Last updated: March 4th 2019, at 9.42am

${\bf Contents}$

1	Lim	Limits of Moore's Law									
	1.1	Moore's Law									
	1.2	Parallelism									
		1.2.1 Example									
		1.2.2 Exponential Parallelism									
2	Implementing Qubits 3										
	2.1	Ion Traps									
	2.2	Linear Optics									
	2.3	Others									
3	Qua	Quantum Circuits 4									
	3.1	Reversible gates									
	3.2	Qubits									
	3.3	Quantum gates									
		3.3.1 Single qubit gates									
		3.3.2 Multiple qubit gates 6									
	3.4	Universal quantum gate sets									
	3.5	Example — Deutsch's Algorithm									
		3.5.1 Problem statement									
		3.5.2 Classical circuits									
		3.5.3 Quantum circuit									
		3.5.4 Deutsch's circuit									

Why?

Complexity and Intractability

What:

- is 2×7 ?
- are the factors (divisors) of 14?

- is 5×11 ?
- are the factors of 55?
- is 13×19 ?
- are the factors of 247?
- is 229×557 ? (you may use pen and paper)
- are the factors of 127, 553? (you may use pen and paper)
- is $573, 260, 813 \times 879, 193, 169$? (you may use a calculator)
- are the factors of 504,006,965,615,712,893? (you may use a calculator)

1 Limits of Moore's Law

1.1 Moore's Law

The processing power of chips doubles every...

But difficult to make a chip smaller than a hydrogen atom

1.2 Parallelism

1.2.1 Example

Classical computers Quantum computers

1.2.2 Exponential Parallelism

One \dots

bit Zero or onequbit Zero and one

 $\mathbf{Two}\ \dots$

bits Zero or one or two or three
qubits Zero and one and two and three

. . .

A 16 qubit word represents 65,536 values simultaneously, a 32 qubit word 4,294,967,296 values, and a 64 qubit word 18,446,744,073,709,551,616 values.

2 Implementing Qubits

2.1 Ion Traps

Use electron orbits to represent bits

- Ion trapped by electromagnetic field
- Use lasers to set and measure states

Long coherence time, reliable, but slow, and difficult to scale.

2.2 Linear Optics

- Uses polarisation of photons
- Difficult to entangle

2.3 Others

 \mathbf{NMR} Qubit = spin state of many molecules in a fluid

 \mathbf{SQP}^1 Qubit = frequency of oscillations in superfluids

3 Quantum Circuits

3.1 Reversible gates

All quantum gates must be reversible. E.g.

3.2 Qubits

A qubit is a matrix with complex numbers:

$$\begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

with $|c_0|^2 + |c_1|^2 = 1$ and $|c_n|^2$ (with $n \in \{0, 1\}$) the probability the qubit is in state $|n\rangle$.

A single qubit can be represented as a point on a Bloch sphere.

- Latitude probability of $|0\rangle$, $|1\rangle$
- Longitude evolution

3.3 Quantum gates

3.3.1 Single qubit gates

Hadamard gate

$$H\left|0\right\rangle = \frac{\left|0\right\rangle + \left|1\right\rangle}{\sqrt{2}}, H\left|1\right\rangle = \frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}$$

$$\begin{array}{c|c} |0\rangle & |0\rangle & |0\rangle \\ \hline H & H & H \\ \hline \downarrow & \downarrow & \downarrow \\ \frac{1}{23/2} \left(|0\rangle + |1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle + |7\rangle \right) \end{array}$$

Pauli gates

Rotate the Bloch sphere through 180° around the x, y, z axes

Square root of NOT

$$\sqrt{\text{NOT}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}$$

Rotational gates Let $\overrightarrow{v} = (x, y, z)$ be a unit vector in the Bloch sphere, then

$$R_{\overrightarrow{v}}(\theta) = \cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} (xX + yY + zZ)$$

rotates the Bloch sphere round \overrightarrow{v} by θ .

Special cases:

$$R_{\overrightarrow{x}}(\theta) = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$

$$R_{\overrightarrow{y}}(\theta) = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$

$$R_{\overrightarrow{z}}(\theta) = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z = \begin{bmatrix} e^{-i\theta/2} & 0 \\ o & e^{i\theta/2} \end{bmatrix}$$

 $e^{i\theta/2}R {\over z}(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\theta} \end{bmatrix}$ is known as a $\it phase~shift~gate$

3.3.2 Multiple qubit gates

Controlled not

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{ccc} |x\rangle & & & |x\rangle \\ |y\rangle & & & |x\ xor\ y\rangle \end{array}$$

Controlled U If U is a single qubit gate then a controlled U gate is

This generalises to n-qubit gates. E.g. if U_2 is

$$\begin{bmatrix} u_{0,0} & u_{0,1} & u_{0,2} & u_{0,3} \\ u_{1,0} & u_{1,1} & u_{1,2} & u_{1,3} \\ u_{2,0} & u_{2,1} & u_{2,2} & u_{2,3} \\ u_{3,0} & u_{3,1} & u_{3,2} & u_{3,3} \end{bmatrix}$$

then a ${}^{C}U_{2}$ gate is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & u_{0,0} & u_{0,1} & u_{0,2} & u_{0,3} \\ 0 & 0 & 0 & 0 & u_{1,0} & u_{1,1} & u_{1,2} & u_{1,3} \\ 0 & 0 & 0 & 0 & u_{2,0} & u_{2,1} & u_{2,2} & u_{2,3} \\ 0 & 0 & 0 & 0 & u_{3,0} & u_{3,1} & u_{3,2} & u_{3,3} \end{bmatrix}$$

Toffoli gate

The Toffoli gate is ${}^{C}\left({}^{C}\mathrm{NOT}\right)$

Deutsch gates


```
\begin{array}{ll} \mbox{if } (|\mathbf{x}\rangle{=}{=}|\mathbf{1}\rangle \ \&\& \ |\mathbf{y}\rangle{=}{=}|\mathbf{1}\rangle) \ \{\\ |\mathbf{z}'\rangle{=} \ R(\theta)\,|\mathbf{z}\rangle \\ \} \ \ \mbox{else} \ \{\\ |\mathbf{z}'\rangle{=}\,|\mathbf{z}\rangle \\ \} \end{array}
```

3.4 Universal quantum gate sets

- $\{H, {}^{C}NOT, R\left(\cos^{-1}\frac{3}{5}\right)\}$
- $\{D(\theta)\}$, for some θ for which $\frac{\pi}{\theta}$ is irrational

are both universal quantum gate sets

3.5 Example — Deutsch's Algorithm

Implementing algorithms

- Start in a classical state
- Move to a superposition of states
- Act on the superposition
- Measure qubits

3.5.1 Problem statement

Considers functions from $\{0,1\}$ to $\{0,1\}$.

Given a $U_{f_{n,m}}$ "black box"

decide if $f_{n,m}$ is constant or balanced

3.5.2 Classical circuits

Table for, e.g., $U_{f_{1,0}}$

x	y	$f_{1,0}(x)$	$y \ xor \ f_{1,0}(x)$	$U_{f_{1,0}}(x,y)$
0	0	1	1	01
0	1	1	0	00
1	0	0	0	10
1	1	0	1	11

All functions

\boldsymbol{x}	y	$U_{f_{0.0}}$	$U_{f_{0,1}}$	$U_{f_{1,0}}$	$U_{f_{1,1}}$
0	0	00	00	01	01
0	1	01	01	00	00
1	0	10	11	10	11
1	1	11	10	11	10

On each line:

- boxed outputs are identical
- unboxed outputs are identical
- one boxed output is from a constant function, one from a balanced
- one unboxed output is from a constant function, one from a balanced so cannot find input that will discriminate

3.5.3 Quantum circuit

Constructing matrices Construct matrix for, e.g. $U_{f_{1,0}}$

x	0	0	1	1
y	0	1	0	1
$f_{1,0}(x)$	1	1	0	0
$y \ xor \ f_{1,0)(x)}$	1	0	0	1
$ x, y xor f_{1,0}(x)\rangle$	$ 01\rangle$	$ 00\rangle$	$ 10\rangle$	$ 11\rangle$
	0	1	0	0
	0 1	1 0	0	0
	0 1 0	1 0 0	0 0 1	0 0 0

Matrices:

		m = 0				m=1				
	Γ1	0	0	0		Γ1	0	0	0]
· 0	0	1	0	0		0	1	0	0	
n = 0	0	0	1	0		0	0	0	1	
	0	0	0	1		0	0	1	0	
	0	1	0	0		0	1	0	0	
an 1	1	0	0	0		1	0	0	0	
n = 1	0	0	1	0		0	0	0	1	
	0	0	0	1		0	0	1	0	

In general

$$U_{f_{n,m}} = \begin{bmatrix} 00 & 01 & 10 & 11 \\ \overline{n} & n & 0 & 0 \\ n & \overline{n} & 0 & 0 \\ 0 & 0 & \overline{m} & m \\ 0 & 0 & m & \overline{m} \end{bmatrix}$$

The top row gives the $|xy\rangle$ input, the column is the matrix for the output. E.g., the output for input 11 is $\begin{bmatrix} 0 & 0 & m & \overline{m} \end{bmatrix}^T$ (which, e.g., for $f_{1,1}$ is $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T = |10\rangle$)

3.5.4 Deutsch's circuit

The matrix representation for this is

$$(H \otimes I) * U_{f_{n,m}} * (H \otimes H) * |01\rangle$$

where H is the matrix for the Hadamard gate, I is a two-by-two identity matrix, $U_{f_{n,m}}$ is the matrix for our mystery controlled function gate (Note: n and m will have concrete values — we just don't know which ones), and $|01\rangle$ is our input. The reasoning behind these values is (from right to left):

- $|01\rangle$ the input. This is given.

- $U_{f_{n,m}}$ the mystery gate
- $H \times I$ the parallel composition of a Hadamard gate with an "identity gate" (i.e. the wire that just passes the lower qubit straight through).

The circuit is a sequential composition of these components, hence the use of ordinary matrix multiplication (*) to put them together.

We now need the matrix representations of these values:

• $|01\rangle$ This is the tenor product of $|0\rangle$ and $|1\rangle$.

$$|0
angle\otimes|1
angle=egin{bmatrix}1\\0\end{bmatrix}\otimesegin{bmatrix}0\\1\end{bmatrix}=egin{bmatrix}0\\1\\0\\0\end{bmatrix}$$

• $H \times H$ The matrix for a Hadamard gate is

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

so this parallel composition is

• $U_{f_{n,m}}$ This is given.

$$U_{f_{n,m}} = \begin{bmatrix} \overline{n} & n & 0 & 0\\ n & \overline{n} & 0 & 0\\ 0 & 0 & \overline{m} & m\\ 0 & 0 & m & \overline{m} \end{bmatrix}$$

• $H \otimes I$ The two-by-two identity matrix is

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

so our parallel composition is

$$H \otimes I = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

So the whole circuit is

The values of the entries in the:

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \frac{(\overline{n}+\overline{m})-(n+m)}{2} \\ \frac{(n+m)-(\overline{n}+\overline{m})}{2} \\ \frac{(\overline{n}+m))-(n+\overline{m})}{2} \\ \frac{(n+\overline{m})-(\overline{n}+m)}{2} \end{bmatrix}$$

matrix, for the possible values of n and m are:

$$\begin{array}{c|ccccc} n & 0 & 0 & 1 & 1 \\ m & 0 & 1 & 0 & 1 \\ \hline \hline \frac{(\overline{n}+\overline{m})-(n+m)}{2\sqrt{2}} & +\frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ \hline \frac{(n+m)-(\overline{n}+\overline{m})}{2\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & +\frac{1}{\sqrt{2}} \\ \hline \frac{(\overline{n}+m)-(n+\overline{m})}{2\sqrt{2}} & 0 & +\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \hline \frac{(n+\overline{m})-(\overline{n}+m)}{2\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & +\frac{1}{\sqrt{2}} & 0 \\ \hline \end{array}$$

E.g., if n = 0 and m = 0 the output of this circuit is

$$\begin{bmatrix} +\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix}^T.$$

This is the superposition of two qubits, q_0 and q_1 , say, which can be written as

$$+\frac{|00\rangle-|01\rangle}{\sqrt{2}}.$$

Here q_0 is $|0\rangle$, and q_1 is $\frac{|0\rangle - |1\rangle}{\sqrt{2}}$. For the other possible values of n and m:

So measure q_0 .

- If $q_0 = |0\rangle$ function is constant.
- If $q_0 = |1\rangle$ function is balanced.

The sign also disappears on measurement.