2019年全国硕士研究生入学统一考试 (数学 II)

	选择职	(1-8 小師	每小题4分,	± 32 分)
-	1儿1生证火	【 1-8 / 1) 定火 .	一世八八秋 4 77,	. 共 32 77.)

- **1.** 当 $x \to 0$ 时, 若 $x \tan x$ 与 x^k 是同阶无穷小, 则 k = ().
 - (A) 1

(B) 2

(C) 3

- (D) 4
- 2. 曲线 $y = x \sin x + 2 \cos x \left(-\frac{\pi}{2} < x < \frac{3\pi}{2} \right)$ 的拐点是 ().
 - (A)(0,2)
- (B) $(\pi, -2)$
- (C) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (D) $\left(\frac{3\pi}{2}, -\frac{3\pi}{2}\right)$
- 3. 下列反常积分发散的是().
 - (A) $\int_{0}^{\infty} x e^{-x} dx$
 - (C) $\int_{1}^{+\infty} \frac{\arctan x}{1+x^2} dx$

- (B) $\int_{a}^{+\infty} x e^{-x^2} dx$
- (D) $\int_{0}^{+\infty} \frac{x}{1+x^2} \, \mathrm{d}x$
- **4.** 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (C_1 + C_2x)e^{-x} + e^x$, 则 a, b, c 依次 为().
 - (A) 1, 0, 1
- (B) 1,0,2
- (C) 2, 1, 3
- (D) 2, 1, 4

5. 已知平面区域 $D = \{(x,y)||x|+|y| \leq \frac{\pi}{2}\}$, 若记

$$I_1 = \iint_D \sqrt{x^2 + y^2} \, dx \, dy, \ I_2 = \iint_D \sin \sqrt{x^2 + y^2} \, dx \, dy, \ I_3 = \iint_D (1 - \cos \sqrt{x^2 + y^2}) \, dx \, dy,$$

$$\iiint_D () .$$

- (A) $I_3 < I_2 < I_1$ (B) $I_2 < I_1 < I_3$ (C) $I_1 < I_2 < I_3$ (D) $I_2 < I_3 < I_1$
- **6.** 设函数 f(x), g(x) 的二阶导函数在 x = a 处连续, 则 $\lim_{x \to a} \frac{f(x) g(x)}{(x a)^2} = 0$ 是两条曲线 y = f(x), y = g(x) 在 x = a 对应的点处相切及曲率相等的().
 - (A) 充分不必要条件

(B) 充分必要条件

(C) 必要不充分条件

(D) 既不充分也不必要条件

7 .	设 A 是四阶矩阵,	A* 为其伴随矩阵,	若线性方程组	Ax = 0 的基	础解系中只有	有两个向
	量,则 $r(A^*)=($).				

(A) 0

(B) 1

(C) 2

(D) 3

8. 设 A 是三阶实对称矩阵, E 是三阶单位矩阵, 若 $A^2+A=2E$, 且 |A|=4, 则二次型 x^TAx 的规范形是(

(A) $y_1^2 + y_2^2 + y_3^2$ (B) $y_1^2 + y_2^2 - y_3^2$ (C) $y_1^2 - y_2^2 - y_3^2$ (D) $-y_1^2 - y_2^2 - y_3^2$

二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)

1.
$$\lim_{x\to 0} (x+2^x)^{\frac{2}{x}} =$$
_____.

2. 曲线
$$\begin{cases} x = t - \sin t \\ v = 1 - \cos t \end{cases}$$
 在 $t = \frac{3\pi}{2}$ 对应点处的切线在 y 的截距为 ______.

3. 设函数
$$f(u)$$
 可导, $z = yf\left(\frac{y^2}{x}\right)$, 则 $2x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.

4. 曲线
$$y = \ln \cos x$$
 ($0 \le x \le \frac{\pi}{6}$) 的弧长为 ______.

5. 已知函数
$$f(x) = x \int_{1}^{x} \frac{\sin t^2}{t} dt$$
, 则 $\int_{0}^{1} f(x) dx =$ ______.

6. 已知矩阵
$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 1 & -1 & 1 \\ 3 & -2 & 2 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$
, A_{ij} 表示元素 a_{ij} 的代数余子式,则 $A_{11} - A_{12} =$ _______

三、解答题(1-5 题每题 10 分, 6-9 题每题 11 分, 共 94 分)

1. 已知函数
$$f(x) = \begin{cases} x^{2x}, & x > 0 \\ xe^x + 1, & x < 0 \end{cases}$$
, 求 $f'(x)$, 并求函数 $f(x)$ 的极值.

2. 求不定积分
$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} \, \mathrm{d}x.$$

- **3.** 设函数 y(x) 是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解.
 - (1) 求 y(x) 的表达式;
 - (2) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x) \}$, 求 D 绕 x 轴旋转一周所形成的旋转体的体积.
- **4.** 设平面区域 $D = \{(x,y) | |x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分 $\iint_D \frac{x+y}{\sqrt{x^2+y^2}} dx dy$.
- 5. 设 n 是正整数, 记 S_n 为曲线求曲线 $y = e^{-x} \sin x (0 \le x \le n\pi)$ 与 x 轴所形成图形的面积, 求 S_n , 并求 $\lim_{n\to\infty} S_n$.
- **6.** 已知函数 u(x,y) 满足关系式 $2\frac{\partial^2 u}{\partial x^2} 2\frac{\partial^2 u}{\partial y^2} + 3\frac{\partial u}{\partial y} = 0$. 求 a,b 的值, 使得在变换 $u(x,y) = v(x,y)e^{ax+by}$ 之下, 上述等式可化为函数 v(x,y) 的不含一阶偏导数的等式.
- **7**. 已知函数 f(x) 在 [0,1] 上具有二阶导数,且 f(0)=0, f(1)=1, $\int_0^1 f(x) dx = 1$,证明:
 - (1) 至少存在一点 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (2) 至少存在一点 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.
- 8. 已知向量组 I: $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}$; 向量组 II: $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 0 \\ 2 \\ 1 a \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 3 \\ a^2 + 3 \end{pmatrix}$. 若向量组 II 等价, 求常数 a 的值, 并将 β_3 用 α_1 , α_2 , α_3
- 9. 已知矩阵 $A = \begin{pmatrix} -2 & 2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

线性表示.

(1) 求 x, y 之值; (2) 求可逆矩阵 P, 使得 $P^{-1}AP = B$.