RSA-2048

Key generation

- 1. Choose two 1024-bit prime numbers p and q.
- 2. Compute Let n = pq, choose $e \leftarrow \mathbb{Z}_{d(n)}^*$ and set $d \leftarrow e^{-1} \mod \phi(n)$.
- 2. Compute Let n = pq, choose $e \leftarrow \mathbb{Z}_{\phi(n)}$ and set q.

 3. Public key is (n, e) and secret key is (n, e, d).

- **Encryption**1. Let pad: $\{0,1\}^{128} \to \mathbb{Z}_n^*$ be a predefined embedding.
- 2. To encrypt $m \in \{0,1\}^{128}$, output $c \leftarrow \mathsf{pad}(m)^e \mod n$.

Decryption

- 1. To decrypt $c \in \mathbb{Z}_n$, compute $x \leftarrow c^d \mod n$.
- 2. Extract m form x and verify that pad(m) = x.
- 3. Output \perp in case of failure and m otherwise.

Public Key Cryptosystem

