Mapping Flood Waters with Satellite Imagery and Topography using Convolutional Neural Networks

Flood Events

Multispectral Imagery

Machine Learning

Ephemeral Surface Water Spatio-temporal + Spectral Variance`

Spectral Signature of object Reflection across EM bands Supervised Learning AI CNNs

Christopher Koido-Bunt Student No. 20195994

Need and Challenge

- Flood Risk intensity under a changing climate
- Developments in AI methods and imagery data availability
- "...advanced transition phase..." (Hoeser and Kuenzer, 2020) global benchmark datasets
- Effects of topography in the field of flood modelling

Current Literature Fragmented: Data Fusion, ML models, Water Mapping methods

- Two relevant studies but limited in :
 - Flood event types
 - Study area type
 - Local scale
 - MERIT global terrain dataset
 - Punching above it weight
 - o 'raw' DEM vs derived HAND TI

Observed Behaviours

- Topo. was useful in 10m models (DEM + HAND)
- DEM10m performance better in complex multi-catchment scene
- In models with DEM, target function harder to learn than BASE or HAND
- In 90m models Topo., no additional benefit or detrimental
 - Despite data imbalance
 - DEM90m failed to learn to predict water

HAND val min

Causes:

HAND / DEM differences

- Scale-dependent differences
- Model architecture

Dilation Rates: 0. 2

Dilation Rates: 6, 12, 18

			77.7						
0.24 -			1.1		, 1				
0.70	1	~			السال				
0.20	VIII	D		<u> </u>	~~~	Ι.	1 .		
0.16 -	W			-		أيالان			Like
0.12 -	197	and the	and the latest		AMA	****	-	~	
	Ó	200	400	600	800 Epochs	1000	1200	1400	1600
	BAS	SE trai	n -	— в	ASE va		В/	ASE va	l min
_	DE	M train	ı -	D	EM val	-	D	EM val	min

HAND val

HAND train

Loss Curves of 10m Models

Model	OA	F1	mIOU	Recall	Precisio	Epochs
Wiodei	(%)	(%)	Water (%)	Water (%)	n Water (%)	(n)
BASE10m	79.24	36.86	12.96	13.36	24.69	592
DEM10m	80.53	36.22	14.02	16.06	24.82	1156
HAND10m	88.03	36.72	15.94	18.28	26.99	893
BASE90m	87.55	46.14	21.47	18.17	50.98	3907
DEM90m	81.41	35.91	0.00	0.00	0.00	3840
HAND90m	87.24	45.18	20.77	17.90	52.40	3908

- Topo. can improve FW mapping in CNNs on a global scale
- The training data imbalance between 10m and 90m models affected comparability
- Interesting to see model behaviours on full dataset

Future work can:

- Tweak dilation rates in atrous convolutions
- Assess if there is any benefit in using both the DEM and HAND TI

Assess alternative CNN architectures (backbones/conv. arms)

- Should these results be promising it opens up questions on additional uses the MERIT dataset to "peek under occlusions".
- Examine other open global ancillary data sources

Icons and Artworl

MERTT data_l- Yamazaki, et al., 2017, 2019 NorldFloods Sentinel-2 Data – Mateo-Garcia, et al., 2021