Reflektionen & Coreflektionen

Topologie Seminar

Fabian Gabel

Sommersemester 2017

Das (sportliche) Programm – Etappen(ziele)

Grundlagen der Kategorientheorie (Teil II)

Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien

Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

Konvergenzstrukturen Uniforme Konvergenzstrukturen Bindeglied zwischen beiden Strukturen

Inhalt

Grundlagen der Kategorientheorie (Teil II)

Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien

Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

Konvergenzstrukturen Uniforme Konvergenzstrukturen Bindeglied zwischen beiden Struktu

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu ????Funktoren.

Definition

 \mathcal{C} und \mathcal{D} Kategorien, $\mathcal{F}_1: |\mathcal{C}| \to |\mathcal{D}|$ and $\mathcal{F}_2: \operatorname{Mor}_{\mathcal{C}} \to \operatorname{Mor}_{\mathcal{D}}$. Wir nennen $\mathcal{F} = (\mathcal{C}, \mathcal{D}, \mathcal{F}_1, \mathcal{F}_2)$ einen (covarianten) Funktor von \mathcal{C} nach \mathcal{D} , falls:

- F1) $f \in [A, B]_{\mathcal{C}} \Rightarrow \mathcal{F}(f) \in [\mathcal{F}(A), \mathcal{F}(B)]_{\mathcal{D}}.$
- F2) $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$, falls $f \circ g$ definiert ist.
- F3) $\forall A \in |\mathcal{C}| \colon \mathcal{F}(1_A) = 1_{\mathcal{F}(A)}.$

Abkürzend: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$. (Homomorphismus von Kategorien)

Kontravarianter Funktor, falls modifiziert:

- F2') $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(B), \mathcal{F}(A)]_{\mathcal{D}}$.
- F3') $\mathcal{F}(f \circ g) = \mathcal{F}(g) \circ \mathcal{F}(f)$, falls $f \circ g$ existiert.

Beispiele

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) := X \text{ und } \mathcal{F}(f) := 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}^*$ definiert durch $\Delta_{\mathcal{C}}(X) = X$ und $\Delta_{\mathcal{C}}(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein covarianter Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ \mathcal{F} \circ \Delta_{\mathcal{C}^*} \colon \mathcal{C}^* \to \mathcal{D}^*$ (covariant)
- e) Identitätsfunktor $\mathcal{I}_{\mathcal{C}}$: $\mathcal{I}_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$ definiert durch $\mathcal{I}_{\mathcal{C}}(X) = X$ und $\mathcal{I}_{\mathcal{C}}(f) = f$. (treu)
- f) Inklusionsfunktor: Sei \mathcal{C} eine Kategorie und \mathcal{A} eine Unterkategorie, dh.
 - 1. $|\mathcal{A}| \subset |\mathcal{C}|$,
 - 2. $(A, B) \in |\mathcal{A}| \times |\mathcal{A}| : [A, B]_{\mathcal{A}} \subset [A, B]_{\mathcal{C}}$,
 - 3. Komposition von Mor. in ${\mathcal A}$ wie in $\hat{{\mathcal C}};$ Identitätsmorphismus derselbe.

Gilt sogar $[A, B]_{\mathcal{A}} = [A, B]_{\mathcal{C}}$: volle Unterkategorie.

$$\mathcal{F}_e \coloneqq \mathcal{I}_{\mathcal{C}}|_{\mathcal{A}}$$

Definition – Universelle Abbildung

 \mathcal{A} und \mathcal{B} Kategorien, $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und $B \in |\mathcal{B}|$.

Paar (u,A) mit $A \in |\mathcal{A}|$ und $u \colon B \to \mathcal{F}(A)$ heißt universelle Abbildung für B bezüglich \mathcal{F} , falls $\forall A' \in |\mathcal{A}|$ und $\forall f \colon B \to \mathcal{F}(A')$ genau ein \mathcal{A} -Morphismus $\overline{f} \colon A \to A'$ ex., so dass das Diagramm

kommutiert.

Entsprechend: Paar (A, u) mit $A \in |\mathcal{A}|$ und $u \colon \mathcal{F}(A) \to B$: co-universelle Abbildung für B bezüglich \mathcal{F} , falls (u^*, A) universelle Abbildung für B bezüglich $\mathcal{F}^* \colon \mathcal{A}^* \to \mathcal{B}^*$ ist:

Das Prinzip bei der Arbeit

Schonmal gesehen bei der Stone-Čech-Kompaktifizierung?

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}$. (Tychonoff = T1 + T3 $\frac{1}{2}$) Für alle $X \in |\mathbf{Tych}|$ ist $(e_x, \beta(X))$ eine universelle Abbildung: $Y \in \mathbf{CompHaus}$ und $f \in [X, \mathcal{F}_e(Y)]_{\mathbf{Tych}}$, liefert Satz von Stone-Čech gerade:

Weitere Beispiele

- ► T-Nullifizierung
- ightharpoonup Vergissfunktor

Die richtigen Abbildungen zwischen Funktoren

Seien $\mathcal C$ und $\mathcal D$ Kategorien und $\mathcal F,\mathcal G\colon\mathcal C\to\mathcal D$ Funktoren.

1) Familie $\eta = (\eta_A)_{A \in |\mathcal{C}|}$ mit $\mathcal{A} \in |\mathcal{C}|$: $\eta_A \in [\mathcal{F}(A), \mathcal{G}(A)]_{\mathcal{D}}$ heißt natürliche Transformation, falls $\forall f \in [A, B]_{\mathcal{C}}$ das rechte Diagramm

$$\begin{array}{ccc} A & & \mathcal{F}(A) & \stackrel{\eta_A}{\longrightarrow} \mathcal{G}(A) \\ \downarrow^f & & \mathcal{F}(f) \downarrow & & \downarrow^{\mathcal{G}(f)} \\ B & & \mathcal{F}(B) & \stackrel{\eta_B}{\longrightarrow} \mathcal{G}(B) \end{array}$$

kommutiert. Kurz: $\eta: \mathcal{F} \to \mathcal{G}$ (Morphismus von Funktoren in Cat).

- 2) Natürliche Transformation $\eta \colon \mathcal{F} \to \mathcal{G}$ heißt natürliche Äquivalenz, falls $\forall A \in |\mathcal{C}|$ der Morphismus η_A Isomorphismus ist.
- 3) \mathcal{F} und \mathcal{G} heißen natürlich äquivalent, wenn eine natürliche Äquivalenz $\eta \colon \mathcal{F} \to \mathcal{G}$ existiert. Kurz: $\mathcal{F} \approx \mathcal{G}$.

Universelle Abbildungen und natürliche Transformationen

Satz

Sei $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und

 $\forall B \in |\mathcal{B}| \ ex. \ univ. \ Abbildung (u_B, A_B) \ bezgl. \ \mathcal{F}.$

Dann ex. genau ein Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ mit

- $\blacktriangleright \ \forall B \in \mathcal{B} \colon \mathcal{G}(B) = A_B.$
- ▶ $u = (u_B)_{B \in |\mathcal{B}|} : \mathcal{I}_{\mathcal{B}} \to \mathcal{G} \circ \mathcal{F}$ ist natürliche Transformation.

Beweis.

Setze $\forall B \in |\mathcal{B}| \colon \mathcal{G}(B) := A_B$. Universelle Abbildung:

$$\mathcal{I}_{\mathcal{B}}(B) = B \xrightarrow{u_B} \mathcal{F}(A_B) = \mathcal{F}(\mathcal{G}(B))$$

$$\downarrow f \qquad \qquad \downarrow_{\mathcal{F}(\overline{f})}$$

$$\mathcal{I}_{\mathcal{B}}(B') = B' \xrightarrow{u_{B'}} \mathcal{F}(A_{B'}) = \mathcal{F}(\mathcal{G}(B'))$$

Definiert $\mathcal{G}(f) := \overline{f}$ einen Funktor?

▶ Dann wäre $(u_B)_{B \in |\mathcal{B}|}$ eine natürliche Transformation.

Universelle Abbildungen und natürliche Transformationen

Satz

Sei $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und

 $\forall B \in |\mathcal{B}| \ ex. \ univ. \ Abbildung (u_B, A_B) \ bezgl. \ \mathcal{F}.$

Dann ex. genau ein Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ mit

- $\blacktriangleright \ \forall B \in \mathcal{B} \colon \mathcal{G}(B) = A_B.$
- ▶ $u = (u_B)_{B \in |\mathcal{B}|} : \mathcal{I}_B \to \mathcal{G} \circ \mathcal{F}$ ist natürliche Transformation.

Beweis.

Setze $\forall B \in |\mathcal{B}| \colon \mathcal{G}(B) := A_B$ und versuche $\forall f \in \text{Mor}_{\mathcal{B}} \colon \mathcal{G}(f) := \overline{f} \colon$ Es kann höchstens einen solchen Funktor geben!

- $F(\overline{g} \circ \overline{f}) = \mathcal{F}(\overline{g}) \circ \mathcal{F}(\overline{f})$
- $\qquad \qquad \textbf{Eindeutigkeit: } \overline{g \circ f} = \overline{g} \circ \overline{f}$
- $\mathcal{G}(g \circ f) = \mathcal{G}(g) \circ \mathcal{G}(f)$
- ▶ Identität: $\overline{1_B} = 1_{A_B}$
- $\mathcal{G}(1_B) = 1_{\mathcal{G}(B)}$
- \blacktriangleright Nicht ganz sauber...

solange die Kuh noch Milch gibt...

Satz

Sei $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und

 $\forall B \in |\mathcal{B}| \ ex \ univ. \ Abbildung \ (u_B, A_B) \ bezgl. \ \mathcal{F}.$

Dann ex. genau ein Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ mit

- $\blacktriangleright \ \forall B \in \mathcal{B} \colon \mathcal{G}(B) = A_B.$
- ▶ $u = (u_B)_{B \in |\mathcal{B}|} : \mathcal{I}_B \to \mathcal{G} \circ \mathcal{F}$ ist natürliche Transformation.

Korollar

Es ex. genau eine natürliche Transformation $v=(v_A)\colon \mathcal{G}\circ\mathcal{F}\to\mathcal{I}_\mathcal{A}$ mit

- $\forall A \in |\mathcal{A}| \colon \mathcal{F}(v_A) \circ u_{\mathcal{F}(A)} = 1_{\mathcal{F}(A)},$
- $\forall B \in |\mathcal{B}| \colon v_{\mathcal{G}(B)} \circ \mathcal{G}(u_B) = 1_{\mathcal{G}(B)}.$

Idee

Mache Satz und Korollar zur Definition und untersuche die dadurch enstehenden Objekte...

Adjungierter Funktor

Definition

Sind $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ und $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ Funktoren und $u = (u_B) \colon \mathcal{I}_{\mathcal{B}} \to \mathcal{F} \circ \mathcal{G}$ sowie $v = (v_A) \colon \mathcal{G} \circ \mathcal{F} \to \mathcal{I}_{\mathcal{A}}$ nat. Trans. mit

- (1) $\mathcal{F}(v_A) \circ u_{\mathcal{F}(A)} = \mathbf{1}_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{A}|$ und
- (2) $v_{\mathcal{G}(B)} \circ \mathcal{G}(u_B) = \mathbf{1}_{\mathcal{G}(B)}$ für alle $B \in |\mathcal{B}|$,

so nennen wir

 $\mathcal G$ den zu $\mathcal F$ linksadjungierten Funktor und analog nennen wir $\mathcal F$ den zu $\mathcal G$ rechtsadjungierten Funktor.

Das Paar $(\mathcal{G}, \mathcal{F})$ nennen wir ein Paar adjungierter Funktoren.

Wo sind meine universellen Abbildungen?

 $\forall B \in |\mathcal{B}| \text{ liefert } (u_B, \mathcal{G}(B)) \text{ das Gewünschte.}$

Zusammenfassung

Ein Funktor $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ besitzt einen linksadjungierten Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ genau dann, wenn für alle $B \in |\mathcal{B}|$ eine bezüglich \mathcal{F} universelle Abbildung existiert.

Adjungierte Situation

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz.
- ▶ Universelle Abbildungen bleiben *universell* unter Verknüpfung mit Isos.
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

Beispiel

Wieder Stone-Čech-Kompaktifizierung:

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$

<u>Für alle</u> $X \in |\mathbf{Tych}|$ ist $(e_x, \beta(X))$ eine universelle Abbildung bezüglich \mathcal{F}_e Also ex. Linksadjungierte $\beta \colon \mathbf{Tych} \to \mathbf{CompHaus}$.

Wir haben (nichts-ahnend) einen Funktor konstruiert!

Inhalt

Grundlagen der Kategorientheorie (Teil II)

Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen Konvergenzstrukturen Uniforme Konvergenzstrukturen Bindeglied zwischen beiden Strukturen

Definition – Reflektive Unterkategorie

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |\mathcal{C}|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

Funktor ${\mathcal R}$ nennen wir Reflektor

Morphismen $r_X: X \to \mathcal{F}_e(X_A)$ nennen wir Reflektionen von X bezüglich A.

Durch Dualisierung erhalten wir einen weiteren Begriff:

Wir nennen \mathcal{A} coreflektiv in \mathcal{C} , genau dann, wenn \mathcal{A}^* reflektiv ist in \mathcal{C}^* .

Wir nennen \mathcal{A} epireflektiv/ extremal epireflektiv/ bireflektiv in \mathcal{C} , falls

- \triangleright \mathcal{A} reflektiv in \mathcal{C}
- ▶ $r_X: X \to \mathcal{F}_e(X_A)$ ist ein Epimorphismus/ extremaler Epimorphismus / Bimorphismus ist.

Die Morphismen r_X nennen wir Epireflektionen/ extremale Epireflektionen/ Bireflektionen.

Wie sehen Bicoreflektionen denn aus?

Im Falle von topologischen Konstrukten: ganz einfach!

Lemma

Jedes coreflektive, volle und unter Isomorphie abgeschlossene Unterkonstrukt $\mathcal A$ eines topologischen Konstrukts $\mathcal C$ ist bicoreflektiv, falls $|\mathcal A|$ mindestens ein Element mit nicht leerer zugrunde liegender Menge enthält.

Betrachte also ein Unterkonstrukt obiger Bauart. Dann:

- ▶ Für $(X,\xi) \in |\mathcal{C}|$: $c_X: (Y_A, \eta_A) \to (X,\xi)$ bijektiv.
- es ex. C-Struktur $\xi_{\mathcal{A}}$ auf X, sodass $c_X : (Y_{\mathcal{A}}, \eta_{\mathcal{A}}) \to (X, \xi_{\mathcal{A}})$ Iso.
- $(X, \xi_{\mathcal{A}}) \in |\mathcal{A}|$ (Abgeschlossenheit)
- ▶ $\xi_{\mathcal{A}}$ gröbste aller \mathcal{C} -Strukturen ξ' , mit $\xi' \leq \xi$ und $(X, \xi') \in |\mathcal{A}|$.
- $ightharpoonup c_X \circ c_X^{-1} = 1_X \colon (X, \xi_A) \to (X, \xi)$ ist universelle Abbildung...
- ▶ $((X, \xi_A), 1_X)$ Coreflektion von (X, ξ) bezüglich A.

Fazit

Man erhält die Coreflektion eines C-Objekts (X, ξ) bezüglich \mathcal{A} durch eine Modifikation der C-Struktur ξ auf X. (bis auf Isomorphie)

Was ist so toll an bireflektiven oder bicoreflektiven Unterkategorien?

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ► volles,
- ▶ unter Isomorphie abgeschlossenes
- ▶ Unterkonstrukt eines topologischen Konstrukts C.

und ist A bireflektiv (bicoreflektiv) in C, dann:

- ightharpoonup A ist topologisch.
- ightharpoonup initialen (finalen) Strukturen in $\mathcal A$ stimmen mit denen in $\mathcal C$ überein.
- ▶ finale (initiale) Strukturen in A entstehen aus den finalen (initialen) Strukturen in C, indem man den Bireflektor (Bicoreflektor) anwendet.

Oha!

Beweis

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen: Daten: X Menge,∀i ∈ I: (X_i, ξ_i) ∈ |A|, f_i: X → X_i ∈ Mor_{Set}. ξ die initiale C-Struktur auf X. Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X\colon (X,\xi_{\mathcal{A}})\to (X,\xi)$$

Zeige nun: $\xi_{\mathcal{A}}$ ist eindeutige Initialstruktur auf \mathcal{A} ...

- Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- ▶ X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $\forall i \in I : (X_i, \xi_i)n \in |\mathcal{A}|, f_i : X_i \to X \in \text{Mor}_{\text{Set}}$
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.
 - $\xi_{\mathcal{A}} = \xi_{\mathcal{C}} \dots !$

Sei \mathcal{A} bireflektiv in \mathcal{C} ... Analog.

Inhalt

Grundlagen der Kategorientheorie (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

Konvergenzstrukturen Uniforme Konvergenzstrukturen Bindeglied zwischen beiden Strukturen

Konvergenzstrukturen: GConv und ihre Kinder

a) X Menge, F(X) Menge der Filter auf X.

Ein verallgemeinerter Konvergenzraum ist ein Paar (X, q): $q \subset F(X) \times X$ mit

- C1) $\forall x \in X : (\dot{x}, x) \in q$
- C2) $(F, x) \in q \text{ und } G \supset F \Rightarrow (\mathcal{G}, x) \in q$
- b) $f \colon (X,q) \to (X',q')$ heißt stetig, falls $\forall (\mathcal{F},x) \in q \colon (f(\mathcal{F}),f(x)) \in q'$.

Ein verallgemeinerter Konvergenzraum heißt

- c) Kent-Konvergenzraum, falls:
 - C3) $(\mathcal{F}, x) \in q \Rightarrow (\mathcal{F} \cap \dot{x}, x) \in q$.
- d) Limesraum, falls:
 - C4) $((\mathcal{F}, x) \in q \text{ und } (\mathcal{G}, x) \in q) \Rightarrow (\mathcal{F} \cap \mathcal{G}, x) \in q.$
- e) $Pseudotopologischer\ Raum,\ falls:$
 - C5) $((\mathcal{U}, x) \in q \text{ für alle Ultrafilter } \mathcal{U} \supset \mathcal{F}) \Rightarrow (\mathcal{F}, x) \in q.$
- f) Prätopologischer Raum, falls:
 - C6) $\forall x \in X : (\mathcal{U}_q(x), x) \in q$, wobei $\mathcal{U}_q(x) := \bigcap \{ \mathcal{F} \in F(X) : (\mathcal{F}, x) \in q \}$

Ein prätopologischer Raum (X,q) heißt

g) topologischer (prätopologischer) Raum, falls: C7) $\forall U \in \mathcal{U}_q(x)$ existiert $V \in \mathcal{U}_q(x)$, sodass $\forall y \in V : U \in \mathcal{U}_q(y)$.

Inklusionskette

$\mathbf{GConv}\supset\mathbf{KConv}\supset\mathbf{Lim}\supset\mathbf{PsTop}\supset\mathbf{PrTop}\supset\mathbf{TPrTop}$

Proposition

KConv ist bireflektives und bicoreflektives Unterkonstrukt von GConv.

Propostion

Alle restlichen Konstrukte sind bireflektive Unterkonstrukte ihrer Vorgänger.

Beweisidee

Naheliegende Modifikation (Vergrößerung) der Konvergenzstruktur zusammen mit der Set-Abbildung $\mathbf{1}_X$ liefert das Gewünschte.

Zwischen Konvergenz und Topologie

Ist $(X,q) \in |\mathbf{GConv}|$, so lässt sich eine Topologie τ_q definieren durch

$$O \in \tau_q \iff \forall x \in X, \mathcal{F} \in F(X) \text{ mit } (\mathcal{F}, x) \in q \text{ gilt } O \in \mathcal{F}.$$

Ist (X, τ) Topologie auf X, so lässt sich **TPrTop**-Struktur definieren durch:

$$(\mathcal{F}, x) \in q_{\tau} \iff \mathcal{F} \supset \underline{\mathbf{U}}^{\tau}(x)$$

Wir erkennen, dass

- (1) $\tau_{q_{\tau}} = \tau$ für jede Topologie τ ,
- (2) $q_{\tau_q} = q$ für jede **TPrTop**-Struktur q.

Ähnliches zeigt sich für die stetigen Abbildungen.

Folglich: **Top** und **TPrTop** sind (konkret) isomorphe Kategorien.

Wir müssen also nicht zwischen beiden Kategorien unterscheiden.

Uniforme Konvergenzstrukturen

- a) X Menge, F(X) Menge der Filter auf X.
 - Ein semiuniformer Konvergenzraum ist ein Paar $(X, \mathcal{J}_X) \subset X \times F(X \times X)$, (uniforme Filter) mit:
 - UC1) $\forall x \in X : (\dot{x} \times \dot{x}) \in \mathcal{J}_X$.
 - UC2) $(\mathcal{F} \in \mathcal{J}_X \text{ und } \mathcal{F} \subset \mathcal{G}) \Rightarrow \mathcal{G} \in \mathcal{J}_X$.
 - UC3) $\mathcal{F} \in \mathcal{J}_X \Rightarrow \mathcal{F}^{-1} = \{ F^{-1} : F \in \mathcal{F} \} \in \mathcal{J}_X.$
- b) $f: (X, \mathcal{J}_X) \to (Y, \mathcal{J}_Y)$ heißt gleichmäßig stetig, falls $(f \times f)(\mathcal{J}_X) \subset \mathcal{J}_Y$.

Ein semiuniformer Konvergenzraum heißt

- c) semiuniformer Limesraum, falls:
 - UC4) $(F \in \mathcal{J}_X \text{ und } \mathcal{G} \in \mathcal{J}_X) \Rightarrow \mathcal{F} \cap \mathcal{G} \in \mathcal{J}_X.$
- d) uniformer Limesraum, falls:

UC5)
$$(\mathcal{F} \in \mathcal{J}_X \text{ und } \mathcal{G} \in \mathcal{J}_X) \Rightarrow \mathcal{F} \circ \mathcal{G} \in \mathcal{J}_X.$$

Ein uniformer Limesraum (X, \mathcal{J}_X) heißt

- e) Haupt-uniformer Limesraum falls $\emptyset \neq \mathcal{F} \subset \mathcal{P}(X \times X)$ ex.
 - mit endlicher Durchschnitsseigenschaft,
 - abg. geg. Obermengenbildung und
 - $\blacktriangleright [\mathcal{F}] := \{ \mathcal{G} \in F(X \times X) \colon \mathcal{G} \supset \mathcal{F} \} = \mathcal{J}_X.$

Inklusionskette

Proposition

Jedes der Konstrukte der Inklusionskette

$$\mathbf{SUConv}\supset\mathbf{SULim}\supset\mathbf{ULim}\supset\mathbf{PrULim}$$

ist ein bireflektives, volles und unter Isomorphie abgeschlossenes Unterkonstrukt der vorangehenden.

Wo bleibt die Kategorie die uniformen Räume Unif?

Ist $(X, \mathcal{W}) \in |\mathbf{Unif}|$ so ist $(X, [\mathcal{W}]) \in |\mathbf{SUConv}|$, wobei

$$[\mathcal{W}] := \{ \mathcal{F} \in \mathcal{F}(X \times X) \colon \mathcal{F} \supset \mathcal{W} \}.$$

Sind (X, \mathcal{W}) und (Y, \mathcal{R}) in $|\mathbf{Unif}|$, so sind äquivalent:

- (1) $f: (X, [\mathcal{W}]) \to (Y, [\mathcal{R}])$ is glm. stetig in **SUConv**.
- (2) $f:(X,\mathcal{W})\to (Y,\mathcal{R})$ ist glm. stetig in **Unif**.

Bindeglied zwischen beiden Strukturen

Cauchy-Filter

$$(X, \mathcal{J}_X) \in |\mathbf{SUConv}|.$$

$$\mathcal{F} \in \mathcal{F}(X)$$
 heißt $(\mathcal{J}_X$ -) Cauchy-Filter, falls $\mathcal{F} \times \mathcal{F} \in \mathcal{J}_X$

Ähnlich dem Übergang $\mathbf{Top} \to \mathbf{GConv}$ legen wir nun einfach fest, welche Filter Cauchy sein sollen.

Definition

X Menge. Ein Paar (X, γ) mit $\gamma \subset F(X)$ heißt Filterraum, falls

F1)
$$\forall x \in X : \dot{x} \in \gamma$$

F2)
$$(\mathcal{F} \in \gamma \text{ und } \mathcal{F} \subset \mathcal{G}) \implies \mathcal{G} \in \gamma$$

Definition

 (X, \mathcal{J}_X) heißt **Fil**-bestimmt, falls $J_X = J_{\gamma_{J_X}}$ gilt.

Hierbei ist γ_{J_X} Menge der \mathcal{J}_X -Cauchy-Filter und $\mathcal{J}_{\gamma} := \{ \mathcal{F} \in \mathcal{F}(X \times X) : \exists G \in \gamma : \mathcal{F} \supset \mathcal{G} \times \mathcal{G} \}$

$$\mathcal{J}_{\gamma} := \{ \mathcal{F} \in \mathcal{F}(X \times X) \colon \exists G \in \gamma \colon \mathcal{F} \supset \mathcal{G} \times \mathcal{G} \}$$

Ist nun alles vollständig?

Bekanntes Prinzip: Eigenschaften uniformer Räume zur Definition machen.

Definition

 $(X, \gamma) \in |\mathbf{Fil}|$ heißt vollständig, falls $\forall \mathcal{F} \in \gamma$ ein $x \in X$ ex. mit $\mathcal{F} \cap \dot{x} \in \gamma$.

Proposition

CFil (vollst. Filterräume) ist volles und unter Isomophie abgeschlossenes bicoreflektives Unterkonstrukt von **Fil**.

Ebenso verfahren wir mit der Symmetrie topologischer Räume (R0-Eigenschaft).

Definition

(X,q) heißt symmetrisch, falls $((\mathcal{F},x) \in q \text{ und } y \in \bigcap_{F \in \mathcal{F}}) \Rightarrow (F,y) \in q$.

Zielgerade

1) a) Sei (X, γ) ein Filterraum. Dann wird eine symmetrische Kent Konvergenzstruktur q_{γ} auf X definiert durch

$$(\mathcal{F}, x) \in q_{\gamma} \iff \mathcal{F} \cap \dot{x} \in \gamma$$

- b) Ist $f: (X, \gamma) \to (X', \gamma')$ eine Cauchy-stetige Abbildung zwischen Filterräumen, so ist $f: (X, q_{\gamma})$ stetig.
- 2) a) Sei (X,q) ein Kent Konvergenzraum. Dann wird eine vollständige Fil-Struktur γ_q auf X definiert durch

$$\gamma_q = \{ \mathcal{F} \in \mathcal{F}(X) \colon \exists x \in X \colon (\mathcal{F}, x) \in q \}.$$

- b) Ist $f:(X,q)\to (X',q')$ eine stetige Abbildung zwischen Kent Konvergenzräumen, dann ist $f:(X,\gamma_q)\to (X',\gamma_{q'})$ Cauchy-stetig.
- 3) Das Konstrukt **CFil** ist konkret isomorph zum Konstrukt **KConv**_S der symmetrischen Kent Konvergenzräume (und stetigen Abbildungen).

Übersicht

