RLC 串联谐振电路的稳态特性实验报告

陈依皓

	② 当Naward,我们和电路游摄,此时 p(ma)=U A(ma)=1						
	UL(t) = QUO WOS (WOt) UL(t) = - QUO WOS (WOT) UELT) = SIN (WOT).						
	Ult) = Vosin(wt).						
人游城县	我们把U(t)与lut)分别指入核示股高的CHI与CHZ,则用XY纸显式正张信号的						
侧屋>	岩出北 1 时,两新祖位相同,由此便确定指振频年.						
	M로 Q>.						
	由我一切由以(七)与以(七)的振幅之的为从,我们用不像器分别例出二级						
	m乳鱼作比即同.						
	应丝秀 1. 示像器两路输入信号要求规则取电查多数点						
	EP CH1						
	I R						
	c T						

	2.知前文明描.电感器可看作理想电总器与驾效电阻串联.						
	故 电路等效电阻 Rey = R+RL						
	我们可以用 LCR例试依得到电路器 电转放。						

一:对谐振频率与品质系数的测量结果

电路谐振时							
U	1.45						
U _c	3.29						
L	9.68 32.41 100.00						
R_L							
R							
Q _{测量}	2.27						
Q _{理论}	2.35						
f_0 (HZ)	5116.00						

真松

二:对频率特性的测量

实验数据如下

		/ .	5 (5)				
f (HZ) $U_0(Vpp$		[μS) δT (μs)	$R_L(\Omega)$	f_0 (HZ)	A´		ω/ω_0
1000 1.9		000.0 -236.5	31.35	5116	0.08770	-85.140	0.195465
1500 1.9		666.7 -152.0	31.50	5116	0.13751	-82.076	0.293198
2000 1.9		500.1 -109.5	31.80	5116	0.19601	-78.824	0.390930
2500 1.93		400.1 -83.0	32.17	5116	0.26625	-74.678	0.488663
3000 1.89	0.513	333.5 -63.8	32.35	5116	0.35924	-68.870	0.586396
3200 1.86	55 0.570	312.6 -57.2	32.00	5116	0.40343	-65.873	0.625489
3400 1.83		293.9 -51.3	32.00	5116	0.45415	-62.838	0.664582
3600 1.80	0.697	277.8 -45.5	32.00	5116	0.51113	-58.963	0.703675
3800 1.79		263.1 -39.8	32.70	5116	0.57985	-54.458	0.742768
4000 1.70	0.837	250.0 -34.0	32.00	5116	0.64991	-48.960	0.781861
4200 1.6	2 0.908	238.0 -28.1	32.14	5116	0.71760	-42.504	0.820954
4300 1.64		232.6 -25.2	32.24	5116	0.75784	-39.003	0.840500
4400 1.63		227.3 -22.1	32.36	5116	0.79793	-35.002	0.860047
4500 1.58		222.2 -19.1	32.30	5116	0.83606	-30.945	0.879593
4600 1.5		217.3 -15.9	32.31	5116	0.87328	-26.341	0.899140
4700 1.53		212.8 -12.6	32.34	5116	0.90412	-21.316	0.918686
4800 1.53		208.3 -9.5	32.32	5116	0.92554	-16.419	0.938233
4850 1.50		206.2 -8.1	32.34	5116	0.94327	-14.142	0.948006
4900 1.49		204.1 -6.5	32.35	5116	0.95370	-11.465	0.957780
4950 1.49		202.0 -5.0	32.32	5116	0.96087	-8.911	0.967553
5000 1.48		200.0 -3.4	32.35	5116	0.96789	-6.120	0.977326
5050 1.48		198.0 -2.0	32.35	5116	0.97164	-3.636	0.987099
5100 1.48		196.0 -0.5	32.36	5116	0.97129	-0.918	0.996873
5150 1.48		194.2 -0.7	32.39	5116	0.97283	-1.298	1.006646
5200 1.48		192.3 2.2	32.39	5116	0.96842	4.119	1.016419
5250 1.49		190.5 3.4	32.40	5116	0.96412	6.425	1.026192
5300 1.49		188.8 4.6	32.40	5116	0.95888	8.771	1.035966
5350 1.50		186.9 5.8	32.40	5116	0.94937	11.172	1.045739
5400 1.50		185.2 7.0	32.40	5116	0.94120	13.607	1.055512
5500 1.52		181.7 9.1	32.42	5116	0.92258	18.030	1.075059
5600 1.54		178.5 11.0	32.44	5116	0.89698	22.185	1.094605
5700 1.5		175.3 12.7	32.46	5116	0.87145	26.081 29 / 652	1.114152
5800 1.58 5900 1.60		172.4 14.2 169.5 15.5	32.47 32.47	5116 5116	0.84261 0.81469	29.652 3 <mark>2</mark> .920	1.133698 1.153245
6000 1.60		166.5 16.5 166.5 16.5	32.47 32.47	5116	0.78746	85.676	1.172791
6100 1.64		164.0 17.5	32.48	5116	0.75928	38.415	1.172791
6300 1.65		158.6 19.0	32.50	5116	0.73922	43.127	1.231431
6500 1.68		153.8 20.2	32.60	5116	0.72032	47.282	1.270524
6700 1.72		149.3 21.0	32.70	5116	0.62533	50.636	1.309617
6900 1.74		144.8 21.8	32.70	5116	0.58661	54.199	1.348710
7100 1.7		140.8 22.0	33.00	5116	0.55135	56.250	1.387803
7300 1.79		137.0 22.3	33.00	5116	0.511998	58.599	1.426896
7500 1.83		133.3 22.4	33.00	5116	0.49224	60.504	1.465989
7700 1.82		129.9 22.6	33.00	5116	0.46688	62.623	1.505082
8000 1.85		124.9 22.5	33.00	5116	0.43279	64.862	1.563722
9000 1.89		111.0 21.6	33.00	5116	0.35041	70.054	1.759187
12000 1.95		83.4 17.9	33.00	5116	0.22644	77.084	2.345582
15000 1.96		66.7 14.9	33.00	5116	0.22044	80.348	2.931978
18000 1.97		55.5 12.7	34.00	5116	0.10303	82.508	3.518374
21000 1.9	6 0.171	47.6 10.9	34.00	5116	0.11596	82.437	4.104769
24000 1.9		41.6 9.7	34.00	5116	0.11350	84.288	4.691165
27000 1.98		37.0 8.7	34.00	5116	0.08826	84.941	5.277561
30000 1.99		33.3 7.9	34.00	5116	0.03826	85.622	5.863956
33000 1.99		30.3 7.2	34.00	5116	0.07138	85.578	6.450352
33330 1.00	0.100	1.2	21.00	3110	3.0. 100	00.0.0	300002

对实验数据的拟合

对实验的反思:

1.进行实验前对电阻, 电感, 电容的选择不够合理, 导致品质系数 Q 的值小于 3, 应该选择 10 欧姆的电阻进行实验。

2.测量频率特性时,对电源频率的设置间距不够合理,导致在 4000-6000HZ 范围内测了太多的数据,而在小于 4000,大于 6000 区域内的数据较少。这个失误其实可以通过在实验前简单的计算所避免。

At 187