Многокритериальная оптимизация режимов работы котельного отделения электростанции

Студент: Кузьмин Артем Юрьевич

Руководитель: Романова Татьяна Николаевна

Цель и задачи работы

Цель работы – разработка метода многокритериальной оптимизации режимов работы котельного отделения электростанции и его исследование на примере котельного отделения ТЭЦ-20 Мосэнерго .

Решаемые задачи:

- 1. Анализ существующих оптимизационных продуктов и решений;
- 2. Анализ существующих алгоритмов оптимизации и выбор одного из них для реализации;
- 3. Выделение параметров и ограничений, необходимых для построения математической модели;
- 4. Формулирование используемых критериев оптимизации;
- 5. Формулирование целевой функции многокритериальной оптимизации;
- 6. Построение математической модели;
- 7. Разработка метода многокритериальной оптимизации;
- 8. Разработка программного продукта на основе данного метода;
- 9. Исследование разработанного метода и сравнение полученных результатов с другими известными результатами

Существующие продукты и решения

«СМиОР» — система моделирования и оптимизации режимов работы. (ЗАО «Крок инкорпорейтед», 2012).

Основной бизнес-процесс – «**I4Plan**».

Используемые продукты – IBM ILOG (CPLEX, JVIEWS), Thermoflex.

- Использование имитационного моделирования;
- Мощные математический и визуализационный модули;
- Возможность расчета и сравнения нескольких сценариев.

ПК для оптимизации режимов работы тепловых электростанций.

(Иванов Н.С., Беспалов В.И., Лопатин Н.С. – «Известия Томского политехнического университета, 2008).

- Возможность «динамической» оптимизации и оптимизации на заданном оборудовании;
- Использование БД для хранения информации;
- Наличие ручного модуля распределения нагрузок персоналом.

ПК «ТЭС-Эксперт» — оптимальное ведение режима работы теплоэлектроцентрали. (Борисов А.А. — «Вестник ИГЭУ», 2008).

- Оптимизация режимов работы как котлоагрегатов, так и турбоагрегатов;
- Возможность планирования затрат тепла и электроэнергии.

Во всех рассмотренных продуктах — отсутствие возможности оптимизации по нескольким критериям, учета информации о коэффициентах относительной важности критериев.

Алгоритмы оптимизации

Адаптивный алгоритм случайного поиска с переменным шагом.

- Эффективен на начальной стадии вычислений для задач, содержащих не более 10 переменных;
- Для получения решения с большей точностью скорость сходимости алгоритма недостаточна;
- Целесообразно использовать как вспомогательный прием для определения «хорошей» начальной точки при применении более сложных методов оптимизации.

Комбинаторный эвристический алгоритм.

• Более эффективный, чем алгоритм случайного поиска, - минимизирует обращение к выборкам;

Прямые выборочные процедуры с уменьшением интервала поиска.

- Р Более эффективный, чем адаптивный или комбинаторный алгоритмы;
- Наиболее эффективен для решения многоэкстремальных задач.

Был выбран метод прямых выборочных процедур с уменьшением интервала поиска, остальные методы направлены, в основном, на поиска локального экстремума функции.

Постановка задачи

Задача оптимизации состоит в нахождении:

- оптимального состава очереди котлоагрегатов,
- паровых нагрузок для каждого из котлов,
- топлива, используемого каждым из котлов.

В качестве критериев оптимизации режимов работы котлоагрегатов выделим:

- расход газа -> min,
- расход жидкого топлива (мазута) -> **min**,
- финансовые затраты на используемое топливо -> min,
- коэффициент полезного действия (КПД) очереди котлоагрегатов -> **max**.

Ограничения

1. Диапазоны рабочей производительности для каждого из котлоагрегатов

$$D_{Ki}^{min} \leq D_{Ki} \leq D_{Ki}^{max}, \qquad i = 1..(n+m)$$

Где D_{Ki}^{min} — минимально возможная паропроизводительность і-го котлоагрегата; D_{Ki}^{max} — максимально возможная паропроизводительность і-го котлоагрегата; D_{Ki} — текущая паропроизводительность і-го котлоагрегата.

2. Суммарная паропроизводительность группы котлоагрегатов

$$\sum_{i=1}^{n+m} D_{Ki} = D_k$$

Где D_{Ki} — паропроизводительность і-го котлоагрегата; D_k — суммарная паропроизводительность группы работающих котлоагрегатов.

Математическая постановка задачи оптимизации

$$K1: B^{\Gamma}(\{D_{k}\}) = \sum_{i=1}^{n} B_{i}^{\Gamma}(D_{Ki}) \to min;$$

$$K2: B^{M}(\{D_{k}\}) = \sum_{i=1}^{n} B_{i}^{M}(D_{Ki}) \to min;$$

$$K3: F_{M+\Gamma}(\{Dk\}) = \sum_{i=1}^{n} B_{\Gamma i}(D_{Ki}) * p_{\Gamma} + \sum_{i=1}^{m} B_{\Gamma i}(D_{Ki}) * p_{M} \to min;$$

$$K4: \eta_{K} = \frac{\sum_{i=1}^{n} \eta_{Ki\Gamma}(D_{Ki}) * Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^{m} \eta_{KjM}(D_{Kj}) * Q_{KjM}(D_{Kj})}{\sum_{i=1}^{n} Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^{m} Q_{KjM}(D_{Kj})} \to max;$$

где $B_i^\Gamma(D_{Ki})$ – расход газа для обеспечения текущей паропроизводительности D_{Ki} і-ым парогенератором; $B_i^\mathrm{M}(D_{Ki})$ – расход мазута для обеспечения текущей паропроизводительности D_{Ki} і-ым парогенератором; p_M – цена на мазут; p_Γ – цена на газ;

 $\eta_{Ki}(D_{Ki})$ – КПД полезного действия і-го котлоагрегата;

 $\{D_k\} = \{D_{k1}, D_{k2}$, ... , D_{kn} } – вектор паропроизводительностей n котлоагрегатов.

Целевая функция:
$$F=K1+K2+K3-K4 o min;$$

Метод многокритериальной оптимизации

Разработанный метод состоит из двух шагов:

- формирование множества возможных векторных критериев;
- выбор наилучшего векторного критерия из множества возможных.

Формирование множества возможных векторных критериев

Каждый из n котлоагрегатов может находиться в одном из состояний:

- Выключен;
- Работает на газе;
- Работает на мазуте;

Всего таких комбинаций 3^n .

Для каждой из комбинаций проверяется, может ли она обеспечить выполнение заданной суммарной паропроизводительности:

$$\sum_{i=1}^m D_{Ki}^{min} \leq D_k \leq \sum_{i=1}^m D_{Ki}^{max},$$

где *m* – количество работающих котлов в данной комбинации.

Формирование множества возможных векторных критериев

- В случае удовлетворения комбинации заданному ограничению проведение «локальной» оптимизации.
- В противном случае комбинация не рассматривается.
- Сохранение вектора $f_i = \left(B^\Gamma(\{D_k\})_i, B^M(\{D_k\})_i, F_{M+\Gamma}(\{Dk\})_i, \eta_{Ki}\right)$, состоящего из значений выделенных критериев, полученных в результате многокритериальной оптимизации, проведенной для текущей комбинации.

«Локальная» оптимизация

Оптимизация с помощью метода прямых выборочных процедур с уменьшением интервала поиска.

 D_K — суммарная паропроизводительность, которую должна обеспечивать очередь котлоагрегатов.

Необходимо определить n-1 переменных D_{Ki} , где n — количество котлоагрегатов в очереди. Переменная D_{Kn} определяется из соотношения:

$$D_{Kn} = D_k - \sum_{i=1}^{n-1} D_{Ki}.$$

Выбор начальных решений

Выбор начальных решений, входящий в состав метода прямых выборочных процедур:

$$x_i^0 = \frac{x_i + \overline{x_i}}{2}, i = 1, \dots, n.$$

Для решения поставленной задачи такой выбор начальных решений **не подходит.**

Необходимо разработать **иной** алгоритм выбора начальных решений.

Формирование множества возможных векторных критериев

После расчета всех комбинаций, получим множество возможных решений:

$$U = \begin{cases} f_1 = \left(B^{\Gamma}(\{D_k\})_1, B^{M}(\{D_k\})_1, F_{M+\Gamma}(\{Dk\})_1, \eta_{K_1}\right) \\ f_2 = \left(B^{\Gamma}(\{D_k\})_2, B^{M}(\{D_k\})_2, F_{M+\Gamma}(\{Dk\})_2, \eta_{K_2}\right) \\ \dots \\ f_n = \left(B^{\Gamma}(\{D_k\})_n, B^{M}(\{D_k\})_n, F_{M+\Gamma}(\{Dk\})_n, \eta_{K_n}\right) \end{cases}$$

Выбор наилучшего векторного критерия

Выбор наиболее подходящего векторного критерия из множества состоит из трех этапов:

- построение множества Парето;
- сужение множества Парето на основе информации о коэффициентах относительной важности критериев;
- применение метода целевого программирования для выбора оптимального векторного критерия.

Сужение множества Парето

Коэффициенты относительной важности критериев:

$$\theta_{ij} = \frac{w_j^*}{w_i^* + w_j^*}$$
, $(0 < \theta_{ij} < 1)$.

Менее важный j-й критерий в общем списке критериев $f_1,\ f_2,...,f_m$ необходимо заменить новым, вычисленным по формуле:

$$\theta_{ij}f_i + (1 - \theta_{ij})f_j.$$

Где w_j^* - количество единиц по менее важному критерию, w_i^* - количество единиц по более важному критерию

Метод целевого программирования

В пространстве R^m задан вектор y, который называют идеальным вектором.

Задается метрика — числовая функция $\rho = \rho(y,z)$, которая каждой паре векторов у, z сопоставляет неотрицательное число, называемое расстоянием между векторами у и z.

Оптимальным объявляется такое решение $x^* \in X$, для которого выполняется равенство :

$$\inf_{y \in U} \rho(f(x^*), y) = \min_{x \in X} \left(\inf_{y \in U} \rho(f(x^*), y) \right).$$

$$\rho(y, K_4) = \sum_{i=1}^{4} (yi - fi(x^*))^2.$$

Рис. 3. Зависимости расхода газа котлом «К4» от паровой нагрузки.

Средний процент расхождения: 1.7%

Дисперсионный анализ – исследование значимости различий в средних значениях.

Рис.4. Схема сравнения средних

U-критерий Манна-Уитни:

$$U = n_1 * n_2 + \frac{n_x * (n_x + 1)}{2} - T_x.$$

Таблица 3. Расчет рангов для сравниваемых выборок

Nº	Расход газа	Ранг «I4Plan»	Расход газа	Ранг значений
	(«I4Plan»),		(разработанный	разработанного
	[тыс.нм ³ /час]		программный	программного
			продукт), [тыс.нм ³ /час]	продукта
1	10,42	2	10,24	1
2	11,31	4	11,1	3
3	14,63	6	14,39	5
4	15,83	9	15,56	7
5	15,99	10	15,72	8
Сумма рангов		31		24

$$T_{\chi}$$
 = 31. Тогда $U=9$. $U>U_{
m Kp}$

Рассмотрены ситуации:

• «Приоритет расхода топлива»

- Все критерии оптимизации имеют одинаковый вес;
- Известны цена на газ и мазут на рынке электроэнергии;
- Задана плановая паропроизводительность, которую должна обеспечивать очередь котлоагрегатов.

• «Приоритет одного вида топлива»

- Критерий расхода газа важнее остальных критериев;
- Коэффициенты относительной важности задаются с помощью экспертного блока;
- Известны цены на газ и мазут на рынке электроэнергии;
- Задана плановая паропроизводительность, которую должна обеспечивать очередь котлоагрегатов.

Ситуация – «Приоритет расхода топлива».

Таблица 4. Сравнение режимов работы для ситуации «Приоритет расхода топлива»

	Режим работы («I4Plan»)		Режим работы (разработанное ПО)	
Котлоагрегат	Состояние	Паровая нагрузка, [тонн/час]	Состояние	Паровая нагрузка, [тонн/час]
К1	Выкл.	0	Выкл.	0
К2	Выкл.	0	Выкл.	0
К3	Выкл.	0	Выкл.	0
К4	Газ	220	Газ	218
К5	Газ	219	Газ	209
К6	Газ	219	Газ	211
Расход газа, [тыс.нм ³ /час]	50,051		50,043	
Расход мазута, [тонн/час]	0		0	
Финансовые затраты на топливо, [руб./час]	174278,66		174249,73	
КПД группы котлоагрегатов, [%]	93,78		93,803	

Ситуация — «Приоритет одного вида топлива».

- Плановая паропроизводительность: 638 тонн/час;
- Газ: **3482 руб./тыс.нм3**
- Мазут: **6500 руб./т.**
- Коэффициенты относительной важности: [10%; 90%]

Рис. 5. Зависимость значения критериев расхода топлива от коэффициента относительной важности расхода газа по отношению к другим критериям.

Рис. 6. Зависимость финансовых затрат на топливо от коэффициента относительной важности расхода газа по отношению к другим критериям.

Рис. 7. Зависимость значения критерия КПД очереди котлоагрегатов от коэффициента относительной важности расхода газа по отношению к другим критериям.

Заключение

В результате работы:

- 1. Проведен анализ существующих оптимизационных продуктов и решений;
- 2. Проведен анализ существующих алгоритмов оптимизации и выбран один из них;
- 3. Выделены параметры и ограничения, необходимые для построения математической модели;
- 4. Сформулированы критерии оптимизации;
- 5. Сформулирована целевая функция многокритериальной оптимизации;
- 6. Построена математическая модель;
- 7. Разработан метод многокритериальной оптимизации;
- 8. Разработан программный комплекс, реализующий данный метод;
- 9. Проведено исследование разработанного метода и сравнение полученных результатов с другими известными результатами.