研究進捗発表 2018年10月

LDAを用いたAmazonのレビュー データのデータマイニング

B8EM1016 富田優(とみたゆう)

アウトライン

- * ①はじめに
- * ②前回のおさらい
- * ③使用したデータ
- * ④モデル適用の結果
- * 5 考察

はじめに

- * 発表者:富田優
- * 所属:経済学研究科1年
- * 指導教員:石垣先生
- * POSデータやレビューデータの分析をといったマーケティング・リ サーチの分野に進む予定
- * 興味ある分野:統計学、ベイズ統計、機械学習
- ○今日発表する内容 5月に紹介した「トピックモデルを用いた商品の評判要因分析に 関する検討」という論文をもとに進めている研究の発表

前回のおさらい①

項目選択方式

- ○メリット
- * モニターの負担が軽い
- ○デメリット
- * 事前に項目を決める必要
- * サンプル数が必要
- * 人的労力と金銭的費用が大

自由記述方式

- ○メリット
- * 事前に想定できなかった評判要因を知られる
- ○デメリット
- * モニターの負担が重い
- * 解析に労力が必要
- * 多変量解析などの統計的解析 手法が使いにくい

前回のおさらい2

ECサイト上のユーザーレビュー

楽天トラベルのサイト

○メリット

- * 容易に多くのデータを収集可能
- * 統計処理しやすい評点情報
- * 自由記述であるレビュー情報

前回のおさらい③~トピックモデル~

パラメータΦが与えられたときの文書 集合Wの確率は以下の通り

$$p(\boldsymbol{w}|\boldsymbol{\theta_d}, \boldsymbol{\Phi})$$

$$= \prod_{n=1}^{N_d} \prod_{k=1}^K p(z_{dn} = k | \theta_d) p(w_{dn} | \Phi_k)$$

 $\prod_{n=1}^{N_d} \sum_{k=1}^K \theta_{dk} \, \varphi_{kw_{dn}}$ あとはこの θ_{dk} , $\varphi_{kw_{dn}}$, Kをデータから推定する

W:文書集合

Φ:φ_νのベクトル表示

w_d:文書dの単語集合

Φν:単語νが出現する確率

 N_d ;文書dに含まれる単語数

w_{dn}:文書dのn番目の単語

Φ_{wdn}:文書dのn番目の単語が出る確率

前回のおさらい4

○やりたいこと

レビューデータをもっと有効活用して、消費者の商品に対する判断基準を理解し、さらなる購買につなげたい

○具体的な手法

LDA(トピックモデル)を用いてトピック分布と単語分布を推定

○回帰分析

商品のレーティングを、トピック分布、単語分布、価格、消費者の 属性に回帰する

○どの評判要因がレーティングに影響しているのか分析

実験データ

Amazon.comのレビューデータ

分類	Musical instruments
レビュー数	10,213
総語彙数	22756

	asin	helpful.0	helpful.1	overall	reviewText	reviewTime	reviewerID	reviewerName	summary	unixReviewTime
	<chr></chr>	<db7></db7>	<db1></db1>	<db7></db7>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>
1	B00000JBLH	3	4	5	I bought m∼	09 3, 2004	A32T2H815~	ARH	A soli∼	<u>1</u> 094 <u>169</u> 600
2	B00000JBLH	7	9	5	"WHY THIS \sim	12 15, 20~	A3MAFS04Z~	"Let it Be ~	Price ~	<u>1</u> 197 <u>676</u> 800
3	B00000JBLH	3	3	2	I have an ~	01 1, 2011	A1F1A0QQP~	Mark B	Good f∼	<u>1</u> 293 <u>840</u> 000
4	B00000JBLH	7	8	5	I've start∼	04 19, 20~	A49R5DBXX~	R. D Johnson	One of~	<u>1</u> 145 <u>404</u> 800
5	B00000JBLH	0	0	5	For simple~	08 4, 2013	A2XRMQA6P~	Roger J. Bu∼	Still ~	<u>1</u> 375 <u>574</u> 400
6	B00000JBLH	10	12	5	While I do∼	01 23, 20~	A2JFOHC9W~	scott_from_~	Every ~	<u>1</u> 011 <u>744</u> 000
7	B00000JBLH	3	4	5	I've had a∼	01 17, 20~	A38NELQT9~	W. B. Halper	A work~	<u>1</u> 168 <u>992</u> 000
8	B00000JBLH	0	0	5	Bought thi~	11 14, 20~	AA8M6331N~	ZombieMom	Fast s∼	<u>1</u> 384 <u>387</u> 200
9	B00000JBLU	3	3	5	This is a ~	12 7, 2010	A25C2M3QF~	Comdet	Nice d∼	<u>1</u> 291 <u>680</u> 000
_0	B00000JBLU	0	0	5	I love thi~	12 2, 2013	A1RTVWTWZ~	"Hb \"Black~	Love I~	<u>1</u> 385 <u>942</u> 400

Perplexity

Perplexityは分岐数または選択肢の数を表している

- * モデルによって単語の候補をどれだけ絞り込めるか
- * より絞り込める方がよい→値が低い方がよい

*
$$L(\mathbf{w^{test}}|\mathbf{M}) = \sum_{d=1}^{M} \sum_{w_{d,i \in w_d^{test}}} \log p(w_{d,i}|\mathbf{M})$$

*
$$PPL(\mathbf{w^{test}}|\mathbf{M}) = exp\left\{-\frac{L(\mathbf{w^{test}}|\mathbf{M})}{\sum_{d=1}^{M} n_d^{test}}\right\}$$

- * w^{test}:テストデータの単語集合
- * M:学習されたモデル
- * Wd,i:ドキュメントdのi番目の単語

トピック数とパープレキシティ

Topic	Number of vocabulary	Perplexity (train)	Perplexity (test)
10	22756	1352.709	1547-395
15	22756	1305.474	1493.553
20	22756	1273.079	1461.516
25	22756	1247.578	1436.943

回帰①

- 多重回帰
- ・モデル
- $R_i = \alpha_0 + \sum_{k=1}^{14} \beta_k \theta_{ik}$
- R_i i番目のレビューの評点
- οα0 定数項
- ・β_k トピックKの回帰係数
- θ_{ik} i番目のレビューのトピックKの確率

回帰① 結果

```
Residuals:
            1Q Median
   Min
                            3Q
                                   Max
-3.8734 -0.4196 0.3671 0.5237
                                1.7290
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
             1.6675
                        0.3548
                                 4.699 2.64e-06 ***
             4.2448
                        0.4505
                                 9.422 < 2e-16 ***
topic1
topic2
             3.3025
                        0.4633 7.128 1.09e-12 ***
             2.4109
                        0.4459 5.407 6.55e-08 ***
topic3
             3.5780
                        0.4373 8.183 3.11e-16 ***
topic4
                        0.4384
topic5
             3.8634
                                 8.813 < 2e-16 ***
topic6
             2.7120
                        0.4296
                                 6.312 2.86e-10 ***
topic7
            -0.6614
                        0.5414
                                -1.222
                                       0.22183
             3.2352
                        0.4317
                                7.494 7.24e-14 ***
topic8
topic9
            -1.9210
                        0.5107
                               -3.761 0.00017 ***
             3.8186
topic10
                        0.4994
                               7.646 2.25e-14 ***
             4.7641
                        0.4917
topic11
                               9.689 < 2e-16 ***
                        0.5126
topic12
             4.8655
                               9.492
                                       < 2e-16 ***
             3.6773
                        0.4555
                                 8.074 7.60e-16 ***
topic13
topic15
             4.3723
                        0.4665
                                 9.372
                                       < 2e-16 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.8738 on 10198 degrees of freedom
Multiple R-squared: 0.04974, Adjusted R-squared: 0.04844
```

F-statistic: 38.13 on 14 and 10198 DF, p-value: < 2.2e-16

回帰2

- * 順序ロジスティック回帰
- * モデル

*
$$y_i = \frac{1}{1 + e^{-z_i}}$$

$$* z_i = \alpha_0 + \sum_{k=1}^{14} \beta_k \theta_{ik}$$

- * y_i i番目のレビューの評点(ただし、 y_i $\begin{cases} 1 \text{ if } R_i \geq 5 \\ 0 \text{ otherwise} \end{cases}$
- * $R_i \ge 5,4,3,2$ と4パターンで推定 4パターンで β_k は同じと仮定 α_0 は4種類

Coefficients:

	Value	Std.	Error	t value
topic1	8.752		1.115	7.848
topic2	5.720		1.104	5.182
topic3	3.813		1.053	3.623
topic4	6.750		1.052	6.414
topic5	7.420		1.063	6.982
topic6	4.801		1.013	4.738
topic7	-5.312		1.254	-4.235
topic8	6.009		1.035	5.806
topic9	-3.344		1.203	-2.780
topic10	8.286		1.227	6.753
topic11	8.157		1.197	6.817
topic12	10.239		1.255	8.156
topic13	6.839		1.083	6.314
topic15	9.416		1.148	8.202

Intercepts:

	Value	std.	Error	t value
1 2	1.2477	0.84	184	1.4706
2 3	2.0487	0.84	172	2.4182
3 4	3.1256	0.84	169	3.6908
4 5	4.4186	0.84	172	5.2154

Residual Deviance: 19076.18

AIC: 19112.18

回帰② 結果

回帰結果②

intercept	beta	T-value
1 2	-5.2930	-9.1209
2 3	-4.4895	-7.7663
3 4	-3.4063	-5.9063
4 5	-2.1032	-3.6518
AIC	19025.25	

回帰③

- * レーティングをワード分布に回帰
- * Lasso推定
- * モデル
- * $R_i = \alpha_0 + \sum_{v=1}^{22756} \gamma_v \varphi_{iv} I(v)_i$
- * R_i i番目のレビューの評点
- * α₀ 定数項
- * γ_ν 単語vの回帰係数
- * φ_{ik} i番目のレビューの単語vの出現確率
- * $I(v)_i$ i番目のレビューの単語vの出現回数

回帰③ 結果

term	beta	term	beta	term	beta
even	-1.667771162	back	-4.855232252	star	-13.65773519
better	-1.345167395	year	1.594289593	cheap	-9.782175282
need	2.29803766	perfect	11.12399192	bad	-8.164416925
high	1.770711918	problem	-1.191243457	unit	-2.494619464
nice	1.500921608	becaus	-4.15477247	pig	-1.350565567
onli	-5.926596794	best	7.323327732	ubass	-1.156704462
great	1.494628887	seem	-4.279183092	ordering	1.429908253
get	-1.938838758	can	1.568680456	squeezing	-1.986226015
love	4.079614215	alway	1.895679879	apt	-4.644972477
tri	-9.813784969	someth	-8.999300582	onstagegranted	-21.30583837
end	-2.179060762	easi	5.88910488	bonamassa	1.101577968

回帰④

レーティングをトピック分布とワード分布に回帰

- * Lasso推定
- * モデル
- * $R_i = \alpha_0 + \sum_{k=1}^{13} \beta_k \theta_{ik} + \sum_{v=1}^{22756} \gamma_v \varphi_{iv} I(v)_i$
- * R_i i番目のレビューの評点
- * α₀ 定数項
- * β_k トピックKの回帰係数
- * γ_v 単語vの回帰係数
- * θ_{ik} i番目のレビューのトピックKの確率
- * φ_{ik} i番目のレビューの単語vの出現確率
- * $I(v)_i$ i番目のレビューの単語vの出現回数

考察

- * ①15のトピックを得られたが、トピックの解釈が難しい
- * ②トピック抽出にランダム性があるので、ロバストじゃない
- * ③モデルの推定と回帰は一緒にやった方がいいのではないか
- * ④レーティングを上げる、あるいは下げる傾向があるトピック・単語の回帰係数を得られたが、商品ごとに用いた方が係数の解釈しやすいand他のデータを使いやすい(価格データ等)のではないか

課題

- 1. トピック数の決め方 階層ディリクレモデル
- 2. 回帰と一緒にトピックモデルを推定
- 3. 回帰の仕方 0過剰ポアソン分布、順序ロジットでスパース推定
- 4. 商品ごとにデータを分けるべきなのか (商品に対する単語のイメージを量的に抽出と捉えることができる)
- 5. 単語を制限するべきか(名詞と形容詞のみにする等)
- 6. ノイズ(やらせ)の混入
- 7. 階層モデルへの拡張
- 8. 他の変数をどう入れるべきか

参考

- 1. Ldaのモデル選択におけるperplexityの評価(東京農工大学工学部情報工学科2年 森尾 学 2016/02/01)
- 2. トピックモデルによる統計的潜在意味解析(奥村2013)
- 3. トピックモデルを用いた商品の評判要因分析に 関する検討(月岡2013et al)