

EXERCISE Consider an iterated map $x_{n+1} = f(x_n)$, with states $\{1, 2, 3, 4, 5, 6, 7\}$. The function f(x) computes its values by the following algorithm:

- 1. Take the string of characters that expresses the number x in English (e.g., $5 \leadsto$ "five').
- 2. Count the number of letters in the string; this is the value returned by the function (e.g., "five" \rightsquigarrow 4).

Find the fixed points, cycles, transient and recurrent states of this dynamics. How many connected components are there?

EXERCISE Consider the same function f as in the previous exercise, but now the set of possible states is $\{0,1,2,3,4\}$. Does f represent the update rule of a dynamical system on this set of states?

EXERCISE Consider the iterated map $x_{n+1} = f(x_n)$, in the state space $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, with

$$f(x) = \begin{cases} 2x & \text{if } x < 5\\ x - 5 & \text{if } x \ge 5 \end{cases}$$

Find the fixed points, cycles, transient and recurrent states. How many connected components are there? Consider the function

$$Q(x) = 5x \mod 5$$

Is this a conserved quantity for the dynamics? Is it a non-trivial conserved quantity?

EXERCISE Consider the iterated map $x_{n+1} = f(x_n)$, with

$$f(x) = x^2 \mod 7,$$

where $x \in \{0, 1, 2, 3, 4, 5, 6\}$. How many connected components are there? Can you write down a non-trivial conserved charge?

FIXED POINTS: 2 [0] [1]

cycces: 3. (0][1][4,2]

RECURRENT: 4 (0)[1][+][2]

TRANSIENT: 3 [6][5][3]

CONNECTED COMPONENTS: 3 [0][1][5,4,3,2]

$$Q(x) = \begin{cases} 0 & \text{if } x=0 \\ 1 & \text{if } x \neq 0 \end{cases}$$

EXERCISE Consider the iterated map $x_{n+1} = f(x_n)$ in the (infinite) set $\mathbb{N} = \{0, 1, 2, \ldots\}$ with

$$f(x) = x + k$$

where the parameter $k \geq 2$ is an integer. Describe the dynamics (cycles, etc.) Can you construct a non-trivial conserved quantity?

HINT: If the exercise seems too difficult, try considering the special case k=2 first; then see if and how the picture changes when k > 2.

K=2

TRANSIENT: N

CONNECTED COMPONENTS: 2

TRANSIENT: IN CONNECTED COMPONENTS: 3

FIXED POINTS: \$

- Cycles: ϕ RECURRENT: ϕ

TRANSIENT: N

CONNECTED COMPONENTS: X

EXERCISE [difficult] Consider the iterated map $x_{n+1} = f(x_n)$ in the (infinite) set $\mathbb{N} = \{0, 1, 2, \ldots\}$ with

$$f(x) = kx,$$

where the parameter $k \geq 2$ is an integer. Describe the dynamics (cycles, etc.)

$$X_{N+1} = 5(X_N)$$
 $N = \{0, 1, 2, \dots, 5\}$

K = 2

FIXED POINTS: 1 [0]

Cycles: 1[0]

RECURRENT: 1 [0]

TRANSIENT: IN - { 0 }

CONNECTED COMPONENTS: IN/2 + 1 < >0

EXERCISE Consider the dynamical system $x_{n+1} = f(x_n)$, with

$$f(x) = \sin(\pi x)$$

The dynamics has 2 fixed points. Linearize around the smaller fixed point \bar{x} . Regarding the stability of \bar{x} , which one of the following 4 possibilities is realized?

- (a) \bar{x} is stable (not a spiral)
- (b) \bar{x} is a stable spiral
- (c) \bar{x} is unstable (not a spiral)
- (d) \bar{x} is an unstable spiral

FIND FIXED POINT: (EQUAL TO ITSECF)

$$\overline{X} = SW(\overline{\Pi}\overline{X})$$
; \bigcirc $SIW(\bigcirc)$

DO THE DEANATE

LINEARIZE $S(x) = SIW(\overline{\Pi}x)$ $\Rightarrow S'(x) = \pi cos(\pi x)$
 $S'(o) = \pi cos(o) = \pi$

NOT SPIRAL \Rightarrow UNSTAKE

$$f(x) = \frac{1}{\alpha x + 1}$$

with state $x \ge 0$ and parameter $\alpha > 0$. Show that the dynamical system $x_{n+1} = f(x_n)$ has a single fixed point, which is always a stable spiral.

1) FIND FIXED POINT: \$ = 5(\$)

$$\bar{x} = \frac{1}{\omega \bar{x} + 1} = 0$$
 $\Delta = 6^2 + Ac = 1 - 4(\omega)(H) = 1 - 4\omega$

$$x_{1,2} = \frac{-1!\sqrt{1-4\omega}}{2\omega}$$

= -1+ \1-+a

2) DERIVATE

$$5(x) = \frac{1}{\omega x + 1} = (\omega x + 1)^{-1} \qquad \frac{d}{dx} \qquad x^3 = 3x^2$$

$$S'(x) = -10 \left(\omega x + 1\right)^{-2} = \left(\frac{-\omega}{\omega x + 1}\right)^{2}$$

3) SUBSTITUTE X

$$5'(x) = \frac{-\omega}{(\omega)^{\frac{-1+\sqrt{1-4\omega}}{2\omega}}} + 1$$

$$2 = \frac{\omega}{(\sqrt{1-4\omega} + \frac{1}{2})^{2}} = \frac{\omega}{(\sqrt{1-4\omega} + \frac{1}{4} + \frac{2\sqrt{1-4\omega}}{2} \cdot \frac{1}{2})}$$

$$= \frac{\omega}{(\sqrt{1-4\omega} + \frac{1}{4} + \frac{2\sqrt{1-4\omega}}{2} \cdot \frac{1}{2})}$$

$$= \frac{4\omega}{(2-4\omega + 2\sqrt{1-4\omega})}$$

EXERCISE Consider the dynamical system obtained by iteration of the logistic map

$$f(x) = rx(1-x),$$

with state $x \in [0,1]$ and parameter $r \in [0,4]$. Obtain analytically the critical values $r_1 = 1$, $r_2 = 2$, $r_3 = 3$, that separate the following 3 regimes of the dynamical system $x_n = f(x_{n-1})$:

- $0 < r < r_1 x_n$ converges to 0
- $r_1 < r < r_2 x_n$ converges to (r-1)/r monotonically
- $r_2 < r < r_3 x_n$ converges to (r-1)/r with oscillations

General O 5'(0)=+ > x STABLE FOR + ++=1

