

ELTE TTK

RÖNTGENDIFFRAKCIÓ

Olar Alex

Tartalomjegyzék

I. Elméleti összefoglaló, mérési eszközök				
II.	Kiértékelés			
	II.1. Rácstípus maghatározása $Fe-Al$ ötvözet			
	II.2. Ötvözőkoncentráció meghatározása			
	II.3. Ismeretlen fázis meghatározása			
	II.4. Si minta rácsparaméterének meghatározása			

I. Elméleti összefoglaló, mérési eszközök

A mérés során 4 feladatot végeztünk el. Ennek során egy vas-alumínium ötvözetet vizsgáltunk először, melynek a rácsszerkezetét kellett meghatároznunk, majd egy alumínium-magnézium ötvözetre tértünk át, amiben a magnézium arányát kellett meghatároznunk megváltozott rácstávolság alapján. Majd egy ismeretlen minta (szén-pasztilla) csúcskiszélesedése alapján meg lehetett határozni az ismeretlen fázist. Végül egy otthoni feladatot kaptunk a rácsparaméter otthoni meghatározására.

II. Kiértékelés

II.1. Rácstípus maghatározása Fe-Al ötvözet

A reflexiók indexelésével meghatároztuk a difraktorgramból, hogy az ötvözet BCC rács. Ezt a következőképpen kiviteleztük:

• meghatároztuk a Bragg-egyenlet alapján, $(2d_{hkl}sin\vartheta = \lambda)$, a d_{hkl} értékeket, majd leosztva az első diffrakciós csúcshoz tartozó d_{hkl} értékkel az egész sort, kaptuk a közelítő N értékeket

1. ábra. Fe - Al ötvözet röntgen spektruma

2ϑ	d_{hkl} [Å]	N
30.7	2.9121	1
44.0	2.058	2.003
54.6	1.681	3.002
64.0	1.455	4.007
72.6	1.302	5.002
80.9	1.188	6.007
97.1	1.029	8.017
105.3	0.97	9.018
113.8	0.92	10.015
123.0	0.877	11.022
133.2	0.84	12.02

Ebből jól látható, hogy jó közelítéssel egész N értékeket kaptunk, amiből látható, hogy ez egy BCC rács, hiszen:

$$\frac{1}{d_{hkl}^2} = \frac{1}{a^2}N = \frac{1}{a^2}(h^2 + k^2 + l^2)$$

összefüggést csak köbös rácsra lehet alkalmazni.

II.2. Ötvözőkoncentráció meghatározása

Az alumínium magnézium szennyezettségét kellett meghatározni diffrakcióból. A kapott diffrakciós görbén leolvastuk a 2ϑ szögeket, majd kiszámoltuk ebből a d_{hkl} mennyiségeket. Itt a szükséges N értékeket megkaptuk, hiszen a Miller-indexek egy kapott fájlban fel voltak sorolva. A mért és számolt adatokat táblázatba foglalva:

2. ábra. Mg-mal szennyezett Al röntgen spektruma

2ϑ	d_{hkl} [Å]	N	a_{hkl} [Å]
38.3	2.35	3	4.07
44.52	2.035	4	4.07
64.75	1.44	8	4.072
77.76	1.228	11	4.073
81.95	1.176	12	4.073
98.38	1.019	16	4.074
111.15	0.935	19	4.074
115.56	0.911	20	4.075
135.9	0.832	24	4.075

A szennyezés miatt a_{hkl} változik a következő formula szerint:

$$a_{hkl} = a_0 - D\cos\theta \left(ctg\theta + \frac{\cos\theta}{\theta}\right) = a_0 - D \cdot f(\theta)$$

ebből jól látható, hogy $a_{hkl}-f(\vartheta)$ változók között lineáris összefüggés van. Erre egyenest illesztve:

3. ábra. Lineáris összefüggés a_{hkl} és $f(\vartheta)$ között

Ahonnan az illesztési paraméterek (a_0 hibája olyan kicsi lett, hogy felülbecsültem):

$$D = (9.542 \pm 1.128) \cdot 10^{-14} \ m \qquad a_0 = (4.075 \pm 0.001) \cdot 10^{-10} \ m$$

Nagyban befolyásolja az illesztést, ha a csúcsokat nem kellő értékes jegyre adjuk meg.

Ezután le tudtuk olvasni, hogy a_0 -hoz milyen Mg koncentráció tartozik. Ehhez szükségünk van egy ilyen függvényre, ami ezt megmutatja. Ehhez a labor során kaptunk

egy adatsort, amiből az derült ki, hogy $(6.0537 \pm 0.001)\%$ részarányban tartalmaz az alumínium minta magnéziumot.

4. ábra. Lineáris összefüggés a koncentráció és a_{hkl} között, jelölve a mért pont

II.3. Ismeretlen fázis meghatározása

Ismeretlen mintáról felvett röntgendiffrakciós diagramot véve, az első három csúcsra kerestünk az adatbázisban.

5. ábra. Ismeretlen minta

2ϑ	d_{hkl} [Å]
43.846	2.065
75.247	1.263
91.471	1.076
119.564	0.892
140.826	0.818

Az adatbázisból megkaptuk, hogy egy C mintáról van szó. Később megtudtuk, hogy valóban egy szén-pasztillát mértünk.

©1996 JCPDS-International Centre for Diffraction Data. All rights reserved.

Ezen felül számoltunk átlagos szemcseméretet is, a következő összefüggés alapján:

$$\left\langle x\right\rangle = \frac{4\lambda}{3\sqrt{\beta^2 - \beta_i^2}cos\vartheta}$$

amelyben $\beta_i = 0.1^{\circ}$, míg ϑ az első diffrakciós csúcs törési szöge. β a csúcs integrális szélessége (0.2985°). Ebből kapható, hogy:

$$\langle x \rangle = 45.143 \ nm$$

II.4. Si minta rácsparaméterének meghatározása

A kapott adatok alapján

2ϑ	d_{hkl} [Å]	N	a_{hkl} [Å]
28.5	3.132	3	5.424
47.5	1.914	8	5.414
56.25	1.635	11	5.424
69.25	1.357	16	5.427
76.5	1.245	19	5.428
88.25	1.107	24	5.424
95.25	1.044	27	5.424
106.75	0.961	32	5.422
114.5	0.917	35	5.434
128.0	0.858	40	5.425
137.25	0.828	43	5.429

ahol felhasználtam, hogy a Si-kristály köbös rácsú. A korábban is elvégzett $a_{hkl} - f(\vartheta)$ illesztés alapján a rácsparaméter $a_0 = (5.427 \pm 0.0021)$ Å:

6. ábra. Jól láthatóan a pontok nagyon szórnak, azonban az irpdalmi értéktől így is csak kis mértékben tér el a rácsparaméter $(a_0 \approx 5.43086 \text{ Å})$