Abstract

Add your abstract at the beginning of your markdown file like this

title: "Your Title"
abstract: "your abstract here"
authors:
- name: Leonardo V. Castorina
 affiliation: School of Informatics
 institution: University of Edinburgh
 email: justanemail@domain.ext
 address: Edinburgh
- name: Coauthor
 affiliation: Affiliation
 institution: Institution
 email: coauthor@example.com
 address: Address

This is called YAML frontmatter. If you set your abstract correctly you should not see this message.

1 Lost & Found: Predicting Locations from Images

Team name: ExampleTeam

Group Members Linus Schlumberger Lukas Stöckli Yutaro Sigrist [] title: # Table of content style: nestedList includeLinks: true

2 Introduction

2.1 Problem description

Nowadays, images are often automatically enriched with various data from different sensors within devices, including location metadata. However, this metadata often gets lost when images are sent through multiple applications or when devices are set not to track locations for privacy reasons. As a result, images may initially have metadata, but it is lost when shared with friends or published online. This raises the question: Is it possible to re-enrich these images with their location after the metadata is lost?

The main goal of this project is to determine if an Image Classification Model can outperform humans in guessing the countries or regions of images based solely on images with low resolution and no additional information. ### Project Overview This project explores the development of an Image Classification model, focusing on simple street-view images grouped by countries to predict the country where an image was taken. Given limited prior experience with Image Classification, this initiative aims to enhance understanding and skills in this domain. The first objective is to create a

model capable of identifying the country from a given image. Building upon this, a second model will be developed to predict the exact region of the image, providing a more precise location than just the country.

The main goal is to develop a robust Image Classification model that can serve as a foundational tool for various applications. This overarching objective supports the specific sub-goals of predicting the country and coordinates of an image. This leads to the question: for what main purposes could an image classifier for countries or coordinates be valuable? By exploring potential applications, the project aims to demonstrate the broader utility of the developed models in real-world scenarios. ### Potential Applications - **Helping find missing persons**: Our solution can help find where missing people might be by analyzing pictures shared publicly. The emotional impact of helping reunite families or providing important clues is huge. Especially when the model will be used in addition to the search process for the police. For missing people, every second counts after a kidnapping, especially when the search is international. - Rediscovering memories and family history: Have you ever come across an old image of someone close to you? Maybe of a deceased family member or someone who may just not remember where it was taken. Our model can try to predict the rough location to help you rediscover your past. - Supporting humanitarian action: In disaster situations, it could help to quickly identify the most affected areas by analyzing current images from social media or aid organizations. This would improve the coordination of rescue and relief efforts and offer hope and support to those impacted. - Discovering new travel destinations: Have you ever encountered stunning images of places on Instagram or other social media platforms and wondered where they were taken? Our image classifier can help you with that. By analyzing the image, our classifier can identify the location and provide you with the information you need to plan your next visit to this amazing place. This way, you can discover new and exciting travel destinations that you may have never known about before. - Classification as a service: With this service, we will help other companies or data science projects label their data. Sometimes companies want to block, permit, or deploy individual versions of their applications in different countries. Some countries have more restrictions for deploying applications, therefore the image predictor can help the companies have the right version on the right devices for these countries.

2.2 State of the Art

Recent advancements in deep learning have significantly enhanced the ability to determine the geographical location of an image. DeepGeo, developed by Suresh et al., leverages visual cues such as vegetation and man-made structures like roads and signage to infer locations. This approach aims to replicate the human ability to use environmental indicators and prior knowledge for geolocation (Suresh et al., 2018). The DeepGeo model restricts its scope to the United States, utilizing panoramic viewpoints to classify images based on their state. Each input sample consists of four images taken at the same location, oriented in cardinal directions, which are then classified into one of 50 state labels (Suresh et al., 2018).

In contrast, PlaNet, developed by Weyand et al., tackles global image geolocation. It employs a deep convolutional neural network based on the Inception architecture, trained on 126 million geotagged photos from Flickr. PlaNet's method involves partitioning the world map into multi-scale geographic cells and classifying test images into these cells. Despite its large dataset and extensive training, PlaNet achieves a country-level accuracy of only 30% on its test set (Weyand et al., 2016). M2GPS, developed by Hays and Efros, is another significant baseline in scalable image geolocation. This model performs data-driven localization by computing the closest match via scene matching with a large corpus of 6 million geotagged Flickr images, utilizing features such as color and geometric information. IM2GPS's approach demonstrates the importance of leveraging large datasets for effective geolocation (Hays and Efros, 2008).

Banerjee's work emphasizes the classification task of predicting image location solely based on pixel data. Their research highlights the use of CNNs and transfer learning to achieve high-accuracy models capable of superhuman performance. CNNs are particularly effective due to their ability to capture low-level and complex spatial patterns (Banerjee, 2023). Dayton et al. explored a similar task by using a ResNet-50 CNN pre-trained on ImageNet for classifying street view images from the game GeoGuessr. Their model utilized transfer learning to refine the pre-trained network on a dataset specifically curated for the task, resizing images to 224x224 pixels for input. By fine-tuning

the last layers of ResNet-50, they achieved a test accuracy of over 70% for 20 different countries, highlighting the efficacy of leveraging pre-trained models for geolocation tasks (Dayton et al., 2024).

Another notable model is PIGEON, which combines semantic geocell creation with multi-task contrastive pretraining and a novel loss function. PIGEON is trained on GeoGuessr data and demonstrates the capability to place over 40% of its guesses within 25 kilometers of the target location globally, which is remarkable. This model highlights the importance of using diverse datasets and innovative training techniques to enhance geolocation accuracy (Haas et al., 2024). While these models exhibit high accuracy in controlled conditions, they often rely on high-resolution images, multiple perspectives, and enriched datasets that do not reflect real-world scenarios. For instance, DeepGeo's use of panoramic images and PlaNet's extensive dataset of geotagged Flickr photos introduce biases towards urban areas and well-known landmarks, limiting their effectiveness in arbitrary or rural locations (Suresh et al., 2018). Additionally, these models struggle to generalize to lower-resolution images and more diverse datasets that include unseen locations, as highlighted by the performance discrepancies observed in models like PIGEON when applied to varied datasets (Haas et al., 2024).

Furthermore, Banerjee's research on digital image classification since the 1970s underscores the evolution from using textural and colour features to the current reliance on CNNs. This historical perspective reveals that early models had limited discriminative power and robustness, which were significantly improved with the advent of SIFT (Scale-invariant feature transform) and visual Bag-of-Words models. However, the transition to CNNs marked a pivotal shift due to their superior ability to capture both low-level and high-level features (Banerjee, 2023). Dayton et al. further illustrate the application of transfer learning in geolocation by refining a pre-trained ResNet-50 model on a specific geolocation task. Their work highlights the importance of data augmentation and hyperparameter tuning in improving model performance, as well as the need for balanced datasets to reduce bias and enhance generalizability (Dayton et al., 2024).

To develop more robust and universally applicable geolocation models, it is essential to focus on creating systems that can operate effectively with lower-resolution images and without the need for panoramic views or extensive enriched datasets. This involves training models on diverse, real-world datasets that include a variety of image types, from urban streets to rural landscapes, captured under different conditions and perspectives. By doing so, the models can better mimic the conditions under which humans typically use images for geolocation, such as in social media posts, emergency situations, or historical photo analysis. For instance, PIGEOTTO, an evolution of PIGEON, takes a single image per location and is trained on a larger, highly diverse dataset of over 4 million photos from Flickr and Wikipedia, excluding Street View data. This approach demonstrates the model's ability to generalize to unseen places and perform well in realistic scenarios without the need for multiple images per location (Haas et al., 2024). ## Contributions

This paper has four main contributions. Firstly, we address the limitations of current geolocation models by developing a novel approach that leverages low-resolution images, enabling accurate geolocation in more realistic and diverse scenarios. Secondly, we enhance the dataset by expanding it to include more countries, ensuring a balanced and distributed representation, which is crucial for mitigating biases present in state-of-the-art models. Thirdly, we tackle hardware limitations by optimizing image sizes, making the model more accessible and efficient for deployment on various hardware platforms. Finally, we propose a new methodology for training and fine-tuning our model, incorporating the latest advancements in transfer learning and data augmentation techniques, which significantly improve the model's performance and generalizability across different real-world applications.

Our contributions aim to advance the field of image geolocation, making it more practical and effective for a wide range of applications, from aiding in disaster response to rediscovering family histories and beyond. By addressing these key challenges, we believe our work will pave the way for the development of more robust and universally applicable geolocation technologies.

3 Methods (REPRODUCIBILIY is the main goal)

3.1 Data collection

3.1.1 Data source

When it comes to relatively uniform street imagery, there are not many sources. Google Street View <-LINK> being by far the biggest. But instead of sourcing our images directly from Google, we wanted to have a more representative distribution, as well as a more interactive demonstration.

For this reason we instead opted for the online Geography game called Geoguessr <-LINK>. This has the advantage of not manually having to source where there is coverage, at what density and decide on a distribution. The game revolves around being "dropped" into a random location on Google Street View, and having to guess where it is located.

<-POTENTIALLY INSERT GEOGUESSR PICTURE>

Originally the player is allowed to move around, but there are modified modes to create harder difficulties which prevent the moving or even the panning of the camera, which is what we'll be opting for. This will also allow it to generalize more to other static pictures than if we were using the 360° spheres.

<-POTENTIALLY INSERT SAMPLE PICTURES>

Because different countries are of different sizes, but also have different amounts of Google Street View coverage, deciding on a representative distribution for generalization would be very difficult. Instead, we opted to play the Geoguessr multiplayer game mode called "Battle Royale: Countries" <-LINK>. This game mode revolves around trying to guess the country of a location before the opponents do. It has a much more even distribution of countries, while still taking into account the densities of different places.

<-INSERT MULTIPLAYER GRAPH>

Unfortunately, data collection using a multiplayer game mode is quite slow, as even though we do not need to guess and can spectate the rest of the game, we still need to wait for the other players to guess every round. The number of concurrent games was also be limited by the number of currently active players. Additionally, while spectating it is not easily possible to get the exact coordinates of a location, restricting us to only predicting the correct countries. Lastly, we were detected by their anti-cheating software as the automation environment is injecting scripts into the website.

Instead, we chose to collect data through the most popular singleplayer game mode called "World" ("Classic Maps"), by putting in arbitrary guesses and playing a lot of rounds. This allowed us to collect data a lot quicker, as well as also collecting the coordinates, however, it came at the cost of a very skewed distribution.

<-INSERT SINGLEPLAYER GRAPH>

To remedy this, we instead use the country distribution of our multiplayer games and apply it to our collected singleplayer data. This leaves a lot of data unused and forces us to remove very rare countries, but it allows us to get the required amount of data a lot quicker.

<-POTENTIALLY INSERT MAPPED SINGLEPLAYER GRAPH>

3.1.2 Web scraping

To collect this data we built our own scraper, utilizing the testing and browser automation framework "Playwright" <-LINK>. We then deployed 5 parallel instances of this script to a server and periodically retrieved the newly collect data.

Our script starts off by logging and and storing the cookies for further sessions, it then accepts the cookie conditions and attempts to start a game. We do this by navigating the page using the text, as there are no stable identifiers. For multiplayer it additionally checks for rate-limiting or if it joined the same game as another instance of the script, it those cases it waits for a certain amount of time and attempts the same again.

After a game started it will wait for a round to start, wait for the image to load, hide all other elements on the page and move the mouse cursor out of the way and take a screenshot. For singleplayer it then guesses a random location while in multiplayer it waits for the round to end, spectating the rest of the game afterwards. At the end of each round the coordinates or in the case of multiplayer the country are read from the page and saved to a file. Both these files are named after the "game id" we extract from the URL, preventing duplicates. This is the repeated until the script is stopped.

<-POTENTIALLY INSERT SCRAPING CONTROL FLOW GRAPH>

Initially we had a lot of issues with stability, especially with our parallelized workers. After we got rid of hardware bottlenecks we also looked to eliminate as many fixed waits as possible, replacing them wait dynamic ones to avoid timing issues. Finally, we made sure to enable auto-restarting and added a lot of other measures to completely restart after our environment stops working, which can happen during extended scraping sessions. We then let this script run in parallel, non-stop for multiple weeks, collecting <-INSERT FIGURE> multiplayer datapoints and <-INSERT FIGURE> singleplayer datapoints.

To make sure our data is collected correctly, we manually inspected it periodically. Any faults we noticed in the images like black screens and blurring, we would address later in our filtering. However, we also had to inspect whether the coordinates and countries were accurate.

(After an initial run of our singleplayer script, we noticed that the way we collected coordinates in multiplayer did no longer work and had been collecting incorrect coordinates for tens of thousands of images. To address this, we built an additional script looking up the correct coordinates using the "game id", this was a lot quicker than the collection of new data, allowing us to correct the mistake quite quickly. We also then used this new way of looking up coordinates for our collection script.) ## Data processing

3.1.3 Resizing of the images

We can't train the classifier using images in a high resolution, because our resources are limited, and also often images (like from missing persons) are also very low quality. So we decided to reduce the resolution, at the beginning of the processing, about the 1/4 of the original resolution of 1280p x 720p. This also helps to move the images for learning to the server or also between us and also loading takes lot less time for future processing steps.

3.1.4 Enriching (Singleplayer coordinates, Multiplayer names) -> ls

Follows...

(Issues with reverse geocoding, country name matching)

3.1.5 Region Enriching (Source, Mapping)

So to predict the Region of the image, we first searched for a list of regions around the world. And decide to use the geojson file from Natural Earth. Since for each region we had a list of coordinates, which marks the border of the region, we had to get the middle point of each one. Where the python library "geopands" comes in handy. This library has the advantage to be able to work with geojson files and to have an integrated middle point calculation function. In addition, we add a unique region_name for each region using the name of the region + country name + id. This is needed since some region names have similar or the same name. After this preparation, we used the middle point to get the region for each image using their coordinates using k-nearest neighbor method. ### Mapping to a distribution

As mentioned in the previous section (Web scraping), our singleplayer data is skewed towards a few countries, with some countries only appearing very rarely. To address this, we are mapping our singleplayer data to the country distribution of our multiplayer data. This allows us to have a better distribution while still not having every country appear with the same frequency to account for size and coverage differences. It, however, comes with the downside of not being able to use all of our data, although some tests showed that using all of our data unmapped performed worse <-CHECK AND MENTION RESULTS>.

Unfortunately, this also doesn't allow us to include all countries as some of them do not appear often enough and would reduce the number of images we are allowed to use for other countries as well. To achieve a mapping including enough files while including as many countries as possible, we set a minimum threshold of how often a country has to appear within the singleplayer data (<-INSERT FIGURE>). Because this included too few countries, we added a slack factor (<-INSERT FIGURE>), allowing countries that could almost meet the distribution to be included as well.

Finally, we saved this as a list of file names using our "data-loader", and commit it to our repository, making our runs reproducible. We created a few different variants of the mapped list, sometimes including more countries and other times more files per country, until we found a good balance.

<-POTENTIALLY INSERT MAPPED SINGLEPLAYER GRAPH>

3.1.6 Filtering of data

To address issues with our scraping's inherently unstable nature, as well as the big variety of Google Street View images, we had to do some automated filtering of unsuitable data. This consisted of both filtering our images, but also the corresponding data. After filtering we again saved this as a list of file names using our "data-loader", and commit it to our repository.

To filter images we started by setting a minimum threshold of the biggest variance of color between the pictures of an image, meaning either red, green or blue has to vary by some amount. This easily filters out black screens and dark images, like the ones indoor or inside tunnels. Additionally, we added a threshold for the variance after the laplacian kernel was applied, allowing us to filter some blurry and low quality images. We set our thresholds after doing manual sampling and some test runs.

<-INSERT SAMPLE PICTURES WITH VARIANCE>

Additionally, we realized that some rounds were in the exact same locations, so we decided to filter out duplicates by comparing the coordinates, only keeping the first image. This, as well as the image filtering, comes with the added benefit of filtering corrupted data, which would otherwise have to be handled in our training code.

Requirements: 1. **Core Competency in Data Science:** Data processing is a fundamental step in any data science project. Demonstrating this process shows the student's ability to handle and prepare data for analysis, which is a critical skill in the field. 2. **Transparency and Reproducibility:** Detailing the data processing steps ensures transparency and aids in the reproducibility of the results, which are key aspects of scientific research. ____

To talk about:

Basic method (Cross-entropy, ...)

(Coordinates attempt)

3.2 Regions with custom loss

For the region-prediction we use a custom loss function. Which, in short text, is a loss function not only look if the correct region is predicted, it considers also the distance to the correct coordinates. Which means if the predicted region is only slightly off then the loss is not that big like if it is far off. There is the paper "PIGEON: Predicting Image Geolocations" from Stanford University, which comes in handy for this task. They're using the haversine smooth loss function. (Haas et al., 2024).

The steps of the custom loss function The haversine distance is a measure of the shortest distance between two points on the surface of a sphere, given their longitudes and latitudes. It is calculated using the following formula:

$$Hav(\mathbf{p_1}, \mathbf{p_2}) = 2r \arcsin\left(\sqrt{\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right)$$

where

- r is the radius of the Earth (6371 km in this implementation),
- p_1, p_2 are the 2 points with longitude λ and latitude ϕ

The smoothed labels are calculated using the following formula:

$$y_{n,i} = \exp\left(-\frac{Hav(\mathbf{g_i}, \mathbf{x_n}) - Hav(\mathbf{g_n}, \mathbf{x_n})}{\tau}\right)$$

where

- g_i are the centroid coordinates of the geocell polygon of cell i
- g_n are the centroid coordinates of the true geocell.
- $\mathbf{x_n}$ are the true coordinates of the example.
- τ is a temperature parameter.

Finally, the cross-entropy loss is calculated between the model outputs and the smoothed labels.

Requirements: 1. **Understanding and Application:** This section allows students to demonstrate their understanding of various methodologies and their ability to apply appropriate techniques to their specific project. 2. **Rationale and Justification:** Discussing the methods used provides insight into the student's decision-making process and the rationale behind choosing specific approaches. ____ ## Transfer Learning

3.2.1 Model architectures -> ls

Follows... also take the literature from the sources! Without them, we just have 6 and need 7 in total.

Sources: [5]: EfficientNet Rethinking Model Scaling for CNNs [6]: MobileNetV2: Inverted Residuals and Linear Bottlenecks [7]: Deep Residual Learning for Image Recognition / ResNet ____ ### Data augmentation -> ls ### Hyperparameter tuning -> ls ## Human baseline performance

3.2.2 Collection of baseline scores

To compare our model to the performance of a human classifier, we would first have to measure the performance of a similar human. To calculate this, we built a small interactive application using "Gradio" <-LINK>. It loads a random image in our downscaled resolution, though not quite as low as most of our models are trained on, and asks the user to type in the 5 most likely countries. This then allows us to calculate a reasonable Top-1, Top-3 and Top-5 accuracy for comparison with our model.

Follows...

3.3 Machine Learning Operations (MLOps)

3.3.1 Project structure

As we did for our last project ("DSPRO1"), we are using a "monorepo" setup with a pipeline-style setup consisting of numbered folder and subfolders, each representing different stages and sub-stages of our dataflow, from data collection to model training. Every stage consists of at least one Jupyter Notebook, with more helpers and reused python code dispersed throughout the project. Each notebook saves the generated data in its current folder, making the flow obvious. Within each sub-step, the notebooks can be run in arbitrary order because they are not inter-dependent.

3.3.2 Handling a lot of files

Differing from our last project, however, is the amount of data. With our scraping generating hundreds of thousands of images, we could not store them in our git repository. Instead, we opted for storing them in our server we had used for scraping, although in a scaled and already enriched format, making

it quicker to get our training and repository up and running on a new machine. This server is public to allow for our results to be reproduced.

Using a server for storage made storing the files easy, but it came with the added challenge of reproducibility. Ideally, we would want to store all of our data on the server but only pull the required ones for a particular training, ensuring that they were always the same ones.

(To quickly return a list of all files present without overloading the web server we use to serve the files, we wrote a small PHP script returning the files names as a list of links, which can be easily parsed.)

To solve this came up a custom set of helpers called "data-loader". This would get the list of files from our server, filter them by criteria, sort, optionally shuffle or limit them, and output the full paths to the files that should be used for this processing step or training. Note that each data point consists of both an image file and a JSON file, the "data-loader" treats them as pairs and has stable shuffling and limiting behavior, no matter where or how the files are stored.

Behind the scenes, it writes a text file ("data-list") to the repository listing all of the files used. This file is meant to be committed to the repository and ensures that all future runs of this setup will get the exact same files, otherwise throw an error. If some files were still missing locally, they are automatically downloaded before returning the paths.

Once we had this running, we could easily deploy this on persistent cloud environments like HSLU's GPUHub, however, we also wanted to be able to deploy it on Google Colab <-LINK>. which does not have persistent storage. To address this, we wrote a shell script automatically clone our git repository from GitLab <-LINK>, install dependencies using "Poetry" <-LINK>, convert the training notbooking to plain python and run it.

(Even with the script, setup was still slow because hundreds of thousands of files had to be downloaded from our server first. To solve this, we mounted a Google Drive <-LINK> and stored our files there. However, since the drive adapter is slow and seizes to work with a lot of files, we had to take a couple of measures to address this.

Firstly, we stored our downloaded files in nested directories, containing the first and second characters in the "game ids" of the files. Secondly, we store a list of all files present in the Google Drive, preventing a slow file listing, and lastly, we store the files in a zip file, copy the entire file and uncompress them on the local storage of the runner. This allowed us to quickly deploy our model training to Google Colab, which gave us the chance to rain on more powerful GPUs.)

To speed up training in other environments, especially when using a lot of transformations for data augmentation, we cache the prepared dataset using pytorch right before training. The dataset is saved to a file named after the preprocessing parameters, as well as a hash of all file names to ensure consistency. A file only containing the test data after the split is also saved to make calculating the metrics quicker.

For monitoring and deploying we log and push all of our run data to "Weights and Biases" <-LINK>, which allows us to plot and compare many runs, as well as automatically do hyperparameter-tuning. After each training we also push the model weights as well as the test data, if it has not been saved before, otherwise a link to it. This allows us to deploy a model and calculate the final metrics in seconds.

To talk about:

Creating the demo for the geoguessr wizard and how we are deploying the model in this real-world scenario

Requirements: 1. Practical Application: This section emphasizes the practical aspect of machine learning. It's not just about building models but also about deploying them effectively in real-world scenarios. 2. Bridging Theory and Practice: It allows students to demonstrate their ability to translate theoretical knowledge into practical applications, showcasing their readiness for industry challenges.

8

3.4 Model performance on other datasets
Follows
Requirements: 1. Ensuring Model Reliability: Model validation is crucial for assessing the accuracy and reliability of the model. This section shows how the student evaluates the performance and generalizability of their model. 2. Critical Evaluation: It encourages students to critically evaluate their model's performance, understand its limitations, and discuss potential improvements
4 Experiments and Results (and also discussions)
4.1 Predicting countries
Follows
4.2 Predicting regions
Follows
List here all results in plots, confusion matrix and so on. The goal of these sections is to present our result and explain how they help in solving the problem we are working on, and to answer the research questions we are trying to answer.
Our Hypothesis: The main goal of this student project is to determine if an Image Classification Model can outperform humans in guessing the countries or regions of images based solely on the image itself, without additional information
5 Conclusions and Future Work
Follows
Here we should discuss the implications of our results, our limitations, and possible further research possibilities. We should be very honest especially about limitations # References
1. Suresh, Sudharshan, Nathaniel Chodosh, and Montiel Abello. "DeepGeo:

- 1. Suresh, Sudharshan, Nathaniel Chodosh, and Montiel Abello. "DeepGeo: Photo Localization with Deep Neural Network." arXiv, February 16, 2016. https://arxiv.org/abs/1810.03077.
- 2. Weyand, T., Kostrikov, I., & Philbin, J. "PlaNet Photo Geolocation with Convolutional Neural Networks." arXiv, October 6, 2018. https://arxiv.org/abs/1602.05314.
- 3. James Hays, Alexei A. Efros. "IM2GPS: estimating geographic information from a single image. Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)". graphics, n.d., 2008. http://graphics.cs.cmu.edu/projects/im2gps/.
- 4. Banerjee, Arsh. "Image Geolocation with Computer Vision," arshbanerjee, May 9, 2023. http://www.arshbanerjee.com/uploads/paper/3bda9_20230723185809.pdf
- 5. Haas, Lukas, Michal Skreta, Silas Alberti, and Chelsea Finn. "PIGEON: Predicting Image Geolocations." arXiv, May 28, 2024. https://arxiv.org/abs/2307.05845.
- 6. Dayton, Finn, Jeffrey Heo, and Eric Werner. "CNN Plays Geoguessr: Transfer Learning on ResNet50 for Classifying Street View Images," cs229, n.d., 2023. https://www.finndayton.com/CS229_Final_Report.pdf