Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Lancelot Leclerco

15 décembre 2021

Sommaire

- 1. Introduction
- 2. Nettoyage du jeu de données
- 3. Étapes des modélisations
- 4. Modélisation des émissions de carbone
- 5. Modélisation de la consommation énergétique
- 6. Conclusion

Introduction

Introduction

Problématique

- Objectif de la ville de Seattle : atteindre la neutralité en émissions de carbone
- La ville s'intéresse aux émissions des batiments non destinés à l'habitation
- Pour cela des relevés de consommation ont été réalisés mais ils sont couteux à obtenir
- Est-il possible de prédire les émissions et de la consommation d'énergie pour des batiments pour lesquels les relevés n'ont pas été réalisé à partir des relevés déjà obtenus

Jeu de données

- Base de données issue de l'initiative de la ville de Seattle de proposer ses données en accès libre (Open Data)
- Données concernant les batiments de la ville, caractérise :
 - le type,
 - la surface,
 - le nombre d'étages,
 - la consomation énergétique,
 - les émissions de carbone.
 - -
- Données des années 2015 et 2016

Nettoyage du jeu de données

Nettoyage du jeu de données

Nettoyage du jeu de données : Correction et selection des données

- Nettoyage des valeurs négative pour la surface des batiments/parkings, la consommation et les émissions
- Correction du nombre de d'étages aberrant pour certains batiments
- Lorsque le nombre de batiment est nul on remplace par 1

- Suppression des batiments d'habitation
- Suppression des variables ayant moins de 50% de données
- Suppressions des variables étant des relevés afin de voir si notre modèle peut s'en passer

Nettoyage du jeu de données : Selections des variables

Élimination récursive des variables (RFE) et matrice de corrélation

Variables pertinentes pour les émissions

Variables pertinentes pour la consommation

- Selection des variables les plus pertinentes par elimination recursive des variables (RFE)
- Réduction efficace pour les émissions
- Pas de réel changement de RMSE pour la consommation

Nettoyage du jeu de données : Selections des variables Élimination récursive des variables (RFE) et matrice de corrélation

Variables pertinentes pour les émissions

- Observation des résultats de RFE par les matrices de corrélation
- Les variables les plus corrélées sont communes aux deux sélection
- Conservation de 6 variables jugées pertinentes

Variables pertinentes pour la consommation

Nettoyage du jeu de données : Selections des variables Analyse en composantes principales (PCA)

- Le graphique de la variance expliquée cumulée nous montre que 99% de la matrice est exliquée avec 5 variables
- Les quatres variables les plus corrélées se retrouvent sur l'axe F1
- L'EnergyStar score semble avoir une certaine importance car il explique une grande partie de l'axe F3

Étapes des modélisations

Étapes des modélisations

Étapes des modélisations

Afin de comparer les différents modèles

- Split commun à chaque modèle (varie selon la variable modélisée)
- Pour chaque modèle (boucle) :
 - GridSearch des meilleurs paramètres avec validation croisée
 - Création d'un pipeline : scaling et fit du modèle
 - Scaling par RobustScaler car plus résistant aux valeurs aberrantes selon la documentation

- La boucle retourne :
 - Le(s) meilleur(s) paramètre(s) (gridsearch)
 - La RMSE en fonction du paramètre le plus évolutif (validation croisée)
 - La figure de la variable étudiée vs ses prédictions
 - Le R², la RMSE, la MAE (mean absolute error) et le temps de calcul du modèle

Modélisation émissions

Modélisation émissions

Modèle Ridge

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Ridge()

←				
paramètre	Ridge()			
alpha	5094.14			
$\overline{\leftarrow}$				

paramètre	Ridge()	
alpha	6428.07	

- Modèle de régression linéaire introduisant un coefficient cherchant à minimiser l'erreur quadratique

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.24	423.80	150.95	5.72	0.01

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.16	487.86	135.35	2.12	0.02

Modèle Lasso

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Lasso()

←	
paramètre	Lasso()
alpha	178.86
₩	

parametre	Lasso()
alpha	0.34
	=

- Similaire à la regression ridge
- Coefficient est réduit à zéro pour les variables peu corrélées
- Peut être utilisé pour la sélection de feature

	R²	RMSE	MAE	MAE%	FitTime(s)
	0.26	417.95	150.97	5.52	0.02
	_				

				=
R ²	RMSE	MAE	MAE%	FitTime(s)
0.12	490.73	136.13	2.25	0.02

Modèle ElasticNet

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle ElasticNet()

<u></u>	
paramètre	ElasticNet()
alpha I1_ratio	174.75 1.00
-	

paramètre	ElasticNet()
alpha	1.29
_ratio	0.10

 Combine les coefficients des regressions ridge et lasso

<u>←</u>				
R²	RMSE	MAE	MAE%	FitTime(s)
0.26	417.53	150.73	5.48	0.01

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.16	487.75	134.58	2.13	0.02

Modèle kNeighborsRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle KNeighborsRegressor()

<u></u>	
paramètre	KNeighborsRegressor()
n_neighbors	3
_	

paramètre KNeighborsRegressor()

n_neighbors 1

⇒

 Prédiction par interpolation avec les plus proches voisins dans le jeu de données

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.26	418.44	119.52	1.99	0.02

				_
R²	RMSE	MAE	MAE%	FitTime(s)
0.52	401.17	73.27	0.75	0.02

Modèle RandomForestRegressor

Variable non modifiée

paramètre RandomForestRegressor() n_estimators max_features auto

paramètre	RandomForestRegressor()
n_estimators	464
max_features	sqrt

- Classification des valeurs à partir d'arbre de décision aléatoire
- Prédiction à partir de ces classifieurs

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.42	371.52	89.73	1.44	11.48

R²	RMSE	MAE	MAE%	FitTime(s)
0.68	381.25	85.76	0.72	3.01

Variable au log

TotalGHGEmissions pred

Modèle AdaBoostRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle AdaBoostRegressor()

AdaBoostRegressor()
19
square

paramètre	AdaBoostRegressor()
n_estimators loss	15 linear

- Même principe que les forêts aléatoires
- Utilisation d'apprenants faibles (légèrement plus performants que la prediction aléatoire similaire à de petits arbre de décision)
- Les prédictions des apprenants sont combinées avec un coefficient de poids
- À chaque itération le poids des mauvaises prédictions est augmenté ce qui pousse le modèle à se concentrer dessus

Modèle GradientBoostingRegressor

Variable non modifiée

n estimator

paramètre GradientBoostingRegressor() n_estimators 3162 loss squared_error paramètre GradientBoostingRegressor() n_estimators 5623 loss huber

- Similaire à AdaBoostRegressor
- Prend en compte une fonction objectif (loss fonction) plus complexe afin d'améliorer l'optimisation

=				
R²	RMSE	MAE	MAE%	FitTime(s)
0.47	355.84	74.99	1.34	10.37
_				

R²	RMSE	MAE	MAE%	FitTime(s)
0.63	340.24	71.60	0.80	55.91

Variable au log

n estimator

Comparaison des résultats selon que la variable est au log ou non

- RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor ont des erreur moins importantes et un R² plus grand quelque soit la variable modélisée
- KNeighborsRegressor est plus performant avec la variable au log
- Modèles linéaire : Ridge, Lasso et ElasticNet moins efficaces avec la variable au log
- Temps de modélisation de RandomForestRegressor et GradientBoostingRegressor plus importants que les autres
- Temps de modélisation de RandomForestRegressor avec la variable au log moindre qu'avec la variable non modifiée

Influence de l'EnergyStar score sur la prédiction des Émissions

- GradientBoostingRegressor avec la variable au log (RMSE la plus petite)
- L'EnergyStar score améliore la RMSE
- Amélioration des les autres mesures d'erreur et de corrélation

Modélisation consommation

Modélisation consommation

Modèle Ridge

Variable non modifiée

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.33	17660078.37	5153567.28	1.85	0.01
paramè	tre Ridge()			
alpha	102.35			
₩		'		

R²	RMSE	MAE	MAE%	FitTime(s)	
0.31	21043685.67	5666820.77	1.40	0.02	

paramètre	Ridge()
alpha	3511.19
	\Rightarrow

 \Rightarrow

Modèle Lasso

Variable non modifiée

R²	RMSE	MAE	MAE%	FitTime(s)
0.34	17499302.40	5269886.33	1.88	0.04
parami	htro Lacco()	-		

R²	RMSE	MAE	MAE%	FitTime(s)
0.32	23496263.51	6175023.22	1.38	0.02
		-		

paramètre Lasso()
alpha 0.12

Variable au log

Visualisation des données de SiteEnergyUse_log prédites par le modèle Lasso()

alpha

Visualisation des données de SiteEnergyUse prédites par le modèle Lasso()

Modèle ElasticNet

Variable non modifiée

Visualisation des données de SiteEnergyUse prédites par le modèle ElasticNet()

R² RMSE MAE MAE% FitTime(s) 0.33 17669838.00 5135486.35 1.85 0.03

paramètre	ElasticNet()
alpha	0.09
11_ratio	0.46

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.30	20734563.65	5593976.90	1.41	0.02

paramètre	ElasticNet()
alpha	0.89
I1_ratio	0.10

Variable au log

aloha

Modèle kNeighborsRegressor

Variable non modifiée

R²	RMSE	MAE	MAE%	FitTime(s)
0.15	19891776.59	4958197.14	1.14	0.02

paramètre	KNeighborsRegressor()
n_neighbors	3

₩

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.75	15125790.61	2521110.46	0.55	0.01
	-	naramètra	KNIniahhara	Degreeser()

paramètre	KNeighborsRegressor()
n_neighbors	1

Variable au log

Visualisation des données de SiteEnergyUse prédites par le modèle KNeighborsRegressor() vs les données test

n neighbors

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle RandomForestRegressor pour la variable SiteEnergyUse avec le paramètre max_features=log2

Visualisation des données de SiteEnergyUse prédites par le modèle RandomForestRegressor()

R ² RMSE MAE MAE% 0.43 16255496.44 3079266.36 0.85	<u></u>				
0.43 16255496.44 3079266.36 0.85	R²	RMSE	MAE	MAE%	FitTime(s)
0.10 10200100.11 0070200.00 0.00	0.43	16255496.44	3079266.36	0.85	0.09

0.40 10200	nators 10		_
paramètre			•
n_estimators max_features			•

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.80	16533804.87	2771107.51	0.51	2.72

paramètre	RandomForestRegressor()		
n_estimators	464		
max_features	sqrt		

Variable au log

RMSE du modèle RandomForestRegressor pour la variable SiteEnergyUse_log avec le paramètre max_features=sqrt en fonction de l'hyperparamètre n_estimators

Visualisation des données de SiteEnergyUse_log prédites par le modèle RandomForestRegressor()

Modèle AdaBoostRegressor

Variable non modifiée

RMSE du modèle AdaBoostRegressor pour la variable SiteEnergyUse avec le paramètre loss=linear

Visualisation des données de SiteEnergyUse prédites par le modèle AdaBoostRegressor()

R ²	RMSE	MAE	MAE%	FitTime(s)
0.28	18239692.73	5482794.58	2.41	0.05

paramètre	AdaBoostRegressor()
n_estimators	3
loss	linear

				\Rightarrow
R ²	RMSE	MAE	MAE%	FitTime(s)
0.57	17101356.19	4203072.55	0.83	0.13

paramètre	AdaBoostRegressor()		
n_estimators loss	21 exponential		

Variable au log

RMSE du modèle AdaBoostRegressor pour la variable

Visualisation des données de SiteEnergyUse log prédites par le modèle AdaBoostRegressor()

Modèle GradientBoostingRegressor

Variable non modifiée

	R ²	RMSE	MAE	MAE%	FitTime(s)
ľ	0.43	16292946.43	2980171.79	0.90	7.99

paramètre	GradientBoostingRegressor()
n_estimators	1000
loss	huber

				\Rightarrow
R ²	RMSE	MAE	MAE%	FitTime(s)
0.83	15038028.44	2135408.64	0.39	107.33

paramètre	GradientBoostingRegressor()	
n_estimators loss	10000 huber	

n estimators

Visualisation des données de SiteEnergyUse log prédites par le modèle GradientBoostingRegressor() vs les données test

Comparaison des résultats selon que la variable est au log ou non

- RMSE KNeighborsRegressor, RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor inférieures avec la variable au log
- RMSE de RandomForestRegressor et GradientBoostingRegressor légèrement inférieures quelque soit la variable
- MAE de RandomForestRegressor et GradientBoostingRegressor plus significativement inférieures quelque soit la variable
- Temps de modélisation plus important pour GradientBoostingRegressor

Conclusion

Conclusion

Conclusion

- Découverte des différents modèles et de leur fonctionnement
- Obtention avec certains modèles d'une estimation avec moins de 1% d'écart à la moyenne absolue
- Si de nouveaux batiments ont été construits il peut être intéressant de rentrer leurs caractéristiques dans notre base de donnée et voir si on peut prédire leurs émissions et consommation quitte à faire des mesures pour estimer si ces prédictions sont bonnes