

Cambridge International Examinations

Cambridge International Advanced Level

Paper 3	Oct	ober/November 2014 2 hours
COMPUTING		9691/33
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Candidates answer on the Question Paper.

No additional materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names for software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

© UCLES 2014

International Examinations

1	(a)	Convert the follo	wing infix form	expressions into	reverse Polish notation.
•	(a)	COLIVEL LITE TOTAL		CVDI COOIDIIO II IIO	TEVELSE I UIISH HULALIUH.

(i)) (a	+	b') ,	/	6
١.	, ,	a		20	, ,		\circ

[1]]
-----	---

(ii)
$$3 * (x * y + 3)$$

(b) Convert the following reverse Polish notation expressions into infix form.

(i)
$$3 \times y + z + *$$

Note: the caret (^) symbol represents "to the power of".

(c) An expression in reverse Polish notation can be evaluated on a computer system using a stack.

((i)	Describe the	operation	of	а	stack
١,	.,		operation	Oi	а	Stack

	[4]

(ii) The expression in reverse Polish notation

is to be evaluated using a stack. The first available location on the stack is 1.

The diagram will show the changing contents of the stack as this expression is evaluated. Complete the diagram.

[4]

2

(a)	Modern operating systems use a memory management technique called paging.
	Explain how paging works by using the terms:
	PagePage framePage table
	[3]
(b)	For a computer system using multi-programming, the low-level scheduler decides what process will get next use of the processor.
	One algorithm could be a "round-robin"; that is, every process gets use of the processor in sequence.
	State two other algorithms which could be used by the low-level scheduler.
	1
	2
	[2]

(c) For a "round-robin" algorithm, five processes are currently loaded and get the use of the processor in the sequence:

PROG16 - PROGWP - PROGDB - PROG11 - PROG31, then return to PROG16

Process PROGDB has just completed its time-slice. Put the sequence of events below in the correct order.

Note: two of the statements will not be used.

Α	Process PROG11
В	Interrupt received from the low-level scheduler
С	Copy to the CPU registers the contents of the file directory for PROG11
D	Save the PC and all other registers contents for PROGDB to its Process Control Block (PCB)
E	Copy to the CPU registers the contents of the stack
F	Copy to the CPU registers the contents of the Process Control Block for PROG11

List the sequence of events using the letters.	
	[4]

3	A da	ataba	ase is to be set up to store data about paintings sold to customers by a gallery.	
	Sev	eral a	attempts are made at the database design.	
	(a)	Con	nsider Design 1:	
		Pai	stomer(<u>CustomerID</u> , CustAddress, DateRegistered) .nting(<u>PaintingID</u> , Description, PaintingDate, Artist, Price) .es(<u>SalesID</u> , CustomerID, PaintingID, PurchaseDate)	
		(i)	Circle above the two foreign keys in this database design.	[2]
		(ii)	These two foreign keys form two relationships. Complete the entity-relationship (E-R) diagram to show them.	
				[0]
				[2]
		(iii)	It is suggested that, as the number of sales made is relatively small, a SalesID is required. The Sales table could be re-designed as:	not
			Sales(<u>CustomerID</u> , <u>PurchaseDate</u> , PaintingID)	
			This design is to be implemented. How will this restrict the gallery's sales?	
				[1]

(b) More data is to be stored about the artist and the customer.

Consider Design 2:

(i)	Name the table which is not in Second Normal Form (2NF) and explain why.
	Table
	Explanation
	Re-design this table.
	[3]
(ii)	Name the table which is not in Third Normal Form (3NF) and explain why.
	Table
	Explanation
	Re-design this table and add a new table. Both these tables must be fully normalised.
	[5]

(c)	The final design for the customer table is:
	Customer(CustomerID, CustomerName, CustAddress, TelNo, DateRegistered)
	Customer 065 has contacted the gallery to tell them his new telephone number is 0123 456789.
	Write the Data Manipulation Language (DML) command to update their record.

4 The table below gives a subset of the assembly language instructions for a computer with a single general-purpose register, the Accumulator (ACC), and an index register (IX).

Instr	Opcode (mnemonic) Operand		
-			Explanation
LDD	<address></address>	0000 0100	Direct addressing. Load the contents of the given address to ACC
LDV	<number></number>	0000 0101	Load the given number to ACC
STO	<address></address>	0001 0000	Store the contents of ACC at the given address
LDI	<address></address>	0000 0110	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC
LDX	<address></address>	0000 0111	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>
INC	<register></register>	0000 0011	Add 1 to the contents of the register (ACC or IX)
OUTCH		1000 0001	Output to the monitor the character corresponding to the ASCII character code in ACC
IN		1001 0000	Input a denary number from the keyboard and store in ACC
JMP	<address></address>	1100 1000	Unconditional jump to the given address
END		1111 1111	End the program and return to the operating system

The diagram shows a program loaded in main memory starting at location 100.

Locations 200 onwards contain data which are used by the program.

(a)) (i)	The instruction	at address	102 is fetched.
-----	-------	-----------------	------------	-----------------

(b)

	ACC	100	LDI 150
		101	OUTCH
		102	LDD 203
		103	INC ACC
		104	STO 150
	IX	105	JP 100
		106	END
		107	
	Show the contents of the registers after execution. Write on the diagram to explain. [2]		77
	write on the diagram to explain.	150	200
(ii)	The instruction at address 100 is fetched.		77
	100	200	65
	ACC	201	76
		202	65
		203	77
		204	32
	IX	205	32
	Show the contents of the registers after execution. Write on the diagram to explain.		[3]
The	given table of instructions shows the binary number used f	or eac	h instruction's opcode.
	nstructions in machine code are stored as a 16-bit pattern, and the operand as the second 8 bits.	with t	he opcode as the first 8
(i)	What is the maximum number of different instructions this	proces	ssor could have?
			[1]
(ii)	Consider the instruction:		
	0 0 0 1 0 0 0 0 1 0 0 0	0 0	1
	Describe what this instruction does.		
			[2]

(iii)	Programmers prefer to write machine code instructions in hexadecimal.	
	Explain why.	
(iv)	What is the hexadecimal number for the instruction shown in part (b)(ii)?	
		[1]
Sho	ow the machine code for the following instructions:	
(v)	LDI 150	
		[2]
(vi)	LDV 15	
		[2]
(vii)	A programmer makes the statement:	
	"For this instruction set, some of the instructions do not require an operand"	
	Circle if this statement is true or false and explain with reference to the instructions gi	ven.
	True / False	
		[2]

(c) Use the ASCII code table to trace the first four iterations of the given program.

ASCII code table (part)						
Character	Decimal	Character	Decimal	Character	Decimal	
<space></space>	32	I	73	R	82	
А	65	J	74	S	83	
В	66	K	75	Т	84	
С	67	L	76	U	85	
D	68	M	77	V	86	
Е	69	N	78	W	87	
F	70	0	79	Х	88	
G	71	Р	80	Υ	89	
Н	72	Q	81	Z	90	

ACC	Location 150	OUTPUT

100	LDI	150
101	OUTCH	
102	LDD	150
103	INC	ACC
104	STO	150
105	JP	100
106	END	
107		
		ノノ
	/	<u> </u>
150		200
		ノノ
		<u>/ / </u>
200		65
201		76
202		65
203		77
204		32
205		32

Mos	st modern computers are designed using Von Neumann architecture.
(a)	Describe what is meant by Von Neumann architecture.
	[2]
(b)	The sequence of operations below shows the fetch stage of the fetch-execute cycle in register transfer notation.
	1. MAR ← [PC] 2. PC ← [PC] + 1 3. MDR ← [[MAR]] 4. CIR ← [MDR]
	Note: [register] denotes the contents of the specified register.
	Explain what is happening at the fetch stage.
	1
	2
	3
	4
	[4]

(c)	The	ado	dress bus and c	lata bus are used during the fetch-execute cycle.
	(i)	Na	me another bus	s used in a typical microprocessor.
				[1]
	(ii)	Na	me one signal	carried by this bus.
(d)	Cor	 heide	er two assembl	v language instructions which were given in Question 4
			ame one signal carried by this bus. [1] [2] [2] [3] [4] [5] [6] [7] [8] [8] [8] [8] [8] [9] [9] [9	
-	code moni			Explanation
	L	DV	<number></number>	Load the given number to ACC
	L	DD	<address></address>	Direct addressing. Load the contents of the given address to ACC
	Foll bus	mu: eac	ng step 4 of the st be used againg the hinstruction be	n before the execution of the instruction can be completed.
	(1)			
				[2]
	(ii)	LD:	D 35	
		Ca	se 1 / Case 2	
		Ex	olanation	
				[2]
		••••		[4]

6 The following are the first few lines of a source program written in a high-level language which is about to be translated by the language compiler.

```
// invoicing program
// program written 21 Oct 2014
DECLARE i : INTEGER;
DECLARE Customer(40) : STRING;
DECLARE Address: STRING;
CONSTANT DiscountRate = 5;

// start of main program
CALL InitialiseCustomerData
REPEAT
...
...
...
...
```

(a)	Dur	ring the lexical analysis stage the compiler will use a keyword table and a symbo	ol table.
	(i)	Describe what information is contained in the keyword table.	
			[2]
	(ii)	List three entries which must be in the keyword table for this program.	
			[1]
	(iii)	Describe what information is contained in the symbol table.	
			[2]
	(iv)	List three entries which will be entered in the symbol table for this program.	
			[1]

	(v)	Explain what happens during the lexical analysis stage of compilation. Include how the contents of the keyword table and symbol table are used.
		[5]
(b)	The	final stage of compilation is code optimisation.
	(i)	Explain what is meant by code optimisation.
		[2]
	(ii)	Consider three assembly language instructions that were given in Question 4 .

Instruction		Fymlonation	
Op Code	Operand	Explanation	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC	
STO	<address></address>	Copy the contents of ACC to the given address	
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)	

Study the assembly language code below.

200	LDD 151
201	INC ACC
202	STO 151
203	LDD 151
204	INC ACC
205	STO 151

One instruction is not needed and could be removed during optimisation. State the address of this instruction.

Address of instruction[1]

7 The function DateDiff is documented as follows:

The function assumes Date1 is earlier than Date2.
The function calculates the difference, in days or as a whole number of months, between Date1 and Date2.

OutputFlag takes values:

- 'D': the result is computed and returned as a number of days
- 'M': the result is computed and returned as a whole number of months

An error is generated for each of the following:

- · An unrecognised or missing flag parameter
- · A date parameter in the wrong format
- Date1 > = Date2

Dates are recognised by the function using the 'hash (#) delimiter'.

What is returned from the following function calls?

(f)	High-level programming languages have two types of function. These are built-in and user-defined . Explain the difference between them. You may give an example from your practical experience for a built-in function.
(e)	DateDiff(#14/01/2014#, #17/01/2014#)[1]
(d)	DateDiff("12/09/2014", "15/09/2014", 'D')[1]
(c)	DateDiff(#30/07/2012#, #30/09/2012#, 'M')[1]
(b)	DateDiff(#21/10/2014#, #19/10/2014#, 'D')[1]
(a)	DateDiff(#12/09/2014#, #15/09/2014#, 'D') [1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.