# JARINGAN KOMPUTER UJIAN TENGAH SEMESTER

## Dosen pengampu:

JOHAN ERICKA WAHYU PRAKASA, M. Kom.

### Disusun oleh:

ALFRED RAJENDRA WIJAYA (220605110103)



# PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM MAULANA MALIK IBRAHIM MALANG TAHUN AJARAN 2023 / 2024

Anda adalah seorang network administrator di sebuah perusahaan. Di perusahaan anda terdapat 2 divisi yaitu divisi Marketing dan divisi Office yang memiliki beberapa komputer. Dan juga terdapat server yang berada pada jaringan terpisah.

Tugas anda adalah mendesain sebuah komputer di kantor anda dengan ketentuan sebagai berikut :

- Terdapat komputer sejumlah X di divisi Marketing dan sejumlah Y komputer di divisi Office.
- Terdapat 1 laptop di masing masing divisi yang terhubung ke <u>jaringan</u> <u>komputer</u> melalui WIFI
- Sedangkan lainnya menggunakan PC yang terhubung ke jaringan melalui LAN
- Laptop & PC di masing masing divisi berada pada jaringan yang sama
- Terdapat 1 web server
- <u>IP Address</u> untuk divisi marketing adalah 192.168.**X**.abc, <u>IP Address</u> untuk divisi Office adalah 192.168.**Y**.abc dan IP Address untuk web server adalah 10.1.1.**X**

### **TUGAS:**

1. Buatlah perhitungan subnetwork secara detail yang menampilkan IP Network, IP Host Valid dan IP Broadcast untuk divisi Marketing dan divisi Office. Gunakan perhitungan subnet yang sesuai dengan jumlah komputer di masing - masing divisi [poin 30]

```
X = digit terakhir NIM anda + 1 (jika 0 dianggap 1)
```

**Y** = digit terakhir NIM anda + 2 (jika 0 dianggap 1)

### Jawaban:

Jika:

Digit nim terakhir = 3

Maka:

X = 3 + 1 = 4

Y = 3 + 2 = 5

A. Divisi marketing: 192.168.4.abc

Terhubung via lan : 4 pc Terhubung via wifi : 1 laptop

Total: 5 perangkat + 1 Gateway = 6 IP usable dibutuhkan

```
Host -2 = usable ip
Host = 2^x \mid x = bit
2^x - 2 \ge y \mid y = ip yang dibutuhkan & x = bit
```

Sehingga:

Bit subnet dibutuhkan:

 $2^x - 2 \ge 6$ 

 $2^x \ge 7$ 

X = 3

Sehingga CIDR yang digunakan:

Total bit – bit dibutuhkan = CIDR

32 - 3 = 29

Untuk mendapatkan subnet mask, maka harus dikonversi ke biner dahulu. Dari hasil perhitungan diatas, 29 menunjukkan banyaknya angka 1 diawal dan 3 menunjukkan jumlah angka 0 setelahnya. Maka didapat

11111111.1111111111.111111111111000

Setelah notasi binernya didapat maka dikonversi ke decimal, sehingga didapat **255.255.255.248** 

Sehingga ip subnet yang digunakan adalah /29

Ip /29 merupakan ip 3 bit yang memiliki  $2^3$  atau **8 hosts ip**. Jika 1 ip digunakan untuk ip network dan 1 lainnya digunakan sebagai ip broadcast, maka usable ipnya ada 6 ip. Sehingga bisa digunakan ke 6 perangkat yang terhubung

Dengan perhitungan diatas, didapat beberapa blok host ip sebagai berikut :

| Network       | Usable IP                     | IP Broadcast  |
|---------------|-------------------------------|---------------|
| 192.168.4.0   | 192.168.4.1 - 192.168.4.6     | 192.168.4.7   |
| 192.168.4.8   | 192.168.4.9 - 192.168.4.14    | 192.168.4.15  |
| 192.168.4.16  | 192.168.4.17 - 192.168.4.22   | 192.168.4.23  |
| 192.168.4.24  | 192.168.4.25 - 192.168.4.30   | 192.168.4.31  |
| 192.168.4.32  | 192.168.4.33 - 192.168.4.38   | 192.168.4.39  |
| 192.168.4.40  | 192.168.4.41 - 192.168.4.46   | 192.168.4.47  |
| 192.168.4.48  | 192.168.4.49 - 192.168.4.54   | 192.168.4.55  |
| 192.168.4.56  | 192.168.4.57 - 192.168.4.62   | 192.168.4.63  |
| 192.168.4.64  | 192.168.4.65 - 192.168.4.70   | 192.168.4.71  |
| 192.168.4.72  | 192.168.4.73 - 192.168.4.78   | 192.168.4.79  |
| 192.168.4.80  | 192.168.4.81 - 192.168.4.86   | 192.168.4.87  |
| 192.168.4.88  | 192.168.4.89 - 192.168.4.94   | 192.168.4.95  |
| 192.168.4.96  | 192.168.4.97 - 192.168.4.102  | 192.168.4.103 |
| 192.168.4.104 | 192.168.4.105 - 192.168.4.110 | 192.168.4.111 |
| 192.168.4.112 | 192.168.4.113 - 192.168.4.118 | 192.168.4.119 |
| 192.168.4.120 | 192.168.4.121 - 192.168.4.126 | 192.168.4.127 |
| 192.168.4.128 | 192.168.4.129 - 192.168.4.134 | 192.168.4.135 |
| 192.168.4.136 | 192.168.4.137 - 192.168.4.142 | 192.168.4.143 |
| 192.168.4.144 | 192.168.4.145 - 192.168.4.150 | 192.168.4.151 |
| 192.168.4.152 | 192.168.4.153 - 192.168.4.158 | 192.168.4.159 |
| 192.168.4.160 | 192.168.4.161 - 192.168.4.166 | 192.168.4.167 |
| 192.168.4.168 | 192.168.4.169 - 192.168.4.174 | 192.168.4.175 |

| 192.168.4.176 | 192.168.4.177 - 192.168.4.182 | 192.168.4.183 |
|---------------|-------------------------------|---------------|
| 192.168.4.184 | 192.168.4.185 - 192.168.4.190 | 192.168.4.191 |
| 192.168.4.192 | 192.168.4.193 - 192.168.4.198 | 192.168.4.199 |
| 192.168.4.200 | 192.168.4.201 - 192.168.4.206 | 192.168.4.207 |
| 192.168.4.208 | 192.168.4.209 - 192.168.4.214 | 192.168.4.215 |
| 192.168.4.216 | 192.168.4.217 - 192.168.4.222 | 192.168.4.223 |
| 192.168.4.224 | 192.168.4.225 - 192.168.4.230 | 192.168.4.231 |
| 192.168.4.232 | 192.168.4.233 - 192.168.4.238 | 192.168.4.239 |
| 192.168.4.240 | 192.168.4.241 - 192.168.4.246 | 192.168.4.247 |
|               |                               |               |

### Jadi, konfigurasi ip yang mungkin diterapkan untuk divisi MARKETING:

Nw**:** 192.168.4.0 Bc : 92.168.4.7 Gw : 192.168.4.1/29 PC 1 : 192.168.4.2/29 PC 2 : 192.168.4.3/29 PC 3 : 192.168.4.4/29 **PC 4** : 192.168.4.5/29 **Laptop** : 192.168.4.6/29 Netmask : 255.255.255.248

### **B.** Divisi Office : 192.168.5.abc

Terhubung via lan : 5 pc Terhubung via wifi : 1 laptop

# **Total: 6 perangkat + 1 Gateway = 7 IP usable dibutuhkan**

Host - 2 = usable ip $Host = 2^x | x = bit$ 

 $2^{x}-2 \ge y \mid y = ip \text{ yang dibutuhkan & } x = bit$ 

### Sehingga:

Bit subnet dibutuhkan:

 $2^x - 2 \ge 7$ 

 $2^{x} > 9$ 

X = 4

Sehingga CIDR yang digunakan :

Total bit – bit dibutuhkan = CIDR

32 - 4 = 28

Sehingga ip subnet yang digunakan adalah /28

Didapat netmask:
11111111.111111111111111111110000
Dikonversikan ke bilangan biner menjadi:
255.255.255.240

ip /28 merupakan ip 4 bit yang memiliki  $2^4$  atau **16 hosts ip**. Jika 1 ip digunakan untuk ip network dan 1 lainnya digunakan sebagai ip broadcast, maka usable ipnya ada 14 ip. Sehingga bisa digunakan ke 141 perangkat yang terhubung

Dengan perhitungan diatas, didapat beberapa blok host ip sebagai berikut :

| <b>Network Address</b> | Usable Host Range             | <b>Broadcast Address:</b> |
|------------------------|-------------------------------|---------------------------|
| 192.168.5.0            | 192.168.5.1 - 192.168.5.14    | 192.168.5.15              |
| 192.168.5.16           | 192.168.5.17 - 192.168.5.30   | 192.168.5.31              |
| 192.168.5.32           | 192.168.5.33 - 192.168.5.46   | 192.168.5.47              |
| 192.168.5.48           | 192.168.5.49 - 192.168.5.62   | 192.168.5.63              |
| 192.168.5.64           | 192.168.5.65 - 192.168.5.78   | 192.168.5.79              |
| 192.168.5.80           | 192.168.5.81 - 192.168.5.94   | 192.168.5.95              |
| 192.168.5.96           | 192.168.5.97 - 192.168.5.110  | 192.168.5.111             |
| 192.168.5.112          | 192.168.5.113 - 192.168.5.126 | 192.168.5.127             |
| 192.168.5.128          | 192.168.5.129 - 192.168.5.142 | 192.168.5.143             |
| 192.168.5.144          | 192.168.5.145 - 192.168.5.158 | 192.168.5.159             |
| 192.168.5.160          | 192.168.5.161 - 192.168.5.174 | 192.168.5.175             |
| 192.168.5.176          | 192.168.5.177 - 192.168.5.190 | 192.168.5.191             |
| 192.168.5.192          | 192.168.5.193 - 192.168.5.206 | 192.168.5.207             |
| 192.168.5.208          | 192.168.5.209 - 192.168.5.222 | 192.168.5.223             |
| 192.168.5.224          | 192.168.5.225 - 192.168.5.238 | 192.168.5.239             |
| 192.168.5.240          | 192.168.5.241 - 192.168.5.254 | 192.168.5.255             |

### Jadi, konfigurasi ip yang mungkin digunakan untuk divisi OFFICE:

Nw : 192.168.5.240 : 192.168.5.255 Bc Gw **:** 192.168.5.1/28 **PC** 1 **:** 192.168.5.2/28 PC 2 **:** 192.168.5.3/28 PC 3 : 192.168.5.4/28 **PC 4** : 192.168.5.5/28 **PC 5** : 192.168.5.6/28 Laptop **:** 192.168.5.7/28 Netmask : 255.255.255.240