Lecture-4-Feature-Extraction_short

April 24, 2019

1 Machine Learning

Lecture 4

Feature Extraction Part 1

2 Machine Learning Pipelines

3 Feature Extraction

- Feature extraction describes the transformations from **data** to **vectors**
- Extracting good features is more important than choosing a ML model
- We will cover some standard feature extractors, but there are many more
- Often the best feature extractors include domain knowledge by human experts
- Feature extractors have to be optimized along with all other model parameters

4 Feature Extraction

- Continuous Features
- Categorical Features
- Text (next lecture)
- Images (next lecture)

ml-pipeline-2.png

4.1 Continuous Features

- Continuous features: $x \in R^d$
- For many models continuous features don't need to be transformed
- For some models it is necessary or beneficial to **normalize** continuous features
 - When optimizing with stochastic gradient descent
 - When regularizing models: to control regularization

4.2 Normalization: z-scoring

Given a feature $x \in R^1$ (and for multivariate x analogously) there are several standard normalization options:

Standard scaling / z-scoring: compute mean μ_x and standard deviation σ_x of x and compute

$$x \leftarrow \frac{(x - \mu_x)}{\sigma_x}$$

- Resulting variable has zero mean and unit variance
- See sklearn.preprocessing.StandardScaler

4.3 Normalization: Min-Max Scaling

Min-max scaling: compute min min_x and max max_x of x

$$x \leftarrow \frac{(x - \min_x)}{\max_x - \min_x}$$

- Resulting variable is in range [0,1] (or any other range)
- See sklearn.preprocessing.MinMaxScaler

4.4 Categorical Features

Categorical features are variables $x \in \{0,1,2,...,N\}$ taking one value of a set of cardinality N without an implicit ordering e.g.: - colors (red, green, blue) - user ids - Movie ids

Often used feature transformations are

- One-hot encoding
- More recently for neural networks: low dimensional embeddings

4.5 One-hot encoding

Given a set of values [red, green, blue], we transform the data into

red ← [1,0,0]
green ← [0,1,0]
blue ← [0,0,1]

Sets of categorical variables can be represented as sum over single value vectors. Examples: bag-of-words vectors

4.6 One-hot encoding: Problems

- Cardinality needs to be estimated upfront
- New items / categories cannot be represented
- Similarity information is lost (light-blue and blue as different as black and white)