DEVOIR 01 D'ANALYSE FONCTIONNELLE

Devoir à rendre pour le jeudi 29 septembre 9h00

Exercice 1. Une fonction mesurable $u : \mathbb{R}^d \to \mathbb{R}$ est à variation moyenne bornée (bounded mean oscillation) si

$$\begin{aligned} &born\acute{e} \ (\text{bounded mean oscillation}) \ si \\ &\|u\|_{\mathrm{BMO}(\mathbb{R}^d,\mathbb{R})} \doteq \sup_{\substack{a \in \mathbb{R}^d \\ r \in (0,1)}} \frac{1}{\mu(\mathbb{B}^d[a,r])} \int_{\mathbb{B}^d[a,r])} \frac{1}{\mu(\mathbb{B}^d[a,r])} \int_{\mathbb{B}^d[a,r])} |u(x) - u(y)| \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) < +\infty \end{aligned}$$

où μ est la mesure de Lebesgue sur \mathbb{R}^d . Nous notons BMO(\mathbb{R}^d , \mathbb{R}) l'ensemble formé par toutes ces fonctions.

- (i) Toute fonction mesurable $u: \mathbb{R}^d \to \mathbb{R}$ bornée est-elle à variation moyenne bornée ?
- (ii) Toute fonction constante est-elle à variation bornée ?
- (iii) Les fonctions à variation moyenne bornée $\mathbb{R}^d \to \mathbb{R}$ forment-elles un espace vectoriel ?
 - (a) Si oui, la quantité $\|\cdot\|_{BMO(\mathbb{R}^d,\mathbb{R})}$ définit-elle un norme ? Une seminorme ?
 - (b) Si non, l'ensemble des fonctions à variations bornée muni de la fonction

 $d_{\mathrm{BMO}(\mathbb{R}^d,\mathbb{R})}: (u,v) \in \mathrm{BMO}(\mathbb{R}^d,\mathbb{R}) \times \mathrm{BMO}(\mathbb{R}^d,\mathbb{R}) \mapsto \|u-v\|_{\mathrm{BMO}(\mathbb{R}^d,\mathbb{R})}$ $admet\text{-}il \ une \ structure \ d'espace \ m\'etrique \ ? \ Semi\text{-}m\'etrique \ ?}$

Date: Automne 2022.