

Practice of AI

Time Series Forecasting

谢文伟 (Jim Xie)

Demo

Forecasting for the count infected by COVID-19 (USA)

https://www.kaggle.com/sudalairajkumar/covid19-in-usa

Sample

Dataset: 147 (2020-01-22 to 2020-06-16)

Dimension: 25

Date

- PositiveIncrease
- States
- TotalTestResults

Out[6]:

date object int64 states int64 positive float64 negative float64 pending hospitalizedCurrently float64 hospitalizedCumulative float64 inlcuCurrently float64 inlcuCumulative float64 onVentilatorCurrently float64 onVentilatorCumulative float64 float64 recovered dateChecked object float64 death hospitalized float64 lastModified object total int64 totalTestResults int64 posNeg int64 int64 deathIncrease hospitalizedIncrease int64 negativelncrease int64 positiveIncrease int64 totalTestResultsIncrease int64 hash object

Workflow

EDA # Positive Increase

Increase trend

❖ Decline convulsively after 4/1

EDA # Positive Increase

Stable after difference

EDA # Positive Increase & Test

Correlation matrix

	positive	positiveIncrease	test	testIncrease
positive	1.00	-0.74	0.97	0.94
positiveIncrease	-0.74	1.00	-0.71	-0.62
test	0.97	-0.71	1.00	0.93
testIncrease	0.94	-0.62	0.93	1.00

EDA # Positive Count & State

EDA

- ✓ Increase declines convulsively after 4/1
- ✓ Increase becomes stable after difference
- ✓ High correlation between increase and test
- ✓ No increase pattern found in different states

Time Series Data

- Trend
- Seasonal
- Cyclical
- Irregular

Model

$$\Rightarrow$$
 ARIMA $y_t = \mu + \sum_{i=1}^p \gamma_i y_{t-i} + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$

D

Q

Workflow

Stationarity Test

❖ ADF test result

- ✓ P Value < 0.05
- √ Test Statistic < Critical Value
 </p>

Stage	Test result
Raw data	Test Statistic -0.94 p-value 0.78 Critical Value (1%) -3.53 Critical Value (5%) -2.90 Critical Value (10%) -2.59
After smooth	Test Statistic -1.20 p-value 0.68 Critical Value (1%) -3.54 Critical Value (5%) -2.91 Critical Value (10%) -2.59
After difference 1	Test Statistic -9.86 p-value 0.00 Critical Value (1%) -3.53 Critical Value (5%) -2.90 Critical Value (10%) -2.59
After difference 2	Test Statistic -8.07 p-value 0.00 Critical Value (1%) -3.53 Critical Value (5%) -2.91 Critical Value (10%) -2.59

Stationarity

❖ Stable after difference 2

10000 5000 0 -5000 -10000 0 10 20 30 40 50 60 70

Raw data

After difference 2

ACF

PACF

❖
$$P = 3$$

Model/P/Q

Model	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off	Truncated after N Lag	Tails off
PACF	Truncated after N Lag	Tails off	Tails off

- Recommended parameter pair (P=3,D=2,Q =2)
- Try parameter pair (p in [0:5],q in [0:5]

Verify

$$RMSE(X,h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2}$$

Best performance (P=4,Q=4)

P=1,Q=0,Error=3044.832934 P=1,Q=1,Error=2945.576680 P=1,Q=2,Error=2966.281480 P=1,Q=3,Error=2896.684189 P=1,Q=4,Error=2860.274045 P=1,Q=5,Error=2788.130198 P=2,Q=0,Error=2855.045201 P=2,Q=1,Error=2839.954995 P=2,Q=2,Error=2741.163190 P=2,Q=3,Error=2638.373490 P=2,Q=5,Error=2861.528584 P=3,Q=0,Error=2710.645780 P=3,Q=1,Error=2704.595950 P=3,Q=2,Error=2611.901070 P=3,Q=3,Error=2428.514544

18

Forecast

❖Predict

Date	Real	Predicted	Error	E(%)
20200621	27287	21909	5378	19.7090
20200620	31958	21816	10142	31.7354
20200619	31055	22319	8736	28.1307
20200618	27512	23633	3879	14.0993
20200617	23871	23407	464	1.9438

Further

Samples

- 1. More verify samples
- 2. Decompose
- 3. Infected count explode
- 4.

More features

- 1. Medical information
- 2. Population density
- 3. Seasonality
- 4.

More models

- 1. RNN
- 2. LSTM
- 3. Model with CNN
- 4.

Demo

Learn from demo

✓ More effort in EDA and FE

- ✓ Model has pre-condition and limitation
- ✓ Try several models or parameter pairs
- ✓ Evaluate and select suitable model

Thanks

2020-8-15

❖ Backlog

Backlog

❖ I (Difference)

Raw data: [1,3,5,9,11,15,16]

After difference : [2,2,4,2,4,1]

❖ Mean & Average

Mean & Average

Data: [1,1,2,2,2,2,3,4,5]

Mean: (2/9)*1 + (4/9)*2 + (2/9)*3+(1/9)*4+(1/9)*5

Average: (1+1+2+2+2+3+3+4+5)/9

Variance & standard deviation & covariance

$$s^2 = \frac{\sum_{i=1}^n (x_i - x)^2}{n}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$

❖ 单位根

DF检验

假设Y是由一阶自回归过程生成 $Y_{t} = \gamma Y_{t-1} + \nu_{t}$ (35)

 $\ddot{A}^{|\gamma|<1}$,则Y是平稳的, $\ddot{A}^{|\gamma|=1}$,则Y是非平稳的

检验问题: $H_0: \gamma = 1$, $H_A: \gamma < 1$

模型转换之后 $\Delta Y_t = (\gamma - 1)Y_{t-1} + v_t = \beta Y_{t-1} + v_t$ (36)

检验问题: $H_0: \beta = 0, H_A: \beta < 1$

❖ 单位根&白噪音检验

单位根检验

方法: statsmodels.tsa.stattools import adfuller

判断:

- 1. 结果同时小于1%、5%、10%对应的值,表示平稳
- 2. P-value (不变显著性) 接近0 , 表示平稳

白噪音检验

方法: statsmodels.stats.diagnostic import acorr_ljungbox

判断:

1. P-value < 0.05 表示不是白噪音