# Save and Secure Robotics based on Open Source Software

"Guidelines" for specifications of safety critical equipment

- Some hints

Dietmar Reinert, Norbert Jung, Michael Schaefer





#### **Contents**

- Nature & requirements
- Basic properties
- Phases during development
- Examples on methods of specifications
  - ◆ E.g. structured analysis





#### What is a specification?

#### Attempt of a definition:

- "A specification is a closer description of a primary rather unspecific matter"
- Assembly of different documents
  - What is intended?
  - Which properties it should have?
  - ◆ How it will be constructed?
  - ♦ How it will be validated/tested?
  - **•** ....
    - Each on system-, subsystem-, module-, component-level





# **Specification requirements for SILx** (IEC 61508)

| Specifications                                                                               | SIL 4                                             | SIL 3                                             | SIL 2                                  | SIL 1                                  | Applicability:<br>Hardware (H)<br>/ Software (S) |
|----------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------|
| Requirements and design specifications                                                       | Formal (mathematical)                             | Semi-formal<br>(e.g. natural<br>language)         | Informal<br>(e.g. natural<br>language) | Informal<br>(e.g. natural<br>language) | H/S                                              |
| Configuration management                                                                     | Complete (automatic for development & production) | Complete (automatic for development & production) | Yes                                    | Manual                                 | H/S                                              |
| Prototyping                                                                                  | Yes                                               | Yes                                               | Optional                               | Optional                               | H/S                                              |
| Structured design<br>techniques (e.g.<br>data flowcharts;<br>relation or transfer<br>charts) | Yes                                               | Yes                                               | Preferably                             | Optional                               | H/S                                              |
| Design reviews                                                                               | Yes<br>(Project team)                             | Yes<br>(Project team)                             | Yes (Project team)                     | Test<br>(Experts)                      | H/S                                              |
| Project management                                                                           | Yes                                               | Yes                                               | Yes                                    | Preferably                             | H/S                                              |



Hochschule

Bonn-Rhein-Sieg





#### Properties of good specifications

- complete, consistent
- non-ambiguous, free of contradictions
- clear, concise, understandable, readable, ...
- refineable, changeable, extendable, ...
- testable, measureable
- should not restrict the following design phases
- refers to well recognized (industrial) standards and applicable laws







# Phases during development / lifecycle



- 1. Collecting information, problem analysis
- 2. Product specification
- 3a. Requirements Specification
- 3b. Design Specification
- 3c. Test Specification
- 4. Functional design
- 5. System integration & test
- 6. Prototyping application



system subsystems modules components











### Methods for representation of processes

- Textual: non-formal description in natural language, ...
- Graphical: Flow chart, Jackson-diagram, statediagram, decision tables, sequence diagram, ...
- Formal: mathematical expressions, UML

 Usually starting textual; finally combination of different methods



### **Example: Structured analysis**

- Graphical analysis method (known since long)
- Splitting complex function into simple elements
  - iterative top-down approach
  - ◆ Data flow, control flow, ...

Result: hierachical document specifying system

behavior and its properties

Advantage: clear notation

Replaced by UML etc.





#### **Flowchart**

- Standard e.g. DIN 66001
- Sequence, selection, repetition
- Only for small structures
- Alternative: structogram





#### Flowchart example "telephone call"









### Jackson diagram

- Hierachical tree diagram
- Refineable
- Flow top-down, left-right
- Separate trees for each task or interrupt



Deutschen Gesetzlichen Unfallversicherung

## Sequence diagram

- Description of processes
  - dynamic, parallel
- State transition due to event
- State=interruptable process
- Events= noninterruptable
- State transition if condition = true







Repeatuntil Loop



Deutschen Gesetzlichen Unfallversicherung

#### Recommendation

- Make your own choice, but be clear
  - What where the criteria of a good specification?
- Structured apporach required
  - ◆ (short) orientation phase
  - ◆ Specifications of
    - requirements, (What)
    - design and test (How)
  - prior any implementation!
  - Finally validation (and refinement iteration)



