AIFA Logical Deduction Propositional Logic

25/01/2024

Koustav Rudra

Example wffs

- P
- True
- P\(\Omega\)Q
- $(P \land Q) \rightarrow R$
- $(P \land Q) \lor R \rightarrow S$
- ~(PVQ)
- $\sim (P \lor Q) \rightarrow R \land S$

What does a wff mean --- Semantics?

• Interpretation in a world

• When we interpret a sentence in a world we assign meaning to it and it evaluates to either True or False

- Same proposition could be interpreted in two different worlds in two different ways
- Interpretation attributes meaning or semantics to propositions

Semantics

- We deal with two symbols P and Q
- Truth values of P and Q depend on the way we interpret it in a particular world

How do we get a meaning?

• Sentences can be compound propositions

• Steps:

- Interpret each atomic proposition in the **same world**
- Assign Truth values to each interpretation
- Compute the Truth value of compound proposition

Example

- P: likes(Akash, Aritra)
- Q: knows(Amit, Adway)
- World: Akash and Aritra are friends. Amit and Adway are known to each other.
- P = T, Q = T
- $P \wedge Q = T$
- $P \land \sim Q = F$

Validity of a sentence

- If a propositional sentence is true under all possible interpretation, it is <u>VALID</u>
- A sentence is <u>VALID</u> means it is True irrespective of the world in which we interpret it
- PV~P is always True
 - <u>Tautology</u>

Satisfiability

- An interpretation is a mapping to a world
- A sentence is satisfiable by an interpretation if
 - Under that interpretation the sentence evaluates to <u>True</u>
- If NO interpretation makes a sentence True then
 - That sentence is called **UNSATISFIABLE** or **INCONSISTENT**
 - P \(\sigma \)
- If NO interpretation makes all the sentences in the set to be True then
 - The set of sentences is UNSATISFIABLE or INCONSISTENT

Inference in Propositional Logic

25/01/2024

Objective

- Infer the truth value of a proposition
- Reason towards new facts given a set of propositions
- Prove a proposition given a set of propositional facts

Truth Value Assignment

P	Q	PΛQ	PVQ	~P	~Q	P→Q
Т	Т	Т	Т	F	F	Т
Т	F	F	Т	F	Т	F
F	Т	F	Т	Т	F	T
F	F	F	Т	Т	Т	Т

De Morgan's Theorem

•
$$\sim$$
(P \land Q) = \sim P \lor \simQ

•
$$\sim$$
(PVQ) = \sim P \land \sim Q

Р	Q	PVQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

~(PVQ)
F
F
F
Т

~p	~Q
F	F
F	Т
Т	F
Т	Т

~P^~Q
F
F
F
Т

Problem 2

- If P and Q are True, then what is the truth value of following statements?
 - S: $(\sim P \lor Q) \rightarrow P$

P	Q	~PVQ	S
Т	Т	Т	Т

Deduction using Propositional Logic: Steps

- Choice of Boolean variables a, b, c, d ... which can take values True or False
- Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables
- Codification of Sentences of the argument into Boolean Formulae
- Developing the <u>Deduction Process</u> as obtaining truth of a <u>Combined Formula</u> expressing the complete argument
- <u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Problem 1

• If I am the Director then I am well-known. I am the Director. So I am well-known.

Choice of Boolean variables a, b, c, d ... which can take values True or False

- Coding: Variables
- a: I am the Director
- b: I am well-known

Coding the sentences

- Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables
- 1. a→b
- 3. b

- <u>Codification of Sentences</u> of the argument into Boolean Formulae
- Developing the **<u>Deduction Process</u>** as obtaining truth of a **<u>Combined Formula expressing the complete argument</u>**
- The final formula for deduction
- $((a \rightarrow b) \land a) \rightarrow b$

<u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Proof or Otherwise

a	b	a→b	((a→b)∧a)	$((a \rightarrow b) \land a) \rightarrow b$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Problem 2

• If I am the Director then I am well-known. I am not the Director. So I am not well-known.

Choice of Boolean variables a, b, c, d ... which can take values True or False

Boolean Formulae developed using well defined connectors \sim , Λ , V, \rightarrow , etc, whose meaning (semantics) is given by their truth tables

<u>Codification of Sentences</u> of the argument into Boolean Formulae

Developing the <u>Deduction Process</u> as obtaining truth of a Combined Formula expressing the complete argument

- Coding: Variables
- a: I am the Director
- b: I am well-known
- Coding the sentences
- 1. a→b
- 2. ~a
- 3. ~b
- The final formula for deduction
- ((a→b)∧~a)→~b

<u>Determining the Truth</u> or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

Proof or Otherwise

a	b	a→b	((a→b)∧~a	((a→b)∧~a)→~b
Т	Т	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

Reasoning

- Using the given propositions which are assumed to be True
 - Trying to derive new facts which will also be True
- P: It is the month of July
- Q: It rains
- R: $P \rightarrow Q$ [If it is month of July then it rains]
- Premise: It is the month of July
- Conclude: It rains

Symbolic Deduction

Modus Ponens: One Inference Rule

- $P \rightarrow Q$
- P
- Q
- $P \rightarrow Q = \sim P \vee Q$
- P∧~P∨Q
- $(P \land \sim P) \lor Q$
- FVQ
- Q

Allows us to deduce the truth of a consequent depending on the truth of the antecedents

Inference Rule: Importance

- We want to develop some mechanical procedures using which we can make the machine infer new facts
- Inference rules can be mechanically applied

• Rules:

- If Not(Not(P)) then P
- Chain Rule:
 - If P then Q
 - If Q then R
 - If P then R

Rules of Natural Deduction

- Modus Ponens: $(a \rightarrow b)$, a :- therefore b
- Modus Tollens: $(a \rightarrow b)$, $\sim b$:- therefore $\sim a$
- Hypothetical Syllogism: $(a \rightarrow b)$, $(b \rightarrow c)$:- therefore $(a \rightarrow c)$
- Disjunctive Syllogism: (a V b), ~a:- therefore b
- Constructive Dilemma: $(a \rightarrow b) \Lambda (c \rightarrow d)$, $(a \lor c)$:- therefore $(b \lor d)$
- Destructive Dilemma: (a \rightarrow b) Λ (c \rightarrow d), (\sim b V \sim d) :- therefore (\sim a V \sim c)
- Simplification: a Λ b:- therefore a
- Conjunction: a, b:- therefore a Λ b
- Addition: a :- therefore a V b

Inference Mechanisms

- Formal way of inferencing using propositional logic
- Truth Table Method
 - We can find out the truth of any compound proposition when we know the truth values of the individual propositions

Deductive method

- Inference rules which are not dependent on any interpretation
- The propositions will evaluate to True or False based on some interpretation
- Modus Ponen is one such inference rule

Resolution

- Propositions converted into clausal form
- Negation of the goal, convert to clausal form
- Iteratively apply propositions and prove NULL

Automated Reasoning

- In general, the inference problem is NP-complete [Cook's Theorem]
- If we restrict ourselves to Horn sentences, then repeated use of Modus Ponens gives us a polytime procedure.
 - Horn sentences are of the form:
 - $F1 \wedge F2 \wedge ... \wedge Fn \rightarrow G$
 - Forward chaining
 - Backward chaining

Automated Reasoning

• Forward Chaining

Automated Reasoning

• Backward chaining

Thank You