CPT_S 260 Intro to Computer Architecture Lecture 4

Integer Representation January 21, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Recap: Computer Performance

inst count Cycle time

CPI

CPU time	= Seconds	= Instructions x	Cycles x	Seconds
	Program	Program	Instruction	Cycle

	Inst Count	СРІ	Clock Rate
Program	X		
Compiler	X	(X)	
Inst. Set.	X	X	
Organization		X	X
Technology			X

Recap: Amdahl's Law

- How do we increase performance?
 - Utilize parallelism
 - Principle of locality
 - Focus on the common case
- Amdahl's law provides a method to quantify speedup

$$Speedup_{overall} = \frac{t_{old}}{t_{new}} = \frac{1}{(1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}}}$$

Best achievable speedup is

$$Speedup_{maximum} = \frac{1}{1 - fraction_{enhanced}}$$

$$\longrightarrow$$

Today's Topics

Representation of numbers in different number systems

Conversion of numbers from one system to another

Representation of sign in binary

References

Computer Architecture Chapter 3 Mano 3 edition

- 3-1 Data types
- 3-2 Compliments
- 3-3 Fixed Point Representation

Patterson 5E, Chapter 2

2-4 Signed and Unsigned Numbers

Introduction

- Computers store information in processor or memory registers
- This information is in binary form
- Processor register store control information specifying a sequence of command signals needed to manipulate data in other registers
- Memory registers store binary data that are operated on (arithmetically or logically) to achieve the desired result.

Numbering Systems

- A number system of a specific base (radix) uses numbers from 0 to that base-1
- Numbers can be computed to decimal through the sum of the weighted digits-

$$Number = \sum_{i=0}^{n} base^{i} * digit$$

	Binary	Octal	Decimal	Hexadecimal
Base	2	8	10	16
Symbols	{0,1}	{0,1,2,3,4,5,6,7}	{0,1,2,3,4,5,6,7,8,9}	{0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F}

Examples

Decimal – (724)₁₀

Binary – (1011010100)₂

Octal – (1324)₈

Hexadecimal – (2D4)₁₆

Binary

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Binary represents numbers as a series of base-2 expressions multiplied by 0 or 1.

Example: 47₁₀ represented in binary

$$(47)_{10}$$

$$32 + 8 + 4 + 2 + 1$$

$$1*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 1*2^{1} + 1*2^{0}$$

$$(101111)_{2}$$

(Subscript notation denotes base)

Decimal → **Binary**

Choose one of two equivalent methods

- Subtract largest power of 2 until difference = 0. For each subtraction, place '1' in a binary string at a position corresponding to the power. Fill empty positions with 0's.
- Divide by 2 until quotient = 0. For each division, place the remainder, either '0' or '1', in a binary string growing from right to left. The rightmost end of the string is the low-order bit.

Example: Convert 131₁₀ to binary

Binary → **Decimal**

Compose a series of base-2 terms from a binary number by identifying the position of every '1' and expressing 1's as 2^{position}. Read binary numbers from right to left and index the rightmost position as zero.

Example: Convert 11001001₂ to decimal

Range of Unsigned Binary Integers

Given an n-bit number

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: 0 to +2ⁿ 1
- Example
 - $-0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 10112$ = 0 + ... + 1×23 + 0×22 +1×21 +1×20 = 0 + ... + 8 + 0 + 2 + 1 = 1110
- Using 32 bits
 - 0 to +4,294,967,295

Hexadecimal

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	Е
15	F

Hexadecimal represents numbers as a series of base-16 expressions multiplied by integers from zero to 15.

Example: 47₁₀ represented in hex

Binary ↔ **Hexadecimal**

Partition binary digits right-to-left in groups of four. Convert each group to one hexadecimal symbol.

Example: Convert 1000101010₂ to hexadecimal

Hexadecimal number	Binary-coded hexadecimal	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
Α	1010	
В	1011	
С	1100	
D	1101	
E	1110	
F	1111	

Hexadecimal → Binary

Convert each hexadecimal symbol to a four-digit binary number and combine.

Example: Convert F01₁₆ to binary

Hexadecimal number	Binary-coded hexadecimal	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
Α	1010	
В	1011	
С	1100	
D	1101	
E	1110	
F	1111	

Binary ↔ **Octal**

Octal	Binary-coded octal	Decimal equivalent	
0	000	0	
1	001	1	
2	010	2	Code
3	011	3	for one
4	100	4	octal
5	101	5	digit
6	110	6	1
7	111	7 .	1

Sign in Binary

Represent the domain of negative and positive integers in one of two distinct ways

Signed Magnitude

 In signed-magnitude format, one bit designates sign and the remaining bits magnitude. The sign bit is the high-order bit at the leftmost position and takes '1' for negative or '0' for positive. The magnitude is an absolute value.

2's complement

In signed-2's-complement format, positive integers take the same form as in signed-magnitude but negative integers do not. The 2's-complement is one plus the 1'scomplement, which, for a given number and range, is the difference between the range's maximum value and the number.

Example of the Two Methods

	Unsigned	Signed-magnitude	Signed-2's-complement
(-15) ₁₀	N/A	N/A	N/A
(-7) ₁₀	N/A	1111	1001
(0) ₁₀	0000	0000	0000
(7) ₁₀	0111	0111	0111
(15) ₁₀	1111	N/A	N/A
Range(nbits)	[0, 2 ⁿ - 1]	[-(2 ⁿ⁻¹ - 1), 2 ⁿ⁻¹ - 1]	[-2 ⁿ⁻¹ , 2 ⁿ⁻¹ - 1]

2's-Complement Signed Integers

Given an n-bit number:

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: -2ⁿ⁻¹ to +2ⁿ⁻¹ − 1
- Example
- Using 32 bits, 2's complement range is:
 - -2,147,483,648 to +2,147,483,647

Signed Negation in 2's Complement

- Complement and add 1
 - Complement means $1 \rightarrow 0, 0 \rightarrow 1$

- Example: negate +2
 - **+2** = 0000 0000 ... 0010₂
 - -2 = 1111 1111 ... 1101₂ + 1 = 1111 1111 ... 1110₂

Signed-2's-complement

Example: (260)₁₀ represented in 16-bit signed-2's-complement format

(0000 0001 0000 0100)2

Example: (-260)₁₀ represented in 16-bit signed-2's-complement format

(0000 0001 0000 0100)₂

