AMENDED CLAIMS

We claim:

- 1-16. (Previously canceled)
- 17. (Previously Presented) A method for laser vision correction, comprising providing a controlled biodynamic response in corneal tissue of an eye by inflicting a controlled trauma to an exposed corneal surface outside an identified optical zone for a myopia correcting nominal laser ablation of the cornea.
- 18. (Currently Amended) The method of claim 17, wherein providing the controlled biodynamic response includes a flattening of the corneal surface over at least a central portion of the optical zone.
- 19. (Currently Amended) The method of claim 17, wherein inflicting the controlled trauma comprises laser ablating a portion of the exposed corneal surface.
- 20. (Currently Amended) The method of claim 319, wherein laser ablating a portion of the exposed corneal surface comprises ablating at least a portion of a ring of corneal tissue having a circular or an acircular shape.
- 21. (Currently Amended) The method of claim 420, wherein the at least a portion of the ablation ring has an inner boundary adjacent an outer boundary of the optical zone.
- 22. (Currently Amended) The method of claim 521, wherein the inner boundary of the at least a portion of the ablation ring begins at a distance, d, from the outer boundary of the optical zone, where $200\mu m \le d \le 600\mu m$.
- 23. (Currently Amended) The method of claim 420, comprising ablating the at least a portion of the ring to a depth, t, where $10\mu m \le t \le 70\mu m$, and having a width, w.
- 24. (Currently Amended) The method of claim 723, wherein t and w are variable as a function of biodynamic ablation location on the cornea.

PATENT CASE NAME/NO. P03149 (1223P008A)

- 25. (Currently Amended) The method of claim 723, wherein w is a function of the laser beam diameter on the cornea.
- 26. (Currently Amended) The method of claim 723, wherein w has a nominal value of about 1mm.
- 27. (Currently Amended) The method of claim 420, comprising ablating the at least a portion of the ring within a transition zone of the nominal ablation of the cornea.
- 28. (Currently Amended) The method of claim 17, wherein providing the controlled biodynamic response comprises creating a tissue ablation volume for a desired refractive correction that is less than a corresponding tissue ablation volume for the desired refractive correction in the absence of the controlled biodynamic response.
- 29. (Currently Amended) The method of claim 1228, wherein the lessened tissue ablation volume has a smaller ablation depth over the optical zone than a corresponding ablation depth over the optical zone in the absence of the controlled biodynamic response.
- 30. (Currently Amended) The method of claim 17, wherein providing the controlled biodynamic response comprises empirically determining the controlled biodynamic response from a statistically significant population.
- 31. (Currently Amended) The method of claim 17, wherein providing the controlled biodynamic response comprises delivering a plurality of photoablative light pulses onto the corneal surface, all of which have only a 1mm diameter.
- 32. (Currently Amended) The method of claim <u>1531</u>, wherein the plurality of photoablative light pulses have a direct aperture transmission portion and a diffractive aperture transmission portion so as to produce a soft-spot beam intensity profile.
- 33. (Previously Presented) A method for a LASIK or a LASEK myopia correction, comprising:

PATENT CASE NAME/No. P03149 (1223P008A)

ablating a volume of corneal tissue outside an optical zone of a nominal ablation region of the cornea.

- 34. (Currently Amended) The method of claim 4733, wherein the volume of ablated corneal tissue is in the form of at least a portion of a ring of ablated corneal tissue having a circular or an acircular shape.
- 35. (Currently Amended) The method of claim 1834, wherein the at least a portion of the ring has an inner boundary adjacent an outer boundary of the optical zone.
- 36. (Currently Amended) The method of claim 1935, wherein the inner boundary of the at least a portion of the ablation ring begins at a distance, d, from the outer boundary of the optical zone, where $200\mu m \le d \le 600\mu m$.
- 37. (Currently Amended) The method of claim 2036, comprising ablating the at least a portion of the ring to a depth, t, where $10\mu\text{m} \le t \le 70\mu\text{m}$, and a width, w.
- 38. (Currently Amended) The method of claim 2437, wherein t and w are variable as a function of biodynamic ablation location on the cornea.
- 39. (Currently Amended) The method of claim 2137, wherein w is a function of the laser beam diameter on the cornea.
- 40. (Currently Amended) The method of claim 2137, wherein w has a nominal value of about 1mm.
- 41. (Currently Amended) The method of claim 2440, comprising ablating the at least a portion of the ring within a transition zone of the nominal ablation of the cornea.
- 42. (Currently Amended) The method of claim 1733, wherein ablating the volume of corneal tissue comprises creating a tissue nominal ablation volume in the optical zone for a desired refractive correction that is less than a corresponding tissue nominal ablation volume in the optical zone for the desired refractive correction in the absence of the controlled biodynamic response.

PATENT CASE NAME/No. P03149 (1223P008A)

The method of claim 2642, wherein the lessened tissue nominal

ablation volume has a smaller ablation depth over the optical zone than a corresponding ablation depth over the optical zone in the absence of ablating the volume of corneal tissue.

44. (New) In an improved device readable medium having stored therein an executable instruction for directing an ophthalmic vision correcting laser platform to deliver a myopia

43. (Currently Amended)

- correcting nominal ablation in an optical zone of a corneal surface, the improvement comprising an executable instruction stored in the medium for directing the ophthalmic vision correcting laser platform to deliver a myopia correction enhancing biodynamic ablation in the corneal surface outside of the optical zone.
- 45. (Currently Amended) The device readable medium of claim 2844, wherein the biodynamic ablation has the form of at least a portion of a ring having an inner boundary adjacent an outer boundary of the optical zone, wherein the ring has a circular or an acircular shape.
- 46. (Currently Amended) The device readable medium of claim 2945, wherein the inner boundary of the biodynamic ablation is separated from the outer boundary of the optical zone by a distance, d, where $200\mu m \le d \le 600\mu m$.
- 47. (Currently Amended) The device readable medium of claim $\frac{2945}{}$, wherein the at least a portion of the ring has a depth, t, where $10\mu m < t < 70\mu m$, and a width, w.
- 48. (Currently Amended) The device readable medium of claim 3147, wherein t and w are variable as a function of biodynamic ablation location on the cornea.
- 49. (Currently Amended) The device readable medium of claim 3147, wherein w is a function of the laser beam diameter on the cornea
- 50. (Currently Amended) The method of claim 2945, wherein w has a nominal value of about 1mm.

PATENT CASE NAME/No. P03149 (1223P008A)

- 51. (Currently Amended) The device readable medium of claim 2945, wherein the at least
- a portion of the ring is located within a transition zone of the nominal ablation of the cornea.
- 52. (Currently Amended) The device readable medium of claim 2945, wherein the controlled delivered biodynamic ablation comprises a plurality of photoablative light pulses delivered to the corneal surface, all of which have only a 1mm diameter.