Applied Combinatorics Homework 4

Akash Narayanan

October 27, 2020

Problem 1. How many positive integers less than or equal to 1000 are divisible by none of 3, 8, and 25?

Solution. We can apply the principle of Inclusion-Exclusion to positive integers less than or equal to 1000. First note that the number of positive integers less than or equal to 1000 divisible by k is $\lfloor \frac{1000}{k} \rfloor$. In particular, this counts the number of multiples of k less than or equal to 1000. Then we have

$$1000 - \lfloor \frac{1000}{3} \rfloor - \lfloor \frac{1000}{8} \rfloor - \lfloor \frac{1000}{25} \rfloor + \lfloor \frac{1000}{3 \cdot 8} \rfloor + \lfloor \frac{1000}{3 \cdot 25} \rfloor + \lfloor \frac{1000}{8 \cdot 25} \rfloor - \lfloor \frac{1000}{3 \cdot 8 \cdot 25} \rfloor = 560$$

Thus, there are 560 positive integers less than or equal to 1000 that are divisible by none of 3, 8, and 25. \Box

Problem 2. Find the coefficient on x^{10} in the generating function $(1+x)^{12}$. Solution. We can find the coefficient of x^{10} by using the binomial theorem, which states that the coefficient of x^{10} is $\binom{12}{10} = 66$.

Problem 3. Solve the recurrence equation $r_{n+2} = r_{n+1} + 2r_n$ if $r_0 = 1, r_2 = 3$. Solution. We can rewrite the recurrence as a polynomial in the advancement operator.

$$(A^2 - A - 2)f(n) = 0$$

The polynomial in A factors into (A-2)(A+1). The corresponding bases for the solution space are 2^n and $(-1)^n$. Thus, the general solution to the recurrence relation is $r_n = c_0 2^n + c_1 (-1)^n$.

We're given two conditions. Using the first, we have $r_0 = c_0 2^0 + c_1 (-1)^0$. That is, $c_0 + c_1 = 1$. Similarly, the second condition yields $8c_0 + c_1 = 3$. Using the first equation, we solve for $c_1 = 1 - c_0$, which we can substitute into the second equation. This shows that $7c_0 = 2$ which implies that $c_0 = \frac{2}{7}$. Finally, we can substitute this back into one of the previous equations to solve for $c_1 = \frac{5}{7}$. Thus our recurrence is

$$r_n = \frac{2}{7} \cdot 2^n + \frac{5}{7} \cdot (-1)^n$$