PA TNT COOPERATION TREAT

From the INTERNATIONAL BUREAU **PCT** Commissioner NOTIFICATION OF ELECTION **US Department of Commerce** United States Patent and Trademark Office, PCT (PCT Rule 61.2) 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202 **ETATS-UNIS D'AMERIQUE** Date of mailing: in its capacity as elected Office 22 March 2001 (22.03.01) International application No.: Applicant's or agent's file reference: 51-06034WO PCT/JP00/06185 International filing date: Priority date: 14 September 1999 (14.09.99) 11 September 2000 (11.09.00) Applicant: HANASAKI, Koji et al 1. The designated Office is hereby notified of its election made: X in the demand filed with the International preliminary Examining Authority on: 09 January 2001 (09 01 01)

1			UJ Janua	11 y 2001 (00.01.1		• •		
	in a no	tice effecting later el	lection filed with th	e International Bure	eau on:			
2.	The election	X was was not				··· • •		
	made before Rule 32.2(b).	the expiration of 19	months from the p	riority date or, wher	re Rule 32 applies	, within the time lin	nit under	
						en je napoma.	ray w	
				÷			,	

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer:

J. Zahra

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

Translation

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 51-06034WO	FOR FURTHER ACTION		ionofTransmittalofInternational Preliminary Report (Form PCT/IPEA/416)	
International application No.	International filing date (day/n	nonth/year)	Priority date (day/month/year)	
PCT/JP00/06185	11 September 2000 (1	1.09.00)	14 September 1999 (14.09.99)	
International Patent Classification (IPC) or n C07D 277/18, 279/06, 279/08, 4 43/00 // C07D 417/12, 213:36, 2	17/12, A61K 31/426, 31/541		1/547, A61P 13/12, 29/00, 37/06, (C07D 417/12, 279:06, 333:34)	
Applicant	SHIONOGI & CO.,	LTD.		
and is transmitted to the applicant ac	ecording to Article 36.		ational Preliminary Examining Authority	
2. This REPORT consists of a total of	sheets, including	ig this cover sl	neet.	
been amended and are the bas		ontaining rec	ption, claims and/or drawings which have tifications made before this Authority (see CT).	
These annexes consist of a to	tal ofl sheets.			
3. This report contains indications relat	ting to the following items:			
Basis of the report				
II Priority				
III Non-establishment o	of opinion with regard to novelty, inventive step and industrial applicability			
IV Lack of unity of inve	ention			
V Reasoned statement citations and explana	under Article 35(2) with regard to novelty, inventive step or industrial applicability; tions supporting such statement			
VI Certain documents c	ited			
VII Certain defects in the	e international application			
VIII Certain observations	on the international application			
Date of submission of the demand	Date of	completion of	this report	
09 January 2001 (09.0	1.01)	12 Sep	tember 2001 (12.09.2001)	
Name and mailing address of the IPEA/JP	Authori	zed officer		
Facsimile No.	Telepho	one No.		

tional application No.

PCT/JP00/06185

I. Basis of the report				
1. With	regard to	the elements of the international application:*		
	the inte	rnational application as originally filed		
ΙĒ	the desc	cription:		
	pages	, as originally filed		
	pages	, filed with the demand		
	pages	. filed with the letter of		
	the clair			
}	pages			
1	pages	, filed with the demand		
i •		27-33		
	the drav			
	pages .			
	pages pages	, filed with the demand		
		filed with the letter of		
'	the seque	nce listing part of the description:		
	pages	, as originally filed		
	pages .	, filed with the demand		
	pages	, filed with the letter of		
the ir	nternation	o the language, all the elements marked above were available or furnished to this Authority in the language in which nal application was filed, unless otherwise indicated under this item. Its were available or furnished to this Authority in the following language which is:		
	the lang	guage of a translation furnished for the purposes of international search (under Rule 23.1(b)).		
	the lang	guage of publication of the international application (under Rule 48.3(b)).		
	the lang	guage of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/).		
3. With prelin	n regard minary ex	to any nucleotide and/or amino acid sequence disclosed in the international application, the international camination was carried out on the basis of the sequence listing:		
	contain	ed in the international application in written form.		
	filed tog	gether with the international application in computer readable form.		
	furnishe	ed subsequently to this Authority in written form.		
	furnishe	ed subsequently to this Authority in computer readable form.		
	The sta	atement that the subsequently furnished written sequence listing does not go beyond the disclosure in the ional application as filed has been furnished.		
		tement that the information recorded in computer readable form is identical to the written sequence listing has rnished.		
4.	The ame	endments have resulted in the cancellation of:		
	t	the description, pages		
	$\overline{}$	the claims. Nos.		
		the drawings, sheets/fig		
5.	This rep	ort has been established as if (some of) the amendments had not been made, since they have been considered to go the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**		
in ini	icement si is report 10.17).	heets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16		
** Any re	eplaceme	nt sheet containing such amendments must be referred to under item 1 and annexed to this report.		

III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability				
1. The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non obvious), or to be industrially applicable have not been examined in respect of:				
	the entire international application.			
\boxtimes	claims Nos. <u>21-23</u> <u>1-20,24-33</u>			
becaus	se:			
\boxtimes	the said international application, or the said claims Nos. 21-23 relate to the following subject matter which does not require an international preliminary e	xamination (specify):		
Se	ee supplemental sheet for continuation of Box III. 1.			
	the description, claims or drawings (indicate particular elements below) or said claims No.	s 1-20 24-33		
	are so unclear that no meaningful opinion could be formed (specify):			
Se	ee supplemental sheet for continuation of Box III. 1.			
		₹.		
		1		
	the claims, or said claims Nos. by the description that no meaningful opinion could be formed.	are so inadequately supported		
\boxtimes	no international search report has been established for said claims Nos. 21-23	1-20,24-33		
2. A mear	ningful international preliminary examination cannot be carried out due to the failure of the listing to comply with the standard provided for in Annex C of the Administrative Instruc	he nucleotide and/or amino acidetions:		
	the written form has not been furnished or does not comply with the standard.			
	the computer readable form has not been furnished or does not comply with the standard.			

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of: III. 1.

X Claims 21-23 in their entirety and parts of Claims 1-20 and 24-30

Claims 21-23 pertain to methods for treatment of the human body by therapy (PCT Article 34 (4)(a)(i) and PCT Rule 67.1 (iv))

For the reasons given in Section VII, the claims and description do not satisfy conditions to enable meaningful international preliminary examination.

Therefore, this international preliminary examination report considers only inventions presented in the description which satisfy the following conditions.

- Substituent group A is an optionally substituted phenyl group or an optionally substituted 3-pyridyl group
- \bullet m is an integer 0 to 2
- R¹ is a C2 or C3 optionally substituted straight-chain alkylene group
- R^2 is an alkyl group, $-C(=R^5)-R^6$ group or $-SO_2R^7$ group (where substituent groups R^5 , R^6 and R^7) are as defined in the claims.
- X Claims 21-23 in their entirety and parts of Claims 1-20 and 24-30 X Claims 21-23 in their entirety and parts of Claims 1-20 and 24-30

INTERNATIONAL PRELIMINATION REPORT

P 00/06185

v.	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
ı	citations and explanations supporting such statement

1, 0,000	1.		Statement
----------	----	--	-----------

Novelty (N)	Claims	7, 11-20, 26-33
	Claims	1-6, 8-10, 24, 25
Inventive step (IS)	Claims	7, 11-20, 26-33
	Claims	1-6, 8-10, 24, 25
Industrial applicability (IA)	Claims	1-20, 24-33
	Claims	

2. Citations and explanations

This opinion is based on the following documents cited in the international search report.

Document 1: J. Gieldanowski et al., Arch Immunol. Ther. Exp., 26 (1-6), pp. 921-929

Document 2: JP, 62-212378, A (Bayer AG)

Document 3: JP, 2-3678, A (Janssen Pharmaceutica NV)

Document 4: FR, 2201080, A (Badische Anilin- & Soda-Fabrik AG)

Document 5: JP, 2-223564, A (Ube Industries, Ltd.)

Document 6: JP, 63-41471, A (Nippon Soda Co., Ltd.)

Document 7: JP, 57-134472, A (Hoechst AG)

Document 8: JP, 59-172486, A (Janssen Pharmaceutica NV)

Document 9: JP, 56-10180, A (Hoechst AG)

Document 10: JP, 52-51364, A (Hoechst AG)

Document 11: JP, 52-17468, A (Hoechst AG)

Document 12: JP, 51-54555, A (Hoechst AG)

Document 13: JP, 50-37775, A (Egyt Gyogyszervegyeszeti Gyar)

Document 14: JP, 48-36169, A (Bayer AG)

Document 15: JP, 48-23793, A (Imperial Chemical Industries, Ltd.)

Document 16: US, 3678041, A (Etablissements Clin-Byla)

Document 17: JP, 6-220053, A (Fuji Photo Film Co., Ltd.)

Document 18: N. J. Gailwad et al., Indian J. Pharm. Sci.,

46 (5), pp. 170-171 (1984)

Claims 1-6, 8-10, 24 and 25

Document 1, abstract, Table 3 and page 928, lines 13-14, indicates that although thiazinocarbonyl derivatives shown in Table 3 have a weak antiinflammatory action they have a potent immunosuppressant action.

Document 2, claims, page 25, upper right column and examples, Document 3, claims, page 14, lower right column, and examples, and Document 4, claims, page 4, lines 1-19, and examples, disclose thiazolidine-2-imide derivatives suitable for managing and preventing inflammation.

Document 5, claims and Table 1, and Document 6, claims and Table 1, disclose thiazolidine-2-imino derivatives which are derivatives of aminopyridine and oxa(thia)zolidine respectively.

Document 7, claims and page 9, lower right column to page 10, lower right column, Document 8, claims, page 11 upper right column to lower left column, and examples, Document 9, claims, page 18, upper left column to page 19, upper left column, and examples, Document 10, claims and examples, Document 11, claims and examples, Document 12, claims, page 28, lower right column to page 29, upper right column, and examples, Document 13, claims, page 2, upper left column, and examples, Document 14, claims, page 3, upper left column to page 4, upper right column, and examples, Document 15, claims, page 3, upper left column, and examples, Document 16, claims, page 1, lines 1-11, and examples. Document 17, claims and paragraphs [0014], [0015] and [0024], and Document 18 disclose pharmaceutical preparations in which the active ingredient is a thiazolidine-2-imino derivatives.

Therefore, the inventions set forth in Claims 1-6, 8-10, 24 and 25 are disclosed in Documents 1 to 18 and are not novel.

Claims 11-20, 27-33

Comparing the inventions set forth in the claims above with the inventions disclosed in Documents 5 and 6, they differ in as much as in the former R¹ is a C2-9 alkylene substituted with an alkylene, or a branched-chain C2-9 alkylene, whereas the latter do not have this chemical structure.

Moreover, no document mentions that a compound disclosed in Document 5 or 6 or any other document acts by a mechanism involving an affinity for or agonist effect on cannabinoid receptor 2, and a person skilled in the art could not easily derive the inventions set forth in the above claims from the disclosures in these documents.

Therefore, the inventions set forth in 11-20 and 27-33 involve an inventive step relative to Documents 1 to 18.

It should be noted that the present opinion has been arrived by using the results of an international search as defined in Section III and Section VIII.

Continuation of the international patent classification (IPC)

//(C07D417/12, C07D213:36, C07D79:06), (C07D417/12, C07D215:12, C07D279:06), (C07D417/12, C07D279:06, C07D333:34)

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

Claims 1-20 and 24-33

The technical feature of all of the inventions set forth in Claims 1-20 and 24-33 is compounds represented by Formula (I) or Formula (II) in themselves or the pharmaceutical use of said compounds, and the chemical structure common to the group of compound included in Formula (I) and Formula (II) reduces to the following partial structure.

$$-(CH_2)_{m}-N=C$$

However, as the list of documents indicates, compounds having this chemical structure and pharmaceutical compositions using said compounds are well known; therefore, the technical feature is not adequately specified by this chemical structure, and the description only supports some of the wide range of compounds encompassed in this group of chemicals.

ain published document	ts (Rule 70.10)				
Application No. Patent No.	Publication (day/month		Filing date (day/month/year)	_	Priority date (valid claim) (day/month/year)
WO 00/42031 A2 [PX]	20 July 2000 (20.07.2000)	14 December 1999 (14	4.12.1999)	14 January 1999 (14.01.19
-written disclosures (Ru Kind of non-written			vritten disclosure	referring to	of written disclosure
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
			onthyear)	referring to	o non-written disclosure
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)
		(day/m	onthyear)	referring to	o non-written disclosure lay/month/year)

特許協力条約

PCT

国際予備審查報告

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 51-06034WO	今後の手続きについては、『	国際予備審査報告の送付通知 ([PEA/416)を参照する	様式PCT/ こと。		
国際出願番号 PCT/JP00/0:6 1:8 5: (日.月.年) 11.09.00 優先日 (日.月.年) 14.09.99					
国際特許分類 (IPC) Int. Cl' C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00 (以下続葉)					
出願人 (氏名又は名称) 塩 塩	野義製薬株	式 会 社			
1. 国際予備審査機関が作成したこの国 2. この国際予備審査報告は、この表案			定に従い送付する。		
区 この国際予備審査報告には、附 査機関に対してした訂正を含む (PCT規則70.16及びPCT この附属書類は、全部で	付属書類、つまり補正されて、 ご明細書、請求の範囲及び// 実施細則第607号参照)	この報告の基礎とされた及び	/又はこの国際予備審		
3. この国際予備審査報告は、次の内容	容を含む。		,		
I X 国際予備審査報告の基礎					
II 優先権					
Ⅲ X 新規性、進歩性又は産業	上の利用可能性についての国	際予備審査報告の不作成			
IV 開の単一性の欠如		1	•		
V X PCT35条(2)に規定する の文献及び説明	する新規性、進歩性又は産業.	上の利用可能性についての見解	、それを裏付けるため		
VI X ある種の引用文献					
VII 国際出願の不備		- 500			
VII X 国際出願に対する意見					
		· · · · · · · · · · · · · · · · · · ·			

国際予備審査の請求書を受理した日 09.01.01	国際予備審査報告を作成した日 12.09.01
名称及びあて先 日本国特許庁(IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 4C 9736 荒 木 英 則 電話番号 03-3581-1101 内線 3450

様式PCT/IPEA/409 (表紙) (1998年7月)

,	
4	
国際予備審査報告	

Ι.	<u> </u>	国際予備審査報告の基礎			
1.	1. この国際予備審査報告は下記の出願審類に基づいて作成された。 (法第6条 (PCT14条) の規定に基づく命令に 応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。 PCT規則70.16,70.17)				
	出願時の国際出願書類				
	X	明細書 第 1-138 ページ、 明細書 第 ページ、 明細書 第 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの		
	X	請求の範囲 第 1-26 項、 請求の範囲 第 項、 請求の範囲 第 27-33 項、	出願時に提出されたもの PCT19条の規定に基づき補正されたもの 国際予備審査の請求審と共に提出されたもの 09.03.01 付の書簡と共に提出されたもの		
		図面 第 ページ/図、 図面 第 ページ/図、 図面 第 ページ/図、	国際予備審査の請求書と共に提出されたもの		
		明細書の配列表の部分 第 ページ、 明細書の配列表の部分 第 ページ、 明細書の配列表の部分 第 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの		
2.		上記の出願書類の言語は、下記に示す場合を除くほか、こ 上記の書類は、下記の言語である 語であ			
	上記の書類は、下記の言語である 語である。 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語 PCT規則48.3(b)にいう国際公開の言語 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語				
3.	3	この国際出願は、ヌクレオチド又はアミノ酸配列を含んで	おり、次の配列表に基づき国際予備審査報告を行った。		
 □ この国際出願に含まれる書面による配列表 □ この国際出願と共に提出されたフレキシブルディスクによる配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表 □ 出願後に、この国際予備審査(または調査)機関に提出されたフレキシブルディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった □ 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。 					
4.	4. 補正により、下記の書類が削除された。				
5.	5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)				
·			·		

Ш.	新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成				
1.	次に関して、当該請求の範囲に記載されている発明の新規性、進歩性又は産業上の利用可能性につき、 次 の理由により 審査しない。				
	国際出願全体				
X	請求の範囲 21-23の全体 及び 1-20,24-33の一部				
理由	ı:				
\mathbf{x}	この国際出願又は請求の範囲 21-23 は、国際予備審査をすることを要しない 次の事項を内容としている(具体的に記載すること)。				
	請求の範囲21ないし23に係る発明は治療による人体の処置方法である。 (PCT34条(4)(a)(i)、PCT規則67.1(iv))				
X	明細書、請求の範囲若しくは図面(次に示す部分)又は請求の範囲 1-20,24-33 の記載が、不明確であるため、見解を示すことができない(具体的に記載すること)。				
	第四欄に記載した事項のため、請求の範囲及び明細書は、有意義な国際予備審査をすることができる程度まで所定の要件を満たしているものではない。したがって、本報告においては明細書の記載を参考にして、以下の条件を満たすもののみを国際予備審査の対象とした。 ・置換基Aは置換可能なフェニル基又は置換可能な3-ピリジル基				
	 ・mは0ないし2の整数 ・R¹は炭素数2または3である、置換可能な直鎖アルキレン基 ・R²はアルキル基、-C (=R⁵) -R⁵基、又は-SO₂R⁻基 (R⁵、R⁶及びR⁻の各置換基の定義は請求の範囲に記載の通り。) 				
	(八、八次〇八 少石巨灰巫少龙我话明小少距四飞而来少远了。)				
	全部の請求の範囲又は請求の範囲 が、明細書による十分な 裏付けを欠くため、見解を示すことができない。				
•					
X	請求の範囲 21-23の全体 及び 1-20,24-33の一部 について、国際調査報告が作成されていない。				
2.	ヌクレオチド又はアミノ酸の配列表が実施細則の附属書C (塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン) に定める基準を満たしていないので、有効な国際予備審査をすることができない。				
	■ 書面による配列表が提出されていない又は所定の基準を満たしていない。				
	□ フレキシブルディスクによる配列表が提出されていない又は所定の基準を満たしていない。				

新規性、進歩性又は産業上の利用可能性についての法第12条(PCT35条(2))に定める見解、それを裏付ける 文献及び説明 1. 見解 7, 11-20, 26-33 請求の範囲 _ 有 新規性 (N) 無 請求の範囲 1-6, 8-10, 24, 25 請求の範囲7, 11-20, 26-33請求の範囲1-6, 8-10, 24, 25 有 進歩性(IS) 無 1-20, 24-33有 請求の範囲 産業上の利用可能性(IA) 請求の範囲 2. 文献及び説明 (PCT規則70.7) 見解は、国際調査報告で引用された以下の文献に基づいて示される。 文献 1: GIELDANOWSKI, J., et al., Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978) 62-212378 A ($n^*(TIN)-POFIVY^*t^*NV+7$) 文献 2: JP $2-3\overline{6}\overline{7}\overline{8}$ A ($\sqrt[3]{7}$ + $\sqrt{2}$)- $\sqrt{2}$ - $\sqrt{2$ 2 2 0 1 0 8 0 A (BADISCHE ANILIN- & SODA-FABRIK AG.) 文献4:FR 2-223564 A (宇部興産株式会社) 文献 5 : J P 63-41471 A (日本曹達株式会社) 文献 6 : J P 文献 7 : J P 文献 8 : J P 56-10180 A (ヘキスト・アクチーエンケ せ ルシャフト) 文献 9 : J P 文献10: JP 文献11: JP 51-54555 A (ヘキスト・アクチーエンケ ゼ ルシャフト) 文献12: JP 50-3775 A (エキ゛トキ゛オキ゛スセ゛ルウ゛ェキ゛エスセ゛ティ ク゛ヤール) 文献13: J P 48-36169 A (バイエル・アクチエンゲゼルシヤフト) 文献14: JP 48 - 23793 A $(144^{\circ})7N \cdot 757N \cdot 179^{\circ}719 - 719 \cdot 1970 - 1$ 文献15: JP 文献16: US 3 6 7 8 0 4 1 A (Etablissements Clin-Byla) 文献17: JP 6-220053 A (富士写真フィルム株式会社) 文献18: GAILWAD, N. J., et al., Indian J. Pharm. Sci., 46(5), pp. 170-171 (1984)○請求の範囲1-6、8-10、24、25について 文献1の要約、第3表及び第928頁13-14行の記載によれば、第3表で表されるチア ジノカルボニル誘導体が抗炎症作用が弱いものの、強い免疫抑制作用を有することが 記載されている。 文献2の特許請求の範囲、第25頁右上欄及び実施例、文献3の特許請求の範囲、第14頁右下欄及び実施例、並びに文献4の特許請求の範囲、第4頁1-19行及び実施例 には、チアゾリジンー2ーイミド誘導体が炎症の処置や予防に適当であると記載され ている。 文献5の特許請求の範囲及び第1表、並びに文献6の特許請求の範囲及び第1表に は、それぞれアミノピリジン誘導体及びオキサ(チア)ゾリジン誘導体であってチア ゾリジン-2-イミノ誘導体が記載されている。 (以下、第V欄の続きに続く。)

国際予備審查報	吸告	国際出願番号 PCT/JP00/06185		
. ある種の引用文献				
ある種の公表された文書 (PC	T規則70.10)			
出願番号 特許番号	公知日 (日月. 年)	出願日 (日.月.年)	優先日(有効な優先権の主 (日.月.年)	
WO 00/42031 A2	20. 07. 00	14. 12. 99	14. 01. 99	
	·			
**************************************	O THE BUILD ON			
. 書面による開示以外の開示(P 書面による開示以外の開示の種類	***	開示の日付 書面に	よる開示以外の開示に言及して 書面の日付(日.月 <u>年</u>)	
	(11. 24. 17			
±	•	į		
		<u>-</u> .	· S · Seri	
			1	

補充欄(いずれかの欄の大きさが足りない場合に使用すること)

V 欄の続き

(第V欄の続き) 文献7の特許請求の範囲及び第9頁右下欄一第10頁右下欄、文献8の特許請求の範 囲、第11頁右上欄一左下欄及び実施例、文献9の特許請求の範囲、第18頁左上欄一第 19頁左上欄及び実施例、文献10の特許請求の範囲及び実施例、文献11の特許請求の範 囲及び実施例、文献12の特許請求の範囲、第28頁右下欄一第29頁右上欄及び実施例、 文献13の特許請求の範囲、第2頁左上欄及び実施例、文献14の特許請求の範囲、第3 頁左上欄一第4頁右上欄及び実施例、文献15の特許請求の範囲、第3頁左上欄及び実

18に記載されているものであり、新規性を有さない。

○請求の範囲11-20、27-33について 同項に係る発明と文献5及び6に記載されたものとを比較すると、前者が化学構造 Rがアルキレンで置換された炭素数2~9のアルキレン、又は炭素数2~9の分枝 状アルキレンであるのに対し、後者はかかる化学構造を有していない点で相違する。 そして文献5及び6、並びに他の文献に記載された化合物の作用機序としてカンナ ビノイド2受容体に対する親和性や作動性については言及されているものは存在しな いから、これらの文献における記載によっては、当業者が同項に係る発明を容易に実 施できたものであるとは認められない。

27-33に係る発明は、文献1ないし18の したがって、請求の範囲11-20、

記載にものに比べて進歩性を有するものである。

なお、本見解は第Ⅲ欄及び第Ⅷ欄に記載された内容で行われた国際調査の結果を用 いてなされている点に留意されたい。

○国際特許分類(IPC)の続き //(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D215:12, C07D279:06),(C07D417/12, C07D279:06, C07D333:34)

. .

個. 国際出願に対する意見

請求の範囲、明細書及び図面の明瞭性又は請求の範囲の明細書による十分な裏付についての意見を次に示す。

〇請求の範囲 1-20、 24-33について 請求の範囲 1-20 並びに 24-33にかかる発明は、いずれも式(I)若しくは式(II)により表される化合物自体又は当該化合物を医薬として用いることを技術的特徴とするものである。そして、式(I)及び式(II)に含まれる化合物群における共通した化学構造は

$$- (CH2) _{m}-N=C$$

なる部分のみであるが、文献欄にもあるように、かかる化学構造を有する化合物やかかる化合物を用いた医薬組成物は広く知られているものであるから、かかる化学構造によってはその技術的特徴が充分に特定されたものとは認められず、また、明細書には広範な化合物群に包含される一部の化合物についてしか裏付けとなる記載がなされていない。

制の方法。

物。

- 23. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする腎炎の治療方法。
- 24. 抗炎症剤を製造するための請求の範囲第1項記載の化合物の使用。
- 5 25. 免疫抑制剤を製造するための請求の範囲第1項記載の化合物の使用。
 - 26. 腎炎治療剤を製造するための請求の範囲第1項記載の化合物の使用。
- 27. (追加) R¹がアルキレンで置換された炭素数 2~9の直鎖状のアルキレン、又は炭素数 2~9の分枝状のアルキレンであり、R²が式:-C (=R⁵)-R⁶ (式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基であり、mが0であり、Aが置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環である請求項8記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和
 - 28. (追加) 請求の範囲第27項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物。
- 29. (追加) カンナビノイド2受容体親和性である請求の範囲第28項記載 20 の医薬組成物。
 - 30. (追加) カンナビノイド2受容体作動性である請求の範囲第28項記載の医薬組成物。
 - 31. (追加) 抗炎症剤である請求の範囲第28項記載の医薬組成物。
 - 32. (追加) 免疫抑制剤である請求の範囲第28項記載の医薬組成物。
- 25 33. (追加) 腎炎治療剤である請求の範囲第28項記載の医薬組成物。

 $P \subset T$

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

出願人乂は代理人 の書類記号 51-06034W0	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220) 及び下記5を参照すること。						
国際出願番号 PCT/JP00/06185	国際出願日(日.月.年)	11.0	9.00	優先日(日.月	l l. 年)	14.09.9	9
出願人 (氏名义は名称) 塩	野義	製薬	株 5	主 会	· 社		
・ 国際調査機関が作成したこの国際調 この写しは国際事務局にも送付され		—— 規則第41条	(PCT1	8条)の規	 見定に従い	出願人に送付する。	
この国際調査報告は、全部で7	ページであ	る。					
□ この調査報告に引用された先行	支術文献の写し	も添付されて	こいる。				
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除 この国際調査機関に提出さ	くほか、この国 れた国際出願(際出願がされ の翻訳文に基	ιたものに づき国際調	基づき国際 間査を行っ	ミ調査を行 た。	った。	
b. この国際出願は、ヌグレオチ この国際出願に含まれる書	面による配列	表			基づき国	際調査を行った。	
この国際出願と共に提出さ				削表			
□ 出願後に、この国際調査機 □ 出願後に、この国際調査機				プによる配	列表		
□ 出願後に提出した書面によ						る事項を含まない旨	の陳述
書の提出があった。 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。					の陳述		
2. X 請求の範囲の一部の調査ができない(第 I 欄参照)。							
3. ② 発明の単一性が欠如して	ハる(第Ⅱ欄参	:照) 。					
4. 発明の名称は X 出	額人が提出した	ものを承認す	ナる。		•		
	に示すように国	際調査機関/	が作成した	•		,	
_							
5. 要約は 🗓 出	頼人が提出した	ものを承認す	ける。				
国		「成した。出版	領人は、こ	の国際調査		則38.2(b)) の規定 送の日から1カ月り	
6. 要約書とともに公表される図は 第 図とする,		: おりである。			X な!	L	
. □ 出	願人は図を示さ	なかった。					
□★	図は発明の特徴	女を一層よく	表している	•	-		

国際出願番号 CT/JP00/06185

第I欄	請求の範囲の一部の調査がで で ないときの意見 (第1ページの2の続き)
	※第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	into 1
_	
1. X	請求の範囲 21-23 は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、
	請求の範囲21ないし23にかかる発明は治療による人体の処置方法である。
	(PCT ₁ -7-条(2)(a)(i)、PCT規則39.1(iv))
o [v]	請求の範囲 1-20,24-26 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
2. X	間外の配因 <u>1-20,24-20</u> は、有息殺な国际調査をすることができる程度まで別定の安任を調だしていまい。 ない国際出願の部分に係るものである。つまり、
	(別紙を参照のこと。)
	·
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
w	- A
次に辺	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	•
,	
	·
	•
•	
_	
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
	And the state of the late of t
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
۰ L	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
ა. ⊔	付のあった次の請求の範囲のみについて作成した。
·	11 07 87 77 Ci入 07 mp in スペン WEILIT 07 のかに フマ・ヒードルス しって。
	·
$4. \square$	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
	·
追加調查	E手数料の異議の申立てに関する注意
L	」 追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。

(第 I 欄の 2 について)

請求の範囲 1-20 並びに 24-26 にかかる発明は、いずれも式(I)若しくは式(II)により表される化合物自体又は当該化合物を医薬として用いることを技術的特徴とするものである。そして、式(I)及び式(II)に含まれる化合物群における共通した化学構造は

$$- (CH_{,2}) _{m} - N = C$$

なる部分のみであるが、文献欄にもあるように、かかる化学構造を有する化合物やかかる化合物を用いた医薬組成物は広く知られているものであるから、かかる化学構造によってはその技術的特徴が充分に特定されたものとは認められず、また、明細書には広範な化合物群に包含される一部の化合物についてしか裏付けとなる記載がなされていない。したがって、請求の範囲及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしているものではない。

したがって、本報告においては明細書の記載を参考にして、以下の条件を満たすもののみ を調査の対象とした。

- ・置換基Aは置換可能なフェニル基又は置換可能な3-ピリジル基
- ·mは0ないし2の整数
- ・R¹は炭素数2または3である、置換可能な直鎖アルキレン基
- ・R²はアルキル基、-C(=R⁵)-R⁵基、又は-SO₂R⁻基 (R⁵、R⁰及びR⁻の各置換基の定義は請求の範囲に記載の通り。)

三百万八十二 五十八

A. 発明の属する分野の分類(国際存許分類(IPC))

Int. Cl⁷ C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00 //(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D215:12, C07D279:06), (C07D417/12, C07D279:06, C07D333:34)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07D277/08-277/18, 279/06-279/08, 417/12, A61K31/426, 31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-37/06, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN), WPI (DIALOG), JICST (JOIS)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	GIELDANOWSKI, J., et al., "PHARMACOLOGICAL ACTIVITY IN THE GROUP OF NEW SUBSTITUTED THIAZOLOACETIC AND THIAZINOCAOROXYL	1-6, 24, 25
Α .	ACID DERIVATIVES", Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978)	7-20, 26
X	JP, 62-212378, A (バイエル・アクチエンゲゼルシヤ フト), 18. 9月. 1987 (18. 09. 87),	1-5, 24
A	特許請求の範囲, 第25頁右上欄一第26頁左上欄, 実施例, & DE, 3632042, A, & EP, 240680, A, & US, 4771062, A	6-20, 25, 26

|X| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献义は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日义は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性乂は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 12.12.00 国際調査報告の発送日 12.12.00 国際調査機関の名称及びあて先 特許庁審査官 (権限のある職員) 4 C 9 7 3 6 今 村 玲 英 子 印 単便番号100-8915 東京都千代田区霞が関三丁日4番3号 電話番号 03-3581-1101 内線 3450

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Х	JP, 2-3678, A (ジャンセン・ファーマシューチカ・ナー ムローゼ・フェンノートシャップ),	1-5, 24
Α	9. 1月. 1990 (09. 01. 90),	6-20, 25, 26
	特許請求の範囲,第14頁左上欄-第15頁右下欄,実施例, & EP, 331232, A,& AU, 8930739, A,& NO, 8900813, A,	,
	& DK, 8900918, A, & PT, 89875, A, & FI, 8900931, A,	
(4.7)	& CN, 1036569, A, & ZA, 8901547, A, & IL, 89426, A	,
x	FR,2201080,A(BADISCHE ANILIN- & SODA-FABRIK AG.), 26.4月.1974(26.04.74),	1-5, 24
A	特許請求の範囲,第4頁1行一第5頁3行,	, 6-20, 25, 26
	& DE, 2114097, A, & GB, 1402103, A	
X	JP, 2-223564, A (宇部興産株式会社),	8-10, 13
A	5.9月.1990 (05.09.90), 特許請求の範囲,第1表,	11, 12, 14
	& EP, 356158, A, & ZA, 8906308, A, & US, 5073558, A	
. X	JP, 63-41471, A (日本曹達株式会社),	8-10, 13
A	22.2月.1988 (22.02.88), 特許請求の範囲, 第1表 (ファミリーなし)	11, 12, 14
X	JP, 57-134472, A (ヘキスト・アクチエンゲゼルシヤ フト), 19.8月.1982 (19.08.82),	1, 2
A	特許請求の範囲,第9頁右下欄一第10頁右下欄,& EP, 55458, A,	3-20, 24-26
1	& DE, 3049460, A, & NO, 8104468, A, & DK, 8105811, A, & FI, 8104175, A, & ZA, 8108968, A, & US, 4421757, A,	
	& IL, 64653, A, & ES, 8305342, A, & ES, 8308549, A, & ES, 8308550, A, & ES, 8308551, A, & ES, 8402829, A,	
	& CA, 1173836, A	
X	JP, 59-172486, A (ジャンセン・ファーマシューチカ	1, 2
A	・ナームローゼ・フェンノートシャップ), 29.9月.1984(29.09.84),	3-20, 24-26
A .	特許請求の範囲,第11頁右上欄-左下欄,実施例,& EP,118138,A,	
	& AU, 8425097, A, & NO, 8400735, A, & NO, 8702221, A, & NO, 9000396, A, & DK, 8401070, A, & DK, 9100783, A,	
	& DK, 9101088, A, & FI, 8400781, A, & PT, 78156, A,	
,	& ZA, 8401449, A, & US, 4619931, A, & IL, 71066, A, & CA, 1271194, A, & JP, 5-246999, A, & ES, 8505364, A,	
	& ES, 8506007, A, & ES, 88507541, A	
	·	
	-	

	国院調 宜報	国際出願番号	0/06185
C(続き).	関連すると認められる文献		95.44
引用文献の カテゴリー*	引用文献名 及び一部の筒所が関連するときに	は、その関連する簡所の表示	関連する 請求の範囲の番号
X A	JP, 56-10180, A (ヘキスト・フト), 2.2月.1981 (02.02 特許請求の範囲,第18頁左上欄一第19頁左 & DE, 2926771, A, & NO, 8001995, A, & NO, 8 & EP, 23964, A, & DK, 8002865, A, & FI, 800 & ZA, 8003979, A, & US, 4346088, A, & CA, 1 & IL, 60468, A, & IL, 70114, A	. 81), E上欄,実施例, B404120,A, D2094,A,	1, 2 3-20, 24-26
x	JP, 52-51364, A (ヘキスト・ フト), 25. 4月. 1977 (25. 0		1, 2
A	特許請求の範囲,実施例,& BE, 847352, A, & NL, 7611159, A, & SE, 7611504, A, & NO, 7 & FI, 7602920, A, & DK, 7604640, A, & FR, 2 & US, 4083979, A, & AT, 7902625, A, & AT, 7 & GB, 1563323, A, & CA, 1083581, A	& DE, 2546165, A, 7603502, A, 2327778, A,	3-20, 24-26
X	JP, 52-17468, A (ヘキスト・ フト), 9.2月.1977(09.02	•	1, 2
A	特許請求の範囲,実施例,& BE, 844666, A, & NL, 7608206, A, & SE, 7608545, A, & NO, 7 & DK, 7603404, A, & FI, 7602140, A, & FR, 2 & US, 4061647, A, & GB, 1522107, A, & AT, 7 & IL, 50146, A, & CA, 1077492, A	& DE, 2533821, A, 7602625, A, 2319345, A,	3-20, 24-26
X	JP, 51-54555, A (ヘキスト・ フト), 13. 5月. 1976 (13. 0		1, 2
A	特許請求の範囲,第28頁右下欄一第29頁右&JP,52-83511,A,&NL,5708848,A,&BE,&IL,47779,A,&DE,2436263,A,&SE,750&NO,7502636,A,&DK,750340,A,&FI,75&FR,2282882,A,&ZA,7504772,A,ⅅ,1&US,4061761,A,&US,4125614,A&GB,15&CA,1054596,A,&CH,617431,A,&CH,62&CH,624678,A,&AT,7505770,A,&AT,77&AT,7707814,A,&AT,7707815,A,&AT,77	T上欄,実施例, 831794, A, 98476, A,& PT, 64112, A, 502131, A, 121112, A, 513948, A, 23316, A,& CH, 624677, A,	3-20, 24-26
X A	JP, 50-37775, A (エギト キ ティ グヤール), 8. 4月. 1975 特許請求の範囲, 第2頁, 実施例, & NL, 7	(08.04.75), 7409315,A,	1, 2 3-20, 24-26
	& DE, 2433104, A, & SE, 7409092, A, & DK, 74 & DD, 112452, A, & FR, 2236495, A, & CS, 74 & GB, 1467385, A, & AT, 7404954, A	•	

国際調査報

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*		関連する 請求の範囲の番号
X	JP, 48-36169, A (バイエル・アクチエンゲゼルシヤフト), 28. 5月. 1973 (28. 05. 73), 特許請求の範囲, 第3頁左上欄一第4頁右上欄, 実施例, & JP, 48-36168, A, & BE, 788743, A, & DE, 2145807, & RO, 68389, A, A, & NL, 7212419, A, & ZA, 7206271, A, & FR, 2154512, A, & DD, 103898, A, & DD, 105990, A, & GB, 1377265, A, & RO, 84247, A,	1, 2 3-20, 24-26
	& US, 3860590, A, & AT, 7402318, A, & AT, 7402319, A, & SU, 455544, A, & CH, 569724, A, & CH, 587258, A & SU, 439988, A, & SU, 505363, A, & SU, 556728, A, & RO, 84248, A& RO, 68372, A, & IL, 40338, A, & CA, 1007638, A	
X	JP, 48-23793, A (イムペリアル・ケミカル・インダストリース・リミテッド),	1, 2
, A	27.3月.1973 (29.03.73), 特許請求の範囲,第3頁左上欄,実施例,&DE,2236970,A, &BE,786416,A,&FR,2147214,A,&ZA,7204731,A,&SU,847915,A, ⅅ,103645,A,&GB,1351031,A,&US,3845070,A,&US,3925440,	3-20, 24-26
x	US, 3678041, A (Etablissements Clin-Byla), 18.7月.1972 (18.07.72),	1, 2
A	特許請求の範囲,第1欄1-11行,実施例,& DE, 1770583, A, & BE, 716140, A, & AU, 6838776, A, & ZA, 6703535, A, & ZA, 6803535, A, & CA, 897687, A, & GB, 1224546, A, & US, 3678041, A, & US, 3704296, A, & FR, 1604530, A	3-20, 24-26
X	JP, 6-220053, A (富士写真フィルム株式会社), 9.8月.1994(09.08.94), 特許請求の範囲, 【0014】, 【0015】, 【0024】, & US,5476945, A, & US,5618831, A	1, 2 3-20, 24-26
X	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5), pp. 170-171	1, 2
A	(1984)	3-20, 24-26
PX	WO, 00/42031, A2 (BAYER CORPORATION), 20.7月.2000(20.07.00), 特許請求の範囲,実施例, & AU,200027087,A	1, 2, 8-10, 13, 15
A	JP, 11-80124, A (日本たばこ産業株式会社), 26.3.1999(26.03.99), & WO,99/02499, A1, & AU,9881279, A	1-20, 24-26
A	MUNRO, S., et al., "Molecular characterization of a peripheral receptor of cannabinoids", NATURE, 365(2), pp. 61-65 (1993)	1-20, 24-26

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年3月22日(22.03.2001)

PCT

(10) 国際公開番号 WO 01/19807 A1

(51) 国際特許分類7:

C07D 277/18, 279/06, 279/08, 417/12, A61K 31/426, 31/541, 31/5415, 31/547, A61P 13/12, 29/00, 37/06, 43/00 // (C07D 417/12, 213:36, 279:06) (C07D 417/12, 215:12, 279:06) (C07D 417/12, 279:06, 333:34)

(21) 国際出願番号:

RCT/JP00/06185

(22) 国際出願日:

2000年9月11日(11.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/260780 1999年9月14日(14.09.1999)

(71) 出願人 (米国を除く全ての指定国について): 塩野嚢 製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

(72) 発明者: および

(75)発明者/出願人 (米国についてのみ): 花崎浩二 (HANASAKI, Koji) [JP/JP]; 〒553-0002 大阪府大阪 市福島区鷺洲5丁目12番4号 塩野義製薬株式会社内 Osaka (JP). 村司孝己 (MURASHI, Takami) [JP/JP]. 甲 斐浩幸 (KAI, Hiroyuki) [JP/JP]; 〒520-3423 滋賀県甲 賀郡甲賀町大字五反田1405番地 塩野義製薬株式会 社内 Shiga (JP).

- (74) 代理人: 山内秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩 野羲製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

This Cope

(54) Title: 2-IMINO-1,3-THIAZINE DERIVATIVES

(54) 発明の名称: 2-イミノー1, 3-チアジン誘導体

represents optionally substituted aryl, etc.

(57) Abstract: It is found out that compounds represented by general formula (I) bind selectively to cannabinoid 2 receptor (CB2R) and thus exhibit CB2R antagonism or CB2R agonis wherein R1 represents optionally substituted alkylene; R2 represents hydrogen, alkyl, a group represented by the formula -C(=R⁵)-R⁶ (wherein R⁵ represents O or S; and R⁶ represents alkyl, alkoxy, alkylthio, etc.) or a group represented by the formula SO₂R⁷ (wherein R⁷ represents alkyl, etc.); m is an integer of from 0 to 2; and A

WO 01/19807

(57) 要約:

式(I)で示される本発明化合物が、カンナビノイド2受容体(CB2R)に 選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を 示すことを見出した。

$$(CH_2)_m$$
 R^1
 R^2
 (I)

(式中、式中、 R^1 は置換されていてもよいアルキレン; R^2 は水素、アルキル、式:-C ($=R^5$) $-R^6$ (式中、 R^5 はO又はS; R^6 はアルキル、アルコキシ、アルキルチオ等)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル等)で示される基;mは $O\sim 2$ の整数;Aは置換されていてもよい芳香族炭素環等)

明細書

2-イミノー1,3-チアジン誘導体

5 技術分野

本発明は、2-イミノー1,3-チアジン誘導体に関する。より詳しくは、カンナビノイド2受容体に選択的なアンタゴニスト作用またはアゴニスト作用を有する2-イミノー1,3-チアジン誘導体及びその医薬用途に関する。

10 背景技術

15

20

25

カンナビノイドは、1960年にマリファナの活性物質の本体として発見され、 その作用は、中枢神経系作用(幻覚、多幸感、時間空間感覚の混乱)、および末 梢細胞系作用(免疫抑制、抗炎症、鎮痛作用)であることが見出された。

その後、内在性カンナビノイド受容体アゴニストとして、アラキドン酸含有リン脂質から産生されるアナンダミドや2-アラキドノイルグリセロールが発見された。これら内在性アゴニストは、中枢神経系作用及び末梢細胞系作用を発現することが知られているが、さらに、Hypertension (1997) 29, 1204-1210 には、アナンダミドの心血管への作用も報告されている。

カンナビノイド受容体としては、1990年にカンナビノイド1受容体が発見され、脳などの中枢神経系に分布することがわかり、そのアゴニストは神経伝達物質の放出を抑制し、幻覚などの中枢作用を示すことがわかった。また、1993年にはカンナビノイド2受容体が発見され、脾臓などの免疫系組織に分布することがわかり、そのアゴニストは免疫系細胞や炎症系細胞の活性化を抑制し、免疫抑制作用、抗炎症作用、鎮痛作用を示すことがわかった(Nature, 1993, 365, 61-65)。

従って、カンナビノイド2受容体の選択的なアンタゴニストまたはアゴニスト

は、カンナビノイド1受容体に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体に関連した依存性を引き起こすこともなく、免疫抑制剤、抗炎症剤、鎮痛剤として期待されている(Nature, 1998, 349, 277-281)。

カンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有する化合物としては、イソインドリノン誘導体(WO97/29079、WO99/02499)、ピラゾール誘導体(WO98/41519)などが知られている。一方、2-イミノー1,3-チアジン骨格を有する有機燐化合物には殺虫作用があることが知られている(特開昭61-65894、特開昭62-29594)。
 しかし、2-イミノー1,3-チアジン誘導体がカンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有することは知られていない。

発明の開示

カンナビノイド2受容体に選択的なアンタゴニスト作用またはアゴニスト作用 15 を有する新規な化合物として、2-イミノー1,3-チアジン誘導体などを見出 した。

すなわち、本発明は、

1) 式(I):

20 (式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: $-C (=R^5)-R^6 (式中、<math>R^6$ はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ

ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、mは0~2の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族

れらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、

2) 式:

10

15

20

5

で示される基が、式:

(式中、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O) $-R^H$ (R^H は水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又は R^3 及び R^4 は一緒になってアルキレンジオキシを表わし、Aは

置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表 わす。)である上記1)記載の医薬組成物、

- 3) カンナビノイド2受容体親和性である上記1)又は2)記載の医薬組成物、
- 4) カンナビノイド2受容体作動性である上記3)記載の医薬組成物、
- 5 5) 抗炎症剤である上記3)記載の医薬組成物、
 - 6) 免疫抑制剤である上記3)記載の医薬組成物、
 - 7) 腎炎治療剤である上記3)記載の医薬組成物、
 - 8) 式(II):

10

15

20

$$\begin{array}{c|c}
R^{3} & (CH_{2})_{m} & \\
R^{4} & R^{2}
\end{array}$$

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 は式:-C($=R^5$) $-R^6$ (式中、 R^5 はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アル

コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、

9) mが0である上記8)記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物、

10

15

- 10) R¹がアルキレンで置換されていてもよい炭素数2~9の直鎖状又は分 枝状のアルキレンである上記8)又は9)記載の化合物、そのプロドラッグ、そ れらの製薬上許容される塩、又はそれらの溶媒和物、
- 11) R^1 がアルキレンで置換された炭素数 $2 \sim 9$ の直鎖状のアルキレン、又は炭素数 $2 \sim 9$ の分枝状のアルキレンである上記 8) ~ 1 0) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、
- 20 1 2) R^6 がアルコキシ又はアルキルチオであり、 R^7 が置換されていてもよい アリールである上記 8) \sim 1 1)のいずれかに記載の化合物、そのプロドラッグ、 それらの製薬上許容される塩、又はそれらの溶媒和物、
 - 13) R^3 および R^4 がそれぞれ独立して水素、アルキル、アルコキシ、又はアルキルチオであり、Aが置換されていてもよい芳香族炭素環である上記8) ~ 1
- 25 2) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される 塩、又はそれらの溶媒和物、

14) R^{\perp} \mathring{v} 2, $2-\mathring{y}$ \cancel{y} $\cancel{$ 2, 2-エチレントリメチレン、1-メチルトリメチレン、2-メチルトリメチ レン、トリメチレン、2,2-ジーn-プロピルトリメチレン、2,2-テトラ メチレントリメチレン、2,2-ペンタメチレントリメチレン、1,1-ジメチ ルエチレン、又は1-メチルエチレンであり、 R^6 がメチル、エチル、n-プロ ピル、i-プロピル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、 nーブトキシ、メチルチオ、エチルチオ、nープロピルチオ、iープロピルチオ、 iープチルチオ、secープチルチオ、ベンジルオキシ、ベンジルチオ、メトキシ メチル、エトキシメチル、メチルチオメチル、エチルチオメチル、又はエチルア ミノであり、R⁷がメチル、エチル、4-トリル、4-二トロフェニル、3-二 10 トロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロ メチルフェニル、2-チエニル、又は2-ナフチルであり、 R^3 が水素、メチル、 エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチ ル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、ジ 15 メチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、 エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、 塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、Nーメチルカルバモイル、メトキシカルボニル、メタンスルフィニル、 エタンスルフィニル、メタンスルホニル、エタンスルホニル、アセチル、メトキ 20 シメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピベ リジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカ ルポニルであり、R⁴が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキ シ、又はエトキシであり、又はR³及びR⁴が一緒になって-O-CH2-O-を 表わし、Aがベンゼン環、ナフタレン環、ピリジン環、又はキノリン環である上 25 記8)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそ

れらの溶媒和物、

- 15) 上記8)~14)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、
- 16) カンナビノイド2受容体親和性である上記15)記載の医薬組成物、
- 5 17) カンナビノイド2受容体作動性である上記16)記載の医薬組成物、
 - 18) 抗炎症剤である上記16)記載の医薬組成物、
 - 19) 免疫抑制剤である上記16)記載の医薬組成物、
 - 20) 腎炎治療剤である上記16)記載の医薬組成物、
 - 21) 上記1)記載の医薬組成物を投与することを特徴とする炎症の治療方法、
- 10 22) 上記1)記載の医薬組成物を投与することを特徴とする免疫抑制の方法、
 - 23) 上記1)記載の医薬組成物を投与することを特徴とする腎炎の治療方法、
 - 24) 抗炎症剤を製造するための上記1)記載の化合物の使用、
 - 25) 免疫抑制剤を製造するための上記1)記載の化合物の使用、
 - 26) 腎炎治療剤を製造するための上記1)記載の化合物の使用、
- 15 に関する。

発明を実施するための最良の形態

式(I)及び式(II)で示される化合物の定義中使用される各語の意味を、 以下に説明する。各語は明細書中で統一して使用する。

「アルキレン」とは、炭素数2~10の直鎖状又は分枝状のアルキレンを意味し、例えば、エチレン、1ーメチルエチレン、1ーエチルエチレン、1,1ージメチルエチレン、1,1ージエチルエチレン、1,2ージエチルエチレン、1ーエチルー2ーメチルエチレン、トリメチレン、1ーメチルトリメチレン、2ーメチルトリメチレン、1,1ージメチルトリメチレン、1,2ージメチルトリメチレン、1,2ージメチルトリメチレン、1,2

ージェチルトリメチレン、 2 、 2 ージェチルトリメチレン、 2 ーエチルー 2 ーメチルトリメチレン、 5 トラメチレン、 1 ーメチルテトラメチレン、 2 ーメチルテトラメチレン、 2 ージメチルテトラメチレン、 1 、 2 ージメチルテトラメチレン、 2 、 2 ージメチルテトラメチレン、 2 、 2 ージメチルテトラメチレン、 2 、 2 ージー 1 ープロピルトリメチレン等が挙げられる。特に、炭素数 1 のの直鎖状又は分枝状のアルキレン、 1 きらには、炭素数 1 の分枝状のアルキレンが好ましい。具体的には、 1 、 1 ージメチルトリメチレン、 1 ーメチルトリメチレン、 1 ーメチルトリメチレン、 1 ーズチルトリメチレン、 1 ーズチルトリメチレン、 1 、 1 ージメチルエチレン、 1 、 1 の順に付した場合の 面方を意味する。

「置換されていてもよいアルキレン」の置換基としては、アルキレン(例えば、 メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン等)、シ クロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シク ロヘキサン等)、アルコキシ(例えば、メトキシ、エトキシ等)、アルキルチオ 15 (例えば、メチルチオ、エチルチオ等)、アルキルアミノ (例えば、メチルアミ ノ、エチルアミノ、ジメチルアミノ等)、アシルアミノ(例えば、アセチルアミ ノ等)、アリール(例えば、フェニル等)、アリールオキシ(例えば、フェノキ シ等)、ハロゲン(フッ素、塩素、臭素、よう素)、ヒドロキシ、アミノ、ニト ロ、アルキルスルホニル(例えば、メタンスルホニル、エタンスルホニル等)、 20 · アリールスルホニル (例えば、ベンゼンスルホニル等)、シアノ、ヒドロキシア ミノ、カルボキシ、アルコキシカルボニル(例えば、メトキシカルボニル、エト キシカルボニル等)、アシル(例えば、アセチル、ベンゾイル等)、アラルキル (例えば、ベンジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ等が 挙げられ、これらの置換基は1~4個の任意の位置で置換していてもよい。「置 25 換されていてもよいアルキレン」の置換基としては、特に、アルキレンが好まし

いっ

10

なお、アルキレンで置換されたアルキレンには、スピロ原子を介してアルキレ ンで置換されたアルキレン(例えば、2,2-エチレントリメチレン、2、2-トリメチレントリメチレン、2、2-テトラメチレントリメチレン、2、2-ペ 5 ンタメチレントリメチレン等)、及び異なる位置がアルキレンで置換されたアル キレン(例えば、1,2-テトラメチレンエチレン、1,2-エチレントリメチ レン等)が包含される。具体的には、2,2-エチレントリメチレン、2,2-トリメチレントリメチレン、2、2-テトラメチレントリメチレン、2、2-ベ ンタメチレントリメチレンが好ましく、特に、2,2-エチレントリメチレン、 2,2ーテトラメチレントリメチレン、2,2ーペンタメチレントリメチレンが 好ましい。

「アルキル」とは、炭素数1~10の直鎖状又は分枝状のアルキルを意味し、 例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチ 15 ル、sec-ブチル、t-ブチル、n-ペンチル、i-ペンチル、neo-ペン チル、n-ヘキシル、n-ヘブチル、n-オクチル、n-ノニル、n-デシルな どが挙げられる。特に、炭素数1~4の直鎖又は分枝状のアルキルが好ましく、 具体的には、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチル、t-ブチルが好ましい。

20 『「アルコキシ」とは、酸素原子に上記「アルキル」が置換した基を意味し、例 えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、 i-ブトキシ、sec-ブトキシ、t-ブトキシ、n-ペンチルオキシ、n-ヘ キシルオキシ、n-ヘプチルオキシ、n-オクチルオキシなどが挙げられる。特 に、炭素数1~4の直鎖又は分枝状のアルコキシが好ましく、メトキシ、エトキ シ、nープロポキシ、iープロポキシ、nーブトキシ、iープトキシ、sec-25 ブトキシ、t-ブトキシが好ましい。

「アルキルチオ」とは、硫黄原子に上記「アルキル」が置換した基を意味し、例えば、メチルチオ、エチルチオ、 nープロピルチオ、 iープロピルチオ、 nープチルチオ、 iープチルチオ、 nーペンチルチオ、 iープチルチオ、 secーブチルチオ、 tープチルチオ、 nーペンチルチオ、 nーヘキシルチオ等が挙げれれる。特に、炭素数 1~4の直鎖又は分枝状のアルキルチオが好ましく、メチルチオ、エチルチオ、 nープロピルチオ、 iープロピルチオ、 nープチルチオが好ましい。

「置換されていてもよいアミノ」の置換基としては、アルキル(例えば、メチル、エチル、n-プロピル、i-プロピル等)、アシル(例えば、ホルミル、ア セチル、プロピオニル、ベンゾイル等)等が挙げられる。アミノ基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいアミノ」としては、アミノ、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、ジメチルアミノ、ジェチルアミノ、エチルメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、プロピルメチルアミノ等が好ましい。

15

「アリール」とは、炭素数 6~14の芳香族炭素環式基を意味し、例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。

「アラルキル」とは、上記「アルキル」に上記「アリール」が置換した基を意 20 味し、例えば、ベンジル、フェニルエチル(例えば、1-フェニルエチル、2-フェニルエチル)、フェニルプロピル(例えば、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル等)、ナフチルメチル(例えば、1-ナフチルメチル、2-ナフチルメチル等)等が挙げられる。

「アラルキルオキシ」とは、酸素原子に上記「アラルキル」が置換した基を意 25 味し、例えば、ベンジルオキシ、フェニルエチルオキシ (例えば、1-フェニル エチルオキシ、2-フェニルエチルオキシ)、フェニルプロポキシ (例えば、1

-フェニルプロピルオキシ、2-フェニルプロピルオキシ、3-フェニルプロピルオキシ等)、ナフチルメトキシ(例えば、1-ナフチルメトキシ、2-ナフチルメトキシ等)等が挙げられる。

「アラルキルチオ」とは、硫黄原子に上記「アラルキル」が置換した基を意味 し、例えば、ベンジルチオ、フェニルエチルチオ (例えば、1-フェニルエチルチオ、2-フェニルエチルチオ)、フェニルプロピルチオ (例えば、1-フェニルプロピルチオ、2-フェニルプロピルチオ、3-フェニルプロピルチオ等)、ナフチルメチルチオ (例えば、1-ナフチルメチルチオ、2-ナフチルメチルチオ等)等が挙げられる。

「アラルキルアミノ」とは、窒素原子に上記「アラルキル」が1又は2個置換した基を意味し、例えば、ベンジルアミノ、フェニルエチルアミノ(例えば、1ーフェニルエチルアミノ、2ーフェニルエチルアミノ)、フェニルプロピルアミノ、3ーノ(例えば、1ーフェニルプロピルアミノ、3ーフェニルプロピルアミノ)、ナフチルメチルアミノ(例えば、1ーナフチルメチルアミノ、2ーナフチルメチルアミノ(例えば、1ーナフチルメチルアミノ、2ーナフチルメチルアミノ等)、ジベンジルアミノ等が挙げられる。

「アルコキシアルキル」とは、上記「アルキル」に上記「アルコキシ」が置換した基を意味し、例えば、メトキシメチル、エトキシメチル、nープロポキシメチル、1ーメトキシエチル、2ーエトキシエチル、2ーエ20 トキシエチル、1ーnープロポキシエチル、2ーnープロポキシエチル、1ーメトキシーnープロピル、3ーメトキシーnープロピル、3ーメトキシーnープロピル、3ーエトキシーnープロピル、1ーエトキシーnープロピル、2ーエトキシーnープロピル、2ーnープロポキシーnープロピル、3ーnープロポキシーnープロピル、3ーnープロポキシーnープロピル、3ーnープロポキシーnープロピル、3ーnープロポキシーnープロピル等が挙げられる。

25 「アルキルチオアルキル」とは、上記「アルキル」に上記「アルキルチオ」が 置換した基を意味し、例えば、メチルチオメチル、エチルチオメチル、n-プロ

11

ピルチオメチル、1-メチルチオエチル、2-メチルチオエチル、1-エチルチオエチル、2-エチルチオエチル、1-n-プロピルチオエチル、2-n-プロピルチオエチル、2-n-プロピルチオエチル、3-n-プロピルチオエチル、1-メチルチオ-1-プロピル、1-エチルチオ-1-プロピル、1-エチルチオ-1-プロピル、1-エチルチオ-1-プロピル、1-アロピル、1-アロピルチオ-1-プロピル、1-0ピルチオ-1-プロピル、1-0ピルチオ-1-プロピル、1-0ピルチオ-1-プロピルチオ-1-プロピル、1-0ピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオ-1-プロピルチオー1-プロピルチオ-1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルチオー1-プロピルキオー1-プロピルチオー1-プロピルチオー1-プロピルキ

「置換されていてもよいアミノアルキル」とは、上記「置換されていもてよいアミノ」が置換した上記「アルキル」を意味し、例えば、Nーメチルアミノメチル、N、Nージメチルアミノメチルなどが挙げられる。

「アルコキシアルコキシ」とは、上記「アルコキシ」で置換された上記「アルコキシ」を意味し、例えば、メトキシメトキシ、エトキシメトキシ、n-プロポキシメトキシ、イソプロポキシメトキシ、1-メトキシエトキシ、2-メトキシエトキシなどが挙げられる。

15

「アルキルチオアルコキシ」とは、上記「アルキルチオ」で置換された上記「アルコキシ」を意味し、例えば、メチルチオメトキシ、エチルチオメトキシ、nープロピルチオメトキシ、イソプロピルチオメトキシ、1-メチルチオエトキシ、2-メトキシエトキシなどが挙げられる。

20 「「ヘテロアリール」とは、窒素原子、酸素原子、および/又は硫黄原子を1~4個含む炭素数1~9のヘテロアリールを意味し、例えば、フリル(例えば、2-フリル、3-フリル)、チエニル(例えば、2-チエニル、3-チエニル)、ピロリル(例えば、1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル(例えば、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル(例えば、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、トリアゾリル(例えば、1,2,4-トリアゾール-1-イル、1,2,4-トリアゾール-3-イル、1,2,4-トリアゾール-4-

イル)、テトラゾリル(例えば、1-テトラゾリル、2-テトラゾリル、5-テトラゾ リル)、オキサゾリル(例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾ リル)、イソキサゾリル(例えば、3-イソキサゾリル、4-イソキサゾリル、5-イ ソキサゾリル)、チアゾリル(例えば、2-チアゾリル、4-チアゾリル、5-チアゾ リル)、チアジアゾリル、イソチアゾリル(例えば、3-イソチアゾリル、4-イソ 5 チアゾリル、5-イソチアゾリル)、ピリジル(例えば、2-ピリジル、3-ピリジル、 4-ピリジル)、ピリダジニル(例えば、3-ピリダジニル、4-ピリダジニル)、ピ リミジニル(例えば、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル)、フ ラザニル(例えば、3-フラザニル)、ピラジニル(例えば、2-ピラジニル)、オ キサジアゾリル (例えば、1,3,4-オキサジアゾール-2-イル)、ベンゾフリル (例 10 えば、2-ベンゾ[b]フリル、3-ベンゾ[b]フリル、4-ベンゾ[b]フリル、5-ベンゾ[b] フリル、6-ベンゾ[b]フリル、7-ベンゾ[b]フリル)、ベンゾチエニル(例えば、2-ベンゾ[b]チエニル、3-ベンゾ[b]チエニル、4-ベンゾ[b]チエニル、5-ベンゾ[b]チ エニル、6-ベンゾ|b|チエニル、7-ベンゾ[b]チエニル)、ベンズイミダゾリル(例 15 えば、1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、 5.ベンゾイミダゾリル)、ジベンゾフリル、ベンゾオキサゾリル、キノキサリル (例えば、2-キノキサリニル、5-キノキサリニル、6-キノキサリニル)、シンノ リニル(例えば、3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノ リニル、7-シンノリニル、8-シンノリニル)、キナゾリル (例えば、2-キナゾリ ニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-20 キナゾリニル)、キノリル(例えば、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル)、フタラジニル(例えば、1-フタラジニル、5-フタラジニル、6-フタラジニル)、イソキノリル(例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル、6-イソキノ リル、7-イソキノリル、8-イソキノリル)、プリル、プテリジニル(例えば、2-25 プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル)、カルバゾ

0

リル、フェナントリジニル、アクリジニル(例えば、1-アクリジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、インドリル(例えば、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル)、イソインドリル、ファナジニル(例えば、1-フェナジニル、2-フェナジニル)またはフェノチアジニル(例えば、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニル)等が挙げられる。

 R^3 又は R^4 のヘテロアリールとしては、特に、3-ピリジルが好ましい。 R^7 のヘテロアリールとしては、特に、2-チエニルが好ましい。

10

15

20

25

A環は、「置換されていてもよい芳香族炭素環」又は「置換されていてもよい 芳香族複素環」を意味する。

「芳香族炭素環」とは、炭素数 6~14の芳香族炭素環を意味し、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等が挙げられる。特にベンゼン環、ナフタレン環が好ましい。

「芳香族複素環」とは、窒素原子、酸素原子、および/又は硫黄原子を1~4個含む炭素数1~9の芳香環を意味し、例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソキサゾール、チアゾアゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、フラザン、ピラジン、ベンゾフラン、ベンゾチオフェン、ベンズイミダゾール、ジベンゾフラン、ベンゾオキサゾール、キノキサリン、シンノリン、キナゾリン、キノリン、フタラジン、イソキノリン、プリン、プテリジン、カルバゾール、フェナントリジン、アクリジン、インドール、イソインドールまたはフェナジン等が挙げられる。特に、ピリジン、キノリン、イソキノリンが好ましい。

「置換されていてもよいアラルキルオキシ」、「置換されていてもよいアラル

キルチオ」、「置換されていてもよいアラルキルアミノ」、「置換されていても よいアリール」、「置換されていてもよいヘテロアリール」、「置換されていて もよいアリールオキシ」、「置換されていてもよい芳香族炭素環」、「置換され ていてもよい芳香族複素環」及び「置換されていてもよい非芳香族複素環式基」 の置換基としては、アルキル、アルコキシ、アルキルチオ、置換されていてもよ いアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキ シ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアル コキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニ ル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキ ルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、 アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されてい てもよい非芳香族複素環式基、アルコキシイミノアルキル、式:-C(=O)-RH(RHは水素、アルキル、置換されていてもよいアリール、又は置換されてい てもよい非芳香族複素環式基)で示される基、アリールスルホニル(例えば、ベ ンゼンスルホニル等)、シアノ、ヒドロキシアミノ、アラルキル(例えば、ベン ジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ、イソシアノ、イソ シアナト、チオシアナト、イソチオシアナト、スルファモイル、ホルミルオキシ、 ハロホルミル、オキザロ、チオホルミル、チオカルボキシ、ジチオカルボキシ、 チオカルバモイル、スルフィノ、スルフォ、スルホアミノ、アジド、ウレイド、 アミジノ、グアニジノ、オキソ、チオキソ等が挙げられる。

これらの置換基で置換可能な任意の位置が置換されていてもよい。また、環上の同一又は隣接する位置において、アルキレンジオキシで置換されていてもよい。アルキレンジオキシとしては、例えば、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2$

25

10

15

20

「アリールオキシ」とは、酸素原子に上記「アリール」が置換した基を意味し、

例えば、フェノキシ、ナフトキシ (例えば、1-ナフトキシ、2-ナフトキシ等)、アントリルオキシ (例えば、1-アントリルオキシ、2-アントリルオキシ等)、フェナントリルオキシ (例えば、1-フェナントリルオキシ、2-フェナントリルオキシ等)等が挙げられる。

5 「シクロアルキル」とは、炭素数 3 ~ 7 のシクロアルキルを意味し、例えば、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられ る。

「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。特に、フッ素、塩素、臭素が好ましい。

- 10 「ハロアルキル」とは、上記「アルキル」に1以上のハロゲンが置換した基を 意味し、例えば、クロロメチル、ジクロロメチル、ジフルオロメチル、トリフル オロメチル、クロロエチル (例えば、1-クロロエチル、2-クロロエチル等)、 ジクロロエチル (例えば、1,1-ジクロロエチル、1,2-ジクロロエチル、 2,2-ジクロロエチル等)等が挙げられる。
- 15 「ハロアルコキシ」とは、上記「アルコキシ」に 1 以上のハロゲンが置換した 基を意味し、例えば、ジクロロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ等) 等が挙 げられる。

「置換されていてもよいカルバモイル」の置換基としては、アルキル(例えば、20 メチル、エチル、n-プロピル、i-プロピル等)、アシル(例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。カルバモイル基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいカルバモイル」としては、カルバモイル、N-メチルカルバモイル、N-エチルカルバモイル等が好ましい。

25 「アルコキシカルボニル」とは、カルボニルに上記「アルコキシ」が置換した 基を意味し、特に、メトキシカルボニル、エトキシカルボニル等が好ましい。

「アルキルスルフィニル」とは、スルフィニルに上記「アルキル」が置換した 基を意味し、特に、メタンスルフィニル、エタンスルフィニル等が好ましい。

「アルキルスルホニル」とは、スルホニルに上記「アルキル」基が置換した基 を意味し、特に、メタンスルホニル、エタンスルホニル等が好ましい。

「非芳香族複素環式基」とは、窒素原子、酸素原子、および/又は硫黄原子を1~4個含む炭素数1~9の非芳香環を意味し、例えば、1-ピロリニル、2-ピロリニル、3-ピロリニル、1-イミダゾリニル、3-ピロリジニル、1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル、1-イミダゾリジニル、2-イミダゾリジニル、1-ピラゾリニル、3-ピラゾリニル、4-ピラゾリニル、1-ピラゾリニル、4-ピラゾリニル、1-ピラゾリジニル、ピペリジノ、2-ピペリジル、3-ピペリジル、4-ピペリジル、ピペラジノ、2-ピペラジニル、2-モルホリニル、3-モルホリニル、モルホリノ、テトラヒドロピラニル等が挙げられる。特に、モルホリノ、ピロリジノ、ピペリジノ、ピペラジノが好ましい。

15 「アルコキシイミノアルキル」は、アルコキシイミノで置換された上記「アルキル」を意味する。例えば、メトキシイミノメチル、エトキシイミノメチル、1
-メトキシイミノエチル等が挙げられる。

式:-C(=O)-R^H(RHは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基としては、

20 例えば、ホルミル、アセチル、ベンゾイル、トルオイル、モルホリノカルボニル 等が挙げられる。

mは $0 \sim 2$ の整数を意味し、特に、m = 0 が好ましい。

カンナビノイド2受容体作動性とは、カンナビノイド2受容体に対してアゴニスト作用を示すことを意味する。

25

本発明に係る化合物は、以下に示す工程によって製造することができる。

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: - C (= R⁵) - R⁶ (式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコ キシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいア ラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されて いてもよいアミノアルキルを表わす)で示される基、又は式:-SO2R7(式中、 R⁷はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、 又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、R ³およびR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、 置換されていてもよいアミノ、置換されていてもよいアリール、置換されていて もよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロ アルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、 アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキ シアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、ア ルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロア リール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、 又は式:-C(=O) $-R^{H}$ (R^{H} は水素、アルキル、置換されていてもよいアリ ール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又は R^3 及び R^4 は一緒になって $-O-CH_2-O-$ を表わし、mは $O\sim 2$ の整数

5

10

15

20

を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)

第1工程

式(III)で示される化合物のアミノ基をイソチオシアン酸エステル(イソチオシアネート)に変換し、式(IV)で示される化合物を製造する工程である。アミノ基からイソチオシアン酸エステル(イソチオシアネート)への変換法としては、①アンモニア(NH3、NH4OH)やトリエチルアミン(Et3N)などの塩基の存在下に二硫化炭素(CS2)を作用させて得られるジチオカルバミド酸塩を、クロロ炭酸エチル(C1CO2Et)、トリエチルアミン(Et3N)で処理する方法、②前記ジチオカルバミド酸塩を、硝酸鉛等の金属塩で処理する方法③チオホスゲン(CSC12)を作用させる方法④チオカルボニルジイミダゾールを作用させる方法等が挙げられる。

①の場合、塩基(1.0~1.5 当量)及び二硫化炭素(1.0~1.5 当量) を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。その後、クロロ炭酸エチル(1.0~1.5 当量)及びトリエチルアミン(1.0~1.5 当量)を加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、特に0℃~室温が好ましい。

③の場合、チオホスゲン(1.0~1.5当量)を化合物(III)に加え、 非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチル 25 ホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で 0. 5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、特に 0℃~室温が好ましい。

④の場合、チオカルボニルジイミダゾール(1.0~1.5当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で 0.5 時間~10時間攪拌する。反応温度としては 0 \mathbb{C} ~100 \mathbb{C} が好ましく、特に 0 \mathbb{C} ~室温が好ましい。

式(III)で示される化合物としては、m=0の例として、アニリン、2-メチルアニリン、2-エチルアニリン、2-n-プロピルアニリン、2-i-プ ロピルアニリン、2-n-ブチルアニリン、<math>2-sec-ブチルアニリン、2t-ブチルアニリン、3-メチルアニリン、3-i-プロピルアニリン、3-i 10 ープロピルー4ーメチルアニリン、3-t-ブチルアニリン、4-メチルアニリ ン、4-i-プロピルアニリン、2,6-ジメチルアニリン、2,3-ジメチル アニリン、2,4-ジメチルアニリン、3,4-ジエチルアニリン、2,5-ジ メチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2, 6-ジェチルアニリン、2,6-ジーi-プロピルアニリン、2-メトキシアニ 15 リン、2-エトキシアニリン、2-1-プロポキシアニリン、3-メトキシアニ リン、3,5-ジメトキシアニリン、3-n-プトキシアニリン、4-n-プト キシアニリン、4-エトキシアニリン、3,4-ジメトキシアニリン、2-メチ ルチオアニリン、2-エチルチオアニリン、2-1-プロピルチオアニリン、2 -N, N-ジメチルアミノアニリン、2-フェニルアニリン、3-フェニルアニ 20 リン、4-フェノキシアニリン、2-シクロヘキシルアニリン、2-シクロペン チルアニリン、2-ニトロアニリン、2,4-ジニトロアニリン、2-フルオロ アニリン、2-クロロアニリン、4-クロロアニリン、2,3-ジクロロアニリ ン、3,4-ジクロロアニリン、2-i-プロピル-4-ニトロアニリン、2i-プロピルー6-ニトロアニリン、2-ヒドロキシアニリン、2-N, N-ジ 25 _ メチルアミノカルボニルアニリン、 2 – N – アセチルアニリン、 2 – (1 – エチ

ルプロピル) アニリン、2-i-プロピル4-メチルアニリン、<math>2-i-プロピル-4-ヒドロキシアニリン、2-i-プロピル-4-クロロアニリン、2-i-プロピル-4-クロロアニリン、2-i-プロピル-5-メチルアニリン、2-i-プロピル-5-クロロアニリン、2-i-プロピル-5-クロロアニリン、4-クロロ-3-メチルアニリン、3,4-メチレンジオキシアニリン等が挙げられる。

5

m=1の例としては、ベンジルアミン、2-メチルベンジルアミン、2-エチ ルベンジルアミン、2-n-プロピルベンジルアミン、2-i-プロピルベンジ ルアミン、2-n-ブチルベンジルアミン、2-sec-ブチルベンジルアミン、 2-t-ブチルベンジルアミン、3-メチルベンジルアミン、3-i-プロピル 10 ベンジルアミン、3-i-プロピル-4-メチルベンジルアミン、3-t-ブチ ルベンジルアミン、4-メチルベンジルアミン、4-i-プロピルベンジルアミ ン、2,6-ジメチルベンジルアミン、2,3-ジメチルベンジルアミン、2, 4-ジメチルベンジルアミン、3,4-ジエチルベンジルアミン、2,5-ジメ チルベンジルアミン、3,4-ジメチルベンジルアミン、3,5-ジメチルベン 15 ジルアミン、2、6-ジエチルベンジルアミン、2、6-ジ-i-プロピルベン ジルアミン、2-メトキシベンジルアミン、2-エトキシベンジルアミン、2i-プロポキシベンジルアミン、3-メトキシベンジルアミン、3,5-ジメト キシベンジルアミン、3-n-ブトキシベンジルアミン、4-n-ブトキシベン 20 ジルアミン、4-エトキシベンジルアミン、3,4-ジメトキシベンジルアミン、 2-メチルチオベンジルアミン、2-エチルチオベンジルアミン、2-i-プロ ピルチオベンジルアミン、2-N,N-ジメチルアミノベンジルアミン、2-フ ェニルベンジルアミン、3-フェニルベンジルアミン、4-フェノキシベンジル アミン、2-シクロヘキシルベンジルアミン、2-シクロペンチルベンジルアミ 25 ン、2-ニトロベンジルアミン、2,4-ジニトロベンジルアミン、2-フルオ ロベンジルアミン、2-クロロベンジルアミン、4-クロロベンジルアミン、2,

メチルベンジルアミン、2-i-プロピル-5-ヒドロキシベンジルアミン、2

-i-プロピル-5-クロロベンジルアミン、4-クロロ-3-メチルベンジル

10 アミン、3、4-メチレンジオキシベンジルアミン等が挙げられる。

m=2の例としては、フェネチルアミン、2-メチルフェネチルアミン、2-エチルフェネチルアミン、2-n-プロピルフェネチルアミン、2-i-プロピ ルフェネチルアミン、2-n-ブチルフェネチルアミン、2-sec-ブチルフ エネチルアミン、2-t-プチルフェネチルアミン、3-メチルフェネチルアミ ン、3-i-プロピルフェネチルアミン、3-i-プロピル-4-メチルフェネ 15 チルアミン、3-t-ブチルフェネチルアミン、4-メチルフェネチルアミン、 $4-i-\mathcal{I}$ ロピルフェネチルアミン、2,6-ジメチルフェネチルアミン、2, ジエチルフェネチルアミン、2,5-ジメチルフェネチルアミン、3,4-ジメ 20 チルフェネチルアミン、3,5ージメチルフェネチルアミン、2,6ージエチル フェネチルアミン、2,6-ジーi-プロピルフェネチルアミン、2-メトキシ フェネチルアミン、2-エトキシフェネチルアミン、2-i-プロポキシフェネ チルアミン、3-メトキシフェネチルアミン、3,5-ジメトキシフェネチルア ミン、3-n-ブトキシフェネチルアミン、4-n-ブトキシフェネチルアミン、 4-エトキシフェネチルアミン、3,4-ジメトキシフェネチルアミン、2-メ

25 4-エトキシフェネチルアミン、3,4-ジメトキシフェネチルアミン、2-メ -チルチオフェネチルアミン、2-エチルチオフェネチルアミン、2-i-プロピ

ルチオフェネチルアミン、2-N, N-ジメチルアミノフェネチルアミン、<math>2-フェニルフェネチルアミン、3-フェニルフェネチルアミン、4-フェノキシフ ェネチルアミン、2-シクロヘキシルフェネチルアミン、2-シクロベンチルフ ェネチルアミン、2-ニトロフェネチルアミン、2,4-ジニトロフェネチルア ミン、2-フルオロフェネチルアミン、2-クロロフェネチルアミン、4-クロ 5 ロフェネチルアミン、2,3-ジクロロフェネチルアミン、3,4-ジクロロフ ェネチルアミン、2-i-プロピル-4-ニトロフェネチルアミン、2-i-プ ロピルー6-ニトロフェネチルアミン、2-ヒドロキシフェネチルアミン、2-N, N-ジメチルアミノカルボニルフェネチルアミン、2-N-アセチルフェネ チルアミン、2-(1-エチルプロピル)フェネチルアミン、2-1-プロピル 10 4-メチルフェネチルアミン、2-i-プロピル-4-ヒドロキシフェネチルア ミン、2-i-プロピル-4-クロロフェネチルアミン、2-i-プロピル-4 ーアミノフェネチルアミン、2-i-プロピル-5-メチルフェネチルアミン、 2 - i - プロピル- 5 - ヒドロキシフェネチルアミン、2 - i - プロピル- 5 -15 クロロフェネチルアミン、4-クロロー3-メチルフェネチルアミン、3,4-メチレンジオキシフェネチルアミン等が挙げられる。

第2工程

式(IV)で示される化合物のイソチオシアン酸エステル(イソチオシアネー 20 ト)に、NH $_2$ -R 1 -OHを反応させ、式(V)で示される化合物を製造する工程である。

本工程は、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で行うことができる。

反応温度としては、0℃~100℃が好ましく、特に0℃~室温が好ましく、反応時間としては、0.5時間~10時間が好ましい。

 NH_2-R^1-OH (R^1 は置換されていてもよいアルキレン) は、化合物 (I V) に対して1.0~1.5 当量用いればよい。

 NH_2-R^1-OH としては、2-Pミノエタノール、2-Pミノー2-Xチル エタノール、2-Pミノー1-Xチルエタノール、2-Pミノー1, 1-Y チェタノール、3-Pミノー1-X チルプロパノール、3-Pミノー1-X チルプロパノール、3-Pミノー1-X チルプロパノール、3-Pミノー1-X チルプロパノール、3-Pミノー1-X チルプロパノール、3-Pミノー1-X チルプロパノール、1-Pミノメチルー1-P ドロキシメチルシクロプロパン、1-P ミノメチルー1-P (ヒドロキシメチル) シクロプタン、1-P シクロペンタノール等が挙げられる。

第3工程

式(V)で示される化合物を閉環させ、式(VI)で示される化合物を製造する工程である。

15 閉環方法としては、①ジェチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph₃P)で処理する方法、②塩酸で処理する方法等が挙げられる。

①の場合は、溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)等を用い、0.5時間~5時間、00~室温で行えばよい。ジェチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph $_3$ P)は、それぞれ化合物(V)に対して1.0~1.5当量用いればよい。

②の場合は、濃塩酸中で0.5時間~10時間、加熱還流すればよい。

25 第4工程

20

式 (VI) で示される化合物に、R² (式:-C(=R⁵)-R⁶で示される基

又は式: $-SO_2R^7$ で示される基)を導入し、式(II)で示される化合物を製造する工程である。(式中、 R^6 はO又はSを表わし、 R^6 はPルキル、Pルコキシ、Pルキルチオ、置換されていてもよいPラルキルオキシ、置換されていてもよいPラルキルチオ、置換されていてもよいPラルキルアミノ、PルコキシPルキルアミノ、PルコキシPルキル、PルキルチオPルキル、又は置換されていてもよいPミノ、置換されていてもよいPミノ、置換されていてもよいPリール、又は置換されていてもよいPリールを表わす)

5

20

本工程は、塩基(例えば、トリエチルアミン、ピリジン、N, Nージメチルア 10 ミノピリジン等)の存在下、式:X-C(=R⁵)-R⁶(式中、R⁵及びR⁶は 前記と同意義、Xはハロゲンを表わす)で示される化合物を反応させることにより行うことができる。通常のN-アシル化の条件に従って行えばよく、例えば、 溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、 ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等) 5 等を使用し、0℃~100℃で、0.5時間~10時間、反応を行えばよい。

また、R⁶がS、R⁶がアルキルチオ又は置換されていてもよいアラルキルチオであるジチオ酸エステルの化合物は、塩基(例えば、水素化ナトリウム等)の存在下、二硫化炭素(CS₂)を反応させ、次いで、ハロゲン化アルキル(例えば、ヨードメタン、ヨードエタン等)又はハロゲン化アラルキル(例えば、ベンジルブロマイド等)を反応させることによっても得ることができる。この場合、溶媒としては、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)を用いることができ、0℃~室温で反応は進行する。

また、 R^2 として、式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていて 25 もよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を導入する場合は、式: R^7SO_2X (式中、

Xはハロゲン等)で示される化合物を式(VI)で示される化合物に塩基存在下で反応させればいい。

プロドラッグは、生理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載されている。

本発明に係る化合物のプロドラッグは、脱離基を導入することが可能なA環上の置換基(例えば、アミノ、ヒドロキシ等)に、脱離基を導入して製造することができる。アミノ基のプロドラッグとしては、カルバメート体(例えば、メチルカルバメート、シクロプロピルメチルカルバメート、tーブチルカルバメート、ベンジルカルバメート等)、アミド体(例えば、ホルムアミド、アセタミド等)、Nーアルキル体(例えば、Nーアリルアミン、Nーメトキシメチルアミン等)等が挙げられる。ヒドロキシ基のプロドラッグとしては、エーテル体(メトキシメチルエーテル、メトキシエトキシメチルエーテル等)、エステル体(例えば、アセテート、ピバロエート、ベンゾエート等)等が挙げられる。

10

15

20

25

製薬上許容される塩としては、塩基性塩として、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、ブロカイン塩等の脂肪族アミン塩;N,N-ジベンジルエチレンジアミン等のアラルキルアミン塩;ピリジン塩、ピコリン塩、キノリン塩、イソキノリン塩等のヘテロ環芳香族アミン塩;テトラメチルアンモニウム塩、テトラエチルアモニウム塩、ベンジルトリズチルアンモニウム塩、メチルトリオクチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム

塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;アルギニン塩、リジン塩等の塩基性アミノ酸塩等が挙げられる。酸性塩としては、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;メタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩;アスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等が挙げられる。

5

15

溶媒和物としては、式(I)又は式(II)で示される化合物、そのプロドラ 10 ッグ、又はその製薬上許容される塩の溶媒和物を意味し、例えば、一溶媒和物、二溶媒和物、一水和物、二水和物等が挙げられる。

本発明化合物は、カンナビノイド2受容体(CB2R)親和性であり、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。特に、CB2Rアゴニスト作用を示す。

また、本発明化合物は、カンナビノイド1受容体(CB1R)に対する親和性がなく、カンナビノイド1受容体(CB1R)に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体(CB1R)に関連した依存性を引き起こすこともない。

従って、本発明化合物は、カンナビノイド2受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。例えば、Proc. Natl. Acad. Sci. USA 96, 14228-14233.には、CB2受容体アゴニストが抗炎症作用、鎮痛作用を有する旨記載されている。また、Nature, 1998, 349, 277-281には、CB2受容体アゴニストが鎮痛作用を有する旨記載されている。また、European Journal of Pharmacology 396 (2000) 85-92には、CB2受容体アンタゴニストが鎮痛作用を有する旨記載されている。

すなわち、本発明化合物は、免疫系細胞や炎症系細胞の活性化を抑制し、末梢 細胞系作用(免疫抑制、抗炎症、鎮痛作用)を発現すると考えられ、抗炎症剤、 抗アレルギー剤、鎮痛剤、免疫不全治療剤、免疫抑制剤、免疫調節剤、自己免疫 疾患治療剤、慢性関節リューマチ治療剤、多発性硬化症治療剤等として用いるこ とができる。

また、カンナビノイド2受容体作動剤は、ラット Thy-1 抗体惹起腎炎に対する 抑制効果を有していることが知られており(WO97/29079)、腎炎治療 剤としても有用である。

本発明化合物を治療に用いるには、通常の経口又は非経口投与用の製剤として製剤化する。本発明化合物を含有する医薬組成物は、経口及び非経口投与のための剤形をとることができる。即ち、錠剤、カブセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投与用製剤などの非経口投与製剤とすることもできる。

15

20

25

10

5

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例えば、トウモロコシでん粉等)、充填剤(例えば、ラクトース、微結晶性セルロース等)、崩壊剤(例えば、でん粉グリコール酸ナトリウム等)又は滑沢剤(例えば、ステアリン酸マグネシウム等)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例えば、メチルセルロース等)、乳化剤(例えば、レシチン等)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として、点眼剤とし

て使用する場合も液剤又は懸濁化剤として用いる。

本発明化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重1 kg あたり、1日 $0.01\sim100$ mg、好ましくは $0.01\sim10$ mg、より好ましくは $0.1\sim10$ mg、非経口投与の場合、体重1 kg あたり、1日 $0.001\sim100$ mg、好ましくは $0.001\sim1$ mg、より好ましくは $0.001\sim1$ mg、より好ましくは $0.001\sim1$ mg を投与する。これを $1\sim4$ 回に分割して投与すればよい。

10

5

実施例

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり 本発明はこれらに限定されるものではない。

なお、各略号は以下に示す意味を有する。

15 Me:メチル、Et:エチル、Pr:プロピル、Pr¹:iープロピル、

 $Bu: \vec{J} \neq \mathcal{D}$, $Bu^i: i - \vec{J} \neq \mathcal{D}$, $Bu^s: sec - \vec{J} \neq \mathcal{D}$,

Bu^t:tーブチル

Ph:フェニル、Ac:アセチル、Bn:ベンジル

20 DEAD:アゾジカルボン酸ジエチル、

参考例1-1 (2-イソプロピルフェニル)イソチオシアネート(化合物 2)の製造

5

15

20

2 ーイソプロピルアニリン (5.00g)、トリエチルアミン (3.74g)、トルエン (10 ml) の混合液に、二硫化炭素 (2.81g)を10分間で滴下し、室温で1時間攪拌した後、12時間放置した。反応溶液を減圧濃縮し、塩化メチレン (20 ml)、トリエチルアミン (3.74g)を加え、クロロ炭酸エチル (4.01g)を氷冷下10分間で加え、室温で1時間攪拌した。反応液に10%塩酸(20 ml)を加え、塩化メチレン (60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2ーイソプロピルフェニル)イソチオシアネート (6.55g、収率99%)を黄色油状物で得た。

10 ¹H-NMR (δ ppm TMS / CDCl₃)1.25(6H, d, J=6.7), 3.25(1H, q, J=6.7), 7.14-7.30(4H, m).

参考例 1 - 2 (2 - イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

2- (1.81 g) のジエチルエーテル (20 ml) 溶液に、チオホスゲン (1.54 g) を氷冷下10分間で滴下し、室温で1時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-イソプロピルフェニル)イソチオシアネート (2.35 g、収率99%) を褐色油状物で得た。

参考例 2 N-(2-イソプロピルフェニル)-N'-(1-ヒドロキシ-2、2-ジメチル)プロピルチオウレア(化合物 3)の製造

NCS
$$H_2N$$
 OH (1eq) H_2N OH S NH OH S

5 (2-イソプロピルフェニル) イソチオシアネート (3.30g) のジエチルエーテル (20 ml) 溶液に、3-アミノ-2,2-ジメチルプロパノール (1.92g) を加え、室温で1時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル) にて精製して、N-(2-イソプロピルフェニル) -N'-(1-ヒドロキシ-2,2-ジメル) プロピルチオウレア (4.60g、収率88%) を黄色油状物で得た。

1 サーNMR (δ ppm TMS / CDCl₃)0.82(6H, s), 1.25(6H, d, J=6.7), 3.11(1H, q, J=6.7), 3.25(2H, s), 3.55(2H, d, J=6.3), 6.05(1H, m), 7.17-7.40(4H, m).

参考例 3 2-(2-イソプロピルフェニル)イミノー5,5-ジメチルー1,3-15 チアジン(化合物 4)の製造

 $N-(2-4\gamma)$ プロピルフェニル) -N'-(1-k) に、では、 2-2 に、 2-2 に

率50%)を白色結晶で得た。

融点155-157℃

¹H-NMR (δ ppm TMS / CDCl₃)1.15(6H, s), 1.20(6H, d, J=6.7), 2.67(2H, s), 3.09(2H, s), 3.15.(1H, q, J=6.7), 6.88(1H, m), 7.05-7.11(2H, m), 7.20(1H, m).

5

参考例 4 2-(2-イソプロピルフェニル)イミノー5,5-ジメチル-1,3-チアジン(化合物 4)の製造

N-(2-イソプロピルフェニル)-N'-(1-ヒドロキシー2,2-ジメチル)プロピルチオウレア(1.00g)のテトラヒドロフラン(6 ml)の混合液に、塩化チオニル(0.60g)を滴下し、室温で1時間撹拌する。反応溶液を減圧濃縮し、アセトニトリル(20 ml)、炭酸カリウム(0.93g)を加え、2時間加熱還流した。反応液に水(40 ml)を加え、塩化メチレン(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.45g、収率48%)を白色結晶で得た。

参考例 3、4 で得られた 2-(2-4)プロピルフェニル)イミノー 5,5-ジメ 20 チルー 1,3-4アジンを用いて、以下の実施例 $1\sim 5$ を行った。

実施例 1 3-x チルー 2-(2-4) プロピルフェニル) イミノー 5 , 5- ジメチルー 1 , 3- チアジン(化合物 I-1) の製造

5

20

10 ¹ H-NMR (δ ppm TMS / CDCl ₃) 1.13 (6H, s), 1.20 (6H, d, J = 6.9), 1.25 (3H, t, J = 7.4), 2.61 (2H, s), 3.05 (2H, s), 3.17 (1H, m), 3.64 (2H, q, J = 6.9), 6.72-6.80 (1H, m), 6.98-7.07 (2H, m), 7.20-7.32 (1H, m).

実施例 2 2-(2-4) プロピルフェニル) イミノー 3- プロピオニルー 5, 5 15 - ジメチルー 1, 3- チアジン(化合物 I-2)の製造

2-(2-4)プロピルフェニル)イミノー5,5-9メチルー1,3-4アジン (0.26g)、トリエチルアミン(0.15g)、塩化メチレン(5ml)の混合液に、塩化プロピオニル(0.13g)を5分間で滴下し、室温で<math>2時間撹拌した。反応液に水(30ml)を加え、ジエチルエーテル(60ml)で抽出した。抽出液を無水硫酸

マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー $(n-\Lambda+ \forall \nu)$ 作酸エチル)にて精製して、2-(2-4)プロピルフェニル)イミノ-3-プロピオニル-5,5-ジメチル-1,3-チアジン(0.18g)、収率56%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃)1.14 (6H, s), 1.20 (6H, d, J = 6.9), 1.22 (3H, t, J = 7.4), 2.60 (2H, s), 2.95 (2H, q, J = 7.4), 2.96 (1H, q, J = 6.9), 3.73 (2H, s), 6.73-6.78 (1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).

実施例3 3-(x++シカルボニル)-2-(2-イソプロピルフェニル)イミノ10 -5,5-ジメチル-1,3-チアジン(化合物 I-3)の製造

15

2-(2-(1)) 2 -(1) 2 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 3 -(1) 3 -(1) 2 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 5 -(1) 3 -(1) 6 -(1) 7 -(1) 8 -(1) 7 -(1) 8 -(1) 8 -(1) 8 -(1) 9 -(1

¹ H-NMR (δ ppm TMS / CDCl ³) 1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.59 (2H, s), 3.17 (1H, q, J = 6.9), 3.65 (2H, s), 4.32 (2H, q, J = 7.1), 6.74-6.78 (1H, m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

5 2-(2-イソプロピルフェニル)イミノー5,5-ジメチルー1,3-チアジン(1.00g)、トリエチルアミン(0.58g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.56g)を5分間で滴下し、室温で1時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、3-(エチルチオカルボニル)-2-(2-イソプロピルフェニル)イミノー5,5-ジメチルー1,3-チアジン(0.74g、収率56%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃)1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.63 (2H, s), 2.89 (2H, q, J = 7.1), 3.15 (1H, q, J = 6.9), 3.77 (2H, s), 6.79-6.85 (1H,m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

実施例 5 2-(2-4)プロピルフェニル)イミノー 3-(メチルチオ)チオカルボニルー 5,5-ジメチルー1,3-チアジン(化合物 I-5)の製造

15

1-5

2-(2-4)プロピルフェニル) 4 = 2 - 5, 5-9 メチルー 1, 3-4 アジン 1 - 2 の 1 - 3 に 1 -

参考例2、参考例3と同様に、以下の参考例5を行った。

5

15 参考例 5 2 - (2-イソプロピルフェニル) イミノー 1,3 - チアゾリジン(化 合物 6)の製造

(2-イソプロピルフェニル) イソチオシアネート (2.00g) のジエチルエーテル (20 ml) 溶液に、2-アミノエタノール (0.69g) を加え、室温で1 20 時間撹拌した。反応溶液を減圧濃縮して得られた油状物に濃塩酸 (5 ml) を加え、 3時間加熱環流した。反応液を室温に冷却し、20%水酸化ナトリウム水溶液 (2

5 ml) に注ぎ込み、塩化メチレン(6 0 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノー1,3-チアゾリジン(1.80g、収率7.3%)を白色結晶で得た。融点7.6-7.7 $^{\circ}$

¹H-NMR (δ ppm TMS / CDCl₃)1.20(6H, d, J=6.7), 3.15(1H, q, J=6.7), 3.27(2H, t, J = 6.7), 3.67(2H, t, J = 6.7), 6.95-6.99(1H, m), 7.05-7.19(2H, m), 7.22-7.26(1H, m).

10 参考例 5 で得られた 2-(2-4)プロピルフェニル) イミノー 1,3-4 アゾリジンを用いて、以下の実施例 $6\sim7$ を行った。

5

15

20

 $2-(2-4\gamma 7 ロピルフェニル) イミノ-1,3-チアゾリジン(0.25g)、トリエチルアミン(0.15g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.15 g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-n+1$ ン/酢酸エチル)にて精製して、3-(x+1)のルボニル) - 2ー(2ーイソプロピルフェニル) イミノー1,3ーチアゾリジン(0.27g、収率77%)を白色結晶で得た。融点79-81℃

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.20 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.90 (2H, t, J = 7.4), 3.15 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.31 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.07-7.16 (2H, m), 7.28-7.32 (1H, m).

5 実施例 7 2-(2-4)プロピルフェニル) 4 > 2-(3-4) チオカル ボニル -1, 3-4 アゾリジン(化合物 1-7)の製造

2-(2-イソプロピルフェニル)イミノー1,3-チアゾリジン(0.22 g)、 二硫化炭素(0.09 g)、N,N-ジメチルホルムアミド(2 ml)の混合液に、6 0% 10 水素化ナトリウム(0.05 g)を氷冷下で加え、3 0分間撹拌後、よう化メチル(0.17 g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノー3-(メチルチオ)チオカルボニル-1,3-チアゾリジン(0.14 g、収率45%)を無色油状物

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.23 (6H, d, J = 6.9), 2.65 (3H, s), 2.90 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.45 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.28-7.32 (1H, m).

20

で得た。

参考例6 (2-メトキシベンジル) イソチオシアネート(化合物8)の製造

2 - メトキシベンジルアミン (1.80 g) のジエチルエーテル (20 ml) 溶液に、チオホスゲン (1.54 g) を氷冷下10分間で滴下し、室温で1時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。 抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2 - メトキシベンジル) イソチオシアネート (2.35 g、収率99%) を褐色油状物で得た。 ¹H-NMR (δ ppm TMS / CDCl₃)3.86(3H, s), 4.70(2H, s), 6.88 (1H, d, J = 7.4), 6.98(1H, t, J = 7.4), 7.24-7.30(2H, m).

10 参考例 7 N - (2 - \vee + \vee

 $(2- \lambda + 2 \lambda +$

¹H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 3.25(2H, s), 3.55(2H, d, J=6.3), 3.86(3H, s), 4.70(2H, s), 6.50(1H, brs), 6.88(1H, d, J = 7.4), 6.95(1H, t, J = 7.4), 7.24-7.30(2H, m).

N-(2-メトキシベンジル)-N'-(1-ヒドロキシ-2,2-ジメチル)

プロピルチオウレア(3.70g)、トリフェニルホスフィン(3.44g)、テトラヒドロフラン(20ml)の混合液に、アゾジカルボン酸ジエチル(2.28g)を10分間で滴下し、室温で2時間撹拌した。反応液に水(40ml)を加え、塩化メチレン(90ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノー5,5-ジメチル-1,3-チアジン(0.87g、収率25%)を無色油状物で得た。

1H-NMR(δpm TMS/CDCl₃)1.05(6H, s,), 2.75(2H, s), 3.23(2H, s), 3.83(3H, s), 4.41(2H, s), 6.86-6.95(1H, m), 7.20-7.30(1H, m), 7.44-7.48 (2H, m).

15 参考例 8 で得られた 2-(2-メトキシベンジル) イミノー 5 , 5-ジメチルー1 , $3-チアジンを用いて、以下の実施例 <math>8\sim 9$ を行った。

20 2-(2- + 1) 2 (0.15 g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.17 g)を5分間で滴下し室温で1時間撹拌した。反応液に

水(3 0 ml)を加え、ジエチルエーテル(6 0 ml)で抽出した。抽出液を無水硫酸マ グネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグ ラフィー(n-ヘキサン/酢酸エチル)にて精製して、3-(エチルチオカルボニ (1, 1) (2 - (2 - x) (2 - x) (2 - x) (3 - x)(0.20g、収率57%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.69 (2H, s), 2.83 (2H, q, J = 7.4), 3.69 (2H, s), 3.84 (3H, s), 4.61 (2H, s), 6.86 (1H, d, J =8.2), 6.96 (1H, t, J = 8.2), 7.26 (1H, t, J = 8.2), 7.55 (1H, t, J = 8.2).

2-(2-メトキシベンジル)イミノ-3-(メチルチオ)チオカルポニ 10 実施例9 ルー5,5-ジメチルー1,3-チアジン(化合物 I-9)の製造

5

20

27 g)、二硫化炭素(0.09 g)、N, N-ジメチルホルムアミド(2 ml)の混合 液に、60%水素化ナトリウム(0.05 g)を氷冷下で加え、30分間撹拌後、よ 15 う化メチル(0.17g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加 え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾 燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n - へ キサン/酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノ-3-(x+y+1)収率57%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.25 (6H, s), 2.56 (3H, s), 2.72 (2H, s), 3.85 (3H, s), 4.43 (2H, s), 4.63 (2H, s), 6.86-6.88(2H, m), 7.20-7.30 (1H, m), 7.44-7.48 (1H, m).

参考例9 (2-メトキシフェネチル) イソチオシアネート(化合物12)の製造

2-メトキシフェネチルアミン (1.98 g) のジエチルエーテル (20 ml) 溶液に、チオホスゲン (1.5 4 g) を氷冷下 1 0 分間で滴下し、室温で 1 時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2-メトキシフェネチル) イソチオシアネート (1.80 g、収率 7 1%) を褐色油状物で得た。 1H-NMR (δ ppm TMS / CDCl₃)3.00(2H, t, J = 7.4), 3.70(2H, t, J = 7.4), 3.86(3H, s), 6.88-6.95(2H, m), 7.15(1H, d, J = 7.4), 7.24(1H, t, J = 7.4).

参考例 10 N - (2 - \vee + \wedge + \wedge

¹H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 2.90(2H, t, J = 7.4), 3.25(2H, s),

3.55(2H, d, J=6.3), 3.70(2H, t, J = 7.4), 3.86(3H, s), 6.50(1H, brs), 6.88-6.95(2H, m), 7.15(1H, m), 7.24(1H, m).

参考例 1 1 2 - (2 - メトキシフェネチル) イミノー 5,5 - ジメチルー 1,3 5 - チアジン(化合物 1 4)の製造

N-(2-メトキシフェネチル)-N'-(1-ヒドロキシー2,2-ジメチル) プロピルチオウレア(2.40g)、トリフェニルホスフィン(2.12g)、テトラヒドロフラン(20 ml)の混合液に、アゾジカルボン酸ジエチル(2.28g) を10 を10分間で滴下し、室温で2時間撹拌した。反応液に水(40 ml)を加え、塩化メチレン(90 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン / 酢酸エチル)にて精製して、2-(2-メトキシフェネチル)イミノー5,5-ジメチル-1,3-チアジン(0.70g、収率31%)を無色油状物で得た。

上記参考例 1 1 で得られた 2-(2-メトキシフェネチル) イミノー 5 , 5-ジ 20 メチルー 1 , 3-チアジンを用いて、以下の実施例 <math>1 $0 \sim 1$ 1 を行った。

5

20

2-(2-x++2)フェネチル)イミノー 5 、5-3ジメチルー 1 、3-4アジン (0.28 g)、トリエチルアミン(0.15 g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.15 g)を 3分で滴下し、室温で 2 時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+1)で酸エチル)にて精製して、2-(2-x+1)でオチンフェネチル)イミノーN-(x+1)で酸エチル)にて精製して、2-(2-x+1)のスチン(3-40、3-41 で 3-41 の 3-41 の 3-41 に 3

10 ¹ H-NMR (δ ppm TMS / CDCl₃) 1.11 (6H, s), 1.26 (3H, t, J = 7.4), 2.61 (2H, s), 2.83 (2H, q, J = 7.4), 2.99-3.05 (2H, m), 3.61-3.66 (2H, m), 3.62 (2H, s), 3.82 (3H, s), 6.86-6.91 2H, m), 7.17-7.26 (2H, m).

実施例 1 1 2 - $(2- \lambda + 2)$ フェネチル) イミノー $3-(\lambda + \lambda + 2)$ チオカル 15 ポニルー 5 , 5- 3 メチルー 1 , 3- 4 アジン(化合物 1-1 1) の製造

1-(1-xトキシフェネチル)イミノー 5 、 $5-\tilde{\text{y}}$ メチルー 1 、 $3-\tilde{\text{y}}$ アジン $(0.28\ g)$ 、二硫化炭素 $(0.09\ g)$ 、N、Nージメチルホルムアミド $(2\ ml)$ の 混合液に、60%水素化ナトリウム $(0.05\ g)$ を氷冷下で加え、30 分間撹拌後、よう化メチル $(0.17\ g)$ を加え、室温で 2 時間撹拌した。反応液に水 $(30\ ml)$ を加え、ジエチルエーテル $(60\ ml)$ で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n)

ーヘキサン/酢酸エチル)にて精製して、2-(2-メトキシフェネチル)イミノー3-(メチルチオ)チオカルボニルー5,5-ジメチルー1,3-チアジン(0.18 g、収率<math>50%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.19 (6H, s), 2.55 (3H,s), 2.64 (2H, s), 3.05 (2H, t, J = 7.5), 3.66 (2H, t, J = 7.5), 3.84 (3H, s), 4.35 (2H, s), 6.84-6.91 (2H, m), 7.17-7.30 (2H, m).

上記実施例と同様にして、以下の表に示される化合物を合成した。なお、表中の左カラムの数字は化合物No.を表わす。

(表1)

	r			- 54	05	D.6	D7	R ⁸
	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	
I-16	Н	Н	H	Н	H	COSEt	Me	Me
I-17	F	H	Н	Н	H	COSEt	Me	Me
I-18	Cl	Н	Н	H	H	COSEt	Me	Me
I-19	Me	Н	Н	Н	Н	COSEt	Me	Me
I-20	Et	Н	Н	Н	Н	COSEt	Me	Me
I-21	Pr	Н	Н	H	Н	COSEt	Me	Me
I-22	Bu	Н	Н	Н	Н	COSEt	Me	Me
I-23	Buʻ	Н	Н	Н	Н	COSEt	Me ·	Me
I-24	Bu ^t	Н	Н	Н	Н	COSEt	Me	Me
I-25	Ph	Н	Н	Н	Н	COSEt	Me	Me
I-26	CF ₃	Н	Н	Н	Н	COSEt	Me	Me
I-27	0Me	Н	Н	Н	Н	COSEt	Me	Me
I-28	0Et	Н	Н	Н	Н	COSEt	Me	Me
I-29	OPr'	Н	Н	Н	Н	COSEt	Me	Me
I-30	SMe	Н	Н	Н	Н	COSEt	Me	Me
I-31	SEt	Н	Н	Н	Н	COSEt	Me	Me
I-32	SPr'	Н	Н	Н	Н	COSEt	· Ме	Me
I-33	NMe,	Н	Н	Н	Н	COSEt	Me	Me
I-34	Н	Pr'	Н	Н	Н	COSEt	Me	Me
I-35	Н	Н	C1	Н	Н	COSEt	Me	Me
I-36	Н	Н	Pr'	Н	Н	COSEt	Me	Me
I-37	Н	Н	NO,	Н	Н	COSEt	Me	Me
I-38	Me	Me	Н	н	Н	COSEt	Me	Me
I-39	Me	Н	Me	Н	Н	COSEt	Me	Me
I-40	Me	Н	Н	Me	Н	COSEt	Me	Me
I-41	Me	Н	Н	Н	Me	COSEt	Me	Me
I-42	Н	Me	Me	Н	Н	COSEt	Me	Me
I-43	H	Me	Н	Me	Н	COSEt	Me	Me
I-44	Me	Н	Cl	Н	H	COSEt	Me	Me
L		<u> </u>						

(表2)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{6}$$

	R¹	R ²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
I-45	C1	Н	Me	Н	Н	COSEt	Me	Me
I-46	Pr'	Н	NO,	Н	Н	COSEt	Me	Me
I-47	Pr ⁱ	Н	Н	Н	NO ₂	COSEt	Me	Me
I-48	NO,	Н	NO,	Н	Н	COSEt	Me	Me
I-49	Pr	Н	Н	Н	Н	COSMe	Me	Me
I-50	Pr'	Н	Н	Н	Н	COSMe	Me	Me
I-51	Bu*	Н	Н	Н	Н	COSMe	Me	Me
I-52	Н	Pr'	Н	Н	Н	COSMe	Me	Me
1-53	Н	0Me	OMe	Н	Н	COSMe	Me	Me
I-54	Н	-0	CH,0-	Н	H	COSMe	Me	Me
I-55	Н	0Me	OMe	0Me	Н	COSMe	Ме	Me
I-56	Et	Н	Н	Н	Н	CSSMe	Me	Me
I-57	Bu*	Ŧ	Н	H	Н	CSSMe	Me	Me
I-58	CH₁OMe	H	Ξ	H	Н	CSSMe	Me	Me
I-59	CH(Me)OMe	H	H	H	Н	CSSMe	Me	Me
I-60	0Me	Н	Н	. Н	Н	CSSMe	Ме	Me
I-61	OEt	Н	Н	Н	Н	CSSMe	Me	Me
I-62	SMe	Н	Н	Н	Н	CSSMe	Ме	Me
I-63	SEt	Н	Н	Н	Н	CSSMe	Me	Me
I-64	SPr'	Н	Н	Н	Н	CSSMe	Me	Me
I-65	SOMe	Н	Н	Н	Н	CSSMe	Me	Me
I-66	SO₁Me	Н	Н	Н	Н	CSSMe	Me	Ме
I-67	SOEt	Н	Н	Н	Н	CSSMe	Me	Me
I-68	NMe,	Н	Н	Н	Н	CSSMe	Me	Me
I-69	Н	Pr'	Н	Н	Н	CSSMe	Me	Me
I-70	Н	Н	C1	Н	Н	CSSMe	Me	Me

(表3)

$$R^2$$
 R^3
 R^4
 R^5
 R^5

	R¹	R ²	R³	R ⁴	R⁵	R ⁶	R ⁷	Rª
I-71	Me	Н	Me	Н	Н	CSSMe	Me	Me
I-72	Me	Н	Н	Me	Н	CSSMe	Me	Me
I-73	Me	Н	Н	Н	Me	CSSMe	Me	Me
I-74	Н	Me	Me	Н	Н	CSSMe	Me	Me
I-75	Н	Me	Н	Me	Н	CSSMe	Me	Me
I-76	0Me	OMe	. Н	Н	Н	CSSMe	Me	Me
I-77	Н	OMe	OMe	Н	Н	CSSMe	Me	Me
I-78	0Me	Н	Н	0Me	Н	CSSMe	Me	Me
I-79	0Me	Н	OMe		Н	CSSMe	Me	Me
I-80	Н	-OC	H,0-	Н	Н	CSSMe	Me	Me
I-81	Pr'	Н	NO ₂	Н	Н	CSSMe	Me	Me
I-82	Pr'	Н	Н	Н	NO,	CSSMe	Me	Me
I-83	Н	0Me	0Me	0Me	Н	CSSMe	Me	Me
I-84	Pr ⁱ	Н	Н	Н	Н	CSSEt	Me	Me
I-85	Bu⁵	Н	Н	Н	Н	CSSEt	Me	Me
I-86	0Et	Н	Н	Н	Н	CSSEt	Me	Me
I-87	SMe	Н	Н	Н	Н	CSSEt	Me	Me
I-88	Н	Pr'	Н	Н	Н	CSSEt	Me	Me
I-118	Н	0Et	0Et	Н	Н	CSSMe	Me	Me
I-119	OMe	Н	Me	Н	Н	CSSMe	Ме	Me
I-120	0Me	Н	Н	Me	Н	CSSMe	Me	Me
I-121	Н	0Me	Me	Н	Н	CSSMe	Me	Me
I-122	Me	Me	Н	Н	Н	CSSMe	Me	Me
I-123	N(Me)Ac	Н	Н	н	Н	CSSMe	Me	Me

(表4)

·	R ⁶	R ⁷	Rª
1-89	COPr	Me	Me
I-90	СООМе	Me	Me
I-91	COOPr	Me	Me
I-92	CONHEt	Me	Me
1-93	COCH ₂ OMe	Me	Me
I-94	COCH ₂ SMe	Me	Me
I-95	COCH₂SEt	Me	Me
I-96	CSOEt	Me	Ме
I-97	CSNHEt	Me	Me
I-98	CSSPr	Me	Me
I-99	CSSPr'	Me	Ме
I-100	CSSBn	Me	Me

(表5)

5

R² R¹ S R⁸ R⁸

R۱ R² R³ R⁶ R⁷ R^B n I-101 Н Н C1 1 COSEt Me Ме C1 I-102 Н Н 1 CSSMe Me Me C1 I-103 Н C1 2 COSEt Me Мe I-104 Cl Cl Н 2 CSSMe Me Ме

(表6)

,		
	R ⁶	W
I-105	COSEt	s
I-106	COSEt	s
I-107	COSEt	s
I-108	COSEt	s
I-109	COSEt	s ,
I-110	COSEt	× ×
I-111	COSEt	s N
I-112	COSEt	s
I-113	CSSMe	s
I-114	CSSMe	s
I-115	CSSMe	s N
I-116	CSSMe	s A
I-117	CSSMe	s N

(表7)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R⁵
I-124	Н	Н	OEt	Н	Н	CSSMe	Ме	Me
I-125	Н	OEt	Н	Н	Н	CSSMe	Me	Me
I-126	Н	Н	OMe	Н	Н	CSSMe	Me	Ме
I-127	Н	OMe	Н	Н	Н	CSSMe	Me	Ме
I-128	Н	OEt	OMe	Η	Τ	CSSMe	Me	Me
I-129	H	OPr_	OMe	Ι	Η	CSSMe	Ме	Me
I-130	Н	OEt	OEt _	Ι	H	CSSMe	Me	Me
I-131	Η	Н	OPr	I	Ι	CSSMe	Ме	Me
I-132	Ι	OPr	Н	Τ	Έ	CSSMe	Ме	Me
I-133	Τ	Н	OBu	I	Έ	CSSMe	Ме	Me
I-134	Ι	OBu	I	Ι	Ι	CSSMe	Ме	Ме
I-135	H	OMe	OEt	Ι	Ι	CSSMe	Ме	Me
I-136	I	OMe	OPr	Ι	Ι	CSSMe	Ме	Ме
I-137	Ι	OBu	OMe	Ι	Ι	CSSMe	Ме	Ме
I-138	Ι	Ι	OPr ⁱ	H	Ι	CSSMe	Me	Ме
I-139	Ξ	OPr ⁱ	Ι	Ι	Ι	CSSMe	Ме	Ме
I-140	Ι	H	I	Ι	Ι	CSSMe	Me	Ме
I-141	щ	Ι	Ι	H	I	CSSMe	Ме	Me
I-142	ō	H	Η	Η	Ι	CSSMe	Ме	Me
I-143	Ι	CI	H	Η	Ι	CSSMe	Me	Ме
I-144	Ме	Ι	H	Τ	Η	CSSMe	Ме	Me
I-145	Ι	Me	Н	Н	Η	CSSMe	Ме	Ме
I-146	Η	Η	Me	Н	H	CSSMe	Ме	Ме
I-147	Н	Bu	Н	_ Н	H	CSSMe	Me	Ме
I-148	Н	Н	Bu	Н	Н	CSSMe	Me	Me

(表8)

H.	н							
	R¹	R²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
I-149	Bu'	Н	Н	Н	Н	CSSMe	Me	Me
I-150	Н	Н	Et	Τ	Н	CSSMe	Me	Me
I-151	Н	Et	Ξ	Н	Н	CSSMe	Ме	Me
I-152	Н	H	F	Н	H	CSSMe_	Ме	Me
I-153	Н	F	Н	I	Н	CSSMe	Ме	Me_
I-154	Н	Н	Pr ⁱ	Н	H	CSSMe	Ме	Me
I-155	Н	Н	Morpho lino	Н	н	CSSMe	Ме	Ме
I-156	Н	Ac	Н	Н	H	CSSMe	Me	Me
I-157	Н	Н	Br	Н	Н	CSSMe	Ме	Me
I-158	Н	Br	Τ	Н	Н	CSSMe	Ме	Ме
I-159	Br	Н	H	Н	Н	CSSMe	Ме	Me
I-160	Н	C(Me)= NOMe	Н	Н	н	CSSMe	Me	Ме
I-161	Н	Н	Ac	Н	H_	CSSMe	Me	Ме
I-162	Н	Н	C(Me)= NOMe	Н	Н	CSSMe	Ме	Ме
I-163	OPr'	Н	Н	Н	Н	CSSMe	Me	Ме
I-164	Pr	Н	Н	Н	Н	CSSMe	Ме	Me
I-165	CF₃	н	Н	Н	Н	CSSMe	Me	Me
I-166	H	Н	OPh	Н	Н	CSSMe	Me_	Me
I-167	Н	Н	Pr	Н	Н	CSSMe	Me	Me
I-168	Н	Н	Bu'	Н	Н	CSSMe	Me	Me
I-169	Н	CF ₃	Н	Н	Н	CSSMe	Ме	Me
I-170	Н	Н	CF₃	H_	Н	CSSMe	Ме	Me
I-171	Pr ⁱ	Н	NHAc	H	H	CSSMe	Me	Me
I-172	Pr ⁱ	Н	Н	Н	NHAc	CSSMe	Me	Me
I-173	Н	COOMe	Н	Н	OMe	CSSMe	Me	Me_

(表9)

						, 		,
	R¹	R ²	R ³	R⁴	R⁵	R⁵	R ⁷	R ⁸
I-174	Morpholino	H	H	H	Н	CSSMe	Me	Me
I-175	H	Morpholino	Н	H	Ι	CSSMe	Me	Me
I-176	Pr [/]	Н	Н	COOEt	Ξ	CSSMe	Ме	Me
I-177	Н	Н	Piperid ino	Н	Н	CSSMe	Ме	Ме
I-178	Pyrrolidino	Н	Н	Н	Η	CSSMe	Ме	Ме
I-179	Н	SMe	Н	Ξ	Ι	CSSMe	Me	Ме
I-180	H.	Н	SMe	Н	Η	CSSMe	Ме	Ме
I-181	OCF ₃	Н	Н	Н	I	CSSMe	Ме	Ме
I-182	Н	OCF₃	Н	H	H	CSSMe	Ме	Ме
I-183	Н	Н	OCF₃	Н	H	CSSMe	Ме	Ме
I-184	Н	Н	3- Pyridyl	Н	н	CSSMe	Me	Ме
I-185	H	3-Pyridyl	Н	H	Н	CSSMe	Ме	Ме
I-186	3-Pyridyl	Н	Н	Н	Η	CSSMe	Ме	Ме
I-187	OPh	H	Н	Н	Н	CSSMe	Ме	Ме
I-188	Н	OEt	OEt	Н	Н	COOMe	Me	Me
I-189	OMe	Н	Н	H	Н	COOMe	Ме	Ме
I-190	Н	н	Et	Н	Η	COOMe	Ме	Ме
I-191	Н	Н	Pr ⁱ	Ι	Ι	COOMe	Me	Ме
I-192	OMe	Н	H	Н	Η	COSMe	Ме	Ме
I-193	Η	H	Et	H	Η	COSMe	Ме	Ме
I-194	Н	Η	Pr ⁱ	H	Н	COSMe	Me	Ме
I-195	Н	Н	OEt	Н	Н	COSMe	Me	Ме
I-196	H	OMe	OEt	Н	Η	COSMe	Ме	Ме
I-197	Н	Piperidino	Н	Н	Н	CSSMe	Ме	Ме
I-198	Н	H	NEt ₂	Н	Н	CSSMe	Ме	Ме

(表10)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{6}} R^{8}$$

R ⁴	Ř ⁵							
	R¹	R²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
I-199	OMe	Н	COOMe	H	H	CSSMe	Ме	Me
I-200	Н	2- Oxopyrr olidino	Н	Н	н	CSSMe	Me	Ме
I-201	I	OPh	Н	H	Н	CSSMe	Ме	Ме
I-202	H	Η	Ph	Н	Н	CSSMe	Me	Me
I-203	Ph	I	Н	Н	Н	CSSMe	Me	Me
I-204	Н	Ph	Н	H	Н	CSSMe_	Me	Ме
I-205	Pr ⁱ	Н	Н	Н	Ι	CSOMe	Ме	Me
I-206	Pr'	Н		Н	Ι	CSSMe	Me	Me
I-207	OMe	Н	(Morphol ino)CO	н	I	CSSMe	Ме	Ме
I-208	Н	Н	NMe₂	H	Ι	CSSMe	Me	Me
I-209	Н	NMe ₂	Н	Н	I	CSSMe	Me	Ме
I-210	N(Me)Et	Н	Н	Н	Η	CSSMe	Me	Ме
I-211	N(Me)Pr	Н	Н	H	Н	CSSMe	Me	Me
I-212	NEt ₂	Н	Н	Н	Н	CSSMe	Ме	Me
I-213	F	Н	н	Н	F	CSSMe_	Me	Мe
I-214	Pr ⁱ	Н	CI	Н	H	CSSMe	Me	Ме
I-215	NMe ₂	Me	Н	Н	Н	CSSMe	Me_	Ме
I-216	NMe ₂	Н	Ме	Н	Н	CSSMe	Me	Me
I-217	NMe ₂	Н	Н	Me	H	CSSMe	Me	Me
I-218	NMe ₂	Н	Н	CI _	H	CSSMe	Me	Me
I-219	Me	Н	Н	Н	Ме	CSSMe	Me	Me
I-220	NMe ₂	Н	H	H	Н	CSSEt_	Me	Me
I-221	Н	NMe ₂	Н	H	H	CSSEt	Me	Me
I-222	NMe ₂	Н	Me	H	Н	CSSEt	Ме	Me
1-223	Н	Н	Pr ⁱ	Н	Н	CSSEt	Me	Me

(表11)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹_	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-224	OMe	Н	CONHMe	Ŧ	H	CSSMe	Ме	Ме
I-225	OCHF ₂	Н	I	Н	H	CSSMe	Me	Ме
I-226	Η	OCHF ₂	Н	H	Н	CSSMe	Ме	Ме
I-227	Н	NEt ₂	H	Ι	Н	CSSMe	Ме	Ме
I-228	NMe ₂	H	C	Ι	Н	CSSMe	Ме	Me
I-229	NMe ₂	Ι	F	Н	H	CSSMe	Ме	Me
I-230	NMe ₂	H	Н	F	H	CSSMe	Ме	Me
I-231	NMe ₂	Ι	Et	H	Н	CSSMe	Ме	Ме
I-232	NMe₂	H	Η	Et	Н	CSSMe	Ме	Ме
I-233	NMe ₂	H	CI	H	H	CSSEt	Ме	Ме
I-234	NMe ₂	Н	F	H	H	CSSEt	Ме	Ме
I-235	NMe ₂	Ι	Et_	H	Н	CSSEt	Me	Me
I-236	Pr ⁱ	I	H	H	Н	CSSBu⁵	Ме	Ме
I-237	Pr ⁱ	Η	H	Н	Н	CSSBu ⁱ	Me	Ме
I-238	Pr'	H	Ι	Н	Н	CSNHMe	Me	Ме
I-239	Ме	NMe ₂	Ι	Н	Н	CSSMe	Ме	Ме
I-240	NMe ₂	OMe	H	H	Н	CSSMe	Me	Me
I-241	Н	NMe ₂	Ме	<u> </u>	H	CSSMe	Ме	Me
I-242	NMe ₂	C	Н	Н	H	CSSMe	Ме	Ме
I-243	I	NMe ₂	OMe	Η	I	CSSMe	Ме	Ме
I-244	Pr ⁱ	Н	Н	Н	Н	CSSEt	Et	Et
I-245	Pr ⁱ	Н	Н	H	Н	Ме	Ме	Ме
I-246	Pr ⁱ	Н	Н	Н	Н	Pr	Ме	Ме
I-247	Pr ⁱ	Н	Н	Н	Н	Pr ⁱ	Me	Ме
I-248	Pr ⁱ	Η	Н	Н	H	Bu ⁱ	Me	Ме

(表12)

		R ⁶	R ⁷	R ⁸
	A	<u>n</u>		
1-249		CSSMe	Ме	Me
1-250		CSSMe	Me	Ме
I-251	N—OMe	CSSMe	Ме	Me
1-252	N—NMe ₂	CSSMe	Ме	Ме
I-253	a-{\}_	CSSMe	Ме	Ме
I-254	MeO-N	CSSMe	Me	Ме
I-255	EtO-N	CSSMe	Me	Me
I-256	PrO-N	CSSMe	Me	Ме
I-257	Pr'O-N-	CSSMe	Me	Ме
I-258	MeS-	CSSMe	Me	Me
I-259	EtS-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CSSMe	Me	Me
1-260	PrS-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CSSMe	Me	Ме
I-261	Pr's N	CSSMe	Ме	Ме

(表13)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-262	NMe ₂	Н	ОМе	Н	H	CSSMe	Ме	Me
1-263	NMe ₂	Н	Н	OMe	Н	CSSMe	Me	Ме
I-264	Me	NEt ₂	Н	H	Н	CSSMe	Ме	Ме
I-265	Н	NEt ₂	Ме	Н	Н	CSSMe	Ме	Ме
I-266	Н	NEt ₂	OMe	Н	Н	CSSMe	Ме	Ме
I-267	Bu⁵	Ι	H	Н	H	CSSMe	Et	Et
I-268	Pr ⁱ	H	Η	Τ	Н	CSSMe	Pr	Pr
I-269	Pr ⁱ	Н	I	Н	H	CSSMe	-(CH ₂)4-
I-270	Pr ⁱ	Н	Н	Н	Н	CSSMe	-(CH ₂	

(表14)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-271	Pr ⁱ	Н	Н	Н	Н	SO₂Me	Ме	Ме
I-272	Pr ⁱ	Н	Н	н	Н	so ₂ -(s)	Ме	Ме
I-273	Pr ⁱ	н	H ·	Н	Н	SO ₂ Me	Ме	Me
I-274	H	Pr ⁱ	Н	Н	Н	SO ₂ Me	Me	Ме
I-275	Н	Pr ⁱ	Н	Н	Н	SO₂Et	Me	Ме
I-276	Н	Pr ⁱ	Н	Н	Н	SO ₂ NO ₂	Ме	Ме
I-277	Н	Pr ⁱ	H	Η	Н	SO ₂ OMe	Me	Ме
I-278	н	Pr ⁱ	н	Н	н	SO ₂	Ме	Ме
I-279	Н	Pr ⁱ	Η	Н	Н	SO ₂ CF ₃	Me	Ме
I-280	Н	Pr ⁱ	Н	Н	Н	SO ₂	Ме	Ме

上記の表に示される化合物の物性データ (融点、 1 H - N M R) を以下の表に 5 示す。

(表15)

化合物		物性
番号	 	
No	融点	
I-16	57-59℃	1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.64 (2H, s), 2.91 (2H, q, J = 7.3), 3.78 (2H, s), 6.96 (1H, dd, J = 7.4, 1.2), 7.14 (1H, t, J
	01-03-0	= 7.4), 7.36 (2H, t, $J = 7.4$).
I-17		1.15 (6H, s), 1.31 (3H, t, J = 7.3), 2.67 (2H, s), 2.91 (2H, q J = 7.3), 3.77 (2H, s), 7.10-7.15 (4H, m).
I-18		1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.68 (2H, s), 2.92 (2H, q, J)
		= 7.3),3.80 (2H, s), 6.96 (1H, dd, J = 7.7, 1.2), 7.08 (1H, dt, J = 7.7, 1.6), 7.25 (2H, t, J = 7.4), 7.40 (1H, d, J = 7.4).
Ī-19		1.15 (6H, s), 1.27 (3H, t, J = 7.3), 2.24 (3H, s), 2.62 (2H, s),
		2.92 (2H, q, J = 7.4), 3.77 (2H, s), 6.83 (1H, d, J = 7.7), 7.04 (1H, t, J = 7.7), 7.16-7.22 (2H, m).
I-20	<u>.</u>	1.15 (6H, s), 1.19 (3H, t, $J = 7.4$), 1.31 (3H, t, $J = 7.3$), 2.62
		(2H, q, J = 7.3), 2.65 (2H, s), 2.94 (2H, q, J = 7.4), 3.77 (2H, s), 6.83 (1H, d, J = 7.6), 7.10-7.22 (3H, m).
I-21		0.95 (3H, t, $J = 7.3$), 1.15 (6H, s), 1.30 (3H, t, $J = 7.4$),
		1.50-1.64 (2H, m), 2.56 (2H, q, $J = 7.3$), 2.59 (2H, s), 2.90
		(2H, q, J = 7.4), 3.76 (2H, s), 6.82 (1H, d, J = 7.3), 7.06-7.28 (3H, m).
I-22		0.90 (3H, t, J = 7.1), 1.15 (6H, s), 1.29 (3H, t, J = 7.4),
		1.30-1.34 (2H, m), 1.52-1.58 (2H, m), 2.54 (2H, q, $J = 7.1$), 2.62 (2H, s), 2.92 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.79 (1H, dd,
		J = 7.9, 1.4, 7.06-7.28 (3H, m).
I-23		0.86 (3H, t, J = 7.4), 1.14 (6H, s), 1.16 (6H, d, J = 6.9), 1.29
		(3H, t, J = 7.4), 1.48-1.58 (2H, m), 2.61 (2H, s), 2.89 (2H, q)
		J = 7.4), 2.88-2.92 (1H, m), 3.76 (2H, d, $J = 13.6$), 3.82 (1H, d,
		J = 13.6), 6.82-6.88 (1H, m), 7.10-7.18 (1H, m), 7.23-7.29
I-24	<u></u>	(1H, m). 1.15 (6H, s), 1.27 (3H, t, J = 7.4), 1.33 (9H, s), 2.68 (2H, s),
1.24		2.86 (2H, q, J = 7.4), 3.75 (2H, s), 6.86 (1H, dd, J = 7.4, 1.6),
		7.08-7.19 (2H, m), 7.38 (2H, dd, J = 7.4, 1.6).
I-25		0.99 (6H, s), 1.25 (3H, t, J = 7.4), 2.45 (2H, s), 2.82 (2H, q, J)
-		= 7.4), 3.51 (2H, s), 6.98 (1H, d, $J = 7.7$), $7.20-7.36$ (6H, m),
		7.43 (2H, m).
I-26		1.15 (6H, s), 1.29 (3H, t, J = 7.3), 2.66 (2H, s), 2.89 (2H, q, J)
	82-83℃	= 7.4), 3.77 (2H, s), 6.98 (1H, d, J = 7.6), 7.19 (1H, t, J = 7.6),
Li		7.49 (1H, t, J = 7.6), 7.64 (1H, d, J = 7.6).

(表16)

化合物 番号		物性
No	融点	
I-27		1.16 (6H, s), 1.25 (3H, t, J = 7.4), 2.62 (2H, s), 2.88 (2H, q, J = 7.4), 3.78 (2H, s), 3.83 (3H, s), 6.91-6.96 (3H, m), 7.05-7.14 (1H, m).
I-28		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 1.40 (3H, t, J = 7.0), 2.60 (2H, s), 2.90 (2H, q, J = 7.4), 3.78 (2H, s), 4.08 (2H, q, J = 7.0), 6.90-6.94 (3H, m), 7.06-7.08 (1H, m).
I-29		1.14 (6H, s), 1.29 (6H, d, J = 7.4), 1.31 (6H, d, J = 6.0), 2.59 (2H, s), 2.89 (2H, q, J = 7.4), 3.76 (2H, s), 4.50 (1H, q, J = 6.0), 6.90-6.93 (3H, m), 7.01-7.07 (1H, m).
I-30	78-80℃	1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.43 (3H, s), 2.63 (2H, s), 2.89 (2H, q, J = 7.4), 3.78 (2H, s), 6.87-6.91 (1H, m), 7.05-7.14 (2H, m), 7.20-7.29 (1H, m).
I-31	55-57℃	1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.4), 2.66 (2H, s), 2.89 (2H, q, J = 7.4), 2.94 (2H, q, J = 7.4), 3.78 (2H, s), 6.91 (1H, dd, J = 7.4, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.4, 1.6).
1-32		1.15 (6H, s), 1.27 (6H, d, J = 6.6), 1.28 (6H, d, J = 7.4), 2.65 (2H, s), 2.88 (2H, q, J = 7.4), 3.38-3.42 (1H, m), 3.78 (2H, s), 6.90 (1H, dd, J = 7.7, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.7, 1.6).
I-33		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.60 (2H, s), 2.71 (6H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.90-6.98 (3H, m), 7.05-7.10 (1H, m).
I-34		1.16 (6H, s), 1.27 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.4), 2.64 (2H, s), 2.91 (2H, q, J = 7.4), 2.98 (1H, q, J = 6.9), 3.77 (2H, s), 6.78-6.83 (2H, m), 7.01-7.04 (1H, m), 7.25-7.27 (1H, m).
I-35	68-69℃	1.16 (6H, s), 1.30 (3H, t, J = 7.3), 2.66 (2H, s), 2.90 (2H, q, J = 7.3), 3.76 (2H, s)6.98 (2H, dd, J = 6.6, 2.1), 7.31 (2H, dd, J = 6.6, 2.1).
I-36	67-69℃	1.15 (6H, s), 1.20 (6H, d, J = 6.9), 1.26 (3H, t, J = 7.4), 2.64 (2H, s), 2.86 (2H, q, J = 7.4), 2.89 (1H, q, J = 6.9), 3.75 (2H, s), 6.98 (2H, d, J = 8.2), 7.20 (2H, d, J = 8.3).
I-37	125- 126℃	1.15 (6H, s), 1.30 (3H, t, J = 7.3), 2.72 (2H, s), 2.92 (2H, q, J = 7.3), 3.78 (2H, s), 7.05 (2H, d, J = 8.3), 7.31 (2H, d, J = 8.3).
I-38	76-78℃	1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.14 (3H, s), 2.29 (3H, s), 2.63 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.70 (1H, d, J = 7.9), 6.94 (1H, d, J = 7.9), 7.06 (1H, s).

(表17)

化合物		物性
番号		
- No	融点	
I-39		1.14 (6H, s), 1.29 (3H, t, J = 7.4), 2.21 (3H, s), 2.32 (3H, s),
		2.65 (2H, s), 2.89 (2H, q, J = 7.4), 3.76 (2H, s), 6.73 (1H, d, d)
		J = 7.9), 6.97 (1H, d, $J = 7.9$), 7.02 (1H, s).
I-40	1	1.15 (6H, s), 1.30 (3H, t, $J = 7.4$), 2.19 (3H, s), 2.31 (3H, s),
		2.64 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.65 (1H, s),
I-41	59-61°C	6.86 (1H, d, J = 7.9), 7.07 (1H, d, J = 7.7). 1.15 (6H, s), 1.30 (3H, t, J = 7.3), 2.19 (6H, s), 2.62 (2H, s),
1-41	99-61 C	1.15 (6H, s), 1.50 (5H, t, $3 - 7.5$), 2.15 (6H, s), 2.62 (2H, s), 2.90 (2H, q, $J = 7.3$), 3.78 (2H, s), 6.90-6.96 (1H,m), 7.02-
	ļ	7.08 (2H, m).
I-42	· · · · · · · · · · · · · · · · · · ·	1.15 (6H, s), 1.31 (3H, t, J = 7.4), 2.26 (3H, s), 2.28 (3H, s),
		2.65 (2H, s), 2.91 (2H, q, J = 7.4), 3.78 (2H, s), 6.74 (1H, dd,
		J = 7.9, 1.8, 6.80 (1H, d, J = 1.8), 7.13 (1H, d, J = 7.7).
I-43		1.15 (6H, s), 1.31 (3H, t, J = 7.4), 2.31 (6H, s), 2.63 (2H, s),
		2.90 (2H, q, J = 7.4), 3.76 (2H, s), 6.58 (2H, s), 6.77 (1H, s).
I-44		1.15 (6H, s), 1.28 (3H, t, $J = 7.4$), 2.21 (3H, s), 2.64 (2H, s),
1		2.90 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.74 (1H, d, $J = 8.2$),
I-45		7.10-7.18 (2H, m). 1.15 (6H, s), 1.28 (3H, t, J = 7.4), 2.31 (3H, s), 2.66 (2H, s),
1.40		2.92 (2H, q, J = 7.4), 3.78 (2H, s), 6.74 (1H, d, J = 7.8), 7.04
ļ		(1H, d, J = 7.8), 7.25 $(1H, d, J = 7.8).$
I-46		1.16 (6H, s), 1.25 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4), 2.69
	119-	(2H, s), 2.90 (2H, q, J = 7.4), 3.15 (1H, m), 3.79 (2H, s), 6.92
[120℃	(1H, d, J = 8.7), 8.01 (1H, dd, J = 8.5, 2.4), 8.18 (1H, d, J = 8.5)
		2.4).
I-47		1.17 (6H, s), 1.23 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.69
		(2H, s), 2.91 (2H, q, J = 7.4), 3.19 (1H, m), 3.79 (2H, s), 7.41
		(1H, d, J = 8.7), 7.71 (1H, d, $J = 2.4), 7.92$ (1H, dd, $J = 8.7, 2.4$).
I-48		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.73 (2H, s), 2.93 (2H, q, J
		= 7.4), 3.82 (2H, s)7.15 (2H, d, J = 8.3), 8.48 (1H, dd, J = 8.3,
		1,4), 8.90 (1H, d, J =8.3).
I-49	•	0.95 (3H, t, J = 7.3), 1.15 (6H, s), 1.50-1.64 (2H, m), 2.32
	64-66℃	(3H, s), 2.56 $(2H, q, J = 7.3)$, 2.63 $(2H, s)$, 3.78 $(2H, s)$, 6.82
		(1H, d, J = 7.3),
T 50		7.06-7.28 (3H, m).
I-50	95-96℃	1.16 (6H, s), 1.20 (6H, d, $J = 6.9$), 2.32 (3H, s), 2.64 (2H, s), 3.12 (1H, q, $J = 6.9$), 3.79 (2H, s), 6.78-6.82 (1H, m),
	90-90 C	7.11-7.20 (2H, m), 7.30-7.34 (1H, m).
L		1.11 1.20 (AII, III), 1.00-1.04 (III, III).

(表18)

	·	物性
化合		100 III
物番		
号		
No	融点	
	-	7 7 0 1 2 (OIL 1 I CO) 1 10 (CH c)
I-51		0.85 (3H, t, J = 7.3), 1.15 (6H, d, J = 6.9), 1.18 (6H, s),
	53-56℃	1.57-1.70 (2H, m), 2.31 (3H, s), 2.62 (2H, s), 2.91 (1H, q, J =
		6.9), 3.74 (1H, d, J = 13.7), 3.78 (1H, d, J = 13.7), 6.78-6.83
		(1H, m), 7.11-7.18 (2H, m), 7.23-7.30 (1H, m).
I-52		1.17 (6H, s), 1.27 (6H, d, $J = 6.9$), 2.33 (3H, s), 2.65 (2H, s),
	88-90℃	2.91 (1H, q, J = 6.9), 3.79 (2H, s), 6.78-6.83 (2H, m), 7.01-
		7.04 (1H, m), 7.20-7.24 (1H, m).
I-53		1.16 (6H, s), 2.32 (3H, s), 2.65 (2H, s), 3.77 (2H, s), 3.87 (6H,
		s), 6.51-6.59 (2H, m), 6.80-6.89 (1H, m).
I-54	102-	1.15 (6H, s), 2.31 (3H, s), 2.65 (2H, s), 3.76 (2H, s), 5.96 (2H, s), 6.42 (1H, dd, J = 8.1, 1.8), 6.53 (1H, d, J = 1.8), 6.78 (1H,
	104℃	
-	100	d, J = 8.1). 1.16 (6H, s), 2.32 (3H, s), 2.67 (2H, s), 3.78 (2H, s), 3.85 (6H,
I-55	129-	
	131℃	s), 3.86 (3H, s), 6.20 (2H, s) 1.17 (3H, t, J = 7.6), 1.22 (6H, s), 2.58 (2H, q, J = 7.6), 2.64
I-56	107-	(3H, s), 2.66 (2H, s), 4.51 (2H, s), 6.91 (1H, dd, J = 7.5, 1.3),
	109℃	7.02-7.19 (2H, m), 7.23-7.28 (1H, m).
T 57		0.85 (3H, t, J = 7.3), 1.18 (6H, d, J = 6.9), 1.23 (6H, s),
I-57		1.57-1.70 (2H, m), 2.64 (3H, s), 2.66 (2H, s), 2.88 (1H, q, J
Ì	1	6.9), 4.38 (1H, d, $J = 13.7$), 4.60 (1H, d, $J = 13.7$), $6.83-6.90$
		(1H, m), 7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
1-58	85-87℃	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 3.35 (3H, s), 4.40 (2H,
1.00	85-67 0	s), 4.48 (2H, s), 6.93-6.99 (1H, m), 7.11-7.29 (2H, m), 7.40-
		7.49 (1H. m).
I-59	113-	1.22 (3H, s), 1.24 (3H, s), 1.37 (3H, d, $J = 6.4$), 2.63 (3H, s),
1-00	114°C	2.65 (2H, s), 3.24 (3H, s), 4.35 (1H, d, J = 13.6), 4.55 (1H, q, J = 13.6)
i		J = 6.4), 4.66 (1H, d, $J = 13.6$), 6.91 (1H, d, $J = 7.4$), 7.19-
		7.40 (2H, m), 7.51 (1H, d, J = 7.4).
I-60	128-	1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.85 (3H, s), 4.53 (2H,
	130℃	s), 6.93-6.99 (2H, m), 7.02-7.15 (2H, m).
I-61	100-	1.26 (6H, s), 1.43 (3H, t, J = 7.4), 2.66 (2H, s), 2.67(3H, s),
	101℃	4.08 (2H, q, J = 7.0), 4.55 (2H, s), $6.95-6.99$ (3H, m), $7.11-$
-		7.18 (1H, m).
I-62	137-	1.23 (6H, s), 2.43 (3H, s), 2.64 (3H,s), 2.67 (2H, s), 4.53 (2H,
	139℃	s), 6.87-6.92 (1H, m), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).

(表19)

化合物		物性
番号		T
No	融点	
I-63		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.4), 2.66
1	103-	(2H, s), 2.89 $(2H, q, J = 7.4)$, 2.94 $(2H, q, J = 7.4)$, 3.78 $(2H, q, J = 7.4)$
	105℃	s), 6.91 (1H, dd, $J = 7.4$, 1.6), $7.08-7.20$ (2H, m), 7.32 (1H,
<u> </u>	ļ. <u>. </u>	dd, J = 7.4, 1.6).
I-64		1.24 (6H, s), 1.28 (6H, d, J=6.6), 2.63(3H, s), 2.66 (2H, s),
-	125-	3.38-3.42 (1H, m), 4.53 (2H, s), 6.97 (1H, dd, $J = 7.7$, 1.6),
7.05	126℃	7.08-7.20 (2H, m), 7.32 (1H, dd, $J = 7.7$, 1.6).
I-65		1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, d, J = 13.6), 2.75 (3H, s),
}	ļ	4.17 (1H, d, J = 13.6), 4.77 (1H, d, J = 13.6), 7.06 (1H, dd, J
I-66	147-	= 7.7, 1.7), 7.19-7.40 (2H, m), 7.97 (1H, dd, $J = 7.7, 1.7$).
1-00	147- 149℃	1.23 (6H, s), 2.63 (3H, s), 2.71 (2H, s), 3.13 (3H, s), 4.52 (2H, s), 7.11 (1H, m,), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).
I-67	1430	1.22 (6H, s), 1.23 (3H, t, J = 6.9), 2.63 (3H, s), 2.66 (2H, s),
1-07	129-	2.70-2.85 (1H, m), $2.90-3.15$ (1H, m), 4.25 (1H, d, $J = 13.6$),
1	130℃	4.70 (1H, d, J = 13.6), 7.06 (1H, d, J = 7.5), 7.30-7.45 (2H,
		m), $7.90 (1H, d, J = 7.5)$.
I-68	100-	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.71 (6H, s), 4.50 (2H,
	102℃	s), 6.93-6.99 (3H, m), 7.02-7.15 (1H, m).
I-69		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.64 (3H, s), 2.66 (2H, s),
		$2.92 \text{ (1H, q, } \overline{J} = 6.9), 4.52 \text{ (2H, s), } 6.84-6.86 \text{ (2H, m), } 7.08-$
		7.13 (1H, m), 7.28-7.32 (1H, m).
I-70	116-	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.97 (2H,
T ===	118℃	d, J = 8.6), 7.35 (2H, d, J = 8.6).
I-71	103-	1.22 (6H, s), 2.19 (3H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H,
	105℃	s), 4.50 (2H, s), 6.79 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9), 7.02 (1H, s).
I-72	100-	1.23 (6H, s), 2.18 (3H, s), 2.32 (3H, s), 2.64 (3H, s), 2.65 (2H,
1-,2	101℃	s), 4.51 (2H, s), 6.71 (1H, s), 6.88 (1H, d, J = 7.9), 7.08 (1H,
	1010	t, J = 7.9).
1-73	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H,
		s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9),
		7.08 (1H, t, J = 7.9).
I-74	126-	1.23 (6H, s), 2.25 (3H, s), 2.27 (3H, s), 2.64 (3H, s), 2.65 (2H,
	128℃	s), 4.51 (2H, s), 6.76 (1H, d, $J = 7.9$), 6.82 (1H, s), 713 (1H,
T. 55	0.0.000	d, J = 7.9).
I-75	96-98℃	1.23 (6H, s), 2.32 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 4.51 (2H,
170		s), 6.64 (2H, s), 6.80 (1H,s).
I-76		1.22 (6H, s), 2.64 (3H, s), 2.65 (2H, s), 3.79 (3H, s), 3.88 (3H, s), 4.52 (2H, s), 6.60 (1H, d, J = 7.9), 6.73 (1H, d, J = 7.9),
		7.04 (1H, d, J = 7.9).
		1.01 (±±±, u, u = 1.0).

(表20)

化 合 物 番号		物性
- No	融点	
I-77		1.24 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 3.87 (6H, s), 4.50 (2H, s) 6.61-6.65 (2H, m), 6.85-6.89 (1H, m).
I-78		1.22 (6H, s), 2.62 (3H, s), 2.66 (2H, s), 3.81 (6H, s), 4.52 (2H, s), 6.48 (1H, dd, J=8.5, 2.4), 6.51 (1H, d, J=2.4), 6.92 (1H, d, J=8.5).
I-79		1.22 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.77 (6H, s), 4.52 (2H, s), 6.56 (1H, d, J = 2.4), 6.68 (1H, dd, J = 8.5, 2.4), 686 (1H, d, J = 8.5).
I-80	108- 110℃	1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, s), 4.49 (2H, s), 6.04 (2H, s), 6.50 (1H, dd, J = 8.1, 1.8), 6.61 (1H, d, J = 1.8), 6.83 (1H, d, J = 8.1).
I-81		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.65 (3H, s), 2.71 (2H, s), 3.11 (1H, q, J = 6.9), 4.51 (2H, s), 7.02 (1H, d, J = 8.5), 8.04 (1H, dd, J = 8.5, 2.7), 8.21 (1H, d, J = 2.7).
I-82		1.21 (6H, s), 1.24 (6H, d, J = 6.9), 2.63 (3H, s), 2.66 (2H, s), 3.17 (1H, q, J = 6.9), 4.51 (2H, s), 7.45 (1H, d, J = 8.5), 7.80 (1H, d, J = 2.4), 7.99 (1H, dd, J = 8.5, 2.4).
I-83		1.24 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 3.85 (6H, s), 3.86 (3H, s), 4.51 (2H, s), 6.28 (2H, s).
I-84	68-70	1.22 (6H, d, J = 6.9), 1.23 (6H, s), 1.35 (3H, t, J = 7.4), 2.65 (2H, s), 3.11 (1H, q, J = 6.9), 3.25 (2H, q, J = 6.9), 4.48 (2H, s), 6.89-6.92 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H, m).
I-85		0.85 (3H, t, J=7.4), 1.18 (6H, d, J=6.9), 1.23 (6H, s), 1.35 (3H, t, J=7.4), 1.57-1.70 (2H, m), 2.56 (2H, s), 2.87 (1H, q, J=6.9), 3.25 (2H, q, J=7.4), 4.35 (1H, d, J=13.7), 4.60 (1H, d, J=13.7), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30-7.34 (1H, m).
I-86	96-97	1.23 (6H, s), 1.36 (3H, t, J = 7.0), 1.40 (3H, t, J = 7.0), 2.63 (2H, s), 3.27 (2H, q, J = 7.4), 4.06 (2H, q, J = 7.0), 4.51 (2H, s), 6.92-7.08 (3H, m), 7.11-7.15 (1H, m).
I-87	105-106	1.22 (6H, s), 1.35 (3H, t, J = 7.4), 2.43 (3H, s), 2.66 (2H, s), 3.26 (2H, q, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, m), 7.10-7.17 (2H, m), 7.24-7.29 (1H, m).

(表21)

化合	T	物性
物番		1/4 1244
号		
No	融点	
I-88		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 1.35 (3H, t, J = 7.4), 2.66
1-00		(2H, s), 2.90 (1H, q, J = 6.9), 3.28 (2H, q, J = 7.4), 4.50 (2H, g, J = 7.4), 4.50 (2H, g
		s), 6.84-6.88 (2H, m), 7.08-7.13 (1H, m), 7.28-7.32 (1H, m).
I-89		0.98 (3H,t, J = 7.4), 1.12 (6H, s), 1.22 (6H, d, J = 6.9),
		1.72-1.80 (2H, m), 2.58 (2H, s), 2.90 (2H, t, $J = 7.4$), 3.06
1		(1H, q, J = 6.9), 3.71 (2H, s), 6.71-6.76 (1H, m), 7.11-7.20
T 00	 -	(2H, m), 7.30-7.34 (1H, m).
1-90	99-	1.14 (6H, s), 1.21 (6H, d, $J = 6.9$), 2.58 (2H, s), 3.14 (1H, q, $J = 6.9$), 3.64 (2H, s), 3.86 (3H, s), 6.73-6.78 (1H, m),
	101℃	7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
I-91		1.00 (3H, t, J = 7.3), 1.14 (6H, s), 1.20 (6H, d, J = 6.9), 1.74
ŀ		(2H, q, J = 7.3), 2.58 (2H, s), 3.16 (1H, q, J = 6.9), 3.65 (2H, s)
		s), 4.23 (2H, q, $J = 6.9$), $6.73-6.80$ (1H, m), $7.12-7.18$ (2H,
	·	m), 7.31-7.34 (1H, m).
I-92	F0 F0°C	1.13 (6H, s), 1.19 (6H, d, J = 6.9), 1.20 (3H, t, J = 7.4), 2.60
	52-53℃	(2H, s), 2.98 (1H, q, J = 6.9), 3.38 (2H, q, J = 7.4), 3.77 (2H, s), 6.73-6.78 (1H, m), 7.09-7.18 (2H, m), 7.28-7.32 (1H, m).
I-93	<u> </u>	1.14 (6H, s), 1.22 (6H, d, J = 6.9), 2.62 (2H, s), 2.96 (1H, q)
	76-78℃	J = 6.9), 3.48 (3H, s), 3.75 (2H, s), 4.64 (2H, s), 6.73-6.78
		(1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).
I-94		1.14 (6H, s), 1.20 (6H, d, J = 6.9), 2.23 (3H, s), 2.68 (2H, s),
	61-62℃	2.93 (1H, q, J = 6.9), 3.71 (2H, s), 3.94 (2H, s), 6.82-6.86
I-95		(1H, m), 7.10-7.18 (2H, m), 7.30-7.36 (1H, m). 1.13 (6H, s), 1.20 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.3), 2.65
1-90	50-52℃	(2H, J = 7.3), 2.68 (2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, J)
	33 32 3	s), 3.97 (2H, s), 6.82-6.86 (1H, m), 7.12-7.19 (2H, m),
		7.30-7.36 (1H, m).
I-96		1.21 (6H, s), 1.22 (6H, d, $J = 6.9$), 1.42 (3H, t, $J = 6.9$), 2.61
	73-75℃	(2H, s), 3.10 (1H, q, J = 6.9), 4.15 (2H, s), 4.65 (2H, q, J = 6.9), 6.74 (2H, s), 7.14 (2H, s),
		6.9), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H,
I-97		m). 1.18 (6H, s), 1.22 (6H, d, J = 6.9), 1.25 (3H, t, J = 7.4), 2.60
- "	160-	(2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, q, J = 7.4), 4.40 (2H, l)
	162℃	s), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H, m).
I-98		1.04 (3H, t, J = 7.4), 1.20 (6H, d, J = 6.9), 1.27 (6H, s), 1.73
		(2H, m), 2.64 $(2H, s)$, 3.12 $(1H, q, J = 6.9)$, 3.22 $(2H, t, J = 1)$
		7.4), 4.48 (2H, s),
		6.89-6.92 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).

(表22)

/L A #		物性
化合物		₩ II
番号		
No	点蝠	
		1 0 4 (OT 1 T C O) 1 97 (CH c) 1 49 (9H d I - 6 O)
I-99		1.04 (6H, d, J =6.9), 1.27 (6H, s), 1.42 (3H, d, J = 6.9), 2.63 (2H, s), 3.14 (1H, q, J = 6.9), 4.02 (1H, q, J = 6.9),
	113-	2.63 (2H, s), 3.14 (1H, q, 3 = 0.3), 4.02 (1H, q, 6 = 0.3), 4.46 (2H, s), 6.89-6.93 (1H, m), 7.10-7.20 (2H, m), 7.28-
•	114	7.35 (1H, m).
I-100		1.10 (6H, d, $J = 6.9$), 1.22 (6H, s), 2.64 (2H, s), 3.08 (1H,
1-100		q, $J = 6.9$), 4.48 (2H, s),4.49 (2H, s), 6.83-6.90 (1H, m),
		7.11-7.18 (2H, m), 7.20-7.38 (6H, m).
I-101		1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.70 (2H, s), 2.87 (2H, q,
1-101		J = 7.4), 3.69 (2H, s), 4.55 (2H, s), 7.30-7.40 (4H, m).
I-102		1.24 (6H, s), 2.57 (3H, s), 2.73 (2H, s), 4.43 (2H, s), 4.58
11102		(2H, s), 7.23-7.40 (4H, m).
I-103		1.11 (6H, s), 1.26 (3H, t, J = 7.4), 2.61 (2H, s), 2.83 (2H, q)
		J = 7.4, 3.10 (2H, t, $J = 7.4$), 3.65 (2H, s), 3.66 (2H, t, $J = 1$)
		7.4, 7.17 (1H, dd, $J = 8.2$, 2.1), 7.30 (1H, t, $J = 8.2$), 7.36
		(1H, d, J = 2.1).
I-104		1.16 (6H, s), 2.55 (3H,s), 2.63 (2H, s), 3.13 (2H, t, J =
ļ ·		7.5), 3.69 (2H, t, $J = 7.5$), 4.35 (2H, s), 7.15 (1H, dd, $J = 1$
		8.2, 2.1, 7.25 (1H, t, $J = 8.2$), 7.36 (1H, d, $J = 2.1$).
I-105		1.20 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.10-2.22 (2H, J = 7.4)
1	ł	m), 2.65 (2H, t, $J = 6.4$), 2.94 (2H, q, $J = 7.4$), 3.11 (1H, q,
		J = 6.9), 4.05 (2H, t, $J = 7.4$), 6.82-6.86 (1H, m), 7.10-7.16
		(2H, m), 7.28-7.34 (1H, m).
I-106		1.17-1.30 (12H, m), 1.45-1.52 (1H, m), 1.90-1.96 (1H, m),
		2.92 (2H, q, J = 7.4), 2.95-3.05 (2H,m), 3.14-3.23 (1H,m),
	 	3.72-3.75 (1H, m), 7.20-7.30 (2H,m), 7,40-7.45 (2H,m). 1.22 (6H, d, J = 6.9), 1.28 (3H, d, J = 6.6), 1.29 (3H, t, J =
I-107		7.4), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, $J = 0.00$)
		7.4), 3.14 (1H, m), 3.31-3.36 (1H, m), 4.01-4.10 (2H, m),
		6.81-6.85 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).
I-108	 -	1.12 (3H,d, J = 6.6), 1.20 (6H, d, J = 6.9), 1.29 (3H, t, J = 6.9), 1
1-100		7.4), 2.40-2.50 (1H, m), 2.57 (1H, dd, $J = 13.5$, 6.6), 2.91
		(2H, q, J = 7.4), 2.95 (1H, m), 3.14 (1H, m), 3.45 (1H, dd,
		J = 13.5, 8.4, 4.30 (1H, dd, $J = 13.5, 8.4$), 6.81-6.85 (1H,
		m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).

(表23)

/i. ^		Adm 144
化 合		物性
物番		•
号		
No	融点	
	ļ	
I-109		0.88 (6H, t, J = 7.5), 1.22 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4),
	f	1.45-1.52 (4H, m), 2.58 (2H, s), 2.89 (2H, q, J = 7.4), 3.15
		(1H,m), 3.77 (2H, s), 6.78-6.83 (1H, m), 7.08-7.21 (2H, m),
		7.30-7.35 (1H, m).
I-110	109-	1.21 (6H, d, $J = 6.9$), 1.23 (6H, s), 1.25 (3H, t, $J = 7.4$), 2.81
	111℃	(2H, q, J = 7.4), 2.90 (1H, t, J = 6.9), 3.05 (2H, s), 7.13-7.30
		(2H, m), 7.36-7.45 (2H, m).
I-111		1.21 (6H, d, $J = 6.9$), 1.31 (3H, t, $J = 7.4$), 1.42 (3H, d, $J = 6.7$),
	Ì	2.90 (2H, q, J = 7.4), 3.23 (1H, q, J = 6.9), 3.69 (1H, q, J = 6.9)
		6.6), 3.87-3.93 (1H, m), 6.78-6.82 (1H, m), 7.08-7.20 (2H, m),
		7.25-7.30 (1H, m).
I-112		1.19-1.25 (9H, m), 1.14 (3H, d, $J = 6.3$), 2.76 (1H, d, $J = 10.9$),
1-112		2.96 (2H, t, $J = 7.4$), 3.22 (1H, q, $J = 6.9$), $3.44-3.48$ (1H, m),
		5.12 (1H, q, J = 6.3), 6.81-6.85 (1H, m), 7.09-7.16 (2H, m),
		7.28-7.32 (1H, m).
I-113		1.18 (6H, d, $J = 6.9$), 1.22 (6H, d, $J = 6.9$), 1.45 (3H, t, $J = 7.4$),
1-110	126-	1.80-1.91 (1H,m), 2.57-2.64 (2H, m), 2.61 (3H,s), 2.86-2.89
	128℃	(1H, m), 3.07 (1H, m), 5.95-6.05 (1H, m), 6.98-7.00 (1H, m),
	1200	7.12-7.22 (2H, m), 7.28-7.35 (1H, m).
I-114		1.20 (6H, d, $J = 6.9$), 1.28 (3H, d, $J = 6.9$), 1.82-1.88 (1H, m),
1-114		2.48-2.63 (1H, m), 2.63 (3H,s), 3.11 (1H, m), 3.29-3.35 (1H, m),
		4.26(1H, m), 4.98 (1H, m), 6.90-6.95 (1H, m), 7.15-7.20 (2H,
		m), 7.30-7.35 (1H, m).
I-115		1.14 (3H, d, J = 6.5), 1.20 (6H, d, J = 6.9), 2.53 (1H, dd, J = 6.9)
		13.0, 5.4), 2.75 (3H,s), 2.80-2.85 (1H, m), 2.95 (1H, dd, J =
<u>,</u>		13.0, 5.4), 3.11 (1H, m), 3.72 (1H, dd, $J = 13.0, 9.0$), 5.15 (1H,
1		dd, $J = 13.0, 9.0$), $6.90-6.95$ (1H, m), $7.15-7.25$ (2H, m), $7.30-6.95$
		7.35 (1H, m).
I-116		0.88 (6H, t, J = 7.5), 1.20 (6H, d, J = 6.9), 1.45-1.52 (4H, m),
	119-	2.62 (2H, s), 2.64 (3H, s), 3.15 (1H,m), 4.66 (2H, s), 6.78-6.83
	121℃	(1H, m), 7.08-7.21 (2H, m), 7.30-7.35 (1H, m).
I-117		0.71-0.79 (1H, m), $0.85-0.90$ (2H, m), 1.22 (6H, d, $J = 6.9$),
	99-	1.22-1.25 (1H, m), 2.61 (3H, s), 2.79 (3H, s), 3.00-3.05 (1H, m),
	100℃	4.40 (2H, s), 6.92-6.95 (1H, m), 7.15-7.21 (2H, m), 7.30-7.35
	1000	(1H, m).
		1 \

(表24)

		Ain 14
化 合		物性
物 番		"
号		
	=L +-	
No	融点	
I-118		1.23 (6H, s), 1.45 (6H, t, J = 7.4), 2.63 (3H, s), 2.67(2H, s), 4.08
		(2H, q, J = 7.0), 4.55 (2H, s), 6.57-6.63 (2H, m), 6.85 (1H, d, J)
		= 7.9).
1 110	110	1.24 (6H, s), 2.37 (3H, s), 2.64 (3H, s), 2.66 (2H, s), 3.84 (3H,
I-119	116-	s), 4.54 (2H, s), 6.75-6.80 (2H, m), 6.88 (1H, m).
	118℃	s), 4.54 (2H, s), 6.75-6.60 (2H, m), 6.60 (1H, m).
I-120	92-93℃	1.23 (6H, s), 2.27 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 3.84 (3H,
		s), 4.51 (2H, s), 6.51-6.58 (2H, m), 7.10 (1H, d, J = 7.9).
I-121	129-	1.22 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.80 (3H,
1	130℃	s), 4.53 (2H, s), 6.78-6.95 (3H, m).
T 100	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H,
I-122	93-99 C	s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9), 7.08
L		(1H, t, J = 7.9).
I-123		1.22 (6H, s), 1.83 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.17 (3H,
	151-	s), 4.40 (1H, d, $J = 13.6$), 4.65 (1H, d, $J = 13.6$), 7.01 (1H, d, J
	152℃	= 7.9),
		7.10-7.15 (2H, m), 7.30-7.35 (1H, m).

(表25)

化合	1	
物番		初任
号		
No	融点	NMR (CHCl ₃)
I-124	105-	1.23 $\overline{(6H, s)}$, 1.41 (3H, t, J=7.0), 2.63 (3H, s), 2.66 (2H,
	106℃	s),4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.88 (2H, d, J=8.6),
		6.98 (2H, d, J=8.6).
I-125	92-94℃	1.23 (6H, s), 1.40 (3H, t, J=7.0), 2.62 (3H, s), 2.66 (2H,
ļ		s), 4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.57-6.63 (2H, m),
I-126	108-	6.70-6.75 (1H, m), 7.25-7.30 (1H, m). 1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 3.81 (3H, s), 4.50
1-120	109℃	(2H, s), 6.92 (2H, d, J=8.6), 7.04 (2H, d, J=8.6).
I-127	62-64°C	1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, s), 3.82 (3H, s), 4.50
]	•= • • •	(2H, s), 6.57-6.63 $(2H, m), 6.70-6.75$ $(1H, m), 7.25-7.30$ $(1H, m)$
}		m).
I-128	78-79℃	1.23 (6H, s), 1.44 (3H, t, J=7.0), 2.59 (3H, s), 2.63 (2H,
		s), 3.82 (3H, s), 4.10 (2H, q, J=7.0), 4.47 (2H, s),
		6.57-6.63 (2H, m), 6.82-6.87 (1H, m).
I-129	58-60℃	1.04 (3H, t, J=7.0), 1.23 (6H, s), 2.00 (2H, sext, J= 7.0),
		2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 4.10 (2H, t, J=7.0),
I-130		4.50 (2H, s), 6.58-6.64 (2H, m), 6.86-6.91 (1H, m). 1.13 (6H, s), 1.45 (6H, t, J=7.4), 2.28 (3H, s), 2.62 (2H,
1-130		s), 3.74 (2H, s), 4.08 (4H, q, $J=7.4$), $6.46-6.53$ (2H, m),
		6.88-6.92 (1H, m).
I-131	91-93℃	1.04 (3H, t, J=7.0), 1.22 (6H, s), 1.76 (2H, sext, J=7.0),
		2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50 (2H,
	· · · · · · · · · · · · · · · · · · ·	s), 6.90 (2H, d, $J=8.6$), 6.98 (2H, d, $J=8.6$).
I-132	103-	1.04 (3H, t, $J = 7.0$), 1.22 (6H, s), 1.76 (2H, sext, $J =$
	104℃	7.0), 2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50
		(2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d, J=7.4), 6.72 (1H, dd, J=7.4, 2.1), 7.28 (1H, d, J=7.4).
I-133	91-92°C	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
1 100	01 05 0	1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
		t, J=7.0), 4.50 (2H, s), 6.90 (2H, d, J=8.6), 6.98 (2H, d,
		J=8.6).
I-134	86-87℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
		1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
		t, J=7.0), 4.50 (2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d,
		J=7.8), 6.72 (1H, dd, J=7.8, 2.1), 7.28 (1H, d, J=7.8).

(表26)

(L A		物性
化合		,
物番		
号	=+ F	NMR (CHCl ₃)
No	融点	N M It (CHOI3)
T 105	60 70°C	1.22 (6H, s), 1.47 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
I-135	69-70℃	s), 3.88 (3H, s), 4.15 (2H, q, J=7.0), 4.51 (2H, s), 6.61
		(1H, d, J=8.2), 6.62 (1H, d, J=2.1), 6.88 (1H, d, J=8.2).
T 100	88-89°C	1.04 (3H, t, J=7.0), 1.23 (6H, s), 1.80 (2H, sext, J=7.0),
I-136	00-03 (2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 3.90 (2H, t, J=7.0),
		4.51 (2H, s), 6.61 (1H, dd, J=8.2, 2.1), 6.62 (1H, d, J=2.1),
ļ		6.88 (1H, d, J=8.2).
I-137	83-85℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
1-131	00.000	1.70-1.80 (2H, m), 2.64 (3H, s), 2.68 (2H, s), 3.87 (3H, s),
		4.03 (2H, t, J=7.0), 4.50 (2H, s), 6.59 (1H, d, J=8.2), 6.61
		(1H, s), 6.88 (1H, d, J=8.2).
I-138	84-85℃	1.23 (6H, s), 1.34 (6H, d, J=6.1), 2.63 (3H, s), 2.65 (2H,
1 130	01 00 0	s), 4.50 (2H, s), 4.53 (1H, sept, J=6.1), 6.89 (2H, d,
į		J=8.6), 7.04 (2H, d, J=8.6).
I-139	92-93℃	1.23 (6H, s), 1.34 (6H, d, J=6.1), 2.63 (3H, s), 2.65 (2H,
1 100	• • • • • • • • • • • • • • • • • • •	s), 4.50 (2H, s), 4.53 (1H, sept, J=6.1), 6.50 (1H, d,
j		J=2.1), 6.60 (1H, d, J=8.0), 6.72 (1H, dd, J=8.0, 2.1), 7.28
Ì		(1H, d, J=8.0).
I-140	109-	1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50 (2H, s), 7.04
	110℃	(2H, d, J=7.5), 7.15 (1H, d, J=7.5),
	_	7.32 (2H, t, J =7.5).
I-141	92-93℃	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
		7.01-7.08 (1H, m), 7.11-7.15 (3H, m).
I-142	133-	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 4.54 (2H, s), 7.03
	135℃	(1H, dd, J=8.0, 2.1), 7.08 (1H, dd, J=8.0, 2.1), 7.25 (1H,
		t, J=8.0), 7.44 (1H, t, J=8.0).
I-143	92-93℃	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 4.50 (2H, s), 6.88
		(1H, dd, J = 8.0, 2.1), 7.03 (1H, d, J=2.1), 7.15 (1H, dd, J=2.1)
	<u> </u>	J=8.0, 2.1), 7.28(1H, t, J=8.0).
I-144	134-	1.22 (6H, s), 2.22 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50
	135℃	(2H, s), 7.00 (1H, d, J=8.1), 7.08 (1H, t, J=8.1), 7.15-7.25
		(2H, m).
I-145	87-89℃	1.23 (6H, s), 2.37 (3H, s), 2.63 (3H, s), 2.66 (2H, s), 4.50
		(2H, s), 6.82 (1H, d, J=8.1), 6.84 (1H, s), 6.98 (1H, d,
		J=8.1), 7.21 (1H, t, J=8.1).

(表27)

化 合		物性
物番		
号 No	融点	NMR (CHCI ₃)
110	Maca Jan	White (Cheis)
I-146	91-93℃	1.23 (6H, s), 2.35 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50
		(2H, s), 6.92 (2H, d, J=8.6), 7.15 (2H, d, J=8.6).
I-147	82-83℃	0.90 (3H, t, J=7.0), 1.22 (6H, s), 1.28-1.40 (2H, m),
		1.48-1.55 (2H, m), 2.55 (2H, t, $J = 7.0$), 2.64 (3H, s), 2.66
		(2H, s), 4.50 (2H, s), 6.90 (1H, d, J=7.8), 7.09 (1H, t, J=7.8), 7.11 (1H, t, J=7.8), 7.28 (1H, d, J=7.8).
I-148	72-73°C	0.90 (3H, t, $J=7.0$), 1.22 (6H, s), 1.28-1.40 (2H, m),
1 110	12 100	1.48-1.55 (2H, m), 2.60 (2H, t, J=7.0), 2.64 (3H, s), 2.66
		(2H, s), 4.50 (2H, s), 6.95 (2H, d, J=8.6), 7.18 (2H, d,
		J = 8.6).
I-149	133-	1.23 (6H, s), 1.35 (9H, s), 2.65 (3H, s), 2.69 (2H, s), 4.50
	134℃	(2H, s), 6.97 (1H, d, J=7.8), 7.13 (1H, t, J=7.8), 7.19 (1H,
7 150		t, J=7.8), 7.41 (1H, d, J=7.8).
I-150	99- 100℃	1.22 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (3H, s), 2.64 (2H,
	100 C	s), 2.66 (2H, q, J=7.4), 4.50 (2H, s), 6.95 (2H, d, J= 8.6), 7.20 (2H, d, J=8.6).
I-151	40-42°C	1.23 (6H, s), 1.24 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
	10 12 0	s), 2.67 (2H, q, J=7.0), 4.52 (2H, s), 6.83 (1H, d, J=8.1),
		6.86 (1H, s), 7.00 (1H, d, J=8.1), 7.28 (1H, t, J=8.1).
I-152	118-	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
	119℃	6.97-7.10 (4H, m).
I-153	89-90℃	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
T 154	111	6.73-6.90 (3H, m), 7.25-7.30 (1H, m).
I-154	111- 112℃	1.22 (6H, s), 1.25 (6H, d, J=7.0), 2.62 (3H, s), 2.64 (2H, s), 2.91 (1H, sept, J=7.0), 4.50 (2H, s), 6.95 (2H, d,
	112 0	J=8.6), 7.25 (2H, d, J=8.6).
I-155	127-	1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.14-3.18 (4H,m),
	129℃	3.85-3.90 (4H, m), 4.50 (2H, s), 6.93 (2H, d, $J=8.6$), 7.04
		(2H, d, J=8.6).
I-156	91-93℃	1.24 (6H, s), 2.62 (3H, s), 2.65 (3H, s), 2.68 (2H, s), 4.53
		(2H, s), 7.21-7.25 (1H, m), 7.48 (1H, t, J=7.9), 7.61 (1H,
L		t, J=1.8), 7.74-7.78 (1H, m).

(表28)

化合物番号 No 融点 NMR (CHCI ₃) I-157 103.5- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 4.50 (2H, 104.5°C 6.88-6.94 (2H, m), 7.46-7.51 (2H, m). I-158 97-98°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, 6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159 155.5- 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 156.5°C 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, 1-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.54 (3H, s), 4.54 (3H, s), 4.54 (3H, s), 4.54 (3H, s), 7.28 (1H, m), 7.28 (1H,	s), m).
号	s), m).
No 融点 NMR (CHCI ₃) I-157 103.5- 104.5℃ 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 4.50 (2H, m). I-158 97-98℃ 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, 6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159 155.5- 156.5℃ 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, m), 7.59-7.63 (1H, m), 7.28-7.34 (3H, s), 2.67 (2H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H, m), 7.28 (1H, m), 7.28 (1H, m), 7.28 (1H, m)	s), m).
I-157 103.5- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 4.50 (2H, 104.5°C 6.88-6.94 (2H, m), 7.46-7.51 (2H, m). I-158 97-98°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, 6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159 155.5- 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 156.5°C 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, 1-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.54 (2H, 106°C (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H,	s), m).
104.5℃ 6.88-6.94 (2H, m), 7.46-7.51 (2H, m). I-158 97-98℃ 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, 6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159 155.5- 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 156.5℃ 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, 1-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.54 (2H, s), 4.54 (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28	s), m).
104.5℃ 6.88-6.94 (2H, m), 7.46-7.51 (2H, m). I-158 97-98℃ 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, 6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159 155.5- 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 156.5℃ 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, 1-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.54 (2H, s), 4.54 (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28	s), m).
6.93-6.97 (1H, m), 7.19-7.31 (3H, m). I-159	s), m).
I-159 155.5- 1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, 156.5°C 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, 1-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H, m),	m).
156.5°C 6.98-7.05 (2H, m), 7.28-7.34 (1H, m), 7.59-7.63 (1H, I) 102-	m).
I-160 102- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4 106°C (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H,	.00
106°C (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H,	t,
106°C (3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H,	t,
J=1.8), 7.37 (1H, t, $J=7.8$), 7.45-7.49 (1H, m).	
I-161 111- 1.23 (6H, s), 2.60 (3H, s), 2.65 (3H, s), 2.69 (2H, s),	53
112°C (2H, s), 7.06-7.10 (2H, m), 7.97-8.03 (2H, m).	- 00
I-162 124- 1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s),	บบ
125°C (3H, s), 4.52 (2H, s), 7.00-7.05 (2H, m), 7.65-7.70	ΔΠ,
m).	211
I-163 102- 1.23 (6H, s), 1.32 (6H, d, J=6.3), 2.63 (2H, s), 2.64	on,
103.5°C s), 4.52 (2H, s), 4.52 (1H, sept, J=6.3), 6.90-6.98	, 511,
m), 7.04-7.13 (1H, m)	3)
I-164 90-92°C 0.94 (3H, t, J=7.3), 1.23 (6H, s), 1.58 (2H, sext, J=7	.о), /9Н
2.51-2.56 (2H, m), 2.65 (3H, s), 2.65 (2H, s), 4.51	, 211,
s), 6.90 (1H, dd, J=7.6, 1.3), 7.07-7.25 (3H, m) 1-165 157- 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.49 (2H, s),	7 08
	m).
158°C (1H, d, J=7.9), 7.22 (1H, d, J=7.6), 7.50-7.56 (1H, 7.66-7.69 (1H, m)	ш/,
I-166 145- 1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H,	s),
146°C 7.00-7.13 (7H, m), 7.30-7.37 (2H, m)	•
I-167 77-79°C 0.95 (3H, t, J=7.3), 1.23 (6H, s), 1.65 (2H, sext, J=7.4)	.3),
2.58 (2H, t, J=7.3), 2.63 (3H, s), 2.66 (2H, s), 4.51	(2H,
s), 6.93-7.00 (2H, m), 7.14-7.20 (2H, m)	

(表29)

化合		物性
物番		E CONTRACTOR DE
号		
No	融点	NMR (CHCl ₃)
140		NMR (CHCl ₃)
T 160	117	1 92 (611 a) 1 55 (011 a) 2 62 (211 a) 2 67 (211 a) 4 59
I-168	117-	1.23 (6H, s), 1.55 (9H, s), 2.63 (3H, s), 2.67 (2H, s), 4.52
1 100	118℃	(2H, s), 6.96-7.01 (2H, m), 7.37-7.42 (2H, m).
I-169	55-56℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.19
<u></u>		(1H, d, J=7.6), 7.26-7.27 (1H, m), 7.40-7.52 (2H, m).
I-170	88-90℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.10
		(2H, d, J=8.2), 7.63 (2H, d, J=8.2).
I-171		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.17 (3H, s), 2.31 (3H,
		s), 2.64 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.80
		(1H, d, J=8.2), 7.11-7.18 (1H, m), 7.28-7.35 (1H, m).
I-172		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.15 (3H, s), 2.31 (3H,
		s), 2.65 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.99
		(1H, s), 7.11-7.18 (1H, m), 7.28-7.35 (1H, s).
I-173	121-	1.22 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 3.89 (3H, s), 3.89
	123℃	(3H, s), 4.54 (2H, s), 6.96 (1H, d, J=8.6), 7.67 (1H, d,
		J=2.1), 7.87 (1H, dd, J=8.6, 2.1).
I-174	146-	1.24 (6H, s), 2.59 (2H, s), 2.65 (3H, s), 2.96-2.99 (4H,
	147°C	m), 3.76-3.79 (4H, m), 4.52 (2H, s), 6.98-7.17 (4H, m).
I-175	155-	1.23 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 3.16-3.20 (4H,
	157℃	m), 3.84-3.88 (4H, m), 4.51 (2H, s), 6.54-6.57 (2H, m),
		6.70-6.74 (1H, m), $7.24-7.30$ (1H, m).
I-176		1.22 (6H, d, J=6.6), 1.23 (6H, s), 1.38 (3H, t, J=7.1),
		2.65 (3H, s), 2.67 (2H, s), 3.08-3.18 (1H, m), 4.37 (2H,
		q, J=6.9), 4.52 (2H, s), 7.38 (1H, d, J=7.9), 7.59 (1H,
		d, J=2.0), 7.82 (1H, dd, J=8.1, 1.8).
I-177	120-	1.23 (6H, s), 1.50-1.61 (2H, m), 1.67-1.75 (4H, m), 2.62
	122℃	(3H, s), 2.66 (2H, s), 3.13-3.17 (4H, m), 4.50 (2H, s),
		6.92-7.02 (4H, m).
I-178	124-	1.23 (6H, s), 1.85-1.90 (4H, m), 2.62 (3H, s), 2.68 (2H,
	125℃	s), 3.22-3.27 (4H, m), 4.48 (2H, s), 6.74-6.80 (2H, m),
		6.95-6.98 (1H, m), 7.03-7.10 (1H, m).

(表30)

化合		物性
物番		··· · -
号		
No	融点	NMR (CHCI ₃)
I-179		1.23 (6H, s), 2.50 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.51
		(2H, s), 6.78-6.82 (1H, m), 6.91 (1H, t, J=2.0), 7.03-7.07
		(1H, m), 7.25-7.31 (1H, m).
I-180	102-	1.23 (6H, s), 2.49 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 4.51
	103℃	(2H, s), 6.96-7.01 (2H, m), 7.27-7.31 (2H, m).
I-181	82-83℃	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s), 7.07
		(1H, dd, J=7.6, 1.7), 7.14-7.20 (1H, m), 7.25-7.34 (2H, m).
I-182		1.23 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.52 (2H, s), 6.90
		(1H, s), 6.93-7.04 (2H, m), 7.38 (1H, t, J=8.2)
I-183	68-70℃	1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H, s),
		7.01-7.07 (2H, m), 7.21-7.24 (2H, m).
I-184	169-	1.25 (6H, s), 2.66 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	170℃	7.13-7.18 (2H, m), 7.34-7.39 (1H, m), 7.59-7.63 (2H, m),
		7.86-7.91 (1H, m), 8.58 (1H, dd, J=4.8, 1.6), 8.87 (1H, t,
		J=1.5)
I-185	92.5-	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
	93.5℃	7.05-7.09 (1H, m), 7.24 (1H, t, J=1.6), 7.34-7.40 (2H, m), 7.49 (1H, t, J=7.6), 7.87-7.92 (1H, m), 8.60 (1H, dd, J=4.9,
	<u> </u>	
T 100	<u> </u>	1.4), 8.87 (1H, dd, J=2.3, 0.7) 1.09 (6H, s), 2.56 (3H, s), 2.58 (2H, s), 4.20 (2H, s),
I-186		7.09-7.12 (1H, m), 7.24-7.30 (2H, m), 7.36-7.45 (2H, m),
		7.75-7.79 (1H, m), 8.54 (1H, dd, J=4.9, 1.6), 8.68 (1H, dd,
1		J=2.3, 0.7)
I-187	110.5-	1.17 (6H, s), 2.51 (3H, s), 2.61 (2H, s), 4.33 (2H, s),
1 10'	111.5℃	6.93-7.19 (7H, m), 7.23-7.30 (2H, m)
I-188	75-76°C	1.14 (6H, s), 1.43 (6H, t, J=7.4), 2.61 (2H, s),
	' ' ' '	3.65 (2H, s), 3.84 (3H, s), 4.08 (4H, q, J=7.4),
		6.46 (1H, dd, J=8.1, 2.2), 6.52 (1H, d, J=2.2),
		6.84 (1H, d, J=8.4).
I-189		1.19 (6H, s), 2.61 (2H, s), 3.65 (2H, s), 3.85 (3H, s), 3.88
1		(3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).

(表31)

化合]	物性
物 番		
号		·
No	融点	NMR (CHCl ₃)
- 100	<u> </u>	
I-190		1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (2H, s), 2.66 (2H,
		q, J=7.4), 3.64 (2H, s), 3.84 (3H, s), 6.84 (2H, d, J=8.6),
7 101	45 4500	7.16 (2H, d, J=8.6).
I-191	45-47℃	1.14 (6H, s), 1.25 (6H, d, J = 7.0), 2.62 (2H, s), 2.91 (1H,
ļ		sept, J=7.0), 3.64 (2H, s), 3.84 (3H, s), 6.86 (2H, d,
I-192	93-95℃	J=8.6), 7.19 (2H, d, J=8.6). 1.15 (6H, s), 2.31 (3H, s), 2.62 (2H, s), 3.80 (2H, s), 3.85
1-192	93-95 C	(3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).
I-193	65-67°C	1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.31 (3H, s), 2.62 (2H,
1 100	00-07-0	s), 2.65 (2H, q, J=7.4), 3.77 (2H, s), 6.90 (2H, d, J=8.3),
		7.21 (2H, d, J=8.3).
I-194	95-97℃	1.15 (6H, s), 1.24 (6H, d, J=7.0), 2.31 (3H, s), 2.64 (2H,
		s), 2.91 (1H, sept, J=7.0), 3.77 (2H, s), 6.90 (2H, d,
		J=8.6), 7.21 (2H, d, J=8.6).
I-195	94-96℃	1.15 (6H, s), 1.41 (3H, t, J=7.0), 2.31 (3H, s), 2.64 (2H,
		s), 3.77 (2H, s), 4.05 (2H, q, J=7.4), 6.90-6.99 (4H, m).
I-196	99-	1.15 (6H, s), 1.47 (3H, t, J=7.0), 2.32 (3H, s), 2.66 (2H,
j	100℃	s), 3.77 (2H, s), 3.88 (3H, s), 4.08 (2H, q, J=7.0), 6.52
		(1H, d, J=8.2), 6.56 (1H, d, J=2.1), 6.88 (1H, d, J=8.2).
I-197	133-	1.23 (6H, s), 1.50-1.75 (6H, m), 2.63 (3H, s), 2.65 (2H,
	·134℃	s), 3.18 (4H, t, J=5.4), 4.51 (2H, s), 6.47-6.57 (2H, m),
T 100	104	6.72-6.76 (1H, m), 7.21 (1H, d, J=8.1)
I-198	124-	1.17 (6H, t, J=6.9), 1.23 (6H, s), 2.61 (3H, s), 2.68 (2H,
	125℃	s), 3.35 (4H, q, J=6.9), 4.49 (2H, s), 6.68 (2H, d, J=8.9), 7.04 (2H, d, J=8.9)
I-199	85-87°C	1.22 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.89 (3H, s),
1 199	00 07 0	3.92 (3H, s), 4.54 (2H, s), 7.01 (1H, d, J=7.9), 7.62 (1H, l)
]		d, J=1.3), 7.67 (1H, dd, J=7.9, 1.7)
I-200	137-	1.23 (6H, s), 2.11-2.22 (2H, m), 2.62 (2H, t, J=7.9),
	138℃	2.64 (3H, s), 2.67 (2H, s), 3.88 (2H, t, J=7.1), 4.52
		(2H, s), 6.81-6.84 (1H, m), 7.30-7.50 (3H, m)

(表32)

(X 0)		物性
化 合 物 番		A) IT
物 番 号		
-	 融点	NMR (CHCl ₃)
No	一种	Will (Shoily)
I-201	86.5-	1.22 (6H, s), 2.62 (3H, s), 2.67 (2H, s), 4.50 (2H, s), 6.71
1 201	87.5℃	(1H, t, $J=2.0$), 6.76-6.82 (2H, m), 7.02-7.13 (3H, m),
	_	7.29-7.37 (3H, m)
I-202	162-	1.25 (6H, s), 2.65 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	163℃	7.10-7.14 (2H, m), 7.33-7.46 (3H, m), 7.59-7.63 (4H, m)
I-203	56.5-	1.06 (6H, s), 2.51 (3H, s), 2.59 (2H, s), 4.14 (2H, s), 7.07
	57.5℃	(1H, dd, J=8.2, 1.3), 7.21-7.45 (8H, m)
I-204	97-99℃	1.24 (6H, s), 2.65 (3H, s), 2.68 (2H, s), 4.54 (2H, s),
		7.00-7.04 (1H, m), 7.25-7.26 (1H, m), 7.33-7.48 (5H, m),
		7.60-7.63 (2H, m)
1-205	95-96℃	1.21 (6H, s), 1.21 (6H, d, J=6.9), 2.61 (2H, s), 4.13(3H,
		s), 4.16 (2H, s), 6.77-6.81 (1H, m), 7.13-7.16 (2H, m),
		7.29-7.33 (1H, m)
I-206	128-	1.18 (6H, d, J=6.9), 1.22 (6H, s), 2.63 (3H, s), 2.66 (2H,
	129℃	s), 2.96-3.06 (1H, m), 4.48 (2H, s), 6.67 (1H, d, J=8.2),
		7.47 (1H, dd, J=8.2, 1.7), 7.59 (1H, d, J=2.0)
I-207	149-	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.71 (8H, m),
7 000	150°C	3.86 (3H, s), 4.53 (2H, s), 6.95-7.05 (3H, m) 1.23 (6H, s), 2.61 (3H, s), 2.67 (2H, s), 2.96 (6H, s), 4.50
I-208	124-	(2H, s), 6.74 (2H, d, J=8.2), 7.04 (2H, d, J=8.2).
7 000	126℃	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.96 (6H, s), 4.51
I-209	107- 109℃	(2H, s), 6.34 (1H, d, J=2.0), 6.38 (1H, d, J=8.0), 6.54 (1H,
•	1030	dd, J=8.0, 2.0), 7.24 (2H, d, J=8.0).
I-210	98-99℃	1.06 (3H, t, J=7.4), 1.23 (6H, s), 2.63 (5H, s), 2.65 (3H,
1 210	00 00 0	s), 2.99 (2H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (3H, m),
		7.15-7.20 (1H, m).
I-211	94-96℃	0.84 (3H, t, J = 7.4), 1.22 (6H, s), 1.49 (2H, sext, J =
		7.3), 2.63 (3H, s), 2.65 (2H, s), 2.72 (3H, s), 2.84 (2H,
		t, J = 7.4, 4.51 (2H, s), $6.90-7.05$ (3H, m), $7.10-7.15$
		(1H, m).

	·	
化 物 番 号		物性
No	融点	NMR (CHCl ₃)
I-212	98-99℃	1.02 (6H, t, J=7.4), 1.22 (6H, s), 2.61 (2H, s), 2.63 (3H, s), 3.06 (4H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (4H, m).
I-213	83-84℃	1.23 (6H, s), 2.64 (3H, s), 2.71 (2H, s), 4.57 (2H, s), 6.90-7.12 (3H, m)
I-214		1.19 (6H, d, J=6.9), 1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 3.06 (1H, sept, J=6.9), 4.49 (2H, s), 6.85 (1H, d, J=8.2), 7.14 (1H, dd, J=8.2, 2.3), 7.27 (1H, d, J=2.3)
I-215	83-85℃	1.23 (6H, s), 2.32 (3H, s), 2.63 (3H, s), 2.66 (2H, s), 2.71 (6H, s), 4.50 (2H, s), 6.75-6.80 (1H, m), 6.98 (1H, s), 6.97-7.00 (1H, m).
I-216	99- 100°C	1.23 (6H, s), 2.33 (3H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 4.50 (2H, s), 6.78 (2H, t, J=7.9), 6.91 (1H, d, J=7.9).
I-217	98-99℃	1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.67 (6H, s), 4.50 (2H, s), 6.81 (1H, s), 6.92 (2H, s).
I-218	117- 19℃	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.68 (6H, s), 4.50 (2H, s), 6.89 (1H, d, J=8.5), 6.99 (1H, d, J=2.0), 7.04 (1H, dd, J=7.9, 2.0).
I-219	68-70°C	1.22 (6H, s), 2.22 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 4.54 (2H, s), 6.93-6.98 (1H, m), 7.04 (2H, d, J=8.0).
I-220	97-99℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.72 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.94-7.05 (3H, m), 7.15-7.20 (1H, m).
I-221	118- 119℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.95 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.34 (1H, d, J=7.5), 6.38 (1H, s), 6.52 (1H, d, J=7.5,), 7.24 (1H, t, J=7.5).
I-222	74-76°C	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.33 (3H, s), 2.63 (2H, s), 2.70 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.78 (1H, d, J=7.5), 6.82 (1H, s), 6.91 (1H, t, J=7.5).

(表34)

化合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
110	MOL ATA	WHIT (Chel3)
I-223		1.22 (6H, s), 1.25 (6H, d, J=7.0), 1.34 (3H, t, J=7.4), 2.65
		(2H, s), 2.91 (1H, sept, J=7.0), 3.25 (2H, q, J=7.4), 4.50
		(2H, s), 6.98 (2H, d, J=8.2), 7.28 (2H, d, J = 8.2).
I-224		1.21 (6H, s), 2.62 (3H, s), 2.66 (2H, s), 2.97 (3H, d,
		J=4.9), 3.84 (3H, s), 4.51 (2H, s), 6.66 (1H, brs), 6.96
		(1H, d, J=7.9), 7.30-7.33 (1H, m), 7.49 (1H, d, J=1.3)
I-225	69-71°C	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.52 (2H, s), 6.49
		(1H, t, J=74.6), 7.04-7.26 (4H, m)
I-226		1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.50
		(1H, t, J=74.2), 7.00-7.05 (2H, s),
		7.11-7.16 (2H, m)
I-227	81-83℃	1.17 (6H, t, J=7.0), 1.23 (6H, s), 2.63 (3H, s),
		2.66 (2H, s), 3.35 (4H, q, J=7.0), 4.52 (2H, s),
		6.29 (1H, s), 6.30 (1H, d,t, J=8.2,2.3),
		6.49 (1H, dd, J=8.2, 2.3), 7.19 (1H, t, J=8.2).
I-228	106-	1.21 (6H, s), 2.61 (3H, s), 2.64 (2H, s), 2.70 (6H, s), 4.47
	107℃	(2H, s), 6.90 (2H, s), 6.93 (1H, s).
I-229	121-	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 4.48
	122℃	(2H, s), 6.50-6.70 (2H, m), 6.93 (1H, dd, J=8.5, 6.2).
I-230	85-86℃	1.21 (6H, s), 2.63 (3H, s), 2.64 (2H, s), 2.66 (6H, s), 4.49
		(2H, s), 6.74-6.79 $(2H, m), 6.93-6.98$ $(1H, m).$
I-231	82-84℃	1.23 (6H, s), 1.25 (3H, t, J=7.6), 2.62 (3H, s), 2.66 (2H,
		s), 2.67 (2H, q, J=7.6), 2.71 (6H, s), 4.50 (2H, s), 6.80
		(1H, d, J=7.6), 6.84 (1H, s), 6.93 (1H, d, J=7.6).
I-232	75-76℃	1.22 (3H, t, $J=7.6$), 1.23 (6H, s), 2.60 (2H, q, $J=7.6$), 2.63
		(3H, s), 2.64 (2H, s), 2.68 (6H, s), 4.50 (2H, s), 6.83 (1H,
		s), 6.93 (2H, s).
I-233	86-88℃	1.22 (6H, s), 1.33 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
		s), 3.24 (2H, q, J=7.4), 4.47 (2H, s), 6.92 (2H, s), 6.94(1H,
		s).

(表35)

化合		物性
物番		· ·
号		
No	融点	NMR (CHCl ₃)
I-234	70-71℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
		s), 3.25 (2H, q, J=7.4), 4.46 (2H, s), 6.60-6.68 (2H, m),
		6.92-6.94(1H, m).
I-235	80-82℃	1.22 (6H, s), 1.24 (3H, t, J=7.6), 1.33 (3H, t, J=7.4), 2.60
		(2H, q, J=7.6), 2.61 (2H, s), 2.71 (6H, s), 3.24 (2H, q, J=7.4), 4.47 (2H, s), 6.81 (1H, d, J=7.6), 6.94(1H, s),
		6.94 (1H, d, J=7.6).
I-236		1.03 (3H, t, J=7.3), 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.40
1 200		(3H, d, J=6.9), 1.61-1.89 (2H, m), 2.63 (2H, s), 3.15 (1H,
		sept, J=6.9), 3.95 (1H, q, J=6.9), 4.47 (2H, s), 6.89-6.92
		(1H, m), 7.13-7.20 (2H, m), 7.31-7.34 (1H, m)
I-237		1.05 (6H, d, J=6.6), 1.21 (6H, d, J=6.6), 1.23 (6H, s),
		1.98-2.08 (1H, m), 2.64 (2H, s), 3.16 (1H, sept, J=6.6),
		3.20 (2H, d, J=6.6), 4.49 (2H, s), 6.88-6.92 (1H, m),
I-238	102-	7.13-7.22 (2H, m), 7.30-7.35 (1H, m) 1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.61 (2H, s), 2.85-2.95
1 233	102°C	(1H, m), 3.19 (3H, d, J=4.6), 4.46 (2H, s), 6.73-6.79 (1H,
		m), 7.14-7.20 (2H, m), 7.29-7.34 (1H, m), 12.40 (1H, brs)
I-239	58-60℃	1.23 (6H, s), 2.17 (3H, s), 2.64 (3H, s), 2.65 (2H, s),
		2.70 (6H, s), 4.52 (2H, s), 6.63 (1H, d, J=7.9), 6.87 (1H,
		d , J=7.9), 7.14 (1H, d, J=7.9).
I-240	100-	1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 2.78 (6H, s), 3.89
	101℃	(3H, s), 4.52 (2H, s), 6.60-6.70 (2H, m), 6.94 (1H, d ,
I-241	82-83℃	J=7.9). 1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 2.70
1-241	04-03 ((6H, s), 4.52 (2H, s), 6.63 (1H, d,t, J=7.9,1.9),
	ļ	6.70 (1H, d, J=1.9), 7.14 (1H, d, J=7.9).
I-242	99-	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.81 (6H, s), 4.50
	100℃	(2H, s), 6.91 (1H, d,t, J=8.4,2.6), 7.06 (1H, d, J=8.4),
		7.14 (1H, d, J=2.6).
I-243	63-64℃	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 2.78 (6H, s), 3.89
		(3H, s), 4.52 (2H, s), 6.67 (1H, s), 6.70 (1H, d, J=7.9),
T 044	00.7000	6.81 (1H, d , J=7.9).
I-244	68-70℃	0.88 (6H, t, J=7.5), 1.22 (6H, d, J=6.9), 1.35 (3H, t, J=7.4), 1.50-1.70 (4H, m), 2.61 (2H, s), 3.15 (1H, sept,
		J=6.9), 3.29 (2H, q, $J=7.4$), 4.44 (2H, s), 6.89-6.92 (1H,
		m), 7.08-7.21 (2H, m), 7.30-7.35 (1H, m).

(表36)

物 番 別の 離点	化合		物性
日	1		17. CA
I-245 81-82°C 1.14 (6H, s), 1.20 (6H, d, J=6.9), 2.63 (2H, s), 3.06 (2H, s), 3.08 (1H, sept, J=6.9), 3.18 (3H, s), 6.74 (1H, dd, J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m)			
S), 3.08 (1H, sept, J=6.9), 3.18 (3H, s), 6.74 (1H, dd, J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m) I-246	No	融点	NMR (CHCI ₃)
S), 3.08 (1H, sept, J=6.9), 3.18 (3H, s), 6.74 (1H, dd, J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m) I-246			
J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m) I-246	I-245	81-82℃	
I-246			
1.55-1.74 (2H, m), 2.62 (2H, s), 3.03-3.11 (3H, m), 3.52-3.57 (2H, m), 6.73 (1H, dd, J=7.6, 1.7), 6.96-7.10 (2H, m), 7.21 (1H, dd, J=7.3, 1.7) I-247 68-70°C 1.11 (6H, s), 1.18 (6H, d, J=6.9), 1.19 (6H, d, J=6.9), 2.56 (2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H, sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m), 7.21 (1H, dd, J=7.9, 1.7) I-248 0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9), 2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H, sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71 (1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) I-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251 105- 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),			
3.52-3.57 (2H, m), 6.73 (1H, dd, J=7.6, 1.7), 6.96-7.10 (2H, m), 7.21 (1H, dd, J=7.3, 1.7) I-247 68-70°C 1.11 (6H, s), 1.18 (6H, d, J=6.9), 1.19 (6H, d, J=6.9), 2.56 (2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H, sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m), 7.21 (1H, dd, J=7.9, 1.7) I-248 0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9), 2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H, sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6), 6.71(1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.3), 7.87 (1H, dd, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-250 108- 1.22 (6H, s), 2.67 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-251 105- 1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m) I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 8.12 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),	I-246	47-49℃	
m), 7.21 (1H, dd, J=7.3, 1.7) I-247 68-70°C			
I-247 68-70°C 1.11 (6H, s), 1.18 (6H, d, J=6.9), 1.19 (6H, d, J=6.9), 2.56 (2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H, sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m), 7.21 (1H, dd, J=7.9, 1.7) I-248 0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9), 2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H, sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71 (1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) I-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251 105- 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.53 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 8.12 (1H, s).			
(2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H, sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m), 7.21 (1H, dd, J=7.9, 1.7) I-248 0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9), 2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H, sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) I-249 96-97℃ 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J=7.3), 2.1), 8.05 (1H, d, J=7.3,). I-250 108- 109℃ 1.24 (6H, s), 2.67 (3H, s), 2.69 (2H, s), 4.59 (2H, s), 7.15 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251 105- 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 113℃ 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),	7.045	00 500	
Sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m), 7.21 (1H, dd, J=7.9, 1.7) I-248	1-247	68-70°C	
7.21 (1H, dd, J=7.9, 1.7) I-248			
I-248			I .
2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H, sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) I-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3), 3.87 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 8.92-8.95 (1H, m). I-251 105- 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),	1-249		
sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7), 6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7) I-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, dd, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3), 1.87 (1H, dd, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (2H, s), 7.15 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251 105-	1-240		
1-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3), 1.87 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (2H, s), 7.15 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251	İ		
I-249 96-97°C 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04 (1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3,). I-250 108-			l
(1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87 (1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3,). I-250 108- 109°C	I-249	96-97℃	
(1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3,). I-250			
I-250 108- 109°C 1.24 (6H, s), 2.67 (3H, s), 2.69 (2H, s), 4.59 (2H, s), 7.15 (1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4), 7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4), 8.92-8.95 (1H, m). I-251 105- 107°C 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 133°C 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 120°C 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 113°C 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),			
109°C	I-250	108-	
1-251 105-		109℃	(1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4),
I-251 105- 107°C 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53 (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 133°C 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 120°C 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 113°C 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),			7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4),
107°C (2H, s), 6.87-6.90 (1H, m), 7.25-7.30 (1H, m), 7.96-7.99 (1H, m). I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),			8.92-8.95 (1H, m).
I-252 132- 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 133°C 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),	I-251		
I-252 132- 133°C 1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s), 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 120°C 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 113°C 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),		107℃	
133°C 4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m), 8.05-8.07 (1H, m) I-253 118- 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),	7 050	1.00	
8.05-8.07 (1H, m) 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),	1-252	B.	
I-253 118- 120°C 1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30 (2H, s), 8.12 (1H, s). I-254 112- 113°C 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),		133°C	
120°C	1_252	110	
I-254 112- 113°C 1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51 (2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),	1-203	i i	
113°C (2H, s), 6.76 (1H, d, $J = 8.1$), 7.35 (1H, dd, $J = 8.1$, 2.1),	1-254		
	1 204		
			7.92 (1H, d, $J = 2.1$).
I-255 109- 1.23 (6H, s), 1.40 (3H, t, J=7.0), 2.62 (3H, s), 2.66 (2H,	I-255	109-	
110°C s), 4.38 (2H, q, J=7.0), 4.51 (2H, s), 6.75 (1H, d, J= 8.1).			
7.35 (1H, dd, J=8.1, 2.1), 7.90 (1H, d, J=2.1).		-	

(表37)

	T	物性
No	融点	NMR (CHCI ₃)
I-256	75-76℃	1.03 (3H, t, J=7.6), 1.22 (6H, s), 1.76 (2H, sext, J= 7.6), 2.63 (3H, s), 2.65 (2H, s), 4.24 (2H, t, J=7.6), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1),
I-257	74-76°C	7.92 (1H, d, J=2.1). 1.24 (6H, s), 1.36 (6H, d, J=6.3), 2.63 (3H, s), 2.70 (2H, s), 4.51 (2H, s), 5.28 (1H, sept, J=6.3), 6.70 (1H, d, J=8.1), 7.32 (1H, dd, J=8.1, 2.1), 7.92 (1H, d, J=2.1).
I-258	102- 104℃	1.23 (6H, s), 2.58 (3H, s), 2.63 (2H, s), 2.69 (3H, s), 4.51 (2H, s), 7.20-7.26 (2H, m), 8.21 (1H, d, J=2.1).
I-259	81-83℃	1.23 (6H, s), 1.38 (3H, t, J=7.3), 2.63 (3H, s), 2.63 (2H, s), 3.18 (2H, q, J=7.3), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.21 (1H, d, J=2.1).
I-260	78-79℃	1.05 (3H, t, J = 7.4), 1.23 (6H, s), 1.75 (2H, sext, J=7.3), 2.63 (3H, s), 2.65 (2H, s), 3.15 (2H, t, J=7.4), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.20 (1H, d, J=2.1).
I-261	102- 103℃	1.23 (6H, s), 1.40 (6H, d, J=6.6), 2.63 (3H, s), 2.66 (2H, s), 4.00 (1H, sept, J=6.6), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.22 (1H, d, J=2.1).
I-262	109- 110℃	1.22 (6H, s), 2.61 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 3.80 (3H, s), 4.48 (2H, s), 6.47 (1H, dd, J=7.9, 2.1), 6.56 (1H, d, J=2.1), 6.95 (1H, d, J=7.9).
I-263	99- 100°C	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 2.64 (6H, s), 3.78 (3H, s), 4.48 (2H, s), 6.59 (1H, d, J=2.1), 6.64 (1H, dd, J=7.9, 2.1), 6.98 (1H, d, J=7.9).
I-264	114- 115℃	0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.65 (1H, d, J=7.9), 6.89 (1H, d, J=7.9), 7.13 (1H, t, J=7.9).
I-265	66-67℃	0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.63 (1H, dd, J=7.9,2.1), 6.70 (1H, d, J=2.1), 7.16 (1H, d, J = 7.9).
I-266	88-90°C	1.04 (6H, t, J=7.0), 1.24 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.17 (4H, q, J=7.0), 3.86 (3H, s), 4.51 (2H, s), 6.67 (1H, s), 6.70 (1H, d, J=7.9), 6.85 (1H, d, J=7.9).

(表38)

化 合物 番号		物性
No	融点	NMR (CHCl₃)
I-267	138- 140℃	0.82-0.92 (9H, m), 1.18 (3H, d, J=6.9), 1.51-1.65 (6H, m), 2.62 (2H, s), 2.65 (3H, s), 2.87 (1H, sept, J=6.9), 4.33 (1H, d, J=13.5), 4.59 (1H, d, J=13.5), 6.89-6.92 (1H, m), 7.13-7.28 (3H, m)
I-268	161- 163℃	0.89-0.95 (6H, m), 1.21 (6H, d, J=6.9), 1.25-1.54 (8H, m), 2.62 (2H, s), 2.65 (3H, s), 3.10 (1H, sept, J=6.9), 4.47 (2H, s), 6.88-6.92 (1H, m), 7.14-7.18 (2H, m), 7.31-7.34 (1H, m)
I-269		1.21 (6H, d, J=6.9), 1.65-1.88 (8H, m), 2.64 (3H, s), 2.75 (2H, s), 3.09 (1H, sept, J=6.9), 4.57 (2H, s), 6.90-6.94 (1H, m), 7.13-7.20 (2H, m), 7.30-7.35 (1H, m)
I-270		1.21 (6H, d, J=6.9), 1.37-1.54 (8H, m), 1.76-1.80 (2H, m), 2.65 (3H, s), 2.67 (2H, s), 3.09 (1H, sept, J=6.9), 4.54 (2H, s), 6.89 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)

(表39)

化 合物 番号		物性
No	融点	NMR (CHCl ₃)
I-271		1.04 (3H, s), 1.08 (3H, s), 1.29 (6H, d), J=6.9), 2.69(2H, s), 3.40 (1H, sept, J=6.9), 3.43 (3H, s), 3.51 (2H, s), 7.18-7.29 (2H, m), 7.36-7.45 (2H, m)
I-272		0.96 (3H, s), 1.05 (3H, s), 1.25 (3H, d, J=6.9), 1.26 (3H, d, J=6.9), 2.61 (1H, d, J=12), 2.70 (1H, d, J=12), 3.39 (1H, sept, J=6.9), 3.45-3.58 (2H, m), 7.02-7.07 (2H, m), 7.11-7.18 (1H, m), 7.38-7.45 (2H, m), 7.61-7.70 (2H, m)
1-273		0.84 (3H, s), 1.00 (3H, s), 1.25 (3H, d, J=6.9), 1.29 (3H, J=6.9), 2.43 (3H, s), 2.53 (1H, d, J=12), 2.64 (1H, d, J=12), 3.29 (1H, d, J=16), 3.42 (1H, d, J=16), 3.47 (1H, sept, J=6.9), 7.09-7.19 (2H, m), 7.24-7.29 (2H, m), 7.38-7.45 (2H, m), 7.81-7.86 (2H, m)
I-274		0.99 (6H, s), 1.19 (6H, d, J=6.9), 2.40 (3H, s), 2.67 (2H, s), 2.87 (1H, sept, J=6.9), 3.43 (2H, s), 7.11-7.29 (6H, m), 7.68 (2H, d, J=8.1)
I-275		1.07 (6H, s), 1.26 (6H, d, J=6.9), 1.38 (3H, t, J=7.2), 2.71 (2H, s), 2.93 (1H, sept, J=6.9), 3.51 (2H, s), 3.60 (2H, q, J=7.2), 7.20-7.30 (4H, m)
I-276		1.19 (6H, s), 1.23 (6H, d, J=6.9), 2.77 (2H, s), 2.87 (1H, sept, J=6.9), 3.58 (2H, s), 6.65-6.69 (2H, m), 6.91 (1H, d, J=7.5), 7.20 (1H, t, J=7.5), 7.51 (2H, d, J=9.3), 8.22 (2H, d, J=9.3)
I-277	1	0.99 (6H, s), 1.20 (6H, d, J=6.9), 2.67 (2H, s), 2.88 (1H, sept, J=6.9), 3.44 (2H, s), 3.85 (3H, s), 6.86-6.90 (2H, m), 7.11-7.26 (4H, m), 7.72-7.76 (2H, m)

(表40)

(38 4 0	,	
化 合物 番号		物性
No	融点	NMR (CHCl ₃)
1-278		1.03 (6H, s), 1.20 (6H, d, J=6.9), 2.70 (2H, s), 2.88 (1H, sept, J=6.9), 3.44 (2H, s), 7.08-7.31 (4H, m), 7.60 (1H, t, J=8.4), 8.04 (1H, d, J=8.4), 8.39 (d, J=8.4), 8.74 (1H, s)
1-279		1.01 (6H, s), 1.19 (6H, d, J=6.9), 2.69 (2H, s), 2.88 (1H, sept, J=6.9), 3.42 (2H, s), 7.09-7.32 (4H, m), 7.68 (2H, d, J=8.4), 7.92 (2H, d, J=8.4),
1-280		1.19 (3H, s), 1.21 (3H, s), 1.23-1.30 (6H, m), 2.62 (1H, d, J=12), 2.82 (1H, sept, J=6.9), 3.02 (1H, d, J=12), 3.46-3.70 (2H, m), 6.53-6.60 (2H, m), 6.86 (1H, d, J=7.8), 7.13 (1H, t, J=7.8), 7.28-7.40 (2H, m), 7.61-7.66 (1H, m), 7.90 (1H, dd, J=7.5, 1.2)

本発明化合物には、以下の表に示される化合物も含まれる。これらの化合物は、 上記実施例と同様に合成することができる。なお、表中の左カラムの数字は化合 物No. を表わす。

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
A-1	Н	Pr	Н	Н	Н	CSSMe	Me	Me
A-2	Pr	Н	CI	Н	Н	CSSMe	Me	Ме
A-3	Н	Bu ^s	Н	Н	Н	CSSMe	Me	Me
A-4	Н	Н	Bu⁵	H	Н	CSSMe	Me	Me
A-5	OPr	Н	H	Н	H	CSSMe	Ме	Ме
A-6	OBu	Н	Н	Н	Н	CSSMe	Me	Me
A-7	H	SEt	Н	Н	Н	CSSMe	Ме	Ме
A-8	Н	Н	SEt	Н	Н	CSSMe	Me	Ме
A-9	Н	SPr'	Н	Н	Н	CSSMe	Me	Me
A-10	Н	Н	SPr ⁱ	Н	Н	CSSMe	Me	Me
A-11	Ξ	OCHF ₂	Н	Н	Н	CSSMe	Ме	Ме
A-12	Pr ⁱ	Н	NMe ₂	Н	Н	CSSMe	Ме	Ме
A-13	Pr ⁱ	NMe ₂	H	Ι	Η	CSSMe	Ме	Me
A-14	Et	Et	Ι	Ι	H	CSSMe	Ме	Me
A-15	Η	Et	Et	Ι	H	CSSMe	Ме	Ме
A-16	Bu ⁱ	Н	Н	Ι	Ι	CSSMe	Me	Me
A-17	Η	Bu [/]	H	Ι	Ι	CSSMe	Me	Ме
A-18	Н	Н	Bu ⁱ	I	Ι	CSSMe	Ме	Me
A-19	Н	N(Me)Et	I	Ι	I	CSSMe	Me	Ме
A-20	Η	N(Me)Pr	Ι	Ι	Ξ	CSSMe	Me	Me
A-21	NPr ₂	Н	Н	Ι	I	CSSMe	Ме	Ме
A-22	Н	NPr ₂	H	H	Н	CSSMe	Me	Ме
A-23	Н	H	·NPr ₂	H	Η	CSSMe_	Me	Ме
A-24	Н	NPr ₂	Me	H	Н	CSSMe	Ме	Me
A-25	Н	Bu ^t	Н	Н	H	CSSMe	Ме	Ме

(表41-B)

R ^Ā _Ì	R ⁵				- 55	R ⁶	R ⁷	R ⁸
	R¹	R ²	R ³	R ⁴	R⁵			Me
A-26	Н	CH,OMe	<u> </u>	_ H _	Н	CSSMe	Me	
A-27	Н	Н	CH ₂ OMe	H	Н	CSSMe	Me	Me
A-28	CH,OEt	Н	н	Н	<u>H</u>	CSSMe	Me	Ме
A-29	н	CH,OEt	Н	Н	Н	CSSMe	Me	Me
A-30	Н	Н	CH,OEt	Н	Н	CSSMe	Me	Me
A-31	CH,SMe	Н	Н	Н	Н	CSSMe	Me	Me
A-32	H H	CH,SMe	Н	Н	Н	CSSMe	Me	Me
A-33	H 1	Н	CH,SMe	Н	Н	CSSMe	Me	Me
A-34	CH,SEt	— Н	Н	Н	Н	CSSMe	Me	Me
	H	CH,SEt	Н	Н	Н	CSSMe	Me	Me
A-35	Н	H	CH,SEt	Н	Н	CSSMe	Me	Me
A-36		—— <u>'</u> '	H	H	Н	CSSMe	Me	Ме
A-37	CH,NMe,	CH,NMe,	— ' '	H	H	CSSMe	Me	Ме
A-38	H	H	CH,NMe,	Н	Н	CSSMe	Ме	Me
A-39	CH,NEt,	Н	Н	Н	Н	CSSMe	Me	Me
A-40 A-41	H	CH,NEt,	Н	Н	Н	CSSMe	Ме	Ме
A-41 A-42	H	Н	CH,NEt,	Н	H	CSSMe	Me	Me
A-43	OCH,CH,OM	Н	Н	Н	н	CSSMe	Ме	Ме
A-44	Н	OCH, CH, OMe	Н	Н	Н	CSSMe	Me	Me
A-45	Н	Н	OCH,CH,OM e	Н	Н	CSSMe	Ме	Ме
A-46	OCH,CH,SM	Н	Н	Н	н	CSSMe	Ме	Me
A-47	 	OCH, CH, SMe	Н	Н	Н	CSSMe	Me	Me
A-48	н	н	OCH,CH,SM e	Н	Н	CSSMe	Ме	Me
A-49	OCH, CH, NM e,	Н	Н	Н	Н	CSSMe	Me	Me
A-50	H	OCH, CH, NMe,	Н	Н	Н	CSSMe	Me	Ме

(表41-C)

$$R^2$$
 R^3
 R^4
 R^5
 R^6

	R'	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
A-51	Н	Н	OCH, CH, NMe,	Н	Н	CSSMe	Ме	Me
A-52	F	Н	F	Н	Н	CSSMe	Ме	Ме
A53	Cl	Н	CI	Н	Н	CSSMe	Me	Me
A-54	OMe	CI	Н	Н	Н	CSSMe	Me	Me
A-55	OMe	Н	CI	Н	H	CSSMe	Ме	Ме
A-56	ОМе	Ме	H	Н	Н	CSSMe	Ме	Ме
A-57	OMe	Et	Н	H	Н	CSSMe	Me	Me
A-58	OMe	Н	Et	Ι	Н	CSSMe	Ме	Me
A-59	OMe	Н	Pr ⁱ	Ξ	Н	CSSMe	Me	Me
A-60	OMe	<u>·</u> _H	OEt	Н	Н	CSSMe	Ме	Ме
A-61	ОМе	Н	OPr	Н	Н	CSSMe	Ме	Ме
A-62	OMe	NMe,	Н	Н	Н	CSSMe	Ме	Ме
A-63	OMe	NEt,	Н	Н	Н	CSSMe	Ме	Me
A-64	OEt	NMe,	Н	Н	Н	CSSMe	Ме	Me
A-65	OEt	NEt,	Н	Н	Н	CSSMe	Ме	Me
A-66	Н	ŌMe	F	Н	Н	CSSMe	Me	Ме
A-67	Н	OMe	CI	Н	Н	CSSMe	Ме	Ме
A-68	Н	OMe	OPr ⁱ	Ι	Ι	CSSMe	Ме	Ме
A-69	H	OEt	OPr	Ι	Ι	CSSMe	Me	Me
A-70	Н	OEt	OPr ⁱ	Н	Ι	CSSMe	Ме	Ме
A-71	Н	OEt	OBu	Н	Ι	CSSMe	Me	Ме
A-72	SMe	SMe	Н	Н	H	CSSMe	Me	Me
A-73	SMe	Н	SMe	Н	Η	CSSMe	Ме	Ме
A-74	NMe,	NMe,	Н	Н	Η	CSSMe	Me	Ме
A-75	NMe,	Н	NMe,	Н	Н	CSSMe	Ме	Ме

(表42)

n	<u> </u>							
	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
B-1	Н	Η	I	Η	H	COSMe	Me	Me
B-2	CI	Τ	Ι	I	H	COSMe	Me_	Me
B-3	Br	H	H	Н	Η	COSMe	Me	Ме
B-4	Me	Н	Н	H	Н	COSMe	Ме	Me
B-5	Et	H	Н	Η	Ι	COSMe	Me	Me
B-6	Bu	Н	Н	_ н	H	COSMe	Ме	Me
B-7	Bu'	Н	Н	Н	H	COSMe	Ме	Me
B-8	Bu'	Н	H	H	H	COSMe	Ме	Me
B-9	OEt	H	Н	H	Η	COSMe	Ме	Me
B-10	OPr	Η	Н	Η	Ι	COSMe	Me	Me
B-11	OCHF ₂	Н	Н	Н	I	COSMe	Me	Me
B-12	OCF ₃	Н	Н	Ι	Ι	COSMe	Ме	Me
B-13	CF ₃	H	H	Τ	Н	COSMe	Me	Me
B-14	SMe	Н	Н	Τ	Н	COSMe	Ме	Me
B-15	SEt	Н	Н	Ŧ	Ι	COSMe	Me	Me
B-16	SPr	Н	Н	H	Η	COSMe	Me	Me
B-17	NMe ₂	Н	Н	Τ	Н	COSMe	Me	Me
B-18	NEt ₂	Н	Н	Η	Н	COSMe	Me	Ме
B-19	Н	CI	H	Η	H	COSMe	Me	Ме
B-20	Н	Br	Н	Н	H	COSMe	Me	Ме
B-21	Н	Me	H	Н	Н	COSMe	Me	Me
B-22	Н	Et	Н	H	Н	COSMe	Me	Me
B-23	Н	Pr	Н	Н	Н	COSMe	Me	Me_
B-24	Н	Bu	Н	Н	Н	COSMe	Me	Me
B-25	Н	Bu ⁱ	Н	Н	Н	COSMe	Ме	Me

(表43)

	R¹	R ²	R ³	R⁴	R⁵	T D6	57	т
B-26	H	Bus	H			R ⁶	R ⁷	Rª
	H			H	H	COSMe	Me	Me_
B-27		Bu'	H	H	<u> </u>	COSMe	Me	Me
B-28	H	OMe	H	Н	<u> </u>	COSMe	Me	Me
B-29	Н	OEt	Н	H	Н	COSMe	Ме	Me
B-30	. H	OPr	Н	Н	Н	COSMe	Me	Me
B-31	Н	OCHF ₂	<u>H</u>	Н	H	COSMe	Me	Me
B-32	H	OCF ₃	Н	Н	Н	COSMe	Me	Me
B-33	H	CF₃	Н	Н	Н	COSMe	Me	Me
B-34	H	SMe	Н	Н	H	COSMe	Me	Me
B-35	<u> </u>	SEt	Н	н	Н	COSMe	Me	Me
B-36	Н	SPr ⁱ	Н	Н	Н	COSMe	Me	Me
B-37	Н	NMe ₂	H	Н	Н	COSMe	Me	Me
B-38	Н	NEt ₂	Н	Н	Н	COSMe	Me	Me
B-39	Н	Н	CI	Н	Н	COSMe	Me	Me
B-40	Н	Н	Br	H	Н	COSMe	Me	Me
B-41	H	Н	Me	H	Н	COSMe	Ме	Me
B-42	H	#	Pr	Н	Н	COSMe	Me	Me
B-43	H	Н	Bu	Н	H	COSMe	Me	Me
B-44	H	H	Bu [/]	Н	Н	COSMe	Me	Me
B-45	Н	Η	Bu⁵	Н	Н	COSMe	Me	Me
B-46	Н	Н	But	Н	Н	COSMe	Me	Me
B-47	Н	Н	OMe	Н	Н	COSMe	Me	Me
B-48	Н	H	OEt	Н	Н	COSMe	Me	Me
B-49	Н	<u>H</u>	OPr	Н	H	COSMe	Me	Me
B-50	Н	H	OCHF ₂	Н	H	COSMe	Ме	Me

(表44)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R²	R³	R⁴	R⁵	R⁵	R ⁷	R⁵
B-51	H	H	OCF ₃	Н	Н	COSMe	Ме	Me
B-52	Н	Н	CF₃	Н	Н	COSMe	Ме	Me
B-53	Н	Н	SMe	Н	Τ	COSMe	Me	Ме
B-54	Н	Н	SEt	Н	Ι	COSMe	Me	Me
B-55	Н	Н	SPr ⁱ	Н	Н	COSMe	Me	Ме
B-56	Н	Τ	NMe ₂	Н	Τ	COSMe	Ме	Ме
B-57	Н	Н	NEt ₂	Н	Н	COSMe	Ме	Me
B-58	Me	Me	Н	Ŧ	Η	COSMe	Ме	Ме
B-59	Н	Me	Me	Н	I	COSMe	Me	Me
B-60	Et	Et	Н	H	H	COSMe	Ме	Me
B-61	Н	Et	Et	Н	H	COSMe	Me	Me
B-62	OMe	Me	Н	H	H	COSMe	Me	Me
B-63	OMe	Н	Me	Н	Н	COSMe	Ме	Me
B-64	NMe ₂	Me	Н	Н	H	COSMe	Me	Ме
B-65	Н	NMe ₂	Me	Н	Н	COSMe	Me	Me
B-66	Me	NMe ₂	Н	Н	Н	COSMe	Ме	Me
B-67	NMe ₂	CI	Н	Н	Н	COSMe	Me	Me
B-68	Me	NEt ₂	H	H	Н	COSMe	Ме	Me
B-69	Н	NEt ₂	Me	Н	Н	COSMe	Me	Me
B-70	Pr ⁱ	Н	F	Н	Н	COSMe	Me	Me

(表45)

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
C-1	Н	Н	Н	Н	Н	CSSEt	Me	Ме
C-2	CI	Н	Н	Н	Н	CSSEt	Me	Me
C-3	Br	Н	Н	Н	Н	CSSEt	Ме	Ме
C-4	Ме	Н	Н	Н	Н	CSSEt	Ме	Me
C-5	Et	Н	Н	Н	Н	CSSEt	Ме	Me
C-6	Pr	H	Н	Н	Ι	CSSEt	Ме	Me
C-7	Bu	Н	Н	Н	Н	CSSEt	Ме	Me
C-8	Bu ⁱ	H	Н	Н	Η	CSSEt	Ме	Me
C-9	Bu ^t	H	Н	Н	H	CSSEt	Ме	Ме
C-10	OMe	Ι	Н	Н	H	CSSEt	Ме	Me
C-11	OPr	Η	Н	Н	Ŧ	CSSEt	Ме	Ме
C-12	OCHF ₂	Ι	Н	Н	I	CSSEt	Ме	Ме
C-13	OCF₃	Ι	H	Η	Ι	CSSEt	Me	Ме
C-14	CF ₃ _	Ι	Н	H	H	CSSEt	Ме	Ме
C-15	SEt	I	Н	H	Ι	CSSEt	Ме	Ме
C-16	SPr'	Ι	H	Η	I	CSSEt	Ме	Ме
C-17	NEt ₂	H	H	Н	Н	CSSEt	Me	Me
C-18	Н	ō	Н	Η	Ή	CSSEt	Me_	Ме
C-19	Н	Br	Н	H	Ι	CSSEt	Me	Ме
C-20	Н	Ме	Н .	H	Η	CSSEt	Me	Me
C-21	H	Et _	Н Н	Н	H	CSSEt	Ме	Me
C-22	Н	Pr	H	Η	H	CSSEt	Ме	Ме
C-23	Н	Bu	Н	Н	Н	CSSEt	Ме	Ме
C-24	Н	Bu ⁱ	Н	Η	H	CSSEt	Me	Ме
C-25	Н	Bu⁵	Н	Н	Н	CSSEt	Ме	Ме

(表46)

$$R^{2} \xrightarrow{R^{1}} S \xrightarrow{R^{7}} R^{8}$$

$$R^{3} \xrightarrow{R^{4}} R^{5}$$

H' I	H~	_						
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
C-26	Н	Bu'	Н	Η	Η	CSSEt	Me	Me_
C-27	Н	OMe	Н	Н	H	CSSEt	Ме	Me
C-28	I	OEt	Н	Н	H	CSSEt	Me	Me
C-29	H	OPr	Н	Н	H	CSSEt	Me	Me
C-30	H	OCHF ₂	Н	Н	Н	CSSEt	Me	Me
C-31	Н	OCF ₃	Н	Н	Н	CSSEt	Ме	Ме
C-32	Н	CF ₃	Н	Н	Н	CSSEt	Ме	Ме
C-33	Н	SMe	Н	Н	Н	CSSEt	Ме	Ме
C-34	Н	SEt	Η	Н	Н	CSSEt	Ме	Ме
C-35	Н	SPr ⁱ	Н	Н	H	CSSEt	Ме	Ме
C-36	Н	NEt ₂	Н	Н	Н	CSSEt	Ме	Ме
C-37	Н	Н	CI	Н	Н	CSSEt	Ме	Ме
C-38	Н	Н	Br	Н	Н	CSSEt	Me	Ме
C-39	Н	Н	Ме	Н	Н	CSSEt	Me	Me
C-40	Н	Н	Et	Н	Н	CSSEt	Ме	Me
C-41	Н	Н	Pr	Н	Н	CSSEt	Me	Me
C-42	Н	Н	Bu	H	Н	CSSEt	Me	Me
C-43	Н	Н	Bu ⁱ	Н	Н	CSSEt	Me	Me
C-44	Н	Н	Bus	Н	Н	CSSEt	Ме	Me
C-45	Н	Н	Bu'	Н	Н	CSSEt	Me	Me
C-46	Н	Н	OMe	Н	Н	CSSEt	Me	Me
C-47	Н	Н	OEt	Н	Н	CSSEt	Ме	Me
C-48	Н	Н	OPr	Н	Н	CSSEt	Ме	Ме
C-49	Н	Н	OCHF ₂	Н	Н	CSSEt	Me	Ме
C-50	Н	Н	OCF ₃	Н	Н	CSSEt	Ме	Ме

(表47)

	R ¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
C-51	Н	Н	CF₃	Н	Н	CSSEt	Me	Me
C-52	H	H	SMe	Н	Н	CSSEt	Me	Me
C-53	Н	Н	SEt	Н	Н	CSSEt	Me	Me
C-54	Н	Н	SPr ⁱ	Н	Н	CSSEt	Me	Me
C-55	H	Н	NMe ₂	Н	Н	CSSEt	Me	Me
C-56	Н	Н	NEt ₂	Н	Н	CSSEt	Ме	Me
C-57	Me	Me	Н	Н	H	CSSEt	Me	Me
C-58	Н	Me	Me	Н	Н	CSSEt	Ме	Me
C-59	Et	Et	Н	H	Н	CSSEt	Ме	Me
C-60	Н	Et	Et	Н	Н	CSSEt	Ме	Me
C-61	OMe	Me	H	Н	Н	CSSEt	Me	Me
C-62	OMe	Н	Ме	Τ	H	CSSEt	Me	Ме
C-63	NMe ₂	Me	H	Η	Н	CSSEt	Ме	Ме
C-64	Н	NMe ₂	Ме	Н	Η	CSSEt	Ме	Me
C-65	Me	NMe ₂	Ι	Н	Н	CSSEt	Me	Me
C-66	NMe ₂	CI	I	Ι	Ι	CSSEt	Me	Me
C-67	Me	NEt ₂	Η	Ξ	Ι	CSSEt	Ме	Ме
C-68	Н	NEt ₂	Me	I	I	CSSEt	Ме	Me
C-69	Pr ⁱ	H	F	I	H	CSSEt	Me	Ме
C-70	OMe	Η	ОМе	I	I	CSSEt	Me	Me
C-71	Н	OMe	ОМе	H	Н	CSSEt	Me	Ме
C-72	Н	OMe	OEt	Н	Н	CSSEt	Ме	Me
C-73	H	OEt	OMe	Н	Н	CSSEt	Ме	Ме
C-74	Н	OEt	OEt	Н	H	CSSEt	Ме	Me
C-75	ОМе	Н	Me	Н	Н	CSSEt	Ме	Ме

(表48)

$$R^{3} \xrightarrow{R^{1}} R^{1} \xrightarrow{R^{6}} R^{8}$$

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
D-1	Br	Н	Н	Н	H	COSEt	Me	Me
D-2	Bu ⁱ	H	H	Н	Ι	COSEt	Ме	Me
D-3	OPr	Н	Н	Н	H	COSEt	Me	Me
D-4	OCHF ₂	H	Н	H	Н	COSEt	Me	Me
D-5	OCF ₃	Н	Н	Н	Н	COSEt	Me	Ме
D-6	NEt ₂	Н	H	H	Ξ	COSEt	Ме	Ме
D-7	Н	CI	H	Н	Ξ	COSEt	Me	Me
D-8	Н	Br	Ι	H	Н	COSEt	Ме	Me
D-9	Н	Et	Ι	Ι	Ι	COSEt	Me	Ме
D-10	Н	Pr	Ξ	Ι	Η	COSEt	Ме	Ме
D-11	Н	Bu	I	Ξ	Τ	COSEt	Ме	Ме
D-12	H	Bu ⁱ	H	H	Η	COSEt	Ме	Ме
D-13	Н	Bu⁵	Ι	Τ	Η	COSEt	Ме	Me
D-14	Н	Bu ^t	Ŧ	I	Ι	COSEt	Ме	Me
D-15	Н	OEt	Τ	Σ	I	COSEt	Ме	Ме
D-16	Н	OPr	Ξ	Ι	Ι	COSEt	Me	Ме
D-17	Н	OCHF ₂	Η	Ι	I	COSEt	Ме	Ме
D-18	Н	OCF₃	Ι	Ι	I	COSEt	Ме	Ме
D-19	H	CF ₃	Η	Ι	I	COSEt	Ме	Ме
D-20	Н	SMe	Η	H	Ι	COSEt	Me	Ме
D-21	H	SEt	Н	Η	Η	COSEt	Ме	Me
D-22	Н	SPr ⁱ	Н	Н	Ι	COSEt	Ме	Me
D-23	H	NMe₂	Η	Η	Н	COSEt	Me	Me
D-24	Н	NEt ₂	Н	Н	Н	COSEt	Me	Me
D-25	Н	Н	Br	Н	Н	COSEt	Me	Me

(表49)

	R¹	R ²	₽³	R⁴	R⁵	R ⁶	R ⁷	Rª
D-26	H	Н	Et	Н	Н	COSEt	Me	Me
D-27	H	H	Pr	Н	Н	COSEt	Me	Me
D-28	Н	Η	Bu	Н	Н	COSEt	Me	Me
D-29	Э	Н	Bu'	Н	Н	COSEt	Me	Me
D-30	Н	H	Bus	H	Н	COSEt	Me	Me
D-31	Н	Н	Bu ^t	Н	Н	COSEt	Me	Me
D-32	Н	Н_	OMe	Н	Н	COSEt	Ме	Me
D-33	Н	Н	OEt	Ι	Н	COSEt	Ме	Me
D-34	H	Н	OPr	Н	Н	COSEt	Me	Me
D-35	Н	Н	OCHF ₂	Τ	Н	COSEt	Ме	Me
D-36	H	Н	OCF₃	Ι	Н	COSEt	Me	Me
D-37	Н	Н	CF₃	I	Н	COSEt	Me	Me
D-38	Н	Н	SMe	Ι	Ι	COSEt	Me	Ме
D-39	Н	Н	SEt	I	H	COSEt	Me	Me
D-40	Н	Н	SPr ⁱ	Ι	Ι	COSEt	Me	Ме
D-41	Н	Н	NMe ₂	H	Ι	COSEt	Me	Ме
D-42	Н	Н	NEt ₂	Н	Ξ	COSEt	Me	Ме
D-43	Et	Et	H	Н	I	COSEt	Ме	Ме
D-44	Н	Et	Et	Н	I	COSEt	Me	Me
D-45	OMe	Me	Н	Н	H	COSEt	Me	Me
D-46	OMe	H	Me	Н	Н	COSEt	Me	Me
D-47	NMe ₂	Me	H	H	н	COSEt	Me	Me
D-48	Н	NMe ₂	Ме	Н	Н	COSEt	Ме	Me
D-49	Н	OEt	OMe	Н	Н	COSEt	Ме	Me
D-50	Н	OEt	OEt	н	H	COSEt	Ме	Ме

(表50)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R ²	R³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
E-1	Ξ	Н	H	Н	Н	CSSMe	Et	Et
E-2	CI	Н	Н	Н	Н	CSSMe	_ Et	Et
E-3	Br	Ι	Н	Н	Н	CSSMe	Et	Et
E-4	Me	Ι	Н	Н	Н	CSSMe	Et	Et
E-5	Et	Ξ	Н	Н	H	CSSMe	Et	Et
E-6	Pr	Ι	Ι	Η	H	CSSMe	Et	Et
E-7	Bu	H	H	Н	Ξ	CSSMe	Et	Et
E-8	Bu ⁱ	Ι	Ή	Ι	Η	CSSMe	Et	Et
E-9	Bu¹	Ι	I	Ι	H	CSSMe	Et	Et
E-10	OMe	Ι	H	Ι	Η	CSSMe	Et	Et
E-11	OEt	Ι	Η	I	H	CSSMe	Et	Et
E-12	OPr ⁱ	Ι	Ι	Ι	H	CSSMe	Et	Et
E-13	OPr	Ξ	Τ	x	Ξ	CSSMe	Et	Et
E-14	OCHF ₂	H	Η	I	Ι	CSSMe	Et	Et
E-15	OCF ₃	Ŧ	H	Ξ	Η	CSSMe	Et	Et
E-16	CF ₃	Ι	H	Ξ	Ξ	CSSMe	Et	Et
E-17	SMe	I	Ι	Ι	Ξ	CSSMe	Et	Et
E-18	SEt	Ŧ	I	I	Ι	CSSMe	Et	Et
E-19	SPr ⁱ	Ι	I	Ι	Ξ	CSSMe	_ Et _	Εt
E-20	NMe₂	Ι	Ι	Ι	Ξ	CSSMe	Et	Et
E-21	NEt ₂	Ι	H	Ξ	Ή	CSSMe	Et	Et
E-22	Н	C	H	Η	Ι	CSSMe	Et	Et
E-23	Н	Br	H		Η	CSSMe	Et	Et
E-24	Н	Me	H_	Τ	Τ	CSSMe	Et	Et
E-25	H	Et	Н	Н	Н	CSSMe	Et	Et

(表51)

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
E-26	H	Pr	Н	Н	Н	CSSMe	Et	Et
E-27	Н	Pr ⁱ	Н	Н	Н	CSSMe	Et	Et
E-28	Ξ	Bu	Н	Н	Н	CSSMe	Et	Et
E-29	Ξ	Bu'	Н	H	Н	CSSMe	Et	Et
E-30	Ι	Bu⁵	Н	H	H	CSSMe	Et	Et
E-31	Ξ	Bu ^r	Н	Н	Н	CSSMe	Et	Et
E-32	Ι	OMe	Н	Τ	Ι	CSSMe	Et	Et
E-33	Ξ	OEt	Ι	I	Τ	CSSMe	Et	Et
E-34	Ξ	OPr	Τ	Τ	H	CSSMe	Et	Et
E-35	Ι	OPr ⁱ	Ι	Ι	H	CSSMe	Et	Et
E-36	Ι	OCHF ₂	Η	Η	Н	CSSMe	Εť	Et
E-37	Ŧ	OCF₃	Η	H	Η	CSSMe	Et	Et
E-38	Н	CF ₃	Ι	Η	Η	CSSMe	Ĕ	Et
E-39	Η	SMe	Ι	Н	H	CSSMe	Et	Et
E-40	Ι	SEt	Ι	Н	Ι	CSSMe	Et	Et
E-41	Τ	SPr ⁱ	I	H	Ή	CSSMe	Et	Et
E-42	H	NMe ₂	Н	Н	H	CSSMe	Et	Et
E-43	H_	NEt ₂	Ι	Н	Η	CSSMe	Et	_ Et
E-44	Н	Н	CI	Η	Н	CSSMe	Et	Et
E-45	H	Н	Br	H	Ι	CSSMe	Et	Et
E-46	H	Н	Ме	Н	Н	CSSMe	<u>E</u> t	_Et
E-47	Н	Н	Et	H	<u> </u>	CSSMe	Et	Et
E-48	Н	Н	Pr	Н	Н	CSSMe	Et	Et
E-49	H	Н	Pr'	Н	Н	CSSMe	Et	Et
E-50	H	H	Bu	Η .	Н	CSSMe	Et	Et

(表52)

R1	n r	7							
E-51 H H Bu' H H CSSMe Et Et Et E-52 H H Bu's H H CSSMe Et Et Et Et E-53 H H H Bu' H H CSSMe Et Et Et Et E-54 H H OMe H H CSSMe Et Et Et Et E-55 H H OEt H H CSSMe Et Et Et Et E-55 H H OPr H H CSSMe Et Et Et Et E-56 H H OPr H H CSSMe Et Et Et Et E-57 H H OPr' H H CSSMe Et Et Et Et E-58 H H OCHF2 H H CSSMe Et Et Et Et E-59 H H OCF3 H H CSSMe Et Et Et Et E-59 H H CF3 H H CSSMe Et Et Et Et E-60 H H CF3 H H CSSMe Et Et Et Et E-61 H H SEt H H CSSMe Et Et Et Et E-62 H H SEt H H CSSMe Et Et Et Et E-63 H H SPr' H H CSSMe Et Et Et Et E-64 H H NMe2 H H CSSMe Et Et Et E-65 H H NEt2 H H CSSMe Et Et Et E-66 Me NMe2 H H CSSMe Et Et Et E-67 NMe2 CI H H H CSSMe Et Et Et E-68 Me NEt2 H H CSSMe Et Et Et E-69 H NEt2 H H CSSMe Et Et Et E-69 H NEt2 H H CSSMe Et Et Et E-69 H NEt2 H H CSSMe Et Et Et E-70 Pr' H F H H CSSMe Et Et Et E-71 OMe H OMe OMe H H CSSMe Et Et Et E-72 H OMe OMe H H CSSMe Et Et Et E-73 H OMe OMe H H CSSMe Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe H H CSSMe Et Et Et Et E-74 H ORE OMe Et Et Et Et Et Et ET E-74 H ORE OMe Et Et Et Et ET E-74 H ORE OMe H H CSSMe Et Et Et Et ET E-74 H ORE OMe ET ET ET ET ET ET ET ET ET E		R¹	R ²	R ³	R⁴	R⁵	₽°	R ⁷	R ⁸
E-52 H H Bus H H CSSMe Et Et E-53 H H Bus H H CSSMe Et Et E-54 H H OMe H H CSSMe Et Et E-55 H H OEt H H CSSMe Et Et E-56 H H OPr H H CSSMe Et Et E-56 H H OPr H H CSSMe Et Et Et E-57 H H OPr H H CSSMe Et	F-51			Bu ⁱ	Н	Н	CSSMe	Et	Et
E-53 H H Bu' H H CSSMe Et Et E-54 H H OMe H H CSSMe Et Et E-55 H H OEt H H CSSMe Et Et E-56 H H OPr' H H CSSMe Et Et E-57 H H OCHF2 H H CSSMe Et Et E-58 H H OCHF2 H H CSSMe Et Et Et E-59 H H OCF3 H H CSSMe Et			H	Bu⁵	Н	Н	CSSMe	Et	Et
E-54 H H OME H H CSSME Et Et E-55 H H OEt H H CSSME Et Et E-56 H H OPr H H CSSME Et Et E-57 H H OPr H H CSSME Et Et E-58 H H OCHF2 H H CSSME Et Et E-59 H H CSSME Et Et E-60 H H CF3 H H CSSME Et Et E-61 H H SME H CSSME Et Et E-62 H H SET H CSSME ET ET E-63 H H CSSME ET ET E-64 H H NMe2 H H CSSME ET ET E-65 H H NET2 H H CSSME ET ET E-66 Me NMe2 H H CSSME ET ET E-67 NMe2 CI H H CSSME ET ET E-69 H NET2 ME H H CSSME ET ET E-70 Pr' H F H H CSSME ET ET E-71 OME H OME OME H H CSSME ET ET E-73 H OME OET H H CSSME ET ET E-74 H OET OME H CSSME ET ET E-75 H H CSSME ET ET E-76 F H CSSME ET ET E-77				Bu ^t	H	Н	CSSMe	Et	Et
E-55 H H OEt H H CSSMe Et Et E-56 H H OPr H H CSSMe Et Et E-57 H H OPr' H H CSSMe Et Et E-58 H H OCHF2 H H CSSMe Et Et E-59 H H CSSMe Et Et E-60 H H CF3 H H CSSMe Et Et E-61 H H SMe H H CSSMe Et Et E-62 H H SEt H H CSSMe Et Et E-63 H H SPr' H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H CSSMe Et Et E-67 NMe2 CI H H CSSMe Et Et E-68 Me NEt2 H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pr' H F H H CSSMe Et Et E-71 OME H OME OME H H CSSME Et Et E-73 H OME OET H H CSSME ET ET E-74 H OET OME ET ET				OMe	H	Н	CSSMe	Et	Et
E-56			Н		H	Н	CSSMe	Et	Et
E-57 H H OPr' H H CSSMe Et Et E-58 H H OCHF ₂ H H CSSMe Et Et E-59 H H CSSMe Et Et E-60 H H CF ₃ H H CSSMe Et Et E-61 H H SMe H H CSSMe Et Et E-62 H H SEt H H CSSMe Et Et E-63 H H SPr' H H CSSMe Et Et E-64 H H NMe ₂ H H CSSMe Et Et E-65 H H NEt ₂ H H CSSMe Et Et E-66 Me NMe ₂ H H CSSMe Et Et E-67 NMe ₂ CI H H H CSSMe Et Et E-68 Me NEt ₂ H H CSSMe Et Et E-69 H NEt ₂ Me H H CSSMe Et Et E-70 Pr' H F H H CSSMe Et Et E-71 OME H OME OME H H CSSMe Et Et E-73 H OME OME H H CSSME Et Et E-74 H OEt OME H CSSME Et Et E-75 Et E-74 H OME OME H H CSSME ET ET				OPr	H	Н	CSSMe	Et	Et
E-58				OPr'	Н	Н	CSSMe	Et	Et_
E-59 H H OCF3 H H CSSMe Et Et E-60 H H CF3 H H CSSMe Et Et E-61 H H SMe H H CSSMe Et Et E-62 H H SEt H H CSSMe Et Et E-63 H H SPri H H CSSMe Et Et E-63 H H NMe2 H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et Et E-65 H H NEt2 H H CSSMe Et			Н	OCHF,	Н	Н	CSSMe	Et	Et
E-60 H H CF3 H H CSSMe Et Et E-61 H H SMe H H CSSMe Et Et E-62 H H SEt H H CSSMe Et Et E-63 H H SPri H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-					Н	Н	CSSMe	Et	Et_
E-61 H H SMe H H CSSMe Et Et E-62 H H SEt H H CSSMe Et Et E-63 H H SPri H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-			Н		Н	Н	CSSMe	Et	Et
E-62 H H SEt H H CSSMe Et Et E-63 H H SPri H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-71 OMe H H CSSMe Et Et Et E-73 <t< td=""><td></td><td></td><td>Н</td><td></td><td>Н</td><td>Н</td><td>CSSMe</td><td>Et</td><td>Et</td></t<>			Н		Н	Н	CSSMe	Et	Et
E-63 H H SPr' H H CSSMe Et Et E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pr' H F H H CSSMe Et Et E-71 OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H <			Н		Н	Н	CSSMe	Et	Et
E-64 H H NMe2 H H CSSMe Et Et E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et <		Н	Н	SPr ⁱ	Н	Н	CSSMe	Et	Et
E-65 H H NEt2 H H CSSMe Et Et E-66 Me NMe2 H H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et <td></td> <td></td> <td>Н</td> <td>NMe₂</td> <td>Н</td> <td>Н</td> <td>CSSMe</td> <td>Et</td> <td>Et</td>			Н	NMe ₂	Н	Н	CSSMe	Et	Et
E-66 Me NMe2 H H H CSSMe Et Et E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et			Н	NEt ₂	Н	Н	CSSMe	Et	
E-67 NMe2 CI H H H CSSMe Et Et E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pr' H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et			NMe ₂		Н	Н	CSSMe	Et	Et
E-68 Me NEt2 H H H CSSMe Et Et E-69 H NEt2 Me H H CSSMe Et Et E-70 Pri H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et				Н	Н	Н	CSSMe	Et	Et
E-69 H NEt ₂ Me H H CSSMe Et Et E-70 Pr' H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et			NEt ₂	Н	Н	Н	CSSMe	Et	Et
E-70 Pr' H F H H CSSMe Et Et E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et		Н		Me	Н	Н	CSSMe	Et	Et
E-71 OMe H OMe H H CSSMe Et Et E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et		Pr'		F	Н	Н	CSSMe		
E-72 H OMe OMe H H CSSMe Et Et E-73 H OMe OEt H H CSSMe Et Et E-74 H OEt OMe H H CSSMe Et Et			Н	OMe	Н	Н	CSSMe		Et
E-73 H OME OEt H H CSSME Et Et E-74 H OEt OME H H CSSME Et Et			OMe	OMe	Н	Н	CSSMe	Et	Et
E-74 H OEt OMe H H CSSMe Et Et		Н	OMe	OEt	Н	Н	CSSMe	Et	Et
- I CCCMa Et Et			OEt	OMe	Н	Н	CSSMe	Et	Et_
				OEt	Н	Н	CSSMe	Et	Et

(表53)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

	R ¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-1	Н	H	Н	Н	Н	CSSMe	Pr	Pr
F-2	Ci	H	Н	Н	Н	CSSMe	Pr	Pr
F-3	Br	Н	Н	Н	Н	CSSMe	Pr	Pr
F-4	Me	Н	Н	Н	Н	CSSMe	Pr	Pr
F-5	Et	Н	Н	Н	Н	CSSMe	Pr	Pr
F-6	Pr	Н	Н	Н	H	CSSMe	Pr	Pr
F-7	Bu	Н	Н	Н	Н	CSSMe	Pr	Pr
F-8	Bu [′]	Н	Н	Н	H	CSSMe	Pr	Pr
F-9	Bu'	Н	Н	H	Н	CSSMe	Pr	Pr
F-10	OMe	Η	Н	Η	Ι	CSSMe	Pr	Pr
F-11	OEt	Н	Н	Н	Η	CSSMe	Pr	Pr
F-12	OPr'	Н	Н	Η	I	CSSMe	Pr	Pr
F-13	OPr	Н	Н	H	Ι	CSSMe	Pr	Pr
F-14	OCHF2	Н	Н	H_	Ι	CSSMe	Pr	_Pr
F-15	OCF ₃	Ι	H	Н	Ι	CSSMe	Pr	Pr
F-16	CF₃	H	H	Н	Н	CSSMe	Pr	Pr
F-17	SMe	Τ	H	Н	Η	CSSMe	Pr	Pr
F-18	SEt	I	Τ	Η	Ή	CSSMe	Pr	Pr
F-19	SPr ⁱ _	Τ	H	Н	Ξ	CSSMe	Pr	Pr
F-20	NMe ₂	Ξ	Н	H	Н	CSSMe	Pr	Pr_
F-21	NEt ₂	Н	H -	Н	Н	CSSMe	Pr	Pr
F-22	Н	C	Н	Н	Ξ	CSSMe	Pr	Pr
F-23	H	Br	Η	Н	H	CSSMe	Pr	Pr
F-24	Н	Me	Н	Н	Н	CSSMe	Pr	Pr
F-25	Н	Et	H	H	Н	CSSMe	Pr	Pr

(表54)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-26	Ι	Pr	Н	Н	H	CSSMe	Pr	Pr
F-27	Ι	Pr ⁱ	Н	Н	H	CSSMe	Pr	Pr
F-28	Н	Bu	Н	Н	Н	CSSMe	Pr	Pr
F-29	Η	Bu	Τ	Н	Н	CSSMe	Pr	Pr
F-30	Н	Bu ^s	Ι	H	Н	CSSMe	Pr	Pr
F-31	Н	Bu ^t	Ι	H	H	CSSMe	Pr	Pr
F-32	Н	OMe	I	I	Н	CSSMe	Pr	Pr
F-33	Н	OEt	Ι	Τ	H	CSSMe	Pr	Pr
F-34	H	OPr	Ι	I	Η	CSSMe	Pr	Pr
F-35	H	OPr ⁱ	Ι	Ι	Н	CSSMe	Pr	Pr
F-36	Н	OCHF ₂	Ι	Ι	H	CSSMe	Pr	Pr
F-37	I	OCF ₃	Ι	I	Н	CSSMe	Pr	Pr
F-38	H	CF₃	Η_	Ή	Η	CSSMe	Pr	Pr
F-39	H	SMe	Ι	I	Ι	CSSMe	Pr	Pr
F-40	Н	SEt	Η	I	Τ	CSSMe	Pr	Pr
F-41	H	SPr ⁱ	Н	Η	H	CSSMe	Pr	Pr
F-42	Н	NMe₂	Н	H	Н	CSSMe	Pr	Pr
F-43	Н	NEt ₂	<u>H</u>	H	Ι	CSSMe	Pr	Pr
F-44	H	Н	CI	H	Ι	CSSMe	Pr	Pr
F-45	Н	Н	Br	Η	Ι	CSSMe	Pr	Pr
F-46	H_	Н	Me	Ξ	Ι	CSSMe	Pr	Pr
F-47	Н	Н	Et	I	#	CSSMe	Pr	Pr
F-48	H	Н	Pr	Н	Η	CSSMe	Pr	Pr
F-49	Н	Н	Pr ⁱ	H	Ι	CSSMe	Pr	Pr
F-50	Н	Н	Bu	H	Η	CSSMe	Pr	Pr

(表55)

$$R^{3} \xrightarrow{R^{4}} R^{5}$$

$$R^{4} \xrightarrow{R^{5}} R^{6}$$

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-51	H	Н	Bu [/]	Н	Н	CSSMe	Pr	Pr
F-52	Н	Н	Bu⁵	Н	Н	CSSMe	Pr	Pr
F-53	Н	Н	Bu'	Н	Н	CSSMe	Pr	Pr
F-54	Н	Н	OMe	Н	Н	CSSMe	Pr	Pr
F-55	Н	Н	OEt	Н	Η _	CSSMe	Pr	Pr
F-56	Н	Н	OPr	H	Ŧ	CSSMe	Pr	Pr
F-57	Н	Н	OPr ⁱ	Н	Н	CSSMe	Pr	Pr
F-58	Н	Н	OCHF ₂	Н	H	CSSMe	Pr	Pr
F-59	Н	H	OCF₃	Η	Ι	CSSMe	Pr	Pr
F-60	Н	Ξ	CF ₃	Η	H	CSSMe	Pr	Pr
F-61	Н	H	SMe	I	Η	CSSMe	Pr	Pr
F-62	H ·	Н	SEt	H	H	CSSMe	Pr	Pr
F-63	Н	H	\$Pr ⁱ	Ι	Ι	CSSMe	Pr	Pr
F-64	Н	Н	NMe ₂	H	Ι	CSSMe	Pr	Pr
F-65	Н	H	NEt ₂	I	Ι	CSSMe	Pr	Pr
F-66	Ме	NMe₂	H	Ι	Ι	CSSMe	Pr	Pr
F-67	NMe ₂	CI	Н	Н	I	CSSMe	Pr	Pr
F-68	Ме	NEt ₂	H	I	Η	CSSMe	Pr	Pr
F-69	Н	NEt ₂	Me	H	H	CSSMe	Pr	Pr
F-70	Bu ^s	Н	H	H	H	CSSMe	Pr	Pr_
F-71	OMe	Н	OMe	Н	H	CSSMe	Pr	Pr
F-72	Н	OMe	OMe	H	Ι	CSSMe	Pr	Pr
F-73	H	OMe	OEt	H	I	CSSMe	Pr	Pr
F-74	Н	OEt	OMe	Н	Η	CSSMe	Pr	Pr
F-75	Н	OEt	OEt	Н	Ι	CSSMe	Pr	Pr

(表56)

$$\begin{array}{c|c} R^2 & R^1 & R^7 \\ R^3 & N & R^6 \end{array}$$

	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
G-1	Н	Ξ	Ι	Н	Н	CSSEt	Et	Et
G-2	CI	Н	Н	H	Н	CSSEt	Et	Et
G-3	Br	H	Н	Н	Н	CSSEt	Et	Et
G-4	Me	H	H	H	Н	CSSEt	Et	Et
G-5	Et	Н	H	H	Н	CSSEt	Et	Et
G-6	Pr	Н	Н	Ξ	Н	CSSEt	Et	Et
G-7	Bu	Н	Н	Н	Н	CSSEt	Et	Et
G-8	Bu ⁱ	H	Н	Н	H	CSSEt	Et	Et
G-9	Bu'	Н	Н	Τ	Η	CSSEt	Et	Et
G-10	OMe	H	H	Н	Η	CSSEt	Et	Et
G-11	OEt	Τ	Ή	Ι	H	CSSEt	Et	Et
G-12	OPr ⁱ	Н	H	Ι	Η	CSSEt	Et	Et
G-13	OPr	Н	H	Ι	Ξ	CSSEt	Et	Et
G-14	OCHF ₂	Н	Н	Ι	Ι	CSSEt	Et	Et
G-15	OCF₃	Н	Н	Η	H	CSSEt	Et	Et
G-16	CF₃	Н	Н	Ι	Ι	CSSEt	Et	Et
G-17	SMe	Н	н	· H	H	CSSEt	Et	Et
G-18	SEt	Н	Н	Η	H	CSSEt	Et	Et
G-19	SPr ⁱ	Н	Н	Н	Η	CSSEt	Et	Et
G-20	NMe ₂	Н	Н	Η	Ι	CSSEt	Et	Et
G-21	NEt ₂	H	Н	Ι	Τ	CSSEt	Et	Et
G-22	Н	CI	Н	Η	I	CSSEt	_Et _	Et
G-23	Н	Br	Н	Н	Н	CSSEt	Et	Et
G-24	Н	Ме	Н	Н	Τ	CSSEt	Et	Et
G-25	Н	Et	Н	Н	Н	CSSEt	Et	Et

(表57)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R⁵
G-26	Н	Pr	Н	Н	Н	CSSEt	Et	Et
G-27	Н	Pr ⁱ	Н	Н	Н	CSSEt	Et	Et
G-28	Н	Bu	Н	Н	Н	CSSEt	Et	Et
G-29	Н	Bu ⁱ	H	H	H	CSSEt	Et	Et
G-30	Н	Bus	H	H	Н	CSSEt	Et	Et
G-31	Н	Bu'	Ι	Н	Η	CSSEt	Et	Et
G-32	Н	OMe	Ι	Ι	H	CSSEt	Et	Et
G-33	Ι	OEt	I	Н	Н	CSSEt	Et	Et
G-34	Н	OPr	Ι	I	Η	CSSEt	Et	Et
G-35	H	OPr'	I	Н	Н	CSSEt	Et	Et
G-36	Η	OCHF ₂	H	Н	Н	CSSEt	Et	Et
G-37	Η	OCF ₃	H	Н	H	CSSEt	Et	Et
G-38	Ι	CF₃	Н	Н	Н	CSSEt	Et_	Et
G-39	Η	SMe	Н	H	H	CSSEt	Et	Et
G-40	Н	SEt	H	Н	H	CSSEt	Et	Et
G-41	Н	SPr ⁱ	· H	Н	Н	CSSEt	Et	Et
G-42	H	NMe ₂	H	Н	Н	CSSEt	Et	Et
G-43	H	NEt ₂	Н	Н	H	CSSEt	Et	Et
G-44	H	Н	CI_	Н	Н	CSSEt	Et	Et
G-45	H	Н	Br	Н	Н	CSSEt	Et	Et
G-46	H	H	Me	Н	Н	CSSEt	Et	Et
G-47	Н	Н	Et	Н	Н	CSSEt	Et	Et
G-48	Ι	Н	Pr	Н	Н	CSSEt	Et	Et
G-49	H	Н	Pr ⁱ	Н	Н	CSSEt	Et	Et
G-50	Ι	H	Bu	Ι	Ξ	CSSEt	Et	Et

(表58)

	R ¹	R²	R ³	R⁴	R⁵	R⁵	R ⁷	R ⁸
G-51	Н	Н	Bu ⁱ	H	Н	CSSEt	Et	Et
G-52	Н	Н	Bu⁵	Н	Н	CSSEt	Et	Et
G-53	Н	Н	Bu ^t	Н	Н	CSSEt	Et	Et
G-54	Н	Н	OMe	Н	Н	CSSEt	Et	Et
G-55	H	Н	OEt	H	Н	CSSEt	Et	Et
G-56	Н	Н	OPr	Н	Н	CSSEt	Et	Et
G-57	Н	Н	OPr ⁱ	H	Н	CSSEt	Et	Et
G-58	Н	Н	OCHF ₂	I	Η	CSSEt	Et	Et
G-59	Н	Н	OCF ₃	I	Н	CSSEt	Et	Et
G-60	H	H	CF ₃	Ξ	Η	CSSEt	Et	Et
G-61	Н	Н	SMe	I	Η	CSSEt	Et	Et
G-62	Н	Н	SEt	I	I	CSSEt	Et	Et
G-63	Н	Н	SPr'	Ι	Н	CSSEt	Et	Et
G-64	Н	Н	NMe₂	I	Ι	CSSEt	Et	Et
G-65	Н	Н	NEt ₂	I	Ι	CSSEt	Et	Et
G-66	Me	NMe₂	H	I	H	CSSEt	Et	Et
G-67	NMe ₂	CI	Н	Н	H	CSSEt	Et	Et
G-68	Ме	NEt ₂	Н	H	Η	CSSEt	Et	E.t
G-69	Н	NEt ₂	Me	Н	H	CSSEt	Et	Et
G-70	Bu⁵	H	Н	Н	H	CSSEt	Et	Et
G-71	OMe	H	OMe	Н	Η	CSSEt	Et	Et
G-72	Η	OMe	OMe	Н	Н	CSSEt	Et	Et
G-73	H	OMe	OEt	Η	Ŧ	CSSEt	Et	Et
G-74	Н	OEt	OMe	H	H	CSSEt	Et	Et
G-75	Н	OEt	OEt	Н	Н	CSSEt	Et	Et

(表59)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

	R¹	R ²	R³	R⁴	R⁵	R⁵	R ⁷	R ⁸
H-1	H	H	Н	Н	H	CSSMe	-(CF	12)2-
H-2	CI	Н	Н	Н	Н	CSSMe	-(CH	
H-3	Br	H	H	Н	Н	CSSMe	-(CF	12)2-
H-4	Me	Н	H	Н	Н	CSSMe	-(CH	12)2-
H-5	Et	Н	Н	Н	Н	CSSMe	-(CH	
H-6	Pr	Н	Н	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-7	Bu	Н	Н	Н	Н	CSSMe	-(CH	₂) ₂ -
H-8	Bu ⁱ	Н	Н	Н	Н	CSSMe	-(CH	
H-9	Bu ^t	Н	Н	Н	Н	CSSMe	(CH	
H-10	OMe	Н	Η	Н	Н	CSSMe	-(CH	
H-11	OEt	Н	Н	Н	Н	CSSMe	-(CH	
H-12	OPr ⁱ	Н	I	Н	Н	CSSMe	-(CH	2)2-
H-13	OPr	H	T	Н	Н	CSSMe	-(CH	2)2-
H-14	OCHF ₂	Н	Ι	H	H	CSSMe	-(CH	2)2-
H-15	OCF ₃	Н	I	Ξ	Η	CSSMe	-(CH	2)2-
H-16_	CF₃	Н	Ι	I	H	CSSMe	-(CH	
H-17	SMe	Н	Η	Ι	H	CSSMe	-(CH	2)2-
H-18	SEt	H	Н	Η	H	CSSMe	-(CH	
H-19	SPr ⁱ	H	Н	Н	H	CSSMe	-(CH	2)2-
H-20	NMe ₂	Н	H	Н	Н	CSSMe	(CH	
H-21	NEt ₂	H	Н	Н	Н	CSSMe	-(CH	
H-22	<u> </u>	CI	Н	Н	Н	CSSMe	-(CH	
H-23	Н	Br	Н	Н	Н	CSSMe	-(CH	
H-24	Н	Ме	Н	Н	Н	CSSMe	-(CH	
H-25	H	Et	Н	Н	Н	CSSMe	-(CH	

(表60)

	n 			54	05	D6	R ⁷ R ⁸
	R¹	R ²	R ³	R⁴	R⁵	R ⁶	
H-26	Ξ	Pr	H	<u> </u>	H	CSSMe	-(CH ₂) ₂ -
H-27	H	Pr ⁱ	H	Н	Н	CSSMe	-(CH ₂) ₂ -
H-28	I	Bu	Η	<u>H</u>	<u> </u>	CSSMe	-(CH ₂) ₂ -
H-29	Н	Bu ⁱ	I	Η	Н	CSSMe	-(CH ₂) ₂ -
H-30	Н	Bu⁵	Н	H	Ι	CSSMe	-(CH ₂) ₂ -
H-31	Н	Bu ^t	Н	Н	H	CSSMe	-(CH ₂) ₂ -
H-32	Ξ	OMe	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-33	Ξ	OEt	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-34	Ι	OPr	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-35	H	OPr ⁱ	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-36	Ι	OCHF ₂	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-37	H	OCF ₃	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-38	Н	CF ₃	Ι	Н	Н	CSSMe	-(CH ₂) ₂ -
H-39	Н	SMe	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-40	Н	SEt	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-41	Н	SPr'	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-42	Н	NMe ₂	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-43	Н	NEt ₂	Н	H	Н	CSSMe	-(CH ₂) ₂ -
H-44	Н	Н	CI	H	Н	CSSMe	-(CH ₂) ₂ -
H-45	Н	Н	Br	Н	Н	CSSMe	-(CH ₂) ₂ -
H-46	Н	Н	Me	Н	Н	CSSMe	-(CH ₂) ₂ -
H-47	Н	Н	Et	Н	Н	CSSMe	-(CH ₂) ₂ -
H-48	Н	Н	Pr	Н	Н	CSSMe	-(CH ₂) ₂ -
H-49	Н	Н	Pr ⁱ	Н	Н	CSSMe	-(CH ₂) ₂ -
H-50	Н	Н	Bu	Н	Н	CSSMe	-(CH ₂) ₂ -

(表61)

	R¹	R ²	R ³	R⁴	R ⁵	R⁵	R ⁷	R ⁸
H-51	Н	Н	Bu ⁱ	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-52	Н	H	Bu ^s	H	Н	CSSMe	-(CH	l ₂) ₂ -
H-53	H	Н	Bu ^t	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-54	Н	Н	OMe	Н	H	CSSMe	-(CH	2)2-
H-55	H	Н	OEt	I	Ι	CSSMe	-(CH	2)2-
H-56	Н	Н	OPr	H	Н	CSSMe	-(CH	2)2-
H-57	Н	H	OPr ⁱ	Ι	Ι	CSSMe	-(CH	
H-58	Н	H	OCHF ₂	Ι	Η	CSSMe	-(C)	2)2-
H-59	Н	Н	OCF₃	Ι	Ι	CSSMe	-(CH	2)2-
H-60	Н	Ι	CF₃	Ι	Ι	CSSMe	-(CH	
H-61	Н	Ή	SMe	Ι	Η	CSSMe	-(CH	2)2-
H-62	Н	Н	SEt	Ι	Η	CSSMe	-(CH	2)2-
H-63	Н	Н	SPr ⁱ	I	Ι	CSSMe	(CH	2)2-
H-64	Н	Η	NMe ₂	I	Τ	CSSMe	-(CH	2)2-
H-65	Н	Н	NEt₂	I	Ι	CSSMe	-(CH	2)2-
Н-66	Ме	NMe₂	Н	Η	Ι	CSSMe	-(CH	
H-67	NMe₂	CI	Ι	H	H	CSSMe	-(CH	2)2-
H-68	Me	NEt ₂	Η	H	Ι	CSSMe	-(CH	2)2-
H-69	Н	NEt ₂	Me	H	Ι	CSSMe	-(CH	2)2-
H-70	Bu⁵	Ι	H	н	Ι	CSSMe	-(CH	
H-71	OMe	I	ОМе	H	Η	CSSMe	-(CH	2)2-
H-72	Н	OMe	OMe	Н	Ξ	CSSMe	-(CH	
H-73	Н	OMe	OEt	H	H	CSSMe	-(CH	
H-74	Н	OEt	OMe	Н	H	CSSMe	-(CH	2)2-
H-75	Н	OEt	OEt	Н	Н	CSSMe	-(CH	2)2-

(表62)

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
N-1	Н	Н	Н	Н	Н	CSSMe	-(CH	12)4-
N-2	CI	Н	Н	Н	Н	CSSMe	-(CH	2)4-
N-3	Br	Н	Н	H	Н	CSSMe	-(CH	
N-4	Me	Н	Н	Н	Н	CSSMe	-(CH	
N-5	Et	Н	Н	H	Н	CSSMe	-(CH	
N-6	Pr	Н	Н	Н	Н	CSSMe	-(CH	
N-7	Bu	H	Н	H	Н	CSSMe	-(CH	
N-8	Bu ⁱ	Н	Н	Η	Н	CSSMe	-(CH	
N-9	Bu ^t	H	Н	Η	Н	CSSMe	· -(CH	2)4-
N-10	OMe	Н	Η	Н	Н	CSSMe	-(CH	
N-11	OEt	H	Ι	Ξ	Н	CSSMe	-(CH	
N-12	OPr ⁱ	Н	Н	H	Н	CSSMe	-(CH	2)4-
N-13	OPr	Н	Η	Н	Η	CSSMe	-(CH	
N-14	OCHF ₂	H	Н	Ι	Ι	CSSMe	-(CH	2)4-
N-15	OCF ₃	H	Н	Н	Τ	CSSMe	-(CH	
N-16	CF₃	Н	Н	I	Ι	CSSMe	-(CH	2)4-
N-17	SMe	Н	H	Ι	Ι	CSSMe	-(CH	
N-18	SEt	Η	H	I	H	CSSMe	-(CH	
N-19	SPr ⁱ	Η	Η	Ι	Ξ	CSSMe	-(CH	
N-20	NMe ₂	Η	Ι	I	H	CSSMe	-(CH	2)4-
N-21	NEt ₂	Τ	Н	Н	Η	CSSMe	-(CH	2)4-
N-22	H	CI	Η	H	Н	CSSMe	-(CH	2)4-
N-23	Н	Br	Н	H	H	CSSMe	-(CH	
N-24	Н	Me	H	H	Ι	CSSMe	-(CH	
N-25	H	Et	Н	Н	Н	CSSMe	-(CH	

(表63)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
N-26	Н	Pr	H	Н	Н	CSSMe	-(CH	2)4-
N-27	H	Pr'	Н	Н	Н	CSSMe	-(CH	l ₂) ₄ -
N-28	Н	Bu	H	Н	Н	CSSMe	-(CH	12)4-
N-29	Н	Bu ⁱ	Η	Н	Н	CSSMe	-(CF	
N-30	Н	Bu ^s	Η	Н	Н	CSSMe	-(CH	l ₂) ₄ -
N-31	Н	Bu'	H	Н	Н	CSSMe	-(CH	2)4-
N-32	H	OMe	Ι	Н	Н	CSSMe	-(CH	1 ₂) ₄ -
N-33	H	OEt	Ι	H	Τ	CSSMe	-(C	2)4-
N-34	H	OPr	Η	Ξ	Τ	CSSMe	-(CH	2)4-
N-35	Н	OPr'	Н	Ι	Τ	CSSMe	-(C⊦	
N-36	Н	OCHF ₂	H	Ι	Ι	CSSMe	-(CH	2)4-
N-37	Н	OCF ₃	Ι	H	Ι	CSSMe	-(C	2)4-
N-38	Н	CF₃	Ι	I	H	CSSMe	-(CH	
N-39	Н	SMe	H	I	Ι	CSSMe	-(CH	l ₂) ₄ -
N-40	H	SEt	H	H	Н	CSSMe	-(CH	l ₂) ₄ -
N-41	Η	SPr ⁱ	Н	H	Н	CSSMe	-(CH	2)4-
N-42	Н	NMe ₂	Ι	Τ	Η	CSSMe	-(CH	
N-43	Н	NEt ₂	Ι	I	H	CSSMe	-(CH	2)4-
N-44	Н	H	ō	Ι	Η	CSSMe	-(CH	2)4-
N-45	Н	Н	Br	I	Ι	CSSMe	-(CH	2)4-
N-46	Н	Н	Ме	H	Н	CSSMe	-(CH	2)4-
N-47	Н	Н	Et	H	Н	CSSMe	-(CH	
N-48	Н	Н	Pr	Н	Н	CSSMe	-(CH	
N-49	Н	Н	Pr ⁱ _	Ι	H	CSSMe	-(CH	2)4-
N-50	H	Н	Bu	Н	Н	CSSMe	-(CH	2)4-

(表64)

	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
N-51	Н	H	Bu ⁱ	H	H	CSSMe	-(CF	2)4-
N-52	Н	Н	Bu⁵	Ξ	Н	CSSMe	-(CH	
N-53	Н	Н	Bu'	H	Н	CSSMe	-(CF	
N-54	Н	Н	OMe	H	Н	CSSMe	-(CH	
N-55	Н	Н	OEt	Ή	Н	CSSMe	-(CH	2)4-
N-56	Н	Н	OPr	Н	Н	CSSMe	-(CH	2)4-
N-57	Н	Η	OPr'	Ι	Н	CSSMe	-(CH	2)4-
N-58	Н	H	OCHF ₂	Τ	H	CSSMe	-(CH	
N-59	Η	Н	OCF ₃	Η	Н	CSSMe	-(CH	
N-60	H	Н	CF₃	I	Н	CSSMe	-(CH	
N-61	H	Η	SMe	I	H	CSSMe	-(CH	
N-62	H	Ι	SEt	Η	Н	CSSMe	-(CH	
N-63	H	I	SPr ⁱ	I	H	CSSMe	-(CH	2)4-
N-64	Н	Ι	NMe ₂	I	Ι	CSSMe	-(CH	
N-65	Н	Н	NEt ₂	Н	Ι	CSSMe	-(CH	
N-66	Me	NMe₂	Н	Н	Ι	CSSMe	-(CH	2)4-
N-67	NMe ₂	CI	H	Η	Ι	CSSMe	-(CH	2)4-
N-68	Me	NEt ₂	I	I	I	CSSMe	-(CH	2)4-
N-69	Н	NEt ₂	Me	Н	I	CSSMe	-(CH	2)4-
N-70	Bu⁵	Н	Н	Н -	Ι	CSSMe	-(CH	2)4-
N-71	OMe	Η	OMe	Н	Ι	CSSMe	-(CH	
N-72	H	OMe	OMe	H	Ι	CSSMe	-(CH	
N-73	Н	ОМе	OEt	H	Н	CSSMe	-(CH	2)4-
N-74	Н	OEt	OMe	Н	H	CSSMe	-(CH	2)4
N-75	Н	OEt	OEt	Н	Н	CSSMe	-(CH	2)4-

	R ¹	R ²	R ³	R⁴_	R⁵	R ⁶	R ⁷	R ⁸
J-1	Н	Н	Н	Н	Н	CSSMe	-(C ⊢	2)5-
J-2	CI	H	Н	Н	Н	CSSMe	-(CH	₂) ₅ -
J-3	Br	Н	Н	Н	Н	CSSMe	-(CH	
J-4	Ме	Н	Н	Н	Н	CSSMe	-(CH	
J-5	Εt	Н	H	H	Н	CSSMe	-(CH	2)5-
J-6	Pr	Н	Н	H	Н	CSSMe	-(CH	₂) ₅ -
J-7	Bu	Н	Н	Н	Н	CSSMe	-(CH	2)5-
J-8	Bu ⁱ	Н	Н	H	H	CSSMe	-(CH	l ₂) ₅ -
J -9	Bu'	H	Η _	Ι	Н	CSSMe	-(CH	2)5-
J-10	ОМе	Н	Н	H	Н	CSSMe	-(CH	₂) ₅ -
J-11	OEt	H	Η	Н	Н	CSSMe	-(CH	
J-12	OPr'	H	H	Н	Н	CSSMe	-(CH	
J-13	OPr	Ι	Ή	H	H	CSSMe	-(CH	₂) ₅ -
J-14	OCHF ₂	I	Η	Ι	Η	CSSMe	-(CH	2)5-
J-15	OCF ₃	I	Ι	Ι	Ι	CSSMe	-(CH	2)5-
J-16	CF₃	Ή	Τ	Τ	Η	CSSMe	-(CH	₂) ₅ -
J-17	SMe	I	H	Ι	H	CSSMe	-(CH	2)5-
J-18	SEt	Ι	Н	Η	Н	CSSMe	-(CH	2)5-
J-19	SPr ⁱ	Н	H	Н	Н	CSSMe	-(CH	2)5-
J-20	NMe ₂	H	H	Ι	Н	CSSMe	-(CH	2)5-
J-21	NEt ₂	Н	Н	H	I	CSSMe	-(CH	
J-22	Н	CI	Н	Η	H	CSSMe	-(CH	2)5-
J-23	H	Br	Н	Η	Н	CSSMe	(CH	2)5
J-24	, н	Me	Н	Н	Н	CSSMe	-(CH	2)5-
J-25	Н	Et	Н	Н	H	CSSMe	-(CH	2)5-

(表66)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

				, -				
	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R⁵
J-26	H	Pr	Н	Н	Н	CSSMe	-(CF	l ₂) ₅ -
J-27	Н	Pr ⁱ	Н	Н	H	CSSMe	-(CH	l ₂) ₅ -
J-28	H_	Bu	H	Н	Н	CSSMe	-(CH	l ₂) ₅ -
J-29	Ι	Bu ⁱ	Н	Н	Н	CSSMe	-(CH	l ₂) ₅ -
J-30	Ι	Bu⁵	Н	Н	Н	CSSMe	-(CH	l ₂) ₅ -
J-31	Ŧ	Bu ^t	Н	Н	Н	CSSMe	-(CH	l ₂) ₅ -
J-32	Ι	OMe	Н	Н	Н	CSSMe	-(CH	2)5-
J-33	H	OEt	H	Н	Н	CSSMe	-(CH	
J-34	Ι	OPr	Ι	Н	Н	CSSMe	-(CH	
J-35	Ι	OPr'	Ι	Н	Н	CSSMe	-(CH	2)5-
J-36	Η	OCHF ₂	Н	Н	Н	CSSMe	-(CH	2)5-
J-37	Ξ	OCF ₃	Н	Н	Н	CSSMe	-(CH	2)5-
J-38	Н	CF₃	Н	Н	Н	CSSMe	-(CH	
J-39	Н	SMe	Н	Н	Н	CSSMe	-(CH	2)5-
J-40	Н	SEt	Н	Н	Н	CSSMe	-(CH	2)5-
J-41	Н	SPr ⁱ	Н	Н	Н	CSSMe	-(CH	2)5-
J-42	Н	NMe ₂	H	Ι	Н	CSSMe	-(CH	2)5-
J-43	Н	NEt ₂	Η	Ι	Н	CSSMe	-(CH	2)5-
J-44	Н	Н	CI	I	Ξ	CSSMe	-(CH	2)5-
J-45	Н	Н	Br	I	Ŧ	CSSMe	-(CH	2)5-
J-46	Н	Н	Ме	Ι	H	CSSMe	-(CH	2)5-
J-47	н	Н	Et	Н	H	CSSMe	-(CH	2)5-
J-48	Н	Н	Pr	Н	Н	CSSMe	-(CH	2)5-
J-49	Н	Н	Pr ⁱ	Ξ	Н	CSSMe	-(CH	2)5-
J-50	Н	Н	Bu	I	H	CSSMe	-(CH	2)5-

(表67)

	R¹	R ²	R ³	R⁴	_ R⁵	R ⁶	R ⁷	R ⁸
J-51	Η	Н	Bu ⁱ	Н	Н	CSSMe	-(CH ₂) ₅	;-
J-52	Н	Н	Bus	Ι	Н	CSSMe	-(CH ₂) ₅	
J-53	Н	Н	Bu ^t	Н	H	CSSMe	-(CH ₂) ₅	;
J-54	Н	Н	OMe	Н	Н	CSSMe	-(CH ₂) ₅	;-
J-55	Н	Н	OEt	Н	Н	CSSMe	-(CH ₂) ₅	;-
J-56	Н	Н	OPr	Н	Н	CSSMe	-(CH ₂) ₅	
J-57	Н	Н	OPr'	Н	Н	CSSMe	-(CH ₂) ₅	; -
J-58	Н	Н	OCHF ₂	H	Н	CSSMe	-(CH ₂) ₅	
J-59	Н	, H	OCF ₃	H	Н	CSSMe	-(CH ₂) ₅	;-
J-60	H	H	CF₃	Н	Н	CSSMe	-(CH ₂) ₅	
J-61	Н	Н	SMe	H	Н	CSSMe	-(CH ₂) ₅	-
_J-62	Н	Н	SEt	Н	Н	CSSMe	-(CH ₂) ₅	
J-63	Н	Н	SPr ⁱ	Н	Н	CSSMe	-(CH ₂) ₅	
J-64	Н	Н	NMe ₂	H	Н	CSSMe	-(CH ₂) ₅	; -
J-65	Н	Н	NEt ₂	H	H	CSSMe	-(CH ₂) ₅	; -
J-66	Me	NMe ₂	Τ	Τ	Н	CSSMe	-(CH ₂) ₅	
J-67	NMe ₂	CI	Н	I	Ξ	CSSMe	-(CH ₂) ₅	-
J-68	Ме	NEt ₂	H	Ι	Ι	CSSMe	-(CH ₂) ₅	-
J-69	Н	NEt ₂	Ме	Ξ	Ι	CSSMe	-(CH ₂) ₅	-
J-70	Bu⁵	Н	Н	Η	Τ	CSSMe	-(CH ₂) ₅	-
J-71	OMe	Τ	OMe	Η	Ι	CSSMe	-(CH ₂) ₅	-
J-72	Н	OMe	OMe	Τ	Η	CSSMe	-(CH₂)₅	-
J-73	Н	OMe	OEt	Η	Н	CSSMe	-(CH ₂) ₅	-
J-74	Н	OEt	OMe	Н	Н	CSSMe	-(CH ₂) ₅	
J-75	Н	OEt	OEt	H	H	CSSMe	-(CH ₂) ₅	-

(表68)

	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
K-1	Н	Ι	Н	H	H	COSEt	Et	Et
K-2	CI	Ι	Н	Н	Н	COSEt	Et	Et
K-3	Br	I	H	Η	Н	COSEt	Et	Et
K-4	Me	Ι	Н	H	Н	COSEt	Et	Et
K-5	Et	Ι	Н	Η	Н	COSEt	Et	_ Et
K-6	Pr	H	Н	H	Н	COSEt	Et	Et
K-7	Bu	Н	Н	Н	H	COSEt	Et _	Et
K-8	Bu′	I	H	Ξ	Ι	COSEt	Et	Et
K-9	Bu ^t	H	H	Ι	Ξ	COSEt	Et	Et
K-10	OMe	Η	Η	H	Ι	COSEt	Et	Et
K-11	OEt	Н	H	H	Ι	COSEt	Et	Et
K-12	OPr ⁱ	H	I	H	Ι	COSEt	Et	Et
K-13	OPr	Η	Н	Н	Ι	COSEt	Et	Et
K-14	OCHF ₂	Ι	Τ	Τ	Ξ	COSEt	Et	Et
K-15	OCF ₃	Ι	Υ	Τ	Ή	COSEt	Et	Et
K-16	CF ₃	I	Ι	Ι	Ξ	COSEt	Et	Et
K-17	SMe	Ι	Ι	Ι	Ι	COSEt	Et	Εt
K-18	SEt	I	Ι	Ι	Ι	COSEt	Et	E
K-19	SPr ⁱ	Η	I	Ξ	Н	COSEt	Et	Et
K-20	NMe₂	H	I	Н	H	COSEt	Et	Et
K-21	NEt ₂	Н	Ι	Τ	H	COSEt	Et	Et
K-22	H	CI	I	Н	I	COSEt	Et	Et
K-23	Н	Br	I	H	H	COSEt	Et	Et
K-24	Н	Ме	Ι	Ξ	Ι	COSEt	Et	Et
K-25	Н	Et	I	I	Ξ	COSEt	Et	Et

(表69)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
K-26	H	Pr	Н	H	Н	COSEt	Et	Et
K-27	H	Pr ⁱ	Н	Н	Н	COSEt	Et	Et
K-28	Н	Bu	н	Н	H	COSEt	Et	Et
K-29	H	Bu ⁱ	Н_	Н	Н	COSEt	Et	Et
K-30	Н	Bu⁵	Н	Н	H	COSEt	Et	Et
K-31	Ι	Bu ^t	Η	Н	Н	COSEt	Et	Et
K-32	Н	OMe	Η	Н	H	COSEt	Et	Et
K-33	I	OEt	H	Н	Н	COSEt	Et	Et
K-34	Η	OPr	Ι	н	Н	COSEt	Et	Εt
K-35	Ξ	OPr ⁱ	I	Н	Н	COSEt	Et	Et
K-36	H	OCHF ₂	I	Н	Н	COSEt	Et	Et
K-37	Η	OCF ₃	Ι	Ι	H	COSEt	Et	Et
K-38	Ι	CF₃	Ι	H	Η	COSEt	Et	Et _
K-39	T	SMe	Ι	Τ	Ι	COSEt	Et	Et
K-40	Ι	SEt	Ι	Η	Ι	COSEt	Et	Et
K-41	Ι	SPr ⁱ	Ι	Ŧ	Ι	COSEt	Et	Et
K-42	Τ	NMe ₂	Ξ	Ξ	Ι	COSEt	Et	Et
K-43	I	NEt ₂	Н	Ŧ	Ι	COSEt	Et	Et
K-44	I	H	CI	Ι	Ι	COSEt	Et	Et
K-45	Τ	Н	Br	H	Н	COSEt	Et .	Et
K-46	Η	Н	Ме	Η	H	COSEt	Et	Et
K-47	Η	Н	Et	H	Н	COSEt	Et	Et _
K-48	H	Н	Pr	H	Н	COSEt	Et	Et
K-49	H	Н	Pr ⁱ	Н	H	COSEt	Et	Et
K-50	H	Н	Bu	Н	H	COSEt	Et	Et

PCT/JP00/06185 WO 01/19807

	د ا	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
	R¹	<u> </u>	Bu ⁱ	H	<u> </u>	COSEt	Et	Et
K-51	<u> </u>		Bu ^s	Н Н	H	COSEt	Et	Et
K-52	Н	Н			- :- -	COSEt	Et	Et Et
K-53	<u> </u>	H	Bu ^t	н				Et
K-54	<u> </u>	<u> </u>	OMe	H	<u>H</u>	COSEt	<u>Et</u>	
K-55	Н	H	OEt	Н	Н	COSEt	Et	Et
K-56	H	Η	OPr	H	н	COSEt	Et	Et
K-57	Н	Н	OPr ⁱ	Н	Н	COSEt	Et	Et
K-58	Ι	Н	OCHF ₂	Н	H	COSEt	Et	Et
K-59	I	Н	OCF ₃	Н	H	COSEt	Et _	Et
K-60	Н	I	CF₃	Н	Н	COSEt	Et	Et
K-61	H	H	SMe	H	Н	COSEt	Et_	Et
K-62	Н	Н	SEt	Н	Н	COSEt	Et	Et
K-63	Н	Н	SPr ⁱ	Н	Н	COSEt	Et	Et_
K-64	Н	Н	NMe ₂	Н	Н	COSEt	Et	Et
K-65	H	Н	NEt ₂	Н	Н	COSEt	Et	Et
K-66	Me	NMe ₂	H	Н	Н	COSEt	Et	Et
K-67	NMe ₂	CI	Н	Н	Н	COSEt	Et	Et
K-68	Me	NEt ₂	Н	Н	Н	COSEt	Et	Et
K-69	Н	NEt,	Me	Н	Н	COSEt	Et	Et
K-70	Bu⁵	H	Н	Н	Н	COSEt	Et _	Et
K-71	OMe	Н	OMe	Н	Н	COSEt	Et	Et
K-72	Н	OMe	OMe	Н	Н	COSEt	Et	Et _
K-73	H	OMe	OEt.	Н	Н	COSEt	Et	Et
K-74	H	OEt	OMe	H	Н	COSEt	Et	Et
K-75	H-	OEt	OEt	Н	H	COSEt	Et	Et
W-12								

(表71)

$$R^{3} \xrightarrow{R^{4}} R^{5}$$

$$R^{3} \xrightarrow{R^{6}} R^{6}$$

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
L-1	Н	Н	Н	Н	H	COSMe	Et	Et
L-2	CI	Н	Н	H	Н	COSMe	Et	Et
L-3	Br	Н	Н	Н	H	COSMe	Et	Et
L-4	Me	H	Η	Τ	H	COSMe	Et	Et
L-5	Et	H	H	Ι	Η	COSMe	Et	Et
L-6	Pr	H	Η	Ι	Ι	COSMe	Et	Et
L-7	Bu	Ξ	Н	Ι	Ι	COSMe	Et	Et
L-8	Bu ⁱ	Ή	Ι	Ι	Ŧ	COSMe	Et	Et
L-9	But	Н	Н	Ι	Ι	COSMe	Et_	Et
L-10	ОМе	Η	Τ	Ι	Н	COSMe	Et	Et
L-11	OEt	Н	Н	Ξ	I	COSMe	Et	Et
L-12	OPr ⁱ	Н	Н	Ι	Τ	COSMe	Et	Et
L-13	OPr	H	H	Ι	Ι	COSMe	Et	Et
L-14	OCHF ₂	Н	I	Ι	Τ	COSMe	Et	Et
L-15	OCF ₃	Ξ	H	Ξ	Τ	COSMe	Et	Et
L-16	CF₃	Τ	Н	Ι	Ι	COSMe	Et	Et
L-17	SMe	Ή	Η	Ή	Н	COSMe	Et	Et
L-18	SEt	I	Η	H	H	COSMe	Et	Et
L-19	SPr ⁱ	Ι	Ι	Η	Η	COSMe	Et	Et
L-20	NMe ₂	Ι	Ι	Τ	Ι	COSMe	Et	Et
L-21	NEt ₂	H	H	H	Н	COSMe	Et	Et
L-22	H	CI	H	H	Τ	COSMe	Et	Et
L-23	Н	Br	Н	H	Н	COSMe	Et	Et
L-24	Н	Me	Η	Н	Н	COSMe	Et	Et
L-25	Н	Et	H	Н	Н	COSMe	Et	Et

(表72)

	R1	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
L-26	Н	Pr	H	Н.	Н	COSMe	Et	Et
L-27	Н	Pr ⁱ	H	Н	Н	COSMe	Et	Et
L-28	Н	Bu	Ι	H	Н	COSMe	Et	Et
L-29	H	Bu ⁱ	Η	I	Н	COSMe	Et	Et
L-30	H	Bus	Ι	Ι	Н	COSMe	Et	Et
L-31	Н	Bu ^t	Ι	Ι	Н	COSMe	Et	Et
L-32	Н	OMe	τ	I	Н	COSMe	Et	Et
L-33	H	OEt	I	Ι	Н	COSMe	Et	Et
L-34	H	OPr	T	Ι	Н	COSMe	Et	Et
L-35	Ξ	OPr'	Ι	Ι	Н	COSMe	Et	Et
L-36	Η	OCHF ₂	Ι	Ι	Н	COSMe	Et	Et
L-37	Ξ	OCF ₃	Ι	Τ	Η	COSMe	Et	Et
L-38_	Ι	CF₃	I	I	Η	COSMe	Et	Et
L-39	H	SMe	Ι	Η	H	COSMe	Et	Et
L-40	Ι	SEt	I	Η	Ι	COSMe	Ĕ	Et
L-41	I	SPr ⁱ	Η	H	Η	COSMe	Et	Et
L-42	H	NMe ₂	H	Η	H	COSMe	Et	Et
L-43	Η	NEt ₂	Ι	I	Ξ	COSMe	Et	Et
L-44	Ξ	H	ō	Ι	Ι	COSMe	Et	Et
L-45	Ι	Н	Br	I	H	COSMe	Et	Et
L-46	Ξ	Н	Me	H	Ξ	COSMe	Et	Et
L-47	Н	Н	Et	Ι	Η	COSMe	Et	Et
L-48	H	Н	Pr	Η	Η	COSMe	Et	Et
L-49_	Н	Н	Pr ⁱ	H	H	COSMe	Et	Et
L-50	Н	Н	Bu	H	Н	COSMe	Et	Et

(表73)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
L-51	Н	Н	Bu ⁱ	<u>H</u>	Н	COSMe	Et	Et _
L-52	Н	Н	Bu⁵	Н	н	COSMe	Et	Et
L-53	Н	Н	Bu'	H	Н	COSMe	Et	Et
L-54	Н	Н	OMe	Н	Н	COSMe	Et	Et
L-55	Н	Н	OEt	H	Н	COSMe	Et	Et
L-56	Н	Н	OPr	Ξ	Н	COSMe	Et	Et
L-57	Н	Н	OPr ⁱ	Н	Н	COSMe	Et	Et
L-58	Н	Н	OCHF ₂	Ι	H	COSMe	Et	Et
L-59	Н	Н	OCF₃	Ι	Η	COSMe	Et	Et
L-60	Н	Н	CF ₃	Ι	Н	COSMe	Et	Et
L-61	Н	Н	SMe	Ι	Н	COSMe	Et	Et
L-62	Н	Н	SEt	Ή	Η	COSMe	Et	Et
L-63	Н	Н	SPr ⁱ _	I	Η	COSMe	Et	Et
L-64	Н	Н	NMe ₂	Ι	x	COSMe	É	Et
L-65	Н	Η	NEt ₂	Ι	Ξ	COSMe	Et	Et
L-66	Me	NMe₂	Η	Ι	Ι	COSMe	Et	Et
L-67	NMe ₂	CI	H	Ι	Н	COSMe	Ĕ	Et
L-68	Me	NEt ₂	I	Ι	Ι	COSMe	Et	Et
L-69	Ι	NEt ₂	Ме	_H	I	COSMe	Et_	Et _
L-70	Bu⁵	Η	Ι	Η	Τ	COSMe	Et	Et
L-71	Pr	H	H	Н	Ξ	COSMe	Et	Et
L-72	H	OMe	OMe	H	H	COSMe	Et	Et
L-73	H	OMe	OEt	Н	Ι	COSMe	Et	Et
L-74	Н	OEt	OMe	H	I	COSMe	Et	Et
L-75	Н	OEt	OEt	Н	H	COSMe	Et	Et

(表74)

	R¹	R ²	R³_	R⁴	R ⁵	R ⁶	R ⁷ R ⁸
M-1	H	H	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-2	CI	Н	H	Н	Н	COSMe	-(CH ₂) ₄ -
M-3	Br	Ι	H	Н	Н	COSMe	-(CH ₂) ₄ -
M-4	Me_	Ι	Н	Н	H_	COSMe	-(CH ₂) ₄ -
M-5	Et	Ι	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-6	Pr	H	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-7	Bu	Ι	Н	H	Н	COSMe	-(CH ₂) ₄ -
M-8	Bu ⁱ	Η	Н	Ή	Ι	COSMe	-(CH ₂) ₄ -
M-9	Bu ^t	Η	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-10	OMe	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
M-11	OEt	Н	Н	Н	Η	COSMe	-(CH ₂) ₄ -
M-12	OPr ⁱ	Н	H	Η	Ϊ	COSMe	-(CH ₂) ₄ -
M-13	OPr	H	H	Н	Ή	COSMe	-(CH ₂) ₄ -
M-14	OCHF ₂	H	Н	Н	H	COSMe	-(CH ₂) ₄ -
M-15	OCF ₃	H	Н	H	Н	COSMe	-(CH ₂) ₄ -
M-16	CF ₃	Н	<u>H</u>	H	Н	COSMe	-(CH ₂) ₄ -
M-17	SMe	H	H	Н	H	COSMe	-(CH ₂)₄-
M-18	SEt	Н	Η	H	Н	COSMe	-(CH ₂) ₄ -
M-19	SPr ⁱ	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-20	NMe ₂	<u>H</u>	H	Н	Н	COSMe	-(CH ₂) ₄ -
M-21	NEt ₂	H	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-22	Н	CI	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-23	H	Br	H	H	Н	COSMe	-(CH ₂) ₄ -
M-24	Н	Me	H	Н	Н	COSMe	-(CH ₂) ₄ -
M-25	Н	Et	Н	Н	Н	COSMe	-(CH ₂) ₄ -

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
M-26	<u> </u>	Pr	Н	Η.	H	COSMe	-(CF	10)4-
M-27	H	Pr'	Н	Н	Н	COSMe	-(CH	2)4-
M-28	Н	Bu	Н	Н	H	COSMe	-(CF	
M-29	Н	Bu ⁱ	H	H	Н	COSMe	-(CH	
M-30	H	Bu⁵	H	Н	Н	COSMe	-(CH	
M-31	Н	Bu ^t	Н	Н	Н	COSMe	-(CH	
M-32	Н	OMe	Н	Н	Н	COSMe	-(CH	
M-33	Н	OEt	Н	Н	Н	COSMe	-(CH	
M-34	Н	OPr	Н	Н	Н	COSMe	-(CH	
M-35	Н	OPr ⁱ	Н	Н	Н	COSMe	-(CH	
M-36	Н	OCHF ₂	Н	Н	Н	COSMe	-(CH	
M-37	Η	OCF ₃	Н	Н	Н	COSMe	-(CH	
M-38	H	CF₃	Н	Н	Н	COSMe	-(CH	
M-39	Н	SMe	Н	Н	Н	COSMe	-(CH	
M-40	H	SEt	Н	Н	Н	COSMe	-(CH	
M-41	Н	SPr ⁱ	H	Н	Н	COSMe	-(CH	2/4
M-42	H	NMe ₂	Н	Н	Н	COSMe	-(CH	
M-43	H	NEt ₂	Н	H	Н	COSMe	-(CH	
M-44	Н	Н	CI	Н	H	COSMe	-(CH	2/4
M-45	H	Н	Br	Н	Н	COSMe	-(CH	3)
M-46	Н	Н	Me	Н	Н	COSMe	-(CH	3/4
M-47	H	Н	Et	Н	Н	COSMe	-(CH	1
M-48	Н	Н	Pr	Н	Н	COSMe	-(CH)
M-49	H	Н	Pr ⁱ	Н	Н	COSMe	(CH ₂	
M-50	Н	Н	Bu	Н	Н	COSMe	-(CH ₂	
								/ ~

(表76)

₹						
R¹	R²	R ³	R⁴	R⁵		R ⁷ R ⁸
Н	Н	Bu'	Н	H	COSMe	-(CH ₂) ₄ -
Н	Н	Bu ^s	H	Ι	COSMe	-(CH₂)₄-
Н	Н	Bu'	H	Н	COSMe	-(CH ₂) ₄ -
- н	Н	OMe	H	Н	COSMe	-(CH ₂) ₄ -
Н	Н	OEt	Н	H	COSMe	-(CH ₂)₄-
Н	Н	OPr	H	Н	COSMe	-(CH ₂) ₄ -
Н	Н	OPr ⁱ	Н	Η	COSMe	-(CH₂)₄-
Н	Н	OCHF ₂	Н	Н	COSMe	-(CH ₂) ₄ -
Н	Н	OCF ₃	Н	Н	COSMe	-(CH₂)₄-
Н	H	CF ₃	H	Н	COSMe	-(CH ₂)₄-
Н	Н	SMe	Н	H.	COSMe	-(CH ₂)₄-
Н	Н	SEt	Н	Н	COSMe	-(CH ₂)₄-
Н	Н	SPr ⁱ	Н	H	COSMe	-(CH ₂)₄-
Н	Н	NMe ₂	Н	Н	COSMe	-(CH₂)₄-
Н	Н	NEt ₂	Н	H	COSMe	-(CH ₂) ₄ -
Me	NMe ₂	Н	Н	Н	COSMe	-(CH₂)₄-
	CI	Н	Н	Н	COSMe	-(CH ₂) ₄ -
Me	NEt ₂	Н	Н	H	COSMe	-(CH ₂) ₄ -
Н.	NEt ₂	Me	H	H	COSMe	-(CH₂)₄-
Bus	Н	Н	Н	Н	COSMe	-(CH ₂) ₄ -
Pr ⁱ	Н	Н	Н	H	COSMe	-(CH ₂) ₄ -
Н	OMe	OMe	Н	Н	COSMe	-(CH ₂)₄-
Н	OMe	OEt	Н	Н	COSMe	-(CH ₂) ₄ -
Н	OEt	OMe	Н	Н	COSMe	-(CH ₂) ₄ -
Н	OEt	OEt	Н	Н	COSMe	-(CH ₂) ₄ -
	R¹ H H H H H H H H H H H H H H H H H H H	R¹ R² H H H H H H H H H H H H H H H H H H H	R¹ R² R³ H H Bu' H H Bu' H H Bu' H H OMe H H OPr H H OPr' H H OCF ₃ H H OCF ₃ H H SMe H H SSt H H SPr' H H NMe ₂ H H NEt ₂ Me NMe ₂ H NMe ₂ CI H NMe ₂ H H H NEt ₂ H H H H H H H H H H H H H H H H H H H H H H H H H	R¹ R² R³ R⁴ H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H SEt H H H H SEt H H H SEt H H H H NMe2 H H H H H NEt2 H H NEt2 H H H H H H H H H H H H H H H H H H H H	R¹ R² R³ R⁴ R⁵ H H H H H H H H H H H H H H H H H <td>R¹ R² R³ R⁴ R⁵ R⁶ H H H H COSMe H H H H COSMe H H H H COSMe H H H COSMe H H COSMe H H H OPr H H COSMe H H COSMe H H H OCSMe H H COSMe H H H COSMe H H H COSMe H H H</td>	R¹ R² R³ R⁴ R⁵ R⁶ H H H H COSMe H H H H COSMe H H H H COSMe H H H COSMe H H COSMe H H H OPr H H COSMe H H COSMe H H H OCSMe H H COSMe H H H COSMe H H H COSMe H H H

(表77)

$$R^3$$
 $(CH_2)_n$ - N
 R^7
 R^8

	R¹	R ²	R ³				
R-1	H			<u> </u>	R ⁶	R ⁷	R ⁸
R-2		H	<u> </u>	1 1	CSSMe	Me_	Me
	CI	H H	H	1	CSSMe	Me	Ме
R-3	Br	<u> </u>	Н	11	CSSMe	Me	Me
R-4	Me_	<u> </u>	H	11	CSSMe	Me	Me
R-5	<u>Et</u>	<u> </u>	<u> </u>	1	CSSMe	Me	Me
R-6	Pr	<u> </u>	<u> </u>	1	CSSMe	Me	Me
R-7	Bu	<u> </u>	Н	1	CSSMe	Me	Me
R-8	Bu ⁱ	<u> </u>	Н	1	CSSMe	Me	Me
R-9	Bu'	Н	Н	1	CSSMe	Me	Me
R-10	Pr ⁱ	Н	Н	1	CSSMe	Me	Me
R-11	OEt	Н	Н	1	CSSMe	Me	Me
R-12	OPr ⁱ	Н	Н	1	CSSMe	Me	Me
R-13	OPr	Н	Н	1	CSSMe	Me	
R-14	OCHF,	Н	Н	1	CSSMe	Me	Me
R-15	OCF ₃	Н	Н	1	CSSMe	Me	Me
R-16	CF₃	Н	H	1	CSSMe		Me
R-17	SMe	Н	H	1	CSSMe	<u>Me</u>	Me
R-18	SEt	H	H	1		Me_	Me
R-19	SPr'	<u>- :/</u>	Н	<u> </u> 1	CSSMe	<u>Me</u>	Me
R-20	NMe ₂	Н.	H		CSSMe	Me	Me
R-21	NEt ₂	H	Н	1	CSSMe	<u>Me</u>	Me
R-22	H	CI		1	CSSMe	<u>Me</u>	Me
R-23	Н Н	Br	H	1	CSSMe	<u>Me</u>	Me
R-24	H		H	1	CSSMe	Me	Me
R-25	H	Me	<u>H</u>	1	CSSMe	Me	Me
		Et	H	1	CSSMe	Me	Me

(表78)

R1	R ²	R ³	n	R ⁶	R ⁷	R ⁸
		H	1	CSSMe	Me	Ме
		H	1	CSSMe	Me	Me
			1	CSSMe	Me	Me
			1	CSSMe	Me	Me
			1	CSSMe	Me	Me
			1	CSSMe	Me	Me
					Me	Me
			_		Me	Me
			1		Me	Me
						Me
						Me
						Me
			<u> </u>			Me
						Me
						Me
						Me
						Me
						Me
						Me
						Me
<u> </u>			 			Me
Ή						Me
Τ		 				
Н	H	Pr				Me_
Н	Н	Pr'	11			Me_
Н	H	Bu	11	CSSMe	Me	Me_
	H	H Pr H Pr' H Bu H Bu' H Bu' H Bu' H OMe H OEt H OPr H OPr' H OCF ₃ H CF ₃ H SMe H SEt H SPr' H NMe ₂ H NEt ₂ CI H H H H H H H	H Pr H H Pr' H H Bu H H Bu' H H Bu' H H Bu' H H OMe H H OEt H H OPr' H H OPr' H H OCF ₃ H H CF ₃ H H SMe H H SEt H H SPr' H H NMe ₂ H H NEt ₂ H CI H CI H H Br H H Pr'	H Pr H 1 H Pr' H 1 H Bu H 1 H Bu' H 1 H Bu' H 1 H Bu' H 1 H OMe H 1 H OPr H 1 H OPr' H 1 H OCF ₃ H 1 H OCF ₃ H 1 H SEt H 1 H SEt H 1 H SEt H 1 H SPr' H 1 H SPr' H 1 H NMe ₂ H 1 H NEt ₂ H 1 H NEt ₂ H 1 H NEt ₂ H 1 H H Br 1 H H H Pr 1	H	H

(表79)

$$R^2$$
 $(CH_2)_n$ -N
 R^7
 R^8

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
R-51	Н	Н	Bu'	1	CSSMe	Me	Me
R-52	Н	Н	Bu⁵	1	CSSMe	Me	Me
R-53	Н	Н	Bu ^r	1	CSSMe	Me	Me
R-54	Н	Н	OMe	1	CSSMe	Me	Me
R-55	Н	Н	OEt	1	CSSMe	Me	Me
R-56	Н	H	OPr	1	CSSMe	Me	Me
R-57	Н	Н	OPr ⁱ	1	CSSMe	Me	Me
R-58	H	Н	OCHF ₂	1	CSSMe	Me	Me
R-59	H	Н	OCF ₃	1	CSSMe	Me	Me
R-60	Н	Н	CF ₃	1	CSSMe	Me	Me
R-61	<u> </u>	Н	SMe	1	CSSMe	Me	Me
R-62	Н	Н	SEt	1	CSSMe	Me	Me
R-63	Н	Н	SPr ⁱ	1	CSSMe	Me	Me
R-64	H	Н	NMe ₂	1	CSSMe	Me	Me
R-65	H	H	NEt ₂	1	CSSMe	Me	Me
R-66	Me	NMe ₂	Н	1	CSSMe	Me	Me
R-67	NMe ₂	CI	Η	1	CSSMe	Me	Me
R-68	Ме	NEt ₂	Ι	1	CSSMe	Me	Me
R-69	H	NEt ₂	Me	1	CSSMe	Me	Me
R-70	Bu⁵	H	Ι	1	CSSMe	Me	Me
R-71	OMe	H	OMe	1	CSSMe	Me	Me
R-72	Н	OMe	OMe	1	CSSMe	Me	Me
R-73	H	OMe	OEt	1	CSSMe	Me	Me
R-74	H	OEt	OMe	1	CSSMe	Me	Me
R-75	Н	OEt	OEt	1	CSSMe	Me	Me

(表80)

$$R^{3}$$
 R^{3}
 $(CH_{2})_{n}$
 R^{5}
 R^{6}

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
0-1	H	H	Н	2	CSSMe	Ме	Me
0-2	CI	Н	Н	2	CSSMe	Ме	Ме
0-3	Br	Н	Н	2	CSSMe	Ме	Ме
0-4	Me	Н	Н	2	CSSMe	Ме	Ме
0-5	Et	H	Н	2	CSSMe	Me	Ме
0-6	Pr	Н	Н	2	CSSMe	Me	Me
0-7	Bu	Н	Н	2	CSSMe	Ме	Me
0-8	Bu ⁱ	Н	Н	2	CSSMe	Ме	Me
0-9	Bu'	Н	H	2	CSSMe	Ме	Me_
O-10	Pr ⁱ	Н	Н	2	CSSMe	Me	Me
0-11	OEt	Н	Η	2	CSSMe	Ме	Me
0-12	OPr'	Н	Ι	2	CSSMe	Ме	Me
0-13	OPr	Ι	Н	2	CSSMe	Me	Me_
0-14	OCHF ₂	H	Н	2	CSSMe	Me	Me
0-15	OCF₃	Н	Н	2	CSSMe	Me	Me
0-16	CF ₃	H	Н	2	CSSMe	Me	Me
0-17	SMe	Н	H	2	CSSMe_	Me	Me
O-18	SEt	Н	Н	2	CSSMe	Me_	Me
0-19	SPr ⁱ	Н	Н	2	CSSMe	Me	Me
O-20	NMe ₂	Н	Ι	2	CSSMe	Me	Me
0-21	NEt ₂	Н	Н	2	CSSMe	Me	Me
0-22	Н	CI	H	2	CSSMe	Me	Me
O-23	Н	Br	Н	2	CSSMe	Me	Me_
0-24	Н	Me	Н	2	CSSMe	Me	Me_
O-25	Н	Et	Н	2	CSSMe	Me	Me_

(表81)

$$R^2$$
 R^3
 $(CH_2)_n$
 R^5

	R ¹	\mathbb{R}^2	R ³	m	R ⁶	R ⁷	R ⁸
0-26	<u></u> Н	Pr	H	2	CSSMe	Me	Me
0-20	<u>''</u>	Pri	H	2	CSSMe	Me	Me
	H	Bu	H	2	CSSMe	Me	Me
0-28						Me	Me
0-29	H	Bu ⁱ	Н	2	CSSMe		
0-30	Н	Bu⁵	H	2	CSSMe	Me	Me
0-31	Н	Bu ^t	H	2	CSSMe	<u> Me</u>	Me
0-32	H	OMe	Н	2	CSSMe	Me	Me
0-33	Н	OEt	Н	2	CSSMe	Me	Me
0-34	Н	OPr	Н	2	CSSMe	Me	Me
0-35	Н	OPr ⁱ	Н	2	CSSMe	Me	Me
0-36	H	OCHF ₂	Н	2	CSSMe	Me	Me
0-37	Ŧ	OCF ₃	Н	2	CSSMe	Me	Me
0-38	H	CF ₃	Н	2	CSSMe	Me	Ме
0-39	H	SMe	Н	2	CSSMe	Ме	Me
O-40	H	SEt	Н	2	CSSMe	Ме	Me
0-41	Н	SPr ⁱ	Н	2	CSSMe	Me	Me
0-42	Н	NMe ₂	Н	2	CSSMe	Me	Me
0-43	Н	NEt ₂	Н	2	CSSMe	Me	Me
0-44	F	Н	F	2	CSSMe	Ме	Me
0-45	Н	Н	Br	2	CSSMe	Me	Me
0.46	Ш	Ш	Mo)	CSSMa	Ma	Ma

(表82)

$$R^3$$
 R^3
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8

	R ¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
0-51	Н	Н	Bu [′]	2	CSSMe	Me	Me
0-52	Н	Н	Bu⁵	2	CSSMe	Me	Me
O-53	Н	H	Bu ^t	2	CSSMe	Me	Me
0-54	Н	Н	OMe	2	CSSMe	Me	Me
0-55	Н	Н	OEt	2	CSSMe	Me	Me
0-56	Н	Н	OPr	2	CSSMe	Me	Me
0-57	Н	Н	OPr ⁱ	2	CSSMe	Me	Me
O-58	Н	Н	OCHF ₂	2	CSSMe	Me	Me
0-59	Н	. H	OCF ₃	2	CSSMe	Me	Me
O-60	Н	H	CF₃	2	CSSMe	Me	Me
0-61	H	Н	SMe	2	CSSMe	Me	Me
0-62	Н	Н	SEt	2	CSSMe	Me	Ме
O-63	Н	Н	SPr ⁱ	2	CSSMe	Me	Me
0-64	Н	Н	NMe ₂	2	CSSMe	Me	Ме
0-65	Н	H	NEt ₂	2	CSSMe	Me	Ме
0-66	Me	NMe₂	Н	2	CSSMe	Me	Ме
0-67	NMe ₂	CI	Η	2	CSSMe	Ме	Ме
O-68	Me	NEt ₂	Ι	2	CSSMe	Me	Ме
0-69	Н	NEt ₂	Me	2	CSSMe	Ме	Me
O-70	Bu*	H	Н	2	CSSMe	Me	Me
0-71	OMe	Н	OMe	2	CSSMe	Me	Me
0-72	Н	OMe	OMe	2	CSSMe	Me	Ме
0-73	Н	OMe	OEt	2	CSSMe	Ме	Me
0-74	Н	OEt	OMe	2	CSSMe	Me	Me
0-75	Н	OEt	OEt	2	CSSMe	Ме	Ме

(表83)

$$R^2$$
 $(CH_2)_n$ - N
 R^6

	R¹	R ²	R ³	n	R ⁶	R ⁷	l R ⁸
P-1	Н	Н	H	1	CSSMe	Et	Et -
P-2	CI	Н	Н	1	CSSMe	Et	Et
P-3	Br	Н	H	1	CSSMe	Et	Et
P-4	Me	Н	H	1	CSSMe	Et	Et
P-5	Et	Н	Н	1	CSSMe	Et	Et
P-6	Pr	Н	Н	1	CSSMe	Et	Et
P-7	Bu	Н	Н	1	CSSMe	Et	Et
P-8	Bu ⁱ	Н	Н	1	CSSMe	Et	Et
P-9	Bu'	Н	Н	1	CSSMe	Et	Et
P-10	Pr'	Н	Н	1	CSSMe	Et	Et
P-11	OEt	Н	Н	1	CSSMe	Et	Et
P-12	OPr ⁱ	Н	Н	1	CSSMe	Et	Et
P-13	OPr	Н	Н	1	CSSMe	Et	Et
P-14	OCHF ₂	Н	Н	1	CSSMe	Et	Et
P-15	OCF₃	Н	Н	1	CSSMe	Et	Et
P-16	CF₃	Н	Н	1	CSSMe	Et	Et
P-17	SMe	Н	Н	1	CSSMe	Et	Et
P-18	SEt	H	Н	1	CSSMe	Et	Et
P-19	SPr ⁱ	Н	Н	1	CSSMe	Et	Et
P-20	NMe ₂	H	Н	1	CSSMe	Et	Et
P-21	NEt ₂	Н	Н	1	CSSMe	Et	Et
P-22	Н	CI	Н	1	CSSMe	Et	Et
P-23	H	Br	Н	1	CSSMe	Et	Et
P-24	H	Ме	Н	1	CSSMe	Et	Et
P-25	H	Et	Н	11	CSSMe	Et	Et

(表84)

$$R^{2}$$
 R^{1} R^{8} R^{3} $(CH_{2})_{n}-N$ R^{5}

	R¹	R ²	R³	D	R ⁶	R ⁷	R ⁸
D 26	H	Pr	H	1	CSSMe	Et	Et
P-26	H	Pr ⁱ		1	CSSMe	Et	Et
P-27	H	Bu	- ¦' - 	1	CSSMe	Et	Et
P-28		Bu ⁱ	H	1	CSSMe	Et	Et
P-29	H			1	CSSMe	Et	Et
P-30	H	Bus		1	CSSMe	Et	Et
P-31	Н	Bu'	<u>H</u>			Et	Et
P-32	H	OMe	<u> </u>	1	CSSMe		Et
P-33	Н	OEt	H	1	CSSMe	Et_	
P-34	H	OPr	Н	1	CSSMe	Et	Et
P-35	Н	OPr ⁱ	Н	1	CSSMe	Et	Et
P-36	Н	OCHF ₂	Н	1	CSSMe	Et	Et
P-37	H	OCF ₃	<u>H</u>	1	CSSMe	Et	Et
P-38	H	CF ₃	H	1	CSSMe	Et	Et
P-39	Н	SMe	H	1	CSSMe	<u>Et</u>	Et
P-40	Н	SEt	Н	1	CSSMe	Et	Et
P-41	Н	SPr ⁱ	Н	1	CSSMe	Et	Et
P-42	Н	NMe ₂	н	1	CSSMe	Et	Et
P-43	Н	NEt ₂	Н	1	CSSMe	Et	Et
P-44	OMe	Н	Н	1	CSSMe	Et	Et
P-45	Н	Н	Br	1	CSSMe	Et	Et
P-46	Н	Н	Me	1	CSSMe	Et	Et
P-47	Н	Н	Et	1	CSSMe	Et	Et
P-48	Н	Н	Pr	1	CSSMe	Et	Et
P-49	Н	Н	Pr ⁱ	1	CSSMe	Et	Et
P-50	Н	Н	Bu	1	CSSMe	Et	Et

(表85)

$$R^{3}$$
 $(CH_{2})_{n}$ N R^{6}

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
P-51	Н	Н	Bu ⁱ	1	CSSMe	Et	Et
P-52	Н	Н	Bus	1	CSSMe	Et	Et Et
P-53	Н	Н	Bu ^t	1	CSSMe	Et	Et
P-54	Н	Н	OMe	1	CSSMe	Et	Et
P-55	Н	Н	OEt	1	CSSMe	Et	Et
P-56	Н	Н	OPr	1	CSSMe	Et	Et
P-57	H	Н	OPr ⁱ	1	CSSMe	Et	Et
P-58	Н	Н	OCHF ₂	1	CSSMe	Et	Et
P-59	Н	Н	OCF ₃	1	CSSMe	Et	Et
P-60	Н	Н	CF₃	1	CSSMe	Et	Et
P-61	Н	H	SMe	1	CSSMe	Et	Et
P-62	H	H	SEt	1	CSSMe	Et	Et
P-63	Н	Н	SPr ⁱ	1	CSSMe	Et	Et
P-64	H	Н	NMe ₂	1	CSSMe	Et	Et
P-65	H	H	NEt ₂	1	CSSMe	Et	Et
P-66	Me	NMe ₂	Н	1	CSSMe	Et	Et
P-67	NMe ₂	CI	H	1	CSSMe	Et	Et
P-68	Me	NEt ₂	Н	1	CSSMe	Et	Et
P-69	H	NEt ₂	Me	1	CSSMe	Et	Et
P-70	Bu ^s	H	Н	1	CSSMe	Et	Et
P-71	OMe	H	OMe	1	CSSMe	Et	Et
P-72	H	OMe	OMe	1	CSSMe	Et	Et
P-73	Н	OMe	OEt	1	CSSMe	Et	Et
P-74	H	OEt _	OMe	1	CSSMe	Et	Et
P-75	H	OEt	OEt	1	CSSMe	Et	Et

(表86)

$$R^{2}$$
 R^{1}
 R^{3}
 $(CH_{2})_{n}-N$
 R^{6}

					,		
	R¹	R²	R³	n	R ⁶	R ⁷	R ⁸
Q-1	Н	Н	Н	2	CSSMe	Et	Et
Q-2	CI	Н	Н	2	CSSMe	_Et	Et
Q-3	Br	н	Н	2	CSSMe	Et	Et
Q-4	Me	Н	Н	2	CSSMe	Et_	Et_
Q-5	Et	Н	Н	2	CSSMe	Et	Et
Q-6	Pr	Н	Н	2	CSSMe	Et	Et
Q-7	Bu	н	Н	2	CSSMe	Et	Et
Q-8	Bu'	Н	Н	2	CSSMe	Et	Et
Q-9	Bu [*]	Н	Н	2	CSSMe	Et	Et
Q-10	Pr ⁱ	Н	Н	2	CSSMe	Et_	Et
Q-11	OEt	Н	Н	2	CSSMe	Et	Et
Q-12	OPr ⁱ	I	Н	2	CSSMe	Et	Et
Q-13	OPr	I	Н	2	CSSMe	Et	Et
Q-14	OCHF ₂	I	Н	2	CSSMe	Et	Et
Q-15	OCF₃	Н	Н	2	CSSMe	Et	Et
Q-16	CF ₃	Н	Н	2	CSSMe	Et	Et
Q-17	SMe	Н	Н	2	CSSMe	Et	Et
Q-18	SEt	Н	Н	2	CSSMe	Et	Et
Q-19	SPr ⁱ	Н	Н	2	CSSMe	Et	Et
Q-20	NMe ₂	Н	Н	2	CSSMe	Et _	Et
Q-21	NEt ₂	Н	Н	2	CSSMe	Et	Et
Q-22	H	CI	Н	2	CSSMe	Et	Et
Q-23	Н	Br	Н	2	CSSMe	Et	Et .
Q-24	Н	Me	Н	2	CSSMe	Et	Et
Q-25	Н	Et	Н	2	CSSMe	Et	Et

(表87)

	R¹	R ²	R ³	T	7 56		
Q-26	 ';			<u></u>	R ⁶	R ⁷	R ⁸
	+	Pr	H	2	CSSMe	Et	Et
Q-27	 H	Pr'	<u> Н</u>	2	CSSMe	Et	Et
Q-28	H	Bu	<u> </u>	2	CSSMe	Et	Et
Q-29	H	Bu ⁱ	Н	2	CSSMe	Et	Et
Q-30	H	Bus	H	2	CSSMe	Et	Et
Q-31	H	Bu'	Н	2	CSSMe	Et	Et
Q-32	<u> </u>	OMe	Н	2	CSSMe	Et	Et
Q-33	H	OEt	Н	2	CSSMe	Et	Et
Q-34	Н	OPr	Н	2	CSSMe	Et	Et
Q-35	H	OPr'	Н	2	CSSMe	Et	Et
Q-36	Н	OCHF,	Н	2	CSSMe	Et	Et
Q-37	Н	OCF ₃	Н	2	CSSMe	Et	Et
Q-38	Н	CF₃	Н	2	CSSMe	Et	Et
Q-39	Н	SMe	Н	2	CSSMe	Et	Et
Q-40	Н	SEt	Н	2	CSSMe	Et Et	
Q-41	Н	SPr'	Н	2	CSSMe	Et Et	Et Et
Q-42	H	NMe ₂	Н	2	CSSMe	Et Et	Et
Q-43	Н	NEt,	H	2	CSSMe		Et
Q-44	OMe	Н	H	2	CSSMe	Et	<u>Et</u>
Q-45	Н	Н	Br	2	CSSMe	<u>Et</u>	<u>Et</u>
Q-46	Н	H H	Me	2	CSSMe	<u>Et</u>	Et
Q-47	Н	H	Et	2		<u>Et</u>	Et
O-48	H	Н	Pr	2	CSSMe	<u>Et</u>	<u>Et</u>
0-49	H	Н	Pr ⁱ	2	CSSMe	Et	Et
0-50	H	— <u>''</u>			CSSMe	Et	<u>Et</u>
- 2 30			Bu	2	CSSMe	Et	<u>Et</u>

(表88)

$$R^2$$
 R^3
 $(CH_2)_n$ - N
 R^5

	R¹	R ²	R ³		R ⁶	R ⁷	R ⁸
0.51	H	`` H	Bu'	2	CSSMe	Et	Et
Q-51	—— ''	H	Bus	2	CSSMe	Et	Et
Q-52	Н	'' -	Bu'	2	CSSMe	Et	Et
Q-53	H	Н.	OMe	2	CSSMe	Et	Et
Q-54	H	H	OEt	2	CSSMe	Et	Et
Q-55	H	<u>''</u> Н	OPr	2	CSSMe	Et	Et
Q-56	H	Н Н	OPr ⁱ	2	CSSMe	Et	Et
Q-57	H	<u>''</u>	OCHF ₂	2	CSSMe	Et	Et
Q-58	H	H	OCF ₃	2	CSSMe	Et	Et
Q-59	Н	H	CF ₃	2	CSSMe	Et	Et
Q-60	Н	H	SMe	2	CSSMe	Et	Et
Q-61 Q-62	 	H	SEt	2	CSSMe	Et	Et
Q-63	 	H	SPr ⁱ	2	CSSMe	Et	Et
Q-64	H	H	NMe ₂	2	CSSMe	Et	Et
Q-65	H	H	NEt ₂	2	CSSMe	Et	Et
Q-66	Me	NMe ₂	H	2	CSSMe	Et	Et
Q-67	NMe ₂	CI	Н	2	CSSMe	Et	Et
0-68	Me	NEt ₂	H	2	CSSMe	Et	Et
Q-69	H	NEt ₂	Me	2	CSSMe	Et	Et
Q-70	Bus	H	Н	2	CSSMe	Et	Et
Q-71	OMe	H	OMe	2	CSSMe	Et	Et
Q-72	H	OMe	OMe	2	CSSMe	Et	Et
Q-73	Н	OMe	OEt	2	CSSMe	Et	Et
Q-74	H	OEt	OMe	2	CSSMe	Et	Et
Q-75	 	OEt	OEt	2	CSSMe	Et	Et

上記の本発明化合物の試験例を以下に示す。

5 試験例1 ヒト CB2 受容体結合阻害実験

10

ヒト CB2 受容体をコードする cDNA 配列 (Munro 等, Nature, 1993, 365, 61-65) を、動物細胞用発現ベクターである pSVL SV40 Late Promoter Expression Vector (Amersham Pharmacia Biotech 社) のプロモーター下流域に順方向に挿入した。得られた発現ベクターを LipofectAMINE 試薬 (Gibco BRL社) を用いて、宿主細胞 CHO に使用説明書にしたがってトランスフェクションし、CB2 受容体安定発現細胞を得た。

5

10

15

CB2 受容体を発現させた CHO 細胞から調製した膜標品を、被検化合物及び38,000 dpm の[³H]CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製)とともに、アッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HCl 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2時間インキュベーションした後、1% ポリエチレンイミン処理したグラスフィルターGF/C にて濾過した。0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10 μ M WIN55212-2 (US 5081122 記載のカンナビノイド受容体アゴニスト、Research Biochemicals International 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (IC50値)を求めた。

ヒト CB1 受容体に対する結合実験は、CB1 受容体を安定発現する CHO 細胞を上記と同じ方法で作製し、その膜画分を用いて行った。これらの結合実験の結果、得られた被検化合物の各ヒトカンナビノイド受容体に対する Ki 値を表に示した。表に示したとおり、本発明の一連の化合物は、CB1 受容体に比べて CB2 受容体への CP55940 (US 4371720 記載のカンナビノイド受容体アゴニスト) の結合を選択的に阻害した。

(実	8	n)
(オマ	n	м	,

(衣89)				
化合物	Ki (nM)			
	CB1受容体	CB2受容体		
. I-5	>5000	61		
I-23	>5000	29		
I-50	>5000	39		
I-51	n.t.	23		
I-52	n.t.	35		
1-56	n.t.	54		
I-6	>5000	9		
I-57	4134	6		
1-69	n.t.	33		
I-60	2097	18		
I-62	n.t.	44		
I-63	n.t.	43		
1-74	n.t.	48		
1-77	n.t.	53		
1-84	>5000	35		
I-85	n.t.	25		

n.t.: not tested

試験例2 ヒト CB2 受容体を介する cAMP 生成阻害実験

ヒト CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュ ベーションの後、フォルスコリン(終濃度 4 μ M、SIGMA 社)を加えて 20 分間インキュベーションした。 1N HCl を添加して反応を停止させた後、上清中の cAMP 量を Amersham Pharmacia Biotech 社製の EIA kit を用いて測定した。フォルスコリン刺激による cAMP 生成をフォルスコリン無刺激に対して 100%とし、50%の抑制作用を示す被検化合物の濃度(IC₅₀ 値)を求めた。この結果得られた被検化合物の IC₅₀ 値を表 9 0 に示す。表 9 0 に示すとおり、本発明化合物は、CB2 受容体に対してアゴニスト作用を示した。

なお、同様に試験することにより、アンタゴニスト作用についても試験することができる。

(表90)

化合物	IC _{so} (nM)		
1-5	6.5		
I-23	2.6		
I-51	2.8		
1-6	2.7		
1-57	5.5		

試験例3 ヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル実験

雌性 ddY マウス(7週令)をヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル 5 に用いた。

カンナビノイド受容体作用薬である I-6、I-60、I-77 および I-118 は 0.6% アラビアゴム溶液に懸濁した。マウスは 10¹個の SRBC を左後肢足蹠皮内(40 ml)に注射することにより感作した。その 5 日後に 10⁸個の SRBC を右後肢足蹠皮内(40 ml)に注射することにより DTH 反応を惹起した。薬物は DTH 反応惹起 1 時間前および 5 時間後に経口投与(10 ml/kg)した。 SRBC 注射 24 時間後に左右後肢の容積を水置換法により測定し、右足容積と左足容積の差を求めることにより足浮腫容量を算出して DTH 反応の指標とした。

データはそれぞれの化合物の抑制率で示す。統計的検定は Welchの t検定法により行ない、P<0.05 のとき有意差ありと判定した。

15

10

(表91)

化合物	投与量(mg/kg)	抑制率(%)
1-6	40	45.2
1-60	30	31.1
1-77	30	33.8
I-118	30	33.0

産業上の利用可能性

5

10

式(I)及び式(II)で示される本発明化合物は、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。従って、カンナビノイド1受容体(CB1R)に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体(CB1R)に関連した依存性を引き起こすこともなく、カンナビノイド2受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。

請求の範囲

1. 式(I):

$$(CH_2)_m$$
 (I) R^2

5 (式中、R¹は置換されていてもよいアルキレンを表わし、R²はアルキル、式:
-C(=R⁵)-R⁶(式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式:-SO₂R¹(式中、R¹はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、mは0~2の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物。

2. 式:

で示される基が、式:

(式中、R³およびR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいへテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:一C(=O)ーRH(RHは水素、アルキル、置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、Aは置換されていてもよい芳香族複素環又は置換されていてもよい芳香族複素環を表わす。)である請求の範囲第1項記載の医薬組成物。

3. カンナビノイド2受容体親和性である請求の範囲第1項又は第2項記載の 15 医薬組成物。

4. カンナビノイド2受容体作動性である請求の範囲第3項記載の医薬組成物。

5. 抗炎症剤である請求の範囲第3項記載の医薬組成物。

6. 免疫抑制剤である請求の範囲第3項記載の医薬組成物。

7. 腎炎治療剤である請求の範囲第3項記載の医薬組成物。

20 8. 式(II):

5

10

$$R^3$$
 A
 $(CH_2)_m$
 R^2
 (II)

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 は式: -C (= R⁵)-R⁶(式中、R⁵はO又はSを表わし、Rցはアルキル、アルコキシ、アル キルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキ シ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルア ミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよい 5 アミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はア ルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置 換されていてもよいヘテロアリールを表わす)で示される基を表わし、R³およ びR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換 されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよ 10 いアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアル キル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アル コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシア ルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコ 15 キシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリー ル、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又 は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリー ル、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数 を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳 20 香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許 容される塩、又はそれらの溶媒和物。

- 9. mが 0 である請求の範囲第 8 項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。
- 10. R 1 がアルキレンで置換されていてもよい炭素数 $2\sim9$ の直鎖状又は分枝状のアルキレンである請求の範囲第 8 項又は第 9 項記載の化合物、そのプロド

ラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

11. R¹がアルキレンで置換された炭素数2~9の直鎖状のアルキレン、又は炭素数2~9の分枝状のアルキレンである請求の範囲第8項~第10項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

12. R⁶がアルコキシ又はアルキルチオであり、R⁷が置換されていてもよいアリールである請求の範囲第8項~第11項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

13. R³およびR⁴がそれぞれ独立して水素、アルキル、アルコキシ、又はア 10 ルキルチオであり、Aが置換されていてもよい芳香族炭素環である請求の範囲第 8項~第12項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物。

トロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロメチルフェニル、2-チエニル、又は2-ナフチルであり、 R^3 が水素、メチル、25 エチル、n-プロピル、i-プロピル、n-プチル、i-プチル、sec-プチル、t-プチル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-

ミノであり、R⁷がメチル、エチル、4-トリル、4-二トロフェニル、3-二

ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、ジメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、エタンスルフィニル、メタンスルホニル、エタンスルフィニル、メトキシメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピペリジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカルボニルであり、R⁴が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキシ、又はエトキシであり、又はR³及びR⁴が一緒になって-O-CH₂-O-を表わし、Aがペンゼン環、ナフタレン環、ピリジン環、又はキノリン環である請求の範囲第8項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

- 15. 請求の範囲第8項~第14項のいずれかに記載の化合物、そのプロドラ 15 ッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成 物。
 - 16. カンナビノイド2受容体親和性である請求の範囲第15項記載の医薬組成物。
- 17. カンナビノイド2 受容体作動性である請求の範囲第16項記載の医薬組 20 成物。
 - 18. 抗炎症剤である請求の範囲第16項記載の医薬組成物。
 - 19. 免疫抑制剤である請求の範囲第16項記載の医薬組成物。
 - 20. 腎炎治療剤である請求の範囲第16項記載の医薬組成物。
- 2 1. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする炎症の 25 治療方法。
 - 22. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする免疫抑

制の方法。

23. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする腎炎の治療方法。

- 24. 抗炎症剤を製造するための請求の範囲第1項記載の化合物の使用。
- 5 25. 免疫抑制剤を製造するための請求の範囲第1項記載の化合物の使用。
 - 26. 腎炎治療剤を製造するための請求の範囲第1項記載の化合物の使用。

			202/0	200,00103
Int. 31/5 (C07	SIFICATION OF SUBJECT MATTER .Cl ⁷	00//(C07D417/1 6),(C07D417/12	12, C07D213:: 2, C07D279:(36. C07D279.06)
	S SEARCHED			
Int.	31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-3	279/08,417/12, 7/06, 43/00	,A61K31/426	
	tion searched other than minimum documentation to th			
CAPI	lata base consulted during the international search (nan LUS (STN), REGISTRY (STN), WPI (DIALC	ne of data base and, wn	ere practicable, sea	rch terms used)
	MENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·		
Category*	CIRI DANOWCKI To the state of t			Relevant to claim No.
х	GIELDANOWSKI, J., et al., "PHAF THE GROUP OF NEW SUBSTITUT	RMACOLOGICAL A TED THIAZOLOA	ACTIVITY IN	1-6,24,25
A	THIAZINOCAOROXYL ACID DERIVATIVE Exp., 26(1-6), pp.921-929 (1978)	/ES", Arch. Imm		7-20,26
x	JP, 62-212378, A (Bayer Aktiend 18 September, 1987 (18.09.87),	gesellschaft),	,	1-5,24
A	Claims; page 25, upper right colu column; example	umn to page 26,	upper left	6-20,25,26
	& DE, 3632042, A & EP, 2406 & US, 4771062, A			
х	JP, 2-3678, A (Janssen Pharmace 09 January, 1990 (09.01.90),	eutica N.V.),		1-5,24
A	Claims; page 14, upper left colum column; example		lower right	6-20,25,26
	& EP, 331232, A & AU, 8930	739, A		
ľ	& NO, 8900813, A & DK, 89008 & PT, 89875, A & FI, 89008	918, A 931, A		
	& CN, 1036569, A & ZA, 8901	547, A	ĺ	
1	& IL, 89426, A			
	documents are listed in the continuation of Box C.	See patent famil		
"A" documer	categories of cited documents: nt defining the general state of the art which is not	priority date and r	not in conflict with the	national filing date or eapplication but cited to
"E" earlier d	red to be of particular relevance locument but published on or after the international filing	understand the pri "X" document of parti	inciple or theory unde icular relevance; the cl	rlying the invention laimed invention cannot be
date "L" documer	nt which may throw doubts on priority claim(s) or which is	considered novel of step when the doc	or cannot be considere cument is taken alone	ed to involve an inventive
special r	establish the publication date of another citation or other reason (as specified) nt referring to an oral disclosure, use, exhibition or other	"Y" document of parti- considered to invo	icular relevance; the cl olve an inventive step	laimed invention cannot be when the document is
means "P" documer	nt reterring to an oral disclosure, use, exhibition or other nt published prior to the international filing date but later priority date claimed	combination being	ne or more other such on a person of the same patent far	skilled in the art
Date of the ac	ctual completion of the international search ovember, 2000 (27.11.00)	Date of mailing of the 12 December	e international searc er, 2000 (1:	h report 2.12.00)
	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No.		Telephone No.		

ategory*	Citation of document with indicate when according to the state of	Deleve-44- 1 2
X	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Λ	FR, 2201080, A (BADISCHE ANILIN- & SODA-FABRIK AG.), 26 April, 1974 (26.04.74),	1-5,24
A	Claims; page 4, line 1 to page 5, line 3	6-20,25,26
	& DE, 2114097, A & GB, 1402103, A	
x	JP, 2-223564, A (Ube Industries, Ltd.),	8-10,13
	05 September, 1990 (05.09.90),	
A	Claims; Table 1, & EP, 356158, A & ZA, 8906308, A	11,12,14
	& US, 5073558, A	
х	JP, 63-41471, A (Nippon Soda Co., Ltd.),	8-10,13
	22 February, 1988 (22.02.88),	
A	Claims; Table 1 (Family: none)	11,12,14
X	JP, 57-134472, A (Hoechst Aktiengesellschaft),	1,2
A	19 August, 1982 (19.08.82), Claims; page 9, lower right column to page 10, lower right	3-20,24-26
A	column	3-20,24-25
	& EP, 55458, A & DE, 3049460, A & NO, 8104468, A & DK, 8105811, A & FI, 8104175, A & ZA, 8108968, A	
	& NO, 8104468, A & DK, 8105811, A	
	& US, 4421757, A & IL, 64653. A	
	& ES, 8305342, A & ES, 8308549, A	
	& ES, 8305342, A & ES, 8308549, A & ES, 8308551, A & ES, 8308551, A & CA, 1173836, A	
	R 15, 0402025, A R CA, 1173030, A	
Х	JP, 59-172486, A (Janssen Pharmaceutica N.V.), 29 September, 1984 (29.09.84),	1,2
A	Claims; page 11, upper right column to lower left column;	3-20,24-26
	example	·
	& EP, 118138, A & AU, 8425097, A	
	& NO, 8400735, A & NO, 8702221, A & NO, 9000396, A & DK, 8401070, A	
	& DK, 9100783, A & DK, 9101088, A	
	& FI, 8400781, A & PT, 78156, A	
	& ZA, 8401449, A & US, 4619931, A & IL, 71066, A & CA, 1271194, A	
	& JP, 5-246999, A & ES, 8505364, A	
	& ES, 8506007, A & ES, 88507541, A	
х	JP, 56-10180, A (Hoechst Aktiengesellschaft),	1,2
A	02 February, 1981 (02.02.81), Claims; page 18, upper left column to page 19, upper left	3-20,24-26
-•	column; example	J-20,24-20
	& DE, 2926771, A & NO, 8001995, A	
	& NO, 8404120, A & EP, 23964, A & DK, 8002865, A & FI, 8002094, A	
	& ZA, 8003979, A & US, 4346088, A	
	& CA, 1156240, A & IL, 60468, A	
	& IL, 70114, A	
х	JP, 52-51364, A (Hoechst Aktiengesellschaft),	1,2
A	25 April, 1977 (25.04.77), Claims; example	3-20 24 26
44	& BE, 847352, A & DE, 2546165, A	3-20,24-26
	& NL, 7611159, A & SE, 7611504, A	
	& NO, 7603502, A & FI, 7602920, A & DK, 7604640, A & FR, 2327778, A	
	& US, 4083979, A & AT, 7902625, A	

	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& AT, 7607655, A & GB, 1563323, A & CA, 1083581, A	
x		
	JP, 52-17468, A (Hoechst Aktiengesellschaft), 09 February, 1977 (09.02.77),	1,2
A	Claims; example & BE, 844666, A & DE, 2533821, A	3-20,24-26
	& NL, 7608206, A & SE, 7608545, A	
	& NL, 7608206, A & SE, 7608545, A & NO, 7602625, A & DK, 7603404, A & FI, 7602140, A & FR, 2319345, A	
	& US, 4061647, A & GB, 1522107, A	
	& AT, 7605555, A & IL, 50146, A & CA, 1077492, A	
Х	JP, 51-54555, A (Hoechst Aktiengesellschaft), 13 May, 1976 (13.05.76),	1,2,
A	Claims; page 28, lower right column to page 29, upper right	3-20,24-36
	column; example & JP, 52-83511, A & NL, 5708848, A	
	& BE, 831794, A & IL. 47779, A	
İ	& DE, 2436263, A & SE, 7508476, A & PT, 64112, A & NO, 7502636, A	
	& DK, 750340, A & FI, 7502131, A	
	& FR, 2282882, A & ZA, 7504772. A	
İ	& DD, 121112, A & US, 4061761, A & US, 4125614, A & GB, 1513948, A	
İ	& CA, 1054596, A & CH, 617431, A	
- 1	& CH, 623316, A & CH, 624677, A & CH, 624678, A & AT, 7505770, A	
	& CH, 624678, A & AT, 7505770, A & AT, 7707817, A & AT, 7707814, A & AT, 7707815, A & AT, 7707816, A	
х	<pre>JP, 50-37775, A (Egyt Gyogyszervegyeszeti Gyar), 08 April, 1975 (08.04.75),</pre>	1,2,
A	Claims; page 2; example	3-10,24-26
	& NL, 7409315, A & DE, 2433104, A & SE, 7409092 A & DK 7403740 A	
i	& SE, 7409092, A & DK, 7403740, A & DD, 112452, A & FR, 2236495, A	
	& CS, 7404954, A & GB, 1467385, A & AT, 7404954, A	
x	JP, 48-36169, A (Bayer Aktiengesellschaft), 28 May, 1973 (28.05.73),	1,2,
A	Claims; page 3, upper left column to page 4, upper right	3-20,24,26
	column; example & JP, 48-36168, A & BE, 788743, A	, ,
į.	& DE, 2145807, & RO, 68389, AA,	
	& NL, 7212419, A & ZA, 7206271, A & FR, 2154512, A & DD, 103898, A	
	& DD, 105990, A & GB, 1377265, A	
	& RO, 84247, A & US, 3860590, A & AT, 7402318, A & AT, 7402319, A	
1	& SU, 455544, A & CH, 569724, A	
	& CH, 587258, A & SU, 439988, A & SU, 556728, A	
] (& RO, 84248, A & RO, 68372, A	
1 '	& IL, 40338, A & CA, 1007638, A	ļ
x S	JP, 48-23793, A (Imperial Chem. Ind. Ltd.),	1,2
	29 March, 1973 (29.03.73),	

PCT/JP00/06185

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages Claims; page 3, upper left column; example	3-20, 24, 26
A	& DE, 2236970, A & BE, 786416, A	3 20,21,20
	& FR, 2147214, A & ZA, 7204731, A	
	& SU, 847915, A & DD, 103645, A & GB, 1351031, A & US, 3845070, A	
	& US,3925440,	
х	US, 3678041, A (Etablissements Clin-Byla),	1,2
A	18 July, 1972 (18.07.72), Claims; Column 1, lines 1 to 11; example	3-20,24,26
	& DE, 1770583, A & BE, 716140, A	
	& AU, 6838776, A & ZA, 6703535, A & ZA, 6803535, A & CA, 897687, A & GB, 1224546, A & US, 3678041, A	
	& GB, 1224546, A & US, 3678041, A	
	& US, 3704296, A & FR, 1604530, A	
x	JP, 6-220053, A (Fuji Photo Film Co., Ltd.), 09 August, 1994 (09.08.94),	1,2
A	Claims; Par. Nos. [0014], [0015], [0024]	3-20,24,26
	& US, 5476945, A & US, 5618831, A	
X	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5),	1,2
A	pp.170-171 (1984)	3-20,24,26
PX	WO, 00/42031, A2 (BAYER CORPORATION),	1,2,8-10,13,1
	20 July, 2000 (20.07.00), Claims; example	
	& AU, 200027087, A	
A	JP, 11-80124, A (JAPAN TOBACCO INC.),	1-20,24-26
	26 March, 1999 (26.03.99)	
	& WO, 99/02499, A1 & AU, 9881279, A	
A	MUNRO, S., et al., "Molecular characterization of a	1-20,24-26
	peripheral receptor of cannabinoids", NATURE, 365(2), pp.61-65 (1993)	
	pp. oz (arsa,	

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. 🖂 Claims Nos.: 21-23 because they relate to subject matter not required to be searched by this Authority, namely: The inventions as set forth in claims 21 to 23 pertain to methods for treatment of the human body by therapy (Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT). Claims Nos.: 1-20,24-26 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: (See extra sheet.) Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

Continuation of Box No. I-2 of continuation of first sheet (1)

(The technical features of the inventions as set forth in claims 1 to 20 and claims 24 to 26 reside in the compounds per se represented by the formula (I) or (II) or utilization of these compounds as drugs. The compounds involved in the formulae (I) and (II) have nothing but the following chemical structure in common:

As stated in the documents, compounds having this chemical structure and medicinal compositions with the use of these compounds have been widely known. Therefore, the technical features cannot be considered as being sufficiently specified by the chemical structure. Moreover, only a part of compounds among compounds involved in a broad scope are supported in the description. Therefore, the claims and description fail to satisfy the definite requirements to such an extent as enabling meaningful international search.

In this report, therefore, the search has been practiced exclusively on compounds satisfying the following conditions by reference to the statement in the description:

- the substituent A is an optionally substituted phenyl or optionally substituted 3-pyridyl group;
- ·m is an integer of from 0 to 2;
- $^{\boldsymbol{\cdot}}\,R^1$ is an optionally substituted, linear $C_{2\text{-}3}$ alkylene group; and
- R^2 is an alkyl, -(C= R^5)- R^6 or -SO₂ R^7 group (wherein R^5 , R^6 and R^7 are each as defined in claims).

Α.	発明の属する分野の分類	(国際性数分類 (L D C \
л.	プレヴィンスは、9 くり・カーサーフ・カーチョー	しいずりがん かんしょうしん しょうしん しょうしん しょうしん しょうしょう しょう	IPCI

Int. Cl⁷ C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00 //(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D279:06, C07D333:34)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07D277/08-277/18, 279/06-279/08, 417/12, A61K31/426, 31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-37/06, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN), WPI (DIALOG), JICST (JOIS)

C. 関連すると認められる文献

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
GIELDANOWSKI, J., et al., "PHARMACOLOGICAL ACTIVITY IN THE	1-6, 24, 25
ACID DERIVATIVES", Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978)	7-20, 26
JP, 62-212378, A (バイエル・アクチエンゲゼルシャフト), 18.9月.1987 (18.09.87)	1-5, 24
特許請求の範囲,第25頁右上欄-第26頁左上欄,実施例, & DE, 3632042, A,& EP, 240680, A,& US, 4771062, A	6-20, 25, 26
	GROUP OF NEW SUBSTITUTED THIAZOLOACETIC AND THIAZINOCAOROXYL ACID DERIVATIVES", Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978) JP, 62-212378, A (バイエル・アクチェンゲゼルシャフト), 18. 9月. 1987 (18. 09. 87), 特許請求の範囲,第25頁右上欄一第26頁左上欄,実施例,

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献义は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

27.11.00

国際調査報告の発送日

12.12.00

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 今 村 玲 英 子 4C 9736

電話番号 03-3581-1101 内線 3450

•	国際、最告	国際出 B PCT/JP0	0/06185
C (続き).	関連すると認められる文献		
引用文献の カテゴリー*		は、その関連する箇所の表示	関連する 請求の範囲の番号
Х	JP, 2-3678, A (ジャンセン・フムローゼ・フェンノートシャップ),		1-5, 24
A	9. 1月. 1990 (09. 01. 90) 特許請求の範囲, 第14頁左上欄一第15頁右 & EP, 331232, A, & AU, 8930739, A, & NO, 89 & DK, 8900918, A, & PT, 89875, A, & FI, 89 & CN, 1036569, A, & ZA, 8901547, A, & IL,	5下欄,実施例, 900813, A, 00931, A,	6-20, 25, 26
Х	FR, 2201080, A (BADISCHE ANILII 26.4月.1974 (26.04.74		1-5, 24
A	特許請求の範囲,第4頁1行-第5頁3行 & DE, 2114097, A, & GB, 1402103, A		, 6-20, 25, 26
X	JP, 2-223564, A (宇部興産校 5.9月.1990 (05.09.90)	•	8-10, 13
A	特許請求の範囲,第1表, & EP,356158,A, & ZA,8906308,A, & US,5		11, 12, 14
X	JP, 63-41471, A (日本曹達校 22.2月.1988 (22.02.88		8-10, 13
A	特許請求の範囲,第1表(ファミリーな)		11, 12, 14
X	JP, 57-134472, A (ヘキス) フト), 19.8月.1982(19.0	ト・アクチエンゲゼルシヤ 38.82),	1, 2
A	特許請求の範囲,第9頁右下欄一第10頁7 & DE, 3049460, A, & NO, 8104468, A, & DK, & FI, 8104175, A, & ZA, 8108968, A, & US, & IL, 64653, A, & ES, 8305342, A, & ES, 83 & ES, 8308550, A, & ES, 8308551, A, & ES, & CA, 1173836, A	台下欄,& EP,55458,A, 8105811,A, 4421757,A, 808549,A,	3-20, 24-26
x	JP, 59-172486, A (ジャン・ナームローゼ・フェンノートシャップ)		1, 2
A .	29. 9月. 1984 (29.09.8 特許請求の範囲,第11頁右上欄一左下欄, & AU,8425097, A, & NO,8400735, A, & NO, & NO,9000396, A, & DK,8401070, A, & DK, & DK,9101088, A, & FI,8400781, A, & PT, & ZA,8401449, A, & US,4619931, A, & IL, & CA,1271194, A, & JP,5-246999, A, & ES,8506007, A, & ES,88507541, A	4), 実施例, & EP, 118138, A, 8702221, A, 9100783, A, 78156, A, ,71066, A,	3-20, 24-26

国際調査報	设台	

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP, 56-10180, A (ヘキスト・アクチーエンゲゼルシャフト), 2. 2月. 1981 (02. 02. 81),	1, 2
A	特許請求の範囲,第18頁左上欄一第19頁左上欄,実施例, & DE, 2926771, A,& NO, 8001995, A,& NO, 8404120, A, & EP, 23964, A,& DK, 8002865, A,& FI, 8002094, A, & ZA, 8003979, A,& US, 4346088, A,& CA, 1156240, A, & IL, 60468, A,& IL, 70114, A	3-20, 24-26
X	JP, 52-51364, A (ヘキスト・アクチーエンゲゼルシャフト), 25. 4月. 1977 (25. 04. 77),	1, 2
A	特許請求の範囲,実施例,& BE, 847352, A,& DE, 2546165, A, & NL, 7611159, A,& SE, 7611504, A,& NO, 7603502, A, & FI, 7602920, A,& DK, 7604640, A,& FR, 2327778, A, & US, 4083979, A,& AT, 7902625, A,& AT, 7607655, A, & GB, 1563323, A,& CA, 1083581, A	3-20, 24-26
X	JP, 52-17468, A (ヘキスト・アクチーエンゲゼルシヤフト), 9. 2月. 1977 (09. 02. 77),	1, 2
A	特許請求の範囲,実施例,& BE, 844666, A,& DE, 2533821, A, & NL, 7608206, A,& SE, 7608545, A,& NO, 7602625, A, & DK, 7603404, A,& FI, 7602140, A,& FR, 2319345, A, & US, 4061647, A,& GB, 1522107, A,& AT, 7605555, A, & IL, 50146, A,& CA, 1077492, A	3-20, 24-26
X .	JP, 51-54555, A (ヘキスト・アクチーエンゲゼルシヤフト), 13. 5月. 1976 (13. 05. 76),	1, 2
A	特許請求の範囲,第28頁右下欄一第29頁右上欄,実施例, & JP, 52-83511, A, & NL, 5708848, A, & BE, 831794, A, & IL, 47779, A, & DE, 2436263, A, & SE, 7508476, A, & PT, 64112, A, & NO, 7502636, A, & DK, 750340, A, & FI, 7502131, A, & FR, 2282882, A, & ZA, 7504772, A, & DD, 121112, A, & US, 4061761, A, & US, 4125614, A & GB, 1513948, A, & CA, 1054596, A, & CH, 617431, A, & CH, 623316, A, & CH, 624677, A, & CH, 624678, A, & AT, 7505770, A, & AT, 7707817, A & AT, 7707814, A, & AT, 7707815, A, & AT, 7707816, A	3-20, 24-26
X A	JP, 50-37775, A (エギト ギオギスゼルヴェギエスゼ ティ グヤール), 8. 4月. 1975 (08. 04. 75), 特許請求の範囲, 第2頁, 実施例, & NL, 7409315, A, & DE, 2433104, A, & SE, 7409092, A, & DK, 7403740, A,	1, 2 3-20, 24-26
	& DD, 112452, A, & FR, 2236495, A, & CS, 7404954, A, & GB, 1467385, A, & AT, 7404954, A	

	四际一个和古	国际正 F PCI/JPU	7/00183
C(続き).	関連すると認められる文献	·	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	、その関連する箇所の表示	関連する 請求の範囲の番号
A A	JP, 48-36169, A (バイエル・た), 28.5月.1973 (28.05.特許請求の範囲,第3頁左上欄一第4頁右& JP, 48-36168, A, & BE, 788743, A, & DE, 21A, & NL, 7212419, A, & ZA, 7206271, A, & FR, & DD, 103898, A, & DD, 105990, A, & GB, 1377& US, 3860590, A, & AT, 7402318, A, & AT, 74& SU, 455544, A, & CH, 569724, A, & CH, 5872& SU, 505363, A, & SU, 556728, A, & RO, 8424& IL, 40338, A, & CA, 1007638, A	アクチエンゲゼルシヤフ 73), 上欄,実施例, 145807, & RO,68389,A, 2154512,A, 7265,A, & RO,84247,A, 102319,A,	1, 2 3-20, 24-26
X	JP, 48-23793, A (イムペリア) トリース・リミテッド),	レ・ケミカル・インダス	1, 2
A	27.3月.1973(29.03.73) 特許請求の範囲,第3頁左上欄,実施例,& & BE,786416,A, & FR,2147214,A, & ZA,720 & DD,103645,A, & GB,1351031,A, & US,384	2 DE, 2236970, A, 04731, A, & SU, 847915, A,	3-20, 24-26
X	US, 3678041, A (Etablissement 18.7月.1972 (18.07.72)		1, 2
A	特許請求の範囲,第1欄1-11行,実施例, & BE, 716140, A,& AU, 6838776, A,& ZA, 670 & ZA, 6803535, A,& CA, 897687, A,& GB, 122 & US, 3678041, A,& US, 3704296, A,& FR, 16	& DE, 1770583, A, 03535, A, 24546, A,	3-20, 24-26
X	JP, 6-220053, A (富士写真フ 9.8月.1994 (09.08.94),		1, 2
A	特許請求の範囲,【0014】,【001 & US,5476945,A, & US,5618831,A		3-20, 24-26
X	GAILWAD, N. J., et al., "Substituted Anticonvulsants", Indian J. Pharm. Sc		1, 2
A	(1984)	•	3-20, 24-26
PX	WO, 00/42031, A2 (BAYER COF 20.7月.2000 (20.07.00) 特許請求の範囲,実施例, & AU,200027087,	,	1, 2, 8-10, 13, 15
A	JP, 11-80124, A (日本たばこ) 26.3.1999 (26.03.99), & WO,99/02499,A1, & AU,9881279,A		1-20, 24-26
A	MUNRO, S., <i>et al.</i> , "Molecular chaperipheral receptor of cannabinoid pp.61-65 (1993)		1-20, 24-26

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
成しなれ	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作 かった。
1. X	請求の範囲 <u>21-23</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲21ないし23にかかる発明は治療による人体の処置方法である。 (PCT17条(2)(a)(i)、PCT規則39.1(iv))
2. X	請求の範囲 <u>1-20,24-26</u> は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、 (別紙を参照のこと。)
3. []	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に过	さべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 ・
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. [出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 🗌	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
追加調査	手数料の異議の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。 追加調査手数料の納付と共に出願人から異議申立てがなかった。

(第 I 欄の 2 について)

請求の範囲 1-20 並びに 24-26 にかかる発明は、いずれも式(I) 若しくは式(II) により表される化合物自体又は当該化合物を医薬として用いることを技術的特徴とするものである。そして、式(I) 及び式(II) に含まれる化合物群における共通した化学構造は

$$- (CH2) _m - N = C$$

なる部分のみであるが、文献欄にもあるように、かかる化学構造を有する化合物やかかる化合物を用いた医薬組成物は広く知られているものであるから、かかる化学構造によってはその技術的特徴が充分に特定されたものとは認められず、また、明細書には広範な化合物群に包含される一部の化合物についてしか裏付けとなる記載がなされていない。したがって、請求の範囲及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしているものではない。

したがって、本報告においては明細書の記載を参考にして、以下の条件を満たすもののみを調査の対象とした。

- ・置換基Aは置換可能なフェニル基又は置換可能な3-ピリジル基
- ·mは0ないし2の整数
- ・R'は炭素数2または3である、置換可能な直鎖アルキレン基
- ・R²はアルキル基、-C (=R⁵) -R⁶基、又は-SO₂R⁷基 (R⁵、R⁶及びR⁷の各置換基の定義は請求の範囲に記載の通り。)