EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 08259934 PUBLICATION DATE : 08-10-96

APPLICATION DATE : 20-03-95 APPLICATION NUMBER : 07060749

APPLICANT: MATSUSHITA ELECTRIC IND CO LTD;

INVENTOR: MURAKAMI MUTSUAKI;

INT.CL. : C09K 11/06 H05B 33/14

TITLE : ELECTROLUMINESCENT ELEMENT

$$\begin{array}{c|c}
 & R_3 & R_3 \\
 & N - O - O - N \\
 & Q \\
 & R_2
\end{array}$$

ABSTRACT: PURPOSE: To obtain an org. electroluminescent element having good luminescent properties and a high luminescent stability.

CONSTITUTION: The org. electroluminescent element has a mixture layer of an amine compd. of the formula and a luminescent material provided in contact with a luminescent layer. In the formula, R_1 and R_2 are each a hydrogen atom, a lower alkyl group, a lower alkoxy group, a phenyl group or a phenyl group having a lower alkyl group or a lower alkoxy group as a substitutent; and R_3 is a hydrogen atom, a methyl group, a methoxy group, or a chlorine atom; provided that at least one of R_1 and R_2 is an isobutyl group, a sec. butyl group, a tert. butyl group, a phenyl group, or a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-259934

(43)公開日 平成8年(1996)10月8日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 9 K 11/06 11 0 5 B 33/14 9280 - 411

C 0 9 K 11/06

Z

H 0 5 B 33/14

審査請求 未請求 請求項の数9 〇L (全日) 頁)

(21)出願番号

特願平7-60749

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出願日

平成7年(1995)3月20日

(72)発明者 福山 正雄

神奈川県川崎市多摩区東三田3丁目10番1

号 松下技研株式会社内

(72)発明者 鈴木 睦美

神奈川県川崎市多摩区東三田3丁目10番1

号 松下技研株式会社内

(72) 発明者 村上 睦明

神奈川県川崎市多摩区東三田3丁目10番1

号 松下技研株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 電界発光素子

(57)【要約】

【目的】 電界発光素子に関し、良好な発光特性と高い 発光安定性を有する有機電界発光素子を提供することを 目的とする。

【構成】 下記(化1)で示されるアミン化合物と発光 材の混合層を発光層に接して設けた有機電界発光素子。

【化1】

ただし、R1、R2 は水素原子、低級アルキル基、低級アルコキシ基、フェ エル基、低級アルキル基または低級アルコキシ基を世換基として有するフ ェニル基、R3は水本原子、メチル基、メトキシ基、または塩素原子を表 し、 トロ、 トセの少なくとも一方は、イノブチル基、セカンダリブテル基、 ターショルプチル基、フェニル基、低級アルキル基または低級アルコキシ 基を有するフェニル基を表す。

-237-

【特許請求の範囲】

【請求項1】 下記一般式で記述されるアミン化合物と 発光材の混合層を発光層に接して設けた電界発光素子。 【化1】

ただし、R₄、R₅、R₅は同一でも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のアリール基を表し、R₂は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を※

※表わし、A: は以下のいずれかの構造を有する置換基を表すが、(C)中のR: は水素原子、メチル基、メトキシ基、または塩素原子を表す。

2

ルコキシ基、フェニル基、低級アルキル基または低級ア

ルコキシ基を置換基として有するフェニル基、Raは水

素原子、メチル基、メトキシ基、または塩素原子を表

*ただし、R:、R:は水素原子、低級アルキル基、低級ア

[化3]

【請求項3】 下記一般式で記述されるアミン化合物と 50 発光材の混合層を発光層に接して設けた電界発光素子。

【化4】

3

1

ただし、R。、Rieは水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のフェニル基を表し、Riiは水素原子、メチル基、メトキシ基、塩素原子を表す。

*【請求頃4】 下記一般式で記述されるアミン化合物と 発光材の混合層を発光層に接して設けた電界発光素子。 【化5】

ただし、R:a、R:aは同一でも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のアリール基を表し、R:aは水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表わ

し、 A_2 は以下のいずれかの構造を有する置換基を表すが、(C) 中の R_8 は水素原子、メチル基、メトキシ基、塩素原子を表す。

【化6】

【請求項5】 請求項1から4記載のアミン化合物から 選ばれる少なくとも2種類を含む材料と発光材の混合層 を発光層に接して設けたことを特徴とする電界発光素 于。

陽極、アミン化合物と発光材の混合層、 【請求項6】 発光層及び陰極からなる請求項1から5のいずれか記載 の電界発光素子。

【請求項7】 陽極、ホール輸送層、アミン化合物と発 30 光材の混合層、発光層及び陰極からなる請求項1から5 のいずれか記載の電界発光素子。

【請求項8】 発光層と陰極の間に電子輸送層を設けた 請求項6または7記載の電界発光素子。

【請求項9】 混合層の発光材と発光層の発光材とが同 一である請求項1から8のいずれか記載の電界発光素 子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、各種の表示装置として 40 広範囲に利用される発光素子であって、低い駆動電圧、 高輝度、かつ安定性に優れた電界発光素子に関するもの である。

[0002]

【従来の技術】電界発光素子は、自己発光のために液晶 素子に比較して明るく、鮮明な表示が可能であるため従 来多くの研究者によって研究されてきた。

【0003】現在、実用レベルに達した電界発光素子と しては無機材料のスnSを用いた素子がある。

光のための駆動電圧として200V以上が必要で広く使 用されるには至っていない。

【0005】これに対して有機材料を用いた電界発光素 子である有機電界発光素子は、従来実用的なレベルから はほど遠いものであったが、1987年にコダック社の C. W. Tangらによって開発された積層構造素子に よりその特性が飛躍的に進歩した。

【0006】彼らは蒸着膜の構造が安定で電子を輸送す ることの出来る蛍光体と、正孔を輸送することの出来る 有機物を積層し、両方のキャリヤーを蛍光体中に注入し て発光させることに成功した。

【0007】これによって有機電界発光素子の発光効率 が向上し、10 V以下の電圧で1000 c d/m²以上 の発光が得られる様になった。

【0008】その後多くの研究者によってその特性向上 のための研究が行われ、現在では10000cd/m² 以上の発光特性が得られている。

【0009】この様な有機電界発光素子の基本的な発光 特性はすでに十分実用範囲にあり、現在その実用化を妨 げている最も大きな課題は、駆動時の発光特性の安定性 の不足にある。

【0010】具体的には、発光輝度が低下したり、ダー クスポットと呼ばれる発光しない領域が発生したり、素 子の短絡により破壊が起きてしまうことである。

[0011]

【発明が解決しようとする課題】本発明は、以上の様な 状況を鑑み、従来の電界発光素子の技術的課題を解決 【0004】しかし、この様な無機の電界発光素子は発50し、駆動電圧が低く、高輝度でさらに発光安定性に優れ

た有機電界発光素子を実現出来る新規な電界発光素子を 提供することを目的とすし、特に連続発光時の発光輝度 の低下が格段に優れた電界発光素子を提供することにあ る。

[0012]

【課題を解決するための手段】上記目的を達成するために、本発明者らは様々な電界発光素子を試作し、発光の安定性の評価を行った。

【0013】その結果、請求項1から8記載の電界発光素子では発光安定性が大きく向上することを見出した。

【0014】以下順次説明する。請求項1から4記載の 発明では、以下の(化7)、(化8)、(化9)、(化 10)で記述されるアミン化合物と発光材の混合層を発* *光層に接して設けた。

[0015]

【化7】

$$\begin{array}{c|c}
 & R_3 & R_3 \\
 & N & N & N
\end{array}$$

$$\begin{array}{c|c}
 & R_3 & R_3 & R_3 \\
 & R_2 & R_2
\end{array}$$

8

【0016】 【化8】

$$\begin{array}{c} R_4 \\ R_7 \\ N - \Delta_1 - N \\ R_7 \\ N \end{array}$$

[0017]

[0018]

ただし、(化7)におけるR₁、R₂は水素原子、低級アルキル基、低級アルコキシ基、フェニル基、低級アルキル基または低級アルコキシ基を置換基として有するフェニル基、R₃は水素原子、メチル基、メトキシ基、または塩素原子を表し、R₁、R₂の少なくとも一方は、ノルマルブチル基、イソプチル基、セカンダリブチル基、ターシャルプチル基、フェニル基、低級アルキル基または 20 低級アルコキシ基を有するフェニル基を表す。 *

*【0019】また、(化8)におけるR₄、R₅、R₅は同一でも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のアリール基を表し、R₇は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表し、A₇は以下の(A)から(M)のいずれかの構造を有する置換基を表す。

[0020]

【化11】

ここで、(C)中のR®は水素原子、メチル基、メトキシ基、または塩素原子を表す。

【0.0.2.1】また、((4.9))における $R_{\rm e}$ 、 $R_{\rm T0}$ は水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のフェニル基を表し、 $R_{\rm e}$ は水素原子、メチル基、メトキシ基、塩素原子を表す。

【0022】また、(化10) における、R:a、R:aは 50

同一でも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、置換または無置換のアリール基を表し、Rickは水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表し、Aik以下の(A)から(M)のいずれかの構造を有する置換基を表す。

[0023]

【化12】

ここで、(C)中のRsは水素原子、メチル基、メトキ シ基、または塩素原子を表す。

【0024】また、混合層の形成方法としては真空蒸着 法などの乾式成膜法や、スピンコート法などの湿式成膜 法などがあげられる。

【0025】さらに真空蒸着法では、複数の蒸着源より 同時に異なった材料を蒸着して混合層を作製することが 好まれるが、複数の材料を混合させ単一の蒸着源を用い 30 て蒸着を行い混合層を作製することも可能である。な お、混合層の膜厚は100mm以下が適当であり、さら には50nm以下が特に好ましい。

【0026】また、発光材としては各種の金属錯体化合 物、オキサジアゾール誘導体などの有機色素化合物、ポ リパラフェニレンビニレンなどの高分子化合物など各種 の材料を用いることができるが、発光層に用いる発光材 と混合層に用いる発光材は基本的には同一の材料が好適 である。

【0027】また、発光層にキナクリドンやクマリンな 40 どのドーパントを添加することによりさらに高性能の電 界発光素子を作製することができる。

【0028】また、請求項5記載の発明のようにアミン 化合物としては上記で示されるものから複数種選んで発 光材と混合してもよい。

【0029】また、請求項7の発明のように陽極からの 正孔の注入を改善するためにホール輸送層を設けるとよ 170

【0030】このホール輸送層は単一の化合物でも複数

されていてもよく、さらには、本発明で示したアミン化 合物を用いるとなおよい。

【0031】また、請求項8記載の発明のように陰極と 発光層の間に電子輸送層を設け陰極からの電子の注入を 改善するとさらによい。

[0032]

【作用】本発明の構成中のアミン化合物は、耐熱性の向 上した優れた正孔輸送性の化合物であり、本発明は、こ のような化合物と発光材の混合した層を発光層に接して 設けた素子構成を有する。

【0033】このため、連続して発光させた際の発光層 界面の劣化が大幅に抑制され、発光安定性がきわめて改 善される。

[0034]

【実施例】以下に、本発明につき実施例を用いてより具 体的に説明する。

【0035】本発明はこれらによって何等の限定を受け るものではない。なお以下の実施例では、発光材とし て、トリス(8-キノリノール)アルミニウム(A1 q) を用い、陽極、正孔輸送層、混合層、発光層、陰極 を有する素子の実施例を示すが、本発明の技術的思想 は、これらの実施例の具体的構成により何等の限定を受 けるものではないことはいうまでもない。

【0036】 (実施例1) 以下、本発明の実施例1につ いて説明をする。

【0037】図1は、本実施例の電界発光素子の斜視図 を示す。図1において、1はガラス電極、2は透明電 の化合物から形成されていてもよく、また単層でも積層 50 極、3は正孔(ホール)輸送層、4は混合層、5は発光

-243-

層、6は電極である。

【0038】この電界発光素子は、ガラス基板1上に透明電極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層3、アミン化合物と発光材の混合層4、発光層5、アルミニウム/リチウム(A1/Li)電極6の順に蒸着して積層構造として作製したものであるが、その製造過程について、より詳細に説明をする。

【0039】まず、十分に洗浄したガラス基板1(IT 〇電極2は成膜済み)に対して、前記(化7)のR:= p-t-C:H₉、R₂=H、R₂=Hであるアミン化合物 10 (1)、電子輸送性発光材として精製したAlqを蒸着 装置にセットした。

【0040】次に、10-6torrまで排気した後、 0.1nm/秒の速度でアミン化合物(1)を蒸着し、 正孔輸送層3を50nm形成した。

【0041】次に、アミン化合物(1)とAlqを異なる蒸着源より、それぞれ0.1nm/秒の速度で蒸着し、アミン化合物(1)と発光材の混合層4を30nm形成した。

【0042】次に、発光層5の蒸着はAlqを0.1n 20m/秒の速度で行い、その膜厚を50nmとし、発光層5を積層した。

【0043】最後に、A1/Li電極6の蒸着は1nm /砂の速度で行い、その厚さを150nmとし、電極6 を積層し、電界発光素子を作製した。

【0044】なお、これらの蒸着はいずれも真空を破らずに連続して行い、膜厚は水晶振動子によってモニター した。

【0045】そして、素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引続き特性測定を行った。

【0046】ここで、得られた素子の発光特性は100mA/cm²の電流を印加した場合の発光輝度で定義した。

【0047】そして、発光の安定性は500cd/m°の発光が得られる電流を連続で印加し、その時の発光輝度の変化を測定した。

【0048】また、発光の寿命を、輝度が半分の250 cd/m²になるまでの時間と定義した。

【0049】その結果、発光特性は2500cd/m²であり、発光の寿命は2100hであった。

14

【0050】ついで、比較のためにアミン化合物(1) とA1gとの混合層を形成しない以外は、上記と同様に して電界発光素子を作製し特性を調べた。

【0051】 その結果、発光特性、発光の寿命特性はそれぞれ、 $2500cd/m^2$ 、620hであった。

【0052】さらに、アミン化合物(1)の代わりに、 以下の(化13)に示す代表的な正孔輸送性材料(略称 TPD)を用いた以外は上記と同様に電界発光素子を作 製して特性を調べた。

[0053]

【化13】

その結果、この比較例における発光特性、発光の寿命特性はそれぞれ、 2300 c d/m^2 、150 hであった。

【0054】以上より、本実施例においては、本発明になるアミン化合物(1)と発光材の混合層を設けた電界発光素子は、発光特性に優れ、さらに発光寿命が格段に向上することが確認された。

【0055】(実施例2)以下、本発明の実施例2について説明をする。

【0056】本実施例では、アミン化合物(1)の代わりに、それぞれ、アミン化合物(2)(R:=p-iso-CaHa、R2=H、R3=H)、(3)(R:=p-t-CaHa、R2=p-t-CaHa、R3=H)、(4)(R:=p-CaHa、R2=p-CaHa、R3=H)、(5)(R:=p-CHa-CaHa、R2=H)、(5)(R:=p-CHa-CaHa、R2=H)を用いた以外は実施例1と同様な方法で電界発光素子を作製し、その特性を評価した。

【0057】さらに、比較のために各アミン化合物と発 光材の混合層を設けていない素子を作製し特性を評価し た。

【0058】それらの結果を以下の(表1)に示す。 【0059】

【表1】

40

30

アミン化合物 No	混合層の有無	発光特性 (c d ∕ m²)	発光寿 命 (h)
2	有	2100	1800
	無	2100	500
3	有	1950	2000
	無	2000	600
4	有	2100	1300
	無	2150	450
5	有	2500	1250
	111 1	2450	400

以上より、本実施例については、本発明になるアミン化合物 $(2) \sim (5)$ と発光材の混合層を用いた電界発光素子は、発光特性に優れ、さらに発光寿命が格段に向上することが確認された。

【0060】(実施例3)以下、本発明の実施例3について説明をする。

【0061】本実施例では、アミン化合物(1)の代わりに、それぞれ、前記(化8)のアミン化合物(6) (Rr=H、Rs=H、Rs=H、Rr=H、Ar= (A))、(7)(Rs=H、Rs=H、Rs=H、Rr= II、Rs=II、Ar=(C))、(8)(Rs=p-t-Cs Hs、Rs=p-t-CsHs、Rs=H、Rr=H、Rr=+ 16

【0062】さらに、比較のために各アミン化合物と発 光材の混合層を設けていない素子を作製し特性を評価し 20 た。

【0063】それらの結果を、以下の(表2)に示す。

[0064]

【表2】

アミン化合物 No	混合層の有無	発光特性 (cd/m²)	発光寿命 ('n)
6	有	2600	2400
	無	2600	700
7	有	2150	2600
	無	2100	800
8	有	2200	2500
	無	2200	700
9	有	2300	2300
	無	2300	650
10	有	2300	2300
))(2200	600

以上より、本実施例については、本発明になるアミン化 40 合物(6)~(10)と発光材の混合層を用いた電界発 光素子は、発光特性に優れ、さらに発光寿命が格段に向 上することが確認された。

【0065】(実施例4)以下、本発明の実施例4について説明をする。

【0066】本実施例では、アミン化合物(1)の代わりに、それぞれ、前記(化9)のアミン化合物(11)(R₀=H, R₁₀=H, R₁₁=H)、(12)(R₀=p-CH₀、R₁₁=CH₀)(13)(R₀=p-t-C₀H₀、R₁₀=p-t-C₁H₀、R₁₁=H)、50

(14) (R_s=p-iso-C4H9、R10=p-iso-C₄H₅、R₁₁=H)、(15) (R_s=p-C₆H₅、R₁₀=p-C₆H₅、R₁₁=H) を用いた以外は、実施例1と同様な方法で電界発光素子を作製し、その特性を評価した。

【0067】さらに、比較のために各アミン化合物と発 光材の混合層を設けていない素子を作製し特性を評価し た。

【0068】それらの結果を以下の(表3)に示す。

[0069]

【表3】

アミン化合物 No	混合層の有無	発光特性 (o d / m²)	発光寿 命 (h)
1 1	有	2400	2500
	無	2400	750
12	有	2300	2000
	無	2300	450
:3	有	2100	2200
	無	5500	600
14	有	2500	2300
	無	2550	550
15	有	2500	1900
	無	2500	450

以上より、本実施例については、本発明になるアミン化合物(11) \sim (15)と発光材の混合層を用いた電界発光素子は、発光特性に優れ、さらに発光寿命が格段に向上することが確認された。

【0070】(実施例5)以下、本発明の実施例5につ 20 た。 いて説明をする。 【6

【0071】本実施例では、アミン化合物(1)の代わりに、それぞれ、前記(化10)のアミン化合物(16)(R:2=p-CH₈、R:3=p-CH₈、R:4=H、A2=(A))、(17)(R:2=H、R:3=H、R:4=H、R₁=H

*= (C))、(19) (R₁₂=H、R₁₃=H、R₁₄=H、R₁₄=H、R₁₃=H、R₁₃=H、R₁₃=H、R₁₄=H、R₁₄=H、R₁₄=H、R₁₅=H、R₁₄=H、R₁₅=H、R₁₅=H、R₁₅=H、R₁₄=H、R₁₅=

【0072】さらに、比較のために各アミン化合物と発 光材の混合層を設けていない素子を作製し特性を評価し た。

【0073】それらの結果を以下の(表4)に示す。

[0074]

【表4】

アミン化合物 No	混合層の有無	発光特性 (o d / m²)	発光寿命 (5)
16	有	2400	1500
	無	2300	400
: 7	有	2050	2200
	無	2000	700
:8	有	2100	1700
	無	2100	550
19	有	2300	1900
	無	2350	500
20	有	2300	1800
	無	2300	500

以上より、本実施例については、本発明になるアミン化合物(16)~(20)と発光材の混合層を用いた電界発光素子は、発光特性に優れ、さらに発光寿命が格段に向上することが確認された。

【0075】(実施例6)以下、本発明の実施例6について説明をする。

【0076】アミン化合物(1)の代わりに、アミン化合物(1)と(7)を用いて、発光材であるAlqとの 50

混合層を形成した以外は、実施例1と同様な方法で電界 発光素子を作製し、その特性を評価した。

【0077】その結果、発光特性は2400cd/m²であり、発光の寿命は2500hであった。

【0078】比較のためにアミン化合物(1)、(7) とA1qとの混合層を形成しない以外は、上記と同様に して、電界発光素子を作製し特性を調べた。

【0079】その結果、発光特性、発光の寿命特性はそ

れぞれ、 2500 c d/m^2 、620 hであった。

【0080】以上より、本実施例については、本発明に なるアミン化合物(1)、(7)と発光材の混合層を設 けた電界発光素子は、発光特性に優れ、さらに発光寿命 が格段に向上することが確認された。

[0081]

【発明の効果】以上のように、本発明は、最適化された アミン化合物と発光材の混合層を設けた電界発光素子で あり、本発明の材料及び構成を用いることにより、従来 の電界発光素子の最も大きな技術的課題であった発光安 10 5 電子輸送層兼発光層 定性を格段に改良した電界発光素子を実現することがで

きる。

【図面の簡単な説明】

【図1】本発明の一実施例における電界発光素子の構成 を示す部分断面拡大斜視図

20

【符号の説明】

- 1 ガラス基板
- 2 透明電極
- 3 正孔輸送層
- 4 アミン化合物と発光材の混合層
- - 6 Al/Li電極

【図1】

