Einführung in Matlab Übung 5

Aufgabe 1: Gegeben seien n Punkte $p_i = (p_{i,1}, p_{i,2}) \in \mathbb{R}^2$ für $i = 1, \dots, n$ in der Ebene. Gesucht ist ein Kreisring mit minimalem Flächeninhalt, der alle Punkte enthält.

In der Vorlesung haben wir dies durch geeignete Umformung als lineares Programm formuliert,

$$\begin{aligned} & \min_{x_1,\dots,x_4} \pi \cdot x_4 - \pi \cdot x_3 \quad \text{unter den NB} \\ & 2p_{i,1} \cdot x_1 + 2p_{i,2} \cdot x_2 + x_3 \leq p_{i,1}^2 + p_{i,2}^2 \\ & -2p_{i,1} \cdot x_1 - 2p_{i,2} \cdot x_2 - x_4 \leq -p_{i,1}^2 - p_{i,1}^2 \quad , \quad i=1,\dots,n \end{aligned}$$

wobei dann $m = (x_1, x_2)$ der Mittelpunkt, $r_1 = \sqrt{(x_1^2 + x_2^2) + x_3}$ der innere Radius und $r_2 = \sqrt{(x_1^2 + x_2^2) + x_4}$ der äußere Radius des Kreisringes sind.

- (a) Schreiben Sie eine Funktion [m,r1,r2,a]=kreisring(p) mit folgenden Eigenschaften:
 - Die Punkte werden zusammen übergeben als Matrix p der Form

$$p = \begin{pmatrix} p_{1,1}, & p_{1,2} \\ \vdots & \vdots \\ p_{n,1}, & p_{n,2} \end{pmatrix}$$

d.h. die erste Spalte enthält die x-Koordinaten und die zweite Spalte enthält die y-Koordinaten der Punkte p_i .

- Damit werden rechte Seite-Vektor b und Koeffizienten-Matrix A für die Ungleichungen, sowie Zielfunktionsvektor f erzeugt,
- und mit diesen dann eine Lösung mit dem Matlab-Löser [x,fx]=linprog(f,A,b) berechnet.
- Dann werden aus x,fx die entsprechenden Rückgabewerte m,r1,r2 und Flächeninhalt a erzeugt.
- (b) Bei den Übungen in Stud.Ip finden Sie auch eine Excel-Datei mit 10 Datensätzen (Arbeitsblätter) zum Testen. Kopieren Sie diese in Ihren aktuellen Matlab-Ordner und lesen Sie sie ein, z.B. den 8. Datensatz mit

```
>> p=xlsread('kreisring_daten.xlsx',8);
>> [m,r1,r2,a]=kreisring(p)
m =
        4.1549
        0.0762
r1 =
        1.0031
r2 =
        1.2944
a =
        2.1024
```

und plotten Sie die Punkte p_i zusammen mit dem berechneten Mittelpunkt und Kreisring.

- (c) Schreiben Sie nun ein Skript kreisring_auswertung mit folgenden Eigenschaften:
 - Es werden nacheinander alle 10 Datensätze mit geeigneter for-Schleife eingelesen,
 - und jeweils in eine eigene Figure die Punkte p_i zusammen mit dem berechneten Mittelpunkt und Kreisring geplottet,
 - und die berechneten Werte als Latex-Datei (.tex) zusammen in eine Tabelle geschrieben, welche man dann z.B. mit \input im Haupt-Latex-file einbinden kann (alternativ auch als einfache Textdatei)

(**Bemerkung**: Bei fprintf muss der backslash \ bei Latexbefehlen durch zwei backslash-Zeichen \\ erzeugt werden)

Datensatz	Mittelpunkt	innerer Radius	äußerer Radius	Flächeninhalt
1	(4.17, 0.76)	1.01	1.31	2.14
2	(1.54, 4.31)	1.01	1.30	2.11
3	(1.71, 2.36)	1.01	1.30	2.13
4	(1.89, 2.08)	1.00	1.29	2.11
5	(3.86, 2.86)	1.02	1.30	2.06
6	(3.50, 1.76)	1.01	1.30	2.12
7	(0.16, 4.01)	1.02	1.31	2.13
8	(4.15, 0.08)	1.00	1.29	2.10
9	(5.02, 0.98)	0.73	1.08	2.00
10	(4.31, 4.54)	0.97	1.27	2.12

Aufgabe 2: In der Vorlesung haben wir ein Sensornetzwerk zur Lokalisierung als nichtlineares Ausgleichsproblem behandelt. Schreiben Sie zum bequemen Testen dafür eine Funktion [x,p,t,x_berechnet,t_verrauscht]=sensor_graphisch(n,epsilon) mit folgenden Eigenschaften:

- Die **Objekt-und** n **Sensorpositionen** können **graphisch** mit ginput **gewählt** werden. Zum Erzeugen eines zunächst leeren Plots im Quadrat $[-1,1]^2$ kann man z.B. folgendes eingeben figure(1); clf; xlim([-1 1]); ylim([-1 1])
- Dabei wird als Titel (title) entsprechend "Setze Sensor k" bzw. "Setze Objekt" gesetzt, und die Sensoren als Kreise und das Objekt als Kreuz 'x' geplottet.
- Der Zeitpunkt t_0 wird zufällig im Intervall [0,1] erzeugt, und damit dann die exakten Sensorzeiten berechnet.
- Die exakten Sensorzeiten werden dann verrrauscht mit maximalem relativen Fehler ε .
- Dann wird mit den Sensorpositionen, verrauschten Zeiten und Null-Vektor als Startwert die Least-Squares-Lösung berechnet und die berechnete Objektposition mit einem Kreis markiert.

