

Analisis Hubungan antara GRE Score, TOEFL Score, University Rating, Statement of Purpose, Letter of Recommendation, Undergraduate GPA, dan Research Experience terhadap Kemungkinan Mahasiswa Sarjana Diterima Program Magister

Project 2 - Model Linier PTA 2022/2023

Anggota Kelompok

O1 Safira Raissa Rahmi 2006568891

Daniel Lie 2206820610

Muhammad Daffa 2006568626 Caturangga Argya
Nuriski
2206813800

Yoel Klamedia Sinurat

Pendahuluan

Apa masalah yang akan dibahas?

Bagaimana memprediksi kemungkinan mahasiswa sarjana diterima di program magister berdasarkan GRE score, TOEFL score, university rating, statement of purpose (SOP), letter of recommendation (LOR), undergraduate GPA (CGPA), dan research experience?

Variabel apa saja yang berpengaruh signifikan terhadap besar kemungkinan mahasiswa sarjana diterima di program magister?

Data yang digunakan

Penelitian oleh Mohan S. Acharya, dkk

Sumber data:

https://www.kaggle.com/datasets/mohans acharya/graduate-admissions/data

	GRE Score	TOEFL Score	University	Rating	SOP	LOR	CGPA	Research	Chance of Adm
0	337	118		4	4.5	4.5	9.65	1	0.0
1	324	107		4	4.0	4.5	8.87	1	0.7
2	316	104		3	3.0	3.5	8.00	1	0.7
3	322	110		3	3.5	2.5	8.67	1	0.0
4	314	103		2	2.0	3.0	8.21	0	0.6
	1000	655		552	255		35.52	277	
495	332	108		5	4.5	4.0	9.02	1	0.8
496	337	117		5	5.0	5.0	9.87	1	0.0
497	330	120		5	4.5	5.0	9.56	1	0.0
498	312	103		4	4.0	5.0	8.43	0	0.7
499	327	113		4	4.5	4.5	9.04	0	0.0

gambaran dari beberapa data yang ditampilkan

Ukuran data

500 data

Kolom data

8 kolom

Skala/tipe data

GRE Score

TOEFL Score

University Rating

Statement of Purpose (SOP)

Letter of Recommendation (LOR)

Research Experience

Chance of Admittance

: Skala Rasio

: Skala Ordinal

: Skala Rasio

Penjelasan masing-masing variabel

GRE Score (0-340): Skor yang diperoleh mahasiswa pada tes yang digunakan untuk menilai kesiapan mahasiswa dalam melanjutkan pendidikan ke program magister.

TOEFL Score (0-120): Skor yang diperoleh mahasiswa dalam tes untuk menilai kemampuan berbahasa Inggris TOEFL.

University Rating (0-5): Akreditasi universitas yang didasarkan pada berbagai faktor.

Statement of Purpose (0-5): Nilai evaluasi terhadap esai yang ditulis oleh mahasiswa berisi penjelasan alasan ingin melanjutkan studi ke program magister.

Letter of Recommendation (0-5): Nilai evaluasi terhadap surat rekomendasi/referensi oleh pihak lain yang mengenal mahasiswa dengan baik mengenai wawasan, kinerja, profesionalisme, dan karakter. Biasanya ditulis oleh dosen, profesor, atau atasan.

Undergraduate GPA (0-10): Rata-rata nilai akademis mahasiswa yang diperoleh selama studi sarjana.

Research Experience (O atau 1): Pengalaman penelitian yang dimiliki mahasiswa. Nilai O berarti mahasiswa tidak memiliki pengalaman melakukan penelitian, sedangkan nilai 1 berarti mahasiswa memiliki pengalaman melakukan penelitian.

Chance of Admittance (0-1): Nilai probabilitas dari mahasiswa diterima di program magister

"Tujuan utama dari penelitian ini adalah untuk menggambarkan hubungan antara variabel-variabel seperti GRE score, TOEFL score, university rating, statement of purpose (SOP), letter of recommendation (LOR), dan undergraduate GPA (CGPA), serta untuk memprediksi kemungkinan seorang mahasiswa sarjana diterima program magister berdasarkan kontribusi masing-masing variabelnya."

— Tujuan Penelitian

Preprocessing & Analisis Deskriptif

Notebook: Project 1 Molin Kelompok D

Pemeriksaan Missing Values

```
Serial No. 0
GRE Score 0
TOEFL Score 0
University Rating 0
SOP 0
LOR 0
CGPA 0
Research 0
```

df.isnull().sum()

Chance of Admit

dtype: int64

Encoding Data Kategorik

```
df['Research'].value_counts()
```

1 280

0 220

Name: Research, dtype: int64

Encoding Data Kategorik

```
df['Research'].value_counts()
```

1 280

0 220

Name: Research, dtype: int64

Pemeriksaan Outliers

Analisis Dataset

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000

Koefisien Korelasi Antar Variabel

Count Plot Masing-masing Variabel

Density Plot Masing-masing Variabel

Linearity Plot Masing-masing Variabel

Feature Scaling - Standardisasi

$$X' = \frac{X-\mu}{\sigma}$$

- X': Data yang terstandarisasi
- X: Data awal
- μ: Rata-rata nilai variabel
- σ: Standar deviasi nilai variabel

Sehingga persebaran data dalam grafik *box plot* sebelum dan sesudah standarisasi adalah sebagai berikut:

Hipotesis

Hipotesis yang akan diteliti adalah GRE score, TOEFL score, university rating, statement of purpose (SOP), letter of recommendation (LOR), undergraduate GPA (CGPA), dan Research Experience berpengaruh terhadap kemungkinan mahasiswa sarjana diterima program magister (Chance of admittance).

Pemodelan

Notebook: Project 1 Molin Kelompok D

Variabel Signifikan

Menerima uji parsial untuk masing-masing variabel nilai p > α = 0.05 dan memiliki nilai VIF<10.

Model 1

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \varepsilon$$

y := Chance of admittance

 $x_1 := GRE \ score$

 $x_2 := TOEFL score$

 $x_3 := University Rating$

 $x_{_{4}} := Statement \ of \ Purpose$

 $x_5 := Letter \ of \ Recommendation$

 $x_6 := Undergraduate GPA$

 $x_7 := Research Experience$

 $\varepsilon := Error/Galat$

	coef	std err	t	P> t	[0.025	0.975]
const	-1.2757	0.104	-12.232	0.000	-1.481	-1.071
GRE Score	0.0019	0.001	3.700	0.000	0.001	0.003
TOEFL Score	0.0028	0.001	3.184	0.002	0.001	0.004
University Rating	0.0059	0.004	1.563	0.119	-0.002	0.013
SOP	0.0016	0.005	0.348	0.728	-0.007	0.011
LOR	0.0169	0.004	4.074	0.000	0.009	0.025
CGPA	0.1184	0.010	12.198	0.000	0.099	0.137
Research	0.0243	0.007	3.680	0.000	0.011	0.037
Omnibus:	=======	112.770	Durbin-Wats	on:	0.7	96
Prob(Omnibus):		0.000	Jarque-Bera (JB):		262.104	
Skew:		-1.160	Prob(JB):		1.22e-57	
Kurtosis:		5.684	Cond. No.		1.30e+04	
						==

	Feature	VIF
0	GRE Score	4.225203
1	TOEFL Score	3.898373
2	University Rating	2.615772
3	SOP	2.834454
4	LOR	2.029486
5	CGPA	4.776161
6	Research	1.170262

 $R^2_{82.2\%}$

Drop Variabel

- University Rating memiliki p-value = $0.119 > \alpha = 0.05$
- SOP memiliki p-value = $0.728 > \alpha = 0.05$.

Model 2

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \varepsilon$$

y := Chance of admittance

 $x_1 := GRE \ score$

 $x_2 := TOEFL score$

 $x_5 := Letter \ of \ Recommendation$

 $x_6 := Undergraduate GPA$

 $x_7 := Research Experience$

 $\varepsilon := Error/Galat$

Dep. Variable:	Cha	Chance of Admit		B squapod:		0.821	
Model:	Cila	OLS		Control of the contro		0.819	
Method:		Least Square	-	The state of the s		452.1	
Date:		, 31 Oct 202				9.97e-182	
Time:	Tue	14:14:1				699.65	
No. Observation	15.		0 AIC:			-1387.	
Df Residuals:		49	7-1-17-5			-1362.	
Df Model:			5			-1502.	
Covariance Type	2:	nonrobus	-				
					<mark>-</mark>		
	coef	std err	t	P> t	[0.025	0.975	
const	_1 3357	a ago	-13 /182	0.000	-1 530	-1.14	
- 4-200		0.001	100000000000000000000000000000000000000	1 BB 3 BB 5	0.001	0.00	
TOEFL Score	0.0030	0.001			0.001	0.00	
LOR		0.004			0.012	0.02	
CGPA	0.1230	0.009	13.221	0.000	0.105	0.14	
Research	0.0252	0.007	3.814	0.000	0.012	0.03	
Omnibus:		109.02	7 Durbir	Durbin-Watson:		0.800	
Prob(Omnibus):		0.00	0 Jarque	Jarque-Bera (JB):		248.874	
Skew:		-1.130		Prob(JB):		9.07e-55	
Kurtosis:		5.61	5 Cond.	No.		1.23e+04	

	Feature	VIF
6	GRE Score	4.209225
1	TOEFL Score	3.795962
2	LOR	1.696170
3	CGPA	4.370664
4	Research	1.168252

 R^2 82.1%

Dropping Outlier

- Indeks Outlier: 9, 10, 40, 59, 64, 65, 66, dan 92
- Value Outlier :
 - -1.8843977798251839, -1.513368720554275, -1.311025594378516, -1.4525315842865516,
 - -1.634919495326382, -1.6354360693732906, -1.298544056161342, dan -1.6186940339113074.

Dep. Variable:	Cha	Chance of Admit		od.	0.853		
Model:	Cita					0.852	
Method:				Adj. R-squared:			
		The BOSTON BETTER WAS A STREET		F-statistic:		564.8	
Date:	Mon	, 18 Dec 2023	100				
Time:		17:51:55		0		-216.71	
No. Observation	ns:	492	100 TO 100	AIC:		445.4	
Df Residuals:		486				470.6	
Df Model:		5					
Covariance Type	e:	nonrobust					
========				P> t	[0.025	0.975	
		0.029		0.131	-0.102	0.01	
GRE Score	0.1788	0.036	4.950	0.000	0.108	0.25	
TOEFL Score	0.1371	0.033	4.122	0.000	0.072	0.20	
LOR	0.1157	0.022	5.207	0.000	0.072	0.159	
CGPA	0.5158	0.036	14.475	0.000	0.446	0.586	
Research	0.1249	0.042	2.953	0.003	0.042	0.208	
 Omnibus:			Durbin-			0.935	
Prob(Omnibus):		V/ 57 (1.7c/57)				68.065	
Skew:				Jarque-Bera (JB):			
Skew: Kurtosis:				Prob(JB): Cond. No.		1.66e-15 5.47	

	Fea	atures V				
0		const	2.964192			
1	GRE	Score	4.494472			
2	TOEFL	Score	3.822170			
3		LOR	1.709610			
4		CGPA	4.403566			
5	Res	search	1.511538			

BEST Model

000

Model Ketiga (Terbaik)

$$y = -0.0444 + 0.1788x_1 + 0.1371x_2 + 0.1157x_5 + 0.5158x_6 + 0.1249x_7 + \varepsilon$$

y := Chance of admittance

 $x_1 := GRE \ score$

 $x_2 := TOEFL score$

 $x_5 := Letter \ of \ Recommendation$

 $x_6 := Undergraduate GPA$

 $x_7 := Research Experience$

 $\varepsilon := Error/Galat$

04

Pengolahan Data dan Analisis Hasil

Notebook: Project 1 Molin Kelompok D

Analisis Residual

Residu dari regresi adalah selisih dari nilai variabel asli dengan hasil prediksi.

$$\hat{\varepsilon} = y - \hat{y} = y - (\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k)$$

Model regresi yang baik harus memenuhi asumsi:

- Rata-rata residual nol
- Homoskedastisitas
- Residu berdistribusi normal
- Independensi

Residual vs Variabel Independen

Residual vs Hasil Prediksi

Histogram Residual

Residual vs Time

Kesimpulan

Model ketiga memiliki R^2 yang baik yakni 0.853 yang berarti 85.3% variabilitas dari Chance of Admittance dapat diprediksi oleh variabel-variabel yang diusulkan pada model kedua ini. Model ini juga memiliki global p-value yang baik sebesar $7.78*10(-200) < \alpha = 0.05$. Selain itu, model ini telah memenuhi asumsi normalitas, homoskedastisitas, linearitas, dan tidak terdapat multikolinearitas variabel prediktor.

Dengan demikian, model kedua yang telah dilakukan drooping outlier dapat digunakan untuk memprediksi kemungkinan mahasiswa sarjana diterima di program magister berdasarkan GRE score, TOEFL score), letter of recommendation (LOR), undergraduate GPA (CGPA), dan research experience dengan baik.

Daftar pustaka

Chauhan, N. S. (n.d.). From data pre-processing to optimizing a regression model performance - KDnuggets. KDnuggets. https://www.kdnuggets.com/2019/07/data-pre-processing-optimizing-regression-model-performance.html

James, G., Witten, D., Hastie, T., and Tibshirani, R. (eds.). (2013). An introduction to statistical learning: with applications in R. New York: Springer

Knief, U., & Forstmeier, W. (2021, May 7). Violating the normality assumption may be the lesser of two evils - behavior research methods. SpringerLink. Retrieved December 28, 2021, from https://link.springer.com/article/10.3758/s13428-021-01587-5

Mendenhall, W., & Sincich, T. (2012b). A second course in statistics: Regression Analysis. Pearson College Division.

M. S. Acharya, A. Armaan and A. S. Antony, "A Comparison of Regression Models for Prediction of Graduate Admissions," 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 2019, pp. 1-5, doi: 10.1109/ICCIDS.2019.8862140.

Pan, Y. and Jackson, R.T. (2008) Ethnic Difference in the Relationship between Acute Inflammation and Serum Ferritin in US Adult Males.

Terima Kasih!

