## Principal Stress Calculator

Directory | Career | News | Standards | Industrial | SpecSearch®

# funda

#### Formula Home

#### Mechanics of Matl.

Stress Strain Hooke's Law

### Applications

Pressure Vessels Rosette Strain Gages Failure Criteria

#### Calculators

Stress Transform Strain Transform Principal Stress

Principal Strain Elastic Constants

ResourcesBibliography

**Login** 



# ANSYS - FEA & CFD

ozeninc.com

Consulting, Software Sales, Training Ozen Engineering, Inc.

#### **Calculator Introduction**

Given the stress components  $s_x$ ,  $s_y$ , and  $t_{xy}$ , this calculator computes the principal stresses  $s_1$ ,  $s_2$ , the principal angle  $q_p$ , the maximum shear stress  $t_{max}$  and its angle  $q_s$ . It also draws an approximate Mohr's circle for the given stress state.







# Stresses in given coordinate system

### Principal stresses

### **Inputs**

| Normal Stress s <sub>x</sub> : | 1 MPa ‡ |
|--------------------------------|---------|
| Normal Stress s <sub>y</sub> : | 0.1     |
| Shear Stress $t_{xy}$ :        | 1       |
|                                |         |

#### **Answers**



The Mohr's circle associated with the above stress state is similar to the following figure. However, the exact loaction of the center  $s_{Avg}$ , the radius of the Mohr's circle R, and the principal angle  $q_p$  may be different from what are shown in the figure.



# **Equations behind the Calculator**

The formulas used in this calculator are,

$$\tan 2\theta ... = \frac{2\tau_{\chi y}}{}$$

$$\sigma_{X} - \sigma_{y}$$

$$\sigma_{1,2} = \frac{\sigma_{x} + \sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}} = \frac{\sigma_{1} - \sigma_{2}}{2}$$

$$\tan 2\theta_{s} = -\frac{\sigma_{x} - \sigma_{y}}{2\tau_{xy}}$$

$$\Rightarrow \theta_{s} = \theta_{p} \pm 45^{\circ}$$

$$T_{xy} \qquad T_{yx} \qquad T_{xy} \qquad T_$$

Further information can be found in the plane stress, Mohr's Circle, and the Mohr's Circle usage pages.

# **Protect Your Home**

mediacomcable.com/HomeController

coordinate system

Learn about Mediacom's home security service. From \$34.99/month

 Home
 Membership
 About Us
 Privacy
 Disclaimer
 Contact
 Advertise

Copyright © 2014 eFunda, Inc.