- Introduction
- Power series
- Differentiation in Higher Dimensions
- Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

Introduction into Linear Regression

- Theory and experiment: How to confirm the congruence?
- Example:
 Elongation y [cm] of a spring subject to a force t [N]

Hooke's law:

$$y=y_0+\frac{1}{D}t$$

(*D* spring constant, describes stiffness of spring, y_0 pre-elongation of spring due to own weight)

Source: Wikipedia

• Are the free parameters D, y_0 constant over different experiments?

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

Theory:	y(t)	$= x_1$	$+ x_2 t$
---------	------	---------	-----------

Data: (t_i, y_i)

Error (residuum): $r_i = y_i - y(t_i)$

i	t _i	y _i	$y(t_i)$	r _i	r_i^2
1	1	2			
2	2	3			
3	3	7			
4	4	8			
5	5	9			

Linear Regression - Intro

1	0			ı	-	ı	
	9 -					+	-
	8 -				+		-
	7 -			+			-
	6 -						-
>	5 -						-
	4 -						-
	3 -		4	+			-
	2 -	+					-
	1 -						-
	0	1	2	2 3 t	4	5	6

Theory: y(t) = 1 + t

Data: (t_i, y_i)

Error (residuum):
$$r_i = y_i - y(t_i) = y_i - 1 - t_i$$

_ i	ti	y i	$y(t_i)$	r _i	r_i^2
1	1	2	2	0	0
2	2	3	3	0	0
3	3	7	4	3	9
4	4	8	5	3	9
5	5	9	6	3	9
				$\sum_{i=1}^{5} I$	$r_i^2 = 27$

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in **Higher Dimensions**

Further Topics in Calculus

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in **Higher Dimensions**

Further Topics in Calculus

Summary -Outlook and Review

Theory: $y(t) = 4 + t$	Theory	y : <i>y</i>	(t)	=	4	+	t
------------------------	--------	---------------------	-----	---	---	---	---

Data: (t_i, y_i)

Error (residuum):
$$r_i = y_i - y(t_i) = y_i - 4 - t_i$$

	I	l I	ĺ		1 •
i	ti	y i	$y(t_i)$	r _i	r_i^2
1	1	2	5	-3	9
2	2	3	6	-3	9
3	3	7	7	0	0
4	4	8	8	0	0
5	5	9	9	0	0
				$\sum_{i=1}^{5} I$	$r_i^2 = 18$

Linear Regression - 2nd Try

Linear Regression - 3rd Try

Theory: y(t) = 2.5 + t

Data: (t_i, y_i)

Error (residuum): $r_i = y_i - y(t_i) = y_i - 2.5 - t_i$

i	t _i	y _i	$y(t_i)$	r_i	r_i^2	
1	1	2	3.5	-1.5	2.25	
2	2	3	4.5	-1.5	2.25	
3	3	7	5.5	1.5	2.25	
4	4	8	6.5	1.5	2.25	
5	5	9	7.5	1.5	2.25	
				$\sum_{i=1}^{5} r_i^2 = 11.25$		

S.-J. Kimmerle

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in **Higher Dimensions**

Further Topics in Calculus

Linear Regression - Solved

Theory: y(t) = 0.1 + 1.9 t

Data: (t_i, y_i)

Error (residuum): $r_i = y_i - y(t_i) = y_i - 0.1 - 1.9 t_i$

i	t_i	y _i	$y(t_i)$	r _i	r_i^2
1	1	2	2	0	0
2	2	3	3.9	-0.9	0.81
3	3	7	5.8	1.2	1.44
4	4	8	7.7	0.3	0.09
5	5	9	9.6	-0.6	0.36
				$\sum_{i=1}^{5} r_i$	$\frac{1}{2} = 2.7$

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Linear Regression: Normal Equations (~= 2)

Motivation normal equations ~> see blackboard In general (*m* arbitrary):

$$A^{\top}A = \begin{pmatrix} m & \sum_{i=1}^{m} t_i \\ \sum_{i=1}^{m} t_i & \sum_{i=1}^{m} t_i^2 \end{pmatrix}, \quad A^{\top}\mathbf{y} = \begin{pmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} t_i y_i \end{pmatrix}$$

$$x_{1} = \frac{\sum_{i=1}^{m} t_{i}^{2} \sum_{j=1}^{m} y_{j} - \sum_{i=1}^{m} t_{i} \sum_{j=1}^{m} t_{j} y_{j}}{m \sum_{i=1}^{m} t_{i}^{2} - \left(\sum_{i=1}^{m} t_{i}\right)^{2}}$$

$$x_{2} = \frac{m \sum_{i=1}^{m} t_{i} y_{i} - \sum_{i=1}^{m} t_{i} \sum_{j=1}^{m} y_{j}}{m \sum_{i=1}^{m} t_{i}^{2} - \left(\sum_{i=1}^{m} t_{i}\right)^{2}}$$

$$A^{T}A = \begin{pmatrix} \Lambda & \Lambda & \Lambda & \Lambda \\ -L_{4} & t_{2} & t_{3} & t_{4} & t_{5} \end{pmatrix}$$

Analysis 2

S.-J. Kimmerle

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in **Higher Dimensions**

Further Topics in Calculus

We conclude:

- In general more data points y_i (here 5) as parameters x_i (here 2)
- Measurement of process/data collection afflicted with uncertainties (w/o systematical errors)
- Overdetermined LES \impsi in general no solution exists

Aims:

- Determine $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ "optimally" from data
- General method to do that

We call this **regression** (in particular in stochastics) or **curve fitting**.

Special case of a mathematical optimization method

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Problem (Linear Regression)

Assume: linear relation (e.g. from physics)

$$y(t) = x_1 + x_2 t$$

Given: data points (t_i, y_i) , i = 1, ..., m, afflicted with uncertainties (errors) ε_i . The uncertainties are random variables and 0 in average.

Searched for: $x_1, x_2 \in \mathbb{R}$, such that

$$\begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_i \\ \vdots & \vdots \\ 1 & t_m \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \end{pmatrix}$$

We write

$$A\mathbf{x} = \mathbf{y} + \boldsymbol{\varepsilon}$$

with $A \in \mathbb{R}^{m \times 2}$, $\mathbf{x} \in \mathbb{R}^2$, $\mathbf{y}, \boldsymbol{\varepsilon} \in \mathbb{R}^m$.

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

General situation: $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{y} \in \mathbb{R}^{m}$

Idea: determine $\mathbf{x} = (x_1, \dots, x_n)^{\top}$, such that the error in the LES

$$||A\mathbf{x} - \mathbf{y}||_2 = \sqrt{\sum_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j - y_i\right)^2}$$
bzw. $\frac{1}{2} ||A\mathbf{x} - \mathbf{y}||_2^2$

is minimized.

The minimum is denoted by $\hat{\mathbf{x}}$.

This minimization problem is called a **linear regression problem** or **least-squares problem**.

Method of least squares, better method of least residual sum of squares

By C. F. Gauß and A.-M. Legendre (1805)

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Problem (★) (Lin. regression as minimization problem)

Let be given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{y} \in \mathbb{R}^m$ with $m, n \in \mathbb{N}$.

We search for the solution $\hat{\mathbf{x}} \in \mathbb{R}^n$ of the minimization problem

$$\frac{1}{2}||A\hat{\mathbf{x}} - \mathbf{y}||_2^2 = \min_{x \in \mathbb{R}^n} \frac{1}{2}||A\mathbf{x} - \mathbf{y}||_2^2.$$

- If m = n and A invertible, then $A\mathbf{x} = \mathbf{y}$ has a unique solution.
- The case m > n is of uttermost importance in applications.
- In the case m < n the LES $A\mathbf{x} = \mathbf{y}$ is underdetermined. It may be unsolvable, if $\operatorname{Rank}(A) \neq \operatorname{Rank}(A \mid \mathbf{y})$.

Moreover, other norms as $\|\cdot\|_2$ could be considered. Then the determination of solutions is harder in general, since differentiability might not be given.

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Gaussian normal equations)

 \hat{x} solves Problem (\star) if and only iff the **normal equations**

$$A^{\mathsf{T}}A\hat{\mathbf{x}}=A^{\mathsf{T}}\mathbf{y}.$$

hold true.

 $A^{T}A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite.

Theorem (Uniqueness)

Let $m \ge n$. Suppose $A \in \mathbb{R}^{m \times n}$ has maximal rank, d.h. rank(A) = n.

Exactly then the minimization problem (\star) or the normal equations, resp., are uniquely solvable.

Then $A^T A \in \mathbb{R}^{n \times n}$ is invertible and positive definite.

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in **Higher Dimensions**

Further Topics in Calculus

Summary -Outlook and Review

Figure: Curve fitting over different temperatures T compared with measured data points (squares) with confidence intervals for q = 90%(triangles). Left-hand side for $\mu_{krit}(T) \pm \sigma_{krit}(T)$, in red the fitted curve, right-hand side $\sigma_{krit}(T)$. [K., Dvorsky, Ließ, Avenhaus 2019]

Model based approach

$$f_{krit}(T) = t_{\Theta} + t_0 \exp\left(\left(\frac{T_a}{T - T_{\infty}}\right)^d\right)$$

Example (Measurement of TTF (Time-To-Failure) of Electrical Automotive Components)

T	[°C]	115	130	140	155
μ_{krit}	[<i>h</i>]	3791.62	987.74	439.66	189.94

Conjecture (model based): Arrhenius law

$$\mu_{krit}(T) = t_0 \exp\left(\frac{T_a}{T - T_{\infty}}\right)$$

(μ_{krit} TTF in h, t_0 reaction-kinetic period in h, T temperature in K, T_a activation temperature in K, $T_{\infty} = 173.15$ consolidation temperature in K)

We may transform this into an affine-linear relation

$$ln(\mu_{krit}(T)) = ln(t_0) + \frac{T_a}{T - T_\infty} \qquad \Longleftrightarrow \qquad y(t) = x_1 + x_2 t$$

By insertion of measured data we obtain a linear equation system (LES)

$$y_i = x_1 + x_2 t_i, \quad i = 1, ..., 4.$$

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Linear Regression: Example - Result

Figure: Curve fitting over different inverse temperature differences t, in semi-logarithmic representation and compared with measured data points (squares) together with confidence intervals for q = 90% (triangles). Left-hand side for $t_{krit}(1/t) \pm \sigma_{krit}(1/t)$, in red the fitted curve. Right-hand side $\sigma_{krit}(T)$. [K., Dvorsky, Ließ, Avenhaus 2019]

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

Linear Regression: Example - Re-transformed Result

Figure: Curve fitting over different temperatures T, re-transformed in exponential representation and compared with measured data points (squares) together with confidence intervals for q=90% (triangles). Left-hand side for $t_{krit}(T) \pm \sigma_{krit}(T)$, in red the fitted curve. Right-hand side $\sigma_{krit}(T)$. [K., Dvorsky, Ließ, Avenhaus 2019]

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n Differentiability in \mathbb{R}^n Optimization in \mathbb{R}^n

Introduction into Linear Regression

Integration in Higher Dimensions

Further Topics in Calculus

