Mechatronische Systeme WS21/22 Bildschirmtest (90 min) am 03. Feb. 202

Name:____ Matrikel-Nr:____

Ein Viertelfahrzeug mit Pendelachse ist in Bild dargestellt. Die Aufbau- und Radmasse beträgt m_A und m_R . Greifen Feder und Dämpfer nicht über dem Radmittelpunkt an, muss das Hebelverhältnis zum Quadrat berücksichtigt werden. Die Seitenkraft am Rad ist F_y . Eine Fahrt über eine unebene Fahrbahn bewirke eine Wegerregung $z_h(t)$.

Die Differentialgleichungen lauten für Aufbau, Reifen:

$$m_A \ddot{z}_A + d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R) + c_E \cdot \left(\frac{l_E \cos(\alpha)}{l_R}\right)^2 \cdot (z_A - z_R) - \frac{r}{l_R} \cdot F_y = 0 \tag{1}$$

$$m_R \ddot{z}_R - d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R) - c_E \cdot \left(\frac{l_E \cos(\alpha)}{l_R}\right)^2 \cdot (z_A - z_R) + c_R \cdot z_R + \frac{r}{l_R} \cdot F_y = c_R \cdot z_h \tag{2}$$

$$\dot{F}_y + \frac{c_y}{c_\alpha} \cdot v \cdot F_y - c_y \cdot \frac{r}{l_B} \cdot (\dot{z}_A - \dot{z}_R) = 0 \tag{3}$$

 Eingabedaten in m-file mit Ihrem Nachname. Erstellen Sie nach den Systemgleichungen ein Modell mit Simulink im Zeitbereich, (beginnend vom unten angegebenen Bild):

Die gegebene Bremsschwelle $z_h(t)$:

Die Anfangsbedingungen der Zustandsgrößen sollen gleich Null angenommen werden.

Die Fahrbahnanregung $z_h(t)$ ist eine Bremsschwelle angenommen.

Ausgänge in Scope: Die Dämpfungskraft $d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R)$ und Seitenkraft F_y . Simulation time 3 sec mit 0.01 Fixed-step.

2. Berechnen Sie die Eigenwerte des Systems. Ist das System stabil? Begründung!

土	
土	
土	

Mechatronische Systeme WS21/22 Bildschirmtest (90 min) am 03. Feb. 202

Name:	
Matrikel-Nr:	

Berechnen Sie die ungedämpfte, gedämpfte Eigenfrequenzen f_0 , $f_{\rm d}$ (Hz) und Dämpfungsgrad ξ .

Ungedämpfte f ₀ (Hz)	gedämpfte $f_{\rm d}$ (Hz)	Dämpfungsgrad ξ		

- 3. Polten Sie die Übertragungsfunktion $\left|\frac{F_y}{Z_h}\right|$ und Phasenwinkel bis $\omega = 2\pi \times 20 \text{ rad/s}$ in einer Figure (Bodediagramm) mit dem Titel "Übertragungsfunktion $|F_y/Z_h|$ ".
- 4. Leiten Sie anhand der Systemgleichungen einen formelmäßigen Ausdruck in *A, B, C, D* Matrizen her.

Systemeingange: Z_h

Ausgänge: Die Dämpfungskraft $d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R)$ und Seitenkraft F_y

Zustandsgrößen: $[z_A \quad z_R \quad \dot{z}_A \quad \dot{z}_R \quad F_y]^T = [x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5]^T$

5. Senden Sie m-File und mdl-File mit Ihrem Nachnamen zu eine ZIP Datei an!

	Name	~	Тур				
	1 Mustername_mfile		MATLAB Code	Senden an	· 0	Bluetooth-Gerät	
	Mustername_mdl		Simulink Model (MDL	Ausschneiden		Desktop (Verknüpfung erstellen)	
	1)markieren Sie zwei Dateien		Kopieren		Dokumente Dropbox		
	On an			Verknüpfung erstellen		E-Mail-Empfänger	
			Löschen Umbenennen		Faxempfänger		
	4			Eigenschaften	1	Skype ZIP-komprimierter Ordner	
Mustername zip ZIP-komprimierter Ordner							

Senden Sie diese ZIP Datei per Email an: xiaofeng.wang@hs-rm.de

Viel Erfolg!