Surname	Centre Number	Candidate Number
First name(s)		2

GCE AS

B410U20-1

FRIDAY, 27 MAY 2022 - AFTERNOON

CHEMISTRY – AS component 2

Energy, Rate and Chemistry of Carbon Compounds

1 hour 30 minutes

		FOR EX	aminer's us	e only
		Question	Maximum Mark	Mark Awarded
ADDITIONAL MATERIALS	Section A	1. to 7.	10	
In addition to this examination paper,				
you will need a: • calculator;	Section B	8.	13	
Data Booklet supplied by WJEC.		9.	15	
		10.	13	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions. **Section B** Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q.10(a).

11.

12.

Total

19

10

80

	SECTION A	E	xaminer only
	Answer all questions.		
1.	Name the compound (CH ₃) ₄ C.	[1]	
2.	State the meaning of the term 'heterolytic bond fission'.	[1]	
3.	Explain why propanoic acid is soluble in water but propane is not.	[2]	
4.	Propanoic acid reacts with magnesium to form magnesium propanoate and hydrogen. Write an equation for this reaction.	[1]	

[1]

PMT

Label the enthalpy change.

A
Energy

5.

Extent of reaction

The enthalpy change for a reversible reaction is $-98 \, \text{kJ} \, \text{mol}^{-1}$.

On the axes below draw the energy profile for this reaction.

(b) The activation energy for the backward reaction is $234 \, \text{kJ} \, \text{mol}^{-1}$.

Calculate the activation energy for the forward reaction.

[1]

Activation energy =kJ mol⁻¹

6. A gas cylinder for a barbecue contains 9.0 kg of propane.

Calculate the number of propane molecules in the cylinder.

[2]

Molecules of propane =

7. State how many isomers are represented by the formula C_5H_{12} .

[1]

.....

10

© WJEC CBAC Ltd. (B410U20-1)

Turn over.

SECTION B
Answer all questions.
ane and propene are typical examples of hydrocarbons.
Describe the nature of the bonding in propene and explain how this governs its chemical behaviour.
A diagram may be used in support of your answer. [4]
Propene can undergo polymerisation to form poly(propene).
Draw the repeating unit in poly(propene). [1]

(i)	Name the type of reaction mechanism which occurs in this case.	[1
(ii)	Write the mechanism for the reaction to form 1-chloropropane.	
	Include one termination step.	[4
•••••		
	ydrocarbon has a relative molecular mass of 136. The percentage compositions, is C 88.1%; H 11.9%.	on, by
Cal	culate both the empirical and molecular formulae of the compound.	on, by
Cal	ss, is C 88.1%; H 11.9%.	on, by [3
Cal	culate both the empirical and molecular formulae of the compound.	
Cal	culate both the empirical and molecular formulae of the compound.	
Cal	culate both the empirical and molecular formulae of the compound.	
Cal	culate both the empirical and molecular formulae of the compound.	
Cal	culate both the empirical and molecular formulae of the compound.	

Turn over. (B410U20-1) © WJEC CBAC Ltd.

9. (a) Ethanol can be produced industrially by the hydration of ethene.

 $CH_2 = CH_2(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$ $\Delta H = -46 \text{ kJ mol}^{-1}$

(i) Name the catalyst used in this production.

[1]

.....

(ii) Calculate the average bond enthalpy for the C — C bond using the enthalpy change of reaction above and the average bond enthalpy values given in the table.

[3]

Bond	Average bond enthalpy / kJ mol ⁻¹
c = c	612
C — H	413
c-o	360
O—H	463

Average bond enthalpy of C — $C = \dots kJ \text{ mol}^{-1}$

5	-	
_	•	

		7
(b)	(i)	State the meaning of the term 'standard enthalpy change of combustion', $\Delta_{\rm c} H^{\rm \theta}$. [2
	(ii)	The enthalpy change of combustion of ethanol is –1370 kJ mol ⁻¹ .
		The density of ethanol is 0.789 g cm ⁻³ .
		Calculate the heat energy released, in kJ, when 0.350 dm ³ of ethanol is burned.
		Give your answer to an appropriate number of significant figures. [3
		Heat energy released =k

			¬Evomin/
(c)	Etha sulfu	nol can be heated under reflux with propanoic acid in the presence of concentrated ric acid to form an ester.	Examine only
	(i)	Draw a labelled diagram of the apparatus you could use for heating under reflux. [3]	
	(ii)	Explain how this apparatus prevents escape of vapour and give a reason why the escape of vapour should be prevented. [2]	
	(iii)	Draw the structure of the ester that forms. [1]	
			15

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

. (a)	Halogenoalkanes can be hydrolysed to give alcohols.
	Devise an experiment to compare the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane.
	Include the expected results and use these to state the trend in the rates of reaction. Explain this trend. [6 QER]
•••••	

(B410U20-1)

		Exa
(b)	1-Chlorobutane can be converted into 2-iodobutane in a two-stage synthesis.	OI
	$CH_3CH_2CH_2CH \longrightarrow CH_3CH_2CH = CH_2 \longrightarrow CH_3CH_2CHICH_3$	
	Stage 1 has a 25% yield and stage 2 has a 92% yield.	
	Calculate the mass of 2-iodobutane made from 37.6 g of 1-chlorobutane.	[3]
	Mass of 2-iodobutane =	. g
(c)	Chlorofluorocarbons, CFCs, were used for a variety of purposes but have now been replaced by hydrofluorocarbons, HFCs.	
	Explain why HFCs have replaced CFCs.	[4]

Turn over.

11. (a) A student carried out an experiment to study the rate of the reaction between calcium carbonate and hydrochloric acid.

$$CaCO_3(s)$$
 + $2HCI(aq)$ \longrightarrow $CaCI_2(aq)$ + $H_2O(I)$ + $CO_2(g)$

He used the following apparatus to measure the total mass of the reagents and the flask every 30 s for 6 minutes.

The solution remained at room temperature and the reaction was still in progress when the final measurement was taken.

His results are shown below.

Time / min	Mass of reagents + flask / g
0	171.50
0.5	171.37
1.0	171.29
1.5	171.23
2.0	171.19
2.5	171.12
3.0	171.07
3.5	171.02
4.0	170.98
4.5	170.94
5.0	170.91
5.5	170.89
6.0	170.87

-	(i) \$	Sugg	est w	vhy cott	on woo	ol was	placed	in the	neck (of the	flask.				[1]
	(ii) [Briefl would	ly des d allo	scribe a	differente of t	ent exp	erimer ction to	tal me	ethod, (etermin	other t	han lo	ss of	mas	ss, tha	t [2]
	(iii) (Com	plete	the plo	t for the	e resul	ts of th	e expe	erimen	t and o	draw a	line	of be	est fit.	[3]
	171.	5 *													
	171.4	4													
	171.3	3		×											
sk/g															
s + fla	171.2	2													
Mass of reagents + flask/g															
of rea	171.	1													
Mass															
	171.0	0													
	170.9	9													
	170.8	8													
		0		1		2	Time		4		5			6	

(iv) l	
, `	Use the graph to calculate the rate of reaction, in grams per minute, at 1 minute. [2]
	Rate = g min ⁻¹
	He used 1.50 g of calcium carbonate and $40.0\mathrm{cm^3}$ of $1.50\mathrm{moldm^{-3}}$ hydrochloric acid.
	Calcium carbonate is the limiting reactant. Calculate the mass of carbon dioxide that would have been lost if the reaction had been allowed to go to completion. [2]
	Mass of carbon dioxide =g
(vi) l	Mass of carbon dioxide =g He then repeated the experiment using 1.50 g of powdered calcium carbonate.
(He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any
	He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any differences in the curves. [3]
	He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any differences in the curves. [3]
	He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any differences in the curves. [3]
	He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any differences in the curves. [3]
	He then repeated the experiment using 1.50 g of powdered calcium carbonate. Sketch on the graph in part (iii) the curve he would expect to obtain. Explain any differences in the curves. [3]

			Examiner
b)		her student carried out an experiment to study the enthalpy change for the reaction een calcium carbonate and hydrochloric acid.	only
		reacted 2.50 g of the carbonate with $50.0\mathrm{cm^3}$ of $1.00\mathrm{moldm^{-3}}$ hydrochloric acid in ystyrene cup. The acid was in excess.	
		used a thermometer that was accurate to $\pm 0.1^{\circ}\text{C}$ and the temperature rose from $^{\circ}\text{C}$ to 21.3 $^{\circ}\text{C}$.	
	(i)	Calculate the molar enthalpy change for this reaction, in kJ mol ⁻¹ . [3]	
		$\Delta H^{\theta} = \dots kJ \text{mol}^{-1}$	
	(ii)	Calculate the percentage error in the temperature rise recorded. [1]	
		Percentage error = %	
	(iii)	She repeated the experiment but used 25.0 cm ³ of 2.00 mol dm ⁻³ hydrochloric acid.	
		Predict the temperature change in this reaction. Give a reason for your answer. [1]	
	(iv)	She repeated the experiment again but used 50.0 cm ³ of 1.00 mol dm ⁻³ nitric acid.	
		Predict the temperature change in this reaction. Give a reason for your answer. [1]	
	•••••		
			19

12. Study the reaction scheme shown below and the other information that follows.

Compound L is a hydrocarbon. It does not show E-Z isomerism and its mass spectrum shows a molecular ion peak at m/z 56.

The ¹HNMR spectrum for compound **K** shows 3 peaks and the ratio of the peak areas is 6:1:2.

The ¹³C NMR spectrum for compound **N** shows 3 peaks.

Compound **O** does not react with sodium carbonate.

(a)	Identify compounds K , L , M and N . Give your reasoning.	[8]
		••••••
(b)	Name the homologous series to which compound O belongs.	[1]
(b)	Name the homologous series to which compound O belongs.	[1]
(b)	State the reagent(s) and conditions needed for the conversion of compound K to	
		[1]
	State the reagent(s) and conditions needed for the conversion of compound K to	
	State the reagent(s) and conditions needed for the conversion of compound K to compound L .	

Turn over. © WJEC CBAC Ltd. (B410U20-1)

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examin only
	write the question number(s) in the left-hand margin.	1
		1
		1
		1
		1

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

GCE AS

B410U20-1A

FRIDAY, 27 MAY 2022 - AFTERNOON

CHEMISTRY – AS component 2 Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273 K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ $V_m = 24.5 \text{ dm}^3 \text{ mol}^{-1}$ $h = 6.63 \times 10^{-34} \text{ Js}$ $c = 3.00 \times 10^8 \text{ ms}^{-1}$ $d = 1.00 \text{ g cm}^{-3}$ $c = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$ $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ $e = 1.60 \times 10^{-19} \text{ C}$

temperature (K) = temperature (°C) + 273

 $1 \,dm^3 = 1000 \,cm^3$ $1 \,m^3 = 1000 \,dm^3$ $1 \,tonne = 1000 \,kg$ $1 \,atm = 1.01 \times 10^5 \,Pa$

Multiple	Prefix	Symbol
10-9	nano	n
10-6	micro	μ
10-3	milli	m

Multiple	Prefix	Symbol
10 ³	kilo	k
10 ⁶	mega	M
10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber/cm ⁻¹
C-Br	500 to 600
$C-\!\!\!-\!\!\!\!-\!$	650 to 800
C-O	1000 to 1300
C = C	1620 to 1670
C = O	1650 to 1750
$C \equiv N$	2100 to 2250
C-H	2800 to 3100
O — H (carboxylic acid)	2500 to 3200 (very broad)
O — H (alcohol / phenol)	3200 to 3550 (broad)
N-H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
$-\overset{\mid}{c}-\overset{\mid}{c}-$	5 to 40
R — C — CI or Br	10 to 70
R-c-c- 0	20 to 50
R-C-N	25 to 60
-c-o-	50 to 90
c = c	90 to 150
$R-C \equiv N$	110 to 125
	110 to 160
R — C — (carboxylic acid / es	ster) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

¹H NMR chemical shifts relative to TMS = 0

Type of proton	Chemical shift, δ (ppm)
$-CH_3$	0.1 to 2.0
R-CH ₃	0.9
R-CH ₂ -R	1.3
CH ₃ —C≡N	2.0
CH ₃ -C	2.0 to 2.5
$-CH_2-C$	2.0 to 3.0
$\langle \bigcirc \rangle$ — CH_3	2.2 to 2.3
HC-Cl or HC-Br	3.1 to 4.3
HC-O	3.3 to 4.3
R-OH	4.5 *
-C = CH	4.5 to 6.3
-c = cH - co	5.8 to 6.5
\leftarrow CH=C	6.5 to 7.5
\leftarrow H	6.5 to 8.0
ОН	7.0 *
R-C H $R-C$ O OH	9.8 *
R-COH	11.0 *

^{*}variable figure dependent on concentration and solvent

© WJEC CBAC Ltd. (B410U20-1A) Turn over.

THE PERIODIC TABLE

	0		Helium 2	.0 20.2 Ne nrine Ne nrine 10	.5 40.0 1 Ar Argon 18	83.8 Kr Kr Kr Kr Krypton 36	Xe Xenon State	0) (222) It Rn tine Radon 5 86	,	∱ E	E
	2			16.0 19.0 C F xygen Fluorine	35.5 CI Chlorine Chlorine 17	Se Br Slenium Bromine 35	128 127	(210) (210) At Olonium Astatine 85		175 Lu Lutetium 71	t) (257) C Lr um Lawrendum 103
	9		p block	Ô	32.1 Sulfur 16	Š		ď		173 Yb Yb 170 Ym Ytterbium 70	(254) No Nobelium 102
	1			12.0 C N arbon Nitrogen 6 7	.1 31.0 ii P con Phosphorus 15	.6 As e As anium Arsenic 33	9 122 n Sb n Antimony 51	b Bismuth 83		r Tm Tm Thulium 69	3) (256) N Md ium Mendelevium 101
	3 4			10.8 12.0 Boron Carbon 5 6	27.0 28.1 Si Al Si Aluminium Silicon 14	69.7 72.6 Ga Ge Ge Ge 31 32	115 119 Sn Indium Tin 49 50	204 207 TI Pb Thallium Lead 81		165 167 HO Er olmium Erbium 67 68	(254) (253) Es Fm Einsteinum Fermium 99 100
			V	10 B B B B B B B B B B B B B B B B B B B	27	65.4 69 Zn Gal Zinc Gal	Cd Ind	Hg Tha		163 165 Dy Ho Dyspresium Holmium 66 67	(251) (25 Califonium Einster 98 9
IABLE						63.5 Cu Copper 29	Ag (Silver Ca	Au I Gold Me	×	159 1 Tb [Terbium Dyst	(245) (2 Bk (2
						S8.7 Ni Nickel C	106 Pd Palladium \$	195 Pt Platinum 78	f block	157 Gd Gadolinium Te	Curium Be
HE PEKIODIC						58.9 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		(153) Eu Europium 63	(243) Am Americium
# 7E	Group		Key	mass atomic number		55.8 Fe Iron 26	101 Ruthenium 44	190 Os Osmium 76		Samarium 62	(242) Pu
=	Gr			Symbol Name	d block	Mang Sa		Promethium 61	(237) Neptunium		
			σ		52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 W Tungsten 74		Neodymium 60	238 U Uranium	
						50.9 Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Pr Praseodymium 59	(231) Pa Protactinium 91
						47.9 Ti Titanium	91.2 Zr	179 Hf n Hafnium 72	^	Cerium 58	232 Thorium 90
		^			\ \ 	Scandium 21	88.9 Y Yttrium 39	139 La La La La La La La Lanthanum	(227) Ac PA Actinium 89	► Lanthanoid elements	►► Actinoid elements
	7	s block		9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	7	•
	~	\downarrow	1.01 H Hydrogen	6.94 Li Lithium	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223)		
		Period	-	2	က	4	2	9	7		