Lehrveranstaltung

Informationstheorie

— Sommersemester 2023 —

Martin Mittelbach (Vorlesung, Tutorium), Anne Wolf (Übung, Tutorium) {martin.mittelbach, anne.wolf}@tu-dresden.de

Professur für Informationstheorie und maschinelles Lernen, TU Dresden

Vorlesung 6 03. Mai 2023

Wiederholung

Shannonsche Informationsmaße:

H(X)

$$\begin{split} H(X) &= -\mathbb{E}\Big(\log_2\Big(p_X(X)\Big)\Big) &\quad H(X,Y) = -\mathbb{E}\Big(\log_2\Big(p_{X,Y}(X,Y)\Big)\Big) \\ \\ H(Y|X) &= -\mathbb{E}\Big(\log_2\Big(p_{Y|X}(Y|X)\Big)\Big) \\ \\ D(X||Y) &= \mathbb{E}\Big(\log_2\Big(\frac{p_X(X)}{p_Y(Y)}\Big)\Big) \\ \\ I(X;Y) &= \mathbb{E}\Big(\log_2\Big(\frac{p_{X,Y}(X,Y)}{p_X(X)p_Y(Y)}\Big)\Big) &\quad I(X;Y|Z) = \mathbb{E}\Big(\log_2\Big(\frac{p_{X,Y|Z}(X,Y|Z)}{p_{X|Z}(X|Z)p_{Y|Z}(Y|Z)}\Big)\Big) \end{split}$$

• Grundlegende Zusammenhänge, Kettenregeln:

H(Y)

$$I(X,Y;Z) = I(X;Z) + I(Y;Z|X)$$

$$I(X,Y;Z) = I(X;Z) + I(Y;Z|X)$$

 $H(X) = H(p_X) = \log_2 |\mathcal{X}| - D(p_X||p_U)$ $I(X;Y) = D(p_{X,Y}||p_X \cdot p_Y)$

Wiederholung

• Nichtnegativität / Wichtige (Un-)Gleichungen:

Inhalt der letzten Vorlesungen

- 1. Verlustlose Datenkompression mit Codes variabler Länge
- (1.1) Einführendes Beispiel, Modellbildung, Problemstellung
- (1.2) Quellen als Datenmodell
- (1.3) Codes variabler Länge
- (1.4) Huffman-Codes
- 2. Informationsmaße für diskrete Zufallsgrößen
- (2.1) Definition der Shannonschen Informationsmaße
- (2.2) Symmetrien
- (2.3) Grundlegende Zusammenhänge, Kettenregeln
- (2.4) Nichtnegativität
- (2.5) Wichtige (Un-)Gleichungen
- (2.6) Beispiel / Online-Zufallsexperiment

Inhalt Vorlesung 6

- 2. Informationsmaße für diskrete Zufallsgrößen
- (2.7) *n*-dimensionale Verallgemeinerungen (Folien VL 5)
- (2.8) Asymptotische Größen (Folien VL 5)
- (2.9) Konvexitätseigenschaften (Folien VL 5)
- 3. Eigenschaften von eindeutig decodierbaren und präfixfreien Codes
- (3.1) Kraft-McMillan-Ungleichung
- (3.2) Entropieschranke für eindeutig decodierbare Codes
- (3.3) Eigenschaften von Huffman-Codes

Vorgehensweise / Themenübersicht

(1) Praktische Problemstellung

systematischer Entwurf effizienter Datenkompression systematischer Entwurf effizienter zuverlässiger Datenübertragung

(2) Abstraktion/Mathematische Modellbildung

stochastisches Datenmodell Quelle = Folge von Zufallsgrößen deterministisches Kompressionsmodell Quellen-Codier-Decodier-Schemata

operationelle Bewertungskenngrößen (minimale) mittlere Codewortlänge/Coderate, Distortionmaß, Rate-Distortion-Funktion stochastisches Übertragungsmodell Kanal = bedingte Wahrscheinlichkeitsverteilung deterministisches Kommunikationsmodell

operationelle Bewertungskenngrößen (maximale) Coderate, Decodierfehlerwahrscheinlichkeit. Codierkapazität

(3) Entwicklung mathematischer Werkzeuge für Modellanalyse

Informationsmaße

Entropie (bedingte, relative, differentielle, empirische \sim), Transinformation (bedingte, empirische \sim)

Eigenschaften, Rechenregeln

(Symmetrie, Nichtnegativität), Kettenregeln, Konvexität/Konkavität
Unabhängigkeit / (Gleichverteilung (Normalverteilung)) maximiert Entropie (differentielle ~)

Ungleichungen, grundlegende Theoreme

Kraft-McMillan-Ungleichung, fundamentale Ungleichung, Datenverarbeitungsungleichung, Fano-Ungleichung

Informationsmaßebasierte Kenngrößen

Redundanz, Entropierate, Informations-Rate-Distortion-Funktion, Informationskapazität

(4) Herleitung fundamentaler Resultate für abstrahiertes Modell mit math. Werkzeugen

Ouellencodierungstheoreme

Ausagen über theoretische Grenzen effizienter Datenkompression (bei definierter Güte) Sinngemäß: Verfustlose (asymptotisch ~) Datenkompression ist begenzt durch Entropie(-rate) (Entropie(-rate) ≤ min. mittl. Cwi (pro Sym.) / Coderate) Sinngemäß: Verfustbehaftete Datenkompression ist begrenzt durch Informations-Rate-Distortion-Funktion (Rate-Distortion-Funktion = Informations-~)

Kanalcodierungstheoreme

Aussagen über theoretische Grenzen effizienter Datenübertragung bei definierter Zuverlässigkeit Sinngemäß: Maximale Coderate bei zuverlässiger Datenübertragung ist begrenzt durch Informationskapazität (Codierkapazität = Informationskapazität)

(5) Anwendung der Resultate auf praktische Problemstellung

Entwurfskriterien für optimale Datenkompression/-übertragung, Systembewertung

3. Eigenschaften von eindeutig decodierbaren und präfixfreien

Codes

Vorbemerkungen/Festlegungen zu Abschnitt 3

- Abschnitt 3 ist die Fortsetzung von Abschnitt 1.
- Wir betrachten Modell/Codierung aus Teilabschnitt (1.3), d. h. wir betrachten die symbolweise Codierung der Werte einzelner Zufallsgrößen einer

stationäre Quelle
$$X = (X_1, X_2, X_3, X_4, \ldots)$$

$$\mathsf{mit}\,\mathsf{Alphabet}\,\mathcal{X} = \{1, 2, \dots, M\}$$

und der für alle Folgeglieder X_k identischen W-Funktion p

mittels

D-wertigem Code C variabler Länge.

Bewertung der Effizienz eines D-wertigen Codes $\mathcal{C} = \{c(i), i \in \mathcal{X}\}$ mit Codewortlängen $\ell(i)$, $i \in \mathcal{X}$, für W-Funktion p mit mittlerer Codewortlänge

$$\bar{\ell} = \bar{\ell}(\mathcal{C}, p) = \sum_{i=1}^{M} p(i) \, \ell(i).$$

 Optimale Codes: Präfixfreie/eindeutig decodierbare Codes mit minimaler mittlerer Codewortlänge

$$\bar{\ell}_{\mathrm{ud}}^* = \bar{\ell}_{\mathrm{ud}}^*(p) = \min \left\{ \bar{\ell}(\mathcal{C}, p) : \mathcal{C} \text{ eindeutig decodierbar} \right\}$$

$$\leq \quad \bar{\ell}_{\mathrm{pre}}^* = \bar{\ell}_{\mathrm{pre}}^*(p) = \min \left\{ \bar{\ell}(\mathcal{C},p) : \mathcal{C} \text{ pr\"afixfrei} \right\}$$

Vorbemerkungen/Festlegungen zu Abschnitt 3

- Zur Erinnerung das Einführungsbeispiel aus Abschnitt 1 (Vorlesungen 2/3):
 - Alphabet $\mathcal{X} = \{1, 2, 3, 4\}$ und W-Funktion p

Codierung mit Code

$$\mathcal{C}_3 = \{0, 10, 110, 111\}.$$

• Beispiel Codierung Datenstrom:

- Der Code C₃ ist:
 - eindeutig decodierbar,
 - präfixfrei.
 - sogar ein Huffman-Code, d. h. ein spezieller präfixfreier Code.

Zusammenfassung wesentlicher Resultate

- **Zusammenfassung** der wesentlichen Ergebnisse aus den folgenden Teilabschnitten (3.1) (3.3) für D-wertige optimale Codes für festes Alphabet \mathcal{X} , feste \mathbb{W} -Funktion p und symbolweise Codierung:
 - (Un-) Gleichungen:

$$H_D(p) \stackrel{\text{(3.2.1)}}{\leq} \bar{\ell}_{\mathrm{ud}}^*(p) \stackrel{\text{(3.1.2)}}{=} \bar{\ell}_{\mathrm{pre}}^*(p) \stackrel{\text{(3.3.1)}}{=} \bar{\ell}_{\mathrm{Huff}}(p) \stackrel{\text{(3.3.3)}}{<} H_D(p) + 1$$

(Fundamentale und Kraft-McMillan-Ungleichung sind die wichtigsten Herleitungswerkzeuge.)

Relationen:

(3.1) Kraft-McMillan-Ungleichung

- (3.1.1) Kraft-McMillan-Ungleichung:
 - (i): Jeder eindeutig decodierbare D-wertige Code $\mathcal{C}=\{c(1),c(2),\ldots,c(M)\}$ mit Codwortlängen $\ell(1),\ell(2),\ldots,\ell(M)$ erfüllt die Ungleichung

$$\sum_{i=1}^{M} D^{-\ell(i)} \le 1.$$

- (ii): Ist für die Codewortlängen $\ell(1), \ell(2), \dots, \ell(M)$ die Ungleichung aus (i) erfüllt, so existiert ein D-wertiger präfixfreier Code mit denselben Codewortlängen.
- Herleitung zu (3.1.1): Siehe z. B. S. 43 und S. 47 in R. W. Yeung: A First Course in Information Theory, Springer, 2002.
- (3.1.2) Folgerungen:
 - Zu jedem eindeutig decodierbaren D-wertigen Code existiert ein D-wertiger präfixfreier Code, mit denselben Codewortlängen.
 - Diese Aussage erhält man aus der Kombination von (3.1.1), (i), und (3.1.1), (ii).
 - Für die minimalen mittleren Codewortlängen $\bar{\ell}_{\mathrm{ud}}^*(p)$ und $\bar{\ell}_{\mathrm{pre}}^*(p)$ eindeutig decodierbarer bzw. präfixfreier D-wertiger Codes für die W-Funktion p gilt

$$\bar{\ell}_{\mathrm{ud}}^*(p) = \bar{\ell}_{\mathrm{pre}}^*(p).$$

Diese Aussage erhält man mit der vorhergehenden Folgerung.

(3.1) Kraft-McMillan-Ungleichung

Historisches:

- Die Kraft-McMillan-Ungleichung ist nach Leon Gordon Kraft und Brockway McMillan benannt.
- Kraft veröffentlichte diese 1949 in seiner Masterarbeit (MIT), beschränkte sich jedoch auf den präfixfreien Fall.
- Die Verallgemeinerung für eindeutig decodierbare Codes wurde 1956 von McMillan vorgenommen.

Kraft, Leon G. (1949): A device for quantizing, grouping, and coding amplitude modulated pulses, Cambridge, MA: MS Thesis, Electrical Engineering Department, Massachusetts Institute of Technology.

McMillan, Brockway (1956): Two inequalities implied by unique decipherability, IEEE Trans. Inf. Theory, 2(4):115-116.

(3.2) Entropieschranke für eindeutig decodierbare Codes

• **Vorbemerkung:** Wir haben die Entropie in (2.1.1) bezüglich des Logarithmus \log_2 zur Basis 2 definiert. Für die Analyse von D-wertigen Quellencodes betrachten wir die Entropie bezüglich des Logarithmus \log_D zur Basis D. Als Bezeichung verwenden wir $H_D(\cdot)$ anstatt $H(\cdot)$. Es gilt aufgrund der Eigenschaften des Logarithmus

$$H_D(\cdot) = \frac{H(\cdot)}{\log_2(D)}.$$

- (3.2.1) Entropieschranke für eindeutig decodierbare Codes:
 - (i) Die minimale mittlere Codewortlänge $\bar{\ell}^*_{\mathrm{ud}}(p)$ eindeutig decodierbarer D-wertiger Codes für die \mathbb{W} -Funktion p erfüllt die Ungleichung

$$H_D(p) \le \bar{\ell}_{\mathrm{ud}}^*(p).$$

• (ii) Für die mittlere Codewortlänge $\bar{\ell}(\mathcal{C},p)$ eines eindeutig decodierbaren D-wertiger Codes $\mathcal{C}=\{c(1),c(2),\ldots,c(M)\}$ gilt

$$\bar{\ell}(\mathcal{C}, p) = H_D(p)$$

genau dann, wenn für alle $i=1,2,\ldots,M$ die Codewortlängen $\ell(i)$ die Gleichung

$$\ell(i) = -\log_D p(i)$$

erfüllen.

(3.2) Entropieschranke für eindeutig decodierbare Codes

• (3.2.2) Folgerung:

• Gilt für die mittlere Codewortlänge $\bar{\ell}(\mathcal{C},p)$ eines eindeutig decodierbaren D-wertiger Codes $\mathcal{C}=\{c(1),c(2),\ldots,c(M)\}$ die Gleichung

$$\bar{\ell}(\mathcal{C}, p) = H_D(p),$$

dann ist C ein optimaler eindeutig decodierbarer Code.

Diese Aussage erhält man direkt mit (i) in (3.2.1).

Bemerkungen:

- Ob ein für die \mathbb{W} -Funktion p optimaler, D-wertiger, eindeutig decodierbarer Code \mathcal{C} (d. h. $\bar{\ell}(\mathcal{C},p)=\bar{\ell}^*_{\mathrm{ud}}(p)$) die Gleichung $\bar{\ell}(\mathcal{C},p)=H_D(p)$ erfüllen kann, hängt von der konkreten \mathbb{W} -Funktion p ab.
- Für den optimalen binären Code \mathcal{C}_3 ist die Gleichung $\bar{\ell}(\mathcal{C}_3,p)=H(p)$ erfüllt.

(3.2) Entropieschranke für eindeutig decodierbare Codes

• Herleitung zu (3.2.1):

• (3.3.1) Optimalität von Huffman-Codes:

Die mittlere Codewortlänge $\bar{\ell}_{\mathrm{Huff}}(p)$ eines D-wertigen Huffman-Codes für die W-Funktion p erfüllt die Gleichung

$$\bar{\ell}_{\mathrm{Huff}}(p) = \bar{\ell}_{\mathrm{pre}}^*(p),$$

d.h. Huffman-Codes sind optimale präfixfreie Codes.

- Vorgehensweise zur Herleitung:
 - Wir beschränken uns bei der Herleitung der Optimalität von Huffman-Codes der Übersichtlichkeit halber auf den 2-wertigen (d. h. binären) Fall. Der Nachweis für den D-wertigen Fall ist analog.
 - Wir verwenden für die Herleitung von (3.3.1) folgende einfache Eigenschaften optimaler (binärer) Codes, die bei Huffman-Codes aufgrund der Konstruktion stets erfüllt sind.
- (3.3.2) Eigenschaften optimaler Codes:
 - (i) Bei einem optimalen (eindeutig decodierbaren oder präfixfreien) D-wertigen Code werden kürzere Codewörter größeren Wen zugeordnet.
 - (ii) Es existiert ein optimaler präfixfreier 2-wertiger Code, bei dem die Codewörter, die den beiden kleinsten Wen zugeordnet sind, gleich lang sind und sich nur im letzten Symbol (Bit) unterscheiden.

 Herleitung zu (3.3.1) (Optimalität von Huffman-Codes): (binärer Fall, D-wertiger Fall analog)

Herleitungen zu (3.3.2) (Eigenschaften optimaler Codes):

• (3.3.3) Obere Entropieschranke für Huffman-Codes:

Die mittlere Codewortlänge $\bar{\ell}_{\mathrm{Huff}}(p)$ eines D-wertigen Huffman-Codes für die W-Funktion p erfüllt die Ungleichung

$$\bar{\ell}_{\mathrm{Huff}}(p) < H_D(p) + 1.$$

Diese obere Schranke ist die beste, die nur von der Entropie abhängt.

• Herleitung zu (3.3.3):