

Recommender Systems

- Recommender Systems RSs are software tools and techniques providing suggestions for items to be used by a user
- **Item** is general term used to denote what the system recommends
- The system can be personalized and non-personalized
- RSs are powerful tools to cope with the information overload problem
- The goal is to **predict** a rating a **user** \boldsymbol{v} will give to a **new item** \boldsymbol{i}
 - Can be seen as a prediction problem

Recommender Systems Applications

- News
- Places
- Movies
- Products
- Musics

Utility Matrix

Two classes of entities users and items

Filme	Alice	Bob	Carol	Dave
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Utility Matrix

- System can ask users to rate items: **explicit feedback**
- Inference from users` behavior: **implicit feedback**
 - o clicks, views, etc

Recommender Systems Techniquest

- **Content-based**. The system learns to recommend items that are similar to the ones that the user liked in the past
- **Collaborative Filtering.** Recommendation is generated to an active user based on items that other users with similar tastes liked in the past
- **Demographic.** This type of system recommends items based on the demographic profile of the user: language, country, age, etc.
- **Knowledge-based.** Recommendation based on inference about the users preferences about how certain item features meet users needs

Recommender Systems Techniques

- **Community-based.** Recommendations based on the social connections of the users: "Tell me who your friends are, and I will tell you who you are"
- **Hybrid Recommender.** Combines RSs trying to use advantage of a RS to overcome a limitation of another one
- We focus here on Content-based and Collaborative Filtering

Content-based recommendations

- This technique is based on **item profile**
 - Records representing important characteristics
 - Movies: actors, director, year of the movie, genre, etc.
- When features are not immediately apparent
 - E.g. **Documents**, images
 - o TF-IDF, bag of words
- Item profile can be represented as a feature vector

Movie	Drama	Action
Love at last	1	0
Swords vs. Karate	0	1

Content-based recommendations

Filme	Drama	Action	
Love at last	1	0	
Romance forever	1	0	Drama
Cute puppies of love	1	0	
Nonstop car chases	0	1	Action
Swords vs. karate	0	1	Action

Content-based recommendations

• User profile is created using the same features of item profile

Movie	Drama	Action
Love at	1	0
Swords	0	1

	Drama	Action
Alice	5	0
Dave	0	4

- Recommendations are generated using similarity functions between the feature vectors
 - Cosine similarity
 - Jaccard similarity
 - o etc

Collaborative Filtering RS

Collaborative Filtering RS

- Focus on similarity of the user ratings of two items
- Instead of **item profile**, we use the **row** of the utility matrix

Filme	Alice	Bob	Carol	Dave
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Collaborative Filtering RS

- Collaborative filtering RSs are grouped into:
 - Neighborhood method
 - user-item ratings are directly used to predict ratings for new items
 - Model-based method
 - uses ratings to learn a predictive model
 - Model user-item interactions with factors representing latent characteristics

Neighborhood methods

- User-based neighborhood
 - Predict the rating r^-_{ui} of a user \boldsymbol{u} to a new item \boldsymbol{i} using ratings given to \boldsymbol{i} by users most similar to \boldsymbol{u}
 - k-NN is used to find the most similar users $N_i(u)$
 - o w_uv similarity between user **u** and user **v**

$$\hat{r}_{ui} = \frac{\sum\limits_{v \in \mathcal{N}_i(u)} w_{uv} r_{vi}}{\sum\limits_{v \in \mathcal{N}_i(u)} |w_{uv}|}.$$

. .

Neighborhood methods

- Item-based neighborhood
 - Predict the rating r^-_u of a user \boldsymbol{u} to a new item \boldsymbol{i} using ratings given to similar items to \boldsymbol{i} given by \boldsymbol{u}
 - k-NN is used to find the most similar items rated by \boldsymbol{u} $N_i(\boldsymbol{u})$
 - \circ w ij similarity between item **i** and item **j** based on ratings

$$\hat{r}_{ui} = \frac{\sum\limits_{j \in \mathcal{N}_u(i)} w_{ij} r_{uj}}{\sum\limits_{j \in \mathcal{N}_u(i)} |w_{ij}|}.$$

Model methods

- Uses ratings to learn a predictive model
- Model user-item interactions with factors representing latent characteristics
- Singular Value Decomposition (SVD), **Latent models**, etc.
- Most successful latent factor models are based on matrix factorization
 - Characterizes both items and users by vectors of factors inferred from item rating patterns

Matrix Factorization Model

- 2 dimension
- female- versus male-oriented
- serious versus escapist
- Gus tends to love Dumb and Bumber and hate The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which characterizes both users and movies using two axes—male versus female and serious versus escapist.

Basic Matrix Factorization Model

- MF model map users and items to a joint latent factor space of f dimensions
- item i is associated with a vector q_i of f dimension
 - \circ elements in q_i measure the extent to which the item possesses those factors, positive or negative
- user u is associated with a vector p u of f dimension
 - o *p_u* measure the extent of interest the user has in items that are high on the corresponding factor, positive or negative

$$\hat{r}_{ni} = q_i^T p_n$$
. _____ user-item interaction

Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems," in *Computer*, vol. 42, no. 8, pp. 30-37, Aug. 2009

Basic Matrix Factorization Model

- The learning model
- Minimize the regularized squared error on the set of known ratings
- r_ui known rating (training set)

$$\min_{q \cdot p \cdot \sum_{(u,i) \in \mathbb{K}} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

Basic Matrix Factorization Model

- Techniques to minimize the previous equation
 - Stochastic gradient descent
 - Update parameters by a magnitude proportional to gamma
 - Easy implementation and fast running time
 - Alternating least squares (Spark MLlib)
 - Convert the equation into a quadratic optimization problem
 - Rotate between fixing q_i's and p_i's
 - Allow parallelization
 - q_i is independent of the other item factors
 - p_u is independent of the other user factors
 - Favor for system centered on implicit data

Alternating least squares - ALS

Basics

• **Input**: itemCol, userCol, ratingCol,

rank number of latent factors

regParam reguralization param

implicitPrefs explicit / implicit

alpha confidence for implicit feedback

nonnegative use or not non-negative constraint

Data Format: LibSVM

Output: predictionCol