

功能说明

TT8642 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。TT8642 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

TT8642 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合于手机及其他便携式音频产品。

TT8642 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件、PCB 面积和系统成本。

TT8642 提供 MSOP8 和 SOP8 封装,额定的工作温度范围为-40℃至 85℃。

1 主要特性

- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 3W 输出功率(10% THD、5V 电源、4Ω 负载)
- 0.05%THD+N(1W输出功率、5V电源)
- 无需滤波器 Class-D 结构
- 高达 90%的效率
- 高 PSRR: -80dB (217Hz)
- 低静态电流(3.5mA)
- 工作电压范围: 2.2V~5.25V
- 过流保护、过热保护、欠压保护
- MSOP8 和 SOP8 封装

2 应用领域

- 移动电话(手机等)
- MP3/PMP
- Mini 音箱
- 数码相框

3 典型应用电路

图1 TT8642 典型应用图

4 极限参数

表1 芯片最大物理极限值

参数		最小值	最大值	单位	
电源电	 违压 V _{DD}	-0.3	6.0	V	
INP, INN,	CTRL引脚电压	-0.3	V _{DD} +0.3	V	
最之	大结温		150	$^{\circ}\!\mathbb{C}$	
存储剂	且度范围	-65	150	$^{\circ}\!\mathbb{C}$	
引脚温度	(焊接 10 秒)		260	$^{\circ}\!\mathbb{C}$	
封装热阻θ.	JA (MSOP8)		190	°C/W	
封装热阻	θ_{JA} (SOP8)		150	°C/W	
工作温度范围		-40	85	$^{\circ}\!\mathbb{C}$	
ESD [访护电压		+/-8000	V	
Latch-up	+IT		150	mA	
	-IT		-150	mA	

注 1: 在极限值之外或任何其他条件下,芯片的工作性能不予保证。

5 电气特性

限定条件:: TA=25℃(除非特别说明)

表2 TT8642 电气特性表

符号	参数	测试条件	最小值	标准值	最大值	单位
电学特性						
	输出失调电压	V _{IN} =0V, A _V =9V/V, V _{DD} =2.2V to 5.25V		5	20	mV
I_Q	静态电流	V _{DD} =3.6V		3.5		mA
I_{SD}	关断电流	V _{DD} =3.6V, CTRL=0V		0.1		μА
PSRR	电源抑制比	217Hz 20KHz			-80 -72	dB dB
CMRR	共模抑制比			-70		dB
f_{SW}	调制频率	$V_{\rm DD}$ =2.2V to 5.25V		400		kHz
A_{V}	放大倍数			19		dB
工作特性						
P _O 输出功率		THD+N=10%, f=1kHz, $R_L = 4\Omega$, $V_{DD} = 5V$		3.0		W
	松山马家	THD+N=1%, f=1kHz, $R_L = 4\Omega$, $V_{DD} = 5V$		2.1		dB dB dB kHz dB
	潮 山切伞	THD+N=10%, f=1kHz, $R_L = 8\Omega$, $V_{DD} = 5V$		1.8		W
		THD+N=1%, f=1kHz, $R_L = 8\Omega$, $V_{DD} = 5V$		1.3		W

THD+N	总谐波失真 +噪声	$V_{DD} = 5V$, $P_0 = 0.5W$, $R_L = 8\Omega$, $f = 1kHz$		0.05		%
		$V_{DD} = 5V$, Po=1W, $R_L = 4\Omega$, f=1kHz		0.05		%
η	效率	$P_0=1W$, $R_L=8\Omega$, $f=1kHz$		90		%
VIH	CTRL 输入 高电平		1.2		V_{DD}	V
$V_{\rm IL}$	CTRL 输入 低电平		0		0.2	V
$t_{\rm ST}$	启动时间			30		ms
$t_{ m WK}$	唤醒时间		35			ms
$t_{ m SD}$	关断时间		80			ms

6 芯片管脚描述

6.1 MSOP8 和SOP8 管脚分配图

图2 MSOP8 和 SOP8 管脚分配图

6.2 管脚功能描述

表3 TT8642 管脚描述

管脚号	符号	功能描述
1	CTRL	工作模式控制
2	Bypass	内部共模电压旁路电容
3	INP	正相音频输入
4	INN	反相音频输入
5	VoN	反相音频输出
6	VCC	电源输入
7	GND	地
8	VoP	正相音频输出

TT8642 典型参考特性

超低 EMI、无需滤波器、3W 单声道 D 类音频功放

TT8642 应用说明

原理框图 8.1 VOF Cin 0.1uF ±1nF Input Output Stage Modulator VON Cin 0.1uF Oscillat CTRL O OCP ОТР TT8642 Bypass UVLO Bias Cbyp GND

图4 TT8642 功能框图

8.2 工作原理

TT8642是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。在 5V 电源下,能够向 4 Ω 负载提供 3W 的功率,并具有高达 90%的效率。

TT8642 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

TT8642 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件数目、PCB 面积和系统成本,利用扩展频谱技术充分优化全新电路设计。芯片内置过流保护、过热保护和欠压保护功能,在异常工作条件下关断芯片,有效地保护芯片不被损坏,当异常条件消除后,TT8642 自动恢复工作。

8.3 无需输出滤波器

TT8642采用无需输出滤波器的 PWM 调制方式,省去了传统 D 类放大器的 LC 滤波器,提高了效率,提供了一个更小面积,更低成本的实现方案。

8.4 上电,掉电噪声抑制

TT8642内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能出现的瞬态噪声。

8.5 EMI增强技术

TT8642 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示。

图5 EMI测试频谱图

8.6 CTRL引脚设置

通过设置 CTRL 引脚的电平值,可以设置 TT8642 的工作模式,如表 4 所示。

表4 工作模式

CTRL	Mode
Н	Open
L	Shutdown

8.7 效率

TT8642 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。最高可达 90%的效率 更加适合于手机及其他便携式音频产品。

8.8 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,TT8642自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,TT8642继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

8.9 应用信息

电源去耦电容

电源端加适当的去耦电容可以确保器件的高效率及最佳的 THD 性能,同时为得到良好的高频瞬态性能,希望电容的 ESR 值要尽量小。一般使用 $1\,\mu$ F 的陶瓷电容将 V_{DD} 旁路到地。去耦电容在布局上应尽可能的靠近芯片的 V_{DD} 放置。如果希望更好地滤除低频噪声,则需要根据具体应用添加一个 $10\,\mu$ F 或更大的去耦电容。

输入滤波器

音频信号通过隔直电容输入到 TT8642 的 INP 与 INN。输入电容与内置输入电阻 Rin(25K Ω)构成一个高通滤波器。选用 Cin=0.1uF,截止频率为 fc = $1/(2 \pi \text{RinCin}) = 64 \text{Hz}$ 。

应用中可以选用较小的 Cin 电容以滤除从输入端耦合进入的 217Hz 噪声。 两个输入电容之间良好的 匹配对提升芯片整体性能及噼噗-咔嗒声抑制都有帮助。

图7 单端输入方式

磁珠与电容

TT8642 在没有磁珠、 电容的情况下, 对 60cm 的音频线, 仍可满足 FCC 标准要求。在输出音频线过长或器件布局靠近 EMI 敏感设备时,建议使用磁珠、电容。磁珠及电容要尽量靠近芯片放置。

图8 磁珠与电容

9 芯片的封装

9.1 MSOP-8 封装尺寸图

图9 MSOP-8 封装尺寸图

9.2 SOP-8 封装尺寸图

Symbol	Dimensions In Millimeters		ensions In Millimeters Dimensions	
	Min	Max	Min	Max
A	1. 350	1. 750	0.053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1.550	0.053	0.061
b	0. 330	0.510	0.013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
Е	3.800	4.000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

图10 SOP-8 封装尺寸图