An Agent-Based Model of Diel Vertical Migration in *Mysis diluviana*

Nick J. Strayer¹, Brian P. O'Malley² Sture Hansson³, Jason D. Stockwell²

¹College of Engineering and Mathematical Sciences, University of Vermont

²Rubenstein Ecosystem Science Laboratory, University of Vermont

³Department of Ecology, Environment, and Plant Science, Stockholm University

Mysis diluviana is a mid-trophic level omnivore; links upper/lower trophic levels across habitats via DVM

What We Want to Figure Out

- According to _____ et al. we know that Mysis exhibit partial dvm.
- Why do Mysis exhibit partial diel vertical migration?
 - Are there multiple stable strategies?
 - What are the main driving forces pushing them to migrate.
- Modeling the migration as a whole will pave the way to understanding decision processes and tease out the motivating factors driving migration.

An agent-based, Monte-Carlo style model

- Simulates an individual *Mysis* throughout the entire year.
- At every hour of the year, draws are taken from probability distributions for decision making.
- Many individuals are simulated to get an idea of populationwide trends.
- Input comes in the form of Mysis migration extent and...
- Food availability/variability for the pelagic (surface) waters.

Input comes in terms of *Mysis* migration extent under the assumption of temperature and light "ceilings"

Light intensity levels

+

Temperature profile

_

Mysocline

And food availability/variability in pelagia

- Normalized measure of food quality and quantity in the pelagic environment to the benthic environment.
- Directly maps to probability of migrating, scales feeding reward.

Paired with food variability to approximate seasonal

variability.

Model Structure

The Mysocline

- Highlights seasonal fluctuations in migration extent
- Early spring and late fall are light bounded.
- Late spring, summer and early fall are thermocline bound

Each line represents a single Mysis; seasonal trends in condition values; cost of migration weighed with the variability of reward

Condition Over Year

500 mysids, Reward: 0.66, Migration Cost: 20, Mortality Rate: 0.182

Model shows greater sensitivity to migration cost changes than feeding reward

Language

- The entire model was coded in R.
- This makes it easier to share the code with peers for future investigation and expansion.
- Shiny Servers and RMarkdown furthered the accessibility.

https://nstrayer.shinyapps.io/mysisApp/

Mysis Condition

Where To Go Now?

- Probe the possibility of multiple stable migration patterns.
- Dig in to specific aspects of the model. E.g. predation risk, benthic food availability
- Utilize real data in model inputs such as thermocline depth and food availability. (Oh, and to validate.)

Acknowledgments

- Office of Undergraduate Research.
- Peter Euclide for Mysis insights.
- Professors James Bagrow & Daniel Bentil for advising.
- James Marsh Professor-at-Large Program