Section B

IP Addressing/Address Resolution

Addressing at Network Layer: IP Addressing

- Internet a combination of different physical networks.
- Packets travel different physical networks to destination.
- A global identification system necessary for hosts (and routers).
- · Solution: Unique identifier is IP address in Internet.
- · IP address:
 - Unique
 - Universal.
- · Location not names.

Address Format

- Address 32 bit long, composed of four 8 bit fields called octets.
- · Octets separated by periods.
- · Each octet represents a decimal number in the range 0-255.
 - Dotted decimal notation.
- Address divided into two parts:
 - Netid: identifies systems located on same physical segment.
 - Hostid: Identifies individual entity (host, server, router) within the segment.

IP Address Format

Network ID Host ID

Address Classes

- Five address classes defined.
- Class: Defines
 - bits for netid and hostid.
 - number of networks/number of hosts per network.
- · Five classes defined
 - A, B, C, D, and E.

Table 1: Address Class Summary

	Number of networks	Number of Hosts per Network	Range of Network Ids (First Octet
Class A	126	16, 777, 214	1 n 126
Class B	16, 384	65, 534	128 n 191
Class C	2, 097, 152	254	192 n 223

Multihomed Devices

- Internet address defines node's connection to its network.
- Multihomed: A device connected to more than one network.
 - Different address for each network.
 - Address can be of different classes.
- Can you think of such a multihomed device??

Special Addresses

- Some parts of address space (A,B,C) are used for special addresses.
- Network address: A,B.C, address with hostid set to zero.
 - Defines the network itself.
- Direct Broadcast Address
 - True for A, B, C.
 - All hostid's are set to 1.
 - Packets sent to all hosts in a specific network.

Special Addresses

- · Limited Broadcast Address
 - True for A, B, C.
 - All 1s in the netid and host id.
 - Broadcast within the current network.
- This host on this network
 - True for A only.
 - All zeroes address.
- · Specific host on this network
 - True for A only.
 - Netid of all zeroes.

Special Addresses

- · Loopback Address.
 - True for A only.
 - First byte set to 127.
 - To test IP software in a machine.
 - Packet returns to protocol software: Does not leave machine.

Unicast, Multicast and Broadcast Addresses

- Unicast: One to one communication.
 - Addresses belong to class A, B, or C.
- Multicast: One to many communication.
- Broadcast: One to all communication.
 - Internet limits broadcast to local level.
 - No global level broadcast. Why??
 - Example: Limited broadcast, direct broadcast.

Private Networks

- · For orgs.not requiring internet access.
- · Org. uses TCP/IP.
- Addressing scheme options:
 - Apply for unique address and NOT connect to Internet.
 - Use any class A, B, C without registering with authority.
 - Use reserved block of private addresses.
- · Reserved block.

Applying for IP addresses

- Organization applies for netid. (A, B, C)
- Problem: Class A addresses depleted, very few B addresses left.
- Proof for procuring A.
- · Organization assigns hostids from the given netid.
- Application for netid: Network Information Centers.

Assigning Netids and Hostids

- Netid: identifies host located on same physical segment.
- Unique id for each router interface.
- Figure:
- Networks 1 and 3 represent two routed networks.
- Network 2: Wide area connection between two routers.
- Network 2 requires network id so that interfaces between two routres can be assigned unique host ids.

Assigning Host IDs

- Host id: identifies a host in network.
 - Unique to network id.
 - Assigned to: hosts, interfaces to routers.
- Hostid of router interface: Default gateway for other hosts.
- Suggestions
 - $\,-\,$ No rules for assigning valid host ids.
 - Guidelines:
 - Assign host ids in groups based on host or server type.
 - Designate routers by their IP address.

Table 2: Valid Host IDs

Address Class	Beginning Range	Ending range
Class A	w.0.0.1	w.255.255.254
Class B	w.x.0.1	w.x.255.254
Class C	w.x.y.1	w.x.y.254

Subnet Mask

What is a subnet mask?

- · Distinguishes network id from host id.
- Specifies if destination host is local or remote.

Default subnet mask

- · Used on networks not divided into subnets.
- What is a subnet??
- All hosts on TCP/IP network need a subnet mask.
- · Its use depends on address class.
- All bits corresponding to network id are set to 1.
- All bits corresponding to host id are set to 0.

Subnet Mask

Default subnet mask

- Class A: 255.0.0.0
 - Class B: 255.255.0.0
- Class C: 255.255.255.0

Determining local \remote hosts

- ANDing: Internal process to determine whether a packet is local or remote.
- Host's IP address and remote address ANDed with default subnet mask.
- If both match, they belong to same network.

Subnetting

Subnet

- Division of a single class A, B, or C network into smaller pieces.
- Each piece: A physical network in TCP/IP environment.
- Uses IP address derived from single network ID.
- Result: Single network (Single Netid) divided into smaller subnets.
 - Each subnet has different network ID.

Need for Subnetting

- IP addresses rapidly getting saturated.
- Internet Routing tables beginning to grow.
- Local administrators request another network number from Internet before new network could be installed.

Subnetting

- Organization gets one Net ID from InterNIC.
- One Net id divided into Multiple subnetworks.
- Each sub ID can represent a single physical network.
- Implemented by borrowing bits from host id section of address.

Subnetting

Benefits

- · Mix different technologies.
- Overcome limitations of current technologies.
- · Reduce network congestion.
- Subnetworks appear as single network to the rest of Internet.
- Note: Subnetting defined in RFC 950.

Extended Network Prefix

Network-Prefix	Subnet Number	Host-Number
----------------	---------------	-------------

Subnet Design Considerations

Key Questions

- How many total subnets does organization need today?
- How many total subnets will organization need in future?
- How many hosts are there on Organization's largest subnet today?
- How many hosts will there be in organization's largest subnet in future?

Special Subnet Addresses

- Initially, it was prohibited to use all-0s and all-1s subnet.
- Reason: To eliminate situations that could potentially confuse a router.
- Today a router has functionality to support this feature.
- Our examples: We will label these as special addresses.

Subnetting Procedure

- Defining subnet mask:
 - Determine number of physical segments required.
 - Convert this number to binary.
 - Count number of bits required to represent number of physical segments in binary.
 - Convert required number of bits to decimal format in high order.

Subnetting Procedure

Defining subnet Ids.

- List number of bits in high order used for subnet id.
- · Convert the bit with lowest value to decimal format.
 - Increment value.
 - Starting with zero increment value for each bit combination until next increment is 256.
- Tip: If you know number of bits you need, you can raise 2 to the power of bit, then subtract 2 to determine possible bit combinations.

Subnetting Procedure

To determine number of hosts per subnet.

- · Calculate bits available for hostid.
- Convert binary hostid bits to decimal.
- Subtract 1.
- Tip: If you know2 number of host id bits you need, raise 2 to the power of host id bits, then subtract 2.

Variable Length Subnetting

- · Scheme to divide a subnet further into smaller subnets.
- · Subnetted network uses more than one subnet mask.
- Mask can be of variable length: Variable length Subnet mask (VLSM)

VLSM Benefits:

- Efficient use of Organization's assigned IP address space.
- · Route aggregation.

VLSM Design Considerations

- How many total subnets does this level need today?
- How many total subnets will this level need in the future?
- How many hosts are there on this level's largest subnet today?
- How many6 hosts will there be on thi9s level's largest subnet in the future?

Address Resolution

- At network level: Host id are logical addresses: IP
 - Jurisdiction is universal.
- At physical level, hosts, routers recognized by physical address.
 - Jurisdiction is local.
 - MAC addresses.
- Two unique identifiers (logical and physical) essential. Why??
- Delivery of packet needs two levels of addressing.
- Mapping essential.

Address Resolution

- Mapping: To map logical address to physical address and vice versa.
- Mapping:
 - Static versus Dynamic

Address Resolution Protocol (ARP)

- Successful mapping of IP (Logical) address to a hardware (Physical) address.
- · Address resolution is function of ARP.
- ARP uses local broadcast to obtain a hardware address.
- Address mappings are stored in cache for future reference.
- · Two cases of resolution:
 - Local
 - Remote

ARP: Resolving local IP address

- · ARP request initiated
- Determine IP address. Is local/remote.
- If local, check ARP cache.
- If no mapping found
 - Generate ARP request
 - Broadcast request to all hosts.
- · Concerned target host
 - Validates IP address in request.
 - Generates ARP reply
- · Sender updates its cache.

ARP: Resolving Remote Addresses

- · ARP request initiated
 - IP address identified as remote.
- Determine IP address Of default gateway.
- · Check cache for hardware address Of gateway
- If not found, generate ARP request for gateway's hardware address
- Get gateway response.
- Send data packet to gateway.
- At gateway, determine address local or remote.
- If local, broadcast ARP request, obtain hardware address
- Else, determine default gateway and repeat the process.

ARP Cache

- · Maintains static/dynamic entries.
- · Dynamic entries added/deleted automatically.
- Hardware broadcast address maintained as static entry.
- Each entry has potential lifetime: 10 minutes.
- · Each entry when added is timestamped.
- Default timeout: 2 minutes for unused entries, 10 minutes for used entries.

ARP Command

- Cache examined using arp command.
 - -a: displays all entries in ARP cache.
 - -d: deletes entry from arp cache.
 - -s: adds entry into arp cache
- What does Reverse ARP do?
- Gratuitous ARP: An ARP message broadcasting your IP address and your corresponding physical address.
 - Why is this used?
- What is Proxy ARP?