Graphs

Quick note on my slide decks.

- My slides are simple, I don't (cannot) spend time on making fancy fonts and effects.
- This is because I would much rather spend that time on adding useful content for u all.
 - not too little
 - and not too much either (there's always the books and online resources for that)
- I also don't use some of the features of power point where I could put text on a busy slide one by one.
- So, please try to follow me when I am going thru the slides and don't try to read all text on a slide, when I may just be talking about the first bullet on that slide (try not to get ahead of me ©)

Happy learnings.

Graph

- Graphs are also a very commonly used data structure.
- Do not confuse them with the graphs u see in Mathematics... there are no x,y coordinates here ©
- Are used to represent a variety of things:
 - Flight connections.
 - Train connections.
 - To generalize, we can say transportation connections
 - And to generalize even further, any routing representation
 - Electrical circuits
 - Web (internet)
 - Social connections (Facebook, Twitter, LinkedIn, etc.)
 - Tasks / job schedules
 - Graphs can depict dependencies among tasks.
 - Etc.

Graph

A graph contains:

- A set of edges
- A set of vertices
- In the graph shown here, we have
 - Vertices:
 - A, B, C and D
 - Edges:
 - E1, E2, E3, E4
 - An edge is really just a pair of vertices
 - E1: (A,B)
 - E2: (B, C)
 - And so on.

Graph

- We can formalize the definition to:
- G = (V, E)
 - Where:
 - V is a set of vertices
 - E is a set of edges (vertex pairs)

- A graph can be
 - Undirected
 - Directed
 - Also called digraph

• Undirected graph:

- V(G) = { A, B, C, D }
- E(G) = { (A,B), (B,C), (C,D), (B,D) }

- V(G) = { A, B, C, D }
- E(G) = { (B,A), (B,C), (C,B), (B,D), (D,C) }
 - Note we need to have (B,C) and (C,B)

- So, (V₁, V₂) is not the same as (V₂, V₁)
- So, we say
 - Directed graph:
 - E is a set of **ordered** pairs of vertices
 - Undirected graph:
 - E is a set of **unordered** pairs of vertices

Graphs vs Trees

- A tree is essentially a graph with certain restrictions:
 - Tree does not have any loops.
 - A parent node has a path to its child(ren), but not the other way around.
 - Each node in a tree has only one parent (except root node).
 - There is only one root node.
 - There are always N-1 edges (N being the total number of nodes in a tree)

- Adjacent vertices
 - Two vertices are said to be adjacent if there is an edge between them

- Path
 - If you can get from a vertex V_a to a vertex V_b, there is a path between those two vertices.
 - In other words, the sequence of vertices that have to be traversed in order to get from V_a to V_b are what constitute this path.

- Degree
 - Undirected graph:
 - Degree of a vertex is the number of edges that come out of that vertex.
 - Or go into that vertex (it's the same thing for an undirected graph)
 - Degree of A: 1
 - Degree of B: 3

- Directed graph:
 - *In-degree* of a vertex is the number of edges that are coming into the vertex
 - Out-degree of a vertex is the number of edges that are going out of a vertex
 - A: In-degree is 1, out-degree is 0
 - B: In-degree is 1, out-degree is 3
 - C: In-degree is 2, out-degree is 1
 - Note that sum of in-degree = sum of out-degree
 - This is for the whole graph (i.e., all vertices)

- Complete graph
 - This is a graph in which each vertex is *directly* connected to every other vertex.
 - In other words, the length of the shortest path from any vertex to any other vertex is 1.

- Connected graph
 - If a path exists between any two vertices in a graph, it is a connected graph.
 - Graph on right is a connected graph →
 - Question:
 - Is a complete graph also a connected graph?
 - Is a connected graph also a complete graph?

- Disconnected graph
 - If there is at least one vertex where there is no path from any other vertex, it is a *disconnected* graph.

• How many edges are in a *complete undirected* graph with N vertices?

• How many edges are in a *complete undirected* graph with N vertices?

• N * (N-1)/2

• How many edges are in a *complete directed* graph with N vertices?

• N * (N-1)

• Weighted graph

- This is a graph in which a weight is assigned to all the edges.
- weight is a generic term here, but it could be like the cost of that edge.

• Example:

- If a graph represents the road connectivity between cities (vertices), then the weight of an edge could represent the distance between the cities connected by that edge.
- Or it could represent the cost of gas for driving a delivery truck from one city to another.
- Or the amount of goods that can be transported by the trucks.

Representing graphs

• There are many ways to represent a graph in a data structure

1. Edge list

- This is a collection of vertex pairs.
 - (A,B), (B,C), (B,D) (C, D)
- This could be implemented as an array of vertex pairs, so something like:

```
class VertexPair ( or class Edge)
{
         Vertex     v1;
         Vertex     v2;
};
```

We now use an array of VertexPair to represent the list of edges.

- Space complexity:
 - Size of this list is E, where E is the number of edges.
- Time complexity:
 - Search for an edge in this list: O(E)
- Enumerating adjacent vertices of a given vertex: O(E)
- **SUMMARY**: Collection of all edges in the graph

Adjacency matrix

2. Adjacency matrix

- Its a matrix (2 dimensional array) of size V x V
 - If matrix[V₁][V₂] == 0
 - there is no edge between V₁ and V₂
 - Else
 - there is an edge between V₁ and V₂

	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2	0	1	0	1
3	0	1	1	0

- Size (space): V X V = ← Change font color to reveal
- Search if exists an edge (V_i, V_i) : \leftarrow Change font color to reveal
- Enumerating adjacent vertices of a given vertex V_i: ← Change font color

Adjacency matrix

- Time complexity for look up here is great
- But space complexity (V²) is an issue with this representation.
 - Imagine the space requirement for a huge graph.
- Can be used for small graphs, but not big ones.
- For a given vertex V₁
 - In-degree of V₁ is count of non-zero entries in the row of matrix[V₁]
 - If u want to look a bit mathematical, then this is for u ②. If not, u can ignore it.
 - In-degree of $V_1 = \sum_{j=0}^{v-1} matrix[V_1][V_j]$ \leftarrow Assumes if edge (V_1, V_j) exists, then matrix has 1, else 0
 - Out-degree of V₁ is count of non-zero entries in the column of matrix [V_i][V₁]
 - Out-degree V_1 of = $\sum_{i=0}^{\nu-1} matrix[Vi][V_1]$ \leftarrow Assumes if edge (V_i, V_1) exists, then matrix has 1, else 0

These are true for undirected as well as directed graphs (aka digraph)

Representing graphs

3. Adjacency list

- There is a neighbor list for each vertex, i.e.:
 - we store a list for each vertex
 - and this list contains its neighbor vertices.
- See next slide for a diagrammatic representation.
- For example:
 - Lets say there are N vertices, from 0 to N-1
 - We can have an array of list.
 - Array[0] would have a list that contains neighbors of vertex 0
 - Array[1] would have a list that contains neighbors of vertex 1
 - And so on...

Adjacency list

For this graph, an adjacency list would look like:

• [0]:	В	// for vertex A
• [1]:	A, C, D	// for vertex B
• [2]:	B, D	// for vertex C
• [3]:	В, С	// for vertex D

- Size:
 - (V+E)
- Access a vertex's adjacency list: O(1)
- Search for an edge (V₁, V₂):
 - O(neighbors of V₁) OR O(neighbors of V₂)
 - For a digraph, it would be O(out-degree of V₁) or O(in-degree of V₂)

- Enumerating adjacent vertices of a given vertex V₁:
 - O(neighbors of V₁)

Adjacency list

For this *directed* graph, an adjacency list would look like:

- [0]: // for vertex A
 [1]: A, C, D // for vertex B
 [2]: B // for vertex C
 [3]: C // for vertex D
- Size:
 - (V+E)
- Access a vertex's adjacency list: O(1)
- Search for an edge (V₁, V₂) in this digraph:
 - O(neighbors of V₁) or O(out-degree of V₁)
- Enumerating adjacent vertices of a given vertex V₁:
 - O(neighbors of V₁)

Graph traversal

- Graphs can be traversed in *breadth* first or *depth* first
 - Breadth first traversal (aka BFS)
 - Depth first traversal (aka DFS)

- Graph traversal can be a little harder to visualize than for trees.
 - trees do not have loops, which makes it easier.
- All nodes in a tree have only one parent.

Graph traversal

- In a graph, a given node, say, 'a', can have more than one parent.
 - This implies that we can get to that node 'a' in more ways than one.
 - This in turn implies that we need to keep track of nodes that we have already visited in a traversal (so that we don't visit the same node more than once).
 - We do this by marking nodes as "visited" (once we visit them)
 - Tree traversal didn't require us to keep track of visited nodes, because u can get to a
 given node in only one way, which is from its <u>one</u> parent.

Breadth first search (aka BFS)

- BFS starts at a given vertex.
- In this graph, BFS starting at
 - A would give us:
 - A, B, C, D
 - D would give us:
 - D, B, C, A OR D, C, B, A

Breadth first search (aka BFS)

• Pseudocode for BFS **NOTE**: Lets only think of **undirected** graph for now

```
BFS (Vertex v) {
           Queue q;
           q.Push(v); // q:d
           while ( ! q.Empty() )
                       Vertex a = q.Pop(); // q: empty / b q: c,
                       Mark a as visited
                       Print a
                       AddUnvisitedNeighbors(q, a) // q: b, c / q: c, a
AddUnvisitedNeighbors (Queue q, Vertex a) { // add unvisited neighbors of a
           for each vertex w connected to a
                       if ( w not visited yet)
                                   q. Push ( w )
```


If we call BFS(A), then we have

Queue : A Visited: empty Printed : empty Queue : Visited: empty Printed : empty

Breadth first traversal

• Pseudocode for BFS **NOTE**: Now lets think of **directed** graphs

```
BFS (Vertex v) {
           Queue q;
           q.Push(v);
           while (!q.Empty())
                      Vertex a = q.Pop();
                      Mark a as visited
                      Print a
                       AddUnvisitedNeighbors(q, a)
AddUnvisitedNeighbors( Queue q, Vertex a ) {
           for each vertex w having a as incoming vertex
                      if ( w not visited yet)
                                  q. Push ( w )
```


If we call BFS(A), then we have

Queue : A Visited: empty Printed : empty Queue : Visited: empty Printed : empty

Depth first traversal

```
DFS ( Vertex v ) {
          Stack s;
          s.Push( v );
          while (!s.Empty())
                     Vertex a = s.Pop();
                     Mark a as visited
                     Print a
                      AddUnvisitedNeighbors(s, a)
AddUnvisitedNeighbors(Stack s, Vertex a) {
          for each vertex w having a as incoming vertex
                     if ( w not visited yet)
                                s.Push(w)
```


If we call DFS(A), then we have

Stack : A Visited: empty Printed : empty Stack : Visited: empty Printed : empty

Depth first traversal

We can write this as a recursive function (where do we get the stack in that case ?)

If we call DFS(A), then we have

Stack : A Visited: empty Printed : empty Stack : Visited: empty Printed : empty

Recursive BFS?

• We looked at iterative and recursive versions of DFS.

• Can we do recursive BFS?

• Why does it seem easy to do recursive DFS than BFS?

Topological Sort

• A topological sort (new term we are looking at) of a directed acyclic graph (DAG) is essentially a "certain" ordering of its vertices.

• We will look at what that ordering really is, and look at a more formal definition, as well as an algorithm to determine this ordering.

• But first, on the next slide, lets get a high level idea of it in a non-technical language, before we go all mathematical and computer sciency ©

• gregarious

Topological Sort of a directed graph

- Lets think as if the vertices in the directed graph represent some job to be done.
- And if vertex B has an edge going into vertex A, then u think of it as B needs to happen before A can happen, i.e., A is dependent on B.
 - So, in the topological sort, B has to be placed before A
 - And for the same reason, B has to be placed before D and C.
 - And D before C ... which means both B and D have to be before C
 - In fact, B is NOT dependent on any vertex, so this means B has to be the first vertex in this sort.
- So, a topological sort here could be:

• B

Α

D

C

OR

• B

D

Δ

C

Topological Sort of a directed graph

- Now, earlier we said that this sort can happen on a directed acyclic graph.
- Lets look at a graph with cycles, and see what issue we would run into:
 - This graph has and edge (A,B) as well as (B,A).
 - This is a cycle $A \rightarrow B \rightarrow A$

- This means
 - A needs to come before B in a topo sort
 - But also that B needs to come before A.
 - This is not possible to resolve, and is known as a *cyclic* dependency.
 - So this graph is not a DAG.
 - And we cannot do a topo sort on this.

Topological Sort

- So, to put it a little formally:
 - Topological sorting of a directed acyclic graph is where
 - a linear ordering of the vertices is created
 - such that if there is an edge (V₁, V₂),
 - then in the ordering, V₁ occurs before V₂.

Linear ordering = layout the vertices one after another (order matters)

- Start from a vertex that has no incoming edges (B)
 - This means it has no dependencies, and can be the first one in the sort.
 - **Note**: If u cannot find such a vertex, u have a loop (cycle).
 - Print this vertex to output list

• output list : B

- So, we took out vertex B and any edges going out of B.
- Find the next vertex with no incoming edges.
 - We have A and D.
 - Lets pick A
 - Print A
 - Remove
 - Vertex A
 - And any edges going out of A (none)

• output list : B A

- So, we took out vertex A and any edges going out of A.
- Find the next vertex with no incoming edges.
 - We have D.
 - Print D
 - Remove
 - Vertex D
 - And any edges going out of D

• output list : B A D

- Now we are left with only vertex C
 - Print C
 - Remove C
 - No more vertices left.
 - We are done.

• output list : B A D C

C

- Lets take a look at the algorithm again, this time with the complexity in mind.
- Our first step was:
 - Start from a vertex that has no incoming edges
- In order to achieve this, we need to have these:
 - 1. computed the in-degree of all vertices in the graph.
 - This would be a one time step (initialization)
 - O(E)
 - 2. Find a vertex with in-degree zero
 - This is a linear search in the array computed in step 1 above.
 - This means a linear search in an array of size V (number of vertices)
 - And this would need to be done V times
 - O(V²)
 - 3. Reduce the in-degrees of adjacent vertices
 - This is where we removed the edges going out of the current selected vertex
 - O(E)
 - 4. Mark vertex
 - O(V)
- So, overall complexity here is O (V^2) + O (E) ... which is quadratic, and hence not that good.

• The step that causes the quadratic complexity is the search for vertex with in-degree 0

- So, lets see if we can improve that step.
- During initialization, we add the following:
 - Create a queue. O(1)
 - Initialize it with in-degree 0 vertices.
- In the step where we reduce the in-degrees of vertices, if the in-degree becomes 0, push that vertex onto this queue.
 - Pushing onto queue is O (1)
 - Do this for a total of V vertices.
 - O(V)
- So, we reduced O (V²) to O (V), for a total time complexity of
 - O(V)+O(E)

LAB

• '	Write a function that will crea	te one (or both) of the following	g graphs (adjacen	cy list shown
-----	---------------------------------	-----------------	--------------------	-------------------	---------------

• a: b c

• b: d e

• c: f g

• d: h i

• OR

• a: b

• b: c

• c: d c1

• d: d1

• d1: d2

• c1: c2

• Now write functions for:

• Depth first traversal : print vertices

• Breadth first traversal: print vertices

Further topics

- Spanning Tree
 - Minimum Spanning Tree
 - Kruskal's algorithm
 - Prim's algorithm
- Shortest path algorithms
 - Dijkstra's algorithm