QUANTUM STATES FOR SINGLE QUBIT SYSTEMS

Question 1

We define a state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ to be a quantum state if $|\alpha|^2+|\beta|^2=1$. Which of the following equations describe a quantum state?

(a) Example: $|\psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$

$$\alpha = \frac{1}{\sqrt{2}}, \beta = \frac{1}{\sqrt{2}}$$
$$\alpha^2 + \beta^2 = (\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 = 1$$

Since $\alpha^2+\beta^2=1$, $|\psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$ is a valid quantum state.

(b) $|\psi\rangle = \frac{1}{4} |0\rangle + \frac{3}{4} |1\rangle$

(c) $|\psi\rangle = |0\rangle + |1\rangle$

(d) $|\psi\rangle = \frac{5}{13} |0\rangle + \frac{12}{13} |1\rangle$

(e) $ \psi\rangle=\frac{3}{5} 0\rangle+\frac{4}{5} 1\rangle$
(f) $ \psi angle= 1 angle$
(g) $ \psi\rangle = \frac{1}{4} 0\rangle$
(h) $ \psi angle=rac{\sqrt{3}}{2}\left 0 ight angle+rac{1}{2}\left 1 ight angle$
(i) $ \psi\rangle = \frac{\sqrt{7}}{4} 0\rangle + \frac{\sqrt{5}}{4} 1\rangle$

QUANTUM GATES AND MEASUREMENT

Question 2

What is the resulting state for each of the circuits below?

(a)

(b)

(c)

(d)

$$rac{|0>+|1>}{\sqrt{2}}$$
 H

Question 3

What can we expect on measurement?

(a)

(b)

(c)

(d)

$$\frac{|0>+|1>}{\sqrt{2}}$$
 H | $0>$ \nearrow