Response Time Analysis & Dynamic Pre-emptive Scheduling

KF6010 - Distributed Real Time Systems

Dr Alun Moon alun.moon@northumbria.ac.uk

Lecture 5

Task Model

Each task has

- **period** T how often the task runs
- offset ϕ the initial delay, phase-difference between two tasks of same period
- **WCET** C Worst-Case-Execution-Time of the task
- **deadline** D the time by which the task must complete

Some Assumptions

for now

- 1. An application consists of a fixed set of N tasks
- 2. All tasks are periodic and the periods are known
- **3**. All offsets are 0
- 4. Worst-case execution times are known
- 5. Task deadlines are equal to task periods
- 6. Tasks are independent, no precedence constraints, no shared resources, etc.
- 7. Overheads, such as context switch times, are assumed to be 0

Fixed Priority Scheduling — FPS

- Each task has a static (unchanging) priority
- Priorities are assigned before runtime (cf. TTS)
- Priorities of ready tasks determine the execution order
- Priorities are derived from temporal resuirements

Rate Monotonic Scheduling — RMS

- Fixed priority scheduling
- Pre-emptive
- Rate-monotonic priority assignment
- 1. The shorter the period (the higher the rate) of a task, the higher its priority P_i
- 2. Rate (frequency) of task is

$$f_i=\frac{1}{T_i}$$

e.g. a task with a period of 10 ms has a rate of 100 Hz

- **3.** $\forall i, j : P_i > P_j \Leftrightarrow T_i < T_j$
- The ready task with the highest priority is selected for execution
- Rate-monotonic priority assignment is optimal for FPS
 If a task can be scheduled with a fixed priority pre-emptive scheduler, it can be scheduled using RMS

Schedule-ability Tasks

- If a sufficient schedule-ability test is positive, the tasks are definitely schedule-able
- If a necessary schedule-ability test is negative, the tasks are definitely not-schedule-able

Utilisation-Based Schedule-ability Test

Utilisation U for a task set of size N is defiled by

$$U = \sum_{i=1}^{N} \frac{C_i}{T_i}$$

Necessary schedule-ability test for RMS

$$U \leq 1$$

if test negative U > 1 definitely not-schedule-able

Sufficient schedule-ability test for RMS

$$U \leq N(2^{\frac{1}{N}}-1)$$

if test positive (true), definitely schedule-able

If $N(2^{\frac{1}{N}}-1) \leq U \leq 1$ then we cannot tell from these tests whether the task-set is schedule-able

Utilisation bound theorem

Liu and Layland proposed the Utilisation Bound theorem

Utilisation Bound Theorem

For a set of N tasks, with relative deadlines equal to periods and priorities assigned in rate-monotonic order, the least upper bound to processor utilisation is

$$U_{lub} = N(s^{\frac{1}{N}} - 1)$$

 U_{lub} is a decreasing function of N. For large N, $U_{lub} \approx 0.69$

N	U _{lub}	N	U_{lub}
2	0.828 0.779 0.756 0.743	6	0.734
3	0.779	7	0.728
4	0.756	8	0.724
5	0.743	9	0.720

Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. *Journal of the ACM (JACM)*, 20(1):46–61, 1973.

Response Time and Critical Instant

- The response time of a task instance is the length of time between the arrival of the instance and the completion of the execution.
- The worst-case-response-time WCRT of a task is the maximum response over all its instances.
- A critical-instant for a task is defined to be an instant at which the arrival of the task at that instant will give rise to the worst case response time for the task.
- According to Liu and Layland, the critical-instant for a task in a fixed-priority-schedule task set occurs whenever the task arrives at the same time as all the higher-priority tasks.

Response Time Analysis I

- Response time analysis gives a necessary and sufficient (exact) test for the schedule-ability
 of any task set.
- The test has two parts
- 1. Calculate the WCRT R_i of each task in the task set
- **2.** If $R_i \leq T_i = D_i$ for all tasks i, then the task set is schedule-able, otherwise it is not!
- The WCRT of the highest priority task is equal to its computation time.
- Other processes will suffer *interference* from higher-priority tasks. *ie.* although ready to run, the task will have to wait while one or more higher priority tasks execute.
- So in General the response time of a task i is given by

$$R_i = C_i + I_i$$

where I_i is the maximum interference that task i can suffer in any interval $[t, t + R_i]$

Response Time Analysis II

- Assume all tasks arrive at time 0 (a critical-instant for all tasks)
- For tasks i and j with $P_j > P_i$ task j will arrive a number of times, at least once, within the interval $[0, R_i)$
- The number of arrival times is given by the expression

$$\left\lceil \frac{R_i}{T_j} \right\rceil$$

• Each arrival of task j will impose an interference of C_j so the maximum interference suffered by task i due to task j is

$$\left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

• Each task of higher priority interferes with task i so the maximum interference I_i suffered by task i is

$$I_i = \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

Response Time Analysis III

• Substituting this back into the equation for R_i gives

$$R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

- Problem: Although this equation gives an accurate representation of R_i , it is difficult to solve, since R_i appears on both sides and on one side appears within an expression involving the ceiling operator.
- The simplest way to solve the equation is to form a recurrence relation

$$r_i^{n+1} = C_i + \sum_{j \in hp(i)} \left\lceil \frac{r_i^n}{T_j} \right\rceil C_j$$

This allows us to solve the equation iteratively

Response Time Analysis IV

- For each task i:
 - 1. set $r_i^0 = C_i$
 - **2.** use the recurrence relation to compute r_i^1, r_i^2, \ldots
 - 3. when the sequence converges (ie when $r_i^k = r_i^{k+1}$ for some k) the solution has been found
 - **4.** $R_i = r_i^k$
- It is possible that the iteration may not converge, in which case it can be terminated when $w_i^k > T_i$, where the task becomes *un-schedule-able*

Example

Determine the Response-Time-Analysis, and hence whether the task set is schedule-able for:

Task	Period <i>T</i>	WCET C	Priority <i>P</i>
a	7	3	3
b	12	3	2
С	20	5	1

Task a
$$R_a = r_a^0 = C_a = 3$$

Task b 1.
$$r_b^0 = C_b = 3$$

2.
$$r_b^1 = C_b + \sum_{j \in \{a\}} \left\lceil \frac{r_b^0}{T_j} \right\rceil C_j = C_b + \left\lceil \frac{r_b^0}{T_a} \right\rceil C_a = 3 + \left\lceil \frac{3}{7} \right\rceil 3 = 3 + 3 = 6$$

 $r_b^2 = C_b + \left\lceil \frac{r_b^1}{T_a} \right\rceil C_a = 3 + \left\lceil \frac{6}{7} \right\rceil 3 = 3 + 3 = 6$

3.
$$R_b = r_b^2 = 6$$

Example II

Task c 1.
$$r_c^0 = C_c = 5$$

2.
$$r_c^1 = C_c + \sum_{j \in \{a,b\}} \left\lceil \frac{r_c^0}{T_j} \right\rceil C_j = C_c + \left\lceil \frac{r_c^0}{T_a} \right\rceil C_a + \left\lceil \frac{r_c^0}{T_b} \right\rceil C_b$$

 $r_c^1 = 5 + \left\lceil \frac{5}{7} \right\rceil 3 + \left\lceil \frac{5}{12} \right\rceil 3 = 5 + 3 + 3 = 11$

3.
$$r_c^2 = C_c + \left\lceil \frac{r_c^1}{T_a} \right\rceil C_a + \left\lceil \frac{r_c^1}{T_b} \right\rceil C_b$$

= $5 + \left\lceil \frac{11}{7} \right\rceil 3 + \left\lceil \frac{11}{12} \right\rceil 3 = 5 + 2 \times 3 + 3 = 14$

4.
$$r_c^3 = 5 + \left[\frac{14}{7}\right] 3 + \left[\frac{14}{12}\right] 3 = 5 + 2 \times 3 + 2 \times 3 = 17$$

5.
$$r_c^4 = 5 + \left\lceil \frac{17}{7} \right\rceil 3 + \left\lceil \frac{17}{12} \right\rceil 3 = 5 + 3 \times 3 + 2 \times 3 = 20$$

6.
$$r_c^5 = 5 + \left\lceil \frac{20}{7} \right\rceil 3 + \left\lceil \frac{20}{12} \right\rceil 3 = 5 + 3 \times 3 + 2 \times 3 = 20$$

7.
$$R_c = 20$$

Example III

The task set can be annotated with the response times.

Task	Period	WCET	Priority	WCRT
	T	С	Р	R
а	7	3	3	3
b	12	3	2	6
С	20	5	1	20

Schedule-ability

Since we can say

$$\forall p \in \{a, b, c\} : R_p \leq T_p$$

holds.

The Task-set is schedule-able