Теория чисел

Д3 1

Гольдберг Дмитрий Максимович

Группа БПМИ248

Найдите (123456789, 987654321)

Решение:

Применяя алгоритм Евклида, получаем цепочку равенств $(123456789,\,987654321) = (123456789,\,987654321\,-\,123456789^*8) = (123456789,\,9) = 9$

Ответ:

9

Докажите, что следующие дроби несократимы при всех натуральных значениях n:

a)
$$\frac{2n+13}{n+7}$$
; 6) $\frac{2n^2-1}{n+1}$.

Решение:

- а) Найдем $(2n+13,\ n+7)$ применяя алгоритм Евклида $(2n+13,\ n+7)=(n+6,n+7)=1\ \ (\text{так как НОД соседних чисел всегда 1})\Rightarrow$ дробь несократимая
- б) Найдем $(2n^2-1,n+1)$ применяя алгоритм Евклида $(2n^2-1,n+1)=(2n^2-1-2(n+1)^2,n+1)=(-4n-3,n+1)=(n,n+1)=1\Rightarrow$ дробь несократимая

Ответ:

ч.т.д

Докажите, что для нечетных чисел $a,\,b,\,$ и c имеет место равенство

$$\left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right)=(a,b,c)$$

Решение:

Заметим, что $a=\frac{1}{2}(a+c)+\frac{1}{2}(a+b)-\frac{1}{2}(b+c);\ b=\frac{1}{2}(b+c)+\frac{1}{2}(a+b)-\frac{1}{2}(c+c);\ c=\frac{1}{2}(a+c)+\frac{1}{2}(c+c)+\frac{1}{$

С другой стороны, если некоторое число k делит a,b,c, то оно также делит и их линейные комбинации(в частности $\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}$). Как k можно взять $\left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right)$. Получаем, что $(a,b,c)\mid\left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right)$.

Итого, имеем

$$\begin{cases} \left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right) \mid (a,b,c) \\ (a,b,c) \mid \left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right) \end{cases} \Rightarrow \left(\frac{b+c}{2},\frac{a+c}{2},\frac{a+b}{2}\right) = (a,b,c)$$

Ответ:

ч.т.д

Пусть a и b — взаимно простые натуральные числа и $a \geqslant b$. Докажите, что биномиальный коэффициент $\binom{a}{b}$ делится на a.

Решение:

$$\binom{a}{b} = \frac{a!}{b!(a-b)!} = \frac{a \cdot \frac{(a-1)!}{(b-1)!(a-b)!}}{b}, \text{ но } (a,b) = 1, \text{ при этом } \binom{a}{b} \text{ целое число} \Rightarrow b \mid \frac{(a-1)!}{(b-1)!(a-b)!}$$

иначе b обязано быть единицей, но тогда утверждение, очевидно, верно.

Разделим $\frac{(a-1)!}{(b-1)!\cdot(a-b)!}$ на b. Получим число $\frac{(a-1)!}{b!(a-b)!}$. Оно является целым. Тогда исходный биномиальный коэффициент делится на a, так как полученное на этом шаге число является результатом деления $\binom{a}{b}$ на a, а оно целое. Утверждение доказано.

Ответ:

ч.т.д

Рассмотрим числа Ферма: $f_k=2^{2^k}+1, k\geqslant 0$. Докажите, что при $m\neq n$ выполняется равенство $(f_n,f_m)=1$.

Решение:

$$\begin{split} f_k - 2 &= 2^{2^k} - 1 = \left(2^{2^{k-1}} - 1\right) \left(2^{2^{k-1}} + 1\right) = \left(2^{2^{k-1}} - 1\right) \cdot f_{k-1} = \left(\left(2^{2^{k-2}} - 1\right)\right) \cdot f_{k-2} \cdot f_{k-1} = \dots \\ &= f_0 \cdot f_1 \cdot \dots \cdot f_{k-1} \Rightarrow f_k = f_0 \cdot f_1 \cdot \dots \cdot f_{k-1} + 2 \end{split}$$

Пусть
$$m>n$$
. Тогда $f_m-2=f_0\cdot\ldots\cdot f_n\cdot\ldots\cdot f_{m-1}\Rightarrow f_n\mid f_m-2.$

Рассмотрим произвольное число d, такое что $d\mid f_n$ и $d\mid f_m$. Из системы условий

$$\begin{cases} f_n \mid f_m-2\\ d \mid f_n \end{cases} \quad \text{заключаем, что} \quad d \mid f_m-2. \ \text{При этом} \ d \mid f_m. \quad \text{Ho} \ \gcd(f_m,f_m-2)=\gcd(2,f_m)=1 \Rightarrow d=1 \end{cases}$$

Итого, для произвольного делителя d получили, что он обязательно равен единице \Rightarrow ч.т.д

Ответ:

убито