Automaten und Berechenbarkeit - $\ddot{\mathrm{U}}$ bung 02

FELIX TISCHLER, MARTRIKELNUMMER: 191498

Aufgabe 1

NFA $M = (\{0, 1\}, \{a, b, c, d\}, \delta, \{a, d\}, \{b, d\})$ δ :

Zustand	0	1
Ø	Ø	Ø
a	Ø	$\{b,c,d\}$
b	$\{d\}$	Ø
c	$\{b\}$	Ø
d	Ø	{c}

(a)

$$\begin{split} \delta^*(\{a\}, 1001) &= \bigcup_{z \in \{a\}} \delta^*(\delta(\{a\}, 1), 001) \\ &= \delta^*(\{b, c, d\}, 001) \\ &= \bigcup_{z \in \{b, c, d\}} \delta^*(\delta(\{b, c, d\}, 0), 01) \\ &= \delta^*(\{d\}, 01) \cup \delta^*(\{b\}, 01) \cup \delta^*(\emptyset, 01) \\ &= \delta^*(\delta(\{d\}, 0), 1) \cup \delta^*(\delta(\{b\}, 0), 1) \\ &= \emptyset \cup \delta^*(\{d\}, 1) \\ &= \delta^*(\delta(\{d\}, 1), \lambda) \\ &= \delta^*(\{c\}, \lambda) \\ &= \{c\} \end{split}$$

$$\begin{split} \delta^*(\{d\}, 1000) &= \delta^*(\delta(\{d\}, 1), 000) \\ &= \delta^*(\{c\}, 000) \\ &= \delta^*(\delta(\{c\}, 0), 00) \\ &= \delta^*(\{b\}, 00) \\ &= \delta^*(\delta(\{b\}, 0), 0) \\ &= \delta^*(\{d\}, 0) \\ &= \delta^*(\delta(\{d\}, 0), \lambda) \\ &= \delta^*(\emptyset, \lambda) &= \emptyset \end{split}$$

(b)

Bestimmen Sie $\{w \in \{0,1\}^* \mid \delta^*(\{a\}, w) \cap \{d\} \neq \emptyset\}!$

 $\delta^*(\{a\}, w)...$ Menge der

(c)

$$\begin{array}{l} \delta^*(\{d,b\},0) = \\ \delta^*(\{d,b\},1) = \\ \delta^*(\{b,c,d\},0) = \\ \delta^*(\{b,c,d\},1) = \end{array}$$

Bzw.

Zustand	0	1
Ø	Ø	Ø
a	Ø	$\{b,c,d\}$
b	$\{d\}$	Ø
c	{b}	Ø
d	Ø	$\{c\}$
$\{b,c,d\}$	$\{d,b\}$	$\{c\}$
$\{d,b\}$	$\{d\}$	$\{c\}$

Zustand	0	1
Ø	Ø	Ø
q_0	Ø	$\{q_4\}$
q_1	$\{q_3\}$	Ø
q_2	$\{q_1\}$	Ø
q_3	Ø	$\{q_2\}$
q_4	$\{q_5\}$	$\{q_2\}$
q_5	$\{q_3\}$	$\{q_2\}$

 $M^{'} = (\{0,1\}, Z', \delta', S', Z'_E)$

Aufgabe 2

(a)

Der DFA ist mittel Potenzmengenkonstruktion aus dem NFA in (b) entstanden. Die Zustände z_2 und z_3 wurden entfernt, da Sie nicht erreichbar sind.

$$M' = (\{0,1\}, Z', \delta', S', Z'_E)$$
 δ :

Zustand	0	1
z_0	$\{z_{0}\}$	$\{z_1\}$
z_1	$\{z_0, z_2\}$	$\{z_0, z_2\}$
z_2	$\{z_0,z_3\}$	$\{z_0,z_3\}$
z_3	$\{z_0\}$	$\{z_0\}$
$\{z_0,z_1\}$	$\{z_0,z_2\}$	$\{z_0,z_1,z_2\}$
$\{z_0, z_2\}$	$\{z_0,z_3\}$	$\{z_0,z_1,z_3\}$
$\{z_0, z_3\}$	$\{z_0\}$	$\{z_0,z_1\}$
$\{z_0,z_1,z_2\}$	$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$
$\{z_0,z_1,z_3\}$	$\{z_0, z_2\}$	$\{z_0,z_1,z_2\}$
$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$

Zustand	0	1
z_0	$\{z_0\}$	$\{z_1\}$
z_1	$\{z_5\}$	$\{z_5\}$
z_2	$\{z_{6}\}$	$\{z_{6}\}$
z_3	$\{z_0\}$	$\{z_0\}$
z_4	$\{z_5\}$	$\{z_7\}$
z_5	$\{z_6\}$	$\{z_8\}$
z_6	$\{z_0\}$	$\{z_4\}$
z_7	$\{z_9\}$	$\{z_9\}$
z_8	$\{z_5\}$	$\{z_7\}$
z_9	$\{z_9\}$	$\{z_9\}$

Bzw.

Beweis. " \subseteq "

Beweis. " \supseteq "

(b)

$$M = (\{0,1\}, Z, \delta, S, Z_E)$$

 δ :

Zustand	0	1
z_0	$\{z_0\}$	$\{z_1\}$
z_1	$\{\mathbf{z}_0, \mathbf{z}_2\}$	$\{z_0, z_2\}$
z_2	$\{\mathbf{z}_0, z_3\}$	$\{z_0, z_3\}$
z_3	$\{z_0\}$	$\{z_0\}$

Beweis. " \subseteq "	
Beweis. " \supseteq "	

Aufgabe 3

Zustand	a	b
z_0	z_3	z_1
z_1	z_3	z_2
z_2	z_3	Ø
z_3	z_3	z_3

Beweis. " \subseteq "
Beweis. " \supseteq "

Aufgabe 4

$$G_{1} = (\{a,b\}, \{S,A,B,E1,E2\}, S,R) \text{ mit } R : \begin{cases} S & \to aA \mid Bb \\ A & \to E_{1}b \mid b \\ B & \to aE_{2} \mid a \\ E_{1} & \to aA \\ E_{2} & \to Bb \end{cases}$$

Beweis. " \subseteq "

Beweis. " \supseteq "