Lecture 1

Tuesday 28th October, 2014

Contents

1			nformation Hours
2	Fun	ctions	
	2.1	Notati	on
	2.2	Definit	tions
		2.2.1	Domain, Range and Variables
		2.2.2	Image of a function
		2.2.3	Existence domain
		2.2.4	Graph
		2.2.5	Even function
		2.2.6	Odd function
		2.2.7	Periodical function
		2.2.8	Shifting with respect to y-axis
		2.2.9	Shifting with respect to x-axis
		2.2.10	Monotonic function
		2 2 11	One to one function

1 General Information

Dr. Yakov Yakubov

1.1 Office Hours

Monday 16:15 - 17:15 Room 233, MathBuilding Tel: 03-6405357

2 Functions

2.1 Notation

$$\mathbb{N}$$
 = Set of all natural numbers (1)

$$\mathbb{Z} = \text{Set of all integers}$$
 (2)

$$\mathbb{N} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
 (3)

2.2 Definitions

2.2.1 Domain, Range and Variables

Let D and E be two sets of real numbers. A function f from D into E is a well defined law which, to each $x \in D$ corresponds to a unique number $y \in E$. The set D is called the domain of f and the set E is called the range of f.

Denote $f: D \to E$ or y = f(x).

The variable x is called <u>independent variable</u> and the variable y is called <u>dependent</u> variable.

The variable x is also called the <u>origin</u> of y and y is also called the <u>image</u> of x.

2.2.2 Image of a function

Given $f: D \to E$. Then the image of f is a set of all $y \in E$ s.t. $\exists x \in D, y = f(x): I(f) = \{y \in E: \exists x \in D, y = f(x)\}$

2.2.3 Existence domain

The biggest possible domain of a function f is called the existence domain of f.

2.2.4 Graph

A set of point $\{(x, f(x)) : x \in D\}$ in the plane \mathbb{R}^2 is called a graph of a function y = f(x).

2.2.5 Even function

If f(-x) = f(x); $(x, -x \in D)$ then, f is called an <u>even function</u>. Each even function is symmetric about the y-axis.

2.2.6 Odd function

If f(-x) = -f(x); $(x, -x \in D)$ then, f is called an <u>odd function</u>. Each odd function is symmetric about the origin.

2.2.7 Periodical function

A function y = f(x) which is defined on D is called <u>periodical</u> if $\exists T \neq 0$ which is called a <u>period</u> of f s.t. $\forall x \in D \Rightarrow x + T \in D$ and f(x + T) = f(x). The smallest such T > 0 (if it exists) is called the minimal period.

2.2.8 Shifting with respect to y-axis

f(x+a) is the graph of f(x), shifted by a, in the direction of the x-axis, opposite to the sign of a.

2.2.9 Shifting with respect to x-axis

f(x) + a is the graph of f(x), shifted by a, in the direction of the y-axis, according to the sign of a.

2.2.10 Monotonic function

A function y = f(x) is called monotonic increasing (strongly increasing) in D if $\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)(f(x_1) < f(x_2))$. A function y = f(x) is called monotonic decreasing (strongly increasing) in D if $\forall x_1, x_2 \in D, x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)(f(x_1) > f(x_2))$.

2.2.11 One-to-one function

A function $f:D(f)\to E$ is called one-to-one if $\forall y\in I(f)\Rightarrow \exists !x\in D(f)$ s.t. y=f(x).

Equivalently, $\forall x_1, x_2 \in D(f)$, if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.