Computational Physics HW1 pro3

Jiawei Wang

Since $f_0 = 2$, $f_n = f_{n-1}^2$, we have $f_1 = 4$, $f_2 = 16$, \dots , $f_n = 2^{2^{n-1}}$. Then we can calculate the maximum value for different data types.

- a) For int, the maximum value it can store is $32767 = 2^15 1 < 2^{2^4}$, so the maximum value for f_n is $f_4 = 2^{2^3}$ which means the maximum n is n = 4. b) For long int, the maximum value it can store is $2147483647 = 2^31 1 < 2^{2^5}$, so the maximum value for f_n is $f_5 = 2^{2^4}$ which means the maximum n is
- c) For unsigned long int, the maximum value it can store is 4294967295 = $2^{3}2-1<2^{2^{5}}$, so the maximum value for f_{n} is the same as the condition in long int and the maximum n is n = 5.