Digital Signal Processing

Formulary

Author: Daniel Thiem - studium@daniel-thiem.de

Version 0.1 - 10.02.2013

Contents

1	Digital Processing of Continous-Time Signals			3
	1.1	Period	dic Sampling	
		1.1.1	Reconstruction of Band-Limited Signals	3
				3
2	Filter Design			
	2.1	Digita	l Filters	4
		2.1.1	Finite Impulse Response (FIR) filter	4
		2.1.2	Linear Phase Filters	4
		2.1.3	Linear Phase FIR Filters	5
			FIR Filter Types	
	2.2	Filter	Specficaion	7
3	Miscellaneous			
	3.1	Useful mathematical equations		
			Geometric series	
		3.1.2	Conversion from Geometric series to trigonometric fraction .	8

Preface

This formulary is based on the formulary of the course Stochastic Signals and Systems, which can be found here https://github.com/Tyde/stosigsysfs/blob/master/document.pdf?raw=true. If you find any errors or have any ideas for improvement, mail me at studium@daniel-thiem.de or file an issue at !GITHUBLINK. The LATEX source code is online on !GITHUBLINK and can be improved and extended.

2

1 Digital Processing of Continous-Time Signals

1.1 Periodic Sampling

Basic principles of sampling and transforming signals can be found in the Stochastic Signals and Systems formulary

1.1.1 Reconstruction of Band-Limited Signals

Assume, that $H_r(j\Omega)$ and $h_r(t)$ are the frequency and time responses for an ideal low pass filter where x(n) is the input signal. Then the output will be

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n)h_r(t - nT)$$
(1.1)

Because the filter is assumed to be ideal, its impulse response is given by:

$$h_r(t) = \frac{\sin(\pi t/T)}{\pi t/T} \tag{1.2}$$

where T is the sampling interval that should fulfil the Nyquist condition $\Omega_{\rm s}>2\Omega_{\rm B}$

1.1.2 Discrete-time Processing of Continous-Time Signals

To process a continuous-time signal $x_c(t)$ with digital signal processing techniques, the following setup is used:

2 Filter Design

2.1 Digital Filters

Let x(n) and y(n), $n = 0 \pm 1,...$ be the input and the output of the system. Linear time-invariant discrete-time systems can be characterized by linear constant coefficient difference equations of the following type, where $\max(N-1,M)$ is the order:

$$\sum_{k=0}^{M} a_k y(n-k) = \sum_{r=0}^{N-1} b_r x(n-r)$$
 (2.1)

2.1.1 Finite Impulse Response (FIR) filter

If M = 0 then the impulse response of the filter is finite so that:

$$y(n) = \frac{1}{a_0} \sum_{k=-\infty}^{\infty} b_r x(n-k)$$
 (2.2a)

comparison with the convolution sum yields

$$h(n) = \begin{cases} b_n/a_n, & n = 0, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$
 (2.2b)

2.1.2 Linear Phase Filters

A digital filter can be described as linear phase filter if $H(e^{j\omega})$ can be expressed as:

$$H(e^{j\omega}) = H_M(e^{j\omega})e^{-j\omega\alpha}$$
 (2.3)

with $H_M(e^{j\omega})$ real and α (group delay) constant

Generalized linear phase system

A Linear phase system with:

$$H(e^{j\omega}) = H_M(e^{j\omega})e^{-j\omega\alpha + j\beta}$$
 (2.4)

has to meet the condition:

$$\sum_{n=-\infty}^{\infty} h(n) \sin[\omega(n-\alpha) + \beta] = 0 \,\forall \, \omega \in \mathbb{R}$$
 (2.5)

2.1.3 Linear Phase FIR Filters

Applying the condition for generalized linear phase systems (2.1.2) to the FIR Filters yields two possible causal FIR Systems:

$$h(n) = \begin{cases} h(N-1-n) & , 0 \le n \le N-1 \\ 0 & , \text{otherwise} \end{cases}$$
 (2.6a)

$$H(e^{j\omega}) = H_e(e^{j\omega})e^{-j\omega(N-1)/2}$$
 (2.6b)

and

$$h(n) = \begin{cases} -h(N-1-n) & , 0 \le n \le N-1\\ 0 & , \text{otherwise} \end{cases}$$
 (2.7a)

$$H(e^{j\omega}) = H_o(e^{j\omega}) e^{-j\omega(N-1)/2 + j\pi/2}$$
 (2.7b)

2.1.4 FIR Filter Types

The linear phase FIR filters have been classified into 4 Types:

- Type I symmetric impulse response and N is odd
- Type II symmetric impulse response and N is even
- Type III antisymmetric impulse response and N is odd
- Type IV antisymmetric impulse response and N is even

Type I linear phase filter

N is odd and the impuls response is symmetric. $\beta = 0$

$$h(n) = h(N-1-n) \quad 0 \le n \le N-1$$
 (2.8a)

$$H(e^{j\omega}) = e^{-j\omega \frac{N-1}{2}} \left[\sum_{k=0}^{(N-1)/2} a(k)\cos(\omega k) \right]$$
 (2.8b)

where

$$a(0) = h\left(\frac{N-1}{2}\right)$$
 and $a(k) = 2h\left(\frac{N-1}{2} - k\right)$, $k = 1, 2, ..., (N-1)/2$

Type II linear phase filter

N is even and the impuls response is symmetric. $\beta = 0$

$$h(n) = h(N-1-n) \quad 0 \le n \le N-1$$
 (2.9a)

$$H(e^{j\omega}) = e^{-j\omega\frac{N-1}{2}} \left\{ \sum_{k=1}^{N/2} b(k) \cos\left[\omega\left(k - \frac{1}{2}\right)\right] \right\}$$
 (2.9b)

where

$$b(k) = 2h[N/2 - k],$$
 $k = 1, 2, ..., N/2$

Type III linear phase filter

N is odd and the impuls response is antisymmetric. $\beta = \pi/2$

$$h(n) = -h(N-1-n)$$
 $0 \le n \le N-1$ (2.10a)

$$H(e^{j\omega}) = je^{-j\omega\frac{N-1}{2}} \left[\sum_{k=1}^{(N-1)/2} c(k)\sin(\omega k) \right]$$
 (2.10b)

where

$$c(k) = 2h[(N-1)/2 - k],$$
 $k = 1, 2, ..., (N-1)/2$

Type IV linear phase filter

N is even and the impuls response is antisymmetric. $\beta = \pi/2$

$$h(n) = -h(N-1-n)$$
 $0 \le n \le N-1$ (2.11a)

$$H(e^{j\omega}) = je^{-j\omega\frac{N-1}{2}} \left\{ \sum_{k=1}^{N/2} d(k) \sin\left[\omega\left(k - \frac{1}{2}\right)\right] \right\}$$
 (2.11b)

where

$$d(k) = 2h[N/2 - k],$$
 $k = 1, 2, ..., N/2$

2.2 Filter Specficaion

Non-ideal Filters have one or more pass-bands(ω_p), transition-bands(between ω_p and ω_s) and stop-bands(ω_s). For the pass- and the stop- band, a tolerance α_i has to be specified. Therefore a low-pass filter would have the following specification:

3 Miscellaneous

3.1 Useful mathematical equations

3.1.1 Geometric series

$$\sum_{n=0}^{N-1} q^n = \frac{1-q^N}{1-q} \quad \text{for} \quad |q| < 1$$
 (3.1)

3.1.2 Conversion from Geometric series to trigonometric fraction

Let
$$\frac{1-q^N}{1-q}$$
 be with $q=e^{-j\omega}$

$$\frac{1 - e^{-jN\omega}}{1 - e^{-j\omega}} = e^{-j\omega} \frac{\sin\left(\frac{N}{2}\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$
(3.2)