Some relations relate inputs with outputs produced by operating given rules over the inputs.

Outputs

Inputs (domain)

 $A \qquad \qquad f \qquad \qquad B$ $a \qquad \qquad Rules \qquad \rightarrow f(a)$

(codomain)

José Fiadeiro – 2013/14

Functions

 Some relations relate inputs with outputs produced by operating given rules over the inputs.

Friday, 18 October 13

Charles Babbage

- Charles Babbage, 1791 1871) was an English mathematician, philosopher, inventor and mechanical engineer, who is best remembered now for originating the concept of a programmable computer.
- Babbage began working in 1822 on what he called the difference engine, made to compute values of polynomial functions. It was created to calculate a series of values automatically.

Friday, 18 October 13

é Fiadeiro – 2013/14

Functions

- A function between two sets A and B is a relation f ⊆ A×B such that:
 - for every $a \in A$, there is some $b \in B$ such that $(a,b) \in f$
 - for every $a \in A$, if $(a,b_1) \in f$ and $(a,b_2) \in f$ then $b_1 = b_2$
- In other words, for every $a \in A$, there is one and only one $b \in B$ such that $(a,b) \in f$ therefore we write b = f(a) and $f: A \to B$

Friday, 18 October 13

• Which of these relations are functions $\{0, 1\} \rightarrow \{0, 1\}$?

·o – 2013/14

Terminology

- Let $f: A \rightarrow B$ be a function:
 - for every $a \in A$, f(a) is the image of a.
 - A is the domain and B is the codomain of f.
 - The set $f(A) = \{ f(a) \mid a \in A \}$ is the *image* of A. We have $f(A) \subseteq B$.

Invertible functions

- A function $f: A \to B$ is invertible if f^{-1} is a function (which is then called its inverse).
- If $f: A \rightarrow B$ is invertible then, for every $a \in A$,

$$f^{-1}(f(a)) = a$$

71/610C Suis-Fried 5:

Example

- When data is transmitted errors can be introduced.
- For example, (I, 0, 0, I, I, 0, 0, I) is sent and (I, 0, I, I, I, 0, 0, I) is received.
- How can the receiver know that there has been an error, and ask for the data to be resent?

Example

- Instead of sending a string of length 8 send one of length 9, where the last digit on the string is the sum of the previous 8 digits modulo 2.
 - For example, instead of (1, 0, 0, 1, 1, 0, 0, 1),
 (1, 0, 0, 1, 1, 0, 0, 1, 0) is sent.
- The coding function is *bit_parity*: $\{0, 1\}^n \rightarrow \{0, 1\}^{n+1}$
 - $bit_parity(b_1, b_2, ..., b_n) = (b_1, b_2, ..., b_n, b_{n+1})$ where

$$b_{n+1} = (b_1 + b_2 + ... + b_n)\%2$$

Example

But not the other way around

- The receiver checks that the last digit is correct.
 If it is not, the receiver knows there has been an error.
 - If (1, 0, 1, 1, 1, 0, 0, 1, 0) is received, there was an error.
- If there is no error, the receiver applies the inverse of bit_parity to decode the message:
 - bit_parity⁻¹($b_1, b_2, ..., b_n, b_{n+1}$) = ($b_1, b_2, ..., b_n$)

Injective functions

• A function $f: A \rightarrow B$ is injective if, for every $a_1, a_2 \in A$,

$$f(a_1) = f(a_2)$$
 implies $a_1 = a_2$

- We also say that f is one-to-one, or 1-1.
- Question: is $f(x) = x^2 + 2$ an injective function?
- Better question: is $f(x) = x^2 + 2$ an injective function over \mathbb{Z} ?

Surjective functions

• A function $f: A \rightarrow B$ is surjective if

for every $b \in B$, there exists $a \in A$ such that b = f(a)

- We also say that f is onto.
- Question: is $f(x) = x^2 + 2$ an surjective function over \mathbb{Z} ?

Bijective functions

- A function $f: A \rightarrow B$ is bijective (or a bijection) if it is both injective and surjective.
- Theorem I:
 - A function $f: A \rightarrow B$ is invertible iff it is bijective.
- Exercises:
 - If f is surjective then f(A) = B
 - If $f: A \rightarrow B$ is injective then f defines a bijection between A and f(A).