# Visual Data Analysis of Fraudulent Transactions

Your CFO has also requested detailed trends data on specific card holders. Use the starter notebook to query your database and generate visualizations that supply the requested information as follows, then add your visualizations and observations to your markdown report.

```
In [1]: # Initial imports
!pip install psycopg2-binary
!pip install connectorx
import pandas as pd
import calendar
import hvplot.pandas
from sqlalchemy import create_engine
import psycopg2
import connectorx as cx

Requirement already satisfied: psycopg2-binary in c:\users\yohan\anaconda3\envs\dev\envs
\dev\lib\site-packages (2.9.3)
```

Requirement already satisfied: connectorx in c:\users\yohan\anaconda3\envs\dev\envs\dev \lib\site-packages (0.3.0)

```
In [2]: # Create a connection to the database
engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection")
```

## **Data Analysis Question 1**

The two most important customers of the firm may have been hacked. Verify if there are any fraudulent transactions in their history. For privacy reasons, you only know that their cardholder IDs are 2 and 18.

- Using hvPlot, create a line plot representing the time series of transactions over the course of the year for each cardholder separately.
- Next, to better compare their patterns, create a single line plot that containins both card holders' trend data.
- What difference do you observe between the consumption patterns? Does the difference suggest a fraudulent transaction? Explain your rationale in the markdown report.

```
In [3]: # loading data for card holder 2 and 18 from the database
    # Write the query

#First, get the card numbers from customers id 2 and 18 from table credit_card which onl
    #customer id. This step is first given that the transaction table does not have customer
    query = "SELECT cardholder_id, card FROM credit_card WHERE cardholder_id = 2 OR cardhold

# Create a DataFrame from the query result.

two_eighteen_df=pd.read_sql(query,engine)
    two_eighteen_df
```

| 0 | 2  | 4866761290278198714 |
|---|----|---------------------|
| 1 | 2  | 675911140852        |
| 2 | 18 | 4498002758300       |
| 3 | 18 | 344119623920892     |
| 4 | 25 | 4319653513507       |
| 5 | 25 | 372414832802279     |

In [4]: #now we can match the cardnumbers with the transaction history in the transaction table:
 query\_c2 = "SELECT date, transaction\_amount, card FROM transaction WHERE card = '4866761
 c2\_df = pd.read\_sql(query\_c2,engine)
 c2\_df

| Out[4]: |     | date                | transaction_amount | card                |
|---------|-----|---------------------|--------------------|---------------------|
|         | 0   | 2018-01-06 02:16:41 | 1.33               | 4866761290278198714 |
|         | 1   | 2018-01-06 05:13:20 | 10.82              | 4866761290278198714 |
|         | 2   | 2018-01-07 15:10:27 | 17.29              | 4866761290278198714 |
|         | 3   | 2018-01-10 10:07:20 | 10.91              | 675911140852        |
|         | 4   | 2018-01-16 06:29:35 | 17.64              | 675911140852        |
|         | ••• |                     |                    |                     |
|         | 94  | 2018-12-13 06:21:43 | 19.36              | 4866761290278198714 |
|         | 95  | 2018-12-13 15:28:18 | 10.06              | 675911140852        |
|         | 96  | 2018-12-16 13:44:25 | 11.38              | 4866761290278198714 |
|         | 97  | 2018-12-22 23:29:09 | 10.20              | 4866761290278198714 |
|         | 98  | 2018-12-28 15:30:55 | 11.03              | 675911140852        |

99 rows × 3 columns

In [5]: #we do the same for cardholder 18:
 query\_c18 = "SELECT date, transaction\_amount, card FROM transaction WHERE card = '449800
 c18\_df = pd.read\_sql(query\_c18,engine)
 c18\_df

| Out[5]: |     | date                | transaction_amount | card            |
|---------|-----|---------------------|--------------------|-----------------|
|         | 0   | 2018-01-01 23:15:10 | 2.95               | 4498002758300   |
|         | 1   | 2018-01-05 07:19:27 | 1.36               | 344119623920892 |
|         | 2   | 2018-01-07 01:10:54 | 175.00             | 344119623920892 |
|         | 3   | 2018-01-08 11:15:36 | 333.00             | 344119623920892 |
|         | 4   | 2018-01-08 20:10:59 | 11.55              | 344119623920892 |
|         | ••• |                     |                    |                 |
|         | 128 | 2018-12-23 03:33:56 | 4.36               | 344119623920892 |
|         | 129 | 2018-12-27 18:46:57 | 1.70               | 344119623920892 |

```
      130
      2018-12-28 08:45:26
      3.46
      4498002758300

      131
      2018-12-28 09:00:45
      12.88
      344119623920892

      132
      2018-12-29 08:11:55
      12.25
      4498002758300
```

133 rows × 3 columns

```
In [6]: # Plot for cardholder 2
    c2_plot = c2_df.hvplot.line(x="date", y="transaction_amount", rot=90, label="cardholder2
    c2_plot
```



In [7]: # Plot for cardholder 18
 c18\_plot=c18\_df.hvplot.line(x="date", y="transaction\_amount", rot=90, label="cardholder1
 c18\_plot



In [8]: # Combined plot for card holders 2 and 18
c2\_plot \* c18\_plot





In [9]: #It seems that cardholder 18 has been hacked. Cardholder 2 has a lot more stable and sma #But cardholder 18 has these sudden bursts of expenditures sometimes close to \$2000.

## **Data Analysis Question 2**

The CEO of the biggest customer of the firm suspects that someone has used her corporate credit card without authorization in the first quarter of 2018 to pay quite expensive restaurant bills. Again, for privacy reasons, you know only that the cardholder ID in question is 25.

- Using hvPlot, create a box plot, representing the expenditure data from January 2018 to June 2018 for cardholder ID 25.
- Are there any outliers for cardholder ID 25? How many outliers are there per month?
- Do you notice any anomalies? Describe your observations and conclusions in your markdown report.

### Out[9]: date transaction\_amount card 0 2018-01-02 02:06:21 4319653513507 1.46 **1** 2018-01-05 06:26:45 10.74 372414832802279 2 2018-01-07 14:57:23 2.93 4319653513507 3 2018-01-10 00:25:40 1.39 372414832802279 **4** 2018-01-14 05:02:22 17.84 372414832802279 **5** 2018-01-16 02:26:16 1.65 372414832802279 **6** 2018-01-18 12:41:06 15.86 4319653513507 **7** 2018-01-21 23:04:02 2.22 372414832802279

| 8  | 2018-01-30 18:31:00 | 1177.00 | 4319653513507   |
|----|---------------------|---------|-----------------|
| 9  | 2018-01-31 05:46:43 | 2.75    | 4319653513507   |
| 10 | 2018-02-02 11:31:33 | 10.75   | 372414832802279 |
| 11 | 2018-02-05 21:59:07 | 10.81   | 372414832802279 |
| 12 | 2018-02-07 00:20:11 | 5.97    | 372414832802279 |
| 13 | 2018-02-12 03:44:20 | 3.69    | 4319653513507   |
| 14 | 2018-02-18 20:43:22 | 16.70   | 4319653513507   |
| 15 | 2018-02-23 10:13:27 | 1.26    | 4319653513507   |
| 16 | 2018-02-23 12:26:19 | 2.63    | 4319653513507   |
| 17 | 2018-02-23 18:49:22 | 11.01   | 372414832802279 |
| 18 | 2018-02-28 02:06:08 | 0.91    | 372414832802279 |
| 19 | 2018-02-28 13:56:12 | 1.18    | 372414832802279 |
| 20 | 2018-03-02 23:23:52 | 12.42   | 4319653513507   |
| 21 | 2018-03-05 07:34:15 | 16.58   | 4319653513507   |
| 22 | 2018-03-06 07:18:09 | 1334.00 | 4319653513507   |
| 23 | 2018-03-07 16:45:37 | 2.88    | 4319653513507   |
| 24 | 2018-03-09 03:59:06 | 2.04    | 372414832802279 |
| 25 | 2018-03-11 19:37:02 | 13.57   | 4319653513507   |
| 26 | 2018-03-12 01:00:24 | 10.10   | 372414832802279 |
| 27 | 2018-03-12 09:08:18 | 1.65    | 372414832802279 |
| 28 | 2018-03-12 17:16:34 | 3.08    | 372414832802279 |
| 29 | 2018-03-16 02:04:54 | 4.20    | 372414832802279 |
| 30 | 2018-03-17 18:22:07 | 2.56    | 4319653513507   |
| 31 | 2018-03-18 12:29:39 | 18.28   | 372414832802279 |
| 32 | 2018-03-31 20:12:10 | 21.04   | 372414832802279 |
| 33 | 2018-04-01 07:17:21 | 100.00  | 4319653513507   |
| 34 | 2018-04-01 21:08:23 | 2.62    | 4319653513507   |
| 35 | 2018-04-02 01:50:15 | 7.08    | 372414832802279 |
| 36 | 2018-04-02 18:34:50 | 17.15   | 372414832802279 |
| 37 | 2018-04-08 06:03:50 | 1063.00 | 4319653513507   |
| 38 | 2018-04-08 18:03:55 | 10.15   | 372414832802279 |
| 39 | 2018-04-08 18:14:22 | 10.06   | 4319653513507   |
| 40 | 2018-04-09 18:28:25 | 269.00  | 4319653513507   |
| 41 | 2018-04-10 23:03:20 | 10.24   | 4319653513507   |
| 42 | 2018-04-18 10:12:40 | 7.39    | 372414832802279 |
| 43 | 2018-04-19 18:30:14 | 6.01    | 4319653513507   |
| 44 | 2018-04-20 17:02:27 | 20.03   | 372414832802279 |
| 45 | 2018-04-26 02:16:45 | 2.79    | 372414832802279 |

| 46 | 2018-04-26 19:49:31 | 10.02   | 4319653513507   |
|----|---------------------|---------|-----------------|
| 47 | 2018-04-26 23:09:51 | 15.66   | 372414832802279 |
| 48 | 2018-04-29 02:41:44 | 16.50   | 372414832802279 |
| 49 | 2018-05-06 04:38:27 | 1.10    | 372414832802279 |
| 50 | 2018-05-13 06:31:20 | 1046.00 | 4319653513507   |
| 51 | 2018-05-17 21:32:51 | 12.15   | 4319653513507   |
| 52 | 2018-05-19 09:12:20 | 2.27    | 4319653513507   |
| 53 | 2018-05-29 14:34:36 | 5.97    | 372414832802279 |

```
In [10]: c25_df["month"] = ""
     c25_df.head()
```

# Out[10]: date transaction\_amount card month 0 2018-01-02 02:06:21 1.46 4319653513507 1 2018-01-05 06:26:45 10.74 372414832802279 2 2018-01-07 14:57:23 2.93 4319653513507 3 2018-01-10 00:25:40 1.39 372414832802279 4 2018-01-14 05:02:22 17.84 372414832802279

```
In [11]: # loop to change the numeric month to month names

for i in range(0, len(c25_df["date"])):
    if c25_df["date"][i] < pd.Timestamp('2018-02-01'):
        c25_df["month"][i] = "January"
    elif c25_df["date"][i] < pd.Timestamp('2018-03-01'):
        c25_df["month"][i] = "February"
    elif c25_df["date"][i] < pd.Timestamp('2018-04-01'):
        c25_df["month"][i] = "March"
    elif c25_df["date"][i] < pd.Timestamp('2018-05-01'):
        c25_df["month"][i] = "April"
    elif c25_df["date"][i] < pd.Timestamp('2018-06-01'):
        c25_df["month"][i] = "May"</pre>
```

```
c25_df["month"][i] = "May"

c25_df

C:\Users\yohan\anaconda3\envs\dev\envs\dev\lib\site-packages\ipykernel_launcher.py:5: Se ttingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
"""

C:\Users\yohan\anaconda3\envs\dev\envs\dev\lib\site-packages\ipykernel_launcher.py:7: Se ttingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
import sys
C:\Users\yohan\anaconda3\envs\dev\envs\dev\lib\site-packages\ipykernel_launcher.py:9: Se ttingWithCopyWarning:
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user

A value is trying to be set on a copy of a slice from a DataFrame

```
guide/indexing.html#returning-a-view-versus-a-copy
 if name == ' main ':
C:\Users\yohan\anaconda3\envs\dev\lib\site-packages\ipykernel launcher.py:11: S
ettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user quide/indexing.html#returning-a-view-versus-a-copy

# This is added back by InteractiveShellApp.init path()

C:\Users\yohan\anaconda3\envs\dev\envs\dev\lib\site-packages\ipykernel launcher.py:13: S ettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy del sys.path[0]

| $\cap$ | 11      |  |
|--------|---------|--|
| out    | 1 4 4 1 |  |
|        |         |  |

|    | date                | transaction_amount | card            | month    |
|----|---------------------|--------------------|-----------------|----------|
| 0  | 2018-01-02 02:06:21 | 1.46               | 4319653513507   | January  |
| 1  | 2018-01-05 06:26:45 | 10.74              | 372414832802279 | January  |
| 2  | 2018-01-07 14:57:23 | 2.93               | 4319653513507   | January  |
| 3  | 2018-01-10 00:25:40 | 1.39               | 372414832802279 | January  |
| 4  | 2018-01-14 05:02:22 | 17.84              | 372414832802279 | January  |
| 5  | 2018-01-16 02:26:16 | 1.65               | 372414832802279 | January  |
| 6  | 2018-01-18 12:41:06 | 15.86              | 4319653513507   | January  |
| 7  | 2018-01-21 23:04:02 | 2.22               | 372414832802279 | January  |
| 8  | 2018-01-30 18:31:00 | 1177.00            | 4319653513507   | January  |
| 9  | 2018-01-31 05:46:43 | 2.75               | 4319653513507   | January  |
| 10 | 2018-02-02 11:31:33 | 10.75              | 372414832802279 | February |
| 11 | 2018-02-05 21:59:07 | 10.81              | 372414832802279 | February |
| 12 | 2018-02-07 00:20:11 | 5.97               | 372414832802279 | February |
| 13 | 2018-02-12 03:44:20 | 3.69               | 4319653513507   | February |
| 14 | 2018-02-18 20:43:22 | 16.70              | 4319653513507   | February |
| 15 | 2018-02-23 10:13:27 | 1.26               | 4319653513507   | February |
| 16 | 2018-02-23 12:26:19 | 2.63               | 4319653513507   | February |
| 17 | 2018-02-23 18:49:22 | 11.01              | 372414832802279 | February |
| 18 | 2018-02-28 02:06:08 | 0.91               | 372414832802279 | February |
| 19 | 2018-02-28 13:56:12 | 1.18               | 372414832802279 | February |
| 20 | 2018-03-02 23:23:52 | 12.42              | 4319653513507   | March    |
| 21 | 2018-03-05 07:34:15 | 16.58              | 4319653513507   | March    |
| 22 | 2018-03-06 07:18:09 | 1334.00            | 4319653513507   | March    |
| 23 | 2018-03-07 16:45:37 | 2.88               | 4319653513507   | March    |
| 24 | 2018-03-09 03:59:06 | 2.04               | 372414832802279 | March    |
| 25 | 2018-03-11 19:37:02 | 13.57              | 4319653513507   | March    |
| 26 | 2018-03-12 01:00:24 | 10.10              | 372414832802279 | March    |
|    |                     |                    |                 |          |

| 27 | 2018-03-12 09:08:18 | 1.65    | 372414832802279 | March |
|----|---------------------|---------|-----------------|-------|
| 28 | 2018-03-12 17:16:34 | 3.08    | 372414832802279 | March |
| 29 | 2018-03-16 02:04:54 | 4.20    | 372414832802279 | March |
| 30 | 2018-03-17 18:22:07 | 2.56    | 4319653513507   | March |
| 31 | 2018-03-18 12:29:39 | 18.28   | 372414832802279 | March |
| 32 | 2018-03-31 20:12:10 | 21.04   | 372414832802279 | March |
| 33 | 2018-04-01 07:17:21 | 100.00  | 4319653513507   | April |
| 34 | 2018-04-01 21:08:23 | 2.62    | 4319653513507   | April |
| 35 | 2018-04-02 01:50:15 | 7.08    | 372414832802279 | April |
| 36 | 2018-04-02 18:34:50 | 17.15   | 372414832802279 | April |
| 37 | 2018-04-08 06:03:50 | 1063.00 | 4319653513507   | April |
| 38 | 2018-04-08 18:03:55 | 10.15   | 372414832802279 | April |
| 39 | 2018-04-08 18:14:22 | 10.06   | 4319653513507   | April |
| 40 | 2018-04-09 18:28:25 | 269.00  | 4319653513507   | April |
| 41 | 2018-04-10 23:03:20 | 10.24   | 4319653513507   | April |
| 42 | 2018-04-18 10:12:40 | 7.39    | 372414832802279 | April |
| 43 | 2018-04-19 18:30:14 | 6.01    | 4319653513507   | April |
| 44 | 2018-04-20 17:02:27 | 20.03   | 372414832802279 | April |
| 45 | 2018-04-26 02:16:45 | 2.79    | 372414832802279 | April |
| 46 | 2018-04-26 19:49:31 | 10.02   | 4319653513507   | April |
| 47 | 2018-04-26 23:09:51 | 15.66   | 372414832802279 | April |
| 48 | 2018-04-29 02:41:44 | 16.50   | 372414832802279 | April |
| 49 | 2018-05-06 04:38:27 | 1.10    | 372414832802279 | May   |
| 50 | 2018-05-13 06:31:20 | 1046.00 | 4319653513507   | May   |
| 51 | 2018-05-17 21:32:51 | 12.15   | 4319653513507   | May   |
| 52 | 2018-05-19 09:12:20 | 2.27    | 4319653513507   | May   |
| 53 | 2018-05-29 14:34:36 | 5.97    | 372414832802279 | May   |







In [15]: #it seems as though there are a few outliers in the expenditures of cardholder 25. There #sometimes in the amount of over \$1000. February did not have any but April had three ou