

几何模型

浙江大学 谈之奕

安全观演

安全观演

- 安全观演
 - 广场某处正在进行一场露天表演,若干人先后到达附近并选择一个地点观看表演
 - 观众选择地点的要求
 - ・ 与舞台中心的距离不小于 L
 - 与之前到达的任一观众的距离不小于 r
 - 在满足上述要求的情况下,观众选择与舞台中心距离最近的某个点
 - 观众选择地点的方式
 - 有引导: 观众在工作人员引导下到达满足要求的地点
 - 无引导: 观众自行选择满足要求的地点
 - 观演距离
 - 求第 n 个到达的观众与舞台中心的距离 d_n 的估计

观演距离

- 观演距离
 - 记舞台中心为 O 。以 O 为圆心,半径为 R 的圆为 C
 - 记第 i 个到达的观众为 A_i ,所选位置为 P_i 。以 P_i 为圆心,r 为半径的圆为 C_i
 - $d_i = |OP_i| \ge L$
 - P_i 不在圆 C 内,也不在圆 C_1, C_2, \dots, C_{i-1} 内
 - $d_1 \le d_2 \le \cdots \le d_n$
 - 若 $d_i > d_{i+1}$,则 A_i 到达时可选择 P_{i+1} ,矛盾
- (无引导) 观演距离的上界
 - 观众 A_n 无法选到与点 O 距离小于 d_n 的点
 - 以O为圆心,半径为 d_n 的圆内的所有点均在圆C或 $C_1, C_2, \cdots, C_{n-1}$ 内
 - $\pi \cdot d_n^2 \le (n-1) \cdot \pi r^2 + \pi L^2 \implies d_n \le \sqrt{(n-1)r^2 + L^2}$

观演距离

- 观演距离的下界
 - •记以 P_i 为圆心, $\frac{r}{2}$ 为半径的圆记为 Q_i
 - 圆 Q_1, Q_2, \dots, Q_n 两两互不相交
 - 圆 Q_1,Q_2,\cdots,Q_n 均在以 O 为圆心,半径为 $d_n+\frac{r}{2}$ 的圆内

•
$$\pi \left(d_n + \frac{r}{2} \right)^2 \ge n \cdot \pi \left(\frac{r}{2} \right)^2 \implies d_n \ge \left(\frac{\sqrt{n}}{2} - \frac{1}{2} \right) r$$

$$L = 10, r = 1, n = 1000$$
 $15.31 \le d_n \le 33.15$

安全观演

- •安全观演
 - 无遮视野
 - 若以 P_i 为圆心, ρ 为半径的圆周与线段 OP_j 相交,则 A_j 被 A_i 遮挡
 - 若 A_i 不被 A_i 遮挡,点 P_i 到直线 OP_j 的距离大于 ρ
- (有引导) 无遮视野人数的下界
 - n 名观众位于 C 的内接正 n 边形顶点

• 相邻两顶点
$$P_i$$
 与 P_{i+1} 夹角 $\theta = \angle P_i O P_{i+1} = \frac{2\pi}{n}$
• $\left| P_i P_{i+1} \right| = 2L \sin \frac{\theta}{2} = 2L \sin \frac{\pi}{n}$ \Rightarrow
$$\begin{cases} 2L \sin \frac{\pi}{n} \ge r \\ L \sin \frac{2\pi}{n} \ge \rho \end{cases}$$

$$L = 10, n = 60$$
 $2L\sin\frac{\pi}{n} \approx 1.04672, L\sin\frac{2\pi}{n} \approx 1.04528$

无遮视野

- 存在遮挡的充分条件
 - 子仕返挡的允分余件 若 $d_i \leq d_j$, $\angle P_i O P_j$ 为锐角且 $\sin \angle P_i O P_j \leq \frac{\rho}{2} \left(\frac{1}{d_i} + \frac{1}{d_j} \right)$, 则 A_j 被 A_i 遮挡 过 P_i 垂直于 $O P_j$ 的直线垂足位于线段 $O P_j$ 上 点 P_i 到直线 $O P_j$ 的距离为 $d_i \sin \angle P_i O P_j \leq d_i \frac{\rho}{2} \left(\frac{1}{d_i} + \frac{1}{d_j} \right) \leq \rho$
- 无遮视野人数的上界
 - 若 n 名观众未发生遮挡
 - n 条线段在点 C 将周角分为 n 个角 $\angle P_{\sigma(i)}OP_{\sigma(i+1)}$, 这里 $\sigma(1), \sigma(2), \cdots, \sigma(n)$ 是 $1,2,\dots,n$ 的一个排列,并记 $\sigma(n+1)=\sigma(1)$

 - $2\pi = \sum_{i=1}^{n} \angle P_{\sigma(i)} OP_{\sigma(i+1)}$ $\sin \angle P_{\sigma(i)} OP_{\sigma(i+1)} > \frac{\rho}{2} \left(\frac{1}{d_{\sigma(i)}} + \frac{1}{d_{\sigma(i+1)}} \right)$

无遮视野

• 无遮视野人数的上界

•
$$2\pi = \sum_{i=1}^{n} \angle P_{\sigma(i)} OP_{\sigma(i+1)} \ge \sum_{i=1}^{n} \sin \angle P_{\sigma(i)} OP_{\sigma(i+1)} \ge \frac{\rho}{2} \sum_{i=1}^{n} \left(\frac{1}{d_{\sigma(i)}} + \frac{1}{d_{\sigma(i+1)}} \right)$$

$$= \rho \sum_{i=1}^{n} \frac{1}{d_{\sigma(i)}} = \rho \sum_{i=1}^{n} \frac{1}{d_{i}} \ge \rho \sum_{i=1}^{n} \frac{1}{\sqrt{(i-1)r^{2} + L^{2}}} \qquad d_{n} \le \sqrt{(n-1)r^{2} + L^{2}}$$

$$\ge \rho \sum_{i=1}^{n} \int_{i}^{i+1} \frac{dx}{\sqrt{(x-1)r^{2} + L^{2}}} = \rho \int_{1}^{n+1} \frac{dx}{\sqrt{(x-1)r^{2} + L^{2}}}$$

$$= \frac{2\rho}{r^{2}} \sqrt{(x-1)r^{2} + L^{2}} \Big|_{1}^{n+1} = \frac{2\rho}{r^{2}} \left(\sqrt{nr^{2} + L^{2}} - L \right)$$

$$n \le \left(\frac{\pi r}{\rho} \right)^{2} + \frac{2\pi L}{\rho} \qquad n \le 732$$

$$L = 10, r = 1, \rho = \frac{1}{6} \qquad n \le 731$$

$$S_{\Delta AOB} \leq S_{ar{ar{B}}\mathcal{R}AOB} \ rac{1}{2}\sin heta \leq \pirac{ heta}{2\pi}$$

若
$$\theta \in \left(0, \frac{\pi}{2}\right)$$
, $\sin \theta \le \theta$

