

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AFWAL-TR-82-1141

CAPABILITIES AND POTENTIAL OF MILLIMETER-WAVE IMPATT DEVICES One of a series of Reports on Millimeter-Wave Circuit Analysis and Synthesis

R. K. Mains G. I. Haddad

Electron Physics Laboratory Department of Electrical and Computer Engineering The University of Michigan Ann Arbor, Michigan 48109

November 1982

Interim Report for Period March 1981-August 1982

Approved for public release; distribution unlimited.

AVIONICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

01 14 012

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Jon E. GRIGOS, CAPT, USAF

Project Engineer
Microwave Techniques &
Applications Gp

FOR THE COMMANDER

DONALD S. REES, Chief

Microwave Technology Branch

Avionics Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/AADM, W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO AFWAL-TR-82-1141 AD-A 4.3	3 RECIPIENT'S CATALOG NUMBER
CAPABILITIES AND POTENTIAL OF MILLIMETER-WAVE	5. Type of REPORT & PERIOD COVERED Interim Tech March 1981-August 1982
IMPATT DEVICES	6. PERFORMING ORG. REPORT NUMBER Tech. Report No. 159
· AuTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
R. K. Mains G. I. Haddad	F33615-81-K-1429
Electron Physics Laboratory The University of Michigan Ann Arbor, MI 48109	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 20020392
1. CONTROLLING OFFICE NAME AND ADDRESS Avionics Laboratory (AFWAL/AADM-2)	12. REPORT DATE November 1982
Air Force Wright Aeronautical Laboratories, AFSC Air Force Systems Command, WPAFB, OH 45433	13. NUMBER OF PAGES 157
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	Unclassified
	154. DECLASSIFICATION/DOWNGRADING N/A

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official Department of the Air Force position, unless so designated by other authorized documents.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Millimeter-wave IMPATT devices

Single-drift doping profiles

Theoretical investigations

Double-drift doping profiles

GaAs diodes

CW performance

Si diodes

Pulsed performance

InP diodes

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

 \geq Theoretical investigations of IMPATT diodes are carried out at 30, 40, 60 and 94 GHz. GaAs, Si and InP diodes are simulated. Several single- and doubledrift doping profiles are considered. Extensive results as a function of RF voltage amplitude and dc current density are presented. Taking thermal resistance into account, the expected CW performance of each structure is presented, such that the maximum allowable diode temperature is 5250k. Matching each device to 1 n circuit resistance gives an estimate of maximum/obtainable-

DD 1 JAN 73 1473

Unclassified

20. (Contd.)

pulsed power. Finally, CW and pulsed performance for all structures and materials are compared over the entire frequency range simulated.

FOREWORD

This report describes the theoretical investigations of IMPATT diodes at the Electron Physics Laboratory, Department of Electrical and Computer Engineering, The University of Michigan, Ann Arbor, Michigan. The work was sponsored by the Air Force Systems Command, Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio under Contract No. F33615-81-K-1429.

The work reported herein was performed during the period March 1981 to August 1982 by Drs. R. K. Mains and G. I. Haddad. The report was released by the authors in August 1982.

The authors wish to thank Captains Jon Grigus and Alan Mertz for their insightful comments and suggestions during the course of this work.

THE PARTY OF THE PARTY SEED AND THE PARTY SECTIONS AND THE PARTY SEC

TABLE OF CONTENTS

SECTION		PAGE
1	INTRODUCTION	1
2	MATERIAL PARAMETERS	3
3	THERMAL RESISTANCE	8
4	ESTIMATION OF OPTIMUM CURRENT DENSITY AND DOPING LEVELS AT DIFFERENT FREQUENCIES	11
5	RESULTS AT 30 GHz	13
6	RESULTS AT 40 GHz	39
7	RESULTS AT 60 GHz	64
8	RESULTS AT 94 GHz	100
9	SUMMARY OF RESULTS	138
	LIST OF REFERENCES	144

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	(a) GaAs Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 9 kA/cm^2 . ($X_A = 0.44 \mu\text{m}$, J_{dc} = 9 kA/cm^2 , E_{max} = 5.31×10^5 V/cm, E_{LHS} = 1.52×10^5 V/cm, E_{to} = 2.61×10^5 V/cm and E_{RHS} = 1.71×10^5 V/cm)	15
2	Large-Signal Results for the Profile of Figure 1a at $T = 500^{\circ}K$, $f = 30$ GHz and (a and b) $J_{dc} \approx 9$ kA/cm ² , (c) $V_{RF} = 31.5$ V.	16
3	(a) GaAs Double-Read Profile for 30-GHz Operation and (b) Dc Solution at T = 500°K and J_{dc} = 9 kA/cm ² . (X _A = 0.26 µm, J_{dc} = 9 kA/cm ² , E(LHS) = 2.03 x 10 ⁵ V/cm, E _{to} (LHS) = 2.8 x 10 ⁵ V/cm, E _{max} = 5.16 x 10 ⁵ V/cm, E _{to} (RHS) = 2.606 x 10 ⁵ V/cm, E(RHS) = 1.81 x 10 ⁵ V/cm, Integrated Doping Spike Q _p = 1.632 x 10 ¹² cm ⁻² and Q _n = 1.78 x 10 ¹² cm ⁻²)	23
4	Large-Signal Results for the Profile of Figure 3a at $T = 500^{\circ}K$, $f = 30$ GHz and (a and b) $J_{dc} = 9$ kA/cm ² , (c) $V_{RF} = 28$ V.	24
5	(a) Si Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 3.5 kA/cm ² . (X _A = 0.5 μ m, J_{dc} = 3.5 kA/cm ² , E(LHS) = 1.206 x 10 ⁵ V/cm, E _{max} = 4.819 x 10 ⁵ V/cm, E _{to} = 1.7 x 10 ⁵ V/cm and E(RHS) = 1.203 x 10 ⁵ V/cm)	28
6	Large-Signal Results for the Si Profile of Figure 5a at $f = 30$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} \approx 3.5$ kA/cm ² , (c) $V_{RF} = 36$ V.	29
7	(a) InP Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 7 \text{ kA/cm}^2$. (X _A = $0.54 \mu \text{m}$, $J_{dc} = 7 \text{ kA/cm}^2$, E(LHS) = $3.0 \times 10^5 \text{ V/cm}$, E _{max} = $6.658 \times 10^5 \text{ V/cm}$, E _{to} = $3.772 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.89 \times 10^5 \text{ V/cm}$)	33

FIGURE		PAGE
8	Large-Signal Results for the Profile of Figure 7a at $T = 500^{\circ}K$, $f = 30$ GHz and (a and b) $J_{dc} \approx 7 \text{ kA/cm}^2$, (c) $V_{RF} = 42^{\circ} \text{ V}$.	34
9	(a) GaAs Hybrid Profile for 40 -GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 10 \text{ kA/cm}^2$. ($X_A = 0.36 \mu\text{m}$, $J_{dc} = 10 \text{ kA/cm}^2$, E(LHS) = 1.41 x 10^5 V/cm , $E_{max} = 5.495 \text{ x} 10^5 \text{ V/cm}$, $E_{to} = 2.616$ x 10^5 V/cm and E(RHS) = $1.83 \text{ x} .10^5 \text{ V/cm}$	40
10	Large-Signal Results for the Profile of Figure 9a at $T = 500^{\circ}K$, $f = 40$ GHz and (a and b) $J_{dc} = 11$ kA/cm ² , (c) $V_{RF} = 26$ V.	41
11	(a) GaAs Double-Read Profile for 40 -GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 9 \text{ kA/cm}^2$. ($X_A = 0.24 \mu\text{m}$, $J_{dc} = 9 \text{ kA/cm}^2$, $E_{max} = 5.283 \times 10^5$ V/cm, Integrated Doping Spike $Q_p = 1.7 \times 10^{12} \text{ cm}^{-2}$ and $Q_n = 1.93 \times 10^{12} \text{ cm}^{-2}$)	45
12	Large-Signal Results for the Profile of Figure 11a at $T = 500^{\circ}K$, $f = 40$ GHz and (a and b) $J_{dc} \approx 9$ kA/cm ² , (c) $V_{RF} = 23$ V.	46
13	(a) Single-Drift GaAs Read Structure for 40 -GHz Operation and (b) Dc Solution at T = 500° K and $J_{\rm dc} = 8~{\rm kA/cm^2}$. ($X_{\rm A} = 0.14~{\rm \mu m}$, T = 500° K, $J_{\rm dc} = 8~{\rm kA/cm^2}$, $E_{\rm max} = 6.96~{\rm x}~10^5~{\rm V/cm}$, $E_{\rm to} = 2.637~{\rm x}$ $10^5~{\rm V/cm}$, $E({\rm RHS}) = 2.101~{\rm x}~10^5~{\rm V/cm}$, and Integrated Doping Spike $Q_{\rm n} = 2.95~{\rm x}~10^{12}~{\rm cm}^{-2}$)	50
14	Large-Signal Results for the Profile of Figure 13a at $f = 40$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} \approx 8$ kA/cm ² , (c) $V_{RF} = 13.5$ V.	51
15	(a) Si Hybrid Profile for 40 -GHz Operation and (b) Dc Solution at T = 500° K and $J_{\rm dc}$ = 7.5 kA/cm ² . (X _A = 0.4 μ m, $J_{\rm dc}$ = 7.5 kA/cm ² , E(LHS) = 1.32 x 10^5 V/cm, E _{max} = 5.1 x 10^5 V/cm, E _{to} = 1.82 x 10^5 V/cm and E(RHS) = 1.34 x 10^5 V/cm)	53
16	Large-Signal Results for the Profile of Figure 15a at $f = 40$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} \approx 7.5$ kA/cm ² , (c) $V_{RF} = 29$ V.	54

AND THE THE THE WASHINGTON TO SHOW AND AND THE SHOWING THE SHOWING

FIGURE		PAGE
17	(a) InP Hybrid Profile for 40-GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 10 \text{ kA/cm}^2$ ($X_A = 0.42 \mu\text{m}$, $J_{dc} = 10 \text{ kA/cm}^2$, $E(LHS) = 3.15 x 10^5 \text{ V/cm}$, $E_{max} = 6.916 x 10^5 \text{ V/cm}$, $E_{to} = 3.755 x 10^5 \text{ V/cm}$ and $E(RHS) = 2.99 x 10^5 \text{ V/cm}$)	58
18	Large-Signal Results for the Profile of Figure 17a at T = 500° K, f = 40 GHz and (a and b) J_{dc} = 10 kA/cm ² , V_{RF} = 33 V.	59
19	(a) Single-Drift GaAs Read Structure for 60-GHz Operation and (b) Dc Solution at $T = 500^{\circ}$ K and $J_{\rm dc} = 15 \text{ kA/cm}^2$. ($X_{\rm A} = 0.14 \text{ µm}$, $T = 500^{\circ}$ K, $J_{\rm dc} = 15 \text{ kA/cm}^2$, $E_{\rm max} = 6.82 \text{ x } 10^5 \text{ V/cm}$, $E_{\rm to} = 2.59 \text{ x } 10^5 \text{ V/cm}$, $E(\text{RHS}) = 2.16 \text{ x } 10^5 \text{ V/cm}$ and Integrated Doping Spike $Q_{\rm n} = 2.91 \text{ x } 10^{12} \text{ cm}^{-2}$)	65
20	Large-Signal Results for the Profile of Figure 19a at T = 500° K, f = 60 GHz and (a and b) J_{dc} = 15 kA/cm ² ,(c) V_{RF} = 10 V.	66
21	(a) GaAs Hybrid Double-Drift Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and $J_{\rm dc}$ = $18~{\rm kA/cm^2}$. ($X_{\rm A}$ = $0.26~{\rm \mu m}$, $J_{\rm dc}$ = $18~{\rm kA/cm^2}$, E(LHS) = $1.97~{\rm x}~10^5~{\rm V/cm}$, $E_{\rm max}$ = $6.18~{\rm x}~10^5~{\rm V/cm}$, $E_{\rm to}$ = $2.57~{\rm x}~10^5~{\rm V/cm}$ and E(RHS) = $2.04~{\rm x}~10^5~{\rm V/cm}$)	70
22	Large-Signal Results for the Profile of Figure 21a at $f = 60$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} = 18$ kA/cm ² , (c) $V_{RF} = 18$ V.	71
23	(a) Uniform GaAs Double-Drift Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 18 \text{ kA/cm}^2$. ($X_A = 0.3^{\downarrow} \mu\text{m}$, $J_{dc} = 18 \text{ kA/cm}^2$, E(LHS) = $1.413 \times 10^5 \text{ V/cm}$, $E_{max} = 5.658 \times 10^5 \text{ V/cm}$ and E(RHS) = $1.412 \times 10^5 \text{ V/cm}$)	76
24	Large-Signal Results for the Profile of Figure 23a at $f = 60$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} = 18 \text{ kA/cm}^2, (c) V_{RF} = 17 \text{ V}.$	77

FIGURE		PAGE
25	(a) Double-Read GaAs Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and $J_{\rm dc} = 15 \text{ kA/cm}^2$. ($X_{\rm A} = 0.22 \mu\text{m}$, $J_{\rm dc} = 15 \text{ kA/cm}^2$, E(LHS) = $2.48 \times 10^5 \text{ V/cm}$, $E_{\rm to}$ (LHS) = 2.87×10^5	82
	V/cm, $E_{\text{max}} = 5.649 \times 10^5 \text{ V/cm}$, $E_{\text{to}}(\text{RHS}) = 2.57 \times 10^5 \text{ V/cm}$, $E(\text{RHS}) = 2.158 \times 10^5 \text{ V/cm}$, $Q_{\text{n}} = 0.000 \times 10^5 \text{ V/cm}$	
	$2.16 \times 10^{12} \text{ cm}^{-2} \text{ and } Q_p = 1.948 \times 10^{12} \text{ cm}^{-2})$	
26	Large-Signal Results for the Profile of Figure 25a at $f = 60$ GHz, $T = 500^{\circ}$ K and (a and b) $\frac{1}{60}$	83
	= 15 kA/cm ² , (e) $V_{RF} = 17.5 V$.	
27	(a) InP Hybrid Doping Profile for 60 -GHz Operation and (b) Dc Solution at T = 500° K and J = 18	88
	kA/cm^2 . $(X_A = 0.28 \mu m, J_{dc} = 18 kA/cm^2, E(LHS))$	
	= 3.12×10^5 V/cm, $E_{max} = 7.26 \times 10^5$ V/cm, $E_{to} = 3.77 \times 10^5$ V/cm and $E(RHS) = 2.905 \times 10^5$ V/cm)	
28	Large-Signal Results for the Profile of Figure 27a at $f = 60$ GHz, $T = 500^{\circ}$ K and (a and b) J_{dc}	89
	= 18 kA/cm^2 , (c) $V_{RF} = 23 \text{ V}$.	
29	(a) Si Hybrid Doping Profile for 60 -GHz Operation and (b) Dc Solution at T = 500° K and J = 18	93
	kA/cm^2 . $(X_A = 0.34 \mu m, J_{dc} = 18 kA/cm^2, E(LHS) =$	
	1.62 x 10^5 V/cm, E _{max} = 5.46 x 10^5 V/cm, E _{to} = 2.02 x 10^5 V/cm and E(RHS) = 1.64 x 10^5 V/cm)	
30	Large-Signal Results for the Profile of Figure 29a at $T = 500^{\circ}K$, $f = 60$ GHz and (a and b) $J_{dc} =$	94
	18 kA/cm ² , (c) $V_{RF} = 22 \text{ V}.$	
31	(a) GaAs Single-Drift Diode for 94 -GHz Operation and (b) Dc Solution at T = 500° K and J = 25	101
	kA/cm ² . $(X_A = 0.1 \mu m, J_{dc} = 25 \text{ kA/cm}^2, E_{max} = 8.68 \times 10^5 \text{ V/cm}, E_{to} = 2.62 \times 10^5 \text{ V/cm}, E(RHS)$	
	$= 2.18 \times 10^5 \text{ V/cm and } Q_n = 4.21 \times 10^{12} \text{ cm}^{-2})$	
32	Large-Signal Results for the Profile of Figure 31a at $f = 94$ GHz, $T = 500^{\circ}$ K and (a and b) J_{dc}	102
	= 25 kA/cm ² , (c) $V_{pr} = 6.5 \text{ V}$.	

FIGURE	•	PAGE
33	(a) Si Hybrid Structure for 94-GHz Operation and (b) Dc Solution at $T = 500^{\circ}$ K and $J_{dc} = 25 \text{ kA/cm}^2$. ($X_A = 0.38 \mu\text{m}$, $J_{dc} = 25 \text{ kA/cm}^2$, E(LHS) = $2.24 \times 10^5 \text{ V/cm}$, $E_{max} = 5.656 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.208 \times 10^5 \text{ V/cm}$)	105
34	Large-Signal Results for the Profile of Figure 33a at $T = 500^{\circ}K$, $f = 94$ GHz and (a and b) $J_{dc} = 25 \text{ kA/cm}^2$, (c) $V_{RF} = 19 \text{ V}$.	107
35	(a) Doping Profile of Double-Read GaAs Diode for 94-GHz Operation and (b) Dc Solution at T = 500° K and $J_{dc} = 25 \text{ kA/cm}^2$. ($X_A = 0.13 \mu\text{m}$, $J_{dc} = 25 \text{ kA/cm}^2$, $E(LHS) = 2.45 \times 10^5 \text{ V/cm}$, $E_{to}(LHS) = 2.94 \times 10^5 \text{ V/cm}$, $E_{max} = 6.65 \times 10^5 \text{ V/cm}$, $E_{to}(RHS) = 2.64 \times 10^5 \text{ V/cm}$, $E(RHS) = 2.227 \times 10^5 \text{ V/cm}$, $Q_n = 2.8 \times 10^{12} \text{ cm}^{-2}$ and $Q_p = 2.58 \times 10^{12} \text{ cm}^{-2}$)	110
36	Large-Signal Results for the Profile of Figure 35a at $f = 94$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} = 25 \text{ kA/cm}^2$, (c) $V_{RF} = 11 \text{ V}$.	111
37	(a) Doping Profile for GaAs Hybrid Structure for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 30 kA/cm^2 . (X_A = 0.19 μm , J_{dc} = 30 kA/cm^2 , E(LHS) = $2.068 \times 10^5 \text{ V/cm}$, E = $7.094 \times 10^5 \text{ V/cm}$, E = $2.591 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.063 \times 10^5 \text{ V/cm}$)	117
38	Large-Signal Results for the Profile of Figure 37a at T = 500° K, f = 94 GHz and (a and b) J_{dc} = 30 kA/cm ² , (c) V_{RF} = 12.25 V.	118
39	(a) InP Hybrid Doping Profile for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 25 kA/cm^2 . (X _A = 0.19 μ m, J_{dc} = 25 kA/cm^2 , E(LHS) = 3.09×10^5 V/cm, E _{max} = 7.64×10^5 V/cm, E _{to} = 4.0×10^5 V/cm and E(RHS) = 3.081×10^5 V/cm)	122
40	Large-Signal Results for the Profile of Figure 39a at $f = 94$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} = 25$ kA/cm ² , (c) $V_{RF} = 17$ V.	123

TGURE		PAGE
41	(a) Doping Profile for Uniformly Doped GaAs Double-Drift IMPATT at 94 GHz and (b) Dc Solution at T = 500° K and J _{dc} = 60 kA/cm^2 . (X _A = $0.28 $ µm, E(LHS) = $2.192 \text{ x } 10^5 \text{ V/cm}$, E _{max} = $6.122 \text{ x } 10^5 \text{ V/cm}$ and E(RHS) = $2.228 \text{ x } 10^5 \text{ V/cm}$)	127
42	(a) Doping Profile for Uniformly Doped Si Double-Drift IMPATT at 94 GHz and (b) Dc Solution at $T = 500^{\circ}\text{K}$ and $J_{\text{dc}} = 25 \text{ kA/cm}^2$. ($X_{\text{A}} = 0.37 \mu\text{m}$, $E(\text{LHS}) = 1.368 \text{ x } 10^5 \text{ V/cm}$, $E_{\text{max}} = 5.436 \text{ x } 10^5 \text{ V/cm}$ and $E(\text{RHS}) = 1.342 \text{ x } 10^5 \text{ V/cm}$)	131
43	Large-Signal Results for the Profile of Figure 42a at $f = 94$ GHz, $T = 500^{\circ}$ K and (a and b) $J_{dc} = 25$ kA/cm ² , (c) $V_{RF} = 18$ V.	133
ήή	Summary of Maximum CW RF Powers Obtained for (1) Si Hybrid Structure, (2) InP Hybrid Structure, and (3) GaAs Hybrid Structure vs. Frequency. (a) Single Mesa, Copper Heat Sink, (b) Single Mesa, Diamond Heat Sink, (c) Ring Geometry, Copper Heat Sink, and (d) Ring Geometry, Diamond Heat Sink.	141

LIST OF TABLES

TABLE		PAGE
1	GaAs Material Parameters.	4
2	Si Material Parameters (T = 500°K).	5
3	InP Material Parameters (T = 500°K).	6
14	Large-Signal Results for the GaAs Hybrid Profile in Figure 1a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 30 GHz, V_{RF} = 31.5 V).	17
5	CW Results for the Profile in Figure la at 30 GHz Taking into Account the Thermal-Resistance Expressions.	21
6	Large-Signal Results for the GaAs Double Read Profile in Figure 3a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 30 GHz, V_{RF} = 28 V).	25
7	CW Results for the Profile in Figure 3a at 30 GHz Taking into Account the Thermal-Resistance Expressions.	27
8	Large-Signal Results for the Si Hybrid Profile in Figure 5a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 30 GHz, V_{RF} = 36 V).	30
9	CW Results for the Profile in Figure 5a at 30 GHz Taking into Account the Thermal-Resistance Expressions.	32
10	Large-Signal Results for the InP Hybrid Profile in Figure 7a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 30 GHz, V_{RF} = 42 V).	36
11	CW Results for the Profile in Figure 7a at 30 GHz Taking into Account the Thermal-Resistance Expressions.	37
12	Large-Signal Results for the GaAs Hybrid Profile of Figure 9a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 40 GHz, V_{RF} = 26 V).	42
13	CW Results for the Profile in Figure 9a at 40 GHz Taking into Account the Thermal-Resistance Expressions.	44

TABLE		PAGE
14	Large-Signal Results for the GaAs Double Read Profile in Figure 11a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 40 GHz, V_{RF} = 23 V).	47
15	CW Results for the Profile in Figure 11a at 40 GHz Taking into Account the Thermal-Resistance Expressions.	49
16	Large-Signal Results for the GaAs Single-Drift Read Profile in Figure 13a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 40 GHz, V_{RF} = 13.5 V).	52
17	Large-Signal Results for the Si Hybrid Profile in Figure 15a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 40 GHz, V_{RF} = 29 V).	56
18	CW Results for the Profile in Figure 15a at 40 GHz Taking into Account the Thermal-Resistance Expressions.	57
19	Large-Signal Results for the InP Hybrid Profile in Figure 17a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 40 GHz, V_{RF} = 33 V).	61
20	CW Results for the Profile in Figure 17a at 40 GHz Taking into Account the Thermal-Resistance Expressions.	62
21	Large-Signal Results for the GaAs Single-Drift Read Profile in Figure 19a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 60 GHz, V_{RF} = 10 V).	67
22	CW Results for the Profile in Figure 19a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	68
23	Large-Signal Results for the GaAs Hybrid Profile in Figure 21a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 60 GHz, V_{RF} = 18 V).	72
24	CW Results for the Profile in Figure 21a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	74

TABLE		PAGE
25	Large-Signal Results for the GaAs Uniform Double-Drift Profile in Figure 23a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 60 GHz, V_{RF} = 17 V).	78
26	CW Results for the Profile in Figure 23a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	80
27	Large-Signal Results for the Double Read GaAs Profile in Figure 25a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 60 GHz, V_{RF} = 17.5 V).	84
28	CW Results for the Profile in Figure 25a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	86
29	Large-Signal Results for the InP Hybrid Profile in Figure 27a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 60 GHz, V_{RF} = 23 V).	90
30	CW Results for the Profile in Figure 27a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	91
31	Large-Signal Results for the Si Hybrid Profile in Figure 29a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 60 GHz, V_{RF} = 22 V).	95
32	CW Results for the Profile in Figure 29a at 60 GHz Taking into Account the Thermal-Resistance Expressions.	97
33	Large-Signal Results for the GaAs Single-Drift Read Profile in Figure 31a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz, V_{RF} = 6.5 V).	103
34	CW Results for the Profile in Figure 31a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	104
35	Large-Signal Results for the Si Hybrid Structure in Figure 33a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz, V_{RF} = 19 V).	108

TABLE		PAGE
36	CW Results for the Profile in Figure 33a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	109
37	Large-Signal Results for the Double Read GaAs Profile in Figure 35a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz, V_{RF} = 11 V).	112
38	CW Results for the Profile in Figure 35a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	115
39	Large-Signal Results for the GaAs Hybrid Profile in Figure 37a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz, V_{RF} = 12.25 V).	119
40	CW Results for the Profile in Figure 37a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	121
41	Large-Signal Results for the InP Hybrid Profile in Figure 39a and Power Levels Obtained by Matching to 1- Ω Resistance (f = 94 GHz, V_{RF} = 17 V).	124
42	CW Results for the Profile in Figure 39a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	126
43	Large-Signal Results for the Double-Drift GaAs Profile in Figure 41a and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz).	128
44	CW Results for the Profile in Figure 41a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	130
45	Large-Signal Results for the Uniform Si Double- Drift Profile in Figure $42a$ and Power Levels Obtained by Matching to $1-\Omega$ Resistance (f = 94 GHz).	134
46	CW Results for the Profile in Figure 42a at 94 GHz Taking into Account the Thermal-Resistance Expressions.	136
47	Summary of CW RF Power for All Frequencies, Diode Structures and Mesa Geometry, Heat- Sink Material Combinations (W).	139

TABLE		PAGE
48	Summary of Peak Electronic RF Powers Obtained by Matching to $1-\Omega$ Resistance (W).	142

SECTION 1.

INTRODUCTION

In a previous report, results of computer simulations of GaAs IMPATT diode structures operating at X-band frequencies were presented, and a description of the finite-difference computer program and the method of analysis were described. This report presents similar theoretical results for IMPATT diode structures designed to operate from 30 to 94 GHz. In addition to investigating GaAs devices, results for Si and InP are also presented. For each frequency range and material some doping profile optimization was carried out, although time did not permit extensive variation of all the parameters. Therefore, the profiles presented in this report are nearly optimum, although further adjustment of parameters may result in slightly better performance. Systematic optimization of some of these structures is currently being done, and the results will be reported at a future time.

Since efficiency of these devices decreases with increasing frequency and since dimensions become smaller, heat sinking becomes even more of a problem than at X-band. Therefore, thermal limitations are taken into account in this report when calculating expected output power for the various structures.

sestioned **Telegopola Minima de Sanda**

Comparisons among the uniform double-drift, hybrid double-drift, and double Read double-drift profiles are made at different frequencies and for different materials. While it was found that for GaAs at X-band the double Read profile is optimum, at millimeter-wave frequencies it is found that the hybrid double-drift profile

or the uniformly doped profile is optimum depending on the frequency.

This can be related to the fact that the ionization rates vs. electric field in GaAs are saturated for electric-field strengths typically found in millimeter-wave IMPATTs.

Throughout this report the static drift-diffusion model is employed, although it is known that for GaAs and InP nonequilibrium effects become significant at millimeter-wave frequencies. An improved model including energy and momentum balance equations has been developed for Si IMPATT simulation, and results have shown very little discrepancy with the static results up to 200 GHz. A similar model for GaAs IMPATT simulation is currently being implemented and in the near future a similar comparison will be made for GaAs.

SECTION 2.

MATERIAL PARAMETERS

The results of the IMPATT simulations strongly depend on the assumed material parameters, and unfortunately some of the parameter values at the high fields encountered in millimeter-wave IMPATTs are uncertain. Table 1 gives the material parameters assumed for GaAs. The sources for these parameters are given by Bauhahn. 3 In addition, the saturated velocity for holes and the ionizations rates used are in accordance with recent measurements carried out at Raytheon. 4 For previous calculations at X-band, a saturated diffusion coefficient of 20 cm²/V-s had been used. However, it was found that at higher frequencies the calculated efficiency is very dependent on the highfield diffusion coefficient, and since this value is uncertain, the diffusion coefficient was varied until the best fit to experimentally obtained efficiencies in the 35-GHz range was obtained. This occurred when a diffusion coefficient of 15 cm²/s was assumed. Since there is some numerical diffusion in the program, the effective diffusion coefficient is somewhat larger than 15 cm²/s but still less than $20 \text{ cm}^2/\text{s}$.

The material parameters used for the Si and InP simulations are given in Tables 2 and 3, respectively. The sources for the Si parameters are given by Bauhahn.³ The InP parameters^{3,5-11} in Table 3 were obtained as follows. The InP ionization rates of Kao and Crowell⁵⁻⁶ at T = 500°K presented at the Cornell Hot-Electron Workshop were used. (The measurement technique and previous measurements at room temperature are given in Reference 7.) The electron

TABLE 1
GaAs MATERIAL PARAMETERS

$$v_{n}(E) = \frac{\mu_{n}|E| + v_{nsat}\left(\frac{E}{E_{v}}\right)^{4}}{1 + \left(\frac{E}{E_{v}}\right)^{4}}$$

$$v_{p}(E) = v_{psat}[1 - exp(-\mu_{p}|E|/v_{psat})]$$

$$D_{n}(E) = \frac{D_{no} + D_{nsat}\left(\frac{E}{E_{d}}\right)^{4}}{1 + \left(\frac{E}{E_{d}}\right)^{4}}$$

$$D_{p}(E) = 15 \text{ cm}^{2}/\text{s}$$

$$\alpha_n(E) = \alpha_p(E) = A \exp[-(b/E)^2]$$

T	$\mu_{\mathbf{n}}$	v_{nsat}	$\mathbf{E}_{\mathbf{v}}$	$\mathbf{v}_{\mathtt{psat}}$	$^{ extsf{\mu}}_{ extsf{p}}$	$^{ extsf{D}}_{ extsf{nsat}}$	$\mathbf{E}_{\mathbf{d}}$
(°K)	$(cm^2/V-s)$	(cm/s)	(V/cm)	(cm/s)	$(cm^2/V-s)$	(cm^2/s)	(V/cm)
300	5000	8x10 ⁶	4x10 ³	8x10 ⁶	400	15	5.8x10 ³
500	4000	5 x 10 ⁶	4x10 ³	5.2x10 ⁶	200	15	5.8x10 ³

T A b
$$D_{no}$$

(°K) (cm^{-1}) (V/cm) (cm^{2}/s)
300 1.61x10⁵ 5.42x10⁵ 129
500 1.84x10⁵ 6.47x10⁵ 172

TABLE 2

Si MATERIAL PARAMETERS (T = 500°K)

$$v_n(E) = v_{nsat}[1 - exp(-\mu_n|E|/v_{nsat})]$$

$$v_p(E) = v_{psat}[1 - exp(-\mu_p|E|/v_{psat})]$$

$$D_n(E) = D_p(E) = 18.2 \text{ cm}^2/\text{s}$$

$$\alpha_n(E) = A_n \exp(-b_n/E)$$

$$\alpha_{p}(E) = A_{p} \exp(-b_{p}/E)$$

$$\mu_{\rm p} = 250 \, {\rm cm}^2/({\rm V-s})$$

$$\mu_n = 550 \text{ cm}^2/(V-s)$$

$$v_{psat} = 1.02 \times 10^7 \text{ cm/s}$$

$$v_{nsat} = 8.5 \times 10^6 \text{ cm/s}$$

$$A_n = 1.8 \times 10^6 \text{ cm}^{-1}$$

$$b_n = 1.64 \times 10^6 \text{ V/cm}$$

$$A_{p} = 1.0 \times 10^{7} \text{ cm}^{-1}$$

$$b_{p} = 3.2 \times 10^{6} \text{ V/cm}$$

$$\epsilon_r = 11.8$$

TABLE 3

Inp MATERIAL PARAMETERS (T = 500°K)

Parameters have the same functional form as in Table 1 except:

$$\alpha_n(E) = A_n \exp(-b_n/E)$$

$$\alpha_{p}(E) = A_{p} \exp(-b_{p}/E)$$

$$\mu_{\rm p} = 90 \, {\rm cm}^2/({\rm V-s})$$

$$\mu_n = 2760 \text{ cm}^2/(V-s)$$

$$v_{psat} = 5.68 \times 10^6 \text{ cm/s}$$

$$v_{nsat} = 6.0 \times 10^6 \text{ cm/s}$$

$$A_n = 7.121 \times 10^6 \text{ cm}^{-1}$$

$$b_n = 4.072 \times 10^6 \text{ V/cm}$$

$$A_{p} = 3.502 \times 10^{7} \text{ cm}^{-1}$$

$$b_p = 3.852 \times 10^6 \text{ V/cm}$$

$$E_{v} = 11.0 \times 10^{3} \text{ V/cm}$$

$$D_{\text{nsat}} = D_{\text{p}} = 15 \text{ cm}^2/\text{s}$$

$$E_{d} = 10.0 \times 10^{3} \text{ V/cm}$$

$$D_{no} = 119 \text{ cm}^2/\text{s}$$

$$\epsilon_r = 14.0$$

saturated velocity was suggested by Blakey⁵ and is close to the value obtained from Monte Carlo calculations by Fawcett and Hill.⁸ The electron low-field mobility was derived from References 5 and 8 through 11. E_v, the field corresponding to the peak electron velocity, was also obtained from the calculations by Fawcett and Hill.⁸ The high-field diffusion coefficient for electrons, D_{nsat}, is close to the value obtained by Fawcett and Hill.⁸ The low-field electron diffusion coefficient D_{no} is given by the Einstein relationship and is close to the value calculated by Bauhahn, Haddad and Masnari.¹¹ The field E_D used in the D_n(E) expression was obtained from Bauhahn.³ The values for hole diffusion coefficient, low-field mobility and hole saturated velocity were suggested by Blakey.⁵

SECTION 3.

THERMAL RESISTANCE

In order to calculate the expected power output for millimeter-wave IMPATTs, the thermal resistance of the diode must be known. For double-drift GaAs IMPATTs, the thermal resistance is given approximately by 12

$$R_{TH} = \frac{2}{\pi K_{hs} d} + R_{PKG} + \frac{4 \ell_1 T_1}{120 \pi d^2} + \frac{4 \ell_2 T_2}{300 \pi d^2} , \qquad (1)$$

where d is the device diameter in cm, $K_{\rm hs}$ is the thermal conductivity of the heat-sink material in W/cm- $^{\rm o}$ K, $R_{\rm PKG}$ is the portion of the thermal resistance due to the package and bonding ($^{\rm o}$ K/W), $\ell_{\rm l}$ is the buffer or substrate thickness (cm), $T_{\rm l}$ is the average temperature ($^{\rm o}$ K) of the buffer layer, $\ell_{\rm l}$ is the active layer thickness (cm) between the junction and the buffer layer, and $T_{\rm l}$ is the average temperature ($^{\rm o}$ K) in the active layer.

The first term in Equation 1 is the spreading resistance which occurs at the interface between the diode and heat sink. It is the result obtained by Kennedy¹³ for the case of a uniform circuit heat flux density incident on a large cylindrical heat sink of thermal conductivity K_{hs}. (It should be noted that the quantity H in Equation 9 of Reference 13 limits to 1 for this case; also conversions from calories to joules and inches to centimeters are necessary in k and A, respectively, in order for the spreading resistance expressions to agree). The third term in Equation 1, which is the thermal resistance of the buffer layer of length

l₁, can be derived from the expression in Appendix B of the Olson
paper¹⁴ for thermal resistance assuming one-dimensional heat flow:

$$R = \frac{\Delta x}{kA} , \qquad (2)$$

where Δx is the length of the section, k the thermal conductivity, and A the cross-sectional area. Setting $\Delta x = \ell_1$ and equating these two terms obtains the following expression for the thermal conductivity of GaAs in the buffer layer:

$$k = \frac{120}{T_1} \frac{w}{cm^{-0}K} . \qquad (3)$$

Equation 3 agrees well with the expression given in Appendix A of the Olson paper¹⁴ and also with the experimental conductivity data in Figure 7 of the Maycock paper.¹⁵ The final term in Equation 1, representing the thermal resistance of the active layer, is of the same form as the buffer-layer term but is reduced by the factor 0.4. This is because in deriving the active-layer term, uniform heat generation throughout the active region is assumed.¹²

For these calculations, the thermal conductivity 12 of a diamond heat sink is taken as 11.7 W/cm- $^{\circ}$ K and that of a copper heat sink is 3.9 W/cm- $^{\circ}$ K. Since R_{PKG} is very dependent on the package and bonding technique, it is taken to be zero in the thermal resistance calculations.

From the expressions given in Appendix A of Olson, 14 it is seen that the thermal conductivity of Si is approximately three times that of GaAs. Therefore, it is expected that the last two terms of Equation 1 will be reduced by a factor of 1/3 for Si calculations.

Also, from Figure 8 of Maycock¹⁵ it is seen that the thermal conductivity of InP is slightly higher than for GaAs by approximately the factor 5/4. Therefore, the final two terms of Equation 1 are reduced by 4/5 in InP calculations.

The use of multiple mesas or ring geometries will reduce the first term in Equation 1, as explained in the previous X-band report. As was done in that report, it will be assumed here that an improvement of the spreading term by the factor 0.55 is possible by utilizing more efficient geometries than the single-round mesa structure.

Once the thermal-resistance expression is known, the diode junction temperature T $({}^{\circ}K)$ under large-signal CW conditions is given by

$$T = 300 + R_{th}(1 - \eta)V_{dc}J_{dc}A$$
 (4)

where n is the fractional RF generation efficiency, $V_{\rm dc}$ is the diode dc voltage in V, $J_{\rm dc}$ is the diode dc current density in A/cm², and A is the device area in cm². Equation 4 will be taken into account when estimating the power output expected from these devices.

SECTION 4.

ESTIMATION OF OPTIMUM CURRENT DENSITY AND DOPING LEVELS AT DIFFERENT FREQUENCIES

As the frequency of operation is varied in the 30 to 94 GHz range, it is useful to develop expressions which roughly predict the optimum current density and doping level at each frequency.

The small-signal impedance expression of Gilden and Hines¹⁶ may be used to estimate the optimum current density for a Read structure as follows. If it is assumed that the avalanche and drift lengths are specified such that the optimum transit angle ($\theta \cong \pi$) is obtained and the desired operation frequency ω is specified, the avalanche resonance frequency ω can be derived which yields the maximum small-signal negative conductance. Since ω is related to J_{Ω} , the following expression for optimum current density is obtained:

$$J_{O} = \frac{\frac{\varepsilon \omega^{2}}{2\alpha^{*} v_{d}}}{1 + \frac{l_{d} l_{d}^{3} \omega}{v_{d}^{\pi^{2}} (l_{a} + l_{d})^{2}} + \frac{l_{a}}{l_{a} + l_{d}}}, \qquad (5)$$

where J_0 is in A/cm^2 , ϵ is the dielectric constant in F/cm, v_d is the saturated velocity in cm/s, l_d and l_a are the drift and avalanche region lengths in cm, respectively, and α' is the derivative of the ionization rate with respect to electric field in the avalanche region in V^{-1} . The quantity α' is found by first determining E_a , the field in the avalanche region, such that $\alpha(E_a)l_a=1$. Then $\alpha'(E_a)$ is calculated from the ionization rate expression.

Of course, Equation 5 is based on many simplifying assumptions and can only give a rough estimate of the optimum current density.

The optimum doping in the drift region of a Read structure can be estimated if the diode is designed to operate in the precollection mode as follows. If the terminal voltage is $V_{\rm dc} + V_{\rm RF} \sin{(\omega t)}, \ {\rm then} \ {\rm d}V/{\rm dt} \ {\rm at} \ 315^{\circ} \ {\rm in} \ {\rm the} \ {\rm cycle} \ {\rm is} \ (0.707) \omega V_{\rm RF}.$ (315° is chosen because it is halfway into the last quarter cycle.) Recalling that the expression for the velocity of the depletion edge on the n-side is 1

$$\frac{dw}{dt} = \frac{\varepsilon}{qwN_D(w)} \frac{dV}{dt}$$
 (6)

(where the diode is punched through on the p-side and w is the width of the depleted region), an approximate expression for N_D is obtained if it is required that the depletion edge moves at the peak velocity, v_{max} , at 315° in the cycle. This gives

$$N_{D} = \frac{\varepsilon \omega V_{RF}}{\sqrt{2} \text{ qwv}_{max}} . \qquad (7)$$

Once $V_{
m dc}$ is known for the structure (by assuming a favorable electric field profile), $V_{
m RF}$ can be estimated. Equation 7 then gives a starting point for optimum doping profile determination.

SECTION 5

RESULIS AT 30 GHz

As a first step, Equation 5 is evaluated for GaAs to obtain an estimate of the dc current density for operation at 30 GHz. For a one-sided GaAs Read structure with $\ell_a=0.2~\mu m$ and $\ell_d=0.83~\mu m$ (chosen so that $\theta=\pi$), it is found that $\alpha=5~x~10^4~cm^{-1}$ and from the $\alpha(E)$ expression in Table 1, $E_a=5.67~x~10^5~V/cm$. Thus $\alpha'=0.23~V^{-1}$, and evaluating Equation 5 at 30 GHz yields $J_0=8.48~x~10^3~A/cm^2$.

For Si and InP, Equation 5 is not applicable because the ionization rates for holes and electrons are not equal. However, for Si, if one performs the calculation first using the ionization rate expression for electrons and then the rate expression for holes in Table 2, one finds in both cases that J_0 is substantially less than the J_0 for GaAs; it is 2.65 x 10^3 A/cm² for electrons and 2.36 x 10^3 A/cm² for holes. Therefore, it is expected that the Si Read diode will operate at considerably lower current densities than the GaAs diode, mostly due to the larger slope of the ionization rates for Si.

For InP, Equation 5 is not applicable since the ionization rates for holes and electrons are quite different, and very different results are obtained for J_{\odot} depending on which is used.

Equation 7 can be used to estimate the optimum N_D needed to obtain the precollection mode for a GaAs double Read structure at 30 GHz. It has already been found that $E_a \approx 5.67 \times 10^5$ V/cm for an avalanche region width of 0.2 μm . If it is assumed that the

drift-region field is constant and equal to 2.6 x 10^5 V/cm and that the drift length is 0.67 µm long, a dc voltage of 46 V is estimated. Since the optimum V_{RF} is typically 0.65 V_{dc} for GaAs, the value V_{RF} = 30 V is used in Equation 7. When $v_{max} \approx 10^7$ cm/s and w ≈ 1.54 µm, the value N_D = 1.8 x 10^{16} cm⁻³ is obtained.

Figure la shows a doping profile for a GaAs hybrid IMPATT that was simulated at 30 GHz, and Figure 1b shows the dc solution for $J_{\rm dc}=9~{\rm kA/cm^2}$. Plots of the large-signal results obtained for this structure at T = 500°K are given in Figure 2. The maximum efficiency was 23.24 percent for $J_{\rm dc}=9~{\rm kA/cm^2}$ and $V_{\rm RF}=31.5~{\rm V}$. The maximum power density obtained was $P_{\rm RF}=1.216~{\rm x}~10^5~{\rm W/cm^2}$ at $J_{\rm dc}=17.1~{\rm kA/cm^2}$ and $V_{\rm RF}=31.5~{\rm V}$.

Table 4 lists some of the large-signal results vs. J_{dc} plotted in Figure 2c. Also given in Table 4 are the dc, RF and dissipated powers in W that would result if the diode area is chosen so that the diode exhibits $1-\Omega$ negative resistance. This value of area is given by

$$A = \frac{-G_{D}}{G_{D}^{2} + B_{D}^{2}} . (8)$$

If the area were chosen larger, the negative resistance would be smaller than 1 Ω , and P_{RF} would be greater. However, since it is difficult to match the diode with a circuit whose resistance is below 1 Ω , the values in Table 4 are reasonable estimates of the maximum electronic power generating capabilities of the diode. These values can also be determined if the circuit load resistance for a particular circuit is known and is different from 1 Ω .

Figure 1. (a) GaAs Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 9 kA/cm^2 . ($X_A = 0.44 \text{ }\mu\text{m}$, J_{dc} = 9 kA/cm^2 , E_{max} = $5.31 \times 10^5 \text{ V/cm}$, E_{LHS} = $1.52 \times 10^5 \text{ V/cm}$, E_{to} = $2.61 \times 10^5 \text{ V/cm}$ and E_{RHS} = $1.71 \times 10^5 \text{ V/cm}$)

Figure 2. Large-Signal Results for the Profile of Figure 1a at $T = 500^{\circ} \text{K}, \text{ f.= 30 GHz and (a and b) J}_{dc} \approx 9 \text{ kA/cm}^2,$ (c) $\text{V}_{RF} = 31.5 \text{ V}.$

TABLE 4

LARGE-SIGNAL SIMULATION RESULTS FOR THE GAAS HYBRID PROFILE IN FIGURE 1a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 30 GHz, $v_{\rm RF}$ = 31.5 V)

D (mils)	2.2	2.7	٣	4.26	46.4	5.4	5.7	6.5	7.4	7.8	ω	8.2	8.2
θ_{R}	29	39	59	11.3	۲	5.4	4	3.4	1.8	1.4	1.2	٦	٦
Pdiss (W)				19.8						158	183	206	216
P _{RF}	24.0	Н	1.56	5.53	9.43	12.7	15.8	18.5	39	35	37	39	37
P _{dc}	3.84	6.8	9.5	25.4	141	9.45	70	ή8	150	193	220	245	253
n (Percent)	12.2	15.6	17	21.8	23	23.2	22.5	22	20	18	17	16	14.7
v dc	017	0†		Ţ ,		75	75	75	43	43	143	743	143
I _{dc}	960.0	0.17	0.23	0.62	1.0	1.3	1.66	2.0	3.5	4.5	5.1	2:3	5.9
A x 10 ⁻⁴ (cm ²)	0.2 ⁴	0.37		0.92		1.48	1.66	1.89	2.5	2.8	3.0	3.2	3.2
B _D	1260	1236	1220	9411	1105	101	1053	1023	546	895	862	836	820
- G _D	38.4	9.95	68.2	123	154	176	190	206	237	747	245	242	235
$^{\mathrm{J}_{\mathrm{dc}}}$	ત	4.5	72	6.8	Ø	6	10	11	17	16	17	18	18.7

THE PROPERTY OF THE PROPERTY O

The term "electronic" power means that thermal effects are ignored, and the diode is assumed to be at a constant temperature. These power levels may be achievable under very short (much lower than the device thermal-time constant) pulse conditions. θ_R is the thermal resistance which is required so that the diode temperature rise does not exceed 225°C above the ambient temperature. D is the diode diameter in mils corresponding to the area A in cm².

Of course, not all the P_{RF} values in Table 4 are achievable in practice under CW conditions. This is because for some values of diameter D the thermal resistance achievable in practice is larger than the required θ_R . Therefore, if the diode were operated at that power level, the temperature rise would exceed 225°C, and the diode would burn out. The achievable thermal resistance θ is calculated using Equation 1. As previously mentioned, the package/bonding term R_{PKG} is assumed to be zero, due mostly to lack of knowledge of this parameter. The buffer layer thickness ℓ_1 is assumed to be 0.5 μ m, and the average buffer layer temperature T_1 is assumed to be 450°K. For this structure (see Figure 1a), the active layer thickness ℓ_2 is taken to be the p-layer thickness and is therefore 0.96 μ m. The average temperature in the active layer T_2 is assumed to be 500°K.

Four different cases will be considered. The first case is for a single diode mesa on a copper heat sink. The thermal resistance for this case is denoted by $\theta(CM)$. Since the thermal conductivity for copper is 3.9 W/cm- $^{\circ}$ K, Equation 1 becomes

$$\theta(CM) = \frac{64.27}{d_m} + \frac{68.58}{d_m^2},$$
 (9)

where d_m is the diameter in mils. For the case of a single mesa on a diamond heat sink, denoted by DM, evaluating Equation 1 using $K_{hs} = 11.7 \text{ W/cm-}^{\circ}\text{K}$ for diamond yields

$$\theta(DM) = \frac{21.42}{d_m} + \frac{68.58}{d_m^2} . \qquad (10)$$

The remaining two cases use ring geometries instead of a single mesa. As explained in Reference 1, using an aspect ratio of 4 reduces the spreading term in Equation 1 by 0.55. If this aspect ratio is assumed, the thermal resistance for a ring geometry on a copper heat sink, denoted by $\theta(CR)$, is

$$e(CR) = \frac{35.35}{d_m} + \frac{68.58}{d_m^2},$$
 (11)

where d_m is the equivalent diode diameter, i.e., $\pi d_m^2/4$ is the area of the diode annulus. For the case of a ring geometry on a diamond heat sink, the thermal resistance is

$$\theta(DR) = \frac{11.78}{d_m} + \frac{68.58}{d_m^2}$$
 (12)

It is seen that for all these cases, the thermal resistance has the form

$$\theta = \frac{A}{d_m} + \frac{B}{d_m^2} . \qquad (13)$$

If it is required that the diode temperature rise not exceed 225°C, Equation 4 becomes

$$\left(\frac{A}{d_{m}} + \frac{B}{d_{m}^{2}}\right)(1 - \eta)V_{dc}J_{dc} \frac{\pi d_{m}^{2}(2.54 \times 10^{-3})^{2}}{4} \leq 225 ,$$
(14)

where 2.54×10^{-3} is the conversion factor for mils to cm. Solving for d_m yields

$$d_{m} \leq \frac{1}{A} \left(\frac{4.44 \times 10^{7}}{(1 - \eta)V_{dc}J_{dc}} - B \right) . \tag{15}$$

Therefore, the maximum achievable power from thermal considerations is calculated by taking the equality sign in Equation 15.

Therefore, two methods of calculating the maximum diode diameter and maximum power generated are now available. One is from matching considerations in Equation 8, where a minimum circuit resistance of 1 Ω is assumed. The second method is from thermal considerations in Equation 15. To estimate the maximum achievable power in practice, the procedure is to calculate the device diameter using both methods and then to choose the minimum of these two values.

This procedure has been carried out for the data of Table 4, and the results are given in Table 5. Results for each combination of diode geometry and heat-sink material are given. D is the minimum diameter for each case as discussed in the previous paragraph. θ is the corresponding achievable thermal resistance for this diameter as calculated from Equation 9 through 12. P_{RF} is the RF power corresponding to the given diameter; it is therefore the estimate for the maximum achievable CW RF power in practice.

It is seen from Table 5 that for low values of $J_{\rm dc}$, the power generation is electronically limited. For higher $J_{\rm dc}$ values, the power output is thermally limited.

For pulsed operation, higher peak powers than those given in Table 5 are possible since the thermal limitation is relaxed.

CW RESULTS FOR THE PROFILE IN FIGURE 1s AT 30 GHZ TAKING INTO ACCOUNT TABLE 5

THE THERMAL-RESISTANCE EXPRESSIONS

J	(KA/cm ²)	4	4.5	2	6.8	80	σ	10	11	77	16	17	18	18.7
P _{RF} (DR)	(M)	74.0	н	1.56	5.53	9.43	12.7	15.8	11.1	7.2	94.0	960.0	ł	1
0 (DR)	(M/Jo)	19.5	13.8	11.5	6.5	5.2	4.5	4.2	5.7	23	107	1480	{	ł
D(DR)	(mils)	2.2	2.7	ო	4.26	76.4	5.4	5.7	9.4	α	98.0	0.39	1	ł
PRF (CR)	(M)	24.0		1.56	4.5	3.52	2.53	1.76	1.23	0.272	0.051	0.011	1	1
0 (CR)	(M/ Do)	30.2	22.5	19.4	13.9	19.1	26.8	37	51.6	506	096	4322	1	1
D(CR)	(mils)	2.2	2.7	m	3.82	3.03	2.39	1.92	1.54	19.0	0.29	0.13	ļ	į
$P_{RF}^{}(DM)$	(M)	74.0	н	1.56	5.53	9.43	6.89	4.8	3.35	ħ2.0	0.14	0.029	ł	1
(MQ) 0	(M/Do)	23.9	17.3	10	8.8	7.1	9.86	13.6	18.9	75.9	352	1588		1
D(DM)	(mils)	2.2	2.7	m	4.26	46.4	3.94	3.17	2.55	1.10	74.0	0.21	ļ	ł
PRF(CM) D(DM)	(M)	74.0	н	1.56	1.36	1.06	92.0	0.53	0.37	0.082	0.016	3.2 x 10-3	ł	ł
⊕(CM)	(M/D _o)	η·εη	33.2	63	94	63	88	122	170	683	3173	1.43 x 104	1	ł
D(CM)	(mils)	2.2	2.7	m	2.1	1.67	1.31	1.05	0.85	0.37	0.16	0.072	ł	i

on or on the Proposition of Washington and Contraction

This depends on the pulse width relative to the thermal-time constant and the duty cycle.

The GaAs double Read structure of Figure 3a and b was simulated at 30 GHz. Large-signal results vs. V_{RF} at $J_{dc}=9~kA/cm^2$ are presented in Figure 4a and b. Figure 4c presents large-signal results vs. J_{dc} at $V_{RF}=28~V$, the voltage at which maximum efficiency in Figure 4a was obtained. The maximum efficiency obtained for this structure was $\eta=25.6$ percent at $V_{RF}=28~V$ and $J_{dc}=7~kA/cm^2$; the maximum power density was $P_{RF}=94.6~kW/cm^2$ at $V_{RF}=28~V$ and $J_{dc}=11.14~kA/cm^2$.

Table 6 presents large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 28 V, along with electronic powers obtainable if the diode is matched to $1-\Omega$ resistance. Comparison with Table 4 shows that the electronic power for the hybrid structure is larger than for the double Read structure. This is because the doping on the p-side of the hybrid structure is larger than the p-doping in the double Read drift region, so that space-charge effects are not as severe for the hybrid, and it can operate at higher current densities than the double Read structure. Therefore, the hybrid structure is superior for pulsed applications where excessive heating is not a problem.

However, when thermal effects are included to evaluate CW performance, the double Read structure can generate more power than the hybrid. The thermal-resistance expressions for the double Read diode corresponding to Equations 9 through 12 and using $\ell_2=0.76~\mu m$ from Figure 3a for the hybrid are

$$\theta (CM) = \frac{64.27}{d_m} + \frac{62}{d_m^2},$$
 (16)

Figure 3. (a) GaAs Double-Read Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 9 kA/cm^2 . (X_A = $0.26 \text{ }\mu\text{m}$, J_{dc} = 9 kA/cm^2 , E(LHS) = $2.03 \times 10^5 \text{ V/cm}$, $E_{to}(LHS)$ = $2.8 \times 10^5 \text{ V/cm}$, E_{max} = $5.16 \times 10^5 \text{ V/cm}$, $E_{to}(RHS)$ = $2.606 \times 10^5 \text{ V/cm}$, E(RHS) = $1.81 \times 10^5 \text{ V/cm}$, Integrated Doping Spike Q_p = $1.632 \times 10^{12} \text{ cm}^{-2}$ and Q_n = $1.78 \times 10^{12} \text{ cm}^{-2}$)

Figure 4. Large-Signal Results for the Profile of Figure 3a at $T = 500^{\circ} K, \ f = 30 \ GHz \ and \ (a \ and \ b) \ J_{dc} = 9 \ kA/cm^2,$ (c) $V_{RF} = 28 \ V.$

TABLE 6

POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 30 GHz, $v_{\rm RF}$ = 28 V) LARGE-SIGNAL RESULTS FOR THE GAAS DOUBLE READ PROFILE IN FIGURE 3a AND

А	(mils)	2.9	3.3	9°.	4.2	4.8	5.1	5.6	5.8	6.2	6.2
9 R	(%C/M)	45	27	ħζ	14.3	9.5	7.5	5.3	4.2	3.33	m
Pdiss	(M)	7	4.8	9,46	15.75	23.8	30	42.5	53	67.5	75.3
P RF	(M)	1.35	2.15	2.94	5.25	8.2	10	13.5	16	18.5	18.7
Pdc	(W)	6.3	9.5	12.4	73	32	04	26	69	98	な
٤	(Percent)	21.3	22.6	23.7	25	25.6	25	77	23	21.6	
V	(A)	36	36.7	37	37.5	38	38.4	38.8	39	39	39
							1.05				
A	x 10-4 (cm ²)	77.0	0.57	0.67	0.93	1.2	1.35	1.65	1.77	2.0	2.0
В	(mho/cm ²)	1314	1292	1275	1235	1200	1176	1146	1110	1070	1047
٦	(mho/cm ²)	7.7	95	110	143	174	196	210	227	241	540
J_{dc}	(kA/cm^2)	4	4.5	2	9	_	7.8	6	10	11	12

$$\theta(DM) = \frac{21.42}{d_m} + \frac{62}{d_m^2},$$
 (17)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{62}{d_m^2}$$
 (18)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{62}{d_m^2}$$
 (19)

Again restricting the maximum diode temperature rise to 225°C and evaluating Equations 13 through 15 gives the data presented in Table 7. As before, for low values of $J_{\rm dc}$ the power generation capability is electronically limited, and for higher values of $J_{\rm dc}$ it is thermally limited. For every geometry and heat-sink material, the double Read structure can generate more CW power than the hybrid at 30 GHz.

In addition to these GaAs structures, Si and InP hybrid profiles were simulated at 30 GHz. Figure 5a shows the Si hybrid profile used, and Figure 5b shows the dc solution at T = 500° K and J_{dc} = 3.5 kA/cm². Large-signal results vs. V_{RF} at J_{dc} = 3.5 kA/cm² are plotted in Figure 6a and b. Figure 6c shows large-signal results vs. J_{dc} at V_{RF} = 36 V; both the maximum efficiency and power points appear in this curve. The maximum efficiency obtained was n = 22.73 percent at J_{dc} = 2.5 kA/cm², and the maximum electronic power density was 79.3 kW/cm² at J_{dc} = 7.9 kA/cm². It should be noted that Si hybrid operates at considerably lower current densities than the GaAs diodes, as was predicted from Equation 5 at the beginning of this section.

Large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 36 V are given in Table 8. To determine the thermal-resistance expressions, it is noted from Figure 5a that the length of the p-side is 1.68 μ m;

TABLE 7

CW RESULTS FOR THE PROFILE IN FIGURE 3a AT 30 GHZ TAKING INTO ACCOUNT

THE THERMAL-RESISTANCE EXPRESSIONS

$J_{\rm dc}$ (kA/cm^2)	ন	5.4	5	9	-	7.8	6	10	11	12
$P_{RF}(DR)$	1.35	2.15	2.94	5.25	8.2	10	13.5	16	16.6	10.9
0 (DR)	11.4	9.56	7.39	6.32	5.14	69.4	4.08	3.87	3.74	5.14
D(DR)									5.94	
P _{RF} (CR)	1.35	2.15	2.94	5.25	7.28	5.59	3.77	2.68	1.84	1.22
0(CR)										
D(CR)							2.98	2.43	1.98	1.6
$P_{RF}^{}(DM)$	1.35	2.15	2.94	5.25	8.2	10	10.3	7.3	5.0	3.3
(°C/W)	14.8	11.8	9.93	8.6	7.15	6.58	6.92	9.5	12.4	17
D(DM)	2.9	3.3	3.8	4.2	8.4	5.1	4.9	0.4	3.3	5.6
- '	1.35	2.15	2.94	2.79	2.2	1.69	1.14	0.811	0.557	0.368
(°C/W)	29.5	25.2	21.2	26.9	35.2	ካ• ካካ	62.3	82.8	111	153
D(CM)	2.9	3.3	3.8	3.1	2.5	2.1	1.6	1.3	1.1	0.88

Figure 5. (a) Si Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 3.5 kA/cm². (X_{A} = 0.5 μ m, J_{dc} = 3.5 kA/cm², E(LHS) = 1.206 x 10⁵ V/cm, E_{max} = 4.819 x 10⁵ V/cm, E_{to} = 1.7 x 10⁵ V/cm and E(RHS) = 1.203 x 10⁵ V/cm)

Figure 6. Large-Signal Results for the Si Profile of Figure 5a at $f = 30 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} \text{ J}_{dc} \approx 3.5 \text{ kA/cm}^2,$ $(c) \text{ V}_{RF} = 36 \text{ V}.$

TABLE 8

LARGE-SIGNAL RESULTS FOR THE SI HYBRID PROFILE IN FIGURE 5a AND POWER LEVELS

OBTAINED BY MATCHING TO 1- Ω RESISTANCE (f = 30 GHz, $v_{\rm RF}$ = 36 V)

А	(mils)	4.35	16.4	5.6	90.9	6.98	7.86	8.56	8.72	9.05	9.29	9.54	9.74
θ Έ	(M/O ₀)	₹ 7	14.8	9.61	7	<i>4</i>	2.5	1.76	1.61	1.4	1.22	1.08	96.0
Pdiss	(M)	9.39	15.2	23.4	32.0	55.7	4.68	128	140	191	184	208	233
P RF	(M)	2.71	74.4	6.85	9.23	15.3	22.6	29.5	30.3	32.6	34.6	36.1	36.7
P dc	(W)	12.1	19.7	30.3	41.2	71.0	112	157	170	194	219	544	270
د	(Percent)	22.4	22.7	22.6	4.52	21.5	20.2	18.6	17.8	16.8	15.8	14.8	13.6
V	(¥)	63	63.3	63.5	63.7	79	64.2	79	63.8	63.6	63.4	63.2	63
Idc	(A)	0.192	0.312	0.477	749.0	1.11	1.75	2.45	2.66	3.05	3.45	3.87	4.28
Ą	x 10-4 (cm ²)	96.0	1.25	1.59	1.86	2.47	3.13	3.71	3.85	4.12	4.37	19.4	4.81
_B Ω	(mho/cm ²)	670	099	648	638	419	585	557	247	531	515	864	181
- G	(mho/cm ²)	43.2	55	67.7	9.91	95.3	111	120.4	120.7	122.3	122.4	121	118
J	(kA/cm^2)	8	2.5	m	3.48	4.5	5.6	9.9	6.9	ተ• /	7.9	η.8	8.9

therefore $\ell_2 = 1.68 \times 10^{-4}$ cm is used in Equation 1. As before, it is assumed that $T_2 = 500^{\circ} K$, $\ell_1 = 0.5 \times 10^{-4}$ cm and $T_1 = 450^{\circ} K$. As was noted in Section 3, the thermal conductivity of Si is approximately 3 times that of GaAs; therefore the final two terms in Equation 1 are reduced by the factor 1/3. Then the expressions for thermal resistance of the Si hybrid are

$$\theta(CM) = \frac{64.27}{d_m} + \frac{30.78}{d_m^2} , \qquad (20)$$

$$\theta(DM) = \frac{21.42}{d_m} + \frac{30.78}{d_m^2},$$
 (21)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{30.78}{d_m^2}$$
 (22)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{30.78}{d_m^2}$$
 (23)

Evaluating Equations 13 through 15 along with the thermalresistance expressions in Equations 20 through 23 gives the expected CW power
levels in Table 9. Because of the lower thermal resistance for Si,
the CW powers in Table 9 are greater than for either the GaAs hybrid
structure or the GaAs double Read structure. The electronic powers
in Table 8 are lower than for the GaAs hybrid in Table 4, indicating
that the GaAs hybrid is capable of generating more power under pulsed
conditions than the Si hybrid.

The final structure simulated at 30 GHz is the InP hybrid profile shown in Figure 7a. The dc solution for this profile at $T = 500^{\circ}$ K and $J_{dc} = 7 \text{ kA/cm}^2$ is shown in Figure 7b.

Large-signal results for the InP hybrid vs. V_{RF} are shown in Figure 8a and b, and results vs. J_{dc} at V_{RF} = 42 V are plotted

TABLE 9

CW RESULTS FOR THE PROFILE IN FIGURE 5a AT 30 GHz TAKING INTO ACCOUNT

THE THERMAL-RESISTANCE EXPRESSIONS

$^{ m J}_{ m dc}$	(1	2.5	т	3.48	4.5	5.6	9.9	6.9	4.7	6.7	4.8	8.9
P _{RF} (DR)	2.71	<u>ታ</u> ተ-ተ	6.85	9.23	15.3	22.6	29.5	24.2	19.7	16	13	10.3
θ(DR) (°C/W)	4.33	3.62	3.08	2.78	2.32	2.0	1.8	2.0	2.31	2.63	3.0	3.43
D(DR)	4.35	4.97	5.6	90.9	6.98	7.86	8.56	7.8	7.0	6.32	5.72	5.17
$P_{RF}(CR)$ (W)	2.71	74.4	6.85	9.23	6.89	4.53	3.08	2.68	2.19	1.78	1.45	1.14
	9.75	8.36	7.29	6.67	8.94	12.6	16.7	18.1	20.8	23.7	27.0	30.9
D(CR)	4.35	4.97	5.6	90.9	1,68	3.51	2.78	5.6	2.34	2.11	1.91	1.72
$P_{RF}(DM)$ (W)	2.71	74.4	6.85	9.23	15.3	12.3	8.39	7.31	5.96	4.85	3.94	3.12
(OC/W)	6.55	5.56	18.4	4.37	3.7	4.62	6.12	99.9	7.62	8.7	9.95	11.4
D(DM)	4.35	76.4	5.6	90.9	6.98	5.79	4.59	4.29	3.86	3.48	3.14	2.84
θ (CM) P_{RF} (CM) D(DM) (°C/W) (W) (mils)	2.71	74.4	3.86	3.15	2.08	1.37	0.932	0.812	0.662	0.539	0.438	0.347
9(CM)	16.4	14.2	17	20.6	29.6	41.6	55.1	09	68.6	78.3	89.3	102
D(CM) (mils)	4.35	16.4	4.21	3.54	2.58	1.93	1.53	1.43	1.28	1.16	1.05	0.947

Figure 7. (a) InP Hybrid Profile for 30-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 7 kA/cm^2 . ($X_A = 0.54 \text{ }\mu\text{m}$, $J_{dc} = 7 \text{ kA/cm}^2$, $E(LHS) = 3.0 \times 10^5 \text{ V/cm}$, $E_{max} = 6.658 \times 10^5 \text{ V/cm}$, $E_{to} = 3.772 \times 10^5 \text{ V/cm}$ and $E(RHS) = 2.89 \times 10^5 \text{ V/cm}$)

Figure 8. Large-Signal Results for the Profile of Figure 7a at $T = 500^{\circ} K, f = 30 \text{ GHz and (a and b) J}_{dc} \approx 7 \text{ kA/cm}^2,$ (c) $V_{RF} = 42 \text{ V}.$

in Figure 8c. Table 10 presents large-signal results vs. $J_{\rm dc}$ and electronic powers obtained by matching the diode to 1- Ω resistance. The maximum efficiency obtained was 27.2 percent at $J_{\rm dc}=6.06~{\rm kA/cm^2}$ and $V_{\rm RF}=42~{\rm V}$, which is larger than the efficiencies obtained from any of the other structures simulated at 30 GHz. From Figure 7a, the active (p) layer width for thermal-resistance calculations is $\ell_2=0.9~{\rm x~10^{-4}~cm}$; also it is assumed as before that $\ell_1=0.5~{\rm x~10^{-4}~cm}$, $T_1=450^{\rm o}{\rm K}$ and $T_2=500^{\rm o}{\rm K}$. As noted in Section 3, the thermal conductivity of InP is approximately 1.25 times that of GaAs; therefore the last two terms of Equation 1 are reduced by a factor of 0.8. Then the thermal resistances for the InP hybrid of Figure 7a are

$$e(CM) = \frac{64.27}{d_m} + \frac{53.28}{d_m^2},$$
 (24)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{53.28}{d_m^2},$$
 (25)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{53.28}{d_m^2}$$
 (26)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{53.28}{d_m^2}$$
 (27)

Evaluating Equations 13 through 15 together with the expressions in Equations 24 through 27 yields the CW powers in Table 11.

Although the maximum efficiency for the InP hybrid is large, the electronic power generated at the maximum efficiency point is less than for the GaAs structures. This is because the GaAs diodes, especially the hybrids, operate at higher current

TABLE 10

POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 30 GHz, $v_{\rm RF}$ = 42 V) LARGE-SIGNAL RESULTS FOR THE INP HYBRID PROFILE IN FIGURE 7a AND

А	(mils)	2.9	3.37	3.79	4.08	4.41	99.4	5.31	5.86	6.22	42.9
	(°C/W)						5.38		1.92	1.35	1.12
Pdiss	(W)	6.99	12	18.1	23.6	32.6	41.8	74.8	117	167	
P RF	(M)	2.53	64.4	6.74	8.75	11.6	13.9	21.2	27.7	30.9	56.9
	•				32.4	2.44	55.7	96	145	198	228
٤	(Percent)	56.6	27	27.2	27			22.1	19.1		
V de	(V)	55.	26	56.	56.3	3 56.5	1 56.4	56.5	56.3	55.8	55.1
Idc	(A)	0.171	0.292	144.0	0.576	0.783	0.988	1.70	2.58	3.55	41.4
Ą	x 10-4 (cm ²)	0.427	0.577	0.728	0.842	0.987		1.43		1.96	1.97
			1222	1196	1178	1153	1132	1070	1004	935	874
- G	(mho/cm ²)	67	9.98	105	118	133	:43	168	181	178	155
Jdc	(kA/cm^2)	ব	90.6	90.9	48.9	7.93	8.98	11.9	14.8	18.1	21.0

TABLE 11

CW RESULTS FOR THE PROFILE IN FIGURE 7a AT 30 GHz

TAKING INTO ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

9(CM) 1	PRF(CM)	D(DM)		${ m P}_{ m RF}({ m DM})$	D(CR)	_		D(DR)	_	$P_{ m RF}({ m DR})$	Jdc
(W)	_1	(mils)	(M/Oo)	(M)	(mils)	•		(mils)	(M/Do)	(M)	(kA/cm ²
2.5	m	2.9	13.7	2.53	2.9			2.9		2.53	4
2.44	. 7	3.37	11	4.43	3.37	15.2	4.43	3.37	8.19	4.43	5.06
1.8		3.79	9.36		3.56	14.1	5.94	3.79	6.82	6.74	90.9
1.4		4.08	8.45	8.75	2.96	18	4.62	4.08	60.9	8.75	6.84
0	546	3.78	9.39		2.29	25.6	3.12	14.4	5.41	11.6	7.93
0.6	528	2.97	13.3	5.66	1.8	36.1	2.08	99.4	4.98	13.9	8.98
0.1	.81	1.47	39.5		0.891	107	09.0	2.67	11.9	5.38	11.9
0.0	33	0.587	191		0.356	520	0.102	1.07	57.8	0.92	14.8
ł		1	ł	ł	ł	1	ł	ł	1	ł	18.1
i		;	1	1	}	!	1	!	;	1	23

densities than the InP hybrids. This power is greater than for the Si hybrid, since the Si hybrid operates at a lower current density than the InP hybrid at the maximum efficiency point. At the maximum electronic power points, both the Si hybrid and the GaAs hybrid generate more power than the InP hybrid.

In summary, the simulations at 30 GHz show that for CW operation, the Si hybrid is capable of generating the most RF power due to its high thermal conductivity. Another advantage of Si is that diodes of larger area can be matched to $1-\Omega$ circuit resistance since the diode susceptance is more nearly equal in magnitude to the diode conductance (see Equation 8).

For pulsed applications where excessive heating is not a problem, the uniformly doped GaAs hybrid structure was found to generate the most RF power.

SECTION 6.

RESULTS AT 40 GHz

The use of Equations 5 for GaAs with ℓ_a = 0.2 µm and ℓ_d = 0.625 µm predicts from the simplified analysis that maximum small-signal negative conductance for a Read structure at 40 GHz is obtained for $J_{\rm dc}$ = 15.4 kA/cm². Also, Equation 7 is evaluated to estimate the doping needed to obtain the precollection mode in GaAs at 40 GHz. Of course, the validity of Equation 7 at 40 GHz is suspect since it is questionable whether the standard precollection mode can be obtained at this frequency. This can only be determined by carrying out energy and momentum conserving IMPATT simulations for GaAs, which will be done in the course of the program. It is found that $V_{\rm dc}$ for the GaAs double-drift structures for 40-GHz operation is typically approximately 36 V. When $V_{\rm RF}$ = 0.65 $V_{\rm dc}$ and w = 1.2 µm in Equation 7, the value $N_{\rm D}$ = 2.39 x 10¹⁶ cm⁻³ is obtained.

Figure 9a shows a GaAs hybrid doping profile simulated at 40 GHz; the dc solution at T = 500° K and $J_{\rm dc}$ = $10~{\rm kA/cm^2}$ is shown in Figure 9b. Figure 10a and b shows plots of the large-signal results vs. $V_{\rm RF}$ at T = 500° K, f = 40 GHz, $J_{\rm dc}$ * 11 kA/cm², and Figure 10c shows large-signal results vs. $J_{\rm dc}$ at T = 500° K and $V_{\rm RF}$ = $26~{\rm V}$. The best efficiency obtained for the GaAs hybrid was η = 20.5 percent at $J_{\rm dc}$ = 11 kA/cm² and $V_{\rm RF}$ = $26~{\rm V}$, and the maximum electronic RF power density was $P_{\rm RF}$ = $131.3~{\rm kW/cm^2}$ at $J_{\rm dc}$ = $26~{\rm kA/cm^2}$ and $V_{\rm RF}$ = $26~{\rm V}$. Table 12 shows the large-signal results vs. $J_{\rm dc}$ at f = 40 GHz and $V_{\rm RF}$ = $26~{\rm V}$. When it is noted

Figure 9. (a) GaAs Hybrid Profile for 40-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 10 kA/cm^2 . (X_A = 0.36 µm, J_{dc} = 10 kA/cm^2 , E(LHS) = $1.41 \times 10^5 \text{ V/cm}$, E_{max} = $5.495 \times 10^5 \text{ V/cm}$, E_{to} = $2.616 \times 10^5 \text{ V/cm}$ and E(RHS) = $1.83 \times 10^5 \text{ V/cm}$)

Figure 10. Large-Signal Results for the Profile of Figure 9a at $T = 500^{\circ}K, f = 40 \text{ GHz and (a and b) J}_{dc} = 11 \text{ kA/cm}^2,$ (c) $V_{RF} = 26 \text{ V}.$

TABLE 12

LARGE-SIGNAL RESULTS FOR THE GAAS HYBRID PROFILE OF FIGURE 9a AND POWER LEVELS

OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 4 O GHz, V RF = 26 V)

Д	(mils)	2.45	2.85	3.1	3.48	3.61	3.72	4.02	7,42	4.72	4.99	5.26	5.51	5.62
θ Έ	(M/Jo)	33	21.8	17	12.2	9.82	9,46	6.37	4.38	3.4	3.69	2.16	1.8	1.6
Pdiss	•	6.82				22.9				66.2		104	125	141
P RF	(M)	1.32	2.32	3.14	4.78	5.48	6.11	7.86	10.7	13.1	15.5	17.8	20.3	20.3
Pdc	1	8.14	12.6	16.3	23.3	28.4	32.7	43.2	62.1	79.3	66	122	145	161
د	(Percent)	16.2	18.4	19.3	20.5	19.3	18.7	18.2	17.3	16.5	15.7	14.6	14	12.6
V	(V)	33.8	34.1	34.3		35	35.2	35.4		35.9	36	36.2	36.2	36
Idc	(A)	0.241	0.371	0.475	0.674	0.812	0.928	1.22	1.74	2.21	2.75	3.37	0.4	84.4
А	x 10-4 (cm ²)	0.304	0.412	0.486	0.613	99.0	0.703	0.818	0.99	1.13		1.4	1.54	1.6
Q Q	(mho/cm^2)	2057	2007	1978	1932	1911	1891	1845	1772	1715	1658	1598	1536	1490
G G	(mho/cm ²)	129	167	192	232	245	256	285	321	346	364	378	388	378
$J_{ m dc}$	(kA/cm^2)	7.93	6	9.78	11	12.3	13.2	14.9	17.6	19.6	21.8	24.1	56	28

from Figure 9a that the p-region width is $\ell_2 = 0.6 \times 10^{-4}$ cm and $\ell_1 = 0.5 \times 10^{-4}$ cm, as before, for the buffer-layer thickness, the thermal-resistance expressions for this structure become

$$\theta(CM) = \frac{64.27}{d_m} + \frac{56.74}{d_m^2}, \qquad (28)$$

$$\theta(DM) = \frac{21.42}{d_m} + \frac{56.74}{d_m^2},$$
 (29)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{56.74}{d_m^2}$$
 (30)

and

$$e(DR) = \frac{11.78}{d_m} + \frac{56.74}{d_m^2}$$
 (31)

Evaluating Equations 13 through 15 together with the expressions in Equations 28 through 31 yields the CW power data given in Table 13. It should be noted that for the CM case (copper heat sink, single mesa), the CW power levels are all thermally limited. For the other cases, as before, for low values of $J_{\rm dc}$ the power is electronically limited, and for nigher values of $J_{\rm dc}$ the power is thermally limited.

Figure 11a shows a double Read GaAs profile simulated at 40 GHz. The dc solution for this profile is shown in Figure 11b. Large-signal results vs. V_{RF} at T = 500°K, f = 40 GHz and $J_{dc} \approx 9$ kA/cm² are plotted in Figure 12a and b, and results vs. J_{dc} at $V_{RF} = 23$ V are plotted in Figure 12c. The maximum efficiency was $\eta = 20.83$ percent at $J_{dc} = 6.02$ kA/cm² and $V_{RF} = 23$ V, and the maximum electronic RF power density was $P_{RF} = 86.16$ kW/cm² at $J_{dc} = 16$ kA/cm² and $V_{RF} = 23$ V. Table 14 lists the large-signal results vs. J_{dc} along with the electronic power generated when the device exhibits $1-\Omega$ negative resistance. In Figure 11a it is seen that

TABLE 13

CW RESULTS FOR THE PROFILE IN FIGURE 9a AT 40 GHZ TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

D(CM)		$\theta(\text{CM}) P_{RF}(\text{CM})$	D(DM)	θ(DM)	$P_{RF}(DM)$	D(CR)	θ(CR)	P _{RF} (CR)	D(DR)	θ(DR)	PRF (DR)	J
(mils)	(mils) (°C/W)	(M)	(mils)	(M/20)	(W)	(mils)	(M/Do)	(W)	(mils)	(°C/W)	(M)	(kA/cm ²)
2.19	1.14	1.06	2.45	18.2	1.32	2.45	23.9	1.32	2.45	14.3	1.32	7.93
1.88	50.4	1.01	2.85	14.5	2.32	2.85	19.4	2.32	2.85	11.1	2.32	0
1.67	58.9	0.914	3.1	12.8	3.14	3.03	17.8	3.02	3.1	7.6	3.14	9.78
1.4	74.8	0.775	3.48	10.8	4.78	2.55	22.6	2.56	3.48	8.07	4.78	11
1.1	104	0.515	3.32	11.6	4.63	2.01	31.6	1.7	3.61	7.62	5.48	12.3
946.0	131	0.394	2.84	14.6	3.55	1.72	39.7	1.3	3.72	7.27	6.11	13.2
0.718	199	0.251	2.16	22.2	2.26	1.31	60.3	0.83	3.92	6.7	7.47	14.9
744.0	428	0.11	1.34	9.74	0.989	0.812	130	0.363	5. 44	14.4	3.27	17.6
0.293	880	0.05	0.879	97.8	0.454	0.533	566	0.167	1.6	29.6	1.5	19.6
0.161	2580	0.016	0.484	286	0.146	0.293	779	0.054	0.88	96.6	0.484	21.8
0.044	3020	0.0013	0.133	3360	0.011	0.081	9136	0.0042	0.242	1015	0.038	24.1
!	1	1	ļ	ŀ		ł	ł	1	ł	ł	ł	92
1	ì	ŀ	ł	1		i	}	1	;	1	1	28

Figure 11. (a) GaAs Double-Read Profile for 40-GHz Operation and (b) Dc Solution at T = 500° K and $J_{\rm dc}$ = 9 kA/cm². (X_A = 0.24 μ m, $J_{\rm dc}$ = 9 kA/cm², $E_{\rm max}$ = 5.283×10^5 V/cm, Integrated Doping Spike Q_p = 1.7 x 10^{12} cm⁻² and Q_n = 1.93 x 10^{12} cm⁻²)

Figure 12. Large-Signal Results for the Profile of Figure 11a at $T = 500^{\circ}K, f = 40 \text{ GHz and (a and b) J}_{dc} \approx 9 \text{ kA/cm}^2,$ (c) $V_{RF} = 23 \text{ V}.$

TABLE 14

LARGE-SIGNAL RESULTS FOR THE GAAS DOUBLE READ PROFILE IN FIGURE 11a AND POWER LEVELS OBTAINED BY MATCHING TO 1- Ω RESISTANCE (f = μ 0 GHz, v_{RF} = 23 V)

D (mils)	2.17	2.51	2.76	2.93	3.14	3.36	3.51	3.65	3.82	3.9	4.2	4.22
θ _R	76	45.7	32.2	24.7	19.1	14.3	11.8	10.2	4.8	7.58	5.56	4.88
Pdiss (W)	2.96	4.92	6.99	9.11	11.8	15.7	19	22.1	26.8	29.7	40.5	46.1
P _{RF}	ηηL.0	1.29	1.84	2.29	2.96	3.78	4.37	7.96	5.77	60.9	99.1	7.5
P _{dc}	3.7	6.21	8.83	11.4	14.8	19.5	23.4	27.1	32.6	35.8	1,8.2	53.6
n (Percent.)	20.1	20.83	20.8	20.1	20	19.4	18.7	18.3	17.7	17	15.9	14
v dc (v)	31.9	32.2	32.7	32.9	33.1	33.4	33.4	33.4	33.6	33.5	33.7	33.5
I dc	0.116	0.193	0.27	0.348	944.0	0.585	0.7	0.811	0.969	1.07	1.43	1.6
A x 10 ⁻⁴ (cm ²)	0.239	0.32	0.385	0.436	0.5	0.574	0.625	0.676	0.74	0.769	0.895	0.903
B _D	2220	2181	2154	2132	2102	2067	2038	5008	1974	1949	1880	1838
- G _D		153	180	200	223	549	792	278	295	599	326	314
J_{dc}	18.1	6.02	7.01	7.98	8.92	10.2	11.2	12	13.1	13.9	16	17.7

THE RESERVE OF THE PARTY OF THE

the width of the p-type region is 0.6 µm, the same as for the hybrid structure previously considered. Therefore, the thermal-resistance expressions given in Equations 28 through 31 are also applicable to the double Read structure. Solving Equations 13 through 15 for this case yields the data given in Table 15. Comparisons with the data in Table 13 for the hybrid shows that for the single mesa cases, the double Read is capable of generating more CW power than the hybrid structure.

In addition to the GaAs double-drift structures simulated at 40 GHz, a single-drift GaAs Read structure was simulated. Figure 13a shows the doping profile, and Figure 13b is the dc solution at T = 500° K and $J_{dc} = 8 \text{ kA/cm}^2$. Large-signal results at T = 500° K, f = 40 GHz and $J_{dc} = 8$ kA/cm² are plotted in Figure 14a and b, and results vs. J_{dc} at V_{RF} = 13.5 V are given in Figure 14c. Table 16 presents the data for large-signal runs vs. $J_{\rm dc}$. The maximum efficiency obtained for this structure was $\eta = 18.1$ percent at $J_{\rm dC}$ = 7.02 kA/cm² and $V_{\rm RF}$ = 13.5 V, and the maximum RF power density was $P_{RF} = 33.6 \text{ kW/cm}^2 \text{ at } J_{dc} = 12.1 \text{ kA/cm}^2 \text{ and } V_{RF} = 13.5 \text{ V.}$ When ℓ_2 = 0 in Equation 1 and ℓ_1 = 0.5 μm as before, the thermally limited RF powers were calculated for this device by solving Equations 13 through 15. However, for every geometry and heat-sink material combination, the resulting diode diameter was larger than the corresponding diameter given in Table 16. Therefore, for all cases this device is electronically limited.

The doping profile for the Si hybrid structure simulated at 40 GHz is given in Figure 15a, and the dc solution at $T = 500^{\circ} K$ and $J_{\rm dc} = 7.5 \ kA/cm^2$ is shown in Figure 15b. Figure 16a and b shows

TABLE 15

CW RESULTS FOR THE PROFILE IN FIGURE 11a AT 40 GHz TAKING INTO ACCOUNT

THE THERMAL-RESISTANCE EXPRESSIONS

		,	,		•		,	•		,	,	
D(CM)	0 (CM)	$P_{RF}^{(CM)}$	D(DM)	θ(DM)	$P_{ m RF}({ m DM})$	D(CR)	0 (CR)	$_{ m RF}^{ m (CR)}$	D(DR)	0(DR)	$P_{RF}^{(DR)}$	Jdc
(mils)	(M/Do)	(W)	(mils)	(°C/W)	(W)	(mils)	(M/Oc)	(W)	(mils)	(M/Do)	(M)	(kA/cm ²)
2.17	41.7	447.0	2.17	21.9	ሳ ተረጉ 0	2.17	28.3	772.0	2.17	17.5	447.0	η8. μ
2.51	34.6	1.29	2.51	17.5	1.29	2.51	23.1	1.29	2.51	13.7	1.29	6.02
2.76	30.7	1.84	2.76	15.2	1.84	2.76	20.2	1.84	2.76	11.7	1.84	7.01
2.41	36.4	1.55	2.93	13.9	2.29	2.93	18.7	2.29	2.93	9.01	2.29	7.98
2.04	45.1	1.25	3.14	12.6	2.96	3.14	17	2.96	3.14	9.51	2.96	8.92
1.63	9.09	0.893	3.36	11.4	3.78	2.97	18.3	2.95	3.36	8.53	3.78	10.2
1.39	75.7	0.684	3.51	10.7	4.37	2.52	22.9	2.26	3.51	7.96	4.37	11.2
1.23	90.1	95.0	3.65	10.1	96.4	2.23	27.2	1.85	3.65	7.49	96.4	12
1.02	117	0.414	3.07	13	3.73	1.86	35.3	1.37	3.82	6.97	5.77	13.1
0.905	140	0.328	2.71	15.6	2.95	1.64	42.4	1.08	3.9	6.75	60.9	13.9
0.641	238	0.178	1.92	26.5	1.6	1.16	72.2	0.589	3.49	8.02	5.3	16
0.472	391	0.094	1.42	43.4	0.843	0.858	118	0.31	2.57	13.1	2.79	17.7

Figure 13. (a) Single-Drift GaAs Read Structure for 40-GHz Operation and (b) Dc Solution at T = 500°K and $J_{\rm dc}$ = 8 kA/cm². ($X_{\rm A}$ = 0.14 µm, T = 500°K, $J_{\rm dc}$ = 8 kA/cm², $E_{\rm max}$ = 6.96 x 10⁵ V/cm, $E_{\rm to}$ = 2.637 x 10⁵ V/cm, $E({\rm RHS})$ = 2.101 x 10⁵ V/cm, and Integrated Doping Spike $Q_{\rm n}$ = 2.95 x 10¹² cm⁻²)

Figure 14. Large-Signal Results for the Profile of Figure 13a at $f = 40~GHz,~T = 500^{\circ}K~and~(a~and~b)~J_{dc}~^{\approx}~8~kA/cm^2,$ (c) $V_{RF} = 13.5~V.$

TABLE 16

LARGE-SIGNAL RESULTS FOR THE GAAS SINGLE-DRIFT READ PROFILE IN FIGURE 13a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 4 O GHz, $^{V}_{\mathrm{RF}}$ = 13.5 V)

Д	(mils)	1.35	1.69	1.84	1.99		2.25	2.26
o Ri		242	141	114	85.2	56.1	41.9	37.9
Pdiss	(M)	0.132 0.928	1.56	1.97	2.64	4.01	5.37	5.93
$^{ m P}_{ m dc}$ $^{ m P}_{ m RF}$	(M)	0.132	1.88 0.32 1.56	2.4 0.434 1.97	3.22 0.58	4.79 0.776 4.01	6.23 0.86 5.37	6.78 0.854 5.93
$^{\mathrm{P}}_{\mathrm{dc}}$	(M)	1.06	1.88	2.4	3.22	4.79	6.23	6.78
ድ	(Percent)	12.5	17	18.1	18	16.2	13.8	12.6
V	(V)	19.5	19.9	20	20.1	20.2	20.1	20
$I_{ m dc}$	(A)	0.0544	0.0945 19.9	0.12	0.16	0.237	0.31	0.339
Ą	$\times 10^{-4} (cm^2)$	0.0919	0.145	0.171	0.2	0.237	0.256	0.259
B	(mho/cm ²)	9514	9204	η£0η	3980	3879	3771	3715
о _р -	(mho/cm ²)	159	242	279	319	360	368	361
$J_{ m dc}$	(kA/cm^2)	5.92	6.52	7.02	8.0	10	12.1	13.1

Figure 15. (a) Si Hybrid Profile for 40-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 7.5 kA/cm². (X_A = 0.4 µm, J_{dc} = 7.5 kA/cm², E(LHS) = 1.32 x 10⁵ V/cm, E_{max} = 5.1 x 10⁵ V/cm, E_{to} = 1.82 x 10⁵ V/cm and E(RHS) = 1.34 x 10⁵ V/cm)

Figure 16. Large-Signal Results for the Profile of Figure 15a at $f = 40~\rm{GHz},~T = 500^o K~and~(a~and~b)~J_{dc}~^{2}~7.5~kA/cm^2,$ (c) $V_{RF} = 29~V.$

the large-signal results vs. V_{RF} at 40 GHz, and Figure 16c shows large-signal results vs. J_{dc} . The maximum efficiency was $\eta=21.0$ percent at $J_{dc}=5.47$ kA/cm² and $V_{RF}=29$ V, and the maximum electronic RF power density was $P_{RF}=97.8$ kW/cm² at $J_{dc}=12.6$ kA/cm² and $V_{RF}=29$ V. Table 17 presents the large-signal results vs. J_{dc} . From Figure 15a it is seen that $\ell_2=1.26$ x 10^{-4} cm. Using $\ell_1=0.5$ x 10^{-4} cm as before and reducing the last two terms of Equation 1 by 1/3 due to the higher thermal conductivity of Si gives the following thermal-resistance expressions:

$$\theta(CM) = \frac{64.27}{d_m} + \frac{26.17}{d_m^2},$$
 (32)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{26.17}{d_m^2},$$
 (33)

$$e(CR) = \frac{35.35}{d_m} + \frac{26.17}{d_m^2}$$
 (34)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{26.17}{d_m^2}$$
 (35)

Solving Equations 13 through 15 and 32 through 35 yields the CW data of Table 18 for the Si hybrid. Again due to the higher thermal conductivity of Si, the Si hybrid structure is capable of generating more CW RF power than the GaAs structure.

Figure 17a gives the doping profile of an InP hybrid simulated at 40 GHz; Figure 17b gives the dc solution at T = 500° K and $J_{\rm dc}$ = 10 kA/cm². Large-signal results vs. $V_{\rm RF}$ at T = 500° K and f = 40 GHz are plotted in Figure 18a and b, and Figure 18c shows the results vs. $J_{\rm dc}$. The maximum efficiency obtained was η = 24.8 percent at $J_{\rm dc}$ = 9.87 kA/cm² and $V_{\rm RF}$ = 33 V, and the maximum RF power density

TABLE 17

LARGE-SIGNAL RESULTS FOR THE SI HYBRID PROFILE IN FIGURE 15a AND POWER LEVELS

OBTAINED BY MATCHING TO 1-3 RESISTANCE (f = 4 0 GHz, 4 RF = 29 V)

(mils)	40.4	4.59	5.16	5.57	90.9	6.31	6.87	7.05	7.51	1.67	7.95
(M/Do)	15.6	9.85	6.36	4.81	3.47	2.91	2.12	1.88	1.47	1.31	1.11
(W)	77.41	22.9	35.4	16.8	6.49	77.3	901	120	153	172	203
(M)	3.8	60.9	9.23	11.8	15.6	17.6	22.7	23.9	27.7	28.4	29.2
(M)	18.2	59	9.44	58.6	80.5	6.46	129	177	181	200	232
(Percent)	20.9	21	20.7	20.2	19.4	18.6	17.6	16.6	15.3	14.2	12.6
(<u>A</u>	4.64	9.64	50	50.1	50.3	50.2	50.4	50.3	50.3	50.1	20
(A)	0.369	0.585	0.891	1.17	1.6	1.89	2.56	2.87	3.6	3.99	†9° †
x 10 ⁻⁴ (cm ²)	0.825			1.57	1.86	2.02	2.39	2.52	2.86	2.98	3.2
(mho/cm ²)	1144	9111	1082	1056	1018	993	546	920	870	841	961
(mho/cm ²)	109	135	162	180	200	208	226	226	232	226	218
kA/cm ²)	74.4	5.47	9.9	7.45	8.63	9.36	10.7	11.4	12.6	13.4	14.5
	(mho/cm^2) (mho/cm^2) $x 10^{-4}$ (cm^2) (A) (V) $(Percent)$ (W) (W) (W)	$\frac{(mho/cm^2)}{109} \frac{(mho/cm^2)}{1144} \frac{x 10^{-4}}{0.825} \frac{(A)}{0.369} \frac{(V)}{49.4} \frac{(Percent)}{20.9} \frac{(W)}{18.2} \frac{(W)}{3.8} \frac{(W)}{14.4} \frac{(^{\circ}C/W)}{15.6}$	(mho/cm²) (mho/cm²) x 10 ⁻⁴ (cm²) (A) (V) (Percent) (W) (V) (V) (W) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>mho/cm²/b (mho/cm²) x 10²²² (cm²) (A) (V) (Percent) (W) (W)</td><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (Y) (Percent) (W) <th< td=""><td>(mho)cm² (mho)cm² x 10⁻⁴ (cm²) (A) (V) (Percent) (W) (</td><td>(mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<</td><td>(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)</td></th<></td></th<></td></th<></td></th<></td></th<>	(mho/cm²) (mho/cm²) x 10 ⁻⁴ (cm²) (A) (V) (Percent) (W) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>mho/cm²/b (mho/cm²) x 10²²² (cm²) (A) (V) (Percent) (W) (W)</td><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (Y) (Percent) (W) <th< td=""><td>(mho)cm² (mho)cm² x 10⁻⁴ (cm²) (A) (V) (Percent) (W) (</td><td>(mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<</td><td>(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)</td></th<></td></th<></td></th<></td></th<>	(mho/cm²) (mho/cm²) x 10 ⁻⁴ (cm²) (A) (V) (Percent) (W) (W) <th< td=""><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (V) (Percent) (W) <th< td=""><td>mho/cm²/b (mho/cm²) x 10²²² (cm²) (A) (V) (Percent) (W) (W)</td><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (Y) (Percent) (W) <th< td=""><td>(mho)cm² (mho)cm² x 10⁻⁴ (cm²) (A) (V) (Percent) (W) (</td><td>(mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<</td><td>(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)</td></th<></td></th<></td></th<>	(mho/cm²) (mho/cm²) x 10 ⁻⁴ (cm²) (A) (V) (Percent) (W) (W) <th< td=""><td>mho/cm²/b (mho/cm²) x 10²²² (cm²) (A) (V) (Percent) (W) (W)</td><td>(mho/cm²) (mho/cm²) x 10⁻⁴ (cm²) (A) (Y) (Percent) (W) <th< td=""><td>(mho)cm² (mho)cm² x 10⁻⁴ (cm²) (A) (V) (Percent) (W) (</td><td>(mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<</td><td>(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)</td></th<></td></th<>	mho/cm²/b (mho/cm²) x 10²²² (cm²) (A) (V) (Percent) (W) (W)	(mho/cm²) (mho/cm²) x 10 ⁻⁴ (cm²) (A) (Y) (Percent) (W) (W) <th< td=""><td>(mho)cm² (mho)cm² x 10⁻⁴ (cm²) (A) (V) (Percent) (W) (</td><td>(mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<</td><td>(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)</td></th<>	(mho)cm² (mho)cm² x 10 ⁻⁴ (cm²) (A) (V) (Percent) (W) ((mto/cm²) (mto/cm²) (mto/cm²) (x) (v) (Percent) (W) (W)<	(mho)cm² x 10²²² (cm²) (A) (V) Fercent (W) (W)

TABLE 18

CW RESULTS FOR THE PROFILE IN FIGURE 15a AT 40 GHz TAKING

INTO ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

D(CM)	θ (CM)	P _{RF} (CM) I	D(DM)	0 (DM)	$P_{RF}(DM)$	D(CR)	ы (CR)	$P_{RF}(cR)$	D(DR)	0 (DR)	P _{RF} (DR)	Jac
(mils)	(M/Do)	(W)	(mils)	(M/2°)	(M)	(mils)	(M/Do)	(W)	(mils)	(M/Do)	(M)	(kA/cm^2)
3.55	20.2	2.94	40.4	6.9	3.8	ħ0.4	10.4	3.8	†0 ° †	4.52	3.8	24.4
2.82	26.1	2.29	4.59	5.91	6.09	4.59	8.94	60.9	4.59	3.81	6.09	2.47
2.23	37	1.72	5.16	5.13	9.23	90.4	10.3	5.7	5.16	3.26	9.23	9.9
1.91	40.8	1.4	5.57	69.4	11.8	3.48	12.3	4.62	5.57	2.96	11.8	7.45
1.57	51.6	1.05	7.4	5.74	9.43	2.85	15.6	3.46	90.9	5.66	15.6	8.63
1.1	59.3	0.867	4.2	6.59	7.8	2.54	17.9	2.86	6.31	2.52	17.6	9.36
1.15	75.9	0.633	3.44	8.43	5.7	5.09	23	5.09	92.9	2.55	18.8	10.7
1.04	86.3	0.519	3.11	9.58	19.4	1.89	26.1	1.72	99.5	2.9	15.4	77.11
0.88	107	0.38	5.64	11.9	3.42	1.6	32.3	1.26	8.4	3.59	11.3	12.6
0.792	123	0.303	2.38	13.6	2.73	1.44	37.2	1.0	4.32	4.13	9.05	13.4
0.683	150	0.216	2.05	16.7	1.94	1.24	45.4	0.714	3.72	5.05	6.42	14.5

Figure 17. (a) InP Hybrid Profile for 40-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 10 kA/cm^2 . (X_A = 0.42 μ m, J_{dc} = 10 kA/cm^2 , E(LHS) = $3.15 \times 10^5 \text{ V/cm}$, E_{max} = $6.916 \times 10^5 \text{ V/cm}$, E_{to} = $3.755 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.99 \times 10^5 \text{ V/cm}$)

Figure 18. Large-Signal Results for the Profile of Figure 17a at $T = 500^{\circ}K, f = 40 \text{ GHz and (a and b) J}_{dc} = 10 \text{ kA/cm}^2,$ $V_{RF} = 33 \text{ V}.$

was $P_{RF} = 169 \text{ kW/cm}^2$ at $J_{dc} = 24.3 \text{ kA/cm}^2$ and $V_{RF} = 33 \text{ V}$. Table 19 lists the large-signal results vs. J_{dc} and the electronic RF powers obtained by matching the diode negative resistance to 1 Ω .

From Figure 17a, the p-region width is $\ell_2 = 0.68 \times 10^{-4}$ cm. As before, when $\ell_1 = 0.5 \times 10^{-4}$ cm and the final two terms in Equation 1 are reduced by 0.8 due to the higher thermal conductivity of InP (relative to GaAs), the following thermal-resistance expressions are obtained:

$$\theta(CM) = \frac{64.27}{d_m} + \frac{47.5}{d_m^2},$$
 (36)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{47.5}{d_m^2},$$
 (37)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{47.5}{d_m^2}$$
 (38)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{47.5}{d_m^2}$$
 (39)

Solving Equations 13 through 15 and 36 through 39 yields the CW powers given in Table 20 for the InP hybrid structure.

Summarizing the 40-GHz results given in Tables 12 through 20 shows that the Si hybrid generates more CW power than any of the GaAs or InP structures for all combinations of geometry and heatsink material. In addition, the Si hybrid generated more electronic RF power (matching into 1- Ω resistance) than any other 40-GHz structure. This is due to the fact that for the Si structure, the susceptance is much nearer to the magnitude of the conductance than for the other structures (G = -218, B = 796 mho/cm² for Si;

LARGE-SIGNAL RESULTS FOR THE INP HYBRID PROFILE IN FIGURE 178 AND POWER LEVELS TABLE 19

OBTAINED BY MATCHING TO 1- Ω RESISTANCE (f = $40~\mathrm{GHz}$, V_RF = 33 V)

А	(mils)	7.2	2.63	2.85	3.02	3.18	3.29	3.64	4.22	4.55	4.89	7.4
θ Έ	(M/Do)	32.9	24.2	18.3	14.8	12	10.3	6.5	3.41	2.34	1.56	1.43
Pdiss	(M)	6.83	9.29	12.3	15.2	18.7	6.69 21.9	34.6	62.9	96.3	144	157
P RF	(W)	2.17	3.01	10.4	5.01	5.9	69.9	9.37	14.9	17.7	19.5	14.7
Pdc	(M)	9/	12.3	16.3	20.2	24.6	28.6	71 71	80.8	114	164	172
٦	(Percent)	24.1	24.5	5 ⁴ .6	24.8	ħ г	23.4	21.3	18.4	15.5	11.9	8.54
V dc	(V)	43.7	43.9	71	77.7	77.7	77.7	5.44	6.44	8.44	8.44	£.44
Idc	(A)	0.206	0.28	0.371	0.457	0.557	0.647	0.989	1.8	2.55	3.67	3.88
A	$x 10^{-4} (cm^2)$	0.293	0.35	0.411	0.463	0.511	0.548	0.673	0.903	1.05	1.21	1.12
В	(mho/cm ²)	2151	2117	2086	2058	2030	2010	1937	1804	1692	1542	1441
g D	\sim 1											
ı	2) (mho/cm ²)	136	158	180	198	213	224	257	302	311	298	240

TABLE 20

CW RESULTS FOR THE PROFILE IN FIGURE 17a AT 40 GHZ TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

Jdc	(kA/cm^2)	7.02	ω	9.02	9.87	10.9	11.8	14.7	19.9	24.3	30.3	34.6
P _{RF} (DR)	(W)	2.17	3.01	10.4	5.01	5.9	69.9	7.64	1.08	3.6 x 10-3	¦	!
θ(DR)	(M/Do)	13.2	11.3	9.98	9.11	4.8	7.97	7.97	47.1	1.13 x 104	ł	1
D(DR)	(mils)	2.4	2.63	2.85	3.02	3.18	3.29	3.29	1.14	0.065	ł	ł
$P_{ m RF}({ m cR})$	(W)	2.17	3.01	4.01	3,38	2.55	۵	0.848	0.12	μ.06 x 10 ⁻³	;	1
θ(CR)	(M/Oc)	23	20.3	18.2	21.9	27.8	34.3	71.8	ħ2ħ	1.02 x 10 ⁵	ł	1
D(CR)	(mils)	2.4	2.63	2.85	2.48	5.09	1.8	1.1	0.379	0.0218	ļ	1
$P_{ m RF}({ m DM})$	(W)	2.17	3.01	4.01	5.01	5.9	94.5	2.31	0.326	1.1 x 10-3	}	;
θ (DM)	(M/Do)	17.2	15	13.4	12.3	11.4	12.6	76.4	156	3.74 x 104	1	1
D(DM)			2.63							0.036	ł	1
P _{RF} (CM) I	(W)	1.86	1.52	1.22	1.02	0.772	909.0	0.257	0.0362	<i>.</i>	1	1
θ(CM)	(M/20)	38.4	48.1	60.2	72.4	35		237		3.36 x 10 ⁵	ŀ	1
D(CM)	(mils)	2.23	1.87	1.57	1.37	1.15	0.99	0.603	0.208	0.012	1	}

G = -298, B = 1441 mho/cm² for InP). As a result, when the Si diode is matched to 1- Ω resistance, the resulting diode size is larger for Si, and a higher peak P_{RF} is obtained.

The InP hybrid structure had the best efficiency, η = 24.8 percent, of any of the 40-GHz structures.

SECTION 7

RESULTS AT 60 GHz

Figure 19a shows the doping profile for the single-drift GaAs Read structure simulated at 60 GHz, and Figure 19b shows the solution at T = 500° K and $J_{\rm dc}$ = 15 kA/cm². Large-signal results for this structure at f = 60 GHz, T = 500° K and $J_{\rm dc}$ = 15 kA/cm² are plotted in Figure 20a and b, and large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 10 V are shown in Figure 20c. The maximum efficiency obtained was η = 11.1 percent at $J_{\rm dc}$ = 15.2 kA/cm² and $V_{\rm RF}$ = 10 V; the maximum electronic RF power density was $P_{\rm RF}$ = 38 kW/cm² at $J_{\rm dc}$ = 26.5 kA/cm² and $V_{\rm RF}$ = 10 V.

Table 21 presents large-signal results vs. $J_{\rm dc}$ for this structure and RF powers obtained by matching to $1-\Omega$ resistance. Setting $\ell_2=0$ and $\ell_1=0.5$ x 10^{-4} cm, as before, gives the following thermal-resistance expressions from Equation 1:

$$\theta(CM) = \frac{64.27}{d_m} + \frac{14.8}{d_m^2},$$
 (40)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{14.8}{d_m^2},$$
 (11)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{14.8}{d_m^2}$$
 (42)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{14.8}{d_m^2}$$
 (43)

Solving Equations 13 through 15 and 40 through 43 yields the CW powers listed in Table 22. The only case which becomes

Figure 19. (a) Single-Drift GaAs Read Structure for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 15 kA/cm^2 . (X_A = 0.14 µm, T = 500° K, J_{dc} = 15 kA/cm^2 , E_{max} = 6.82 x 10^5 V/cm , E_{to} = 2.59 x 10^5 V/cm , E(RHS) = 2.16 x 10^5 V/cm and Integrated Doping Spike Q_n = 2.91 x 10^{12} cm^{-2})

Figure 20. Large-Signal Results for the Profile of Figure 19a at $T = 500^{\circ} \text{K, f} = 60 \text{ CHz and (a and b) J}_{dc} = 15 \text{ kA/cm}^2,$ (c) $V_{RF} = 10 \text{ V}.$

TABLE 21

LARGE-SIGNAL RESULTS FOR THE GAAS SINGLE-DRIFT READ PROFILE OF FIGURE 198 AND POWER LEVELS OBTAINED BY MATCHING TO 1-3 RESISTANCE (f = 60 GHz, $v_{\rm RF}$ = 10 V)

Д	(mils)	0.583	0.886	1.14	1.26	1.38	1.45	1.51	1.58	1.61	1.64	1.63
9 E	(M/Do)	988	354	1.83	126	86.5	68	57.7	48.2	45.5	40.9	40.7
Pdiss	(M)	0.254	0.636	1.23	1.78	2.6	3.31	3.9	4.67	46.4	5.5	5.53
PRF	(W)	0.0113	0.694 0.0581	. 0.15	0.222	0.299	0.351	0.398	0.462	0.495	0.514	0.508
Pdc	(M)	0.265	η69.0	1.38	2	2.9	3.66	4.3	5.13	5.43	10.9	6.04
۲	(Percent)	4.28	8.38	10.9	11.1	10.3	9.6	9.26	6	9.11	8.56	8.42
V	(4	15.8	16	16.2	16.3	16.5	16.5	16.6	16.7	16.7	16.7	16.7
Idc	(A)	0.0168	0.0434	0.0853	0.123	0.176	0.222	0.259	0.307	0.325	0.36	0.362
A	$x 10^{-4} (cm^2)$	0.0172	0.0398	0.0656	0.0811	0.0965	0.107	0.115	0.126	0.131	0.136	0.135
			8570								7440	7430
о С			293									755
$J_{ m dc}$	(kA/cm^2)	9.78	10.9	13	15.2	18.3	20.8	22.5	7.42	24.8	26.5	26.8

TABLE 22

CW RESULTS FOR THE PROFILE IN FIGURE 19a AT 60 GHZ TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

D(CM)	θ(CM)	PRF(CM) I	D(DM)	θ(DM)	$P_{ m RF}({ m DM})$	D(CR)	θ(CR)	$P_{RF}(cR)$	D(DR)	0(DR)	${ t P}_{ m RF}({ t DR})$	$^{\mathrm{J}_{\mathrm{dc}}}$
(mils)	(M/Do)	(W)	(mils)	(M/Do)	(W)	(mils)	(M/Do)	(W)	(mils)	(M/Do)	(W)	(kA/cm^2)
0.583	154	0.0113	0.583	80.3	0.0113	0.583	104	0.0113	0.583	63.7	0.0113	9.78
0.886	91.4	0.0581	0.886	7†3	0.0581	0.886	58.8	0.0581	0.886	32.1	0.0581	10.9
1.14	67.8	0.15	1.14	30.2	0.15	1.14	42.4	0.15	1.14	21.7	0.15	13
1.26	60.3	0.222	1.26	26.3	0.222	1.26		0.222	1.26	18.7	0.222	15.2
1.38	54.3	0.299	1.38	23.3	0.299	1.38	33.4	0.299	1.38	16.3	0.299	18.3
1.45	51.4	0.351	1.45	21.8	0.351	1.45	31.4	0.351	1.45	15.2	0.351	20.8
1.46	61.2	0.375	1.51	20.7	0.398	1.51	29.9	0.398	1.51	14.3	0.398	22.5
1.29	72.2	0.308	1.58	19.3	0.462	1.58	28.3	0.462	1.58	13.4	0.462	4.45
1.26	74.3	0.303	1.61	19	0.495	1.61	27.7	0.495	1.61	13	0.495	24.8
1.13	85.7	0.246	1.64	18.6	0.514	1.64	27	0.514	1.64	12.7	415.0	26.5
1.11	88	0.235	1.63	18.7	0.508	1.63	27.2	0.508	1.63	12.8	0.508	26.8

thermally limited is the single mesa, copper heat-sink case starting at $J_{\rm dc}$ = 22.5 kA/cm². The other cases are electronically limited.

Figure 21a shows the hybrid GaAs double-drift profile simulated at 60 GHz, and the dc solution at T = 500° K and $J_{\rm dc}$ = 18 kA/cm² is shown in Figure 21b. Large-signal results vs. $V_{\rm RF}$ at T = 500° K, f = 60 GHz and $J_{\rm dc}$ = 18 kA/cm² are plotted in Figure 22a and b, and large-signal results vs. $J_{\rm dc}$ are plotted in Figure 22c. The maximum efficiency obtained was η = 14.2 percent at $J_{\rm dc}$ = 17.7 kA/cm², and the maximum electronic RF power density was $P_{\rm RF}$ = 132 kW/cm² at $J_{\rm dc}$ = 54.8 kA/cm² and $V_{\rm RF}$ = 18 V. Large-signal results vs. $J_{\rm dc}$ are listed in Table 23 along with electronic RF power obtained by matching to $1-\Omega$ resistance. When it is noted from Figure 21a that the p-region width is ℓ_2 = 0.4 x 10^{-4} cm, and when ℓ_1 = 0.5 x 10^{-4} cm as before, the thermal-resistance expressions become

$$\theta(CM) = \frac{64.27}{d_m} + \frac{50.16}{d_m^2},$$
 (44)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{50.16}{d_m^2},$$
 (45)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{50.16}{d_m^2}$$
 (46)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{50.16}{d_m^2}$$
 (47)

Solving Equations 13 through 15 and 44 through 47 yields the CW powers listed in Table 24. The case of a single mesa on a copper heat sink is thermally limited at all the current densities

Figure 21. (a) GaAs Hybrid Double-Drift Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 18 kA/cm^2 . $(X_{A} = 0.26 \text{ } \mu\text{m}, J_{dc} = 18 \text{ kA/cm}^2, \text{ E(LHS)} = 1.97 \text{ x } 10^5 \text{ V/cm}, \\ E_{max} = 6.18 \text{ x } 10^5 \text{ V/cm}, E_{to} = 2.57 \text{ x } 10^5 \text{ V/cm} \text{ and} \\ E(\text{RHS}) = 2.04 \text{ x } 10^5 \text{ V/cm})$

Figure 22. Large-Signal Results for the Profile of Figure 21a at $f = 60 \text{ GHz}, \ T = 500^{\circ}\text{K} \quad \text{and (a and b)} \ J_{dc} = 18 \text{ kA/cm}^2,$ (c) $V_{RF} = 18 \text{ V}.$

TABLE 23

LARGE-SIGNAL RESULTS FOR THE GAAS HYBRID PROFILE IN FIGURE 21a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 60 GHz, v_{RF} = 18 v)

D (mils)	1.66	1.76	1.85	α	2.12	2.17	2.36	2.72	2.93	3.22	3.43	3.56
θ _R	7.64	41.6	35.6	28.7	23.2	20.6	14.2	9,46	6.32	54.4	3.5	2.92
Pdiss (W)	4.57	5.41	6.31	7.85	7.6	10.9	15.8	56.6	35.6	50.6	64.3	76.9
P _{RF}	249.0	0.809	0.977	1.3	1.6	1.74	2.32	3.77	17.4	6.32	7.54	8.17
Pdc (W)	5.22	6.22		9.15		12.6	18.1	30.4	ተ0.	6.95	71.8	85.1
n (Percent)	12.4	13	13.4	14.2	14.2	13.8	12.8	12.4	11.8	11.1	10.5	9.6
v dc (v)	25.2	25.3	25.4	25.5	25.9	56	26.2	26.7	26.9	27.1	27.2	27.2
I _{dc}	0.207	0.246	0.287	0.359	0.438	0.485	0.691	1.14	1.5	2.1	2.64	3.13
A x 10 ⁻⁴ (cm ²)	0.139	0.157	0.173	0.203	0.227	0.238	0.282	0.374	0.436	0.524	0.595	0.644
$^{\mathrm{B}}_{\mathrm{D}}$	0454	7,500	1460	0011	1,360	4330	4210	4020	3880	3700	3540	3400
\smile_{I}												
$- G_{\rm D} $ (mho/cm ²) (288		347	396	987	452	508	619	676	947	782	784

Cont.

Table 23, Cont.

A	(mils)	3.84	3.99	77
ө Я	(M/Jo)	2.2	1.92	9
Pdiss	(M)	102	117	133
P. RF	(M)	9.91	9.01	10.6
Pdc	(M)	112	128	ተ ጥ L
د	(Percent)	8.85	4.72 27.2 8.25 128 10.6 117 1.92 3.99	7,35
Vdc	(V)	27.3	27.2	27.1
I_{dc}	(A)	4.1	4.72	5,33
A	x 10-4 (cm ²	0.749	0.808	0.848
B	(mho/cm^2)	3200	3060	2920
- ^д р	(mho/cm ²)	817	810	477
$^{\mathrm{J}}_{\mathrm{dc}}$	(kA/cm^2)	54.8	58.4	65.9

TABLE 24

CW RESULTS FOR THE PROFILE IN FIGURE 21a AT 60 GHz TAKING

INTO ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

	1m ²)	0	_	9	<u>-</u>	m	4	κŻ	4	ر. د	
J	(kA/cm^2)	14.9	15.7	16.6	17.	19.	20.4	24.5	30.4	34.5	04
P _{RF} (DR)	(M)	O.647	0.809	0.977	1.3	1.6	1.74	2.32	0.554	0.067	¦
θ(DR)	(M/Do)	25.3	22.9	ಸ	18.4	16.7	16.1	7,7	57.4	452	ł
D(DR)	(mils)	1.66	1.76	1.85	α	2.12	2.17	2.36	1.04	0.346	;
$ m P_{RF}(cR)$	(W)	749.0	0.809	0.977	1.08	0.82	0.654	0.283	0.0616	4700.0	1
θ(CR)	(M/20)	39.5	36.3	33.8	34.4	4.54	55	116	517	4070	ł
D(CR)	(mils)	1.66	1.76	1.85	1.82	1.51	1.33	0.825	0.348	0.115	1
PRF (DM)	(M)	749.0	0.809	0.977	1.3	1.6	1.74	0.772	0.168	0.0202	ł
θ(DM)	(M/Do)	31.1	28.4	26.2	23.2	21.3	20.5	42.8	190	1490	ł
D(DM)	(mils)	1.66	1.76	1.85	8	2.12	2.17	1.36	0.573	0.19	l
PRF(CM)	(M)	0.411	0.389	0.354	0.327	0.248	0.198	0.0857	0.0186	0.0022	ł
θ(CM)	(M/Do)	77.5	86.5	4.86	114	150	182	385	1710	1.34 x 104	ł
D(CM)	(mils)	1.32	1.22	1.11	Ч	0.83	0.73	0.454	0.191	0.0635	1
				_7]	·						

used in the simulations. For the other cases, the CW power is electronically limited at low values of $J_{\rm dc}$ and thermally limited at higher values of $J_{\rm dc}$. It should be noted that it is not possible to obtain CW power for any configuration above 35 kA/cm².

Next, a uniformly doped GaAs double-drift structure is considered. The doping profile is shown in Figure 23a, and the dc solution at T = 500° K and J_{dc} = 18 kA/cm² is shown in Figure 23b. Large-signal results vs. V_{RF} at f = 60 GHz and J_{dc} = 18 kA/cm² are plotted in Figure 24a and b, and large-signal results vs. J_{dc} at V_{RF} = 17 V are plotted in Figure 24c. The maximum efficiency obtained for this structure was n = 12.1 percent at J_{dc} = 29.6 kA/cm² and V_{RF} = 17 V, and the maximum RF power density was P_{RF} = 174.8 kW/cm² at J_{dc} = 78.8 kA/cm². Large-signal results vs. J_{dc} are listed in Table 25. From Figure 23a it is seen that ℓ_2 = 0.43 x 10^{-4} cm, and when ℓ_1 = 0.5 x 10^{-4} cm is used as before, the thermal resistance expressions for the uniform double-drift diode are

$$\theta(CM) = \frac{64.27}{d_m} + \frac{51.15}{d_m^2},$$
 (48)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{51.15}{d_m^2},$$
 (49)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{51.15}{d_m^2}$$
 (50)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{51.15}{d_m^2}$$
 (51)

Solving Equations 13 through 15 and 48 through 51 yields the CW power data given in Table 26. CW operation is only possible for

Figure 23. (a) Uniform GaAs Double-Drift Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 18 kA/cm^2 . ($X_A = 0.34 \text{ µm}$, $J_{dc} = 18 \text{ kA/cm}^2$, E(LHS) = $1.413 \times 10^5 \text{ V/cm}$, $E_{max} = 5.658 \times 10^5 \text{ V/cm}$ and E(RHS) = $1.412 \times 10^5 \text{ V/cm}$)

Figure 24. Large-Signal Results for the Profile of Figure 23a at $f = 60 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} \text{ J}_{dc} = 18 \text{ kA/cm}^2,$ (c) $\text{V}_{RF} = 17 \text{ V}.$

TABLE 25

C

LARGE-SIGNAL RESULTS FOR THE GAAS UNIFORM DOUBLE-DRIFT PROFILE IN FIGURE 23a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 60 GHz, $v_{\rm RF}$ = 17 V)

D (mils)	1.94	2.12	2.32	2.98	3.66	45.4	14.97	5.69	6.34	7.16	8.03	8.83
θ_{R}	28.2	20.8	15.7	6.88	3.28	1.8	1.15	0.738	0.512	0.355	0.252	0.191
Pdiss (W)	7.97	10.8	14.3	32.7	68.7	125	196	305	1,39	634	893	1180
P _{RF}		1.34	1.86	4.5	8.76	77.41	20.5	28.4	35.8	45.2	56.2	9.59
P _{dc} (W)	8.96	12.1	16.2	37.2	77.5	139	217	333	475	619	646	1242
n (Percent)	11	11.1	11.5	12.1	11.3	10.4	91.6	8.53	7.53	6.65	5.92	5.28
v dc (v)	26.5	26.7	56.9	28	28.6	29.1	29.4	29.5	29.5	29.4	29.3	29.1
I _{dc}	0.338	0.454	0.604	1.33	2.71	4.77	7.39	11.3	16.1	23.1	32.4	42.7
×I					0.681		1.25	1.64	2.04	5.6	3.27	3.95
B _D	0484	4240	4150	3870	3500	3130	2790	5440	2110	1780	1490	1260
- GD (mho/cm ²	360	412	ηLη	1 69	888	1040	1140	1220	1210	1200	1190	
$^{\mathrm{J}}_{\mathrm{dc}}$	17.8	20	22.2	59.6	39.8	6.64	59.1	69	78.8	89	66	108

Table 25 Cont.

Q	(mils)	10.4	22.7	34.4	43.5
θ Έ	(M/Do)	0.122	0.021 22.7	8.87 x 10-3	5.5 x 10-3
Pdiss	(M)	1851	1.08 94.2 1.07 x 10* x 10*	2.54 x 10 ⁴	4.09 x 104
P RF	(W)	76.8	94.2	118	122
Pdc	(M)	1928	1.08 x 10 ⁴	2.55 x 10*	4.1 x 104
٦	Percent	10.4	0.87		
V	(V)	28.3	25.h	54.9	24.8
I	(A)	68.1	425 25. ¹ և	1023	1653 24.8 0.30
A	x10-4(cm ²)	5.45	26.1	9.6	96.1
$^{\rm B}_{\rm D}$	(mho/cm ²)	914.9	182.8	64.23	37.8
- G	(mho/cm ²) (975.1	250	137	87.8
$^{\mathrm{J}}_{\mathrm{dc}}$	(kA/cm^2)	125	163	171	172

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

TABLE 26

CW RESULTS FOR THE PROFILE IN FIGURE 23a AT 60 GHz TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

	D(CM)	D(CM) 0(CM)	PRF (CM)	D(DM)	θ(DM)	$P_{RF}^{}(DM)$	D(CR)	0(CR)	PRF (CR)	D(DR)		P _{RF} (DR)	J
	(mils)	(°C/W)	(W)	(mils)	(%C/M)	(M)	(mils)	(M/Do)	(W)	(mils)		(W)	(kA/cm^2)
	0.85	146	0.19	1.94	9,45	0.986	1.54	14.3	0.628	1.94		0.986	17.8
	0.659	215	0.131	1.98	23.9	1.18	1.2	65	65 0.432 2.12	2.12	16.9	1.34	50
_	0.511	321	0.091	1.53	35.7	0.819	0.93	97.2	0.301	2.32		1.8	22.2
	0.152	2620	0.0118 0.457	0.457	291	901.0	0.277	793	0.039	0.832		0.351	29.6

low values of dc current density. Comparison with the hybrid double-drift CW powers in Table 24 shows that the hybrid is capable of generating considerably more power than the uniform double-drift at 60 GHz. However, comparison of electronic RF powers indicates that the uniform double-drift can generate more power in pulsed operation.

The next structure considered is the GaAs double Read profile of Figure 25a. The dc solution for this structure at T = 500°K and $J_{\rm dc}$ = 15 kA/cm² is given in Figure 25b. Large-signal results at f = 60 GHz and $J_{\rm dc}$ = 15 kA/cm² are plotted in Figure 26a and b, and results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 17.5 V are plotted in Figure 26c. The best efficiency obtained was n = 13.85 percent at $J_{\rm dc}$ = 14.8 kA/cm² and $V_{\rm RF}$ = 17.5 V; the maximum electronic RF power density was $P_{\rm RF}$ = 82.8 kW/cm² at $J_{\rm dc}$ = 30.9 kA/cm² and $V_{\rm RF}$ = 17.5 V. Table 27 presents large-signal results vs. $J_{\rm dc}$ and powers obtained when the diode is matched to 1 Ω . If $L_{\rm g}$ = 0.42 x 10⁻⁴ cm from Figure 25a and $L_{\rm l}$ = 0.5 x 10⁻⁴ cm, then the thermal-resistance expressions are

$$\theta(CM) = \frac{64.27}{d_m} + \frac{50.82}{d_m^2},$$
 (52)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{50.82}{d_m^2},$$
 (53)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{50.82}{d_m^2}$$
 (54)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{50.82}{d_m^2}$$
 (55)

Solving Equations 13 through 15 and 52 through 55 yields the CW powers listed in Table 28. Comparing these powers with the

Figure 25. (a) Double-Read GaAs Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 15 kA/cm^2 . ($X_A = 0.22 \text{ }\mu\text{m}$, $J_{dc} = 15 \text{ kA/cm}^2$, E(LHS) = $2.48 \text{ x } 10^5 \text{ V/cm}$, $E_{to}(\text{LHS}) = 2.87 \text{ x } 10^5 \text{ V/cm}$, $E_{max} = 5.649 \text{ x } 10^5 \text{ V/cm}$, $E_{to}(\text{RHS}) = 2.57 \text{ x } 10^5 \text{ V/cm}$, E(RHS) = $2.158 \text{ x } 10^5 \text{ V/cm}$, $Q_n = 2.16 \text{ x } 10^{12} \text{ cm}^{-2}$ and $Q_p = 1.948 \text{ x } 10^{12} \text{ cm}^{-2}$)

Figure 26. Large-Signal Results for the Profile of Figure 25a at $f = 60 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} J_{\text{dc}} = 15 \text{ kA/cm}^2,$ (c) $V_{\text{RF}} = 17.5 \text{ V}.$

TABLE 27

LARGE-SIGNAL RESULTS FOR THE DOUBLE READ GAAS PROFILE IN FIGURE 25a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 60 GHz, $v_{RF} = 17.5 \text{ V}$)

А	(mils)	0.79	6.0	1.3	1.56	1.76	1.88	1.99	5.06	2.15	2.26	2.38	2.45	Cont.
e ex	(M/Oo)	904	284	114	65.8	45.5	35.1	27.2	23	19.4	15.5	12.7	11.2	
Pdiss	(W)	0.554	0.792	1.97	3.42	म्ह.म	6.41	8.28	9.19	11.6	14.5	17.7	20.1	
P.RF	(M)	0.0364	0.061	0.251	0.507	0.791	1.01	1.22	1.41	1.61	1.9	2.28	2°76	
P dc	(M)	0.59	0.853	2.22	3.93	5.73	7.42	9.5	11.2	13.2	16.4	50	22.6	
٤	(Percent)	6.17	7.15	11.3	12.9	13.8	13.6	12.9	12.6	12.2	11.6	11.4	10.9	
V		23.6	23.7	24.1	प्रकृ	24.7	24.8	25	25.1	25.2	25.4	25.5	25.6	
I	1	0.025	0.036	0.0921	0.161	0.232	0.299	0.38	0.445	0.524	0.645	0.783	0.882	
Ą	x 10 ⁻⁴ (cm ²)	0.0316	0.041	0.0853	0.124	0.157	0.179	0.20	0.216		0.259	0.288	0.304	
B C	(mho/cm ²)	1890	1,860	0747	η650	14580	4520	0944	00 ५ १	η320	4270	4200	0414	
- G		75.6											530	
J	(kA/cm^2)	7.92	8.77	10.8	13	14.8	16.7	19	20.6	22.4	24.9	27.2	53	

Table 27 Cont.

A CONTRACTOR OF THE CONTRACTOR

Q	(mils)	2.52	2.5
	(°C/W)		99.6
Pdiss	(M)	22.8	2 23.3
P RF	(M)	2.64	25.8 2.52
Pdc	(M) (M)	25.h	25.8
E	(Percent)	10.4	9.79
v dc	(<u>v</u>	25.6	25.5
	(A)	0.992	1.01
А	$x 10^{-4} (cm^2)$	0.321	0.316
B _D	(mho/cm^2)	4070	0404
о _р –	(mho/cm ²)	541 4070	524
Jdc	(kA/cm ²) (n	30.9	32.1

A SOLD OF THE SOLD

TABLE 28

CW RESULTS FOR THE PROFILE IN FIGURE 25a AT 60 GHz TAKING INTO ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS.

D(CM)	0 (CM)	PRE (CM)	D(DM)	6 (DM)	PRF (DM)	D(CR)	0 (CR)	PRF(CR)	D(DR)	0 (DR)	PRF (DR)	Jan
(mils)	(M/O ₀)	(M)	(mils)	(M/Do)	(M)	(mils)	(°C/W)	(M)	(mils)	(M/Do)	(M)	(kA/cm ²)
	163	0.0364	0.79	108	0.0364	0.79	126	0.0364	0.79	96.3	0.0364	7.92
	134	0.061	6.0	86.5	0.061	6.0	102	0.061	6.0	75.8	0.061	8.77
	79.5	0.251	1.3	46.5	0.251	1.3	57.3	0.251	1.3	39.1	0.251	10.8
1.56	62.1	0.507	1.56	34.6	0.507	1.56	43.5	0.507	1.56	28.4	0.507	13
1.4	71.7	0.502	1.76	28.6	0.791	1.76	36.5	0.791	1.76	23.1	0.791	14.8
1.14	95.5	0.371	1.88	25.8	1.01	1.88	33.2	1.01	1.88	20.6	1.01	16.7
0.879	139	0.24	1.99	23.6	1.22	1.6	75	0.793	1.99	18.8	1.22	19
0.738	180	0.18	5.06	22.4	1,41	1.34	54.6	η65.0	2.06	17.7	1.41	20.6
0.603	546	0.127	1.81	27.4	1.14	1.1	74.5	0.42	2.15	16.5	1.61	22.4
0.445	101	0.0736	1.33	9.44	0.662	0.809	121	0.243	2.26	15.2	1.9	24.9
0.333	650	9440.0	H	72.2	0.401	909.0	196	741.0	1.82	21.8	1.32	27.2
0.254	1040	0.0264	0.761	116	0.238	0.461	315	0.0872	1.38	35	0.785	59
0.184	1850	0.0141	0.552	506	0.127	0.334	260	9940.0	-	62.2	0.42	30.9
0.145	2860	0.0085	0.435	318	0.0767	0.263	998	0.0282	0.79	96.3	0.254	32.1

expected CW powers for the GaAs hybrid in Table 24 shows that the CW power levels are comparable. Furthermore, since the hybrid can generate higher peak electronic powers, there is no advantage to fabricating a double Read structure instead of the hybrid structure at 60 GHz.

Figure 27a shows an InP hybrid structure simulated at 60 GHz, and Figure 27b shows the dc solution at T = 500°K and $J_{\rm dc}$ = 18 kA/cm². Large-signal results vs. $V_{\rm RF}$ at 40 GHz are plotted in Figure 28a and b, and results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 23 V are plotted in Figure 28c. The best efficiency obtained was η = 19.31 percent at $J_{\rm dc}$ = 15.8 kA/cm² and $V_{\rm RF}$ = 23 V, and the maximum RF power density was $P_{\rm RF}$ = 173 kW/cm² at $J_{\rm dc}$ = 50.4 kA/cm² and $V_{\rm RF}$ = 23 V. Table 29 lists the large-signal results vs. $J_{\rm dc}$. From Figure 27a, $\ell_{\rm 2}$ equals 0.46 x 10⁻⁴ cm. Using $\ell_{\rm 1}$ = 0.5 x 10⁻⁴ cm as before and reducing the last two terms in Equation 1 by the factor 0.8 to account for the higher thermal conductivity of InP obtains the following thermal-resistance expressions:

$$\theta(CM) = \frac{64.27}{d_m} + \frac{41.71}{d_m^2},$$
 (56)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{41.71}{d_m^2},$$
 (57)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{41.71}{d_m^2}$$
 (58)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{41.71}{d_m^2}$$
 (59)

Solving Equations 13 through 15 and 56 through 59 yields the expected CW powers given in Table 30 for the hybrid InP structure.

Figure 27. (a) InP Hybrid Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 18 kA/cm^2 . (X_A = 0.28 μ m, J_{dc} = 18 kA/cm^2 , E(LHS) = $3.12 \times 10^5 \text{ V/cm}$, E_{max} = $7.26 \times 10^5 \text{ V/cm}$, E_{to} = $3.77 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.905 \times 10^5 \text{ V/cm}$)

Figure 28. Large-Signal Results for the Profile of Figure 27a at $f = 60 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} \text{ J}_{dc} = 18 \text{ kA/cm}^2,$ (c) $\text{V}_{RF} = 23 \text{ V}.$

TABLE 29

LARGE-SIGNAL RESULTS FOR THE INP HYBRID PROFILE IN FIGURE 27a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 60 GHz, V_{RF} = 23 V)

Jac			Ą	I	V đc	٤	Pdc	PRF	Pdiss	e R	Ω
1/cm ²)			x 10-4 (cm ²)	(A)	(V)	(Percent)	(M)		(M)	(M/20)	(mils)
15			0.185	0.278	32.9	18.9	9.15	1.73	7.42	30.3	1.91
15.8			0.204	0.322	33	19.3	9.01	2.04	8.56	26.3	2.01
9.91			0.216	0.358	33.1	19.2	11.8	2.26	9.54	23.6	2.06
18.2			0.243	0.442	33.2	19.3	14.7	2.84	11.9	18.9	2.19
18.8			0.25	74.0	33.4	18.9	15.7	2.97	12.7	17.7	2.22
19.8			0.255	0.505	33.4	18.1	16.9	3.06	13.8	16.3	2.24
29.8			0.375	1.12	34.3	14.9	38.4	5.72	32.7	6.88	2.72
39.9			964.0	1.98	34.9	12.2	69.1	8.43	60.7	3.71	3.13
50.4	653	3180	0.62	3.12	35.3	69.6	110	10.6	4.66	2.26	3.5
58.4	509		0.576	3.36	35.1			7.73	110	2.04	3.37

TABLE 30

CW RESULTS FOR THE PROFILE IN FIGURE 27a AT 60 GHZ TAKING INTO ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

ئ	(kA/cm^2)	15	15.8	16.6	18.2	18.8	19.8	29.8	39.9	50.4	58.4
P _{DE} (DR)	(M)	1.73	2.04	2.26	2.84	2.97	3.06	0.485		;	;
θ(DR)	•		16.2	15.5	14.1	13.8	13.6		}	;	}
D(DR)	(mils)	1.91	2.01	5.06	2.19	2.22	2.24	0.792	1	ł	1
PRF(CR)	(M)	1.73	1.66	1.45	1.15		0.787		ł	1	1
0(CR)	(M/Jo)	29.9	32.4	36.8	46.7	52.7	63.2	732	}	}	;
D(CR)	(mils)	1,91	1.8	1.65	1.4	1.29	1.14	0.264	i i	}	}
$P_{RF}^{}(DM)$	(W)	1.73	2.04	2.26	2.84	2.71	2.14	0.146	l	ł	!
θ(DM)	(M/Do)	22.6	21	20.2	18.5	19.3	23.2	569	{	¦	¦
D(DM)	(mils)	1.91	2.01	5.06	2.19	2.12	1.88	0.436	ł	!	!
PRF(CM) I	(W)	0.548	0.503	ተተ 0	0.348	0.301	0.238	0.0163	{	ł	!
θ(CM)	(M/O ₀)	92.6	107	122	154	174	209	2420	ł	1	1
D(CM)	(mils)	1.08	0.993	0.907	0.768	0.708	0.626	0.145	;	1	¦

TREETH TOWNS IN

Comparison with the CW results for the GaAs hybrid in Table 24 shows that the InP hybrid is expected to have better performance at 60 GHz.

Figure 29a shows the Si hybrid doping profile that was simulated at 60 GHz, and Figure 29b gives the dc solution at $T=500^{\circ} K$ and $J_{\rm dc}=18~kA/cm^2$. Large-signal results vs. $V_{\rm RF}$ at f=60 GHz and $J_{\rm dc}=18~kA/cm^2$ are plotted in Figure 30a and b; results vs. $J_{\rm dc}$ at $V_{\rm RF}=22$ V are plotted in Figure 30c. Large-signal results vs. $J_{\rm dc}$ are listed in Table 31 along with electronic RF powers obtained by matching the device to $1-\Omega$ resistance. The best efficiency obtained was $\eta=18.3$ percent at $J_{\rm dc}=14.1~kA/cm^2$ and $V_{\rm RF}=22$ V, and the best RF power density was $P_{\rm RF}=128~kW/cm^2$ at $J_{\rm dc}=24.8~kA/cm^2$ and $V_{\rm RF}=22$ V. Using $\ell_2=0.84~x~10^{-4}~cm$ and $\ell_1=0.5~x~10^{-4}~cm$ as before and reducing the final two terms in Equation 1 by the factor 1/3 due to the higher thermal conductivity of Si obtains the following thermal-resistance expressions:

$$e(CM) = \frac{64.27}{d_m} + \frac{21.57}{d_m^2},$$
 (60)

$$e(DM) = \frac{21.42}{d_m} + \frac{21.57}{d_m^2},$$
 (61)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{21.57}{d_m^2}$$
 (62)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{21.57}{d_m^2}$$
 (63)

Solving Equations 13 through 15 and 60 through 63 yields the CW powers listed in Table 32 for the Si hybrid diode. The Si hybrid can generate more CW power than GaAs and InP due to

Figure 29. (a) Si Hybrid Doping Profile for 60-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 18 kA/cm^2 . (X_A = $0.34 \text{ }\mu\text{m}$, J_{dc} = 18 kA/cm^2 , E(LHS) = $1.62 \times 10^5 \text{ V/cm}$, E_{max} = $5.46 \times 10^5 \text{ V/cm}$, E_{to} = $2.02 \times 10^5 \text{ V/cm}$ and E(RHS) = $1.64 \times 10^5 \text{ V/cm}$)

Figure 30. Large-Signal Results for the Profile of Figure 29a at $T = 500^{\circ}K, f = 60 \text{ GHz and (a and b) J}_{dc} = 18 \text{ kA/cm}^2,$ (c) $V_{RF} = 22 \text{ V}.$

TABLE 31

LARGE-SIGNAL RESULTS FOR THE SI HYBRID PROFILE IN FIGURE 298 AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 60 GHz, $v_{\rm RF}$ = 22 V)

D (mils)	2.37	2.55	2.71	3.41	3.22	3.28	3.29	3.54	3.8	3.96	4.09	42.4
θ _R	34	27.4	22.7	14.1	12.8	12.2	11.8	9.3	7.33	6.3	5.6	7.86
Pdiss (W)	6.62	8.21	9.91	16	17.5	18.5	19	24.2	30.7	35.7	40.2	46.3
P _{RF}	1.27	1.66	2.09	3.53	3.89	41.4	4.22	5.39	6.88	7.89	8.77	9.89
P _{dc} (W)	7.89	9.87	12	19.5	21.4	22.6	23.2	29.6	37.6	43.6	61	56.2
n (Percent)	16.1	16.8	17.4	18.1	18.2	18.3	18.2	18.2	18.3	18.1	17.9	17.6
(v)	35.4	35.5	35.7	35.9	36	36	36.1	36.2	36.5	36.6	36.6	36.7
I _{dc}	0.223	0.278	0.337	0.544	0.596	0.627	0.644	0.818	1.03	1.19	1.34	1.53
A x 10 ⁻⁴ (cm ²)	0.285	0.329	0.372	0.499	0.527	0.545	0.55	0.634	0.731	0.794	978.0	0.912
$^{\mathrm{B}}_{\mathrm{D}}$	2540	2510	2490	2410	2390	2380	2380	2330	2280	2240	2210	2170
$ ^{G}_{D}$ (mho/cm ²)	185	209	233	762	306	317	31.7	352	391	412	429	844
${\rm ^{J}dc}_{\rm (kA/cm^2)}$	7.82	9,46	90.6	10.9	11.3	11.5	11.7	12.9	14.1	15	15.8	16.8

Table 31 Cont.

А	iils)	1.39	η.76	777.5	5.83	69.5	3.98
θ π	/o _e)	4.2	3.18	1.8	1.3	1.1	1.9
Pdiss	(M)	52.7	84.7 14 70.7	119	168	196	117
P RF	(M)	11	1,4	19.2	19.4	12.5	2.16
Pđc	(M)	63.7	84.7	138	187	208	116
٦	ercent)	17.3	16.5	13.9	10.4	9	1,86
v dc	(d	36.8	37	37.2	37	36.7	36.6
I	(A)	1.73	2.29 37	3.72	5.06	5.66	3.18
¥	$\frac{2}{x} \frac{x}{10^{-4}} \frac{(cm^2)}{(cm^2)}$	0.976	1.15			1.64	
д М	(mp/oqu	2130	2030				1170
- G	(mho/cm ²)	191	503	530	194	316	111
J			19.9				39.6

TABLE 32

CW RESULTS FOR THE PROFILE IN FIGURE 29a AT 60 GHz TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

D(CM)	0 (CM)		D(DM)	0 (DM)	PRF (DM)	D(CR)	9 (CR)	PRF(CR)	D(DR)	θ(DR)	PRF (DR)	Jac
(mils)	(M/Jo)	(M)	(mils)	(°C/W)	(M)	(mils)	(M/Do)	(M)	(mils)	(%/D ₀)	(M)	(kA/cm ²)
2.37	æ	1.27		12.9	1.27	2.37	18.8	1.27	2.37	8.81	1.27	7.82
2.43	30.1	1.51	2.55	11.7	1.66	2.55	17.2	1.66	2.55	7.94	1.66	9,46
2.25	32.8	1,44	2.71	10.8	5.09	2.71	16	2.09	2.71	7.28	5.09	90.6
1.82	41.8	1.19	3.14	9.01	3.53	3.41	13.4	3.53	3.14	5.94	3.53	10.9
1.74	1 1	1.14	3.22	8.73	3.89	3.16	13.3	3.76	3.22	5.74	3.89	11.3
1.71	54	1.12	3.28	8.54	41.4	3.10	13.6	3.7	3.28	5.6	41.4	11.5
1.66	† 9†	1.08	3.29	8.5	4.22	3.02	17	3.56	3.29	5.57	4.22	7.11
1.47	53.6	0.934	3.54	7.77	5.39	2.68	16.2	3.09	3.54	5.05	5.39	12.9
1.31	61.8	0.816	3.8	7.13	6.88	2.38	18.7	2.7	3.8	4.59	6.88	14.1
1.2	68.5	0.726	3.6	7.61	6.54	2.18	20.7		3.96	4.35	7.89	15
1.12	9.47	0.657	3.36	8.29	5.92	2.04	22.6		60·†	4.17	8.77	15.8
1.02	83.3	0.577	3.07	9.56	5.2	1.86	25.2	1.91	4.24	3.98	9.89	16.8

THE PARTY OF THE PROPERTY OF T

Table 32 Cont.

gc	(cm ²)	7.7	6.6	24.8	7.6	4.5	9.6
	•	7	Н	0	N	m	m
PRF (DR)	(M)	11	11.4	5.55	2.38	0.687 34.5	0.0916
0(DR)	(%C/M)	3.8	3.91	6.58	Ħ	20.9	9.94
D(DR)	(mils)	4.39	4.3	2.91	2.04	1.34	0.819
) P _{RF} (DM) D(CR) 0(CR) P _{RF} (CR) D(DR) 0(DR) P	(W)	1.69	1.26	0.613	0.264	0.0763	0.0102
0(CR)	(M/Do)	27.8	35.2	59.3	98.9	188	419
D(CR)	(mils)	1.72	1.43	0.971	0.678	0.445	0.273
$P_{RF}(DM)$	(M)	9.4	3.44	21.8 1.67	0.719	0.208	0.0277
0 (DM)	(M/20)	10.2	12.9	21.8	36.3	69.1	154
D(DM)	(mils)	2.84	2.36	1.6	1.12	0.734	0.45
$\theta(\mathrm{CM})$ $\mathrm{P}_{\mathrm{RF}}(\mathrm{CM})$	(M)	0.512	0.382	0.185	0.0798	0.023	0.0031
	(M/O ₀)	91.9	911	967	327	622	0.15 1380
D(CM)	(mils)	746.0	0.788	0.534	0.373	0.245	0.15

its higher thermal conductivity and because the device susceptance is much smaller for the Si diode.

In summary, the results at 60 GHz were that the highest efficiency, 19.3 percent, was obtained for the InP hybrid structure. The highest electronic RF power (matched to $1-\Omega$ resistance) was obtained for the uniform GaAs double-drift diode. The maximum efficiency for the Si hybrid was 18.3 percent, only slightly less than for the InP hybrid; however, the electronic RF power at the maximum efficiency point was higher for the Si hybrid. In all cases, the expected CW RF power was highest for the Si hybrid diode.

SECTION 8.

RESULTS AT 94 GHz

Figure 31a shows the doping profile for a GaAs Read single-drift structure simulated at 94 GHz, and Figure 31b gives the dc solution at T = 500° K and J_{dc} = 25 kA/cm². Large-signal results at f = 94 GHz and J_{dc} = 25 kA/cm² are plotted in Figure 32a and b, and Figure 32c shows a plot of large-signal results vs. J_{dc} at V_{RF} = 6.5 V. Large-signal results vs. J_{dc} are listed in Table 33. The optimum efficiency for this structure was η = 4.04 percent at J_{dc} = 29.6 kA/cm², and maximum electronic RF power density was P_{RF} = 31.9 kW/cm² at J_{dc} = 71.2 kA/cm². When L_2 = 0 and L_1 = 0.5 x 10^{-4} cm, the thermal-resistance expressions are

$$\theta(CM) = \frac{64.27}{d_m} + \frac{37}{d_m^2},$$
 (64)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{37}{d_m^2},$$
 (65)

$$\theta(CR) = \frac{35 \cdot 35}{d_m} + \frac{37}{d_m^2}$$
 (66)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{37}{d_m^2}$$
 (67)

Solving Equations 13 through 15 and 64 through 67 gives the CW powers listed in Table 34.

Figure 33a gives the doping profile for a Si hybrid diode simulated at 94 GHz, and Figure 33b gives the dc solution at $T = 500^{\circ} K$ and $J_{\rm dc} = 25 \ kA/cm^2$. Large-signal results vs. $V_{\rm RF}$ at

Figure 31. (a) GaAs Single-Drift Diode for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 25 kA/cm^2 . (X_A = 0.1 μ m, J_{dc} = 25 kA/cm^2 , E_{max} = $8.68 \times 10^5 \text{ V/cm}$, E_{to} = $2.62 \times 10^5 \text{ V/cm}$, E(RHS) = $2.18 \times 10^5 \text{ V/cm}$ and Q_n = $4.21 \times 10^{12} \text{ cm}^{-2}$)

Figure 32. Large-Signal Results for the Profile of Figure 31a at $f = 94 \text{ GHz}, \ T = 500^{\circ}\text{K and (a and b)} \ J_{\text{dc}} = 25 \text{ kA/cm}^2,$ (c) $V_{\text{RF}} = 6.5 \text{ V}.$

TABLE 33

LARGE-SIGNAL RESULTS FOR THE GAAS SINGLE-DRIFT READ PROFILE IN FIGURE 31a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz, v_{RF} = 6.5 V)

D (mils)	0.35	0.522	0.586	0.622	0.671	0.726	0.776	0.804	0.824	0.875	0.956	0.965
θ _R	1470	523	356	263	197	148	115	98.7	87.9	70.5	52.7	49.2
Pdiss (W)	0.153	0.43	0.632	0.856	1.14	1.52	1.96	2.28	2.56	3.19	14.27	4.57
P _{RF}	0.157 3.6x10 ⁻³	0.0172	0.0266	0.0331	0.0432	0.0575	0.0735	0.0821	0.0882	0.108	0.147	0.148
P _{dc} (W)	0.157	O.447	0.659	0.889	1.18	1.58	2.03	2.36	2.65	3.3	7.42	4.72
n (Percent)	2.29	3.85	†0° †	3.72	3.66	3.64	3.62	3.48	3.33	3.28	3.33	3.14
v _{dc}	12.8	12.8	12.8	13	13	13.1	13.2	13.2	13.2	13.3	13.4	13.4
I _{dc}	0.0123	0.0349	0.0515	0.0684	0.0912	0.121	0.154	0.179	0.201	0.248	0.33	0.352
A x 10 ⁻⁴ (cm ²)	6.2 x 10 ³	0.0138	0.0174	0.0196	0.0228	0.0267	0.0305	0.0328	0.0344	0.0388	0.0463	0.0472
$^{\mathrm{B}}_{\mathrm{D}}$	2.11x10 ⁴	2.07x104	2.04x10"	2.02x10 ⁴	1.99×104	1.96x10*	1.93x10 ⁴	1.9x10 ⁴	1.88×10*	1.84x104	1.8x104	1.77×10*
- G _D	276	592	726	799	905	1030	1140	1190	1220	1320	1510	1490
$\frac{\mathrm{J}_{\mathrm{dc}}}{(\mathrm{kA/cm}^{2})}$	19.9	25.3	29.6	34.9	04	45.3	9.05	54.5	58.5	63.9	71.2	9.47

TABLE 34 CW RESULTS FOR THE PROFILE IN FIGURE 31a AT 94 GHz TAKING INTO

D(CM)		$\theta(CM)$ $P_{RF}(CM)$ $D(DM)$	D(DM)	θ(DM)	$P_{ m RF}({ m DM})$	D(CR)	θ(CR)	P _{RF} (CR)	D(DR)	θ(DR)	$ m P_{RF}(DR)$	Jac
(mils)	(M/Oo)	(°C/W) (W) (mils)	(mils)	(M/Do)	(M)	(mils)	(M/Do)	(W)	(mils)	(0°C/W)	(M)	(KA/cm ²)
0.35	7486	3.6x10-3	0.35	363	3.6x10 ⁻³	0.35	403	3.6x10 ⁻³	0.35	336	3.6x10 ⁻³	19.9
0.522	259	0.0172	0.522	177	0.0172	0.522	204	0.0172	0.522	158	0.0172	25.3
0.586	217	0.0266	0.586	144	0.0266	0.586	168	0.0266	0.586	128	0.0266	29.6
0.622	199	0.0331	0.622	130	0.0331	0.622	152	0.0331	0.622	114	0.0331	34.9
0.671	178	0.0432	0.671	114	0.0432	0.671	135	0.0432	0.671	7.66	0.0432	04
0.632	194	0.0438	0.726	7.66	0.0575	0.726	119	0.0575	0.726	4.98	0.0575	45.3
764.0	279	0.0303	0.776	89	0.0735	0.776	107	0.0735	0.776	9.91	0.0735	9.05
0.419	364	0.0223	0.804	83.9	0.0821	0.762	110	0.0737	0.804	71.9	0.0821	54.5
0.35	984	0.0159	0.824	80.5	0.0882	0.636	147	0.0527	0.824	68.8	0.0882	58.5
0.265	771	9.9x10 ⁻³	0.794	92.6	0.0891	0.481	233	0.0327	0.875	61.8	0.108	63.9
0.173	1600	1600 4.83x10 ⁻²	0.52	178	0.0435	0.315	485	0.016	0.945	53.9	771.0	71.2
0.138	2420	2420 3.02x10 ⁻³	0.413	268	0.0272	0.25	731	9.98x10 ⁻³	0.751	81.2	0.0898	9° 7L

Figure 33. (a) Si Hybrid Structure for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 25 kA/cm^2 . (X_A = 0.38 μ m, J_{dc} = 25 kA/cm^2 , E(LHS) = $2.24 \times 10^5 \text{ V/cm}$, E_{max} = $5.656 \times 10^5 \text{ V/cm}$ and E(RHS) = $2.208 \times 10^5 \text{ V/cm}$)

f = 94 GHz and $J_{\rm dc}$ = 25 kA/cm² are plotted in Figure 34a and b, and large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 19 V are plotted in Figure 34c. Large-signal results vs. $J_{\rm dc}$ are listed in Table 35. Using ℓ_2 = 0.52 x 10⁻⁴ cm from Figure 33a, assuming ℓ_1 = 0.5 x 10⁻⁴ cm as before, and then reducing the final two terms of Equation 1 by 1/3 to account for higher thermal conductivity in Si obtains the thermal-resistance expressions as follows:

$$\theta(CM) = \frac{64.27}{d_m} + \frac{18.05}{d_m^2},$$
 (68)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{18.05}{d_m^2}$$
, (69)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{18.05}{d_m^2}$$
 (70)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{18.05}{d_m^2}$$
 (71)

Solving Equations 13 through 15 and 68 through 71 yields the expected CW powers listed in Table 36. These RF powers are quite high due to the high thermal conductivity of Si and the smaller susceptance values for Si IMPATTs.

Figure 35a shows a GaAs double Read structure simulated at 94 GHz, and Figure 35b shows the dc solution at T = 50° K and $J_{\rm dc}$ = 25 kA/cm². Large-signal results for this structure vs. $V_{\rm RF}$ at f = 94 GHz and $J_{\rm dc}$ = 25 kA/cm² are plotted in Figure 36a and b, and large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}$ = 11 V are plotted in Figure 36c. Large-signal results vs. $J_{\rm dc}$ are listed in Table 37. From Figure 35a, the p-region length is ℓ_2 = 0.26 x 10⁻⁴ cm, and when ℓ_1 = 0.5 x 10⁻⁴ cm, the thermal-resistance expressions become

Figure 34. Large-Signal Results for the Profile of Figure 33a at $T = 500^{\circ}\text{K}, f = 94 \text{ GHz and (a and b) } J_{\text{dc}} = 25 \text{ kA/cm}^2,$ (c) $V_{\text{RF}} = 19 \text{ V}.$

TABLE 35

LARGE-SIGNAL RESULTS FOR THE SI HYBRID STRUCTURE IN FIGURE 33ª AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz, $v_{\rm RF}$ = 19 V)

	W) (mils)	2 1.61	3 1.76	6 1.87	1.96	6 2.09	lt 2.2	8 2.32	54 2.96	72 3.29	3.38	55 3.41	40 3.34
	(%C/M)	5.44 (32.3	5 26.6	22	17.6	14.4	11.8	4.54	2.72	N	1.55	1.49
Pdiss	(M)	5.09	96.9	8.45	10.2	12.8	15.6	19.1	49.5	82.8	112	145	151
P.R.F.	(E)	1.09	1.52	1.85	2.25	2.76	3.31	3.93	8.06	17.6	8.26	6.21	5.01
Pac	(M)	6.18	8.48	10.3	12.4	15.6	18.9	23	57.6	92.5	120	151	156
د	(Percent)	17.6	17.9	18	17.9	17.7	17.5	17.1	17	10.5	6.88	4.11	3.21
Vdc	(4)	27.6	27.7	27.8	27.9	28	28	28.1	28.4	28.3	28.1	28.1	28.2
Ide	(A)	0.224	0.306	0.372	0.443	0.559	0.674	0.819	2.03	3.27	4.29	5.37	5.53
A	\times 10 ⁻⁴ (cm ²)	0.132	0.158	0.177	0.195	0.222	0.246	0.273	6.44.0	0.548	0.58	0.59	0.564
Q Q													
о _р -	(mho/cm ²)	458	532	583	627	691	947	199	1020	686	793	584	164
Jdc	(kA/cm ²)	17	19.4	23	22.7	25.2	4.75	29.9	45.9	59.7	477	91.1	98.1

TABLE 36

CW RESULTS FOR THE PROFILE IN FIGURE 33s AT 94 GHz TAKING INTO

J	(kA/cm^2)	17	19.4	ส	22.7	25.2	27.4	29.9	45.9	59.7	47	91.1	98.1
${ m P}_{ m RF}({ m DR})$	(M)	1.09	1.52	1.85	2.22	2.76	3.31	3.93	3.1	0.829	0.124	5.6 * 10-6	ł
θ(DR)	(M/Do)	14.3	12.5	11.5	10.7	9.77	9.08	8.43	11.8	31.8	134	1.7 x 106	1
D(DR)	(mils)	1.61	1.76	1.87	1.96	2.09	2.2	2.32	1.83	96.0	0.414	3.2 x 10-3	ł
PRF(CR)	(M)	1.09	1.52	1.85	2.08	1.73	1.48	1.22	0.344	0.092	0.0138	6.2 * 10-7	ł
θ(CR)	(M/Do)	28.9	25.9	24.1	23.5	28	32.3	38.1	901	287	1200	1.5 x 107	1
D(CR)	(mils)	1.61	1.76	1.87	1.9	1.65	1.47	1.29	0.61	0.32	0.138	1.08 * 10-3	ł
$P_{RF}(DM)$	(M)	1,09	1.52	1.85	2.22	2.76	3.31	3.31	986.0	0.251	0.0376	1.7 x 10-6	1
9 (DM)	(M/Do)	20.3	18	16.6	15.6	14.4	13.5	17	39.1	105	244	5.7 x 106	ł
D(DM)	(mils)	1.61	1.76	1.87	1.96	2.09	2.2	2.13	1.01	0.528	0.228	1.78 x 10 ⁻³	ł
PRF(CM) I	(M)	0.949	0.805	0.719	0.631	0.523	0.447	0.368	0.104	0.0278	0.0042	1.89 x 10-5	1
0 (CM)	(M/Do)	50.6	6.09	68.6	77.8	95.6	107	126	352	246	3980	5.11 x 107	1
D(CM)	(mils)	1.51	1.28	1.16	1.05	0.909	0.811	0.711	0.335	0.176	0.0759	5.95 x 10 ⁻⁴	1

Figure 35. (a) Doping Profile of Double-Read GaAs Diode for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 25 kA/cm². (X_{A} = 0.13 µm, J_{dc} = 25 kA/cm², E(LHS) = 2.45 x 10⁵ V/cm, E_{to} (LHS) = 2.94 x 10⁵ V/cm, E_{max} = 6.65 x 10⁵ V/cm, E_{to} (RHS) = 2.64 x 10⁵ V/cm, E(RHS) = 2.227 x 10⁵ V/cm, Q_{n} = 2.8 x 10¹² cm⁻² and Q_{p} = 2.58 x 10¹² cm⁻²)

Figure 36. Large-Signal Results for the Profile of Figure 35a at $f = 94 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} \text{ J}_{dc} = 25 \text{ kA/cm}^2,$ (c) $\text{V}_{RF} = 11 \text{ V}.$

TABLE 37

LARGE-SIGNAL RESULTS FOR THE DOUBLE READ GAAS PROFILE IN FIGURE 35a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz, v_{RF} = 11 V)

D (m11s)	0.308	0.584	0.712	0.83	0.954	1.03	1.1	1.18	1.25	1.31	1.34	1.4
θR (°C/W)	2230	163	258	191	9.66	74.5	57.5	45.4	36	29.9	27.2	23.6
Pdiss (W)	0.101	0.486	0.871	1.4	2.26	3.02	3.91	96.4	6.24	7.52	8.28	9.55
P _{RF}	0.103 0.002	0.512 0.0258	0.926 0.0547	0.099	2.43 0.167	0.221	0.284	5.32 0.356	144.0	0.521	0.562	0.653
P _{dc}	į	0.512	0.926	1.5	2.43	3.24	4.19	5.32	6.68	8.04	8.84	10.2
n (Percent)	1.99	5.04	5.91	9.9	6.88	6.83	6.77	6.7	9.9	87.9	6.36	4.9
v dc (v)		17.4	17.5	17.6	17.9	18.1	18.2	18.3	18.5	18.6	18.6	18.7
I _{dc}	6.02x10-3	0.0294	0.0529	0.0852	0.136	0.179	0.23	0.291	0.361	0.432	0.475	0.547
A x10 ^{-*} (cm ²)	4	0.0173	0.0257	0.0349	0.0461	0.0539	9190.0	0.0703	0.0794	0.0872	9160.0	0.0997
$^{ m B}_{ m D}$		11,900	11,700	11,600	11,400	11,200	001,11	10,900	10,700	10,600	10,500	10,400
$-G_{\rm D}$ (mho/cm ²)		245	352	047	6 01	619	762	840	916	988	1020	1090
J_{dc}	12.5	17	20.6	4.45	29.4	33.3	37.4	7.14	45.5	9.64	51.9	54.9

Table 37 Cont.

A	(mils)	1,41	1.54	1.59	1.59
θ R	(%/D°)	21.8	16.5	14.3	13.8
Pdiss	(M)	10.3	13.6	15.7	16.3
P RF	(W)	0.652	0.874	0.962	0.939
Pdc	(W)	11	14.5	16.7	17.2
F	(Percent)	5.93	0.768 18.9 6.03 14.5 0.874 13.6 16.5 1.54	5.76	5.46
V	(V)	18.7	18.9	19	18.9
I	(A)	0.586	0.768	0.878	0.909
A	$\times 10^{-4} (cm^2)$	0.101	0.12	0.128	0.128
E C	(mho/cm ²)	10,200	0966	9760	0650
	(mho/cm ²)		1210	1240	1210
Jdc	(kA/cm ²)	58	η9	9.89	17

$$\theta(CM) = \frac{64.27}{d_m} + \frac{45.56}{d_m^2},$$
 (72)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{45.56}{d_m^2},$$
 (73)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{45.56}{d_m^2}$$
 (74)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{45.56}{d_m^2}$$
 (75)

Solving for Equations 13 through 15 and 72 through 75 yields the expected CW powers listed in Table 38. Comparison with Table 36 shows that the Si hybrid can generate significantly more CW power than the GaAs double Read structure at 94 GHz.

Figure 37a shows the doping profile for a GaAs hybrid structure simulated at 94 GHz, and Figure 37b gives the dc solution at T = 500° K and J_{dc} = 30 kA/cm². Large-signal results vs. V_{RF} at f = 94 GHz and J_{dc} = 30 kA/cm² are plotted in Figure 38a and b, and large-signal results vs. J_{dc} at V_{RF} = 12.24 V are plotted in Figure 38c. The best efficiency obtained was η = 7.54 percent at J_{dc} = 30 kA/cm² and V_{RF} = 12.25 V, and the largest electronic RF power density was P_{RF} = 121 kW/cm² at J_{dc} = 117 kA/cm² and V_{RF} = 12.25 V. Large-signal results vs. J_{dc} are listed in Table 39. From Figure 37a, the active region length is ℓ_2 = 0.25 x 10⁻⁴ cm, and when ℓ_1 = 0.5 x 10⁻⁴ cm as before, the following thermal-resistance expressions are obtained:

$$e(CM) = \frac{64.27}{d_m} + \frac{45.23}{d_m^2},$$
 (76)

TABLE 38

CW RESULTS FOR THE PROFILE IN FIGURE 35a AT 94 GHZ TAKING INTO

D(CM)	θ(CM)	P _{RF} (CM) D(DM)	D(DM)	0 (DIM)	$P_{RF}(DM)$	D(CR)	0 (CR)	P _{RF} (CR)	D(DR)	0 (DR)	PRF (DR)	Jdc
(mils)	(M/Do)	(M)	(mils)	(%C/M)	(M)	(mils)	(%/Do)	(W)	(mils)	(%C/M)	(M)	(kA/cm^2)
0.308	689	ካ ላፒ•0	0.308	550	0.002	0.308	595	0.002	0.308	518	0.002	12.5
0.584	777	0.232	0.584	170	0.0258	0.584	194	0.0258	0.584	154	0.0258	17
0.712	180	0.19	0.712	120	0.0547	0.712	140	0.0547	0.712	901	0.0547	20.6
0.83	174	0.148	0.83	, 28	0.099	0.83	109	0.099	0.83	80.3	0.099	7.42
0.701	184	0.0901	0.954	72.5	0.167	0.954	87.1	0.167	0.95₺	62.4	0.167	₽.62
0.521	291	0.0567	1.03	63.7	0.221	0.948	88	0.187	1.03	4.42	0.221	33.3
0.38	485	0.0337	1.1	57.1	0.284	0.69	741	0.111	1.1	1.81	0.284	37.4
0.268	178	0.0185	908.0	96.8	0.167	0.488	797	0.0613	1.18	42.7	0.356	4.14
0.17	1960	8.13 x 10 ⁻³	0.51	217	0.0731	0.309	592	0.0269	0.927	65.8	0.242	45.5
0.092	0609	2.56 * 10 ⁻³	0.276	677	0.023	0.167	1840	8.46 x 10-3	0.501	205	0.0761	9.61
0.0554	1.6 x 10*	9.56 * 10-4	0.166	1780	8.6 x 10 ⁻³	0.101	0484	3.16 x 10-3	0.302	537	0.0284	51.9

Table 38 Cont.

Jdc	(kA/cm^2)	1.01 54.9 x 10 ⁻³	58	719	9.89	17
PRF (DR)	(M)	1.01 x 10-3	1	ļ	1	1
0 (DR)	(M/D ₀)	1.52 x 104		;	!	1
D(DR)	(mils)	0.0552	i	;	ţ	1
$P_{RF}(CR)$	(M)	1.12 0.0552 x 10-4	ł	;	ł	1
(CR)	(M/Do)	1.37			1	ł
D(CR)	(mils)	0.0184	ł	ł	ł	1
$P_{ m RF}({ m DM})$	(M)	3.06 0.0184 x 10 ⁺	1	ł	1	ļ
0 (DM)	(M/Do)	5.02 * 10*	ł	ł	ł	ł
D(DM)	(mils)	0.0303	1	ł	ŀ	;
		3.4 x 10 ⁻⁵	ļ	ł	;	;
		4.5 x 105	1	1	1	1
D(CM)	(mils)	0.0101	ł	1	1	1

Figure 37. (a) Doping Profile for GaAs Hybrid Structure for 94-GHz Operation and (b) Dc Solution at T = 500° K and J_{dc} = 30 kA/cm². (X_A = 0.19 µm, J_{dc} = 30 kA/cm², E(LHS) = 2.068 x 10^{5} V/cm, E_{max} = 7.094 x 10^{5} V/cm, E_{to} = 2.591 x 10^{5} V/cm and E(RHS) = 2.063 x 10^{5} V/cm)

Figure 38. Large-Signa! Results for the Profile of Figure 37a at $T = 500^{\circ}K, f = 94 \text{ GHz and (a and b) J}_{dc} = 30 \text{ kA/cm}^2,$ (c) $V_{RF} = 12.25 \text{ V}.$

TABLE 39

LARGE-SIGNAL RESULTS FOR THE GAAS HYBRID PROFILE IN FIGURE 37a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz, $v_{\rm RF}$ = 12.25 V)

D (mils)	0.522	18.0	90.1	1.15	1.32	1.53	1.65	1.88	1.95	2.06	2.25	2.52	2.54	2.67
$\theta_{\rm R}$	453	142	73	51.5	30.4	17.7	13	8.9	6.99	5.6	4.16	2.92	2.63	2.14
Pdiss (W)	164.0	1.59	3.08	4.37	7.39	12.7	17.3	27	32.2	40.2	54.1	76.9	4.58	105
P _{RF}	0.0167	0.106	0.251	0.347	0.553	0.937	1.18	1.79	1.93	2.25	2.83	3.9	3.57	3.76
Pac (W)	0.514	1.7	3.33	4.72	7.94	13.6	18.5	28.8	34.1	42.4	6.95	80.8	89	109
V _{dc} n (V) (Percent)	3.25	6.23	7.54	7.35	6.97	6.89	6.38	6.23	5.66	5.3	4.97	4.83	4.01	3.45
V dc (V) (1	19.1	19.3	19.6	20	20.3	20.7	20.9	21.2	21.2	21.2	21.4	21.5	21.3	21.2
I _{dc}	0.0269	0.0881	0.17	0.236	0.391	0.658	0.886	1.36	1.61	α	5.66	3.76	4.18	5.13
A x10-4(cm ²)	0.0138	0.0358	0.0568	0.0671	0.0878	0.119	0.138	0.179	0.192	0.216	0.256	0.321	0.327	0.361
	10,800	10,500	10,200	10,100	0476	9330	9010	8540	8250	7900	7450	6920	6520	0809
$J_{ m dc}$ - $G_{ m D}$ $B_{ m D}$ $\langle { m kA/cm}^2 angle \ \langle { m mho/cm}^2 angle$	161	395	593	688	839	1050	1140	1340	1340	1390	1480	1620	1460	1380
$\frac{\mathrm{J}_{\mathrm{dc}}}{(\mathrm{kA/cm}^2)}$	19.5	54.6	30	35.2	44.5	55.3	64.2	92	83.8	92.5	104	117	128	142

$$\theta(DM) = \frac{21.42}{d_m} + \frac{45.23}{d_m^2},$$
 (77)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{45.23}{d_m^2},$$
 (78)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{45.23}{d_m^2}$$
 (79)

Solving Equations 13 through 15 and 76 through 79 yields the CW powers given in Table 40.

Figure 39a shows the doping profile for the InP hybrid structure simulated at 94 GHz, and Figure 39b gives the dc solution at $T=500^{\circ}\text{K}$ and $J_{\rm dc}=25~\text{kA/cm}^2$. Large-signal results vs. $V_{\rm RF}$ at $f=94~\rm GHz$ and $J_{\rm dc}=25~\rm kA/cm^2$ are plotted in Figure 40a and b, and large-signal results vs. $J_{\rm dc}$ at $V_{\rm RF}=17~\rm V$ are plotted in Figure 40c. Large-signal results vs. $J_{\rm dc}$ are listed in Table 41. The best efficiency was $\eta=13.4$ percent at $J_{\rm dc}=24.6~\rm kA/cm^2$, and the maximum RF power density was $P_{\rm RF}=162~\rm kW/cm^2$ at $J_{\rm dc}=92.6~\rm kA/cm^2$. Using $\ell_2=0.3~\rm x~10^{-4}~cm$ from Figure 39a and $\ell_1=0.5~\rm x~10^{-4}~cm$ as before, and reducing the final two terms in Equation 1 by 0.8 to account for the higher thermal conductivity of InP yields the following thermal-resistance expressions:

$$e(CM) = \frac{64.27}{d_m} + \frac{37.5}{d_m^2},$$
 (80)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{37.5}{d_m^2},$$
 (81)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{37.5}{d_m^2}$$
 (82)

TABLE 40

CW RESULTS FOR THE PROFILE IN FIGURE 37a AT 94 GHz TAKING INTO

Jåc	(kA/cm^2)	19.5	24.6	30	35.2	5.44	55.3
${ m P}_{ m RF}$ (DR)	(M)	0.0167	901.0	0.251	9.347	0.133	i
θ(DR)	(°C/W)	188	78.1	51.4	7.77	127	1
D(DR)	(mils)	0.522	0.8 ⁴	1.06	1.15	979.0	ļ
P _{RF} (cr		0.0167	901.0	0.239	0.110	0.0148	ł
0(CR)	(M/Do)	234	106	76.8	163	1140	1
D(GR)	(mils)	0.522	0.84	1.03	9,646	0.215	1
$P_{ m RF}({ m DM})$	(M)	0.0167	901.0	0.251	0.298	0.0402	ł
0 (DM)	(M/Do)	207	9.68	60.5	59.8	419	1
D(DM)	(mils)	0.522	0.84	1.06	1.07		1
${ m P}_{ m RF}({ m CM})$	(W)		901.0	0.0722	0.0331	4.47 x 10 ⁻³	1
0 (CM)	(0C/M)	289	141	254	539	3770	ł
D(CM)	(mils)	0.522	0.84	0.567	0.355	0.118	!

Figure 39. (a) InP Hybrid Doping Profile for 94-GHz Operation and (b) Dc Solution at T = 500° K and $V_{\rm dc}$ = 25 kA/cm². (X_A = 0.19 µm, $J_{\rm dc}$ = 25 kA/cm², E(LHS) = 3.09 x 10⁵ V/cm, $E_{\rm max} = 7.64 \times 10^5 \text{ V/cm}, E_{\rm to} = 4.0 \times 10^5 \text{ V/cm} \text{ and}$ E(RHS) = 3.081 x 10⁵ V/cm)

Figure 40. Large-Signal Results for the Profile of Figure 39a at $f = 94 \text{ GHz}, \ T = 500^{\circ}\text{K and (a and b)} \ J_{\text{dc}} = 25 \text{ kA/cm}^2,$ (c) $V_{\text{RF}} = 17 \text{ V}.$

TABLE 41

LARGE-SIGNAL RESULTS FOR THE INP HYBRID PROFILE IN FIGURE 39a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz, v_{RF} = 17 V)

D (mils)	0.881	0.963	1.02	1.06	1.09	1.21	1.41	1.55	1.75	1.85	1.93	1.97
θ _R .	131	101	82.h	6.69	58.3	34.4	19.4	13	8.01	6.2	5.16	4.28
Pdiss (W)	1.72	2.23	2.73	3.22	3.86	6.54	11.6	17.3	28.1	36.3	43.6	52.6
P _{RF}	0.241	0.339	0.422	0.481	0.521	0.759	1.29	1.73	2.46	2.8	3.04	2.95
Pdc (W)	1.96	2.57	3.15	3.7	4.38	7.3	12.9	19	30.6	39.1	9.94	55.6
n (Percent)	12.3	13.2	13.4	13	11.9	10.4	76.6	11.6	8.04	7.16	6.53	5.31
dg (v	23.9	54	24.2	24.2	24.5	25	25.5	25.9	26.4	26.6	26.8	27
I _{dc}	0.0821	0.107	0.13	0.153	0.179	0.292	0.505	0.734	1.16	1.47	1.74	5.06
A x 10 ⁻⁴ (cm ²)	0.0393	0.047	0.0528	0.0572	0.0602	0.0744	0.101	0.122	0.155	0.173	0.188	0.196
B _D (mho/cm ²)	1.04×104	1.03x10*	1.02x10*	1.01x10 ⁴	0666	9700	9290	8910	8340	7970	1640	7210
- G _D	756	200	551	585	603	704	880	982	1100	1120	1120	1040
J_{dc} (kA/cm ²)	20.9	22.7	54.6	26.7	29.8	39.2	20	60.2	75	84.8	95.6	105

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{37.5}{d_m^2}$$
 (83)

Solving Equations 13 through 15 and 80 through 83 yields the CW power levels given in Table 42.

Figure 41a gives the doping profile for a uniform GaAs doubledrift IMPATT simulated at 94 GHz, and Figure 41b shows the dc solution at T = 500° K and $J_{\rm dc}$ = 60 kA/cm². Selected large-signal results for different values of $J_{\rm dc}$ and $V_{\rm RF}$ at f = 94 GHz are given in Table 43. The best efficiency obtained was η = 7.92 percent at $J_{\rm dc}$ = 69.7 kA/cm² and $V_{\rm RF}$ = 15 V, and maximum RF power density was $P_{\rm RF}$ = 196 kW/cm² at $J_{\rm dc}$ = 178 kA/cm² and $V_{\rm RF}$ = 15 V. From Figure 41a, ℓ_2 = 0.32 x 10^{-4} cm, and when ℓ_1 = 0.5 x 10^{-4} cm as before, the thermal-resistance expressions become

$$\theta(CM) = \frac{64.27}{d_m} + \frac{47.53}{d_m^2},$$
 (84)

$$\theta(DM) = \frac{21.42}{d_m} + \frac{47.53}{d_m^2},$$
 (85)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{47.53}{d_m^2}$$
 (86)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{47.53}{d_m^2}$$
 (87)

Solving Equations 13 through 15 and 84 through 87 yields the expected CW powers given in Table 44.

Figure 42a gives the doping profile for a uniformly doped Si double-drift IMPATT simulated at 94 GHz, and Figure 42b gives the dc solution at $T = 500^{\circ}$ K, and $J_{dc} = 25 \text{ kA/cm}^2$. Large-signal

TABLE 42

CW RESULTS FOR THE PROFILE IN FIGURE 39a AT 94 GHz TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

Jdc	(kA/cm^2)	20.9	22.7	9.42	26.7	29.8	39.2	50	60.2
P _{RF} (dr)	(W)	0.241	0.339	0.422	0.481	0.521	0.635	6.5 x 10-3	ł
0(DR)	(M/Do)	61.7	52.7	9.74	44.5	4.54	41.1	3840	i
(DR)	(mils)	0.881	0.963	1.02	1.06	1.09	1.11	0.1	ł
P _{RF} (cR) D	(M)	0.241	0.339	0.422	0.481	0.35	0.0706	0.72 x 10 ⁻³	1
0(CR)	(M/Do)	4.88	77.1	70.7	2.99	86.7	370	3.45 x 10' x	ł
	(mils)	0.881	0.963	1.02_	1.06	0.892	0.37	0.0335	!
	(M)	0.241	0.339	0.422	0.481	0.521	0.192	1.96 x 10 ⁻³	ł
θ(DM)	(M/20)	72.6	62.7	57	53.6	51.2	136	1.27 x 10	1
D(DM)	(mils)	0.881	0.963	1.02	1.06	1.09	0.61	0.0552	1
$\theta(\text{CM}) P_{RF}(\text{CM})$	(M)	0.241	0.28	0.231	0.177	0.106	0.0214	2.18 x 10-	
0 (CM)	(M/20)	121	122	150	190	287	1220	1.14 x 105	i 1
D(CM)	(mils)	0.881	0.878	0.757	949.0	0.491	0.203	0.0184	l
					,				

Figure 41. (a) Doping Profile for Uniformly Doped GaAs Double-Drift IMPATT at 94 GHz and (b) Dc Solution at T = 500° K and $J_{dc} = 60 \text{ kA/cm}^2. \quad (X_A = 0.28 \text{ }\mu\text{m}, \text{ E(LHS)} = 2.192 \text{ x } 10^5 \text{ V/cm},$ $E_{max} = 6.122 \text{ x } 10^5 \text{ V/cm} \text{ and E(RHS)} = 2.228 \text{ x } 10^5 \text{ V/cm})$

LARGE-SIGNAL RESULTS FOR THE DOUBLE-DRIFT GAAS PROFILE IN FIGURE 41a AND POWER LEVELS TABLE 43

OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94.GHz)

	v RF	5	15	15	15	15	15	15	15	15	17	13	12
	А	(mils) (V)	0.183	0.493	0.709	0.928	1.11	1.22	1.37	1.48	0.685	0.854	0.972
	e R	(M/Do)	2440	317	132	4.79	41.7	31.4	22.5	17.6	163	104	79.5
	Pdiss	(W)	0.092	0.71	1.7	3.34	5.4	7.16	66.6	12.8	1.38	2.17	2.83
	P RF	(M)	3.38 x 10-4	0.0175	0.0708	0.195	0.375	0.524	0.81	1.05	0.0545	0.11	0.153
	Pdc	(M)	0.0923	0.728	1.77	3.53	5.77	7.68	10.8	13.9	1.43	2.28	2.98
	٤	(V) (Percent)	0.366	7.2	4	5.53	6.5	6.83	7.5	7.57	3.81	78.4	5.13
	V dc	<u>(3</u>	19.9	20.1	20.2	20.4	20.6	20.7	เร	21.1	20.4	20.7	12
	$^{ m I}_{ m dc}$	(A)	₹	0.0362	0.0877	0.173	0.28	0.371	0.515	0.659	0.0702	0.11	0.142
Ą	x 10-4	(cm ²)	0.0017	0.0123	0.0255	0.0436	0.0621	0.0749	0.0952	0.111	0.0238	0.037	0.0479
	a ^C	(mho/cm ²)	1.02 * 10*	1.01 * 10*	9830	0956	9290	9100	8880	8680	9920	0476	9620
	- _{GD} _{BD}	(mho/cm ²)	27.3 17.7 1.02 x 10*	126	742	399	538	623	756	843	234	352	1111
	Jdc	(kA/cm ²)	27.3	4.62	34.4	39.7	45.1	49.5	54.1	4.es	29.5	29.7	59.6

Cont.

Table 43 Cont.

$^{ m V}_{ m RF}$	Ξ	11	15	15
Д	(mils)	1.07	1.73	3.46
ө _Ж	(M/Oo)	4.59	10.8	0.978
Pdiss	(M)	3.62 0.181 3.44 65.4 1.07 11	20.8	230
PRF	(M)	0.181	1.79	11.8
Pdc	(W)	3.62	22.6	242
٤	(Percent)	0.0576 0.171 21.2 5	0.151 1.05 21.5 7.92	1.88
V	<u>A</u>	21.2	21.5	22.4
Idc	(A)	0.171	1.05	0.606 10.8 22.4 4.88
× 10-4	(cm^2)	0.0576	0.151	909.0
a O	(mpo/cm	9500	8300	5070
- G	(mho/cm ²)	521	1060	1740
Jdc	(kA/cm^2)	29.7	7.69	178

TABLE 44

CW RESULTS FOR THE PROFILE IN FIGURE 41a AT 94 GHZ TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

J_{dc} $(\mathrm{v_{RF}})$ $(\mathrm{kA/cm}^2)$	27.3 (15)	29.4 (15)	34.4 (15)	39.7 (15)	45.1 (15)	49.5 (15)	54.1 (15)	(15)	29.5 (14)	29.7 (13)	29.6 (12)	29.7 (11)
$J_{ m dc} { m (V_{RF})}$	27.3	29.4	34.4	39.7	45.1	49.5	54.1	59.4	29.5	29.7	29.6	29.7
$P_{\mathrm{RF}}(\mathrm{DR})$	3.38 x 10-4	0.0175	0.0708	0.18	0.0283	1	1	1	0.0545	0.11	0.153	0.181
θ(DR) (°C/W)	1480	219	111	73	552	ł	;	ł	118	45	62.4	52.5
D(DR)	0.183	0.493	0.709	0.891	0.304	ł	ł	1	0.685	0.854	0.972	1.07
P _{RF} (CR)	3.38 x 10-4	0.0175	0.0408	0.02	3.14 x 10-3	ł	}	1	0.0545	0.0971	0.0997	0.091
0(CR)	1610	267	230	657	4970	ļ	}	ţ	153	118	122	130
D(CR)	0.183	0.493	0.538	0.297	0.101	ļ	!	ţ	0.685	0.802	0.785	0.755
$P_{RF}(DM)$ (W)	3.38 x 10-4	0.0175	0.0708	0.0546	8.56 x 10 ⁻³	!	ł	ļ	0.0545	0.11	0.153	0.181
(DM)	1540	239	125	241	1830	ŀ	ł	ł	132	90.2	72.3	61.5
D(DM)	0.183	0.493	0.709	64.0	0.167	ł	i	ł	0.685	0.854	0.972	1.07
P _{RF} (CM)	3.38 x 10-4	0.0151	0.0123	6.06 * 10-3	9.51 x 10 ⁻⁴		ŀ	ł	0.0239	0.0294	0.0302	0.0275
θ(CM)	1770	366	759	2170	1.64 x 10*	1	1	!	372	390	403	7,30
D(CM)	0.183	0.458	0.296	0.163	0.0558	ł	! }	1	0.454	0.441	0.432	0.415
		_	1 30-	,								

Figure 42. (a) Doping Profile for Uniformly Doped Si Double-Drift IMPATT at 94 GHz and (b) Dc Solution at T = 500° K and J_{dc} = 25 kA/cm^2 . (X_A = 0.37 μm , E(LHS) = 1.368 x 10^5 V/cm, E_{max} = 5.436 x 10^5 V/cm and E(RHS) = 1.342 x 10^5 V/cm)

results vs. V_{RF} at f = 94 GHz and J_{dc} = 25 kA/cm² are plotted in Figure 43a and b, and large-signal results vs. J_{dc} at V_{RF} = 18 V are plotted in Figure 43c. Large-signal results vs. J_{dc} are listed in Table 45. Using ℓ_2 = 0.445 µm from Figure 42a, assuming ℓ_1 = 0.5 µm as before, and then reducing the final two terms of Equation 1 by 1/3 to account for higher thermal conductivity in Si yields the following thermal-resistance expressions:

$$e(CM) = \frac{64.27}{d_m} + \frac{17.21}{d_m^2},$$
 (88)

$$e(DM) = \frac{21.42}{d_m} + \frac{17.21}{d_m^2},$$
 (89)

$$\theta(CR) = \frac{35.35}{d_m} + \frac{17.21}{d_m^2}$$
 (90)

and

$$\theta(DR) = \frac{11.78}{d_m} + \frac{17.21}{d_m^2}$$
 (91)

Solving Equations 13 through 15 and 88 through 91 yields the expected CW powers listed in Table 46.

When the results obtained at 94 GHz are summarized, it is found that the Si hybrid and uniformly doped double-drift devices are capable of generating more CW power than any other structure for all combinations of diode geometry and heat-sink material. The Si hybrid has the highest RF conversion efficiency. The uniform GaAs double-drift device yielded the nighest maximum electronic RF power (matching into $1-\Omega$ resistance and ignoring thermal effects). The uniform Si double-drift device was capable of generating almost half the peak RF electronic power generated by the uniform GaAs double-drift structure.

Figure 43. Large-Signal Results for the Profile of Figure 42a at $f = 94 \text{ GHz}, T = 500^{\circ}\text{K and (a and b)} J_{\text{dc}} = 25 \text{ kA/cm}^2,$ (c) $V_{\text{RF}} = 18 \text{ V}.$

TABLE 45

LARGE-SIGNAL RESULTS FOR THE UNIFORM SI DOUBLE-DRIFT PROFILE IN FIGURE 42a AND POWER LEVELS OBTAINED BY MATCHING TO 1-0 RESISTANCE (f = 94 GHz)

D (mils)	924.0	1.0	1.37	1.63	1.84	2.02	2.21	2.37	2.64	2.9	3.41	4.01
θ _R (°C/W)	966	161	9.99	38.5	26.3	19.4	14.5	11.4	7.98	5.7	3.2	1.83
Pdiss (W)	0.226	1.4	3.38	5.84	8.56	11.6	15.5	19.8	28.2	39.5	70.2	123
P _{RF}	9.35x10-3	0.171	0.549	1.05	1.64	2.24	3.03	3.85	5.46	7.36	11.8	18
Pdc (W)	0.235	1.57	3.93	6.89	10.2	13.8	18.5	23.6	33.7	6.94	82	141
n (Percent)	3.98	10.87	13.96	15.26	16.03	16.2	16.4	16.3	16.2	15.7	ተ.ተ ር	12.8
v dc (V)	25.9	26.2	26.4	56.6	26.8	26.9	27.1	27.2	27.4	27.6	27.9	28.2
I _{dc}	9.08×10-3	0.0598	0.149	0.259	0.38	0.515	0.684	0.866	1.23	1.7	2.94	4.99
A cm ²)	1.15x10 ⁻⁶	5.07x10 ⁻⁶	9.46x10-6	1.35x10 ⁻⁵	1.72x10 ⁻⁵	2.07x10 ⁻⁵	2.47x10-5	2.84x10-5	3.52x10-5	4.26x10 ⁻⁵	5.9x10 ⁻⁵	8.17x10-5
B _D	2099	6387	6129	5965	5800	6495	6645	5355	5124	1,887	7044	3856
$^{ m J}_{ m dc}$ $^{-}$ $^{ m G}_{ m D}$ $^{ m B}_{ m D}$	50.3	207	360	785	586	671	762	834	957	1065	1236	1368
J _{dc}	7.9	11.8	15.8	19.2	22.1	6.45	27.7	30.5	35	39.8	49.8	61.1

Cont.

able 45 Cont.

А	mils)	4.3	4.68	5.2	5.26	5.57	6.51	6.85
ө Ж	(°C/W)	1.4 4.3	1.02	969.0	0.586	0.438	0.271	0.226
$^{ m P}_{ m diss}$	(W)	191	221	323	384	715	830	366
P RF	(M)	181 20.1 161	22	24.3	17.8	14.2	16.2	15.2
Pdc	(W)	181	243	347	705	528	9†8	1010
٤	(Percent)	11.1	90.6	7.0	24.4	2.7	1.92	1.5
v dc	3	28.1	28.0	28.0	27.9	28.1	28.5	28.7
Idc	(A)	6.43	8.68	12.4	14.4	18.8	29.7	35.2
¥	(cm ²)	68.6 1318 3512 9.37x10 ⁻⁵ 6.43 28.1 11.1 18	1.11x10-4	1.37x10 ⁴	1.4x10-4	1.57x10-4	2.15x10 ⁴	2.38x10-"
В	(mho/cm ²)	3512	3092	2610	2232	1807	1396	1228
- _В	(mho/cm ²)	1318	1225	1096	787	295	991	396
J	(kA/cm^2)	9.89	78.2	90.5	103	120	138	148

TABLE 46

CW RESULTS FOR THE PROFILE IN FIGURE 42a AT 94 GHZ TAKING INTO

ACCOUNT THE THERMAL-RESISTANCE EXPRESSIONS

D(CM)	θ(CM)	$D(CM) = \theta(CM) = \frac{P_{RF}(CM)}{D(DM)}$	D(DM)	0 (DM)	P _{RF} (DM) D(CR)	D(CR)	θ(CR)	e(CR) P _{RF} (CR)	D(DR)	$\theta(DR)$	P _{RF} (DR)	Jdc
(mils)	(M/O ₀)	(mils) (°C/W) (W)	(mils)	(%C/M)	(W)	(mils) (°C/W)		(W)	(mils) (°C/W)	(M/Do)	(M)	(kA/cm^2)
924.0	966	9.35x10 ⁻³ 0.476	924.0	966	9.35x10-3	924.0	966	9.35x10 ⁻³	0.476	966	9.35×10 ⁻³	7.9
1.0	191	0.171	1.0	161	0.171	1.0	161	0.171	1.0	191	171.0	11.8
1.37	9.99	645.0	1.37	9.99	0.549	1.37	9.99	6,549	1.37	9.99	0.549	15.8
1.32	58.4	ħ69°0	1.63	38.5	1.05	1.63	38.5	1.05	1.63	38.5	1.05	19.2
1.12	71.0	0.605	1.84	26.3	1.64	1.84	26.3	19.1	1.84	26.3	1.64	22.1
η96.0	85.2	0.511	2.05	19.4	2.24	1.75	25.8	1.69	2.02	19.4	2.24	24.9
0.835	102	0.436	2.21	14.5	3.03	1.52	30.7	1,44	2.21	14.5	3.03	27.7
0.729	120	0.364	2.19	13.4	3.28	1.32	36.5	1.2	2.37	11.4	3.85	30.5
0.592	158	0.275	1.77	17.5	2.47	1.08	7.74	606.0	2.64	7.98	5.46	35
0.478	210	0.2	1.43	23.3	1.8	0.869	63.5	99.0	5.6	7.06	5.94	39.8
0.313	381	0.0994	0.939	42.3	0.895	0.569	115	0.329	1.71	12.8	2.96	49.8
0.192	804	0.0412	0.575	89.3	0.371	0.348	243	0.136	1.04	27	1.23	61.1

Cont.

Table 46

D(CM)	0 (CM)	$\theta(CM)$ $P_{RF}(CM)$ $D(DM)$	D(DM)	0 (DM)		D(CR)	0(CR)	$P_{ m RF}({ m DM})$ D(CR) $ heta({ m CR})$ $P_{ m RF}({ m CR})$ D(DR) $ heta({ m DR})$ ${ m J_{dc}}$	D(DR)	0(DR)	P _{RF} (DR)	J
(mils)	(M/20)	(mils) (°C/W) (W) (mils) (°C/W)	(mils)	(OC/W)	(W)	(mils)	(0°C/W)	(mils) (°C/W) (W)		(%/O°)	(mils) (°C/W) (W) (kA/cm ²)	(kA/cm^2)
0.135	1420	0.0197 0.405	0.405	158	0.178	0.246	0.246 429	0.0652	0.736	0.736 47.7 0.587	0.587	68.6
0.0788	3585	0.0788 3585 6.25x10 ⁻³ 0.236	0.236	398	0.0562	0.143 1	1084	0.0207	0.43	120	0.186	78.2
0.0249	3.03x10*	0.0249 3.03x10 5.58x10 0.0747 3.35x10 5.02x10 0.0453 9171	0.0747	3.35x10³	5.02×10-3	0.0453	1716	1.84x10 ⁻³ 0.136	0.136	1019	0.0166	90.5
ł	ł	1	ł	.	1	ł	ł	ŀ	ł	ł	ļ	103
;	ł	ļ	1	1	1	}	;	ł	ł	ł	1	120
1	1	;	ł	i	ł	1	1	1	1	1	;	138

SECTION 9.

SUMMARY OF RESULTS

Table 47 presents a summary of the expected maximum CW powers obtained for all combinations of frequency, diode structure, mesa geometry and heat-sink material studied. It is seen that Si devices yield the maximum power in all cases.

It should be kept in mind that the thermal-resistance expressions used were quite optimistic since the mounting term, R_{PKG}, in Equation 1 was ignored. Also, the contributions due to intervening metallization layers were not considered. Therefore, it is expected that the CW powers in Table 47 represent "best case" estimates. Figure 44 gives plots of the CW powers vs. frequency for all four combinations of mesa geometry and heat-sink material for the Si, GaAs and InP hybrid structures.

Table 48 lists the peak electronic RF power obtained by matching each diode to 1- Ω circuit resistance, excluding thermal considerations. Results for the uniformly doped GaAs double-drift diode at 94 GHz in Table 48 are not for the structure examined previously in this report, but rather a structure recently found¹⁸ to have optimum electronic power generating capability at 94 GHz was simulated. This structure has $N_A = 2.2 \times 10^{17} \text{ cm}^{-3}$, $N_D = 2.23 \times 10^{17} \text{ cm}^{-3}$, and $W_D = W_D = 0.32 \text{ }\mu\text{m}$. The very large powers in Table 48 for the uniform double-drift structures are brought about by a large increase in device area required to match into 1- Ω circuit resistance as J_{dc} increases. Both |G| and B decrease (beyond a certain point) with increasing J_{dc} , and also the ratio

TABLE 47
SUMMARY OF CW RF POWER FOR ALL FREQUENCIES, DIODE STRUCTURES
AND MESA GEOMETRY, HEAT-SINK MATERIAL COMBINATIONS (W)

		Frequen	cy (GHz)	
Diode Type	_30	40	_60	94
Single Mes	a, Copper	Heat Sink	<u>.</u>	
Si Hybrid	4.47	2.94	1.51	0.949
Si Uniform Double Drift				0.694
GaAs Hybrid	1.56	1.06	0.411	0.106
InP Hybrid	2.53	1.86	0.548	0.28
GaAs Double Read	2.94	1.84	0.507	0.232
GaAs Uniform Double Drift			0.19	0.0302
GaAs Single Drift			0.375	0.0438
Single Mesa,	Diamond H	leat Sink		
Si Hybrid	15.3	11.8	6.88	3.31
Si Uniform Double Drift				3.28
GaAs Hybrid	9.43	4.78	1.74	0.298
InP Hybrid	8.75	5.9	2.84	0.521
GaAs Double Read	10.3	4.96	1.41	0.284
GaAs Uniform Double Drift			1.18	0.181
GaAs Single Drift			0.514	0.0891
Ring Geometry	, Copper	Heat Sink		
Si Hybrid	9.23	6.09	3.76	2.08
Si Uniform Double Drift				1.69
GaAs Hybrid	4.5	3.02	1.08	0.239
InP Hybrid	5.94	4.01	1.73	0.481
GaAs Double Read	7.28	2.96	1.01	0.187
GaAs Uniform Double Drift			0.628	0.0997
GaAs Single Drift			0.514	0.0737
				Cont.

Table 47 Cont.

		Freque	ncy (GHz)	
Diode Type	30	40	60	94
Ring Geometry,	Diamond	Heat Sink		
Si Hybrid	29.2	18.8	11.4	3.93
Si Uniform Double Drift				5.94
GaAs Hybrid	15.8	7.47	2.32	0.347
InP Hybrid	13.9	7.64	3.06	0.635
GaAs Double Read	16.6	6.09	1.9	0.356
GaAs Uniform Double Drift			1.8	0.181
GaAs Single Drift			0.514	0.144

The second of th

THE PROPERTY THE PROPERTY AND ADDRESS OF THE

Figure 44. Summary of Maximum CW RF Powers Obtained for (1) Si Hybrid Structure, (2) InP Hybrid Structure, and (3) GaAs Hybrid Structure vs. Frequency. (a) Single Mesa, Copper Heat Sink, (b) Single Mesa, Diamond Heat Sink, (c) Ring Geometry, Copper Heat Sink, and (d) Ring Geometry, Diamond Heat Sink.

TABLE 48 SUMMARY OF PEAK ELECTRONIC RF POWERS OBTAINED BY MATCHING TO $1\text{-}\Omega \ \text{RESISTANCE} \ (\text{W})$

		Frequenc	y (GHz)	
Diode Type	_30	40	60	94
Si Hybrid	36.7	29.2	19.4	9.71
GaAs Hybrid	39	20.3	10.6	3.9
InP Hybrid	30.9	19.5	10.6	3.04
GaAs Double Read	18.7	7.66	2.52	0.962
GaAs Uniform Double Drift			122	60.4*
GaAs Single Drift			0.514	0.148
Si Uniform Double Drift				24.3

^{*}Calculated for Structure D7 in Reference 18.

B/|G| decreases, both effects increasing $A = -G/(G^2 + B^2)$. The powers in Table 48 occur for J_{dc} well above the J_{dc} for maximum RF power density. It is doubtful that these peak powers could be observed experimentally since the required pulse width would be extremely short.

LIST OF REFERENCES

- 1. Mains, R. K. and Haddad, G. I., "Properties of High-Efficiency X-Band GaAs IMPATT Diodes," Tech. Report No. AFWAL-TR-81-1066, Electron Physics Laboratory, The University of Michigan, Ann Arbor, June 1981.
- 2. Froelich, R. K., "Computer Modeling of Millimeter-Wave IMPATT Diodes," Ph.D. Dissertation, The University of Michigan, Ann Arbor, 1982.
- 3. Bauhahn, P. E., "Properties of Semiconductor Materials and Microwave Transit-Time Devices," Ph.D. Dissertation, The University of Michigan, Ann Arbor, 1977.
- 4. Steele, S. R., Johnson, K. K., Lauterwasser, B. D., Baras, A. D. and Holway, L., Jr., "P-Type Gallium Arsenide Epitaxial Growth," Tech. Report No. AFAL-TR-79-1144, Raytheon Company, Waltham, MA, October 1979.
- 5. Blakey, P. A., private communication.
- 6. Cornell Hot Electron Workshop, July 1978; presented by Kao and Crowell from the University of Southern California, Los Angelos. Blakey, P. A., private communication.
- 7. Kao, C. W. and Crowell, C. R., "Impact Ionization by Electrons and Holes in InP," <u>Solid-State Electronics</u>, vol. 23, No. 8, pp. 881-891, August 1980.
- Fawcett, W. and Hill, G., "Temperature Dependence of the Velocity/Field Characteristic of Electrons in InP," <u>Electronic Letters</u>, vol. 11, No. 4, pp. 80-81, 20 February 1975.
- 9. Belova, N. A., Galchenkov, L. A., Skvortsova, N. E. and Sokolov, Yu. F., "Investigation of the Carrier Mobility in Epitaxial InP Films Grown on Heavily Doped Substrates,"

 <u>Sov. Phys. Semicon.</u>, vol. 13, No. 9, pp. 1045-1047, September. 1979.
- 10. Majerfeld, A., Potter, K. E. and Rolson, P. N., "Temperature Dependence of the Subthreshold Velocity/Field Characteristic for Epitaxial InP," <u>Electronic Letters</u>, vol. 11, No. 4, pp. 81-82, 20 February 1975.
- 11. Bauhahn, P. E., Haddad, G. I. and Masnari, N. A., "Comparison of the Hot Electron-Diffusion Rates for GaAs and InP,"

 <u>Electronic Letters</u>, vol. 9, No. 19, pp. 460-461, 20 September 1973.

- 12. Microwave Associates, Burlington, MA, private communication.
- 13. Kennedy, D. P., "Spreading Resistance in Cylindrical Semiconductor Devices," J. Appl. Phys., vol. 31, No. 8, pp. 1490-1497, August 1960.
- 14. Olson, H. M., "Temperature Transients in IMPATT Diodes," IEEE Trans. on Electron Devices, vol. ED-23, No. 5, pp. 484-503, May 1976.
- 15. Maycock, P. D., "Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys," Solid-State Electronics, vol. 10, No. 3, pp. 161-168, March 1967.
- 16. Gilden, M. and Hines, M. E., "Electronic Tuning Effects in the Read Microwave Avalanche Diode," <u>IEEE Trans. on Electron Devices</u>, vol. ED-13, No. 1, pp. 169-175, January 1966.
- 17. Massé, D., Barlas, A. D., Holway, L., Adlerstein, M., Johnson, K. K. and Mozzi, R., "EHF GaAs Double-Drift IMPATT Diodes," Tech. Report AFAL-TR-79-1204, Raytheon Research Division, Waltham, MA, December 1979.
- 18. Cherensky, S., "Assessment and Optimization of Uniformly Doped Double-Drift GaAs Millimeter Wave IMPATT Diodes," Electron Physics Laboratory, The University of Michigan, Ann Arbor, January 1982.

FILMED

2-83

DTIC