DYNAMIC PROGRAMMING

Nicolò Felicioni

EMAIL: NICOLO . FELICIONI@ POLIMI . IT

INTRO PRESENTATION

NICOLÒ FELICIONI

EMAIL: NICOLO . FELICIONI @ POLIMI . IT

FRESEARCH INTERESTS:

MACHINE LEARNING

RECOMMENDATION SYSTEMS

DYNAMIC PROGRAMMING

DYNAMIC PROGRAMMING DEFINITION

DYNAMIC PROGRAMMING

- **DYNAMIC PROGRAMMING** IS AN ALGORITHM DESIGN TECHNIQUE
- TECHNIQUE
- USUALLY, BRINGS A NAIVE SOLUTION WITH EXPONENTIAL COMPLEXITY TO POLYNOMIAL COMPLEXITY
- $O(C^N) \rightarrow O(N^C)$

BIG O COMPLEXITIES

Complexity function	n=10
n linear	.00001 second
n^2 polynomial	.0001 second
n^5 polynomial	.1 second
2 ⁿ exponential	.001 second

Complexity function	n=10	n=20
n linear	.00001 second	.00002 second
n^2 polynomial	.0001 second	.0004 second
n ⁵ polynomial	.1 second	3.2 seconds
2 ⁿ exponential	.001 second	1.0 second

Complexity function	n=10	n=20	n=30
n linear	.00001 second	.00002 second	.00003 second
n^2 polynomial	.0001 second	.0004 second	.0009 second
n^5 polynomial	.1 second	3.2 seconds	24.3 second
2^n exponential	.001 second	1.0 second	17.9 minutes

Complexity function	n=10	n=20	n=30	n=40	n=50	n=60
n linear	.00001 second	.00002 second	.00003 second	.00004 second	.00005 second	.00006 second
n^2 polynomial	.0001 second	.0004 second	.0009 second	.0016 second	.0025 second	.0036 second
n^5 polynomial	.1 second	3.2 seconds	24.3 second	1.7 minutes	5.2 minutes	13.0 minutes
2^n exponential	.001 second	1.0 second	17.9 minutes	12.7 days	35.7 years	366 centuries

WHEN TO USE DP

OP CAN BE USED IN A VARIETY OF SITUATIONS

THERE MUST BE

2 FUNDAMENTAL PROPERTIES THAT HOLD

PROPERTY 1: OPTIMAL SUBSTRUCTURE

THE **OPTIMAL SUBSTRUCTURE** PROPERTY HOLDS WHEN:

BY SOLVING OPTIMALLY EACH SUBPROBLEM,
YOU OPTIMALLY SOLVE THE ORIGINAL PROBLEM

PROPERTY 1: OPTIMAL SUBSTRUCTURE

THE **OPTIMAL SUBSTRUCTURE** PROPERTY HOLDS WHEN:

BY SOLVING OPTIMALLY EACH SUBPROBLEM,
YOU OPTIMALLY SOLVE THE ORIGINAL PROBLEM

PROPERTY 2: OVERLAPPING SUBPROBLEMS

THE **OVERLAPPING SUBPROBLEMS** PROPERTY HOLDS WHEN:

THE ORIGINAL PROBLEM CAN BE BROKEN DOWN INTO SUBPROBLEMS THAT

ARE **REUSED** SEVERAL TIMES

PROPERTY 2: OVERLAPPING SUBPROBLEMS

THE **OVERLAPPING SUBPROBLEMS** PROPERTY HOLDS WHEN:

- THE ORIGINAL PROBLEM CAN BE BROKEN DOWN INTO SUBPROBLEMS THAT ARE **REUSED** SEVERAL TIMES
- ANY RECURSIVE ALGORITHM SOLVING THE PROBLEM SHOULD SOLVE THE **SAME** SUB-PROBLEMS OVER AND OVER, RATHER THAN GENERATING NEW SUB-PROBLEMS

- ← MERGESORT IS NOT A DP ALGORITHM
- THIS IS BECAUSE THE SORTING PROBLEM SATISFIES PROPERTY 1 (OPTIMAL SUBSTRUCTURE) BUT NOT PROPERTY 2 (OVERLAPPING SUBPROBLEMS)

	38	27	43	3	9	82	10
--	----	----	----	---	---	----	----

A **NAIVE** RECURSIVE SOLUTION:

```
def fib(i):
    if i < 2: return i
    return fib(i-1) + fib(i-2)</pre>
```


RECURSION TREE:

EXPONENTIAL COMPLEXITY!

THE NAIVE SOLUTION DOES NOT EXPLOIT THE **OVERLAPPING**

SUBPROBLEMS PROPERTY

THE NAIVE SOLUTION DOES NOT EXPLOIT THE **OVERLAPPING SUBPROBLEMS** PROPERTY

THIS PROBLEM HAS A LOT OF OVERLAPS

- THE NAIVE SOLUTION DOES NOT EXPLOIT THE **OVERLAPPING SUBPROBLEMS** PROPERTY
- THIS PROBLEM HAS A LOT OF OVERLAPS
- WE WILL USE THE SO-CALLED **MEMOIZATION** TECHNIQUE

A SOLUTION WITH **MEMOIZATION**:

```
def fib_memo(i):
   mem = {} #dict of cached values
    def fib(x):
        if x < 2: return x
       #check if already computed
        if x in mem: return mem[x]
        #only if not already computed
       mem[x] = fib(x-1) + fib(x-2)
        return mem[x]
    fib(i)
    return mem[i]
```


RECURSION TREE WITH MEMOIZATION:

THE BLACK NODES ARE NOT COMPUTED ANYMORE: LINEAR COMPLEXITY!

LEETCODE PROBLEM 1

70 CLIMBING STAIRS

HTTPS://LEETCODE.COM/PROBLEMS/CLIMBING-STAIRS/

YOU ARE CLIMBING A STAIRCASE. IT TAKES **N** STEPS TO REACH THE TOP.

EACH TIME YOU CAN EITHER CLIMB 1 OR 2 STEPS. IN HOW MANY DISTINCT WAYS CAN YOU CLIMB TO THE TOP?

LEETCODE PROBLEM 2

118 PASCAL'S TRIANGLE

HTTPS://LEETCODE.COM/PROBLEMS/PASCALS-TRIANGLE/

GIVEN AN INTEGER NUMROWS, RETURN THE FIRST NUMROWS OF **PASCAL'S TRIANGLE**.

IN PASCAL'S TRIANGLE, EACH NUMBER IS THE SUM OF THE TWO NUMBERS DIRECTLY ABOVE IT AS SHOWN:

LEETCODE PROBLEM 3

115 DISTINCT SUBSEQUENCES

HTTPS://LEETCODE.COM/PROBLEMS/DISTINCT-SUBSEQUENCES/

GIVEN TWO STRINGS **S** AND **T**, RETURN THE NUMBER OF DISTINCT SUBSEQUENCES OF **S** WHICH EQUALS **T**.

```
Input: s = "babgbag", t = "bag"
Output: 5
Explanation:
As shown below, there are 5 ways you can generate "bag" from s.

babgbag
babgbag
babgbag
babgbag
babgbag
babgbag
babgbag
```


DYNAMIC PROGRAMMING CREDITS

CREDITS

SLIDES BY CAROLA WENK

HTTPS://WWW.CS.TULANE.EDU/~CAROLA/TEACHING/CMPS6610/FALL16/SLIDES/LECTURE DYNAMICPROGRAMMING.PDF

SLIDES BY TYLER MOORE

HTTPS://TYLERMOORE.UTULSA.EDU/COURSES/CSE3353/S13/SLIDES/L19-HANDOUT.PDF

WIKIPEDIA PAGE ON DYNAMIC PROGRAMMING.

HTTPS://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC PROGRAMMING