Modelo de parcial I

UNIVERSIDAD CATÓLICA DE CÓRDOBA

Facultad de Ingeniería

ANÁLISIS MATEMÁTICO II

PA	RCI	AL.	I - Práctico
1 1 1			i iacuco

--/04/202- Porcentaje

Apellido y nombre:

Comisión:

Clave UCC:

Ej1	Ej2	Ej3	Ej4	Total	Nota

00-18	1
18-36	2
37-54	3
55 -58	4
59-66	5
67-74	6
75-81	7
82-88	8
89-96	9
97-100	10

Eiercicio 1 (25%)

Para la función

$$f(x,y) = \begin{cases} \frac{2x^2 - y^2}{\sqrt{x^2 + y^2}} & \text{; si } xy \neq 0\\ 0 & \text{; si } xy = 0 \end{cases}$$

- a) (9%) Demuestre que es continua en (x, y) = (0,0).
- b) (9%) Utilizando la definición, obtenga el valor de las derivadas parciales en (x, y) = (0,0).
- c) (7%) Demuestre que no es diferenciable en (x, y) = (0,0).

Ejercicio 2 (25%)

Sean los siguientes campos vectoriales:

$$\vec{g}(x,y) = (x^2 - 3xy, y, x + y)$$
 y $\vec{f}(u,v,w) = (u^2 + w, u^3 + v)$

- a) (15%) Determine las matrices jacobianas de \vec{f} y \vec{g} .
- b) (10%) Utilizando la **regla de la cadena** obtenga la matriz jacobiana de $\vec{f} \circ \vec{g}$ evaluada en el punto $(x_0, y_0) = (2,1)$.

Eiercicio 3 (25%)

Sean la función $f(x, y, z) = xye^{yz} + xsen(z)$, y los puntos $\vec{x}_0 = (1,1,0)$ y $\vec{x}_1 = (2,3,1)$.

- a) (18%) Obtenga el valor de la derivada direccional de f en el punto \vec{x}_0 según la dirección que va de \vec{x}_0 a \vec{x}_1 .
- b) (7%) Determine la máxima razón de cambio de f en \vec{x}_0 .

Ejercicio 4 (25%)

Para la función
$$f(x, y) = \frac{2}{3}x^3 + \frac{2}{3}y^3 - x^2 - y^2 - 12x - 4y$$
:

- a) (14%) Obtenga los puntos críticos.
- b) (4%) Determine la matriz hessiana.
- c) (7%) Clasifique los puntos críticos.