Introduction to Tensorflow

Subtitle

Deep Learning Libraries

- Tensorflow (by Google)
- **K** Keras
- Keras (on Tensorflow, MXNet, DL4J, or Microsoft Cognitive Toolkit)
- PYTORCH
- PyTorch (by Facebook)
- Caffe (by Berkeley Vision and Learning Center)
- mxnet MXNet (by Amazon)
 - Microsoft Cognitive Toolkit
- Deeplearning4J
- Caffe2 (by NVIDIA and Facebook)

Comparison of Deep Learning Libraries

	User Community	Flexibility	Scalability	Performance	Deployment
Tensorflow	++++	+++	+++	++	++++
PyTorch	++	++++	++	++++	++
MXNet	++	++	++++	++++	+++
Caffe	+++	++	++	+++	+++
DL4J	+	+++	+++	+++	++++

Why Tensorflow ?

- Large user community
- Plenty of online learning material
- Lots of examples on Github
- Lots of pre-trained models
- Easily deployed to different devices

Tensorflow programming environment

Dataflow graph in Tensorflow

- Advantages of a dataflow model
 - Parallelism
 - Distributed execution
 - Compilation
 - Portability

An example of Tensorflow Graph


```
a = tf.placeholder(tf.float32, None, name='a')
b = tf.placeholder(tf.float32, None, name='b')
c = tf.multiply(a,b)
d = tf.add(a, b)
e = tf.add(c, d)
f = tf.Print(e, [a, b, c, d, e])
```

If we run f:
with tf.Session() as sess:
 sess.run(f, feed_dict={a:1, b:2})
We'll see in stderr:
[1][2][2][3][5]

If we run c :
with tf.Session() as sess:
 print(sess.run(c, feed_dict={a:1, b:2}))
We'll see: