

NIVEAU: 2PC - SVT

Résumé 2

dérivation - étude des fonctions page - 1 -

Dérivation : Dérivabilité à droite à gauche	• f est dérivable au point $x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$. $\left(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \ell \in \mathbb{R}\right)$		
	$\ell = f'(x_0)$ s'appelle le nombre dérivé de f en x_0 .		
	• f est dérivable à droite de $X_0 \Leftrightarrow \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell_d \in \mathbb{R}$. $\left(\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_d \in \mathbb{R}\right)$		
	$\ell_{\rm d}={ m f}_{ m d}^{'}\left({ m x}_{ m 0} ight)$ s'appelle le nombre dérivé à gauche de f en ${ m x}_{ m 0}$.		
	• f est dérivable à gauche de $x_0 \Leftrightarrow \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell_g \in \mathbb{R}$. $\left(\lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_g \in \mathbb{R}\right)$		
	$\ell_{\rm g}={ m f}_{ m g}^{'}\left({ m x}_{ m 0} ight)$ s'appelle le nombre dérivé à gauche de f en ${ m x}_{ m 0}$.		
	• f est dérivable au point $x_0 \Leftrightarrow f$ est dérivable à droite et à gauche et $f_d(x_0) = f_g(x_0)$		
Interprétation géométrique du nombre dérivé $f'(x_0)$	• f' (x_0) est le coefficient directeur de la tangente (T) à la courbe de f au point d'abscisse x_0		
	• équation de la tangente (T) au point d'abscisse x_0 est : $(T):y=(x-x_0)f'(x_0)+f(x_0)$.		
	• Si $f'(x) = 0$ alors la tangente est parallèle à l'axe des abscisse.		
	• La fonction $\mathbf{u}(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0)\mathbf{f}'(\mathbf{x}_0) + \mathbf{f}(\mathbf{x}_0)$ s'appelle la fonction affine tangente à la		
	courbe de f au voisinage de x_0 .		
	• La fonction $(x-x_0)f'(x_0)+f(x_0)$ est une approximation affine de la fonction f au		
	voisinage de x_0 . On écrit $f(x) \approx u(x)$ au voisinage de x_0 .		
	• On pose $x = x_0 + h$ on a $f(x_0 + h) \approx u(x_0 + h)$ ou encore $f(x_0 + h) \approx hf'(x_0) + f(x_0)$		
	• f est dérivable sur un intervalle ouvert $(I =]a,b[) \Leftrightarrow$ pour tout x de I f est dérivable en x		
Dérivabilité sur un intervalle	• f est dérivable sur [a,b[⇔ f est dérivable sur]a,b[et f est dérivable à droite de a		
	• f est dérivable sur]a,b] ⇔ f est dérivable sur]a,b[et f est dérivable à gauche de b		
	f est dér. sur [a,b] \Leftrightarrow f est dérivable sur]a,b[et f est dérivable à droite de a et à gauche de b		
La fonction dérivée	• La fonction définie par : $\forall x \in I$ on a $x \mapsto f'(x)$ s'appelle la fonction dérivée de f sur I on note f' .		
	• La fonction dérivée de f'sur I s'appelle la fonction dérivée seconde (dérivée d'ordre 2) on		
	note f'' ou $f^{(2)}$.		
	$ullet$ La fonction dérivée de $f f^{(n)}$ sur I s'appelle la fonction dérivée (n+1) $^{i \hat{e}me}$ (dérivée d'ordre		
	$n+1$) on note $\left(f^{(n)}\right)$ ' ou $f^{(n+1)}$		
Operations sur les fonctions dérivables	$(f+g)'=f'+g'$ $(\alpha \times f)'=\alpha \times f' \text{ avec } \alpha \in \mathbb{R}$		
	$ (\mathbf{f} \times \sigma)' = \mathbf{f}' \times \sigma + \mathbf{f} \times \sigma' $ $ (\mathbf{f}^{n})'(\mathbf{x}) = \mathbf{n} \times (\mathbf{f}(\mathbf{x}))^{n-1} \times \mathbf{f}'(\mathbf{x}) ; \mathbf{n} \in \mathbb{Z}^{*}; $		
	$(f \times g)' = f' \times g + f \times g'$ $(f) (f) (f) (f) (f) (f) (f) (f) (f) (f) $		
	$\left(\frac{1}{g}\right) = \frac{-g'}{g^2}; \left(x \in I, g(x) \neq 0\right) \qquad \left(\frac{f}{g}\right) = \frac{f' \times g - f \times g'}{g^2}; \left(x \in I, g(x) \neq 0\right)$		

on note

(ou sa concavité est dans le sens des ordonnés positives .

 $\forall x \in I : f''(x) < 0$ (la fonction dérivée seconde) alors :

NIVEAU : 2PC - SVT Résumé 2 dérivation - étude des fonctions page - 3 -			
	Points d'inflexions	• La courbe (C_f) de f est située au dessous des tangentes pour tout point $M(x_0, f(x_0))$ tel que $x_0 \in I$. • Dans ce cas on dit que la courbe (C_f) de f est concave (ou sa concavité est dans le sens des ordonnés négatives . on note f Si la fonction dérivée seconde f s'annule en f I (f intervalle ouvert) et f change de signe au voisinage de f alors le point d'abscisse f (f s'annule en f s'annule	
Centre de symétrie de $\left(\mathrm{C_f}\right)$		point $A(x_0, f(x_0))$ coupe (ou traverse) la courbe. Le point $I(a,b)$ est centre de symétrie à la courbe $ \begin{pmatrix} C_f \end{pmatrix} \Leftrightarrow \begin{cases} \forall x \in D_f \; ; \; 2a - x \in D_f \\ \forall x \in D_f \; ; \; f(2a - x) + f(x) = 2b \end{cases} $	
Axe de symétrie de $\left(C_{f}\right)$		$ \begin{array}{l} \text{La droite d'équation } D \colon x = a \text{ est un axe de symétrie à la} \\ \text{courbe } \left(C_f \right) \iff \begin{cases} \forall x \in D_f \; ; \; 2a - x \in D_f \\ \forall x \in D_f \; ; \; f(2a - x) = f(x) \end{cases} $	
	f est paire f est impaire	f est une fonction définie sur $D_f = I \cup I'$ (I et I' sont symétriques par rapport à 0 (zéro) avec I contient juste les nombres positifs . • Si f est paire ou bien impaire il suffit d'étudier la monotonie de f sur I • Si f est paire : la fonction f a la même monotonie (même variations) sur I et I' • Si f est impaire : la monotonie de f sur I et I' sont opposées . • donc il suffit d'étudier f sur $D_E = D_f \cap \mathbb{R}^+ = I$ (D_E est appelé ensemble d'étude de f)	
Domaine d'étude d'une fonction f	f est périodique	$f \ est \ p\'eriodique \ de \ p\'eriode \ P=T \ son \ ensemble \ d\'etude$ $est \ D_E = D_f \cap \left[a,a+T\right] \ avec \ a \in \mathbb{R} \ .$ $\bullet \ On \ pr\'ef\`ere \ a=0 \ ou \ bien \ a=-\frac{T}{2}$ $\bullet \ On \ obtient: \ D_E = D_f \cap \left[0,T\right]$ $ou \ bien: \ D_E = D_f \cap \left[-\frac{T}{2},\frac{T}{2}\right]$	

NIVEAU: 2PC-SVT

Résumé 2

dérivation - étude des fonctions

Les branches infinies

3ième cas

2ième cas Asymptote verticale

 $\lim_{x\to\pm\infty}f(x)=a$

1er cas

Asymptote oblique et les trois cas particuliers

 $\lim_{x\to a^{\pm}} f(x) = \pm \infty$

 $(\mathbf{C}_{_{\mathbf{f}}})$ admet une asymptote horizontale c'est la droite d'équation y = aau voisinage de ±∞

> Exemple : asymptote horizontale d'équation v = 2 au voisinage de $\pm \infty$

$$\inf_{\pm\infty} f(x) = \pm\infty$$

 (C_{f}) admet une asymptote verticale c'est la droite d'équation $\mathbf{x} = \mathbf{a}$

Exemple: asymptote verticale d'équation x = 1

$$\lim_{x \to +\infty} f(x) - (ax + b) = 0$$

$$\lim_{x\to\pm\infty}\frac{f\left(x\right)}{x}=a\in\mathbb{R}^{*}$$

$$\lim_{x\to\pm\infty}\frac{f\left(x\right)}{x}=0$$

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$$

$$\lim_{x\to\pm\infty} (f(x)-ax) = b \in \mathbb{R}$$

$$\lim_{x\to\pm\infty} \left(f\left(x\right) - ax \right) = \pm\infty$$

 $\left(\mathbf{C}_{\mathbf{f}}\right)$ admet une asymptote oblique la droite d'équation y = ax + b

voisinage de ±∞ $f(x) = x + 3 - \frac{(x+7)}{(x-1)}$ Exemple

Rq: position relative de (C_f) et (D) on étudie le signe de f(x)-(ax+b)

cas particulier 3 :

 $\mathbf{a} \in \mathbb{R}^* \text{ et } \mathbf{b} = \pm \infty$

 $(C_{\scriptscriptstyle
m f})$ admet une B.P.D la droite y = ax au voisinage de ±∞

 $f(x) = x + \sqrt{x-3}$ Exemple

cas particulier 2: a = 0

(C_f) admet une B.P.D l'axe des abscisses

cas particulier 1: $a = \pm \infty$

(C_f) admet une B.P.D l'axe des ordonnés

 $f(x) = x^3$ Exemple

les cas particuliers (Remarque : B.P.D= branche parabolique de direction)