Report: Assignment 1

Submitted By: Siddharth Agrawal (150716)

1.1 Problem 1

1.1.1 Compilation

For the sequential program:

\$ g++ seq.cpp -o seq -lpthread

For the parallel program:

\$ g++ par.cpp -o par -lpthread

1.1.2 Execution

For the sequential program:

\$./seq <No. of elements> <array 1 path> <array 2 path>

For the parallel program:

\$./par <No. of worker threads> <No. of elements> <array 1 path> <array 2 path>

1.1.3 Report

The graph below shows how the programs scales with the number of threads. (Note: For the sequential program, result shown with a horizontal line)

Figure 1.1: The number of elements in the two arrays used: 1,000,000

1.2 Problem 2

1.2.1 Compilation

For the sequential program:

\$ g++ seq.cpp -o seq -lpthread

For the Hillis & Steele program:

\$ g++ hns.cpp -o hns -lpthread

For the Blelloch program:

\$ g++ ble.cpp -o ble -lpthread

1.2.2 Execution

For the sequential program:

\$./seq <No. of elements> <array path>

For the Hillis & Steele program:

\$./hns <No. of worker threads> <No. of elements> <array path>
For the Blelloch program:

\$./ble <No. of worker threads> <No. of elements> <array path>

1.2.3 Report

The graph below shows how the programs scales with the number of threads. (Note: For the sequential program, result shown with a horizontal line)

Figure 1.2: The number of elements in the two arrays used: 1,048,576

1.3 Problem 3

1.3.1 Compilation

\$ g++ spawn.cpp -o spawn -lpthread

1.3.2 Execution

\$./seq <Limit of shared counter>