Методы современной прикладной статистики 2. Основы проверки гипотез

Родионов Игорь Владимирович vecsell@gmail.com

Весна, 2018

Постановка задачи

Пусть X (в нашем курсе, как правило, X – это выборка (X_1,\ldots,X_n)) – наблюдение из неизвестного распределения P_X . Основная задача – по наблюдению X сделать выводы о распределении P_X .

Предположим, что $P_X \in \mathcal{P}$, где \mathcal{P} – некий класс распределений, которому заведомо принадлежит P_X .

- Основная гипотеза: $H_0: P_X \in \mathcal{P}_0$, где $\mathcal{P}_0 \subset \mathcal{P}$. Пример. Пусть известно, что выборка имеет нормальное распределение, хотим проверить, что выборка распределена по закону N(0,1). Тогда $\mathcal{P} = \{N(a,\sigma^2), a \in \mathbb{R}, \sigma^2 > 0\}$, а $\mathcal{P}_0 = \{N(0,1)\}$.
- Альтернативная гипотеза (или альтернатива): $H_1: P_X \in \mathcal{P}_1$, где $\mathcal{P}_1 \subset \mathcal{P} \backslash \mathcal{P}_0$.
- Гипотеза называется **простой**, если \mathcal{P}_0 (или \mathcal{P}_1) состоит из одного распределения.
- Статистика критерия: T(X) такая статистика, что при $P_X \in \mathcal{P}_0$ мы либо знаем её распределение, либо можем оценить сверху вероятности её редких значений.

• Если правило проверки гипотезы выглядит так:

если
$$T(X) \in S$$
, то отвергнуть H_0 ,

то S называется **критическим множеством**, а само правило называют **критерием**.

- Критерии бывают
 - двусторонние, $\{T(X) > u_{1-\alpha} \cup T(X) < u_{\alpha}\};$
 - односторонние, которые делятся на правосторонние, $\{T(X)>u_{1-\alpha}\}$, и левосторонние, $\{T(X)< u_{\alpha}\}$;
 - более сложные.

- **Уровень значимости** критерия: такое α , что $P_0(T(X) \in S) \le \alpha \ \forall P_0 \in \mathcal{P}_0$.
- Размером критерия называется его минимальный уровень значимости, т.е. такое lpha, что

$$\alpha = \sup_{P_0 \in \mathcal{P}_0} P_0(T(X) \in S).$$

Уровень значимости выбирается исследователем. Его обычные значения $-0.1,\ 0.05$ или 0.01.

	H_0 верна	H_0 неверна		
H_0 принимается	H_0 верно принята	Ошибка второго рода (False negative)		
H_0 отвергается	Ошибка первого рода (False positive)	H_0 верно отвергнута		

Type I error (false positive)

• Функция мощности критерия:

$$Q(S,P) = P(T(X) \in S).$$

Тогда $Q(S,P_0),\ P_0\in\mathcal{P}_0,$ – вероятность ошибки I рода на распределении $P_0,$ а $1-Q(S,P_1),\ P_1\in\mathcal{P}_1,$ – вероятность ошибки II рода на распределении $P_1.$

Получаем, что, уменьшая вероятность ошибки I рода (т.е. уменьшая S), мы неизменно увеличиваем вероятность ошибки II рода, поэтому выбирать слишком низкий уровень значимости не рекомендуется.

На рисунке – вероятности ошибок I и II родов в задаче различения 2 простых гипотез.

На рисунке – функции мощности t-критерия Стьюдента при различных уровнях значимости, если выборка сделана из распределения $N(d, \sigma^2)$.

• Критерий называется **состоятельным**, если $\forall P \in \mathcal{P}_1$ выполнено

$$P(T_n(X) \in S) \to 1$$
 при $n \to \infty$.

• Критерий называется **несмещенным**, если

$$\sup_{P\in\mathcal{P}_0}P(T(X)\in\mathcal{S})\leq\inf_{P\in\mathcal{P}_1}P(T(X)\in\mathcal{S}).$$

• Критерий S мощнее критерия R, если уровни значимости этих критериев совпадают и $\forall P \in \mathcal{P}_1$ выполнено

$$P(T(X) \in S) \ge P(T(X) \in R).$$

• Критерий *S* называется **равномерно наиболее мощным** критерием (р.н.м.к.), если он мощнее любого другого критерия того же уровня значимости.

Лемма Неймана-Пирсона

Р.н.м. критерии существуют далеко не во всех ситуациях. В задаче различения двух простых гипотез $H_0: P=P_0$ против $H_1: P=P_1$ р.н.м.к. существует всегда, как утверждает следующая лемма.

Лемма Неймана-Пирсона.

Пусть $S_{\lambda} = \{x : p_1(x) - \lambda p_0(x) \ge 0\}$, где p_i – плотность распределения P_i по мере μ , i = 0, 1. Пусть критерий R того же уровня значимости, что и критерий S_{λ} , т.е.

$$P_0(X \in R) \leq P_0(X \in \mathcal{S}_\lambda)$$
. Тогда

- 1) $P_1(X \in R) \le P_1(X \in S_{\lambda})$ (т.е. S_{λ} мощнее R);
- 2) $P_1(X \in S_\lambda) \ge P_0(X \in S_\lambda)$ (т.е. S_λ несмещенный).

Лемма Неймана-Пирсона

Пример. Пусть X_1, \ldots, X_n — выборка из $Exp(\alpha)$. Построим р.н.м. критерий в задаче различения гипотезы $H_0: \alpha=2$ против альтернативы $H_1: \alpha=3$. Функция правдоподобия равна:

$$f(X,\alpha) = f(X_1,\ldots,X_n,\alpha) = \prod_{i=1}^n \alpha e^{-\alpha X_i} = \alpha^n e^{-\alpha \sum_i X_i},$$

тогда р.н.м. критерий

$$S_{\lambda} = \left\{ \frac{f(X,3)}{f(X,2)} \ge \lambda \right\} = \left\{ \frac{3^n}{2^n} e^{-\sum_i X_i} \ge \lambda \right\} = \left\{ \sum_{i=1}^n X_i \le \lambda_1 \right\},$$

где $\lambda_1 = n \ln(2/3) + \ln \lambda$.

4□ > 4□ > 4□ > 4□ > 4□ > 90

Лемма Неймана-Пирсона

Далее, найдем такое λ , что критерий будет иметь уровень значимости γ . Если гипотеза H_0 верна, то $\sum_{i=1}^{n} X_i \sim \Gamma(n,2)$. Отсюда, $\lambda_1 = u_{\gamma}$, где $u_{\gamma} - \gamma$ -квантиль распределения $\Gamma(n,2)$. Значит, $\lambda = (3/2)^n e^{u_{\gamma}}$.

Пусть X_1, \ldots, X_n – выборка из $Pois(\lambda)$. Построим критерий проверки гипотезы $H_0: \lambda = \lambda_0$ против альтернативы $H_1: \lambda \neq \lambda_0$ с помощью ЦПТ. При выполнении гипотезы H_0 ,

$$\frac{\sum_{i=1}^{n} X_i - n\lambda_0}{\sqrt{n\lambda_0}} \xrightarrow{d} N(0,1), \ n \to \infty.$$

Тогда критерий будет выглядеть так:

если
$$\left| \frac{\sum_{i=1}^n X_i - n \lambda_0}{\sqrt{n \lambda_0}} \right| > u_{1-\frac{lpha}{2}},$$
 то отвергать $H_0,$

где $u_{1-\frac{\alpha}{2}}-(1-\alpha/2)$ -квантиль N(0,1). В отличие от критерия Неймана-Пирсона, данный критерий является асимптотическим, т.е. его уровень значимости лишь стремится к α при $n \to \infty,$ а не равен α в точности.

Критерий Вальда

Но дисперсия не всегда является функцией от известного параметра λ_0 , как в предыдущем примере, поэтому в общем случае стоит заменять дисперсию на её оценку s^2 (сходимость к N(0,1) сохранится ввиду леммы Слуцкого). Получаем критерий

если
$$\left| \frac{\sum_{i=1}^n X_i - n \lambda_0}{\sqrt{n s^2}} \right| > u_{1-\frac{\alpha}{2}},$$
 то отвергать $H_0,$

который называется критерием Вальда.

Монотонное отношение правдоподобия

Говорят, что доминируемое семейство распределений $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ имеет монотонное отношение правдоподобий по статистике T(X), если $\forall \theta_0 < \theta_1$ функция $\frac{f(X,\theta_1)}{f(X,\theta_0)}$ является монотонной функцией от T(X), причем монотонность одна и та же $\forall \theta_0 < \theta_1$.

Теорема (о монотонном отношении правдоподобия) Пусть в задаче проверки гипотезы $H_0: \theta \leq \theta_0$ (или $\theta = \theta_0$) против альтернативы $H_1: \theta > \theta_0$ отношение $\frac{f(X,\theta_2)}{f(X,\theta_1)}$ возрастает по T(X) при $\forall \theta_1 < \theta_2$. Если $\exists c_\alpha$ такое, что $P_{\theta_0}(T(X) \geq c_\alpha) = \alpha$, то $S = \{T(X) \geq c_\alpha\}$ – р.н.м.к. уровня значимости α для проверки H_0 против H_1 .

На практике часто возникает задача различения двух семейств распределений. Для этих целей можно использовать критерий отношения правдоподобия (RML-тест).

Пусть $H_0:\theta\in\Theta_0$ и $H_1:\theta\in\Theta_1$, где $\Theta_0\cap\Theta_1=\varnothing$ и $\Theta_0\cup\Theta_1\subseteq\Theta$. Введем статистику

$$\lambda_n(X,\Theta_0) = \frac{\sup_{\theta \in \Theta_0} f(X,\theta)}{\sup_{\theta \in \Theta} f(X,\theta)},$$

также используется статистика

$$\lambda'_n(X) = \frac{\sup_{\theta \in \Theta_0} f(X, \theta)}{\sup_{\theta \in \Theta_1} f(X, \theta)}.$$

Теорема Уилкса.

Пусть $\Theta \subset \mathbb{R}^k$, $\dim(\Theta) = k$, $\dim(\Theta_0) = s < k$, тогда при верности гипотезы $H_0: \theta \in \Theta_0$ выполнено

$$-2 \ln \lambda_n(X, \Theta_0) \xrightarrow{d} \chi^2_{k-s}, \ n \to \infty.$$

Кроме того, критерий $\widetilde{S}=\{x:-2\ln\lambda_n(X,\Theta_0)\geq u_{1-\alpha}\}$, является состоятельным, где $u_{1-\alpha}-(1-\alpha)$ -квантиль распределения χ^2_{k-s} .

Байесовский подход

Пусть $H_0: P \in \mathcal{P}_0 = \{P_\theta, \theta \in \Theta\}$ и $H_0: P \in \mathcal{P}_1 = \{\widetilde{P}_\gamma, \gamma \in \Gamma\}$. Рассмотрим статистику

$$K = \frac{P(\mathcal{P}_0|X)}{P(\mathcal{P}_1|X)} = \frac{\int_{\Theta} f(X,\theta)q(\theta)d\theta}{\int_{\Gamma} \widetilde{f}(X,\gamma)\widetilde{q}(\gamma)d\gamma}.$$

Заметим, что распределение статистики K не зависит от параметров θ и γ , поэтому можно найти её распределение при условии верности H_0 и H_1 (или промоделировать его) и в соответствии с этим построить критерий.

Байесовский подход

Но если нет времени, то есть шкала Джеффри!

K	верна ли <i>H</i> ₀ ?
1-3	нельзя определенно сказать
3-10	большие основания принять H_0
10-30	почти наверняка
>30	точно

Пусть значение статистики критерия T(X) на наблюдении X равно t. Тогда р-значение — такая величина, которая является функцией от t и равна вероятности того, что T(X) (на другой реализации наблюдения X) примет значение "экстремальнее", чем t.

Правило проверки гипотезы с помощью р-значения выглядит так: если $p < \alpha$, где α – уровень значимости критерия, то отвергаем основную гипотезу.

В случае левостороннего критерия p = P(T(X) < t), в случае правостороннего критерия p = P(T(X) > t), в случае двустороннего критерия $p = 2 \min\{P(T(X) < t), P(T(X) > t)\}$.

Примерно так принимаются решения о значимости эффекта на основании рзначения (при основной гипотезе, что эффект незначим). Пример (habrahabr.ru/company/stepic/blog/250527/). Допустим, мы хотим выяснить, существует ли связь между пристрастием к шутерам и агрессивностью у школьников. Для этого отобрали группу школьников, играющих в шутеры, и группу школьников, не играющих в компьютерные игры.

В качестве показателя агрессивности возьмём количество драк с участием конкретного школьника за месяц, в качестве основной гипотезы — что связи нет. Допустим, мы сравнили показатели 2 этих групп с помощью критерия хи-квадрат на уровне значимости 0.05 и получили р-значение, равное 0.04.

О чем говорит р-значение 0.04 в данном случае?

- Компьютерные игры причина агрессивного поведения с вероятностью 96%;
- Вероятность того, что агрессивность и компьютерные игры не связаны, равна 0.04;
- В Если бы мы получили р-значение больше, чем 0.05, это означало бы, что агрессивность и компьютерные игры никак не связаны между собой;
- Вероятность случайно получить такие различия равняется 0.04.
- 5 Ни один из вариантов не верен.

Ключевой вопрос: Допустим, при проверке некоторой гипотезы двумя критериями р-значение первого критерия оказалось меньше уровня значимости, а р-значение второго критерия больше. Как следует поступить: отвергнуть гипотезу или принять её?

Ключевой вопрос: Допустим, при проверке некоторой гипотезы двумя критериями р-значение первого критерия оказалось меньше уровня значимости, а р-значение второго критерия больше. Как следует поступить: отвергнуть гипотезу или принять её?

Ответ: Зависит от ситуации.

Моделирование

Table 5. The probability of correct selection (PCS) based on Monte Carlo (MC) simulations and also based on asymptotic results (AS) when the data are from log-normal distribution for different values of p.

	n						
	20	40	60	80	100	200	
p = 0.9							
MC	0.731	0.814	0.869	0.913	0.931	0.987	
AS	0.770	0.852	0.900	0.930	0.951	0.990	
p = 0.8							
MC	0.693	0.782	0.846	0.877	0.923	0.974	
AS	0.739	0.817	0.866	0.899	0.923	0.978	
p = 0.7							
MC	0.689	0.761	0.810	0.848	0.878	0.948	
AS	0.710	0.783	0.831	0.865	0.892	0.960	
p = 0.6							
MC	0.662	0.728	0.749	0.784	0.826	0.911	
AS	0.682	0.748	0.793	0.828	0.829	0.932	
p = 0.5							
MC	0.617	0.665	0.686	0.749	0.750	0.842	
AS	0.655	0.713	0.755	0.787	0.813	0.896	
p = 0.4							
MC	0.568	0.666	0.663	0.690	0.715	0.786	
AS	0.628	0.678	0.714	0.743	0.768	0.849	
p = 0.3							
MC	0.598	0.647	0.676	0.683	0.717	0.785	
AS	0.601	0.641	0.671	0.695	0.716	0.789	

Таблица вероятностей правильного принятия решения с помощью RML-теста в задаче различения логномального и вейбулловского распределений в случае, если выборка имеет логнормальное распределение. p — доля минимальных членов вариационного ряда, взятых для построения теста.

Моделирование

	n = 100	n = 100	n = 200	n = 200	n = 500	n = 1000	n = 5000
	k = 10	k = 20	k = 20	k = 50	k = 50	k = 50	k = 50
log-Pareto(2)	0.28	0.71	0.49	0.98	0.84	0.6	0.19
log-Pareto(1)	0.06	0.12	0.07	0.3	0.09	0.06	0.04
log-Gamma	0.37	0.58	0.62	0.89	0.94	0.97	0.99
Cauchy	0.51	0.8	0.8	0.99	0.99	1	1
Pareto(2)	0.92	1	1	1	1	1	1
LN(0,1)	0.91	0.98	1	1	1	1	1

Таблица эмпирических вероятностей ошибок I рода (первые 2 строчки) и эмпирических мощностей критерия различения распределений с супер-тяжелыми и тяжелыми хвостами. k – количество максимальных членов вариационного ряда, используемых для построения критерия. Количество реализаций m=10000.

218

I. Fraga Alves et al. / Journal of Statistical Planning and Inference 139 (2009) 213 - 227

Fig. 1. Empirical power (left) and estimated type I error probability (right) of $T_n(k)$ at a nominal level $\alpha = 0.05$, built on 5000 samples of size n = 1000 from the prescribed parent distributions, all plotted against $k = 3, 4, \dots, 200$.

Графики эмпирических вероятностей ошибок I рода (справа) и эмпирических мощностей (слева) того же критерия. Количество реализаций m=5000, размер выборок n=1000.

Моделирование

График значений некой оценки параметра θ и его 95%-доверительного интервала, построенного по этой оценке. Судя по этому графику, можно отвергнуть гипотезу о том, что $\theta=1$, на уровне значимости 0.05.

Моделирование

Ящики с усами (boxplots) эксперимента Майкельсона-Морли по измерению скорости света.

Boxplot

Boxplot – графическое изображение некоторых свойств выборки или распределения. В частности, помогает сравнить между собой несколько наборов данный на предмет несовпадения их распределений.

- 1 Жирная линия в середине ящика медиана выборки (или распределения, изредка выборочное среднее или мат. ожидание);
- 2 Верхняя и нижняя границы ящика верхняя и нижняя квартили выборки соответственно (т.е. квантили уровня 0.75 и 0.25);

- 3 Границы верхнего и нижнего "усов" ящика как правило, максимальное и минимальное значение выборки без выбросов;
- 4 Кружки выше и ниже границы усов выбросы, которые определяются либо как не принадлежащие интервалу

$$(Z_{0.25} - 1.5(Z_{0.75} - Z_{0.25}), Z_{0.75} + 1.5(Z_{0.75} - Z_{0.25}))$$

значения выборки, либо с помощью статистических тестов.

Finita!