

Security Engineering

Einführung und Überblick

Martin Gruhn Institut für Informatik FU Berlin 17. Januar 2008

Inhalt

- Begriffe und Definitionen
 - Was ist IT-Sicherheit?
 - Was ist Security Engineering?
- Security Engineering
 - Prinzipien
 - Sicherheit im Entwicklungsprozess
 - Mechanismen, Maßnahmen, Werkzeuge
 - Evaluierung und Zertifizierung
- Aktuelle (Forschungs-) Aktivitäten

Begriffe und Definitionen

Informationssicherheit (security) nach [Eckert04]

<u>Schutz von IT-Systemen</u> vor unautorisiertem Informationsgewinn und Veränderung von gespeicherten oder verarbeiteten Informationen.

- Elementare Schutzziele:
 - Vertraulichkeit, Unversehrtheit, Authentizität
 - Außerdem: Verbindlichkeit, Verfügbarkeit, Anonymität, ...
- IT-System umfasst:
 - Systemsicherheit und Netzsicherheit (schwer trennbar)
 - Hardware und Software (im Internet meist nur SW)

Begriffe und Definitionen

- Funktionssicherheit (safety):
 - Funktionalität erfüllt Spezifikation
 - Informationssicherheit/Schutz ist Spezialisierung von Funktionssicherheit
- Weitere Nomenklatur:
 - Schutz (security) vs. Sicherheit (safety)
- Datenschutz (privacy):
 - Selbstbestimmung über persönliche Informationen

Was ist Security Engineering?

Security Engineering behandelt Werkzeuge, Prozesse und Methoden für Entwurf, Implementierung und Test von sicheren IT-Systemen.

R. Anderson

Sicherheitsbewusste Softwaretechnik

P. Löhr

- Betont ganzheitlichen Ansatz im Gegensatz zu einem speziellen anzuwendenden Schutzverfahren
- Bezeichnungen für LVs, z. B.:
 - IT-Sicherheit (FU Berlin)
 - Security Engineering (TU Darmstadt, Uni Mannheim)

Martin Gruhn

Standardwerk von Ross Anderson: "Security Engineering"

- Protokolle
- Zugriffsschutz
- Kryptographie
- Mehrschichtige Sicherheit
- Mehrseitige Sicherheit
- Überwachung
- Biometrie
- Physischer Verfälschungsschutz
- Kopierschutz und Datenschutz
- Prozesse, Management und Evaluierung
- ... und viele Szenarien und Beispiele

Standardwerk von Ross Anderson: "Security Engineering"

- Protokolle
- Zugriffsschutz
- Kryptographie
- Mehrschichtige Sicherheit
- Mehrseitige Sicherheit
- Überwachung
- Biometrie
- Physischer Verfälschungsschutz
- Kopierschutz und Datenschutz
- Prozesse, Management und Evaluierung
- ... und viele Szenarien und Beispiele

Probleme bei IT-Sicherheit

- Grundsatzproblem
 - Software Engineering stellt sicher, dass die Spezifikation unter vorgesehenen Bedingungen erfüllt wird.
 - Security Engineering soll verhindern, dass ein Schutzziel insb. unter unvorhergesehenen Bedingungen verletzt wird (-> Angreifer).
- Außerdem (z.B. nach [DevStu00])
 - Entwickler sind keine Sicherheitsfachleute
 - Kunde: Funktionalität vor Sicherheit
 - Unabhängige Behandlung von funktionalen und sicherheitsrelevanten Anforderungen
 - Sicherheit häufig am Ende des Entwicklungsprozesses

Inhalt

- Begriffe und Definitionen
 - Was ist IT-Sicherheit?
 - Was ist Security Engineering?
- Security Engineering
 - Prinzipien
 - Sicherheit im Entwicklungsprozess
 - Mechanismen, Maßnahmen, Werkzeuge
 - Evaluierung und Zertifizierung
- Aktuelle (Forschungs-) Aktivitäten

Prinzipien für sichere IT-Systeme

8 Prinzipien nach Salzer/Schröder (SalSch75)

- Economy of mechanism
 - "Keep the design as simple and small as possible."
 - Begünstigt Durchsichten und Debugging
- Fail-safe defaults
 - "The default situation is lack of access."
 - Lückenhafte Konfiguration tendiert zu sicheren Zuständen
- Complete mediation
 - "Every access to every object must be checked for authority."
 - Vorsicht vor Optimierung Zugriffsschutzmechanismen
- Open design
 - "The design should not be secret"

- Separation of privilege
 - "Two keys"
 - Vier-Augen-Prinzip
- Least privilege
 - "Need-to-know"
 - So wenig Rechte wie möglich zur Aufgabenbewältigung
- Least common mechanism
 - Minimieren potentieller Informationsflüsse zwischen Nutzern -> Möglichst auf einen Nutzer beschränkte Prozesse
- Psychological acceptability
 - "Mental image of his protection goals matches the mechanisms to use"

IT-Sicherheit im Entwicklungsprozess

Martin Gruhn

Grundlage bildet BSI Grundschutzhandbuch:

1. Analyse:

- Strukturanalyse:
 - Funktionale Anforderungen, Einsatzumgebung (Topologieplan); Funktionale Komponenten
- Schutzbedarfsermittlung:
 - Mit Hilfe von Schadenszenarien (Auswirkungen auf Aufgabenerfüllung, Unversehrtheit, finanziell)
- Bedrohungsanalyse:
 - z. B. mit Bedrohungsbaum, Bedrohungsmatrix
- Risikoanalyse:
 - Kombination von Wahrscheinlichkeit und potentiellem Schaden eines Angriffs

Martin Gruhn

IT-Sicherheit im Entwicklungsprozess

2. Modellierung:

- Sicherheitsstrategie:
 - Bestimmung der Maßnahmen zur Erfüllung des Schutzbedarfs (z.B. Authentisierung, Rechteverwaltung)
- Sicherheitsmodell:
 - Rollenmodell (Rollen-Rechte-Ressourcen); evtl. formal

3. Sicherheitsarchitektur:

 Konkrete Umsetzung der Sicherheitsstrategie in detaillierte Architektur

4. Umsetzung

- Implementierung
- Validierung: Modul- und Integrationstests; Code-Inspektionen; Penetrationstests

5. Aufrechterhaltung im laufenden Betrieb

IT-Sicherheit im Entwicklungsprozess

- Kritik an Entwicklungsprozess f
 ür sichere SW
 - Ähnelt Wasserfallmodell
 - Was ist mit agilen Ansätzen?
 - Was ist mit open source Projekten?

Integration in Softwareentwicklungsprozess?

Martin Gruhn 15/37

Maßnahmen zur Analyse

- Bedrohungsbaum
 - Wurzel: Bestimmte Bedrohung
 - Knoten: Teilziel
 - Und/Oder Verknüpfungen
 - Angriffsvariante: Ein Weg von Wurzel zum Blatt
 - Textuell oder graphisch (Beispiel folgt)
- Bedrohungsmatrix
 - Klärt: Welches Angriffsszenario kann durch wen (oder was) in welchem Bereich ausgeführt werden
 - Gefährdungsbereiche (Zeilen)
 - Bedrohungsauslöser (Spalten)
 - Angriffsszenarien (Felder)

Maßnahmen zur Analyse

Bedrohungsmatrix

Quelle: Vorlesung SySi05 (Prof. Löhr)

	Programmierer	interner Benutzer	externer Benutzer	mobiler Code
HW-Angriffe	-	Sicherungskopie vernichten	Einbruch	-
SW-Angriffe	Salami-Taktik	Dateischutz umgehen	Passwort knacken	Vireninfektion
Ressourcen- Blockade	Speicherverbrauch	Prozesse erzeugen	Netzlast erzeugen	Prozessor monopolisieren

Martin Gruhn 18/37

Modellierung formaler Sicherheitsstrategie SecTOOL [KolKocLoh06]:

- Für UML-basierte Softwareentwicklung
- Hilft bei Erstellung formaler Sicherheitsstrategie bzgl.
 Zugriffsschutz als VPL (View Policy Language)
- Nutzung von:
 - Use-Case diagram (identifiziert Rollen)
 - Klassendiagramm (identifiziert Objektschnittstellen)
 - Sequenzdiagramme (identifiziert Zugriffsrechte)
- Visualisierung der VPL als "view diagram"
 - Verspricht Round-Trip engineering

Martin Gruhn

Werkzeuge: Analyse, Test

- Statische Codeanalyse: z. B. Lapse [LivLam05]
 - Hilft bei Code-Durchsicht
 - Eclipse Plugin für automatisierte statische Analyse von J2EE Webanwendungen
 - Prüft auf: Parameter-Manipulation, SQL injection, Header Manipulierung, ...
 - OSS unter GPL
- Fuzzing
 - Penetrationstests mit automatisch generierten verschiedenartigen Anfragen
 - Erstes Tool: Generieren von Zufallswerten zum Testen von Unix-Kommandos
 - Spezielle Werkzeuge für verschiedene Gebiete, z. B. FTP, ActiveX-Controls, ...

Martin Gruhn

Werkzeuge: Aufrechterhaltung

- Der elektronische Sicherheitsinspektor eSI
 - Produkt vom FhI SIT (Sichere Informations-Technologie)
 - Ziel: Test und Überwachung eines laufenden Systems
 - Architektur ermöglicht automatisierte Anwendung existierender Prüfwerkzeuge und Analysetools, z.B. Portscanner, Virenscanner, etc.

Martin Gruhn 21/37

Inhalt

- Begriffe und Definitionen
 - Was ist IT-Sicherheit?
 - Was ist Security Engineering?
- Security Engineering
 - Prinzipien
 - Sicherheit im Entwicklungsprozess
 - Mechanismen, Maßnahmen, Werkzeuge
 - Evaluierung und Zertifizierung
- Aktuelle (Forschungs-) Aktivitäten

Freie Universität Berlin

Evaluierung: Produktorientiert

- Ziel:
 - Vertrauen in Sicherheit von unabh. zertifizierten Systemen
- TCSEC: 1985 vom DOD, "Orange Book"
 - Bewertung anhand erbrachter Funktionalität
 - 7 Stufen von D-A, z.B.
 - C1/C2: Benutzerbestimmbarer Schutz (Klassischer Zugriffschutz)
 - B1/B2/B3: Systembestimmter Schutz (Informationsflusskontrolle)
 - Kritik: Keine Bewertung der Wirksamkeit von Funktionalität
- ITSEC: 1991, europäischer Standard
 - Funktionsklassen angelehnt an TCSEC
 - Neu: Qualitätsklassen
 - Kritik: Keine Anwendersicht

- Common Criteria (CC), 1999, international
 - Homogenisierung und Erweiterung nationaler Standards
 - Neu: Anwendersicht -> Schutzprofile
- Schutzprofil (Protection Profile, PP)
 - Enthält Sicherheitsanforderungen,
 Implementierungs- und Produktunabhängig
 - Security Target (ST): Spezialisierung auf konkretes Produkt
 - ST und PP sind selbst evaluierbar
- Ziel:
 - Wachsender Katalog von PPs und evaluierten Produkten

Evaluierung: Produktorientiert

- Nutzen von CC:
 - PPs enthalten Bedrohungen und entsprechende Schutzziele (funktional wie qualitativ) zur Vermeidung
 - Kann als Checkliste dienen
- Kritik an CC (nach Anderson):
 - Nimmt Wasserfallmodell an: Auswirkungen von Änderungen im Produkt sind schwierig zu betrachten
 - Großer Aufwand, hohe Kosten, Bürokratie
 - Zielt auf hierarchisch verwaltete, zentrale Systeme
 - Dokumente sind für normale Entwickler schwer verständlich
 - Was ist mit realer Anwendungsnähe?
 - Was ist mit Implementierungsfehlern und Anwendungsfehlern?

Evaluierung: Prozessorientiert

Systems Security Engineering – Capability Maturity Model (SSE-CMM)

- Reifegradmodell zur Beurteilung der Qualität von Prozessen bei Entwicklung sicherer IT-Systeme
- Definiert:
 - Prozesse (processes) für definierte Gebiete (process area)
 - Goals -> Practices
 - Einstufung mit Capability Measure (Level 1-5)

Martin Gruhn 26/37

Martin Gruhn 27/37

SSE-CMM Process Areas

- Organizational process areas:
 - Define Organization's Security Engineering Process
 - Improve Organization's Security Engineering Process
 - •
- Project process areas:
 - Ensure Quality
 - Manage Configurations
 - Manage Program Risk
 - •
- Engineering process areas
 - nächste Folie

SSE-CMM Engineering PAs

- Risk area
 - PA 04: Assess Threat
 - PA 05: Assess Vulnerability
 - PA 02: Assess Impact
 - PA 03: Assess Security Risk
- Engineering area
 - PA 10: Specify Security Needs
 - PA 09: Provide Security Input
 - PA 07: Coordinate Security
 - PA 01: Administer Security Controls
 - PA 08: Monitor Security Posture
- Assurance area
 - PA 11: Verify and Validate Security
 - PA 06: Build Assurance Argument

SSE-CMM Engineering PAs

- Risk area
 - PA 04: Assess Threat
 - Goal: Threats to the security are identified and characterized
 - BP 04.01: Identify Natural Threats
 - BP 04.02: Identify Man-made Threats
 - •

- Fazit SSE-CMM:
 - Umfangreiches Modell
 - Nutzung als Kriterienkatalog für Beurteilung von Prozessen für IT-Sicherheit

Martin Gruhn 30/37

Inhalt

- Begriffe und Definitionen
 - Was ist IT-Sicherheit?
 - Was ist Security Engineering?
- Security Engineering
 - Prinzipien
 - Sicherheit im Entwicklungsprozess
 - Mechanismen, Maßnahmen
 - Werkzeuge
 - Evaluierung und Zertifizierung
- Aktuelle (Forschungs-) Aktivitäten

(Forschungs-) Aktivitäten

- Security Requirements Engineering und XP [BosWayBod06]
 - Erweitern des Planning Game: Abuser stories; Securityrelated user stories
- Security Patterns [Schumacher03]
 - In der Tradition von Entwurfsmustern von GoF (Gamma, Helm, Johnson, Vlissides)
 - Muster besteht aus: Name, Kontext, Problem, Lösung

Martin Gruhn

Security Pattern Systems (M. Schumacher)

Martin Gruhn 33/37

(Forschungs-) Aktivitäten

- Programmier-Ratgeber
 - Viega/McGraw (2001): Building Secure Software
 - Security Engineering: Patterns & Practices (Microsoft)
 - Tech Tips der CERT (Programm des SEI der Carnegie Mellon University) http://www.cert.org/tech_tips/
 - Ähnlich: Ranglisten häufigster Fehler in Webanwendungen und deren Vermeidung (z.B. [OWASP07])
- Security Engineering und Open Source Software
 - Verstehen von Prozessen für sichere OSS -> Empfehlungen
 - Master-Arbeit
 - Analyse, Beschreibung und Bewertung sicherheitsrelevanten Verhaltens im Rahmen der Entwicklung von OSS
 - Qual. Patch-Tracker Analyse bzgl. Sicherheitspatches
 - Was gibt es für sicherheitskritische Fehler, wie sind sie entstanden und wie wird damit umgegangen?

Zusammenfassung: Sicherheitsprozess

Quellen

- [Anderson01] R. Anderson (2001): Security Engineering.
- [BosWayBod06] G. Boström et al. (2006): Extending XP Practices to Support Security Requirements Engineering.
- [Eckert04] C. Eckert (2004): IT-Sicherheit.
- [eSI05] eSI- Der elektronischer Sicherheitsinspektor. http://www.sit.fraunhofer.de/fhg/Images/eSI_de_en_tcm105-96939.pdf
- [KolKocLoh06] Kolarczyk et. al (2006): SecTOOL -- Supporting Requirements Engineering for Access Control
- [LivLam05] B. Livschits, M. Lam (2005): Finding Security Errors in Java Programs with Static Analysis.
- [OWASP07] OWASP Top 10 2007. http://www.owasp.org/index.php/Top_10_2007
- [SalSch75] J. Saltzer, D. Schroeder (1975): The Protection of Information in Computer Systems.
- [Schumacher03] M. Schumacher (2003): Security Engineering with Patterns.
- [SSE-CMM03] Systems Security Engineering Capability Maturity Model 3.0. http://www.sse-cmm.org/

Martin Gruhn 36/37

Vielen Dank!

Martin Gruhn 37/37