

Parametric methods for Rational Spectra

Per Mattsson

Systems and Control
Department of Information Technology
Uppsala University

2019-09-13

per.mattsson@it.uu.se SysCon, IT, UU

Summary from last lecture

Refined non-parametric methods

Blackman-Tukey:
$$\hat{\phi}_{\mathrm{BT}}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k) \hat{r}(k) e^{-i\omega k}$$

Welch:
$$\hat{\phi}_{\mathrm{W}}(\omega) = \frac{1}{S} \sum_{j=1}^{S} \frac{1}{MP} \left| \sum_{t=1}^{M} v(t) y_j(t) e^{-i\omega t} \right|^2$$

- Windowed Correlogram/Periodogram (smoothing)
- Window functions (Bartlett, Hamming, Chebyshev, Kaiser)
- Bias/Variance or Resolution(main)/Leakage(side) trade-off
- Estimating continuous/line spectra

Today: Parametric methods for rational (continuous) spectra

- Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

If two theories explain the data equally well, then the simpler theory is preferable.

"Keep it as simple as possible, but no simpler" – Albert Einstein.

SysCon, IT, UU per.mattsson@it.uu.se

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

If two theories explain the data equally well, then the simpler theory is preferable.

- "Keep it as simple as possible, but no simpler" Albert Einstein.
- "With four parameters I can fit an elephant

John von Neumann.

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

If two theories explain the data equally well, then the simpler theory is preferable.

- "Keep it as simple as possible, but no simpler" Albert Einstein.
- "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." – John von Neumann.

SysCon, IT, UU per.mattsson@it.uu.se

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

- "Keep it as simple as possible, but no simpler" Albert Einstein.
- "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." – John von Neumann.
- Bias/variance trade-off

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

- "Keep it as simple as possible, but no simpler" Albert Einstein.
- "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." – John von Neumann.
- Bias/variance trade-off
- Overfitting.

- ► Model the data/PSD using fewer parameters (cf. Periodogram has one for each ω , i.e. N parameters)
- ▶ If the model is poor, the result will be biased.
- Some prior knowledge needed.

Occam's razor or Principle of Parsimony

- "Keep it as simple as possible, but no simpler" Albert Einstein.
- "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." – John von Neumann.
- Bias/variance trade-off
- Overfitting.
- Model order selection is important, but difficult (more in L7)

Signals with rational spectra

Rational spectra

Rational PSD

$$\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{\sum_{k=-n}^{n} \rho_k e^{-i\omega k}}$$

where $\gamma_{-k}=\gamma_k^*$ and $\rho_{-k}=\rho_k^*$, can approximate any **continuous** PSD for **sufficiently large** m,n

Rational spectra

Rational PSD

$$\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{\sum_{k=-n}^{n} \rho_k e^{-i\omega k}}$$

where $\gamma_{-k} = \gamma_k^*$ and $\rho_{-k} = \rho_k^*$, can approximate any **continuous** PSD for **sufficiently large** m, n

Spectral factorization theorem says we can write a rational $\phi(\omega)$ as

$$\phi(\omega) = \left| \frac{B(\omega)}{A(\omega)} \right|^2 \sigma^2$$

for some positive scalar σ^2 , where

$$A(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$B(z) = 1 + b_1 z^{-1} + \dots + b_m z^{-m}$$

and $A(\omega) = A(z)|_{z=e^{i\omega}}$.

$$y(t) = \frac{B(z)}{A(z)}e(t).$$

- $y(t) = \frac{B(z)}{A(z)}e(t).$
- ▶ Input spectrum: $\phi_e(\omega) =$

- $y(t) = \frac{B(z)}{A(z)}e(t).$
- ▶ Input spectrum: $\phi_e(\omega) = \sigma^2$.

- $y(t) = \frac{B(z)}{A(z)}e(t).$
- ▶ Input spectrum: $\phi_e(\omega) = \sigma^2$.
- ► Output spectrum:

$$\phi_y(\omega) =$$

- $y(t) = \frac{B(z)}{A(z)}e(t).$
- ▶ Input spectrum: $\phi_e(\omega) = \sigma^2$.
- ► Output spectrum:

$$\phi_y(\omega) = \left| \frac{B(\omega)}{A(\omega)} \right|^2 \sigma^2$$

White noise e(t) with variance σ^2 filtered through a linear filter:

- $y(t) = \frac{B(z)}{A(z)}e(t).$
- ▶ Input spectrum: $\phi_e(\omega) = \sigma^2$.
- Output spectrum:

$$\phi_y(\omega) = \left| \frac{B(\omega)}{A(\omega)} \right|^2 \sigma^2$$

► Conclusion: A rational spectrum can be modelled as the spectrum of white noise filtered through a linear filter.

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- ► Stable if all poles lies inside the unit circle.

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

Spectrum:

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

 $\blacktriangleright \phi(\omega)$ is finite for all $\omega \iff$

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- ► Stable if all poles lies inside the unit circle.

Spectrum:

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

 \blacktriangleright $\phi(\omega)$ is finite for all $\omega \iff$ No poles on the unit circle.

Linear filter:

$$y(t)=rac{B(z)}{A(z)}e(t)=\sum_{k=0}^{\infty}h_ke(t-k), \quad h_0=1 ext{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

- \blacktriangleright $\phi(\omega)$ is finite for all $\omega \iff$ No poles on the unit circle.
- ▶ Can always choose A(z) and B(z) so that the poles and zeros lie inside the unit circle. (If $\phi(\omega)$ is finite)

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

- \blacktriangleright $\phi(\omega)$ is finite for all $\omega \iff$ No poles on the unit circle.
- ▶ Can always choose A(z) and B(z) so that the poles and zeros lie inside the unit circle. (If $\phi(\omega)$ is finite)
- ▶ Pole at $z_1 \approx e^{i\omega_1}$ (near unit circle)

Linear filter:

$$y(t)=rac{B(z)}{A(z)}e(t)=\sum_{k=0}^{\infty}h_ke(t-k), \quad h_0=1 ext{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

- $lackbox{}\phi(\omega)$ is finite for all $\omega\iff$ No poles on the unit circle.
- ▶ Can always choose A(z) and B(z) so that the poles and zeros lie inside the unit circle. (If $\phi(\omega)$ is finite)
- ▶ Pole at $z_1 \approx e^{i\omega_1}$ (near unit circle) $\implies \phi(\omega_1)$ large.

Linear filter:

$$y(t) = \frac{B(z)}{A(z)}e(t) = \sum_{k=0}^{\infty} h_k e(t-k), \quad h_0 = 1 \text{ in these slides}$$

- ▶ Poles: Zeros of A(z). Zeros: Zeros of B(z).
- Stable if all poles lies inside the unit circle.

Spectrum:

per.mattsson@it.uu.se

$$\phi_y(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}\sigma^2 \xrightarrow{z=e^{i\omega}} \phi_y(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

- \blacktriangleright $\phi(\omega)$ is finite for all $\omega \iff$ No poles on the unit circle.
- ▶ Can always choose A(z) and B(z) so that the poles and zeros lie inside the unit circle. (If $\phi(\omega)$ is finite)
- ▶ Pole at $z_1 \approx e^{i\omega_1}$ (near unit circle) $\implies \phi(\omega_1)$ large.
- ightharpoonup Zero at $z_1 \approx e^{i\omega_1}$ (near unit circle) $\implies \phi(\omega_1)$ small.

Example

AR(MA) (1)

Autoregressive moving average (pole-zero model)

ARMA:
$$A(z)y(t) = B(z)e(t)$$

Special cases

$$\mathsf{AR} \colon A(z)y(t) = e(t)$$

$$\mathsf{MA:}\ y(t) = B(z)e(t)$$

Estimate parameters: $\{a_i\}_{i=1}^n$, $\{b_i\}_{i=1}^m$, $\sigma^2 \implies \mathsf{PSD}$ estimate

AR(MA) (1)

Autoregressive moving average (pole-zero model)

ARMA:
$$A(z)y(t) = B(z)e(t)$$

Special cases

$$\mathsf{AR} \colon A(z)y(t) = e(t)$$

$$\mathsf{MA} \colon y(t) = B(z)e(t)$$

Estimate parameters: $\{a_i\}_{i=1}^n$, $\{b_i\}_{i=1}^m$, $\sigma^2 \implies \mathsf{PSD}$ estimate

AR Ex.: N=256; e=randn(N,1); y=filter(1,[1 -0.95],e);

AR(MA) (2)

N=256; e=randn(N,1); y=filter(1,[1 -0.95],e); Single real-valued pole (A(z)=0) at z=0.95, i.e. close to unit circle at $\omega=0$

Covariance structure

ARMA can be written out as (with $b_0 = 1$)

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j)$$

Covariance structure

ARMA can be written out as (with $b_0 = 1$)

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j)$$

Multiplying by $y^*(t-k)$ and taking the expectation gives

Covariance structure

ARMA can be written out as (with $b_0 = 1$)

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j)$$

Multiplying by $y^*(t-k)$ and taking the expectation gives

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = \sigma^2 \sum_{i=0}^{m} b_j h_{j-k}^*$$

Covariance structure

ARMA can be written out as (with $b_0 = 1$)

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j)$$

Multiplying by $y^*(t-k)$ and taking the expectation gives

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = \sigma^2 \sum_{j=0}^{m} b_j h_{j-k}^*$$

But $h_s = 0$ for s < 0 (causality), which gives

Covariance structure

ARMA can be written out as (with $b_0 = 1$)

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j)$$

Multiplying by $y^*(t-k)$ and taking the expectation gives

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = \sigma^2 \sum_{j=0}^{m} b_j h_{j-k}^*$$

But $h_s = 0$ for s < 0 (causality), which gives

Covariance structure

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0$$
, for $k > m$

Methods for AR-models

AR-model: A(z)y(t) = e(t). Here m = 0, and $B(z) = b_0 = 1$, so

$$r(0) + \sum_{i=1}^{n} a_i r(-i) =$$

AR-model: A(z)y(t) = e(t). Here m = 0, and $B(z) = b_0 = 1$, so

$$r(0) + \sum_{i=1}^{n} a_i r(-i) = \sigma^2 b_0 h_0 =$$

AR-model: A(z)y(t) = e(t). Here m = 0, and $B(z) = b_0 = 1$, so

$$r(0) + \sum_{i=1}^{n} a_i r(-i) = \sigma^2 b_0 h_0 = \sigma^2,$$

AR-model: A(z)y(t) = e(t). Here m = 0, and $B(z) = b_0 = 1$, so

$$r(0) + \sum_{i=1}^{n} a_i r(-i) = \sigma^2 b_0 h_0 = \sigma^2,$$

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k = 1, \dots, n$$

These are called the Yule-Walker equations.

AR-model: A(z)y(t) = e(t). Here m = 0, and $B(z) = b_0 = 1$, so

$$r(0) + \sum_{i=1}^{n} a_i r(-i) = \sigma^2 b_0 h_0 = \sigma^2,$$

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k = 1, \dots, n$$

These are called the **Yule-Walker equations**. On matrix form:

$$\begin{bmatrix} r(0) & r(-1) & \cdots & r(-n) \\ r(1) & r(0) & \cdots & r(-n+1) \\ \vdots & & \ddots & \vdots \\ r(n) & r(n-1) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $lackbox{W}$ Want to find an estimate of $heta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{ op}$.

- $lackbox{ Want to find an estimate of } \theta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^\top.$
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.

- Want to find an estimate of $\theta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top}$.
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.
- If we remove the first row we get

$$\underbrace{\begin{bmatrix} \hat{r}(1) \\ \vdots \\ \hat{r}(n) \end{bmatrix}}_{\hat{r}_n} + \underbrace{\begin{bmatrix} \hat{r}(0) & \cdots & \hat{r}(-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(n-1) & \cdots & \hat{r}(0) \end{bmatrix}}_{\hat{R}_n} \underbrace{\begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix}}_{\hat{\theta}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- $lackbox{ Want to find an estimate of } \theta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\intercal}.$
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.
- ▶ If we remove the first row we get

$$\underbrace{\begin{bmatrix} \hat{r}(1) \\ \vdots \\ \hat{r}(n) \end{bmatrix}}_{\hat{r}_n} + \underbrace{\begin{bmatrix} \hat{r}(0) & \cdots & \hat{r}(-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(n-1) & \cdots & \hat{r}(0) \end{bmatrix}}_{\hat{R}_n} \underbrace{\begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix}}_{\hat{\theta}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

► Solution: $\hat{\theta} =$

- Want to find an estimate of $\theta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top}$.
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.
- If we remove the first row we get

$$\underbrace{\begin{bmatrix} \hat{r}(1) \\ \vdots \\ \hat{r}(n) \end{bmatrix}}_{\hat{r}_n} + \underbrace{\begin{bmatrix} \hat{r}(0) & \cdots & \hat{r}(-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(n-1) & \cdots & \hat{r}(0) \end{bmatrix}}_{\hat{R}_n} \underbrace{\begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix}}_{\hat{\theta}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \triangleright Solution: $\hat{\theta} = -\hat{R}_n^{-1}\hat{r}_n$.

- $lackbox{ Want to find an estimate of } \theta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top}.$
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.
- ▶ If we remove the first row we get

$$\underbrace{\begin{bmatrix} \hat{r}(1) \\ \vdots \\ \hat{r}(n) \end{bmatrix}}_{\hat{r}_n} + \underbrace{\begin{bmatrix} \hat{r}(0) & \cdots & \hat{r}(-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(n-1) & \cdots & \hat{r}(0) \end{bmatrix}}_{\hat{R}_n} \underbrace{\begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix}}_{\hat{\theta}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- ightharpoonup Solution: $\hat{\theta} = -\hat{R}_n^{-1}\hat{r}_n$.
- ▶ Using $\hat{\theta}$, the first row now gives

$$\hat{\sigma}^2$$
 —

- lackbox Want to find an estimate of $heta = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top}$.
- ▶ Idea: Replace all r(k) with standard biased estimate $\hat{r}(k)$.
- If we remove the first row we get

$$\underbrace{\begin{bmatrix} \hat{r}(1) \\ \vdots \\ \hat{r}(n) \end{bmatrix}}_{\hat{r}_n} + \underbrace{\begin{bmatrix} \hat{r}(0) & \cdots & \hat{r}(-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(n-1) & \cdots & \hat{r}(0) \end{bmatrix}}_{\hat{R}_n} \underbrace{\begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix}}_{\hat{\theta}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- ightharpoonup Solution: $\hat{\theta} = -\hat{R}_n^{-1}\hat{r}_n$.
- ▶ Using $\hat{\theta}$, the first row now gives

$$\hat{\sigma}^2 = \hat{r}(0) + \begin{bmatrix} \hat{r}(-1) & \cdots & \hat{r}(-n) \end{bmatrix} \hat{\theta}.$$

The AR-model A(z)y(t) = e(t) can be written as

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t-i) =$$

The AR-model A(z)y(t) = e(t) can be written as

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t-i) = y(t) - \varphi^{\top}(t)\theta,$$

where

$$\varphi(t) = \begin{vmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \end{vmatrix}, \quad \theta = \begin{vmatrix} a_1 \\ \vdots \\ a_n \end{vmatrix}.$$

The AR-model A(z)y(t)=e(t) can be written as

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t-i) = y(t) - \varphi^{\top}(t)\theta,$$

where

$$\varphi(t) = \begin{bmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \end{bmatrix}, \quad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

Prediction error: If we predict y(t) using $\hat{y}(t) = \varphi^{\top}(t)\theta$, then $e(t) = y(t) - \hat{y}(t)$ is the prediction error.

The AR-model A(z)y(t) = e(t) can be written as

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t-i) = y(t) - \varphi^{\top}(t)\theta,$$

where

$$\varphi(t) = \begin{bmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \end{bmatrix}, \quad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

- Prediction error: If we predict y(t) using $\hat{y}(t) = \varphi^{\top}(t)\theta$, then $e(t) = y(t) \hat{y}(t)$ is the prediction error.
- Note: In the book $\varphi^{\top}(t)$ is defined without the minus sign, so we have $e(t) = y(t) + \varphi^{\top}(t)\theta$.

 \blacktriangleright Idea: Estimate θ by minimizing the prediction errors

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \sum_{t=1}^{N} |e(t)|^2 =$$

Idea: Estimate θ by minimizing the prediction errors

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{t=1}^{N} |e(t)|^2 = \underset{\theta}{\operatorname{arg\,min}} \sum_{t=1}^{N} |y - \varphi^{\top}(t)\theta|^2$$
=

 \blacktriangleright Idea: Estimate θ by minimizing the prediction errors

$$\hat{\theta} = \underset{\theta}{\operatorname{arg \,min}} \sum_{t=1}^{N} |e(t)|^2 = \underset{\theta}{\operatorname{arg \,min}} \sum_{t=1}^{N} |y - \varphi^{\top}(t)\theta|^2$$
$$= \underset{\theta}{\operatorname{arg \,min}} \|y - \Phi\theta\|_2^2,$$

where

$$y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}, \quad \Phi = \begin{bmatrix} \varphi^{\top}(1) \\ \vdots \\ \varphi^{\top}(N) \end{bmatrix}.$$

 \blacktriangleright Idea: Estimate θ by minimizing the prediction errors

$$\hat{\theta} = \underset{\theta}{\operatorname{arg \,min}} \sum_{t=1}^{N} |e(t)|^2 = \underset{\theta}{\operatorname{arg \,min}} \sum_{t=1}^{N} |y - \varphi^{\top}(t)\theta|^2$$
$$= \underset{\theta}{\operatorname{arg \,min}} \|y - \Phi\theta\|_2^2,$$

where

$$y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}, \quad \Phi = \begin{bmatrix} \varphi^{\top}(1) \\ \vdots \\ \varphi^{\top}(N) \end{bmatrix}.$$

Solution:

$$\hat{\theta} =$$

 \blacktriangleright Idea: Estimate θ by minimizing the prediction errors

$$\begin{split} \hat{\theta} &= \operatorname*{arg\,min}_{\theta} \sum_{t=1}^{N} |e(t)|^2 = \operatorname*{arg\,min}_{\theta} \sum_{t=1}^{N} |y - \varphi^{\top}(t)\theta|^2 \\ &= \operatorname*{arg\,min}_{\theta} \|y - \Phi\theta\|_2^2, \end{split}$$

where

$$y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}, \quad \Phi = \begin{bmatrix} \varphi^{\top}(1) \\ \vdots \\ \varphi^{\top}(N) \end{bmatrix}.$$

Solution:

$$\hat{\theta} = (\Phi^* \Phi)^{-1} \Phi^* y.$$

 \blacktriangleright Idea: Estimate θ by minimizing the prediction errors

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{t=1}^{N} |e(t)|^2 = \underset{\theta}{\operatorname{arg\,min}} \sum_{t=1}^{N} |y - \varphi^{\top}(t)\theta|^2$$
$$= \underset{\theta}{\operatorname{arg\,min}} \|y - \Phi\theta\|_2^2,$$

where

$$y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}, \quad \Phi = \begin{bmatrix} \varphi^{\top}(1) \\ \vdots \\ \varphi^{\top}(N) \end{bmatrix}.$$

► Solution:

$$\hat{\theta} = (\Phi^* \Phi)^{-1} \Phi^* y.$$

▶ Again, the book uses $Y = -\Phi$, so $\hat{\theta} = -(Y^*Y)^{-1}Y^*y$.

▶ If, for example, n = 3 then

$$\varphi^{\top}(1) = \begin{bmatrix} y(0) & y(-1) & y(-2) \end{bmatrix}$$
$$\varphi^{\top}(2) = \begin{bmatrix} y(1) & y(0) & y(-1) \end{bmatrix}$$
$$\varphi^{\top}(3) = \begin{bmatrix} y(2) & y(1) & y(0) \end{bmatrix}$$

▶ If, for example, n = 3 then

$$\varphi^{\top}(1) = \begin{bmatrix} y(0) & y(-1) & y(-2) \end{bmatrix}$$
$$\varphi^{\top}(2) = \begin{bmatrix} y(1) & y(0) & y(-1) \end{bmatrix}$$
$$\varphi^{\top}(3) = \begin{bmatrix} y(2) & y(1) & y(0) \end{bmatrix}$$

▶ We have only measured y(t) for $t \ge 1$. How to handle this?

▶ If, for example, n = 3 then

$$\varphi^{\top}(1) = \begin{bmatrix} y(0) & y(-1) & y(-2) \end{bmatrix}$$
$$\varphi^{\top}(2) = \begin{bmatrix} y(1) & y(0) & y(-1) \end{bmatrix}$$
$$\varphi^{\top}(3) = \begin{bmatrix} y(2) & y(1) & y(0) \end{bmatrix}$$

- ▶ We have only measured y(t) for $t \ge 1$. How to handle this?
- ▶ Option 1: Let y(t) = 0 for t < 0.

If, for example, n=3 then

$$\varphi^{\top}(1) = \begin{bmatrix} y(0) & y(-1) & y(-2) \end{bmatrix}$$
$$\varphi^{\top}(2) = \begin{bmatrix} y(1) & y(0) & y(-1) \end{bmatrix}$$
$$\varphi^{\top}(3) = \begin{bmatrix} y(2) & y(1) & y(0) \end{bmatrix}$$

- ▶ We have only measured y(t) for $t \ge 1$. How to handle this?
- ▶ Option 1: Let y(t) = 0 for $t \le 0$.
- ightharpoonup Option 2: Skip the first n rows in Y and Φ .

▶ If, for example, n = 3 then

$$\varphi^{\top}(1) = \begin{bmatrix} y(0) & y(-1) & y(-2) \end{bmatrix}$$
$$\varphi^{\top}(2) = \begin{bmatrix} y(1) & y(0) & y(-1) \end{bmatrix}$$
$$\varphi^{\top}(3) = \begin{bmatrix} y(2) & y(1) & y(0) \end{bmatrix}$$

- ▶ We have only measured y(t) for $t \ge 1$. How to handle this?
- ▶ Option 1: Let y(t) = 0 for $t \le 0$.
- ▶ Option 2: Skip the first n rows in Y and Φ .
- Could also add rows corresponding to e.g. t = N + 1, ..., N + n and assume that y(t) = 0 at these rows.

$$y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ \hline y(n+1) \\ y(n+2) \\ \vdots \\ \hline y(N) \\ \hline 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 & \dots & 0 \\ y(1) & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline y(n) & y(n-1) & \dots & y(1) \\ y(n+1) & y(n) & \dots & y(2) \\ \vdots & & & \vdots \\ \hline y(N-1) & y(N-2) & \dots & y(N-n) \\ \hline y(N) & y(N-1) & \dots & y(N-n+1) \\ \hline 0 & y(N) & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \hline 0 & & \dots & 0 & y(N) \end{bmatrix}$$
 Note: With notation used in these slides $\Phi = -Y$.

$$y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ \hline y(n+1) \\ y(n+2) \\ \vdots \\ \hline y(N) \\ \hline 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 & \dots & 0 \\ y(1) & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline y(n) & y(n-1) & \cdots & y(1) \\ y(n+1) & y(n) & \cdots & y(2) \\ \vdots & & & \vdots \\ \hline y(N-1) & y(N-2) & \cdots & y(N-n) \\ \hline y(N) & y(N-1) & \cdots & y(N-n+1) \\ 0 & y(N) \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & y(N) \end{bmatrix}$$

Note: With notation used in these slides $\Phi = -Y$.

► Autocorrelation method: Use full matrices. Equiv. to YW.

$$y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ \hline y(n+1) \\ y(n+2) \\ \vdots \\ \hline y(N) \\ \hline 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 & \dots & 0 \\ y(1) & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline y(n) & y(n-1) & \dots & y(1) \\ y(n+1) & y(n) & \dots & y(2) \\ \vdots & & & \vdots \\ \hline y(N-1) & y(N-2) & \dots & y(N-n) \\ \hline y(N) & y(N-1) & \dots & y(N-n+1) \\ \hline 0 & y(N) \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & y(N) \end{bmatrix}$$

Note: With notation used in these slides $\Phi = -Y$.

- Autocorrelation method: Use full matrices. Equiv. to YW.
- LS method: Only keep middle part. Approx YW.

Methods for **ARMA-models**

ARMA-models

▶ Sharp peaks captured by AR-part, and deep valleys by MA-part:

$$A(q)y(t) = B(q)e(t).$$

ARMA-models

Sharp peaks captured by AR-part, and deep valleys by MA-part:

$$A(q)y(t) = B(q)e(t).$$

Much harder to estimate an ARMA-model!

ARMA-models

► Sharp peaks captured by AR-part, and deep valleys by MA-part:

$$A(q)y(t) = B(q)e(t).$$

- Much harder to estimate an ARMA-model!
- Here two methods that often works will be discussed.

ARMA-models

► Sharp peaks captured by AR-part, and deep valleys by MA-part:

$$A(q)y(t) = B(q)e(t).$$

- Much harder to estimate an ARMA-model!
- Here two methods that often works will be discussed.
- Many more estimators in the literature.

We can write the ARMA-model as

$$e(t) = y(t) - \varphi^{\top}(t)\theta$$

with

$$\varphi(t) =$$

$$\theta =$$

We can write the ARMA-model as

$$e(t) = y(t) - \varphi^{\top}(t)\theta$$

with

$$\varphi(t) = \begin{vmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \\ -e(t-1) \\ \vdots \\ -e(t-m) \end{vmatrix}, \quad \theta = \begin{vmatrix} a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_m \end{vmatrix}.$$

We can write the ARMA-model as

$$e(t) = y(t) - \varphi^{\top}(t)\theta$$

with

$$\varphi(t) = \begin{bmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \\ -e(t-1) \\ \vdots \\ -e(t-m) \end{bmatrix}, \quad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

▶ Idea: Minimize $\sum_{t=1}^{N} |e(t)|^2 = ||y - \Phi \theta||_2^2$.

We can write the ARMA-model as

$$e(t) = y(t) - \varphi^{\top}(t)\theta$$

with

$$\varphi(t) = \begin{bmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \\ -e(t-1) \\ \vdots \\ -e(t-m) \end{bmatrix}, \quad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

- ▶ Idea: Minimize $\sum_{t=1}^{N} |e(t)|^2 = ||y \Phi \theta||_2^2$.
- **Problem**: Can't create Φ since we do not have e(t).

We can write the ARMA-model as

$$e(t) = y(t) - \varphi^{\mathsf{T}}(t)\theta$$

with

$$\varphi(t) = \begin{vmatrix} -y(t-1) \\ \vdots \\ -y(t-n) \\ -e(t-1) \\ \vdots \\ -e(t-m) \end{vmatrix}, \quad \theta = \begin{vmatrix} a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_m \end{vmatrix}.$$

- ▶ Idea: Minimize $\sum_{t=1}^{N} |e(t)|^2 = ||y \Phi \theta||_2^2$.
- ▶ Problem: Can't create Φ since we do not have e(t).
- Potential solution: First estimate e(t), then use LS to estimate θ .

- We can assume that the ARMA-model is minimum phase.
- Then the ARMA-model can be written as an infinite dimensional AR-model

$$e(t) = \frac{A(q)}{B(q)}y(t) = y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) + \cdots,$$

where $\alpha_k \to 0$ as $k \to \infty$.

- ▶ We can assume that the ARMA-model is minimum phase.
- ► Then the ARMA-model can be written as an infinite dimensional AR-model

$$e(t) = \frac{A(q)}{B(q)}y(t) = y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) + \cdots,$$

where $\alpha_k \to 0$ as $k \to \infty$.

► For large enough *K* we should be able to approximate the ARMA-model with an AR-model of order *K*.

- ▶ We can assume that the ARMA-model is minimum phase.
- ► Then the ARMA-model can be written as an infinite dimensional AR-model

$$e(t) = \frac{A(q)}{B(q)}y(t) = y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) + \cdots,$$

where $\alpha_k \to 0$ as $k \to \infty$.

- ► For large enough *K* we should be able to approximate the ARMA-model with an AR-model of order *K*.
- ► Potential problems:
 - ightharpoonup K should not be too large with respect to N (overfitting).

- ▶ We can assume that the ARMA-model is minimum phase.
- ► Then the ARMA-model can be written as an infinite dimensional AR-model

$$e(t) = \frac{A(q)}{B(q)}y(t) = y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) + \cdots,$$

where $\alpha_k \to 0$ as $k \to \infty$.

- ► For large enough *K* we should be able to approximate the ARMA-model with an AR-model of order *K*.
- ► Potential problems:
 - ightharpoonup K should not be too large with respect to N (overfitting).
 - ▶ With **zeros close to the unit circle** (deep valleys in the PSD), *K* must be very large to keep the bias errors low.

▶ **Step 1:** Choose a sufficiently large K, and estimate an AR-model of order K. Let

$$\hat{e}(t) = y(t) + \sum_{k=1}^{K} \hat{\alpha}_k y(t-k)$$

Step 1: Choose a sufficiently large K, and estimate an AR-model of order K. Let

$$\hat{e}(t) = y(t) + \sum_{k=1}^{K} \hat{\alpha}_k y(t-k)$$

▶ **Step 2:** Estimate the ARMA-model by minimizing

$$\|y - \hat{\Phi}\theta\|_2^2$$

where we get $\hat{\Phi}$ by replacing e(t) with $\hat{e}(t)$.

▶ **Step 1:** Choose a sufficiently large *K*, and estimate an AR-model of order *K*. Let

$$\hat{e}(t) = y(t) + \sum_{k=1}^{K} \hat{\alpha}_k y(t-k)$$

▶ **Step 2:** Estimate the ARMA-model by minimizing

$$||y - \hat{\Phi}\theta||_2^2$$

where we get $\hat{\Phi}$ by replacing e(t) with $\hat{e}(t)$. Can use either YW-method or LS method for this.

▶ **Step 1:** Choose a sufficiently large *K*, and estimate an AR-model of order *K*. Let

$$\hat{e}(t) = y(t) + \sum_{k=1}^{K} \hat{\alpha}_k y(t-k)$$

► **Step 2:** Estimate the ARMA-model by minimizing

$$||y - \hat{\Phi}\theta||_2^2$$

where we get $\hat{\Phi}$ by replacing e(t) with $\hat{e}(t)$. Can use either YW-method or LS method for this.

▶ The variance σ^2 is estimated by the sample variance of $\hat{e}(t)$.

▶ **Step 1:** Choose a sufficiently large *K*, and estimate an AR-model of order *K*. Let

$$\hat{e}(t) = y(t) + \sum_{k=1}^{K} \hat{\alpha}_k y(t-k)$$

▶ **Step 2:** Estimate the ARMA-model by minimizing

$$||y - \hat{\Phi}\theta||_2^2$$

where we get $\hat{\Phi}$ by replacing e(t) with $\hat{e}(t)$. Can use either YW-method or LS method for this.

- ▶ The variance σ^2 is estimated by the sample variance of $\hat{e}(t)$.
- Finally, the estimate of the spectrum is

$$\hat{\phi}(\omega) = \left| \frac{\hat{B}(\omega)}{\hat{A}(\omega)} \right|^2 \hat{\sigma}^2.$$

lacktriangle We want to estimate A(q) and B(q) in

$$A(q)y(k) = B(q)e(k)$$

 $lackbox{ We want to estimate } A(q) \ {\rm and} \ B(q) \ {\rm in}$

$$A(q)y(k) = B(q)e(k)$$

► From earlier in this lecture

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k > m.$$

▶ We want to estimate A(q) and B(q) in

$$A(q)y(k) = B(q)e(k)$$

From earlier in this lecture

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k > m.$$

▶ Idea: Use these equations to estimate A(q).

ightharpoonup We want to estimate A(q) and B(q) in

$$A(q)y(k) = B(q)e(k)$$

► From earlier in this lecture

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k > m.$$

▶ Idea: Use these equations to estimate A(q). We can then use $\hat{A}(q)$ to estimate B(q).

Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

or on matrix form for $k = m + 1, \dots, m + M$,

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

▶ Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

ightharpoonup or on matrix form for $k=m+1,\ldots,m+M$,

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \triangleright Can estimate a_1, \ldots, a_n with least squares.

▶ Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- ightharpoonup Can estimate a_1, \ldots, a_n with least squares.
- ightharpoonup User choice: How large should M be?

▶ Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- \triangleright Can estimate a_1, \ldots, a_n with least squares.
- ightharpoonup User choice: How large should M be?
 - $lackbox{ } M=n$ gives square matrix. M>n overdetermined system.

▶ Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- ightharpoonup Can estimate a_1, \ldots, a_n with least squares.
- ightharpoonup User choice: How large should M be?
 - $lackbox{M} = n$ gives square matrix. M > n overdetermined system.
 - ightharpoonup Larger M needed when poles and zeros are closely spaced near the unit circle (narrowband spectrum).

▶ Replace r(k) with estimates $\hat{r}(k)$ to get,

$$\hat{r}(k) + \sum_{i=1}^{n} a_i \hat{r}(k-i) = 0, \quad k > m.$$

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- ightharpoonup Can estimate a_1, \ldots, a_n with least squares.
- ightharpoonup User choice: How large should M be?
 - ightharpoonup M=n gives square matrix. M>n overdetermined system.
 - ▶ Larger *M* needed when poles and zeros are closely spaced near the unit circle (narrowband spectrum).
 - When poles and zeros are both well inside the unit circle, M=n typically works well.

ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).

- ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

- ▶ ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

▶ Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) =$$

- ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 =$$

- ▶ ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

▶ Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=1}^m \gamma_k e^{-i\omega k}.$$

- ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

▶ Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m \gamma_k e^{-i\omega k}.$$

Finally,

$$\gamma_k =$$

- lacksquare ARMA-model: A(q)y(k)=B(q)e(k). Let x(k)=B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

▶ Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m \gamma_k e^{-i\omega k}.$$

Finally,

$$\gamma_k = E\{x(t)x^*(t-k)\} =$$

- ▶ ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

▶ Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m \gamma_k e^{-i\omega k}.$$

► Finally,

$$\gamma_k = E\{x(t)x^*(t-k)\} = E\{[B(q)e(t)][B(q)e(t-k)]^*\}$$

- ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m \gamma_k e^{-i\omega k}.$$

Finally.

$$\gamma_k = E\{x(t)x^*(t-k)\} = E\{[B(q)e(t)][B(q)e(t-k)]^*\}$$

$$= E\{[A(q)y(t)][A(q)y(t-k)]^*\}$$

- ARMA-model: A(q)y(k) = B(q)e(k). Let x(k) = B(q)e(k).
- Note that

$$\phi_y(\omega) = \frac{1}{|A(\omega)|^2} \phi_x(\omega).$$

Let γ_k be the ACS for x(k), then $\gamma_k = 0$ for |k| > m, and

$$\phi_x(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m \gamma_k e^{-i\omega k}.$$

Finally.

$$\gamma_k = E\{x(t)x^*(t-k)\} = E\{[B(q)e(t)][B(q)e(t-k)]^*\}$$

$$= E\{[A(q)y(t)][A(q)y(t-k)]^*\}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} a_j a_p^* r(k+p-j), \quad a_0 = 1.$$

$$A(q)y(t) = B(q)e(t)$$

$$A(q)y(t) = B(q)e(t)$$

Compute estimate $\hat{r}(k)$ of r(k).

$$A(q)y(t) = B(q)e(t)$$

- ► Compute estimate $\hat{r}(k)$ of r(k).
- Find an estimate $\hat{A}(q)$ of A(q) from

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$A(q)y(t) = B(q)e(t)$$

- ightharpoonup Compute estimate $\hat{r}(k)$ of r(k).
- ▶ Find an estimate $\hat{A}(q)$ of A(q) from

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \blacktriangleright Estimate the ACS of B(q)e(t) with

$$\hat{\gamma}_k = \sum_{j=0}^n \sum_{p=0}^n \hat{a}_j \hat{a}_p^* \hat{r}(k+p-j).$$

$$A(q)y(t) = B(q)e(t)$$

- ▶ Compute estimate $\hat{r}(k)$ of r(k).
- ▶ Find an estimate $\hat{A}(q)$ of A(q) from

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \blacktriangleright Estimate the ACS of B(q)e(t) with

$$\hat{\gamma}_k = \sum_{i=0}^n \sum_{p=0}^n \hat{a}_j \hat{a}_p^* \hat{r}(k+p-j).$$

▶ The estimate of the ARMA spectrum is then

$$\hat{\phi}(\omega) =$$

$$A(q)y(t) = B(q)e(t)$$

- ▶ Compute estimate $\hat{r}(k)$ of r(k).
- lacktriangle Find an estimate $\hat{A}(q)$ of A(q) from

$$\begin{bmatrix} \hat{r}(m+1) \\ \vdots \\ \hat{r}(m+M) \end{bmatrix} + \begin{bmatrix} \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\ \vdots & \ddots & \vdots \\ \hat{r}(m+M-1) & \cdots & \hat{r}(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

▶ Estimate the ACS of B(q)e(t) with

$$\hat{\gamma}_k = \sum_{i=0}^n \sum_{p=0}^n \hat{a}_j \hat{a}_p^* \hat{r}(k+p-j).$$

▶ The estimate of the ARMA spectrum is then

$$\hat{\phi}(\omega) = \frac{\sum_{k=-m}^{m} \hat{\gamma}_k e^{-i\omega k}}{|\hat{A}(\omega)|^2}.$$

Summing up

- ► Parametric approach
- ► Rational spectra AR(MA) processes
- Pole/zero placement (intuition)
- Covariance structure for AR(MA)
- Yule-Walker for AR(MA)
- Least squares for AR(MA)

	Computational		Guarantee	
Method	Burden	Accuracy	$\hat{\phi}(\omega) \geq 0$?	Use for
AR: YW or LS	low	medium	Yes	Spectra with (narrow) peaks but no valley
MA: BT	low	low-medium	No	Broadband spectra possibly with valleys but no peaks
ARMA: MYW	low-medium	medium	No	Spectra with both peaks and (not too deep) valleys
ARMA: 2-Stage LS	medium-high	medium-high	Yes	As above

per.mattsson@it.uu.se SysCon, IT, UU

MATLAB

Useful MATLAB functions:

- ► lsar(y,n)
- ► lsarma(y,n,m,K)
- yulewalker(y,n)
- mywarma(y,n,m,M)
- armase(b,a,sig2,L)
- ► argamse(gamma,a,L)
- zplane(b,a)

Note: These methods assume that the mean value of y is 0. If this is not the case for your data set, start by removing the mean!