INSTITUTO POLITÉCNICO DE TOMAR UNIDADE DEPARTAMENTAL DE TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO

Projeto (Trabalho de Grupo) APIs, Packages

O trabalho prático é obrigatório para a obtenção de aprovação na unidade curricular. No caso de não entrega durante o prazo previsto os alunos serão admitidos a exame.

<u>Objetivo</u>: Familiarização com os conceitos de obtenção de dados a partir de diferentes sources via APIs e packages Python

Entrega: Os trabalhos devem ser inseridos na plataforma de e-Learning em data a anunciar pelo docente.

<u>Realização do trabalho</u>: Os trabalhos devem ser entregues em formato notebook (devidamente documentados).

Neste exercício pretende-se reunir os dados meteorológicos de um conjunto de cidades portuguesas bem como a sua distância para uma cidade de referência. Pretende-se com esta base de dados reunir informação que permita no futuro aplicar um algoritmo de machine learning que estude o efeito (se algum) que a proximidade de uma cidade, ao mar, tem no clima local. Para esse efeito, pretende-se reunir um conjunto de 10 cidades com diferentes distâncias relativamente a uma cidade costeira de referência. Na escolha das cidades devese optar por deixar de fora, cidades montanhosas por forma a evitar a introdução de outros fatores que poderão afetar o clima (nomeadamente a altitude).

Deverá proceder à recolha dos dados meteorológicos a cada 1 hora durante o espaço de 5 dias consecutivos. Para a obtenção automática das distâncias (air distance) entre as cidades sugere-se o recurso a packages de Geocoding (Geocoding is the computational process of transforming a physical address description to a location on the Earth's surface (spatial representation in numerical coordinates) — Wikipedia).

- 1. Recorra a uma biblioteca Python que permita plotar num mapa google as localidades consideradas.
- 2. Com recurso à API "Current Weather" (https://openweathermap.org/current) obtenha os seguintes dados meteorológicos a cada hora durante o espaço de 5 dias consecutivos:
 - Temperature
 - Humidity
 - Pressure
 - Description
 - Wind speed
 - Wind degree
 - Timestamp (dt)

Para a obtenção dos dados (e em alternativa ao uso da sua máquina local) sugere-se executar o código durante os referidos 5 dias na seguinte máquina virtual: https://www.pythonanywhere.com/

- 3. Recorra a packages de geocoding (e.g., "Geopy" (https://geopy.readthedocs.io/en/stable/) para obter de forma programática a distância entre as cidades selecionadas e a cidade de referência.
- 4. Guarde os dados obtidos num único ficheiro json.
- 5. Liste os dados num dataframe.

	city	day	dt	temp	humidity	pressure	description	wind_speed	wind_deg	dist
0	Torino	2021-09-16 17:46:32	1631814392	17.86	80	1012	few clouds	0.45	338	357.715752
1	Milano	2021-09-16 17:46:22	1631814382	20.40	89	1011	thunderstorm with rain	4.02	74	250.478716
2	Asti	2021-09-16 17:47:01	1631814421	21.77	96	1011	moderate rain	1.19	85	315.230029
3	Piacenza	2021-09-16 17:47:02	1631814422	24.10	88	1011	clear sky	2.57	130	199.697736
4	Mantova	2021-09-16 17:47:03	1631814423	21.96	85	1012	overcast clouds	2.24	47	130.235792
5	Ferrara	2021-09-16 17:45:44	1631814344	22.52	87	1012	scattered clouds	1.34	135	28.996835

- 6. Proceda a uma análise gráfica dos resultados referindo-se/justificando os resultados obtidos.
 - 6.1. Verifique a evolução da temperatura num dado dia numa cidade à sua escolha.

6.2. Verifique a evolução da temperatura no conjunto dos 5 dias coletados numa cidade à sua escolha.

6.3. Verifique a evolução da temperatura num dado dia em 6 cidades à sua escolha. Uma vez que o objetivo é analisar como e se a proximidade ao mar influencia o tempo, deverá começar por escolher as 3 cidades mais próximas ao mar (a verde no exemplo) e as 3 mais afastadas (a vermelho no exemplo).

- 6.4. Aprofunde a sua análise ao correlacionar num scatter plot (gráfico de dispersão) a relação entre a distância que separa as 10 cidades do mar e a respetiva temperatura máxima.
- 6.5. Aprofunde a sua análise ao correlacionar num scatter plot (gráfico de dispersão) a relação entre a distância que separa as 10 cidades do mar e a respetiva temperatura mínima.
- 6.6. Verifique a evolução da humidade num dado dia em 6 cidades à sua escolha. Uma vez que o objetivo é analisar como e se a proximidade ao mar influencia o tempo, deverá começar por escolher as 3 cidades mais próximas ao mar (a verde no exemplo) e as 3 mais afastadas (a vermelho no exemplo).
- 6.7. Aprofunde a sua análise ao correlacionar num scatter plot (gráfico de dispersão) a relação entre a distância que separa as 10 cidades do mar e as respetivas humidades máximas e mínimas (obtidas entre os vários dias de coleta considerados). Considere o recurso à funcionalidade de subplot para mostrar ambos os gráficos um ao lado do outro.
- 6.8. Crie um Heatmap da correlação entre as diversas variáveis. Retire conclusões acerca dos dados obtidos.

