

A Method for Re-engineering Non-Ontological Resources for Building Ontologies

Boris Villazón-Terrazas, Asunción Gómez-Pérez

{bvillazon,asun}@fi.upm.es
Ontology Engineering Group. Laboratorio de Inteligencia Artificial
Departamento de Inteligencia Artificial
Facultad de Informática
Universidad Politécnica de Madrid

Date: 19/11/2009

Knowledge Resources

- Non-Ontological Resource (NOR) is an existing knowledge-aware resource whose semantics has not been formalized yet by an ontology.
- Non-Ontological Resource Re-engineering refers to the process of taking an existing non-ontological resource and transforming it into an ontology.

Classification Scheme - Example: FAO Water Areas

A classification scheme¹ is the descriptive information for an arrangement or division of objects into groups based on characteristics, which the objects have in common. E.g. water area classification scheme².

Classification Scheme

Adjacency List

ID	CSI_Name	Parent
20000	Water area	
21000	Environmental area	20000
24020	Jurisdiction area	20000
22000	Fishing Statistical area	20000
21001	Inland/marine	21000
21002	Ocean	21000
21003	North/South/Equatorial	21000
22001	FAO statistical area	22000
22002	Areal grid system	22000

	Classification
	<category></category>
Y	<nodeid>20000</nodeid>
	<pre><watercategory>Water Area</watercategory></pre>
	<pre><pre><pre><pre>parentNodeId>1</pre></pre></pre></pre>
	<category></category>
Y	<nodeid>21000</nodeid>
	<pre><watercategory>Environmental area</watercategory></pre>
	<pre><parentnodeid>20000</parentnodeid></pre>
	<category></category>
	<nodeid>22000</nodeid>
	<pre><watercategory>Fishing statistical area</watercategory></pre> /WaterCategory
	<pre><parentnodeid>20000</parentnodeid></pre>
F	
	<category></category>
T	<nodeid>24020</nodeid>
	<pre><watercategory>Jurisdiction area</watercategory></pre>
	<pre><parentnodeid>20000</parentnodeid></pre>
H	
	<category></category>
	<nodeid>21001</nodeid>
	<pre><watercategory>inland/marine</watercategory></pre>
	<pre><parentnodeid>21000</parentnodeid></pre>
-	
3	•••
_	<pre></pre>

2. http://www.fao.org/figis/servlet/RefServlet

Classification Scheme Data Models

 Path Enumeration Data Model is defined as a model that stores for each node the path (as a string) from the root to the node.

	ID	CSI_Name
	20000	Water area
	20000.21000	Environmental area
	20000.24020	Jurisdiction area
	20000.22000	Fishing Statistical area
	20000.21000.21001	Inland/marine
	20000.21000.21002	Ocean
	20000.21000.21003	North/South/Equatorial
	20000.22000.22001	FAO statistical area
\Rightarrow	20000.22000.22002	Areal grid system
	<u>ż</u>	

Snowflake Data Model is a normalized structure for hierarchy representations. For each hierarchy level a entity is created. In this model each hierarchy node has a column linked to its parent node.

 Adjacency List is a recursive structure for hierarchy representations that comprises a list of nodes with a linking column to their parent nodes.

	ID	CSI_Name	Parent
	20000	Water area	
	21000	Environmental area	20000
	24020	Jurisdiction area	20000
\Rightarrow	22000	Fishing Statistical area	20000
	21001	Inland/marine	21000
	21002	Ocean	21000
	21003	North/South/Equatorial	21000
	22001	FAO statistical area	22000
\Rightarrow	22002	Areal grid system	22000

• **Flattened Data Model**, is a denormalized structure. The hierarchy is represented with an entity where each hierarchy level is stored on a different column.

Non-Ontological Resource Re-engineering

Patterns for re-engineering non-ontological Resources (PR-NOR) define a procedure to transform knowledge-aware resources into ontologies taking into account the resource type (thesaurus, classification scheme, etc.) and their underlying resource data model. For every type of resource and data model, the NeOn method defines a pattern with a well-defined sequence of activities. Our patterns perform the following transformations:

- TBox transformation: for transforming the resource content into an ontology schema.
- ABox transformation: for transforming the resource schema into an ontology schema, and the resource content, into ontology instances.

Non-Ontological Resource Re-engineering (II)

Data gathering: to search and compile all the available data and documentation about the non-ontological resource including purpose, components, data model and implementation details.

Conceptual abstraction: to identify the schema of the nonontological resource including the conceptual components and their relationships.

Information exploration: to find out how the conceptual schema of the non-ontological resource and its content are represented in the data model.

pattern?

Task 6. Manual refinement

Task 7. Formalize

Task 8. Implement

Ontology

Task 5.a Use the pattern to

guide the transformation

Ontology Development Team

Activity 3 Ontology

Forward Engineering

Task 5.b. Perform an ad-hoc

transformation

Non-Ontological Resource Re-engineering (III)

The goal is to generate a conceptual model from the NOR

Criteria for searching for a suitable pattern:

- NOR Type: classification scheme, thesauri, lexicon, glossary, or folksonomy
- Data model: C.Scheme (path enumeration, adjacency list, snowflake, or flattened), Thesaurus (record-based, relation-based)
- Transformation approach: TBox, ABox, or population

Non-Ontological Resource Re-engineering (IV)

Activity 3 Ontology

SEEMP Use Case

NORs pertaining to the domain of human resources were transformed into ontologies.

Ontologies Concepts 1612 **Atributes** 120 Relations 97 Instances 1674

We re-engineered classification schemes using the set of patterns.

ISCO-88 (COM)

International Standard Classification of Occupations (for European Union purposes)

Occupation

FOET

Classification of fields of education and training

Statistical Classification of **Economic Activities in the European Community**

Economic Activity Ontology

ISO 3166

English country names and code elements

Pattern for re-engineering a classification scheme modelled with a Snowflake Data Model

ISTAT

Italian Geography Standard

Pattern for re-engineering a classification scheme modelled with an Adjacency List Data Model

Italian Geography Ontology

SEEMP Use Case - ISTAT

A Method for Re-engineering Non-Ontological Resources for Building Ontologies

Boris Villazón-Terrazas, Asunción Gómez-Pérez

{bvillazon,asun}@fi.upm.es
Ontology Engineering Group. Laboratorio de Inteligencia Artificial
Departamento de Inteligencia Artificial
Facultad de Informática
Universidad Politécnica de Madrid

Date: 19/11/2009