第十章脉冲波形的产生与整形

- ★ 555定时器的工作原理和应用;
- ★ 555定时器的逻辑功能;
- ★ 由555构成的脉冲电路。

м

数字电路与模拟电路的区别:工作信号为离散脉冲信号。

一、什么是脉冲信号?

矩形波; 三角波; 锯齿波

狭义: 持续时间极短的电压或电流信号

广义: 凡不具有连续正弦形状的信号

最常用的脉冲信号是方波(矩形波)。

二、什么是脉冲单元电路? 用来产生、变换、整形脉冲信号的电路

本章讨论重点:

- 如何产生方波?
- 对不理想的方波如何整形?

M

脉冲电路分类:

(单稳态电路(单稳态触发器) 多谐振荡(无稳态)电路 施密特电路(施密特触发器)

脉冲电路作用:脉冲波形的产生和整形。

脉冲电路构成: 开关电路 + RC电路

破坏电路的稳态, 产生暂态。

控制暂稳态时间的长短。

脉冲电路与数字电路的比较:

- 「★脉冲电路侧重波形,数字电路侧重逻辑关系。
- ★数字电路的信号波形也是一种脉冲波形。

м

555定时器的原理和应用

555定时器:

一种多用途的数字一模拟混合集成电路。在外部配上适当的阻容元件即可方便地构成施密特触发器、单稳态触发器和多谐振荡器。使用方便,带负载能力较强。

- 一、555定时器的电路结构和基本功能
- 1. 电路结构(555定时器的内部电路包括五个部分)

两个电压比较器: C1、C2 一个基本RS 触发器

w

555定时器的管脚图

电源电压范围:

4.5V ~ 18V

 R_D +Vcc2. 基本工作状态 R CO_{\bullet} + & TH° R $\frac{2}{3}$ *Vcc* $TR \circ$ S & + Vo R $\frac{1}{3}$ *Vcc* Rb

三个电阻构成的分压器给两个比较器提供基准电压: 分别为 $\frac{2}{3}$ vcc 和 $\frac{1}{3}$ vcc 。

工作状态:

在TH、TR、TD 端施加不同电平的控制信号,得到555的几种不同工作状态。

需了解C1、C2、T、Q、 \overline{Q} , Vo 的工作情况。

① $\overline{R}_D = 0$ 时: $\overline{Q} = 1$, $V_O = 0$,T 导通

- \overline{R}_D =0 时: \overline{Q} =1, V_O =0, T导通
- $\overline{R_D} = 1$, $V_{TH} > \frac{2}{3} V_{CC}$, $V_{TR} > \frac{1}{3} V_{CC}$ 时:

$$C1 = 0$$
、 $C2 = 1$ 、 $Q = 1$ 、 $Q = 0$ 、 $Vo = 0$, T 导通。

③
$$\overline{R_D} = 1$$
, $V_{TH} < \frac{2}{3} V_{CC}$, $V_{TR} > \frac{1}{3} V_{CC}$ 时:

C1=1、C2=1、 $Q\sqrt{Q}$ 不变;Vo不变,T状态不变。

③
$$\overline{R_D} = 1$$
, $V_{TH} < \frac{2}{3}V_{CC}$, $V_{TR} > \frac{1}{3}V_{CC}$ 时:

C1=1、C2=1、 $Q\sqrt{Q}$ 不变;Vo不变,T状态不变。

④
$$\overline{R_D} = 1$$
, $V_{TH} < \frac{2}{3}V_{CC}$, $V_{TR} < \frac{1}{3}V_{CC}$ 时:

$$C1=1$$
、 $C2=0$ 、 $Q=1$ 、 $Q=0$; $Vo=1$, T截止。

1

555定时器功能表

R	S	RD	阈值端 TH-R	触发端 TR-S	\mathcal{V}_{o}	晶体管 T
X	X	0	X	X	0	导通
0	1	1	大于 2Vcc/ 3	大于 Vcc/ 3	0	导通
1	1	1	小于 2Vcc/ 3	大于 Vcc/ 3	保持	保持
1	0	1	小于 2Vcc/ 3	小于 Vcc/ 3	1	截止
0	0	1	大于 2Vcc/ 3	小于 Vcc/ 3	不允许	午相出现

二、555定时器的基本应用

555定时器应用范围广泛,可构成多种电路形式,但最基本的电路为:单稳态触发器、多谐振荡器和施密特触发器。其它电路基本是这三种电路的变形。

- 1. 单稳态触发器
- 2. 多谐振荡器
- 3. 施密特触发器

м

1. 单稳态触发器

- ①电路有一个稳态和一个暂稳态。
- ②在外来触发脉冲作用下, 电路由稳态翻转到暂稳态。
- ③暂稳态是一个不能长久保持的状态,经过一段时间后,电路会自动返回到稳态。暂稳态的持续时间与触发脉冲无关,仅决定于电路本身的参数(主要为RC参数)。

学习重点: 为什么会自动返回? 需多少时间?

(1) 单稳态触发器电路

(2)工作原理

上电过程(V_I =1)

① 假设Vo=0

T导通,Vc=0, $C_1=C_2=1$ 电路处于稳态。

<i>V6=V_{TH}</i>	V2=V _{TR}	Vo	R S	Т
>2/3 <i>VCC</i>	>1/3 <i>VCC</i>	0	0 1	导通
<2/3 <i>VCC</i>	>1/3 <i>VCC</i>	保持	1 1	保持
<2/3 <i>VCC</i>	<1/3 <i>VCC</i>	1	1 0	截止

(2) 工作原理

上电过程($V_I=1$)

② 假设Vo=1

T截止,C充电, $V_{\rm c}$ 上升。

充电到2V_{CC}/3时:

- →比较器C₁=0, 将触发器置0,
- $\rightarrow V_{o} = 0$.
- →T导通, *C*放电, *V_c*≈0
- →比较器C₁=C₂=1,
- →电路状态不变。
- →电路进入稳态。

结论: V_I =1, 上电后输出处于稳定状态, V_0 =0, T导通, V_c =0。

(2) 工作原理(续1) 触发翻转 $(V_1=0, C_2=0)$

C充电,电路 进入暂态, $v_{\rm I}^{\rm O}$

触发:

 $V_T = 0$

 \rightarrow Vo=1,

→T截止。对

直到 $Vc>2/3V_{CC}$ 充电时间决 定于RC大小。

R

<2/3 *VCC* V_{TH}

Q + Vcc

 $V6=V_{TH}$

VCC

VCC

>2/3

 $\langle 2/3 \rangle$

RD

 $V2=V_{TR}$

>1/3 *VCC*

>1/3 *VCC*

<1/3 *VCC*

Vo

保持

 \overline{R} \overline{S}

0 1

1 0

导通

保持

截止

可以在5脚外接控制电压, 以改变放电阀值。

结论: $V_I = 0$ 触发后,电路进入暂态, Vo=1,T截止,Vc →逐渐上升。

结论: Vc充电到2/3 V_{CC} 后,电路返回到 稳态,Vo=0,T导通,Vc放电→0。

工作波形:

① 上电后进入稳态 (V_I=1, V_C =0, V_O =0)

	V6=V _{TH}	V2=V _{TR}	Vo	R S	Т
I	>2/3 <i>VCC</i>	>1/3 <i>VCC</i>	0	0 1	导通
	<2/3 <i>VCC</i>	>1/3 <i>VCC</i>	保持	1 1	保持
	<2/3 <i>VCC</i>	<1/3 <i>VCC</i>	1	1 0	截止

- $V_i < 1/3 V_{CC}$
- →比较器 C_2 =0,触发器置1,
- $\rightarrow V_0 = 1$
- →T截止,*C*充电
- →电路进入暂稳态。

③自动返回(V_I =1):

T截止,*C*充电,当 v_c上升到 2/3 V_{cc}时:

- →比较器C₁=0,触发器置0,
- $\rightarrow V_0 = 0$
- →T导通,C放电, $V_c \approx 0$ 电路
- →电路返回稳态。

V6=V _{TH}	V2=V _{TR}	Vo	R S	Т
>2/3 <i>VCC</i>	>1/3 <i>VCC</i>	0	0 1	导通
<2/3 <i>VCC</i>	>1/3 <i>VCC</i>	保持	1 1	保持
<2/3 <i>VCC</i>	<1/3 <i>VCC</i>	1	1 0	截止

结论:

 v_I 每输入一次负脉冲, v_o 便输出一个正脉冲, 脉冲宽度 t_W 由RC决定。

(3) 输出脉冲宽度 t_w

tw是Vc从0指数上升到2Vcc/3时所需的时间

$$v_{c}(0_{+}) = 0 \quad v_{c}(\infty) = V_{CC} \quad v_{c}(t) = \frac{2}{3}V_{CC}$$

$$t_{w} = RC \ln \frac{V_{C}(\infty) - V_{C}(0_{+})}{V_{C}(\infty) - V_{C}(t)}$$

$$= RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}}$$

$$= 1.1RC$$

涟意:

 t_w 宽度增加将降低定时精度和稳度。seconds-minutes。

多次触发时的情况:

在充电过程中(C1=1),如 V_1 再次触发,C2=1 \rightarrow 0,Q仍保持为1,电路状态不变(T截止,C保持充电状态)。

(4) 可重复触发的单稳态触发器(自学)

①电路图

(4) 可重复触发的单稳态触发器(续)

②工作过程

a. 稳态时:

V_I=1, T1截止, 电路状态同 普通单稳。

b. 触发时:

 V_I =0时,电路触发翻转, V_O =1, V_I =0期间, T_I 导通, 电容不能充电。

V₁=1后, T1截止, 电容开始充电。

(4) 可重复触发的单稳态触发器(续)

②工作过程(续)

a. 稳态时:

V_I=1, T1截止, 电路状态同 普通单稳。

b. 触发时:

电路翻转。

c. 重复触发时:

当 $Vc<2/3V_{CC}$ (电路仍处暂态)时,若 V_I 又进行触发($V_I=0$),则C通过T1放电,电路将维持在暂态,直到在 t_W 时间内没有新的触发,电路回到稳态。

③ 可重复触发的单稳态触发器的波形图:

触发过程:

b. V_I=0, 触发→V₀=1

→进入暂态,C不能充电。v_C

c.
$$V_r=1$$
 →电容开始充电

d. V_c >2/3 V_c c \rightarrow Q=0, f Q=0, 恢复稳态, f Q=0, 恢复稳态, f Q=0, 电容放电

e. 重复触发:

电容充电过程中 V_I =0, 电容放电, V_I =1后,再次充 电 \rightarrow 实现可重复触发。

结论:

 v_I 每输入一次负脉冲, v_o 便输出一个正脉冲, v_c 充电至 $2/3V_{CC}$ 放电, 再来正脉冲再充再放...

(5) 单稳态触发器的应用

(a)

2. 延时: 把输入信号延迟一定时间后输出

3. 整形: 把不规则的波形转换成宽度、幅度都相等的波形

2. 555定时器做多谐振荡器

多谐振荡器的特点:

- (1) 不需外触发的自激振荡器;
- (2) 无稳定状态,均为暂稳态;
- (3) 矩形波中含有丰富的高次谐波,常称多谐振荡器。

(1) 电路

外接R1,R2,C

(2) 原理

- ① V_{cc} 通过R1、R2向C充电,在 V_{c} 没有充电到 $2V_{cc}/3$ 之前, V_{o} 保持 1 不变。
- ② 当 $V_C = 2V_{CC}$ /3时
 - → V_o由1翻转为 0。
 - $\rightarrow T$ 导通
 - →电容C经R2、T放电。
- ③当Vc降至 V_{CC} /3时,使得
 - → V₀ 回到1
 - →T截止
 - →电容C 再充电,进入循环 ...

$$t = \ln \frac{v_C(\cdot) - v_C(0_+)}{v_C(\cdot) - v_C(t_-)}$$

$$v_O \longrightarrow t_{W2} - t_{W1}$$

第一个暂稳态的脉冲宽度 $t_{\rm w1}$, $V_{\rm C}$ 从 $V_{\rm CC}/3$ 充电上升到 $2V_{\rm CC}/3$ 所需的时间

$$t_{\text{w1}} = (R_1 + R_2)C \ln \frac{V_{CC} - 1/3V_{CC}}{V_{CC} - 2/3V_{CC}} \approx 0.7(R_1 + R_2)C$$

第二个暂稳态的脉冲宽度 $t_{\rm w2}$, $V_{\rm c}$ 从 $2V_{\rm CC}/3$ 放电下降到 $V_{\rm CC}/3$ 所需的时间

$$t_{w2} = R_2 C \ln \frac{2/3V_{CC}}{1/3V_{CC}} \approx 0.7R_2 C$$

重点掌握:

振荡周期:
$$T = t_{W1} + t_{W2} \approx 0.7(R_1 + 2R_2)C$$

類 率:
$$f = \frac{1}{T} \approx \frac{1.43}{(R_1 + 2R_2)C}$$

占 空 比:
$$q = \frac{t_{W1}}{T} = \frac{R_1 + R_2}{R_1 + 2R_2}$$

问题:如何得到占空比 q<½的脉冲波形?

(3) 占空比可调多谐振荡器

电路特点:充放电电路各自独立。

充电回路: $t_{wl}=R_ACln2$

放电回路: $t_{w2}=R_BCln2$

占空比:

$$q = t_{w1}/(t_{w1} + t_{w2}) = R_A/(R_A + R_B)$$

通过调节R2来调节占空比

10

3. 555定时器做施密特触发器

施密特触发器的特点:

- (1) 双稳态触发器,有两个稳定的状态;
- (2) 电平触发——电压达到某个值时电路状态翻转;
- (3) 具有滞后电压传输特性——回差特性 (两次翻转输入电平不同);

$$V_{\rm I} < 1/3 V_{\rm CC}$$
时,C1=1,C2=0, $V_0 = 1$ $V_{\rm I} > 2/3 V_{\rm CC}$ 时,C1=0,C2=1, $V_0 = 0$

$V6=V_{TH}$ $V2=V_{TR}$ Vo	T
>2/3 <i>VCC</i> >1/3 <i>VCC</i> 0	导通
<2/3 VCC	保持
<2/3 VCC <1/3 VCC 1	截止

(a) 当 V_i = 0 时,由于比较器 C_1 =1、 C_2 =0,触发器置 1,即 Q=1、 Q=0, $V_0=1$ 。 V_i 升高时,在未到达 $2V_{cc}/3$ 以前, $V_0=1$ 的状态不会改变。

- (a) 当 v_i =0 时,由于比较器 C_i =1、 C_2 =0,触发器置 1,即 Q=1、Q=0, v_o =1。 v_i 升高时,在未到达 $2V_{CC}/3$ 以前, v_o =1 的状态不会改变。
- (b) v_i 升高到 $2V_{CC}/3$ 时,比较器 G 输出为 0、G 输出为 1,触发器置 0,即 Q=0、 $\overline{Q}=1$, $v_0=0$ 。此后, v_i 上升到 V_{CC} ,然后再降低,但在未到达 $V_{CC}/3$ 以前, $v_0=0$ 的状态不会改变。

- (a) 当 v_i =0 时,由于比较器 G=1、 $C_2=0$,触发器置 1,即 Q=1、Q=0, $v_0=1$ 。 v_i 升高时,在未到达 $2V_{CC}/3$ 以前, $v_0=1$ 的状态不会改变。
- (b) v_i 升高到 $2V_{\text{CC}}/3$ 时,比较器 G 输出为 0、G 输出为 1,触发器置 0,即 Q=0、Q=1, $v_0=0$ 。此后, v_i 上升到 V_{CC} ,然后再降低,但在未到达 $V_{\text{CC}}/3$ 以前, $v_0=0$ 的状态不会改变。
- (c) v_i 下降到 $V_{cc}/3$ 时,比较器 G 输出为 1、G 输出为 0,触发器置 1,即 Q=1、Q=0, $v_0=1$ 。此后, v_i 继续下降到 0,但 $v_0=1$ 的状态不会改变。

(a) 传输特性

(b)逻辑符号

回差电压(滞后电压):
$$V_{T+}=2/3V_{CC}$$
; $V_{T-}=1/3V_{CC}$
$$\Delta V_{T}=V_{T+}-V_{T-}=1/3V_{CC}$$

м

说明:①在5脚上加控制电压 \mathbf{v}_{CO} 可以改变 \mathbf{V}_{T+} , \mathbf{V}_{T-} ,以调节回差电压的大小。

②在7脚外接一电阻,并与 V_{CC1} 相连, V_0 =1时, V_{01} = V_{CC1} ; V_0 =0时, V_{01} =0。可以实现电平移动。

(3) 施密特触发器的应用:

① 波形变换——三角波、正弦波变换成方波

调节V_{T+}, V_{T-}可以改变脉冲宽度

② 波形整形——消除噪声干扰

③ 幅度鉴别

可以调节V_{T+}作为鉴别门限

④构成多谐振荡器

M

本章要求

- 1.熟练掌握555定时器的基本功能和三种基本应用。
- 2.熟练掌握脉冲电路有关参数的计算和波形的绘制。
- 3.掌握三种脉冲电路的主要应用。
- 4.掌握集成单稳、集成施密特触发器的主要特点和基本结构。

本章作业

8.3, 8.6, 8.7