BAYESUVIUS QUANTICO

a visual dictionary of Quantum Bayesian Networks

ROBERT R. TUCCI

Bayesuvius Quantico,

a visual dictionary of Quantum Bayesian Networks

Robert R. Tucci www.ar-tiste.xyz

October 28, 2025

This book is constantly being expanded and improved. To download the latest version, go to

https://github.com/rrtucci/bayes-quantico

Bayesuvius Quantico

by Robert R. Tucci Copyright ©2025, Robert R. Tucci.

This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. To view a copy of this license, visit the link https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

Contents

$\mathbf{A}_{\mathbf{I}}$	ppendi	ices	5
A	Nota A.1 A.2 A.3 A.4 A.5 A.6 A.7	ational Conventions and Preliminaries Set notation	66 66 77 77 88 99 100 111
	A.9	Permutations	14
В	Bird B.1 B.2 B.3	Classical Bayesian Networks and their Instantiations	15 15 17 18
1	Casi 1.1 1.2 1.3 1.4	mir Operators Independent Casimirs of Simple Lie Groups Casimir matrix expressed in terms of $6j$ coefficients	23 24 28 31 32
2	Cha	racteristic Equations	33
3		osch-Gordan Coefficients CB coefficients as matrices	37 37 40
4	Dyn	kin Diagrams: COMING SOON	42
5	General Relativity Nets: COMING SOON		
6	Inte	grals over a Group	44

	6.1	$\int dg \; G \; \ldots \; \ldots$	45
	6.2	$\int_{\mathbb{R}} dg \ G \otimes G^{\dagger}$	45
	6.3	Character Orthonormality Relation	48
	6.4	SU(n) examples	48
		$6.4.1$ $\int dg \ G \otimes G$	49
		$6.4.2$ $\int dg G^{\dagger} \otimes G^{\dagger} \otimes G \otimes G$	49
7	Inv	variant Tensors	52
8	${ m Li}\epsilon$	e Algebras	56
	8.1	Generators of infinitesimal transformations	56
	8.2	Tensor Invariance Conditions	58
	8.3	Clebsch-Gordan Coefficients	59
	8.4	Structure Constants (3 gluon vertex)	61
	8.5	Other Forms of Lie Algebra Commutators	64
9	\mathbf{Or}	thogonal Groups: COMING SOON	66
10	Qu	antum Shannon Information Theory: COMING SOON	67
11	${ m Re}$	coupling Identities	68
	11.1		68
	11.2	t-channel to sum of s-channels	72
	11.3	Wigner $3n - j$ coefficients/DAGs	74
12	${ m Re}$	coupling Identities for $U(n)$	75
	12.1	1 0	76
	12.2		77
	12.3	Sum rules	78
13	${ m Re}$	ducibility of Representations	80
	13.1		80
	13.2	$[P_i, M] = 0$ consequences	81
	13.3		82
	13.4		83
14	\mathbf{Sp}	inors: COMING SOON	84
15	\mathbf{Sq}	uashed Entanglement: COMING SOON	85
16	Sy	mplectic Groups: COMING SOON	86
17	$\mathbf{S}\mathbf{y}$	mmetrization and Antisymmetrization	87
		Symmetrizer	87

	17.2	Antisymmetrizer	. 91				
	17.3	Levi-Civita Tensor	. 95				
	17.4	Fully-symmetric and Fully-antisymmetric tensors	. 96				
	17.5	Identically Vanishing Birdtracks	. 98				
18	Un	tary Groups	99				
	18.1	SU(n)					
	18.2	Differences between $U(n)$ and $SU(n)$. 105				
	18.3	$V \otimes V$ Decomposition					
	18.4	$V_{adj} \otimes V$ decomposition	. 106				
19	Wi	gner-Ekart Theorem	113				
	19.1	WE in general	. 113				
	19.2	WE for angular momentum	. 115				
20	You	ing Tableau	118				
	20.1	Symmetric group S_{n_b}	. 119				
		20.1.1 $dim(\mathcal{Y} S_{n_b})$					
		20.1.2 Regular Representation	122				
	20.2	Unitary group $U(n)$. 123				
		20.2.1 Young Projection operators					
		$20.2.2 dim(\mathcal{Y}_{\alpha} U(n)) \dots \dots \dots \dots \dots \dots \dots \dots \dots$. 125				
	20.3	Young Projection operators for $n_b = 1, 2, 3, 4 \dots \dots$. 127				
	20.4	Young Projection Operator with swaps	130				
	20.5	Tensor product decompositions	130				
	20.6	SU(n)					
Bil	Bibliography						

Appendices

Chapter 20

Young Tableau

This chapter is based on Cvitanovic's Birdtracks book Ref. [1].

We recommend that the read Chapter 17 on symmetrizers and antisymetrizers before reading this one.

A Young Diagram (YD) $\mathcal{Y} = [\lambda_1, \lambda_2, \dots, \lambda_D]$ consists of λ_1 left-aligned empty boxes (LAEB) over λ_2 LAEB, over λ_3 LAEB, up to λ_{NR} LAEB, where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_{NR} \geq 1$. NR = number of rows. For example,

$$= [4, 2, 1, 1] \tag{20.1}$$

We will call [4, 2, 1, 1] the **row lengths** (RL) method of labeling YD.

A alternative method of labelling YD is called the **Dynkin** (**D**) labels or row changes (**RC**). These labels list the change in number of columns as we go down the YD. For example,

$$= [2, 1, 0, 1, 0 \dots]_D \tag{20.2}$$

A Young Tableau (YT) \mathcal{Y}_{α} is a YD in which integers from 1 to n where $n \leq n_b$ and n_b is the number boxes, are inserted according to some rules. The rules for insertion are that integers must increase when reading a row left to right and when reading a column from top to bottom. Obviously, for $n < n_b$, some integers are repeated.

A Standard Young Tableau (SYT) \mathcal{Y}_{α} is a YT such that $n=n_b$ and no integer is repeated. Fig.20.1 shows all SYT for $n_b=1,2,3,4$

- $n_b = 1$ 1

 $n_b = 2$ 1 2
- $n_b = 3$ 1 2 3 1 2 1 3 1 2 2 3 3

Figure 20.1: All SYT for $n_b = 1, 2, 3, 4$.

We will use $|\mathcal{Y}|$, or $|\mathcal{Y}_{\alpha}|$ or $|\alpha|$ to denote the number of boxes in a YD or YT.¹

20.1 Symmetric group S_{n_b}

Let

 S_{n_b} = the symmetric group in n_b letters (or n_b boxes) $irreps(S_{n_b})$ = the set of all irreps of S_{n_b} .

The **transpose of a YT** is defined as if it were a matrix. For example

$$transpose \left(\begin{array}{c|c} 1 & 3 & 5 \\ \hline 2 & 6 \\ \hline 4 \end{array}\right) = \begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \end{array}$$
 (20.3)

¹For many authors and for us too, |S| stands for the number of elements in a finite set S. This should not lead to confusion as a YD or YT are not sets.

n-dim General Linear group $GL(n) = \{M \in \mathbb{C}^{n \times n} : det(M) \neq 0\}$ n-dim Special Linear group $SL(n) = \{M \in GL(n) : det(M) = 1\}$ n-dim Unitary group, $U(n) = \{M \in GL(n) : MM^{\dagger} = M^{\dagger}M = 1\}$ n-dim Special Unitary group $SU(n) = \{M \in U(n) : det(M) = 1\}$ $YD(n_b) = \text{set of YD with } n_b \text{ boxes. } YD = \bigcup_{n_b=1}^{\infty} YD(n_b).$ $SYD(n_b) = \text{set of SYD with } n_b \text{ boxes. } YT = \bigcup_{n_b=1}^{\infty} YT(n_b).$ $SYT(n_b, NR) = \text{set of STY with } n_b \text{ boxes and } NR \text{ rows.}$ $YT(\mathcal{Y}) = \text{set of YT with a YD } \mathcal{Y}.$ $SYT(\mathcal{Y}) = \text{set of SYT with a YD } \mathcal{Y}.$ $dim(\mathcal{Y}|S_{n_b}) = \text{ dimension of irrep } \mathcal{Y} \text{ of } S_{n_b}$ $dim(\mathcal{Y}_{\alpha}|U(n)) = \text{ dimension of irrep } \mathcal{Y}_{\alpha} \text{ of } U(n) \text{ or } SU(n).$

Claim 30

1. The YD with n_b boxes label all irreps of the symmetric group S_{n_b} .

$$irreps(S_{n_b}) = YD(n_b)$$
 (20.4)

2. The SYT with n_b boxes and no more than n rows $(NR \le n)$, label the irreps of GL(n) and of U(n)

$$irreps(U(n)) = \bigcup_{n_b \le n, NR \le n} STY(n_b, NR)$$
 (20.5)

3. The SYT with n_b boxes and no more than n-1 rows $(NR \le n-1)$, label the irreps of SL(n) and SU(n).

$$irreps(SU(n)) = \bigcup_{n_b \le n, NR \le n-1} STY(n_b, NR)$$
 (20.6)

proof: QED

20.1.1 $dim(\mathcal{Y}|S_{n_b})$

Claim 31

$$dim(\mathcal{Y}|S_{n_b}) = |SYT(\mathcal{Y})| \tag{20.7}$$

proof: QED

For example, there are 3 irreps of S_4 associated with the YD

$$\mathcal{Y} = \boxed{ } \tag{20.8}$$

And each of those 3 irreps has dimension 3. Why? Because there are 3 possible SYT for this YD:

Thus, we can denote the basis vectors of one of these 3 degenerate irreps by

To compute $hook(\mathcal{Y})$:

- 1. Fill each box of the YD with the number of boxes below and to the right of the box, including the box itself.
- 2. Multiply the numbers in all the boxes.

For example,

Claim 32 (hook rule for computing $dim(\mathcal{Y}|S_{n_b})$)

$$dim(\mathcal{Y}|S_{n_b}) = \frac{n_b!}{hook(\mathcal{Y})}$$
(20.12)

proof: QED

For example

SO

$$dim(\mathcal{Y}|S_4) = \frac{4!}{4(2)} = 3 \tag{20.14}$$

20.1.2 Regular Representation

The **regular representation** of the symmetric group S_{n_b} is defined as follows. For each permutation $\sigma \in S_{n_b}$, define an independent vector $|\sigma\rangle$ in a vector space $\mathcal{V} = \{|\sigma\rangle : \sigma \in S_{n_b}\} = \{|\sigma_i\rangle : i = 1, 2, \dots, n_b!\}$. Let

$$|x\rangle = \sum_{i} x_i |\sigma_i\rangle \tag{20.15}$$

For any $\tau \in S_{n_b}$, suppose

$$\langle \sigma_i | \tau | \sigma_i \rangle = \langle \sigma_i \tau | \sigma_i \rangle \tag{20.16}$$

$$\langle \sigma_j | \tau | x \rangle = \langle \sigma_j \tau | x \rangle = \sum_i x_i \langle \sigma_j \tau | \sigma_i \rangle$$
 (20.17)

Claim 33 The regular rep is $n_b!$ dimensional and reducible. In the decomposition of the regular rep of S_{n_b} , each $\lambda \in irreps(S_{n_b})$ appears $dim(\lambda|S_{n_b})$ times.

proof: QED

From the last claim, it follows that

$$n_b! = |S_{n_b}| = \sum_{\lambda \in irreps(S_{n_b})} [dim(\lambda|S_{n_b})]^2$$

$$= [n_b!]^2 \sum_{\mathcal{Y} \in YD(n_b)} \frac{1}{[hook(\mathcal{Y})]^2}$$
 (Because $|irreps(S_{n_b})| = |YD(n_b)|$)
$$(20.19)$$

Hence,

$$1 = n_b! \sum_{\mathcal{Y} \in YD(n_b)} \frac{1}{[hook(\mathcal{Y})]^2}$$
 (20.20)

The Clebsch-Gordan series for the regular rep of S_{n_b} is

$$1 = \sum_{\mathcal{Y} \in YD(n_b)} P_{\mathcal{Y}} \tag{20.21}$$

where each $P_{\mathcal{Y}}$ can be further decomposed into

$$P_{\mathcal{Y}} = \sum_{\mathcal{Y}_{\alpha} \in SYT(\mathcal{Y})} \underbrace{\left| \mathcal{Y}_{\alpha} \right\rangle \left\langle \mathcal{Y}_{\alpha} \right|}_{P_{\mathcal{Y}_{\alpha}}}$$
(20.22)

The projection operators

$$\{P_{\mathcal{Y}_{\alpha}}: \mathcal{Y}_{\alpha} \in STY(\mathcal{Y}), \mathcal{Y} \in YD(n_b)\} = \{P_{\mathcal{Y}_{\alpha}}: \mathcal{Y}_{\alpha} \in SYT(n_b)\}$$
(20.23)

are complete and orthogonal.

Unitary group U(n)20.2

Let

 $STY(n_b, NR < n') = \text{set of STY with } n_b \text{ boxes and number of rows } NR < n'$ Recall that²

$$irreps(U(n)) = \bigcup_{n_b \le n, NR \le n} STY(n_b, NR) = \bigcup_{n_b = 1}^n STY(n_b, NR < n)$$
 (20.26a)

$$irreps(SU(n)) = \bigcup_{n_b \le n, NR \le n-1} STY(n_b, NR) = \bigcup_{n_b = 1}^n STY(n_b, NR < n-1)$$
 (20.26b)

A SYT with n_b boxes represents a tensor with n_b indices (n_b -particles state). Each index ranges from 1 to n.

 $n_b = 1$: A 1-index, 1-box tensor is a 1-particle with n states. This corresponds to the fundamental representation.

 $n_b=2$: A 2-index, 2-box tensor is a 2-particle with n^2 states. These n^2 states break into two sets, symmetric and anti-symmetric.

²Note that $STY(n_b)$ only contains STY with $n_b \leq n$ boxes, so the $n_b \leq n$ constraint might seem redundant in Eqs.(20.26). It isn't redundant because by $\bigcup_{n_b \leq n}$ we mean $\bigcup_{n_b=1}^n$.

The SYT of an irrep describes the symmetry of the indices of a tensor in that irrep. A single column SYT indicates a totally anti-symmetric tensor, a single row SYT indicates a totally symmetric tensor, and a SYT with more than one row or column indicates a mixed symmetry tensor. This is why we can't have more than n rows, because there are only n integers to fill all boxes so more than n rows would require a repetition of an integer in a column, and such a column, after antisymetrizing, would lead to zero.

20.2.1 Young Projection operators

For each SYT $\mathcal{Y}_{\alpha} \in irreps(U(n))$, define the **Young projection operator**

$$P_{\mathcal{Y}\alpha} = \mathcal{N}\left(\prod_{i} S_{i}\right) \left(\prod_{j} A_{j}\right) \tag{20.29}$$

for some normalization constant $\mathcal N$ yet to be e determined. These projection operators are not unique.

Claim 34

$$\mathcal{N} = \frac{\left(\prod_{i} |S_{i}|!\right) \left(\prod_{j} |A_{j}|!\right)}{hook(\mathcal{Y})}$$
(20.30)

where $|S_i|$ and $|A_j|$ are the number of arrows entering the symmetrizer or antisymmetrizer. Note that the normalization constant \mathcal{N} depends only on the YD \mathcal{Y} . Furthermore, the operators $P_{\mathcal{Y}_{\alpha}}$ are idempotent (i.e., their square equals themselves) mutually orthogonal and complete:

$$P_{\mathcal{Y}_{\alpha}}P_{\mathcal{Y}_{\beta}} = P_{\mathcal{Y}_{\alpha}}\delta(\alpha,\beta) \tag{20.31}$$

$$1 = \sum_{\mathcal{Y}_{\alpha} \in SYT(n_b, NR < n')} P_{\mathcal{Y}_{\alpha}} \tag{20.32}$$

where

$$n' = \begin{cases} n & \text{for } U(n) \\ n-1 & \text{for } SU(n) \end{cases}$$
 (20.33)

proof:

$$P_{\mathcal{Y}_{\alpha}} = \mathcal{N} \frac{1}{\prod_{i} |S_{i}|! \prod_{j} |A_{j}|!} \left(\begin{array}{c} \longleftarrow \\ \longleftarrow \\ \vdots \\ & + \cdots \end{array} \right)$$

$$(20.34)$$

From Eq. (20.32)

$$\mathbb{1} = \sum_{\mathcal{Y}_{\alpha} \in SYT(n_b, NR < n')} \mathcal{N} \frac{1}{\prod_i |S_i|! \prod_j |A_j|!} \quad \mathbb{1}$$

$$(20.35)$$

$$= \sum_{\mathcal{Y} \in YD(n_b)} \frac{n_b!}{hook(\mathcal{Y})} \mathcal{N} \frac{1}{\prod_i |S_i|! \prod_j |A_j|!} \quad \mathbb{1}$$
(20.36)

$$= \sum_{\mathcal{Y} \in YD(n_b)} \frac{n_b!}{[hook(\mathcal{Y})]^2} \frac{1}{\prod_i |S_i|! \prod_j |A_j|!} \quad \mathbb{1} \quad \text{(if assume Eq.(20.30)) (20.37)}$$

$$= 1 (by Eq.(20.20)) (20.38)$$

QED

20.2.2 $dim(\mathcal{Y}_{\alpha}|U(n))$

Let $dim(\mathcal{Y}_{\alpha}|U(n))$ be the dimension of an irrep of U(n) with STY given by $\mathcal{Y}_{\alpha} \in STY(n_b, NR < n)$.

Claim 35

$$dim(\mathcal{Y}_{\alpha}|U(n)) = |YT(\mathcal{Y})| \tag{20.39}$$

Note that the right hand side is independent of α , so this dimension is the same for all irreps α with the same YD \mathcal{Y} .

proof: QED

Hence, $\{|\alpha\rangle : \alpha \in YT(\mathcal{Y})\}$ are a basis for the irrep \mathcal{Y}_{α} of U(n). Note that the irreps of U(n) are given by SYT \mathcal{Y}_{α} , whereas the basis vectors of an irrep are given by YT (not just STY). For example, for

$$\mathcal{Y}_{\alpha} = \boxed{1 \quad 2} \tag{20.40}$$

the basis vectors are

SO

$$dim(\mathcal{Y}_{\alpha}|U(2)) = 3 \tag{20.42}$$

In Eq.(20.39) we gave a way of finding $dim(\mathcal{Y}_{\alpha}|U(n))$ A second way is by taking the trace of the corresponding projection operator

$$dim(\mathcal{Y}_{\alpha}|U(n)) = tr(P_{\mathcal{Y}_{\alpha}}) \tag{20.43}$$

For example, if

$$\mathcal{Y}_{\alpha} = \boxed{1 \quad 2} \tag{20.44}$$

then

$$dim(\mathcal{Y}_{\alpha}|U(n)) = \underbrace{-\mathcal{S}_{2}}_{2}$$

$$= \frac{1}{2} \left(\underbrace{-}_{2} + \underbrace{-}_{2} \right)$$

$$(20.45)$$

$$= \frac{1}{2} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \begin{array}{c} \\ \\ \\ \end{array} \right) \tag{20.46}$$

$$= \frac{1}{2}(n^2 + n) \tag{20.47}$$

$$= 3 \text{ for } n = 2$$
 (20.48)

A third way of computing $dim(\mathcal{Y}_{\alpha}|U(n))$ is by computing the hook and coat functions and using the formula

$$dim(\mathcal{Y}_{\alpha}|U(n)) = \frac{coat(\mathcal{Y})}{hook(\mathcal{Y})}$$
(20.49)

Note that right hand side is independent of α ; it depends only on the YD. We've already discussed how to compute $hook(\mathcal{Y})$. $coat(\mathcal{Y})$ is calculated as follows.³

1. Fill \mathcal{Y} with

- n at the diagonal blocks
- n increments increasing by 1 when reading from left to right
- n increments decreasing by 1 when reading from top to bottom

2. multiply all the boxes

Examples

$$dim(\boxed{1 \ 2}, U(2)) = \boxed{\boxed{\frac{n \ n+1}{2}}} = \frac{n(n+1)}{2}$$
 (20.50)

$$dim(\boxed{\frac{1}{2}}, U(2)) = \boxed{\frac{\frac{n}{n-1}}{2}} = \frac{n(n-1)}{2}$$
 (20.51)

³I invented the name $coat(\mathcal{Y})$. I don't know if it has a name.

$$dim(\underbrace{ \begin{array}{c|c|c|c} 1 & 2 & 3 & 4 \\ \hline 5 & 6 \\ \hline 7 \end{array}}, U(7)) = \underbrace{ \begin{array}{c|c|c} n & n+1 & n+2 & n+3 \\ \hline n-1 & n \\ \hline n-2 \\ \hline \hline 6 & 4 & 2 & 1 \\ \hline 3 & 1 \\ \hline 1 \\ \hline \end{array}}_{n-2} = \frac{n^2(n^2-1)(n^2-4)(n+3)}{144} \quad (20.52)$$

20.3 Young Projection operators for $n_b = 1, 2, 3, 4$

Symmetrizers S_p and antisymmetriers A_p are discussed in Chapter 17.

In this section, we will use symmetrizers and antisymmetrizers with "holes" Holes, denoted by empty square, will signify particles the symmetrizer or antisymmetrizer does not touch. For example

$$\begin{array}{cccc}
& \leftarrow \mathcal{S}_2 \leftarrow 1 \\
& \parallel \\
& \leftarrow \square \leftarrow 2 \\
& \leftarrow \parallel \\
& \leftarrow 3
\end{array} \tag{20.53}$$

denotes a symmetrizer of the particles 1 and 3 but not 2.

Note that

Similarly

Hence, one can avoid using symmetrizers and antisymmetrizers with holes, if one is willing to use swaps instead of holes.

Below, we use holes, but keep in mind that those holes can we replaced by swaps.

Below, we give the Clebsch decomposition of

$$(20.56)$$

$$(\longrightarrow)^{\otimes n_b}$$

for $n_b = 1, 2, 3, 4$.

•
$$n_b = 1$$

$$\boxed{1}$$

•
$$n_b = 2$$

$$\begin{array}{c|c}
\hline
1 & 2 \\
\leftarrow S_2 \leftarrow \\
\hline
 & A_2 \leftarrow \\
\hline
 & \parallel
\end{array}$$

20.4 Young Projection Operator with swaps

Same info as in Section 20.3 but using swaps instead of holes.

20.5 Tensor product decompositions

$$n^{3} = \frac{n(n+1)(n+2)}{6} + \frac{n(n^{2}-1)}{3} + \frac{n(n^{2}-1)}{3} = \frac{(n-2)(n-1)n}{6}$$
 (20.61)

For U(n), the blue YT are zero for $n_b = 2$, and non-zero otherwise.

20.6 SU(n)

$$\mathfrak{su}(\mathfrak{n}) \ A_n$$

$$\epsilon_{a_1 a_2 \dots a_n} = G_{a_1}^{\ a'_1} G_{a_2}^{\ a'_2} \cdots G_{a_n}^{\ a'_n} \ \epsilon_{a'_1 a'_2 \dots a'_n} \tag{20.63}$$

YD for SU(n) has a maximum of n-1 rows. For SU(4)

 $[5,3,2]_{RL}$ row lengths, $[2,1,2,0,\ldots]_D$ row changes (Dynkin labels).

$$[b_1, b_2, \dots, b_{n-1}]$$

For $SU(6)$,

Besides RL and RC, a third way of labelling YD (reps of SU(n)) is by their dimension, and then adding a subscript or overline if there are more than one reps with a different YD but the same dimension. This method is used mostly by physicists for SU(3) (The Eightfold Way). Note that all YT with the same YD have the same dimension, so this really labels YD instead of YT. For example, for SU(3) we have

$$n \otimes \overline{n} = 1 \oplus (n^2 - 1) \tag{20.68}$$

fun rep
$$\otimes$$
 conjugate rep = singlet rep \oplus adjoint rep (20.69)

Adjoint representation

$$P_{adj} = \frac{2(n-1)}{n}$$

$$= \frac{2(n-1)}{n}$$

Bibliography

- [1] Predrag Cvitanovic. *Group theory: birdtracks, Lie's, and exceptional groups.* Princeton University Press, 2008. https://birdtracks.eu/course3/notes.pdf.
- [2] JP Elliott and PG Dawber. Symmetry in Physics, vols. 1, 2. Springer, 1979.
- [3] Robert R. Tucci. Bayesuvius (free book). https://github.com/rrtucci/Bayes uvius.
- [4] Robert R. Tucci. Quantum Bayesian nets. *International Journal of Modern Physics B*, 09(03):295–337, January 1995.