Stochastic Analysis

Steven Shen

April 27, 2017

1 Foundation

A stochastic process is a collection of $R.V.: X = \{X_t; 0 \le t < \infty\}$ on sample space (Ω, \mathcal{F}) , which take values in a second measurable state space $(\mathcal{R}^d, \mathcal{B}(\mathcal{R}^d))$.

1.1 Understanding $\sigma - algebra$

1.2 Filtration

A non-decreasing family $\{\mathcal{F}_t; t \geq 0\}$ of $sub-\sigma-field$ of \mathcal{F} : $\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}$ for $0 \leq s < t < \infty$. Set $\mathcal{F}_{\infty} = \sigma(\bigcup_{t \geq 0} \mathcal{F}_t)$.

Given a process X(t), the simplest choice of a filtration is $\mathcal{F}_t^X = \sigma(X_s; 0 \le s \le t)$.

1.3 Conditional Expectation

 $\mathbb{E}[X|\mathcal{G}]$ is the unique random variable that satisfies:

- 1. $\mathbb{E}[X|\mathcal{G}]$ is $\mathcal{G}-measurable$
- 2. $\int_A \mathbb{E}[X|\mathcal{G}](w)d\mathbb{P}(w) = \int_A X(w)d\mathbb{P}(w)$, for all $A \in \mathcal{G}$

1.4 Stopping Times

Consider a measurable space (Ω, \mathcal{F}) equipped with a filtration $\{\mathcal{F}_t\}$. A random time T is a stopping time w.r.t. that filtration, if the event $\{T \leq t\}$ belongs to \mathcal{F}_t , $\forall t \geq 0$.

Let T, S be stopping times and Z an integrable R.V.. We have:

- 1. $\mathbb{E}[Z|\mathcal{F}_T] = \mathbb{E}[Z|\mathcal{F}_{S \wedge T}]$, P-a.s. on $\{T \leq S\}$
- 2. $\mathbb{E}[\mathbb{E}[Z|\mathcal{F}_T]|\mathcal{F}_S] = \mathbb{E}[Z|\mathcal{F}_{S \wedge T}]$, P-a.s.

2 Brownian Motion

- 2.1 Construction
- 2.2 Levy Theorem
- 2.3 First Passage Time
- 2.4 Maximum of Brownian Motion with Drift

3 Ito Integral

Property of I(t):

- 1. Continuity
- 2. $\mathcal{F}(t)$ measurable
- 3. Linearity
- 4. Martingale
- 5. $Isometry: \mathbb{E}I^2(t) = \mathbb{E}\int_0^t \Delta^2(u)du$
- 6. $QV(t) = [I, I](t) = \int_0^t \Delta^2(u) du$

There is a useful exercise on Shreve $P_{151} - 4.4.11$.

4 Risk-Neutral Measure

4.1 Change of Measure

In $(\Omega, \mathcal{F}, \mathbb{P})$, R.V. Z is a.s. nonnegative, $\mathbb{E}Z = 1$. Then for all $A \in \mathcal{F}$, we can define $\widetilde{\mathbb{P}}(A) = \int_A Z(w) d\mathbb{P}(w)$.

4.2 Radon-Nikodym Derivative Process

We have $(\Omega, \mathcal{F}, \mathbb{P})$ and $filtration \mathcal{F}(t)$ defined on $0 \leq t \leq T(T \text{ fixed})$. R.V. Z is a.s. nonnegative, $\mathbb{E}Z = 1$. Define $\widetilde{\mathbb{P}}$ as in previous subsection. Define the Radon-Nikodym Derivative Process to be $Z(t) = \mathbb{E}[Z|\mathcal{F}(t)]$, Z(t) is a martingale with respect to $\mathcal{F}(t)$. Property of Z(t):

1. if Y is a $\mathcal{F}(t)$ – measurable R.V., then $\widetilde{\mathbb{E}}Y = \mathbb{E}[YZ(t)]$

- 2. if $0 \le s \le t \le T$, Y is a $\mathcal{F}(t)$ measurable R.V., then $Z(s)\widetilde{\mathbb{E}}[Y|\mathcal{F}(s)] = \mathbb{E}[YZ(t)|\mathcal{F}(s)]$
- 4.3 Girsanov Theorem, one dimension
- 4.4 Martingale Representation Theorem, one dimension
- 4.5 Application of Risk-Neutral
- 5 Stochastic Differentiation Equations
- 5.1 Markov Property
- 5.2 Feynmann-Kac Theorem, one dimension
- 5.3 Kolmogorov Backward & Forward Equation Shreve P_{291}
- 5.4 Volatility Smile & Surface