

Stabilized Super-Resolution Deep Learning Adaptation for UAV-Assisted Mobile Edges: A Lyapunov Optimization Approach IEEE Seoul Section Student Paper Contest (2019)

<u>Jaesung Yoo</u> (Undergraduate Student of EE): Korea University, Seoul, Korea **Dohyun Kim** (Graduate Student of CSE): Chung-Ang University, Seoul, Korea **Joongheon Kim** (Assistant Professor of EE): Korea University, Seoul, Korea

Introduction

Introduction Algorithm Details Performance Evaluation Concluding Remarks

Motivation

- UAV/drone-based mobile edge computing is essential for seamless real-time surveillance applications.
- For the surveillance, the drone records video streams and then transit them to ground mobile edge stations.
 - The stream arrivals into the mobile edge is time-varying due to the unreliability of the wireless links between drone and mobile edge.
 - Thus, the drone compresses the videos (in order to save wireless bandwidth) and then the mobile edge (receiver) conducts super-resolution for enhance the resolution.
 - Due to the static model of super-resolution neural network, it may introduce overflow when the arrivals are bursty.

Introduction

Introduction Algorithm Details Performance Evaluation Concluding Remarks

Proposed Control Algorithm

- In order to handle the unpredictable overflow, the proposed algorithm controls the model based on queue-backlog.
 - If queue-backlog (task queue) is long, we have to speed up the computation in the super-resolution neural network.
 - If the queue-backlog (task queue) is idle, we have to maximize the super-resolution performance even though it takes a lot of time.
 - Thus, we can observe the tradeoff between delays and utility (i.e., super-resolution performance).
- In order to model the tradeoff, Lyapunov optimization framework is used.
 - Thus, the formulation is for the time-average maximization of the superresolution performance subject to queue stability.

Introduction

- System Model and Motivation
 - Virtual Bandwidth Extension

Transmission

How can we control this model?

Lyapunov Control for	r Learning-based	Systems
----------------------	------------------	----------------

Lyapunov Optimization Formulation

Maximization of Time-Average Learning-Accuracy subject to Queue Stability

$$\alpha^*[t] \leftarrow \underset{\alpha[t] \in A}{\operatorname{argmax}}[V \cdot Accuracy(\alpha[t]) - Q[t]\{a(\alpha[t]) - b(\alpha[t])\}]$$

$$\alpha^*[t] \leftarrow \underset{\alpha[t] \in A}{\operatorname{not Controllable}}$$

$$\alpha^*[t] \leftarrow \underset{\alpha[t] \in A}{\operatorname{argmax}}\{V \cdot Accuracy(\alpha[t]) + Q[t]b(\alpha[t])\}$$

$$\alpha[t] \in A$$

- Semantical Description
 - If the queue is near empty $(Q[t] \cong 0)$,
 - Select the $\alpha[t]$ which can maximize $V \cdot Accuracy(\alpha[t])$, i.e., high learning-accuracy NN will be selected.
 - If the queue is near overflow $(Q[t] \cong \infty)$,
 - Select the $\alpha[t]$ which can maximize $b(\alpha[t])$, i.e., fast computation (i.e., low learning-accuracy) NN will be selected.

Algorithm Details

Algorithm Details Performance Evaluation

Introduction

Concluding Remarks

Algorithm Pseudo-Code

Algorithm 1 Proposed Super-Resolution Deep Neural Network Model Adaptation

Initialize:

- 1: $t \leftarrow 0$
- 2: $Q(t) \leftarrow 0$
- 3: Elements in Bag-of-Models: $A = \{\alpha_1(t), \dots, \alpha_N(t)\}$

Stochastic Super-Resolution Model Adaptation:

- 4: while t < T do // T: operation time 5:
- Observe Q(t) $\mathcal{T}^* \leftarrow -\infty$
- for $\alpha(t) \in A$ do 7:
- $\mathcal{T} \leftarrow V \cdot P(\alpha(t)) + Q(t) \cdot \mu_{\alpha}(t)$ 8:
- if $T > T^*$ then 9:
- $\mathcal{T}^* \leftarrow \mathcal{T}$ 10:
- $\alpha^*(t) \leftarrow \alpha(t)$ 11:
- end if 12:
- end for 13:
- 14: end while

Experimental Results

500

- In the initial phase, the proposed control algorithm follows the model which is for maximizing super-resolution performance.
- In the end, the proposed algorithm starts to control the model selection in order to handle the tradeoff between utility and delays via Lyapunov optimization framework.

100

200

Conclusions and Future Work

• Conclusions

- This paper proposes a Lyapunov optimization framework for time-average maximization of super-resolution performance subject to queue stability.
- This control algorithm is used for the virtual bandwidth extension between drones and mobile edges.

Future Work

- The scenario with multi-drone networks is considerable.
 - In this case, appropriate scheduling policies are required.

· Q&A

• joongheon@korea.ac.kr (Prof. Joongheon Kim)

