11.3

Dot Products

DEFINITION Dot Product

Given two nonzero vectors **u** and **v** in two or three dimensions, their **dot product** is

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta,$$

where θ is the angle between **u** and **v** with $0 \le \theta \le \pi$ (Figure 11.44). If **u** = **0** or **v** = **0**, then **u** · **v** = 0, and θ is undefined.

DEFINITION Orthogonal Vectors

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimesions, two nonzero orthogonal vectors are perpendicular to each other.

THEOREM 11.1 Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$,

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

THEOREM 11.2 Properties of the Dot Product

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

Commutative property

2.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

Associative property

3.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

Distributive property

DEFINITION (Orthogonal) Projection of u onto v

The orthogonal projection of u onto v, denoted proj_vu, where $v \neq 0$, is

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = |\mathbf{u}| \cos \theta \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right).$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \operatorname{scal}_{\mathbf{v}}\mathbf{u}\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right) = \left(\frac{\mathbf{u}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\right)\mathbf{v},$$

where the scalar component of u in the direction of v is

$$\operatorname{scal}_{\mathbf{v}}\mathbf{u} = |\mathbf{u}| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.$$

Copyright © 201

Education, Inc. Publishing as Pearson Addison-Wesley

Co

Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Work

Let a constant force \mathbf{F} be applied to an object, producing a displacement \mathbf{d} . If the angle between \mathbf{F} and \mathbf{d} is θ , then the **work** done by the force is

$$W = |\mathbf{F}||\mathbf{d}|\cos\theta = \mathbf{F} \cdot \mathbf{d}.$$

Copyright Education,

Copyright © 20____

Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 11.54

11.4

Cross Products

DEFINITION Cross Product

Given two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^3 , the **cross product** $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta,$$

where $0 \le \theta \le \pi$ is the angle between **u** and **v**. The direction of $\mathbf{u} \times \mathbf{v}$ is given by the **right-hand rule**: When you put the vectors tail to tail and let the fingers of your right hand curl from **u** to **v**, the direction of $\mathbf{u} \times \mathbf{v}$ is the direction of your thumb, orthogonal to both **u** and **v** (Figure 11.56). When $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, the direction of $\mathbf{u} \times \mathbf{v}$ is undefined.

THEOREM 11.3 Geometry of the Cross Product

Let **u** and **v** be two nonzero vectors in \mathbb{R}^3 .

- 1. The vectors **u** and **v** are parallel ($\theta = 0$ or $\theta = \pi$) if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- 2. If **u** and **v** are two sides of a parallelogram (Figure 11.57), then the area of the parallelogram is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta.$$

Copyright © 2011 Pe

Education, Inc. Publishing as

THEOREM 11.4 Properties of the Cross Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be nonzero vectors in \mathbf{R}^3 , and let a and b be scalars.

1.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

Anticommutative property

2.
$$(a\mathbf{u}) \times (b\mathbf{v}) = ab(\mathbf{u} \times \mathbf{v})$$

Associative property

3.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

Distributive property

4.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

Distributive property

THEOREM 11.5 Cross Products of Coordinate Unit Vectors

$$\mathbf{i} \times \mathbf{j} = -(\mathbf{j} \times \mathbf{i}) = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = -(\mathbf{k} \times \mathbf{j}) = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = -(\mathbf{i} \times \mathbf{k}) = \mathbf{j}$ $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

Copyright © 2011 Pearsor FIGURE 11.60

THEOREM 11.6 Evaluating the Cross Product

Let
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
 and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then,

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{k}.$$

Copyright © 201

Education, Inc. rupusning as

Pearson Addison-Wesley

Copyright

Education, Inc. Publishing as Pearson Addison-Wesley