Control Stabilization for Bi-Quadcopter Payload Delivery System

ACSI - Fall 2023

Hima Hrithik Pamu

Shang Shi

Ben Spin

Peter Blumenstein

Srikumar Brundavanam

Presentation Overview

- Motivation
- Related Work
- Dynamic Modelling
- Simulation
- Firmware Alterations
- PID Tuning
- Adaptive Controller

Drone delivery has a wide range of applications

[1]

^[1] Annierpalmer, "Amazon's Drone Delivery Unit hit with layoffs just as 10-year-old project finally launches," CNBC, https://www.cnbc.com/2023/01/20/amazon-drone-unit-hit-with-layoffs-as-long-awaited-program-launches.html (accessed Oct. 9, 2023).

^{[2] &}quot;Drone payloads to become vital in supplying medicines, test results in COVID-19 pandemic - GPS world," GPS World - The Business and Technology of Global Navigation and Positioning, https://www.gpsworld.com/drone-payloads-to-become-vital-in-supplying-medicines-test-results-in-covid-19-pandemic/ (accessed Oct. 9, 2023).

Our goal is to improve drone delivery system capacity through dual drone coordination

Features of the Dual Drone Coordination

- Dual Drone Control
- Stable Flight
- Dynamic Reconfiguration
- Payload Pickup/ Delivery

Design Inspiration:

Collaborative payload carrying

[3] H. Xie, K. Dong and P. Chirarattananon, "Cooperative Transport of a Suspended Payload via Two Aerial Robots With Inertial Sensing," in IEEE Access, vol. 10, pp. 81764-81776, 2022, doi: 10.1109/ACCESS.2022.3194932.

Collaborative transport without communication between drones Controller Linear Quadratic Regulator (LQR) Sensing - standard fisheye lens USB camera, Pixhawk PX4 IMU Hardware Odroid XU4 microcontroller

Design Inspiration:

Autonomous Rigidly Attached Quadcopters

[4] D. G. Morín, J. Araujo, S. Tayamon and L. A. A. Andersson, "Autonomous Cooperative Flight of Rigidly Attached Quadcopters," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 5309-5315, doi: 10.1109/ICRA.2019.8794266.

A successful demo would involve stable take-off, flight and payload pickup

3D Truss Model

- Short model original design
 - Not a significant controls challenge
- Long Truss
 - Tradeoffs of weight and length

Changes to the Truss

- Settled on final design with similar weight to our short truss
- Sufficiently stable and lightweight enough to carry significant payload

Density = 0.001000 grams per cubic millimeter

Mass = 7.931425 grams

Volume = 7931.425432 cubic millimeters

Dynamics Recap

- Utilizing Euler angles, Lagrangian Dynamics
- Decision made to operate in the body frame, consistent with default commands
- Model easy adjusted to new wrench representations, or additional drones

$$\mathbf{R}_{\mathcal{GB}} = \mathbf{R}(\phi)\mathbf{R}(\theta)\mathbf{R}(\psi) = \begin{pmatrix} \cos(\psi)\cos(\theta) & \cos(\theta)\sin(\psi) & -\sin(\theta) & x \\ \cos(\psi)\sin(\phi)\sin(\theta) - \cos(\phi)\sin(\psi) & \cos(\phi)\cos(\psi) + \sin(\phi)\sin(\psi)\sin(\theta) & \cos(\theta)\sin(\phi) & y \\ \sin(\phi)\sin(\psi) + \cos(\phi)\cos(\psi)\sin(\theta) & \cos(\phi)\sin(\psi)\sin(\theta) - \cos(\psi)\sin(\phi) & \cos(\phi)\cos(\theta) & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{L} = T - V \;\; rac{d}{dt} \left(rac{\partial \mathcal{L}}{\partial \dot{q}_i}
ight) - rac{\partial \mathcal{L}}{\partial q_i} = Q_i$$

Dynamics Model

Control Vector (Before Condensing) $\mathbf{u} = \begin{bmatrix} F_1, & F_2, & F_3, & F_4, & F_5, & F_6, & F_7, & F_8, & \tau_1, & \tau_2, & \tau_3, & \tau_4, & \tau_5, & \tau_6, & \tau_7, & \tau_8 \end{bmatrix}$

12x8 [Top 8 Rows are Zero]

B Matrix ==

0.001838	0.001838	0.001838	0.001838	0.001838	0.001838	0.001838	0.001838
-0.000369	0.000369	-0.000369	0.000369	-0.000369	0.000369	-0.000369	0.000369
0.119682	0.119682	-0.119682	-0.119682	0.119682	0.119682	-0.119682	-0.119682
0.001371	0.001371	0.001371	0.001371	-0.001371	-0.001371	-0.001371	-0.001371

Condensed from [12,16] to [12,8] utilizing ratios from single drone paper

*Other SS Matrices
1s and 0s

Control Vector
$$\mathbf{u} = \begin{bmatrix} \Omega_1, & \Omega_2, & \Omega_3, & \Omega_4, & \Omega_5, & \Omega_6, & \Omega_7, & \Omega_8 \end{bmatrix}$$

State Vector
$$\mathbf{x} = \begin{bmatrix} x, & \dot{x}, & y, & \dot{y}, & z, & \dot{z}, & \phi, & \dot{\phi}, & \theta, & \dot{\theta}, & \psi, & \dot{\psi} \end{bmatrix}$$

Ref Luis, C., & Le Ny, J. (August, 2016). Design of a Trajectory Tracking Controller for a Nanoquadcopter. Technical report, Mobile Robotics and Autonomous Systems Laboratory, Polytechnique Montreal.

Simulation

The controller is 3 cascaded PID controllers.

Simulation

The attitude rate controller was the most impactful.

Swarm Flight - Overview

- Need to send commands to both drones simultaneously
- Control 2 drones with 1 radio using Swarm module
 - Flash different address on to drone
- Send commands to drones using Motion Commander (made possible by Flow Deck)
- Allows commands such as: Forwards 0.5m, turn left 90 deg, right 1 m... etc
- Sends purely velocity setpoints
 - Positional error accumulates

Firmware - Original Power Distribution (PWD)

M1: Thrust - Roll + Pitch + Yaw

M2: Thrust - Roll - Pitch - Yaw

M3: Thrust + Roll - Pitch + Yaw

M4: Thrust + Roll + Pitch - Yaw

Firmware Modification - Existing PWD

Existing (Roll):

Firmware Modification - Flight Test (Existing PWD)

Firmware Modification - Linear PWD

Linear (Roll):

Firmware Modification - Linear PWD

Linear (Roll):

Firmware Modification - Flight Test (Linear PWD)

Firmware Modification - Yaw

Firmware Modification - Yaw Test (Default Yaw)

Firmware Modification - Yaw Setpoint Adjustment

Setpoint Adjustment:

Firmware Modification - Yaw Test (Setpoint Adjusted)

Firmware Modification - Yaw Comparison

No Setpoint Change

With Adjusted Setpoint

Controller Tuning

- From hardware testing, unstable maneuvers are
 - Sideways translation (roll)
- Attitude Rate PID
- Challenges
 - Abrupt changes in direction create instability
 - Swinging payload introduced general instability in flight

PID Tuning Steps

Analyze MOI Ratio	Tuning in Simulation	Tuning on Hardware	Tuning with Mass	
Get intuition of PID changes based on change in Moment of Inertia (MOI)	Tune controller in Simulation	Test values from Simulation and fine tune	Tune for PID given a certain payload	

New Force MOI Ratio

- Needed a simple, easily updated model to guide tuning
- Came up with ratio method utilizing wrench and inertia definitions
- Mixed results, but gave insight into relative PID increases on each axis

$$\begin{pmatrix} 0 \\ F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 \\ -F_1 \operatorname{Ly_{ir}} - F_4 \operatorname{Ly_{ir}} - F_5 \operatorname{Ly_{ir}} - F_2 \operatorname{Ly_{or}} - F_8 \operatorname{Ly_{ir}} - F_3 \operatorname{Ly_{or}} - F_6 \operatorname{Ly_{or}} - F_7 \operatorname{Ly_{or}} \\ F_1 \operatorname{Lx_{ir}} - F_4 \operatorname{Lx_{ir}} + F_5 \operatorname{Lx_{ir}} + F_2 \operatorname{Lx_{or}} - F_8 \operatorname{Lx_{ir}} - F_3 \operatorname{Lx_{or}} + F_6 \operatorname{Lx_{or}} - F_7 \operatorname{Lx_{or}} \\ \tau_1 - \tau_2 + \tau_3 - \tau_4 + \tau_5 - \tau_6 + \tau_7 - \tau_8 \end{pmatrix}$$

```
roll_ratio = 20.584128319459368735369963463472

pitch_ratio = 1.1469975386838440201131561479997

yaw ratio = 33.195622855752418445263174362481
```

PID Tuning with Simulation

Y Velocity (Roll)

Default PID: Kp = 250, Ki = 500, Kd = 2.5

Tuned PID: Kp = 600, Ki = 500, Kd = 6

Testing PID Values through left-right flight

PID Tuning resulted in Performance Improvements

Before and after for roll (no mass)

Error: 8.5% Error: 6.4%

Improved payload capacity from dual drone system

Tested payload capacity with magnets (3g each)

Single Drone Payload	Dual Drone Payload*	
2 magnets + 2 paper clips = 7 g	3 magnets + 2 paper clips = 10 g	

*on top of 8 g truss

PID Tuning resulted in Performance Improvements

Before and after for roll (with mass ~8g):

Error: 7.4% Error: 5.8%

Final Flight Performance

Take off and land at payload pickup site

Final Flight Performance

After payload pickup, moving left and right

Final Flight Performance

Payload stability

Adaptive Controller based on mass of payload

 Linearly Interpolate between PWM & PID Values from dual drone with and without 8g payload

	Without Payload	With 8 g Payload	
PWM	49500	52000	
PID Values	Kp = 600 , Ki = 500, Kd = 6	Kp = 800 , Ki = 500, Kd = 8	

Adaptive Controller based on mass of payload

Fly to Pick Up Destination	Pick Up Load	Measure Hover PWM	Scale PID Values	Continue to Drop Off
Fly to location of paper clips	The magnet will attract a random number of paperclips as payload	After taking off with payload, measure the hover PWM	Scale PID values based on measured PWM	Continue flight

Full load pickup demonstration

Single Drone vs Dual Drone Review

 The dual-drone system has an increased payload capacity and a decreased trajectory error.

	Single	Dual	Change
Payload	7 g	10 g	~43% Increase
Left-Right Test Error %	7.8%	5.8%	~26% Decrease

Future Work

 Perform further testing to see the stability limits of the dual-drone system

 Investigate whether framework can be extended to even more drones

