M.Sc. Matthias Thiel

5. Juni 2019

Stochastik I 9. Übung

Aufgabe 1 (4 Punkte)

- (i) Sei X eine auf der Menge $\{0, \ldots, 10\}$ gleichverteilte Zufallsvariable. Zudem sei die Zufallsvariable $Y = 25 (X 5)^2$ gegeben. Überprüfen Sie X und Y auf Unabhängigkeit und Unkorreliertheit.
- (ii) Seien X und Y zwei unabhängige Zufallsvariablen mit Erwartungswert 0 und Varianz 1. Für ein $\varrho \in [-1,1]$ sei außerdem $Z := \varrho X + \sqrt{1 \varrho^2} Y$. Berechnen Sie die Korrelation von X und Z.
- **Aufgabe 2** (3 Punkte) Seien X, \tilde{X} zwei Zufallsvariablen und sei $(X_n)_{n \in \mathbb{N}}$ eine Folge von Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $X_n \stackrel{P}{\to} X$. Zeigen Sie:

$$X_n \stackrel{P}{\to} \tilde{X} \Leftrightarrow X = \tilde{X}$$
 P-fast sicher.

Aufgabe 3 (4 Punkte)

(i) Zeigen Sie, dass für zwei unabhängige Zufallsvariablen X und Y mit werten in \mathbb{N}_0 gilt:

$$P(\{X+Y=n\}) = \sum_{l=0}^{n} P(\{X=l\}) P(\{Y=n-l\}) \quad \forall n \in \mathbb{N}_{0}.$$

- (ii) Seien nun X,Y zwei unabhängige, Poisson-verteilte Zufallsvariablen zu den Parametern λ und μ . Bestimmen Sie die Verteilung von X+Y.
- **Aufgabe 4** (5 Punkte) Für $n \in \mathbb{N}$ ist die Dichte der χ^2 -Verteilung mit n Freiheitsgraden gegeben durch

$$f_n(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} \mathbb{1}_{\{x \ge 0\}},$$

wobei $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$ für alle $x \ge 0$.

- (i) Seien X und Y unabhängig χ^2 -verteilt mit n bzw. m Freiheitsgraden. Bestimmen Sie die Verteilung von X+Y.

 Hinweis: Zeigen Sie, zunächst durch geeignete Substitutionen, dass $\Gamma(x)\Gamma(y) = \Gamma(x+y)\int_0^1 t^{x-1}(1-t)^{y-1}dt$ gilt.
- (iI) Seien X_1, \ldots, X_n unabhängige, standardnormalverteilte Zufallsvariablen. Zeigen Sie, dass die Zufallsvariable $Z = X_1^2 + \ldots, X_n^2$ χ^2 -verteilt ist mit n Freiheitsgraden.