AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

(Currently Amended) A system for use in a well, comprising: 1. 1 at least one a plurality of wireless network device devices in the well, the plurality of 2 wireless network devices in the well to communicate wirelessly using a protocol 3 that defines short-range wireless communication. 4 (Currently Amended) [[The]] A system of claim 1, further for use in a well, comprising: 2. 1 a plurality of wireless network devices in the well, the plurality of wireless network 2 devices to communicate wirelessly using a Bluetooth wireless communication 3 4 protocol. (Original) The system of claim 1, further comprising: 3. 1 an interlink wireless network device positioned proximal the surface of the well; 2 a communication line interconnecting the interlink wireless network device to a surface 3 controller. 4 (Currently Amended) The system of claim 1, further comprising: 1 4. [[the]] at least one of the wireless network device devices communicating with a 2 3 downhole device.

1	5.	(Currently Amended) The system of claim 4, wherein the downhole device is selected
2		from gauges, sensors, valves, sampling devices, a device used in intelligent or smart well
3		completion, temperature sensors, pressure sensors, flow-control devices, flow rate
4		measurement devices, oil/water/gas ratio measurement devices, scale detectors, actuators,
5		locks, release mechanisms, equipment sensors-(e.g., vibration sensors), sand detection
6		sensors, water detection sensors, data recorders, viscosity sensors, density sensors, bubble
7		point sensors, composition sensors, resistivity array devices and sensors, acoustic devices
8		and sensors, other telemetry devices, near infrared sensors, gamma ray detectors, H ₂ S
9		detectors, CO ₂ detectors, downhole memory units, downhole controllers, perforating
10		devices, shape charges, firing heads, and locators.
1	6.	(Currently Amended) The system of claim 1, further comprising:
2		[[the]] at least one of the wireless network device is devices in communication with a
3		power source.
1	7.	(Original) The system of claim 6, wherein the power source is selected from a battery, a
2		fuel cell, a downhole power generator, and a communication line extending to a surface
3		of the well.
1	8.	(Currently Amended) The system of claim [[1]] 2, further comprising:
2		at least one of the wireless network device devices positioned in a lateral branch of a
3		multilateral well.
1	9.	(Currently Amended) The system of claim [[1]] 2, further comprising wherein:
. 2		a first of the wireless network device devices is positioned in a lateral branch of a
3		multilateral well;
4		a second of the wireless network device devices is positioned outside the lateral branch in
5		another portion of the well;
6		the first wireless network device and second wireless network device positioned within
7		range of one another.

1	10.	(Currently Amended) The system of claim [[1]] 2, further comprising:
2		a wireless network device in a wellhead of the well to communicate wirelessly with at
3		least one of the wireless network devices in the well using the Bluetooth wireless
4		communication protocol.
1	11.	(Currently Amended) The system of claim 10, further comprising:
2		a wireless network device outside the well adapted to communicate wirelessly with the at
3		least one of the wireless network device devices in the wellhead.
1	12. –	13. (Cancelled)
1	14.	(Currently Amended) The system of claim 1, further comprising:
2		a wireless network device outside the well adapted to communicate wirelessly with the at
3		least one of the wireless network device devices in the well using the protocol.
1	15.	(Cancelled)
1	16.	(Currently Amended) The system of claim [[1]] 2, further comprising at least one
2		secondary communication system in communication with the at least one of the wireless
3		network device devices.
1	17.	(Original) The system of claim 16, wherein the secondary communication system is
2		selected from communication line, a fiber optic line, an Internet, a satellite, a telephone
3		system, and an intranet.
1	18.	(Original) The system of claim 16, wherein the at least one secondary communication
2		system provides communication between the at least one wireless network device and a
3		location selected from a remote land-based location and an offshore surface location.

(Currently Amended) The system of claim [[1]] 2, further comprising wherein: 1 19. a first one of the wireless network device devices is positioned outside a casing in the 2 well; 3 a second one of the wireless network device devices is positioned inside the casing of the 4 5 well; 6 the first wireless network device and the second wireless network device adapted to 7 communicate wirelessly with one another. 20. (Original) The system of claim 19, further comprising: 1 2 a memory device communicating with the first wireless network device. (Original) The system of claim 19, wherein: 1 21. the second wireless network device is mounted in the well. 2 1 22. (Original) The system of claim 19, further comprising: the second wireless network device is provided on a running tool. 2 23. (Currently Amended) The system of claim 1, further comprising wherein: 1 a first of the wireless network device devices is positioned outside a tubing in the well; 2 a second of the wireless network devices devices is positioned inside the tubing of the 3 4 well; 5 the first wireless network device and the second wireless network device adapted to communicate wirelessly with one another. 6 (Original) The system of claim 23, further comprising: 1 24. a memory device communicating with the first wireless network device. 2 1 25. - 27. (Cancelled)

1	28.	(Currently Amended) The system of claim 23, further comprising:
2		at least a portion of the tubing extends through a casing in the well;
3		a third of the wireless network device devices positioned inside the casing of the well;
4		the first wireless network device, the second wireless network device, and the third
5		wireless network device are adapted to communicate wirelessly with one another.
1	29.	(Original) The system of claim 28, wherein:
2		the first wireless network device relays information between the second wireless network
3		device and the third wireless network device.
1	30.	(Cancelled)
1	31.	The system of claim 30, wherein: A system comprising:
2		a tool having a first wireless network device, the tool movable in the well;
3		the at least one at least a second wireless network device in the well located at a
4		predetermined position therein; and
5		a depth correlation circuitry in the tool [[is]] in communication with the first wireless
6		network device in the tool and is adapted to detect a signal from the connected
7		first wireless network device and determine for determining the depth of the tool
8		in the well-therefrom, the signal from the first wireless network device based on
9		wireless communication between the first and second wireless network devices.
1	32.	(Currently Amended) The system of claim 31, further comprising:
2		a plurality of third wireless network devices device in the well;
3		wherein the tool detects the signal of at least two of the plurality of is based on wireless
4		communication between the first wireless network device and the second and
5		third wireless network devices to determine the depth of the tool.

1	33.	(Currently Amended) The system of claim 31, further comprising:
2		a plurality of third wireless network devices device in the well;
3		wherein the tool detects the signal of at least three of the plurality of is based on
4		triangulation among the first, second, and third wireless network devices-to
5		triangulate the depth of the tool.
1	34. –	38. (Cancelled)
1	39.	(Currently Amended) A method for use in a well, comprising:
2		providing [[a]] plural wireless network device devices in well; and
3		the plural wireless network devices communicating wirelessly using a protocol that
4		defines short-range wireless communication.
1	40.	(Currently Amended) [[The]] A method of claim 39, further for use in a well,
2		comprising:
3		providing a plurality of wireless network devices in the well; and
4		the plurality of wireless network devices communicating wirelessly using a Bluetooth
5		wireless communication protocol.
1	41.	(Currently Amended) The method of claim 39, further comprising:
2		communicating with a downhole device via at least one of the wireless network device
3		devices.
1	42.	(Currently Amended) The method of claim 39, further comprising:
2		powering at least one of the wireless network device devices with a downhole power
3		source.
1	43.	(Currently Amended) The method of claim [[39]] 40, further comprising:
2		telemetering data in a multilateral well using the wireless network device devices.

1	44.	(Currently Amended) The method of claim 39, further comprising:
2		telemetering data from the well to a position outside the well using at least one of the
3		wireless network device devices.
1	45.	(Currently Amended) The method of claim [[39]] 40, further comprising:
2		telemetering data from through a casing using at least one of the wireless network device
3		devices.
1	46.	(Currently Amended) The method of claim [[39]] 40, further comprising:
2		telemetering data from through a tubing using at least one of the wireless network device
3		devices.
1	47.	(Currently Amended) The method of claim [[19]] 40, further comprising:
2		storing information downhole;
3		transferring the stored information to a running tool via at least one of the wireless
4		network device devices.
1	48.	(Currently Amended) The method of claim [[30]] 47, further comprising:
2		determining the depth of a tool in the well using at least one of the wireless network
3		device devices.
1	49.	(Currently Amended) The method of claim [[30]] 40, wherein further comprising:
2		actuating a tool in the well using at least one of the wireless network devices.
1	50.	(Cancelled)

1	51.	(Original) A system for use in a well, comprising:
2		a first device positioned in the well;
3		a second device remotely located with respect to the first device;
4		means for transferring data between the first device and the second device using short-
5		range wireless communication operating without the need for a central network.
1	52.	(Currently Amended) A subsea networking system, comprising:
2		a wireless network device positioned in a subsea structure;
3		a subsea vehicle having a wireless network device therein that is adapted to communicate
4		based on a radio frequency wireless protocol with the wireless network device
5		positioned in the subsea structure.
1	53.	(Currently Amended) The method system of claim 52, wherein:
2		the subsea structure is selected from a wellhead, a subsea processing device, a power
3		generation device and a subsea monitor.
1	54.	(Currently Amended) The method system of claim 52, wherein:
2		the subsea vehicle is selected from an ROV and a AUV.
1	55.	(Currently Amended) A subsea telemetry system, comprising:
2		a wireless network device positioned proximal the sea floor;
3		a subsea vehicle having a wireless network device therein that is adapted to communicate
4		based on a radio frequency wireless protocol with the wireless network device
5		positioned proximal the sea floor.

1	56.	(Currently Amended) The system of claim 55, further comprising: A subsea telemetry
2		system, comprising:
3		a wireless network device positioned proximal the sea floor;
4		a subsea vehicle having a wireless network device therein that is adapted to communicate
5		with the wireless network device positioned proximal the sea floor; and
6		a guidance circuitry of the subsea vehicle in communication with the wireless network
7		device of the subsea vehicle, the guidance circuitry adapted to determine the
8		relative position of the subsea vehicle based upon input from the interconnected
9		wireless network device.
1	57.	(New) A system for use in a well, comprising:
2		a tool containing a first wireless network device, the tool movable in the well during a
3		downhole operation;
4		a second wireless network device for location in the well,
5		wherein the first wireless network device is outside a wireless communication range of
6		the second wireless network device until the tool is moved into proximity of the
7		second wireless network device.
1	58.	(New) The system of claim 57, the second wireless network device to transmit a location
2		code to the first wireless network device.
1	59.	(New) The system of claim 57, wherein the tool includes a depth correlation device to
2		correlate a position of the tool based on wireless communication between the first and
3		second wireless network devices.
1	60.	(New) The system of claim 57, further comprising at least another wireless network
2		device for location in the well, the first wireless network device to perform triangulation
3		of signals to determine relative position of the tool to the second wireless network device
4		and the at least another wireless network device.

- 1 61. (New) The system of claim 57, the second wireless network device to send an actuating
- 2 signal to the first wireless network device for actuating the tool once the tool comes
- within range of the second wireless network device.
- 1 62. (New) The system of claim 61, wherein the tool comprises a perforating gun, and the
- 2 actuating signal comprises a firing signal to fire the perforating gun.
- 1 63. (New) The system of claim 61, wherein the tool comprises a valve actuated by the
- 2 actuating signal.
- 1 64. (New) The system of claim 61, wherein the tool comprises a release mechanism that
- 2 releases sensors from the tool in response to the actuation signal.
- 1 65. (New) The system of claim 61, wherein the tool comprises a sampler to take a sample in
- 2 response to the actuating signal.
- 1 66. (New) The system of claim 61, wherein the tool comprises a recorder that starts
- 2 recording in response to the actuating signal.
- 1 67. (New) The system of claim 1, wherein the protocol comprises a Bluetooth protocol.
- 1 68. (New) The method of claim 39, wherein communicating wirelessly using the protocol
- 2 comprises communicating wirelessly using a Bluetooth protocol.
- 1 69. (New) The system of claim 51, wherein the short-range wireless communication is
- 2 according to a Bluetooth protocol.