

AFRL-RQ-WP-TM-2013-0264

SPATIALLY TARGETED ACTIVATION OF A SHAPE MEMORY POLYMER-BASED RECONFIGURABLE SKIN SYSTEM

Greg Reich, James Joo, and Nate DeLeon

**Design and Analysis Branch
Aerospace Vehicles Division**

Richard Beblo and John Puttmann

University of Dayton Research Institute

**DECEMBER 2013
Interim Report**

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

**AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE**

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(<http://www.dtic.mil>).

AFRL-RQ-WP-TM-2013-0264 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//

JAMES J. JOO
Program Manager
Design and Analysis Branch
Aerospace Vehicles Division

//Signature//

THOMAS C. CO, Chief
Design and Analysis Branch
Aerospace Vehicles Division

//Signature//

CARL TILMANN, Principal Scientist
Aerospace Vehicles Division
Aerospace Systems Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) December 2013			2. REPORT TYPE Interim		3. DATES COVERED (From - To) 01 October 2012 – 30 September 2013	
4. TITLE AND SUBTITLE SPATIALLY TARGETED ACTIVATION OF A SHAPE MEMORY POLYMER-BASED RECONFIGURABLE SKIN SYSTEM					5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F	
6. AUTHOR(S) Greg Reich, James Joo, and Nate DeLeon (AFRL/RQVC) Richard Beblo and John Puttmann (University of Dayton Research Institute)					5d. PROJECT NUMBER 2401 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0Q0	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Design and Analysis Branch (AFRL/RQVC) Aerospace Vehicles Division Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United States Air Force			University of Dayton Research Institute 300 College Park Dayton, OH 45469		8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-RQ-WP-TM-2013-0264	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command United States Air Force					10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/RQVC	
					11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RQ-WP-TM-2013-0264	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.						
13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2013-3534; Clearance Date: 08 Aug 2013. Report contains color. This document is comprised wholly of a slide show presentation.						
14. ABSTRACT The objective of the project is to investigate the thermomechanical behavior of engineered shape memory polymer (SMP) materials for use as composite reconfigurable skin systems in morphing aircraft applications. An anisotropic, reconfigurable skin based on selective heating of a cellular SMP material will be designed and investigated to understand its material characteristics.						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified			17. LIMITATION OF ABSTRACT: SAR	18. NUMBER OF PAGES 40	19a. NAME OF RESPONSIBLE PERSON (Monitor) James J. Joo 19b. TELEPHONE NUMBER (Include Area Code) N/A	

Spatially Targeted Activation of a Shape Memory Polymer Based Reconfigurable Skin System

**Dr. Greg Reich
Dr. James Joo
Capt Nate DeLeon
Aerospace Systems Directorate
Dr. Richard Beblo
Mr. John Puttmann
UDRI**

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited
Case Number 88ABW-2013-3534

Outline

- Project Outline
- Project Roadmap
- Magnetic and Thermal Modeling
- Heating Scheme Proof of Concept
- Epoxy SMP Characterization
- Composite Analytic Model
- Composite Characterization
- Composite FEA Model
- System Modeling
- Honeycomb Geometry Optimization
- Heating Pattern Optimization
- Future Work
- Conclusions

Project Outline

Skin Objectives (via MAS)

Nominal Panel Size 15" x 20"
Shear from 30° to 75°
No Wrinkling of Skin
Total Skin Weight <0.95 lb/sqft
Aerodynamic Load 400lb/sqft
Max Out-of-Plane Deflection 0.1"

Heating Patterns

- 0 degrees
- +45 degrees
- 45 degrees
- 90 degrees
- Diamond
- Large Honeycomb
- Auxetic
- Isotropic
- 0 Poisson
- Top/Bottom
- Left/Right

Project Roadmap

Project Roadmap

Magnetic and Thermal Modeling

Project Roadmap

Heating Scheme Proof of Concept

Velocity of a particle subject to a pulsating fluid

$$u = \frac{3\rho}{\rho + 2\rho_s} v_\infty$$

u particle velocity
 ρ fluid density
 ρ_s particle density
 v_∞ imposed pulsating field

D.V. Lyubimov, A.Y. Baydin, T.P. Lyubimova; *Particle Dynamics in a Fluid Under High Frequency Vibrations of Linear Polarization*, J. of Microgravity Science & Technology, vol. 25, pp 121-126, 2013

Heating Scheme Proof of Concept

5 vol% 3-7 μm Nickel particles
Neodymium magnets 40mm separation
350 Hz vibration
212°F for 3 hours
Mold: 10 x 10 x 0.75 cm

$\phi_c = 0.41$ (50 μm diameter, δ_c 10 nm)
 $\phi_{exp} = 0.10$
10 vol%, 10V, random orientation: 60s

Heating Scheme Proof of Concept

End View of Nickel

Tested several Copper, Steel, and NiChrome mesh electrodes
100x100 Cu most promising

Current activation: 10V, ~60s

Side View Nickel

End View of Particle Chains

10

Project Roadmap

Epoxy SMP Characterization

Epoxy SMP Formulation

0.02 mol (7.28g) EPON 826
0.01 mol (2.3g) Jeffamine D230
100°C for 1.5hr, 130°C for 1hr

Epoxy SMP Characterization

Experimental Results

T_g	65 °C
E (ambient)	1300 MPa
E (115 °C)	19 MPa

Values consistent over several batches, 0-8 week sample age

Project Roadmap

Composite Analytic Model

Composite Analytic Model

Non-compliant Geometry

$$\delta_j = \sum_m \left\{ \left[\int_0^{L_m} \frac{N_m^2}{2E_m A_m} \partial z + \int_0^{L_m} \frac{M_{x,m}^2}{2E_m I_{x,m}} \partial z \right] \frac{\partial}{\partial F_j} \right\}$$

$$\delta_0 = \delta_a + 2\delta_{lr} + 2\delta_{ls}$$

$$E_{c0} = \frac{F_{00}}{\delta_0} \frac{(a + x_0)}{2cy_0}$$

Composite Analytic Model

- Analytic Model

Project Roadmap

Composite Characterization

	23 °C	115 °C
E_{Epoxy}	1.3 GPa	19 MPa
E_{HX}	62.8 kPa	
E_{HY}	16.6 kPa	
E_{CX}	2.19 GPa	33.9 MPa
E_{CY}	2.04 GPa	11.8 MPa

	23 °C	115 °C
G_{Epoxy}	1.27 GPa	1.06 MPa
G_{CXY}	1.19 GPa	13.9 MPa
G_{CYX}	1.13 GPa	13.0 MPa

Composite Characterization

- Analytic Model
- Experimental Results

Project Roadmap

Composite FEA Model

FEA supports force distribution assumption of analytic model

X soft tension, axial stress top left beam

Composite FEA Model

23 °C

115 °C

	23 °C	115 °C
E_{CX}	1.40 GPa	52.4 MPa
E_{CY}	1.08 GPa	17.9 MPa
G_{CXY}	0.81 GPa	16.3 MPa
G_{CYX}	0.81 GPa	16.4 MPa

X hard tension, axial stress top left beam

Composite FEA Model

23 °C 115 °C

	23 °C	115 °C
E_{CX}	TBD	TBD
E_{CY}	TBD	TBD
G_{CXY}	TBD	TBD
G_{CYX}	TBD	TBD

X hard tension, axial stress top left beam

Composite FEA Model

FEA

Tension (Von-Mises Stress)

Shear (Von-Mises Stress)

DIC

Composite FEA Model

- Analytic Model
- Experimental Results
- FEA Results

Project Roadmap

System Modeling

Low fidelity FEA
Homogenization scheme using effective composite properties
Plane Stress (z direction neglected)
In-plane only
Calculates effective E_x , E_y , G_{xy} , G_{yx} given heating pattern

Material Stiffness Matrix

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \\ \varepsilon_{21} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_1} & -\frac{v_{21}}{E_2} & 0 & 0 \\ -\frac{v_{12}}{E_1} & \frac{1}{E_2} & 0 & 0 \\ 0 & 0 & \frac{1}{G_{12}} & \frac{\mu_{12,21}}{G_{21}} \\ 0 & 0 & \frac{\mu_{21,12}}{G_{12}} & \frac{1}{G_{21}} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \\ \sigma_{21} \end{bmatrix}$$

$$\mu_{12,21} = \frac{1}{\mu_{21,12}} = \frac{(l^3 + a^3 \cos^2(\theta))(a + x_0)}{2y_0 a^3 \cos(\theta) \sin(\theta)}$$

Non-zero shear coupling (Chentsov) coefficients

27

Project Roadmap

Honeycomb Geometry Optimization

Design Variables

$$\begin{aligned} 0 &\leq l(m) < \infty \\ 0.00005 &\leq d(m) < \infty \\ 0 &\leq a(m) < \infty \\ 0 &\leq \theta \leq \pi/2 \\ 0 &\leq h_{core}(m) < \infty \\ 0 &\leq t_f(m) < \infty \end{aligned}$$

Ex. Optimization Function

$$F_{ext} = ave(E_{cell})\varepsilon_{max}b_{panel}(h_{core} + 2t_f)$$

MAS Program Constraints

$$\delta = \delta_{panel} + \delta_{cell} \leq 2.54 \text{ mm}$$

$$\delta_{panel} = \frac{C_0 w b_{panel}^4}{6 E_f h_{core}^2 t_f} \left(\frac{1 - \nu_f^2}{0.91} \right)$$

$$\delta_{cell} = \frac{C_0 w \min(2y_0, a + x_0)^4}{E_i t_f^2} \left(\frac{1 - \nu_i^2}{0.91} \right)$$

$$W_{skin max} \leq 4.6 \frac{kg}{m^3} = \rho_{skin}(h_{core} + 2t_f)$$

$$\rho_{skin} = \rho_{core} \frac{h_{core}}{h_{core} + 2t_f} + \rho_f \frac{2t_f}{h_{core} + 2t_f}$$

Self-Imposed Constraints

$$\begin{aligned} \varepsilon_{x\max} &> 0.1 \\ \varepsilon_{y\max} &> 0.1 \\ \frac{1}{2} &< \frac{2y_0}{a + x_0} < 2 \end{aligned}$$

Equation Constraints

Unit Cell Equations

$$\begin{cases} \leq \frac{\sin(\theta)}{\sin(\theta)\cos(\theta)} \\ \leq \frac{2\sin(\theta) - \sin(2\theta)\cos(\theta)}{\sin(\theta)\cos(\theta)} \\ a \\ l \\ \geq 0 \\ \geq \frac{\sin\left(\frac{3\pi}{2} + 2\theta\right)}{\cos(\theta)} \end{cases}$$

Thin Beam Theory

$$\begin{cases} \leq \frac{a}{8} \\ d \\ \leq \frac{l}{8} \end{cases}$$

Sandwich Plate Deflection

$$\delta \leq (h_{core} + 2t_f)$$

$$\delta_{cell} \leq t_f$$

Material Properties Constraints

$$\frac{C_1 w b_{panel}^2}{t_f h_{core}} = \sigma_{max} \leq \frac{1.0 E 7 (Pa)}{2} = \frac{\sigma_f}{FOS}$$

$$\varepsilon_{x\max} \leq \varepsilon_{xf} = \frac{l(\cos(\beta_x) - \cos(\theta))}{a + l \cos(\theta)}$$

$$\beta_x = \cos^{-1} \left[\frac{\varepsilon_{if} a}{l} + \cos(\theta)(\varepsilon_{if} + 1) \right]$$

$$\varepsilon_{y\max} \leq \varepsilon_{yf} = \frac{\sin(\beta_y) - \sin(\theta)}{\sin(\theta)}$$

$$\beta_y = \cos^{-1} [\sin(\theta)(\varepsilon_{if} + 1)]$$

$$\varepsilon_{if} = 200\%$$

Optimized Geometry

l	10 mm
a	1.0 mm
d	0.05 mm
θ	62°
h_{core}	172 mm
t_f	2.5 mm

Heating Pattern Optimization

Genetic Algorithm

13 full cells
12 partial cells
7 hot cells
18 cold cells

Not included:
Out-of-plane def.
Deformation req.

Project Roadmap

Future Work

Future Work System Scheme

- Heating Pattern Optimization
- System Integration / Fabrication
- System Characteristics Envelope

Future Work Heating Scheme

- Thermal characterization of heating scheme
- Thermal diffusion between cells
- Direct write electrodes (variable patterns)

Conclusions

Conclusions

- **Viable Option for Morphing Structures**
- **30-40% In-plane Strain Achievable**
- **Accurate Analytic Model of Filled Honeycomb**
- **Optimistic High Thickness SMP Heating Scheme**