Macchine di Turing

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

Macchine di Turing a nastro singolo

Dispositivo che accede ad un *nastro* potenzialmente illimitato diviso in celle contenenti ciascuna un simbolo appartenente a un alfabeto Γ , ampliato con il carattere speciale \square (blank) che rappresenta la situazione di cella non contenente caratteri.

All'inizio del calcolo solo una porzione finita del nastro contiene simboli di Γ . La macchina di Turing opera su tale nastro tramite una testina, la quale può scorrere su di esso in entrambe le direzioni Su ogni cella la testina può leggere o scrivere caratteri appartenenti all'alfabeto Γ oppure il simbolo \square .

Macchine di Turing a nastro singolo

Macchina di Turing deterministica

Sestupla $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$, dove :

- \bullet Γ : alfabeto dei simboli di nastro
- $\square \notin \Gamma$: carattere speciale denominato blank
- Q: insieme finito e non vuoto di stati
- $q_0 \in Q$: stato iniziale
- $F \subseteq Q$: insieme degli stati finali
- δ : funzione di transizione definita come

$$\delta: (Q - F) \times (\Gamma \cup \{\Box\}) \mapsto Q \times (\Gamma \cup \{\Box\}) \times \{\frown, \frown, \circ\}$$

in cui \curvearrowright , \lt e \circ indicano, rispettivamente, lo spostamento a destra, lo spostamento a sinistra e l'immobilità della testina.

Transizione determinata da $\delta(q_2,b)=(q_3,a,{\curvearrowright})$ DTM

- DTM utilizzabili per calcolo di funzioni, o per riconoscere o accettare stringhe su un alfabeto di input $\Sigma \subseteq \Gamma$
- DTM usate per accettare stringhe vengono dette di tipo riconoscitore
- DTM usate per calcolare funzioni vengono dette di tipo trasduttore
- In entrambi i casi, all'inizio del calcolo, solo una porzione finita del nastro contiene simboli diversi da blank che costituiscono l'input del calcolo stesso

Configurazioni di DTM

Si definisce configurazione istantanea o configurazione di una macchina di Turing con alfabeto di nastro Γ ed insieme degli stati Q, una stringa c=xqy, con (assumendo $\bar{\Gamma}=\Gamma\cup\{\Box\}$):

- 1. $x \in \Gamma \bar{\Gamma}^* \cup \{\varepsilon\}$
- 2. $q \in Q$
- 3. $y \in \bar{\Gamma}^*\Gamma \cup \{\Box\}$

L'interpretazione data ad una stringa xqy è che xy rappresenti il contenuto della sezione non vuota del nastro, che lo stato attuale sia q e che la testina sia posizionata sul primo carattere di y. Nel caso in cui $x=\varepsilon$ abbiamo che a sinistra della testina compaiono solo simboli \square , mentre se $y=\square$ sulla cella attuale e a destra della testina compaiono soltanto simboli \square .

Configurazione iniziale

La configurazione iniziale di una MT rispetto a una stringa di input σ prevede che:

- ullet il nastro contenga la stringa σ in una sequenza di celle
- tutte altre celle del nastro siano vuote (contengano □)
- lo stato attuale sia lo stato iniziale q_0
- ullet la testina si trovi sulla cella contenente il primo carattere di σ

Una configurazione xqy è quindi iniziale se $x=\varepsilon$, $q=q_0$, $y=\sigma$.

Configurazione finale

Una configurazione c = xqy, con si dice finale se $q \in F$.

Quindi, una macchina di Turing si trova in una configurazione finale se il suo stato attuale è uno stato finale, indipendentemente dal contenuto del nastro e dalla posizione della testina.

Matrice di transizione

La funzione di transizione può essere rappresentata mediante matrici di transizione e grafi di transizione.

Esempio

	0	1	*	\$	
q_0	$(q_1, *, \curvearrowright)$	$(q_2,\$,\curvearrowright)$	-	-	(q_F,\Box,\circ)
q_1	$(q_1,0,\curvearrowright)$	$(q_1,1,\curvearrowright)$	-	-	$(q_3,\square,\curvearrowright)$
q_2	$(q_2,0,\curvearrowright)$	$(q_2,1,\curvearrowright)$	-	-	$(q_4,\square,\curvearrowright)$
q_3	$(q_3,0,\curvearrowright)$	$(q_3,1,\curvearrowright)$	-	-	$(q_5,0,\curvearrowleft)$
q_4	$(q_4,0,\curvearrowright)$	$(q_4,1,\curvearrowright)$	-	-	$(q_6,1,\curvearrowleft)$
q_5	$(q_5,0,\curvearrowleft)$	$(q_5,1,\curvearrowleft)$	$(q_0,0,\curvearrowright)$	-	$(q_5,\square,\curvearrowleft)$
q_6	$(q_6,0,\curvearrowleft)$	$(q_6,1, \curvearrowleft)$	-	$(q_0,1,\curvearrowright)$	$(q_6,\square,\curvearrowleft)$
q_F	_	_	_	_	-

In generale, assumiamo che uno stato finale non abbia transizioni uscenti definite.

Grafo di transizione

Esercizio

Considerata la macchina di Turing deterministica definita sopra e assumendo la configurazione iniziale q_010 :

- 1. determinare la computazione effettuata dalla macchina, indicando la configurazione finale che viene raggiunta;
- 2. descrivere informalmente il comportamento della macchina su un input generico.

Accettazione e rifiuto di stringhe

- Computazione massimale: computazione che non può prolungarsi (non esistono transizioni applicabili alla configurazione raggiunta)
- · Computazione di accettazione: computazione massimale che termina in una configurazione finale
- · Computazione di rifiuto: computazione massimale che si conclude in una configurazione non finale

Dato un alfabeto di input $\Sigma\subseteq \Gamma$, una stringa $x\in \Sigma^*$ è accettata (rifiutata) da una MT $\mathcal M$ se esiste una computazione di accettazione (di rifiuto) di $\mathcal M$ con $c_0=q_0x$.

Accettazione e rifiuto di stringhe

• Terza possibilità: non esiste alcuna computazione massimale con $c_0 = q_0 x$; in altre parole, la computazione di \mathcal{M} su input x non termina

Data un MT \mathcal{M} con alfabeto di input Σ , l'insieme Σ^* è partizionato in tre linguaggi:

- L'insieme $L(\mathcal{M})$ delle stringhe accettate da \mathcal{M}
- L'insieme $\overline{L}(\mathcal{M})$ delle stringhe *rifiutate* da \mathcal{M}
- L'insieme $\Sigma^* (L(\mathcal{M}) \cup \overline{L}(\mathcal{M}))$ delle stringhe sulle quali la computazione effettuata da \mathcal{M} non termina

Definizioni equivalenti

- 1. esistono due soli stati finali q_1,q_2 , tutte le computazioni massimali terminano in uno stato finale ed una stringa x è accettata se $q_0x \vdash_{\stackrel{}{\longrightarrow} M}^* wq_1z$, mentre è rifiutata se $q_0x \vdash_{\stackrel{}{\longrightarrow} M}^* wq_2z$
- 2. esiste un solo stato finale q_F , l'alfabeto di nastro contiene due simboli speciali $\mathcal{Y}, \mathcal{N} \notin \Sigma$, tutte le computazioni massimali terminano nello stato finale ed una stringa x è accettata se $q_0x \stackrel{*}{\longmapsto} q_F \mathcal{Y}$, mentre è rifiutata se $q_0x \stackrel{*}{\longmapsto} q_F \mathcal{N}$.

Riconoscimento di linguaggi

- Data una MT deterministica $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$
- Dato un alfabeto di input $\Sigma \subseteq \Gamma$
- \mathcal{M} riconosce (decide) un linguaggio $L \in \Sigma^*$ se e solo se per ogni $x \in \Sigma^*$:
 - esiste una computazione massimale $q_0x \stackrel{*}{ \longmapsto} wqz$
 - $q \in F$ se e solo se $x \in L$
 - $w \in \Gamma \bar{\Gamma}^* \cup \{\varepsilon\}$ e $z \in \bar{\Gamma}^* \Gamma \cup \{\Box\}$ rappresentano il contenuto delle porzioni di nastro significative prima e dopo la posizione della testina
- Affinché un linguaggio sia riconosciuto, \mathcal{M} deve fermarsi per ogni $x \in \Sigma^*$

Accettazione di linguaggi

- Data una MT deterministica $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$
- Dato un alfabeto di input $\Sigma \subseteq \Gamma$
- \mathcal{M} accetta un linguaggio $L \in \Sigma^*$ se e solo se $L = \{x \in \Sigma^* \mid q_0x \overset{*}{\underset{\mathcal{M}}{\longmapsto}} wqz; q \in F\}$
- Quindi, L è l'insieme delle stringhe per le quali la computazione effettuata da $\mathcal M$ termina in uno stato finale
- Che succede per $x \notin L$? La computazione effettuata da \mathcal{M} può:
 - 1. terminare in uno stato $q \in Q F$
 - 2. non terminare

Esercizio

- i) Definire una macchina di Turing deterministica che riconosce il linguaggio $L = \{w\tilde{w} \mid w \in \{a,b\}^+\}.$
- ii) Definire una macchina di Turing deterministica che accetta il linguaggio L sopra definito e che per qualche stringa $x \in \{a,b\}^* L$ cicla indefinitamente.

Turing-decidibilità

- ullet Un linguaggio L è detto Turing-decidibile se esiste una macchina di Turing deterministica che lo riconosce
- Un linguaggio è detto Turing-semidecidibile se esiste una macchina di Turing deterministica che lo accetta.

MT a più nastri

Una MTM (multi-tape Turing machine) a k nastri ($k \geq 2$) è una sestupla $\mathcal{M}^{(k)} = \langle \Gamma, \Box, Q, q_0, F, \delta^{(k)} \rangle$ dove:

- $\Gamma = \bigcup_{i=1}^k \Gamma_i$ è l'unione dei k alfabeti di nastro $\Gamma_1, \ldots, \Gamma_k$ non necessariamente distinti
- Q_{i} , q_{0} ed F hanno lo stesso significato che nel caso della macchina di Turing ad 1 nastro
- la funzione di transizione $\delta^{(k)}$ è definita come

$$\delta^{(k)}: (Q-F) \times \bar{\Gamma}_1 \times \ldots \times \bar{\Gamma}_k \mapsto Q \times \bar{\Gamma}_1 \times \ldots \times \bar{\Gamma}_k \times \{\smallfrown, \smallfrown, \circ\}^k$$

MT a più nastri

- Una $\mathcal M$ esegue una transizione a partire da uno stato interno q_i e con le k testine una per nastro posizionate sui caratteri a_{i_1},\ldots,a_{i_k}
- se $\delta^{(k)}(q_i, a_{i_1}, \dots, a_{i_k}) = (q_j, a_{j_1}, \dots, a_{j_k}, z_{j_1}, \dots, z_{j_k})$
 - si porta nello stato q_j ,
 - scrive i caratteri a_{j_1},\ldots,a_{j_k} sui rispettivi nastri
 - fa compiere alle testine i rispettivi spostamenti a destra, a sinistra o nessuno spostamento, come specificato dagli $z_{j_\ell} \in \{ \curvearrowright, \curvearrowleft, \circ \}$, $\ell = 1, \ldots, k$

Configurazioni di MTM

Una configurazione istantanea di una macchina di Turing multinastro può essere rappresentata da una stringa del tipo

$$q \# \alpha_1 \uparrow \beta_1 \# \alpha_2 \uparrow \beta_2 \# \dots \# \alpha_k \uparrow \beta_k$$

- q è lo stato attuale
- il contenuto significativo del nastro T_k è $\alpha_k \cdot \beta_k$
- la testina del nastro T_k è posizionata sulla cella contenente il primo carattere di β_k

Configurazioni di MTM

Una configurazione di una MTM $q \# \alpha_1 \uparrow \beta_1 \# \alpha_2 \uparrow \beta_2 \# \dots \# \alpha_k \uparrow \beta_k$ è:

- finale se $q \in F$, quindi se lo stato attuale è finale, indipendentemente dal contenuto dei nastri
- iniziale (con stringa di input x) se $q=q_0$, $\alpha_i=\varepsilon, i=1,\ldots,k$, $\beta_1=x$, $\beta_i=\square, i=2,\ldots,k$, quindi se il primo nastro contiene l'input con la testina sul primo carattere, e gli altri nastri sono vuoti

Esempio di MTM

Esempio di MTM

- Operazioni:
 - 1. input scandito da sx verso dx fino a quando si incontra il separatore c: simboli copiati sul nastro di lavoro da sx verso dx
 - 2. resto dell'input scandito da sx verso dx, nastro di lavoro scandito da dx verso sx, confrontano i caratteri in input con quelli presenti sul nastro di lavoro
- Alfabeto di input $\Sigma = \{a, b, c\}$
- Alfabeto del nastro di lavoro è $\Gamma = \{a, b\}$
- Configurazione iniziale: $q_0 \# \uparrow xc\tilde{x} \# \uparrow \square$.
- Tre stati: q_0 (scansione di x), q_1 (scansione di \tilde{x}), q_2 , stato finale. Quindi $Q = \{q_0, q_1, q_2\}$ e $F = \{q_2\}$.

Esempio di MTM

Funzione di transizione:

- Lettura e copiatura di x: $\delta(q_0, a, \Box) = (q_0, a, a, \land, \land)$, $\delta(q_0, b, \Box) = (q_0, b, b, \land, \land)$
- Lettura separatore: $\delta(q_0, c, \square) = (q_1, c, \square, \sim, \sim)$
- Lettura e verifica di \tilde{x} :
 - Caratteri uguali sui due nastri: $\delta(q_1,a,a)=(q_1,a,a,\curvearrowright, \curvearrowright)$, $\delta(q_1,b,b)=(q_1,b,b,\curvearrowright, \curvearrowright)$
 - Caratteri diversi sui due nastri: in questo caso la stringa non viene accettata. Nessuna transizione definita.

• Terminazione della verifica: $\delta(q_1, \square, \square) = (q_2, \square, \square, \circ, \circ)$

Esempio di MTM

Computazioni massimali corrispondenti ai due input bacab e acb.

Equivalenza tra MTM e MT

È possibile dimostrare l'equivalenza tra MTM e MT:

- per ogni MT \mathcal{M} esiste una MTM \mathcal{M}' equivalente, tale cioé che $L(\mathcal{M}) = L(\mathcal{M}')$ (si tratta della stessa \mathcal{M})
- per ogni MTM \mathcal{M} esiste una MT \mathcal{M}' equivalente, tale cioé che $L(\mathcal{M}) = L(\mathcal{M}')$
 - dimostrazione mediante simulazione di \mathcal{M}' su \mathcal{M} : mostrando come ad ogni computazione di \mathcal{M} corrisponda una computazione di \mathcal{M}' con stesso esito (accettazione, rifiuto, non termina)

MT non deterministica

Una macchina di Turing non deterministica (NDTM) \mathcal{M} a k nastri è una sestupla $\mathcal{M} = \langle \Gamma, \Box, Q, q_0, F, \delta_{\text{N}} \rangle$, in cui:

- $\Gamma = \bigcup_{i=1}^k \Gamma_i$
- δ_N è una funzione parziale

$$\delta_{\mathsf{N}}: (Q - F) \times \bar{\Gamma}_1 \times \dots \bar{\Gamma}_k \mapsto \mathcal{P}(Q \times \bar{\Gamma}_1 \times \dots \times \bar{\Gamma}_k \times \{ \smallfrown, \smallfrown, \circ \}^k)$$

Esempio di NDTM

Consideriamo una macchina di Turing non deterministica \mathcal{M} avente $\Gamma = \{a, b, c, d\}$, $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, F = \{q_{11}\}$ e funzione δ_N definita come segue:

	a	b	c	d	
q_0	$\{(q_0,a,\curvearrowright),(q_1,c,\curvearrowright)\}$	$\{(q_0,b,\curvearrowright),(q_2,c,\curvearrowright)\}$	_	_	_
q_1	$ \{(q_1, a, \land), (q_3, d, \land)\} $	$\{(q_1,b,\curvearrowright)\}$	_	_	-
q_2	$\{(q_2,a,\curvearrowright)\}$	$\{(q_2,b,\curvearrowright),(q_3,d,\curvearrowleft)\}$	_	_	-
q_3	$\{(q_3,a,\curvearrowleft)\}$	$\{(q_3,b,\curvearrowleft)\}$	$\{(q_4,c,\curvearrowright)\}$	_	-
q_4	$\{(q_5,c,\smallfrown)\}$	$\{(q_6,c,\curvearrowright)\}$	_	_	-
q_5	$\{(q_5,a,\smallfrown)\}$	$\{(q_5,b,{\curvearrowright})\}$	_	$\{(q_7,d,\curvearrowright)\}$	-
q_6	$\{(q_6,a,\curvearrowright)\}$	$\{(q_6,b,\curvearrowright)\}$	_	$\{(q_8,d,\curvearrowright)\}$	-
q_7	$\{(q_9,d,\curvearrowleft)\}$	_	_	$\{(q_7,d,\curvearrowright)\}$	-
q_8	_	$\{(q_9,d, \curvearrowleft)\}$	_	$\{(q_8,d,\curvearrowright)\}$	-
q_9	$\{(q_{10},a, \curvearrowleft)\}$	$\{(q_{10},b,\curvearrowleft)\}$	$ \{(q_{11},c,\circ)\} $	$\{(q_9,d,\curvearrowleft)\}$	-
q_{10}	$\{(q_{10},a,\curvearrowleft)\}$	$\{(q_{10},b,\curvearrowleft)\}$	$\{(q_4,c,\curvearrowright)\}$	_	-
q_{11}	_	_	_	_	-

Esempio di NDTM

La macchina di Turing ${\mathcal M}$

- ha grado di non determinismo 2
- data una stringa di input $x \in \{a,b\}^*$, la accetta se e solo se esiste una stringa $y \in \{a,b\}^*$ con $|y| \ge 2$ tale che x = uyyv, con $u,v \in \{a,b\}^*$

Esempio di computazioni di ${\mathcal M}$

Possibili computazioni su input $abab \in L(\mathcal{M})$

- 1. $q_0abab \longmapsto cq_1bab \longmapsto cbq_1ab \longmapsto cbaq_1b \longmapsto cbabq_1\Box$
- 2. $q_0abab \longmapsto aq_0bab \longmapsto acq_2ab \longmapsto acaq_2b \longmapsto acabq_2\square$
- 3. $q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abcq_1b \longmapsto abcbq_1\Box$
- 4. $q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abaq_0b \longmapsto abacq_2\Box$
- 5. $q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abaq_0b \longmapsto ababq_0\Box$
- $\textbf{6.} \ \ q_0abab \longmapsto aq_0bab \longmapsto acq_2ab \longmapsto acaq_2b \longmapsto acq_3ad \longmapsto aq_3cad \longmapsto acq_4ad \longmapsto accq_5d \longmapsto accdq_7\square$
- 7. $q_0abab \longmapsto cq_1bab \longmapsto cbq_1ab \longmapsto cq_3bdb \longmapsto cq_4bdb \longmapsto ccq_6db \longmapsto ccdq_8b \longmapsto ccq_9dd \longmapsto cq_9cdd \longmapsto cq_{11}cdd$

Equivalenza tra MT ed MTND

È possibile dimostrare l'equivalenza tra MTND e MT:

- per ogni MT \mathcal{M} esiste una MTND \mathcal{M}' equivalente, tale cioé che $L(\mathcal{M}) = L(\mathcal{M}')$ (si tratta della stessa \mathcal{M})
- per ogni MTND $\mathcal M$ esiste una MT $\mathcal M'$ equivalente, tale cioé che $L(\mathcal M) = L(\mathcal M')$
 - dimostrazione mediante simulazione di \mathcal{M}' su \mathcal{M} : mostrando come ad ogni computazione di \mathcal{M} corrisponda una computazione di \mathcal{M}' con stesso esito (accettazione, rifiuto, non termina)

Linguaggi di tipo 0 e Macchine di Turing

Teorema 1. Se \mathcal{G} è una grammatica di tipo 0 e $L = L(\mathcal{G})$ è il linguaggio da essa generato, esiste una macchina di Turing non deterministica a due nastri \mathcal{M}_L che accetta L.

Linguaggi di tipo 0 e Macchine di Turing

Sia $\mathcal{G} = \langle V_N, V_T, P, S \rangle$, la macchina \mathcal{M}_L opera nel seguente modo.

- Data una stringa $w \in V_T^*$, la configurazione iniziale di \mathcal{M}_L è $q_0 \# \uparrow w \# \uparrow S$.
- Ad ogni passo, in modo non deterministico \mathcal{M}_L applica sulla forma di frase ϕ presente sul secondo nastro tutte le possibili produzioni in P, rimpiazzando ϕ con una nuova forma di frase ϕ' derivabile da ϕ . Quindi verifica se ϕ' coincide con w: solo se la verifica dà esito positivo la macchina entra in uno stato finale di accettazione.

Linguaggi di tipo 0 e Macchine di Turing

Corollario:

I linguaggi di tipo 0 sono Turing-semidecidibili Linguaggi di tipo 0 e Macchine di Turing

Teorema 2. Se \mathcal{M} è una macchina di Turing che accetta il linguaggio L allora esiste una grammatica \mathcal{G}_L di tipo 0 tale che $L = L(\mathcal{G}_L)$.