

基于深度学习的麦田杂草识别分析系统

陆祥宇(农机化)*,黄志一(信息工程),靳盛浩(电子信息) 指导老师: 苏宝峰 副教授

摘要

- 本项目基于无人机图像,训练深度神经网络实现杂草检测.制作分类数据集4000张,标记检测集1600张.
- 分类模型获得4类杂草96.9%的均准确率,初步验证深度神经网络识别杂草的可行性;进一步在YOLO v3检测模型上获得74.2%的mAP(均精度均值).

背景

- 苗期小麦田中有多种杂草与之竞争,影响小麦生长;
- 广泛使用的全面积喷药, 危害众多;
- 对于杂草,传统算法准确率低,用高光谱设备成本高;
- 深度神经网络模型日渐成熟,广泛应用于目标检测.

实施过程及结果

• 1. 制作标准数据集用于分类:

图1. 采集杂草数据并扩增

对4类杂草(蒿草,蓟草,藜草,婆婆纳),各250张标准图,旋转翻转扩增到[1000张/类],按照4:1划分训练集:测试集,并转换为tfrecords格式为Tensorflow中训练准备.

• 2. 训练目标分类模型, 对比收敛性&测试集准确率:

图2. 模型训练loss值-迭代次数.

分类模型选用Alexnet, Inception v3以及Resnet_v2_101,最大迭代次数 13000,上图可见各模型均有较好收敛,其中Alexnet收敛快,达到90%准确率 的迭代次数仅为1100; inception v3最终准确率高,达到0.9688.

• 3. 无人机采集的图像, 标记并制作数据集用于检测:

图3. 无人机采集麦田图像(左)标记杂草(右). 共采集到4类杂草(蒿草,艾草,荠菜,婆婆纳),各400张密布大图,每张图含有约8个杂草目标,共有4*400*8约12800张目标单位.

• 4. 目标检测模型YOLO v3训练结果:

表1: YOLO v3模型训练次数与测试集精度AP, 重叠度IOU关系.					
结果参数	AP.max	AP. mid	midAP.unit	mAP	IoU. avr
妇木勿奴	单位均精	单位均精	精度均值	均精度均	平均
迭代次数	度最大	度中	中值单位	值	交并比_
4000	66.73 %	57. 78 %	maiye	48.85 %	58.69 %
6000	87.00 %	73. 16 %	a1cao	68.11 %	56.36 %
7000	87.39 %	77.39 %	jicai	74. 20 %	57.41 %
7500	86.81 %	74.77 %	aicao	71.96 %	57.46 %
13000	86.34 %	69.56 %	jicai	66.33 %	46.92 %
23000	86.16 %	65.52 %	jicai	61.58 %	52.00 %

检测模型采用YOLO v3,最大迭代次数23000,表中可见于7000次左右达到测试集上的最高mAP(均精度均值)87.39%,继续训练,出现准确率下降,即过拟合现象.

• 5. 检测模型可视化:

图4. 模型测试结果图.

用训练后模型检测训练集图片,并将检测到的目标按类框出;如上图中, 蒿草为黄色, 艾草为紫色;用该模型在西农校内麦田[坐标N34°16′,E108°4′]实验检测,得出蒿草单位占比最高,与实地观测结果一致.

6. 可视化软件平台(麦田UAV杂草识别分析系统):

现已完成软件初期

版本测试.

图5. 可视化平台操作界面.

个人简介

姓 名: 陆祥宇 学 校: 西北农林科技大学

专业:农业机械自动化专业 电话:15206424953

邮 箱: 15206424953@163.com

科研经历:

2018.05 - 2019 组织"基于深度学习的杂草识别分析系统"省创项目.组长. 2019.04 - 今. 参与"无曲柄连杆的往复活塞式内燃机"创新项目.方案设计. 2019.05 - 今. 参与"播种机液态种肥喷施装置"设计项目.落种检测.

软著及专利:

西农 UAV 麦田杂草识别分析平台. 软件著作权. 已通过 无人机双药腔喷施作业装置. 实用新型专利. 实审阶段

一种便携式轿车充气遮阳装置. 实用新型专利. 实审阶段

一种曲沟球轴承内外圈曲沟加工装置.实用新型专利.实审阶段

获得奖项:

2017数学建模国赛(省二等奖) 2018数学建模美赛(ICM-2018 H奖)

2018数学建模国赛(省二等奖) 2018中国服务机器人大赛(二等奖,组长)