GUGA-FCIQMC

Orbital Reordering in Lattice Models and Properties via RDMs

Werner Dobrautz

NECI Developer's eMeeting 20221

Stuttgart, September 7, 2021

Max Planck Institute for Solid State Research

Outline

- Motivation: Wave Function Compression by Orbital Reordering
- Orbital Reordering: Application to Lattice Models
- Spin-pure RDM Sampling in GUGA-FCIQMC: CASSCF and Properties
- \blacksquare Scaling to Larger Systems and Extension to Hubbard and ab~initio Systems
- Conclusions and Outlook

Motivation: Wave Function Compression by Orbital Reordering

Compression by reordering – Iron-Sulfur Clusters

- Physically motivated ordering
- Locality
- Induced sparseness in Hamiltonian
- Compact ground state

[†]Li Manni, Dobrautz, Alavi, JCTC **16**, (4), 2202 (2020)

Compression by reordering

- Localized orbitals on each magnetic site
- captures local high-spin state
- (anti-)ferromagnetic interaction between magnetic centers, $\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$
- Compact excited states

Example: N_4 Compactness, Sparseness and quasi-Block-diagonalization

Open-shell CSFs of N₄ (12e,12o) active space in localized orbitals

Example: Chromium dimer CAS(24,48) at dissociation

to Lattice Models

Orbital Reordering: Application

Lattice models – Bipartite graphs

$$\hat{H} = 2J \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$$

Spin-free GUGA form:

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{e}_{ij,ji} - \frac{JN_b}{2}$$

- Physically motivated ordering
- Bipartite: Every A has only B neighbors and v.v.
- E.g. used in sign-problem free formulation of Hubbard model at half-filling
- 'Unfrustrated'

4×4 Heisenberg model: Natural ordering

Intuitive straight-forward ordering used for SDs:

Reference CSF:

Problem across boundary (e.g. 4 - 5) already, since $S \ge 0$

4×4 Heisenberg model: Snake-like ordering

Reference CSF:

Snake-like ordering:

Problem across boundary (e.g. 4 - 5) resolved.

4×4 Heisenberg model: Bipartite ordering

Bipartite ordering:

Reference CSF (as for FeS/N systems!)

Order	reference weight [%]
Natural	30%
Snake	30%
Bipartite	86%

Question, as bipartite is not unique:

like locality?

What is the 'best' ordering?

Can we use additional physically-motivated concepts

3 site Heisenberg chain

3-site Heisenberg chain with $S = \frac{1}{2}$: two possible CSFs: $|uud\rangle$ and $|udu\rangle$.

$$|u_1 u_2 d_3\rangle = \frac{1}{\sqrt{6}} (2 |\uparrow_1 \uparrow_2 \downarrow_3\rangle - |(\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2) \uparrow_3\rangle)$$

$$|u_1 d_2 u_3\rangle = \frac{1}{\sqrt{2}} |(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \uparrow_3\rangle$$

Equivalent set of spin eigenfunctions by applying the permutation operator P_{23} :

$$P_{23} |u_1 u_2 d_3\rangle = |u_1 u_3 d_2\rangle = -\frac{1}{2} |u_1 u_2 d_3\rangle + \frac{\sqrt{3}}{2} |u_1 d_2 u_3\rangle$$

$$P_{23} |u_1 d_2 u_3\rangle = |u_1 d_3 u_2\rangle = \frac{\sqrt{3}}{2} |u_1 u_2 d_3\rangle + \frac{1}{2} |u_1 d_2 u_3\rangle$$

3 site Heisenberg chain with OBC

$$\hat{H} = \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_2 \cdot \hat{\mathbf{S}}_3$$

In GUGA-CSF basis and natural (1-2-3) order:

$$H^{123} = -\begin{pmatrix} \frac{5}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}$$

whilst with the second (1-3-2) order, it is already diagonal:

$$H^{132} = \begin{pmatrix} -\frac{3}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix}$$

A permutation (symmetric group) diagonalizes the (unitary group) Hamiltonian!

4 site Heisenberg chain – Periodic Boundary conditions

$$\hat{H} = \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_2 \cdot \hat{\mathbf{S}}_3 + \hat{\mathbf{S}}_3 \cdot \hat{\mathbf{S}}_4 + \hat{\mathbf{S}}_4 \cdot \hat{\mathbf{S}}_1$$

The S=0 CSF Hilbert space is still only 2 dimensional (g(4,0)=2), with the two states $|uudd\rangle$ and $|udud\rangle$. Employing the natural order 1-2-3-4, we obtain the Hamiltonian

$$H^{1234} = -\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{3}{2} \end{pmatrix}$$

whilst the order 1-3-2-4 yields the diagonal Hamiltonian

$$H^{1324} = - \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix},$$

Note: 4 site Heisenberg with PBC is 'biggest' system with single CSF ground state

What is the 'best' ordering \rightarrow extensive search

Workflow:

- Create all n! permutations for n-site chain/ring (very rapidly growing!)
- Create the CSF Hilbert space for chosen spin (S = 0 for now)
- Loop over all permutations and create the Hamiltonian for chosen perm.
- Reminder: Order **DOES** matter in GUGA (difference to Slater dets.)
- Diagonalize the Hamiltonian, analyze and store interesting quantities (reference weight, etc.)

6 site Heisenberg chain – Compact Ordering and CSF

Reference weight in GS

Weight and reference for the compact ordered 6 site chain with OBC.

6 site Heisenberg chain – Renormalization

Cumulative doublet coupling of "meta-spin-1/2" in the most compact order.

		D. A. COE	CI coefficient [%]		
Order		Ref. CSF	PBC	OBC	
Natural	1-2-3-4-5-6	$ u_1d_2u_3d_4u_5d_6\rangle$	77.9	92.2	
Bipartite	1-3-5-2-4-6	$ u_1u_3u_5d_2d_4d_6\rangle$	95.7	89.9	
Compact	1-3-2-5-4-6	$ u_1u_3d_2u_5d_4d_6\rangle$	97.1	94.7	
SDs Néel state		$ \uparrow_1\downarrow_2\uparrow_3\downarrow_4\uparrow_5\downarrow_6\rangle$	47.9	44.9	

Combinatorial number of permutations: Need cheap indicator

For nearest neighbor Heisenberg model, the reference energy is a 'cheap' indicator for the largest weight!

Reference weight in GS

Reference energy of ref. CSF

Combinatorial number of permutations: Need cheap indicator

Need to minimize over all permutations, S_n , and CSFs, $|\mu\rangle$:

$$\min_{S_n} \min_{\mu} \langle \mu | \hat{H} | \mu \rangle$$

Heisenberg diagonal elements in the GUGA approach:

$$\langle \mu | \hat{H} | \mu \rangle \sim \sum_{j>i} V_{ij} X_{ij}(\mu), \quad V_{ij} = \begin{cases} J & \text{for nearest neighbors} \\ 0 & \text{else} \end{cases}$$

For nearest neighbor only: related to the traveling salesman problem (TSP)

Traveling Salesman Problem

Cost function X_{ij} ('distance') and connectivity V_{ij} (chosen route)

Reference energy ≈ -9

Compact order:

Reference energy ≈ -10.6

Used **Simulated Annealing** and state-of-the-art TSP solvers to verify compact order via renormalization for large number of sites

Physical motivation: Spin-spin correlation function

$$H = 2J \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \sim J \sum_{\langle i,j \rangle} \hat{E}_{ij} \hat{E}_{ji} \qquad \rightarrow \quad \langle S_i^z \cdot S_j^z \rangle \sim \langle \hat{E}_{ij} \hat{E}_{ji} \rangle$$

Approximate with the single reference CSF $|\mu_0\rangle = \sum_i c_i |D_i\rangle$, which is still a linear combination of many SDs!

- Natural: $|\mu_0\rangle = |ududududud\rangle$
- Bipartite: $|\mu_0\rangle = |uuuuuddddd\rangle$
- Compact: $|\mu_0\rangle = |uududududd\rangle$

Spin-pure RDM Sampling in GUGA-FCIQMC: CASSCF and

Properties

Spin-free RDMs with GUGA-FCIQMC: CASSCF and Properties

One- and two-body RDMs:

$$\rho_{ij} = \langle \Psi | \hat{E}_{ij} | \Psi \rangle = \sum_{\mu\nu} c_{\mu}^{(\mathrm{I})} c_{\nu}^{(\mathrm{II})} \langle \nu | \hat{E}_{ij} | \mu \rangle, \quad \Gamma_{ij,kl} = \frac{1}{2} \langle \Psi | \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} | \Psi \rangle$$

Replica trick*: two statistically independent simulations (I and II) for unbiased RDMs necessary! (Twice the computational cost)

- Sample ρ_{ij} and $\Gamma_{ij,kl}$ in the random excitation process $|\mu\rangle \rightarrow |\nu\rangle$
- Already for SDs: store 'parent' state $|\mu\rangle$, coefficient c_μ and source (I,II) along $|\nu\rangle$
- New for GUGA: store coupling coefficient $\langle \nu | \hat{E}_{ij} | \mu \rangle$, information of the excitation type and 'original' probability $p(\mu \to \nu | i, j, k, l)$
- Moderate computational overhead and interfaced with OpenMolcas for spin-pure CASSCF

^{*}Overy, Booth, Blunt, Shepherd, Cleland, Alavi, JCP, 141, 244117 (2014)

${\bf Spin\text{-}pure\ state\text{-}specific\ CASSCF-Fe}_2S_2$

Results: Iron-sulfur clusters $- Fe_2S_2 - Spin$ -spin correlation

Spin-spin correlation between irons: $\langle \sum_{i \in \text{Fe}_A} \hat{\mathbf{S}}_i \cdot \sum_{j \in \text{Fe}_B} \hat{\mathbf{S}}_j \rangle$

Back to the Heisenberg model

Scaling to Larger Systems and Extension to Hubbard and *ab* initio Systems

Scaling to larger systems: Reference energy and weight

Reference weight:

Scaling to Larger Systems: FCIQMC accuracy

Difference to exact energy vs. number of walkers N_w :

Real-space, half-filled Hubbard model, U = 16:

Difference to exact energy vs. number of walkers N_w :

1D Hydrogen Chains in a minimal basis 🐧 🔱 🐧 🕕

3.6Å separated hydrogen chain in a minimal basis and localized orbitals: Difference to exact energy vs. number of walkers N_w :

Summary: Reference weight

Weight of the reference state [%] for the Heisenberg, Hubbard and Hydrogen chains with OBC for the natural and compact ordering.

Order	Heise	nberg	Hubbard			Hydrogen		
# sites	20	30	10	20	30	10	20	30
Natural Compact	60.2 85.4	43.0 79.0	78.9 87.3	54.7 77.1	43.3 68.4	67.2 74.0	41.3 54.9	36.1 46.8

Target Larger Systems: Simulated Annealing + Excitation Generation

Use a mix of Simulated Annealing (SA) and GUGA-FCIQMC excitation generation to search for the 'best' CSF, $|\mu\rangle$ and corresponding permutation (order), P:

Conclusions and Outlook

Conclusions and Outlook

Conclusions:

- Simple reordering of orbitals increases compactness of GUGA Ansatz
- Not only locality, but renormalization underlying concept (different than DMRG!)
- Mimics properties of exact solution (Reference energy and spin-spin correlations)
- Increased compactness of GS. Sparseness and block-diagonalization of Hamiltonian
- Orders of magnitude increased accuracy for initiator FCIQMC
- Combination of SA and excitation generation for larger systems

Outlook:

- $\bullet\,$ Vamshi: Next-nearest neighbor interaction, frustrated systems and higher dimensions
- Giovanni: Application to *ab initio* systems
- Sujun: Real-space Hubbard model

Thank you for your attention!

Scaling to larger systems

Difference to DMRG Reordering

Locality and entanglement are important concepts for DMRG orbital order. Increased compactness by orbital reordering in GUGA is different!

30-site hydrogen chain DMRG energy difference to M = 500 Fiedler reference result for different orbital ordering with and without spin-adaptation versus matrix dimension M.

Spin-free RDMs with GUGA-FCIQMC cont.

• Coupling coefficients $\langle \mu' | \hat{E}_{ij} | \mu \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$:

More complicated as for SDs, but already calculated ${f on-the-fly}$ in $excitation\ generation$

• Additional information on excitation type:

Excitation identification, like the involved spatial indices (i, j, k, l), more costly as for SDs (but already available)

• 'original' probability $p(\mu \to \nu | i, j, k, l)$:

Different exchange type double excitations $\hat{E}_{ij}\hat{E}_{ji}$ can lead to same $|\mu\rangle \to |\nu\rangle$. Needs to be considered for unique total generation probability, but for RDM sampling we need to unbias this

 \Rightarrow We need to communicate **three additional 64bit integers**. Communicating accumulated data every 1000 iterations **only** \approx **10%** increase in time per iteration! Interfaced with OpenMolcas

4×2 Heisenberg Ladder

Natural order reference weight.

Compact order reference weight with OBC.

4×2 Heisenberg Ladder

Natural order reference weight.

Compact order reference weight with PBC.