Сравнительный анализ методов создания квантовых битов и особенностей их взаимодействия с электромагнитными полями

Пятков Всеволод

МГУ имени М.В. Ломоносова, физический факультет

Кафедра атомной физики, физики плазмы и микроэлектроники

Постановка цели и задач

Цель: анализ и сравнение основных типов квантовых битов, а также изучение их взаимодействия с электромагнитными полями и возможности использования как детекторов слабого сигнала.

Задачи:

- ▶ Выделение критериев сравнения квантовых битов;
- Обзор методов создания и принципов действия некоторых типов кубитов;
- Их сравнение по заданным критериям;
- Описание взаимодействия кубитов с электромагнитными полями, на примере простейшей двухуровневой системы;
- Изучение возможности использования квантовых битов в качестве усилителей СВЧ сигнала.

Критерии сравнения и типы кубитов

Для того, чтобы двухуровневая система могла быть использована в качестве вычислительного блока, необходимо соблюдение ряда технических требований:

- Хорошее время когерентности (Coherence time);
- ► Способность к масштабированию (Scalability);
- Иметь возможность считывания (Measurability);
- Обладать высокой точностью управления (Controllability);
- Простота изготовления.

Рассмотренные методы создания кубитов:

- ▶ Ионы в ловушках;
- Спин на нейтральных атомах;
- Спин в полупроводниковой матрице;
- Квантовый бит на сверхпроводящей элементной базе.

Сравнение характеристик квантовых битов

	Кубит на ионах в ловушках	Кубит на нейтральных атомах	Кубит на спинах в полупроводниках	Сверхпроводящий кубит
Возможность применения при комнатной температуре	Да	Да	Да	Нет
Manufacturability				
Scalability				
Measurability				
Controllability				
Coherence time				

Взаимодействие с э/м полями

В общем случае Гамильтониан двухуровневой системы и поля:

$$\hat{H} = E_0 \hat{I} + W_1 \sigma_x + W_2 \sigma_y + \Delta \sigma_z = \begin{pmatrix} E_0 + \Delta & W_1 - iW_2 \\ W_1 + iW_2 & E_0 - \Delta \end{pmatrix}. \tag{1}$$

Вероятность обнаружить систему в состоянии 1:

$$P_{0\to 1}(t) = |\langle 1|\psi(t)\rangle|^2 = \frac{|W|^2}{\Delta^2 + |W|^2} \sin^2\left(\frac{(E_+ - E_-)t}{2\hbar}\right).$$
 (2)

где E_+, E_- - собственные значения \hat{H} ;

$$\Omega = rac{E_+ - E_-}{2\hbar} = rac{\sqrt{\Delta^2 + |\mathcal{W}|^2}}{\hbar}$$
 - частота Раби.

Резонансный импульс при RWA

Система атом-свет:

$$\hat{H} = \hat{H}_0 + \hat{H}_I = \frac{\hbar\omega_0}{2}\sigma_z + \frac{\hbar\Omega(t)}{2}\cos(\omega t)\sigma_x, \tag{3}$$

$$P_{0\to 1}(t) = \sin^2\left(\frac{\Theta}{2}\right),\tag{4}$$

где $\Theta = \int_{-\infty}^t \Omega(t\prime) \, dt\prime; \ \Omega(t) = rac{ec{d}ec{ec{ec{ec{ec{ec{ec{ec{v}}}}}}(t)}}{\hbar}.$

В качестве высокочувствительных детекторов э/м поля можно использовать искусственные атомы.