© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale-Supélec Maths 2 MP 2004

I Matrices carrées d'ordre 2 à coefficients entiers

Soit $\mathcal{M}_2(\mathbb{Z})$ l'ensemble des matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ carrées d'ordre 2 à coefficients dans l'anneau \mathbb{Z} des entiers

Dans les parties I, II, III, les lettres a, b, c, d désignent des éléments de \mathbb{Z} . On pose :

$$I_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

- $oxed{1}$ Démontrer que l'ensemble $\mathcal{M}_2(\mathbb{Z})$ est un anneau.
- **2.a** Démontrer que l'ensemble $GL_2(\mathbb{Z})$ des éléments de $\mathcal{M}_2(\mathbb{Z})$ inversibles dans $\mathcal{M}_2(\mathbb{Z})$ est un groupe pour la multiplication, appelé le groupe des unités de l'anneau $\mathcal{M}_2(\mathbb{Z})$.
 - **2.b** Montrer que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}) \iff |ad - bc| = 1$$

3 On pose

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) \mid ad - bc = 1 \right\}$$

- **3.a** Montrer que $SL_2(\mathbb{Z})$ est un groupe pour la multiplication des matrices.
- **3.b** Déterminer l'ensemble des couples $(c,d) \in \mathbb{Z} \times \mathbb{Z}$ tels que la matrice $\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix}$ appartienne à $\mathrm{SL}_2(\mathbb{Z})$.
- **3.c** Déterminer l'ensemble des couples $(c,d) \in \mathbb{Z} \times \mathbb{Z}$ tels que la matrice $\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix}$ appartienne à $\mathrm{GL}_2(\mathbb{Z})$.
- **3.d** Quelle est la condition nécessaire et suffisante portant sur le couple (a,b) de $\mathbb{Z} \times \mathbb{Z}$ pour qu'il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ appartenant à $\mathrm{GL}_2(\mathbb{Z})$?

4 Soient S et T les éléments de $SL_2(\mathbb{Z})$ définis par

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Pour chacune des trois matrices T, S et TS, répondre aux questions suivantes :

- **4.a** La matrice est-elle diagonalisable, ou à défaut trigonalisable, dans $\mathcal{M}_2(\mathbb{C})$? Donner une forme réduite éventuelle ainsi qu'une matrice de passage.
- **4.b** La matrice est-elle diagonalisable, ou à défaut trigonalisable, dans $\mathcal{M}_2(\mathbb{R})$? Donner une forme réduite éventuelle ainsi qu'une matrice de passage.
- $\boxed{\textbf{5}} \ \ \text{On cherche les matrices } A \ \text{de } SL_2(\mathbb{Z}) \ \text{telles que } A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$
 - **5.a** Soit A une telle matrice. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et préciser les formes réduites diagonales possibles de A.
 - **5.b** En déduire l'ensemble des matrices solutions A.
- **6** On cherche les matrices A de $SL_2(\mathbb{Z})$ telles que

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

- **6.a** Soit A une telle matrice. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ et calculer la trace tr(A) de A.
- **6.b** Donner la forme générale des matrices solutions A en fonction des trois paramètres a, b, c et d'une relation liant ces trois paramètres.
- **7.a** Démontrer que si deux matrices U et V de $\mathcal{M}_2(\mathbb{R})$ sont semblables en tant que matrices de $\mathcal{M}_2(\mathbb{C})$, alors elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.
 - **7.b** En déduire que les matrices A de $SL_2(\mathbb{Z})$ solutions de l'équation :

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

sont semblables dans $\mathcal{M}_2(\mathbb{R})$ à la matrice $S=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$.

II Réseaux de C

On note \mathcal{H} le demi-plan ouvert défini par $\mathcal{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$.

 $\mathcal{B}=(\alpha,\beta)$ étant une base de $\mathbb C$ considéré comme plan vectoriel réel, on appelle réseau engendré par \mathcal{B} l'ensemble

$$\Lambda_{\mathcal{B}} = \mathbb{Z}\alpha + \mathbb{Z}\beta = \{u\alpha + v\beta, (u, v) \in \mathbb{Z}^2\}$$

Pour simplifier les notations, un réseau sera généralement désigné par la lettre Λ , sans préciser quelle base $\mathcal B$ de $\mathbb C$ l'engendre.

- **8. 8.a** De quelle structure algébrique est doté un réseau Λ ?
 - **8.b** Démontrer que tout réseau Λ peut être engendré par une base $\mathcal{B}=(\alpha,\beta)$ de \mathbb{C} telle que $\frac{\alpha}{\beta}\in\mathcal{H}$.

8.c Démontrer que pour tout quadruplet $(a, b, c, d) \in \mathbb{Z}^4$ et pour tout $z \in \mathbb{C}$ tel que $cz + d \neq 0$, on a

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{ad-bc}{|cz+d|^2}\operatorname{Im}(z)$$

9. 9.a Démontrer que si deux bases $\mathcal{B} = (\omega_1, \omega_2)$ et $\mathcal{B}' = (\omega_1', \omega_2')$ de \mathbb{C} telles que

$$\frac{\omega_1}{\omega_2} \in \mathcal{H} \text{ et } \frac{\omega_1'}{\omega_2'} \in \mathcal{H}$$

engendrent le même réseau Λ , alors il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ telle que

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$

9.b Etudier la réciproque.

 $\boxed{\mathbf{10}} \ \ \text{On considère un réseau } \Lambda \ \text{engendré par une base} \ \mathcal{B} = (\omega_1, \omega_2) \ \text{de} \ \mathbb{C} \ \text{telle que} \ \frac{\omega_1}{\omega_2} \in \mathcal{H}.$

Déterminer l'ensemble des couples $(c,d) \in \mathbb{Z}^2$ tels que $\mathcal{B}' = (\omega_1', \omega_2')$ avec $\omega_1' = 3\omega_1 + 5\omega_2$ et $\omega_2' = c\omega_1 + d\omega_2$ soit une base de \mathbb{C} engendrant également le réseau Λ .

Pour tout complexe $\tau \in \mathbb{C} \setminus \mathbb{R}$ on note Λ_{τ} le réseau engendré par la base $(\tau, 1)$ de \mathbb{C} . On suppose que $\tau \in \mathcal{H}$. Trouver la condition nécessaire et suffisante pour qu'un élément $\tau' \in \mathcal{H}$ vérifie $\Lambda_{\tau'} = \Lambda_{\tau}$.

III Similitudes directes de centre O laissant stable un réseau

Si Λ est un réseau et z un nombre complexe, on pose $z\Lambda = \{z\rho; \rho \in \Lambda\}$. On dit que deux réseaux Λ et Λ' sont semblables s'il existe $\lambda \in \mathbb{C}^*$ tel que $\Lambda' = \lambda \Lambda$.

- **12 12.a** Démontrer que tout réseau Λ est semblable à un réseau Λ_{τ} où $\tau \in \mathcal{H}$.
 - **12.b** Démontrer que deux réseaux Λ_{τ} et $\Lambda_{\tau'}$, où $(\tau, \tau') \in \mathcal{H} \times \mathcal{H}$, sont semblables si et seulement si il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ telle que $\tau' = \frac{a\tau + b}{c\tau + d}$.

La fin de la partie III montre qu'il existe des similitudes directes de centre O, autres que des homothéties, laissant stable un réseau donné Λ .

13 Soit Λ un réseau.

- 13.a Indiquer, sans faire de démonstration, le lien existant entre l'ensemble $S(\Lambda) = \{z \in \mathbb{C}; z\Lambda \subset \Lambda\}$ et l'ensemble des similitudes directes σ de centre O laissant stable le réseau Λ , c'est-à-dire telles que $\sigma(\Lambda) \subset \Lambda$.
- **13.b** Quel est l'ensemble des homothéties de centre O laissant stable le réseau Λ ? En déduire l'ensemble $S(\Lambda) \cap \mathbb{R}$.
- **13.c** De quelle structure algébrique est doté l'ensemble $S(\Lambda)$?
- **13.d** $\mathcal{B}=(\omega_1,\omega_2)$ étant une base de \mathbb{C} , on pose $\tau=\frac{\omega_1}{\omega_2}$. Comparer les ensembles $S(\Lambda_{\mathcal{B}})$ et $S(\Lambda_{\tau})$.
- **13.e** Quelle relation d'inclusion existe-t-il entre les ensembles $S(\Lambda_{\tau})$ et Λ_{τ} ?
- 14 τ étant un complexe de $\mathbb{C} \setminus \mathbb{R}$, on considère le réseau Λ_{τ} engendré par la base $(\tau, 1)$ de \mathbb{C} .
 - **14.a** On suppose que l'ensemble $S(\Lambda_{\tau})$ n'est pas réduit à \mathbb{Z} . Montrer que τ est alors racine d'un polynôme du second degré à coefficients dans \mathbb{Z} .

14.b Réciproquement, on suppose que τ est racine non réelle d'un polynôme $P(X) = uX^2 + vX + w$ du second degré à coefficients u, v, w dans \mathbb{Z} .

14.b.i Montrer que $S(\Lambda_{\tau})$ n'est pas contenu dans \mathbb{R} .

14.b.ii Que dire des ensembles $S(\Lambda_{\tau})$ et Λ_{τ} si u = 1?

IV Action du groupe Γ des homographies associées à $SL_2(\mathbb{Z})$ sur l'ensemble \mathcal{H}

Dans cette dernière partie, on étudie l'action de ce groupe Γ sur l'ensemble \mathcal{H} .

On introduit au 18 un sous-ensemble fondamental \mathcal{F} de \mathcal{H} . On montre aux questions et 20 que Γ est engendré par les homographies s et t associées aux matrices S et T introduites au 4 et qu'un système de représentants des orbites de Γ est constitué par les points de \mathcal{F} .

A toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $SL_2(\mathbb{Z})$ on associe l'application $g: \mathcal{H} \to \mathbb{C}$ définie par : $\forall \tau \in \mathcal{H}, g(\tau) = \frac{c+b}{c+d}$.

15 15.a Montrer que l'on a $g(\mathcal{H}) \subset \mathcal{H}$.

On identifie dorénavant g avec l'application de \mathcal{H} vers \mathcal{H} qu'elle induit.

Lorsque la matrice A parcourt $SL_2(\mathbb{Z})$, l'application correspondante g de \mathcal{H} vers \mathcal{H} décrit un ensemble noté Γ

Dans la suite de cette question on s'intéresse aux propriétés de la surjection

$$\Phi \colon \left\{ \begin{array}{ccc} \operatorname{SL}_2(\mathbb{Z}) & \longrightarrow & \Gamma \\ A & \longmapsto & g \end{array} \right.$$

- **15.b** Montrer que $\Phi(A) \circ \Phi(A') = \Phi(AA')$. En déduire que la loi \circ de composition des applications est une loi interne sur Γ .
- **15.c** Pour tout $A \in SL_2(\mathbb{Z})$, montrer que $\Phi(A)$ est une bijection de \mathcal{H} sur \mathcal{H} et que l'on a $[\Phi(A)]^{-1} = \Phi(A^{-1})$. En déduire que (Γ, \circ) est un groupe.
- **15.d** Montrer que $\Phi(A) = Id_{\mathcal{H}} \iff A = \pm I_2$.
- **15.e. 15.e. i** Résoudre l'équation $\Phi(A') = \Phi(A)$.
 - **15.e.ii** En utilisant les matrices S et T définies à la question **4**, vérifier que le groupe (Γ, \circ) n'est pas commutatif.
- **16 16.a** Montrer que le cercle $\mathcal{C}(\omega, R)$ de centre $\omega \in \mathbb{C}$ et de rayon R > 0 a pour équation

$$|z|^2 - (\omega \overline{z} + \overline{\omega}z) + |\omega|^2 = R^2$$

A quelle condition nécessaire et suffisante ce cercle est-il inclus dans \mathcal{H} ?

- **16.b** On appelle s l'application de \mathcal{H} vers \mathcal{H} associée à la matrice $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ définie à la question **4**, c'est-à-dire l'élément $s = \Phi(S)$ de Γ. Déterminer l'image par s d'un cercle $\mathcal{C}(\omega, R)$ inclus dans \mathcal{H} .
- 17. a Trouver l'image par s d'une droite \mathcal{D} incluse dans \mathcal{H} , c'est-à-dire d'une droite \mathcal{D} d'équation $y = \beta$, avec $\beta > 0$.
 - **17.b** Trouver l'image par s d'une demi-droite \mathcal{D}_+ d'équation $\begin{cases} x = \alpha \\ y > 0 \end{cases}$, où $\alpha \in \mathbb{R}$, incluse dans \mathcal{H} .
- $\boxed{\mathbf{18}}$ On introduit le sous-ensemble \mathcal{F} de \mathcal{H} , défini par

$$\mathcal{F} = \left\{ \tau \in \mathcal{H} \mid |\tau| \ge 1, |\operatorname{Re}(\tau)| \le \frac{1}{2} \right\}$$

On appelle t l'application de \mathcal{H} vers \mathcal{H} associée à la matrice $\mathbf{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ définie à la question $\mathbf{4}$, c'est-à-dire l'élément $t = \Phi(\mathbf{T})$ de Γ . Représenter graphiquement l'ensemble \mathcal{F} et ses images $t(\mathcal{F})$ et $t^{-1}(\mathcal{F})$ par les applications t et t^{-1} .

- **19** On note G le sous-groupe de Γ engendré par l'ensemble $\{s, t\}$. Soit τ un élément de \mathcal{H} .
 - **19.a** Montrer qu'il existe un élément $g_0 \in G$ tel que

$$\forall g \in G, \operatorname{Im}(g(\tau)) \leq \operatorname{Im}(g_0(\tau))$$

19.b On pose alors $\tau' = g_0(\tau)$. Démontrer qu'il existe un entier $m \in \mathbb{Z}$ tel que

$$|\operatorname{Re}(t^m(\tau'))| \leq \frac{1}{2}$$

- **19.c** Vérifier que $|t^m(\tau')| \ge 1$ et en conclure que $t^m(\tau') \in \mathcal{F}$.
- On peut démontrer le résultat suivant, que l'on admettra ici : si $\tau \in \mathcal{F}$ et si pour un élément $g \in \Gamma$, avec $g \neq \mathrm{Id}_{\mathcal{H}}$, on a $g(\tau) \in \mathcal{F}$ alors τ est un point frontière de \mathcal{F} , autrement dit on a

$$Re(\tau) = \pm \frac{1}{2} \text{ ou } |\tau| = 1$$

En utilisant ce résultat ainsi que ceux de la section 19, démontrer que $G = \Gamma$.

Indication: on pourra considérer un point τ intérieur à \mathcal{F} (c'est-à-dire $\tau \in \mathring{\mathcal{F}}$) et son image $g(\tau)$ par $g \in \Gamma$.