Concours National Commun - Session 2013

Corrigé de l'épreuve de mathématiques II Filière MP

Matrice de Gram, équation matricielle et étude d'une équation différentielle linéaire d'ordre p

Corrigé par M.TARQI¹

Premier exercice

Matrice de Gram et application

1. Pour tout $(i,j) \in [1,n]^2$ on peut utiliser l'expression du produit scalaire dans la base canonique de \mathbb{R}^n et écrire

$$(u_i|u_j) = \sum_{k=1}^n m_{ki} m_{kj}.$$

On trouve donc le coefficient d'indice (i, j) de la matrice ${}^t\!MM$, donc $G(u_1, ..., u_n) = {}^t\!MM$.

2. Il est clair que $G(u_1,...,u_n)$ est symétrique puisque, pour tout $(i,j) \in [1,n]^2$, $(u_i|u_j) = (u_j|u_i)$. Soit

maintenant
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 un vecteur colonne de taille n . On a

$${}^{t}X{}^{t}MMX = {}^{t}(MX)MX = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} m_{ij}x_{j}\right)^{2} \ge 0,$$

donc $G(u_1,...,u_n)$ est positive. Enfin si la famille $(u_1,...,u_n)$ est libre la matrice $G(u_1,...,u_n)$ est inver-

sible, en effet, s'il existe $\lambda_1,...,\lambda_n$ des scalaires tels que $\sum_{i=1}^n \lambda_i C_i = 0$ (les C_i désignent les colonnes de $G(u_1,...,u_n)$), alors on aura $\sum_{j=1}^n \lambda_j(u_i|u_j) = (u_i|\sum_{j=1}^n \lambda_j u_j) = 0$ et ceci pour tout $i \in [\![1,n]\!]$, donc

$$\sum_{j=1}^{n} \lambda_j u_j = 0 \text{ et donc } \lambda_1 = \lambda_2 = \dots = \lambda_n = 0.$$

Conclusion : La matrice symétrique positive $G(u_1,...,u_n)$ est définie si et seulement si, la famille $(u_1,...,u_n)$ est libre.

3. (a) On choisit $u_i = \sum_{k=1}^i e_k$, on voit bien que $(u_i|u_j) = \min(i,j)$, donc la matrice A_n est une matrice de Gram, comme la famille $(u_1,...,u_n)$ est libre, la matrice A_n est définie positive. D'autre part, la matrice $R_n = (r_{ij})_{1 \le i,j \le n}$ avec $r_{ij} = 1$ si $i \le j$ et 0 sinon vérifie ${}^tR_nR_n = A_n$.

^{1.} Veuillez adresser toute remarque, correction ou suggestion à l'auteur : medtarqi@yahoo.fr

(b) Le système ${}^{t}R_{4}Z = Y$ s'écrit :

$$\begin{cases} z_1 &= 1\\ z_1 + z_2 &= 2\\ z_1 + z_2 + z_3 &= 3\\ z_1 + z_2 + z_3 + z_4 &= 4 \end{cases}$$

Donc $Z = {}^t(1,1,1,1)$. Le système $R_4X = Y$ s'écrit aussi sous la forme :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1 \\ x_2 + x_3 + x_4 &= 1 \\ x_3 + x_4 &= 1 \end{cases},$$

dont la solution est $X = {}^t(0,0,0,1)$.

Si X une solution de $A_4X=Y$ ou encore de ${}^tR_4R_4X=Y$, alors R_4X est solution l'équation ${}^tR_4Z=Y$, donc l'étude précédente assure que $X={}^t(0,0,0,1)$ est l'unique solution du système inversible $A_4X=Y$.

Deuxième exercice

Résolution de l'équation $X^2 + 3X = A$ dans $\mathcal{M}_3(\mathbb{R})$

- 1. La matrice A admet trois valeurs propres réelles et simples à savoir $\lambda_1=10$, $\lambda_2=4$ et $\lambda_3=0$. Donc A est diagonalisable dans $\mathbb R$ et les sous espaces propres de A sont des droites vectorielles.
- 2. Il est clair que le sous-espace propre associé à la valeur $\lambda_1 = 10$ est engendré par le vecteur $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, on

prend par exemple e_1 ce vecteur. De même on prend $e_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$. Pour $\lambda_3=0$, la résolution du système

AX = 0 conduit au sous-espace propre engendré par le vecteur $e_3 = \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}$.

- 3. Puisque la matrice est diagonalisable, la famille (e_1,e_2,e_3) est une base de \mathbb{R}^3 . La matrice Δ de u dans cette base est $\begin{pmatrix} 10 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 4. D'après le choix de la base, on peut prendre $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{pmatrix}$ puis $P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & \frac{-1}{4} \end{pmatrix}$.
- 5. (a) L'égalité $v^2 + 3v = u$ n'est autre que la traduction vectorielle de l'égalité matricielle $B^2 + 3B = A$.
 - (b) u est un polynôme en v, donc u et v commutent. v commute avec u et donc laisse stable les trois droites propres de u. Ainsi une base de \mathbb{R}^3 formée de vecteurs propres de u est également une base de vecteurs propres de v ou encore, alors pour la même matrice P, $V = P^{-1}BP$ est une matrice diagonale.

(c) On a:

$$B^2 + 3B = A \Leftrightarrow PV^2P^{-1} + 3PVP^{-1} = P\Delta P^{-1} \Leftrightarrow V^2 + 3V = \Delta,$$

ce qui conduit au système :

$$\begin{cases} \alpha_1^2 + 3\alpha_1 = 10, \\ \alpha_2^2 + 3\alpha_2 = 4, \\ \alpha_3^2 + 3\alpha_3 = 0. \end{cases}$$

On trouve $\alpha_1 \in \{2, -5\}$, $\alpha_2 \in \{1, -4\}$ et $\alpha_3 \in \{0, -3\}$. D'où les $2^3 = 8$ solutions pour V:

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

$$\left(\begin{array}{cccc}
-5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\left(\begin{array}{cccc}
-5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right)
\left(\begin{array}{cccc}
-5 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 0
\end{array}\right)
\left(\begin{array}{cccc}
-5 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -3
\end{array}\right)$$

Chaque valeur de V donne une valeur pour $B: B = PVP^{-1}$.

6. Chaque valeur de V donne une solution B de l'équation $X^2 + 3X = A$, donc le nombre de solution de l'équation matricielle est B.

Problème

Étude d'une équation différentielle linéaire d'ordre p

Partie I : Résultats préliminaires

1.1

- 1.1.1 Si P est un polynôme de degré inférieure ou égal à n, sa dérive P' est un polynôme de degré inférieure ou égal à n-1, donc est un élément de $\mathbb{C}_n[X]$, par conséquent $\mathbb{C}_n[X]$ est stable par l'opérateur D.
- 1.1.2 Pour tout $k \in [0, n]$, on a $D_n^{n+1}(X^k) = 0$, donc D_n est un endomorphisme nilpotent de $\mathbb{C}_n[X]$ (car $(1, X, X^2, ..., X^n)$ est une base de $\mathbb{C}_n[X]$).
- 1.1.3 Comme D est nilpotent 0 est la seule valeur propre de D_n , en conséquence pour tout complexe α non nul, $D_n + \alpha I_n$ est inversible. L'inverse de $D_n + \alpha I_n$ est donnée par la formule :

$$(D_n + \alpha I_n)^{-1} = \frac{1}{\alpha} \left(\frac{D_n}{\alpha} + I_n \right)^{-1} = \frac{1}{\alpha} \sum_{k=0}^n (-1)^k \left(\frac{D_n}{\alpha} \right)^k.$$

1.2 Soit α un nombre complexe non nul, comme $D_n + \alpha I_n$ est inversible, alors pour tout polynôme R de $\mathbb{C}_n[X]$ de degré n, il existe un unique polynôme $R_1 \in \mathbb{C}_n[X]$ tel que $(D_n + \alpha I_n)(R_1) = R$ ou encore

 $R_1' + \alpha R_1 = R$. Cette égalité montre aussi que $\deg R_1 = \deg(\alpha R_1 + R_1') = \deg(R) = n$. D'après la question 1.(c), on a :

$$R_1 = (D_n + \alpha I_n)^{-1}(R) = \frac{1}{\alpha} \sum_{k=0}^n (-1)^k \left(\frac{D_n}{\alpha}\right)^k (R)$$
$$= \frac{1}{\alpha} \sum_{k=0}^n \left(\frac{-1}{\alpha}\right)^k R^{(k)}.$$

1.3

1.3.1 D'après le cours, on sait que l'ensemble de solutions de l'équation différentielle linéaire avec second membre $y'-\lambda y=g$ est un espace affine de dimension 1, donc pour conclure il suffit de montre que la fonction $Y:x\mapsto G(x)e^{\lambda x}$ vérifie cette équation différentielle. En effet, pour tout $x\in\mathbb{R}$, on a :

$$Y' - \lambda Y = G'(x)e^{\lambda x} + \lambda G(x)e^{\lambda x} - \lambda G(x)e^{\lambda x} = g(x).$$

En conclusion, les solutions de $y' - \lambda y = g$ sont de la forme

$$x \mapsto \left(\int_0^x g(t)e^{-\lambda t} dt\right)e^{\lambda x} + ke^{\lambda x}$$

où k est une constante complexe.

1.3.2 D'après ce qui précède, la solution générale de $y' - \lambda y = R(x)e^{\lambda x}$ est de la forme :

$$x \mapsto \left(\int_0^x R(t) dt \right) e^{\lambda x} + k e^{\lambda x} = S(x) e^{\lambda x},$$

où
$$S(x) = \int_0^x R(t) dt + k$$
.

Il est clair que S'(x) = R(x) pour tout $x \in \mathbb{R}$.

1.3.1 D'après ce qui précède, la solution générale de $y'-\lambda y=R(x)e^{\mu x}$ est de la forme :

$$x \mapsto \left(\int_0^x R(t)e^{(\mu-\lambda)t} dt\right)e^{\lambda x} + ke^{\lambda x}.$$

D'après un résultat classique sur les primitives, on sait qu'il existe un polynôme R_1 et $k_1 \in \mathbb{C}$ tels que $\int_0^x R(t)e^{(\mu-\lambda)t}\,\mathrm{d}t = R_1(x)e^{(\mu-\lambda)x} + k_1$. D'où la solution générale de $y' - \lambda y = R(x)e^{\mu x}$:

$$x \mapsto R_1(x)e^{\mu x} + ce^{\lambda x}, \quad c \in \mathbb{C}.$$

En remplaçant dans l'équation différentielle $y'-\lambda y=R(t)e^{\mu t}$, on obtient pour tout $t\in\mathbb{R}$,

$$R_1'(t)e^{\mu t} + \mu R_1(t)e^{\mu t} - \lambda R_1(t)e^{\mu t} = R(t)e^{\mu t},$$

d'où
$$R'_1 + (\mu - \lambda)R_1 = R$$
.

Partie II : Expression des solutions de l'équation différentielle (\mathscr{E}_p)

2.1 Cas où $P = (X - \lambda)^n$ avec $\lambda \in \mathbb{C}$ et $n \in \mathbb{N}^*$

Une application $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{C})$ est solution de l'équation différentielle (\mathscr{E}_p) si et seulement si, $\forall x \in \mathbb{R}, \ a_n f^{(n)}(x) + ... + a_1 f'(x) + a_0 f(x) = 0$ ou encore si et seulement si, $(\mathscr{D} - \lambda I)^n(f) = 0$. D'où

$$\forall x \in \mathbb{R}, \ (\mathscr{D} - \lambda I)^n(f)(x) = \sum_{k=0}^n \mathcal{C}_n^k(-1)^{n-k} \lambda^{n-k} f^{(k)}(x) = 0$$

et donc

$$e^{-\lambda x} \sum_{k=0}^{n} \mathbb{C}_{n}^{k} (-1)^{n-k} \lambda^{n-k} f^{(k)}(x) = \sum_{k=0}^{n} \mathbb{C}_{n}^{k} (e^{-\lambda x})^{n-k} f^{(k)}(x) = \frac{d^{n} (e^{-\lambda x} f(x))}{dx^{n}} = 0.$$

Ainsi $e^{-\lambda x}f(x)$ est un polynôme R de degré inférieure ou égal à n-1, donc $f(x)=R(x)e^{\lambda x}$. Réciproquement; si $x\mapsto e^{-\lambda x}f(x)$ est une fonction polynomiale de degré inférieure ou égal à n-1, alors $\forall x\in\mathbb{R}, \ \frac{d^n(e^{-\lambda x}f(x))}{dx^n}=0$ et on conclut avec la formule de Binôme.

2.2

- 2.2.1 L'endomorphisme $Q(\mathcal{D})$ est un polynôme en \mathcal{D} ; donc il commute avec $(\mathcal{D} \lambda I)$.
- 2.2.1 Une fonction $f \in \mathscr{C}(\mathbb{R}, \mathbb{C})$ est solution de (\mathscr{E}_P) si et seulement si, $(\mathscr{D} \lambda I) \circ Q(\mathscr{D})(f) = 0$ ou encore si et seulement si, $Q(\mathscr{D}) \circ (D \lambda I)(f) = Q(\mathscr{D})(f' \lambda f) = 0$, ceci est équivalent à dire que $f' \lambda f$ est solution de l'équation différentielle (\mathscr{E}_Q) .
- 2.3 Le résultat est vrai si n=1 ; en effet, la solution générale de $y'-\lambda y=0$ est de la forme $x\mapsto R(x)e^{\lambda x}$ avec R(x)=1.

Posons $Q=(X-\lambda)^{n-1}$ de tel sorte que $P=(X-\lambda)Q$ et supposons que la solution générale de l'equation différentielle $(D-\lambda I)^{n-1}(f)=0$ s'écrit sous la forme $x\mapsto R(x)e^{\lambda x}$ où $R\in\mathbb{C}_{n-2}[X]$.

Si f est solution de l'équation (\mathscr{E}_P) , alors $f' - \lambda f$ est solution de (\mathscr{E}_Q) , donc il existe $R \in \mathbb{C}_{n-2}[X]$ tel que $\forall x \in \mathbb{R}, \ f'(x) - \lambda f(x) = R(x)e^{\lambda x}$, et d'après la question 1.3.2, f est de la forme $x \mapsto S(x)e^{\lambda x}$ avec deg $S = \deg R + 1$ (car S' = R). La propriété est donc démontrée pour l'ordre n, on conclut par la suite avec le principe de récurrence.

- 2.4 **Un exemple** : $P_1 = X^4 + 2X^3 2X 1 = (X 1)(X + 1)^3$. La solution de l'équation différentielle $(\mathscr{D} + I)^3(y) = 0$ est de la forme $x \mapsto R(x)e^{-x}$ où $R \in \mathbb{C}_2[X]$. Maintenant si f est solution de (\mathscr{E}_{P_1}) , alors f' f est solution l'équation différentielle (\mathscr{E}_Q) , donc il existe $R \in \mathbb{C}_2[X]$ tel que $f' f = R(x)e^{-x}$, donc f est de la forme $x \mapsto R_1(x)e^{-x} + ce^x$ (d'après 1.3.3) avec la relation $R_1' 2R_1 = R$.
- 2.5 **Cas général :** D'après la question 1.3, le résultat est vrai pour tout polynôme de degré 1, supposons qu'il est démontré pour tout polynôme de degré inférieure ou égal à $n \in \mathbb{N}$ et soit P un polynôme de degré n+1. En divisant par son coefficient dominant, on peut supposer P unitaire. On pose $P=(X-\lambda)Q$ avec $Q=\prod_{k=1}^r (X-\lambda_k)^{m_k}$ (comme dans la question 2.5). Soit maintenant f une solution de (\mathscr{E}_P) , alors $f'-\lambda f$ solution de (\mathscr{E}_Q) , donc

$$\forall x \in \mathbb{R}, \ f'(x) - \lambda f(x) = \sum_{k=1}^{r} R_k(x) e^{\lambda_k x},$$

où $R_k \in \mathbb{C}_{m_k-1}[X]$ pour tout $k \in [1, r]$. Deux cas sont possibles :

• 1er cas : $\forall k \in [\![1,r]\!]$, $\lambda \neq \lambda_k$ (λ racine simple de P) : Une solution particulière de $y' - \lambda y = R_k(x)e^{\lambda_k x}$ est de la forme $f_k: x \mapsto S_k(x)e^{\lambda_k x}$ où S_k est un polynôme de même degré que R_k . D'après le principe de superposition, la solution générale de $y'(x) - \lambda y(x) = \sum_{k=1}^r R_k(x)e^{\lambda_k x}$ est de la forme

$$x \mapsto \sum_{k=1}^{r} f_k(x) + ce^{\lambda x} = \sum_{k=1}^{r} S_k(x)e^{\lambda_k x} + ce^{\lambda x}, \quad c \in \mathbb{C}.$$

• 2eme cas : $\exists k_0 \in \llbracket 1, r \rrbracket$, $\lambda = \lambda_{k_0}$ (λ racine d'ordre $m_{k_0} + 1$) : La solution de $y - \lambda y = R_{k_0}(x)e^{\lambda x}$ est de la forme $x \mapsto S_{k_0}(x)e^{\lambda x}$ où S_{k_0} est un polynôme tel que $S'_{k_0} = R_{k_0}$ ($\deg S_{k_0} \leq m_{k_0}$). Donc la solution de $y'(x) - \lambda y(x) = \sum_{k \neq k_0} R_k(x)e^{\lambda_k x} + R_{k_0}e^{\lambda x}$ est de la forme ,

$$x \mapsto \sum_{k \neq k_0} f_k(x) + S_{k_0}(x)e^{\lambda x} = \sum_{k \neq k_0} S_k(x)e^{\lambda_k x} + S_{k_0}(x)e^{\lambda x}.$$

On voit donc que la propriété est bien vérifiée pour le polynôme *P*.

- 2.6 D'après le cours, l'ensemble de solutions de l'équation différentielle (\mathscr{E}_P) est un espace vectoriel de dimension $n=\deg P$. D'autre part, toute solution de (\mathscr{E}_P) est combinaison linéaire des éléments de la famille $\mathscr{F}=\bigcup\limits_{k=1}^r\{x\mapsto e^{\lambda_k x},x\mapsto xe^{\lambda_k x},...,x\mapsto x^{m_k-1}e^{\lambda_k x}\}$ (d'après 2.5), de plus on peut vérifier que cette famille est libre et comme $\operatorname{card}\mathscr{F}=\sum\limits_{k=1}^r m_k=\deg P$, alors \mathscr{F} est une base de (\mathscr{E}_P) ce qui permet de conclure.
- 2.7 **Un autre exemple :** La division euclidienne du polynôme P_2 par $(X-1)^3$ conduit à la factorisation : $P_2 = (X-1)^3(X-i)^2(X+i)^2$. Donc les solutions de (\mathscr{E}_{P_2}) sont de la forme

$$x \mapsto (ax^2 + bx + c)e^x + (dx + e)e^{ix} + (fx + g)e^{ix}$$

où a,b,c,d,e,f,g sont des nombres complexes.

Partie III: Application

- 3.1
 - 3.1.1 Il est clair que $g_n=nf_{\frac{1}{n}}-nf_0$, donc $g_n\in E_f$ et comme $(\varphi_1,...,\varphi_n)$ est base, alors on peut trouver des complexes $\alpha_{1,n},...,\alpha_{p,n}$ tels que $g_n=\sum_{k=1}^p\alpha_{k,n}\varphi_k$.
 - 3.1.2 On a, pour tout $x \in \mathbb{R}$, $\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{f(x + \frac{1}{n}) f(x)}{\frac{1}{n}} = f'(x)$, donc la suite de fonctions $(g_n)_{n \ge 1}$ converge simplement sur \mathbb{R} vers f'.

3.2.1 Supposons que la fonction $x \mapsto \delta_2(a_1, x)$ est identiquement nulle sur \mathbb{R} , alors on aura, pour tout $x \in \mathbb{R}$,

$$\delta_2(a_1, x) = \begin{vmatrix} \varphi_1(a_1) & \varphi_2(a_1) \\ \varphi_1(x) & \varphi_2(x) \end{vmatrix} = 0,$$

et donc $\varphi_2(x) = \frac{\varphi_2(a)}{\varphi_1(a)}\varphi_1(x)$ (car $\varphi_1(a) \neq 0$), donc φ_1 et φ_2 sont colinéaires, ce qui est absurde. En conséquence il existe un réel a_2 tel que $\delta_2(a_1,a_2) \neq 0$ et dans ce cas la matrice $\Delta_2(a_1,a_2)$ est inversible.

3.2.2 De même , supposons que la fonction $x \mapsto \delta_{k+1}(a_1,...,a_k,x)$ est identiquement nulle sur \mathbb{R} , alors on aura, pour tout $x \in \mathbb{R}$,

$$\delta_{k+1}(a_1, ..., a_k, x) = \begin{vmatrix} \varphi_1(a_1) & \dots & \varphi_k(a_1) & \varphi_{k+1}(a_1) \\ \varphi_1(a_2) & \dots & \varphi_k(a_2) & \varphi_{k+1}(a_2) \\ \vdots & & \vdots & \vdots \\ \varphi_1(a_k) & \dots & \varphi_k(a_k) & \varphi_{k+1}(a_k) \\ \varphi_1(x) & \dots & \varphi_k(x) & \varphi_{k+1}(x) \end{vmatrix} = 0.$$

Le développement de ce déterminant par rapport à la dernière ligne conduit à une relation de type

$$\beta_1 \varphi_1(x) + ... + \beta_k \varphi_k(x) + \delta_k(a_1, ..., a_k) \varphi_{k+1}(x) = 0$$
 (les β_i sont des constantes)

et ceci pour tout $x \in \mathbb{R}$, donc $\varphi_{k+1} \in \mathrm{Vect}(\varphi_1,...,\varphi_k)$ (car $\delta_k(a_1,...,a_k) \neq 0$), ce qui est absurde. Ainsi il existe un réel a_{k+1} tel que $\delta_{k+1}(a_1,...,a_k,a_{k+1}) \neq 0$.

3.3

- 3.3.1 D'après la relation (1) on a, pour tout $i \in [1, p]$, $g_n(a_i) = \sum_{k=1}^p \varphi_k(a_i)\alpha_{k,n}$, cette relation se traduit matriciellement par l'égalité $Z_n = MY_n$.
- 3.3.2 On sait que la suite de vecteurs colonnes $(Z_n)_{n\geq 1}$ converge vers le vecteur Y de $\mathcal{M}_{p,1}(\mathbb{C})$ de composantes $(f'(a_1),...,f'(a_p))$, et comme $Y_n=M^{-1}Z_n$, la suite $(Y_n)_{n\geq 1}$ converge vers $M^{-1}Y$, car l'application $X\mapsto M^{-1}X$ est continue sur $\mathcal{M}_{p,1}(\mathbb{C})$.
- 3.3.3 Puisque la suite $(Y_n)_{n\geq 1}$ converge, alors la suites $(a_{k,n})_{n\geq 1}$ converge dans $\mathbb C$ pour tout $k\in [\![1,p]\!]$. $\forall k\in [\![1,p]\!]$, on note $\alpha_k=\lim_{n\to\infty}\alpha_{k,n}$, donc la relation (1) montre que $\forall x\in\mathbb R$,

$$f'(x) = \lim_{n \to \infty} g_n(x) = \sum_{k=1}^p \alpha_k \varphi_k(x),$$

donc $f' \in E_f$.

3.4 Si $h \in E_f$, alors h est une combinaison linéaire des fonctions dérivables sur \mathbb{R} (les f_τ sont derivebles dans \mathbb{R}), donc h est dérivable sur \mathbb{R} et comme précédemment on montre que $h' \in E_f$. Le même raisonnement se fait maintenant pour h' au lieu de h, donc $h'' = (h')' \in E_f$, une récurrence sur l'ordre de dérivée permet de conclure, ainsi tous les éléments de E_f sont de classe \mathscr{C}^∞ sur \mathbb{R} , par conséquent E_f est un sous-espace vectoriel de $\mathscr{C}^\infty(\mathbb{R},\mathbb{C})$ qui est évidement stable par l'opérateur \mathscr{D} .

3.5 D'après le théorème de Cayley-Hamilton \mathcal{D} est racine de son polynôme caractéristique P, c'est à dire $P(\mathcal{D}) = 0$, en particulier $P(\mathcal{D})(f) = 0$, donc f est solution de l'équation différentielle (\mathscr{E}_P) . D'après le résultat de la question 2.6, si $P = (-1)^n \prod_{k=1}^r (X - \lambda_k)^{m_k}$ où $n = \deg P$, f est de forme $x \mapsto \sum_{k=1}^r R_k(x)e^{-\lambda_k x}$ avec $R_k \in \mathbb{C}_{m_k-1}[X]$ pour tout $k \in [\![1,r]\!]$.

Inversement, si f est de type $x\mapsto \sum_{k=1}^r R_k(x)e^{-\lambda_k x}$, alors pour tout $\tau\in\mathbb{R}$ et tout $x\in\mathbb{R}$, on a :

$$f_{\tau}(x) = f(x+\tau) = \sum_{k=1}^{r} R_k(x+\tau)e^{\lambda_k \tau}e^{\lambda_k x} = \sum_{k=1}^{r} S_k(x)e^{-\lambda_k x}$$

où S_k est un polynôme de même degré que R_k , donc f_τ prend la même forme que f, autrement dit,

$$E_f = \operatorname{Vect}\left(\bigcup_{k=1}^r \{x \mapsto e^{\lambda_k x}, x \mapsto x e^{\lambda_k x}, ..., x \mapsto x^{m_k - 1} e^{\lambda_k x}\}\right),$$

c'est un sous-espace vectoriel de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{C})$ de dimension finie.

•••••