

## First Project Cryptography 2024-1

In this programming project, you and your team will embark on an endeavor to evaluate the efficiency of various algorithms. Instead of coding these algorithms from scratch, you'll leverage pre-existing implementations within the programming language of your choice, selecting suitable libraries that offer these implementations. Your primary task is to construct a set of test vectors aligned with the input requirements of each algorithm, enabling you to gauge the execution time of each one.

| Algorithm | Size                        |
|-----------|-----------------------------|
| Chacha20  | Key Size 256 bits           |
| AES-EBC   | Key Size 256 bits           |
| AES-GCM   | Key size 256 bits           |
| SHA-2     | Hash size 512 bits          |
| SHA-3     | Hash size 512 bits          |
| Scrypt    | Output size 32 bits         |
| RSA-OAEP  | 2048 bits                   |
| RSA-PSS   | 2048 bits                   |
| ECDSA     | ECDSA, 521 Bits (P-521)     |
| EdDSA     | ECDSA, 32 Bits (Curve25519) |

Each algorithm serves a specific purpose, and it is imperative to compare algorithms with shared objectives. For instance, when assessing hashing algorithms, your focus should be on contrasting the efficiency of SHA-2 and SHA-3 using identical input test vectors.

Following this approach, your project will involve creating a comprehensive comparison table or graph that highlights the relative efficiency of these algorithms across five distinct operations:

| Encryption |
|------------|
| Decryption |
| Hashing    |
| Signing    |
| Verifying  |

Upon running your program, you must present the results for each operation in a visually engaging manner, such as a table or graph that accurately represents the execution behavior. This is an important element of the evaluation of this project.

Finally, your project should culminate in a detailed report that addresses the following key points:

|       | Justify your choice of programming language and library. Explain the rationale behind your selection.                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
|       | Elaborate on the inputs required by each algorithm in your chosen library.                                                          |
|       | Describe the process of generating your test vectors and clarify the number of vectors employed for each algorithm.                 |
|       | Provide reasoning for the quantity of test vectors you selected.                                                                    |
|       | Explain the methodology used to calculate the average execution time and interpret what this time signifies for each algorithm.     |
|       | For each classification, identify the algorithm that exhibits the best performance, and substantiate why it outperforms the others. |
| Checl | the specific instructions for the report on the corresponding space on Canvas.                                                      |
| Refer | ences                                                                                                                               |
|       | NIST Official Site for testing Vectors <a href="http://csrc.nist.gov/groups/STM/cavp/">http://csrc.nist.gov/groups/STM/cavp/</a>    |
|       | IETF Data Tracker <a href="https://datatracker.ietf.org/">https://datatracker.ietf.org/</a>                                         |
|       |                                                                                                                                     |

□ Practical Cryptography for Developers, Svetlin Nakov, Software University, 2018,

ISBN: 978-619-00-0870-5m https://cryptobook.nakov.com/