Project 5 : Great Energy Predictor

UserName: Snow White

```
In [1]: #load libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import category encoders
        from sklearn.model_selection import train_test_split
        from sklearn import preprocessing
        from sklearn.preprocessing import StandardScaler
        from sklearn import linear model
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.ensemble import RandomForestRegressor
        from math import sqrt
        from sklearn.metrics import mean squared error
        import warnings
        warnings.filterwarnings("ignore", category=DeprecationWarning)
In [2]: # get building metadata
        building metadata = pd.read csv("building metadata.csv")
        print(building metadata.shape)
        building metadata.head(10)
        (1449, 6)
```

Out[2]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count
0	0	0	Education	7432	2008.0	NaN
1	0	1	Education	2720	2004.0	NaN
2	0	2	Education	5376	1991.0	NaN
3	0	3	Education	23685	2002.0	NaN
4	0	4	Education	116607	1975.0	NaN
5	0	5	Education	8000	2000.0	NaN
6	0	6	Lodging/residential	27926	1981.0	NaN
7	0	7	Education	121074	1989.0	NaN
8	0	8	Education	60809	2003.0	NaN
9	0	9	Office	27000	2010.0	NaN

```
In [3]: # get train data
    train_data = pd.read_csv("train.csv")
    print(train_data.shape)
    train_data["timestamp"] = pd.to_datetime(train_data["timestamp"])
    train_data.head(10)
```

(20216100, 4)

Out[3]:

	building_id	meter	timestamp	meter_reading
0	0	0	2016-01-01	0.0
1	1	0	2016-01-01	0.0
2	2	0	2016-01-01	0.0
3	3	0	2016-01-01	0.0
4	4	0	2016-01-01	0.0
5	5	0	2016-01-01	0.0
6	6	0	2016-01-01	0.0
7	7	0	2016-01-01	0.0
8	8	0	2016-01-01	0.0
9	9	0	2016-01-01	0.0

In [4]: # get weather train data weather_train_data = pd.read_csv("weather_train.csv") print(weather_train_data.shape) weather_train_data["timestamp"] = pd.to_datetime(weather_train_data["timestamp"]) weather_train_data.head(10)

(139773, 9)

Out[4]:

	site_id	timestamp	air_temperature	cloud_coverage	dew_temperature	precip_depth_1_hr	sea
0	0	2016-01- 01 00:00:00	25.0	6.0	20.0	NaN	
1	0	2016-01- 01 01:00:00	24.4	NaN	21.1	-1.0	
2	0	2016-01- 01 02:00:00	22.8	2.0	21.1	0.0	
3	0	2016-01- 01 03:00:00	21.1	2.0	20.6	0.0	
4	0	2016-01- 01 04:00:00	20.0	2.0	20.0	-1.0	
5	0	2016-01- 01 05:00:00	19.4	NaN	19.4	0.0	
6	0	2016-01- 01 06:00:00	21.1	6.0	21.1	-1.0	
7	0	2016-01- 01 07:00:00	21.1	NaN	21.1	0.0	
8	0	2016-01- 01 08:00:00	20.6	NaN	20.0	0.0	
9	0	2016-01- 01 09:00:00	21.1	NaN	20.6	0.0	

In [5]: # merge building_metadata and train data
building_train_merged = pd.merge(building_metadata, train_data, how = 'i
 nner', on = ['building_id'], sort = True)
 print(building_train_merged.shape)
 building_train_merged.head(10)

(20216100, 9)

Out[5]:

		site_id	building_id	primary_use	square_feet	year_built	floor_count	meter	timestamp	mete
-	0	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 00:00:00	
	1	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 01:00:00	
	2	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 02:00:00	
	3	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 03:00:00	
	4	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 04:00:00	
	5	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 05:00:00	
	6	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 06:00:00	
	7	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 07:00:00	
	8	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 08:00:00	
	9	0	0	Education	7432	2008.0	NaN	0	2016-01- 01 09:00:00	

In [6]: # merge weather_train with merged building_metadata and train data
 data_merged = pd.merge(building_train_merged, weather_train_data, how =
 'left', on = ['site_id', 'timestamp'], sort = True)
 print(data_merged.shape)
 data_merged.head(10)

(20216100, 16)

Out[6]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	meter	timestamp
0	0	0	Education	7432	2008.0	NaN	0	2016-01- 01
1	0	1	Education	2720	2004.0	NaN	0	2016-01- 01
2	0	2	Education	5376	1991.0	NaN	0	2016-01- 01
3	0	3	Education	23685	2002.0	NaN	0	2016-01- 01
4	0	4	Education	116607	1975.0	NaN	0	2016-01- 01
5	0	5	Education	8000	2000.0	NaN	0	2016-01- 01
6	0	6	Lodging/residential	27926	1981.0	NaN	0	2016-01- 01
7	0	7	Education	121074	1989.0	NaN	0	2016-01- 01
8	0	8	Education	60809	2003.0	NaN	0	2016-01- 01
9	0	9	Office	27000	2010.0	NaN	0	2016-01- 01

```
In [7]: # extract hour, day, weekday, month from timestamp attribute in data_mer
    ged
    data_merged['hour'] = data_merged['timestamp'].dt.hour
    data_merged['day'] = data_merged['timestamp'].dt.day
    data_merged['weekday'] = data_merged['timestamp'].dt.weekday
    data_merged['month'] = data_merged['timestamp'].dt.month
    del data_merged['timestamp']
    data_merged.head(10)
```

Out[7]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	meter	meter_readiı
0	0	0	Education	7432	2008.0	NaN	0	С
1	0	1	Education	2720	2004.0	NaN	0	С
2	0	2	Education	5376	1991.0	NaN	0	С
3	0	3	Education	23685	2002.0	NaN	0	С
4	0	4	Education	116607	1975.0	NaN	0	С
5	0	5	Education	8000	2000.0	NaN	0	С
6	0	6	Lodging/residential	27926	1981.0	NaN	0	С
7	0	7	Education	121074	1989.0	NaN	0	С
8	0	8	Education	60809	2003.0	NaN	0	С
9	0	9	Office	27000	2010.0	NaN	0	С

```
In [8]: # replace numerical values of meter with categorical values
    data_merged['meter'].replace({0:"Electricity",1:"ChilledWater",2:"Steam"
    ,3:"HotWater"},inplace=True)
```

```
In [9]: # plot for distribution of meter reading
   plt.rcParams['figure.figsize'] = (8, 5)
   ax = sns.distplot(data_merged['meter_reading'], color = 'teal')
   plt.xlabel('meter_reading', fontsize = 12)
   plt.ylabel('Count ', fontsize = 12)
   plt.xticks(fontsize = 12)
   plt.yticks(fontsize = 12)
   plt.title(' Distribution of meter_reading ', fontsize = 15)
   plt.show()
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/distributions.py:218: MatplotlibDeprecationWarning: The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead. color=hist_color, **hist_kws)


```
In [10]: # descriptive statistics of meter reading
         data merged['meter reading'].describe()
Out[10]: count
                  2.021610e+07
                  2.117121e+03
         mean
                  1.532356e+05
         std
                  0.000000e+00
         min
         25%
                  1.830000e+01
         50%
                  7.877500e+01
         75%
                  2.679840e+02
         max
                  2.190470e+07
         Name: meter_reading, dtype: float64
```



```
In [12]: # check the maximum and minimum values of meter_reading in training set
    print("Max: ",data_merged['meter_reading'].max())
    print("Min: ",data_merged['meter_reading'].min())
```

Max: 16.902211829285342

Min: 0.0

```
In [13]: # Distribution of data with respect to meter type
   plt.rcParams['figure.figsize'] = (8, 5)
   ax = sns.countplot(data = data_merged, x = 'meter', palette = 'CMRmap', a
   lpha = 0.5)
   ax.set_ylabel('Count', fontsize = 12)
   ax.set_xlabel('Meter Type', fontsize = 12)
   plt.show()
```



```
In [14]: # Distribution of data with respect to primary_use
   plt.rcParams['figure.figsize'] = (15, 12)
   ax = sns.boxplot(data = data_merged, y ='primary_use', x = 'meter_readin
   g', color = 'peru', boxprops=dict(alpha=.3))
   ax.set_xlabel('Log(Meter Reading)', fontsize = 20)
   ax.set_ylabel('primary_use', fontsize = 20)
   plt.show()
```



```
In [15]: # plot for distribution of square feet
  plt.rcParams['figure.figsize'] = (8, 5)
  ax = sns.distplot(data_merged['square_feet'], color = 'teal')
  plt.xlabel('square_feet', fontsize = 12)
  plt.ylabel('Count ', fontsize = 12)
  plt.xticks(fontsize = 12)
  plt.yticks(fontsize = 12)
  plt.title(' Distribution of square_feet ', fontsize = 15)
  plt.show()
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/distributions.py:218: MatplotlibDeprecationWarning:
The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
color=hist_color, **hist_kws)


```
In [16]: # log transformation of square_feet and distribution of square_feet afte
    r transformation
    data_merged['square_feet'] = np.log1p(data_merged['square_feet'])
    plt.rcParams['figure.figsize'] = (10, 8)
    ax = sns.distplot(data_merged['meter_reading'], color = 'teal')
    plt.xlabel('square_feet', fontsize = 12)
    plt.ylabel('Count ', fontsize = 12)
    plt.xticks(fontsize = 12)
    plt.yticks(fontsize = 12)
    plt.title(' Distribution of square_feet ', fontsize = 15)
    plt.show()
```


Out[17]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	meter	meter_reading
0	0	0	1.0	8.913685	2008.0	NaN	Electricity	0.0
1	0	1	1.0	7.908755	2004.0	NaN	Electricity	0.0
2	0	2	1.0	8.589886	1991.0	NaN	Electricity	0.0
3	0	3	1.0	10.072639	2002.0	NaN	Electricity	0.0
4	0	4	1.0	11.666573	1975.0	NaN	Electricity	0.0

```
In [18]: # get dummies for the catergorical attribute 'meter'
meter_dummies = pd.get_dummies(data_merged['meter'])
```

```
In [19]: # drop the actual attribute 'meter'
data_merged = data_merged.drop(columns=['meter'], axis = 1)
data_merged.head(10)
```

Out[19]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	meter_reading	air_tempe
0	0	0	1.0	8.913685	2008.0	NaN	0.0	
1	0	1	1.0	7.908755	2004.0	NaN	0.0	
2	0	2	1.0	8.589886	1991.0	NaN	0.0	
3	0	3	1.0	10.072639	2002.0	NaN	0.0	
4	0	4	1.0	11.666573	1975.0	NaN	0.0	
5	0	5	1.0	8.987322	2000.0	NaN	0.0	
6	0	6	2.0	10.237349	1981.0	NaN	0.0	
7	0	7	1.0	11.704165	1989.0	NaN	0.0	
8	0	8	1.0	11.015510	2003.0	NaN	0.0	
9	0	9	5.0	10.203629	2010.0	NaN	0.0	

```
In [20]: # concatinate the data set with dummies of 'meter'
    data_merged = pd.concat([meter_dummies, data_merged], axis = 1)
    data_merged.head(10)
```

Out[20]:

	ChilledWater	Electricity	HotWater	Steam	site_id	building_id	primary_use	square_feet	year
0	0	1	0	0	0	0	1.0	8.913685	2
1	0	1	0	0	0	1	1.0	7.908755	2
2	0	1	0	0	0	2	1.0	8.589886	1
3	0	1	0	0	0	3	1.0	10.072639	2
4	0	1	0	0	0	4	1.0	11.666573	1
5	0	1	0	0	0	5	1.0	8.987322	2
6	0	1	0	0	0	6	2.0	10.237349	1
7	0	1	0	0	0	7	1.0	11.704165	1
8	0	1	0	0	0	8	1.0	11.015510	2
9	0	1	0	0	0	9	5.0	10.203629	2

10 rows × 22 columns

```
In [21]: # standardize year values
    data_merged['year_built'] = np.uint8(data_merged['year_built']-1900, inp
    lace = True)
```

Out[22]:

	ChilledWater	Electricity	HotWater	Steam	site_id	building_id	primary_use	square_feet
0	16033660	12060910	18952063	17507387	1076662	8784	8165504	8.913685
1	16033660	12060910	18952063	17507387	1076662	8784	8165504	7.908755
2	16033660	12060910	18952063	17507387	1076662	8784	8165504	8.589886
3	16033660	12060910	18952063	17507387	1076662	8784	8165504	10.072639
4	16033660	12060910	18952063	17507387	1076662	8784	8165504	11.666573

5 rows × 22 columns

```
In [23]: # find the number of missing values in each column
         data merged.isnull().sum(axis = 0)
Out[23]: ChilledWater
                                      0
         Electricity
                                      0
         HotWater
                                      0
         Steam
                                      0
         site_id
                                      0
         building_id
                                      0
         primary_use
                                      0
         square_feet
                                      0
         year_built
                                      0
         floor_count
                               16709167
         meter_reading
         air_temperature
                                  96658
         cloud_coverage
                                8825365
         dew_temperature
                                100140
         precip_depth_1_hr
                                3749023
         sea level pressure
                                1231669
         wind_direction
                                      0
         wind_speed
                                 143676
         hour
                                      0
         day
                                      0
         weekday
                                      0
                                      0
         month
         dtype: int64
In [24]: # replace the missing values with 0
         data_merged = data_merged.fillna(0)
In [25]: # get the valid rows from the data merged which are non zero
         data merged = data merged[(data merged.square feet>0) & (data merged.yea
         r built>0) & (data merged.floor count >0)
```

& (data merged.primary use >0)]

```
In [26]: # get the correlation matrix of the attributes in the data_merged datase
t
import seaborn as sns
corrmat = data_merged.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,20))

#plot heat map
g=sns.heatmap(data_merged[top_corr_features].corr(),annot=True,cmap="RdY lGn")
```



```
In [28]: # Standardize(scale) the data
         scalerX = StandardScaler()
         columnsX = X_train.columns
         scalerX.fit(X_train)
         X_train_scaled = scalerX.transform(X_train)
         X_val_scaled = scalerX.transform(X_val)
         X_train_scaled_df = pd.DataFrame(X_train_scaled, columns=columnsX)
         X_val_scaled_df = pd.DataFrame(X_val_scaled, columns=columnsX)
In [29]: #LINEAR REGRESSION model
         LR model = linear model.LinearRegression().fit(X = X train scaled df, y
         = Y_train)
         LR predicted = LR model.predict(X val scaled df)
         print('Linear Regression Model')
         LR R square = LR model.score(X = X val scaled df,y = Y val)
         print()
         print('R square')
         print(LR R square)
         LR RootMeanSquareError = np.sqrt(mean squared error(Y val, LR predicted
         ))
         print()
         print('Root Mean Square Error')
         print(LR RootMeanSquareError)
```

Linear Regression Model

0.43923074997777584

Root Mean Square Error 1.561774097294691

R square

```
In [30]: #Ridge REGRESSION model
         Ridge model = linear model.Ridge(alpha=.5).fit(X = X train scaled df, y
         = Y train)
         Ridge predicted = Ridge model.predict(X val scaled df)
         print('Ridge Regression Model')
         Ridge R square = Ridge_model.score(X = X_val_scaled_df,y = Y_val)
         print()
         print('R square')
         print(Ridge_R_square)
         Ridge RootMeanSquareError = np.sqrt(mean squared error(Y val, Ridge pred
         icted))
         print()
         print('Root Mean Square Error')
         print(Ridge RootMeanSquareError)
         Ridge Regression Model
         R square
         0.4392309491413351
         Root Mean Square Error
         1.5617738199537743
In [31]: #Bayesian Ridge REGRESSION model
         Y train = Y train.values.ravel()
         Bayesian_Ridge_model = linear_model.BayesianRidge().fit(X = X train scal
         ed df, y = Y train)
         Bayesian Ridge predicted = Bayesian Ridge model.predict(X val scaled df)
         print('Bayesian Ridge Regression Model')
         Bayesian Ridge R square = Bayesian Ridge model.score(X = X val scaled df
         ,y = Y val)
         print()
         print('R square')
         print(Bayesian Ridge R square)
         Bayesian Ridge RootMeanSquareError = np.sqrt(mean squared error(Y val, B
         ayesian Ridge predicted))
         print()
         print('Root Mean Square Error')
```

Bayesian Ridge Regression Model

print(Bayesian Ridge RootMeanSquareError)

0.43923087396057203

Root Mean Square Error
1.5617739246451292

R square

```
In [32]: # Gradient Boosting REGRESSION model
         GB_model = GradientBoostingRegressor(n_estimators=10, learning_rate=0.1,
                   max depth=1, random state=0).fit(X = X train scaled df, y = Y_
         train)
         GB predicted = GB model.predict(X val scaled df)
         print('Gradient Boosting Regressor')
         GB_R_square = GB_model.score(X = X_val_scaled_df,y = Y_val)
         print()
         print('R square')
         print(GB_R_square)
         GB_RootMeanSquareError = np.sqrt(mean_squared_error(Y_val, GB_predicted
         ))
         print()
         print('Root Mean Square Error')
         print(GB_RootMeanSquareError)
         print()
         print('Feature importances')
         print(GB model.feature importances )
         Gradient Boosting Regressor
         R square
         0.3026301927146213
```

Root Mean Square Error 1.7416371924352358

0.

0.

0.

0.

0.

0.69540225 0.

0.

0.

0.

]

0.30459775 0.

0.

0.

0.

0.

0.

Feature importances

[0.

0.

0.

0.

```
In [33]: # Random Forest REGRESSION model
         RF model = RandomForestRegressor(n estimators=10, random state=42).fit(X
         = X_train_scaled_df, y = Y_train)
         RF predicted = RF model.predict(X val scaled df)
         print('Random Forest Regressor')
         RF R square = RF model.score(X = X val scaled df,y = Y val)
         print()
         print('R square')
         print(RF_R_square)
         RF RootMeanSquareError = np.sqrt(mean squared error(Y val, RF predicted
         ))
         print()
         print('Root Mean Square Error')
         print(RF_RootMeanSquareError)
         print()
         print('Feature importances')
         print(RF model.feature importances_ )
```

R square
0.9655695882252688

Root Mean Square Error
0.3869877595712031

Feature importances
[9.55050710e-03 1.74860238e-02 9.59637762e-03 1.24279025e-02 4.74667305e-02 3.11190941e-02 1.85284481e-02 4.18146707e-01 6.84833133e-02 9.38473759e-02 7.43693295e-02 9.78923142e-05 6.29277176e-02 3.60597681e-04 8.52371138e-03 5.09873214e-03 5.26616847e-03 2.38243250e-02 1.91478862e-02 1.16321861e-02 6.20989739e-02]

Random Forest Regressor

```
In [34]: # plot feature importances
   imp_features = pd.Series(RF_model.feature_importances_, index = X_train.
        columns)
   imp_features.plot(kind = "barh")
```

Out[34]: <matplotlib.axes. subplots.AxesSubplot at 0x128e4f320>


```
In [36]: # plot RMSE for the evaluation of models
plt.rcParams['figure.figsize'] = (10, 8)
ModelEvaluation.plot(kind='bar',x='Model',y='RMSE')
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1290a92b0>


```
In [37]: # plot R_Square for the evaluation of models
    plt.rcParams['figure.figsize'] = (10, 8)
    ModelEvaluation.plot(kind='bar',x='Model',y='R_Square')
```

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x128aa7048>


```
In [38]: # get test data
    test_data = pd.read_csv("test.csv")
    print(test_data.shape)
    test_data["timestamp"] = pd.to_datetime(test_data["timestamp"])
    test_data.head(10)
```

(41697600, 4)

Out[38]:

	row_id	building_id	meter	timestamp
0	0	0	0	2017-01-01
1	1	1	0	2017-01-01
2	2	2	0	2017-01-01
3	3	3	0	2017-01-01
4	4	4	0	2017-01-01
5	5	5	0	2017-01-01
6	6	6	0	2017-01-01
7	7	7	0	2017-01-01
8	8	7	1	2017-01-01
9	9	8	0	2017-01-01

```
In [39]: # get weather test data
    weather_test_data = pd.read_csv("weather_test.csv")
    print(weather_test_data.shape)
    weather_test_data["timestamp"] = pd.to_datetime(weather_test_data["timestamp"])
    weather_test_data.head(10)
```

(277243, 9)

Out[39]:

	site_id	timestamp	air_temperature	cloud_coverage	dew_temperature	precip_depth_1_hr	sea
0	0	2017-01- 01 00:00:00	17.8	4.0	11.7	NaN	
1	0	2017-01- 01 01:00:00	17.8	2.0	12.8	0.0	
2	0	2017-01- 01 02:00:00	16.1	0.0	12.8	0.0	
3	0	2017-01- 01 03:00:00	17.2	0.0	13.3	0.0	
4	0	2017-01- 01 04:00:00	16.7	2.0	13.3	0.0	
5	0	2017-01- 01 05:00:00	15.6	2.0	12.8	0.0	
6	0	2017-01- 01 06:00:00	15.0	0.0	12.8	0.0	
7	0	2017-01- 01 07:00:00	15.0	2.0	13.3	0.0	
8	0	2017-01- 01 08:00:00	13.3	0.0	12.2	0.0	
9	0	2017-01- 01 09:00:00	12.2	4.0	11.7	0.0	

In [40]: # merge building_metadata and test data building_test_merged = pd.merge(building_metadata, test_data, how = 'inn er', on = ['building_id'], sort = True) print(building_test_merged.shape) building_test_merged.head(10)

(41697600, 9)

Out[40]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	row_id	meter	timestam
0	0	0	Education	7432	2008.0	NaN	0	0	2017-01 0 00:00:0
1	0	0	Education	7432	2008.0	NaN	129	0	2017-01 0 01:00:0
2	0	0	Education	7432	2008.0	NaN	258	0	2017-01 0 02:00:0
3	0	0	Education	7432	2008.0	NaN	387	0	2017-01 0 03:00:0
4	0	0	Education	7432	2008.0	NaN	516	0	2017-01 0 04:00:0
5	0	0	Education	7432	2008.0	NaN	645	0	2017-01 0 05:00:0
6	0	0	Education	7432	2008.0	NaN	774	0	2017-01 0 06:00:0
7	0	0	Education	7432	2008.0	NaN	903	0	2017-01 0 07:00:0
8	0	0	Education	7432	2008.0	NaN	1032	0	2017-01 0 08:00:0
9	0	0	Education	7432	2008.0	NaN	1161	0	2017-01 0 09:00:0

(41697600, 16)

Out[41]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	row_id	meter	time
0	0	0	Education	7432	2008.0	NaN	0	0	2(
1	0	1	Education	2720	2004.0	NaN	1	0	20
2	0	2	Education	5376	1991.0	NaN	2	0	20
3	0	3	Education	23685	2002.0	NaN	3	0	20
4	0	4	Education	116607	1975.0	NaN	4	0	20
5	0	5	Education	8000	2000.0	NaN	5	0	20
6	0	6	Lodging/residential	27926	1981.0	NaN	6	0	20
7	0	7	Education	121074	1989.0	NaN	7	0	20
8	0	7	Education	121074	1989.0	NaN	8	1	20
9	0	8	Education	60809	2003.0	NaN	9	0	20

```
In [42]: # extract hour, day, weekday, month from timestamp attribute in data_mer
ged

data_merged_test['hour'] = data_merged_test['timestamp'].dt.hour
data_merged_test['day'] = data_merged_test['timestamp'].dt.day
data_merged_test['weekday'] = data_merged_test['timestamp'].dt.weekday
data_merged_test['month'] = data_merged_test['timestamp'].dt.month
del data_merged_test['timestamp']
data_merged_test.head(10)
```

Out[42]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	row_id	meter	air_
0	0	0	Education	7432	2008.0	NaN	0	0	
1	0	1	Education	2720	2004.0	NaN	1	0	
2	0	2	Education	5376	1991.0	NaN	2	0	
3	0	3	Education	23685	2002.0	NaN	3	0	
4	0	4	Education	116607	1975.0	NaN	4	0	
5	0	5	Education	8000	2000.0	NaN	5	0	
6	0	6	Lodging/residential	27926	1981.0	NaN	6	0	
7	0	7	Education	121074	1989.0	NaN	7	0	
8	0	7	Education	121074	1989.0	NaN	8	1	
9	0	8	Education	60809	2003.0	NaN	9	0	

```
In [43]: # replace numerical values of meter with categorical values
    data_merged_test['meter'].replace({0:"Electricity",1:"ChilledWater",2:"S
    team",3:"HotWater"},inplace=True)
```

```
In [44]: # apply log transformation on square_feet
    data_merged_test['square_feet'] = np.log1p(data_merged_test['square_feet'])
```

Out[45]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	row_id	meter	air_te
0	0	0	1.0	8.913685	2008.0	NaN	0	Electricity	
1	0	1	1.0	7.908755	2004.0	NaN	1	Electricity	
2	0	2	1.0	8.589886	1991.0	NaN	2	Electricity	
3	0	3	1.0	10.072639	2002.0	NaN	3	Electricity	
4	0	4	1.0	11.666573	1975.0	NaN	4	Electricity	

```
In [46]: # get the dummies of the attribute 'meter'
meter_dummies = pd.get_dummies(data_merged_test['meter'])
```

In [47]: # drop the actual attribute 'meter'
 data_merged_test = data_merged_test.drop(columns=['meter'], axis = 1)
 data_merged_test.head(10)

Out[47]:

	site_id	building_id	primary_use	square_feet	year_built	floor_count	row_id	air_temperature
0	0	0	1.0	8.913685	2008.0	NaN	0	17.8
1	0	1	1.0	7.908755	2004.0	NaN	1	17.8
2	0	2	1.0	8.589886	1991.0	NaN	2	17.8
3	0	3	1.0	10.072639	2002.0	NaN	3	17.8
4	0	4	1.0	11.666573	1975.0	NaN	4	17.8
5	0	5	1.0	8.987322	2000.0	NaN	5	17.8
6	0	6	2.0	10.237349	1981.0	NaN	6	17.8
7	0	7	1.0	11.704165	1989.0	NaN	7	17.8
8	0	7	1.0	11.704165	1989.0	NaN	8	17.8
9	0	8	1.0	11.015510	2003.0	NaN	9	17.8

```
In [48]: # concatinate the data set with dummies of 'meter'
    data_merged_test = pd.concat([meter_dummies, data_merged_test], axis = 1
    )
    data_merged_test.head(10)
```

Out[48]:

	ChilledWater	Electricity	HotWater	Steam	site_id	building_id	primary_use	square_feet	year
0	0	1	0	0	0	0	1.0	8.913685	2
1	0	1	0	0	0	1	1.0	7.908755	2
2	0	1	0	0	0	2	1.0	8.589886	1
3	0	1	0	0	0	3	1.0	10.072639	2
4	0	1	0	0	0	4	1.0	11.666573	1
5	0	1	0	0	0	5	1.0	8.987322	2
6	0	1	0	0	0	6	2.0	10.237349	1
7	0	1	0	0	0	7	1.0	11.704165	1
8	1	0	0	0	0	7	1.0	11.704165	1
9	0	1	0	0	0	8	1.0	11.015510	2

10 rows × 22 columns

Out[50]:

	ChilledWater	Electricity	HotWater	Steam	site_id	building_id	primary_use	square_feet
0	32972640	24755760	39157200	36021120	2260080	17520	16801680	8.913685
1	32972640	24755760	39157200	36021120	2260080	17520	16801680	7.908755
2	32972640	24755760	39157200	36021120	2260080	17520	16801680	8.589886
3	32972640	24755760	39157200	36021120	2260080	17520	16801680	10.072639
4	32972640	24755760	39157200	36021120	2260080	17520	16801680	11.666573

5 rows × 22 columns

```
In [51]: # find the number of missing values in each column
         data merged test.isnull().sum(axis = 0)
Out[51]: ChilledWater
         Electricity
                                      0
         HotWater
                                      0
                                      0
         Steam
         site_id
                                      0
         building_id
                                      0
         primary_use
                                      0
         square_feet
                                      0
         year_built
                                      0
         floor count
                               34444320
         row_id
         air_temperature
                                 221901
         cloud_coverage
                              19542180
         dew_temperature
                                260799
         precip depth 1 hr
                               7801563
         sea level pressure
                                2516826
         wind_direction
                                      0
         wind_speed
                                 302089
         hour
                                      0
         day
                                      0
         weekday
                                      0
                                      0
         month
         dtype: int64
In [52]: # replace the missing values with averages
         avgs = data merged test.loc[:,data merged test.isnull().sum(axis = 0) >
         0].mean()
         avgs = avgs.astype(int)
         data_merged_test = data_merged_test.fillna(avgs)
In [53]: # get the shape of the data merged test set
         data merged test.shape
Out[53]: (41697600, 22)
```

```
In [54]: # get sample_submission to see the format of output
    sample_submission = pd.read_csv("sample_submission.csv")
    print(sample_submission.shape)
    sample_submission.head(10)

(41697600, 2)
```

•

Out[54]:

	row_id	meter_reading
0	0	0
1	1	0
2	2	0
3	3	0
4	4	0
5	5	0
6	6	0
7	7	0
8	8	0
9	9	0

```
In [55]: # get rowids from data_merged_test and then drop them
rowids = pd.DataFrame(data_merged_test['row_id'])
data_merged_test=data_merged_test.drop(["row_id"],axis=1)
```

```
In [56]: # standardize(scale) the test set
    columnsX = data_merged_test.columns
    X_test_scaled = scalerX.transform(data_merged_test)
    X_test_scaled_df = pd.DataFrame(X_test_scaled, columns=columnsX)
```

```
In [58]: # Build the output in the required format with rowids and predicted valu
    es on the test set
    output = pd.DataFrame({'row_id':rowids["row_id"], 'meter_reading': test_
        pred})
```

In [59]: # check the output output

	row_id	meter_reading
0	0	1.533930
1	1	0.557138
2	2	1.755082
3	3	2.412684
4	4	3.958811
5	5	1.473085
6	6	2.728818
7	7	3.958811
8	8	3.958811
9	9	2.135211
10	10	2.343753
11	11	2.343753
12	12	6.158011
13	13	3.495652
14	14	4.168485
15	15	3.336897
16	16	3.336897
17	17	2.695239
18	18	2.695239
19	19	2.695239
20	20	2.695239
21	21	4.158408
22	22	2.250648
23	23	3.958811
24	24	2.203024
25	25	3.958811
26	26	1.533930
27	27	0.557138
28	28	3.958811
29	29	3.426255
41697570	41498533	4.575191
41697571	41498534	2.473921
41697572	41498535	0.694374

	row_id	meter_reading
41697573	41498536	4.161283
41697574	41498537	4.161283
41697575	41498538	4.187002
41697576	41498569	4.187002
41697577	41498539	4.575191
41697578	41498540	2.273064
41697579	41498541	2.273064
41697580	41498542	2.389645
41697581	41498543	2.389645
41697582	41498544	1.159257
41697583	41498545	2.421060
41697584	41498546	2.421060
41697585	41498547	4.304390
41697586	41498548	4.304390
41697587	41498549	3.923303
41697588	41498550	3.923303
41697589	41498551	4.092965
41697590	41498552	4.392161
41697591	41498553	2.330136
41697592	41498554	2.696598
41697593	41498555	2.696598
41697594	41498556	0.694374
41697595	41498557	2.559255
41697596	41498558	0.134225
41697597	41498559	2.749679
41697598	41498560	2.499639
41697599	41498570	3.485455

41697600 rows × 2 columns

```
In [60]: # check the maximum and minimum values for predicted meter reading
    print("Max: ",output['meter_reading'].max())
    print("Min: ",output['meter_reading'].min())
```

Max: 9.414237718580951

Min: 0.0

```
In [61]: # copy the output to Project5_submission_results.csv
    output.to_csv('Project5_submission_results.csv', index=False)

In [62]: # check Project5_submission_results.csv
    Project5_submission_results = pd.read_csv("Project5_submission_results.c
    sv")
    print(Project5_submission_results.shape)
    Project5_submission_results.head(10)

    (41697600, 2)
```

Out[62]:

	row_id	meter_reading
0	0	1.533930
1	1	0.557138
2	2	1.755082
3	3	2.412684
4	4	3.958811
5	5	1.473085
6	6	2.728818
7	7	3.958811
8	8	3.958811
9	9	2.135211

In []: