6. Команды MMX, SSE, SSE-2, SSE-3, AVX

Идея **MMX** (первоначальное название этой технологии Multi-Media eXtension было изменено фирмой INTEL на Matrix-Math eXtension) родилась как средство, решающее часть проблем с нехваткой быстродействия центрального процессора для задач мульти-медиа приложений, характеризующихся следующими факторами:

-небольшие целочисленные данные (например, 8-ми битовые графические пиксели или 16-ти битовые элементы звукового потока), которые обрабатываются в значительных объемах;

-небольшие, многократно повторяющиеся циклы;

-частые умножения и накапливания результата (выражения типа:

 $\langle (a = a + b) \rangle$;

-постоянные циклические обращения к памяти.

Параллельность вычислений — ключевой момент в технологии ММХ. Поэтому большинство новых ММХ-команд построены по принципу «ОД-НА КОМАНДА — МНОЖЕСТВО ДАННЫХ» (SINGLE INSTRUCTION MULTIBLE DATA — SIMD). Так как процессоры PENTIUM имеют 64-х разрядную шину данных, базовая длина слова данных новых ММХ-инструкций выбрана тоже 64 разрядной.

ММХ-регистры хранят только ММХ-данные, остальные восемь РОН-ов (EAX, EBX и др.) используются для адресации памяти, работы с циклами или любых других операций.

регистров (на месте мантиссы FP-данных). Поле порядка и знака (старшие 16 бит) устанавливаются в состояние «все единицы», что соответствует состоянию «минус бесконечность» или «нечисло» для FP-данных. Поэтому FP-и ММХ-данные невозможно случайно неверно интерпретировать.

Таблица 2.35 – Команды ММХ.

команды пересылки		
EMMS	Очистка стека регистров – установка всех еди-	
	ниц в слове тегов	
MOVD mm, m32/ir32	Пересылка данных в младшие 32 бита регистра ММХ с заполнением старших бит нулями	
MOVD m32/ir32, mm	Пересылка данных из младших 32-х бит регистра ММХ	
MOVQ mm, mm/m64	Пересылка данных в регистр ММХ	
MOVQ mm/m64, mm	Пересылка данных из регистра ММХ	
PACKSSDW mm,	Упаковка со знаковым насыщением двух двой-	
mm/m64	ных слов, расположенных в mm, и двух двой- ных слов mm/m64 в четыре слова, помещае- мых в mm	
PACKSSWB mm,	Упаковка со знаковым насыщением четырех	
mm/m64	слов, расположенных в mm, и четырех слов mm/m64 в восемь байт, помещаемых в mm	
PACKUSWB mm,	Упаковка с насыщением четырех знаковых слов,	
mm/m64	расположенных в mm, и четырех слов mm/m64 в восемь беззнаковых байт, помещаемых в mm	
PUNPCKHBW mm,	Чередование в регистре-приемнике байтов стар-	
mm/m64	шей половины операнда-источника с байтами	
	старшей половины операнда-приемника	
PUNPCKHWD mm,	Чередование в регистре-приемнике слов старшей	
mm/m64	половины операнда-источника со словами стар-шей половины операнда-приемника	
PUNPCKHDQ mm,	Чередование в регистре-приемнике двойного	
mm/m64	слова старшей половины операнда-источника с	
	двойным словом старшей половины операнда-приемника	
PUNPCKLBW mm,	Чередование в регистре-приемнике байтов	
mm/m64	младшей половины операнда-источника с бай- тами младшей половины операнда-приемника	
PUNPCKLWD mm,	Чередование в регистре-приемнике слов млад-	
mm/m64	шей половины операнда-источника со словами	
min mor	младшей половины операнда-приемника	
PUNPCKLDQ mm,	Чередование в регистре-приемнике двойного	
mm/m64	слова младшей половины операнда-источника с	
	двойным словом младшей половины операнда-	
	приемника	
	, -	

АРИФМЕТИЧЕСКИЕ И ЛОГИЧЕСКИЕ КОМАНДЫ	
PADDB mm, mm/m64	Сложение упакованных байт (слов или двойных
PADDW mm, mm/m64	слов) без насыщения (с циклическим переполне-
PADDD mm, mm/m64	нием)
PADDSB mm, mm/m64	Сложение упакованных байт (слов) со знаковым
PADDSW mm, mm/m64	насыщением
PADDUSB mm, mm/m64 PADDUSW mm, mm/m64	Сложение упакованных байт (слов) с беззнаковым насыщением
PSUBB mm, mm/m64	Вычитание упакованных байт (слов, двойных
PSUBW mm, mm/m64	слов) без насыщения (с циклическим переполне-
PSUBD mm, mm/m64	нием)
PSUDSB mm, mm/m64	Вычитание упакованных знаковых байт (слов) с
PSUDSW mm, mm/m64	насыщением
PSUBUSB mm, mm/m64	Вычитание упакованных беззнаковых байт
PSUBUSW mm, mm/m64	(слов) с насыщением
PMULHW mm,	Умножение упакованных знаковых слов с со-
mm/m64	хранением только старших 16 бит элементов ре-
	зультата
PMULLW mm,	Умножение упакованных знаковых или беззна-
mm/m64	ковых слов с сохранением только младших 16
	бит результата
PMADDWD mm,	Умножение четырех знаковых слов операнда-
mm/m64	источника на четыре знаковых слова операнда
	приемника. Два двойных слова результатов ум-
	ножения младших слов суммируются и записы-
	ваются в младшие 32 бита операнда-приемника.
	Два двойных слова результатов умножения
	старших слов суммируются и записываются в
	старшие 32 бита операнда-приемника
PAND mm, mm/m64	Логическое "И"
PANDN mm, mm/m64	Логическое "И-НЕ"
POR mm, mm/m64	Логическое "ИЛИ"
PXOR mm, mm/m64	Исключающее "ИЛИ"
PCMPEQB mm,mm/m64	1 1 1
PCMPEQW mm, mm/m64	, , , ,
PCMPEQD mm,mm/m64	тата будут единичными (True) при равенстве со-
	отвествующих элементов операндов и – нулевы-
	ми (False) при неравенстве
PCMPGTB mm,mm/m64	Сравнение (по величине) упакованных знаковых
PCMPGTW mm, mm/m64	3 / 11
PCMPGTD mm, mm/m64	результата будут единичными (True), если соот-
	ветствующий элемент операнда-получателя
	больше элемента операнда-источника, и нуле-

SSE. Основное отличие новой технологии «ММХ-2», так называемое, потоковое расширение – SSE (Streaming SIMD Extensions), получившей офи-

циальное название «Новый набор инструкций KATMAI» – KNI (Katmai New Instruction), – использование параллельных вычислений над числами с плавающей запятой одинарной точности (SIMD-FP, Single Instruction Multiple Data — Floating Point). В добавление к 57 ММХ-командам процессор PENTIUM-3 (более раннее название – KATMAI) имеет еще 70 команд, ориентированных на SIMD-FP (направленных на обработку 3Dприложений), а также дополнительные целочисленные инструкции с регистрами ММХ и команды управления кэшированием. Добавлены специализированные команды для ускорения трансформации трехмерных объектов, эффектов освещения, атмосферных эффектов и др.

Расширение SSE-2. В новом процессоре PENTIUM-4 (2000 г.) основные нововведения направлены на ускорение обработки потоковых данных, что обеспечивает максимальную производительность при обработке видео, графических изображений, работе с мультимедиа и в других сложных задачах. Поток в данном контексте подразумевает, что с его данными должны выполняться однотипные операции. Кроме того, данные, уже прошедшие обработку, в дальнейшем этим вычислительным процессом использоваться не будут и ими не следует засорять КЭШ. Добавлены дополнительные 144 команды (SSE-2), ускоряющие ра-

боту широкого спектра потоковых ресурсоемких приложений.

В процессоре PENTIUM-4 добавлены новые форматы данных:

-упакованная пара чисел с плавающей точкой двойной точности (2 * 64 = 128 бит);

-упакованные целые числа: 16 байт (16 * 8 = 128 бит), 8 слов (8 * 16 =128 бит), 4 двойных слова (4 * 32 = 128 бит) и 2 счетверенных слова (2 * 64 = 128 бит).

Расширение SSE-3. В процессор PENTIUM-4 на ядре PRESCOTT (который появился в конце 2003 г.) добавлены еще 13 новых команд SIMD-FP, получившие название SSE-3.

Advanced Vector Extensions (AVX) – расширение системы команд x86 для микропроцессоров Intel и AMD, предложенное Intel в марте 2008. Новые возможности AVX:

- -Новая схема кодирования инструкций VEX;
- -Ширина векторных регистров SIMD увеличивается со 128 (XMM) до 256 бит (регистры YMM0 – YMM15). Существующие 128-битовые SSE инструкции будут использовать младшую половину новых YMM регистров, не изменяя старшую часть. Для работы с YMM регистрами добавлены новые 256-битовые AVX инструкции. В будущем возможно расширение векторных регистров SIMD до 512 или 1024 бит. Например,

процессоры с архитектурой Larrabee уже имеют векторные регистры (ZMM) шириной в 512 бит, и используют для работы с ними SIMD команды с MVEX и VEX префиксами, но при этом они не поддерживают AVX;

- -Неразрушающие операции. Набор AVX инструкций использует трёхоперандный синтаксис. Например, вместо a = a + b можно использовать c = a + b, при этом регистр а остаётся неизменённым. В случаях, когда значение а используется дальше в вычислениях, это повышает производительность, так как избавляет от необходимости сохранять перед вычислением и восстанавливать после вычисления регистр, содержавший а, из другого регистра или памяти;
- -Для большинства новых инструкций отсутствуют требования к выравниванию операндов в памяти. Однако, рекомендуется следить за выравниванием на размер операнда, во избежание значительного снижения производительности.
- -Набор инструкций AVX содержит в себе аналоги 128-битовых SSE инструкций для вещественных чисел. При этом, в отличие от оригиналов, сохранение 128-битового результата будет обнулять старшую половину YMM регистра. 128-битовые AVX инструкции сохраняют прочие пре-имущества AVX, такие как новая схема кодирования, трехоперандный синтаксис и невыровненный доступ к памяти. Рекомендуется отказаться от старых SSE и MMX инструкций в пользу новых 128-битовых AVX инструкций, даже если достаточно двух операндов.