White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques?

There are **2** types of query operations that can be performed on a tree:

- 1. 1 u x: Assign  $\boldsymbol{x}$  as the value of node  $\boldsymbol{u}$ .
- 2. 2 u v: Print the sum of the node values in the unique path from node  $m{u}$  to node  $m{v}$ .

Given a tree with N nodes where each node's value is initially 0, execute Q queries.

## **Input Format**

The first line contains 2 space-separated integers, N and Q, respectively.

The N-1 subsequent lines each contain  ${\bf 2}$  space-separated integers describing an undirected edge in the tree.

Each of the Q subsequent lines contains a query you must execute.

#### **Constraints**

- $1 \le N, Q \le 10^5$   $1 \le x \le 1000$  It is guaranteed that the input describes a connected tree with N nodes.
- Nodes are enumerated with **0**-based indexing.

## **Output Format**

For each type-2 query, print its integer result on a new line.

### **Sample Input**

3 3

0 1 1 2

1 0 1

1 1 2

2 0 2

# **Sample Output**

## **Explanation**



After the first  ${f 2}$  queries, the value of node  $n_0=1$  and the value of node  $n_1=2$ . The third query requires us to print the sum of the node values in the path from nodes 0 to 2, which is 1+2+0=3. Thus, we print **3** on a new line.