১৬শ অধ্যায়

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

- ১. (i) একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 3 মিটার বাড়ালে ক্ষেত্রফল $27\sqrt{3}$ বর্গমিটার বেড়ে যায়।
 - (ii) একটি লোহার পাইপের ভিতরের ও বাইরের ব্যাসার্ধ যথাক্রমে 4 সে.মি. ও 6 সে.মি. ও পাইপের উচ্চতা 6 মিটার।

[ঢাকা বোর্ড ২০২৪]

- (ক) একটি ত্রিভুজের দুইটি বাহুর দৈর্ঘ্য যথাক্রমে $18~\rm h$. ও $16~\rm h$. এবং এদের অন্তর্ভুক্ত কোন 30° হলে, ক্ষেত্রফল নির্ণয় কর।
- (খ) সমবাহু ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

গণিত

(গ) 1 ঘন সে.মি. লোহার ওপন 7.2 গ্রাম হলে, পাইপের লোহার ওজন নির্ণয়

১ নং প্রশ্নের উত্তর

- (ক) মনে করি, ত্রিভুজের বাহুদ্বয় যথাক্রমে a=18 মি. ও b=16 মি. এবং এদের অন্তর্ভুক্ত কোণ $\theta=30^\circ$.
 - \therefore ত্রিভুজটির ক্ষেত্রফল $= \frac{1}{2} ab \sin \theta$ $= \frac{1}{2} \times 18 \times 16 \times \sin 30^{\circ}$ বর্গ মিটার $= \frac{1}{2} \times 18 \times 16 \times \frac{1}{2}$ বর্গ মি. = 72 বর্গ মি.

নির্ণেয় ত্রিভুজের ক্ষেত্রফল 72 বর্গ মি.।

- (খ) মনে করি, সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য a মিটার।
 - \therefore ত্রিভুজটির ক্ষেত্রফল $= rac{\sqrt{3}}{4} a^2$ বর্গ মিটার।

ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য 3 মিটার বাড়ালে প্রত্যেক বাহুর দৈর্ঘ্য হবে (a + 3) মিটার।

এবং ত্রিভুজটির ক্ষেত্রফল
$$= rac{\sqrt{3}}{4}(a+3)^2$$
 বর্গমিটার।

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}(a+3)^2 - \frac{\sqrt{3}}{4}a^2 = 27\sqrt{3}$$

বা,
$$(a+3)^2 - a^2 = 108$$
 [উভয়পক্ষকে $\frac{\sqrt{3}}{4}$ দ্বারা ভাগ করে]

$$4, a^2 + 2.a. 3 + 3^2 - a^2 = 108$$

বা,
$$a^2 + 6a + 9 - a^2 = 108$$

বা,
$$6a = 108 - 9 = 99$$

ৰা,
$$a = \frac{99}{6} = \frac{33}{2} = 16.5$$

$$a = 16.5$$

অর্থাৎ, সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য a=16.5 মিটার।

$$\therefore$$
 সমবাহু ত্রিভুজের ক্ষেত্রফল $=\frac{\sqrt{3}}{4}a^2=\frac{\sqrt{3}}{4}\times(16.5)^2$ বর্গ মি. । $=117.89$ বর্গ মি. (প্রায়)

নির্ণেয় ত্রিভুজটির ক্ষেত্রফল 117.89 বর্গ মি. (প্রায়)।

(গ) মনে করি, পাইপের ভিতরের ব্যাসার্ধ, $r_1 = 4$ সে.মি.

পাইপের বাইরের ব্যাসার্ধ,
$$r_2 = 6$$
 সে.মি.

এবং উচ্চতা, h = 6 মিটার = (6×100) সে.মি. = 600 সে.মি.

∴ পাইপের ভিতরের আয়তন = $\pi r_1^2 h$

এবং পাইপের বাইরের আয়তন = $\pi r_2^2 h$

∴ পাইপের লোহার আয়তন =
$$\pi r_2^2 h - \pi r_1^2 h$$

= $\pi h (r_2^2 - r_1^2)$
= $3.1416 \times 600 (6^2 - 4^2)$ ঘন সে.মি.
= $3.1416 \times 600 (36 - 16)$ ঘন সে.মি.
= $3.1416 \times 600 \times 20$ ঘন সে.মি.

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

∴ 37699.2 ঘন সে.মি. লোহার ওজন = 37699.2 × 7.2 গ্রাম = 271434.24 গ্রাম =
$$\frac{271434.24}{1000}$$
 কি.গ্রাম [∵ 1000 গ্রাম = 1 কি.গ্রাম]

= 37699.2 ঘন সে.মি.

= 271.43 কি.গ্রাম (প্রায়)

নির্ণেয় পাইপের লোহার ওজন 271.43 কি.গ্রাম (প্রায়)।

২. একটি আয়ত ও একটি রম্বসের পরিসীমা পরস্পর সমান। আয়তক্ষেত্রটির দৈর্ঘ্য প্রস্থের দেডগুণ এবং পরিসীমা 180 সে,মি.।

[রাজশাহী বোর্ড ২০২৪]

- (ক) আয়তক্ষেত্রটির ক্ষুদ্রতম বাহুর দৈর্ঘ্য নির্ণয় কর।
- (খ) রম্বসের বৃহত্তম কর্ণটি 72 সে.মি. হলে, এর অপর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (গ) কোনো সমদ্বিবাহ ত্রিভুজের সমান সমান বাহুর দৈর্ঘ্য ভূমির ³/₄ অংশ এবং পরিসীমা আয়তটির পরিসীমার অর্ধেক হলে, ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

২ নং প্রশ্নের উত্তর

(ক) মনে করি, <mark>আয়তক্ষেত্রটি</mark>র প্রস্থ = x সে.মি.

$$\therefore$$
 আয়তক্ষেত্রটির দৈর্ঘ্য $=1\frac{1}{2}\times x$ সে.মি. $=\frac{3}{2}x$ সে.মি.

আয়তক্ষেত্রটির পরিসীমা = 2(দৈর্ঘ্য + প্রস্ত)

=
$$2\left(\frac{3}{2}x + x\right)$$
 সে.মি.
= $2\left(\frac{3x+2x}{2}\right)$ সে.মি. = $5x$ সে.মি.

প্রশ্নমতে, 5x = 180

বা,
$$x = \frac{180}{5}$$

$$\therefore x = 36$$

অর্থাৎ, আয়তক্ষেত্রটির প্রস্থ 36 সে.মি.।

অতএব, আয়তক্ষেত্রটির ক্ষুদ্রতম বাহুর দৈর্ঘ্য 36 সে.মি.।

(খ) দেওয়া আছে, আয়তক্ষেত্রের পরিসীমা = 180 সে.মি.। আবার, একটি আয়ত ও একটি রম্বসের পরিসীমা পরস্পর সমান।

মনে করি, ABCD

রম্বসের পরিসীমা = 180 সে.মি.

রম্বসের বাহুর দৈর্ঘ্য,
$$AB = \frac{180}{4}$$
 সে.মি.

[
 রম্বসের পরিসীমা = 4
 বাহুর দৈর্ঘ্য]

আমরা জানি.

রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে। চিত্রে রম্বসের AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে ছেদ করে।

∴
$$OA = OC = \frac{AC}{2} = \frac{72}{2}$$
 সে.মি. = 36 সে.মি.

এখন, AOB সমকোণী ত্রিভূজ হতে পিথাগোরাসের উপপাদ্য অনুসারে,

$$AB^2 = OA^2 + OB^2$$

$$\mathsf{T}, (45)^2 = (36)^2 + 08^2$$

বা,
$$OB^2 = (45)^2 - (36)^2 = 2025 - 1296 = 729$$

বা,
$$OB = \sqrt{729} = 27$$

$$: OB = 27$$

🗅 রম্বসটির অপর কর্ণের দৈর্ঘ্য 54 সে.মি.।

(গ) মনে করি, ABC একটি সমদ্বিবাহু ত্রিভুজ এবং এর

দেওয়া আছে, আয়তের পরিসীমা =180 সে.মি. প্রশ্নমতে, সমদ্বিবাহু ত্রিভুজের পরিসীমা $=\frac{}{}$ আয়তের পরিসীমা

$$4x + \frac{3x}{4} + \frac{3x}{4} = \frac{180}{2}$$

$$\sqrt[4]{\frac{4x+3x+3x}{4}} = 90$$

Prepared by: ISRAFIL SHARDER AVEEK

বা,
$$\frac{10x}{4} = 90$$

বা,
$$10x = 360$$

বা, $x = \frac{360}{10}$

বা,
$$x = \frac{360}{100}$$

$$\therefore x = 36$$

অর্থাৎ, BC = 36 সে.মি.

$$\therefore AB = AC = \frac{3}{4} \times 36$$
 সে.মি. = 27 সে.মি.

ধরি,
$$a = AB = AC = 27$$
 সে.মি.

∴ সমদিবাহু ত্রিভুজ ABC এর ক্ষেত্রফল

$$=\frac{b}{4}\sqrt{4a^2-b^2}$$

$$=\frac{\frac{36}{4}}{\sqrt{4.(27)^2-(36)^2}}$$
 বৰ্গ সে.মি.

$$= 9\sqrt{2916 - 1296}$$
 বর্গ সে.মি.

$$= 9\sqrt{1620}$$
 বর্গ সে.মি.

$$= 9 \times 18\sqrt{5}$$
 বৰ্গ সে.মি.

নির্ণেয় ত্রিভুজটির ক্ষেত্রফল 362.24 বর্গ সে.মি. (প্রায়)।

লোহার তৈরি একটি আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত 3:2 : 2 এবং আয়তন 768 ঘনমিটার। ঘনবস্তুটিকে গলিয়ে একটি বেলনাকা<mark>র ফা</mark>ঁপা পাইপ তৈরি করা হলো, যার ভিতরের ও বাইরের ব্যাসার্ধ যথাক্রমে 5 সে.মি. ও 6 সে.মি.।

[যশোর বোর্ড ২০২৪]

- (ক) কোনো ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের দৈর্ঘ্যের গড় 11 সে.মি. এবং ক্ষেত্রফল 121 বর্গ সে.মি. হলে, এর সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী লম্ব দূরত নির্ণয় কর।
- (খ) আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল নির্ণয় কর।
- (গ) লোহার পাইপটির উচ্চতা নির্ণয় কর।

৩ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের দৈর্ঘ্যের গড় 11 সে.মি. এবং ক্ষেত্রফল 121 বর্গ সে.মি.
 - \therefore ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের যোগফল $= (2 \times 11)$ সে.মি.

আমরা জরি,

ট্রাপিজিয়ামের ক্ষেত্রফল $=rac{1}{2} imes$ (ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের যোগফল)

× (সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী লম্ব দূরত্ব)

বা, সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী লম্ব দূরত্ব $=rac{2 imes (ট্রাপিজিয়ামের ক্ষেত্রফল)}{\pi$ মান্তরাল বাহুদ্বয়ের যোগফল

$$=\frac{2\times121}{22}$$
 সে.মি. $=11$ সে.মি.

নির্ণেয় লম্ব দূরত 11 সে.মি.।

(খ) দেওয়া আছে,

আয়তাকার ঘনবস্তুর দৈর্ঘ্য : প্রস্থ : উচ্চতা = 3:2:2

এবং আয়তন = 768 ঘন মিটার

ধরি, আয়তাকার ঘনবস্তুর দৈর্ঘ্য, a=3x মিটার

প্রস্থ,
$$b = 2x$$
 মিটার

এবং উচ্চতা,
$$c = 2x$$
 মিটার

 \therefore আয়তাকার ঘনবস্তুর আয়তন =abc ঘন একক

$$= (3x \times 2x \times 2x)$$
 ঘন মিটার $= 12x^3$ ঘন মিটার

প্রশ্নমতে,
$$12x^3 = 768$$

বা,
$$x^3 = \frac{768}{12}$$

বা,
$$x^3 = 64$$

বা,
$$(x)^3 = (4)^3$$

∴ আয়তাকার ঘনবস্তুর দৈর্ঘ্য, a = 3 × 4 মিটার = 12 মিটার প্রস্থ, $b=2\times 4$ মিটার =8 মিটার

এবং উচ্চতা,
$$c=2\times 4$$
 মিটার $=8$ মিটার

আয়তাকার ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল

$$= 2(12 \times 8 + 8 \times 8 + 8 \times 12)$$
 বর্গ মিটার

$$= 2 \times (96 + 64 + 96)$$
 বর্গ মিটার

নির্ণেয় আয়তাকার ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল 512 বর্গ মিটার।

(গ) দেওয়া আছে. আয়তাকার ঘনবস্তুটিকে গলিয়ে একটি বেলনাকার ফাঁপা পাইপ তৈরি করা হয় যার ভিতরের ও বাইরের ব্যাসার্ধ যথাক্রমে 5 সে.মি. ও 6

ধরি, পাইপের বাইরের ব্যাসার্ধ, $ho_1=6$ সে.মি. $=rac{6}{100}$ মিটার =0.06

এবং পাইপের ভেতরের ব্যাসার্ধ, $m r_2=5$ সে.মি. $=rac{5}{100}$ মিটার =0.05

<mark>যেহেতু আয়তাকার ঘনবস্তুটিকে গলিয়ে বেলনাকার ফাঁপা পাইপ তৈরি করা হয়।</mark> সুতরাং, পাইপের বাইরের আয়তন – পাইপের ভেতরের আয়তন = আয়তাকার ঘনবস্তুর আয়তন

ধরি, বেলনাকার পাইপের উচ্চতা = h একক

শর্তমতে,
$$\pi r_1^2 h - \pi r_2^2 h = 768$$

বা,
$$\pi h(r_1^2 - r_2^2) = 768$$

ৰা,
$$\pi h(r_1^2 - r_2^2) = 768$$

ৰা, $h = \frac{768}{\pi(r_1^2 - r_2^2)} = \frac{768}{3.1416 \times \{(0.06)^2 - (0.05)^2\}}$

$$= \frac{768}{3.1416 \times (0.0036 - 0.0025)}$$

$$= \frac{768}{3.1416 \times (0.0011} = 222237.655$$
 পোৱা ।

নির্ণেয় লোহার পাইপের উচ্চত<mark>া 2</mark>222<mark>37.655 মিটা</mark>র (প্রায়)।

- 8. (i) একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 1 মিটার হ্রাস পেলে ক্ষেত্রফল $\sqrt{3}$ বর্গমিটার হ্রাস পায়।
 - (ii) একটি রম্বসের ক্ষেত্রফল 1944 বর্গ সে.মি. এবং বৃহত্তম কর্ণ 72 সে.মি.। [কুমিল্লা বোর্ড ২০২৪]
 - (ক) একটি বৃত্তচাপ কেন্দ্র 60° কোণ উৎপন্ন করে। বৃত্তের ব্যাস 110 সে.মি. হলে, বৃত্তচাপটির দৈর্ঘ্য নির্ণয় কর।
 - (খ) সমবাহু ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য নির্ণয় কর।
 - (গ) রম্বসটির পরিসীমা নির্ণয় কর।

৪ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, ব্যাস = 110 সে.মি.

ধরি, বৃত্তের ব্যাসার্ধ,
$$r = \frac{110}{2}$$
 সে.মি. $= 55$ সে.মি.

বৃত্তচাপের দৈর্ঘ্য = s

এবং বৃত্তচাপ দারা কেন্দ্রে উৎপন্ন কোণ, $heta=60^\circ$

আমুবা জানি
$$c = \frac{\pi r \theta}{r}$$

আমরা জানি,
$$s=\frac{\pi r \theta}{180^\circ}$$

$$\dot{\cdot} \ s=\frac{3.1416\times55\times60^\circ}{180^\circ}$$
সে.মি. $=57.6$ সে.মি. (প্রায়) নির্ণেয় বৃত্তচাপটির দৈর্ঘ্য 57.6 সে.মি. (প্রায়) ।

- (খ) মনে করি, সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য = a মিটার
 - \therefore ত্রিভুজটির ক্ষেত্রফল $= \frac{\sqrt{3}}{4}a^2$ বর্গমিটার

ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য 1 মিটার হ্রাস পেলে ত্রিভুজটির বাহুর দৈর্ঘ্য = (a − 1) মিটার ı

এবং ক্ষেত্রফল
$$=\frac{\sqrt{3}}{4}(a-1)^2$$
 বর্গমিটা

এবং ক্ষেত্রফল
$$= \frac{\sqrt{3}}{4}(a-1)^2$$
 বর্গমিটার প্রশ্নমতে, $\frac{\sqrt{3}}{4}a^2-\frac{\sqrt{3}}{4}(a-1)^2=\sqrt{3}$

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

$$\overline{4}, \frac{\sqrt{3}}{4} \{ a^2 - (a-1)^2 \} = \sqrt{3}$$

বা,
$$a^2 - (a - 1)^2 = \frac{4 \times \sqrt{3}}{\sqrt{3}}$$

বা, $a^2 - (a^2 - 2a + 1) = 4$

বা,
$$a^2 - (a^2 - 2a + 1) = 4$$

বা,
$$a^2 - a^2 + 2a - 1 = 4$$

বা.
$$2a = 4 + 1$$

বা,
$$a = \frac{5}{2} = 2.5$$

$$\therefore$$
 a = 2.5

∴ সমবাহু ত্রিভুজের পত্যেক বাহুর দৈর্ঘ্য 2.5 মিটার।

∴ রম্বসটির ক্ষেত্রফল =
$$\frac{1}{2}$$
 d₁d₂ বর্গ সে.মি.

প্রশ্নতে,
$$\frac{1}{2}$$
d₁d₂ = 1944

বা,
$$\frac{1}{2} \times 72 \times d_2 = 1944$$

বা,
$$36 \times d_2 = 1944$$

বা, $d_2 = \frac{1944}{36}$

বা,
$$d_2 = \frac{1944}{36}$$

$$d_2 = 54$$

আমরা জানি, রম্বসের কর্ণদ্বয় পরস্পরকে সমাকোণে সমদ্বিখণ্ডিত করে।

$$\therefore 0A = 0C = \frac{72}{2} = 36$$
 সে.মি.

$$OB = OD = \frac{54}{2}^2 = 27$$
 সে.মি.

এখন,
$$AOB$$
 সমকোণী ত্রিভুজে, $AB^2 = OA^2 + OB^2$

$$= (36)^2 + (27)^2$$
$$= 1296 + 729 = 2025$$

$$\therefore AB = \sqrt{2025} = 45$$

রম্বসটির পরিসীমা $= 4 \times AB$ সে.মি. $= 4 \times 45$ সে.মি. = 180 সে.মি.

∴ রম্বসটির পরিসীমা 180 সে.মি.।

সামান্তরিক আকৃতির একটি জমির সন্নিহিত বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে 45 মিটার এবং 39 মিটার। জমিটির ক্ষুদ্রতর কর্ণের দৈর্ঘ্য 42 মিটার।

[সিলেট বোর্ড ২০২৪]

- (ক) 54 বর্গ সে.মি. ক্ষেত্রফলবিশিষ্ট কোনো রম্বসের একটি কর্ণের দৈর্ঘ্য 9 সে.মি. হলে, অপর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (খ) বহত্তর সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী লম্বদুরত নির্ণয় কর।
- (গ) জমিটির বৃহত্তর কর্ণের দৈর্ঘ্য নির্ণয় কর।

৫ নং প্রশ্নের উত্তর

(ক) মনে করি, ABCD রম্বসের ক্ষেত্রফল = 54 বর্গ সে.মি.

রম্বসটির কর্ণ $BD = d_1 = 9$ সে.মি. এবং অপর কর্ণ $AC = d_2$ সে.মি.

আমরা জানি, রম্বসের ক্ষেত্রফল $=\frac{1}{2}\times$ কর্ণদ্বয়ের গুণফল

 \therefore রম্বসটির ক্ষেত্রফল $=\frac{1}{2} d_1 d_2$ বর্গ

বা,
$$\frac{1}{2} \times 9 \times d_2 = 54$$

বা,
$$d_2 = \frac{54 \times 2}{9} = 12$$

$$d_2 = 12$$

নির্ণেয় অপর কর্ণের দৈর্ঘ্য 12 সে.মি.।

(খ) মনে করি, ABCD সামান্তরিক আকৃতির জমির সন্নিহিত বাহুদ্বয় AB=45 মিটার এবং AD = 39 মিটার।

এর ক্ষুদ্রতম কর্ণের দৈর্ঘ্য, BD = 42 মিটার

ধরি, ABCD সামান্তরিকের AB = a = 45 মি.

AD = BC = c = 39 মি. এবং কর্ণ BD = b = 42 মি.

D ও C হতে AB এর উপর এবং AB এর বর্ধিতাংশের উপর DF ও CE লম্ব

$$\therefore \Delta ABD$$
 এর অর্ধপরিসীমা, $S = \frac{a+b+c}{2}$

$$= \frac{45+42+39}{2} \, \widehat{\lambda}.$$

$$= \frac{126}{2} \, \widehat{\lambda}. = 63 \, \widehat{\lambda}.$$

$$\therefore \triangle ABD$$
 এর ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{63(63-45)(63-42)(63-39)}$$
 বৰ্গ মি.
= $\sqrt{63\times18\times21\times24}$ বৰ্গ মি.
= $\sqrt{571536}$ বৰ্গ মি.

আবার, $\triangle ABD$ এর ক্ষেত্রফল $=\frac{1}{2} \times AB \times DF$

বা,
$$756 = \frac{1}{2} \times 45 \times DF$$

বা,
$$45 \times DF = 756 \times 2$$

ৰা, DF =
$$\frac{756 \times 2}{45}$$
 = 33.6

$$\therefore DF = 33.6$$

অর্থাৎ, সামান্তরিকের উচ্চতা 33.6 মি.

এক্ষেত্রে, সামান্তরিকের উচ্চতা হলো এর বৃহত্তম সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী

নির্ণেয় বৃহত্তর সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী লম্বদূরত 33.6 মিটার।

(গ) 'খ' হতে প্রাপ্ত, সামান্তরিকের উচ্চতা, DF = CE = 33.6 মি. এবং AD =

$$BC = 36$$
 মি.
এখন সমকোণী ΔBCE হতে পাই,

$$BE^{2} = BC^{2} - CE^{2}$$

$$= (39)^{2} - (33.6)^{2}$$

$$= 1521 - 1128.96$$

= 392.04

$$\therefore BE = \sqrt{392.04} = 19.8$$

$$\therefore AE = AB + BE$$

$$= (45 + 19.8) \, \hat{\lambda} = 64.8 \, \hat{\lambda}$$

এখন, ACE সমকোণী ত্রিভুজ থেকে পাই,

$$AC^2 = AE^2 + CE^2$$

$$= (64.8)^2 + (33.6)^2$$

$$=4199.04 + 1128.96 = 5328$$

$$\therefore AC = \sqrt{5328} = 72.99$$
 (প্রায়)

অর্থাৎ সামান্তরিকটির বৃহত্তম কর্ণের দৈর্ঘ্য 72.99 মি. (প্রায়)

নির্ণেয় জমিটির বৃহত্তর কর্ণের দৈর্ঘ্য 72.99 মি. (প্রায়)।

৬. একটি বসদ্বিবাহু ত্রিভুজের পরিসীমা 6 সে.মি.। এর সমান সমান বাহুর দৈর্ঘ্য

[বরিশাল বোর্ড ২০২৪]

- (ক) একটি ঘনকের পৃষ্ঠতলের কর্ণের দৈর্ঘ্য $2\sqrt{2}$ সে.মি. হলে, এর সমগ্রতলের ক্ষেত্রফল নির্ণয় কর।
- (খ) ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (গ) ত্রিভুজের পরিসীমা রম্বসের একটি কর্ণেল দৈর্ঘ্যের সমান এবং রম্বসের ক্ষেত্রফল 24 বর্গ সে.মি.। রম্বসের পরিসীমা নির্ণয় কর।

৬ নং প্রশ্নের উত্তর

- (ক) মনে করি, ঘনকটির ধার a
 - \therefore ঘনকটির পৃষ্ঠতলের কর্ণের দৈর্ঘ্য $=\sqrt{2a}$

প্রশ্নমতে,
$$\sqrt{2}a = 2\sqrt{2}$$

athematics.com.bd

গণিত ১৬শ অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

বা,
$$a = \frac{2\sqrt{2}}{\sqrt{2}} = 2$$

∴ ঘনকটির সমগ্রতলের ক্ষেত্রফল = $6a^2$

$$= 6 \times 2^2$$
 বর্গ সে.মি.
= 6×4 বর্গ সে.মি.

নির্ণেয় ঘনকের সমগ্রকের ক্ষেত্রফল 24 বর্গ সে.মি.।

(খ) মনে করি, সমদ্বিবাহু ত্রিভুজের ভূমির দৈর্ঘ্য b সে.মি.।

$$= b \times \frac{2}{3}$$
 সে.মি. $= \frac{2b}{3}$ সে.মি

 $=b imesrac{2}{3}$ সে.মি. $=rac{2b}{3}$ সে.মি. এখানে, সমদ্বিবাহু ত্রিভুজের পরিসীমা =6 সে.মি.

প্রামতে,
$$b + \frac{2b}{3} + \frac{2b}{3} = 6$$

বা, $\frac{3b+2b+2b}{3} = 6$

$$\overline{a}, \frac{3b+2b+2b}{3} = 6$$

বা,
$$\frac{7b}{3} = 6$$
বা, $7b = 18$

বা,
$$b = \frac{18}{7} = 2.6$$
 (প্রায়)

ধরি, a = 1.7 সে.মি.

∴ সমদিবাহু ত্রিভুজের ক্ষেত্রফল
$$=$$
 $\frac{b}{4}\sqrt{4a^2-b^2}$ $=$ $\frac{2.6}{4}\sqrt{4\times(1.7)^2-(2.6)^2}$ বর্গ

$$=\frac{2.6}{4}\sqrt{4\times(1.7)^2-(2.6)^2}$$
 বৰ্গ

সে.মি.

$$=rac{2.6}{4}\sqrt{11.56-6.76}$$
 বর্গ সে.মি.
 $=rac{2.6}{4}\sqrt{4.8}$ বর্গ সে.মি.
 $=1.42$ বর্গ সে.মি. (প্রায়)

নির্ণেয় ত্রিভূজটির ক্ষেত্রফল 1.42 বর্গ সে.মি.(প্রায়)।

(গ) দেওয়া আছে, সমদ্বিবাহু ত্রিভুজের পরিসীমা = 6 সে.মি.

ত্রিভুজের পরিসীমা রম্বসের একটি কর্ণেল

দৈর্ঘ্যের সমান।

এবং রম্বসের অপর কর্ণের দৈর্ঘ্য, AC =

প্রমতে,
$$\frac{1}{2}$$
d₁d₂ = 24

বা,
$$\frac{1}{2} \times 6 \times d_2 = 24$$

বা,
$$3d_2 = 24$$

বা,
$$d_2 = \frac{24}{3} = 8$$

$$d_2 = 8$$

আমরা জানি, রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে।

$$: OA = OC = \frac{d_2}{2} = \frac{8}{2} = 4$$
 সে.মি.

$$OB = OD = rac{d_1^2}{2} = rac{6}{2} = 3$$
 সে.মি. এখন, AOB সমকোণী ত্রিভুজে, $AB^2 = OA^2 + OB^2$

$$= 4^2 + 3^2 = 16 + 9 = 25$$

$$\therefore AB = \sqrt{25} = 5$$

আমরা জানি, রম্বসের পরিসীমা = 4 × এক বাহুর দৈর্ঘ্য

$$\therefore$$
 ABCD রম্বসের পরিসীমা = $4 \times AB$

$$= (4 \times 5)$$
 সে.মি. $= 20$ সে.মি.

প্রিমিতি

নির্ণেয় রম্বসের পরিসীমা 20 সে.মি.।

- (i) একটি সামান্তরিকের বাহুর দৈর্ঘ্য 36 সে.মি. ও 28 সে.মি.। এর ক্ষুদ্রতম কর্ণটি 32 সে.মি.।
 - (ii) একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে এর ক্ষেত্রফল $30\sqrt{3}$ বর্গমিটার বৃদ্ধি পায়।

[দিনাজপুর বোর্ড ২০২৪]

- (ক) একটি সুষম পঞ্চভুজের প্রতি বাহুর দৈর্ঘ্য 8 সে.মি. হলে, এর ক্ষেত্রফল
- (খ) (ii) নং উদ্দীপকের আলোকে সমবাহু ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (গ) (i) নং থেকে সামান্তরিকের অপর কর্ণের দৈর্ঘ্য নির্ণয় কর।

৭ নং প্র**শ্নে**র উত্তর

(ক) মনে করি.

সুষম পঞ্জুজের বাহুর দৈর্ঘ্য a=8 সে.মি.

এবং বাহুর সংখ্যা,
$$n=5$$

আমরা জানি, n সংখ্যক বাহুবিশিষ্ট সুষম বহুভূজের ক্ষেত্রফল

$$= \frac{na^2}{4} \cot \frac{180}{n}$$

∴ সুষম পঞ্চভুজের ক্ষেত্রফল
$$=\frac{5\times 8^2}{4}\cot\frac{180^\circ}{5}$$
 বর্গ সে.মি. $=80\times\cot36^\circ$ বর্গ সে.মি.

$$= 80 \times \cot 36^{\circ}$$
 বৰ্গ সে.মি.
= 80×1.376 বৰ্গ সে.মি.

= 110.08 বর্গ সে.মি. (প্রায়)

নির্ণেয় সুষম পঞ্চভুজের ক্ষেত্রফল 110.08 বর্গ সে.মি. (প্রায়)।

(খ) মনে করি, সমবাহু ত্রিভুজের প্রতিটি বাহুর দৈর্ঘ্য a মিটার

$$\therefore$$
 সমবাহু ত্রিভূজের ক্ষেত্রফল $= \frac{\sqrt{3}}{4} a^2$ বর্গমিটার ত্রিভূজিটির প্রত্যেক বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে

এবং ক্ষেত্রফল =
$$\frac{\sqrt{3}}{4}(a+4)^2$$
 বর্গমিটার

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}(a+4)^2 - \frac{\sqrt{3}}{4}a^2 = 30\sqrt{3}$$

বা,
$$\frac{\sqrt{3}}{4}$$
 { $(a + 4)^2 - \frac{\sqrt{3}}{4}a^2 = 30\sqrt{3}$
বা, $(a + 4)^2 - a^2 = 30 \times 4$

$$4, (a + 4)^2 - a^2 = 30 \times 4$$

বা,
$$a^2 + 2$$
. a. $4 + 4^2 - a^2 = 120$

বা,
$$a^2 + 8a + 16 - a^2 = 120$$

বা,
$$a = \frac{104}{8} = 13$$

$$\therefore$$
 সমবাহু ত্রিভুজটির ক্ষেত্রফল $= rac{\sqrt{3}}{4} imes (13)^2$ বর্গমিটার $= rac{\sqrt{3}}{4} imes 169$ বর্গমিটার $= 73.18$ বর্গমিটার (প্রায়)

নির্ণেয় ত্রিভুজের ক্ষেত্রফল 73.18 বর্গমিটার (প্রায়)

(গ) মনে করি, ABCD সামান্তরিকের AB = DC = 36 সে.মি.

C ও D হতে AB এর বর্ধিতাংশ ও AB এর উপর যথাক্রমে CE ও DF লম্ব আঁকি।

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

তাহলে. সামান্তরিকের উচ্চতা DF = CE

:
$$\Delta ABD$$
 এর ক্ষেত্রফল = $\sqrt{s(s-AB)(s-BD)(s-AD)}$

$$= \sqrt{48(48-36)(48-32)(48-28)}$$
 বর্গ সে.মি.
$$= \sqrt{48\times12\times16\times20}$$
 বর্গ সে.মি.
$$= \sqrt{184320}$$
 বর্গ সে.মি.
$$= 429.33$$
 বর্গ সে.মি. (প্রায়)

আবার, $\triangle ABD$ এর ক্ষেত্রফল $=\frac{1}{2}AB \times DF$

বা,
$$429.33 = \frac{1}{2} \times 36 \times DF$$

বা, $18 \times DF = 429.33$

বা, DF =
$$\frac{429.33}{18}$$
 = 23.85

এখন, BCE সমকোণী ত্রিভুজে,
$$BE^2 + CE^2 = BC^2$$

বা,
$$BE^2 = BC^2 - CE^2 = (28)^2 - (23.85)^2 = 215.1775$$

$$\therefore BE = \sqrt{215.1775} = 14.67$$
 (প্রায়)

$$\therefore$$
 AE = AB + BE = 36 + 14.67 = 50.67

আবার, ACE সমকোণী ত্রিভুজ থেকে পাই,

$$AC^2 = AE^2 + CE^2 = (50.67)^2 + (23.85)^2 = 3136.2714$$

$$\therefore AC = \sqrt{3136.2714} = 56$$

অর্থাৎ, অপর কর্ণের দৈর্ঘ্য 56 সে.মি.।

নির্ণেয় অপর কর্ণের দৈর্ঘ্য 56 সে.মি.।

 ৬. একটি আয়তাকার ঘনবস্তু 48 বর্গমিটার ক্ষেত্রফলবিশিষ্ট ভূমির উপর দ্বায়মান। এর উচ্চতা 3 মিটার এবং কর্ণের দৈর্ঘ্য 13 মিটার।

[ময়মনসিংহ বোর্ড ২০২৪]

- (ক) একটি ত্রিভুজের দুইটি বাহুর দৈর্ঘ্য যথাক্রমে 19 সে.মি. ও 20 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ 45° হলে ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (খ) ঘনবস্তুটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- (গ) ঘনবস্তুর কর্ণের দৈর্ঘ্যকে বাইরের ব্যাস, উচ্চতাকে ভিতরের ব্যাস ধরে 5 সে.মি. উচ্চতাবিশিষ্ট লোহার পাইপ তৈরি করা হলো। প্রতি ঘন সে.মি. লোহার ওজন 7.2 গ্রাম হলে, পাইপের লোহার ওজন নির্ণয় কর।

৮ নং প্রশ্নের উত্তর

(ক) মনে করি, ত্রিভুজের বাহুদ্বয় যথাক্রমে a = 19 সে.মি., ও b = 20 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ, $\theta = 45^{\circ}$

$$\therefore$$
 ত্রিভুজটির ক্ষেত্রফল $=\frac{1}{2}$ ab $\sin\theta$ $=\frac{1}{2}\times 19\times 20\times \sin45^\circ$ $=\frac{1}{2}\times 19\times 20\times \frac{1}{\sqrt{2}}$ বর্গ সে.মি. $=134.35$ বর্গ সে.মি. (প্রায়)

নির্ণেয় ত্রিভুজের ক্ষেত্রফল 134.35 বর্গ সে.মি. (প্রায়)।

- (খ) মনে করি, আয়তাকার ঘনবস্তুর দৈর্ঘ্য = a মিটার
 - এবং আয়তাকার ঘনবস্তুর প্রস্থ = b মিটার
 - ∴ ভূমির ক্ষেত্রফল = ab বর্গমিটার = 48 বর্গমিটার

আমরা জানি, আয়তাকার ঘনবস্তুর কর্ণ, $d = \sqrt{a^2 + b^2 + c^2}$ মিটার এখানে, আয়তাকার ঘনবস্তুর উচ্চতা c=3 মিটার।

প্রশ্নমতে,
$$13 = \sqrt{a^2 + b^2 + 3^2}$$

বা,
$$169 = a^2 + b^2 + 9$$
 [উভয়পক্ষকে বর্গ করে]

$$a^2 + b^2 = 169 - 9$$

বা,
$$a^2 + b^2 = 160$$

$$(a + b)^2 = a^2 + b^2 + 2ab$$

$$= 160 + 96 = 256$$

বা,
$$a + b = \sqrt{256}$$

$$a + b = 16....(1)$$

$$a - b = 8 \dots (2)$$

এখন, (1) নং এবং (2) নং যোগ করে পাই,

$$a + b + a - b = 16 + 8$$

বা,
$$2a = 24$$
 বা, $a = \frac{24}{2} = 12$

$$a + b - a + b = 16 - 8$$

বা,
$$2b = 8$$

বা,
$$b = \frac{8}{2} = 4$$

নির্ণেয় দৈর্ঘ্য 12 মিটার এবং প্রস্থ 4 মিটার।

(গ) দেওয়া আছে, ঘনবস্তুর কর্ণের দৈর্ঘ্য = 13 মিটার

∴ লোহার পাইপের বাইরের ব্যাস 13 মিটার

এবং ভিতরের ব্যাস 3 মিটার।

ধরি, পাইপের বাইরের ব্যাসার্ধ,
$$r_1=rac{13}{2}=6.5$$
 মিটার

পাইপের ভিতরের ব্যাসার্ধ, $r_2=rac{3}{2}=1.5$ মিটার

এখানে, পাইপের উচ্চতা, h = 5 সে.মি.

তাহলে, পাইপের বাইরের আয়তন = $\pi r_1^2 h$ ঘন একক

এবং পাইপের ভিতরের <mark>আ</mark>য়তন = πr2h ঘন একক

∴ পাইপের লোহার আয়তন = πr₁²h − πr₂²h

$$=\pi h(r_1^2-r_2^2)$$

$$-\pi ((650)^2)$$
 (15

$$= 5\pi \{(650)^2 - (150)^2\}$$
 ঘন সে.মি.

$$= 5 \times 3.1416 \times 400000$$
 ঘন সে.মি.

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

∴ 6283200 ঘন সে.মি. লোহার ওজন = 6283200 × 7.2 গ্রাম

[·· 1000 গ্রাম = 1 কি.গ্রাম]

নির্ণেয় পাইপের লোহার ওজন 45239.04 কি.গ্রাম।

- ৯. (i) একটি বৃত্তের পরিধি 340 সে.মি.।
 - (ii) একটি ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে 37 সে.মি. ও 25 সে.মি.।

[ঢাকা বোর্ড ২০২৩]

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

- (ক) একটি ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 294 বর্গমিটার হলে, এর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (খ) উদ্দীপকের আলোকে বৃত্তে অন্তর্লিখিত বর্গক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- (গ) ট্রাপিজিয়ামের অপর বাহুদ্বয়ের দৈর্ঘ্য 10 সে.মি. ও 14 সে.মি. হলে ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয় কর।

- (ϕ) মনে করি, ঘনকটির ধার = a
 - \therefore ঘনকটির সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল $=6a^2$

প্রশ্নমতে,
$$6a^2 = 294$$

বা,
$$a^2 = \frac{294}{6}$$

বা,
$$a^2 = 49$$

বা,
$$a = \sqrt{49}$$

 \therefore ঘনকটির কর্ণের দৈর্ঘ্য = $\sqrt{3}a$

$$=\sqrt{3}\times7$$
 মিটার

 $= 7\sqrt{3}$ মিটার বা 12.12 মিটার (প্রায়)

নির্ণেয় কর্ণের দৈর্ঘ্য $7\sqrt{3}$ মিটার বা 12.12 মিটার (প্রায়) ।

- (খ) ধরি, বৃত্তের ব্যাসার্ধ = r সে.মি.
 - ∴ বুত্তের ব্যাস = 2r সে.মি.
 - ∴ বৃত্তের পরিধি = 2πr সে.মি.

আমরা জানি,

প্রশ্নমতে,
$$2\pi r = 340$$

থান্নমতে,
$$2\pi r = 340$$

বা, $2r = \frac{340}{\pi} = \frac{340}{3.1416} = 108.2251 সে.মি. প্রোয়$

∴ বর্গের কর্ণের দৈর্ঘ্য = বৃত্তটির ব্যাস = 108.2251 সে.মি. (প্রায়)

ধরি, বর্গের বাহুর দৈর্ঘ্য = a সে.মি.

 \therefore বর্গের কর্ণের দৈর্ঘ্য = $\sqrt{2}a$

$$\therefore \sqrt{2}a = 108.2251$$

বা,
$$a = \frac{108.2251}{\sqrt{2}}$$

- ∴ a = 76.527 সে.মি. (প্রায়)
- বর্গের বাহুর দৈর্ঘ্য = 76.527 সে.মি. (প্রায়)
- ∴ বৃত্তে অন্তর্লিখিত বর্গক্ষেত্রের ক্ষেত্রফল = a^2

$$=(76.527)^2$$
 বৰ্গ সে.মি.

= 5856.382 বর্গ সে.মি. (প্রায়)

নির্ণেয় ক্ষেত্রফল 5856.382 বর্গ সে.মি. (প্রায়)।

(গ) মনে করি, ABCD ট্রাপিজিয়ামের AB = 37 সে.মি., CD = 25 সে.মি., AD = 10 সে.মি., BC = 14 সে.মি.। C ও D থেকে AB এর উপর যথাক্রমে CF ও DE লম্ব টানি। ফলে, CDEF একটি আয়তক্ষেত্র

উৎপন্ন হলো। যার EF = CD = 25 সে.মি.।

ধরি,
$$AE = x$$
 এবং $DE = CF = h$

 \therefore BF = AB - AF = 37 - (AE + EF) = 37 - (x + 25) = 12 - x এখন, ADE সমকোণী ত্রিভুজে, $AE^2 + DE^2 = AD^2$

$$7, (12 - x)^2 + h^2 = (14)^2$$

$$71, 144 - 24x + x^2 + h^2 = 196$$

বা,
$$144 - 24x + 100 = 196$$
 [(i) হতে]

বা,
$$244 - 24x = 196$$

বা. 24x = 244 - 196

বা,
$$24x = 48$$

বা,
$$x = \frac{48}{24}$$

$$\therefore x = 2$$

x-এর মান (i) নং এ বসিয়ে পাই, $2^2 + h^2 = 100$

বা,
$$4 + h^2 = 100$$

বা,
$$h^2 = 100 - 4 = 96$$

বা,
$$h = \sqrt{96} = 9.798$$
 (প্রায়)

- ∴ ABCD ট্রাপিজিয়ামটির ক্ষেত্রফল
- $=rac{1}{2}$ (সমান্তরাল বাহুদ্বয়ের যোগফল imes সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব

$$=\frac{1}{2}(AB + CD) \times h$$
 বৰ্গ একক

$$=\frac{1}{2}(37+25)\times 9.798$$
 বর্গ সে.মি.

$$=\frac{1}{2}\times62\times9.798$$
 বর্গ সে.মি. = 303.738 বর্গ সে.মি. (প্রায়)

নির্ণেয় ট্রাপিজিয়ামটির ক্ষেত্রফল 303.738 বর্গ সে.মি. (প্রায়)।

১০. তোমার বিদ্যালয়ের আয়তাকার হলরুম এবং বর্গাকার ক্লাসরুমের পরিসীমা সমান। <mark>হলরুমের ভিতরের</mark> দৈর্ঘ্য প্রস্থের দেড়গুণ এবং হলরুমটিতে টাইলস করতে প্রতি বর্গমি<mark>টার 75 টাকা হিসাবে মো</mark>ট 45,000 টাকা খরচ হয়। রুম দুইটিতে 50 সে.মি. বর্গাকার টাইলস লাগানো হলো।

[রাজশাহী বোর্ড ২০২৩]

- (ক) হলরুমের ক্ষেত্রফল নির্ণয় কর।
- (খ) হলরুমের ভিতরের পরিসীমা নির্ণয় <mark>কর</mark>।
- (গ) রুম দুইটি টাইলস করতে কতটি টাইলস লাগবে? নির্ণয় কর।

১০ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, আয়তাকার হলরুটিকে টাইলস করতে প্রতি বর্গমিটার 75 টাকা হিসেবে মোট 45000 টাকা খরচ হয়।

অর্থাৎ, 75 টাকা খরচ হয় 1 বর্গমিটার

$$\therefore$$
 1 " " $\frac{1}{75}$ "

নির্ণেয় হলরুমের ক্ষেত্রফল 600 বর্গমি<mark>টার।</mark>

- (খ) মনে করি, আয়তাকার হলরুমের ভিতরের প্রস্থ = x মিটার
 - ∴ আয়তাকার হলরুমের ভিতরের দৈর্ঘ্য $= ext{x} imes 1^{rac{1}{2}}$ মিটার

$$= X \times \frac{3}{2}$$
 বা $\frac{3X}{2}$ মিটার

আয়তাকার হলরুমের ভিতরের ক্ষেত্রফ

$$= \frac{3x}{2} \times x বর্গমি$$
$$= \frac{3x^2}{2} বর্গমিটার$$

<mark>'ক' হতে প্রাপ্ত, আয়তাকার হলরুমের ভিতরের ক্ষেত্রফল 600</mark> বর্গমিটার

প্রমতে,
$$\frac{3x^2}{2} = 600$$

বা,
$$3x^2 = 1200$$

বা,
$$x^2 = \frac{1200}{3} = 400$$

বা,
$$x = \sqrt{400}$$
 : $x = 20$

অর্থাৎ, হলরুমের ভিতরের প্রস্ত = 20 মিটার

- \therefore হলরুমের ভিতরের দৈর্ঘ্য $=rac{3 imes20}{2}$ মিটার =30 মিটার
- ∴ হলরুমের ভিতরের পরিসীমা = 2(দৈর্ঘ্য + প্রস্থ)

$$=2 imes 50$$
 মিটার $=100$ মিটার

নির্ণেয় পরিসীমা 100 মিটার।

- (গ) 'ক; হতে প্রাপ্ত, হলরুমের ক্ষেত্রফল = 600 বর্গমিটার
 - 'খ' হতে প্রাপ্ত, হলরুমের পরিসীমা = 100 মিটার
 - প্রশ্নমতে, বর্গাকার ক্লাসরুমের পরিসীমা = হলরুমের পরিসীমা

গণিত ১৬শ অধ্যায়

প্রিমিতি Prepared by: ISRAFIL SHARDER AVEEK

- ∴ বর্গাকার ক্লাসরুমের পরিসীমা = 100 মিটার
- \therefore বর্গাকার ক্লাসরুমের দৈর্ঘ্য $= rac{100}{4}\,$ মিটার $= 25\,$ মিটার
- ∴ বর্গাকার ক্লাসরুমের ক্ষেত্রফল = (দৈর্ঘ্য)^২

 $= (25)^2$ বর্গমিটার = 625 বর্গমিটার

ক্লম দুইটির মোট ক্ষেত্রফল = (600+625) বর্গমিটার = 1225 বর্গমিটার এখানে, বর্গাকার টাইলসের দৈর্ঘ্য = 50 সে.মি.

=
$$\frac{50}{100}$$
 মিটার + [∵100 সে.মি. = 1মি.]
= 0.5 মিটার

- \therefore বর্গাকার টাইলসের ক্ষেত্রফল $= (0.5)^2$ বর্গমিটার = 0.25 বর্গমিটার
- \therefore রুম দুইটি টাইলস করতে টাইলস লাগবে $rac{1225}{0.25}$ টি =4900টি। নির্ণেয় টাইলস 4900টি।
- ১১. (i) একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 10 মিটার বাডালে ক্ষেত্রফল $100\sqrt{3}$ বর্গমিটার বেডে যায়।
 - (ii) 6 সে.মি., 4 সে.মি. এবং 10 সে.মি. ধারবিশিষ্ট তিনটি ধাতব ঘনককে গলিয়ে একটি নতুন ঘনক তৈরি করা হলো।

[যশোর বোর্ড ২০২৩]

- (ক) রম্বসের দুইটি কর্ণের দৈর্ঘ্য যথাক্রমে 20 সে.মি. এবং 24 সে.মি.। রম্বসের ক্ষেত্রফল নির্ণয় কর।
- (খ) (i) অনুসারে সমবাহু ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (গ) (ii) অনুসারে নতুন ঘনকটির কর্ণের দৈর্ঘ্য নির্ণয় কর।

১১ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, রম্বসের একটি কর্ণ, $d_1 = 20$ সে.মি. এবং অপর কর্ণ, d₂ = 24 সে.মি.

আমরা জানি, রম্বসের ক্ষেত্রফল $=\frac{1}{2} \times$ কর্ণ দুইটির গুণফল

 \therefore রম্বসের ক্ষেত্রফল $=\frac{1}{2} \times d_1 d_2$

$$=\frac{1}{2} \times 20 \times 24$$
 বর্গ সে.মি. = 240 বর্গ সে.মি.

নির্ণেয় রম্বসের ক্ষেত্রফল 240 বর্গ সে.মি.।

- (খ) (i) হতে, মনে করি, সমবাহু ত্রিভুজের প্রত্যেক বাহু<mark>র দৈর্ঘ্য</mark> a মিটার
 - \therefore ত্রিভুজটির ক্ষেত্রফল $\frac{\sqrt{3}}{4}a^2$ বর্গমিটার

ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য 10 মিটার বাড়ালে

ত্রিভুজটির ক্ষেত্রফল
$$= \frac{\sqrt{3}}{4}(a+10)^2$$
 বর্গমিটার প্রশ্নমতে, $\frac{\sqrt{3}}{4}(a+10)^2 - \frac{\sqrt{3}}{4}a^2 = 100\sqrt{3}$

- বা, $(a+10)^2-a^2=400$ [উভয় পক্ষকে $rac{\sqrt{3}}{4}$ দ্বারা ভাগ করে]
- $\overline{a}, a^2 + 20a + 100 a^2 = 400$
- বা, 20a = 300 বা, $a = \frac{300}{20} = 15$
- ∴ a = 15
- \therefore সমবাহু ত্রিভুজটির ক্ষেত্রফল $=\frac{\sqrt{3}}{4} \times (15)^2$ বর্গমিটার = 97.428 বর্গমিটার (প্রায়)

নির্ণেয় সমবাহু ত্রিভুজটির ক্ষেত্রফল 97.428 বর্গমিটার (প্রায়)।

- (গ) আমরা জানি, ঘনকের ধার a একক হলে,
 - ঘনকের আয়তন = a^3 ঘন একক

এবং কর্ণের দৈর্ঘ্য $=\sqrt{3}a$ একক

এখানে, তিনটি ঘনকের ধার যথাক্রমে 6 সে.মি., 8 সে.মি. ও 10 সে.মি.

∴ নতুন ঘনকের আয়তন = (6³ + 8³ + 10³) ঘন সে.িম.

শর্তমতে, $a^3 = 1.728$

বা, a =
$$\sqrt[3]{1728}$$
 = 12

- $\therefore a = 12$
- নতুন ঘনকের ধার 12 সে.মি.
- \therefore নতুন ঘনকের কর্ণ = $\sqrt{3}a = \sqrt{3} \times 12$ সে.মি.

নির্ণেয় নতুন ঘনকের কর্ণের দৈর্ঘ্য 20.7876 সে.মি.।

১২. একটি সামান্তরিকের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য যথাক্রমে 20 সে.মি. ও 15 সে.মি. এবং ক্ষুদ্রতর কর্ণের দৈর্ঘ্য 16 সে.মি.।

আবার, একটি লোহার পাইপের বাইরের ব্যাস 8 সে.মি. এবং ভিতরের ব্যাস 6 সে.মি. এবং পাইপটির উচ্চতা 10 মিটার 1 ঘন সে.মি. পাইপের লোহার ওজন 7.2 গ্রাম।

[কুমিল্লা বোর্ড ২০২৩]

- (ক) একটি বৃত্তের ব্যাস ও পরিধির পার্থক্য 25 সে.মি. হলে বৃত্তটির ব্যাসার্ধ
- (খ) সামান্তরিকটির অপর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (গ) পাইপটির লোহার ওজন নির্ণয় কর।

১২ নং প্রশ্নের উত্তর

- (Φ) ধরি, বৃত্তটির ব্যাসার্ধ = r
 - ∴ বৃত্তটির ব্যাস = 2r
 - ∴ বত্তটির পরিধি =2πτ
 - প্রশ্নমতে, $2\pi r 2r = 25$
 - বা, $2r(\pi 1) = 25$
 - বা, 2r(3.1416 1) = 25
 - বা, 2r × 2.1416 = 25
 - বা, $r = \frac{25}{2 \times 2.1416} = 5.837$ প্রায়
 - ∴ r = 5.837 (প্রায়)

নির্ণেয় বৃত্তটির ব্যাসার্ধ 5.837 সে.মি. (প্রায়)।

(খ) মনে করি, ABCD সামান্তরিকের AB = a =20 সে.মি., AD = BC = 15 সে.মি. এবং কৰ্ণ BD = b = 16 সে.মি.। D ও C থেকে AB এর ওপর ও AB এর বর্ধিতাংশের ওপর DF ও CE লম্ব টানি।

- B, D ও A, C যোগ করি।

B, D ও A, C যোগ কার।
$$\therefore \Delta ABD \text{ এর আর্ধ-পরিসীমা } S = \frac{a+b+c}{2}$$

$$= \frac{20+16+15}{2} = 25.5 \text{ (স.ম.)}$$

- $\therefore \Delta$ ক্ষেত্র ABD এর ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$
- $=\sqrt{25.5(25.5-20)(25.5-16)(25.5-15)}$ বৰ্গ সে.মি.
- $=\sqrt{25.5 \times 5.5 \times 9.5 \times 10.5}$ বৰ্গ সে.মি.
- = $\sqrt{13989.9375}$ বৰ্গ সে.মি. = 118.279 বৰ্গ সে.মি. (প্ৰায়)
- আবার, $\Delta ext{ABD}$ এর ক্ষেত্রফল $=rac{1}{2} ext{AB} imes ext{DE}$

বা 118.279 =
$$\frac{1}{2} \times 20 \times DF$$

বা, DF =
$$\frac{118.279}{10}$$
 = 11.8279

- DF = 11.83 (প্রায়)
- ∴ CE = DF = 11.83 (প্রায়)
- এখন, BCE সমকোণী ত্রিভুজে, BE $^2 + CE^2 = BC^2$

বা,
$$BE^2 = BC^2 - CE^2$$

= $(15)^2 - (11.83)^2 = 85.0511$

- ∴ BE = √85.0511 = 9.22 (প্রায়)
- $\therefore AE = AB + BE = 20 + 9.22 = 29.22$

আবার, ACE সমকোণী ত্রিভুজ থেকে পাই,

$$AC^2 = AE^2 + CE^2$$

$$= (29.22)^2 + (11.83)^2 = 993.7573$$

১৬শ অধ্যায়

গণিত

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

 $\therefore AC = \sqrt{993.7573} = 31.52$ (প্রায়) নির্ণেয় অপর কর্ণের দৈর্ঘ্য 31.52 সে.মি. (প্রায়)।

(গ) দেওয়া আছে, পাইপের ভিতরের ব্যাস = 6 সে.মি.

∴ পাইপের ভিতরের ব্যাসার্ধ, $r_1 = \frac{6}{3} = 3$ সে.মি.

পাইপের বাইরের ব্যাস = 8 সে.মি.

 \therefore পাইপের বাইরের ব্যাসার্ধ, $\mathbf{r}_2=\frac{8}{2}=4$ সে.মি.

এবং পাইপটির উচ্চতা, h = 10 মিটার = (10×100) সে.মি.

= 1000 সে.মি.

∴ পাইপের লোহার আয়তন = পাইপের বাইরের আয়তন – পাইপের ভিতরের আয়তন

 $= \pi r_2^2 h - \pi r_1^2 h$ = $\pi h (r_2^2 - r_1^2)$

 $=1000 \pi (4^{2}-3^{2})$ ঘন সে.মি.

= 1000 × 3.1416(16 – 9) ঘন সে.মি.

= 1000 × 3.1416 × 3 ঘন সে.মি.

= 21991.2 ঘন সে.মি.

এখন, 1 ঘন সে.মি. পাইপের লোহার ওজন 7.2 গ্রাম

∴ 21991.2 ঘন সে.মি. পাইপের লোহার ওজন = 21991.2 × 7.2 গ্রাম

= 158336.64 গ্রাম

 $=\frac{158336.67}{1000}$ গ্রাম [: 1000 গ্রাম =1 কি. গ্রাম]

= 158.337 কি. গ্রাম (প্রায়)

নির্ণেয় পাইপটির লোহার ওজন 158.337 কি. গ্রাম (প্রায়)।

১৩. একটি বৃত্তের ব্যাসার্ধ 5 সে.মি.। একটি সমবৃত্তভূমিক সিলিভারের <mark>আ</mark>য়তন 150π ঘন সে.মি. এবং সিলিভারটির ভূমির ব্যাসার্ধ ঐ বৃত্তটির ব্যাসার্ধের

[চট্টগ্রাম বোর্ড ২০২৩]

- (ক) একটি সমবাহু ত্রিভুজের পরিসীমা 12 সে.মি. হলে, এর ক্ষেত্রফল নির্ণয়
- (খ) সিলিভারটির বক্রতলের ক্ষেত্রফল নির্ণয় কর।
- (গ) উল্লিখিত বৃত্তটির ক্ষেত্রফল ও ঐ বৃত্তে অন্তর্লিখিত বর্গের ক্ষেত্রফলের <mark>পা</mark>র্থক্য নির্ণয় কর।

১৩ নং প্রশ্নের উত্তর

- (ক) ধরি, সমবাহু ত্রিভুজের প্রতিটি বস্তুর দৈর্ঘ্য = a একক
 - : সমবাহু ত্রিভুজের পরিসীমা = (a + a + a) একক = 3a একক

এবং সমবাহু ত্রিভুজের ক্ষেত্রফল $=rac{\sqrt{3}}{4}a^2$ বর্গ একক

প্রশ্নমতে, 3a = 12

বা,
$$a = \frac{12}{3} = 4$$

- $\therefore a = 4$
- সমবাহু ত্রিভুজের প্রতিটি বাহুর দৈর্ঘ্য 4 সে.মি.
- \therefore সমবাহু ত্রিভুজটির ক্ষেত্রফল $=\frac{\sqrt{3}}{2}\times 4^2$ বর্গ সে.মি.

 $=\sqrt{3}\times 4$ বর্গ সে.মি.

= 6.928 বর্গ সে.মি. (প্রায়)

নির্ণেয় ক্ষেত্রফল 6.928 বর্গ সে.মি. (প্রায়)।

- (খ) দেওয়া আছে, একটি বৃত্তের ব্যাসার্ধ, r=5 সে.মি.
 - \therefore সিলিন্ডারের ভূমির ব্যাসার্ধ, r=5 সে.মি.

ধরি, সমবৃত্তভূমিক সিলিভারটির উচ্চতা = h একক

 \therefore সিলিভারটির আয়তন $=\pi r^2 h$

প্রমতে, $\pi r^2 h = 150\pi$

বা,
$$r^2h = 150$$

বা,
$$5^2 \times h = 150$$

বা,
$$h = \frac{150}{5^2} = 6$$

- ∴ সিলিভারটির বক্রতলের ক্ষেত্রফল = 2πrh

 $= 2 \times 3.1416 \times 5 \times 6$ = 188.496 বর্গ সে.মি. (প্রায়)

নির্ণেয় সিলিন্ডারটির বক্রতলের ক্ষেত্রফল 188.496 বর্গ সে.মি. (প্রায়)। (গ) দেওয়া আছে.

একটি বৃত্তের ব্যাসার্ধ, r = 5 সে.মি.

 \therefore বৃত্তটির ক্ষেত্রফল $=\pi r^2$

 $= 3.1416 \times 5^2$ বর্গ সে.মি.

= 3.1416 × 25 বর্গ সে.মি.

= 78.54 বর্গ সে.মি.

আমরা জানি, বৃত্তে অন্তর্লিখিত বর্গের কর্ণের দৈর্ঘ্য ঐ বৃত্তের ব্যাসের সমান।

এখানে, বৃত্তটির ব্যাস = 2 × ব্যাসার্ধ

= 2 × 5 সে.মি.

= 10 সে.মি.

ধরি, বর্গক্ষেত্রের প্রতিটি বাহুর দৈর্ঘ্য = a একক

 \therefore বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য $=\sqrt{2}a$ একক

 $\therefore \sqrt{2}a = 10$ $\text{at, } a = \frac{5 \times 2}{\sqrt{2}} = 5 \times \sqrt{2}$

 $\therefore a = 5\sqrt{2}$

∴ বর্গক্ষেত্রের ক্ষেত্রফল = (বাহুর দৈর্ঘ্য)²

 $=\left(5\sqrt{2}\right)^2$ বৰ্গ সে.মি.

= 50 বর্গ সে.মি.

: বৃত্তটির ক্ষেত্রফল – বৃত্তে অন্তর্লিখিত বর্গক্ষেত্রের ক্ষেত্রফল

= 78.57 বর্গ সে.মি. – 50 বর্গ সে.মি.

= (78.57 - 50) বৰ্গ সে.মি.

= 28.57 বর্গ সে.মি.

নির্ণেয় ক্ষেত্রফলের পার্থক্য 28.54 বর্গ সে.মি.।

\$8.

[সিলেট বোর্ড ২০২৩]

- (ক) একটি ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 1014 বর্গমিটার হলে, এর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (খ) ABCD বেলনের সমগ্রতলের ক্ষেত্র নির্ণয় কর।
- (গ) △AOB এর সমান ক্ষেত্রফলবিশিষ্ট বৃত্তের পরিধি নির্ণয় কর।

১৪ নং প্রশ্নের উত্তর

- (ক) ধরি, ঘনকটির ধার a
 - \therefore এর সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল $= 6a^2$

এবং কর্ণের দৈর্ঘ্য $= \sqrt{3}a$

প্রশ্নতে, $6a^2 = 1014$

বা, $a^2 = \frac{1014}{6} = 169$

বা, $a = \sqrt{169} = 13$

 \therefore ঘনকটির কর্ণের দৈর্ঘ্য $=\sqrt{3}.13=22.517$ মিটার (প্রায়) নির্ণেয় কর্ণের দৈর্ঘ্য 22.517 (প্রায়)।

(খ) এখানে, ABCD বেলনের ভূমির ব্যাসার্ধ,

গণিত ১৬শ অধ্যায়

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

$$r = \frac{CD}{2} = \frac{6}{2} = 3$$
 সে.মি.

এবং উচ্চতা, h = 8 সে.মি.

∴ বেলনের সমগ্রতলের ক্ষেত্রফল = 2πr(r + h) $= 2 \times 3.1416 \times 3(3 + 8)$ \sim

সে.মি.

নির্ণেয় ABCD বেলনের সমগ্রতলের ক্ষেত্রফল 207.35 বর্গ সে.মি. (প্রায়)।

(গ)

চিত্রে ABCD আয়তক্ষেত্রের AB = CD = 6 সে.মি.

কর্ণ AC ও BD পরস্পর O বিন্দুত ছেদ করেছে।

এখন, সমকোণী ত্রিভুজ ABC হতে পিথাগোরাসের সূত্রানুসারে,

$$AC^2 = AB^2 + BC^2$$

বা,
$$AC = \sqrt{AB^2 + BC^2}$$

$$=\sqrt{6^2+8^2}$$
 সে.মি. $=\sqrt{36+64}$ সে.মি. $=\sqrt{100}$ সে.মি.

যেহেতু, আয়তের কর্ণদ্বয় পরস্পর সমান

আমরা জানি, আয়তের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করে

$$\therefore$$
 OA = OC = OB = OD = $\frac{10}{3}$ = 5 সে.মি.

 $\triangle AOB$ এর অর্ধ-পরিসীমা, $S = \frac{OA + OB + AB}{AOB + AB}$

$$=\frac{5-\frac{2}{2}}{2}=\frac{16}{2}=8$$
 সে.মি.

$$\therefore \Delta AOB$$
 এর ক্ষেত্রফল = $\sqrt{s(s - OA)(s - OB)(s - AB)}$

$$= \sqrt{8(8-5)(8-5)(8-6)}$$
 বৰ্গ সে.মি.
= $\sqrt{8 \times 3 \times 3 \times 2}$ বৰ্গ সে.মি.

 $=\sqrt{144}$ বর্গ সে.মি. =12 বর্গ সে.মি.

প্রশ্নমতে, বৃত্তের ক্ষেত্রফল = 12 বর্গ সে.মি.

ধরি, বৃত্তের ব্যাসার্ধ = r সে.মি.

 \therefore বৃত্তের ক্ষেত্রফল $=\pi r^2$

বা,
$$12 = \pi r^2$$

বা,
$$r^2 = \frac{12}{\pi} = \frac{12}{3.1416} = 3.8197$$

বা,
$$r = \sqrt{3.8197} = 1.9544$$
 (প্রায়)

∴ r = 1.9544 সে.মি. (প্রায়)

∴ বৃত্তের পরিধি = $2\pi r$

= 2 × 3.1416 ×× 1.9544 সে.মি.

= 12.28 সে.মি. (প্রায়)

নির্ণেয় বৃত্তের পরিধি 12.28 সে.মি. (প্রায়)।

১৫. একটি রম্বসের পরিসীমা 180 সে.মি.। এর বৃহত্তম কর্ণের দৈর্ঘ্য 72 সে.মি.। একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 1 মিটার বাড়ালে এর ক্ষেত্রফল $4\sqrt{3}$ বর্গমিটার বেডে যায়।

বিরিশোল বোর্ড ২০২৩

- (ক) একটি চাকা 100π সে.মি. পথ যেতে 10 বার ঘুরবে। চাকাটির ব্যাসার্ধ
- (খ) রম্বসটির ক্ষুদ্রতম কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (গ) সমবাহু ত্রিভুজটির পরিসীমা নির্ণয় কর।

১৫ নং প্রশ্নের উত্তর

(ক) ধরি, চাকাটির ব্যাসার্ধ = r

∴ চাকাটির পরিধি = 2πr

আমরা জানি,

চাকাটি 1 বার ঘুরে তার পরিধির সমান দূরত্ব অতিক্রম করে। এখানে, চাকাটি 10 বার ঘুরে পথ অতিক্রম করে 100π সে.মি.

$$\therefore$$
 " " " " $\frac{100\pi}{10} = 10\pi$

প্রমতে, $2\pi r = 10\pi$

বা.
$$2r = 10$$

বা,
$$r = \frac{10}{2} = 5$$

নির্ণেয় চাকাটির ব্যাসার্ধ 5 সে.মি.।

(খ) মনি করি, ABCD একটি রম্বস।

দেওয়া আছে, রম্বসের পরিসীমা = 180 সে.মি.

বৃহত্তম কর্ণ,
$$AC = 72$$
 সে.মি.
রম্বসের বাছর দৈর্ঘ্য, $AB = \frac{180}{4}$ সে.মি.

[রম্বসের পরিসীমা = 4 × বাহুর দৈর্ঘ্য]

আমরা জানি

রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে। চিত্রে রম্বসের AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে ছেদ করে।

∴
$$OA = OC = \frac{AC}{2} = \frac{72}{2}$$
 সে.মি. = 36 সে.মি

এখন, AOB সমকোণী ত্রিভুজ হতে পিথাগোরাসের উপপাদ্য অনুসারে.

$$AB^2 = OA^2 + OB^2$$

$$45)^2 = (36)^2 + 08^2$$

$$\boxed{45, 08^2 = (45)^2 - (36)^2 = (45 + 36)(45 - 36) = 81 \times 9 = 729}$$

∴ রম্বসটির ক্ষুদ্রতম কর্ণের দৈ<mark>র্ঘ্য 5</mark>4 সে.মি.।

(গ) মনে করি, সমবাহু ত্রিভুজের প্রতিটি বাহুর দৈর্ঘ্য a মিটার

$$\therefore$$
 সমবাহু ত্রিভুজের ক্ষেত্রফল $=\frac{\sqrt{3}}{4}a^2$ বর্গমিটার

ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য 1 মি<mark>টার বাড়ালে</mark> ত্রিভুজটির বাহুর দৈর্ঘ্য (a+1)

এবং ত্রিভূজটির ক্ষেত্রফল $\frac{\sqrt{3}}{4}(a+1)^2$ বর্গমিটার।

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}(a+1)^2 - \frac{\sqrt{3}}{4}a^2 = 4\sqrt{3}$$

ৰা,
$$\frac{\sqrt{3}}{4}$$
{(a + 1)² - $\frac{\sqrt{3}}{4}$ a² = 4 $\sqrt{3}$
ৰা, (a + 1)² - a² = 16

$$\sqrt{(a+1)^2-a^2}=16$$

বা,
$$a^2 + 2a + 1 - a^2 = 16$$

বা,
$$2a + 1 = 16$$

বা,
$$a = \frac{15}{2} = 7.5$$

$$a = 7.5$$

 \therefore সমবাহু ত্রিভুজটির পরিসীমা $= 3a = 3 \times 7.5$ মিটার = 22.5 মিটার নির্ণেয় সমবাহু ত্রিভুজটির পরিসীমা 22.5 মিটার।

১৬. লোহার তৈরি একটি নিরেট ঘনকাকৃতির বস্তুর আয়তন 343 ঘন সে.মি.। বস্তুটিকে গলিয়ে একটি বেলনাকার ফাঁপা পাইপে পরিণত করা হলো। ফাঁপা পাইপটির ভিতরের ও বাইরের ব্যাস যথাক্রমে 6 সে.মি. ও 9 সে.মি.।

দিনাজপুর বোর্ড ২০২৩]

- (Φ) সমবাহু ত্রিভুজের ক্ষেত্রফল $4\sqrt{3}$ বর্গ সে.মি. হলে, এর বাহুর দৈর্ঘ্য নির্ণয়
- (খ) ঘনকাকৃতির বস্তুটির একটি পৃষ্ঠতলের কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (গ) ফাঁপা পাইপটির উচ্চতা নির্ণয় কর।

১৬শ অধ্যায়

পারামাত

গণিত

Prepared by: ISRAFIL SHARDER AVEEK

১৬ নং প্রশ্নের উত্তর

(ক) ধরি, সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য a একক

আমরা জানি, সমবাহু ত্রিভূজের ক্ষেত্রফল শর্তমতে, $= rac{\sqrt{3}}{4} a^2$ বর্গ একক

বা,
$$a^2 = 4\sqrt{3} \times \frac{4}{\sqrt{3}}$$

বা,
$$a^2 = 16$$

বা,
$$a = \sqrt{16}$$
 [বর্গমূল করে]

∴ সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য 4 সে.মি.।

(খ) ধরি, নিরেট ঘনবস্তুটির প্রতিটি ধার a

আমরা জানি, ঘনকাকৃতির বস্তুর আয়তন $=a^3$

শর্তমতে,
$$a^3 = 343$$

বা,
$$a^3 = 7^3 : a = 7$$

আবার, ঘনকের পৃষ্ঠতলের কর্ণের দৈর্ঘ্য $= a\sqrt{2}$

 \therefore ঘনকাকতির বস্তুটির পষ্ঠতলের কর্ণের $= 7 \times \sqrt{2}$

$$=7\sqrt{2}$$
 সে.মি.

6 সে.মি.

9 সে.মি.

নির্ণেয় ঘনকাকৃতির বস্তুটির পৃষ্ঠতলের কর্ণের দৈঘ্য 9.90 সে.মি. (প্রায়)।

দেওয়া আছে, ফাঁপা পাইপের বাইরের ব্যাস $2r_1 = 9$ সে.মি.

এবং ভিতরের ব্যাস $2r_2 = 6$ সে.মি.

: ফাঁপা পাইপের বাইরের ব্যাসার্ধ,

$$r_1 = \frac{9}{2} = 4.5$$
 সে.মি.

এবং ভেতরের ব্যাসার্ধ, $r_2 = \frac{6}{3} = 3$ সে.মি.

আমরা জানি, বেলনাকার পাইপের আয়তন $= \pi r^2 h$

শর্তমতে,
$$\pi r_1^2 h - \pi r_2^2 h = 343$$

বা,
$$\pi h(20.25 - 9) = 343$$

বা,
$$11.25h\pi = 343$$

বা,
$$h = \frac{343}{11.25}\pi$$

🗅 ফাঁপা পাইপটির উচ্চতা 9.705 সে.মি. (প্রায়)।

١٩.

ABCDট্রাপিজিয়াম এবং AB || CD.

[ময়মনসিহং বোর্ড ২০২৩]

- (ক) একটি সমবাহু ত্রিভুজের ক্ষেত্রফল $16\sqrt{3}$ বর্গ সে.মি. হলে এর বাহুর দৈর্ঘ্য নির্ণয় কর।
- (খ) ΔPQR এর পরিসীমা 160 সে.মি. হলে, এর ক্ষেত্রফল নির্ণয় কর।
- (গ) ABCD এর ক্ষেত্রফল নির্ণয় কর

১৭ নং প্রশ্নের উত্তর

(ক) ধরি, সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য a

আমরা জানি, সমবাহু ত্রিভুজের ক্ষেত্রফল $=\frac{\sqrt{3}}{4}a^2$

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}a^2 = 16\sqrt{3}$$

বা,
$$a^2 = 16\sqrt{3} \times \frac{4}{\sqrt{3}}$$

বা,
$$a^2 = 64$$

∴ a = 8 [উভয়পক্ষে বর্গমূল করে]

- 🗅 সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য 🎖 সে.মি.।
- (খ) দেওয়া আছে, $\Delta APQR$ এর PQ = 50 সে.মি., QR = 60 সে.মি. এবং পরিসীমা. 2s = 160 সে.মি.

আমরা জানি, ত্রিভুজের পরিসীমা ত্রিভুজের তিন বাহুর যোগফল

শর্তমতে,
$$PQ + QR + PR = 160$$

বা,
$$50 + 60 + PQ = 160$$

 ΔPQR এর অপর বাহুর দৈর্ঘ্য PR=50 সে.মি.

$$\Delta PQR$$
 এর অর্ধ-পরিসীমা, s = $\frac{160}{2}$ = 80 সে.মি.

∴
$$\Delta PQR$$
 এর ক্ষেত্রফল = $\sqrt{s(s - PR)(s - QR)(s - PQ)}$
= $\sqrt{80(80 - 60)(80 - 50)(80 - 50)}$

$$= \sqrt{80 \times 20 \times 30 \times 30}$$

$$=\sqrt{1440000}=1200$$
 বৰ্গ সে.মি.।

নির্ণেয় ক্ষেত্রফল 1200 বর্গ সে.মি.।

- (গ) মনে করি, ABCD ট্রাপিজিয়ামের AB = 84 সে.মি., CD = 54 সে.মি.। C
 - ও D থেকে AB এর উপর যথাক্রমে DE
 - ও CF লম্ব টানি।
 - ∴ CDEF একটি আয়তক্ষেত্র।

ধরি,
$$AE = x$$
 এবং $DE = CF = h$

$$\therefore BF = AB - AF = 84 - (AE + EF) = 84 - (x + 54) = 30 - x$$

ADE সমকোণী ত্রিভুজে,
$$AE^2 + DE^2 = AD^2$$

$$x^2 + h^2 = 144...(1)$$

আবার, BCF সমকোণী ত্রিভুজে, $BF^2 + CF^2 = BC^2$

বা,
$$(30 - x)^2 + h^2 = (18)^2$$

বা,
$$900 - 60x + x^2 + h^2 = 324$$

বা,
$$1044 - 324 = 60x$$

বা,
$$60x = 720$$

বা
$$x = \frac{720}{}$$

$$\therefore x = 12$$

(1) নং এ x-এর মান বসিয়ে পাই,
$$(12)^2 + h^2 = 144$$

বা,
$$144 + h^2 = 144$$

বা,
$$h^2 = 144 - 144$$

বা,
$$h^2 = 0$$

$$\therefore h = 0$$

লক্ষ করি: এখানে, ট্রাপিজিয়ামটির ক্ষেত্রফল শূন্য বের হয়েছে যা সঠিক নয়। কারণ, কোনো ক্ষেত্রের ক্ষেত্রফল শূন্য হতে পারে না। তাই এই প্রশ্নে প্রদত্ত তথ্যসমূহ সামঞ্জস্যপূর্ণ নয়।

১৮. একটি আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতর অনুপাত 12:4:3 এবং কর্ণের দৈর্ঘ্য 26 মিটার। একটি রম্বস আকৃতির বাগানের একটি কর্ণের দৈর্ঘ্য ঘনবস্তুটির কর্ণের সমান এবং বাগানের একটি বাহুর দৈর্ঘ্য 15 মিটার।

[ময়মনসিংহ বোর্ড ২০২৩]

- (ক) কোনো ত্রিভুজের দুই বাহুর দৈর্ঘ্য যথাক্রমে 9 সে.মি. ও 10 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ 30° হলে, ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (খ) ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল নির্ণয় কর।

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

(গ) প্রতি বর্গমিটার 5 টাকা হিসেবে বাগানটিতে ঘাস লাগাতে মোট কত টাকা খরচ হবে?

১৮ নং প্রশ্নের উত্তর

(ক) ধরি, ত্রিভূজটির বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে a = 9 সে.মি. এবং b=10 সে.মি. এবং অন্তর্ভুক্ত কোণ $\theta=30^\circ$

∴ ত্রিভুজটির ক্ষেত্রফল
$$=\frac{1}{2}$$
 ab $\sin\theta$ $=\frac{1}{2}\times 9\times 10\times \sin 30^\circ$ $=\frac{1}{2}\times 9\times 10\times \frac{1}{2}$ $=22.5$ বর্গ সে.মি.

নির্ণেয় ক্ষেত্রফল 22.50 বর্গ সে.মি.।

(খ) দেওয়া আছে.

আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত = 12:4:3 এবং কর্ণের দৈর্ঘ্য = 26 মিটার

ধরি, আয়তাকার ঘনবস্তুটির দৈর্ঘ্য, a=12x মিটার

প্রশ্ন,
$$b = 4x$$
 মিটার
উচ্চতা, $c = 3x$ মিটার

আমরা জানি, আয়তাকার ঘনবস্তুর কর্ণের দৈর্ঘ্য = $\sqrt{a^2 + b^2 + c^2}$

শর্তমতে,
$$\sqrt{(12x)^2 + (4x)^2 + (3x)^2} = 26$$

$$4, \sqrt{144x^2 + 16x^2 + 9x^2} = 26$$

বা,
$$\sqrt{169x^2} = 26$$

বা,
$$13x = 26$$

$$x = 2$$

আয়তাকার ঘনবস্তুটির দৈর্ঘ্য, $a = 12 \times 2 = 24$ মি.

প্রস্থ,
$$b = 4 \times 2 = 8$$
 মি.
উচ্চতা, $c = 3 \times 2 = 6$ মি.

আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল

=
$$2(ab + bc + ca)$$

= $2(24 \times 8 + 8 \times 6 + 6 \times 24)$
= $2(192 + 48 + 144)$
= $2 \times 384 = 768$ \mathfrak{A}

নির্ণেয় ক্ষেত্রফল 768 বর্গ মি.।

(গ) ABCD রম্বস আকৃতির, বাহুর দৈর্ঘ্য অই AB = BC = CD = AD = 15 মিটার এবং একটি কর্ণের দৈর্ঘ্য, d₁ = 25 মিটার

$$\therefore BO = DO = \frac{d_1}{2} = \frac{26}{2} = 13$$
 মিটার

এখন,
$$\triangle AOB$$
-এ $AO = \sqrt{AB^2 - BO^2}$

$$=\sqrt{15^2-13^2}=7.48$$
 (প্রায়)

 \therefore রম্বসটির অপর কর্ণ, $d_2 = AC$

$$= 2 \times 7.48 = 14.96$$
 মিটার

$$\therefore$$
 রম্বসটির ক্ষেত্রফল $= rac{1}{2} imes d_1 imes d_2$ $= rac{1}{2} imes 26 imes 14.96$ $= 194.48$ বর্গমিটার

: বাগানটিতে ঘাস লাগাতে মোট খরচ হবে 194.48×5 টাকা।

নির্ণেয় টাকার পরিমাণ 972.40 টাকা।

১৯. একটি গাড়ির চাকার পরিধি 22 মিটার।

[ঢাকা বোর্ড ২০২২]

- (ক) একটি ঘনকের একধারের দৈর্ঘ্য 7 সে.মি. হলে এর সমগ্র পৃষ্ঠের ক্ষেত্রফল
- (খ) চাকাটিতে অন্তর্লিখিত বর্গক্ষেত্রের বাহুর দৈর্ঘ্য নির্ণয় কর।

(গ) চাকাটির পরিধি একটি সমবাহু ত্রিভুজের পরিসীমার সমান হলে, এদের ক্ষেত্রফলের অনুপাত নির্ণয় কর।

১৯ নং প্রশ্নের উত্তর

(ক) মনে করি, ঘনকের একধারের দৈর্ঘ্য, a = 7 সে.মি.

$$=6\times7^2$$
 বর্গ সে.মি.

নির্ণেয় সমগ্র পৃষ্ঠের ক্ষেত্রফল 294 বর্গ সে.মি.।

- (খ) ধরি, চাকার ব্যাসার্ধ = r মিটার
 - ∴চাকার ব্যাস = 2r মিটার

এবং চাকার পরিধি = 2πr মিটার

মনে করি, ABCD বর্গক্ষেত্রটি ঐ চাকাটিতে অন্তর্লিখিত।

<mark>আমরা জানি,</mark> চাকাটিতে অন্তর্লিখিত বর্গের কর্ণের দৈর্ঘ্য ঐ চাকার ব্যাসের সমান।

- ∴ ABCD বর্গের কর্ণ AC = 2r
- প্রশ্নমতে, $2\pi r = 22$

বা,
$$r = \frac{22}{2 \times 3.1416}$$

- ∴ r = 3.5014 মিটার (প্রায়)
- ∴ বর্গের কর্ণ AC = 2 × 3.5014 মিটার = 7.0028 মিটার (প্রায়)
- ধরি, বর্গের বাহুর দৈর্ঘ্য AB = a মিটার
- \therefore বর্গের কর্ণের দৈর্ঘ্য = $\sqrt{2}a$ মিটার

$$\therefore \sqrt{2}a = 7.0028$$

$$a, a = \frac{7.0028}{\sqrt{2}}$$

- ∴ a = 4.9517 মিটার (প্রায়)
- চাকাটিতে অন্তর্লিখিত বর্গের বাহুর দৈর্ঘ্য 4.9517 মিটার (প্রায়)।
- (গ) মনে করি, চাকার ব্যাসার্ধ = r মিটার
 - ∴ চাকার পরিধি = 2πr মিটার

এখানে, চাকার পরিধি 22 মিটার

প্রমতে,
$$2\pi r = 22$$

বা,
$$r = \frac{22}{2\pi} = \frac{11}{\pi}$$

$$\therefore r = \frac{11}{\pi}$$
মিটার

$$\therefore$$
 চাকার ক্ষেত্রফল $= \pi r^2 = \pi . \left(\frac{11}{\pi}\right)^2$ বর্গমিটার $= \pi \times \frac{121}{\pi^2}$ বর্গ মিটার $= \frac{121}{\pi}$ বর্গ মিটার

<mark>চাকার পরিধি একটি সমবাহু ত্রিভূজের পরিসীমার সমান হলে, সমবাহু ত্রিভূজের</mark> পরিসীমা = 22 মিটার

- ∴ সমবাহু ত্রিভুজের এক বাহুর দৈর্ঘ্য, a = ²² মিটার
- \therefore সমবাহু ত্রিভুজের ক্ষেত্রফল $=\frac{\sqrt{3}}{4}a^2$

$$= \frac{\sqrt{3}}{4} \left(\frac{22}{3}\right)^2 \, \text{বর্গমিটার}$$

$$= \frac{\sqrt{3}}{4} \times \frac{484}{9} \, \text{বর্গমিটার} = \frac{121}{3\sqrt{3}} \, \text{বর্গমিটার}$$
∴ চাকার ক্ষেত্রফল : সমবাহু ত্রিভুজের ক্ষেত্রফল = $\frac{121}{\pi} : \frac{121}{3\sqrt{3}}$

$$= \frac{1}{\pi} : \frac{1}{3\sqrt{3}} = 9\sqrt{3} : \pi$$

$$=\frac{1}{\pi}:\frac{1}{3\sqrt{3}}=9\sqrt{3}:\pi$$

২০. একটি রম্বসের ক্ষেত্রফল 1944 বর্গ সে.মি. এবং বৃহত্তর কর্ণের দৈর্ঘ্য 72 সে.মি.। আবার একটি বৃত্তের পরিধি রম্বসটির বৃহত্তর কর্ণের 3 গুণ।

 (Φ) একটি ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 48 বর্গ সে.মি.। এর পৃষ্ঠতলের কর্ণের দৈঘ্য নির্ণয় কর।

www.schoolmathematics.com.bd

১৬শ অধ্যায়

পারামাত

গণিত

Prepared by: ISRAFIL SHARDER AVEEK

- (খ) স্বসটির পরিসীমা নির্ণয় কর।
- (গ) উদ্দীপকে বর্ণিত বৃত্তে অন্তর্লিখিত বর্গক্ষেত্রের বাহুর দৈর্ঘ্য নির্ণয় কর।

২০ নং প্রশ্নের উত্তর

- (ক) মনে করি, ঘনকটির ধার = a
 - \therefore ঘনকটির সম্পূর্ণ পষ্ঠের ক্ষেত্রফল $= 6a^2$

প্রামতে,
$$6a^2 = 48$$

বা,
$$a^2 = \frac{48}{6}$$

বা,
$$a^2 = 8$$
 বা, $a = \sqrt{8}$

$$\therefore a = 2\sqrt{2}$$

 \therefore ঘনটির পৃষ্ঠতলের কর্ণের দৈর্ঘ্য $=\sqrt{2}a$

$$=\sqrt{2}\times2\sqrt{2}$$
 সে.মি. $=4$ সে.মি.

নির্ণেয় পষ্ঠতলের কর্ণের দৈর্ঘ্য 4 সে.মি.।

(খ) মনে করি, ABCD রম্বসের বৃহত্তম কর্ণের দৈর্ঘ্য $AC = d_1 = 72$ সে.মি. এবং অপর কর্ণের দৈর্ঘ্য $= d_2$ সে.মি.

$$\therefore$$
 রম্বসটির ক্ষেত্রফল $=\frac{1}{2}d_1d_2$ বর্গ সে.মি.

প্রমতে,
$$=\frac{1}{2}d_1d_2=1944$$

বা,
$$\frac{1}{2} \times 72 \times d_2 = 1944$$

বা,
$$36 \times d_2 = 1944$$

বা,
$$d_2 = \frac{1944}{36}$$

আমরা জানি, রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে।

$$\therefore OA = OC = \frac{72}{2} = 36$$
 সে.মি.

$$OB = OD = \frac{54}{2} = 27$$
 সে.মি.

এখন, AOB সমকোণী ত্রিভুজে, $AB^2 = OA^2 + OB^2$

$$= (36)^2 + (27)^2$$
$$= 1296 + 729 = 2025$$

∴ AB =
$$\sqrt{2025}$$
 = 45 সে.মি.

রম্বসটির পরিসীমা $= 4 \times AB$

রম্বসটির পরিসীমা 180 সে.মি.।

- (গ) দেওয়া আছে, রম্বসের বৃহত্তর কর্ণের দৈর্ঘ্য = 72 সে.মি.
 - ∴ বৃত্তের পরিধি = 3 × রম্বসের বৃত্তের কর্ণের দৈর্ঘ্য

ধরি, বৃত্তের ব্যাসার্ধ r সে.মি.

 \therefore বৃত্তের পরিধি $=2\pi r$ সে.মি.

বা,
$$r = \frac{216}{2\pi} = \frac{216}{2\times 3.1416} = 34.3774$$
 সে.মি. (প্রায়)

∴ বৃত্তের ব্যাস = $2r = 2 \times 34.3774 = 68.7548$ সে.মি. (প্রায়)

আমরা জানি, বৃত্তের অন্তর্লিখিত বর্গের কর্ণ বৃত্তের ব্যাসের সমান।

: বর্গের কর্ণের দৈর্ঘ্য = 68.7548 সে.মি. (প্রায়)

ধরি, বর্গের বাহুর দৈর্ঘ্য = a সে.মি.

 \therefore বর্গেল কর্ণের দৈর্ঘ্য $= \sqrt{2}a$ সে.মি.

অর্থাৎ,
$$\sqrt{2}a = 68.7548$$

বা,
$$a = \frac{(68.7548)}{\sqrt{2}}$$

∴ a = 48.62 সে. মি. (প্রায়)

নির্ণেয় বর্গের বাহুর দৈর্ঘ্য 48.62 সে.মি. (প্রায়)।

২১.

চিত্রে AH = 12 সে.মি., AB = 16 সে.মি., BC = 21 সে.মি.

[যশোর বোর্ড ২০২২]

- (ক) আয়তাকার ঘনবস্তুটির ভূমির পরিসীমা নির্ণয় কর।
- (খ) ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় কর।
- (গ) ঘনবস্তুটির BCFE তলকে, BC বাহুর চারদিকে ঘুরালে যে নতুন ঘনবস্তু উৎপন্ন হয় তার আয়তন ও বক্রতলের ক্ষেত্রফল নির্ণয় কর।

২১ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, আয়তাকার ঘনবস্তুর ভূমির দৈর্ঘ্য, BC = 21 সে.মি. <mark>আয়তাকার ঘন</mark>বস্তুর ভূমির প্রস্থ, AB = 16 সে.মি.
 - <mark>∴ আয়তাকার</mark> ঘনবস্তুটির ভূমির পরিসীমা = 2(BC + AB) সে.মি.

$$= 2 \times 37$$
 সে.মি. $= 74$ সে.মি.

নির্ণেয় ভূমির পরিসীমা 74 সে.মি.।

(খ) মনে করি, আয়তাকার ঘনবস্তুটির দৈর্ঘ্য BC = a = 21 সে.মি.

এবং উচ্চতা
$$AH = c = 12$$
 সে.মি.

- ∴ ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ সে.িম.
- $= 2(21 \times 16 + 16 \times 12 + 12 \times 21)$ বর্গ সে.মি.
- = 2(336 + 192 + 252) বর্গ সে.মি.
- = 2 × 780 বর্গ সে.মি. = 1560 বর্গ সে.মি.

এবং ঘনবস্তুটির আয়তন = abc ঘন সে.মি.

- ∴ ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল 1560 বর্গ সে.মি. এবং আয়তন 4032 ঘন
- (গ) ঘনবস্তুটির BCFE তলকে BC বাহুকে চারদিকে ঘুরালে একটি সমবৃত্তভূমিক সিলিন্ডার উৎপন্ন হয়।

সিলিভারের ভূমির ব্যাসার্ধ, r = 12 সে.মি.

এবং উচ্চতা, h = 21 সে.মি.

∴ সিলিভারটির আয়ত্ন $= \pi r^2 h$

 $= 3.1416 \times 144 \times 21$ " = 9500.198 ঘন সে.মি. (প্রায়)

সিলিভারটির বক্রতলের ক্ষেত্রফল = 2πrh

= 2 × 3.1416 × 12 × 21 বর্গ সে.মি.

= 1583.366 বর্গ সে.মি. (প্রায়)

নির্ণেয় আয়তন 9500.198 ঘন সে.মি. (প্রায়) এবং বক্রতলের ক্ষেত্রফল 1583.366 বর্গ সে.মি. (প্রায়)।

২২. একটি বর্গক্ষেত্রের পরিসীমা একটি আয়তক্ষেত্রের পরিসীমার সমান। আয়তক্ষেত্রটির দৈর্ঘ্য প্রস্তের তিনগুণ এবং ক্ষেত্রফল 1200 বর্গমিটার। আবার একটি রম্বসের পরিসীমা 80 সে.মি. এবং ক্ষুদ্রতম কর্ণের দৈর্ঘ্য 24 সে.মি.।

[কুমিল্লা বোর্ড ২০২২]

- (ক) একটি বৃত্তের ব্যাস ও পরিধির পার্থক্য 66 সে.মি. হলে বৃত্তের ব্যাসার্ধ নির্ণয়
- (খ) প্রতিটি 50 সে.মি. বর্গাকার পাথর দ্বারা বর্গক্ষেত্রটি বাধাঁতে মোট কতটি পাথর লাগবে এবং প্রতিটি পাথরের মূল্য 25 টাকা হলে বর্গক্ষেত্রটি বাঁধাতে মোট কত টাকা খরচ হবে?
- (গ) রম্বসটির বৃহত্তর কর্ণের দৈর্ঘ্য 32 সে.মি. হলে অপর কর্ণ ও ক্ষেত্রফল নির্ণয়

২২ নং প্রশ্নের উত্তর

() মনে করি, বৃত্তের ব্যাসার্ধ = r সে.মি.

Prepared by: ISRAFIL SHARDER AVEEK

$$\therefore$$
 বৃত্তের ব্যাস $=2$ r সে.মি.
বৃত্তের পরিধি $=2\pi$ r সে.মি.

প্রমতে,
$$2\pi r - 2r = 66$$

বা,
$$r(2\pi - 2) = 66$$

বা,
$$r(2 \times 3.1416 - 2) = 66$$

বা,
$$r = \frac{66}{4.2832}$$

নির্ণেয় ব্যাসার্ধ 15.41 সে.মি. (প্রায়)।

(খ) মনে করি, আয়তক্ষেত্রের প্রস্থ = x

$$\therefore$$
 আয়তক্ষেত্রের ক্ষেত্রফল $=(3x\times x)$ বর্গমিটার $=3x^2$ বর্গমিটার

শর্তমতে,
$$3x^2 = 1200$$

বা,
$$x^2 = \frac{1200}{3}$$

বা,
$$x^2 = 400$$

বা,
$$x = \sqrt{400} = 20$$

$$\therefore$$
 প্রস্থ $=20$ মিটার এবং দৈর্ঘ্য $(3 imes20)$ মিটার $=60$ মিটার

$$=2 imes 80$$
 মিটার $=160$ মিটার

যেহেতু বর্গক্ষেত্রের পরিসীমা আয়তক্ষেত্রের পরিসীমার সমান সেহেতু বর্গক্ষেত্রের পরিসীমা = 160 মিটার

$$\therefore$$
 বৰ্গক্ষেত্ৰের এক বাহুর দৈর্ঘ্য, $a=rac{160}{4}$ মিটার $=40$ মিটার

$$\therefore$$
 বর্গক্ষেত্রের ক্ষেত্রফল $=a^2$ বর্গ একক

$$=(40)^2$$
 বর্গ একক $=1600$ বর্গমিটার

বর্গাকার পাথরের এক বাহুর দৈর্ঘ্য = 50 সে.মি.

 \therefore বর্গাকার পাথরের ক্ষেত্রফল $= (0.5)^2$ বর্গমিটার = 0.25 বর্গমিটার

বর্গক্ষেত্রটি পাথর দিয়ে বাঁধতে মোট পাথর লাগবে
$$=$$
 $\frac{1600}{0.25}$ টি

বৰ্গক্ষেত্ৰটি বাঁধতে মোট খরচ হবে $= (6400 \times 25)$ টাকা = 1,60,000 টাকা

∴ বর্গক্ষেত্রটি বাঁধতে মোট খরচ হবে 1,60,000 টাকা।

(গ) মনে করি, ABCD রম্বসের পরিসীমা 80 সে.মি.।

\therefore ABCD রম্বসের একবাহু, AB = $\frac{80}{4}$

ক্ষুদ্রতম কর্ণ, BD = 24 সে.মি.

আমরা জানি, রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে।

এখন, AOB সমকোণী ত্রিভুজে, AB² = $OA^2 + OB^2$

$$\text{ at, } (20)^2 = 0A^2 + (12)^2$$

বা,
$$400 = 0A^2 + 144$$

বা,
$$OA^2 = 400 - 144$$

বা,
$$0A^2 = 256$$

বা,
$$0A = \sqrt{256} = 16$$

অপর কর্ণ,
$$AC = 2 \times OA = 2 \times 16$$
 সে.মি. = 32 সে.মি.

এর বৃহত্তর কর্ণের দৈর্ঘ্য AC = 32 সে.মি.

$$\therefore$$
 ABCD রম্বসের ক্ষেত্রফল $= \frac{1}{2} \times AC \times BD$
 $= \frac{1}{2} \times 32 \times 24$ বর্গ সে.মি.
 $= 384$ বর্গ সে.মি.

নির্ণেয় রম্বসের ক্ষেত্রফল 384 সে.মি.

[Note: যেহেতু রম্বসটির ক্ষুদ্রতম ও বৃহত্তর কর্ণের দৈর্ঘ্য দেওয়া আছে তাই অপর কর্ণের দৈর্ঘ্য নির্ণয় করা প্রশ্নের সঙ্গে সঙ্গতিপূর্ণ নয়। কাজেই শুধু ক্ষেত্রফল নির্ণয় করা হয়েছে।]

২৩. একটি বর্গক্ষেত্রের পরিসীমা একটি আয়তক্ষেত্রের পরিসীমান সমান। আয়তক্ষেত্রটির দৈর্ঘ্য প্রস্থের পাঁচগুণ এবং ক্ষেত্রফল 1280 একটি সামান্তরিকের বাহুদ্বয়ের দৈর্ঘ্য 60 সে.মি. ও 52 সে.মি.।

[চট্টগ্রাম বোর্ড ২০২২]

২৩ নং প্রশ্নের উত্তর

(ক) মনে করি, ত্রিভুজটির দুই বাহুর দৈর্ঘ্য যথাক্রম a=10 সে.মি. এবং

এদের অন্তর্ভুক্ত কোণ,
$$\theta=30^\circ$$

∴ ত্রিভুজটির ক্ষেত্রফল
$$=\frac{1}{2} absin \theta$$
 $=\left(\frac{1}{2}\times 10\times 12\times \sin 30^{\circ}\right)$ বর্গ সে.মি. $=\left(60\times \frac{1}{2}\right)$ বর্গ সে.মি. $=30$ বর্গ সে.মি.

নির্ণেয় ক্ষেত্রফল 30 বর্গ সে. মি.।

(খ) মনে করি, আয়তক্ষেত্রটির প্রস্থ = x মিটার

আয়তক্ষেত্রটির ক্ষেত্রফল $= 5x \times x$ বর্গ মি. $= 5x^2$ বর্গ মি.

আবার, আয়তক্ষেত্রটির ক্ষেত্রফল 1280 বর্গ মি.

শর্তমতে,
$$5x^2 = 1280$$

বা,
$$x^2 = \frac{1280}{5}$$

বা,
$$x^2 = 256$$

বা,
$$x = \sqrt{256}$$

বা,
$$x = 16$$
 মিটার

আয়তক্ষেত্রটির দৈর্ঘ্য, $5\mathrm{x}=(5 imes16)$ মিটার =80 মিটার

ধরি, বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য = a মিটার

 \therefore বর্গক্ষেত্রের পরিসীমা =4a মিটার

শর্তমতে, আয়তক্ষেত্রের পরিসীমা = বর্গক্ষেত্রের পরিসীমা

বা,
$$a = \frac{192}{4}$$

 \therefore বর্গক্ষেত্রটির ক্ষেত্রফল $=a^2=(48)^2$ বর্গমিটার =2304 বর্গমিটার এখানে, প্রতিটি বর্গাকার পাথরের এক বাহুর

$$=rac{40}{100}$$
 মিটার [$: 100$ সে.মি. $= 1$ মিটার]

$$\therefore$$
 বর্গাকার পাথরের ক্ষেত্রফল $=(0.4)^2$ বর্গ মিটার $=0.16$ বর্গমিটার

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

😀 এখন, প্রতিটি 0.4 মিটার বর্গাকার পাথর দিয়ে বর্গক্ষেত্রটি বাঁধাই করতে মোট পাথর লাগবে $=rac{2304}{0.16}$ টি =14400 টি

∴ বর্গক্ষেত্রটি বাঁধাই করতে মোট 14400 টি পাথর লাগবে।

(গ) মনে করি, ABCD সামান্তরিকের AB = 60 সে.মি.

D ও C হতে AB এর উপর ও AB এর বর্ধিতাং েশর উপর যথাক্রমে DF ও CE লম্ব টানি। A, C যোগ করি।

$$\Delta ABD$$
 এর অর্থ পরিসীমা, $S=rac{AB+BD+AD}{2}$ $=rac{(60+56+52)}{2}$ সে.মি. $=rac{168}{2}=84$ সে.মি.

$$\Delta ABD$$
 এর ক্ষেত্রফল = $\sqrt{S(S-AB)(S-BD)(S-AD)}$ বর্গ একক = $\sqrt{84(84-60)(84-56)(84-52)}$ বর্গ

সে.মি.

$$=\sqrt{84 \times 24 \times 28 \times 32}$$
 বর্গ সে.মি.
 $=\sqrt{1806336}$ বর্গ সে.মি.
 $=1344$ বর্গ সে.মি.

আবার, $\triangle ABD$ এর ক্ষেত্রফল $=\frac{1}{2}AB \times DF$

$$\therefore \frac{1}{2} AB \times DF = 1344$$

বা, $\frac{1}{2} \times 60 \times DF = 1344$

বা,
$$30 \times DF = 1344$$

বা, DF =
$$\frac{1344}{30}$$
 = 44.8

এখন সমকোণী ΔBCE থেকে পাই,

$$BE^2 + CE^2 = BC^2$$

$$\overline{A}, BE^2 = BC^2 - CE^2$$

বা,
$$BE^2 = (52)^2 - (44.8)^2$$
 [∵ $CE = DF$]

বা, BE = $\sqrt{696.96}$ = 26.4

আবার,
$$\triangle ACE$$
 সমকোণী ত্রিভুজে, $AC^2 = AE^2 + CE^2$

$$= (AB + BE)^2 + CE^2$$

$$= (60 + 26.4)^2 + (44.8)^2$$

$$= (86.4)^2 + (44.8)^2$$

$$= 7464.96 + 2007.04$$

$$= 9472$$

∴ AC = √9472 = 97.32 সে.মি. (প্রায়)

নির্ণেয় সামান্তরিকের অপর কর্ণ 97.32 সে.মি. (প্রায়)।

- ২৪. (i) একটি লোহার পাইপের ভিতরের ও বাইরের ব্যাস যথাক্রমে 16 সে.মি. ও 18 সে.মি. এবং পাইপের উচ্চতা 7 মিটার।। ঘন সে.মি. লোহার ওজন
 - (ii) একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 7 সে.মি., 8 সে.মি. ও 9 সে.মি.।

[চট্টগ্রাম বোর্ড ২০২২]

- (ক) পাইপের ভিতরের বক্রতলের ক্ষেত্রফল নির্ণয় কর।
- (খ) পাইপের লোহার ওজন কেজিতে নির্ণয় কর।

(গ) (ii) নং এ বর্ণিত ত্রিভুজের ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট একটি সমবাহু ত্রিভুজের পরিসীমা নির্ণয় কর।

২৪ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, পাইপের ভিতরের ব্যাস = 16 সে.মি.

$$\therefore$$
 পাইপের ভিতরের ব্যাসার্ধ, $r_1=rac{16}{2}$ সে.মি. $=8$ সে.মি.

পাইপের উচ্চতা,
$$h = 7$$
 মিটার $= (7 \times 100)$ সে.মি. $= 700$ সে.মি.

পাইপের ভিতরের বক্রতলের ক্ষেত্রফল 35185.92 বর্গ সে.মি

(খ) 'ক' হতে প্রাপ্ত, পাইপের ভিতরের ব্যাসার্ধ, $r_1 = 8$ সে.মি.

পাইপের উচ্চতা, h = 700 সে.মি.

এবং পাইপের বাইরের ব্যাস = 18 সে.মি

$$\therefore$$
 পাইপের বাইরের ব্যাসার্ধ, ${
m r}_2=rac{18}{2}$ সে.মি. $=9$ সে.মি.

পাইপের লোহার আয়তন
$$=(\pi r_2^2 \text{h}^2 - \pi r_1^2 \text{h})$$
 ঘন সে.মি.

$$= \pi h(r_2^2 - r_1^2)$$
 ঘন সে.মি.

সে.মি. লোহার ওজন 7.2 গ্রাম

∴ পাইপের লোহার ওজন 269.17 কেমি (প্রায়)।

(গ) মনে করি, একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে a=7 সে.মি. b=8সে.মি. ও c = 9 সে.মি.

$$\therefore$$
 ত্রিভুজটির অর্ধপরিসীমা, $S = \frac{a+b+c}{2}$

=
$$\frac{}{\frac{2}{1}}$$

= $\frac{7+8+9}{2}$ (7.14). = 12 (7.14).

$$\therefore$$
 ত্রিভুজটির ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{12(12-7)(12-8)(12-9)}$$
 বৰ্গ সে.মি.

$$=\sqrt{12\times5\times4\times3}$$
 বৰ্গ সে.মি.

$$=\sqrt{720}$$
 বর্গ সে.মি. $=12\sqrt{5}$ বর্গ সে.মি.

<mark>যেহেতু, বর্ণিত ত্রিভুজের ক্ষেত্রফলের সমান ত্রিভুজের ক্ষেত্রফল। সেহেতু সমবাহু</mark> ত্রিভুজের ক্ষেত্রফল $12\sqrt{5}$ বর্গ সে.মি.

ধরি, সমবাহু ত্রিভুজের বাহুর দেঘ্য = a

$$\therefore$$
 সমবাহু ত্রিভুজের ক্ষেত্রফল $\frac{\sqrt{3}}{4}a^2$ বর্গ সে.মি.

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}a^2=12\sqrt{5}$$

$$41, a^2 = \frac{12\sqrt{5} \times 4}{\sqrt{3}}$$

বা,
$$a^2 = 61.9677$$

বা,
$$a = \sqrt{61.9677} = 7.872$$
 সে.মি. (প্রায়)

নির্ণেয় পরিসীমা : 23.616 সে.মি. (প্রায়)।

২৫. (i) একটি বর্গক্ষেত্রের পরিসীমা একটি সমবাহু ত্রিভুজের পরিসীমার সমান।

[সিলেট বোর্ড ২০২২]

১৬শ অধ্যায়

প্রিমিতি

গণিত

Prepared by: ISRAFIL SHARDER AVEEK

- (ক) একটি ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 108 বর্গমিটার হলে, এর কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (খ) বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য $30\sqrt{2}$ সে.মি. হলে, সমবাহু ত্রিভূজের ক্ষেত্রফল
- (গ) আয়তক্ষেত্রটিকে বহতুর বাহুর চতুর্দিকে ঘোরালে উৎপন্ন ঘনবস্তুর পৃষ্ঠতলের ক্ষেত্রফল নির্ণয় কর।

২৫ নং প্রশ্নের উত্তর

- (ϕ) মনে করি, ঘনকটির ধারা =a মিটার
 - \therefore ঘনকটির সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল $=6a^2$ বর্গমিটার

প্রমতে,
$$6a^2 = 108$$

বা,
$$a^2 = \frac{108}{6}$$

বা,
$$a^2 = 18$$

বা,
$$a^2 = \sqrt{18}$$

$$\therefore a = 3\sqrt{2}$$

 \therefore ঘনকটির কর্ণের দৈর্ঘ্য $=\sqrt{3}a$ মিটার

$$=\sqrt{3}\times3\sqrt{2}$$
 মিটার

= 7.35 মিটার (প্রায়)

নির্ণেয় ঘনকটির কর্ণের দৈর্ঘ্য 7.35 মিটার (প্রায়)।

- (খ) মনে করি,
 - বর্গক্ষেত্রের বাহুর দৈর্ঘ্য = a সে.মি.

বর্গাক্ষেত্রের কর্ণের দৈর্ঘ্য = $\sqrt{2}a$ সে.মি.

প্রশ্নমতে,
$$\sqrt{2}a = 30\sqrt{2}$$

বা,
$$a = \frac{30\sqrt{2}}{\sqrt{2}}$$

বর্গক্ষেত্রের পরিসীমা = 4a

$$=4\times30$$

যেহেতু বর্গক্ষেত্রের পরিসীমা সমবাহু ত্রিভুজের পরিসীমার সমান। সেহেতু সমবাহু ত্রিভূজের পরিসীমা 120 সে.মি.

ধরি, সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য = x সে.মি.

∴ সমবাহু ত্রিভুজের পরিসীমা = 3x সে.মি.

অর্থাৎ,
$$3x = 120$$

ৰা,
$$x = \frac{120}{3} = 40$$

∴ $x = 40$ সে.মি.

 \therefore সমবাহু ত্রিভুজের ক্ষেত্রপল $= \frac{\sqrt{3}}{4} x^2$ $=\frac{\sqrt{3}}{4} \times (40)^2$ বৰ্গ সে.মি. $=\frac{\sqrt{3}}{4} \times 1600$ বৰ্গ সে.মি.

নির্ণেয় সমবাহু ত্রিভুজের ক্ষেত্রফল 692.82 বর্গ সে.মি. (প্রায়)।

(গ) মনে করি, ABCD আয়তক্ষেত্রের বৃহত্তর বাহু AB=8সে.মি. এবং ক্ষুদ্রতম BC = 6 সে.মি.।

আয়তক্ষেত্রটিকে বৃহত্তর বাহুর চতুর্দিকে ঘোরালে একটি সমবৃত্তভূমিক সিলিন্ডার উৎপন্ন হবে।

ধরি, সিলিন্ডারটির উচ্চতা, h = 8 সে.মি. এবং ভূমির ব্যাসার্ধ, r = 6 সে.মি.

- $= 2 \times 3.1416 \times 6(6 + 8)$ বর্গ সে.মি.
- $= 2 \times 3.1416 \times 6 \times 14$ বর্গ সে.মি.
- = 527.79 বর্গ সে.মি. (প্রায়)
- 🙃 ঘনবস্তুর পৃষ্ঠতলের ক্ষেত্রফল 527.79 বর্গ সে.মি. (প্রায়)।

২৬.

চিত্রে AD = 7 সে.মি.. BC = 12 সে.মি.

[বরিশাল বোর্ড ২০২২]

- (ক) একটি সুষম পঞ্চভুজের প্রতি বাহুর দৈর্ঘ্য 6 সে.মি. হলে, এর ক্ষেত্রফল নির্ণয় কর।
- (খ) PORS সামান্তরিকের ক্ষেত্রফল একটি বর্গক্ষেত্রের ক্ষেত্রফলের সমান। বর্গক্ষেত্রটির কর্ণের দৈঘ্য নির্ণয় কর।
- (গ) ABCD চতুর্ভুজটির ক্ষেত্রফল নির্ণয় কর।

২৬ নং প্রশ্নের উত্তর

(ক) মনে করি, সুষম পঞ্চভুজের বাহুর দৈর্ঘ্য a = 6 সে.মি.

এবং বাহুর সংখ্যা,
$$n=5$$

আমরা জানি, সুষম বহুভূজের ক্ষেত্রফল
$$=rac{\mathrm{na}^2}{4}\mathrm{cot}rac{180^\circ}{\mathrm{n}}$$

নির্ণেয় ক্ষেত্রফল 61.92 বর্গ সে.মি. (প্রায়)।

(খ) দেওয়া আছে, PQRS সামান্তরিকের ভূমি = QR = 45 এবং

∴ PQRS সামান্তরিকের ক্ষেত্রফল = ভূমি × উচ্চতা

$$= OR \times PT$$

যেহেত PORS সামান্তরিকের ক্ষেত্রফল একটি বর্গক্ষেত্রের ক্ষেত্রফলের সমান।

সেহেতু বর্গক্ষেত্রের ক্ষেত্রফল = 225 বর্গ একক

ধরি. বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য = a একক

 $\cdot\cdot$ বর্গন্ধেত্রের ক্ষেত্রফল $= a^2$ বর্গ একক

শর্তমতে,
$$a^2 = 225$$

বা,
$$a = \sqrt{225}$$

 \therefore বর্গক্ষেত্রটির <mark>কর্ণে</mark>র দৈর্ঘ্য $=\sqrt{2}a$ একক

$$=\sqrt{2} \times 15$$
 একক $= 21.21$ একক (প্রায়)

নির্ণেয় কর্ণের দৈর্ঘ্য 21.21 একক (প্রায়)।

(গ) দেওয়া আছে, ABCD চতুর্ভুজের AD || BC

- ∴ ABCD একটি ট্রাপিজিয়াম। এর AD = 7 সে.মি., BC = 12 সে.মি. এবং AB = 10 সে.মি., CD = 8 সে.মি.।
- E, BC এর উপর একটি বিন্দু। AE যোগ করি।

আবার, AB = AE = 10 সে.মি.। সুতরাং ΔABE সমদ্বিবাহু। এখন, A ও D হতে BC বাহুর উপর AG ও DF লম্ব টানি। তাহলে, AGFD একটি আয়তক্ষেত্ৰ।

ধরি,
$$BE = x$$
 এবং $AG = DF = h$

∴ BG = GF =
$$\frac{x}{2}$$
 [∵ \triangle ABE সমদ্বিবাহু]

$$CF = BC - BF = 12 - (BG + GF) = 12 - (\frac{x}{2} + 7) = 5 - \frac{x}{2}$$

সমকোণী ΔABG -এ

Prepared by: ISRAFIL SHARDER AVEEK

$$BG^2 + AG^2 = AB^2$$

বা, $\left(\frac{x}{2}\right)^2 + h^2 = (10)^2$
 $\therefore \frac{x^2}{4} + h^2 = 100$ (i)
আবার, সমকোণী ΔCDF -এর

$$CF^2 + DF^2 = CD^2$$

ৰা,
$$\left(5 - \frac{x}{2}\right)^2 + h^2 = 8^2$$

ৰা,
$$25 - 5x + \frac{x^2}{4} + h^2 = 64$$

বা,
$$25 - 5x + 100 = 64$$
 [(i) নং হতে]

বা,
$$125 - 5x = 64$$

বা,
$$5x = 125 - 64$$

বা,
$$5x = 61$$

$$\therefore x = \frac{61}{5}$$

$$x$$
 এর মান (i) নং সমীকরণে বসিয়ে পাই, $\frac{\left(\frac{61}{5}\right)^2}{4} + h^2 = 100$

বা,
$$\left(\frac{61}{5}\right)^2 + 4h^2 = 400$$

বা,
$$4h^2 = 400 - \left(\frac{61}{5}\right)^2$$

বা,
$$4h^2 = 400 - \left(\frac{61}{5}\right)^2$$

বা, $4h^2 = 400 - \frac{3721}{25} = \frac{10000 - 3721}{25} = \frac{6279}{25}$
বা, $h^2 = \sqrt{\frac{6279}{100}} = 7.924$

বা,
$$h^2 = \sqrt{\frac{6279}{100}} = 7.924$$

∴ ABCD চতুর্ভুজের ক্ষেত্রফল 75.278 বর্গ সে.মি.

২৭.

চিত্রে PM = 30 সে.মি., MN = 14 সে.মি.

[বরিশাল বোর্ড ২০২২]

- (ক) $\sqrt{3}$ সে.মি. বাহুবিশিষ্ট সমবাহু ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।
- (খ) চিত্র হতে বৃত্তচাপ LN এর দৈর্ঘ্য এবং বৃত্তকলা LMN-এর ক্ষেত্রফল নির্ণয় কর।
- (গ) উপরের চিত্রটির সমগ্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় কর।

২৭ নং প্রশ্নের উত্তর

(ক) মনে করি, সমবাহু ত্রিভুজের একবাহুর দৈর্ঘ্য $a=\sqrt{3}$ সে.মি.

$$\therefore$$
 সমবাহু ত্রিভুজের ক্ষেত্রফল $= \frac{\sqrt{3}}{4} \, a^2$ বর্গ সে.মি. $= \frac{\sqrt{3}}{4} \times \left(\sqrt{3}\right)^2$ বর্গ সে.মি. $= \frac{\sqrt{3}}{4} \times 3$ বর্গ সে.মি. $= 1.3$ বর্গ সে.মি. (প্রায়)

নির্ণেয় সমবাহু ত্রিভুজের ক্ষেত্রফল 1.3 বর্গ সে.মি. (প্রায়)।

(খ) দেওয়া আছে, বুত্তের ব্যাসার্ধ, MN = r = 14 সে.মি. এবং উৎপন্ন কেন্দ্রস্থ কোণ, $\theta=30^\circ$

আমরা জানি, s =
$$\frac{\pi r \theta}{180^{\circ}}$$

= $\frac{3.1416 \times 14 \times 30^{\circ}}{180^{\circ}}$
= $\frac{3.1416 \times 14}{4}$ = 7.33 সে.মি. (প্রায়)

ধরি, বৃত্তচাপের দৈর্ঘ্য,
$$\mathrm{LN} = \mathrm{s}$$
 সে.মি.

আমরা জানি, $\mathrm{s} = \frac{\pi r \theta}{180^\circ}$

$$= \frac{3.1416 \times 14 \times 30^\circ}{180^\circ}$$

$$= \frac{3.1416 \times 14}{6} = 7.33 \ \mathrm{rx.}$$
মি. (প্রায়)

এবং বৃত্তকলা LMN এর ক্ষেত্রফল $= \frac{\theta}{360^\circ} \times \pi r^2$

$$= \frac{30^\circ}{360^\circ} \times 3.1416 \times 14^2 \ \mathrm{ff} \ \mathrm{rx.}$$
মি.
$$= \frac{1}{12} \times 3.1416 \times 196 \ \mathrm{ff} \ \mathrm{rx.}$$
মি.
$$= 51.31 \ \mathrm{ff} \ \mathrm{rx.}$$
মি. (প্রায়)
নির্ণেয় বৃত্তচাপ LN এর দৈর্ঘ্য $7.33 \ \mathrm{rx.}$ মি. (প্রায়) এবং বৃত্তকলা LMN এর ক্ষেত্রফল $51.31 \ \mathrm{ff} \ \mathrm{rx.}$ মি. (প্রায়) ।
উদ্দীপকের চিত্রটি একটি সমবৃত্তভূমিক সিলিভার যার ভূমির ব্যাসার্ধ, $\mathrm{MN} = 1$

- (গ) উদ্দীপকের চিত্রটি একটি সমবৃত্তভূমিক সিলিন্ডার যার ভূমির ব্যাসার্থ, MN=1= 14 সে. মি. এবং উচ্চতা, PM = h = 30 সে.মি.।
 - ∴ সিলিভারটির সমগ্রতলের ক্ষেত্রফল = 2πr(r + h)
 - $= 2 \times 3.1416 \times 14 \times (14 + 30)$ বৰ্গ সে.মি.
 - = 2 × 3.1416 × 14 × 44 বর্গ সে.মি.
 - = 3870.4512 বর্গ সে.মি. (প্রায়)

এবং আয়তন
$$=\pi r^2 h$$

- ∴ চিত্রটির সমগ্রতলের ক্ষেত্রফল 3870.4512 বর্গ সে.মি. (প্রায়) এবং আয়তন 18472.608 ঘন সে.মি. (প্রায়)।
- ২৮. একটি বৃত্তের ব্যাস 28 সে.মি.।

[দিনাজপুর বোর্ড ২০২২]

- (ক) বৃত্তটির পরিধি নির্ণয় কর।
- (খ) একটি বর্গের ক্ষেত্রফল <mark>উ</mark>ক্ত বৃত্তের ক্ষেত্রফলের সমান হলে বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য-নির্ণয় কর।
- (গ) বৃত্তটির পরিধি একটি <mark>সমবাহু ত্রিভুজের প</mark>রিসীমার সমান হলে, এদের ক্ষেত্রফলের অনুপাত নির্ণয় কর।

২৮ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, বৃত্তের ব্যাস 28 সে.মি.

অর্থাৎ,
$$2r = 28$$
 সে.মি.

$$\therefore$$
 বৃত্তটির পরিধি = $2\pi r = 2r \times \pi$

নির্ণেয় পরিধি 87.9648 সে.মি. (প্রায়)।

(খ) 'ক' হতে পাই.

বৃত্তের ব্যাস,
$$2r = 28$$
 সে.মি.

∴ বৃত্তের ব্যাসার্ধ,
$$r = \frac{28}{3} = 14$$
 সে.মি

্বভেন্ন ব্যাপ,
$$21-28$$
 পোন, $\frac{28}{2}=14$ সে.মি. $\frac{28}{2}=14$ সে.মি. $\frac{28}{2}=14$ সে.মি. $\frac{28}{2}=14$ সে.মি.

ধরি, বর্গক্ষেত্রটির এক বাহুর দৈর্ঘ্য সে.মি.

 \therefore বর্গক্ষেত্রটির ক্ষেত্রফল = a^2 বর্গ সে.মি.

শর্তমতে, বর্গক্ষেত্রের ক্ষেত্রফল = বৃত্তের ক্ষেত্রফল

বা,
$$a^2 = 615.7536$$

বা,
$$a = \sqrt{615.7536}$$

আমরা জানি, বর্গের কর্ণ
$$=\sqrt{2}\times$$
 বাহু

$$\therefore$$
 বর্গটির কর্ণের দৈর্ঘ্য $= \sqrt{2}a$

$$=\sqrt{2}\times24.81$$
 সে.মি. $=35.09$ সে.মি. (প্রায়)

নির্ণেয় কর্ণের দৈর্ঘ্য 35.09 সে.মি. (প্রায়)।

Prepared by: ISRAFIL SHARDER AVEEK

- (গ) 'ক' হতে প্রাপ্ত, বৃত্তটির পরিধি = 87.9648 সে.মি. ধরি, সমবাহু ত্রিভুজটির এক বাহুর দৈর্ঘ্য = x সে.মি.
 - ∴ সমবাহু ত্রিভুজটির পরিসীমা = 3x সে.মি.
 - শর্তমতে, বৃত্তের পরিধি সমবাহু ত্রিভুজের পরিসীমা
 - বা, 87.9648 = 3x

বা,
$$x = \frac{87.9648}{3}$$

- ∴ x = 29.3216 সে.মি.
- \therefore সমবাহু ত্রিভুজটির ক্ষেত্রফল $= \frac{\sqrt{3}}{2} x^2$ $=\frac{\sqrt{3}}{4}(29.3216)^2$ বর্গ সে.মি. = 372.2854 বর্গ সে.মি. (প্রায়)

'খ' হতে পাই, বৃত্তটির ক্ষেত্রফল 615.7536 বর্গ সে.মি.এায়)

বৃত্তের ক্ষেত্রফল : সমবাহু ত্রিভুজের ক্ষেত্রফল = 615.7536 : 372.2854

$$= \frac{615.7536}{372.2854} : 1 = 1.65 : 1$$

নির্ণেয় অনুপাত, 1.65:1

- ২৯. (i) একটি সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে ক্ষেত্রফল $20\sqrt{3}$ বর্গমিটার বেড়ে যায়।
 - (ii) একটি আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত 5 : 4 : 3 এবং সমগ্রতলের ক্ষেত্রফল 1504 বর্গমিটার।

[ময়মসিংহ বোর্ড ২০২২]

- (ক) একটি বৃত্তের ব্যাসার্ধ 6 মিটার এবং বৃত্তচাপ কেন্দ্রে 60° কোণ উৎপন্ন করে। বৃত্তাংশের ক্ষেত্রফল নির্ণয় কর।
- (খ) ত্রিভুজটির বাহুর দৈর্ঘ্য এবং ক্ষেত্রফল নির্ণয় কর।
- (গ) ঘনবস্তুর কর্ণের দৈর্ঘ্য নির্ণয় কর।

২৯ নং প্রশ্নের উত্তর

 (ϕ) দেওয়া আছে, বৃত্তের ব্যাসার্ধ, r = 6 মিটার

কেন্দ্রে উৎপন্ন কোণ,
$$\theta=60^\circ$$

∴ বৃত্তাংশের ক্ষেত্রফল =
$$\frac{\theta}{360^{\circ}} \times \pi r^2$$
 বর্গ একক = $\frac{60^{\circ}}{360^{\circ}} \times 3.1416 \times 6^2$ বর্গমিটার = $\frac{1}{6} \times 3.1416 \times 36$ বর্গমিটার = 18.8496 বর্গমিটার

নির্ণেয় বৃত্তাংশের ক্ষেত্রফল 18.8496 বর্গমিটার।

- (খ) মনে করি, সমবাহু ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য মিটার = a মিটার
 - \therefore ত্রিভুজটির ক্ষেত্রফল $= \frac{\sqrt{3}}{4}a^2$ বর্গ মিটার

ত্রিভুজটির প্রত্যেক বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে ত্রিভুজটির ক্ষেত্রফল

$$=\frac{\sqrt{3}}{4}(a+4)^2$$
 বর্গমিটার

প্রশ্নমতে,
$$\frac{\sqrt{3}}{4}(a+4)^2 - \frac{\sqrt{3}}{4}a^2 = 20\sqrt{3}$$

$$\operatorname{d}, \frac{\sqrt{3}}{4}(a^2 + 8a + 16 - a^2) = 20\sqrt{3}$$

$$\overline{4}$$
, $8a + 16 = \frac{20\sqrt{3}}{\sqrt{3}}$

বা,
$$8a = 64$$
 বা, $a = \frac{64}{8}$

- $\therefore a = 8$
- ∴ ত্রিভুজটির বাহুর দৈর্ঘ্য ৪ মিটার

এবং ত্রিভুজটির ক্ষেত্রফল
$$=\frac{\sqrt{3}}{4}a^2$$
 বর্গমিটার
$$=\frac{\sqrt{3}}{4}\times 8^2 \, \text{বর্গমিটার}$$

$$=\frac{\sqrt{3}}{4}\times 64 \, \text{বর্গমিটার}$$

$$=16\sqrt{3} \, \text{বর্গমিটার} = 27.713 \, \text{বর্গমিটার} \, (প্রায়)$$

ত্রিভুজটির দৈর্ঘ্য 8 মিটার ক্ষেত্রফল 27.713 বর্গমিটার (প্রায়)।

(গ) দেওয়া আছে,

আয়তাকার ঘনবস্তুর দৈঘ্য, প্রস্থ ও উচ্চতার অনুপাত 5:4:3

মনে করি, আয়তাকার ঘনবস্তুর দৈর্ঘ্য,
$$a=5x$$
 মিটার

এবং উচ্চতা,
$$c=3x$$
 মিটার

∴ ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গমিটার

$$= 2(5x \times 4x + 4x \times 3x + 3x \times 5x)$$
 বর্গমিটার

- $= 2(20x^2 + 12x^2 + 15x^2)$ বর্গ মিটার
- $= 2 \times 47x^2$ বর্গমিটার $= 94x^2$ বর্গমিটার

আবার, আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল 1504 বর্গমিটার প্রশ্নতে, $9x^2 = 1504$

$$41, x^2 = \frac{1504}{94}$$

বা,
$$x^2 = 16$$
 বা, $x = \sqrt{16}$ $\therefore x = 4$

 \therefore ঘনবস্তুর দৈর্ঘ্য, a=5 imes 4=20 মিটার

প্রস্থ,
$$b = 4 \times 4 = 16$$
 মিটার

উচ্চতা,
$$c=3\times 4=12$$
 মিটার

আয়তাকার ঘনবস্তুর কর্ণের দৈর্ঘ্য = $\sqrt{a^2 + b^2 + c^2}$

$$=\sqrt{20^2+16^2+12^2}$$
 মিটার

$$=\sqrt{400+256+144}$$
 মিটার

$$=\sqrt{800}$$
 মিটার = 28.28 মিটার (প্রায়)

নির্ণেয় ঘনবস্তুর কর্ণের দৈর্ঘ্য 28.28 মিটার (প্রায়)।

৩০. একটি ত্রিভুজের তিনটি <mark>বাহুর অনুপাত 4:5:</mark>7 এবং পরিসীমা 64 সে. মি.। ত্রিভূজটির পরিসীমার স<mark>মান পরিসীমাবিশিষ্ট সামান্তরিকের সন্নিহিত বাহুদ্ব</mark>য়ের একটির দৈর্ঘ্য 28 সে.মি.।

[ঢাকা বোর্ড ২০২০]

- (ক) একটি ঘনকের পৃষ্ঠত<mark>লের ক্ষেত্রফল 600</mark> বর্গ সে. মি.। এর বাহুর দৈর্ঘ্য নির্ণয় কর।
- (খ) ত্রিভুজটির ক্ষেত্রফল নির্ণয় <mark>ক</mark>র।
- (গ) সামান্তরিকের অপর কর্ণে<mark>র দৈর্ঘ্য নির্ণয় কর।</mark>

৩০ নং প্রশ্নের উত্তর

- (ক) মনে করি, ঘনকের বাহুর দৈর্ঘ্য a সে.মি.
 - \therefore ঘনকের একটি পৃষ্ঠের ক্ষেত্রফল a^2 বর্গ সে.মি.
 - এবং সম্পূর্ণ পৃষ্ঠতলের ক্ষেত্রফল 6a² বর্গ সে.মি.

এখন, ঘনকের সম্পূর্ণ পৃষ্ঠতলের ক্ষেত্রফল 600 বর্গ সে.মি.

প্রশ্নমতে,
$$6a^2 = 600$$

$$4, a^2 = \frac{600}{6} = 100 = (10)^2$$

$$\therefore$$
 a = 10

∴ ঘনকটির বাহুর দৈর্ঘ্য 10 সে.মি.।

লক্ষ করিঃ ঘনকের একটি পৃষ্ঠতলের ক্ষেত্রফল 600 বর্গ সে.মি. বিবেচনা করলে-

প্রমতে,
$$a^2 = 600$$
 বা, $a = \sqrt{600}$

এক্ষেত্রে, ঘনকটির বাহুর দৈর্ঘ্য 24.495 সে.মি. (প্রায়)।

- (খ) দেওয়া আছে, একটি ত্রিভুজের তিনটি বাহুর অনুপাত 4:5:7
 - মনে করি, বাহু তিনটির দৈর্ঘ্য যথাক্রমে a=4x সে.মি., b=5x সে.মি. ও c= 7x সে.মি.

প্রামতে,
$$4x + 5x + 7x = 64$$

বা,
$$16x = 64$$

বা,
$$x = \frac{3}{10}$$

$$b = 5 \times 4 = 20$$
 সে.মি.

$$c = 7 \times 4 = 28$$
 সে.মি.

ধরি, ত্রিভুজটির অর্ধপরিসীমা s

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

$$\therefore s = \frac{64}{2} = 32$$

∴ ত্রিভুজটির ক্ষেত্রফল

$$=\sqrt{s(s-a)(s-b)(s-c)}$$
 বৰ্গ একক

$$= \sqrt{32(32-16)(32-20)(32-28)}$$
 বৰ্গ সে.মি.

$$=\sqrt{32\times16\times12\times4}$$
 বর্গ সে.মি.

- $=\sqrt{24576}$ বর্গ সে.মি.
- = 156.77 বর্গ সে.মি. (প্রায়)

নির্ণেয় ত্রিভুজটির ক্ষেত্রফল 156.77 বর্গ সে.মি. (প্রায়)।

(গ) দেওয়া আছে, ত্রিভুজটির পরিসীমা 64 সে.মি. প্রশানসারে, সামান্তরিকের পরিসীমা = 64 সে.মি.

মনে করি, সামান্তরিকের একটি বাহুর দৈর্ঘ্য, AD=12 সে.মি. এবং অপর বাহুর দৈর্ঘ্য, AB = x সে.মি.

∴ সামান্তরিক পরিসীমা = 2(AD + AB) সে.মি. = 2(12 + x) সে.মি.

প্রশ্নতে,
$$2(12 + x) = 64$$

বা,
$$12 + x = 32$$

C ও D হতে AB এর উপর এবং AB এর বর্ধিতাংশের উপর যথাক্রমে CF ও DE লম্ব আকি। A, C যোগ কর।

ধরি, সামান্তরিকটির একটি কর্ণ BD = 28 সে.মি.।

ΔABD এর অর্ধ-পরিসীমা s হলে,

$$s = \frac{AB+BD+AD}{2} = \frac{20+28+12}{2} = \frac{60}{2} = 30$$
 সে.মি.

∴ △ABD এর ক্ষেত্রফল

$$=\sqrt{s(s-AB)(s-BD)(s-AD)}$$
 বৰ্গ একক

$$= \sqrt{30(30-20)(30-28)(30-12)}$$
 বর্গ সে.মি.

$$=\sqrt{30\times10\times2\times18}$$
 বৰ্গ সে.মি.

$$=\sqrt{10800}$$
 বর্গ সে.মি. $=103.923$ বর্গ সে.মি. (প্রায়)

আবার, $\Delta ext{ABD}$ এর ক্ষেত্রফল $=rac{1}{2} imes ext{AB} imes ext{DE}$

বা,
$$103.923 = \frac{1}{2} \times 20 \times DE$$

বা, DE =
$$\frac{103.923}{10}$$

এখন, BCF সমকোণী ত্রিভূজের,

$$BF^2 + CF^2 = BC^2$$

বা,
$$BF^2 = BC^2 - CF^2$$

বা, BF =
$$\sqrt{(12)^2 - (10.39)^2}$$

$$\therefore$$
 BF = $\sqrt{144 - 107.9521} = \sqrt{36.048} = 6$ সে.মি.

$$\therefore$$
 AF = AB - BF = (20 - 6) সে.মি. = 14 সে.মি.

ACF সমকোণী ত্রিভুজের ক্ষেত্রে,

$$AC^2 = AF^2 + CF^2$$

বা,
$$AC^2 = (14)^2 + (10.39)^2 = 196 + 107.9521 = 303.9521$$

বা,
$$AC = \sqrt{303.9521} = 17.43$$
 (প্রায়)

৩১. একটি রম্বসের ক্ষেত্রফল 1344 বর্গ সে. মি. এবং একটি সিলিভারের আয়তন 2262 ঘন সে. মি.।

[রাজশাহী বোর্ড ২০২০]

- (ক) একটি সমবাহু ত্রিভূজের ক্ষেত্রফল $36\sqrt{3}$ বর্গ সে. মি.। এর বাহুর দৈর্ঘ্য
- (খ) রম্বসের বৃহত্তম কর্ণ 56 সে.মি. হলে, এর পরিসীমা নির্ণয় কর।
- (গ) সিলিভারের উচ্চতা 20 সে. মি. হলে, এর সমগ্রতলের ক্ষেত্রফল নির্ণয়

৩১ নং প্রশ্নের উত্তর

(ক) মনে করি, সমবাহু ত্রিভুজটির বাহুর দৈর্ঘ্য a সে.মি.

$$\therefore$$
 সমবাহু ত্রিভুজটির ক্ষেত্রফল $= \frac{\sqrt{3}}{4}a^2$ বর্গ সে.মি.

প্রমতে,
$$\frac{\sqrt{3}}{4}a^2=36\sqrt{3}$$

বা,
$$\frac{1}{4}a^2 = 36$$
 [উভয়পক্ষকে $\sqrt{3}$ দ্বারা ভাগ করে]

বা,
$$a^2 = 144$$

বা,
$$a^2 = (12)^2$$

সমবাহু ত্রিভুজটির বাহুর দৈর্ঘ্য 12 সে.মি.।

(খ) মনে করি, ABCD রম্বসের ক্ষেত্রফল 1344 বর্গ সে.মি.

এখন রম্বসটির ক্ষেত্রফল
$$=\frac{1}{2} \times AC \times BD$$

বা,
$$1344 = \frac{1}{2} \times 56 \times BD$$

বা, BD =
$$\frac{1344}{22}$$

আমরা জানি, রম্বসের কর্ণদ্বয় <mark>পরস</mark>্পর<mark>কে সমকোণ সম</mark>দ্বিখণ্ডিত করে।

$$: OA = OC = \frac{AC}{2} = \frac{56}{2} = 28$$
 সে.মি.

OB = OD =
$$\frac{BD}{2} = \frac{48}{2} = 24$$
 (7.1%).

$$\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}$$

এখন, AOB সমকোণী ত্রিভুজ থেকে পাই, $AB^2 = OA^2 + OB^2$

$$41, AB^2 = (28)^2 + (24)^2 = 784 + 576 = 1360$$

বা, AB =
$$\sqrt{1360}$$

∴ রম্বসটির বাহুর দৈর্ঘ্য 36.88 সে.মি.

$$\therefore$$
 রম্বসটির পরিসীমা = $4 \times AB$

নির্ণেয় রম্বসের পরিসীমা 147.52 সে.মি. (প্রায়)

(গ) এখানে, সিলিন্ডারের উচ্চতা, h = 20 সে.মি.

সিলিভারের আয়তন 2262 ঘন সে.মি.

মনে করি, সিলিভারের ব্যাসার্ধ r সে.মি.

∴ সিলিভারের আয়তন = πr²h ঘন সে.মি.

প্রমতে,
$$\pi r^2 h = 2262$$

বা,
$$r^2 = \frac{2262}{\pi h}$$

$$\overline{q}, r^2 = \frac{\frac{\pi h}{2262}}{3.1416 \times 20} = \frac{2262}{62.832} = 36$$

বা
$$r = 6$$

∴ সিলিভারটির সমগ্রতলের ক্ষেত্রফল

$$= 2\pi r(r+h) = 2 \times 3.1416 \times 6(6+20)$$
 বর্গ সে.মি.

নির্ণেয় ক্ষেত্রফল 980.18 বর্গ সে.মি. (প্রায়)

৩২. (i) চিত্রে, ABC একটি সমবাহু ত্রিভুজ এবং BCDE একটি রম্বস।

গণিত ১৬শ অধ্যায়

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

(ii) একটি লোহার পাইপের ভিতরের ও বাইরের ব্যাস যথাক্রমে 18 সে. মি. ও 20 সে. মি. এবং পাইপের উচ্চতা 5 মিটার। 1 ঘন সে. মি. লোহার ওজন 7.2

[যশোর বোর্ড ২০২০]

- (ক) ABC বৃত্তাংশের ক্ষেত্রফল নির্ণয় কর।
- (খ) যদি BD = 6 সে. মি. হয়, তবে, BCDE রম্বসের ক্ষেত্রফল নির্ণয় কর।
- (গ) পাইপের লোহার ওজন নির্ণয় কর।

৩২ নং প্রশ্নের উত্তর

(ক) এখানে, ABC সমবাহু ত্রিভুজ বলে,

$$AB = BC = AC = r = 5$$
 সে.মি.

$$\angle ABC = \angle BAC = \angle ACB = \theta = 60^{\circ}$$

: ABC বৃত্তাংশের ক্ষেত্রফল

$$= \frac{\theta}{360} \times \pi r^2$$

$$=rac{ heta}{360} imes \pi r^2$$
 $=rac{60}{360} imes 3.1416 imes 5^2$ বৰ্গ সে.মি.

= 13.09 বর্গ সে.মি. (প্রায়)।

নির্ণেয় ABC বৃত্তাংশের ক্ষেত্রফল 13.09 বর্গ সে.মি. (প্রায়)।

(খ) এখানে, BCDE রম্বসের BC = BE = ED

কর্ণ BD = 6 সে.মি.

আমরা জানি, রম্বসের কর্ণদ্বয় পরস্পরকে

সমকোণে সমদ্বিখণ্ডিত করে

$$\therefore$$
 OB = OD = $\frac{BD}{2} = \frac{6}{2} = 3$ সে.মি.
OE = OC = $\frac{EC}{2}$

এখন, BOC সমকোণী ত্রিভুজ থেকে পাই,

$$BC^2 = OB^2 + OC^2$$

বা,
$$0C^2 = BC^2 - 0B^2 = 5^2 - 3^2 = 25 - 9 = 16 = 4^2$$

$$\therefore$$
 OC = 4

$$\therefore$$
 EC = 2 × 0C = 2 × 4 সে.মি. = 8 সে.মি.

$$Arr$$
 BCDE রম্বসের ক্ষেত্রফল $= rac{1}{2} imes EC imes BD$ $= rac{1}{2} imes 8 imes 6$ বর্গ সে.মি. $= 24$ বর্গ সে.মি. $|$

নির্ণেয BCDE রম্বসের ক্ষেত্রফল 24 বর্গ সে.মি.।

(গ) এখানে, পাইপের উচ্চতা = 5 মিটার

$$= (5 \times 100)$$
 সে.মি.

= 500 সে.মি.

পাইপের ভেতরের ব্যাস = 18 সে.মি.

পাইপের ভেতরের ব্যাসার্ধ, $r_1 = \frac{18}{2}$ সে.মি. = 9 সে.মি.

পাইপের ভেতরের আয়তন $=\pi r_1^2 \hat{h}$ ঘন একক

$$= 3.1416 \times 9^2 \times 500$$
 ঘন সে.মি.

= 127234.8 ঘন সে.মি.

পাইপের বাইরের ব্যাস = 20 সে.মি.

$$\therefore$$
 পাইপের বাইরের ব্যাসার্ধ, ${
m r_2}=rac{20}{2}$ সে.মি. $=10$ সে.মি.

পাইপের বাইরের আয়তন = $\pi r_2^2 h$ ঘন একক

$$= 3.1416 \times (10)^2 \times 500$$
 ঘন সে.মি.

$$= 3.1416 \times 100 \times 500$$
 ঘন সে.মি.

= 157080 ঘন সে.মি.

1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

= 214885.44 গ্রাম

=
$$\frac{214885.44}{1000}$$
 কিলোগ্ৰাম

[: 1000 গ্রাম = 1 কিলোগ্রাম]

= 214.885 কিলোগ্রাম ı

পাইপের লোহার ওজন 214.885 কিলোগ্রাম (প্রায়)

99.

চিত্রে, ABCD একটি সামান্তরিক এবং AC এর ক্ষুদ্রতম কর্ণ।

[কুমিল্লা বোর্ড ২০২০]

- (ক) কোনো ত্রিভূজের দুই বাহুর দৈর্ঘ্য যথাক্রমে ৪ সে.মি. ও 9 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ 45°, ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (খ) অপর কর্ণ BD এর দৈর্ঘ্য নির্ণয় কর।
- (গ) উদ্দীপকে উল্লিখিত সা<mark>মান্ত</mark>রিকটির বৃহত্তম বাহুর দৈর্ঘ্য ও ক্ষুদ্রতম কর্ণের দৈর্ঘ্য যথাক্রমে অপর এ<mark>কটি রম্বসের বাহুর দৈ</mark>র্ঘ্য ও ক্ষুদ্রতম কর্ণের দৈর্ঘ্যের সমান হলে রম্বসটির ক্ষেত্রফল নির্ণয় কর।

৩৩ নং প্রশ্নের উত্তর

(ক) এখানে, ত্রিভুজের বাহুর দৈর্ঘ্য a = 8 সে.মি. এবং b = 9 সে.মি.

তাদের অন্তর্ভুক্ত কোণ,
$$\theta=45^\circ$$

∴ ত্রিভুজটির ক্ষেত্রফল
$$=\frac{1}{2}ab \sin \theta$$

$$=\frac{1}{2}\times 8\times 9\times \sin 45^\circ$$
 বৰ্গ সে.মি.

$$=\frac{2}{36} \times \frac{1}{\sqrt{2}}$$
 বর্গ সে.মি. $=25.46$ বর্গ সে.মি.।

নির্ণেয় ত্রিভুজটির ক্ষেত্রফল 25.46 সে.মি. (প্রায়)।

(খ) এখানে, ABCD সামান্তরিকের

বাহু,
$$AB = a = 10$$
 মি.

A ও D থেকে BC এর উপর এবং BC

এর বর্ধিতাংশের উপর যথাক্রমে AE ও DF লম্ব টানি।

$$\Delta$$
ABC এর অর্থপরিসীমা, $S = \frac{a+b+c}{2} = \frac{10+16+12}{2}$ মি. = 19 মি.

$$\therefore \triangle ABC$$
 এর ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$

=
$$\sqrt{19(19-10)(19-16)(19-12)}$$
 $\sqrt{19(19-10)(19-16)(19-12)}$

$$=\sqrt{19\times9\times3\times7}$$
 বর্গ মি.

$$=\sqrt{3691}$$
 বর্গ মি. $=59.925$ বর্গ মি. (প্রায়)

আবার,
$$\Delta$$
 ক্ষেত্র ABC এর ক্ষেত্রফল $=\frac{1}{2} imes BC imes AE$

বা,
$$59.925 = \frac{1}{2} \times 16 \times AE$$

বা, AE =
$$\frac{59.925}{8}$$

গণিত ১৬শ অধ্যায়

পরিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

বা, AE = 7.491 মি. (প্রায়)

এখন, ΔCDF সমকোণী বলে.

$$CF^2 = CD^2 - DF^2 = AB^2 - AE^2 = (10)^2 - (7.491)^2 = 43.85$$

∴ CF =
$$\sqrt{43.885}$$
 = 6.625 মি. (প্রায়)

এখন, BDF সমকোণী ত্রিভজ থেকে পাই.

$$BD^2 = BF^2 + DF^2$$

বা, BD =
$$\sqrt{568.006}$$
 = 23.833 মি. (প্রায়)

অতএব, অপর কর্ণ BD এর দৈর্ঘ্য 23,833 মি. (প্রায়)

(গ) এখানে, সামান্তরিকটির বৃহত্তম বাহুর দৈর্ঘ্য, BC = 16 মি. এবং ক্ষুদ্রতম কর্ণের দৈর্ঘ্য, AC = 12 জি

∴
$$PT = TR = \frac{PR}{2} = \frac{12}{2} \bar{N}$$
. = 6 \bar{N} .

$$\angle PTQ = \angle QTR = \angle RTS = \angle PTS = 90^{\circ}$$

এখন, PTQ সমকোণী ত্রিভুজ থেকে পাই,

$$PT^2 + QT^2 = PQ^2$$

বা,
$$QT^2 = PQ^2 - PT^2$$

$$T^2 = (16)^2 - (6)^2$$

বা,
$$QT^2 = 220$$

বা,
$$QT = \sqrt{220} = 14.832$$
 মি. (প্রায়)।

অতএব, রম্বসটির ক্ষেত্রফল 177.984 বর্গ.মি. (প্রায়)

98.

[চট্টগ্রাম বোর্ড ২০২০]

- (ক) ΔDCE এর ক্ষেত্রফল নির্ণয় কর।
- (খ) ABCD ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয় কর।
- (গ) AECD ক্ষেত্রের বাইরে চতুর্দিকে 1.5 মিটার চওড়া একটি রাস্তা তৈরি করতে 25×12.5 বর্গ সে.মি. তলবিশিষ্ট ইটের সংখ্যা নির্ণয় কর।

৩৪ নং প্রশ্নের উত্তর

- (ক) এখানে, AD = EC = 21 সে.মি., CD = 13 সে.মি. এবং ∠DCE = 90°
 - \therefore DCE সমকোণী গ্রিভুজের ক্ষেত্রফল = $\frac{1}{2} \times$ EC \times CD = $\frac{1}{2} \times 21 \times 13$ বর্গ সে.মি. = 136.5 বর্গ সে.মি. |
 - ∴ ΔDCE এর ক্ষেত্রফল 136.5 বর্গ সে.মি. (প্রায়)।

∴ ABE সমকোণী ত্রিভুজ থেকে পাই.

$$AB^2 = AE^2 + BE^2$$

$$T, BE^2 = AB^2 - AE^2$$

বা,
$$BE^2 = (15)^2 - (13)^2$$

বা,
$$BE^2 = 56$$

বা. BE =
$$\sqrt{56}$$
 = 7.483 (প্রায়)

$$\therefore$$
 ABCD ট্রাপিজিয়ামের ক্ষেত্রফল = $\frac{1}{2}$ (BC + AD) \times AE

$$=\frac{1}{2}(28.483+21)\times 13$$
 বর্গ সে.মি.

$$=\frac{1}{2} \times 49.483 \times 13$$
 বৰ্গ সে.মি.

<mark>নির্ণেয় ট্রাপিজিয়ামের ক্ষেত্রপল 321.64 বর্গ সে.মি. (প্রায়)</mark>।

- (গ) AECD ক্ষেত্রের রাস্তা বাদে দৈর্ঘ্য 21 সে.মি. এবং প্রস্থ 13 সে.মি.।
 - ∴ রাস্তা বাদে ক্ষেত্রফল = (21 × 13) বর্গ সে.মি. = 273 বর্গ সে.মি.
 - রাস্তাটি চওড়া = 1.5 মিটার = (1.5×100) সে.মি. = 150 সে.মি.

রাস্তাসহ দৈর্ঘ্য =
$$\{21 + (150 \times 2)\}$$
 সে.মি. = 321 সে.মি. রাস্তাসহ প্রস্থ = $\{13 + (150 \times 2)\}$ সে.মি. = 313 সে.মি.

প্রতিটি ইটের তলার ক্ষেত্রফল = (25×12.5) বর্গ সে.মি.

 \therefore প্রয়োজনীয় ইটের সংখ্যা $=\frac{100200}{312.5}$ টি =320.64 টি ≈321 টি

নির্ণেয় ইটের সংখ্যা 321 টি (প্রায়)।

- ৩৫. (i) একটি সমবাহু ত্রিভুজের প্রত্যেকটি বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে ক্ষেত্রফল $7\sqrt{3}$ বর্গমিটার বেডে যায়।
 - (ii) একটি লোহার পাইপের <mark>ভিতরের ও বাহিরের</mark> ব্যাস যথাক্রমে 14 সে.মি. ও 16 সে.মি. এবং পাইপের উচ্চতা 4 মিটার।

[সিলেট বোর্ড ২০২০]

- (ক) একটি ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 24 বর্গমিটার। এর পৃষ্ঠের কর্ণের দৈর্ঘ্য নির্ণয় কর।
- (খ) সমবাহু ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।
- (গ) 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম হলে পাইপে লোহার ওজন নির্ণয় কর।

৩৫ নং প্রশ্নের উত্তর

- (ক) মনে করি, ঘনকের বাহুর দৈঘ্য a মিটার
 - ∴ ঘনকের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 6a² বর্গমিটার

প্রমতে,
$$6a^2 = 24$$

বা,
$$a^2 = \frac{24}{}$$

বা,
$$a^2 = 4$$

বা,
$$a^2 = 2^2$$

$$\therefore a = 2$$

 \therefore ঘনকের পৃষ্ঠের কর্ণের দৈর্ঘ্য $= a\sqrt{2}$ মিটার

$$= 2\sqrt{2}$$
 মিটার $= 2.828$ মিটার (প্রায়)

নির্ণেয় ঘনকের পৃষ্ঠের কর্ণের দৈঘ্য 2.828 মিটার (প্রায়)।

(খ) মনে করি,

সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য x মিটার

$$\therefore$$
 " ক্ষেত্রফল $= \frac{\sqrt{3}}{4} \chi^2$ বর্গমিটার

ত্রিভুজটির বাহুর দৈর্ঘ্য 4 মিটার বাড়ালে প্রতি বাহুর দৈর্ঘ্য (x+4) মিটার এবং

ক্ষেত্রফল
$$= rac{\sqrt{3}}{4}(x+4)^2$$
 মিটার।

গণিত ১৬শ অধ্যায়

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

শর্থানুসারে,
$$\frac{\sqrt{3}}{4}(x+4)^2 - \frac{\sqrt{3}}{4}x^2 = 7\sqrt{3}$$

$$4, \frac{\sqrt{3}}{4}\{(x+4)^2 - x^2\} = 7\sqrt{3}$$

বা,
$$(x + 4)^2 - x^2 = \frac{7\sqrt{3}\times 4}{\sqrt{3}}$$

বা, $x^2 + 8x + 16 - x^2 = 28$

$$41. x^2 + 8x + 16 - x^2 = 28$$

বা.
$$8x = 28 - 16$$

বা,
$$8x = 12$$

বা,
$$x = \frac{12}{8}$$

$$\therefore$$
 ত্রিভুজটির ক্ষেত্রফল $= \frac{\sqrt{3}}{4} \times (1.5)^2$ বর্গমিটার $= 0.973$ বর্গমিটার (প্রায়) নির্ণেয় সমবাহু ত্রিভুজটির ক্ষেত্রফল 0.973 বর্গমিটার (প্রায়) ।

(গ) দেওয়া আছে,

পাইপের ভিতরের ও বাইরের ব্যাস যথাক্রমে 14 সে.মি. ও 16 সে.মি.

$$\therefore$$
 পাইপের ভিতরের ব্যাসার্ধ, $r_1 = \frac{14}{3} = 7$ সে.মি.

" বাইরের ব্যাসার্ধ,
$$r_2 = \frac{16}{2} = 8$$
 সে.মি.

"উচ্চতা,
$$h=4$$
 মিটার $=(4 imes 100)$ সে.মি. $=400$ সে.মি.

$$\therefore$$
 পাইপের লোহার আয়তন $=\pi r_2^2 h - \pi r_1^2 h$

$$=\pi h(r_2^2-r_1^2)$$

$$=400\pi(8^2-7^2)$$
 ঘন সে.মি.

$$=400 \times 3.1416(64-49)$$
"

$$= 400 \times 3.1416 \times 15$$
"

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

= 135717.12 গ্রাম
=
$$\frac{135717.12}{1000}$$
 কি. গ্রাম

[::1000 গ্রাম =1 কি.গ্রাম]

= 135.717 কি. গ্রাম

: পাইপের লোহার ওজন 135.717 কি. গ্রাম (প্রায়)।

৩৬.

[বরিশাল বোর্ড ২০২০]

- (ক) OP এর মান নির্ণয় কর।
- (খ) PORS এর ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট কোনো বর্গের ভিতরে চারদিকে 2.5 মিটার চওড়া একটি রাস্তা আছে। রাস্তার ক্ষেত্রফল নির্ণয়
- (গ) PQRS চতুর্ভুজটিকে বৃহত্তর বাহুর চতুর্দিকে ঘুরা উৎপন্ন হয় তার সমগ্র তলের ক্ষেত্রফল ও আয়তন নির্ণয় কর।

৩৬ নং প্রশ্নের উত্তর

(ক) এখানে,
$$PQ = SR = 16$$
 মিটার

$$PS = QR = 25$$
 মিটার

এবং PQ ⊥ QR

∴ PQRS একটি আয়তক্ষেত্র।

এখন, PQR সমকোণী ত্রিভুজ থেকে পাই, $PR^2 = PQ^2 + QR^2$

$$\text{ at, } PR^2 = (16)^2 + (25)^2$$

বা,
$$PR^2 = 881$$

বা,
$$PR = \sqrt{881} = 29.682$$
 মিটার

আয়তক্ষেত্রের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে.

$$\therefore$$
 $OP = \frac{PR}{2} = \frac{29.682}{2} \, m = 14.84$ মিটার নির্ণেয় OP এর মান 14.84 মিটার (প্রায়)।

$$PS = QR = 2S$$
 মিটার

রাস্তাসহ বর্গক্ষেত্রের ক্ষেত্রফল = PORS আয়তক্ষেত্রের ক্ষেত্রফল = 400 বর্গমিটার

 \therefore রাস্তাসহ বর্গক্ষেত্রের বাহুর দৈর্ঘ্য $=\sqrt{400}$ মিটার =20 মিটার রাস্তাটি চওড়া = 2.5 মিটার

 $dec{\cdot}$ রাস্তা বাদে বর্গক্ষেত্রের বাহুর দৈর্ঘ্য $=\{20-(2.5 imes2)\}$ মিটার =

 \therefore রাস্তা বাদে বর্গক্ষেত্রের ক্ষেত্রফল $=(15)^2$ বর্গমিটার =225 বর্গমিটার

∴ রাস্তা<mark>র ক্ষেত্রফল = (400</mark> – 225) বর্গমিটার = 175 বর্গমিটার অতএব, রাস্তা<mark>টির ক্ষেত্রফল</mark> 175 বর্গমিটার।

(গ) এখানে, PQRS চতুর্ভুজের বৃহত্তম বাহু QR = 25 মি.

এবং ক্ষুদ্রতম বাহু PQ = 16 মি.

চতুর্ভুজটি বৃহত্তর বা<mark>হুর</mark> চতুর্দিকে ঘুরালে একটি

সমবৃত্তভূমিক সিলিভার উৎপন্ন হবে।

ধরি, সিলিভারটির উচ্চতা, h=25 মিটার

এবং ভূমির ব্যাসার্ধ, r=16 মিটার

∴ সিলিভারের সমগ্রতলের ক্ষেত্রফল = $2\pi r(r+h)$

$$= 2 \times 3.1416 \times 16 \times (16 + 25)$$
 বর্গমিটার

$$= 2 \times 3.1416 \times 16 \times 41$$
 বর্গমিটার

= 4121.779 বর্গমিটার (প্রায়)

∴ সিলিভারের আয়তন = πr²h

$$= 3.1416 \times (16)^2 \times 25$$
 ঘন মিটার

অতএব, উৎপন্ন ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল 4121.779 বর্গমিটার প্রায়) এবং আয়তন 20106.24 ঘন মিটার (প্রায়)।

৩৭. একটি ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে 54 সে.মি. এবং 84 সে.মি.। একটি লোহার পাইপের ভিতরের ও বাইরের ব্যাস যথাক্রমে 12 সে.মি. এবং 15 সে.মি. ও পাইপের উচ্চতা ৬ মিটার।

[দনাজপুর বোর্ড ২০২০]

- (ক) 20 সে.মি. ব্যাসবিশিষ্ট বৃত্তের ক্ষেত্রফল নির্ণয় কর।
- (খ) এক ঘন সে.মি. লোহার ওজন 7.2 গ্রাম হলে পাইপের লোহার ওজন নির্ণয়
- (গ) ট্রাপিজিয়ামের অপর বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে 12 সে.মি. ও 18 সে.মি. হলে ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় কর।

৩৭ নং প্রশ্নের উত্তর

- (ক) এখানে, বৃত্তের ব্যাস, d=20 সে.মি.

 - \therefore বৃত্তের ব্যাসার্ধ, $r=rac{d}{2}=rac{20}{2}$ সে.মি. =10 সে.মি. \therefore বৃত্তের ক্ষেত্রফল $=\pi r^2=3.1416 imes(10)^2$ বর্গ সে.মি. = 314.16 বর্গ সে.মি. (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 314.16 বর্গ সে.মি. (প্রায়)।

- (খ) এখানে, পাইপের ভিতরের ব্যাস 12 সে.মি.
 - ∴ পাইপের ভিতরের ব্যাসার্ধ, $r_1 = \frac{12}{2} = 6$ সে.মি. পাইপের বাইরের ব্যাস 15 সে.মি.
 - \therefore পাইপের বাইরের ব্যাসার্ধ, $r_2 = \frac{15}{2} = 7.5$ সে.মি.
 - পাইপের উচ্চতা h = 6 মিটার $= (6 \times 100)$ সে.মি. = 600 সে.মি.

www.schoolmathematics.com.bd

গণিত ১৬শ অধ্যায়

পরিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

$$\therefore$$
 পাইপের লোহার আয়তন $=\pi r_2^2 h - \pi r_1^2 h$ $=\pi h (r_2^2 - r_1^2)$ $=600\pi \{(7.5)^2 - 6^2\}$ ঘন সে.মি. $=600\pi (56.25-36)$ ঘন সে.মি. $=600\times 3.1416\times 20.25$ ঘন সে.মি. $=38170.44$ ঘন সে.মি. (প্রায়)

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

$$: 38170.44$$
 " " = (38170.44×7.2) গ্রাম = 274827.168 গ্রাম = $\frac{274827.168}{1000}$ কিলোগ্রাম

অতএব, পাইপের লোহার ওজন 274.827 কিলোগ্রাম (প্রায়)।

- (গ) মনে করি, ABCD্টাপিজিয়ামের AB=84 সে.মি., CD=54 সে.মি. । C ও D থেকে AB এর উপর যথাক্রমে DE ও CF লম্ব টানি ।
 - ∴ CDEF একটি আয়তক্ষেত্র।

$$\therefore BF = AB - AF = 84 - (AE +$$

$$EF) = 84 - (x + 54) = 30 - x$$

$$7, x^2 + h^2 = (12)^2$$

$$\therefore x^2 + h^2 = 144$$
(1)

আবার, BCF সমকোণী ত্রিভুজে, $BF^2 + CF^2 = BC^2$

$$4, (30 - x)^2 + h^2 = (18)^2$$

$$4,900 - 60x + x^2 + h^2 = 324$$

বা,
$$900 - 60x + 144 = 324$$
 [(1) হতে]

বা,
$$1044 - 324 = 60x$$

বা, 60x = 720

(1) নং এ x-এর মান বসিয়ে পাই. $(12)^2 + h^2 = 144$

বা,
$$144 + h^2 = 144$$

বা,
$$h^2 = 144 - 144$$

বা,
$$h^2 = 0$$

$$\therefore h = 0$$

: ABCD ট্রাপিজিয়ামটির ক্ষেত্রফল

$$=\frac{1}{2}(AB+CD)$$
. h বর্গ একক

$$=\frac{1}{2}(84+54)\times 0$$
 বর্গ সে.মি. $=0$ বর্গ সে.মি.

লক্ষ করি: এখানে, ট্রাপিজিয়ামটির ক্ষেত্রফল শূন্য বের হয়েছে যা সঠিক নয়। কারণ, কোনো ক্ষেত্রের ক্ষেত্রফল শূন্য হতে পারে না। তাই এই প্রশ্নে প্রদত্ত তথ্যসমূহ সামঞ্জস্যপূর্ণ নয়।

- ৩৮. একটি আয়তাকার কাঠের বাব্ধের বাইরের মাপ যথাক্রমে 9 সেমি, 7 সেমি এবং 5 সেমি। এর ভিতরের সমগ্র পৃষ্ঠের ক্ষেত্রফল 142 বর্গ সেমি এবং বাব্ধটির কাঠের পুরুত্ব সমান। আবার, একটি বেলনের আয়তন বাব্ধের বাইরের আয়তনের সমান এবং বেলনের উচ্চতা তার ভূমির ব্যাসার্ধের দ্বিগুণ।
 - [ময়মনসিংহ বোর্ড ২০২০]
 - (ক) বাক্সটির কর্ণের দৈর্ঘ্য নির্ণয় কর।
 - (খ) বাক্সটির কাঠের পুরুত্ব নির্ণয় কর।
 - (গ) বেলনের বক্রতলের ক্ষেত্রফল এবং সমগ্রপৃষ্ঠের ক্ষেত্রফল নির্ণয় কর।

৩৮ নং প্রশ্নের উত্তর

- (ক) মনে করি, আয়তাকার বাক্সটির দৈর্ঘ্য, a=9 সে.মি. আয়তাকার বাক্সটির প্রশ্ন, b=7 সে.মি. আয়তাকার বাক্সটির উচ্চতা, c=5 সে.মি.
 - \therefore বাক্সটির কর্ণের দৈর্ঘ্য $=\sqrt{a^2+b^2+c^2}$

$$=\sqrt{9^2+7^2+5^2}$$
 সে.মি.
 $=\sqrt{81+49+25}$ সে.মি.
 $=\sqrt{155}=12.45$ সে.মি. (প্রায়)

অতএব, বাক্সটির কর্ণের দৈর্ঘ্য 12.45 (প্রায়)।

- (খ) মনে করি, আয়তাকার বাক্সটির কাঠের পুরুত্ব সে.মি.
 - বাব্লের বাইরের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 9 সে.মি., 7 সে.মি. ও 5 সে.মি.

$$\therefore$$
 বাক্সটির ভিতরের দৈর্ঘ্য, $a_1 = (9 - 2x)$ সে.মি.

বাক্সটির ভিতরের প্রস্থ,
$$b_1 = (7 - 2x)$$
 সে.মি.

বাক্সটির ভিতরের উচ্চতা,
$$c_1 = (5 - 2x)$$
 সে.মি.

$$:$$
 বাক্সটির ভিতরের সমগ্রপৃষ্ঠের $=2(a_1b_1+b_1c_1+c_1a_1)$ বর্গ একক

প্রমতে,
$$2(a_1b_1 + b_1c_1 + c_1a_1) = 142$$

বা, $a_1b_1 + b_1c_1 + c_1a_1 = 71$

$$\boxed{4}, (9-2x)(7-2x) + (7-2x)(5-2x) + (5-2x)(9-2x) = 71$$

$$\boxed{4}, 63 - 32x + 4x^2 + 35 - 24x + 4x^2 + 45 - 28x + 4x^2 - 71 = 0$$

$$41, 12x^2 - 84x + 72 = 0$$

$$41, 12(x^2 - 7x + 6) = 0$$

বা,
$$x^2 - 7x + 6 = 0$$

বা,
$$x^2 - 6x - x = 6 = 0$$

বা,
$$(x-6)(x-1)=0$$

হয়,
$$x - 6 = 0$$
 অথবা, $x - 1 = 0$

কিন্তু বাস্ত্রটির পুরুত্ তার বাইরের তিনটি পরিমাপের কোণটির চেয়েই বেশি হতে পারে না।

অতএব, বাক্সটির কাঠের পুরুত্ব 1 সে.মি.।

- (গ) বাব্দ্রের বাইরের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে a=9 সে.মি., b=7 সে.মি. ও c=5 সে.মি.
 - ∴ বাক্সের আয়তন = abc

∴ বেলনের আয়তন = বাক্সের আয়তন = 315 ঘন সে.মি.

মনে করি, বেলনের ভূমির ব্যাসার্ধ r সে.মি.

∴ বেলনের উচ্চতা, h = 2r সে.মি.

∴ বেলনের আয়তন = $\pi r^2 h$

প্রশ্নতে,
$$\pi r^2 h = 315$$

বা,
$$\pi r^2 \times 2r = 315$$

বা,
$$2\pi r^3 = 315$$

ৰা,
$$r^3 = \frac{315}{2\pi} = \frac{315}{2\times 3.1416} = 50.1337$$

বা,
$$r = \sqrt[3]{50.1337}$$

: বেলনের বক্রতলের ক্ষেত্রফল = 2πrh

$$= 2\pi r \times 2r \left[: h = 2r \right]$$

$$=4\pi r^2$$

 $= 4 \times 3.1416 \times (3.6873)^2$ বর্গ সে.মি.

= 170.86 বর্গ সে.মি. (প্রায়)

্র বেলনের সমগ্রপৃষ্ঠের ক্ষেত্রফল = $2\pi r(r+h)$

$$=2\pi r(r+2r)[\because h=2r]$$

$$= 2\pi r \times 3r = 6\pi r^2$$

$$= 6 \times 3.1416 \times (3.6873)^2$$
 বৰ্গ সে.মি.

অতএব, বেলনের বক্রতলের ক্ষেত্রফল 170.86 বর্গ সে.মি. (প্রায়) এবং সমগ্রপৃষ্ঠের ক্ষেত্রফল 256.28 বর্গ সে.মি. (প্রায়)।

১৬শ অধ্যায়

প্রিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

৩৯. একটি আয়তক্ষেত্রের ক্ষেত্রফল 540 বর্গসেমি। এর দৈর্ঘ্য 7 সে.মি. কম হলে এটি একটি বর্গক্ষেত্র হয়। আয়তক্ষেত্রটির ক্ষেত্রফলের সমান। ক্ষেত্রফলবিশিষ্ট একটি সমদ্বিবাহু ত্রিভুজের ভূমির দৈর্ঘ্য 36 সে.মি.।

- (Φ) একটি চাকা 200π সে.মি. পথ যেতে 10 বার ঘুরলে, চাকাটির ব্যাসার্ধ
- (খ) আয়তক্ষেত্রটির দৈর্ঘ্য নির্ণয় কর।

গণিত

(গ) ত্রিভজটির পরিসীমা নির্ণয় কর।

৩৯ নং প্রশ্নের উত্তর

- (ক) মনে করি, চাকাটির ব্যাসার্ধ r সে.মি.
 - ∴ চাকাটির পরিধি = 2πr

চাকাটি 10 বার ঘুরে অতিক্রম করে 200π সে. মি.

 \therefore চাকাটি 1 বার ঘুরে অতিক্রম করে $= rac{200\pi}{10}$ সে.মি. $= 20\pi$ সে.মি.

বৃত্তাকার চাকা একবার ঘুরে পরিধির সমান দূরত্ব অতিক্রম করে।

$$\therefore 2\pi r = 20\pi$$

বা,
$$r = \frac{20\pi}{100} = 10$$

বা, $r=\frac{20\pi}{2\pi}=10$ নির্ণেয় চাকাটির ব্যাসার্থ 10 সে.মি.।

(খ) মনে করি, আয়তক্ষেত্রটির দৈর্ঘ্য x সে.মি.

এবং আয়তক্ষেত্রটির প্রস্থ y সে.মি,

∴ আয়তক্ষেত্রটির ক্ষেত্রফল xy বর্গ সে.মি.

আয়তক্ষেত্রটির দৈর্ঘ্য 7 সে.মি. কম হলে এর দৈর্ঘ্য হতো (x - 7) সে.মি.

এবং প্রস্থ v সে.মি.।

২য় শর্তমতে,
$$x - 7 = y$$
(2)

(1) নং এ y = x - 7 বসিয়ে পাই,

$$x(x-7) = 540$$

বা,
$$x^2 - 7x = 540$$

$$41, x^2 - 7x - 540 = 0$$

$$4, x^2 - 27x + 20x - 540 = 0$$

$$4x(x-27) + 20(x-27) = 0$$

4, (x-27)(x+20) = 0

অথবা,
$$x + 20 = 0$$

বা, x = -20; যা গ্রহণযোগ্য নয়, কারণ

দৈর্ঘ্য ঋণাত্মক হতে পারে না।

নির্ণেয় আয়তক্ষেত্রটির দৈর্ঘ্য 27 সে.মি.।

(গ) দেওয়া আছে. আয়তক্ষেত্রটির ক্ষেত্রফল 540 বর্গ সে.মি.

এখানে, সমদ্বিবাহু ত্রিভুজের ক্ষেত্রফল = আয়তক্ষেত্রটির ক্ষেত্রফল

মনে করি, সমদ্বিবাহু ত্রিভুজের সমান সমান বাহুর দৈর্ঘ্য a সে.মি. এবং ভূমির দৈর্ঘ্য b = 36 সে.মি.।

∴ সমদ্বিবাহু ত্রিভুজটির ক্ষেত্রফল

প্রমতে,
$$\frac{b}{4}\sqrt{4a^2-b^2}=540$$

$$\overline{4}, \frac{36}{4} \sqrt{4a^2 - (36)^2} = 540$$

বা,
$$9\sqrt{4a^2 - 1296} = 540$$

বা, $\sqrt{4a^2 - 1296} = \frac{540}{9}$

বা,
$$\sqrt{4a^2 - 1296} = 60$$

বা,
$$(\sqrt{4a^2 - 1296})^2 = (60)^2$$
 [বর্গ করে]

বা,
$$4a^2 - 1296 = 3600$$

বা,
$$4a^2 = 3600 + 1296 = 4896$$

বা,
$$a^2 = \frac{4896}{4} = 1224$$

বা,
$$a = \sqrt{1224}$$

- $\therefore a = 6\sqrt{34}$
- \therefore ত্রিভুজটির সমান বাহুর দৈর্ঘ্য, $a=6\sqrt{34}$ সে.মি.
- ∴ ত্রিভূজটির পরিসীমা = 2a + b

$$= (2 \times 6\sqrt{34} + 36)$$
 সে.মি.

$$=(12\sqrt{34}+36)$$
 সে.মি.

নির্ণেয় ত্রিভুজটির পরিসীমা 105.971 সে.মি. (প্রায়)।

৪০. একটি ত্রিভুজের তিনটি বাহুর অনুপাত 4:5:7 এবং পরিসীমা 64 সে.মি.। ত্রিভুজটির পরিসীমার সমান পরিসীমাবিশিষ্ট সামান্তরিকের সন্নিহিত বাহুদ্বয়ের একটির দৈর্ঘ্য 12 সে.মি. এবং একটি কর্ণের দৈর্ঘ্য 28 সে.মি.।

[রাজশাহী বোর্ড ২০১৯]

- $\frac{(\sigma)}{(\sigma)}$ বেলনাকার দণ্ডের ভূমির ব্যাসার্ধ 6 সে.মি. ও আয়তন 180π ঘন সে.মি. হলে, এর উচ্চতা নির্ণয় কর।
- (খ) ত্রিভজটির ক্ষেত্রফল নির্ণয় কর।
- (গ) সা<mark>মান্ত</mark>রিকটির <mark>অপর কর্ণের দৈর্ঘ্য নির্ণয় কর।</mark>

৪০ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, বেলনাকার দন্ডের ভূমির ব্যাসার্ধ, r=6 সে.মি.

ধরি, দুভটির উচ্চতা = h সে.মি.

$$\therefore$$
 দণ্ডটির আয়তন = $\pi r^2 h$ ঘন সে.মি.

প্রশ্নতে,
$$\pi r^2 h = 180\pi$$

বা,
$$h = \frac{180\pi}{\pi r^2} = \frac{180}{6^2} = \frac{180}{36} = 5$$

∴ বেলনাকার দণ্ডের উচ্চতা 5 সে.মি.।

(খ) দেওয়া আছে. একটি ত্রিভুজের তিনটি বাহুর অনুপাত 4:5:7

মনে করি, বাহু তিনটির দৈর্ঘ্য যথাক্রমে a=4x সে.মি., b=5x সে.মি. ও c= 7x সে.মি.

প্রমতে,
$$4x + 5x + 7x = 64$$

বা,
$$16x = 64$$

বা,
$$x = \frac{64}{16}$$

$$\therefore x = 4$$

$$b = 5 \times 4 = 20$$
 সে.মি.

$$c = 7 \times 4 = 28$$
 সে.মি.

ধরি, ত্রিভুজটির <mark>অর্ধপ</mark>রিসীমা s

$$\therefore s = \frac{64}{2} = 32$$

∴ ত্রিভুজটির ক্ষেত্রফল

$$= \sqrt{s(s-a)(s-b)(s-c)}$$
 বৰ্গ একক

$$= \sqrt{32(32-16)(32-20)(32-28)}$$
 বৰ্গ সে.মি.

$$=\sqrt{32\times16\times12\times4}$$
 বর্গ সে.মি.

 $=\sqrt{24576}$ বর্গ সে.মি. =156.77 বর্গ সে.মি. (প্রায়)

নির্ণেয় ত্রিভুজটির ক্ষেত্রফল 156.77 বর্গ সে.মি. (প্রায়)।

(গ) দেওয়া আছে, ত্রিভুজটির পরিসীমা 64 সে.মি.

প্রশানুসারে, সামান্তরিকের পরিসীমা = 64 সে.মি.

মনে করি. সামান্তরিকের একটি বাহুর দৈর্ঘ্য, AD = 12 সে.মি. এবং অপর

বাহুর দৈর্ঘ্য, AB = x সে.মি.

$$\therefore$$
 সামান্তরিক পরিসীমা $=2(AD+AB)$ সে.মি.

$$= 2(12 + x)$$
 সে.মি.

প্রশ্নতে,
$$2(12 + x) = 64$$

বা,
$$12 + x = 32$$

১৬শ অধ্যায়

পারামাত

গণিত

Prepared by: ISRAFIL SHARDER AVEEK

বা, x = 20

∴ AB = 20 সে.মি.

C ও D হতে AB এর উপর এবং AB এর বর্ধিতাংশের উপর। যথাক্রমে CF ও DE লম্ব আকি। A. C যোগ কর।

ধরি, সামান্তরিকটির একটি কর্ণ BD = 28 সে.মি.।

Δ ABD এর অর্ধ-পরিসীমা s হলে,

$$=\sqrt{s(s-AB)(s-BD)(s-AD)}$$
 বৰ্গ একক

$$= \sqrt{30(30-20)(30-28)(30-12)}$$
 বর্গ সে.মি.

$$=\sqrt{30\times10\times2\times18}$$
 বৰ্গ সে.মি.

$$=\sqrt{10800}$$
 বর্গ সে.মি. $=103.923$ বর্গ সে.মি. (প্রায়)

আবার, $\triangle ABD$ এর ক্ষেত্রফল $=\frac{1}{2} \times AB \times DE$

বা,
$$103.923 = \frac{1}{2} \times 20 \times DE$$

বা, DE =
$$\frac{103.923}{10}$$

এখন, BCF সমকোণী ত্রিভুজে, BF
2
 + CF 2 = BC 2

বা,
$$BF^2 = BC^2 - CF^2$$

$$\text{ at, BF} = \sqrt{(12)^2 - (10.39)^2}$$

$$\therefore$$
 BF = $\sqrt{144 - 107.9521} = \sqrt{36.048} = 6$ সে.মি.

ACF সমকোণী ত্রিভুজের ক্ষেত্রে.

$$AC^2 = AF^2 + CF^2$$

বা,
$$AC = \sqrt{303.9521} = 17.43$$
 (প্রায়)

🗅 অপর কর্ণের দৈর্ঘ্য 17.43 সে.মি. (প্রায়)।

85.

চিত্রে, AB = 9 মিটার, BC = 16 মিটার।

[কুমিল্লা বোর্ড ২০১৯]

- (ক) OB এর দৈর্ঘ্য নির্ণয় কর।
- (খ) ABCD এর ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট কোনো বর্গের বাইরে চারদিকে 2 মিটার চওড়া একটি রাস্ডা আছে। রাস্তাটির ক্ষেত্রফল নির্ণয়
- (গ) ABCD এর পরিসীমার $\frac{3}{5}$ অংশ কোনো সমবাহু ত্রিভুজের পরিসীমা হলে ত্রিভুজটির মধ্যমার দৈঘ্য নির্ণয় কর।

৪১ নং প্রশ্নের উত্তর

(ক) চিত্রে দেওয়া আছে. AB = 9 মিটার

$$\therefore$$
 CD = AB = 9 মিটার

AB ⊥ BC ∴ ABCD একটি আয়তক্ষেত্র।

এখন, BCD সমকোণী ত্রিভুজে,

$$BD^2 = BC^2 + CD^2$$

বা,
$$BD^2 = 16^2 + 9^2$$

বা,
$$BD^2 = 256 + 81 = 337$$

বা, BD =
$$\sqrt{337}$$
 : BD = 18.36

যেহেতু ABCD একটি আয়ত। সেহেতু এর কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত

$$: OB = \frac{BD}{2} = \frac{18.36}{2} = 9.18$$
 মিটার।

নির্ণেয় OB এর দৈর্ঘ্য 9.18 মিটার।

(খ) চিত্রে দেওয়া আছে, AB = 9 মিটার এবং BC = 16 মিটার

প্রশানুসারে, বর্গক্ষেত্রের ক্ষেত্রফল = 144 বর্গমিটার

 \therefore বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য $=\sqrt{144}$ মিটার =12 মিটার

এখন, রাস্তাসহ বর্গক্ষেত্রের এক বাহুর দৈঘ্য = (12 + 2 × 2) মিটার

= 16 মিটার

<mark>∴ রাস্তাসহ বর্গক্ষেত্রের ক্ষেত্রফল = $(16)^2$ বর্গমিটার = 256 বর্গমিটার</mark>

🗠 রাস্তাটির ক্ষেত্রফল = (256 – 144) বর্গমিটার = 112 বর্গমিটার নির্ণেয় রাস্তাটির ক্ষেত্রফল ১১২ বর্গমিটার।

(গ) চিত্রে, দেওয়া আছে, AB = 9 মিটার এবং BC = 16 মিটার

$$= (2 \times 25)$$
 মিটার $= 50$ মিটার

$$\therefore$$
 সমবাহু ত্রিভূজের পরিসীমা $= \mathbf{ABCD}$ এর পরিসীমার $rac{3}{5}$ অংশ

$$= 50 \times \frac{3}{5}$$
মিটার $= 30$ মিটার

 \therefore সমবাহু ত্রিভুজের এক বাহুর দৈর্ঘ্য, $a = \frac{30}{2}$ মিটার = 10 মিটার

সমবাহু ত্রিভুজের মধ্যমা
$$= rac{\sqrt{3}a}{2}$$
 একক $= rac{\sqrt{3} imes 10}{2}$ মিটার

$$= 5\sqrt{3}$$
 মিটার = 8.66 মিটার (প্রায়)

নির্ণেয় ত্রিভুজটির মধ্যমার দৈর্ঘ্য 8.66 মিটার (প্রায়)।

৪২. একটি লোহার পাইপের ভিতরে<mark>র ও বাহিরের ব্যাস</mark> যথাক্রমে 14 সে.মি. ও 16 সে.মি. এবং পাইপের উচ্চতা 5 মিটার। 1 ঘন সে.মি, লোহার ওজন 7.2 গ্রাম। আবার অন্য একটি বৃত্তের পরিধি = 660 মিটার।

[চট্টগ্রাম বোর্ড ২০১৯]

- (ক) বৃত্তের ব্যাস 25 সে.মি. হলে এর ক্ষেত্রফল নির্ণয় কর।
- (খ) উদ্দীপকের <mark>আলোকে বৃত্তে অন্তর্লিখিত ব</mark>র্গক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- (গ) পাইপের লোহার ওজন নির্ণয় কর।

৪২ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, বৃত্তের ব্যাস 25 সে.মি.

∴ বৃত্তের ব্যাসার্ধ,
$$r = \frac{25}{2} = 12.5$$
 সে.মি.

$$\therefore$$
 বৃত্তটির ক্ষেত্রফল $=\pi r^2$ বর্গ একক

নির্ণেয় বৃত্তের ক্ষেত্রফল 490.875 বর্গ সে. মি.।

(খ) মনে করি, বৃত্তের ব্যাসার্ধ = r মি. এবং ABCD বৰ্গক্ষেত্ৰটি ঐ বৃত্তে অন্তৰ্লিখিত।

আমরা জানি, বৃত্তের পরিধি $=2\pi r$ একক

$$\sqrt{1}, r = \frac{660}{37} = \frac{660}{38234416} = 105.042$$

বা,r = $\frac{660}{2\pi}$ = $\frac{660}{2\times3.1416}$ = 105.042 \therefore বৃত্তের ব্যাস AC = 2r = 2×105.042 = 210.084 মিটার এখন, ABCD বর্গের কর্ণ AC = d এবং বাহুর দৈর্ঘ্য a হলে,

$$d = 2\sqrt{2}$$

$$d = a\sqrt{2}$$

বা, $a = \frac{d}{\sqrt{2}} = \frac{210.081}{\sqrt{2}} = 148.55$ মিটার (প্রায়)

www.schoolmathematics.com.bd

গণিত ১৬শ অধ্যায়

পারামাত

Prepared by: ISRAFIL SHARDER AVEEK

 $=(148.55)^2$ বর্গমিটার = 22067.103 বর্গমিটার (প্রায়)

নির্ণেয় বর্গক্ষেত্রের ক্ষেত্রফল 22067.103 বর্গমিটার (প্রায়)।

(গ) দেওয়া আছে.

পাইপের ভিতরের ও বাইরের ব্যাস যথাক্রমে 14 সে.মি. ও 16 সে.মি.

- \therefore পাইপের ভিতরের ব্যাসার্ধ, ${
 m r_1}=rac{14}{3}=7$ সে.মি.
 - বাইরের ব্যাসার্ধ, $r_2 = \frac{16}{2} = 8$ সে.মি.
 - উচ্চতা, h = 5 মিটার = (5 × 100) সে.মি. = 500 সে.মি
- \therefore পাইপের লোহার আয়তন = $\pi r_1^2 h \pi r_1^2 h$ $= \pi h(r_2^2 - r_1^2)$ $=500\pi(8^2-7^2)$ ঘন সে.মি. = 500 × 3.1416(64 – 49) ঘন সে.মি. $= 500 \times 3.1416 \times 15$ ঘন সে.মি. = 23562 ঘন সে.মি.

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

- : 23562 ঘন সে.মি. লোহার ওজন = (23562 × 7.2) গ্রাম = 169646.4 গ্রাম <u> 169646.4</u> কি. গ্রাম [·: 1000 গ্রাম = 1 কি. গ্রা<mark>ম</mark>] = 169.6464 কি. গ্রাম
- : পাইপের লোহার ওজন 169.6464 কি. গ্রাম (প্রায়)।
- ৪৩. চিত্রে' একটি ট্রফি দেখানো হয়েছে। এর উপরের অংশের আকৃতি <mark>বৃত্তা</mark>কার, মাঝের অংশের আকতি বর্গাকার এবং নিচের অংশটি একটি আয়তাকার ঘনবস্তু। উপরের অংশের বাহিরের পরিধি 22 সে.মি. এবং মাঝের অংশের পরিসীমা 20 সে.মি.।

উপরের অংশের সবুজ ক্ষেত্রের ক্ষেত্রফল লাল ক্ষেত্রের ক্ষেত্রফলের দ্বিগুণ। ট্রফিটির নিচের অংশের দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত 5:4:3 এবং কর্ণের দৈর্ঘ্য 10√2 সে.মি.।

[সিলেট বোর্ড ২০১৯]

- ক) ট্রফিটির মাঝের অংশের ক্ষেত্রফল নির্ণয় কর।
- (খ) ট্রফিটির উপরের অংশের লাল ক্ষেত্রের ব্যাসার্ধ নির্ণয় কর।
- (গ) ট্রফিটির নিচের অংশের সমগ্রতলের ক্ষেত্রফল নির্ণয় কর।

৪৩ নং প্রশ্নের উত্তর

- (ক) ট্রফিটির মাঝের অংশ একটি বর্গক্ষেত্র যার পরিসীমা 20 সে.মি. ধরি, বর্গক্ষেত্রটির এক বাহুর দৈর্ঘ্য a সে.মি.
 - ∴ বর্গক্ষেত্রটির পরিসীমা = 4a সে.মি.
 - প্রশ্নমতে, 4a = 20

বা,
$$a = \frac{20}{4}$$
 : $a = 5$

- \therefore ট্রফিটির মাঝের অংশের অর্থাৎ বর্গক্ষেত্রের ক্ষেত্রফল $=a^2$ বর্গ সে.মি.
- = 52 বর্গ সে.মি. = 25 বর্গ সে.মি.

নির্ণেয় ট্রফিটির মাঝের অংশের ক্ষেত্রফল 25 বর্গ সে.মি.।

- (খ) ট্রফিটির উপরের অংশটি একটি বৃত্তাকার ক্ষেত্র যাচ্ছ সেই পরিধি 22 সে.মি. ধরি, বৃত্তটির ব্যাসার্ধ $\mathbf{r} = \mathbf{r}$ স.মি.
 - \therefore বৃত্তটির পরিধি $=2\pi r$ সে.মি.

বা,
$$r=\frac{22}{2\pi}$$
 বা, $c=\frac{22}{2\times 3.1416}$ \therefore $r=3.5$ ধরি, সবুজ চিহ্নিত অংশের বেধ x সে.মি.

 \therefore লাল অংশের ব্যাসার্ধ = (3.5 - x) সে.মি.

- বৃত্তটির ক্ষেত্রফল $= \pi r^2$ বর্গ সে.মি.
- লাল ক্ষেত্রের ক্ষেত্রফল $= \pi (3.5 x)^2$ বর্গ সে.মি.
- সবুজ ক্ষেত্রের ক্ষেত্রফল $=\pi r^2 \pi (3.5-x)^2$ বর্গ সে.মি

প্রমতে,
$$\pi r^2 - \pi (3.5 - x)^2 = 2\pi (3.5 - x)^2$$

বা,
$$\pi r^2 = 2\pi (3.5 - x)^2 + \pi (3.5 - x)^2$$

$$at ar^2 = 2\pi(2 E v)^2$$

বা,
$$\pi r^2 = 3\pi (3.5 - x)^2$$

$$4, r^2 = 3(3.5 - x)^2$$

$$4, r^2 = 3(3.5 - x)^2$$

বা,
$$(3.5)^2 = 3(3.5 - x)^2$$
 [∵ r = 3.5]

$$4, 3(3.5 - x)^2 = 12.25$$

$$\sqrt{3.5-x}^2 = \frac{12.25}{3}$$

বা,
$$(3.5 - x)^2 = 4.0833$$

বা,
$$3.5 - x = \sqrt{4.0833}$$

$$x = 1.4793$$

নির্ণেয় লাল ক্ষেত্রের ব্যাসার্ধ 2.02 সে.মি. (প্রায়)।

- (গ) ট্রফিটির নিচের অংশ একটি <mark>আ</mark>য়তাকার ঘনবস্তু।
 - যার দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত 5:4:3।

ধরি, আয়তাকার ঘনবস্তুটির দৈর্ঘ্য, a=5x সে.মি.,

ও উচ্চতা
$$c=3x$$
 সে.মি.

 \therefore আয়তাকার ঘনবঞ্জটির কর্ণের দৈর্ঘ্য $= \sqrt{a^2 + b^2 + c^2}$ সে.মি.

প্রশ্নমতে,
$$\sqrt{a^2 + b^2 + c^2} = 10\sqrt{2}$$

$$\sqrt{(5x)^2 + (4x)^2 + (3x)^2} = 10\sqrt{2}$$

বা,
$$\sqrt{25x^2 + 16x^2 + 9x^2} = 10\sqrt{2}$$

বা,
$$\sqrt{50x^2} = 10\sqrt{2}$$

বা,
$$5\sqrt{2x} = 10\sqrt{2}$$

বা,
$$x = \frac{10\sqrt{2}}{5\sqrt{2}} = 2$$

∴ আয়তাকার ঘনবস্তুটির দৈর্ঘ্য $a=5 \times 2=10$ সে.মি. আয়তাকার ঘনবস্তুটির প্রস্ত $b = 4 \times 2 = 8$ সে.মি.

আয়তাকার ঘনবস্তুটির উচ্চতা $c = 3 \times 2 = 6$ সে.মি.

- ∴ ট্রফিটির নিচের অংশের অর্থাৎ, আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল
- = 2(ab + bc + ca) বৰ্গ একক
- = 2(10 × 8 + 8 × 6 + 6 × 10) বর্গ সে.মি.
- = 2(80 + 48 + 60) বৰ্গ সে.মি.
- = 2 × 188 বর্গ সে. মি. = 376 বর্গ সে.মি.

নির্ণেয় ট্রফিটির নিচের অংশের সমগ্রতলের ক্ষেত্রফল 376 বর্গ সে.মি.।

88.

[বরিশাল বোর্ড ২০১৯]

- (ক) OS এর দৈঘ্য নির্ণয় কর।
- (খ) MNST চতুর্ভুজটিকে বৃহত্তর বাহুর চতুর্দিকে ঘোরালে যে ঘনবস্তুটি উৎপন্ন হয়, তার সমগ্র তলের ক্ষেত্রফল ও আয়তক্ষেত্রের ক্ষেত্রফলের অনুপাত
- (গ) ΔPQR এর ক্ষেত্রফল কোনো বৃত্তের ক্ষেত্রফলের সমান হলে বৃত্তের পরিধি

9 (म. बि.

গণিত ১৬শ অধ্যায়

10 সে. মি.

পরিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

৪৫ নং প্রশ্নের উত্তর

(ক) চিত্রে, MN =10 সে. মি.

$$NS = 9$$
 সে. মি.

এবং TM \perp MN

∴ MNST একটি আয়তক্ষেত্ৰ।

এখন, MNS সমকোণী ত্রিভুজে,

$$MS^2 = MN^2 + NS^2$$

বা,
$$MS^2 = (10)^2 + 9^2$$

বা,
$$MS^2 = 100 + 81$$

বা,
$$MS^2 = 181$$

বা.
$$MS = \sqrt{181} = 13.454$$

যেহেতু MNST আয়তক্ষেত্রের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে।

$$∴ OS = \frac{MS}{2} = \frac{13.454}{2} = 6.73 সে.মি. (প্রায়)$$

নির্ণেয় OS এর দৈর্ঘ্য 6.73 সে.মি. (প্রায়)।

- (খ) NST চতুর্জাটির বৃহত্তম বাহু ${
 m MN}=10$ সে.মি. এবং ক্ষুদ্রতম বাহু ঘঝ =9 সে মি.
 - \therefore চতুর্জুজটিকে বৃহত্তম বাহুর চতুর্দিকে ঘোরালে একটি সমবৃত্তহূমিক বেলন বা সিলিন্ডার উৎপন্ন হবে। যার ভূমির ব্যাসার্ধ r=9 সে.মি.।

এবং উচ্চতা h = 10 সে.মি.।

্ সিলিভারটির সমগ্রতলের ক্ষেত্রফল = $2\pi r(r+h)$

$$= 2\pi \times 9 \times (9 + 10)$$
 বর্গ সে.মি.

$$=2\pi \times 9 \times 10$$
 বর্গ সে.মি.

= 342π বর্গ সে.মি.

এবং MNST আয়তক্ষেত্রের ক্ষেত্রফল = MN × NS

- ∴ সিলিভারের সমগ্র তলের ক্ষেত্রফল ও আয়তক্ষেত্রের ক্ষেত্রফলের অনুপাত
 - $= 342\pi:90$
 - = $\frac{342\pi}{18}$: $\frac{90}{18}$ [18 দারা ভাগ করে]
 - $= 19\pi:5$

নির্ণেয় ক্ষেত্রফলের অনুপাত 19π: 5

(গ) চিত্রে PR = 7 সে.মি.

: PQR একটি সমদ্বিবাহু ত্রিভুজ।

ধরি, PQR সমদ্বিবাহু ত্রিভুজের সমান সমান বাহুর দৈর্ঘ্য, a=PQ=PR=7 সে.মি. এবং ভূমির দৈর্ঘ্য, b=QR=8 সে.মি. ।

$$\Delta$$
PQR এর ক্ষেত্রফল = $\frac{b}{4}\sqrt{4a^2-b^3}=\frac{8}{4}\sqrt{4\times7^2-8^2}$
= $2\sqrt{4\times49-64}=2\sqrt{196-64}$
= $2\sqrt{132}=2\times11.489=22.978$ বর্গ সে.মি.

প্রশানুসারে, বৃত্তের ক্ষেত্রফল = ΔPQR এর ক্ষেত্রফল = 22.978 বর্গ সে.মি. মনে করি, বৃত্তের ব্যাসার্ধ = r সে.মি.

 \therefore বৃত্তের ক্ষেত্রফল $=\pi r^2$ বর্গ সে.মি.

पर्शार,
$$\pi r^2 = 22.978$$

বা,
$$r^2 = \frac{22.978}{\pi} = \frac{22.978}{3.1416} = 7.3141$$

বা,
$$r = \sqrt{7.3141} : r = 2.704$$

 \therefore বৃত্তের পরিধি $=2\pi r=2\times 3.1416\times 2.704=16.99$ সে.মি. (প্রায়) ।

নির্ণেয় বৃত্তের পরিধি 16.99 সে.মি. (প্রায়)।

৪৫. একটি ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের দৈর্ঘ্য যথাক্রমে 56 সে.মি. ও 86 সে.মি.। একটি লোহার পাইপের ভেতরের ও বাইরের ব্যাস যথাক্রমে 10 সে.মি. ও 13 সে.মি. এবং উচ্চতা 6 মিটার।।

- [দিনাজপুর বোর্ড ২০১৯]
- (ক) পাইপের বাইরের বক্রতলের ক্ষেত্রফল নির্ণয় কর।
- (খ) এক ঘন সে.মি. লোহার ওজন 7.2 গ্রাম হলে পাইপের লোহার ওজন নির্ণয় কব।
- (গ) ট্রাপিজিয়ামের অপর বাহুদ্বয়ের দৈর্ঘ্য 13 সে.মি. ও 19 সে.মি. হলে ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় কর।

৪৫ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, পাইপের বাইরের ব্যাস 13 সে.মি.
 - \therefore পাইপের বাইরের ব্যাসার্ধ, $r_2 = \frac{13}{3} = 6.5$ সে.মি.

পাইপের উচ্চতা,
$$h=6$$
 মিটার

$$= (6 \times 100)$$
 সে. মি. $= 600$ সে.মি.

- ∴ পাইপের বক্রতলের ক্ষেত্রফল = 2πr₂h
- = 2 × 3.1416 × 6.5 × 600 বৰ্গ সে.মি.
- = 24504.48 বর্গ সে.মি. (প্রায়)

নির্ণেয় পাইপের বাইরের বক্রতলের ক্ষেত্রফল 24504.48 বর্গ সে.মি. (প্রায়)।

- (খ) এখানে, পাইপের ভিতরের ব্যাস 10 সে.মি.
 - ∴ পাইপের ভিতরের ব্যাসার্ধ, $r_1 = \frac{10}{2} = 5$ সে.মি.
 - 'ক' হতে প্রাপ্ত, পাইপের বাইরের ব্যাসার্ধ, ${
 m r_2}=6.5$ সে.মি.

এবং উচ্চতা,
$$h = 6$$
 মিটার = 600 সে.মি.

- \therefore পাইপের লোহার আয়তন $=\pi r_2^2 h \pi r_1^2 h$
 - $= \pi h(r_2^2 r_1^2)$
 - $=600\pi\{(6.5)^2-(5)^2\}$ ঘন সে.মি.
 - = 600 × 3.1416(42.25 25) ঘন সে.মি.
 - = 600 × 3.1416 × 17.25 ঘন সে.মি.
 - = 32515.56 ঘন সে.মি.

এখন, 1 ঘন সে.মি. লোহার ওজন 7.2 গ্রাম

- ∴ 32515.56 ঘন সে.মি. লোহার ওজন
 - = 32515.56 × 7.2 গ্রাম
 - = 234112.032 গ্রাম
 - = $\frac{234112.032}{1000}$ কি. গ্রাম [: 1000 গ্রাম = 1 কি. গ্রাম]
 - = 234.11 কি. গ্রাম (প্রায়)

নির্ণেয় পাইপের লোহার ওজন 234.11 কি. গ্রাম (প্রায়)।

(গ) মনে করি, ABCD ট্রাপিজিয়ামের

সে.মি.। C ও D থেকে AB এর উপর

যথাক্রমে DE ও CF লম্ব টানি।

∴ CDEF একটি আয়তক্ষেত্র।

ধরি,
$$AE = x$$
 এবং $DE = CF = h$

$$\therefore BF = AB - AF = 86 - (AE + EF) = 86 - (x + 56) = 30 - x$$

ADE সমকোণী ত্রিভুজে,
$$AE^2 + DE^2 = AD^2$$

$$7, x^2 + h^2 = (13)^2$$

$$\therefore x^2 + h^2 = 169 \dots (1)$$

আবার, BCF সমকোণী ত্রিভুজে,
$$BF^2 + CF^2 = BC^2$$

বা,
$$(30 - x)^2 + h^2 = (19)^2$$

$$4,900 - 60x + x^2 + h^2 = 361$$

বা,
$$1069 - 361 = 60x$$

বা,
$$60x = 708$$

বা,
$$x = \frac{708}{60}$$

$$x = 11.8$$

(1) নং এ x এর মান বসিয়ে পাই, $(11.8)^2 + h^2 = 169$

গণিত ১৬শ অধ্যায়

পবিমিতি

Prepared by: ISRAFIL SHARDER AVEEK

বা,
$$h^2 = 169 - 139.24$$

বা.
$$h^2 = 29.76$$

বা,
$$h = \sqrt{29.76}$$

∴ ABCD ট্রাপিজিয়ামটির ক্ষেত্রফল

$$=\frac{1}{2}(AB+CD)$$
. h বর্গ একক

$$=\frac{1}{2}(86+56)\times 5.4553$$
 বর্গ সে.মি.

$$=\frac{1}{2}\times 142\times 5.4553$$
 বর্গ সে.মি. $=387.33$ বর্গ সে.মি. (প্রায়)

নির্ণেয় ট্রাপিজিয়ামিটর ক্ষেত্রফল 387.33 বর্গ সে.মি. (প্রায়)।

৪৬. একটি বর্গক্ষেত্রের পরিসীমা একটি আয়তক্ষেত্রের পরিসীমার সমান। আয়তক্ষেত্রের দৈর্ঘ্য, প্রস্থের তিন গুণ এবং ক্ষেত্রফল 972 বর্গমিটার। আয়তক্ষেত্রের বাহিরের চতুর্দিকে 3/2 মিটার চওড়া একটি রাস্তা আছে।

[সকল বোর্ড ২০১৮]

- (ক) x চলকের মাধ্যমে আয়তক্ষেত্রের পরিসীমা প্রকাশ কর।
- (খ) বর্গক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- (গ) 0.25×0.125 বর্গমিটার তলবিশিষ্ট প্রতিটি ইটের মূল্য 15 টাকা হলে, ইট দ্বারা রাস্তাটি বাঁধাই করতে কত টাকা খরচ হবে তা নির্ণয় কর।

৪৬ নং প্রশ্নের উত্তর

- (ক) মনে করি, আয়তক্ষেত্রের প্রস্থ মিটার x মিটার
 - ∴ আয়তক্ষেত্রের দৈর্ঘ্য 3x মিটার

আয়তক্ষেত্রের পরিসীমা = ২(দৈর্ঘ্য + প্রস্থ) একক

আয়তক্ষেত্রের প্রস্থ x মিটার হলে পরিসীমা 8x মিটার।

(খ) ক- থেকে পাই, আয়তক্ষেত্রের প্রস্ত 8x মিটার হলে,

আয়তক্ষেত্রের দৈর্ঘ্য 3x মিটার

আয়তক্ষেত্রের ক্ষেত্রফল = (দৈর্ঘ্য 🗙 প্রস্থ) বর্গ একক

$$=3x \times x$$
 বর্গমিটার

$$=3x^2$$
 বর্গমিটার

প্রমতে, $3x^2 = 972$

বা,
$$x^2 = \frac{972}{3} = 324$$
 বা, $x = \sqrt{324} = 18$

- \therefore আয়তক্ষেত্রের পরিসীমা = 8x মিটার $= (8 \times 18)$ মিটার = 144 মিটার
- শর্তানুসারে, বর্গক্ষেত্রের পরিসীমা = 144 মিটার
- \therefore বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য $= (144 \div 4)$ মিটার = 36 মিটার
- ∴ বর্গক্ষেত্রের ক্ষেত্রফল = (36)² বর্গমিটার = 1296 বর্গমিটার
- ∴ বর্গক্ষেত্রের ক্ষেত্রফল 1296 বর্গমিটার।
- (গ) 'খ' থেকে পাই, প্রস্থ = x = 18 মিটার
 - ∴ আয়তক্ষেত্রের দৈর্ঘ্য = (3 × 18) মিটার = 54 মিটার

রাস্তাসহ আয়তক্ষেত্রের দৈঘ্য
$$=\left(54+2\times\frac{3}{2}\right)$$
 মিটার

রাস্তাসহ আয়তক্ষেত্রের প্রস্থ
$$=\left(18+2 imesrac{3}{2}
ight)$$
 মিটার

রাস্তাসহ আয়তক্ষেত্রের ক্ষেত্রফল = (57 × 21) বর্গমিটার = 1197 বর্গমিটার দেওয়া আছে, আয়তক্ষেত্রের ক্ষেত্রফল = 972 বর্গমিটার

∴ রাস্তার ক্ষেত্রফল = (1197 – 972) বর্গমিটার = 225 বর্গমিটার

প্রতিটি ইটের তলার ক্ষেত্রফল = (0.25×0.125) বর্গমিটার

= 0.03125 বর্গমিটার

সুতরাং রাস্তাটি বাঁধাই করতে ইট লাগবে = (225 ÷ 0.03125) টি = 7200টি

প্রতিটি ইটের মূল্য 15 টাকা হলে, রাস্তাটি বাঁধাই করতে খরচ হবে মোট (7200×15) টাকা = 10800 টাকা।

∴ রাস্তাটি বাঁধাই করতে খরচ হবে 108000 টাকা।

