

(II) Viele in den Noter und Ingenieurussenschafte auftretenden Brössen benöhgen zu Three exakten Definition einen Grenzprozers der Folgenden art: Wirkt eine konstente Kraft f längs eines weges der Länge is, und zwor längs der x-Achse vom Punkt a bis Zun Punkt b== q+s, so versteht mon unter der von der Konstanten Kraft f geleisteten Arbeit das Podukt f. S = f (b-a) Ist die Kraft f Jedoch örtlich vorable, des Ortes xe (a,b], so wird man Zerlege das Interval [a,b] in kleine Terlintervale I, An Wahle in Jedom Interval Ik = [xxxx] einer prikt & aw. Man wird dann du "Riemannische Simme" An If (2k) (xk-xk-) als Näherng for Lie Gesichte Arbeit A onsehen. therew wird man insbesondese dann berechtigt Sein, wenn man mit feder genigen feinen Zerlaging des Intervals I einem festen wert A beliebig nahe kommt

Dies ist sehr einfech, wenn die Finkhon

f überall den konstenten wert f(x)=c

hat for eine feste realle Zahl ce IR.

In diesem Fall ist die Fläche

witer dem Grephen von f ein Rechteck

und wir definieren dessen Flächeninhalt

einfech als Breite med Höhe, also des

Produkt A = (b-a) c - Man beachte,

dess die Zahl c auch negahu sein derf

und dann ist auch A regehu.

Fre emfeche Formal ergibt sich auch for eine Finlehon, die sich aus konstenten Enkhonen auf endlich vielen Teilintovalen von [a, b] zusammensetzen lässt

For allgemeine beschränkte Finkhøren kann man nun wie in (f) vorgehen.

Wir wählen eine stufferlung, (Zerlegung Einterlung, Porthün) des Anterials I= Co, 5] in endlich velle Terlinteriale.

As Jedem dieser Teilintende Ig ersefren
f durch eine Finkhon die auf dusem
Tailmtonel Konstent ist und in einem noch
zu klärenden Sinn nicht allzu stark um
f abweicht. Dann bilden wir die Simme
ar Flächeninholte der auf deese Weise
erhalteren Rochtecke Diese Summe ist
als Nöherngsvert for der gewinschte
Fläche zu verstehen.

 $A \sim \sum_{k=1}^{1} f(g_k)(x_k - x_{k-1})$ Um den genouen Wert der Flüche festzulegen bilden wir immer feiner Zerlegingen des Est ist dann das Grenzwert verhalten der diesen summer zu integreben 86-1 Riemans Integrel: Definition, Elementere

O Egenschaften Sei f: [c, b] - IR eine beschrankte Finkhion Defn 6-1 Fine Perhhon oder Zertening

oder Einteilung

oder Unterteilung

eines Intervals (a,b) ut eine endlichte

Henge

P = {a=xo, x, , , x = b}

xo <xo, < - - <xo P(I) 3 = EPCI | a, beP, P ut endlich Lie llenge aller Pohhonen. xo=a xo = b=xn

Feb 19-2014 Luchue / 8 Bemerkung 6-2. Aus den Definitionen folgt direkt a) Für eine feste Zerleging P git stets U(f,P) & S(f,P, E) & O(f,P) b) For twee Parhhoren P, Q $\in \mathcal{P}(I)$ o P \subset Q \Longrightarrow $U(f, P) \leq U(f, Q) \leq O(f, Q) \leq O(f, P)$ Beneis. Un dies zu verstehen, et es notz Irch, den Fall zu betrachten, deuss die Zerleging Q genau einen punkt mehr enthält als P SET P= {xo, , , xn} Q=PU [8] wober gen never Unterfeitungs punkt, Also richt pleich einem der Elemente von P ist. Dann gibt es genau ein LESI, N3 so dass xe-1 < 5 < xe Tst Danit erhalt man

Satz 6.6 (Riemannsches Knterum for integnerberkeit) Sei f: I - s IR eine beschränkte Finkhön Dann sind folgende Avssegen åguvalent (a) f (x) Tet integnerber Ober Ca, b] (b) Fir feder EDO existrent eine Parthon QE P(I) mit O(f, Q) - U(f, Q) < E. Beneis: (a) => (b) Sei f Rieman mtegriertar, A == f(x)dx $= \sup_{P} U(f, P)$ $= \inf_{P} O(f, P)$ Noch definition van Sup und Inf folgt dass zwei Partitionen Pe, Pre P(I) existeen, so doss $A = \frac{\varepsilon}{2} \langle U(f, P_1) \rangle \langle f, P_2 \rangle \langle A + \frac{\varepsilon}{2} \rangle$ Definere D==P,UP2 Dann P,CQ nd
P2CQ

Sotz 6.7 1) jede Stehge Finkhen

f. D -> IR Tist R. Integrerben 2) jede Monotone Finkhon ist R. integnaber Beneis D. f. I & IR stety, I= (ab)
kompokt

J gleichmassig stety Odh Britedom EDO, gibt es £20 mit [x-y] $\geq f$ $\Rightarrow |f(x)-f(y)| < \frac{\varepsilon}{b-\alpha}$. For eine PeP(I) mit Feinheit f(P) < 8 git donn O(f, P) - U(f, P) = Z(supf - Inff) (x-x) $\leq \frac{2}{5} \left(\frac{\epsilon}{b-a}\right) \left(\frac{x_{7}-x_{7-1}}{b-a}\right) = \frac{\epsilon}{b-a} \frac{\sum_{i=1}^{3} (x_{7}-x_{7-1})}{b-a}$ Somit ist f nach Riemannische Kntern integnerber

Wir wähler die Buschenpinkke

5.0) - k + k=1.0

Do ga sind die rechten Endport le der Teilinterele

themat folgt

 $S(f, ph) = \sum_{k=1}^{n} f(s_k) \begin{pmatrix} s_k - t_{k-1} \end{pmatrix}$

 $\frac{2}{2}\left(\frac{k^2-k}{n^2}-\frac{k}{n}\right)\left(\frac{k}{n}-\frac{k+1}{n}\right)$

 $=\frac{1}{n}\left(\frac{k^2}{n^2}-\frac{k}{n}\right)$

73 km nº ka

 $\frac{1}{n^3} \left(\frac{n(n\pi)(2n\pi)}{6} \right) - \frac{1}{n^2} \left(\frac{n(n\pi)}{2} \right)$

 $\frac{2}{6} - \frac{1}{2} = \frac{-1}{6}$

 $\int_{6}^{6} (x^{2} - x) dx = \frac{-1}{6}$

Mit der verfemerten Parkhon P= P, UP2. ergibt Sich unter Verwendung von

(For beschrönkte finkha hauf euren interval Ight

(*) Sup h(x) - Inf h(x) = Sup[h(x) - h(y) | x, y \in I]

VOI VOI = Sup { | hlx|-hly) | x y = I }. $O(h, P) - U(h, P) = \sum_{k=1}^{\infty} (sph - infh)(x_k - x_k)$ (*) 5 sp h(x) - h(y) (x - x - 1)

xiye Ik < |x | Z sup | f(x) - f | y) | (x, -x, -1) + |3| Z sp (g(x)-g(y))(x,-x,-1) $- |x| \sum_{k=1}^{\infty} \left(\sup_{k=1}^{k} \int_{\mathbb{R}^{k}} \left(x_{k} - x_{k-1} \right) \right)$ = |31 2 (supg - Infg) (x x x x 2) = 121 [O (f, P) - U (f, P)]+ B/ [0(g,p) - U(g,p)]

Noch (23)
Bnk 6-2 (PCP
$\Rightarrow \cup (f, P) < \cup (f, P)$ and
o(f, P) < o(f, P)
Dann, - U(f,P) & - U(f,P) und.
O(f, P) - U(f, P) < O(f, R) - U(f, P)
2 (x + p)
(2) Seien $f, g = I \rightarrow IR$ integrable mit $f(x) \leq g(x) \forall x \in I$.
Die Funkhon $h := g - f$ Tit wegen (1) integreber Sei nur $P = \{x_0, x_1,, x_n\}$ eine belubige Parhhon von $[a, b]$. Aus $h(x) \ge 0$ $\forall x \in [a, b]$ folgt dann
$\frac{2nfh(x)\geq 0}{4} \forall x \in (a_1b_2) folgt dann$
$U(h, P) = \sum_{p} (hfh)(x_{k} - x_{k-1}) \ge 0$

Was wodern

(4) Als integrerbore Finkhonen sind of und of beschrönkt
Also existeren die Konstenten
$d = Sep[f(x)]$ and $\beta = Sep[g(x)]$ $x \in [a,b]$ $x \in [a,b]$
Wegen Riem Kniterium (Set z 6.6) gibt es Perhhoren P. Pz mit
0 O(f, P,) - U(f, P,) (E , O(g, P2) - U(g, P2) (E 2(x+p))
Setzen wir h == fg so gilt
(h(x)-h(y)) < (f(x)(g(x)-g(y))+(g(y))(f(x)-f(y))
< 2 g(x) - 5(y) + p' f(x) - f(y)
$0 \forall x,y \in [a,b].$ $C = P = P, UP_3.$
Ute in dem Beneis von (1) egibt-sich unter Verwendung von
$sph-infh = sp[h(x)-h y] \times y \in I$ $x \in I$
dann

O(h, P) - U(h, P)

= Z (Suph - Infh)(x -x -x - 1)

| Fe | Fk |

 $= \sum_{k=1}^{\infty} \sup \left\{ h(x) - h(y) \right\} \left(x_k - x_{k-1} \right)$

= 1/B1 Z sip (f(x)-f(y)) (x_-x_-) + |x| Z siplg(x)-g(y) (xx-x_-

= 131 [0(f, P) - U(f, P)] + 1x1 [0(g, P) - U(g, P)]

Sotz 6.10. Stendardabschäfzungen.

Sei fintegrerben über Gab J. Dann gelfen

die Abschäfzungen

(b-a) Inf $f \leq \int_{a}^{b} f(x) dx \leq (b-a)$ Supf (b-a) Supf (a-b) Supf (a-b)

Beveir: For der Parkhon P. Sa, b3 von (a, b)
folgt safort

(b-a) Inff - U(f, P) < f(x)dx < O(f, P)=(b-a) spf

$$O(g, P) - U(g, P) = \sum_{p} (M_{k}(g) - m_{k}(g)) (x_{k} - x_{k-1})$$

$$= \sum_{p} \left(M_{k}(f) - m_{k}(f) \right) \left(x_{k} + x_{k-1} \right)$$

$$\leq \frac{\sum_{k} \left(M_{k}^{"}(f) - m_{k}^{"}(f) \right) \left(x_{k} \times_{k-1} \right)}{P^{"}}$$

M(f) = sup f

$$I_k(f) = J_k(f) = J_k(f) = J_k(f)$$
 $I_k(f) = J_k(f) = J_k(f)$

$$\int \frac{desen}{c} \frac{f(x)dx}{a} = \int \frac{f(x)dx}{a} + \int \frac{f(x)dx}{a}$$

Konvention 6-13 () Set of integrabel auf For add in I defined non $\int f(x)dx = -\int f(x)dx.$ Mit dieser Konvention gelten alle bisterigen Figenschaften. 7.B $\forall a,b,c \in I$: $\int_{a}^{c} f = \int_{a}^{b} f + \int_{a}^{c} f$

56.2 Differentiation und Dntegration.

In diesem Kapitel wird der Zusammenhang
zurschen Differentiation und Dntegration
hergestellt.

Zu diesem Zweck beginnin wir mit dem
folgenden Sot 2, Mittelwertotz der Dntegralam

Set 2 614 (mws der Integralsrechung).

Set f. (o. b) -> 12 eine stehge finkhon

Donn exishert ein ze (a.b) mit

 $\int_{a}^{b} f(x)dx = f(g)(b-a).$

Georghisch:

A+B= C+ D

Beneis - Wir sefzen $m = \min \{f(x) \mid x \in C_0, bJ\} = f(x_-)$ $M = \max \{ \{ \{ \{ \{ \} \} \mid x \in C_0, b \} \} = \{ \{ \{ \} \} \}$ Wegen Set 2 6.10 (Standard abschätzigen) $m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$ gibt es $g \in [a,b]$ mit $M - f(g) = \int_{-a}^{b} f(x) dx$ Non konnt de erste Houpkotz der Diff und Ditegralischung. Sotz (6.15) (Houpsetz A). Sei f = (a,b] - sIReire stehge Finkhon. Definiere for Jeder $x \in (a,b)$: $= \int f(b) db$

(33)
Folgender Begriff ist dann naheliegend-
Defn 6.16 Set f. (a, b) - IR eine Finkhon Ein Stammfinkhön von f (auf (a, b))
ist ein differenserbore Finkhon F: (a,b) - IR
mit $F'(x) = f(x)$.
Wegen Sot 2 6.15, not fede stehge Finkhon mindestens eine Stemmfinlehm.
Mit Avsnohme einer additiven Konstente, die beim Differenzieren ja wegfüllt, ist die Stammfinkhon auch eindewitig beschmit. Dies ist der Inhalt des folgenden Sotzes,
Sot 2 6.17 Seven IC IR ein beliebigen inferel und F= I 3 IR eine Stemmfinkhon von f= I 3 IR. Dann gelten-
(a) Die Finkhon F+C Ist for jede Konstente CER ebenfells eine Stempfink um f
(b) let G: I -> IR eine wester Stemmfuhren von f, so gibt es eine Konsterk CEIR

	(34)
mit G=F+C	
Beveis (a) Offenber ist At. Fach Fre	= deff.bo
(F-c) = F'= f	
(b) Da Fi und G Stommfmkhonen, sind, git F'-f, F'-f.	van f
Also $(f-G)=0$ and $f-G=ko$	nsterte
Definition 6.18. Fire Stemmfinktion von	n f
heisst auch unbeschmmtes Integel un	
and wird bezeichnet mit of kildx	e .
Mittels einer Stammfinkhon lösst sich Integral einer gegeberen Abbildung s leuch berechren:	h des
Integral etrer gegeberen Abbilding s	sehr
leuch berechren.	

Dies ist der Inhalt des flarpsotz B)

(36)

Der Setz 6-19 Ist des zenhelele

Ergebnis zur Berechung konkreter Integel

Mon benötigt nur eine Stemmfinischun und het von dieser lediglich die

Delforenz der Finkhonswerke turschen den beiden Endpunkten des Interds [a, 5]

O Insberondere sprett es beine Rolle, velche Werte die Stemmfrikhen im inneren des Intervals [a,b] onnimmt.

Beispile von Stammfinkhören

BSP 6.20.

defo Berich	Finkhinf	Stammfrik F
£ (0, 70)	xx, delR.	$\frac{x^{2+1}}{x^{2}} \leftarrow x \rightarrow -1$
2 3		1091x+c x=-1
1 IR	x ⁿ , nem	×1+1 n+1
\$ (12	ex	e*+c

Togorovehele	Fork.	(37)
dy B	Frkf	Stempfik
С _п (50) и		
12	SINX	- WSX + C
· R	COSX	SINX TC
(0,1)	1 1-×2	arcsinx TC
(-1,1)	$\frac{-1}{\sqrt{1-x^2}}$	arccosx + C
12	1 /t×2	Grefox+C
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	ton x	-Ch /cosx/ +C
Hperbolische)	Frehores	- en Isink / + C.
IR.	sinhx	coshx + C
IR.	coshx	sinhx + C
IR.	1 1+x2	aresinh x + C
(1,20)	(X ² -)	arecosh x + C.