8. Übungszettel Mustererkennung WS15/16

Prof. Raúl Rojas, Fritz Ulbrich Institut für Informatik, Freie Universität Berlin Abgabe Online bis Mittwoch, 13.01.16, 10 Uhr

Bitte laden Sie ihre Lösung der Aufgaben als **pdf-Datei** hoch. Quellcode können Sie optional als Archiv anhängen.

1. Aufgabe (10 Punkte): Logistische Regression

Importieren Sie den Datensatz **spiders.txt.** Der Datensatz beschreibt das Vorkommen der "burrowing wolf spider" (Lycosa ishikariana) an verschiedenen Stränden in Abhängigkeit von der Größe der Sandkörner (Format: grain size (mm), spiders (0=absent, 1=present)).

- a) (5 Punkte) Implementieren Sie das in der Vorlesung vorgestellte Verfahren (Gradientenabstieg) zur Bestimmung der Regressionskoeffizienten β für die logistische Regression. Verwenden Sie dabei als initialen Wert β =[0;0]. Verwenden Sie die Schrittweite α =0.1 für den Gradientenabstieg. Plotten Sie jeweils nach 1, 10, 100 und 1000 Iterationen die Funktion $p(x, \beta)$, sowie die Datenpunkte.
- b) (1 Punkt) Berechnen Sie, ab welcher Größe der Sandkörner es wahrscheinlicher ist, Spinnen anzutreffen (als keine Spinnen anzutreffen).
- c) (4 Punkte) Plotten Sie die log-likelihood Funktion $l(\beta)$ des Datensatzes für das Intervall β_0 = [-100, 100] und β_1 = [-100, 100] in einem dreidimensionalen Koordinatensystem. Plotten Sie in dem selben Diagram die log-likelihood des von Ihnen in Aufgabe a) berechneten β als dreidimensionalen Punkt.
 - (Siehe http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/logistic.pdf für die Definition der log-likelihood Funktion).