Approx-SVP in Ideal lattices with Pre-Processing

Alice Pellet-Mary, Guillaume Hanrot and Damien Stehlé

LIP, ENS de Lyon

Séminaire de cryptographie de Rennes, May 24, 2019

https://eprint.iacr.org/2019/215.pdf

What is this talk about

Time/Approximation trade-offs for SVP in ideal lattices:

(Figures are for prime power cyclotomic fields)

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 11 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Shortest Independent Vectors Problem (SIVP)

Find n short vectors which are linearly independent.

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Applications

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Applications

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Applications

- hash functions
- encryption
- identity based encryption
- fully homomorphic encryption
- o . . .

Difficulty

Schemes using LWE/SIS are not efficient

Difficulty

Schemes using LWE/SIS are not efficient

Improve efficiency using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

Difficulty

Schemes using LWE/SIS are not efficient

Improve efficiency using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

 \Rightarrow this is an ideal lattice

Difficulty

Schemes using LWE/SIS are not efficient

Improve efficiency using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

⇒ this is an ideal lattice

Structured analogues of LWE/SIS:

Difficulty

Schemes using LWE/SIS are not efficient

Improve efficiency using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

⇒ this is an ideal lattice

Structured analogues of LWE/SIS:

Is approx-SVP still hard when restricted to ideal lattices?

SVP in ideal lattices

[CDW17]: Better than BKZ in the quantum setting

- Heuristic
- For prime power cyclotomic fields

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

This work

(Figure for prime power cyclotomic fields)

- Heuristic
- ullet Pre-processing $2^{O(n)}$, independent of the choice of the ideal
- All number fields (trade-offs differ slightly)

• Approx-SVP in ideal lattices might be easier than in general lattices

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP [Gen09,GGH13]

[[]Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC.

[[]GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP [Gen09,GGH13]

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC.

[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP [Gen09,GGH13]

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC.

[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

Outline of the talk

- Definitions and objective
- 2 The CDPR algorithm
- This work
- 4 Extensions and conclusion

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$
 - ightharpoonup e.g. $\mathbb{Z}^{\times}=\{-1,1\}$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$
 - lacksquare e.g. $\mathbb{Z}^{ imes}=\{-1,1\}$
- Principal ideals: $\langle g \rangle = \{ gr \mid r \in R \}$ (i.e. all multiples of g)
 - e.g. $\langle 2 \rangle = \{ \text{even numbers} \} \text{ in } \mathbb{Z}$
 - g is called a generator of $\langle g \rangle$
 - the generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n}+1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_{n-1} \end{pmatrix}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} \\ g_1 & g_0 \\ \vdots & \vdots \\ g_{n-1} & g_{n-2} \end{pmatrix}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} & \cdots & -g_1 \\ g_1 & g_0 & \cdots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \cdots & g_0 \end{pmatrix}$$

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle \setminus \{0\}$ such that $||r|| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle \setminus \{0\}$ such that $||r|| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

BKZ algorithm can do it in time $2^{O(n^{1-\alpha})}$, can we do better?

Outline of the talk

- Definitions and objective
- The CDPR algorithm
- This work
- 4 Extensions and conclusion

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g
angle$

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If n = 1: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If $\mathbf{n}=\mathbf{1}$: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

$$-6$$
 -4 -2 0 2 4 6

For larger n: one of the generators is somehow small

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\text{Log } r = h + a\mathbf{1}$, with $h \in H$

• a > 0

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\text{Log } r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := \text{Log}(R^{\times})$ is a lattice

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\text{Log } r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\text{Log } r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time $\operatorname{poly}(\underline{n})$
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $\|h\| \leq \widetilde{O}(\sqrt{n})$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| < \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $\|h\| \leq \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

Outline of the talk

- Definitions and objective
- The CDPR algorithm
- This work
- 4 Extensions and conclusion

Important

Important

Important

Important

Important

The lattice L

The lattice L

The lattice L

$$L = egin{bmatrix} \Lambda & h_{\mathsf{Log}(r_1)}, \cdots, h_{\mathsf{Log}(r_{
u})} \\ \hline 1/\sqrt{n} \\ 1/\sqrt{n} \\ & & \\ 1/\sqrt{n} \end{bmatrix} \qquad t = egin{bmatrix} h_{\mathsf{Log}(g_1)} \\ 0 \\ & & \\ 1/\sqrt{n} \end{bmatrix}$$

Heuristic

For some $\nu = \widetilde{O}(n)$, the covering radius of L satisfies $\mu(L) = O(1)$.

(= for all target t, there exists $s \in L$ such that ||t - s|| = O(1))

Algorithm

Compute r_1, \dots, r_n with small 'a'

Compute r_1, \dots, r_n with small 'a'

Compute the lattice L

Compute r_1, \dots, r_n with small 'a'

Compute the lattice L

Compute g_1 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \dots, 0)^T$

Compute r_1, \dots, r_n with small 'a'

Compute the lattice L

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \dots, 0)^T$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Compute r_1, \dots, r_n with small 'a'

Compute the lattice L

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \dots, 0)^T$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write $s = h_{\log r}$ for some $r \in R$

Compute r_1, \dots, r_n with small 'a'

Compute the lattice L

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \cdots, 0)^T$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write $s = h_{\log r}$ for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

Compute
$$r_1, \dots, r_n$$
 with small 'a'

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute the lattice L

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \cdots, 0)^T$

$$\operatorname{poly}(n) \ / \ 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\log r}$$
 for some $r \in R$

$$\|rg_1\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$$

Compute
$$r_1, \dots, r_n$$
 with small 'a'

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \dots, 0)^T$

$$\operatorname{poly}(n) \ / \ 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\text{Log } r}$$
 for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

Compute
$$r_1, \dots, r_n$$
 with small 'a'

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute the lattice
$$L$$

Compute
$$g_1$$
 a generator of $\langle g \rangle$, \Rightarrow let $t = (h_{\text{Log}(g_1)}, 0, \cdots, 0)^T$

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\mathsf{Log}\,r}$$
 for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

CDPR	This work
Good basis of Λ	No good basis of L known

CDPR	This work	
Good basis of Λ	No good basis of L known	

Key observation

L does not depend on $\langle g
angle$

CDPR	This work
Good basis of Λ	No good basis of <i>L</i> known

Key observation

L does not depend on $\langle g \rangle \implies \mathsf{Pre\text{-}processing}$ on L

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

L does not depend on $\langle g \rangle \;\; \Rightarrow \; \mathsf{Pre\text{-}processing} \; \mathsf{on} \; \; L$

[Laa16,DLW19,Ste19]:
$$ullet$$
 Find $s\in L$ such that $\|s-t\|=\widetilde{O}(n^lpha)$

- Time:
 - \triangleright $2^{\widetilde{O}(n^{1-2\alpha})}$ (query)
 - \rightarrow + 2^{O(n)} (pre-processing)

[[]Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

[[]DLW19]: E. Doulgerakis, T. Laarhoven, and B. de Weger. Finding closest lattice vectors using approximate Voronoi cells. PQCRYPTO.

[[]Ste19]: N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing – instantiating the DLW heuristic. ArXiv.

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{\alpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ^{O(n)}

 $+2^{O(n)}$ Pre-processing / Non-uniform algorithm

Outline of the talk

- Definitions and objective
- 2 The CDPR algorithm
- This work
- Extensions and conclusion

Extensions

We can extend the algorithm to

Non-principal ideals

Extensions

We can extend the algorithm to

- Non-principal ideals
- All number fields

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

All generators • are somehow large

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$
 - not much sparser

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$
 - not much sparser
 - with a small generator •

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Extension to any ideal

- I has no generator (not principal)
- Multiply by some small ideal J
 - ► // sublattice of /
 - not much sparser
 - principal
 - with a small generator •

Reminder: This is a theoretical result (no practical applications)

[[]BBV+17] J. Bauch, D. J. Bernstein, H. de Valence, T. Lange, C. van Vredendaal. Short generators without quantum computers: the case of multiquadratics. Eurocrypt.

Reminder: This is a theoretical result (no practical applications)

Open problems:

- Remove/prove the heuristics?
 - Stephens-Davidowitz proved Laarhoven's algo

[[]BBV+17] J. Bauch, D. J. Bernstein, H. de Valence, T. Lange, C. van Vredendaal. Short generators without quantum computers: the case of multiquadratics. Eurocrypt.

Reminder: This is a theoretical result (no practical applications)

Open problems:

- Remove/prove the heuristics?
 - Stephens-Davidowitz proved Laarhoven's algo
- Improve the algorithm for specific rings?
 - ▶ e.g. multiquadratics [BBV+17]

[[]BBV+17] J. Bauch, D. J. Bernstein, H. de Valence, T. Lange, C. van Vredendaal. Short generators without quantum computers: the case of multiquadratics. Eurocrypt.

Reminder: This is a theoretical result (no practical applications)

Open problems:

- Remove/prove the heuristics?
 - Stephens-Davidowitz proved Laarhoven's algo
- Improve the algorithm for specific rings?
 - e.g. multiquadratics [BBV+17]
- Generalize to module SVP?

[[]BBV+17] J. Bauch, D. J. Bernstein, H. de Valence, T. Lange, C. van Vredendaal. Short generators without quantum computers: the case of multiquadratics. Eurocrypt.

Reminder: This is a theoretical result (no practical applications)

Open problems:

- Remove/prove the heuristics?
 - Stephens-Davidowitz proved Laarhoven's algo
- Improve the algorithm for specific rings?
 - ▶ e.g. multiquadratics [BBV+17]
- Generalize to module SVP?

Questions?

[[]BBV+17] J. Bauch, D. J. Bernstein, H. de Valence, T. Lange, C. van Vredendaal. Short generators without quantum computers: the case of multiquadratics. Eurocrypt.