$$x_1 x_2 x_3 x_4 = -4$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 10$$

$$x_2 x_2^2 = -2$$

$$x_{2}x_{3}^{2} = -2$$

$$x_{1}^{3} + x_{2}^{2} + x_{3}^{3} - x_{4}^{2} = 2$$

$$x_{1} = 0.5$$

 $x_3 = 1.5$ $x_4 = 1.5$

 $x_2 = -2.5$

$$[f']^{k} \{\Delta x\}^{k} = -\{f\}^{k} \longrightarrow \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} & \frac{\partial f_{1}}{\partial x_{4}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} & \frac{\partial f_{2}}{\partial x_{4}} \\ \frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}} & \frac{\partial f_{3}}{\partial x_{4}} \\ \frac{\partial f_{4}}{\partial x_{1}} & \frac{\partial f_{4}}{\partial x_{2}} & \frac{\partial f_{4}}{\partial x_{3}} & \frac{\partial f_{4}}{\partial x_{4}} \end{bmatrix}^{k} \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \\ \Delta x_{3} \\ \Delta x_{4} \end{bmatrix}^{k} = -\begin{bmatrix} f' \\ f' \\ f' \end{bmatrix}$$

$$\{x\}^{k+1} = \{x\}^{k} + \{\Delta x\}^{k}$$

$$f_{1} = x_{1}x_{2}x_{3}x_{4} + 4$$

$$f_{2} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - 10$$

$$f_{3} = x_{2}x_{3}^{2} + 2$$

$$[f'] = \begin{bmatrix} x_{2}x_{3}x_{4} & x_{1}x_{3}x_{4} & x_{1}x_{2}x_{4} & x_{1}x_{2}x_{3} \\ 2x_{1} & 2x_{2} & 2x_{3} & 2x_{4} \\ 0 & x_{3}^{2} & 2x_{2}x_{3} & 0 \end{bmatrix}$$

 $f_4 = x_1^3 + x_2^2 + x_3^3 - x_4^2 - 2$

Initial Estimate =
$$\begin{pmatrix} 0.5 \\ -2.5 \\ 1.5 \\ 1.5 \end{pmatrix}$$
 Solution =
$$\begin{pmatrix} 1. \\ -2. \\ 1. \\ 2. \end{pmatrix}$$

 $||\mathbf{f}(\mathbf{x}_{k})||_{2}/||\mathbf{f}(\mathbf{x}_{1})||_{2}$

1	1.13886	1.
2	0.230074	0.20202
3	0.0133317	0.0117061
4	0.000034377	0.0000301854
5	2.42295×10^{-10}	2.12751×10^{-10}
6	9.15513×10^{-16}	8.03882×10^{-16}
7	0.	0.

 $\|\mathbf{f}(\mathbf{x}_{\mathbf{k}})\|_2$

Note that for this case I used the built-in LinearSolve[...] command to solve the linear set of equations at each iteration

Quadratic convergence observed for this initial estimate:

Initial Estimate =
$$\begin{bmatrix} -2.5 \\ 1.5 \\ 1.5 \end{bmatrix}$$

Initial Estimate =
$$\begin{pmatrix} 1. \\ 1. \\ 1. \\ 1. \end{pmatrix}$$

```
LinearSolve ::nosol :

Linear equation encountered which has no solution . More...

LinearSolve ::nosol :

Linear equation encountered which has no solution . More...

LinearSolve ::nosol :

Linear equation encountered which has no solution . More...

General ::stop : Further output of LinearSolve ::nosol will be suppressed during this calculation . More...
```

```
Out[95]= $Aborted
```

Convergence failed for the initial estimate $X^0 = \{1.0, 1.0, 1.0, 1.0\}^T$

Good initial estimates are important for the convergence of the Newton's Method for the solution of non-linear systems

Used the initial estimate $X^0 = \{0.5, -2.5, 1.5, 1.5\}^T$

k	$ \mathbf{f}(\mathbf{x_k}) _2$	$ \mathbf{f}(\mathbf{x}_{\mathbf{k}}) _{2} / \mathbf{f}(\mathbf{x}_{1}) _{2}$
1	1.	1.13886
2	6.49495	7.39687
3	64.0895	72.9893
4	$3.087617976789494 \times 10^{658}$	$3.516379249160662 \times 10^{658}$
5	$3.115413502965002 \times 10^{64666}$	$3.54803459389495 \times 10^{64666}$
6	$1.254358281939305 \times 10^{6401926}$	$1.42854442057969 \times 10^{6401926}$
7	Overflow[]	Overflow[]
8	Overflow[]	Overflow[]
9	Indeterminate	Indeterminate
10	Indeterminate	Indeterminate

When the linear problem at each iteration is solved with Gauss-Seidel with a relaxation parameter of 1.1 (over-relaxation), the method diverges. We can try under-relaxation (w<1.0).

 1
 1.
 1.13886

 2
 0.20202
 0.230074

 3
 0.0117061
 0.0133317

 4
 0.0000301854
 0.000034377

 2.12751×10^{-10} 2.42295×10^{-10}

 $\|\mathbf{f}(\mathbf{x}_{k})\|_{2} / \|\mathbf{f}(\mathbf{x}_{1})\|_{2}$

 9.15513×10^{-16}

Used the initial estimate $X^0 = \{0.5, -2.5, 1.5, 1.5\}^T$

k

5

 $\|\mathbf{f}(\mathbf{x}_{\mathbf{k}})\|_2$

7 0. 0.
 When the linear problem at each iteration is solved with Gauss-Seidel with a relaxation parameter of 0.5 (under-relaxation), the method converges.
 Note that the precision goal to solve the linear problem on

 8.03882×10^{-16}

• Note that the precision goal to solve the linear problem on each step was 10⁻²⁰ The precision goal to solve the non-linear problem was 10⁻¹⁶

Quadratic convergence observed when the linear problem at each iteration is solved with Gauss-Seidel with a relaxation parameter of 0.5 (under-relaxation),