

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 6 Questions and Answers

Updated October 20, 2017 - 13:43

Assigned:

Due:

Answers Out:

Late Due:

Contents

Title Page	
Contents	1
Question 1	2
Question	2
Solution	3
Question 2	8
Question	8
Solution	9
Question 3	11
Question	11
Solution	12
Question 4	14
Question	14
Solution	15
Question 5	17
Question	17
Solution	18

MOS Amplifier Frequency Response

Rashid 7.67

7.67 Design a common-source NMOS amplifier as shown in Fig. P7.67 to give a passband gain of $20 \le$ $|A_{\rm PB}| \le 30$, $Z_{\rm in(mid)} \ge 100~{\rm k}\Omega$, a low 3-dB frequency of $f_{\rm L} \le 10~{\rm kHz}$, and a high 3-dB frequency of $f_{\rm H} = 200 \text{ kHz}.$

FIGURE P7.67

Notes: Carry out only the analysis part of this question and provide the answers in terms of the parameters.

Additional Tasks: Study voltage-shunt feedback and current-series feedback.

Necessary Knowledge and Skills: Trans-conductance amplifier analysis, trans-resistance amplifier analysis, voltage-shunt feedback, feedback network analysis, effect of feedback on frequency response, MOS small signal model, SCTC, OCTC, Miller effect.

Note: Swing this question via feedback concepts. Alternative one can solve it through applying directly the usual techniques. -) WL, WH and midbond goin are to be compused. Holyzed the following arount in a spante document: (see that document for the results in this soln, whose derivations have been on utted) The TRA, Pl (feedback loaded TransResistance Amplifier) corresponding to the above cruit is: TRG vs Circuit the ideolized feedback network is not shown. TRA, PR model rin, TRA, Pl = RG // raus, TRA = RG// RD//rout, TCA = RG//RD//[ro1(1+9m1RSR1)] ATRA, PR = - Jm RG [RG//RO//[G1(1+3m1 R/R1)] (see the #stated document-Scanned by CamScanne

Refer to
$$(\pm)$$

$$\frac{U_{14}}{U_{51}} = \frac{-9n1}{1+9n4} \left[\frac{R_D/R_G}{R_G} \right] \left[\frac{r_{01}}{1+9n4} \frac{R_{SR3}}{R_{SR3}} \right] \left(\frac{1}{1} \right)$$

Then will play a role in the computation of the Miller cap at 91.

If $R_{SR1} \gg \frac{1}{9m1}$, we will for convenience, not account for C_{95} in the computation of W_{14} .

Miller cap

$$C_{941,91} = C_{941} \left(1 - \frac{V_{14}}{V_{94}} \right)$$
 $R_{C_{941,91}} = R_G$
 $C_{941,91} = R_G$
 $C_{941,91} = R_G$
 $C_{941,91} = R_{C_{941,91}} C_{941,91}$
 $W_{14} \approx \frac{1}{C_{C_{941,91}}}$
 (5)

$$\frac{\sigma_{0}}{\sigma_{0}} = \frac{2}{R_{0}}$$

$$\frac{R_{0}}{R_{0}} = \frac{2}{R_{0}}$$

$$\frac{R_{0}}{R_{0}} = \frac{R_{0}}{R_{0}}$$

Refer to (****).
We have now time constant to compute:

Problem 1 (
$$T_{c1} = R_{c1} \cdot C_1$$
)

 $R_{c1} = R_s + r_{in}f$
 $R_{c2} = R_{c2} \cdot C_2 \cdot C_2$
 $R_{c2} = r_{out}f + R_L$

Cascaded MOS Amplifier - SCTC and OCTC

Rashid 7.71

7.71 A two-stage amplifier is shown in Fig. P7.71. The parameters are $R_{\rm S} = 1~{\rm k}\Omega$, $R_{11} = 500~{\rm k}\Omega$, $R_{21} = 500~{\rm k}\Omega$, $R_{\rm D1} = 10~{\rm k}\Omega$, $R_{12} = 500~{\rm k}\Omega$, $R_{22} = 500~{\rm k}\Omega$, $R_{\rm D2} = 15~{\rm k}\Omega$, $R_{\rm L} = 10~{\rm k}\Omega$, $R_{\rm m1} = 20~{\rm mA/V}$, $R_{\rm m2} = 50~{\rm mA/V}$,

 C_1 = 1 μ F, C_2 = 1 μ F, C_3 = 10 μ F, C_{gd1} = C_{gd2} = 2 pF, and C_{gs1} = C_{gs2} = 5 pF. Calculate the low 3-dB frequency f_L and the high cutoff frequency f_H .

FIGURE P7.71

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: MOS small signal model, amplifier voltage gain computations, SCTC, OCTC, Miller's effect.

Quick ons wers for the analysis

Rashed 7-71

$$R_{c1} = R_s + R_{11} / R_{21}$$

$$R_{c3} \not= C_3 \Rightarrow (T_{c3} = R_{c3}C_3)$$

> Midboud gain

$$\begin{array}{l} \text{Cgd1,g1} & \to \text{Miller cap at g1} \\ \text{Cgd1,g1} & = \text{Cgd1} \left(1 - \frac{\sqrt{d_1}}{\sqrt{g_1}} \right) = \text{Ggd1} \left(1 + \frac{\sqrt{g_1}}{\sqrt{g_1}} \right) = \frac{\sqrt{g_1} \left(1 + \frac{\sqrt{g_1}}{\sqrt{g_1}} \right)}{\sqrt{g_1}} \\ \text{Cgd2,g2} & \to \text{Miller cap at g2} \\ \text{Cgd2,g2} & = \text{Cgd2} \left(1 - \frac{\sqrt{g_2}}{\sqrt{g_2}} \right) = \text{Ggd2} \left(1 + \frac{\sqrt{g_1}}{\sqrt{g_2}} \right) \\ \text{Cgd2,g2} & = \text{Cgd2} \left(1 - \frac{\sqrt{g_2}}{\sqrt{g_2}} \right) = \text{Ggd2} \left(1 + \frac{\sqrt{g_1}}{\sqrt{g_2}} \right) \end{array}$$

$$\begin{aligned} & R_{\text{Gold,g1}} = R_{\text{S}} / | R_{\text{II}} / | R_{21} \\ & R_{\text{Cgd2,g2}} = R_{21} / | R_{22} / | R_{\text{PI}} / | r_{\text{OI}} \\ & T_{\text{Cgd1,g1}} = R_{\text{Cgd1,g1}} C_{\text{gd1,g1}} C_{\text{gd1,g1}} \\ & T_{\text{Cgd2,g2}} = R_{\text{Cgd2,g2}} C_{\text{gd2,g2}} \\ & V_{\text{H}} \approx \frac{1}{T_{\text{Cgd1,g1}} + T_{\text{Cgd2,g2}}} \end{aligned}$$

Rashrol 7-71 Contin-

CE Amplifier Frequency Response

Rashid 8.54

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_f = 100$, $C_{je} = 8$ pF at $V_{BE} = 100$ at $V_{\text{CE}} = 10 \text{ V}$. The transition frequency is $f_{\text{T}} = 300 \text{ MHz}$ at $V_{\text{CE}} = 20 \text{ V}$, $I_{\text{C}} = 10 \text{ mA}$. The substrate is connected to the ground. Assume $I_C=5$ mA (unless specified), $V_{CC}=15$ V, $V_{BE}=0.7$ V, $R_s=1$ k Ω , and $R_L=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.54 Design a CE amplifier as shown in Fig. P8.54 to give a passband gain of $40 \le |A_{PB}| \le 50$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 50$ kHz.

FIGURE P8.54

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.

Quad answer for the analysis
$$\frac{R_{0}hid}{8.54}$$

$$\Rightarrow \frac{Walband}{R_{0}} = \frac{V_{0}}{V_{0}}$$

$$\stackrel{=}{=} \frac{K_{0}//R_{2}//R_{0}hh}{R_{0}hf} + \frac{-g_{m1}}{1+g_{m1}} + \frac{-g_{m1}}{1+g_{m1}} + \frac{1}{\Gamma_{0}} + \frac{1$$

CB Amplifier Frequency Response

Rashid 8.55

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_f = 100$, $C_{je} = 8$ pF at $V_{BE} = 100$ 0.5 V, $C_{\mu} = 4$ pF at $V_{\text{CB}} = 5$ V, $C_{\text{cs}} = 4$ pF at $V_{\text{CS}} = 8$ V, $\beta_{\text{f}} = 100$, $V_{\text{je}} = V_{\text{jc}} = V_{\text{js}} = 0.8$ V, and $h_{\text{oe}} = 1/r_{\text{o}} = 5$ μ T is μ T. at $V_{\rm CE}=10$ V. The transition frequency is $f_{\rm T}=300$ MHz at $V_{\rm CE}=20$ V, $I_{\rm C}=10$ mA. The substrate is connected to the ground. Assume $I_C=5$ mA (unless specified), $V_{CC}=15$ V, $V_{BE}=0.7$ V, $R_s=1$ k Ω , and $R_L=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.55 Design a CB amplifier as shown in Fig. P8.55 to give a passband gain of $20 \le |A_{PB}| \le 30$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 100$ kHz. Assume $R_s = 15$ k Ω and $R_L = 10$ k Ω .

FIGURE P8.55

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.

<u>Roshid</u> 8-55

I om assuming that B (base of the BJT) is god-ed that vio a large cap. CB.

- => SCTC method (all cap except the chosen one are short cir)
 - · RCE corresponding to CE to be computed => TCE=RCECE

 RCE RE2//RE1 + RS//Jm1
 - . R_{C1} corresponding to C₁ to be computed \Rightarrow T_{C1}=R_{C1}C₁ R_{C1} \cong R_s + R_{E1}/ $\frac{1}{9m1}$
 - · R_{C_2} corresponding to C_2 to be computed \Rightarrow $T_{C_2} = R_{C_2} C_2$ $R_{C_2} = R_L + R_C / \left[r_{o_1} (1 + g_{m_1} R_{E_1}) \right]$
 - . $R_{CB} \simeq R_1//R_2//\left[r_{TL}(1+g_{m1}R_{EL})\right]$

$$\longrightarrow W_{\perp} \simeq \frac{1}{\tau_{cE}} + \frac{1}{\tau_{c1}} + \frac{1}{\tau_{c2}} + \frac{1}{\tau_{cg}}$$

Midband gain (all caupling or bypass depareshorted)

$$\frac{Rashrd}{8.55}$$

$$\frac{R}{M} = \frac{U_{o}}{U_{s}}$$

$$\frac{R}{M} = \frac{V_{o}}{U_{s}}$$

$$\frac{R}{M} = \frac{V_{o}}{V_{s}}$$

$$\frac{$$

$$\frac{\sum_{\alpha} C_{TC} \text{ method } \left(\text{oll cap except the chosen one but bip conting are open cr.} \right) }{ \text{ore open cr.} }$$

$$\frac{R_{C_{II}} \text{ for } C_{II} \left(T_{C_{II}} = R_{C_{II}} C_{II} \right) }{ \text{oll cody short cr.} }$$

$$\frac{R_{C_{II}} = R_{C_{II}} \left(R_{II} \right) \left[r_{o_{I}} (1 + g_{ML} R_{EL}) \right] }{ \text{Re}_{TI} + R_{C_{II}} + R_{C_{II}} }$$

$$\frac{R_{C_{II}} = R_{C_{II}} C_{II} }{ \text{Te}_{II} + T_{C_{II}} }$$

$$\frac{R_{C_{II}} = R_{C_{II}} C_{II} }{ \text{Te}_{II} + T_{C_{II}} }$$

$$\frac{R_{C_{II}} = R_{C_{II}} C_{II} }{ \text{Te}_{II} + T_{C_{II}} }$$

Cascaded Amplifier Frequency Response

Rashid 8.58

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_{\rm f}=100$, $C_{\rm je}=8$ pF at $V_{\rm BE}=0.5$ V, $C_{\rm L}=4$ pF at $V_{\rm CB}=5$ V, $C_{\rm cs}=4$ pF at $V_{\rm CS}=8$ V, $\beta_{\rm f}=100$, $V_{\rm je}=V_{\rm jc}=V_{\rm js}=0.8$ V, and $h_{\rm oe}=1/r_{\rm o}=5$ $\mu \rm T$ at $V_{\rm CE}=10$ V. The transition frequency is $f_{\rm T}=300$ MHz at $V_{\rm CE}=20$ V, $I_{\rm C}=10$ mA. The substrate is connected to the ground. Assume $I_{\rm C}=5$ mA (unless specified), $V_{\rm CC}=15$ V, $V_{\rm BE}=0.7$ V, $V_{\rm R}=1$ k Ω , and $V_{\rm C}=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.58 Design a CE-CC amplifier as shown in Fig. P8.58 to give a passband gain of $20 \le |A_{PB}| \le 30$, $Z_{i1(mid)} \le 100 \Omega$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 100$ kHz.

FIGURE P8.58

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.

SETC continued (whort other cap, Kill indep rources in SS.) $R_{C3} = R_{L} + R_{E} / \left[\frac{r_{\pi 2} + R_{out, b^{2}}}{1 + \beta_{2}} \right]$ Remarks = R3//Rc//RJohn Russin = ro1 [+ 2m1 RE1 rn1 + RE1 // (rn1+ Rout, 61) (See related derivations in Jeparate documents) TC3 = RC3 C3 $W_1 \stackrel{\sim}{=} \frac{1}{T_C} + \frac{1}{T_C} + \frac{1}{T_{CE}} + \frac{1}{T_{CE}}$

- Miller's effects accounted for

-) OCTC applied

Gain computations

$$\frac{\sqrt{51}}{\sqrt{5}} = \frac{\frac{||R_{1}|| ||R_{2}||}{||R_{1}|| ||R_{2}||}}{\frac{||R_{1}|| ||R_{2}||}{||R_{1}|| ||R_{2}||}}$$

Note that, above

Rin, 61 = ril (1+9m1 RE1)

Rin, 62 = ril (+9m2 (RE//RL))

Miller's effects

Cu1: Miller's effect applies.

Converted to grounded cap. at b1 $C_{\mu 1,b1} = \left(1 - \frac{v_{c1}}{v_{s1}}\right)^{c_{\mu 1}}$

Also converted to The converted to $C_{M1, c1} = \left(1 - \frac{v_{51}}{v_{c1}}\right) C_{M1} = \int_{\mathbb{R}^{n}} \int_{$

CTI : Provided that RE1 > 1 (vel will be very close to 1) Millers effect renders this apacitor meffective (see related lecture notes)

CTI2: the same concllyion as for CTIL

provided that RE// RL > 1/9m2 (vez will be very close to 1)

Cu2: one mode is grounded) no Miller effect

Cu2; b2 = Cu2

Small cap, donot

account for this

OCTC

Kashid

There is only one time constant

that is bip enough to dominate the others.

WH = \frac{1}{T_{CM\$\frac{1}{2},51}} = \frac{1}{R_{CM\$\frac{1}{2},51}} C_{M\$\frac{1}{2},51}

$$W_{H} \stackrel{\sim}{=} \frac{1}{T_{C_{M}\mathbf{1},b1}} = \frac{1}{R_{C_{M}\mathbf{1},b1}} C_{M\mathbf{1},b1}$$

RCus, 51 needs to be computed

$$R_{C_{\mu 1},b1} = R_s //R_1 //R_2 //R_{in,b1}$$
where $R_{in,b1} = r_{11} (1 + g_{\mu 1} R_{E1})$