Reproducible Research: Peer Assessment 1

Loading and preprocessing the data

```
activity <- read.csv('activity.csv', na.strings = 'NA')
activity$date <- as.Date(activity$date, '%Y-%m-%d')
str(activity)

## 'data.frame': 17568 obs. of 3 variables:
## $ steps : int NA ...
## $ date : Date, format: "2012-10-01" "2012-10-01" ...
## $ interval: int 0 5 10 15 20 25 30 35 40 45 ...</pre>
```

What is mean total number of steps taken per day?

```
library(data.table)
activity <- data.table(activity)
activity.clean <- activity[complete.cases(activity),]
dailytotal <- activity.clean[, .(TotalSteps = sum(steps, na.rm = TRUE)), by=date]
cat('mean total number of steps taken per day:', mean(dailytotal$TotalSteps), '\n')</pre>
```

```
## mean total number of steps taken per day: 10766.19
```

```
cat('median total number of steps taken per day:', median(dailytotal$TotalSteps))
```

```
## median total number of steps taken per day: 10765
```

```
hist(dailytotal$TotalSteps, main='Histogram for Total Steps of each day',
    xlab = 'Total Steps for each day', col='forestgreen')
```

Histogram for Total Steps of each day

What is the average daily activity pattern?

Averge Steps by Interval

Find the interval which contains the maxium steps:

```
avg.interval[which(avg.interval$Avg == max(avg.interval$Avg)),]
```

```
## interval Avg
## 1: 835 206.1698
```

Imputing missing values

```
cat('Total number of rows that have missing values: ', sum(is.na(activity)), '\n')
```

Total number of rows that have missing values: 2304

cat('Number of missing dates:', sum(is.na(activity\$date)),'\n')

Number of missing dates: 0

cat('Number of missing steps:', sum(is.na(activity\$steps)), '\n')

Number of missing steps: 2304

```
cat('Number of missing intervals"', sum(is.na(activity$interval)), '\n')
```

```
## Number of missing intervals" 0
```

Impute the missing values by filling in the interval averages using data table packages.

```
activity[, avg:=mean(steps, na.rm = TRUE), by=interval][is.na(steps), steps:=avg][, avg:=NULL]
```

Replot the daily average steps and recaculate the mean and median.

```
dailytotal2 <- activity[, .(TotalSteps = sum(steps, na.rm = TRUE)), by=date]
cat('mean total number of steps taken per day:', mean(dailytotal2$TotalSteps), '\n')</pre>
```

```
## mean total number of steps taken per day: 10749.77
```

```
cat('median total number of steps taken per day:', median(dailytotal2$TotalSteps))
```

```
## median total number of steps taken per day: 10641
```

Histogram for Total Steps of each day

As we filled the missing values with interval averages, this does not have a big impact on the overall averages. The mean and median were only of slight difference and the distribution was almost identical.

Are there differences in activity patterns between weekdays and weekends?

Avg Steps Comparison

