Cross-validation for detecting and preventing overfitting

Andrew W. Moore
Professor
School of Computer Science
Carnegie Mellon University

Some edits by MW

A Regression Problem

Linear Regression

Copyright © Andrew W. Moore

Linear Regression Univariate Linear regression with a constant term:

X	Y
3	7
1	3
•	•

Originally discussed in the previous Andrew Lecture: "Neural Nets"

Linear Regression Univariate Linear regression with a constant term:

	<u> </u>		1041 1	391000101		u	<i>7</i> 0110	tarre	
X	Y			X= [3		y=	7	
3	7				1			3	
1	3				:			:	
				_				7	
•	X=	1	3	y=	7		y ₁	₁ =7	
		:			:	1			
				<i>y</i> ₁=7		1			
	.X	_k =(1,	x _k)						

Linear Regression Univariate Linear regression with a constant term:

Thranks Internet and the second terms of the s							
X	Y		X=	3	y=	7	
3	7			1		3	
1	3			:		:	
<u> </u>	X'=	1 3	V =	= [-,	У	₁ =7	

$$\mathbf{x}_1 = (1,3)...$$

 $\mathbf{x}_k = (1,x_k)$

$$\mathbf{x}_k = (1, \mathbf{x}_k)$$

3

$$y_1 = 7...$$

$$\beta = (XX')^{-1}(Xy)$$

$$y^{\text{est}} = \beta_0 + \beta_1 x$$

Quadratic Regression

Quadratic Regression

Copyright © Andrew W. Moore

Join-the-dots

Also known as piecewise linear nonparametric regression if that makes you feel better

Copyright © Andrew W. Moore

Which is best?

Why not choose the method with the best fit to the data?

What do we really want?

Why not choose the method with the best fit to the data?

"How well are you going to predict future data drawn from the same distribution?"

- 1. Randomly choose 30% of the training set to be in a validation set
- 2. The remainder is a actual training set

- 1. Randomly choose 30% of the training set to be in a validation set
- 2. The remainder is a actual training set
- 3. Perform your regression on the actual training set

(Linear regression example)

(Linear regression example)
Mean Squared Error = 2.4

- 0. Split in to training and test set
- 1. Randomly choose 30% of the training set to be in a validation set
- 2. The remainder is a actual training set
- 3. Perform your regression on the actual training set
- 4. Choose best model based on validation set5. Report performance on test set

- Randomly choose
 of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- (Quadratic regression example)

 Mean Squared Error = 0.9

4. Estimate your future performance with the test set

(Join the dots example)

Mean Squared Error = 2.2

- 1. Randomly choose 30% of the training set to be in a validation set
- 2. The remainder is a actual training set
- 3. Perform your regression on the actual training set
- 4. Estimate your future performance with the test set

Good news:

- Very very simple
- Can then simply choose the method with the best validation-set score

Bad news:

•What's the downside?

Good news:

- Very very simple
- Can then simply choose the method with the best validation-set score

Bad news:

- •Wastes data: we get an estimate of the best method to apply to 30% less data
- If we don't have much data, our validation might just be lucky or unlucky

We say the "validation-set estimator of performance has high variance"

For k=1 to R

1. Let (x_k, y_k) be the k^{th} record

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

When you've done all points, report the mean error.

LOOCV for Quadratic Regression

LOOCV for Join The Dots

Which kind of Cross Validation?

	Downside	Upside
Single split	Variance: unreliable estimate of future performance-wasteful	Cheap
Leave- one-out	Expensive Has some weird behavior	Doesn't waste data

..can we get the best of both worlds?

Copyright © Andrew W. Moore

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Linear Regression $MSE_{3FOLD}=2.05$

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

Quadratic Regression $MSE_{3FOLD}=1.11$

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the validation-set sum of errors on the blue points.

Then report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave-	Expensive.	Doesn't waste data
one-out	Has some weird behavior	
10-fold	Wastes 10% of the data.	Only wastes 10%. Only
	10 times more expensive than test set	10 times more expensive instead of R times.
3-fold	Wastier than 10-fold.	Slightly better than test-
	Expensivier than test set	set
R-fold	Identical to Leave-one-out	

Copyright © Andrew W. Moore

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	
10-fold	Wastes 10% of the data. 10 times more expensive than testset	10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than testset	Slightly better than test- set
R-fold	Identical to Leave-one-out	

Copyright © Andrew W. Moore

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			\boxtimes
4	f_4			
5	f_5			
6	f_6			

CV-based Model Selection

- Example: Choosing number of hidden units in a onehidden-layer neural net.
- Step 1: Compute 10-fold CV error for six different model classes:

Algorithm	TRAINERR	10-FOLD-CV-ERR	Choice
0 hidden units			
1 hidden units			
2 hidden units			\boxtimes
3 hidden units			
4 hidden units			
5 hidden units			

 Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictive model you'll use.

CV-based Model Selection

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Algorithm	TRAINERR	10-fold-CV-ERR	Choice
K=1			
K=2			
K=3			
K=4			\boxtimes
K=5			
K=6			

 Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictive model you'll use.

CV-based Algorithm Choice

- Example: Choosing which regression algorithm to use
- Step 1: Compute 10-fold-CV error for six different model classes:

 Step 2: Whichever algorithm gave best CV score: train it with all the data, and that's the predictive model you'll use.