Exercices récapitulatifs

Sections 2.1 et 2.2

- ▲ 1. Pour chacun des termes suivants, indiquez le coefficient, les variables et le degré.
 - a) $\pi/2$

d) x^2y

b) -3yz

e) $\sqrt{7}m^2n^3$

c) πr^2

- f) $\frac{-xy^2z}{4}$
- 2. Déterminez si les expressions suivantes sont des polynômes. Justifiez votre réponse. Si l'expression est un polynôme, déterminez son degré.
 - a) 4

e) $2\sqrt{x} - 4xy^2 + 7$

b) $x^2 + 2y^2$

- f) $\frac{2x^4}{y} \frac{5yz^2}{x} + 3y^2z 1$
- c) $5x^3y^{-1} 4x + 3y$
- d) $3xy \sqrt{2}y + 3$

- **3.** a) Déterminez un monôme donnant l'aire totale d'un cube dont l'arête est x.
 - b) Quelle est l'aire totale d'un cube dont l'arête mesure 2,8 cm?
- **4.** a) Déterminez un binôme donnant l'aire totale d'un cylindre dont le rayon est r et la hauteur h.
 - b) Quelle est l'aire totale d'un cylindre dont le rayon mesure 4 cm et la hauteur 10 cm?
- **5.** a) Déterminez un trinôme donnant l'aire totale d'un parallélépipède (prisme rectangulaire) dont les côtés sont x, y et z.
 - b) Quelle est l'aire totale d'un parallélépipède dont les côtés mesurent 2 cm, 5 cm et 7 cm?
- ▲ 6. Effectuez les opérations suivantes.

a)
$$(6x^2 - 2x + 7) + (9x^2 + 3x - 4)$$

b)
$$(2xz - 5yz - 6xy) + (5xy - 7xz - yz)$$

- c) $(y^3 4y^2 + 5y + 4) (-2y^3 + 4y 1)$
- d) $3(2t^3 t^2 + 4t + 3) 4(2 2t^3 + 3t)$
- e) $(uv \frac{1}{2}u^2v \frac{5}{6}uv^2) + (2uv^2 + \frac{1}{4}uv u^2v)$
- f) $(\frac{7}{8}x^2 \frac{3}{2}x + \frac{4}{5}) (\frac{1}{4}x^2 \frac{2}{3}x \frac{1}{2})$
- g) $x [(xy + 1 + x) (x^2 xy)]$
- h) $(3uv + 3u 5v) (2uv^2 + 7u 2v) +$ $(3uv^2 + 7v + 4u - uv)$
- 5. Une tige métallique est coupée pour former les arêtes du parallélépipède ci-dessous.
 - a) Déterminez un polynôme donnant la longueur totale de la tige métallique nécessaire à la construction de ce parallélépipède.
 - b) Quelle est la longueur de la tige métallique nécessaire à la construction du parallélépipède si x = 10 cm et y = 13 cm?

- 8. Une fenêtre est formée d'un rectangle surmonté d'un demicercle, comme l'illustre la figure ci-contre.
 - a) Déterminez un polynôme donnant le périmètre de cette fenêtre.
 - b) Déterminez un polynôme donnant l'aire de cette fenêtre.
 - c) Quels sont le périmètre et l'aire de la fenêtre si x = 0.8 m et y = 1.2 m?

Section 2.3

- 9. Effectuez les multiplications suivantes.
- f) $(3-4x)^2$
- a) $7y(5y^3 + 3)$ f) $(3-4x)^2$ b) $-3t^2(5t^2 4t 2)$ g) (3x + 2y)(5y 4x)

- c) (1-3x)(2x+3) h) -(2u-3v)(4v+3u)d) (2t-5)(2t+5)e) $(x-1)(x^2+x+1)$ i) $(2x-y)(3x^2+xy-2y^2)$ j) $(x^2-4)(3+x)-4x(x-2)$

- 10. Une entrepreneure veut construire un entrepôt occupant une superficie de 20 000 m². Les normes de construction de la municipalité exigent la présence de zones tampons autour de l'entrepôt, comme le montre le schéma ci-dessous.

- a) Déterminez un polynôme donnant la superficie minimale du terrain permettant la construction d'un entrepôt d'une longueur x (en mètres) et d'une largeur y (en mètres), dans le respect des normes de la municipalité.
- b) Quelle est la superficie minimale du terrain permettant la construction de l'entrepôt si sa longueur est de 160 m?
- 11. Vous venez de faire installer une piscine hors terre circulaire de 7.32 m de diamètre dans votre cour

arrière. Vous voulez construire tout autour une terrasse en bois traité d'une largeur x (en mètres), comme l'illustre le schéma ci-contre.

- a) Déterminez un polynôme donnant la superficie de la terrasse.
- b) Quelle est la superficie d'une terrasse de 1 m de large autour de cette piscine?
- c) Les règlements de votre municipalité stipulent que vous devez installer une clôture autour de la terrasse. Déterminez un polynôme donnant la longueur de clôture nécessaire pour une terrasse de largeur x (en mètres).
- d) Quelle est la longueur de clôture nécessaire pour une terrasse de 1 m de large autour de cette piscine?
- 12. On peut construire une boîte rectangulaire fermée en repliant, comme sur le schéma ci-contre, une feuille de carton carrée de 20 cm de côté dont on a découpé certaines parties, ombrées dans la figure.

- a) Déterminez un polynôme donnant le volume de la boîte ainsi construite.
- b) Quel est le volume de la boîte si x = 0.75 cm?
- gner l'événement, ses partenaires de jeu ont décidé de faire recouvrir de bronze la balle de l'exploit pour en faire un trophée.
 - a) Sachant que le rayon d'une balle de golf est de 21,4 mm et pour une épaisseur de couche de bronze x (en millimètres), déterminez un polynôme donnant le volume de la couche de bronze.
 - b) Quel est le volume de la couche de bronze si son épaisseur est de 0,1 mm?
- 🍅 14. Le diamètre intérieur d'un baril cylindrique est de 1 m et sa hauteur intérieure est de 1,5 m. Ce baril sert à l'entreposage de contaminants chimiques. Pour en empêcher l'oxydation,

on recouvre l'intérieur du baril d'une fine couche de zinc d'une épaisseur x (en centimètres).

- a) Déterminez un polynôme donnant le volume de la couche de zinc (en centimètres cubes).
- b) Quel est le volume de la couche de zinc si son épaisseur est de 0,01 mm?
- c) Si le zinc coûte 70 \$/kg et si 1 kg de zinc occupe un volume de 140 cm³, combien cela coûtera-t-il pour recouvrir l'intérieur du baril d'une couche de zinc de 0,01 mm?

Section 2.4

15. Effectuez les divisions suivantes.

a)
$$\frac{y^5 - 4y^3 + 5y^2 + 3y - 5}{2y^2}$$

b)
$$(3x^3 - 6x^2 - x + 4) \div (-3x)$$

c)
$$\frac{6t^4 + 13t^2 + 7}{3t^2 - 1}$$

d)
$$(x^3 - x^2 + x - 1) \div (x - 1)$$

e)
$$\frac{10u^3 + 13u^2 + 5u + 12}{5u^2 - u + 4}$$

f)
$$(x^3 + 3x^2 + 2x - 4) \div (x^2 + 3x)$$

g)
$$\frac{6t^4 - 31t^2 + 26t - 5}{2t^2 - 4t + 1}$$

h)
$$\frac{5 - 4u^4 - u^3 + u^2}{1 - 4u - u^3}$$

i)
$$(x^4 + x^2 - x + 1) \div (x^2 + x + 1)$$

j)
$$(3x^3 - x + 1) \div (2x - 4)$$

- **21.** a) $8\sqrt{6}$

- b) $\frac{5\sqrt{2}}{8}$

- c) $-\frac{4\sqrt{5}}{3}$

- d) $2\sqrt{2x}$
- e) $\frac{9+5\sqrt{3}}{3}$ i) $\sqrt{6}+2$ m) $\sqrt{x}-4$ n) $4(\sqrt{x}-\sqrt{x-3})$ f) $2-3\sqrt{6}$ g) $2-\sqrt{3}$ k) $\frac{\sqrt{x}-2}{x-4}$ h) $\frac{12-4\sqrt{2}}{7}$ l) $\frac{9(3+\sqrt{x})}{9-x}$

Chapitre 2

	Terme	Coefficient	Variable(s)	Degré
a)	₹⁄2	5/2	Aucune	0
b)	-3 <i>yz</i>	-3	y et z	2
c)	πr^2	π	r	2
d)	x^2y	1	x et y	3
e)	$\sqrt{7}m^2n^3$	√7	m et n	5
f)	$\frac{-xy^2z}{4}$	-1/4	x. y et z	4

- 2. a) L'expression 4 est composée d'un seul terme. Dans ce terme, il n'y a pas de variable (ou bien les variables ont comme exposant 0). L'expression 4 est donc un polynôme de degré 0.
 - b) Cette expression est composée d'une somme de deux termes: x^2 et $2x^2$. Dans chacun de ces termes, les variables sont affectées d'exposants entiers positifs. L'expression $x^2 + 2y^2$ est donc un polynôme et son degré est 2.
 - c) Dans le terme $5x^3y^{-1}$ la variable y est affectée de l'exposant -1 qui n'est pas un entier positif ou nul. L'expression $5x^3y^{-1} - 4x + 3y$ n'est donc pas un polynôme.
 - d) L'expression donnée est composée d'une somme et d'une différence de trois termes: 3xy, $\sqrt{2}y$ et 3. Dans chacun de ces termes, les variables sont affectées d'exposants entiers positifs ou nuls. L'expression $3xy - \sqrt{2}y + 3$ est donc un polynôme et son degré est 2.
 - e) Dans le terme $2\sqrt{x} = 2x^{\frac{1}{2}}$, la variable x est affectée de l'exposant $\frac{1}{2}$ qui n'est pas un entier. L'expression $2\sqrt{x} - 4xy^2 + 7$ n'est donc pas un polynôme.
- f) Dans le terme $\frac{2x^4}{y} = 2x^4y^{-1}$, la variable y est affectée de l'exposant -1 qui n'est pas un entier positif ou nul. L'expression $\frac{2x^4}{v} - \frac{5yz^2}{x} + 3y^2z - 1$ n'est donc pas un polynôme.
- 3. a) $A = 6x^2$
- **4.** a) $A = 2\pi r^2 + 2\pi rh$
- 5. a) A = 2xy + 2xz + 2yz
- 6. a) $15x^2 + x + 3$
 - b) -5xz 6yz xy
 - c) $3y^3 4y^2 + y + 5$
 - d) $14t^3 3t^2 + 1$
- 7. a) L = 12x + 4y

- b) $A = 47.04 \text{ cm}^2$
- b) $A \approx 351.86 \text{ cm}^2$
- b) $A = 118 \text{ cm}^2$
- e) $\frac{3}{4}uv \frac{3}{2}u^2v + \frac{7}{6}uv^2$
- f) $\frac{5}{8}x^2 \frac{5}{6}x + \frac{13}{10}$
- g) $x^2 2xy 1$
- h) $uv^2 + 2uv + 4v$
- b) L = 172 cm

8. a)
$$P = \frac{1}{2}\pi x + x + 2y$$

b)
$$A = \frac{\pi}{8}x^2 + xy$$

9. a)
$$35y^4 + 21y$$

b)
$$-15t^4 + 12t^3 + 6t^2$$

c)
$$-6x^2 - 7x + 3$$

d)
$$4t^2 - 25$$

e)
$$x^3 - 1$$

10. a)
$$S = xy + 30x + 24y + 720$$

11. a)
$$S = \pi x^2 + 7.32\pi x$$

b)
$$S \approx 26.14 \text{ m}^2$$

12. a)
$$V = 2x^3 - 40x^2 + 200x$$

13. a)
$$V = \frac{4\pi}{3} (x^3 + 64, 2x^2 + 1373, 88x)$$

14. a)
$$V = \pi (2x^3 - 350x^2 + 20000x)$$

b)
$$V \approx 62,83 \text{ cm}^3$$

15. a)
$$\frac{1}{2}y^3 - 2y + \frac{5}{2} + \frac{3}{2y} - \frac{5}{2y^2}$$

b)
$$-x^2 + 2x + \frac{1}{3} - \frac{4}{3x}$$

c)
$$2t^2 + 5 + \frac{12}{3t^2 - 1}$$

d)
$$x^2 + 1$$

e)
$$2u + 3$$

c)
$$P \approx 4.46 \text{ m et } A \approx 1.21 \text{ m}^2$$

f)
$$16x^2 - 24x + 9$$

g)
$$-12x^2 + 7xy + 10y^2$$

h)
$$-6u^2 + uv + 12v^2$$

i)
$$6x^3 - x^2y - 5xy^2 + 2y^3$$

j)
$$x^3 - x^2 + 4x - 12$$

b)
$$S = 28520 \text{ m}^2$$

c)
$$L = 7.32\pi + 2\pi x$$

d)
$$L \approx 29.28 \text{ m}$$

b)
$$V = 128,34375 \text{ cm}^3$$

b)
$$V \approx 578,18 \text{ mm}^3$$

f)
$$x + \frac{2x-4}{x^2+3x}$$

g)
$$3t^2 + 6t - 5$$

h)
$$4u + 1 + \frac{17u^2 + 4}{-u^3 - 4u + 1}$$

i)
$$x^2 - x + 1 - \frac{x}{x^2 + x + 1}$$

j)
$$\sqrt[3]{2}x^2 + 3x + \frac{11}{2} + \frac{23}{2x - 4}$$

