TC 2022 Interconexión de redes

Esquemas de direccionamiento

Tecnológico de Monterrey, Campus Querétaro

Objetivos de esta sesión

Estudiar y entender los esquemas de direccionamiento IPv4, crear esquemas de direccionamiento y reconocer esquemas con base de una dirección IP y su máscara.

Direccionamiento IPv4

Diseñado al inicio de 1980

Se usan 4 bytes para identificar de manera única cada dispositivo de red.

Notación Punto Decimal

A.B.C.D

132.163.128.17

¿Cómo reconocer que parte pertenece a la red y que parte a un host?

Direccionamiento IPv4

Cinco clases diseñadas : A, B, C, D, E

Clase	Bytes reservados por la clase	Bytes para identificar Hosts	Máscara de subred
A	1	3	255.0.0.0
В	2	2	255.255.0.0
С	3	1	255.255.255.0
D	0	4	No tiene
E	0	4	No tiene

Multicast

Investigación

Direccionamiento IP

IP v4 (Direccionamiento lógico)

Una dirección IP puede escribirse de tres formas distintas:

Notación decimal	200.1.25.7	
Binaria	11001000 00000001 0001100	1 00000111
Hexadecimal	C8 01 19 07	

	Primer octeto	Segundo octeto	Tercer octeto	Cuarto octeto
Clase A	Network	Host	Host	Host
Clase B	Network	Network	Host	Host
Clase C	Network	Network	Network	Host

Direccionamiento IPv4

Bytes para Network

Rango de cada clase en binario

Α	0000000	0 1111111
В	10 000000	10 111111
С	110 00000	110 11111
D	1110 0000	11101111
Е	1111 0000	11111111

Direccionamiento IP

IP v4 (Direccionamiento lógico)

		Primer octeto	Segundo octeto	Tercer octeto	Cuarto octeto
	#bits	1 7		24	
Clase A		0 Network	Host	Host	Host
Class B	#bits	1 1	14	Ţ	16
Clase B		1 0 Network	Network	Host	Host
	#bits	1 1 1	21		8
Clase C		1 1 0 Network	Network	Network	Host

Direccionamiento IP v4

Clase D

- Estas direcciones IP están reservadas para multicast (multidifusión). Los datos de la multidifusión no están destinados para un host en particular.
- Los primeros cuatro bits del primer octeto se establecen en **1110**, dando una serie de:

 El resto de los bits se utilizan para identificar el grupo de computadoras al que el mensaje del multicast está dirigido. El rango de direcciones IP va de 224.0.0.0 a 239.255.255.255 y no tienen máscara de subred.

Clase E

- Estas direcciones IP están reservada para fines experimentales.
- Los primeros cuatro bits del primer octeto se establecen en 1111, por lo que las direcciones IP van de 240.0.0.0 a 255.255.255.254 y tampoco tienen máscara de subred.

Direccionamiento IP

IP (Direccionamiento lógico)

Clase	Rango primer octeto	Número de redes		Número de hosts		Dirección de muestra
A	1 - 127	2 ⁷ – 1 *	127	2 ²⁴ - 2	16,777,214	10.15.121.5 00001010 00001111 01111001 00000101
В	128 - 191	214	16,384	2 ¹⁶ - 2	65,534	130.13.44.52 10000010 00001101 00101100 00110100
С	192 - 223	221	2,097,152	2 ⁸ - 2	254	200.15.23.8 11001000 00001111 00010111 00001000
D	224 - 239					
E	240 - 255					

^{*} La red 127 no se usa está reservada

Ejercicio de clase

¿A qué clase pertenecen las siguientes direcciones de red?

Dirección IPv4	Clase
127. 0. 0. 0	Α
65. 0. 0. 0	
192. 0. 0. 0	
172. 16. 0. 0	
225. 255. 254. 245	

El primer byte nos dice la clase a la que pertenece.

Dirección IP 127.0.0.1

- Está reservada para loopback.
- El dispositivo de red loopback es un interfaz de red virtual que siempre representa al propio dispositivo independientemente de la dirección IP que se le haya asignado.

- La interface loopback no está asociada con ningún tipo de hardware y no está físicamente conectada a la red.
- Se utiliza en tareas de diagnóstico de conectividad y validez del protocolo de comunicación. Se utiliza para checar que la tarjeta de red esté funcionando. Ping 127.0.0.1. Todas las tarjetas se conectan a esta dirección.

Direcciones privadas

Son direcciones de cada clase que no están asignadas.

Las direcciones privadas pueden ser utilizadas por:

- Los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública.
- Los hosts que no se conectan a Internet.

En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten mediante el protocolo NAT (Network Address Translation - Traducción de Dirección de Red).

Las direcciones privadas son:

Clase A	10.X.X.X	10.0.0.0 a 10.255.255.255
Clase B	172.16.X.X – 172.31.X.X	172.16.0.0 a 172.31.255.255
Clase C	192.168.X.X	192.168.0.0 a 192.168.255.255

NAT (Network Address Translation)

Su uso más común es permitir utilizar direcciones privadas para acceder a Internet.

Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles.

NAT (Network Address Translation)

Si el número de direcciones privadas es muy grande puede usarse solo una parte de direcciones públicas para salir a Internet desde la red privada. De esta manera simultáneamente sólo pueden salir a Internet con una dirección IP tantos equipos como direcciones públicas se hayan contratado.

IP Address

La longitud de los campos varia dependiendo de la clase de la dirección IP.

Net Id	Host Id
--------	---------

IP Address with subnetting

Algunos bits son prestados del campo Host Id.

El número máximos de bits que pueden ser prestados es la longitud del Host Id – 2.

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Dirección IP y prefijo de red

En esquemas de subneteo el prefijo de red es un número entero (cuando mucho igual a 30) que da información valiosa del esquema utilizado

10. 25. 96. 2 / 22

El prefijo indica la posición del **Byte Crítico** (**BC**). Este Byte nos da información para calcular el **desplazamiento entre subredes**, nos permite construir **máscaras de subneto** y nos da información del **número de bits** que se han utilizado **para crear subredes** y, por consecuencia, el **número de bits de la sección de hosts**.

Subredes y máscaras de subred

¿Qué tendrías que hacer para encontrar la máscara de subred en notación punto decimal?

10. 25. 96. 2 / 22

¿Qué tendrías que hacer para encontrar la dirección de red y la dirección de broadcast?

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

1. Las direcciones IPv4 están compuestas de 32 bits.

2. El **prefijo de red** es la suma de los bits de **Reserva** de la clase y los bits utilizados para crear **subredes** (R+s).

3. Los bits de host son la resta de 32 y el valor del prefijo.

Prefijo = /21

4. El **Byte Crítico** (**BC**) es aquel en donde está ubicado el último bit de subneteo.

3. Para **calcular la máscara**, recuerda que los bits de red y subred se rellenan con unos y luego se convierte a decimal. Un tip importante es que los bytes que se encuentran a la izquierda del **Byte Crítico** les corresponde un valor de 255 y los que se encuentran a la derecha un valor de 0.

4. Para calcular el **desplazamiento en el Byte Crítico**, al valor de **256** le restas el valor de la máscara en el **Byte Critico** (decimal) y este es el valor del desplazamiento de cada subred.

256 – 248 = 8 El desplazamiento es de 8 en el Byte crítico.

Creación de máscaras

Método base 10

En el **Byte crítico**, los bits que faltan para completar el byte o llegar a la siguiente frontera se denomina por la literal **k**.

Elevar **2**^k representa el desplazamiento entre subredes.

$$2^3 = 8$$

Creación de máscaras

Método base 10

El valor en la posición del **Byte Crítico** resulta al restar al valor **256** el valor del desplazamiento.

Los bytes que se encuentran a la izquierda del **Byte Crítico** les corresponde un valor de 255 y los que se encuentran a la derecha un valor de 0.

Ejercicio de creación de máscaras

Método de CISCO

Con base en la información de la IP y el prefijo de red, determina la máscara de subred.

Dir IP / prefijo red	Máscara de subred
135. 21. 0. 0 / 19	255.255.1110 0000 255.255.224.0
1. 0. 0. 0 / 26	
145. 0. 0. 0 / 22	
10. 0. 0. 0 / 13	

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

Ejercicio de creación de máscaras

Método base 10

Con base en la información de la IP y el prefijo de red, determina: (a) la posición del BC, (b) el valor de k y (c) la máscara de subred.

Dir IP / prefijo red	Pos BC	k	Máscara de subred
135. 21. 0. 0 / 19	135. 21. 0 . 0	5 2^5 =32	255.255. 256-32 .0 255.255 .224. 0
1. 0. 0. 0 / 26			
145. 0. 0. 0 / 22			
10. 0. 0. 0 / 13			

A la izquierda del byte crítico corresponde el valor de 255. A la derecha del byte crítico corresponde el valor de 0.

Direcciones de broadcast

La dirección broadcast de una dirección IPv4 se forma al copiar, dependiendo la clase a la que pertenece la dirección IP, los valores de los **Bytes de reserva** y asignar el valor de 255 a los Bytes que se encuentran a la derecha de los de reserva.

Dirección IP Red	Dirección de broadcast
129. 10. 0. 0	129.10.255.255
68. 0. 0. 0	
195. 79. 1. 0	
130. 0. 0. 0	
221. 0. 0. 0	

NOTA: Identificar el valor de la red o clase (los bits de reserva se copian)

Direccionamiento IPv4

Creación de subredes

Para crear subredes se toman bits prestados de la porción Host de la dirección IP de la red o clase (izquierda a derecha).

Los bits restantes son utilizados para numerar cada host dentro de cada subred.

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

1) Identificar la clase, los bytes reservados por clase y la porción original de bits para hosts

2) Identificar los bits para subredes y los bits para hosts

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

3) Identificar el Byte Crítico.

Byte Crítico

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

4) Calcular la máscara en decimal: 255.255.248.0

5) Calcular el valor del desplazamiento en el Byte crítico. Al valor de 256 le restas el valor de la máscara en el Byte Critico (decimal) y este es el valor del desplazamiento de cada subred.

256 – 248 = 8 El desplazamiento es de 8 en el byte crítico

Ejemplo

6) Utilizar el desplazamiento calculado en el paso 4 y crear la información de las primeras cuatro subredes. Recuerda que el desplazamiento se da en el **Byte Crítico**. Dirección de red: **112.0.0.0** y máscara de subred: 255.**255.248**.0

#	Dirección	Primera IP	Última IP	Dirección de
Subred	de subred	válida	válida	broadcast
0	112.0. 0 .0	112.0.0.1	112.0.7.254	112.0. 0+7 .255
1	112.0. 8 .0	112.0.8.1	112.0.15.254	112.0. 8+7 .255
2				
3				

Dirección de broadcast: Los valores a la izquierda del byte crítico no cambian, lo que cambia es el byte crítico y lo que se encuentra a la derecha. Todo lo que se encuentre a la derecha del byte crítico le corresponde el valor numérico de **255**. Al byte crítico le corresponde el **valor inicial del byte crítico + desplazamiento – 1**.

¿Cómo podemos calcular cualquier subred dada la IP y el prefijo?

Utilizando la red 19.0.0.0 / 28 responde a las preguntas:.

- ¿Cuál será la máscara de subred en notación decimal para este esquema de direccionamiento?
- ¿Cuál es la posición del byte crítico?
- ¿Cuál es el valor del desplazamiento en el byte crítico? ______
- Llena la siguiente tabla con los valores de las subredes que se muestran:

Subred	Dir. IP de la subred
3	
211	
296	
970	
1913	

¿Cómo podemos calcular cualquier subred dadas la IP y el prefijo con el método binario?

Utilizando los siguientes datos IP 19.0.0.0 / 28 responde a las preguntas:.

- Identificar los bits de reserva de clase: 19. 0. 0. 0
- Identificar los bits de subnetting: 11111111. 11111111. 111110000

Subred	Transformar el #subred en binario utilizando los bits de subnetting	Dirección de subred	
3	19. 00000000. 00000000. 00110000	19.0.0.48	
211	19 . 00000000. 00001101. 00110000	19.0.13.48	
296	19. 00000000. 00010010. 10000000	19.0.18.128	
970	19 . 00000000. 0011 1100. 1010 000 0	19.0.60.160	
1913	19 . 00000000. 01110111. 1001 000 0	19.0.119.144	

¿Pasos para determinar una subred dadas la IP y el prefijo con el método base 10?

- 1. Identificar la máscara de subred.
- 2. Identificar la posición del byte crítico
- 3. Calcular el desplazamiento en el byte Crítico
- 4. Multiplicar #subred * desplazamiento
- 5. Dividir de forma entera entre 256

El valor del **residuo** se escribe en la **posición de byte Crítico**.

El valor del **cocient**e se escribe a la **izquierda del byte Crítico**.

Si el cociente > 255 → Volver a dividir entre 256

¿Pasos para determinar una subred dado la IP y la máscara con el método base 10?

Utilizando la dirección de red: 19.0.0.0 /	28 :
--	-------------

1.	Identificar la máscara de subrec	l y la	a posición del b '	yte crítico:
			•	

- Calcular el desplazamiento en el byte crítico
- 3. Multiplicar #subred * desplazamiento
- 4. Dividir de forma entera entre 256
 - El valor del **residuo** se escribe en la **posición de byte crítico**.
 - El valor del **cociente** se escribe a la **izquierda del byte crítico**.

Si el cociente > 255 → Volver a dividir entre 256

#Subred	#Subred * desplazamiento	Dividir entre 256	Cociente	Residuo	Dirección de subred
3	3*16=48	<u>0</u> 256 /48 48	0	48	19. 0 .0 .48
211					
296					
970					
1913					

Identificar la primera y última dirección IP válida y la dirección de broadcast de una subred?

Dirección de red: 19.0.0.0 / 28

• Máscara de subred: 255.255.250.240

Posición del byte crítico: 4

Desplazamiento en el byte crítico: 16

#Subred	Dirección de subred	Primera IP válida	Última IP válida	Dirección de broadcast
3	19. 0 .0 .48	19. 0 .0 .49	19. 0 .0 .62	19. 0 .0 .48 + 15 19.0.0. 63
211	19. 0. 13.48			
296	19. 0. 18.128			
970	19. 0. 60.160			
1913	19. 0. 119.144			