Note: in this course, \log denotes \log_2 .

Shannon's computation

Suppose we wish to compress a binary message $x_1^n = (x_1, ..., x_n) \in \{0, 1\}^n$. Assume x_1^n is generated by n iid random variables $X_1^n = (X_1, ..., X_n)$ where each X_i is Bernouilli of parameter p, for some $p \in (0, 1)$. We write P for the probability mass function of the X_i , i.e $P(x) = \mathbb{P}(X_i = x)$ for $x \in \{0, 1\}$.

Idea: give more likely strings shorter descriptions.

Question: how is the probability distributed among all such x_1^n ?

Let P^n denote the joint pmf of X_1^n . Then

$$\mathbb{P}(X_1^n = x_1^n) = P^n(x_1^n) = \prod_{i=1}^n P(x_i) = 2^{\log \prod_{i=1}^n P(x_i)}$$

$$= 2^{\sum_{i=1}^n \log P(x_i)}$$

$$= 2^{k \log p + (n-k) \log(1-p)}$$

$$= 2^{-n\left[-\frac{k}{n} \log p - \frac{n-k}{n} \log(1-p)\right]}$$

$$\approx 2^{-n\left[-p \log p - (1-p) \log(1-p)\right]}. \quad \text{(LLN)}$$

Where we have defined k to be the number of 1's in x_1^n . Now we define

$$h(p) = -p \log p - (1-p) \log(1-p)$$

so for large n we have

$$\mathbb{P}(X_1^n = x_1^n) \approx 2^{-nh(p)}$$

with high probability.

This means that for large n, the space $\{0,1\}^n$ of all possible messages consists of:

- 1. non typical strings that have negligible probability of showing up;
- 2. approximately $2^{nh(p)}$ each of similar probability.

Note that the binary entropy function h(p) has a maximum at $p = \frac{1}{2}$ with h(1/2) = 1 and is symmetric through $p = \frac{1}{2}$.

Back to data compression. Consider the following algorithm. Let $B_n \subseteq \{0,1\}^n$ consist of the "typical" strings. Given x_1^n to compress:

- If $x_1^n \notin B_n \to \text{declare "error"};$
- If $x_1^n \in B_n$, then describe it by describing its index j in B_n , where $1 \le j \le |B_n|$. This takes $\log |B_n| \approx nh(p)$ bits

Asymptotic Equipartition Property

Suppose $X_1, X_2, ...$ are iid random variables with values in a finite set, or alphabet, A. Let P denote the PMF of these variables, i.e $P(x) = \mathbb{P}(X_i = x)$, $x \in A$.

Theorem 0.1. Write $X_1^n = (X_1, X_2, ..., X_n)$. Then

$$-\frac{1}{n}\log P^n(X_1^n) = -\frac{1}{n}\log\prod_{i=1}^n P(X_i) = \frac{1}{n}\sum_{i=1}^n \left[-\log P(X_i)\right] \xrightarrow{\mathbb{P}} H \text{ as } n \to \infty$$

where H is the entropy of X.

Proof. Law of large numbers.

Definition. If $X \sim P$ on a finite alphabet A, the *entropy* of X is defined as

$$H(X) = \mathbb{E}[-\log P(X)].$$

Notes.

- 1. $H(X) = \sum_{x \in A} P(x) \log (1/P(x));$
- 2. By convention $0 \log 0 = 0$;
- 3. H(X) is a function of P only, and in fact only depends on the probabilities P(x), not the values of the random variable. In particular, if F is a bijection then H(F(X)) = H(X);
- 4. $H(X) \ge 0$ with equality if and only if X is almost-surely constant;
- 5. For large n, $P^n(X_1^n) \approx 2^{-nH}$, with high probability. More formally,

$$\mathbb{P}\left(\left|-\frac{1}{n}\log P^n(X_1^n) - H\right|\right| \le \varepsilon\right) \to 1 \text{ as } n \to \infty.$$

Equivalently,

$$\mathbb{P}\left(\left\{x_1^n \in A^n : \left| -\frac{1}{n} \log P^n(x_1^n) - H \right| \le \varepsilon\right\}\right) \to 1 \text{ as } n \to \infty$$

or,

$$P^n(B_n^*(\varepsilon)) \to 1 \text{ as } n \to \infty \ \forall \varepsilon > 0$$

where $B_n^*(\varepsilon) = \{x_1^n \in A: 2^{-n(H+\varepsilon)} \le P^n(x_1^n) \le 2^{-n(H-\varepsilon)}\}$ are the "typical strings".

Theorem 0.2 (Asymptotic Equipartition Property). Suppose $(X_n)_{n\geq 1}$ is a sequence of iid random variables with PMF P on A. Then for any $\varepsilon > 0$:

• (\Rightarrow) : $|B_n^*(\varepsilon)| \leq 2^{n(H+\varepsilon)}$ for all $n \geq 1$, and $\mathbb{P}(X_1^n \in B_n^*(\varepsilon)) \to 1$ as $n \to \infty$.

• (\Leftarrow) if $(B_n)_{n\geq 1}$ is a sequence of sets with $B_n\subseteq A^n$ for all $n\geq 1$ such that $\mathbb{P}(X_1^n\in B_n)\to 1$ as $n\to\infty$, then $|B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}$ eventually.

Proof. For (\Rightarrow) we have

$$1 \ge P^n(B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n^*(\varepsilon)} P^n(x_1^n) \ge |B_n^*(\varepsilon)| 2^{-n(H+\varepsilon)}$$

and $\mathbb{P}(x_1^n \in B_n^*(\varepsilon)) \to 1$ by the previous.

For (\Leftarrow) , suppose $P^n(B_n) \to 1$ as $n \to \infty$. Then

$$P^{n}(B_{n} \cap B_{n}^{*}(\varepsilon)) = P^{n}(B_{n}) + P^{n}(B_{n}^{*}(\varepsilon)) - P^{n}(B_{n} \cup B_{n}^{*}(\varepsilon)) \to 1 + 1 - 1 = 1.$$

So eventually,

$$(1 - \varepsilon) \le P^n(B_n \cap B_n^*(\varepsilon))$$

$$\le \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n)$$

$$\le |B_n \cap B_n^*(\varepsilon)| 2^{-n(H - \varepsilon)}$$

$$< |B_n| 2^{-n(H - \varepsilon)}.$$

Fixed-rate (lossless) data compression

Definition. A source (X_n) with alphabet A is a collection of random variables taking values in A. The source is memoryless if the X_i are iid with some common PMF P on A.

Definition. A fixed-rate code of block length n on a finite alphabet A is a collection of codebooks (B_n) where $B_n \subseteq A^n$. To compress $x_1^n \in A^n$:

- (i) If $x_1^n \notin B_n$, then send "0" followed by x_1^n in binary. This will take $1 + \lceil \log |A^n| \rceil$ bits;
- (ii) If $x_1^n \in B_n$ then describe it by sending a "1" followed by the index of x_1^n in B_n , in binary. This takes $1 + \lceil \log |B_n| \rceil$ bits.

The error probability of the code is

$$P_e^{(n)} = \mathbb{P}(X_1^n \notin B_n) = P^n(B_n^c)$$

and its rate is

$$\frac{1}{n} (1 + \lceil \log |B_n| \rceil)$$
 bits/symbol.

Question: if we require $P_e^{(n)} \to 0$, what is the best (i.e smallest possible) compression rate.

Theorem 0.3 (Fixed-rate coding theorem). If (X_n) is a memoryless source with PMF P on A then for all $\varepsilon > 0$:

- (\Rightarrow) There is a code $(B_n^*(\varepsilon))$ with $P_e^{(n)} \to 0$ and rate less that or equal to $H + \varepsilon + \frac{2}{n}$ bits/symbol;
- (\Leftarrow) Any code has rate larger than $H \varepsilon$ eventually, where $H = H(X_i)$ is the entropy.

Proof. (\Rightarrow) Let $B_n^*(\varepsilon)$ be the typical sets. Then $P_e^{(n)}=P^n(B_n^*(\varepsilon)^c)\to 0$ by the AEP and the resulting rate is

$$\frac{1}{n}\left(1+\lceil\log|B_n^*(\varepsilon)|\right) \leq \frac{1}{n}+\frac{1}{n}+\frac{1}{n}\log\left(2^{n(H+1)}\right) \leq H+\varepsilon+\frac{2}{n}.$$

(\Leftarrow) By the AEP, any code with $P_e^{(n)} \to 0$ has $|B_n| \ge (1-\varepsilon)2^{n(H-\varepsilon)}$ eventually, so its rate is

$$\frac{1}{n}\left(1+\lceil\log|B_n|\right)\geq \frac{1}{n}+\frac{1}{n}\log\left(1-\varepsilon\right)+H-\varepsilon\geq H-\varepsilon.$$

Relative Entropy & Hypothesis Testing

Definition. Let P,Q be two PMFs on a discrete alphabet A. The *relative entropy* between P&Q is

$$D(P||Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)}.$$

Notes. D(P||Q) is not symmetric and it does not satisfy the triangle inequality. Despite this, we do think of this as a 'distance'.

Theorem 0.4 (Basic entropy bounds).

(i) If X takes values in A, then

$$0 \le H(x) \le \log A$$

with equality in the first inequality if and only if X is uniform.

(ii) $D(P||Q) \ge 0$ with equality if and only if P = Q.

Binary or simple-vs-simple hypothesis testing

Suppose X_1^n has iid entries from either P or Q on A. A hypothesis test is a decision region $B_n \subseteq A^n$ such that

$$x_1^n \in B_n \to \text{ declare } X_1^n \sim P^n \text{ and } x_1^n \notin B_n \to \text{ declare } X_1^n \sim Q^n.$$

The probabilities of error are

$$e_1^{(n)} = \mathbb{P}(\text{declare } P|X_1^n \sim Q^n) = Q^n(B_n)$$

 $e_2^{(n)} = \mathbb{P}(\text{declare } Q|X_1^n \sim P^n) = P^n(B_n^c).$

Question: if we require that $e_2^{(n)} \to 0$ as $n \to \infty$, how small can $e_1^{(n)}$ be?

Theorem 0.5 (Stein's Lemma). Suppose P,Q are PMFs on the same alphabet A such that $D(P||Q) \neq 0, \infty$. Then for all $\varepsilon > 0$

• (\Rightarrow) There are decision regions $B_n^*(\varepsilon)$ such that

$$e_1^{(n)} \le 2^{-(D-\varepsilon)n}$$
 for all n

and $e_2^{(n)} \to 0$ as $n \to \infty$.

• (\Leftarrow) For any decision regions (B_n) such that

$$e_2^{(n)} \to 0 \text{ as } n \to \infty$$

we have $e_1^{(n)} \ge 2^{-n(D+\varepsilon+\frac{1}{n})}$ eventually, where D = D(P||Q).

Proof. (\Rightarrow) Let us look at the likelihood ratio $\frac{P^n(x_1^n)}{Q^n(x_1^n)}$. If $X_1^n \sim P^n$, then

$$\frac{1}{n}\log \frac{P^{n}(X_{1}^{n})}{Q^{n}(X_{1}^{n})} = \frac{1}{n}\sum_{i=1}^{n}\log \frac{P(X_{i})}{Q(X_{i})} \xrightarrow{\mathbb{P}} D(P\|Q)$$

by the Law of Large Numbers.

This motivates the definition

$$B_n^*(\varepsilon) = \{x_1^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)}\}$$

so we have $P^n(B_n^*(\varepsilon)) \to 1$. Hence $e_2^{(n)} = P^n(B_n^*(\varepsilon)^c) \to 0$. Also

$$1 \ge P^{n}(B_{n}^{*}(\varepsilon)) = \sum_{x_{1}^{n} \in B_{n}^{*}(\varepsilon)} P^{n}(x_{1}^{n}) = \sum_{x_{1}^{n} \in B_{n}^{*}(\varepsilon)} Q^{n}(x_{1}^{n}) \frac{P^{n}(x_{1}^{n})}{Q^{n}(x_{1}^{n})}$$
$$\ge 2^{n(D-\varepsilon)} Q^{n}(B_{n}^{*}(\varepsilon)).$$

(\Leftarrow) Suppose $e_2^{(n)}(B_n)=P^n(B_n^c)\to 0$ and recall that also $e_2^{(n)}(B_n^*(\varepsilon))=P^n(B_n^*(\varepsilon)^c)\to 0$ as $n\to\infty$. Then $P^n(B_n\cap B_n^*(\varepsilon))\to 1$ as $n\to\infty$, and in particular

$$\frac{1}{2} \leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} Q^n(x_1^n) \frac{P^n(x_1^n)}{Q^n(x_1^n)} \\
\leq 2^{n(D+\varepsilon)} Q^n(B_n \cap B_n^*(\varepsilon)) \\
\leq 2^{n(D+\varepsilon)} e_1^{(n)}(B_n).$$

Note. The "likelihood-ratio typical" sets $B_n^*(\varepsilon)$ are asymptotically optimal, in that they achieve the best possible exponent for $e_1^{(n)}$, namely $D=D(P\|Q)$. But they are <u>not</u> optimal for finite n. Indeed, for each n the optimal decision regions are the Neyman-Pearson tests

$$B_{\rm NP} = \{x_1^n \in A^n : P^n(x_1^n) \ge T\}$$
 for some threshold T.

Proposition 0.6.

$$B_{NP} = \{x_1^n : D(\hat{P}_n || Q) \ge D(\hat{P}_n || P) + \frac{1}{n} \log T\}$$

where

$$\hat{P}_n(a) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{x_i = a\}$$

is the empirical distribution.

Proof. Note that

$$\frac{1}{n} \log \frac{P^{n}(x_{1}^{n})}{Q^{n}(x_{1}^{n})} = \frac{1}{n} \sum_{i=1}^{n} \log \frac{P(x_{i})}{Q(x_{i})}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} \mathbb{1}\{x_{i} = a\} \log \frac{P(a)}{Q(a)}$$

$$= \sum_{a \in A} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{x_{i} = a\} \log \frac{P(a)}{Q(a)}$$

$$= \sum_{a \in A} \hat{P}_{n}(a) \log \left(\frac{P(a)}{Q(a)} \frac{\hat{P}_{n}(a)}{\hat{P}_{n}(a)}\right)$$

$$= \sum_{a \in A} \hat{P}_{n}(a) \log \frac{\hat{P}_{n}(a)}{Q(a)} - \sum_{a \in A} \hat{P}_{n}(a) \log \frac{\hat{P}_{n}(a)}{P(a)}$$

$$= D(\hat{P}_{n} || Q) - D(\hat{P}_{n} || P)$$