Results

Krishnakanta Maity

2022-12-23

```
# Clear environment
rm(list = ls())
graphics.off()
# Load the libraries
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4

## v tibble 3.1.8 v dplyr 1.0.9

## v tidyr 1.2.0 v stringr 1.4.0

## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lfe)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
```

```
# Set working directory
# setwd("D:/Project/SummerProject/notebook/")
setwd("G:/Other computers/HP/SummerProject/notebook")
# Load the data
data <- read.csv('./../data/final_result.csv')
# Change the variable type
data$banker_name <- factor(data$banker_name, )
data$vulnerable <- factor(data$vulnerable)
data$type <- factor(data$type)
data$type <- factor(data$type)
data$company_name <- factor(data$company_name)
data$time <- factor(data$time)
data$bank_prod_code <- factor(as.numeric(data$banker_name)*data$nic_prod_code)
sapply(data, function(x){length(unique(x))})</pre>
```

##	symbol	banker_name	co_code	company_name	exchange
##	28	28	2118	2118	2
##	beta	mes	vulnerable	type	time
##	28	28	2	2	2
##	count	nskew	duvol	ic_count	ic_nskew
##	10	4203	4203	9	2118
##	ic_duvol	roa	leverage	nic_prod_code	bank_prod_code
##	2118	2105	1695	63	409

	Dependent variable:							
	NSKEW: Crash Risk Measure							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
MES		1.939*	3.722			9.472*		
	(0.000)	(1.095)	(3.922)	(0.000)	(0.000)	(4.887)	(0.000	
Post	-0.047	-0.046	-0.044	-0.045	-0.044	-0.044	-0.044	
	(0.039)	(0.059)	(0.046)	(0.033)	(0.026)	(0.027)	(0.026	
MES:Post	-8.529***	-8.591***	-8.605***	-8.590***	-8.651***	-8.673***	-8.677*	
	(0.734)	(1.048)	(1.096)	(0.864)	(1.067)	(1.044)	(1.047	
Observations	4,203	4,203	4,203	4,203	4,203	4,203	4,203	
R2	0.009	0.042	0.125	0.048	0.137	0.145	0.150	

Table 2: Result for NSKEW measure (With controls) Dependent variable: ## ## NSKEW: Crash Risk Measure (3) (2) (4) (5) (1) (6) (7) 2.260** 4.735 11.141** (0.977) (3.757) (0.000) (0.000) (4.777) (0.000)(0.000)-0.046 -0.044 -0.043 ## Post -0.047 -0.045 -0.044 -0.043 (0.037) (0.066) (0.044) (0.032) (0.026) (0.027) (0.027)## 0.002 0.004 0.004 0.003 0.003 0.003 0.003 (0.002) (0.003) (0.003) (0.003)## (0.002)(0.003)## Leverage 0.0001 -0.00002 0.0001 -0.00004 0.0002 0.0002 0.0002 (0.0002) (0.0002) (0.001) (0.0002) (0.001) (0.001)(0.001)## NSKEW (t-1) 0.092*** 0.081*** 0.071*** 0.083*** 0.067*** 0.072*** 0.070*** (0.013) (0.024)(0.015) (0.012)(0.012)(0.014)(0.013)## MES:Post -8.535*** -8.601*** -8.628*** -8.599*** -8.673*** -8.698*** -8.704*** (0.759) (1.034) (1.113) (0.880) (1.086) (1.061) (1.067)## Observations 4,203 4,203 4,203 4,203 4,203 4,203 4,203 0.019 0.051 0.130 0.057 0.142 0.150 0.155

Note:

*p<0.1; **p<0.05; ***p<0.01

	Dependent variable:							
	(1)	(2)	DUVOL: (Crash Risk (4)	Measure (5)	(6)	(7)	
MES		-1.165	-3.366			-2.396		
	(0.000)	(0.910)	(2.095)	(0.000)	(0.000)	(2.373)	(0.000	
Post	0.002	0.002	0.004	0.003	0.005	0.005	0.005	
	(0.007)	(0.009)	(0.010)	(0.007)	(0.009)	(0.007)	(0.009	
MES:Post	-3.175***	-3.227***	-3.230***	-3.222***	-3.229***	-3.256***	-3.240*	
	(0.00004)	(0.364)	(0.889)	(0.00004)	(0.0001)	(0.819)	(0.0001	
Observations	4,203	4,203	4,203	4,203	4,203	4,203	4,203	
R2	0.013	0.036	0.134	0.046	0.143	0.148	0.152	

```
model1 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | banker_name | 0 | banker_nam
model2 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | nic_prod_code | 0 | banker_n
model3 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | bank_prod_code | 0 | banker_:
model4 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | banker_name + nic_prod_code
model5 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | banker_name + bank_prod_code
model6 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | nic_prod_code + bank_prod_co
model7 <- felm(duvol ~ mes + time + mes*time + roa + leverage + ic_duvol | banker_name + nic_prod_code
stargazer(model1, model2, model3, model4, model5, model6, model7,
          type = 'text', float = TRUE, font.size = "small",
          dep.var.labels = c('DUVOL: Crash Risk Measure'),
         title = 'Table 4: Result for DUVOL measure (With controls)',
         covariate.labels = c('MES', 'Post', 'ROA', 'Leverage', 'DUVOL (t-1)', 'MES:Post'), align = TR
         no.space = TRUE, keep.stat = c('n','rsq'))
```

Table 4: Result for DUVOL measure (With controls) Dependent variable: ## DUVOL: Crash Risk Measure ## (3) (2) (4) (5) (1) (6) (7) -0.875 -2.455 -1.076(0.000) (0.967) (1.841) (0.000) (0.000) (2.375) (0.000) 0.003 0.002 0.004 0.005 ## Post 0.003 0.005 0.005 (0.007) (0.009) (0.011) (0.007) (0.009) (0.008) (0.009)0.001 0.001 0.002 0.001 0.001 0.002 0.001 (0.002) (0.001) (0.001) (0.001) (0.001)## (0.001)(0.001)## Leverage 0.001* 0.001* 0.001 0.001 0.001 0.001 0.001 (0.0004) (0.0004) (0.0004) (0.001) (0.0004) (0.0004) (0.0004)## DUVOL (t-1) 0.110*** 0.098*** 0.092*** 0.096*** 0.087*** 0.090*** 0.089*** (0.023)(0.020) (0.025) (0.022) (0.023)(0.025)## MES:Post -3.180*** -3.231*** -3.248*** -3.228*** -3.245*** -3.275*** -3.260*** (0.0001) (0.290) (0.851) (0.0001) (0.0001) (0.794) (0.0001)## Observations 4,203 4,203 4,203 4,203 4,203 4,203 0.025 0.046 0.140 0.055 0.149 0.154 0.158 *p<0.1; **p<0.05; ***p<0.01

Note: