第7章 周波数特性 **154**

(a) ボード線図とベクトル軌跡

2 次遅れ要素 (7.58) 式の周波数伝達関数 $P(j\omega)$ は、 $\eta:=\omega/\omega_{\rm n}$ とおくと、

$$P(j\omega) = \frac{\omega_{\rm n}^2}{\omega_{\rm n}^2 - \omega^2 + j(2\zeta\omega_{\rm n}\omega)} = \frac{1}{1 - \eta^2 + j(2\zeta\eta)}$$
(7.60)

であるから、ゲイン $G_{\mathbf{g}}(\omega)$ 、位相差 $G_{\mathbf{p}}(\omega)$ は

$$G_{\rm p}(\omega) = \angle P(j\omega) = -\tan^{-1} \frac{2\zeta\eta}{1-\eta^2} \,[{\rm deg}]$$
 (7.62)

となる. (7.61), (7.62) 式より

(i) $0 < \eta = \omega/\omega_n \ll 1 \ (0 < \omega \ll \omega_n)$ のとき:

$$G_{
m g}(\omega) \simeq 1$$
 [悟] \implies $20 \log_{10} G_{
m g}(\omega) \simeq 0$ [dB] $G_{
m p}(\omega) \simeq -{
m tan}^{-1}0 = 0$ [deg]

(ii) $\eta = \omega/\omega_n = 1 (\omega = \omega_n)$ のとき:

$$G_{g}(\omega) = \frac{1}{2\zeta} \left[\stackrel{\triangle}{\text{H}} \right] \implies 20 \log_{10} G_{g}(\omega) = 20 \log_{10} \frac{1}{2\zeta} \left[\stackrel{\triangle}{\text{H}} \right]$$

$$G_{\rm p}(\omega) = -\tan^{-1}\infty = -90$$
 [deg]

(iii) $\eta = \omega/\omega_n \gg 1 \; (\omega \gg \omega_n) \; \text{obs} \; :$

$$G_{\mathrm{g}}(\omega) \simeq \frac{1}{\eta^2}$$
 [悟] $\implies 20 \log_{10} G_{\mathrm{g}}(\omega) \simeq -40 \log_{10} \eta$ [dB]

$$G_{\rm p}(\omega) \simeq -\tan^{-1}0 = -180 \; [{\rm deg}]$$

であるから、2 次遅れ要素のボード線図は \mathbf{Z} 7.16 (a) \sim (c), ベクトル軌跡は \mathbf{Z} 7.16 (d) のようになる.

(b) ピーク角周波数 $\omega_{\mathbf{p}}$ と共振ピーク $M_{\mathbf{p}}$

 $\omega = \omega_{\mathrm{n}}$ 付近の周波数領域では、減衰係数 ζ の値によって $G_{\mathrm{g}}(\omega) > 1$ となる場合 がある. この場合, $\omega=\omega_{\rm n}$ 付近では正弦波入力 $u(t)=A\sin\omega t$ の振幅 A と比べて, (7.6) 式 (p. 137) に示した周波数応答 $y_{app}(t)$ の振幅

$$B(\omega) = AG_{\rm g}(\omega) = \frac{A}{\sqrt{f(\eta)}}, \quad f(\eta) := (1 - \eta^2)^2 + (2\zeta\eta)^2$$
 (7.63)

の方が大きくなる $(B(\omega) > A$ となる) ため、共振を生じる. ここでは、共振が生じ るような減衰係数 (の範囲を求めてみよう.

(7.63) 式の振幅 $B(\omega)$ が最大となるのは $f(\eta)$ が最小となるときである. $f(\eta)$ を η で微分すると,

$$\frac{\mathbf{d}f(\eta)}{\mathbf{d}\eta} = 4\eta(\eta^2 + 2\zeta^2 - 1)$$

であるから、 $\mathbf{d}f(\eta)/\mathbf{d}\eta=0$ となるのは $\eta=0,\pm\sqrt{1-2\zeta^2}$ である.そのため, $\zeta>0$ の大小により以下のように場合分けされる.

• $\mathbf{0} < \boldsymbol{\zeta} < \mathbf{1}/\sqrt{2}$ のとき : $1-2\zeta^2 > 0$ なので、 $\mathrm{d}f(\eta)/\mathrm{d}\eta = 0$ の三つの解は互いに異なる実数 $\eta = 0, \pm \eta_\mathrm{p}$ であり、三つの極値を持つ。ただし、 $\eta_\mathrm{p} = \sqrt{1-2\zeta^2}$ である。増減表は

η		$-\eta_{ ext{p}}$		0		$\eta_{ m p}$	
$\frac{\mathrm{d}f(\eta)}{\mathrm{d}\eta}$	_	0	+	0	_	0	+
$f(\eta)$	7	f_{\min}	7	1	7	f_{\min}	7

となり、 $f(\eta)$ $(\eta > 0)$ は $\eta = \eta_p$ で最小値

$$f_{\min} := f(\eta_{\rm p}) = 4\zeta^2(1 - \zeta^2)$$

を持つ. ここで、 $0 < f_{\rm min} < 1$ となることに注意する. したがって、 $\eta = \omega/\omega_{\rm n}$ と $f(\eta)$ の関係は、図 7.17 (a) のようになり、ピーク角周波数 $\omega_{\rm p}$ (= $\omega_{\rm n}\eta_{\rm p}$) と 共振ピーク $M_{\rm p}$ は

206 第 9 章 現代制御

図 9.11 目標値からのフィードフォワードを利用した目標値追従

9.5.2 積分型サーボ制御

ここでは、外乱 d(t) を考慮した可制御な制御対象

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}(u(t) + d(t)) \\ y(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{cases}$$
(9.73)

に対して, 積分器を含ませたコントローラ

積分型コントローラ -

$$u(t) = Kx(t) + Gw(t), \quad w(t) := \int_0^t e(\tau)d\tau, \quad e(t) = r - y(t) \quad (9.74)$$

を用い、定値 (もしくはステップ状に変化する) の目標値 r(t) や外乱 d(t) に対して、 $\lceil t \to \infty \rfloor$ で $\lceil e(t) \to 0 \rfloor$ を実現する. このときのフィードバック制御系を**積分型サー**

図 9.12 積分型サーボ系

236 付録 B MATLAB の基本的な操作

B.5.2 数式処理における MATLAB 関数

関数名	使用例	説明
syms	syms x y	x, y を複素数のシンボリック変数として定義
	syms x y real	x, y を実数のシンボリック変数として定義
	syms x y positive	x, y を正数のシンボリック変数として定義
	syms x y integer	x, y を整数のシンボリック変数として定義
simplify	simplify(fx)	f(x) を単純化
collect	collect(fx)	f(x) をべき乗でまとめる
	collect(fx,x)	f(x) を x に関するべき乗でまとめる
factor	factor(fx)	f(x) を因数分解したときの因数
	<pre>prod(factor(fx))</pre>	f(x) を因数分解
expand	expand(fx)	f(x) の展開
subs	subs(fx,x,a)	$f(x)$ の x に a を代入 $(f(x) _{x=a})$
limit	limit(fx,x,a)	極限 $\lim_{x \to a} f(x)$
fplot	fplot(fx)	グラフの描画
	<pre>fplot(fx,[xmin xmax])</pre>	グラフの描画 (横軸の範囲を指定)
laplace	Fs = laplace(ft)	$f(t)$ のラプラス変換 $F(s) = \mathcal{L}[f(t)]$
ilaplace	ft = ilaplace(Fs)	$F(s)$ の逆ラプラス変換 $f(t) = \mathcal{L}^{-1} \big[F(s) \big]$
taylor	taylor(fx)	f(x) の 5 次までのマクローリン展開
	taylor(fx,x,'Order',n)	f(x) の n 次までのマクローリン展開
	taylor(fx,x,a)	f(x) の $x=a$ における 5 次までのテイラー展開
	taylor(fx,x,a,'Order',n)	f(x) の $x=a$ における n 次までのテイラー展開

B.5.3 制御工学に関連した MATLAB 関数

■ モデルの定義

関数名	使用例	説明	
tf	sys = tf(num,den)	(B.1) 式の形式の伝達関数 $P(s)$ を定義	
	sys = tf(sys)	$(\mathrm{B.1})$ 式の形式の伝達関数 $P(s)$ に変換	
	s = tf('s')	ラプラス演算子 s の定義	
zpk	sys = zpk(z,p,K)	(B.2) 式の形式の伝達関数 $P(s)$ の定義	
	sys = zpk(sys)	$(\mathrm{B.2})$ 式の形式の伝達関数 $P(s)$ に変換	
ss	sys = ss(A,B,C,D) 状態空間表現 (B.3) 式の定義		
	sys = ss(sys)	状態空間表現 (B.3) 式に変換	

$$P(s) = \frac{N(s)}{D(s)}, \quad \begin{cases} N(s) = b_m s^m + \dots + b_1 s + b_0 \\ D(s) = a_n s^n + \dots + a_1 s + a_0 \end{cases} \implies \begin{cases} \text{num = [bm \dots b1 b0]} \\ \text{den = [an \dots a1 a0]} \end{cases}$$
(B.1)

$$P(s) = \frac{k(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \implies \begin{cases} \mathbf{z} = [\mathtt{z1} \ \mathtt{z2} \ \cdots \ \mathtt{zm}] \\ \mathbf{p} = [\mathtt{p1} \ \mathtt{p2} \ \cdots \ \mathtt{pn}] \end{cases} \tag{B.2}$$

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{u}(t) \end{cases}$$
(B.3)

238 付録 B MATLAB の基本的な操作

関数名	使用例	説明		
margin	margin(sys)	ボード線図の描画と安定余裕の表示		
	<pre>[invL Pm wpc wgc] = margin(sys) Gm = 20*log10(invL)</pre>	ゲイン余裕 $G_{\mathbf{m}}$,位相余裕 $P_{\mathbf{m}}$,位相交差角周波数 ω_{pc} ,ゲイン交差角周波数 ω_{gc} の計算		

■ PID コントローラの設計

関数名	使用例	説明
pidtune	<pre>sysC = pidtune(sysP,type)</pre>	制御対象のモデル sysP に対し, 形式を type とした PID コントローラの設計
	<pre>sysC = pidtune(sysP,type,wgc)</pre>	開ループ伝達関数のゲイン交差角周波数 $\omega_{ m gc}$ を指定
	<pre>sysC = pidtune(sysP,type,opts)</pre>	"pidtuneOptions" により位相余裕や, 目標値追 従と外乱抑制のバランスを設定
pidTuner	pidTuner(sysP)	制御対象のモデル sysP に対し、PID コントローラ を視覚的に設計

■ 状態空間表現に基づく解析

関数名	使用例	説明		
initial	initial(sys,x0)	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $oldsymbol{y}(t)$ の描画 (時間指定なし)		
	initial(sys,x0,t)	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $oldsymbol{y}(t)$ の描画 (時間指定あり)		
	y = initial(sys,x0,t);	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $y(t)$ の計算		
ctrb	Vc = ctrb(A,B)	可制御性行列 $oldsymbol{V}_{ ext{c}} = \left[oldsymbol{B} \ oldsymbol{A} oldsymbol{B} \ \cdots \ oldsymbol{A}^{n-1} oldsymbol{B} ight]$ の計算		
obsv	Vo = obsv(A,C)	可制御性行列 $oldsymbol{V}_{ m o}=\left[egin{array}{c} oldsymbol{C} oldsymbol{C} oldsymbol{A} \ dots \ oldsymbol{C} oldsymbol{A}^{n-1} \end{array} ight]$ の計算 $oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{A}^{n-1} \end{array}$		

$$\left\{ \begin{array}{l} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{array} \right. \implies \text{ sys = ss(A,[],C,[]);}$$

■ 状態空間表現に基づくコントローラ設計

関数名	使用例	説明
acker	<pre>K = - acker(A,B,p)</pre>	極配置法:1入力 n 次系の制御対象に対し, $A+BK$ の固有
		値を $\boldsymbol{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\boldsymbol{u}(t) = \boldsymbol{K}\boldsymbol{x}(t)$ を設計
place	<pre>K = - place(A,B,p)</pre>	極配置法: m 入力 n 次系の制御対象に対し, $A+BK$ の固
		有値を $\mathbf{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\mathbf{u}(t) = \mathbf{K}\mathbf{x}(t)$ を設
		計 $(p_i の重複は m を超えてはならない)$
lqr	K = - lqr(A,B,Q,R)	最適レギュレータ:評価関数
		$J = \int_0^\infty (\boldsymbol{x}(t)^\top \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)^\top \boldsymbol{R} \boldsymbol{u}(t)) dt$
		を最小化する $u(t) = \boldsymbol{K} \boldsymbol{x}(t)$ を設計
care	P = care(A,B,Q,R)	リカッチ方程式
		$PA + A^{\top}P - PBR^{-1}B^{\top}P + Q = O$
		の解 $\mathbf{P} = \mathbf{P}^{\top} > 0$ を求める