Math 3355 Quiz 1

Duncan Wilkie

11 September 2021

Problem 1

Call the set of investors that invested in traditional annuities A, and the set of investors that invested in the stock market B. By the inclusion-exclusion principle, $|A \cup B| = |A| + |B| - |A \cap B|$. Solving for $|A \cap B|$, the size of the set of investors who invested in both, yields

$$|A \cap B| = |A| + |B| - |A \cup B| = 60\% + 35\% - 80\% = 15\%$$

Problem 2

The binomial theorem says $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. In this case, a=2x and b=5y, and further since the power of x is 7 and that of y is 3, this corresponds to n=10 and k=3. Therefore, the full corresponding term is $\binom{10}{4}(2x)^7(5y)^3$. Pulling the constant terms out of the exponentiations yields a coefficient of $\binom{10}{4} \cdot 2^7 \cdot 5^3 = 3,360,000$.

Problem 3

The probability that a random point from (a,b) falls into a subinterval (α,β) is $\frac{\beta-\alpha}{b-a}$ by definition of random selection. In this case, (a,b)=(0,1) and $(\alpha,\beta)=(\frac{1}{3},1)$, so the probability the random point is drawn from the latter interval is

$$\frac{\beta - \alpha}{b - a} = \frac{1 - \frac{1}{3}}{1 - 0} = \frac{2}{3}$$