Espaces vectoriels

- Espaces vectoriels
 - Vecteurs du plan
 - Vecteurs de l'espace
 - Somme de vecteurs
 - Multiplication par un scalaire
 - Définition d'un espace vectoriel
 - Sous-espace vectoriel
 - Combinaisons linéaires, partie génératrice
 - Indépendance linéaire
 - Somme de sous-espaces vectoriels

Mathématiques et calcul 1

Mathématiques et calcul 1

Mathématiques et calcul 1

Un ensemble E, muni d'une addition et d'une multiplication externe par des nombres réels est un espace vectoriel sur \mathbb{R} si les deux opérations vérifient :

►
$$\forall \vec{u}, \vec{v}, \vec{w} \in E$$
 : $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

- ► $\forall \vec{u}, \vec{v}, \vec{w} \in E$: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $ightharpoonup \forall \vec{u}, \vec{v} \in E : \vec{u} + \vec{v} = \vec{v} + \vec{u}$

- ► $\forall \vec{u}$, \vec{v} , $\vec{w} \in E$: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $ightharpoonup \forall \vec{u}, \vec{v} \in E : \vec{u} + \vec{v} = \vec{v} + \vec{u}$

- ► $\forall \vec{u}, \vec{v}, \vec{w} \in E$: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $ightharpoonup \forall \vec{u}, \vec{v} \in E : \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $\blacktriangleright \forall \vec{u} \in E, \exists \vec{v} \in E \text{ (noté : } -\vec{u} \text{) tel que : } \vec{u} + \vec{v} = \vec{v} + \vec{u} = \vec{0}$

Propriétés de la multiplication externe

►
$$\forall \vec{u} \in E$$
, $\forall \alpha, \beta \in \mathbb{R} : \alpha.(\beta.\vec{u}) = \alpha\beta.(\vec{u})$

Propriétés de la multiplication externe

- $\blacktriangleright \ \forall \vec{u} \in E, \quad \forall \alpha, \beta \in \mathbb{R} : \alpha. (\beta. \vec{u}) = \alpha\beta. (\vec{u})$
- $\blacktriangleright \forall \vec{u} \in E : 1.\vec{u} = \vec{u}$

Relation de l'addition et de la multiplication externe

$$ightharpoonup \forall \vec{u} \in E, \quad \forall \alpha, \beta \in \mathbb{R} : (\alpha + \beta).\vec{u} = \alpha.\vec{u} + \beta.\vec{u}$$

Relation de l'addition et de la multiplication externe

- ▶ $\forall \vec{u} \in E$, $\forall \alpha, \beta \in \mathbb{R} : (\alpha + \beta).\vec{u} = \alpha.\vec{u} + \beta.\vec{u}$
- $\blacktriangleright \ \forall \vec{u} \,, \vec{v} \in E, \quad \forall \alpha \in \mathbb{R} : \alpha . \left(\vec{u} + \vec{v} \right) = \alpha . \vec{u} + \alpha . \vec{v}$

Sous-espace vectoriel

Soit E un espace vectoriel et $F \subset E$ une partie non-vide de E.

F est un sous-espace vectoriel de E, si :

 \vec{u} , $\vec{v} \in F \implies \vec{u} + \vec{v} \in F$ (stabilité par addition)

Sous-espace vectoriel

Soit E un espace vectoriel et $F \subset E$ une partie non-vide de E.

F est un sous-espace vectoriel de E, si :

- ▶ \vec{u} , $\vec{v} \in F$ \Rightarrow $\vec{u} + \vec{v} \in F$ (stabilité par addition)
- ▶ $\vec{u} \in F$, $\alpha \in \mathbb{R}$ \Rightarrow $\alpha . \vec{u} \in F$ (stabilité par multiplication externe)

Combinaisons linéaires

Soit
$$\mathcal{F} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$$

Soit
$$\mathcal{F} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\} = \{\vec{u}_i\}_{1 \le i \le n}$$
,

Soit $\mathcal{F} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\} = \{\vec{u}_i\}_{1 \leq i \leq n}$, une famille de vecteurs d'un espace vectoriel E,

Soit $\mathcal{F} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\} = \{\vec{u}_i\}_{1 \leq i \leq n}$, une famille de vecteurs d'un espace vectoriel E, on appelle combinaison linéaire des vecteurs \vec{u}_i (ou combinaison linéaire de la famille \mathcal{F}),

le vecteur v :

Soit $\mathcal{F} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\} = \{\vec{u}_i\}_{1 \leq i \leq n}$, une famille de vecteurs d'un espace vectoriel E, on appelle combinaison linéaire des vecteurs \vec{u}_i (ou combinaison linéaire de la famille \mathcal{F}),

le vecteur v :

$$\vec{v} = \alpha_1 \cdot \vec{u}_1 + \alpha_2 \cdot \vec{u}_2 + \dots + \alpha_n \cdot \vec{u}_n = \sum_{i=1}^n \alpha_i \cdot \vec{u}_i \quad (\alpha_i \in \mathbb{R}, \ 1 \le i \le n)$$

Proposition : Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \le i \le n}$ une famille de vecteurs d'un espace vectoriel E.

Proposition : Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

L'ensemble F de toutes les combinaisons linéaires de \mathcal{F} , est un sous-espace vectoriel de E.

Proposition : Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

L'ensemble F de toutes les combinaisons linéaires de \mathcal{F} , est un sous-espace vectoriel de E.

On note
$$F = \text{Vect}(\mathcal{F})$$

Proposition : Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

L'ensemble F de toutes les combinaisons linéaires de \mathcal{F} , est un sous-espace vectoriel de E.

On note
$$F = \text{Vect}(\mathcal{F})$$

F est engendré par \mathcal{F} , ou \mathcal{F} est une partie génératrice de F.

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \le i \le n}$ une famille de vecteurs d'un espace vectoriel E.

On dit que la famille \mathcal{F} est libre, si :

$$\alpha_1 \cdot \vec{u}_1 + \alpha_2 \cdot \vec{u}_2 + \dots + \alpha_n \cdot \vec{u}_n = \vec{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

On dit que la famille \mathcal{F} est libre, si :

$$\alpha_1.\vec{u}_1 + \alpha_2.\vec{u}_2 + \dots + \alpha_n.\vec{u}_n = \vec{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

On dit aussi : les vecteurs \vec{u}_i $(1 \le i \le n)$ sont linéairement indépendants.

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille de vecteurs d'un espace vectoriel E.

On dit que la famille \mathcal{F} est libre, si :

$$\alpha_1.\vec{u}_1 + \alpha_2.\vec{u}_2 + \dots + \alpha_n.\vec{u}_n = \vec{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

On dit aussi : les vecteurs \vec{u}_i $(1 \le i \le n)$ sont linéairement indépendants.

Un famille qui n'est pas libre est dite liée.

Exemple

Soit les vecteurs \vec{u} , \vec{v} , \vec{w} de l'espace vectoriel \mathbb{R}^4 :

$$\vec{u} = (2, 0, 3, 0), \vec{v} = (0, -1, 0, 0), \vec{w} = (5, -2, 0, 0)$$

Exemple

Soit les vecteurs \vec{u} , \vec{v} , \vec{w} de l'espace vectoriel \mathbb{R}^4 :

$$\vec{u} = (2, 0, 3, 0), \vec{v} = (0, -1, 0, 0), \vec{w} = (5, -2, 0, 0)$$

La famille \vec{u} , \vec{v} , \vec{w} est libre.

Exemple

Soit les vecteurs \vec{u} , \vec{v} , \vec{w} de l'espace vectoriel \mathbb{R}^4 :

$$\vec{u} = (2, 0, 3, 0), \vec{v} = (0, -1, 0, 0), \vec{w} = (5, -2, 0, 0)$$

La famille \vec{u} , \vec{v} , \vec{w} est libre.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

Exemple

Soit les vecteurs \vec{u} , \vec{v} , \vec{w} de l'espace vectoriel \mathbb{R}^4 :

$$\vec{u} = (2, 0, 3, 0), \vec{v} = (0, -1, 0, 0), \vec{w} = (5, -2, 0, 0)$$

La famille \vec{u} , \vec{v} , \vec{w} est libre.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

$$\begin{cases}
2\alpha + 5\gamma &= 0 \\
-\beta - 2\gamma &= 0 \\
3\alpha &= 0
\end{cases}$$

Exemple

Soit les vecteurs \vec{u} , \vec{v} , \vec{w} de l'espace vectoriel \mathbb{R}^4 :

$$\vec{u} = (2, 0, 3, 0), \vec{v} = (0, -1, 0, 0), \vec{w} = (5, -2, 0, 0)$$

La famille \vec{u} , \vec{v} , \vec{w} est libre.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

Alors:

$$\begin{cases}
2\alpha + 5\gamma &= 0 \\
-\beta - 2\gamma &= 0 \\
3\alpha &= 0
\end{cases}$$

Donc $\alpha = \beta = \gamma = 0$

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2, \vec{v}(X) = X(X-1), \vec{w}(X) = (X-1)^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2.

Exemple

Soit la famille $\mathcal{F}=\{\vec{u}(X)=X^2, \vec{v}(X)=X(X-1), \vec{w}(X)=(X-1)^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2.

La famille \mathcal{F} est linéairement indépendante.

Exemple

Soit la famille $\mathcal{F}=\{\vec{u}(X)=X^2, \vec{v}(X)=X(X-1), \vec{w}(X)=(X-1)^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2.

La famille \mathcal{F} est linéairement indépendante.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$

Exemple

Soit la famille $\mathcal{F} = \{ \vec{u}(X) = X^2, \vec{v}(X) = X(X-1), \vec{w}(X) = (X-1)^2 \}$ dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2.

La famille \mathcal{F} est linéairement indépendante.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$ Alors :

$$\begin{cases}
\alpha + \beta + \gamma &= 0 \\
\beta + 2\gamma &= 0 \\
\gamma &= 0
\end{cases}$$

Exemple

Soit la famille $\mathcal{F}=\{\vec{u}(X)=X^2, \vec{v}(X)=X(X-1), \vec{w}(X)=(X-1)^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2.

La famille \mathcal{F} est linéairement indépendante.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$ Alors :

$$\begin{cases}
\alpha + \beta + \gamma &= 0 \\
\beta + 2\gamma &= 0 \\
\gamma &= 0
\end{cases}$$

Donc $\alpha = \beta = \gamma = 0$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs : $\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5)$.

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs : $\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5).$ La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs :

$$\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5).$$

La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Soient
$$\alpha$$
, β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs : $\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5)$.

La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha \cdot \vec{u} + \beta \cdot \vec{v} + \gamma \cdot \vec{w} = \vec{0}$

$$\begin{cases} \alpha + \beta + 2\gamma &= 0 \\ -\alpha + 3\beta + 5\gamma &= 0 \end{cases}$$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs :

$$\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5).$$

La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

$$\begin{cases} \alpha + \beta + 2\gamma &= 0 \\ -\alpha + 3\beta + 5\gamma &= 0 \end{cases}$$

Donc
$$lpha=-rac{1}{4}$$
 , $eta=-rac{7}{4}$, $\gamma=1$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs :

$$\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5).$$

La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

$$\begin{cases}
\alpha + \beta + 2\gamma &= 0 \\
-\alpha + 3\beta + 5\gamma &= 0
\end{cases}$$

Donc
$$\alpha=-\frac{1}{4}$$
, $\beta=-\frac{7}{4}$, $\gamma=1$ et : $\vec{w}=\frac{1}{4}.\vec{u}+\frac{7}{4}.\vec{v}$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , soit la famille de vecteurs :

$$\vec{u} = (1, -1), \vec{v} = (1, 3), \vec{w} = (2, 5).$$

La famille $\{\vec{u}, \vec{v}, \vec{w}\}$ est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u} + \beta . \vec{v} + \gamma . \vec{w} = \vec{0}$

Alors:

$$\begin{cases}
\alpha + \beta + 2\gamma &= 0 \\
-\alpha + 3\beta + 5\gamma &= 0
\end{cases}$$

Donc
$$\alpha = -\frac{1}{4}$$
, $\beta = -\frac{7}{4}$, $\gamma = 1$ et : $\vec{w} = \frac{1}{4} \cdot \vec{u} + \frac{7}{4} \cdot \vec{v}$

Remarque : Quand une famille est liée, on peut exprimer des vecteurs de la famille comme combinaison linéaire des autres.

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

La famille \mathcal{F} est liée.

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

La famille \mathcal{F} est liée.

Soient
$$\alpha$$
, β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

La famille \mathcal{F} est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$ Alors :

$$\begin{cases}
\alpha + \beta + \gamma = 0 \\
\alpha - \beta = 0
\end{cases}$$

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

La famille \mathcal{F} est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha.\vec{u}(X) + \beta.\vec{v}(X) + \gamma.\vec{w}(X) = \vec{0}$

$$\begin{cases}
\alpha + \beta + \gamma &= 0 \\
\alpha - \beta &= 0
\end{cases}$$

Donc
$$\alpha = \beta = -\frac{\gamma}{2}$$

Exemple

Soit la famille $\mathcal{F} = \{\vec{u}(X) = X^2 + 1, \vec{v}(X) = X^2 - 1, \vec{w}(X) = X^2\}$ dans l'espace vectoriel $\mathbb{R}_2[X]$.

La famille \mathcal{F} est liée.

Soient α , β , $\gamma \in \mathbb{R}$ tels que : $\alpha . \vec{u}(X) + \beta . \vec{v}(X) + \gamma . \vec{w}(X) = \vec{0}$

Alors :

$$\begin{cases} \alpha + \beta + \gamma &= 0 \\ \alpha - \beta &= 0 \end{cases}$$

Donc
$$\alpha = \beta = -\frac{\gamma}{2}$$

En prenant $\gamma = -2$: $\vec{u}(X) + \vec{v}(X) - 2\vec{w}(X) = 0$

Remarques

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille libre dans un espace vectoriel E.

Famille libre

Remarques

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille libre dans un espace vectoriel E.

▶
$$\forall i \ (1 \le i \le n), \quad \vec{u}_i \ne \vec{0}$$

Famille libre

Remarques

Soit $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq n}$ une famille libre dans un espace vectoriel E.

- ▶ $\forall i \ (1 \le i \le n), \quad \vec{u}_i \ne \vec{0}$
- ► Si $i \neq j$, $\vec{u}_i \neq \vec{u}_j$

On appelle base d'un espace vectoriel, une famille de vecteurs, \mathcal{B} , à la fois libre et génératrice.

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{e}_1, \vec{e}_2\}$, avec :

$$\vec{e}_1 = (1,0) \text{ et } \vec{e}_2 = (0,1),$$

est une base de \mathbb{R}^2 .

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{e}_1, \vec{e}_2\}$, avec :

$$\vec{e}_1 = (1,0) \text{ et } \vec{e}_2 = (0,1),$$

est une base de \mathbb{R}^2 .

▶ \mathcal{B} est libre : si $\alpha . \vec{e}_1 + \beta . \vec{e}_2 = \vec{0}$, alors :

$$\begin{cases}
\alpha = 0 \\
\beta = 0
\end{cases}$$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{e}_1, \vec{e}_2\}$, avec :

$$\vec{e}_1 = (1,0) \text{ et } \vec{e}_2 = (0,1),$$

est une base de \mathbb{R}^2 .

• \mathcal{B} est libre : si $\alpha . \vec{e}_1 + \beta . \vec{e}_2 = \vec{0}$, alors :

$$\left\{ \begin{array}{lcl} \alpha & = & 0 \\ \beta & = & 0 \end{array} \right.$$

▶ \mathcal{B} est génératrice : si $\vec{u} = (x_u, y_u), x_u, y_u \in \mathbb{R}$

et :
$$\vec{u} = x_u \cdot \vec{e}_1 + y_u \cdot \vec{e}_2$$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{u}_1, \vec{u}_2\}$, avec :

$$\vec{u}_1 = (1, 2) \text{ et } \vec{u}_2 = (-2, 3),$$

est une base de \mathbb{R}^2 .

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{u}_1, \vec{u}_2\}$, avec :

$$ec{u}_1=(1,2) ext{ et } ec{u}_2=(-2,3),$$
 est une base de \mathbb{R}^2 .

 \triangleright \mathcal{B} est libre : si $\alpha.\vec{u}_1 + \beta.\vec{u}_2 = \vec{0}$, alors :

$$\begin{cases}
\alpha - 2\beta &= 0 \\
2\alpha + 3\beta &= 0
\end{cases}$$

Donc : $\alpha = \beta = 0$

Exemple

Dans l'espace vectoriel \mathbb{R}^2 , la famille $\mathcal{B} = \{\vec{u}_1, \vec{u}_2\}$, avec :

$$ec{u}_1=(1,2) ext{ et } ec{u}_2=(-2,3),$$
 est une base de \mathbb{R}^2 .

 \triangleright \mathcal{B} est libre : si $\alpha.\vec{u}_1 + \beta.\vec{u}_2 = \vec{0}$, alors :

$$\begin{cases}
\alpha - 2\beta &= 0 \\
2\alpha + 3\beta &= 0
\end{cases}$$

Donc : $\alpha = \beta = 0$

▶ \mathcal{B} est génératrice : si $\vec{V} = (x_V, y_V)$, alors : $\vec{V} = \frac{3x_V + 2y_V}{7} \cdot \vec{u}_1 + \frac{-2x_V + y_V}{7} \cdot \vec{u}_2$

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

$$\vec{f}_0(X) = 1$$
, $\vec{f}_1(X) = X$, $\vec{f}_2(X) = X^2$, $\vec{f}_3(X) = X^3$ est une base.

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

$$\vec{f}_0(X) = 1$$
, $\vec{f}_1(X) = X$, $\vec{f}_2(X) = X^2$, $\vec{f}_3(X) = X^3$ est une base.

▶ \mathcal{B} est libre : si $\alpha_0.\vec{f}_0(X) + \alpha_1.\vec{f}_1(X) + \alpha_2.\vec{f}_2(X) + \alpha_3.\vec{f}_3(X) = \vec{0}$, alors :

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

$$\vec{f}_0(X) = 1$$
, $\vec{f}_1(X) = X$, $\vec{f}_2(X) = X^2$, $\vec{f}_3(X) = X^3$ est une base.

▶ \mathcal{B} est libre : si $\alpha_0.\vec{f}_0(X) + \alpha_1.\vec{f}_1(X) + \alpha_2.\vec{f}_2(X) + \alpha_3.\vec{f}_3(X) = \vec{0}$, alors :

$$\alpha_0 + \alpha_1 X + \alpha_2 X^2 + \alpha_3 X^3 = 0$$

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

$$\vec{f}_0(X) = 1$$
, $\vec{f}_1(X) = X$, $\vec{f}_2(X) = X^2$, $\vec{f}_3(X) = X^3$ est une base.

▶ \mathcal{B} est libre : si $\alpha_0.\vec{f}_0(X) + \alpha_1.\vec{f}_1(X) + \alpha_2.\vec{f}_2(X) + \alpha_3.\vec{f}_3(X) = \vec{0}$, alors :

$$\alpha_0 + \alpha_1 X + \alpha_2 X^2 + \alpha_3 X^3 = 0$$

donc:
$$\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = 0$$

Exemple

Dans l'espace vectoriel des polynômes de degré inférieur ou égal à 3, $\mathbb{R}_3[X]$, la famille $\mathcal{B} = \{\vec{f}_0(X), \vec{f}_1(X), \vec{f}_2(X), \vec{f}_3(X)\}$ avec :

$$\vec{f}_0(X) = 1$$
, $\vec{f}_1(X) = X$, $\vec{f}_2(X) = X^2$, $\vec{f}_3(X) = X^3$ est une base.

▶ \mathcal{B} est libre : si $\alpha_0.\vec{f}_0(X) + \alpha_1.\vec{f}_1(X) + \alpha_2.\vec{f}_2(X) + \alpha_3.\vec{f}_3(X) = \vec{0}$, alors :

$$\alpha_0 + \alpha_1 X + \alpha_2 X^2 + \alpha_3 X^3 = 0$$

donc:
$$\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = 0$$

B est génératrice puisque tout polynôme de degré au plus 3, s'écrit :

$$\alpha_0 + \alpha_1 X + \alpha_2 X^2 + \alpha_3 X^3$$

Théorème : Si un espace vectoriel possède une partie génératrice à n éléments, toute partie ayant au moins n+1 éléments est liée.

Théorème : Si un espace vectoriel possède une partie génératrice à n éléments, toute partie ayant au moins n+1 éléments est liée.

(Théorème admis)

Théorème : Si un espace vectoriel possède une partie génératrice à n éléments, toute partie ayant au moins n+1 éléments est liée.

(Théorème admis)

Corollaire : Dans un espace vectoriel, *E*, toutes les bases ont le même nombre d'éléments.

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

 \mathcal{B}_1 est libre et \mathcal{B}_2 génératrice,

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

 \mathcal{B}_1 est libre et \mathcal{B}_2 génératrice, donc : $n_1 \le n_2$

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

 \mathcal{B}_1 est libre et \mathcal{B}_2 génératrice, donc : $n_1 \le n_2$

 \mathcal{B}_2 est libre et \mathcal{B}_1 génératrice,

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

 \mathcal{B}_1 est libre et \mathcal{B}_2 génératrice, donc : $n_1 \le n_2$

 \mathcal{B}_2 est libre et \mathcal{B}_1 génératrice, donc : $n_2 \le n_1$

Soit \mathcal{B}_1 une base de cardinal n_1 et \mathcal{B}_2 une base de cardinal n_2 .

 \mathcal{B}_1 est libre et \mathcal{B}_2 génératrice, donc : $n_1 \le n_2$

 \mathcal{B}_2 est libre et \mathcal{B}_1 génératrice, donc : $n_2 \le n_1$

$$n_1 = n_2$$

Théorème : Si un espace vectoriel possède une partie génératrice à n éléments, toute partie ayant au moins n+1 éléments est liée.

(Théorème admis)

Corollaire : Dans un espace vectoriel, *E*, toutes les bases ont le même nombre d'éléments.

Ce nombre s'appelle la dimension de l'espace vectoriel E.

Théorème : Si un espace vectoriel possède une partie génératrice à n éléments, toute partie ayant au moins n+1 éléments est liée.

(Théorème admis)

Corollaire : Dans un espace vectoriel, *E*, toutes les bases ont le même nombre d'éléments.

Ce nombre s'appelle la dimension de l'espace vectoriel *E*.

Notation: dim E

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

▶ Toute famille libre de *n* vecteurs est une base.

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- ▶ Toute famille libre de *n* vecteurs est une base.
- ▶ Toute famille génératrice de *n* vecteurs est une base.

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- ▶ Toute famille libre de *n* vecteurs est une base.
- ▶ Toute famille génératrice de *n* vecteurs est une base.
- ▶ Toute famille contenant plus de *n* vecteurs est liée.

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- Toute famille libre de n vecteurs est une base.
- ▶ Toute famille génératrice de n vecteurs est une base.
- ▶ Toute famille contenant plus de *n* vecteurs est liée.
- ► Toute famille contenant moins de *n* vecteurs n'est pas génératrice.

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- ▶ Toute famille libre de *n* vecteurs est une base.
- ▶ Toute famille génératrice de n vecteurs est une base.
- ▶ Toute famille contenant plus de *n* vecteurs est liée.
- ► Toute famille contenant moins de *n* vecteurs n'est pas génératrice.

Autre expression:

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- ▶ Toute famille libre de *n* vecteurs est une base.
- ► Toute famille génératrice de *n* vecteurs est une base.
- ▶ Toute famille contenant plus de *n* vecteurs est liée.
- ► Toute famille contenant moins de *n* vecteurs n'est pas génératrice.

Autre expression:

▶ Une base est une famille libre maximale

Propriétés des bases d'un espace vectoriel

Dans un espace vectoriel E de dimension n:

- ▶ Toute famille libre de *n* vecteurs est une base.
- ▶ Toute famille génératrice de n vecteurs est une base.
- ▶ Toute famille contenant plus de *n* vecteurs est liée.
- ► Toute famille contenant moins de *n* vecteurs n'est pas génératrice.

Autre expression:

- Une base est une famille libre maximale
- ► Une base est une partie génératrice minimale

Les espaces vectoriels \mathbb{R}^n

Les espaces vectoriels \mathbb{R}^n sont de dimension n.

Les espaces vectoriels \mathbb{R}^n

Les espaces vectoriels \mathbb{R}^n sont de dimension n.

Les familles $\mathcal{B} = \{\vec{e}_i\}$ où :

$$\vec{e}_i = (0,...,0,1,0,...,0)$$

i-ième position

sont des bases de \mathbb{R}^n

Les espaces vectoriels \mathbb{R}^n

Les espaces vectoriels \mathbb{R}^n sont de dimension n.

Les familles $\mathcal{B} = \{\vec{e}_i\}$ où :

$$\vec{e}_i = (0,...,0,1,0,...,0)$$

i-ième position

sont des bases de \mathbb{R}^n

On les appelle les bases canoniques de \mathbb{R}^n

Base d'un espace vectoriel

Unicité de l'écriture dans une base

Proposition : Soit une base $\mathcal{B} = \{\vec{a}_i\}_{1 \leq i \leq n}$ une base d'un espace vectoriel E de dimension n.

Base d'un espace vectoriel

Unicité de l'écriture dans une base

Proposition : Soit une base $\mathcal{B} = \{\vec{a}_i\}_{1 \leq i \leq n}$ une base d'un espace vectoriel E de dimension n.

Tout vecteur $\vec{u} \in E$ s'écrit de manière unique :

$$\vec{u} = \sum_{i=1}^{n} \alpha_i . \vec{a}_i$$

Base d'un espace vectoriel

Unicité de l'écriture dans une base

Proposition : Soit une base $\mathcal{B} = \{\vec{a}_i\}_{1 \leq i \leq n}$ une base d'un espace vectoriel E de dimension n.

Tout vecteur $\vec{u} \in E$ s'écrit de manière unique :

$$\vec{u} = \sum_{i=1}^n \alpha_i . \vec{a}_i$$

Les scalaires α_i s'appellent les coordonnées de \vec{u} dans la base \mathcal{B}

Soit *E* un espace vectoriel de dimension *n* et $F \neq \{\vec{0}\}$ un sous-espace vectoriel de *E*.

▶ Toute famille libre de F est libre dans E.

- Toute famille libre de F est libre dans E.
- Soit p le nombre de vecteurs d'une famille maximale libre, B, de F :

- ▶ Toute famille libre de F est libre dans E.
- Soit p le nombre de vecteurs d'une famille maximale libre, B, de F :
 - 1. \mathcal{B} est une base de F

- ▶ Toute famille libre de F est libre dans E.
- Soit p le nombre de vecteurs d'une famille maximale libre, B, de F :
 - 1. \mathcal{B} est une base de F
 - 2. $p \le n$

- ▶ Toute famille libre de F est libre dans E.
- Soit p le nombre de vecteurs d'une famille maximale libre, B, de F :
 - 1. \mathcal{B} est une base de F
 - 2. $p \le n$
 - 3. Si p = n, \mathcal{B} est une base de E et F = E.

Théorème : Si *F* est un sous-espace vectoriel d'un espace vectoriel *E*, de dimension *n* :

1. $\dim F \leq \dim E$

Théorème : Si F est un sous-espace vectoriel d'un espace vectoriel E, de dimension n :

- 1. $\dim F \leq \dim E$
- 2. $\dim F = \dim E \implies F = E$

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant \mathcal{L} et incluses dans $\mathcal{L} \cup \mathcal{G}$, soit \mathcal{B} une partie maximale.

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant $\mathcal L$ et incluses dans $\mathcal L \cup \mathcal G$, soit $\mathcal B$ une partie maximale.

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant \mathcal{L} et incluses dans $\mathcal{L} \cup \mathcal{G}$, soit \mathcal{B} une partie maximale.

On pose $F = \text{Vect}(\mathcal{B})$.

▶ Si F = E. B est la base cherchée.

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant $\mathcal L$ et incluses dans $\mathcal L \cup \mathcal G$, soit $\mathcal B$ une partie maximale.

- ▶ Si F = E, \mathcal{B} est la base cherchée.
- ► Si $F \neq E$, $\exists \vec{g} \in \mathcal{G}$ tel que $\vec{g} \notin F$.

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant \mathcal{L} et incluses dans $\mathcal{L} \cup \mathcal{G}$, soit \mathcal{B} une partie maximale.

- ▶ Si F = E, B est la base cherchée.
- ► Si $F \neq E$, $\exists \vec{g} \in \mathcal{G}$ tel que $\vec{g} \notin F$. Alors, $\mathcal{B} \cup \{\vec{g}\}$ est libre, contient \mathcal{B} et est contenue dans $\mathcal{L} \cup \mathcal{G}$

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Parmi toutes les familles libres contenant \mathcal{L} et incluses dans $\mathcal{L} \cup \mathcal{G}$, soit \mathcal{B} une partie maximale.

- ▶ Si F = E, B est la base cherchée.
- ► Si $F \neq E$, $\exists \vec{g} \in \mathcal{G}$ tel que $\vec{g} \notin F$. Alors, $\mathcal{B} \cup \{\vec{g}\}$ est libre, contient \mathcal{B} et est contenue dans $\mathcal{L} \cup \mathcal{G}$ donc \mathcal{B} n'est pas maximale

Soit une famille $\mathcal{F} = \{\vec{u}_i\}_{1 \le i \le p}$ de vecteurs d'un espace vectoriel E de dimension $n \ge p$.

Soit une famille $\mathcal{F} = \{\vec{u}_i\}_{1 \leq i \leq p}$ de vecteurs d'un espace vectoriel E de dimension $n \geq p$.

On appelle, rang de la famille \mathcal{F} , la dimension du sous-espace vectoriel F engendré par \mathcal{F} .

Proposition : On ne change pas le rang d'une famille de vecteurs si :

Proposition : On ne change pas le rang d'une famille de vecteurs si :

▶ On permute les vecteurs

Proposition : On ne change pas le rang d'une famille de vecteurs si :

- On permute les vecteurs
- ▶ On multiplie l'un d'entre eux par un réel non-nul.

Proposition : On ne change pas le rang d'une famille de vecteurs si :

- On permute les vecteurs
- On multiplie l'un d'entre eux par un réel non-nul.
- On ajoute à l'un d'entre eux par une combinaison linéaire des autres.

Calcul

Calculer le rang de la famille de vecteurs :

$$\vec{u} = (1, 2, 3), \vec{v} = (0, 2, 1), \vec{w} = (2, 6, 7)$$

Calcul

Calculer le rang de la famille de vecteurs :

$$\vec{u} = (1, 2, 3), \vec{v} = (0, 2, 1), \vec{w} = (2, 6, 7)$$

$$\vec{u} = (1,2,3)$$

$$\vec{v} = (0,2,1)$$

$$\vec{w} = (2,6,7)$$

Calcul

Calculer le rang de la famille de vecteurs :

$$\vec{u} = (1, 2, 3), \ \vec{v} = (0, 2, 1), \ \vec{w} = (2, 6, 7)$$

$$\vec{v} = (1,2,3)$$

 $\vec{v} = (0,2,1)$

$$\vec{W} = (2,6,7)$$

On remplace \vec{w} par $\vec{w} - 2\vec{u}$:

$$\vec{u} = (1,2,3)$$

$$\vec{v} = (1,2,3)$$

 $\vec{v} = (0,2,1)$

$$\vec{w} - 2\vec{u} = (0,2,1)$$

Calcul

Calculer le rang de la famille de vecteurs :

$$\vec{u} = (1, 2, 3), \ \vec{v} = (0, 2, 1), \ \vec{w} = (2, 6, 7)$$

$$\vec{u} = (1,2,3)$$

 $\vec{v} = (0,2,1)$

$$\vec{w} = (2,6,7)$$

On remplace \vec{w} par $\vec{w} - 2\vec{u}$:

$$\vec{v} = (1,2,3)$$

 $\vec{v} = (0,2,1)$
 $\vec{w} - 2\vec{u} = (0,2,1)$

$$\vec{v} = (0,2,1)$$

$$\vec{w} - 2\vec{u} = (0,2,1)$$

$$\operatorname{rg}\left(\operatorname{Vect}(\vec{u},\vec{v},\vec{w})\right)=2$$

On pose : $F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

▶
$$\exists \vec{u}_1, \vec{v}_1 \in F_1$$
 et $\exists \vec{u}_2, \vec{v}_2 \in F_2 : \vec{u} = \vec{u}_1 + \vec{u}_2$ et $\vec{v} = \vec{v}_1 + \vec{v}_2$

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

- ▶ $\exists \vec{u}_1, \vec{v}_1 \in F_1$ et $\exists \vec{u}_2, \vec{v}_2 \in F_2 : \vec{u} = \vec{u}_1 + \vec{u}_2$ et $\vec{v} = \vec{v}_1 + \vec{v}_2$
- $\vec{u} + \vec{v} = (\vec{u}_1 + \vec{u}_2) + (\vec{v}_1 + \vec{v}_2) = (\vec{u}_1 + \vec{v}_1) + (\vec{u}_2 + \vec{v}_2)$

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

- ▶ $\exists \vec{u}_1, \vec{v}_1 \in F_1 \text{ et } \exists \vec{u}_2, \vec{v}_2 \in F_2 : \vec{u} = \vec{u}_1 + \vec{u}_2 \text{ et } \vec{v} = \vec{v}_1 + \vec{v}_2$
- $\vec{u} + \vec{v} = (\vec{u}_1 + \vec{u}_2) + (\vec{v}_1 + \vec{v}_2) = (\vec{u}_1 + \vec{v}_1) + (\vec{u}_2 + \vec{v}_2)$
- ▶ $\vec{u}_1 + \vec{v}_1 \in F_1$ et $\vec{u}_2 + \vec{v}_2 \in F_2$

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

- ▶ $\exists \vec{u}_1, \vec{v}_1 \in F_1 \text{ et } \exists \vec{u}_2, \vec{v}_2 \in F_2 : \vec{u} = \vec{u}_1 + \vec{u}_2 \text{ et } \vec{v} = \vec{v}_1 + \vec{v}_2$
- $\vec{u} + \vec{v} = (\vec{u}_1 + \vec{u}_2) + (\vec{v}_1 + \vec{v}_2) = (\vec{u}_1 + \vec{v}_1) + (\vec{u}_2 + \vec{v}_2)$
- ▶ $\vec{u}_1 + \vec{v}_1 \in F_1$ et $\vec{u}_2 + \vec{v}_2 \in F_2$
- $\qquad \qquad \bullet \ \alpha.\vec{u} = \alpha.(\vec{u}_1 + \vec{u}_2) = \alpha.\vec{u}_1 + \alpha.\vec{u}_2$

On pose :
$$F_1 + F_2 = \{ \vec{u} \in E \mid \vec{u} = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_1 \in F_1 \text{ et } \vec{u}_2 \in F_2 \}$$

Proposition : $F_1 + F_2$ est un sous-espace vectoriel de E

- ▶ $\exists \vec{u}_1, \vec{v}_1 \in F_1$ et $\exists \vec{u}_2, \vec{v}_2 \in F_2 : \vec{u} = \vec{u}_1 + \vec{u}_2$ et $\vec{v} = \vec{v}_1 + \vec{v}_2$
- $\vec{u} + \vec{v} = (\vec{u}_1 + \vec{u}_2) + (\vec{v}_1 + \vec{v}_2) = (\vec{u}_1 + \vec{v}_1) + (\vec{u}_2 + \vec{v}_2)$
- ▶ $\vec{u}_1 + \vec{v}_1 \in F_1$ et $\vec{u}_2 + \vec{v}_2 \in F_2$
- $\qquad \qquad \bullet \ \alpha.\vec{u} = \alpha.(\vec{u}_1 + \vec{u}_2) = \alpha.\vec{u}_1 + \alpha.\vec{u}_2$
- $ightharpoonup \alpha.\vec{u}_1 \in F_1$ et $\alpha.\vec{u}_2 \in F_2$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

1. Soit
$$\vec{u} \in F_1 \cap F_2$$
: $\vec{u} = \vec{u} + \vec{0}$ $\vec{u} \in F_1$ $\vec{0} \in F_2$ $\vec{u} = \vec{0} + \vec{u}$ $\vec{0} \in F_1$ $\vec{u} \in F_2$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

1. Soit
$$\vec{u} \in F_1 \cap F_2$$
: $\vec{u} = \vec{u} + \vec{0}$ $\vec{u} \in F_1$ $\vec{0} \in F_2$ $\vec{u} = \vec{0} + \vec{u}$ $\vec{0} \in F_1$ $\vec{u} \in F_2$ donc: $\vec{u} = \vec{0}$ et $F_1 \cap F_2 = \{\vec{0}\}$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

- 1. Soit $\vec{u} \in F_1 \cap F_2$: $\vec{u} = \vec{u} + \vec{0}$ $\vec{u} \in F_1$ $\vec{0} \in F_2$ $\vec{u} = \vec{0} + \vec{u}$ $\vec{0} \in F_1$ $\vec{u} \in F_2$ donc: $\vec{u} = \vec{0}$ et $F_1 \cap F_2 = \{\vec{0}\}$
- 2. Si $F_1 \cap F_2 = \{\vec{0}\}$, supposons : $\vec{u} = \vec{u}_1 + \vec{u}_2 = \vec{v}_1 + \vec{v}_2$, $\vec{u}_1, \vec{v}_1 \in F_1$, $\vec{u}_2, \vec{v}_2 \in F_2$

Soit E un espace vectoriel et F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 + F_2$.

$$\forall \vec{u} \in E, \ \exists \vec{u}_1 \in F_1 \ \exists \vec{u}_2 \in F_2 \ : \vec{u} = \vec{u}_1 + \vec{u}_2$$

- 1. Soit $\vec{u} \in F_1 \cap F_2$: $\vec{u} = \vec{u} + \vec{0}$ $\vec{u} \in F_1$ $\vec{0} \in F_2$ $\vec{u} = \vec{0} + \vec{u}$ $\vec{0} \in F_1$ $\vec{u} \in F_2$ donc: $\vec{u} = \vec{0}$ et $F_1 \cap F_2 = \{\vec{0}\}$
- 2. Si $F_1 \cap F_2 = \{\vec{0}\}$, supposons : $\vec{u} = \vec{u}_1 + \vec{u}_2 = \vec{v}_1 + \vec{v}_2$, $\vec{u}_1, \vec{v}_1 \in F_1$, $\vec{u}_2, \vec{v}_2 \in F_2$

Alors:
$$\vec{u}_1 - \vec{v}_1 = \vec{u}_2 - \vec{v}_2 \in F_1 \cap F_2 = \{\vec{0}\}\$$

Théorème : Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E tels que $E = F_1 + F_2$, les deux conditions suivantes sont équivalentes :

1. La décomposition de tout $\vec{u} \in E$ en somme $\vec{u}_1 + \vec{u}_2$, avec $\vec{u}_1 \in F_1$ et $\vec{u}_2 \in F_2$ est unique.

Théorème : Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E tels que $E = F_1 + F_2$, les deux conditions suivantes sont équivalentes :

- 1. La décomposition de tout $\vec{u} \in E$ en somme $\vec{u}_1 + \vec{u}_2$, avec $\vec{u}_1 \in F_1$ et $\vec{u}_2 \in F_2$ est unique.
- 2. $F_1 \cap F_2 = \{\vec{0}\}$

Théorème : Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E tels que $E = F_1 + F_2$, les deux conditions suivantes sont équivalentes :

- 1. La décomposition de tout $\vec{u} \in E$ en somme $\vec{u}_1 + \vec{u}_2$, avec $\vec{u}_1 \in F_1$ et $\vec{u}_2 \in F_2$ est unique.
- 2. $F_1 \cap F_2 = \{\vec{0}\}$

Dans ce cas, on dit que F_1 et F_2 sont deux sous-espaces vectoriels supplémentaires dans E

Théorème : Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E tels que $E = F_1 + F_2$, les deux conditions suivantes sont équivalentes :

- 1. La décomposition de tout $\vec{u} \in E$ en somme $\vec{u}_1 + \vec{u}_2$, avec $\vec{u}_1 \in F_1$ et $\vec{u}_2 \in F_2$ est unique.
- 2. $F_1 \cap F_2 = \{\vec{0}\}$

Dans ce cas, on dit que F_1 et F_2 sont deux sous-espaces vectoriels supplémentaires dans E ou que E est somme directe de F_1 et F_2 .

Théorème : Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E tels que $E = F_1 + F_2$, les deux conditions suivantes sont équivalentes :

- 1. La décomposition de tout $\vec{u} \in E$ en somme $\vec{u}_1 + \vec{u}_2$, avec $\vec{u}_1 \in F_1$ et $\vec{u}_2 \in F_2$ est unique.
- 2. $F_1 \cap F_2 = \{\vec{0}\}$

Dans ce cas, on dit que F_1 et F_2 sont deux sous-espaces vectoriels supplémentaires dans E ou que E est somme directe de F_1 et F_2 .

Notation : $E = F_1 \oplus F_2$

Existence d'un supplémentaire

Théorème : Soit F un sous-espace vectoriel de dimension p d'un espace vectoriel E de dimension n, tel que : $F \subsetneq E$.

Existence d'un supplémentaire

Théorème : Soit F un sous-espace vectoriel de dimension p d'un espace vectoriel E de dimension n, tel que : $F \subseteq E$.

Alors : F admet au moins un supplémentaire G dans E et :

$$E = F \oplus G \implies \dim E = \dim F + \dim G$$

Exemple

$$F_1 = {\vec{u} = (x, 0)} = \mathbb{R} \times {0}$$

 $F_2 = {\vec{v} = (0, y)} = {0} \times \mathbb{R}$

Exemple

Soit l'espace vectoriel \mathbb{R}^2 .

$$F_1 = {\vec{u} = (x, 0)} = \mathbb{R} \times {0}$$

$$F_2 = {\vec{v} = (0, y)} = {0} \times \mathbb{R}$$

1. F_1 et F_2 sont des sous-espaces vectoriels de \mathbb{R}^2 .

Exemple

$$F_1 = {\vec{u} = (x, 0)} = \mathbb{R} \times {0}$$

$$F_2 = {\vec{v} = (0, y)} = {0} \times \mathbb{R}$$

- 1. F_1 et F_2 sont des sous-espaces vectoriels de \mathbb{R}^2 .
- 2. $\mathbb{R}^2 = F_1 + F_2$.

Exemple

$$F_1 = {\vec{u} = (x, 0)} = \mathbb{R} \times {0}$$

 $F_2 = {\vec{v} = (0, y)} = {0} \times \mathbb{R}$

- 1. F_1 et F_2 sont des sous-espaces vectoriels de \mathbb{R}^2 .
- 2. $\mathbb{R}^2 = F_1 + F_2$.
- 3. $F_1 \cap F_2 = \{\vec{0}\}.$

Exemple

$$F_1 = {\vec{u} = (x, 0)} = \mathbb{R} \times {0}$$

 $F_2 = {\vec{v} = (0, y)} = {0} \times \mathbb{R}$

- 1. F_1 et F_2 sont des sous-espaces vectoriels de \mathbb{R}^2 .
- 2. $\mathbb{R}^2 = F_1 + F_2$.
- 3. $F_1 \cap F_2 = \{\vec{0}\}.$

$$\mathbb{R}^2 = F_1 \oplus F_2$$

Mathématiques et calcul 1

Existence d'un supplémentaire

Théorème : Soit F un sous-espace vectoriel de dimension p d'un espace vectoriel E de dimension n, tel que : $F \subseteq E$.

Alors : F admet au moins un supplémentaire G dans E et :

$$E = F \oplus G \implies \dim E = \dim F + \dim G$$

Mathématiques et calcul 1

Par le théorème de la base incomplète

Théorème de la base incomplète

Théorème : Soit E un espace vectoriel, \mathcal{L} une famille libre dans E et \mathcal{G} une famille génératrice de E.

Alors, il existe une base \mathcal{B} de E telle que : $\mathcal{L} \subset \mathcal{B} \subset \mathcal{L} \cup \mathcal{G}$

Par le théorème de la base incomplète :

 $\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$

Par le théorème de la base incomplète :

$$\exists \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que} : \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$ec{u} = \sum_{i=1}^p lpha_i ec{f}_i + \sum_{j=1}^{n-p} eta_j ec{\mathbf{e}}_j$$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que} : \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{f}_i + \sum_{j=1}^{n-p} \beta_j \vec{e}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i \in F \quad \text{et} \quad \sum_{j=1}^{n-p} \beta_j \vec{e}_j \in G,$$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{f}_i + \sum_{j=1}^{n-p} \beta_j \vec{e}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{t}_i \in F \quad \text{et} \quad \sum_{i=1}^{n-p} \beta_j \vec{e}_j \in G, \text{ donc} : E = F + G$$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

 $G = \text{Vect}(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_{n-p})$, tout vecteur $\vec{u} \in E$ s'écrit :

$$ec{u} = \sum_{i=1}^p lpha_i ec{f}_i + \sum_{j=1}^{n-p} eta_j ec{\mathbf{e}}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{t}_i \in F \quad \text{ et } \quad \sum_{j=1}^{n-p} \beta_j \vec{e}_j \in G, \text{ donc} : E = F + G$$

Si $\vec{u} \in F \cap G$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{f}_i + \sum_{j=1}^{n-p} \beta_j \vec{e}_j$$

$$\sum_{j=1}^{p} \alpha_{i} \vec{f}_{i} \in F \quad \text{ et } \quad \sum_{j=1}^{n-p} \beta_{j} \vec{e}_{j} \in G, \text{ donc } : E = F + G$$

Si
$$\vec{u} \in F \cap G$$
 $\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{t}_i$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$ec{u} = \sum_{i=1}^p lpha_i ec{f}_i + \sum_{j=1}^{n-p} eta_j ec{\mathbf{e}}_j$$

$$\sum_{j=1}^{p} \alpha_{i} \vec{f}_{i} \in F \quad \text{ et } \quad \sum_{j=1}^{n-p} \beta_{j} \vec{e}_{j} \in G, \text{ donc } : E = F + G$$

Si
$$\vec{u} \in F \cap G$$
 $\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{f}_i = \sum_{j=1}^{n-p} \beta_j \vec{e}_j$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$ec{u} = \sum_{i=1}^p lpha_i ec{f}_i + \sum_{j=1}^{n-p} eta_j ec{\mathbf{e}}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i \in F \quad \text{ et } \quad \sum_{i=1}^{n-p} \beta_j \vec{e}_j \in G, \text{ donc } : E = F + G$$

Si
$$\vec{u} \in F \cap G$$
 $\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{t}_i = \sum_{j=1}^{n-p} \beta_j \vec{e}_j$:

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i - \sum_{i=1}^{n-p} \beta_j \vec{e}_j = \vec{0}$$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$ec{u} = \sum_{i=1}^p lpha_i ec{f}_i + \sum_{j=1}^{n-p} eta_j ec{\mathbf{e}}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i \in F \quad \text{ et } \quad \sum_{j=1}^{n-p} \beta_j \vec{e}_j \in G, \text{ donc} : E = F + G$$

Si
$$\vec{u} \in F \cap G$$
 $\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{t}_i = \sum_{j=1}^{n-p} \beta_j \vec{e}_j$:

$$\sum_{i=1}^{p} \alpha_i \vec{t}_i - \sum_{i=1}^{n-p} \beta_j \vec{e}_j = \vec{0} \quad \Rightarrow \quad \forall i, j, \quad \alpha_i = \beta_j = 0$$

Par le théorème de la base incomplète :

$$\exists \ \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ tels que}: \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_p, \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_{n-p}\} \text{ soit une base de } E.$$

$$\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{f}_i + \sum_{j=1}^{n-p} \beta_j \vec{e}_j$$

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i \in F \quad \text{ et } \quad \sum_{j=1}^{n-p} \beta_j \vec{e}_j \in G, \text{ donc} : E = F + G$$

Si
$$\vec{u} \in F \cap G$$
 $\vec{u} = \sum_{i=1}^{p} \alpha_i \vec{t}_i = \sum_{j=1}^{n-p} \beta_j \vec{e}_j$:

$$\sum_{i=1}^{p} \alpha_i \vec{f}_i - \sum_{i=1}^{n-p} \beta_j \vec{e}_j = \vec{0} \quad \Rightarrow \quad \forall i, j, \quad \alpha_i = \beta_j = 0 \quad \Rightarrow \quad F \cap G = \{\vec{0}\}$$

Proposition : Soit *E* un espace vectoriel et *F* et *G* deux sous-espaces vectoriels de *E*.

$$\dim(F+G)=\dim(F)+\dim(G)-\dim(F\cap G)$$

Proposition : Soit *E* un espace vectoriel et *F* et *G* deux sous-espaces vectoriels de *E*.

$$\dim(F+G)=\dim(F)+\dim(G)-\dim(F\cap G)$$

► Soit H un supplémentaire de $F \cap G$ dans G: $H \cap F = H \cap (F \cap G) = \{\vec{0}\}\$ donc : $F + G = F \oplus H$

Proposition : Soit E un espace vectoriel et F et G deux sous-espaces vectoriels de E.

$$\dim(F+G)=\dim(F)+\dim(G)-\dim(F\cap G)$$

- ▶ Soit H un supplémentaire de $F \cap G$ dans G: $H \cap F = H \cap (F \cap G) = \{\vec{0}\} \text{ donc } : F + G = F \oplus H$
- ▶ $dim(H) = dim(G) dim(F \cap G)$ donc: $\dim(F+G) = \dim(F) + \dim(H) = \dim(F) + \dim(G) - \dim(F \cap H)$

