Banco de dados

BCD29008 – Engenharia de Telecomunicações

Prof. Emerson Ribeiro de Mello

mello@ifsc.edu.br

31 de março de 2022

Licenciamento

Estes slides estão licenciados sob a Licença Creative Commons "Atribuição 4.0 Internacional".

Uso de imagem e voz

Não está autorizada a gravação de áudio ou vídeo de qualquer aula

Objetivo da disciplina

Introduzir conceitos fundamentais sobre sistemas de banco de dados, modelagem e o uso de banco de dados em aplicações

- Carga horária: 36h teóricas + 18h práticas
 - 15:40 17:30 terça-feira (quinzenal)
 - 15:40 17:30 quinta-feira
- Local
 - Laboratório de Redes de Computadores
- Atendimento paralelo
 - 13:30 15:30 terça-feira

Aulas nos sábados

- 07/05/2022 09:40 às 11:30
- 04/06/2022 09:40 às 11:30
- 18/06/2022 09:40 às 11:30
- 23/07/2022 09:40 às 11:30

Avaliação

Quantidade	Atividade	Peso
1	Avaliação escrita (AE)	50%
1	Projeto prático (PP)	40%
2	Listas de exercícios (e)	10%

■ Recuperação

- Avaliação escrita substitutiva no final do semestre abrangendo todo o conteúdo da disciplina.
- Projetos e listas: Dedução de 10% do valor total da nota para cada dia de atraso após o prazo de entrega, sendo 5 dias o prazo máximo para entrega tardia.

Critérios para aprovação na disciplina

■ ConceitoFinal =
$$\left[AE \times 0.5 + PP \times 0.4 + \frac{\sum_{i=1}^{2} e_i}{2} \times 0.1\right]$$
, $CF \in \mathbb{N}$.

■ No mínimo 75% de presença e *ConceitoFinal* ≥ 6

Conteúdo programático

- 1 Conceitos sobre sistemas de bancos de dados
- 2 Diagrama Entidade-Relacionamento (ER)
- Bancos de dados relacionais
- 4 Linguagem SQL
- 5 Formas normais
- 6 Desenvolvimento de aplicações web
- 7 NoSQL

Conteúdo programático

Nessa disciplina será visto

- Como modelar banco de dados relacionais
- Como fazer consultas em bancos de dados
- Como desenvolver aplicações que fazem uso de banco de dados
- Laboratórios com SQLite, MySQL e Java

A disciplina não abordará como construir ou mesmo gerenciar de sistemas de banco de dados

Relação com outras unidades curriculares

Bibliografia

🌘 HENRY F.; SILBERSCHATZ, АВРАНАМ; KORTH

SISTEMA DE BANCO DE DADOS

https://app.minhabiblioteca.com.br/books/9788595157552

HEUSER, CARLOS A.

PROJETO DE BANCO DE DADOS

https://app.minhabiblioteca.com.br/books/9788577804528

Os livros estão disponíveis no aplicativo Minha biblioteca. Acesse o SIGAA e no menu superior escolha Serviços externos → Minha biblioteca.

Problema: cafeteira espresso com leitor NFC

Características

- Cada usuário possui um cartão de identificação
- Deve-se registrar o total de café que cada usuário consumiu
- É possível tirar café simples ou duplo
- No final de cada mês, deve-se indicar o valor total a pagar

Problema: cafeteira espresso com leitor NFC

Características

- Cada usuário possui um cartão de identificação
- Deve-se registrar o total de café que cada usuário consumiu
- É possível tirar café simples ou duplo
- No final de cada mês, deve-se indicar o valor total a pagar

Use arquivos texto para persistir os dados

- 1 Quais dados precisa armazenar?
- 2 Como os dados serão armazenados?

Problema: cafeteira espresso com leitor NFC

Características

- Cada usuário possui um cartão de identificação
- Deve-se registrar o total de café que cada usuário consumiu
- É possível tirar café simples ou duplo
- No final de cada mês, deve-se indicar o valor total a pagar

Use arquivos texto para persistir os dados

- 1 Quais dados precisa armazenar?
- 2 Como os dados serão armazenados?

Aplicação

Como fará para inserir ou consultar dados nos arquivos?

Armazenamento usando somente o sistema de arquivos

Qual dessas abordagens seria mais adequada?

Como fará para inserir ou consultar dados nos arquivos?

■ Um único arquivo CSV

```
123, Juca, juca@email, simples, 2018-07-20,08:00
123, Juca, juca@email, simples, 2018-07-21,09:00
345, Paula, paula@email,,,
567, Anna, anna@email,,,
123, Juca, juca@email, duplo, 2018-07-27,07:30
```

Vários arquivos CSV

```
123, Juca, juca@email
345, Paula, paula@email
567, Anna, anna@email
```

```
123, simples, 2018-07-20, 08:00
123, simples, 2018-07-21, 09:00
123, duplo, 2018-07-27, 07:30
```


Novos requisitos

- 1 Cada usuário possui um saldo e só poderá tomar café se houver saldo na conta
- No final de cada mês, deve-se indicar o total de cafés que cada usuário consumiu
- O histórico de consumo nunca poderá ser perdido
- O usuário poderá ver a qualquer momento um extrato sobre seu consumo

Trecho em Java para trabalhar com CSV

```
/* ------*/
/* Escrevendo no arquivo */
/* ------*/
FileWriter arquivo = new FileWriter("usuarios.csv");
List<List<String>> linhas = new ArrayList<>();
linhas.add(Arrays.asList("123","juca","j@email"));

for(List<String> elem : linhas){
    arquivo.append(String.join(",",elem));
    arquivo.append("\n");
}
```

```
/* ----- */
/* Lendo conteúdo do arquivo */
/* ----- */
File entrada = new File("usuarios.csv");
Scanner linha = new Scanner(entrada);
while(linha.hasNext()){
    String[] registro = linha.nextLine().split(",");
    System.out.print(registro[0]);
}
```

Compartilhar os arquivos csv em um servidor de arquivos

Acesso concorrente por múltiplos usuários

 Usuário colocando crédito no mesmo instante que um novo usuário é inserido na base

Compartilhar os arquivos csv em um servidor de arquivos

Acesso concorrente por múltiplos usuários

 Usuário colocando crédito no mesmo instante que um novo usuário é inserido na base

Atomicidade das atualizações

■ Debitando crédito & adicionando registro de consumo

Compartilhar os arquivos csv em um servidor de arquivos

Acesso concorrente por múltiplos usuários

 Usuário colocando crédito no mesmo instante que um novo usuário é inserido na base

Atomicidade das atualizações

Debitando crédito & adicionando registro de consumo

Controle de acesso

Como garantir que somente parte dos dados esteja disponível para determinados usuários?

Conceitos

Conceitos sobre banco de dados

- Banco de dados é uma coleção de dados inter-relacionados
- Sistema de gerenciamento de banco de dados (SGBD) é um conjunto de programas que permitem aos usuários acessar e modificar esses dados
- Dicionário de dados contém metadados (dados sobre dados)
 - Estrutura dos dados, referencial de integridade, restrições, autorização, etc

Conceitos sobre banco de dados

- Modelo de dados é coleção de ferramentas para descrever os dados, seus relacionamentos, semântica e restrições de consistência
 - Entidade-relacionamento (ER)
 - Modelo relacional
 - Baseado em objetos
 - Semi-estruturado

 Baseado na percepção do mundo real que consiste em uma coleção de objetos (entidades) e os relacionamentos entre esses objetos

- Modelo de dados é coleção de ferramentas para descrever os dados, seus relacionamentos, semântica e restrições de consistência
 - Entidade-relacionamento (ER)
 - Modelo relacional
 - Baseado em objetos
 - Semi-estruturado

- Coleção de tabelas para representar dados e os relacionamentos entre eles
- Cada tabela contém registros de um mesmo tipo
- Cada registro define um número fixo de campos ou atributos
- Modelo mais usado atualmente

- Modelo de dados é coleção de ferramentas para descrever os dados, seus relacionamentos, semântica e restrições de consistência
 - Entidade-relacionamento (ER)
 - Modelo relacional
 - Baseado em objetos
 - Semi-estruturado

 Pode ser visto como uma extensão do modelo ER com noções de encapsulamento e identidade do objeto

- Modelo de dados é coleção de ferramentas para descrever os dados, seus relacionamentos, semântica e restrições de consistência
 - Entidade-relacionamento (ER)
 - Modelo relacional
 - Baseado em objetos
 - Semi-estruturado

- Permite que registros do mesmo tipo possuam diferentes atributos – oposto daquilo que existe nos outros modelos
- Exemplos: XML e JSON

- Modelo de dados é coleção de ferramentas para descrever os dados, seus relacionamentos, semântica e restrições de consistência
 - Entidade-relacionamento (ER)
 - Modelo relacional
 - Baseado em objetos
 - Semi-estruturado

Esquema

Descrição de uma coleção de dados em particular com base em um modelo de dados

Exemplo de banco de dados relacional

Tabela Alunos

ld	Nome	Curso
123	Juca	Telecomunicações
456	Amélia	Elétrica
789	Breno	Computação
900	Jucé	Automação

Tabela Cursos

Campus	Orçamento			
São José	100.000,00			
Florianópolis	300.000,00			
Lages	20.000,00			
Chapecó	150.000,00			
	São José Florianópolis Lages			

Níveis de abstração e independência de dados

- Nível físico Descreve como os dados são armazenados em baixo nível
 - Tabelas consistem em um conjunto de arquivos, cujo conteúdo não possui qualquer ordenação
 - Índices são dados específicos que possuem uma ordenação

Níveis de abstração e independência de dados

- Nível lógico Descreve quais dados são armazenados e os relacionamentos entre eles
 - Ex: Tabela Aluno possui id, nome do aluno e nome do curso

Níveis de abstração e independência de dados

- Nível de visão esquema externo que descreve a parte do banco de dados que um grupo de usuários pode ver
 - Ex: O coordenador de curso só consegue ver informações sobre os alunos de seu curso

Linguagem de definição de dados Data Definition Language - DDL

- Linguagem para especificação do esquema ou estrutura do banco de dados
- Compilador DDL gera um conjunto de tabelas em um conjunto de arquivos denominado dicionário de dados

```
CREATE TABLE Alunos(
    Id    INT AUTO_INCREMENT,
    Nome    VARCHAR(60) not null,
    Curso VARCHAR(60) null,
    PRIMARY KEY(Id)
);
```


Linguagem de manipulação de dados Data Manipulation Language - DML

- Permite acessar ou manipular dados no banco de dados
 - Recuperação, Inserção, Exclusão ou Modificação
- SQL (Structured Query Language) é a linguagem de consulta mais utilizada atualmente

```
SELECT Nome
FROM Alunos
WHERE Alunos.Id = '123';
```

```
SELECT Alunos.Nome, Alunos.Curso, Cursos.Campus
FROM Alunos, Cursos
WHERE Alunos.Curso = Cursos.Curso
AND Cursos.Curso = "Telecomunicacoes";
```


Algum problema com esse projeto de banco de dados?

ld	Nome	Curso	Disciplina	Professor
123	Juca	Telecomunicações	Sinais	João
456	Amélia	Elétrica	Sinais	João
789	Breno	Computação	Programação I	Martin
900	Jucé	Automação	Programação I	Martin
334	Maira	Telecomunicações	Sistemas Distribuídos	Paulo
453	Célio	Telecomunicações	Cálculo II	Luíza
112	Cícero	Computação	Cálculo II	Luíza
322	Marco	Automação	Cálculo II	Luíza
567	Alonso	Computação	Sistemas Distribuídos	Paulo
257	Luiz	Telecomunicações	Sinais	João

Algum problema com esse projeto de banco de dados?

ld	Nome	Curso	Disciplina	Professor
123	Juca	Telecomunicações	Sinais	João
456	Amélia	Elétrica	Sinais	João
789	Breno	Computação	Programação I	Martin
900	Jucé	Automação	Programação I	Martin
334	Maira	Telecomunicações	Sistemas Distribuídos	Paulo
453	Célio	Telecomunicações	Cálculo II	Luíza
112	Cícero	Computação	Cálculo II	Luíza
322	Marco	Automação	Cálculo II	Luíza
567	Alonso	Computação	Sistemas Distribuídos	Paulo
257	Luiz	Telecomunicações	Sinais	João

Normalização

Criar um conjunto de tabelas que permita armazenar informações sem redundância desnecessária

Diagramas E-R (notação baseada na UML)

Figura: Diagrama E-R

Figura: Diagrama E-R gerado pela ferramentas MySQL Workbench

Banco de dados transacional – propriedades ACID

Garante que todas operações de consulta ou de alteração são **atômicas**, **consistentes**, **isoladas** e **duráveis**.

Atomicidade

 Todas operações (leitura/escrita) em uma transação são executadas com sucesso ou tudo é desfeito

Consistência

A execução de uma transação leva o banco de um estado consistente para um outro estado consistente

Isolamento

 Transações podem acontecer de forma concorrente sem qualquer interferência

Durabilidade

 Ao concluir uma transação, todas modificações geradas serão persistentes


```
read saldoContaOrigem
write (saldoContaOrigem - 500)
read saldoContaDestino
write (saldoContaDestino + 500)
```

Antes

■ Saldo origem: 600,00

Saldo destino: 300,00

Depois

■ Saldo origem: 100,00

■ Saldo destino: 800,00


```
read saldoContaOrigem
write (saldoContaOrigem - 500)
read saldoContaDestino
write (saldoContaDestino + 500)
FALHA NO SISTEMA
```

Antes

■ Saldo origem: 600,00

Saldo destino: 300,00

Depois

■ Saldo origem: 100,00

■ Saldo destino: 800,00

read saldoContaOrigem
write (saldoContaOrigem - 500)

FALHA NO SISTEMA

read saldoContaDestino
write (saldoContaDestino + 500)

Antes

■ Saldo origem: 600,00

■ Saldo destino: 300,00

Depois

■ Saldo origem: 100,00

■ Saldo destino: 300,00

- SGBD garantem que a execução concorrente das transações T_1, \ldots, T_n seja equivalente a uma execução serial dessas transações
 - Antes de ler ou escrever, a transação obtém acesso a uma seção crítica e só libera depois que for concluída
- A atomicidade e durabilidade podem ser garantidas por meio de um arquivo de registro (log)
 - Mantenha no log todas as escritas que foram concluídas
 - Se houver alguma falha, então desfaça as escritas parciais (que não foram escritas no log)

Alguns SGBDs relacionais

Big data

- Grande **volume** de dados
- gerados em grande velocidade
- e com grande variedade
- que exigem novas formas de processamento para ajudar nas tomadas de decisão (alguns ainda citam veracidade e valor)
- Fundamentado sobre tecnologias de análise (Hadoop / MapReduce) e infraestrutura de armazenamento e processamento

Instrumentos científicos

Redes sociais

Cidades inteligentes

Dados de telefones

Banco de dados NoSQL

Adequado para armazenar uma vasta quantidade de dados de maneira efetiva, com baixo custo e com facilidade para implementar escalonamento horizontal (distribuição por diversos nós)

- Modelo de dados não é baseado em tabelas
 - Em uma tabela, todas as linhas terão o mesmo número de colunas
- Estrutura de dados em bancos NoSQL
 - chave-valor
 - colunas esparsas
 - grafo
 - orientado a documento

Escalonamento vertical

Adiciona mais recursos (memória, cpu, disco) em um único nó para permitir que atenda o aumento da demanda

Escalonamento horizontal

 Capacidade de processamento e armazenamento é aumentada por meio de adição de novos nós no cluster

Escalonamento horizontal

 Capacidade de processamento e armazenamento é aumentada por meio de adição de novos nós no cluster

Escalabilidade horizontal é a opção mais barata e flexível, porém possui uma maior complexidade

Sistema centralizado vs sistema distribuído

Sincronismo das réplicas

Múltiplos nós

primário/primário

Teorema de CAP

Consistency, Availability and Partition tolerance

- Consistência Toda operação de leitura em qualquer nó do *cluster* deve retornar a última escrita ou um erro
- **Disponibilidade** Todo nó não falho retornará uma resposta dentro um limite de tempo razoável, porém não há garantia que se refere a escrita mais recente
- Tolerância a partição o sistema continua a funcionar mesmo diante de mensagens perdidas/atrasadas ou falhas em alguns nós

Em um sistema de armazenamento de dados distribuídos é impossível oferecer simultaneamente mais de duas das garantias acima

■ Diante do particionamento da rede, é necessário escolher entre consistência e disponibilidade

Banco de dados NoSQL estão fundamentados sobre modelo de consistência eventual (BASE)

■ Basic Availability

■ Todo pedido terá uma resposta, porém a resposta pode indicar uma falha na tentativa de obter o dado ou que o dado retornado está em um estado inconsistente

Soft-state

 O estado do sistema pode alterar ao longo do tempo, mesmo durante intervalo de tempo que não houve qualquer escrita

Eventual consistency

Sistema se tornará consistente ao longo do tempo uma vez que não se tenha novas operações de escrita

ACID vs BASE

- As propriedades do BASE são menos restritivas que as garantias do modelo ACID
- Para o BASE pode ser mais importante garantir a disponibilidade dos dados (requisito para ambientes de larga escala) do que oferecer a garantia da consistência dos dados em todas as réplicas

ACID vs BASE

- As propriedades do BASE são menos restritivas que as garantias do modelo ACID
- Para o BASE pode ser mais importante garantir a disponibilidade dos dados (requisito para ambientes de larga escala) do que oferecer a garantia da consistência dos dados em todas as réplicas

Qual modelo seria mais adequado?

 Para armazenar dados das contas bancárias de uma instituição financeira

 Para armazenar os posts na linha do tempo em uma rede social

Alguns bancos de dados NoSQL

