```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import plotly.offline as py
        py.init notebook mode()
        %matplotlib inline
        import seaborn as sns
        from pylab import rcParams
In [2]: df = pd.read_csv("Rose.csv",parse_dates=True,index_col=0)
In [3]: |df.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
        Data columns (total 1 columns):
             Column Non-Null Count Dtype
             Rose
                      185 non-null
                                      float64
        dtypes: float64(1)
        memory usage: 2.9 KB
In [4]: df.head()
Out[4]:
                   Rose
         YearMonth
         1980-01-01 112.0
         1980-02-01 118.0
         1980-03-01 129.0
         1980-04-01
                   99.0
         1980-05-01 116.0
```

```
In [5]: df.tail()
```

Out[5]:

YearMonth				
1995-03-01	45.0			
1995-04-01	52.0			
1995-05-01	28.0			
1995-06-01	40.0			
1995-07-01	62.0			

Rose

```
In [6]: df.shape
Out[6]: (187, 1)
In [7]: df.isnull().sum()
Out[7]: Rose 2
    dtype: int64
```

Out[8]: Text(0, 0.5, 'Rose Sales')

Out[12]: Text(0, 0.5, 'Rose Sales')

Rose Sales Distribution


```
In [13]: data.describe()
```

Out[13]:

	Rose
count	187.000000
mean	89.907184
std	39.246679
min	28.000000
25%	62.500000
50%	85.000000
75%	111.000000
max	267.000000

```
In [14]: # Analyzing data:
    # Year-on-year plot of the sales:

fig, ax = plt.subplots(figsize=(20,10))
    sns.boxplot(data.index.year, data.values[:,0], ax=ax,whis=1.5)
    plt.grid();
    plt.xlabel('Year/Month',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Year-on-Year Rose Sales Distribution',color='blue',fontsize=20)
```

Out[14]: Text(0.5, 1.0, 'Year-on-Year Rose Sales Distribution')


```
In [15]: #Plotting month-wise sales distribution across years:

fig, ax = plt.subplots(figsize=(20,12))
    sns.boxplot(data.index.month_name(), data.values[:,0], ax=ax,whis=1.5)
    plt.grid();
    plt.xlabel('Months',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Month-wise Rose Sales Distribution across years',color='blue',fontsize=20)
```

Out[15]: Text(0.5, 1.0, 'Month-wise Rose Sales Distribution across years')


```
In [16]: # Plotting a month-plot:
    from statsmodels.graphics.tsaplots import month_plot
    fig, ax = plt.subplots(figsize=(20,12))
    month_plot(data,ax=ax)
    plt.grid();
    plt.xlabel('Months',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Month-plot of Rose Sales',color='blue',fontsize=20)
```

Out[16]: Text(0.5, 1.0, 'Month-plot of Rose Sales')

In [17]: # Computing and plotting the per month sales for each year:
 monthly_sales_across_years = pd.pivot_table(data, values = 'Rose', columns = data.index.month_name(), ir
 monthly_sales_across_years

Out[17]:

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September	
YearMonth													
1980	99.0	129.000000	267.0	118.0	112.0	118.000000	168.0	129.0	116.0	150.0	147.0	205.0	
1981	97.0	214.000000	226.0	129.0	126.0	222.000000	127.0	124.0	102.0	154.0	141.0	118.0	
1982	97.0	117.000000	169.0	77.0	89.0	117.000000	121.0	82.0	127.0	134.0	112.0	106.0	
1983	85.0	124.000000	164.0	108.0	75.0	109.000000	108.0	115.0	101.0	135.0	95.0	95.0 105.0	
1984	87.0	142.000000	159.0	85.0	88.0	87.000000	87.0	112.0	91.0	139.0	108.0	95.0	
1985	93.0	103.000000	129.0	82.0	61.0	87.000000	75.0	124.0	108.0	123.0	108.0	90.0	
1986	71.0	118.000000	141.0	65.0	57.0	110.000000	67.0	67.0	76.0	107.0	85.0	99.0	
1987	86.0	73.000000	157.0	65.0	58.0	87.000000	74.0	70.0	93.0	96.0	100.0	101.0	
1988	66.0	77.000000	135.0	115.0	63.0	79.000000	83.0	70.0	67.0	100.0	116.0	102.0	
1989	74.0	74.000000	137.0	60.0	71.0	86.000000	91.0	89.0	73.0	109.0	87.0	87.0	
1990	77.0	70.000000	132.0	69.0	43.0	78.000000	76.0	73.0	69.0	110.0	65.0	83.0	
1991	65.0	55.000000	106.0	55.0	54.0	96.000000	65.0	66.0	60.0	74.0	63.0	71.0	
1992	53.0	52.000000	91.0	47.0	34.0	67.000000	55.0	56.0	53.0	58.0	51.0	46.0	
1993	45.0	54.000000	77.0	40.0	33.0	57.000000	55.0	46.0	41.0	48.0	52.0	46.0	
1994	48.0	44.279246	84.0	35.0	30.0	45.364189	45.0	42.0	44.0	63.0	51.0	46.0	
1995	52.0	NaN	NaN	39.0	30.0	62.000000	40.0	45.0	28.0	NaN	NaN	NaN	

```
In [18]: monthly_sales_across_years.plot(figsize=(20,10))
    plt.grid()
    plt.legend(loc='best');
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Monthly Rose Sales Distribution across Years',color='blue',fontsize=20)
```

Out[18]: Text(0.5, 1.0, 'Monthly Rose Sales Distribution across Years')

Out[19]:

Rose

YearMonth	
1980-12-31	146.500000
1981-12-31	148.333333
1982-12-31	112.333333
1983-12-31	110.333333
1984-12-31	106.666667

```
In [20]: data_yearly_mean.plot();
    plt.grid()
    plt.xlabel('Mean Sales per year',color='blue',fontsize=18);
    plt.ylabel('Mean Sales',color='blue',fontsize=18);
    plt.title('Mean Rose Sales distribution across Years',color='blue',fontsize=20)
```

Out[20]: Text(0.5, 1.0, 'Mean Rose Sales distribution across Years')


```
In [21]: # Computing and plotting mean sales for each quarter:
    data_quarterly_mean = data.resample('Q').mean()
    data_quarterly_mean.head()
```

Out[21]:

Rose

YearMonth	
1980-03-31	119.666667
1980-06-30	127.666667
1980-09-30	150.666667
1980-12-31	188.000000
1981-03-31	126.333333

```
In [22]: data_quarterly_mean.plot(figsize=(20,10));
    plt.grid()
    plt.xlabel('Mean Sales per quarter',color='blue',fontsize=18);
    plt.ylabel('Mean Sales',color='blue',fontsize=18);
    plt.title('Mean Rose Sales distribution across Quarters',color='blue',fontsize=20)
```

Out[22]: Text(0.5, 1.0, 'Mean Rose Sales distribution across Quarters')

In [23]: #Decomposing the Time Series:

from statsmodels.tsa.seasonal import seasonal_decompose

```
In [24]: # Additive decomposition:
    decomposition_add = seasonal_decompose(data, model='additive')
    decomposition_add.plot();
```


In [25]: # Multiplicative decomposition:
 decomposition_multi = seasonal_decompose(data,model='multiplicative')
 decomposition_multi.plot();

In [26]: # we will choose multiplicative decomposition as residual is more random, centralised around 1.0
In [27]: # Computing the various components of the decomposed data:
 trend = decomposition_multi.trend
 seasonality = decomposition_multi.seasonal
 residual = decomposition multi.resid

```
In [28]: # Checking the components:
         print('Trend in Sparkling Sales','\n',trend.head(12),'\n')
         print('Seasonality in Sparkling Sales','\n', seasonality.head(12),'\n')
         print('Residual','\n',residual.head(12),'\n')
         Trend in Sparkling Sales
          YearMonth
         1980-01-01
                               NaN
         1980-02-01
                               NaN
         1980-03-01
                               NaN
         1980-04-01
                               NaN
         1980-05-01
                               NaN
         1980-06-01
                               NaN
          1980-07-01
                        147.083333
         1980-08-01
                        148.125000
         1980-09-01
                        148.375000
         1980-10-01
                        148.083333
         1980-11-01
                        147.416667
         1980-12-01
                        145.125000
         Name: trend, dtype: float64
          Seasonality in Sparkling Sales
          YearMonth
         1980-01-01
                        0.670208
         1980-02-01
                        0.806225
         1980-03-01
                        0.901320
         1980-04-01
                        0.854202
         1980-05-01
                        0.889574
         1980-06-01
                        0.924142
          1980-07-01
                        1.058226
         1980-08-01
                        1.034110
         1980-09-01
                        1.017792
         1980-10-01
                        1.022731
         1980-11-01
                        1.192548
         1980-12-01
                        1.628922
         Name: seasonal, dtype: float64
         Residual
          YearMonth
         1980-01-01
                             NaN
         1980-02-01
                             NaN
          1980-03-01
                             NaN
```

```
1980-04-01
                   NaN
1980-05-01
                   NaN
1980-06-01
                   NaN
1980-07-01
              0.758124
1980-08-01
              0.842160
1980-09-01
              1.357482
1980-10-01
              0.970621
1980-11-01
              0.853235
              1.129454
1980-12-01
Name: resid, dtype: float64
```

```
In [29]: # Checking how the data looks without seasonality:
    deaseasonalized_ts = trend + residual
    deaseasonalized_ts.head(12)
```

```
Out[29]: YearMonth
         1980-01-01
                               NaN
         1980-02-01
                               NaN
         1980-03-01
                               NaN
         1980-04-01
                               NaN
         1980-05-01
                               NaN
         1980-06-01
                               NaN
         1980-07-01
                        147.841457
         1980-08-01
                        148.967160
         1980-09-01
                        149.732482
         1980-10-01
                        149.053954
         1980-11-01
                        148.269902
         1980-12-01
                        146.254454
```

dtype: float64

localhost:8888/notebooks/Time series forecasting/TSF Project (Rose) - Sabita.ipynb

```
In [30]: data.plot()
    deaseasonalized_ts.plot()
    plt.legend(["Original Time Series", "Deseasonalised Time Series"]);
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Original v/s Deseasonalised Rose Sales distribution',color='blue',fontsize=20)
```

Out[30]: Text(0.5, 1.0, 'Original v/s Deseasonalised Rose Sales distribution')

Original v/s Deseasonalised Rose Sales distribution


```
In [31]: #Splitting data into train and test set:
    train = data[data.index<'1991']
    test = data[data.index>='1991']

In [32]: print(train.shape)
    print(test.shape)

    (132, 1)
    (55, 1)
```

```
In [33]: print('First few rows of Training Data','\n',train.head(),'\n')
         print('Last few rows of Training Data','\n',train.tail(),'\n')
         print('First few rows of Test Data','\n',test.head(),'\n')
         print('Last few rows of Test Data','\n',test.tail(),'\n')
         First few rows of Training Data
                       Rose
         YearMonth
         1980-01-01 112.0
         1980-02-01 118.0
         1980-03-01 129.0
         1980-04-01 99.0
         1980-05-01 116.0
         Last few rows of Training Data
                       Rose
         YearMonth
         1990-08-01
                      70.0
         1990-09-01
                      83.0
                      65.0
         1990-10-01
         1990-11-01 110.0
         1990-12-01 132.0
         First few rows of Test Data
                      Rose
         YearMonth
         1991-01-01 54.0
         1991-02-01 55.0
         1991-03-01 66.0
         1991-04-01 65.0
         1991-05-01 60.0
         Last few rows of Test Data
                      Rose
         YearMonth
         1995-03-01 45.0
         1995-04-01 52.0
         1995-05-01 28.0
         1995-06-01 40.0
         1995-07-01 62.0
```

```
In [34]: # Plotting the train and test data:
    train['Rose'].plot(figsize=(15,8), fontsize=14)
    test['Rose'].plot(figsize=(15,8), fontsize=14)
    plt.grid()
    plt.legend(['Training Data','Test Data'])
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
    plt.title('Rose Sales - Train & Test Data',color='blue',fontsize=20)
    plt.show()
```


In [35]: # Exponential smoothing models:

```
In [36]: #Triple exponential smothing using the Holt-Winter's method: (since there is seasonality)
         import statsmodels.tools.eval measures as em
         from sklearn.metrics import mean squared error
         from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt
         from IPython.display import display
         from pylab import rcParams
In [37]: # Finding the best parameters:
         model TES = ExponentialSmoothing(train, trend='multiplicative', seasonal='multiplicative')
         # Fitting the model
         model_TES = model_TES.fit()
         print('')
         print('~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~')
         print('')
         print(model_TES.params)
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
         ng:
         No frequency information was provided, so inferred frequency MS will be used.
         ~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~
         {'smoothing level': 0.06995960293207605, 'smoothing slope': 8.106800492700789e-20, 'smoothing seasona
         l': 0.0, 'damping_slope': nan, 'initial_level': 76.65465630264949, 'initial_slope': 0.993904454146076
         9, 'initial seasons': array([1.45183135, 1.64400934, 1.79905601, 1.5750985, 1.76974808,
                1.90937901, 2.10054341, 2.24522639, 2.11358019, 2.07293345,
                2.41587165, 3.31139382]), 'use boxcox': False, 'lamda': None, 'remove bias': False}
```

```
In [38]: # Forecasting using this model for the duration of the test set

TES_predict = model_TES.forecast(len(test))
TES_predict
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

```
Out[38]: 1991-01-01
                         53.999888
         1991-02-01
                         60.775090
         1991-03-01
                         66.101399
         1991-04-01
                         57.519926
         1991-05-01
                         64.234255
         1991-06-01
                         68.879823
         1991-07-01
                         75.314080
         1991-08-01
                         80.010925
         1991-09-01
                         74.860465
         1991-10-01
                         72.973266
         1991-11-01
                         84.527285
         1991-12-01
                        115.153868
         1992-01-01
                         50.179751
         1992-02-01
                         56.475652
         1992-03-01
                         61.425160
         1992-04-01
                         53.450770
         1992-05-01
                         59.690103
         1992-06-01
                         64.007028
         1992-07-01
                         69.986104
         1992-08-01
                         74.350678
         1992-09-01
                         69.564579
         1992-10-01
                         67.810887
         1992-11-01
                         78.547535
         1992-12-01
                        107.007489
         1993-01-01
                         46.629864
         1993-02-01
                         52.480371
         1993-03-01
                         57.079733
         1993-04-01
                         49.669479
         1993-05-01
                         55.467421
         1993-06-01
                         59.478952
         1993-07-01
                         65.035047
         1993-08-01
                         69.090856
```

1993-09-01	6	4		6	4	3	3	4	2
1993-10-01	6	3		0	1	3	7	1	3
1993-11-01	7	2		9	9	0	8	1	3
1993-12-01	9	9		4	3	7	4	1	3
1994-01-01	4	3		3	3	1	1	0	7
1994-02-01	4	8	•	7	6	7	7	3	0
1994-03-01	5	3	•	0	4	1	7	1	8
1994-04-01	4	6	•	1	5	5	6	9	0
1994-05-01	5	1	•	5	4	3	4	6	6
1994-06-01	5	5	•	2	7	1	2	0	7
1994-07-01	6	0	•	4	3	4	2	4	5
1994-08-01	6	4	•	2	0	3	1	3	2
1994-09-01	6	0	•	0	7	0	2	5	1
1994-10-01	5	8	•	5	5	5	9	0	7
1994-11-01	6	7	•	8	2	7	1	9	3
1994-12-01	9	2	•	4	0	2	8	7	0
1995-01-01	4	0	•	2	6	5	7	1	7
1995-02-01	4	5	•	3	1	7	7	3	3
1995-03-01	4	9	•	2	8	9	3	6	5
1995-04-01	4	2	•	8	9	0	4	7	8
1995-05-01	4	7	•	8	9	7	1	0	4
1995-06-01	5	1	•	3	6	1	1	3	2
1995-07-01	5	6	•	1	5	8	9	2	0
Freq: MS, dtype	:		f	1	o	a	t	6	4

```
In [39]: ## Plotting the Training data, Test data and the forecasted values:
    plt.plot(train, label='Train')
    plt.plot(test, label='Test')

plt.plot(TES_predict, label='Alpha=0.07, Beta=8.11e-20, Gamma=0.0: TES predictions on Test Set')

plt.legend(loc='best')
    plt.grid()
    plt.title('Triple Exponential Smoothing Predictions',color='blue',fontsize=20);
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Rose Sales',color='blue',fontsize=18);
```


12.831106

TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0

```
In [42]: # Double exponential smoothing using the Holt's method:
         model DES = Holt(train)
         model DES = model DES.fit()
         print('')
         print('~~~ Holt DES model Estimated Parameters ~~~')
         print('')
         print(model DES.params)
         ~~~ Holt DES model Estimated Parameters ~~~
         {'smoothing level': 0.15789473684210525, 'smoothing slope': 0.15789473684210525, 'smoothing seasonal':
         nan, 'damping slope': nan, 'initial level': 112.0, 'initial slope': 6.0, 'initial seasons': array([],
         dtype=float64), 'use boxcox': False, 'lamda': None, 'remove bias': False}
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa model.py:159: ValueWarni
         ng:
         No frequency information was provided, so inferred frequency MS will be used.
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/holtwinters.py:743: ConvergenceWa
         rning:
         Optimization failed to converge. Check mle retvals.
```

```
In [43]: # Forecasting using this model for the duration of the test set

DES_predict = model_DES.forecast(len(test))
DES_predict
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

```
Out[43]: 1991-01-01
                         86.863579
          1991-02-01
                         88.028056
         1991-03-01
                         89.192534
         1991-04-01
                         90.357011
         1991-05-01
                         91.521488
         1991-06-01
                         92.685966
         1991-07-01
                         93.850443
         1991-08-01
                         95.014921
         1991-09-01
                         96.179398
         1991-10-01
                         97.343876
         1991-11-01
                         98.508353
         1991-12-01
                         99.672831
         1992-01-01
                        100.837308
         1992-02-01
                        102.001785
         1992-03-01
                        103.166263
         1992-04-01
                        104.330740
         1992-05-01
                        105.495218
         1992-06-01
                        106.659695
         1992-07-01
                        107.824173
         1992-08-01
                        108.988650
         1992-09-01
                        110.153127
         1992-10-01
                        111.317605
         1992-11-01
                        112.482082
         1992-12-01
                        113.646560
         1993-01-01
                        114.811037
         1993-02-01
                        115.975515
         1993-03-01
                        117.139992
                        118.304469
         1993-04-01
         1993-05-01
                        119.468947
         1993-06-01
                        120.633424
         1993-07-01
                        121.797902
         1993-08-01
                        122.962379
```

1993-09-01	124.126857
1993-10-01	125.291334
1993-11-01	126.455811
1993-12-01	127.620289
1994-01-01	128.784766
1994-02-01	129.949244
1994-03-01	131.113721
1994-04-01	132.278199
1994-05-01	133.442676
1994-06-01	134.607153
1994-07-01	135.771631
1994-08-01	136.936108
1994-09-01	138.100586
1994-10-01	139.265063
1994-11-01	140.429541
1994-12-01	141.594018
1995-01-01	142.758495
1995-02-01	143.922973
1995-03-01	145.087450
1995-04-01	146.251928
1995-05-01	147.416405
1995-06-01	148.580883
1995-07-01	149.745360
Freq: MS, dtyp	e: float64

```
In [44]: # Plotting the Training data, Test data and the forecasted values:

plt.plot(train, label='Train')
plt.plot(test, label='Test')

plt.plot(TES_predict, label='Alpha=0.07, Beta=8.11e-20, Gamma=0.0: TES predictions on Test Set')
plt.plot(DES_predict, label='Alpha=0.16, Beta=0.16: DES predictions on Test Set')

plt.legend(loc='best')
plt.grid()
plt.title('TES & DES Predictions',color='blue',fontsize=20);
plt.xlabel('Years/Months',color='blue',fontsize=18);
plt.ylabel('Rose Sales',color='blue',fontsize=18);
```

TES & DES Predictions


```
In [45]: #Evaluating the DES model:
    print('DES RMSE:',mean_squared_error(test.values,DES_predict.values,squared=False))
```

DES RMSE: 70.60459768443859

```
In [46]: # Storing results to a dataframe:
    results_smoothing_2 = pd.DataFrame({'Test RMSE': [mean_squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_predict.values,DES_pr
```

Out[46]:

Test RMSE

70.604598

TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0 12.831106

DES: Alpha=0.16,Beta=0.16

```
In [47]: # Using the Linear Regression model for forecasting:

# Modifying the data to incorporate order against the sales values:

train_time = [i+1 for i in range(len(train))]
test_time = [i+133 for i in range(len(test))]
print('Training Time instance','\n',train_time)
print('Test Time instance','\n',test time)
```

Training Time instance
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]
Test Time instance
[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187]

```
In [48]: # Working on copies of Train & test data:
    LinearRegression_train = train.copy()
    LinearRegression_test = test.copy()
```

In [49]: #Cross-checking the data: LinearRegression_train['time'] = train_time LinearRegression_test['time'] = test_time print('First few rows of Training Data') display(LinearRegression_train.head()) print('Last few rows of Training Data') display(LinearRegression_train.tail()) print('First few rows of Test Data') display(LinearRegression_test.head()) print('Last few rows of Test Data') display(LinearRegression_test.tail())

First few rows of Training Data

Rose time

	nose	unie
YearMonth		
1980-01-01	112.0	1
1980-02-01	118.0	2
1980-03-01	129.0	3
1980-04-01	99.0	4
1980-05-01	116.0	5

Last few rows of Training Data

	Rose	time
YearMonth		
1990-08-01	70.0	128
1990-09-01	83.0	129
1990-10-01	65.0	130

Rose time

YearMonth		
1990-11-01	110.0	131
1990-12-01	132.0	132

First few rows of Test Data

	Rose	time
YearMonth		
1991-01-01	54.0	133
1991-02-01	55.0	134
1991-03-01	66.0	135
1991-04-01	65.0	136
1991-05-01	60.0	137

Last few rows of Test Data

	Rose	time
YearMonth		
1995-03-01	45.0	183
1995-04-01	52.0	184
1995-05-01	28.0	185
1995-06-01	40.0	186
1995-07-01	62.0	187

In [51]: #Predicting values: train_predictions_lr = lr.predict(LinearRegression_train[['time']]) LinearRegression_train['LR_on_time'] = train_predictions_lr test_predictions_lr = lr.predict(LinearRegression_test[['time']]) LinearRegression_test['LR_on_time'] = test_predictions_lr plt.plot(train['Rose'], label='Train') plt.plot(test['Rose'], label='Train') plt.plot(TES_predict, label='Alpha=0.07, Beta=8.1le-20, Gamma=0.0: TES predictions on Test Set') plt.plot(DES_predict, label='Alpha=0.16, Beta=0.16: DES predictions on Test Set') plt.plot(LinearRegression_test['LR_on_time'], label='Regression On Time_Test Data') plt.legend(loc='best') plt.grid(); plt.title('TES, DES & LR Predictions',color='blue',fontsize=20); plt.ylabel('Years/Months',color='blue',fontsize=18); plt.ylabel('Rose Sales',color='blue',fontsize=18);

TES, DES & LR Predictions


```
In [52]: # Evaluating the model:
    print('LR RMSE:', mean_squared_error(test['Rose'], test_predictions_lr, squared=False))
```

LR RMSE: 15.278368802792677

Out[53]:

Test RMSE

TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0 12.831106

DES: Alpha=0.16,Beta=0.16 70.604598

LR RMSE 15.278369

```
In [54]: # Using the Naive Approach for forecasting:
    # Working on copies of Train & test data:
    Naive_train = train.copy()
    Naive_test = test.copy()
```

In [55]: train.head()

Out[55]:

Rose

YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0

1980-05-01 116.0

```
In [56]: test.head()
```

Out[56]:

Rose

YearMonth		
1991-01-01	54.0	
1991-02-01	55.0	
1991-03-01	66.0	
1991-04-01	65.0	
1991-05-01	60.0	

```
In [58]: plt.plot(Naive_train['Rose'], label='Train')
    plt.plot(test['Rose'], label='Test')

    plt.plot(TES_predict, label='Alpha=0.07, Beta=8.11e-20, Gamma=0.0: TES predictions on Test Set')
    plt.plot(DES_predict, label='Alpha=0.16, Beta=0.16: DES predictions on Test Set')
    plt.plot(LinearRegression_test['LR_on_time'], label='Regression On Time_Test Data')

    plt.plot(Naive_test['naive'], label='Naive Forecast on Test Data')

    plt.legend(loc='best')
    plt.title("Various Model Forecasts")
    plt.grid();
```



```
In [59]: # Evaluating the model:
          print('Naive RMSE:', mean_squared_error(test['Rose'], Naive_test['naive'], squared=False))
          Naive RMSE: 79.74569745398024
In [60]: results_smoothing_4 = pd.DataFrame({'Test RMSE': [mean_squared_error(test['Rose'], Naive_test['naive'], squared_error(test['Rose'])
                                        ,index=['Naive RMSE'])
          results = pd.concat([results, results_smoothing_4])
          results
Out[60]:
                                               Test RMSE
           TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0
                                               12.831106
                        DES: Alpha=0.16,Beta=0.16
                                               70.604598
                                               15.278369
                                      LR RMSE
                                    Naive RMSE
                                               79.745697
In [61]: # Using the Simple Average method:
          # Working on copies of Train & test data:
          SA train = train.copy()
          SA test = test.copy()
```

Out[62]:

Rose mean_forecast

YearMonth		
1991-01-01	54.0	104.939394
1991-02-01	55.0	104.939394
1991-03-01	66.0	104.939394
1991-04-01	65.0	104.939394
1991-05-01	60.0	104.939394

In [63]: # Plotting predictions of various models:
 plt.plot(SA_train['Rose'], label='Train')
 plt.plot(SA_test['Rose'], label='Test')

plt.plot(TES_predict, label='Alpha=0.07, Beta=8.11e-20, Gamma=0.0: TES predictions on Test Set')
 plt.plot(DES_predict, label='Alpha=0.16, Beta=0.16: DES predictions on Test Set')
 plt.plot(LinearRegression_test['LR_on_time'], label='Regression On Time_Test Data')
 plt.plot(Naive_test['naive'], label='Naive Forecast on Test Data')

plt.plot(SA_test['mean_forecast'], label='Simple Average on Test Data')

plt.legend(loc='best')
 plt.title("Various Model Forecasts")
 plt.grid();

Various Model Forecasts


```
In [64]: # Evaluating the model:
    print('SA RMSE:', mean_squared_error(test['Rose'], SA_test['mean_forecast'], squared=False))
```

SA RMSE: 53.48823282885678

```
In [65]: results_smoothing_5 = pd.DataFrame({'Test RMSE': [mean_squared_error(test['Rose'], SA_test['mean_forecast
                                    ,index=['SA RMSE'])
         results = pd.concat([results, results smoothing 5])
         results
```

Out[65]:

TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0	12.831106
DES: Alpha=0.16,Beta=0.16	70.604598
LR RMSE	15.278369

Naive RMSE 79.745697

SA RMSE 53.488233

Test RMSE

```
In [66]: #Using the Moving Average method on a copy of the original data:
         MA = data.copy()
         MA.head()
```

Out[66]:

Rose

YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

```
In [67]: # Using various parameters:
         MA['Trailing_2'] = MA['Rose'].rolling(2).mean()
         MA['Trailing_4'] = MA['Rose'].rolling(4).mean()
         MA['Trailing 6'] = MA['Rose'].rolling(6).mean()
         MA['Trailing 9'] = MA['Rose'].rolling(9).mean()
         MA.head(10)
```

Out[67]:

	Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
YearMonth					
1980-01-01	112.0	NaN	NaN	NaN	NaN
1980-02-01	118.0	115.0	NaN	NaN	NaN
1980-03-01	129.0	123.5	NaN	NaN	NaN
1980-04-01	99.0	114.0	114.50	NaN	NaN
1980-05-01	116.0	107.5	115.50	NaN	NaN
1980-06-01	168.0	142.0	128.00	123.666667	NaN
1980-07-01	118.0	143.0	125.25	124.666667	NaN
1980-08-01	129.0	123.5	132.75	126.500000	NaN
1980-09-01	205.0	167.0	155.00	139.166667	132.666667
1980-10-01	147.0	176.0	149.75	147.166667	136.555556

```
In [68]: # Plotting on the entire data:

plt.plot(MA['Rose'], label='Train')
plt.plot(MA['Trailing_2'], label='2 Point Moving Average')
plt.plot(MA['Trailing_4'], label='4 Point Moving Average')
plt.plot(MA['Trailing_6'], label = '6 Point Moving Average')
plt.plot(MA['Trailing_9'], label = '9 Point Moving Average')

plt.legend(loc = 'best')
plt.grid();
plt.title('Various MA Forecasts on entire data', color='blue', fontsize=20);
plt.xlabel('Years / Months', color='blue', fontsize=18);
plt.ylabel('Rose Sales', color='blue', fontsize=18);
```

Various MA Forecasts on entire data


```
In [69]: #Creating train and test set for MA method:
    trailing_MA_train = MA[MA.index<'1991']
    trailing_MA_test= MA[MA.index>='1991']
```

In [70]: trailing_MA_train.tail()

Out[70]:

	Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
YearMonth					
1990-08-01	70.0	74.0	73.25	73.833333	76.888889
1990-09-01	83.0	76.5	76.75	75.500000	70.888889
1990-10-01	65.0	74.0	74.00	73.500000	73.333333
1990-11-01	110.0	87.5	82.00	80.333333	77.888889
1990-12-01	132.0	121.0	97.50	89.666667	84.44444

In [71]: trailing_MA_test.head()

Out[71]:

	Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
YearMonth					
1991-01-01	54.0	93.0	90.25	85.666667	81.888889
1991-02-01	55.0	54.5	87.75	83.166667	80.333333
1991-03-01	66.0	60.5	76.75	80.333333	79.222222
1991-04-01	65.0	65.5	60.00	80.333333	77.777778
1991-05-01	60.0	62.5	61.50	72.000000	76.666667

```
In [72]: # Plotting on Test data:

plt.figure(figsize=(16,8))
   plt.plot(trailing_MA_train['Rose'], label='Train')
   plt.plot(trailing_MA_test['Rose'], label='Test')

plt.plot(trailing_MA_test['Trailing_2'], label = '2 Point Trailing Moving Average on Test Set')
   plt.plot(trailing_MA_test['Trailing_4'], label = '4 Point Trailing Moving Average on Test Set')
   plt.plot(trailing_MA_test['Trailing_6'], label = '6 Point Trailing Moving Average on Test Set')
   plt.plot(trailing_MA_test['Trailing_9'], label = '9 Point Trailing Moving Average on Test Set')

plt.legend(loc = 'best')
   plt.grid();
   plt.slabel('Various MA Forecasts on Test data',color='blue',fontsize=20);
   plt.xlabel('Years / Months',color='blue',fontsize=18);
   plt.ylabel('Rose Sales',color='blue',fontsize=18);
```

Various MA Forecasts on Test data


```
In [73]: # Evaluating using RSME:
         from sklearn import metrics
         # 2 point Trailing RSME
         rmse test 2 = metrics.mean squared error(test['Rose'],trailing MA test['Trailing 2'],squared=False)
         print("For 2 point MA Model, RMSE is %3.3f" %(rmse test 2))
         # 4 point Trailing RSME
         rmse test 4 = metrics.mean squared error(test['Rose'],trailing MA test['Trailing 4'],squared=False)
         print("For 4 point MA Model, RMSE is %3.3f" %(rmse test 4))
         # 6 point Trailing RSME
         rmse test 6 = metrics.mean squared error(test['Rose'],trailing MA test['Trailing 6'],squared=False)
         print("For 6 point MA Model, RMSE is %3.3f" %(rmse test 6))
         # 9 point Trailing RSME
         rmse test 9 = metrics.mean squared error(test['Rose'],trailing MA test['Trailing 9'],squared=False)
         print("For 9 point MA Model, RMSE is %3.3f" %(rmse test 9))
```

```
For 2 point MA Model, RMSE is 11.530
For 4 point MA Model, RMSE is 14.458
For 6 point MA Model, RMSE is 14.573
For 9 point MA Model, RMSE is 14.733
```

Out[74]:

	Test RMSE
TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0	12.831106
DES: Alpha=0.16,Beta=0.16	70.604598
LR RMSE	15.278369
Naive RMSE	79.745697
SA RMSE	53.488233
2-point MA	11.530054
4-point MA	14.458402
6-point MA	14.572976
9-point MA	14.732918

```
In [75]: # Plotting the comparison of all model predictions:
         plt.figure(figsize=(16,8))
         plt.plot(train['Rose'], label='Train')
         plt.plot(test['Rose'], label='Test')
         plt.plot(TES predict, label='Alpha=0.07, Beta=8.11e-20, Gamma=0.0: TES predictions on Test Set')
         plt.plot(DES predict, label='Alpha=0.16, Beta=0.16: DES predictions on Test Set')
         plt.plot(LinearRegression test['LR on time'], label='Regression On Time Test Data')
         plt.plot(Naive test['naive'], label='Naive Forecast on Test Data')
         plt.plot(SA test['mean forecast'], label='Simple Average on Test Data')
         plt.plot(trailing MA test['Trailing 2'], label = '2-Point Trailing MA on Training data')
         plt.plot(trailing MA test['Trailing 4'], label = '4 Point Trailing MA on Test Set')
         plt.plot(trailing MA test['Trailing 6'], label = '6 Point Trailing MA on Test Set')
         plt.plot(trailing MA test['Trailing 9'], label = '9 Point Trailing MA on Test Set')
         plt.legend(loc='best')
         plt.grid();
         plt.title('Model Comparison Plots',color='blue',fontsize=20);
         plt.xlabel('Years / Months',color='blue',fontsize=18);
         plt.ylabel('Rose Sales',color='blue',fontsize=18);
```

Model Comparison Plots


```
In [76]: # Checking for stationarity of data using ADF test:
    from statsmodels.tsa.stattools import adfuller
```

```
In [77]: stat_test = adfuller(data,regression='ct')
    print('Test statistic is %3.3f' %stat_test[0])
    print('Test p-value is' ,stat_test[1])
    print('Number of lags used' ,stat_test[2])
```

Test statistic is -2.242 Test p-value is 0.46628917681591 Number of lags used 13

```
In [78]: # P-value > alpha, so data is non-stationary. Using level-1 differencing to make data stationary:
    stat_test = adfuller(data.diff().dropna(),regression='ct')
    print('Test statistic is %3.3f' %stat_test[0])
    print('Test p-value is' ,stat_test[1])
    print('Number of lags used' ,stat_test[2])
```

Test statistic is -8.161 Test p-value is 3.037926501732391e-11 Number of lags used 12

Out[79]: Text(0, 0.5, 'Rose Sales')


```
In [80]: # Plotting the autocorrelation and partial autocorrelation plots on data:
    from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    plot_acf(data,alpha=0.05);
```


In [81]: plot_pacf(data,zero=False,alpha=0.05);


```
In [82]: #Splitting data to build the models:
    train = data[data.index<'1991']
    test = data[data.index>='1991']

In [83]: test.shape
Out[83]: (55, 1)
```

Out[84]: Text(0, 0.5, 'Rose Sales')


```
In [85]: #Checking for stationarity of the train data:
         stat_test = adfuller(train,regression='ct')
         print('Test statistic is %3.3f' %stat test[0])
         print('Test p-value is' ,stat_test[1])
         print('Number of lags used' ,stat test[2])
         Test statistic is -1.686
         Test p-value is 0.7569093051047098
         Number of lags used 13
In [86]: # P-value > alpha, so data is non-stationary. Using level-1 differencing to make data stationary:
         stat_test = adfuller(train.diff().dropna(),regression='ct')
         print('Test statistic is %3.3f' %stat_test[0])
         print('Test p-value is' ,stat_test[1])
         print('Number of lags used' ,stat test[2])
         Test statistic is -6.804
         Test p-value is 3.8948313567828775e-08
         Number of lags used 12
```

Out[87]: Text(0, 0.5, 'Rose Sales')


```
In [88]: # Since there is seasonality in the data set, we will build SARIMA model:
         ## Building automated version of SARIMA:
In [89]: import itertools
         p = q = range(0, 4)
         d = range(1,2)
         D = range(0,1)
         pdq = list(itertools.product(p, d, q))
         PDQ = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, D, q))]
         print('Examples of the parameter combinations for the Model are')
         for i in range(1,len(pdq)):
             print('Model: {}{}'.format(pdg[i], PDQ[i]))
         Examples of the parameter combinations for the Model are
         Model: (0, 1, 1)(0, 0, 1, 12)
         Model: (0, 1, 2)(0, 0, 2, 12)
         Model: (0, 1, 3)(0, 0, 3, 12)
         Model: (1, 1, 0)(1, 0, 0, 12)
         Model: (1, 1, 1)(1, 0, 1, 12)
         Model: (1, 1, 2)(1, 0, 2, 12)
         Model: (1, 1, 3)(1, 0, 3, 12)
         Model: (2, 1, 0)(2, 0, 0, 12)
         Model: (2, 1, 1)(2, 0, 1, 12)
         Model: (2, 1, 2)(2, 0, 2, 12)
         Model: (2, 1, 3)(2, 0, 3, 12)
         Model: (3, 1, 0)(3, 0, 0, 12)
         Model: (3, 1, 1)(3, 0, 1, 12)
         Model: (3, 1, 2)(3, 0, 2, 12)
         Model: (3, 1, 3)(3, 0, 3, 12)
In [90]: #Creating dataframe for storing AIC values:
         SARIMA AIC = pd.DataFrame(columns=['param', 'seasonal', 'AIC'])
         SARIMA AIC
Out[90]:
           param seasonal AIC
```

```
In [91]: statsmodels.api as sm
         m in pdq:
         param seasonal in PDQ:
         SARIMA model = sm.tsa.statespace.SARIMAX(train['Rose'].values,
                                              order=param,
                                              seasonal order=param seasonal,
                                              enforce stationarity=False,
                                              enforce invertibility=False)
         results SARIMA = SARIMA model.fit(maxiter=1000)
         print('SARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results SARIMA.aic))
         SARIMA AIC = SARIMA AIC.append({'param':param,'seasonal':param seasonal ,'AIC': results SARIMA.aic}, igr
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/base/model.py:567: ConvergenceWarnin
         g:
         Maximum Likelihood optimization failed to converge. Check mle retvals
         SARIMA(2, 1, 1)x(3, 0, 3, 12) - AIC:2493.0270444578505
         SARIMA(2, 1, 2)x(0, 0, 0, 12) - AIC:1253.91021165659
         SARIMA(2, 1, 2)x(0, 0, 1, 12) - AIC:1085.9643681360224
         SARIMA(2, 1, 2)x(0, 0, 2, 12) - AIC:916.3259134369662
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/base/model.py:567: ConvergenceWarnin
         g:
         Maximum Likelihood optimization failed to converge. Check mle_retvals
         SARIMA(2, 1, 2) \times (0, 0, 3, 12) - AIC: 2034.5662408936164
         SARIMA(2, 1, 2) \times (1, 0, 0, 12) - AIC:1073.2912711166598
         SARIMA(2, 1, 2)x(1, 0, 1, 12) - AIC:1044.1909349817224
```

Out[92]:

	param	seasonal	AIC
222	(3, 1, 1)	(3, 0, 2, 12)	774.400286
238	(3, 1, 2)	(3, 0, 2, 12)	774.880941
220	(3, 1, 1)	(3, 0, 0, 12)	775.426699
221	(3, 1, 1)	(3, 0, 1, 12)	775.495330
252	(3, 1, 3)	(3, 0, 0, 12)	775.561019

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

Dep. Variab	ole:			Rose	No. Observat	ions:	132
Model:	SARI	MAX(3, 1, 1))x(3, 0, [1,	2], 12)	Log Likeliho	od	-377.200
Date:			Sat, 09	Oct 2021	AIC		774.400
Time:				09:28:34	BIC		799.618
Sample:			01	-01-1980	HQIC		784.578
			- 12	2-01-1990			
Covariance	Type:			opg			
=======	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	0.0464	0.127	0.366	0.714	-0.202	0.294	
ar.L2	-0.0060	0.120	-0.050	0.960	-0.241	0.229	
ar.L3	-0.1808	0.098	-1.837	0.066	-0.374	0.012	
ma.L1	-0.9370	0.067	-13.902	0.000	-1.069	-0.805	
ar.S.L12	0.7639	0.165	4.639	0.000	0.441	1.087	
ar.S.L24	0.0840	0.159	0.527	0.598	-0.229	0.397	
ar.S.L36	0.0727	0.095	0.764	0.445	-0.114	0.259	
ma.S.L12	-0.4967	0.250	-1.988	0.047	-0.987	-0.007	

ma.S.L24	-0.2190	0.210	-1.044	0.297	-0.630	0.192
sigma2	192 . 1979 ========	39.638 	4.849 	0.000	114.508	269.888
Ljung-Box	(Q):		34.22	Jarque-Bera	(JB):	1.64
Prob(Q):			0.73	Prob(JB):		0.44
Heterosked	asticity (H):		1.11	Skew:		0.33
Prob(H) (t	wo-sided):		0.78	Kurtosis:		3.03

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Histogram plus estimated density

In [94]: results_auto_SARIMA.plot_diagnostics();

Standardized residual

In [95]: # Using SARIMA model to predict test set:
 predicted_auto_SARIMA = results_auto_SARIMA.get_forecast(steps=len(test))

```
In [96]: # Defining Mean Absolute Percentage Error (MAPE):
         def mean absolute percentage error(y true, y pred):
             return np.mean((np.abs(y true-y pred))/(y true))*100
         from sklearn.metrics import mean squared error
In [97]: # Evaluating the predictions:
         rmse = mean squared_error(test['Rose'],predicted_auto_SARIMA.predicted_mean,squared=False)
         mape = mean absolute percentage_error(test['Rose'],predicted auto SARIMA.predicted mean)
         print('RMSE:',rmse,'\nMAPE:',mape)
         RMSE: 18.91207676153986
         MAPE: 36.45868367214725
In [98]: # Storing results for comparison:
         results models = pd.DataFrame({'Test RMSE': rmse,'MAPE':mape}
                                    ,index=['SARIMA(3,1,1)(3,0,2,12)'])
         results_models
Out[98]:
                           Test RMSE
                                       MAPE
```

SARIMA(3,1,1)(3,0,2,12) 18.912077 36.458684

```
In [99]: # Building a manual SARIMA model by selecting values of p, q from correlation plots:

plot_acf(train.diff(),title='Training Data Autocorrelation',missing='drop')
plot_pacf(train.diff().dropna(),title='Training Data Partial Autocorrelation',zero=False)
plt.show()
```


In [100]: # As per the ACF and PACF plots, we will take the values as p=2, q=2, d=1 and seasonal components P=1,

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

Dep. Variab Model: Date:		MAX(2, 1, 2	2)x(1, 1, [Sat, 09 0	1], 12) L	o. Observation og Likelihood IC	ns:	13 -450.84 915.69
Time:					ic		934.20
Sample:			01-	01-1980 н	QIC		923.193
	_		- 12-	01-1990			
Covariance '	Type:			opg			
=======	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	1.1021	0.134	8.228	0.000	0.840	1.365	
ar.L2	-0.3435	0.109	-3.141	0.002	-0.558	-0.129	
ma.L1	-1.8137	0.106	-17.035	0.000	-2.022	-1.605	
ma.L2	0.8654	0.095	9.133	0.000	0.680	1.051	
ar.S.L12	-0.3879	0.069	-5.615	0.000	-0.523	-0.252	
ma.S.L12	-0.0779	0.130	-0.598	0.550	-0.333	0.177	
sigma2	338.2778	53.785	6.289	0.000	232.860	443.695	
Ljung-Box (===== == Q) :	=======	25 . 41	Jarque-Ber	a (JB):	0.	03
Prob(Q):			0.96	Prob(JB):		0.	98

Heteroskedasticity (H):	0.66	Skew:	0.04
<pre>Prob(H) (two-sided):</pre>	0.22	Kurtosis:	2.97

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [102]: results_manual_SARIMA.plot_diagnostics()
 plt.show()

Out[105]:

	lest RMSE	MAPE
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917

Took DIACE

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

==========	======	========					
Dep. Variable:		R	ose No.	Observations	:	132	
Model:	SA	RIMAX(1, 1,	1) Log	Likelihood		-628.092	
Date:	Sa	t, 09 Oct 2	021 AIC			1262.184	
Time:		09:28	:40 BIC			1270.763	
Sample:		01-01-1	980 HQI	С		1265.670	
		- 12-01-1	990				
Covariance Type	:	1	opg				
=========	coef	std err	======= Z	P> z	[0.025	0.975]	
ar.L1	0.1713	0.074	2.311	0.021	0.026	0.317	
ma.L1 -	0.9172	0.056	-16.407	0.000	-1.027	-0.808	
sigma2 98	2.8469	95.174	10.327	0.000	796.310	1169.384	
Ljung-Box (Q):			======= 116.72	Jarque-Bera	======== (JB):	 3	5.90
<pre>Prob(Q):</pre>		0.00	Prob(JB):			0.00	
Heteroskedasticity (H):			0.35	Skew:			0.85
Prob(H) (two-si	ded):		0.00	Kurtosis:			4.95

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Out[108]:

	Test RMSE	MAPE
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917
SARIMA(1.1.1)(0.0.0.12)	37.446644	77.285151

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

Dep. Varial Model:		MAX(3. 1.	0)x(1, 0, [o. Observation	s:	132 -526.778
Date:	DIIICI	11111 (3) 1)	Sat, 09 0		IC		1065.557
Time:			•		SIC		1082.079
Sample:			01-	01-1980 H	QIC		1072.264
			- 12-	01-1990			
Covariance	Type:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.5474	0.090	-6.087	0.000	-0.724	-0.371	
ar.L2	-0.5233	0.066	-7.875	0.000	-0.654	-0.393	
ar.L3	-0.2008	0.117	-1.712	0.087	-0.431	0.029	
ar.S.L12	0.8809	0.031	27.976	0.000	0.819	0.943	
ma.S.L12	-0.8080	0.156	-5.187	0.000	-1.113	-0.503	
sigma2	463.0906	77.996	5.937	0.000	310.222	615.959	
Ljung-Box	======== (Q):		 27.62	Jarque-Ber	a (JB):	53.7	= 7
<pre>Prob(Q):</pre>			0.93	Prob(JB):		0.0	0
Heteroskedasticity (H):			0.43	Skew:		0.4	0
Prob(H) (to	wo-sided):		0.01	Kurtosis:		6.2	4

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Out[111]:

	lest RIVISE	MAPE
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917
SARIMA(1,1,1)(0,0,0,12)	37.446644	77.285151
SARIMA(3,1,0)(1,0,1,12)	32.654565	67.157273

Total DMCE

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

========		=======	=======	========		========	========
Dep. Varia	ble:			Rose No.	Observations:		132
Model:	SARI	MAX(2, 1,	1)x(1, 1, [], 12) Log	Likelihood		-458.160
Date:			Sat, 09 Oc	t 2021 AIC	:		926.320
Time:			09	:28:42 BIC	•		939.590
Sample:			01-0	1-1980 HQI	C.C.		931.697
			- 12-0	1-1990			
Covariance	Type:			opg			
========			=======	========		======	
	coei		z 		[0.025	0.9/5]	
ar.L1	0.2202				-0.001	0.441	
ar.L2	-0.1033	0.105	-0.980	0.327	-0.310	0.103	
ma.L1	-0.9140	0.061	-15.070	0.000	-1.033	-0.795	
ar.S.L12	-0.4028	0.059	-6.801	0.000	-0.519	-0.287	
-					262.010		
Ljung-Box		=======		======== Jarque-Bera	========= . (JB):		=== .38
Prob(Q):			0.97	Prob(JB):	,	0	.83
Heteroskedasticity (H):			0.62	Skew:		0	.14
Prob(H) (to	- ' '		0.16	Kurtosis:		3	.09
========	========	=======	=======	========	=========	========	===

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Out[114]:

	Test RMSE	MAPE
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917
SARIMA(1,1,1)(0,0,0,12)	37.446644	77.285151
SARIMA(3,1,0)(1,0,1,12)	32.654565	67.157273
SARIMA(2,1,1)(1,1,0,12)	16.463285	23.552684

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

Dep. Variable:				Rose No. 0	Observations:		132
Model:	SAR	IMAX(3, 1, 1)x(1, 0, 1)	, 6) Log 1	Likelihood		-568.546
Date:		Sa	t, 09 Oct	2021 AIC			1151.092
Time:			09:2	8:43 BIC			1170.720
Sample:			01-01-	1980 HQIC			1159.065
			- 12-01-	1990			
Covariance	Type:			opg			
=======	coef				[0.025		
ar.L1	0.0102				-0.152	0.172	
ar.L2	-0.2493	0.106	-2.345	0.019	-0.458	-0.041	
ar.L3	0.0025	0.085	0.029	0.977	-0.165	0.170	
ma.L1	-0.8397	0.075	-11.222	0.000	-0.986	-0.693	
ar.S.L6	-0.9530	0.020	-46.944	0.000	-0.993	-0.913	
ma.S.L6	1.0000	429.160	0.002	0.998	-840.138	842.138	
sigma2	564.8418	2.42e+05	0.002	0.998	-4.75e+05	4.76e+05	
Ljung-Box (Q):		73.65	Jarque-Bera	a (JB):	2	7.50	
<pre>Prob(Q):</pre>			0.00	Prob(JB):		(0.00
Heteroskedasticity (H):			0.39	Skew:		(73
<pre>Prob(H) (two-sided):</pre>			0.00	Kurtosis:		•	4.82

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Out[117]:

	Test RMSE	MAPE
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917
SARIMA(1,1,1)(0,0,0,12)	37.446644	77.285151
SARIMA(3,1,0)(1,0,1,12)	32.654565	67.157273
SARIMA(2,1,1)(1,1,0,12)	16.463285	23.552684
SARIMA(3,1,1)(1,0,1,6)	31.190011	62.979047

Out[118]:

	Test RMSE	MAPE
TES: Alpha=0.07, Beta=8.11e-20, Gamma=0.0	12.831106	NaN
DES: Alpha=0.16,Beta=0.16	70.604598	NaN
LR RMSE	15.278369	NaN
Naive RMSE	79.745697	NaN
SA RMSE	53.488233	NaN
2-point MA	11.530054	NaN
4-point MA	14.458402	NaN
6-point MA	14.572976	NaN
9-point MA	14.732918	NaN
SARIMA(3,1,1)(3,0,2,12)	18.912077	36.458684
SARIMA(2,1,2)(1,1,1,12)	13.278681	17.133917
SARIMA(1,1,1)(0,0,0,12)	37.446644	77.285151
SARIMA(3,1,0)(1,0,1,12)	32.654565	67.157273
SARIMA(2,1,1)(1,1,0,12)	16.463285	23.552684
SARIMA(3,1,1)(1,0,1,6)	31.190011	62.979047

In [119]: #Comparing RMSE of all models, we can go with 2-point Moving Average, TES & SARIMA(2,1,2)(1,1,1,12) as

```
In [120]: #Final forecasting using TES model:
          model final = ExponentialSmoothing(data, trend='multiplicative', seasonal='multiplicative')
          # Fitting the model
          model final = model final.fit()
          print('')
          print('~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~')
          print('')
          print(model final.params)
          /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa model.py:159: ValueWarni
          ng:
          No frequency information was provided, so inferred frequency MS will be used.
          ~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~
          {'smoothing level': 0.08409605754446657, 'smoothing slope': 1.9059183137266802e-28, 'smoothing seasona
          l': 0.0, 'damping slope': nan, 'initial level': 64.03828414961501, 'initial slope': 0.993307504511918
          6, 'initial seasons': array([1.72703925, 1.96783625, 2.17516895, 1.9448051, 2.12245456,
                 2.30708257, 2.58780767, 2.66156174, 2.52889052, 2.49412681,
```

2.90036268, 4.00865224]), 'use boxcox': False, 'lamda': None, 'remove bias': False}

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

Forecasted Rose Sales (TES Model)

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

			SARIMA ========	x Results			
Dep. Variab	ole:			Rose	No. Observation	ons:	18
Model:	SARI	MAX(2, 1, 2	2)x(1, 1, [1], 12)	Log Likelihood	l	-665.358
Date:			Sat, 09 0	ct 2021	AIC		1344.716
Time:			0	9:28:48	BIC		1366.199
Sample:			01-	01-1980	HQIC		1353.440
			- 07-	01-1995			
Covariance	Type:			opg			
=======	coef				[0.025		
ar.L1	1.1071	0.093	11.850	0.000	0.924	1.290	
ar.L2	-0.3258	0.079	-4.098	0.000	-0.482	-0.170	
ma.L1	-1.8269	0.068	-26.777	0.000	-1.961	-1.693	
ma.L2	0.8776	0.061	14.465	0.000	0.759	0.996	
ar.S.L12	-0.3824	0.049	-7.752	0.000	0 -0.479	-0.286	
ma.S.L12	-0.0853	0.093	-0.916	0.360	-0.268	0.097	
sigma2	251.0546	26.973	9.308	0.000	198.189	303.921	
Ljung-Box (Q):			35.74	Jarque-Be	========= era (JB):		=== .97

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [123]: predicted_full_data = results_full_data_model.get_forecast(steps=12)
```

```
In [124]: pred_SARIMA = predicted_full_data.summary_frame(alpha=0.05)
pred_SARIMA.head()
```

Out[124]:

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	52.762088	15.844704	21.707038	83.817137
1995-09-01	47.558565	16.454734	15.307878	79.809252
1995-10-01	52.319731	16.464088	20.050711	84.588752
1995-11-01	57.435555	16.464115	25.166483	89.704627
1995-12-01	82.686197	16.474636	50.396504	114.975890

```
In [125]: pred_SARIMA.tail()
```

Out[125]:

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1996-03-01	45.939048	16.921644	12.773236	79.104860
1996-04-01	52.302785	17.215946	18.560152	86.045418
1996-05-01	37.739694	17.548626	3.345019	72.134369
1996-06-01	45.111871	17.901053	10.026451	80.197291
1996-07-01	57.115584	18.260924	21.324831	92.906336

In []: ## THE END!