

PROPOSAL PENGAJUAN TUGAS AKHIR PERANCANGAN DAN REALISASI PENGUAT DAYA IF PADA FREKUENSI 450 MHZ

BIDANG KEGIATAN PROPORSAL TUGAS AKHIR PROGRAM D4 TEKNIK TELEKOMUNIKASI

Diusulkan oleh: Hani Dinantika Putri; 151344014; 2015

POLITEKNIK NEGERI BANDUNG BANDUNG

2019

PENGESAHAAN PROPOSAL TUGAS AKHIR

1. Judul Tugas Akhir : Perancangan Dan Realisasi Penguat

Daya IF Pada Frekuensi 450 MHz.

2. Bidang Kegiatan : Tugas Akhir Program Studi DIV

Teknik Telekomunikasi.

3. Pengusul

a. Nama Lengkap : Hani Dinantika Putri

b. NIM : 151344014c. Jurusan : Teknik Elektro

d. Universitas/ Institut/ Politeknik : Politeknik Negeri Bandung
e. Alamat Rumah dan No. Telp/HP : JL.Flamboyan 3 No 10 Komp

Inkorba Bukittinggi

f. Alamat Email : hanidinantika97@gmail.com

4. Dosen Pembimbing

a. Nama Lengkap dan Gelar : Sutrisno, BSEE.,MT.

b. NIDN : 0019105703

c. Alamat Rumah dan No. Telp/HP : Perumahan Tani Mulya Jl. Intisari

No.15 Cimahi / 081912161945

5. Biaya Kegiatan Total

a. Dana pribadi : Rp Rp 3.385.000,-

b. Sumber lain :-

6. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, Januari 2019

Pengusul,

<u>Hani Dinantika Putri</u> NIM. 151344014

DAFTAR ISI

PENGESAHAAN PROPOSAL TUGAS AKHIR	ii
DAFTAR ISI	iii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Perumusan Masalah	2
1.3 Tujuan	2
1.4 Batasan Masalah	2
1.5 Luaran Yang Diharapkan	2
BAB II TINJAUAN PUSTAKA	3
BAB III METODE PELAKSANAAN	3
3.1 Perancangan	4
3.2 Realisasi	6
3.3 Pengujian	7
3.4 Analisa	7
3.5 Evaluasi	8
BAB IV BIAYA DAN JADWAL KEGIATAN	9
4.1. Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	10
LAMPIRAN-LAMPIRAN	11
Lampiran 1. Biodata Pengusul dan Dosen Pembimbing	11
Lampiran 2. Justifikasi Anggaran Kegiatan `	16
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	18
Lampiran 4. Gambaran Teknologi yang diharapkan	19

BAB 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Dalam proses penerimaan informasi pada sistem komunikasi gelombang micro, informasi yang dikirimkan akan melalui beberapa proses agar sinyal yang diterima sesuai dengan sinyal yang dikirimkan. Namun selama proses tersebut berlangsung sinyal akan mengalami penurunan daya yang disebabkan oleh beberapa faktor salah satunyan redaman yang disebabkan oleh mixer. Redaman tersebut akan mengakibatkan daya yang dihasilkan oleh mixer menurun, sehingga dibutuhkan pemasangan sebuah penguat IF agar daya pada sinyal tersebut dapat dideteksi dan diproses oleh detektor.

Penguat IF berfungsi untuk memperkuat daya pada frekuensi IF sinyal pembawa yang berasal dari keluara mixer. Penguat ini menerima sinyal yang lemah hasil keluaran dari mixer dan harus diperkuat hingga beberapa puluh dB agar dapat dicapai level yang cukup untuk masuk ke proses berikutnya. Penguat IF dapat ditemukan dibeberapa sistem komunikasi microwave salah satunya radar. Radio Detecting and Ranging (Radar) adalah perangkat yang digunakan untuk menentukan posisi, bentuk, dan arah pergerakan dari suatu objek yang terdeteksi,dimana radar bekerja pada frekuensi mikrowave(ashardi,2013). Radar bisa digunakan diberbagai aplikasi salah satunya biasa digunakan untuk pendeteksi cuaca. Pada sistem penerimaan radar dibutuhkan sebuah penguat IF yang bekerja ada frekuensi UHF pada frekuensi 450MHz.

Pada proposal Tugas Akhir ini, Penulis akan merancang dan merealisasikan sebuah Penguat IF yang bekerja pada frekuensi 450 MHz yang memiliki *Gain* >10dB dan VSWR<2.

1.2 Perumusan Masalah

Bagaimana cara pemilihan transistor agar teknik biasing dan penyesuai impedansi sesuai dengan gain dan noise figure yang diharapkan pada penguat IF yang bekerja pada frekuensi 450 MHz.

1.3 Tujuan

Tujuan dari pembuatan proposal ini adalah Merancang dan Merealisasikan Penguat Daya IF pada frekuensi 450 MHz.

1.4 Batasan Masalah

- 1. Penguat daya IF bekerja pada frekuensi 450 MHz.
- 2. Matching Impedance dilakukan dengan menggunakan lumped element tipe T

1.5 Luaran Yang Diharapkan

Luaran yang diharapkan dari pembuatan proposal ini adalah sebuah Penguat IF yang bekerja pada frekuensi 450 MHz yang sesuai dengan spesifikasi dan sudah diuji di Laboratorium .

BAB II TINJAUAN PUSTAKA

Penelitian penguat daya sebelumnya sudah pernah dilakukan untuk beberapa aplikasi diantaranya Pemancar TV digital, TTC downlink Nano Satelit.

Realisasi penguat daya RF broadband untuk pemancar TV digital pada band IV-V UHF. Penguat daya RF ini direalisasikan menggunakan transistor kelas penguat A berjenis BLW34 dengan diberikan daya input sebesar 20 dBm menghasilkan daya *output* sebesar 27 dBm sehingga penguatan yang dihasilkan sebesar 7 dB, dan menghasilkan *bandwidth* sebesar 390 MHz.(Astika,2017).

Perancangan dan direalisasikan HPA dua tingkat dengan frekuensi kerja 435 - 438 MHz. Penyesuaian impedansi input menggunakan metode impedance matching Pi-network, sedangkan untuk penyepadanan impedansi interstage dan output menggunakan metode impedance matching T-network. Hasil perancangan HPA pada frekuensi 437,430 MHz menghasilkan gain sebesar 28,400 dB, VSWRin sebesar 1,291, dan VSWRout sebesar 1,295. Dari hasil pengukuran prototipe HPA, pada frekuensi 437,430 MHz menghasilkan gain sebesar 23,01 dB, VSWRin sebesar 2,126, VSWRout sebesar 1,695 pada bandwidth 50 MHz(kusrini,2016).

Dalam perancangan penguat daya pada frekuensi UHF biasing sebaiknya dirancang pada kelas A untuk mendapatkan distorsi yang kecil(Yagci,2013).

Pada tugas akhir ini akan dirancang dan direalisasikan Penguat daya IF untuk aplikasi radar yang bekerja pada frekuensi 450 MHz dimana proses matching impedance input dan output akan menggunakan metode T-Network.Penguat daya ini akan dibuat dua tingkat agar menghasilkan gain >10dB.

BAB III METODE PELAKSANAAN

3.1 Perancangan

Blok Diagram Keseluruhan

Blok diagram Perancangan Penguat Daya IF

Blok diagram di atas menunjukan alur pengerjaan penguat daya IF. Penguat daya ini memiliki beberapa sub bagian pengerjaa yaitu input matching, DC Bias dan output matching.

I. Rangkaian Biasing

DC Biasing atau rangkaian prategangan DC digunakan untuk mengaktifkan transistor BJT agar dapat bekerja pada titik kerja (Q) yang diinginkan. Pemilihan titik kerja transistor akan turut mempengaruhi kemampuan transistor dalam hal gain maupun output daya maksimal. DC biasing yang digunakan sesuai dengan datasheet transistor

Rangkaian Biasing

II. Penyesuaian Impedansi

Apabila impedansi sebuah saluran tidak *match* dengan saluran lain yang terhubung maka akan menimbulkan rugi-rugi seperti adanya daya yang memantul sehingga menyebabkan transfer daya tidak maksimum. Penyesuai Impedansi harus dilakukan untuk *input* dan *output* rangkaian penguat. Metode yang digunakan untuk penyesuain impedansi ini adalah penyesuaian impedansi tipe T.

Berikut adalah rangkaian untuk penyesuaian impedansi input dan output

Rangkaian matching impedace input dan ouput menggunakan T Network

III. Penyesuaian Impedansi Interstage

Agar penguatan yang akan di realisasikan memiliki gain yang besar maka digunakan penguatan 2 tingkat sehingga untuk mendapatkan transfer daya maksimum harus dilalukan penyesuaian impedansi pada bagian antar

stage nya. Metode yang digunakan untuk maching interstage ini sama dengan metode penyepadanan input dan output.

Rangkaian matching impedace input dan ouput menggunakan T Network

setelah perancangan perhitungan selesai maka langkah selanjutnya adalah melakukan disimulasikan menggunakan ADS 2016.

3.2 Realisasi

Dalam Proyek Akhir ini, dipilih substrat dari FR4 *epoxy* karena substrat *yang* banyak tersedia dipasaran Indonesia.

Data Substrat FR4 epoxy

Parameter	Nilai
Tebal konduktor (t)	0,018 mm
Tinggi substrat (h)	0,8 mm
Konstanta dielektrik (ε_r)	4,4
Factor disipasi (tan δ)	0.01

Blok diagram yang sudah ada akan dilakukan proses perancangan dan pemilihan komponen yang akan di simulasi menggunakan software ADS yang nantinya akan digunakan untuk mendesain penguat daya IF. Setelah mendesain rangkaian

skematik selesai langkah selanjutnya adalah pembuatan layout PCB rangkain yang dilakukan dengan konversi dari skematik ke layout melalui proses konversi pada sofware.

3.3 Pengujian

Pengujian dilakukan dimulai dari setiap bagian untuk mengecek kondisi setiap bagiannya. Paramater yang akan diuji adalah daya output dan gain. Pengujian kinerja penguat dilakukan dengan membandingkan hasil yang didapat dari pengukuran dengan spesifikasi perancangan. Pengujian ini dilakukan setelah dilakukan optimasi pada rangkaian realisasi penguat yaitu dengan memeriksa rangkaian DC biasing dan maching impedance baik input maupun output.

3.4 Analisa

Pada saat perancangan dan pengecekan akan dilakukan tiap bagian sub sistem agar lebih mudah dalam pengecekan dan pengambilan data,bila noise figure,VSWR maupun gain mengalami pergeseran maka perbaikan akan lebih mudah dilakukan.

3.5 Evaluasi

Diharapkan alat ini dapat digunakan pada bagian penerima pada sistem radar cuaca pada frekuensi IF 450 MHz dan dapat digunakan,dikembangkan dan dioptimalkan untuk kedepannya bagi masyarakat yang membutuhkannya.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1.Anggaran Biaya

Tabel 4.1 Anggaran biaya

No	Jenis Biaya	Biaya
1	Perlengkapan Yang Diperlukan	Rp 1.575.000,-
2	Bahan Habis Pakai	Rp 1.255.000,-
4	Perjalanan	Rp 2.800.000,-
5	Lain-lain Lain-lain	Rp 140.000,-
	Jumlah	Rp 3.385.000,-

4.2 Jadwal Kegiatan

Tabel 4.2 Tabel Jadwal Kegiatan

No	Jenis Kegiatan	Bulan				
		1	2	3	4	5
1	Perancangan					
2	Survey Komponen					
3	Implementasi Alat					
4	Tahap Analisi					
5	Pengujian Alat					
6	Evaluasi					
7	Pembuatan					
	Laporan Akhir					

DAFTAR PUSTAKA

- Ashardi 2013, 'Radar', dilihat 08 februari 2019, http://drinformation.blogspot.com/2013/03/pengertian-radar.html.
- Astika W,F 2017,' Realisasi Penguat Daya RF Broadband untuk Aplikasi Pemancar TV Digital pada Band IV-V UHF',Dilihat 04 februari 2019,http://digilib.polban.ac.id/gdl.php?mod=browse&op=read&id=jbptppolban-gdl-widiafitri-6364.
- Yagci,H,B 2013,' *UHF power amplifier design for small satellites*',dillihat 07 februari 2019,https://www.researchgate.net/publication/261110415_UHF_power_amplifier_design_for_small_satellites.
- Kusrisi,P,Wiranto,G,Syamsu,I,Hasanah,L 2016 'Jurnal Elektronika dan Telekomunikasi', vol 16,no 2,dilihat 06 Februari 2019,< www.jurnalet.com/jet/article/download/139/154>

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Pengusul dan Dosen Pembimbing Biodata Pengusul

A. Identitas Diri

1.	Nama Lengkap	Hani Dinantika Putri
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Telekomunikasi
4.	NIM	151344014
5.	Tempat dan Tanggal Lahir	Bukittinggi, 26 Mei 1997
6.	Email	hanidinantika97@gmail.com
7.	Nomor Telepon/Hp	085107022444

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

NO	Jenis Kegiatan	Status dalam	Waktu dan
		Kegiatan	Tempat
1	PPKK	Peserta	Agustus 2015, POLBAN
2	ESQ	Peserta	Agustus 2015, POLBAN
3	Bela Negara	Peserta	Agustus 2015, PUSDIKHUB
4	HIMATEL	Anggota	2016-sekarang

C. Penghargaan Yang Pernah Diterima

NO	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir Program D IV Teknik Telekomunikasi Politeknik Negeri Bandung.

Bandung, 1 Februari 2019 Pengusul,

Hani Dinantika Putri

Biodata Dosen Pembimbing

A. Identitas Diri

1.	Nama Lengkap	Sutrisno,BSEE.,MT.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Telekomunikasi
4.	NIDN	0019105703
5.	Tempat dan Tanggal Lahir	Bandung,19 Oktober 1957
6.	Email	Sutrisno@polban.ac.id
7.	Nomor Telepon/Hp	081912161945

B. Riwayat Pendidikan

	S-1/Sarjana	S-2/Magister	S-3/Doktor
Nama Institusi	University of Kentucky,USA	Institut Teknologi Bandung	-
Jurusan/Prodi	Teknik Elektro	Teknik Telekomunikasi	-
Tahun Masuk- Lulus	1988-1990	2006-2009	-

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

NO	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Teknik Pengukuran Frekuesi Tinggi	Wajib	3
2	Sistem Komunikasi Radio	Wajib	3

C.2. Penelitian

N	Judul Penelitian	Penyandang dana	Tahun
О			
1	Internet Access using Ethernet over PDH	TELKOMNIKA	Vol.3
	Ethernet over PDH Technology for Remote Area	Indonesian Journal for Electrical Engineering	No.2.Pebrua ri 2015
2	Building Telecommunication	IOSR	Vol 11
	Facilities for Railway	International Organization of Scientific Research	No.5 October 2016
3	Optical Transceiver Design And Geometric Loss Measurement For Free Space Optic Communication	IJRED International Journal of Engineering Research and Development	Vol 13 No.9 September 2017
4	Wireless Optical Link for Discharge Warning System		Jurnal sudah diterima :
		IJRED	IJERD Journal
		International Journal of Engineering Research and Development	Ref id AB712009 Rencana akan dipublikasik aan pada jurnal IJERD terbitan Januari 2019
			Januari 2019

C.3. Pengabdian Kepada Masyarakat

NO	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pendampingan dan Pelatihan Teknik Perancangan, Penginstalasian dan Pengoperasian	DIPA Politeknik Negeri Bandung	2016

	Sistem Komunikasi Radio dan Data Untuk Anggota senkom Mitra POLRI		
2	Perencanaan, Instalasi, Pengoperasian dan Perawatan Sound System di Lingkungan Masjid	DIPA Politeknik Negeri Bandung	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

.

Lampiran 2. Justifikasi Anggaran Kegiatan`

1. Perlengkapan Yang Diperlukan	Volume	Harga Satuan (Rp)	Jumlah (Rp)
- Toolset Elektronik	1 Set	500.000	500.000
- Obeng	1 Set	100.000	100.000
- Protoboard	1Buah	25.000	25.000
- PCB	1 Buah	50.000	50.000
- Casing	1 Buah	200.000	200.000
- Multimeter Digital	1 Buah	700.000	700.000
		SUB TOTAL (Rp)	1.575.000
2. Bahan Habis	Volume	Harga Satuan (Rp)	Jumlah (Rp)
- Timah	2 Buah	60.000	120.000
- Port	2 Buah	50.000	100.000
- Komponen Elektronika	1 set	500.000	500.000
- Komponen Mekanik (Mur,Baut,dll)	1Set	500.000	500.000
- Kabel jumper female to female	5 Set	2000	10.000
- Kabel jumper male to female	5 Set	5000	25.000
		SUB TOTAL (Rp)	1.255.000
3. Perjalanan	Volume	Harga Satuan (Rp)	Jumlah (Rp)
- Parkir	20 Kali	2.000	40.000
- Perjalanan Ke Jaya Plasa	5 Kali	20.000	100.000
	l	SUB TOTAL (Rp)	140.000
	Volume		Jumlah (Rp)

- Kertas A4	1 Rim	55.000	55.000	
- Tinta printer	4 Set	90.000	360.000	
SUB TOTAL (Rp) 415.0				
TOTAL 1+2+3+4 (Rp) 3.385.0				
Terbilang enam juta lima puluh lima ribu rupia				

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Alokasi Waktu (jam / minggu)	Uraian Tugas
1.	Hani Dinantika Putri (151344014)	D4	Teknik Telekomunikasi	20 jam	Membuat perancangan rangkaian penguat daya IF 450MHz dan merealisasikannya

Penguat RF

Mixer
Pertama

Penguat IF

Mixer
Kedua

Local
Osilator

Lampiran 4. Gambaran Teknologi yang diharapkan

Blok diagram diatas merupakan sistem penerima dari radar cuaca dimana perancangan dan perealisasian difokuskan pada bagian penguat IF. Pada perancangan ini dilakukan penguatan agar sinyal IF yag merupakan input dari mixer berikutnya sesuai dengan spesifikasi yang diharapkan.

Dalam perancangan penguat Daya IF ini ada beberapa tahap yang harus dilakukan yaitu DC bias, input output matching. Untuk maching imppedance digunakan teknik single stub dan menggunakan mikrostrip dalam perealisasiannya. Penguat ini menggunakan komponen aktif berupa transistor BFR91A. Perancangan rangkaian ini akan disimulasikan menggunakana software Advance Design System (ADS). Pada saat simulasi berlangsung akan didapatkan beberapa parameter yang dibutuhkan agar saat peresalisasian komponen dan hasil parameter sesuai dengan rancangan yang telah sesuai dengan perancangan.

Datasheet Komponen

Silicon NPN Planar RF Transistor

Electrostatic sensitive device. Observe precautions for handling.

Applications

RF amplifier up to GHz range specially for wide band antenna amplifier.

Features

- High power gain
- Low noise figure
- · High transition frequency

BFR91A Marking: BFR91A Plastic case (TO 50)

1 = Collector, 2 = Emitter, 3 = Base

Absolute Maximum Ratings

T_{amb} = 25°C, unless otherwise specified

Parameter	Test Conditions	Symbol	Value	Unit
Collector-base voltage		V _{CBO}	20	V
Collector-emitter voltage		V _{CEO}	12	V
Emitter-base voltage		V _{EBO}	2	٧
Collector current		Ic	50	mA
Total power dissipation	T _{amb} ≤ 60 °C	Ptot	300	mW
Junction temperature		Tj	150	°C
Storage temperature range		T _{stq}	-65 to +150	°C

Maximum Thermal Resistance

T_{amb} = 25°C, unless otherwise specified

	-			
Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	on glass fibre printed board (40 x 25 x 1.5) mm ³	RthJA	300	K/W
1	plated with 35um Cu			

BFR91A

Vishay Telefunken

Electrical DC Characteristics

T_{amb} = 25°C, unless otherwise specified

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Collector cut-off current	V _{CE} = 20 V, V _{BE} = 0	ICES			100	μА
Collector-base cut-off current	V _{CB} = 20 V, I _E = 0	Icao			100	nΑ
Emitter-base cut-off current	V _{EB} = 2 V, I _C = 0	I _{EBO}			10	μА
Collector-emitter breakdown voltage	I _C = 1 mA, I _B = 0	V _{(BR)CEO}	12			V
Collector-emitter saturation voltage	I _C = 50 mA, I _B = 5 mA	V _{CEsat}		0.1	0.4	V
DC forward current transfer ratio	V _{CE} = 5 V, I _C = 30 mA	hFE	40	90	150	

Electrical AC Characteristics

T_{amb} = 25°C, unless otherwise specified

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Transition frequency	V _{CE} = 5 V, I _C = 30 mA, f = 500 MHz	fT		6		GHz
Collector-base capacitance	V _{CB} = 5 V, f = 1 MHz	Ccb		0.4		pF
Collector-emitter capacitance	V _{CE} = 10 V, f = 1 MHz	Coe		0.3		pF
Emitter-base capacitance	V _{EB} = 0.5 V, f = 1 MHz	Ceb		1.5		pF
Noise figure	$V_{CE} = 8 \text{ V, } Z_{S} = 50 \Omega, f = 800 \text{ MHz,}$ $I_{C} = 5 \text{ mA}$	F		1.6		dB
	$V_{CE} = 8 \text{ V, } Z_{S} = 50 \Omega, f = 800 \text{ MHz,}$ $I_{C} = 30 \text{ mA}$	F		2.3		dB
Power gain	$V_{CE} = 8 \text{ V, } I_{C} = 30 \text{ mA, } Z_{S} = 50 \Omega,$ $Z_{L} = Z_{Lopt}, f = 800 \text{ MHz}$	Gpe		14		dB
Linear output voltage – two tone intermodulation test	$V_{CE} = 8 \text{ V. } I_{C} = 30 \text{ mA, } d_{IM} = 60 \text{ dB,}$ $f_{1} = 806 \text{ MHz, } f_{2} = 810 \text{ MH,}$ $Z_{S} = Z_{L} = 50 \Omega$	V ₁ = V ₂		280		mV
Third order intercept point	V _{CE} = 8 V, I _C = 30 mA, f = 800 MHz	IP ₃		32		dBm