MA 106 D1-T3 Recap-2

Siddhant Midha

06-04-2022

We shall consider functions of the form

$$f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$$

We shall consider functions of the form

$$f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$$

Some notions

Multilinearity

$$f(c_1 \ldots ac_i + bc_i' \ldots c_n) = af(c_1 \ldots c_i \ldots c_n) + bf(c_1 \ldots c_i' \ldots c_n)$$

We shall consider functions of the form

$$f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$$

Some notions

Multilinearity

$$f(c_1 \dots ac_i + bc'_i \dots c_n) = af(c_1 \dots c_i \dots c_n) + bf(c_1 \dots c'_i \dots c_n)$$

Normalization

$$f(e_1, e_2 \dots e_n) = 1$$

We shall consider functions of the form

$$f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$$

Some notions

Multilinearity

$$f(c_1 \ldots ac_i + bc'_i \ldots c_n) = af(c_1 \ldots c_i \ldots c_n) + bf(c_1 \ldots c'_i \ldots c_n)$$

Normalization

$$f(e_1, e_2 \dots e_n) = 1$$

(Skew) Symmetry

$$f(c_1, \ldots c_i \ldots c_j \ldots c_n) = (-)f(c_1, \ldots c_i \ldots c_i \ldots c_n)$$

Definition

A normalized, skew symmetric and multilinear function on the set of $n \times n$ matrices is called a determinant function.

Definition

A normalized, skew symmetric and multilinear function on the set of $n \times n$ matrices is called a determinant function.

Theorem

The determinant function exists and is unique.

Definition

A normalized, skew symmetric and multilinear function on the set of $n \times n$ matrices is called a determinant function.

Theorem

The determinant function exists and is unique.

Lemma

Let $f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$ be a multilinear function.

Lemma

Lemma

Let $f: \mathbb{R}^n \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}$ be a multilinear function. The following are equivalent.

f is skew symmetric.

Lemma

- *f* is skew symmetric.
- $f(c_1, c_2 \dots c_i \dots c_j \dots c_n) = 0$ whenever $c_i = c_j$.

Lemma

- *f* is skew symmetric.
- $f(c_1, c_2 \dots c_i \dots c_j \dots c_n) = 0$ whenever $c_i = c_j$.
- $f(c_1, c_2 \dots c_i, c_{i+1} \dots c_n) = 0$ whenever $c_i = c_{i+1}$.

Lemma

- *f* is skew symmetric.
- $f(c_1, c_2 \dots c_i \dots c_j \dots c_n) = 0$ whenever $c_i = c_j$.
- $f(c_1, c_2 \dots c_i, c_{i+1} \dots c_n) = 0$ whenever $c_i = c_{i+1}$.

Consider a matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

Consider a matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

■ For each a_{ij} , deleting the corresponding row and column results in a $(n-1) \times (n-1)$ matrix, whose determinant we call the minor M_{ij} .

Consider a matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

- For each a_{ij} , deleting the corresponding row and column results in a $(n-1) \times (n-1)$ matrix, whose determinant we call the minor M_{ij} .
- The cofactors are defined as, $A_{ij} := (-1)^{i+j} M_{ij}$.

Consider a matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

- For each a_{ij} , deleting the corresponding row and column results in a $(n-1) \times (n-1)$ matrix, whose determinant we call the minor M_{ij} .
- The cofactors are defined as, $A_{ij} := (-1)^{i+j} M_{ij}$.

Theorem

For any $n \times n$ matrix A,

Consider a matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

- For each a_{ij} , deleting the corresponding row and column results in a $(n-1) \times (n-1)$ matrix, whose determinant we call the minor M_{ij} .
- The cofactors are defined as, $A_{ij} := (-1)^{i+j} M_{ij}$.

Theorem

For any $n \times n$ matrix A,

$$det(A) = \sum_{j=1}^{n} a_{ij} A_{ij}$$

for all i = 1, 2, ..., n.

Theorem

Given k vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$, define

Theorem

Given k vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$, define

$$G:=[g_{ij}]$$

where $g_{ij} := v_i^T v_j$.

Theorem

Given k vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$, define

$$G:=[g_{ij}]$$

where $g_{ij} := v_i^T v_j$. The vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$ are linearly independent iff

Theorem

Given k vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$, define

$$G:=[g_{ij}]$$

where $g_{ij} := v_i^T v_j$. The vectors $v_1, v_2 \dots v_k \in \mathbb{R}^n$ are linearly independent iff

$$det(G) \neq 0$$

Given a $n \times n$ matrix A

Given a $n \times n$ matrix A, when we

 \blacksquare Replace a_{ij} by A_{ij} .

Given a $n \times n$ matrix A, when we

- \blacksquare Replace a_{ij} by A_{ij} .
- **2** Take the transpose.

Given a $n \times n$ matrix A, when we

- \blacksquare Replace a_{ij} by A_{ij} .
- **2** Take the transpose.

we get what's called the adjugate of A.

Given a $n \times n$ matrix A, when we

- \blacksquare Replace a_{ij} by A_{ij} .
- **2** Take the transpose.

we get what's called the adjugate of A.Thus,

$$Adj(A) := [A_{ij}]^T$$

Given a $n \times n$ matrix A, when we

- \blacksquare Replace a_{ij} by A_{ij} .
- **2** Take the transpose.

we get what's called the adjugate of A.Thus,

$$Adj(A) := [A_{ij}]^T$$

We saw in class, if A is non-singular then

$$A^{-1} = \frac{Adj(A)}{det(A)}$$