Matching

Junrui Lin

NYU MSQE

June 5, 2023

Setup

- ullet x_i : vector of characteristics individual i reports to the insurance company
- ullet $p_{it}=f_t(x_i)$: regular premium function that unknown for us, stable over time
- $d_{it} = \min\{\frac{1}{2}p_{it}, cap_t\}$: regular deductible level
- ullet w_i : wealth of individual i
- \bullet (p_i^h, d_i^h) : insurance contract, high premium, high deductible
- ullet (p_i^l,d_i^l) : insurance contract, low premium, low deductible
- ullet t_i : duration of the policy
- $u_i(w)$: individual's vNM utility function
- ullet λ_i : claim rate, known to individual (assume no moral harzard)

Junrui Lin (jl12680) NYU MSQE June 5, 2023

Model

The expected utility from a contract (p,d) is

$$v(p,d) := (1 - \lambda t)u(w - pt) + (\lambda t)u(w - pt - d)$$

when individual is indifference between $(\boldsymbol{p}^h,\boldsymbol{d}^h)$ and $(\boldsymbol{p}^l,\boldsymbol{d}^l)$

$$\begin{split} \lambda &= \lim_{t \to 0} \frac{\frac{1}{t} \bigg(u(w - p^h t) - u(w - p^l t)) \bigg)}{\bigg(u(w - p^h t) - u(w - p^h t - d^h) - u(w - p^l t) + u(w - p^l t - d^l) \bigg)} \\ &= \frac{(p^l - p^h)u'(w)}{u(w - d^l) - u(w - d^h)} \end{split}$$

Using Taylor expansion

$$\frac{p^l - p^h}{\lambda} u'(w) \approx (d^h - d^l)u'(w) - \frac{1}{2}(d^h - d^l)(d^h + d^l)u''(w)$$

Junrui Lin (il12680) NYU MSQE June 5. 2023 3 / 7

Model (cont.)

Let $\Delta d=d^h-d^l$, $\Delta p=p^l-p^h$, and $\bar d=\frac12(d^h+d^l)$, then previous Taylor expansion will be

$$\frac{\Delta p}{\lambda}u'(w) = \Delta du'(w) - \bar{d}\Delta du''(w) \Rightarrow r := \frac{-u''(w)}{u'(w)} = \frac{\frac{\Delta p}{\lambda \Delta d} - 1}{\bar{d}}$$

where r is coefficient of absolute risk aversion at wealth level w.

Note: the indifferent set $(r^*(\lambda), \lambda)$ and $(\lambda^*(r), r)$ are interchangeable and have closed form.

Junrui Lin (jl12680) NYU MSQE June 5, 2023 4/7

Model Estimation

We want to estimate the joint distribution of (λ_i, r_i) , conditional on observables x_i . Assuming (λ_i, r_i) is bivariate lognormal

$$\ln \lambda_i = x_i' \beta + \varepsilon_i, \ \ln r_i = x_i' \gamma + \nu_i$$

$$\begin{bmatrix} \varepsilon_i \\ \nu_i \end{bmatrix} \overset{\text{i.i.d.}}{\sim} N \bigg(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_\lambda^2 & \rho \sigma_\lambda \sigma_r \\ \rho \sigma_\lambda \sigma_r & \sigma_r^2 \end{bmatrix} \bigg)$$

 λ and r are not directly observed, we only observe claims and deductible choice.

Assume claims follows Poisson process

$$claims_i \sim Poisson(\lambda_i t_i)$$

When choosing deductible plans, they will choose low deductible iff $r_i \geq r_i^*(\lambda_i)$

$$Pr(\text{low deductible}) = Pr\bigg(\exp(x_i'\gamma + \nu_i) > \frac{\frac{\Delta p_i}{\exp(x_i'\beta + \varepsilon_i)\Delta d_i} - 1}{\bar{d}_i}\bigg)$$

Then it's fairly easy to write out the likelihood or use simulation method.

Junrui Lin (jl12680) NYU MSQE June 5, 2023

Asymmetric Information (Einav et al. 2010)

Setup

Asymmetric Information (Einav et al. 2010)

Junrui Lin (jl12680) NYU MSQE June 5, 2023