Пространствен модел на Никълсън-Бейли вариант С

СУ-ФМИ, Въведение в изчислителната биология (2020)

През 30-те години на XX век Никълсън и Бейли разработват дискретен модел, който описва популационната динамика на насекомо (гостоприемник) и неговия паразитоид (друго насекомо, например паразитна оса). Паразитните оси снасят яйца в гостоприемника, който загива при завършването на жизнения цикъл (излюпване) на следващото поколение паразитоиди. Паразитоидите са интересни организми, защото от една страна приличат на паразитите, тъй като растат в гостоприемника, а от друга – на хищниците, тъй като при излюпването на поколението им унищожават гостоприемника.

Класически модел. Класическият модел на Никълсън-Бейли, който разгледахме в курса, е зададен със система от диференчни уравнения, описващи взаимодействието между двете популации.

$$\begin{cases} N_{t+1} = \lambda N_t \exp(-aP_t) \\ P_{t+1} = cN_t(1 - \exp(-aP_t)) \end{cases}$$

Променливите N_t и P_t представляват гъстотите на популациите от гостоприемници и паразитоиди в t-то поколение.

Ако приемем срещите между гостоприемник и паразитоид за случайни, вероятността гостоприемник да избяга от паразитоид може да бъде зададена с $\exp(-aP_t)$, където a е константа на пропорционалност. По подобен начин, вероятността за заразяване се дава от $(1-\exp(-aP_t))$. Параметърът c описва броя на паразитоидите, които се излюпват от заразения гостоприемник, а λ е скоростта на възпроизводство на гостоприемника.

В лекцията доказахме, че равновесната точка на класическия модел на Никълсън-Бейли е неустойчива. Симулацията на модела показа, че динамиката се характеризира с неустойчиви колебания с нарастваща амплитуда, докато популацията не се срине. Започвайки от стойности близки до равновесната точка, траекторията на популациите достига стойности, близки до 0, т.е. популациите се сриват и изчезват.

Пространствен модел. Важен фактор, който класическият модел на Никълсън-Бейли пренебрегва, е *пространството*. Пространството може да бъде пренебрегнато, ако популациите се смятат за добре смесени в глобален смисъл. Това допускане обаче невинаги може да бъде оправдано в реални условия. Взаимодействието между популациите и разпространението на потомството им може да се влияе значително от *локалните условия*. Моделът на Никълсън-Бейли може да бъде разширен, за да включва пространството, в което се разпространяват популациите. За тази цел разглеждаме пространствена мрежа (с размер $n \times n$), на която се осъществява динамиката на Никълсън-Бейли.

В полето с координати (i,j) от мрежата динамиката се задава с простия модел на Никълсън-Бейли от лекцията, но освен това позволяваме на гостоприемниците и паразитоидите да се разпространяват във всички непосредствено съседни полета (със скорости на разпространение d_n и d_p). Математически пространственият модел се задава от следните уравнения

$$N_{i,j}(t+1) = \lambda N_{i,j}^*(t) \exp(-aP_{i,j}^*(t))$$

$$P_{i,j}(t+1) = cN_{i,j}^*(t)[1 - \exp(-aP_{i,j}^*(t))]$$

където долният двоен индекс показва полето (i,j) от мрежата, а поколението е посочено в скоби. Тук

$$N_{i,j}^*(t) = (1 - d_n)N_{i,j}(t) + \frac{d_n}{8} \sum_{k,l} N_{k,l}(t)$$

$$P_{i,j}^*(t) = (1 - d_p)P_{i,j}(t) + \frac{d_p}{8} \sum_{k,l} P_{k,l}(t)$$

където сборът е над всичките 8 непосредствено съседни на (i,j) полета (т.е. $(i-1,j-1),\ldots,(i+1,j+1)$). Този модел е изцяло детерминистичен.

В следните задачи се изследват два сценария на екологично самоограничаване на растежа на популациите ("устойчиви" паразитоиди и самоограничаване на растежа при гостоприемниците) и как това допускане влияе върху пространствената динамика.

Задачи

- 1. Напишете скрипт, който изпълнява пространствения модел на Никълсън-Бейли за двумерна решетка с размери $n \times n$. Необходимо е да наложите гранични условия за разпространението на индивидите в клетките по ръба на мрежата. Експериментирайте с условия на фон Нойман (отражение, т.е. необходимо е да се промени формулата за $N_{i,j}, P_{i,j}$, ако поне един от индексите i, j = 1 или n) и периодични условия (т.е. индивидите, излизащи от лявата страна на решетката се появяват от дясната й страна и.т.н, т.е. $N_{1,j} = N_{n,j}, N_{j,1} = N_{j,n}$ и.т.н.).
- 2. В зависимост от избраните гранични условия трябва да изведете формула за движението на популациите в клетките по границата на решетката. Какви трябва да бъдат скоростите d_n, d_p , за да се гарантира, че гъстотите на популациите са винаги положителни?
- 3. Въведете в класическия модел "устойчиви" паразитоиди (т.е. в следващото поколение оцелява минимален дял $k \approx 0$ от паразитоидите дори при липса на гостоприемници в съответната клетка). Обяснете как следва да се променят

уравненията на класическия модел. Изследвайте за различни стойности на k как това допускане влияе върху динамиката при класическия модел.

- 4. Сега изследвайте промяната в динамиката на пространствения модел. Изберете фиксирани стойности d_n, d_p за скоростите на разпространение и сравнете динамиката на класическия модел и на модела с "устойчиви" паразитоиди.
- 5. Въведете самоограничаване на растежа при популацията на гостоприемника (с помощта на кривата на Рикер $N_{t+1} = N_t \exp(r(1-N_t/K)-aP_t))$. Обяснете какво се променя в класическия модел.
- 6. Сега изследвайте промяната в динамиката на пространствения модел. Изберете фиксирани стойности d_n, d_p за скоростите на разпространение и сравнете динамиката на класическия модел и модела със самоограничаване на растежа при популацията на гостоприемника.