PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-146634

(43)Date of publication of application: 15.06.1993

(51)Int.CI.

B01D 53/34

B01D 53/36

B01D 53/36

B01J 23/64

B01J 29/22

(21)Application number: 03-312308 (71)Applicant: BABCOCK HITACHI KK

(22)Date of filing:

27.11.1991 (72)Inventor: KATO YASUYOSHI

KONISHI KUNIHIKO

(54) AMMONIA DECOMPOSING CATALYST HAVING DENITRATION **FUNCTION AND PURIFICATION OF EXHAUST GAS**

(57)Abstract:

PURPOSE: To obtain a catalyst catalytically reducing nitrogen oxide and also decomposing unreacted ammonia by the injection of a reducing agent by using oxide of an element such as titanium or vanadium as a first component and also using a salt of a noble metal such as platinum or palladium as a second component.

CONSTITUTION: A catalyst has such a structure that micropores formed by zeolite are present in macropores formed by a denitrating catalytic component composed of oxide of an element such as titanium or vanadium here and there. A component containing a noble metal element such as platinum or palladium is supported within micropores. Whereupon. ammonia easily adsorbed by the

denitrating catalytic component is selectively adsorbed at the inlets of macropores and reacted with diffused NOx to be consumed. When NOx is reduced and adsorbed ammonia becomes a non-consumed state, ammonia is diffused to micropores and reaches a noble metal to be oxidized. Therefore, the outflow of ammonia is reduced.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-146634

(43)公開日 平成5年(1993)6月15日

(51)Int.Cl. ⁵		識別記号			庁内整理番号	FΙ	技術表示箇所			
B 0 1 D	-	l	29	В	6953-4D					
	53/36]	E !	9042-4D					
		1	0 2	B	9042-4D					
B 0 1 J	23/64	1	03.	A	8017-4G 6750-4G					
	29/22			ΑI		ş				
							審查請求	未請求	請求項の数4(全 9 頁)	
(21)出願番号		特願平3-312308				(71)出願人	0000054	000005441		
						an un purpe en	パブコッ	ソク日立村	朱 式会社	
(22)出願日		平成3年	(1991)1	1月2	7 E	4 Year Manager	東京都一	F代田区	大手町2丁目6番2号	
						(72)発明者	(72)発明者 加藤 泰良			
						広島県呉市宝町 3番36号 バブコック日立				
							株式会社	上吳研究月	万内	
						(72)発明者	小西 邦彦			
							広島県県	市宝町:	3番36号 バブコック日立	
								上具研究所		
						(74)代理人			•	

(54)【発明の名称】 脱硝機能を備えたアンモニア分解触媒および排ガス浄化方法

(57)【要約】

【目的】 脱硝触媒にリークアンモニアの分解機能と酸 化分解機能を持たせ、脱硝機能を持つと同時にリークア ンモニアを極めて低い値に低減することができる触媒と 該触媒を用いて排ガスを浄化する方法を提供すること。 【構成】 Ti、V、W、Moから選ばれる一種以上の 元素の酸化物からなる組成物を第一成分とし、Pt、P d、Rhから選ばれる貴金属の塩類もしくはゼオライ ト、アルミナ、シリカなどの多孔体に予め担持された前 記貴金属を含有する組成物を第二成分とした組成物から 成り、窒素酸化物を接触還元すると同時に還元剤として 注入された未反応状態のアンモニアを分解する脱硝機能 を備えたアンモニア分解触媒、又は、排ガス中の窒素酸 化物と該窒素酸化物の還元剤として排ガス中に注入され たアンモニアの内、未反応状態のアンモニアを分解する 触媒として前記脱硝機能を備えたアンモニア分解触媒を 用いる排ガス浄化方法である。

【特許請求の範囲】

【請求項1】 チタン、バナジウム、タングステン、モリブデンから選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金、パラジウム、ロジウムから選ばれる貴金属の塩類もしくはゼオライト、アルミナ、シリカなどの多孔体にあらかじめ担持された前記貴金属を含有する組成物を第二成分とした組成物から成り、窒素酸化物を接触還元すると同時に還元剤として注入された未反応状態のアンモニアを分解することを特徴とする脱硝機能を備えたアンモニア分解触媒。

【請求項2】 多孔体が水素置換型モルデナイトであることを特徴とする請求項1記載の脱硝機能を備えたアンモニア分解触媒。

【請求項3】 第二成分と第一成分の混合重量比が1/99~10/90の範囲にあることを特徴とする請求項1または請求項2記載の脱硝機能を備えたアンモニア分解触媒。

【請求項4】 排ガス中の窒素酸化物と該窒素酸化物の 還元剤として排ガス中に注入されたアンモニアの内、未 反応状態のアンモニアを分解する触媒として請求項1な いし請求項3いずれかに記載の触媒を用いることを特徴 とする排ガス浄化方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は排ガス浄化用触媒に係り、特に排ガスに含有される窒素酸化物(NOx)をアンモニア(NH3)で接触還元する際に発生する未反応アンモニアの流出が少ない脱硝とアンモニア分解用触媒、および未反応アンモニアを低減するのに好適な触媒および当該触媒を用いる排ガス浄化方法に関する。

[0002]

【従来の技術】発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒にはバナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO_2)系触媒が使用されており、特に活性成分の一つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、

 $NH_3 + 5/4O_2 \rightarrow NO + 3/2H_2O$

【0007】そこで、本発明の目的は、脱硝触媒にリークアンモニアの分解機能と酸化分解機能を持たせ、脱硝機能を持つと同時にリークアンモニアを極めて低い値に低減することができる脱硝機能を備えたアンモニア分解触媒を提供し、また、この触媒を用いて排ガスを浄化する方法を提供することである。

[00008]

【課題を解決するための手段】本発明の上記目的は次の

より低温から使用できることなどから、現在の脱硝触媒の主流になっている(特開昭 50-128681 号公報など)。

【0003】ところで、近年の電力需要増加、特に夏期電力需要の増加に対応するためガスタービンの建設あるいはガスタービン等を利用したコージェネレーションシステムの建設が都心部を中心に増加している。これらの設備は人工密集地域に隣接して設置されることが多いことと窒素酸化物(NOx)の排出規制が総量規制であることから、設備から排出される排ガス中のNOx量を極めて低いレベルに抑えることが望まれている。このため、触媒の充填量を増加し、アンモニア注入量を増加させて脱硝装置を高脱硝率で運転する等の方法が検討されている。

【0004】この様な高度の脱硝に対する需要に伴って、脱硝反応に使用されなかった未反応アンモニア(以下リークアンモニアという)もNOxレベル以下にすることが必須になってきており、リークアンモニアを低減するため、脱硝触媒の後流部にアンモニア分解触媒の設置が検討されている。このリークアンモニアを分解する触媒についても従来より研究が進められており、アンモニアの酸化活性に優れた銅(Cu)、鉄(Fe)等を活性成分にした触媒等が知られている(特開昭 52-43767号公報等)。

[0005]

【発明が解決しようとする課題】上記従来技術の内、単に脱硝触媒を増加する方法は、未反応アンモニアが増加するという問題がある。これは、脱硝装置を NH_3/N Ox比を変化させて運転した場合の触媒層出口におけるNOx 濃度とリークアンモニア濃度の挙動を示した図5の実線で示す様に、 NH_3/NOx 比を1近くで運転すれば高脱硝率が得られるもののリークアンモニアも NH_3/NOx が1近辺から急に増大するためである。

【0006】このリークアンモニアを低減するために触 媒層を二層にし、前流部に従来の脱硝触媒を設置し、後 流部に従来のアンモニア分解触媒を設置する図6のよう な装置の場合には、NH3/NOx比を増加した場合のリ ークアンモニアは確かに減少するものの、NH3の酸化 分解によって次式のようなNO生成反応が併発し、図7 に示すように高脱硝率が得られないという問題があっ た。

$2H_{0}O$ (1)

基本構成により達成される。すなわち、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属の塩類もしくはゼオライト、アルミナ、シリカなどの多孔体にあらかじめ担持された前記貴金属を含有する組成物を第二成分とした組成物から成り、窒素酸化物を接触還元す

ると同時に還元剤として注入された未反応状態のアンモニアを分解する脱硝機能を備えたアンモニア分解触媒、または

【0009】排ガス中の窒素酸化物と該窒素酸化物の還元剤として排ガス中に注入されたアンモニアの内、未反応状態のアンモニアを分解する触媒として前記脱硝機能を備えたアンモニア分解触媒を用いる排ガス浄化方法である。

【0010】 さらに具体的には、第一成分および第二成分は次のようなものを用い、貴金属元素の濃度が0を越えて1000ppm以下の範囲になるように両者を混合し、水を加えて混練後、公知の方法により板状、ハニカム状、粒状に成形後所定温度で焼成したものを触媒にすることにより達成することができる。

【0011】 (A) 第一成分としてはTi-V、Ti-Mo、Ti-W、Ti-W-WまたはTi-Mo-Vのいずれかの組み合わせの酸化物または鍋(Cu) または 鉄(Fe) を担持したモルデナイト等のゼオライトを用いる。

【0012】(B)第二成分としては塩化白金酸、硝酸パラジウム、塩化ロジウム等の貴金属の塩類またはゼオ

$$NH_3 \div 5/4O_2 \rightarrow NO + 3/2H_2O$$

 $NH_3 + 3/4O_2 \rightarrow 1/2N_2 + 3/2H_2O$ (2)

【0015】ここで生成したNOは、図3の様に、ミクロポアからマクロボアへと触媒の外内に拡散していく過

$$NO+NH_3+1/4O_2 \rightarrow N_2+3/2H_2O$$

このためNOを生成することが無く脱硝率の低下を生じない。

【0016】以上に示したように本発明になる触媒は、NOの存在する場合には通常の脱硝触媒と同様に作用し、NOxが消費されてアンモニアが余剰になると、貴金属の触媒作用によるアンモニアの酸化作用と脱硝触媒の作用の協奏作用でアンモニアを窒素に添加できる新規な触媒である。

【0017】したがって、本発明の触媒を単独で使用した場合には、従来技術で問題となったNH3/NO比を高くすると生じる図5の実線のようなリークアンモニア量を同図破線のように極めて低い値に押えることができる。

【0018】また、本発明になる触媒を図6の二層式反応器の後流部に設置して(前流部には通常の脱硝触媒を設置する)リークアンモニアの酸化分解に用いれば、NOxを生成することがないので、図7の実線の様な従来のアンモニア分解触媒で問題となる脱硝率の悪化を生じることなく、同図破線の様に高脱硝率が得られる。

【0019】さらに、従来技術では脱硝触媒と同程度の 多量のアンモニア分解触媒が必要であるのに対し、本発 明の触媒を用いる場合にはNOxが存在する時には脱硝 触媒として作用するため脱硝触媒を少なくでき、ひいて は全体の触媒量を非常に少なくすることができる。 ライト、多孔質シリカ、多孔質アルミナにあらかじめ上 記責金属元素をイオン交換含浸等により担持させた組成 物を用いる。

[0013]

【作用】図1は本発明になる触媒の有する細孔のモデルを示したものである。脱硝触媒成分(第一成分)が形成するマクロポアの所々にゼオライト等の多孔質が形成するミクロポアが存在する構造になっており、そのミクロポア内に貴金属元素含有第二成分が担持された状態にある。この様な構造にすると脱硝触媒成分に吸着され易いアンモニアはマクロポア入り口部の脱硝触媒成分に選択的に吸着され、図2のように拡散してくるNOxと反応して消費されてしまう。このため拡散抵抗の大きいミクロポア内の貴金属にまでは到達することがなく、通常の脱硝触媒の場合と同様の高いNOx除去率を示す。

【0014】一方、NOxが減少し、吸着アンモニアが 消費されなくなるとアンモニアはミクロポア内にまで拡 散するようになり貴金属にまで到達し、(1)と(2) 式で示される酸素による酸化反応が進行するようにな る。

程でマクロポア内面に吸着しているアンモニアに衝突して(3)式の脱硝反応により窒素に還元される。

(1)

/2H₂O (3)

【0020】この様に本発明になる触媒は、単独で使用するか、あるいは従来の脱硝触媒の後流部に設置して高脱硝率を維持しつつ、リークアンモニアの少ないシステムを構成することを可能にするものである。

【0021】本発明の触媒は前述したような触媒の構成に特徴があり、その調製法もその様な構造を実現できるものであればどのような調製法であっても採用できることは言うまでもない。しかし、次のような方法を用いればより優れた触媒を得ることができる。

【0022】触媒成分の内、まず第一成分は、前記したような各種のものを使用することができるが、特に触媒成分としてTiーV、Ti-V-Mo、Ti-W-V等の元素からなる酸化物触媒を用いた場合に好結果をもたらす。これらは、メタチタン酸等の含水酸化チタンのスラリにバナジウム、モリブデン、タングステンの酸素酸塩をはじめとする塩類を添加し、加熱ニーダを用いて水を蒸発させながらペースト状にし、乾燥後、400℃から700℃で焼成、必要に応じて粉砕することによって得られる。

【0023】また第二成分の添加は、前述した貴金属の可溶性塩類を水に溶かして上記第一成分粉末と混練して第一成分の有するミクロポア内に担持する方法によっても良いが、望ましくは予めゼオライト、シリカ、アルミナ等の多孔体のミクロポア内にイオン交換や混練により

担持したものを調製し、第一成分に添加するのが良い。第二成分に用いられるゼオライトはモルデナイト、クリノブチロライト、エリオナイト、Y型ゼオライト等の中から選ばれるゼオライトの水素置換型、ナトリウム型、カルシウム型のものを用いることができる。また、シリカ、アルミナは含水酸化物を低温で焼成した表面積が100 m^2/g から 500 m^2/g のものが用いられる。これら粒径は1~10 μ m程度であり、ゼオライト等の構造が破壊されない程度に粉砕して用いることもできる。これらに貴金属をその塩化物、硝酸塩、あるいはアンミン錯体の形で溶解した水溶液中に浸漬してイオン交換するか、水溶液と共に蒸発乾固し、貴金属を0.01wt %~0.1wt %担持した粉末を得て、第二成分として用いる。

【0024】得られた第一、第二成分は第二成分/第一成分重量比(以下第二成分/第一成分比)として20/80~0.5/99.5、望ましくは10/90~1/99の範囲に混合され、これに水、無機バインダ、成形助剤、無機繊維等周知の成形性向上剤が添加されてニーダにより混練されてペースト状触媒混合物にされる。得られたペースト状触媒は無機繊維製網状基材、溶射等により粗面化した金属基板等に塗布され、板状触媒に成形されるか、押し出し成形機により柱状あるいはハニカム状に成形される。

【0025】第二成分/第一成分比は本発明では特に重要であり、第二成分/第一成分比が前述した範囲より大きい場合にはNOxを生成して、脱硝率の低下を生じ、小さい場合にはアンモニアの分解率を高くできないという不具合がある。特に、前述した範囲のうち、貴金属担持量の大きいゼオライト、シリカ、アルミナ等を用いて第二成分/第一成分比が小さくなるように選定し、かつ触媒全体の貴金属担持量が1から1000ppm望ましくは10から100ppm範囲にすることが好結果を与える。これは図1のモデルで示したように、第二成分の形成するミクロポアが第一成分の形成するマクロポア内にまばらに存在させて、NH。が選択的に第一成分に吸着し脱硝反応に用いられ易くするためである。

【0026】また、貴金属量を小さくすることで、触媒 単価を低くできるという経済的効果以外に、脱硝反応と アンモニアの酸化反応をNOの存在の有無によって分離 され易くする効果もある。

【0027】さらに、単一触媒で用いる場合には第二成分/第一成分比を小さくなるように選定し、図6に示すような二層式の反応器に使用する場合は第二成分/第一成分比を大きくとり、貴金属含有量も大きい方が好結果を得易い。

[0028]

【実施例】以下、実施例を用いて本発明を詳細に説明す ス

実施例1

メタチタン酸スラリ(TiO_2 含有量:30wt%、 SO_4 含有量:8wt%)67kgにパラタングステン酸アンモニウム($(NH_4)_{10}H_{10}\cdot W_{12}O_{46}\cdot 6H_2O)$ を3.59kg及びメタバナジン酸アンモン1.29kgを加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36%のペーストを得た。これを3mmゅの柱状に押し出し、造粒後、流動乾燥機で乾燥し、次に大気中550℃で2時間焼成した。得られた顆粒をハンマーミルで 1μ mの粒径が60%以上に粉砕し、第一成分である脱硝触媒粉末を得た。このときの組成は

V/W/Ti=4/5/91 (原子比) である。

【0029】一方、塩化白金酸(H_2 [$PtC1_6$]・ $6H_2$ O)0.665gを水1リットルに溶解したものに、<math>Si/A1原子比が約21、平均粒径約 10μ mのH型モルデナイト500gを加え、砂浴上で蒸発乾固してPtを担持した。これを180℃で2時間乾燥後、空気中で500℃で2時間焼成し、0.05wt%Pt-モルデナイトを調製し第二成分とした。

【0030】これとは別に繊維径9μmのEガラス性繊維1400本からなる燃糸を10本/インチの粗さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニールアルコール1%のスラリーを含浸し、150℃で乾燥して剛性を持たせ触媒基材を得た。

【0031】第一成分20kgと第二成分408gにシリカ・アルミナ系無機繊維5.3kg、水17kgを加えてニーダで混練し、触媒ペーストを得た。上記触媒基材2枚の間に調製したペースト状触媒混合物を置き、加圧ローラを通過させることにより基材の編目間および表面に触媒を圧着して厚さ約1mmの板状触媒を得た。得られた触媒は、180℃で2時間乾燥後、大気中で500℃で2時間焼成した。本触媒中の第一成分と第二成分の第二成分/第一成分比は2/98で有り、Pt含有量は触媒基材・無機繊維を除いて10ppmに相当する。

実施例1において第二成分を添加しないで同様に触媒を 調製した。

【0033】比較例2

[0032]比較例1

実施例1の第一成分に替えて塩素法で製造されたチタニア(石原産業(株)製、商品名: CR50)を用いて触媒を得た。

【0034】試験例1

実施例1および比較例1および比較例2の触媒を幅20mm×長さ100mmに切断したものを3mm間隔で反応器に3枚充填し、表1に示した条件でアンモニア量を変化させた場合の脱硝率と反応器出口における未反応アンモニアを測定した。

[0035]

【表 1】

NO	200ppm
NH₃	変化
O ₂	10%
H₂O	6%
CO₂	6%
SO ₂	2ppm
ガス量	1801/h
温度	350℃
面積速度(AV)	17m/h

【0036】また、得られた結果を図4に示した。図4に示されるように実施例1の触媒はアンモニア注入量を増加させ、 NH_3 /NO比を大きくした場合、脱硝率は比較例1の脱硝触媒成分単独のものと同等であるにもかかわらず反応器出口におけるアンモニア濃度は数ppmと低い。これに対し比較例1は NH_3 /NO比が増加するにつれ、高濃度のアンモニアが反応器出口に検出される。一方、比較例2の第二成分は含むが脱硝活性を持たないチタニアを用いたものでは、反応器出口の NH_3 濃度は低いものの多量のNOxを生成し脱硝率が負になった。

【0037】この結果からも判るように本実施例になる 触媒は前述した如く第一成分と第二成分の協奏作用によ り、 NH_3 /NO比が低い場合は通常の脱硝触媒と同様高い脱硝率を示し、脱硝反応で<math>NOxが消費されてしま うと余剰のアンモニアをNOxを生成することなく減少 できる極めて優れた触媒である。

【0038】実施例2および3

実施例1におけるH型モルデナイトに替えて微粒シリカ 粉末(富田製薬(株)製、商品名:マイコンF)(実施 例2)およびγーアルミナ粉末(実施例3)を用いて同 様に第二成分を調製し、これと実施例1における第一成 分とを第二成分/第一成分比1/9で使用して触媒調製 した。

【0039】実施例4

実施例1における第二成分に替えて塩化白金酸水溶液 (Pt濃度:1.2mg/ml)833mlを用い他は 実施例1と同様の方法で触媒した。

【0040】実施例5

実施例1の第一成分調製法におけるパラタングステン酸アンモニウムに替えてパラモリブデン酸アンモン ((N H_4) $_6$ ・ Mo_7O_{24} ・ $4H_2O$)を用いて他は実施例1と同様に触媒調製した。

【0041】実施例6および7

実施例1における塩化白金酸を硝酸パラジウム(Pd (NO_3)。 (実施例6) および硝酸ロジウム(Rh (NO_3)。 (実施例7) の硝酸溶解液に変更し、パラジウムもしくはロジウム担持量0.05wt%のモルデナイトを調製した。これをPt-モルデナイトの場合と同様の方法で実施例1の第一成分に添加して触媒調製した。

【0042】実施例8~10

実施例1における第二成分/第一成分比を2/98から 0.5/99.5 (実施例8)、1/9 (実施例9)、 2/8 (実施例10)にそれぞれ変更し、他は実施例1 と同様に触媒を調製した。

【0043】実施例11~13

実施例1における塩化白金酸の添加量を2.66に変えて第二成分を調製し、これを用いて実施例8~10と同じ第二成分/第一成分比でそれぞれ触媒を調製した。 【0044】比較例3

実施例5において第二成分を添加せず、第一成分単独で 触媒を調製した。

【0045】比較例4~7

実施例2、3、6および7における第一成分を替えて比較例3で用いたと同様のチタニアを使用しそれぞれ触媒を調製した。

【0046】試験例2

実施例 $1\sim13$ 、および比較例 $1\sim7$ の触媒について表1の条件下でアンモニア漫度を280ppm一定にし、脱硝率と未反応アンモニアの分解率を測定した。得られた結果を表2にまとめて示した。なお、ここで未反応アンモニアの分解率は次式で求めた。

アンモニア分解率 (%) = {反応器出口の NH_3 濃度/ (反応器入口 NH_3 濃度-脱硝反応で消費された NH_3 濃度) $\} \times 100$

[0047]

【表2】

		第一成分	混合比	貴金属含有	注 话性	活性 (%)		
触划	第二成分	(原子比)			脱硝率	AH3分解導		
実施例	1 0.05%Pt-	- Ti/W/V -91/5/4	2/98	10	96	94		
実施例	2 0.051Pt- シリカ	Ti/W/V =91/5/4	1/9	50	85	99		
実施例	0.05%Pt- 7-7#3#	Ti/W/V =91/5/4	1/9	50	83	\$1		
実施例4	5 tail	Ti/W/V =91/5/4	-	50	96	65		
実施例5	0.052Pt-	Ti/No/V =91/5/4	7/98	10	94	91		
実施例6	0.05%Pd- £#f9f}	Ti/M/V =91/5/4	2/98	10	97	74		
実腌例7	0.05#Rh- €#ቻታ1ト	Ti/W/V =91/5/4	2/98	10	96	66		
実施例8	0.05%Pt- E####	Ti/N/V =91/5/4	0.5/99.5	2.5	98	48		
実施例9	0.05%Pt- €25711	Ti/M/V =91/5/4	1/9	50	91	98		
実施例10	0.05%Pt~ E###11	Ti/W/V =91/5/4	2/8	100	8.8	99		
実施例!!	0.22Pt- *******	Ti/W/V =91/5/4	0.5/99.5	10	97	93		
実施例12	0.2%Pt- E####	Ti/W/V =91/5/4	1/9	200	12	99		
実施例13	0.2%Pt- E####1	Ti/W/V =91/5/4	2/8	400	41	99		
比較例	_	Ti/W/V =91/5/4	-	0	98	3		
比較例2	0.05%Pt- E#f#1}	不活性 TiO _z	-	10	-52	98		
比較例 3	-	Ti/Mo/V =91/5/4	-	0	96	2		
比較例(0.05類t- シリカ	不活性 TiO ₂	1/9	50	-64	99		
比較例5	0.05%Pt- 1-7%%}	不活性 TiO ₂	1/9	50	-29	76		
七較例6	0.05%Pd- E477/}	不活性 TiO ₂	2/98	10	- 22	71		
土較例7	0.05#Rh- t*f){}	不活性 TiO ₂	2/98	10	13	64		

【0048】表2から明らかなように本発明の実施例触 媒は比較例のそれに比べて、いずれも高い脱硝率と未反 応アンモニアの分解率を示し、本発明になる触媒が未反 応アンモニアのリークを防止できる優れた触媒であるこ とが判る。

[0049]

【発明の効果】本発明の触媒を単独で使用することにより、高NH₂/NOx比で脱硝装置を運転した場合の未反

応アンモニアの流出を極めて低くできる。

【0050】また本発明の触媒を他の高活性脱硝触媒の 後流部に設置し、未反応アンモニア(リークアンモニア)の分解に使用すれば、アンモニア注入量のアンバランスなどによる未反応アンモニアの流出をなくすことが 可能になり、都市近郊で望まれている脱硝装置の高脱硝率での運転が可能になる。

【0051】さらに、本発明の触媒はNOxの存在する

場合は脱硝触媒として働き、NOxが無い場合にはアンモニア分解触媒として働く。その上、アンモニアの分解によってもNOxが生成し難いので、脱硝触媒と従来のアンモニア分解触媒とを二層にした場合に比し、使用する触媒量を大幅に少なくできるという特徴もある。

【図面の簡単な説明】

【図1】 本発明になる触媒の特色を示すための触媒断面の模式図である。

【図2】 本発明の触媒の作用を示す概念図である。

【図3】 本発明の触媒の作用を示す概念図である。

[図1]

【図4】 実施例1および比較例1および2の触媒の脱 硝性能と未反応アンモニア量を比較して示した図であ る。

【図5】 従来触媒と本発明の触媒を用いた脱硝装置出口におけるNOxと未反応アンモニアの挙動を示す図である。

【図6】 脱硝触媒とアンモニア分解触媒を二層にして 用いる場合の構成図である。

【図7】 脱硝触媒とアンモニア分解触媒を二層にして 用いる場合の問題点を示す図である。

[図2]

[図3]

[図6]

