FTI – Teste Treino: Resolução

Felipe B. Pinto 61387 - MIEQB

9 de outubro de 2022

Conteúdo

Questão 1)	2	Questão 9)	5
Questão 2)	2	Questão 10)	6
Questão 3)	3	Questão 11)	6
Questão 5)	3	Questão 12)	7
Questão 6)	3	Questão 13)	8
Questão 7)	4	Questão 14)	9
Questão 8)	4		

Questão 1)

Marque a alternativa em que são citadas apenas grandezas derivadas.

- a) Força, velocidade, aceleração e distância;
- b) Energia, aceleração e tempo;
- c) potência, velocidade, e trabalho;
- d) Energia, massa, potência e tempo.
- e) Energia, distância e força

RS: c)

Questão 2)

Marque a alternativa em que são citadas apenas grandezas fundamentais.

- a) Tempo, distância, força e energia;
- b) Temperatura, velocidade e comprimento;
- c) Distância, massa e velocidade;
- d) Massa, força e tempo;
- e) Massa, distância e temperatura

RS: e)

$\overline{\text{Questão }3}$

Quais as unidades fundamentais de tensão?

- a) MLT b) ML^2T c) ML^2T^2 d) $ML^{-1}T^{-2}$ e) ML^2T^{-3}

$$[T] = N/m^2 = g m s^{-2}/m^2 = M L^{-1} T^{-2}$$

RS: d)

Questão 5)

No Sistema Internacional, a pressão é dada em unidades de

- a) $kg m^{1} s^{-2}$ b) $kg m^{-2} s^{3}$ c) $kg m^{-1} s^{-2}$ d) $kg m^{-1} s^{-3}$

$$[P] = N/m^2 = kg m s^{-2}/m^2 = kg m^{-1} s^{-2}$$

RS: c)

Questão 6)

1 Newton representa:

- (a) $1 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2}$ (b) $1 \,\mathrm{kg} \,\mathrm{m}^{-2} \,\mathrm{s}^{3}$ (c) $1 \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-2}$ (d) $1 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-1}$

RS: a)

Questão 7)

A viscosidade de um líquido é de 1.3 cP (P = Poise, unidade de viscosidade no sistema c.g.s).Qual a viscosidade do líquido em unidades do sistema internacional.

a)
$$13 \text{ E} - 3 \text{ kg m}^{-1} \text{ s}^{-1}$$

c)
$$1.3 \text{ E} - 3 \text{ kg m}^{-1} \text{ s}^{-1}$$

b)
$$1.3 \text{ E} - 5 \text{ kg m}^{-1} \text{ s}^{-1}$$

d)
$$1.3 \text{ E} - 2 \text{ kg m s}^{-1}$$

$$1.3 \,\mathrm{cP} = 1.3 \,\mathrm{E} - 2 \,\mathrm{P} = 1.3 \,\mathrm{E} - 3 \,\mathrm{Pa} = 1.3 \,\mathrm{E} - 3 \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-2}$$

RS: c)

Questão 8)

Na expressão $A = F/B^2$, F representa força e B um comprimento. No sistema internacional de unidades (SI) a constante A é expressa em:

a)
$$kg m^3$$

c)
$$kg m^{-1}s^{-2}$$

$$e) \text{ kg m}^{-3} \text{s}$$

d)
$$kg m^{-1} s^{-1}$$

$$[A] = \frac{[F]}{[B]^2} = \frac{N}{m^2} = kg \, m^{-1} \, s^{-2}$$

RS: c)

Questão 9)

A queda de pressão devido ao alargamento súbito de um tubo pode ser calculada através da expressão abaixo.

$$(-\Delta P)^{
m alargamento} =
ho^b rac{(v_1-v_2)^a}{2}$$

onde ρ é a densidade do fluido, v_1 e v_2 velocidadades do fluido antes e depois do alargamento do tubo.

Calcule os valores de $a \in b$ para que a equação seja dimensionalmente correta.

a)
$$a = 1, b = 2$$

a)
$$a = 1, b = 2$$
 c) $a = 2, b = 1$

b)
$$a = 1, b = 1$$

b)
$$a = 1, b = 1$$
 d) $a = 3, b = 1$

$$[(-\Delta P)^{\text{alargamento}}] = \text{kg m}^{-1} \text{ s}^{-2} = [\rho]^{b} \frac{[(v_{1} - v_{2})]^{a}}{2} = (\text{kg/m}^{3})^{b} (\text{m/s})^{a} = \text{kg}^{b} \text{ m}^{-3b+a} \text{ s}^{-a}$$

$$\therefore \begin{cases} -a = -2 \implies a = 2 \\ b = 1 \\ -3 * b + a = -3 * 1 + 2 = -1 \end{cases} = \begin{cases} a = 2 \\ b = 1 \end{cases}$$

RS: c)

Questão 10)

A velocidade, v, de uma partícula esferica caindo lentamente num líquido muito viscoso pode ser expressa por $v = f(d, \mu, \gamma, \gamma_s)$ onde d é o diâmetro da partícula, μ a viscosidade do líquido e γ e γ_s sao as densidades do líquido e da partícula, respectivamente.

Aplicando o teorema pi de Buckingham assinale qual o conjunto de recurso que deveria utilizar se pretender obter uma relação entre v e as outras variáveis.

- a) d, γ, γ_s
- b) D, v, μ c) d, μ, γ d) d, μ

$$[v] = L T^{-1}$$

$$[d] = L$$
 $[\mu] = L^2 T^{-1}$ $[\gamma] = [\gamma_s] = M L^{-3}$

$$[\gamma] = [\gamma_s] = M L^{-3}$$

RS: c)

Questão 11)

Calcular o caudal de um fluido em cm³ s⁻¹ se a velocidade média de passagem do fluido por um tubo com $1.27 \,\mathrm{cm}$ de diâmetro for de $3.59 \,\mathrm{m \, s^{-1}}$.

- a) $45.5 \text{cm}^3 \text{s}^{-1}$
- c) $8743 \text{cm}^3 \text{s}^{-1}$
- e) não sei

- b) $455 \text{ cm}^3 \text{ s}^{-1}$
- d) 4.55cm^3

$$G = v S = v \pi r^2 = 3.59 \text{ E } 2\pi (1.27/2)^2 \text{ cm/s} \approx 454.77 \text{ cm/s}$$

RSb)

Questão 12)

A velocidade média de um fluido através de uma tubo com $10\,\mathrm{m}$ de comprimento e $1.27\,\mathrm{cm}$ de diametro é $3.59\,\mathrm{m/s}$. A queda de pressão através do tubo é de $21.36~\mathrm{E}\,5\,\mathrm{N/m^2}$. Usando a equação de Hagen-Poiseiulle calcule a viscosidade do fluido assumindo um fluxo laminar?

$$ar{v} = rac{D^2}{32\,\mu}rac{(-\,\Delta P)}{L}$$

a)
$$0.3 \text{ kg m}^{-1} \text{ s}^{-1}$$

c)
$$0.025 \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-1}$$

b)
$$1.2 \text{ kg m}^{-1} \text{ s}^{-1}$$

d)
$$0.3 \text{ kg m}^{-2} \text{ s}^{-2}$$

$$\mu = \frac{D^2(-\Delta P)}{32\,\bar{v}\,L} = \frac{(1.27\;\mathrm{E}\,-2)^2*21.36\;\mathrm{E}\,5}{32*3.59*10} = \frac{(1.27)^2*21.36}{32*3.59*10}\;\mathrm{E}\,1 \cong 299.89\,\mathrm{E}\,-3$$

RS: a)

Questão 13)

Considere duas placas planas paralelas (1 e 2), com um fluido entre elas, que estão separadas entre si de 1 mm (vêr figura). A placa inferior movimenta-se segundo y à velocidade de A m s⁻¹. A tensão de corte exercida sobre as placas é de $0.5 \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-2}$ e a viscosidade do fluido entre as placas é $1 \,\mathrm{E} - 3 \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-1}$

Calcule o valor de A. Assinale a opção correcta:

a)
$$0.5 \text{ m s}^{-1}$$
 b) 5 m s^{-1} c) 50 m s^{-1}

b)
$$5 \text{ m s}^{-1}$$

c)
$$50 \text{ m s}^{-1}$$

d)
$$0.05 \text{ m s}^{-1}$$

$$A = |V_1|$$

$$- \int_{V_1}^{V_2} \mu \, dV = -\mu \, \Delta V \Big|_{V_1}^{V_2} = -\mu \, (V_2 - V_1) = \int_{x_1}^{x_2} \tau \, dx = \tau \, \Delta x \Big|_{x_1}^{x_2} = \tau (x_2 - x_1) \implies$$

$$\implies A = \frac{\tau}{\mu} (x_2 - x_1) - V_2 = \frac{0.5 \text{ E } 3}{1} (1 \text{ E} - 3 - 0) - 0 = 0.5$$

Questão 14)

Considere o escoamento laminar de um fluido através de um tubo estacionário de raio 0.635 cm e comprimento 8 m, representado na figura abaixo.

O perfil de velocidade para este escoamento é dado pela seguinte expressão:

$$v_r = rac{1}{4\,\mu} \left(-rac{\Delta P}{\Delta Y}
ight) (R_1^2 - r^2)$$

Em que P é a pressão e $\mu = 4\,\mathrm{g\,cm^{-1}\,s^{-1}}$ a viscosidade do fluido.

Neste escoamento, a velocidade média do fluido é igual a 1/2 da sua velocidade máxima. Se a velocidade média do fluido for 3.59 m/s, qual a queda de pressão no tubo?

- a) 2.28 E 5 Pa
- c) 4.56 E 6 Pa
- e) Não sei

- b) 2.28 E 6 Pa
- d) $1.14 \to 5 Pa$

$$\begin{split} &-\Delta P = \frac{v_r \, 4 \, \mu \, \, \Delta Y}{R_1^2 - r^2} = \frac{\max v \, 4 \, \mu \, \, \Delta Y}{R_1^2} = \frac{2 \, \bar{v} \, 4 \, \mu \, \, \Delta Y}{R_1^2} = \\ &= \frac{2 * 3.59 * 4 * 4 \, \mathrm{E} \, 2 * 8}{(0.635 \, \mathrm{E} - 2)^2} = \frac{2 * 3.59 * 4 * 4 \, \mathrm{E} - 1 * 8}{(0.635 \, \mathrm{E} - 2)^2} = \\ &= \frac{2 * 3.59 * 4 * 4 * 8}{(0.635)^2} \, \mathrm{E} \, 3 \cong 2.28 \, \mathrm{E} 6 \end{split}$$

RS: b)