Chap 4 : Equations différentielles linéaires

I. Quelques caractérisations de l'exponentielle

$$\{f \in \mathfrak{D}^{1}(\mathbb{R}, \mathbb{R}), f' = f\} = \left\{ f \begin{cases} \mathbb{R} \to \mathbb{R} \\ t \mapsto ae^{t} \end{cases} \quad a \in \mathbb{R} \right\}$$

$$\{f \in \mathfrak{D}^{1}(\mathbb{R}, \mathbb{R}), f(x+y) = f(x) \times f(y)\} = \left\{ 0_{F(\mathbb{R}, \mathbb{R})}, f \begin{cases} \mathbb{R} \to \mathbb{R} \\ t \mapsto e^{\beta t} \end{cases} \quad \beta = f'(0) \right\}$$

Preuves : 1 : vérifier puis unicité avec produit des deux \rightarrow dérivée

2 : Vérifier pour 0, dériver f(x+y) p/r y, utiliser le truc précédent

II. Equations différentielles linéaires d'ordre 1

- (E) y'(x) + a(x)y(x) = b(x) \rightarrow Espace des solutions : δ
- (E_0) y'(x) + a(x)y(x) = 0 \rightarrow Espace des solutions : δ_0

 S_0 espace des solutions est un \mathbb{K} – espace vectoriel

Preuve : $\mathfrak{S}_0 \neq \emptyset$ car $\mathfrak{O}_{F(I,\mathbb{R})} \in \mathfrak{S}_0$ $(\alpha f + \beta g)'(x) + (\alpha f + \beta g)(x) = 0$

 y_1 solution de (E) $y \in \mathbb{S} \Leftrightarrow (y - y_1) \in \mathbb{S}_0$ $\mathbb{S} = y_1 + \mathbb{S}_0$

 δ est un sous espace affine de $\mathcal{F}(I,\mathbb{R})$

Preuve : égaliser (E) pour y et y_1 , et se ramener à E_0

$$\mathfrak{S}_0 = \left\{ y \begin{cases} I \to \mathbb{R} \\ x \mapsto \lambda e^{-A(x)} \end{cases} \qquad \lambda \in \mathbb{R} \right\} \text{ où } A \text{ est une primitive de } a \text{ sur } I$$

Preuve: Vérifier $e^{-A(x)}$ solution. S₀ sous-esp vect $\rightarrow \lambda e^{-A(x)}$ solution. Vérifier $e^{A(x)}y(x)$ constant.

Méthode de variation de la constante :

Chercher $y: x \mapsto \mu(x)e^{-A(x)} \Rightarrow \mu'(x) = e^{A(x)}b(x)$

$$\mathbb{S} = \left\{ \begin{cases} I \to \mathbb{R} \\ x \mapsto \mu_1(x)e^{-A(x)} + \lambda e^{-A(x)} \end{cases} = \left\{ \begin{cases} I \to \mathbb{R} \\ x \mapsto e^{-\int_{x_0}^x a(t)dt} \left(\lambda + \int_{x_1}^x e^{-\int_{x_0}^x a(t)dt} b(s)ds \right) \end{cases} \quad \lambda \in \mathbb{R} \right\}$$

(E) $y' + ay = b_1 + b_2$ $\rightarrow \forall j \in \{1, 2\}, (E_j)$ $y_j' + ay_j = b_j$ (E) $= (E_1) + (E_2)$

 $y_{_{1}}$ solution de $(E_{_{1}})$, $y_{_{2}}$ solution de $(E_{_{2}})$ \Rightarrow $(y_{_{1}}+y_{_{2}})$ solution de (E)

Théorème de Cauchy-Lipschitz :
$$\begin{cases} y'(x) + a(x)y(x) = b(x) \\ y(x_0) = z_0 \end{cases}$$
 admet une unique solution
$$\left(y = \frac{z_0 - y_1(x_0)}{y_0(x_0)} y_0 + y_1 \right)$$

Preuve : $y_0 : x \mapsto e^{-A(x)}$, y_1 solution particulière, $\delta = \{\lambda y_0 + y_1\}$ Remplacer et trouver un unique λ_1

III. Equations différentielles linéaires d'ordre 2 (à coefficients constants)

- (E) y''(x) + a(x)y'(x) + b(x)y(x) = c(x)
- (E_0) y''(x) + a(x)y'(x) + b(x)y(x) = 0
- S_0 est un espace vectoriel
- y_1 solution de (E) $y \in \mathbb{S} \Leftrightarrow (y y_1) \in \mathbb{S}_0$ $\mathbb{S} = y_1 + \mathbb{S}_0$
- \mathbb{S} est un sous espace affine de $F(I,\mathbb{R})$

$$(E_0)$$
 $y'' + ay' + by = 0$ $(a,b) \in \mathbb{C}^2$

$$(E_r) \qquad x^2 + ax + b = 0$$

 $*\Delta \neq 0$ solutions de $(E_r): \alpha \neq \beta$

$$S_0 = \left\{ \begin{cases} \mathbb{R} \to \mathbb{C} \\ x \mapsto \lambda e^{\alpha x} + \mu e^{\beta x} \end{cases} \quad (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

 $*\Delta = 0$ solution de $(E_r): \alpha$

$$S_0 = \left\{ \begin{cases} \mathbb{R} \to \mathbb{C} \\ x \mapsto (\lambda x + \mu)e^{\alpha x} \end{cases} \quad (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Preuve: Chercher une solution de la forme $y: x \mapsto e^{rx}$ $y \in S_0 \Leftrightarrow r^2 + ar + b = 0$

*
$$\Delta \neq 0 \Rightarrow \{\lambda e^{\alpha x} + \mu e^{\beta x}\} \subset S_0$$
 (S₀ sous esp vect)

$$g: x \mapsto e^{-\alpha x} y(x)$$
 $y \in S_0 \iff y(x) = e^{\alpha x} g(x)$

$$\Rightarrow$$
 g' solution de z'+ $(2\alpha + a)z = 0 \Leftrightarrow z' + (\alpha - \beta)z = 0$ $a = -(\alpha + \beta)$

$$\exists \lambda_0 \in \mathbb{C} \ \mathsf{tq} \ g'(x) = \lambda_0 e^{(\alpha - \beta)x} \quad \Rightarrow g(x) = \frac{\lambda_0}{\beta - \alpha} e^{(\beta - \alpha)x} + \mu \quad \Rightarrow \dots$$

$$*\Delta = 0$$
 idem $2\alpha + a = 0 \Rightarrow g''(x) = 0 \Rightarrow g(x) = \lambda x + \mu \Rightarrow ...$

$$(E_0)$$
 $y'' + ay' + by = 0$ $(a,b) \in \mathbb{R}^2$

$$(E_r) \qquad x^2 + ax + b = 0$$

* $\Delta > 0$ solutions réelles : $r_1 \neq r_2$

$$S_0 = \left\{ \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x} \end{cases} \quad (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

* $\Delta = 0$ solution: r_0

$$S_0 = \left\{ \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (\lambda x + \mu)e^{r_0 x} \end{cases} \quad (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

* Δ < 0 solutions complexes : $r_1 = \overline{r_2} = \alpha + i\beta$

$$\mathcal{S}_0 = \left\{ \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^{\alpha x} (\lambda \cos(\beta x) + \mu \sin(\beta x)) = A e^{\alpha x} \sin(\beta x + \varphi) \end{cases} (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Preuve : Δ < 0 Partir du résultat complexe, passer aux conjugués, puis vérifier la "réciproque"

Théorème de Cauchy-Lipschitz linéaire : $\forall (x_0, P_0, Q_0) \in I \times \mathbb{R} \times \mathbb{R}$, il existe une unique solution de (E)

$$y \in \mathfrak{D}^2(I, \mathbb{R})$$
 telle que
$$\begin{cases} y(x_0) = P_0 \\ y'(x_0) = Q_0 \end{cases}$$