Лабораторная работа № 2

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Цель работы: получить навык приближенного вычисления определенных интегралов.

Задания на лабораторную работу

Во всех задачах требуется вычислить приближенное значение определенного интеграла

$$J[f] = \int_{a}^{b} f(x)dx$$

от заданной в индивидуальном задании функции f(x), определенной на отрезке [a,b]. Необходимо также вычислить точное значение $\bar{J}[f]$ этого интеграла (при необходимости, воспользоваться пакетом Maple).

Задача 1. (1 балл)

- 1) Написать вычислительную программу на языке программирования C++ для вычисления интеграла J[f] по квадратурным формулам прямоугольников и трапеций на равномерной сетке.
- 2) Построить графики зависимости абсолютной погрешности

$$\Delta = |J - \bar{J}|$$

вычисления интеграла с использованием обеих формул от количества узлов сетки.

3) Для каждой из квадратурных формул определить минимальное количество узлов равномерной сетки, обеспечивающее вычисление интеграла с указанной в индивидуальном задании величиной абсолютной погрешности $\overline{\Delta}$.

Задача 2. (1 балл)

Выполнить п. 1)-3) из Задачи 1 для квадратурной формулы Симпсона.

Задача 3. (2 балла)

- 1) С использованием написанной при решении Задачи 1 программы определить порядок главного члена погрешности квадратуры, реализовав программно процесс Эйткена.
- 2) Зная приближенное значение порядка главного члена погрешности, реализовать метод Рунге повышения порядка точности квадратуры. Определить порядок точности модифицированного метода.
- 3) С использованием правила Ромберга вычислить значение интеграла с абсолютной погрешностью $10^{-6}\overline{\Delta}$.

Задача 4. (2 балла)

- 1) Заменой переменной интегрирования отобразить отрезок интегрирования [a,b] в [-1,1].
- 2) Построить квадратурную формулу Гаусса с единичным весом на системе ортогональных многочленов Лежандра.
- 3) Выполнить программную реализацию построенной квадратуры на языке программирования С++.
- 4) С использованием написанной программы построить график абсолютной погрешности приближенного вычисления интеграла от числа узлов сетки и определить минимальное количество узлов сетки, обеспечивающее вычисление интеграла с указанной в индивидуальном задании величиной абсолютной погрешности $\overline{\Delta}$.

Задача 5. (З балла)

- 1) Для заданного интеграла получить приближенное решение задачи об оптимальном распределении узлов квадратурной формулы трапеций.
- 2) Выполнить программную реализацию квадратуры с оптимальным распределением узлов.
- 5) С использованием написанной программы определить минимальное оптимальное количество узлов сетки, обеспечивающее вычисление интеграла с указанной в индивидуальном задании величиной абсолютной погрешности $\overline{\Delta}$.

Задача 6. (1 балл)

- 1) Написать программу на языке программирования С++ для приближенного вычисления интеграла методом Монте-Карло.
- 2) С использованием написанной программы построить график зависимости оценки математического ожидания абсолютной погрешности приближенного интегрирования от количества случайных точек метода. Размер выборки (количество повторных вычислительных экспериментов) для каждого случая принять равным 100.

Теоретическая часть

Номер задачи	Литература
1	[1] (Глава 3, §1), [2] (Глава IV, §1, пп.2,4), [3] (Глава II, §2)
2	[1] (Глава 3, §1) [2] (Глава IV, §1, п.3), [3] (Глава II, §2)
3	[1] (Глава 3, §13-§15), [2] (Глава IV, §1, п.6), [3] (Глава II, §2)
4	[1] (Глава 3, §5), [2] (Глава IV, §1, п.7)
5	[1] (Глава 3, §11, §12)
6	[2] (Глава IV, §4), [1] (Глава 5, §8)

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.
- 2. Калиткин Н.Н. Численные методы.
- 3. Самарский А.А. Введение в численные методы

Индивидуальные задания для выполнения лабораторной работы №2 (Взять из таблицы заданий к лабораторной работе № 1)

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.