## **Pipe Flow**



Laminar and Turbulent Pipe Flow



## **Moody's Chart**







At very large Reynolds numbers, the friction factor curves on the Moody chart are nearly horizontal, and thus the friction factors are independent of the Reynolds number.



## Flow through Non-Circular Duct

$$Re = \frac{\rho V_{av} D_h}{v}$$

Hydraulic diameter  $D_h = \frac{4A_c}{D}$ 

$$D_h = \frac{4A_c}{P}$$

where  $A_c$  is the cross-sectional area of the pipe and P is its wetted perimeter.





$$D=D_h$$

Head loss: 
$$\mathbf{D} = \mathbf{D_h} \qquad h_L = \frac{\Delta P_L}{\rho g} = f \frac{L}{D} \frac{V_{\text{avg}}^2}{2g}$$

$$f = F\left(\frac{VD_h}{\nu}, \frac{\epsilon}{D_h}\right) \qquad \mathbf{V} = \mathbf{V_{avg}}$$

Square duct:

$$D_h = \frac{4a^2}{4a} = a$$







Secondary flow (Turbulent Flow)



Rectangular duct:





Midplane



**Channel: ??????** 

# **Major Losses**

Friction factor for fully developed *laminar flow* in pipes of various cross sections ( $D_h=4A_c/p$  and Re =  $V_{\rm avg}~D_h/\nu$ )

| Tube Geometry       | $a/b$ or $\theta^{\circ}$ | Friction Factor f |
|---------------------|---------------------------|-------------------|
| Circle              |                           | 64.00/Re          |
| Rectangle           | _a/b_                     |                   |
|                     | 1                         | 56.92/Re          |
|                     | 2 3                       | 62.20/Re          |
|                     | 3                         | 68.36/Re          |
|                     | 4                         | 72.92/Re          |
| <b>←</b> a <b>←</b> | 6                         | 78.80/Re          |
|                     | 8                         | 82.32/Re          |
|                     | 00                        | 96.00/Re          |
| Ellipse             | _ a/b_                    |                   |
|                     | 1                         | 64.00/Re          |
|                     | 2                         | 67.28/Re          |
|                     | 4                         | 72.96/Re          |
|                     | 8                         | 76.60/Re          |
|                     | 16                        | 78.16/Re          |

## **Major Losses**



The pressure drop  $\Delta P$  equals the pressure loss  $\Delta P_L$  in the case of a horizontal pipe:

$$\frac{P_1}{\rho g} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_{\text{pump}, u} = \frac{P_2}{\rho g} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_{\text{turbine}, e} + h_L$$

### **Inclined Pipes**

$$u(r) = -\frac{R^2}{4\mu} \left( \frac{dP}{dx} + \rho g \sin \theta \right) \left( 1 - \frac{r^2}{R^2} \right)$$
$$V_{\text{avg}} = \frac{(\Delta P - \rho g L \sin \theta) D^2}{32\mu L}$$



### **Head Loss**

Head loss: (major) 
$$h_L = \frac{\Delta P_L}{\rho g} = f \frac{L}{D} \frac{V_{\text{avg}}^2}{2g}$$

Major losses are due to frictional losses in the pipe

Loss coefficient: 
$$K_L = \frac{h_L}{V^2/(2g)}$$

Minor loss:  $h_L = K_L \frac{V^2}{2g}$ 

Minor losses are usually expressed in terms of the loss coefficient  $K_L$ Minor losses are due to flow irregularities and mixing such as

- 1. Pipe entrance or exit.
- 2. Sudden expansion or contraction.
- 3. Bends, elbows, tees, and other fittings.
- 4. Valves, open or partially closed.
- 5. Gradual expansions or contractions.

Pipe section with valve:



Pipe section without valve:







### **Total Head Loss**

*Total head loss (general):* 

$$h_{L, \text{ total}} = h_{L, \text{ major}} + h_{L, \text{ minor}}$$

$$= \sum_{i} f_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2g} + \sum_{j} K_{L, j} \frac{V_{j}^{2}}{2g}$$

*Total head loss* (D = constant):

$$h_{L, \text{ total}} = \left( f \frac{L}{D} + \sum_{l} K_{L} \right) \frac{V^{2}}{2a}$$







### Losses due to Valves and Expansion/Contraction of Flow



Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Sudden expansion: 
$$K_L = \left(1 - \frac{d^2}{D^2}\right)^2$$



Sudden contraction: See chart.









#### Bends and Branches

90° smooth bend:

Flanged:  $K_L = 0.3$ 

Threaded:  $K_L = 0.9$ 



90° miter bend (without vanes):  $K_L = 1.1$ 



90° miter bend (with vanes):  $K_l = 0.2$ 



 $45^{\circ}$  threaded elbow:  $K_I = 0.4$ 



180° return bend:

Flanged:  $K_L = 0.2$ 

Threaded:  $K_I = 1.5$ 



Tee (branch flow):

Flanged:  $K_L = 1.0$ 

Threaded:  $K_L = 2.0$ 



Tee (line flow):

Flanged:  $K_L = 0.2$ 

Threaded:  $K_L = 0.9$ 



Threaded union:

 $K_L=0.08$ 

