计算机组成原理与系统结构

第三章 信息编码与数据表示

http://jpkc.hdu.edu.cn/computer/zcyl/dzkjdx/

第三章 信息编码与数据表示

- 3. 数值数据的表示
- 3. 数据格式
- 3.3 定点机器数的表示
 - 方法
- 3.4 浮点机器数的表示
 - 方法
- 3. 非数值数据的表示
- 3. 校验码
- 3.7 现代计算机系统的数据表

不

本章小结

3.1 数值数据的表示

进位计数制

不同数制之间的相互转换

十进制数的编码

- ❖数制的两大要素:
 - 基数 R: 指在这种进位制中允许使用的基本 数码个数。
 - 权 W_i: 权也称位权,指某一位 i 上的数码的 权重值,即权与数码所处的位置 i 有关。 W_i
 = Rⁱ。
- ❖基数为 R 的数制称为 R 进制数。
- ❖R 进制数的主要特点就是逢 R 进 1。

❖ 思考:何谓十进制、二进制、八进制、十六进

制	?	

进制	基数 R	权 W _i	数码符号
十进制	R=10	10 [†]	0~9
二进制	R=2	2 †	0 、 1
八进制	R=8	8 †	0~7
十六进制	R=16	16¹	0~9 . A~F

❖ 假设任意数值 N 用 R 进制数来表示,形式为:

$$N = (D_{m-1}D_{m-2}\cdots D_{0} \cdot D_{-1}D_{-2}\cdots$$

$$\mathbf{D}_{-k}$$
) \mathbf{R}

- 其中, D_i 为该进制的基本符号, $D_i \in [0, R-1]$,i = -k,-k+1,……,m-1;小数点在 D_0 和 D_{-1} 之间。
- * 则数值 N 的实际值为: 加权求和 $N = \sum (D_i \times R^i)$

i=-k

十进制

- * 例 1: $(2345.459)_{10} = 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} + 9 \times 10^{-3}$
- ❖ 例 2: (11011.011) $_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^{-0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = (27.375)$

* 例 3: (123.67) $_8 = 1 \times 8^2 + 2 \times 8^1 + 3$ $\times 8^0 + 6 \times 8^{-1} + 7 \times 8^{-2} = (83.859375)$ $_{10}$

二、不同数制之间的相互转换

常用的几种数制的对应关系

2

二、八、十六进制转换为十进制

3

十进制转换为二、八、十六进制

1、常用的几种数制的对应关系

十进制	二进制	八进制	十六进制	十进制	二进制	八进制	十六进制
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	В
4	0100	4	4	12	1100	14	C
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	Е
7	0111	7	7	15	1111	17	F
				16	1000	20	10
					0		

2、二、八、十六进制转换为十进制

❖ 转换方法: 加权求和。

$$N = \sum_{i=-k}^{m-1} (D_i \times R^i)$$

- 例: (5AC. E6) $_{16}$ = 5×16² + 10×16¹ + 12×16⁰ + 14×16⁻¹ + 6×16⁻² = (14 52. 8984375) $_{10}$
- ❖十进制(Decimal)、二进制(Binary)、八进制(Octal)、十六进制(Hexdecimal)数分别用 D、B、Q、H来标志。
- ◆ 例如: (1011) ₂→ (1011) _B→1011B→101
 1b
 - (123.45) $_{10}$ → (123.45) $_{D}$ → 123.45 D → 123.45
 - (2B.D) $_{16}$ = (2B.D) $_{16}$ = (43.8125) $_{10}$ =

3、十进制转换为二、八、十六进制

- *转换方法:可以分为以下两种方法

 - 间接转换: 十进制 → 二进制 → 八、十六进制

- ❖(1) 十进制转化为R进制
- ❖(2)二进制转化为八、十六进制

(1)十进制转化为R进制

*转换方法

- 整数部分:除以R取余,先得低位,直到商为0。
- 小数部分: 乘R取整,先得高位,直到积为0或者达到精度要求为止。

(1)十进制转化为R进制

- ❖例: (123.75) ₁₀= 1111011.11 ?
- *整数部分

*小数部分

- **❖练习:** (123.75) ₁₀= 173.6 ?

小数部分的精度要求

- ❖ 当小数部分不能整除为二进制时,则乘以2取整的过程中,积不会为0;或者当小数部分转化为二进制位数很长,这时由精度来决定二进制位数
 - (114.35)₁₀ = (?)₂ 无法整除
 - (0.6875)₁₀ = (?)₂位数太长
- ❖ 例: (114.35) ₁₀= (?) ₂,要求精度
 大于 10%。
 - 要求 "="左右两边的十进制值的差的绝对值 <10 %
 ; 因为 10 % >2 -4, 所以只需取 4 位二进制小数即可满足要求。
 - \bullet (114.35) $_{10}$ = (1110010.0101) $_{2}$
- ❖ 思考: 若要求转换精度大 1%,则二进制小数

(2)二进制转化为八、十六进

- ※二进制→八进制
 - 以小数点为中心分别向两边分组,每三位一组,写出对应的八进制数字。(不够位数则在两边加0补足3位)
- ※二进制→十六进制
- 001 011 111. 110 心分别向两边分组,每四位一组,上对应的十六进制符号。(不够位数则在两人加0补足4位)
 - **◇**例: $(10\dot{1}1111.11)_2 = 137.6$)₈ $(10\dot{1}1111.11)_2 = (5F.G)_1$

<u>0101</u> <u>1111</u>. <u>1100</u>

思考1:八、十六进制如何转化为二进制

- ❖八进制→二进制:将每位八进制数展开为3位二进制数,整数的最高位0和小数的最低位0可以略去。
- ❖十六进制→二进制:将每位十六进制数展开为 4位二进制数,整数的最高位 0 和小数的最低位 0可以略去。

111 110 101. 010
011

*例: $(765.233)_{16} = 111 0110 0101.0010$

0

思考 2: 计算机中为什么采用二进制表示数

- *① 具有二值状态的物理器件容易实现。
- ◆② 二进制数据的抗干扰性强,可靠性高

- ◆③ 二进制的运算规则简单,硬件实现容易。
- ❖④ 具有逻辑特性,可代表"真假"、 "是非"。

三、十进制数的编码

- ❖ 提出的问题:如何在计算机内使用二进制 来表示十进制数据?
- ❖ 1、二一十进制码(BCD码)
- ❖ 2、十进制数串的表示方法

1、二一十进制码(BCD码)

- ❖ BCD (Binary Coded Decimal)码:使用二进制来编码十进制数字0~9。
- ❖编码方法: 一般使用 4 位二进制编码来表示 1 位十进制数字,在 16 个编码中选用 10 个来表示数字 0 ~ 9。不同的选择构成不同的 BCD 码。

❖ 分类:

- 有权码:编码的每一位都有固定的权值,加权求和的值即是表示的十进制数字。如 8421 码、2421 码、5211 码、4311 码、84 -2-1 码等。
- 无权码:编码的每一位并没有固定的权,主要包括格雷码、余3码等。

1、二一十进制码(BCD码)

十进制数	8421 码	2421 码	5211 码	4311 码	84-2-1 码	格雷码	余3 码
0	0000	0000	0000	0000	0000	0000	0011
1	0001	0001	0001	0001	0111	0001	0100
2	0010	0010	0011	0011	0110	0011	0101
3	0011	0011	0101	0100	0101	0010	0110
4	0100	0100	0111	1000	0100	0110	0111
5	0101	1011	1000	0111	1011	1110	1000
6	0110	1100	1010	1011	1010	1010	1001
7	0111	1101	1100	1100	1001	1000	1010
8	1000	1110	1110	1110	1000	1100	1011
9	1001	1111	1111	1111	1111	0100	1100

几种常见的 BCD 码

- ① 8421 码:
 - 特点: 4位二进制数位的权从高到低依次是 8 、4、2、1; 8421码实际上就是十进制数 字0~9的二进制编码本身。
 - 是最常用的一种 BCD 码,在没有特别指出的一般情况下,所提到的 BCD 码通常就是指 842 1 码。
- ② 余3码:对应的8421码加上0011构成的。是一种自补码,即任何两个相加之和等于9的编码,互为反码。

几种常见的 BCD 码

③ 格雷码:

- 特点:又叫循环码,它的任何相邻的两个编码(例如2和3、7和8、9和0等)之间只有一位二进制位不同。
- 优点:是用它构成计数器时,在从一个编码 变到下一个编码时,只有一个触发器翻转即 可,波形更完美、可靠。
- 格雷码的编码方案有许多种。

2、十进制数串的表示方法

- ❖字符串形式:用 ASCII 码来表示十进制数字或符号位,即 1 个字节存放 1 位十进制数字或符号位。
- ❖压缩的十进制数串形式:用 BCD 码来表示十进制数字,即 1 个字节存放 2 个十进制的数字;符号位放在最低位数字位之后,一般用 C (12)表示正号,用 D (13)表示负号。
 - ●例如 + 258 被表示成 258CH, 占用两个字节, -34 被表示为 034DH, 也占用两个字节

0

❖共同点:必须给出它在主存中的首地址和位长

2、十进制数串的表示方法

- *采用十进制表示数据的优点是:
 - ■对于需要大量地进行输入输出数据而运算简单的场合,大大减少了二-十进制转换,提高了机器的运行效率:
 - ■十进制数串的位长可变,许多机器中规定该长度从0到31,有的甚至更长。不受定点数和浮点数统一格式的约束,从而提高了数据的表示范围和运算精度。

The Engl