∞ Dérivées : fonctions exponentielles 3

Pour la fonction f qui suit, on déterminera sa dérivée, son tableau de variation, sa dérivée seconde, sa convexité et les éventuels points d'inflexion

$$f(x) = \frac{e^{9x+2}}{x+3}$$

Dérivées TG

Correction:

$$f'(x) = \frac{(9x+26)e^{9x+2}}{(x+3)^2}$$
$$f''(x) = \frac{(9x^2+36x+29)e^{9x+2}}{(x+3)^3}$$
$$\Delta = 252 > 0$$

х	-∞ -	-3	$\frac{-26}{9}$	+∞
9x + 26	_		0	+
$(x+3)^2$	+ () +		
f'(x)	_	_	0	+
f(x)	0	+∞	→ 9e ²⁸ —	→ +∞

x	-∞	-3	$\frac{36-\sqrt{252}}{18}$		$\frac{36+\sqrt{252}}{18}$		+∞
$(x+3)^3$	-	Ó	+				
$9x^2 + 36x + 29$	+		0	-	0	+	
f''(x)	-	+	0	-	0	+	
f	concave	convexe	0	concave	0	convexe	

On a donc trois points d'inflexion :

$$\left(3, f(3)\right) \quad \left(\frac{36 - \sqrt{252}}{18}, f\left(\frac{36 - \sqrt{252}}{18}\right)\right) \quad \left(\frac{36 + \sqrt{252}}{18}, f\left(\frac{36 + \sqrt{252}}{18}\right)\right)$$