Control Systems

Krishna Srikar Durbha

EE18BTECH11014

12th Februrary 2020

Question

Q.34 The number of roots of the polynomial,

$$s^7+s^6+7s^5+14s^4+31s^3+73s^2+25s+$$
 200, in the open left half of the complex plane is

- (A) 3
- (B) 4
- (C) 5
- (D) 6

Solution

We will be using the concept of Routh-Hurwitz Criterion.

Routh-Hurwitz Criterion: The number of roots of the polynomial that are in the right half-plane is equal to the number of sign changes in the first column.

 Routh-Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time invariant control system.

Rules for generating Routh-Hurwitz Table.

- Label the rows of Routh table from highest power to the lowest power.
- List alternative coefficients starting with the highest order coefficients in the first row.
- List alternative coefficients starting with the next highest order coefficients in the second row.
- Each entry is the negative of determinant of the previous two entries in the previous two rows divided by the entry in the first column directly above the row.

- The left hand column of the determinant is always the first column of the previous two rows.
- The right hand column is the elements of the column above and to the right.
- The table is complete when all of the rows are completed down to s^0 .

The Routh-Hurwitz Table for given equation

$$s^7 + s^6 + 7s^5 + 14s^4 + 31s^3 + 73s^2 + 25s + 200$$
, is calculated as follows

s ⁷	1	7	31	25
s ⁶	1	14	73	200

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0
s ⁴	8	48	200	0

s ⁷	1	7	31	25
s ⁶	1	14	73	200
<i>s</i> ⁵	-7	-42	-175	0
s ⁴	8	48	200	0
<i>s</i> ³	0	0	0	

When such a case is encountered, we take the derivative of the expression formed the the coefficients above it i.e derivative of $8s^4 + 48s^2 + 200$.

$$\frac{d}{dx}(8s^4 + 48s^2 + 200) = 32s^3 + 96s$$

The coefficients of obtained expression are placed in the table.

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0
s ⁴	8	48	200	0
s^3	32	96	0	

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0
s ⁴	8	48	200	0
<i>s</i> ³	32	96	0	
s ²	24	200	0	

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0
s ⁴	8	48	200	0
<i>s</i> ³	32	96	0	
<i>s</i> ²	24	200	0	
s^1	-170.67	0		

s ⁷	1	7	31	25
s ⁶	1	14	73	200
s ⁵	-7	-42	-175	0
s ⁴	8	48	200	0
s^3	32	96	0	
s^2	24	200	0	
s^1	-170.67	0		
s^0	200			

So, the above one is the Routh-Hurwitz Table.

The no.of sign changes in first column of Routh–Hurwitz Table is the no.of roots on right side of imaginary axis.

So, for the given equation 4 roots lie on right-side of Imaginary Axis.

Given equation has a total of 7 roots in which 4 lie on right side of Imaginary Axis. So there will be 3 roots on left of Imaginary Axis.

Verification using Python Code

Roots of f(z)

Contour Plot Describing the values of f(z)

