

Evaluating #SAT Solvers on Industrial Feature Models

Technische

Chico Sundermann, Thomas Thüm, Ina Schaefer, February 10, 2020

What is #SAT?

What is #SAT?

Procedure

Configurable System Placeholder

Configurable System Placeholder

Configurable System Placeholder

Configurable System Placeholder

#SAT = Number of valid configurations

Motivating Example

Navigation ⇒ USB

Navigation ⇒ USB

Navigation ⇒ USB

USB: 32 valid configurations

Navigation ⇒ USB

Navigation ⇒ USB

USB: 32 valid configurations

CD: 20 valid configurations

Navigation ⇒ USB

USB: 32 valid configurations

CD: 20 valid configurations

USB: 32 valid configurations

CD: 20 valid configurations

Feature Prioritization!

USB: 32 valid configurations

CD: 20 valid configurations

Feature Prioritization!

Rating Errors!

Navigation ⇒ USB

Navigation ⇒ USB

Radio mandatory?

Navigation ⇒ USB

Radio mandatory? 40 left

Radio mandatory? 40 left

USB xor CD?

Navigation ⇒ USB

Radio mandatory? 40 left

USB xor CD? 26 left

Navigation ⇒ USB

Radio mandatory? 40 left

USB xor CD? 26 left

Remove Bluetooth? 22 left

Use-cases for Configurable Systems

- 9 Evaluated Solvers
 - 5 DPLL
 - 3 d-DNNF
 - 1 BDD

Evaluation

- 9 Evaluated Solvers
 - 5 DPLL
 - 3 d-DNNF
 - 1 BDD
- 127 Subject Systems
 - 4 Automotive
 - 116 CDL
 - 7 KConfig

Subject Systems	#Models	#Features	#Constraints
KConfig	7	96-6467	14-3545
CDL	116	1178-1408	816-956
Automotive02	4	14010-18616	666-1369
Automotive03	5	149-588	0-1184
Automotive04	50	127-531	0-623
Automotive05	136	246-1674	0-11632

Conclusion

9 Evaluated Solvers

- 5 DPLL
- 3 d-DNNF
- 1 BDD
- 127 Subject Systems
 - 4 Automotive
 - 116 CDL
 - 7 KConfig
- 2 stages
 - Timeout 10 minutes
 - Timeout 24 hours

Subject Systems	#Models	#Features	#Constraints
KConfig	7	96-6467	14-3545
CDL	116	1178-1408	816-956
Automotive02	4	14010-18616	666-1369
Automotive03	5	149-588	0-1184
Automotive04	50	127-531	0-623
Automotive05	136	246-1674	0-11632

Introduction

Results Runtime

Do #SAT solvers scale to industrial configuration spaces?

Do #SAT solvers scale to industrial configuration spaces?

Do #SAT solvers scale to industrial configuration spaces?

Do #SAT solvers scale to industrial configuration spaces?

To a majority but not all systems.

Is one #SAT solver superior to other solvers?

Is one #SAT solver superior to other solvers?

Is one #SAT solver superior to other solvers?

countAntom on a majority of the systems.

Is one type of #SAT solvers superior to other types?

Is one type of #SAT solvers superior to other types?

Is one type of #SAT solvers superior to other types?

 $\mathsf{DPLL} \approx \mathsf{d}\text{-}\mathsf{DNNF} \overset{?}{>} \mathsf{BDD}$

Automotive03 Automotive04 Automotive05 10³ Runtime in Seconds (Logarithmic) 10² 10¹ c2d 100 cachet count Antom dsharp sharpSAT Timeout 10^{-2} Memory Limit 2 5 10 20 30 40 50 Ò 20 40 60 80 100 120 Model Index Model Index Model Index

How does the runtime change during the evolution of a configurable system?

How does the runtime change during the evolution of a configurable system?

Increases over time.

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

Does the runtime of the solvers correlate to the size or complexity of the configuration space?

- Small and incomplex systems are easy to solve (< 1000)
- Unclear for large or complex systems

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ - 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	$10^{28} - 10^{31}$
Automotive04	50(50)	$10^{13} - 10^{23}$
Automotive05	136(62)	$10^{48} - 10^{66}$

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ — 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	10 ²⁸ — 10 ³¹
Automotive04	50(50)	$10^{13} - 10^{23}$
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations relate to the number of all configurations?

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ — 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	10 ²⁸ — 10 ³¹
Automotive04	50(50)	$10^{13} - 10^{23}$
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations relate to the number of all configurations?

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	$10^{11} - 10^{201}$
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	$10^{28} - 10^{31}$
Automotive04	50(50)	$10^{13} - 10^{23}$
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations relate to the number of all configurations?

Depends on the subject system.

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ — 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	$10^{28} - 10^{31}$
Automotive04	50(50)	10 ¹³ — 10 ²³
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations change during the evolution of a configurable system?

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ — 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	$10^{28} - 10^{31}$
Automotive04	50(50)	10 ¹³ — 10 ²³
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations change during the evolution of a configurable system?

Subject System	#Models(Solved)	#Configurations
KConfig	7(6)	10 ¹¹ — 10 ²⁰¹
CDL	116(116)	$10^{118} - 10^{136}$
Automotive02	4(4)	$10^{1260} - 10^{1534}$
Automotive03	5(5)	10 ²⁸ — 10 ³¹
Automotive04	50(50)	10 ¹³ — 10 ²³
Automotive05	136(62)	10 ⁴⁸ — 10 ⁶⁶

How does the number of valid configurations change during the evolution of a configurable system?

Continuous growth.

Does #SAT scale?

For which systems?

Solver types?

Does #SAT scale?

For a majority.

For which systems?

Solver types?

Does #SAT scale?

For a majority.

For which systems?

Small: √ Large: ?

Solver types?

Does #SAT scale?

For a majority.

For which systems?

Small: √ Large: ?

Solver types?

 $DPLL \approx d-DNNF \stackrel{?}{>} BDD$

Does #SAT scale?

For a majority.

For which systems?

Small: √ Large: ?

Solver types?

 $DPLL \approx d-DNNF \stackrel{?}{>} BDD$

Evolution of systems?

Configuration spaces are growing.

Approximate Model Counting by Partial Knowledge Compilation

College of Computer Science and Technology Jilin University Chanechun 130012. China

Approximate #SAT

Model Counting: A New Strategy for Obtaining Good Bounds

Carla P. Gomes and Ashish Sabharwal and Bart Selman Department of Computer Science

Cornell University, Ithaca NY 14853-7501, USA {gomes, sabhar, selman}@cs.cornell.edu*

Probabilistic Model Counting with Short XORs

Dimitris Achlioptas * Department of Computer Science University of California Santa Cruz

Panos Theodoropoulos† Department of Informatics & Telecommunications University of Athens

A Scalable Approximate Model Counter^{*}

Supratik Chakrabortv¹, Kuldeep S. Meel², and Moshe Y. Vardi²

¹ Indian Institute of Technology Bombay, India ² Department of Computer Science, Rice University

Future Work

- Approximate #SAT
- Memory Usage

	total	used	free
Mem:	16173180	2982184	9513232

VIRT	RES	SHR	S	%CPU	%MEM
4133156	525884	167788	S	8,3	3,3
3261712	267324	120128	S	8,0	1,7
2654184	227896	149544	S	7,0	1,4
1022584	291524	260984	S	4,7	1,8
6735456	21924	17020	S	1,3	0,1

Future Work

#Features

#Cross tree constraints

#Literals

- Approximate #SAT
- Memory Usage
- Metrics for Meta Solver

#Clauses

Cyclomatic Complexity

#Leaf Features

#Valid Configurations

Ratio Optional Features

Share of Features appearing in Constraints

Future Work

- Approximate #SAT
- Memory Usage
- Metrics for Meta Solver
- More Applications

Navigation ⇒ USB

Configurable System

Concrete Collapsed USB CD DigitalCards GPSAntenna Navigation - USB

↓ transform

transform

 $[\ldots] \land (Ports \implies USB \lor CD) \land [\ldots]$ J. input

#SAT = Number of valid configurations

