WYDZIAŁ NAUK ŚCISŁYCH I TECHNICZNYCH

Symulacje Komputerowe

Sprawozdanie "Symulacja Wieloagentowa"

Adam Talarczyk, Mateusz Wrzoł

Spis treści

1	Zad	anie 1	2			
2	Symulacja środowiska ptaszników					
	2.1	Opis modelu	3			
	2.2	Kod źródłowy symulatora	4			
	2.3	Interfejs użytkownika	4			
	2.4	Wyniki symulacji	11			
Spis rysunków						
Tabele						
Bibliografia						

1 Zadanie 1

Należy opracować symulator dowolnego zjawiska lub procesu, wykorzystując model wieloagentowy.

Symulator powinien być wyposażony następujące funkcje:

- wizualizacja stanu środowiska i agentów,
- wykres(y) z wynikami symulacji,
- interfejs użytkownika umożliwiający modyfikowanie parametrów modelu.

Sprawozdanie powinno zawierać:

- opis zaimplementowanego modelu wieloagentowego,
- kod źródłowy symulatora z komentarzami,
- prezentację interfejsu użytkownika z zrzutami ekranu,
- przykładowe wyniki symulacji,
- spis bibliografii (jeżeli była wykorzystana).

Dodatkowo poza sprawozdaniem proszę przesłać pik(i) z projektem symulatora (np. plik Netlogo).

Ocena rozwiązania będzie uwzględniała:

- stopień skomplikowania zaproponowanego modelu i opracowanego symulatora,
- oryginalność rozwiązania (symulator nie może być prostą modyfikacją modeli symulacyjnych dostępnych w Netlogo lub innego gotowego oprogramowania),
- jakość przygotowanego sprawozdania.

Do rozwiązania zadania można wykorzystać środowisko Netlogo lub dowolne inne środowisko programistyczne.

2 Symulacja środowiska ptaszników

Wykonana w sprawozdaniu symulacja jest odwzorowaniem naturalnego środiwiska ptaszników z uwzględnieniem ich charakterystycznych zachowań. Ponadto, symulacja pozwala na zmianę wielu czynników wpływając na zachowania symulowanych obiektów.

Rozdział zawiera opis zaimplementowanego modelu wieloagentowego, kod źródłowy z komentarzami, prezentację interfejsu użytkownika oraz opis wyników symulacji.

2.1 Opis modelu

Stworzony model obejmuje zagadnienia związane z przebiegiem cyklu życia ptasznika, lecz bez wskazania na konkretny gatunek. Użytkownik posiada możliwość zasymulowania według własnego zamysłu grupowej hodowli ptaszników. Projekt został zaimplementowany na podstawie poniższych zagadnień:

- Ptaszniki podzielone są na dwie płcie: samiec oraz samica,
- Przestrzeń, po której poruszają się ptaszniki zawiera miejsca wilgotne, a także suche,
- W miejscach wilgotnych samice oraz podrostki samców zakładają gniazda, mogę jednak je opuścić w poszukiwaniu innej lokalizacji,
- Na całym obszarze poruszają się owady karmowe, które służą jako pokarm dla populacji ptaszników, ich ilość jest regulowana,
- Mijający czas powoduje wzrost ptaszników odpowiednio wielkościowo dla płci (pajęczaki przechodzą tak zwaną wylinkę), a także powoduje śmierć u zwierząt ze względu na podeszły wiek,
- Okres oczekiwania na kolejną wylinkę ptasznika może być regulowany przez użytkownika systemu,
- Spotkanie dwóch ptaszników może doprowadzić do walki pomiędzy nimi, a w następstwie śmiercią jednego z nich,
- Dorosłe samce poruszają się po terytorium w poszukiwaniu samicy, w celu odbycia kopulacji,
- Kopulacja może skończyć się pozytywnym scenariuszem, wtedy samica
 po pewnym czasie może złożyć kokon. W najgorszym wypadku samica
 atakuje samca i go zjada, dzieje się tak w momencie gdy samica jest
 głodna lub wskaźnik agresji wśród populacji znajduje się na wysokim
 poziomie,

- Udana kopulacja nie zapewnia pewności stworzenia kokonu przez samicę, powodzenie gwarantuje odpowiedni parametr ustawiany przez użytkownika,
- Dojrzałość płciową reguluje się w systemie za pomocą parametru DC, w żargonie terrarystyki jest to długość ciała zwierzęcia,
- Złożenie kokonu odbiera samicy połowę maksymalnej energii, a opieka nad kokonem samica sprawuje do czasu jego otwarcia,
- Inkubacja kokonu trwa przez okres zdefiniowany przez użytkownika,
- Z otwierającego się kokonu wychodzi określona przez użytkownika ilość nimf (okres życia ptasznika po wylęgu),
- Warunki atmosferyczne (temperatura i wilgotność) mają wpływ na życie ptaszników oraz szansę otwarcia się kokonu, niekorzystne warunki powodują wymieranie populacji, Wskaźniki numeryczne oraz wykresy wskazują parametry związane z ilością poszczególnych elementów w symulacji oraz ich zmiany w przeciągu interwałów czasowych.

2.2 Kod źródłowy symulatora

2.3 Interfejs użytkownika

Interfejs użytkownika został przedstawiony na rysunku 1, wyszczególnić można 3 kategorie:

- Konfiguracja symulacji i środowiska
- Pole na którym wyświetlana jest symulacja
- Panel raportowania, zawierający dane i wykresy

Rysunek 1: Obszar symulacji

Obszar konfiguracji środowiska również podzielony jest na kategorie. Parametry startowe zaprezentowane na rysunku 2 (tj. *ilosc_samic*, *ilosc_samcow*) określają ile dorosłych samic i samców podczas inicjalizacji ma zostać wygenerowanych.

Rysunek 2: Kontrolki odpowiedzialne za parametry startowe

Parametry rasy (rysunek 3 określają ogólne zachowanie ptaszników:

- agresywnosc zachowanie w stosunku do innych ptaszników. Wartość 0 oznacza, że nie będąze sobą w ogóle walczyć,
- wartość 100 walka przy każdym spotkaniu.
- kokon ilość młodych nimf wyklutych z pojedynczego kokonu
- inkubacja ticki ilość czasu potrzebne do wyinkubowania kokonu
- wylinka_ticki ilość czasu, potrzebna do odbycia kolejnej wylinki. Wylinka wiąże się ze wzrostem DC pająka.
- max_dc maksymalny rozmiar, który może osiągnąć ptasznik.
- dc_kopulacja wymagany rozmiar ptasznika aby osiągnąć zdolności kopulacyjne

Rysunek 3: Kontrolki odpowiedzialne za parametry rasy

Parametry środowiskowe - ogólne parametry odpowiedzialne za środowisko, temperaturę, wilgotność oraz ilość pożywienia na ekranie (rysunek 4):

- temperatura, wilgotnosc parametry, które mogą być zmieniane podczas symulacji. Stosując wartości skrajne można spowodować zachowania uboczne, np. Umieranie ptaszników, niszczenie kokonów.
- food_rate mnożnik jedzenia, im większy, tym więcej pożywienia pojawia się na ekranie.
- max_food maksymalna ilość pożywienia na ekranie jednocześnie. Zbyt duża ilość może powodować problemy optymalizacyjne.

Rysunek 4: Kontrolki odpowiedzialne za parametry środowiskowe

Obszar symulacji zaprezentowano na rysunku 5. Po obszarze poruszają się ptaszniki, których płeć można rozróżnić przez charakterystyczne kolory. Kolor różowy oznacza samicę, a niebieski samca (rysunek 6). Dodatkowo, na obszarze symulacji wyszczególnić można ikony kokonu i pożywienia (rysunek 7).

Rysunek 5: Obszar wizualizacji symulacji

Rysunek 6: Ikony samców i samic w symulacji

(a) Ikona pokarmu

(b) Ikona kokonu

Rysunek 7: Pozostałe ikony użyte w symulacji

Dodatkowo, środowisko Net Logo pozwala na śledzenie obiektów w czasie rzeczywistym, zaprezentowane zostało to na rysunku $8\,$

Rysunek 8: Parametry ptasznika w trakcie trwania symulacji.

Ostatnim elementem jest prezentacja danych i wyników. Odpowiedzialne jest za to monitor (rysunek 9).

Rysunek 9: Monitor - reprezentacja danych symulacji

Monitor podzielony został on na dane i wykresy. Dane przedstawiają sumaryczna ilość ptaszników z podziałem na samce, samice, ptaszniki zdolne i niezdolne do kopulacji. Dodatkowo, wyświetlana jest ilość pożywienia, ilość ptaszników bez gniazda oraz aktywne, inkubowane kokony (rysunek 10).

Pożywienie	Ptaszniki bez gn
185	9
Samce	Aktywne kokony
113	13
Ptaszniki nie zd	
238	
	Samce 113 Ptaszniki nie zd

Rysunek 10: Poszczególne dane

Wykresy przedstawiają w czasie rzeczywistym populację ptaszników z podziałem na samce i samice. Ostatni wykres przedstawia ilość kokonów (rysunek 11).

Rysunek 11: Wykresy

2.4 Wyniki symulacji

Wyniki symulacji przedstawiane są w czesie rzeczywistym na monitorze danych. Wizualna reprezentacja przedstawiona jest na wykresach (rysunek 11). Zauważyć można zależność, że populacja ptaszników rośnie i maleje co jakiś interwał. Wynika to z charakterystyki ich zachowania, samce żyją znacznie krócej od samic i umierają niedługo po wylince umożliwiającej im kopulację. Ilość ptaszników, które przeżywa zależna jest od ilości pożywienia, agresywności rasy i innych przypadkowych czynników. Podsumowując, tylko niewielka ilość ptaszników dożywa momentu, w którym jest zdolna do kopulacji. Mimo to, w symulacji występuje ciągłość- gatunek nie wymiera przy optymalnych parametrach.

Spis rysunków

1	Obszar symulacji	5
2	Kontrolki odpowiedzialne za parametry startowe	5
3	Kontrolki odpowiedzialne za parametry rasy	6
4	Kontrolki odpowiedzialne za parametry środowiskowe	6
5	Obszar wizualizacji symulacji	7
6	Ikony samców i samic w symulacji	7
7	Pozostałe ikony użyte w symulacji	8
8	Parametry ptasznika w trakcie trwania symulacji	9
9	Monitor - reprezentacja danych symulacji	10
10	Poszczególne dane	10
11	Wykresy	11

Spis tablic

Literatura

- $[1] \ https://ccl.northwestern.edu/netlogo/docs/programming.html$
- $[2]\ https://ccl.northwestern.edu/netlogo/docs/dictionary.html$