Generalised Regression Models

GRM: Example — Poisson Regression in R/S-PLUS Semester 1, 2022–2023

1 Textile data set

The following discrete data are on textile faults: the cloth length (x) is the explanatory variable and the number of faults (y) is the response variable.

x:	551	651	832	375	715	868	271	630	491	372	645	441	895	458	642	492
<i>y</i> :	6	4	17	9	14	8	5	7	7	7	6	8	28	4	10	4
x:	543	842	905	542	522	122	657	170	738	371	735	749	495	716	952	417
<i>y</i> :	8	9	23	9	6	1	9	4	9	14	17	10	7	3	9	2

2 Poisson regression model

It is assumed that the responses Y_1, \ldots, Y_n each have a Poisson distribution, and that the *i*th response Y_i has a mean

$$E(Y_i) = \lambda_i = \theta_1 + \theta_2 x_i$$

which depends on the value of an explanatory variable x_i .

3 Plotting the data

4 Fitting the model

5 Extracting information from the glm object

```
> summary(textile.glm)
Call: glm(formula = numb.faults ~ cloth.length, family = poisson(identity))
Deviance Residuals:
                       Median
                10
                                  3Q
                                             Max
-2.798506 -1.104746 -0.2399216 0.550989 3.490582
Coefficients:
                Value Std. Error t value
 (Intercept) 0.3234857 1.111843792 0.2909453
cloth.length 0.0145519 0.002079579 6.9975214
(Dispersion Parameter for Poisson family taken to be 1 )
   Null Deviance: 103.7138 on 31 degrees of freedom
Residual Deviance: 64.45047 on 30 degrees of freedom
Number of Fisher Scoring Iterations: 3
Correlation of Coefficients:
             (Intercept)
cloth.length -0.9024138
```