

Basics of Unsupervised Learning

Mladen Nikolić

Faculty of Mathematics University of Belgrade

Everseen

Overview

Types of Unsupervised Learning

Dimensionality Reduction / Reprezentation Learning

Clustering

Overview

Types of Unsupervised Learning

Dimensionality Reduction / Reprezentation Learning

Clustering

Unsupervised learning

- Model should identify some relevant structure in the data
- ▶ Input data consists only of feature values, there are no target values
- ► Task to be learned is defined by the algorithm for different kinds of tasks, different learning algorithms are formulated
- ► Typical tasks:
 - Dimensionality reduction
 - Representation learning
 - Clustering

Dimensionality reduction

- ▶ Identification of subspaces (planes or manifolds) in which data lie
- ▶ PCA, autoencoders, t-SNE, ...
- ▶ Mostly used for data preprocessing and visualisation

Figure: S. Roweis, L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings

Representation learning

- ▶ Finding representations in data which facilitate exploitation of relevant information
- Can include dimensionality reduction
- ▶ PCA, autoencoders, VAEs, GANs, word2vec,...
- ▶ Used for natural language understanding, semantic image manipulation, improvement of other algorithms...

Clustering

- Identification of groups of data
- ▶ Grouping can be defined based on proximity, density, shape, ...
- \blacktriangleright k means, DBSCAN, Gaussian mixture, agglomerative hierarchical clustering, ...
- ► Tasks like community detection in social networks, human genetic clustering, detection of different types of tissue in medical imaging, data reduction
- ▶ Interesting both in its own right and as a data preprocessing technique

Clustering illustration

Figure: https://towardsdatascience.com/k-means-data-clustering-bce3335d2203

Overview

Types of Unsupervised Learning

Dimensionality Reduction / Reprezentation Learning

Clustering

Towards principal component analysis

- Data usually lie in a small dimensional surface within the feature space
- Consider faces
- Assume a linear surface a plane
- Data need not lie perfectly on that plane, but we can find the best one and project the data to it
- ► Some information may be lost

Data variability

- ▶ Variable values change as we switch from instance to instance
- ▶ The way they change together reflects the dependencies among variables
- ▶ If they were constant, there would be no information about dependencies of variables
- Variability is important!

How to choose a plane?

How to choose a plane?

- ▶ Among planes of some dimension, choose one which preserves the most variation when data is projected to it
- ► How many dimensions?
- ► Let's start with a line

Variability along the line

Principal components

Variance and covariance

▶ For sample of values $x_1, ..., x_n$, variance is defined by:

$$Var[X] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

Covariance of two variables measures how they vary together

$$Cov[X, Y] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

▶ For variables X_1, \ldots, X_n we can define covariance matrix Σ such that

$$\Sigma_{ij} = Cov[X_i, X_j]$$

Variance of the data

▶ Variation of the data:

$$Var[X] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

▶ Variation of the data projected on unit vector *d*:

$$Var[Xd] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \cdot d - \overline{x} \cdot d)^2$$

▶ If we center the data (s.t. \overline{x} =0) prior to computation:

$$Var[Xd] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \cdot d)^2$$

First principal component

► Find the direction of maximal variance:

$$\arg\max_{\|d\|=1} \sum_{i=1}^{N} (x_i \cdot d)^2 =$$

$$\arg\max_{\|d\|=1} \|Xd\|_2^2 =$$

$$\arg\max_{\|d\|=1} d^T X^T X d =$$

$$\arg\max_{\|d\|=1} d^T \Sigma d$$

Properties of Σ

- ▶ If it holds $Av = \lambda v$ for $v \neq 0$, v is an eigenvector of matrix A and λ is its corresponding eigenvalue
- $\Sigma = X^T X$ is a symmetric matrix with orthonormal eigenvectors v_i corresponding to different eigenvalues λ_i which are real and nonnegative
- Assume λ_i are sorted in decreasing order
- ► We can use them to form an orthonormal basis of the space in which data lie and decompose

$$d = \sum_{i=1}^{n} \alpha_i v_i$$

First principal component

▶ Find the direction of maximal variance:

$$\arg\max_{\|d\|=1} d^T \Sigma d = \\ \arg\max_{\|d\|=1} \left(\sum_{i=1}^n \alpha_i v_i\right) \Sigma \left(\sum_{j=1}^n \alpha_j v_j\right) = \\ \arg\max_{\|d\|=1} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j v_i^T \Sigma v_j = \\ \arg\max_{\|d\|=1} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \lambda_j v_i^T v_j = \\ \arg\max_{\|d\|=1} \sum_{i=1}^n \sum_{j=1}^n \alpha_i^2 \lambda_i$$

▶ How to maximize with respect to *d*?

First principal component

Find the direction of maximal variance:

$$\arg\max_{\|d\|=1} \sum_{i=1}^{n} \alpha_i^2 \lambda_i$$

ho $\alpha_1, \ldots, \alpha_n$ are constrained by the budget ||d|| = 1:

$$1 = \|d\|^2 = d^T d = \left(\sum_{i=1}^n \alpha_i v_i\right)^T \left(\sum_{i=1}^n \alpha_i v_i\right) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j v_i^T v_j = \sum_{i=1}^n \alpha_i^2$$

- ▶ Spend the whole budget at λ_1 since it is the greatest
- ▶ Therefore, eigenvector of Σ is the first principal component

How much variation?

 \triangleright Fraction of variation captured by the plane spanned by first k eigenvectors is

$$\sum_{i=1}^{k} \frac{\lambda_i}{\sum_{j=1}^{n} \lambda_j}$$

Dimensionality reduction

- ► Pick dominant eigenvectors to explain enough variance and arrange them as columns of matrix V
- ▶ Transform the data to new feature space by: X' = XV
- ▶ If needed, data can be returned to original feature space by: $X'V^T$

Face detection via PCA

Eigenfaces

Projection of images to eigenface space

Autoencoder

- ► Nonlinear cousin of PCA
- ► Neural network of specific architecture
- Minimizes reconstruction loss:

$$\min_{w} \sum_{i=1}^{N} \|x_i - f_w(x_i)\|_2^2$$

Autoencoder architecture

Latent space

- ► Bottleneck principle
- Encoder maps from feature space to latent space
- Decoder maps from latent space to feature space, thus parametrizing the data surface
- ▶ By moving around latent space and decoding, we move around data surface
- Similarities are preserved to some degree

Latent space

```
666666666666666
```

Latent space

Autoencoder applications

- ► Dimensionality reduction
- Denoising
- ▶ Outlier detection
- Search

Denoising autoencoder

Denoising autoencoder

Overview

Types of Unsupervised Learning

Dimensionality Reduction / Reprezentation Learning

Clustering

Kinds of clusters

- ► Globular
- ► Well separated
- Dense
- Hierarchical
- Connected clusters
- **.**..

Cluster granularity

K means

- ▶ Randomly initialize *K* centroids by random sampling from the data
- ► Repeat until there is no change
 - Assign instances to nearest centroids to form clusters
 - Compute centroids as means of clusters

K means

K means properties

- ► Guaranteed convergence
- ▶ Performs local minimization of

$$SSE(C_1,...,C_K) = \sum_{i=1}^K \sum_{x \in C_i} \|x - \overline{x}_i\|_2^2$$

over partitions C_1, \ldots, C_K of the training set

- Prefers spherical clusters of similar volume and density
- Sensitive to outliers

K means illustrations

K means comparison

How to select K?

- ▶ There is no objective solution to the question of granularity!
- ▶ Still, some heuristics are often used in practice

Elbow rule

Multivariate normal distirbution

Limitations of K means

Normal terms

- K means is biased towards clusters which are
 - Spherical
 - Of similar radius
 - Of similar number of points
- Each point x_i belongs strictly to one cluster z_i
- Clusters differ by their centroids

Probabilistic terms

- ► Clusters are distributed as $p(x|z=k) = \mathcal{N}(x; \mu_k, \Sigma_k)$
 - $\Sigma_k = \sigma_k I$

 - $ightharpoonup p_k = 1/K$
- If $k = \arg \max_j p(z_i = j|x_i)$, then let $p(z_i = k|x_i) = 1$ and the rest be 0
- $\blacktriangleright \mu_k$ differ

Generative model of the data for K means

- Assume there is a stochastic mechanism which generated the data
- ▶ It first decides from which cluster to generate and then which point from that cluster to generate
- ▶ Then, probability density over point space is:

$$p(x) = \sum_{i=1}^{K} \frac{1}{K} p(x|z=i) = \sum_{i=1}^{K} \frac{1}{K} \mathcal{N}(x|\mu_i, \sigma^2 I)$$

▶ We don't really wan to generate the data, but to identify the mechanism which might have generated it and to obtain knowledge by inspecting such mechanism

Can we generalize this?

- Clusters may differ in cardinality generalize 1/K
- Clusters may differ in volume generalize σ^2
- ► Clusters may differ in shape generalize I
- Gaussian mixture model:

$$p(x) = \sum_{i=1}^{K} \pi_i \mathcal{N}(x|\mu_i, \Sigma_i)$$

$$\sum_{i=1}^{K} \pi_i = 1$$

$$\pi_i > 0$$

Gaussian mixture model

Clustering by GMM

How to learn model parameters?

If we knew model parameters it would be easy to identify the clusters for instance x_i:

$$p(z = k|x_i) = \frac{p(x_i|z = k)p(z = k)}{p(x_i)}$$

$$= \frac{p(x_i|z = k)p(z = k)}{\sum_{k=1}^{K} p(x_i|z = k)p(z = k)}$$

$$= \frac{\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_i; \mu_j, \Sigma_j)}$$

$$\triangleq r_{jk}$$

How to learn model parameters?

▶ If we knew distribution over clusters for each instance, it would be easy to estimate the parameters:

$$\pi_k = \frac{1}{N} \sum_{i=1}^{N} r_{ik}$$

$$\mu_k = \frac{\sum_{i=1}^{N} r_{ik} x_i}{\sum_{i=1}^{N} r_{ik}}$$

$$\Sigma_k = \frac{\sum_{i=1}^{N} r_{ik} (x_i - \mu_k)^T (x_i - \mu_k)}{\sum_{i=1}^{N} r_{ik}}$$

How to learn model parameters?

- Start with randomly initialized parameters
- ▶ Iterate cluster identification and parameter estimation
- ▶ This is an instance of much more general EM algorithm

GMM clustering process

DBSCAN

- ightharpoonup Extract *core points* which have at least *MinPts* points in its ε neighbourhood
- ightharpoonup Connect to them all points in their arepsilon neighbourhood and form a graph
- Return its connected components as clusters

DBSCAN

DBSCAN properties

- ► Prefers dense cluster
- Unsuitable in case of clusters of varying density
- ► Arbitrary cluster shapes
- Discards some instances as noise

Agglomerative clustering

- ► Initialize clusters to single instances
- ► Repeat until single cluster is left
 - ► Compute distances between all pairs of clusters
 - ► Merge two nearest clusters

Cluster distance

- ► Minimum of distances of elements from each cluster arbitrary shapes, but sensitive to noise
- ► Maximum globular clusters
- ► Average compromise

Dendrogram

Agglomerative clustering properties

- Cluster distance dependent
- ▶ Provide full clustering information
- ► Can provide required number of clusters afterwards

Advanced topics

- ► Generative adversarial networks
- Variational autoencoders
- ► Self-supervised learning
- ▶ ..

THANK YOU

Mladen Nikolić nikolic@math.rs Machine Learning and Applications Group at the Faculty of Mathematimachinelearning.math.rs

