Lineare Algebra II: Übungsstunde 4

Florian Frauenfelder

https://florian-frauenfelder.ch/ta/linalg/

17.03.2025

1 Quiz 17: Lösungsvorschlag

1.1 Aufgabe 17.1

Definition. V ein endlich-dimensionaler Vektorraum, $T: V \to V$ linear, $\lambda \in \sigma(T)$, dann ist der verallgemeinerte Eigenraum von λ definiert als:

$$\tilde{E}_{\lambda} := \bigcup_{i=1}^{\infty} \ker(T - \lambda \mathbf{1}_{V})^{k} \tag{1}$$

Ein dazu äquivalentes Lemma (Skript: Lemma 12.3.3):

Lemma 1.

$$\tilde{E}_{\lambda} = \ker(T - \lambda \mathbf{1}_{V})^{\dim V} \tag{2}$$

1.2 Aufgabe 17.2

Wir können die Matrix als Blockdiagonalmatrix mit Jordanblöcken auf der Diagonalen schreiben:

$$A = \begin{pmatrix} J_2(2) & & & & \\ & J_1(2) & & & \\ & & J_2(3) & & \\ & & & J_1(5) \end{pmatrix}, \tag{3}$$

mit dem charakteristischen Polynom

$$\chi_A(x) = (2-x)^3 (3-x)^2 (5-x), \tag{4}$$

womit wir direkt die Eigenwerte

$$\lambda_1 = 2 \qquad \lambda_2 = 3 \qquad \lambda_3 = 5 \tag{5}$$

mit ihren algebraischen Vielfachheiten (entsprechen den Vielfachheiten der Nullstellen in $\chi_A(x)$)

$$a_2 = 3$$
 $a_3 = 2$ $a_5 = 1$ (6)

ablesen können. Die geometrischen Vielfachheiten können wir aus der Matrix selbst als die Anzahl Blöcke pro Eigenwert ablesen:

$$g_2 = 2$$
 $g_3 = 1$ $g_5 = 1$ (7)

2 Feedback Serie 16

3. Vorsicht mit vorschnellen Implikationen: $\sigma(f) = \{1\} \land f^2 = \mathrm{id} \equiv \mathbf{1}_V \implies f = \mathrm{id}$. Ein Gegenbeispiel:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- 4. Die Aufgabenstellung war $\exists v \in V, v \neq 0_V : p(T)v = 0_V$ (oder äquivalent dazu: $v \in \ker p(T)$) und nicht $\forall v \in V, v \neq 0_V : p(T)v = 0_V$. (Die Formulierung war etwas unklar, dies wurde so weitergeleitet.)
- 5. Ein kleines, aber wichtiges Detail: Wieso gibt es neben den gefundenen Eigenfunktionen $ce^{\lambda x}$ keine weiteren?

3 Theorie-Recap letzte Woche

Behandelte Themen: Verallgemeinerte Eigenräume, Jordanketten, Jordansche Normalform (Beweis).

3.1 Zusätzliches Material

Ein «Rezept» um die Jordansche Normalform einer Matrix $A \in K^{n \times n}$ (und die dazugehörende Jordanbasis) zu bestimmen:

- 1. Charakteristisches Polynom $\chi_A(x)$ berechnen; Wir erhalten die algebraischen Vielfachheiten a_{λ} aus den Vielfachheiten der Nullstellen, die uns die Summe der Länge aller Jordanblöcke pro Eigenwert (die Anzahl Einträge mit dem Eigenwert auf der Diagonalen) geben.
 - a) Bereits hier hilft $g_{\lambda} \leq a_{\lambda}$ eventuell weiter.
- 2. Bestimmung der Eigenräume (mithilfe Bestimmen von $\ker(A \lambda \mathbf{1}_n)$ oder Lösen des Gleichungssytems $Av = \lambda v$), womit wir die geometrischen Vielfachheiten g_{λ} aus den Dimensionen der Eigenräume erhalten, die uns die Anzahl Jordanblöcke pro Eigenwert geben.
 - a) Wenn die Differenzen und Werte der Vielfachheiten nicht zu gross sind, kann man hier häufig bereits die gesamte Jordansche Normalform hinschreiben.
- 3. Bestimmung der Jordanketten, um die Längen der einzelnen Blöcke aus den Längen der Jordanketten und die fehlenden Vektoren für die Jordanbasis zu finden:

- a) Einen Eigenvektor $Av = \lambda v$ auswählen.
- b) $S := A \lambda \mathbf{1}_n$ benutzen, um mit Sw = v den Vektor w zu finden. Dies solange mit $w \mapsto v$ wiederholen, bis $w = 0_V$ die Lösung ist. Die erhaltenen Vektoren (ohne 0_V) $\{w, Sw, S^2w, \ldots, S^{k-1}w\}$ bilden die gewünschte Jordankette, wobei die Länge dieser der Länge des Jordanblocks entspricht.
- 4. Jordansche Normalform hinschreiben
 - a) Konvention: Eigenwerte der Grösse nach aufsteigend und Blöcke desselben Eigenwertes der Grösse nach absteigend sortieren.
 - b) Das minimale Polynom kann einfach abgelesen werden:

$$m_A(x) = \prod_{\lambda \in \sigma(A)} (\lambda - x)^{b_{\lambda}},$$

wobei b_{λ} die Länge des grössten Jordanblocks zum Eigenwert λ ist.

5. Jordanbasis (bzw. Basiswechselmatrix) hinschreiben: alle Jordanketten geordnet nach ihren zugehörigen Blöcken in der Jordanschen Normalform. Wichtig: Die Jordanketten selbst müssen umgekehrt sortiert sein als in der Definition; also zuerst der Eigenvektor des Blocks, dann die niedrigeren Potenzen von S! (Andernfalls sind die 1-Einträge des Blocks unter der Diagonale statt wie gewünscht darüber.)

4 Aufgaben

Beispiel 1. Berechne die Jordansche Normalform und die zugehörige Jordanbasis der Matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{8}$$

Lösung. Wir bestimmen das charakteristische Polynom:

$$\chi_A(x) = (1 - x)^4 \tag{9}$$

und erhalten daraus den einzigen Eigenwert $\lambda=1$ mit algebraischer Vielfachheit $a_{\lambda}=4$. Entweder mit konkreter Berechnung oder Betrachtung der Matrix sehen wir, dass ein einziger Eigenvektor $v=e_1$ existiert. Damit haben wir bereits die Jordansche Normalform bestimmt:

$$J_A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{10}$$

Um die Jordanbasis zu erhalten, finden wir die Jordankette zum Eigenvektor $v = S^3 w$, wobei

womit direkt ersichtlich ist, dass $w=e_4$. Damit können wir die Jordankette in umgekehrter Reihenfolge mithilfe von

$$S^{2} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{12}$$

hinschreiben (und somit auch die Basiswechselmatrix):

$$\{S^{3}w, S^{2}w, Sw, w\} = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\} \implies P = \begin{pmatrix} 1 & 2 & 1 & 0\\0 & 1 & 1 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix}. \tag{13}$$

Zur Überprüfung berechnen wir: $P^{-1}AP = J_A$ \checkmark .

Vorsicht: WolframAlpha braucht die andere Konvention der Basiswechselmatrizen: $QAQ^{-1} = J_A$, weshalb unsere berechnete Basiswechselmatrix nicht der von WolframAlpha entspricht; es gilt: $Q^{-1} = P^G$ (die «Gegentransponierte» von P, also die Spiegelung an der Diagonalen von links unten nach rechts oben) mit $p_{ij} = q_{n-j+1,n-i+1}^{-1}$. Das behandelte Beispiel ist hier auf WolframAlpha zu finden.

Aufgaben mit HSxx oder FSxx sind aus der Prüfungssammlung des VMP entnommen: https://exams.vmp.ethz.ch/category/LineareAlgebraIII Weitere Aufgaben:

- HS04: 4
- HS07: 3

Tipps zur Serie 17 auf der nächsten Seite!

5 Tipps zur Serie 17

- 1. Welche Bedeutungen hat der Rang? Betrachte eine Einschränkung $L_A|_{\text{im }L_A}$ und multipliziere das Polynom mit x, um Grad r+1 zu erhalten.
- 2. Beweise mithilfe von Induktion, dass $W:=\langle \mathbf{1}_n,A,A^2,\ldots\rangle=\langle \mathbf{1}_n,A,A^2,\ldots,A^{n-1}\rangle$. Benutze Cayley-Hamilton, um zu zeigen, dass $A^k\in W, \forall k\in\mathbb{N}$.
- 5. Schreibe die Darstellungsmatrizen in einer geeigneten Basis hin.
- 7. Unterscheide nilpotent (Aussage stimmt, beweise sie mithilfe der Anzahl Jordanblöcke) und nicht-nilpotent (Aussage stimmt nicht, finde ein Gegenbeispiel).