Lógica de Proposições Quantificadas QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

- Predicados
- Quantificador universal e existencial
- Quantificadores com domínio restrito
- Quantificadores e variáveis ligadas
- Equivalência entre quantificadores
- Proposições com quantificadores aninhados

Referências para esta aula

- **Seções 1.3 e 1.4** do livro: Kenneth H. Rosen. *Matemática Discreta e suas Aplicações*. (Sexta Edição).
- Capítulo 2 do livro: Daniel J. VELLEMAN. How to Prove it. A structured approach. (3rd Edition). Cambridge University Press; 3rd Edition, 2019.

Introdução

• A lógica proposicional não pode expressar adequadamente o significado das proposições em matemática e em linguagem natural.

 A lógica proposicional não pode expressar adequadamente o significado das proposições em matemática e em linguagem natural.

• Exemplo:

"Todo computador conectado à rede da universidade está funcionando apropriadamente."

• A lógica proposicional não pode expressar adequadamente o significado das proposições em matemática e em linguagem natural.

• Exemplo:

"Todo computador conectado à rede da universidade está funcionando apropriadamente."

Seja MATH3 um dos computadores conectados à rede da universidade. Nenhuma regra da lógica proposicional nos permite decidir sobre a veracidade da afirmação:

• A lógica proposicional não pode expressar adequadamente o significado das proposições em matemática e em linguagem natural.

• Exemplo:

"Todo computador conectado à rede da universidade está funcionando apropriadamente."

Seja MATH3 um dos computadores conectados à rede da universidade. Nenhuma regra da lógica proposicional nos permite decidir sobre a veracidade da afirmação:

"MATH3 está funcionando apropriadamente."

• A lógica proposicional não pode expressar adequadamente o significado das proposições em matemática e em linguagem natural.

• Exemplo:

"Todo computador conectado à rede da universidade está funcionando apropriadamente."

Seja *MATH*3 um dos computadores conectados à rede da universidade. Nenhuma regra da lógica proposicional nos permite decidir sobre a veracidade da afirmação:

"MATH3 está funcionando apropriadamente."

 Por isto, introduzimos os predicados e a lógica de predicados, a fim de podermos trabalhar com declarações envolvendo variáveis e propriedades sobre estas variáveis.

"x é maior que 3"

• P(x) = x é maior que 3: P indica o predicado e x é a variável.

- P(x) = x é maior que 3: P indica o predicado e x é a variável.
- Uma vez que um valor é dado para a variável x, a declaração P(x) torna-se uma proposição e tem um valor-verdade.

- P(x) = x é maior que 3: P indica o predicado e x é a variável.
- Uma vez que um valor é dado para a variável x, a declaração P(x) torna-se uma proposição e tem um valor-verdade.
- Qual o valor-verdade de P(4) e P(2)?

- P(x) = x é maior que 3: P indica o predicado e x é a variável.
- Uma vez que um valor é dado para a variável x, a declaração P(x) torna-se uma proposição e tem um valor-verdade.
- Qual o valor-verdade de P(4) e P(2)?
- Seja Q(x, y) = "x = y + 3". Quais os valores-verdade de Q(1, 2) e Q(3, 0)?

- Definição: Um predicado é uma sentença que contém um número finito de variáveis e se torna uma proposição quando as variáveis são substituídas por valores específicos.
- Os valores das variáveis de predicados são definidos por conjuntos chamados domínios. Por exemplo: R, Z, Q, N.

Quantificadores

P(x) contendo a variável livre x é verdadeira para alguns valores de x°

Para quantos?

Quantificadores

P(x) contendo a variável livre x é verdadeira para alguns valores de x

Para quantos?

Para todos?

Para pelo menos um?

Quantificadores

P(x) contendo a variável livre x é verdadeira para alguns valores de x

Para pelo menos um?

Quantificadores

Surgem para expressar estas ideias de quantidades.

Definição: Quantificadores são palavras/expressões que referem a quantidades tais como "todos" e "alguns" e indicam para quantos elementos do domínio um dado predicado é verdadeiro.

• Usado para expressar a ideia de que P(x) vale para **todos** os valores do universo de discurso (ou domínio de discurso).

 $\forall x P(x)$ "para todo x, vale P(x)"

• Usado para expressar a ideia de que P(x) vale para **todos** os valores do universo de discurso (ou domínio de discurso).

$$\forall x P(x)$$
 "para todo x, vale $P(x)$ "

 \circ O conjunto-verdade de P(x) é U.

• Usado para expressar a ideia de que P(x) vale para **todos** os valores do universo de discurso (ou domínio de discurso).

$$\forall x P(x)$$
 "para todo x, vale $P(x)$ "

- \circ O conjunto-verdade de P(x) é U.
- Um elemento para o qual P(x) é falsa é chamado de **contraexemplo**.

• Usado para expressar a ideia de que P(x) vale para **todos** os valores do universo de discurso (ou domínio de discurso).

$$\forall x P(x)$$
 "para todo x, vale $P(x)$ "

- \circ O conjunto-verdade de P(x) é U.
- Um elemento para o qual P(x) é falsa é chamado de **contraexemplo**.
- o x não é mais variável livre.

• Usado para expressar a ideia de que P(x) vale para **todos** os valores do universo de discurso (ou domínio de discurso).

$$\forall x P(x)$$
 "para todo x, vale $P(x)$ "

- o O conjunto-verdade de P(x) é U.
- Um elemento para o qual P(x) é falsa é chamado de **contraexemplo**.
- o x não é mais variável livre.
- Exemplo:

$$U=\mathbb{R}$$
;

$$\forall x(x>2\rightarrow x^2>4).$$

• Usado para expressar a ideia de que **existe pelo menos um** elemento do universo do discurso para o qual P(x) é verdadeira.

 $\exists x P(x)$ "existe x, tal que P(x)"

 Usado para expressar a ideia de que existe pelo menos um elemento do universo do discurso para o qual P(x) é verdadeira.

$$\exists x P(x)$$
 "existe x, tal que $P(x)$ "

o O conjunto-verdade de P(x) é não-vazio.

 Usado para expressar a ideia de que existe pelo menos um elemento do universo do discurso para o qual P(x) é verdadeira.

$$\exists x P(x)$$
 "existe x, tal que $P(x)$ "

- \circ O conjunto-verdade de P(x) é não-vazio.
- o x não é mais variável livre.

 Usado para expressar a ideia de que existe pelo menos um elemento do universo do discurso para o qual P(x) é verdadeira.

$$\exists x P(x)$$
 "existe x, tal que $P(x)$ "

- \circ O conjunto-verdade de P(x) é não-vazio.
- o x não é mais variável livre.
- Exemplo:

$$U=\mathbb{N};$$

$$\exists x(x^2-3x-4=0).$$

 Usado para expressar a ideia de que existe pelo menos um elemento do universo do discurso para o qual P(x) é verdadeira.

$$\exists x P(x)$$
 "existe x, tal que $P(x)$ "

- \circ O conjunto-verdade de P(x) é não-vazio.
- o x não é mais variável livre.
- Exemplo:

$$U = \mathbb{N};$$

 $\exists x(x^2 - 3x - 4 = 0).$
• De fato, $x \in \{-1, 4\}.$

Resumo

TABELA 1 Quantificadores.		
Sentença	Quando é verdadeira?	Quando é falsa?
$\forall x P(x)$	P(x) é verdadeira para todo x .	Existe um x tal que $P(x)$ é falsa.
$\exists x P(x)$	Existe um x tal que $P(x)$ é verdadeira.	P(x) é falsa para todo x .

extraído do livro do Rosen.

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ $M(x) = "x ext{ \'e homem"};$
 - \circ B(x) = "x tem barba".

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ $M(x) = "x ext{ \'e homem"};$
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ $M(x) = "x ext{ \'e homem"};$
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - \circ **Atenção**: $\forall x P(x) \rightarrow Q(x)$ significa $(\forall x P(x)) \rightarrow Q(x)$

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ M(x) = "x 'e homem";
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - \circ **Atenção**: $\forall x P(x) \to Q(x)$ significa $(\forall x P(x)) \to Q(x)$ e **não** $\forall x (P(x) \to Q(x))$.

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ M(x) = "x 'e homem";
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - \circ **Atenção**: $\forall x P(x) \rightarrow Q(x)$ significa $(\forall x P(x)) \rightarrow Q(x)$ e **não** $\forall x (P(x) \rightarrow Q(x))$.
- 3. Alguém não fez a lição de casa.

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ M(x) = "x 'e homem";
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - \circ **Atenção**: $\forall x P(x) \to Q(x)$ significa $(\forall x P(x)) \to Q(x)$ e **não** $\forall x (P(x) \to Q(x))$.
- 3. Alguém não fez a lição de casa.
 - $\circ \exists x(x \text{ não fez a lição de casa}).$

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ M(x) = "x 'e homem";
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - \circ **Atenção**: $\forall x P(x) \to Q(x)$ significa $(\forall x P(x)) \to Q(x)$ e **não** $\forall x (P(x) \to Q(x))$.
- 3. Alguém não fez a lição de casa.
 - $\circ \exists x(x \text{ não fez a lição de casa}).$
 - ∘ $\exists x(\neg L(x))$ tal que L(x) = "x fez a lição de casa".

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ M(x) = "x 'e homem";
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - ∘ **Atenção**: $\forall x P(x) \rightarrow Q(x)$ significa $(\forall x P(x)) \rightarrow Q(x)$ e não $\forall x (P(x) \rightarrow Q(x))$.
- 3. Alguém não fez a lição de casa.
 - $\circ \exists x(x \text{ não fez a lição de casa}).$
 - ∘ $\exists x(\neg L(x))$ tal que L(x) = "x fez a lição de casa".
- 4. Ninguém é perfeito.

- 1. $\exists x (M(x) \land B(x))$ tal que:
 - \circ $M(x) = "x ext{ \'e homem"};$
 - \circ B(x) = "x tem barba".
- 2. $\forall x (M(x) \rightarrow B(x))$
 - Atenção: $\forall x P(x) \rightarrow Q(x)$ significa $(\forall x P(x)) \rightarrow Q(x)$ e não $\forall x (P(x) \rightarrow Q(x))$.
- 3. Alguém não fez a lição de casa.
 - $\circ \exists x(x \text{ não fez a lição de casa}).$
 - ∘ $\exists x(\neg L(x))$ tal que L(x) = "x fez a lição de casa".
- 4. Ninguém é perfeito.
 - ∘ $\forall x(\neg P(x))$ ou $\neg \exists x(P(x))$, tal que P(x) = "x é perfeito".

1. Todos os produtos daquele supermercado são caros ou são de má-qualidade

1. Todos os produtos daquele supermercado são caros ou são de má-qualidade

x um produto;

- Todos os produtos daquele supermercado são caros ou são de má-qualidade
 - o x um produto;
 - \circ Se x está no supermercado, então x é caro ou é de má-qualidade.

- Todos os produtos daquele supermercado são caros ou são de má-qualidade
 - o x um produto;
 - \circ Se x está no supermercado, então x é caro ou é de má-qualidade.

$$S(x) =$$
" x está no supermercado."

- Todos os produtos daquele supermercado são caros ou são de má-qualidade
 - o x um produto;
 - \circ Se x está no supermercado, então x é caro ou é de má-qualidade.

$$S(x) =$$
" x está no supermercado."
 $C(x) =$ " x é caro."

- Todos os produtos daquele supermercado são caros ou são de má-qualidade
 - o x um produto;
 - \circ Se x está no supermercado, então x é caro ou é de má-qualidade.

$$S(x) = "x \text{ está no supermercado."}$$

$$C(x) = "x \text{ \'e caro."}$$

$$M(x) = "x \text{ \'e de m\'a-qualidade."}$$

- Todos os produtos daquele supermercado são caros ou são de má-qualidade
 - o x um produto;
 - \circ Se x está no supermercado, então x é caro ou é de má-qualidade.

$$S(x) = "x \text{ está no supermercado."}$$

$$C(x) = "x \text{ \'e caro."}$$

$$M(x) = "x \text{ \'e de m\'a-qualidade."}$$

$$\forall x(S(x) \rightarrow (C(x) \lor M(x)))$$

A ⊆ B

$$\circ \ \forall x (x \in A \to x \in B).$$

- $A \subseteq B$ • $\forall x (x \in A \rightarrow x \in B)$.
- $A \cap B \subseteq (B \setminus C)$

- $A \subseteq B$ • $\forall x (x \in A \rightarrow x \in B)$.
- $A \cap B \subseteq (B \setminus C)$ • $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.

- A ⊆ B
 - $\circ \ \forall x(x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - $\circ \ x \in B \setminus C \text{ \'e equivalente a } x \in B \land x \not\in C.$

- A ⊂ B
 - $\circ \ \forall x (x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$

- A ⊂ B
 - $\circ \ \forall x(x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$
- Se $A \subseteq B$, então A e $C \setminus B$ são disjuntos.

- A ⊂ B
 - $\circ \ \forall x(x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x ((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$
- Se $A \subseteq B$, então A e $C \setminus B$ são disjuntos.
 - ∘ $A \cap (C \setminus B) = \emptyset$ significa que:

- A ⊂ B
 - $\circ \ \forall x(x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x ((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$
- Se $A \subseteq B$, então A e $C \setminus B$ são disjuntos.
 - ∘ $A \cap (C \setminus B) = \emptyset$ significa que:
 - $\neg \exists x (x \in A \land x \in C \setminus B)$;

- A ⊂ B
 - $\circ \ \forall x(x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x ((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$
- Se $A \subseteq B$, então A e $C \setminus B$ são disjuntos.
 - ∘ $A \cap (C \setminus B) = \emptyset$ significa que:
 - $\neg \exists x (x \in A \land x \in C \setminus B)$;
 - $\neg \exists x (x \in A \land (x \in C \land x \notin B)).$

- A ⊂ B
 - $\circ \ \forall x (x \in A \to x \in B).$
- $A \cap B \subseteq (B \setminus C)$
 - ∘ $x \in A \cap B$ é equivalente a $x \in A \land x \in B$.
 - ∘ $x \in B \setminus C$ é equivalente a $x \in B \land x \notin C$.
 - ∘ Portanto, $\forall x ((x \in A \land x \in B) \rightarrow (x \in B \land x \notin C))$
- Se $A \subseteq B$, então A e $C \setminus B$ são disjuntos.
 - ∘ $A \cap (C \setminus B) = \emptyset$ significa que:
 - $\neg \exists x (x \in A \land x \in C \setminus B)$;
 - $\neg \exists x (x \in A \land (x \in C \land x \notin B)).$
 - $\circ \ \forall x(x \in A \to x \in B) \to \neg \exists x(x \in A \land (x \in C \land x \notin B)).$

•
$$\forall x \exists y (x + y = 5)$$

•
$$\exists x \forall y (x + y = 5)$$

- $\forall x \exists y (x + y = 5)$
 - Para todo x, existe y tal que x + y = 5.

 $\bullet \ \exists x \forall y (x+y=5)$

- $\forall x \exists y (x + y = 5)$
 - Para todo x, existe y tal que x + y = 5.

- $\exists x \forall y (x + y = 5)$
 - o Existe x tal que para todo y, x + y = 5.

- $\forall x \exists y (x + y = 5)$
 - Para todo x, existe y tal que x + y = 5.
 - Verdadeiro!
- $\exists x \forall y (x + y = 5)$
 - Existe x tal que para todo y, x + y = 5.
 - o Falso!

1.
$$\forall x \exists y (x < y)$$

- 1. $\forall x \exists y (x < y)$
 - o Para x natural arbitrário e fixo, existe y tal que x < y?

- 1. $\forall x \exists y (x < y)$
 - o Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$
 - Existe um natural y para o qual todos os outros são menores do que ele?

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$
 - Existe um natural y para o qual todos os outros são menores do que ele?
 - o Falso!

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$
 - Existe um natural y para o qual todos os outros são menores do que ele?
 - o Falso!
- 3. $\exists x \forall y (x < y)$

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$
 - Existe um natural y para o qual todos os outros são menores do que ele?
 - Falso!
- 3. $\exists x \forall y (x < y)$
 - Existe um natural x tal que todos os outros naturais são maiores do que ele?

- 1. $\forall x \exists y (x < y)$
 - Para x natural arbitrário e fixo, existe y tal que x < y?
 - Verdadeiro!
- 2. $\exists y \forall x (x < y)$
 - Existe um natural y para o qual todos os outros são menores do que ele?
 - Falso!
- 3. $\exists x \forall y (x < y)$
 - Existe um natural x tal que todos os outros naturais são maiores do que ele?
 - Falso!

Decida se é verdadeiro ou falso

1. Qual o valor verdade de $\forall x(x^2 \ge x)$ se o domínio consiste em todos os números reais? E qual o valor-verdade dessa proposição se o domínio são todos os números inteiros?

Decida se é verdadeiro ou falso

- 1. Qual o valor verdade de $\forall x(x^2 \ge x)$ se o domínio consiste em todos os números reais? E qual o valor-verdade dessa proposição se o domínio são todos os números inteiros?
 - \circ Falso quando $U = \mathbb{R}$ pois $\left(\frac{1}{2}\right)^2 \ngeq \frac{1}{2}$.

Decida se é verdadeiro ou falso

- 1. Qual o valor verdade de $\forall x(x^2 \ge x)$ se o domínio consiste em todos os números reais? E qual o valor-verdade dessa proposição se o domínio são todos os números inteiros?
 - \circ Falso quando $U = \mathbb{R}$ pois $\left(\frac{1}{2}\right)^2 \not\geq \frac{1}{2}$.
 - \circ Verdadeito quando $U = \mathbb{Z}$.

 Algumas vezes precisamos de mais precisão do que simplesmente existe um elemento no universo do discurso.

• Algumas vezes precisamos de mais precisão do que simplesmente existe um elemento no universo do discurso.

Precisamos que ele seja único.

∃! "existe e é único"

• Algumas vezes precisamos de mais precisão do que simplesmente existe um elemento no universo do discurso.

Precisamos que ele seja único.

∃! "existe e é único"

$$\exists !xP(x)$$

 Algumas vezes precisamos de mais precisão do que simplesmente existe um elemento no universo do discurso.

Precisamos que ele seja único.

∃! "existe e é único"

$$\exists !xP(x)$$

é uma abreviação para

$$\exists x (P(x) \land \neg \exists y (P(y) \land x \neq y))$$

- Seja o predicado Q(x), onde x tem domínio $U = \{x_1, x_2, \dots, x_n\}$
- Proposição universal é uma generalização da conjunção (∧):

$$\forall x \in U, Q(x) \equiv Q(x_1) \land Q(x_2) \land \ldots \land Q(x_n)$$

- Seja o predicado Q(x), onde x tem domínio $U = \{x_1, x_2, \dots, x_n\}$
- Proposição universal é uma generalização da conjunção (∧):

$$\forall x \in U, Q(x) \equiv Q(x_1) \wedge Q(x_2) \wedge \ldots \wedge Q(x_n)$$

∘ **Exemplo:**
$$Q(x)$$
: x^2 , $U = \{0, 1\}$
 $\forall x \in U$, tal que $Q(x) \equiv Q(0) \land Q(1)$

- Seja o predicado Q(x), onde x tem domínio $U = \{x_1, x_2, \dots, x_n\}$
- Proposição universal é uma generalização da conjunção (∧):

$$\forall x \in U, Q(x) \equiv Q(x_1) \wedge Q(x_2) \wedge \ldots \wedge Q(x_n)$$

• Exemplo:
$$Q(x)$$
: x^2 , $U = \{0, 1\}$
 $\forall x \in U$, tal que $Q(x) \equiv Q(0) \land Q(1)$

Proposição existencial é uma generalização da disjunção (∨):

$$\exists x \in U \text{ tal que } Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \ldots \lor Q(x_n)$$

- Seja o predicado Q(x), onde x tem domínio $U = \{x_1, x_2, \dots, x_n\}$
- Proposição universal é uma generalização da conjunção (∧):

$$\forall x \in U, Q(x) \equiv Q(x_1) \wedge Q(x_2) \wedge \ldots \wedge Q(x_n)$$

• Exemplo:
$$Q(x)$$
: x^2 , $U = \{0, 1\}$
 $\forall x \in U$, tal que $Q(x) \equiv Q(0) \land Q(1)$

Proposição existencial é uma generalização da disjunção (∨):

$$\exists x \in U \text{ tal que } Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \ldots \lor Q(x_n)$$

• Exemplo:
$$Q(x)$$
: $x + x$, $U = \{0, 1\}$
 $\exists x \in U$, tal que $Q(x) \equiv Q(0) \lor Q(1)$

Quantificadores com domínio restrito

Quantificadores com domínio restrito

Dado $U = \mathbb{R}$, o que a proposição $\forall_{x<0}(x^2>0)$ significa?

- Restringe o domínio para qualquer número real x com x < 0.
- Ela diz que "o quadrado de todo número real negativo é positivo".
- A proposição é o mesmo que $\forall x (x < 0 \rightarrow x^2 > 0)$.

Quantificadores com domínio restrito

Dado $U = \mathbb{R}$, o que a proposição $\exists_{z>0}(z^2 = 2)$ significa?

- Ela diz que "existe um número real positivo tal que seu quadrado é igual a 2".
- Essa proposição é equivalente a $\exists z(z > 0 \land z^2 = 2)$.

• $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.

- $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.
 - ∘ $\forall x \in \mathbb{R}(x \ge 0)$ é falso.

- $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.
 - ∘ $\forall x \in \mathbb{R}(x \ge 0)$ é falso.
 - ∘ $\forall x \in \mathbb{N}(x \ge 0)$ é **verdadeiro**.

• $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.

```
∘ \forall x \in \mathbb{R}(x \ge 0) é falso.
```

∘ $\forall x \in \mathbb{N}(x \ge 0)$ é verdadeiro.

• $\exists x \in U \ P(x)$: existe $x \in U \ P(x)$.

- $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.
 - $\forall x \in \mathbb{R}(x \ge 0)$ é falso.
 - ∘ $\forall x \in \mathbb{N}(x \ge 0)$ é verdadeiro.

- $\exists x \in U \ P(x)$: existe $x \in U \ P(x)$.
 - ∘ $\exists x \in \mathbb{R}(x < 0)$ é **verdadeiro**.

- $\forall x \in U \ P(x)$: para todo $x \in U \ P(x)$.
 - $\forall x \in \mathbb{R}(x \ge 0)$ é falso.
 - ∘ $\forall x \in \mathbb{N}(x \ge 0)$ é verdadeiro.

- $\exists x \in U \ P(x)$: existe x em U, P(x).
 - ∘ $\exists x \in \mathbb{R}(x < 0)$ é **verdadeiro**.
 - ∘ $\exists x \in \mathbb{N}(x < 0)$ é falso.

Quantificadores restritos - Resumo

$$\forall x \in A P(x)$$

significa que para todo $x \in A$, P(x) é verdadeira, isto é,

$$\forall x(x\in A\rightarrow P(x))$$

Quantificadores restritos - Resumo

$$\forall x \in A P(x)$$

significa que para todo $x \in A$, P(x) é verdadeira, isto é,

$$\forall x (x \in A \rightarrow P(x))$$

$$\exists x \in A P(x)$$

significa que existe $x \in A$ para o qual P(x) é verdadeira, isto é,

$$\exists x (x \in A \land P(x))$$

Quantificadores restritos - Resumo

$$\forall x \in A P(x)$$

significa que para todo $x \in A$, P(x) é verdadeira, isto é,

$$\forall x (x \in A \rightarrow P(x))$$

$$\exists x \in A \ P(x)$$

significa que existe $x \in A$ para o qual P(x) é verdadeira, isto é,

$$\exists x (x \in A \land P(x))$$

Quantificadores restritos podem ser pensados como abreviações das expressões acima.

Equivalências envolvendo quantificadores

Equivalências envolvendo quantificadores

- Definição: Sentenças que envolvem predicados e quantificadores são logicamente equivalentes se e somente se elas têm o mesmo valor verdade quaisquer que sejam os predicados substituídos nessas sentenças e qualquer que seja o domínio de discurso para as variáveis nessas funções proposicionais.
- Usamos a notação $S \equiv T$ para indicar que as duas declarações S e T que envolvem predicados e quantificadores são logicamente equivalentes.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

 $\forall x P(x)$ é falso sse existe um elemento x no domínio para o qual P(x) é falso.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

 $\forall x P(x)$ é falso sse existe um elemento x no domínio para o qual P(x) é falso.

Existe um elemento x no domínio para o qual P(x) é falso sse existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

 $\forall x P(x)$ é falso sse existe um elemento x no domínio para o qual P(x) é falso.

Existe um elemento x no domínio para o qual P(x) é falso sse existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro.

Existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro sse $\exists x \neg P(x)$ é verdadeiro.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

 $\forall x P(x)$ é falso sse existe um elemento x no domínio para o qual P(x) é falso.

Existe um elemento x no domínio para o qual P(x) é falso sse existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro.

Existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro sse $\exists x \neg P(x)$ é verdadeiro.

Portanto, concluímos que $\neg \forall x P(x)$ é verdadeiro sse $\exists x \neg P(x)$ é verdadeiro.

(Leis de De Morgan para quantificadores)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Demonstração:

Note que $\neg \forall x P(x)$ é verdadeiro sse $\forall x P(x)$ é falso.

 $\forall x P(x)$ é falso sse existe um elemento x no domínio para o qual P(x) é falso.

Existe um elemento x no domínio para o qual P(x) é falso sse existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro.

Existe um elemento x no domínio tal que $\neg P(x)$ é verdadeiro sse $\exists x \neg P(x)$ é verdadeiro.

Portanto, concluímos que $\neg \forall x P(x)$ é verdadeiro sse $\exists x \neg P(x)$ é verdadeiro.

Logo,
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
.

(Leis de De Morgan para quantificadores)

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

(Leis de De Morgan para quantificadores)

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

(Leis de De Morgan para quantificadores)

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

 $\exists x P(x)$ é falso sse não existe x no domínio para o qual P(x) é verdadeiro.

(Leis de De Morgan para quantificadores)

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

 $\exists x P(x)$ é falso sse não existe x no domínio para o qual P(x) é verdadeiro.

Agora, não existe x no domínio para o qual P(x) é verdadeiro sse P(x) é falso para todo x no domínio.

(Leis de De Morgan para quantificadores)

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

 $\exists x P(x)$ é falso sse não existe x no domínio para o qual P(x) é verdadeiro.

Agora, não existe x no domínio para o qual P(x) é verdadeiro sse P(x) é falso para todo x no domínio.

Note que P(x) é falso para todo x no domínio sse $\neg P(x)$ é verdadeiro para todo x no domínio, o que acontece sse $\forall x \neg P(x)$ é verdadeiro.

(Leis de De Morgan para quantificadores)

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

 $\exists x P(x)$ é falso sse não existe x no domínio para o qual P(x) é verdadeiro.

Agora, não existe x no domínio para o qual P(x) é verdadeiro sse P(x) é falso para todo x no domínio.

Note que P(x) é falso para todo x no domínio sse $\neg P(x)$ é verdadeiro para todo x no domínio, o que acontece sse $\forall x \neg P(x)$ é verdadeiro.

Portanto, concluímos que $\neg \exists x P(x)$ é verdadeiro sse $\forall x \neg P(x)$ é verdadeiro.

(Leis de De Morgan para quantificadores)

Demonstração:

Note que $\neg \exists x P(x)$ é verdadeiro sse $\exists x P(x)$ é falso.

 $\exists x P(x)$ é falso sse não existe x no domínio para o qual P(x) é verdadeiro.

Agora, não existe x no domínio para o qual P(x) é verdadeiro sse P(x) é falso para todo x no domínio.

Note que P(x) é falso para todo x no domínio sse $\neg P(x)$ é verdadeiro para todo x no domínio, o que acontece sse $\forall x \neg P(x)$ é verdadeiro.

Portanto, concluímos que $\neg \exists x P(x)$ é verdadeiro sse $\forall x \neg P(x)$ é verdadeiro.

$$\mathsf{Logo}, \, \neg \exists x P(x) \equiv \, \forall x \neg P(x).$$

Leis da negação do quantificador

(Leis de De Morgan para quantificadores)

 Quando o domínio de um predicado P(x) consiste em n elementos, em que n é um número inteiro, as regras de negação para proposições quantificadas são exatamente como as leis de De Morgan.

Leis da negação do quantificador

(Leis de De Morgan para quantificadores)

- Quando o domínio de um predicado P(x) consiste em n elementos, em que n é um número inteiro, as regras de negação para proposições quantificadas são exatamente como as leis de De Morgan.
- Quando o domínio tem n elementos x_1, x_2, \ldots, x_n segue que $\neg \forall x P(x)$ é o mesmo que $\neg (P(x_1) \land P(x_2) \land \cdots \land P(x_n))$ e que é equivalente a $\neg P(x_1) \lor \neg P(x_2) \lor \cdots \lor \neg P(x_n)$. Pela lei de De Morgan isso é o mesmo que $\exists x \neg P(x)$.

Leis da negação do quantificador

(Leis de De Morgan para quantificadores)

- Quando o domínio de um predicado P(x) consiste em n elementos, em que n é um número inteiro, as regras de negação para proposições quantificadas são exatamente como as leis de De Morgan.
- Quando o domínio tem n elementos x_1, x_2, \ldots, x_n segue que $\neg \forall x P(x)$ é o mesmo que $\neg (P(x_1) \land P(x_2) \land \cdots \land P(x_n))$ e que é equivalente a $\neg P(x_1) \lor \neg P(x_2) \lor \cdots \lor \neg P(x_n)$. Pela lei de De Morgan isso é o mesmo que $\exists x \neg P(x)$.
- Analogamente, $\neg \exists x P(x)$ é o mesmo que $\neg (P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n))$, que pela lei de De Morgan é equivalente a $\neg P(x_1) \land \neg P(x_2) \land \cdots \land \neg P(x_n)$, que é o mesmo que $\forall x \neg P(x)$.

A ⊆ B

- A ⊆ B
 - $\circ \ \forall x (x \in A \rightarrow x \in B)$

- A ⊆ B
 - $\circ \forall x (x \in A \rightarrow x \in B)$
 - ∘ **Negando**: $\neg \forall x (x \in A \rightarrow x \in B)$

- A ⊆ B
 - $\circ \ \forall x(x \in A \rightarrow x \in B)$
 - ∘ Negando: $\neg \forall x (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (x \in A \rightarrow x \in B)$

(Lei da negação do quantificador)

- A ⊂ B
 - $\circ \forall x (x \in A \rightarrow x \in B)$
 - ∘ Negando: $\neg \forall x (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (x \in A \rightarrow x \in B)$

(Lei da negação do quantificador)

• $\equiv \exists x \neg (\neg x \in A \lor x \in B)$

(Lei do condicional)

- A ⊂ B
 - $\circ \forall x (x \in A \rightarrow x \in B)$
 - ∘ Negando: $\neg \forall x (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (x \in A \rightarrow x \in B)$

(Lei da negação do quantificador)

• $\equiv \exists x \neg (\neg x \in A \lor x \in B)$

(Lei do condicional)

• $\equiv \exists x (\neg \neg x \in A \land \neg x \in B)$

(DeMorgan)

- A ⊂ B
 - $\circ \ \forall x(x \in A \rightarrow x \in B)$
 - ∘ **Negando**: $\neg \forall x (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (\neg x \in A \lor x \in B)$
 - $\equiv \exists x (\neg \neg x \in A \land \neg x \in B)$
 - $\equiv \exists x (x \in A \land \neg x \in B)$

(Lei da negação do quantificador)

(Lei do condicional)

(DeMorgan)

(Negação dupla)

- A ⊂ B
 - $\circ \ \forall x(x \in A \rightarrow x \in B)$
 - ∘ Negando: $\neg \forall x (x \in A \rightarrow x \in B)$
 - $\equiv \exists x \neg (x \in A \rightarrow x \in B)$

(Lei da negação do quantificador)

• $\equiv \exists x \neg (\neg x \in A \lor x \in B)$

(Lei do condicional)

• $\equiv \exists x (\neg \neg x \in A \land \neg x \in B)$

(DeMorgan)

• $\equiv \exists x (x \in A \land \neg x \in B)$

- (Negação dupla)
- Isto é: A ⊈ B é o mesmo que dizer que existe x tal que x pertence a A mas x não pertence a B.

• Todo mundo tem um parente de quem não gosta.

- Todo mundo tem um parente de quem não gosta.
 - $\circ P(x,y) = "x e y são parentes."$

- Todo mundo tem um parente de quem não gosta.
 - o P(x,y) = "x e y são parentes."
 - $\circ L(x,y) = "x \text{ gosta de } y."$

- Todo mundo tem um parente de quem não gosta.
 - $\circ P(x,y) = "x e y são parentes."$
 - $\circ L(x,y) = "x \text{ gosta de } y."$
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$

- Todo mundo tem um parente de quem não gosta.
 - o P(x, y) = "x e y são parentes."
 - o L(x, y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ **Negando**: $\neg \forall x \exists y (P(x,y) \land \neg L(x,y))$.

- Todo mundo tem um parente de quem não gosta.
 - o P(x, y) = "x e y são parentes."
 - \circ L(x,y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ Negando: $\neg \forall x \exists y (P(x, y) \land \neg L(x, y))$.
 - $\equiv \exists x \neg \exists y (P(x,y) \land \neg L(x,y)).$ (Lei da negação do quantificador)

- Todo mundo tem um parente de quem não gosta.
 - o P(x, y) = "x e y são parentes."
 - \circ L(x,y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ **Negando**: $\neg \forall x \exists y (P(x,y) \land \neg L(x,y))$.
 - $\equiv \exists x \neg \exists y (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y \neg (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)

- Todo mundo tem um parente de quem não gosta.
 - o P(x, y) = "x e y são parentes."
 - \circ L(x, y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ **Negando**: $\neg \forall x \exists y (P(x,y) \land \neg L(x,y))$.
 - $\equiv \exists x \neg \exists y (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y \neg (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y (\neg P(x, y) \lor \neg \neg L(x, y)).$ (DeMorgan)

- Todo mundo tem um parente de quem não gosta.
 - P(x, y) = "x e y são parentes."
 - o L(x, y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ **Negando**: $\neg \forall x \exists y (P(x,y) \land \neg L(x,y))$.
 - $\equiv \exists x \neg \exists y (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y \neg (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y (\neg P(x, y) \lor \neg \neg L(x, y)).$ (DeMorgan)
 - $\equiv \exists x \forall y (\neg P(x, y) \lor L(x, y)).$ (Negação Dupla)

- Todo mundo tem um parente de quem não gosta.
 - P(x, y) = x e y são parentes.
 - o L(x, y) = "x gosta de y."
 - ∘ **Então:** $\forall x \exists y (P(x,y) \land \neg L(x,y)).$
 - ∘ **Negando**: $\neg \forall x \exists y (P(x,y) \land \neg L(x,y))$.
 - $\equiv \exists x \neg \exists y (P(x, y) \land \neg L(x, y)).$ (Lei da negação do quantificador)
 - $\equiv \exists x \forall y \neg (P(x,y) \land \neg L(x,y))$. (Lei da negação do quantificador)
 - $\equiv \exists x \forall y (\neg P(x, y) \lor \neg \neg L(x, y)).$ (DeMorgan)
 - $\equiv \exists x \forall y (\neg P(x, y) \lor L(x, y)).$ (Negação Dupla)
 - $\equiv \exists x \forall y (P(x,y) \to L(x,y))$. (Lei do condicional)

• $\neg \forall x \in A P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

• $\neg \forall x \in A \ P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \ \neg \forall x \in A \ P(x)$$

• $\neg \forall x \in A P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \neg \forall x \in A P(x)$$

•
$$\equiv \neg \forall x (x \in A \rightarrow P(x))$$

(Expansão da abreviação)

• $\neg \forall x \in A \ P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \neg \forall x \in A P(x)$$

- $\equiv \neg \forall x (x \in A \rightarrow P(x))$ (Expansão da abreviação)
- $\equiv \exists x \neg (x \in A \rightarrow P(x))$ (Lei da negação do quantificadores)

• $\neg \forall x \in A \ P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \neg \forall x \in A P(x)$$

- $\equiv \neg \forall x (x \in A \rightarrow P(x))$
- (())
- $\equiv \exists x \neg (x \in A \rightarrow P(x))$

• $\equiv \exists x \neg (\neg x \in A \lor P(x))$

(Expansão da abreviação)

(Lei da negação do quantificadores)

(Lei do condicional)

• $\neg \forall x \in A \ P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \neg \forall x \in A P(x)$$

- $\equiv \neg \forall x (x \in A \rightarrow P(x))$
- $\equiv \exists x \neg (x \in A \rightarrow P(x))$
- $\equiv \exists x \neg (\neg x \in A \lor P(x))$
- $\equiv \exists x (\neg \neg x \in A \land \neg P(x))$
- $\equiv \exists x (x \in A \land \neg P(x))$

(Expansão da abreviação)

(Lei da negação do quantificadores)

(Lei do condicional)

(DeMorgan)

(Negação dupla)

• $\neg \forall x \in A \ P(x)$ é equivalente a $\exists x \in A \neg P(x)$.

$$\circ \neg \forall x \in A P(x)$$

- $\equiv \neg \forall x (x \in A \rightarrow P(x))$ (Expansão da abreviação)
- $\equiv \exists x \neg (x \in A \rightarrow P(x))$ (Lei da negação do quantificadores)
- $\equiv \exists x \neg (\neg x \in A \lor P(x))$ (Lei do condicional)
- $\equiv \exists x (\neg \neg x \in A \land \neg P(x))$ (DeMorgan)
- $\equiv \exists x (x \in A \land \neg P(x))$ (Negação dupla)
- $\equiv \exists x \in A \neg P(x)$ (Abreviação)

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

• $\equiv \neg \exists x (x \in A \land P(x))$

(Expansão da abreviação)

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

• $\equiv \neg \exists x (x \in A \land P(x))$

(Expansão da abreviação)

• $\equiv \forall x \neg (x \in A \land P(x))$

(Lei da negação do quantificador)

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

• $\equiv \neg \exists x (x \in A \land P(x))$

(Expansão da abreviação)

• $\equiv \forall x \neg (x \in A \land P(x))$

(Lei da negação do quantificador)

• $\equiv \forall x (\neg x \in A \lor \neg P(x))$

(DeMorgan)

• $\neg \exists x \in A P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

- $\equiv \neg \exists x (x \in A \land P(x))$
- $\equiv \forall x \neg (x \in A \land P(x))$
- $\equiv \forall x (\neg x \in A \lor \neg P(x))$
- $\equiv \forall x (x \in A \rightarrow \neg P(x))$

(Expansão da abreviação)

(Lei da negação do quantificador)

(DeMorgan)

(Lei do condicional)

• $\neg \exists x \in A \ P(x)$ é equivalente a $\forall x \in A \neg P(x)$.

$$\circ \neg \exists x \in A P(x)$$

- $\equiv \neg \exists x (x \in A \land P(x))$
- $\equiv \forall x \neg (x \in A \land P(x))$
- $\equiv \forall x (\neg x \in A \lor \neg P(x))$
- $\equiv \forall x (x \in A \rightarrow \neg P(x))$
- $\equiv \forall x \in A \neg P(x)$

(Expansão da abreviação)

(Lei da negação do quantificador)

(DeMorgan)

(Lei do condicional)

(Abreviação)

Sentenças Quantificadas e Domínio Vazio

• $\exists x \in U P(x)$

• $\exists x \in U \ P(x)$ Sempre falso!

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U P(x)$

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- Prova 1: ∀x ∈ U P(x) é equivalente a ¬¬∀x ∈ U P(x),
 o que é equivalente a ¬∃x ∈ U¬P(x).

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - ∘ Como $\exists x \in U \neg P(x)$ é falso (veja acima),

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - Como $\exists x \in U \neg P(x)$ é falso (veja acima),
 - ∘ então $\neg \exists x \in U \neg P(x)$ é verdadeiro.

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - Como $\exists x \in U \neg P(x)$ é falso (veja acima),
 - ∘ então $\neg \exists x \in U \neg P(x)$ é verdadeiro.
- Prova 2: $\forall x \in U \ P(x)$ é equivalente a $\forall x (x \in U \rightarrow P(x))$

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - Como $\exists x \in U \neg P(x)$ é falso (veja acima),
 - ∘ então $\neg \exists x \in U \neg P(x)$ é verdadeiro.
- **Prova 2**: $\forall x \in U \ P(x)$ é equivalente a $\forall x (x \in U \rightarrow P(x))$
 - O condicional é falso apenas quando o antecedente é verdadeiro e o consequente falso.

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - Como $\exists x \in U \neg P(x)$ é falso (veja acima),
 - ∘ então $\neg \exists x \in U \neg P(x)$ é verdadeiro.
- **Prova 2**: $\forall x \in U \ P(x)$ é equivalente a $\forall x (x \in U \rightarrow P(x))$
 - O condicional é falso apenas quando o antecedente é verdadeiro e o consequente falso.
 - o O antecedente $x \in U$ nunca é verdadeiro.

- $\exists x \in U \ P(x)$ Sempre falso!
- $\forall x \in U \ P(x)$ Sempre verdadeiro, vacuosamente verdadeiro!
- **Prova 1**: $\forall x \in U \ P(x)$ é equivalente a $\neg \neg \forall x \in U \ P(x)$,
 - ∘ que é equivalente a $\neg \exists x \in U \neg P(x)$.
 - Como $\exists x \in U \neg P(x)$ é falso (veja acima),
 - ∘ então $\neg \exists x \in U \neg P(x)$ é verdadeiro.
- **Prova 2**: $\forall x \in U \ P(x)$ é equivalente a $\forall x (x \in U \rightarrow P(x))$
 - O condicional é falso apenas quando o antecedente é verdadeiro e o consequente falso.
 - o O antecedente $x \in U$ nunca é verdadeiro.
 - Logo, o condicional $x \in U \rightarrow P(x)$ é sempre verdadeiro.

• **Definição:** Dois quantificadores estão **aninhados** se um está dentro no escopo do outro.

• **Definição:** Dois quantificadores estão **aninhados** se um está dentro no escopo do outro.

Exemplo:
$$\forall x \exists y (x + y = 0)$$

 Definição: Dois quantificadores estão aninhados se um está dentro no escopo do outro.

Exemplo:
$$\forall x \exists y (x + y = 0)$$

- A sentença $\forall x \exists y (x + y = 0)$ diz que, para cada número real x existe um número real y, tal que x + y = 0;
- o Isto é, todo número real tem um inverso aditivo (oposto).

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$$

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$$

Solução:

 "Para quaisquer dois números reais x e y, se x é positivo e y é negativo, então xy é negativo."

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$$

Solução:

- "Para quaisquer dois números reais x e y, se x é positivo e y é negativo, então xy é negativo."
- "O produto de um número real positivo e um número real negativo é sempre um número real negativo."

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y (x + y = y + x)$$

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y (x + y = y + x)$$

Solução:

- "Para qualquer número real x, para qualquer número real y, x + y = y + x" (lei comutativa da adição)
- "Para qualquer par de números reais x e y, x + y = y + x"

• Dado como domínio o conjunto \mathbb{R} , traduza para o português a sentença:

$$\forall x \forall y (x + y = y + x)$$

Solução:

- "Para qualquer número real x, para qualquer número real y, x + y = y + x" (lei comutativa da adição)
- "Para qualquer par de números reais x e y, x + y = y + x"
- Esta última sentença determina que

$$\forall x \forall y (x + y = y + x) \equiv \forall y \forall x (x + y = y + x)$$

A ordem dos quantificadores **universais** aninhados em uma declaração sem outros quantificadores pode ser alterada sem modificar o significado da declaração quantificada.

 $\bullet\,$ Dado como domínio o conjunto $\mathbb N,$ traduza para o português a sentença:

$$\exists x \exists y (xy = 6)$$

ullet Dado como domínio o conjunto $\mathbb N$, traduza para o português a sentença:

$$\exists x \exists y (xy = 6)$$

Solução:

- "Existe um inteiro x para o qual existe um inteiro y tal que xy = 6"
- "Existe um par de inteiros x, y para o qual xy = 6"

• Dado como domínio o conjunto \mathbb{N} , traduza para o português a sentença:

$$\exists x \exists y (xy = 6)$$

Solução:

- "Existe um inteiro x para o qual existe um inteiro y tal que xy = 6"
- "Existe um par de inteiros x, y para o qual xy = 6"
- Esta última sentença determina que

$$\exists x \exists y (xy = 6) \equiv \exists y \exists x (xy = 6)$$

A ordem dos quantificadores **existenciais** aninhados em uma declaração sem outros quantificadores pode ser alterada sem modificar o significado da declaração quantificada.

A ordem dos quantificadores aninhados **precisa ser considerada** se os quantificadores são de tipos diferentes.

• $\forall x \exists y P(x, y)$ não é o mesmo que $\exists y \forall x P(x, y)$

A ordem dos quantificadores aninhados **precisa ser considerada** se os quantificadores são de tipos diferentes.

• $\forall x \exists y P(x, y)$ não é o mesmo que $\exists y \forall x P(x, y)$

Exemplo:

• Suponha P(x,y) = "x ama y"

A ordem dos quantificadores aninhados **precisa ser considerada** se os quantificadores são de tipos diferentes.

• $\forall x \exists y P(x, y)$ não é o mesmo que $\exists y \forall x P(x, y)$

Exemplo:

- Suponha P(x, y) = "x ama y"
- Então: ∀x∃yP(x, y) traduz para
 Todo mundo ama alguém.

A ordem dos quantificadores aninhados **precisa ser considerada** se os quantificadores são de tipos diferentes.

• $\forall x \exists y P(x, y)$ não é o mesmo que $\exists y \forall x P(x, y)$

Exemplo:

- Suponha P(x, y) = "x ama y"
- Então: ∀x∃yP(x, y) traduz para
 Todo mundo ama alguém.
- Por outro lado, ∃y∀xP(x, y) traduz para:
 Existe alguém que é amado por todo mundo.

O significado dos dois é diferente.

• **Exemplo:** Seja Q(x,y) a sentença "x+y=0". Quais os valores-verdade das quantificações $\exists y \forall x Q(x,y)$ e $\forall x \exists y Q(x,y)$, em que $x,y \in \mathbb{R}$?

- **Exemplo:** Seja Q(x, y) a sentença "x + y = 0". Quais os valores-verdade das quantificações $\exists y \forall x Q(x, y)$ e $\forall x \exists y Q(x, y)$, em que $x, y \in \mathbb{R}$?
- **Solução:** A quantificação $\exists y \forall x Q(x,y)$ indica a proposição "Existe um número real y tal que para todo número real x, Q(x,y)."

- **Exemplo:** Seja Q(x, y) a sentença "x + y = 0". Quais os valores-verdade das quantificações $\exists y \forall x Q(x, y)$ e $\forall x \exists y Q(x, y)$, em que $x, y \in \mathbb{R}$?
- **Solução:** A quantificação $\exists y \forall x Q(x, y)$ indica a proposição "Existe um número real y tal que para todo número real x, Q(x, y)."

Sabemos que, qualquer que seja o valor de y escolhido, existe um único valor x para o qual x+y=0. Como não existe número real y tal que x+y=0 para todo número real x, a sentença $\exists y \forall x Q(x,y)$ é falsa.

- **Exemplo:** Seja Q(x, y) a sentença "x + y = 0". Quais os valores-verdade das quantificações $\exists y \forall x Q(x, y)$ e $\forall x \exists y Q(x, y)$, em que $x, y \in \mathbb{R}$?
- **Solução:** A quantificação $\exists y \forall x Q(x,y)$ indica a proposição "Existe um número real y tal que para todo número real x, Q(x,y)."

Sabemos que, qualquer que seja o valor de y escolhido, existe um único valor x para o qual x+y=0. Como não existe número real y tal que x+y=0 para todo número real x, a sentença $\exists y \forall x Q(x,y)$ é falsa.

A quantificação $\forall x \exists y Q(x,y)$ indica a proposição "Para todo número real x existe um número real y tal que Q(x,y)."

- **Exemplo:** Seja Q(x, y) a sentença "x + y = 0". Quais os valores-verdade das quantificações $\exists y \forall x Q(x, y)$ e $\forall x \exists y Q(x, y)$, em que $x, y \in \mathbb{R}$?
- **Solução:** A quantificação $\exists y \forall x Q(x,y)$ indica a proposição "Existe um número real y tal que para todo número real x, Q(x,y)."

Sabemos que, qualquer que seja o valor de y escolhido, existe um único valor x para o qual x+y=0. Como não existe número real y tal que x+y=0 para todo número real x, a sentença $\exists y \forall x Q(x,y)$ é falsa.

A quantificação $\forall x \exists y Q(x, y)$ indica a proposição "Para todo número real x existe um número real y tal que Q(x, y)."

Dado um número real x arbitrário, existe um número real y tal que x + y = 0; a saber, y = -x. Portanto, $\forall x \exists y Q(x, y)$ é **verdadeira**.

Sentença	Quando é verdadeira?	Quando é falsa?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) é verdadeira para todo par x, y .	Existe um par x , y para o qual $P(x, y)$ é falsa.
$\forall x\exists yP(x,y)$	Para todo x existe um y para o qual $P(x, y)$ é verdadeira.	Existe um x tal que $P(x, y)$ é falsa para todo y .
$\exists x \forall y P(x,y)$	Existe um x tal que $P(x, y)$ é verdadeira para todo y .	Para todo x existe um y para o qual $P(x, y)$ é falsa.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	Existe um par x , y para o qual $P(x, y)$ é verdadeira.	P(x, y) é falsa para todo par x , y .

Retirado do livro do Rosen

Exemplo: Qual a negação da seguinte afirmação:

 $P: \forall \text{ pessoas } x, \exists \text{ uma pessoa } y \text{ tal que } x \text{ ama } y.$

O que significa a sentença ser falsa?
 A propriedade não ser válida para todas as pessoas.

Exemplo: Qual a negação da seguinte afirmação:

P: \forall pessoas x, \exists uma pessoa y tal que x ama y.

O que significa a sentença ser falsa?
 A propriedade não ser válida para todas as pessoas.

```
\neg P: \exists uma pessoa x tal que \neg(\exists uma pessoa y tal que x ama y) \equiv
```


Exemplo: Qual a negação da seguinte afirmação:

P: \forall pessoas x, \exists uma pessoa y tal que x ama y.

O que significa a sentença ser falsa?
 A propriedade não ser válida para todas as pessoas.

```
\neg P: \exists uma pessoa x tal que \neg(\exists uma pessoa y tal que x ama y) \equiv \exists uma pessoa x tal que \forall pessoas y, x não ama y
```


Exemplo: Qual a negação da seguinte afirmação:

P: \forall pessoas x, \exists uma pessoa y tal que x ama y.

O que significa a sentença ser falsa?
 A propriedade não ser válida para todas as pessoas.

```
\neg P: \exists uma pessoa x tal que \neg(\exists uma pessoa y tal que x ama y) \equiv \exists uma pessoa x tal que \forall pessoas y, x não ama y
```

Regra geral: $\neg \forall x \exists y Q(x, y) \equiv \exists x \forall y \neg Q(x, y)$

• Regra geral 1:

$$\neg \forall x \exists y Q(x, y) \equiv \exists x \forall y \neg Q(x, y)$$

Exemplo:

∘ P: \forall inteiros n, \exists um inteiro k tal que n = 2k.

• Regra geral 1:

$$\neg \forall x \exists y Q(x, y) \equiv \exists x \forall y \neg Q(x, y)$$

• Exemplo:

- ∘ P: \forall inteiros n, \exists um inteiro k tal que n = 2k.
- \circ ¬P: ∃ um inteiro n tal que \forall inteiro k, $n \neq 2k$.

• Regra geral 2:

$$\neg \exists x \forall y Q(x, y) \equiv \forall x \exists y \neg Q(x, y)$$

• Exemplo:

∘ P: \exists uma pessoa x tal que \forall pessoas y, x ama y.

• Regra geral 2:

$$\neg \exists x \forall y Q(x, y) \equiv \forall x \exists y \neg Q(x, y)$$

• Exemplo:

- ∘ P: \exists uma pessoa x tal que \forall pessoas y, x ama y.
- $\circ \neg P$: \forall pessoas x, \exists uma pessoa y tal que x não ama y.
- Sumário: Análogo a "De Morgan"

Quantificador	Negação	
A	3	
3	\forall	

Exemplo: Expresse a negação da sentença $\forall x \exists y (xy = 1)$ de tal forma que a negação não preceda algum quantificador.

Exemplo: Expresse a negação da sentença $\forall x \exists y (xy = 1)$ de tal forma que a negação não preceda algum quantificador.

•
$$\neg \forall x \exists y (xy = 1)$$

Exemplo: Expresse a negação da sentença $\forall x \exists y (xy = 1)$ de tal forma que a negação não preceda algum quantificador.

•
$$\neg \forall x \exists y (xy = 1)$$

∘
$$\exists x \neg \exists y (xy = 1)$$
 (Lei de De Morgan para quantificadores)

Exemplo: Expresse a negação da sentença $\forall x \exists y (xy = 1)$ de tal forma que a negação não preceda algum quantificador.

- $\neg \forall x \exists y (xy = 1)$
 - $\circ \exists x \neg \exists y (xy = 1)$

(Lei de De Morgan para quantificadores)

 $\circ \ \exists x \forall y \neg (xy = 1)$

(Lei de De Morgan para quantificadores)

Exemplo: Expresse a negação da sentença $\forall x \exists y (xy = 1)$ de tal forma que a negação não preceda algum quantificador.

•
$$\neg \forall x \exists y (xy = 1)$$

$$\circ \exists x \neg \exists y (xy = 1)$$

$$\circ \exists x \forall y \neg (xy = 1)$$

$$\circ \exists x \forall y (xy \neq 1)$$

(Lei de De Morgan para quantificadores)

(Lei de De Morgan para quantificadores)

(Negação da igualdade)

FIM