

Tentamen i Matematisk statistik och sannolikhetslära MA506G

2023-01-04, kl. 14.15-19.15

Hjälpmedel: Formelsamling och miniräknare med tomt minne

Betygskriterier: Maxpoäng på tentan är 60 poäng, och den nedre gränsen för betyg k ($k \in \{3, 4, 5\}$) är 10k poäng.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg och svara exakt. Besvara högst en uppgift per blad. Lämna in bladen i uppgiftsordning om ni vill att rättaren ska hitta dem och ge poäng för lösningen.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Henrik Olsson.

Lycka till!

- 1. Jayne och Jussi har elva frukter av vilka tre är giftiga. Jayne äter fyra slumpmässigt valda frukter och Jussi äter sex. Deras hund får den sista frukten. Beräkna
 - (a) sannolikheten att hunden klarar sig och inte blir förgiftad [2p]
 - (b) den betingade sannolikheten att både Jayne och Jussi blir förgiftade om [4p] hunden klarar sig
 - (c) sannolikheten att både Jayne och Jussi blir förgiftade men hunden klarar [4p] sig.
- 2. De diskreta slumpvariablerna X och Y har sannolikhetsfunktionerna $p_X(0) = 1/6$, $p_X(1) = 1/3$, $p_X(2) = 1/2$ respektive $p_Y(0) = 1/2$, $p_Y(1) = 1/3$, $p_Y(2) = 1/6$.
 - (a) Vilka värden kan Z = X + Y anta? [4p]
 - (b) Ange sannolikhetsfunktionen $p_Z(k)$. [4p]
- 3. Låt X och Y ha den gemensamma täthetssfunktionen

$$f_{X,Y}(x,y) = \begin{cases} x/2 + y/4 & 0 \le x \le 1, \quad 0 \le y \le 2, \\ 0 & \text{annars.} \end{cases}$$

- (a) Bestäm den betingade täthetsfunktionen $f_{X|Y}(x|y)$. [4p]
- (b) Beräkna det betingade väntevärdet E(X|Y=y). [4p]
- (c) för vilket värde y är det betingade väntevärdet E(X|Y=y) störst respektive minst? [4p]

- 4. Nittiosex (96) vanliga tärningar slås och antalet ettor räknas. Använd lämplig [10p] metod och beräkna sannolikheten att antalet ettor är färre än 13.
- 5. En forskare har bildat en ny legering och teoretiskt beräknat dess smältpunkt till 1050 °C. För att kontrollera resultatet har hon mätt smältpunkten $T_{\rm s}$ hos 10 prover av legeringen och erhållit följande mätvärden:

	1	2	3	4	5	6	7	8	9	10
$T_{\rm s}$	1054.8	1052.9	1051.0	1049.8	1051.6	1047.9	1051.8	1048.5	1050.2	1050.7

Variationerna i mätvärden beror på imperfektioner hos termometern. Erfarenhet från tidigare försök ger att man kan anta att mätfelen är oberoende och normalfördelade med väntevärde 0 och standardavvikelse 2.3.

Testa hypotesen att smältunkten är $\mu = 1050$ °C på nivån 5 %. Som mothypotes tas att smältpunkten är skild från 1050 °C.

Till din hjälp har du följande beräkningar från observationerna av de 10 provernas smältpunkter.

$$\sum T_{\rm s} = 10509.2, \sum T_{\rm s}^2 = 11044365.48$$

6. Norrländsk furu levereras i plankor av standardbredd och varierande längd för använding till golv. Längderna varierar som oberoende och normalfördelade stokastiska variabler. Sexton slumpmässigt utvalda plankor hade följande längder i meter

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
5.8	5.9	5.1	3.5	4.2	4.9	5.3	5.3	4.7	3.9	4.5	4.1	4.0	4.2	4.7	4.8

- (a) Bestäm ett 95 % konfidensintervall för väntevärdet av planklängden (medelvärdet av alla plankor). [5p]
- (b) Beräkna ett 95 % konfidensintervall för standardavvikelsen. [5p]

Till din eventuella hjälp har du nedanstående beräkningar.

$$\sum x = 74.9, \sum x^2 = 357.67$$