МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Параллельные алгоритмы» Тема: Реализация параллельной структуры данных с

тонкой блокировкой

Студент гр. 9304	Афанасьев А.
Преподаватель	Сергеева Е.И.

Санкт-Петербург 2022

Цель работы.

Реализовать параллельную структуры данных с тонкой блокировкой (или же с lock-free алгоритмом). Сравнить производительность с вариантом, реализованным с помощью условных переменных.

Задание.

Обеспечить структуру данных из лаб. 2 как минимум тонкой блокировкой (* сделать lock-free).

Протестировать доступ в случае нескольких потоков-производителей и потребителей. Сравнить производительность со структурой с грубой синхронизацией (т.е. с лаб. 2).

Сформулировать инвариант структуры данных.

Выполнение работы.

Сложение матриц будет происходить в 3 этапа: считывание двух матриц из из очереди, сложение матриц поэлементно, и вывод получившейся матрицы в очередь результатов. Результат сложения записывается в файл output.txt. В начале программы можно задать количество итераций.

Потокобезопасность структуры данных обеспечена lock-free алгоритмом вставки и удаления с помощью CAS-операций внутри цикла do - while.

Вставка:

Создаем новый узел. В цикле сохраняем текущую голову, подставляем её в указатель next нового узла и с помощью CAS-операции пытаемся в голову записать новый узел. Повторяем, пока CAS-операция не завершится успешно.

Удаление:

В цикле сохраняем голову, пытаемся записать узел next головы в голову, пока CAS-операция не завершится успешно или ждем, пока голова пуста и пробуем.

Было проведено сравнение со структурой из предыдущей лабораторной работы на 3 произодителях и 3 потребителях, также на 5 и 5 и 10 и 10, соответственно. Везде было по 1000 итераций, зафиксирован средний результат 3 независимых прогонов. Складывались случайные матрицы размера 100 на 100. Результаты представлены в таблице 1.

Таблица 1: Сравнение lock-free и толстой синхронизации

Потребители/	Blocking queue, мк. сек.	Lock-free stack, мк. сек.
Производители		
3/3	8675743	10181887
5/5	21354601	17058583
10/10	43050352	25867592

Можно сделать вывод, что толстая блокировка лучше на небольшом количестве потоков, осуществляющих одновременный доступ (в нашем случае — 6). Начиная с 10 потоков, лучше себя проявляет lock-free структура данных.

Выводы.

В ходе выполнения лабораторной работы была реализована lock-free структура данных. Экспериментальным путем было выяснено, что толстая блокировка быстрее при небольшом количестве потоков, когда же lock-free гораздо лучше при большом количестве потоков.