Baseball Level Analysis

Jaden Thomas

2024-02-05

Problem Description

To be able to determine what level of baseball a player plays at by the individuals height and weight, a logistic regression model is fit.

The model formula is:

$$p(X) = \frac{e^{\beta_0 + \beta_1 H T_i + \beta_2 W T_i}}{1 + e^{\beta_0 + H T_i + W T_i}}; i = 1, ..., n$$

Or,

$$\log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 H T_i + \beta_2 W T_i; i = 1, ... n$$

Where HT is in inches, WT is in lbs, and the two classes are MLB and Club, with MLB labeled as 1 and Club baseball labeled as 0.

Import Necessary Packages

```
library(tidyverse)
library(ggthemes)
library(verification)
```

Set Seed

set.seed(2024)

Import Datasets

```
mlb_2023 <- read_csv("mlbBaseballPlayers_2023.csv")
club_2024 <- read_csv("clubBaseballPlayers_2024.csv")</pre>
```

Format Data

EDA


```
sub %>% ggplot(aes(x=Age, y=League)) +
  geom_boxplot(fill="#e63946") +
  theme_economist() +
  labs(title="Player Age by League", x="Age")
```



```
sub %>% ggplot(aes(x=HT, y=League)) +
geom_boxplot(fill="#e63946") +
theme_economist() +
labs(title="Player Height by League", x="Height")
```



```
sub %>% ggplot(aes(x=WT, y=League)) +
  geom_boxplot(fill="#e63946") +
  theme_economist() +
  labs(title="Player Weight by League", x="Weight")
```


summary(sub)

```
##
       fname
                          lname
                                                Age
                                                                 HT
                                                 :17.00
                                                                  :64.00
   Length:2463
                       Length:2463
                                           Min.
                                                           Min.
   Class :character
                       Class :character
                                           1st Qu.:21.00
                                                           1st Qu.:71.00
                                                           Median :73.00
    Mode :character
                       Mode :character
                                           Median :23.00
##
                                           Mean
                                                  :24.21
                                                           Mean
                                                                  :72.61
                                           3rd Qu.:27.00
##
                                                           3rd Qu.:74.00
##
                                           Max.
                                                  :40.00
                                                           Max.
                                                                  :83.00
##
          WT
                      city
                                         state
                                                             POS
          :130
                  Length:2463
                                      Length: 2463
                                                         Length: 2463
   Min.
   1st Qu.:175
                  Class :character
                                      Class :character
                                                         Class :character
##
   Median:190
                  Mode :character
                                      Mode :character
                                                         Mode :character
    Mean
           :193
##
    3rd Qu.:210
##
   Max.
           :285
##
##
        Team
                        League
                                      MLB
                                   Mode :logical
##
   Length:2463
                       Club:1242
    Class : character
                       MLB :1221
                                   FALSE: 1242
                                   TRUE :1221
##
   Mode : character
##
##
##
```

As seen by the graphs and numerical summary, the average height and weight for MLB players seems to be higher than that of Club baseball players.

Logistic Regression Model

Train Test Split

```
train <- sample(c(TRUE, FALSE), nrow(sub), replace=T, prob=c(0.7, 0.3))
sub.train <- sub[train,]
sub.test <- sub[!train,]
Y.test <- sub.test$MLB</pre>
```

Model Fitting

```
m.fit <- glm(MLB~HT+WT, data=sub.train, family="binomial")</pre>
```

Model Summary

```
summary(m.fit)
```

```
##
## Call:
## glm(formula = MLB ~ HT + WT, family = "binomial", data = sub.train)
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -3.2242 -0.8355 -0.3369
                               0.8395
                                        2.4072
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                           1.824871 -10.47 < 2e-16 ***
## (Intercept) -19.109369
## HT
                 0.136833
                            0.027871
                                       4.91 9.13e-07 ***
## WT
                           0.003286
                 0.047340
                                       14.41 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
## Null deviance: 2383.4 on 1719 degrees of freedom
## Residual deviance: 1802.9 on 1717 degrees of freedom
## AIC: 1808.9
##
## Number of Fisher Scoring iterations: 4
plot(m.fit)
```


The fitted model is $\hat{p_i} = logit(-19.109369 + 0.136833 * HT_i + 0.047340 * WT_i); i = 1, ..., n$. Both predictors HT and WT are significant also with the null hypothesis $H_0: \beta_i = 0$ being rejected for all i=(1,2,3).

Model Prediction

```
# T means that, yes the individual is in the MLB
m.probs <- predict(m.fit, sub.test, type="response")
m.pred <- rep(F, length(m.probs))
m.pred[m.probs>.5] <- T</pre>
```

Model Evaluation

```
table(m.pred, Y.test, dnn=c("Predicted MLB", "Actual MLB"))

## Actual MLB
## Predicted MLB FALSE TRUE
## FALSE 287 93
## TRUE 74 289

mean(m.pred==Y.test)
```

[1] 0.7752355

ROC curve for MLB Classifcation

The model performs with a 79.43925% accuracy, a sensitivity of 77.211796% and a specificity of 81.648936.

Conclusion

As the prediction results from the logistic regression show, predicting the level at which an individual play baseball at, either MLB or Club, can be done at a relatively high rate with just the height and weight of the players as independent variables using logistic regression.