

ZNN U7-Core Experimental Chip

Neural-network matrix arithmetic on open source RISC-V ISA.

The ZNN U7-Core is an open-source chip designed specifically for running complex tasks involving convolutional neural networks and reinforcement learning. It features a dedicated hardware level matrix arithmetic logic unit along with the usual arithmetic unit. The ZNN U7 is based on the SiFive U74 standard core which is based on the RISC-V open source instruction set architecture. Since RISC-V is, of course, reduced instruction set computing (similar to ARM but without IP blocks), it can perform tasks with incredible efficiency. Compared to a standard x86_64 ISA, RISC-V can provide equivalent performance at less than one tenth the power consumption. This makes RISC-V ISA chips great for low power tasks where low power consumption and efficiency are imperative; however, it also opens up opportunities to increase efficiency in more complex, power hungry workloads. Running these computationally intensive tasks on a specialized matrix unit on the RISC-V ISA could allow for more parallel convolutional neural networks to be run or even pseudo-quantum emulation through dedicated qubit registers/dictionaries. The ZNN U7-Core is designed with a matrix arithmetic unit on a 64-bit word architecture to have performance levels on par with x86_64 matrix arithmetic chips of today.

Figure 1.1: Core Complex of the ZNN U7 Core

While the ZNN U7-Core is still very much in the idea phase, emulations of the specialized hardware indicate that it is a viable alternative to software matrix manipulations. Without the excess instructions of x86_64, and the ability to implement custom instructions without having to navigate IP laws, the ZNN U7-Core could be a next generation chip for developers and industry with the ease of use and apparent scalability of the RISC-V instruction set architecture. Please see the following pages for proposed specifications for the ZNN U7-Core EXP version.

Exp Chip Essentials	
Processor Number	RV64IMAFDC-EXP
Lithography	16 nm
Number of Cores	8
Number of Threads	8
Processor Base Frequency	1.74 GHz
Processor Boost Frequency	2.30 Ghz
Cache	4 MiB L2 @ 32CA-4CB
TDP	5 W
Max Memory Size	256 GB
Memory Types	DDR4-2666 ECC
Processor Graphics	No
I/O	64-bit AXI4
System Port Size	512 MiB
Physical Memory Protection	16 Regions
Debug Module	Present
Clock Gate Extraction	Present

More Specifications

MODES & ISA		
Number of Cores	8 1	
Machine Mode	Present	
User Mode	Present	
Supervisor Mode	Present	
Multiply	Present	
Atomics	Present	
Floating Point	FP (F & D)	
SiFive Custom Instruction Extension (SCIE)	Present	None

ON-CHIP MEMORY		
Instr. Cache Size	32 KiB Evaluation RTL: 16 KiB	32 KiB
Instr. Cache Assoc	8-way	
Data Cache	Present	
Data Cache Size	64 KiB Evaluation RTL: 16 KiB	32 KiB
Data Cache Base Address	0x6000_0000	
Data Cache Assoc	16-way	8-way
Data Local Store	Present	None
Data Local Store Size	512 KiB Evaluation RTL: 16 KiB	None
Data Local Store Base Address	0x7000_0000	None
L2 Cache	Present	
L2 Cache Size	4 MiB Evaluation RTL: 128 KiB	128 KiB
L2 Cache Assoc (Ways)	32	8
L2 Cache Banks	4	1
ITIM	Present	None
ITIM Size	4 KiB	
ITIM Base Address	0x0180_0000	None

PORTS	
Front Port	Present
Front Port Protocol	AXI4
Front Port Width	64-bit
System Port	Present
System Port Protocol	AXI4
System Port Width	64-bit
System Port Base Address	0x4000_0000

ZNN U7-Core Experimental Chip

System Port Size	512 MiB Evaluation RTL: 8 KiB	512 MiB
Peripheral Port	Present	
Peripheral Port Protocol	AXI4	
Peripheral Port Width	64-bit	
Peripheral Port Base Address	0x2000_0000	
Peripheral Port Size	512 MiB Evaluation RTL: 8 KiB	512 MiB
Memory Port	Present	
Memory Port Protocol	AXI4	
Memory Port Width	128-bit	
Memory Port Base Address	0x8000_0000	
Memory Port Size	512 MiB Evaluation RTL: 128 KiB	512 MiB

SECURITY		
Physical Memory Protection	Present	
PMP Regions	16	8

DEBUG	
Debug Module	Present
Debug Interface	JTAG
Hardware Breakpoints	2
External Triggers	0
System Bus Access	Present
Raw Instruction Trace Port	None
Performance Counters	2
Nexus Trace Encoder (TE)	None
Multi-core TE	None
Send Trace To	None
TE Timestamp	None
Trace Timestamp Width (Bits)	None
Trace Timestamp Source	None
External Trigger Inputs to TE	None
External Trigger Outputs from TE	None
On-chip Trace Buffer Size	None
Instrumentation Trace Component	None

INTERRUPTS	
PLIC	Present
Priority Levels	7
Global Interrupts	127
Local Interrupts	16 0

DESIGN FOR TEST		
SRAM Macro Extraction		
Clock Gate Extraction	Present	None
Group and Wrap	Present	None

POWER MANAGEMEN	Т
Clock Gating	Present