POKRIVANJE KVADRATA S KVADRATKI Z ZAPOREDNIMI STRANICAMI

Skupina 2: Covering a square with squares of consecutive sides

Leon Bahovec in Pavla Novak

4. november 2022

Navodilo naloge je, da imamo za vsako število $i=1,\ldots n$ natanko en kvadratek s stranico dolžine i. Želimo najti največji kvadrat, ki ga lahko pokrijemo z omenjenimi kvadratki. Seveda se lahko prekrivajo, drugače je rešitev veliko manj oziroma za nekatere n-je jih sploh ni. Najmanjši možni n, če se kvadratki ne smejo prekrivati, je 21. Odkril ga je Duijvestijn in obstaja natanko en način, kako zložiti 21 kvadratkov. A vrnimo se na naš problem. Kvadratkov ne smemo rotirati, lahko pa jih premikamo. Oglejmo si primer pokrivanja.

Slika a) predstavlja največje možno pokrivanje za i=1,2 (ne edino možno), b) pa največje možno pokrivanje za $i=1,\ldots 6$. Vidimo, da za n=6 dobimo netrivialno rešitev, kvadrat s stranico dolžine 8. Za reševanje naloge sva se odločila za uporabo celoštevilskega linearnega programa, ki je zastavljen spodaj. Za začetek definiramo nekaj spremenljivk. Začnimo s spremenljivko $x_{i,j,k}$. Zavzema vrednosti $\{0,1\}$. Vrednost 1 zavzame, če kvadratek s stranico dolžine i pokriva enotski kvadratek naše mreže (j,k) - torej kvadratek v i-ti vrstici in j-tem stoplcu. Nato definiramo še $y_{j,k}$, ki nam pove, če je kvadratek na mreži (j,k) pokrit vsaj enkrat. Zavzema vrednosti $\{0,1\}$. Da bo to res, dodamo naslednjo omejitev $\forall j,k$:

$$y_{j,k} \le \sum_{i=1}^{n} x_{i,j,k}$$

Definiramo še z_l , ki nam pove, če je kvadrat $(0, \ldots l) \times (0, \ldots l)$ pokrit. Veljati

mora naslednja zveza:

$$2lz_{l} \le z_{l-1} + y_{l,l} + \sum_{m=1}^{l-1} y_{l,m} + y_{m,l}.$$

Zdaj še za $\forall i, u, v$ definiramo spremenljivko $w_{i,u,v}$, ki nam pove, če ima kvadrat s stranico l levi spodnji kot v kvadratku (u,v). $w \in \{0,1\}$ in pa $\sum_u \sum_v w_{i,u,v} = 1$ (vsak kvadratek je samo en.) Če je $w_{i,u,v} = 1$, morajo biti vsi enotski kvadratki ustrezno označeni, $\forall j = u, \ldots u + l - 1, k = v, \ldots v + l - 1$: $x_{i,j,k} = 1$. To zapišem v jeziku linearnih programov kot

$$\forall i = 1, \dots, u = 1, \dots, \sqrt{\frac{n(n+1)(2n+1)}{6}}, v = 1, \dots, \sqrt{\frac{n(n+1)(2n+1)}{6}},$$
$$\forall j = u, \dots, u + l - 1, k = v, \dots, v + l - 1:$$
$$w_{i,u,v} \le x_{i,j,k}$$

Koren zgoraj je največja možna velikost u-ja in v-ja oziroma vsota prvih n kvadratov pod korenom (da dobimo stranico kvadrata). Zdaj definiramo še našo ciljo funkcijo:

$$\max \sum_{l} z_{l}$$
.

To je osnovni problem, potem pa se bova ukvarjala še s problemom, če zahtevamo, da je vsak kvadratek mreže pokrit vsaj r-krat. To preprosto zahtevamo, če malce spremenimo prvo omejitev $\forall j, k$:

$$ry_{j,k} \le \sum_{i=1}^{n} x_{i,j,k}$$

in s tem dobimo vsaj r-kratno pokrivanje. Zanimivo bo videti, koliko zahtevnejši postane problem.