Resurgence of the Airy function

Aaron Fenyes

January 14, 2022

1 The Laplace transform

1.1 Analytic version

1.1.1 Regularity and decay properties

Take two copies \mathbb{R} and $\hat{\mathbb{R}}$ of the real line, with standard coordinates z and ζ respectively. The Laplace transform in ζ turns a function $\hat{\varphi}$ on $\hat{\mathbb{R}}_{\zeta>0}$ into a function $\mathcal{L}_{\zeta}\hat{\varphi}$ on $\mathbb{R}_{z>0}$, defined by the integral

 $\mathcal{L}_{\zeta}\hat{\varphi} = \int_{0}^{\infty} e^{-z\zeta} \,\hat{\varphi} \,d\zeta.$

For $a \in [0, \infty]$, recall that recall that $O_{\zeta \to a}(g)$ is the space of functions φ on $\hat{\mathbb{R}}_{\zeta > 0}$ with $|\varphi| \lesssim g$ in some neighborhood of a. A function is subexponential if it's in $O_{\zeta \to \infty}(e^{c\zeta})$ for all c > 0. Let \mathcal{E}_{ζ} be the space of subexponential functions on $\hat{\mathbb{R}}_{\zeta > 0}$ which are L^1 both locally and around $\zeta = 0$. If $\hat{\varphi}$ is in \mathcal{E}_{ζ} , then $\varphi = \mathcal{L}_{\zeta}\hat{\varphi}$ is well-defined, and it extends to a holomorphic function on the right half-plane $\mathbb{C}_{\text{Re}(z)>0}$ [1, §5.6]. If $\hat{\varphi}$ is in $O_{\zeta \to 0}(1)$, then φ is in $O_{z \to \infty}(z^{-1})$ [2, equation 1.8]. More generally, if $\hat{\varphi}$ is in $O_{\zeta \to 0}(\zeta^{\alpha})$, with $\alpha > -1$, then φ is in $O_{z \to \infty}(z^{-(\alpha+1)})$.

1.1.2 Action on differential operators

When $\hat{\varphi} \in \mathcal{E}_{\zeta}$, we can use differentiation under the integral to show that [2, Theorem 1.34]

$$\mathcal{L}_{\zeta}(\zeta^{n}\hat{\varphi}) = \left(-\frac{\partial}{\partial z}\right)^{n} \mathcal{L}_{\zeta}\hat{\varphi}. \tag{1}$$

When $\hat{\varphi}$ is *n* times differentiable, its *n*th derivative is in \mathcal{E} , and its zeroth through (n-1)st derivatives extend continuously to zero, integration by parts gives the formula

$$\mathcal{L}_{\zeta} \left(\frac{\partial}{\partial \zeta} \right)^{n} \hat{\varphi} = z^{n} \mathcal{L}_{\zeta} \hat{\varphi} - \left[\hat{\varphi} z^{n-1} + \hat{\varphi}' z^{n-2} + \hat{\varphi}'' z^{n-3} + \dots + \hat{\varphi}^{(n-1)} \right]_{\zeta=0}$$

$$= z^{n} \mathcal{L} \left(\hat{\varphi} - \left[\hat{\varphi} + \hat{\varphi}' \zeta + \frac{\hat{\varphi}''}{2!} \zeta^{2} + \dots + \frac{\hat{\varphi}^{(n-1)}}{(n-1)!} \zeta^{n-1} \right]_{\zeta=0} \right).$$
(2)

¹The argument cited still works in our generality. For holomorphic $\hat{\varphi}$, one can also use Equation 1.5 of Borel-Laplace Transform and Asymptotic Theory (Sternin & Shatalov).

Note that if a function's derivative is subexponential, so is the function itself.²

1.2 Algebraic version

1.2.1 Definition

Let \mathcal{P}_{ζ} be the vector space spanned by ζ^{α} for $\alpha \in \mathbb{R} \setminus \mathbb{Z}_{<0}$. Note that $\mathcal{P}_{\zeta} \cap \mathcal{E}_{\zeta}$ is $\mathcal{P}_{\zeta}^{>-1}$, the subspace spanned by ζ^{α} with $\alpha > -1$. Since

$$\mathcal{L}_{\zeta}(\zeta^{\alpha}) = \Gamma(\alpha+1) z^{-(\alpha+1)}$$

for all $\alpha > -1$, let's use the same formula to extend \mathcal{L}_{ζ} to all of \mathcal{P}_{ζ} . This defines \mathcal{L}_{ζ} consistently on $\mathcal{E}_{\zeta} + \mathcal{P}_{\zeta}$.

1.2.2 Action on differential operators

Observe that

$$\mathcal{L}_{\zeta}(\zeta^{\alpha+1}) = -\frac{\partial}{\partial z} \, \mathcal{L}_{\zeta}(\zeta^{\alpha})$$

for $\alpha \neq -1$. This extends identity 1 to all of \mathcal{P}_{ζ} .

Observe that

$$\mathcal{L}_{\zeta} \frac{\partial}{\partial \zeta} (\zeta^{\alpha}) = \begin{cases} z \, \mathcal{L}_{\zeta} (\zeta^{\alpha}) & \alpha \neq 0 \\ 0 & \alpha = 0, \end{cases}$$

and that $0 = z \mathcal{L}_{\zeta}(1) - 1$. This recovers identity 2 for any function in \mathcal{P}_{ζ} whose *n*th derivative is in $\mathcal{P}_{\zeta}^{>-1}$. Although the functions in $\mathcal{P}_{\zeta}^{<0}$ are singular at zero, let's pretend they vanish at zero. With that convention, formula 2 extends to all of \mathcal{P}_{ζ} .

Now we have the results of Section 1.1.2 for all functions in $\mathcal{E}_{\zeta} + \mathcal{P}_{\zeta}$. Identity 2 is particularly simple when $\hat{\varphi}$ has a fractional power singularity at $\zeta = 0$. By this, I mean that $\hat{\varphi}$ can be written as $\hat{\varphi}_{\text{frac}} + \hat{\varphi}_{\text{reg}}$, where $\hat{\varphi}_{\text{frac}} \in \mathcal{P}_{\zeta}$ has only non-integer exponents, and the zeroth through (n-1)st derivatives of $\hat{\varphi}_{\text{reg}} \in \mathcal{E}_{\zeta}$ vanish at zero. Under this condition, all the initial value terms in the identity vanish, leaving

$$\mathcal{L}_{\zeta} \left(\frac{\partial}{\partial \zeta} \right)^{n} \hat{\varphi} = z^{n} \mathcal{L}_{\zeta} \hat{\varphi}.$$

$$\left| \int_0^Z f' \, d\zeta \right| \le \int_0^Z |f'| \, d\zeta \lesssim \int_0^Z e^{c\zeta} \, d\zeta = \frac{1}{c} (e^{cZ} - 1) \lesssim e^{cZ}.$$

Now we know the integral on the left-hand side converges, implying that f extends continuously to zero, with $|f - f_{\zeta=0}| \lesssim e^{c\zeta}$.

²Say $f' \in O_{\zeta \to \infty}(e^{c\zeta})$. Then

1.3 Change of coordinates

Define a new coordinate ζ_a on $\hat{\mathbb{R}}$ so that $\zeta = a + \zeta_a$. From the calculation

$$\mathcal{L}_{\zeta}\hat{\varphi} = \int_{0}^{\infty} e^{-z\zeta} \,\hat{\varphi} \,d\zeta$$
$$= \int_{0}^{\infty} e^{-z(a+\zeta_{a})} \,\hat{\varphi} \,d\zeta_{a}$$
$$= e^{-az} \int_{0}^{\infty} e^{-z\zeta_{a}} \,\hat{\varphi} \,d\zeta_{a}$$
$$= e^{-az} \mathcal{L}_{\zeta_{a}} \hat{\varphi},$$

we learn that

$$\mathcal{L}_{\zeta_a}\hat{\varphi} = e^{az}\mathcal{L}_{\zeta}\hat{\varphi}.$$

Define new coordinates x and ξ on \mathbb{R} and $\hat{\mathbb{R}}$, respectively, so that $\zeta = b\xi$ and $z d\zeta = x d\xi$. Explicitly, $z = b^{-1}x$. From the calculation

$$\mathcal{L}_{\zeta}\hat{\varphi} = \int_{0}^{\infty} e^{-z\zeta} \,\hat{\varphi} \,d\zeta$$
$$= \int_{0}^{\infty} e^{-x\xi} \,\hat{\varphi} \,b \,d\xi$$
$$= b\mathcal{L}_{\xi}\hat{\varphi},$$

we learn that

$$\mathcal{L}_{\xi}\hat{\varphi} = b^{-1}\mathcal{L}_{\zeta}\hat{\varphi}.$$

2 The Airy equation

2.1 Basics

The Airy equation is

$$\left[\left(\frac{\partial}{\partial y} \right)^2 - y \right] \psi = 0. \tag{3}$$

One solution is given by the Airy function,

$$\operatorname{Ai}(y) = \frac{i}{2\pi} \int_{\Gamma} \exp\left(-\frac{1}{3}t^3 + yt\right) dt,$$

where Γ is a path that comes from ∞ at 120° and goes to ∞ at -120° .

The contour Γ in the u plane.

With the substitution $t = 2uy^{1/2}$, we can rewrite the Airy integral as

$$Ai(y) = y^{1/2} \frac{i}{\pi} \int_{u^{-1/2}\Gamma} \exp\left[-\frac{2}{3}y^{3/2} \left(4u^3 - 3u\right)\right] du.$$

We've rescaled the contour by a factor of two, but it still approaches ∞ in the desired way. Note that $4u^3 - 3u$ is the third Chebyshev polynomial.

2.2 Rewriting as a modified Bessel equation

We can distill the most interesting part of the Airy function by writing

$$\operatorname{Ai}(y) = \frac{1}{\pi\sqrt{3}} y^{1/2} K(\frac{2}{3}y^{3/2}),$$

where

$$K(z) = i\sqrt{3} \int_{z^{-1/3}\Gamma} \exp\left[-z\left(4u^3 - 3u\right)\right] du.$$
 (4)

Saying that Ai satisfies the Airy equation is equivalent to saying that K satisfies the modified Bessel equation

$$\left[z^{2}\left(\frac{\partial}{\partial z}\right)^{2}+z\frac{\partial}{\partial z}-\left[\left(\frac{1}{3}\right)^{2}+z^{2}\right]\right]\varphi=0. \tag{5}$$

In fact, K is the modified Bessel function $K_{1/3}$ [3, equation 9.6.1].

As we'll see in Section ??, K is in $O_{z\to\infty}(e^{-z})$. It'll be helpful to pull out the exponential decay factor and work instead with the function κ defined by $K = e^{-z}\kappa$. Saying that K satisfies equation 5 is equivalent to saying that κ satisfies the equation

$$\left[z^{2}\left(\frac{\partial}{\partial z}+1\right)^{2}+z\left(\frac{\partial}{\partial z}+1\right)-\left[\left(\frac{1}{3}\right)^{2}+z^{2}\right]\right]\varphi=0. \tag{6}$$

2.3 Asymptotic analysis

From [3], equations 10.40.2 and 10.17.1, we get the asymptotic series

$$\kappa \sim \left(\frac{\pi}{2}\right)^{1/2} \left[z^{-1/2} - \frac{\left(\frac{1}{6}\right)_1\left(\frac{5}{6}\right)_1}{2^1 \cdot 1!} z^{-3/2} + \frac{\left(\frac{1}{6}\right)_2\left(\frac{5}{6}\right)_2}{2^2 \cdot 2!} z^{-5/2} - \frac{\left(\frac{1}{6}\right)_3\left(\frac{5}{6}\right)_3}{2^3 \cdot 3!} z^{-7/2} + \dots \right]$$
(7)

2.4 Going to the spatial domain

2.4.1 A good try at $\zeta = 0$

Let's try to find a function \hat{K} with $K = \mathcal{L}_{\zeta}\hat{K}$, which is unique if it exists [2, Theorem 1.23]. If a function $\hat{\varphi}$ satisfies the equation

$$\left[\left(\zeta^2 - 1 \right) \left(\frac{\partial}{\partial \zeta} \right)^2 + 3\zeta \frac{\partial}{\partial \zeta} + \left[1 - \left(\frac{1}{3} \right)^2 \right] \right] \hat{\varphi} = 0, \tag{8}$$

its Laplace transform $\varphi = \mathcal{L}_{\zeta} \hat{\varphi}$ satisfies the equation

$$\begin{split} \left[\left(-\frac{\partial}{\partial z} \right)^2 - 1 \right] \left(z^2 \varphi - \left[\hat{\varphi} \, z + \hat{\varphi}' \right]_{\zeta = 0} \right) + 3 \left(-\frac{\partial}{\partial z} \right) \left[z \varphi - \hat{\varphi} \right]_{\zeta = 0} + \left[1 - \left(\frac{1}{3} \right)^2 \right] \varphi = 0 \\ \left(\frac{\partial}{\partial z} \right)^2 \left[z^2 \varphi \right] - \left(z^2 \varphi - \left[\hat{\varphi} \, z + \hat{\varphi}' \right]_{\zeta = 0} \right) - 3 \left(\frac{\partial}{\partial z} \right) \left[z \varphi \right] + \left[1 - \left(\frac{1}{3} \right)^2 \right] \varphi = 0 \\ \left[2 + 4 z \frac{\partial}{\partial z} + z^2 \left(\frac{\partial}{\partial z} \right)^2 \right] \varphi - \left(z^2 \varphi - \left[\hat{\varphi} \, z + \hat{\varphi}' \right]_{\zeta = 0} \right) - 3 \left[1 + z \frac{\partial}{\partial z} \right] \varphi + \left[1 - \left(\frac{1}{3} \right)^2 \right] \varphi = 0, \end{split}$$

which simplifies to

$$\left[z^2 \left(\frac{\partial}{\partial z}\right)^2 + z \frac{\partial}{\partial z} - \left[\left(\frac{1}{3}\right)^2 + z^2\right]\right] \varphi = -\left[\hat{\varphi} z + \hat{\varphi}'\right]_{\zeta=0}.$$
 (9)

Since we want $\mathcal{L}_{\zeta}\hat{K}$ to satisfy equation 5, which is the homogeneous version of equation 9, we might guess that \hat{K} is a solution of equation 8 that vanishes through first order at $\zeta = 0$. Unfortunately, this would force \hat{K} to be zero.

2.4.2 Success at $\zeta = 1$

Define a new coordinate ζ_1 on $\hat{\mathbb{R}}$ so that $\zeta = 1 + \zeta_1$. Since

$$\mathcal{L}_{\zeta_1} \hat{K} = e^z \mathcal{L}_{\zeta} \hat{K}$$
$$= e^z K$$
$$= \kappa,$$

we want $\mathcal{L}_{\zeta_1}\hat{K}$ to satisfy equation 6. Rewrite equation 8 as

$$\left[\zeta_1(\zeta_1+2)\left(\frac{\partial}{\partial\zeta_1}\right)^2 + 3(\zeta_1+1)\frac{\partial}{\partial\zeta_1} + \left[1 - \left(\frac{1}{3}\right)^2\right]\right]\hat{\varphi} = 0. \tag{10}$$

If $\hat{\varphi}$ satisfies equation 10, $\mathcal{L}_{\zeta_1}\hat{\varphi}$ will satisfy an inhomogeneous version of equation 6, analogous to equation 9. This time, though, there's a trick we can use to zero out the inhomogeneity. Equation 10 has a regular singularity at $\zeta_1 = 0$, and one solution (up to scaling) is a

holomorphic multiple of $\zeta_1^{-1/2}$. That solution has a fractional power singularity at $\zeta_1 = 0$, as defined in Section 1.2.2, so its Laplace transform in ζ_1 satisfies equation 6.

Following this plan, let's find \hat{K} explicitly. Defining another coordinate ξ on $\hat{\mathbb{R}}$ so that $\zeta_1 = -2\xi$, we can rewrite equation 10 as the hypergeometric equation

$$\left[\xi(1-\xi)\left(\frac{\partial}{\partial\xi}\right)^2 + 3\left(\frac{1}{2}-\xi\right)\frac{\partial}{\partial\xi} - \left[1-\left(\frac{1}{3}\right)^2\right]\right]\hat{\varphi} = 0. \tag{11}$$

The hypergeometric function

$$\hat{g}_1 = F(\frac{2}{3}, \frac{4}{3}; \frac{3}{2}; \xi)$$

satisfies equation 11 by definition. It's not the solution we want, though, because it's holomorphic around $\xi = 0$. Formula 15.10.12 from [3] gives another solution,

$$\hat{f}_0 = \xi^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; \xi\right),$$

which is a holomorphic multiple of $\xi^{-1/2}$ near $\xi = 0$. By the argument above, $f_0 = \mathcal{L}_{\zeta_1} \hat{f}_0$ satisfies equation 6. This suggests that a constant multiple of \hat{f}_0 is our desired \hat{K} . The power series [3, equation 15.2.1]

$$\hat{f}_0 = \xi^{-1/2} + \frac{\left(\frac{1}{6}\right)_1\left(\frac{5}{6}\right)_1}{\left(\frac{1}{2}\right)_1 \ 1!} \ \xi^{1/2} + \frac{\left(\frac{1}{6}\right)_2\left(\frac{5}{6}\right)_2}{\left(\frac{1}{2}\right)_2 \ 2!} \ \xi^{3/2} + \frac{\left(\frac{1}{6}\right)_3\left(\frac{5}{6}\right)_3}{\left(\frac{1}{2}\right)_3 \ 3!} \ \xi^{5/2} + \dots$$

converges near $\xi = 0$, showing that

$$\hat{f}_0 \in \xi^{-1/2} + O_{\varepsilon \to 0}(\xi^{1/2}).$$

In terms of ζ_1 , we have

$$\hat{f}_0 \in -i\sqrt{2}\,\zeta_1^{-1/2} + O_{\zeta_1 \to 0}(\zeta_1^{1/2}).$$

Using the decay properties from Section 1.1.1, we deduce that

$$f_0 \in -i\sqrt{2\pi} \, z^{-1/2} + O_{z \to \infty}(z^{-3/2}).$$

Since we know that f_0 satisfies equation 6, this confirms that f_0 is a constant multiple of κ , which is the only subexponential solution of equation 6 (up to scaling). Comparing with series 7, we see that $\kappa = \frac{i}{2} f_0$. We conclude that $\kappa = \mathcal{L}_{\zeta_1} \hat{K}$ for

$$\hat{K} = \frac{1}{\sqrt{2}} \zeta_1^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; -\frac{1}{2}\zeta_1\right).$$

3 Sketches

3.1 Contour argument

We can recast integral 4 into $\hat{\mathbb{C}}$ by setting $\zeta = 4u^3 - 3u$. Projecting $z^{-1/3}\Gamma$ to a contour γ_z in $\hat{\mathbb{C}}$ and choosing the branch of u that lifts γ_z back to $z^{-1/3}\Gamma$, we have

$$K = \frac{i}{\sqrt{3}} \int_{\gamma_z} e^{-z\zeta} \frac{d\zeta}{4u^2 - 1}.$$
 (12)

For $z \in (0, \infty)$, the contour γ_z runs clockwise around $[1, \infty)$, as shown below. Let's assume $z \in (0, \infty)$ for the rest of the section. [Our conclusions should probably hold whenever Re(z) > 0.]

The contour γ_1 in $\hat{\mathbb{C}}$.

It happens³ that for our desired branch of u,

$$\frac{1}{4u^2 - 1} = -F\left(\frac{1}{3}, \frac{2}{3}; \frac{1}{2}; \zeta^2\right),\,$$

so we can rewrite integral 12 as

$$K = \frac{1}{i\sqrt{3}} \int_{\gamma_{\pi}} e^{-z\zeta} F\left(\frac{1}{3}, \frac{2}{3}; \frac{1}{2}; \zeta^2\right) d\zeta.$$

This gives us an alternate route to the conclusion of Section 2.4, which we'll follow below. In addition to the solutions \hat{g}_1 and \hat{f}_0 from Section 2.4.2, equation 11 has the solutions

$$\hat{g}_0 = F\left(\frac{2}{3}, \frac{4}{3}; \frac{3}{2}; 1 - \xi\right)$$

$$\hat{f}_1 = (1 - \xi)^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; 1 - \xi\right),$$

given by formulas 15.10.13 and 15.10.14 from [3].

The quadratic transformation identity 15.8.27 from [3] shows [verified numerically] that⁴

$$F(\frac{1}{3}, \frac{2}{3}; \frac{1}{2}; \zeta^2) = \frac{1}{3}(\hat{g}_1 + \hat{g}_0),$$

so we have

$$K = \frac{1}{i \, 3\sqrt{3}} \int_{\gamma_{-}} e^{-z\zeta} (\hat{g}_1 + \hat{g}_0) \, d\zeta.$$

The solution \hat{g}_1 is holomorphic on $\zeta \in [1, \infty)$, so it integrates to zero. The solution \hat{g}_0 , in contrast, is non-meromorphic at $\zeta = 1$. Along the branch cut $\zeta \in [1, \infty)$, its above-minus-

⁴Note that
$$2\Gamma(\frac{1}{2})\Gamma(\frac{3}{2}) = 2\Gamma(\frac{1}{2})\frac{1}{2}\Gamma(\frac{1}{2}) = \pi$$
 and $\left[\Gamma(\frac{5}{6})\Gamma(\frac{7}{6})\right]^{-1} = \left[\Gamma(\frac{5}{6})\frac{1}{6}\Gamma(\frac{1}{6})\right]^{-1} = \frac{6\sin(\frac{1}{6}\pi)}{\pi} = \frac{3}{\pi}$.

³How to verify this? This hypergeometric function can be written in terms of Legendre functions, but I don't know where to go from there. **Veronica:** Look at "Special cases" section in [3], e.g. 15.4.14!

below difference is $-\frac{3\sqrt{3}}{2}\hat{f}_0$, as given⁵ by equation 15.2.3 from [3]. Hence,

$$K = \frac{i}{2} \int_{1}^{\infty} e^{-z\zeta} \hat{f}_{0} d\zeta$$
$$e^{z} K = \frac{i}{2} \int_{1}^{\infty} e^{-z(\zeta-1)} \hat{f}_{0} d\zeta$$
$$\kappa = \frac{i}{2} \mathcal{L}_{\zeta_{1}} \hat{f}_{0},$$

just as we found in Section 2.4.2.

3.2 Another solution

Section 3.1 associates the solution K of equation 5 with the solution \hat{g}_0 of equation 11, which contributes the pole at $\zeta = 1$ of

$$\frac{du}{d\zeta} = \frac{1}{4u^2 - 1} = \frac{1}{3}(\hat{g}_1 + \hat{g}_0).$$

The solution \hat{g}_1 , which contributes the pole at $\zeta = -1$, is associated with another solution of equation 5.

To express this other solution as a Laplace transform, following the method of Section 2.4.2, we would use the solution

$$\hat{f}_1 = (1 - \xi)^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; 1 - \xi\right)$$

of equation 11, given by formula 15.10.14 from [3]. This is the only solution, up to scale, which has a fractional power singularity at $\zeta = -1$.

In summary, the contour integration method of solving equation 5 is associated with the basis

$$\hat{g}_1 = F\left(\frac{2}{3}, \frac{4}{3}; \frac{3}{2}; \xi\right)$$

$$\hat{g}_0 = F\left(\frac{2}{3}, \frac{4}{3}; \frac{3}{2}; 1 - \xi\right)$$

of solutions for equation 11, given by formulas 15.10.11 and 15.10.13 from [3]. These solutions contribute the poles at $\xi = 1$ and $\xi = 0$, respectively, of a generic solution.

The Laplace transformation method of solving equation 5, on the other hand, is associated with the basis

$$\hat{f}_1 = (1 - \xi)^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; 1 - \xi\right)$$

$$\hat{f}_0 = \xi^{-1/2} F\left(\frac{1}{6}, \frac{5}{6}; \frac{1}{2}; \xi\right)$$

given by formulas 15.10.14 and 15.10.12 from [3]. These solutions, up to scale, are the only ones with fractional power singularities.

Identities 15.10.18, and 15.10.22 from [3] give the change of basis

$$\hat{f}_1 = \frac{1}{\sqrt{3}} \, \hat{g}_1 + \frac{1}{2} \, \hat{f}_0$$

$$\hat{f}_0 = \frac{1}{\sqrt{3}} \, \hat{g}_0 + \frac{1}{2} \, \hat{f}_1.$$

 $^{{}^5\}text{Note that }\Gamma(\frac{3}{2})\Gamma(\frac{1}{2})^{-1} = \frac{1}{2} \text{ and } \left[\Gamma(\frac{2}{3})\Gamma(\frac{4}{3})\right]^{-1} = \left[\Gamma(\frac{2}{3})\,\frac{1}{3}\Gamma(\frac{1}{3})\right]^{-1} = \frac{3\sin(\frac{1}{3}\pi)}{\pi} = \frac{3\sqrt{3}}{2\pi}.$

Summing these identities, we see that

$$\hat{g}_1 + \hat{g}_0 = \frac{\sqrt{3}}{2} (\hat{f}_1 + \hat{f}_0),$$

giving the alternate decomposition

$$\frac{du}{d\zeta} = \frac{1}{2\sqrt{3}} \left(\hat{f}_1 + \hat{f}_0 \right).$$

3.3 Correspondence with Mariño's series

Let $f_1(z)$ be the holomorphic function corresponding to Mariño's formal power series $\varphi_1(z^{-1})$. The formal power series corresponding to f will be written in the variable z.

$$Ai(x) = \frac{1}{2\sqrt{\pi}} x^{-1/4} e^{-z} \varphi_1 \left(\frac{2}{3} z^{-1}\right)$$
$$= \frac{1}{2\sqrt{\pi}} x^{-1/4} e^{-z} f_1 \left(\frac{3}{2} z\right)$$
$$Ai(x) = \frac{1}{\pi\sqrt{3}} x^{1/2} K \left(\frac{2}{3} x^{3/2}\right)$$

Putting together,

$$\frac{1}{2\sqrt{\pi}}x^{-1/4}e^{-z}f_1\left(\frac{3}{2}z\right) = \frac{1}{\pi\sqrt{3}}x^{1/2}K\left(\frac{2}{3}x^{3/2}\right)$$

$$\frac{\sqrt{3\pi}}{2}x^{-3/4}e^{-z}f_1\left(\frac{3}{2}z\right) = K\left(\frac{2}{3}x^{3/2}\right)$$

$$\frac{\sqrt{3\pi}}{2}\left(\frac{3}{2}z\right)^{-1/2}e^{-z}f_1\left(\frac{3}{2}z\right) = K(z)$$

$$\sqrt{\frac{\pi}{2}}z^{-1/2}e^{-z}f_1\left(\frac{3}{2}z\right) = K(z)$$

$$\sqrt{\frac{\pi}{2}}\left[\mathcal{L}^{-1}z^{-1/2}\right] * \left[\mathcal{L}^{-1}f_1\left(\frac{3}{2}z\right)\right](\zeta - 1) = \hat{K}(\zeta)$$

$$\sqrt{\frac{\pi}{2}}\left[\Gamma\left(-\frac{1}{2}\right)^{-1}\zeta^{-1/2}\right] * \frac{2}{3}\hat{f}_1\left[\frac{2}{3}(\zeta - 1)\right] = \hat{K}(\zeta)$$

$$-\frac{1}{3\sqrt{2}}\left[\zeta^{-1/2}\right] * \hat{f}_1\left[\frac{2}{3}(\zeta - 1)\right] = \hat{K}(\zeta)$$

Notice that if the hypergeometric differentiation formula holds for fractional derivatives,

$$\left(\frac{\partial}{\partial \xi}\right)^{1/2} F\left(\frac{2}{3}, \frac{4}{3}; \frac{3}{2}; \xi\right) \propto F\left(\frac{7}{6}, \frac{11}{6}; 2; \xi\right)$$

References

[1] C. Mitschi and D. Sauzin, *Divergent Series, Summability and Resurgence I:*Monodromy and Resurgence. No. 2153 in Lecture Notes in Mathematics. 2016.

- [2] J. L. Schiff, The Laplace Transform: Theory and Applications. Springer, 1999.
- [3] "NIST digital library of mathematical functions." http://dlmf.nist.gov, release 1.1.3 of 2021-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, editors.