

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA DEPARTAMENTO ELECTRÓNICA Y COMPUTACIÓN

ÁREA CONTROL ASIGNATURA: SISTEMAS DE CONTROL

CONTROL DE CONVERTIDORES CONMUTADOS DC/DC

PARTE 1: TOPOLOGÍAS Y COMPONENTES

- ☐ Genéricamente, los convertidores conmutados son sistemas electrónicos orientados a las transformaciones eficientes de energía según un método de control:
 - **□**Eléctrica ↔ Eléctrica
 - **□**Eléctrica ↔ Mecánica
- □ La modelización de los procesos de conversión de energía involucra la caracterización de plantas no LTI, particularmente, de estructura variable en el tiempo.

MOTIVACIÓN:

- Introducción a topologías y componentes de convertidores de potencia DC/DC
- □ Desarrollo de métodos de modelización de plantas de estructura topológica variable
- □ Compensación, control y performance en sistemas de estructura variable

APLICACIONES TÍPICAS:

- Cargadores / descargadores de baterías
- □ Convertidores DC/DC on board y reguladores de potencia

(2/28)

ORGANIZACIÓN:

- Sesión 1: Componentes en conversión de potencia, topologías fundamentales
- Sesión 2: Modelación de convertidores DC/DC y control en lazo cerrado para performance
- □ Sesión 3: Simulación de convertidores DC/DC (LTSpice / MtLab / NL5)
- Sesión 4: Proyecto de diseño de un convertidor DC/DC
- ☐ Sesión 5: Problemas de compensación mediante promediación de estados

COMPETENCIAS REQUERIDAS EN LA TEMÁTICA:

EJEMPLO: ANATOMÍA DE UN REGULADOR (CUASI) LINEAL PARA CARGAR BATERÍAS

Tensión de salida: 12V...(13.8V)
Corriente de carga máxima=20A
Tensión de línea= 220Vrms +/-10%
Po=240W...276W

- □ Cuánto disipa el transistor en el peor caso ?
- Cuánto resulta la eficiencia (aprox.) ?
- Cómo es la corriente de red ?
- Cuánto vale la potencia aparente de red ?

$$156W < P_D < 340W$$

$$0.41 < \eta < 0.64$$

EJEMPLO: ALTERNATIVA DE CONVERTIDOR CONMUTADO PARA CARGAR BATERÍAS

MODELIZACIÓN DEL PROCESO DE ESTRUCTURA VARIABLE:

CLASIFICACIÓN DE LAS ESTRUCTURAS DE CONVERSIÓN:

CONVERSION ESTÁTICA DE ENERGÍA ELÉCTRICA: Transformación de parámetros y características de la energía eléctrica suministrada por un generador, para adaptarlos a una aplicación particular (receptor o carga), empleando un conjunto de elementos eléctricos estáticos, interconectados por mallas circuitales de estructura variable.

COMPONENTES DE LAS ESTRUCTURAS DE CONVERSIÓN:

INTERRUPTORES (SEMICONDUCTORES)

REACTIVOS

COMPONENTES: GENERADORES

Propiedades:

Tipo: tensión / Corriente

Sentido: AC / DC

Reversibilidad energética Impedancia Instantánea.

- **UNA FUENTE DE TENSIÓN NO PUEDE** CORTOCIRCUITARSE
- UNA FUENTE DE CORRIENTE NO PUEDE DEJARSE A CIRCUITO ABIERTO
- DOS FUENTES DE TENSIÓN NO PUEDEN CONECTARSE EN PARALELO
- **DOS FUENTES DE CORRIENTE NO PUEDEN**CONECTARSE EN SERIE

COMPONENTES: INTERRUPTORES (NOCIÓN)

Vk, Ik > 0 CONMUTACION COMANDADA

La conmutación comandada del interruptor modifica la topología del circuito externo

Vk.Ik < 0 CONMUTACION NATURAL

El circuito externo provoca la conmutación del interruptor y luego cambia su topologia

CONMUTACION COMANDADA (Interruptores con electrodo de comando)

PUNTOS DE FUNCIONAMIENTO ANTES Y DESPUES DE LA CONMUTACION SOBRE SEGMENTOS ORTOGONALES DEL MISMO SIGNO!

CONMUTACION NATURAL (ESPONTANEA) (Interruptores sin electrodo de comando)

PUNTOS DE FUNCIONAMIENTO ANTES Y DESPUES DE LA CONMUTACION SOBRE SEGMENTOS ORTOGONALES DE SIGNO CONTRARIO!

COMPONENTES: CÉLULA ELEMENTAL DE CONMUTACIÓN

- UNA FUENTE DE TENSIÓN NO PUEDE CORTOCIRCUITARSE
- UNA FUENTE DE CORRIENTE NO PUEDE DEJARSE A CIRCUITO ABIERTO
- **DOS FUENTES DE TENSIÓN NO PUEDEN**CONECTARSE EN PARALELO
- **DOS FUENTES DE CORRIENTE NO PUEDEN**CONECTARSE EN SERIE

CARACTERÍSTICAS:

- CONEXIÓN DE UNA FUENTE DE TENSIÓN CON UNA DE CORRIENTE
- OPERACIÓN DE LOS INTERRUPTORES FORZOSAMENTE COMPLEMENTARIA
- UN CAPACITOR SE COMPORTA TRANSITORIAMENTE COMO UNA FUENTE DE TENSIÓN
- UN INDUCTOR SE COMPORTA TRANSITORIAMENTE COMO UN GENERADOR DE CORRIENTE
- □ LAS TRES TOPOLOGÍAS BÁSICAS DE CONVERSIÓN SE OBTIENEN POR ROTACIONES DE LA CÉLULA ELEMENTAL

COMPONENTES: INTERRUPTORES (REALIZACIÓN)

INTERRUPTOR DE DOS CUADRANTES BIDIRECCIONAL EN CORRIENTE UNIDIRECCIONAL EN TENSIÓN

INTERRUPTOR DE DOS CUADRANTES BIDIRECCIONAL EN TENSION UNIDIRECCIONAL EN CORRIENTE

INTERRUPTOR DE UN CUADRANTE UNIDIRECCIONAL EN CORRIENTE UNIDIRECCIONAL EN TENSIÓN

INTERRUPTORES DE CUATRO CUADRANTES
BIDIRECCIONALES EN TENSION – BIDIRECCIONALES EN CORRIENTE

COMPONENTES: CAPACITORES

 $C=Q/V=\epsilon.A/t$

- Ls= Inductancia serie
- C= Capacidad efectiva
- ESR= Resistencia serie efectiva (Rs)
- Vk= Tensión de avalancha
- Rp= Resistencia de fugas

CARACTERÍSTICAS:

- CAPACIDAD
- TENSIÓN DE OPERACIÓN
- VOLUMEN
- PÉRDIDAS (JOULE + DIELÉCTRICAS)
- MÁXIMA CORRIENTE
- □ VIDA ÚTIL (MTBF)
- IMPEDANCIA EFECTIVA
- TEMPERATURA DE TRABAJO
- MODO DE FALLA
- ☐ CORRIENTE DE FUGA

TECNOLOGÍA:

- MULTICAPA
- ELECTROLÍTICOS
- PELÍCULA METÁLICA
- DIELÉCTRICO METALIZADO
- EDLC (SUPERCAPACITORES)

DIELÉCTRICO:

- CERÁMICO
- MICA
- PAPEL
- POLIPROPILENO (MKP)
- POLIESTIRENO (MKS)
- POLIESTER (MKT)
- AIO3

COMPONENTES MAGNÉTICOS: REVISIÓN DE CONCEPTOS

- lacksquare Inducción magnética: $ec{B}[T]$
- lacksquare Excitación magnética: $ec{H}[rac{A}{m}]$
- ☐ Flujo magnético: Ø [Wb]

i(*t*)

- ☐ Permeabilidad magnética: $\mu \left[\frac{H}{m}\right]$
 - En el vacío: $\mu_0 = 4\pi 10^{-7} \left[\frac{H}{m} \right]$
 - En un material soft: $\mu = \mu_0 . \mu_R$

$$\mathcal{R}_{m} = \frac{l_{m}}{\mu_{0}\mu_{R}.s}$$

$$\mathcal{R}_{g} \cong \frac{l_{g}}{\mu_{0}.s}$$

$$P = A_{L} = \frac{1}{\mathcal{R}_{l} + \mathcal{R}_{g}}$$

$$\vec{B}[T] = \mu . \vec{H}$$

$$\vec{B}[Wb] = \vec{B} . \vec{s}$$

- **■** Ley de Ampère: $\oint \vec{H} \cdot \vec{dl} = \sum N \cdot I$
- □ Ley de Faraday: $v(t) = -N.\frac{d\phi(t)}{dt}$
- **■** Ley de Hopkinson: $N.I = \emptyset. \Sigma \mathcal{R}$

$$v_L(t) = L.\frac{di}{dt} = N.\frac{d\emptyset}{dt}$$

$$L = \frac{N.\emptyset}{I} = \frac{N^2}{\mathcal{R}_m + \mathcal{R}_g} \cong \frac{N^2}{\frac{l_m}{\mu_0 \mu_R.s} + \frac{l_g}{\mu_0.s}}$$

COMPONENTES MAGNÉTICOS: REVISIÓN DE CONCEPTOS

PROPIEDADES DEL NÚCLEO

- Saturación
- Alinealidad tipo histéresis
- Permeabilidad función de H
- Pérdidas por corrientes Foucault
- Pérdidas por histéresis

MATERIAL DEL NÚCLEO:

- Acero-silicio
- Acero-silicio grano orientado
- Ferrites
- Hierro pulverizado
- Materiales amorfos

TRANSFORMADOR

$$N_1.I_1 - N_2.I_2 = \phi_m.\mathcal{R}$$

En el caso ideal: $\mu \to \infty \Longrightarrow \mathcal{R} \to 0$

$$N_1.I_1 = N_2.I_2$$

Caso ideal significa que no existe flujo disperso!

Por ley de Faraday:

$$\frac{d\phi_m}{dt} = \frac{V_1}{N_1} = \frac{V_2}{N_2}$$

(14/28)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CASO 1: BUCK O FORWARD

- \square HIPÓTESIS CCM: $I_L > 0$
- \square PERÍODO CONSTANTE: T_S
- \square REDUCIDO RIPPLE: $\triangle V_o \ll V_o$

CICLO DE TRABAJO:

$$0 \leq D(t) \triangleq \frac{T_{ON}(t)}{T_S} \leq 1$$

ESTADO ON:

ESTADO OFF:

$$\Delta I_L^{+} = \frac{(V_{CC} - V_O)}{I} . T_{ON}$$

ESTADO ESTACIONARIO:

$$\Delta I_L^+ = \Delta I_L^-$$

RELACIÓN DE CONVERSIÓN: $V_O = D(t) \cdot V_{CC}$

PROPORCIONALIDAD => LINEALIDAD ?

(15/28)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CCM=Continuous Conduction Mode DCM=Discontinuous Conduction Mode

CASO 1: BUCK O FORWARD (LÍMITE CCM / DCM)

 $\Delta I_L = 0$

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CASO 1: BUCK O FORWARD (CÁLCULO DE ELEMENTOS)

INDUCTOR CRÍTICO
$$\Delta I_L = 2. I_O \rightarrow L_C = \frac{V_O (1 - D_{min}). T_S}{2. I_{Omin}}$$

CÁLCULO DE RIPPLE DE TENSIÓN EN CCM:

$$\frac{\Delta V_O}{V_O} = \frac{(1-D)}{8.L.C.F_S^2} = \frac{1}{100}$$

$$\Delta I_{L} \quad \frac{\Delta V_{O}}{V_{O}} = \frac{(1-D)}{8. L. C. F_{S}^{2}} \rightarrow \qquad \frac{\Delta V_{O}}{V_{O}} = (1-D). \frac{1}{2} \pi^{2} \left(\frac{\omega_{C}}{\omega_{S}}\right)^{2}$$

RIPPLE RELATIVO DE TENSIÓN

RESPUESTA DEL FILTRO LC

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CASO 1: BUCK O FORWARD (RESPUESTA TRANSITORIA)

$$T_Q \approx L. \frac{(I_{LMAX} - I_{LMIN})}{(V_{CC} - V_Q)}$$

$$\Delta V_O \approx L. \frac{(I_{LMAX} - I_{LMIN})^2}{2.C(V_{CC} - V_O)}$$

$$T_Q \approx L. \frac{(I_{LMAX} - I_{LMIN})}{V_O}$$

$$\Delta V_O \approx L. \frac{(I_{LMAX} - I_{LMIN})^2}{2. C. V_O}$$

* Se asume pequeña perturbación

CONTROL DE CONVERTIDORES CONMUTADOS DC/DC (18/28)**CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO: CASO 1: BUCK O FORWARD** CARGA TENSIÓN DE SALIDA Vo COMPARADOR Vcc=24V TENSIÓN NODO CONMUTACIÓN Va • Fsw=20kHz • $R=1\Omega$ • D=0.5 • L=200uH • C=100uF CORRIENTE INDUCTOR **START-UP CON D Y R FIJOS ESCALÓN DE CARGA 50%** ↓ TENSIÓN DE SALIDA Vo TENSIÓN NODO CONMUTACIÓN Va ~100mVpp CORRIENTE INDUCTO

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

RESPUESTA ELEMENTAL DEL FILTRO LC (MODO FORWARD)

FUNCIÓN TRANSFERENCIA:
$$G_F(s) = \frac{1}{1 + s \cdot \frac{L}{R} + s^2 \cdot LC}$$

Representando el denominador:

...y la transferencia resultante G_F:

NOTACIÓN:

$$\omega_0 \triangleq \frac{1}{\sqrt{L.C}}$$

$$Z_0 \triangleq \sqrt{\frac{L}{C}}$$

$$Q_0 \triangleq \frac{R}{Z_0} = R. \sqrt{\frac{C}{L}}$$

Hallando las raíces de la transferencia del filtro:

R/L $\omega_0 = 1/\sqrt{LC}$

$$s_{1,2} = \frac{-1}{2.R.C} \cdot \left(1 \mp \sqrt{1 - 4.Q_0^2}\right)$$

$$Q_0 = \frac{R/L}{\omega_0} < \frac{1}{2}$$

POLOS REALES!

(20/28)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

RESPUESTA ELEMENTAL DEL FILTRO LC (MODO FORWARD)

FUNCIÓN TRANSFERENCIA:
$$G_F(s) = \frac{1}{1 + s \cdot \frac{L}{R} + s^2 \cdot LC}$$

Derivando el denominador se obtiene el máximo ω_{pk} :

$$\omega_{pk} = \omega_0 \cdot \left(1 - \frac{1}{\sqrt{2} \cdot Q_O} \right)$$

$$Q_0 < \frac{1}{\sqrt{2}}$$

|G_F| MONÓTONAMENTE **DECRECIENTE!**

EJEMPLO:

L=100uH; C=100uF

$$\omega_0 = 10^4 \left[\frac{r}{s} \right]; \ Z_0 = 1\Omega$$

(21/29)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

AMORTIGUAMIENTO DEL FILTRO LC (MODO FORWARD)

EJEMPLO:

L=100uH; C=100uF

 $R_X=1\Omega$; $C_X=100uF$

$$\omega_0 = 10^4 \left[\frac{r}{s} \right]; \ Z_0 = 1\Omega$$

(22/29)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CASO 2: BOOST (CCM)

$$\Delta I_L^{+} = \frac{(V_{CC})}{L} . T_{ON}$$

$$\Delta I_L^- = \frac{(V_O - V_{CC})}{L} . T_{OFF}$$

EJECUCIÓN CIRCUITAL

ESTADO
ESTACIONARIO: $\Delta I_{L}^{+} = \Delta I_{L}^{-}$

RELACIÓN DE CONVERSIÓN:

$$V_O = \frac{V_{CC}}{(1 - D(t))}$$

(23/29)

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO:

CASO 2: FLYBACK (CCM)

$$\Delta I_L^{+} = \frac{(V_{CC})}{L} . T_{ON}$$

ESTADO OFF:

$$\Delta I_L^- = \frac{(V_O)}{L} . T_{OFF}$$

EJECUCIÓN CIRCUITAL

ESTADO ESTACIONARIO: $\Delta I_L^+ = \Delta I_L^-$

): | | |

RELACIÓN DE CONVERSIÓN:

$$V_{O} = \frac{V_{CC} \cdot D(t)}{(1 - D(t))}$$

CONVERTIDORES DC/DC EN ESTADO ESTACIONARIO: COMPARACIÓN

CASO IDEAL (SIN PÉRDIDAS):

$$P_{IN} = V_{CC}.\overline{I_{CC}} = V_O.I_O = P_O$$

	BUCK	BOOST	FLYBACK
Relación Conversión	D	1/(1-D)	D/(1-D)
Corriente media de entrada	lo.D	lo / (1-D)	Io.D / (1-D)
Tipo de corriente de entrada	Pulsada	Contínua c/ripple	Pulsada
Tipo de corriente de salida	Contínua c/ripple	Pulsada	Pulsada
Tensión máxima llave activa	Vcc	Vo	Vcc+ Vo

Para evaluar durante el estudio:

- Relación de conversión en DCM
- ☐ Inductor crítico p/boost, flyback
- Ripple casos boost y flyback
- ☐ Fenómeno escalón de carga
- Corriente media, RMS y pico en L
- Stress en las llaves
- ☐ Efecto de la ESR capacitor de filtro

(25/29)

TOPOLOGÍAS DE MAYOR ORDEN

Estructuras de conversión DC/DC de "cuarto orden", sincrónicas.

RELACIÓN DE CONVERSIÓN:

$$V_O = V_{CC}.\frac{D}{(1-D)}$$

CONVERTIDOR CÙK

CONVERTIDOR SEPIC

CONVERTIDOR ZETA

TOPOLOGÍAS CON AISLACIÓN

TOPOLOGÍAS FORWARD CON AISLACIÓN

PUSH-PULL

SUMARIO:

- □Los convertidores conmutados DC/DC son sistemas de estructura variable orientados a la conversión eficiente de energía eléctrica
- La célula elemental de conmutación junto con las reglas de conexión de fuentes definen tres topologías elementales con diferente relación de conversión
- □ La frecuencia de conmutación del convertidor impacta en el volumen de los elementos reactivos, a mayor frecuencia, menor volumen

BIBLIOGRAFÍA:

- ☐ "Fundamentals of Power Electronics", Robert Erickson Dragan Maksimovic'
- □ Apuntes de Cátedra

PREGUNTAS?