PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 15 GENNAIO 2010

1) Nel circuito in figura, i transistori possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per $0 < V_i < V_{cc}$.

 V_{cc} = 5 V, β_F =100, R_1 = 1.5 k Ω , R_2 = 1.5 k Ω , R_3 = 100 Ω , R_4 = 5.5 k Ω .

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti β_n e β_p .

I segnali di ingresso $(V_i,\ V_{CK})$ hanno l'andamento mostrato in figura. Si determini il corrispondente andamento di V_u . Si determino inoltre i tempi di propagazione del segnale V_u relativi alle transizioni di discesa del segnale V_i (* evidenziate in figura).

 V_{dd} = 3.3 V, V_T = 0.4 V, β_n =1 mA/V2, β_p =800 μ A/V2, C=50 fF.

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 30m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 30m). Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h 30 m).

[•] Indicare su ciascun foglio nome, cognome, data e numero di matricola

[·] Non usare penne o matite rosse

[•] L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Compito del 15-01-2010 - Esercizio #1

Osservazioni preliminari:

- 1) T2 e D sono o contemporaneamente OFF o contemporaneamente ON;
- 2) T2 quando ON è in AD (collettore connesso a Vcc).

Regione 1: vi< v $_{\gamma}$: T1 OFF ; T2 e D OFF (sse vx-vu<2 v $_{\gamma}$, da verificare)

Con T2 off (per Hp, e da verificare)	Affinché T2 e D siano off deve essere				
ib2=(vcc-vx)/r2=0, ovvero vx=vcc	$vx-vu<2 v_{y}$, ma $vu-vx=0.09 V<1.5V$.				
Inoltre	Quindi l'hp fatta è verificata.				
vu=vcc*r4/(r3+r4)=4.91 V	-				
Si rimane in questa regione fintantoché T1 rimane off, sse vi< v _γ , sse vi<0.75 V					
Regione 1: per $0 < vi < v_{\gamma}$					

Regione 2: T1 ON in AD, T2 e D OFF.

ir3=(vcc-vu)/r3 ib1=(vi-v $_{\gamma}$)/r1 ir4=vu/r4 Ma ir3= β f*ib1+ir4	$=(vi-v_{\gamma})/r1$ $vu=9.821$ -6.548 vi = $vu/r4$ Si rimane in questa regione fintantoché T1 va sat o T2 e D vanno ON					
1) T1 va sat quando vce=vu=vcesat, sse vu=(9.821 -6.5476 vi)=vcesat sse vi=1.469 V		2) T2 e D rimangono off fintantoché vx-vu<2 v _γ , ma vx=vcc, quindi sse vcc-(9.821 -6.5476 vi)<2 v _γ , sse vi<0.965 V. Per valori di vi>0.965 V T2 e D vanno ON				
Delle due condizioni quella che si verifica prima è allora l'accensione di T2 e D.						
Regione 2: per $v_{\gamma} < vi < 0.965 \text{ V}$						

Regione 3: T1 AD. e T2 AD e D ON.

regione o. 11 11b, c 12 11b c b o	- 1.						
ir3=(vcc-vu)/r3	Ma ir $3+(\beta f+1)ib2=\beta f*ib1+ir4$						
$ib1=(vi-v_{\gamma})/r1$	Risolvendo si ricava che:						
ir4=vu/r4	vu=4.330 -0.860 vi						
$ib2=(vcc-(vu+2 v_{\gamma}))/r2$	Si rimane in questa regione fintantoché T1 va sat.						
T1 va sat quando vce=vu=vcesat, sse vu=(4.330 -0.860 vi)=vcesat sse vi=4.802 V							
Regione 3: per 0.965 V < vi < 4.802 V							

Regione 4: T1 sat, e T2 AD e D ON, per 4.802 V<vi < Vcc, vu=vcesat e vx=vcesat+2 v $_{\gamma}$ =1.7 V

Di seguito si riporta la caratteristica statica di trasferimento.

Esercizio 2

Con riferimento alla figura, è possibile identificare le diverse regioni di funzionamento seguenti:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V_{i}	V_L	V_L	V_{H}	V_{H}	V_L	V_L	V_L	V_{H}	V_{H}	V_{H}	V_L	V_L	V_L	V_L
V_{CK}	V_{L}	V_{H}	V_{H}	V_L	V_L	V_{H}	V_{L}	V_L	V_{H}	V_L	V_L	V_{H}	V_L	V_{H}
M_1	off	off	on	on	off	off	off	on	on	on	off	off	off	off
M_2	on	on	off	off	on	on	on	off	off	off	on	on	on	on
M_3	off	on	on	off	off	on	off	off	on	off	off	on	off	On
M_4	on	on	off	off	on	on	on	off	off	off	on	on	on	on
M_5	on	off	off	on	on	off	on	on	off	on	on	off	on	off
V_{v}	V_{H}	V_{H}	V_L	V_L	V_{H}	V_{H}	V_{H}	V_L	V_L	V_L	V_{H}	V_{H}	V_{H}	V_{H}
V_{u}	V_{H}	V_L	V_L	V_L	V_{H}	V_L	V_{H}	V* _L	V* _L	V* _L	V_{H}	V_L	V_{H}	V_L
			(AI)						(AI)					

- 1) V_uè alto, tramite il pull-up M₂-M₅ in serie.
- 2) V_v è alto (uscita invertitore M_1 - M_2), per cui pull-down M_3 - M_4 in serie attivo e V_u alto
- 3) V_v è basso (uscita invertitore M_1 - M_2), per cui V_u in alta impedenza (ancora alto)
- 4) V_y è basso (uscita invertitore M_1 - M_2), quindi V_u basso, tramite il pull-down M_5 - M_1 in serie (M_5 è un pMOS nella rete di pull-down, ma l'uscita è già bassa (0 V) e non c'è bisogno di scaricare il condensatore)
- 5) V_u è alto, tramite il pull-up M₂-M₅ in serie.
- 6) Come punto 2
- 7) Come punto 5
- 8) Come punto 4, ma in questo caso il condensatore è inizialmente carico: il transitorio si arresta quindi quando si azzera la corrente, cioè per $V_{DS1}=0$ (M_1 lin) e $V_{SG5}=V_T$ (M_5 sat). V_u assume il valore "debole" $V_L^*=V_T$
- 9) V_y è basso (uscita invertitore M_1 - M_2), per cui, come nel punto 3, V_u in alta impedenza (in questo caso 0 debole)
- 10) Come punto 8
- 11) Come punto 5
- 12) Come punto 6
- 13) Come punto 1
- 14)Come punto 6

Il primo transitorio richiesto è relativo alla transizione 4 \rightarrow 5: il condensatore, inizialmente scarico (V_u =0), si carica attraverso la serie dei due pMOS M_2 - M_5 in serie, equivalenti ad un pMOS con $\beta_{eq} = \frac{\beta_p}{2}$. Il calcolo del transitorio segue quindi il procedimento abituale. Inizialmente, per $0 < V_u < V_T$, il pMOS equivalente si trova in saturazione:

$$I_{D} = \frac{\beta_{eq}}{2} (V_{DD} - V_{T})^{2}$$

$$I_{C} = C \frac{dV_{u}}{dt}$$

$$I_{D} = I_{C}$$

$$\to t_{SAT} = 11.89 \text{ ps}$$

Successivamente, per $V_T < V_u < \frac{V_{DD}}{2}$, il pMOS equivalente si trova in regione lineare:

$$I_{D} = \beta_{eq} \left((V_{DD} - V_{T})(V_{DD} - V_{u}) - \frac{(V_{DD} - V_{u})^{2}}{2} \right)$$

$$I_{C} = C \frac{dV_{u}}{dt}$$

$$I_{D} = I_{C}$$

Da cui, integrando (scomposizione in fratte semplici), si ricava:

$$t_p - t_{SAT} = 39.76 \text{ ps}$$

E quindi il tempo complessivo di propagazione:

$$t_p = 51.65 \text{ ps}$$

Il secondo transitorio è invece relativo alla transizione $10\rightarrow11$, ed è analogo a quello appena considerato. Il condensatore, tuttavia, non è inizialmente completamente scarico ($V_u=V_T$) per i motivi sopra descritti. Il transitorio è quindi più breve, limitandosi alla sola parte lineare, e quindi, in questo caso:

$$t_n = 39.76 \text{ ps}$$