Contents

Contents			i
1	Vec	tor Spaces, Algebras, and Normed Spaces	1
	1.1	Vector Spaces	1
	1.2	Algebras	9

Last update: 2025 January 24

Chapter 1

Vector Spaces, Algebras, and Normed Spaces

For the entirety of this chapter assume F to be \mathbb{R} or \mathbb{C} .

§ 1.1. Vector Spaces

Definition 1.1.1. A vector space (or linear space) over F is a nonempty set V equipped with two operations:

$$V \times V \xrightarrow{+} V$$
 defined by $(v, w) \mapsto v + w$
 $F \times V \to V$ defined by $(\alpha, v) \mapsto \alpha v$

satisfying:

- (1) (V, +) is an abelian group:
 - (i) u + (v + w) = (u + v) + w for all $u, v, w \in V$;
 - (ii) there exists 0_V such that $v + 0_V = 0_V + v = v$ for all $v \in V$;
 - (iii) for all $v \in V$, there exists $w \in V$ satisfying $v + w = w + v = 0_V$;
 - (iv) v + w = w + v for all $v, w \in V$;
- (2) $\alpha(v + w) = \alpha v + \alpha w$ for all $\alpha \in F$, $v, w \in V$;
- (3) $\alpha(\beta \nu) = (\alpha \beta) \nu$ for all $\alpha, \beta \in F, \nu \in V$;
- (4) $1_{\mathsf{F}} \mathsf{v} = \mathsf{v}$ for all $\mathsf{v} \in \mathsf{V}$.

It can be shown that the vector 0_V is unique, the additive inverse in (iii) is unique (which we denote as $-\nu$), that $0\nu = 0_V$, and $(-1)\nu = -\nu$.

Exercise 1.1.1. Show (iv) follows from the other axioms.

Exercise 1.1.2. Show
$$nv = \underbrace{v + v + ... + v}_{n \text{ times}}$$
 for $n \in \mathbb{Z}_{\geq 1}$.

It can be shown that a subspace is a vector space in its own right.

Example 1.1.1. Let $\{W_i\}_{i\in I}$ be a family of vector spaces. Then $\bigcap_{i\in I} W_i$ is also a vector space.

Example 1.1.2. Planes and lines through the origin are subspaces of \mathbb{R}^3 .

Definition 1.1.2. Let V be a vector space and $S \subseteq V$ a subset.

- (1) A linear combination from S is a finite sum $\sum_{j=1}^n \alpha_j \nu_j$ with $\alpha_j \in F$, $\nu_j \in S$.
- (2) The linear span of S is:

$$\operatorname{span}(S) := \left\{ \sum_{j=1}^{n} \alpha_{j} \nu_{j} \mid n \in \mathbb{N}, \alpha_{j} \in F, \nu_{j} \in S \right\}.$$

Exercise 1.1.3. Show that $span(S) \subseteq V$ is a subspace and:

$$\mathrm{span}(S) = \bigcap \{ W \mid S \subseteq W, W \text{ is a subspace} \},\$$

that is, span(S) is the smallest subspace of V containing S.

Definition 1.1.3. Let V be a vector space and $S \subseteq V$ a subset.

- (1) S is spanning for V if span(S) = V.
- (2) S is independent if, given $n \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in F$, $\nu_1, ..., \nu_n \in S$, then $\sum_{j=1}^n \alpha_j \nu_j = 0$ implies $\alpha_j = 0$ for all j.

Our goal is to show that every vector space admits a basis. As such, recall the following definitions from a standard course in Real Analysis.

Definition 1.1.4. An *ordering* on a set X is a relation $R \subseteq X \times X$ on X that is reflexive, transitive, and antisymmetric. We write xRy as $x \leq_R y$. The pair (X, \leq_R) is called an *ordered set*. An ordering \leq on X is called *total* (or *linear*) if for all $x, y \in X$, $x \leq y$ or $y \leq x$.

Note that if (X, \leq) is an ordered set and $Y \subseteq X$ is a subset, then (Y, \leq) is an ordered set as well.

Definition 1.1.5. Let (X, \leq) be an ordered set and $Y \subseteq X$. An *upper bound* for Y is an element $u \in X$ with $u \geq y$ for all $y \in Y$. An element $m \in X$ is called *maximal* if $x \in X$, $x \geq m$ implies x = m.

Lemma 1.1.1 (Zorn's Lemma). Let (X, \leq_X) be an ordered set. Suppose every subset $Y \subseteq X$ for which (Y, \leq_X) is totally ordered has an upper bound in X. Then X admits a maximal element.

The proof of Zorn's Lemma is outside the interest of this text.

Theorem 1.1.2. Every vector space admits a basis. Moreover, every independent set is contained in a basis.

Proof. Let $S \subseteq V$ be linearly independent. Define:

$$\mathfrak{T}(S) = \{ T \subseteq V \mid S \subseteq T, T \text{ linearly independent } \}.$$

Let $\mathfrak{C} \subseteq \mathfrak{T}(S)$ be a totally ordered subset. Set $R = \bigcup_{T \in \mathfrak{C}} T$. Clearly $R \supseteq S$. Assume $\sum_{j=1}^{n} \alpha_{j} \nu_{j} = 0$, where $\alpha_{j} \in F$ and $\nu_{j} \in R$. Since \mathfrak{C} is totally ordered, there exists $T_{0} \in \mathfrak{C}$ with $\nu_{j} \in T_{0}$ for all j = 1, ..., n. Since T_{0} is independent, $\alpha_{j} = 0$ for all j = 1, ..., n. Thus R is independent as well. Whence R is an upper bound for \mathfrak{C} . By Zorn's Lemma, $\mathfrak{T}(S)$ admits a maximal element, call it R.

Claim: B is a basis for V. Suppose towards contradiction it's not, then there exists $v_0 \in V \setminus \text{span}(B)$. Consider $B \cup \{v_0\}$ and let $\alpha_0 v_0 + \sum_{j=1}^n \alpha_j v_j = 0_V$. If $\alpha_0 \neq 0$, then $\sum_{j=1}^n \alpha_j v_j = -\alpha_0 v_0$, giving $v_0 \in \text{span}(B)$ which is a contradiction. If $\alpha_0 = 0$, then $\sum_{j=1}^n \alpha_j v_j = 0_V$. Since B is independent, $\alpha_j = 0$ for all j = 1, ..., n. Thus $B \cup \{v_0\}$ is independent, contradicting the maximality of B. Whence B is a basis for V.

Theorem 1.1.3. If B_1 and B_2 are bases for V, then $card(B_1) = card(B_2)$.

Definition 1.1.6. If V is a vector space, its *dimension* is the cardinality of any of its bases.

Corollary 1.1.4. If B is a basis for V, then every $v \in V$ can be written $v = \sum_{i=1}^{n} \alpha_k \beta_k$, $\alpha_k \in F$, $b_k \in B$ in a unique way.

Theorem 1.1.5. Let V be a linear space and $B \subseteq V$ a subset. The following are equivalent:

- (1) B is a basis for V;
- (2) B is a maximal element in $\mathfrak{T} = \{T \subseteq V \mid T \text{ independent}\};$
- (3) B is a minimal element in $\mathfrak{S} = \{S \subseteq V \mid S \text{ spans } V\};$

Definition 1.1.7. Let $\{V_i\}_{i\in I}$ be a family of vector spaces over a field F.

(1) The product of $\{V_i\}_{i\in I}$ is denoted:

$$\prod_{i \in I} V_i := \{(v_i)_{i \in I} \mid v_i \in V_i\}.$$

(2) The co-product (or sum) is denoted

$$\bigoplus_{i\in I} V_i := \left\{ (\nu_i)_{i\in I} \mid \nu_i \in V_i, \, \mathrm{supp}\big((\nu_i)_{i\in I}\big) < \infty \right\}.$$

Exercise 1.1.4.

(1) Show that $\prod_{i \in I} V_i$ equipped with pointwise operations:

$$(v_i)_{i \in I} + (w_i)_{i \in I} = (v_i + w_i)_{i \in I}$$

 $\alpha(v_i)_{i \in I} = (\alpha v_i)_{i \in I}$

is a linear space.

(2) Show that $\bigoplus_{i \in I} V_i$ is a subspace of $\prod_{i \in I} V_i$.

Proposition 1.1.6. Let V be a vector space over F and W \subseteq V. The (additive, abelian) quotient group V/W can be made into a vector space by defining multiplication by scalars as $\alpha(v + W) = \alpha v + W$ for all $\alpha \in F$, $v + W \in V/W$.

Example 1.1.3.

- (1) The set $F^n = \{(x_1, ..., x_n) \mid x_j \in F\}$ with component-wise operations is a vector space.
- (2) The set $M_{n,m}(F) = \{(a_{ij}) \mid a_{ij} \in F\}$ with linear operations is a vector space.
- (3) Let Ω be a nonempty set. Then $\mathcal{F}(\Omega, F) = \{f \mid f : \Omega \to F\}$ with pointwise operations is a vector space.
- (4) The set $\ell_{\infty}(\Omega, F) = \{ f \in \mathcal{F}(\Omega, F) \mid ||f||_{\mathfrak{u}} < \infty \}$ with pointwise operations is a vector space.

Exercise 1.1.5. Show $\ell_{\infty}(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(5) Let $K \subseteq V$ be a convex subset of a vector space V, that is, for all $v, w \in K$ and $t \in [0,1]$, then $(1-t)v + tw \in K$. A function $f: K \to F$ is said to be *affine* if $x,y \in K$ and $t \in [0,1]$ implies f((1-t)x + ty) = (1-t)f(x) + tf(y). The set $Aff(K,F) = \{f \in \mathcal{F}(\Omega,F) \mid f \text{ affine}\}$ with pointwise operations is a vector space.

Exercise 1.1.6. Show $Aff(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(6) The set $C([a,b],F) = \{f : [a,b] \to F \mid f \text{ continuous}\}$ with pointwise operations is a vector space.

Exercise 1.1.7. Explain why $C([a,b],F) \subseteq \ell_{\infty}([a,b],F)$ is a subspace.

- (7) Consider the following sequence spaces:
 - $s = \{(a_k)_k \mid a_k \in F\} = \mathcal{F}(\mathbb{N}, F);$
 - $\ell_{\infty} = \ell_{\infty}(\mathbb{N}, F) = \{(\alpha_k)_k \mid \sup_{k \ge 1} |\alpha_k| < \infty\};$
 - $c = \{(a_k)_k \mid (a_k)_k \text{ converges }\};$
 - $c_0 = \{(a_k)_k \mid (a_k)_k \to 0\};$

- $c_{00} = \{(a_k)_k \mid \text{supp}(a_k)_k < \infty\};$
- $\ell_1 = \{(\alpha_k)_k \mid \sum_{k=1}^{\infty} |\alpha_k| \text{ converges } \}.$

These are all vector spaces with pointwise operations. In fact, $c_{00} \subseteq c_0 \subseteq c \subseteq$ $\ell_{\infty} \subseteq s$ are all subspaces.

Exercise 1.1.8. Show that $\ell_1 \subseteq c_0$ is a subspace.

- (8) Consider the following continuous function spaces on \mathbb{R} :
 - $C(\mathbb{R}) = \{f : \mathbb{R} \to F \mid f \text{ continuous } \};$
 - $C_{\mathbf{b}}(\mathbb{R}) = C(\mathbb{R}) \cap \ell_{\infty}(\mathbb{R})$:
 - $C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 0 \};$
 - Recall that a function is *compactly supported* if for all $\epsilon > 0$, there exists $\alpha > 0$ such that $|x| \ge \alpha$ implies f(x) = 0. The set of compactly supported functions is denoted $C_c(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid f \text{ compactly supported } \}.$

These are all vector spaces with pointwise operations, and $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq$ $C_b(\mathbb{R}) \subseteq C(\mathbb{R})$ are all subspace inclusion.

Definition 1.1.8. If V and W are linear spaces over a common field F, a map $T: V \to W$ is called *linear* if $T(v_1 + \alpha v_2) = T(v_1) + \alpha T(v_2)$ for all $v_1, v_2 \in V$ and $\alpha \in F$.

Example 1.1.4. Let $A \in M_{m,n}(F)$. Then $T_A : F^n \to F^m$ defined by $T_A(\nu) = A\nu$ is linear. Let $\{e_1, ..., e_n\}$ be a basis for F^n . If $T : F^n \to F^m$ is linear, set:

$$[\mathsf{T}] = \Big(\mathsf{T}(e_1) \ \Big| \ \mathsf{T}(e_2) \ \Big| \ \dots \ \Big| \ \mathsf{T}(e_n)\Big).$$

This gives T(v) = [T]v for all $v \in F^n$. In fact, we also have $[T_A] = A$ and $T_{[T]} = T$.

Example 1.1.5. The canonical projection is linear:

$$\pi_j: \prod_{i\in I} V_i \to V_j \ \ \text{defined by} \ \ \pi_j\big((\nu_i)_i\big) = \nu_i.$$

We also have that the *coordinate exclusions* are linear:

$$\iota_j: V_j \hookrightarrow \bigoplus_{i \in I} V_i \ \text{ defined by } \ \iota_j(\nu) = (\nu_i)_i \,, \ \text{where } \ \nu_i = \begin{cases} 0_{\nu}, & i \neq j \\ \nu_j, & \text{otherwise.} \end{cases}$$

The evaluation map is linear as well. For $s \in S$, consider:

$$e_s : \mathcal{F}(S, F) \to F$$
 defined by $e_s(f) = f(s)$.

Proposition 1.1.7. * Let V be a vector space with basis B. Let W be a vector space and suppose $\varphi: B \to W$ is a map. Then there exists a unique linear map $T_{\varphi}: V \to W$ with $T_{\varphi}(b) = \varphi(b)$ for all $b \in B$.

Proof.

Proposition 1.1.8. * Let $T: V \rightarrow W$ be linear.

- (1) $\ker(T) = \{ v \in V \mid T(v) = 0_W \}$ is a linear subspace of V.
- (2) $\operatorname{im}(T) = \{T(v) \mid v \in V\}$ is a linear subspace of W.
- (3) $ker(T) = \{0_V\}$ if and only if T is injective.
- (4) im(T) = W if and only if W is surjective.

Proof. (1) Let $v_1, v_2 \in \ker(T)$ and $\alpha \in F$. Observe that:

$$T(v_1 + cv_2) = T(v_1) + cT(v_2)$$

= 0.

Thus $v_1 + cv_2 \in \ker(T)$, giving $\ker(T)$ as a linear subspace of V.

(2) Let $w_1, w_2 \in \text{im}(T)$. Then there exists $v_1.v_2 \in V$ with $T(v_1) = w_1$ and $T(v_2) = w_2$. We have:

$$w_1 + cw_2 = T(v_1) + cT(v_2)$$

= $T(v_1 + cv_2)$.

Whence $w_1 + cw_2 \in \text{im}(T)$, giving im(T) as a linear subspace of W.

(3) Let $\ker(T) = \{0\}$. Suppose $T(\nu_1) = T(\nu_2)$. Then $T(\nu_1) - T(\nu_2) = T(\nu_1 - \nu_2) = 0_W$. It must be that $\nu_1 - \nu_2 = 0_W$, giving $\nu_1 = \nu_2$. Thus T is injective. Conversely, suppose T is injective and let $\nu \in \ker(T)$. Then $T(\nu) = 0_W = T(0_V)$. Hence $\nu = 0_V$, establishing $\ker(T) = \{0\}$.

$$\square$$

Proposition 1.1.9. If $T: V \to W$ is linear and bijective, then the inverse map $T^{-1}: W \to V$ is linear.

Proof. We have that:

$$\mathsf{T}(\mathsf{T}^{-1}(w_1) + \alpha \mathsf{T}^{-1}(w_2)) = w_1 + \alpha w_2 = \mathsf{T} \circ \mathsf{T}^{-1}(w_1 + \alpha w_2).$$

Applying T^{-1} to both sides gives the desired result.

Proposition 1.1.10 (Vector Spaces are Injective). * Let U, V, W be vector spaces and $0 \to U \xrightarrow{j} V$ be exact (that is, j is injective). Let $\phi: U \to W$ be linear. There exists a linear map $\psi: V \to W$ such that $\phi = \psi \circ j$; i.e., the following diagram commutes:

$$0 \longrightarrow U \xrightarrow{j} V$$

$$\psi \downarrow \psi$$

$$W$$

Proof. Let $\{u_i\}_{i\in I}$ be a basis for U. Claim: $\{j(u_i)\}_{i\in I}$ is linearly independent. Observe that:

$$0 = \sum_{i \in I} \alpha_i j(u_i)$$
$$= j \left(\sum_{i \in I} \alpha_i u_i \right).$$

By the injectivity of j, we have that $\sum_{i=1}^{n} \alpha_i u_i = 0$, giving $\alpha_i = 0$ for all $i \in I$. Thus $\{j(u_i)\}_{i \in I}$ is linearly independent. We can extend this set to a basis of V as follows: let

Proposition 1.1.11 (Vector Spaces are Projective). * Let U, V, W be vector spaces and $V \xrightarrow{\pi} U \to 0$ be exact (that is, π is onto). Let $\phi : W \to U$ be linear. There exists a linear map $\phi : V \to W$ such that $\phi = \pi \circ \psi$; i.e., the following diagram commutes:

$$V \xrightarrow{\psi} V \xrightarrow{\pi} U \longrightarrow 0$$

Proof.

Definition 1.1.9. Let V and W be vector spaces over F. A linear isomorphism between V and W is a bijective linear map $T: V \to W$. If such a T exists, we say V and W are linearly isomorphic, and write $V \cong W$.

Finite dimensional vector spaces are boring. This is illustrated through the following theorem.

Theorem 1.1.12. Let V and W be finite-dimensional vector spaces over F. Then $V \cong W$ if and only if $\dim(V) = \dim(W)$.

Proof. Suppose $V \cong W$. Then there is an isomorphism taking basis of V to a basis of W. Therefore they have the same dimension.

Conversely, if $\dim(V) = \dim(W) = n$, then they are each isomorphic to F^n , giving that they are isomorphic to each other.

____//___

Example 1.1.6. Let V be a vector space, $W \subseteq V$ a subspace. The *natural projection*:

$$\pi: V \to V/W$$
 defined by $\pi(v) = v + W$

is a linear surjective map.

Theorem 1.1.13 (First Isomorphism Theorem for Vector Spaces). * Let $T: V \to V'$ be a linear map and $W \subseteq V$ a subspace.

(1) If T "kills" W (that is, $W \subseteq \ker(T)$), then there exists a linear map $\widetilde{T} : V/W \to V'$ with $\widetilde{T} \circ \pi = T$; i.e., the following diagram commutes.

- (2) If ker(T) = W, then \widetilde{T} is injective.
- (3) If ker(T) = W and im(T) = V', then $V/W \cong V'$.

Proof. (1) As stipulated, define $\widetilde{\mathsf{T}}(v+W)=\mathsf{T}(v)$. We must show that $\widetilde{\mathsf{T}}$ is well-defined: suppose $v_1+W=v_2+W$ for some $v_1,v_2\in\mathsf{V}$. Then $v_1=v_2+w$ for some $w\in\mathsf{W}$. This gives:

$$\widetilde{\mathsf{T}}(\nu_1 + W) = \widetilde{\mathsf{T}}(\nu_2 + w + W)$$
$$= \widetilde{\mathsf{T}}(\nu_2 + W).$$

Whence $\widetilde{\mathsf{T}}$ is well-defined. Now given $v_1 + W, v_2 + W \in V/W$ and $\alpha \in \mathsf{F}$, observe that:

$$\widetilde{\mathsf{T}}\big((\nu_1+W)+c(\nu_2+W)\big) = \widetilde{\mathsf{T}}\big((\nu_1+c\nu_2)+W\big)$$

$$= \mathsf{T}(\nu_1+c\nu_2)$$

$$= \mathsf{T}(\nu_1)+c\mathsf{T}(\nu_2)$$

$$= \widetilde{\mathsf{T}}(\nu_1+W)+c\widetilde{\mathsf{T}}(\nu_2+W).$$

Thus $\widetilde{\mathsf{T}}$ is linear.

Definition 1.1.10. Let S be a nonempty set. The free vector space of S is:

$$\mathbb{F}(S) = \{f : S \to F \mid \text{supp}(f) < \infty\}.$$

Exercise 1.1.9. Show $\mathbb{F}(S) \subseteq \mathcal{F}(S, F)$ is a subspace.

Proposition 1.1.14. The set $\{\delta_s \mid s \in S\}$ is a basis for $\mathbb{F}(S)$, where $\delta_s : S \to F$ is defined by:

$$\delta_s(t) = \begin{cases} 1, & t = 0 \\ 0, & \textit{otherwise.} \end{cases}$$

Proof. If
$$f \in \mathbb{F}(S)$$
 with $supp(f) = \{s_1, ..., s_n\}$, then $f = \sum_{k=1}^n f(s_k) \delta_{s_k}$. If $\sum_{k=1}^n \alpha_k \delta_{s_k} = 0$, then for $j = 1, ..., n$ we have $0 = \left(\sum_{k=1}^n \alpha_k \delta_{s_k}\right)(s_j) = \alpha_j$.

Theorem 1.1.15. * Given any vector space V and a map (of sets) $\phi : S \to V$, there exists a unique linear map $T_{\phi} : \mathbb{F}(S) \to V$ with $T_{\phi} \circ \iota = \phi$, where $\iota : S \to \mathbb{F}(S)$ is defined by $\iota(s) = \delta_s$ for all $s \in S$. In other words, the following diagram commutes:

Proof.

Definition 1.1.11. Let V and W be vector spaces. The set of linear transformations between V and W is $\mathcal{L}(V, W) = \{T \mid T : V \to W \text{ linear } \}$. The set of linear functionals is $V' := \mathcal{L}(V, F)$.

Exercise 1.1.10. Show $\mathcal{L}(V, W)$ is a vector space.

Exercise 1.1.11. Show $M_{m,n}(F) \cong \mathcal{L}(F^m, F^n)$ by $a \mapsto T_a : (v \mapsto av)$.

§ 1.2. Algebras

Definition 1.2.1. An *algebra* over F is a linear space A over F equipped with a multiplication operation:

$$A \times A \rightarrow A$$
 defined by $(a, b) \mapsto ab$

satisfying:

- (1) (ab)c = a(bc) for all $a, b, c \in A$;
- (2) $(\alpha a)b = \alpha(ab) = \alpha(\alpha b)$ for all $a, b \in A, \alpha \in F$;
- (3) a(b+c) = ab + ac for all $a, b, c \in A$;
- (4) (a + b)c = ac + bc for all $a, b, c \in A$.

If ab = ba for all $a, b \in A$ we say that A is *commutative*. If there exists $1_A \in A$ with $1_A a = a1_A = a$ for all $a \in A$ we say A is *unital*.

Example 1.2.1.

- (1) $M_n(F)$ is a noncommutative unital algebra over F under the usual matrix multiplication.
- (2) If V is a vector space over F, $\mathcal{L}(V)$ is a unital algebra over F. It is noncommutative provided $\dim(V) > 1$.
- (3) $\mathcal{F}(S, F)$ is a unital commutative algebra over F.

Definition 1.2.2. Let B be a (unital) algebra over F.

- (1) A (unital) *subalgebra* of B is a subspace $A \subseteq B$ ($1_B \in A$) satisfying the property that if $\alpha, \alpha' \in A$, then $\alpha\alpha' \in A$.
- (2) An *ideal* of B is a subspace $I \subseteq B$ with $b \in B$, $a \in I$ implying $ba, ab \in I$.

Example 1.2.2.

- (1) $\ell_{\infty}(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a unital subalgebra.
- (2) $c_{00} \subseteq c_0 \subseteq c \subseteq \ell_{\infty} \subseteq s$ are all subalgebras. In particular, $c_0 \subseteq \ell_{\infty}$ and $c_{00} \subseteq s$ are ideals.
- (3) $C([a,b]) \subseteq \ell_{\infty}([a,b])$ is a unital subalgebra.
- (4) $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C_b(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are all subalgebras. In fact, $C_b(\mathbb{R}) \subseteq C(\mathbb{R})$ and $C_b(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are unital, whereas $C_0(\mathbb{R}) \subseteq C_b(\mathbb{R})$ and $C_c(\mathbb{R}) \subseteq C(\mathbb{R})$ are ideals.
- (5) The set $T_n(F) = \{(a_{ij}) \in M_n(F) \mid a_{ij} = 0, i > j\}$ is a unital subalgebra of $M_n(F)$.

Example 1.2.3 (Group Algebra). Let Γ denote a group (not necessarily abelian). Take the free vector space $\mathbb{F}(\Gamma)$ and define multiplication as *convolution*: given $f, g \in \mathbb{F}(\Gamma)$ let:

$$(f*g)(r) = \sum_{\substack{\{(s,t) \mid \\ s \in \text{supp}(f), \\ t \in \text{supp}(g), \\ st = r\}}} f(s)g(t).$$

Since $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$ are finite, this is a finite sum. We often suppress this notation and write $(f*g)(r) = \sum_{st=r} f(s)g(t)$.

We can also make substitutions:

$$\begin{split} (f*g)(r) &= \sum_{st=r} f(s)g(t) \\ &= \sum_{t \in \Gamma} f(rt^{-1})g(t) \\ &= \sum_{s \in \Gamma} f(s)g(s^{-1}r). \end{split}$$

It is clear that:

$$(f+g)*h = f*h+g*h$$

 $g*(g+h) = f*g+f*h$
 $\alpha(f*g) = (\alpha f)*g = f*(\alpha g)$

for $f,g,h\in\mathbb{F}(\Gamma)$, $\alpha\in F$. Associativity can be similarly shown using the above definition. Rather, we will prove associativity by first show that $\delta_s*\delta_t=\delta_{st}$. Given:

$$(\delta_s * \delta_t)(r) = \sum_{q \in \Gamma} \delta_s(rq^{-1})\delta_t(q),$$

notice that:

$$\delta_s(\mathsf{rt}^{-1}) = \begin{cases} 1, & s = \mathsf{rt}^{-1} \\ 0, & \text{otherwise} \end{cases} = \begin{cases} 1, & r = st \\ 0, & \text{otherwise} \end{cases} = \delta_{s\,t}(r).$$

Since $\{\delta_t \mid t \in \Gamma\}$ is a basis for $\mathbb{F}(\Gamma)$, every $f \in \mathbb{F}(\Gamma)$ looks like:

$$f = \sum_{t \in J} \alpha_t \delta_t, \ J \subseteq T \ finite.$$

Using distributivity we get:

$$\begin{split} \delta_{r} * (\delta_{s} * \delta_{t}) &= \delta_{r} * \delta_{st} \\ &= \delta_{rst} \\ &= \delta_{rs} * \delta_{t} \\ &= (\delta_{r} * \delta_{s}) * \delta_{t}. \end{split}$$

Whence convolution is associative.

Proposition 1.2.1. * Let $\{A_i\}_{i\in I}$ be a family of algebras over F.

- (1) $\prod_{i \in I} A_i$ is an algebra under $(a_i)_i(b_i)_i = (a_ib_i)_i.$
- (2) $\bigoplus_{i \in I} \subseteq \prod_{i \in I} A_i$ is an ideal.

Proposition 1.2.2. * Let A be an algebra over F and $I \subseteq A$ an ideal. Then A/I is an algebra under (a + I)(b + I) = ab + I.