rstatsZH - Data Science mit R

Mit mehreren Dataframes arbeiten / Tabellen darstellen

Lars Schöbitz 2020-05-02

Rückblick - Woche 6

- Erweiterte Vektoren
 - Faktoren
 - Datums- und Zeitwerte
 - Tibbles
- Daten importieren
 - o read_csv()
 - o read_excel()
 - o etc.
- SQL in R Markdown
- Tidy Data Konzept
- Daten drehen (pivoting) mit {tidyr}
 - o pivot_longer()
 - o pivot_wider()

Hausaufgabe 6

Hausaufgabe 6

Hausaufgabe 6 - Lösungen

- **GitHub Organisation:** rstatsZH
 - https://github.com/rstatsZH/
- Repo: ha-06-treibhausgase
 - https://github.com/rstatsZH/ha-06-treibhausgase
- R Markdown Datei: ha-06-solutions.Rmd
 - https://github.com/rstatsZH/ha-06-treibhausgase/blob/main/ha-06-solutions.Rmd

Ziele für diese Woche

Am Ende dieser Woche könnt ihr:

- Mehrere Dataframes zusammenfügen
- Tabellen mit dem {gt} Package erstellen
- Einen mit ggplot() erstellten Plot interaktiv darstellen
- Einen R Markdown Bericht als Website publizieren
- Mit den im Kurs erlernten Fähigkeiten selbstständig weiter arbeiten

Mit mehreren Dataframes arbeiten

Wir...

haben mehrere Dataframes

WO len diese zusammenbringen

Data: Women in science

Informationen zu 10 Frauen in der Wissenschaft welche die Welt verändert haben

name

Ada Lovelace

Marie Curie

Janaki Ammal

Chien-Shiung Wu

Katherine Johnson

Rosalind Franklin

Vera Rubin

Gladys West

Flossie Wong-Staal

Jennifer Doudna

Quelle: Discover Magazine

Inputs - Drei Dataframes

professions dates works

```
# A tibble: 10 x 2
                    profession
  name
  <chr>
                    <chr>
1 Ada Lovelace
                   Mathematician
                   Physicist and Chemist
2 Marie Curie
3 Janaki Ammal Botanist
4 Chien-Shiung Wu Physicist
5 Katherine Johnson Mathematician
6 Rosalind Franklin Chemist
7 Vera Rubin Astronomer
8 Gladys West Mathematician
9 Flossie Wong-Staal Virologist and Molecular Biologist
10 Jennifer Doudna Biochemist
```

Gewünschter Output

```
# A tibble: 10 x 5
  name profession
                          birth year death year known for
  <chr> <chr>
                               <dbl> <dbl> <chr>
1 Ada Lov... Mathematician
                                             NA first computer a...
                                  NA
2 Marie C... Physicist an...
                                             NA theory of radioa...
                                  NA
3 Janaki ... Botanist
                                           1984 hybrid species, ...
                                1897
4 Chien-S... Physicist
                                           1997 confim and refin...
                            1912
 5 Katheri... Mathematician
                                1918
                                           2020 calculations of ...
6 Rosalin... Chemist
                                1920
                                           1958 <NA>
                                1928
                                           2016 existence of dar...
7 Vera Ru... Astronomer
8 Gladys ... Mathematician
                                1930
                                             NA mathematical mod...
 9 Flossie... Virologist a...
                                1947
                                             NA first scientist ...
10 Jennife... Biochemist
                                1964
                                             NA one of the prima...
```

Inputs als Erinnerung

names(profession	ons)	nrow(professions)						
[1] "name"	"profession"	[1] 10						
names(dates)		nrow(dates)						
[1] "name"	"birth_year" "death_y	[1] 8						
names(works)		nrow(works)						
[1] "name"	"known_for"	[1] 9						

Dataframes zusammenfügen

Dataframes zusammenfügen

```
abcd_join(x, y)
```

- left_join(): alle Reihen aus x
- right_join(): alle Reihen aus y
- full_join(): alle Reihen aus x und y
- ...

Beispiel

Für die nächsten Folien

```
# A tibble: 3 x 2
    id var_x
    <dbl> <chr>
1     1 x1
2     2 x2
3     3 x3
```

```
# A tibble: 3 x 2
    id var_y
    <dbl> <chr>
1     1 y1
2     2 y2
3     4 y4
```

left_join()


```
left_join(tib_x, tib_y)
```

left_join()

```
professions %>%
  left_join(dates)
```

```
# A tibble: 10 x 4
                profession
                                        birth_year death_year
  name
  <chr> <chr>
                                             <dbl> < fdb>
1 Ada Lovelace Mathematician
                                                NA
                                                          NΑ
2 Marie Curie Physicist and Chemist
                                                NΑ
                                                          NA
3 Janaki Ammal Botanist
                                              1897
                                                        1984
4 Chien-Shiung ... Physicist
                                              1912
                                                        1997
5 Katherine Joh... Mathematician
                                              1918
                                                        2020
6 Rosalind Fran... Chemist
                                              1920
                                                        1958
7 Vera Rubin Astronomer
                                              1928
                                                        2016
8 Gladys West Mathematician
                                              1930
                                                          NA
9 Flossie Wong-... Virologist and Molecular...
                                              1947
                                                          NA
10 Jennifer Doud... Biochemist
                                              1964
                                                          NA
```

right_join()


```
right_join(tib_x, tib_y)
```

right_join()

```
professions %>%
    right_join(dates)
```

```
# A tibble: 8 x 4
 name profession
                                       birth_year death_year
 <chr> <chr>
                                            <dbl>
1 Janaki Ammal Botanist
                                             1897
                                                      1984
2 Chien-Shiung ... Physicist
                                             1912
                                                      1997
3 Katherine Joh... Mathematician
                                             1918
                                                      2020
4 Rosalind Fran... Chemist
                                             1920
                                                      1958
5 Vera Rubin Astronomer
                                             1928
                                                      2016
6 Gladys West Mathematician
                                             1930
                                                        NA
7 Flossie Wong-... Virologist and Molecular ...
                                             1947
                                                        NA
8 Jennifer Doud... Biochemist
                                             1964
                                                        NA
```

full_join()


```
full_join(tib_x, tib_y)
```

full_join()

```
dates %>%
  full_join(works)
```

```
# A tibble: 10 x 4
             birth_year death_year known_for
  name
                  <dbl> <dbl> <chr>
  <chr>
1 Janaki Am...
                  1897
                             1984 hybrid species, biodiversity...
2 Chien-Shi... 1912
                             1997 confim and refine theory of ...
                             2020 calculations of orbital mech...
3 Katherine... 1918
4 Rosalind ... 1920
                             1958 < NA>
5 Vera Rubin 1928
                             2016 existence of dark matter
                               NA mathematical modeling of the...
6 Gladys We...
                  1930
7 Flossie W...
                  1947
                               NA first scientist to clone HIV...
8 Jennifer ... 1964
                               NA one of the primary developer...
9 Ada Lovel...
                               NA first computer algorithm
                  NA
                               NA theory of radioactivity, di...
10 Marie Cur...
                    NA
```

Alles in einer Code Sequenz

```
professions %>%
  left_join(dates) %>%
  left_join(works)
```

```
# A tibble: 10 x 5
  name profession birth year death year known for
  <chr> <chr>
                               <dbl> <dbl> <chr>
1 Ada Lov... Mathematician
                                  NA
                                             NA first computer a...
2 Marie C... Physicist an...
                                 NA
                                             NA theory of radioa...
3 Janaki ... Botanist
                                           1984 hybrid species, ...
                               1897
                                           1997 confim and refin...
4 Chien-S... Physicist
                               1912
5 Katheri... Mathematician
                               1918
                                           2020 calculations of ...
6 Rosalin... Chemist
                               1920
                                           1958 <NA>
                               1928
                                           2016 existence of dar...
7 Vera Ru... Astronomer
8 Gladys ... Mathematician
                               1930
                                             NA mathematical mod...
                                             NA first scientist ...
9 Flossie... Virologist a...
                               1947
10 Jennife... Biochemist
                                1964
                                             NA one of the prima...
```

Praktikum 10 - Daten zusammenfügen

2er Teams

- 1. **E-Mail**: Öffne deine Email und klicke auf den Link zu deinem persönlichen GitHub repo
- 2. **GitHub**: Klicke auf den grünen Button "Code" und kopiere den Link für das Repo in deine Zwischenablage
- 3. **RStudio Cloud**: Öffne deinen Arbeitsbereich für den Kurs in der RStudio Cloud
- 4. **RStudio Cloud / Projects**: Klicke auf "New Project from GitHub Repository"

Inputs - Drei Dataframes

einkaeufe preise kundenprofile

```
# A tibble: 9 x 4
 kunden_id produkt_name einkauf einheit
 <chr> <chr> <chr>
1 k1 Chips
                    2 anzahl
                      3 anzahl
2 k1
         Milch
                   1 anzahl
        Avocado
3 k1
4 k2 Pfirsich
                      2.5 kg
5 k2
         Birne
                      0.5 kg
6 k2
         Apfel
                      2 kg
7 k2
         Tomate
                      1.5 kg
8 k2
         Pfirsich
                      1 kg
9 k2
         Milch
                      4 anzahl
```

Gewünschter Output

vorname	nachname	summe	email
Edwin	Dumont	9.2	edwin.dumont@example.com
Leonora	Garcia	24.6	leonora.garcia@example.com

Schritt 1 - Daten zusammenfügen

```
einkaeufe_preise <- einkaeufe %>%
  left_join(preise)
einkaeufe_preise
```

```
# A tibble: 9 x 5
 kunden_id produkt_name einkauf einheit preis
 <chr> <chr> <dbl> <chr> <dbl>
1 k1 Chips 2 anzahl 3.8
       Milch 3 anzahl 2.2
2 k1
3 k1 Avocado 1 anzahl 3.2
                  2.5 kg 6.5
4 k2 Pfirsich
5 k2 Birne
                  0.5 kg 2.6
6 k2
       Apfel
                  2 kg 4.1
            1.5 kg 2.7
7 k2
       Tomate
8 k2
       Pfirsich
                  1 kg 6.5
                  4 anzahl 2.2
9 k2
       Milch
```

Schritt 2 - Daten zusammefassen

```
einkaeufe_preise_sum <- einkaeufe_preise %>%
  group_by(kunden_id) %>%
  summarise(
   summe = sum(preis)
)
einkaeufe_preise_sum
```

Schritt 3 - Daten zusammenfügen + eingrenzen

```
kunden_tab <- einkaeufe_preise_sum %>%
  left_join(kundenprofile) %>%
  select(ends_with("name"), summe, email)
kunden_tab
```

Schritt 4 - Daten als Tabelle darstellen

kunden_tab %>%
 gt()

vorname	vorname nachname		email
Edwin	Dumont	9.2	edwin.dumont@example.com
Leonora	Garcia	24.6	leonora.garcia@example.com

Als eine Code Sequenz

```
einkaeufe %>%
  left_join(preise) %>%
  group_by(kunden_id) %>%
  summarise(
    summe = sum(preis)
) %>%
  left_join(kundenprofile) %>%
  select(ends_with("name"), summe, email) %>%
  gt()
```

vorname	orname nachname		email
Edwin	Dumont	9.2	edwin.dumont@example.com
Leonora	Garcia	24.6	leonora.garcia@example.com

Tabellen darstellen

Welche Eigenschaften von Tidy data sind hier nicht erfüllt?

	_													
	A	В	С	Н	М	R	S	Т	U	V	M	Х	Y	Z
1	Kosten des Gesundheitswesens nach Leistungen 1)												Т	14.5.1.3
2	In Millionen Franken													
3														
4			1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
5		Total	36 056	43 072	52 388	62 565	64 243	66 512	69 118	71 429	74 385	77 455	79 643	80 242
6	L	Stationäre Kurativbehandlung 2)	9 742	10 786	12 584	13 373	13 583	14 176	14 791	14 947	15 386	15 758	15 718	15 548
7	L1	Stationäre somatische Akutbehandlung 2)				11 696	11 878	12 397	12 946	13 118	13 469	13 832	13 786	13 622
8	L2	Stationäre Psychiatriebehandlung 2)				1 674	1 699	1 771	1 836	1 819	1 905	1 912	1 917	1 908
9	L3	Stationäre Geburtshausbehandlung 2)				3	5	8	9	10	12	14	16	17
10	М	Ambulante Kurativbehandlung	8 336	10 243	12 699	15 808	16 109	16 924	17 688	18 681	19 541	20 436	21 108	20 753
11	M2	Ambulante somatische Akutbehandlung im Spital				4 226	4 315	4 717	4 969	5 427	5 677	6 136	6 307	6 409
12	МЗ	Ärztliche Behandlung, ambulant, Einzelleistungen 3)				4 509	4 317	4 273	4 343	4 405	4 638	4 711	4 690	3 871
13	M4	Ärztliche Behandlung, ambulant, Managed Care 3)				1 582	1 984	2 277	2 578	2 839	3 195	3 400	3 659	3 797
14	M6	Zahnbehandlung				4 022	4 089	4 171	4 251	4 347	4 279	4 256	4 473	4 684
15	M7	Ambulante Psychiatrie- und Psychologiebehandlung, kurativ 4)				864	854	923	987	1 121	1 169	1 263	1 301	1 391

Quelle: Bundesamt für Statistik - Kosten des Gesundheitswesens nach Leistungen

Welche Eigenschaften von Tidy data sind hier nicht erfüllt?

Quelle: Bundesamt für Statistik - Kosten des Gesundheitswesens nach Leistungen

Welche Eigenschaften von Tidy data sind hier nicht erfüllt?

	A	В	С	Н	М	R	S	Т	U	V	W	Х	Y	Z
1 2	1 Kosten des Gesundheitswesens nach Leistungen 1) 2 In Millionen Franken				V	ari	abl	و ع	ahr	al	s R	eih	e T	14.5.1.3
3			1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018
5		Total	36 056	43 072	52 388	62 565	64 243	66 512	69 118	71 429	74 385	77 455	79 643	80 242
6	L	Stationäre Kurativbehandlung 2)	9 742	10 786	12 584	13 373	13 583	14 176	14 791	14 947	15 386	15 758	15 718	15 548
7	L1	Stationäre somatische Akutbehandlung 2)				11 090	110/0	12 391	12 940	13 110	13 409	13 032	13 /00	13 022
8	L2	Stationäre Psychiatriebehandlung 2)				1 674	1 699	1 771	1 836	1 819	1 905	1 912	1 917	1 908
9	L3	Stationäre Geburtshausbehandlung 2)				3	5	8	9	10	12	14	16	17
10	М	Ambulante Kurativbehandlung	8 336	10 243	12 699	15 808	16 109	16 924	17 688	18 681	19 541	20 436	21 108	20 753
11	M2	Ambulante somatische Akutbehandlung im Spital				4 226	4 315	4 /1/	4 969	5 421	56//	b 136	6 307	6 409
12	МЗ	Ärztliche Behandlung, ambulant, Einzelleistungen 3)				4 509	4 317	4 273	4 343	4 405	4 638	4 711	4 690	3 871
13	M4	Ärztliche Behandlung, ambulant, Managed Care 3)				1 582	1 984	2 277	2 578	2 839	3 195	3 400	3 659	3 797
14	M6	Zahnbehandlung				4 022	4 089	4 171	4 251	4 347	4 279	4 256	4 473	4 684
15	M7	Ambulante Psychiatrie- und Psychologiebehandlung, kurativ 4)				864	854	923	987	1 121	1 169	1 263	1 301	1 391

Reihen als Zusammenfassung (Summe)

Quelle: Bundesamt für Statistik - Kosten des Gesundheitswesens nach Leistungen

Relevanter Unterschied - Ziel der Daten Publikation

Daten in Tabellen darstellen

- Layout
 - Gut leserlich
 - Kompakt
 - Erkenntnis bringend
- Metadaten

Daten für weitere Nutzung bereitstellen

- Layout (Tidy data)
 - Eigenschaft 1: Jede Spalte ist eine Variable
 - Eigenschaft 2: Jede Reihe ist eine Beobachtung
 - Eigenschaft 3: Jede Zelle enthält eine Messung
- Keine Metadaten
- Keine Farben, Formatierungen, etc.
- Folgt Standards (Datum: ISO 8601)
- etc.

Tabellen darstellen mit dem {gt} Package

Parts of a gt Table

A Typical gt Workflow

Quelle: gt.rstudio.com

Demonstration 3 - Tabellen darstellen

- 1. Schaut mir beim Programmieren zu
- 2. Macht euch Notizen und stellt Fragen

{gt} - Lerne das Package besser kennen

gt
TEST DRIVE

R Studio Cloud

Quelle: gt.rstudio.com

Tabellen darstellen - Weitere Packages

- {kableExtra}: https://haozhu233.github.io/kableExtra/
- {formattable}: https://renkun-ken.github.io/formattable/
- {DT}: https://rstudio.github.io/DT/
- {flextable}: https://davidgohel.github.io/flextable/
- etc.

The End

The End - Noch nicht ganz

Was habt ihr gelernt?

- Anwendung von Tidyverse Packages zum
 - o Importieren,
 - Aufräumen (Tidying),
 - Transformieren,
 - Visualisieren, und
 - Kommunizieren von Daten.
- Kollaboration und Versionsverwaltung mit Git/GitHub
- Datenprojekte reproduzierbar publizieren mit GitHub
- Das Konzept von Tidy Data

Wie geht's weiter?

Raus aus der RStudio Cloud

- 1. Installationen: https://github.com/rstatsZH/kochbuch/tree/main/01-Installation
- 2. Einmalig: Tidyverse Packages installieren
- 3. Danach: Tidyverse Packages laden
- 4. Packages ausserhalb des Tidyverse installieren und laden (e.g. janitor)

```
# Einmalig in Konsole ausführen
install.packages("tidyverse")

# In jedem Skript
library(tidyverse)
```

Weiterführende Ressourcen - Üben + Vertiefen

https://rstatszh.github.io/website/posts/2021-04-30-woche07/

Projektarbeit - Unterstützung bis Anfang Juli

Hausaufgabe 6

- 1. GitHub Repository erstellen und RStudio Projekt aufgleisen (Hausaufgabe 6)
- 2. Daten für das Projekt identifizieren

Wie es weiter geht: Bericht mit R Markdown schreiben

- 1. Daten importieren
- 2. Daten (visuell) erkunden
- 3. Daten ggf. transformieren und dann erneut (visuell) erkunden
- 4. Fragen an den Datensatz formulieren
- 5. Versuchen zu Antworten zu kommen und dokumentieren
- 6. Immer wieder, git add, commit, push

Feedback

Ziele erreicht?

Bitte ausfüllen: kutt.it/rstatszh-eval

Photo by: Virgil Cayasa

Wie es für mich weiter geht

- 1. Beratung: Projektbezogener Support, Code Review, Coaching
- 2. rstatsZH Kursleitung: Info über den Kurs verbreiten
- 3. Kurse zu vertiefenden Themen: Entwicklung von 4-Stunden Workshops

Contact: Lars@Lse.de

Für die Aufmerksamkeit!

Für die R packages {xaringan} und {xaringanthemer} mit welchen die Folien geschrieben wurden.

Eine PDF Version der Folien kann hier heruntergeladen werden: https://github.com/rstatsZH/website/raw/master/slides/e1_d07-data-join/e1_d07-data-join.pdf

Für Data Science in a Box und Remaster the Tidyverse, von welchen ich Materialien für diesen Kurs nutze und welche genau wie diese Folien mit Creative Commons Attribution Share Alike 4.0 International lizensiert sind.