1

CONTENTS

1

1

2

1 Stability

2 Routh Hurwitz Criterion

3 Compensators

4 Nyquist Plot

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

1 STABILITY

2 ROUTH HURWITZ CRITERION

The number of roots of the polynomial, $s^7 + s^6 + 7s^5 + 14s^4 + 31s^3 + 73s^2 + 25s + 200$, in the open left half of the complex plane is

- (A) 3
- (B) 4
- (C) 5
- (D) 6

We will be using the concept of Routh-Hurwitz Criterion.

Routh-Hurwitz Criterion: The number of roots of the polynomial that are in the right half-plane is equal to the number of sign changes in the first column.

RouthHurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time invariant control system.

Rules for generating Routh-Hurwitz Table.

- 1) Label the rows of Routh table from highest power to the lowest power.
- 2) List alternative coefficients starting with the highest order coefficients in the first row.
- 3) List alternative coefficients starting with the next highest order coefficients in the second row.
- 4) Each entry is the negative of determinant of the previous two entries in the previous two rows divided by the entry in the first column directly above the row.
- 5) The left hand column of the determinant is always the first column of the previous two rows.

- 6) The right hand column is the elements of the column above and to the right.
- 7) The table is complete when all of the rows are completed down to s^0 .

The Routh-Hurwitz Table for given equation $s^7 + s^6 + 7s^5 + 14s^4 + 31s^3 + 73s^2 + 25s + 200$, is calculated as follows

s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^4	8	48	200	0
s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^4	8	48	200	0
s^3	0	0	0	

When such a case is encountered, we take the derivative of the expression formed the the coefficients above it i.e derivative of $8s^4 + 48s^2 + 200$.

$$\frac{d}{dx}(8s^4 + 48s^2 + 200) = 32s^3 + 96s$$

The coefficients of obtained expression are placed in the table.

s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^4	8	48	200	0
s^3	32	96	0	
s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^4	8	48	200	0
s^3	32	96	0	
s^2	24	200	0	
s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
$\frac{s^5}{s^4}$	8	48	200	0
s^3	32	96	0	
s^2	24	200	0	
s^1	-	0		
	170.67			

Fig. 7: Roots of given polynomial

Fig. 7: Contour Plot Describing the values of given polynomial

s^7	1	7	31	25
s^6	1	14	73	200
s^5	-7	-42	-175	0
s^4	8	48	200	0
s^3	32	96	0	
s^2	24	200	0	
s^1	-	0		
	170.67			
s^0	200			

So, the above one is the Routh-Hurwitz Table. The no.of sign changes in first column of Routh-Hurwitz Table is the no.of roots on right side of imaginary axis. So, for the given equation 4 roots lie on right-side of Imaginary Axis. Given equation has a total of 7 roots in which 4 lie on right side of Imaginary Axis. So there will be 3 roots on left of Imaginary Axis.

- 3 Compensators
- 4 Nyquist Plot