E0 298 | Linear Algebra and Its Applications Assignment 6

Deadline: 08-12-23 Full Marks: 25

- 1. Suppose $A \in \mathbb{R}^{n \times n}$ has no real eigenvalues. Prove that $\det A > 0$. (2)
- 2. Using the fundamental theorem of algebra but without using determinants, prove that any $A \in \mathbb{C}^{n \times n}$ has an eigenvalue. (3)
- 3. For matrices, we generally have $AB BA \neq 0$. However, show that there does not exist matrices $A, B \in \mathbb{C}^{n \times n}$ such that AB BA = I.
- 4. Let $A, B \in \mathbb{C}^{n \times n}$. Prove that (5)
 - (i) I AB invertible $\iff I BA$ invertible.
 - (ii) λ is an eigenvalue of $AB \iff \lambda$ is an eigenvalues of BA.
- 5. Let $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, $C \in \mathbb{C}^{m \times n}$, and $0 \in \mathbb{C}^{n \times m}$. Prove that

$$\det\left(\frac{A \mid C}{0 \mid B}\right) = \det(A) \, \det(B).$$

- 6. Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ be such that (3)
 - $\forall 1 \leqslant i \leqslant n : a_{ii} = 1$.
 - $\forall 1 \leqslant i \leqslant n : \sum_{j=1, j\neq i}^{n} |a_{ij}| \leqslant 1/2.$

Prove that *A* is invertible.

7. We say that $v \in \mathbb{C}^n \setminus \{0\}$ is a generalized eigenvector of $A \in \mathbb{C}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{C}$ if there exists $k \geqslant 1$ such that $(A - \lambda I)^k v = 0$. Prove that generalized eigenvectors corresponding to distinct eigenvalues are linearly independent. (5)
