

ECSE 421 Lecture 10: More Processing Elements

ESD Chapter 3

Last Time

- Embedded systems employ hardware in a loop
- Information processing
 - Importance of energy efficiency
 - Special purpose HW (ASICs) are very expensive
- Key Requirements for Processors
 - Energy efficiency of processors
 - Code-size efficiency
 - Run-time efficiency

Where Are We?

W	D	Date		Topic	ESD	PES	Out	In	Notes
1	Т	12-Jan-2016	L01	Introduction to Embedded System Design	1.1-1.4				
	R	14-Jan-2016		Introduction to Embedded System Design	1.1-1.4				
2	Т	19-Jan-2016	L02	Specifying Requirements / MoCs / MSC	2.1-2.3				
	R	21-Jan-2016	L03	CFSMs	2.4				
3	Т	26-Jan-2016	L04	Data Flow Modeling	2.5	3.1-5,7	LA1		
	R	28-Jan-2016	L05	Petri Nets	2.6				Thru Slide 21
4	Т	2-Feb-2016	L06	Discrete Event Models	2.7	4			G: Zaid Al-bayati
	R	4-Feb-2016	L07	DES / Von Neumann Model of Computation	2.8-2.10	5	LA2	LA1	
5	Т	9-Feb-2016	L08	Sensors	3.1-3.2	7.3,12.1-6			
	R	11-Feb-2016	L09	Processing Elements	3.3	12.6-12			
6	Т	16-Feb-2016	L10	More Processing Elements / FPGAs			LA3	LA2	
	R	18-Feb-2016	L11	Memories, Communication, Output	3.4-3.6				
7	Т	23-Feb-2016	L12	Embedded Operating Systems	4.1				
	R	25-Feb-2016		Midterm exam: in-class, closed book			Р	LA3	Chapters 1-3
	Т	1-Mar-2016		No class					Winter break
	R	3-Mar-2016		No class					Winter break
8	Т	8-Mar-2016	L13	Middleware	4.4-4.5				
	R	10-Mar-2016	L14	Performance Evaluation	5.1-5.2				
9	Т	15-Mar-2016	L15	More Evaluation and Validation	5.3-5.8				
	R	17-Mar-2016	L16	Introduction to Scheduling	6.1-6.2.2				
10	Т	22-Mar-2016	L17	Scheduling Aperiodic Tasks	6.2.3-6.2.4				
	R	24-Mar-2016	L18	Scheduling Periodic Tasks	6.2.5-6.2.6				

Today

 Embedded system hardware is frequently used in a loop ("hardware in a loop"):

Recall: Three Key Requirements

- Embedded processing elements must achieve
 - Energy efficiency
 - Code-size efficiency
 - Run-time efficiency
- Often, this is done with accomplished with special architectures or architectural features
 - Digital signal processors
 - VLIW processors
 - Domain-specific processors
 - Application-specific processors

VLIW Processors

- Very Long Instruction Word (VLIW) Computing
 - Instructions grouped in packets
 - Instructions in a packet are executed in parallel
- Packet locations are associated with fixed functional units
 - Performance limited by compiler's ability to fill slots

VLIW vs. RISC

- RISC: hardware finds independent instructions dynamically at run-time
 - Hardware overhead in area, energy, etc.
- VLIW: compiler finds independent instructions to execute in packets at compile-time
 - Eliminates the above overhead, but ...
 - Not all parallelism can be exposed at compile-time (e.g., memory disambiguation)
- EPIC: explicitly parallel instruction set computers
 - Parallelism is identified by the compiler, but ...
 - Parallelism is not limited to instruction packets

EPIC Example: TMS 320C6xx

1 bit per instruction encodes end of parallel exec.

1 A 2 B C D 3 E F G

Instructions B, C and D use disjoint functional units, cross paths and other data path resources. The same is also true for E, F and G.

Parallel execution cannot span several packets

Partitioned Register Files

- Register files with many ports are required to deliver many operands each cycle
- Memories with many ports are expensive
- →Registers are partitioned into (typically 2) sets
- *E.g.* for TI C60x:

Recall: Branch Delay Slot

VLIW: Many Branch Delay Slots

instruction fetch
instruction decode
instruction execute
register writeback

VLIW: Many Branch Delay Slots

instruction fetch
instruction decode
instruction execute
register writeback

VLIW: Many Branch Delay Slots

- Many instructions begin execution before the branch is detected
- Squashing those instructions would waste compute power

- ⇒ Executing those instructions is declared a feature, not a bug
- → Compiler must fill the "delay slots" (otherwise, waste!)
- ⇒ How? Avoid branches wherever possible (e.g., loop unrolling)

Predicated Instruction Execution

- Conditional Instruction "[c] I" consists of:
 - condition c, and
 - instruction I

```
\mathbf{c} = \mathsf{true} \implies \mathbf{I} is executed
```

 $\mathbf{c} == \mathsf{false} \Rightarrow \mathsf{NOP}$

Predicated Execution: TI C6x

```
if (c)
{ a = x + y;
 b = x + z;
}
else
{ a = x - y;
 b = x - z;
}
```

Conditional branch

```
[c] B L1
NOP 5
B L2
NOP 4
SUB x,y,a
|| SUB x,z,b
L1: ADD x,y,a
|| ADD x,z,b
```

max. 12 cycles

Predicated execution

```
[c] ADD x,y,a
|| [c] ADD x,z,b
|| [!c] SUB x,y,a
|| [!c] SUB x,z,b
```

1 cycle

Microcontrollers: MHS 80C51

•	8-bit CPU optimized for control applications <	
•	Extensive Boolean processing capabilities	Fe
•	64 k Program Memory address space	atu
•	64 k Data Memory address space	res
•	4 k bytes of on chip Program Memory	fo
•	128 bytes of on chip data RAM ←	rEr
•	32 bi-directional and individually addressable I/O lines	mbo
•	Two 16-bit timers/counters +	eda
•	Full duplex UART *	led
•	6 sources/5-vector interrupt structure with 2 priority levels	Syste
•	On chip clock oscillators	iter
•	Very popular CPU with many different variations *	ns

Domain- and Application-Specific PEs

© Hugo De Man: From the Heaven of Software to the Hell of Nanoscale Physics: An Industry in Transition, *Keynote Slides*, ACACES, 2007

VIP for car mirrors Infineon

200MHz , 0.76 Watt 100Gops @ 8b 25Gops @ 32b

Close to power efficiency of silicon

Domain- and Application-Specific PEs

© Hugo De Man: From the Heaven of Software to the Hell of Nanoscale Physics: An Industry in Transition, *Keynote Slides*, ACACES, 2007

Close to power efficiency of silicon

Multiprocessor Systems-on-a-chip

(2)Telephony (W-CDMA)

Power on

Power off

	Control	ON	
Baseband part	W-CDMA	ON	
puit	GSM	ON / OFF	
Application	System-domain	ON	
part	Realtime-domain	OFF	
Measured (@ Room	407 μ A		

92007. Renesas Technology Corp., All rights reserved.

MPSoC '07

⇒ "Dark silicon": not all components powered at the same time

 \Rightarrow H. Esmaeilzadeh et al., "Dark Silicon and the End of Multicore Scaling," ISCA'11

nttp://www.mpsoc-forum.org/2007/slides/Hattori.pdf

Energy Efficiency of FPGAs

© Hugo De Man, IMEC, Philips, 2007

Reconfigurable Logic

- Custom HW may be too expensive
- SW may be too slow
- Combine the speed of HW with the flexibility of SW
 - HW with programmable functions and interconnect
 - Field programmable gate arrays (FPGAs)
- Applications: bit-oriented algorithms like
 - Encryption
 - Fast "object recognition" (security, medical and military)
 - Adapting mobile phones to different standards
- Very popular devices from
 - XILINX (XILINX Virtex 7 are recent devices)
 - Actel, Altera and others

Floor-plan of VIRTEX II FPGAs

Virtex 5 Configurable Logic Block (CLB)

Virtex 5 Slice (Simplified)

- Memories used as look-up tables (LUTS)
- Can implement any function of ≤ 6 variables

COUT Sync ■ Async → DMUX □ DPRAM64/32 A5 SPRAM64/32 A4 SPL32 O6 DFF DLATCH DINIT1 DINIT0 A3 D SPL16 05 -D00 A2 RAM DI₁ A1 POM CE SRHIGH WA1-WA6 WA7 WA8 DX 🗀 CMUX DI₂ A6 DPRAM64/32 A5 SPRAM64/32 A4 D SRL32 A3 D SRL16 FF LATCH 05 ____CQ INIT1 A2 BAM DI₁ CE SRHIGH WA1-WA6 SR REV WA7 WA8 BI \square → BMUX A6 DPRAM64/32 A5 SPRAM64/32 A4 SRL32 O6 A3 LUT LATCH INIT1 A2 RAM DI₁ CE SRHIGH MC31 SRLOW WA7 WA8 → AMUX A6 DPRAM64/32 A5 SPRAM64/32 A4 DSRL32 A3 DSRL16 LATCH INIT1 INIT0 05 D A2 BAM DI₁ CE SRHIGH A1 POM MC31 WA1-WA6 WA7 WA8 CLK WSGEN © 2016 Marwedel, Meyer UG190_c5_03_022709

Virtex 5

SliceM

- Memories can be used for:
 - storing data,
 - shiftregisters

© Xilinx

FPGA Interconnect: Virtex II

Hierarchical Routing Resources

FPGA Hard Cores: Virtex II Pro

- Virtex II Pro devices include up to four PowerPC processor cores
 - Higher-performance than soft cores
 - IP makes it easy to interface with and between the cores
- Virtex 5 devices include up to two

[© and source: Xilinx Inc.: Virtex-II Pro™ Platform FPGAs: Functional Description, Sept. 2002, //www.xilinx.com]

Summary

- Embedded systems employ hardware in a loop
- Information processing
 - Run-time efficiency: do more in a single instruction
 - VLIW processing: parallel instructions
 - MPSoC: parallel processing elements
- Re-configurable logic
 - The flexibility of software combined with the performance and efficiency of hardware

Next Time

- Memories, Communication, and Output
 - Chapter 3.4-6

