Лекц: Фрактал ба Сиерпинскийн гурвалжин (Fractals and Sierpinski triangle)

Ч.Цэнд-Аюуш(Ph.D) Компьютерийн Ухааны Салбар 304 тоот

Удиртгал

PQ сегментийн дунд цэгийн координатыг ол.

Midpoint Томъёо:

$$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$$

Фрактал гэж юу вэ

- Фрактал гэдэг нь хэсэг бүр нь бүхэлдээ ижил статистик шинж чанартай байдаг геометрийн дүрс юм. Энэ бол хэзээ ч дуусдаггүй хэв загвар юм.
- Эдгээр нь энгийн процессыг дахин дахин давтах замаар бүтээгддэг.
- Эдгээр нь ижил төстэй хэв шинжүүд аажмаар жижиг масштабаар давтагддаг бүтцийг загварчлах, үүл, зүлэг, модны үндэс, шингэний эргэлт зэрэг үзэгдлүүдийг дүрслэхэд чухал ач холбогдолтой юм.
- Фракталууд нь компьютер график, анимэйшн зэрэгт хэрэглэгддэг

Фракталын чухал шинж чанарууд

• Рекурсив байна. Өөрөөр хэлбэл, тэднийг бий болгох үйл явц төгсгөлгүй давтагдана.

$$P1=F(P0), P2=F(P1), P3=F(P2), ...$$

• Self-similarity

Объектуудын эд анги, ерөнхий шинжүүд хоорондоо ижил төстэй байна.

Self-Similarity

Self similarity: Томруулж харвал түвшин бүртээ ижил байна.

Жишээ: Koch snowflake

Self-Similarity

Статиастик Self-Similarity

Жишээ: coastline

Бодит амьдрал дээрх Self-Similarity

Фракталын ангилал

- Self-similar fractals
 - •бүх хувилбарууд нь объектын жижигрүүлсэн масштаб бүхий хэсгүүд байна.
- Self-affine fractals
 - •sx,sy,sz зэрэг өөр өөр координатын дагуу масштабладаг утга бүхий хэсэгүүдтэй.
- Invariant fractals
 - •Энэ ангилалд Mandelbrot багц болгон self squaring fractals opно.

Хуваагдах хэмжээ

Self-similar хэмжигдэхүүн

Серпинскийн гурвалжин байгуулах

Хэрэглэгдэхүүн: цаас, шугам, харандаа

Шугам ашиглан цаасыг бүхэлд нь хамрах гурвалжин зур.

Гурвалжин нь ямар ч хэлбэрийн гурвалжин байж болно,гэхдээ энэ нь ойролцоогоор хоёр талт байвал илүү хялбар байх болно.

Харандаа ба шугам аван дунд цэгүүдийг олно. Гурвалжингийн хоёр тал ба цэгүүдийг холбоно.

Сиерпинскийн гурвалжин зурах 2 дахь давталт

Хамгийн багадаа нэг удаа давтах, боломжтой бол түүнээс олон давтах

Гурвалжин бүрийн дунд хэсгийг үргэлж нээлттэй орхино.

Сиерпинскийн гурвалжин зурах 3 дахь давталт

Сиерпинскийн гурвалжин зурах 3 дахь давталт

Процесс нь дурын хэлбэртэй гурвалжин дээр ажиллана

4 давталттай өөр нэг жишээ

Хоёр дахь арга (Бүлэглэх үйл ажиллагаа)

Хэрэглэгдэхүүн: Харандаа, цаас, шугам, тодруулагч *Бүлэг бүр нэг гурвалжинг бүтээнэ.*

- 1. Цаасны зүүн ба доод талд тэнхлэг зур.
- 2. Том гурвалжин хийхийн тулд гурван цэгийг сонгоно уу. Хэрэв цэгүүдийн нэг нь координатын төв бөгөөд нэг цэг нь тэнхлэгүүдийн аль нэг дээр байрлавал илүү хялбар болно.
- 3. Гурвалжны хажуу тус бүрийн дунд цэгийг тооцоолж цэгүүдийн графикийг гарга.
- 4. Дунд цэгүүдийг холбоно.

Эхлэл – Координатын хавтгай дээр гурвалжин зурах

Гурвалжингийн хажуугийн дундаж цэгүүдийг тооцоолох ба холбох

Р цэгийг (хаа нэгтээ) тэмдэглэх ба Эхний Midpoint (H)

тодорхойлох

Р ба дурын оройн (А, В, С) хоорондох цэгийг ол.

Хоёр дахь Midpoint (R) тодорхойлно

Гурав дахь Midpoint (S) тодорхойлно

Дундаж цэгийг тодорхойлох 16 давталтын дараа

Сиерпинскийн гурвалжин үүсгүүрийг ашиглах

https://www.khanacademy.org/computer-programming/chaos-game/2777397046

- Гурвалжины кооринатыг өөрчлөж үзэх
 - \circ (x1, y1)
 - o (x2, y2)
 - o (x3, y3)
- Давталтыг өөрчилж үзэх
- Цэгийн хэмжээг өөрчилж үзэх

Програмчлал

Эхлэл

Midpoint томъёо

$$A(x_1, y_1)$$

$$B(x_2, y_2)$$

$$C(x_3, y_3)$$

$$P(a,b)$$

$$\boldsymbol{M} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Гурван хэмжээстийн жишээ- Sierpinski Tetrahedron

Серпинскийн хивс

3 хэмжээтэй квадрат, мөн түүний уртыг нэгээр хорогдуулсан өөр нэгэн квадратаас эхэлье.

периметр =
$$4 \cdot 3 + 4 \cdot 1 + 8 \cdot 4 \cdot \frac{1}{3}$$

талбай = $3^2 - 1^2 - 8 \cdot \left(\frac{1}{3}\right)^2$

Уг квадрат нь тус бүрийн талын урт нь 1 байх найман жижиг квадратыг агуулсан байг.

$$P = 4 \cdot 3 + 4 \cdot 1 + 8 \cdot 4 \cdot \frac{1}{3} + 8^2 \cdot 4 \cdot \left(\frac{1}{3}\right)^2$$

$$S = 3^2 - 1^2 - 8 \cdot \left(\frac{1}{3}\right)^2 - 8^2 \cdot \left(\frac{1}{3}\right)^{2 \cdot 2}$$

Давталт.

$$P = 4 \cdot 3 + 4 \cdot 1 + 8 \cdot 4 \cdot \frac{1}{3} + 8^{2} \cdot 4 \cdot \left(\frac{1}{3}\right)^{2} + 8^{3} \cdot 4 \cdot \left(\frac{1}{3}\right)^{3}$$

$$S \quad 3^2 - 1^2 - 8 \cdot \left(\frac{1}{3}\right)^2 - 8^2 \cdot \left(\frac{1}{3}\right)^{2 \cdot 2} - 8^3 \cdot \left(\frac{1}{3}\right)^{2 \cdot 3}$$

Давталт.

$$P = 4 \cdot 3 + 4 \cdot 1 + 8 \cdot 4 \cdot \frac{1}{3} + 8^{2} \cdot 4 \cdot \left(\frac{1}{3}\right)^{2} + 8^{3} \cdot 4 \cdot \left(\frac{1}{3}\right)^{3} + \dots$$

$$=4\cdot 3+\sum_{n=0}^{\infty}4\cdot \left(\frac{8}{3}\right)^n$$

$$=\infty$$

$$(1)^{2\cdot 2}$$

$$S = 3^{2} - 1^{2} - 8 \cdot \left(\frac{1}{3}\right)^{2} - 8^{2} \cdot \left(\frac{1}{3}\right)^{2 \cdot 2} - 8^{3} \cdot \left(\frac{1}{3}\right)^{2 \cdot 3} - \dots$$

 $= 3^{2} - \left| 1 + \frac{8}{9} + \left(\frac{8}{9} \right)^{2} + \left(\frac{8}{9} \right)^{3} + \dots \right|$

 $=3^2-\left(\frac{1}{1-\frac{8}{9}}\right)=0$

Sierpinski хивсний Фрактал хэмжээг тооцоолох?

 $\log_3 8 \approx 1.89$

Menger sponge fractal dimension:

 $\log_3 20 \approx 2.73$

Мод

Random Fractal: Brown-ы моднууд

Кохын муруй (Koch Curves)

- 1904 онд Хельге фон Кох (Helge von Koch) нээжээ
- 1 урттай үргэлжилсэн шулуунаас эхэлнэ
- Рекурсив:
 - Шулууныг 3 тэнцүү хэсэгт хуваана
 - Дунд сегментийг хасаж буй сегменттэй ижил урттай тэнцүү талт гурвалжны хоёр талаар орлуулна. Шинэ урт = 4/3

Кохын муруй

Кохын цасан ширхэг (Koch Snowflakes)

- Кохын гурван муруйг нийлүүлэн Кох цасан ширхгийг үүсгэж болно
- Цасан ширхгийн периметр нь дараахь байдлаар өсдөг.

$$P_i = 3\left(\frac{4}{3}\right)^i$$

Рі нь цасан ширхэгийн і дахь давталтын периметр

- Талбайн өсөлт S_∞ = 8/5!!
- Self-similar:
 - Дурын хэсэгт томруулж харвал ижил байна
 - Хэрэв n нь хангалттай бол хэлбэр нь хэвээр байна

Кохын цасан ширхэг

```
Pseudocode, to draw K_n:

If (n equals 0) draw straight line Else{

Draw K_{n-1} Turn left 60° Draw K_{n-1}

Turn right 120° Draw K_{n-1}

Turn left 60° Draw K_{n-1}
```

Жишээ: Mandelbrot Set

Жишээ: Mandelbrot Set

Жишээ: Fractal Terrain

Courtesy: Mountain 3D Fractal Terrain software

Жишээ: Fractal Terrain

Жишээ: Fractal Art

Courtesy: Internet Fractal Art Contest

Хэрэглээ: Фрактал урлаг

Courtesy: Internet Fractal Art Contest

- Давталтын онол дээр суурилсан
- Сонирхолын функц:

$$f(z) = (s)^2 + c$$

Утгуудын дараалал (орбит):

$$d_1 = (s)^2 + c$$

$$d_2 = ((s)^2 + c)^2 + c$$

$$d_3 = (((s)^2 + c)^2 + c)^2 + c$$

$$d_4 = ((((s)^2 + c)^2 + c)^2 + c)^2 + c$$

- Mandelbrot set: use complex numbers for c and s
- Always set s = 0
- Choose c as a complex number
- For example:

•
$$s = 0$$
, $c = 0.2 + 0.5i$

■ Hence, orbit:

• 0, c,
$$c^2$$
, c^2 + c, $(c^2$ + c)² + c,

Definition: Mandelbrot set includes all finite orbit c

Some complex number math:

i * i = -1

Re

For example:
$$2i*3$$

$$|z| = \sqrt{a^2 + b^2}$$

$$x + yi = (x^2 - y^2) + (2xy)i$$

$$x + yi = (x^2 - y^2) + (2xy)i$$

- Эхний 4 нөхцөлийг тооцоолох
 - s=2, c=-1
 - s = 0, c = -2+i

- Calculate first 3 terms
 - s=2, c=-1, terms are

$$2^{2}-1=5$$
 $5^{2}-1=24$
 $24^{2}-1=575$

$$s = 0, c = -2+i$$

$$0 + (-2 + i) = -2 + i$$
$$(-2 + i)^{2} + (-2 + i) = 1 - 3i$$
$$(1 - 3i)^{2} + (-2 + i) = -10 - 5i$$

- **Fixed points:** Some complex numbers converge to certain values after *x* iterations.
- **Example:**
 - s = 0, c = -0.2 + 0.5i converges to -0.249227 + 0.333677i after 80 iterations
 - Experiment: square -0.249227 + 0.333677i and add -0.2 + 0.5i
- Mandelbrot set depends on the fact the convergence of certain complex numbers

- Routine to draw Mandelbrot set:
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
 - if number hasn't exceeded 2 after 100 iterations, never will!
- Routine returns:
 - Number of times iterated before modulus exceeds 2, or
 - 100, if modulus doesn't exceed 2 after 100 iterations
 - See dwell() function in Hill (figure A4.5, pg. 755)

Тасралтгүй функцийг ашиглана

Үнэгүй програм хангамж

- Фрактал үүсгэх програм хангамж
 - Fractint
 - FracZoom
 - Astro Fractals
 - Fractal Studio
 - 3DFract