Architecture des ordinateurs haute performance

Soraya Zertal

Laboratoire Li-PaRAD, Université de Versailles E-mail: soraya.zertal@uvsq.fr **Cours 3: Jeux d'instructions**

Architecture et jeu d'instructions DLX

Choix du DLX : Machine "pédagogique" RISC proche des machines telles que MIPS ou PowerPC.

Caractéristiques :

- 32 registres entiers de 32 bits (R0 spécial et toujours à 0)
- 32 registres flottants de 32 bits
- Les instructions Arith. et Log. ne peuvent s'effectuer en mémoire
- Les opérations Arith. et Log. comportent 3 opérandes
- Plusieurs modes d'adressage : immédiat, registres, indexé (déplacement), indirect, absolu

Jeu d'instructions DLX : modes d'adressage

Plusieurs modes d'adressage :

```
immédiat :
    add R1,R2,#4; // [R1] := [R2]+4
Registres :
    add R1,R2,R3; // [R1] := [R2]+[R3]
Indexé (déplacement) :
    Lw R1,18(R2); // [R1] := Memoire[[R2]+18]
Absolu :
    Lw R26,896(R0); // [R26] := Memoire[896]
```

Jeu d'instructions DLX : classes d'instructions

Pour des raisons de simplicité, on considère les 3 classes d'instructions suivantes (et non R, I, J) :

- opérations arithmétiques et logiques
- opérations mémoires (chargement et rangement)
- opérations de contrôle (branchements avec ou sans condition)

Chaque instruction est codée sur 32 bits avec un opcode de 6 bits (poids fort)

Les données manipulées sont en octets (8bits), demi-mots (16bits), mots (32bits), double-mots (64bits) pour les flottants double précision.

DLX: instructions Arith. et Log.

Format des instructions Arith. et Log. avec et sans valeur immediate :

Code-op	rs1	rd		immédiat
6	5	5	5	11
Code-op	rs1	rs2	rd	Fonc.

DLX: liste des instructions Arith. et Log.

Instruction	Signification	
ADD, ADDU, ADDI, ADDUI	addition (signée et pas), addition immédiate	
	(signée et pas) avec valeur sur 16bits	
SUB, SUBU, SUBI, SUBUI	soustraction (signée et pas), soustraction	
	immédiate (signée et pas) avec valeur sur 16bits	
Mult, MultU, DIV, DIVU	Multiplication (signée et pas),	
	Division (signée et pas). Reg flottants sur 32bits	
OU,OUI,XOR,XORI	ou, ou immédiat, ou-exculsif, ou-exclusif immédiat	
LHI	chargement Haut immédiat (init haut d'un reg avec val)	
SLL, SRL, SRA, SLLI, SRLI,	décalage gauche/droite, logique/arithmetique	
S_, S_I	Set if CDT: "_" peut etre LT, GT, LE, GE, EQ, NE	

DLX: instructions Arith. et Log.

Quelques exemples:

instruction	fonction	traitement correspondant
Add R1, R2, R3	Addition	Reg[R1] := Reg[R2] + Reg[R3]
Addl R1, R2, #5	Addition immédiate	Reg[R1] := Reg[R2] + 5
SLLI R1, R2, #5	Décalage logique gauche immédiat	Reg[R1] := Reg[R2] << 5
SLT R1 R2 R3	Set if Lower Than	si (Reg[R2] < Reg[R3]) Reg[R1]=1, 0 sinon
LHI R1, #13	chargement immédiat haut	Reg[R1] := 13## 0 ¹⁶

0¹⁶ concaténation avec 16 Zéro à droite.

DLX: instructions Arith. et Log.

Bilan:

- Elles opèrent sur des registres, typiquement 2 sources et un destination
- 2 La mise à jour du registre se produit en fin d'exécution
- Leur complexité est modérée
- Leur timing d'exécution est déterministe : une fois les valeurs des registres sources obtenues, la durée d'exécution est fixe.

DLX : instructions chargement/rangement

Format des instructions mémoire ou chargement/rangement de mots, demi-mots et octets.

Code-op	rs1	rd	immédiat
6	5		16

DLX : les instructions chargement/rangement

Une liste restreinte d'instructions de chargement/rangement :

Instruction	Signification	
LB, LBU, SB	chargement octet, chargement octet non signé,	
	rangement octet	
LH, LHU, SH	chargement demi-mot, chargement	
	demi-mot non signé, rangement demi-mot	
LW, SW	chargement mot, rangement mot (de/vers reg. entiers)	

DLX : les instructions chargement/rangement

Il existe sussi :

- Des instructions concernant le chargement/rangement des flottants simple et double précision.
- Des instructions de transfert entre registres speciaux et registres à usage général.
- Des instructions de transfert de 32 bits de/vers registres flottants vers/de registres entiers.

DLX : instructions chargement/rangement

Quelques examples:

Instruction	Fonction	Traitement correspondant
LW R1, 30(R2)	Chargement mot	Reg[R1] := Memoire[30+Reg[R3]]
LW R1, 500(R0)	Chargement mot	Reg[R1] := Memoire[500]
SW 1000(R5), R3	Rangement mot	Memoire[1000 + Reg[R5]] := Reg[R3]

DLX : instructions de chargement/rangement

Bilan:

- Leur complexité est importante (calcul d'adresse + accès mémoire), extention et concaténation concernant les transferts entre registres.
- Leur timing d'exécution est non déterministe, seul le calcul d'adresse est déterministe. L'accès peut donner lieu à un défaut et engendrer un défaut de plusieurs cycles. Le temps d'accès est donc variable.

DLX : instructions de contrôle

Format des instructions de contôle : branchement avec (Br. cdt) ou sans condition (saut).

Code-op	rs1	rd	immédiat	Br. cdt
6	5	5	16	•
Code-op		Dépl	acement	Saut

DLX : quelques instructions de contrôle

Les instructions de contrôle les plus utilisées :

Instruction	Signification
BEQZ, BNEZ	branchement si reg égal/différent de zéro au : CP+ val immédiate (16 bits)
J, JR	saut au : CP+ déplacement(26 bits) pour J et au Reg[rs1] pour JR

Remarque:

Dans le cas du branchement conditionnel, rs1 est le registre condition, rd n'est pas utlisé.

DLX : instructions de contrôle

Exemples:

Instruction	Fonction	Traitement correspondant
J etiq	Saut	PC += etiq
JR R1	Saut selon registre	PC = Reg[R1]
BEQZ R2 Etiq	Branchement si zéro	if $(Reg[R2] == 0) CP += etiq$
BENZ R2 Etiq	Branchement si non zéro	if (Reg[R2] != 0) CP +=etiq

DLX : instructions de contrôle

Bilan:

- Leur complexité est variable
- Leur timing d'exécution est non déterministe, un branchement peut donner lieu à un défaut et engendrer un défaut de plusieurs cycles