Lecture21: NMOS inverter (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Gain & input impedance (1/2)

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_{v} = +g_{m}R_{D}$$

Input impedance

$$R_{in} = \frac{1}{g_m}$$

It's small!

Gain & input impedance (2/2)

- Consider the output resistance, r_o .
 - Voltage gain

$$A_v = +\left(g_m + \frac{1}{r_O}\right)(R_D||r_O)$$

Input impedance

$$R_{in} = \frac{r_O + R_D}{g_m r_O + 1}$$

Output impedance

• Without a finite source resistance, $R_{out} = r_0 ||R_D||$

Generic form of CS and CG stages

Setting for calculating R_{out}

Source follower

- Also called the "common-drain" stage
 - The drain is ac grounded.
- Wait a minute!
 - Is it a real amplifier?

Its core

• Gain is less than 1?? (Neglecting r_0)

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

Razavi, example 17.36

 In integrated circuits, the follower is typically realized as shown below. Determine the voltage gain if the current source is ideal. Neglect the channel-length modulation.

Razavi, example 17.37

 A source follower is realized as shown below. Calculate the voltage gain of the circuit.

Razavi, example 17.39

- Design the source follower.
 - Determine W/L and R_S .
 - The DC drain current is 1 mA.
 - The voltage gain is 0.8.

Why digital?

- You know the answer.
 - And you know what it actually is. (Binary)
- Today, we will consider the following questions:
 - How can we treat the arithmetic operations (Addition, subtraction, multiplication, ...)
 - What is the elemental operation?
 - Then, what are the essential circuits to build such a system?
 - (It will be a short review on <u>Digital Design</u>.)
- Inverter and NAND gates

Addition

- Once you can add two numbers, x and y, you can do
 - Addition, x + y (of course)
 - Subtraction, x y = x + (-y)
 - A simple example) 4-digit binary numbers, a = 0110 and b = 0011.
 - The 1's complement of *b* is 1100.
 - The 2's complement of *b* is 1101.
 - Sum of 0110 and 1101 is 10011.
 - Discarding the end carry gives us the correct answer, 0011.
 - Multiplication, $x \times y$

Even in addition,

- You can recognize that
 - Addition of two 1-bit binary numbers is the core operation!
 - There are only four possible cases!

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$ Carry

Inclusion of carry-bit

We introduce a separate bit for representing the carry.

Treat them separately!

Relation btw x, y, and sum

- Concentrate on the sum-bit.
 - A table can be made.
 - It is called a truth table.

x	y	sum
0	0	0
0	1	1
1	0	1
1	1	0

Yes, it is the exclusive OR, x XOR y.

Relation btw x, y, and carry

- Concentrate on the carry-bit.
 - A table can be made, again.

x	y	carry
0	0	0
0	1	0
1	0	0
1	1	1

Yes, it is the AND operation, x AND y

After all,

- As much as we have AND, OR, and NOT gates, we can implement any Boolean function.
 - For example, x XOR y = (x AND (NOT y)) OR ((NOT x) AND y)
 - With <u>NAND</u>, <u>NOR</u>, <u>and NOT gates</u>, we can, too.

Inverter and NAND

NOR can be implemented similarly.

x	NOT
0	1
1	0

x	y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

In circuit,

- How can we represent 0 and 1?
 - V_{DD} is assigned to the logical value, 1.
 - GND is assigned to the logical value, 0.

NMOS inverter

- How can we have an output, 0?
 - Only when the input is high. <u>You have seen it before!</u>

Vin	Vout
0	1
1	0

Voltage transfer

- When $V_{in} < V_{TH}$, trivially, $V_{out} = V_{DD}$.
- When V_{in} is slightly larger than V_{TH} , the NMOSFET is in the saturation region.

$$V_{out} = V_{DD} - I_D R_D$$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

• When V_{in} is further increased, the NMOSFET is in the triode region.

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D [2(V_{in} - V_{TH})V_{out} - V_{out}^2]$$

Draw it! (1/2)

Parameters in Example 17. 14 (Razavi) w/o modification.

$$\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$$
, $V_{TH} = 0.5 \ \text{V}$, $\frac{W}{L} = \frac{10}{0.18}$, $R_D = 1k\Omega$ and $V_{DD} = 1.8 \ \text{V}$

GIST Lecture on June 1, 2020 (Internal use only)

Draw it! (2/2)

With a wider NMOSFET

$$\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$$
, $V_{TH} = 0.5 \ \text{V}$, $\frac{W}{L} = \frac{50}{0.18}$, $R_D = 1k\Omega$ and $V_{DD} = 1.8 \ \text{V}$

 V_{in}

GIST Lecture on June 1, 2020 (Internal use only)