Лекция 6. Китайская теорема об остатках. Алгебраические структуры. Таблица Кэли

#вшпи #дискретная_математика #теория

Автор конспекта: Гридчин Михаил

Теорема (Китайская теорема об остатках). Пусть a_1, a_2, \ldots, a_n - попарно взаимно простые числа, $r_1, r_2, \ldots, r_n : 0 \le r_i < a_i$. Тогда

$$\exists N: orall i \in \{1,2,3,\ldots,n\} \implies N \equiv r_i \pmod{a_i}$$

Если N_1 и N_2 - решения системы сравнений, то $N_1 \equiv N_2 \pmod{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$.

 \square Докажем по индукции по n.

 $ag{\it basa}$. n=1. Очевидно, $\exists N_1:N_1\equiv r_1\pmod{a_1}$ и

$$\exists N_2 : N_2 \equiv r_1 \pmod{a_1} \implies N_1 \equiv N_2 \pmod{a_1}.$$

Шаг. Пусть утверждение верно для $n \le k$. Рассмотрим n = k + 1. По предположению системы существует решение системы x:

$$egin{cases} x\equiv r_1\pmod{a_1}\ x\equiv r_2\pmod{a_2}\ \dots\ x\equiv r_k\pmod{a_k} \end{cases}$$
 $\exists N$ - решение системы $x\equiv r_k\pmod{a_k}$

Положим $d:=a_1\cdot a_2\cdot\ldots\cdot a_k$. По условию теоремы $(d,a_{k+1})=1$. Выпишем следующие числа:

$$N \quad N+d \quad N+2d \quad \dots \quad N+(a_{k+1}-1)d$$

Все эти числа дают разные остатки при делении на a. Действительно, положим, что это не так и существуют два числа N+di и N+dj, которые дают одинаковый остаток при делении на a. Но тогда $(N+di)-(N+dj)\equiv 0\pmod{a_{k+1}} \Longrightarrow d(i-j)\equiv 0\pmod{a_{k+1}}$. Но $(d,a_{k+1})=1\implies i-j\equiv 0\pmod{a_{k+1}} \Longrightarrow i\equiv j\pmod{a_{k+1}} \Longrightarrow i=j$. Так как $i,j< a_{k+1}$. Значит среди всех этих чисел представлены все остатки от деления на a_{k+1} , в том числе и r_{k+1}

Пусть оно имеет вид $N+jd\equiv r_{k+1}\pmod{a_{k+1}}$. Теперь, если мы рассмотрим все остатки этого числа N+jd на все остальные числа a_1,a_2,\ldots,a_k , то поскольку $d\mid a_i$, то $N+jd\equiv r_i\pmod{a_i}, \forall i\leq k$. То есть N+jd всё ещё подходит. Мы доказали первую часть теоремы, так как смогли предъявить такое подходящее число N':=N+jd. Докажем теперь вторую часть теоремы. Рассмотрим два различных решения N_1,N_2 , тогда из формулировки теоремы следует, что

$$egin{cases} N_1 \equiv r_i \pmod{a_i} \ N_2 \equiv r_i \pmod{a_1} \implies N_1 - N_2 \equiv 0 \pmod{a_i} \end{cases}$$

Получаем требуемое:

$$egin{array}{ll} N_1 - N_2 \mid d \ N_1 - N_2 \mid a_{k+1} \end{array} \implies N_1 - N_2 \mid d \cdot a_{k+1} \quad ((d, a_{k+1}) = 1) \end{array}$$

_

Алгебраические структуры

Пусть дано множество M и операция \times , определённая на нём. Будем работать только с такими операциями, которые не выводят за пределы множества, то есть $\forall a,b:a\in M,b\in M\implies a\times b\in M.$

Def. Пусть задано множество M и операция \circ , заданная на нём. Если выполнена ассоциативность, т.е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$

То эту структуру назовём полугруппой.

Пример: слова из алфавита $\{0,1\}$ и операция конкатенации, определённая на этом множестве.

Def. Полугруппу, у которой существует единственный нейтральный элемент, то есть

$$\exists ! e : a \circ e = e \circ a = a$$

Назовём моноидом.

Пример: слова из алфавита $\{0,1\} \cup \{\epsilon\}$ (пустое слово) и операцией конкатенации слов, определённой на этом множестве.

Свойство: можно записать уравнение вида $a \circ x = b$, но не всегда можно решить.

Def. Моноид, для каждого элемента которого существует единственный обратный элемент, то есть

$$\forall x \exists ! y : x \circ y = y \circ x = e$$

Назовём группой.

Про группы будем говорить всю следующую часть семестра.

Пример решения уравнения:

$$x\circ a=b \ x\circ a\circ a^{-1}=b\circ a^{-1} \ x\circ e=b\circ a^{-1} \ egin{aligned} x\circ e=b\circ a^{-1} \end{aligned}$$

Пример: повороты пространства вокруг центра координат

Пример: пусть $m \in \mathbb{Z}$. $M := \{0, 1, \dots, m-1\}$ с операцией $+_m$ (сложение по модулю m) образует группу. Стандартное обозначение $(\mathbb{Z}_m, +)$.

Пример: пусть $p \in \mathbb{N}$, p - простое. Тогда $M := \{1, 2, \dots, p-1\}$ с операцией \times_p (умножение по модулю p) образует группу. Стандартное обозначение $(\mathbb{Z}_p \setminus \{0\}, \times)$. Действительно, по малой теореме Ферма $a^{p-1} \equiv 1 \pmod p \iff a^{p-2} \equiv a^{-1} \pmod p$. Следовательно, для каждого элемента множества есть существует обратный элемент. (нейтральный элемент - 1)

Пример: рассмотрим M - множество перестановок (биекций) длины n. Обозначение перестановки:

$$\pi = egin{pmatrix} 1 & 2 & 3 & \dots & n \ i_1 & i_2 & i_3 & \dots & i_n \end{pmatrix}, \quad \pi(j) = i_j$$

Определим операцию "композиция перестановок" на M (\circ) следующим образом:

$$\pi = egin{pmatrix} 1 & 2 & 3 & \dots & n \ i_1 & i_2 & i_3 & \dots & i_n \end{pmatrix}, \quad \pi' = egin{pmatrix} 1 & 2 & 3 & \dots & n \ j_1 & j_2 & j_3 & \dots & j_n \end{pmatrix} \ \pi \circ \pi' = egin{pmatrix} 1 & 2 & 3 & \dots & n \ \pi(\pi'(1)) & \pi(\pi'(2)) & \pi(\pi'(3)) & \dots & \pi(\pi'(n)) \end{pmatrix}$$

Нейтральный элемент

$$e =: id := egin{pmatrix} 1 & 2 & 3 & \dots & n \ 1 & 2 & 3 & \dots & n \end{pmatrix}$$

Обратный элемент

$$y = x^{-1} \iff y(x(i)) = i$$

Заметим, что поскольку функция x(i) биективна, то она обратима, то есть $\forall x \exists ! y = x^{-1} \implies$ это группа.

Свойство: можно решить уравнение вида $a \circ x = b$.

Def. Кольцо $(M, +, \times)$ - это

- 1. коммутативная группа по сложению (то есть + также коммутативен).
- 2. ассоциативна по ×
- 3. дистрибутивна a imes (a+c) = a imes b + a imes c.

Пример: $(\mathbb{Z}_m, +, \times)$ - кольцо.

Пример: $(\mathbb{Z}_2, \oplus, \wedge)$. Коммутативно по \oplus , нейтральный элемент - 0, обратный элемент - само число. Ассоциативна по \wedge . Также $(a \oplus b) \wedge c = a \wedge c \oplus b \wedge c \implies$ кольцо.

Свойство: можно записать уравнение вида $a \times x + b = c$, но не всегда можно решить. Чтобы уравнение можно было решить, нужно определение поля.

Def. Поле $(M, +, \times)$ - это

- 1. коммутативная группа по +
- 2. $M \setminus \{0\}$ коммутативная группа по imes
- 3. a imes (b+c) = a imes b + a imes c Пример: множества $\mathbb{Q}, \mathbb{R}, \mathbb{C}, (\mathbb{Z}_p, +, imes)$ поля.

Конечные группы

Def. порядок группы - количество элементов в ней.

Def. мультипликативная запись:

$$egin{aligned} (a\circ b)\circ c&=a\circ (b\circ c)\ \exists!e:=1\ a\circ 1&=1\circ a=a\ orall x\exists!x^{-1}\ x\circ x^{-1}&=x^{-1}x=1 \end{aligned}$$

Def аддитивная запись:

$$(a+b)+c=a+(b+c)$$

 $\exists !e:=0$
 $a+0=0+a=a$
 $\forall x \exists !(-x)$
 $x+(-x)=(-x)+x=0$

Пример группы порядка k: $(\mathbb{Z}_k, +)$.

Def. Таблица Кэли - таблица для записи результатов применения операции ко всем парам элементов

Пример: таблица Кэли для группы порядка 2. В ней обязательно должен быть нейтральный элемент e и оставшийся элемент $a \neq e$. Заметим, что вариант может быть всего один, поскольку ae = a, ea = a, ee = e, остаётся только aa, значит, a - обратный элемент для $a \implies aa = e$

$$egin{array}{c|cccc} \circ & e & a \\ \hline e & e & a \\ a & a & e \\ \end{array}$$

Значит, любые группы порядка 2 изоморфны (см. далее).

Пусть теперь n=3. По аналогии заполним:

0	e	a	b
\overline{e}	$egin{array}{c} e \ a \ b \end{array}$	a	\overline{b}
a	a	b	e
b	b	e	a