

Center for Research in Applied Cryptography and Cyber Security

DEFENCE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund Instructor: Hanan Rosemarin

Problem Description

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks

אוניברסיטת בר-אילן Bar-Ilan University

בס"ד

Background and Goal

- ✓ An adversarial example is an instance with small, intentional feature perturbations that cause a machine learning model to make a false prediction.
- ✓ The goal is to Find a way to train 'secured' models such that this sort of attacks should not affect them.
- ✓ Project based on the article <u>Bridging machine learning and cryptography in defence against adversarial attacks</u>

Figure 1: example of an adversarial example

Set-Up

- ✓ Mnist and fashion-mnist
- ✓ Using well-known neural nets

1. Securing Models

Approach: training models on encrypted images Encryption techniques:

- ✓ Permutation
- ✓ AES in ECB, CBC and CTR modes

Figure 2: architecture for securing models

2. Cutting loose ends

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can be seen in figure 3.

Figure 3: Sample of the encrypted images. Interesting to see how for the human eye it's impossible to distinguish between various classes but a DNN model classifies quite well, as in table 1

3. Attacking

Attacks:

- ✓ Carlini & Wagner, CW
- ✓ Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.

Figure 4: visualization of a CW and FGSM attack

Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarial images, but overall, accuracies are good. See table 1 for the detailed results.

Classification error (%) on the first 1000 test samples								
		mnist			fashion_mnist			
		original adversarial images		original	adversarial images			
	model	images	attack	gray-box	images	attack	gray-box	
UNENCRYPTED	Α	1.49	CW I ₂	100.00	8.30	CW I ₂	100.00	
			CW I _o	100.00		CW I _o	100.00	
			CW I _∞	100.00		CW I _∞	100.00	
	В	2.10	FGSM	39.50	9.50	FGSM	77.20	
PERMUTATED			CW I ₂	4.50		CW I ₂	12.70	
	Α	3.70	CW I _o	7.30	12.30	CW I _o	12.50	
			CW I _∞	5.40		CW I _∞	12.90	
	В	4.20	FGSM	8.60	12.00	FGSM	29.80	
AES · ECB	Α	18.40	CW I ₂	irrelevant	54.60	CW I ₂	irrelevant	
	В	19.30	FGSM		55.30	FGSM		
AES · CBC	Α	67.60	CW I ₂	irrelevant	71.50	CW I ₂	irrelevant	
	В	87.40	FGSM		90.30	FGSM		
AES · CTR	Α	3.70	CW I ₂	4.20	17.40	CW I ₂	17.20	
	В	2.70	FGSM	4.90	16.70	FGSM	26.50	

Table 1: table containing all the results

Efficiency of Permutation

In order to check the efficiency of training models on permutated data, we trained models on images with greater dimensions. See table 2 for results.

	image size	error rate	
	28x28	3.63	
mnist	40x40	2.65	
minist	60x60	2.69	
	100x100	2.30	
	28x28	12.40	
fashion_mnist	40x40	12.07	
	60x60	11.41	

Table 2: results for training permutated data, various image dimensions

Future Work

- √ improve accuracy on AES-ECB model
- ✓ Nicholas Carlini (the 'C' in CW attack) believes we still might defeat these defenses, (we contacted him)
- ✓ Test on more complicated datasets; i.e. cifar-10

