Introduction to Information Retrieval http://www.informationretrieval.org

Hierarchical Clustering

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2007.06.19

Overview

- Introduction
- 2 Single-link/Complete-link
- GAAC/Centroid
- 4 Implementation
- 5 Labeling

Institute for Natural Language Processing, Stuttgart

Introduction

Hierarchical Clustering

 Build a tree-based hierarchical taxonomy (dendrogram) from a set of unlabeled examples,

 One option to produce a hierarchical clustering is recursive application of a partitional clustering algorithm to produce a hierarchical clustering.

Hierarchical Agglomerative Clustering (HAC)

- Assumes a similarity function for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

A Dendogram: Hierarchical Clustering

 Dendrogram: Decomposes data objects into a several levels of nested partitioning (tree of clusters).

 Clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.

Divisive clustering

- Top-down (instead of bottom-up as in HAC)
- Start with all docs in one big cluster
- The recursively split clusters
- Eventually each node forms a cluster on its own

Naive HAC algorithm

- Given
 - N one-document clusters
 - a similarity measure between clusters
- I := N
- Repeat until I==1:
 - Compute l² similarities between all clusters
 - Find cluster pair with highest similarity
 - Merge the two clusters
 - I := I − 1
- N − 1 iterations until we have a single cluster with all docs

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is O(n²).
- In each of the subsequent n-2 merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
 - Since we can just store unchanged similarities
- In order to maintain an overall O(n²)
 performance, computing similarity to each other
 cluster must be done in constant time.
 - Else $O(n^2 \log n)$ or $O(n^3)$ if done naively

- Single-link: Maximum similarity
 - Maximum over all ω_1 - ω_2 -pairs
- Complete-link: Minimum similarity
 - Minimum over all ω_1 - ω_2 -pairs
- Centroid: Average similarity
 - Average over all ω_1 - ω_2 -pairs
- Group-average: Average similarity
 - Average over all document pairs, including pairs of docs in the same cluster

Cluster similarity: Example

Single-link?

Single-link: Maximum similarity

Complete-link?

Complete-link: Minimum similarity

Cluster similarity: Example

Centroid?

Centroid: Average similarity (exc. within cluster)

Cluster similarity: Example

Group-average?

Group average: Average similarity (inc. within cluster)

Single-link?

Introduction

Cluster similarity: Larger example

Complete-link?

Complete-link: Minimum similarity

Cluster similarity: Larger example

Centroid?

Centroid: Average similarity (exc. within cluster)

Cluster similarity: Larger example

• Group-average?

26 / 74

Single Link Agglomerative Clustering

Use maximum similarity of pairs:

$$sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} sim(x, y)$$

- Can result in "straggly" (long and thin) clusters due to chaining effect.
 - Appropriate in some domains, such as clustering islands: "Hawai'i clusters"
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

Single-link clustering: Example

4 D > 4 D > 4 E > 4 E > 4 E > 9 Q @

Single-link: Chaining

Single-link clustering often produces long, straggly clusters. For most applications, these are undesirable.

Complete Link Agglomerative Clustering

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

- Makes "tighter," spherical clusters that are typically preferable.
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_{ij} , is:

$$sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$$

37 / 74

Single-link vs. Complete link clustering

Complete-link clustering: Document example

Complete-link: Sensitivity to outliers

A single outlier can have a large effect on the final outcome of complete-link clustering. Coordinates:

 $1+2\times\epsilon,4,5+2\times\epsilon,6,7-\epsilon$. GAAC (group-average HAC) is better here.

43 / 74

GAAC/Centroid

$$\mathsf{sim\text{-}ga}(\omega_i,\omega_j) \ = \ \frac{1}{(N_i + N_j)(N_i + N_j - 1)} \sum_{\substack{[d_k \in \omega_i \cup \omega_i] \ [d_\ell \in \omega_i \cup \omega_i, d_\ell \neq d_k]}} \vec{d}_k \cdot \vec{d}_\ell$$

- The similarity of two clusters is the average of all pairwise doc similarities – except for self-similarities.
- Avoids the problems of single-link and complete-link.
- Usually the best option for HAC

$$\operatorname{sim-ga}(\omega_{i}, \omega_{j}) = \frac{1}{(N_{i} + N_{j})(N_{i} + N_{j} - 1)} \sum_{\substack{[d_{k} \in \omega_{i} \cup \omega_{j}] \ [d_{\ell} \in \omega_{i} \cup \omega_{j}, d_{\ell} \neq d_{k}]}} \sum_{\substack{\vec{d}_{k} \cdot \vec{d}_{\ell} \\ (N_{i} + N_{j})(N_{i} + N_{j} - 1)}} \sum_{\substack{[d_{k} \in \omega_{i} \cup \omega_{j}] \ [d_{\ell} \in \omega_{i} \cup \omega_{j}, d_{\ell} \neq d_{k}]}} \vec{d}_{k} \cdot \vec{d}_{\ell}$$

- Holds because of distributivity of the scalar product with respect to vector addition
- Makes similarity computation efficient

Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_i} \vec{x}$$

Compute similarity of clusters in constant time:

$$\mathit{sim}(c_{i},c_{j}) = \frac{(\vec{s}(c_{i}) + \vec{s}(c_{j})) \bullet (\vec{s}(c_{i}) + \vec{s}(c_{j})) - (|c_{i}| + |c_{j}|)}{(|c_{i}| + |c_{j}|)(|c_{i}| + |c_{j}| - 1)}$$

Centroid HAC

- The similarity of two clusters is the scalar product of their centroids.
- Alternative: (negative) distance of the centroids can result in different clustering.

Labeling

Centroid clustering: Example

Outliers in centroid computation

- Can ignore outliers when computing centroid.
- What is an outlier?
 - Lots of statistical definitions, e.g.
 - moment of point to centroid > M x some cluster moment.

Say 10.

- In an inversion, the similarity increases during a merge sequence. Causes an inversion of the dendrogram.
- Below: Similarity of the first merger $(d_1 \cup d_2)$ is -4.0, similarity of second merger $((d_1 \cup d_2) \cup d_3)$ is ≈ -3.5 .

$$\mathsf{sim\text{-}cent}(\omega_i,\omega_j) = (\frac{1}{N_i} \sum_{d_k \in \omega_i} \vec{d}_k) \cdot (\frac{1}{N_j} \sum_{d_\ell \in \omega_j} \vec{d}_\ell) = \frac{1}{N_i N_j} \sum_{d_k \in \omega_i} \sum_{d_\ell \in \omega_j} \vec{d}_k \cdot \vec{d}_\ell$$

- GAAC: average of all similarities, including within original two clusters (except self-similarities)
- Centroid clustering: average similarity over pairs of docs where one doc is from ω_i and one doc is from ω_i

Hinrich Schütze

Efficient HAC algorithm

```
Given: N length-normalized vectors \vec{v}_i
Compute matrix C
for k = 1 to N:
   for \ell = 1 to N:
       C[k][\ell].sim = \vec{v}_k \cdot \vec{v}_\ell
       C[k][\ell].index = \ell
for k = 1 to N
   P[k] :=  priority queue for C[k] sorted on sim
   Delete C[k][k] from P[k] (don't want self-similarities)
Initialization
A = [1]
for k = 1 to N
   I[k] = 1
Compute clustering
for k = 1 to N - 1:
   k_1 = \operatorname{arg\,max}_{k,l[k]=1} P[k].\operatorname{max}()
   k_2 = P[k_1].max().index
   A.append(\langle k_1, k_2 \rangle)
   I[k_2] = 0
   P[k_1] = \emptyset
   for all \ell with I[\ell] = 1, \ell \neq k_1:
       C[k_1][\ell].sim = C[\ell][k_1].sim = sim(\ell, k_1, k_2)
      Delete C[\ell][k_1] and C[\ell][k_2] from P[\ell]
      Insert C[\ell][k_1] in P[\ell], C[k_1][\ell] in P[k_1]
```

Combination similarities for HAC algorithms

clustering algorithm	$sim(\ell, k_1, k_2)$
single-link	$\max(\operatorname{sim}(\ell, k_1), \operatorname{sim}(\ell, k_2))$
complete-link	$\min(\operatorname{sim}(\ell, k_1), \operatorname{sim}(\ell, k_2))$
centroid	$\left(\frac{1}{N_m}\vec{V}_m\right)\cdot\left(\frac{1}{N_\ell}\vec{V}_\ell\right)$
group-average	$\left[\frac{1}{(N_m+N_\ell)(N_m+N_\ell-1)}[(\vec{v}_m+\vec{v}_\ell)^2-(N_m+N_\ell)]\right]$

One iteration in efficient HAC algorithm

compute C[5]create P[5] (by sorting) merge 2 and 3, update

similarity of 2, delete 3

1	2	3	4
0.2	8.0	0.6	0.4
2	3	4	1
0.8	0.6	0.4	0.2
2	4	1	
0.3	0.4	0.2	
4	2	1	
0.4	0.3	0.2	

reinsert 2

Efficient single-link clustering

Given: N one-document clusters

```
Compute similarity matrix
for k = 1 to N:
  for \ell = 1 to N:
     C[k][\ell] = sim(d_k, d_\ell)
Initialization
A = []
for k = 1 to N:
  I[k] = 1
  NBM[k].index = arg max_{i i \neq k} C[k][i]
  NBM[k].sim = C[k][NBM[k].index]
Compute clustering
for n = 1 to N - 1:
  k_1 = \arg \max_{i,|[i]=1} NBM[i].sim
  k_2 = NBM[k_1].index
  A.append(\langle k_1, k_2 \rangle)
  k_{\min} = \arg\min_{i=k_1,k_2} NBM[i].sim
   I[k_{\min}] = 0
```

- Is there an $O(n^2)$ algorithm for complete-link and GAAC? No!
- Single-link is merge-persistent, complete-link and GAAC are not.
- Merge-persistent: If d₂ is best merge candidate for d₃, then after merging d₂ with another cluster d₁, the merger {d₁, d₂} will be the best merge candidate for d₃.
- Example below shows that this is not the case for complete-link clustering: The best candidate is d_4 .

Efficiency: Medoid As Cluster Representative

- The centroid does not have to be a document.
- Medoid: A cluster representative that is one of the documents
- For example: the document closest to the centroid
- One reason this is useful
 - Consider the representative of a large cluster (>1000 documents)
 - The centroid of this cluster will be a dense vector
 - The medoid of this cluster will be a sparse vector
- Compare: mean/centroid vs. median/medoid

Comparison of HAC algorithms

method	combination similarity	time compl.	optimal?	comment
single-link	max sim of any two docs	$O(N^2)$	yes	chaining effect
complete-link	min sim of any two docs	$O(N^2 \log N)$	no	sensitive to outliers
group-average	avg sim of any two docs	$O(N^2 \log N)$	no	best choice for most applications
centroid	similarity of centroids	$O(N^2 \log N)$	no	inversions can occur

Bisecting K-means

- Divisive hierarchical clustering method using K-means
- For I=1 to k-1 do {
 - Pick a leaf cluster C to split
 - For J=1 to ITER do {
 - Use K-means to split C into two sub-clusters, C₁ and C₂
 - Choose the best of the above splits and make it permanent}

,

 Steinbach et al. suggest HAC is better than k-means but Bisecting K-means is better than HAC for their text experiments

Exercise

- Consider running 2-means clustering on a corpus, each doc of which is from one of two different languages. What are the two clusters we would expect to see?
- Is HAC likely to produce results different to the above?

- Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold
- Cut to get a predetermined number of clusters K
- Hierarchical clustering is often used to get K flat clusters.
 The hiearchy is then ignored.

Major issue - labeling

- After clustering algorithm finds clusters how can they be useful to the end user?
- Need pithy label for each cluster
 - In search results, say "Animal" or "Car" in the jaguar example.
 - In topic trees (Yahoo), need navigational cues.
 - Often done by hand, a posteriori.

Ideas?

How to Label Clusters

- Show titles of typical documents
 - Titles are easy to scan
 - Authors create them for quick scanning!
 - But you can only show a few titles which may not fully represent cluster
- Show words/phrases prominent in cluster
 - More likely to fully represent cluster
 - Use distinguishing words/phrases
 - Differential labeling
 - But harder to scan

Labeling

- Common heuristics list 5-10 most frequent terms in the centroid vector.
 - Drop stop-words; stem.
- Differential labeling by frequent terms
 - Within a collection "Computers", clusters all have the word computer as frequent term.
 - Discriminant analysis of centroids.
- Perhaps better: distinctive noun phrase

Cluster labeling: Example

		labeling method			
	# docs	centroid	mutual information	title	
4	622	oil plant mexico production crude power 000 refinery gas bpd	plant oil production barrels crude bpd mexico dolly capa- city petroleum	MEXICO: Hurricane Dolly heads for Me- xico coast	
9	1017	police security rus- sian people milita- ry peace killed told grozny court	police killed military security peace told troops forces re- bels people	RUSSIA: Russia's Lebed meets rebel chief in Chechnya	
10	1259	00 000 tonnes tra- ders futures wheat prices cents sep- tember tonne	delivery traders fu- tures tonne tonnes desk wheat prices 000 00	USA: Export Business - Grain/oilseeds complex	

- Three methods: most prominent terms in centroid, differential labeling using MI, title of doc closest to centroid
- Any feature selection method can also be used for labeling

Flat or hierarchical clustering?

- For high efficiency, use flat clustering (or perhaps bisecting) k-means)
- When results should be deterministic: HAC
- When a hierarchical structure is desired: hiearchical algorithm
- HAC also can be applied if K cannot be predetermined (can start without knowing K)

- IIR 17
- Data clustering: A review. A. K. Jain, M. N. Murty and P. J. Flynn. ACM Computering Surveys, 1999
- A comparison of document clustering techniques. Michael Steinbach, George Karypis and Vipin Kumar. KDD Workshop on Text Mining, 2000