

Météorologie - déroulé

- 3 séances de cours de 2h30 environ
- En présentiel à Bex ET retransmises en direct via <u>Skype</u>
- Tous les supports de cours et documents dans le <u>Drive</u> et le <u>Moodle 050 Météorologie</u>
- N'hésitez pas à poser toutes vos questions (pensez à activer votre micro)

Portrait

- → 2011 : licence de pilote de planeur en Bretagne
- Membre du GVV
- ◆ Instructrice, compétitrice
- Ingénieur-prévisionniste à MétéoSuisse (Genève)

Intérêts de la météorologie

- 1. Sécurité des vols dans l'aviation en général
- 2. En planeur : performances réalisables

Objectifs

- ► Bagage météorologique pour l'examen...
- ... mais surtout pour vos vols!

Prévision à 1 mois

- 1. Atmosphère
- 2. Vent
- 3. Thermodynamique
- 4. Nuages
- 5. Brume et brouillard
- 6. Précipitations
- 7. Masses d'air et fronts
- 8. Climatologie
- 9. Dangers pour l'aviation
- 10. Information météorologique

Prévision à 1 mois

- 1. Atmosphère
- 2. Vent
- 3. Thermodynamique
- 4. Nuages
- 5. Brume et brouillard
- 6. Précipitations
- 7. Masses d'air et fronts
- 8. Climatologie
- 9. Dangers pour l'aviation
- 10. Information météorologique

1. Atmosphère

1.1 Composition de l'atmosphère

Air sec Vapeur d'eau (gaz)

Aérosols

78% Azote (N₂)

21% Oxygène (O₂)

1% Gaz rares, dioxyde de carbone (CO₂) et autres

1.1 Composition de l'atmosphère

Air sec Vapeur d'eau (gaz) Aérosols

H₂O gaz invisible!

1.1 Composition de l'atmosphère

Air sec

Vapeur d'eau (gaz)

Aérosols

- poussières, sable
- pollens
- particules fines
- fumées...

1.2 Structure de l'atmosphère

1.2 Structure de l'atmosphère

Météo 2025

16

Cycle diurne

Cycle saisonnier

Variations liées à la nébulosité

Variations liées à la nébulosité

Influence relief, nature surface...

Météo 2025

24

Influence relief, nature surface... exemple 06.12.2022

1013,25 hPa

1013,25 mbar

760 mmHg

Pression atmosphérique moyenne au niveau de la mer

Baromètre anéroïde

500 hPa	5500 m
700 hPa	3000 m
850 hPa	1500 m
1013 hPa	niveau de la mer

A vous de jouer! Analyse d'une carte de pression en surface

1.5 Densité

1.5 Densité

$$ho \propto \frac{p}{RT}$$

1.5 Densité

solide

plus dense

liquide

gaz

moins dense

densité

agitation thermique

température

ISA: ICAO Standard Atmosphere

1 hPa/8,5 m1 hPa/28 ft

QFE: Pression mesurée au sol

QFF: Pression corrigée de l'altitude de la station de mesure dans les conditions actuelles

QNH : Pression corrigée de l'altitude de la station de mesure dans les conditions ISA

Température actuelle > température ISA → QFF < QNH

Température actuelle < température ISA → QFF > QNH

Réglage de la pression

= calage

Les calages altimétriques :

Calage QFE: hauteur par rapport au sol

Calage QNH: altitude par rapport au niveau de la mer

Calage **1013,25** (standard): hauteur par rapport à la surface isobare 1013,25 hPa —> niveaux de vol (Flight Level FL)

Calage QFE: hauteur par rapport au sol

Calage QNH: altitude par rapport au niveau de la mer

Météo 2025

Calage 1013,25 hPa (standard)

Météo 2025

Calage 1013,25 hPa (standard)

Calé sur 1013,2 hPa avec une pression extérieure de 843 hPa, l'altimètre indique une altitude de 5000 ft (= Flight Level 50)

Calage 1013,25 hPa (standard) —> Flight Level

Météo 2025

49

Influence de la température

