

spherically-chaped organ, cornea, iris, pupil,		
orystalline lens, retina (rods, cones)		
Artificial Iris:		
o autonomic response to light		
@ depth of field (DOF)		
Opin hole effect		
Transictors:		
$\mathcal{O}_{B} = \frac{l_{S}}{\beta} e^{\frac{V_{BE}}{V_{T}}}$ $l_{c} = \beta l_{B}$ $l_{E} = (\beta + 1) l_{B}$	2 _B depend	s on VBE
Transictors: $ \begin{array}{ccc} \boxed{D} \overline{l}_{B} = \frac{l_{S}}{\beta} e^{\frac{V_{BE}}{\sqrt{T}}} & l_{c} = \beta l_{B} & \overline{l}_{E} = (\beta + 1) \overline{l}_{B} \\ \overline{l}_{S} = \overline{l}_{SO} \left(1 + \frac{V_{CE}}{V_{A}} \right) & \beta = \beta_{O} \left(1 + \frac{V_{CE}}{V_{A}} \right) & \overline{l}_{c} = s ght h $ $ \boxed{\Theta} \text{ small signal model: } re = \frac{V_{T}}{I_{E}} $	j depends	on Vct
Θ small signal model: $Ye = \frac{V_T}{I_E}$	leasty et	fect)
1. crussent missors:		
D Lo = Tref R; × Inf [13]		
& MOSFET current mirror: Zo= lref [132]		
3 with base current compensation: $20 \approx \frac{lret}{\beta(H\beta)}$		
P Wilson mirror: $lo = \frac{lnet}{l+\frac{2}{\beta(l+\beta)}}$ $R_i \approx \frac{\beta}{2} r_0(Q_3)$	1247	
DWidlar mirror: $\times lo$ $R_{E} = \frac{V_{T}}{lo} ln \left(\frac{lref}{lo}\right)$ [131]	,12[]	
(f) Widlax mirror: X to RE to m	(v+ -V-) LAE	0C
2 operational transconductance amplifier: io=	-2Vf	
Interfacing photodiodes:		
transimpedance amplifier (TIA) [142]		
$\frac{V_0}{T_s} = \frac{-Z_F}{H AB} \triangleq Z_T$		
LED:		
O Buck converter [172]		

		B Bo	ost	(M)	verte	er [i	78]									
				T	volt		_	ler	[18]]						
6	Mi	cro di				J										
			' '	J	194]		2.1	DLP	[188	7		37	COS	, [2	09]	
			-		D OLE						S)		ico j			
0	Ro				& P.								/	7	_	
					resp				_							
					per											
					ght p					, Fv	(lm)					
		Ð	thy	den	sity kight:	: Ee	(W/	m')	. Ev	[lm/	$m^2=1$	×)		E= 0	LF; LA	
		Ø	Line exit	coming	kight) : /\ ight)) Ле (И	//m²)	, M	v (Im	$1/m^2$)	/	$\Lambda = \frac{d}{d}$	Fo CA		
		B	Conte	going h m sith	ight) Yi l	e (W	(sr)	, Zv	(Im)	lsr =	col)			•		
					s ce: 1		_									
	E				n					_		,				
o	CC				SN											
	Į.	chaoc	acter	istics	}.`											
		O Pi				Ød.	I YNCUN	ic 8	onge		B SP	eed	Œ	€ Phys	ical	size
		ard					7		7		,			7		
				fran		② }	nterl	ine	tsan	ster		37	tsam	e tra	ons fe	-
				V						l		- /			V	

o	Static characteristics:
	static transfer function & range
	accuracy & precision & resolution, systematic & random errors
	(non-) linearity & hysteresis
	Dynamic characteristics:
	bandwidth (zero, first, second order)
	Other characteristics:
	input le output impedance, poner supply, cross-influences,
	sensitivity distribution, reliability, efficiency
0	Primary sensors:
	temperature: bimetal [86] [87]
	prescure: U-tube, Bourdon-tube, diaphragm, capsule & bellows
	flow: orifice plate & diaphragm, nozzle. Ventroi-tube
	(Bernoullis' theorem: $P + pgh + \frac{PV^2}{2} = constant$)
o	Signal conditioners:
	1. amplitude: voltage & crossent
	2. frequency: demodulation (f > V + ADC)
	3. linearization:
	Onon-linear sensor using parallel resistor [112]
	Ecusient driven [117]
	3 small-signal [118]
	@ prush -prul) [120]
	your -purition

Pphotodiode circuits [125]
· Resistive:
1. Opotentionneters Ostrain gange Opush-pull
2. temperature sensors:
ORTD (compensation of wires)
Dethermistor: NTC, PTC
3. photo conductor (LDR)
4. minidity sensor
· Capacitive:
1. plate separation
2. pressure & strain
3. level of lignid
4. permittivity
J. plate area: liquid level, position, votation, tilt angle
6. in terfacing capacitive sensors
7. capacitive accelerometer
o Inductive:
1. rehictance & self-inductance: N, u.Z. (eddy current)
2. LVDT
o Other:
1. Hall sensor [237]

						•											
		2, 0	ptice	al t	iber	sen	SOY	: in	tonhe	3)(4	l ex	tins	C				
		3. +	ibes	Brai	19 G	ratin	g se	MSDY									
٥	Ac		tors:		•												
	MC	vuu	<i>WYS</i> :														
		e	lectr	osta	tric	acti	uato	rs:									
										a		1, /					
			inter	oligi t	ated	, con	$nb \alpha$	apac	tor	& 1	para	llel p	late	cap	acit	d y	
											8	•		8 6			