6. 设有关系模式 R(A,B,C,D,E), 其上的函数依赖集:

 $F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$

- (1) 计算B⁺。
- (2) 求出 R 的所有的候选键, 判断 R 的范式。
- 9. 设有函数依赖集 F = {AB→CE, A→C, GP→B, EP→A, CDE→P, HB→P, D→HG, ABC→PG}, 求与 F 等价的最小函数依赖集。
- 11. 现有一个关系模式 R(A,B,C),其上的函数依赖集 $F = \{A \rightarrow B, C \rightarrow B\}$,判断分解 $\rho_1 = \{AB,AC\}$; $\rho_2 = \{AB,BC\}$ 是否具有无损连接性和依赖保持性。
- 13. 设 R(A,B,C,D,E,G), F = {AB→C, C→D, CA→E, E→A,BD→A, B→C}。 求其保持函数依赖和无损连接的 3NF 分解。

6.

(1) $B^0 = B$

 $B^1=BD(B\rightarrow D)$

 $B^2=B^1=BD$ (因为在 F 中未用过的函数依赖的左边属性已没有 B^1 的子集) 所以 $B^+=BD$

 $(2) A^0 = A$

 $A^1 = ABC(A \rightarrow BC)$

 $A^2=ABCD(B\rightarrow D)$

 $A^3=ABCDE(CD\rightarrow E)=U$

所以 $A^{+}=U$, $A \in R$ 的候选键

因为 E→A, A+=U, 所以 E+=U, 所以 E 是 R 的候选键

 $B^{+}=BD$, $C^{+}=C$, $D^{+}=D$, 所以 B、C、D 不是 R 的候选键

因为 CD→E, E+=U, 所以(CD)+=U, 所以 CD 是 R 的候选键

 $(BC)^0=BC$

 $(BC)^1 = BCD(B \rightarrow D)$

 $(BC)^2 = BCDE(CD \rightarrow E)$

 $(BC)^3 = ABCDE(E \rightarrow A) = U$

所以 $(BC)^{+}=U$,所以 BC 是 R 的候选键

(BD)+=BD, 所以 BD 不是 R 的候选键

综上, R 的候选键有 A, E, BC, CD, 主属性有 A、B、C、D、E, 无非主属性 R ∈ 3NF。①R ∈ 1NF; ②R ∈ 2NF, 因为不存在非主属性; ③R ∈ 3NF, 因为不存在非主属性; ④R ∉ BCNF, 因为存在函数依赖 E→A 的左部不包含 R 的任一候选键。

9.

(1) 将 F 中函数依赖右部分解为单属性, 结果为

 $F_1 = \{AB \rightarrow C, AB \rightarrow E, A \rightarrow C, GP \rightarrow B, EP \rightarrow A, CDE \rightarrow P, HB \rightarrow P, D \rightarrow H, D \rightarrow G, ABC \rightarrow P, ABC \rightarrow G \}$

(2) 去掉 F₁中多余的函数依赖

- ① 判断 AB→C。去掉 AB→C 后的(AB)_F,+=ABCEPG, C⊆(AB)_F,+, 所以 AB→C 是多余的, 去掉之后得 F₂={AB→E,A→C, GP→B, EP→A, CDE→P, HB→P, D→H, D→G,ABC→P,ABC→G}。
- ② 判断 AB→E。去掉 AB→E 后的(AB)_F,⁺=ABCPG,E⊈(AB)_F,⁺,所以 AB→E 不是 多余的。
- ③ 判断 A→C。去掉 A→C 后的 A_F,⁺=A, C⊈ A_F,⁺, 所以 A→C 不是多余的。
- ④ 判断 GP→B。去掉 GP→B 后的(GP)_F,+=GP, B⊈(GP)_F,+, 所以 GP→B 不是多余的。
- ⑤ 判断 EP→A。去掉 EP→A 后的(EP)_F,⁺=EP, A⊈(EP)_F,⁺, 所以 EP→A 不是多余的。
- ⑥ 判断 CDE→P。去掉 CDE→P 后的(CDE)_F,⁺=CDEHG, P⊈(CDE)_F,⁺, 所以 CDE→P 不是多余的。
- ⑦ 判断 HB→P。去掉 HB→P 后的(HB)_F,⁺=HB, P⊈(HB)_F,⁺, 所以 HB→P 不是多余的。
- ⑧ 判断 D→H。去掉 D→H 后的 D_F,+=DG, H⊈ D_F,+, 所以 D→H 不是多余的。
- ⑨ 判断 D→G。去掉 D→G 后的 D_F⁺=DH, G⊈ D_F⁺, 所以 D→G 不是多余的。
- ⑪ 判断 ABC→P。去掉 ABC→P 后的(ABC)_F,⁺=ABCGE, P⊈(ABC)_F,⁺, 所以 ABC→P 不是多余的。
- ① 判断 ABC→G。去掉 ABC→G 后的(ABC)_F,+=ABCPE,G⊈(ABC)_F,+,所以 ABC→G 不是多余的。
- (3) 去掉 F₂ 中函数依赖左部多余的属性
 - ① 对 AB→E, 试去 A, 因 B+=B, 所以 A 不多余。试去 B, 因 A+=A, 所以 B 不多余。
 - ② 对 GP→B, 试去 G, 因 P⁺=P, 所以 G 不多余。试去 P, 因 G⁺=G, 所以 P 不多 全。
 - ③ 对 EP→A, 试去 E, 因 P⁺=P, 所以 E 不多余。试去 P, 因 E⁺=E, 所以 P 不多余。
 - ④ 对 CDE→P, 试去 C, 因(DE)⁺=DEHG, 所以 C 不多余。试去 D, 因 (CE)⁺=CEHG, 所以 D 不多余。试去 E, 因(CD)⁺=CDHG, 所以 E 不多余。
 - ⑤ 对 HB→P, 试去 H, 因 B+=B, 所以 H 不多余。试去 B, 因 H+=H, 所以 B 不多余。
 - ⑥ 对 ABC→P, 试去 A, 因(BC)⁺=BC, 所以 A 不多余。试去 B, 因(AC)⁺=AC, 所以 B 不多余。试去 C, 因(AB)⁺=ABCEPG, 所以 C 多余。去掉后得 F₃={AB→E,A→C, GP→B, EP→A, CDE→P, HB→P, D→H, D→G,AB→P,ABC→G}
 - ⑦ 对 ABC→G, 试去 A, 因(BC)⁺=BC, 所以 A 不多余。试去 B, 因(AC)⁺=AC, 所以 B 不多余。试去 C, 因(AB)⁺=ABCEPG, 所以 C 多余。
- 所以与 F 等价的最小函数依赖集 F_m ={AB \rightarrow E,A \rightarrow C, GP \rightarrow B, EP \rightarrow A, CDE \rightarrow P, HB \rightarrow P, D \rightarrow H, D \rightarrow G,AB \rightarrow P,AB \rightarrow G }。

11.

对 $\rho_1 = \{AB,AC\}$, $R_1 \cap R_2 = A$, $R_1 - R_2 = B$, 所以 $(R_1 \cap R_2) \rightarrow (R_1 - R_2)$ 即 $A \rightarrow B$, 所以 ρ_1 具有无损连接性, 又因为 $\prod_{AB}(F) \cup \prod_{AC}(F) = \{A \rightarrow B\}$ 与 F 不等价, 所以 ρ_1 不具有依赖保持性。 对 $\rho_2 = \{AB,BC\}$, $R_1 \cap R_2 = B$, $R_1 - R_2 = A$, $R_2 - R_1 = C$, 所以 $(R_1 \cap R_2) \rightarrow (R_1 - R_2)$ 即 $B \rightarrow A \notin F^+$, $(R_1 \cap R_2) \rightarrow (R_2 - R_1)$ 即 $B \rightarrow C \notin F^+$ 所以 ρ_2 不具有无损连接性, 又因为 $\prod_{AB}(F) \cup \prod_{BC}(F) = \{A \rightarrow B\}$, $C \rightarrow B\}$ 与 F 等价, 所以 ρ_2 具有依赖保持性。

13.

由候选键的定义和属性闭包的求解算法可知,在函数依赖集F中所有函数依赖的右部未出现的属性一定是候选键的成员。故R的候选键中至少包含B和G。

计算: (BG)+=ABCDEG=U。经分析 R 只有唯一的候选键 BG。

求出最小函数依赖集 $F_m = \{C \rightarrow D, CA \rightarrow E, E \rightarrow A, B \rightarrow A, B \rightarrow C\}$ 。

独立,G 未出现在 F_m 中任一函数依赖的左部或右部,将 G 独立出去单独构成一个关系子模式。

合并分组,分解为:ρ={CD,CAE,EA,BAC,G}

因ρ中无子模式含 R 的候选键,则令ρ=ρ \cup {R 的候选键}。去掉被包含的子集,所以满足 3NF 且具有无损连接性和函数依赖保持性的分解为

 $\rho = \{CD, CAE, BAC, BG\}$