IA et science des données

Cours 10 - mardi 5 avril 2022

Christophe Marsala Vincent Guigue

Sorbonne Université

LU3IN026 - 2021-2022

Programme du jour

Le projet

Apprentissage non-supervisé

Plan du cours

Le projet

Le projet

Apprentissage non-supervisé

1 – Le projet -

Évaluation d'un classifieur : bonnes pratiques

- ► Train vs Test
- Validation croisée

1 – Le projet –

Exemples d'études (non exhaustif...)

- ► Choisir une classe à prédire
 - est-ce qu'une application est populaire?
 - prédire le prix
 - ...
- ► Trouver des clusters
 - qu'est-ce qui rend populaire une application?
 - caractéristiques des applis beaucoup téléchargées
 - •
- ► Algorithmes de base
 - supervisé : kppv, perceptron (Rosenblatt, biais), arbres de décision (numériques
 - données catégorielles et numériques
 - classe binaire et multi-classes
 - ullet non-supervisé : $K ext{-moyennes}$ (notebook séance 10)

Marsala & Guigue – 2022

LU3IN026 - cours 10 - 4

Plan du cours

Le projet

Apprentissage non-supervisé

évaluation du résultat en pratique conclusion

2 – Apprentissage non-supervisé -

Clusters différents au final

Le choix initial des centres est important! (ici avec K=2)

· ·

Marsala & Guigue - 2022

LU3IN026 - cours 10 - 7

2 – Apprentissage non-supervisé – évaluation du résultat

Évaluation du résultat d'un clustering

- ► Évaluer la partition obtenue : mesurer sa qualité
 - différentes approches
 - utilisation des caractéristiques des clusters
- ► Compacité d'un cluster
 - évaluer combien les exemples sont proches les uns des autres
 - compacité intra-cluster
- Séparabilité des clusters
 - évalue combien les clusters sont éloignés les uns des autres
 - distance inter-clusters
- ► Mesure globale : index d'une partition
 - index de Dunn
 - index de Xie-Beni
 - ...

Algorithme K moyennes (2)

- Prérequis
 - X : un ensemble de données (base d'apprentissage)
 - un entier naturel K > 0 (le nombre de clusters à trouver)
 - une mesure de distance d entre deux exemples x et y : d(x,y)
- Algorithme :
 - $\overline{1}$. choisir aléatoirement K exemples dans X comme premiers centres de clusters $c_1,\,c_2,...,\,c_K$
 - chaque centre c_k définit un cluster C_k
 - 2. affecter chaque x de X au cluster dont il est le plus proche
 - calculer $d(x, c_1), ..., d(x, c_K)$
 - affecter x au cluster C_k pour lequel $d(x, c_k)$ est la plus petite
 - 3. mettre à jour les centres des clusters
 - c_k est la moyenne des descriptions du cluster C_k
 - 4. retourner à l'étape 2 jusqu'à ce que l'inertie globale ne change plus beaucoup
- Résultat
 - un ensemble de clusters $C_1,..., C_K$

Marsala & Guigue - 2022

LU3IN026 - cours 10 - 8

LU3IN026 - cours 10 - 10

2 – Apprentissage non-supervisé – en pratique

Les K-moyennes en pratique

- ► Algorithme très simple à mettre en œuvre
 - algo ancien : James McQueen 1967
 - mais encore très utilisé!
 - nombreuses variantes...
- Quelques problèmes
 - ullet quelle valeur pour K?
 - convergence : la stabilisation peut être très longue à venir
 - sensible au choix initial des centres
 - quelle mesure de distance?

Marsala & Guigue – 2022

LU3IN026 - cours 10 - 9

2 – Apprentissage non-supervisé – conclusion

K-moyenne : ce que l'on a vu

- ightharpoonup Objectif: trouver une partition en K groupes (ou clusters)
 - bonne partition : minimise l'inertie globale intra-cluster
 - mesure de l'inertie d'un cluster : densité autour de son centre
- ► Algorithme : itérations successives jusqu'à convergence
 - affectation des exemples aux clusters
 - mise à jour des centres
 - arrêt si convergence ou itérations max

Marsala & Guigue – 2022