

IPFS星际文件系统 生态报告

InterPlanetary File System Ecological Report

2019 • 10

前言

IPFS(InterPlanetary File System)星际文件系统,由Juan Benet(胡安.贝纳特)于2014年5月立项,入驻美国著名创业孵化器Y Combinator(成功孵化出Airbnb、Dorpbox等)拿到YC巨额投资,同时胡安·贝纳特成立了协议实验室(Protocol Labs),目前协议实验室下辖项目有 IPFS、Filecoin、libp2p、IPLD、Multiformats 五个独立项目组成。其团队成员大都来自国际知名名校,斯坦福大学居多。

Juan Benet (胡安.贝纳特) 生于1988年03月16日,墨西哥.库埃纳瓦卡人,现居地美国 旧金山湾区。

- 2014年5月--至今 协议实验室 创始人& CEO
- 2012年6月--2013年8月 Athena 项目创始人
- 2006-2010 斯坦福大学 计算机科学 学士
- 2010-2012 斯坦福大学 计算机科学 硕士

其在校期间多次参与斯坦福大学"计算机科学研究小组",研究方向包含无线传感器网络路由协议(CTP)、私有数据共享、以及PrPI协议的应用等。

在校期间以"软件工程师"的职位在Verve Wireless、Anticancer Inc 机构实习。

IPFS缘起--让数据永存

2012年,斯坦福毕业后,胡安决定留在了美国开始了他的第一轮技术创业。 2013年,Athena 公司有声有色的运作着,随着资本的注入来到了2014年。时 逢摩根大通近亿量级的个人银行数据被黑客窃取,美国四分之一的民众受到了 影响,更有近千万的企业同受到数据窃取带来的损失,经济一度被数据中心化 安全所牵动。

当年,无中心主义的胡安立项了IPFS,几乎同时,成立了协议实验室,至此,协议实验室开始了星际传输协议的研究与开发,至今已5年有余。

IPFS广受关注原因一方面在于它的目标是补充甚至替代已经使用20余年的 HTTP传输协议,它是较早提出点对点、文件内容寻址、技术栈完善的存储解 决方案;

另一方面在于IPFS的兄弟项目——区块链项目Filecoin,并且它们都是开源项目。

技术上,IPFS富有创新性,前景上分布式存储是未来趋势,但是要完成替代 HTTP的道路,IPFS及IPFS所属的分布式存储还有很多的困难需要解决。

- ▶1.1 IPFS简述
 - 1.2 IPFS定义
- ▶2.1 协议架构
 - 2.2 寻址方式
 - 2.3 发展进程
- 3.1 应用层
 - 3.2 激励层
- ▶ 4.1 结语

1、IPFS的目标

1.1、IPFS概述

Web2.0时代的当下,用户每天花费大量时间在互联网,或工作,或娱乐,时刻使用着基于HTTP文本传输协议的数据上传与下载。

基于TCP / IP的计算机应用层面的HTTP,用C/S或B/S架构传输数据,即从服务器端传输超文本数据到本地客户端,客户端的浏览器、APP等应用程序经渲染再将数据呈现给用户。

HTTP是为了实现某一类具体应用的协议(即超文本传输),并由某一运行在用户空间的应用程序来实现其功能,它是一种协议规范,这些规范记录在相关文档上。

HTTP目前显现出了部分缺陷,包括:服务高度依赖中心网络,中心无法承载经济成本或流量压力;中心数据库/服务器受损的可逆和修复性弱;带宽利用率低;

同HTTP一样IPFS也可以定义为应用层协议,IPFS创造的是点对点的网络拓扑,从数据寻址方式、分布关系颠覆;基于文件内容哈希标识的唯一性,节约了空间消耗及运维成本。

IPFS网络文件不会只存在于数个节点,并且文件以碎片存在于多个子节点上。 IPFS网络检索文件将把节点(通过哈希)表检索,找到全部碎片并行抓取,最 后在本地拼成完整文件。这样,并行的速度远优于当前的数据传输形式。

分布式储存方式能有效解决数据丢失的风险,同时减轻个体数据库的存储压力。

1.2、IPFS定义

• IPFS是协议

定义了基于内容寻址的文件传输协议,并结合了来自Kademlia、BitTorrent、Git等想法来协调内容传输。在这个网络协议下,访问文件或数据的依据,是一串串与文件匹配的唯一的哈希值。

• IPFS是文件系统

有文件夹、文件和基于FUSE的可挂载文件系统。虽然在此协议下检索文件是依据哈希值而非IP,但具体文件依然存储在以树状层级文件夹系统为基础的文件系统。

• IPFS是互联网

文件可以通过HTTP网关来访问,例如https://ipfs.io;

浏览器通过扩展插件或直接使用区块链浏览器来使用ipfs://域;

哈希寻址保证了内容的真实性。

• IPFS是P2P(点对点通讯)

支持世界范围点对点文件传输,具有完全分散的架构,没有中心点故障。掠过 所有中间节点的端对端直达传输。

• IPFS是CDN

在本地库中添加一个文件,立即对世界可用,并拥有对缓存友好的内容哈希地址和BitTorrent一样的带宽分发。访问此网络下的文件就像访问本地文件一样迅速方便。

• IPFS是云服务

基于分布式存储结构,集合全节点存储能力,以供存储检索需求。

2 IPFS VS HTTP

2.1、协议架构

IPFS架构分为八层子协议栈,从上至下为身份、网络、路由、交换、对象、文件、命名、应用。

	IDEO // E44 2014
	IPFS八层协议栈
身份层	S/Kademlia生成
	对等节点身份信息生成
网络层	任意传输层协议
	ICE NET&NAT穿透
路由层	分布式松散哈希表(DSHT)
	定位对等点和存储对象需要的信息
交换层	BitTorrent&BitSwap
	管理区块如何分布
对象层	Merkle-DAG
	内容可寻址的不可篡改、去冗余的对象链接
文件层	类似Git
	版本控制的文件系统: blob、list、tree、commit
命名层	具有SFS (Self-Certified Filesystems)
	IPNS: DAG对象命名可变
20140100	在IPFS上运行的应用程序利用最近节点提供服务
应用层	提升效率、降低成本

HTTP是符合OSI的七层式协议栈,从上至下为物理、数据链路、网络、传输、 会话、表示、应用。

IPFS/HTTP各协议栈层互相协作,共同搭建网络信息传输协议生态。

2.2、寻址方式

IP寻址 VS 内容寻址

HTTP IP寻址简述:

首先,每个计算机必须有一个IP地址才能够连入因特网;

每个IP包必须有一个地址才能够发送到另一台计算机;

TCP/IP 使用 32 个比特或者 4 个 0 到 255 之间的数字来为计算机编址;

使用固定的连接,用于应用程序之间的通信;

用于 TCP/IP 地址的名字被称为域名;

键入一个可读域名,域名会被一种DNS程序翻译为数字IP;

应用程序希望通过TCP与另一个应用程序通信时,会发送一个通信请求,这个请求被送到确切的IP地址,在双方"握手"后,TCP将在两个应用程序之间建立一个全双工(full-duplex)的通信;

这个全双工的通信将占用两个计算机之间的通信线路,直到它被一方或双方关闭为止;

IPFS 内容寻址简述:

每个文件都可以使用名为IPNS的分布式命名系统通过人类可读的名称找到对应数据;

每个文件及其中的所有块都被赋予一个称为加密 Hash 的唯一指纹;

IPFS 消除了网络上的单点冗余重复;

每个网络节点仅存储它感兴趣的内容,以及一些索引信息,帮助确定谁在存储 什么:

在查找文件时,你要求网络查找,内容存储在的唯一 Hash 后面的节点;

2.3、发展进程

HTTP 诞生已有三十个年头

而 IPFS 目前也已经有五年余载

HTTP发展

HTTP 2.x

2015

统一使用二进制数据、客户端和服务端同时发送多个请求、在网页没有传输完之前就主动把该网页中 包含的静态资源推送到客户端,减少客户端请求次 数。

HTTP 1.1

开始支持了持久连接、一个连接可以且同时发送多 个请求、增加方法(PUT、PATCH、DELETE、 OPTIONS)、支持了虚拟主机 1997

Future

HTTP 1.0

1996

支持多种文件格式、多种方法 (GET、POST、HEAD)

HTTP 0.9

只有一个GET命令、仅支持html格式

1991

IPFS发展

3、IPFS生态

3.1、应用层

(Dapp分布图)

DAPP示例

1) Openbazaar 是个开源的开放集市(c2c),没有中心服务器,靠的是分布式节点自动维护,交易付款用BTC,交易双方是匿名;网站没有没有域名,它并不是使用域名访问的,而是使用类似区块链技术的onename。

在1.0版本,OpenBazaar被称之为"黑市",那时没有应用IPFS,利用ZeroMQ来实现P2P交易,把交易的手续费作为红利给到用户,同时它用比特币作为支付渠道而轰动一时,用户数量在短时间内迅速提升。

在2.0版本发布后,加入了一层审查机制,同时支持了比特币之外的BCH等数字货币,并且整合与重构IPFS,取代了之前的ZeroMQ。

现在,集市上众多的商店在没有用户上线的情况下,也可以在主机上就被运行。 以前必须同时登陆才可以交易,现在利用IPFS相当于实现了离线店铺,这意味 着,访问你店铺的人越多,店铺数据被复制越多,有利于优质的店铺宣传和推 广,这也是一定意义上的价值回归。

2) PeerPad 是协作的实时编辑器,它不使用第三方,所有参与节点直接对话,不需要中央服务器。同时Peerpad开源,展示了开发者如何使用IPFS建立自己的无服务器的、实时的、离线优先的多人协作的分布式应用程序,由协议实验室和IPFS社区建立。可实现四种功能:

1、会议笔记

无论是使用纯文本、Markdown还是富文本,你都可以实时地与同事分享会议记录。

2、协作或共享代码片段

Peerpad有一个内置的代码编辑器,可以在编辑同一个文件时使用它与同事协作。

3、写文章并分享

您可以发布一个pad的快照到IPFS,使其在internet上可用。通过共享解密内容的读取密钥来选择与谁共享。

4、与多个用户同时协作

Peerpad可以与许多用户同时修改文档,实时处理彼此的变化。

IPFS应用层目前还多为当前互联网商业业务突出的产品的区块链版,有音视频娱乐服务、电子商务等,但结合IPFS特性及中心化社会的痛点,未来但凡涉及'数据量大'、'带宽压力'、'数据安全'、'文件版本'等基本诉求的业务,皆向去中心化甚至IPFS靠拢,在这里做个窥探性前瞻。

3.1、激励层

目前IPFS激励层应用在国内外有多个项目在探索,最受关注的还是协议实验室自搭建的Filecoin(文件币),它的出现旨在提升IPFS协议在全球范围内被应用的广度,这个普及推广的过程需数年甚至数十年,Filecoin自身也形成了一个应用生态,包含了存储网络、经济体系、技术架构等。(该详情可查阅Filecoin生态报告)

4、结语

总结

IPFS架构分为八层子协议栈,从上至下为身份、网络、路由、交换、对象、文件、命名、应用、每个协议栈各司其职、互相搭配。

IPFS生态系统分为五大模块,覆盖八个层级的子协议栈。

IPFS拥有去冗余机制,自动删除重复文件,保证区块链网络空间的合理分配;将文件分片存在子节点上,提取文件并行抓取,保证区块链网络的高效性;IPFS网络的数据访问会分散到大量节点,防止DDoS攻击保证网络安全性。

IPFS已拥有部分成熟应用及大量存储空间,但IPFS欲颠覆HTTP统治地位,激励系统尚未完善,这部分且关注Filecoin。

法律声明

知识产权声明

此报告为IPFS原力区制作编译,报告中所有数据、表格、图片均受有关商标和 著作权法律保护,部分数据采集自公开信息,知识产权为原作者所有。如需采 用报告及数据,请提前告知IPFS原力区。

免责条款

此报告中所有内容均为IPFS原力区工作人员通过市场调查、数据分析及其他合法渠道获得,通过IPFS原力区的数据分析师建立相关模型得出,仅供参考。本报告仅作为各类市场活动参考资料,不构成任何投资或交易建议。

特此声明

ForcePool

存储空间服务

基于获取 Filecoin 通证的存储空间服务,参与者通过选择存储空间类型,参与获取FIL 通证;存储空间持有者按比分配,获取相应的 FIL 通证。

Force System 基于 IPFS 的 to B商务服务平台

新一代 DSaaS 平台, 致力于构建Web 3.0 基础设施。

原力区

IPFS 原力区

基于 IPFS/Filecoin 持续输出全面、精细、优质的I资讯及技术支持,将生态中的爱好者转变为参与者,共建 IPFS/Filecoin 生态的健康发展。

价值 共建 共享 荣耀

IPFS原力区

致力于构建和成为Web 3.0 基础设施 让存储 更安全 更高效 更开放 更经济

— 100场+开放日 / 10W+受众 / 400篇+原创 —

扫码关注 共同进步

价值 共建 共享 荣耀