Recommendation of the mobile phone plans for the mobile operator's company

After the completed analysis in Project 5 it's required to create a system that could predict the clients behavior and suggest to the client to switch on a new plans (such as "Smart" and "Ultra"). Using the provided data from project 5 it's required to train the classification models for selection of the optimal plan for clients.

Additional tasks:

- to get the accuracy score on models testing higher than 0.75;
- check the efficacy of the models

Table of Content

- 1. Data import and overview
- 2. Splitting of dataset to samples
- 3. Model training
- 4. Model testing
- 5. Model efficacy testing
- 6. General conclusion

Data import and overview

Libraries import

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
```

Data loading

Out[2]: calls minutes messages mb_used is_ultra 83.0 19915.42 40.0 311.90 0 85.0 516.75 56.0 22696.96 0 77.0 467.66 86.0 21060.45 0 **3** 106.0 745.53 8437.39 81.0 66.0 418.74 1.0 14502.75 0

```
In [3]: df data.info()
```

```
RangeIndex: 3214 entries, 0 to 3213
Data columns (total 5 columns):
             Non-Null Count Dtype
    Column
             -----
    calls
             3214 non-null float64
    minutes 3214 non-null float64
1
    messages 3214 non-null float64
    mb_used 3214 non-null
                           float64
    is ultra 3214 non-null
                            int64
dtypes: float64(4), int64(1)
memory usage: 125.7 KB
```

<class 'pandas.core.frame.DataFrame'>

Conclusion

- 1) Data was successfully loaded, the target columns is named 'is_ultra', other columns to be used as parameters for model training.
- 2) Dataset has 3214 rows and 5 columns: quantity of calls, used minutes, used messages, used internet traffic and type of plan.

Splitting of dataset to samples

```
In [4]: # set the columns _is ultra as target, other as features
        features = df data.drop(columns = 'is ultra')
        target = df data.is ultra
In [5]: # split the data to train and valid samples
        features train, features valid temp, target train, target valid temp = train test split(features, target,
                                                                                              test size=0.4, random state=12345)
In [6]: # percentage check
        features train['calls'].count()/features['calls'].count()
        0.5998755444928439
Out[6]:
In [7]: # percentage check
        features valid temp['calls'].count()/features['calls'].count()
        0.4001244555071562
Out[7]:
In [8]: # features check
        features valid temp.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         Int64Index: 1286 entries, 1415 to 711
         Data columns (total 4 columns):
              Column
                        Non-Null Count Dtype
              calls
                        1286 non-null float64
              minutes 1286 non-null float64
              messages 1286 non-null float64
              mb used 1286 non-null float64
         dtypes: float64(4)
         memory usage: 50.2 KB
In [9]: # splitting data to test and valid
         features valid, features test, target valid, target test = train test split(features valid temp, target valid temp, test size=0.5, rai
In [10]: # percentage check
         features valid['calls'].count()/features['calls'].count()
         0.2000622277535781
Out[10]:
In [11]: # percentage check
         features test['calls'].count()/features['calls'].count()
         0.2000622277535781
Out[11]:
```

Conclusion

Dataset was splat on target and features, train sample has 60% of data, valid and test 20%

3 Model training

Decision tree model training (model_a)

Searching for optimal depth (from 1 to 10)

```
In [12]: best_model_a = 'none'
best_accuracy_a = 0
```

```
best_depth_a = 0
for depth in range (1,10):
    model_a = DecisionTreeClassifier(random_state=12345, max_depth = depth)
    model_a.fit(features_train, target_train)
    predictions_valid_a = model_a.predict(features_valid)
    accuracy_a = accuracy_score(target_valid,predictions_valid_a)
    if accuracy_a > best_accuracy_a:
        best_model_a = model_a
        best_accuracy_a = accuracy_a
        best_accuracy_a = accuracy_a
        best_depth_a = depth

print('\n','Best_model =',best_model_a, '\n','Best_accuracy:',best_accuracy_a,'\n','depth:',best_depth_a)

Best_model = DecisionTreeClassifier(max_depth=3, random_state=12345)
Best_accuracy: 0.7853810264385692
depth: 3
```

Random forest model training (model_b)

Searching for optimal quantity of leaves (from 10 to 70 using step equal to 10) and optimal depth (from 1 to 10)

```
best model b = 'none'
In [13]:
         best accuracy b = 0
         best depth b = 0
         best est = 0
         for est in range(10,71,10):
             for depth in range (1,10):
                 model b = RandomForestClassifier(random state=12345,n estimators = est, max depth = depth)
                 model b.fit(features train, target train)
                 predictions valid b = model b.predict(features valid)
                 accuracy b = accuracy score(target valid, predictions valid b)
                 if accuracy b > best accuracy b:
                     best model b = model b
                     best accuracy b = accuracy b
                     best depth b = depth
                     best est = est
         print( '\n', 'Best model =',best model b, '\n','Best accuracy:',best accuracy b,'\n','Depth:',best depth b,
               '\n','Quantity of leaves =',best est)
```

```
Best model = RandomForestClassifier(max_depth=8, n_estimators=40, random_state=12345)
Best accuracy: 0.8087091757387247
Depth: 8
Quantity of leaves = 40
```

Logistic regression model trainig (model_c)

```
In [14]: model_c = LogisticRegression(random_state=12345)
    model_c.fit(features_train, target_train)
    predictions_valid_c = model_c.predict(features_valid)
    accuracy_c = accuracy_score(target_valid,predictions_valid_c)

    print('\n','best model =',model_c, '\n','model accuracy:',accuracy_c)

    best model = LogisticRegression(random_state=12345)
    model accuracy: 0.7107309486780715
```

Conclusion

During model training the different types of the models were trained using different hyperparameters.

Best models were selected for further use.

Hyperparameters tuning

Hyperparameters tuning for random forest model using grid search

```
GridSearchCV
Out[16]:
          ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
         grid a.best params
In [17]:
         {'max_depth': 8, 'n_estimators': 70}
Out[17]:
In [18]: # display the accuracy of rf model with tuned hyperparameters
         model d = RandomForestClassifier(random state=12345,n estimators =grid a.best params ['n estimators'], max depth = grid a.best params
         model d.fit(features train, target train)
         predictions valid d = model d.predict(features valid)
         accuracy d = accuracy score(target valid, predictions valid d)
         accuracy d
         0.7978227060653188
Out[18]:
         Hyperparameters tuning for randomforest model usig random search
         grid b = RandomizedSearchCV(RandomForestClassifier(),parameters)
In [19]:
         grid b.fit(features train, target train)
In [20]:
                    RandomizedSearchCV
Out[20]:
          ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [21]:
         grid b.best params
         {'n_estimators': 30, 'max_depth': 8}
Out[21]:
         # display the accuracy of rf model with tuned hyperparameters
In [22]:
         model e = RandomForestClassifier(random state=12345,n estimators = grid b.best params ['n estimators'], max depth = grid b.best params
         model_e.fit(features_train, target_train)
```

```
predictions valid e = model e.predict(features valid)
         accuracy e = accuracy score(target valid, predictions valid e)
         accuracy_e
         0.7993779160186625
Out[22]:
         Models testing
         model_a testing
In [23]: test_predictions_a = best_model_a.predict(features test)
         test accuracy a = accuracy score(target test,test predictions a)
         print('model a accuracy =', test accuracy a)
         model a accuracy = 0.7791601866251944
         model_b testing
In [24]: test_predictions_b = best_model_b.predict(features_test)
         test accuracy b = accuracy score(target test, test predictions b)
         print('model b accuracy = ', test accuracy b)
         model b accuracy = 0.7962674961119751
         model_c testing
In [25]: test_predictions_c = model_c.predict(features_test)
         test accuracy c = accuracy score(target test,test predictions c)
         print('model_c accuracy ', test_accuracy_c)
         model_c accuracy 0.6842923794712286
         model_d testing
         test_predictions_d = model_d.predict(features_test)
In [26]:
         test_accuracy_d = accuracy_score(target_test,test_predictions_d)
```

```
print('model d accuracy ', test accuracy d)
          model d accuracy 0.8055987558320373
          model_e testing
In [27]: test predictions e = model e.predict(features test)
          test accuracy e = accuracy score(target test,test predictions e)
          print('model e accuracy', test accuracy e)
          model e accuracy 0.7931570762052877
          comparison of results
In [28]:
          models df = pd.DataFrame({'model name': ['model a','model b','model c','model d','model e'],
                                      'model accuracy': [test accuracy a, test accuracy b, test accuracy c,
                                                          test accuracy e, test accuracy d, ],
                                     'prediction':[test predictions a, test predictions b, test predictions c, test predictions d, test prediction
          models df = models df.sort values(by = 'model accuracy', ascending = False).reset index(drop = True)
In [30]: models_df
Out[30]:
             model name model accuracy
                                                             prediction
          0
                 model e
                               0.805599 [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...
                 model_b
                               0.796267 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...
          2
                 model_d
                               0.793157 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...
          3
                 model a
                               0.779160 [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...
          4
                 model c
```

Conclusion

Models testing were done, models E, B and D have the best accuracy score - higher than 79%

Model efficacy testing

Creating of test dataset

```
In [31]: test_df = features_test
    test_df = test_df.join(target_test,rsuffix='r')
    test_df = test_df.rename(columns={'is_ultrar': 'is_ultra'})
    test_df
```

\cap	11	+	[21]	
\cup	и	L		

	calls	minutes	messages	mb_used	is_ultra
160	61.0	495.11	8.0	10891.23	0
2498	80.0	555.04	28.0	28083.58	0
1748	87.0	697.23	0.0	8335.70	0
1816	41.0	275.80	9.0	10032.39	0
1077	60.0	428.49	20.0	29389.52	1
•••					
2401	55.0	446.06	79.0	26526.28	0
2928	102.0	742.65	58.0	16089.24	1
1985	52.0	349.94	42.0	12150.72	0
357	39.0	221.18	59.0	17865.23	0
2313	40.0	301.03	102.0	6057.63	0

643 rows × 5 columns

Monthly payment calculation

```
ultra = pd.DataFrame({'messages included':[1000], 'mb per month included': [30720], 'minutes included': [3000],
                               'rub monthly fee':[1950], 'rub per gb':[150],'rub per message': [1],'rub per minute':[1]})
         # function for calculation of monthly fee
In [331:
         def total fee (df):
             calls = df['minutes']
             msgs = df['messages']
             internet = df['mb used']
             tarif = df['is ultra']
             if tarif == 0:
                 total fee=smart['rub monthly fee'][0]
                 if calls > smart['minutes included'][0]:
                     total_fee += (calls-smart['minutes_included'][0])*smart['rub_per_minute'][0]
                 if msgs>smart['messages included'][0]:
                     total fee+= (msgs-smart['rub per message'][0])*3
                 if internet > smart['mb per month included'][0]:
                     total fee+= math.ceil((internet-smart['mb per month included'][0])/1024)*smart['rub per gb'][0]
                 return(total fee)
             else:
                 total fee=ultra['rub monthly fee'][0]
                 if calls > ultra['minutes included'][0]:
                     total fee += (calls-ultra['minutes included'][0])*ultra['rub per minute'][0]
                 if msgs>ultra['messages included'][0]:
                     total fee+= (msgs-ultra['rub per message'][0])*3
                 if internet > ultra['mb per month included'][0]:
                     total fee+= math.ceil((internet-ultra['mb per month included'][0])/1024)*ultra['rub per gb'][0]
                 return(total fee)
In [34]: test df['total fee'] = test df.apply(total fee,axis=1)
         test df
```

Out[34]:		calls	minutes	messages	mb_used	is_ultra	total_fee
	160	61.0	495.11	8.0	10891.23	0	550.00
	2498	80.0	555.04	28.0	28083.58	0	3315.12
	1748	87.0	697.23	0.0	8335.70	0	1141.69
	1816	41.0	275.80	9.0	10032.39	0	550.00
	1077	60.0	428.49	20.0	29389.52	1	1950.00
	•••						
	2401	55.0	446.06	79.0	26526.28	0	2978.00
	2928	102.0	742.65	58.0	16089.24	1	1950.00
	1985	52.0	349.94	42.0	12150.72	0	550.00
	357	39.0	221.18	59.0	17865.23	0	1318.00
	2313	40.0	301.03	102.0	6057.63	0	847.00

643 rows × 6 columns

Insert of data obtained from three models with best accuracy score to dataset and check it efficacy

```
In [35]:
    test_df[models_df.iloc[0,0]] = models_df.iloc[0,2]
    test_df[models_df.iloc[1,0]] = models_df.iloc[1,2]
    test_df[models_df.iloc[2,0]] = models_df.iloc[2,2]

def new_tarif (df):
    if df['total_fee']>=1950:
        return(1)
    else:
        return(0)

test_df['correct_answer'] = test_df.apply(new_tarif,axis=1)
    test_df
```

Out[35]:		calls	minutes	messages	mb_used	is_ultra	total_fee	model_e	model_b	model_d	correct_answer
	160	61.0	495.11	8.0	10891.23	0	550.00	0	0	0	0
	2498	80.0	555.04	28.0	28083.58	0	3315.12	1	1	1	1
	1748	87.0	697.23	0.0	8335.70	0	1141.69	1	0	0	0
	1816	41.0	275.80	9.0	10032.39	0	550.00	0	0	0	0
	1077	60.0	428.49	20.0	29389.52	1	1950.00	0	0	0	1
	•••										
	2401	55.0	446.06	79.0	26526.28	0	2978.00	1	1	0	1
	2928	102.0	742.65	58.0	16089.24	1	1950.00	0	0	0	1
	1985	52.0	349.94	42.0	12150.72	0	550.00	0	0	0	0
	357	39.0	221.18	59.0	17865.23	0	1318.00	0	0	0	0
	2313	40.0	301.03	102.0	6057.63	0	847.00	1	1	1	0

643 rows × 10 columns

```
In [36]: test_df[models_df.iloc[0,0]+'_check'] = test_df[models_df.iloc[0,0]] == test_df['correct_answer']
    test_df[models_df.iloc[1,0]+'_check'] = test_df[models_df.iloc[1,0]] == test_df['correct_answer']
    test_df[models_df.iloc[2,0]+'_check'] = test_df[models_df.iloc[2,0]] == test_df['correct_answer']
    test_df
```

Out[36]:		calls	minutes	messages	mb_used	is_ultra	total_fee	model_e	model_b	model_d	correct_answer	model_e_check	model_b_check	model_d_che
	160	61.0	495.11	8.0	10891.23	0	550.00	0	0	0	0	True	True	Tr
	2498	80.0	555.04	28.0	28083.58	0	3315.12	1	1	1	1	True	True	Tr
	1748	87.0	697.23	0.0	8335.70	0	1141.69	1	0	0	0	False	True	Tr
	1816	41.0	275.80	9.0	10032.39	0	550.00	0	0	0	0	True	True	Tr
	1077	60.0	428.49	20.0	29389.52	1	1950.00	0	0	0	1	False	False	Fa
	•••													
	2401	55.0	446.06	79.0	26526.28	0	2978.00	1	1	0	1	True	True	Fa
	2928	102.0	742.65	58.0	16089.24	1	1950.00	0	0	0	1	False	False	Fa
	1985	52.0	349.94	42.0	12150.72	0	550.00	0	0	0	0	True	True	Tr
	357	39.0	221.18	59.0	17865.23	0	1318.00	0	0	0	0	True	True	Tr
	2313	40.0	301.03	102.0	6057.63	0	847.00	1	1	1	0	False	False	Fa

Efficacy Calculation

643 rows × 13 columns

```
In [37]: model_e_percentage = test_df.query('model_e_check == True')['model_e_check'].count()/test_df['model_e_check'].count()

Out[37]: 0.7247278382581649

In [38]: model_d_percentage = test_df.query('model_d_check == True')['model_d_check'].count()/test_df['model_d_check'].count()

model_d_percentage

0.7309486780715396

In [39]: model_b_percentage = test_df.query('model_b_check == True')['model_b_check'].count()/test_df['model_b_check'].count()

model_b_percentage

0.7278382581648523
```

Conclusion

Based on performed testing of model the models has the following efficacy:

- Model e efficacy is 72,4%
- Model d efficacy is 73.0%
- Model b efficacy is 72,78%

It's recommended to use the "model D" for dertmination of proposal to client to swith on different mobile plan

General Conclusion

- 1) Data was successfully loaded, the target columns is named 'is_ultra', other columns to be used as parameters for model training.
- 2) Dataset was splat on target and features and three samples: train sample has 60% of data, valid and test 20%
- 3) Random forest, Decision tree and Regression models were trained. The validation accuracy scores are following:
- Random Forest model 0.78
- Decision Tree model 0.80
- Logistic Regression model 0.71
- 4) Hyperparameters were tuned for random forest models. The validation accuracy scores are following:
- GridSearchCV 0.79
- RandomSearchCV 0.79
- 5) Models testing was successfully executed. The accuracy scores on the test sample are following:
- Random Forest model 0.77
- Decision Tree model 0.79
- Logistic Regression model 0.68

- GridSearchCV 0.79
- RandomSearchCV 0.8
- 6) Models efficacy were tested, the model with higher efficacy is "model D". Efficacy is 73%.