1 Calcul numérique & littéral

I – Opérations sur les nombres réels

1 - Addition et soustraction

Proposition 1.1 – Propriétés de l'addition

— L'addition est **commutative**, *i.e.*, pour tous réels *a* et *b*, on a

$$a+b=b+a$$
.

— L'addition est **associative**, *i.e.*, pour tous réels *a*, *b* et *c*, on a

$$(a+b) + c = a + (b+c).$$

Exemple 1.2 – Les propriétés de l'addition (commutativité et associativité) permettent de simplifier la somme A = 3 + x + 4.

$$A = 3 + x + 4 = 3 + 4 + x = 7 + x$$
.

Proposition 1.3 – Distributivité du signe « – » 🗖

Pour tous réels a, b et c, on a

$$a - (b + c) = a - b - c$$
 et $a - (b - c) = a - b + c$.

On retiendra la méthode suivante.

Méthode 1.4 - Suppression de parenthèses précédées d'un signe « + » ou d'un signe « - »

On commence par repérer le signe qui précède la parenthèse que l'on souhaite supprimer, puis

- s'il s'agit d'un signe « + », on supprime les parenthèses sans rien changer de plus,
- s'il s'agit d'un signe « », on supprime les parenthèses en changeant le signe de **tous** les termes à l'intérieur de la parenthèse.

Exemple 1.5 – Simplifier les expressions suivantes.

•
$$A = x - 1 + (1 - x)$$

= $x - 1 + 1 - x$
= 0
• $B = x - 1 - (1 - x)$
= $x - 1 - 1 + x$
= $2x - 2$

2 – Multiplication et division

Proposition 1.6 - Propriétés de la multiplication

— La multiplication est **commutative**, *i.e.*, pour tous réels a et b, on a

$$a \times b = b \times a$$
.

— La multiplication est **associative**, *i.e.*, pour tous réels a, b et c, on a

$$(a \times b) \times c = a \times (b \times c).$$

Exemple 1.7 - Les propriétés de la multiplication (commutativité et associativité) permettent de simplifier le produit $A = 3 \times x \times 4$.

$$A = 3 \times x \times 4 = 3 \times 4 \times x = 12x$$
.

Proposition 1.8 - Règle de simplification des fractions

Soient a et b deux réels, avec $b \neq 0$. Si c est réel non nul, alors

$$\frac{a \times c}{b \times c} = \frac{a}{b}.$$

Exemple 1.9 – Simplifier les fractions suivantes.
•
$$A = \frac{21}{12} = \frac{\cancel{3} \times 7}{\cancel{3} \times 4} = \frac{7}{4}$$

$$\bullet B = \frac{2x}{3x} = \frac{2 \times x}{3 \times x} = \frac{2}{3}$$

ATTENTION! Il s'agit de l'unique règle de simplification d'une fraction et elle concerne les FACTEURS d'un produit!

Méthode 1.10 - Manipulation des fractions

- Pour additionner (ou soustraire) des fractions, on commence par les mettre au même dénominateur PUIS on ajoute (ou soustrait) les numérateurs.
- Pour **multiplier** des fractions, on multiplie les numérateurs et les dénominateurs entre eux.
- Pour **diviser** par une fraction, on multiplie par son INVERSE.

Exemple 1.11 – Donner l'écriture des nombres suivants sous la forme d'une fraction irréductible.

- $A = \frac{1}{4} \frac{1}{3} = \frac{3 \times 1}{3 \times 4} \frac{4 \times 1}{4 \times 3} = \frac{3}{12} \frac{4}{12} = -\frac{1}{12}$ $B = \frac{3}{2} \times \frac{8}{5} = \frac{3 \times 8}{2 \times 5} = \frac{3 \times 4 \times 2}{2 \times 5} = \frac{12}{5}$
- $C = \frac{\frac{1}{2}}{\frac{2}{3}} = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4}$

Remarque 1.12 - On donnera toujours le résultat sous la forme d'une fraction irréductible.

3 - Puissance entière

Définition 1.13 – Soit *n* un entier naturel non nul et *a* un réel.

— Le réel noté a^n (lire « a puissance n ») est le produit de n facteurs tous égaux à a, i.e.,

$$a^n = \underbrace{a \times a \times \cdots \times a}_{n \text{ facteurs}}.$$

— Si *a* est non nul, on a

$$a^{-n} = \frac{1}{a^n}.$$

— Par convention, $a^0 = 1$.

Exemple 1.14 – Calculer les nombres suivants.

•
$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$\bullet \ 2^{-4} = \frac{1}{2^4} = \frac{1}{16}$$

Proposition 1.15 – Règles de calcul —

Pour tous réels a et b et tous entiers relatifs m et n, on a

$$a^{1} = a,$$
 $a^{m} \times a^{n} = a^{m+n},$ $\frac{a^{m}}{a^{n}} = a^{m-n},$ $(a^{m})^{n} = a^{mn},$ $(ab)^{n} = a^{n}b^{n}$ et $(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}.$

Démonstration. On a

$$a^{m} \times a^{n} = \underbrace{a \times a \times \cdots \times a}_{m \text{ fois}} \times \underbrace{a \times a \times \cdots \times a}_{n \text{ fois}} = \underbrace{a \times a \times \cdots \times a}_{m+n \text{ fois}} = a^{m+n}.$$

Corollaire 1.16

Soit a un réel et n un entier naturel. Alors

$$(-a)^n = \begin{cases} a^n & \text{si } n \text{ est pair,} \\ -a^n & \text{si } n \text{ est impair.} \end{cases}$$

Exemple 1.17 – Calculer les nombres suivants.

•
$$A = 2^2 \times 2^{-4} \times 2 = 2^{2-4+1} = 2^{-1} = \frac{1}{2}$$

•
$$B = \frac{3^8}{3^7} = 3^{8-7} = 3^1 = 3$$

•
$$C = \frac{(5^4)^3}{5^{11}} = \frac{5^{4 \times 3}}{5^{11}} = \frac{5^{12}}{5^{11}} = 5^{12-11} = 5^1 = 5$$

4 - Racines carrées

Définition 1.18 – Soit a un réel <u>positif ou nul</u>. On appelle **racine carrée** de a, l'unique réel positif (ou nul) x solution de l'équation $x^2 = a$. On le note $x = \sqrt{a}$.

Proposition 1.19

Soient a et b deux réels **positifs**, on a

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$
, $\sqrt{a^2} = a$ et $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ si $b \neq 0$.

ATTENTION! On veillera à retenir qu'en général,

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
.

Par exemple, si on choisit a = 9 et b = 16, on a

$$\sqrt{a+b} = \sqrt{9+16} = \sqrt{25} = 5$$
 mais $\sqrt{a} + \sqrt{b} = \sqrt{9} + \sqrt{16} = 3+4=7$.

Remarque 1.20 – Il n'est pas inutile de remarquer que les règles de calcul pour la racine carrée et les puissances sont analogues pour la multiplication et la division :

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 vs $(ab)^n = a^nb^n$ et $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ vs $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

II - Calcul littéral

1 - Règles de priorité

Méthode 1.21 - Règles de priorité

Afin de mener à bien des calculs, il faut savoir dans quel ordre effectuer les différentes opérations. Pour cela, il est indispensable de parfaitement maîtriser les règles de priorité. Celles-ci sont rappelées ci-dessous.

- 1. On effectue d'abord les calculs des expressions entre parenthèses, en commençant par les parenthèses les plus à l'intérieur.
- 2. On effectue les puissances <u>AVANT</u> les multiplications, les divisions, les additions et les soustractions.
- 3. On effectue d'abord les multiplications et les divisions <u>AVANT</u> les additions et les soustractions.
- 4. Enfin, on effectue les additions et les soustractions.

Exemple 1.22 – Calculer les nombres suivants.

•
$$A = 5 - 4 \times 3 + 5 \times (3 - 6)$$

= $5 - 12 + 5 \times (-3)$
= $5 - 12 - 15 = -22$
• $B = \frac{2 \times (4 - 2)}{3^2 \times 2^2}$
= $\frac{2 \times 2}{9 \times 4}$
= $\frac{4}{9 \times 4} = \frac{1}{9}$

ATTENTION! Il ne faut surtout pas confondre $(-5)^2$ et -5^2 . D'un côté, on a $(-5)^2 = (-5) \times (-5) = 25$ et de l'autre $-5^2 = -(5 \times 5) = -25$.

2 - Développement

Définition 1.23 – Développer une expression consiste à transformer un produit en une somme.

Proposition 1.24 - Règle de distributivité

Soient a, b, c, d et k des réels. On a

- 1. k(a+b) = ka + kb,
- $2. \ k(a-b) = ka kb,$
- 3. (a+b)(c+d) = ac + ad + bc + bd.

Exemple 1.25 - Développer les expressions suivantes.

•
$$A = (x-4)(-2x+3)$$

 $= -2x^2 + 3x + 8x - 12$
 $= -2x^2 + 11x - 12$
• $B = (x-4)(2x-1)(x^2 - 5x + 6)$
 $= (2x^2 - x - 8x + 4)(x^2 - 5x + 6)$
 $= (2x^2 - 9x + 4)(x^2 - 5x + 6)$
 $= 2x^4 - 10x^3 + 12x^2 - 9x^3 + 45x^2 - 54x + 4x^2 - 20x + 24$
 $= 2x^4 - 19x^3 + 61x^2 - 74x + 24$

3 - Factorisation

Définition 1.26 - Factoriser une expression consiste à transformer une somme en produit.

Les règles utiles à la factorisation sont les mêmes que celles utilisées pour développer une expression, cette fois écrites dans l'autre sens.

- 1. ka + kb = k(a + b),
- 2. ka kb = k(a b).

Factoriser consiste donc à identifier le <u>facteur commun</u> aux différents termes d'une somme (ici, k) et à regrouper entre parenthèses les facteurs complémentaires associés (ici, a et b).

Remarque 1.27 – « Développer » et « factoriser » sont des transformations inverses l'une de l'autre.

Méthode 1.28 - Factoriser une expression

Pour mener à bien une factorisation, il faut

- 1. identifier le facteur commun,
- 2. identifier les facteurs complémentaires,
- 3. identifier les signes à placer entre les facteurs complémentaires.

Exemple 1.29 - Factoriser les expressions suivantes.

•
$$A = 8x + 4$$

 $= 4 \times 2x + 4 \times 1$
 $= 4(2x + 1)$
• $B = (x - 4)(2x - 1) + (x - 4) \times 1$
 $= (x - 4) \times (2x - 1 + 1)$
 $= 2x(x - 4)$

4 - Identités remarquables

Proposition 1.30 – Identités remarquables

Soient a et b deux réels. On a

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
,

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
,

3.
$$(a-b)(a+b) = a^2 - b^2$$
.

Démonstration.

1.
$$(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$$
,

2.
$$(a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2$$
.

3.
$$(a-b)(a+b) = a^2 + ab - ba - b^2 = a^2 - b^2$$
.

Remarque 1.31 – Ces trois identités remarquables (<u>à connaître parfaitement</u>) permettent de développer ou de factoriser rapidement des expressions comportant des carrés.

Exemple 1.32 - Développer les expressions suivantes.

•
$$A = (8x + 4)^2$$

= $(8x)^2 + 2 \times 8x \times 4 + 4^2$
= $64x^2 + 64x + 16$

•
$$B = (2x-1)^2$$

= $(2x)^2 - 2 \times 2x \times 1 + 1^2$
= $4x^2 - 4x + 1$

Exemple 1.33 – Factoriser les expressions suivantes.

•
$$A = 4x^2 + 4x + 1$$

= $(2x)^2 + 2 \times 2x \times 1 + 1^2$
= $(2x + 1)^2$
• $B = x^2 - 6x + 9$
= $x^2 - 2 \times x \times 3 + 3^2$
= $(x - 3)^2$
• $C = 4x^2 - 9$
= $(2x)^2 - 3^2$
= $(2x - 3)(2x + 3)$

5 - Détection d'erreurs

Méthode 1.34 - Détection d'erreurs dans des calculs littéraux

Une façon de détecter des erreurs dans des calculs littéraux consiste à « tester » les différentes expressions pour une valeur numérique particulière.

On est alerté d'une erreur dès qu'il y a discordance entre les résultats obtenus.

Exemple 1.35 – Détecter d'éventuelles erreurs dans les calculs de l'exemple précédent.

III - Ensembles usuels de nombres

1 - Notations

Rappelons les notations usuelles des principaux ensembles de nombres.

- N désigne l'ensemble des <u>entiers naturels</u> : 0, 1, 2, ...
- Z désigne l'ensemble des entiers relatifs : ensemble des entiers naturels et de leurs opposés.
- **D** désigne l'ensemble des <u>nombres décimaux</u> : ensemble des quotients de la forme $\frac{a}{10^n}$ avec a un entier relatif et n un entier naturel.
- **Q** désigne l'ensemble des <u>rationnels</u>: ensemble des quotients $\frac{p}{q}$ avec p un entier relatif et q un entier naturel non nul
- **R** désigne l'ensemble des <u>réels</u> : il contient, outre les rationnels, des nombres dits <u>irrationnels</u> tels que $\sqrt{2}$, π , ...

Remarque 1.36 – Ces ensembles privés de 0 sont respectivement notés N^* , Z^* , D^* , Q^* et R^* .

2- Intervalles de R

Pour tous $a, b \in \mathbf{R}$ tels que $a \le b$, on introduit différents ensembles de nombres appelés **intervalles** de \mathbf{R} .

— les segments ou intervalles fermés : $[a; b] = \{x \in \mathbb{R}; a \le x \le b\}$;

— intervalles ouverts :] $a; b = \{x \in \mathbb{R}; a < x < b\}$

 $]a; +\infty[= \{x \in \mathbf{R}; x > a\}$

et] $-\infty$; $b = \{x \in \mathbb{R}; x < b\}$;

— intervalles semi-ouverts à droite : [a; b[= { $x \in \mathbb{R}$; $a \le x < b$ }

et $[a; +\infty[= \{x \in \mathbf{R}; x \ge a\};$

— intervalles semi-ouverts à gauche :] a; b] = { $x \in \mathbb{R}; a < x \le b$ }

et] $-\infty$; b] = { $x \in \mathbb{R}$; $x \le b$ }

Remarque 1.37 – On peut aussi être amené à considérer des intervalles d'entiers. Pour tous $a, b \in \mathbb{Z}$ tels que $a \le b$, on note [a; b] l'ensemble des entiers compris entre a et b:

$$[a;b] = \{n \in \mathbb{Z}; a \le n \le b\}.$$

Par exemple, $[0;2] = \{0;1;2\}.$