Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра экологии

ЗАПЫЛЕННОСТЬ И ЗАГРЯЗНЕНИЕ АТМОСФЕРЫ В РЕЗУЛЬТАТЕ РАБОТЫ ТРАНСПОРТА

Методическое пособие для практических занятий по дисциплине «Основы экологии и энергосбережения»

Рецензент: профессор кафедры психологии и эргономики БГУИР, д-р мед. наук И. С. Асаенок

Авторы:

И. И. Кирвель, М. А. Бобровничая, В. И. Камлач, Н. В. Цявловская

Запыленность и загрязнение атмосферы в результате работы транс-3-14 порта: метод. пособие для практич. занятий по дисц. «Основы экологии и энергосбережения» / И. И. Кирвель [и др.]. – Минск: БГУИР, 2009. – 24 с.

ISBN 978-985-488-423-3

Рассмотрены проблемы загрязнения атмосферы и шумового загрязнения в результате работы автотранспорта, освещены статистические показатели данной экологической проблемы, приведена методика расчета количества вредных выбросов в атмосферу, представлено практическое задание по оценке экологичности различных видов топлива. Пособие предназначено для студентов всех специальностей и форм обучения БГУИР.

УДК 632.151(075.8) ББК 20.18я73

ISBN 978-985-488-423-3

© УО «Белорусский государственный университет информатики и радиоэлектроники», 2009

1. ОБЩИЕ ПОЛОЖЕНИЯ

Запыленность воздуха — важнейший экологический фактор, сопровождающий человека повсюду. Пылью считаются любые взвешенные в воздухе твердые частицы. Безвредных пылей не существует. Экологическая опасность пылей для человека определяется их природой и концентрацией в воздухе. Пыли можно подразделить на две большие группы.

- 1. Мелкодисперсная пыль, состоящая из легких и подвижных частиц размером до нескольких десятков и сотен микрон (1 микрон равен 10^{-3} мм). Такая пыль может находиться в воздухе длительное время «витать». Она попадает с воздухом в легкие при дыхании, может накапливаться в организме.
- 2. Крупнодисперсная пыль, состоящая из тяжелых и малоподвижных частиц. Такая пыль быстро выпадает из воздуха при отсутствии ветра, образуя пылевые отложения (например на мебели). Отложения пыли являются источниками вторичного загрязнения воздуха.

В 1 см³ воздуха в закрытом помещении может содержаться до 10⁶ пылинок различного размера, природы и степени опасности. Пыль может содержать органические вещества (частицы биогенного происхождения – растительного, животного и антропогенного) и неорганические вещества (частицы почвы, строительных материалов, синтетических моющих средств, различных химических веществ и др.). На пылевых частицах могут поселяться вредные микроорганизмы, адсорбироваться еще более мелкие частицы вредных веществ (например тяжелых металлов, органических соединений). Наиболее токсичны пыли, содержащие сложные белковые молекулы и простейшие организмы (живые и отмершие), например, пыль белково-витаминного концентрата, пыль хитинового покрова отмерших бытовых насекомых – мух, тараканов, муравьев и т.п. Такие пыли вызывают аллергические заболевания как при вдыхании, так и при попадании на кожу (при контакте). Некоторые виды пылей могут создавать взрывоопасные смеси с воздухом (древесная, хлопковая, мучная и т.п.).

Основным видом транспорта, влияющим на экологическое состояние воздуха, является автомобильный. В Республике Беларусь на 10 млн жителей приходится около 1,9 млн автомобилей, т.е. примерно 1 автомобиль на 5 человек. И хотя этот уровень несколько выше среднемирового, по европейским меркам он весьма невысок. Автомобиль является источником загрязнения воздуха пылью. Пыль образуется при стирании покрышек, выделяется с отработавшими газами. Увеличения количества взвешенной в воздухе и осевшей на поверхности пыли объясняется также повышенным износом асфальтового покрытия автомобильных дорог вследствие применения ошипованных шин. Например, за год эксплуатации покрышки одного легкового автомобиля истираются на 1 кг. Источниками поступления загрязняющих веществ в воздух являются отработавшие газы двигателей внутреннего сгорания, испарение топлива с топливной системы. Определяющая доля выбросов вредных веществ (56 %) принадлежит грузовым автомобилям. Структура выбросов автомобильного транспорта представлена 200 веществами, из которых самыми опасными являются: оксид азота (NO), угарный газ (CO), углеводороды – несгоревшее топливо,

бензопирен, свинец и т.д. Один усредненный автомобиль за 6 лет эксплуатации выбрасывает в атмосферу 9 т CO_2 , 0,9 т CO, 0,25 т CO0 и 80 кг углеводородов. Около 50 % соединений свинца в атмосферу поступает от легковых автомобилей и 2/3 оксида азота — от грузовых автомобилей (рис.1.1) [1].

Рис. 1.1. Структура выбросов загрязняющих веществ от автотранспорта

Повышенное содержание СО и NO можно обнаружить в выхлопных газах неотрегулированного двигателя, а также двигателя в режиме прогрева. Приближенный состав выхлопных газов автомобилей представлен в табл. 1.1 [2].

Таблица 1.1 Приближенный состав (% по объему) выхлопных газов автомобилей

Компоненты отрабо-	Состав выхлопных газов			
тавших газов				
Оксид азота	8,0-10,0			
Сажа	0,3-3,5			
Пары воды	3,0-5,5			
Диоксид углерода	5,0 – 12,0			
Оксид углерода	70,5 – 78,0			
Углеводороды	6,0 – 18,0			
Диоксид серы	0,2-0,8			
Альдегиды	0,1-0,2			
Сернистый газ	0,002 - 0,03			

На выбросы оксида углерода значительное влияние оказывает рельеф дороги и режим движения автомобиля. Так, например, при ускорении и торможении в отработавших газах увеличивается содержание СО почти в 8 раз. Минимальное количество СО выделяется при равномерной скорости автомобиля 60 км/ч (рис. 1.2), где $K_{\rm mV}$ – коэффициент изменения выбросов в зависимости от скорости движения.

Рис. 1.2. Зависимость удельных приведенных выбросов легковых автомобилей от скорости движения

Концентрация вредных веществ в выхлопных газах зависит также и от режима работы двигателя (табл. 1.2).

 Таблица 1.2

 Концентрация вредных веществ в выхлопных газах

Режим работы	Оксид углерода,	Углеводороды,	Оксиды азота,
двигателя	мг/л	мг/л	мг/л
Холостой ход	4,0 – 12,0	2,0-6,0	4,0-8,0
Принудительный	2,0-4,0	8,0-12,0	2,5-4,0
холостой ход			
Средние нагрузки	0 - 1,0	0.8 - 1.5	-
Полные нагрузки	2,0	0,7-0,8	-

Состав и объем выбросов зависят также от типа двигателя (табл.1.3). Как видно из таблицы, выбросы загрязняющих веществ значительно ниже в дизельных двигателях. В топливе для дизельных двигателей нет свинцовых присадок, а выброс CO на 50-90 % ниже, чем у бензинового собрата. Поэтому принято считать их более экологически чистыми. Однако дизельные двигатели отличаются повышенными выбросами сажи. Сажа насыщена канцерогенами, и их выбросы в атмосферу недопустимы.

Таблица 1.3 Количество выбросов вредных веществ в зависимости от типа двигателя

Вещество	Двигатель		
	Карбюраторный	Дизельный	
Оксид углерода (% по объему)	1,0 – 12,0	0.01 - 0.5	
Оксид азота, мг/л	0,05 - 8,0	0,002 - 0,5	
Углеводороды, мг/л	0.8 - 6.0	0,01-0,5	

В связи с тем что выхлопные газы автомобилей поступают в нижний слой атмосферы, вредные вещества находятся практически в зоне дыхания человека. Попадая в кровь, СО действует на красные кровяные шарики – эритроциты, которые теряют способность транспортировать кислород. В результате наступает кислородное голодание, что прежде всего сказывается на центральной нервной системе. При вдыхании оксид азота в дыхательных путях соединяется с водой и образуются азотная и азотистая кислота. В результате возникают не только раздражения слизистых, но и весьма тяжёлые заболевания. Считается, что окислы азота в 10 раз опаснее для организма, чем окись углерода. Типичным представителем канцерогенных веществ, т.е. веществ, способствующих возникновению раковых опухолей, является бензапирен. Автомобиль – источник изменения температуры воздуха в городах. Если в городе одновременно движется 100 тыс. машин, то это равно эффекту, производимому одним миллионом литров горячей воды. Автомобиль – один из источников шумового загрязнения города. В городах с интенсивным автомобильным движением уровень шума превышает 70 дБ (децибел). На автомагистралях крупных городов Беларуси количество шума составляет 70 - 85 дБ, допустимая норма - 60 дБ (табл. 1.4)[3].

Таблица 1.4 Оценка основных источников транспортного шума

Вид транспорта	Эквивалентный уровень шума, дБ
Легковые автомобили	77
(на расстоянии 7,5 м)	//
Автобусы и грузовые автомобили	78 – 83
Железнодорожный (на расстоянии 20 м)	90 – 101
Воздушный	98 – 105

Именно в развитии автотранспорта и, следовательно, во всё большем засорении городского воздуха автомобильными газами многие учёные видят главную причину увеличения смертности от рака лёгких. Частота этого заболевания в городах намного выше, чем в сельской местности [4].

Мероприятия по борьбе с выбросами автотранспорта загрязняющих веществ в атмосферу:

- перевод автомобилей на дизельные двигатели. Возрастающий интерес к дизельному двигателю связан не только с удешевлением эксплуатации автомобилей, но и уменьшением загрязнения окружающей среды;
- газ вместо бензина. Это позволит не только повысить чистоту воздушного бассейна в крупных городах, но и высвободить для нужд народного хозяйства немало дефицитного жидкого топлива;
- электромобиль. Считается целесообразным перевод автомобилей на электротягу, особенно в крупных городах. Оценки показывают, что к 2025 г электромобили могут составить 15 % от общего числа автомобилей мира;
- внедрение альтернативных видов топлива. Биогаз состоит на 60–70 % из метана (с теплотворной способностью 5000 ккал на 1 m^3).

2. КАЧЕСТВО АТМОСФЕРНОГО ВОЗДУХА В КРУПНЫХ ПРОМЫШЛЕННЫХ ЦЕНТРАХ

Город Минск относится к городам с высокой плотностью эмиссий вредных веществ на единицу площади, однако благодаря хорошим условиям рассеивания индекс загрязнения атмосферы — один из самых низких среди крупных промышленных центров (рис. 2.1) [1].

Рис. 2.1. Среднегодовые концентрации загрязняющих веществ в атмосферном воздухе областных центров

Однако динамика выбросов от передвижных источников за последние 15 лет свидетельствует о возрастании объемов с 1998 г. (рис. 2.2) [1].

Рис. 2.2. Динамика выбросов загрязняющих веществ от передвижных источников

Важным фактором, определяющим выбросы от автотранспорта, является характер и качество потребляемого топлива. Автотранспорт столицы использует в качестве топлива в основном бензин и дизельное топливо; в меньшей степени используются автомобили, работающие на сжиженном нефтяном газе и сжатом природном газе (табл. 2.1) [1]. В последние годы сокращается доля автомобилей, потребляющих низкооктановый бензин.

Таблица 2.1 Распределение транспортных средств по видам используемого топлива (2005 г.)

Наименование показателей	Количество, ед.	
Автомобили, конструкция кот	орых позволяет использовать:	
только бензин	17,3	
только диз. топливо	10,8	
сжиженный нефтяной газ	0,2	
сжатый природный газ	0,3	

В настоящее время свыше 33 % автомобилей находится в эксплуатации более 13 лет. По данным Минского городского управления статистики, 91,6 % транспортных средств, находящихся на балансе организаций и предприятий, технически исправны. Однако состояние многих автомобилей по дымности и токсичности отработавших газов неудовлетворительное.

Максимальные концентрации формальдегида в воздухе составляют: на пр. Независимости (Ботанический сад) — 4,8 ПДК, на ул. Московской (почта) — 4,3 ПДК, на пр. Партизанском — 4,6 ПДК. Выше средней по городу загрязненность воздуха формальдегидом наблюдалась в районах ул. Ванеева, Плеханова, Кирова, Семенова, Брилевской, Долгобродской, Руссиянова, Никифорова, Ротмистрова, Селицкого и проспекта Пушкина.

Максимальные концентрации оксида углерода отмечены на ул. Ванеева (4,8 ПДК) и проспекте Партизанском (4,6 ПДК).

Максимальные концентрации диоксида азота в воздухе составляют в районе улиц: Радиальной, проспекта Независимости, Судмалиса, площади Свободы (табл. 2.2) [1].

Таблица 2.2 Среднемесячные концентрации диоксида азота (в долях ПДК), 2005 г.

Адрес	Месяц											
_	1	2	3	4	5	6	7	8	9	10	11	12
1. Пр. Независимо-	0,3	0,4	0,7	1,2	0,4	0,7	1,7	0,3	0,1	0,4	0,7	0,4
СТИ												
2. Ул. Судмалиса	0,3	0,5	0,8	0,8	0,8	0,8	1,1	0,3	0,3	0,2	0,3	0,2
3. Ул. Тимирязева	0,1	0,1	0,2	0,3	0,1	0,2	0,3	0,2	0,3	0,2	0,2	0,2
4. Ул. Челюскинцев	0,2	0,3	0,5	0,4	0,4	0,4	0,4	0,5	0,4	0,2	0,2	0,2
5. Ул. М. Богдано-	0,2	0,2	0,3	0,2	0,2	0,3	0,3	0,4	0,3	04	0,4	0,3
вича												
6. Пл. Свободы	-	ı	1,1	0,3	0,5	0,5	0,5	0,6	0,5	0,4	0,4	0,3
7. Ул. Казинца	0,3	0,4	0,5	0,4	0,41	0,5	0,4	0,5	0,5	0,4	0,5	0,5
8. Ул. Щорса	0,1	0,2	0,2	0,1	0,7	0,1	0,2	0,1	0,1	0,1	0,1	0,1
9. Ул. Радиальная	0,4	0,6	1,0	0,7	0,8	-	1,0	0,7	0,7	0,5	0,5	0,5
10. Ул. Шаранго-	-	-	-	0,2	0,3	0,1	0,4	0,4	0,2	0,2	0,3	0,3
вича												

Формальдегид (муравьиный альдегид), химическая формула HCHO – бесцветный газ с резким запахом. Служит сырьем в производстве фенолоформальдегидных смол, карбамидных смол, изопрена и других важных продуктов.

Данные табл. 2.2 свидетельствуют о том, что в годовой динамике существенный рост максимальных концентраций диоксида азота в воздухе наблюдается в теплый период года, что обусловлено более активными процессами трансформации химических веществ под влиянием солнечного излучения. Повышенную концентрацию формальдегида в различных функциональных зонах города Минска «обеспечивают» два основных источника загрязнения – вредные выбросы от работы промышленных предприятий и автотранспорт (рис. 2.3) [1].

Рис. 2.3. Динамика среднемесячных концентраций формальдегида в различных функциональных зонах города Минска

3. БИОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ НАЗЕМНЫХ ЭКОСИСТЕМ

Биоиндикация — это оценка состояния окружающей среды по реакции живых организмов (от лат. Indices — указывать). В качестве биоиндикаторов используют животных, растения, бактерии, вирусы. Одним из перспективных объектов биоиндикации являются лишайники, которые могут служить объектом мониторинга на всех уровнях: локальном, региональном и глобальном. Лишайники высокочувствительны к загрязнению среды обитания. На них избирательно действуют прежде всего вещества, увеличивающие кислотность среды (SO_2 , HF, HCL, NO, O_3). Для лишайников сравнительно безвредны тяжелые металлы, накапливающиеся в слоевище, а также радиоактивные изотопы [5].

Тело лишайника – слоевище состоит из гриба и одноклеточных водорослей, находящихся в симбиозе. По строению слоевища лишайники делятся на три группы:

- накипные (коркоподобные), похожи на плоские корки, плотно срастающиеся с корой, камнями, почвой; они трудно отделяются, на ощупь бархатистые, влажноватые;
- листовые (листовидные), имеют форму мелких пластинок, чешуек; прикрепляются к поверхности тонкими нитями гриба и довольно легко отделяются от нее;
- кустистые, которые либо растут вверх, как маленькие кустики, либо свисают с дерева вниз, подобно бороде.

Выделяют зоны лишайников, позволяющие судить о степени загрязнения атмосферного воздуха:

зона критического загрязнения – полное отсутствие лишайников, самые неблагополучные районы города;

зона умеренного загрязнения – лишайниковая флора бедна;

относительно чистая зона — встречаются многие виды лишайников (периферийная часть города, лесопарки, парки) (табл. 3.1) [7].

Таблица 3.1 Степень загрязнения в зависимости от видового разнообразия лишайников

Зона Степень загрязнения		Наличие (+) или	и отсутствие (-	–) лишайников
ЭОНа	Степень загрязнения	кустистые	листовые	накипные
1	Загрязнения нет	+	+	+
2	Относительно чистая зона	-	+	+
2	Зона умеренного			
3	загрязнения	-	_	+
1	Зона критического			
4	загрязнения	-		_

Причины повышенной чувствительности лишайников к составу атмосферы:

- отсутствие непроницаемой кутикулы, поэтому газообмен происходит свободно через всю поверхность;
- лишайники всей своей поверхностью впитывают дождевую воду, где концентрируется много токсичных газов;
 - сохраняют способность к росту при температурах чуть ниже 0°C.

Сбор образцов лишайников производится со стволов деревьев до высоты 160 см по всей площади. Загрязнители воздуха нарушают пигментную систему фотосинтеза, окисляя хлорофилл, разрушающийся уже при рН 3,2 – 3,4 [6].

Методика исследований основана на определении флористического состава лишайников, с помощью которого через присутствие — отсутствие отдельных видов и/или через какие-либо количественные характеристики можно судить о воздействии загрязнителя на лишайники.

4. РАСЧЕТНАЯ ОЦЕНКА КОЛИЧЕСТВА ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ ОТ АВТОТРАНСПОРТА

Количество выбросов вредных веществ, поступающих от автотранспорта в атмосферу, может быть оценено расчетным методом. Исходными данными для расчета количества выбросов являются:

- количество единиц автотранспорта разных типов, проезжающего по выделенному участку автотрассы в единицу времени;
- нормы расхода топлива автотранспортом (средние нормы расхода топлива автотранспортом при движении приведены в табл. 4.1) [5].

Таблица 4.1 Средние нормы расхода топлива автотранспортом при движении в условиях города

Тип автотранопорта	Средние нормы расхода	Удельный расход топ-
Тип автотранспорта	топлива (литр на 100 км)	лива, Y_i (литр на 1 км)
Легковой автомобиль	11 – 13	0,11-0,13
Грузовой автомобиль	29 – 33	0,29 - 0,33
Автобус	41 - 44	0,41 - 0,44
Дизельный грузовой авто-	31 – 34	0.21 0.24
мобиль	31 – 34	0,31 - 0,34

Значения эмпирических коэффициентов, определяющих выброс вредных веществ от автотранспорта в зависимости от вида горючего, приведены в табл. 4.2 [11].

Таблица 4.2 Эмпирические коэффициенты, определяющие выброс вредных веществ от автотранспорта в зависимости от вида горючего

Рил топпира	Значение коэффициента, К				
Вид топлива	Угарный газ	Углеводороды	Диоксид азота		
Бензин	0,6	0,1	0,4		
Диз. топливо	0,1	0,03	0,04		

Коэффициент К численно равен количеству вредных выбросов соответствующего компонента в литрах при сгорании в двигателе автомашины количества топлива (также в литрах), необходимого для проезда 1 км (т.е. равного удельному расходу).

Справочные значения предельно допустимых концентраций приведены в табл. 4.3 [12].

Кумулятивный эффект – накопление в организме токсичных веществ либо продуктов их превращений, вследствие чего происходит усиление токсического действия.

Таблица 4.3 Значения предельно допустимых концентраций

Загрязни- тель	Свойства вещества	Основные источники поступления в атмо- сферу	ПДК $_{\rm HII}$, макс разовая, мг/м 3	ПДК _{рз,} мг/м ³
Диоксид серы	Раздражает дыхательные пути, ощутимый при $0,4-1,3$ мг/м 3	Сгорание угля, производство резиновых изделий	0,5	10
Оксид, диоксид азота	Раздражает дыхательные пути. Активно взаимодействует с другими загрязнителями	Выхлопные газы автотранспорта, продукты сгорания	0,04 0,085	2 5
Моноок- сид угле- рода	Ядовитый газ, обладающий кумулятивным эффектом. Время жизни в атмосфере – 2–4 месяца	Продукты неполного сгорания топлива, выбросы промышленных предприятий	5,0	20
Углеводо- роды неф- ти	Бесцветные пары	Выхлопные газы тепловых двигателей	100 (пен- тан)	300
Хлор	Желто-зеленоватый газ, сильный окислитель	Транспортировка сжиженного хлора	0,1	1,0
Фтор- водород,	Бесцветный газ сильный раздражитель дыхательных путей	Выбросы предприятий по производству фосфорита, алюминиевых заводов	0,02	0,5
Аммиак, NH ₃	Бесцветный газ с рез- ким характерным запа- хом	Выбросы животноводческих комплексов, холодильных установок	0,2	20
Сероводо-	Бесцветный ядовитый газ	Выбросы химических предприятий	0,008	10
Оксид уг- лерода	Бесцветный газ, продукт жизнедеятельности организмов	Дыхание животных и растений, сгорание органических остатков	3	20
Формаль- дегид	Бесцветный газ с рез- ким запахом	Выбросы химических предприятий	0,05	4

Примечание. ПДК $_{\rm н\pi}$ – населенный пункт; ПДК $_{\rm p3}$ – рабочая зона.

Пример выполнения задания

3adaнue. Рассчитать количество выбросов вредных веществ в воздух, поступающее от автотранспорта на участке автотрассы, расположенной вблизи БГУИР (между 2 и 4 учебными корпусами). Протяженность участка составляет – 1 км.

Определяем количество единиц автотранспорта, проходящего по участку в течение 20 мин. Количество единиц автотранспорта, пройденного за 1 ч, рассчитывают, умножая на 3 количество, полученное за 20 мин. Рассчитываем общий путь, пройденный количеством автомобилей каждого типа за час (*L*, км) по формуле

$$L = N_i \cdot l, \tag{4.1}$$

где N_i – количество автомобилей каждого типа;

i – обозначение типа автотранспорта (i = 1 для легковых автомобилей;

i = 2 для грузовых автомобилей; i = 3 для автобусов; i = 4 для дизельных грузовых автомобилей);

l – длина участка, км (по условию равна 1 км).

Данные расчетов заносим в табл. 4.4.

Таблица 4.4 Автотранспорт, проходящий по выбранному участку

Тууг ортогромомоморго	Всего за 20 мин,	За час,	Общий путь
Тип автотранспорта	шт.	$N_{i,}$ шт.	за 1 ч, <i>L</i> , км
Легковые автомобили	263	789	789
Грузовой автомобиль	3	9	9
Автобус	2	6	6
Дизельный грузовой автомобиль	1	3	3

Рассчитываем количество топлива (Q_i , π), сжигаемого двигателями автомашин, по формуле

$$Q_i = L_i Y_i, (4.2)$$

где L_i – общий путь каждого вида автотранспорта за 1 ч;

 Y_i – удельный расход топлива (значения Y_i приведены в табл. 4.1).

$$Q_1 = 789.0, 12 = 94,68$$
 л;

$$Q_2 = 9.0,31 = 2,79 \text{ n};$$

$$Q_3 = 6.0,42 = 2,52 \text{ }\pi;$$

$$Q_4 = 3.0,33 = 0,99$$
 л.

Полученный результат заносим в табл. 4.5.

Таблица 4.5 Количество сожженного топлива каждым видом транспортного средства

Тип автотранспорта	L_i , KM	Q_i , л
Легковой автомобиль	789	94,68
Грузовой автомобиль	9	2,79
Автобус	6	2,52
Дизельный грузовой автомобиль	3	0,99
	Beero ΣQ	100,98

Определяем общее количество сожженного топлива каждого вида (ΣQ) при условии использования вида топлива каждым типом автотранспорта в соотношении N_{δ} / N_{∂} (N — количество автомобилей с бензиновым или дизельным двигателем).

Результаты заносим в табл. 4.6.

Таблица 4.6 Количество сожженного бензина и дизельного топлива

Тип автотранспорта	Тип двигателя, N_{δ}/N_{δ}	Бензин, л	Диз. топливо,
			Л
Легковой автомобиль	600/189	72,0	22,68
Грузовой автомобиль	9/0	2,79	-
Автобус	0/6	-	2,52
Дизельный грузовой	0/3	-	0,99
	Всего ΣQ_i	74,79	26,19

Рассчитываем количество выделившихся вредных веществ по каждому виду топлива (данные табл. 4.2 и 4.6). Результаты заносим в табл. 4.7.

 Таблица 4.7

 Количество выделившихся вредных веществ по каждому виду топлива

Вид топлива	Σ Q _i , л	Количество выделившихся вредных веществ, л		
		CO	углеводороды (С ₅ H ₁₂)	NO ₂
Бензин	74,79	44,87	7,48	29,9
Диз. топливо	26,19	2,61	0,79	1,04
	Всего (<i>V</i>)	47,3	8,27	4,03

Рассчитываем массу выделившихся вредных веществ (т, г) по формуле

$$m = \frac{V \cdot M}{22.4} , \qquad (4.3)$$

где M – молярная масса вещества;

V – количество выделившихся вредных веществ, л.

$$M$$
 (CO) = 12+16 = 28;
 M (C₅H₁₂) = 5·12+1·12 = 72;
 M (NO₂) = 14+16·2 = 46.

Рассчитываем количество чистого воздуха, необходимое для разбавления выделившихся вредных веществ и для обеспечения санитарно допустимых условий окружающей среды. Результаты заносим в табл. 4.8.

 Таблица 4.8

 Масса выделившихся вредных веществ в атмосферу от работы автотранспорта

Вид вещества	Масса, т, г	Количество воздуха, м ³	ПДК мг/м³
CO	59,13	11826	5,0
Углеводороды	26,6	266	100
NO_2	8,3	97647	0,085

5. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

<u>Задание</u>. Рассчитать массу выбросов вредных веществ в воздух, поступающих от автотранспорта, и количество чистого воздуха, необходимое для разбавления выделившихся вредных веществ и для обеспечения санитарно допустимых условий окружающей среды на участке автотрассы (данные по интенсивности транспортного потока за 20 мин по всем видам транспортных средств см. табл. 4.4).

Результаты расчетов оформлять в виде таблиц (см. табл. 4.4 - 4.8).

Варианты заданий

Таблица 5.1

Вариант	Протяженность участка, м	Временной интервал, мин
1	500	15
2	700	30
3	1300	45
4	1500	90
5	1800	120
6	2000	240
7	2500	480
8	3000	1440

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие из перечисленных факторов относятся к искусственному загрязнению: а) вулканические извержения; б) выхлопные газы автомобилей, смог; в) пыльные бури?
- 2. Почему предельно допустимые концентрации различных загрязнителей должны быть ниже тех концентраций, которые начинают вредить здоровью человека?
- 3. На какие органы человека оказывают особенно сильное влияние разные виды загрязнителей и почему?
 - 4. По каким признакам в городском парке можно судить о чистоте воздуха?
- 5. Какая связь существует между запыленностью атмосферы и «парниковым эффектом»?
- 6. Какой тип двигателя в меньшей степени загрязняет атмосферу и почему?
- 7. Объясните увеличение выбросов вредных веществ от автотранспорта по Беларуси после 1998 г.
 - 8. Что такое «шумовое загрязнение»?
 - 9. Назовите основные источники транспортного шума.
- 10.Перечислите меры, предупреждающие загрязнение атмосферы в результате работы автотранспорта.

. .

ПРИЛОЖЕНИЕ

Рекомендации по правилам питания населения, проживающего на загрязненной территории

- 1. Желательно употреблять хлеб из муки грубого помола, пшено, перловку, овсянку, гречку, мед, морскую капусту, молочнокислые продукты, фрукты, из овощей тыкву, баклажаны, свеклу, морковь, капусту [8].
- 2. Для более быстрого выведения радионуклидов необходимо употреблять много жидкости: соки из овощей и фруктов с мякотью, которые адсорбируют радионуклиды. Очень полезно использовать настои трав с мочегонным и желчегонный действием: ромашка, зверобой, тысячелистник, мята, зеленый чай, а также минеральные воды.
- 3. Для снижения всасывания радионуклидов цезия и стронция в желудочнокишечном канале полезно увеличить на 10 % потребление продуктов, содержащих много белка, по сравнению с суточной нормой. К ним следует отнести мясо, молоко, морскую рыбу и рыбопродукты. Радиозащитными свойствами обладают нерафинированное растительное масло и животный жир. Полезны орехи, семечки, печень – источники витамина Е.

Кальций, содержащийся в молочных продуктах, яйцах, икре, бобовых, способствует выведению стронция. Калий (его много в изюме, кураге, урюке, орехах, черноплодной рябине, печеной картошке) способствует выведению радиоцезия.

- 4. Хороший очищающий эффект дают пектиновые вещества, которые адсорбируют радионуклиды. Они содержатся в цитрусовых, крыжовнике, белой смородине, рябине, яблоках, грушах, персиках, абрикосах, сливах, чернике, клюкве, вишне, черешне, дыне, арбузе. Поэтому для уменьшения количества радионуклидов в организме желательно регулярно пить овощные и фруктовые соки, особенно мякотные, употреблять вышеперечисленные ягоды и фрукты.
- 5. Супы надо готовить на втором бульоне, первый сливать после закипания через 10–15 мин. В свинине содержится меньше и цезия, и стронция по сравнению с говядиной. Повышенное содержание радионуклидов характерно для почек и печени. В костях животных накапливается стронций. После варки мяса концентрация радиоцезия уменьшается в 2 раза, а стронция в 2,5 раза. Концентрация радионуклидов в организме диких животных обычно выше, чем в организме домашних.
- В 2–5 раз уменьшается концентрация радионуклидов в рыбе после ее отваривания, практически не изменяется в жареной рыбе и в ухе.
- 6. Очень эффективно уменьшает концентрацию радиоцезия различная переработка молока, что связано со свойством его соединений переходить в водную фазу (сыворотку). Вследствие этого его концентрация в сливках, масле и сыре сравнительно невысока. Ионы стронция Sr^{90} , хотя и отличаются по своим химическим свойствам от ионов Cs^{137} , ведут себя сходным образом. При перера-

ботке молока снижение концентрации Cs^{137} и Sr^{90} составляет соответственно: в твороге -4 и 3 раза, в сыре -10 и 2 раза, в масле -50 и 100 раз, сливках -10 и 20 раз.

Одним из основных поставщиков Sr^{90} являются хлебопродукты. Радионуклид Sr^{90} главным образом сосредоточен в оболочечной части зерна. Поэтому после переработки зерна в хлебе и крупе содержится в 1,5-3 раза меньше радионуклидов. Хлебопродукты из муки тонкого помола с низким процентом выхода могут быть значительно чище при условии, что для помола использовалось одно и то же зерно.

Важное значение имеет разнообразная обработка продуктов питания, с помощью которой можно существенно снизить количество радионуклидов: мытье, чистка, отваривание и т.д. Так, с картофеля и свеклы при чистке удаляется 60–80 % радионуклидов, во время варки – до 60 %, а при отваривании с 2–3-кратной сменой воды количество радионуклидов уменьшается в 2–3 раза.

Очистка свеклы уменьшает содержание радиоцезия на 70 %. При отваривании свеклы и щавеля в воду переходит 50–80 %.

Уменьшение концентрации радиоцезия на 15–20 % характерно для капусты и огурцов при их консервировании, но при этом нельзя использовать в пищу маринад или рассол.

Адаптогены для повышения иммунитета, антиоксиданты, энтеросорбенты

<u>Адаптогены для повышения иммунитета</u> — жень-шень (корень), китайский лимонник (ягоды, листья, стебли молодые), айва японская (плоды), радиола розовая, левзея лекарственная, элеутерококк, эхинацея, политабс-ферментированная пыльца растений, прополис, цернилтон — препарат из цветочной пыльцы, пыльца сушеная цветочная, маточкино молоко, мумиё.

Все эти вещества продаются в аптеках в виде настоек, настоев или таблеток. Так, например, эхинацея в виде настойки, кроме указанного названия, может называться «иммунал», в виде таблеток — «эстифан» и т.д.

- 1. Все препараты принимаются небольшими дозами: настои от 1 (для детей до 8 лет) до 3 чайных ложек (для взрослых), настойки от 10 капель (для детей) до 30 капель (для взрослых) 1 раз в день за 20–30 мин до еды. Настойки обязательно перед приемом разводятся в 1—2 ложках теплой воды [5].
- 2. Все препараты принимаются долго, по 3–5 месяцев (зимой и весной), но с перерывами. Примерная схема приема препаратов: принимать 3 недели, 2 недели не принимать и т.д.
- 3. Все препараты обязательно запивать полстаканом теплой кипяченой воды для лучшего и быстрейшего всасывания.

<u>Антиоксиданты</u> – вещества, защищающие клетки организма, в том числе и иммунной системы, от радиации. К ним относятся витамины Е, С, А. Препараты антиоксидантного действия: антиоксидантный комплекс, бета-каротин, кверти-

цин, антиокс в капсулах, пророщенная пшеница, чага или бефунгин (или меланин) – экстракт березового гриба.

Если нет в аптеке указанных препаратов, некоторые из них готовят дома. Это в первую очередь относится к пророщенной пшенице, так как покупная может содержать ростки более 2 мм, которые считаются токсичными для иммунных клеток. А самое главное, что пророщенную пшеницу нельзя варить, высушивать и вообще убивать росток, так как он потеряет лечебные свойства. Это должна быть пшеница, предназначенная для пищевых целей, не протравленная. Рекомендуемые дозы: 1 ст. ложка в день для детей до 5 лет, 2 ст. ложки – для детей от 5 до 15 лет, старше 15 лет и взрослым – 3 ст. ложки в день. Принимается ежедневно с ноября по апрель [9].

<u>Энтеросорбенты</u> – вещества, приносящие двойную пользу: во-первых, они удаляют из организма радионуклиды и соли тяжелых металлов, во-вторых, они чистят организм от аллергенов. К энтеросорбентам относят пищевые добавки, содержащие пектиновые вещества или пищевые волокна, а также активированные угли. Особенно ценны те препараты, к которым добавлены витамины и минералы [5]:

- яблопект пищевая витаминизированная добавка (по 1-2 таблетки в день для детей, по 1-4 таблетки в день для взрослых в течение 14-28 дней). Курс повторять 2-3 раза в год;
 - эламин из морских водорослей;
- спирулина микроскопическая водоросль с добавками витаминов и минералов дозы 1-2 таблетки в день для детей (1 таблетка на 10 кг веса, но не более 5 таблеток для взрослого);
 - порошки или чаи из календулы, крапивы или черноплодной рябины;
- растительное масло из семян укропа, тыквы или арбуза по 0,5 чайной ложки в день;
 - оливковое растительное масло с салатами по 1 чайной ложки в день.

Использование продукции леса

Накопление радионуклидов в грибах по их видовой принадлежности [8]:

- <u>Аккумулятор</u>: гриб польский, свинушка, масленок, моховик желтобурый, горькушка. В плодовых телах этих грибов даже при загрязнении почв, близких к фоновому значению $(0.1-0.2~{\rm Ku/km}^2)$, содержание цезия -137 может превышать допустимый уровень[10]. Поэтому сбор этих грибов не рекомендуется.
- <u>Сильнонакапливающие</u>: грузди, волнушка розовая, зеленка, сыроежки. Собирать эти грибы допускается при плотности загрязнении до 1 $\rm Ku/km^2$ с обязательным радиометрическим контролем.
- <u>Средненакапливающие:</u> лисичка настоящая, рядовка, белый, подберезовик, подосиновик.
 - Слабонакапливающие: опенок осенний, гриб-зонтик, дождевик жемчужный.

Накопление радионуклидов в грибах по содержанию в отдельных частях плодовых тел у одного вида различно:

– у грибов с хорошо развитой ножкой (белый, подберезовик, подосиновик, польский гриб), как правило, содержание радионуклидов в шляпках в 1,5 - 2,0 раза выше, чем в ножках.

Различий в содержании цезия-137 в молодых и старых грибах не установлено. Рекомендуется брать молодые грибы, так как в старых могут накапливаться еще и ядовитые вещества.

Собранные грибы перед приготовлением необходимо обязательно очистить от прилипших частиц лесной подстилки, мха, почвы; у некоторых грибов необходимо снять со шляпки кожицу. Снижения содержания радионуклидов в грибах можно добиться путем их отваривания в течение 15–60 минут в соленой воде с добавлением уксуса или лимонной кислоты. При сушке грибов содержание радионуклидов в них не снижается, поэтому сушить нужно только «чистые» грибы.

Заготовка лесных ягод

Из лесных ягод наибольшей способностью накапливать радиоцезий обладают голубика, клюква, брусника, черника. Несколько меньше накапливают радиоцезий земляника, малина, ежевика. Менее всего загрязнены ягоды рябины и калины. При одинаковой плотности загрязнения почв накопления цезия-137 в ягодах больше во влажных условиях произрастания, чем в сухих.

ЛИТЕРАТУРА

- 1. Охрана окружающей среды и природопользование города Минска: сб. докл. РЦРКиМОС. Минск : БГУ, 2005.
- 2. Галай, Е. И. Использование природных ресурсов и охрана природы / Е. И. Галай. Минск : Амалфея, 2007.
- 3. Шимова, О. С. Основы экологии и экономика природопользования: учеб. пособие / О. С. Шимова, Н. К. Соколовский. Минск : БГЭУ, 2001.
- 4. Ланасюк, Е. Н. Химические загрязнители воздушной среды и работоспособность человека / Е. Н. Ланасюк. Киев: Здоровье, 1985.
- 5. Поворова, О. В. Практикум по экологии: учеб.-метод. пособие / О. В. Поворова, Г. Н. Тихончук. Могилев : МГУ, 2007.
- 6. Маврищев, В. В. Изучение загрязненности атмосферного воздуха г. Минска методом лихеноиндикации / В. В. Маврищев, Т. А. Дюкова. Минск: БГПУ, 2008.
- 7. Современные проблемы ландшафтоведения и геоэкологии: сб. материалов IV Междунар. науч. конф. Минск : БГУ, 2008.
- 8. Кирвель, И. И. Лесные ресурсы. Оценка, состояние, экологические проблемы лесов и пути их решения : метод. пособие для практич. занятий / И. И. Кирвель, Н. В. Цявловская. Минск : БГУИР, 2007.
- 9. Экология рационального природопользования / М. Г. Ясовеев [и др.]. Минск : Право и экономика, 2005.
- 10. Белый, О. А. Национальный доклад о состоянии окружающей среды Республики Беларусь / О. А. Белый, А. А. Савастенко. Минск : Экология, 2005.
- 11. Кирвель, И. И. Экологические проблемы использования энергоресурсов : метод. пособие для практич. занятий / И. И. Кирвель, В. И. Петровская, Н. В. Цявловская. Минск : БГУИР, 2007.
- 12. Матесович, А. А. Природная среда в Республике Беларусь: состояние и проблемы / А. А. Матесович, А. А. Савастенко. Минск : БЕЛНИЦ ЭКОЛО-ГИЯ, 1992.

СОДЕРЖАНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ	3
2. КАЧЕСТВО АТМОСФЕРНОГО ВОЗДУХА В КРУПНЫХ ПРОМЫШЛЕННЫХ ЦЕНТРАХ	7
3. БИОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ НАЗЕМНЫХ ЭКОСИСТЕМ	10
4. РАСЧЕТНАЯ ОЦЕНКА КОЛИЧЕСТВА ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ ОТ АВТОТРАНСПОРТА	11
5. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	17
ПРИЛОЖЕНИЕ	18
ЛИТЕРАТУРА	22

Учебное издание

Кирвель Иван Иосифович **Бобровничая** Марина Анатольевна **Камлач** Вероника Ивановна **Цявловская** Наталья Владимировна

ЗАПЫЛЕННОСТЬ И ЗАГРЯЗНЕНИЕ АТМОСФЕРЫ В РЕЗУЛЬТАТЕ РАБОТЫ ТРАНСПОРТА

Методическое пособие для практических занятий по дисциплине «Основы экологии и энергосбережения»

Редактор Т. П. Андрейченко Корректор Е. Н. Батурчик

Подписано в печать 08.07.2009. Гарнитура «Таймс».

Уч.-изд. л. 1,5.

Формат 60×84 1/16. Печать ризографическая.

Тираж 250 экз.

Бумага офсетная. Усл. печ. л. 1,51.

Заказ 88.

Издатель и полиграфическое исполнение: Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ №02330/0494371 от 16.03.2009. ЛП №02330/0494175 от 03.04.2009. 220013, Минск, П. Бровки, 6