Quantum mechanics with neural networks Dane Hudson Smith

M dhudsmith@gmail.com

github.com/dhudsmith

linkedin.com/in/dhudsmith

"If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet."

-Niels Bohr

Bird's-eye view

Goal: Teach a neural network (NN) to rapidly solve quantum mechanics (QM) problems.

Motivation:

- Solving QM problems is computationally expensive
- Solution may be impractical in time-sensitive applications
- Once trained, simple NNs make quick predictions

Approach:

- 1. Solve a large ensemble of QM problems by brute force
- 2. Train a neural network (NN) to predict solution for new inputs

How much energy can we give a particle in a bowl?

Where is the particle?

How do we determine the allowed **energies** and the **probability densities**?

Solve Schrödinger's equation:

What is a "wave function"?

$$f(x) = |\psi(x)|^2$$

Solving Schrödinger's equation for new V(x) is computationally expensive and time consuming.

Define the *functionals:*

$$g_E\left(V(x)
ight) = E$$
 (energy functional)
$$g_f\left(V(x)
ight) = f(x)$$
 (probability density functional)

If we knew the form of $g_E(V(x))$ and $g_f(V(x))$, we would not have to solve Schrödinger's equation for each new V(x).

Neural network model of a quantum system: Big picture

Goal:

Model the functionals $g_E(V(x))$ and $g_f(V(x))$ with neural networks

Why neural networks?

- $g_E(V(x))$ and $g_f(V(x))$ highly nonlinear
- 1D "image processing"
- Fast predictors

Neural network model of a quantum system:

Building the neural network

Generate an **ensemble** of random potentials:

Neural network model of a quantum system: Building the neural network

Solve Schrödinger's equation for the entire ensemble

Extract probability distributions and energy levels.

Neural network model of a quantum system

Building the neural network

Generate a ensemble of examples of $g_f(V(x))$ and $g_E(V(x))$:

V(x)	$f_0(x)$	$f_1(x)$	•••	E_0	E_1	• • •
$V^{(1)}(x)$	$f_0^{(1)}(x)$	$f_1^{(1)}(x)$	• • •	$E_0^{(1)}$	$E_1^{(1)}$	• • •
$V^{(2)}(x)$	$f_0^{(2)}(x)$	$f_1^{(2)}(x)$	• • •	$E_0^{(2)}$	$E_1^{(2)}$	• • •
•		•	• • •	•	•	• • •
$V^{(N)}(x)$	$f_0^{(N)}(x)$	$f_1^{(N)}(x)$	• • •	$E_0^{(N)}$	$E_1^{(N)}$	• • •

Use a neural network to model of $g_f(V(x))$ and $g_E(V(x))$.

 $g_f(V(x))$

 $g_E(V(x))$

Neural network model of a quantum system

Building the neural network

Focus on $g_E(V(x))$:

V(x)	E_0	E_1	•••	E_9
$V^{(1)}(x)$	$E_0^{(1)}$	$E_1^{(1)}$	•••	$E_{9}^{(1)}$
:	•	•	•••	•
$V^{(1e5)}$	$E_0^{(1e5)}$	$E_1^{(1e5)}$	•••	$E_9^{(1{ m e}5)}$

The "Multi-layer perceptron" model:

Neural network model of a quantum system

Building the neural network

Need to choose:

- number of hidden layers
- number of nodes per layer

Neural network model of a quantum system Results

Hidden layers: 1

Nodes in hidden layer: 50

Neural network model of a quantum system Results

How do **accuracy** and **speed** depend upon the network architecture?

- NNs with 2 hidden layers are more accurate, slower.
- NNs with more nodes are more accurate, slower.

Fast: compare with ~1e-5 s from conventional solution.

Neural network model of a quantum system Results

How do we choose an "optimum" network architecture?

Trade-off between prediction accuracy and prediction speed

To do

- 1. Model the probability density functional, $g_f(V(x))$
- 2. Publish!
- 3. Try other nonlinear models
- 4. Model 2D and 3D quantum systems

Summary

- Neural networks can accurately model quantum mechanical systems
- Prediction times are much faster than conventional solutions
- Model selection achieved by optimizing prediction time and accuracy

Thank you!

References

Source code:

Github

https://github.com/dhudsmith/QuantumML

Neural network:

Scikit-learn, development version http://scikit-learn.org/dev/documentation.html

· Plots:

Matplotlib

http://matplotlib.org/contents.html

Multilayer perceptron graph:

https://github.com/nikolaypavlov/MLPNeuralNet