MEDICAL IMAGE SEGMENTATION IN MRI SCAN IMAGES

Graduation Project

Cem Yusuf Aydoğdu, 150120251

Advisor: Assoc. Prof. Dr. Gözde ÜNAL

Contents

- Problem: Ischemic Stroke
- Magnetic Resonance Imaging
- Data Source of the Project
- Solution in Computer Vision
 - GrowCut
 - Results From GrowCut
- Solution in Machine Learning
 - Dataset Generation
 - Masking
 - Creating Samples
 - Normalization
 - Application of Machine Learning Models
 - Results From Machine Learning Models
- Conclusion
- Further Development

Problem - Ischemic Stroke

- Effects 15 million individuals each year
- Second most common mortality factor among elders
- Fifth most common mortality factor among youngers

Magnetic Resonance Imaging

- A non-invasive imaging technique
- Used in diagnosing ischemic stroke disease
- Various modalities to distinguish distinct tissue types

Data Source of the Project

- Obtained from "2015 MICCAI Ischemic Stroke Segmentation Challenge"
- 3D MRI volumes from 26 patients
- Four different modalities (Flair, T1, T2, DWI) and one ground-truth (OT) volumes for each patient
- For each patient, all volumes are pre-registered

Solution in Computer Vision

GrowCut

- A semi-automatic segmentation algorithm, based on "cellular automata"
- Foreground and background seeds are manually initialized
- Works in multidimensional data

Results From GrowCut

 $str_{foreground} = 1$ $str_{background} = 1$

Results From GrowCut

 $str_{foreground} = 1$ $str_{background} = 1.05$

Solution In Machine Learning

Dataset Generation:

- 1. Volumes of each patient are masked
- 2. Random samples from each patient are extracted
- All dataset is normalized

Masking:

Creating Samples:

- 300 lesion and 300 non-lesion labeled samples from each patient
- Each sample contains four patches (11x11x11 cube) and a corresponding label
- 600 samples from each patient, 600*26 = 15600 samples in total

An example patch:

An example patch:

Normalization:

Normalization is performed in each patch of each sample

 Mean substraction and standard deviation scaling applied to each patch separately

Normalization:

```
Before normalization
sample 0
min: 456.879303
                 mean: 741.500305
                                    max:902.608398
                                                     std: 99. 483292
min: 353.000000
                 mean: 912, 804688
                                    max: 1414.000000
                                                      std: 235, 895309
min: 510.000000
                                                     std: 244. 382370
                 mean: 973. 979736
                                    max: 1552.000000
min:370.397888
                                                     std:48 541573
               mean: 512.687256
                                   max:611.376587
sample 1
min: 499. 460815
                 mean:883.014954
                                    max: 1264.290894 std: 132.276749
min: 324.000000
                 mean: 666, 930908
                                    max: 1084.000000
                                                      .std: 152.074860
min:822.000000
                 mean: 1656, 366699
                                    max: 2031.0000000 std: 184.562317
min: 206. 757553
                 mean: 421, 092590
                                    max 703 650696
                                                     std: 110, 297859
sample 2
                 mean: 779.269470
min: 564, 177551
                                    max:938.853821
                                                     std: 65, 423935
min: 247.000000
                 mean: 637, 012756
                                    max: 1117.000000
                                                      std: 173, 408554
min:828.000000
                 mean: 1311, 475586
                                    max:1566.0000000 std:111.665344
min: 270.885315
                 mean: 394 815552
                                    max 523 309814
                                                     std:46 288769
```

Normalization:

```
After normalization
sample 0
min:-2.860993
                mean: -0.000001
                                 max · 1 619449
                                                 std: 1.000000
min: -2.373106
                                 max 2 124651
                                                 std: 1.0000000
                mean: -0.000000
min:-1.898581
                mean: -0.000000
                                                 std: 1.0000000
                                 max: 2.365229
                                 max: 2.033089
                                                 std: 1.0000000
min:-2.931289
                mean: -0.000001
sample 1
min:-2.899634
                                                 std: 1.0000000
                mean: -0.000001
                                 max:2.882411
min:-2.255014
                mean: -0.000000
                                 max: 2.742525
                                                 std: 1.000000
min:-4.520786
                mean: -0.000000
                                 max 2 029847
                                                 std: 1.0000000
min:-1.943238
                mean: 0.000000
                                max 2 561773
                                                std: 1.0000000
sample 2
min:-3.287664
                mean: -0.000001
                                 max: 2.439235
                                                 std: 1.0000000
                                                std: 1.0000000
min:-2.249098
                mean: 0.000000
                                max: 2.767956
                                 max: 2.279350 std: 1.000000
min:-4.329683
                mean: -0.000000
min:-2.677328
                mean: 0.000000
                                max · 2 775928
                                                std: 1.000000
```

Application Of Machine Learning Models

- Following learning based models are applied:
 - K-Nearest Neighbors
 - Linear Classifier
 - Support Vector Machine
 - Random Forests
 - 3D Convolutional Neural Networks (CNN)
- Models are evaluated with 5-fold cross validation
- Sensitivity, specificity and accuracy are used as performance metrics

K-Nearest Neighbors Classification

Linear Classifier

Support Vector Machine

Random Forest

3D Convolutional Neural Network

Convolutional & pooling layers

Convolution Layers

activations: leaky_relu regularization: L2 kernel size : 3³

feature maps: 32, 64, 128

Pooling Layers kernel size: 2³ strides:1

Convolutional & pooling layers

Fully connected & dropout layers

Convolution Layers

activations: leaky_relu regularization: L2 kernel size : 3³

feature maps: 32, 64, 128

Pooling Layers kernel size: 2³ strides:1

Fully Connected Layers activations: leaky_relu neuron counts: 256, 512

<u>Dropout Layers</u> keep probability: 75%

Convolutional & pooling layers

Fully connected & dropout layers

Classifier layer

Convolution Layers

activations: leaky_relu regularization: L2 kernel size : 3³

feature maps: 32, 64, 128

Pooling Layers kernel size: 2³ strides:1

Fully Connected Layers activations: leaky_relu neuron counts: 256, 512

<u>Dropout Layers</u> keep probability: 75%

Classifier Layer activation: softmax output count: 2

Model Evaluation

K-Fold cross validation

Confusion Matrix		Actual Label		
		Positive	Negative	
Predicted Label	Positive	TP	FP	
	Negative	FN	TN	

Confusion Matrix		Actual Label		
		Positive		Negative
Predicted Label	Positive		TP	FP
	Negative		FN	TN

$$Sensitivity = \frac{TP}{TP + FN}$$

Confusion Matrix		Actual Label		
		Positive	Negative	
Predicted Label	Positive	TP	FP	
	Negative	FN	TN	

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$Accuracy = \frac{{}^{TN+TP}}{{}^{TN+TP+FN+FP}}$$

Results From Learning Based Models

Classifier	Confusion Matrix		Sensitivity	Specificity	Accuracy
K-Nearest Neighbors	6891	2116	0 0025	0,7287	0,8061
	909	5684	0,8835		
Linear Classifier	4760	2006	0,6103	0,7428	0,6765
	3040	5794			
Support Vector Machine	5344	3143	0,6851	0,5971	0,6411
	2456	4657			
Random Forest	5994	1078	0,7685	0,8618	0,8151
	1806	6722			
3D Convolutional	7029	942	0,9012	0,8792	0,8902
Neural Network	771	6858			

Results From Learning Based Models

Problem is adressed as a:

Problem is adressed as a:

- Computer vision segmentation problem
 - GrowCut

Problem is adressed as a:

- Computer vision segmentation problem
 - GrowCut

- Machine learning classification problem
- K-Nearest Neighbors
- Linear Classifier
- Support Vector Machine
- Random Forests
- 3D Convolutional Neural Networks (CNN)

Problem is adressed as a:

- Computer vision segmentation problem
 - GrowCut

- Machine learning classification problem
- K-Nearest Neighbors
- Linear Classifier
- Support Vector Machine
- Random Forests
- 3D Convolutional Neural Networks (CNN)

Evaluation:

 Visual examination

Problem is adressed as a:

- Computer vision segmentation problem
 - GrowCut

- Machine learning classification problem
- K-Nearest Neighbors
- Linear Classifier
- Support Vector Machine
- Random Forests
- 3D Convolutional Neural Networks (CNN)

Evaluation:

 Visual examination Sensitivity, specificity, accuracy metrics

Further Development

Improvements in methods

Advanced visualization

Opinions from medical experts

Thank you for listening