Statistics

2023 Lectures Part 2 - Random Variables

Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

A numerical function of the outcomes

- In most cases, an experimenter focuses on some specific characteristics of the experiment
- E.g., a traffic engineer may focus on the number of vehicles traveling on a certain road or in a certain direction rather then on the brand of vehicles or number of passengers in each vehicle
- Each outcome of the experiment can be associated with a number by specifying a rule of association
- Passing from the experimental outcomes to a numerical function of the outcomes is allowed by the concept of a random variable, a useful tools for describing events (and much more).

Random variable

- A general idea: random variable is a number depending on chance
- Aim: to define random variable associated with the studied phenomenon rather than with a specific sample space

Definition 1: A real-valued function $X[(S, A) \to (\mathbb{R}, \mathcal{B}^1)]$ is a random variable, provided it is measurable, i.e.

$$B \in \mathcal{B}^1 \Rightarrow X^{-1}(B) \in \mathcal{A}.$$

• Hence, each $\{s \in S | X(s) \le t\}$ or for brevity just $\{X \le t\}$ is an event for each $t \in \mathbb{R}$.

Invariance of random variables

Definition 2: X, X' random variables, defined on sample spaces S, S', respectively, describing the same phenomenon, are equivalent if for every t we have $\{X \leq t\}$ occurs if and only if $\{X' \leq t\}$ occurs and these events have the same probability.

 the above equivalence satisfies the requirements for relation of equivalence - reflexivity, symmetry and transitivity

Example 1: In the tossing of three fair coins, let r.v. X be defined as the number of tails. Then X has only values 0, 1, 2, 3. We can associate with these values probabilities in the following way:

$$P(X = 0) = P({H, H, H}) = 1/8;$$

 $P(X = 1) = P({H, H, T} \cup {H, T, H} \cup {T, H, H}) = 3/8;$
 $P(X = 2) = P({H, T, T} \cup {T, H, T} \cup {T, T, H}) = 3/8;$
 $P(X = 3) = P({T, T, T}) = 1/8.$

Distribution of random variable

Definition 3: By distribution of the random variable X we mean the assignment of probabilities to all events $\{X \in A\} \subset S$, where $A \subset \mathbb{R}$.

Basic type of events are given by intervals

$${a < X < b}, {a \le X < b}, {a \le X \le b}, {a \le X \le b}, {a \le X \le b},$$

for
$$-\infty \le a \le b \le \infty$$
.

Discrete distribution

Definition 4: A random variable X is called discrete if there is a finite or countable set of real numbers $U = \{x_1, x_2, \dots\}$ such that

$$P(X \in U) = \sum_{n} P(X = x_n) = 1.$$

Ex	nei	i m	enf

Contact five customers

Inspect a shipment of 50 radios Operate a restaurant for one day Sell an automobile

Random Variable (x)

Number of customers who place an order

Number of defective radios Number of customers

Gender of the customer

Possible Values for the Random Variable

0, 1, 2, 3, 4, 5

 $0,\,1,\,2,\,\cdots,\,49,\,50$

 $0, 1, 2, 3, \cdots$

0 if male; 1 if female

Definition 5: The probability mass function (or discrete density function) of a discrete random variable *X* is the function

$$p_X(k) = egin{cases} P(X=k) & ext{if } k \in U; \\ 0 & ext{else}. \end{cases}$$

Uniform distribution

- some distributions with certain characteristics have special names
- there are many classes of (parametric) distributions of random variables

Example 2: $U = \{x_1, \dots, x_n\}, P(X = x_i) = 1/n, i = 1, \dots, n.$ E.g., the selection (assumed fair) of the number of the winning lottery ticket, where n is the total number of tickets.

Such distribution of random variable *X* is called discrete uniform distribution.

Binomial distribution

Example 3:

$$U = \{0, 1, \dots, n\}, P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, k = 0, \dots, n$$

Random variable with this distribution is often defined as total number of successes in n independent experiments, each with probability p

The probability of k successes and n-k failures in any specific order equals $p^k(1-p)^{n-k}$. There is $\binom{n}{k}$ of such different orders. Clearly,

$$\sum_{k=0}^{n} P(X=k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = (p+(1-p))^{n} = 1.$$

Such distribution is called binomial We write $X \sim BIN(n, p)$.

Binomial distribution: Example

Example 4: Consider $X \sim BIN(10, 0.25)$. The graph of the probability mass function

Binomial Distribution (n = 10, p = 0.25)

More examples of discrete distribution

Example 5:

 $U = \{0, 1, 2, \dots\}, P(X = k) = p(1 - p)^k, k = 0, 1, 2 \dots$ X is the number of trials before the first success in series

$$\sum_{k=0}^{\infty} P(X=k) = p \sum_{k=0}^{\infty} (1-p)^k = p \frac{1}{p} = 1.$$

Such distribution is called geometric and we write $X \sim GEO(p)$.

Example 6: $U = \{0, 1, 2, \dots\}, P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, 2, \dots$ Such distribution is called Poisson

$$\sum_{k=0}^{\infty} P(X=k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$

We write $X \sim POI(\lambda)$.

Poisson distribution: Example

Example 7: Consider $X \sim POI(3)$.

The graph of the probability mass function

Random variable and events

Theorem 1: The probabilities of the events of the form $\{a < X \le b\}$ for all $-\infty \le a \le b \le \infty$ uniquely determine the probabilities of events of the form $\{a < X < b\}$, $\{a \le X < b\}$ and $\{a \le X \le b\}$.

• Moreover $\{a < X \le b\} = \{X \le b\} \setminus \{X \le a\}$ and so

$$P(a < X \le b) = P(X \le b) - P(X \le a).$$

• Thus probabilities of events $\{a < X \le b\}$ are determined by probabilities of events $\{X \le t\}$ for $-\infty < t < \infty$.

Distribution function

Definition 6: For any random variable X, the (cumulative) distribution function (cdf) F_X is defined as

$$F_X(t) = P(X \le t), \quad t \in \mathbb{R}.$$

Theorem 2: For any random variable X, cdf F_X has the following properties:

- a) F_X is nondecreasing;
- b) $\lim_{t\to-\infty} F_X(t) = 0$, $\lim_{t\to\infty} F_X(t) = 1$;
- c) F_X is continuous on the right.
 - As a consequence $P(X = t) = F_X(t) F_X(t)_-$. So if F_X is continuous at t, then P(X = t) = 0.
 - For discrete random variables

$$F_X(t) = P(X \le t) = \sum_{x_i \le t} P(X = x_i).$$

Properties of cdf: Example

Example 1 (cont.): Recall, X is the number of tails in three tosses of a regular coin. In such simple cases we can represent the distribution by a table

$$\begin{array}{c|cccc} \text{values} & 0 & 1 & 2 & 3 \\ \hline \text{probabilities} & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\ \end{array}$$

We have $0 \le X \le 3$ and so $F_X(t) = 0$ for t < 0 and $F_X(t) = 1$ for $t \ge 3$.

For
$$t \in [0, 1)$$

$$F_X(t) = P(X=0) = 1/8$$

For $t \in [1, 2)$

$$F_X(t) = P(X = 0) + P(X = 1) = 1/2$$

For $t \in [2, 3)$

$$F_X(t) = P(X = 0) + P(X = 1) + P(X = 2) = 7/8$$

Remark: Cdf is defined for all real arguments, not only for the values of the random variable. E.g., one can find $F_X(2.27)$.

Continuous random variable

Definition 7: The random variable X is called continuous if there exists a nonnegative function f, called the density of X, such that

$$F_X(t) = \int_{-\infty}^t f(x) dx, \quad -\infty < t < \infty.$$

Theorem 2c: For a continuous random variable *X*,

- a) F_X is nondecreasing;
- b) $\lim_{t\to-\infty} F_X(t) = 0$, $\lim_{t\to\infty} F_X(t) = 1$;
- c) F_X is continuous.
 - As a consequence P(X = t) = 0 for any $t \in \mathbb{R}$.
- f(t) = F'(t) and $f(t) \ge 0$ almost everywhere

Properties of cdf for continuous distribution

Theorem 3: If *X* has density *f* then for all a < b we have

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b) =$$

= $F(b) - F(a) = \int_{a}^{b} f(x) dx.$

Uniform distribution

Example 8: Let a < b and

$$f(x) = \begin{cases} 0, & \text{if } X < a; \\ c, & \text{if } a \le X \le b; \\ 0, & \text{if } X > b. \end{cases}$$

Then

$$F_X(t) = \begin{cases} 0, & \text{if } t < a; \\ \int_a^t f(x) dx = c(t-a), & \text{if } a \le t \le b; \\ c(b-a), & \text{if } t > b. \end{cases}$$

Hence $c := \frac{1}{b-a}$ and distribution of X is called uniform on [a,b]. We write $X \sim U[a,b]$.

Exponential distribution

Example 9: The distribution with the density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0; \\ 0, & x \le 0, \end{cases}$$

is called exponential with parameter $\lambda > 0$. We write $X \sim EXP(\lambda)$.

Exponential distribution: Example

Example 10: Consider $X \sim EXP(\lambda)$ for values $\lambda = 0.3, 0.8, 2$. The graph of the density functions

Densities of Exponential Distribution

Normal distribution

Example 11: The distribution with the density

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \ x \in \mathbb{R},$$

is called normal with parameters μ and σ . We write $X \sim N(\mu, \sigma^2)$.

Standard normal distribution

For any a < b

$$P(a \le X \le b) = \frac{1}{\sqrt{2\pi}} \int_{z_1}^{z_2} e^{-\frac{z^2}{2}} dz = \Phi(z_2) - \Phi(z_1),$$

where $z_1 = \frac{a-\mu}{\sigma}$, $z_2 = \frac{b-\mu}{\sigma}$ and Φ is the cumulative distribution function of the standard normal distribution denoted as N(0,1).

Moreover,

$$\Phi(-z) = 1 - \Phi(z).$$

Quantiles

Definition 8: Let X be a random variable with cdf F_X , and let 0 . The <math>pth (lower) quantile ξ_p of X is defined as a minimum of solutions of inequalities

$$P(X \le x) \ge p, \ P(X \ge x) \ge 1 - p.$$

• Alternatively, the pth quantile ξ_p has to satisfy

$$F_X(\xi_p) \ge p$$
 and $F_X(\xi_p)_- \le p$.

- for p = 0.25, ξ_p is called the lower quartile
- for p = 0.5, ξ_p is called the median
- for p = 0.75, ξ_p is called the upper quartile
- alternatively, pth upper quantile is the (1-p)th lower quantile

Quantiles: Example

Example 12: Consider rolling of a die.

The graph of the cdf:

Find median and upper and lower quartiles.

More properties of continuous random variables

• Let X be a continuous random variable. Then the pth quantile ξ_p of X is defined as a minimum value of $x \in \mathbb{R}$ satisfying

$$P(X \le x) = p, 0$$

Theorem 4: Let X be a random variable with continuous cdf F_X . Then

$$P(\xi_a \le X \le \xi_b) = b - a$$
 for $0 < a < b < 1$.

Example 13: If F is continuous, there is always 50% probability that a random variable with cdf F will assume a value between its upper and lower quartile.

Example 14: Determine the median, lower and upper quartiles for random variable X with the following cdf, k > 0:

$$F_X(x) = \begin{cases} 0, & \text{for } x < 0; \\ kx^3, & \text{for } 0 \le x \le \frac{1}{\sqrt[3]{k}}; \\ 1, & \text{for } x > \frac{1}{\sqrt[3]{k}}. \end{cases}$$

Example 14

Example 14: cdf for k=1

More properties of cdfs

Theorem 5: (without proof) For any function F satisfying a) - c) (Theorem 2) there is a probability space (S, \mathcal{A}, P) and a random variable X such that $F_X = F$.

 Note that different random variables may have the same cdf.

Example 15: Let us consider the experiment consisting of three tosses of a coin, and two random variables: *X* the total number of heads and *Y* the total number of tails.

A simple count shows that P(X = k) and P(Y = k) are the same for all k and hence the distribution functions F_X and F_Y are identical.

Transformation of random variable

 in practical situations we often deal with a function (transformation) of a random variable

Example 16: A computer can generate a random number from distribution uniform on [0,1]. Then if the desired random number is from a different range [a,b], a < b, one just need to apply a linear transformation

$$\varphi(x) = (b - a)x + a.$$

functions of random variables are very important in statistics

Transformation of discrete random variables

- Let X assume values in the set $U = \{x_1, x_2, \dots\}$, with corresponding probabilities $p_i = P(X = x_i)$, such that $\sum p_i = 1$. Then $Y = \varphi(X)$, where φ is a real-valued function, also has a discrete distribution.
- function φ may not be one-to-one, thus

$$P(Y = y) = P(\varphi(X) = y) = \sum_{x:\varphi(x)=y} P(X = x).$$

Example 17: Suppose that *X* has a distribution

If $\varphi(x) = x^2$ then $Y = X^2$ with the distribution

values	0	1	4	9	16
probabilities	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{2}{10}$

Transformation of continuous random variables

- Let F and f denote the cdf and density of continuous random variable X and let $Y = \varphi(X)$, where φ is assumed to be at least piecewise differentiable.
- Consider first the case of φ strictly monotone
- If φ is strictly increasing then

$$F_Y(y) = P(\varphi(X) \le y) = P(X \le \varphi^{-1}(y)) = F_X(\varphi^{-1}(y)).$$

• If φ is strictly decreasing then

$$F_Y(y) = P(\varphi(X) \le y) = P(X \ge \varphi^{-1}(y)) = 1 - F_X(\varphi^{-1}(y)).$$

Theorem 6: If φ is a continuous differentiable function with inverse ψ and X is a continuous random variable with density f_X , then the density of $Y = \varphi(X)$ is

$$f_Y(y) = f_X(\psi(y))|\psi'(y)|, y \in \mathbb{R}.$$

Probability integral transformation

Example 18: Let Y = aX + b. If a > 0 then for $y \in \mathbb{R}$,

$$F_Y(y) = P(aX + b \le y) = P\left(X \le \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right)$$

and

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right).$$

Theorem 7: (Probability integral transformation) Let X be a continuous random variable with strictly increasing cdf F. Then the distribution of Y = F(X) is uniform on [0,1].

Transformation of a continuous random variable

• when φ is not monotone we still have

$$F_Y(y) = P(\varphi(X) \le y),$$

but since φ has no inverse the inequality $\varphi(X) \leq y$ is usually not equivalent to a single inequality for X

Example 19: Let *X* be a continuous random variable and $\varphi(x) = x^2$. Then $F_Y(y) = 0$ for $y \le 0$ and for y > 0

$$F_Y(y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}).$$

Also, for y > 0

$$f_Y(y) = F'_Y(y) = \frac{1}{2\sqrt{y}}(f_X(\sqrt{y}) + f_X(-\sqrt{y})).$$

