

Phase-field modelling Lecture 7 in 4H5919

Assoc. Prof. Joakim Odqvist (odqvist@kth.se)

Dr. Efim Borukhovich (efim@kth.se)
(Home assignment)

Outline

- History and background to the Phase-Field Method (PFM)
- Mathematics of the PFM
- Modelling with the PFM
- Examples of applications
- The home assignment

PFM in the ICME framework

- Creator linking process with structure
- Structure as in microstructure
 - Spatial distribution of structural features
 - Phases (with different compositions)
 - Grains (of different orientations)
 - Domains with different properties (electrical, magnetic etc.)

Mesoscale modelling (nm-µm)

Microstructural Evolution and Materials Response Length Scale

When should we consider the PFM?

- Modelling of moving interfaces
- Modelling microstructure evolution during phase transformations
- Effect of external stress, strain, transformation strain, anisotropic properties and complex morphologies

Engineering problems suitable for the PFM

- Sintering (wetting and redistribution of alloy elements)
 - -ceramics
 - -sintered steels
 - cemented carbides
- Soldering, brazing (wetting)
- Grain growth (lowers strength)
- Precipitation/dissolution (strength -homogenisation)
- Coarsening of precipitates (lowers strength)
- Spinodal decomposition (e.g. 475°C-embrittlement in steels, strengthening of cemented carbides))
- Martensite formation

PFM – the importance of interfaces

- The PFM is a diffuse interface method
 - Compare with DICTRA and TC-PRISMA, which are sharp interface methods
- Conditions at the interface
 - Local equilibrium assumption (DICTRA and TC-PRISMA, but not for the PFM)

Sharp vs. diffuse interface modelling of phase transformations

• Sharp:

- + Easy to program, well-defined interface position
- Conditions at the interface
 Can be cumbersome in higher dimensions and for complex shapes

• Diffuse (phase-field):

+ Easily extended to 3D

No explicit tracking of interfaces

No need to specify conditions at the interface Good for complex shapes

Often computationally demanding
 Often requires mesh adaptivity

Basics of the PFM I

- The microstructure is described with a number of phase field variables e.g.
 - Concentration
 - Crystal structure
 - ...
- Time evolution of the field variables from partial differential equations (PDEs)
 - Cahn-Hilliard equation
 - Allen-Cahn equation
- No explicit tracking of the moving interfaces

Basics of the PFM II

• The concept of an order parameter (often denoted by η or ϕ)

Parameters that characterizes the variations in state during a phase transformation e.g. site fraction and magnetization, Bain

variants etc.

Figure 1. Schematics demonstrating the representation of morphologies by field variables. (a) disordered single phase, (b) two-phase mixture, and (c) ordered single phase.

Chen and Wang

Table I. Examples	s of the	Field Model	Applications
-------------------	----------	-------------	---------------------

Types of Processes	Field Variables
Isostructural Spinodal Decomposition	c
Ordering and Antiphase Domain Coarsening	n
Solidification in Single-Component Systems	'n
180° Ferroelectric Domain Formation	P (polarization)
Solidification in Alloys	ੌ c, η
Precipitation of Ordered Intermetallics with	• •
Two Kinds of Ordered Domains	ς, η
Four Kinds of Ordered Domains	c , η_1 , η_2 , η_3
90° Ferroelectric Domain Formation	P_1, P_2, P_3
Cubic→Tetragonal Displacive Transformation or Martensitic Transformation	$\eta_{1'}^{-}, \eta_{2'}^{-}, \eta_{3}^{-}$
Tetragonal Precipitates in a Cubic Matrix	c , η_1 , η_2 , η_3
Ordered Precipitate Morphology under Stress	$c_1 \eta_1, \eta_2, \eta_3$
Grain Growth in a Single-Phase Material	$\eta_1, \eta_2,, \eta_Q$
Grain Growth in a Two-Phase Mixture	c , η_1 , η_2 ,, η_Q

Chen and Wang

Short history of the PFM I

- The name "phase-field" Fix 1983 (free boundary problems)
- Studies on solidification of pure melts Langer 1980's, Kobayashi's dendrites 1990's
- Van der Waals 1893: interfaces between liquids and solids (continuous variation of the density with an extra term $(\nabla \rho)^2$)

Short history of the PFM II

- 1956-58: Cahn and Hilliard and Hillert
 - Extra term $(\nabla c)^2$, "gradient energy"
 - Equilibrium from variational analysis.
 - Dynamics from a diffusion equation derived from the total free energy. => Cahn-Hilliard equation
- 1979: Allen and Cahn, migration of APB, change in order parameter η (non-conserved).
 - Dynamics from a postulated equation derived from total free energy.
 - Similar equation postulated by Ginzburg-Landau in the 1950's to represent superconductivity transformation.
 - => AC/GL-equation (Allen-Cahn/Ginzburg-Landau)

Kobayashi's dendrites

Gordon Research Conference 1990's

Physica D 63 (1993) 410-423 North-Holland

Modeling and numerical simulations of dendritic crystal growth

Ryo Kobayashi

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Ohtsu 520-21, Japan

$$\dot{\tau} \phi = \varepsilon \nabla^2 \phi + \gamma \phi (1 - \phi) (\phi - \frac{1}{2} + m(T_m - T))$$

$$\dot{T} = \nabla(\lambda_T \nabla T) + \frac{L}{c_p} \dot{\phi}$$

$$f = \frac{1}{2} \varepsilon (\nabla \phi)^2 + \frac{\gamma}{4} \phi^2 (1 - \phi)^2 - L \frac{T_m - T}{T_m} 6(\frac{\phi^2}{2} - \frac{\phi^3}{3})$$

Solid $\phi = 1$ Liquid $\phi = 0$

Mathematics of the PFM

The total Gibbs energy:

$$G = \int_{\Omega} \left(G_m(\phi, x_k) / V_m + \frac{\varepsilon^2}{2} |\nabla \phi|^2 + \frac{\kappa^2}{2} |\nabla x_k|^2 \right) d\Omega$$

At equilibrium *G* is minimal, for fixed over-all composition. From variational calculus:

$$\frac{\delta G}{\delta \phi} = \left(\frac{\partial (G_m / V_m)}{\partial \phi} - \varepsilon^2 \nabla^2 \phi \right)$$

$$\frac{\delta G}{\delta x_k} = \frac{\partial (G_m / V_m)}{\partial x_k} - \kappa^2 \nabla^2 x_k$$

Variational calculus

$$I = \int F(y, y', x) dx$$

Functional

$$\frac{\delta I}{\delta x}$$

Variational derivative

$$\frac{\delta I}{\delta x} = \frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right)$$
 Euler-Lagrange equation

Rate equations

$$J_{k} = -\sum L_{kj} \nabla \left(\frac{\delta G_{m}}{\delta x_{j}} \right)$$

Cahn-Hilliard Equation: "Model B"

$$\dot{x}_{k} = \nabla \cdot \left[\sum_{k,j} \nabla \left(\frac{\partial G_{m}}{\partial x_{j}} - V_{m} \kappa_{j}^{2} \nabla^{2} x_{j} \right) \right]$$

AC/GL-equation: "Model A"

$$\dot{\phi} = -M_{\phi} \frac{\delta G}{\delta \phi} = -M_{\phi} \left(\frac{\partial G_m / V_m}{\partial \phi} - \varepsilon^2 \nabla^2 \phi \right)$$

Modelling with the PFM I

Consider a binary two-phase system

How should we represent $G_m(x_i, \phi)$?

Wheeler, Boettinger and McFadden (WBM)

$$G_m(x_1, x_2, \phi) = (1 - p(\phi))G_m^{\alpha}(x_1, x_2) + p(\phi)G_m^{\beta}(x_1, x_2) + g(\phi)W$$

Steinbach et al. Multi-Phase-Field (MPF)

$$G_m(x_i, \phi) = (1 - p(\phi))G_m^{\alpha}(x_1^{\alpha}, x_2^{\alpha}) + p(\phi)G_m^{\beta}(x_1^{\beta}, x_2^{\beta}) + g(\phi)W$$

Modelling with the PFM II

Example polynomials

$$p(\phi) = \phi^{3} (10 - 15\phi + 6\phi^{2})$$
$$g(\phi) = \phi^{2} (1 - \phi)^{2}$$

Examples of applications

- Martensite formation in Fe-C
- Spinodal decomposition in Fe-Cr alloys
- Sigma phase formation in a duplex stainless steel

Martensite formation in Fe-C

- ➤ MT is diffusionless, i.e. no variation in concentration
- >Phase field Equation: $\frac{\partial \eta_p}{\partial t} = -\sum_{p=1}^{p=v} L_{pq} \frac{\delta G}{\delta \eta_p}$ (Allen-Cahn)
- ▶L_{pq}: Kinetic coefficient, corresponds to interface mobility
- \triangleright Phase field variable: η_p : (η_1, η_2, η_3)
- \triangleright G =G_{chemical} + G_{gradient} + G_{elastic} + G_{plastic}

One Allen-Cahn type equation for each Bain variant

Shape of Martensite...

Simulation parameters

- >Fe-0.3C alloy
- ➤ Physical size of the system: 1µm
- ➤ M_s temperature (Experimental value)
- ➤ Driving force calculated from Thermo-Calc at M_s
- \triangleright Bain strains (ε^{T}) calculated from Lattice constants (Experimental)
- ➤ Isotropic Elasticity case : E = 200 GPa
- ➤ Anisotropic Elastic modulii(c): Experimental values

Martensite formation in Fe-C: 2D simulation

Zero displacement BC

Stress free BC

Malik et al.

Results from 2D simulations

Martensite formation in Fe-C: 3D simulation

Zero displacement BC

Stress free BC

Austenite

Martensite-V1

Martensite-V2

Martensite-V3

Malik et al.

Results from 3D simulations

Conclusions

- 3D simulations are required to investigate the stress effects!
- •In a Fe-0.3%C system:
 - Maximum volume fraction of the martensite phase can be achieved by applying the tensile stress.
 - Applying the compressive stress, reduces the volume fraction of the martensite phase.

Characteristic features of spinodal decomposition

Modulated or mottled constrast in ferrite in a duplex stainless steel

Hättestrand et al.

Solving the Cahn-Hilliard equation: Simulation results for Fe-45at%Cr at 773K

Thermodynamics: Andersson and Sundman, 1987

Thermodynamics: Xiong et al., 2010

Sigma phase formation in a duplex stainless steel (Fe-25Cr-7Ni-4Mo)

Continuous Cooling from 1273K to 950K

Time = 0.0 s Temp = 1273.00 K

Austenite: 60.44 Ferrite: 38.45 Sigma: 0.73

1K/s

Time = 0.0 s Temp = 1273.00 K

Austenite: 60.44 Ferrite: 38.45 Sigma: 0.73

50K/s

Time = 0.0 s

Temp = 1273.00 K

Austenite: 60.44 Ferrite: 38.45 Sigma: 0.73

100K/s

Malik et al.

Issues in phase-field modelling

- Computational efficiency
- Realistic length scales: interfaces thicknesess vs. size of grains/phase domains
- Number of domains/grains
- Nucleation
 - Evolution equations are deterministic i.e. explicit nucleation events cannot be handled with the original Cahn-Hilliard, Allen-Cahn equations

$$\frac{dG}{dt} \le 0$$

Codes for the PFM

- Most groups in the field have their own in-house code
- Many open source codes available for solving PDEs
 - femLego
 (https://www.mech.kth.se/~minh/femLegoPar/introduction.htm)
 - FiPy (<u>http://www.ctcms.nist.gov/fipy/</u>)
 - Moose (<u>http://mooseframework.org/</u>)
 - OpenPhase (<u>http://www.openphase.de/</u>)
 - ...
- One commercial code: MICRESS (http://web.micress.de/)

The home assignment

- Implement WBM and MPF for a binary, two-phase system using e.g. Matlab
- Perform numerical experiments
- Discussion of the home assignment Friday May 12, 9-10 (Efim Borukhovich)