Tecnologia da Informação; 08/2024

BRIGHTSIGHT

Por:

Caio Visconti (R.A: 04242024),

Gustavo Vieira Felício Amorim (R.A: 04242041,

Julia Visconti (R.A: 04242033),

Mateus Diniz Leite (R.A: 04242048),

Zaqueu Chavier Durães Filho (R.A: 04242025).

Contexto:

No decorrer das décadas, as formas de energias vêm crescendo e se propagando cada vez mais ao redor do globo, partindo inicialmente de sistemas básicos de queima de carvão e outros produtos para sistemas extremamente complexos e diversos de obtenção de energia, sendo de forma sustentável ou não para o meio ambiente. Entretanto com a evolução e utilização desses meios de obtenção, houve um grande problema que foi se intensificando: a poluição e aumento da temperatura ao redor do globo, com isso acontecendo o mundo passou por diversas discussões e pautas sobre a necessidade de haver uma maior utilização de maneiras de obtenção de energia mais renováveis e que não prejudiquem tanto o meio ambiente.

Dentre as opções criadas e aprimoradas, há a energia que vem do Sol e é capaz de ser transformada em energia elétrica a partir de painéis solares que não causam degradação alguma no meio ambiente e geram uma quantidade alta de energia se posicionadas no ambiente correto. Sendo esse fator muito importante para a decisão da implantação de painéis solares que é um investimento que consegue se pagar apenas a longo prazo e, quanto menos tempo for para conseguir pagar o investimento, melhor para o cliente.

Assim como pode ser observado e analisado do mapa ao lado, que mostra a incidência solar em diferentes regiões do Brasil ao ano, sendo que segue uma ordem crescente de aumento de incidência solar partindo da cor verde, que é a menor incidência, para o vermelho, que é a região com maior incidência solar. Logo é importante que haja um estudo focado na localidade para verificar se vale a pena o investimento e se haverá um retorno bom do investimento, esse estudo focalizado, normalmente, não é medido especificamente em escala municipal ou até interestadual.

Podemos fazer uma comparação entre regiões que possuem uma alta e baixa incidência solar para mostrarmos o quanto que a localidade influencia muito no ganho de energia, segundo o site EcoPower a cidade de Santos do estado de São Paulo possui uma incidência solar de 4,08W/m², já a incidência solar de Sento Sé do estado da Bahia, segundo o site Amaranzero, possui uma incidência de 255 W/m² que é 62,5 vezes mais alta que em Santos. Pode-se fazer comparação entre cidades do mesmo estado como Bom Jesus da Lapa e Ilheus, que são cidades do estado da Bahia e possuem as seguintes incidências solares médias respectivamente, 250 W/m² e 208 W/m², tendo uma diferença de 30% na incidência podendo chegar até 40% dependendo do estado.

Com o crescente interesse global por fontes de energia renovável, muitas empresas e residências têm buscado a instalação de painéis solares como uma alternativa sustentável e econômica para geração de eletricidade. No entanto, a eficiência dos painéis solares depende diretamente da localização e do ângulo em que são instalados, uma vez que fatores como a incidência de luz solar, sombreamento, obstruções, clima e a inclinação do terreno podem afetar o desempenho.

Diante dessa necessidade, o projeto visa desenvolver um dispositivo inovador que mede a incidência solar e determina o melhor local para a instalação de painéis solares. O dispositivo será capaz de coletar dados precisos sobre a radiação solar, a inclinação ideal do terreno e as condições climáticas, permitindo que empresas de energia solar façam avaliações detalhadas antes de decidir onde instalar os painéis.

Por isso o nosso projeto será focado nessa problemática, faremos uma ferramenta que receba de forma precisa o dado da incidência solar de uma localidade em um período e forneça um estudo detalhado sobre como foi a incidência solar na região a partir de um site institucional com direito a gráficos de variação de incidência solar em um determinado período. Assim buscando maximizar os lucros de nossos clientes e gerar uma melhora no serviço oferecido pela empresa, garantindo assim uma maior confiança e reconhecimento do prestador de serviços no nicho de energia solar.

Objetivo:

Melhorar a eficácia energética de painéis solares a partir do estudo focalizado em certar regiões para calcular a melhor localidade para a sua implantação e gerar lucros mais rapidamente.

Justificativa:

Aumentar a eficiência e lucro em até 30%, além de gerar um aumento na quantidade geral de instalações de painéis solares.

Escopo:

Descrição do projeto:

O sensor conectado ao Arduíno dentro do nosso produto irá receber dados relacionados a quantidade de luz que o ambiente recebe, que é enviado à IDE, que irá enviar para um banco de dados MySQL Server que está hospedado em uma máquina virtual, de lá os dados vão para a aplicação onde são tratados e enviados para uma dashboard disponibilizada para o usuário.

Resultados Esperados:

- Produtos funcionais com sistema de Arduino e sensor para captação dos dados;
- Banco de Dados configurado e automatizado para armazenar os dados obtidos pelo sensor e relacionar ao usuário que captou esses dados;

- Site institucional criado com funcionalidades de login e cadastro, além de conseguir produzir gráficos e métricas estatísticas/analíticas utilizando os dados do banco de dados;
- Ferramenta de Suporte (Help Desk) formulada e funcional.

Requisitos:

<u>Desejável</u>	
<u>Importante</u>	
<u>Essencial</u>	

BackLog de Requisitos		
Nome do Requisito	Descrição do Requisito	Classificação
Tabela de	Uma tabela feita usando MySQL Workbench 8.0 para armazenar as informações coletadas pelo sensor LDR enviadas ao arduíno,	
dados do sensor	que as enviam ao MySQL o horário, a data, a temperatura e o ID do dado.	
Tabela do consumidor	Uma tabela feita usando MySQL Workbench 8.0 para armazenar as informações coletadas pelo cadastro do site, armazenando	
	o nome do cliente,CNPJ, CEP, número do logradouro e o ID do cliente.	
Tabela de média	Uma tabela feita usando MySQL Workbench 8.0 para armazenar a média das medições mensais do arduino.	
do arduíno		
Interface de login	Tela em html um input de email, CNPJ e um input de senha e um botão de validação.	
Interface de cadastro	Tela em html com Inputs de: Nome, email, CNPJ, CEP, número de logradouro , telefone e um botão para confirmação.	
Dashboard	Dashboard que demonstra as informações armazenadas no banco de dados por meio de gráficos.	
Setup de Virtualização	Setup do client da maquina virtual configurada no virtualizador VirtualBox.	
Imagem da VM	Linux Ubuntu instalado e configurado no client de virtualização da VM local.	
Instalação Arduino IDE	Arduino IDE instalada e configurada.	
Sensor Arduino	Arduino ligado e configurado.	
Codigo Arduino	Codigo Arduino em C++ no Arduino IDE.	
Simulador Financeiro	Tela do simulador financeiro com os campos: "botão para calculo da simulação, div para exibição do resultado da simulação.	
Protótipo do Site	Prototipação da interface sendo, uma tela de login/cadastro, tela de dashboard.	
Repositorio GitHub	Repositorio criado e configurado no github com todos os membros adicionados.	
BackEnd Simulador	Codigo em JavaScript do simulador financeiro com a lógica de simulação.	
Design do Simulador Financeiro	Estilização do simulador financeiro.	
Design interface 1	Estilização das telas de login e cadastro.	
Design interface 2	Estilização da dashboard.	
Design interface 3	Estilização da tela de inicio.	
Inserção de dados	Inserção automática de dados obtidos pelo sensor para o banco de dados sem que haja uma interação externa.	
Suporte técnico	Equipe de suporte ativa e funcional diariamente.	

Limites e exclusões: Limites do projeto: Produção de um dispositivo que capte apenas dados sobre quantidade de luz; Produção de um site institucional com funcionalidades de login, cadastro e acesso ao perfil que está configurado para receber a coleta de dados; Criação de tabelas em um banco de dados para receber dados fornecidos pelo dispositivo, dados pessoais obtidos durante o cadastro como nome, e-mail e telefone, além de Sistema de Suporte de TI para quaisquer inconveniências relacionadas ao serviço; Formulação de gráficos analíticos que analisam a quantidade de luz obtida em um dado período (30 dias) e, ao selecionar o estado em que será implantado, um gráfico sobre o valor obtido a partir do valor de energia médio no estado fornecido. Exclusões do projeto: Captação de dados que não sejam obtidos pelo sensor; Alteração externa dos dados obtidos pelo sensor; - Fornecimento dos dados obtidos para mais de uma conta, sendo restrita apenas a conta do cliente: Suporte de TI que abranja mais questões que estejam além do serviço BRIGHTLIGHT; Geração de gráficos envolvendo valores médios de cidades e bairros; Permissão direta do cliente ao banco de dados, apenas os dados direcionados e próprios da conta do mesmo; Site institucional com modelagem própria para visualização em telefones celulares. Macro Cronograma:

Recursos Necessários:

- + Produção da interface do site:
 - Equipamento necessário:
 - 2x Computador com a aplicação: VS Code.
- + Produção do Banco de Dados:
 - Equipamento necessário:
 - 1x Computador com a aplicação: MySQL Workbench 8.0 CE configurada.
- + Configuração e montagem do Dispositivo:
 - Equipamento necessário:
 - 1x Arduino UNO R3;
 - 1x Sensor LDR;
 - 3x Fio Jumper (Macho-Macho);
 - 1x ProtoBoard;
 - 1x Resistor 1K 1/4W 5%;
 - 1x Cabo USB tipo B;
 - 1x Computador com a aplicação: IDE Arduino.
- + Configuração da VM:
 - Equipamento necessário:
 - 1x Computador com a aplicação: Oracle VM VirtualBox configurado com o sistema operacional Lubuntu instalado e configurado.
- + Manutenção da Ferramenta de Gestão e versionamento do projeto:
 - Equipamento necessário:
 - Todos os computadores devem possuir cadastro no site Trello e adicionados ao projeto BrightSight;
 - Todos os computadores devem possuir cadastro no site GitHub e adicionados ao repositório do projeto;
 - Ferramenta Git baixada e configurada de acordo com cada função da equipe;

Partes interessadas:

Esse projeto abrange um aumento na eficácia e na geração de energia de painéis solares, assim o projeto tem como foco principal melhorar o suporte à empresa para instalações de painéis solares. Sendo assim interessante para a empresa fabricante e instaladora de painéis solares possuir o serviço **BrightSight** em seu atendimento.

Premissas:

Premissas necessárias para que haja o uso correto e sem problemas do produto pelo cliente, são:

- Dispositivo estará conectado em sistemas de monitoramento e armazenamento de dados.
- O dispositivo terá acesso à energia o tempo inteiro.
- Haver um clima adequado para a medição;
- Haver uma ambientação favorável para a captação de dados do sensor.
- Haver funcionários capacitados para manusear o dispositivo.

Restrições

- Não colocar o produto sob a chuva;
- A visualização de dados só pode ser executada pelo navegador conectado à internet;
- O dispositivo deve ser compacto e fácil de transportar para diferentes locais de medição.
- A plataforma não será disponibilizada em dispositivos móveis;
- O dispositivo deve ser aprovado pelas agências reguladoras e cumprir todas as exigências técnicas necessárias para certificação.
- A coleta de dados será verificada apenas no dispositivo em que há a conexão direta com o Arduino;

Marcos do Projeto:

- Início do Projeto: 14/08/2024;
- Começo da documentação: 15/08/2024;
- Começo do desenvolvimento: 15/08/2024;
- Criação do Banco de Dados e Tabelas: 25/08/2024;
- Diagrama de Negócio: 28/08/2024;
- Protótipo do Site Institucional: 29/08/2024;
- Finalização da documentação: 31/08/2024;
- Entrega da Sprint 1: 11/09/2024.

Equipe Envolvida:

- Responsável Banco de Dados: Mateus Diniz Leite;
- Responsável VM: Gustavo Vieira Felicio Amorim;
- Responsável Design: Julia Visconti;
- Responsável Back-End: Zaqueu Chavier Durães Filho;
- Responsáveis Front-End: Julia Visconti e Zaqueu Chavier Durães Filho;
- Responsável Configuração e montagem do Arduino: Caio Visconti.

Sustentação:

Como grande parte do serviço possui uma infraestrutura totalmente focada no meio digital da coleta dos dados até a leitura dos gráficos pelo usuário final, é importante que haja:

- Manutenção do site institucional
 - Um programador Back-End;
 - Um programador Front-End;
 - Manutenção diária das funcionalidades do site, como a funcionalidade de login, cadastro e acesso aos dados obtidos pelos sensores;
 - Manutenção diária das funções que geram os gráficos, para manter uma constância perfeita dos dados e sem variâncias derivadas de falhas do sistema.
- Manutenção da coerência do banco de dados:
 - Um cientista de dados;
 - Verificação diária da entrada de dados, para certificar que não haja entradas erradas de valores;
 - Verificação diária para que não haja a troca de dados obtidos entre usuários;
 - Análise de dados cadastrais e agir juntamente à equipe que faz a manutenção do site para corrigir problemas de cadastro ou login de usuários.
- Manutenção da VM:
 - Um cientista de sistemas operacionais;
 - Verificação diária sobre a passagem de dados do Arduino para o SO;
 - Verificação diária do Sistema Ubuntu e Lubuntu para corrigir possíveis problemas provenientes de atualizações dos sistemas;
 - Verificação diária de possíveis bugs vindos dos sistemas operacionais.
- Manutenção do Dispositivo Físico:
 - Um cientista de dados com curso de montagem básica de Arduino;
 - Verificação, quando requisitada, da estrutura física e configuração do Arduino.

