

Pilani Campus

Computer Networks (CS F303)

Virendra Singh Shekhawat Department of Computer Science and Information Systems

Second Semester 2020-2021 Module-4 < Network Layer>

- DHCP Protocol
- IP Datagram Fragmentation
- NAT Firewall

host, router network layer functions:

transport layer: TCP, UDP IP protocol routing protocols addressing conventions path selection datagram format • RIP, OSPF, BGP network packet handling conventions layer forwarding ICMP protocol table error reporting router "signaling link layer

How does a *host* get IP address?

- Hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config

- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - Automate the process of connecting a host into a network. "plug-andplay"
 - Works as client (arriving host) and Server (DHCP server)
 - Useful where hosts join and leave network frequently

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected/"on")
- Support for mobile users who want to join network (more shortly)

DHCP overview:

- Host broadcasts "DHCP discover" msg
- DHCP server responds with "DHCP offer" msg
- Host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP Client-Server Scenario

IP Fragmentation & Reassembly [.1]

innovate

IP Fragmentation & Reassembly [..2]

Network Address Translation (NAT)

- Motivation: local network uses just one IP address as far as outside world is concerned
 - Can change addresses of devices in local network without notifying outside world
 - Can change ISP without changing addresses of devices in local network
 - Devices inside local net not explicitly addressable, visible by outside world (a security plus)

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

How it Works???

Facts about NAT

- 16-bit port-number field:
 - How many devices can be connected?

- NAT is controversial:
 - Routers should only process up to layer 3
 - Violates end-to-end argument
 - Address shortage should instead be solved by IPv6

NAT Traversal Problem

- Client wants to connect to server with address 10.0.0.1
 - Server address 10.0.0.1 local to LAN (client can't use it as destination address)
 - Only one externally visible NATed address:
 138.76.29.7

Solutions [.1]

- Statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (138.76.29.7, port 25000) always forwarded to 10.0.0.1 port 25000
- Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol.
 Allows NATed host to:
 - Learn public IP address (138.76.29.7)
 - e.g., BitTorrent application in the host asks NAT to create a hole that maps (10.0.0.1,3345) to (138.76.29.7,5001)
 - Add/remove port mappings (with lease times)

- Relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay
 - Relay bridges packets between two connections

Thank You!