Cognome: Mome: # Matricola: Riga: Col:

Algoritmi e Strutture Dati - 31/10/14

Esercizio 0 Scrivere correttamente nome, cognome, numero di matricola, riga e colonna.

Esercizio 1 – Punti ≥ 6 (Parte A)

Si considerino le seguenti equazioni di ricorrenza, per le quali i casi base sono tutti pari a T(n) = 1 per $n \le 1$.

- 1. T(n) = T(2n/3) + 2n 4
- 2. $T(n) = 4T(n/2) + n^2\sqrt{n}$
- 3. $T(n) = 2T(n/4) + \sqrt{n} + 10 \log n$
- 4. $T(n) = 3T(n/2) + 2n \log n + 10n$
- 5. $T(n) = T(n-6) + n^{5/6}$

Identificare limiti superiori e inferiori per ognuna delle equazioni di ricorrenza (eventualmente stretti, utilizzando la notazione $\Theta(f(n))$), utilizzando un metodo a vostro piacimento. Assumendo che esse provengano dall'analisi di altrettanti algoritmi, quale algoritmo scegliereste?

Esercizio 2 – Punti ≥ 6 (Parte A)

Sia dato V un vettore di $n \ge 10^6$ elementi per il quale è noto che i primi $n - \lfloor n^{4/5} \rfloor$ elementi siano già ordinati fra di loro. Scrivere una funzione almostSort(int[] V, int n) in pseudocodice che ordini l'intero vettore V in tempo inferiore a $\Theta(n \log n)$.

Discutere informalmente la correttezza della soluzione proposta e calcolare la complessità computazionale.

Esercizio 3 – Punti ≥ 8 (Parte A)

In questo esercizio si consideri un grafo diretto G rappresentato tramite <u>matrice di adiacenza</u>. In questa rappresentazione, è possibile utilizzare le solite primitive G.V() e G.adj(), ma vi ricordo che in questo caso una visita ha costo $O(n^2)$; d'altra parte, l'operazione G.insertEdge(u, v) può essere realizzata in tempo O(1), semplicemente ponendo ad 1 il bit relativo a tale arco.

- 1. Un grafo diretto G è connesso debolmente se per ogni coppia u, v di vertici <u>distinti</u> esiste almeno una sequenza di nodi <u>tutti distinti</u> $u = w_1, w_2, \ldots, w_{n-1}, w_n = v$ tale per cui esiste almeno uno degli due archi (w_i, w_{i+1}) o (w_{i+1}, w_i) , con $1 \le i < n$. Scrivere una funzione weaklyConnected(GRAPH G) in pseudocodice che determini se il grafo è connesso debolmente oppure no.
- 2. Un grafo diretto G è connesso singolarmente se per ogni coppia u, v di vertici distinti esiste esattamente una sequenza di nodi tutti distinti $u = w_1, w_2, \ldots, w_{n-1}, w_n = v$ tale per cui esiste almeno uno degli archi (w_i, w_{i+1}) o (w_{i+1}, w_i) . Scrivere una funzione singularlyConnected(GRAPH G) in pseudocodice che determini se il grafo è connesso singolarmente oppure no.

Discutere informalmente la correttezza delle soluzioni proposte e calcolare la complessità computazionale.

Esercizio 4 – Punti ≥ 12 (Parte A)

In un vettore V di interi, si dice *spessore* del sottovettore $V[i \dots j]$ la differenza tra il massimo e il minimo valore contenuto nel sottovettore.

Scrivere una funzione thickness(int[] V, int n, int C) in pseudocodice che, preso un vettore V contenente n interi ed un intero C > 0, restituisca la lunghezza del più lungo sottovettore tra quelli di spessore al più C.

Discutere informalmente la correttezza della soluzione proposta e calcolare la complessità computazionale.

Nota: esistono algoritmi con complessità $\Theta(n^3)$, $\Theta(n^2)$, $\Theta(n \log n)$ (basato su divide-et-impera).