Nr.		Pun	
Ι	ÎN ITEMII 1-3 RĂSPUNDEȚI SCURT LA ÎNTREBĂRI CONFORM CERINȚEL ÎNAINTATE:	OR	
1	Completați următoarele propoziții astfel, ca ele să fie adevărate:	L	L
	a) Odată cu creșterea altitudinii de la suprafața terestră, intensitatea câmpului		
	gravitațional al pământului	0	0
	b) La încălzirea apei de la temperatura camerei până la fierbere volumul	2	2
	acesteia	4	4
	c) La gruparea în serie a două condensatoare cu capacități electrice nenule, capacitatea	6	6
	echivalentă va fi întotdeauna mai decât fiecare din capacitățile inițiale în parte.	8	8
	d) Reactanța inductivă a unei bobine ideale crește la frecvenței tensiunii alternative aplicate.	10	10
	e) Impulsul fotonului este mai mare dacă lungimea de undă este mai		
2	Stabiliți (prin săgeți) corespondența dintre următoarele mărimi fizice și unitățile	L	L
	ce le exprimă:		
	Deplasare m ⁻³	0	0
	Constantă de elasticitate N/C	2	2
	Concentrație a moleculelor m	4	4
	Intensitate a curentului electric N/m	6	6
	Impuls relativist A kg·m/s	8	8
		10	10
3	Determinați valoarea de adevăr a următoarelor afirmații, marcând A, dacă	L	L
	afirmația este adevărată și F dacă afirmația este falsă:	0	0
	a) La mișcarea rectilinie vectorul deplasării nu-și schimbă direcția. A F	2	2
	b) Dacă rezultanta forțelor exterioare ce acționează asupra unui sistem de corpuri este	4	4
	nulă, impulsul mecanic al sistemului se conservă. A F	6	6
	c) La comprimarea izotermă, concentrația moleculelor unui gaz scade. A F	8	8
	d) La suprapunerea a două unde coerente cu o diferență de drum optic egală cu un	10	10
	număr întreg de lungimi de undă se obține un maxim de interferență A F	10	
	e) Datorită efectului fotoelectric extern, corpul metalic pe care cade radiație, fiind izolat de alte corpuri, se va încărca pozitiv. A F		
	II. ÎN ITEMII 4 – 9 RĂSPUNDEȚI LA ÎNTREBĂRI SAU REZOLVAȚI, SCRIIN	D	
	ARGUMENTĂRILE ÎN SPAȚIILE REZERVATE:		
4	O sferă mică legată de un fir se rotește uniform în vid,	L	L
	într-un plan orizontal. Îndicați pe desen în poziția dată,	0	0
	forțele care acționează asupra acesteia, rezultanta forțelor și accelerația sferei. \overrightarrow{q}	1	1
		2	2
	Ó	3	3
	U	4	4
		-	–

5	Determinați energia radiației electromagnetice de frecvență $3 \cdot 10^{14}$ Hz dacă aceasta conține 10^{17} fotoni. REZOLVARE:		
	REZOLVARE.	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
6	Un condensator plan cu aer este conectat la o sursă de tensiune constantă. Cum se va modifica energia câmpului electric dintre plăcile condensatorului, dacă distanța dintre acestea se va micșora de 2 ori?		
	REZOLVARE:	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
7	Un corp se mișcă sub acțiunea unei forțe constante de 10 N, astfel încât energia cinetică a acestuia se modifică de la 50 J la 20 J. Determinați distanța parcursă de corp. Unghiul dintre vectorii forță și viteză este egal cu 180°. REZOLVARE:		
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6

III. ÎN ITEMII 10-12 SCRIEȚI REZOLVAREA COMPLETĂ A SITUAȚIILOR DE PROBLEMĂ PROPUSE :

Un corp cu masa de 1,0 kg coboară de-a lungul unui plan înclinat sub acțiunea unei forțe de 6,0 N, fără viteză inițială, conform desenului. Coeficientul de frecare dintre corp și planul înclinat este $1/(2\sqrt{3})$, iar planul formează un unghi de 30° cu orizontala.

Veți considera accelerația căderii libere egală cu 10 m/s², orientată conform figurii. Dimensiunile corpului sunt neglijabile.

- a) Reprezentați forțele ce acționează asupra corpului în timpul mișcării pe planul înclinat.
- b) Determinați timpul în care corpul va parcurge distanța de 17 cm de-a lungul planului înclinat.

$$\sin 30^{\circ} = 0, 5; \quad \cos 30^{\circ} = \sqrt{3}/2$$

REZOLVARE:

1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7

8

a)

L

0

1

2

b)

L 0 a)

L

0

1

2

b) L

0

O bară se mișcă cu viteză constantă pe două șine paralele sub acțiunea forței orizontale de 3,0 N în câmpul magnetic vertical omogen (vezi figura privită de sus). Ce forță trebuie să aplicăm barei astfel încât la micșorarea rezistenței *R* de 4 ori bara să se miște cu aceeași viteză. Veți neglija rezist

ența electrică a șinelor, a barei și a firelor de conexiune, forța de frecare dintre șine și bară.

	REZOLVARE:		
		т	т
		L	L
		0	0
		1	1
		2	2
		3	3
		5	5
		6	6
		7	7
		8	8
		9	9
		10	10
		11	11
		11	11
12	Aveți la dispoziție o sursă de tensiune cu rezistența internă și tem necunoscute, două		
	rezistoare identice cu rezistența cunoscută, un ampermetru ideal, fire de conexiune. Trebuie să determinați tensiunea electromotoare a sursei. Ampermetrul nu poate fi		
	utilizat pentru măsurarea curenților de scurtcircuit ai sursei de tensiune.		
	a) Descrieți cum veți proceda, prezentați schema circuitului.b) Deduceți formula de calcul pentru rezistența internă a sursei.	a)	a)
	REZOLVARE:	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		b)	b)
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4

ANEXE

Constante fizice

Sarcina elementară $e = 1.60 \cdot 10^{-19}$ C

Masa de repaus a electronului $m_e = 9,11 \cdot 10^{-31} \text{ kg}$

Viteza luminii în vid $c = 3,00 \cdot 10^8 \text{ m/s}$

Constanta gravitațională $K = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Constanta electrică $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}$

Constanta lui Avogadro $N_A = 6,02 \cdot 10^{23} \text{ mol}^{-1}$

Constanta lui Boltzmann $k = 1,38 \cdot 10^{-23}$ J/K

Constanta universală a gazelor $R = 8.31 \text{ J/(mol \cdot K)}$

Constanta lui Planck $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Constanta electrostatică $k_e = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

MECANICĂ

$$x = x_{0} + v_{0x}t \; ; \; x = x_{0} + v_{0x}t + \frac{a_{x}t^{2}}{2} \; ; \; v_{x} = v_{0x} + a_{x}t \; ; \; v_{x}^{2} - v_{0x}^{2} = 2a_{x}s_{x} \; ; \; v = \frac{1}{T} \; ; \; \omega = \frac{2\pi}{T} \; ; \; v = \omega \; r \; ; \; \omega = 2\pi v \; ; \; a_{c} = \frac{v^{2}}{r} \; .$$

$$\vec{F} = m\vec{a} \; ; \; \vec{F}_{12} = -\vec{F}_{21} \; ; \; F = K \frac{m_{1}m_{2}}{r^{2}} \; ; \; \vec{F}_{e} = -k\Delta \vec{l} \; ; \; F_{f} = \mu N \; ; \; F_{A} = \rho_{0}Vg \; ; \; p = \frac{F}{S} \; ; \; p = \rho gh \; ; \; M = Fd \; .$$

$$\vec{p} = m\vec{v} \; ; \; \Delta \vec{p} = \vec{F}\Delta t \; ; \; L_{mec.} = Fs\cos\alpha \; ; \; P = \frac{L}{t} \; ; \; E_{c} = \frac{mv^{2}}{2} \; ; \; L_{12} = E_{c2} - E_{c1} \; ; \; E_{p} = mgh \; ; \; E_{p} = \frac{kx^{2}}{2} \; ; \; L_{12} = -\left(E_{p2} - E_{p1}\right) \; ;$$

$$x = A\sin(\omega t + \varphi_{0}) \; ; \; T = 2\pi\sqrt{\frac{I}{a}} \; ; \; T = 2\pi\sqrt{\frac{m}{k}} \; ; \; \lambda = vT \; ;$$

FIZICĂ MOLECULARĂ SI TERMODINAMICĂ

$$p = \frac{1}{3}m_{0}n\overline{v^{2}} = \frac{2}{3}n\overline{\varepsilon}_{tr.}; \overline{\varepsilon}_{tr.} = \frac{3}{2}kT; p = nkT; v_{T} = \sqrt{\frac{3RT}{M}}; pV = vRT; v = \frac{m}{M} = \frac{N}{N_{A}}; R = kN_{A}; M = m_{0}N_{A};$$

$$pV = const., T = const.; \frac{p}{T} = const., V = const.; \frac{V}{T} = const., p = const.; \frac{pV}{T} = const., m = const.$$

$$U = \frac{3}{2}\frac{m}{M}RT; L = p\Delta V; Q = cm\Delta T; Q = C_{M}v\Delta T; c_{p} - c_{V} = \frac{R}{M}; Q_{V} = \lambda_{V}m; Q = qm; Q = \Delta U + L; \eta = \frac{Q_{1} - |Q_{2}|}{Q_{1}};$$

$$\eta_{max.} = \frac{T_{1} - T_{2}}{T_{1}}; \varphi = \frac{\rho_{a}}{\rho_{a}} = \frac{p_{a}}{\rho_{a}}; \sigma = \frac{F_{s}}{l}; h = \frac{4\sigma}{\rho qd}; \frac{F}{S} = E\frac{\Delta l}{l}; l = l_{0}(1 + \alpha t);$$

FLECTRODINAMICĂ

$$F = \frac{k_e}{\varepsilon_r} \frac{|q_1 q_2|}{r^2}; E = \frac{k_e}{\varepsilon_r} \frac{|q|}{r^2}; k_e = \frac{1}{4\pi\varepsilon_0}; \vec{E} = \frac{\vec{F}}{q_0}; E = \frac{U}{d}; \varphi = \frac{W}{q_0}; \varphi = \frac{kq}{r}; U = \frac{L}{q_0};$$

$$C = \frac{q}{U}; C = \frac{\varepsilon_0 \varepsilon_r S}{d}; C_p = \sum_{i=1}^n C_i; \frac{1}{C_S} = \sum_{i=1}^n \frac{1}{C_i}; W_e = \frac{CU^2}{2}$$

$$I = \frac{\Delta q}{\Delta t}; I = \frac{E}{R+r}; I_{s.c.} = \frac{\varepsilon}{r}; R = \rho \frac{l}{S}; R_s = \sum_{i=1}^n R_i; \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i}; L = IUt; Q = I^2Rt; P = IU; \eta = \frac{L_u}{L_t};$$

$$F_m = IBl\sin\alpha; F_L = qvB\sin\alpha;$$

$$\Phi = BS\cos\alpha; \varepsilon_i = -\frac{\Delta \Phi}{\Delta t}; \Phi = Li; \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t}; W_m = \frac{LI^2}{2}; q = q_m\cos(\omega t + \varphi_0); I = \frac{I_m}{\sqrt{2}}; U = \frac{U_m}{\sqrt{2}};$$

$$\frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2}; X_C = \frac{1}{\omega C}; X_L = \omega L; T = 2\pi\sqrt{LC};$$

$$\Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2}; \Delta_{\min} = \pm (2m+1) \cdot \frac{\lambda}{2}; d\sin\varphi = \pm m\lambda; d = \frac{l}{N} = \frac{1}{n}$$

FIZICĂ MODERNĂ

$$\begin{split} \tau &= \frac{\tau_0}{\sqrt{1 - v^2/c^2}}; \ l = l_0 \sqrt{1 - v^2/c^2}; \ m = \frac{m_0}{\sqrt{1 - v^2/c^2}}; \ \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}} = \frac{E}{c^2} \vec{v}; \ E = mc^2; \ E_c = (m - m_0)c^2; \\ \varepsilon_f &= \frac{hc}{\lambda}; \ p_f = \frac{h}{\lambda}; \ hv = L_e + \frac{mv_{\text{max}}^2}{2}; \ v = \frac{c}{\lambda}; \ hv = E_n - E_m; N = N_0 e^{-\lambda t}; \ \lambda = \frac{\ln 2}{T_{1/2}}; \ N = N_0 2^{-\frac{t}{T_{1/2}}} \\ \frac{A}{Z}X \rightarrow \frac{A-4}{Z-2}Y + \frac{4}{2}He; \frac{A}{Z}X \rightarrow \frac{A}{Z+1}Y + \frac{0}{1}e; 1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}; 1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}. \end{split}$$