Přednáška 9, 17. dubna 2015

Za situace popsané v předchozí větě je Jacobiho matice složeného zobrazení $h = g \circ f$ v bodě a rovna součinu Jacobiho matice zobrazení g v bodě b = f(a) a Jacobiho matice zobrazení f v bodě a:

$$\left(\frac{\partial h_i}{\partial x_j}(a)\right)_{i,j=1}^{k,m} = \left(\frac{\partial g_i}{\partial x_j}(b)\right)_{i,j=1}^{k,n} \cdot \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{i,j=1}^{n,m}$$

$$= \left(\sum_{r=1}^n \frac{\partial g_i}{\partial x_r}(b) \cdot \frac{\partial f_r}{\partial x_j}(a)\right)_{i,j=1}^{k,m}.$$

Speciálně pro k=1, kdy funkce $h=h(x_1,x_2,\ldots,x_m)$ o m proměnných je složeninou

$$h = g(f_1, f_2, \dots, f_n)$$

funkce $g = g(x_1, x_2, ..., x_n)$ o n proměnných s n funkcemi $f_i = f_i(x_1, x_2, ..., x_m)$, dostáváme <u>řetízkové pravidlo</u> pro parciální derivaci složené funkce:

$$\frac{\partial h}{\partial x_i}(a) = \sum_{j=1}^n \frac{\partial g}{\partial x_j}(f(a)) \cdot \frac{\partial f_j}{\partial x_i}(a)$$
$$= \langle \nabla g(f(a)), \partial_i f(a) \rangle,$$

kde
$$i = 1, 2, \ldots, m, f = (f_1, f_2, \ldots, f_n)$$
 a $\partial_i f = (\partial_i f_1, \partial_i f_2, \ldots, \partial_i f_n)$.

Geometrie parciálních derivací. Zobecníme pojem tečny ke grafu funkce jedné proměnné na (nad)rovinu tečnou ke grafu funkce více proměnných. Pro jednoduchost značení se omezíme na případ tečné roviny a dvou proměnných; obecná tečná nadrovina ke grafu funkce m proměnných se zavádí analogicky.

Nechť $(x_0, y_0) \in U \subset \mathbb{R}^2$, kde U je otevřená množina v rovině, a $f: U \to \mathbb{R}$ je funkce. Její graf

$$G_f = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in U, z = f(x, y)\}$$

je plocha v třírozměrném euklidovském prostoru. Na G_f leží bod (x_0, y_0, z_0) , kde $z_0 = f(x_0, y_0)$. Nechť je funkce f v bodě (x_0, y_0) diferencovatelná. Potom mezi všemi afinními funkcemi dvou proměnných L(x, y) (tj. $L(x, y) = \alpha + \beta$)

 $\beta x + \gamma y$), jejichž graf obsahuje bod (x_0, y_0, z_0) , je pouze jediná splňující pro $(x, y) \to (x_0, y_0)$ aproximaci

$$f(x,y) = L(x,y) + o(\sqrt{(x-x_0)^2 + (y-y_0)^2})$$

totiž funkce

$$T(x,y) = z_0 + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$
.

To plyne z existence a jednoznačnosti diferenciálu, protože zřejmě $T(x,y) = z_0 + Df(x_0, y_0)(x - x_0, y - y_0)$. Graf funkce T(x, y)

$$G_T = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2, z = T(x, y)\}$$

se nazývá tečnou rovinou ke grafu funkce f v bodě (x_0, y_0, z_0) .

Rovnici tečné roviny z = T(x, y) přepíšeme ve tvaru

$$\frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0) - (z - z_0) = 0,$$
neboli $\langle V, (x - x_0, y - y_0, z - z_0) \rangle = 0,$

kde $V \in \mathbb{R}^3$ je vektor

$$V = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right).$$

Označíme-li X=(x,y,z) a $X_0=(x_0,y_0,z_0)$, můžeme tečnou rovinu G_T zapsat i jako

$$G_T = \{ X \in \mathbb{R}^3 \mid \langle V, X - X_0 \rangle = 0 \} .$$

Tvoří ji tedy právě ty body, jejichž směrové vektory k bodu X_0 jsou kolmé na V. Vektor V se nazývá normálovým vektorem ke grafu funkce f v bodě X_0 .

Parciální derivace vyšších řádů. Pokud má funkce $f: U \to \mathbb{R}$ definovaná na okolí $U \subset \mathbb{R}^m$ bodu a v každém bodě U parciální derivaci $F = \partial_i f$ a tato funkce $F: U \to \mathbb{R}$ má v bodě a parciální derivaci $\partial_j F(a) = \partial_j \partial_i f(a)$, řekneme, že f má v bodě a parciální derivaci druhého řádu podle proměnných x_i a x_j a její hodnotu značíme

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) .$$

Podobně definujeme parciální derivace vyšších řádů: má-li $f = f(x_1, x_2, \ldots, x_m)$ v každém bodě $x \in U$ parciální derivaci $(i_1, i_2, \ldots, i_{k-1}, j \in \{1, 2, \ldots, m\})$

$$F = \frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \dots \partial x_{i_1}} (x)$$

a F má v bodě $a \in U$ parciální derivaci $\partial_j F(a)$, řekneme, že f má v bodě a parciální derivaci k-tého řádu podle proměnných $x_{i_1}, \ldots, x_{i_{k-1}}, x_j$ a její hodnotu značíme

$$\frac{\partial^k f}{\partial x_j \partial x_{i_{k-1}} \dots \partial x_{i_1}}(a) .$$

Na pořadí proměnných při parciálním derivování obecně záleží: jako cvičení dokažte, že funkce $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{pro } x^2 + y^2 \neq 0\\ 0 & \text{pro } x^2 + y^2 = 0 \end{cases}$$

má v počátku obě smíšené parciální derivace druhého řádu s různými hodnotami

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1 \text{ a } \frac{\partial^2 f}{\partial y \partial x}(0,0) = -1 \text{ .}$$

Při spojitých parciálních derivacích však na pořadí proměnných nezáleží.

Tvrzení (obvykle $\partial_x \partial_y f = \partial_y \partial_x f$). Nechť funkce $f: U \to \mathbb{R}$ má na okolí $U \subset \mathbb{R}^m$ bodu a parciální derivace druhého řádu $\partial_j \partial_i f$ a $\partial_i \partial_j f$, $i \neq j$, a ty jsou v a spojité. Pak

$$\partial_j \partial_i f(a) = \partial_i \partial_j f(a)$$
.

Důkaz. Nechť m=2 a $a=\overline{0}=(0,0)$, obecný případ je velmi podobný. Díky spojitosti obou parciálních derivací v počátku stačí nalézt pro každé (dosti malé) h>0 ve čtverci $[0,h]^2$ dva body σ a τ , v nichž $\partial_x\partial_y f(\sigma)=\partial_y\partial_x f(\tau)$. Pro $h\to 0^+$ pak totiž $\sigma,\tau\to \overline{0}$ a limitní přechod a spojitost obou parciálních derivací v $\overline{0}$ dávají, že $\partial_x\partial_y f(\overline{0})=\partial_y\partial_x f(\overline{0})$.

Vrcholy čtverce označíme a = (0,0), b = (0,h), c = (h,0), d = (h,h) a uvážíme číslo f(d) - f(b) - f(c) + f(a). Lze ho dvěma způsoby napsat jako rozdíl rozdílů:

$$f(d) - f(b) - f(c) + f(a) = (f(d) - f(b)) - (f(c) - f(a)) = \psi(h) - \psi(0)$$

= $(f(d) - f(c)) - (f(b) - f(a)) = \phi(h) - \phi(0)$,

kde

$$\psi(t) = f(h,t) - f(0,t)$$
 a $\phi(t) = f(t,h) - f(t,0)$.

Máme $\psi'(t) = \partial_y f(h,t) - \partial_y f(0,t)$ a $\phi'(t) = \partial_x f(t,h) - \partial_x f(t,0)$. Lagrangeova věta o střední hodnotě dává dvě vyjádření

$$f(d) - f(b) - f(c) + f(a) = \psi'(t_0)h = (\partial_y f(h, t_0) - \partial_y f(0, t_0))h$$

= $\phi'(s_0)h = (\partial_x f(s_0, h) - \partial_x f(s_0, 0))h$,

kde $0 < s_0, t_0 < h$ jsou mezibody. Použijeme ji ještě jednou na rozdíly parciálních derivací f a máme

$$f(d) - f(b) - f(c) + f(a) = \partial_x \partial_y f(s_1, t_0) h^2 = \partial_y \partial_x f(s_0, t_1) h^2, \ s_1, t_1 \in (0, h)$$
.

Body $\sigma = (s_1, t_0)$ a $\tau = (s_0, t_1)$ leží ve čtverci $[0, h]^2$ a máme $\partial_x \partial_y f(\sigma) = \partial_y \partial_x f(\tau)$ (protože obě hodnoty se rovnají témuž číslu $(f(d) - f(b) - f(c) + f(a))/h^2$).

Rovnost hodnot obou derivací lze dokázat i za slabších předpokladů: existujeli $\partial_x \partial_y f$ v okolí bodu a a je v něm spojitá, potom existuje $\partial_y \partial_x f(a)$ a $\partial_u \partial_x f(a) = \partial_x \partial_u f(a)$.

Pro otevřenou množinu $U \subset \mathbb{R}^m$ označíme symbolem $\mathcal{C}^k(U)$ množinu funkcí $f: U \to \mathbb{R}$, jejichž všechny parciální derivace do řádu k včetně jsou na U definované a spojité.

Důsledek. Pro každou funkci $f = f(x_1, x_2, ..., x_m)$ z $C^k(U)$ hodnoty jejích parciálních derivací až do řádu k nezávisí na pořadí proměnných—pro $l \leq k$ a $a \in U$ platí

$$\frac{\partial^l f}{\partial x_{i_l} \partial x_{i_{l-1}} \dots \partial x_{i_1}}(a) = \frac{\partial^l f}{\partial x_{j_l} \partial x_{j_{l-1}} \dots \partial x_{j_1}}(a) ,$$

jakmile se posloupnosti (i_1, \ldots, i_l) a (j_1, \ldots, j_l) liší jen pořadím členů.

 $D\mathring{u}kaz$. Když je posloupnost $v=(j_1,\ldots,j_l)$ pouze permutací posloupnosti $u=(i_1,\ldots,i_l)$, dokážeme u proměnit ve v prohazováním dvojic členů v u, dokonce stačí prohazovat sousední členy: v u nalezneme člen j_1 a necháme ho "propadnout" až dolů na první místo, pak necháme propadnout na druhé místo j_2 atd. Rovnost hodnot parciálních derivací tak plyne z předchozího tvrzení.

V případě spojitých parciálních derivací tak záleží jen na multimnožině proměnných, podle kterých se derivuje, ale ne na jejich pořadí. Místo $\partial_x \partial_x$ píšeme stručněji ∂x^2 apod. Například, pro $f \neq C^5(U)$ na U máme

$$\frac{\partial^5 f}{\partial y \; \partial x \; \partial y \; \partial y \; \partial z} = \frac{\partial^5 f}{\partial y^2 \; \partial x \; \partial z \; \partial y} = \frac{\partial^5 f}{\partial x \; \partial z \; \partial y^3} = \frac{\partial^5 f}{\partial z \; \partial y^3 \; \partial x} \; .$$

Důležitým nástrojem při studiu funkcí je Taylorův polynom, jenž nyní zobecníme pro více proměnných. Na příkladu vysvětlíme, jak rozumět použitému symbolickému zápisu mocniny diferenciálního operátoru. Nechť f=f(x,y,z) je funkce z $\mathcal{C}^3(U)$ a $a\in\mathbb{R}^3,\ \alpha,\beta\in\mathbb{R}$ jsou konstanty. Například zápisem

$$(\alpha \partial_y + \beta \partial_z)^3 f(a)$$

se rozumí

$$(\alpha^{3}(\partial_{y})^{3} + 3\alpha^{2}\beta(\partial_{y})^{2}\partial_{z} + 3\alpha\beta^{2}\partial_{y}(\partial_{z})^{2} + \beta^{3}(\partial_{z})^{3})f(a)$$

$$= \alpha^{3}\frac{\partial^{3}f}{\partial y^{3}}(a) + 3\alpha^{2}\beta\frac{\partial^{3}f}{\partial y^{2}\partial z}(a) + 3\alpha\beta^{2}\frac{\partial^{3}f}{\partial y\partial z^{2}}(a) + \beta^{3}\frac{\partial^{3}f}{\partial z^{3}}(a) .$$

Podobně pro jiné mocniny.

Věta (zobecnění Taylorova polynomu). Nechť $U \subset \mathbb{R}^m$ je okolí bodu a $a \ f : U \to \mathbb{R}$ je funkce $z \ \mathcal{C}^n(U)$. Potom pro každý bod $h = (h_1, h_2, \dots, h_m)$, že $a + h \in U$, máme Taylorův rozvoj

$$f(a+h) = \sum_{i=0}^{n} \frac{1}{i!} (h_1 \partial_1 + h_2 \partial_2 + \dots + h_m \partial_m)^i f(a) + e(h)$$

$$= \sum_{i=0}^{n} \frac{1}{i_1! i_2! \dots i_m!} \cdot \frac{\partial^{i_1 + i_2 + \dots + i_m} f}{\partial x_1^{i_1} \partial x_2^{i_2} \dots \partial x_m^{i_m}} (a) \cdot h_1^{i_1} h_2^{i_2} \dots h_m^{i_m} + e(h)$$

$$= f(a) + \sum_{i=1}^{m} \partial_{x_i} f(a) h_i + \sum_{1 \le i < j \le m} \partial_{x_i} \partial_{x_j} f(a) h_i h_j + \frac{1}{2} \sum_{i=1}^{m} \partial_{x_i}^2 f(a) h_i^2 + \dots + e(h) ,$$

kde e(h) je chybová funkce splňující pro $h \to \overline{0}$ odhad $e(h) = o(\|h\|^n)$, tj. $\lim_{h\to \overline{0}} e(h)/\|h\|^n = 0$. V prvním výrazu mocninu chápeme symbolicky (ve

výše popsaném smyslu) a ve druhém, kde jsme ji rozvinuli podle multinomické věty, v sumě sčítáme přes všechny m-tice nezáporných celých čísel i_1, i_2, \ldots, i_m se součtem nejvýše n. Ve třetím výrazu jsme uvedli začátek rozvoje pro hodnoty i=0,1 a 2.