස්ථානයට)$

 \therefore ගෝලයේ පරිමාව $1.1~\mathrm{cm}^3$

3.8 අභනාසය

- 1. යකඩ සන සෙන්ටිමීටරයක් 7.86 g ස්කන්ධයකින් යුක්ත වේ. දිග, පළල හා සනකම පිළිවෙළින් 5.4 m, 0.36 m හා 0.22 m වූ සනකාභාකාර යකඩ බාල්කයක ස්කන්ධය ආසන්න කිලෝග්රෑමයට සොයන්න.
- **2.** $g = \frac{4\pi^2 l}{T^2}$ සූතුයේ $\pi = 3.142$ ද l = 1.75 ද T = 2.7 නම් g හි අගය සොයන්න.
- 3. අරය $0.75~\mathrm{m}$ වූ වෘත්තාකාර තුනී ලෝහ තහඩුවකින් අරය $0.07~\mathrm{m}$ වූ වෘත්තාකාර කොටසක් කපා ඉවත් කරන ලදි.
 - (i) ඉතිරි කොටසේ වර්ගඵලය $\pi imes 0.82 imes 0.68$ බව පෙන්වන්න.
 - (ii) π හි අගය 3.142 ලෙස ගෙන, ලසුගණක වගු ඇසුරෙන්, ඉතිරි කොටසේ වර්ගඵලය සොයන්න.
- 4. සෘජුකෝණික තුිකෝණාකාර බිම් කොටසක් රූපයේ දැක්වේ. එහි පැති දෙකක දිග $3.75~\mathrm{m}$ හා $0.94~\mathrm{m}$ නම්, PR පාදයේ දිග මීටර $\sqrt{4.69 \times 2.81}$ බව පෙන්වා ලසුගණක වගු ඇසුරෙන් PR දිග මීටරවලින් ආසන්න දශමස්ථාන දෙකකට සොයන්න.

් 3.9 ගණක යන්තුයේ භාවිත

බොහෝ කාලයක් තිස්සේ සංකීර්ණ ගණනය කිරීම් සඳහා ලසුගණක භාවිත කරනු ලැබිණි. එහෙත් අද කාලයේ එම කාර්යය සඳහා බොහෝ දුරට ගණක යන්තුය (calculator) යොදා ගැනේ. සාමානා ගණක යන්තුය භාවිතයෙන් කළ හැකි ගණනය කිරීම් සීමා සහිත ය. සංකීර්ණ ගණනය කිරීම් සඳහා විදාාත්මක ගණකය යොදා ගැනේ. විදාාත්මක ගණක යන්තුයේ යතුරු පුවරුව සාමානා ගණක යන්තුයට වඩා තරමක් සංකීර්ණ වේ.

බලයක අගය ගණක යන්තුය මගින් ලබා ගැනීම

 521^3 හි අගය ගණක යන්තුය මගින් $521 \times 521 \times 521$ ලෙස යතුරු පුවරුව කිුයාත්මක කිරීමෙන් ලැබේ. එහෙත් විදහාත්මක ගණක යන්තුයෙන් x^n බලය දැක්වෙන යතුර භාවිතයෙන් හෝ \triangle යතුරු කිුයාත්මක කිරීමෙන් පහසුවෙන් එක් වර 521^3 හි අගය ලබා ගත හැකි ය.

නිදසුන 1

275³ හි අගය ගණකය මගින් සොයන්න. සෙවීම සඳහා කිුියාත්මක කරන යතුරු අනුපිළිවෙළින් දක්වන්න.

 $275 x^{n}3 = හෝ 275 <math> 15$

20 796 875

මූලයක අගය ගණක යන්තුය මගින් ලබා ගැනීම

යතුරු පුවරුවේ $\widehat{\mathrm{shift}}$ යතුර මූලයක් ලබා ගැනීමේ දී අවශා වේ. ඊට අමතරව $\widehat{\sqrt[X]}$ යතුරත් කිුයාත්මක කළ හැකි ය.

නිදසුන 2

 $\sqrt[4]{2313\ 441}$ හි අගය ගණකය මගින් ලබා ගැනීම සඳහා කිුියාත්මක කළ යුතු යතුරු අනුපිළිවෙලින් දක්වන්න.

2313441 shift $x^{n}4=$

ඉහා්

2313441 $x^{\frac{1}{n}}$ 4=

39

 $[2][3][1][3][4][4][1] \sqrt[n]{x}[4][=$

බල හා මූල ඇතුළත් පුකාශන සුළු කිරීම් සඳහා ගණක යන්තුය භාවිතය

 $\frac{5.21^3 imes \sqrt[3]{4.3}}{3275}$ හි අගය ලබා ගැනීම සඳහා විදාහත්මක ගණක යන්තුයේ කිුියාත්මක කළ

යුතු යතුරු අනුපිළිවෙළින් දක්වන්න.

5 . 2 1 x^n 3 × 4 . 3 $x^{\frac{1}{n}}$ 3 ÷ 3 2 7 5 =

0.070219546

3.9 අභනාසය

- 1. පහත දැක්වෙන එක් එක් අගය ගණනය කිරීම සඳහා විදාහත්මක ගණක යන්තුයේ කියාත්මක කළ යුතු යතුරු, අනුපිළිවෙළින් සටහනක දක්වන්න.
 - a. 952^2

b. $\sqrt{475}$

 $c. 5.85^3$

d. $\sqrt[3]{275.1}$

e. $375^2 \times \sqrt{52}$

f. $\sqrt{4229} \times 352^2$

g. $\frac{37^2 \times 853}{\sqrt{50}}$

h. $\frac{\sqrt{751} \times 85^2}{\sqrt[3]{36}}$

i. $\frac{\sqrt{1452} \times 38.75}{98.2}$

j. $\frac{\sqrt[3]{827.3} \times 5.41^2}{9.74}$

මිශු අභාගාසය

1. ලසුගණක වගුව භාවිතයෙන් සුළු කරන්න. පිළිතුරේ නිවැරදි බව ගණක යන්තුය මගින් පරීක්ෂා කරන්න.

(i)
$$\frac{1}{275.2}$$

(i)
$$\frac{1}{275.2}$$
 (ii) $\frac{1}{\sqrt{982.1}}$

(iii)
$$\frac{1}{\sqrt{0.954}}$$

(iv)
$$0.5678^{\frac{1}{3}}$$

(v)
$$0.785^2 - 0.0072^2$$
 (vi) $9.84^2 + 51.2^2$

$$(vi) 9.84^2 + 51.2^2$$

2. a = 0.8732 හා b = 3.168 වන විට

(i)
$$\sqrt{\frac{a}{b}}$$

(ii)
$$(ab)^2$$

අගය සොයන්න.

- **3.** $A=p \left(1+\frac{r}{100}\right)^n$ සූතුයෙහි $p=675,\,r=3.5$ හා n=3 වන විට, A හි අගය සොයන්න.
- 4. තුනී වෘත්තාකාර ලෝහ තහඩුවකින්, කේන්දුයේ කෝණය 73° ක් වූ කේන්දික ඛණ්ඩයක් කපා ගන්නා ලදි.
 - (i) කේන්දික ඛණ්ඩයේ වර්ගඵලය වෘත්තයේ වර්ගඵලයෙන් කවර භාගයක් ද?
 - (ii) වෘත්තාකාර තහඩුවේ අරය 17.8 cm නම් කපා ගන්නා ලද කේන්දික ඛණ්ඩයේ පැත්තක වර්ගඵලය සොයන්න.

සන වස්තුවල පෘෂ්ඨ වර්ගඵලය

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

- පතුල සමචතුරසුාකාර ඍජූ පිරමීඩයක පෘෂ්ඨ වර්ගඵලය ගණනය කිරීමට
- ඍජු කේතුවක පෘෂ්ඨ වර්ගඵලය ගණනය කිරීමට
- ගෝලයක පෘෂ්ඨ වර්ගඵලය ගණනය කිරීමට

හැකියාව ලැබෙනු ඇත.

පිරමීඩය

ඉහත රූපවල දැක්වෙන ඝන වස්තු හොඳින් නිරීක්ෂණය කරන්න. ඒවායේ මුහුණත් ලෙස ඇත්තේ බහු - අසුයි. එම මුහුණත් අතුරින් එකක් හැර අනෙක් සියල්ල ම තිකෝණාකාර වේ. තිකෝණාකාර නොවන මුහුණතට ආධාරකය යැයි කියනු ලැබේ. එම තිකෝණාකාර මුහුණත් සියල්ලට පොදු වන ලක්ෂායක් ඇති අතර එම පොදු ලක්ෂායට ශීර්ෂය යැයි කියනු ලැබේ. මෙම ලක්ෂණ සහිත ඝන වස්තුවකට පිරමීඩයක් යැයි කියනු ලැබේ. රූපයේ දැක්වෙන පිරමීඩ තුනෙහි ආධාරක පිළිවෙළින් චතුරසුාකාර, පංචාසුාකාර හා ෂඩාසුාකාර වේ.

ආධාරකය සමචතුරසුාකාර වන ඍජු පිරමීඩය

ක් සමචතුරසුාකාර ආධාරකයක් සහිත පිරමීඩයක් රූපයෙහි දැක්වේ. මෙහි ආධාරකය සමචතුරසුාකාර - ^{ඇල දාරය} වේ. ඉතිරි මුහුණත් හතර ම තිුකෝණාකාර වේ.

> සමවතුරසුාකාර ආධාරකයේ "හරි මැද" (එනම් සමවතුරසුයේ විකර්ණ ඡේදනය වන ලක්ෂාය) පිරමීඩයේ ශිර්ෂයට යා කළ විට ලැබෙන රේඛා ඛණ්ඩය ආධාරකයට ලම්බක වේ නම්, එවිට මෙම පිරමීඩයට සමවතුරසුාකාර ඍජු පිරමීඩයක් යැයි කියනු ලැබේ.

එම රේඛා ඛණ්ඩයේ දිගට පිරමීඩයේ ලම්බ උස (හෝ වඩාත් සරලව, උස) යැයි කියනු ලැබේ. ආධාරකය මත නොපිහිටි දාර ඇල දාර ලෙස හැඳින්වේ. අප මෙම පාඩමේ දී සලකා බලනුයේ සමචතුරසුාකාර ඍජු පිරමීඩවල පෘෂ්ඨ වර්ගඵලය සෙවීම පිළිබඳව පමණි.

සටහන: චතුස්තලය ද පිරමීඩයක් ලෙස සැලකිය හැකි ය. එහි මුහුණත් සියල්ල තිකෝණාකාර වේ. චතුස්තලයක ආධාරකය ලෙස ඕනෑ ම මුහුණතක් ගත හැකි ය. සෘජු පිරමීඩ යන්න ආධාරකය සමචතුරසු නොවූ පිරමීඩ සඳහා ද අර්ථ දැක්විය හැකි ය. නිදසුනක් ලෙස, ආධාරකය ඕනෑ ම සවිධි බහු - අසාකාර හැඩයක් ගන්නා අවස්ථාවේ දී ඍජු පිරමීඩ අර්ථ දැක්වෙන්නේ මෙසේ ය. එම සවිධි බහු - අසුයේ සමමිතික රේඛා සියල්ල ගමන් කරන පොදු ලක්ෂායක් ඇති අතර, එම පොදු ලක්ෂාය පිරමීඩයේ ශීර්ෂයට යා කරන රේඛා ඛණ්ඩය ආධාරකයට ලම්බක වේ නම් එම පිරමීඩය ඍජු පිරමීඩයක් ලෙස හැඳින්වේ. ආධාරකය සවිධි නොවූ බහුඅසුකාර හැඩයක් ගන්නා විට දී එම ආධාරකයේ "හරි මැද" ලෙස එම බහුඅසුයේ කේන්දුකය ගත හැකි ය. කේන්දුකය පිළිබඳ සංකල්පය ගණිතය ඉහළට ඉගෙනීමේ දී ඔබට උගෙන ගත හැකි වනු ඇත.

සමචතුරසාකාර ඍජු පිරමීඩයක ඇති වැදගත් ගුණයක් නම් තිුකෝණාකාර මුහුණත් සියල්ල එකිනෙකට අංගසම වීමයි. එම නිසා එම මුහුණත්වල වර්ගඵල ද සමාන වේ.

තව ද සෑම තිකෝණාකාර මුහුණතක ම එක් පාදයක් සමචතුරසුාකාර ආධාරකයේ එක් පාදයක් වන අතර, ඉතිරි පාද දෙක දිගින් සමාන වේ. එබැවින් මෙම තිකෝණ සමද්විපාද වේ.

4.1 ආධාරකය සමචතුරසුාකාර වන සෘජු පිරමීඩයක පෘෂ්ඨ වර්ගඵලය

ආධාරකය සමචතුරසුාකාර වන සෘජු පිරමීඩයක මුළු පෘෂ්ඨ වර්ගඵලය සෙවීම සඳහා ආධාරකයේ වර්ගඵලයත් තිුකෝණාකාර මුහුණත් හතරෙහි වර්ගඵලත් සොයා ඒවා සියල්ලේ ඓකාය ගත යුතු ය.

අාධාරකයේ පැත්තක දිග හා තිුකෝණාකාර මුහුණතක ලම්බ උස (පහත රූපය බලන්න) දී ඇති විට එහි මුළු පෘෂ්ඨ වර්ගඵලය සොයන ආකාර පිළිබඳව වීමසා බලමු. සමචතුරසාකාර ආධාරකයේ පැත්තක දිග a ද තිුකෝණාකාර මුහුණතක ලම්බ උස l ද ලෙස දී ඇතැයි සිතමු.

(මෙවැනි මුහුණත් හතරක් ඇත) මේ අනුව අපට පහත දැක්වෙන ලෙස මුළු පෘෂ්ඨ වර්ගඵලය සෙවිය හැකි ය.

මුළු පෘෂ්ඨ වර්ගඵලයA නම්

$$A = a^2 + 2al$$

සමචතුරසුාකාර ඍජු පිරමීඩයක පෘෂ්ඨ වර්ගඵලය සෙවීම සම්බන්ධ විසඳූ ගැටලු කීපයක් පිළිබඳ ව දැන් අවධානය යොමු කරමු.

නිදසුන 1

සමවතුරසුාකාර ආධාරකයේ පැත්තක දිග $10~{
m cm}$ ද තිුකෝණාකාර මුහුණතක ලම්බ උස $15~{
m cm}$ ද වූ ඍජු පිරමීඩයක මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

අාධාරකයේ වර්ගඵලය
$$= 10 \times 10$$
 $= 100$ $= 100$ $= \frac{1}{2} \times 10 \times 15$ $= 75$ $= 75 \times 4$ $= 300$ $= 100 + 300$ $= 400$

 \therefore මුළු පෘෂ්ඨ වර්ගඵලය $400~{
m cm}^2$ වේ.

නිදසුන 2

රූපයේ දැක්වෙන සෘජු පිරමීඩයේ සමචතුරසුාකාර ආධාරකයේ පැත්තක දිග $12~{
m cm}$ වන අතර, පිරමීඩයේ ලම්බ උස $8~{
m cm}$ කි.

- (i) තිකෝණාකාර මුහුණතක ලම්බ උස
- (ii) තිකෝණාකාර මුහුණතක වර්ගඵලය
- (iii) මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

තිකෝණාකාර මුහුණතක ලම්බ උස සෙන්ටිමීටර l යැයි ගනිමු. දී ඇති රූපයේ අඳුරු කර ඇති තිකෝණය සලකමු. පයිතගරස් පුමේයයට අනුව

(i)
$$l^2 = 8^2 + 6^2$$

= $64 + 36$
= 100
 $l = \sqrt{100}$
= 10

 \therefore තිකෝණාකාර මුහුණතක ලම්බ උස $10~\mathrm{cm}$ වේ.

(ii) නිකෝණාකාර මුහුණතක වර්ගඵලය = $rac{1}{2} imes 12 imes 10$

= 60

- \therefore තිකෝණාකාර මුහුණතක වර්ගඵලය $60~\mathrm{cm^2}$ වේ.
- (iii) මුළු පෘෂ්ඨ වර්ගඵලය = $12 \times 12 + 4 \times 60$ = 144 + 240= 384

 \therefore මුළු පෘෂ්ඨ වර්ගඵලය $384~{
m cm}^2$ වේ.

4.1 අභනාසය

1. සමචතුරසාකාර ආධාරකයේ පැත්තක දිග 20 cm වු ඍජු පිරමීඩයක තිකෝණාකාර මුහුණතක ලම්බ උස 15 cm නම් පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- 2. පැත්තක දිග 8 cm වූ සමචතුරසුාකාර ආධාරකයක් සහිත ඍජු පිරමීඩයක තිුකෝණාකාර මුහුණතක ලම්බ උස 20 cm නම් පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.
- 3. ආධාරකයේ පැත්තක දිග $16\ \mathrm{cm}$ වු සෘජු පිරමීඩයක සෘජු උස $6\ \mathrm{cm}$ වේ.
 - (i) තිකෝණාකාර මුහුණතක ලම්බ උස
 - (ii) පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

4. ආධාරකයේ පැත්තක දිග $20~{\rm cm}$ වූ ද සමචතුරසුාකාර ඍජු පිරමීඩයක ලම්බ උස $12~{\rm cm}$ නම් පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

ආධාරකයේ පැත්තක දිග $6~{\rm cm}$ වූ ඍජු පිරමීඩයක ඇල දාරයක දිග $5~{\rm cm}$ නම් පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- 6. ආධාරකයේ පැත්තක දිග 10 cm වූ සෘජු සමචතුරසුාකාර ආධාරකයක් සහිත පිරමීඩයක ඇල දාරයක දිග 13 cm නම් එහි මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.
- 7. පැත්තක දිග $30~{\rm cm}$ වු සමවතුරසු ආධාරකයක් සහිත ඍජු පිරමීඩයක මුළු පෘෂ්ඨ වර්ගඵලය $2400~{\rm cm}^2$ වේ.
 - (i) එහි ශී්ර්ෂයේ සිට ආධාරකයේ පාදයකට ඇති ලම්බ දූර
 - (ii) පිරමීඩයේ උස සොයන්න.
- 8. පැත්තක දිග $8 \ m$ වූ සමචතුරසුාකාර ආධාරකයක් සහිත සෘජු පිරමීඩාකාර කුඩාරමක් සාදා ඇති රෙද්දක වර්ගඵලය $80 \ m^2$ වේ. කුඩාරමේ පතුල සඳහා රෙදි භාවිත කර නොමැති බව සලකා කුඩාරමේ උස සොයන්න.
- 9. උස 4 m ද තිකෝණාකාර මුහුණතක ලම්බ උස 5 m ද වන සමචතුරසුාකාර පතුලක් සහිත කුඩාරමක වහලය හා පතුල සඳහා රෙදි ඇතිරීමට නියමිත නම් අවශා වන මුළු රෙදි පුමාණය සොයන්න.
- 10.සමචතුරසුාකාර පතුලේ පැත්තක දිග $16~\mathrm{m}$ ද පිරමීඩයේ උස $6~\mathrm{m}$ ද වන පරිදි වූ සෘජු පිරමීඩාකාර කුඩාරමක් තැනීමට අවශා වේ. මෙහි පතුල ද ආවරණය වන පරිදි කුඩාරම සැකසීමට අවශා වන රෙදි පුමාණය සොයන්න.

කේතුව

ඉහත දක්වා ඇත්තේ කේතු ආකාර වස්තූත් කිහිපයකි. කේතුවකට වෘත්තාකාර තල පෘෂ්ඨ කොටසක් හා වකු පෘෂ්ඨ කොටසක් ඇති බව නිරීක්ෂණය කළ හැකි ය. වෘත්තාකාර තල පෘෂ්ඨ කොටසට කේතුවේ ආධාරකය යැයි කියනු ලැබේ. වකු පෘෂ්ඨ කොටස මත ඇඳි සරල රේඛා සියල්ල ගමන් කරන ලක්ෂායට, කේතුවේ ශීර්ෂය යැයි කියනු ලැබේ.

කේතුවක ආධාරක වෘත්තයේ කේන්දය ශීර්ෂයට යා කෙරෙන රේඛා ඛණ්ඩය ආධාරකයට ලම්බක නම් එය සෘජු වෘත්ත කේතුවක් ලෙස හැඳින්වේ. කේතුවක ආධාරක වෘත්තයේ අරයට කේතුවේ අරය යැයි ද ආධාරක වෘත්තයේ කේතුවේ ලම්බ උස යැයි ද කියනු ලැබේ. තව ද, කේතුවේ ශීර්ෂය හා ආධාරක වෘත්තයේ පරිධිය මත ඕනෑ ම

ලක්ෂායක් අතර ඇති සරල රේඛා ඛණ්ඩයකට ඇල රේඛාවක් යැයි ද එම රේඛා ඛණ්ඩයේ දිගට කේතුවේ ඇල උස යැයි ද කියනු ලැබේ.

කේතුවක අරය r මගින් ද උස h මගින් ද ඇල උස l මගින් ද සාමානායෙන් දැක්වේ.

්4.2 සෘජු වෘත්ත කේතුවක පෘෂ්ඨ වර්ගඵලය

කේතුවක පෘෂ්ඨ වර්ගඵලය සෙවීමේ කුමයක් විස්තර කිරීම පිණිස තුනී ආස්තරයකින් සැදි කුහර කේතුවක් සලකමු. මුලින් ම එය සෑදී ඇති පෘෂ්ඨ කොටස් මොනවාදැයි බලමු. ආධාරකය, වෘත්තාකාර හැඩයක් සහිත තල පෘෂ්ඨ කොටසකි. වකු පෘෂ්ඨ කොටස, ඇල රේඛාවක් ඔස්සේ දිග හැරිය විට කේන්දික ඛණ්ඩයක හැඩය ගත් ආස්තරයකි.

කේතුවක අරය හා ඇල උස දී ඇති විට එහි මුළු පෘෂ්ඨ වර්ගඵලය සෙවීම සඳහා වකු පෘෂ්ඨ කොටසේ වර්ගඵලයත් වෘත්තාකාර ආධාරකයේ වර්ගඵලයත් සොයා, ඒවායේ ඓකාය ගත හැකි ය. වෘත්තාකාර ආධාරකයේ වර්ගඵලය πr^2 සූතුය භාවිතයෙන් ගණනය කළ හැකි ය. වකු පෘෂ්ඨ කොටස වන කේන්දික ඛණ්ඩයේ වර්ගඵලය මෙසේ ගණනය කළ හැකි ය.

වකු පෘෂ්ඨ කොටස

වෘත්තාකාර ආධාරකය

වකු පෘෂ්ඨ කොටස එය දිග හැරීමෙන් ලැබෙන කේන්දික ඛණ්ඩයේ අරය l වේ. එහි චාප දිග $2\pi r$ වේ (මක් නිසා ද යත්, එම චාප දිග වන්නේ ආධාරක වෘත්තයේ පරිධිය යි). දැන්, මෙම වෘත්ත ඛණ්ඩයට අදාළ කේන්දු කෝණය θ නම් (10 ශේුණියේ දී කේන්දික

ඛණ්ඩයක පරිමිතිය යටතේ උගත් පරිදි) $\frac{\theta}{360} imes 2\pi l = 2\pi r$ වේ. එවිට

$$\theta = rac{2\pi r imes 360}{2\pi l}$$
 එනම් $\theta = rac{360r}{l}$ වේ.

මෙම θ කේන්දු කෝණය සහිත කේන්දිුක ඛණ්ඩයක වර්ගඵලය වන්නේ (10 ශේුණියේ දී කේන්දිුක ඛණ්ඩයක වර්ගඵලය යටතේ උගත් පරිදි) $\frac{\theta}{360} \times \pi l^2$ ය. θ සඳහා මුල් සමීකරණයෙන් ආදේශ කිරීමෙන් වර්ගඵලය $\frac{360r}{l} \times \frac{\pi l^2}{360}$ ලෙස ලැබේ. මෙය සුළු කළ විට $\pi r l$ ලැබේ. මේ අනුව, කේතුවේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය $\pi r l$ වේ. මේ අනුව,

කේතුවේ මුළු පෘෂ්ඨ
$$=$$
 $\left\{$ කේතුවේ වකු පෘෂ්ඨ $\right\}_{+}$ $\left\{$ වෘත්තාකාර ආධාරකයේ $\right\}_{-}$ වර්ගඵලය $=\pi rl+\pi r^2$

මුළු පෘෂ්ඨ වර්ගඵලයA නම්

$$A = \pi r l + \pi r^2$$

කේතුවක පෘෂ්ඨ වර්ගඵලය සම්බන්ධයෙන් විසඳූ ගැටලු කීපයක් පිළිබඳ ව දැන් අවධානය යොමු කරමු. මෙම පාඩමේ දී π හි අගය $\frac{22}{7}$ ලෙස ගනු ලැබේ.

නිදසුන 1

ඝන කේතුවක රූප සටහනක් පහත දැක්වේ. එහි අරය $7~{
m cm}$ ද ඇල උස $12~{
m cm}$ ද නම් කේතුවේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

7 cm

ෙක්තුවේ වකු පෘෂ්ඨයේ වර්ගඵලය
$$=\pi r l$$
 $=\frac{22}{7} \times 7 \times 12$ $=264~\rm{cm}^2$ වෘත්තාකාර තල පෘෂ්ඨයේ වර්ගඵලය $=\pi r^2$ $=\frac{22}{7} \times 7 \times 7$ $=154~\rm{cm}^2$ $=264+154$ $=418~\rm{cm}^2$

නිදසුන 2

ආධාරකයේ පරිධිය $88\ {
m cm}$ වූ කේතුවක ඇල උස $15\ {
m cm}$ නම් එහි වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සොයන්න.

වෘත්තාකාර ආධාරකයේ පරිධිය = 88 cm ආධාරකයේ අරය සෙන්ටිමීටර r යැයි ගනිමු.

ඒ අනුව
$$2\pi r = 88$$

$$2 \times \frac{22}{7} \times r = 88$$

$$r = \frac{88 \times 7}{2 \times 22}$$

$$r = 14 \text{ cm}$$

කේතුවේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය =
$$\pi r l$$
 = $\frac{22}{7} imes 14 imes 15$ = 660

 \therefore කේතුවේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය $660~{
m cm}^2$ වේ.

නිදසුන 3

අරය 7 cm ද ලම්බ උස 12 cm ද වූ ඝන කේතුවක

- (i) ඇල උස
- (ii) වකු පෘෂ්ඨ කොටසේ වර්ගඵලය
- (iii) මුළු පෘෂ්ඨ වර්ගඵලය

දශමස්ථාන එකකට නිවැරදි ව සොයන්න.

කේතුවේ ඇල උස සෙන්ටීමීටර l යැයි ගනිමු. පයිතගරස් පුමේයයට අනුව

 \therefore කේතුවේ ඇල උස ආසන්න වශයෙන් $13.8~\mathrm{cm}$ වේ.

(ii) වකු පෘෂ්ඨ කොටසේ වර්ගඵලය =
$$\pi r l$$
 = $\frac{22}{7} \times 7 \times 13.8$ = 303.6

 \therefore වකු පෘෂ්ඨ කොටසේ වර්ගඵලය $303.6~{
m cm}^2$ වේ.

(iii) වෘත්තාකාර කොටසේ වර්ගඵලය
$$= \pi r^2$$
 $= \frac{22}{7} \times 7 \times 7$ $= 154 \text{ cm}^2$ මුළු පෘෂ්ඨ වර්ගඵලය $= 303.6 + 154$ $= 457.6$

 \therefore මුළු පෘෂ්ඨ වර්ගඵලය $457.6~{
m cm}^2$ වේ.

4.2 අභාහාසය

- 1. ආධාරකයේ අරය 14 cm වූ ද ඇල උස 20 cm වූ ද සෘජු කේතුවක වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සොයන්න.
- 2. ආධාරකයේ අරය 7 cm වූ ද ලම්බ උස 24 cm වූ ද ඝන ඍජු කේතුවක
 - (i) ඇල උස
 - (ii) වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සොයන්න.
- **3.** ආධාරකයේ පරිධිය $44 \, \mathrm{m}$ වූ කේතුක හැඩයේ වැලි ගොඩක ඇල උස $20 \, \mathrm{m}$ නම්
 - (i) ආධාරකයේ අරය
 - (ii) වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සොයන්න.
- **4.** ආධාරකයේ අරය $10.5~{\rm cm}$ වූ ද ඇල උස $15~{\rm cm}$ වූ ද සෘජු කුහර කේතුවක පිටත පෘෂ්ඨ වර්ගඵලය සොයන්න.
- **5.** කේතුවක හැඩයෙන් යුත් ඝන වස්තුවක ඇල උස $14~{
 m cm}$ වේ. එහි වකු පෘෂ්ඨ කොටසේ වර්ගඵලය $396~{
 m cm}^2$ නම්
 - (i) කේතුවේ අරය ගණනය කරන්න.
 - (ii) ලම්බ උස ගණනය කරන්න.

කේතුවක හැඩැති තුනී වීදුරු බඳුනක උසින් හරි අඩක් වන සේ 16 cm පලතුරු බීම පුරවා ඇති ආකාරය රූපයේ දැක්වේ. වීදුරුවේ අරය 12 cm ද එහි කේතු කොටසේ උස 16 cm ද වේ. වීදුරුවේ පලතුරු බීම ගෑවී ඇති කොටසේ පෘෂ්ඨ වර්ගඵලය සොයන්න.

ගෝලය

ටෙනිස් බෝලය

පා පන්දුව

ගෝලීය හැඩය පිළිබඳ ඔබට අවබෝධයක් ඇතුවාට සැක නැත. අවල ලක්ෂායක සිට නියත දුරකින් තිුමාණ අවකාශයේ පිහිටි ලක්ෂා කුලකය ගෝලයක් ලෙස හැඳින්වේ. එම අවල ලක්ෂායට ගෝලයේ කේන්දුය යැයි ද නියත දුරට අරය යැයි ද කියනු ලැබේ. ගෝලයට එක් වකු පෘෂ්ඨයක් පමණක් ඇති අතර, දාර හෝ ශීර්ෂ කිසිවක් නොමැත.

ගෝලයක අරය සාමානාගෙන් r මගින් දැක්වේ.

4.3 ගෝලයක පෘෂ්ඨ වර්ගඵලය

ගෝලයක පෘෂ්ඨ වර්ගඵලය ගණනය කිරීමට උපකාරී වන, ආකිමිඩිස් විසින් නිරීක්ෂණය කළ සංසිද්ධියක් මෙසේ විස්තර කළ හැකි ය.

ගෝලයක අරයට සමාන අරයක් ද ගෝලයේ විෂ්කම්භයට සමාන උසක් ද ඇති සිලින්ඩරයකට එම ගෝලයේ පරිසිලින්ඩරය යැයි කියනු ලැබේ.

එම ගෝලය සිලින්ඩරය තුළ ඇති විට සිලින්ඩරයේ වෘත්තාකාර තල මුහුණතට සමාන්තර ව කපන ලද ඕනෑ ම කැපුම් දෙකක් මගින් ගෝලයෙන් හා සිලින්ඩරයෙන් කැපෙන කොටස්වල වකු පෘෂ්ඨ වර්ගඵල සමාන බව ගීසියේ විසු ආකිමිඩිස් නම් ගණිතඥයා විසින් කිස්තු පූර්ව 225 දී

පමණ පෙන්වා දෙන ලදි.

ඒ අනුව ඉහත රූපයේ පෙන්වා ඇති ගෝලයේ PQRS වකු පෘෂ්ඨ කොටසේ වර්ගඵලය

සිලින්ඩරයේ ABCD වකු පෘෂ්ඨ කොටසේ වර්ගඵලයට සමාන වේ. මේ නිසා ආකිමිඩිස් විසින් ඉදිරිපත් කළ ඉහත සම්බන්ධතාවට අනුව ගෝලයේ පෘෂ්ඨ වර්ගඵලය පරිසිලින්ඩරයේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලයට සමාන වේ.

පරිසිලින්ඩරයේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සෙවීම සඳහා $2\pi rh$ සූතුය යෙදූ විට,

පරිසිලින්ඩරයේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය =
$$2\pi r \times 2r$$
 = $4\pi r^2$ එබැවින් ගෝලයේ පෘෂ්ඨ වර්ගඵලය = $4\pi r^2$

මුළු පෘෂ්ඨ වර්ගඵලයA නම්

$$A=4\pi r^2$$

නිදසුන 1

අරය 7 cm වූ ගෝලයක පෘෂ්ඨ වර්ගඵලය ගණනය කරන්න.

ගෝලයේ පෘෂ්ඨ වර්ගඵලය
$$=4\pi r^2$$
 $=4 imes rac{22}{7} imes 7 imes 7$ $=616$

 \therefore ගෝලයේ පෘෂ්ඨ වර්ගඵලය $616~{
m cm}^2$ වේ.

නිදසුන 2

ගෝලයක පෘෂ්ඨ වර්ගඵලය $1386~\mathrm{cm}^2$ නම් එහි අරය ගණනය කරන්න. ගෝලයේ අරය සෙන්ටිමීටර r යැයි ගනිමු.

లివె
$$4\pi r^2 = 1386$$
 $4 \times \frac{22}{7} \times r^2 = 1386$
 $r^2 = \frac{1386 \times 7}{4 \times 22}$
 $= \frac{441}{4}$
 $r = \sqrt{\frac{441}{4}}$
 $= \frac{21}{2}$

 \therefore ගෝලයේ අරය $10.5~\mathrm{cm}$ වේ.

4.3 අභනාසය

- 1. අරය 3.5 cm වූ ගෝලයක පෘෂ්ඨ වර්ගඵලය සොයන්න.
- 2. අරය 14 cm වූ ගෝලයක පෘෂ්ඨ වර්ගඵලය සොයන්න.
- ${f 3.}$ පෘෂ්ඨ වර්ගඵලය ${f 5544~cm^2}$ වූ ගෝලයක අරය සොයන්න.
- 4. අරය 7 cm වූ කුහර අර්ධ ගෝලයක බාහිර වකු පෘෂ්ඨ වර්ගඵලය සොයන්න.
- **5.** විෂ්කම්භය $0.5 \, \mathrm{m}$ වූ ඝන අර්ධ ගෝලයක මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.
- ${f 6.}$ මුළු පෘෂ්ඨ වර්ගඵලය $1386~{
 m cm}^2$ වූ ඝන අර්ධ ගෝලයක අරය සොයන්න.

සාරාංශය

ullet සමචතුරසාකාර ආධාරකයේ පැත්තක දිග a වූ ද තිුකෝණාකාර මුහුණතක ලම්බ උස l වූ ද ඍජු ඝන පිරමීඩයක පෘෂ්ඨ වර්ගඵලය A නම්

$$A = a^2 + 2al$$

ullet ආධාරකයේ අරය r ද ඇල උස l වූ සෘජු ඝන වෘත්ත කේතුවක පෘෂ්ඨ වර්ගඵලය A නම්

$$A = \pi r l + \pi r^2$$

ullet අරය r වූ ගෝලයක පෘෂ්ඨ වර්ගඵලය A නම්

$$A = 4\pi r^2$$
 ෙව්.

මිශු අභාහාසය

- 1. පිරමීඩයක් සෑදීමට යොදා ගන්නා ලද පතරොමක් පහත දැක්වේ.
 - (i) එහි a හා b මගින් දක්වා ඇති අගය ගණනය කරන්න.
 - (ii) මෙම පතරොම භාවිතයෙන් සාදා ගන්නා පිරමීඩය සෘජු පිරමීඩයක් නොවීමට හේතුව කුමක් ද?
 - (iii) පිරමීඩයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- 2. රූප සටහනින් පෙන්වා ඇති කේන්දික ඛණ්ඩයක ආකාරයේ වූ ලෝහ තහඩුවක් යොදාගනිමින් සෘජු කේතුවක් සාදා ගනු ලැබේ.
 - (i) සාදා ගත් කේතුවේ පතුලට වෘත්තාකාර තහඩුවක් සවිකරනු ලැබේ. එම කොටසේ අරය ගණනය කරන්න.

- (ii) කේතුව සාදා ගත් පසු එහි මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.
- 3. කේතුවක ඇල උස හා ලම්බ උස අතර අනුපාතය 5:4 වේ. කේතුවේ ආධාරකයේ අරය $6\ {
 m cm}$ නම්,
 - (i) කේතුවේ ඇල උස ගණනය කරන්න.
 - (ii) කේතුවේ වකු පෘෂ්ඨ කොටසේ වර්ගඵලය සොයන්න.
- 4. අරය 7 cm ක් වූ ගෝලයක මුදුතේ සිට සෘජු උස 2 cm ක් පහළට තීන්ත ආලේප කර ඇත් නම් තීන්ත ආලේප කර ඇති කොටසේ වර්ගඵලය ගණනය කරන්න. (ඉඟිය: පරිසිලින්ඩරය පිළිබඳ දැනුම යොදාගන්න)

5. අර්ධ ගෝල හැඩැති මැටි භාජනයක අභාන්තර අරය 7 cm ද බාහිර අරය 7.7 cm ද නම් භාජනයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

සන වස්තුවල පරිමාව

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

සෘජු පිරමීඩයක, සෘජු කේතුවක හා ගෝලයක පරිමාව ගණනය කිරීමට හැකියාව ලැබෙනු ඇත.

පුනරීක්ෂණ අභාගාසය

1. මීට පෙර ඔබ විසින් අධායනය කර ඇති ඝන වස්තු කීපයක රූප සටහන් පහත දැක්වේ. ඒවායේ පරිමාව සෙවූ ආකාරය මතකයට නගා ගනිමින්, දී ඇති වගුව සම්පූර්ණ කරන්න.

ඝනකය

ඝනකාභය

තිකෝණාකාර පුස්මය

වස්තුව	හරස්කඩ වර්ගඵලය	පරිමාව
ඝනකය		
ඝනකාභය		
තිකෝණාකාර පිස්මය		
සිලින්ඩරය		

- 2. පැත්තක දිග 10 cm වූ ඝනකයක පරිමාව ගණනය කරන්න.
- 3. දිග 15 cm ද පළල 10 cm ද උස 8 cm ද වූ ඝනකාභයක පරිමාව ගණනය කරන්න.
- 4. අරය 7 cm ද උස 20 cm ද වන සිලින්ඩරයක පරිමාව ගණනය කරන්න.
- 5. රූපයේ දැක්වෙන පුිස්මයේ පරිමාව ගණනය කරන්න.

5.1 පතුල සමචතුරසුාකාර සෘජු පිරමීඩයක පරිමාව

සමචතුරසුාකාර ආධාරකයක් සහිත ඍජු පිරමීඩයක පරිමාව සෙවීම සඳහා සූතුයක් ගොඩනැගීමට දැන් අවධානය යොමු කරමු. මේ සඳහා පහත කිුියාකාරකමේ යෙදෙන්න.

කිුයාකාරකම

රූපයේ දැක්වෙන ආකාරයේ, පැත්තක දිග $6~{\rm cm}$ බැගින් වන සමවතුරසුාකාර පතුලක් සහිත උස $10~{\rm cm}$ වන කුහර ඝනකාභයක් හා පැත්තක දිග $6~{\rm cm}$ බැගින් වන සමවතුරසුාකාර ආධාරකයක් සහිත උස $10~{\rm cm}$ වන ඍජු කුහර පිරමීඩයක් තුනී කාඩ්බෝඩ් භාවිතයෙන් සකස් කර ගන්න.

සාදා ගත් පිරමීඩ හැඩැති භාජනය සිහින් වැලිවලින් සම්පූර්ණයෙන්ම පුරවා ගන්න. එසේ පුරවා ගත් සිහින් වැලි සියල්ල ඝනකාභ හැඩැති භාජනයට දමන්න. ඝනකාභ හැඩැති භාජනය පිරවීමට මේ ආකාරයට පිරමීඩාකාර භාජනයෙන් කී වාරයක් දැමිය යුතු දැයි නිරීක්ෂණය කරන්න.

ඉහත කියාකාරකමේ දී ඝනකාභ හැඩැති බඳුන සම්පූර්ණයෙන් පිරවීමට, පිරමීඩ හැඩැති බඳුන සම්පූර්ණයෙන් වැලිවලින් පුරවා තුන් වාරයක් දැමිය යුතු බව ඔබ නීරීක්ෂණය කරන්නට ඇත. සමවතුරසුාකාර ආධාරකයේ පැත්තක දිග a ද උස h ද වූ සනකාභයක් හා සමවතුරසුාකාර ආධාරකයේ පැත්තක දිග a ද ලම්බ උස h ද වූ සෘජු පිස්මයක් සලකන්න. කි්යාකාරකමට අනුව, පිරමීඩයේ පරිමාව \times 3 = සනකාභයේ පරිමාව

$$\therefore$$
 පිරමීඩයේ පරිමාව $= \frac{1}{3} \times$ ඝනකාභයේ පරිමාව $= \frac{1}{3} \times$ ආධාරකයේ වර්ගඵලය \times ලම්බ උස $= \frac{1}{3} \times (\ a \times a\) \times h$ $= \frac{1}{3}\ a^2h$ පිරමීඩයේ පරිමාව $= \frac{1}{3}\ a^2h$

නිදසුන 1

සමචතුරසාකාර ආධාරකයේ පැත්තක දිග 15 cm ද උස 10 cm ද වූ සෘජු පිරමීඩයක පරිමාව සොයන්න.

පිරමීඩමය් පරිමාව
$$=$$
 $\frac{1}{3}$ a^2h $=$ $\frac{1}{3} \times 15 \times 15 \times 10$ $=$ 750

 \therefore පිරමීඩයේ පරිමාව $750 \, \mathrm{cm}^3$ වේ.

නිදසුන 2

සමචතුරසුාකාර ආධාරකයක් සහිත පිරමීඩයක පරිමාව $400~\mathrm{cm^3}$ කි. එහි උස $12~\mathrm{cm}$ නම් ආධාරකයේ පැත්තක දිග සොයන්න.

ආධාරකයේ පැත්තක දිග සෙන්ටිමීටර a යැයි ගනිමු.

පිරමීඩ ගේ පරිමාව =
$$\frac{1}{3} a^2 h$$

 $\therefore \frac{1}{3} a^2 h = 400$
 $\therefore \frac{1}{3} a^2 \times 12 = 400$
 $\therefore 4a^2 = 400$
 $\therefore a^2 = 100$
 $= 10^2$
 $\therefore a = 10$

 \therefore ආධාරකයේ පැත්තක දිග $10~\mathrm{cm}$ වේ.

5.1 අභනාසය

- 1. සමචතුරසුාකාර ආධාරකයේ පැත්තක දිග 5 cm වූ පිරමීඩයක උස 9 cm නම්, එහි පරිමාව ගණනය කරන්න.
- **2.** සමචතුරසුාකාර ආධාරකයේ වර්ගඵලය $36~{
 m cm}^2$ වූ පිරමීඩයක උස $10~{
 m cm}$ නම්, එහි පරිමාව ගණනය කරන්න.
- 3. සමවතුරසුාකාර පිරමීඩයක උස 12 cm නම් හා එහි පරිමාව 256 cm³ නම්, ආධාරකයේ පැත්තක දිග ගණනය කරන්න.
- **4.** සමචතුරසාකාර පිරමීඩයක උස $5~{\rm cm}$ ද එහි පරිමාව $60~{\rm cm}^3$ ද නම් පිරමීඩයේ ආධාරකයේ වර්ගඵලය ගණනය කරන්න.
- 5. ආධාරකයේ පැත්තක දිග $9~{\rm cm}$ වූ සමචතුරසුාකාර පිරමීඩයක පරිමාව $216~{\rm cm}^3$ නම්, එහි උස ගණනය කරන්න.
- **6.** ආධාරකයේ වර්ගඵලය $16~{
 m cm}^2$ වූ සමචතුරසාකාර පිරමීඩයක පරිමාව $80~{
 m cm}^3$ නම්, එහි උස ගණනය කරන්න.
- 7. සමචතුරසුාකාර ආධාරකයක් සහිත පිරමීඩයක ආධාරකයේ පැත්තක දිග $12~{
 m cm}$ ද ඇල දාරයක දිග $10~{
 m cm}$ ද වේ. පිරමීඩයේ,
 - (i) උස
 - (ii) පරිමාව

ගණනය කරන්න.

(පිළිතුර කරණි ආකාරයෙන් තබන්න.)

- 8. සමවතුරසුාකාර ආධාරකයක් සහිත පිරමීඩයක ආධාරකයේ පැත්තක දිග $10~{
 m cm}$ ද ඇල දාරයේ දිග $13~{
 m cm}$ ද වේ. පිරමීඩයේ,
 - (i) උස
 - (ii) පරිමාව

ගණනය කරන්න. (පිළිතුර කරණි ආකාරයෙන් තබන්න.)

(5.2 සෘජු වෘත්ත කේතුවක පරිමාව

සෘජු වෘත්ත කේතුවක පරිමාව සෙවීම සඳහා සූතුයක් ගොඩනැගීම පිළිබඳ ව අවධානය යොමු කරමු. ඒ සඳහා ඍජු වෘත්ත කේතුවක් හා ඍජු වෘත්ත සිලින්ඩරයක් යොදාගෙන පහත කියාකාරකමේ යෙදෙන්න.

කියාකාරකම

රූපයේ දැක්වෙන ආකාරයේ සමාන අර හා සමාන උස සහිත ආධාරකය රහිත කේතුවකුත් පතුල සහිත නමුත් පියන රහිත සිලින්ඩරයකුත් කාඩ්බෝඩ් භාවිතයෙන් සකස් කර ගන්න.

සාදා ගත් කේතු හැඩැති භාජනය සිහින් වැලිවලින් සම්පූර්ණයෙන්ම පුරවා ගන්න. එසේ පුරවා ගත් සිහින් වැලි සියල්ල සිලින්ඩරාකාර භාජනයට දමන්න. සිලින්ඩරාකාර භාජනය සම්පූර්ණයෙන්ම පිරවීමට මේ ආකාරයට කේතු හැඩැති භාජනයෙන් කී වරක් වැලි දැමිය යුතු දැයි නිරීක්ෂණය කරන්න.

සිලින්ඩරාකාර භාජනය සම්පූර්ණයෙන් පිරවීමට කේතු ආකාර භාජනයෙන් තුන් වාරයක් සිහින් වැලි පුරවා දැමිය යුතු බව ඔබට නිරීක්ෂණය කිරීමට හැකි වනු ඇත. ඒ අනුව,

කේතුවේ පරිමාව
$$imes 3$$
 = සිලින්ඩරයේ පරිමාව

කේතුවේ පරිමාව =
$$\frac{1}{3}$$
 $imes$ සිලින්ඩරයේ පරිමාව

අරය r ද උස h ද වූ සිලින්ඩරයක පරිමාව $\pi r^2 h$ මගින් ලැබෙන බව මීට ඉහත දී ඔබ උගෙන ඇත. ඒ නිසා අරය r හා උස h වූ කේතුවක පරිමාව $\frac{1}{3}\pi r^2 h$ මඟින් ලැබේ.

කේතුවේ පරිමාව
$$=rac{1}{3}\pi r^2 h$$

මෙම පාඩමේ ගණනය කිරීම්වලදී π හි අගය $rac{22}{7}$ ලෙස ගනු ලැබේ.

නිදසුන 1

අරය $7~\mathrm{cm}$ ද උස $12~\mathrm{cm}$ ද වූ කේතුවක පරිමාව සොයන්න.

කේකුවේ පරිමාව
$$=$$
 $\frac{1}{3}\pi r^2 h$ $=$ $\frac{1}{3} imes \frac{22}{7} imes 7 imes 7 imes 12$ $=$ 616

12 cm

 \therefore කේතුවේ පරිමාව $616~\mathrm{cm^3}$ වේ.

නිදසුන 2

ආධාරකයේ පරිධිය 44 cm වූ කේතුවක ලම්බ උස 21 cm නම් කේතුවේ පරිමාව සොයන්න.

ආධාරකයේ පරිධිය = 44 cm කේතුවේ අරය සෙන්ටිමීටර r යැයි ගනිමු.

$$\therefore 2\pi r = 44$$

$$2 \times \frac{22}{7} \times r = 44$$

$$\therefore r = \frac{44 \times 7}{2 \times 22}$$

$$= 7$$

∴ කේතුවේ අරය 7 cm වේ.

ෙක්තුවේ පරිමාව
$$=$$
 $\frac{1}{3}\pi r^2 h$ $=$ $\frac{1}{3} imes \frac{22}{7} imes 7 imes 7 imes 21$ $=$ 1078

 \therefore කේතුවේ පරිමාව $1078~{
m cm}^3$ වේ.

නිදසුන 3

අරය 7 cm ද ඇල උස 25 cm ද වූ කේතුවක

- (i) උස
- (ii) පරිමාව

සොයන්න.

කේතුවේ උස සෙන්ටිමීටර h මගින් දක්වමු. පහත රූපයේ දැක්වෙන තිුකෝණයට පයිතගරස් පුමේයය යොදා h සොයමු.

(i)
$$h^{2} + 7^{2} = 25^{2}$$
$$h^{2} + 49 = 625$$
$$h^{2} = 625 - 49$$
$$h = \sqrt{576}$$
$$h = 24$$

∴ කේතුවේ උස 24 cm වේ.

(ii) කේතුවේ පරිමාව
$$=$$
 $\frac{1}{3}\pi r^2 h$ $=$ $\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24$ $=$ 1232

 \therefore කේතුවේ පරිමාව $1232~{
m cm}^3$ වේ.

නිදසුන 4

අරය $3.5~\mathrm{cm}$ ද පරිමාව $154~\mathrm{cm}^3$ ද වූ කේතුවක සෘජු උස සොයන්න.

කේතුවේ ඍජු උස සෙන්ටිමීටර h මගින් දක්වමු.

ෙක්තුවේ පරිමාව =
$$\frac{1}{3}\pi r^2 h$$

 $\therefore 154 = \frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times h$ ($3.5 = \frac{7}{2}$ නිසා)
 $\therefore h = \frac{154 \times 3 \times 7 \times 2 \times 2}{22 \times 7 \times 7}$
= 12

 \therefore කේතුවේ සෘජූ උස $12~{
m cm}$ වේ.

5.2 අභාගාසය

- ${f 1.}$ අරය $7~{
 m cm}$ ද උස $12~{
 m cm}$ ද වන කේතුවක පරිමාව ගණනය කරන්න.
- 2. විෂ්කම්භය 21 cm ද උස 25 cm ද වූ කේතුවක පරිමාව ගණනය කරන්න.
- 3. ඇල උස 13 cm ද පතුලේ අරය 5 cm වූ ද කේතුවක පරිමාව ගණනය කරන්න.
- 4. විෂ්කම්භය 12 cm ද ඇල උස 10 cm ද වූ කේතුවක පරිමාව ගණනය කරන්න.
- 5. පරිමාව $616~{
 m cm}^3$ වූ කේතුවක උස $12~{
 m cm}$ නම් කේතුවේ අරය ගණනය කරන්න.
- ${f 6.}\$ පරිමාව $6468\ {
 m cm}^3$ වූ කේතුවක උස $14\ {
 m cm}\$ නම් කේතුවේ විෂ්කම්භය ගණනය කරන්න.
- 7. පතුලේ පරිධිය 44 cm වූ සෘජු කේතුවක ඇල උස 25 cmකි. කේතුවේ,
 - (i) ආධාරකයේ අරය
 - (ii) උස
 - (iii) පරිමාව

ගණනය කරන්න.

- 8. කේතු හැඩැති භාජනයක ආධාරකයේ පරිධිය 88 cm ද ඍජු උස 12 cm ද වේ නම්, භාජනයේ පරිමාව ගණනය කරන්න.
- 9. අරය 14 cm ද උස 30 cm ද වූ ඝන ලෝහ සිලින්ඩරයක් උණු කර, අරය 7 cm වූ ද උස 15 cm වූ ද ඝන ලෝහ කේතු කීයක් සෑදිය හැකි ද?

10. සෘජු කේතුවක ආකාරයේ වූ බඳුනක අරය 12 cm ද උස 21 cm ද වේ. එහි උසින් හරි අඩක් ජලයෙන් පුරවා ඇත් නම්, බඳුන සම්පූර්ණයෙන් පිරවීමට තව කොපමණ ජල පරිමාවක් දැමිය යුතු දැයි සොයන්න.

5.3 ගෝලයක පරිමාව

ගෝලයක පෘෂ්ඨ වර්ගඵලය සොයා ගැනීම සඳහා යොදා ගත් 'පරිසිලින්ඩරය' නම් උපකරණය ඇසුරෙන් ම ගෝලයක පරිමාව සෙවීමේ කුමයක් ද ආකිමිඩිස් නම් ගණිතඥයා විසින් පැහැදිලි කරන ලදි. ඒ අනුව සැලසුම් කර ඇති පහත කියාකාරකම ඇසුරෙන් ගෝලයක පරිමාව සෙවීම සඳහා සූතුයක් ගොඩනගමු.

කුියාකාරකම

මේ සඳහා අරය 3cm පමණ වූ ගෝලයක් ගන්න. ගෝලයේ අරයට සමාන අරයකින් හා ගෝලයේ විෂ්කම්භයට සමාන උසකින් යුත් දෙපසම විවෘත සිලින්ඩරයක් තුනී කාඩ්බෝඩ් භාවිතයෙන් තනා ගන්න. ඉන් පසු රූපයේ දැක්වෙන පරිදි ගෝලය පරිසිලින්ඩරය තුළට සීරුවෙන් ඇතුළු කරන්න.

එවිට ගෝලය පරිසිලින්ඩරය තුල මුළු අවකාශයම අයත්කර නොගන්නා බවත් හිස් අවකාශයක් ඉතිරි වී ඇති බවත් පැහැදිලි වේ. එම හිස් අවකාශයේ පරිමාව සොයා ගැනීම සඳහා පරිසිලින්ඩරයේ ඉහල කොටස සිහින් වැලිවලින් පුරවා ගන්න. එම වැලි ඉවතට නොයන සේ කාඩ්බෝඩ් කැබැල්ලක් මගින් තද කර තබා ගෙන යට කොටස ඉහළට හරවා ගන්න. දැන් එම කොටස ද සම්පූර්ණයෙන් වැසී යන සේ සිහින් වැලි පුරවා ගන්න. අනතුරුව පරිසිලින්ඩරයේ අරයට සමාන අරයකින් හා පරිසිලින්ඩරයේ උසට සමාන උසකින් යුත් කුහර කේතුවක් තුනී කාඩ්බෝඩ් භාවිතයෙන් සකස් කර ගන්න.

දැන් පරිසිලින්ඩරය තුළට පුරවා ඇති සිහින් වැලි අපතේ නොයන පරිදි සම්පූර්ණයෙන් ඉවත් කර ගෙන, ඉහත සාදා ගත් කුහර කේතුව තුළට දමන්න. එවිට එම වැලිවලින් කුහර කේතුව සම්පූර්ණයෙන් පිරී යන බව ඔබට පැහැදිලි වනු ඇත.

මෙම කිුියාකාරකමට අනුව,

පරිසිලින්ඩරයේ පරිමාව = ගෝලයේ පරිමාව + කේතුවේ පරිමාව

බව ඔබට වැටහෙන්නට ඇත. ඒ අනුව පරිසිලින්ඩරයේ පරිමාවෙන් කේතුවේ පරිමාව අඩු කළ විට ගෝලයේ පරිමාව ලැබෙන බව පැහැදිලි වනු ඇත. මේ අනුව,

ගෝලයේ පරිමාව = පරිසිලින්ඩරයේ පරිමාව – කේතුවේ පරිමාව
$$= \pi r^2 h - \frac{1}{3} \times \pi r^2 h$$

$$= \frac{2}{3} \pi r^2 h$$

$$= \frac{2}{3} \pi r^2 \times 2r \ (h = 2r \ {\rm She})$$

$$= \frac{4}{3} \pi r^3$$

ගෝලයේ පරිමාව
$$= \frac{4}{3} \pi r^3$$

නිදසුන 1

අරය 21 cm වූ ගෝලයක පරිමාව සොයන්න.

ගෝලයේ පරිමාව
$$=\frac{4}{3} \pi r^3$$

$$=\frac{4}{3} \times \frac{22}{7} \times 21 \times 21 \times 21$$
 $=38\,808$

 \therefore ගෝලයේ පරිමාව $38\,808~{
m cm}^3$ වේ.

නිදසුන 2

අරය 7 cm වූ ඝන අර්ධ ගෝලයක පරිමාව සොයන්න.

අර්ධ ගෝලයේ පරිමාව
$$=$$
 $\frac{1}{2} imes \frac{4}{3} \pi r^3$ $=$ $\frac{1}{2} imes \frac{4}{3} imes \frac{22}{7} imes 7 imes 7 imes 718.67$

 \therefore අර්ධ ගෝලයේ පරිමාව $718.67~{
m cm}^3$ වේ.

නිදසුන 3

පරිමාව $113\frac{1}{7}$ cm 3 වූ කුඩා වීදුරු බෝලයක අරය සොයන්න. ගෝලයේ අරය සෙන්ටිමීටර r යැයි ගනිමු.

ෙගෝලයේ පරිමාව =
$$\frac{4}{3} \pi r^3$$

 $\therefore \frac{4}{3} \pi r^3 = 113 \frac{1}{7}$
 $\therefore r^3 = \frac{792}{7} \times \frac{3}{4} \times \frac{7}{22}$
 $= 27$
 $= 3^3$

∴ ගෝලයේ අරය 3 cm වේ.

5.3 අභානාසය

- 1. අරය 7 cm වූ ගෝලයක පරිමාව සොයන්න.
- **2.** විෂ්කම්භය 9 cm වූ ගෝලයක පරිමාව $381 \, \frac{6}{7} \, \mathrm{cm}^3$ බව පෙන්වන්න.
- 3. ගෝලාකාර ගුහ වස්තුවක අරය 2.1 km නම්, 'ගුහ වස්තුවේ පරිමාව සොයන්න.
- **4.** අරය සෙන්ටිමීටර 10.5ක් වූ ඝන අර්ධ ගෝලයක පරිමාව සොයන්න.
- **5.** ගෝලයක පරිමාව $11498\,rac{2}{3}\,\mathrm{cm}^3$ නම්, එහි අරය ගණනය කරන්න.
- 6. අරය $7~{
 m cm}$ වූ ලෝහ ගෝල 8ක් උණු කර, ලෝහ අපතේ නොයන ලෙස තනි ලෝහ ගෝලයක් සාදනු ලැබේ. එහි අරය ගණනය කරන්න.
- 7. අරය $12~{\rm cm}$ වූ ඝන අර්ධ ගෝලාකාර ලෝහ කොටසක් උණු කර, අරය $3~{\rm cm}$ බැගින් වූ කුඩා ඝන ලෝහ ගෝල $32~{\rm a}$ සෑදිය හැකි බව පෙන්වන්න.

ullet ආධාරකයේ පැත්තක දිග a වූ ද ලම්බ උස h වූ ද සමචතුරසුාකාර සෘජු පිරමීඩයක පරිමාව V නම්,

$$V = \frac{1}{3} a^2 h$$
 ඉඩි.

- ullet ආධාරකයේ අරය r සහ ලම්බ උස h වූ සෘජු වෘත්ත කේතුවක පරිමාව V නම්, $V=rac{1}{3}\ \pi r^2 h$ වේ.
- ullet අරය r වන ගෝලයක පරිමාව V නම්,

$$V=rac{4}{3}\pi r^3$$
 වේ.

මිශු අභාගාසය

- 1. පැත්තක දිග 12 cm වූ ඒකාකාර සමචතුරසුාකාර හරස්කඩක් සහිත, දිග 22 cm වූ ඝන ලෝහ කුට්ටියක් උණු කර, අරය 3 cm වූ ඝන ගෝල සාදනු ලබයි නම්, සෑදිය හැකි මුළු ඝන ලෝහ ගෝල ගණන කීය ද?
- 2. අරය 3.5 cm වූ ඝන ලෝහ ගෝලයක් උණු කර, එයින් එම අරයෙන් ම යුත් ඝන කේතුවක් සාදන ලදි. වාත්තු කිරීමේ දී ලෝහ අපතේ නොයන ලදැයි සලකා කේතුවේ උස ගණනය කරන්න.
- 3. රූපයේ දැක්වෙන කේන්දුය O හරහා අරය r වූ කේන්දික ඛණ්ඩයක ආකාරයේ වූ ලෝහ තහඩුව භාවිතයෙන් ශිර්ෂය O හා ඇල උස r වූ කේතු ආකාරයේ බඳුනක් සාදනු ලැබීය. අරය a බැගින් වූ ගෝලාකාර අයිස් කැට n ගණනක් මෙම කේතුව තුළට (ශිර්ෂය යටි අතට සිටින සේ තබා) දැමූ විට අයිස් දිය වූ ජලයෙන් බඳුන පිරී ගියේ නම් 125na³ = 9r³ බව පෙන්වන්න.

ද්විපද පුකාශන

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

ද්විපද පුකාශනයක ඝනායිතය පුසාරණය කිරීමට හැකියාව ලැබෙනු ඇත.

x+y ආකාරමය් ද්විපද පුකාශනයක වර්ගායිතය $(x+y)^2$ මගින් දැක්වූ බවත්, එයින් අදහස් වූයේ (x+y) (x+y) ගුණිතය බවත්, එම ගුණිතය පුසාරණය කළ විට $x^2+2xy+y^2$ ලෙස ලැබුණු බවත් ඔබ මීට කලින් උගෙන ඇත. තව ද $(x-y)^2$ පුසාරණය කළ විට $x^2-2xy+y^2$ ලෙස ලැබුණු බවත් ඔබ උගෙන ඇත. ද්විපද පුකාශනවල වර්ගායිත පුසාරණය සම්බන්ධව ඔබ මෙතෙක් උගෙන ඇති විෂය කරුණු නැවත මතක් කර ගැනීම සඳහා පහත දී ඇති අභාවාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාගාසය

1. හිස්තැන් පූරවන්න.

a.
$$(a+b)^2 = a^2 + 2ab + \dots$$

c.
$$(x+2)^2 = x^2 + 4x + \dots$$

e.
$$(a-5)^2 = \dots -10a+25$$

$$\mathbf{g}$$
. $(4+x)^2 = 16 + \dots$

i.
$$(2x+1)^2 = 4x^2 \dots + 1$$

b.
$$(a-b)^2 = \dots -2ab+b^2$$

d.
$$(y+3)^2 = y^2 + \dots + 9$$

f.
$$(b-1)^2 = b^2 \dots + \dots$$

h.
$$(7-t)^2 = 49 \dots + t^2$$

$$(3b-2)^2 = \dots -12b \dots$$

2. පුසාරණය කරන්න.

a.
$$(2m+3)^2$$

a.
$$(2m+3)^2$$
 b. $(3x-1)^2$ **c.** $(5+2x)^2$

c.
$$(5+2x)^2$$

d.
$$(2a+3b)^2$$
 e. $(3m-2n)^2$ **f.** $(2x+5y)^2$

e.
$$(3m-2n)^2$$

f.
$$(2x + 5y)^2$$

- 3. ද්විපද පුකාශනයක වර්ගායිතයක් ලෙස ලිවීමෙන් පහත දැක්වෙන එක් එක් වර්ගය අගයන්න.

 - **a.** 32^2 **b.** 103^2 **c.** 18^2 **d.** 99^2

(6.1 ද්විපද පුකාශනයක ඝනායිතය

a+b ආකාරයේ ද්විපද පුකාශනයක ඝනායිතය ලෙස හැඳින්වෙන්නේ $(a+b)^3$ යි. එනම්, (a+b) හි තුනෙහි බලය යි. වෙනත් අයුරකින් පැවසුව හොත් $(a+b)^2$ යන්න නැවත (a+b) මගින් ගුණ කිරීමෙන් ලැබෙන පුකාශනයයි.

පහත දැක්වෙන, තුනෙහි බල ලෙස දක්වා ඇති පුකාශන ලියා තිබෙන ආකාර හොඳින් තිරීක්ෂණය කරන්න.

$$3^{3} = 3 \times 3^{2} = 3 \times 3 \times 3 = 27$$

$$x^{3} = x \times x^{2} = x \times x \times x$$

$$(2x)^{3} = (2x) \times (2x)^{2} = (2x) \times (2x) \times (2x) = 8x^{3}$$

එසේ ම,

$$(x+1)^3 = (x+1)(x+1)^2 = (x+1)(x+1)(x+1)$$

 $(a-2)^3 = (a-2)(a-2)^2 = (a-2)(a-2)(a-2)$
 $(3+m)^3 = (3+m)(3+m)^2 = (3+m)(3+m)(3+m)$ ලෙස ද ලිවිය හැකි ය.

ද්වීපද පුකාශනවල වර්ගායිත පුසාරණය කළ ආකාරයට ම ද්වීපද පුකාශනවල ඝනායිත ද පුසාරණය කළ හැකි ය. එය පහත නිදසුන් ඇසුරෙන් අධායනය කරමු.

නිදසුන 1

$$(x+y)^{3} = (x+y)(x+y)^{2}$$

$$= (x+y)(x^{2}+2xy+y^{2})$$

$$= x^{3}+2x^{2}y+xy^{2}+x^{2}y+2xy^{2}+y^{3}$$

$$= x^{3}+3x^{2}y+3xy^{2}+y^{3}$$

මේ අනුව (x+y) ආකාරයේ ද්විපද පුකාශනයක ඝනායිතයේ පුසාරණය සූතුයක් ලෙස මතක තබා ගැනීම සඳහා පහත දැක්වෙන රටාව භාවිත කරමු.

ඒ අනුව,

$$(m+n)^3=m^3+3m^2n+3mn^2+n^3$$
 ලෙස ලිවිය හැකි ය.
එසේ ම, $(a+2)^3=a^3+3\times a^2\times 2+3\times a\times 2^2+2^3$ ලෙස ලියා, එය තව දුරටත්, $a^3+6a^2+12a+8$ ලෙස සුළු කළ හැකි ය.

දැන් ඉහත ආකාරයට ම ගුණ කොට $(x-y)^3$ හි පුසාරණය ලබා ගන්නා ආකාරය සලකා බලමු.

$$(x-y)^{3} = (x-y)(x-y)^{2}$$

$$= (x-y)(x^{2}-2xy+y^{2})$$

$$= x^{3}-2x^{2}y+xy^{2}-x^{2}y+2xy^{2}-y^{3}$$

$$= x^{3}-3x^{2}y+3xy^{2}-y^{3}$$

මෙම පුසාරණය ලබා ගත හැකි තවත් කුමයක් දැන් සලකා බලමු.

මෙහි x-y යන්න x+(-y) ලෙස ද ලිවිය හැකි ය. එවිට එය ඔබ මුලින් දුටු ආකාරයේ පුකාශනයක් ලෙස සැලකිය හැකි ය. ඒ අනුව $(x-y)^3$ යන්න $\{x+(-y)\}^3$ ලෙස ලියා දැක්විය හැකි ය. දැන් මෙම ඝනායිතයෙහි පුසාරණය සලකමු.

$$(x-y)^3 = \{x + (-y)\}^3 = x^3 + 3 \times x^2 \times (-y) + 3 \times x \times (-y)^2 + (-y)^3$$
$$= \underline{x^3 - 3x^2y + 3xy^2 - y^3}$$

ඉහත පද සුළු කිරීම්වල දී $(-y)^2=y^2$ හා $(-y)^3=-y^3$ යන ගුණ යොදා ගෙන ඇති බව නිරීක්ෂණය කරන්න.

ඒ අනුව,
$$(m-n)^3=m^3-3m^2n+3mn^2-n^3$$
 ලෙස ද $(p-q)^3=p^3-3p^2q+3pq^2-q^3$ ලෙස ද ලිවිය හැකි ය.

ඉහත ආකාර දෙකෙන් ම $(x-y)^3$ හි පුසාරණය ලබා ගත හැකි අතර, ඔබ කැමති කුමයකට මෙය සිදු කළ හැකි ය.

දැන් සංඛාහ ද අඩංගු ද්වීපද පුකාශන කිහිපයක ඝනායිත පුසාරණය කරන අයුරු වීමසා බලමු.

නිදසුන 2

$$(x+5)^3 = x^3 + 3 \times x^2 \times 5 + 3 \times x \times 5^2 + 5^3$$
$$= x^3 + 15x^2 + 75x + 125$$

නිදසුන 3

$$(1+x)^3 = 1^3 + 3 \times 1^2 \times x + 3 \times 1 \times x^2 + x^3$$
$$= 1 + 3x + 3x^2 + x^3$$

නිදසුන 4

$$(y-4)^3 = y^3 + 3 \times y^2 \times (-4) + 3 \times y \times (-4)^2 + (-4)^3$$

= $y^3 - 12y^2 + 48y - 64$

හෝ

$$(y-4)^3 = y^3 - 3 \times y^2 \times 4 + 3 \times y \times 4^2 - 4^3$$

= $y^3 - 12y^2 + 48y - 64$

නිදසුන 5

$$(5-a)^3 = 5^3 + 3 \times 5^2 \times (-a) + 3 \times 5 \times (-a)^2 + (-a)^3$$

= $1\underline{25 - 75a + 15a^2 - a^3}$

හෝ

$$(5-a)^3 = 5^3 - 3 \times 5^2 \times a + 3 \times 5 \times a^2 - a^3$$

= $125 - 75a + 15a^2 - a^3$

නිදසුන 6

$$(-2+a)^3 = (-2)^3 + 3 \times (-2)^2 \times a + 3 \times (-2) \times a^2 + a^3$$

= $-8 + 12a - 6a^2 + a^3$

නිදසුන 7

$$(-3 - b)^3 = (-3)^3 + 3 \times (-3)^2 \times (-b) + 3 \times (-3) \times (-b)^2 + (-b)^3$$
$$= \underbrace{-27 - 27b - 9b^2 - b^3}$$

හෝ

$$\begin{bmatrix} -1 (3+b) \end{bmatrix}^{3} = (-1)^{3} (3+b)^{3}$$

$$= -1 (3^{3} + 3 \times 3^{2} \times b + 3 \times 3 \times b^{2} + b^{3})$$

$$= -1 (27 + 27b + 9b^{2} + b^{3})$$

$$= -27 - 27b - 9b^{2} - b^{3}$$

නිදසුන 8

 $(x-3)^3$ හි පුසාරණය ලියා x=4 සඳහා $(4-3)^3=4^3-3^2\times 4^2+3^3\times 4-3^3$ බව සතහාපනය කරන්න.

$$(x-3)^3 = x^3 - 3 \times x^2 \times 3 + 3 \times x \times 3^2 - 3^3$$

x=4 ආදේශයෙන්

වම් පැ. =
$$(4-3)^3$$

= 1

දකුණු පැ. =
$$x^3 - 3 \times x^2 \times 3 + 3 \times x \times 3^2 - 3^3$$

= $4^3 - 3^2 \times 4^2 + 3^3 \times 4 - 3^3$
= 1

වම් පැ. = දකුණු පැ.

එමනිසා
$$(4-3)^3 = 4^3 - 3^2 \times 4^2 + 3^3 \times 4 - 3^3$$
 ඉඩි.

6.1 අභනාසය

1. සුදුසු වීජිය පද හෝ සංඛාා හෝ වීජිය ලකුණු (+ හෝ –) හෝ යොදා ගනිමින් හිස්තැන් පුරවන්න.

a.
$$(x+3)^3 = x^3 + 3 \times x^2 \times 3 + 3 \times x \times 3^2 + 3^3 = x^3 + \square + \square + 27$$

b.
$$(v+2)^3 = v^3 + 3 \times \square \times \square + 3 \times \square \times \square + 2^3 = v^3 + 6v^2 + \square + \square$$

c.
$$(a-5)^3 = a^3 + 3 \times a^2 \times (-5) + 3 \times a \times (-5)^2 + (-5)^3 = a^3 - \Box + \Box - 125$$

d.
$$(3+t)^3 = \square + 3 \times \square \times \square + 3 \times \square \times \square + \square = \square + 27t + \square + t^3$$

e.
$$(x-2)^3 = x^3 \square 3 \times \square \times \square + 3 \times \square \times \square + (-2)^3 = x^3 \square \square + 12x - \square$$

2. පුසාරණය කරන්න.

a.
$$(m+2)^3$$

b.
$$(x+4)^3$$

c.
$$(h-2)^3$$

a.
$$(m+2)^3$$
 b. $(x+4)^3$ **c.** $(b-2)^3$ **d.** $(t-10)^3$

e.
$$(5+p)^3$$
 f. $(6+k)^3$

f.
$$(6+k)^3$$

g.
$$(1+b)^3$$

g.
$$(1+b)^3$$
 h. $(4-x)^3$

i.
$$(2-p)^3$$

i.
$$(9-t)^3$$

i.
$$(2-p)^3$$
 j. $(9-t)^3$ k. $(-m+3)^3$ l. $(-5-y)^3$

1.
$$(-5-y)^3$$

m.
$$(ab + c)^3$$

n.
$$(2x + 3y)^3$$

o.
$$(3x + 4y)^3$$

m.
$$(ab+c)^3$$
 n. $(2x+3y)^3$ **o.** $(3x+4y)^3$ **p.** $(2a-5b)^3$

3. පහත දැක්වෙන එක් එක් වීජීය පුකාශනය ද්විපද පුකාශනයක ඝනායිතයක් ලෙස ලියා දක්වන්න.

a.
$$a^3 + 3a^2b + 3ab^2 + b^3$$

b.
$$c^3 - 3c^2d + 3cd^2 - d^3$$

$$x^3 + 6x^2 + 12x + 8$$

d.
$$v^3 - 18v^2 + 108v - 216$$

e.
$$1 + 3x + 3x^2 + x^3$$

f.
$$64 - 48x + 12x^2 - x^3$$

4. රූපයේ දැක්වෙන්නේ පැත්තක දිග ඒකක (a+5) බැගින් වූ සනකයකි. එහි පරිමාව සඳහා පුකාශනයක් ලියා, එම පුකාශනය පුසාරණය කර දක්වන්න.

- **5.** $(x+3)^3$ යන්න පුසාරණය කර,
 - (i) x = 2
 - (ii) x = 4

අවස්ථා සඳහා පිළිතුර සතහාපනය කරන්න.

- 6. ඝනායිත පිළිබඳ දැනුම භාවිතයෙන්, දී ඇති සංඛ්යාත්මක පුකාශනවල අගය සොයන්න.
 - (i) $64 3 \times 16 \times 3 + 3 \times 4 \times 9 27$
 - (ii) $216 3 \times 36 \times 5 + 3 \times 6 \times 25 125$
- 7. පහත දැක්වෙන එක එකක අගය, ද්විපද පුකාශනයක ඝනායිතයක් ලෙස ලියා සොයන්න.
 - $a. 21^3$
- **b.** 102^3
- **c**. 17³

- **d**. 98^3
- **8.** පැත්තක දිග 2a-5 cm වූ ඝනකයක පරිමාව a ඇසුරෙන් සොයන්න.
- 9. $x^3 3x^2y + 3xy^2 y^3$ යන්න ඝනායිතයක් ලෙස ලියා දක්වා එනයින් $25^3 3 \times 25^2 \times 23 + 3 \times 25 \times 23^2 23^3$ හි අගය සොයන්න.

මෙම පාඩම ඉගෙනීමෙන් ඔබට,

වීජිය භාග ගුණ කිරීම සහ බෙදීම පිළිබඳ ව අවබෝධයක් ලැබෙනු ඇත.

වීජිය භාග එකතු කිරීම සහ අඩු කිරීම පිළිබඳව ඔබ මීට පෙර උගත් කරුණු පුනරීක්ෂණය සඳහා පහත අභානාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාගසය

සුළු කරන්න.

a.
$$\frac{a}{5} + \frac{2a}{5}$$

b.
$$\frac{8}{x} - \frac{3}{x}$$

b.
$$\frac{8}{x} - \frac{3}{x}$$
 c. $\frac{7}{3m} + \frac{3}{4m} - \frac{8}{m}$

d.
$$\frac{9}{x+2} + \frac{1}{x}$$

e.
$$\frac{1}{m+2} - \frac{2}{m+3}$$

d.
$$\frac{9}{x+2} + \frac{1}{x}$$
 e. $\frac{1}{m+2} - \frac{2}{m+3}$ **f.** $\frac{a+3}{a^2-4} + \frac{1}{a+2}$

$$\mathbf{g.} \ \frac{2}{x^2 - x - 2} \ - \ \frac{1}{x^2 - 1}$$

g.
$$\frac{2}{x^2 - x - 2} - \frac{1}{x^2 - 1}$$
 h. $\frac{1}{x^2 - 9x + 20} - \frac{1}{x^2 - 11x + 30}$

(7.1 වීජිය භාග ගුණ කිරීම

භාග සංඛඵාවක් තවත් භාග සංඛඵාවකින් ගුණ කරන ආකාරයට ම වීජීය භාගයක් තවත් වීජිය භාගයකින් ගුණ කිරීම සිදු කළ හැකි ය. මෙය නිදසුන් ඇසුරෙන් අවබෝධ කර ගනිමු.

 $\frac{x}{2} imes \frac{x}{3}$ යන ගුණ කිරීම සලකමු.

භාග දෙකක් ගුණ කිරීම යන්නෙන් අදහස් වන්නේ එම ගුණිත තනි වීජිය භාගයක් ලෙස දැක්වීම යි.

භාග දෙකෙහි හරයේ ඇති පද හා ලවයේ ඇති පද වෙන වෙන ම ගුණ කොට, තනි භාගයක් ලබා ගැනේ. එනම්,

$$\frac{x}{2} imes rac{x}{3} = rac{x imes x}{2 imes 3}$$

$$= rac{x^2}{6} \qquad$$
 ඉලස ගුණ කරනු ලැබේ.

හරයේ හා ලවයේ ඇති පද තව දුරටත් සුළු කළ හැකි නම්, ඒවා සුළු කර සරලම ආකාරයෙන් තැබිය හැකි ය. මෙසේ සුළු කිරීම භාග ගුණ කිරීමට පෙර හෝ ඊට පසු හෝ කළ හැකි ය. එවැනි සුළු කිරීමක් සහිත ගැටලුවක් විසඳන අයුරු දැන් විමසා බලමු.

$$rac{8}{a} imes rac{3}{2h}$$
 ගුණ කරන අයුරු දැන් වීමසා බලමු.

මෙහි මුලින් භාගයේ ලවයේ ඇති 8ට සහ දෙවනුව ඇති භාගයේ හරයේ ඇති 2bට පොදු වූ සාධකය වන 2 ඉවත් කළ හැකි ය. එය මෙසේ සුළු කරමු.

$$\frac{8}{a} \times \frac{3}{2b} = \frac{4}{8} \times \frac{3}{2b}$$

දැන් භාග දෙකෙහි ලවයේ හා හරයේ ඇති අගයන් වෙන වෙන ම ගුණ කරමු. එවිට,

$$\frac{8}{a} \times \frac{3}{2b} = \frac{4 \times 3}{a \times b}$$
$$= \frac{12}{ab}$$

ලෙස සුළු වී තනි භාගයක් ලැබේ.

භාග ගුණ කිරීමෙන් පසු ද පොදු සාධක ඉවත් කළ හැකි ය. පහත දැක්වෙන නිදසුන වීමසා බලන්න.

$$\frac{3}{2a} \times \frac{2b}{3} = \frac{6b}{6a}$$
$$= \frac{b}{a}$$

ලෙස ගුණ කළ හැකි ය. එසේ නමුත්, වීජිය භාග සුළු කිරීමේ දී මුලින් පොදු සාධක ඉවත් කිරීම තුළින් බොහෝ විට දීර්ඝ ලෙස ගුණ කිරීම් හා බෙදීම් නොයෙදෙන නිසා එසේ කිරීම බොහෝ විට යෝගා විය හැකි ය.

පහත දැක්වෙන වීජීය භාග සුළු කර ඇති අයුරු විමසා බලන්න.

නිදසුන 1

$$\frac{x}{y} imes \frac{4}{5x}$$

$$= \frac{1}{y} imes \frac{4}{5x}$$
 (පොදු සාධකයක් වන x වලින් බෙදීම)
$$= \frac{1 imes 4}{y imes 5}$$

$$= \frac{4}{5y}$$

ලවයේ හෝ හරයේ හෝ ඒ දෙකේ ම හෝ වීජිය පුකාශන සහිත වීජිය භාග ගුණ කිරීමේ දී මුලින් ම සාධක වෙන් කර ගත යුතු ය. ඒ, පොදු සාධක ඇත් නම් ඒවා ඉවත් කිරීම සඳහා ය. දැන් එවැනි නිදසුනක් සලකා බලමු.

නිදසුන 2

$$\frac{2}{x+3} imes \frac{x^2+3x}{5}$$
 සුළු කරන්න.

$$\frac{2}{x+3} imes \frac{x^2+3x}{5} = \frac{2}{x+3} imes \frac{x(x+3)}{5}$$
 (x^2+3x) හි සාධක වෙන් කිරීම)
$$= \frac{2}{x+3} imes \frac{x(x+3)}{5} imes (x+3) mtext{ යන පොදු සාධකයෙන් බෙඳීම)}$$

$$= \frac{2x}{5}$$

දැන් මඳක් සංකීර්ණ ගැටලුවක් විමසා බලමු.

නිදසුන 3

$$\frac{a^2-9}{5a} \times \frac{2a-4}{a^2+a-6}$$
 සුළු කරන්න.
$$\frac{a^2-9}{5a} \times \frac{2a-4}{a^2+a-6} = \frac{a^2-3^2}{5a} \times \frac{2(a-2)}{(a+3)(a-2)}$$
$$= \frac{(a-3)(a+3)}{5a} \times \frac{2(a-2)}{(a+3)(a-2)}$$
$$= \frac{2(a-3)}{5a}$$

7.1 අභනාසය

පහත දැක්වෙන වීජීය භාග සුළු කරන්න.

$$\mathbf{a.} \ \frac{6}{x} \times \frac{2}{3x}$$

b.
$$\frac{x}{5} \times \frac{3}{xy}$$

c.
$$\frac{2a}{15} \times \frac{5}{9}$$

d.
$$\frac{4m}{5n} \times \frac{3}{2m}$$

e.
$$\frac{x+1}{8} \times \frac{2x}{x+1}$$

f.
$$\frac{3a-6}{3a} \times \frac{1}{a-2}$$

g.
$$\frac{x^2}{2y+5} \times \frac{4y+10}{3x}$$

h.
$$\frac{m^2-4}{m+1} \times \frac{m^2+2m+1}{m+2}$$

 $a^2 - 9 = (a - 3)(a + 3)$ නිසා

i.
$$\frac{x^2 - 5x + 6}{x^2 - 1} \times \frac{x^2 - 2x - 3}{x^2 - 9}$$
 j. $\frac{a^2 - b^2}{a^2 - 2ab + b^2} \times \frac{2a - 2b}{a^2 + ab}$

j.
$$\frac{a^2 - b^2}{a^2 - 2ab + b^2} \times \frac{2a - 2b}{a^2 + ab}$$

7.2 වීජිය භාගයක් තවත් වීජිය භාගයකින් බෙදීම

භාගයක් තවත් භාගයකින් බෙදීමේ දී මුල් භාගය දෙවන භාගයේ පරස්පරයෙන් ගුණ කර පිළිතුර ලබා ගත් ආකාරය ඔබට මතක ඇතුවාට සැක නැත. එලෙසින්ම වීජිය භාගයක් තවත් වීජිය භාගයකින් බෙදීමේ දී ද පරස්පරයෙන් ගුණ කිරීම සිදු කළ හැකි ය.

වීජිය භාග බෙදීම පිළිබඳව අධාෘයනය කිරීමට පෙර වීජිය භාගයක පරස්පරය පිළිබඳ ව වීමසා බලමු.

වීජීය භාගයක පරස්පරය

සංඛාාවක් තවත් සංඛාාවකින් ගුණ කළ විට, ගුණිතය 1 වේ නම්, එම එක් සංඛාාවක්, අනෙක් සංඛාාවේ පරස්පරය හෙවත් ගුණා පුතිලෝමය බව මීට පෙර උගෙන ඇත. ඒ අනුව,

සංඛාාවක පරස්පරය පිළිබඳ ව අප උගත් කරුණු මතකයට නගා ගනිමු.

$$2 imes \frac{1}{2} = 1$$
 බැවින් 2හි පරස්පරය $\frac{1}{2}$ ද, $\frac{1}{2}$ හි පරස්පරය 2 ද

$$\frac{1}{3} \times 3 = 1$$
බැවින් $\frac{1}{3}$ හි පරස්පරය 3 ද, 3 හි පරස්පරය $\frac{1}{3}$ ද

$$\frac{4}{5} imes \frac{5}{4} = 1$$
 බැවින් $\frac{4}{5}$ හි පරස්පරය $\frac{5}{4}$ ද, $\frac{5}{4}$ හි පරස්පරය $\frac{4}{5}$ ද වේ.

වීජිය භාගයක පරස්පරය ද ඉහත ලෙස ම විස්තර කෙරේ. එනම්, වීජිය භාගයක් තවත් වීජිය භාගයකින් ගුණ කළ විට ගුණිතය 1 වේ නම්, එම එක් වීජිය

 $\frac{5}{x}$ හා $\frac{x}{5}$ වීජිය භාග ගුණ කරමු.

$$\frac{5}{x} \times \frac{x}{5} = \frac{1}{1} = 1$$

එබැවින් $\frac{5}{x}$ හි පරස්පරය $\frac{x}{5}$ ද, $\frac{x}{5}$ හි පරස්පරය $\frac{5}{x}$ ද වේ.

භාගයක්, අනෙක් වීජිය භාගයේ පරස්පරය වේ.

මෙලෙසින් ම

$$\frac{x+1}{y} \times \frac{y}{x+1} = 1$$
 බැවින්

$$\frac{x+1}{y}$$
 හි පරස්පරය $\frac{y}{x+1}$ ද, $\frac{y}{x+1}$ හි පරස්පරය $\frac{x+1}{y}$ ද වේ.

මින් පැහැදිලි වන්නේ සංඛාාවක පරස්පරය සෙවීමේ දී, එහි ලවය හා හරය හුවමාරු කර ලිවීමෙන් පරස්පරය ලබා ගන්නා ආකාරයට ම වීජිය භාගයක ද ලවය හා හරය හුවමාරු කර ලිවීමෙන් එම වීජිය භාගයේ පරස්පරය ලබා ගත හැකි බව යි. පහත දී ඇති වීජිය භාග සහ ඒවායේ පරස්පර නිරීක්ෂණය කරන්න.

වීජිය භාගය පරස්පරය
$$\frac{m}{4} \qquad \qquad \frac{4}{m}$$
$$\frac{a}{a+2} \qquad \qquad \frac{a+2}{a}$$
$$\frac{x-3}{x^2+5x+6} \qquad \qquad \frac{x^2+5x+6}{x-3}$$

දැන් අපි වීජිය භාගයක් තවත් වීජිය භාගයකින් බෙදන ආකාරය අධායනය කරමු.

නිදසුන 1

$$\frac{3}{x} \div \frac{4y}{x}$$
 සුළු කරන්න.

$$\frac{3}{x} \div \frac{4y}{x} = \frac{3}{x} \times \frac{x}{4y} \quad \left(\begin{array}{ccccc} \frac{4y}{x} & \cos \vec{x} & \cos \vec{z} & \cos \vec{z}$$

තවත් නිදසුන් කිහිපයක් විමසා බලමු.

නිදසුන 2

$$\frac{a}{b}\div \frac{ab}{4}$$
 සුළු කරන්න.
$$\frac{a}{b}\div \frac{ab}{4} = \frac{a}{b}\times \frac{4}{ab} \quad \text{(පරස්පරයෙන් ගුණ කිරීම)}$$

$$= \frac{{}^{1}}{b}\times \frac{4}{ab} \quad \text{(පොදු සාධකයක් වන a ගෙන් බේදීම)}$$

$$= \underbrace{\frac{4}{b^{2}}}$$

හරයේ හෝ ලවයේ හෝ වීජිය පුකාශන ඇති විට මුලින් ම එම පුකාශන, සාධකවලට වෙන් කර ගෙන, ඉන් පසු පොදු සාධක ඉවත් කර සුළු කළ හැකි ය.

මෙය නිදසුන් මගින් පැහැදිලි කර ගනිමු.

නිදසුන 3

$$\frac{3x}{x^2+2x}$$
 ÷ $\frac{5x}{x^2-4}$ සුළු කරන්න.

$$\frac{3x}{x^2+2x}$$
 \div $\frac{5x}{x^2-4}$ $=$ $\frac{3x}{x^2+2x}$ \times $\frac{x^2-4}{5x}$ (පරස්පරයෙන් ගුණ කිරීම) $=$ $\frac{3x}{x(x+2)}$ \times $\frac{(x-2)(x+2)}{5x}$ (පුකාශන සාධකවලට වෙන් කිරීම හා පොදු සාධකවලින් බෙදීම) $=$ $\frac{3(x-2)}{5x}$

නිදසුන 4

$$\frac{x^2 + 3x - 10}{x}$$
 \div $\frac{x^2 - 25}{x^2 - 5x}$ සුළු කරන්න.
$$\frac{x^2 + 3x - 10}{x} \div \frac{x^2 - 25}{x^2 - 5x} = \frac{x^2 + 3x - 10}{x} \times \frac{x^2 - 5x}{x^2 - 25}$$

$$= \frac{(x+5)(x-2)}{x} \times \frac{x(x-5)}{(x-5)(x+5)}$$

$$= \frac{x-2}{1}$$

7.2 අභාගාසය

පහත දැක්වෙන වීජීය භාග සුළු කරන්න.

a.
$$\frac{5}{x} \div \frac{10}{x}$$

b.
$$\frac{m}{3n} \div \frac{m}{2n^2}$$

$$\mathbf{c.} \ \frac{x+1}{y} \ \div \ \frac{2(x+1)}{x}$$

d.
$$\frac{2a-4}{2a} \div \frac{a-2}{3}$$

e.
$$\frac{x^2 + 4x}{3y} \div \frac{x^2 - 16}{12y^2}$$

f.
$$\frac{p^2 + pq}{p^2 - pr} \div \frac{p^2 - q^2}{p^2 - r^2}$$

g.
$$\frac{m^2-4}{m+1}$$
 \div $\frac{m+2}{m^2+2m+1}$ **h.** $\frac{x^2y^2+3xy}{4x^2-1}$ \div $\frac{xy+3}{2x+1}$

h.
$$\frac{x^2y^2 + 3xy}{4x^2 - 1} \div \frac{xy + 3}{2x + 1}$$

i.
$$\frac{a^2-5a}{a^2-4a-5} \div \frac{a^2-a-2}{a^2+2a+1}$$

i.
$$\frac{a^2 - 5a}{a^2 - 4a - 5} \div \frac{a^2 - a - 2}{a^2 + 2a + 1}$$
 j. $\frac{x^2 - 8x}{x^2 - 4x - 5} \times \frac{x^2 + 2x + 1}{x^3 - 8x^2} \div \frac{x^2 + 2x - 3}{x - 5}$

 \mathbf{R}

සමාන්තර රේඛා අතර තල රූපවල වර්ගඵලය

මෙම පාඩම අධායනයෙන් ඔබට,

එක ම සමාන්තර රේඛා අතර, එක ම ආධාරකයක් සහිතව පිහිටි තිුකෝණවලත් සමාන්තරාසුවලත් වර්ගඵල අතර පවතින සම්බන්ධතා පිළිබඳ පුමේයයන් හඳුනා ගැනීමටත්, ඒ හා සම්බන්ධ ගැටලු විසඳීමටත්

හැකියාව ලැබෙනු ඇත.

හැඳින්වීම

විවිධ තලරූප පිළිබඳවත්, සමහර විශේෂ ආකාරයේ තලරූපවල වර්ගඵල සොයන ආකාරය පිළිබඳවත් මේ වන විට ඔබ උගෙන ඇත. ඒවා අතුරින් තිුකෝණවල හා සමාන්තරාසුවල වර්ගඵලය ලබා ගත් ආකාරය මතක් කර ගනිමු.

තිකෝණ හා සමාන්තරාසුවල වර්ගඵල සෙවීමේ දී උච්චය හා ආධාරකය යන පද භාවිත වේ. එම පදවලින් හැඳින්වෙන්නේ මොනවා දැයි මුලින් ම මතක් කර ගනිමු. පහත දැක්වෙන ABC තිකෝණය හා PORS සමාන්තරාසුය සලකමු.

ABC තුිකෝණයේ වර්ගඵලය සෙවීමේ දී කැමති පාදයක් ආධාරකය ලෙස සැලකිය හැකි ය. නිදසුනක් ලෙස BC පාදය ආධාරකය ලෙස ගත හැකි ය. එවිට අනුරූප උච්චය ලෙස සැලකෙන්නේ AD රේඛාව යි. එනම්, A සිට BC ට ඇඳි ලම්බය යි.

ලෙවිට

ABC තිකෝණයේ වර්ගඵලය = $\frac{1}{2}$ imes BC imes AD බව අපි උගෙන ඇත්තෙමු. මෙපරිද්දෙන් ම,

AB පාදය ආධාරකය ලෙස සැලකුව හොත්, අනුරුප උච්චය වන්නේ CE රේඛාව යි.

ඒ අනුව, ABC තිකෝණයේ වර්ගඵලය = $\frac{1}{2} \times AB \times CE$ ද ලෙස ද ලිවිය හැකි ය.

මෙලෙස ම, AC පාදය ආධාරකය ලෙස සලකා, B සිට අනුරූප උච්චය ඇඳීමෙන් ද ABC තිුකෝණයේ වර්ගඵලය සෙවිය හැකි ය.

දැන් PQRS සමාන්තරාසුය සලකමු. මෙහි දී ද ඕනෑ ම පාදයක් ආධාරකය ලෙස ගෙන වර්ගඵලය සෙවිය හැකි ය. මෙහි QR පාදය ආධාරකය ලෙස සැලකුවහොත්, අනුරූප උච්චය වන්නේ PM රේඛාව යි. PMහි දිග වන්නේ QR හා ඊට සම්මුඛ පාදය වන PS සමාන්තර රේඛා අතර දුරයි.

එවිට,

PQRS සමාන්තරාසුයේ වර්ගඵලය = $QR \times PM$ බව අපි උගෙන ඇත්තෙමු. එසේ ම, PQ පාදය ආධාරක පාදය ලෙස සැලකුව හොත් අනුරූප උච්චය වන්නේ RN ය. එවිට PQRS සමාන්තරාසුයේ වර්ගඵලය = $PQ \times RN$ ලෙස ද ලිවිය හැකි ය.

සටහන: තුිකෝණයක හෝ සමාන්තරාසුයක උච්චයෙහි දිග ද බොහෝ විට උච්චය යන නමින් ම හැඳින්වේ.

මෙම කරුණු අදාළ කර ගනිමින් මීට පෙර තිකෝණවල හා සමාන්තරාසුවල වර්ගඵලය සෙවීම පිළිබඳ ව උගත් කරුණු මතකයට නඟා ගැනීම පිණිස පහත අභාාසයේ යෙදෙන්න.

පුනරීක්ෂණ අභාහාසය

1. පහත දක්වෙන එක් එක් රූපයේ දී ඇති දත්ත ඇසුරෙන් පසු පිටේ දක්වා ඇති වගුව සම්පූර්ණ කරන්න.

රූපය	ආධාරක	අනුරූප	වර්ගඵලය (පාදවල දිගෙහි
	පාදය	ලම්බ උස	ගුණිතයක් ලෙස)
 (i) ABD තිකෝණය (ii) STU තිකෝණය (iii) WXY තිකෝණය (iv) ABCD ඍජුකෝණාසය (v) EFGH සමාන්තරාසය (vi) JKLM සමාන්තරාසය 			

8.1 එක ම සමාන්තර රේඛා අතර, එක ම ආධාරකය සහිතව පිහිටි සමාන්තරාසු හා තිුකෝණ

එක ම සමාන්තර රේඛා අතර, එකම ආධාරකය සහිතව පිහිටි සමාන්තරාසු හා තුිකෝණ යන්නෙන් අදහස් වන්නේ කුමක් ද යන්න මුලින් ම විමසා බලමු. පහත දී ඇති රූපසටහන්වලට අවධානය යොමු කරන්න.

- (i) රූපයෙහි දැක්වෙන ABCD හා ABEF සමාත්තරාසු දෙක ම පිහිටා ඇත්තේ AB හා DE තම් රේඛා යුගලය අතර ය. මෙහි දී "අතර" යන්නෙන් අදහස් වන්නේ, එක් එක් සමාත්තරාසුයේ සම්මුඛ පාද දෙකක්, AB හා DE සමාත්තර රේඛා දෙක මත පිහිටන බව යි. තව ද, එම සමාත්තරාසු දෙකට ම AB පාදය පොදු වේ. මෙවැනි පිහිටීමක දී එම සමාත්තරාසු දෙක, එක ම සමාත්තර රේඛා අතර, එක ම ආධාරකය සහිත ව ඇතැයි කියනු ලැබේ. මෙහි දී AB පොදු පාදය, සමාත්තරාසු දෙකෙහි ම ආධාරකය ලෙස සලකා ඇත. එම පොදු ආධාරකයට අනුරූපව සමාත්තරාසු දෙකට ම එක ම ලම්බ දුර ඇති බව පැහැදිලි ය. එම ලම්බ දුර වත්නේ AB හා DE සමාත්තර රේඛා දෙක අතර දුර යි.
- (ii) රූපයේ දැක්වෙන්නේ, සමාන්තරාසුයක් හා තිුකෝණයක්, එක ම සමාන්තර රේඛා යුගලයක් අතර, එක ම ආධාරකයක් සහිත ව පිහිටා ඇති ආකාරය යි. සමාන්තරාසුය ABCD ද, තිුකෝණය ABE ද වේ. පොදු ආධාරකය AB ය. මෙහි දී තිුකෝණයේ එක් පාදයක් හා ඊට සම්මුඛ ශීර්ෂය සමාන්තර රේඛා එක එකක් මත පිහිටන බව නිරීක්ෂණය කරන්න.
- m (iii) රූපයේ, දැක්වෙන්නේ එක ම සමාන්තර රේඛා යුගලයක් අතර, එක ම ආධාරකයක් සහිත ව පිහිටි තිුකෝණ දෙකක් ය. එම තිුකෝණ දෙක ABC හා ABD ය.

8.1 අභානසය

- 1. දී ඇති රූපයේ දැක්වෙන තොරතුරු අනුව,
 - (i) සමාන්තරාසු හතරක් නම් කරන්න.
 - (ii) AB හා CD සමාන්තර රේඛා දෙක අතර පිහිටි ආධාරක පාදය QR වූ සමාන්තරාසු දෙක නම් කරන්න.

2. රූපයේ දැක්වෙන AQ හා CP සමාන්තර රේඛා දෙක අතර පිහිටි එකම OP ආධාරකය සහිත තිකෝණ සියල්ල ලියා දක්වන්න.

3. රූපයේ දී ඇති AB හා CD සමාන්තර රේඛා යුගලය අතර ලම්බ දුර h මගින් ද එක් එක් සමාන්තරාසුයේ ආධාරක පාදයේ දිග a හා b මගින් ද දැක්වේ. එම සංකේත ඇසුරෙන් PQRS, KLSR හා MNUT සමාන්තරාසුවල වර්ගඵල ලියා දක්වන්න.

4. රූපයේ දැක්වෙන AB හා CD^{-A} — සමාන්තර රේඛා යුගලය අතර, KLMN සෘජුකෝණාසුය හා PQMN සමාන්තරාසුය පිහිටා ඇත. NM = 10 cm හා LM = 8 cm වේ.

- (i) *KLMN* සෘජුකෝණාසුයේ වර්ගඵලය සොයන්න.
- (ii) *PQMN* සමාන්තරාසුයේ වර්ගඵලය සොයන්න.
- (iii) KLMN සෘජුකෝණාසුයේ වර්ගඵලය හා PQMN සමාන්තරාසුයේ වර්ගඵලය අතර ඇති සම්බන්ධතාව කුමක් ද?

8.2 එක ම සමාන්තර රේඛා යුගලය අතර, එක ම ආධාරකය සහිතව පිහිටි සමාන්තරාසුවල වර්ගඵල

මීළඟට අප සලකා බලන්නේ, එක ම සමාන්තර රේඛා අතර, එකම ආධාරකය සහිතව පවතින සමාන්තරාසුවල වර්ගඵල අතර සම්බන්ධය යි. පහත රූපයේ දැක්වෙන සමාන්තරාසු දෙක සලකන්න.

මෙහි දැක්වෙන ABCD හා ABEF සමාන්තරාසු දෙකෙහි වර්ගඵල සමාන වේ දැයි විමසා බලමු. ඒ සඳහා මුලින් ම,

ABCD සමාන්තරාසුයේ වර්ගඵලය = ABCF තුපීසියමේ වර්ගඵලය + AFD තිකෝණයේ වර්ගඵලය බවත්

ABEF සමාන්තරාසුයේ වර්ගඵලය = ABCF තුපීසියමේ වර්ගඵලය + BEC තිකෝණයේ වර්ගඵලය බවත්

නිරීක්ෂණය කරන්න.

එමනිසා.

AFD තිකෝණයේ වර්ගඵලය = BEC තිකෝණයේ වර්ගඵලය

වුව හොත් සමාන්තරාසු දෙකෙහි වර්ගඵල සමාන විය යුතු බව ඔබට පෙනෙනවා ඇත. ඇත්තවශයෙන් ම මෙම තිුකෝණ දෙක අංගසම වේ. එමනිසා ඒවායේ වර්ගඵල ද සමාන වේ. මෙම තිුකෝණ දෙක අංගසම බව පා.කෝ.පා අවස්ථාව සලකා මෙසේ පෙන්විය හැකි ය.

AFD හා BEC තිකෝණ දෙකේ,

AD=BC (සමාන්තරාසුයක සම්මුඛ පාද)

AF = BE (සමාන්තරාසුයක සම්මුඛ පාද)

තව ද, $D\hat{A}B=C\hat{B}P$ (අනුරූප කෝණ) හා $F\hat{A}B=E\hat{B}P$ (අනුරූප කෝණ) නිසා, මෙම සමීකරණ දෙක අඩු කිරීමෙන්, $D\hat{A}B-F\hat{A}B=C\hat{B}P-E\hat{B}P$

 $D\stackrel{\wedge}{A}F=C\stackrel{\wedge}{B}E$ ලෙස ලැබේ.

මේ අනුව. පා.කෝ.පා අවස්ථාව යටතේ, AFD හා BEC තිුකෝණ දෙක අංගසම වේ.

මේ අනුව, ඉහත සාකච්ඡා කළ පරිදි,

ABCD සමාන්තරාසුයේ වර්ගඵලය = ABEF සමාන්තරාසුයේ වර්ගඵලය ලෙස ලැබේ. මෙම පුතිඵලය, පුමේයයක් ලෙස මෙසේ ලියා දක්වමු.

පුමේයය: එකම ආධාරකය මත හා එක ම සමාන්තර රේඛා යුගලයක් අතර පිහිටි සමාන්තරාසු වර්ගඵලයෙන් සමාන වේ.

දැන් මෙම පුමේයය භාවිතයෙන් ඉතා වැදගත් පුතිඵලයක් ලබා ගනිමු. සමාන්තරාසුයක වර්ගඵලය සෙවීම සඳහා පහත දැක්වෙන සූතුය ඔබ මීට ඉහත ශේණීවල දී මෙන් ම ඉහත අභාගාසයේ දී ද භාවිත කළේ ය.

සමාන්තරාසුයක වර්ගඵලය = ආධාරකය imes ලම්බ උස

මෙම පුතිඵලය ලැබුණේ කෙසේ දැයි ඔබ මීට කලින් සිතා තිබුණා ද? දැන් අපට ඉහත පුමේයය භාවිතයෙන් මෙම සූතුය සාධනය කොට පෙන්විය හැකි ය.

පහත දැක්වෙන්නේ, එක ම සමාන්තර රේඛා දෙකක් අතර හා එක ම ආධාරකය සහිතව පිහිටි ABCD සෘජූකෝණාසුය (එනම් එය සමාන්තරාසුයකි) හා ABEF සමාන්තරාසුය යි.

ඉහත පුමේයය අනුව ඒවායේ වර්ගඵල සමාන වේ. නමුත්, ඍජුකෝණාසුයේ වර්ගඵලය = දිග \times පළල බව අපි දනිමු. ඒ අනුව,

ABEF සමාන්තරාසුයේ වර්ගඵලය = ABCD සෘජුකෝණාසුයේ වර්ගඵලය = $AB \times AD$ = $AB \times$ සමාන්තර රේඛා දෙක අතර ලම්බ දුර = සමාන්තරාසුයේ ආධාරකය \times ලම්බ දුර

මෙම පුමේයය භාවිතයෙන් ගණනය කිරීම් සිදු කරන අයුරු දැන් බලමු.

නිදසුන 1

රූපයේ දැක්වෙන ABEF සමාන්තරාසුයේ වර්ගඵලය $80\mathrm{cm}^2$ ද $AB=8~\mathrm{cm}$ ද වේ.

- (i) රූපයේ එක ම ආධාරකය මත එක ම සමාන්තර රේඛා යුගල අතර පිහිටන සමාන්තරාසු නම් කරන්න.
- (ii) ABCD සමාන්තරාසුයේ වර්ගඵලය කොපමණ ද?
- $(ext{iii})$ AB හා FC සමාන්තර රේඛා අතර ලම්බ උස සොයන්න.

දැන් මෙම කොටස්වලට පිළිතුරු සපයමු.

- (i) ABEF හා ABCD
- (ii) ABEF හා ABCD එක ම ආධාරකය වන AB මත හා එක ම සමාන්තර රේඛා යුගලය වන AB හා FC අතර පිහිටන බැවින්, ABEF සමාන්තරාසුයේ හා ABCD සමාන්තරාසුයේ වර්ගඵලය සමාන වේ.
- \therefore ABCD සමාන්තරාසුයේ වර්ගඵලය $80 \mathrm{cm}^2$ වේ.
- (iii) සමාන්තර රේඛා අතර ලම්බ උස සෙන්ටිමීටර h යැයි ගනිමු. එවිට ABEF වර්ගඵලය = $AB \times h$

$$80 = 8 \times h$$
$$h = 10$$

්. සමාන්තර රේඛා අතර ලම්බ උස 10 cm වේ.

දැන් මෙම පුමේයය භාවිතයෙන් අනුමේයයන් සාධනය කරන අයුරු නිදසුනක් ඇසුරෙන් විමසා බලමු.

නිදසුන 2

රූපයේ දැක්වෙන තොරතුරුවලට අනුව,

- (i) ABQD හා ABCP සමාන්තරාසු බව පෙන්වන්න.
- (ii) ABQD හා ABCP වර්ගඵලයෙන් සමාන සමාන්තරාසු වන බව පෙන්වන්න.
- (iii) $SPC\Delta \equiv DQR\Delta$ බව සාධනය කරන්න.
- (iv) AXQR සමාන්තරාසුයේ වර්ගඵලය = BXPS සමාන්තරාසුයේ වර්ගඵලය බව සාධනය කරන්න.
- (i) ABQD වතුරසුයේ, $AB/\!\!/DQ$ (දී ඇත) $AD/\!\!/BQ$ (දී ඇත)

සම්මුඛ පාද සමාන්තර වන චතුරසුය, සමාන්තරාසුයක් වන නිසා ABQD සමාන්තරාසුයකි. එලෙස ම AB//PC හා AP//BC වන නිසා ABCP ද සමාන්තරාසුයකි.

(ii) ABQD හා ABCP සමාන්තරාසු දෙක,

එක ම ආධාරකය වන AB මත හා, එක ම සමාන්තර රේඛා යුගලය වන AB හා DC අතර පිහිටා තිබෙන බැවින්, ඉහත පුමේයයට අනුව ඒවා වර්ගඵලයෙන් සමාන වේ. $\therefore ABQD$ සමාන්තරාසුයේ වර්ගඵලය = ABCP සමාන්තරාසුයේ වර්ගඵලය

(iii) රූපයේ, SPC හා RDQ තිකෝණවල

$$S\hat{P}C = R\hat{D}Q$$
 ($SP/\!/AD$, අනුරූප කෝණ) $S\hat{C}P = R\hat{Q}D$ ($SC/\!/RQ$, අනුරූප කෝණ) තව ද, $AB = PC$ ($ABCP$ සමාන්තරාසුයේ සම්මුඛ පාද) $AB = DQ$ ($ABQD$ සමාන්තරාසුයේ සම්මුඛ පාද) $\therefore PC = DQ$ $\therefore SPC\Delta \equiv DQR\Delta$ (කෝ.කෝ.පා.)

(iv) ABQD සමාන්තරාසුයේ වර්ගඵලය = ABCP සමාන්තරාසුයේ වර්ගඵලය (සාධිත යි) $RDQ\Delta$ වර්ගඵලය = $SPC\Delta$ වර්ගඵලය ($RDQ\Delta\equiv SPC\Delta$ නිසා)

එමනිසා , ABQD වර්ගඵලය $-RDQ\Delta$ වර්ගඵලය =ABCP වර්ගඵලය $-SPC\Delta$ වර්ගඵලය එනම් රූපය අනුව ABQR තුපීසියමේ වර්ගඵලය =ABSP තුපීසියමේ වර්ගඵලය දෙපසින්ම ABX තිුකෝණයේ වර්ගඵලය අඩු කළ විට

$$ABQR$$
 තුපීසියමේ $ABX\Delta$ $=ABSP$ තුපීසියමේ $ABX\Delta$ වර්ගඵලය වර්ගඵලය වර්ගඵලය

 \therefore AXQR සමාන්තරාසුයේ වර්ගඵලය = BXPS සමාන්තරාසුයේ වර්ගඵලය

8.2 අභාහාසය

 ${f 1.}$ රූපයේ දැක්වෙන්නේ ${\cal P}U$ හා ${\cal S}{\cal R}$ සමාන්තර රේඛා දෙක අතර පිහිටි සමාන්තරාසු දෙකකි. ${\cal P}{\cal Q}{\cal R}{\cal S}$ සමාන්තරාසුයේ වර්ගඵලය ${f 40~cm^2}$ වේ. ${\it TURS}$ සමාන්තරාසුයේ වර්ගඵලය හේතු සහිතව ලියා දක්වන්න.

2. දී ඇති රූපයේ ABCD සෘජුකෝණාසුයක් හා CDEF සමාන්තරාසුයක් දැක්වේ. $AD=7~{\rm cm}$ හා $CD=9~{\rm cm}$ නම්, CDEF සමාන්තරාසුයේ වර්ගඵලය හේතු සහිතව ලියා දක්වන්න.

 $egin{aligned} 3. &$ රූපයේ දැක්වෙන්නේ AQ හා DR සමාන්තර රේඛා අතර පිහිටි ABCD හා PQRS සමාන්තරාසු දෙකකි. DS = CR බව දී ඇත.

- (i) DC = SR බව පෙන්වන්න.
- (ii) ABXSD පංචාසුයේ වර්ගඵලය,PQRCX පංචාසුයේ වර්ගඵලයට සමාන වන බව සාධනය කරන්න.
- (iii) APSD තුපීසියමේ වර්ගඵලය, BQRC තුපීසියමේ වර්ගඵලයට සමාන බව සාධනය කරන්න.
- 4. රූපයේ දැක්වෙන තොරතුරු අනුව,
 - (i) PQRS සමාන්තරාසුයට වර්ගඵලයෙන් සමාන සමාන්තරාසු දෙකක් නම් කරන්න.

- (ii) ADCR සමාන්තරාසුයට වර්ගඵලයෙන් සමාන සමාන්තරාසු දෙකක් නම් කරන්න.
- (iii) PECS සමාන්තරාසුයේ වර්ගඵලයට, QADE සමාන්තරාසුයේ වර්ගඵලය සමාන බව සාධනය කරන්න.
- 5. රූපයේ දැක්වෙන තොරතුරු අනුව ADP තිකෝණයේ වර්ගඵලය BRC තිකෝණයේ වර්ගඵලය කරන්න.

- 6. $AB=6~{
 m cm}, D\^AB=60^{\circ}$ හා $AD=5~{
 m cm}$ වූ ABCD සමාන්තරාසුය නිර්මාණය කරන්න. AB රේඛාවෙන්, සමාන්තරාසුය පිහිටි පැත්තේ ම පිහිටන පරිදි හා එහි වර්ගඵලයට සමාන වන සේABEF රොම්බසය නිර්මාණය කරන්න. ඔබේ නිර්මාණයට ඔබ යොදා ගත් ජාාමිතික පුමේයය සඳහන් කරන්න.
 - 8.3 එක ම සමාන්තර රේඛා අතර, එක ම ආධාරකය සහිතව පිහිටි සමාන්තරාසු හා තිුකෝණවල වර්ගඵල

තිකෝණයක වර්ගඵලය සෙවීම සඳහා පහත දැක්වෙන සූතුය ඔබ මීට ඉහත ශේණිවල සිට ම භාවිත කරමින් ඇත. තිකෝණයක වර්ගඵලය = $\frac{1}{2}$ × ආධාරකය × ලම්බ උස

දැන් අප සූදානම් වන්නේ මෙම සූතුය වලංගු වන්නේ ඇයි ද යන්න පැහැදිලි කිරීමට යි. පහත දැක්වෙන ABC තිුකෝණය සලකමු.

මීළඟ රූපයේ දැක්වෙන අයුරින්, C හරහා, ABට සමාන්තර රේඛාවක් ඇඳ, ABDC සමාන්තරාසුයක් වන පරිදි එම සමාන්තර රේඛාව මත D ලක්ෂායක් ලකුණු කරමු. වෙනත් අයුරකින් පැවසුවහොත්, AB ට සමාන්තරව C හරහා ඇඳි රේඛාවෙන්, AC ට සමාන්තරව B හරහා ඇඳි රේඛාව ඡේදනය වන ලක්ෂාය D ලෙස නම් කරමු.

දැන්, ABC තිකෝණයේ වර්ගඵලය, ABDC සමාන්තරාසුයේ වර්ගඵලයෙන් හරි අඩකි. එයට හේතුව, සමාන්තරාසුයක විකර්ණයකින් එම සමාන්තරාසුය අංගසම තිකෝණ දෙකකට වෙන් වන නිසා ය. ඒ බව අපි 10 වසරේ සමාන්තරාසු පාඩම යටතේ උගත්තෙමු. එමනිසා,

$$ABC$$
 තිකෝණයේ වර්ගඵලය $= rac{1}{2} \ ABDC$ සමාන්තරාසුයේ වර්ගඵලය $= rac{1}{2} imes AB imes (AB$ හා CD රේඛා අතර ලම්බ දුර) $= rac{1}{2} imes AB$ ආධාරකය $imes$ ලම්බ දුර

එනම්, තුිකෝණයේ වර්ගඵලය සඳහා අපට හුරුපුරුදු සූතුය ලැබී ඇත.

මෙහි දී අප නිරීක්ෂණය කළ

ABC තිකෝණයේ වර්ගඵලය = $\frac{1}{2} \times ABDC$ සමාන්තරාසුයේ වර්ගඵලය යන පුතිඵලය නැවත සලකන්න. මෙම පාඩමේ 8.2 කොටසේදී අප ඉගෙන ගත්තේ එක ම සමාන්තර රේඛා දෙකක් අතර එක ම ආධාරකයක් සහිත ව පිහිටි සමාන්තරාසුවල

වර්ගඵල සමාන බව යි. එමනිසා, ඉහත රූපයට අදාළව, AB හා CD සමාන්තර රේඛා අතර, AB ආධාරකය සහිතව ඇති වෙනත් ඕනෑ ම සමාන්තරාසුයක වර්ගඵලය ද ABDC සමාන්තරාසුයේ වර්ගඵලයට සමාන වේ. එනම්,

ABC තුිකෝණයේ වර්ගඵලය = $\frac{1}{2}$ imes (AB හා CD සමාන්තර රේඛා අතර, AB ආධාරකය සහිතව පිහිටි ඕනෑ ම සමාන්තරාසුයක වර්ගඵලය)

මෙම පුතිඵලය, පුමේයයක් ලෙස පහත දැක්වේ.

පුමේයය: තිකෝණයක් හා සමාන්තරාසුයක්, එක ම ආධාරකය මත හා එක ම සමාන්තර රේඛා යුගලයක් අතර පිහිටා ඇති නම්, එම තිකෝණයේ වර්ගඵලය, එම සමාන්තරාසුයේ වර්ගඵලයෙන් හරි අඩක් වේ.

මෙම පුමේයය භාවිතයෙන් ගණනය කිරීම් සිදු කරන අයුරු දැන් විමසා බලමු.

නිදසුන 1

රූපයේ දැක්වෙන්නේ, එක ම සමාන්තර රේඛා යුගලයක් අතර හා එක ම ආධාරකයක් මත පිහිටි PQRS සමාන්තරාසුයක් හා STR තිුකෝණයකි. PQRS සමාන්තරාසුයේ වර්ගඵලය $60~{\rm cm}^2$ වේ.

- (i) හේතු දක්වමින් STR තිකෝණයේ වර්ගඵලය සොයන්න.
- (ii) ST=6 cm නම්, R සිට ST ට ඇඳි ලම්බයේ දිග සොයන්න.
- (i) PQRS සමාන්තරාසුය හා STR තිකෝණය එක ම සමාන්තර රේඛා යුගලක් අතර පිහිටන අතර, එක ම ආධාරකය මත පිහිටයි. එමනිසා STR තිකෝණයේ වර්ගඵලය, PQRS සමාන්තරාසුයේ වර්ගඵලයෙන් හරි අඩකි.
 - \therefore STR Δ වර්ගඵලය = $30~{
 m cm}^2$

(ii)
$$STR$$
 තිකෝණයේ වර්ගඵලය = $\frac{1}{2} \times ST \times RX$

$$\therefore 30 = \frac{1}{2} \times 6 \times RX$$

$$\therefore RX = \underline{10 \text{ cm}}$$

නිදසුන 2

E යනු ABCD සමාන්තරාසුයේ DC පාදය මත පිහිටි ලක්ෂායකි. AE ට සමාන්තර ව B සිට අඳින ලද රේඛාවට, දික් කළ DC පාදය F හි දී හමු වේ. දික් කළ AE හා දික් කළ BC රේඛා G හිදී හමු වේ.

- (i) ABFE සමාන්තරාසුයක් බව
- $(ext{ii})$ ABCD හා ABFE සමාන්තරාසු වර්ගඵලයෙන් සමාන බව
- (iii) ACD තිකෝණයේ වර්ගඵලය = BFG තිකෝණයේ වර්ගඵලය බව සාධනය කරන්න.
- (i) ABFE චතුරසුයේ,

AE//BF (දී ඇත)

AB//EF (දී ඇත)

- ∴ ABFE සමාන්තරාසුයකි. (සම්මුඛ පාද සමාන්තර නිසා)
- (ii) ABCD හා ABFE සමාන්තරාසු දෙක, AB හා DF එක ම සමාන්තර රේඛා යුගලය අතර හා AB එක ම ආධාරකය ඇතිව පිහිටා තිබේ.
- \therefore පුමේයය අනුව ABCD සමාන්තරාසුයේ වර්ගඵලය = ABFE සමාන්තරාසුයේ වර්ගඵලය
- (iii) ABCD සමාන්තරාසුය හා ACD තිකෝණය, DC හා AB සමාන්තර රේඛා යුගලය අතර හා DC එක ම ආධාරකය මත පිහිටා තිබේ.
- \therefore පුමේයය අනුව, $rac{1}{2}$ ABCD සමාන්තරාසුයේ වර්ගඵලය = ACD තිුකෝණයේ වර්ගඵලය

එසේම, ABFE සමාන්තරාසුය හා BFG තිුකෝණය BF හා AG සමාන්තර රේඛා යුගල අතර හා එක ම ආධාරකය BF මත පිහිටා තිබේ.

එවිට, $\frac{1}{2}$ ABFE සමාන්තරාසුයේ වර්ගඵලය = BFG තිකෝණයේ වර්ගඵලය නමුත්, ABCD සමාන්තරාසුයේ වර්ගඵලය = ABFE සමාන්තරාසුයේ වර්ගඵලය නිසා එවිට, $\frac{1}{2}$ ABCD සමාන්තරාසුයේ වර්ගඵලය = $\frac{1}{2}$ ABFE සමාන්තරාසුයේ වර්ගඵලය

 \therefore ACD තිකෝණයේ වර්ගඵලය = $ar{BFG}$ තිකෝණයේ වර්ගඵලය

8.3 අභාගසය

 $oldsymbol{1.}$ රූපයේ දැක්වෙන ABCD සමාන්තරාසුයේ වර්ගඵලය $oldsymbol{50~cm^2}$ වේ.

(i) *PDC* තිකෝණයේ වර්ගඵලය කීය ද?

(ii) DCQ තිකෝණයේ වර්ගඵලය කීය ද?

ABCD සමාන්තරාසුයේ, DC පාදය මත P ලක්ෂාය පිහිටා ඇත. AP ට සමාන්තරව B හරහා ඇඳි රේඛාව දික් කළ DC පාදයට Q හිදී හමු වේ. දික් කළ AP හා දික් කළ BC වේඛා R හි දී හමු වේ. ADR තිකෝණයේ වර්ගඵලය BQR තිකෝණයේ වර්ගඵලයට සමාන බව සාධනය කරන්න.

රූපයේ දැක්වෙන ABCD සමාන්තරාසුයේ, AD පාදය Sහි දී ද, BC පාදය Qහි දී ද හමු වන සේ, AB ට සමාන්තරව SQ ඇඳ තිබේ. PQRS චතුරසුයේ වර්ගඵලය ABCD සමාන්තරාසුයේ වර්ගඵලයෙන් අඩක් බව සාධනය කරන්න.

P යනු රූපයේ දැක්වෙන ABCD සමාන්තරාසුයේ AB පාදය මත පිහිටි ඕනෑ ම ලක්ෂායකි. $APD\Delta$ ව.එ. + $BPC\Delta$ ව.එ. = $DPC\Delta$ ව.එ බව සාධනය කරන්න.

රූපයේ දැක්වෙන ABCD සමාන්තරාසුයේ AD පාදය මත P ලක්ෂාය ද, දික් කළ AB පාදය මත Q ලක්ෂාය ද පිහිටා ඇත. $CPB\Delta$ ව.එ. = $CQD\Delta$ ව.එ. බව සාධනය කරන්න.

6.

ABCD තුපීසියමේ AB //DC හා DC > AB වේ. AB = CE වන පරිදි CD පාදය මත E ලක්ෂාය පිහිටා තිබේ. AFE තිකෝණයේ වර්ගඵලය, ADF තිකෝණයේ වර්ගඵලයට සමාන වන පරිදි DE පාදය මත F ලක්ෂාය පිහිටා ඇත. ABFD තුපීසියමේ වර්ගඵලය, ABCD තුපීසියමේ වර්ගඵලයෙන් අඩක් බව සාධනය කරන්න.

7.

ABCD සමාන්තරාසුයේ BC පාදයේ මධා ලක්ෂාය O වේ. X යනු AB පාදය මත පිහිටි ඕනෑ ම ලක්ෂායකි. දික් කළ XO හා දික් කළ DC රේඛා Y හිදි හමු වේ.

- (i) BOX තිකෝණයේ වර්ගඵලය = COY තිකෝණයේ වර්ගඵලය බව
- (ii) AXYD නුපීසියමේ වර්ගඵලය = ABCD සමාන්තරාසුයේ වර්ගඵලය බව
- (iii) AXYD තුපීසියමේ වර්ගඵලය, ADO තිකෝණයේ වර්ගඵලය මෙන් දෙගුණයක් බව සාධනය කරන්න.

8.4 එක ම සමාන්තර රේඛා අතර, එක ම ආධාරකය සහිතව පිහිටි තිකෝණවල වර්ගඵල

රූපයේ දැක්වෙන පරිදි AB හා CD සමාන්තර රේඛා දෙක අතර QR එක ම ආධාරකය සහිතව පිහිටි ඕනෑ ම PQR හා TQR තිකෝණ දෙක සලකන්න.

ඉහත 8.3 කොටසේ සාකච්ඡා කළ පරිදි

PQR තිකෝණයේ වර්ගඵලය = $\frac{1}{2}$ PQRS සමාන්තරාසුයේ වර්ගඵලය

TQR තිකෝණයේ වර්ගඵලය $= \frac{1}{2} TQRU$ සමාන්තරාසුයේ වර්ගඵලය එහෙත්, එක ම සමාන්තර රේඛා යුගලක් අතර, QR එක ම ආධාරකය ඇතිව පිහිටි සමාන්තරාසු නිසා, පුමේයයට අනුව,

PQRS සමාන්තරාසුයේ වර්ගඵලය = TQRU සමාන්තරාසුයේ වර්ගඵලය

 $\therefore \frac{1}{2} \ PQRS$ සමාන්තරාසුයේ වර්ගඵලය = $\frac{1}{2} \ TQRU$ සමාන්තරාසුයේ වර්ගඵලය

එනම්, PQR තිකෝණයේ වර්ගඵලය = TQR තිකෝණයේ වර්ගඵලය

මේ අනුව QR එක ම ආධාරකය ඇතිව, AB හා CD එක ම සමාන්තර රේඛා යුගලය අතරේ පිහිටි PQR හා TQR තිුකෝණ වර්ගඵලයෙන් සමාන වේ. මෙම පුතිඵලය පුමේයයක් ලෙස මෙසේ දැක්විය හැකි ය.

පුමේයය: එක ම ආධාරකයක් මත, හා එක ම සමාන්තර රේඛා යුගලයක් අතර පිහිටි තිකෝණ වර්ගඵලයෙන් සමාන වේ.

මෙම හඳුනාගත් පුමේයය භාවිත කරමින් ගැටලු විසඳන අයුරු පහත නිදසුන් ඇසුරෙන් වීමසා බලම.

නිදසුන 1

රූපයේ $AB/\!/CD$ වේ.

- (i) ACD තුිකෝණයට වර්ගඵලයෙන් සමාන තුිකෝණයක් නම් කරන්න. ඔබේ පිළිතුරට හේතු වූ ජාහමිතික පුමේයය ලියා දක්වන්න.
- (ii) ABC තිකෝණයේ වර්ගඵලය $30~{
 m cm}^2$ නම්, ABD තිකෝණයේ වර්ගඵලය සොයන්න.
- (iii) AOC තිකෝණයේ වර්ගඵලය, BOD තිකෝණයේ වර්ගඵලයට සමාන බව සාධනය කරන්න.
- (i) BCD තුිකෝණය එක ම ආධාරකය මත, එක ම සමාන්තර රේඛා යුගල අතර පිහිටි තුිකෝණ වර්ගඵලයෙන් සමාන වේ.
- (ii) ABD තිකෝණයේ වර්ගඵලය $=30~
 m cm^2$
- (iii) $ACD\Delta$ වර්ගඵලය = $BCD\Delta$ වර්ගඵලය (CD එක ම ආධාරකය හා $AB/\!/CD$) රූපය අනුව මෙම තුිකෝණ දෙකට ම COD තුිකෝණය පොදු වේ. එම කොටස ඉවත් කළ විට,

$$ACD\Delta - COD\Delta = BCD\Delta - COD\Delta$$

 $\therefore AOC\Delta = BOD\Delta$

නිදසුන 2

ABCDචතුරසුයේ,BCපාදයමතPලක්ෂායපිහිටාඇත. APට සමාන්තරව B හරහා ඇඳි රේඛාවත්, DP ට සමාන්තරව C හරහා ඇඳි රේඛාවත් Xහි දී හමුවේ. $ADX\Delta$ වර්ගඵලය, ABCD චතුරසුයේ වර්ගඵලයට සමාන වන බව සාධනය කරන්න.

සාධනය : AP හා BX සමාන්තර රේඛා යුගලය අතර,AP ආධාරකය ඇතිව,APB හා APXතිකෝණ පිහිටා ඇති නිසා, පුමේයයට අනුව,

එසේම, *DP//CX* නිසා,

$$DPC\Delta = DPX\Delta$$
 _____(2)

$$\bigcirc$$
 + \bigcirc , $ABP\Delta + DPC\Delta = APX\Delta + DPX\Delta$

දෙපසටම $ADP\Delta$ වර්ගඵලය එකතු කරමු.

එවිට,
$$ABP\Delta + DPC\Delta + ADP\Delta = APX\Delta + DPX\Delta + ADP\Delta$$

ABCD චතුරසුයයේ වර්ගඵලය = ADX තිකෝණයේ වර්ගඵලය

8.4 අභනාසය

- $m{1.}$ රූපයේ දැක්වෙන $m{AB}$ හා $m{CD}$ සමාන්තර රේඛා දෙක අතර පිහිටි, $m{ABP}$ තිුකෝණයේ වර්ගඵලය $m{25}\ m{cm}^2$ වේ.
 - (i) ABC තිකෝණයේ වර්ගඵලය කීය ද?
 - (ii) ABX තිකෝණයේ වර්ගඵලය $10~{
 m cm}^2$ නම් ACX තිකෝණයේ වර්ගඵලය කීය ද?
 - (iii) ACX හා BPX තිකෝණවල වර්ගඵල අතර සම්බන්ධය කුමක් දැයි හේතු සහිතව පැහැදිලි කරන්න.

- $egin{aligned} 2. & ABC$ තුිකෝණයේ AB පාදය Dහි දී ද AC පාදය Eහි දී ද හමු වන සේ, BC පාදයට සමාන්තරව DE ඇඳ ඇත.
 - (i) *BED* තිකෝණයට වර්ගඵලයෙන් සමාන තිකෝණයක් නම් කරන්න.
 - (ii) ABE හා ADC තුිකෝණ වර්ගඵලයෙන් සමාන බව සාධනය කරන්න.

- 3. ABCDචතුරසුයේ,ACවිකර්ණයට සමාන්තරවB හරහා ඇඳි රේඛාව, දික් කළ DC රේඛාවට Eහි දී හමුවේ.
- (i) *ABC* තිකෝණයට වර්ගඵලයෙන් සමාන තිකෝණයක් නම් කරන්න. පිළිතුරට හේතු දක්වන්න.
- (ii) *ABCD* චතුරසුයේ වර්ගඵලය, *ADE* තිුකෝණයේ වර්ගඵලයට සමාන බව සාධනය කරන්න.
- **4.** ABCD සමාන්තරාසුයේ, A සිට අඳින ලද ඕනෑ ම රේඛාවක් DC පාදය Yහි දී ද දික්කල BC පාදය Xහි දී ද කපයි.

- (i) *DYX* හා *AYC* තුිකෝණ වර්ගඵලයෙන් සමාන බව
- (ii) *BCY* හා *DYX* තිකෝණ වර්ගඵලයෙන් සමාන බව සාධනය කරන්න.
- 5. ABCD සමාන්තරාසුයේ, BC පාදය මත Y ලක්ෂාය පිහිටා ඇත. දික් කළ AB රේඛාවත්, දික් කළ DY රේඛාවත්, Xහි දී හමු වේ. AXY තිකෝණයේ වර්ගඵලය BCX තිකෝණයේ වර්ගඵලයට සමාන බව සාධනය කරන්න.
- 6. BC යනු $8~{\rm cm}$ දිග අවල සරල රේඛා ඛණ්ඩයකි. ABC තිකෝණයේ වර්ගඵලය $40~{\rm cm}^2$ වන සේ වූ A ලක්ෂායේ පථය දළ සටහනක් මගින් විස්තර කරන්න.
- 7. $AB=8~{
 m cm}, AC=7~{
 m cm}$ හා $BC=4~{
 m cm}$ වූ ABC තිකෝණය නිර්මාණය කරන්න. AB වලින් C පිහිටි පැත්තේ ම P පිහිටන පරිදිත්, වර්ගඵලයෙන් ABC තිකෝණයට සමාන වන පරිදිත්, PA=PB වන සේත් වූ PAB තිකෝණය නිර්මාණය කරන්න.

මිශු අභාහාසය

 $egin{aligned} 1. & ABCD$ සමචතුරසුයේ පැත්තක දිග $12\ \mathrm{cm}$ වේ. $BP=5\ \mathrm{cm}$ වන සේ, BC පාදය මතP ලක්ෂාය පිහිටා තිබේ. D සිට APට ඇඳි ලම්බයේ අඩිය X නම් DXහි දිග සොයන්න.

2. X යනු ABCD සමාන්තරාසුයේ, BC පාදය මත පිහිටි ලක්ෂහයකි. දික් කල DX පාදයට දික් කළ AB පාදය Pහි දී ද දික් කළ AX පාදයට දික් කළ DC පාදය Qහි දී ද හමු වේ. PXQ තිකෝණයේ වර්ගඵලය, ABCD සමාන්තරාසුයේ වර්ගඵලයෙන් අඩක් බව සාධනය කරන්න.

- 3. PQRS සමාන්තරාසුයේ විකර්ණ Oහි දී එකිනෙක ඡේදනය වේ. SR පාදය මත A ලක්ෂාය පිහිටා ඇත. POQ තිකෝණයේ හා PAQ තිකෝණයේ වර්ගඵල අතර අනුපාතය සොයන්න. (ඉඟිය: සුදුසු නිර්මාණයක් යොදා ගන්න.)
- **4.** ABCD හා ABEF යනු AB පාදයෙහි දෙපැත්තේ අඳින ලද, වර්ගඵලයෙන් අසමාන සමාන්තරාසු දෙකකි.
 - (i) *DCEF* සමාන්තරාසුයක් බව
 - (ii) DCEF සමාන්තරාසුයේ වර්ගඵලය, ABCD හා ABEF සමාන්තරාසුවල වර්ගඵලයන්ගේ එකතුවට සමාන බව සාධනය කරන්න.
- **5.** ABCD සමාන්තරාසුයේ, AB පාදය E හිදී ද AD පාදය F හිදී ද ඡේදනය වන සේ, BD \odot සමාන්තරව EF ඇඳ ඇත. (ඉඟිය: සුදුසු නිර්මාණයක් යොදා ගන්න.)
 - (i) BEC ට හා DFC තිුකෝණ වර්ගඵලයෙන් සමාන බව
 - (ii) AEC ට හා AFC තිකෝණ වර්ගඵලයෙන් සමාන බව සාධනය කරන්න.

පුනරීක්ෂණ අභාගස - 1 වන වාරය

I කොටස

- **1.** අගය සොයන්න. $2\sqrt{3} \sqrt{3}$
- **2.** $10^{0.5247}$ = 3.348 නම් lg 0.3348 හි අගය සොයන්න.

 $A \longrightarrow B$

- 3. රූපයේ දැක්වෙන තොරතුරු අනුව, AFE තිකෝණයේ වර්ගඵලය ABCE රූපයේ වර්ගඵලයෙන් කවර භාගයක් ද?
- **4.** $A^3 = x^3 y^3 3x^2y + 3xy^2$ නම්, A, x හා y ඇසුරෙන් දක්වන්න.
- 5. එක සමාන පුමාණයේ සමචතුරසු පිරමීඩ දෙකක, සමචතුරසු මුහුණත් එකට අළවා නව ඝන වස්තුවක් තනා ඇත. එහි පෘෂ්ඨ වර්ගඵලය 384 cm² නම්, සමචතුරසු පිරමීඩයේ තුිකෝණ මුහුණතක වර්ගඵලය සොයන්න.
- 6. සුළු කරන්න. $\frac{2}{x-1} \frac{1}{1-x}$
- 7. අගය සොයන්න. $\log_3 27 \log_4 16$
- 8. 1cm^3 ක ස්කන්ධය 4g වූ විශේෂ දුවායකින් තැනූ ගෝලයක ස්කන්ධය 120g ක් විය. එම ගෝලයේ පරිමාව සොයන්න.
- 9. රූපයේ ද ැක්වෙන B හා C ලක්ෂා දෙක එකිනෙකට $10~{\rm cm}$ දුරින් පිහිටි අවල ලක්ෂා දෙකකි. ABC තිකෝණයේ වර්ගඵලය $20~{\rm cm}^2$ වන පරිදි වූ A හි පථය දළ සටහනකින් දක්වන්න.

- 10. $\lg 5 = 0.6990$ නම් $\lg 20$ හි අගය සොයන්න.
- 11. විෂ්කම්භයට සමාන වූ උසකින් යුත් සිලින්ඩරයක වකු පෘෂ්ඨයේ වර්ගඵලය එම විෂ්කම්භයම ඇති ගෝලයක පෘෂ්ඨ වර්ගඵලයට සමාන වන බව පෙන්වන්න.
- 12. $\sqrt{5} = 2.23$ ලෙස ගෙන $\sqrt{20}$ හි අගය සොයන්න.

13. රූපයේ දැක්වෙන ABCD චතුරසුයේ වර්ගඵලය, ADE තිකෝණයේ වර්ගඵලයට සමාන වන බව පෙන්වන්න.

- **14.** $\sqrt{75} \times 2\sqrt{3}$ හි අගය සොයන්න.
- 15. සුළු කරන්න. $\frac{3x}{x^2-1} \times \frac{x(x-1)}{3}$

II කොටස

- **1.** (i) $x + \frac{1}{x} = 3$ නම් $x^3 + \frac{1}{x^3}$ හි අගය සොයන්න.
 - (ii) සුළු කරන්න. $\frac{m^2-4n^2}{mn\;(m+2n)}\div \frac{m^2-4mn+4n^2}{m^2n^2}$
- **2.** (i) $2 \lg x = \lg 3 + \lg (2x 3)$ වන්නේ x හි කවර අගයක් සඳහා ද?
 - (ii) $2 \lg x + \lg 32 \lg 8 = 2$; x හි අගය සොයන්න.
 - (iii) ලඝුගණක වගු භාවිතයෙන් තොරව අගය සොයන්න.

$$\log_2 \frac{3}{4} - 2 \log_2 \left(\frac{3}{16}\right) + \log_2 12 - 2$$

(iv) ලසුගණක වගු භාවිතයෙන් සුළු කර පිළිතුර ආසන්න දෙවන දශමස්ථානයට දක්වන්න.

$$\frac{\sqrt{0.835}\times0.75^2}{4.561}$$

3. (a) රූපයේ දැක්වෙන ABCD සමාන්තරාසුයේ CD පාදය X තෙක් දික් කර ඇත. AX ට සමාන්තර වන සේ C හරහා ඇඳි රේඛාවට දික්කළ AD පාදය Y හිදී හමුවේ.

- (i) AXY තිකෝණයේ වර්ගඵලයට සමාන තිකෝණයක් නම් කරන්න. ඔබේ පිළිතුරට හේතු දක්වන්න.
- (ii) XDY තිකෝණයේ වර්ගඵලය ABCD සමාන්තරාසුයේ වර්ගඵලයෙන් අඩක් බව සාධනය කරන්න.

- (b) කවකටුව, සරල දාරයක් හා cm / mm පරිමාණයක් පමණක් භාවිත කරමින්,
 - (i) AB = 5.5 cm, $A\hat{B}C = 60^\circ$ හා BC = 4.2 cm වූ ABC තිකෝණය නිර්මාණය කරන්න.
 - (ii) ABC තිකෝණයේ වර්ගඵලය මෙන් දෙගුණයක් වර්ගඵලය ඇති ABPQ රොම්බසය නිර්මාණය කරන්න.
- 4. ABCD සමාන්තරාසුයේ O යනු BC පාදය මත පිහිටි ඕනෑම ලක්ෂායකි. DO ට සමාන්තරව A හරහා ඇඳි රේඛාව, දික් කළ CB රේඛාවට P හිදී හමුවේ. දික් කළ AO රේඛාව, දික් කළ DC රේඛාවට Q හිදී හමුවේ.
 - (i) දී ඇති තොරතුරු ඇතුළත් කරමින් දළ සටහනක් අඳින්න.
 - (ii) ABCD සමාන්තරාසුයේ වර්ගඵලය හා ADO තුිකෝණයේ වර්ගඵලය අතර ඇති සම්බන්ධතාව ලියන්න.
 - (iii) ABP තිකෝණයේ වර්ගඵලය, BOQ තිකෝණයේ වර්ගඵලයට සමාන බව සාධනය කරන්න.
- 5. සෘජු කේතුවක පතුලේ අරය $7~{\rm cm}$ ද, ලම්බ උස $12~{\rm cm}$ ද වේ.
 - (i) කේතුවේ පරිමාව සොයන්න.
 - (ii) කේතුවේ අරය නොවෙනස්ව තබා ලම්බ උස දෙගුණ කළහොත් එම කේතුවේ පරිමාව, මුල් කේතුවේ පරිමාව මෙන් කී ගුණයක් ද?
 - (iii) මුල් කේතුවේ ලම්බ උස නොවෙනස් ව තබා, පතුලේ අරය දෙගුණ කළහොත් එම කේතුවේ පරිමාව මුල් කේතුවේ පරිමාව මෙන් කී ගුණයක් ද?

ලසුගණක

மடக்கைகள்

LOGARITHMS

													9	මධපෑ වූක ු	ිස් එය සුවේග		लं		
						_		_						Mean	Differ	ence	5		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	3
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	3
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	3
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	2
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	2
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	20	22	2
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	2
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	2
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	2
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	2
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	,
21	3222	32 43	3263	3284	3304	3324	3345	3365	3385	3404	. 2	4	6	8	10	12	14	16	ı
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	1
23	3617	3636	3655	3674	3692	3711	3729	3 7 47	3766	3784	2	4	6	7	9	11	13	15	1
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	ż
5	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	1
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	1
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	1.1	13	1
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	1
9	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	1
10	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	1
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	i	3	4	6	7	8	10	11	Ĭ
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	ŧ
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	ł.	3	4	5	6	8	9	10	1
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	1
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	1
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	1
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	1
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	1
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	I
10	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	1
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
14	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	(
15	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	1
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	б	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	1
50	6990	6998	7007	7016	7024	7033	7042		7059		i	2	3	3	4	5	6	7	1
51	7076	7084	7093	7101	7110	7118	7126		7143		1	2	3	3	4	5	6	7	1
52	7160	7168	7177	7185	7193	7202	7210		7226		1 1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292		7308		1	2	2	3	4	5	6	6	
54	7324	7332	73,40	7348	7356	7364	7372	/380	7388	סעני	1	2	2	3	4	3	6	6	•
																			_
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	

ලසුගණක

மடக்கைகள் LOGARITHMS

							මධ්පන ප අන්ත රය இடை வித்தியாசங்கள்												
	0	1	2	3	4	5	6	7	8	9	1	2	3	Mear 4	Differ 5	ence 6	s 7	8	9
55	7404	7412	7419	7427	7426	7443	7451	7450	2466	2424	 	_			T .				
56	7482	7490	7419	7505	7435 7513	7520	7451 7528	7459	7466	7474	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589			7536	7543	7551	1	2	2	3	4	5	5	6	7
57 58	7634					7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
	1	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	.5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	ŧ	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	- I	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	- 3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	i	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	ļ	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	;	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6 6
																			Ť
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	- 5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	ı	ł	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	i	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	- 1	ì	2	2	3	4	4	5	- 5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802		1	2	2	3	3	4	5	.5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859		j	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	i	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	i	í	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
											ĺ								
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	l	ì	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	}	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	,	ı	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
37	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	ī	2	2	3	3	4	4
38	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	i	i	2	2	3	3	4	4
39	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	i	2	2	3	3	4	4
	05:0	06:2	0.553	0.5	0515	0511	0.5	0.7											
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	j	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	}	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	ł	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	i	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	i	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850		9859		0	i	i	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894		9903	9908	0	Ī	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943		9952	0	1	1	2	2	3	3	4	4
)9	9956	9961	9965	9969	9974	9978	9983		9991	9996	0	1	İ	2	2	3	3	3	4
	6			2															
į	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

	පාරිතාෂික ශබ්ද මාලාව	
व		Le
අනන්ත දශම	முடிவில் தசமம்	Infinite decimals
අන්ත දශම	முடிவுறு தசமம்	Finite decimals
අපරිමේය සංඛන	விகிதமுறா எண்கள்	Irrational numbers
අරය	ஆயரை	Radius
අඛිල කරණි	முழுமைச் சேடு	Entire surds
ඇල උස	சாய் உயரம்	Slant height
එ		
එකම ආධාරකය	ஒரே அடி	Same base
සෙ		
සෘජු පිරමීඩය	செங்கூம்பகம்	Right pyramid
සෘජු වෘත්ත කේතුව	செவ்வட்டக்கூம்பு	Right circular cone
ක		
කරණි	சேடு	Surds
කුඩාම පොදු ගුණාකාරය	பொதுமடங்குகளுள் சிறியது	Least common multiple
කේතුව	கூம்பு	Cone
စ		
 ගුණ කිරීම	பெருக்கல்	Multiplication
ගෝලය	கோளம்	Sphere
&		F
ඝනායිතය	கன	Cubed
ත		
		7
තාත්වික සංඛාහ	மெய் எண்கள்	Real numbers
තිුකෝණය	முக்கோணி	Triangle
තිුකෝණාකාර	முக்கோண வடிவான	Triangular
තිුකෝණමිතික අනුපාත	திரிகோண விகிதங்கள்	Trignometric Ratios
\$		
ද ර්ශක	சுட்டி	Indices
දශමාංශය	தசமக் கூட்டு	Mantissa
ද්විපද පුකාශන	ஈருறுப்புக் கோவை	Binomial Expressions

நிறைவெண்கள்

Integers

____ නිඛිල

8

පරිමේය සංඛාහ

Rational numbers

පාදය **a**up Base

බ

ය

යතුර சாவ<mark>ி</mark> Key

0

ලසුගණක மடக்கை Logarithm

ලම්බ උස செங்குத்துயரம் Perpendicular height

ලවය தொகுதி Numerator

ව

වර්ගඵලය பரப்பளவූ Area වර්ගායිතය வர்க்கம் Squared

විදාහත්මක අංකනය விஞ்ஞானமுறைக் குறிப்பீடு Scientific notation විදාහත්මක ගණක යන්නය விஞ்ஞானமுறைக் கணிகருவி Scientific calculator

වියුති பിரிகோடு Bar

වීජීය භාග அட்சரகணிதப் பின்னங்கள் Algebraic Fractions

වෘත්තාකාර வட்ட வடிவான Circular වකු පෘෂ්ඨය வளை மேற்பரப்பளவு Curved Surface

ස

සමචතුරසුාකාර சதுர வடிவான Square shape සමාන්තරාසුය இணைகரம் Parallelogram සමාන්තර රේඛා சமாந்தரக் கோடுகள் Parallel lines සමාවර්ත දශම மீளும் தசமம் Recurring decimals

හ

තරය பகுதி Denominator

පාඩම් අනුකුමය

පෙළපොතේ පරිච්ඡේදය	කාලච්ඡේද ගණන
1 වාරය	
1. තාත්වික සංඛාා	10
2. දර්ශක හා ලසුගණක I	08
3. දර්ශක හා ලසුගණක II	06
4. ඝන වස්තුවල පෘෂ්ඨ වර්ගඵලය	05
5. ඝන වස්තුවල පරිමාව	05
6. ද්විපද පුකාශන	04
7. වීජිය භාග	04
8. සමාන්තර රේඛා අතර තලරූපවල වර්ගඵලය	12
2 වාරය	
09. පුතිශත	06
10. කොටස් වෙළෙඳ පොළ	05
11. මධා ලක්ෂා පුමේයය	05
12. පුස්තාර	12
13. සමීකරණ	10
14. සමකෝණි තිුකෝණ	12
15. දත්ත නිරූපණය හා අර්ථකථනය	12
16. ගුණෝත්තර ශේඪී	06
3 වාරය	
17. පයිතගරස් පුමේයය	04
18. තුිකෝණමිතිය	12
19. නහාස	08
20. අසමානතා	06
21. වෘත්ත චතුරසු	10
22. ස්පර්ශක	10
23. නිර්මාණ	05
24. කුලක	06
25. සම්භාවිතාව	07