COMP S265F Unit 3: Divide and Conquer: Linear Time Selection

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Overview

- Divide and Conquer
- Example 1: Finding maximum of n numbers
 - Divide & Conquer approach
 - Proof of correctness: by M.I.
 - >Time complexity analysis: Simplifying n to powers of 2
- Example 2: MergeSort
 - > Algorithm
 - >Sample run: Divide & Conquer, Merging two sorted lists
 - >Time complexity analysis
- Example 3: Linear time selection
 - >Basic Operation: Divide a set N by a number a
 - >O(n²)-time algorithm
 - >O(n)-time algorithm using a clever way to pick the number a

Divide and Conquer

A basic algorithm design technique

Divide

- ➢ Given some problem, divide it into a number of similar, but simpler problems.
- >Solve each of these problems recursively.

Conquer (or Combine)

Combine the solutions of each of these subproblems into a solution of the original problem.

Example 1: Finding the maximum of n numbers

A divide & conquer approach:

- If n = 1, then return the number immediately.
- Otherwise, do the following:
 - > divide the numbers into two equal groups,
 - riangleright for each of the 2 groups, find recursively the maximum of that group.
 - > compare the two numbers found and return the larger one.

Example: Finding the maximum of n numbers

- If n = 1, then return the number immediately.
- Otherwise, do the following:
 - > divide the numbers into two equal groups,
 - > for each of the 2 groups, find recursively the maximum of that group.
 - > compare the two numbers found and return the larger one.

Pseudo-code:

```
 \begin{array}{l} \max([a_1,\ a_2,\ ...,\ a_n]): \\ \text{ if } n=1: \\ \text{ return } a_1 \\ \text{ else:} \\ m1 = \max([a_1,\ a_2,\ ...,\ a_{n/2}]) \\ m2 = \max([a_{n/2+1},\ a_{n/2+2},\ ...,\ a_n]) \\ \text{ compare } m1,\ m2 \ \text{and return the larger one} \\ \end{array}
```

Proof of Correctness

- Base Case: When n=1, max is obviously correct.
- Induction Hypothesis: Suppose max correctly finds the maximum of any n-1 numbers.
- Consider any input of n numbers a₁,...,a_n.

Proof of Correctness (cont')

- Base Case: When n=1, max is obviously correct.
- Induction Hypothesis: Suppose max correctly finds the maximum of any n-1 numbers.
- Consider any input of n numbers a₁,...,a_n.
- Note that \max divides the n numbers into two groups $S1=\{a_1, ..., a_{n/2}\}$ and $S2=\{a_{n/2+1}, ..., a_n\}$ and call recursively
 - $-m1= \max([a_1, ..., a_{n/2}]), and$
 - $-m2 = \max ([a_{n/2+1}, ..., a_n]),$

and returns the maximum m of m1 and m2.

Proof of Correctness (cont')

- Induction Hypothesis: Suppose max correctly finds the maximum of any n-1 numbers.
- Note that \max divides the n numbers into two groups $S1=\{a_1, \ldots, a_{n/2}\}$ and $S2=\{a_{n/2+1}, \ldots, a_n\}$ and call recursively $-m1=\max([a_1, \ldots, a_{n/2}])$, and $-m2=\max([a_{n/2+1}, \ldots, a_n])$,
 - and returns the maximum m of m1 and m2.
- Obviously, |S1| and |S2| is smaller than or equal to n-1.
- By the Induction Hypothesis, m1 is the maximum of S1 and m2 is the maximum of S2.
- As m is the maximum of S1 \cup S2, max correctly finds the maximum of the n numbers, which completes the proof.

Time complexity

- Let T(n) be the total number of comparisons max made (in the worst case) to find the maximum of n numbers.
- How large is T(n)?

• Therefore, $T(n) = 2 T(\frac{n}{2}) + O(1)$.

Time complexity: Simplifying n

- In this example, we assume n is a power of 2.
- Making this assumption simplifies the computation because we don't need to consider the annoying case when $\frac{n}{2}$ is not an integer.
- Even under this assumption, the analysis gives us sufficient information about T(n).
- To handle the case when n is general, we need to use the ceiling and floor function in our computation.

What is T(n)?

- Let $T(n) = 2 T(\frac{n}{2}) + c$, for some constant c.
- Let $n = 2^k$, so $k = \log_2 n$ is an integer.

•
$$T(n) = 2 T(\frac{n}{2}) + c$$

= $2 (2 T(\frac{n}{4}) + c) + c = 4 T(\frac{n}{4}) + c \times (1 + 2)$
= $4 (2 T(\frac{n}{8}) + c) + c \times (1 + 2) = 8 T(\frac{n}{8}) + c \times (1 + 2 + 4)$
= ...
= $n T(\frac{n}{n}) + c \times (1 + 2 + 4 + ... + \frac{n}{2})$
= $n T(1) + c \times (1 + 2^{1} + 2^{2} + ... + 2^{k-1}) [T(1), c \text{ are constants.}]$
= $O(n + \frac{2 \times 2^{k-1} - 1}{2 - 1}) = O(n + n - 1) = O(n)$.

Example 2: MergeSort

- We can apply an almost identical algorithmic framework to solve another problem.
- For example, we can follow the same framework to sort n numbers.

```
sort([a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>]):
    if n = 1:
        return [a<sub>1</sub>]
    else:
        S1 = sort([a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n/2</sub>])
        S2 = sort([a<sub>n/2+1</sub>, a<sub>n/2+2</sub>, ..., a<sub>n</sub>])
        merge S1, S2 into a single sorted list
```

MergeSort: A sample run - Divide

MergeSort: Conquer (Step 1)

MergeSort: Conquer (Step 2)

MergeSort: Conquer (Step 3)

MergeSort: Conquer (Step 4)

MergeSort: Conquer (Step 5)

MergeSort: Conquer (Step 6)

MergeSort: Conquer (Step 7)

How to merge two sorted list?

5	
9	
12	
22	
34	
67	

5
9
12
22
34
67
78

5
9
12
22
34
67
78
88

5	
9	
12	
22	
34	
67	
78	
88	
92	

• Thus, merging just requires going through the two lists once.

MergeSort: Time complexity

- Let T(n) be the total number of steps sort made (in the worst case) to sort n numbers.
- How large is T(n)?

• Therefore, $T(n) = 2 T(\frac{n}{2}) + O(n)$.

MergeSort: What is T(n)?

- Let $T(n) = 2 T(\frac{n}{2}) + cn$, for some constant c.
- Let $n = 2^k$, so $k = \log_2 n$ is an integer.

•
$$T(n) = 2 T(\frac{n}{2}) + cn$$

= $2 (2 T(\frac{n}{4}) + c \cdot \frac{n}{2}) + cn = 4 T(\frac{n}{4}) + 2 \cdot cn$
= $4 (2 T(\frac{n}{8}) + c \cdot \frac{n}{4}) + 2 \cdot cn = 8 T(\frac{n}{8}) + 3 \cdot cn$
= ...
= $n T(\frac{n}{n}) + k \cdot cn$
= $n T(1) + log_2 n \cdot cn [T(1), c are constants.]$
= $O(n + n log n) = O(n log n)$.

Example 3: Linear time selection

The problem

- Input: n distinct numbers, and an integer k (where 1≤k≤n).
- Output: The kth largest of these n numbers.

Example

- Input: 34, 8, 19, 73, 44, and an integer k=3
- Output: 34
- People used to believe that at least Ω (n log n) comparisons are necessary to solve the problem.
- Blum, Floyd, Pratt, Rivest and Tarjan showed that the problem can be solved using only O(n) comparisons.

What is the k-th largest of n numbers?

- For ease of discussion, we assume all numbers are distinct.
- Given a set N of n numbers.
- If x is the k-th largest number in N, then
 - >there are exactly k numbers in N that are ≥ x;
 - ➤ there are exactly n-k numbers in N that are < x.
 </p>

Example:

- N = {12, 33, 76, 29, 54, 62}.
- n = 6, k = 4.
- The number 33 is the 4-th largest in N \Rightarrow
 - >There are 4 numbers, namely 33, 76, 54, 62, that are ≥ 33, and
 - \triangleright There are 6-4 = 2 numbers, namely 12, 29, that are < 33.

Basic operation: Divide N by the number a

Divide N into the two sets $L = \{x \mid x \ge a\}$ and $S = \{x \mid x < a\}$.

• **Example:** $N = \{12, 33, 76, 29, 54, 62\}$. Let a = 33. Then,

- Note that for an arbitrary number a, if we divide N by a to get L and S, we have three possible cases:
 - > Case 1: |L| = k: a is the k-th largest; it is the solution.

- ightharpoonupCase 1: |L| = k: a is the k-th largest; it is the solution.
- **Case 2:** |L| > k:

- **Key observation:** the solution is the k-th largest in L-{a}.
- Thus, we recursively find the k-th largest in L-{a}.

ightharpoonupCase 1: |L| = k: a is the k-th largest; it is the solution.

> Case 2: |L| > k: The solution is k-th largest in L.

Case 3: |L| < k:</p>

- ightharpoonupCase 1: |L| = k: a is the k-th largest; it is the solution.
- > Case 2: |L| > k: The solution is k-th largest in L.
- Case 3: |L| < k:</p>

- Key observation: the solution is the k-|L| largest in S.
- Thus, we find recursively the k-|L| largest in S.

The algorithm

```
largest(N, k):
   Pick some number a in N arbitrarily.
Divide N into
   L = {x | x ≥ a} and S = {x | x < a}.
   if |L| = k: return a
   if |L| > k: return largest(L-{a}, k)
   if |L| < k: return largest(S, k-|L|)</pre>
```

The algorithm: Time complexity

```
largest (N, k): 
Pick some number a in N arbitrarily.

Divide N into
L = \{x \mid x \geq a\} \text{ and } S = \{x \mid x < a\}.

if |\mathbf{L}| = \mathbf{k}: return a

if |\mathbf{L}| > \mathbf{k}: return largest (L-\{a\}, k)

if |\mathbf{L}| < \mathbf{k}: return largest (S, k-|\mathbf{L}|)

or

T(|\mathbf{n})

O(1)

T(|\mathbf{L}-\{a\}|)

or

T(|S|)
```

Time Complexity (worst case)

```
T(n) = max\{T(|L-\{a\}|), T(|S|)\} + O(n)

\leq T(n-1) + O(n) (because |L-{a}| and |S| \leq n-1)

\leq T(n-2) + O(n-1) + O(n)

\leq ...

\leq O(1 + 2 + ... + n) = O(n^2).
```

The algorithm: Why O(n²) time?

In the worst case,

- We may pick the smallest number a and waste O(n) time for finding L and S.
- But we can only reduce the problem size by 1 (i.e., T(n) → T(n-1)).
- Can we pick some a that guarantees |L| and |S| being at least some fraction of n?

A clever way to pick a

- Divide (arbitrary) the n numbers into n/5 groups each with
 5 numbers (except possibly the last group).
- For each group
 - right sort the 5 numbers in descending order and then determine their median, i.e., the 3rd largest.
- The number a is just the median of "these n/5 medians".

We can prove that such an a is always

- smaller than or equal to at least 3n/10 numbers, and
- larger than at least 3n/10 numbers.

A clever way to pick a: Example

n = 30, 3n/10 = 9

98	189	100	90	132	72
83	42	79	89	120	70
50	19	30	70	80	(55)
12	15	4	61	22	54
9	8	1	18	14	52
/					
132	90	72	98	100	189
120	89	70	83	79	42
\ 80	70	(55) a	50	30	19
22	61	54	12	4	15
14	18	52	9	1	8
			\		

A clever way to pick a: Example

Linear Time Selection

The algorithm:

- Group the n numbers into groups of 5 numbers, and for each group, sort the 5 numbers in ascending order and find the median;
- Find (recursively) the median, a, of these n/5 medians;
- Using this a to partition the n numbers into two groups L and S such that all numbers in L are greater than or equal to a, and all numbers in S are smaller than a.
- If |L| ≥ k, find the k-th largest in L;
- Otherwise, find the (k-|L|)-st largest in S.

T(n/5) n T(|L|) or T(|S|)

Time complexity:

$$T(n) = T(|L|) + T(\frac{n}{5}) + \frac{12n}{5}$$
 or $T(|S|) + T(\frac{n}{5}) + \frac{12n}{5}$

Linear Time Selection: Time Complexity

Note that

- |L| ≤ 7n/10; otherwise, there are fewer than 3n/10 numbers smaller than a;
- |S| ≤ 7n/10; otherwise, there are fewer than 3n/10 numbers larger than or equal to a.

Thus, we have

•
$$T(n) \le T\left(\frac{7n}{10}\right) + T\left(\frac{n}{5}\right) + \frac{12n}{5}$$
.

By mathematical induction, we can prove that

• $T(n) \leq 24n$.