Digital Image Processing

Morphological Image Processing

Emad Fatemizadeh

Distance/online Course: Session 05 Episode 01

Date: 28 February 2021, 10th Esfand 1399

Aim and Goal

- > Used to extract image components that are useful in the representation, description and modification of region shape, such as:
 - -Boundaries extraction
 - -Skeletons
 - -Convex hull
 - -Morphological filtering
 - -Thinning
 - -Pruning

Mathematical Background

- > The language of mathematical morphology is set theory
- > In binary images, the sets in question are members of the 2-D integer space Z², where each element of a set is a tuple (2-D vector) whose coordinates are the coordinates of an object (typically foreground) pixel in the image.
- > Grayscale digital images can be represented as sets whose components are in \mathbb{Z}^3 . In this case, two components of each element of the set refer to the coordinates of a pixel, and the third corresponds to its discrete intensity value

Why Binary Image

> After segmentation step, we have:

Structuring Elements (SE's)

> Morphological operations are defined in terms of sets. In image processing, we use morphology with two types of sets of pixels: objects and structuring elements (SE's).

> Its rule is like as impulse response in signal/image

processing

> SE's member:

- -Background (0)
- -Foreground (1)
- -Don't Care (×)

Set Reflection

> Set Reflection (about its origin):

$$\hat{B} = \{ w \mid w = -b, \text{ for } b \in B \}$$

 π

Set Translation

 \rightarrow Set Translation by point $z=(z_1,z_2)$:

$$(B)_z = \{c \mid c = b + z, \text{ for } b \in B\}$$

An Example

An (I) image and a SE's (B):

Two Fundamental Operator

- > There are two fundamental operation:
 - -Dilation
 - -Erosion

Erosion

> Erosion Definition:

$$A \ominus B = \left\{ z \middle| \left(B \right)_z \subseteq A \right\}$$

Erosion - Example

> Image erosion with a full 3×3 SE:

Erosion - Example

- > Remove small objects:
- > Object size in input image: $1 \times 1, 3 \times 3, 5 \times 5, 7 \times 7, 9 \times 9, 15 \times 15$
- \rightarrow Erosion with a full 13 \times 13 SE then dilation with same SE

Dilation

> Dilation Definition:

$$A \oplus B = \left\{ z \left| \left[(\hat{B})_z \cap A \right] \subseteq A \right\} \right\}$$

Dilation - Example

> Image dilation with a full 3×3 SE:

1	1	1
1	1	1
1	1	1

Dilation - Example

> Image dilation with a full 3×3 SE:

1	1	1
1	1	1
1	1	1

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Opening and Closing

- > Dilation expands and Erosion shrinks.
 - -Opening:
 - > Smooth contour
 - > Break narrow isthmuses
 - > Remove thin protrusion
 - -Closing:
 - > Smooth contour
 - > Fuse narrow breaks,
 - > and long thin gulfs.
 - > Remove small holes, and fill gaps.

Opening and Closing

- > Opening:
 - -An erosion followed by a dilation using the same SE for both:

$$A \circ B = (A \ominus B) \oplus B$$

- > Closing:
 - -An dilation followed by a erosion using the same SE for both:

$$A \bullet B = (A \oplus B) \ominus B$$

Opening Example

> Opening Example:

$$A \circ B = (A \ominus B) \oplus B$$

Image, I

Opening - Example

> Image opening with a full 3×3 SE:

1 1 0 0 0 0 0 0 0 0 0

Closing Example

> Closing Example:

$$A \bullet B = (A \oplus B) \ominus B$$

Closing - Example

> Image closing with a full 3×3 SE:

Opening and Closing Properties

> Morphological opening has the following properties:

- (a) $A \circ B$ is a subset of A.
- **(b)** If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$.
- (c) $(A \circ B) \circ B = A \circ B$.
- (a) A is a subset of $A \cdot B$.
- **(b)** If C is a subset of D, then $C \cdot B$ is a subset of $D \cdot B$.
- (c) $(A \bullet B) \bullet B = A \bullet B$.

Morphological Filtering

> Noise Removal:

Hit-or-Miss

> The morphological hit-or-miss transform (HMT) is a basic tool for shape detection using template.

Application (1)

> Boundary Extraction Formulation:

$$\beta(A) = A - (A \ominus B)$$

Application (1)

> Boundary Extraction Example:

Application (2)

> Hole Filling Formulation:

$$X_k = (X_{k-1} \oplus B) \cap I^c$$

- > Start inside the hole
- > Repeat until convergence

Application (2)

> Hole Filling Example:

Application (3)

> Connected Component Extraction Formulation:

$$X_k = (X_{k-1} \oplus B) \cap I$$

- > Start inside the region
- > Repeat until convergence

Application (3)

> Connected Component Extraction Formulation:

Connected component	No. of pixels in connected comp
01	11
02	9
03	9
04	39
05	133
06	1
07	1
08	743
09	7
10	11
11	11
12	9
13	9
14	674
15	85

Application (4)

- > Convex Hull Extraction:
 - -Smallest Convex set H, containing S

Application (5)

> *Thinning* and Skeletonization

Application (5)

> Thinning and *Skeletonization*

Matlab Command

- > strel: Create morphological structuring element
- > imerode, imdilate
- > imclose, imopen
- > bwhitmiss, imtophat
- > imfill: Fill image regions and holes
- > conndef: Create connectivity array

The End

>AnY QuEsTiOn?

