对 Boston 数据集的降维分析

CS245 数据科学基础 陆朝俊 叶泽林 515030910468

1 问题描述

在数据预处理中,数据约简是一个重要的步骤,数据约简技术可以得到数据集的约简表示,即缩小数据容量但保持了原始数据的大多数信息,使得之后的分析更加高效,而分析结果与未约简的结果几乎相同。

在数据量和数据复杂性日益增多情况下,数据约简更是数据预处理中不可或缺的关键一环。 这次作业中,我将使用数据约简技术(以 PCA 为主)对 Boston 数据集进行降维分析。

2 解决方案1

2.1 数据集获取及读入

Boston 数据集全称为波士顿房价数据集(Boston House Price Dataset),给定房屋及其相邻房屋的详细信息进行房价预测,是一个针对回归问题的数据集。该数据集包含 506 个实例,每个实例拥有 13 个特征及一个回归目标(房价),具体的数据集特征情况可参见附录 A.1。

Boston 数据集已集成在 Python 的 scikit-learn 模块下,安装好该模块后只需运行以下代码即可读取数据集:

```
from sklearn import datasets
boston = datasets.load_ boston()
```

2.2 降维分析

降维分析中最常用的就是主成分分析(PCA)算法,本次作业中也将采用 PCA 算法进行降维分析。PCA 的主要思想是:找出能反映最大偏差的特征线性组合(即主成分),构成新特征空间。

3 结果展示

图 1: PCA 效果可视化(图中不同点的颜色代表不同的回归目标,即房价,颜色越接近则表示数值越接近)

¹本次作业的所有代码实现可参见附录 A.2

表 1: Boston 数据集 PCA 降维效果比较

主成分个数	主成分方差占比之和
1	0.80581
2	0.96887
3	0.99021
4	0.99717
5	0.99848
6	0.99921
7	0.99963
8	0.99988
9	0.99996
10	0.99999
11	0.99999
12	0.99999
13	1.00000

图 2: PCA 对于 Boston 数据集的降维效果

A 附录

A.1 Boston 数据集特征信息

表 2: Boston 数据集特征信息

编号	特征名	特征含义
1	CRIM	城镇人均犯罪率
2	ZN	住宅用地超过 25000 sq.ft. 的比例
3	INDUS	城镇非零售商用土地的比例
4	CHAS	查理斯河空变量(如果边界是河流,则为1;否则为0)
5	NOX	一氧化氮浓度
6	RM	住宅平均房间数
7	AGE	1940年之前建成的自用房屋比例
8	DIS	到波士顿五个中心区域的加权距离
9	RAD	辐射性公路的接近指数
10	TAX	每 10000 美元的全值财产税率
11	PTRATIO	城镇师生比例
12	В	1000(Bk-0.63)2, 其中 Bk 指代城镇中黑人的比例
13	LSTAT	人口中地位低下者的比例

A.2 主要代码