Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 4.50e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna fusjonerer helium i kjernen

STJERNE B) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE C) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE D) stjerna har en levetid på noen millioner år og fusjonerer hydrogen til helium i kjernen

STJERNE E) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.587e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne B har massetet
thet 9.236e+06 kg/m3̂ og temperatur 36 millioner K.

Kjernen i stjerne C har massetet
thet 9.337e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 4.738e+06 kg/m3̂ og temperatur 32 millioner K.

Kjernen i stjerne E har massetet
thet 2.461e+06 kg/m3 og temperatur 21 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er lengst vekk

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 19.08

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.356\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 17.21 millioner K.

Kjernen i stjerne B har massetet
thet $4.728\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 27.10 millioner K.

Kjernen i stjerne C har massetet
thet $3.060\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 19.00

millioner K.

Kjernen i stjerne D har massetet
thet 1.828e+05 kg/m3̂ og temperatur 35.17 millioner K.

Kjernen i stjerne E har massetet
thet 4.492e+05 kg/m3̂ og temperatur 31.74 millioner K.

Filen~1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 113.50 dager etter første observasjon.

$Filen~1O/1O_Figur_4_.png$

0.73

0.68 | | | 0.3258

0.3268

0.3278

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

0.93

0.88

0.83

0.78

Observasjon er gjort 151.33 dager etter første observasjon.

0.3288

0.3298

Bølgelengde (nm) minus 656nm

0.3308

0.3318

0.3328

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.77 buesekunder i løpet av et millisekund. 40.76 36.23 y-posisjon (10⁻⁶ buesekunder) 31.70 27.17 22.65 18.12 13.59 9.06 4.53 0.00 9.06 13.59 18.12 22.65 27.17 31.70 36.23 40.76 4.53 x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.50470 km/t.

Filen 3E.txt

Tog1 veier 74500.00000 kg og tog2 veier 101800.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 494 km/s.

Filen 4E.txt

Massen til gassklumpene er 5900000.00 kg.

Hastigheten til G1 i x-retning er 21000.00 km/s.

Hastigheten til G2 i x-retning er 28140.00 km/s.

Filen 4G.txt

Massen til stjerna er 35.05 solmasser og radien er 3.18 solradier.