Замена непрерывного распределения на дискретное для применения на практике

Нагуманова Карина Ильнуровна, 19Б.04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика

Санкт-Петербург 2023г.

Введение

В практических задачах нередко требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для трехточечной аппроксимации нормального распределения является метод Свонсона.

Однако в ряде областей, например, в нефтяной промышленности, общепринятым распределением, описывающим запасы нефти, является логнормальное распределение. Соответственно, реальной задачей является аппроксимация логнормального распределения. При этом здесь тоже применим метод Свонсона, потому что логнормальное распределение можно свести к нормальному.

Введение

Аппроксимируемые случайные величины складывают и умножают.

Пример перемножения: используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти.

Пример сложения: зная запасы нефти в разных скважинах, нужно оценить суммарные запасы.

Задача: находить аппроксимацию суммы и произведения по аппроксимациям исходных случайных величин.

Введение

План работы.

- Рассмотреть общий подход к трехточечной аппроксимации.
- Рассмотреть трехточечную аппроксимацию нормального распределения, в целом метод Свонсона и вывод правила 30-40-30.
- Рассмотреть трехточечную аппроксимацию логнормального распределения и её свойства.
- Построить алгоритм аппроксимации произведения двух логнормальных распределений.
- **5** Построить алгоритм аппроксимации суммы двух логнормальных распределений.

Часть 1: Общий подход к трехточечной аппроксимации

 ξ — непрерывная случайная величина

$$m = \mathbf{E}(\xi), \qquad s^2 = \mathbf{D}(\xi)$$

F(x) — функция распределения, x_{π_1} , x_{π_2} , x_{π_3} — квантили ξ . $\tilde{\xi}$ — случайная дискретная величина

$$\tilde{\xi} : \begin{pmatrix} x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ p_1 & p_2 & p_3 \end{pmatrix}$$

$$\tilde{m} = \mathbf{E}(\tilde{\xi}), \qquad \tilde{s}^2 = \mathbf{D}(\tilde{\xi})$$

Задача: аппроксимировать распределение случайной величины ξ дискретным распределением $\tilde{\xi}$, то есть найти p_1 , p_2 , p_3 такие, что

$$\begin{aligned} p_1 + p_2 + p_3 &= 1,\\ \tilde{m} &= p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} &= m,\\ \tilde{s}^2 &= p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 &= s^2. \end{aligned}$$

Часть 1: Общий подход к трехточечной аппроксимации

Предложение (Swanson)

Пусть верно

$$\begin{pmatrix} 1 & 1 & 1 \\ \hat{x}_{\pi_1} & \hat{x}_{\pi_2} & \hat{x}_{\pi_3} \\ \hat{x}_{\pi_1}^2 & \hat{x}_{\pi_2}^2 & \hat{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

где $\hat{x}_{\pi_i}=\hat{\mathsf{F}}^{-1}(\pi_i),\ \hat{\mathsf{F}}(y)$ — функция распределения $\hat{\xi}=\frac{\xi-m}{s}$. Тогда $m=\tilde{m}$ и $s^2=\tilde{s}^2$.

Если $\xi \sim N(\mu,\sigma)$ имеет нормальное распределение, то $\hat{\xi}$ имеет нормальное стандартное распределение, поэтому можно написать систему, которая не зависит от μ и σ .

Часть 2: Аппроксимация нормального распределения

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi) & 0 & -\Phi^{-1}(\pi) \\ \Phi^{-1}(\pi)^2 & 0 & \Phi^{-1}(\pi)^2 \end{pmatrix} \begin{pmatrix} p_{\pi} \\ p_{0.5} \\ p_{1-\pi} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Предложение (Swanson)

 $\xi \sim N(\mu, \sigma)$, пусть верно

$$\begin{cases} p_{\pi} = p_{1-\pi} = \frac{\delta}{2}, \\ p_{0.5} = 1 - \delta, \end{cases}$$

где
$$\delta=rac{1}{\Phi^{-1}(\pi)^2}$$
. Тогда $m= ilde{m}$ и $s^2= ilde{s}^2$.

Часть 2: Аппроксимация нормального распределения

Рассмотрим частный случай $\pi=0.1$, имеем

$$\Phi^{-1}(0.1) = -\Phi^{-1}(0.9) \approx -1.28, \qquad \Phi^{-1}(0.5) = 0.$$

$$\begin{cases} p_1 \approx 0.305, \\ p_2 \approx 0.390, \\ p_3 \approx 0.305. \end{cases}$$

Эти вероятности примерно равны 0.3, 0.4, 0.3, поэтому это правило называют правилом 30-40-30.

Часть 3: Связь логнормального распределения с нормальным

Моменты $m,\,s^2$ логнормального распределения выражаются через моменты $\mu,\,\sigma^2$ соответствующего нормального распределения:

$$m = \exp\left(\mu + \frac{\sigma^2}{2}\right),\,$$

$$s^2 = m^2(\exp(\sigma^2) - 1).$$

Параметр σ выражается как

$$\sigma = \frac{\log\left(\frac{x_{\pi_j}}{x_{\pi_i}}\right)}{\Phi^{-1}(\pi_j) - \Phi^{-1}(\pi_i)}, \qquad i \neq j.$$

Значение σ одинаковое для любых пар і и j.

$$\mu = \log(x_{\pi_i}) - \sigma \Phi^{-1}(\pi_i).$$

Результат не зависит от і.

Часть 3: Аппроксимация логнормального распределения

Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

- Вычисляем значения мат. ожидания m и дисперсии s^2 случайной величины η , используя известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$.
- ② Выражаем параметры μ и σ мат. ожидание и дисперсию соответствующего нормального распределения через параметры m и s^2 логнормального распределения
- ullet С помощью системы уравнений из метода для нормального распределения находим значения вероятностей p_1 , p_2 , p_3 .

Результат: вероятности p_1 , p_2 , p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины $\tilde{\xi}$.

Часть 3: Условие на параметр σ

Мною доказаны следующие предложения.

Предложение

Положительные вероятности $p_1, \, p_2, \, p_3$ для аппроксимации логнормальной случайной величины η существуют только при условии

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(-\frac{\sigma^2}{2}\right) (\exp(c\sigma) + \exp(-c\sigma)) \le 0,$$

где
$$c = \Phi^{-1}(\pi)$$
.

Предложение

При уменьшении значения π ограничение на σ становится слабее, то есть диапазон значений σ увеличивается.

Часть 3: Варианты постановки задачи

Задача: имеются квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ логнормальной случайной величины η . Нужно уметь считать m и s^2 .

- ① Используя значения двух квантилей, найти значения параметров μ и σ нормальной случайной величины $\ln(\eta) \sim N(\mu,\sigma)$. Через них вычислить значения m и s^2 .
- f 2 Найти значения p_1, p_2, p_3 такие, что

$$p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} = m,$$

$$p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 = s^2.$$

Если p_1 , p_2 , p_3 положительные, то рассматривается аппроксимация дискретной $\tilde{\xi}$, у которой $\tilde{m}=m$ и $\tilde{s}^2=s^2$. Если не все положительные, то можно воспринимать задачу формально, как поиск коэффициентов линейной комбинации x_π , $x_{0.5}$, $x_{1-\pi}$.

Часть 3: Точность метода Свонсона для логнормального распределения

Проблема: метод Свонсона, применяемый к нормальному распределению, используют для логнормального распределения.

Вопрос: какова точность аппроксимации m и s^2 ?

Предложение

Ошибка аппроксимации мат.ожидания логнормального распределения по методу Свонсона, применяемому к нормальному распределению, равна

$$\frac{\mid m-\widetilde{m}\mid}{m}=\left|\exp\left(\frac{\sigma^2}{2}\right)-\frac{1}{2c^2}\times\right.$$

$$\times (\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1 / \exp\left(\frac{\sigma^2}{2}\right),$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

Часть 3: Точность метода Свонсона для логнормального распределения

Предложение

Ошибка аппроксимации дисперсии логнормального распределения по методу Свонсона, применяемому к нормальному распределению, равна

$$\frac{\mid s^2 - \widetilde{s}^2 \mid}{s^2} = \left| \exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2c^2} \exp(-2c\sigma) - \left(1 - \frac{1}{c^2}\right) \exp(2c\sigma) + \left(\frac{1}{2c^2}(\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1\right)^2 \right| / \exp(\sigma^2)(\exp(\sigma^2 - 1)),$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

Часть 3: Точность метода Свонсона для логнормального распределения

Рис.: Относительная ошибка аппроксимации мат.ож. и дисперсии

Часть 4: Произведение двух логнормальных распределений

Рассмотрим две логнормальные случайные величины

- $\ln(\xi_1) \sim N(\mu_1, \sigma_1^2)$,
- $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2)$,

которые заданы своими квантилями

- x_{π} , $x_{0.5}$, $x_{1-\pi}$ симметричные квантили ξ_1 ,
- ullet y_{π} , $y_{0.5}$, $y_{1-\pi}$ симметричные квантили ξ_2 .

Задача: аппроксимировать непрерывную случайную величину $\eta=\xi_1\xi_2$ дискретной, то есть найти квантили вида z_π , $z_{0.5}$, $z_{1-\pi}$.

Часть 4: Произведение двух логнормальных распределений

Предложение (Swanson)

Зная квантили x_π , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_π , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 можно найти квантили z_π , $z_{0.5}$, $z_{1-\pi}$ случайной величины $\xi_1\xi_2$, как

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

$$z_{0.5} = x_{0.5}y_{0.5},$$

$$z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a),$$

где a и b такие, что прямая $y=\frac{x-a}{b}$, проходит через точки $(\ln(x_\pi y_\pi),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$, где

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Часть 5: Сумма двух логнормальных распределений

Рассмотрим сумму двух логнормальных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

 $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2),$
 $\xi = \xi_1 + \xi_2.$

 ξ_1 и ξ_2 заданы своими квантилями.

Поставим задачу аппроксимации суммы логнормальным распределением $\ln(\eta) \sim N(\mu,\sigma)$, так как нужно рассматривать сумму не обязательно двух, а произвольного числа случайных величин.

Задача: найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины η .

Далее уже знаем, как вычислить вероятности p_1 , p_2 , p_3 такие, что $m=\tilde{m}$ и $s^2=\tilde{s}^2$.

Часть 5: Сумма двух логнормальных распределений

Дано: Квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ — квантили ξ_1 , y_{π} , $y_{0.5}$, $y_{1-\pi}$ — квантили ξ_2 .

- **1** x_{π} , $x_{0.5}$, $x_{1-\pi} \to \mu_1$, σ_1
- $y_{\pi}, y_{0.5}, y_{1-\pi} \to \mu_2, \sigma_2$
- $0 m = m_1 + m_2$
- $5 s^2 = s_1^2 + s_2^2$
- $\mathbf{0}$ m, $s^2 \to \mu$, σ
- \bullet μ , $\sigma \rightarrow z_{\pi}$, $z_{0.5}$, $z_{1-\pi}$
- **8** z_{π} , $z_{0.5}$, $z_{1-\pi} \rightarrow p_1$, p_2 , p_3

Результат: вероятности p_1 , p_2 , p_3 для квантилей $z_{\pi_1}, z_{\pi_2}, z_{\pi_3}$ случайной величины $\xi_1 + \xi_2$.

Ошибки аппроксимации квантилей $q_{10},\ q_{50},\ q_{90}$ случайной величины ξ равны

$$\frac{|q_{10}-z_{10}|}{q_{10}}, \qquad \frac{|q_{50}-z_{50}|}{q_{50}}, \qquad \frac{|q_{90}-z_{90}|}{q_{90}},$$

где

$$z_{100p} = F_{\eta}^{-1}(p) = \exp(\mu + \sigma\sqrt{2}\text{erf}^{-1}(2p-1)).$$

Значение квантилей q_i выражаются как $q_{100p} = F_{\xi}^{-1}(p)$, где

$$F_{\xi}(x) = \int_0^x \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x-y) - \mu_1}{\sigma_1 \sqrt{2}}\right) \right) \times \left(\frac{1}{\sqrt{2\pi}y\sigma_2} \exp\left(-\left(\frac{\ln(y) - \mu_2}{\sqrt{2}\sigma_2}\right)^2\right) \right) dy$$

Рассмотрим $\ln(\xi_1) \sim N(4, \sigma_1^2)$, $\ln(\xi_2) \sim N(6, \sigma_2^2)$ и найдем ошибки с помощью моделирования, объемы выборок равны 10^6 .

Таблица: Ошибка аппроксимации медианы (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.25	0.75	1.25	1.75	2.5
0.25	0.58	0.29	0.89	2.64	6.41
0.75	0.13	0.12	2.15	4.88	7.27
1.25	0.01	0.83	2.94	5.58	10.02
1.75	2.23	0.52	3.61	6.74	9.84
2.5	9.15	3.35	3.25	6.76	9.89

Таблица: Ошибка аппроксимации q_{10} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

-	0.25	0.75	1.25	1.75	2.5
0.25	2.35	13.59	23.93	33.20	42.75
0.75	1.20	10.54	21.80	33.93	42.82
1.25	3.02	7.03	18.43	29.49	40.09
1.75	14.45	5.27	14.33	26.50	36.75
2.5	34.70	11.44	11.10	23.05	32.84

Таблица: Ошибка аппроксимации q_{90} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.25	0.75	1.25	1.75	2.5
0.25	1.01	3.00	4.24	4.10	3.40
0.75	0.04	2.51	4.11	3.26	5.45
1.25	1.44	1.81	3.29	3.93	5.82
1.75	8.25	2.60	2.93	3.60	4.49
2.5	18.17	3.00	3.30	2.44	4.99

Таблица: Коэффициент асимметрии суммы (голубой) и аппроксимации (розовый) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.25	0.75	1.25	1.75	2.5
0.25	1.77	4.23	6.71	15.59	16.68
0.25	1.53	3.75	7.48	14.76	29.70
0.75	1.66	3.86	7.39	11.43	54.43
0.75	1.55	3.65	7.22	14.25	28.77
1.25	2.13	3.68	8.73	13.76	29.28
1.23	1.71	3.60	6.97	13.68	27.66
1.75	5.88	4.06	7.50	31.50	24.89
1.75	2.17	3.71	6.79	13.09	26.41
2.5	11.18	8.85	8.55	10.34	23.61
	3.30	4.29	6.90	12.66	25.13

Таблица: Коэффициент эксцесса суммы (голубой) и аппроксимации (розовый) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.25	0.75	1.25	1.75	2.5
0.25	6.54	51.70	227.68	408.58	734.47
	4.42	32.60	180.39	1088.57	7274.56
0.75	6.21	61.66	144.59	201.69	1304.88
0.75	4.56	30.53	164.86	990.42	6666.16
1.25	11.47	27.75	179.22	193.95	546.57
	5.61	29.53	150.21	886.71	5989.44
1.75	122.65	46.01	110.03	276.24	14081.05
1.75	9.44	31.88	140.69	788.78	5280.07
2.5	195.77	283.81	344.56	4837.85	1292.23
2.5	24.08	44.88	146.68	720.26	4612.33

Посчитаем значения функции $F_{\xi}(x)$ от квантилей z_{10} , z_{50} , z_{90} случайной величины η . Они показывают, каким квантилем для ξ являются квантили z_i . Результаты приведены в следующих таблицах.

Таблица: $F_{\eta}(z_{50})$ в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.15	0.85	1.55	2.25
0.15	0.51	0.50	0.49	0.48
0.85	0.50	0.50	0.48	0.47
1.55	0.49	0.50	0.48	0.46
2.25	0.40	0.49	0.48	0.46

Таблица: $F_{\eta}(z_{10})$ в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

0.15	0.85	1.55	2.25
0.09	0.06	0.04	0.02
0.10	0.07	0.05	0.03
0.05	0.08	0.06	0.04
0.00	0.08	0.07	0.05
	0.09 0.10 0.05	0.09 0.06 0.10 0.07 0.05 0.08	0.15 0.85 1.55 0.09 0.06 0.04 0.10 0.07 0.05 0.05 0.08 0.06 0.00 0.08 0.07

Таблица: $F_{\eta}(z_{90})$ в зависимости от σ_{1}^{2} (строка) и σ_{2}^{2} (столбец)

	0.15	0.85	1.55	2.25
0.15	0.90	0.90	0.90	0.90
0.85	0.90	0.91	0.91	0.90
1.55	0.93	0.90	0.91	0.91
2.25	0.95	0.91	0.90	0.91

Построим оценки плотности для ξ и η , когда ошибки имеют очень маленькие значения и когда достаточно большие.

Puc.:
$$\sigma_1^2 = 1.05$$
, $\sigma_2^2 = 0.45$, $err_{med} = 0.09\%$, $err_{q_{10}} = 2.4\%$, $err_{q_{00}} = 1.1\%$.

Рис.:
$$\sigma_1^2=2.25$$
, $\sigma_2^2=0.05$, $err_{med}=9.92\%$, $err_{q_{10}}=51.34\%$, $err_{q_{90}}=39.88\%$.

Мною были получены следующие результаты:

- **1** Получено условие на σ для существования трехточечной симметричной аппроксимации логнормального распределения.
- Численно оценена точность аппроксимации мат. ожидания и дисперсии логнормального распределения с помощью метода Свонсона, применяемого к нормальному распределению.
- Построен алгоритм для нахождения трехточечной симметричной аппроксимации суммы логнормальных распределений.
- Численно оценена точность трехточечной симметричной аппроксимации суммы логнормальных распределений.