PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-023970

(43)Date of publication of application: 31.01.1987

(51)Int,CI,

C22C 38/60

(21)Application number: 60-162047

(71)Applicant:

NIPPON STEEL CORP

(22)Date of filing:

24.07.1985

(72)Inventor:

KATAYAMA AKIRA

IMAI TATSUYA ONODERA NORIO ISHIBASHI YASUSHI

(54) CONTINUOUSLY CAST LOW-CARBON SULFUR-LEAD FREE-CUTTING STEEL

(57)Abstract:

PURPOSE: To obtain a continuously cast low-carbon free-cutting steel liable to form an MnS film which functions to inhibit the formation of a built-up edge and to improve the roughness of a surface finished by machining on the surface of a tool by regulating the O and Al contents in a steel and the degree of combination of manganese sulfide with oxide.

CONSTITUTION: The composition of a continuously cast low-carbon sulfur-lead free-cutting steel is composed of, by weight, 0.05W0.15% C, 0.5W1.5% Mn, 0.05W0.1% P, 0.15W0.4% Si, 0.05W0.4% Pb and 0.01W0.02% O as essential components, <0.003% Si, <0.0009% Al and the balance Fe with inevitable impurities. The average cross-sectional area of manganese sulfide type inclusions and lead combined manganese sulfide type inclusions present in 1mm2 cross-section of the steel in the rolling direction is regulated to 30W150μm2. The number of sulfide type inclusions not combined with oxide is regulated to ≥80% of the total number of sulfide type inclusions.

LEGAL STATUS

Date of request for examination

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

昭63-4903 許 公 報(B2) ⑫特

(i)Int Cl.4

識別記号

庁内整理番号

2040公告 昭和63年(1988)2月1日

C 22 C 38/60

38/00

301 M - 7147 - 4K

発明の数 1 (全4頁)

連続鋳造による低炭素硫黄ー鉛快削鋼

> ②特 頭 昭60-162047

69公 開 昭62-23970

22出 願 昭60(1985)7月24日 43昭62(1987)1月31日

昌 神奈川県相模原市淵野辺5-10-1 新日本製鐵株式會社 片 山 700発明者

第2技術研究所内 ⑫発 明 者 今 井 逢 也

神奈川県相模原市淵野辺5-10-1 新日本製鉱株式會社

第2技術研究所内

小 野 寺 徳郎 北海道室蘭市仲町12番地 新日本製鐵株式會社室蘭製鐵所 ⑦発 明 者

内

北海道室蘭市仲町12番地 新日本製鐵株式會社室蘭製鐵所 者 石 楯 媦 73発 眀

内

砂出 顖 人 新日本製鐵株式会社

東京都千代田区大手町2丁目6番3号

弁理士 大関 砂代 理 人 和夫 松 宏 審査官 亀

90参考文献

特開 昭55-107725(JP, A) 特開 昭51-42011(JP, A)

特公 昭26-3658(JP, B1) 昭26-5007(JP, B1) 特公

1

劒特許請求の範囲

重量%でC0.05~0.15%、Mn0.5~1.5%、 P0.05~0.10%、S0.15~0.40%、Pb0.05~0.40%、 O0.010~0.020%を基本成分とし、さらにSi0.003 %以下、A10.0009%以下に制限し、残部実質的に Feからなりかつ鋼材圧延方向断面 1 平方㎜当り に存在するマンガン硫化物系介在物および鉛が複 合しているマンガン硫化物系介在物の平均断面積 が30~150μ㎡で、かつ酸化物と複合化していな 80%以上であることを特徴とする連続鋳造による 低炭素硫黄一鉛快削鋼。

発明の詳細な説明

(産業上の利用分野)

本発明は連続鋳造による低炭素硫黄ー鉛快削鋼 15 に関し、特に切削仕上面性状のすぐれた、連続鋳 造による低炭素硫黄ー鉛快削鋼に係るものであ る。

(従来の技術)

近年切削の自動化、NC化が進み快削鋼の需要 20 加工の安定操業にとつて有利であることが知られ

2

量はこの10年間に2~3倍増となつている。快削 鋼の内でもとりわけ連続鋳造した快削鋼の被削性 能が注目されており、たとえば特公昭59-19182 号公報においては%(S)/%(C)×%(O) 5 比を限定することによつてブローホールの発生を 抑制する方法を採用し、AI、Siなどの脱酸剤お よび真空脱ガスのごとき処理を採用しない被削性 のすぐれた連続鋳造法による硫黄快削鋼について 提案されている。また特開昭59-205453号公報に い硫化物系介在物の比率が硫化物系介在物総数の 10 おいてはSにTe、Pb及びBiを複合添加し、さら に連続鋳造して長径が5μm以上、短径が2μm以 上で長径/短径比が5以下のMnS介在物が全 MnS介在物の50%以上を占める快削鋼およびそ の製造法について提案されている。

> 所で連続鋳造した低炭素快削鋼はインゴツト鋳 造した快削鋼よりも化学組成の変動が小さく、そ の結果ロット内のハイスドリルにより評価される 被削性の変動が小さいため、たとえば鉄と鋼 1983.vol.69№ 5の199頁にも見られるように切削

3

ているが、一方においては、マンガン硫化物の寸 法はインゴット鋳造した快削鋼のそれよりも小さ いため旋削により評価される被削性能の絶対値に おいて劣るという欠点がたとえば鉄と鋼 そのため市場における実用化が遅れているのが実 情である。連続鋳造はインゴツト鋳造と比較して 溶鋼の凝固速度が大きくマンガン硫化物が大きく 成長できないのは宿命であり、形状の小さいマン よる快削鋼の開発が工業界から強く望まれてい

(発明が解決しようとする問題点)

本発明はかかる実情に鑑み被削性能の絶対値に 小さい工業的に有益なる連続鋳造による快削鋼を 提供せんものとするものである。

(問題点を解決するための手段)

即ち、本発明者らは種々検討を重ねた結果、従 中O含有量、AI含有量およびマンガン硫化物と 酸化物との複合化の程度を調整することによつ て、構成刃先の生成を抑制して切削仕上面粗さを 改善する作用のあるMnS皮膜を工具表面層に形 成させやすい塑性変形態の大きいMnSを含有す 25 る、連続鋳造による低炭素快削鋼を開発すること に成功して本発明をなしたものであり、その要旨 とするところは重量%でC0.05~0.15%、Mn0.5 ~1.5%, P0.05~0.10%, S0.15~0.40%, Pb0.05 さらにSi0.003%以下、A10.0009%以下に制限し、 残部実質的にFeからなり、かつ鋼材圧延方向断 面1平方㎜当りに存在するマンガン硫化物系介在 物および鉛が複合しているマンガン硫化物系介在 物の平均断面積が30~150μ㎡で、かつ酸化物と 複合化していない硫化物系介在物の比率が硫化物 系介在物総数の80%以上であることを特徴とする 連続鋳造による低炭素硫黄-鉛快削鋼にある。以 下に本発明を詳細に説明する。

(作用)

先ず本発明鋼の成分としては重量%で夫々次の 範囲のものでなければならない。最初にCは切削 仕上面粗さを確保するためにその下限を0.05%に しなければならない。Cの上限については0.15%

を超えると硬さの大きいパーライト組織の占める 割合が高くなり被削性能が低下するので0.15%に 限定する必要がある。

次にMnは鋼の結晶粒界へのFeS析出を防止し 1985vol.71№ 5の242頁などに指摘されており、 5 熱間圧延時の割れを防ぐために0.5%以上必要で あるが、1.5%を超える場合には鋼の硬さを大き くして被削性能を低下させるので1.5%以下に限 定する必要がある。

またPは仕上面粗さを改善するためにその下限 ガン硫化物でも被削性能のすぐれた、連続鋳造に 10 を0.05%にしなければならない。Pの上限につい ては鋼の機械的性質、冷間加工性を損なうので 0.10%に限定する必要がある。

さらにSは構成刃先の大きさを抑制して切削仕 上面粗さを改善する作用のあるMnSを鋼中に生 おいて優れ、なおかつ被削性のロット内変動幅の 15 成させるために0.15%以上は必要であるが0.40% を超える場合、鋼の冷間加工性能を低下させるの で0.40%以下でなければならない。

Pbは切屑のカール半径を小さくして切屑処理 性を改善すると共に仕上面粗さを向上させるため 来の低炭素硫黄-鉛快削鋼にさらに改良を加え鋼 20 0.05%以上必要である。Pbの上限については0.4 %を超える場合熱間加工性能、面疲労特性を損う ので0.40%に限定する必要がある。

> さらにOは圧延中にMnSが糸状に延伸して被 削性が低下するのを防止するために0.010%以上 必要であるが、0.020%を超えると切削中のMnS の塑性変形能が低下するので、該性能を確保する ために0,020%以下に限定する必要がある。

一方SiはMnSの塑性変形能を小さくし工具刃 先へのMnS皮膜生成を抑制する結果、構成刃先 ~0.40%、O0.010~0.020%、を基本成分とし、30 の寸法が大きくなり切削仕上面が劣化するので極 力低目に抑えることが必要であり、その含有量は 0.003%以下に制限しなければならない。

> またAlもマンガン硫化物の塑性変形能を小さ くし工具刃先へのMnS皮膜生成を抑制する結果 35 構成刃先の寸法が大きくなり、切削仕上面粗さを 劣化させるので0.0009%以下に抑制する必要があ る。A1が0.0009%を超えるとMnS皮膜が工具表 面を覆う面積率は急激に低下して切削仕上面粗さ が著しく劣化する。

> 次にマンガン硫化物系介在物およびPbと複合 40 しているマンガン硫化物系介在物の平均断面積は 工具刃先にMnS皮膜を最も生成させやすい範囲 が30~150μ㎡で、この範囲の上・下限を超える とMnS皮膜の生成量が減少するので30~150μ㎡

と定めた。鋼中マンガン硫化物が工具刃先すぐ面 上でMnS皮膜となつて潤滑剤の役割を継続的に 果たすためには、切屑に持ち去られるMnS皮膜 にバランスした量の鋼中MnSが工具刃先に供給 されなければならない。鋼中に含有されるS含有 5 量が一定の場合、鋼中MnS寸法が大きくなると その数が減少するためにMnSの工具刃先に当た る確率は小さくなるため、一定量のMnS皮膜を 形成させるためには不適当である。一方細かくな るとMnSの工具刃先に遭遇する確率は大きくな 10 に示す。 るが、MnSが鋼から分離しにくくなり、工具へ 移行して皮膜を形成する量が減少するPbはMnS 表面層に付着して存在する場合、MnSの塑性変 形能を大きくする作用があるので工具刃先で MnS皮膜が生成しやすくなり潤滑効果はより大 15 明鋼、 $Nn.8 \sim 11$ が比較鋼である。 きくなる。以上の理由からマンガン硫化物系介在 物及び鉛が複合しているマンガン硫化物系介在物 の平均断面積を30~150μπの範囲内とした。

一方Al₂O₃、SiO₂、MnOの1種又は複数種が が小さく、切削中の工具刃先の温度と圧力のもと では塑性変形しにくいためMnS皮膜生成にとつ。 て効果がないばかりでなく、酸化物は一般に硬質 であるためにアブレジョン作用によりMnS皮膜 合化しているマンガン硫化物の比率が20%を超え ると急速にMnS皮膜生成量が減少するので、酸 化物と複合化していないマンガン硫化物の比率を 80%以上とした。

本発明においては前記の如く、Si及びAlの添加 を抑制するものであり、このため溶鋼の脱酸を必 要とする場合にはC脱酸を行ないSi、Alは一切 使用しない。この他、先に述べたように耐火物の 等の浮上除去などの手段を用いてSi、Alの低減

および酸化物と複合化したマンガン硫化物の比率 の低減をはかるものである。さらに連続鋳造鋳型 断面積と鋳片全断面が凝固するまでの水冷による 冷却速度の制御を行なうことにより、マンガン硫 化系介在物およびPbと複合しているマンガン硫 化系介在物の平均断面積の制御をはかるものであ る。凝固後は加熱・圧延等の手段により所望の形 状の鋼材とすることが出来る。

次に実施例により本発明の効果をさらに具体的

(実施例)

第1表に示す鋼材について高速度工具を使用し て回転軸に対して直角方向の旋削試験(突切り方 向の切削)を行なつた。同表中、№1~7が本発

なお本発明鋼についてはAl、Si含有量の少な い原材料の選択、耐火レンガの吟味およびArバ ブリングによるAl₂O₃系介在物の浮上除去などの 諸手段を講じてAl、Si含有量を低減させた。試 複合化しているMnS系介在物はその塑性変形能 20 験結果を第1表に併記する。なお試験条件は次の とおりである。

高速度鋼工具による試験:工具材種はSKH57、 切削速度はV=80m/min、送りは0.05mm/rev、 切削サイクルは2sec切削ー5sec非切削で切削仕上 を剝離させる作用がある。このように酸化物と複 25 面粗さは切削サイクル800の時の値をJIS RZで表 示した。

MnS断面積は鋼材圧延方向1平方m内に含ま れるマンガン硫化物を倍率200の光学顕微鏡を併 用いて測定した。その際10μπ以下の微小なマン ここで本発明鋼の製造手段について言及すると 30 ガン硫化物は除外した。酸化物と複合化していな いマンガン硫化物の比率は倍率200の光学顕微鏡 を使用して1平方㎜内のマンガン硫化物を観察す ることにより測定した。

第1表から明らかなように本発明鋼の切削仕上 吟味あるいはArバブリングによる Al_2O_3 系介在物 35 面粗さは比較鋼の切削仕上面粗さの30%程度であ り本発明鋼の方がすぐれている。

7

第

1 表

(化学成分:重量%)

8

供試材		C	Мn	Р	S	РЬ	0	Si	ΑI	MnS系が よが しる 介断 ルボ ルボ	酸と化いMnS WmS %	仕上面粗さRZ μm	
												V = 80 m/min	V=120 m/min
本発明鋼	1	0, 10	1,05	0,068	0, 336	0, 23	0.015	0.002	0.0007	120	85	8	9
	2	0.09	1.03	0,068	0.332	0, 25	0.014	0.001	0.0005	130	86	6	8
	3	0.08	1.07	0.063	0.322	0.27	0.017	0.001	0.0007	40	89	7	9
	4	0, 11	1.15	0.067	0.325	0,22	0.013	0,001	0.0007	80	92	7	9
	5	0.12	1.12	0.065	0, 320	0.21	0.019	0.001	0.0005	100	83	5	7
	6	0.09	1.03	0,072	0, 335	0.24	0.017	0.001	0.0005	50	82	6	10
	7	0.08	1.10	0,073	0.315	0.22	0.016	0.002	0.0005	30	88	6	9
比較鋼	8	0.08	1.07	0.072	0, 318	0.18	0.018	0.003	0.003	190	7 0	26	29
	9	0.09	1.05	0.069	0, 322	0.25	0.017	0.004	0.004	220	65	31	35
	10	0, 10	1.03	0.067	0,318	0.26	0.020	0.005	0.0009	280	67	35	35
	11	0.09	1.12	0,071	0.332	0.27	0.017	0.002	0.0007	20	73	29	34
	12	0.08	1.11	0.070	0.330	0.25	0.015	0.002	0.002	18	72	24	32

(発明の効果)

以上の実施例からも明らかな如く本発明によれ ば高速度鋼工具切削時の切削仕上面粗さを著しく 向上させうる連続鋳造による低炭素硫黄ー鉛快削 鋼を提供することが可能であり、産業上の効果は 極めて顕著なものがある。