MA2108S Tutorial 5 Solution

Prepared by: LuJingyi LuoYusheng

March 2011

Section 3.1

Question 7. Let $x_n := 1/\ln(n+1)$ for $n \in \mathbb{N}$.

(a). Use the difinition of limit to show that $\lim(x_n) = 0$.

Proof. Given any $\epsilon > 0$, since $\frac{1}{\epsilon} > 0$, $e^{\frac{1}{\epsilon}} > 1$. By the Archimedean Property, $\exists K \in \mathbb{N}$ such that $K > e^{\frac{1}{\epsilon}} - 1$. i.e. $\ln(K+1) > \frac{1}{\epsilon}$. i.e. $\frac{1}{\ln(K+1)} < \epsilon$. Hence $\left| \frac{1}{\ln(1+n)} - 0 \right| = \frac{1}{\ln(1+n)} \le \frac{1}{\ln(K+1)} < \epsilon$.

Hence
$$\lim(x_n) = 0$$
.

7(b). Find a specific value of $K(\epsilon)$ as required in the definition of limit for each of (i) $\epsilon = 1/2$, and (ii) $\epsilon = 1/10$.

(i) For
$$\epsilon = \frac{1}{2}$$
, take $K(\epsilon) = 7$. Then $\frac{1}{\ln(K(\epsilon)+1)} < \epsilon$. Hence by part(a) $\left| \frac{1}{\ln(n+1)} - 0 \right| < \frac{1}{\ln(K(\epsilon)+1)} < \epsilon$ $\forall n \geq K(\epsilon)$.

(ii) For
$$\epsilon = \frac{1}{10}$$
, take $K(\epsilon) = 22026$. Then $\frac{1}{\ln(K(\epsilon)+1)} < \epsilon$. Hence by part(a) $\left| \frac{1}{\ln(n+1)} - 0 \right| < \frac{1}{\ln(K(\epsilon)+1)} < \epsilon \quad \forall n \geq K(\epsilon)$.

Question 8. Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

Proof. We can see that $\lim(x_n) = 0 \iff \forall \epsilon > 0, \exists K \in \mathbb{N} \text{ such that } |x_n - 0| = |x_n| = ||x_n| - 0| < \epsilon \quad \forall n \ge K \iff \lim(|x_n|) = 0.$ Hence $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$

The convergence of $(|x_n|)$ need not imply the convergence of (x_n) . Example: $x_n := (-1)^n$. Then $\lim(|x_n|) = 1$. But (x_n) does not converge.

Question 9. Show that if $x_n \geq 0$ for all $n \in \mathbb{N}$ and $\lim(x_n) = 0$, then $\lim(\sqrt{x_n}) = 0$.

Proof. For all $\epsilon > 0$, since $\epsilon^2 > 0$ and $\lim(x_n) = 0, \exists K \in \mathbb{N}$ such that $|x_n| < \epsilon^2 \quad \forall n \ge K$. Since $x_n > 0$ for all $n \in \mathbb{N}$, $|x_n| = x_n < \epsilon^2 \quad \forall n \ge K$. This implies that $\sqrt{x_n} < \epsilon \quad \forall n \ge K$. Hence by definition, $\lim(\sqrt{x_n}) = 0$.

Question 10. Prove that if $\lim(x_n) = x$ and if x > 0, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$.

Proof. Since $\lim(x_n) = x > 0$, take $\epsilon = x > 0$, then $\exists M \in \mathbb{N}$ such that $|x_n - x| < x \quad \forall n \ge M$. Hence $x - x < x_n < x + x \quad \forall n \ge M$. Hence $x_n > 0 \quad \forall n \ge M$.

Question 11. Show that $\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0$.

Proof. $\forall n \in \mathbb{N}$, observe that $\left|\frac{1}{n} - \frac{1}{n+1} - 0\right| = \left|\frac{1}{n(n+1)}\right| = \frac{1}{n^2+n} < \frac{1}{n}$. $\forall \epsilon > 0$, by the Archimedean Property, $\exists K \in \mathbb{N}$ such that $\frac{1}{K} < \epsilon$. Hence $\left|\frac{1}{n} - \frac{1}{n+1} - 0\right| < \frac{1}{n} < \epsilon \quad \forall n \geq K$. Hence by definition, $\lim(\frac{1}{n} - \frac{1}{n+1}) = 0$.

Question 12. Show that $\lim_{n \to \infty} (\frac{1}{3^n}) = 0$.

Proof. Observe that for all n, $\left|\frac{1}{3^n}-0\right|=\frac{1}{3^n}=\frac{1}{(1+2)^n}\leq \frac{1}{1+2n}$ (by the Bernoulli's Inequality) $<\frac{1}{2n}$. Given any $\epsilon>0$, since $2\epsilon>0$, by the Archimedean Property, $\exists K\in\mathbb{N}$ such that $\frac{1}{K}<2\epsilon$, which implies that $\frac{1}{2K}<\epsilon$. Hence $\left|\frac{1}{3^n}-0\right|<\frac{1}{2n}\leq \frac{1}{2K}<\epsilon$ $\forall n\geq K$. Hence by definition, $\lim(\frac{1}{3^n})=0$.

Question 15. Show that $\lim_{n \to \infty} \left(\frac{n^2}{n!} \right) = 0$.

Proof. Observe that $\left|\frac{n^2}{n!} - 0\right| = \frac{n^2}{n!} < \frac{n^2}{n(n-1)(n-2)} = \frac{n^2}{n^3 - 3n^2 + 2n} < \frac{n^2}{n^3 - 3n^2} = \frac{1}{n-3} \quad \forall n > 3.$ $\forall \epsilon > 0$, by the Archimedean Property, $\exists K \in \mathbb{N}$ such that $\frac{1}{K} < \epsilon$. Then $\left|\frac{n^2}{n!} - 0\right| < \frac{1}{n-3} \le \frac{1}{K} < \epsilon$ $\forall n \ge K + 3$. Hence by definition, $\lim(\frac{n^2}{n!}) = 0$.

Question 16. Show that $\lim_{n \to \infty} (\frac{2^n}{n!}) = 0$.

Proof. For all $n \ge 3$, observe that $\left| \frac{2^n}{n!} - 0 \right| = \frac{2^n}{n(n-1)\cdots 3 \times 2 \times 1} \le \frac{2^{n-1}}{3^{n-2}} = 2\left(\frac{2}{3}\right)^{n-2}$.

Since $\frac{2}{3} < 1$, let $\frac{2}{3} = \frac{1}{1+h}$ where h > 0. Hence by the Bernoulli's inequality, $2\left(\frac{2}{3}\right)^{n-2} = 2\left(\frac{1}{1+h}\right)^{n-2} \le 2\left(\frac{1}{1+(n-2)h}\right) < \frac{2}{(n-2)h}$ if $n \ge 3$.

Given any $\epsilon > 0$, since $\frac{h\epsilon}{2} > 0$, by the Archimedean Property, $\exists K \in \mathbb{N}$ such that $\frac{1}{K} < \frac{h\epsilon}{2}$, which means $\frac{2}{Kh} < \epsilon$. Hence $\forall n \geq K+2$, $\left|\frac{2^n}{n!} - 0\right| < \frac{2}{(n-2)h} \leq \frac{2}{kh} < \epsilon$. Hence $\lim(\frac{2^n}{n!}) = 0$.

Question 17. If $\lim(x_n) = x > 0$, show that there exists a natural number K such that if $n \ge K$, then $\frac{1}{2}x < x_n < 2x$.

Proof. Since $\lim(x_n) = x > 0$, take $\epsilon = \frac{x}{2} > 0$. Then by definition, $\exists K \in \mathbb{N}$ such that $|x_n - x| < \epsilon = \frac{x}{2} \quad \forall n \geq K$. Hence $\frac{x}{2} < x_n < \frac{3}{2}x < 2x$ if $n \geq K$.

Section 3.2

Question 1(b). Establish either the convergence or the divergence of the sequence $X = (x_n)$. $x_n := \frac{(-1)^n n}{n+1}$.

Answer. X is divergent.

Proof. Suppose x_n is convergent and $\lim(x_n) = l$. Take $\epsilon = \frac{1}{2}$. By definition, $\exists K \in \mathbb{N}$ such that $\left|\frac{(-1)^n n}{n+1} - l\right| < \frac{1}{2} \quad \forall n \geq K$.

In particular, for all $n \geq K$, $\left| \frac{(-1)^{2n}2n}{2n+1} - l \right| < \frac{1}{2}$ and $\left| \frac{(-1)^{2n+1}(2n+1)}{(2n+1)+1} - l \right| < \frac{1}{2}$. These imply that $\left| \frac{2n}{2n+1} - l \right| < \frac{1}{2}$ and $\left| \frac{2n+1}{2n+2} + l \right| < \frac{1}{2}$. Hence by the triangle inequality, $\frac{1}{2} + \frac{1}{2} = 1 > \left| \frac{2n}{2n+1} - l \right| + \left| \frac{2n+1}{2n+2} + l \right| \geq \left| \frac{2n}{2n+1} + \frac{2n+1}{2n+2} \right| > \frac{2n}{2n+2} + \frac{2}{2n+2} = 1$ if $n \geq K$. This implies that 1 > 1, which is a contradiction.

Hence the sequence is divergent.

Question 2. Give an example of two divergent sequences X and Y such that:

(a). their sum X + Y converges.

Answer. Let $X := ((-1)^n)$ and $Y := ((-1)^{n+1})$. Then X and Y diverge but X + Y = 0 converges.

(b). their product XY converges.

Answer. Let $X := (0, 1, 0, 1 \cdots)$ and $Y := (1, 0, 1, 0 \cdots)$. Then X and Y diverge but XY = 0 converges.

Question 3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.

Proof. Since X and X+Y are convergent sequences. By limit theorem, Y=(X+Y)-X also converges.

Question 4. Show that if X and Y are sequences such that X converges to $x \neq 0$ and XY converges, then Y converges.

Proof. Claim: there exists a K such that for all $n \geq K$, $x_n \neq 0$.

Proof of Claim:

Case 1: x > 0. Then take $\epsilon = x > 0$. Since $\lim(X) = x$, by definition, $\exists K \in \mathbb{N}$ such that $|x_n - x| < x \quad \forall n \ge K$. Hence $x_n > x - x = 0 \quad \forall n \ge K$.

Case 2: x < 0. Then take $\epsilon = -x > 0$. Since $\lim(X) = x$, by definition, $\exists K \in \mathbb{N}$ such that $|x_n - x| < -x \quad \forall n \ge K$. Hence $x_n < x - x = 0 \quad \forall n \ge K$.

Hence $\exists K \in \mathbb{N}$ such that $x_n \neq 0 \quad \forall n \geq K$. Since XY converges, let $\lim(XY) = z$. Consider the K-tail of X, Y, XY, the K-tail of X converges to x and the K-tail of XY converges to z. Since $Y = \frac{XY}{X}$ if $X \neq 0$, by limit theorem, the K-tail of Y converges to $\frac{z}{x}$. Hence Y converges.

Question 5. Show that the following sequences are not convergent.

(a). (2^n)

Proof. According to Ex1.13, $2^n > n \quad \forall n \in \mathbb{N}$.

Suppose to the contrary, $\lim(2^n) = l$ exists. Then take $\epsilon = 1$, by definition, $\exists K \in \mathbb{N}$ such that $|2^n - l| < 1 \ \forall n \geq K$. Hence $n < 2^n < l + 1 \quad n \geq K$.

Since $l+1 \in \mathbb{R}$, by the Archimedean Property, $\exists H \in \mathbb{N}$ such that H > l+1. Hence $\forall n \geq \max\{H,K\}$, $2^n > n > l+1$. This is a contradiction. Hence (2^n) is not convergent. \square

(b).
$$((-1)^n n^2)$$

Proof. Suppose to the countrary, $\lim((-1)^n n^2) = l$ exists. Take $\epsilon = \frac{1}{2}$, by definition, $\exists K \in \mathbb{N} \text{ such that } |(-1)^n n^2 - l| < \frac{1}{2} \quad \forall n \geq K.$

In particular, $|(-1)^{2n}4n^2 - l| < \frac{1}{2}$ and $|(-1)^{2n+1}(2n+1)^2 - l| < \frac{1}{2}$ $\forall n \geq K$. These imply that $|4n^2 - l| < \frac{1}{2}$ and $|4k^2 + 4k + 1 + l| < \frac{1}{2}$ $\forall n \geq K$. Hence by the triangle inequality, $1 > |4n^2 - l| + |4k^2 + 4k + 1 + l| \geq |8k^2 + 4k + 1| > 1$ $\forall n \geq K$. This implies that 1 > 1, which is a contradiction.

Hence
$$((-1)^n n^2)$$
 is divergent.

Question 6. Find the limits of the following sequences.

(b).
$$\lim \left(\frac{(-1)^n}{n+2}\right)$$
Answer. Since $-\frac{1}{n+2} \le \frac{(-1)^n}{n+2} \le \frac{1}{n+2}$. Also, $\lim \left(-\frac{1}{n+2}\right) = \lim \left(\frac{1}{n+2}\right) = 0$. Hence by the Squeeze Theorem, $\lim \left(\frac{(-1)^n}{n+2}\right) = 0$.

(d).
$$\lim \left(\frac{n+1}{n\sqrt{n}}\right)$$

 $Answer. \lim \left(\frac{n+1}{n\sqrt{n}}\right) = \lim \left(\frac{\frac{n}{n\sqrt{n}} + \frac{1}{n\sqrt{n}}}{1}\right) = \lim \left(\frac{1}{\sqrt{n}}\right) + \lim \left(\frac{1}{n}\right) \lim \left(\frac{1}{\sqrt{n}}\right) = 0.$

Question 7. If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_n b_n) = 0$. Explain why Theorem 3.2.3 cannot be used. Proof. Since (b_n) is bounded, there exists M > 0 such that $|b_n| \leq M \quad \forall n \in \mathbb{N}$. Given any $\epsilon > 0$, since $\lim_{n \to \infty} (a_n) = 0$, and $\frac{\epsilon}{M} > 0$, by definition, $\exists K \in \mathbb{N}$ such that $|a_n| < \frac{\epsilon}{M} \quad \forall n \geq K$. Hence $|a_n b_n| < |a_n| M < \epsilon \quad \forall n \geq K$.

Hence $\lim(a_nb_n) = 0$. Alternatively, it also follows from the squeeze theorem since $-M|a_n| \le |b_n| \le M|a_n|$ for all n.

Theorem 3.2.3 cannot be used because (b_n) may not be convergent.

Question 9. Let $y_n := \sqrt{n+1} - \sqrt{n}$ for $n \in \mathbb{N}$. Show that (y_n) and $(\sqrt{n}y_n)$ converge. Find their limits.

Answer. Observe that $y_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. Hence $0 \le \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$. Since $\lim(0) = \lim\left(\frac{1}{\sqrt{n}}\right) = 0$, by the Squeeze Theorem, $\lim(y_n) = 0$. Observe that $\sqrt{n}y_n = \sqrt{n(n+1)} - n = \frac{n}{\sqrt{n(n+1)} + n} = \frac{1}{\sqrt{n(n+1)} + 1} = \frac{1}{\sqrt{1+\frac{1}{n}} + 1}$. Hence $\lim(\sqrt{n}y_n) = \frac{1}{\sqrt{1+\lim(\frac{1}{n}) + 1}} = \frac{1}{2}$.

Question 10. Determine the following limits.

(a).
$$\lim ((3\sqrt{n})^{1/2n})$$
.

Answer. Note that by Example 3.1.11(c), if c > 0, then $\lim(c^{1/n}) = 1$. By Example 3.1.11(d), $\lim(n^{1/n}) = 1$.

Hence, $\lim((3\sqrt{n})^{1/2n}) = \lim(3^{1/2n})\lim(n^{1/4n}) = \lim(3^{1/2n})\lim(\frac{1}{4})^{1/4n}\lim((4n)^{1/4n}) = 1 \times 1 \times 1 = 1.$

(b).
$$\lim((n+1)^{1/\ln(n+1)}).$$

Answer. Let $(n+1)^{1/\ln(n+1)} = a$, then $n+1 = a^{\ln(n+1)}$. Hence a = e.

Hence $\lim((n+1)^{1/\ln(n+1)}) = \lim(e) = e$.

Question 12 If a > 0, b > 0, show that $\lim (\sqrt{(n+a)(n+b)} - n) = \frac{a+b}{2}$. Proof.

$$\begin{split} & \lim \left(\sqrt{(n+a)(n+b)} - n \right) = \lim \left(\frac{(n+a)(n+b) - n^2}{\sqrt{(n+a)(n+b)} + n} \right) = \lim \left(\frac{(a+b)n + ab}{\sqrt{(n+a)(n+b)} + n} \right) \\ & = \lim \left(\frac{a+b + \frac{ab}{n}}{\sqrt{(1+\frac{a}{n})(1+\frac{b}{n})} + 1} \right) = \frac{\lim (a+b) + \lim \frac{ab}{n}}{\sqrt{\lim (1+\frac{a}{n}) \cdot \lim (1+\frac{b}{n})} + 1} = \frac{a+b}{2}. \end{split}$$

Question 13 Use the Squeeze Theorem 3.2.7 to determine the limits of the following.

$$(a) \left(n^{\frac{1}{n^2}}\right)$$

$$(b) ((n!)^{\frac{1}{n^2}})$$

Proof.

(a) Since $n \leq n^n$ for all n,

then
$$1 \le (n)^{\frac{1}{n^2}} \le (n^n)^{\frac{1}{n^2}} = n^{\frac{1}{n}}$$
.

But
$$\lim 1 = \lim (n^{\frac{1}{n}}) = 1$$
,

hence by the Squeeze Theorem, we have $\lim_{n \to \infty} ((n)^{\frac{1}{n^2}}) = 1$.

(b) Since $n! \leq n^n$ for all n,

then
$$1 \le (n!)^{\frac{1}{n^2}} \le (n^n)^{\frac{1}{n^2}} = n^{\frac{1}{n}}$$
.

But
$$\lim 1 = \lim (n^{\frac{1}{n}}) = 1$$
,

hence by the Squeeze Theorem, we have $\lim_{n \to \infty} ((n!)^{\frac{1}{n^2}}) = 1$.

Question 14 Show that if $z_n := (a^n + b^n)^{\frac{1}{n}}$ where 0 < a < b, then $\lim (z_n) = b$.

Proof.

Since 0 < a < b,

then $b^n < a^n + b^n < 2 \cdot b^n$,

then
$$(b^n)^{\frac{1}{n}} < (a^n + b^n)^{\frac{1}{n}} < (2 \cdot b^n)^{\frac{1}{n}}$$
.

But
$$\lim (b^n)^{\frac{1}{n}} = b = \lim 2^{\frac{1}{n}} \cdot \lim (b^n)^{\frac{1}{n}} = \lim (2 \cdot b^n)^{\frac{1}{n}}$$
,

hence by the Squeeze Theorem, we have $\lim (a^n + b^n)^{\frac{1}{n}} = b$,

i.e.
$$\lim (z_n) = b$$
.

Question 15 Apply theorem 3.2.11 to the following sequences, where a, b satisfy 0 < a < 1, b > 1.

$$(a) (a^n)$$

$$(b) \left(\frac{b^n}{2^n}\right)$$

$$(c)\left(\frac{n}{b^n}\right)$$

$$(d) \left(\frac{2^{3n}}{3^{2n}}\right)$$

Proof.

- (a) Since $a^n > 0 \ \forall n$, and $\lim \frac{a^{n+1}}{a^n} = a < 1$, hence by Theorem 3.2.11, we have $\lim (a^n) = 0$.
- (b) Since $\frac{b^n}{2^n} > 0 \ \forall n$, and $\lim \frac{\frac{b^{n+1}}{2^{n+1}}}{\frac{b^n}{2^n}} = \frac{b}{2}$, but $\frac{b}{2}$ can be either greater or smaller than 1, hence Theorem 3.2.11 does not apply here.
- (c) Since $\frac{n}{b^n} > 0 \ \forall n$, and $\lim \frac{\frac{n+1}{b^{n+1}}}{\frac{n}{b^n}} = \frac{1}{b} < 1$, hence by Theorem 3.2.11, we have $\lim \left(\frac{n}{b^n}\right) = 0$.
- (a) Since $\frac{2^{3n}}{3^{2n}} > 0 \ \forall n$, and $\lim \frac{2^{3(n+1)}}{3^{2(n+1)}} = \frac{8}{9} < 1$, hence by Theorem 3.2.11, we have $\lim \left(\frac{2^{3n}}{3^{2n}}\right) = 0$.

Question 16

- (a) Give an example of a convergent sequence (x_n) of positive numbers with $\lim \frac{x_{n+1}}{x_n} = 1$.
- (b) Give an example of a divergent sequence with this property.

 Answer.
- (a) Consider the convergent sequence $(x_n) = (\frac{1}{n})$. We have $\lim (x_n) = 0$ and $\lim (\frac{x_{n+1}}{x_n}) = \lim \frac{n}{n+1} = 1$.
- (b) Consider the divergent sequence $(x_n) = (n)$. We have (x_n) is not bounded and hence diverge, and $\lim \left(\frac{x_{n+1}}{x_n}\right) = \lim \frac{n+1}{n} = 1$.

Question 17 Let $X = (x_n)$ be a sequence of positive real numbers such that $\lim \left(\frac{x_{n+1}}{x_n}\right) = L > 1$. Show that X is not a bounded sequence and hence is not convergent.

Proof.

Since $\lim \left(\frac{x_{n+1}}{x_n}\right) > 1$,

then $\exists \rho > 1 \text{ and } N_1 \in \mathbb{N}$, such that $\frac{x_{n+1}}{x_n} > \rho \ \forall n \geq N_1$.

Hence $x_{N_1+k} \ge \rho^k x_{N_1}, \ \forall k \in \mathbb{N}.$

Let α be any given positive real number.

Since (ρ^k) is unbounded,

hence $\exists N_2 \in \mathbb{N}$, such that $\rho^k > \frac{\alpha}{x_{N_1}} \ \forall k \geq N_2$.

Then $\forall n \geq N_1 + N_2, \ x_n \geq \rho^{n-N_1} \cdot x_{N_1} > \frac{\alpha}{x_{N_1}} \cdot x_{N_1} = \alpha.$

Therefore, X is not a bounded sequence and hence not convergent.

Question 18 Discuss the convergence of the following sequences, where a, b satisfy 0 < a < 1, b > 1.

$$(a) (n^2 a^n)$$

$$(b) \left(\frac{b^n}{n^2}\right)$$

$$(c)\left(\frac{b^n}{n!}\right)$$

$$(d) \left(\frac{n!}{n^n}\right)$$

Proof.

(a) Since $n^2 a^n > 0 \ \forall n$, and $\lim \frac{(n+1)^2 a^{n+1}}{n^2 a^n} = (\lim (1 + \frac{1}{n}))^2 \cdot a = a < 1$, hence by Theorem 3.2.11, we have $\lim (a^n) = 0$.

(b) Since $\frac{b^n}{n^2} > 0 \ \forall n$, and $\lim \frac{\frac{b^{n+1}}{(n+1)^2}}{\frac{b^n}{2}} = (\lim (1 - \frac{1}{n+1}))^2 \cdot b = b > 1$,

hence by Question 17, we have $(\frac{b^n}{n^2})$ diverges. (c) Since $\frac{b^n}{n!} > 0 \ \forall n$, and $\lim \frac{\frac{b^{n+1}}{(n+1)!}}{\frac{b^n}{n!}} = \lim \frac{b}{n+1} = 0 < 1$,

hence by Theorem 3.2.11, we have $\lim_{n \to \infty} \left(\frac{b^n}{n!} \right) = 0$.

(d) Since $\frac{n!}{n^n} > 0 \ \forall n$, and $\lim \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim \left(\frac{n}{n+1}\right)^n = \frac{1}{\lim (1+\frac{1}{n})^n} = e^{-1} < 1$, hence by Theorem 3.2.11, we have $\lim \left(\frac{n!}{n^n}\right) = 0$.

Question 19 Let (x_n) be a sequence of positive real numbers such that $\lim_{n \to \infty} (x_n^{\frac{1}{n}}) = L < 1$. Show that there exists a number r with 0 < r < 1such that $0 < x_n < r^n$ for all sufficiently large $n \in \mathbb{N}$. Use this to show that $\lim (x_n) = 0.$

Proof.

Since
$$\lim (x_n^{\frac{1}{n}}) = L < 1$$
,

then
$$\exists r < 1 \text{ and } N \in \mathbb{N}$$
, such that $x_n^{\frac{1}{n}} < r \ \forall n \geq N$.

Hence
$$0 \le x_n < r^n \ \forall \ n \ge N$$
,

but
$$\lim 0 = \lim (r^n : n \ge N) = 0$$
.

Hence, by squeeze theorem, we have $\lim (x_n : n \ge N) = 0$.

Hence
$$\lim (x_n) = \lim (x_n : n \ge N) = 0.$$

Question 20

- (a) Give an example of a convergent sequence (x_n) of positive numbers with $\lim x_n^{\frac{1}{n}} = 1$.
- (b) Give an example of a divergent sequence with this property. Answer.
- (a) Consider the convergent sequence $(x_n) = (\frac{1}{n})$. We have $\lim (x_n) = 0$ and $\lim x_n^{\frac{1}{n}} = \lim (\frac{1}{n})^{\frac{1}{n}} = 1$.
- (b) Consider the divergent sequence $(x_n) = (n)$.

We have (x_n) is not bounded and hence diverge, and $\lim x_n^{\frac{1}{n}} = \lim n^{\frac{1}{n}} = 1$.

Question 21 Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\varepsilon > 0$ there exists M such that $|x_n - y_n| < \varepsilon$ for all $n \ge M$.

Does it follow that (y_n) is convergent?

Proof.

The answer is yes.

Let
$$x := \lim (x_n), \varepsilon > 0$$
,

then
$$\exists N_1 \in \mathbb{N}$$
, such that $|x_n - x| < \frac{\varepsilon}{2}$, $\forall n \geq N_1$.

By the assumption, $\exists N_2 \in \mathbb{N}$, such that $|y_n - x_n| < \frac{\varepsilon}{2}$, $\forall n \geq N_2$.

Hence, $|y_n - x| \le |y_n - x_n| + |x_n - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, $\forall n \ge \max\{N_1, N_2\}$, i.e. (y_n) converges (to x).

Question 22 Show that if (x_n) and (y_n) are convergent sequences, then the sequences (u_n) and (v_n) defined by $u_n := max\{x_n, y_n\}$ and $v_n := min\{x_n, y_n\}$ are also convergent. Proof.

Notice that $u_n = \frac{1}{2}(x_n + y_n + |x_n - y_n|)$ and $y_n = \frac{1}{2}(x_n + y_n - |x_n - y_n|)$, $\forall n \in \mathbb{N}$ by Exercise 2.2.16.

Since (x_n) and (y_n) are convergent sequences,

$$\lim (u_n) = \lim \left(\frac{1}{2}(x_n + y_n + |x_n - y_n|)\right) = \frac{1}{2}(\lim (x_n) + \lim (y_n) + |\lim (x_n) - \lim (y_n)|),$$
and
$$\lim (v_n) = \lim \left(\frac{1}{2}(x_n + y_n - |x_n - y_n|)\right) = \frac{1}{2}(\lim (x_n) + \lim (y_n) - |\lim (x_n) - \lim (y_n)|).$$
Hence, (u_n) and (v_n) are also convergent.