

UNIVERSIDADE FEDERAL DE VIÇOSA - *CAMPUS UFV*-FLORESTAL Disciplina: Laboratório de Física Elétrica – FIF 225

EXPERIMENTO – POTÊNCIA ELÉTRICA

INTRODUÇÃO

Aplicando uma tensão aos terminais de um resistor é estabelecida uma corrente que é consequência do movimento de cargas elétricas nesse resistor. O trabalho realizado pelas cargas elétricas, em um determinado intervalo de tempo, gera uma energia que é transformada em calor por Efeito Joule e é definida como potência elétrica. Numericamente, a potência elétrica e igual ao produto da tensão e da corrente, resultando em uma grandeza cuja unidade é o Watt (W).

Suponha que um resistor esteja ligado a uma bateria ou a uma outra fonte qualquer de tensão. Neste caso, temos o aparecimento de Energia Térmica (calor) no resistor. Isto se deve ao fato de que os elétrons da corrente colidem com átomos da rede cristalina do material que o constitui, elevando a amplitude de vibração destes átomos, ou seja, os elétrons da corrente elétrica transferem energia para os átomos do resistor e este dissipa energia na forma de calor, ocasionando o aumento de temperatura do mesmo. Para transportar uma carga dq através de uma diferença de potencial V é preciso fornecerlhe uma energia dq(V). Logo, para manter uma corrente i=dq/dt durante um tempo dt através de V, é preciso fornecer uma energia:

$$dW = (i.dt)V$$

O que corresponde a uma potência (energia por unidade de tempo):

$$\frac{dW}{dt} \equiv P = i.V$$

Combinando a definição de potência com a Lei de Ohm, podem-se obter as seguintes relações, em termos da resistência R do condutor:

$$P = i^2.R = \frac{V^2}{R}$$

A determinação da potência dos resistores segue a tabela abaixo:

Características Físicas

Potencia (W)	Diâmetro (mm)	Comprimento (mm)
1/8	2	3
1/4	2	6
1/2	3	9

Foto de Cima para Baixo Temos:

1/8W 1/4W 1/2W

PARTE EXPERIMENTAL

OBJETIVOS

- Verificar o comportamento da potência dissipada em resistores e lâmpadas quando varia a diferença de potencial entre seus extremos.
- Levantar a curva da potência em função da corrente elétrica para resistores e lâmpadas.

• Observar o efeito Joule e a variação da resistência do filamento de uma lâmpada com a temperatura.

MATERIAL UTILIZADO

- Fonte de tensão regulável
- Multímetros
- Painel de ligações
- Resistor
- Lâmpadas (L1 = 6V / 2W e L2 = 6V / 3W)
- Cabos de ligação

PROCEDIMENTOS

1^a parte – Resistor linear

- 1 Meça a resistência do resistor com o ohmímetro, com sua respectiva incerteza.
- 2 Monte no painel um circuito simples com o resistor em série com a fonte de tensão regulável. Insira um voltímetro e um amperímetro ao circuito.
- 3 Meça a corrente no circuito e a tensão sobre o resistor, variando a tensão na fonte de 0 até 6V, em intervalos de 0.5V.
- 4 Calcule a potência dissipada pelo resistor, para cada par de tensão e corrente medida.
- 5 Faça o gráfico da tensão em função da corrente, e através da regressão linear, avalie o valor da resistência obtida. O resistor obedece à Lei de Ohm?
- 6 Faça o gráfico da potência em função da corrente, e através da regressão polinomial, avalie o valor da resistência obtida.
- 7 Para qual valor de tensão e corrente a potência do resistor será a nominal? O que se observa quando se aplica uma tensão maior que esta? O que acontecerá ao resistor caso se aplique sobre ele uma tensão muito maior que esta?
- 8 Discuta os resultados obtidos.

2ª parte – Resistor não-linear (lâmpada)

- 1 Calcule a resistência da lâmpada através dos valores nominais especificados pelo fabricante. Em seguida, meça as resistências das lâmpadas (a frio), com o ohmímetro. Anote os valores com suas respectivas incertezas.
- 2 Monte no painel um circuito simples com a lâmpada de 6V/2W em série com a fonte de tensão regulável. Insira um voltímetro e um amperímetro ao circuito.
- 3 Meça a corrente no circuito e a tensão sobre lâmpada, variando a tensão na fonte de 0 até 6V, em intervalos de 0,5V.
- 4 Troque a lâmpada e repita as medidas.
- 5 Calcule a potência dissipada pelas lâmpadas, para cada par de tensão e corrente medida.
- 6 Trace as curvas da tensão em função da corrente, para cada uma das lâmpadas, em um mesmo gráfico, e através da regressão linear, avalie o valor das resistências obtidas. As lâmpadas obedecem à Lei de Ohm?
- 7 Trace as curvas da potência em função da corrente, para ambas as lâmpadas, em um mesmo gráfico, e através da regressão polinomial, avalie os valores das resistências obtidas.
- 8 Calcule, para uma das lâmpadas, a resistência do seu filamento, através dos pares de potência e corrente. Faça um gráfico da resistência em função da corrente. O que se observa?
- 9 Para qual valor de tensão e corrente a potência dissipada pela lâmpada será a nominal? O que acontecerá à lâmpada caso se aplique sobre ele uma tensão maior que esta? Qual das lâmpadas possui maior brilho? Qual delas se aqueceu mais? Discuta os resultados obtidos.

REFERÊNCIAS

Halliday, Resnick, Walker. 2006. Fundamentos de Física, vol. 3, LTC.

Campos, Alves, Speziali, 2007, Física Experimental Básica na Universidade, editora UFMG.