Class 12 chapter 1: Solutions		
Lecture 07		
ψ		
Osmotic Bressure (OP):-		
Osmosis		
Dillusim:		
Diffusion:		
movement of a substance from it's higher Concentration to its lower Concentration		
Solution Solution 2		
South 2		
1 10 7 1		
Solvent		
membrane.		
C// Cv.		
Solule (excess): C => movement C_1->C_2		
Solvent(excess): C2 => movement C2->C1		
movement will		
Continue untill		
Concentration is.		
same		
Osmosis		
Solution 1 Solution 2		
$\frac{C_1}{C_2} \frac{C_2}{C_1} \frac{C_2}{C_2}$		
Solvent		
MANSemi Permeable Membrane (SPM)		
Do not allow solute particles to part through		
(Do not allow solute particles to pass through only solvent particles can pars)		

Osmotic Pressure (OP) ->11
The movement of solvent molecules from Solvent to Solvent side By applying extrem Pressure
=> The extra pressur applied over solution side to present osmosis is called Osmotic pressur (II)
TIXM (Moladity of Solution) TXT (T-) Temp in Kelvin)
[TI = MRT] R is solution Constant Whose
value is equal to Gras Constant = 0.082 John (malk
(M = no of moles of solution (in 1)
Types of Solutions
1) I sotonic: II, = II, solutions having same of - (if Temp is some, Misalso some) -
2) Hypotonic: Hypo-less Osmoptic Pressure
(3) Hypertonic: Hyper -> More Osmotic Pressure.
Shrink -> loss of fluid (Hypo) Suell-> gain of fluid (Hypo) (Hypen)

O3) A 5% Solution of cone sugar Moss of cone sugar Solution:	291 is isotonic
03) A 37. Solution of Wholeson	of onea. Calalax
Lia Wilsonlag Mans C	I wiea if the
MI Alas Al con l suc	12 is 342.
Molas Mars of Contract	
$\mathcal{I}_1 = \mathcal{I}_2$	
NOTE NOT	L
$M_1 R T = M_2 R T$	
	un Al moles Al Was
no of moles of Co	ne sugar - no of moles of una
vol of sollin	() VO(G) X000110-10-19
U	12/10
	M.C.
\Rightarrow 5 =	0.87 Xx91
$\Rightarrow \frac{3}{342 \times 0.1} =$	$x \times 9$
DIII	
⇒ 2C= 0.87 x	342
5	
=> 22 60 g/mol-	
J /C.Co.	