Class no 9: Fatending the Algorithm 1 for list decoding R5 wds sugto 1-2 VR to $p=1-\sqrt{2R}$ (Algorithm 2). -> Essential idea: Define $\delta(x,y)$ more devery a intelligantly Observation: Note that to prove (in Algo 1) that every M(X) with deg $(M(X)) \leq k-1$ & $d_H(Y, (M(X)), M(X))$ we used a degree argument on $R(X) \triangleq R(X, M(X))$ e) We know that allest M-e during tenos exist for R(X).

& thus
$$R(x) = O(p\delta y)$$
 if $n-e > deg(R(x))$
& If $R(x) = 0$ then $(y-M(x)) | Q(x,y)$
=) (order devoding is time.
Note that $deg(R(x)) = deg(Q(x,M(x)))$
= $deg(Q) + (R-1) dg_y(Q)$.
=) $n-e > 5$

Note that deg (R(X)) = deg (Q(X,M(X)) $Q(X,Y) = \sum_{l,j=0}^{\infty} q_{l,j} \times^{l} y J$. [only finds terms]. Suppose Then $Q(X, \mu(X)) = \sum_{i,j=0}^{i} q_{i,j} \times^{i} (M(X))^{d}$ $P(X) = \sum_{i,j=0}^{i} q_{i,j} \times^{i} (k-i)^{d}$ $Q(X, \mu(X)) = \sum_{i,j=0}^{i} q_{i,j} \times^{i} (k-i)^{d} \times^{i} (k-i)^{d$

 $dy(p(x)) \leq dy(0) + (k-1) dy(0)$ Now see that then in inth equity possibled

well of y day (0) y day (0)

if nonzero For Algo 2, we will aloune a in Q(X,4)different structure for Q(X,Y) such that the def (R(x)) = max $\begin{cases} (i+(k+1)j) : X'Y' \text{ exists in } Q(X,Y) \\ = D \end{cases}$ with nonzero coeffs Yis strictly smaller than no of roots 8 R(x) = n-e $[n-e > D] \Rightarrow [e < n-D]. If D is small, then e can be large.$

But if Distributed, then no of coefficients in Q(X, 4) will also be 'too small' => Step! (Interpolation step) (annul to executed as for Step, we need no of well in Q(X14) >n Define Q(X|Y) so that $\begin{array}{c}
\text{Countraints} \\
\text{O}(\alpha_i, y_i) = 0 \\
\text{(1)} \\
\text{deg}(P(x)) = D \text{ is small enough}
\end{array}$ Goal for Algo 2: so that $e < n-D = 1 - \sqrt{2R}$ (2) Also make some that no of coelft of Q(X,Y) > n.

Define $Q(X,Y) \stackrel{4}{=} \sum q_{ij} X^{i} Y^{j}$. Step 1: (Interpolation): Then $dg(R(X)) = dg(Q(X, M(X))) \leq D$ (We will fix then $dg(R(X)) = dg(Q(X, M(X))) \leq D$ (We will fix then $dg(R(X)) = dg(Q(X, M(X))) \leq D$) (Real Q worther its $\left(1-\sqrt{2}^{2}\right)^{n}$.

(Now we want to make sine that to raw Step1, not coeffs in $\alpha(x,y)$ has to > n (no of constraints $\rightarrow \alpha(x,y)=0$, $\forall i=1$. n) We have to pick D such that (C) is twe 8 pick D2 e such that (2) is also force To check (1, we first obtain the noof coeffs in Q(X,Y). First note that an $i+(k-1)j \leq D$ l(70,j70)then $j \leq \left| \frac{D}{P-1} \right| = \ell \left(say \right)$

80 No of coefficients in
$$Q(X,Y)$$

$$= \underbrace{\sum_{j=0}^{j=0} \frac{1}{(k-1)}}_{j=0} \longrightarrow \text{nod}_{j} \text{ coeff} \text{ from fixed } (i,j) \text{ from } (i,j) \text{ from$$

Pick D so that

=)
$$\frac{D(D+2)}{2(k-1)} > n$$
. So we pick $D = \sqrt{2n(k-1)}$

Clearly $\frac{D^2}{2(k-1)} > n = \frac{D(D+2)}{2(k-1)} > n$.

This will ensure Step 1 finds a non-zero Q(X,Y).

In Step 2, we find all $\hat{M}(X)$ such that

(a) dg
$$(\hat{M}(X)) \leq k-1$$

(b)
$$(9-\hat{M}(x))|Q(x,14)$$

(c) $d_{H}(y,(M(\alpha_{1}),...,M(\alpha_{n}))) \leq e$

To verify devoting we have to show $R(X) \stackrel{\triangle}{=} Q(X, M(X))$ is zero pry for any M(x) satisfying (a) & (c). This we would diffirst diffirst $def(R(X)) \leq no f roots = n-e$ To do this we wanted ensured leading of ensured was appeared to the sadius of t This is fare as $N - e > D = \sqrt{2n(k-1)}$ =) $e < M - \sqrt{2n(k-1)}$ = $\frac{e}{n} < 1 - \sqrt{\frac{2(k-1)}{n}} = 1 - \sqrt{2R}$.