Mercedes Benz Project

February 6, 2023

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
[3]: df_test = pd.read_csv('G:\\Machine Learning\\test.csv')
     df_train = pd.read_csv('G:\\Machine Learning\\train.csv')
[4]: print(df_test.shape)
     print(df_train.shape)
    (4209, 377)
    (4209, 378)
[5]: df_train.head()
[5]:
                                                           X376
                                                                 X377
                                                                       X378
        ID
                     XO X1
                            X2 X3 X4 X5 X6 X8
                                                    X375
                                                                              X379
                                                                                    \
     0
         0
            130.81
                      k
                                                       0
                                                              0
                                                                    1
                                                                           0
                                                                                 0
                            at
                                    d
                                       u
     1
             88.53
                                                              0
                                                                    0
                                                                           0
                                                                                 0
                      k
                                       у
                                          1
                                                       1
     2
             76.26
                                                              0
                                                                    0
                                    d
                                          j
                                                       0
                                                                                 0
                     az
                                 С
                                       Х
                                                                           0
     3
             80.62
                     az
                         t
                             n
                                f
                                    d
                                       X
                                                              0
                                                                                 0
                                                              0
                                                                           0
        13
             78.02
                                                                                 0
                     az
                              n
                                      h d n
        X380
              X382
                     X383
                           X384
                                  X385
     0
           0
                  0
                        0
                              0
                                     0
     1
           0
                  0
                        0
                              0
                                     0
     2
           0
                        0
                              0
                                     0
     3
           0
                        0
                              0
                                     0
                  0
                        0
                                     0
                              0
     [5 rows x 378 columns]
[6]: df_train.dtypes
[6]: ID
                int64
             float64
     у
     ΧO
              object
```

X1 object Х2 object X380 int64 int64 X382 X383 int64 X384 int64X385 int64

Length: 378, dtype: object

[7]: df_train.describe()

[7]:		ID	У	X10	X11	X12 \		
	count	4209.000000	4209.000000	4209.000000		9.000000		
	mean	4205.960798	100.669318	0.013305		0.075077		
	std	2437.608688	12.679381	0.114590	0.0	.263547		
	min	0.000000	72.110000	0.000000	0.0	0.00000		
	25%	2095.000000	90.820000	0.000000	0.0	0.00000		
	50%	4220.000000	99.150000	0.000000	0.0	0.00000		
	75%	6314.000000	109.010000	0.000000	0.0	0.00000		
	max	8417.000000	265.320000	1.000000	0.0	1.000000		
		X13	X14	X15	X16	X17	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.057971	0.428130	0.000475	0.002613	0.007603	•••	
	std	0.233716	0.494867	0.021796	0.051061	0.086872	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.00000		
	25%	0.000000	0.000000	0.000000	0.000000	0.00000		
	50%	0.000000	0.000000	0.000000	0.000000	0.00000	•••	
	75%	0.000000	1.000000	0.000000	0.000000	0.00000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		Х375	Х376	Х377	X378	X379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.318841	0.057258	0.314802	0.020670	0.009503		
	std	0.466082	0.232363	0.464492	0.142294	0.097033		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	0.000000	0.000000	0.000000	0.000000		
	75%	1.000000	0.000000	1.000000	0.000000	0.000000		
	max	1.000000	1.000000	1.000000	1.000000	1.000000		
		X380	X382	X383	X384	X385		
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.008078	0.007603	0.001663	0.000475	0.001426		
	std	0.089524	0.086872	0.040752	0.021796	0.037734		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		

25%	0.00000	0.00000	0.000000	0.000000	0.000000
50%	0.000000	0.00000	0.00000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000

[8 rows x 370 columns]

```
[8]: train_data = np.var(df_train,axis = 0)
train_data
```

C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3721:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.
return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)

```
[8]: ID
             5.940524e+06
             1.607285e+02
     У
     X10
             1.312780e-02
     X11
             0.000000e+00
     X12
             6.944063e-02
     X380
             8.012675e-03
     X382
             7.544954e-03
     X383
             1.660337e-03
     X384
             4.749465e-04
     X385
             1.423485e-03
     Length: 370, dtype: float64
```

```
[9]: test_data = np.var(df_test,axis = 0)
test_data
```

C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3721:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.
return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)

```
[9]: ID
             5.869917e+06
     X10
             1.864563e-02
     X11
             2.375297e-04
     X12
             6.883438e-02
     X13
             5.733136e-02
    X380
             8.012675e-03
     X382
             8.713410e-03
     X383
             4.749465e-04
     X384
             7.122504e-04
```

```
Length: 369, dtype: float64
[12]: train_name=[]
      for i in train data.iteritems():
          if(i[1]==0):
              train_name.append(i[0])
              #print(i)
      print(train_name)
      test_name=[]
      for i in test_data.iteritems():
          if(i[1]==0):
              test_name.append(i[0])
              #print(i)
      print(test_name)
     ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297',
     'X330', 'X347']
     ['X257', 'X258', 'X295', 'X296', 'X369']
[13]: df_train.drop (train_name,axis = 1 ,inplace = True)
      df_train.drop(test_name ,axis = 1 ,inplace = True)
[14]: df_test.drop(train_name,axis = 1,inplace = True)
      df_test.drop(test_name,axis = 1,inplace = True)
[17]: print(df_train.shape)
      print(df_test.shape)
     (4209, 361)
     (4209, 360)
     0.0.1 Check for null and unique values for dataset
[19]: for i,j in zip (df_train.columns,df_train.isnull().sum()):
          if (j != 0):
              print (i)
[21]: train_desc = df_train.describe(include='0')
      df_train.describe(include='0')
[21]:
                                                           Х8
                XΟ
                      X1
                            X2
                                  ХЗ
                                        Х4
                                               Х5
                                                     Х6
              4209 4209 4209 4209 4209
                                            4209
                                                   4209
                                                         4209
      count
                      27
                                   7
      unique
                47
                            44
                                         4
                                               29
                                                     12
                                                           25
      top
                 z
                            as
                                   С
                                         d
                      aa
                                               W
                                                      g
                                                            j
      freq
               360
                     833 1659 1942 4205
                                              231
                                                   1042
                                                          277
```

X385

1.660337e-03

```
[23]: train_desc.columns
[23]: Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype='object')
[25]: test_desc = df_test.describe(include = '0')
      df_train.describe(include='0')
[25]:
                XΟ
                      Х1
                            Х2
                                  ХЗ
                                        Х4
                                              Х5
                                                    Х6
                                                           Х8
                    4209
                         4209
                                4209 4209
      count
              4209
                                            4209
                                                  4209
                                                         4209
                47
                      27
                            44
                                   7
                                         4
                                              29
                                                     12
                                                           25
      unique
      top
                 7.
                      aa
                            as
                                   С
                                         d
                                               W
                                                      g
                                                            j
                                                          277
                     833 1659 1942 4205
                                             231
                                                  1042
               360
      freq
[27]: test_desc.columns
[27]: Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype='object')
[30]: for i in ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']:
          print ('df_train')
          print(i,df_train[i].unique())
          print('df_test')
          print(i,df_test[i].unique())
     df_train
     X0 ['k' 'az' 't' 'al' 'o' 'w' 'j' 'h' 's' 'n' 'ay' 'f' 'x' 'y' 'aj' 'ak' 'am'
      'z' 'q' 'at' 'ap' 'v' 'af' 'a' 'e' 'ai' 'd' 'aq' 'c' 'aa' 'ba' 'as' 'i'
      'r' 'b' 'ax' 'bc' 'u' 'ad' 'au' 'm' 'l' 'aw' 'ao' 'ac' 'g' 'ab']
     df_test
     XO ['az' 't' 'w' 'y' 'x' 'f' 'ap' 'o' 'ay' 'al' 'h' 'z' 'aj' 'd' 'v' 'ak'
      'ba' 'n' 'j' 's' 'af' 'ax' 'at' 'aq' 'av' 'm' 'k' 'a' 'e' 'ai' 'i' 'ag'
      'b' 'am' 'aw' 'as' 'r' 'ao' 'u' 'l' 'c' 'ad' 'au' 'bc' 'g' 'an' 'ae' 'p'
      'bb']
     df_train
     X1 ['v' 't' 'w' 'b' 'r' 'l' 's' 'aa' 'c' 'a' 'e' 'h' 'z' 'j' 'o' 'u' 'p' 'n'
      'i' 'y' 'd' 'f' 'm' 'k' 'g' 'q' 'ab']
     df_test
     X1 ['v' 'b' 'l' 's' 'aa' 'r' 'a' 'i' 'p' 'c' 'o' 'm' 'z' 'e' 'h' 'w' 'g' 'k'
      'y' 't' 'u' 'd' 'j' 'q' 'n' 'f' 'ab']
     df_train
     X2 ['at' 'av' 'n' 'e' 'as' 'aq' 'r' 'ai' 'ak' 'm' 'a' 'k' 'ae' 's' 'f' 'd'
      'ag' 'ay' 'ac' 'ap' 'g' 'i' 'aw' 'y' 'b' 'ao' 'al' 'h' 'x' 'au' 't' 'an'
      'z' 'ah' 'p' 'am' 'j' 'q' 'af' 'l' 'aa' 'c' 'o' 'ar']
     df_test
     X2 ['n' 'ai' 'as' 'ae' 's' 'b' 'e' 'ak' 'm' 'a' 'aq' 'ag' 'r' 'k' 'aj' 'ay'
      'ao' 'an' 'ac' 'af' 'ax' 'h' 'i' 'f' 'ap' 'p' 'au' 't' 'z' 'y' 'aw' 'd'
      'at' 'g' 'am' 'j' 'x' 'ab' 'w' 'q' 'ah' 'ad' 'al' 'av' 'u']
     df_train
```

```
X3 ['a' 'e' 'c' 'f' 'd' 'b' 'g']
     df_test
     X3 ['f' 'a' 'c' 'e' 'd' 'g' 'b']
     df train
     X4 ['d' 'b' 'c' 'a']
     df test
     X4 ['d' 'b' 'a' 'c']
     df_train
     X5 ['u' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af' 'ag' 'ab' 'ac' 'ad' 'ae'
      'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
     df_test
     X5 ['t' 'b' 'a' 'z' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af' 'ag' 'ab' 'ac'
      'ad' 'ae' 'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
     df train
     X6 ['j' 'l' 'd' 'h' 'i' 'a' 'g' 'c' 'k' 'e' 'f' 'b']
     df_test
     X6 ['a' 'g' 'j' 'l' 'i' 'd' 'f' 'h' 'c' 'k' 'e' 'b']
     df_train
     X8 ['o' 'x' 'e' 'n' 's' 'a' 'h' 'p' 'm' 'k' 'd' 'i' 'v' 'j' 'b' 'q' 'w' 'g'
      'y' 'l' 'f' 'u' 'r' 't' 'c']
     df test
     X8 ['w' 'y' 'j' 'n' 'm' 's' 'a' 'v' 'r' 'o' 't' 'h' 'c' 'k' 'p' 'u' 'd' 'g'
     'b' 'q' 'e' 'l' 'f' 'i' 'x']
     0.0.2 Apply label encoder.
[31]: df_train_x = df_train.drop(['ID','y'],axis = 1)
      df_train_y = df_train ['y']
[32]: print(df_train_x.shape)
      print(df_train_y.shape)
     (4209, 359)
     (4209,)
[34]: df_test_x = df_test.drop(['ID'],axis = 1)
[39]: print(df_test_x.shape)
      print(df_test_x.shape)
     (4209, 359)
     (4209, 359)
[40]: from sklearn.preprocessing import LabelEncoder
      le= LabelEncoder()
      for i in train_desc.columns:
          df_train_x[i]=le.fit_transform(df_train_x[i])
      for i in test_desc.columns:
```

```
df_test_x[i]=le.fit_transform(df_test_x[i])
[41]: from sklearn.model_selection import train_test_split
      xtrain,xtest,ytrain,ytest=train_test_split(df_train_x,df_train_y, test_size=0.
       ⇒25, random_state=10)
      print(xtrain.shape,ytrain.shape)
      print(xtest.shape,ytest.shape)
     (3156, 359) (3156,)
     (1053, 359) (1053,)
     0.0.3 Perform dimensionality reduction.
[44]: from sklearn.decomposition import PCA
      from xgboost import XGBRegressor
      from sklearn.metrics import accuracy_score
[43]: pip install xgboost
     Defaulting to user installation because normal site-packages is not writeable
     Collecting xgboost
       Downloading xgboost-1.7.3-py3-none-win_amd64.whl (89.1 MB)
     Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-
     packages (from xgboost) (1.21.5)
     Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-
     packages (from xgboost) (1.7.3)
     Installing collected packages: xgboost
     Successfully installed xgboost-1.7.3
     Note: you may need to restart the kernel to use updated packages.
[45]: pca =PCA(n_components=0.99, random_state=102)
      xtrain_trans=pca.fit_transform(xtrain)
      xtest trans=pca.transform(xtest)
      print(xtrain.shape)
      print(xtrain_trans.shape)
      print(xtest.shape)
      print(xtest_trans.shape)
     (3156, 359)
     (3156, 27)
     (1053, 359)
     (1053, 27)
[46]: pca =PCA(n_components=0.99, random_state=102)
      df_train_trans=pca.fit_transform(df_train_x)
      print(df_train_x.shape)
      print(df_train_trans.shape)
```

```
(4209, 359)
(4209, 27)
```

0.0.4 Predict your test df values using XGBoost.

```
[47]: xgb=XGBRegressor(base_score=0.5, booster='gbtree',
       →colsample_bylevel=1,colsample_bynode=1, colsample_bytree=0.5,
                       enable_categorical=False, gamma=0, gpu_id=-1,__
       →importance_type=None, interaction_constraints='',
                       learning_rate=0.05, max_delta_step=0, max_depth=8,__
       →min_child_weight=2, monotone_constraints='()',
                       n_estimators=90, n_jobs=-1,num_parallel_tree=1, objective='reg:
       ⇔squarederror',predictor='auto',
                       random_state=2341, reg_alpha=1e-06,_u
       _reg_lambda=2,scale_pos_weight=19.3, subsample=1, tree_method='auto',
                       validate_parameters=1, verbosity=0, eta=0.003)
[49]: xgb.fit(xtrain_trans,ytrain)
[49]: XGBRegressor(base_score=0.5, booster='gbtree', callbacks=None,
                   colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.5,
                   early_stopping rounds=None, enable_categorical=False, eta=0.003,
                   eval_metric=None, feature_types=None, gamma=0, gpu_id=-1,
                   grow policy=None, importance type=None, interaction constraints='',
                   learning_rate=0.05, max_bin=None, max_cat_threshold=None,
                   max cat to onehot=None, max delta step=0, max depth=8,
                   max_leaves=None, min_child_weight=2, missing=nan,
                   monotone_constraints='()', n_estimators=90, n_jobs=-1,
                   num_parallel_tree=1, predictor='auto', ...)
[50]: vpred=xgb.predict(xtest trans)
      xgb.predict(xtest_trans)
```

```
[50]: array([ 94.65012 , 93.778015, 77.745514, ..., 109.12848 , 94.11999 ,
             108.26532 ], dtype=float32)
```

```
[51]: print(xgb.score(xtrain_trans,ytrain))
      print(xgb.score(xtest_trans,ytest))
```

- 0.7837925674595312 0.5259128305736873
- 0.0.5 Prediction on Testing File

```
[52]: xgb.predict(df_train_trans)
```

```
[52]: array([103.95934, 92.636375, 77.92083, ..., 100.07799, 92.68107,
             96.01531 ], dtype=float32)
```

[]:[