$12n_{0574} \ (K12n_{0574})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^6 + u^5 - 2u^4 + u^3 + 3u^2 + b - 3u - 1, \ u^6 + u^5 - 2u^4 + 3u^2 + 2a - u - 2, \\ u^7 + 3u^6 - 4u^4 + 3u^3 + 3u^2 - 6u - 2 \rangle \\ I_2^u &= \langle b - u + 1, \ 3a - 2u + 3, \ u^2 - 3 \rangle \\ I_3^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle b + 2, \ a + 1, \ u - 1 \rangle \\ I_5^u &= \langle b + 1, \ a, \ u - 1 \rangle \\ I_6^u &= \langle b + 1, \ a + 1, \ u - 1 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v + 1 \rangle \end{split}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 14 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^6 + u^5 - 2u^4 + u^3 + 3u^2 + b - 3u - 1, \ u^6 + u^5 - 2u^4 + 3u^2 + 2a - u - 2, \ u^7 + 3u^6 - 4u^4 + 3u^3 + 3u^2 - 6u - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{6} - \frac{1}{2}u^{5} + \dots + \frac{1}{2}u + 1 \\ -u^{6} - u^{5} + 2u^{4} - u^{3} - 3u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{2}u^{6} + \frac{5}{2}u^{5} + \dots - \frac{9}{2}u - 1 \\ u^{6} + 2u^{5} - 2u^{4} - 2u^{3} + 3u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{6} - \frac{1}{2}u^{5} + \dots - \frac{1}{2}u^{2} + \frac{3}{2}u \\ -u^{6} - u^{5} + 3u^{4} - 4u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{6} + \frac{1}{2}u^{5} + \dots + \frac{3}{2}u^{2} - \frac{5}{2}u \\ u^{6} + 2u^{5} - 2u^{4} - 2u^{3} + 3u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ -u^{6} + 4u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^3 + 4u 20$

Crossings	u-Polynomials at each crossing	
c_1	$u^7 - 5u^6 + 17u^5 - 37u^4 + 59u^3 + 73u^2 + 19u + 1$	
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$u^7 - u^6 + 3u^5 - 3u^4 + 7u^3 + 5u^2 - 3u - 1$	
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^7 + 3u^6 - 4u^4 + 3u^3 + 3u^2 - 6u - 2$	

Crossings	Riley Polynomials at each crossing	
c_1	$y^7 + 9y^6 + 37y^5 + 1405y^4 + 9539y^3 - 3013y^2 + 215y - 1$	
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$y^7 + 5y^6 + 17y^5 + 37y^4 + 59y^3 - 73y^2 + 19y - 1$	
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$y^7 - 9y^6 + 30y^5 - 46y^4 + 45y^3 - 61y^2 + 48y - 4$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.08587		
a = -0.409925	-4.90710	-18.2170
b = -0.928471		
u = 0.650401 + 0.883152I		
a = 0.010004 - 0.769994I	4.08163 - 2.95233I	-14.9050 + 2.6687I
b = 1.56753 - 0.20564I		
u = 0.650401 - 0.883152I		
a = 0.010004 + 0.769994I	4.08163 + 2.95233I	-14.9050 - 2.6687I
b = 1.56753 + 0.20564I		
u = -1.66573 + 0.28903I		
a = 0.95395 + 1.19109I	-3.67990 + 7.39754I	-18.2542 - 3.6074I
b = 1.78081 + 0.57849I		
u = -1.66573 - 0.28903I		
a = 0.95395 - 1.19109I	-3.67990 - 7.39754I	-18.2542 + 3.6074I
b = 1.78081 - 0.57849I		
u = -0.306290		
a = 0.715870	-0.466669	-21.1680
b = -0.152106		
u = -1.74892		
a = -1.23386	-15.1689	-16.2970
b = -1.61611		

II.
$$I_2^u = \langle b - u + 1, 3a - 2u + 3, u^2 - 3 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{2}{3}u - 1 \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ \frac{2}{3}u - 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{3}u - 1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{3}u + 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{1}{3}u + 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -\frac{1}{3}u\\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7	$(u-1)^2$		
c_3, c_4, c_5 c_8, c_9, c_{10}	u^2-3		
c_6, c_{11}, c_{12}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^2$		
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y-3)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73205		
a = 0.154701	-16.4493	-24.0000
b = 0.732051		
u = -1.73205		
a = -2.15470	-16.4493	-24.0000
b = -2.73205		

III.
$$I_3^u=\langle b,\; a+1,\; u+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_0 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing		
c_1, c_6, c_8 c_9, c_{10}, c_{11} c_{12}	u-1		
$c_2, c_3, c_4 \ c_5, c_7$	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-6.57974	-24.0000
b = 0		

IV.
$$I_4^u = \langle b+2, a+1, u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_4 c_5, c_6, c_{11} c_{12}	u-1		
c_2, c_7, c_8 c_9, c_{10}	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-6.57974	-24.0000
b = -2.00000		

V.
$$I_5^u = \langle b+1, a, u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	u
c_3, c_4, c_5 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	y
c_3, c_4, c_5 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-4.93480	-18.0000
b = -1.00000		

VI.
$$I_6^u = \langle b+1, a+1, u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing
c_1	u+1
c_2, c_3, c_4 c_5, c_6, c_8 c_9, c_{10}	u-1
c_7, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10}	y-1
c_7, c_{11}, c_{12}	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-4.93480	-18.0000
b = -1.00000		

VII.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	u-1
c_3, c_4, c_5 c_8, c_9, c_{10}	u
c_6, c_{11}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{5}(u+1)(u^{7}-5u^{6}+\cdots+19u+1)$
c_2, c_7	$u(u-1)^{4}(u+1)^{2}(u^{7}-u^{6}+3u^{5}-3u^{4}+7u^{3}+5u^{2}-3u-1)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u(u-1)^{3}(u+1)(u^{2}-3)(u^{7}+3u^{6}-4u^{4}+3u^{3}+3u^{2}-6u-2)$
c_6, c_{11}, c_{12}	$u(u-1)^3(u+1)^3(u^7-u^6+3u^5-3u^4+7u^3+5u^2-3u-1)$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y-1)^{6}(y^{7}+9y^{6}+\cdots+215y-1)$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$y(y-1)^{6}(y^{7} + 5y^{6} + 17y^{5} + 37y^{4} + 59y^{3} - 73y^{2} + 19y - 1)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y(y-3)^2(y-1)^4(y^7-9y^6+\cdots+48y-4)$