Sistemas Lineares

Teorema de Cramer

Definição de Sistemas Lineares

Definição de Sistemas Lineares

Um **sistema linear** é um conjunto de equações lineares envolvendo as mesmas variáveis. Ele pode ser representado na forma geral:

$$egin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m \end{cases}$$

Onde x_1, x_2, \ldots, x_n são as variáveis e b_1, b_2, \ldots, b_m são os termos independentes.

Teorema de Cramer

Teorema de Cramer

O Teorema de Cramer fornece uma solução única para sistemas lineares quadrados (onde o número de equações m é igual ao número de variáveis n), desde que o determinante da matriz dos coeficientes seja diferente de zero.

Seja o sistema de equações representado na forma matricial:

$$A \cdot X = B$$

Onde:

- A é a matriz dos coeficientes $(m \times n)$,
- $\begin{array}{lll} \bullet & X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T \text{\'e o vetor coluna das variáveis,} \\ \bullet & B = \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix}^T \text{\'e o vetor dos termos independentes.} \end{array}$

O Teorema de Cramer diz que, se a matriz A for quadrada e seu determinante ($\det(A)$) for diferente de zero, então as soluções para x_1, x_2, \ldots, x_n podem ser expressas como:

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Onde A_i é a matriz formada substituindo a *i*-ésima coluna de A pelo vetor B.

Como Aplicar o Teorema de Cramer

Como aplicar o Teorema de Cramer

Para resolver um sistema de n equações com n incógnitas usando o Teorema de Cramer, seguimos os seguintes passos:

- 1. Calcular o determinante de A: Se $\det(A)=0$, o sistema não tem solução única (ou não tem solução ou tem infinitas soluções). Se $\det(A)\neq 0$, o sistema tem uma solução única.
- 2. Formar as matrizes A_1, A_2, \ldots, A_n : Para cada i, substituímos a i-ésima coluna da matriz A pelo vetor B.
- 3. Calcular os determinantes $\det(A_1), \det(A_2), \ldots, \det(A_n)$.
- 4. Calcular as soluções:

$$x_i = rac{\det(A_i)}{\det(A)}$$

Exemplo prático

Considere o sistema de equações:

$$\begin{cases} 2x + 3y = 5 \\ 4x - y = 3 \end{cases}$$

Exemplo Prático

A matriz dos coeficientes A é:

$$A = egin{bmatrix} 2 & 3 \ 4 & -1 \end{bmatrix}$$

E o vetor B é:

$$B = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

Exemplo Prático

Passo 1: Calcular $\det(A)$

$$\det(A) = (2)(-1) - (3)(4) = -2 - 12 = -14$$

Passo 2: Formar A_1 e A_2

Substituindo a 1ª coluna de A por B para formar A_1 :

$$A_1 = egin{bmatrix} 5 & 3 \ 3 & -1 \end{bmatrix}$$

Substituindo a 2^a coluna de A por B para formar A_2 :

$$A_2 = egin{bmatrix} 2 & 5 \ 4 & 3 \end{bmatrix}$$

Passo 3: Calcular os determinantes

$$\det(A_1) = (5)(-1) - (3)(3) = -5 - 9 = -14$$

$$\det(A_2) = (2)(3) - (5)(4) = 6 - 20 = -14$$

Passo 4: Calcular as soluções

$$x=\frac{\det(A_1)}{\det(A)}=\frac{-14}{-14}=1$$

$$y = rac{\det(A_2)}{\det(A)} = rac{-14}{-14} = 1$$

Portanto, a solução do sistema é x=1 e y=1.

Propriedades do Teorema de Cramer

Propriedades do Teorema de Cramer

Solução única: Só é possível quando $\det(A) \neq 0$.

Eficiência: Para sistemas pequenos (2x2, 3x3), o Teorema de Cramer pode ser eficiente, mas para sistemas grandes, é mais comum usar métodos numéricos como eliminação de Gauss ou decomposição LU.

Determinantes: O cálculo de determinantes é essencial, o que pode ser complexo para matrizes grandes.

Resumo Esquemático

Resumo esquemático

Teorema de Cramer resolve sistemas lineares quadrados com $\det(A) \neq 0$.

A solução de x_i é dada por $\frac{\det(A_i)}{\det(A)}$.

Propriedade chave: se $\det(A)=0$, o sistema não tem solução única.