5. Основы теории графов (продолжение)

5.5 Некоторые специальные виды графов

- □Граф, состоящий из одной вершины, называется *тривиальным*.
- □Граф, состоящий из простого цикла с k вершинами, обозначается C_k .

Пример.

Граф C_3 :

□Граф, в котором любые две вершины смежны, называется **полным**.

Полный граф с \boldsymbol{n} вершинами обозначается $\boldsymbol{K_n}$.

Он имеет максимально возможное число рёбер:

$$m(K_n)=\frac{n(n-1)}{2}.$$

! Обосновать самостоятельно(используя правила комбинаторики)

Двудольные графы

Граф G(V, E) называется двудольным (или биграфом), если множество его вершин V может быть разбито на два непересекающихся подмножества V_1 и V_2 , такие что

$$V_1 \cup V_2 = V, \quad V_1 \cap V_2 = \emptyset,$$

причём всякое ребро из E инцидентно вершине из V_1 и вершине из V_2 (т. е. соединяет вершину из V_1 с вершиной из V_2).

Множества V_1 и V_2 называются **долями** двудольного графа.

Если двудольный граф содержит все рёбра, соединяющие множества V_1 и V_2 , то он называется **полным двудольным графом**.

Если $|V_1| = p$ и $|V_2| = q$, то полный двудольный граф обозначается $K_{p,q}$.

Пример.

$$V_1 = \{v_1, v_2, v_3\},\ V_2 = \{v_4, v_5, v_6\}.$$

Теорема.

Граф является двудольным тогда и только тогда, когда он не содержит простых циклов нечётной длины.

Следствие.

Ациклические графы двудольны.

Направленные графы

Если в неорграфе ориентировать все рёбра, то получится орграф, который называется направленным (антисимметричным).

В антисимметричном орграфе не может быть «встречных» дуг (\boldsymbol{u} , \boldsymbol{v}) и (\boldsymbol{v} , \boldsymbol{u}).

Направленный орграф, полученный из полного графа, называется **турниром**.

Может представлять результаты однокругового спортивного турнира (дуги соединяют победителей и побежденных)

Нагруженные графы

Если каждому ребру (дуге) графа приписано некоторое число (может характеризовать протяженность ребра, стоимость прохождения по ребру и т. п.), называемое **весом** (или **длиной**) ребра (дуги), то граф называется **взвешенным** (или **нагруженным**).

Для представления нагруженного (*n*, *m*)-графа *G*(*V*, *E*) используется *матрица весов* (*длин*) – квадратная матрица *C* порядка *n*, элементы которой определяются правилами:

$$c_{ij} = egin{cases} 0, & \text{если } i = j, \ \text{вес ребра}\left(v_i, v_j\right), & \text{если } \left(v_i, v_j\right) \in E, \ \infty, & \text{если } \left(v_i, v_j\right)
otin E.$$

5.6 Орграфы и бинарные отношения

Связь между орграфами и бинарными отношениями

Любой орграф G(V, E) с петлями, но без кратных дуг задаёт бинарное отношение E на множестве V, и обратно.

А именно:

пара элементов принадлежит отношению на множестве V: $(a,b) \in E \subset V \times V$,

тогда и только тогда, когда в графе \boldsymbol{G} есть дуга $(\boldsymbol{a},\,\boldsymbol{b}).$

Полный граф соответствует универсальному отношению.

Таким образом:

имеется полная аналогия между орграфами и бинарными отношениями – фактически, это один и тот же класс объектов, описанный разными средствами.

В частности:

орграф, представляющий <u>рефлексивное</u>
 отношение, обязательно имеет петли при каждом узле;

• орграф, представляющий <u>антирефлексивное</u> отношение, не имеет ни одной петли;

если в орграфе для всех пар смежных узлов {u, v} существует как дуга (u, v), так и дуга (v, u), то орграф представляет симметричное отношение;

• в орграфе, представляющем антисимметричное отношение, нет ни одной пары узлов $\{u, v\}$ такой, что если существует дуга (u, v), то существует и дуга (v, u), но допускаются петли;

в орграфе, представляющем транзитивное отношение, для любых трех узлов *u*, *v* и *w* должно выполняться условие: если существуют дуги (*u*, *v*) и (*v*, *w*), то существует и дуга (*u*, *w*).

Дуга (**u**, **w**) называется **транзитивно замыкающей** дугой.

Достижимость и частичное упорядочение

Напоминание:

узел \boldsymbol{v} в орграфе $\boldsymbol{G}(\boldsymbol{V},\boldsymbol{E})$ называется $\boldsymbol{\mu}$ остижимым из узла \boldsymbol{u} , если существует путь $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ из узла \boldsymbol{u} в узел \boldsymbol{v} .

Пусть на множестве V задано отношение строгого частичного порядка $\succ \subset V \times V$ (обладает свойствами антирефлексивности, транзитивности и антисимметричности).

Отношению \succ можно сопоставить орграф $\textbf{\textit{G}}(\textbf{\textit{V}},\textbf{\textit{E}})$, такой что

$$v_1 \succ v_2 \iff (v_1, v_2) \in E$$
.

Теорема 1.

Если отношение E есть строгое частичное упорядочение, то орграф G(V, E) не имеет контуров.

Иллюстрация:

$$oldsymbol{u}, oldsymbol{v}, oldsymbol{w}, oldsymbol{u}$$
 - контур; тогда $oldsymbol{u} \succ oldsymbol{v}, oldsymbol{v} \succ oldsymbol{w}, oldsymbol{w} \succ oldsymbol{u},$

что противоречит свойству транзитивности, в соответствии с которым должно выполняться $u \succ w$.

Теорема 2.

Если орграф G(V, E) не имеет контуров, то отношение достижимости узлов в этом орграфе есть строгое частичное упорядочение.

Теорема 3.

Если орграф не имеет контуров, то в нем есть узел, полустепень захода которого равна 0.

Такой узел называется источником

Теорема 3 позволяет обосновать процедуру нахождения минимального элемента в конечном частично упорядоченном множестве (используется в алгоритме топологической сортировки):

найти узел, которому в матрице смежности соответствует нулевой столбец.

Транзитивное замыкание

Если E – бинарное отношение на множестве V, то транзитивным замыканием E+ на множестве V будет отношение достижимости узлов на орграфе G(V, E).

Матрица достижимости T может быть вычислена по матрице смежности M с помощью алгоритма Уоршалла.

5.7 Деревья

Деревья являются классом графов, который наиболее широко применяется в программировании, причем в самых разных ситуациях.

Лес, дерево

Ациклический граф (т. е. граф без циклов) называется **лесом**.

Ясно, что лес не содержит петель и кратных ребер

Связный ациклический граф называется деревом (свободным деревом).

Примеры.

Все различные деревья с 5 вершинами:

Все различные деревья с 6 вершинами:

Основные свойства деревьев

Теорема.

- Для (\boldsymbol{n} , \boldsymbol{m})-графа $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$ следующие условия эквивалентны:
- **1)** граф *G* является деревом;
- **2)** G связный граф и m = n 1;
- **3) G** ациклический граф и m = n 1;
- **4) G** граф, в котором любые две вершины соединены единственной простой цепью;
- 5) G ациклический граф, и добавление нового ребра приводит к появлению ровно одного простого цикла.

Следствие 1.

Если $(\boldsymbol{n}, \boldsymbol{m})$ -граф \boldsymbol{G} является деревом и $\boldsymbol{n} > 1$, то \boldsymbol{G} имеет по крайней мере две висячие вершины.

В частности, висячими вершинами в дереве являются концы любого диаметра

Следствие 2.

Если \boldsymbol{G} – дерево, то каждая не висячая вершина \boldsymbol{G} является точкой сочленения.

Следствие 3.

Если \boldsymbol{G} – связный граф, и в \boldsymbol{G} нет висячих вершин, то \boldsymbol{G} содержит цикл.

В противном случае *G* является деревом, и → содержит висячие вершины

Центр дерева

Теорема.

Центр дерева состоит из одной вершины или из двух смежных вершин.

Ориентированные деревья

- **Ориентированным деревом** (или **ордеревом**, или **корневым деревом**) называется орграф со следующими свойствами:
- 1. Существует единственный узел, полустепень захода которого равна 0. Этот узел называется корнем ордерева.
- **2.** Полустепень захода всех остальных узлов равна 1.
- 3. Каждый узел достижим из корня.

Ориентированные деревья представляют модель иерархических отношений

Примеры.

Все различные ориентированные деревья с 3

узлами:

Все различные ориентированные деревья с 4 узлами:

Свойства ориентированных деревьев

Теорема.

Если (**n**, **m**)-граф **G** является ордеревом, то он обладает следующими свойствами:

- 1) m = n 1;
- **2)** если в **G** устранить ориентацию дуг, то получится свободное дерево;
- **3)** в *G* нет контуров;
- **4)** для каждого узла **G** существует единственный путь, ведущий в этот узел из корня;
- 5) подграф, определяемый множеством узлов, достижимых из узла v, является ордеревом с корнем v.
 Это ордерево называется

поддеревом узла v

Кроме того, справедливо следующее *утверждение*:

если в свободном дереве любую вершину назначить корнем и задать ориентацию ребер «от корня», то получится ордерево.

Замечание,

В свободном дереве с **n** вершинами каждую из **n** вершин можно назначить корнем и получить ордерево.

Некоторые из полученных ордеревьев могут оказаться изоморфными.

Свободное дерево определяет не более *п* различных ориентированных деревьев.

Еще о терминологии

Концевая вершина ордерева называется листом.

Множество листьев называется *кроной*.

Путь из корня в лист называется **ветвью ордерева**.

Длина наибольшей ветви ордерева называется его **высотой**.

Уровень узла ордерева – это расстояние от корня до узла. Корень имеет уровень 0.

Узлы одного уровня образуют ярус ордерева.

- Наряду с «растительной» используется также «генеалогическая» терминология.
- Узлы, достижимые из узла \boldsymbol{u} , называются **потомками** узла \boldsymbol{u} . Потомки одного узла образуют поддерево.
- Если узел \boldsymbol{v} является потомком узла \boldsymbol{u} , то узел \boldsymbol{u} называется **предком** узла \boldsymbol{v} .
- Если в дереве существует дуга (u, v), то узел u называется **отцом** (или **родителем**) узла v, а узел v называется **сыном** узла u.
- Сыновья одного отца называются братьями.

Общепринятая практика при изображении деревьев:

соглашение о том, что корень находится наверху и все дуги ориентированы сверху вниз, поэтому стрелки можно не изображать.

В таком случае может потребоваться дополнительное уточнение, какого класса дерево изображено на диаграмме. Часто это бывает ясно из контекста.

Упорядоченные деревья

Упорядоченным деревом называется ордерево, у которого дуги, выходящие из каждого узла, упорядочены по определенному критерию.

Пример.

Как свободные деревья G_1 , G_2 и G_3 изоморфны $(G_1 = G_2 = G_3);$

как ориентированные деревья G_1 и G_2 изоморфны; G_2 и G_3 – не изоморфны ($G_1 = G_2$, $G_2 \neq G_3$); как упорядоченные деревья G_1 , G_2 и G_3 различны: $G_1 \neq G_2$, $G_2 \neq G_3$, $G_1 \neq G_3$.

Примеры применения деревьев

□Представление выражений, подлежащих обработке в программе.

Используются ориентированные упорядоченные деревья.

Пример:

Выражение x+y*z

□Представление блочной структуры программы и связанной с ней структуры областей определения идентификаторов.

Используются ориентированные деревья (может быть, неупорядоченные, т. к. порядок определения переменных часто несущественен).

Пример:

Структура областей определения идентификаторов **a**, **b**, **c**, **d**, **e**

□Представление структуры вложенности каталогов и файлов в операционных системах.

Используются упорядоченные ориентированные деревья.

Пример:

а – «корневой каталог»