Estimation of elastic properties of H313_HTI sample

Author: Martin Rühlmann, Abakumov Ivan

Publication date: 24th October 2019

E-mail: abakumov_ivan@mail.ru

Introduction

Some bla bla bla here))

Add MLIB library

```
clear; close all; clc;
mlibfolder = '/home/ivan/Desktop/MLIB';
path(path, mlibfolder);
add_mlib_path;
```

1. Upload the data

Plot velocities

```
figure(123)
                  % P velocities
fig = figure('Position', [1 1 700 550]);
plot (Sample.Theta, Sample.Vp33, 'b+', 'MarkerSize', 7, 'LineWidth', 2)
plot (Sample.Theta, Sample.Vp11,'kx','MarkerSize', 7, 'LineWidth', 2)
plot (Sample.Theta(ind1)-0.5, Sample.Vqp(ind1), 'rd', 'MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind1)));
errorbar(Sample.Theta(ind1)-0.5,Sample.Vqp(ind1),err,'r','LineStyle','none', 'LineWidtl
plot (Sample.Theta(ind2)+0.5, Sample.Vqp(ind2),'cd','MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind2)));
errorbar(Sample.Theta(ind2)+0.5, Sample.Vqp(ind2), err, 'c', 'LineStyle', 'none', 'LineWidtl
xlabel('Theta [\circ]','LineWidth', 2)
ylabel('Velocity [km/s]', 'LineWidth', 2)
legend('V_{p 33}','V_{p 11}','V_{qp}','err 2.9%', 'Location', 'southoutside', 'Orienta'
title('H313-HTI')
xticks(0:45:360)
xticklabels(0:45:360)
axis([0 360 5.4 5.8]);
grid on
```


2. Conventional analyses of Thomsen's parameters

```
C11 = Sample.rho*Sample.Vp11.^2;
C33 = Sample.rho*Sample.Vp33.^2;
C44 = Sample.rho*Sample.Vs31.^2;
C66 = Sample.rho*Sample.Vs21.^2;
Cqp = Sample.rho*Sample.Vqp.^2;
C12 = C11 - 2*C66;

ST2 = (sin(Sample.Theta/180*pi)).^2;
CT2 = (cos(Sample.Theta/180*pi)).^2;
A = (C11 + C44).*ST2 + (C33 + C44).*CT2;
B = (C11 - C44).*ST2 - (C33 - C44).*CT2;
C13 = sqrt(((2*Cqp-A).^2 - B.^2)./(4*ST2.*CT2)) - C44;
gamma = (C66 - C44)./(2*C44);
```

```
epsilon = (C11 - C33)./(2*C33);
delta = ((C13+C44).^2 - (C33-C44).^2)./(2*C33.*(C33-C44));
eta = (epsilon-delta)./(1+2*delta);
ind = ((Sample.Theta == 45) + (Sample.Theta == 135) + (Sample.Theta == 225)) == 1;
delta45.mean = mean(delta(ind));
delta45.std = std(delta(ind));
figure(21);
fig = figure('Position', [1 1 550 550]);
subplot(2,2,1)
plot(Sample.Theta,epsilon,'kd');
xlabel('Theta [\circ]','LineWidth', 2)
axis([0 360 0 0.1]);
legend('\epsilon')
grid on
title('\epsilon')
subplot(2,2,2)
plot(Sample.Theta, gamma, 'kd');
xlabel('Theta [\circ]','LineWidth', 2)
axis([0 360 0 0.1]);
legend('\gamma')
grid on
title('\gamma')
subplot(2,2,3)
plot(Sample.Theta(ind1),delta(ind1),'kd');
hold on
plot(Sample.Theta, delta45.mean*ones(size(Sample.Theta)), 'r--');
legend('\delta(\Theta)', '\delta(45\circ)')
xlabel('Theta [\circ]','LineWidth', 2)
axis([0 360 -0.5 0.5]);
grid on
title('\delta')
subplot(2,2,4)
plot(Sample.Theta(ind1),eta(ind1),'kd');
xlabel('Theta [\circ]','LineWidth', 2)
legend('\eta')
axis([0 360 -0.5 0.5]);
grid on
title('\eta')
```


3. Least squares analysis of Thomsen's parameters

Visualize the data

```
figure(122)
fig = figure('Position', [1 1 1000 400]);
subplot(1,2,1)
plot(Sample.Theta, Sample.Vp33, '+b');
hold on
plot(Sample.Theta, Sample.Vp11, 'xk');
plot(Sample.Theta(ind1), Sample.Vqp(ind1), 'dr');
plot(Sample.Theta(ind2), Sample.Vqp(ind2), 'dc');
xlabel('Theta [\circ]')
ylabel('Velocity [km/s]')
legend('V_{p 33}', 'V_{p 11}', 'V_{qp}', 'Location', 'best')
title('P-wave velocity')
subplot(1,2,2)
```

```
plot(Sample.Theta, Sample.Vs21, 'ko');
hold on
plot(Sample.Theta, Sample.Vs31, 'bo');
xlabel('Theta [\circ]')
ylabel('Velocity [km/s]')
legend('V_{s 21}', 'V_{s 31}', 'Location', 'best')
title('S-wave velocity')
```


Assign C values

```
Sample.C11 = C11;
Sample.C33 = C33;
Sample.C44 = C44;
Sample.C66 = C66;
Sample.Vqp = Sample.Vqp;
```

Find optimum delta

```
testdelta = -0.1:0.001:0.2;
dtheta = -10:0.1:10;
tic
nSample = Sample;
JJ = zeros(length(dtheta),length(testdelta));
for i=1:length(dtheta)
    nSample.Theta = Sample.Theta + dtheta(i);
    J = costFunction_delta(nSample,testdelta);
    JJ(i,:) = J;
end
toc
```

Elapsed time is 0.310591 seconds.

```
[~, minind] = min(JJ(:));
```

```
[inda, indd] = ind2sub(size(JJ),minind);
thetapl = dtheta(inda);
delta = testdelta(indd);
```

Plot final results

```
figure(343)
fig = figure('Position', [1 1 500 400]);
plot(testdelta, squeeze(JJ(inda,:)), 'k-');
hold on
plot(testdelta(indd), JJ(inda,indd), 'r.', 'MarkerSize', 7);
xlabel('\delta')
ylabel('Cost function')
title('Cost function')
```



```
nSample.Theta = 0:1:360;
Vqp = get_Vqp_VTI(nSample,delta);

figure(1222)
fig = figure('Position', [1 1 700 550]);
plot (Sample.Theta, Sample.Vp33,'b+','MarkerSize', 7, 'LineWidth', 2)
hold on
plot (Sample.Theta, Sample.Vp11,'kx','MarkerSize', 7, 'LineWidth', 2)
plot (Sample.Theta(ind1)-0.5, Sample.Vqp(ind1),'rd','MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind1)));
```

```
errorbar(Sample.Theta(ind1)-0.5,Sample.Vqp(ind1),err,'r','LineStyle','none', 'LineWidth'
plot (Sample.Theta(ind2)+0.5, Sample.Vqp(ind2),'cd','MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind2)));
errorbar(Sample.Theta(ind2)+0.5,Sample.Vqp(ind2),err,'c','LineStyle','none', 'LineWidth'
plot(nSample.Theta-thetapl, Vqp, 'g--', 'LineWidth', 2)
xlabel('Theta [\circ]','LineWidth', 2)
ylabel('Velocity [km/s]', 'LineWidth', 2)
legend('V_{p 33}','V_{p 11}','V_{qp}','err 2.9%','V_{qp}^m', 'Location', 'southoutside title('H313-HTI')
xticks(0:45:360)
xticklabels(0:45:360)
axis([0 360 5.4 5.8]);
grid on
```


3. Least squares analysis of Thomsen's parameters (weak anisotropy approximation)

```
Alpha = linspace(5.4,5.5,26);
```

```
Delta = linspace(-0.05,0.15,26);
Epsilon = linspace(0.02,0.12,26);
dTheta = linspace(-2,2,5);

tic
J = costFunction_delta_weak(Sample,Alpha,Delta,Epsilon,dTheta);
toc
```

Elapsed time is 0.272334 seconds.

```
[~, ind] = min(J(:));
[inda,indd,inde,indt] = ind2sub(size(J),ind);

result.alpha = Alpha(inda);
result.delta = Delta(indd);
result.epsilon = Epsilon(inde);
result.dtheta = dTheta(indt);
```

Plot the result:

```
figure(27)
fig = figure('Position', [1 1 1200 800]);
nSample.Theta = 0:1:360;
Vqp = get_Vqp_VTI_weak(nSample,result.alpha,result.delta,result.epsilon,result.dtheta)
figure(144)
fig = figure('Position', [1 1 700 550]);
plot (Sample.Theta, Sample.Vp33, 'b+', 'MarkerSize', 7, 'LineWidth', 2)
hold on
plot (Sample.Theta, Sample.Vp11,'kx','MarkerSize', 7, 'LineWidth', 2)
plot (Sample.Theta(ind1)-0.5, Sample.Vqp(ind1), 'rd', 'MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind1)));
errorbar(Sample.Theta(ind1)-0.5, Sample.Vqp(ind1), err, 'r', 'LineStyle', 'none', 'LineWidtl
plot (Sample.Theta(ind2)+0.5, Sample.Vqp(ind2), 'cd', 'MarkerSize', 7, 'LineWidth', 2)
err = 0.029*ones(size(Sample.Vqp(ind2)));
errorbar(Sample.Theta(ind2)+0.5, Sample.Vqp(ind2), err, 'c', 'LineStyle', 'none', 'LineWidtl
plot(nSample.Theta-result.dtheta, Vqp, 'g-', 'LineWidth', 2)
xlabel('Theta [\circ]','LineWidth', 2)
ylabel('Velocity [km/s]', 'LineWidth', 2)
legend('V_{p 33}','V_{p 11}','V_{qp}','err 2.9%', 'V_{qp}^m', 'Location', 'southoutside
title('H313-HTI')
xticks(0:45:360)
xticklabels(0:45:360)
axis([0 360 5.4 5.8]);
```


4. Find errors of estimated parameters

```
VqpE = Vqptrue.*(1+0.015*randn(size(Vqptrue)));
iSample.Vqp = VqpE;
iSample.Theta = Theta;

J = costFunction_delta_weak(iSample,Alpha,Delta,Epsilon,dTheta);
[~, ind] = min(J(:));
[inda,indd,inde,indt] = ind2sub(size(J),ind);

test.alpha(i) = Alpha(inda);
test.delta(i) = Delta(indd);
test.epsilon(i) = Epsilon(inde);
test.dtheta(i) = dTheta(indt);
end
```

```
1
 2
 3
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```

```
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
```

Plot results:

```
figure(33)
subplot(2,2,1);
histfit(test.alpha',21)
xlabel('V_{P0}, [m/s]')
dist = fitdist(test.alpha(1:100)','Normal');
disp(['ALPHA: Relative error: ' num2str(abs(result.alpha-dist.mu)/result.alpha*100) '%

ALPHA: Relative error: 0.032823%

alpha_err = 2*dist.sigma;
```

```
title(['\mu=' num2str(dist.mu,4) ' \sigma=' num2str(dist.sigma,2)])
subplot(2,2,2);
histfit(test.delta',11)
xlabel('\delta')
dist = fitdist(test.delta(1:100)','Normal');
disp(['DELTA: Relative error: ' num2str(abs(result.delta-dist.mu)/result.delta*100) '%
DELTA: Relative error: 1.2174%
delta_err = 2*dist.sigma;
title(['\mu=' num2str(dist.mu,2) ' \sigma=' num2str(dist.sigma,2)])
subplot(2,2,3);
histfit(test.epsilon',11)
xlabel('\epsilon')
dist = fitdist(test.epsilon(1:100)','Normal');
disp(['EPSILON: Relative error: ' num2str(abs(result.epsilon-dist.mu)/result.epsilon*1
EPSILON: Relative error: 1.5455%
epsilon_err = 2*dist.sigma;
title(['\mu=' num2str(dist.mu,2) ' \sigma=' num2str(dist.sigma,2)])
subplot(2,2,4);
histfit(test.dtheta',5)
xlabel('\Delta\theta')
dist = fitdist(test.dtheta(1:100)','Normal');
disp(['DTHETA: Absolute error: ' num2str(result.dtheta-dist.mu)])
DTHETA: Absolute error: 0.77
dtheta_err = 2*dist.sigma;
title(['\mu=' num2str(dist.mu,2) ' \sigma=' num2str(dist.sigma,2)])
```

