This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

(1) Numéro d publication : 0 506 528 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 92400753.7

(51) Int. Cl.5: G02F 1/136, H01L 27/12

(22) Date de dépôt : 20.03.92

(30) Priorité: 26.03.91 FR 9103625

(43) Date de publication de la demande : 30.09.92 Bulletin 92/40

84 Etats contractants désignés : DE GB IT

71 Demandeur : THOMSON-CSF 51, Esplanade du Général de Gaulle F-92800 Puteaux (FR) (2) Inventeur: Lehureau, Jean-Claude THOMSON-CSF, SCPI, Cédex 67 F-92045 Paris la Défense (FR)

(4) Mandataire: Guérin, Michel et al THOMSON-CSF SCPI F-92045 PARIS LA DEFENSE CEDEX 67 (FR)

(A) Structure de commande matricielle pour écran de visualisation.

(57) L'invention concerne un afficheur matriciel à matériau électrooptique dans lequel le matériau est inséré entre deux substrats comportant chacun un réseau d'électrodes. L'un de ces réseaux comprend des zones semiconductrices dopées transparentes (π₃) servant d'électrodes de pixel, entourées de zones (C) peu ou pas dopées constituant le canal d'un transistor de commande (π₃) dont l'électrode (π₃) forme la source ou le drain.

10

20

25

30

35

45

50

La prés nt invention se rapporte à d s écrans d visualisation comprenant un couch de matériau él ctrooptique, par exemple une couch d cristal liquide,

Comm, il st connu, c s écrans comportent généralement un grand nombre d'éléments d'image de forme carrée ou rectangulaire. La définition de l'écran est fonction du nombre de points susceptibles de recevoir une information. La commande de chaque point se fait par application d'un champ électrique. Pour la visualisation d'informations vidéo, il a été proposé des affichages de type matriciel. Chaque élément d'image est alors défini par l'intersection de deux réseaux de conducteurs orthogonaux appelés lignes et colonnes. On parvient alors à réduire le nombre de connexions de M éléments, d'une valeur M à deux fois la racine carrée de M. Par contre le matriçage pose de sérieux problèmes au niveau de la commande de l'écran et du matériau électrooptique chargé de convertir le signal électrique en signal visuel. En effet, dans ce type d'adressage on ne peut adresser simultanément que les points d'une même ligne i, en appliquant sur cette ligne une tension excitative Vi et sur les colonnes, des tensions Vj qui dépendent de l'état que doivent prendre les points (i,j). Chaque ligne de l'écran est excitée séquentiellement pendant un temps t = T/N où T est le temps d'adressage de l'écran et N le nombre de lignes. Si le matériau électrooptique ne possède pas de mémoire propre, il faut maintenir l'information en revenant périodiquement exciter les points allumés. La valeur maximale de cette période T de rafraîchissement est .fixée, physiologiquement à 40 ms environ. Donc le ... temps t consacré à l'excitation d'un point est t = 40/N ms et devient très court lorsque N augmente.

Une des solutions envisagées pour pallier ce problème est d'utiliser des écrans à commande active pour lesquels le matériau électrooptique est placé en série avec un commutateur électronique (diodes, transistors). La mémoire d'image peut ainsi être constituée de deux réseaux de conducteurs lignes et colonnes à la croisée desquels se trouvent par exemple un transistor de commutation relié au condensateur formé par le matériau électrooptique et ses électrodes de commande (figure 1). Dans ce cas; la grille du transistor est reliée à l'électrode ligne, la source à l'électrode colonne sur laquelle transite le signal vidéofréquence. Lorsqu'une ligne i est excitée, une tension est appliquée de façon à rendre conducteurs tous les transistors de la ligne. Les capacités de cellules électrooptiques se chargent aux tensions vidéo appliquées sur les colonnes. Quand la ligne i cesse d'être excité , l s transist rs sont bloqués, t les informations maint nues dans les condensateurs de la ligne précéd mment adressé .

L'amélioration des performances d'un écran à TFT (thin film transistors) par rapport à un écran à adressage dir ct se fait néanmoins au prix d'un

complexité technologique accrue due au n mbre d dépôts sous vid t au nombre de pas d masquage nécessaires à la réalisation des transistors de l'écran, en plus d défauts tels qu d s lign s coupées, des court-circuits lignes colonnes ou des points défectueux. Les court-circuits entre lignes et colonnes viennent notamment de ce que les lignes et les colonnes sont formées sur une même plaque de verre.

Pour pallier ces problèmes technologiques, la présente invention propose une nouvelle structure d'afficheur matriciel à matériau électrooptique alliant les avantages de report des colonnes sur la paroi opposée à celle des lignes, de l'emploi de transistors et de leur réalisation en un seul niveau de masquage, les procédés connus de réalisation de commandes à transistors utilisant au moins deux niveaux de masquage.

Il s'agit d'un afficheur matriciel à matériau électrooptique comportant un réseau matriciel de zones élémentaires d'image constituées par un matériau électrooptique placé entre deux électrodes. L'une de ces deux électrodes est constituée par une zone semiconductrice dopée transparente entourée complètement par une zone semiconductrice peu ou pas dopée constituant le canal d'un transistor de commande dont l'électrode forme la source ou le drain. L'afficheur comprend en outre des moyens d'adressage des électrodes qui permettent d'appliquer sélectivement en chaque zone un champ électrique adapté à l'image désirée.

Dans un afficheur selon l'invention, l'adressage des lignes et l'adressage des colonnes se font de part et d'autre du-matériau-électrooptique. Les informations sont introduites de préférence dans des colonnes d'électrodes transparentes déposées sur un substrat en verre. Pour transmettre ces informations aux pixels d'une ligne donnée il est nécessaire de commander les électrodes semiconductrices dopées définissant les électrodes de lignes. Pour cela les zones peu ou pas dopées peuvent être recouvertes d'une grille métallique qui lorsqu'elle est mise sous tension permet de rendre le canal du transistor conducteur et par la même assure la conduction entre la source et le drain donc entre deux électrodes de pixel. La structure de grille associée aux zones peu ou pas dopées peut être représentée par une échelle dont les montants matérialisent une ligne d'adressage et dont les barreaux permettent de séparer les pixels adjacents d'une même ligne. Les pixels d'une autre ligne sont définis par une autre échelle non reliée électriquement à la première.

Lorsque l'échelle est mise sous tension les électrodes de la lign ass cié s aux électrod s de colonn s p mett nt de charg r l s pix ls d la lign considérée. Lorsque la ligne n'est plus adressée, les charges r stent bloquées sur l s électrodes semiconductrices de pix l t l s informations r stent ainsi inscrites jusqu'à un nouv l adressag d la ligne donc

55

5

10

15

20

25

30

35

40

45

50

jusqu'à l'introduction de nouvelles informations. Toutefois, la mémoire des pixels est lié à des courants d fuite devant être néglig abl s au niv au du canal du transistor.

D'autres variantes d'afficheur selon l'invention peuvent être représentées par des structures de grilles (associées aux zones peu ou pas dopées) en quinconce ou nid d'abeille, la linéarité et l'orthogonalité des pixels n'étant pas nécessaire.

En principe, les zones peu ou pas dopées formant le canal des transistors d'accès sont déposées sur un substrat de verre et recouvertes d'une couche d'isolant de grille elle-même recouverte d'une grille conductrice (structure MOS directe). Mais les transistors peuvent également être des transistors en couche mince de type à structure étagée inverse. Dans cette structure la grille est déposée sur un substrat et enterrée en dessous des couches isolantes de grille, et semiconductrice.

Le semiconducteur employé pouvant être localement dopé est de préférence du silicium amorphe dopé par une présensibilisation du substrat au phosphore ou par implantation classique. Il peut également s'agir de silicium polycristallin ou bien encore de semiconducteurs organiques tels que le tétrathiofulvalene (TTF) ou le tétracyanoquinodiméthane (TCNQ). Il doit permettre de réaliser des électrodes de pixel transparentes pour permettre à la lumière de traverser l'afficheur.

La présente invention a encore pour objet le procédé de fabrication d'un afficheur selon l'invention, comprenant la formation de deux réseaux d'électrodes d'application de champ électrique sur des substrats séparés et la mise en place d'un matériau électrooptique entre les deux substrats, la formation d'un des réseaux comprenant la réalisation de transistors d'accès individuel pour commander chaque pixel.

Ce procédé comprend notamment les étapes suivantes :

- Dans un ordre quelconque : d'une part, former une couche semiconductrice peu ou pas dopée qui constituera localement le canal de transistors, et d'autre part déposer et graver les grilles de commande de ces transistors, la grille étant constituée en forme d'échelle avec des montants en ligne et des barreaux transversaux reliant les montants, l'espace entre deux barreaux consécutifs définissant un pixel séparé d'un pixel voisin par un des deux barreaux.
- doper les parties de couche semiconductrice non dopées, en utilisant comme masque les grilles de commande de conduction.

La présente invention sera mieux compris et d'autres avantages apparaîtront à la la cture de la description qui va suivre et des figures ann xées parmi la squelles :

- la figure 1 r présent un afficheur matriciel à

- cristal liquide selon l'art connu, utilisant des transistors :
- la figure 2 représ nte l substrat (l₂) supportant les colonn s d'él ctrodes d'un afficheur selon l'invention ;
- la figure 3 représente le substrat (I₃) ainsi que ces électrodes semiconductrices associées à des transistors dans une variante d'afficheur selon l'invention;
- la figure 4 illustre un exemple d'afficheur selon l'invention dans lequel le substrat (l₃) et ses électrodes sont celles représentées à la figure 3.

Dans un afficheur selon l'invention, le matériau électrooptique est inséré entre un substrat (l2) comportant les colonnes d'électrodes (II2) (figure 2) et un substrat (I₃) comportant les électrodes (II₃) semiconductrices et les transistors de commandes (T₃). Ces transistors peuvent être à structure étagée directe, la grille étant déposée sur le semiconducteur où à structure étagée inverse, la grille étant enterrée sous le semiconducteur. La figure 3 illustre un exemple de réalisation de substrat (I₃) avec ses électrodes (II₃) utilisé dans un afficheur selon l'invention. Sur ce substrat, la grille est représentée par une échelle métallique, les espaces internes définis par les montants et les barreaux matérialisent les électrodes (II₃). Dans cet exemple de réalisation les transistors sont à structure étagée directe. La grille métallique (G) est déposée sur une échelle isolante de grille (A), elle-même déposée sur un matériau semiconducteur (S), préalablement déposé sur le substrat (l2). Les électrodes (II₃) définies par l'intérieur des barreaux d'échelle ont une conductivité s supérieure à la conductivité so deszones semiconductrices (C) qui sont en regard de l'échelle isolante (A). L'espace (E) entre échelles ayant également une conductivité s, on peut porter la couche de matériau semiconducteur à un potentiel déterminé V, lorsque la grille (G) est mise sous tension, les transistors deviennent passants et les électrodes (II₃) sont ainsi portées au potentiel V, les informations transmises par les colonnes d'électrodes sont alors affichées sur les pixels de la ligne adressée. L'afficheur ainsi réalisé avec un matériau électrooptique inséré entre les substrats (l2) et (l3) est représenté à la figure 4.

On peut aussi considérer le cas de fonctionnement où les potentiels des différentes colonnes sont alternés; le déplacement de charges se fait alors essentiellement horizontalement entre pixels voisins. Le rôle des zones (E) est de ramener l'ensemble au potentiel V en cas de dérive.

Il est également possible de remplacer les électrodes colonnes transparent s par des él ctrodes réflectrices afin d'utiliser l'écran dans ce mode.

Ce type d'afficheur utilise préfér nti llem nt un matériau cristal liquide pouvant être un nématique en hélice. Le semiconducteur employé peut être de nature varié il doit néanmoins rép ndr de préfér nce

55

15

20

25

35

45

50

aux critères suivants :

- prés nter une bonn transparenc à la lumiè-

avoir une conductivité s au moins égale à 1 microsiem ns et posséder une fuite de canal inférieure à quelques femtoampères par micron pour permettre le stockage des informations lorsqu'une ligne a cessé d'être adressée.

La présente invention a également pour objet le procédé de réalisation de cet afficheur, ce procédé utilise comme masque les grilles (G) de transistors pour définir les électrodes semiconductrices (I₃) permettant un autoalignement de la source et du drain d'un transistor.

Plus précisément, les grilles de commande servent de masque pour doper les parties de couche semiconductrice qui ne sont pas en regard des grilles. La nature et la réalisation du dopage sont adaptées à la structure directe ou inverse des transistors ainsi qu'à la nature du semiconducteur employé.

Dans le cas du silicium amorphe ou polycristallin, pour une structure directe de transistors les techniques classiques d'implantation de phosphore permettent de doper les régions adjacentes à la grille afin d'obtenir des régions dopées n⁺ qui forment les électrodes de pixel et l'espace entre deux lignes adjacentes.

Dans le procédé selon l'invention on dépose sur une plaque de verre une couche semiconductrice par exemple du silicium polycristallin peu dopé, le dopage étant choisi en fonction de la conductivité sous le canal.

___On forme une couche mince isolante, par exemple de l'oxyde de silicium, cette couche servant d'isolant de grille du transistor.

On dépose alors une couche métallique par photolithographie afin de définir les échelles constituant les grilles des transistors ainsi que les échelles d'isolant de grilles.

Le dopage peut alors être effectué par implantation classique de phosphore dans le cas où le matériau semiconducteur est du silicium, permettant de doper les régions constituant les électrodes de pixel et l'espace entre deux lignes adjacentes. La grille métallique sert de masque durant l'opération du dopage, les zones semiconductrices en regard des montants et des barreaux d'échelle restant par conséquent peu dopées.

Le réseau d'électrodes de pixel (II₃) ainsi défini sur le substrat (I₃) est superposé au réseau d'électrodes colonnes (II₂) réalisé sur le substrat (I₂). Le matériau électrooptique est inséré entre ces deux substrats et l'ensemble réalise un afficheur matriciel à matériau él ctrooptiqu.

Dans le cas d'une structur étagée inverse, un couche de phosphore peut être déposée préalablement sur une couche d silicium, la grill étant déposée sur le substrat (I₃) et enterrée sous la couche d

semiconducteur. La diffusion de phosphore dans le semiconducteur put être réalisée au travers du substrat (I₃) par un faisceau las r qui provoque un échauffem nt capabl d générer le dopag, c faisceau laser étant par contrefféchi par la grille métallique. Il est aussi possible de faire après dépôt et gravure des couches métallique et isolante le dépôt sélectif de phosphore sur le substrat et non sur l'isolant. Le procédé est suivi du dépôt silicium et de la diffusion thermique du phosphore. Le procédé d'autoalignement de la source et du drain soit encore de deux électrodes de pixel de ligne peut ainsi être obtenu que la structure des transistors soit directe ou inverse.

Revendications

- Afficheur matriciel à matériau électrooptique, comportant un réseau matriciel de zones élémentaires d'image, et dans chaque zone élémentaire un matériau électrooptique placé entre deux électrodes, l'image affichée en chaque zone étant fonction du champ électrique appliqué entre les deux électrodes situées dans cette zone, et des moyens d'adressage des électrodes étant prévus pour appliquer sélectivement en chaque zone un champ électrique désiré, caractérisé en ce que l'une des deux électrodes est constituée par une zone semiconductrice dopée transparente entourée complètement par une zone semiconductrice peu ou pas dopée constituant le canal d'un transistor de commande dont l'électrode forme la source ou le drain.-----
- 2. Afficheur selon la revendication 1, caractérisé en ce que le matériau électrooptique est inséré entre un substrat (I₂) sur lequel sont définies des colonnes d'électrodes transparentes (II₂) et un substrat (I₃) sur lequel sont définies des électrodes de lignes (II₃) semiconductrices et transparentes avec des transistors dont les grilles sont associées en regard des zones peu ou pas dopées.
 - Afficheur selon l'une des revendications 1 et 2, caractérisé en ce que l'ensemble des grilles d'une ligne est défini par une structure d'échelle dont les barreaux séparent deux électrodes de ligne, les montants définissant une ligne d'adressage.
 - Afficheur selon l'une des revendications 1 à 3, caractérisé en ce que le matériau électrooptique est un cristal liquide.
- Affich ur selon la r v ndication 4, caractérisé n ce que l cristal liquide est un nématique en hélice.

- Afficheur s lon l'une d s revendications 1 à 5, caractérisé en c qu l s miconducteur est du silicium amorphe ou polycristallin.
- 7. Afficheur selon l'une des revendications 1 à 6, caractérisé en ce que les transistors sont à structure étagée directe la grille étant déposée sur un isolant de grille lui-même déposé sur les zones peu ou pas dopées.

8. Afficheur selon l'une des revendications 1 à 6, caractérisé en ce que les transistors sont à structure étagée inverse, la grille étant déposée sur le substrat (I₃) et enterrée sous l'isolant de grille et le semiconducteur.

 Afficheur selon la revendication 8, caractérisé en ce que le semiconducteur est du silicium dopé au phosphore sous l'action d'un laser opérant au travers du substrat (I₃).

10. Afficheur selon la revendication 8, caractérisé en ce que le dépôt sélectif de phosphore sur le substrat est effectué après le dépôt et la gravure des couches métallique et isolante, le silicium étant ensuite déposé sur l'ensemble, et localement dopé par diffusion thermique du phosphore.

11. Procédé de fabrication d'un afficheur matriciel, comprenant la formation de deux réseaux d'électrodes d'application de champ électrique sur des substrats séparés et la mise en place d'un matériau électrooptique entre les substrats (I₂) et (I₃), la formation d'un réseau d'électrodes (II₃) sur (I₃) comprenant la réalisation de transistors d'accès individuel pour commander chaque pixel, comprenant les étapes suivantes :

- dans un ordre quelconque : d'une part, former une couche semiconductrice peu ou pas dopée qui constituera localement le canal de transistors, la grille étant constituée en forme d'échelle avec des montants en ligne et des barreaux transversaux reliant les montants, l'espace entre deux barreaux consécutifs définissant un pixel séparé d'un pixel voisin par un des deux barreaux.

 doper les parties de couche semiconductrice non dopées, en utilisant comme masque les grilles de commande de conduction. 10

15

20

25

30

35

45

50

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 92 40 0753

	DOCUMENTS CONSIDERES COMME PERTINENTS						_	
	Catégorie	Citation du document avec is des parties pert	ndication, en cas de bes inentes	soin,	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)		
	^	EP-A-0 348 209 (MATSUSH) * colonne 4, ligne 24 - figures 4,5A-D *	ITA) colonne 5, ligne	19;	1-11	G02F1/136 H01L27/12		
	^	US-A-4 537 471 (GRINBER * colonne 6, ligne 10 -	- G) ligne 41; figure	es 2,4 *	1,2			
•			•••					
					. [DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)		
						GO2F HO1L		
					and the second state of the second second	and the second s		
			•					
	Le présent rapport a été établi pour toutes les revendications Les de la recharche Date d'achteument de la recharche				<u> L.,</u>	Reminstrate	4	
£	î	LA HAYE	17 JUIN		WONG	SEL H,		
PO PO POR MIRES (PRICES)	X:ps Y:ps	CATEGORIE DES DOCUMENTS articulièrement pertinent à lui seul articulièrement pertinent en combinaiss arte document de la même catégorie	on avec un	T: théorie ou principe à la base de l'invention E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la demande L: cité pour d'autres raisons				
Ca	O:di P:do	A : arrière-plan technologique O : divulgation non-berite P : document intercalaire			& : membre de la même famille, document correspondant			