Controladores PID usando Técnicas Difusas

Control difuso PID

Un controlador PID difuso actúa sobre las mismas señales de entrada que un control clásico, pero la estrategia de control se formula como reglas difusas

Procedimiento de diseño

- 1. Sintonizar y ajustar un controlador PID convencional en primer lugar.
- 2. Reemplazarlo por un control difuso lineal equivalente

3. Sintonía fina

Controladores difusos a estudiar

- 1. Controlador proporcional difuso
- 2. Controlador PD difuso
- 3. Controlador PI difuso incremental
- 4. Controlador PD difuso + I

Control difuso proporcional

$$U(n) = K_p e(n)$$

A mayor error, mayor acción de control

Control difuso proporcional

U(n) es una función no lineal

$$U(n) = f(GE * e(n)) * GU$$

 El controlador tiene que sintonizar las ganancias GE and GU, mientras que el controlador clásico sólo una, Kp.

Control difuso proporcional

$$U(n) = f(GE * e(n)) * GU$$

La función f denota el mapeo de la base de reglas la cual es generalmente no lineal. Un aproximación lineal es,

$$f(GE * e(n)) \approx GE * e(n)$$

Por lo tanto la ley de control aproximada es,

$$\underline{U(n)} = GE * GU * e(n)$$

Sintonía de ganancias

Considerando que,

$$U(n) = K_p e(n)$$

Comparando con,

$$\underline{U(n)} = GE * GU * e(n)$$

 El producto de las ganancias GE y GU corresponden a la ganancia K_p,

$$\underline{GE * GU = K_p}$$

Comportamiento del error

Respuesta transitoria típica: e(k) = r(k) - y(k)

Base de reglas del controlador proporcional

If error is N then control is N

If error is Zero then control is Zero

If error is P then control is P

Condiciones - Controlador difuso lineal

Para la variable de error, usar conjuntos difusos triangulares que se cruzan en $\mu = 0.5$.

Para la variable de salida, utilizar conjuntos singleton.

Controlador PD difuso

Controlador PD convencional

$$U(k) = K_p \left(e(k) + T_d \frac{e(k) - e(k-1)}{T_s} \right)$$

Control PD difuso

$$U(n) = f(GE * e(n), GCE * \dot{e}(n)) * GU$$

Control PD difuso

U(n) es una función no lineal,

$$U(n) = f(GE * e(n), GCE * \dot{e}(n)) * GU$$

Un aproximación lineal es,

$$f(GE * e(n), GCE * \dot{e}(n)) \approx GE * e(n) + GCE * \dot{e}(n)$$

Por lo tanto factorizando GE la ley de control es,

$$\underline{U(n) = \text{GE} * \text{GU}\left(e(n) + \frac{GCE}{GE}\dot{e}(n)\right)}$$

Sintonía de ganancias

Considerando que,

$$U(n) = K_p \left(e(n) + T_d \frac{e(n) - e(n-1)}{T_s} \right)$$

Comparando con,

$$\underline{U(n) = GE * GU\left(e(n) + \frac{GCE}{GE}\dot{e}(n)\right)}$$

Las ganancias son,

$$\underline{GE * GU = K_p}$$

$$\frac{GCE}{GE} = T_d$$

Comportamiento del error

Respuesta transitoria típica: e(k) = r(k) - y(k)

 Δe

	N	Z	P
N	Ν	Ν	Z
Z	Ν	Z	Р
Р	Z	Р	Р

Comportamiento del error

Respuesta transitoria típica: e(k) = r(k) - y(k)

Condiciones - Controlador difuso lineal

- □ Para el error y el cambio en el error, usar conjuntos difusos triangulares que se cruzan en $\mu = 0.5$.
- □ Construir una base de reglas con todas las posibles combinaciones de términos del error y el cambio en el error unidos por el conector ∧.
- □ Usar el operador producto (*) para el conector ∧
- Para la variable de salida, utilizar conjuntos singleton donde la suma de los antecedentes da pertenencia igual a 1.
- Utilizar el operador suma para la agregación y el centroide para defusificación.

Control PD difuso lineal

El controlador actúa como una suma: u = E + CE.

Controlador PI difuso

Control difuso incremental PI

$$U(n) = \sum_{j=1}^{n} f(GE * e(j), GCE * \dot{e}(j)) * GCU * T_s$$

Control difuso incremental PI

$$U(n) = \sum_{j=1}^{n} f(GE * e(j), GCE * \dot{e}(j)) * GCU * T_s$$

Un aproximación lineal es,

$$U(n) \approx \sum_{j=1}^{n} \left(\text{GE} * e(j) + GCE * \dot{e}(j) \right) * GCU * T_s$$

Por lo tanto la ley de control es,

$$U(n) = GCE * GCU \left[\frac{GE}{GCE} \sum_{j=1}^{n} \left(e(j) * T_s \right) + e(j) \right]$$

Sintonía de Ganancias

Considerando que,

$$U(n) = K_p \left(e(n) + \frac{1}{T_i} \sum_{j=1}^n e(j) T_s \right)$$

$$U(n) = GCE * GCU \left[\frac{GE}{GCE} \sum_{j=1}^{n} \left(e(j) * T_s \right) + e(j) \right]$$

Las ganancias son,

$$GCE * GCU = \frac{GE}{K_p} = \frac{1}{T_i}, \frac{Kp}{Ti} = Ki$$

Controlador difuso PD+I

Controlador difuso PD + I

$$U(n) = \left[f(GE * e(n), GCE * \dot{e}(n)) + GIE \sum_{j=1}^{n} e(j)T_{s} \right] * GU$$

Controlador difuso PD + I

Una aproximación lineal es,

$$U(n) \approx \left[\text{GE} * e(n) + GCE * \dot{e}(n) + GIE \sum_{j=1}^{n} e(j) T_s \right] * GU$$

Por lo tanto la ley de control es,

$$U(n) = GE * GU \left[e(n) + \frac{GCE}{GE} * \dot{e}(n) + \frac{GIE}{GE} \sum_{j=1}^{n} e(j) T_{s} \right]$$

Sintonía de Ganancias

Considerando que,

$$U(n) = K_p \left(e(n) + \frac{1}{T_i} \sum_{j=1}^{n} e(j) T_s + T_d \frac{e(n) - e(n-1)}{T_s} \right)$$

Las ganancias son,

Las reglas del PD+I difuso son las mismas del PD difuso.

$$\frac{GE * GU = K_p}{GCE} = T_d$$

$$\frac{GE}{GE} = T_d$$

$$\frac{GIE}{GE} = \frac{1}{T_i}$$

Resumen Relación de Ganancias

Controller	K_p	$1/T_i$	T_d
FP	GE*GU		
FInc	GCE*GCU	GE/GCE	
FPD	GE*GU		GCE/GE
FPD+I	GE*GU	GIE/GE	GCE/GE

¿ Preguntas?

