Robotics 1

February 3, 2022

Exercise #1

Figure 1 shows two 3D views, together with top and side views with geometric data, of the Crane-X7 robot (by RT Corporation, Japan), a 7-dof arm with all revolute joints. The base frame RF_0 and the end-effector frame RF_e attached to the gripper are already assigned as in the figure.

- i. Define a set of Denavit-Hartenberg (D-H) frames for the robot. The origin of the last D-H frame should coincide with the origin O_e of frame RF_e .
- ii. Draw clearly the relevant axes of the D-H frames and fill in the associated table of parameters. Specify therein the signs of the variables q_i , i = 1, ..., 7, in the shown robot configuration.
- iii. Provide the constant rotation matrix ${}^{7}\mathbf{R}_{e}$.

Figure 1: Views of the Crane-X7 robot, with geometric data (in [mm]) and frames RF_0 and RF_e .

Use the Extra Sheet to complete this exercise. Fill in there also the elements of the matrix ${}^{7}\mathbf{R}_{e}$.

Exercise #2

The absolute initial orientation of the end effector of a 6R robot with a spherical wrist is specified by the YXY sequence of Euler angles $\alpha = (\alpha_1, \alpha_2, \alpha_3) = (45^{\circ}, -45^{\circ}, 120^{\circ})$. A different orientation is expressed instead by the rotation matrix

$${}^{0}\boldsymbol{R}_{f}=\left(egin{array}{ccc} 0 & \sin\phi & \cos\phi \ 0 & \cos\phi & -\sin\phi \ -1 & 0 & 0 \end{array}
ight), \qquad {
m with} \; \phi=rac{\pi}{3}.$$

Find an axis-angle representation (r, θ) of the relative rotation between these two end-effector orientations. Further, if a motion is imposed to the end effector with constant angular velocity $\omega = 1.1 \cdot r$ [rad/s], what will be the time T_{ω} needed to accomplish this change of orientation?

Exercise #3

Assume that the motion of a 3R planar robot having equal links of unitary length is commanded by the joint acceleration $\ddot{q} \in \mathbb{R}^3$. With reference to Fig. 2, the robot end effector should follow a desired smooth trajectory $p_d(t) = \begin{pmatrix} p_{x,d}(t) & p_{y,d}(t) \end{pmatrix}^T \in \mathbb{R}^2$ in position, while keeping constant its angular speed at some value $\omega_{z,d} \in \mathbb{R}$ (perhaps, after an initial transient).

- i. Provide the general form of the command \ddot{q} that executes the full task in nominal conditions.
- ii. Study the singularities that may be encountered during the execution of the task.
- iii. Compute the numerical value of \ddot{q} when the robot is in the nominal state $x_d = (q_d, \dot{q}_d) \in \mathbb{R}^6$ and for a desired $\ddot{p}_d \in \mathbb{R}^2$, as given by

$$\boldsymbol{q}_d = \left(\begin{array}{c} \pi/4 \\ \pi/3 \\ -\pi/2 \end{array} \right) \quad [\mathrm{rad}], \qquad \dot{\boldsymbol{q}}_d = \left(\begin{array}{c} -0.8 \\ 1 \\ 0.2 \end{array} \right) \quad [\mathrm{rad/s}], \qquad \ddot{\boldsymbol{p}}_d = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \quad [\mathrm{m/s^2}].$$

What are the values of p_d , \dot{p}_d , and of $\omega_{z,d}$ in this nominal robot state?

iv. If at some time $t \geq 0$, there is a position and/or a velocity error in the execution of the desired end-effector trajectory $\boldsymbol{p}_d(t)$, how would you modify the commanded acceleration $\ddot{\boldsymbol{q}}(t)$ so as to recover exponentially the error to zero, both in position and velocity? And what if also the angular velocity $\omega_z(t)$ is not the desired one?

Figure 2: A 3R planar robot executing the desired Cartesian task.

¹This rate is a property that automatically follows from the linearity of an asymptotically stable error dynamics.

Exercise #4

Consider the situation in Fig. 3, with all data defined therein in symbolic form. The PR robot starts at rest with its end effector placed in $P_{start} = (S, L)$ and should move the end effector to $P_{goal} = (S + \Delta, L)$ in a given time T and stop there, without colliding with the obstacle \mathcal{O}_{obs} located at $(S + (\Delta/2), L/2)$. Design a joint trajectory $\mathbf{q}_d(t) \in \mathbb{R}^2$, $t \in [0, T]$, that realizes the task with continuous acceleration $\ddot{\mathbf{q}}_d(t)$ and no instant of zero velocity in the open interval (0, T). The solution should be parametric with respect to L > 0 (length of the second link of the robot), S > 0 (x-coordinate of P_{start}), $\Delta > L/2$ (distance of the two Cartesian points in the x-direction), and T (motion time). Provide then a numerical example, sketching the plot of $\mathbf{q}_d(t)$.

Figure 3: A PR robot should move its end effector from P_{start} to P_{goal} , avoiding the obstacle \mathcal{O}_{obs} .

Exercise #5

A transmission/reduction system that displaces rotary motion from the motor axis to the joint axis of a link of length L is sketched in Fig. 4. The system involves two toothed gears and two pulleys, connected by a belt at a distance D. The radius of each of the two gear wheels and of the two pulleys is denoted as r_i , i = 1, ..., 4. At t = 0, the link is in the position shown in the figure. If the motor spins on its axis z_m with a constant angular speed $\dot{\theta}_m > 0$, how much time T_{θ} will it take for the link to rotate by 90°? Will the link rotate clockwise (CW) or counterclockwise (CCW) w.r.t. its joint axis z_j ? Evaluate then T_{θ} using the following data:

$$\dot{\theta}_m = 10 \text{ [rad/s]}, \qquad r_1 = 20, \ r_2 = 60, \ r_3 = 8, \ r_4 = 32 \text{ [mm]}, \qquad D = 0.15, \ L = 0.3 \text{ [m]}.$$

Figure 4: A transmission/reduction system for a motor/link pair.

[210 minutes (3.5 hours); open books]