Decision problems

ian.mcloughlin@gmit.ie

Decision problem

$$f: S \to T$$
 where $|T| = 2$

A decision problem is a map to a set with two elements.

Example

$$f: \{0,1\}^* \to \{0,1\}$$
$$f(s) = 0 \Leftrightarrow |s| \equiv_2 0$$

Another example

$$f: \{0,1\}^* \to \{0,1\}$$
$$f(s) = 0 \Leftrightarrow wt(s) \equiv_2 0$$

Recap on Languages

Alphabet: finite set of symbols, denoted Σ .

String: tuple w over Σ .

Star: all strings over Σ , denoted Σ^* .

Language: subset L of Σ^* .

Length: of a string, denoted |w|.

Turing machines recap

For a given input a Turing machine does one of three things:

Accepts the input string by finishing in the accept state in a finite number of steps.

Rejects the input string by finishing in the reject/fail state in a finite number of steps.

Continues indefinitely in some sort of infinite loop.

Remember there are a finite number of states and tape symbols.

Deciders

$$f:\Sigma^*\to\{q_f,q_a\}$$

Decider: a Turing machine that always finishes in a finite number of steps.

Decides: decides the language it accepts.

Decidable: a language is called decidable if any Turing machine decides it.

Important question: are all languages decidable?

PRIMES

Is there a decider that decides if the input is a prime number?

Yes

We can make a Turing machine that counts up to a number, divides and checks the remainder is zero.

We call the language containing strings representing the prime numbers in binary form PRIMES.

$$\mathsf{PRIMES} = \{ x \mid x \in \mathbb{N} \text{ and } x \text{ is prime} \}$$

So, PRIMES is decidable.

An undecidable language

- Encode all Turing machines as strings over some finite alphabet.
- Consider the subset of Turing machines that are deciders.
- This set is undecidable.
- $\,-\,$ Closely related to the halting problem.