

Instituto Tecnológico de Estudios Superiores de Occidente

Construcción de modelos predictivos del precio del maíz utilizando dos métodos convexos: *SVR* y regresión lineal múltiple

Departamento de Matemáticas y Física Optimización convexa Dr. Juan Diego Sánchez Torres

INTEGRANTES

Emilio Carranza Ávila Gustavo Ibáñez Sosa Gabriela Lozano Orozco Karen Manguart Páez 11 de mayo del 2022

1. INTRODUCIÓN

The United States and Mexico are among the world's largest corn producers

Note: Figure depicts average annual corn production by country during U.S. marketing years 2015/16 to 2017/18. Data labels indicate country, average annual production (millions of metric tons), and share of world production (percent).

1. INTRODUCIÓN

- Importancia del precio del maíz en México.
- México segundo importador de maíz en el mundo.
- Séptimo productor mundial.
- Gran volatilidad en los precios del maíz.

- Datos a usar.
- Serie de tiempo de precios del maíz.
- 1959 hasta la actualidad.

2. OBJETIVOS

- Construir dos modelos predictivos de una serie de tiempo del precio del maíz utilizando dos métodos de optimización convexa:
 - SVR
 - Regresión lineal múltiple.
- Calcular métricas de error para poder determinar cuál de los dos métodos predice con mejor exactitud con respecto al tiempo.

3.1 Series de Tiempo

- Secuencia de observaciones ordenadas cronológicamente
- Datos espaciados entre sí de forma uniforme
- Objetivo: Realizar pronósticos

3.1 Series de Tiempo

- Aplicaciones en economía, ingeniería y finanzas.
- Modelos estadísticos tradicionales:
 - ARIMA
 - Funciones de transferencia
 - Modelos para predicciones de series no lineales (Redes neuronales y Máquinas de Soporte)

Serie no estacionaria en media

Serie no estacionaria en media y varianza

Serie estacionaria en media y varianza

Serie estacionaria en media pero no en varianza

3.2 SVR (Support Vector Regression)

$$\min_{w,b,\xi^{(*)}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*),$$
s.t. $(w \cdot x_i) + b - y_i \le \varepsilon + \xi_i, i = 1, \dots, l,$
 $y_i - (w \cdot x_i) - b \le \varepsilon + \xi_i^*, i = 1, \dots, l,$
 $\xi_i^{(*)} \ge 0, i = 1, \dots, l,$

3.3 Regresión lineal

3.3.1 Regresión lineal múltiple

 $yi=\beta 0+\beta 1xi1+\beta 2xi2+...+\beta pxip+\epsilon$

donde,

i = n observaciones

 y_i = variable dependiente

 x_i = variables explicativas

 β_0 = intercepto

 β_p = coeficientes de pendiente para p variables explicativas

 ϵ = termino de error del modelo.

3.3.1 Regresión lineal múltiple

• Problema de mínimos cuadrados: Función objetivo:

$$\min \| Ax - b \|^2$$

donde,

A es una matriz de variables explicativas, b de variables de salida y x un vector de pesos.

3.4 Transformador simbólico

- Genera distintos ajustes por medio de un algoritmo genético
- Se crea una población original aleatoria con la cual se iniciará un proceso de "evolución" para encontrar la mejor población que estará conformada por los individuos con el mejor ajuste y los coeficientes de correlación más cercanos a cero.
- Parámetros
 - Número de generaciones, porcentaje de mutaciones, número de individuos que sobreviven al cambio generacional, métrica, entre otros.
- Uno de los parámetros que se deben de tener en cuenta es el de métrica (*metric*), este parámetro se vuelve relevante en el resultado final ya que con él se define qué coeficiente de correlación se utilizará para corroborar los resultados. Específicamente en gplearn y en la función de *Symbolic Transformer* se cuenta con dos tipos de coeficiente de correlación: Pearson y Spearman.

3.5 MAPE

El MAPE es un indicador del desempeño de un pronóstico. Mide el tamaño del error abosltuo en términos porcentuales y eso lo hace fácil de interpretar. La fórmula para calcularlo es la siguiente:

$$ext{MAPE} = rac{100\%}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

Donde A_t es el valor real y F_t es el valor de pronóstico.

4. DESARROLLO

4.1 División de la base de datos:

- Separación en dos conjuntos: entrenamiento y prueba.
- Variable explicativa: tiempo
- Variable de respuesta: precio
- Separación lineal de datos 70-30 (no aleatoria).
- Datos dependientes entre sí.
- Normalización MinMax.

Fig. 1. División lineal (no aleatoria) de la base de datos en conjuntos de entrenamiento y prueba.

4. DESARROLLO

4.2 *SVR*

- Kernel: RBF (Radial Basis Function), γ =0.01
- C = 10
- $\varepsilon = 0.05$

Resultados:

• MAPE= 1.973%.

Tabla 1. Resultados de MAPE de 5 modelos SVR de kernel RBF variando gamma.

kernel	gamma	C	3	MAPE (%)
RBF	0.5	10	0.05	5.841
RBF	0.25	10	0.05	4.016
RBF	0.10	10	0.05	3.348
RBF	0.01	10	0.05	1.973
RBF	0.0005	10	0	3.146

4. DESARROLLO

4.2 Regresión lineal múltiple

- Serie de tiempo una sola variable explicativa (tiempo)
- Se corrió transformador simbólico
- Se dividieron los datos en conjuntos de entrenamiento y prueba
- Se corrió el algoritmo de ajuste de regresión lineal.
- El mejor MAPE obtenido fue 1.59% y se logró con los siguientes parámetros:
 - generations=20
 - population_size=2000
 - hall_of_fame=100
 - n_components=10

5. CONCLUSIONES

• Importancia de predecir los precios del maíz.

• Resultados de 1.97% SVR

• Resultados de 1.59% Regresión lineal múltiple.

• Por qué es preferible el SVR.

6. REFERENCIAS

- Brownlee, J. (09 de 05 de 2022). Machine Learning Mastery. Obtenido de Linear Regression for Machine Learning: https://machinelearningmastery.com/linear-regression-for-machinelearning/#:~:text=Linear%20regression%20is%20a%20linear,the%20input%20variables%20(x).
- gplearn. (2022). *Symbolic Transformer*. Obtenido de gplearn API reference: https://gplearn.readthedocs.io/en/stable/reference.html#gplearn.genetic.SymbolicTransformer
- Hayes, A. (09 de 05 de 2022). Investiopedia. Obtenido de Regresión Lineal Múltiple: https://www.investopedia.com/terms/m/mlr.asp#:~:text=Key%20Takeaways-,Multiple%20linear%20regression%20(MLR)%2C%20also%20known%20simply%20as%20multiple,uses%20just%20one%20explanatory%20variable
- Minitab. (2022). *Relaciones lineales, no lineales y monótonas*. Obtenido de Support Minitab: https://support.minitab.com/es-mx/minitab/19/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/linear-nonlinear-and-monotonic-relationships/#:~:text=En%20una%20relaci%C3%B3n%20mon%C3%B3tona%2C%20las,direcci%C3%B3n%20a%20un%20ritmo%20con
- Minitab. (2022). *Una comparación de los métodos de correlación de Pearson y Spearman-Minitab*. Obtenido de Support Minitab: https://support.minitab.com/es-mx/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/correlation-and-covariance/a-comparison-of-the-pearson-and-spearman-correlation-methods/#:~:text=Los%20coeficientes%20de%20correlaci%C3%B3n%20de%20P
- Ping-Feng, P., Kuo-Ping, L., & Chi-Shen, L. (2009). Pronóstico de series de tiempo mediante un modelo de regresión de vector de soporte estacional. *Elsevier Ltd.*, 4261–4265.
- Velázques, J., Olaya, Y., & Franco, C. (2010). Predicción de series temporales usando máquinas de vestores de soporte. *Ingeniare*, 64-75.
- Villavicencio, J. (09 de 05 de 2022). Introducción a Series de Tiempo. Obtenido de Instituto de Estadísticas de Puerto Rico: http://www.estadisticas.gobierno.pr/iepr/LinkClick.aspx?fileticket=4_BxecUaZmg%3D
- Xuchan, J., Manjin, C., Yuhong, X., Fuqiang, Q., & Yingjie, T. (2014). Regresión vectorial y análisis de series temporales para el Pronóstico del requerimiento total de agua de Bayannur. *Elsevier*, 523 531.