

EE 604 Digital Image Processing

Announcement

- Questions 1 and 2 for assignment will be posted tonight.
- More questions will be added as we progress
- Due: TBD

Lecture outline

- Image interpolation
- Image enhancement in spatial domain
 - Gray-level transformation
 - Histogram processing

Image interpolation

Image interpolation is required to compute the intensity value at any arbitrary location in an image, or to resize an image.

Checkerboard effect

interpolated to 1024 x 1024 (all)

Lecture outline

- Image interpolation
- Image enhancement in spatial domain
 - Gray-level transformation
 - Histogram processing

Spatial domain transformation

- Spatial domain —> pixel domain
- Working directly on the pixel values

$$g(x, y) = T[f(x, y)]$$
output image

input image

- T(.) can operate on a single image or multiple images
- T(.) can operate on a single pixel or on a neighborhood

Intensity transformation

- *s* is the intensity at g(x,y)
- r is the intensity at f(x,y), r has a range of [0, L-1]

$$s = L - 1 - r$$

image negatives

Intensity transformation

$$s = c \log(1+r)$$

log transformation

Intensity transformation

Power law transformation

Power law transformation

$$s = cr^{\gamma}$$

$$\gamma = 0.4$$

Gamma correction

Contrast stretching

original image

contrast enhanced

binary

Gray-level slicing

Bit plane slicing

Lecture outline

- Image interpolation
- Image enhancement in spatial domain
 - Gray-level transformation
 - Histogram processing

Histogram equalization

The main idea

Histogram equalization

T(.) = CDF of the given image

See class notes for the proof.

Histogram equalization

