# **BAT** - Bolt Analysis Tool



## User Manual

Author: Michael Sams

Issue: 0.1

Date: January 16, 2021

## **Contents**

| 1 | Intr                       | oduction                                              | 2  |  |  |
|---|----------------------------|-------------------------------------------------------|----|--|--|
| 2 | Bolt and Thread Geometry   |                                                       |    |  |  |
| 3 | Joint Diagram              |                                                       |    |  |  |
| 4 | Method B: ECSS-E-HB-32-23A |                                                       |    |  |  |
|   | 4.1                        | Preload and Torques                                   | 6  |  |  |
|   | 4.2                        | Thermal Influcence                                    | 8  |  |  |
|   |                            | 4.2.1 Linear Thermal Influence                        | 8  |  |  |
|   |                            | 4.2.2 VDI Method                                      | 9  |  |  |
|   | 4.3                        | Embedding                                             | 9  |  |  |
|   | 4.4                        | Stesses in Bolt and Clamped-Parts                     | 9  |  |  |
|   |                            | 4.4.1 Stress in bolt after tightening                 | 9  |  |  |
|   |                            | 4.4.2 Stress and margins of safety in bolt at service | 10 |  |  |
| 5 | Refe                       | erences                                               | 12 |  |  |

# **Symbols and Abbreviations**

## **Symbols**

| $lpha_A$   | tightening factor                                            |
|------------|--------------------------------------------------------------|
| $\alpha_b$ | coeff. of lin. thermal expansion of the bolt                 |
| $lpha_c$   | coeff. of lin. thermal expansion of the clamped part (plate) |
| $\delta_b$ | elastic compliance of the bolt                               |
| $\delta_c$ | elastic compliance of the clamped part (plate)               |
| $\lambda$  | under-head bearing angle of bolt                             |
| $\mu_{th}$ | coeff. of friction in bolt thread                            |
| $\mu_{uh}$ | coeff. of friction under bolt head                           |
| $\nu$      | bolt utilization factor                                      |
| arphi      | helix angle / slope of bolt thread                           |
| Φ          | load factor of concentric joint                              |
|            | (also: force ratio or relative compliance factor)            |
| $\Phi_n$   | load factor for concentric clamping and concentric           |
|            | force load introduction via the clamped parts                |
| ho         | friction angle in bolt thread                                |
| $\sigma_n$ | normal stress in the bolt                                    |
| $\sigma_v$ | von-Mises stress in the bolt                                 |
| au         | shear stress in the bolt                                     |
| $A_1$      | nominal cross section of threaded bolt                       |
| $A_3$      | minimal thread cross section                                 |
| $A_p$      | pitch cross section of threaded bolt                         |
| $A_s$      | stress cross section of threaded bolt                        |
| d          | nominal threaded bolt diameter                               |
| $d_2$      | pitch diameter of threaded bolt                              |
| $d_3$      | minimal diameter of threaded bolt                            |
| $d_h$      | minimal contact diameter under bolt head                     |
| $d_s$      | stress diameter of threaded bolt                             |
| $F_A$      | external, axial bolt load                                    |
| $F_M$      | preload after tightening / assembly preload                  |
| $F_{PA}$   | additional axial plate load                                  |
| $F_Q$      | external, shear bolt load                                    |

 $F_{SA}$  additional axial bolt load

 $F_V$  service preload incl. embedding and thermal influence

 $f_Z$  plastic deformation due to embeddding

 $F_Z$  preload loss due to embedding

 $l_K$  joint clamped length

 $M_p$  prevailing torque of bolt locking device

 $\begin{array}{ccc} n & & \text{load introduction factor} \\ p & & \text{pitch of bolt thread} \end{array}$ 

#### **Abbreviations**

BAT Bolt Analysis Tool

CTE Coefficient of Thermal Expansion

TBJ Through-Bolt Joint
TTJ Tapped Thread Joint

# **List of Figures**

| 2.1 | Definition of under head bearing angle [2]                            | ٠ |
|-----|-----------------------------------------------------------------------|---|
| 3.1 | Joint diagram for the working state of a concentrically loaded bolted |   |
|     | joint with $n = 1$ [3]                                                | 4 |

## **List of Tables**

# **List of Algorithms**

# 1 Introduction

This document will include the BAT (Bolt Analysis Tool) User Manual [1] [2] [3].

## 2 Bolt and Thread Geometry

 $D_{Km}$  is the effective diameter of under head/nut friction torque and is defined by

$$D_{Km} = \frac{D_{hole} + d_h}{2} \tag{2.1}$$

where  $D_{hole}$  is the through-hole diameter in the clamped parts and  $d_h$  is the minimum bearing surface outer diameter of the bolt head or nut. An other input value to calculate the under-head friction torque (4.2) is the under head bearing angle  $\lambda$  seen in Figure 2.1.



Figure 2.1: Definition of under head bearing angle [2]

## 3 Joint Diagram

The *joint diagram* seen in Figure 3.1 [3] visualizes the forces and displacements and helps to understand the loading conditions of a concentrically loaded bolted joint.



**Figure 3.1:** Joint diagram for the working state of a concentrically loaded bolted joint with n = 1 [3]

The preload force  $F_V$  (see §4.1) compresses the clamped parts  $f_P$  and elongates the bolt  $f_S$  during tightening. If an external load  $F_A$  is acting on the bolted joint the bolt is streched much further and the clamped parts are relaxed ( $f_{SA} = f_{PA}$ ) due to the loading. The additional axial bolt load  $F_{SA}$  and the additional axial plate load<sup>1</sup>  $F_{PA}$  are given to

$$F_{SA} = n\Phi F_A, \qquad F_{PA} = (1 - n\Phi)F_A$$
 (3.1)

where  $\Phi$  is the load factor, which is defined as the quotient of the additional bolt load  $F_{SA}$  and the axial working load component  $F_A$ . n is the load introduction

<sup>&</sup>lt;sup>1</sup>If the bolt is loaded in tension  $F_{PA}$  is better described as an axial plate relaxation force.

factor and is crucial for determining the size of the additional botl loads. As seen in Figure 3.1  $F_{KR}$  is the residual clamping load at the interface during relief or loading by  $F_{PA}$  and after embedding in service and  $F_S$  is the maximum bolt load.

## 4 Method B: ECSS-E-HB-32-23A

This chapter provides a quick overview and summary of the equations used in **BAT**. A detailed description can be found in the complete ECSS-E-HB-32-23A ESA handbook [2]. Some used variables in the following equations have been changed compared to [2] by the author to increase clarity and consistency.

## 4.1 Preload and Torques

The torque present at the thread interface  $M_{th}$  is dependent of the axial bolt preload  $F_V$  and is given by

$$M_{th} = F_V \tan(\varphi + \rho) \frac{d_2}{2} \tag{4.1}$$

and the under-head torque  $M_{uh}$  due to friction between bolt head or nut and the adjacent clamped part (or shim) is defined by

$$M_{uh} = F_V \frac{\mu_{uh} D_{Km}}{2} \frac{1}{\sin^{\lambda/2}} \tag{4.2}$$

where  $\lambda$  is the under head bearing angle seen in Figure 2.1. It is assumed that the friction force for  $M_{uh}$  is acting at mean bearing radius of the bolt head  $D_{Km}$  (2.1).  $\varphi$  is the helix angle of the thread and  $\rho$  is given by the relation

$$\tan \rho = \frac{\mu_{th}}{\cos \theta/2} \tag{4.3}$$

where  $\theta$  is the half angle of the thread groves (for Unified or Metric threads  $\theta = 60^{\circ}$ ).

The total installation torque  $T_A$  (without torque device scatter) applied to bolt head or nut during tightening to produce the axial bolt preload  $F_V$  is

$$T_A = M_{th} + M_{uh} + M_v (4.4)$$

where  $M_p$  is the prevailing torque of the locking device. With the approximation  $\tan \varphi \tan \rho \ll 1$  the expression  $\tan(\varphi + \rho)$  can be written as  $\tan(\varphi + \rho) \approx \tan \varphi + \tan \rho$ . Now equation (4.4) can be rewritten to

$$T_A = F_V \underbrace{\left[\frac{d_2}{2} \left(\tan \varphi + \frac{\mu_{th}}{\cos \theta/2}\right) + \frac{\mu_{uh} D_{Km}}{2 \sin^{\lambda/2}}\right]}_{K} + M_p \tag{4.5}$$

where K is the joint coefficient.

For calculation of the minimum and maximum axial bolt preload, **BAT** implements the experimental coefficient method [2] with an explicit torque scatter torque of the tightening device  $T_{scatter}$ . Therefore the minimum and maximum total installation torques are defined

$$T_A^{min} = T_A - T_{scatter}, \qquad T_A^{max} = T_A + T_{scatter}.$$
 (4.6)

To calculate the minimum and maximum axial bolt preload after tightening  $F_M^{min/max}$ , (4.5) and (4.13) are combined

$$F_M^{min} = \frac{T_A^{min} - M_p^{max}}{K^{max}}, \qquad F_M^{max} = \frac{T_A^{max} - M_p^{min}}{K^{min}}.$$
 (4.7)

If also the thermal influence and embedding is considered, this leads to the minimum and maximum axial bolt preload at service  $F_V^{min/max}$ 

$$F_V^{min} = \frac{T_A^{min} - M_p^{max}}{K^{max}} + \Delta F_{Vth} - F_Z$$
 (4.8a)

$$F_V^{min} = F_M^{min} + \Delta F_{Vth} - F_Z \tag{4.8b}$$

$$= \frac{T_A^{min} - M_p^{max}}{\frac{d_2}{2} \left( \tan \varphi + \frac{\mu_{th}^{max}}{\cos \theta/2} \right) + \frac{\mu_{uh}^{max} D_{Km}}{2 \sin \lambda/2}} + \Delta F_{Vth} - F_Z$$
 (4.8c)

$$F_V^{max} = \frac{T_A^{max} - M_p^{min}}{K^{min}} + \Delta F_{Vth}$$
(4.9a)

$$F_V^{max} = F_M^{max} + \Delta F_{Vth} \tag{4.9b}$$

$$= \frac{T_A^{max} - M_p^{min}}{\frac{d_2}{2} \left( \tan \varphi + \frac{\mu_{th}^{min}}{\cos \theta/2} \right) + \frac{\mu_{uh}^{min} D_{Km}}{2 \sin \lambda/2}} + \Delta F_{Vth}$$
(4.9c)

where  $\Delta F_{Vth}$  is thermal preload change (see §4.2) and  $F_Z$  is the preload loss due to embedding (see §4.3).

#### 4.2 Thermal Influcence

If a thermal load is applied to a bolted joint, the bolt sees a change  $\Delta F_{Vth}$  in the preload force due to the CTE mismatch of bolt and clamped parts seen in (4.8c) and (4.9c).

#### 4.2.1 Linear Thermal Influence

For the following derivation it is assumed that the Young's Modulus E of bolt and clamped parts does not change with temperature (temperature independent material properties).  $c_b = 1/\delta_b$  and  $c_c = 1/\delta_c$  are defined as bolt stiffness and clamp-part stiffness respectively. Linear thermal elongation is defined

$$\varepsilon_{th} = \alpha \Delta T = \frac{\Delta l}{l_0}$$

The thermal elongation for bolt (index b) and clamped-parts (index c) are given to

$$\Delta l_b = \alpha_b \cdot \Delta T \cdot l_{0b}$$
$$\Delta l_c = \sum_i \alpha_{ci} \cdot \Delta T \cdot l_{0ci}$$

where  $l_K = l_{0b} = \sum_i l_{0ci}$  is the clamping length of the joint. The sign definition in **BAT**is  $\Delta L = \Delta l_c - \Delta l_b$  and this leads to

$$\alpha_c > \alpha_b \Rightarrow +\Delta F_{Vth}$$
  
 $\alpha_c < \alpha_b \Rightarrow -\Delta F_{Vth}$ 

where  $+\Delta F_{Vth}$  defines an increase and  $-\Delta F_{Vth}$  a loss in bolt preload. If the standard stiffness equation  $F = c \cdot \Delta x$  is used for the bolt / clamp-part joint, this leads to

$$\Delta F_{Vth} = c \cdot \Delta L \tag{4.12a}$$

$$=\frac{\Delta L}{\frac{1}{c_b} + \frac{1}{c_c}}\tag{4.12b}$$

$$= \Delta L \frac{c_b c_c}{c_b + c_c} = \Delta L \frac{1}{\delta_b + \delta_c} \tag{4.12c}$$

#### 4.2.2 VDI Method

to be filled

## 4.3 Embedding

to be filled

### 4.4 Stesses in Bolt and Clamped-Parts

### 4.4.1 Stress in bolt after tightening

Based on §4.1 the stresses in the bolt after tightening can be derived. The minimum and maximum shear stress in the bolt  $\tau^{min/max}$  after tightening can be calculated as follows

$$\tau^{min} = \frac{T_A^{min} - M_{uh}^{max}}{W_p}, \qquad \tau^{max} = \frac{T_A^{max} - M_{uh}^{min}}{W_p}$$
(4.13)

where  $T_A$  is defined in (4.13),  $M_{uh}$  in (4.2) with  $F_V = F_M$  and  $W_p = \pi d_s^3/16$  is the polar section modulus. The minimum and maximum normal stress  $\sigma_n^{min/max}$  in the bolt caused by the preload is defined

$$\sigma_n^{min/max} = \frac{F_M^{min/max}}{A_s} \tag{4.14}$$

The minimum and maximum von-Mises equivalent stress  $\sigma_v^{min/max}$  in the bolt after tightening (with 100% shear stress contribution / 0% shear stress relaxation) is defined

$$\sigma_v^{min/max} = \sqrt{\left(\sigma_n^{min/max}\right)^2 + 3\left(\tau^{min/max}\right)^2}$$
 (4.15)

Based on the von-Mises equivalent stress in the bolt the minimum and maximum bolt utilization  $\nu^{min/max}$  is defined

$$\nu^{min/max} = \frac{\sigma_v^{min/max}}{\sigma_v} \tag{4.16}$$

where  $\sigma_y$  is the bolt material yield strength and this defines the tightening status of the joint.

### 4.4.2 Stress and margins of safety in bolt at service

The bolted joint can be loaded with an axial force  $F_A$  and a shear force  $F_Q$ . For the axial loading the additional bolt load is defined in (3.1) and for the shar loading the required clamping force for friction grip per bolt is defined

$$F_{Kreq} = \frac{F_Q}{q_F \mu_T} \tag{4.17}$$

where  $q_F$  is the number of force transmitting and  $\mu_T$  the coefficient of friction in the clamped part interfaces.

### Local Slippage Margin $MOS_{slip}^{local}$

The local slippage margin is defined for a minimum preload  $F_V^{min}$ 

$$MOS_{slip}^{local} = \frac{F_V^{min} - F_{PA}}{F_{Krea}FOS_{slip}} - 1 \tag{4.18}$$

where  $FOS_{slip}$  is the factor of safety against slippage. It is also possible that the local slippage margin is defined with the mean preload  $F_V^{mean} = 0.5(F_V^{min} + F_V^{max})$ , based on engineering judgedment.

#### Local Gapping Margin $MOS_{qap}$

The local gapping margin is defined for a minimum preload  $F_V^{min}$ 

$$MOS_{gap} = \frac{F_V^{min}}{F_{PA}FOS_{gap}} - 1 \tag{4.19}$$

where  $FOS_{qap}$  is the factor of safety against gapping.

### Yield and Ultimate Bolt Margin $MOS_{y/u}$

The yield and ultimate margins are defined for a maximum preload  $F_V^{max}$ 

$$MOS_y = \frac{\sigma_y}{\sqrt{\left(\frac{F_V^{max} + F_{SA}FOS_y}{A_s}\right)^2 + 3\left(0.5\tau^{max}\right)^2}} - 1$$
 (4.20a)

$$MOS_u = \frac{\sigma_u}{\sqrt{\left(\frac{F_V^{max} + F_{SA}FOS_u}{A_s}\right)^2 + 3\left(0.5\tau^{max}\right)^2}} - 1$$
 (4.20b)

where  $FOS_{y/u}$  is the factor of safety against yield and ultimate. For the  $MOS_{y/u}$  calculation a 50% shear load reduction  $\tau=0.5\tau^{max}$  is considered<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>After tightening the shear stress in the bolt relaxes significantly after a few minutes and a conservative 50% relaxation is assumed for margin evaluation [2, 3].

## 5 References

- [1] Guidelines for threaded fasteners. ESA Guideline ESA PSS-03-208 Issue 1, Structures and Mechanism Division ESTEC, December 1989.
- [2] Space engineering threaded fasteners handbook. ECSS Handbook ECSS-E-HB-32-23A, ECSS European Cooperation for Space Standardization, 16 April 2010.
- [3] Systematic calculation of highly stressed bolted joints joints with one cylindrical bolt. VDI Guideline VDI2230 Part 1, VDI Verein Deutscher Ingenieure, November 2015.