Algorithms and Data Structures

Gabriel Istrate, University of Bucharest Course 0: Heapsort, Lower bounds.

Slide credit (partial): David Luebke (Virginia)

Sorting Revisited

So far: two algorithms to sort an array of numbers

What is the advantage of merge sort?

What is the advantage of insertion sort?

Next on the agenda: *Heapsort*

Combines advantages of both previous algorithms

A *heap* can be seen as a complete binary tree:

What makes a binary tree complete?

Is the example above complete?

A *heap* can be seen as a complete binary tree:

The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

In practice, heaps are usually implemented as arrays:

To represent a complete binary tree as an array:

The root node is A[1]

Node i is A[i]

The parent of node i is A[i/2] (note: integer divide)

The left child of node i is A[2i]

The right child of node i is A[2i + 1]

Referencing Heap Elements

```
So...
  Parent(i) { return \[ i/2 \]; }
  Left(i) { return 2*i; }
  right(i) { return 2*i + 1; }
An aside: How would you implement this
most efficiently?
Another aside: Really?
```

The Heap Property

Heaps also satisfy the *heap property*:

 $A[Parent(i)] \ge A[i]$ for all nodes i > 1

In other words, the value of a node is at most the value of its parent

Where is the largest element in a heap stored?

Definitions:

The *height* of a node in the tree = the number of edges on the longest downward path to a leaf

The height of a tree = the height of its root

Heap Height

What is the height of an n-element heap? Why?

This is nice: basic heap operations take at most time proportional to the height of the heap

log2(n) - inaltimea unui arbore binar

Heap Operations: Heapify()

Heapify(): maintain the heap property

Given: a node i in the heap with children l and r

Given: two subtrees rooted at *l* and *r*, assumed to be

heaps

Problem: The subtree rooted at *i* may violate the heap property (*How?*)

Action: let the value of the parent node "float down" so subtree at *i* satisfies the heap property

• What do you suppose will be the basic operation between i, l, and r?

Heap Operations: Heapify()

```
Heapify(A, i)
{
  l = Left(i); r = Right(i);
  if (1 \le \text{heap size}(A) \&\& A[1] > A[i])
   largest = 1;
  else
   largest = i;
  if (r \le heap size(A) \&\& A[r] > A[largest])
   largest = r;
  if (largest != i)
   Swap(A, i, largest);
   Heapify(A, largest);
```


Analyzing Heapify(): Informal

Aside from the recursive call, what is the running time of **Heapify()**?

How many times can **Heapify()** recursively call itself?

What is the worst-case running time of **Heapify()** on a heap of size n?

Analyzing Heapify(): Formal

Fixing up relationships between i, l, and r takes $\Theta(1)$ time

If the heap at i has n elements, how many elements can the subtrees at l or r have?

Draw it

Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by **Heapify()** is given by

$$T(n) \le T(2n/3) + \Theta(1)$$

Analyzing Heapify(): Formal

So we have

$$T(n) \le T(2n/3) + \Theta(1)$$

By case 2 of the Master Theorem,

$$T(n) = O(\lg n)$$

Thus, Heapify () takes linear time

Heap Operations: BuildHeap()

We can build a heap in a bottom-up manner by running **Heapify()** on successive subarrays

Fact: for array of length n, all elements in range $A[\lfloor n/2 \rfloor + 1 ... n]$ are heaps (*Why?*)

So:

- Walk backwards through the array from n/2 to 1, calling **Heapify()** on each node.
- Order of processing guarantees that the children of node *i* are heaps when *i* is processed

BuildHeap()

```
// given an unsorted array A, make A a heap
BuildHeap(A)
{
  heap_size(A) = length(A);
  for (i = \length[A]/2 \length downto 1)
   Heapify(A, i);
}
```

BuildHeap() Example

Work through example

$$A = \{4, 1, 3, 2, 16, 9, 10, 14, 8, 7\}$$

Analyzing BuildHeap()

Each call to **Heapify()** takes $O(\lg n)$ time There are O(n) such calls (specifically, $\lfloor n/2 \rfloor$) Thus the running time is $O(n \lg n)$ Is this a correct asymptotic upper bound? Is this an asymptotically tight bound? A tighter bound is O(n)How can this be? Is there a flaw in the above reasoning?

Analyzing BuildHeap(): Tight

To **Heapify()** a subtree takes O(h) time where h is the height of the subtree

 $h = O(\lg m)$, m = # nodes in subtree

The height of most subtrees is small

Fact: an *n*-element heap has at most $\lceil n/2^{h+1} \rceil$ nodes of height *h*

CLR 7.3 uses this fact to prove that **BuildHeap()** takes O(n) time

Heapsort

Given BuildHeap(), an in-place sorting algorithm is easily constructed:

Maximum element is at A[1]

Discard by swapping with element at A[n]

- Decrement heap_size[A]
- A[n] now contains correct value

Restore heap property at A[1] by calling **Heapify()**

Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

```
Heapsort (A)
  BuildHeap(A);
  for (i = length(A) downto 2)
     Swap(A[1], A[i]);
     heap size(A) -= 1;
     Heapify(A, 1);
```

Analyzing Heapsort

The call to **BuildHeap()** takes O(n) time Each of the n-1 calls to **Heapify()** takes $O(\lg n)$ time Thus the total time taken by **HeapSort()** $= O(n) + (n - 1) O(\lg n)$ $= O(n) + O(n \lg n)$ $= O(n \lg n)$

Priority Queues

Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins

But the heap data structure is incredibly useful for implementing *priority queues*

A data structure for maintaining a set *S* of elements, each with an associated value or *key*

Supports the operations Insert(), Maximum(), and ExtractMax()

What might a priority queue be useful for?

Priority Queue Operations

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the

Maximum(S) returns the element of S with the maximum key

ExtractMax(S) removes and returns the element of S with the maximum key

How could we implement these operations using a heap?

• Insertion sort:

- Easy to code
- Fast on small inputs (less than ~50 elements)
- Fast on nearly-sorted inputs
- $O(n^2)$ worst case
- O(n²) average (equally-likely inputs) case
- O(n²) reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - ◆ Split array in half
 - Recursively sort subarrays
 - ◆ Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - ◆ Heap property: parent key > children's keys
 - O(n lg n) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

- Quick sort:
 - Divide-and-conquer:
 - ◆ Partition array into two subarrays, recursively sort
 - ◆ All of first subarray < all of second subarray
 - ◆ No merge step needed!
 - O(n lg n) average case
 - Fast in practice
 - $O(n^2)$ worst case
 - ◆ Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it
 - How do you suppose we'll beat it?
- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Theorem: all comparison sorts are $\Omega(n \lg n)$
 - ◆ A comparison sort must do O(n) comparisons (*why?*)
 - ◆ What about the gap between O(n) and O(n lg n)

Decision Trees

- *Decision trees* provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
 - (Draw examples on board)
- What do the leaves represent?
- How many leaves must there be?

Decision Trees

- Decision trees can model comparison sorts.
 For a given algorithm:
 - One tree for each *n*
 - Tree paths are all possible execution traces
 - What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n)$ (now let's prove it...)

Lower Bound For Comparison Sorting

- Thm: Any decision tree that sorts n elements has height $\Omega(n \lg n)$
- What's the minimum # of leaves?
- What's the maximum # of leaves of a binary tree of height h?
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves

Lower Bound For Comparison Sorting

• So we have... $n! \le 2^h$

• Taking logarithms: $\lg (n!) \le h$

Stirling's approximation tells us:

$$n! > \left(\frac{n}{e}\right)^n$$
• Thus: $h \ge \lg\left(\frac{n}{e}\right)^n$

Lower Bound For Comparison Sorting

• So we have
$$h \ge \lg \left(\frac{n}{e}\right)^n$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

• Thus the minimum height of a decision tree is $\Omega(n \lg n)$

Lower Bound For Comparison Sorts

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
 - How can we do better than $\Omega(n \lg n)$?