

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<p>(51) International Patent Classification 6 : D01D 5/23, 5/24, D01F 6/62</p>		A1	<p>(11) International Publication Number: WO 95/14799 (43) International Publication Date: 1 June 1995 (01.06.95)</p>
<p>(21) International Application Number: PCT/US94/13012 (22) International Filing Date: 14 November 1994 (14.11.94)</p>		<p>(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).</p>	
<p>(30) Priority Data: 156,237 22 November 1993 (22.11.93) US 334,418 4 November 1994 (04.11.94) US</p>		<p>Published <i>With international search report</i></p>	
<p>(71) Applicant: WELLMAN, INC. [US/US]; Suite 302, 1040 Broad Street, Newbury, NJ 07702-4118 (US).</p>			
<p>(72) Inventors: RAVELUTE, Frederick, L.; 6319 Deveron Drive, Charlotte, NC 28211 (US). HOFFMAN, Robert, E.; 1135 Rainbow Circle, Catawba, SC 29704 (US).</p>			
<p>(74) Agents: SUMMERS, Philip et al.; Bell, Seltzer, Park & Gibson, P.O. Drawer 34009, Charlotte, NC 28234 (US).</p>			
<p>(54) Title: METHOD OF FORMING SELF-TEXTURING FILAMENTS AND RESULTING SELF-TEXTURING FILAMENTS</p>			
<p>(57) Abstract</p>			
<p>A method is disclosed of producing self-texturing filaments that exhibit a desirable tendency to coil rather than to bend sharply or zig zag. The method comprises directing a quenching fluid at extruded hollow filaments of a liquid polymer predominantly from one side of the hollow filaments to thereby produce hollow filaments with different orientations on each side. Thereafter the temperature of the hollow filaments is raised to a temperature sufficient for the filaments to relax, but less than the temperature at which the filaments would shrink. When the relaxed filaments are cut into staple lengths, they tend to assume a form that provides a favorable degree of mechanical entanglement that is useful in forming resilient solid structures.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NR	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BP	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Burkina	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

METHOD OF FORMING SELF-TEXTURING FILAMENTS
AND RESULTING SELF-TEXTURING FILAMENTS

Field of the Invention

The present invention relates to self-texturing filaments formed from synthetic polymer material and in particular relates to a self-texturing filament formed from polyester which exhibits a desirable tendency to coil rather than to bend or tangle.

Background of the Invention

Synthetic polymers are used in many textile applications to replace natural textile materials such as wool and cotton. Synthetic polymers are also used for other textile-related applications such as insulation layers in clothing, particularly clothing for outdoor use in colder weather, and for bulking properties in pillows and other such products in which these properties are alternatively provided by natural materials such as feathers or by synthetic foam materials.

The starting product for almost all synthetic textile materials is a liquid polymer that is extruded in the form of a thin filament of the material. Such filaments have some immediate uses such as fishing line. In textile applications, however, synthetic filaments and the fibers and yarns made from them should desirably provide properties similar to those of natural fibers such as wool or cotton. In order to provide such properties, synthetic filaments must be textured before being formed into yarns and fabrics.

-2-

As is well understood in the textile industry, texturing can comprise crimping, looping, or otherwise modifying continuous filaments to increase their cover, resilience, abrasion resistance, warmth, insulation properties, and moisture absorption, or to provide a somewhat different surface texture.

Typical texturing methods include false twist texturing, mechanical texturing such as edge crimping or gear crimping, air jet crimping, knit-de-knit crimping, and the stuffer box method. In quite logical fashion, the resulting characteristics of the textured filament reflects the texturing method used. Thus, textured filaments can take the form of entangled filaments, multifilament coils, monofilament coils, stuffer box crinkles, knit-de-knit crinkles, or core-bulked filaments. Each of these has its own particular properties, advantages, and disadvantages.

Among these various types of textured filaments, coils are preferred for certain applications such as cushions and insulation. Coiled filaments tend to give more volume and fewer sharp bends, "zig-zags," or "knees." Generally speaking, coiled filaments, and the yarns made from them, take on a coil or spiral configuration that is somewhat more three dimensional than other textured filaments and thus are preferred for many bulking applications, including those mentioned above.

Typical methods for coiling filaments include false twisting or edge crimping, both of which techniques are well-known to those of ordinary skill in the art, and will not be otherwise further described herein.

Both of these methods have various advantages and disadvantages in producing coiled yarns. For example, false twist coiling requires a conventional false twist winding system, while an edge crimp method

-3-

requires the mechanical devices necessary to physically produce the crimp.

Alternatively, coiled filaments can be formed from bilateral fibers that coil following further processing. Traditionally, bilateral fibers are formed from two different generic fibers or variants of the same generic fiber extruded in a side-by-side relationship. Although side-by-side or "bicomponent" spinning offers certain advantages, it also is a relatively demanding process that requires more complex spinning equipment and thus is advantageously avoided where unnecessary.

Therefore, it is an object of the present invention to provide a method of coiling filament, particularly polyester filament, to produce a coiled filament from which appropriate yarns or bulk material can be produced. Furthermore, it is an object of the invention to do so without the requirement of false twisting, mechanical crimping, or bicomponent spinning.

20

Summary of the Invention

The invention is a method of producing self-texturing filaments that exhibit a desirable tendency to coil rather than to bend sharply, "knee," or zig-zag. The method comprises directing a quenching fluid at extruded hollow filaments of a liquid polymer predominantly from one side of the hollow filaments to thereby produce hollow filaments with different orientations on each side. Thereafter, the temperature of the hollow filaments is raised sufficiently for the filaments to relax, but less than the temperature at which the filaments would shrink, to thereby prevent the filaments from crimping. When these filaments are drawn and then permitted to relax, they coil favorably in a manner that would have otherwise required mechanical texturing.

-4-

In another aspect, the invention comprises a method of coiling bilateral hollow filaments in which the two component polymers are identical except for their degree of orientation. In yet another aspect, 5 the invention comprises a coiled bilateral hollow polymeric filament in which the two component polymers are identical except for their degree of orientation.

In a further aspect, the invention comprises a method of cutting the resulting coiled filament prior 10 to heat setting to produce cut, coiled filament that is particularly advantageous for bulk filling purposes.

The foregoing and other objects of the invention will be understood more clearly when taken in conjunction with the detailed description which 15 follows.

Detailed Description

The present invention is a method of producing self-texturing filaments that exhibit a desirable tendency to coil rather than to bend sharply, 20 knee, or zig-zag. These shapes are hereinafter referred to as "crimps" or "crimping" as opposed to coils or coiling. The method comprises directing a quenching fluid at extruded hollow filaments of a liquid polymer predominantly from one side of the 25 hollow filaments to thereby produce hollow filaments with different orientations on each side. Thereafter, the temperature of the hollow filaments is raised sufficiently for the filaments to relax while concurrently maintaining the filaments at a constant 30 length to thereby prevent the filaments from shrinking and becoming brittle, both of which would inhibit drawability.

As used herein and in this art, orientation refers to the degree to which the chain molecules of a 35 polymer are parallel to one another and to the longitudinal dimension of a filament. The degree of

-5-

orientation can be measured using techniques well known in this art, particularly including birefringence.

In preferred embodiments, the liquid polymer comprises polyester which is extruded in the form of

5 hollow filaments prior to the step of directing the quenching fluid at the hollow filaments. Further to the preferred embodiments, the step of extruding the hollow filaments comprises extruding two C-shaped filament sections and directing the sections to merge

10 shortly after they are extruded to form the hollow filament. It will be understood by those familiar with the extrusion of filaments with various cross-sections that the phrase "C-shaped" is a general way of designating two shapes which when brought together

15 would have a hollow space in between, including shapes that would very much resemble the letter "C." It will be further understood that the invention is not limited to C-shape extruded sections or to resulting circular cross-sections, but that these shapes represent

20 descriptive embodiments of the invention.

The preferred quenching fluid is air. In the most preferred embodiments, the air is directed at the filaments as closely as possible to the point at which the hollow filaments are extruded. When, as in

25 preferred embodiments, the step of extruding the filaments comprises extruding the filaments from a spinneret, then the step of directing a quenching fluid comprises directing the quenching fluid at the filaments within about four inches or less of the

30 spinneret, and most preferably within about two inches of the spinneret head.

In preferred embodiments, the step of directing the quenching flow of air comprises directing the flow of air at a rate sufficient to quench the

35 hollow filaments, but less than a rate that would blow the filaments into contact with one another before they were quenched into solid form.

-6-

If evaluated immediately following quenching, the hollow filaments can be considered as having a "cold side" and a "hot side," the cold side being the side at which quenching was originally directed, with 5 the hot side being the generally opposite portion of the filament. As will be well understood by those of skill in this art, the cold side will at this point be generally more oriented than the hot side. It will be further understood that the terms "cold side" and "hot 10 side" are used for explanatory purposes and not as limitations.

As is generally the case in filament spinning, the next step is referred to as "take-up" in which the extruded quenched filaments are collected on 15 a series of rollers for further processing or packaging. The filaments solidify under the affects of lowered temperature during the take-up step.

According to the invention, the solidified filaments are then relaxed by heating them to a 20 temperature greater than ambient and that is sufficient for them to relax, but less than the temperature at which they would shrink. Although the inventors do not wish to be bound by any particular theory, the term "relax" as used herein refers to a process in which the 25 density or compactness of the molecular structure increases as a result of the heating process.

Generally speaking, an appropriate temperature range for relaxing polyester filaments is between about 40°-60°C (104°-140°F), depending on the 30 extent of relaxation desired, as the intensity of the treatment effect is proportional to the temperature used. The higher temperatures to be avoided are those approaching the glass transition temperature (T_g) of polyester, approximately 68°C (155°F). In preferred 35 embodiments of the invention, the relaxing step can be accomplished by heating the finishes applied to the filaments. As known to those familiar with this art,

- 7 -

in more conventional spinning methods, such finishes are generally added at ambient temperatures.

Following the relaxation step, the hot side of the filament has very little orientation. The cold 5 side has some orientation, but less than it had after the stretching that occurred during the initial take-up step.

In order to produce the desired coiling, the relaxed filament is next drawn in otherwise normal 10 fashion, and then released. The draw temperature generally approaches the glass transition temperature. The drawing step adds stress to each side of the filament with the more oriented cold side being more stressed than the less oriented hot side. In preferred 15 embodiments using polyester, the filaments are drawn to a stress level of about 0.3 to 0.4 grams per spun denier. In this regard, one of the apparent effects of the invention is that the relaxing step decreases overall orientation, but increases relative 20 orientation. The relaxed structure is more dense, and can crystallize faster when heated above T_g and drawn.

The drawn filaments are preferably cooled to room temperature, for example by cooling the draw rolls with circulating water. When the filament is released 25 following drawing, both sides tend to return to their earlier condition ("recover"), but the cold side more so than the hot side, and the difference in the degree of recovery creates the desired coils. Preferably, the draw tension is released very suddenly, and as soon as 30 possible after drawing. Similarly, because the relaxation forces are relatively moderate, interference with the filaments as they coil should preferably be avoided.

As a final step, the coiled filaments can be 35 heat set, generally at temperatures of about 177°C (350°F) to produce a rigid coiled filament that is about 40% crystallized.

In another aspect, the invention comprises a method of coiling bilateral hollow filaments in which the two component polymers are identical except for their degree of orientation. As set forth in the 5 background of the invention, bilateral filaments are usually those formed of two different polymers or two forms of a generic polymer. In the present invention, however, the two component polymers are identical and are only oriented differently as a result of the uneven 10 quenching. The coiling method of the invention comprises raising the temperature of the hollow filaments to a temperature sufficient for the filaments to relax, but less than the temperature at which they would shrink. After a drawing step as described above, 15 the filaments are released to coil in the absence of any control on their length.

In the preferred embodiments, the component polymers comprise polyester, specifically a single polyester, and the step of raising the temperature of 20 the filaments sufficiently for the filaments to relax comprises raising their temperature to between about 40°C and 60°C, depending upon the extent of relaxation desired.

Thus, in brief summary, the method steps of 25 the invention can comprise extrusion, quenching, take-up, relaxation, drawing, release, and heat-setting.

In yet another embodiment, the invention comprises a coiled bilateral hollow polymeric filament in which the two component polymers are identical 30 except for their degree of orientation. In preferred embodiments, the component polymers comprise polyester.

As stated earlier, the term "orientation" refers to the degree of parallelism of the chain molecules of a polymer. Although the inventors do not 35 wish to be bound by any particular theory, the relaxation step of the present invention appears to permit both portions of the filament, which have

-9-

different orientations resulting from the uneven quenching carried out upon them, to relax by the same amount of orientation while they maintain a consistent length (because they are fused).

5 For example, a hollow filament or fiber according to the present invention that has one portion with an orientation number of 10 and another portion with an orientation number of 5 has a 2:1 ratio of orientations and will texture accordingly. If that
10 filament is then relaxed by four (4) units using the method of the present invention, the resulting filament has one portion reduced in orientation from 10 to 6, and a second portion reduced from 5 to 1. The resulting relaxed filament now has an orientation ratio
15 of 6:1 rather than 2:1 and will exhibit correspondingly different texturing properties. It will thus be easily seen that the orientation ratio between the two portions of the same filament has essentially been tripled without any mechanical activity whatsoever.

20 Filaments formed according to the present invention, even though self-coiling and self-texturing, can also be mechanically or otherwise textured to give additional textured properties should such be desired or necessary. The invention is thus not limited to
25 methods in which no mechanical or other texturing steps are carried out, but instead provides a method in which such other texturing methods can be minimized or eliminated if so desired, or included if so desired.

As an additional advantage of the invention,
30 however, the capability to produce coil without mechanical crimping permits the production of thinner-walled, hollow, coiled filaments. Specifically, because the hollow filaments will coil without mechanical crimping, their walls can be thinner than
35 the walls required to withstand mechanical crimping. As a result, hollow filaments can be produced according to the present invention with as much as 25-35% void

-10-

space (based on cross-section) compared to 15-18% void space for conventional, mechanically-crimped coiled hollow filaments. These more highly voided filaments give the same bulk properties as the less voided 5 filaments, but at a significantly reduced weight. Stated differently, the invention provides a technique for obtaining high aspect ratio hollow filaments with lighter weight, but equivalent properties to more conventional hollow filaments.

10

Example 1

An 80-pound sample of a spirally-coiled filament of 8 denier per filament (dpf) was produced on a 463-hole hollow pack using polyester. A quench cabinet was set to direct air at the filaments two 15 inches below the spinneret at a 600 foot per minute peak air velocity. The takeup was set to standard conditions for 28/8 (spun denier/finished denier) hollow filament.

As part of the drawing process, a pre-bath 20 and feed rolls were heated to 155°F and the fiber was drawn at a 3.8 draw ratio. The fiber was allowed to relax exit the draw nip roll where the crimp formed. The crimp tow accumulated at this point, was fed to a cutter, and then collected in bags. The cut fiber was 25 taken to a dryer and heat set at 350°F after which a soft hand finish was applied.

Example 2

A 463-hole pack was again utilized in the manner described in Example 1. Polyester was spun at 30 900 meters per minute and 171 pounds per hour throughput to give 28 denier filaments. The same spacer length and quench profile as in Example 1 were again utilized.

For drawing, the pre-bath and feed rolls were 35 heated to 155°F and the draw ratio was set to 3.33.

-11-

The water spray above the feed rolls was used at a relatively low flow rate and the draw rolls were cooled to ambient temperature with circulating water, and a draw nip roll was installed.

5 The drawn tow was taken through the dancer rolls and into the crimper with the pre-crimper steam chest off. The crimper flapper was up and the crimper nip roll pressure was reduced to 30 psi from 80 psi. The crimp formed exit the crimper nip and the crimped 10 tow was guided onto the conveyer to the dryer. After passing through the dryer at 350°F, soft hand finish was applied and the fiber was cut on the production cutter.

Several hundred pounds of coiled filament 15 were produced in accordance with Example 2. The material was evaluated by garnetting to form standard and queen size pillows. In spite of the soft hand finish, the material processed well and demonstrated excellent fill power. Queen pillows which normally 20 require between 25 and 26 ounces of fill required only 22 ounces of the material according to the present invention to maintain the normal pillow size. Similarly, a test with standard pillows indicated that 16 ounces of the material of the present invention was 25 adequate in a pillow that normally required 20 ounces of filler.

Further to the present invention, it has now been determined that if the relaxed coiled filaments are cut into staple length before being heat set, they 30 form an unusual and useful staple filament. In this aspect of the invention, the individual staples have the overall helical coil, and of which the ends curl to even a greater degree in a manner that might be analogously described as a "fish hook" effect. 35 Although the inventors don't wish to be bound by any particular theory, it appears that these fish hook-like curls on the ends of the helixes are the lowest

-12-

potential energy form for the relaxed filaments once they have been cut into staple lengths. By way of comparison, it will be understood that continuous tow formed in conventional fashion--i.e., not according to 5 the method of the present invention--does not exhibit such additional curling, apparently because there exists little or no potential energy driving force to encourage them into such an orientation.

The combination of both the overall helical 10 structure of the staple filaments and their more aggressively curled ends offers the opportunity for greatly enhanced mechanical entanglement when the staple filaments are pressed together in an appropriate fashion. In general, it appears that the helixes of 15 the cut staple filament pieces wrap around one another, while the curled ends add an even greater degree of entanglement.

Furthermore, it has been unexpectedly discovered, according to the present invention, that 20 the entanglement potential provided by cutting--and particularly cutting prior to any heat setting--offers a degree of mechanical stability that can totally eliminate binder fibers or binder resins in nonwoven applications such as carding, batting, cross-lapping 25 and others. Such applications can also include domestic and automotive furniture cushions, among others. It will be understood, however, that such applications are exemplary, and not otherwise limiting of the present invention.

30 In this regard, and as well known by those of ordinary skill in this art, one traditional method of keeping staple fibers together (other than spinning, weaving, or knitting) to form a solid mass for applications such as cushions, is to add a small amount 35 of some binder fiber or binder resin. Typically, the binder fiber melts at a lower temperature than the structural fiber so that a heat-setting treatment can

-13-

be used to hold the majority of the structural fibers together. Alternatively, the term "binder resins" often refers to a liquid applied to the structural fibers that later cures and holds the structural fibers 5 together.

Binder fibers and resins raise certain disadvantages, however, particularly the disadvantage of being formed of a different polymer resin. Accordingly, items formed of polyesters plus additional 10 resins cannot be recycled in the same manner as can products that are formed of polyester alone. In general, the presence of the added polymer resin requires additional recycling steps.

The ability to form coherent solid masses 15 with mechanical integrity entirely out of polyester and without binder fibers or resins offers additional advantages beyond more efficient recycling. In this regard, binder fibers also cause problems when heat stress is applied to the mass that they are intended to 20 hold together. Thus, many formed polymer objects fail various heat test requirements because of their binder fibers, rather than because of their structural fibers. Thus, by eliminating the binder fiber, the thermal 25 characteristics of molded objects made according to the present invention are favorably those of the polyester alone.

For example, in ASTM Test D3574 part B1, resilient materials such as polymer foams or fiber batts are compressed to 50% of their original height 30 and held in the compressed state at 70°C for 22 hours. The permanent height loss of the sample is then measured. By way of comparison, polyurethane foam, which is often used as a furniture cushioning material, loses only 6% or 7% of its height in this test, while 35 ordinary polyester batting will lose between 30% and 35%. In the present invention, however, when the relaxed filaments are cut, formed into a preset, and

-14-

then heat-treated, they are expected to exhibit a favorable loss of height in the ASTM D3574 test.

In brief summary, this aspect of the invention comprises cutting the released coiled 5 filaments into staple lengths, and thereafter heat-setting the cut staple filaments. If desired, the cut filaments can be molded or otherwise formed into a desired shape before or after heat-setting to produce the preformed shapes very often desired by furniture 10 manufacturers and other similar applications.

A typical heat-set temperature is about 175°C (350°F), which represents the point of maximum crystallization for most polyesters, and thus the most stable product, but can be selected to range from 15 between about 70°C to about 200°C. This range represents minimal change through the degradation temperature.

The length to which the staple is cut is a parameter that can be adjusted according to various 20 needs. As expected, cutting the staple shorter produces a greater number of ends and thus "fish hooks," but a lesser degree of helical entanglement. Alternatively, cutting the staples at longer lengths produces fewer curled ends, but a greater degree of 25 entanglement between the longer entangled helixes. Thus, the cut length can be adjusted for various end uses as may be most appropriate or desired.

Because seating cushions, particularly 30 automobile seating cushions, often require a relatively high degree of resiliency, the deniers are generally selected to be larger; i.e., bigger and stiffer fibers with higher bending modulus. Lower denier filaments will, of course, produce generally softer products. By way of comparison, in aspects of the invention other 35 than molded resilient products, the denier may be on the order of about 6, while for automobile seating and other furniture applications, the denier is generally

-15-

selected to be between about 15 and 20. It will thus be understood that the denier can be selected in accordance with the desired end use, and that the described deniers are illustrative of the invention,
5 rather than limiting.

In summary, this aspect of the invention provides a greater degree of loft than regular crimped fibers, a greater filling power, and eliminates binder fibers or binder resins that raise costs, create heat
10 problems, and complicate one or more of the processing or recycling steps.

In the specification, typical preferred embodiments of the invention had been disclosed and, although specific terms have been employed, they have
15 been used in the generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

-16-

THAT WHICH IS CLAIMED IS:

1. A method of producing self-texturing filaments that exhibit a desirable tendency to coil rather than to bend sharply or zig zag, the method comprising:

5 directing a quenching fluid at extruded hollow liquid polymer filaments predominantly from one side of the liquid hollow filaments to thereby produce solidified hollow filaments with different orientations on each side; and

10 thereafter raising the temperature of the hollow solidified filaments to a temperature sufficient for the filaments to relax but less than the temperature at which the filaments would shrink.

2. A method according to Claim 1 and further
15 comprising the steps of:

 cooling the taken-up filaments to ambient temperatures prior to the step of relaxing the filaments;

20 drawing the relaxed hollow filaments; and
 releasing the drawn filaments to coil in the absence of any control of their length.

3. A method according to Claim 2 and further comprising heat setting the coiled filaments to approximately the maximum crystallization temperature
25 of the polymer following the step of releasing the filaments.

4. A method according to Claim 3 and further comprising cutting the heat set filaments into staple lengths.

30 5. A method according to Claim 4 and further comprising the step of forming the cut heat-set staple filaments into a desired shape.

-17-

6. A method according to Claim 2 and further comprising cutting the released coiled filaments into staple lengths.

7. A method according to Claim 6 and further 5 comprising the steps of:

forming the staple filaments into a desired shape following the step of cutting the released coiled filaments into staple lengths; and thereafter

10 heat-setting the cut staple filaments to form a molded resilient preform.

8. A method according to Claim 1 and further comprising the step of heat-setting the cut staple filaments.

9. A method according to Claim 8 comprising 15 heat setting the cut staple filaments to approximately the maximum crystallization temperature of the polymer.

10. A method according to Claim 8 and further comprising the step of forming the heat-set staple filaments into a desired shape.

20 11. A method according to Claim 1 wherein the step of raising the temperature of the hollow filaments to a temperature sufficient for the filaments to relax comprises raising the temperature to less than the 25 glass transition temperature of the polymer.

12. A method according to Claim 1 and further comprising the step of extruding a liquid polymer in the form of hollow filaments prior to the step of directing the quenching fluid at the hollow 30 filaments.

-18-

13. A method according to Claim 12 wherein the step of extruding the hollow filaments comprises extruding two C-shaped filament sections and directing the sections to merge shortly after they are extruded 5 to form the hollow filament.

14. A method according to Claim 1 wherein the step of raising the temperature of the hollow filaments to a temperature sufficient for the filaments to relax comprises adding a heated liquid finish to the 10 filaments in which the finish has been heated sufficiently to in turn raise the temperature of the hollow filaments to a temperature sufficient for the filaments to relax.

15. A method according to Claim 1 wherein 15 the step of directing a quenching fluid comprises directing air at the filaments.

16. A method according to Claim 15 wherein the step of directing a quenching flow of air comprises directing a quenching flow of air at a rate sufficient 20 to quench the hollow filaments, but less than a rate that would blow the filaments into contact with one another before they were quenched into solid form.

17. A method according to Claim 1 wherein the step of raising the temperature of the filaments 25 sufficiently for the filaments to relax comprises raising their temperature to between about 40°C and 60°C.

18. A coiled bilateral hollow polymeric filament in which the two component polymers are 30 identical except for their degree of orientation.

-19-

19. A coiled bilateral hollow polymeric filament according to Claim 13 wherein the component polymers comprises polyester, and wherein the hollow portion is between about 25 and 35 percent of the cross 5 sectional area of the filament.

20. A resilient molded preform formed entirely of polyester, said preform comprising a plurality of coiled bilateral hollow polymeric filaments, said filaments having staple lengths and 10 together forming a predetermined overall shaped solid, and in which the two bilateral components are an identical polyester but with each component having a different degree of orientation, and in which said staple filaments are sufficiently entangled with one 15 another to eliminate the need for any binder filaments or binder resins.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/13012A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 D01D5/23 D01D5/24 D01F6/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 D01D D01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB,A,1 137 027 (TOYO BOSEKI KABUSHIKI KAISHA) 18 December 1968 see the whole document ---	1-12, 15-18,20 13,19
X	GB,A,1 175 756 (TOYO BOSEKI KABUSHIKI KAISHA) 23 December 1969 see the whole document ---	1-10, 15-17
Y	US,A,3 405 424 (ULRICH IMOBERSTEG ET AL.) 15 October 1968 see figure 3 ---	13
Y	GB,A,1 137 028 (TOYO BOSEKI KABUSHIKI KAISHA) 18 December 1968 ---	19
A	US,A,3 050 821 (JOSEPH J. KILIAN) 28 August 1962 see the whole document ---	1-20
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document not published on or after the international filing date
- 'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- '&' document member of the same patent family

1 Date of the actual completion of the international search

Date of mailing of the international search report

24 February 1995

- 8.03.95

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Tarrida Torrell, J

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/13012

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US,A,3 061 874 (RAY F. LEES) 6 November 1962 see the whole document ----	1-20
A	US,A,3 235 442 (WILLIAM LESTER STUMP) 15 February 1966 see the whole document ----	1-20
A	GB,A,1 152 647 (KURASHIKI RAYON KABUSHIKI KAISHA) 21 May 1969 see the whole document ----	1-20
A	GB,A,2 056 362 (E.I. DU PONT DE NEMOURS AND COMPANY) 18 March 1981 see the whole document -----	1-20

1

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/13012

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB-A-1137027		NONE		
GB-A-1175756	23-12-69	FR-A- US-A-	1543643 3577498	04-05-71
US-A-3405424	15-10-68	NONE		
GB-A-1137028		FR-A-	1517632	24-06-68
US-A-3050821	28-08-62	NONE		
US-A-3061874	06-11-62	NONE		
US-A-3235442	15-02-66	GB-A- US-A-	979918 3316612	02-05-67
GB-A-1152647	21-05-69	DE-A- FR-A-	1660446 1546922	24-06-71
GB-A-2056362	18-03-81	US-A- BE-A- CA-A- DE-A- FR-A, B JP-A- NL-A- US-A-	4301102 884308 1150018 3026934 2466537 56015413 8004073 4343860	17-11-81 15-01-81 19-07-83 12-02-81 10-04-81 14-02-81 20-01-81 10-08-82