MATH 56 WORR SHEET: Formier series.

Recalls
$$f(x) = \frac{5}{4} f_n e^{inx}$$
, where $f_m = \frac{1}{2\pi} \int_0^{2\pi} e^{-imx} f(x) dx$

A) Compute
$$\hat{f}_{ni}$$
 coefficients for $f(x) = x$ on $[0,2\pi)$ of $f(x)$

[Hint: treat $n=0$ separately]

217 0 217 q_{11}

B) Let If be written as a familier series, let's wheate
$$||f||^2$$
 to its coeffs:

 $||f||^2 := (f, f) = (2 f e^{imx}, ...)$

now bring the summation signs entside the inner prod. (assume sums enconditionally convergent...), simplify.

If $f \in C([0,2\pi])$, what doe this tell you about the sequence \hat{f}_n as /m/s ?! BONUS: redo B) using truncated series IIF - Z freinx / 2 k setit > 0.

MATTH 56 WORR SHEET: Fourier series. 4/16

Reialls $f(x) = \frac{5}{2\pi} \int_{0}^{\pi} e^{inx}$, where $f_{m} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-imx} f(x) dx$

A) Compute f''' coefficients for f(x) = x on $[0,2\pi)$ of f(x)[Hint: treat n=0 separately] m=0: $f_0=\int_0^2 \int_0^{2\pi} \times dx = \frac{1}{2\pi} \cdot \frac{(2\pi)^2}{2} = \pi$ and value.

m=10: $f_m = \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left(\frac{1}{im} \right) \int_0^{2\pi} e^{-imx} dx$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-imx} dx = \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-imx}}{-im} \right]_0^{2\pi}$ $= \frac{1}{2\pi} \int_0^{2\pi} x e^{-im} dx = \frac{1}{2\pi} \left[\frac{x e^{-im}}{-im} \right]_0^{2\pi} - \frac{1}{2\pi} \left[\frac{x e^{-im}}{-im} \right]_0^{2\pi}$ = 0 from class, for mito.

B) Let f be uniter as a farrier series, let's orthate $\|f\|^2$ to it's coeffs:

note cannot choose on as interval index in sum if nout $\|f\|^2 := (f, f) = (f, f) = (f, f) = (f, f)$ The importance of the summation of the summation f in f in

= $\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(e^{inx}, e^{imx} \right)$ = $\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \left(e^{inx}, e^{inx} \right)$ = $\frac{1}{2} \int_{0}^{1} \left(e^{inx}, e^{inx} \right)$

If $f \in C([0,2\pi])$, what doe this tell you about the sequence f_n as Inform!

The solution of the sequence f_n as Inform!

The solution of the sequence f_n as Inform!

A is a sequence f_n as Inform. BONUS: redo B) using tomated series $\|f - \sum_{n=-N}^{\infty} f_n e^{inn}\|^2 k$ sofit ≥ 0 . $\epsilon = 8ee$ flW4.