Упражнение 6

1 Минимален автомат

Дефиниция 1. Нека $L \subseteq \Sigma^*$ е език, и нека $x,y \in \Sigma^*$. Казваме, че x и y са еквивалентни по отношение на L, означено $x \approx_L y$, ако за всяка дума $z \in \Sigma^*$, следното е вярно: $xz \in L \iff yz \in L$. Тази релация наричаме релация на Нероуд за езика L.

Забележете, че \approx_L е релация на еквивалентност над Σ^* за всеки език L над Σ . Класовете на еквивалентност на тази релация, неформално казано, са множествата от думи, такива че слепването на коя да е фиксирана дума към края на кои да е две от тях води до получаването на две думи, за които или и двете са в L, или и двете са извън L. С $[x]_L$ означаваме класът на думата x по отношение на релацията на Нероуд за L.

Пример 1. Да намерим класовете на еквивалентност за езика $L = (ab + ba)^*$. Не е трудно да се съобрази, че този език има точно *четири* класа на еквивалентност по отношение на релацията на Нероуд, а именно:

- $(1) \ [\epsilon]_L = L,$
- (2) $[a]_L = La$,
- (3) $[b]_L = Lb$,
- $(4) [aa]_L = L(aa + bb)\Sigma^*.$

За (1) можем да отбележим, че не всеки език има свойството, че $[\epsilon]_L=L$. Разгледайте например езика $(ab)^*(a+b)$. (2) и (3) са класовете на думите, които представляват конкатенация на дума от L с a или b съответно. Тези думи могат да се продължат до дума в L единствено с представител на bL^* и aL^* съответно. (4) е класът на думите с дължина ≥ 2 , които не са в L. Каквото и да конкатенираме към произволни два представителя на този клас, резултатната дума ще бъде извън езика.

Дефиниция 2. Нека $A = (Q, \Sigma, \delta, s, F)$ е ДКА. Казваме, че две думи $x, y \in \Sigma^*$ са **еквивалентни по отношение на** A, означено с $x \sim_A y$, ако

$$\hat{\delta}(s, x) = \hat{\delta}(s, y).$$

Тази релация наричаме **релация на Нероуд по автомата** A.

Отново, \sim_L е релация на еквивалентност над Σ^* за всеки език L над Σ . Класовете ѝ на еквивалентност се идентифицират с достижимите от s състояния в A. Означаваме съответстващия на състоянието $q \in Q$ клас с E_q .

Пример 2. Да разгледаме отново езика $L = (ab + ba)^*$. Следният автомат A разпознава точно L.

Класовете на еквивалентност на \sim_A са

- (1) $E_{q_1} = (ba)^*$,
- $(2) E_{q_2} = La,$
- (3) $E_{q_3} = (ba)^*abL$,
- (4) $E_{q_4} = b(ab)^*$,
- (5) $E_{q_5} = L(bb + aa)\Sigma^*,$
- (6) $E_{q_6} = (ba)^* ab L b$.

Връзката между двете релации, които дефинирахме е следната. **Теорема 1.** За всеки ДКА $A=(Q,\Sigma,\delta,s,F)$ и всеки две думи $x,y\in\Sigma^*,$ ако $x\sim_A y,$ то $x\approx_{L(A)} y.$

Друг начин да изкажем тази връзка е да кажем, че релацията \sim_L прецизира релацията $\approx_{L(A)}$. В общия случай, за две релации на еквивалентност R и R' казваме, че R прецизира R', ако за всеки x,y xRy влече xR'y. Обратно, ще казваме, че R' апроксимира R. Ако релацията на еквивалентност \sim прецизира релацията на еквивалентност \approx , то всеки от класовете на еквивалентност на \sim се съдържа в някой от класовете на \approx . С други думи, всеки клас на еквивалентност на \approx е обединение на един или повече класове на еквивалентност на \sim .

Теорема 1 ни дава, че всеки автомат разпознаващ език L има поне толкова състояния, колкото са класовете на еквивалентност на \approx_L . Тоест, броят на класовете на еквивалентност на тази релация е *долна граница* за броя на състоянията на кой да е автомат, разпознаващ езика L. Но дали тази долна граница е достижима? Следната теорема ни дава отговор на този въпрос.

Теорема 2(на Майхил-Нероуд). Нека $L \subseteq \Sigma^*$ е регулярен език. Тогава съществува ДКА с точно толкова на брой състояния, колкото е броят на класовете на еквивалентност на \approx_L , който разпознава L.

Идеята е най-естествена. Използвайки само релацията \approx_L ще конструираме ДКА $A=(Q,\Sigma,\delta,s,F)$, такъв че L(A)=L. A е дефиниран както следва:

 $Q=\{[w]\mid w\in \Sigma^*\}$, множеството от класовете на еквивалентност на $pprox_L$. $s=[\epsilon]$, класът на еквивалентност на ϵ спрямо $pprox_L$.

 $F=\{[w]\mid w\in L\},$ множествтото от класовете на еквивалентност на думите в L спрямо $pprox_L.$

Накрая, за всеки клас $[w] \in Q$ и всяка буква $a \in \Sigma$, дефинираме $\delta([w], a) = [wa].$

Разбира се, такъв автомат може да се конструира само ако \approx_L има краен брой класове на еквивалентност. Как сме сигурни, че това е така? Езикът L е регулярен. Значи съществува ДКА A', такъв че L(A')=L. Според **Теорема 2** конструираният от нас автомат A също разпознава L. Но броя на състоянията на A е точно броят на класовете на еквивалентност на \approx_L . Този брой на свой ред е по-малък от броя на класовете на еквивалентност на $\sim_{A'}$, съгласно **Теорема 1**. Сега е достатъчно да забележим, че броят на класовете на еквивалентност на $\sim_{A'}$ е точно броя на състоянията на A', който е краен. Значи броят на състоянията на A е ограничен отгоре от крайно число.

Пример 3. Минималния автомат за езика $L = (ab + ba)^*$ можем да получим от **Пример 1** и **Пример 2**.

Изведеното до тук не предоставя алгоритъм с който по даден ДКА A да конструираме минималния автомат за L(A). Следва да опишем един такъв алгоритъм. Първо да дефинираме релация $\equiv_A \subseteq Q \times Q$ по следния начин. За всеки две състояния $q, p \in Q$

$$q \equiv_A p \iff (\forall w \in \Sigma^*) [\hat{\delta}(q,w) \in F \iff \hat{\delta}(p,w) \in F].$$

Лесно се забелязва, че тази релация е релация на еквивалентност. Нейните класове на еквивалентност са точно тези множества от състояния, които трябва да се "слеят" в A, за да получим минималния автомат за L(A).

Алгоритъмът ни ще трябва да изчислява класовете на еквивалентност на \equiv_A . За целта дефинираме следната редица от апроксимации на релацията \equiv_A . За всеки две състояния $q,p\in Q$

$$q \equiv_{A}^{n} p \iff (\forall w \in \Sigma^{*})[|w| \le n \implies (\hat{\delta}(q, w) \in F \iff \hat{\delta}(p, w) \in F)].$$

Очевидно, всяка от релациите $\equiv^0_A, \equiv^1_A, \equiv^2_A, \dots$ е апроксимация на пред-шественика си в редицата. Освен това, $q \equiv^0_A p$ е вярно тстк q и p са едновременно крайни или едновременно некрайни състояния. Тоест \equiv^0_A има точно два класа на еквивалентност: F и $Q\setminus F$. Сега остана само да покажем как \equiv_A^n зависи от \equiv_A^{n-1} за всяко $n\geq 1$. Връзката е следната

$$(\forall q \in Q)(\forall p \in Q)[q \equiv_A^n p \iff q \equiv_A^{n-1} p \ \& \ (\forall a \in \Sigma)[\delta(q,a) \equiv_A^{n-1} \delta(p,a)]].$$

Алгоритъмът за изчисление на \equiv_A има следния вид.

- (1) По начало класовете на \equiv_A^0 са F и $Q\setminus F$; (2) За всяко $n=1,2,\dots$ изчисли класовете на \equiv_A^n чрез класовете на \equiv_A^{n-1} докато тези на \equiv_A^n не станат същите като тези на \equiv_A^{n-1} . (3) Върни \equiv_A^n спрямо текущото достигнатото n.

Пример 4. Да приложим алгоритъма върху автомата от Пример 2. Очакваме естествено да получим като резултат автомата от Пример 3.

По начало, класовете на \equiv^0_A са $\{q_1,q_3\}$ и $\{q_2,q_4,q_5,q_6\}$.

След първата итерация на (2), класовете на \equiv_A^1 са $\{q_1,q_3\}, \{q_2\}, \{q_4,q_6\}$ и $\{q_5\}.$

След втората итерация на (2), класовете не се разбиват допълнително. Алгоритъмът терминира и връща горните четири множества като класовете на еквивалентност на \equiv_A . Това са именно състоянията на минималния автомат за $L = (ab + ba)^*$. Крайни са тези от тях, които са получени от разбиването на класа на крайните състояния (тоест тези, които съдържат само крайни състояния). Преход от състояние Q с буквата σ има към състоянието $\{p \in Q \mid \delta(q, \sigma) = p, \text{ за някое } q \in Q\}$. Резултатният автомат естествено е *изоморфен* на този от **Пример 3**.

Задачи

Задача 1. (a) Намерете класовете на еквивалентност спрямо \approx_L за всеки от следните езици:

```
(i) L = (aab + ab)^*.
```

- (ii) $L = \{w \mid w$ има поддумата $aababa\}$.
- (iii) $L = \{ww^{rev} \mid w \in \{a, b\}^*\}.$ (iv) $L = \{ww \mid w \in \{a, b\}^*\}.$
- (v) $L_n = (a+b)*a(a+b)^n$, където $n \in N^+$.
- (б) За тези езици от (а), за които отговорът е краен, дайте минимален ДКА, разпознаващ съответния език.

3 Решения