PERFECT MATCHING FREE SUBGRAPH PROBLEM

ABSTRACT. Lacroix, Mahjoub, Martin and Picoleau have a polynomial time reduction from one-in-three SAT to PMFSP. We survey their result. Given a bipartite graph $G=(U\cup V,E)$, such that |U|=|V| and every edge is labelled true or false or both, the perfect matching free subgraph problem is to determine whether or not there exists a subgraph of G containing, for each node u of U, either all the edges labelled true or all the edges labelled false incident to u, and which does not contain a perfect matching. In their joint paper, the authors first show that the stable set problem in a restricted case of tripartite graphs can be reduced to the perfect matching free subgraph problem. Then, a reduction from one-in-three SAT to the stable set problem in a restricted case of tripartite graphs is present to finish the proof of NP-completeness of the perfect matching free subgraph problem.

1. Introduction

Theorem 1. Given a bipartite graph, if M is a maximum cardinality matching and S is a maximum stable set, then $|M| + |S| = |U \cup V|$.

Let $G = (U \cup V, E)$ be a bipartite graph such that |U| = V| = n. Let $U = \{u_1, \dots, u_n\}$ and $V = \{v_1, \dots, v_n\}$. Suppose that every edge of E is labelled *true* or *false*, where an edge may have both true and false labels. For a node $u_i \in U$, let E_i^t and E_i^f demote the sets of edges incident to u_i labelled true and false, respectively. The *perfect matching free subgraph problem* (PMFSP) in G is to determine whether or not there exists a subgraph containing for each node $u_i \in U$ either E_i^t or E_i^f (but not both), and which is perfect matching free.

2. PMFSP AND STABLE SETS

Let $H = (V^1 \cup V^2 \cup V^3, F)$ be a tripartite graph where $|V^1| = |V^2| = |V^3| = n$, $V^j = \{v_1^j, \dots, v_n^j\}$ for j = 1, 2, 3 and V^1 and V^2 are connected by the perfect matching $M = \{v_1^1 v_1^2, v_2^1 v_2^2, \dots, v_n^1 v_n^2\}$. We will consider the following problem: does there exist a stable set in H of size n + 1? We will call this problem the tripartite stable set with perfect matching problem (TSSPMP).

Theorem 2. TSSPMP reduces to PMFSP in polynomial time.

Proof. We show that an instance of TSSPMP can be transformed into an instance of PMFSP. For an edge $v_i^1v_i^2$ of the perfect matching where $v_i^1 \in V^1$ and $v_i^2 \in V^2$, we consider a node u_i in U. And for a node v_i^3 of V^3 we consider a node u_i in U. Moreover, if $v_i^1v_k^3$ (resp. $v_i^2v_k^3$) is in F for some $i, k \in \{1, ..., n\}$, then we add an edge u_iv_k in E with label true (resp. false).

In what follows, we will show that there exists a stable set in H of size n+1 if and only if there exists a subgraph $G'=(U\cup V,E')$ of G such that for each node $u_i\in U$, either $E_i^t\subset E'$ or $E_i^f\subset E'$, and G' is perfect matching free. In fact, suppose first that there exists a subgraph G' of G that satisfies the required properties. Since G' is perfect matching free, this implies that a maximum cardinality matching in G' contains fewer than n edges. As $|U\cup V|=2n$ by Theorem 1 there exists a stable set in G', say S', of size $|S'|\geq n+1$. Now from S', we are going to construct a stable set in H with the same cardinality. Let S be the node subset of H obtained as follows. For every node $v_j\in V\cap S'$, add node v_j^3 in S. And for every node $u_i\in U\cap S'$, add node v_i^1 in S if $E_i^t\subseteq E'$ and node v_2^i if $E_i^f\subseteq E'$. As $|S'|\geq n+1$, we have $|S|\geq n+1$. Now it is not hard to see that S is a stable set. Moreover from a stable set in H of size greater or equal to H one can obtain along the same line a stable set in H with the same cardinality.

3. The NP-completeness of PMFSP

Theorem 3. TSSPMP is NP-complete.

Proof. Suppose we are given an instance of 1-in-3 3SAT with a set of n literals $L=\{l_1,\ldots,l_n\}$ and a set of m clauses $C=\{C_1,\ldots,C_m\}$. We shall construct an instance of TSSPMP on a graph $H=(V^1\cup V^2\cup V^3,F)$ where $|V^1|=|V^2|=|V^3|=p=3n+m-1$ and the set of edges between V^1 and V^2 correspond exactly to a perfect matching. We will show that H has a stable set of size p+1 if and only if 1-in-3 3SAT admits a truth assignment. The construction will be done in 4 steps. First, with each literal $l_i\in L$, we associate the nodes $v_i^1, \bar{v}_i^1\in V^1, v_i^2, \bar{v}_i^2\in V^2$ and $v_i^3, \bar{v}_i^3\in V^3$, along with the edges $v_i^1\bar{v}_i^2, \bar{v}_i^2v_i^3, v_i^3\bar{v}_i^1, \bar{v}_i^1v_i^2, v_i^2\bar{v}_i^3, \bar{v}_i^3v_i^1$ in F. These nodes will be called literal nodes and the edges literal edges. Note that these edges form a cycle Γ_i . Moreover, if the stable set contains three nodes, these must be either $\{v_i^1, v_i^2, v_i^3\}$ or $\{\bar{v}_i^1, \bar{v}_i^2, \bar{v}_i^3\}$. For every $j\in\{1,\ldots,m\}$ and $k\in\{1,2,3\}$, we associate with x_j^k the node set $\{v_i^1, v_i^2, v_i^3\}$ (resp. $\{\bar{v}_i^1, \bar{v}_i^2, \bar{v}_i^3\}$) if $x_j^k=l_i$ (resp. $x_j^k=\bar{l}_i$) for some $i\in\{1,\ldots,m\}$. As a consequence we have that $\{\bar{v}_i^1, \bar{v}_i^2, \bar{v}_i^3\}$ (resp. v_i^1, v_i^2, v_i^3) is associated with \bar{x}_j^k if $x_j^k=l_i$ (resp. $x_j^k=\bar{l}_i$) for some $i\in\{1,\ldots,m\}$.

1

Next, we add for each clause C_j , j = 1, ..., m the nodes $w_j^1 \in V^1$, $w_j^2 \in V^2$, $w_j^3 \in V^3$ along with the edges $w_j^1 w_j^2$, $w_j^2 w_j^3$, $w_j^3 w_j^1$. These nodes will be called *clause nodes*, the edges *clause edges*. Note that these edges form a triangle, which will be denoted by T_j , for j = 1, ..., m.

In the next step, for each $C_j = (x_j^1, x_j^2, x_j^3)$, we add edges between w_j^1 (resp. w_j^2) and all the nodes associated with \bar{x}_j^1, x_j^2 and x_j^3 (resp. x_j^1, \bar{x}_j^2 and x_j^3) which belong to V^3 . Moreover, we add edges between w_j^3 and all the nodes associated with x_j^1, x_j^2 and \bar{x}_j^3 which belong to V^1 and V^2 . All these edges will be called *satisfiability edges*.

Finally, we add the nodes $z_q^1 \in V^1$, $z_q^2 \in V^2$, $z_q^3 \in V^3$ for $q=1,\ldots,n-1$. These nodes will be called *fictitious nodes*. For each fictitious node in $V^1 \cup V^2$, we add edges to connect this node to the all nodes in V^3 . And for each fictitious node V^3 , we add edges to connect this node to the all non fictitious nodes in $V^1 \cup V^2$. We also add the edges $z_q^1 z_q^2$ for $q=1,\ldots,n-1$. Observe that $|V^1|=|V^2|=|V^3|=p$. Moreover, the edges between V^1 and V^2 form a perfect matching given by the edges $v_i^1 \bar{v}_i^2$, $\bar{v}_i^1 v_i^2$, $i=1,\ldots,n$, $w_j^1 w_j^2$, $j=1,\ldots,m$, and $z_q^1 z_q^2$, $q=1,\ldots,n-1$.

Thus, from an instance of the 1-in-3 3SAT with n literals and m clauses, we obtain a tripartite graph with 9n + 3m - 3 nodes and $10n^2 + 4nm - 5n + 14m + 1$ edges.

Claim 4. Any stable set in H cannot contain more than 3n + m nodes. Moreover, if a stable set contains 3n + m nodes, then it does not contain any fictitious node.

In what follows we show that there exists in H a stable set of size 3n+m if and only if 1-in-3 3SAT admits a solution. (\Rightarrow) Let S be a stable set in H of size 3n+m. By Claim 4, S does not contain any fictitious node. Thus, as |S|=3n+m, S intersects each cycle Γ_i in exactly three nodes and each triangle T_j in exactly one node. Moreover, we have either $S \cap \Gamma_i = \{v_i^1, v_i^2, v_i^3\}$ or $S \cap \Gamma_i = \{\bar{v}_i^1, \bar{v}_i^2, \bar{v}_i^3\}$, for $i=1,\ldots,n$. Consider the solution I for 1-in-3 3SAT defined as follows. If $v_i^k \in S$ (resp. $\bar{v}_i^k \in S$), k=1,2,3, then associate the true (resp. false) value to the literal l_i , for $i=1,\ldots,n$. In what follows we will show that for each clause $C_j = (x_j^1, x_j^2, x_j^3)$, we have exactly one variable with true value. For this it suffices to show that a clause node of T_j is in S if and only if the corresponding variable is of true value. Indeed, suppose that $w_j^1 \in S$. We may suppose that $x_j^1 = l_i$, the case where $x_j^1 = \bar{l}_i$ is similar. By construction of H, as the satisfiability edge $w_j^1 \bar{v}_i^3$ belongs to F, it follows that $\bar{v}_i^3 \notin S$. By the remark above, this implies that v_i^1 , v_i^2 , v_i^3 belong to S. Therefore literal l_i has a true value in solution I. Thus x_j^1 has a true value. It is similar for w_j^2 and w_j^3 . Conversely, if $x_j^1 = l_i$, then by definition of I, v_i^1 , v_i^2 , $v_i^3 \in S$. Moreover, the satisfiability edges $w_j^2 v_i^3$, $w_j^3 v_i^2$ belong to F. As $|S \cap T_j| = 1$, it follows that $w_j^1 \in S$.

As a consequence, as S contains exactly one clause node from each T_i , it follows that each clause has exactly one true variable.

(\Leftarrow) Suppose that there exists a solution I of 1-in-3 3SAT. Let S be the node set obtained as follows. If l_i has true value in I, then add v_i^1 , v_i^2 , v_i^3 to S, otherwise add \bar{v}_i^1 , \bar{v}_i^2 , \bar{v}_i^3 to S. For each clause $C_j = (x_j^1, x_j^2, x_j^3)$, $j = 1, \ldots, m$, add node w_j^k to S if x_j^k has true value, for $k \in \{1, 2, 3\}$. We have that |S| = 3n + m. We now show that S is a stable set. For this, it suffices to show that no clause node in S is adjacent to a literal node. Consider $j \in \{1, \ldots, m\}$ and suppose that x_j^1 has a true value in C_j . (The case where x_j^k , $k \in \{2, 3\}$, has a true value is similar.) Node w_j^1 associated with x_j^1 , which is in S, is adjacent to exactly three literal nodes, namely the ones associated with \bar{x}_j^1 , x_j^2 and x_j^3 , in V_3 . As I is a solution of the 1-in-3 3SAT, and in consequence, these variables have all false values, by construction, the nodes corresponding to these variables do not belong to S. Therefore w_j^1 cannot be adjacent to one of these nodes, and hence the proof is complete.