LEADS SCORING CASE STUDY

SUBMITTED BY:

- 1. Anadi Mitra
- 2. Anju Gautam
- 3. Anmol Bhandari

PROBLEM STATEMENT:

- X Education sells online courses to industry professionals.
- X Education gets a lot of leads on a daily basis, its lead conversion rate is very poor at 30% as every single person is being contacted and very few people are actually buying the courses.
- To make the process more efficient the company wishes to identify most potential leads known as 'Hot Leads' and pursue them.
- This will can inturn take the conversion rate to almost 80%.

PROBLEM APPROACH:

- Importing the data and inspecting the data frame
- Data Understanding and Inspection
- Data Cleaning
- Data Analysis (EDA)
- Data Preparation
- Test-Train Split
- Feature Scaling
- ➤ Model Building
- Model Evaluation
- Making Predictions on test set

Data Analysis (EDA)

Checking & Dropping Category Columns that are Skewed

Checking the imbalance in the target variable

Leads Converted

Univariate Analysis for Categorical Variables

Bivariate Analysis

Bivariate Analysis for Numerical Variables

Correlation Matrix

Finding Optimal Cutoff Point/ Probability

Precision and recall tradeoff

Conclusion

Train Data Set:

• Accuracy: 80.46%

Sensitivity: 80.05%

• Specificity: 80.71%

Test Data Set:

• Accuracy: 80.34%

Sensitivity: 79.82% ≈ 80%

• Specificity: 80.68%

Model Parameters:

- The Optimal cutoff probability point is 0.345. Converted probability greater than 0.345 will
 be predicted as Converted lead (Hot lead) &
 probability smaller than 0.345 will be
 predicted as not Converted lead (Cold lead).
- Top 3 features that contribute positively are
- Lead Source_Welingak Website
- 2. Lead Source_Reference
- 3. Current_occupation_Working Professional