

Calhoun: The NPS Institutional Archive DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1977-06

Data acquisition system for unsteady aerodynamic investigation.

Englehardt, Cleveland Duane

Monterey, California. Naval Postgraduate School

<http://hdl.handle.net/10945/18061>

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

DATA ACQUISITION SYSTEM FOR UNSTEADY
AERODYNAMIC INVESTIGATION.

Cleveland Duane Englehardt

DUDLEY KNOX LIBRARY
ROYAL POSTGRADUATE SCHOOL

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

DATA ACQUISITION SYSTEM FOR UNSTEADY
AERODYNAMIC INVESTIGATION

by

Cleveland Duane Englehardt

June 1977

Thesis Advisor:

Louis V. Schmidt

Approved for public release; distribution unlimited.

T179910

unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) DATA ACQUISITION SYSTEM FOR UNSTEADY AERODYNAMIC INVESTIGATION		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; June 1977
7. AUTHOR(s) Cleveland Duane Englehardt		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		12. REPORT DATE June 1977
		13. NUMBER OF PAGES 130
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Naval Postgraduate School Monterey, California 93940		15. SECURITY CLASS. (of this report) Unclassified
		15e. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Microprocessor, Circulation Control Rotor, Wind Tunnel Data Acquisition		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper describes the design and implementation of a microprocessor based high-speed digital data acquisition and reduction system suitable for use in time-varying signal analysis as encountered in unsteady aerodynamic investigation. A microprocessor, flexible disk drive and an analog-to-digital conversion module were the main components which were integrated to form a 32 channel, 12 bit resolution data acquisition system capable of 1000 Hz sampling rate and permanently		

unclassified

SECURITY CLASSIFICATION OF THIS PAGE When Data Entered

storing over 250,000 bytes of data on magnetic diskette. Subsequent to the data logging process, the same system was capable of serving as a general purpose computer utilizing the popular BASIC scientific programming language.

The system was qualified for accuracy and functional performance through a series of controlled exercises, and was then applied to an actual investigative task to further determine its utility and value.

DATA ACQUISITION SYSTEM FOR UNSTEADY AERODYNAMIC
INVESTIGATION

by

Cleveland Duane Englehardt
Lieutenant, United States Navy
BSEE, San Jose State College

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the
NAVAL POSTGRADUATE SCHOOL
June 1977

ABSTRACT

This paper describes the design and implementation of a microprocessor-based high-speed digital data acquisition and reduction system suitable for use in time varying signal analysis as encountered in unsteady aerodynamic investigation. A microprocessor, flexible disk drive and an analog-to-digital conversion module were the main components which were integrated to form a 32 channel 12 bit resolution data acquisition system capable of 1000 Hz sampling rate and permanently storing over 250,000 bytes of data on magnetic diskette. Subsequent to the data logging process, the same system was capable of serving as a general purpose computer utilizing the popular BASIC scientific programming language.

The system was qualified for accuracy and functional performance through a series of controlled exercises, and was then applied to an actual investigative task to further determine its utility and value.

TABLE OF CONTENTS

I.	Introduction.....	9
II.	System Design.....	11
	A. Definition of the "Need".....	11
	B. Determination of Performance Specifications..	13
	1. Analog to Digital Conversion (A/D)	13
	2. Number of Analog Channels.....	15
	3. Sample Resolution (Quantization Error) ...	17
	4. Conversion Rate.....	17
	C. The Processor.....	18
	1. A/D Control.....	18
III.	Hardware.....	22
	A. MDS-800 Microcomputer Development System....	22
	1. Random Access Memory (RAM)	24
	2. Disk Operating System (DOS)	26
	3. General Purpose I/O Module.....	26
	4. SINETRAC-800 A/D Converter Module.....	27
IV.	Software.....	30
	A. Languages.....	30
	1. 8080 Assembly Language.....	30
	2. PL/M.....	31
	3. BASIC.....	32
	B. Programs and Diskette Files.....	32
	1. CONTROL.....	33
	2. ACQUIRE.....	33
	3. PROTECT.....	35
	4. DATA.nnn.....	36
	5. CONVERT.....	37
	6. REDUCE.....	37
	7. IFACE.....	38
V.	System Qualification.....	39

A.	DC Calibration.....	39
B.	Sinusoidal Signal Reconstruction.....	42
C.	Square Wave Response.....	46
VI.	System Application.....	51
A.	Operating Conditions.....	51
VII.	Conclusions and Recommendations.....	66
A.	Interchannel Sampling Lag.....	66
1.	Interchannel Delay.....	67
2.	Individual Sample and Hold Circuitry.....	67
B.	System Acquisition Speed.....	69
C.	Data Reduction.....	70
Appendix A:	Glossary.....	72
Appendix B:	Program Flow Diagrams.....	75
Appendix C:	Program Listings.....	80
Appendix D:	Sample Output.....	122
Appendix E:	Operating Instructions.....	124
Appendix F:	Sample CONTROL File.....	126
LIST OF REFERENCES.....		127
INITIAL DISTRIBUTION LIST.....		129
LIST OF FIGURES.....		7

LIST OF FIGURES

1.	Typical Analog to Digital Data Acquisition Module...	14
2.	CCR Experimental Signal Flow.....	16
3.	MDS-800 Microcomputer Development System.....	20
4.	16KByte Random Access Memory Module.....	23
5.	SINETRAC-800 Analog to Digital Converter Module....	25
6.	"Aliasing" Effect.....	29
7.	DC Voltage Calibration Results.....	41
8.	Sinusoidal Signal Reconstruction Test Circuit.....	43
9.	Sinusoidal Gain Qualification Test Results.....	44
10.	Sinusoidal Phase Qualification Test Results.....	45
11.	Phase Error Due to Interchannel Sampling Lag.....	47
12.	Square Wave Reconstruction Harmonic Spectrum.....	49
13.	Effect of Compensation on Induced Phase Error.....	50
14.	System Application Configuration.....	53
15.	Coanda Sheet Pressure Profile (3.7 Hz)	54
16.	Coanda Sheet Pressure Profile (5.1 Hz)	55
17.	Coanda Sheet Pressure Profile (6.4 Hz)	56
18.	Coanda Sheet Pressure Profile (8.5 Hz)	57
19.	Coanda Sheet Pressure Profile (10.7 Hz)	58
20.	Coanda Sheet Pressure Profile (13.7 Hz)	59

21.	Coanda Sheet Phase Distribution (3.7 Hz)	60
22.	Coanda Sheet Phase Distribution (5.1 Hz)	61
23.	Coanda Sheet Phase Distribution (6.4 Hz)	62
24.	Coanda Sheet Phase Distribution (8.5 Hz)	63
25.	Coanda Sheet Phase Distribution (10.7 Hz)	64
26.	Coanda Sheet Phase Distribution (13.7 Hz)	65
27.	Single vs Multiple Sample and Hold Concept.....	68

I. INTRODUCTION

Data acquisition systems have historically been both costly and cumbersome for the investigator to use. Acquisition of unsteady experimental data, as in the case of oscillatory flow investigation, was only possible with the aid of expensive digital computer systems used in conjunction with elaborate analog recording devices.

Within the past four years, a new form of computing power has become available to the engineer accompanied by such a reduction in cost that its use has spread rapidly throughout the realm of engineering design. The revolutionary device alluded to is the microprocessor, which in its basic form contains all the arithmetic and logical functions normally found in the central processing unit (CPU) of a large scale computer. Concurrent advances in solid state memory and other large scale integrated (LSI) circuitry has enabled entire computing systems to be encased in table-top enclosures at a fraction of the cost of the previously available minicomputers.

This document describes the use of one such microprocessor-based microcomputer system, the INTEL MDS-800 Microcomputer Development System, as a central component of a data acquisition system. The MDS was integrally connected with various peripheral devices including an analog to digital converter, input-output devices, and a dual flexible disk drive unit to form a data acquisition system. The system was then qualified using known input signals of controlled harmonic content. Subsequently the system was applied to an actual experimental situation,

where unsteady analog signals were digitized, recorded, and later analyzed on the same self-contained computing system.

A glossary of terms commonly used in the instrumentation engineering, data processing and computing disciplines is presented in Appendix A.

II. System Design

An engineering design is, in general, the result of a directed effort in meeting a recognized human need or desire. The value of the design is usually determined by how well the design product satisfies a set of performance criteria. In most cases, several methods of achieving the goal will be available, thus requiring the designer to choose among the alternative approaches. This choice will be governed or influenced by constraints imposed by the environment, funding and production schedule.

This section deals with the definition of the need, specification of the desired performance attributes, determination of viable alternatives, and the decision process by which the final product was developed. Although most of the desired performance requirements were achieved, the project served as an educational experience revealing many areas which could be improved. Section VII discusses the design in retrospect and proposes additional alternatives which could further enhance the system's performance.

A. Definition of the "need"

The "need" was a precipitant of the Circulation Controlled Rotor (CCR) aerodynamic investigation being conducted by Naval Postgraduate School personnel. Existing wind-tunnel data acquisition systems were designed to operate in the steady-state flow-field environment. The

desire to study the dynamic nature of the flow about an airfoil of radical design, while experiencing the effects of an oscillatory flow-field, required a departure from the traditional hand logging or slow-speed automatic data acquisition methods. More important, however, the experimental process not only required investigation of the CCR at various angles of attack and air speeds, as in the case of steady-state wind tunnel experimentation, but additionally introduced frequency, cavity pressure modulation amplitude and phase relative to flow field oscillation as variables. Thus, the CCR experiment required experimental investigation throughout an operating envelope bounded by 5 independent variables rather than the usual 2 associated with steady-state flow problems. This obviously increased the magnitude of the data acquisition problem far beyond the point of practicability for the conventional data logging methods at hand. A high-speed automatic data logging technique was clearly in order. Additionally, in order for large amounts of data to be efficiently analyzed, it was imperative that all information be recorded in a form which could be directly utilized by a digital computer.

The above rationale then became the basis for the following statement of the "need":

* A high-speed digital data acquisition system exhibiting performance attributes necessary to allow numerical analysis of the flow pattern about the surface of a CCR airfoil section, operating in the Naval Postgraduate School 2-foot by 2-foot oscillatory flow wind tunnel

* Function as a controlling device capable of automatically sequencing the Scanivalve mechanical multiplexers without operator intervention

* Perform the algebraic calculations necessary in reducing the data to analytic form

B. Determination of Performance Specifications

Anticipating a significant investment in equipment, and realizing that the CCR research project would some day be complete, it was determined that the system design should take future applications into consideration. For this reason, flexibility was incorporated as a major design goal, which necessarily resulted in a modification of the specifications from those actually required for the CCR task.

1. Analog to Digital Conversion (A/D)

In a typical data-sampling system, signal voltages representing varying physical parameters; e.g., pressure, temperature, position, velocity and acceleration, are sampled and converted via A/D converters into digital form. A/D conversion has become an engineering discipline in itself and an entire vocabulary associated with the field has resulted. To assist the reader in understanding the following treatment of A/D performance requirements, a brief glossary of A/D terminology is included within Appendix A. In the interest of brevity, the discussion herein is limited to the most important facets of A/D conversion. For a more complete treatment of the subject, the reader is directed to ref. 12, an outstanding collection of A/D related articles.

As a prelude to the below listed performance parameters, Fig 1 depicts all of the elements found in a typical A/D conversion system and illustrates the type of errors associated with each stage of the process.

FIGURE 1 - TYPICAL ANALOG-TO-DIGITAL DATA ACQUISITION MODULE

2. Number of Analog Channels

The CCR experimental set up had one analog channel dedicated to each of the below listed signal sources:

- * Scanivalve ONE
- * Scanivalve TWO
- * Cavity Pressure Transducer
- * Hot Wire Anemometer

A schematic of the signal flow is depicted in Fig 2. The four channels were to be sampled in fast succession at a specified periodic rate. The A/D module had provisions for 32 single-ended channels or 16 differential channels. The single-ended mode was employed in this application.

FIGURE 2 - CIRCULATION CONTROL ROTOR EXPERIMENTAL SIGNAL FLOW

3. Sample Resolution (quantization error)

When the analog signal is digitized, the resulting digital quantity can take on only certain discrete values. The number of bits in the digitized datum word determines the number of possible states that the word may have. An 8 bit A/D, for example, can exhibit 2 to the 8th or 256 states. If the range of operation of the A/D is minus 5 to plus 5 volts, (10 volts full scale), then each bit represents an increment of .0391 volts. This amounts to a resolution or quantization error of 0.391 percent. The more bits in the digitized word, the better the resolution; however, the price paid for increased accuracy is a decrease in conversion speed. Of course, speed and accuracy may be obtained concurrently with a corresponding increase in cost.

The A/D module exhibited 12 bit accuracy, yielding a quantization error of 0.024 percent over full range operation. This corresponded to a sensitivity of approximately 0.00244 volts during 10 volt full scale operation. The 12 bit converter offers moderate accuracy and relatively high speed, e.g. 75,000 conversions per second, for a reasonable cost.

4. Conversion Rate

The amount of time required for the A/D module to sample and digitize the analog input is defined as the conversion time. The A/D module was capable of 75,000 12-bit conversions per second, or one conversion every 13 microseconds. This conversion rate was only obtainable if the Direct Memory Access (DMA) mode were utilized. Since the SINETRAC-800 module was operated in the program control

mode, the conversion rate was limited by the microprocessor instruction sequence execution time to 74.5 microseconds per conversion. The resulting throughput was 13,400 conversions per second. The induced lag between channels caused significant problems in signal reconstruction and is discussed in detail in section IV.

C. The Processor

The digital processor was the heart of the system design, and added the flexibility needed to make the A/D conversion, data acquisition and storage process applicable to the problem at hand. The desired functional performance requirements of the processing unit are discussed in this section.

1. A/D control

During the acquisition phase of operation, the processor's main task was that of controlling the A/D module. By controlling the acquisition process under programmed logic, adjustments to the sampling rate, channel sampling sequence, and real-time filtering of the data could be easily effected.

The reconstruction of time-varying analog signals from a set of discrete datum points represents a problem of significant magnitude. Probably the single most important consideration during the acquisition phase is the period at which samples are to be taken. When investigating periodic signals, frequency content is generally a matter of prime interest. Nyquist's sampling theorem states that equi-spaced data, with two or more points per cycle of the

highest frequency, will allow reconstruction of band-limited functions. If this principle were not observed, a phenomenon termed "aliasing" could occur. The concept of aliasing is shown in Fig 3 which depicts a signal sampled at two different rates. The curves drawn through the two sets of points represent possible reconstructions of the original signal. The frequency change implied by the dotted curve is an "alias" of the frequency described by the solid curve.

FIGURE 3 - "ALIASING" EFFECT

Other considerations related to sampling rate are the number of data points required for adequate analysis, the amount of memory, permanent mass storage, and computation time required in processing the data.

In the CCR application, it was predicted that fundamental driving frequencies in the range of 1 to 20 Hz should be investigated; and that frequency content up to the fifth harmonic would be of possible interest. This meant that the system must be capable of sampling the analog channels at a minimum rate of 200 Hz. The resulting design achieved a 500 Hz sampling rate over 8 channels.

III. HARDWARE

A. MDS-800 MICROCOMPUTER DEVELOPMENT SYSTEM

In its basic configuration, the INTEL MDS-800 Microcomputer Development System consists of a CPU, 16K RAM, peripheral interface controller, front panel controller, power supply and enclosure. With the exception of the enclosure and the power supply, each of the aforementioned items is in the form of one or more printed circuit modules which may be inserted into the mainframe of the MDS. The MDS may be directly connected to the following peripheral devices with minimal interfacing: CRT and keyboard console, high speed line printer, standard Teletype with paper tape reader and punch, high speed paper tape reader, and a high speed paper tape punch. This section describes the essential hardware elements of the system, an overall view of which is shown in Fig 4.

FIGURE 4 - MDS-800 MICROCOMPUTER DEVELOPMENT SYSTEM

1. Random access memory (RAM)

The basic block of RAM is a 16K byte module of high access rate volatile dynamic memory, where 1K denotes 2 to the 10th or 1024 bytes. The MDS is capable of addressing 4 such modules or 64K bytes of memory. Of the 64K of RAM only 62K are actually usable due to the coexistence of a 2K block of read only memory (ROM) containing the MDS Monitor program.

Due to the requirement for rapid recording of large blocks of data, the maximum number of RAM modules was installed. A RAM module is illustrated in Fig 5 and serves as an example of the typical insertable printed circuit modules referred to throughout this paper.

FIGURE 5 - 16K BYTE RANDOM ACCESS MEMORY MODULE

2. DISK OPERATING SYSTEM

The INTEL Disk Operating System (DOS) consisted of three major components, a dual floppy disk drive unit, a disk controller, and the DOS support software. The addition of the DOS provided dramatic increases in the flexibility, speed, and mass memory storage available.

Each 7.5-inch diameter floppy disk (diskette) had a capacity of 256K bytes of semi-random access storage. With the dual drive, over 0.5 million bytes of data, program, or other information could be accessed with relative ease and moderate speed.

The software support package offered by INTEL, called ISIS, was evaluated along with the Digital Research CP/M disk operating system. The Digital Research software package was chosen over the INTEL package due to the higher speed it demonstrated and its compatibility with the BASIC-E package used in the data reduction phase.

CP/M consists of several utility routines in addition to the Basic Disk Operating System (BDOS). These routines allow the user to form and edit disk files, programs or data files, to assemble and load assembly language programs, and a powerful debug routine. A more complete description of the CP/M BDOS is contained in ref. 9.

3. GENERAL PURPOSE INPUT OUTPUT MODULE I/O)

The basic MDS-800 was further expanded with the installation of a general purpose I/O module. This module

provided four input ports and four output ports of eight bits each. The need for the I/O module was anticipated for control applications, digital input or outputs, controlling an X-Y plotter, or other general purpose applications. This module was actually intended for controlling the Scanivalve positioning under automatic channel sequencing. However, it was later decided that system flexibility would have been sacrificed had this feature been implemented.

4. SINETRAC-800 ANALOG TO DIGITAL CONVERTER MODULE

The Datel Sinetrac-800 A/D converter module is a 32 channel, 12 bit resolution analog to digital module specifically designed for use with the INTEL MDS-800. Being buss compatible with the MDS system, the module was installed within the MDS chassis and the wiring harness was brought to the backplane of the MDS enclosure.

The main elements of the A/D module were:

- 32 channel analog multiplexor
- sample and hold
- A/D converter sub-module
- addressing and hand-shaking logic circuitry
- Direct Memory Access control circuitry

The A/D module had three fundamental modes of operation:

- program control
- program control with automatic sequencing
- Direct Memory Access mode

Reference 1 contains a complete description of the A/D module including operating instructions and programming techniques.

Although the DMA mode was not utilized because of its requirement of an INTEL DMA module for support, future development of the system will make the addition of the DMA module indispensable. The use of DMA would allow the A/D module to operate at its full capability of 75 KHz sampling rate. This increase in acquisition rate would significantly extend the range of the system in terms of signal frequency component reconstruction.

The Sinetrac-800 also provided user options in certain operational parameter selection. Selectable by jumper wire were input signal voltage range (5, 10, or 20 volts), single ended or differential operation, and interrupt or non-interrupt operation. The options in use were: plus and minus 5 volt single ended, non-interrupt operation. Details concerning the use of jumper options are specified in ref. 1. The SINETRAC-800 is depicted in Fig 6.

FIGURE 6 - SINETRAC-800 ANALOG TO DIGITAL CONVERTER MODULE

IV. SOFTWARE

The software development was accomplished in four distinct phases and involved the use of three different programming languages. This section briefly describes each language and the individual program modules created.

A. LANGUAGES

Every computer language has a level of application for which it was designed. The three languages discussed in this section were used to accomplish varying degrees of program control. A high level programming language allows the programmer to use nearly literal or sentence form expressions or equations. FORTRAN is an example of a high level language. A low level language on the other hand, is closely related to the machine code actually used by the computer. Machine code is, of course, the lowest level programming language but is rarely used. Low level languages provide the programmer with complete control over memory usage and CPU instruction sequences.

1. 8080 Assembly Language

This low-level language was specifically developed for use with the 8080 microprocessor. It is, however, similar in form to assembly languages in use with other computers. The form of the language is described fully in ref. 10, therefore only the merits of the language are

discussed herein.

The use of assembly language offers the programmer direct control over the CPU instruction sequence. Very efficient utilization of available program memory and optimization of program execution time may be accomplished when employed. These features form the basis for the use of assembly language in the construction of the data acquisition and ASCII conversion programs, where execution time and memory allocation are important considerations.

One distinct disadvantage to the use of assembly language is that the amount of work required in producing a relatively short program may be significant. Several pages of documentation are necessary to make the program readable, even to the author of the program. Obviously, tracing another's assembly language program is very difficult even with excellent documentation.

2. PL/M

PL/M is a medium-level language again designed for microprocessor use. It offers moderate control over the CPU instruction sequence while providing the user with many of the features available only in high-level languages. In other words, PL/M is a language which permits the user to determine, within limits, the degree of control he desires. The amount of machine code produced by PL/M compilation is about half again that resulting from a functionally equivalent assembly language program. PL/M is ideal for use when floating point mathematical operations are not required, or when time and memory efficiency are not important factors.

PL/M was used in the construction of the

communications interface program called IFACE which linked the MDS-800 to the IBM-360 via telephone line. PL/M may be assembled on either the IBM-360 or locally on an MDS-800 when equipped with the full complement of 64K of RAM.

3. BASIC

BASIC is a high level language which is gaining wide acceptance throughout the scientific community. Similar to FORTRAN, BASIC provides the user with facility in programming mathematically complex routines in fairly familiar algebraic format. The BASIC-E compiler and run time monitor were developed for 8080 implementation to be used in conjunction with CP/M, and are fully described in ref. 5.

BASIC-E was used in the data analysis routine which may be easily modified to suit the user's needs. A summary of the commands available and syntax of BASIC-E can be found in ref. 6.

B. PROGRAMS AND DISKETTE FILES

The data acquisition and reduction process was a multiphase sequence, each phase consisting of one or more program executions. Each program resided on the system diskette under its individual file name. The system diskette also contained the CP/M BDOS and each of its associated utility routines, the BASIC-E compiler and run time monitor. The system diskette was inserted into disk drive A, while the data diskette was inserted into disk drive B. Each program module and its associated support files is described within this sub-section, and Appendix E

contains a description of the operating procedures.

1. CONTROL

A control file called CONTROL was formed prior to each acquisition run. This file was edited and maintained on the system diskette and contained both text and control parameters that were used by the acquisition program, ACQUIRE. The use of a control file eliminated the need for the operator to re-enter control parameters for successive runs. A sample CONTROL file is contained in Appendix F. The order of the passed parameters was significant; however, the verbiage or content of the string variables could be entered free-form. The ACQUIRE program would only recognize and use the integer value of parameters which were preceded by a colon and followed by a carriage return linefeed combination. The information following the first two colons was ignored, allowing the date and run number to be entered but not passed to the ACQUIRE program. The meanings of the parameters are self-evident from the sample shown in Appendix F, and are therefore not explained here.

2. ACQUIRE

ACQUIRE was the main program which performed the data acquisition function. It would first read the CONTROL file from disk drive A and display it on the CRT for the operator's review. Should corrections or alterations be required, they could be effected at this time by editing the CONTROL file. With the CONTROL file in order, ACQUIRE proceeded to extract the necessary control parameters and duplicated the CONTROL file on the diskette in drive B. Using the extracted control parameters, this program then managed the operation of the SINETRAC-800 module, CRT, and

disk drive unit so as to scan the specified analog channels at the specified rate and number of repetitions, and record the data on the data diskette in disk drive B. The ACQUIRE program accomplished this task by issuing commands to the SINETRAC-800, followed by data to be written or read. The SINETRAC-800 was issued the initial and final channel numbers, a start scan command, and a start conversion command. When an analog to digital conversion was complete, the SINETRAC-800 changed its status word to indicate an end of conversion (EOC). The processor would then read in the two bytes of data resulting from the conversion. Upon receipt of a subsequent start of conversion command, the A/D module would automatically step to the next analog channel to be sampled and perform a conversion. When the entire range of channels was converted, the A/D would change the status word to indicate an end of scan, simultaneously resetting the channel selection register to the initial channel.

The generation of the scan period timing pulse is a topic which deserves explanation as it was one of the most difficult portions of the ACQUIRE routine from a programming standpoint. The MDS-800 front panel controller module includes an interrupt timer which may be turned on or off programmatically. The timer is actually a series of solid state counters which, after receiving a certain number of pulses from the 9.8 MHz system clock, issues a pulse to the CPU. This interrupts the operation of the 8080 CPU, causing the program to execute a subroutine. This subroutine then counts the number of interrupts received in this manner. When the number of interrupts counted reaches a value which matches that prescribed by the scan period control parameter entered by the CONTROL file, a scan instruction is issued to the SINETRAC-800 and a scan sequence is initiated. Each interrupt occurs at 0.977 ms. The fact that the timer interrupts at nominal 1 ms intervals became the limiting

factor on scan rate. In order to increase the scan rate, some other means of initiating the scan must be used. The rationale for using the interrupt timer in the first place was that it provided, at no additional expense, a highly accurate time base, an important requirement for dynamic signal analysis.

Data from each conversion were stored in sequential RAM locations. When the specified number of scans had been performed, the data stored in RAM were formatted and transferred to the data diskette in disk drive B. Each block of scans was written into a file called DATA.nnn, where nnn was the decimal sequence number for that file.

The process continued until all Scanivalve channels were sampled and logged, the diskette space was exhausted, or the process was terminated by the user. If the process were completed without mishap, a file called PROTECT could be written on the data diskette at the users option. The PROTECT file prevented further data from being recorded on an unprocessed diskette.

3. PROTECT

The PROTECT file, if it existed on a data diskette, prevented additional data from being written to the diskette. Normally the PROTECT file was only removed from a diskette upon successful completion of the reduction process. This procedure prevented unprocessed data from being inadvertently destroyed or overwritten. The PROTECT file could also be removed by typing "ERA B:PROTECT" at the console.

4. DATA.nnn

Each time the SCAN subroutine within the ACQUIRE program was executed, a DATA.nnn file was created on the data diskette. This file contained the data stream which resulted from one run. At the completion of all the runs the data diskette would contain several DATA files. For example, a completed data disk directory might be as follows:

```
CONTROL  
DATA.000  
DATA.001  
DATA.002  
PROTECT
```

The first 16 bytes of data on each DATA file form a header for that file, and contained the control information relevant to that file. The meaning of each byte within the header is listed below:

- Byte 0 Initial Analog Channel
- Byte 1 Final Analog Channel
- Byte 2 Scanivalve One setting
- Byte 3 Scanivalve Two Setting
- Byte 4 No. of scans (LSB)
- Byte 5 No. of scans (MSB)
- Byte 6 Scan period (LSB)
- Byte 7 Scan period (MSB)
- Byte 8 Frequency (LSB)
- Byte 9 Frequency (MSB)
- Byte A through F not used

Subsequent data words formed the body of the DATA file. A DATA file was composed of binary information, and

therefore required translation into ASCII characters prior to being read by the BASIC reduction routine.

5. CCNVERT

The CCNVERT program was an assembly language routine which read the desired DATA.nnn file into RAM, converted the binary values to ASCII decimal integers and created a file called DATA.ASC on the data diskette. This was necessary prior to each execution of the REDUCE program, as the BASIC-E file handling would only accommodate ASCII coded disk files. This process could have been made a part of the ACQUIRE program function; however, the additional number of bytes required for each data point would have severely limited the amount of data on each diskette.

The program was executed by typing "CCNVERT DATA.nnn" at the console. The resulting ASCII type file could be viewed in raw unformatted form by typing "TYPE B:DATA.ASC".

6. REDUCE

The REDUCE program was written in BASIC and was executed by typing "RUN REDUCE" on the console. Its function was to read the DATA.ASC file from the data diskette and perform the required numerical analysis necessary to extract the Fourier coefficients of the signal wave form represented by the data. The program used is contained in Appendix C and a discussion of the reduction algorithm is presented in ref. 11.

It is important to note that the BASIC routine used in this application may be easily modified to suit the

user's needs. For that matter, an entirely different analysis algorithm could be substituted with equal facility. In effect, the function of the program was not of significance, however, it served as a vehicle for development and testing of the system. The demonstrated flexibility and ease in programming afforded by incorporation of the BASIC language are the meaningful features.

7. IFACE

This PL/M program was originally written by an unknown author but was adapted for use with the MDS-800 through modification of the interfacing routines.

Its purpose was to allow the user to operate the CRT console as a remote time-share terminal in conjunction with the W.R. Church IBM-360 operating under the Cambridge Monitoring System (CMS). The program listing is included for documentary purposes in Appendix C. It also provided for automatic bi-directional transfer of disk files between the IBM and MDS systems, a useful feature.

V. SYSTEM QUALIFICATION

Any design, whether hardware, software or a combination of both, must be thoroughly evaluated for performance under controlled conditions prior to its introduction in an actual field environment. The test which the design should undergo must exercise the device throughout its expected range of operation so that actual performance limitations may be determined. Qualification testing also provides the designer with quantitative and qualitative measures of the system's conformance to the design criteria. This section discusses the qualification tests conducted on the data acquisition system, and an interpretation of the results obtained.

The main objective of the qualification testing procedure conducted was to provide a level of confidence in the system's ability to faithfully track the input signals, thereby permitting the reduction routine to accurately perform numerical operations which would reconstruct the desired parameters of magnitude and phase, while filtering undesirable frequency components. The three basic qualification tests conducted in the determination of the system's performance characteristics are discussed below.

A. DC CALIBRATION

Accompanying the SINETRAC-800 D/A module was a voltage calibration and scan test software package. This program allowed verification of the accuracy of the A/D conversion

system when known (accurately measured) DC voltage levels were applied to the individual input channels of the A/D module. The results of this test, with the voltage range of the device set at plus and minus five volts full scale, are shown in Fig 7. This voltage range was chosen over the 20 or 5 volt full scale range because the outputs of the signal conditioning amplifiers had historically exhibited bias and excursion characteristics which remained well within this range. Had a 20-volt full-scale range been utilized, sensitivity would have been sacrificed, whereas a 5-volt range would have resulted in an overvoltage condition on the A/D converter circuit.

FIGURE 7 - DC VOLTAGE CALIBRATION RESULTS

B. SINUSOIDAL SIGNAL RECONSTRUCTION

This test was designed to evaluate the system's ability to accurately acquire, store, and reconstruct a sinusoidal input signal of known amplitude and phase relationship to a reference sinusoidal signal.

The test was conducted using the simple operational amplifier circuit illustrated in Fig 8, representing a low-pass filter.

The gain and phase of the output signal relative to the input signal were measured by using the Ballantine true RMS meter and an AD-YU phase meter, respectively. These data were hand logged and plotted in Figs 9 and 10 for comparison with the gain and phase parameters extracted by the analysis algorithm discussed in section IV. A very high correlation between the extracted parameters and the analog measurements is clearly observable.

FIGURE 8 - SINUSOIDAL SIGNAL RECONSTRUCTION TEST CIRCUIT

FIGURE 9 - SINUSOIDAL GAIN RECONSTRUCTION TEST RESULTS

FIGURE 10 - SINUSOIDAL PHASE QUALIFICATION TEST RESULTS

PHASE RANGE (DEG)

C. SQUARE WAVE RESPONSE

This test was designed to evaluate the accuracy of the data acquisition system in reconstructing the higher harmonics contained within a periodic signal. Since a square wave is known to be composed of only odd harmonic components, with known relative amplitudes, the Fourier coefficients derived from this test were easily compared to theoretical results.

By injecting the square wave input into more than one A/D input channel simultaneously, a measurement of the interchannel sampling delay was possible through observation of the resulting phase shift between adjacent channels. Compensation for the artificially induced phase lag was accomplished within the BASIC data reduction algorithm. Referring to Fig 11, which illustrates the phase shift problem graphically, delta t was the amount of time required to switch from one A/D channel to the next and complete a conversion. The software steps for the switching process amounted to 74.5 micro-seconds of apparent phase lag. By adding this value to the time term within the reduction algorithm, the phase shift problem was nearly eliminated.

FIGURE 11 - PHASE ERROR DUE TO INTERCHANNEL SAMPLING LAG

The results of the harmonic reconstruction test are shown in Fig 12, which compares the extracted harmonic content of the square wave as produced by the REDUCE routine, with the theoretical expected values. The test was actually performed for several input frequencies ranging from 5 Hz to over 100 Hz, however, the resulting harmonic spectrum is shown only for the 10 Hz signal so as to illustrate as many harmonics as possible.

For comparison purposes, the phase shift realized with and without compensation within the analysis program are plotted as a function of frequency in Fig 13.

FIGURE 1.2 - SQUARE WAVE RECONSTRUCTION HARMONIC SPECTRUM

FIGURE 1.3 - EFFECT OF COMPENSATION ON INDUCED PHASE ERROR

VI. SYSTEM APPLICATION

Subsequent to the qualification tests and refinement of the reduction algorithm, the system was applied to the actual experimental environment for which it was intended. The system was integrated into the CCR airfoil experimental set-up as illustrated in Fig. 14. This phase of the development was conducted for two important reasons:

- * Evaluate the performance of the system under actual laboratory conditions in search of further improvement areas.
- * Examine the Coanda sheet pressure profile with respect to phase and amplitude while sinusoidally modulating the plenum pressure of the airfoil section.

A. OPERATING CONDITIONS

The wind tunnel was configured to operate with steady flow during this initial evaluation run. Only the plenum pressure of the airfoil section was modulated sinusoidally with various driving frequencies ranging from 3.7 Hz to 13.7 Hz.

Previous work, presented in Refs 7 and 8, produced measurements of the Coanda sheet pressure profile using data from a true RMS meter. These data were hand logged and plotted. A measurement of the phase relationship was not possible using this technique, as the phase meter was inaccurate in the low frequency range investigated.

Digital data acquisition, therefore, provided the first opportunity for observing the phase shift between the driving force and the pressure reaction on the surface of the airfoil. Included in Appendix F is the CONTROL file used in this experimental run. 600 datum points were recorded at 5-millisecond intervals for each analog channel. The channels sampled were:

1. Ch 0.....Plenum reference pressure
2. Ch 1.....Scanivalve pressure (channels 10 thru 17)
3. Ch 2.....Hot wire anemometer

At each frequency, the Scanivalve was cycled along each of the indicated channels which corresponded to stations 23 through 30 of the airfoil. The actual logging of the more than 86,000 data points required approximately 45 minutes, of which approximately 35 minutes were devoted to effecting adjustment of the tunnel operating conditions and driving frequency.

Figures 15 through 20 show the graphical results of the data reduction which followed. Credibility is lent to the results by the close correlation achieved with the previous investigative efforts, and the consistency displayed among results of individual runs.

The graphical results of the phase extraction process are presented for documentary purposes in Figs 21 through 26. It was not within the scope of this work to analyze in detail the aerodynamics of the CCR. Therefore, the reader is directed to refs. 8 and 11 for more explicit information regarding the CCR analysis.

FIGURE 14 - SYSTEM APPLICATION CONFIGURATION

COANDA SHEET PRESSURE PROFILE

FIGURE 1.5 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (3.7 Hz)

COANDA SHEET PRESSURE PROFILE

DRIVING FREQUENCY: 5.1 Hz

$P(\text{STAB})/P(\text{REF})$

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

STATION

FIGURE 16 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (5.1 Hz)

COANDA SHEET PRESSURE PROFILE

FIGURE 17 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (6.4 Hz)

COANDA SHEET PRESSURE PROFILE

FIGURE 18 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (8.5 Hz)

COANDA SHEET PRESSURE PROFILE

FIGURE 1.9 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (10.7 Hz)

COANDA SHEET PRESSURE PROFILE

FIGURE 20 - FUNDAMENTAL MODE COANDA SHEET PRESSURE PROFILE (13.7 Hz)

FIGURE 21 FUNDAMENTAL MODE CONDRA SHEET PHASE DISTRIBUTION

FIGURE 22 FUNDAMENTAL MODE COANDR SHEET PHASE DISTRIBUTION
STATION

FIGURE 23 FUNDAMENTAL MODE CORNARD SHEET PHASE DISTRIBUTION
STATION

FIGURE 24 FUNDAMENTAL MODE CORNDA SHEET PHASE DISTRIBUTION
STATION

FIGURE 25 FUNDAMENTAL MODE COANDA SHEET PHASE DISTRIBUTION
STATION

FIGURE 26 FUNDAMENTAL MODE CORNDA SHEET PHASE DISTRIBUTION

VII. CONCLUSIONS AND RECOMMENDATIONS

During the course of the acquisition system development, modifications were constantly made with the intent of improving the performance or operator interface. System qualification and implementation disclosed several additional areas in need of improvement and, based on the experience gained up to the time of this writing, the upgrade items discussed in this section are believed to be worthy of inclusion in any further development or future generations of the subject system. In some cases alternative solutions to existing shortcomings are presented, taking into consideration current industry developments in compatible hardware modules.

A. INTERCHANNEL SAMPLING LAG

As previously discussed, the finite amount of time required for the processor to switch from one analog channel to the next, and make a conversion, caused an apparent phase shift in the resulting reconstruction of two or more adjacent channel signals. This problem was partially overcome by time adjustments within the reduction algorithm. However, inaccuracies were still attributable to this problem.

Two additional approaches to the problem remain:

1. Interchannel Delay

Effecting a reduction in the interchannel delay time, thereby reducing the relative influence of the lag, is one possible solution. This could be accomplished by the inclusion of a DMA module within the MDS mainframe to augment the capabilities of the SINETRAC-800. This solution although not absolute, would achieve a decrease of the interchannel delay from 74.5 microseconds to 15 microseconds.

2. Individual Sample and Hold Circuitry

The system as described herein contained only one sample and hold circuit which was located downstream of the multiplexor unit. Since each channel shared the same sample and hold circuit, it was impossible to strobe all channels simultaneously. Inclusion of an independent sample and hold circuit element dedicated to each analog channel input would eliminate the phase shift problem completely, since all channels would be sampled at precisely the same instant when triggered by a common source. The sample and hold circuit would maintain the DC level until the A/D was able to poll the individual inputs through the multiplexor. This concept is illustrated in Fig 27.

Single Sample and Hold

Multiple Sample and Hold

FIGURE - 27 SINGLE VS MULTIPLE SAMPLE AND HOLD CONCEPT

B. SYSTEM ACQUISITION SPEED

As presented, the acquisition system was limited to an absolute maximum sampling rate of 500 Hz for more than one analog channel input. This rate could be improved for a few more channels to a maximum of 1 KHz with modifications to the timer interrupt and use of the program interrupt mode on the SINETRAC-800.

For any significant improvement, however, the actual start of scan trigger would require alternate sourcing. The A/D board provided for an on-board control of the scan clock or external triggering. A modification to the triggering of the scan clock could be effected with minimal additional circuitry of local design, utilizing a general purpose proto-typing circuit board for generation of a strobe or sensing of an external synchronization pulse. It is important to realize that any such design should attempt to retain software control over the sampling rate so as not to lose this flexibility feature.

Tremendous reductions in software could be realized with the addition of the Direct Memory Access module. This addition would increase the maximum scan rate attainable from .5 KHz to approximately 11 KHz for 6 channels or from 1 KHz to 33 KHz for 2 channels of input.

In short, the addition of a DMA module is highly recommended in consideration of the multiple improvements in system performance that it affords for a modest expenditure.

C. DATA REDUCTION

The concept of locally reducing the data has many advantages, and likewise disadvantages, which must be considered in future modifications to the system. The decision to locally reduce data was based upon two major factors. First, it was desired that the feasibility of local reduction on a microprocessor be investigated. Secondly, during the design stages the only data communications link available to the W.R. Church computer facility IBM-360 for remote processing was via Teletype speed (110 baud) modem. Anticipating the generation of 250,000 words of data each experimental session, transmission over the existing time-share system network was deemed unreasonable. Transfer of this volume of data would have required at best 7 hours real time, assuming minimal handshaking and system interruptions. The potential of generating several data diskettes during one experimental session renders a slow transmission rate link totally impractical. The CP/CMS system did not, at that time, exhibit the reliability necessary for such a link to be used effectively. At the time of this writing the computer center was completing the installation of communication links capable of 9600 baud transmission rates. At this rate, a full diskette (250K bytes) could be transmitted in as few as 5 minutes. This capability would greatly enhance the computing power of the system, considering the increased sophistication of reduction techniques and output facilities (plotters, high speed printers, etc.) which would then be made available.

Should the autonomy of the system be an over-riding consideration, it is recommended that a high speed printer,

Digital to Analog (D/A) module and an X-Y plotter be included as supplementary system peripherals. The inclusion of an external mathematics module would further improve the system's computational speed and efficiency. Such a module, commercially available, would perform all floating-point mathematical operations (add, subtract, multiply and divide) in circuitry external to the 8080 microprocessor at approximately ten times the speed currently available. The addition of these modules and peripherals would upgrade the system into a completely independent, highly flexible data acquisition and computational device capable of a multitude of data logging or analytical tasks.

APPENDIX A

GLOSSARY

1. accuracy: The ability of a measurement system to determine the true level or state of a variable in terms according to standards of reference.
2. A/D: analog to digital (adjective or noun)
3. Alias: When varying signals are sampled at equally spaced intervals, two frequencies are considered to be aliases of one another if they cannot be distinguished from each other by an analysis of their equally spaced values.
4. ASCII: American Standard Code for Information Interchange. This is a seven-bit-plus-parity code established by the American National Standards Institute to achieve compatibility between data services. Also called USASCII.
5. assembly: A listing which contains both source code and machine code.
6. BAUD: A data transmission rate expressed in BITS per second.
7. BIT: BIary digit. A single unit of information in a binary word.
8. buffer: A group of memory locations used to store specific data (input data, constants, output data, etc.).

9. byte: An eight-BIT word which is processed as a single quantity.
10. CPU: Central Processing Unit. The area of the microprocessor which computes and sequences all logic and arithmetic functions.
11. CRT: Cathode Ray Tube - A television-like picture tube used in visual display terminals.
12. D/A: The inverse of the A/D process.
13. DMA: Direct Memory Access - a facility that permits I/O transfers directly into or out of memory without passing through the processor's general registers; either performed independently of the processor or on a cycle-stealing basis.
14. EPROM: erasable/programmable read only memory
15. Folding Frequency: The lowest frequency which is its own alias, or that which is one-half the sampling rate when samples are continuously made at equal intervals.
16. I/O: input/output
17. K: A suffix which indicates a group of 1024 (2^{10}) items as in '4K of memory' meaning 4096 memory locations.
18. Lag: A difference in time of occurrence between two events.
19. machine code: The BIT patterns actually used by the U-P in order to carry out its assigned logic functions.
20. MODEM: MODulator DEModulator - an electronic device which modulates signals transmitted over communications circuits.
21. MUX: a multiplexing device
- 22.. nibble: The upper or lower four BITS in one byte.

- 23. page: a 256 byte segment of memory
- 24. RAM: Random access memory. Volatile memory used for variable storage and data manipulation.
- 25. register: A storage location located in the CPU.
- 26. Resolution: The ability to determine signal differences in varying signals.
- 27. ROM: read only memory, non-volatile
- 28. Sample and Hold: A device for sampling the amplitude of a signal at a given time and holding that amplitude.
- 29. Sampling Theorem: Nyquist's result that equi-spaced data, with two or more points per cycle of highest frequency, allows reconstruction of band-limited functions.
- 30. software: The program which resides in the U-P's memory.
- 31. source code: The program written by the user.
- 32. U-P: microprocessor

APPENDIX B

PROGRAM FLOW DIAGRAMS

ACQUIRE PROGRAM FLOW DIAGRAM

ACQUIRE PROGRAM FLOW DIAGRAM (CONT)

ACQUIRE PROGRAM FLOW DIAGRAM (CONT)

CONVERT PROGRAM FLOW CHART

APPENDIX C

PROGRAM LISTINGS


```

;*****EQUATES FOR DATA ACQUISITION MODULE*****
;*****PORT ASSIGNMENTS*****
;
;      PORT ASSIGNMENTS
;
0000 = PORT0    EQU    0
0001 = PORT1    EQU    1
0002 = PORT2    EQU    2
0003 = PORT3    EQU    3
;
;      SINETRACK 800 ADDRESS ASSIGNMENTS
;
0010 = BASE     EQU    10H
0010 = DSTAT    EQU    BASE
0011 = DDATA    EQU    BASE+1
0011 = START    EQU    BASE + 1
0013 = CONV     EQU    BASE + 3
0012 = FINAL    EQU    BASE +2
0012 = RDCUR    EQU    BASE+2
0013 = RDFNL    EQU    BASE+3
0001 = EOC      EQU    1
0080 = EOS      EQU    80H
0000 = DCMD    EQU    0
;
;      GENERAL I/O ASSIGNMENTS
;
00F4 = TDATA    EQU    OF4H    ;TTY DATA
00F5 = TSTAT    EQU    OF5H    ;TTY STATUS
00F5 = TCMD     EQU    OF5H    ;TTY CONTROL
00F6 = CDATA    EQU    OF6H    ;CRT DATA
00F7 = CSTAT    EQU    OF7H    ;CRT STATUS
00F7 = CCMD     EQU    OF7H    ;CRT CONTROL
00FC = INTMSK   EQU    OFCH    ;INTERRUPT MASK
00FF = RCLK     EQU    OFFH    ;REAL TIME CLOCK
;
;      GENERAL EQUATES
;
0005 = ENTRY    EQU    005H    ;EDOS ENTRY POINT
0000 = BOOT     EQU    00H     ;BOOT POINT
005C = TFCB     EQU    05CH    ;DEFAULT FCB
0080 = TBUFF    EQU    080H    ;DEFAULT BUFFER
0001 = TXRDY    EQU    1
0002 = RXRDY    EQU    2
000D = CR       EQU    0DH
000A = LF       EQU    0AH
;*****BUFFER ALLOCATION &*****

```


DATA ORGANIZATION

```

; ; ***** VARIABLE AREA *****
;

0100          ORG    100H      ;VARIABLE AREA
0100 C30004      JMP    BEGIN
0103 5245414420MSG1: DB     'READ ERROR $'
010F 5752495445MSG2: DB     'WRITE ERROR $'
011C 4449534B20MSG3: DB     'DISK FULL $'
0127 4449524543MSG4: DB     'DIRECTORY FULL $'
0137 494E56414CMSG5: DB     'INVALID INPUT PARAMETER $'
0150 0DODOD414EMSG6: DB     ODH,ODH,ODH,'ANY CHANGES? Y/N $'
0165 0DODOD4544MSG7: DB     ODH,ODH,ODH,'EDIT CONTROL FILES'
017E 0DODOD4441MSG8: DB     ODH,ODH,ODH,'DATA DISK PROTECT$'
0193 54494D4520MSG10: DB    'TIME           SVO      SVI $'
01AE 4441544120MSG11: DB    'DATA TRUNCATED $'
01BE 474F4F4420MSG12: DB    'GOOD RUN? Y/N $'
01CD 00434F4E54CNTRL: DB   0, 'CONTROL      ',0,0,0,0,0,0,0
01EO 0050524F54PRTCT: DB   0, 'PROTECT      ',0,0,0,0,0,0,0
01F3 0043414C56CALIB: DB   0, 'CALVALU      ',0,0,0,0,0,0,0
0206 0044415441DATA: DB   0, 'DATA         ',0,0,0,0,0,0,0,0
021A 00          EOFLG: DB   0
021B 0000        TIME: DW   0
021D 0000        TIMO: DW   0
021F 0000        GOTO: DW   0
0221 0000        POINT: DW  0      ;BUFFER POINTER
0223 0000        SCNTR: DW  0      ;SCAN COUNTER
0225 0000000000WORK: DB   0,0,0,0,0,0      ;WORKING AREA
022E 0000        PAGER: DW  0      ;PAGE COUNTER
022D 00          RCDS: DB   0      ;RECORDS STORAGE
022E 00          SV00: DB   0      ;INITIAL SCANIVALVE 0 POS
022F 00          SV01: DB   0      ;FINAL SCANIVALVE 0 POS
0230 00          SV10: DB   0      ;INITIAL SCANIVALVE 1 POS
0231 00          SV11: DB   0      ;FINAL SCANIVALVE 1 POS
0232 00          FLAG0: DB   0      ;FLAG0
0233 00          FLAG1: DB   0      ;FLAG1
2000          ORG    2000H      ;START OF DATA AREA
DBUF:
2000 00          ICHNL: DB   0
2001 00          FCHNL: DB   0
2002 00          SVO: DB   0
2003 00          SV1: DB   0
2004 0000        SCANS: DW  0
2006 0000        SCNRT: DW  0
2008 0000        FREQ: DW   0
200A 0000        DUMY: DW   0
200C 00000000      DW   0,0
0400          ORG    400H      ;START OF PROGRAM AREA
BEGIN:
0400 31FF1F      LXI    SP,1FFFH;INITIALIZE STACK
0403 214207      LXI    H,TSVC ;LOAD INTERRUPT VECTOR

```


0406	3EC3	MVI	A,0C3H
0408	320800	STA	08H
040B	220900	SHLD	OSH
040E	CD1404	CALL	AUTO
0411	C30000	JMP	BOOT
;*****			
; AUTO - AUTOMATIC CONTROL SEQUENCE			
; USES THE EXISTING CONTROL FILE IF			
; IF VALID, SCANS THE SPECIFIED ANALOG			
; CHANNELS AND RECORDS DATA ON DISK			
;*****			
AUTO:			
0414	CD1705	CALL	PRLOAD ;VALID CONTROL FILE?
0417	210F02	LXI	H,DATA+S ;ADDR OF EXTENSION
041A	3E30	MVI	A,'0' ;ASCII ZERO
041C	77	MOV	M,A
041D	23	INX	H
041E	77	MOV	M,A
041F	23	INX	H
0420	77	MOV	M,A
0421	3A2E02	LDA	SVO0 ;FETCH INITIAL CHANNEL
0424	320220	STA	SVO ;INITIALIZE SVO
0427	3A3002	LDA	SV10 ;FETCH INITIAL CHANL
042A	320320	STA	SV1 ;INITIALIZE SV1
042D	CD4108	CALL	CRLF ;CARRIAGE RET LN FEED
0430	119301	LXI	D,MSG10 ;"TIME,SVO,SV1"
0433	CD1108	CALL	PRINT
0436	AF	XRA	A ;CLEAR ACCUMULATOR
0437	323202	STA	FLAG0 ;CLEAR FLAG0
043A	323302	STA	FLAG1 ;CLEAR FLAG1
AUT10:			
043D	110040	LXI	D,4000H ;SET HIGH ADDRESS
0440	211020	LXI	H,DEUF+10H
0443	0E00	MVI	C,0
0445	CDE1F9	CALL	OFSE1H
0448	CDE808	CALL	SETVLV
044B	2A1B02	LHLD	TIME ;FETCH CURRENT TIME
044E	CD3408	CALL	PRHL ;PRINT H,L ON CRT
0451	CDOB05	CALL	TAB
0454	3A0220	LDA	SVO ;FETCH
0457	CD2708	CALL	PHEX ;PRINT ASCII PAIR
045A	CDOB05	CALL	TAB
045D	3A0320	LDA	SV1
0460	CD2708	CALL	PHEX
0463	CDOE05	CALL	TAB
0466	CDC405	CALL	SCAN
0469	2A2102	LHLD	POINT ;FETCH BUFFER POINTER
046C	7C	MOV	A,H
046D	D620	SUI	20H
046F	67	MOV	H,A
0470	29	DAD	H ;SHIFT LEFT ONE

0471 D27E04	JNC	AUT20	;
0474 26FF	MVI	H,OFFH	;SET MAX FILE LENGTH
0476 E5	PUSH	H	
0477 11AE01	LXI	D,MSGII	;"DATA TRUNCATED"
047A CD1108	CALL	PRINT	
047D E1	POP	H	
AUT20:			
047E 7C	MOV	A,H	;NUMBER RCDs TO WRITE
047F 3C	INR	A	;INCREMENT BY ONE
0480 322D02	STA	RCDS	;STORE IN RCD COUNTER
0483 210020	LXI	H,DBUF	;POINT TO BEG OF DATA
0486 110602	LXI	D,DATA	;DATA FCB
0489 CD9507	CALL	WRFILE	;WRITE THE DATA FILE
048C 3A2F02	LDA	SVOI	;FETCH LST TO BE SCND
048F 47	MOV	B,A	;
0490 3A0220	LDA	SVO	;FETCH CURRENT SVO
0493 B8	CMP	B	;SAME?
0494 C2A604	JNZ	AUT22	;NO - DON'T SET FLAG0
AUT21:			
0497 3EFF	MVI	A,OFFH	;
0499 323202	STA	FLAG0	;SET FLAG0
049C 3A2E02	LDA	SVOO	;FETCH FIRST TO SCAN
049F 3D	DCR	A	
04A0 320220	STA	SVO	;RESET CURRENT CHNL
04A3 C3AB04	JMP	AUT24	
AUT22:			
04A6 FE18	CPI	24	;MAX VALUE EXCEEDED?
04A8 CA9704	JZ	AUT21	;YES - SET FLAG0
AUT24:			
04AB 3A3102	LDA	SVII	;LAST SVI TO SCAN
04AE 47	MOV	B,A	;
04AF 3A0320	LDA	SVI	;FETCH CURRENT SVI
04B2 B8	CMP	B	;SAME?
04B3 C2C504	JNZ	AUT32	;NO - DON'T SET FLAG1
AUT31:			
04B6 3EFF	MVI	A,OFFH	;
04B8 323302	STA	FLAG1	;SET FLAG1
04BB 3A3002	LDA	SVIO	;FETCH 1ST TO SCAN
04BE 3D	DCR	A	
04BF 320320	STA	SVI	;RESET CURRENT CHNL
04C2 C3CA04	JMP	AUT34	
AUT32:			
04C5 FE30	CPI	48	;MAX VALUE EXCEEDED?
04C7 CAB604	JZ	AUT31	;YES - SET FLAG1
AUT34:			
04CA 3A3202	LDA	FLAG0	;FETCH FLAG0
04CD 47	MOV	B,A	
04CE 3A3302	LDA	FLAG1	;FETCH FLAG1
04D1 4F	MOV	C,A	
04D2 A0	ANA	B	;BOTH SET?
04D3 C2F504	JNZ	EXIT	;YES - EXIT AUTO MODE

NEXT:

04D6	3A0220	LDA	SVO
04D9	3C	INR	A ;STEP ONCE
04DA	320220	STA	SVO
04DD	3A0320	LDA	SVI
04E0	3C	INR	A
04E1	320320	STA	SVI ;STEP ONCE
04E4	211102	LXI	H,DATA+1H ;LOAD ADDR OF EXT

NEXT1:

04E7	7E	MOV	A,M ;FETCH ASCII VALUE OF LSB
04E8	3C	INR	A ;INCREMENT IT
04E9	77	MOV	M,A ;RESTORE IN MEMORY
04EA	FE3A	CPI	'.'
04EC	DA3D04	JC	AUT10 ;NO - SCAN AGAIN
04EF	3630	MVI	M,30H ;RESTORE IN MEMORY
04F1	2B	DCX	H ;GET NEXT MSB
04F2	C3E704	JMP	NEXT1 ;ADJUST NEXT MSB

EXIT:

04F5	11BE01	LXI	D,MSG12 ;"GOOD RUN Y/N"
04F8	CD1108	CALL	PRINT
04FB	CDFC07	CALL	CRTIN ;GET CHAR FROM CONS
04FE	FE59	CPI	'Y' ;YES RESPONSE?
0500	CO	RNZ	;NO - RETURN
0501	11E001	LXI	D,PRTCT
0504	CD5106	CALL	SETFCB
0507	CDAE08	CALL	MAKE ;WRITE PROTECT FILE
050A	C9	RET	

TAB:

050B	0608	MVI	B,8 ;COUNTER FOR 8 BLANKS
------	------	-----	---------------------------

TAB1:

050D	3E20	MVI	A,20H ;ASCII BLANK
050F	CD0508	CALL	CRTOUT ;SEND TAB CHAR TO CRT
0512	05	DCR	B
0513	C20D05	JNZ	TAB1
0516	C9	RET	

;* PRLOAD - READS IN CONTROL FILE AND
; EXECUTES IF VALID
;*****
;

PRLOAD:

0517	CD5008	CALL	LOGA ;LOGIN DISK A
051A	11CD01	LXI	D,CNTRL ;PT TO CNTRL FILE BLK
051D	211020	LXI	H,DBUF+10H ;PT TO DATA BUFFER
0520	CD7007	CALL	RDFILE ;RD CNTRL FILE
0523	111020	LXI	D,DBUF+10H
0526	D5	PUSH	D ;SAVE
0527	CD1108	CALL	PRINT ;DISPLAY CONTROL FILE
052A	E1	POP	H ;RESTORE H
052B	CDDB06	CALL	COLON ;LOOK FOR FIRST COLON
052E	CDDB06	CALL	COLON ;LOOK FOR 2ND COLON

0531	CDDB06	CALL	COLON	;FIND THIRD COLON
0534	E5	PUSH	H	
0535	CDE306	CALL	FLTHX	;FLOATING TO HEX
0538	220420	SHLD	SCANS	;STORE HEX IN SCANS
053B	E1	POP	H	
053C	CDDB06	CALL	COLON	;FIND NEXT COLON
053F	E5	PUSH	H	
0540	CDE306	CALL	FLTHX	;FLOATING TO HEX
0543	220620	SHLD	SCNRT	;STORE IN SCAN RATE
0546	E1	POP	H	
0547	CDDB06	CALL	COLON	;FIND NEXT COLON
054A	E5	PUSH	H	
054B	CDE306	CALL	FLTHX	;CONVERT
054E	7D	MOV	A,L	;FETCH RETURNED VALUE
054F	320020	STA	ICHNL	;PUT IN INITIAL CHNL
0552	E1	POP	H	
0553	CDDB06	CALL	COLON	
0556	E5	PUSH	H	
0557	CDE306	CALL	FLTHX	
055A	7D	MOV	A,L	;FETCH RETURNED BYTE
055B	320120	STA	FCHNL	;STORE IN FINAL CHNL
055E	E1	POP	H	
055F	CDDB06	CALL	COLON	
0562	E5	PUSH	H	
0563	CDE306	CALL	FLTHX	
0566	7D	MOV	A,L	
0567	322E02	STA	SV00	;1ST SCANIVALVE 0 SET
056A	E1	POP	H	
056B	CDDB06	CALL	COLON	
056E	E5	PUSH	H	
056F	CDE306	CALL	FLTHX	
0572	7D	MOV	A,L	
0573	322F02	STA	SV01	;LST SCANIVALVE 0 SET
0576	E1	POP	H	
0577	CDDB06	CALL	COLON	
057A	E5	PUSH	H	
057B	CDE306	CALL	FLTHX	
057E	7D	MOV	A,L	
057F	323002	STA	SV10	;1ST SCANIVALVE 1 SET
0582	E1	POP	H	
0583	CDDB06	CALL	COLON	
0586	E5	PUSH	H	
0587	CDE306	CALL	FLTHX	
058A	7D	MOV	A,L	
058B	323102	STA	SV11	;LST SCANIVALVE 1 SET
058E	E1	POP	H	
		;		
		;	*****	*****
		;	CHECK WITH OPERATOR FOR VALID CONTROL	
		;	FILE	
		;	*****	*****


```

058F 115001    LXI    D,MSG6 ;"ANY CHANGES?"
0592 CD1108    CALL   PRINT
0595 CDFC07    CALL   CRTIN ;GET CHAR FROM CONS
0598 FE4E      CPI    'N'  ;"NO" RESPONSE?
059A 116501    LXI    D,MSG7 ;"EDIT CONTROL FILE"
059D C2DA07    JNZ    ERREX ;EXIT PROGRAM
;*****WRITE THE CONTROL FILE ON DISK B*****
;*****WRITE THE CONTROL FILE ON DISK B*****
05A0 3A6B00    LDA    TFCB+15 ;FETCH RECORD COUNT
05A3 3C        INR    A
05A4 322D02    STA    RCDS  ;STORE IN MEMORY
05A7 CD5808    CALL   LOGB  ;LOGIN DISK B
05AA 11E001    LXI    D,PRTCT ;PT TO PROTECT BLOCK
05AD CD5106    CALL   SETFCB ;SET FCB
05B0 CD8E08    CALL   SEARCH ;SEARCH FOR PROTECT
05B3 3C        INR    A      ;DOES IT EXIST?
05B4 117B01    LXI    D,MSG8 ;"DATA DISK PROTECTED"
05B7 C2DA07    JNZ    ERREX ;YES - EXIT PROGRAM
05BA 11CD01    LXI    D,CNTRL ;PT TO CONTROL BLOCK
05BD 211020    LXI    H,DBUF+10H ;PT TO STORED INFO
05C0 CD9507    CALL   WRFILE ;WRITE CONTROL TO B
05C3 C9        RET
;*****SCAN - COMPLETES N SCANS OF M CHNLS*****
;ENTRY: SCANS = NUMBER OF SCANS
;ICHNL = INITIAL CHNL TO SCAN
;FCHNL = FINAL CHANNEL TO SCAN
;TIME = 2 BYTE TIME IN MS
;EXIT: REGISTERS UNCHANGED
;*****SCAN:*****
05C4 E5        PUSH   H
05C5 D5        PUSH   D
05C6 C5        PUSH   B
05C7 F5        PUSH   PSW
05C8 3A0020    LDA    ICHNL ;FETCH INITIAL CHANNEL
05CB D311      OUT   START ;SET IT
05CD 3A0120    LDA    FCHNL ;FETCH FINAL CHANNEL
05D0 D312      OUT   FINAL ;SET IT
05D2 2A0620    LHLD   SCNRT ;FETCH SCAN RATE
05D5 221D02    SHLD   TIMO  ;STORE IN TIME FACTOR
05D8 21FD05    LXI    H,SCANA ;GET INT SVC JUMP
05DB CD2E07    CALL   TIMER ;ENABLE INT TIMER
05DE 2A0420    LHLD   SCANS ;FETCH # OF SCANS
05E1 222302    SHLD   SCNTR ;PUT IN SCAN COUNTER
05E4 2A1E02    LHLD   TIME  ;FETCH TIME
05E7 211020    LXI    H,DBUF+10H ;GET BUFFER LOCAT
05EA 222102    SHLD   POINT ;STORE IN POINTER

```

SCAN8:

05ED	2A2302	LHLD	SCNTR	;FETCH SCAN COUNT
05F0	7C	MOV	A,H	;
05F1	B5	ORA	L	;FINISHED?
05F2	C2ED05	JNZ	SCAN8	;NO - KEEP SCANNING
05F5	CD6907	CALL	TIMOFF	;KILL INTERRUPT ROUTINE
05F8	F1	POP	PSW	
05F9	C1	POP	B	
05FA	D1	POP	D	
05FB	E1	POP	H	;RESTORED
05FC	C9	RET		
SCANA:				
05FD	E5	PUSH	H	
05FE	D5	PUSH	D	
05FF	C5	PUSH	B	
0600	F5	PUSH	PSW	
0601	2A0620	LHLD	SCNRT	;GET SCAN RATE
0604	221D02	SHLD	TIMO	;RESET TIMEOUT FACTOR
0607	2A2102	LHLD	POINT	;GET BUFFER POINTER
060A	3E00	MVI	A,DCMD	;INITIALIZATION CMD
060C	D310	OUT	DSTAT	;SET FLIP FLOPS
060E	3A1E02	LDA	TIME	;GET TIME
0611	77	MOV	M,A	;STORE IN BUFFER
0612	23	INX	H	;MOVE POINTER
0613	3A1C02	LDA	TIME+1	;GET 2ND BYTE OF TIME
0616	77	MOV	M,A	;STORE IN DATA CELL
0617	23	INX	H	;MOVE POINTER
SCANO:				
0618	D313	OUT	CONV	;START CONVERSION
061A	3E02	MVI	A,2	;SET DELAY COUNTER
061C	00	NOP		;EXTRA DELAY
SCAN1:				
061D	3D	DCR	A	;QUIT LOOP?
061E	C21D06	JNZ	SCAN1	;NO - KEEP COUNTING
0621	DE10	IN	DSTAT	;FETCH STATUS
0623	E601	ANI	EOC	
0625	C23106	JNZ	SCAN3	;YES - GO READ DATA
0628	3600	MVI	M,00H	;INSERT ERROR FLAG
062A	23	INX	H	;MOVE POINTER
062E	3600	MVI	M,00H	;INSERT ERROR FLAG
062D	23	INX	H	;MOVE POINTER
062E	C33906	JMP	SCAN4	;READ NEXT CHANNEL
SCAN3:				
0631	DB11	IN	DDATA	;GET LSB OF DATA
0633	77	MOV	M,A	;STORE
0634	23	INX	H	;MOVE POINTER
0635	DB11	IN	DDATA	;GET MSB OF DATA
0637	77	MOV	M,A	;STORE
0638	23	INX	H	;MOVE POINTER
SCAN4:				
0639	DE10	IN	DSTAT	;FETCH STATUS
063B	E680	ANI	EOS	;END OF SCAN?

063D	CA1806	JZ	SCAN0	; NO - CONV NEXT CHNL
0640	222102	SHLD	POINT	; STORE POINTER
0643	2A2302	LHLD	SCNTR	; FETCH SCAN COUNT
0646	2B	DCX	H	; COUNT DOWN ONE
0647	222302	SHLD	SCNTR	; RESTORE UPDATED COUNT
064A	F1	POP	PSW	
064B	C1	POP	B	
064C	D1	POP	D	
064D	E1	POP	H	
064E	C35C07	JMP	TSVCO	; RETURN
;*****				
; SETFCB - MOVES AN INITIAL FCB INTO				
; TFCB AREA				
; ENTRY: D,E = FILNAME BLOCK				
;*****				
;SETFCB:				
0651	E5	PUSH	H	;SAVE
0652	215C00	LXI	H,05CH	;DEFAULT FCB
0655	C5	PUSH	B	;SAVE
0656	0613	MVI	B,19	;SET COUNTER
SETFI:				
0658	1A	LDAX	D	;FETCH BYTE TO MOVE
0659	77	MOV	M,A	;STORE IN TFCE AREA
065A	23	INX	H	;INCREMENT H
065B	13	INX	D	;INCREMENT D
065C	05	DCR	B	;FINISHED?
065D	C25806	JNZ	SETFI	;NO - GET ANOTHER BYTE
0660	AF	XRA	A	;CLEAR ACCUM
0661	327C00	STA	TFCB+32	
0664	C1	POP	B	
0665	E1	POP	H	
0666	C9	RET		
;*****				
; DECHX - CONVERTS 6 BCD BYTES TO 2 HEX				
;* ENTRY: SIX BCD BYTES STARTING				
; AT 'WORK'				
;* EXIT: TWO HEX AT 'WORK+4'				
;*****				
;DECHX:				
0667	212502	LXI	H,WORK	;POINT TO WORK AREA
066A	54	MOV	D,H	;DUPLICATE IN D
066B	5D	MOV	E,L	;DUPLICATE IN E
066C	CD8506	CALL	HEXBIN	;CONVERT 1ST PR TO HEX
066F	12	STAX	D	;STORE IN WORK
0670	13	INX	D	;MOVE STORAGE POINTER
0671	CD8506	CALL	HEXBIN	;CONVERT SECOND PAIR
0674	12	STAX	D	;STORE IN WORK+1
0675	13	INX	D	;MOVE POINTER
0676	CD8506	CALL	HEXBIN	;CONVERT THIRD PAIR

0679	12	STAX	D
067A	13	INX	D
067B	AF	XRA	A
067C	12	STAX	D
067D	13	INX	D
067E	212502	LXI	H, WORK
0681	CD8E06	CALL	BCD2HX
0684	C9	RET	;RETURN

;SUBROUTINES - BCD2HX AND HEXBIN			

;			
;			
HEXBIN:			
0685	7E	MOV	A,M ;FETCH 1ST BYTE
0686	17	RAL	
0687	17	RAL	
0688	17	RAL	
0689	17	RAL	;SHIFTED TO HIGH NIB
068A	23	INX	H ;MOVE POINTER
068B	B6	ORA	M ;BRING IN LOW NIBBLE
068C	23	INX	H ;MOVE POINTER
068D	C9	RET	;RETURN
BCD2HX:			
068E	CDC906	CALL	BCDBN
0691	23	INX	H
0692	CDC906	CALL	BCDBN
0695	23	INX	H
0696	CDC906	CALL	BCDBN
0699	CDS06	CALL	MULT
069C	C9	RET	
MULT:			
069D	3A2502	LDA	WORK
06A0	5F	MOV	E,A
06A1	1600	MVI	D,O
06A3	210000	LXI	H,O
06A6	CDC106	CALL	MUL10
06A9	EB	XCHG	
06AA	210000	LXI	H,O
06AD	CDC106	CALL	MUL10
06B0	3A2602	LDA	WORK+1
06B3	1600	MVI	D,O
06E5	5F	MOV	E,A
06B6	CDC106	CALL	MUL10
06B9	3A2702	LDA	WORK+2
06BC	1600	MVI	D,O
06BE	5F	MOV	E,A
06BF	19	DAD	D
06C0	C9	RET	
MUL10:			
06C1	0664	MVI	B,100

MUL20:

06C3	19	DAD	D
06C4	05	DCR	B
06C5	C2C306	JNZ	MUL20
06C8	C9	RET	

BCDBN:

06C9	7E	MOV	A,M
06CA	4F	MOV	C,A
06CB	E60F	ANI	OFH
06CD	5F	MOV	E,A
06CE	79	MOV	A,C
06CF	E6FO	ANI	OFOH
06D1	0F	RRC	
06D2	0F	RRC	
06D3	4F	MOV	C,A
06D4	0F	RRC	
06D5	0F	RRC	
06D6	81	ADD	C
06D7	07	RLC	
06D8	83	ADD	E
06D9	77	MOV	M,A
06DA	C9	RET	

; COLON - FINDS THE NEXT COLON ":"
; IN MEMORY STARTING AT H,L
; EXIT: H,L POINTS TO MEMORY
; POSITION AFTER ":"

COLON:

06DB	3E3A	MVI	A,':'	
06DD	BE	COLIO:	CMP	M
06DE	23		INX	H
06DF	C2DD06		JNZ	COLIO
06E2	C9		RET	

; FLTHX - SCANS A BLOCK OF MEMORY FOR
; BCD ASCII CHARACTERS AND
; CONVERTS THEM TO A PAIR OF
; HEX BYTES

FLTHX:

06E3	0606	MVI	E,6	;SET LOOP COUNTER
06E5	E5	PUSH	H	;SAVE
06E6	C5	PUSH	B	;SAVE
06E7	212502	LXI	H,WORK	;INITIALIZE
06EA	AF	XRA	A	; WORK
06EB	77	FLT04:	MOV	M,A ; AREA
06EC	23		INX	H ; TO

06ED 05	DCR	B	;	ZEROS
06EE C2EB06	JNZ	FLT04	;	
06F1 C1	POP	B	;RESTORE	
06F2 E1	POP	H	;RESTORE	
FLT05:				
06F3 7E	MOV	A,M	;FETCH FIRST CHAR	
06F4 FE20	CPI	'.'	;IS IT A BLANK?	
06F6 CA0F07	JZ	FLT10	;YES - IGNORE IT	
06F9 FE0D	CPI	CR	;IS IT A CARRIAGE RTN	
06FB CA1307	JZ	FLT20	;YES QUIT SCANNING	
06FE E6F0	ANI	OF0H	;MASK OFF LOW NIBBLE	
0700 FE30	CPI	30H	;IS IT IN HEX RANGE?	
0702 C22807	JNZ	FLT30	;NO - IT IS AN ERROR	
0705 7E	MOV	A,M	;FETCH THE WORD AGAIN	
0706 FE3A	CPI	3AH	;IS IT > 9	
0708 F22807	JP	FLT30	;YES - IT IS AN ERROR	
070B 05	DCR	B	;COUNT AS A VALID HEX	
070C FA2807	JM	FLT30	;ERROR IF > 6 NUMBERS	
FLT10:				
070F 23	INX	H	;STEP MEMORY POINTER	
0710 C3F306	JMP	FLT05	;SCAN AGAIN	
FLT20:				
0713 3E06	MVI	A,6	;	
0715 90	SUB	B	;COMPUTE # DIGITS	
0716 47	MOV	B,A	;STORE IN B	
0717 2B	DCX	H	;BACK SPACE POINTER	
0718 112A02	LXI	D,WORK+5	;POINT TO WORK AREA	
FLT25:				
071B 7E	MOV	A,M	;FETCH NEXT LSB	
071C E60F	ANI	OFH	;CONVERT TO BCD	
071E 12	STAX	D	;STORE IN WORK AREA	
071F 1B	DCX	D	;MOVE POINTER	
0720 2B	DCX	H	;MOVE SOURCE POINTER	
0721 05	DCR	B	;COUNT DOWN	
0722 C21B07	JNZ	FLT25	;DO AGAIN	
0725 C36706	JMP	DECHX	;CONVERT TO HEXBYTE	
FLT30:				
0728 113701	LXI	D,MSG5	;"INVALID INPUT FIELD"	
072B C3DA07	JMP	ERREX		

; TIMER - INTERRUPTS TO SPECIFIED				
; ROUTINE AFTER NN MILLISECONDS				
; ENTRY: H,L = STARTING ADDR				
; OF INTERRUPT SERVICE ROUTINE				
; D,E = TIMEOUT IN MS				
; EXIT: REGISTERS REMAIN UNCHANGED				
; SERVICE ROUTINE IS EXECUTED				
; INTERRUPT ROUTINE SHOULD LOOK				
; LIKE NORMAL SUBROUTINE				

;				

TIMER:

072E F3	DI		
072F 221F02	SHLD	GOTO	;STORE JUMP ADDRESS
0732 DBFC	IN	INTMSK	;FETCH INT MASK
0734 E6FD	ANI	OFDH	;ENABLE TIMER INT
0736 D3FC	OUT	INTMSK	;SET INTERRUPT MASK
0738 3E12	MVI	A,12H	
073A D3FD	OUT	OFDH	;INIT INT CONTROLLER
073C 3E02	MVI	A,02H	
073E D3FF	OUT	OFFH	;START TIMER
0740 FB	EI		
0741 C9	RET		

;
;
;

TSVC:

0742 F3	DI		;DISABLE INTERRUPTS
0743 F5	PUSH	PSW	;SAVE A
0744 E5	PUSH	H	
0745 3E02	MVI	A,02H	
0747 D3FF	OUT	OFFH	;RESET TIMER
0749 2A1B02	LHLD	TIME	;GET TIME
074C 23	INX	H	;UPDATE
074D 221B02	SHLD	TIME	;RESTORE
0750 2A1D02	LHLD	TIMO	;GET TIMEOUT COUNT
0753 2B	DCX	H	;COUNT DOWN
0754 221D02	SHLD	TIMO	;RESTORE IT
0757 7C	MOV	A,H	;GET MSB OF COUNT
0758 B5	ORA	L	;OR WITH LSB OF COUNT
0759 CA6507	JZ	TSVC1	;TO INT ROUTINE IF 0

TSVCO:

075C E1	POP	H	;RESTORE
075D F3	DI		
075E 3E20	MVI	A,20H	;RESTORE INT LEVEL
0760 D3FD	OUT	OFDH	
0762 F1	POP	PSW	;RESTORE
0763 FB	EI		;ENABLE INTERRUPTS
0764 C9	RET		;RETURN

TSVC1:

0765 2A1F02	LHLD	GOTO	;FETCH JUMP ADDRESS
0768 E9	PCHL		;EXECUTE JUMP

;*****
; TIMOFF - TURNS OFF INTERRUPT SERVICE
;*****
;

TIMOFF:

0769 F5	PUSH	PSW	
076A 3E01	MVI	A,01H	
076C D3FF	OUT	OFFH	
076E F1	POP	PSW	
076F C9	RET		


```

;*****
;*      RDFILE - READ AN ENTIRE FILE INTO
;*              MEMORY
;*      ENTRY: STARTING ADDR OF MEMORY BLOCK
;*              IN H,L
;*              ADDR OF FILENAME BLOCK IN D,E
;*****
;

RDFILE:
0770 222E02      SHLD    PAGER   ;STORE POINTER
0773 CD5106       CALL     SETFCB
0776 CD6008       CALL     OPEN    ;OPEN FILE
0779 AF           XRA     A        ;CLEAR ACCUM
077A 321A02       STA     EOFLG   ;CLEAR EOF FLAG

RDF10:
077D 2A2B02      LHLD    PAGER   ;FETCH POINTER
0780 EB           XCHG    SETDMA
0781 CDC608       CALL     READ    ;READ A RECORD
0784 CD7008       CALL     HAFPG   ;MOVE PAGE INDEX
0787 CDC907       CALL     LDA     EOFLG   ;FETCH EOF FLAG
078A 3A1A02       ORA     A        ;EOF FOUND?
078D B7           JZ      RDF10  ;NO - READ NEW PAGE
078E CA7D07       CALL     CLOSE   ;CLOSE FILE
0791 CD6808       RET
0794 C9           ;RETURN

;*****
;*      WRFILE - WRITE A ELOCK OF MEMORY
;*      ENTRY: NUMBER OF RECORDS+1 TO WRITE
;*              STARTING ADDRESS IN H,L
;*****
;

WRFILE:
0795 222E02      SHLD    PAGER   ;SET UP PAGER
0798 CD5106       CALL     SETFCB ;SET FCB
079E 118000       LXI    D,80H
079F CDC608       CALL     SETDMA
07A1 CDEE08       CALL     SEARCH  ;SEARCH FOR EXISTING
07A4 3C           INR     A        ;WAS THERE A MATCH?
07A5 C2AB07       JNZ     WRF05  ;YES - SKIP MAKE
07A8 CDAE08       CALL     MAKE   ;MAKE DIRECTORY ENTRY

WRF05:
07AB CD6008       CALL     OPEN   ;OPEN FILE

WRF10:
07AE 2A2E02      LHLD    PAGER   ;FETCH CURRENT POINTER
07B1 EB           XCHG    SETDMA ;PUT POINTER IN D,E
07B2 CDC608       CALL     LDA     RCDS   ;RECORDS TO WRITE

WRF15:
07B5 CD8A08       CALL     WRITE  ;WRITE A RECORD
07B8 CDC907       CALL     HAFPG  ;MOVE PAGE INDEX
07BE 3A2D02       LDA     RCDS   ;RECORDS TO WRITE
07BF 216E00       LXI     H,TFCB+15

```



```

07C1 BE      CMP     M
07C2 C2B507  JNZ     WRF15 ;NO-WRITE NEW RECORD
07C5 CD6808  CALL    CLOSE  ;CLOSE THE FILE
07C8 C9      RET    ; RETURN
;*****
;      SUBROUTINE HAFPGE - ADJUSTS DMA ADDRESS
;      HALF PAGE OF MEMORY
;*****
;
HAFPG:
07C9 E5      PUSH   H      ;SAVE
07CA 2A2B02  LHLD   PAGER
07CD 118000  LXI    D,0128 ;
07D0 19      DAD    D      ;ADD 128 TO PAGER
07D1 222B02  SHLD   PAGER ;RESTORE UPDATD PAGER
07D4 EB      XCHG   ;SWITCH H,L WITH D,E
07D5 CDC608  CALL    SETDMA ;SET DMA
07D8 E1      POP    H
07D9 C9      RET
;*****
;      ERREX - FATAL ERRORS EXIT VIA THIS
;      ENTRY: D,E CONTAIN MESSAGE ADDRESS
;      EXIT:   BOOT TO DOS
;*****
;
ERREX:
07DA CD1108  CALL    PRINT  ;PRINT THE MESSAGE
07DD 115C00  LXI    D,TFCB ;TEMPORARY FCB
07E0 CD6808  CALL    CLOSE  ;CLOSE THE FILE
07E3 C30000  JMP    BOOT  ;BOOT TO DOS
;*****
;      DRIVERS - I/O SUBROUTINES CONTAINING
;      TTY, CRT, DISK, I/O PORTS
;*****
;
;      TTY DRIVERS
;
TTYIN:
07E6 DBF5    IN     TSTAT  ;FETCH STATUS
07E8 E602    ANI   RXRDY  ;IS RECEIVER READY
07EA CAE607  JZ    TTYIN  ;NO KEEP LOOKING
07ED DBF4    IN     TDATA  ;FETCH DATA BYTE
07EF C9      RET    ;RETURN W/ BYTE IN A
;
TTYOUT:
07F0 F5      PUSH   PSW   ;SAVE DATA BYTE
07F1 D2F5    IN     TSTAT  ;FETCH STATUS
07F3 E601    ANI   TXRDY  ;TRANSMITTER RDY?
07F5 CAF007  JZ    TTYOUT ;NO - WAIT UNTIL RDY
07F8 F1      POP    PSW   ;BRING BACK DATA BYTE
07F9 D3F4    OUT   TDATA  ;OUTPUT TO TTY
07FB C9      RET    ;RETURN
;
```


	CRTIN:		
07FC DEF7	IN	CSTAT	;FETCH CRT STATUS
07FE E602	ANI	RXRDY	;RECEIVER READY ?
0800 CAFC07	JZ	CRTIN	;NO - WAIT UNTIL RDY
0803 DBF6	IN	CDATA	;FETCH INPUT BYTE
	CRTOUT:		
0805 F5	PUSH	PSW	;SAVE DATA BYTE
	CRT1:		
0806 DBF7	IN	CSTAT	;FETCH CRT STATUS
0808 E601	ANI	TXRDY	;TXMITTER READY ?
080A CA0608	JZ	CRTI	;NO - WAIT UNTIL RDY
080D F1	POP	PSW	;BRING BACK DATA
080E D3F6	OUT	CDATA	;OUTPUT DATA
0810 C9	RET		;RETURN
	PRINT:		
0811 0E09	MVI	C,9	;SET UP FOR BDOS CALL
0813 C30500	JMP	ENTRY	;JUMP TO BDOS
	PNIB:		
0816 E60F	ANI	OFH	;MASK LOW 4 BITS
0818 FE0A	CPI	10	
081A D22208	JNC	P10	
081D C630	ADI	'0'	
081F C30508	JMP	CRTOUT	
	P10:		
0822 C637	ADI	'A' - 10	
0824 C30508	JMP	CRTOUT	
	PHEX:		
0827 F5	PUSH	PSW	
0828 0F	RR		
0829 0F	RR		
082A 0F	RR		
082B 0F	RR		
082C CD1608	CALL	PNIB	
082F F1	POP	PSW	
0830 CD1608	CALL	PNIB	
0833 C9	RET		
	PRHL:		
0834 E5	PUSH H		
0835 7C	MOV A,H		
0836 CD2708	CALL PHEX		
0839 E1	POP H		
083A E5	PUSH H		
083B 7D	MOV A,L		
083C CD2708	CALL PHEX		
083F E1	POP H		
0840 C9	RET		
	CRLF:		
0841 3E0D	MVI A,ODH		;CARRIAGE RETURN
0843 C0508	CALL CRTOUT		
0846 3EOA	MVI A,OAH		;LINE FEED
0848 C30508	JMP CRTOUT		

	INITIAL:	
0845 0E0D	MVI	C,13
084D C30500	JMP	ENTRY
	LOGA:	
0850 110000	LXI	D,00H
0853 0E0E	MVI	C,14
0855 C30500	JMP	ENTRY
	LOGB:	
0858 110100	LXI	D,01H
085B 0E0E	MVI	C,14
085D C30500	JMP	ENTRY
	OPEN:	
0860 115C00	LXI	D,05CH
0863 0EOF	MVI	C,15
0865 C30500	JMP	ENTRY
	CLOSE:	
0868 115C00	LXI	D,05CH
086B 0E10	MVI	C,16
086D C30500	JMP	ENTRY
	READ:	
0870 115C00	LXI	D,05CH
0873 0E14	MVI	C,20
0875 CD0500	CALL	ENTRY
0878 B7	ORA	A
0879 C8	RZ	;RETURN IF NO ERRORS
087A 3D	DCR	A ;IS IT AN EOF?
087B C28408	JNZ	RDO10 ;NO -UNWRITTEN DATA
087E 3EOF	MVI	A,OFH ;SET EOF FLAG
0880 321A02	STA	EOFGLG ;
0883 C9	RET	
	RDO10:	
0884 110301	LXI	D,MSG1 ;'READ ERROR'
0887 C3DA07	JMP	ERREX
	WRITE:	
088A 115C00	LXI	D,05CH
088D 0E15	MVI	C,21
088F CD0500	CALL	ENTRY
0892 B7	ORA	A
0893 C8	RZ	;RETURN IF NO ERRORS
0894 3D	DCR	A ;
0895 C29E08	JNZ	WRO10 ;
0898 110F01	LXI	D,MSG2 ;'WRITE ERROR'
089B C3DA07	JMP	ERREX
	WRO10:	
089E 3D	DCR	A
089F C2A808	JNZ	WR020
08A2 111C01	LXI	D,MSG3 ;'DISK FULL'
08A5 C3DA07	JMP	ERREX
	WR020:	
08A8 112701	LXI	D,MSG4 ;'DIRECTORY FULL'
08AB C3DA07	JMP	ERREX

MAKE:

08AE	115C00	LXI	D,05CH
08B1	0E16	MVI	C,22
08B3	CD0500	CALL	ENTRY
08B6	3C	INR	A
08B7	CO	RNZ	
08B8	112701	LXI	D,MSG4 ; 'DIRECTORY FULL'
08BB	C3DA07	JMP	ERREX

SEARCH:

08BE	115C00	LXI	D,05CH
08C1	0E11	MVI	C,17
08C3	C30500	JMP	ENTRY

SETDMA:

08C6	0E1A	MVI	C,26
08C8	C30500	JMP	ENTRY

; SETVLV - ALLOWS USER TO SET UP PROPER
; SCANIVALE POSITION BEFORE CONTINUING
; *****
;

08CB	494E505554MESS:	DB	'INPUT FREQUENCY TYPE RETURN \$'
	SETVLV:		

08E8	CD4108	CALL	CRLF
08EB	11CB08	LXI	D,MESS
08EE	CD1108	CALL	PRINT
08F1	CDFC07	CALL	CRTIN
08F4	E60F	ANI	OFH
08F6	322702	STA	WORK+2
08F9	CDFC07	CALL	CRTIN
08FC	E60F	ANI	OFH
08FE	322802	STA	WORK+3
0901	CDFC07	CALL	CRTIN
0904	E60F	ANI	OFH
0906	322902	STA	WORK+4
0909	CDFC07	CALL	CRTIN
090C	E60F	ANI	OFH
090E	322A02	STA	WORK+5
0911	CDFC07	CALL	CRTIN
0914	E67F	ANI	7FH
0916	FE0D	CPI	CR
0918	C2E808	JNZ	SETVLV
091B	AF	XRA	A
091C	322502	STA	WORK
091F	322602	STA	WORK+1
0922	CD6706	CALL	DECHX
0925	7D	MOV	A,L
0926	320820	STA	SCNRT + 2
0929	7C	MOV	A,H
092A	320920	STA	SCNRT+3
092D	C9	RET	
092E		END	100H


```

;**
;
;**
;
;
;                                GENERAL I/O ASSIGNMENTS
;
00F4 =      TDATA    EQU      0F4H      ;TTY DATA
00F5 =      TSTAT    EQU      0F5H      ;TTY STATUS
00F5 =      TCMD     EQU      0F5H      ;TTY CONTROL
00F6 =      CDATA    EQU      0F6H      ;CRT DATA
00F7 =      CSTAT    EQU      0F7H      ;CRT STATUS
00F7 =      CCMD     EQU      0F7H      ;CRT CONTROL
;
;
;                                GENERAL EQUATES
;
0005 =      ENTRY    EQU      005H      ;EDOS ENTRY POINT
0000 =      BOOT     EQU      00H       ;BOOT POINT
005C =      TFCE     EQU      05CH      ;DEFAULT FCB
0080 =      TBUFF    EQU      080H      ;DEFAULT BUFFER LOCATION
0001 =      TXRDY    EQU      1
0002 =      RXRDY    EQU      2
000D =      CR        EQU      ODH
000A =      LF        EQU      OAH
;
;**                                BUFFER ALLOCATION &
;                                DATA ORGANIZATION
;
;
;**                                ;
;                                ;
;                                ;
;                                ;
;                                ;
;                                ;
;
0100          ORG      100H      ;VARIABLE AREA
0100 C30004    JMP
0103 5245414420MSG1: DB      'READ ERROR $'
010F 5752495445MSG2: DB      'WRITE ERROR $'
011C 4449534B20MSG3: DB      'DISK FULL $'
0127 4449524543MSG4: DB      'DIRECTORY FULL $'
0137 4441544120MSG11: DB     'DATA TRUNCATED $'
0147 0044415441DATA:  DB     0,'DATA      ',0,0,0,0,0,0,0,0
015B 00          EOFLG:   DE     0
015C 0000        TIME:    DW     0
015E 0000        TIMO:    DW     0
0160 0000        GOTO:    DW     0
0162 0000        POINT:   DW     0      ;BUFFER POINTER
0164 0000        SCNTR:   DW     0      ;SCAN COUNTER
0166 0000000000WORK:  DB     0,0,0,0,0,0      ;WORKING AREA B
016C 0000        PAGER:   DW     0      ;PAGE COUNTER
016E 00          RCDS:    DB     0      ;RECORDS TO BE WRITTENS
016F 0000        LASTM:   DW     00     ;LAST WRITTEN LOCATION

```


2000	ORG	2000H	;START OF DATA AREA
0400	ORG	400H	;START OF PROGRAM AREA
0400 31FF1F	LXI	SP,1FFFH	;INITIALIZE STS
0403 CD0904	CALL	TRANS	
0406 C30000	JMP	BOOT	

; TRANS - READS IN DATA FILE FROM DISK B			
; CONVERTS BINARY DATA TO ASCII @			
; REQUIRED BY BASIC ROUTINE			
; ENTRY: THIS PROGRAM IS CALLED %			
; SUBMIT FILE			
; EXIT: CONTROL IS RETURNED TO S			
; FILE			

;			
; SET UP FILE CONTROL BLOCK - READS IN SE			
; TER ISSUED BY SUBMIT FILE			

;			
0409 118200	LXI	D,082H	;ADDRESS OF PARAMETER L
040C 0604	MVI	B,4	;CHARACTER COUNTER
040E 215C00	LXI	H,05CH	;ADDRESS OF FCB
0411 3600	MVI	M,0	
0413 23	INX	H	
0414 1A	LDAX	D	;FETCH CHARACTER
0415 77	MOV	M,A	;STORE IN FCB
0416 13	INX	D	;STEP POINTER
0417 23	INX	H	;STEP DESTINATION POIN
0418 05	DCR	B	;FINISHED?
0419 C21404	JNZ	TRANI	;NO KEEP TRANSFERRING
041C 13	INX	D	
041D 3E20	MVI	A,20H	
041F 77	MOV	M,A	
0420 23	INX	H	
0421 77	MOV	M,A	
0422 23	INX	H	
0423 77	MOV	M,A	
0424 23	INX	H	
0425 77	MOV	M,A	
0426 23	INX	H	
0427 1A	LDAX	D	
0428 77	MOV	M,A	
0429 23	INX	H	
042A 13	INX	D	
042B 1A	LDAX	D	
042C 77	MOV	M,A	
042D 23	INX	H	

042E	13	INX	D
042F	1A	LDAX	D
0430	77	MOV	M,A
0431	0618	MVI	B,24
0433	AF	XRA	A ;CLEAR A
TRAN2:			
0434	23	INX	H
0435	77	MOV	M,A
0436	05	DCR	B
0437	C23404	JNZ	TRAN2
;*****			
; READ IN DATA FILE			
;*****			
;			
043A	CDC405	CALL	LOGB ;LOGIN DISK B
043D	210020	LXI	H,DBUF ;BUFFER AREA
0440	226C01	SHLD	PAGER ;SET PAGER
0443	CDCC05	CALL	OPEN ;OPEN FOR READ
0446	AF	XRA	A ;CLEAR A
0447	325B01	STA	EOF LG ;RESET END OF FILE FLAG
044A	110020	LXI	D,DBUF
044D	CD3A06	CALL	SETDMA
0450	CD6206	CALL	RDF10 ;READ FILE INTO MEMORY
0453	2A6C01	LHLD	PAGER
0456	117EFF	LXI	D,OFF7EH
0459	19	DAD	D
045A	226F01	SHLD	LASTM ;SAVE LAST MEMORY LOCAT
;*****			
; SET UP TRANSITION BUFFER IN DEFAULT LOG			
;*****			
045D	118000	LXI	D,080H ;ADDRESS OF TBUFF
0460	CD3A06	CALL	SETDMA ;SET DMA ADDRESS
0463	215001	LXI	H,DATA+9 ;ADDRESS OF EXE
0466	3641	MVI	M,'A'
0468	23	INX	H
0469	3653	MVI	M,'S'
046B	23	INX	H
046C	3643	MVI	M,'C'
046E	114701	LXI	D,DATA
0471	CD3F06	CALL	SETFCB ;SET FILE CONTROL BLOCK
0474	CD1A06	CALL	DELET
0477	CD2206	CALL	MAKE
047A	CDCC05	CALL	OPEN
047D	218000	LXI	H,080H ;ADDRESS OF TBUFF
0480	226201	SHLD	POINT ;SET BUFFER POINTER TOT
0483	210020	LXI	H,DBUF ;ADDRESS OF DBUF
0486	226C01	SHLD	PAGER
0489	CDEA04	CALL	GTONE
048C	CDEA04	CALL	GTONE
048F	CDEA04	CALL	GTONE
0492	CDBA04	CALL	GTONE

0495 2A6F01	LHLD	LASTM
0498 EB	XCHG	
CONVT:		
0499 CDCE04	CALL	GTTWO
049C 2A6F01	LHLD	LASTM
049F EB	XCHG	
04A0 2A6C01	LHLD	PAGER
04A3 7B	MOV	A,E
04A4 95	SUB	L
04A5 7A	MOV	A,D
04A6 9C	SBB	H
04A7 D29904	JNC	CONVT
04AA 2A6201	LHLD	POINT
04AD 3E30	MVI	A,'0'
CON10:		
04AF CDF504	CALL	STUFF
04B2 2C	INR	L
04B3 C2AF04	JNZ	CON10
04B6 CDD405	CALL	CLOSE
04B9 C9	RET	
;*****		
; GTONE - TAKES ONE BYTE FROM DATA BUFFER		
; CONVERTS TO ASCII IN TBUF		
; TBUF IS EMPTIED WHEN FULL		
;*****		
GTONE:		
04BA 2A6C01	LHLD	PAGER
04BD 7E	MOV	A,M
04BE 23	INX	H
04BF 226C01	SHLD	PAGER
04C2 6F	MOV	L,A ;MOVE TO L
04C3 2600	MVI	H,O ;CLEAR H
04C5 CD0D05	CALL	BDS ;CONVERT TO ASCII
04C8 3E2C	MVI	A,',,' ;INSERT COMMA
04CA CDF504	CALL	STUFF
04CD C9	RET	;RETURN
;*****		
; GTTWO - TAKES TWO BYTES OF BINARY DATAA		
; CONVERTS THEM TO ASCII IN TBUF		
; TBUF IS DUMPED WHEN FULL;		

GTTWO:		
04CE 2A6C01	LHLD	PAGER
04D1 5E	MOV	E,M ;GET LSE
04D2 23	INX	H ;STEP POINTER
04D3 56	MOV	D,M ;GET MSB
04D4 23	INX	H ;MOVE POINTER
04D5 226C01	SHLD	PAGER ;STORE IN PAGER
04D8 EB	XCHG	
04D9 AF	XRA	A ;CLEAR A
04DA E4	ORA	H ;IS IT NEGATIVE?

04DB F2EC04	JP	GTT10	; NO - DO NOT INSERT MIN
04DE 2B	DCX	H	; DECREMENT
04DF 7C	MOV	A,H	; GET MSB
04E0 EEFF	XRI	OFFH	; COMPLEMENT
04E2 67	MOV	H,A	;
04E3 7D	MOV	A,L	; GET LSB
04E4 EEFF	XRI	OFFH	; COMPLEMENT
04E6 6F	MOV	L,A	; RESTORE LSB
04E7 3E2D	MVI	A,'-'	; MINUS SIGN
04E9 CDF504	CALL	STUFF	; INSERT '-'
GTT10:			
04EC CD0D05	CALL	BD5	; CONVERT TO ASCII
04EF 3E2C	MVI	A,',.'	
04F1 CDF504	CALL	STUFF	
04F4 C9	RET		
;*****			
; STUFF - TAKES CHARACTER PRESENT IN A			
; INSERTS INTO TBUFF AT LOCATION			
; POINTED TO BY POINT			
; WHEN POINT = 100H, BUFFER IS DM			
;*****			
STUFF:			
04F5 E5	PUSH	H	
04F6 D5	PUSH	D	
04F7 C5	PUSH	B	
04F8 2A6201	LHLD	POINT	
04FB 77	MOV	M,A	; STORE IN BUFFER
04FC 2C	INR	L	
04FD C20605	JNZ	STU10	
0500 CDF605	CALL	WRITE	
0503 218000	LXI	H,80H	
STU10:			
0506 226201	SHLD	POINT	
0509 C1	POP	B	
050A D1	POP	D	
050E E1	POP	H	
050C C9	RET		

* BINDEC - CONVERTS ONE OR TWO BYTES OF			
* BINARY DATA TO 5 OR 3 ASCII DE			
* CHARACTERS			
* ENTRY: STORAGE ADDRESS IN D,E			
* VALUE IN H,L			

;			
BD5:			
050D AF	XRA	A	
050E 326601	STA	WORK	
0511 01F0D8	LXI	B,0D8FOH	
0514 CD3005	CALL	BDA	
BD4:			

0517 0118FC	LXI	B,OFC18H
051A CD3005	CALL	BDA
	BD3:	
051D 019CFF	LXI	B,OFF9CH
0520 CD3005	CALL	BDA
	BD2:	
0523 01F6FF	LXI	B,OFFF6H
0526 CD3005	CALL	BDA
	BD1:	
0529 7D	MOV	A,L
052A F630	ORI	30H
052C CDF504	CALL	STUFF
052F C9	RET	
	BDA:	
0530 AF	XRA	A ;CLEAR A
	BDB:	
0531 5D	MOV	E,L
0532 54	MOV	D,H
0533 3C	INR	A
0534 09	DAD	B
0535 DA3105	JC	BDB
0538 3D	DCR	A
0539 6B	MOV	L,E
053A 62	MOV	H,D
053B 47	MOV	B,A ;SAVE IN B
053C FE00	CPI	O ;IS IT A ZERO?
053E C24705	JNZ	BDC ;NO - STUFF IT
0541 3A6601	LDA	WORK ;FETCH FLAG
0544 B7	ORA	A ;IS IT SET?
0545 C8	RZ	;NO - RETURN WITHOUT SW
0546 78	MOV	A,B
	BDC:	
0547 F630	ORI	30H
0549 CDF504	CALL	STUFF
054C 3EFF	MVI	A,OFFH
054E 326601	STA	WORK ;SET FLAG
0551 C9	RET	
	**	
	;	DRIVERS - I/O SUBROUTINES CONTAINING
	;	TTY, CRT, DISK, I/O PORTS
	**	
	;	TTY DRIVERS
	;	
	TTYIN:	
0552 D8F5	IN	TSTAT ;FETCH STATUS
0554 E602	ANI	RXRDY ;IS RECEIVER READY WITH
0556 CA5205	JZ	TTYIN ;NO KEEP LOOKING
0559 D8F4	IN	IDATA ;FETCH DATA BYTE
055B C9	RET	;RETURN WITH BYTE IN A
	TTYOUT:	

055C F5	PUSH	PSW	;SAVE DATA BYTE
055D DBF5	IN	ISTAT	;FETCH STATUS
055F E601	ANI	TXRDY	;TRANSMITTER READY FORB
0561 CA5C05	JZ	TTYOUT	;NO - WAIT UNTIL READY
0564 F1	POP	PSW	;BRING BACK DATA BYTE
0565 D3F4	OUT	IDATA	;OUTPUT TO TTY
0567 C9	RET		;RETURN
CRTIN:			
0568 DBF7	IN	CSTAT	;FETCH CRT STATUS
056A E602	ANI	RXRDY	;RECEIVER READY WITH BY
056C CA6805	JZ	CRTIN	;NO - WAIT UNTIL READY
056F DBF6	IN	CDATA	;FETCH INPUT BYTE
CRTOUT:			
0571 F5	PUSH	PSW	;SAVE DATA BYTE
CRTI:			
0572 DBF7	IN	CSTAT	;FETCH CRT STATUS
0574 E601	ANI	TXRDY	;TRANSMITTER READY FOR BYE
0576 CA7205	JZ	CRTI	;NO - WAIT UNTIL READY
0579 F1	POP	PSW	;BRING BACK DATA
057A D3F6	OUT	CDATA	;OUTPUT DATA
057C C9	RET		;RETURN
PRINT:			
057D OE09	MVI	C,9	;SET UP FOR BDOS CALL
057F C30500	JMP	ENTRY	;JUMP TO BDOS
PNIB:			
0582 E60F	ANI	OFH	;MASK LOW 4 BITS
0584 FE0A	CPI	10	
0586 D28E05	JNC	P10	
0589 C630	ADI	'0'	
058E C37105	JMP	CRTOUT	
P10:			
058E C637	ADI	'A' - 10	
0590 C37105	JMP	CRTOUT	
PHEX:			
0593 F5	PUSH	PSW	
0594 OF	RRD		
0595 OF	RRD		
0596 OF	RRD		
0597 OF	RRD		
0598 CD8205	CALL	PNIB	
059B F1	POP	PSW	
059C CD8205	CALL	PNIB	
059F C9	RET		
PRHL:			
05A0 E5	PUSH H		
05A1 7C	MOV	A,H	
05A2 CD9305	CALL	PHEX	
05A5 E1	POP	H	
05A6 E5	PUSH	H	
05A7 7D	MOV	A,L	
05A8 CD9305	CALL	PHEX	

05AB E1	POP	H
05AC C9	RET	
CRLF:		
05AD 3E0D	MVI	A,0DH ;CARRIAGE RETURN
05AF CD7105	CALL	CRTOUT
05B2 3EOA	MVI	A,0AH ;LINE FEED
05B4 C37105	JMP	CRTOUT
INITIAL:		
05B7 0E0D	MVI	C,13
05B9 C30500	JMP	ENTRY
LOGA:		
05BC 110000	LXI	D,00H
05BF 0E0E	MVI	C,14
05C1 C30500	JMP	ENTRY
LOGB:		
05C4 110100	LXI	D,01H
05C7 0E0E	MVI	C,14
05C9 C30500	JMP	ENTRY
OPEN:		
05CC 115C00	LXI	D,05CH
05CF 0EOF	MVI	C,15
05D1 C30500	JMP	ENTRY
CLOSE:		
05D4 115C00	LXI	D,05CH
05D7 0E10	MVI	C,16
05D9 C30500	JMP	ENTRY
READ:		
05DC 115C00	LXI	D,05CH
05DF 0E14	MVI	C,20
05E1 CD0500	CALL	ENTRY
05E4 B7	ORA	A
05E5 C8	RZ	;RETURN IF NO READ ERRB
05E6 3D	DCR	A ;IS IT AN EOF?
05E7 C2F005	JNZ	RDO10 ;NO MUST BE UNWRITTEN A
05EA 3EOF	MVI	A,0FH ;SET EOF FLAG
05EC 325B01	STA	EOF LG ;
05EF C9	RET	
RDO10:		
05F0 110301	LXI	D,MSG1 ;'READ ERROR'
05F3 C3BF06	JMP	ERREX
WRITE:		
05F6 115C00	LXI	D,05CH
05F9 0E15	MVI	C,21
05FB CD0500	CALL	ENTRY
05FE B7	ORA	A
05FF C8	RZ	;RETURN IF NO WRITE ERRB
0600 3D	DCR	A ;
0601 C20A06	JNZ	WRO10
0604 110F01	LXI	D,MSG2 ;'WRITE ERROR'
0607 C3EF06	JMP	ERREX
WRO10:		

060A 3D	DCR	A
060B C21406	JNZ	WR020
060E 111C01	LXI	D,MSG3 ; 'DISK FULL'
0611 C3BF06	JMP	ERREX
WR020:		
0614 112701	LXI	D,MSG4 ; 'DIRECTORY FULL'
0617 C3BF06	JMP	ERREX
DELET:		
061A 0E13	MVI	C,19
061C 115C00	LXI	D,05CH
061F C30500	JMP	ENTRY
MAKE:		
0622 115C00	LXI	D,05CH
0625 0E16	MVI	C,22
0627 CD0500	CALL	ENTRY
062A 3C	INR	A
062E CO	RNZ	
062C 112701	LXI	D,MSG4 ; 'DIRECTORY FULL'
062F C3BF06	JMP	ERREX
SEARCH:		
0632 115C00	LXI	D,05CH
0635 0E11	MVI	C,17
0637 C30500	JMP	ENTRY
SETDMA:		
063A 0E1A	MVI	C,26
063C C30500	JMP	ENTRY

; SETFCB - MOVES AN INITIALIZATION BLOCK		
; TFCB AREA		
; ENTRY: D,E = FILNAME BLOCK		

; SETFCB:		
063F E5	PUSH	H ;SAVE
0640 215C00	LXI	H,05CH ;DEFAULT FILE CONTROL B
0643 C5	PUSH	B ;SAVE
0644 0613	MVI	B,19 ;SET COUNTER
SETF1:		
0646 1A	LDAX	D ;FETCH BYTE TO BE TRANS
0647 77	MOV	M,A ;STORE IN TFCB AREA
0648 23	INX	H ;INCREMENT H
0649 13	INX	D ;INCREMENT D
064A 05	DCR	B ;FINISHED?
064B C24606	JNZ	SETF1 ; NO - GO FOR ANOTHER
064E AF	XRA	A ;CLEAR ACCUM
064F 327C00	STA	TFCB+32
0652 C1	POP	B
0653 E1	POP	H
0654 C9	RET	

;* RDFILE - READ AN ENTIRE FILE INTO CONTE		


```

;*          MEMORY
;*          ENTRY: STARTING ADDRESS OF MEMB
;*          IN H,L
;*          ADDRESS OF FILENAME BLO
;*****RDFILE:*****
;
0655 226C01      SHLD    PAGER   ;STORE CURRENT POINTER
0658 CD3F06       CALL     SETFCB
065B CDCC05       CALL     OPEN    ;OPEN FILE
065E AF           XRA     A       ;CLEAR ACCUM
065F 325E01       STA     EOFLG   ;CLEAR EOF FLAG
;
RDF10:          LHLD    PAGER   ;FETCH CURRENT POINTER
0662 2A6C01       XCHG    SETDMA
0665 EB           CALL     READ    ;READ A RECORD
0666 CD3A06       CALL     HAFPG   ;MOVE PAGE INDEX
0669 CDDC05       CALL     LDA     EOFLG   ;FETCH EOF FLAG
066C CDAE06       ORA     A       ;EOF FOUND?
066F 3A5E01       JZ      RDF10  ;NO - READ ANOTHER PAGE
0672 B7           CALL     CLOSE   ;CLOSE FILE
0673 CA6206       RET     ;RETURN
0676 CDD405
0679 C9
;
;*****WRFILE - WRITE A BLOCK OF MEMORY IN A FILE
;          ENTRY: NUMBER OF RECORDS+1 TOW
;          STARTING ADDRESS IN H,L
;*****WRF15:*****
;
067A 226C01      SHLD    PAGER   ;SET UP PAGER
067D CD3F06       CALL     SETFCB ;SET FCB
0680 118000       LXI    D,80H
0683 CD3A06       CALL     SETDMA
0686 CD3206       CALL     SEARCH  ;SEARCH FOR EXISTING FILE
0689 3C           INR     A       ;WAS THERE A MATCH?
068A C29006       JNZ     WRF05  ;YES - SKIP MAKE FUNCT0
068D CD2206       CALL     MAKE   ;MAKE DIRECTORY ENTRY
;
WRF05:          CALL     OPEN    ;OPEN FILE
;
WRF10:          LHLD    PAGER   ;FETCH CURRENT POINTER
0693 2A6C01       XCHG    SETDMA
0696 EB           CALL     WRITE   ;MOVE PAGE INDEX
0697 CD3A06       CALL     RCDS   ;FETCH NUMBER OF RECORD
;
WRF15:          CALL     HAFPG  ;WRITE A RECORD
069A CDF605       CALL     LDA    H,TFCB+15
069D CDAE06       CMP     M
06A0 3A6E01       JNZ     WRF15  ;NO - WRITE ANOTHER REO
06A3 216E00
06A6 EE
06A7 C29A06

```


06AA CDD405	CALL	CLOSE	;CLOSE THE FILE
06AD C9	RET		; RETURN

;	SUBROUTINE HAFPG - ADJUSTS DMA ADDRESS		
;	HALF PAGE OF MEMORY		

;			
HAFPG:			
06AE E5	PUSH	H	;SAVE
06AF 2A6C01	LHLD	PAGER	
06B2 118000	LXI	D,0128	;
06B5 19	DAD	D	;ADD 128 TO PAGER
06B6 226C01	SHLD	PAGER	;RESTORE UPDATED PAGER
06B9 EB	XCHG		;SWITCH H,L WITH D,E
06BA CD3A06	CALL	SETDMA	;SET DMA
06BD E1	POP	H	
06BE C9	RET		
**			
;	ERREX - FATAL ERRORS EXIT VIA THIS ROUT		
;	ENTRY: D,E CONTAIN MESSAGE ADDR		
;	EXIT: BOOT TO DOS		
**			
;			
ERREX:			
06BF CD7D05	CALL	PRINT	;PRINT THE MESSAGE
06C2 115C00	LXI	D,TFCB	;TEMPORARY FCB
06C5 CDD405	CALL	CLOSE	;CLOSE THE FILE
06C8 C30000	JMP	BOOT	;BOOT TO DOS
06CB	END	100H	

A>


```

REM*****REDUCE - EXTRACTS FOURIER COEFFICIENTS
REM          OF ODD HARMONICS FROM GIVEN DATA FILE
REM*****
DELTA.T = .85E-6
PI = 3.141592654
CONTR$="B:CONTROL"
DATUM.PTSS$="B:DATA.ASC"
OUTPUT$="B:OUTPUT"
TAB$ = " "
FILE DATUM.PTSS$
IF END # 1 THEN 200
READ # 1; ICHNL,FCHNL,SVO,SV1,SCANS,SCAN.PERIOD,RECORD.FREQ
SCAN.PERIOD = SCAN.PERIOD * .9765625E-3
PRINT "INITIAL ANALOG CHANNEL",ICHNL
PRINT "FINAL ANALOG CHANNEL",FCHNL
PRINT
PRINT "SCANIVALE ZERO SETTING",SVO
PRINT "SCANIVALE ONE SETTING ",SV1
PRINT
PRINT "NUMBER OF SCANS ",SCANS
PRINT "SCAN PERIOD",SCAN.PERIOD;" SECONDS"
PRINT "SCAN RATE",1/SCAN.PERIOD;" HZ"
RECORD.FREQ=RECORD.FREQ/10
PRINT "RECORDED REFERENCE FREQUENCY ",RECORD.FREQ
REM*****
REM      READ IN ASCII DATA FILE
REM*****
DIM DAT(FCHNL+1,SCANS),PHASE(FCHNL+1),A(FCHNL+1),B(FCHNL+1)
READ # 1;DUMMY,DUMMY,DUMMY
PRINT
FOR I= 1 TO SCANS
READ #1;TIME
FOR J=ICHNL TO FCHNL
READ #1;DAT(J,I)
NEXT J
NEXT I
REM*****
REM      COMPUTE LAST DATA SAMPLE NUMBER TO BE USED
REM*****
OMEGA = 2*PI*RECORD.FREQ
DRIVE.PERIOD = 1/RECORD.FREQ
N = INT((DRIVE.PERIOD/SCAN.PERIOD) \
         *INT((SCANS*SCAN.PERIOD)/DRIVE.PERIOD))
PRINT "NUMBER OF DATA POINTS USED ";N,"AVAILABLE ";SCANS
REM*****
REM      COMPUTE FOURIER COEFFICIENTS
REM*****
HIHARMONIC = INT(DRIVE.PERIOD/SCAN.PERIOD/2)
IF HIHARMONIC > 5 THEN HIHARMONIC = 5
PRINT "HIGHEST HARMONIC EXTRACTED ";HIHARMONIC

```



```

FOR INDEX = 0 TO HIHARMONIC
FOR J=ICHNL TO FCHNL
A(J)=0
B(J)=0
NEXT J
FOR I = 1 TO N
FOR J=ICHNL TO FCHNL
    X1= INDEX*OMEGA*((I-1)*SCAN.PERIOD+DELTA.T*j)
    B(J)=B(J)+DAT(j,i)*SIN(X1)
    A(J)=A(J)+DAT(j,i)*COS(X1)
NEXT J
NEXT I
REM*****OUTPUT*****
REM*****
PRINT "FOURIER COEFFICIENTS FOR HARMONIC ";INDEX
PRINT"CHANNEL","COS","SIN","PHASE ","MAG"
FOR J=ICHNL TO FCHNL
PHASE(J)=ATN(B(J)/A(J))
IF A(J)<0 AND B(J)>0 THEN PHASE(J)=PHASE(J)+PI
IF A(J)<0 AND B(J)<0 THEN PHASE(J)=(PHASE(J)-PI)
IF INDEX = 0 THEN A(J) = A(J)/2
MAG= SQR((ABS(A(J)))2+(ABS(B(J)))2)/2.048/I
IF INDEX = 1 AND J = 0 THEN FASE = PHASE(0)
PHASE(J)=PHASE(J)-FASE
IF PHASE(J)<-PI THEN PHASE(J)=PHASE(J)+2*PI
IF PHASE(J)>PI THEN PHASE(J)=PHASE(J)-2*PI
PRINT J,A(J)/2.048/I,B(J)/2.048/I,180*PHASE(J)/PI,MAG
NEXT J
PRINT
NEXT INDEX
200 STOP
END

```



```

/* CP/CMS INTERFACE PROGRAM */
DECLARE BOOT LITERALLY 'OH', BDOS LITERALLY '05H';
DECLARE LIT LITERALLY '13', /* NUMBER OF RUBOUTS ON OUTPUT AFTER LF */
        OPADV BYTE 1, /* REMAINING PAD CHARS TO SEND */
        PAD LIT 1, /* NUMBER OF PAD CHARS AFTER PROMPT */
        HALF DUP LIT 1, /* TRUE IF HALF DUPLEX */
        BEEP LIT 07H,
        BREAK LIT 0,
        RUBOUT LIT 7FH,
        CTLB LIT 02H,
        CTLQ LIT 0CH,
        CTLI LIT 3,
        CTLT LIT 09H,
        CTLU LIT 14H,
        CTLW LIT 15H,
        CTLQ LIT 11H,
        CTLR LIT 12H,
        CTLE LIT 05H,
        CTLW LIT 17H,
        ATTN LIT 'CTLQ',
        CTLJ LIT 0AH,
        ATSIGN LIT '40H',
        BACKSPACE LIT 'A'!SIGN',
        ENDFILE LIT '1A'!SIGN',
        FROMPT LIT '1A'!SIGN',
        EOBLOCK LIT 25H, /* END BLOCK (PERCENT) */
        XOFF LIT 13H,
        EOL LIT XOFF, /* END OF LINE CHAR */
        NULL LIT XOFF; /* NULL CHARACTER FROM COMPUTER */

DECLARE FCBA LIT '5CH',
        FCBAADR ADDRESS INITIAL(FCBA),
        FCB BASED FCBAADR BYTE,
        BUFFA ADDRESS INITIAL(80H),
        MAXMBP ADDRESS INITIAL(05H),
        MAXM BASED MAXMBP ADDRESS,
        BUFF BASED BUFFA BYTE;

100H: /* DISK OUTPUT ROUTINES */
MON1: PROCEDURE(F,A);
DECLARE F BYTF, A ADDRESS;
GO TO BDOS;
END MON1;

LIFTHEAD: PROCEDURE;

```



```

CALL MON1(12,0);
END LIFTHEAD;

MON2: PROCEDURE(FA) BYTE;
DECLARE F BYTE, A ADDRESS;
GO TO BDOS;
END MON2;

DECLARE DCNT BYTE;

OPEN: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
DCNT = MON2(15,FCB);
END OPEN;

CLOSE: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
DCNT = MON2(16,FCB);
END CLOSE;

DELETE: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
CALL MON1(19,FCB);
END DELETE;

DISKWRITE: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
DCNT = MON2(21,FCB);
CALL LIFTHEAD;
END DISKWRITE;

MAKE: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
DCNT = MON2(22,FCB);
END MAKE;

DISKREAD: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
DCNT = MON2(20,FCB);
CALL LIFTHEAD;
END DISKREAD;

DECLARE DCOPY BYTE;
/* 0 IF NO COPY
   1 IF RECEIVING
   2 IF SUSPENDED RECEIVE
   3 IF TRANSMITTING

```


4 IF SUSPENDED TRANSMIT

```
*/ LASTLF BYTE, /* OUTPUT BUFFER POINTER */
    ODP BYTE; /* MEMORY BUFFER POINTER */

DECLARE MBP ADDRESS; /* MEMORY BUFFER POINTER */

/* CRT AND TTY DRIVERS */

DECLARE PROC LIT "PROCEDURE",
LOGICAL LIT "BYTE",
FIXED LIT "ADDRESS",
TRUE LIT "1",
FALSE LIT "0",
FOREVER LIT "WHILE TRUE",
/* I/O CONSTANTS */
CR LIT "ODH",
LF LIT "OAH",
TTI LIT "0F4H",
CRI LIT "0F6H",
TTO LIT "0F4H",
CRO LIT "0F6H",
TTS LIT "0F5H",
CRS LIT "0F7H",
TTC LIT "0F5H",
CRC LIT "0F7H";

CRTINR: PROC LOGICAL;
/* CRT INPUT DATA READY */
RETURN ROR(INPUT(CRS),1);
END CRTINR;

CRTOUTR: PROC LOGICAL;
/* CRT OUTPUT READY */
RETURN INPUT(CRS);
END CRTOUTR;

TTYINR: PROC LOGICAL;
/* TTY INPUT READY */
RETURN ROR(INPUT(TTS),1);
END TTYINR;

TTYOUTR: PROC LOGICAL;
/* TTY OUTPUT READY */
RETURN INPUT(TTS);
END TTYOUTR;

CRTRD: PROC BYTE;
/* CRT DATA IN */
RETURN INPUT(CRI) AND 7FH;
END CRTRD;
```



```

CRTWR: PROC (B);
  DECLARE B BYTE;
  /* CRT WRITE */;
  IF B >= ' ' OR B = CR OR B = LF THEN
    OUTPUT(CR0) = B;
  IF B = LF THEN OPADV = OPADV;
END CRTWR;

TTYRD: PROC BYTE;
/* READ TTY */;
RETURN INPUT(TTI) AND 7FH;
END TTYRD;

TTYWR: PROC (B);
  DECLARE B BYTE;
/* TTY WRITE */;
  OUTPUT(TTO) = B;
END TTYWR;

TTYOUT: PROCEDURE (B);
  DECLARE B BYTE;
DO WHILE NOT TTYOUTR;
  END;
  CALL TTYWR(B);
END TTYOUT;

CRTOUT: PROC (B);
  DECLARE B BYTE;
DO WHILE NOT CRTOUTR;
  END;
  CALL CRTWR(B);
END CRTOUT;

CRLF: PROC;
  CALL CRTOUT(CR);
  CALL CRTOUT(LF);
/* WAIT FOR CRT TO RESPOND TO LF */;
DO WHILE OPADV > 0; OPADV = OPADV - 1;
  CALL CRTOUT(0);
  END;
END CRLF;

CRTPR: PROC(A);
/* WRITE MESSAGE AT A UNTIL $ */;
DECLARE A ADDRESS, M BASED A BYTE;
CALL CRLF;

```



```

DO WHILE M <> '$';
CALL CRTOUT(M); A=A+1;
END;
CALL CRLF;
END CRTPR;

```

```

DECLARE
    BEEPED LOGICAL,          /* TRUE IF "BEEPED" CRT */
    NCHARS BYTE,             /* CHAR TRANSMITTED SINCE LF */
    WAITRESP LOGICAL,        /* WAITING FOR .> */
    SENDXOFF LOGICAL,        /* SEND XOFF */
    RESPUND LOGICAL,         /* RESPOND TO .> */
    NPAD BYTE,               /* PAD CHARACTERS REMAINING AFTER PROMPT */
    CHARBYTF(254) BYTE,     /* CURRENT CRT CHARACTER */
    CRTBUFF(254) BYTE,      /* BUFFER FOR CRT INPUT */
    CRTN BYTE,               /* NUMBER OF BUFFERED CHARS */
    CRTBPF BYTE,              /* NEXT CHARACTER TO TRANSMIT */
    CRTBPL BYTE,              /* NEXT CHARACTER TO FILL */

/* TTY BUFFERS - FROM TTY TO CRT */
TTYBUFF(254) BYTE,
TTYN BYTE,
TTYBPF BYTE,
TTYBPL BYTE;

INTBPF: PROC;
/* INCREMENT TTY FRONT POINTER */
TTYN = TTYN - 1;
IF (TTYBPF := TTYBPF + 1) > LAST (TTYBUFF) THEN
    TTYBPF = 0;
END INTBPF;

INTBPL: PROC;
/* INCREMENT LAST POSITION OF TTY BUFFER */
IF (TTYN := TTYN + 1) > LAST (TTYBUFF) THEN
    DO; CALL CRTPR('OVERFLOW $');
```

```

    TTYN, TTYBPF, TTYBPL = 0;
END;
ELSE
    IF (TTYBPL := TTYBPL + 1) > LAST (TTYBUFF) THEN
        TTYBPL = 0;
END INTBPL;

BUFTTY: PROC;
/* BUFFER CHARACTER FROM TTY TO CRT */
TTYBUFF(TTYBPL) = CHAR;
CALL INTBPL;
END BUFTTY;
```



```

ZERO: PROC; WAITRESP, SENDXOFF, RESPOND = FALSE;
NPAD, NCHARS, CRTN, CRTBPL, CRTBPF, TTYBPF, TTYBPL = 0;
END ZERO;

INC BPF: PROC; /* INCREMENT CRTBPF */
CRTN = CRTN + 1;
IF (CRTBPF := CRTBPF + 1) > LAST(CRTBUFF) THEN
    CRTBPF = 0;
END INC BPF;

INC BPL: PROC; /* INCREMENT CRTBPL */
CRTN = CRTN + 1;
IF (CRTBPL := CRTBPL + 1) > LAST(CRTBUFF) THEN
    CRTBPL = 0;
END INC BPL;

SETFCBR: PROCEDURE;
FCB(32) = 0;
END SETFCBR;

PUTCHAR: PROCEDURE;
CRTBUFF(CRTBPL) = CHAR;
CALL INC BPL;
END PUTCHAR;

FILLBUFF: PROCEDURE(); /* FILL BUFFER WITH CHAR I */
DECLARE I BYTE;
BUFF(OBP) = I;
IF (OBP := OBP + 1) >= 80H THEN
    DO; CALL DISKWRITE(FCBA);
    IF DCNT <> 0 THEN
        DO; DCOPY = J;
        CALL CRTPR(*DISK WRITE ERROR $'');
        CALL CLOSE(FCBA);
    END;
    OBP = 0;
END;
END FILLBUFF;

DUMPMEM: PROCEDURE;
/* DUMP MEMORY BUFFER */
DECLARE I ADDRESS;

```



```

I = 0; WHILE MBP <> 0;
    DO MBP = MBP - 1;
        CALL FILIBUFF(MEMORY(I));
        I = I + 1;
    END DUMPMEM;
END DUMPMEM;

CRTCHAR: PROCEDURE;
DECLARE LAST BYTE;
LAST = (CHAR = PROMPT) AND LASTLF;
IF DCOPY = 1 THEN /* COPY TO DISK */
DO; IF LAST THEN CALL DUMPMEM;
    MEMORY(MBP) = CHAR;
    IF (MBP := MBP + 1) > MAXMBP THEN
        DO; CALL CRTPR(.,:FORCED WRITE$' );
        CALL DUMPMEM;
    END;
END;
CALL BUFFTTY;
RESPOND = RESPOND AND NOT( LASTLF AND (CHAR = EOBLOCK));
IF LAST THEN
    DO; NCHARS = 0;
        IF RESPOND THEN /* AUTO RESPONSE */
            DO; CHAR = '.'; CALL PUTCHAR;
            CHAR = EOL; CALL PUTCHAR;
        END;
        WAITRESP = FALSE; NPAD = PAD;
    END;
    LASTLF = CHAR = LF;
    END CRTCHAR;
END;

CRLFD: PROCEDURE;
CHAR = CR; CALL CRTCHAR;
CHAR = LF; CALL CRTCHAR;
END CRLFD;

GETCHAR: PROCEDURE;
CHAR = 0;
IF DCOPY = 3 THEN /* TRANSMIT DATA */
    DO; /* READ NEXT CHARACTER FROM INPUT BUFFER */
        IF OBP >= 80H THEN
            DO; OBP = 0;
                CALL DISKREAD(FCBA);
                IF DCNT = 1 THEN BUFF,DCOPY = 0; ELSE
                    IF DCNT > 1 THEN

```



```

DO; CALL CRTPR(. 'DISK READ ERROR$' );
FND;

IF ('CHAR := BUFF(OBP)) = ENDFILE THEN
  CHAR, DCOPY = 0;
  OBP = OBP + 1;
END;

IF CHAR = 0 AND CRTN > 0 THEN
  DO; CHAR = CRTBUFF(CRTBPF);
  CALL INCBPF;
END;

/* IGNORE LINE FEEDS (MAY BE FROM FILE) */
IF CHAR = LF THEN CHAR = 0;
IF (SENDXOFF := (CHAR = CRI)) THEN
  DO; CHAR = EOL;
END;
ELSE
  IF (CHAR <> 0) AND HALF DUP THEN CALL CRTCHAR;

RECEIVE: PROCEDURE;
IF DCOPY = 2 THEN DCOPY = 1; ELSE
IF DCOPY <> 0 THEN CALL CRTPR(. 'OUTPUT IN PROGRESS$' );
ELSE
DO; SETFCBR;
CALL DELETE(FCBA); CALL MAKE(FCBA);
CALL OPEN(FCBA);
IF DCNT = 255 THEN
  CALL CRTPR(. 'CANNOT OPEN FILE$' ); ELSE
  DCOPY = 1;
LASTFL = FALSE; OBP, MBP = 0;
END; RECEIVE;
END;

FINIS: PROCEDURE;
IF DCOPY = 0 THEN
  CALL CRTPR(. 'NO I/O IN PROGRESS$' ); FALSE
IF DCOPY < 3 THEN
  DO; CALL DUMPMEM;
  DO WHILE OBP <> 0;
  CALL FILLBUFF(ENDFILE);
  END;
  CALL CLOSE(FCBA);
END;

```


DCOPY = 0;
END FINIS;

TRANSMIT: PROCEDURE;
 IF DCOPY = 4 THEN DCOPY = 3; ELSE
 IF DCOPY <> 0 THEN
 CALL CRTPR(.I/O IN PROGRESS\$');
 ELSE
 DO; CALL SETFCBR;
 CALL CPEN(FCBA);
 IF DCNT = 255 THEN
 CALL CRTPR(.CANNOT OPEN INPUT\$');
 ELSE
 DO; OBP = 80H; DCOPY = 3;
 END;
 END;
 /* TYPE INITIAL MESSAGE, AND LOOP */
 CALL CRTPR(.READY.\$');
 MAXMBP = MAXM; /* SET LARGEST VALUE OF MBP */
 NCHARS, DCOPY = 0;
 CALL ZERO;
 DO FOREVER;
 IF CRTINR THEN /* INPUT AT THE CRT */
 DO;
 IF CRTN = LENGTH(CRTBUFF) THEN /* OVERFLOW */
 DO;
 IF NOT BEEPED THEN
 DO;
 IF (BEEPED := CRTOUTR) THEN
 CALL CRTOUT(BEEP);
 END;
 END; /* SAVE CHARACTER IN CRTBUFF */
 /* CHECK FOR SPECIAL CHARACTERS */
 IF (CHAR := CRTD) = RUBOUT THEN
 DO; IF CRTN > 0 THEN
 DO; CRTN = CRTN - 1;
 IF (CRTBPL := CRTBL(CRTBUFF)) = 255 THEN
 END; ELSE
 DO;
 CHAR = BACKSPACE; CALL PUTCHAR;
 END;
 END;
 END;
 END;
 IF CHAR = BREAK THEN


```

DO; CALL ZERO; CALL TTYOUT(ATTEM);  

IF DCOPY = 1 OR DCOPY = 3 THEN  

DCOPY = DCOPY + 1;  

END; ELSE  

IF CHAR = CTLU THEN  

DO; CRTN = 0; CHAR = BACKSPACE;  

DO WHILE NCHARS <> 0;  

NCHARS = NCHARS - 1;  

CALL PUTCHAR;  

END;  

END; ELSE  

DO; IF CHAR = CTLU THEN  

DO; CHAR = EOL; WAITRESP = FALSE;  

END;  

CALL PUTCHAR;  

END;  

END; /* OF CRTINR READY TEST */  

IF TTYINR THEN /* TTY KEYBOARD IS READY */  

DO;  

IF (CHAR := TTYRD) <> NULL THEN /* COPY */  

DO; IF NPAD > 0 THEN NPAD = NPAD - 1; ELSE  

CALL CRTPR;  

END;  

END;  

IF TTYOUTR AND (NOT WAITRESP) AND (NPAD = 0) THEN  

DO;  

IF (WAITRESP := SENDXOFF) THEN  

DO; SENDXOFF = FALSE;  

END;  

DO; CALL GETCHAR;  

IF CHAR <> 0 THEN  

DO;  

IF CHAR = CTRL THEN /* RECEIVE */  

CALL RECEIVE; ELSE  

IF CHAR = CTLT THEN /* TRANSMIT */  

CALL TRANSMIT; ELSE  

IF CHAR = CTLE THEN /* END TR/REC */  

CALL FINIS; ELSE  

IF CHAR = CTLB THEN  

RESPOND = TRUE; CALL RECEIVE;  

END; ELSE  

IF CHAR = CTLJ THEN  

DO; IF DCOPY = 3 THEN DCOPY = 4; ELSE  

CALL CRTPR(); NO INPUT $);  


```



```

RESPOND = FALSE;
END; ELSE
IF CHAR = CILW THEN DCOPY = 1 THEN DCOPY = 2; ELSE
DO; IF DCOPY = 1 THEN DCOPY = 4; ELSE
IF DCOPY = 2 THEN DCOPY = 4; ELSE
CALL CRTPR(.'NO I/O IN PROGRESS$');
END; ELSE
IF CHAR = CTLC THEN
DO; IF DCOPY <> 0 THEN
CALL FINIS;
GO TO BOOT;
END; ELSE
DO; NCHARS = NCHARS + 1;
CALL TTYWR(CHAR);
END;
END;
END;

IF CRTOUTR THEN /* CHECK FOR BUFFERED OUTPUT */
DO;
IF OPADV > 0 THEN
DO; OPADV = OPADV - 1; CALL CRTWR(0);
END; ELSE
IF TTYN > 0 THEN
DO; CALL CRTWR(TTYBUFF(TTYBPF));
CALL INTBPF;
END;
END;
END; /* OF DO FOREVER */
EOF

```


APPENDIX D

SAMPLE OUTPUT

INITIAL ANALOG CHANNEL	0			
FINAL ANALOG CHANNEL	4			
COORDINATION NUMBER	1			
NUMBER OF SCANS	400			
SCAN PERIOD	2.92968E-03	SECONDS		
SCAN RATE	341.3333	Hz		
RECORDED REFERENCE FREQUENCY			10.1	
NUMBER OF DATA POINTS USED	371	AVAILABLE	400	
FOURIER COEFFICIENTS FOR HARMONIC 0				
CHANNEL	COS	SIN	PHASE	MAG
0	2.49391	0	0	2.493903
1	2.434844	0	0	2.434845
2	2.329837	0	0	2.329838
3	2.211704	0	0	2.211705
4	2.316711	0	0	2.316713
FOURIER COEFFICIENTS FOR HARMONIC 1				
CHANNEL	COS	SIN	PHASE	MAG
0	-654.6378	-816.6686	0	1046.66
1	-653.8682	-817.2451	5.260612E-02	1046.629
2	-653.5261	-817.6686	8.171639E-02	1046.746
3	-652.9547	-818.0521	.1192551	1046.688
4	-652.5599	-818.2418	.142628	1046.59
FOURIER COEFFICIENTS FOR HARMONIC 2				
CHANNEL	COS	SIN	PHASE	MAG
0	1.400119	-3.062779	63.2825	3.367631
1	1.38256	-3.034472	63.21033	3.33459
2	1.54163	-2.995208	65.95031	3.368662
3	1.567927	-2.935155	66.8261	3.327692
4	1.511007	-2.995277	65.46475	3.354618

APPENDIX E

OPERATING INSTRUCTIONS

A. ACQUISITION PROCEDURE INSTRUCTIONS

1. Interconnect the following with the MDS-800 using the appropriate cables:
 - * Disk Drive
 - * CRT
 - * BNC Patch Panel
 - * Teletype (optional).
2. Attach analog sources to the desired patch panel BNC fitting using coaxial cables. Up to 16 channels may be attached. Ensure voltage limits on analog inputs do not exceed plus or minus 5 volts.
3. With disk drive doors open, power up all equipment.
4. Install the program diskette in Drive A and a blank or unprotected diskette in Drive B, then close the doors.
5. Depress the BOOT switch and momentarily depress the RESET switch.
6. Depress the space bar on the CRT keyboard.
7. Reposition the BOOT switch - The CRT will display the following message: 32K CP/M VERS 1.3
8. Enter ACQUIRE and a carriage return. The program will respond by displaying the current CONTROL file and ask:

"ANY CHANGES?".

9. Respond with a Y for yes or a N for no.
10. If yes, you must then edit the CONTROL file by entering:
 * ED CONTROL cr
 * #A cr

Use the editing commands specified in ref. 9.

11. If no, the program will ask for a 4 digit frequency to be entered. The decimal point is understood to be between the first and second significant digits,

ex: 0105 is equivalent to 10.5 Hz.

12. When ready to record data, enter a carriage return.
13. Repeat steps 11 and 12 until the CONTROL file terminates and asks "GOOD RUN?".
14. Enter Y if you wish to protect the disk from being written to.
15. Entering a N will not protect the diskette nor will it destroy data on the disk.

B. DATA ANALYSIS PROCEDURE INSTRUCTIONS

1. With the DATA diskette in Drive B and the program diskette in Drive A, type in CONVERT DATA.xxx; where xxx is the decimal ID of the data file,

CONVERT DATA.001

2. When prompted with an A>, enter RUN REDUCE. Output will appear on the selected console device.

APPENDIX F

SAMPLE CONTROL FILE

DATE: 6/15/77
RUN#: SIN REDUCTION TEST
SCANS PER CHANNEL: 400
SCAN PERIOD: 2
FIRST CHANNEL: 0
LAST CHANNEL: 2
SCANIVALVE 0: 1
SCANIVALVE 0: 6
SCANIVALVE 1: 1
SCANIVALVE 1: 6
CHANNEL 1 = INPUT FROM WAVEtek
CHANNEL 2 AND 3 = OUTPUT FROM OP AMP FILTER
DATA.000 = 10HZ SIN WAVE ZERO OFFSET
.001 = 25HZ SIN WITH ZERO OFFSET
.002 = 35HZ SIN WITH ZERO OFFSET
.003 = 50HZ SIN WITH ZERO OFFSET
.004 = 65HZ SIN WITH ZERO OFFSET
.005 = 75HZ SIN WITH ZERO OFFSET

S

LIST OF REFERENCES

1. Datel Systems, Inc., Sinetrac Series Model ST-800 Analog Peripheral Systems Instruction Manual, Document No. ST8-MH1609, 1976.
2. Intel Corporation, MDS-800 Intellec MDS Microcomputer Development System Hardware Reference Manual, 1975.
3. Intel Corporation, Intellec 800 Microcomputer Development System Operator's Manual, 1975.
4. Intel Corporation, Diskette Operating System Microcomputer Development System MDS-DOS Operator's Manual, 1975.
5. Eubanks, G.E. Jr., BASIC-E Reference manual, Naval Postgraduate School, Monterey, 1976.
6. Eubanks, G.E. Jr., An Extended BASIC Language Processing System, M.S. Thesis, Naval Postgraduate School, Monterey, December, 1976.
7. Lancaster, Emmett John, III, Initial Flow Measurements of the Unsteady Aerodynamics on a Circulation Control Airfoil and an Oscillatory Wind Tunnel, M. S. Thesis, Naval Postgraduate School, Monterey, June, 1977.
8. Kail, Karl A., IV, Unsteady Surface Pressure and Near-Wake Hot Wire Measurements of a Circulation Control Airfoil, Engineer Thesis, Naval Postgraduate School, Monterey, June, 1977.
9. Digital Research Corp., An Introduction to CP/M Features and Facilities, 1976.

10. Intel Corporation, 8080 Assembly Language Programming Manual, 1976.
11. Pickelsimer, B. M., Data Reduction for the Unsteady Aerodynamics on a Circulation Control Airfoil, M.S. Thesis, Naval Postgraduate School, Monterey, March, 1977.
12. Gordon, Bernard M., The Analogic Data Conversion Systems Digest, Analogic Corporation, 1977.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3. Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
4. Professor L. V. Schmidt, Code 67SX Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
5. Professor J. A. Miller, Code 67Mo Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
6. Commanding Officer Attn: Mr. R. F. Siewert, AIR-320D Naval Air Systems Command Washington, D.C. 20361	1

7. Commanding Officer 2
Attn: Dr. H. Chaplin, Code ASED
Mr. J. Wilkerson, Code ASED
David W. Taylor Naval Ship Research
and Development Center
Bethesda, Maryland 20084

8. LT Cleveland D. Englehardt, USN 1
27 Greenbrae Court
El Sobrante, California 94803

thesE454

Data acquisition system for unsteady aer

3 2768 002 06184 8

DUDLEY KNOX LIBRARY