web-страница **djvu**-документ

Закон сохранения импульса и маневры космического корабля

М. Анфимов, Квант 1, 1992, № 3, 36, 37.

Космический корабль приближался к планете, и его требовалось перевести на околопланетную орбиту. Топлива у космонавтов оставалось немного, и использовать его следовало наиболее эффективно. Этот корабль снабжен тремя одинаковыми двигателями. Можно включить все три двигателя одновременно (чтобы каждый из них израсходовал одну треть массы топлива), а можно вводить двигатели в работу последовательно — один за другим. Как же поступить?

Пока остается немного времени до включения системы торможения, порассуждаем и мы вместе с командиром корабля и постараемся найти оптимальный способ торможения. Воспользуемся для этого одним из фундаментальных законов механики — законом сохранения импульса².

Согласно определению, импульс частицы массой m, движущейся со скоростью \vec{v} , равен $\vec{p}=m\vec{v}$. Если мы имеем дело с системой частиц, то импульс системы есть сумма импульсов отдельных частиц: $\vec{p}=\Big|\sum_{i=1}^{N}\Big|m_i\vec{v}_i$. Рассмотрим систему двух взаимодействующих частиц (их массы m_1 и m_2 , скорости \vec{v}_1 и \vec{v}_2), в которой внешние силы отсутствуют. Такая система называется замкнутой. Обозначим через \vec{F}_{12} силу, с которой частица 1 действует на частицу 2, а через \vec{F}_{21} — силу, с которой частица 2 действует на частицу 1. Тогда,

в силу третьего закона Ньютона,

$$\vec{F}_{12} + \vec{F}_{21} = 0.$$

Запишем теперь второй закон Ньютона для каждой из частиц:

$$m_1 \frac{\Delta \vec{v}_1}{\Delta t} = \vec{F}_{21},$$

$$m_2 \frac{\Delta \vec{v}_2}{\Delta t} = \vec{F}_{12}.$$

Умножим оба уравнения на Δt и сложим почленно. Получаем

$$m_1 \Delta \vec{v}_1 + m_2 \Delta \vec{v}_2 = 0,$$

или

$$\Delta(m_1\vec{v}_1 + m_2\vec{v}_2) = 0,$$

т. е. изменение импульса системы взаимодействующих частиц равно нулю. Следовательно, для замкнутой системы частиц полный импульс сохраняется:

$$m_1 \vec{v_1} + m_2 \vec{v_2} = \vec{p} = \text{const.}$$

Заметим, что если бы частицы находились в каком-либо внешнем поле, то силы, действующие на частицы, не были бы скомпенсированы и импульс перестал бы быть сохраняющейся величиной.

Вернемся теперь к нашей ракете. Пусть масса топлива, которое космонавты могут потратить на торможение, равна m, а скорость истечения газов из сопел двигателей равна v.

Рассмотрим первый вариант торможения, когда двигатели включаются одновременно. Чтобы проще было наблюдать за событиями, присоединимся к космонавтам, т.е. перейдем в систему отсчета, связанную с ракетой. В этой системе собственная начальная скорость ракеты вместе с топливом равна нулю. Обозначим скорость, которую приобретет корабль после сжигания всего топлива, через \vec{v}_1 , а массу

¹ «Квант» — научно-популярный физикоматематический журнал.

 $^{^2}$ О «судьбе» импульса и некоторых других понятий механики подробно рассказывалось в «Кванте» № 5 за 1986 год (Прим. ред.).

корабля — через M. Из закона сохранения импульса имеем

$$M\vec{v}_1 + m\vec{v} = 0.$$

Предположим, что корабль движется вдоль оси X декартовой системы координат. Спроектировав все векторы на эту ось, получаем

$$Mv_1 - mv = 0.$$

Отсюда уже находим скорость, которую приобретет корабль после того, как двигатели отработают все топливо:

$$v_1 = \frac{m}{M}v.$$

Во втором варианте торможения нужно рассмотреть три последовательных процесса, в каждом из которых расходуется масса топлива, равная m/3. Когда сгорит первая треть топлива, корабль приобретет скорость

$$v_2' = \frac{m}{3(M+2m/3)}v = \frac{m}{3M+2m}v,$$

и импульс космического корабля станет равным $(M+2m/3)v_2'$. Запишем теперь закон сохранения импульса для этого момента, а также для момента, когда будет израсходована вторая треть топлива:

$$\left(M + \frac{2}{3}m\right)v_2' = \left(M + \frac{1}{3}m\right)v_2'' - \frac{m}{3}(v - v_2').$$

Поясним читателю это равенство. Мы задали скорость истечения газов v относительно неподвижной ракеты. После первого этапа торможения ракета приобрела скорость v_2' , и, следовательно, скорость истечения газов относительно выбранной системы отсчета будет не v, а $v-v_2'$, что и отражено в последнем члене нашего уравнения. После прохождения второго участка торможения скорость космического корабля будет равна

$$v_2'' = v_2' + \frac{m}{3M + m}v.$$

Запишем закон сохранения импульса в третий раз:

$$\left(M + \frac{m}{3}\right)v_2'' = Mv_2 - \frac{m}{3}(v - v_2'').$$

Для окончательной скорости корабля в результате трех последовательных этапов торможения получаем

$$v_2 = \frac{m}{3M + 2m}v + \frac{m}{3M + m}v + \frac{m}{3M}v.$$

Взглянув на результат, то есть на выражения для приобретенных скоростей v_1 и v_2 , видим, что при последовательном включении двигателей дополнительная скорость, которую приобретает корабль, меньше, чем при одновременном. Дело в том, что при последовательном включении часть топлива расходуется на сообщение скорости (v_2', v_2'') оставшемуся топливу.

Теперь нетрудно понять, какое решение должен принять командир космического корабля.