

Kapitel 5: Verkehrslenkung im Internet

5.1 Übersicht

5.2 Adressen

- 5.2.1 Adressräume
- 5.2.2 IP Adressen
- 5.2.3 MAC Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing
- 5.6 Internet Protocol (IP)
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

IP und Ethernet/WiFi Header

Adressierung im Internet basiert auf der MAC Adresse, der IP Adresse und der Port-Nummer

- Ethernet II-Header (18 Bytes) /WiFi-Header (34 Bytes):
 - Source MAC Address: 6 Bytes
 - Destination MAC Address: 6 Bytes

von Host zu Host (lokal) von Host zu Router von Router zu Router

- IPv4/v6 Header (20/40 Bytes):
 - Source IPv4/IPv6 Address: 4 Bytes / 16 Bytes
 - Destination IPv4/IPv6 Address: 4 Bytes / 16 Bytes

von Host zu Host (Ende-zu-Ende)

- TCP/UDP Header (20/8 Bytes):
 - Source Port: 2 Bytes
 - Destination Port: 2 Bytes

von Socket/Prozess zu Socket/Prozess (Ende-zu-Ende)

Adressen

Arten von Adressräumen

- flach: kein Zusammenhang zwischen Adresse und Topologie
- hierarchisch strukturiert:
 - Zusammenhang zwischen Topologie und Adresse
 - Teil der Adresse spezifiziert, wo in der Topologie sich die Adresse befindet

Beispiele allgemeiner Adressen

- strukturiert: Postanschrift, Postleitzahl, Telefonnummer
- flach: Mobilfunknummer

Adressen im Internet

- strukturiert: IP Adresse (e.g., 128.112.7.156)
- flach: MAC (Medium Access Control) Adresse, physikalische Adresse (e.g., 00-15-C5-49-04-A9)

Strukturierte Adressen: Telefonnummer

- Telefonnummer: +49 7531 206 645
- Telefonnummer ist hierarchisch strukturiert, basierend auf dem Präfix kann ein Telefonanruf von Vermittlungsstelle zu Vermittlungsstelle durchgestellt werden.

Binäre Hierarchie

Routing in einer binären Hierarchie ist sehr einfach: in der Routing-Tabelle stehen nur drei Einträge: links, rechts, nach oben

Flacher Adressraum

Routing mit flachem Adressraum skaliert schlecht. Router muss für jede Adresse einen Eintrag in der Routingtabelle halten.

Kapitel 5: Verkehrslenkung im Internet

5.1 Übersicht

5.2 Adressen

- 5.2.1 Adressräume
- 5.2.2 IP Adressen
- 5.2.3 MAC Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing
- 5.6 Internet Protocol (IP)
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

IP Adressen

- IPv4: 32-bit Adressen
 - übliche Notation (dezimal): 192.168.21.76
 - jede Zahl ist ein Byte
 - als Big-Endians gespeichert

- IPv6: 128-bit Adressen
 - übliche Notation (hex): 2001:0db8:85a3:08d3:1319:8a2e:0370:7344

IP Adresse und Forwarding

- Anforderungen an eine Routing Tabelle
 - muss f
 ür jede IP Adresse den n
 ächsten Hop liefern
 - sehr viele Einträge:
 - Wie viele IPv4 Adressen? 2³²=4.3 Milliarden
 - Wie viele IPv6 Adressen? 2¹²⁸=340 Sextillionen
 - ein Eintrag pro IP Adresse skaliert nicht
- Hierarchisches Adress-Struktur
 - IP Adresse enthält Netzwerk-Adresse und Host-Adresse im Netzwerk

Hierarchie mit zwei Stufen

Klassen von IP Adressen / Netzen (historisch)

Woher kommen IP Adressen?

Vergabe von IP Adressen kontrolliert durch die

- Internet Assigned Number Authority
- Ursprünge 1972, ARPANET, UCLA
- heute Teil von ICANN (Internet Corporation for Assigned Names and Numbers)
- IANA vergibt IP-Netzwerk-Präfixe an Unternehmen und Organisationen
 - danach können Router installiert werden, die den Weg in diese Netz weisen

Kapitel 5: Verkehrslenkung im Internet

5.1 Übersicht

5.2 Adressen

- 5.2.1 Adressräume
- 5.2.2 IP Adressen
- 5.2.3 MAC Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing
- 5.6 Internet Protocol (IP)
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

Verkehrslenkung im LAN

- Netzknoten werden in einem LAN über die MAC Adresse identifiziert
 - MAC (Medium Access Control) ist ein Sublayer von Schicht 2
 - spezifiziert vor allem die Koordination von Übertragungen auf einem gemeinsam genutzten Übertragungsmedium
 - dazu zählen auch die Adressen
- MAC Adressen
 - bestehen aus 6 Bytes=48 Bits
 - Hexadezimale Notation: 1A-23-F3-22-AB-92
 - Bytes 1-3 von IEEE an Hersteller vergeben
 - Bytes 4-6 vom Hersteller für Netzwerkkarten vergeben
- MAC Adressen sind nicht strukturiert
 - Verwendung der gleichen MAC Adresse in allen LANs
 - Keine Konfiguration einer MAC Adresse bei Zutritt zu einem LAN
 - Verkehrslenkung muss flache Adresshierarchie mit kontinuierlicher Veränderung der MAC Adressen im Netz unterstützen

MAC Adressen

- Werden nicht für einen Rechner vergeben sondern für Netzwerkadapter
- Jeder Netzwerkadapter in einem LAN hat seine eigene MAC Adresse
- Die MAC Adresse bleibt immer gleich, sie ändert sich nicht, wenn der Knoten das Netz wechselt.

