ECD 422

Machine learning enabled database for predictive computational design of perovskite materials for solar cells

Meet the Team

Advisor: Prof Mengen Wang

Database Engineer: Sanjitha Bhaskar

Team Lead: Alex Kinman

User Interface Engineer: Venkat Gutta

Project Summary

- Use machine learning for advanced development of perovskite solar cells
- Employ ML algorithm to predict outcome of first-principles calculations
- Propose optimal material compositions and synthesizing conditions for perovskites while avoiding traditionally high time and cost

Operational Context

Perovskite Material

Additional Data

- Elemental properties
- Formation environment
- Cell defect calculations
- Results of DFT calculations

Density Functional Theory Calculations

- Costly
- Time intensive
- Requires high power computer

Machine Learning

- Requires data from DFT for training
- Nearly instant
- Low computational cost

Operational Context

Specifications and Goals

- Shall use a machine learning algorithm to predict DFT calculations
- Shall create a GUI to display ML model output
- ML models shall be written in Python
- GUI may be written in Javascript or Python
- Should test more than one machine learning algorithm to determine best model
- May import the data into SQL Database
- Stretch goal: Should generate more data from DFT calculations to expand capabilities of ML model

Timeline

Agile methodology

Engineering Tools

- VESTA
- VASP
- GitHub
- Google Colab
- SQL
- Anaconda
- Visual Studio code
- Google Sites

Current Status

- Three ML models chosen
 - Gaussian Process Regression
 - Neural Network
 - Random Forest Regression
- Data to begin training

Date	Summary	Cost	Total
-	Starting Budget	-	\$1780
9/18/2023	Spiedie HPC subscription	\$1,675	\$105

Questions

