• Techniques:

- ➤ Infinite-Value Time Constant (IVTC) Method
 - Used for obtaining f_L
- > Zero-Value Time Constant (ZVTC) Method
 - Used for obtaining f_H
- These techniques are *extremely easy to* apply, and the results are *quite close to* actuals
- However, there is *one limitation* of these techniques

- They give information only regarding the *Dominant Pole* (DP) of the circuit
- Completely hides information about other poles and zeros of the circuit [known as Non-Dominant Poles (NDP) or Zeros (NDZ)]
- Anyway, information about *NDP and NDZ* are *not* that *critically important* from *practical point of view*

Low-Frequency Response

- The Infinite-Value Time Constant (IVTC) Technique:
 - ➤ Used for obtaining the *lower cutoff frequency* (f_I)
 - ➤ If a circuit has *n* number of *capacitors*, then it would have *n* number of *time constants*
 - This technique derives the information regarding f_I from these time constants

• The Algorithm:

- > Null all independent sources to the circuit
 - Short all independent voltage sources
 - Open all independent current sources
 - DO NOT TOUCH DEPENDENT SOURCES
- \triangleright Name the capacitors C_i (i = 1-n)
- ➤ Consider C₁ and assign infinite values to all other capacitors (thus the name!)
 - Thus, $except C_1$, all other capacitors will short out
- ► Determine the Thevenin Resistance (R_1^{∞}) across the two terminals of C_1

- Find the time constant τ_1 associated with C_1 $\left(\tau_1 = R_1^{\infty} C_1\right)$
- ightharpoonup Calculate the corresponding frequency $f_1 = 1/(2\pi\tau_1)$
- Repeat for all other capacitors, taking one at a time, and find all the rest of the frequencies $(f_2, f_3, ..., f_n)$
- Then the *Lower Cutoff Frequency* f_L can be expressed as:

$$\mathbf{f}_{L} = \left[\sum_{i=1}^{n} \mathbf{f}_{i}^{2}\right]^{1/2}$$

- In discrete circuits, a major component of total cost is due to the cost of the capacitors (directly proportional to the value)
- Hence, an attempt is made to *minimize* the *total capacitor requirement of the circuit*
- For this, the *Dominant Pole* (DP) technique is used
 - \triangleright One of the frequencies among f_1 - f_n is made dominant
 - > Others are made to lie at least 10 times away from it

For example, if f_d is chosen to be the DP, then all other poles are assumed to be at $f_d/10$

$$\Rightarrow f_{L} = \left[f_{d}^{2} + \sum_{n-1} \left(\frac{f_{d}}{10} \right)^{2} \right]^{1/2}$$

 \succ C_d , which *contributes* f_d , is *chosen* to be that capacitor that *sees* the *least Thevenin resistance* across its terminals

> Reason is obvious:

- If any other capacitor were chosen to contribute f_d , then C_d would have been ten times higher
- > This choice is based on heuristics