Билеты к коллоквиуму по матанализу

База, сем. 2

Подготовили:

Решетников Сергей Р
3108
 $\underline{@ReshNF}$

Поставить звёздочку

О1. Первообразная функции на промежутке

 $F'(x) = f(x), x \in \langle a, b \rangle$

О2. Неопределённый интеграл

Неопределенным интегралом функции f на промежутке (a, b) называется множество всех первообразных f на этом промежутке. Неопределенный интеграл обозначается следующим образом:

ОЗ. Многочлен, рациональная дробь, правильная рациональная дробь

3.1 Многочлен Многочленом (полиномом) $P_n(x)$ степени $n \ge 1$ будем называть функцию вида:

$$P_n(x) = a_0 + a_1 x + a_2 x_2 + \ldots + a_n x_n, i \in \mathbb{R}, a_n \neq 0, i \in \{1, 2, \ldots, n\}$$

Многочленом нулевой степени назовем произвольную константу, отличную от нуля. У тождественно равного нулю многочлена степенью будем называть символ $-\infty$.

3.2 Рациональная дробь. Рациональной дробью называется функция вида

$$\frac{P_n(x)}{Q_m(x)}$$

где $P_n(x), Q_m(x)$ – многочлены степеней n и m, соответственно.

3.3 Понятие правильной рациональной дроби. Рациональная дробь

$$\frac{P_n(x)}{Q_m(x)}$$

называется правильной, если n < m, иначе дробь называется неправильной

О4. Простейшие рациональные дроби

Понятие простейших дробей. Простейшими дробями (дробями первого и второго типов) называют дроби вида:

$$rac{A}{(x-a)^k}$$
 , $rac{Ax+B}{(x_2+px+q)^k}$

где $k \in \mathbb{N}$ и $p^2 - 4q < 0$

О5. Разбиение (дробление) отрезка

Понятие разбиения. Говорят, что на отрезке [a, b] введено разбиение (дробление) τ , если введена

система точек
$$x_i, i \in \{0, 1, ..., n\}$$
, что

 $a = x_0 < x_1 < x_2 < ... < x_n = b$

Об. Мелкость (ранг, диаметр) разбиения

Говорят, что на отрезке [a, b] введение разбиение (дробление) τ , если введена система точек $x_i, i \in \{0, 1, ..., n\}$, что:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

Величина $\lambda(\tau) = \max_{i \in \{1,2,\dots,n\}} \Delta x_i$ называется мелкостью (рангом, диаметром) разбиения (дробления).

О7. Оснащённое разбиение

Понятие оснащенного разбиения. Говорят, что на отрезке [a, b] введено разбиение (оснащенное разбиение) (τ, ξ) , если на нем введено разбиение τ и выбрана система точек $\xi = \{\xi_1, \xi_2, ..., \xi_n\}$ таким образом, что $\xi_i \in \Delta_i, i \in \{1, 2, ..., n\}$.

О8. Интегральная сумма

Понятие интегральной суммы. Пусть на отрезке [a, b] задана функция f и введено разбиение (τ, ξ) . Величина

$$\sigma_{\tau}(f,\xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

называется интегральной суммой для функции f на отрезке $[{\bf a},\,{\bf b}],$ отвечающей разбиению $(\tau,\xi).$

О9. Интеграл Римана

Понятие интеграла Римана. Пусть функция f задана на отрезке [a, b]. Говорят, что число I является интегралом Римана от функции f по отрезку [a, b], если

$$\forall \varepsilon > 0 \ \exists \delta : \forall (\tau, \xi) : \lambda(\tau) < \delta \ |\sigma_{\tau}(f, \xi) - I| < \varepsilon$$

Обозначают это число так:

$$I = \int_{a}^{b} f \ d(x)$$

О10. Интегрируемая функция

Понятие интегрируемой функции. Функция f, для которой существует интеграл Римана по отрезку [a, b], называется интегрируемой по Риману на этом отрезке (или просто интегрируемой). Класс интегрируемых (по Риману) на отрезке [a, b] функций будем обозначать так: R[a, b]

О11. Интеграл по отрезкам [a,a] и [b,a]

 $\int_a^a f \; d(x) = 0$ $\int_a^b f \; d(x) = -\int_b^a f \; d(x)$ при a < b

О12. Верхняя и нижняя суммы Дарбу

Понятие сумм Дарбу Пусть функция f задана на отрезке [a, b] и τ — некоторое разбиение этого отрезка. Величины

$$\begin{split} S_{\tau}(f) &= \sum_{i=1}^n M_i \Delta x_i \quad M_i = \sup_{x \in \Delta_i} f(x), \quad i \in \{1,2,...,n\} \\ s_{\tau}(f) &= \sum_{i=1}^n M_i \Delta x_i \quad M_i = \inf_{x \in \Delta_i} f(x), \quad i \in \{1,2,...,n\} \end{split}$$

называют верхней и нижней суммами Дарбу для функции f , отвечающими разбиению τ , соответственно.

013. Измельчение разбиения

Понятие измельчения разбиения. Пусть на отрезке [a, b] введены разбиения τ_1 и τ_2 . Говорят, что

разбиение τ_1 является измельчением разбиения τ_2 , если $\tau_2 \subset \tau_1$.

014. Колебание функции на множестве

Понятие колебания. Пусть $f: \mathbb{E} \to \mathbb{R}$. Колебанием функции f на множестве \mathbb{E} назовем величину

 $\omega(f, \mathbb{E}) = \sup_{x, y \in \mathbb{E}} (f(x) - f(y))$

онатие колебания. Пусть
$$f:\mathbb{F} o \mathbb{R}$$
 Колебанием функции f на множестве \mathbb{F} на

31. Верхний и нижний интеграл

С точки зрения геометрии критерий Дарбу означает следующее: функция f оказывается интегрируемой в том и только том случае, когда «площадь» под графиком функции f может быть изнутри и снаружи аппроксимирована ступенчатами фигурами (вписанной и описанной), «площади» которых могут быть сделаны сколь угодно близкими.

В доказательстве достаточности мы еще и увидели значения I_{\star} и I^{\star} , часто называемые нижним и верхним интегралами Дарбу, соответственно. Они показывают в каком-то смысле npedenы верхних и нижних сумм Дарбу при стремлении мелкости разбиения к нулю. Их равенство (и конеч- ность) и есть условие существования искомого интеграла, а их общая величина – его значение.

О15. Кусочно-непрерывная функция

Понятие кусочно-непрерывной функции. Функция $f:[a,b] \to \mathbb{R}$ называется кусочно-непрерывной, если ее множество точек разрыва конечно или пусто, и все разрывы – разрывы первого рода

О16. Интеграл с переменным верхним (нижним) пределом

Понятие интеграла с переменным верхним пределом. Пусть
$$f \in R[a,b]$$
 и $x \in [a,b]$. Функция

 $\Phi(x) = \int_{-\infty}^{x} f \ d(x)$

называется интегралом с переменным верхним пределом.

Понятие движения. Отображение $U:\mathbb{R}^n\to\mathbb{R}^n$ называется движением, если

|x - y| = |U(x) - U(y)|

О17. Движение

О18. Площадь

Понятие площади.). Функция множеств (функционал) $S: \mathbb{U} \to \mathbb{R}$, заданная на некотором множестве «квадрируемых» подмножеств плоскости, называется площадью, если:

- 1. $S(A) > 0, A \in \mathbb{U}$
- 2. Если $A, B \in \mathbb{U}, A \cap B = \emptyset$, то $A \cup B \in \mathbb{U}$ и

$$S(A \cup B) = S(A) + S(B)$$

- 3. Площадь прямоугольника со сторонами а, b равна ab
- 4. Если $A \in \mathbb{U}$, U движение, то $U(A) \in \mathbb{U}$ и

$$S(U(A)) = S(A)$$

О19. Подграфик и криволинейная трапеция в декартовых координатах

Понятия подграфика и криволинейной трапеции. Пусть $f:[a,b] \to \mathbb{R}, f \ge 0$. Множество

$$G_f = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\}$$

называется подграфиком функции f.

Если функция f непрерывна на [a, b], то подграфик называется криволинейной трапецией.

O20. Подграфик и криволинейный сектор в полярных координатах

Понятия подграфика и криволинейного сектора Пусть $0 < \beta - \alpha \le 2\pi, f : [\alpha, \beta] \to \mathbb{R}, f \ge 0.$ Множество

$$\mathbb{G}_f = \{ (r\cos\varphi, r\sin\varphi) \in \mathbb{R}^2 : \varphi \in [\alpha, \beta], 0 \le r \le f(\varphi) \}$$

называется подграфиком функции f в полярных координатах. Если функция f непрерывна на $[\alpha, \beta]$, то подграфик называется криволинейным сектором.

O21. Путь

Понятие пути Путем в пространстве \mathbb{R}^n называется отображение $\gamma:[a,b]\to\mathbb{R}^n$, все координатные

функции которого непрерывны на [а, b].

022. Начало и конец, замкнутость пути

Понятия начала и конца пути, замкнутого пути. Пусть $\gamma:[a,b]\to\mathbb{R}^n$. Точка $\gamma(a)$ называется

началом пути, а точка $\gamma(b)$ — концом пути γ . Если $\gamma(a) = \gamma(b)$, то путь γ называется замкнутым.

О23. Носитель пути

Понятие носителя пути. Пусть $\gamma:[a,b]\to\mathbb{R}^n$. Множество $\gamma([a,b])$ называется носителем пути γ .

О24. Гладкий путь (порядок гладкости)

Понятие гладкого пути. Пусть $\gamma:[a,b] \to \mathbb{R}^n$, причем

$$\gamma(t) = \left(x_1(t), ..., x_{n(t)}\right), t \in [a, b].$$

Говорят, что γ — путь гладкости $m\in\mathbb{N}\cup\{+\infty\},$ если $x_i\in C^m[a,b], i\in\{1,...,n\}.$ Если $\mathrm{m}=1,$ то путь γ часто просто называют гладким

О25. Кусочно-гладкий путь

Понятие кусочно-гладкого пути Пусть $\gamma:[a,b] \to \mathbb{R}^n$. Если отрезок [a, b] можно разбить точками

$$a = t_0 < t_1 < ... < t_k = b$$

так, что сужение пути γ на каждый отрезок $[t_{i-1},t_i], i\in\{1,...,n\}$ — гладкий путь, то путь γ называется кусочно-гладким

026. Эквивалентные пути

Понятие эквивалентных путей Путь $\gamma_1:[a,b]\to\mathbb{R}^n$ называется эквивалентным пути $\gamma_2:[\alpha,\beta]\to\mathbb{R}^n$, если существует строго возрастающая биекция $u:[a,b]\to[\alpha,\beta]$, что

$$\gamma_1 = \gamma_2(u).$$

О27. Кривая и параметризация кривой

Понятие кривой Класс эквивалентных путей называют кривой, а каждый представитель класса - параметризацией кривой. Кривую часто обозначают $\{\gamma\}$, где γ — какая-либо ее параметризация

О28. Гладкая и кусочно-гладкая кривая

Кривая $\{\gamma\}$ называется гладкой (m-гладкой, $m \in \mathbb{N} \cup \{+\infty\}$, кусочно-гладкой), если у нее существует гладкая (m-гладкая, кусочно-гладкая) параметризация.

О29. Ломаная, вписаная в путь

Множество отрезков, соединяющих точки $\gamma(t_k)$ и $\gamma(t_k-1)$, называется ломаной, вписанной в путь γ , отвечающей разбиению τ . Эту ломаную будем обозначать s_τ

Л1. Длина вписанной ломаной

О длине вписанной ломаной Длина $|s_{\tau}|$ ломаной s_{τ} , вписанной в путь γ , равна

$$|s_{\tau}| = \sum_{i=1}^{n} \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2}$$

Док-во. Длина отрезка, соединяющего точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, вычисляется по теореме Пифагора и равна, очевидно,

$$\sqrt{{(x(t_k)-x(t_{k-1}))}^2+{(y(t_k)-y(t_{k-1}))}^2}$$

Тогда длина $|s_{\tau}|$ ломаной s_{τ} равна

$$|s_{\tau}| = \sum_{i=1}^{n} \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2}$$

О30. Длина пути

п ...

Понятие длины пути Длиной пути
$$\gamma$$
 называется величина

 $l_{\gamma} = \sup_{\tau} |s_{\tau}|$

Понятие спрямляемого пути Если $l_{\gamma} < +\infty$, то путь γ называется спрямляемым.

О31. Спрямляемый путь

О32. Длина кривой

Понятие длины кривой Длиной кривой называют длину любой ее параметризации.

ОЗЗ. Локально интегрируемая функция

E, и пишут $f \in R_{loc}(E)$, если $f \in R[a,b]$ для любого $[a,b] \subset E$

Понятие локальной интегрируемости Говорят, что функция f локально интегрируема на множестве

О34. Несобственный интеграл и его значение

34.1 Понятие несобственного интеграла Пусть $f \in R_{loc}[a,b), -\infty < a < b \le +\infty$. Тогда символ

$$\int_a^b f \ d(x)$$

называется несобственным интегралом от функции f по множеству [a, b]

34.2 Понятие значения несобственного интеграла Пусть $f \in R_{\mathrm{loc}}[a,b), -\infty < a < b \leq +\infty$ и $\omega \in [a,b).$ Предел

$$\lim_{w \to b-0} \left(\int_{a}^{w} f \ d(x) \right)$$

если он существует в $\overline{\mathbb{R}}$, называется значением несобственного интеграла от функции f по множеству [a, b)

О35. Сходимость и расходимость несобственного интеграла

Понятие сходящегося несобственного интеграла. Пусть $f \in R_{\text{loc}}[a,b), -\infty < a < b \le +\infty$ и $\omega \in [a,b)$. Если предел

$$\lim_{w\to b-0} \left(\int_{a}^{w} f \ d(x) \right)$$

существует в \mathbb{R} , то несобственный интеграл называется сходящимся. Иначе - расходящимся.

О36. Несобственные интегралы первого и второго рода

Понятия интегралов первого и второго родов. Несобственный интеграл по неограниченному промежутку часто называется несобственным интегралом первого рода.

Несобственный интеграл от неограниченной функции по промежутку конечной длины часто называется несобственным интегралом второго рода.

О37. Остаток несобственного интеграла

Понятие остатка несобственного интеграла. Пусть $f \in R_{\mathrm{loc}}[a,b), c \in (a,b)$ Тогда

$$\int_{a}^{b} f \; d(x)$$

называется остатком несобственного интеграла от f по [a, b).

32. Сведение интегралов 2 рода к 1 роду

Доказанные теоремы о замене переменной позволяют свести интегралы по конечному промежутку [a, b) к интегралам по бесконечному промежутку. Действительно, отображение

$$x = b - \frac{1}{t} : \left[\frac{1}{b-a}, +\infty \right] \to [a, b)$$

приводит интеграл второго рода к интегралу первого рода:

$$\int_a^b f \ d(x) = \int_{\frac{1}{b-a}}^{+\infty} f\bigg(b - \frac{1}{t}\bigg) \frac{d(t)}{t^2}$$

Значит, не нарушая общности, в дальнейшем можно исследовать интегралы лишь по бесконечному промежутку. Мы будем пользоваться этим соображением при рассмотрении примеров.

ОЗ8. Абсолютная сходимость несобственного интеграла

Понятие абсолютной сходимости. Пусть $f \in R_{loc}[a,b)$. Говорят, что несобственный интеграл от f по [a,b) сходится абсолютно, если сходится интеграл

$$\int^b |f| \; d(x)$$

ОЗ9. Условная сходимость несобственного интеграла

Пусть $f \in R_{loc}[a,b)$. Если интеграл от f по [a,b) сходится, но не сходится абсолютно, то говорят, что интеграл сходится условно.

О40. Несобственный интеграл с двумя особенностями на концах, его значение, сходимость и расходимость

40.1 Понятие несобственного интеграла с двумя особенностями на концах Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\mathrm{loc}}(a,b)$. Тогда символ

$$\int_{a}^{b} f \ d(x)$$

называется несобственным интегралом от функции f по множеству (a, b).

40.2 Понятие значения несобственного интеграла с двумя особен- ностями на концах Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\mathrm{loc}}(a,b)$ Тогда величина

$$\lim_{w_1 \rightarrow a + 0} \left(\int_{w_1}^c f \ d(x) \right) + \lim_{w_2 \rightarrow b - 0} \left(\int_c^{w_2} f \ d(x) \right)$$

если оба предела существуют в $\overline{\mathbb{R}}$ и не равны бесконечностям разных знаков, называется значением несобственного интеграла от функции f по множеству (a, b)

40.3 (N) Сходимость-расходимость. Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\mathrm{loc}}(a,b)$. Если

$$\left(\lim_{w_1\to a+0}\left(\int_{w_1}^c f\ d(x)\right) + \lim_{w_2\to b-0}\left(\int_c^{w_2} f\ d(x)\right)\right) \in R$$

то несобственный интеграл от функции f по (a, b) называется сходящимся, иначе — расходящимся.

Т1. Теорема о множестве всех первообразных

О множестве всех первообразны Пусть F — первообразная функции f на $\langle a, b \rangle$. Для того чтобы Φ также была первообразной функции f на $\langle a, b \rangle$, необходимо и достаточно, чтобы

$$F(x) - \Phi(x) \equiv C, \quad x \in \langle a, b \rangle, \quad C \in \mathbb{R}$$

. Док-во. Докажем необходимость. Пусть $\Psi=F-\Phi,$ где F и Φ — первообразные для f на $\langle {\bf a},\, {\bf b} \rangle.$ Тогда

$$\Psi'(x) = (F(x) - \Phi(x))' = F'(x) - \Phi'(x) = f(x) - f(x) = 0, \quad \forall x \in \langle a, b \rangle$$

. Согласно теореме Лагранжа, для любых $x_1, x_2 \in \langle a, b \rangle$ таких, что $x_1 < x_2,$

$$\Psi(x_2) - \Psi(x_1) = \Psi'(\xi)(x_2 - x_1) = 0, \quad \xi \in (x_1, x_2)$$

. Значит, $\Psi(x) \equiv C, C \in \mathbb{R}, x \in \langle a, b \rangle$.

Докажем достаточность. Пусть на $\langle a, b \rangle$ выполнено условие $F - \Phi \equiv C, C \in \mathbb{R}$. Тогда на этом промежутке $\Phi = F$ - C и, к тому же,

$$\Phi'=F'-C'=F'-0=F'=f$$

. Тем самым, Φ является первообразной для функции f на $\langle a,b \rangle$