

Considere 3 filtros FIR, $H_1(z)$, $H_2(z)$ y $H_3(z)$, cada uno de orden N_1 , N_2 , y $N_3 = N_1 + N_2$. En particular, $H_1(z)$ y $H_2(z)$ son filtros simétricos (Tipo I o II). Considere la transferencia combinada

$$H(z) = H_1(z)H_2(z) + H_3(z)$$

- 1. Determine cuáles son las condiciones sobre $H_3(z)$ para que H(z) tenga fase lineal generalizada. H3(z) debe ser tipo 1 o 2 osea que su desfasaje es cero(simetrica) solo asi puede cumplir que H(z) se FLG
- 2. Suponga que $H_1(z)$ es un filtro pasabajo. Utilizando la estructura que define a H(z), qué características deben cumplir $H_2(z)$ y $H_3(z)$ (suponga pasabajos, pasabanda y/o pasaaltos) para que H(z) sea un filtro con comportamiento <u>pasabanda</u> FLG? (puede suponer las frecuencias de corte que crea convenientes para cada filtro). H2(z) debe ser igual a H1(z) pero rotado en PI, de manera de H1(z)H2(z) sea un filtro pasabanda, H3(z) debe seri igual
- 3. Sea H(z) el filtro diseñado en el punto anterior. Luego, $y(n-\tau)=h(n)*x(n)$. Cuánto

H2=H1(W-TT)