TP2 SAD - Lothmann Feyrit			A B C D		D	Note	
I. Régulation de pression simple boucle (10 pts)							
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	В	П			0,75	Je veux voir la boucle de régulation.
3 Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	1	Α				1	
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	А				1	
5 Régler la boucle de régulation, en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PID.	4	Α				4	
6 Enregistrer la réponse de la mesure X à un échelon de consigne W.	2	Α				2	
II. Régulation à partage d'échelle (10 pts)							
1 Rappeler le fonctionnement d'une boucle de régulation à partage d'échelle.	1	Α				1	
Représenter graphiquement la relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.	1	Α				1	
3 Représenter graphiquement la relation entre Y2 la commande de la vanne V2 et la sortie Y du régulateur.	1	Α				1	
4 Programmer le régulateur pour obtenir le fonctionnement de la régulation conformément au schéma TI ci-dessus.	2	С	П			0,7	
5 Régler la boucle de régulation utilisant la méthode par approches successives.	2	D				0,1	
Enregistrer la reponse des commandes Y1 et Y2 a une variation de la consigne w permettant i ouverture des deux	2	D				0,1	
7 Expliquez l'intérêt d'une régulation à partage d'échelle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	1	D				0,05	
		Not	e: 1	2 7	/20		

Note: 13,7/20

I. Régulation de pression simple boucle

1)Donner le schéma électrique correspondant au cahier des charges.

2)Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

3)Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

TagName	PID1		LIN Name	PID1	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	MANUAL		Alarms		
FallBack	MANUAL				
			HAA	100.0	
→PV	50.0	%	LAA	0.0	
SP	0.0	%	HDA	100.0	
OP	50.0	%	LDA	100.0	
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00100000	
HR_OP	100.0	%	ModeAct	00100001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	

Le procédé est direct donc le régulateur est inverse

PID MIXTE TC= 20-12,5=7,5 s

XP=1,7*5=8,5% Ti=7,5/2=3,75s Td=7,5/8=0,93s

II. Régulation à partage d'échelle

1)Rappeler le fonctionnement d'une boucle de régulation à partage d'échelle.

Une boucle de régulation a partage d'échelle est lorsque l'on contrôle deux organes de réglages avec un seul régulateur .

2)Représenter graphiquement la relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.

4)

5)

6)Je sais pas 7)je sais pas