เรื่อง Pressure Measurement

วัตถุประสงค์

- 1.ศึกษาระบบการทำงานของ Pressure Transmitter
- 2.สามารถนำหลักการทำงานของ Pressure Transmitter มาประยุกต์ใช้งานได้
- 3.ฝึกความแม่นยำและความชำนาญในการใช้งาน Pressure gauge และ Manometer

ทฤษฎีที่เกี่ยวข้อง

Pressure Transmitter

Pressure Transmitter หรือเซนเซอร์วัดความแตกต่างของความดันเป็นอุปกรณ์วัดความ ดันที่เปรียบเทียบความดันทั้งสองด้าน (ด้าน H และด้าน L) ซึ่งค่า Differential pressure transmitter หรือ PDT สามารถหาได้จากสมการ PDT = PH - PL

Pressure gauge

มีหน้าที่ในการวัดความดันซึ่งมีหน่วยในการวัดคือ mmH_2O

Manometer

มาโนมิเตอร์ (manometer) เป็นอุปกรณ์ที่ใช้สำหรับการวัดความดัน (pressure measurement) ชนิดอาศัยการเปลี่ยนแปลงทางกล มีโครงสร้างเป็นหลอดใสภายในบรรจุของเหลว มีหน่วยในการวัดคือ mmHg

Hand Pump

อุปกรณ์สูบลมที่ทำหน้าที่อัดอากาศเข้าไปในท่อลมโดยการใช้มือปั๊มอากาศเข้าไป

หลักการคำนวณหาค่า I/P และ O/P

Transmitter จะแสดงผลออกมาเป็นร้อยละตั้งแต่ 0% -100% ซึ่งค่าที่ได้รับมาเราจะ เรียกว่า INPUT (I/P) และปล่อยกระแสไฟฟ้าออกมาตามสัดส่วนของ I/P ซึ่งมีค่าตั้งแต่ 4-20 mA เรียกว่า OUTPUT (O/P)

Input = 0 to 500 psi

Output = 4-20 mA

ค่า Sensitivity (ความไว) ก็คือค่าความชันในกราฟ

$$S = \frac{20-4}{500-0} = 0.032 \, mA/psi$$

ดังนั้น
$$Output = S x (I/P - Zero) + O/P Zero$$

ตัวอย่าง กำหนดให้ Input = 300 psi จงหาค่า Output

วิธีการคำนวณ

$$Output = S x (I/P - Zero) + O/P Zero$$

$$Output = 0.032 \ x \ (300 - 0) + 4 \ = \ 13.6 \ mA$$
 เป็นต้น

อุปกรณ์ที่ใช้ในการทดลอง

1. Pressure Transmitter

2. Pressure gauge

3. Manometer

4. Hand Pump

5. Multi-meter

6. fitting

7. ท่อลม

- 8. Power Supply
- 9. ไขควง

LAB 2.1 หา Calibration Range (ปัจจุบัน)

1.ทำการต่ออุปกรณ์ต่างๆตามรูป

2. เปิด Power Supplyวัดค่ากระแสไฟฟ้า ที่ความดัน 0mmHg และ 250mmHg แล้วบันทึก ผลลงในตาราง

ผลการทดลอง

%	i/P	O/P	
0	0 mmHg	4 mA	
100	250 mmHg	19.67 mA	

LAB 2.2 Cal Range

LAB 2.2 A Cal Range

- 1.ต่อวงจรตามหัวข้อ LAB 2.1
- 2.ทำการปรับค่าความดันเป็น 0 to 250 mmHg
- 3.ที่ความดัน 250 mmHg ให้ปรับค่า Span ให้ค่ากระแสเท่ากับ 20 mA

4. เปิดPower Supply วัดค่ากระแสไฟฟ้าที่ความดัน 25 % 50 % 75% และ 100 % ตามลำดับ วัด3ครั้งแล้วหาค่าเฉลี่ย บันทึกผลลงในตาราง

ผลการทดลอง

	ความดัน	กระแสไฟฟ้า O/P(mA)			
%	i/P(mmHg)	ครั้งที่1	ครั้งที่2	ครั้งที่3	เฉลี่ย(mA)
0	0	4.00	4.00	4.00	4.0
25	62.5	8.10	8.20	8.10	8.13
50	125	11.90	11.90	12.00	11.93
75	187.5	16.20	16.10	16.00	16.10
100	250	20.00	20.00	20.00	20.00

LAB 2.2 B Suppressed Zero

- 1.ต่อวงจรตามหัวข้อ LAB 2.1
- 2.ทำการปรับค่าความดันเป็น 50 to 200 mmHg
- 3.ที่ความดัน 50 mmHg ให้ปรับค่า Zero ให้ค่ากระแสเท่ากับ 4 mA

4.ที่ความดัน 200 mmHg ให้ปรับค่า Span ให้ค่ากระแสเท่ากับ 20 mA

5.เปิดPower Supply วัดค่ากระแสไฟฟ้าที่ความดัน 25 % 50 % 75% และ 100 % ตามลำดับ วัด3ครั้งแล้วหาค่าเฉลี่ย บันทึกผลลงในตาราง

ผลการทดลอง

	ความดัน	กระแสไฟฟ้า O/P(mA)			
%	i/P(mmHg)	ครั้งที่1	ครั้งที่2	ครั้งที่3	เฉลี่ย(mA)
0	50	4.01	4.02	4.00	4.01
25	87.5	7.99	8.00	7.99	7.99
50	125	12.03	12.03	12.05	12.04
75	162.5	16.11	16.20	16.12	16.14
100	200	20.00	20.00	20.00	20.00

<u>Assignment</u>

ให้ทำการปรับค่าความดันโดยการหมุนค่า Zero และ Span ดังนี้

Input: 40 to 225 mmHg

Output: 4 – 20 mA

จากนั้นให้ทำการหาสมการความชันของกราฟความสัมพันธ์ระหว่างInputกับOutput

Sensitivity =
$$\frac{\Delta y}{\Delta x} = \frac{20 - 4}{225 - 40} = \frac{16}{185} = 0.0865 \, mA/mmHg$$

จากสูตร
$$y = mx + c$$

จะได้
$$20 = 0.0865(225) + c$$

$$c = 0.5375$$

ดังนั้นสมการที่ได้คือ y=0.0865x+0.5375

1.ที่ความดัน 171 mmHg ให้คำนวณหากระแส(mA)?

จากสมการ
$$y = 0.0865x + 0.5375$$

$$y = 0.0865(171) + 0.5375 = 15.329 \, mA$$

2.ที่กระแสไฟฟ้า 19 mA ให้คำนวณหาความดัน(mmHg)?

จากสมการ
$$y = 0.0865x + 0.5375$$

$$19 = 0.0865x + 0.5375$$

$$x = \frac{19 - 0.5375}{0.0865} = 213.4393 \, mmHg$$

สรุปผลการทดลอง

จากการทดลองทำให้ทราบว่า Pressure Transmitter จะทำหน้าที่เปลี่ยนความดันที่ไหล เข้ามาจากHand pump ให้เป็นค่ากระแสไฟฟ้า ซึ่งเราสามารถลดหรือเพิ่มค่าความดันที่ไหลเข้ามาได้ โดยการหมุนค่า Zero และค่า Span ได้ตามความเหมาะสม ซึ่งค่าความดันของ Pressure transmitter นั้นจะแปรผันตรงกับค่ากระแสไฟฟ้าที่ออกมา ซึ่งจะเป็นไปตามสมการ

$$Output = Sx(I/P - Zero) + O/P Zero$$