## Midterm Practice Exam

CS 4390/5390

October 13, 2019

1. Given the table below which was created using the Smith-Waterman algorithm for local alignment, (a) identify the local alignment score, and (b) perform trace-back to find the optimal alignment.

|   |   | T              | T          | A                | C                         | T                                | G                | T                      | G                                  | T                |
|---|---|----------------|------------|------------------|---------------------------|----------------------------------|------------------|------------------------|------------------------------------|------------------|
|   | 0 | 0              | 0          | 0                | 0                         | 0                                | 0                | 0                      | 0                                  | 0                |
| С | 0 | 0              | 0          | 0                | <b>₹</b> 5                | ←4.5                             | ←4               | ←3.5                   | ←3                                 | ←2.5             |
| A | 0 | 0              | 0          | 7.5              | $\leftarrow \uparrow 4.5$ | $\nwarrow \leftarrow \uparrow 4$ | <b>\_</b> ←\↑3.5 | <b>\_</b> ← <b>↑</b> 3 | $\nwarrow \leftarrow \uparrow 2.5$ | <u> </u>         |
| C | 0 | 0              | 0          | <b>↑</b> 4.5     | 710                       | ←9.5                             | ←9               | ←8.5                   | ←8                                 | ←7.5             |
| С | 0 | 0              | 0          | <b>†</b> 4       | <b>₹</b> 195              | <b>\</b> ← <b>\</b> 19           | <u> </u>         | <u> </u>               | <b>\_</b> ←\↑7.5                   | <u> </u>         |
| C | 0 | 0              | 0          | <b>↑</b> 3.5     | <u> </u>                  | <b>\_</b> ←\↑8.5                 | <b>\</b> ←↑8     | <b>\_</b> ←\↑7.5       | <b>\</b> ←↑7                       | <b>\_</b> ←\↑6.5 |
| C | 0 | 0              | 0          | †3               | ₹\18.5                    | <b>\</b> ←↑8                     | <b>\_</b> ←\↑7.5 | <u> </u>               | <b>\_</b> ←\↑6.5                   | <b>\_</b> ←↑6    |
| T | 0 | $\nwarrow 5$   | <b>₹</b> 5 | ←4.5             | ↑7.5                      | 13.5                             | ←13              | <u> </u>               | ←12                                | <-11.5           |
| G | 0 | <b>↑</b> 4.5   | ↑4.5       | <u> </u>         | <b>↑</b> 7                | ↑13                              | 185              | ←18                    | <-17.5                             | ←17              |
| T | 0 | abla 5         | ₹9.5       | ←9               | ←8.5                      | ↑12.5                            | ↑18              | K 23.5                 |                                    | <-22.5           |
| G | 0 | $\uparrow 4.5$ | ↑9         | <b>\_</b> ←\↑8.5 | <b>\\</b> ←↑8             | ↑12                              | <b>△</b> ↑17.5   | <b>↑</b> 23            | 5 28.5                             | ←28              |
|   |   |                |            |                  |                           |                                  |                  |                        |                                    |                  |

Optimal Local Alignment Score:

Optimal Local Alignment (note not all of the spaced will be used)

|  |  |  |  |  | Α | С | С | С | С | Т | G | Т | G |
|--|--|--|--|--|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  | Α | С | - | 1 | - | Т | G | Т | G |

2. Given the Needleman-Wunsch table below, find the optimal global alignment for the two sequences.

|   |              | T                         | T                                                               | A                       | С             | T              | G           | T                | G        | T                                  |
|---|--------------|---------------------------|-----------------------------------------------------------------|-------------------------|---------------|----------------|-------------|------------------|----------|------------------------------------|
|   | 0 -          | ₹ 0.5                     | ←-1                                                             | ←-1.5                   | ←-2           | ←-2.5          | ←-3         | ←-3.5            | ←-4      | ←-4.5                              |
| C | ↑-0.5        | <u> </u>                  | <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | <u>~</u> ←↑-2           | ₹3.5          | ←3             | ←2.5        | ←2               | ←1.5     | ←1                                 |
| A | ↑-1          | <b>\_</b> ← <b>\</b> -1.5 | <u></u>                                                         | 3.5                     | <b>←</b> ↑3   | <u></u>        | <u></u>     | <b>\_</b> ←\1.5  | <u></u>  | <b>\_</b> ←\↑0.5                   |
| C | <b>↑-1.5</b> | <u></u>                   | <b>\_</b> ←↑-2.5                                                | †3                      | 8.5           | ←8             | ←7.5        | <b>←</b> 7       | ←6.5     | ←6                                 |
| C | <b>↑-2</b>   | <b>\_</b> ←\2.5           | <b>\</b> ←↑-3                                                   | ↑2.5                    | <u>₹</u> †8   | <b>\</b> ←↑7.5 | <u></u>     | <b>\_</b> ←\↑6.5 | <u> </u> | <b>\_</b> ←\↑5.5                   |
| C | <b>↑-2.5</b> | <u></u>                   | <b>\_</b> ←↑-3.5                                                | <b>†</b> 2              | <u>₹</u> ↑7.  | <u> </u>       | <u> </u>    | <u> </u>         | <u> </u> | <u> </u>                           |
| C | ↑-3          | <b>\_</b> ← <b>\</b> -3.5 | <u></u>                                                         | <b>↑</b> 1.5            |               | <u></u>        | <u></u>     | <b>\_</b> ←\↑5.5 | <u></u>  | $\nwarrow \leftarrow \uparrow 4.5$ |
| T | <b>↑-3.5</b> | ₹2                        | <u></u>                                                         | <b>←</b> ↑1             | ↑6.5          | K 12           | ←11.5       | <-11             | ←10.5    | <-10                               |
| G | <b>↑-4</b>   | ↑1.5                      | <u> </u>                                                        | <u> </u>                | <b>†</b> 6    | ↑11.5          | K 17        | ←16.5            | <u> </u> | ←15.5                              |
| Т | <b>↑-4.5</b> | <b>\</b> ↑1               | ₹6.5                                                            | ←6                      | <b>←</b> ↑5.5 | <b>\</b> ↑11   | ↑16.5       | K_22             | ←21.5    | <u>~</u> ←21                       |
| G | <b>↑-</b> 5  | ↑0.5                      | <b>†</b> 6                                                      | <b>₹</b> ← <b>†</b> 5.5 | <u>\</u> ←↑5  | ↑10.5          | <b>₹</b> 16 | ↑21.5            | K_27     | <del>2</del> 6.5                   |

Optimal Global Alignment (note not all of the spaced will be used)

|  |  |  | - | - | С | A | С | С | С | С | Т | G | Т | G | - |
|--|--|--|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Т | Т | - | A | С | - | _ | - | Т | G | Т | G | Т |

3. (a) Compute the Z-Values for ACTAACTAAC. (b) how are the values of  $Z_2, Z_3, ... Z_{i-1}$  used in computing  $Z_i$ . (c) what does the value of  $Z_i$  mean?

## (a) ACTAACTAAC Zi - 0 0160 0120

- (b) When computing say Z6, we know Z5 + 5 > 6, so we can look to see if Z2 is less than Z5 + 1, if so we know that the prefix match is contained in the current Z-box (starting at 5) and that the value can simply be copied.
- (c) The Z value is the longest prefix of S[1...n] and S[i...n] that match.

4. From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; and (b) find the longest common substring between the set of sequences, and explain your reasoning.



- (a) Yes, ACTG is contained in the set because the path from the root following that sequence (highlighted) exists in the suffix tree.
- (b) "TG" is the longest common substring, of the internal nodes in the tree with leaves in their subtrees labeled by all 3 sequences (circled), the node representing the string "TG" is the deepest.

7. What is the sum-of-pairs score of the following multiple sequence alignment using the global scoring with affine scoring model with the following parameters:

| match    | 10 |
|----------|----|
| mismatch | -3 |
| indel    | -1 |
| gap      | -3 |

ACCTGCC
-C-TGCA
AGCGGCA
ACCT--A

Mt 3 3 3 3 3 3 3 = 21 Ms 0 3 0 3 0 0 3 = 9 Id 3 0 3 0 3 3 0 = 12 Gp = 9

8. Given the pairwise alignments between the 4 sequences, and using sequence B as the starcenter, create the multiple alignment using the center-star method.

| A: GATG-TGCCG | B: CCTGCT-GCAG                      | B: CCTGCT-GCAG |
|---------------|-------------------------------------|----------------|
| B: CCTGCTGCAG | $C\colon\operatorname{CC-GCTAGCAG}$ | D: CCTG-TAGG   |

B: CCTGCT-GCAG
A: GATG-T-GCCG
C: CC-GCTAGCAG
D: CCTG-TAG--G

9. How would we modify the Smith-Waterman algorithm if we wanted to find a disjoint set of substrings of S to align to a substring of T.

For example when aligning  $S = \mathsf{GGAGCGGCTTGG}$  with  $T = \mathtt{AAAACCTTTT}$ , an optimal alignment would align  $S[3..5] \cdot S[8..10]$  to T[3...8]:

AGCCTT AACCTT.

The concept can be though of as "skipping" S[6..7] when computing the optimal local alignment. Note that the  $\cdot$  operator is for concatenation.

## Update the recursion formula to the following:

```
 V(i,j) = \max \left\{ \\ 0, & \text{// this is local alignment, empty align okay} \\ V(i-1,j-1) + \text{delta}(S[i],S[j]) \text{// match mismatch as normal} \\ V(i,j-1) + \text{delta}(-,T[j]) & \text{// all insertions are still counted} \\ V(i-k,j), k<i & \text{// look for all substrings that ended at j in T} \right\}
```

during the traceback follow any jumps to reconstruct the alignment

3. (2 point) Given the following partially completed computation of the Z-value algorithm, compute the rest of the values using the O(n) time algorithm we discussed in class. Describe how you arrived at each value.

|       | C | G | Т | C | G | Т | A | C | G       | Т        | C  | G         | A                  | C      |                                    |
|-------|---|---|---|---|---|---|---|---|---------|----------|----|-----------|--------------------|--------|------------------------------------|
| i     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9       | 10       | 11 | 12        | 13                 | 14     |                                    |
| $Z_i$ | - | 0 | 0 | 3 | 0 | 0 | 0 | 5 | 0       | O        | 2  | 0         | 0                  | 1      |                                    |
|       |   |   |   |   |   |   |   |   | Coppied | coppéd t | 3  | (on 5), S | o ch<br>S[3<br>not | So rue | compare<br>3] = 5[14] = S[]<br>5[] |

4. (3 points) From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; (b) find the longest substring that occurs in all of the sequences *twice*, and explain your reasoning; (c) list the missing suffix links.



root labeled "A", "ctg" exso yes, a pam from the

5

"TG", Leepest of "G", "TG", "T", "A"

CTGA TTGA
GA TA
GCTC

10. (2 points) How would we modify the Needleman-Wunsch algorithm if we wanted to allow for any character in S to be repeated aligned as many times as we want in place.

For example when aligning S = AGA with T = GGGGGA, an optimal alignment would repeat the G in S 5 times to give the alignment:

AGGGGGA
-GGGGGA

In reality, the middle G is is being aligned with all of the Gs in T.

modify the recomance by adding an extra term

 $V(i,j) = \max \begin{cases} V(i,j-1) + S(S[i],T[i]) \\ V(i,j-1) + S(S[i],'-') \\ V(i,j-1) + S(S[i],T[j]) \end{cases}$ allows for the V(i,j-1) + S(S[i],T[j])best mater/mismater
from last there of S.

Om backtach, follow links that may move non-diagonally but Still output a column w/ two characters.