GRE Physics Study Notes - Strategy / Tricky Notes

Courtesy of Nicole Duncan, transcribed by Jeren Suzuki ${\it Last~Edited~18th~September~2013}$

Contents

1	Look at question before trying to answer the question	1
2	Don't just guess	1
3	Use a Section Classification Key	1
4	Read the Whole Problem	1
5	KNOW WHICH ONES TO SKIP	1
6	Be Aware Of	1
	6.1 Units	1
	6.2 Frequency vs ω	1
	6.3 Signs and Directions	2
	6.4 Answer doesn't fit answers	2
7	Problem Strategy	2
	7.1 When in doubt about E&M fields	2
	7.2 Graphs	2
	7.3 Square Roots and Fractions	2
	7.4 Sneaky Famous Experiments	2
	7.5 Numbers go in Last	2
	7.6 If the answer is an Equation	2
8	Common Errors	2
	8.1 Angstrom	2
	8.2 Collision Problems	3
	8.3 Most Nearly	3
	8.4 When Rounding	3
	8.5 Fractions!	3
\mathbf{a}	Tuit-1	9

1 Look at question before trying to answer the question

- How far apart are they?
 Orders of magnitude, drop all but 1st significant fig very close → need precise values
- 2. "Most nearly" means that my exact answer will not appear Can do some rounding, keep 1 or 2 significant figs
- 3. True vs Not True:

 Make sure you know which one
 Circle the words

2 Don't just guess

Try to write an equation or equality before answering. Justify short answers.

3 Use a Section Classification Key

- 1. Circle $\# \to \text{come back definitely}$
- 2. Cross \rightarrow done

4 Read the Whole Problem

Make sure I understand problem very quickly.

5 KNOW WHICH ONES TO SKIP

6 Be Aware Of

6.1 Units

 $kcal = 10^3 cal$ Answers + given in problem Will ask for answer in kJ, etc.

6.2 Frequency vs ω

Hz always means frequency ${\rm rad/s}=\omega$ $\omega=2\pi\nu, {\rm units~of~} \frac{2\pi{\rm radians}}{{\rm rev}}$ Revolutions always imply frequency

6.3 Signs and Directions

Especially in conservation of momentum problems, v vs -v

Doppler Shift Problems: -v if moving towards you, +v if you move towards it

Sometimes they don't specify where \hat{z} is, so don't get hung up on RHR if they don't label it.

6.4 Answer doesn't fit answers

It might be given in another form. e.g.,

$$\frac{e^{-\epsilon/kT}}{1 + e^{-\epsilon/kt}} \to \frac{1}{e^{\epsilon/kT} + 1} \tag{1}$$

7 Problem Strategy

7.1 When in doubt about E&M fields

Write out maxwell's equations and look for how the field will be changed or how it'll look. Write out Lorentz forces, how does the E & B move the particle

7.2 Graphs

Pick out key features

Axis + relations to other quantities

7.3 Square Roots and Fractions

Use bounding values

 $x = \sqrt{.78}$, $.8^2 = .64$, $.9^2 = .81$, so between 8 and 9.

7.4 Sneaky Famous Experiments

They hide them in other questions about similar equations

7.5 Numbers go in Last

Clearly write exponentials

Say # over to myself as I write

7.6 If the answer is an Equation

Think in limits and units

8 Common Errors

8.1 Angstrom

$$Å = 1 \times 10^{-10} \text{ m}$$

8.2 Collision Problems

Conserve p for initial/final conditions - don't forget $\pm v$. Conserve KE for ΔE between U & KE only!

8.3 Most Nearly

My answer will not be there, don't fret.

8.4 When Rounding

Keep track of up vs down so will know if final answer is less or more.

8.5 Fractions!

$$\frac{1}{2 \times 10^{-5}} = \frac{1}{2} \times 10^5 = .5 \times 10^5 = 5 \times 10^4 \tag{2}$$

9 Tricks

For relativity, write down equations first, then see if you can simply divide. Given E and p, find v:

$$\frac{E}{p} = \frac{\gamma mc^2}{\gamma mv} \to v \tag{3}$$