Proyecto Estadistíca Matemática

Rafael Córdoba Emilio Volpe

Mayo 2020

Resumen

En este proyecto se observó la convergencia según el TLC para el EMV de una distribución $Gamma(\alpha, \beta)$. Se utilizó el método de Newton-Rapson para encontrar los parámetros de máxima verosimilitud con un error menor a el 3 %. Se verificó la valides de el TLC para n=1000 con un error menor a el 5 %. Esto se respalda mediante el test χ^2 planteado sobre $||Z_n||^2$ (método analítico) y por la gráfica del qqplot para esta aproximación (método gráfico). Se graficó la distribución y se observó similitud con respecto a $N(0, I_2)$.

1. Introducción

El teorema de limite central nos permite identificar a partir de transformaciones una distribución normal. En este proyecto partimos de datos con distribución gamma (α, β) donde α y β son desconocidos. Queremos por tanto encontrar el valor de los parámetros, para ello, empleamos el método de máxima verosimilitud multi parámetrico lo cual nos permitirá encontrar los parámetros (α, β) correspondientes. Una vez encontremos estos parámetros resulta natural preguntarse como convergen estos datos (La aproximación de máxima verosimilitud) y cual es la rapidez de convergencia para el TLC a medida de que el tamaños de la muestra n crece en dicho caso. En este proyecto se realizó simulaciones computacionales para muestras Gamma de diferente tamaño y parámetro, específicamente, n=100,200,500,1000,2000 con parámetros de $\alpha=0.7,2.4,6$ y $\beta=3$. Esto con el fin de verificar la aproximación de máxima verosimilitud y poder estimar dicha convergencia por el TLC

2. Desarrollo

El modelo Gamma (α, β) , es un modelo usado para modelar tiempos de vida de artefactos. Al igual que el modelo Weibull, incluye la distribución exponencial como un caso particular. $X \sim \text{Gamma}(\alpha, \beta)$, si la densidad de X viene dada por

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x > 0,$$
(1)

donde α y β son parámetros positivos. α es el parámetro de forma y β el de escala. $\Gamma(\alpha)$ es la función Gamma.

Recuerde las funciones digamma, $\Psi(\alpha)$ y trigamma, $\Psi'(\alpha)$, que son las primeras dos derivadas de $\ln(\Gamma(\alpha))$ respecto a α :

$$\Psi(\alpha) = \frac{\partial \ln(\Gamma(\alpha))}{\partial \alpha} \qquad \Psi'(\alpha) = \frac{\partial^2 \ln(\Gamma(\alpha))}{\partial \alpha^2} \tag{2}$$

Veamos primero dada una distribución Gamma (α, β) la información de Fisher $I(\alpha, \beta) := -E[Hess(\ell)]$; donde $E[\cdot]$ es el valor esperado respecto a el modelo 1.

$$\begin{split} \ell(\alpha,\beta) &:= \log(f(x)) = -log\Gamma(\alpha) - \alpha \log \beta + (\alpha - 1) \log x - \frac{x}{\beta} \implies \\ \frac{\partial \ell}{\partial \alpha} &= -(\log \Gamma(\alpha))' - \log \beta + \log x \\ \frac{\partial \ell}{\partial \beta} &= -\frac{\alpha}{\beta} + \frac{x}{\beta^2} \\ \frac{\partial^2 \ell}{\partial^2 \alpha} &= -(\log \Gamma(\alpha))'' = -\Psi'(\alpha) \\ \frac{\partial^2 \ell}{\partial \beta^2} &= \frac{\alpha}{\beta^2} - 2\frac{x}{\beta^3} \\ \frac{\partial^2 \ell}{\partial \beta \partial \alpha} &= -\frac{1}{\beta} \end{split}$$

Por tanto, la matriz de información de Fisher para el modelo (1) es:

$$I(\alpha, \beta) = \begin{pmatrix} -E[-\Psi'(\alpha)] & -E[-1/\beta] \\ -E[1/\beta] & -E[\alpha/\beta^2 - 2x/\beta^3] \end{pmatrix}$$
(3)

Haciendo uso que la media (E[x]) de una distribución $Gamma(\alpha, \beta)$ es $\alpha\beta$ tenemos que la información de Fisher es:

$$I(\alpha, \beta) = \begin{pmatrix} \Psi'(\alpha) & 1/\beta \\ 1/\beta & \alpha/\beta^2 \end{pmatrix} \tag{4}$$

Tenemos entonces para los valores de $\alpha = 0.7, 2.4, 6$ y $\beta = 3$ respectivamente.

$$I(0.7,3) = \begin{pmatrix} 2.8340492 & 0.\overline{3} \\ 0.\overline{3} & 0.0\overline{7} \end{pmatrix}$$
 (5)

$$I(2.4,3) = \begin{pmatrix} 0.6524012 & 0.\overline{3} \\ 0.\overline{3} & 0.2\overline{6} \end{pmatrix}$$
 (6)

$$I(6,3) = \begin{pmatrix} 1.706118 & 0.\overline{3} \\ 0.\overline{3} & 0.\overline{6} \end{pmatrix}$$
 (7)

Ahora bien, el teorema de limite central (TLC) para el estadístico de máxima verosimilitud (EMV) multi parámetro nos dice que

$$Z_n = \sqrt{n}I(\alpha_0, \beta_0)^{1/2}(\hat{\theta} - \theta_0) \stackrel{\text{(d)}}{\to} N(\mathbf{0}, I_2)$$
(8)

siendo $\theta_0 = (\alpha_0, \beta_0)$ el parámetro verdadero, $\hat{\theta} = (\hat{\alpha}, \hat{\beta})$, el (par de) EMV e I_2 la identidad 2×2 . Como en este caso, la información de Fisher es simétrica positiva definida, la matriz $I(\alpha_0, \beta_0)^{1/2}$ existe. Por tanto, tenemos¹

 $^{^{1}\}mathrm{El}$ desarrollo se encuentra en el código de R

$$I(0.7,3)^{1/2} = \begin{pmatrix} 1.674290 & 0.1763426 \\ 0.1763426 & 0.2160580 \end{pmatrix}$$

$$(9)$$

$$I(2.4,3)^{1/2} = \begin{pmatrix} 0.6434601 & 0.3169668 \\ 0.3169668 & 0.4076748 \end{pmatrix}$$
 (10)

$$I(6,3)^{1/2} = \begin{pmatrix} 0.2739821 & 0.3259705 \\ 0.3254705 & 0.74876053 \end{pmatrix}$$
 (11)

Para encontrar el par $\hat{\theta} = (\hat{\alpha}, \hat{\beta})$ dado una muestra de datos i.i.d. $\mathbf{X} = (X_1, \dots, X_n)$ se tiene (según la estimación de máxima verosimilitud):

(a)
$$\frac{\partial l(\alpha, \beta)}{\partial \alpha} = 0$$
, (b) $\frac{\partial l(\alpha, \beta)}{\partial \beta} = 0$, (12)

$$l(\alpha, \beta) = \frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \log f(x_i) = -\sum_{i=1}^{n} \log \Gamma(\alpha) - \alpha \log \beta + (\alpha - 1) \log x_i - \frac{x_i}{\beta}$$
$$= -n \log \Gamma(\alpha) - n\alpha \log \beta + (\alpha - 1) \log \prod_{i=1}^{n} x_i - n \frac{\overline{X}}{\beta}$$

Por tanto, tenemos las siguientes ecuaciones:

(a)
$$0 = \frac{\partial l(\alpha, \beta)}{\partial \alpha} = -n\Psi(\alpha) - n\log\beta + \log\prod_{i=1}^{n} x_{i} \qquad (b) \qquad 0 = -n\frac{\alpha}{\beta} + n\frac{\overline{X}}{\beta^{2}}$$
 (13)

A partir de b) encontramos que $\beta = \overline{X}/\alpha$ e introduciendo esto en a) tenemos:

$$\Psi(\alpha) - \log \alpha = \frac{1}{n} \log \prod_{i=1}^{n} x_i - \log \overline{X} = \log \frac{\sqrt[n]{\prod_{i=1}^{n} x_i}}{\overline{X}}$$

Vemos entonces que para solucionar el sistema necesitamos solucionar la ecuación anterior sin embargo, esta no se podrá resolver analíticamente pero para ello se emplea el método de Newton-Rapson. En nuestro caso, para hallar la raíz α el esquema Newton-Rapson queda de la siguiente forma:

$$f(\alpha) = \Psi(\alpha) - \log(\alpha) + \log \frac{\overline{X}}{\sqrt[n]{\prod_{i=1}^{n} x_i}} := \Psi(\alpha) - \log(\alpha) + k$$
$$\alpha_{n+1} = \alpha_n - \frac{f(\alpha)}{f'(\alpha)} = \alpha_n - \frac{\Psi(\alpha) - \log(\alpha) + k}{\Psi(\alpha)' - \frac{1}{\alpha}}$$
$$\lim_{n \to \infty} \alpha_n = \alpha$$

Sin embargo, este método converge si la semilla (α_0) está cerca a la raíz.

Para ello, usamos $\alpha_0 = \overline{X}/s^2$ que está cerca a la raíz para valores "grandes" de n por el siguiente razonamiento:

$$\begin{split} \alpha &= \frac{\alpha^2 \beta^2}{\alpha \beta^2} = \frac{E[x]^2}{Var[x]}.\\ \overline{X} &\xrightarrow[n \to \infty]{} E[x] = \alpha \beta \implies \overline{X}^2 \xrightarrow[n \to \infty]{} E[x]^2 = \alpha^2 \beta^2\\ s^2 &\xrightarrow[n \to \infty]{} Var[x] = \alpha \beta^2 \\ \text{Por tanto, tenemos: } \overline{\frac{X}{s^2}} \xrightarrow[n \to \infty]{} \alpha \end{split}$$

Donde la primera implicación es por Slutski y la ultima igualdad es por el TMC (teorema mapa continuo para g(x)=1/x) y Slutski para la multiplicación.

Ahora bien, implementado este método en R^2 para $\alpha = 0.7, 2.4, 6$ y $\beta = 3$ tenemos:

	$\alpha_0 = 0.7 \ \beta = 3$	$\alpha_0 = 2.4 \ \beta = 3$	$\alpha_0 = 6 \ \beta = 3$
100	$\alpha = 0.7155395$	$\alpha = 2.460225$	$\alpha = 6.191308$
	$\beta = 2.989357$	$\beta = 2.983646$	$\beta = 2.96569$
200	$\alpha = 0.708454$	$\alpha = 2.437496$	$\alpha = 6.075591$
	$\beta = 2.980415$	$\beta = 2.97842$	$\beta = 2.992894$
500	$\alpha = 0.7028782$	$\alpha = 2.412933$	$\alpha = 6.027603$
	$\beta = 2.994828$	$\beta = 2.992552$	$\beta = 2.998256$
1000	$\alpha = 0.7010999$	$\alpha = 2.405643$	$\alpha = 6.013992$
	$\beta = 2.998837$	$\beta = 2.996287$	$\beta = 2.998524$
2000	$\alpha = 0.7006954$	$\alpha = 2.404773$	$\alpha = 6.011853$
	$\beta = 3.001491$	$\beta = 2.996754$	$\beta = 2.996945$

Cuadro 1: Valores de α y β calculados para diferentes n a través del método Newton-Rapson con 300 iteraciones.

Ahora que ya tenemos los valores de α y β podemos desarrollar la aproximación de TLC.

2.1. Test χ^2

Procedemos a ver la norma al cuadrado de los vectores Z_n esto es $||Z_n||^2$. Cuando se cumple la aproximación del TLC, los cuantiles de $||Z_n||^2$ estarán cerca de los correspondientes cuantiles de una χ^2 con 2 grados de libertad pues:

$$Z_n = \begin{bmatrix} Z_{n,1} \\ Z_{n,2} \end{bmatrix} \sim N(0, I_2) \implies Z_{n,1} \sim N(0, 1), \quad Z_{n,2} \sim N(0, 1)$$
(14)

y por tanto, por definición de la χ^2

$$||Z_n||^2 = Z_{n,1}^2 + Z_{n,2}^2 \sim \chi_2^2$$

 $^{^2\}mathrm{El}$ código se encuentra en la siguiente sección

Por tanto, si $||Z_n||^2$ se distribuye χ_2^2 podremos verificar que en efecto se cumple el TLC. Procedemos a realizar un test para ello.

2.1.1. Test de χ^2 equiprobable para 5 celdas

Sea $x \sim \chi^2$ y sea $c = \{c_0 = 0, c_1, c_2, c_3, c_4, c_5 = \infty\}$ tal que

$$0.2 = P(c_i \le x < c_{i+1}) \quad (i = 0, 1, 2, 3, 4)$$

entonces estamos partiendo el conjunto de posibles valores de x en 5 regiones equiprobables. La hipótesis nula es H_0 : La distribución $||Z_n||^2$ se parte en estas regiones equiprobables. y la hipótesis alternativa H_a : es que no lo hace.

Usando el estadístico X^2 :

$$X^{2} := \sum_{j=1}^{5} \frac{(n_{j} - n \cdot p_{j})^{2}}{n \cdot p_{j}}$$

Se distribuye como una χ_4^2 . Donde n_j son el numero de datos que cae entre c_{j-1} y c_j de nuestra muestra dada; n el numero de datos en cuestión y $p_j := P(c_{j-1} \le x < c_j) = 0.20$ (en nuestro modelo).

El modelo H_0 se rechaza si $X^2 \in R$ donde R es:

$$R = \{x \in \mathbb{R} | x \ge k \}, \quad k = \text{qchisq}(1 - \alpha, df = 4)$$

Cuyo p-valor es $1 - pchisq(X^2, df = 4)$.

En nuestro caso especial tendremos muestras de $||Z_n||$ de tamaño 5000 y por tanto, $c=\{0,0.4462871,1.0216512,1.8325815,3.2188758,\infty\}$ y $n\cdot p_j=1000$

De esta forma, podremos aplicar este test para verificar la validez del TLC.

Se procede entonces a generar 5000 muestras Gamma para cada uno de las tripletas (α, β, n) . Como se mostró anteriormente, para cada una de ellas se halló el par de EMV, y la raíz de la información de Fisher. De esta forma se halla 5000 datos de vectores Z_n .

Como se mencionó, para cada uno de los Z_n se halla la norma.

3. Código

Se comentará el código en R, aquellos casos en los que se repita lo que se hizo anteriormente no se comentará, es decir, se comenta para $\alpha = 0.7$ y para el resto no. Si se agrega algo nuevo si se comentará.

3.1. Preliminares

library(plot3D)
library(hexbin)

Se importan las librerías que se necesitaran, las dos nos permiten hacer gráficas en 3D e histograma en 2D respectivamente.

Procedemos a calcular las matrices de información de Fisher. Según la definición en el desarrollo te-

nemos:

```
I_0.7=cbind(c(trigamma(0.7),1/3)
,c(1/3,0.7/3^2))
I_2.4=cbind(c(trigamma(2.4),1/3)
,c(1/3,2.4/9))
I_6=cbind(c(trigamma(6),1/3)
,c(1/3,6/9))
```

Ahora, para calcular las raíces de estas matrices se sacan los valores propios y vectores propios, se comenta el resultado para un caso, el resto es el mismo procedimiento.

```
##Se guardan la información de valores
##y vectores propios en ev
ev \leftarrow eigen(I_0.7)
#se sacan los valores propios a un vector.
evalues=ev$values
##Se crea la matriz diagonal con los
##valores propios
D=matrix(c(evalues[1],0,0,evalues[2])
,nrow=2)
##Se crea la matriz con diagonal la
##raiz de valores propios
D_0.5=matrix(c(sqrt(evalues[1]),0,0
,sqrt(evalues[2])),nrow=2)
##Se crea la raiz de la información
##de Fisher
raizI_0.7=ev$vectors%*% D_0.5 %*%
t(ev$vectors)
```

ev <- eigen(I_2.4)
evalues=ev\$values
D=matrix(c(evalues[1],0,0,evalues[2]),nrow=2)
D_0.5=matrix(c(sqrt(evalues[1]),0,0,sqrt(evalues[2])),nrow=2)
raizI_2.4=ev\$vectors%*% D_0.5 %*%
t(ev\$vectors)</pre>

ev <- eigen(I_6)
evalues=ev\$values
D=matrix(c(evalues[1],0,0,evalues[2])
,nrow=2)
D_0.5=matrix(c(sqrt(evalues[1]),0,0)</pre>

```
,sqrt(evalues[2])),nrow=2)
raizI_6=ev$vectors%*% D_0.5 %*%
t(ev$vectors)
```

##Se define el numero de vectores Z_n o=5000

$$\alpha = 0.7, \beta = 3 \text{ y } n = 100, \cdots, 2000$$

3.1.1. Se calcula el EMV

Se procede a calcular el valor estimado de α y $\beta.$

##Tamaño de muestras que se tomaran (n)
muestras=c(100,200,500,1000,2000)

##Se realiza la iteración para cada una de los
##tamaños de la muestra
for (n in muestras){

##Vector con alphas estimados
alphas=c()

##Vector con betas estimados
betas=c()

normZ=c()

##Vector de Z_n (En este caso el tamaño del ##vector será o definido previamente) Z=c() ##Vector con la norma al cuadrado de Z i.e. ## $||Z_n||^2$.

##Se realizan las 5000 (o) muestras por cada n. for $(m \ in \ 1:o)$ {

##Muestras i.i.d. para una distribución
##Gamma (0.7,3)
x=rgamma(n,shape=0.7,scale=3)

##Se calcula el promedio empírico
xbar=sum(x)/n

##Se calcula la varianza muestral
s2=sum((x-xbar)^2)/(n-1)

```
##Se calcula el valor inicial de Newton-Rapsperse imprime el error entre los cuantiles
alpha_0=xbar^2/s2
                                             ##empiricos y los de chi^2_2
alpha=alpha_0
                                             print(100*abs(cuantiles-qchisq(c(0.5,
##Se calcula la constante en el método de
                                             0.75, 0.9, 0.95, df=2)/qchisq(c(0.5,
##Newton-Rapson, en este caso,
                                             0.75,0.9,0.95),df=2))
##log(xbar/(alpha*xmult))=k donde k es
##la constante definida en el desarrollo.
                                             ##Se imprime los valores promedio empírico
xmult=1
                                             ##de alfa y beta
for (i in 1:n){
                                             print (sum(alphas)/o)
    xmult=xmult*(x[i])^(1/n)
                                             print (sum(betas)/o)
k=log(xbar/(alpha*xmult))
##Procedemos a realizar Newton-Rapson
## para 300 iteraciones (Posiblemente
##se necesitan menos)
                                             \alpha = 2.4, \ \beta = 3 \ \mathbf{y} \ n = 100, \cdots, 2000
p = 300
for (i in 1:p){
    alpha=alpha-(digamma(alpha)+k)/
                                             print("### alpha=2.4 ###")
    (trigamma(alpha)-1/alpha)
                                             for (n in muestras){
##Se guarda el valor estimado de alpha y
                                             alphas=c()
## beta (Son los presentados en la Tabla 1)
                                             betas=c()
alphas=c(alphas,alpha)
                                             Z=c()
betas=c(betas,xbar/alpha)
                                             normZ=c()
                                             for (m in 1:o){
```

Se calcula la aproximación por el TLC

```
##Procedemos a calcular la aproximación
                                             x=rgamma(n,shape=2.4,scale=3)
## por el TLC.
                                             xbar=sum(x)/n
                                             s2=sum((x-xbar)^2)/(n-1)
##deltatheta= (\theta gorrito^)
                                             alpha_0=xbar^2/s2
deltatheta=c(alpha,xbar/alpha)-c(0.7,3)
                                             alpha=alpha_0
                                             xmult=1
##Se crea el vector Z_n
                                             for (i in 1:n){
Zn=sqrt(n)*raizI_0.7%*%deltatheta
                                                 xmult=xmult*(x[i])^(1/n)
                                             p = 300
##Se guarda el vector
Z=c(Z,Zn)
                                             for (i in 1:p){
##Se guarda el vector ||Z_n||^2
                                                 alpha=alpha-(digamma(alpha)+
normZ=c(normZ,sum(Zn^2))
                                                 log(xbar/(alpha*xmult)))/
                                                 (trigamma(alpha)-1/alpha)
    }
##Se sacan los cuantiles empíricos de ||Z_n|alphas=c(alphas,alpha)
                                             betas=c(betas,xbar/alpha)
cuantiles=quantile(normZ,probs=c(0.5,
                                             deltatheta=c(alpha,xbar/alpha)-c(2.4,3)
0.75, 0.9, 0.95))
```

```
alfa=0.1
Zn=sqrt(n)*raizI_2.4%*%deltatheta
                                             c=qchisq(1-alfa,df=4)
Z=c(Z,Zn)
normZ=c(normZ,sum(Zn^2))
                                             ##Si X^2>c se rechaza la hipotesis
                                             ##sino se acepta
                                             if(X2_4>c){
cuantiles=quantile(normZ,probs=c(0.5,0.75,0.9,0.95)) ("Se rechaza la hipotesis")
cuantilescontinuos=quantile(normZ,probs=seq(peps {
0.99, by=0.01)
                                                 print("se acepta la hipotesis")
cuantilescontinuosreal=qchisq(seq(0.01,
0.99, by=0.01), df=2)
plot(cuantilescontinuos,
                                             ##Se imprime los valores de c y X^2
cuantilescontinuosreal,main =
                                             ##respectivamente.
paste("Chi^2 q-q plot alfa=2.4 beta=3",n),
                                             print (c(c,X2_4))
xlab="Cuantiles teoricos Chi ^2",
ylab="Cuantiles empiricos ||Z_n||")
print(100*abs(cuantiles-qchisq(c(0.5,0.75,
0.9,0.95),df=2))/qchisq(c(0.5,0.75,
0.9, 0.95), df=2)
print (sum(alphas)/o)
                                             \alpha = 6, \ \beta = 3 \ \mathbf{y} \ n = 100, \cdots, 2000
print (sum(betas)/o)
                                             print("### alpha=6 ###")
Hipótesis \chi^2
                                             for (n in muestras){
##Se definen los valores de c. Los valores dælphas=c()
##c_0 y c_5 no se necesitan por
                                             betas=c()
##las desigualdades
                                             Z=c()
                                             normZ=c()
c=qchisq(seq(1/5,0.8,by=0.2),df=2)
                                             for (m in 1:o){
dat=normZ
##Se encuentran los n_i del modelo
                                             x=rgamma(n,shape=6,scale=3)
                                             xbar=sum(x)/n
n1=length(dat[dat<=c[1]])
                                             s2=sum((x-xbar)^2)/(n-1)
n2=length(dat[dat<=c[2] & dat>c[1]])
                                             alpha_0=xbar^2/s2
n3=length(dat[dat<=c[3] & dat>c[2]])
                                             alpha=alpha_0
n4=length(dat[dat<=c[4] & dat>c[3]])
                                             xmult=1
n5=length(dat[dat>c[4]])
                                             for (i in 1:n){
                                                 xmult=xmult*(x[i])^(1/n)
n=c(n1,n2,n3,n4,n5)
                                             p = 300
##Se saca el estadístico X^2
                                             for (i in 1:p){
                                                 alpha=alpha-(digamma(alpha)+
X2_4=sum((n-1000)^2)/1000
                                                 log(xbar/(alpha*xmult)))/
                                                  (trigamma(alpha)-1/alpha)
##Se prueba con alfa=0.1
                                             }
```

```
## Plot vector Z_n como un histograma en 2D
alphas=c(alphas,alpha)
betas=c(betas,xbar/alpha)
                                             h <- hexbin(df)
deltatheta=c(alpha,xbar/alpha)-c(6,3)
                                             plot(h, colramp=rf, main =
                                              paste("Histograma en 2D de Z_n,
Zn=sqrt(n)*raizI_6%*%deltatheta
                                               alpha=6, n=",n), xlab="Z_{n,1}",
                                               ylab="Z_{n,2}")
Z=c(Z,Zn)
normZ=c(normZ,sum(Zn^2))
                                             cuantiles=quantile(normZ,probs=c(0.5,
                                             0.75,0.9,0.95))
dim(Z) < -c(o,2)
                                             cuantilescontinuos=quantile(normZ,
                                             probs=seq(0.01,
                                             0.99, by=0.01)
library(RColorBrewer)
                                             cuantilescontinuosreal=qchisq(seq(0.01,
rf <- colorRampPalette(rev(</pre>
                                             0.99, by=0.01), df=2)
brewer.pal(11,'Spectral')))
                                             plot(cuantilescontinuos,
r <- rf(32)
                                             cuantilescontinuosreal,
                                              main = paste("Chi^2 q-q plot
x < -Z[,1]
                                               alfa=6 beta=3",n),
y < - Z[,2]
                                              xlab="Cuantiles teoricos Chi ^2",
df <- data.frame(x,y)</pre>
                                              ylab="Cuantiles empiricos ||Z_n||")
                                             print(100*abs(cuantiles-qchisq(c(0.5,
## Plot de el vector Z_n
                                             0.75,
                                             0.9,0.95),df=2))/qchisq(c(0.5,0.75,
plot(df, pch=16, col='black',
                                             0.9, 0.95), df=2)
cex=0.5)
                                             print (sum(alphas)/o)
library(hexbin)
                                             print (sum(betas)/o)
                                             }
```

4. Resultados

Los resultados de el par (α, β) calculados se mostraron anteriormente, en ellos se observa que cada uno de ellos se aproxima satisfactoriamente el valor real cuyo error en α es menor a el 3 % respecto a el valor real y para β menor a el 2 % respecto a el valor real. Se muestran algunos de los resultados mas representativos. Las gráficas completas se encuentran en el apéndice.

Al realizar el desarrollo de $||Z_n||^2$ se había argumentado que tendría distribución χ^2 . Se observa que en efecto al simular 5000 datos, tenemos que para los cuantiles 0.5, 0.75, 0.9 y 0.95 tienen error pequeño, se observa en las siguientes tablas el valor mínimo de n para el cual el error es menor a el 5% en cada uno de los cuantiles.

$$\alpha = 0.7, \ \beta = 3, \ \mathbf{n=500}$$

n=500 cuantil: 50% 75% 90% 95% Error (%): 1.3055 0.4286 0.7481 0.1294

alfa= 0.7028342 beta= 2.99659 alfa= 2.40461

beta= 2.999608

"se acepta la hipótesis"

C= 7.77944

X^2=0.56000

$$\alpha = 6, \beta = 3, n=1000$$

$$\alpha = 2, 4, \beta = 3, n=1000$$

n=1000 cuantil: 50% 75% 90% 95% Error(%): 1.5070 0.7274 0.2140 2.9341

n=1000 cuantil: 50% 75% 90% 95% Error(%): 1.1048 1.7321 0.4452 0.9101

alfa= 6.012594 beta= 2.999053

Por otra parte, al realizar los q-q plots se obtuvo la convergencia esperada cuyas gráficas completas están en el aprendices. Se muestra los valores de n en los cuales el q-q empieza a ser excelente.

Figura 1: q-q Plot de Cuantiles empíricos $||Z_n||$ v
s Cuantiles teóricos χ^2 para $\alpha=0.7,\,\beta=3$ con 1000 datos

Figura 2: q-q Plot de Cuantiles empíricos $||Z_n||$ v
s Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con 500 datos

Figura 3: q-q Plot de Cuantiles empíricos $||Z_n||$ v
s Cuantiles teóricos χ^2 para $\alpha=6,\ \beta=3$ con 1000 datos

Por ultimo se encuentra las gráficas de el vector Z_n . En esta se observa una similitud con la distribución $N(0, I_2)$.

Figura 4: Histograma en 2D de Z_n para $\alpha=6$ y n=2000

5. Conclusiones

- Se observa que el método de máxima verosimilitud permite encontrar valores estimados de α y β con gran precisión como se respalda en la tabla 1 cuyo error es menor a el 3 % respecto a el valor teórico.
- Se comprobó mediante dos técnicas diferentes la convergencia de $||Z_n||^2$, mediante el test χ^2 y mediante los q-q plots. Las cuales son métodos de bondad de ajuste numérico y gráfico. Cada una de estos test nos permiten discernir en efecto la veracidad de nuestra hipótesis y por tanto, concluimos que $||Z_n||^2$ se distribuye en efecto como χ^2 .
- Se observa que a partir de n=1000 los datos de cuantil con p=0.5, 0.75.0.9, 0.95 tienen una error menor a 5 % de hecho, en nuestro caso menor a el 2 % pero se asume 5 % para estar totalmente seguro.
- Como se observa en las figuras 1,2,3 los q.q los datos enteramente caen el la linea y por tanto, esto respalda el item anterior.
- Asi mismo, el test de χ^2 realizado para una distribución Gamma(2.4,6) permite observar la distinción de esta distribución, los p-valores (Anexo), para n>100 son de 0.45,0.42,0.96,0.29 para n=200,500,1000,2000 respectivamente, lo cual permite concluir una vez mas la distribución de hipótesis nula H_0
- Las gráficas $Z_{n,1}Vs.Z_{n,2}$ muestran un comportamiento con media (0,0) parecido a la normal y la gráfica del histograma en 2D apoya este hecho de que Z_n se distribuye $N(0,I_2)$.
- Se concluye entonces la veracidad del TLC para el EMV cuya convergencia para n=1000 tiene un error menor a el 5 % en la distribución Gamma.

6. Anexo

6.1.
$$\alpha = 0.7, \ \beta = 3 \ n = 100, 200, 500, 1000, 2000$$

Las siguientes tablas representan el error entre el cuantil empírico de $||Z_n||^2$ y el teórico de una χ^2_2 . La tercera linea de cada tabla es el valor promedio de α para las 5000 iteraciones y la cuarta linea de cada tabla es el valor promedio de β para las 5000 iteraciones sacado con el método de Newton-Rapson con 300 iteraciones.

[1] 2.997159

	50%	75%	90%	95%			
3.8			5.812884				
[1] 0.7167161							
[1]	2.9685	564					
	50%	75%	90%	95%			
3.98	355079	0.6635031	3.0364241	6.9080954			
[1]	0.7074	155					
[1]	2.9858	305					
	50%	75%	90%	95%			
1.30	055219	0.4286725	0.7481423	0.1294013			
[1]	0.7028	3342					

50% 75% 90% 95% 2.7702080 3.1096319 0.9909717 2.3282619 [1] 0.7017594 [1] 2.997345 50% 75% 90% 95% 1.1688313 0.9956719 0.2513575 0.7208296 [1] 0.7011679

[1] 0.7028342

6.1.1. Gráficas

Chi^2 q-q plot alfa=0.7 beta=3 100

Figura 5: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=0.7,\ \beta=3$ con 100 datos

datos

Figura 6: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Figura 8: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=0.7,\ \beta=3$ con 200 Cuantiles teóricos χ^2 para $\alpha=0.7,\ \beta=3$ con 1000

Figura 7: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Figura 9: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=0.7,\ \beta=3$ con 500 Cuantiles teóricos χ^2 para $\alpha=0.7,\ \beta=3$ con 2000 datos

6.2. $\alpha = 2.4, \ \beta = 3 \ n = 100, 200, 500, 1000, 2000$

Las siguientes tablas representan el error entre el cuantil empírico de $||Z_n||^2$ y el teórico de una χ^2_2 . La tercera linea de cada tabla es el valor promedio de α para las 5000 iteraciones y la cuarta linea de cada tabla es el valor promedio de β para las 5000 iteraciones sacado con el método de Newton-Rapson con 300 iteraciones. La cuarta linea representa la respuesta a el test χ^2 implementado para el ultimo dato $||Z_n||^2$. La quinta linea representa el valor de k y el valor de X^2 respectivamente

[1] "### alpha=2.4 ###" [1] "se acepta la hipótesis" 50% 75% 90% 95% [1] 7.77944 3.85000 1.366548 5.191800 19.303275 37.180318 p-valor=0.42 [1] 2.466117 [1] 2.9741 [1] "Se rechaza la hipótesis" 50% 75% 90% 95% 7.77944 17.79800 1.1048457 1.7321500 0.4452145 0.9101850 p-valor=0.0013 [1] 2.40461 50% 75% 90% 95% [1] 2.999608 0.097380 2.084827 8.565456 13.462285 [1] "se acepta la hipótesis" [1] 2.430492 [1] 7.77944 0.56000 [1] 2.988533 p-valor=0.96 [1] "se acepta la hipótesis" 50% 90% 75% 95% 3.2953946 0.5374177 3.2483205 2.1045790 [1] 7.77944 3.62400 p-valor=0.45 [1] 2.402662 [1] 3.000452 50% 75% 90% 95% 2.502909 2.678401 4.258266 7.550863 [1] "se acepta la hipótesis" [1] 2.411976 [1] 7.77944 4.88000 [1] 2.996119 p-valor=0.29

6.2.1. Gráficas

Chi^2 q-q plot alfa=2.4 beta=3 100

Figura 10: q-q Plot de Cuantiles empíricos $||Z_n||_{16}$ vs Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con 100 datos

Chi^2 q-q plot alfa=2.4 beta=3 200

Chi^2 q-q plot alfa=2.4 beta=3 1000

Figura 11: q-q Plot de Cuantiles empíricos $||Z_n||$ Figura 13: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con vs Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con $200 \, \, \mathrm{datos}$

1000 datos

Chi^2 q-q plot alfa=2.4 beta=3 2000

Figura 12: q-q Plot de Cuantiles empíricos $||Z_n||$ Figura 14: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con vs Cuantiles teóricos χ^2 para $\alpha=2.4,\ \beta=3$ con 500 datos

2000 datos

6.3. $\alpha = 6, \ \beta = 3 \ n = 100, 200, 500, 1000, 2000$

Las siguientes tablas representan el error entre el cuantil empírico de $||Z_n||^2$ y el teórico de una χ^2_2 . La tercera linea de cada tabla es el valor promedio de α para las 5000 iteraciones y la cuarta linea de cada tabla es el valor promedio de β para las 5000 iteraciones sacado con el método de Newton-Rapson con 300 iteraciones.

- [1] "### alpha=6 ###" 50% 75% 90% 95% 2.040076 8.316715 35.338696 66.581782 [1] 6.177533 [1] 2.968763 50% 75% 90% 95% 1.216987 7.810558 18.437838 29.972716 [1] 6.081388 [1] 2.990405 50% 75% 90% 95% 1.036254 4.809037 12.317950 19.578755
- [1] 6.044768 [1] 2.988638 50% 75% 90% 95% 1.5070663 0.7274153 0.2140569 2.9341438 [1] 6.012594 [1] 2.999053 50% 75% 90% 95%
- 1.9450309 3.0286343 0.7300571 1.3153162 [1] 6.011195
- [1] 6.011195 [1] 2.997606

6.3.1. Gráficas

Figura 15: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=6,\,\beta=3$ con 100 datos

Figura 16: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha = 6$, $\beta = 3$ con 200 datos

Cuantiles teoricos Chi ^2

Figura 17: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=6,\,\beta=3$ con 500 datos

Figura 19: q-q Plot de Cuantiles empíricos $||Z_n||$ vs Cuantiles teóricos χ^2 para $\alpha=6,\ \beta=3$ con 2000 datos

Figura 18: q-q Plot de Cuantiles empíricos ||. Cuantiles teóricos χ^2 para $\alpha=6,~\beta=3$ con 1000 datos

Figura 20: Histograma 2D de $Z_n,\,\alpha=6,\,n=100$

Figura 21: Histograma 2D de $Z_n, \, \alpha=6, \, n=200$ Figura 23: Histograma 2D de $Z_n, \, \alpha=6, \, n=1000$

Figura 22: Histograma 2D de $Z_n, \, \alpha=6, \, n=500$ Figura 24: Histograma 2D de $Z_n, \, \alpha=6, \, n=2000$

Figura 25: Gráfica $Z_{n,1}$ vs $Z_{n,2},\,\alpha=6,\,n=100$

Figura 27: Gráfica $Z_{n,1}$ vs $Z_{n,2},\,\alpha=6,\,n=500$

Figura 26: Gráfica $Z_{n,1}$ vs $Z_{n,2},\,\alpha=6,\,n=200$ Figura 28: Gráfica $Z_{n,1}$ vs $Z_{n,2},\,\alpha=6,\,n=1000$

Plot Z_{n,1} vs Z_{n,2}, alpha=6, n= 2000

Z_{n,1}

Figura 29: Gráfica $Z_{n,1}$ vs $Z_{n,2},\,\alpha=6,\,n=2000$