Színezett Petri-hálók

dr. Bartha Tamás

dr. Majzik István

BME Méréstechnika és Információs Rendszerek Tanszék

Motiváció 1/5

Motiváció 2/5

• Miért nem így modellezzük?

Motiváció 3/5

 Szereplők megkülönböztetése szükséges (lehetőleg paraméterezhetően)

Motiváció 4/5

- Tokenek: Filozófusok és villák
 - Legyenek megkülönböztethetők
- Tranzíciók: Villa felvétele és lerakása
 - Legyen meghatározható, melyik filozófus melyik villát

Motiváció 5/5

Megoldás: Színezett Petri-háló

- Tokenek megkülönböztetve
- Tranzíciók hatása részletezve

```
val n = 5;
colset PH = index ph with 1..n;
colset CS = index cs with 1..n;
var p: PH;

fun Chopsticks(ph(i)) =
  1`cs(i) ++
  1`cs(if i=n then 1 else i+1);
```


Színezett Petri-hálók

- A színezett Petri-hálók (Coloured Petri Net, CPN)
 - A színezetlen hálók kiterjesztései:
 - Rugalmas adatszerkezetekkel
 - Adatmanipulációs nyelvvel
 - A színezett Petri-háló modellek ötvözik:
 - Grafikus reprezentáció

→ struktúra áttekinthetősége

Adatmanipuláció

→ kifejezőerő

Jól definiált szemantika

- → formális analízis
- CPN modell = háló struktúra + deklarációk +
 kifejezések + inicializáló kifejezések

Színezett Petri-hálók fő elemei (áttekintés)

- Tokenek kiterjesztései
 - Adatérték: színezett token
 - Adattípus: színhalmaz (színkészlet, színosztály)
- Helyek kiterjesztései
 - Hely típusa: fogadható tokenek adattípusa (színhalmaza)
 - Hely inicializáló kifejezése: kezdeti színezett tokenek megadása
 - Hely aktuális jelölése: típusának megfelelő színezett tokenek (multihalmaz: egy színezett tokenből több is lehet)
- Élek kiterjesztései
 - Élkifejezés: elvett ill. kirakott tokenek meghatározása
 - Leköthető változók: elvett és kirakott tokenek közötti függés
- Tranzíciók kiterjesztései
 - Őrfeltétel a tüzeléshez
 - Tüzeléskor: Élkifejezések kötése színezett tokenekhez

Színezetlen és színezett Petri-hálók összehasonlítása

Színezetlen (P-T) Petri-hálók:

- színezetlen tokenek
- tokenek halmaza (számosság)
- tokenszám manipuláció
- kezdeti jelölés
- tiltó élek
- élsúlyok
- tranzíció engedélyezése
- konfliktus különböző engedélyezett tranzíciók között
- ~ assembly nyelv

Színezett Petri-hálók:

- színezett tokenek
- tokenek multihalmaza
- tokenszám és -szín manipuláció
- inicializáló kifejezések
- őrfeltételek
- élkifejezések (változókkal)
- lekötés engedélyezése
- konfliktus ugyanazon tranzíció engedélyezett lekötései között is
- ~ magas szintű programnyelv

Színezett Petri-hálók felépítése

Tokenek kiterjesztései

- Színezett token
 - Adatérték reprezentálása
- Színhalmaz (színosztály)
 - Adattípus megadása (color, colset)
 Pl. felsorolás (with),
 alaptípus (int, bool, string, ...)
 - Komplex is lehetPl. color P = product U * I
- Változók (token hordozása)
 - Típus megadással (színhalmaz)
 Pl. var x: U
- Deklaráció: formális nyelven
 - Standard ML

```
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```

Petri-háló helyek kiterjesztései

Hely színhalmaza (típusa)

- Milyen típusú tokeneket képes fogadni a hely (a deklarált típusok egyike)
- Megjelenítés: hely mellett dőlten, pl. U

Inicializáló kifejezés

- A kezdeti jelölés megadása
- A színhalmaz egy multi-halmaza (egy adott színű tokenből több is lehet)
- Megjelenítés: hely mellé írva, <u>aláhúzva</u>
 Pl. <u>3'p + 1'q</u> darabszám jelölés

Aktuális jelölés

- Az aktuális tokenek megadása
- Megjelenítés: hely mellé írva;
 részletesen: pl. 2'p + 1'q
 bekarikázott szám darabszám


```
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```

Petri-háló élek és tranzíciók kiterjesztései

Élkifejezések

Elveendő tokenek (engedélyezés feltétele),
 illetve kirakott tokenek (tüzelés eredménye)

- Típusa: az élhez tartozó hely típusa (egy tranzícióhoz több "típusú" él húzható)
- Megjelenítés: él mellett, pl. (x), Succ(x)

Változó használható az élkifejezésben

- Adatértékeket (színezett tokeneket) lehet hozzá kötni a bemeneti helyről
- Típusa kell legyen (milyen színhalmaz elemei köthetők hozzá)
- Egy tranzíció esetén: azonos kötéssel, ha a tranzíció több élkifejezésében is szerepel

Őrfeltétel

- Boole-kifejezés, a tranzíció engedélyezettségéhez igaz kell legyen
- Megjelenítés: tranzíció mellett, pl. [x=p]


```
color U = with p | q;

color I = int;

color P = product U * I;

color E = with e;

var x : U;

var i : I;
```

Élkifejezés, őrfeltétel: Műveletek multihalmazokkal

Összegzés: a1 + a2

Összehasonlítás: a1 ≤ a2, a1 ≠ a2

Számosság: |a1|

Szorzás skalárral: n·a1

Kivonás: a1 - a2 (csak ha a1 \geq a2)

Színezett Petri-háló felépítés: Összefoglalás

- Háló struktúra (elnevezésekkel):
 - Megjeleníti a rendszer vezérlési illetve adatfolyam struktúráját
 - Helyek, tranzíciók, élek
- Deklarációk:
 - Definiálják az adatstruktúrákat és a felhasznált függvényeket
 - Színosztályok, változók, függvények megadása
- Kifejezések:
 - Megadják a háló szintaktikai és adatmanipulációs elemeit
 - Aktuális jelölések, élkifejezések, őrfeltételek
- Inicializációs kifejezések:
 - Megadják a modell kezdeti jelölését (kezdőállapotát)


```
color U = with p \mid q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```


CPN háló alkotóelemei:

- Helyek
 - Név
 - Színhalmaz
 - Kezdeti jelölés
 - Aktuális jelölés
- Tranzíciók
 - Név
 - Őrfeltétel
- Élek
 - Élkifejezések (bemenő, kimenő)

Példa: Vezérlési struktúrák 1.

IF b THEN stmt1 ELSE stmt2

REPEAT stmt UNTIL b

Példa: Vezérlési struktúrák 2.

Alprogram hívás

Processz indítása

Coloured Petri Nets (CPN) hálók eszközkészlete a CPN Tools eszközben

CPN hálók: Színosztályok definiálása

- Egyszerű színosztályok
 - Színezetlen tokenek:unit
 - Alapvető típusok:
 int, bool, real,
 string
 - Részhalmaz:
 with 1..4;
 - Felsorolás:

```
with true | false;
```

- Indexelés (vektor):
 index d with 1..4;

- Az alábbi elemek definíciójában szerepelnek:
 - Összetett színosztályok
 - Változók, konstansok
 - Függvények

Összetett színosztályok

Módszerek kombinált színosztályok létrehozására

```
Unió képzés:

  union S + T;
– n-esek képzése (Descartes-szorzat):
  product P * Q * R;
– Rekord (címkézett n-esek):
  record p:P * q:Q * r:R;
– Lista:
  list int with 2...6;
```

További CPN háló elemek: Változók

Változók

Tokenek szimbolikus nevei

Változódeklaráció:

```
var proc : P;
```

Az alábbi kifejezésekben:

- Élkifejezések
- Őrfeltételek

Konstansok

Rögzített értékek

Konstansdeklaráció:

```
val n = 10;
val d1 = d(1):D;
```

Az alábbi deklarációkban:

- Színosztályok
- Függvények
- Élkifejezések, őrfeltételek, inicializáló kifejezések

További CPN háló elemek: Függvények

Műveletek, operátorok

Infix jelölésrendszer

 Példa: tokenek összegzése egy multihalmazba

```
1 cs(i) ++ 1 cs(i+1);
```

Függvények

Mellékhatás-mentes SML nyelvű függvények

– Példa:

```
fun Chopsticks(ph(i)) =
   1`cs(i) ++
   1`cs(if i=n then 1 else i+1);
```

Az alábbi kifejezésekben:

- Színosztályok
- Függvények
- Konstansok
- Élkifejezések, őrfeltételek, inicializáló kifejezések

További CPN háló elemek: Kifejezések

- Kifejezések a hálóban
 - Értéke: a változók egy adott lekötésével értékelhető ki
 - Típusa: az összes lehetséges kiértékelési eredmény halmaza
 - Példák:

```
x=q
2`(x,i)
if x=q then 2`i else empty
Mes(s)
```

Felhasználásuk:

 Élkifejezések, őrfeltételek, inicializáló kifejezések

Színezett Petri-hálók működése (informális szemantika)

Jelölés és lekötés

• Jelölés:

- Színezett tokenek eloszlása a helyeken
- Lekötés egy tranzíció élkifejezéseiben:
 - A változót adatértékhez (színezett tokenhez) kötjük a bemeneti helyről
 - Egy tranzíció esetén: egy adott változó minden előfordulása ugyanúgy lesz lekötött (azonos változó ugyanazt az értéket veszi fel)
 - Lekötetlen változó kimenő élen:
 Típusának bármely értékét felveheti
 - Különböző tranzíciók a lekötés szempontjából függetlenek (azonos nevű változó lekötései itt függetlenek)

Engedélyezettség

- Tranzíció engedélyezett egy adott jelölésben egy adott lekötésre:
 - A bemenő helyek tartalmazzák azokat a tokeneket, amik az élkifejezések értékei lehetnek az adott lekötésben
 - Az őrfeltétel teljesül
 - Ha egy tranzíció engedélyezett egy adott lekötésre, akkor tüzelhet
- Kötési elem tüzeléshez:
 - Egy (tranzíció, lekötés) pár,pl. (T1, <x=p>)
 - Engedélyezett lehet egy adott jelölésben → tüzelhet
 - Egy tranzíció esetén: több lekötés, ezekből több engedélyezett kötési elem képezhető; ezek tüzelhetnek

Tüzelés

- Tranzíció tüzel egy lekötésben (azaz egy kötési elem tüzel):
 - Bemenő helyekről az élkifejezés adott lekötésben lévő értéke által meghatározott (számú, színű) token elvétele
 - Kimenő helyekre az élkifejezés adott lekötésben lévő értéke által meghatározott (számú, színű) token odarakása
- Lépés (a tüzelés hatása az állapottérben):
 - A színezett Petri-háló egy jelöléséből egy másik lesz

Lekötés: x = p Az A helyről elvesz: p B helyre tesz: Succ(p)

C helyre tesz: p

Elérhetőségi gráf

- Csomópont az elérhetőségi gráfban:
 - Egy jelölés: tokenek multihalmaza minden helyen
- Él az elérhetőségi gráfban:
 - Egy kötési elem,
 amiben tüzelés történt:
 tranzíció és a
 lekötés megadása
 - Definíció szerint
 egyszerre egy tüzelő
 kötési elem van
 feltüntetve az
 elérhetőségi gráfban

CPN Tools demo

- Étkező filozófusok modellje
- Szimuláció: Lekötés kiválasztása, tüzelés
- Elérhetőségi gráf felvétele

CPN Tools elérhetőségi gráf

Csomópont:

- Egy jelölés
- Sorszám,elődök : utódokszáma megadva
- Jelölés kifejthető
- Él:
 - Egy kötési elem, amiben tüzelés történt
 - Tranzíció és a lekötés kifejthető

Példa: Egy egyszerű commit protokoll

A probléma leírása:

- Egy rendszerben három egység van: c₁, c₂ és c₃
- Közülük véletlenszerűen az egyik lesz a koordinátor, aki kérést küld a másik kettőnek
- A kérés hatására a felkért egység vagy abort, vagy commit szavazatot ad
- A két egység szavazata alapján a koordinátor dönt: ha mindkét egység commit döntést hozott, akkor a döntés commit, egyébként abort
- A koordinátornak nincs szavazata

Példa: Az egyszerű commit protokoll modellje

• Három színosztály, ebből kettő egyszerű halmaz:

```
C = \{0, c_1, c_2, c_3\} az egységek (0 a "senki")
```

D = {commit, abort} a szavazatok / döntések

Egy pedig kompozit színosztály:

 $M = C \times C$, a felkérések (ki kit kért fel szavazásra); a (0, x) token: a koordinátort senki sem kéri fel

- Öt változó: x, y, z ∈ C; és d1, d2 ∈ D
- Az if élkifejezés: a programozási nyelveknél megszokott jelentéssel
- A háló kezdőállapotában a p₁ helyen 3 token van:
 M(p₁)=1`c₁++1`c₂++1`c₃, a többi hely üres
- A ∅ jel az üres halmazt jelöli

Példa: Az egyszerű commit protokoll modellje

Színezett Petri-háló modell:

p₁: Résztvevők (kezdeti állapotban c₁, c₂, c₃ tokenek)

− p₂: Kérések

− p₃: Szavazatok

– p₄: Döntés

Színezett Petri-hálók formális definíciója és szemantikája

(első olvasáskor átugorható)

Színezett Petri-hálók formális definíciója

$$CPN = (\Sigma, P, T, A, C, G, E, M_0)$$

Színhalmazok:
$$\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_{\kappa}\}$$

Helyek:
$$P = \{p_1, p_2, ..., p_{\pi}\}$$

Tranzíciók:
$$T = \{t_1, t_2, \dots, t_{\tau}\}$$

$$P \cap T = \emptyset$$

Élek:
$$A \subseteq (P \times T) \cup (T \times P)$$

Színkészlet:
$$C: P \mapsto \Sigma$$

$$\text{Orfeltétel:} \qquad G: \forall t \in T, \Big[\text{Type} \big(G(t) \big) = \mathbb{B} \wedge \text{Type} \big(\text{Var} \big(G(t) \big) \big) \subseteq \Sigma \Big]$$

Élkifejezés:
$$E: \forall a \in A, \Big[\text{Type} \big(E(a) \big) = C(p)_{MS} \land \text{Type} \big(\text{Var} \big(E(a) \big) \big) \subseteq \Sigma \Big]$$

Kezdőállapot:
$$M_0: \forall p \in P, \lceil \text{Type}(M_0(p)) = C(p)_{MS} \rceil$$

A formális definíciókban alkalmazott jelölések

- Egy v változó típusa (színosztálya): Type(v)
- Egy expr kifejezés típusa: Type(expr)
- Egy *expr* kifejezésben szereplő változók halmaza: Var(*expr*)
- A v változó egy lekötése: $b(v) \in \text{Type}(v)$
- Kifejezés által b lekötésre visszaadott érték: expr
 ahol v ∈ Var(expr) és b(v) ∈ Type(v)

Multihalmazok

- Multihalmaz: azonos elemből több példány is lehet benne
 - Leképezés: Bag(A), az A elemkészletre, $a \in [A \rightarrow N]$
 - Formálisan: $a = \sum_{x \in A} a(x) \cdot x$ más jelölés (CPN): $a = \sum_{x \in A} a(x) \cdot x$
- Műveletek multihalmazokkal:
 - Összehasonlítás: $a_2 \neq a_1$ ha $\exists x \in A, a_2(x) \neq a_1(x)$ $a_2 \leq a_1$ ha $\forall x \in A, a_2(x) \leq a_1(x)$
 - Számosság: $|a| = \sum_{x \in A} a(x)$
 - Összegzés: $a_1 + a_2 = \sum_{x \in A} (a_1(x) + a_2(x)) \cdot x$
 - Különbség: $a_1 a_2 = \sum_{x \in A} (a_1(x) a_2(x)) \cdot x$ feltéve, hogy $a_2 \le a_1$
 - Szorzás skalárral: $n \cdot a = \sum_{x \in A} (n \cdot a(x)) \cdot x$

Multihalmazok (folytatás)

- Unió, multihalmazok egyesítése: $a_1 \cup a_2 \cup ... \cup a_m$
 - Tartomány: $A_1 \cup A_2 \cup ... \cup A_m$
 - Eleme: $e_i \in \bigcup_{1}^{m} A_k$ ha $\exists A_i : e_i \in A_i$
- n-esek képzése: $\langle A_1, A_2, ..., A_n \rangle$
 - Tartomány: $A_1 \times A_2 \times ... \times A_2$
 - Eleme: $\langle e_1, e_2, \dots, e_n \rangle \in \Diamond_1^n A_i$ ha $\forall e_i \in A_i$
 - Általánosítás: $\langle a_1, a_2, ..., a_n \rangle$

Élkifejezések

- Használhatók: Változók
 - Rendelkeznek típussal: Type(v)
 - Értékük a típushoz tartozó multihalmaz egy eleme lehet
- Lezárt élkifejezés: nem tartalmaz változókat
- Nyílt élkifejezés: változókat tartalmaz, amelyeket le lehet kötni egy értékkel
 - Lekötés: egy konkrét értékhozzárendelés minden változóhoz
 - Adott lekötéssel az élkifejezés kiértékelhető
 - Rendelkezik típussal: Type $(expr) = C(p)_{MS}$
 - Az értékül kapott színosztály típusa
 - Kifejezésben szereplő változók halmaza: Var(expr)

Lekötött és lekötetlen változók

Lekötött változók

- Az értékhozzárendelést a bemenő élek határozzák meg
- Konzisztencia: változó értéke lekötésen belül azonos
 - Minden, a tranzícióhoz tartozó élen: azonos név → azonos érték

Lekötetlen változók

- Csak kimenő élkifejezésekben szereplő változók
- Az engedélyezés nem rendelt hozzá értéket: lekötetlen
- Tüzeléskor le kell kötni:
 - A színosztályából bármilyen értéket felvehet
 - Annyi lehetséges lekötés, amennyi a színosztály számossága
 - Nemdeterminisztikus választás

Őrfeltételek

- Tranzícióhoz rendelt őrfeltétel
 - Multihalmazok felett értelmezett kifejezés
 - Boolean visszatérési értékkel
- "Igaz" kiértékelési érték esetén engedélyezi a tranzíciót
 - "Szűri" az engedélyezett lekötéseket

Engedélyezettség színezett Petri-hálókban

- Tranzíció lekötése
 - Érvényes lekötés: $\forall v \in \text{Var}(t)$: $b(v) \in \text{Type}(v) \land G(t) \langle b \rangle$ $\text{Var}(t) = \{ v \mid v \in \text{Var}(G(t)) \lor \exists a \in A(t) : v \in \text{Var}(E(a)) \}$
 - Az összes érvényes lekötés halmaza: B(t)
- Egy érvényes lekötés engedélyezett, ha
 - Őrfeltétel igaz
 - A bemenő helyeken van elég színezett token
 (lásd E⁻(p,t) élkifejezések) és a tiltó élek
 nem tiltják le a tüzelést (lásd E^h(p,t) élkifejezések):

$$\forall p \in \bullet t : E^{-}(p,t)\langle b \rangle \leq M(p) \wedge E^{h}(p,t)\langle b \rangle > M(p)$$

Tüzelés prioritásos színezett Petri-hálókban

- Egy engedélyezett tranzíció tüzelhet, ha magasabb prioritású t' tranzíció nem engedélyezett b' lekötésben, azaz
 - Ennek bemenő helyein nincs elég színezett token (lásd $E^-(p,t') < b' >$ élkifejezések), vagy a tiltó élei tiltják le a tüzelését (lásd $E^h(p,t') < b' >$ élkifejezések), $\forall t', \pi(t') > \pi(t) : \exists p \in \bullet t' :$ $E^-(p,t') \langle b' \rangle > M(p) \vee E^h(p,t') \langle b' \rangle \leq M(p)$
 - vagy az őrfeltétele nem igaz

$$\neg G(t')\langle b' \rangle$$

Tüzelés színezett Petri-hálókban

• Tüzelés menete:

- Engedélyezett lekötések keresése
 - Meghatározzák a bemenő élkifejezések, őrfeltételek
- Tranzíció engedélyezett adott lekötéssel → tüzelhet
- Tüzelés: Színezett tokenek elvétele a bemenő helyekről, színezett tokenek odarakása a kimenő helyekre

$$\forall p \in P : M'(p) = M(p) - \sum_{p \in \bullet t} E^{-}(p, t) \langle b \rangle + \sum_{p \in t \bullet} E^{+}(t, p) \langle b \rangle$$

- Ekkor M' közvetlenül elérhető M-ből: M $[(t,b)\rangle$ M'

Színezett Petri-hálók dinamikus tulajdonságai

Elérhetőségi gráf (ld. korábban)

- Csomópontok: Egy-egy jelölés (sorszámmal, elődök: utódok számával)
- Élek: Egy-egy tüzelő kötési elem (tranzíció és lekötés kifejthető)

Színezett Petri-hálók dinamikus tulajdonságai

- A színezetlen hálóknál megismert tulajdonságok kiterjesztései multihalmazokra
- Korlátosság

Egy hely korlátos, ha a tokenek száma bármely állapotban korlátos

- n egy felső egész korlát p-re, ha $\forall M \in [M_0\rangle \colon |M(p)| < n$
- m egy felső multihalmaz korlát p-re, ha $\forall M \in [M_0\rangle : M(p) < m$
- Visszatérő tulajdonság

Egy visszatérő állapotba mindig lehetséges visszajutni:

M egy visszatérő állapot, ha $\forall M' \in [M_0] : M \in [M']$

Színezett Petri-hálók dinamikus tulajdonságai

Élőség

Az élőség garantálja, hogy a lekötési elemek egy része aktív marad (azaz tranzíció valamilyen lekötésben tüzelni tud)

Halott állapot (deadlock): egy lekötési elem sem engedélyezett

$$\forall b \in BE : \neg M[b)$$

Halott tranzíció: egyik lekötése sem válhat engedélyezetté

$$\forall M' \in [M_0\rangle, b \in B(t): \neg M'[b\rangle$$

 Élő tranzíció: minden elérhető állapotra igaz, hogy onnan valamely trajektórián tüzelni tud

$$\forall M' \in [M_0], \exists M'' \in [M'], \exists b \in B(t): M''[b]$$

Színezett Petri-hálók dinamikus tulajdonságai

Fair tulajdonság tüzelési szekvenciákban

Fairség megmutatja, hogy egy lekötési elem milyen gyakran tüzel

Elfogulatlan (impartial) tranzíció: végtelen sokszor tüzel
 (itt OC() az előfordulások száma értelemszerű paraméterekkel)

$$\forall b \in B(t), \ |\sigma| = \infty : \ \operatorname{OC}_b(\sigma) = \infty$$

Fair tranzíció: végtelen sok engedélyezés ⇒ végtelen sok tüzelés

$$\forall b \in B(t), \ |\sigma| = \infty : \ \mathrm{EN}_b(\sigma) = \infty \Longrightarrow \mathrm{OC}_b(\sigma) = \infty$$

 Igazságos (just) tranzíció: perzisztens engedélyezés ⇒ tüzelés (nincs perzisztens engedélyezés tüzelés nélkül)

$$\forall b \in B(t), \forall i \geq 1$$
:

$$\left[\text{EN}_{b,i}(\sigma) \neq 0 \Rightarrow \exists k \geq i : \left[\text{EN}_{b,k}(\sigma) = 0 \vee \text{OC}_{b,k}(\sigma) \neq 0 \right] \right]$$

CPN Tools demo

- Étkező filozófusok modellje
- Tulajdonságok: Jelentés generálása
- Lekérdezések (könyvtári ML függvények)

Színezett Petri-hálók strukturális tulajdonságai

T-invariáns színezett Petri-hálókban

• Tranzíció invariáns

Olyan o tüzelési szekvencia, ami nem hat az állapotra:

$$M'(p) = M(p) - \sum_{p \in \bullet, b \in \sigma} E^{-}(p, t) \langle b \rangle + \sum_{p \in t \bullet, b \in \sigma} E^{+}(t, p) \langle b \rangle$$
ahol $M'(p) - M(p) = 0$ minden p -re
$$\text{ekkor } \sum_{p \in \bullet, b \in \sigma} E^{-}(p, t) \langle b \rangle = \sum_{p \in \bullet, b \in \sigma} E^{+}(t, p) \langle b \rangle$$

 $p \in t \bullet b \in \sigma$

 $p \in \bullet t.b \in \sigma$

P-invariáns színezett Petri-hálókban

- Hely invariáns
 - Alapötlet: Súlyozott tokenösszeg képzése

$$W_{p_1}(M(p_1)) + W_{p_2}(M(p_2)) + ... W_{p_n}(M(p_n))$$

- W_P súlyfüggvény: hely színkészletét egy közös multihalmazra képezi le
- W_P egy P-invariáns, ha a súlyozott tokenösszeg állandó

$$\forall M \in [M_0\rangle : \sum_{p \in P} W_p(M(p)) = \sum_{p \in P} W_p(M_0(p))$$

Színezett Petri-hálók széthajtogatása

Színezett Petri-hálók felépítésének lehetőségei

- CPN hálók: struktúra és adattartalom is lehet
- Szélsőségek
 - Tisztán strukturális információ, nincs adattartalom:
 - Közönséges Petri-háló
 - Nincs struktúra, csak adattartalom (adat és vezérlési információ):
 - Egy hely + egy tranzíció, komplex színosztályok, függvények és élkifejezések
- Kompromisszumra van szükség
 - Érthető, áttekinthető struktúrájú CPN háló legyen

Példa: Modellezési lehetőségek

Vezérlési folyam struktúrában kifejezve

Ugyanez csak kódban ("összehajtogatva")

Széthajtogatás

- (Prioritásos) színezett hálók modellező ereje megfelel a tiltó éllel kiegészített (prioritásos) színezetlen hálókénak
 - Minden színezett hálónak megfeleltethető egy ekvivalens működésű színezetlen háló (automataelméleti értelemben: lépésekre van biszimuláció)
 - Ekvivalens színezetlen háló neve: "széthajtogatott" háló
 - Széthajtogatás:
 - Tokenek adattartalmát struktúrában fejezzük ki
 - Minden eseménynek (tüzelésnek) a színezett hálóban megfelel egy és csak egy esemény (tüzelés) a széthajtogatott hálóban

Egyszerű színezett háló


```
color A = with alma | körte;

color B = with piros | sárga;

color C = with friss | ráncos;

color BC = product B*C declare mult;

var x: A;

var y: B;

var z: C;
```

- CPN hely → PN helyek a színosztály elemei szerint
- CPN tranzíció → PN tranzíciók a lekötések szerint

A széthajtogatott, színezetlen háló

- CPN hely → PN helyek a színosztály elemei szerint
- CPN tranzíció → PN tranzíciók a lekötések szerint

Hierarchikus színezett Petri-hálók

Hierarchikus színezett Petri-hálók

- Alhálók integrálása egyetlen összetett CPN hálóvá hierarchikus rendszerben
 - Színezett Petri-háló modellek (alhálók): Lapok
 - Hivatkozható a lap neve vagy száma
 - A lapok példányosíthatók (a hierarchia bármelyik szintjén)
 - A jelölés (tokeneloszlás) minden példányra egyedi
 - Hierarchia: Lapok struktúrája
 - Fő (prime, top) lap: legfelső szint
 - Másodlagos lap példányok (al-lapok)
 - Azonosítás: lap-példány azonosító szám
 - Laphierarchia gráf

Hierarchikus felépítés eszközei

1. Helyettesítő tranzíciók

- Egy al-lap megjelenítése
- Interfészek a lapok között: Helyek
 - 1. Főlapon: "Socket" helyek → az alhálók beillesztési pontjai
 - 2. Al-lapon: "Port" helyek → ezekkel kapcsolódik az alháló; port típus: bemenet, kimenet, I/O (kétirányú), általánosított

2. Fúziós helyek

- Azonos névvel, több példányban létrehozott helyek, amik ugyanazon helyet jelölik a háló több pontján
- A tokenek egyszerre kerülnek be / távolítódnak el egy adott fúziós helyhez tartozó helyhalmazba / helyhalmazból

Példa: Egy egyszerű protokoll hierarchikus változata

Összefoglalás

- Színezett Petri-hálók felépítése
 - Színhalmazok, élkifejezések, őrfeltételek
- Színezett Petri-hálók működése
 - Engedélyezettség, lekötések, tüzelések
 - Elérhetőségi gráf
- Formális definíciók és szemantika
- Dinamikus tulajdonságok
- Strukturális tulajdonságok
- Széthajtogatás
- Hierarchikus hálók

