

Kubeflow *as-a-service* on HPC clusters – first experience

Mohsin Ahmed Shaikh¹, Nasr Hassanien², Islam Elmas², Saber Feki¹

1: KAUST Supercomputing Lab, 2: Brightskies Inc

Correspondance: mohsin.shaikh@kaust.edu.sa

KAUST Supercomputing Core Lab

- Shaheen 2 (Flagship)
 - Cray XC40: 6174 nodes (Intel Haswell 32 cores 128GB)
- Ibex cluster:
 - Heterogeneous CPU (Intel/AMD): > 22K cores (250GB-3TB memory)
 - Heterogeneous GPU (NVIDIA): > 600 GPUs
- Shaheen 3 (Flagship refresh Coming Soon)
 - HPE Cray EX4000: CPUs + GPUs

SLURM Everywhere

User Personas – by jobtypes

- SLURM batch jobs
 - Large scale HPC (CFD, CompChem, Earth Sci, GeoSci, Bioscience, Datascience)
 - Singleton, arrays, dependency, burst buffer
 - Client/Server (Dask, Ray)
- SLURM Interactive jobs
 - Datascience on GPUs model development
 - Jupyter, VS Code

Motivation

- Ease-of-use for Interactive computing
- Enable resilient + reproducible workflows
- Cross-platform portability -- workstation/cloud/HPC cluster

Kubeflow

Kubeflow

Kubeflow is a framework for developing data science models and workflows

Depends on Kubernetes and abstract its use through a GUI

Kubeflow *as a service* provides:

Interactive notebooks

Kubeflow pipelines – create reproducible workflows

Katib – hyperparameter optimization experiments

Kserve – model serving platform

Functionality tested so far ...

- Interactive computing
- Distributed training

Kubeflow Authentication

Main dashboard

Persistent Volume -- attachable

Tensorboard service

Distributed training Trianing Opreator -- PytorchJob

image: docker.io/mshaikh/kubeflow-demo:kf-dist-torch-vanilla

```
imagePullPolicy: IfNotPresent
                                                                   command: [ "torchrun",
                                                                            "--nnodes", "1",
apiVersion: "kubeflow.org/v1"
                                                                            "--nproc per node","4",
kind: "PyTorchJob"
                                                                            "--node_rank","0",
metadata:
                                                                            "/workspace/mnist/src/ddp.py".
  name: "DDP"
                                                                            "--batch-size","32",
                                                                            "--num-worker", "8",
  namespace: training01
                                                                            "--epochs", "4",
spec:
                                                                            "--lr","0.001" ]
  pytorchReplicaSpecs:
                                                                     env:
    Worker:
                                                                     - name: 'NCCL DEBUG'
                                                                       value: 'INFO'
       replicas: 1
                                                                     - name: 'DATA DIR'
     restartPolicy: Never
                                                                       value: '/data/tiny-imagenet-200'
     template:
                                                                     - name: 'OMP_NUM_THREADS'
       metadata:
                                                                       value: '1'
         annotations:
                                                                     resources:
           sidecar.istio.io/inject: "false"
                                                                       limits:
          spec:
            affinity:
                                                                          cpu: 8
                                                                          memory: '200Gi'
              nodeAffinitv:
              requiredDuringSchedulingIgnoredDuringExecution:
                                                                          nvidia.com/gpu: 4
               nodeSelectorTerms:
                                                                     volumeMounts:
                 - matchExpressions:
                                                                        - name: dshm
                   - key: nvidia.com/qpu.product
                                                                          mountPath: /dev/shm
                     operator: In
                     values:
                                                                volumes:
                      - "Tesla-V100-SXM2-32GB"
                                                                   - emptyDir:
                                                                       medium: Memory
                                                                     name: dshm
```

containers:

- name: pytorch

				!	+		
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage 	•	Uncorr. ECC Compute M. MIG M.	
0 N/A	Tesla 62C	V100-SXM2-32GB P0	Off 190W / 300W		93%	0 Default N/A	
1 N/A	Tesla 61C	V100-SXM2-32GB P0	Off 226W / 300W	00000000:62:00.0 Off 5031MiB / 32768MiB	 94% 	0 Default N/A	
2 N/A	Tesla 61C	V100-SXM2-32GB P0	Off 246W / 300W	•	94%	0 Default N/A	
3 N/A	Tesla 66C	V100-SXM2-32GB P0	Off 279W / 300W	00000000:8A:00.0 Off 5039MiB / 32768MiB	 95% 	0 Default N/A	

Proces	sses: GI ID	CI ID	PID	Туре	Process name	GPU Memory Usage
0	N/A	N/A	2745778	C	/opt/conda/bin/python	5066MiB
1	N/A	N/A	2745779	C	/opt/conda/bin/python	5026MiB
2	N/A	N/A	2745780	C	/opt/conda/bin/python	5026MiB
3	N/A	N/A	2745781	C	/opt/conda/bin/python	5034MiB

SLURM vs Kubeflow

PyTorch DDP training

• Dataset: TinylmageNet200

• Model: ResNet50

• Nodes: 1

• GPUs per node: 4 V100 SXM2 (32GB)

• Training for 20 epochs

• Batch size: 256

SLU	RM	Kubeflow training opreator		
Time to solution(s)	Accuracy	Time to solution(s)	Accuracy	
1939.232	48%	1881.21	48%	

Cluster Infrastructure

On-Prem

Lessons Learnt

- Master in HA
- K3s vs RKE2 (mysql vs etcd)
- DiskPressure CrashLoopBackOff
- Multi-node cluster is important for PoC
- NVIDIA GPU operator vs Device plugin
- Node feature discovery add-on
- Appropriate Container Network Interface (Ethernet + IB +)

Lessons Learnt

- Identity management in a container
 - Per user image vs injecting credentials via Configmaps
- The kubectl CLI use in Jupyter session restricted to namespace
- Customize base images form Kubeflow
 - https://www.kubeflow.org/docs/components/notebooks/container-images/
- The Kubeflow UI is useful, until there is a problem. kubectl access is needed to investigate what went wrong. That's a user support ticket for HPC centers.
- The kubectl describe output and kubectl logs are not always helpful
- For high throughput workflows (with SPMD), restartPolicy=OnFailure provides resiliency

Thank you

Questions and contact: mohsin.shaikh@kaust.edu.sa