Non-Monotonic Sequential Text Generation

Joint work with: Sean Welleck, Kyunghyun Cho and Hal Daumé III

Sequential Text Generation

Word Descrambling: How are you?

Sequential Text Generation

Word Descrambling:

Source: you How? are **Target**: How are you?

you how ? are <eos>

 $f(\cdot|X)$ $f(\cdot|X, \text{how})$ $f(\cdot|X, \text{how,are}) | X, \text{how,are}(y) | X,$

Sequential Text Generation

Word Descrambling:

Target: How are you?

Assume: Sentence order - w_1 w_2 w_3 w_4 w_5

generation order - s_1 s_2 s_3 s_4 s_5

Monotonic

Question: Can we do sequential text generation using a non-monotonic generation order? (i.e. sentence order and generation order is different)

Imitation Learning (Structured Prediction)

Target: How are you?

Goal: Train π to micmic π^* using a loss function

States: $s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$ Monotonic

Actions: you good ? bad orange other green words test are hi things How .

Transition: $P(s'|s,\cdot)$ **Fixed**

Policy: $\pi(\cdot | s)$

Oracle policy: $\pi^*(\cdot | s)$ Optimal Sequence of

Loss: $D_{KL}(\pi(\cdot,s) \mid | \pi^*(\cdot,s))$

Imitation Learning (Change State Space)

Binary Tree State Space

Binary Tree State Space

$$\pi^*_{\textit{Uniform}} = \begin{cases} 1, & \text{if a = and } Y_t = <>\\ \frac{1}{n}, & \text{n is the number of unique words in } Y_t \\ 0, & \text{otherwise} \end{cases}$$

States:

Not Monotonic

Transition:

Not Fixed

Oracle policy:

Optimal actions

$$\pi^*_{\textit{Uniform}} = \begin{cases} 1, & \text{if a = and } Y_t = <>\\ \frac{1}{n}, & \text{n is the number of unique words in } Y_t \\ 0, & \text{otherwise} \end{cases}$$

$$\pi^*_{\textit{Uniform}} = \begin{cases} 1, & \text{if a = and } Y_t = <>\\ \frac{1}{n}, & \text{n is the number of unique words in } Y_t \\ 0, & \text{otherwise} \end{cases}$$

Binary Tree State Space

$$\pi^*_{\textit{Uniform}} = \begin{cases} 1, & \text{if a = and } Y_t = <>\\ \frac{1}{n}, & \text{n is the number of unique words in } Y_t \\ 0, & \text{otherwise} \end{cases}$$

$$\pi_{coaching}^*(\cdot \mid a) \propto \pi_{uniform}^*(\cdot \mid a) \pi(\cdot \mid a)$$

$$\pi_{anneal}^*(\cdot \mid a) = \beta \pi_{Uniform}^*(\cdot \mid s) + (1 - \beta) \pi_{coaching}^*$$

Unconditional Generation (Language Model)

Conditional Generation (Descrambling)

Conditional Generation (Neural Machine Translation)

	Validation				Test			
Oracle	BLEU (BP)	Meteor	YiSi	Ribes	BLEU (BP)	Meteor	YiSi	Ribes
left-right	29.47 (0.97)	29.66	52.03	82.55	26.23 (1.00)	27.87	47.58	79.85
uniform $+\langle end \rangle$ -tuning	14.97 (0.63) 18.79 (0.89)	21.76 25.30	41.62 46.23	77.70 78.49	13.17 (0.64) 17.68 (0.96)	19.87 24.53	36.48 42.46	75.36 74.12
annealed +⟨end⟩-tuning	19.50 (0.71) 21.95 (0.90)	26.57 26.74	48.00 49.01	81.48 81.77	16.94 (0.72) 19.19 (0.91)	23.15 25.24	42.39 43.98	78.99 79.24