Notations

1

10

1

-

5.0

11

10

Sept.

TI.

V

R, C. 2, 220, Z+

(a, b) open inverals = {x \in R, a < x < b}

(or textbook I a, b [)

[a, b] closed inverals

] exist (e.g, \(\frac{1}{2} \times \in R \)

Y for all (e.g, \(\frac{1}{2} \times \in (0,1) \)

-> Complex numbers

Historically, solve $X^2+1=0$, denote by $i=\sqrt{1}$ Generally, a complex number Z=x+iy $x,y\in\mathbb{R}$

For Z= X+ iy

X= real # part of Z

= Re Z

Y = inaginary pare of Z

= In Z

Why do we study C?

Thm (fundamental thm of algebra): Any polynomial nich coefficiencs in \mathbb{C} has a root in \mathbb{C} .

i.e. $\Omega_0, ..., \Omega_n \in \mathbb{C}$, the equation $\Omega_n Z^n + \Omega_m Z^m + ... + \Omega_n = 0$ has a solution in \mathbb{C} .

$$\frac{Ex}{\int_{D}^{\infty} \frac{Sh^{2}x}{x^{2}} dx = \frac{\pi}{2}$$

$$\int_{0}^{\infty} \frac{x^{\alpha +}}{1+x} dx \quad \text{where } \alpha \in (0,1) = \frac{\pi}{Sh(\alpha \pi)}$$

Contain integrals in C.

Closely nelated - Analytic number Theory.
- Differential geometry
- Fluid Dynamics

Def C is the set \mathbb{R}^2 with the following operations For $z = x_j + iy_j$, j = 1, 2we identify it with $(x_j, y_j) \in \mathbb{R}^2$ $T(x_j)^n$

② Scalar Mahaply $C \in \mathbb{R}$ $C \in \mathbb{R}$ $C \times \mathbb{R} + i(C \times \mathbb{R})$

91.4

M

3 Complex Mukaplication $Z_1Z_2 = (x_1 + iy_1)(x_2 + iy_2)$ $= x_1x_2 + i(x_1y_2 + y_1x_2) - y_1y_2 (i^2 = -1)$ $= (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)$

$$(\pi + \sqrt{2}i)(1-2i) = (\pi + 2\sqrt{2}) + i(-2\pi + \sqrt{2})$$

Note $Z_1 = Z_2$ (\Rightarrow (equivalent to saying)

Re $Z_1 = Re Z_2$ $Im Z_1 = Im Z_2$

Field Structure of C

3

-

1

E

g).

1

-

-1

- C is chosed under addition and multiplication $Z_1, \overline{z}_2 \in \mathbb{C}$ $\Rightarrow Z_1 + Z_2 \in \mathbb{C}$ and $Z_1 Z_2 \in \mathbb{C}$.
- Addreion and mutaplication are associative and commutative, and mutaplication is distributive over addition
 - $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$
 - D is an additive identity. $Z_1 + D = Z_1$ (= D + iD)
 - \forall \neq \in C, we have additive inverse. For \neq = x+iy, $-\neq$ = -x+i(-y)
 - Multiplicative identity: 1 = 1 + iD, $\forall z \in \mathbb{C}$, $z \cdot 1 = \overline{z}$. $\forall z \in \mathbb{C} \setminus \{0\}$ multiplicative inverse $\forall z$ exists $\overline{z} = x + iy$, $\overline{z} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2}$ $= \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$

$$\frac{EX}{1-2i} = \frac{1+2i}{(1-2i)(1+2i)} = \frac{1+2i}{5} = \frac{1}{5}+i\frac{2}{5}$$

More Operación on C

33

1

3

1

34

- Conjugación:
$$X+iy \longrightarrow X-iy$$

(= Z) (= Z: Z bar)

- Reflection

7= x+iy

Reflection.

 $\frac{\overline{Z_1} + \overline{Z_2}}{\overline{Z_1} + \overline{Z_2}} = \overline{Z_1} + \overline{Z_2}$

メ Z=x-iŋ

Observacion Consider a polynomial eq

(1) anz" + am z" + ... + ao = 0 where ao, ..., an ER

take Conjugación

> if ZEW Z=W € C solves (1), then Z= W also solver (1).

7 roots of a real coefficients polynomial comes in pairs of conjugation

Modulus Z = x + iy |Z| = modulus of Z $= \sqrt{x^2 + y^2}$

$$= \int x^{2}+y^{2}$$

$$= \frac{1}{2} \times x^{2}+y^{2}$$

 $|Z_1|_{Z_1} = |Z_1|_{Z_2} =$

- 12, + 22 | 4 12,1 + 121 triangle me quality

Í

1

Í

ī

1

1

1

1

Trangle Equality (=>

 $|Z_1 + Z_2| \ge |Z_1| - |Z_2|$ $|Z_1 + Z_2| \ge |Z_2| - |Z_1|$ ore also called Triangle Inequality.

Sture Root. Given
$$\overline{z} = a+bi$$
 find $x \neq iy$ such that
$$(x+iy)^{2} = a+ib \iff (x^{2}-y^{2})+i(2xy)=a+bi$$

$$(x^{2}-y^{2})=a$$

$$(2xy)=b$$

$$(2xy)=b$$

$$(x^{2}+y^{2})=a^{2}+b^{2}$$

$$(x^{2}+y^{2})=a^{2}+b^$$

② tells us how to choose sign

if
$$b \ge D$$
, $(x,y) = \left(\pm \sqrt{\frac{1}{2}(a+\sqrt{a^2+b^2})}, \pm \sqrt{\frac{1}{2}(-a+\sqrt{a^2+b^2})}\right)$

if $b < D$, $(x,y) = \left(\pm \sqrt{\frac{1}{2}(a+\sqrt{a^2+b^2})}, \mp \sqrt{\frac{1}{2}(-a+\sqrt{a^2+b^2})}\right)$

Polar Coordinates

3

40

-

-1

 $r = length of vector <math>r \ge 0$ $\theta = argle from positive X-axis$ to the vector $\theta \in [0, 2\pi]$

X = rcos0, $y = rsin\theta$. given Z = X + iywrite $Z = rcos0 + irsin\theta$ = r(cos0 + isn0)

Here, r = |Z|, $\theta = argumene$ of Z = arg Z $Z_1 = r_1 (ass B_1 + i sm B_1)$, $Z_2 = r_2 (ass B_2 + i sm B_2)$ $Z_1Z_2 = r_1 r_2 ((coss B_1 - sm B_1 sm B_2) + i (coss B_1 sm B_2 + sm B_1 ass B_2))$ $= r_1 r_2 (cos (B_1 + B_2) + i sm (B_1 + B_2))$

Prop |Z1Z2 = |Z11-|Z2|, arg (Z1Z2) = arg Z1 + arg Z2 (mod Z11)

ex
$$Z = r(\cos \theta + i \sin \theta)$$
 $w = \sqrt{r} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}\right)$
 $w = \sqrt{r} \left(\cos \left(\frac{\theta}{2} + T\right) + i \sin \left(\frac{\theta}{2} + T\right)\right)$

In Particular,
$$Z = r(\cos \theta + i \sin \theta)$$

 $Z^n = r^n(\cos(n\theta) + i \sin(n\theta))$

Proposition (de Moivre)
$$(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$$

Ex) $n=3$ $\cos (3\theta) = \cos^3 \theta - 3 \cos \theta \cdot \sin^2 \theta$.

Remark H |w|=1, then $w = \cos\theta + i\sin\theta$ for some θ .

The mapping $z \mapsto zw$ is linear and |zw| = |z| $arg(zw) = arg z + \theta$ (mod $z\pi$)

Note
$$W_k = Cos\left(\frac{2k\pi}{n}\right) + i sin\left(\frac{2k\pi}{n}\right)$$

Note $W_k = Cos\left(\frac{2k\pi}{n}\right) + i sin\left(\frac{2k\pi}{n}\right)$

Setisfy $W_k^k = I$

(a) We not nows of unity.