Machine Learning Techniques

(機器學習技巧)

Lecture 10: Random Forest

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Agenda

Lecture 10: Random Forest

- Basic Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection

Recall: Bagging and Decision Tree

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- $\textbf{1} \ \, \text{request size-N data} \ \, \tilde{\mathcal{D}}_t \ \, \text{by} \\ \, \text{bootstrapping with} \ \, \mathcal{D}$
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(g_t)$

—reduces variance by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$
- —large variance especially if fully-grown

putting them together?
(i.e. aggregate two aggregation models :-))

Random Forest

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D)

For
$$t = 1, 2, ..., T$$

- 1 request size-N data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base G_t by DTree($\tilde{\mathcal{D}}_t$)

return $G = Uniform(G_t)$

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- $\mathbf{3}$ return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c \rrbracket \, G_c(\mathbf{x})$$

- highly parallel/efficient to learn
- inherit pros of C&RT
- · eliminate cons of fully-grown tree

Diversifying by Feature Projection

recall: data randomness for diversity in bagging

randomly sample N examples from \mathcal{D}

other possibility:

randomly sample d' features from \mathbf{x}

- chosen index $i_1, i_2, \dots, i_{d'}$ $-\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, \dots, x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' ≪ d, efficient when d large
 —can be generally used for other learning models
- original RF re-sample new subspace for each $b(\mathbf{x})$ in C&RT

RF = bagging + random-subspace C&RT

Diversifying by Feature Expansion

randomly sample d' features from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = P \cdot \mathbf{x}$ with row i of P randomly \in natural basis

more powerful features: row i of P other than natural basis

• low-dimensional random projection (combination) with **u**:

$$\phi_i(\mathbf{x}) = \sum_{j=1}^{d''} u_j x_j$$

- includes random subspace as a special case: d'' = 1 and $u_1 = 1$
- original RF consider d' random projections for each $b(\mathbf{x})$ in C&RT

RF = bagging + random-combination C&RT
—randomness everywhere!

Fun Time

Bagging Revisited

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$

For t = 1, 2, ..., T

- 1 request size-N data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(g_t)$

	<i>g</i> ₁	<i>g</i> ₂	g 3	 g T
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$\mathcal{ ilde{D}}_{1}$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_2$	*	*

 \star : not used for obtaining g_t —called **out-of-bag (OOB) examples**

Number of OOB Examples

OOB (in ⋆) ← not sampled after N drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N} \approx \frac{1}{e}$$

OOB size per $g_t \approx \frac{1}{e}N$

OOB versus Validation

OOB

	<i>g</i> ₁	<i>g</i> ₂	g 3	 9 т
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_2, \mathbf{y}_2)$	*	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_3, \mathbf{y}_3)$	*	$ ilde{\mathcal{D}}_1$	*	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_{2}$	*	*

Validation

g_1^-	g_2^-	 g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed (why?)
- use \star to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{x}_n)),$ with G_n^- contains only trees that \mathbf{x}_n is OOB of

E_{oob}: self-validation of bagging/RF

Model Selection by OOB Error

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{\mathsf{Eval}}{\mathsf{E}_{val}}(\mathcal{A}_m(\mathcal{D}_{\mathsf{train}}))$

RF: by Best Eoob

$$g_{m^*} = \operatorname{RF}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{\text{Poph}}{E_{\text{poph}}}(\operatorname{RF}_m(\mathcal{D}))$

- use E_{oob} for self-validation
- no re-training needed

E_{oob} often **accurate** in practice

Fun Time

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

and only 'learn' a subset-transform $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}})$ with d' < d for the final hypothesis $g(\Phi(\mathbf{x}))$

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation: 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

Feature Selection by Importance

idea: if possible to estimate

importance(
$$i$$
) for $i = 1, 2, ..., d$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance values

Linear Model

$$s = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = $|w_i|$ with some 'good' **w**
- 'good' w: learned with full data
- non-linear models? often not easy

next: feature selection in RF

Feature Importance by Permutation Test

idea: random test

—if feature i needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, . . .: $P(x_i)$ changed
 - bootstrap, permutation (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i) \approx$ remained
- permutation test:

$$importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}_p)$$

with \mathcal{D}_p containing permuted $\{x_{n,i}\}_{n=1}^N$

permutation test: a general statistical tool that can be used for arbitrary non-linear models like RF

Feature Importance in Original Random Forest permutation test:

 $importance(i) = performance(D) - performance(D_p)$

with \mathcal{D}_p containing permuted $\{x_{n,i}\}_{n=1}^N$

- calculating performance needs re-training and validating on each \mathcal{D}_{p} in general
- how to 'escape' validation? OOB in RF
- original RF solution:

importance(
$$i$$
) = $E_{oob}(G, \mathcal{D}) - E_{oob}(G, \mathcal{D}_p)$

with \mathcal{D}_p 'dynamically' containing permuted $\{x_{n,i}: n \text{ OOB}\}$ for g_t

original RF solution often efficient and promising in practice

Fun Time

Summary

Lecture 10: Random Forest

- Basic Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection