EP1 - PDS

Luiz Eduardo Sol - 8586861 22 de Abril de 2017

1

a)

Figura 1: Polos e zeros das funções X0, X1 e X2

Tabela 1: Tabela de zeros e polos das funções

Função	Zeros	Polos
X0	$\{1,2\}$	$\{0.5, 1.5\}$
X1	$\{-0.2941 + 0.5703j, -0.2941 - 0.5703j\}$	$\{0.6 + 0.6633j, 0.6 - 0.6633j\}$
X2	$\{-2, 0.5, 0.67, 3\}$	${2+3j, 2-3j, -1+2j, -1-2j}$

b)Possíveis regiões de convergência:

```
X0:
ROC1 = \{r \in \mathbb{C} \mid |r| < 0.5\}
ROC2 = \{r \in \mathbb{C} | 0.5 < |r| < 1.5 \}
ROC3 = \{r \in \mathbb{C} | |r| > 1.5\}
    X1:
ROC1 = \{r \in \mathbb{C} \mid |r| < 0.8944\}
ROC2 = \{r \ \in \mathbb{C}| \ |r| > 0.8944\}
    X3:
\begin{split} ROC1 &= \{r \in \mathbb{C} \mid |r| < 2.2361 \} \\ ROC2 &= \{r \in \mathbb{C} | \ 2.2361 < |r| < 3.6056 \} \end{split}
ROC3 = \{r \in \mathbb{C} | |r| > 3.6056\}
    c)
    x0(n):
RC1: não causal e não estável
RC2: bilateral e estável
RC3: causal e não estável
    x1(n):
RC1: não causal e não estável
RC2: causal e estável
    x3(n):
RC1: não causal e estável
RC2: bilateral e não estável estável
RC3: causal e não estável
```

d) Somente X1 possui uma função inversa estável e causal a)

Figura 2: Resposta em frequência de H_a

Figura 3: Resposta em frequência de H_b

b)

Se $f_a = 8[kHz]$ e $\pi[rad/sample] = f_a/2$, temos que em $H_a(z)$ o valor mínimo (y = -58.18[dB]) ocorre em x = 0.2949, que corresponde à frequência real de 4[kHz] * 0.2949 = 1.1796[kHz].

Já em H_b o valor de máximo (y=31.79[dB]) ocorrerá em 4[kHz]*0.291=1.164[kHz].

c) Analisando a resposta em frequência da fase, temos que $H_a(z)$ apresenta uma fase linear pois $-\frac{d\phi(H_a(z))}{z}$ (atraso de grupo) não depende de z (é uma constante), o que não é o caso de $H_b(z)$, que não possui fase linear.

Decompondo as funções em frações parciais obtém-se:

$$V_0(z) = \frac{4}{1+z^{-1}} - \frac{2}{1+0.5z^{-1}}, 0.5 < |z| < 1 \Rightarrow$$
$$v_0[n] = -2(-0.5)^n u[n] - 4(-1)^n u[-u-1]$$

$$V_1(z) = \frac{0.0104}{1+4z^{-1}} - \frac{0.6667}{1+z^{-1}} + 1.6563 + 2.375z^{-1} + 5.5z^{-2}, 4 < |z| < \infty \Rightarrow$$

$$v_1[n] = 0.0104(-4)^n u[n] - 0.6667(-1)^n u[n] + 1.6563\delta[n] + 2.375\delta[n-1] + 5.5\delta[n-2]$$

$$V_2(z) = \frac{0.2231}{1 + 0.6z^{-1}} + \frac{0.6658}{1 - 0.5z^{-1}} + \frac{0.1111}{1 - 0.2z^{-1}}, 0.6 < |z| \Rightarrow$$

$$v_2[n] = 0.2231(-0.6)^n u[n] - 0.6658(0.5)^n u[n] + 0.1111(0.2)^n u[n]$$

a)

Figura 4: Plano-z e resposta em frequência de H(z) para r=0.98 e $\theta=0$

Figura 5: Plano-z e resposta em frequência de H(z) para r=0.98 e $\theta=\pi/4$

Figura 6: Plano-z e resposta em frequência de H(z) para r=0.98 e $\theta=\pi/2$

Figura 7: Plano-z e resposta em frequência de H(z) para r=0.98 e $\theta=\pi$

b)

Figura 8: Plano-z e resposta em frequência de H(z) para r=0.15 e $\theta=0$

Figura 9: Plano-z e resposta em frequência de H(z) para r=0.15 e $\theta=\pi/4$

Figura 10: Plano-z e resposta em frequência de H(z) para r=0.15 e $\theta=\pi/2$

Figura 11: Plano-z e resposta em frequência de H(z) para r=0.15 e $\theta=\pi$