自動機與形式語言 Homework 1

B03902086 李鈺昇

1

We know that $x \sim_n y \iff x \equiv y \mod n \iff x-y=kn, k \in \mathbb{Z}$. Assume $n \neq 0$. To show that \sim_n is an equivalence relation, it suffices to check the following:

- Reflexive: $\forall x \in \mathbb{Z}, x x = 0 = 0 \times n$, so $x \sim_n x$.
- Symmetric: $\forall x, y \in \mathbb{Z}$, $x \sim_n y$ $\iff x - y = kn, k \in \mathbb{Z}$ $\iff y - x = -kn$, and $-k \in \mathbb{Z}$
- $\iff y x = -kn, \text{ and } -k \in \mathbb{Z}$ $\iff y \sim_n x.$
- Transitive: $\forall x, y, z \in \mathbb{Z}$, $x \sim_n y \text{ and } y \sim_n z$ $\implies x - y = k_1 n, y - z = k_2 n, k_1, k_2 \in \mathbb{Z}$ $\implies x - z = (x - y) + (y - z) = (k_1 + k_2)n$, and $k_1 + k_2 \in \mathbb{Z}$ $\implies x \sim_n z$.

There are n equivalence classes, since all the possible remainders modulo n are $\{0, 1, ..., n-1\}$, and $x \sim_n y$ iff $[x]_{\sim} = [y]_{\sim}$, which means two integers falls into the same class iff their remainders modulo n are the same.

$\mathbf{2}$

All the following $k \in \mathbb{Z}$.

- 0. If $x \equiv 0 \mod 3$, x 0 = 3k, 2x = 6k = 3(2k) + 0, $2x \equiv 0 \mod 3$.
- 1. If $x \equiv 0 \mod 3$, x 0 = 3k, 2x + 1 = 6k + 1 = 3(2k) + 1, $2x + 1 \equiv 1 \mod 3$.
- 2. If $x \equiv 1 \mod 3$, x 1 = 3k, 2x = 6k + 2 = 3(2k) + 2, $2x \equiv 2 \mod 3$.
- 0. If $x \equiv 1 \mod 3$, x 1 = 3k, 2x + 1 = 6k + 3 = 3(2k + 1) + 0, $2x + 1 \equiv 0 \mod 3$.
- 1. If $x \equiv 2 \mod 3$, x 2 = 3k, 2x = 6k + 4 = 3(2k + 1) + 1, $2x \equiv 1 \mod 3$.
- 2. If $x \equiv 2 \mod 3$, x 2 = 3k, 2x + 1 = 6k + 5 = 3(2k + 1) + 2, $2x + 1 \equiv 2 \mod 3$.

3

Now assume \sim is an equivalence relation over X.

• $[x]_{\sim} = [y]_{\sim}$ if and only if $x \sim y$.

Proof On one hand,
$$[x]_{\sim} = [y]_{\sim}$$
 $\Longrightarrow y \in [y]_{\sim} = [x]_{\sim}$, by definition of $[\cdot]_{\sim}$ and $y \sim y$ (reflexivity) $\Longrightarrow x \sim y$, by definition of $[\cdot]_{\sim}$.

```
On the other hand, x \sim y \Longrightarrow y \sim x, by symmetry \Longrightarrow \forall z \in [x]_{\sim}, x \sim z, and thus y \sim z by transitivity, which implies z \in [y]_{\sim}. Hence [x]_{\sim} \subseteq [y]_{\sim}. Similarly, [y]_{\sim} \subseteq [x]_{\sim}. \Longrightarrow [x]_{\sim} = [y]_{\sim}.
```

• If $[x]_{\sim} \neq [y]_{\sim}$, then $[x]_{\sim} \cap [y]_{\sim} = \emptyset$.

Proof Suppose $[x]_{\sim} \neq [y]_{\sim}$. If $[x]_{\sim} \cap [y]_{\sim} \neq \emptyset$, $\exists z \in [x]_{\sim} \cap [y]_{\sim}$. Then $z \in [x]_{\sim}$, $z \in [y]_{\sim}$, hence $z \sim z$, $z \sim z$. By symmetry and transitivity, $z \sim y$. Now with the previous part of this lemma, we get $[x]_{\sim} = [y]_{\sim}$, a contradiction. So $[x]_{\sim} \cap [y]_{\sim} = \emptyset$.

4

Each member of X belongs to exactly one equivalence class of \sim .

Proof $\forall x \in X$, by reflexivity we know that $x \in [x]_{\sim}$. Now suppose $x \in A$ and $x \in B$, where A and B are (possibly identical) equivalence classes of \sim . Then $x \in A \cap B$, which means $A \cap B \neq \emptyset$. By the contrapositive of the second part of Lemma 1.1, with A, B in place of $[x]_{\sim}, [y]_{\sim}$ respectively, we have A = B. Therefore x belongs to exactly one equivalence class, i.e. $[x]_{\sim}$.