Package 'glmmPen'

December 13, 2022

```
Type Package
Title High Dimensional Penalized Generalized Linear Mixed Models
      (pGLMM)
Version 1.5.2.11
Date 2022-12-12
Maintainer Hillary Heiling <a href="https://www.unc.edu">heiling@live.unc.edu</a>
Description Fits high dimensional penalized generalized linear
      mixed models using
      the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm.
      The purpose of the package is to perform variable selection on both the fixed and
      random effects simultaneously for generalized linear mixed models.
      The package supports fitting of Binomial, Gaussian, and Poisson data with canonical links, and
      supports penalization using the MCP, SCAD, or LASSO penalties. The MCECM algorithm
      is described in Rashid et al. (2020) <doi:10.1080/01621459.2019.1671197>.
      The techniques used in the minimization portion of the procedure (the M-step) are
      derived from the procedures of the 'ncvreg' package (Breheny and Huang (2011)
      <a href="https://doi:10.1214/10-AOAS388">> and 'grpreg' package (Breheny and Huang (2015))</a>
      <doi:10.1007/s11222-013-9424-2>), with
      appropriate modifications to account for the estimation and penalization of
      the random effects. The 'ncvreg' and 'grpreg' packages also describe the MCP, SCAD,
      and LASSO penalties.
License GPL (>= 2)
Encoding UTF-8
Imports ggplot2,
      Matrix,
      methods,
      ncvreg,
      reshape2,
      rstan (>= 2.18.1),
      rstantools (\geq 2.0.0),
      stringr,
      mvtnorm,
      MASS
Depends 1me4,
      bigmemory,
      Rcpp (>= 0.12.0),
      R (>= 3.6.0)
```

2 adaptControl

LinkingTo BH (>= 1.66.0),
bigmemory,
Rcpp ($>= 0.12.0$),
RcppArmadillo,
RcppEigen ($>= 0.3.3.3.0$),
rstan (>= 2.18.1),
StanHeaders ($\geq 2.18.0$)
RoxygenNote 7.1.2
NeedsCompilation yes
Author Hillary Heiling [aut, cre], Naim Rashid [aut], Quefeng Li [aut]
Suggests testthat, knitr, rmarkdown
Biarch true
SystemRequirements GNU make

R topics documented:

	adaptControl	 	 	 	2
	basal	 	 	 	3
	glFormula_edit	 	 	 	4
	glmm	 	 	 	5
	glmmPen	 	 	 	7
	glmm_FA	 	 	 	13
	lambdaControl	 	 	 	15
	LambdaSeq	 	 	 	18
	optimControl	 	 	 	19
	pglmmObj-class	 	 	 	22
	plot_mcmc	 	 	 	26
	rControl	 	 	 	27
	sim.data	 	 	 	28
ndex					30

Control of Metropolis-within-Gibbs Adaptive Random Walk Sampling Procedure Controls the adaptive random walk Metropolis-within-Gibbs sampling procedure.

Description

Control of Metropolis-within-Gibbs Adaptive Random Walk Sampling Procedure Controls the adaptive random walk Metropolis-within-Gibbs sampling procedure.

```
adaptControl(batch_length = 100, offset = 0)
```

basal 3

Arguments

batch_length positive integer specifying the number of posterior samples to collect before the

proposal variance is adjusted based on the acceptance rate of the last batch_length accepted posterior samples. Default is set to 100. Batch length restricted to be

no less than 50.

offset non-negative integer specifying an offset value for the increment of the proposal

variance adjustment. Optionally used to ensure the required diminishing adap-

tation condition. Default set to 0.

increment = min(0.01, 1 / sqrt(batch*batch_length + offset))

Value

Function returns a list (inheriting from class "adaptControl") containing parameter specifications for the adaptive random walk sampling procedure.

basal

Basal dataset: A composition of cancer datasets with top scoring pairs (TSPs) as covariates and binary response indicating if the subject's cancer subtype was basal-like. A dataset composed of four datasets combined from studies that contain gene expression data from subjects with several types of cancer. Two of these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma (PDAC), one dataset contains data for subjects with Breast Cancer, and the fourth dataset contains data for subjects with Bladder Cancer. The response of interest is whether or not the subject's cancer subtype was the basal-like subtype. See articles Rashid et al. (2020) "Modeling Between-Study Heterogeneity for Improved Replicability in Gene Signature Selection and Clinical Prediction" and Moffitt et al. (2015) "Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma" for further details on these four datasets.

Description

Basal dataset: A composition of cancer datasets with top scoring pairs (TSPs) as covariates and binary response indicating if the subject's cancer subtype was basal-like.

A dataset composed of four datasets combined from studies that contain gene expression data from subjects with several types of cancer. Two of these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma (PDAC), one dataset contains data for subjects with Breast Cancer, and the fourth dataset contains data for subjects with Bladder Cancer. The response of interest is whether or not the subject's cancer subtype was the basal-like subtype. See articles Rashid et al. (2020) "Modeling Between-Study Heterogeneity for Improved Replicability in Gene Signature Selection and Clinical Prediction" and Moffitt et al. (2015) "Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma" for further details on these four datasets.

Usage

data("basal")

4 glFormula_edit

Format

A list containing the following elements:

y binary response vector; 1 indicates that the subject's cancer was of the basal-like subtype, 0 otherwise

X matrix of 50 top scoring pair (TSP) covariates

group factor indicating which cancer study the observation belongs to, which are given the following descriptions: UNC PDAC, TCGA PDAC, TCGA Bladder Cancer, and UNC Breast Cancer

Z model matrix for random effects; organized first by variable, then by group (groups {1,2,3,4} correspond to studies UNC_PDAC, TCGA_PDAC, TCGA_Bladder, and UNC_Breast)

glFormula_edit

Extracting Useful Vectors and Matrices from Formula and Data Information

Description

Takes the model formula and an optional data frame and converts them into y, X, Z, and group output.

Usage

```
glFormula_edit(
  formula,
  data = NULL,
  family,
  subset,
  weights,
  na.action,
  offset,
  ...
)
```

Arguments

formula

a two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ~ operator and the terms, sepearated by + operators, on the right. Random-effects terms are distinguished by vertical bars ("|") separating expression for design matrices from grouping factors. formula should be of the same format needed for glmer in package lme4. Only one grouping factor will be recognized. The random effects covariates need to be a subset of the fixed effects covariates. The offset must be specified outside of the formula in the 'offset' argument.

data

an optional data frame containing the variables named in formula. Although data is optional, the package authors *strongly* recommend its use. If data is omitted, variables will be taken from the environment of formula (if specified as a formula).

glmm 5

family	a description of the error distribution and link function to be used in the model (a family function or the result of a call to a family function). (See family for details of family functions.)
subset	an optional vector specifying a subset of observations to be used in the fitting process.
weights	an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.
na.action	a function that indicates what should happen when the data contain NAs. The default option na.omit removes observations with any missing values in any of the variables
offset	this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases.
	potential further arguments

Value

a list with the following elements:

4	² r	a model	frama inc	duding of	1 fixed o	nd random	coveriates	the response.	and the
Т	r	a modei	irame inc	uuaing ai	i iixea a	na random	covariates.	the response.	and the

grouping variable

X fixed effects covariates model matrix

reTrms list containing several items relating to the random effects

family specified for data modeling

formula formula

fixed_vars vector of variable names used for fixed effects fwmsgs indicator for a check of the group levels

glmm Fit a Generalized Mixed Model via Monte Carlo Expectation Conditional Minimization (MCECM)

Description

glmm is used to fit a single generalized mixed model via Monte Carlo Expectation Conditional Minimization (MCECM). Unlike glmmPen, no model selection is performed.

```
glmm(
  formula,
  data = NULL,
  family = "binomial",
  covar = NULL,
  offset = NULL,
  optim_options = optimControl(),
  adapt_RW_options = adaptControl(),
  trace = 0,
```

6 glmm

```
tuning_options = lambdaControl(),
progress = TRUE,
...
)
```

Arguments

formula

a two-sided linear formula object describing both the fixed effects and random effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars ("I") separating expression for design matrices from the grouping factor. formula should be of the same format needed for glmer in package lme4. Only one grouping factor will be recognized. The random effects covariates need to be a subset of the fixed effects covariates. The offset must be specified outside of the formula in the 'offset' argument.

data

an optional data frame containing the variables named in formula. If data is omitted, variables will be taken from the environment of formula.

family

a description of the error distribution and link function to be used in the model. Currently, the glmmPen algorithm allows the Binomial ("binomial" or binomial()), Gaussian ("gaussian" or gaussian()), and Poisson ("poisson" or poisson()) families with canonical links only.

covar

character string specifying whether the covariance matrix should be unstructured ("unstructured") or diagonal with no covariances between variables ("independent"). Default is set to NULL. If covar is set to NULL and the number of random effects predictors (not including the intercept) is greater than or equal to 10 (i.e. high dimensional), then the algorithm automatically assumes an independent covariance structure and covar is set to "independent". Otherwise if covar is set to NULL and the number of random effects predictors is less than 10, then the algorithm automatically assumes an unstructured covariance structure and covar is set to "unstructured".

offset

This can be used to specify an *a priori* known component to be included in the linear predictor during fitting. Default set to NULL (no offset). If the data argument is not NULL, this should be a numeric vector of length equal to the number of cases (the length of the response vector). If the data argument specifies a data.frame, the offset argument should specify the name of a column in the data.frame.

optim_options

a structure of class "optimControl" created from function optimControl that specifies several optimization parameters. See the documentation for optimControl for more details on defaults.

adapt_RW_options

a list of class "adaptControl" from function adaptControl containing the control parameters for the adaptive random walk Metropolis-within-Gibbs procedure. Ignored if optimControl parameter sampler is set to "stan" (default) or "independence".

trace

an integer specifying print output to include as function runs. Default value is 0. See Details for more information about output provided when trace = 0, 1, or 2.

tuning_options

a list of class "selectControl" or "lambdaControl" resulting from selectControl or lambdaControl containing additional control parameters. When function glmm is used,the algorithm may be run using one specific set of penalty parameters lambda0 and lambda1 by specifying such values in lambdaControl(). The default for glmm is to run the model fit with no penalization (lambda0 =

gImmPen 7

lambda1 = 0). When function glmmPen is run, tuning_options is specified using selectControl(). See the lambdaControl and selectControl documentation for further details.

progress

a logical value indicating if additional output should be given showing the progress of the fit procedure. If TRUE, such output includes iteration-level information for the fit procedure (iteration number EM_iter, number of MCMC samples nMC, average Euclidean distance between current coefficients and coefficients from t-defined in optimControl-iterations back EM_conv, and number of non-zero fixed and random effects covariates not including the intercept). Additionally, progress = TRUE gives some other information regarding the progress of the variable selection procedure, including the model selection criteria and log-likelihood estimates for each model fit. Default is TRUE.

additional arguments that could be passed into glmmPen. See glmmPen for further details.

Details

. . .

The glmm function can be used to fit a single generalized mixed model. While this approach is meant to be used in the case where the user knows which covariates belong in the fixed and random effects and no penalization is required, one is allowed to specify non-zero fixed and random effects penalties using lambdaControl and the (...) arguments. The (...) allow for specification of penalty-related arguments; see glmmPen for details. For a high dimensional situation, the user may want to fit a minimal penalty model using a small penalty for the fixed and random effects and save the posterior samples from this minimal penalty model for use in any BIC-ICQ calculations during selection within glmmPen. Specifying a file name in the 'BICq_posterior' argument will save the posterior samples from the glmm model into a big.matrix with this file name, see the Details section of glmmPen for additional details.

Value

A reference class object of class pglmmObj for which many methods are available (e.g. methods(class = "pglmmObj"))

glmmPen

Fit Penalized Generalized Mixed Models via Monte Carlo Expectation Conditional Minimization (MCECM)

Description

glmmPen is used to fit penalized generalized mixed models via Monte Carlo Expectation Conditional Minimization (MCECM). The purpose of the function is to perform variable selection on both the fixed and random effects simultaneously for the generalized linear mixed model. glmmPen selects the best model using BIC-type selection criteria (see selectControl documentation for further details). To improve the speed of the algorithm, consider setting var_restrictions = "fixef" within the optimControl options.

```
glmmPen(
  formula,
  data = NULL,
```

8 glmmPen

```
family = "binomial",
  covar = NULL,
  offset = NULL,
  fixef_noPen = NULL,
  penalty = c("MCP", "SCAD", "lasso"),
  alpha = 1,
  gamma_penalty = switch(penalty[1], SCAD = 4, 3),
  optim_options = optimControl(),
  adapt_RW_options = adaptControl(),
  trace = 0,
  tuning_options = selectControl(),
  BICq_posterior = NULL,
  progress = TRUE,
  ...
)
```

Arguments

formula

a two-sided linear formula object describing both the fixed effects and random effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars ("I") separating expression for design matrices from the grouping factor. formula should be of the same format needed for glmer in package lme4. Only one grouping factor will be recognized. The random effects covariates need to be a subset of the fixed effects covariates. The offset must be specified outside of the formula in the 'offset' argument.

data

an optional data frame containing the variables named in formula. If data is omitted, variables will be taken from the environment of formula.

family

a description of the error distribution and link function to be used in the model. Currently, the glmmPen algorithm allows the Binomial ("binomial" or binomial()), Gaussian ("gaussian" or gaussian()), and Poisson ("poisson" or poisson()) families with canonical links only.

covar

character string specifying whether the covariance matrix should be unstructured ("unstructured") or diagonal with no covariances between variables ("independent"). Default is set to NULL. If covar is set to NULL and the number of random effects predictors (not including the intercept) is greater than or equal to 10 (i.e. high dimensional), then the algorithm automatically assumes an independent covariance structure and covar is set to "independent". Otherwise if covar is set to NULL and the number of random effects predictors is less than 10, then the algorithm automatically assumes an unstructured covariance structure and covar is set to "unstructured".

offset

This can be used to specify an *a priori* known component to be included in the linear predictor during fitting. Default set to NULL (no offset). If the data argument is not NULL, this should be a numeric vector of length equal to the number of cases (the length of the response vector). If the data argument specifies a data.frame, the offset argument should specify the name of a column in the data.frame.

fixef_noPen

Optional vector of 0's and 1's of the same length as the number of fixed effects covariates used in the model. Value 0 indicates the variable should not have its fixed effect coefficient penalized, 1 indicates that it can be penalized. Order should correspond to the same order of the fixed effects given in the formula.

glmmPen 9

penalty

character describing the type of penalty to use in the variable selection procedure. Options include 'MCP', 'SCAD', and 'lasso'. Default is MCP penalty. If the random effect covariance matrix is "unstructured", then a group MCP, group SCAD, or group LASSO penalty is used on the random effects coefficients. See Breheny and Huang (2011) <doi:10.1214/10-AOAS388> and Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2> for details of these penalties.

alpha

Tuning parameter for the Mnet estimator which controls the relative contributions from the MCP/SCAD/LASSO penalty and the ridge, or L2, penalty. alpha=1 is equivalent to the MCP/SCAD/LASSO penalty, while alpha=0 is equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly zero

gamma_penalty

The scaling factor of the MCP and SCAD penalties. Not used by LASSO penalty. Default is 4.0 for SCAD and 3.0 for MCP. See Breheny and Huang (2011) <doi:10.1214/10-AOAS388> and Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2> for further details.

optim_options

a structure of class "optimControl" created from function optimControl that specifies several optimization parameters. See the documentation for optimControl for more details on defaults.

adapt_RW_options

a list of class "adaptControl" from function adaptControl containing the control parameters for the adaptive random walk Metropolis-within-Gibbs procedure. Ignored if optimControl parameter sampler is set to "stan" (default) or "independence".

trace

an integer specifying print output to include as function runs. Default value is 0. See Details for more information about output provided when trace = 0, 1, or 2.

tuning_options

a list of class "selectControl" or "lambdaControl" resulting from selectControl or lambdaControl containing additional control parameters. When function glmm is used,the algorithm may be run using one specific set of penalty parameters lambda0 and lambda1 by specifying such values in lambdaControl(). The default for glmm is to run the model fit with no penalization (lambda0 = lambda1 = 0). When function glmmPen is run, tuning_options is specified using selectControl(). See the lambdaControl and selectControl documentation for further details.

BICq_posterior

an optional character string expressing the path and file basename of a file combination that will file-back or currently file-backs a big.matrix of the posterior samples from the minimal penalty model used for the BIC-ICQ calculation used for model selection. T (BIC-ICQ reference: Ibrahim et al (2011) <doi:10.1111/j.1541-0420.2010.01463.x>). If this argument is specified as NULL (default) and BIC-ICQ calculations are requested (see selectControl) for details), the posterior samples will be saved in the file combination 'BICq_Posterior_Draws.bin' and 'BICq_Posterior_Draws.desc' in the working directory. See 'Details' section for additional details about the required format of BICq_posterior and the file-backed big matrix.

progress

a logical value indicating if additional output should be given showing the progress of the fit procedure. If TRUE, such output includes iteration-level information for the fit procedure (iteration number EM_iter, number of MCMC samples nMC, average Euclidean distance between current coefficients and coefficients from t-defined in optimControl-iterations back EM_conv, and number of non-zero fixed and random effects covariates not including the intercept). Additionally, progress = TRUE gives some other information regarding the progress of the

10 glmmPen_FA

variable selection procedure, including the model selection criteria and log-likelihood estimates for each model fit. Default is TRUE.

additional arguments that could be passed into glmmPen. See glmmPen_FA for further details.

Details

Argument BICq_posterior details: If the BIC_option in selectControl (tuning_options) is specified to be 'BICq', this requests the calculation of the BIC-ICO criterion during the selection process. For the BIC-ICQ criterion to be calculated, a minimal penalty model assuming a small valued lambda penalty needs to be fit, and the posterior samples from this minimal penalty model need to be used. In order to avoid repetitive calculations of this minimal penalty model (i.e. if the user wants to re-run glmmPen with a different set of penalty parameters), a big.matrix of these posterior samples will be file-backed as two files: a backing file with extension '.bin' and a descriptor file with extension '.desc'. The BICq_posterior argument should contain a path and a filename of the form "./path/filename" such that the backingfile and the descriptor file would then be saved as "./path/filename.bin" and "./path/filename.desc", respectively. If BICq_posterior is set to NULL, then by default, the backingfile and descriptor file are saved in the working directory as "BICq_Posterior_Draws.bin" and "BICq_Posterior_Draws.desc". If the big matrix of posterior samples is already file-backed, BICq_posterior should specify the path and basename of the appropriate files (again of form "./path/filename"); the minimal penalty model will not be fit again and the big.matrix of posterior samples will be read using the attach.big.matrix function of the bigmemory package and used in the BIC-ICQ calculations. If the appropriate files do not exist or BICq_posterior is specified as NULL, the minimal penalty model will be fit and the minimal penalty model posterior samples will be saved as specified above. The algorithm will save 10⁴ posterior samples automatically.

Trace details: The value of 0 (default) does not output any extra information. The value of 1 additionally outputs the updated coefficients, updated covariance matrix values, and the number of coordinate descent iterations used for the M step for each EM iteration. When pre-screening procedure is used and/or if the BIC-ICQ criterion is requested, trace = 1 gives additional information about the penalties used for the 'minimal penalty model' fit procedure. If Stan is not used as the E-step sampling mechanism, the value of 2 outputs all of the above plus gibbs acceptance rate information for the adaptive random walk and independence samplers and the updated proposal standard deviation for the adaptive random walk.

Value

A reference class object of class pglmmObj for which many methods are available (e.g. methods(class = "pglmmObj"), see ?pglmmObj for additional documentation)

glmmPen_FA

Fit Penalized Generalized Mixed Models via Monte Carlo Expectation Conditional Minimization (MCECM)

Description

glmmPen_FA is used to fit penalized generalized linear mixed models via Monte Carlo Expectation Conditional Minimization (MCECM). The purpose of the function is to perform variable selection on both the fixed and random effects simultaneously for the generalized linear mixed model. This function is similar to glmmPen, except that the assumptions about the random effect covariance

glmmPen_FA 11

matrices differ between the methods. glmmPen_FA selects the best model using BIC-type selection criteria (see selectControl documentation for further details). Function is currently available for Binomial and Poisson families with canonical links. To improve the speed of the algorithm, consider setting var_restrictions = "fixef" within the optimControl options.

Usage

```
glmmPen_FA(
  formula,
  data = NULL,
  family = "binomial",
  offset = NULL,
  r_estimation = rControl(),
  fixef_noPen = NULL,
  penalty = c("MCP", "SCAD", "lasso"),
  alpha = 1,
  gamma_penalty = switch(penalty[1], SCAD = 4, 3),
  optim_options = optimControl(),
  adapt_RW_options = adaptControl(),
  trace = 0,
  tuning_options = selectControl(),
 BICq_posterior = NULL,
  progress = TRUE
)
```

Arguments

formula

a two-sided linear formula object describing both the fixed effects and random effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars ("I") separating expression for design matrices from the grouping factor. formula should be of the same format needed for glmer in package lme4. Only one grouping factor will be recognized. The random effects covariates need to be a subset of the fixed effects covariates. The offset must be specified outside of the formula in the 'offset' argument.

data

an optional data frame containing the variables named in formula. If data is omitted, variables will be taken from the environment of formula.

family

a description of the error distribution and link function to be used in the model. Currently, the glmmPen algorithm allows the Binomial ("binomial" or binomial()), Gaussian ("gaussian" or gaussian()), and Poisson ("poisson" or poisson()) families with canonical links only.

offset

This can be used to specify an *a priori* known component to be included in the linear predictor during fitting. Default set to NULL (no offset). If the data argument is not NULL, this should be a numeric vector of length equal to the number of cases (the length of the response vector). If the data argument specifies a data.frame, the offset argument should specify the name of a column in the data.frame.

r_estimation

a list of class "rControl" from function rControl containing the control parameters for the estimation of the number of latent factors to use in the glmmPen_FA and glmm_FA estimation procedures.

fixef_noPen

Optional vector of 0's and 1's of the same length as the number of fixed effects covariates used in the model. Value 0 indicates the variable should not have

12 glmmPen_FA

its fixed effect coefficient penalized, 1 indicates that it can be penalized. Order should correspond to the same order of the fixed effects given in the formula.

penalty

character describing the type of penalty to use in the variable selection procedure. Options include 'MCP', 'SCAD', and 'lasso'. Default is MCP penalty. If the random effect covariance matrix is "unstructured", then a group MCP, group SCAD, or group LASSO penalty is used on the random effects coefficients. See Breheny and Huang (2011) <doi:10.1214/10-AOAS388> and Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2> for details of these penalties.

alpha

Tuning parameter for the Mnet estimator which controls the relative contributions from the MCP/SCAD/LASSO penalty and the ridge, or L2, penalty. alpha=1 is equivalent to the MCP/SCAD/LASSO penalty, while alpha=0 is equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly zero

gamma_penalty

The scaling factor of the MCP and SCAD penalties. Not used by LASSO penalty. Default is 4.0 for SCAD and 3.0 for MCP. See Breheny and Huang (2011) <doi:10.1214/10-AOAS388> and Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2> for further details.

optim_options

a structure of class "optimControl" created from function optimControl that specifies several optimization parameters. See the documentation for optimControl for more details on defaults.

adapt_RW_options

a list of class "adaptControl" from function adaptControl containing the control parameters for the adaptive random walk Metropolis-within-Gibbs procedure. Ignored if optimControl parameter sampler is set to "stan" (default) or "independence".

trace

an integer specifying print output to include as function runs. Default value is 0. See Details for more information about output provided when trace = 0, 1, or 2.

tuning_options

a list of class "selectControl" or "lambdaControl" resulting from selectControl or lambdaControl containing additional control parameters. When function glmm is used,the algorithm may be run using one specific set of penalty parameters lambda0 and lambda1 by specifying such values in lambdaControl(). The default for glmm is to run the model fit with no penalization (lambda0 = lambda1 = 0). When function glmmPen is run, tuning_options is specified using selectControl(). See the lambdaControl and selectControl documentation for further details.

BICq_posterior

an optional character string expressing the path and file basename of a file combination that will file-back or currently file-backs a big.matrix of the posterior samples from the minimal penalty model used for the BIC-ICQ calculation used for model selection. T (BIC-ICQ reference: Ibrahim et al (2011) <doi:10.1111/j.1541-0420.2010.01463.x>). If this argument is specified as NULL (default) and BIC-ICQ calculations are requested (see selectControl) for details), the posterior samples will be saved in the file combination 'BICq_Posterior_Draws.bin' and 'BICq_Posterior_Draws.desc' in the working directory. See 'Details' section for additional details about the required format of BICq_posterior and the file-backed big matrix.

progress

a logical value indicating if additional output should be given showing the progress of the fit procedure. If TRUE, such output includes iteration-level information for the fit procedure (iteration number EM_iter, number of MCMC samples nMC, average Euclidean distance between current coefficients and coefficients from t-defined in optimControl-iterations back EM_conv, and number of non-zero

glmm_FA 13

fixed and random effects covariates not including the intercept). Additionally, progress = TRUE gives some other information regarding the progress of the variable selection procedure, including the model selection criteria and log-likelihood estimates for each model fit. Default is TRUE.

Details

Argument BICq_posterior details: If the BIC_option in selectControl (tuning_options) is specified to be 'BICq', this requests the calculation of the BIC-ICQ criterion during the selection process. For the BIC-ICQ criterion to be calculated, a full model assuming a small valued lambda penalty needs to be fit, and the posterior draws from this full model need to be used. In order to avoid repetitive calculations of this full model (i.e. if the user wants to re-run glmmPen with a different set of penalty parameters), a big.matrix of these posterior draws will be file-backed as two files: a backing file with extention '.bin' and a descriptor file with extension '.desc'. The BICq_posterior argument should contain a path and a filename with no extension of the form "./path/filename" such that the backingfile and the descriptor file would then be saved as "./path/filename.bin" and "./path/filename.desc", respectively. If BICq_posterior is set to NULL, then by default, the backingfile and descriptor file are saved in the working directory as "BICq_Posterior_Draws.bin" and "BICq_Posterior_Draws.desc". If the big matrix of posterior draws is already file-backed, BICq_posterior should specify the path and basename of the appropriate files (again of form "./path/filename"); the full model will not be fit again and the big matrix of posterior draws will be read using the attach.big.matrix function of the bigmemory package and used in the BIC-ICQ calcuations. If the appropriate files do not exist or BICq_posterior is specified as NULL, the full model will be fit and the full model posterior draws will be saved as specified above. The algorithm will save 10⁴ posterior draws automatically.

Trace details: The value of 0 (default) does not output any extra information. The value of 1 additionally outputs the updated coefficients, updated covariance matrix values, and the number of coordinate descent iterations used for the M step for each EM iteration. When pre-screening procedure is used and/or if the BIC-ICQ criterion is requested, trace = 1 gives additional information about the penalties used for the 'full model' fit procedure. If Stan is not used as the E-step sampling mechanism, the value of 2 outputs all of the above plus gibbs acceptance rate information for the adaptive random walk and independence samplers and the updated proposal standard deviation for the adaptive random walk.

Value

A reference class object of class pglmmObj for which many methods are available (e.g. methods(class = "pglmmObj"), see ?pglmmObj for additional documentation)

glmm_FA	Fit a Generalized Mixed Model via Monte Carlo Expectation Conditional Minimization (MCECM)

Description

glmm_FA is used to fit a single generalized linear mixed model via Monte Carlo Expectation Conditional Minimization (MCECM). No model selection is performed.

14 glmm_FA

Usage

```
glmm_FA(
  formula,
  data = NULL,
  family = "binomial",
  offset = NULL,
  r_estimation = rControl(),
  optim_options = optimControl(),
  adapt_RW_options = adaptControl(),
  trace = 0,
  tuning_options = lambdaControl(),
  progress = TRUE,
  ...
)
```

Arguments

formula

a two-sided linear formula object describing both the fixed effects and random effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars ("I") separating expression for design matrices from the grouping factor. formula should be of the same format needed for glmer in package lme4. Only one grouping factor will be recognized. The random effects covariates need to be a subset of the fixed effects covariates. The offset must be specified outside of the formula in the 'offset' argument.

data

an optional data frame containing the variables named in formula. If data is omitted, variables will be taken from the environment of formula.

family

a description of the error distribution and link function to be used in the model. Currently, the glmmPen algorithm allows the Binomial ("binomial" or binomial()), Gaussian ("gaussian" or gaussian()), and Poisson ("poisson" or poisson()) families with canonical links only.

offset

This can be used to specify an *a priori* known component to be included in the linear predictor during fitting. Default set to NULL (no offset). If the data argument is not NULL, this should be a numeric vector of length equal to the number of cases (the length of the response vector). If the data argument specifies a data.frame, the offset argument should specify the name of a column in the data.frame.

r_estimation

a list of class "rControl" from function rControl containing the control parameters for the estimation of the number of latent factors to use in the glmmPen_FA and glmm_FA estimation procedures.

optim_options

a structure of class "optimControl" created from function optimControl that specifies several optimization parameters. See the documentation for optimControl for more details on defaults.

adapt_RW_options

a list of class "adaptControl" from function adaptControl containing the control parameters for the adaptive random walk Metropolis-within-Gibbs procedure. Ignored if optimControl parameter sampler is set to "stan" (default) or "independence".

trace

an integer specifying print output to include as function runs. Default value is 0. See Details for more information about output provided when trace = 0, 1, or 2.

lambdaControl 15

tuning_options a list of class "selectControl" or "lambdaControl" resulting from selectControl or lambdaControl containing additional control parameters. When function glmm is used, the algorithm may be run using one specific set of penalty parameters lambda0 and lambda1 by specifying such values in lambdaControl(). The default for glmm is to run the model fit with no penalization (lambda θ = lambda1 = 0). When function glmmPen is run, tuning_options is specified using selectControl(). See the lambdaControl and selectControl documentation for further details.

progress

a logical value indicating if additional output should be given showing the progress of the fit procedure. If TRUE, such output includes iteration-level information for the fit procedure (iteration number EM_iter, number of MCMC samples nMC, average Euclidean distance between current coefficients and coefficients from t-defined in optimControl-iterations back EM_conv, and number of non-zero fixed and random effects covariates not including the intercept). Additionally, progress = TRUE gives some other information regarding the progress of the variable selection procedure, including the model selection criteria and loglikelihood estimates for each model fit. Default is TRUE.

additional arguments that could be passed into glmmPen_FA. See glmmPen_FA for further details.

Details

The glmm_FA function can be used to fit a single generalized linear mixed model. While this approach is meant to be used in the case where the user knows which covariates belong in the fixed and random effects and no penalization is required, one is allowed to specify non-zero fixed and random effects penalties using lambdaControl and the (...) arguments. The (...) allow for specification of penalty-related arguments; see glmmPen_FA for details. For a high dimensional situation, the user may want to fit a full model using a small penalty for the fixed and random effects and save the posterior draws from this full model for use in any BIC-ICQ calculations during selection within glmmPen_FA. Specifying a file name in the 'BICq posterior' argument will save the posterior draws from the glmm_FA model into a big.matrix with this file name, see the Details section of glmmPen_FA for additional details.

Value

A reference class object of class pglmm0bj for which many methods are available (e.g. methods (class = "pglmmObj"))

lambdaControl

Control of Penalization Parameters and Selection Criteria

Description

Constructs control structures for penalized mixed model fitting.

```
lambdaControl(lambda0 = 0, lambda1 = 0)
selectControl(
  lambda0\_seq = NULL,
```

16 lambdaControl

```
lambda1_seq = NULL,
nlambda = 10,
search = c("abbrev", "full_grid"),
BIC_option = c("BICq", "BICh", "BIC", "BICNgrp"),
logLik_calc = switch(BIC_option[1], BICq = FALSE, TRUE),
lambda.min = NULL,
pre_screen = TRUE,
lambda.min.presc = NULL
)
```

Arguments

lambda0 a non-negative numeric penalty parameter for the fixed effects coefficients

lambda1 a non-negative numeric penalty parameter for the (grouped) random effects co-

variance coefficients

lambda0_seq, lambda1_seq

a sequence of non-negative numeric penalty parameters for the fixed and random effect coefficients (lambda0_seq and lambda1_seq, respectively). If NULL, then a sequence will be automatically calculated. See 'Details' section for more

details on these default calculations.

nlambda

positive integer specifying number of penalty parameters to use for the fixed and random effects penalty parameters. Default set to 10. Only used if either lambda0_seq or lambda1_seq remain unspecified by the user (one or both of these arguments set to NULL) and, consequently, one or more default sequences need to be calculated.

search

character string of "abbrev" (default) or "full_grid" indicating if the search of models over the penalty parameter space should be the full grid search (total number of models equals 'nlambda'^2 or length('lambda0_seq')*length('lambda1_seq')) or an abbreviated grid search. The abbreviated grid search is described in more detail in the Details section. Te authors highly recommend the abbreviated grid search.

 ${\tt BIC_option}$

character string specifying the selection criteria used to select the 'best' model. Default "BICq" option specifies the BIC-ICQ criterion (Ibrahim et al (2011) <doi:10.1111/j.1541-0420.2010.01463.x>), which requires a fit of a 'minimum penalty' model; a small penalty (the minimum of the penalty sequence) is used for the fixed and random effects. See "Details" section for what these small penalties will be. The "BICh" option utilizes the hybrid BIC value described in Delattre, Lavielle, and Poursat (2014) <doi:10.1214/14-EJS890>. The regular "BIC" option penalty term uses (total non-zero coefficients)*(length(y) = total number observations). The "BICNgrp" option penalty term uses (total non-zero coefficients)*(nlevels(group) = number groups).

logLik_calc

logical value specifying if the log likelihood (and log-likelihood based calculations BIC, BICh, and BICNgrp) should be calculated for all of the models in the selection procedure. If BIC-ICQ is used for selection, the log-likelihood is not needed for each model. However, if users are interested in comparing the best models from BIC-ICQ and other BIC-type selection criteria, setting logLik_calc to TRUE will calculate these other quantities for all of the models.

lambda.min

numeric fraction between 0 and 1. The sequence of the lambda penalty parameters ranges from the maximum lambda where all fixed and random effects are penalized to 0 and a minimum lambda value, which equals a small fraction of

lambdaControl 17

the maximum lambda. The parameter lambda.min specifies this fraction. Default value is set to NULL, which automatically selects lambda.min to equal 0.01 when the number of observations is greater than the number of fixed effects predictors and 0.05 otherwise. Only used if either lambda@_seq or lambdal_seq remain unspecified by the user (one or both of these sequence arguments set to NULL) and, consequently, one or more default sequences need to be calculated.

pre_screen

logical value indicating whether pre-screening should be performed before model selection (default TRUE). If the number of random effects covariates considered is 4 or less, then no pre-screening will be performed. Pre-screening removes random effects from consideration during the model selection process, which can significantly speed up the algorithm. See "Details" section for a further discussion.

lambda.min.presc

numeric fraction between 0 and 1. During pre-screening and the minimal penalty model fit for the BIC-ICQ calculation, the small penalty used on the random effect is the fraction lambda.min.presc multiplied by the maximum penalty parameter that penalizes all fixed and random effects to 0. If left as NULL, the default value is 0.01 when the number of random effect covariates is 10 or less and 0.05 otherwise. Only used if lambda1_seq remains unspecified by the user (this argument set to NULL so the random effects penalty parameter sequence needs to be automatically calculated) AND either the pre-screening procedure is selected by the argument pre_screen or the BIC-ICQ is selected as the model selection criteria, i.e., BIC_option = "BICq". See the "Details" section for a further discussion.

Details

If left as the default NULL values, the lambda0_seq and lambda1_seq numeric sequences are automatically calculated. The sequence will be calculated in the same manner as nowneg calculates the range: the max value (let's denote this as lambda_max) penalizes all fixed and random effects to 0, the min value is a small portion of max (lambda.min*lambda_max), and the sequence is composed of nlambda values ranging from these min and max values spread evenly on the log scale. Unlike nowneg, the order of penalty values used in the algorithm must run from the min lambda to the max lambda (as opposed to running from max lambda to min lambda). The length of the sequence is specified by nlambda. By default, these sequences are calculated using LambdaSeq.

The lambda0 and lambda1 arguments used within the glmm function allow for a user to fit a model with a single non-zero penalty parameter combination. However, this is generally not recommended.

Abbreviated grid search: The abbreviated grid search proceeds in two stages. In stage 1, the algorithm fits the following series of models: the fixed effects penalty parameter remains a fixed value evaluated at the minimum of the fixed effects penalty parameters, and all random effects penalty parameters are examined. The 'best' model from this first stage of models determines the optimum random effect penalty parameter. In stage 2, the algorithm fits the following series of models: the random effects penalty parameter remains fixed at the value of the optimum random effect penalty parameter (from stage 1) and all fixed effects penalty parameters are considered. The best overall model is the best model from stage 2. This reduces the number of models considered to length('lambda0_seq') + length('lambda1_seq'). The authors found that this abbreviated grid search worked well in simulations, and performed considerably faster than the full grid search that examined all possible fixed and random effect penalty parameter combinations.

The arguments nlambda and lambda.min are only used if one or both of the lambda0_seq and lambda1_seq penalty sequences (corresponding to the fixed and random effects penalty sequences,

18 LambdaSeq

respectively) remain unspecified by the user (one or both of these arguments left as NULL), indicating that the algorithm needs to calculate default penalty sequences.

The argument lambda.min.presc is only used under the following condition: lambda1_seq remains unspecified by the user (this argument set to NULL so the random effects penalty parameter sequence needs to be calculated) AND either the pre-screening procedure is selected by the argument pre_screen or the BIC-ICQ is selected as the model selection criteria, i.e., BIC_option = "BICq". If lambda1_seq is specified by the user, the minimum value in that sequence will be used as the random effect penalty in the pre-screening procedure and/or the minimal penalty model for the BIC-ICQ calculation.

BIC-ICQ calculation: This model selection criteria requires the fitting of a 'minimal penalty' model, which fits a model with a small penalty on the fixed and random effects. For the fixed effects penalty, the minimal penalty is: (a) 0 if the number of fixed effects covariates is 4 or less or (b) the minimum fixed effect penalty from the fixed effects penalty sequence (either from the default sequence or from the sequence specified by the user). For the random effects penalty, the minimal penalty is (a) 0 if the number of random effects covariates is 4 or less; (b) the minimum random effect penalty from the random effects penalty sequence specified by the user, or (c) lambda_min.presc multiplied to the lambda_max maximum penalty specified above when a default random effects penalty sequence is calculated.

Pre-screening: The minimum fixed effects penalty used in the pre-screening stage will be the minimum penalty of the fixed effects penalty sequence, lambda0_seq. The minimum random effects penalty used in the pre-screening stage will be either (a) the minimum random effects penalty in the sequence lambda1_seq if this sequence specified by the user, or (b) lambda.min.pres x lambda_max, where lambda_max was described above.

Value

The *Control functions return a list (inheriting from class "pglmmControl") containing parameter values that determine settings for variable selection.

LambdaSeq

Calculation of Penalty Parameter Sequence (Lambda Sequence)

Description

Calculates the sequence of penalty parameters used in the model selection procedure. This function calls functions from package novreg.

```
LambdaSeq(
   X,
   y,
   family,
   alpha = 1,
   lambda.min = NULL,
   nlambda = 10,
   penalty.factor = NULL
)
```

optimControl 19

Arguments

X matrix of standardized fixed effects (see std function in novreg documenation).

X should not include intercept.

y numeric vector of response values

family a description of the error distribution and link function to be used in the model.

Currently, the glmmPen algorithm allows the Binomial ("binomial" or binomial()), Gaussian ("gaussian" or gaussian()), and Poisson ("poisson" or poisson o

son()) families with canonical links only.

alpha Tuning parameter for the Mnet estimator which controls the relative contri-

butions from the MCP/SCAD/LASSO penalty and the ridge, or L2, penalty. alpha=1 is equivalent to the MCP/SCAD/LASSO penalty, while alpha=0 is equivalent to ridge regression. However, alpha=0 is not supported; alpha may

be arbitrarily small, but not exactly zero

lambda.min numeric fraction between 0 and 1. The sequence of the lambda penalty param-

eters ranges from the maximum lambda where all fixed and random effects are penalized to 0 and a minimum lambda value, which equals a small fraction of the maximum lambda. The parameter lambda.min specifies this fraction. Default value is set to NULL, which automatically selects lambda.min to equal 0.01 when the number of observations is greater than the number of fixed effects predictors and 0.05 otherwise. Only used if either lambda@_seq or lambdal_seq remain unspecified by the user (one or both of these sequence arguments set to

positive integer specifying number of penalty parameters (lambda) with which

NULL) and, consequently, one or more default sequences need to be calculated.

to fit a model.

penalty.factor an optional numeric vector equal to the fixef_noPen argument in glmmPen

Value

numeric sequence of penalty parameters of length nlambda ranging from the minimum penalty parameter (first element) equal to fraction lambda.min multiplied by the maximum penalty parameter to the maximum penalty parameter (last element)

optimControl

nlambda

Control of Penalized Generalized Linear Mixed Model Fitting

Description

Constructs the control structure for the optimization of the penalized mixed model fit algorithm.

```
optimControl(
  var_restrictions = c("none", "fixef"),
  conv_EM = 0.0015,
  conv_CD = 5e-04,
  nMC_burnin = NULL,
  nMC_start = NULL,
  nMC_max = NULL,
  nMC_report = 5000,
```

20 optimControl

```
maxitEM = NULL,
maxit_CD = 50,
M = 10000,
t = 2,
mcc = 2,
sampler = c("stan", "random_walk", "independence"),
var_start = "recommend",
step_size = 1,
standardization = TRUE,
convEM_type = c("AvgEuclid1", "maxdiff", "AvgEuclid2", "Qfun"),
B_init_type = c("deterministic", "data", "random")
)
```

Arguments

var_restrictions

character string indicating how the random effect covariance matrix should be initialized at the beginning of the algorithm when penalties are applied to the coefficients. If "none" (default), all random effect predictors are initialized to have non-zero variances. If "fixef", the code first examines the initialized fixed effects (initialized using a regular penalized GLM), and only the random effect predictors that are initialized with non-zero fixed effects are initialized with non-zero variances.

conv_EM

a non-negative numeric convergence criteria for the convergence of the EM algorithm. Default is 0.0015. EM algorithm is considered to have converge if the average Euclidean distance between the current coefficient estimates and the coefficient estimates from t EM iterations back is less than conv_EM mcc times in a row. See t and mcc for more details.

conv_CD

a non-negative numeric convergence criteria for the convergence of the grouped coordinate descent loop within the M step of the EM algorithm. Default 0.0005.

nMC_burnin

positive integer specifying the number of posterior samples to use as burn-in for each E step in the EM algorithm. If set to NULL, the algorithm inputs the following defaults: Default 250 when the number of random effects predictors is less than or equal to 10; default 100 otherwise. Function will not allow nMC_burnin to be less than 100.

nMC_start

a positive integer for the initial number of Monte Carlo draws. If set to NULL, the algorithm inputs the following defaults: Default 250 when the number of random effects predictors is less than or equal to 10; default 100 otherwise.

 $\mathsf{nMC}_\mathsf{max}$

a positive integer for the maximum number of allowed Monte Carlo draws used in each step of the EM algorithm. If set to NULL, the algorithm inputs the following defaults: When the number of random effect covariates is greater than 10, the default is set to 1000; when the number of random effect covariates is 10 or less, the default is set to 2500.

nMC_report

a positive integer for the number of posterior samples to save from the final model. These posterior samples can be used for diagnostic purposes, see plot_mcmc. Default set to 5000.

maxitEM

a positive integer for the maximum number of allowed EM iterations. If set to NULL, then the algorithm inputs the following defaults: Default equals 50 for the Binomial and Poisson families, 65 for the Gaussian family.

optimControl 21

maxit_CD

a positive integer for the maximum number of allowed iterations for the coordinate descent algorithms used within the M-step of each EM iteration. Default equals 50.

М

positive integer specifying the number of posterior samples to use within the Pajor log-likelihood calculation. Default is 10⁴; minimum allowed value is 5000

t

the convergence criteria is based on the average Euclidean distance between the most recent coefficient estimates and the coefficient estimates from t EM iterations back. Positive integer, default equals 2.

mcc

the number of times the convergence criteria must be met before the algorithm is seen as having converged (mcc for 'meet condition counter'). Default set to 2. Value restricted to be no less than 2.

sampler

character string specifying whether the posterior samples of the random effects should be drawn using Stan (default, from package rstan) or the Metropolis-within-Gibbs procedure incorporating an adaptive random walk sampler ("random_walk") or an independence sampler ("independence"). If using the random walk sampler, see adaptControl for some additional control structure parameters.

var_start

either the character string "recommend" or a positive number specifying the starting values to initialize the variance of the covariance matrix. For glmmPen, the default "recommend" first fits a simple model with a fixed and random intercept only using the lme4 package. The random intercept variance estimate from this model is then multiplied by 2 and used as the starting variance. For glmmPen_FA, the default is set to 0.10 (see B_init_type for further information)

step_size

positive numeric value indicating the starting step size to use in the Majorization-Minimization scheme of the M-step. Only relevant when the distributional assumption used is not Binomial or Gaussian with canonical links (e.g. Poisson with log link)

standardization

logical value indicating whether covariates should standardized (TRUE, default) or unstandardized (FALSE) before being used within the algorithm. If standardization = TRUE, then the standardized covariates will also be used to create the Z matrix used in the estimation of the random effects.

convEM_type

character string indicating the type of convergence criteria to use within the EM algorithm to determine when a model has converged. The default is "AvgEuclid1", which calculates the average Euclidean distance between the most recent coefficient vector and the coefficient vector t EM iterations back (Euclidean distance divided by the number of non-zero coefficients t EM iterations back). Alternative convergence options include "maxdiff", which determines convergence based on the maximum difference between the coefficient vectors; "AvgEuclid2", which is similar to "AvgEuclid1" except it divides the Euclidean distance by the square-root of the number of non-zero coefficients; and "Qfun", which determines convergence based on the relative difference in the Q-function estimates calculated with the most recent coefficient vector and the coefficient vector t EM iterations back.

B_init_type

character string indicating how the B matrix within the glmmPen_FA method should be initialized. (This argument is not used within the glmmPen function.) The default "deterministic" initializes all non-zero variance and covariance values of the random effect covariance matrix to the value of var_start, such that

each non-zero element of the B matrix is sqrt(var_start / r) (where r is the number of latent factors). Option "data" is similar to "deterministic", but the var_start value is the default data-driven variance estimate used in glmmPen (see argument var_start for more details).

Details

Several arguments are set to a default value of NULL. If these arguments are left as NULL by the user, then these values will be filled in with appropriate default values as specified above, which may depend on the number of random effects or the family of the data. If the user specifies particular values for these arguments, no additional modifications to these arguments will be done within the algorithm.

Value

Function returns a list inheriting from class optimControl containing fit and optimization criteria values used in optimization routine.

pglmmObj-class

Class pglmmObj of Fitted Penalized Generalized Mixed-Effects Models for package glmmPen

Description

The functions glmm, glmmPen, glmm_FA, and glmmPen_FA from the package glmmPen output the reference class object of type pglmmObj.

```
## S3 method for class 'pglmmObj'
fixef(object)

## S3 method for class 'pglmmObj'
ranef(object)

## S3 method for class 'pglmmObj'
sigma(object, ...)

## S3 method for class 'pglmmObj'
coef(object, ...)

## S3 method for class 'pglmmObj'
family(object, ...)

## S3 method for class 'pglmmObj'
nobs(object, ...)

## S3 method for class 'pglmmObj'
nobs(object, ...)

## S3 method for class 'pglmmObj'
ngrps(object, ...)

## S3 method for class 'pglmmObj'
```

```
formula(x, fixed.only = FALSE, random.only = FALSE, ...)
## S3 method for class 'pglmmObj'
model.frame(formula, fixed.only = FALSE, ...)
## S3 method for class 'pglmmObj'
model.matrix(object, type = c("fixed", "random"), ...)
## S3 method for class 'pglmmObj'
fitted(object, fixed.only = TRUE, ...)
## S3 method for class 'pglmmObj'
predict(
  object,
  newdata = NULL,
  type = c("link", "response"),
  fixed.only = TRUE,
)
## S3 method for class 'pglmmObj'
residuals(object, type = c("deviance", "pearson", "response", "working"), ...)
## S3 method for class 'pglmmObj'
print(x, digits = c(fef = 4, ref = 4), ...)
## S3 method for class 'pglmmObj'
summary(
  object,
  digits = c(fef = 4, ref = 4),
  resid_type = switch(object$family$family, gaussian = "pearson", "deviance"),
## S3 method for class 'pglmmObj'
logLik(object, ...)
## S3 method for class 'pglmmObj'
BIC(object, ...)
## S3 method for class 'pglmmObj'
plot(x, fixed.only = FALSE, type = NULL, ...)
```

Arguments

object pglmmObj object output from glmm, glmmPen, or glmmPen_FineSearch

potentially further arguments passed from other methods

an R object of class pglmmObj

fixed.only logical value; default TRUE indicates that only the fixed effects should be used in the fitted value/prediction, while FALSE indicates that both the fixed and random effects posterior modes should be used in the fitted value/prediction

random.only logical value used in formula; TRUE indicates that only the formula elements

relating to the random effects should be returned

formula in the case of model.frame, a pglmmObj object

type See details of type options for each function under "Functions" section.

newdata optional new data.frame containing the same variables used in the model fit

procedure

digits number of significant digits for printing; default of 4

resid_type type of residuals to summarize in output. See predict.pglmm0bj for residual

options available.

Value

The pglmmObj object returns the following items:

fixef vector of fixed effects coefficients

ranef matrix of random effects coefficients for each explanatory variable for each level

of the grouping factor

sigma random effects covariance matrix

scale if family is Gaussian, returns the residual error variance

posterior_samples

Samples from the posterior distribution of the random effects, taken at the end of the model fit (after convergence or after maximum iterations allowed). Can be used for diagnositics purposes. Note: These posterior samples are from a

single chain.

sampling character string for type of sampling used to calculate the posterior samples in

the E-step of the algorithm

results_all matrix of results from all model fits during variable selection (if selection per-

formed). Output for each model includes: penalty parameters for fixed (lambda0) and random (lambda1) effects, BIC-derived quantities and the log-likelihood (note: the arguments BIC_option and logLik_calc in selectControl determine which of these quantities are calculated for each model), the number of non-zero fixed and random effects (includes intercept), number of EM iterations used for model fit, whether or not the model converged (0 for no vs 1 for yes),

and the fixed and random effects coefficients

results_optim results from the 'best' model fit; see results_all for details. BICh, BIC, BICN-

grp, and LogLik computed for this best model if not previously calculated.

family Family

penalty_info list of penalty information

call arguments plugged into glmm, glmmPen, glmm_FA, or glmmPen_FA

formula formula

fixed_vars names of fixed effects variables

data list of data used in model fit, including the response y, the fixed effects covariates

matrix X, the random effects model matrix Z (which is composed of values from the standardized fixed effects model matrix), the grouping factor, offset, model frame, and standardization information used to standardize the fixed effects

covariates

optinfo Information about the optimization of the 'best' model

control_info optimization parameters used for the model fit materials that can be used to initialize another E-step, if desired Estep_init Gibbs_info list of materials to perform diagnositics on the Metropolis-within-Gibbs sample chains, including the Gibbs acceptance rates (included for both the independence and adaptive random walk samplers) and the final proposal standard deviations (included for the adaptive random walk sampler only)) list of output related to estimation of number of latent common factors, r. Only r estimation

relevant for the output of functions glmm_FA and glmmPen_FA, which are cur-

rently in development and are not yet ready for general use.

showClass("pglmmObj") methods(class = "pglmmObj")

Functions

• fixef.pglmm0bj: Provides the fixed effects coefficients

- ranef.pglmm0bj: Provides the random effects posterior modes for each explanatory variable for each level of the grouping factor
- sigma.pglmm0bj: Provides the random effect covariance matrix. If family is Gaussian, also returns the standard deviation of the residual error.
- coef.pglmm0bj: Computes the sum of the fixed effects coefficients and the random effect posterior modes for each explanatory variable for each level of each grouping factor.
- family.pglmmObj: Family of the fitted GLMM
- nobs.pglmm0bj: Number of observations used in the model fit
- ngrps.pglmm0bj: Number of levels in the grouping factor
- formula.pglmm0bj: Formula used for the model fit. Can return the full formula, or just the formula elements relating to the fixed effects (fixed.only = TRUE) or random effects (random.only = TRUE
- model.frame.pglmmObj: Returns the model frame
- model.matrix.pglmmObj: Returns the model matrix of either the fixed (type = "fixed") or random effects (type = "random")
- fitted.pglmmObj: Fitted values, i.e., the linear predictor of the model.
- predict.pglmm0bj: Predictions for the model corresponding to the pglmm0bj output object from the glmmPen package functions. The function predict can predict either the linear predictor of the model or the expected mean of the response, as specified by the type argument. Argument type: character string for type of predictors: "link" (default), which generates the linear predictor, and "response", which generates the expected mean values of the response.
- residuals.pglmm0bj: Residuals for the pglmm0bj output object from the glmmPen package functions. Argument type: character string for type of residuals to report. Options include "deviance" (default), "pearson", "response", and "working", which specify the deviance residuals, Pearson residuals, the difference between the actual response y and the expected mean response (y - mu), and the working residuals (y - mu) / mu
- print.pglmm0bj: Prints a selection of summary information of fitted model
- summary.pglmm0bj: Returns a list of summary statistics of the fitted model.
- logLik.pglmm0bj: Returns the log-likelihood using the Corrected Arithmetic Mean estimator with importance sampling weights developed by Pajor (2017). Degrees of freedom give the sum of the non-zero fixed and random effects coefficients. Citation: Pajor, A. (2017). Estimating the marginal likelihood using the arithmetic mean identity. Bayesian Analysis, 12(1), 261-287.

26 plot_mcmc

• BIC.pglmm0bj: Returns BIC, BICh (hybrid BIC developed by Delattre et al., citation: Delattre, M., Lavielle, M., & Poursat, M. A. (2014). A note on BIC in mixed-effects models. Electronic journal of statistics, 8(1), 456-475.), BICNgrps (BIC using N = number of groups in the penalty term), and possibly BIC-ICQ (labeled as "BICq") if the argument BIC_option was set to "BICq" in selectControl (citation for BIC-ICQ: Ibrahim, J. G., Zhu, H., Garcia, R. I., & Guo, R. (2011). Fixed and random effects selection in mixed effects models. Biometrics, 67(2), 495-503.)

• plot.pglmm0bj: Plot residuals for the pglmmObj output object from the glmmPen package. Argument type: character string for type of residuals to report. Options include "deviance" (default for non-Gaussian family), "pearson" (default for Gaussian family), "response", and "working", which specify the deviance residuals, Pearson residuals, the difference between the actual response y and the expected mean response (y - mu), and the working residuals (y - mu) / mu

plot_mcmc

Plot Diagnostics for MCMC Posterior Draws of the Random Effects

Description

Provides graphical diagnostics of the random effect posterior draws from the (best) model. Available diagnostics include the sample path, histograms, cumulative sums, and autocorrelation.

Usage

```
plot_mcmc(
  object,
  plots = "sample.path",
  grps = "all",
  vars = "all",
  numeric_grp_order = FALSE,
  bin_width = NULL
)
```

Arguments

grps

vars

object an object of class pglmmObj

plots a character string or a vec

a character string or a vector of character strings specifying which graphical diagnostics to provide. Options include a sample path plot (default, "sample.path"), autocorrelation plots ("autocorr"), histograms ("histogram"), cumulative sum plots ("cumsum"), and all four possible plot options ("all"). While the "all" option will produce all four possible plots, subsets of the types of plots (e.g. sample path plots and autocorrelation plots only) can be specified with a proteon of the relevant character strings (e.g. of "sample path" "suppose."))

vector of the relevant character strings (e.g. c("sample.path", "autocorr"))

a character string or a vector of character strings specifying which groups should have diagnostics provided. The names of the groups match the input group factor

levels. Default is set to 'all' for all groups.

a character string or a vector of character strings specifying which variables should have diagnostics provided. Default is set to 'all', which picks all variables with non-zero random effects. Tip: can find the names of the random effect variables in the output sigma matrix found in the pglmmObj object, run

sigma(object).

rControl 27

numeric_grp_order

if TRUE, specifies that the groups factor should be converted to numeric values. This option could be used to ensure that the organization of the groups is in the proper numeric order (e.g. groups with levels 1-10 are ordered 1-10, not 1, 10, 2-9).

bin_width

optional binwidth argument for geom_histogram from the ggplot2 package. Default set to NULL, which specifies the default geom_histogram binwidth. This argument only applies if the "histogram" plot type is selected.

Value

a list of ggplot graphics, each faceted by group and random effect variable. Type of plots specified in the plots argument.

rControl

Control of Latent Factor Model Number Estimation Constructs the control structure for the estimation of the number of latent factors (r) for use within the glmmPen_FA and glmm_FA estimation procedures.

Description

Control of Latent Factor Model Number Estimation

Constructs the control structure for the estimation of the number of latent factors (r) for use within the glmmPen_FA and glmm_FA estimation procedures.

Usage

```
rControl(r = NULL, r_max = NULL, r_est_method = "GR", size = 25)
```

Arguments

r positive integer specifying number of latent common factors to assume in the

model. If NULL (default), this value estimated from the data. See r_{est_method} for available estimation procedures, and the Details section for further details on

the general estimation procedure.

r_max positive integer specifying maximum number of latent factors to consider. If

NULL (default), this value is automatically calculated.

r_est_method character string indicating method used to estimate number of latent factors r.

Default "GR" uses the Growth Ratio method of Ahn and Horenstein (2013) (<doi:10.3982/ECTA8968>). Other available options include "ER" for the Eigenvalue Ratio method of Ahn and Horenstein (2013) (<doi:10.3982/ECTA8968>) and "BN1" or "BN2", the Bai and Ng (2002) method (<doi:10.1111/1468-0262.00273>) wing one of two population (1) (d, p) (d, p)

using one of two penalties: (1) $(d + p) / (d p) \log(d p/(d+p))$ or (2) $(d + p) / (d p) \log(\min(d,p))$ where d is the number of groups in the data and p is the

number of total random effect covariates (including the intercept)

positive integer specifying the total number of pseudo random effect estimates to use in the estimation procedure for the number of latent factors r, which is restricted to be no less than 25. If this size is greater than the number of groups

in the data (i.e.~the number of levels of the grouping variable), then a sampling procedure is used to increase the number of pseudo estimates to the value of

size.

28 sim.data

Details

Estimation of r procedure: For each level of the group variable separately, we identify the observations within that group and fit a regular penalized generalized linear model where the penalty value is the minimum fixed effect penalty. These group-specific estimates, which we label as 'pseudo random effects', are placed into a matrix G (rows = number of levels of the grouping variable, columns = number of random effect covariates), and this pseudo random effects matrix is treated as the observed outcome matrix used in the "GR", "ER", and "BN" estimatino procedures described above in the description of r_est_method.

sim.data

Simulates data to use for the glmmPen package

Description

Simulates data to use for testing the glmmPen package. sim.data simulates data for glmmPen, and sim.data.FA simulates data for glmmPen_FA. Possible parameters to specify includes number of total covariates, number of non-zero fixed and random effects, and the magnitude of the random effect covariance values.

```
sim.data(
 n,
 ptot,
 pnonzero,
 nstudies,
  sd_raneff = 1,
  family = "binomial",
  corr = NULL,
  seed,
  imbalance = 0,
 beta = NULL,
 pnonzerovar = 0,
  sd_x = 1
)
sim.data.FA(
 n,
 ptot,
 pnonzero,
 nstudies,
 sd_raneff = 0,
  family = "binomial",
 B = NULL
  r = 2
  seed,
  imbalance = 0,
 beta = NULL,
 pnonzerovar = 0,
  sd_x = 1
```

sim.data 29

Arguments

n integer specifying total number of samples to generate

ptot integer specifying total number of covariates to generate (values randomly gen-

erated from the standard normal distribution)

pnonzero integer specifying how may of the covariates should have non-zero fixed and

random effects

nstudies number of studies/groups to have in the data

sd_raneff non-negative value specifying the standard deviation of the random effects co-

variance matrix (applied to the non-zero random effects)

family character string specifying which family to generate data from. Family options

include "binomial" (default), "poisson", and "gaussian".

corr optional value to specify correlation in the random effects covariance matrix.

Default NULL, only available within sim. data.

seed integer to use for the setting of a random seed

imbalance integer of 0 or 1 indicating whether the observations should be equally dis-

tributed among the groups (0) or unequally distributed (1).

beta numeric vector of the fixed effects (including intercept)

pnonzerovar non-negative integer specifying the number of covariates with a zero-valued

fixed effect but a non-zero random effect.

sd_x non-negative value specifying the standard deviation of the simulated covariates

(drawn from a normal distribution with mean 0, standard deviation sd_x)

B matrix specifying the factor loadings matrix for the random effects, only used

within sim.data.FA. Dimensions: number of columns is the number of random effects (including the intercept), and number of rows is the number of latent common factors (r). The random effect covariance matrix is specified as Sigma

 $= B x t(B) + diag(sd_raneff)$

r positive integer specifying number of latent common factors that describe the

random effects, only used within sim.data.FA

Value

list containing the following elements:

y vector of the response

X model matrix for the fixed effects

Z model matrix for the random effects, organized first by variable and then by

group

pnonzero number of non-zero fixed effects

z1 values of the random effects for each variable for each level of the grouping

factor

group grouping factor

X0 model matrix for just the non-zero fixed effects

Index

```
* classes
                                                 nobs.pglmmObj (pglmmObj-class), 22
    pglmmObj-class, 22
                                                 optimControl, 6, 7, 9, 11, 12, 14, 15, 19
* datasets
    basal, 3
                                                 pglmmObj, 7, 10, 13, 15
                                                 pglmmObj(pglmmObj-class), 22
adaptControl, 2, 6, 9, 12, 14, 21
                                                 pglmmObj-class, 22
                                                 pglmmObj-method, (pglmmObj-class), 22
basal, 3
                                                 plot.pglmmObj (pglmmObj-class), 22
BIC.pglmmObj (pglmmObj-class), 22
                                                 plot.pglmmObj, (pglmmObj-class), 22
coef.pglmmObj (pglmmObj-class), 22
                                                 plot_mcmc, 20, 26
coef.pglmmObj, (pglmmObj-class), 22
                                                 predict.pglmmObj (pglmmObj-class), 22
                                                 predict.pglmmObj, (pglmmObj-class), 22
family, 5
                                                 print.pglmmObj (pglmmObj-class), 22
family.pglmmObj (pglmmObj-class), 22
                                                 print.pglmmObj, (pglmmObj-class), 22
fitted.pglmmObj (pglmmObj-class), 22
fitted.pglmmObj, (pglmmObj-class), 22
                                                 ranef.pglmmObj (pglmmObj-class), 22
fixef.pglmmObj (pglmmObj-class), 22
                                                 ranef.pglmmObj, (pglmmObj-class), 22
fixef.pglmmObj, (pglmmObj-class), 22
                                                 rControl, 11, 14, 27
formula.pglmmObj (pglmmObj-class), 22
                                                 residuals.pglmmObj(pglmmObj-class), 22
formula.pglmmObj, (pglmmObj-class), 22
                                                 residuals.pglmmObj, (pglmmObj-class), 22
glFormula_edit, 4
                                                 selectControl, 6, 7, 9–13, 15, 24, 26
glmer, 4, 6, 8, 11, 14
                                                 selectControl (lambdaControl), 15
glmm, 5, 17, 22
                                                 show, (pglmmObj-class), 22
                                                 sigma.pglmmObj (pglmmObj-class), 22
glmm_FA, 13, 22
glmmPen, 7, 7, 19, 21, 22, 28
                                                 sigma.pglmmObj, (pglmmObj-class), 22
glmmPen_FA, 10, 10, 15, 21, 22, 28
                                                 sim.data, 28
                                                 summary.pglmmObj (pglmmObj-class), 22
lambdaControl, 6, 7, 9, 12, 15, 15
LambdaSeq, 17, 18
1me4, 21
logLik.pglmmObj (pglmmObj-class), 22
logLik.pglmmObj, (pglmmObj-class), 22
model.frame.pglmmObj (pglmmObj-class),
model.frame.pglmmObj, (pglmmObj-class),
model.matrix.pglmmObj (pglmmObj-class),
         22
model.matrix.pglmmObj,
        (pglmmObj-class), 22
ngrps.pglmmObj (pglmmObj-class), 22
```