DM 8: Estimation statistique

Exercice 1 (Loi exponentielle translatée). On observe $\mathbf{x} = (x_1, \dots, x_n)$ que l'on considère comme la réalisation du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_n)$, où les X_i sont des variables aléatoires i.i.d. de la loi \mathbb{P}_{θ} de densité $f_{\theta}(x) = \mathrm{e}^{-(x-\theta)} \mathbb{1}_{\{x \geq \theta\}}$ de paramètre inconnu $\theta \in \mathbb{R}$.

- 1. Soit Y une v.a. de loi exponentielle de paramètre 1. Montrer que X_i a même loi que $Y + \theta$.
- 2. Calculer l'estimateur par la méthode des moments $\hat{\theta}_n^{\text{MM}}$ de θ . On utilisera le moment d'ordre 1.
- 3. Montrer que l'estimateur $\hat{\theta}_n^{\text{MM}}$ est convergent et asymptotiquement normal. Déterminer son risque quadratique moyen.
- 4. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{\text{MV}}$ de θ , et déterminer sa loi.
- 5. Vérifier si l'estimateur $\hat{\theta}_n^{\text{MV}}$ est convergent.
- 6. Déterminer son risque quadratique moyen $\mathrm{RQM}_{\theta}(\hat{\theta}^{\mathrm{MV}})$.
- 7. Étudier la convergence en loi de $n^{\alpha}(\hat{\theta}_{n}^{\text{MV}} \theta)$ lorsque n tend vers l'infini. En déduire que $\hat{\theta}_{n}^{\text{MV}}$ n'est pas asymptotiquement normal et préciser la vitesse de convergence de l'estimateur.

Solution. 1. Notons $V = Y + \theta$. Il est clair que $V > \theta$ p.s. La fonction de répartition de $V = Y + \theta$ vaut $F_V(v) = 0$ pour $v \le \theta$, et pour $v > \theta$

$$F_V(v) = \mathbb{P}_{\theta}(V \le v) = \mathbb{P}_{\theta}(Y \le v - \theta) = F_Y(v - \theta) = 1 - e^{-(v - \theta)}$$

car $v - \theta > 0$. En dérivant on trouve que la densité de V est f_{θ} . Donc, V et X ont bien la même loi.

- 2. On a $\mathbb{E}_{\theta}[X_1] = \mathbb{E}_{\theta}[Y + \theta] = 1 + \theta$. Pour l'EMM, en posant $1 + \theta = \bar{x}_n$, on obtient $\hat{\theta}^{\text{MM}} = \bar{X}_n 1$.
- 3. Par la LFGN, on a bien $\hat{\theta}_n^{\text{MM}} = \bar{X}_n 1 \to 1 + \theta 1 = \theta$ p.s.. D'où la convergence de l'EMM. D'après le TCL, on a

$$\sqrt{n}(\hat{\theta}_n^{\mathrm{MM}} - \theta) = \sqrt{n}((\bar{X}_n - 1) - \theta) = \sqrt{n}(\bar{X}_n - \mathbb{E}_{\theta}[X_1]) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \operatorname{Var}_{\theta}(X_1)),$$

avec $\operatorname{Var}_{\theta}(X_1) = \operatorname{Var}_{\theta}(Y + \theta) = 1$. L'EMM est donc bien asymptotiquement normal avec une vitesse de convergence de $n^{-1/2}$. Quant au risque quadratique moyen, on trouve

$$\operatorname{RQM}_{\theta}(\hat{\theta}^{\operatorname{MV}}) = (\mathbb{E}_{\theta}[\hat{\theta}^{\operatorname{MM}}] - \theta)^{2} + \operatorname{Var}(\hat{\theta}^{\operatorname{MM}}) = 0 + \frac{1}{n}\operatorname{Var}_{\theta}(X_{1}) = \frac{1}{n}.$$

4. Pour l'EMV on calcule la fonction de vraisemblance

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f_{\theta}(x_i) = \prod_{i=1}^n e^{-x_i + \theta} \mathbb{1}\{x_i \ge \theta\} = e^{-\sum_{i=1}^n x_i + n\theta} \mathbb{1}\{x_{(1)} \ge \theta\},$$

où $x_{(1)} = \min\{x_1, \dots, x_n\}$. D'une part, la fonction $\theta \mapsto \mathbb{1}\{x_{(1)} \geq \theta\}$ est maximale pour tout $\theta \leq x_{(1)}$. D'autre part, la fonction $\theta \mapsto \mathrm{e}^{-\sum_{i=1}^n x_i + n\theta}$ est croissante en θ . Cela implique que le maximum est atteint en $\theta = x_{(1)}$. Donc, l'EMV est $\hat{\theta}_n^{\mathrm{MV}} = X_{(1)}$.

Pour la loi de $\hat{\theta}_n^{\text{MV}}$, il est clair que $\hat{\theta}_n^{\text{MV}} \geq \theta$ p.s.. La fonction de répartition est donnée pour $t > \theta$ par

$$F_{\hat{\theta}_n^{\text{MV}}}(t) = \mathbb{P}_{\theta}(X_{(1)} \le t) = 1 - \mathbb{P}_{\theta}(X_{(1)} > t) = 1 - [\mathbb{P}_{\theta}(X_1 > t)]^n = 1 - [\mathbb{P}_{\theta}(Y > t + \theta)]^n$$
$$= 1 - e^{-n(t+\theta)}.$$

Donc, la densité de $\hat{\theta}_n^{\text{MV}}$ est donnée par $f_{\hat{\theta}_n^{\text{MV}}}(t) = n e^{n(t-\theta)} \mathbb{1}\{t > \theta\}$. Autrement dit, notons Z_n des v.a. de loi exponentielle Exp(n), alors $\hat{\theta}_n^{\text{MV}}$ a même loi que $Z_n + \theta$ pour tout n.

5. Notons $A_n = \{|\hat{\theta}_n^{\text{MV}} - \theta| > a_n\}$ pour des $a_n > 0$. On a

$$\mathbb{P}_{\theta}(A_n) = \mathbb{P}_{\theta}(\hat{\theta}_n^{\text{MV}} > \theta + a_n) = 1 - F_{\hat{\theta}^{\text{MV}}}(\theta + a_n) = e^{-na_n}.$$

En choisissant $a_n=1/\sqrt{n}$, on obtient $\sum_n \mathbb{P}_{\theta}(A_n)<\infty$, et le théorème de Borel-Cantelli implique que $\mathbb{P}_{\theta}(\limsup A_n)=0$. Autrement dit, $\hat{\theta}_n^{\mathrm{MV}}\to\theta$ p.s., d'où la convergence.

6. On a $\mathbb{E}_{\theta}[\hat{\theta}_n^{\text{MV}}] = \mathbb{E}_{\theta}[Z_n + \theta] = \frac{1}{n} + \theta$ et $\text{Var}_{\theta}(\hat{\theta}_n^{\text{MV}}) = \text{Var}_{\theta}(Z_n + \theta) = \frac{1}{n^2}$. Alors, le risque quadratique moyen vaut

$$RQM_{\theta}(\hat{\theta}^{MV}) = (\mathbb{E}_{\theta}[\hat{\theta}^{MV}] - \theta)^2 + Var(\hat{\theta}^{MV}) = \frac{2}{n^2}.$$

7. Remarquons que $n^{\alpha}(\hat{\theta}_{n}^{\mathrm{MV}}-\theta)>0$ p.s. On a pour t>0

$$\mathbb{P}_{\theta}\left(n^{\alpha}(\hat{\theta}_{n}^{\mathrm{MV}} - \theta) \leq t\right) = \mathbb{P}_{\theta}\left(\hat{\theta}_{n}^{\mathrm{MV}} \leq n^{-\alpha}t + \theta\right) = 1 - e^{tn^{-\alpha+1}}.$$

Pour $\alpha=1$ on reconnait la fonction de répartition de la loi exponentielle Exp(1). Donc, on a montré que $n(\hat{\theta}_n^{\text{MV}} - \theta) \stackrel{\mathcal{L}}{\longrightarrow} \text{Exp}(1)$. La vitesse de convergence est alors de 1/n. Dans ce modèle, l'EMV converge plus rapidement que l'EMM, et l'EMV n'est pas asymptotiquement normal.