IT University of Copenhagen Discrete Mathematics MSc Mock Exam

1 December, 2020

Instructions (Read Carefully)

Contents: The exam contains 13 questions for a total of 100 points. The exam is divided into two parts: The first part has 9 multiple choice questions and the second part has 4 open ended questions.

What to check: In the multiple-choice questions, there is one and only one correct answer. You should only check 1 box.

Definitions and theorems: At the end of this document (page 10) you can find some definitions and theorems that could be useful for answering some of the questions.

Info about you: Write *clearly* your full name and your date of birth (DoB) on every page (top-right).

—IMPORTANT—

Only information written on the pages 1-9 will be evaluated. Anything else that you hand-in will NOT be considered for the final evaluation! Part I. Answer the following multiple choice questions.

S 1. (6 pts) Which of the following statements is **true**?

 \overline{A} For any set A, we have that $(A \cup A) - A = A$.

$$\boxed{\mathbb{B}} \{a, b\} \times \{1, 2\} = \{(a, 1), (b, 2)\}$$

$$\boxed{\mathbb{D}} \left\{ \emptyset \right\} \in \mathcal{P} \left(\left\{ 1, 2, 3 \right\} \right)$$

S 2. (6 pts) Which of the following statements is **true**?

 $\boxed{A} \ 2 \mid (2+c) \text{ for all positive integers } c.$

$$C$$
 24 = lcm(6, 4).

 $\boxed{\mathbb{D}} \gcd(a, b) = \gcd(a, ab)$ for all positive integers a and b.

5. (6 pts) Let the two functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = (-1)^n \cdot n$$
 for all $n \in \mathbb{Z}$
 $g(n) = 2n$ for all $n \in \mathbb{Z}$

Which of the following statements is **false**?

 $\boxed{\mathbf{B}}$ f is onto.

 $\boxed{\mathbb{C}} f \circ g$ is one-to-one.

 \square The range of $g \circ f$ is $\{n \in \mathbb{Z} \mid n \text{ is even and } n \geq 0\}$.

Solution: The range of $g \circ f$ is $\{n \in \mathbb{Z} \mid n \text{ is even}\}.$

4. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + k \quad \text{for all } k > 1$$
$$a_1 = 1$$

Which of the following equations is **true** for all n > 0?

$$\boxed{\mathbf{A}} a_n = \frac{n(n-1)}{2}$$

$$a_n = \frac{n(n+1)}{2}$$

$$\overline{\mathbb{C}} a_n = n!$$

Solution: A cannot be true since $a_1=1$ but $\frac{1(1-1)}{2}=0$; C cannot be true since $a_2=1+2=3$ but $2!=2\cdot 1=2$; D cannot be true since $a_2=1+2=3$ but $\sum_{i=1}^2 2i=2\cdot 1+2\cdot 2=6$.

Moreover, we can check that B is true by showing that it satisfies the initial condition and the recurrence. First, consider the initial condition:

$$a_1 = \frac{1(1+1)}{2} = 1$$

Secondly, we show that the recurrence is satisfied. That is we must prove the following equation:

$$\frac{k(k+1)}{2} = \frac{(k-1)((k-1)+1)}{2} + k$$

To this end, we simplify both sides and show that they are equal. For the left-hand side, we have:

$$\frac{k(k+1)}{2} = \frac{k^2 + k}{2}$$

For the right-hand side, we have:

$$\frac{(k-1)((k-1)+1)}{2} + k = \frac{k^2 - k}{2} + \frac{2k}{2} = \frac{k^2 + k}{2}$$

- **CP** 5. (6 pts) The exam for the course *Digital Media* at the *Imaginary Technical University* is structured as follows: It consists of 7 multiple choice questions and 3 open ended questions. The students are asked to choose 5 questions to answer, but they have to at least choose one open ended question. How many different choices are there?
 - A 229
 - B 230
 - **2**31
 - D 232

Solution: There are $\binom{10}{5}$ ways to pick 5 arbitrary questions out of the 10 questions. Out of those, $\binom{7}{5}$ only have multiple choice questions. Hence, according to the difference rule (Theorem 7 on page 14) there are

$$\binom{10}{5} - \binom{7}{5} = 252 - 21 = 231$$

different ways to choose 5 questions with at least one open-ended question.

- **CP 6.** (6 pts) You have three coins. Only one of them is *fair* and comes up heads 50% of the time, whereas the other two coins are *biased* and each comes up heads 75% of the time. You pick one of the coins at random, flip it, and observe that it comes up heads. What is the probability that the coin that you flipped was a biased coin?
 - $\frac{3}{4}$
 - $\mathbb{B}^{\frac{3}{7}}$
 - $\mathbb{C}^{\frac{4}{7}}$
 - $\boxed{D} \frac{2}{3}$

Solution: Let H denote the event that the flipped coin comes up heads, and F the event that the flipped coin is fair. Then we know the following probabilities:

$$P(H|F) = \frac{1}{2}$$
 $P(F) = \frac{1}{3}$ $P(F) = \frac{2}{3}$ $P(F^c) = \frac{2}{3}$

We need to find the probability $P(F^c|H)$. To this end we will use Bayes' theorem:

$$P(F^{c}|H) = \frac{P(H|F^{c}) \cdot P(F^{c})}{P(H|F^{c}) \cdot P(F^{c}) + P(H|F) \cdot P(F)}$$

$$= \frac{\frac{3}{4} \cdot \frac{2}{3}}{\frac{3}{4} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3}}$$

$$= \frac{3}{4}$$

S 7. (6 pts) Let $(\{a, b, c, d, e, f, g, h\}, \preceq)$ be the partially ordered set defined by the following Hasse diagram:

Which of the following statements is **true**?

- $\boxed{\mathbf{B}}$ h is the least element.
- $\boxed{\mathbb{C}}$ a and f are incomparable.
- $\boxed{\mathbb{D}} g \preceq c.$

A 8. (6 pts) Consider the following six strings:

$$w_1 = 0101$$

$$w_4 = \lambda$$

$$w_2 = 000$$

$$w_5 = 01001$$

$$w_3 = 111$$

$$w_6 = 00101011$$

Which of those strings belong to the language defined by the regular expression $(\lambda \mid 00)(10^*)^*$?

- $A w_1, w_2, w_5$
- $\square w_2, w_4, w_6$
- $\mathbf{p} w_3, w_4, w_6$
- **A** 9. (6 pts) Let G be the grammar with vocabulary $V = \{0, 1, S, A\}$, terminal symbols $T = \{0, 1\}$, starting symbol S, and productions

$$S \rightarrow 0A1$$

$$S \rightarrow 01$$

$$A \to 1S0$$

$$A \rightarrow \lambda$$

Which of the following strings can be generated by G?

- A 001110
- **❷** 010101
- C 101010
- D 0101

Solution: 010101 can be generated as follows:

$$S \Rightarrow 0A1 \Rightarrow 01S01 \Rightarrow 010101$$

Part II. Answer the following questions. Be brief but precise. Your correct use of mathematical notation is an important aspect of your answer.

L 10. (12 pts) Prove using mathematical induction that

$$\sum_{i=0}^{n} (2i+1) = (n+1)^2 \quad \text{for all } n \ge 0$$

Solution: We want to prove the statement

$$\sum_{i=0}^{n} (2i+1) = (n+1)^2 \qquad (P(n))$$

for all $n \geq 0$.

Basis step: Let n = 0. The left-hand side of P(0) simplifies to

$$\sum_{i=0}^{0} (2 \cdot i + 1) = 2 \cdot 0 + 1 = 1$$

and the right-hand side of P(0) simplifies to

$$(0+1)^2 = 1$$

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$\sum_{i=0}^{k} (2i+1) = (k+1)^2$$

We must show that P(k+1) holds, that is,

$$\sum_{i=0}^{k+1} (2i+1) = (k+2)^2$$

The following derivation proves this equation:

$$\sum_{i=0}^{k+1} (2i+1)$$

$$= \sum_{i=0}^{k} (2i+1) + (2(k+1)+1)$$
 (write last summand separately)
$$= (k+1)^2 + (2(k+1)+1)$$
 (inductive hypothesis)
$$= (k^2 + 2k + 1) + (2k + 3)$$
 (binomial theorem & distributivity)
$$= k^2 + 4k + 4$$
 (associativity & factorisation)
$$= (k+2)^2$$
 (binomial theorem)

11. (12 pts) Using the logical equivalences on page 10, prove the following logical equivalence:

$$(p \to q) \land p \equiv q \land p$$

In each step, indicate (by number) which equivalence from page 10 you used. Solution:

$$(p \to q) \land p$$

$$\equiv (\sim p \lor q) \land p \tag{12}$$

$$\equiv p \land (\sim p \lor q) \tag{1}$$

$$\equiv (p \land \sim p) \lor (p \land q) \tag{3}$$

$$\equiv \mathbf{c} \vee (p \wedge q) \tag{5}$$

$$\equiv (p \land q) \lor \mathbf{c} \tag{1}$$

$$\equiv p \wedge q \tag{4}$$

$$\equiv q \wedge p$$
 (1)

A 12. (10 pts) Construct a finite-state automaton A with input alphabet $\{0,1\}$ that recognises the set of all strings with an even number of '1's and exactly one '0'. That is, A must satisfy

$$L(A) = \{w \in \{0, 1\}^* \mid |w|_0 = 1 \text{ and } |w|_1 \text{ even}\}$$

Describe the automaton A using a next-state table or a transition diagram. Make sure your automaton is deterministic, i.e. each state has exactly one transition for each symbol of the input alphabet.

Solution:

- G 13. (12 pts) There are three conditions for a graph listed below. For each of these conditions give *either* an example of a graph that satisfies the condition, or a justification why no such graph exists. In order to give an example, either draw the corresponding graph or give the triple (V, E, f) of vertices, edges and edge-endpoint function. In order to give a justification that a graph of the given description cannot exist, use the definitions and theorems about graphs and trees on pages 15–17.
 - (a) A graph with 4 vertices 7 edges and an Euler circuit. Solution: Such a graph does exist:

The graph has an Euler circuit since each vertex has an even degree.

(b) A simple connected graph with a circuit.

Solution: Such a graph exists:

(c) A full binary tree with 8 vertices.

Solution: Such a graph does not exist. According to Theorem 15 on page 17, a full binary tree with n internal vertices has exactly n+1 leaves. That means, every full binary tree has 2n+1 vertices, i.e. an odd number of vertices. Hence, there is no full binary tree with an even number of vertices.

Definitions and theorems

Logic

The truth table for a number of logical operators is given below.

p	q	$\sim p$	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
\mathbf{T}	$\mid \mathbf{T} \mid$	\mathbf{F}	${f T}$	${f T}$	\mathbf{T}	\mathbf{T}
$\mid \mathbf{T} \mid$	$\mid \mathbf{F} \mid$	\mathbf{F}	${f T}$	${f F}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	$\mid \mathbf{T} \mid$	\mathbf{T}	${f T}$	${f F}$	${f T}$	${f F}$
\mathbf{F}	$\mid \mathbf{F} \mid$	\mathbf{T}	${f F}$	${f F}$	\mathbf{T}	${f T}$

A compound proposition is called a *tautology* if it is always true no matter what the truth values of the propositional variables are. A compound proposition that is always false is called a *contradiction*.

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Given any propositional variables p, q, r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold:

1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4. Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5. Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6. Double negative law:	$\sim (\sim p) \equiv p$	
7. Idempotent laws:	$p \wedge p \equiv p$	$p\vee p\equiv p$
8. Universal bound laws:	$p ee \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9. De Morgan's laws:	${\sim}(p \land q) \equiv {\sim}p \lor {\sim}q$	${\sim}(p\vee q)\equiv{\sim}p\wedge{\sim}q$
10. Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11. Negations of $\mathbf{t} \ \& \ \mathbf{c}$:	${\sim}{f t}\equiv{f c}$	$\sim\!\!{f c}\equiv{f t}$
12. Conditional:	$\sim p \lor q \equiv p \to q$	$p \to q \equiv {\sim} q \to {\sim} p$
13. Biconditional:	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	$p \leftrightarrow q \equiv {\sim} p \leftrightarrow {\sim} q$

Sets

A set is an (unordered) collection of objects, called elements or members. We write $a \in A$ to indicate that a is an element of A

A set A is a subset of a set B, written $A \subseteq B$, if for all $a, a \in A$ implies $a \in B$.

Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.

The power set of a set A, denoted $\mathcal{P}(A)$, is the set of all subsets of A. That is, $\mathcal{P}(A) = \{B \mid B \subseteq A\}$.

The union of two sets A and B is the set $A \cup B = \{x \mid x \in A \lor x \in B\}$.

The intersection of A and B is the set $A \cap B = \{x \mid x \in A \land x \in B\}.$

The difference of two sets A and B is the set $A - B = \{x \mid x \in A \land x \notin B\}$.

The complement of a set A is the set $A^c = \{x \in \mathcal{U} \mid x \notin A\}$, where \mathcal{U} is the universal set.

The Cartesian product of A and B is the set $A \times B = \{(a,b) \mid a \in A \land b \in B\}$. That is, $A \times B$ is the set of all pairs (a,b) with $a \in A$ and $b \in B$.

Functions

Given two sets A and B, a function f from A to B (written $f : A \to B$) is an assignment of exactly one element of B to each element of A.

A function $f: A \to B$ is *onto* if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b.

A function $f: A \to B$ is one-to-one if f(a) = f(b) implies a = b for all a and b in the domain of f.

A function f is a *one-to-one correspondence* if it is both one-to-one and onto.

Given two functions $g: A \to B$ and $f: B \to C$, the *composition* of f and g (written $f \circ g: A \to C$) is given by

$$(f \circ g)(a) = f(g(a))$$
 for all $a \in A$

Let $f: X \to Y$. If f(x) = y we say that y is the *image* of x and x is an *inverse image* (or *preimage*) of y. The *range* (or *image*) of f is the set of all values of f, i.e.

$$\mathsf{range}\,(f) = \{y \in Y \mid \exists x \in X. f(x) = y\}$$

The *inverse image* of an element $y \in Y$ is the set of all inverse images of y, i.e.

inverse image of
$$y = \{x \in X \mid f(x) = y\}$$

Relations

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

A relation on a set A is a binary relation from A to A.

A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

A relation R on a set A is called *antisymmetric* if whenever $(a, b) \in R$ and $(b, a) \in R$, then a = b, for all $a, b \in A$,.

A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

The transitive closure of a relation R is the smallest transitive relation T such that $R \subseteq T$.

A relation is an *equivalence relation* if it is reflexive, symmetric and transitive.

Let R be an equivalence relation on a set A. The equivalence class of $a \in A$ is the set $[a]_R = \{x \in A \mid x R a\}.$

A relation is a partial order relation if it is reflexive, antisymmetric and transitive.

A partially ordered set is a pair (A, R) consisting of a set A and a partial order relation R on A.

Elements a and b of a partially ordered set (A, \preceq) are said to be *comparable* if $a \preceq b$ or $b \preceq a$. Otherwise, a and b are said to be *incomparable*.

Let (A, \preceq) be a partially ordered set. An element $a \in A$ is called

- a greatest element of A, if $x \leq a$ for all $x \in A$
- a least element of A, if $a \leq x$ for all $x \in A$
- a maximal element of A if, for all $x \in A$, either $x \leq a$ or a and x are incomparable
- a minimal element of A if, for all $x \in A$, either $a \leq x$ or a and x are incomparable

Number Theory

Given two integers a and b, with $a \neq 0$, we say that a divides b (written $a \mid b$) if there exist an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integer.

Theorem 1. Let a, b, and c be any integers.

1. If $a \mid b \text{ and } a \mid c \text{ then } a \mid (b+c)$.

- 2. If $a \mid b$ then $a \mid bc$.
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Theorem 2 (The Quotient/Remainder Theorem). Given any integer a and a positive integer d, there exist unique integers q and r such that

$$a = dq + r$$
 and $0 \le r < d$

In Theorem 2 the value d is called the *divisor*, a is the *dividend*, q is the *quotient*, and r is the *remainder*. Then div and mod are defined as a div d = q, $a \mod d = r$. Remember that the remainder cannot be negative.

Let n and m be any integers and d a positive integer. We write $n \equiv m \pmod{d}$ if

$$(n \bmod d) = (m \bmod d)$$

Theorem 3. Let n and m be any integers and d a positive integer then

$$n \equiv m \pmod{d}$$
 if and only if $d \mid (n-m)$

Let n be a nonnegative integer and $b_r b_{r-1} ... b_0$ a finite sequence of binary digits, i.e. $b_i \in \{0,1\}$ for $0 \le i \le r$. The sequence $b_r b_{r-1} ... b_0$ is a binary representation of n if

$$n = b_r \cdot 2^r + b_{r-1} \cdot 2^{r-1} + \dots + b_1 \cdot 2 + b_0$$

For example 101101 is the binary representation of $1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2 + 1 = 45$

The greatest common divisor of two integers a and b, not both zero, is denoted by gcd(a, b) and is the largest integer that both divides a and divides b.

The *least common multiple* of two positive integers a and b is denoted by lcm(a, b) and is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

Theorem 4. If a and b integer, not both zero, then

$$\gcd(a, b) = \gcd(b, a \bmod b)$$

Counting

The table below states how many different ways there are to order n distinct objects, and how many ways there are to choose r objects out of n distinct objects (depending on whether the order matters or repetition is allowed).

Order n objects (permutation) $P(n) = n! = n \cdot (n-1) \dots 2 \cdot 1$ Choose r objects from n without repetition with repetition - order matters (r-permutation) $P(n,r) = \frac{n!}{(n-r)!} \qquad n^r$ - order doesn't matter (r-combination) $\binom{n}{r} = \frac{n!}{r! \; (n-r)!} \qquad \binom{n+r-1}{r}$

Theorem 5 (Binomial Theorem). Given real numbers a and b, and non-negative integer n,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Let A be a finite set. We write N(A) to denote the number of elements in A. We say A has N(A) elements or A is a set of size N(A)

Theorem 6. If A and B are finite sets, then

$$N(A \cup B) = N(A) + N(B) - N(A \cap B)$$

Theorem 7 (Difference Rule). If A is a finite set and B is a subset of A, then

$$N(A - B) = N(A) - N(B).$$

Probability

A sample space is the set of all possible outcomes of a random process or experiment. An event is a subset of a sample space. The probability of an event E is denoted P(E). If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the probability of E is

$$P(E) = \frac{N(E)}{N(S)}$$

Let S be a sample space. A probability function P is a function from the set of all events in S to the set of real numbers satisfying

- 1. $0 \le P(A) \le 1$ for all events A in S.
- 2. $P(\emptyset) = 0$ and P(S) = 1.
- 3. If A and B are disjoint events in S, i.e. $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Theorem 8. If A is any event in a sample space S then the probability of the complement event $A^c = S - A$ is

$$P(A^c) = 1 - P(A)$$

Theorem 9. If A and B are events in a sample space S then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Suppose the sample space of an experiment or a random process is given by $S = \{a_1, ..., a_n\}$ where a_i is a real number for all $1 \le i \le n$. Suppose that each a_i occur with probability p_i for $1 \le i \le n$. The *expected value* of the process is

$$\sum_{i=1}^{n} a_i p_i = a_1 p_1 + a_2 p_2 + \dots + a_n p_n$$

Let A and B be events in a sample space S. If $P(A) \neq 0$, then the conditional probability of B given A, denoted P(B|A), is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Theorem 10 (Bayes' Theorem). Suppose that a sample space S is the union of mutually disjoint events $B_1, ..., B_n$ where $P(B_i) \neq 0$ for all $1 \leq i \leq n$. Suppose that A is an event in S and that $P(A) \neq 0$. Then

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n)}$$

Graphs & Trees

A graph is a triple (V, E, f) consisting of: a finite, nonempty set V of vertices; a finite set E of edges; and a function $f: E \to \{\{x,y\} \mid x,y \in V\}$.

An edge with only one endpoint is called a *loop*. Two edges with the same set of endpoints are called *parallel*. Vertices are called *adjacent* if they are endpoints of the same edge (if the edge is a loop, its endpoint is called *adjacent to itself*). We say that an edge is *incident on* its endpoints. Two edges with a common endpoint are called *adjacent*. A vertex on which no edge is incident is called *isolated*.

A graph is called *simple* if it has no loops or parallel edges.

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), is the number of edges that are incident on v, with an edge that is a loop counted twice. The total degree of G is the sum of the degrees of all vertices in G.

Theorem 11 (Handshake Theorem). A graph with m edges has total degree 2m.

The table below gives an overview over the different kinds of walks in a graph:

	repeated edge	repeated vertex	same start & end vertex	must contain at least 1 edge
Walk	allowed	allowed	allowed	no
Trail	no	allowed	allowed	no
Path	no	no	no	no
Closed walk	allowed	allowed	yes	no
Circuit	no	allowed	yes	yes
Simple Circuit	no	first and last only	yes	yes

A subgraph of G is a graph (V', E', f') with $V' \subseteq V$, $E' \subseteq E$ and f'(e) = f(e) for all $e \in E'$.

A graph (V, E, f) is connected if there exists a walk from u to v for all $u, v \in V$. A connected component of a graph G is a maximal connected subgraph C of G (i.e. every connected subgraph of G is either a subgraph of C or has no common vertices with C).

An Euler circuit of a graph G is a circuit that contains every edge and every vertex of G.

An Euler trail of a graph G is a trail that contains every edge and every vertex of G.

Theorem 12. A graph has an Euler circuit if and only if it is connected and every vertex has positive even degree.

Theorem 13. Given two distinct vertices u and v in a graph G, there exists an Euler trail from u to v if and only if G is connected, u and v have odd degree, and all other vertices have positive even degree.

A graph is called *circuit-free* if it has no circuits. A *tree* is a connected and circuit-free graph. In a tree, a vertex is called a *leaf* if it has degree 1, and an *internal vertex* if it has degree 2 or greater. A tree which consists of only one vertex is called *trivial*.

Theorem 14. Let n be a positive integer. A tree with n vertices has n-1 edges.

A rooted tree is a tree in which one vertex is distinguished from the others and is called the root. The level of a vertex in a rooted tree is the number of edges on the unique path from that vertex to the root. Given two adjacent vertices v and w such that the level of w is one greater than the level of v, then we call w a child of v and v the parent of w. In

a rooted tree, a vertex with one or more children is called an *internal vertex*, and a vertex with no children is called a *leaf*. A *binary tree* is a rooted tree in which every parent has at most two children. A *full binary tree* is a binary tree in which each parent has *exactly* two children.

Theorem 15. A full binary tree with n internal vertices has n + 1 leaves.

Automata, Regular Expressions, Grammars

An alphabet Σ is a finite set of symbols.

A string (or word) w over Σ is a finite sequence of symbols from Σ .

A language A is a set of strings over some Σ .

 λ is the *empty string*.

The length of w, written |w|, is the number of symbols that w contains. We write $|w|_a$ for the number of times the symbol a occurs in w.

Given words $w_1 = a_1 a_2 \dots a_m$ and $w_2 = b_1 b_2 \dots b_n$, we write $w_1 w_2$ to mean their concatenation: $a_1 a_2 \dots a_m b_1 b_2 \dots b_n$.

The concatenation of two languages L_1 and L_2 is defined as the language

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2\}$$

The Kleene closure of a language L is the language $L^* = \{\lambda\} \cup L \cup LL \cup LLL \cup ...$

A finite-state automaton is a 5-tuple (S, I, N, s_0, F) consisting of: a finite set of states S; a finite set I (the input alphabet); a transition function $N: S \times I \to S$; an initial state s_0 ; and a set $F \subseteq S$ of accepting states.

The language accepted by an automaton A is denoted by L(A):

$$L(A) = \{ w \mid w \in I^* \text{ and } N^*(s_0, w) \in F \}$$

where $N^*: S \times I^* \to S$ is defined by

$$N^*(s, \lambda) = s$$

 $N^*(s, aw) = N^*(s', w)$ where $s' = N(s, a)$

A regular expression r over an alphabet Σ can be built using: \emptyset ; λ ; a symbol $a \in \Sigma$; concatenation r s and union $r \mid s$ of regular expressions r, s; and Kleene closure r^* of a regular expression r.

The language L(r) defined by a regular expression r is

$$\begin{array}{ll} L(\emptyset) = \emptyset & L(a) = \{a\} & L(r \mid t) = L(r) \cup L(r) \\ L(\lambda) = \{\lambda\} & L(r \, t) = L(r) \, L(r) & L(r^*) = L(r)^* \end{array}$$

A grammar G = (V, T, S, P) consists of: A set of symbols V called *vocabulary*; a set $T \subset V$ of terminal symbols (symbols in N = V - T are called *non-terminal*); a starting symbol $S \in V$; and a set P of productions of the form $z_0 \to z_1$, where $z_0, z_1 \in V^*$ and z_0 must contain at least one non-terminal symbol.

Given a grammar G and two strings $s, t \in V^*$, we write $s \Rightarrow t$, if s can be rewritten to t by applying one production from P. We write $s \stackrel{*}{\Rightarrow} t$, and say that t is derivable from s, if s can be rewritten to t by applying several productions from P. The language defined by the grammar G is the set of strings over T derivable from S:

$$L(G) = \left\{ w \mid w \in T^* \text{ and } S \stackrel{*}{\Rightarrow} w \right\}$$