

ČASOPIS PRO PRAKTICKOU ELEKTRONIKU ROČNÍK XLIII/94. ČÍSLO 2 V TOMTO SEŠITĚ

Náš interview	1
Četli jsme	2, 4
AR seznamuje: Záznamník telefonátů	
PANASONIC KX-T1455	3
Pozvánka na výstavu telekomunikací	4
Jak na to?	5
AR mládeži: Moduly pro nepájivé kontaktní pole,	
Náš kvíz	6
Informace, informace	8
Digitální síťový wattmetr	9
Regulovatelný zdroj pro páječku SMT	14
Kódovaný „infraovládač“ se zákaznickým IO MUFE005	16
Nabíjení NiCd a olověných akumulátorů	18
Inzerce	1 až XXXVI, 43, 44
Katalog MOSFET (pokračování)	23
Katalogy ECA	25
Oprávní zesilovače TS271	26
Modré svítivé diody s větším jasem	27
Zajímavé tremolo pro kytaru	27
Computer hobby	28
Pozemní radarová a radionavigační zařízení	
nacist. Německa v Normandii	37
Dipóly s trapy pro rámcovo WARC	38
Z radioamatérského světa	39
OK1CRA	42

AMATÉRSKÉ RÁDIO – ŘADA A

Vydavatel: Vydavatelství MAGNET-PRESS, s.p., Vladislavova 26, 113 66 Praha 1, telefon 24 22 73 84-9, fax 24 22 31 73, 24 21 73 15.
Redakce: Jungmannova 24, 113 66 Praha 1, tel. 24 22 73 84-9. Šéfredaktor Luboš Kalousek, OK1FAC, I. 354, redaktori: ing. Josef Kellner (zást. šéfred.), Petr Havliš, OK1PFM, I. 348, ing. Jan Klabal, ing. Jaroslav Belza I. 353, sekretáři Tamara Trmková I. 355.

Tiskne: Naše vojsko, tiskárna, Vlastina 889/23, 160 05 Praha 6.

Ročné vychází 12 čísel. Cena výtisku 14,80 Kč. Pololetní předplatné 88,80 Kč, celoroční předplatné 177,60 Kč.

Rozšířuje MAGNET-PRESS a PNS, informace o předplatném podá a objednávky přijímá PNS, pošta, doručovatele a předplatitelské středisko administrace MAGNET-PRESS. Velkodoběrátké a prodejci si mohou objednat AR za vyhodnocných podmínek v oddělení velkoobchodu MAGNET-PRESS, tel./fax (02) 26 12 26.

Podávané novinových zásilek povoleno jak Ředitelství pošt, přepravy Praha (č.j. 349/93 ze dne 1. 2. 1993), tak RPP Bratislava – pošta Bratislava 12 (č.j. 82/93 dřá 23. 8. 1993). Objednávky do zahraničí přijímá vydavatelství MAGNET-PRESS, OZO.312, Vladislavova 26, 113 66 Praha 1 formou bankovního šeku, zaslánoho na výše uvedenou adresu. Celoroční předplatné časopisu pozemní cestou 60 DM nebo 38 US \$, letecky 91 DM nebo 55 US \$.

Ve Slovenské republice předplatné zajišťuje a objednávky přijímá přímo nebo prostřednictvím dalších distributorů MAGNET-PRESS Slovakia s.r.o. PO. Box 814 89 Bratislava, tel. (07) 39 41 67, cena předplatného za jeden výtisk v SR je 17,50 SK.

Inzerci přijímá inzertní oddělení MAGNET-PRESS, Jungmannova 24, 113 66 Praha 1, tel. (02) 24 22 73 84, 24 22 77 23, tel./fax (02) 24 22 31 73. Znění a úprava odborné inzerce lze dohodnut s kterýmkoli redaktorem AR.

Za původnost a správnost příspěvků odpovídá autor. Nevyžádané rukopisy nevracíme.

ISSN 0322-9572, číslo indexu 46 043.

© MAGNET-PRESS s.p. Praha

NÁŠ INTERVIEW

s Ing. Janem Cuřinem, ředitelem firmy FC Service, s. s r. o., kterou jsme navštívili na prosincové výstavě PC salon.

Jak vznikla vaše firma, která má na naše poměry již dosti dlouhý rodokmen?

První myšlenka na to, jak se postavit na vlastní nohy, je z roku 1985. Do tohoto roku se také datuje vznik názvu firmy FC Service. Písmena FC neznamenají fotbalový klub, ale jsou to počáteční písmena jmen zakladatelů firmy Fík – Cuřín. Slovo Service bylo samozřejmostí, protože oba jsme v té době opravovali sálové počítače. Od myšlenky nebylo daleko k činu a u zemědělského družstva, pod jejichž křídla jsme se uchýlili, když jsme odešli z výzkumu, jsme začali budovat „nás“ podnik. Ten dnešní FC service je z února 1990, nejdříve jako konsorcium a zanedlouho jako spol. s r.o..

Naši náplní byla v počátku servisní činnost. Tedy opravy porouchaných počítačů. Léta zkušenosti s opravami sálových počítačů a českých minipočítačů SAPI 80 byly neocenitelným základem pro tuto práci. Poskytovali jsme našim zákazníkům konzultace při nákupu nové výpočetní techniky a doporučovali vhodné konfigurace. Námi doporučenou konfiguraci si šel však zákazník koupit jinam. To se ale změnilo s příchodem třetího společníka firmy Ing. Golla. K servisu jsme přibrali obchod a začali jsme našim zákazníkům počítače prodávat sami. Zkušenosti se servisem a poruchovostí jednotlivých komponentů se promítly i do konstrukce našich počítačů. Od samého začátku jsme hledali spolehlivé komponenty a dodavatele. Ty jsme našli a proto jsme jako jedni z prvních mohli začít poskytovat na počítače záruku 24 měsíců.

A co hlavní stan firmy? Vím, že jste se několikrát stěhovali.

To je bohužel pravda, s firmou jsme se stěhovali mnohokrát. Prostory pro podnikání jsou u nás neustálou bolestí. My jsme začali v jedné kanceláři na Zbraslavě, odkud jsme se stěhovali do starého sklepního bytu v Dejvicích, ale již do dvou místností. Z Dejvic jsme přesídlili do Radotína, tam jsme díky pochopení vedení domovní správy a starosty obce dostali do pronájmu bývalé kadeřnictví se třemi místnostmi. Zde je také sídlo firmy. Na začátku roku 1992 se obchodní část firmy přestěhovala do centra nedaleko nám. Míru, aby se o necelý rok později stěhovala zpět do Radotína, kde jsme si pronajali další kanceláře. Doufám, že to bylo již poslední stěhování.

Samozřejmě, že se přitom firma i rozvíjela. Vzhledem k úzké spoluprá-

Ing. Jan Cuřín

ci se zastoupením firmy SANYO jsme začali nabízet a dodávat monitorovací techniku této značky na náš trh. Dnes jsme jediní, kdo prodává CCTV techniku SANYO u nás. Jedná se především o kamery a monitory pro průmyslovou televizi a pro ochranu objektů. K tomu je samozřejmě celá řada dalších produktů jako kvadrátory, videopřepínače, pomaluběžné videomagnetofony TimeLapse atd. Od loňského roku provádíme i montáž CCTV techniky do objektů (jako dodávku „na klíč“). Klientovi nabídneme a doporučíme řešení, vyhotovíme projekt, zařízení nainstalujeme, zaškolíme obsluhu a dodáme revizní zprávu. I na tuto techniku poskytujeme záruku 24 měsíců. Ze také provádíme servis snad není třeba dodávat. V současné době v této oblasti spolupracujeme i s dalšími firmami, převážně z USA a Japonska.

Není náplň vaší činnosti již příliš obsáhlá?

Máte pravdu, že náplň je širší, a to jsem neuvedl všechno. Jenomže jedno je společné – elektronika. A potom také maximální možná kvalita za odpovídající cenu. V současné době již ráda nejen našich klientů velmi dobře ví, že nakupovat levně neznamená nakoupit dobré. My se nesnažíme být za každou cenu co nejlevnější jak je teď v oblasti prodeje PC „moderní“. Snažíme se prodávat kvalitní a většinou značkové zboží. Tím, že prodáváme koncovým uživatelům, přicházejí pracovníci našeho obchodního oddělení do styku s lidmi, kteří nejsou ve většině případů odborníci. Klientovi je vždy nabídnuto několik variant řešení jeho problému, je upozorněn na výhody a nevýhody jednotlivých způsobů řešení a na cenové relace. Protože v obchodním oddělení zaměstnáváme techniky a ne ekonomy a právníky, je klientovi doporučeno optimální technické řešení. Pak už záleží jen na něm, pro co se rozhodne.

Do tohoto principu zapadá i další aktivita naší firmy, a to je prodej profesionálního nářadí pro elektroniku. Protože jsem sám pracoval léta jako servisní technik, vím jak bylo obtížné a téměř nemožné sehnat na našem trhu slušné kleště nebo šroubováky. Tuto mezitu se pokoušíme zaplnit a od poloviny loňského roku dodává-

me nářadí známé firmy BERNSTEIN (jako autorizovaný distributor na našem trhu). Ze to bylo dobré rozhodnutí potvrzuje velký ohlas. Mezi naše klienty patří i prezidentská kancelář, ministerstvo vnitra, policejní prezidium, ČNB a další. Posledním stupněm vývoje je prodej a dodávky zařízení pro tepelnou vazbu firmy SWEDEX master-bind, jehož jsme výhradním distributorem pro ČR.

Vratme se k výp. technice, co nového připravujete?

V současné době se orientujeme na dodávky výkonných počítačů pro grafická pracoviště CAD a DTP a pro multimedia. Dodáváme počítače na bázi sběrnic VESA Local Bus, které jsou schopné zajistit dostatečnou rychlosť zpracování úlohy. I tady jsme od počátku kladli důraz na kvalitu komponentů. Na loňském veletrhu C-bit v Hannoveru jsme ukončili jednání s firmou, která vyrábí velice kvalitní motherboardy a přídavné desky se sběrnicí VL Bus, vše podle návrhu americké firmy QUICK Technology. Všechny desky s touto sběrnicí jsou tedy od jednoho výrobce, který nám zároveň poskytuje plný technický servis a úplné technické podklady. Nemáme tedy problémy se slučitelností karet od různých výrobců!!! Zároveň máme jistotu, že nové a výkonnější modely budou pracovat společně s těmi staršími. Za zmínu určitě stojí, že od ledna letošního roku si klient ze sortimentu VL Bus může vybrat z osmi typů motherboardů, čtyř typů VGA karet a pěti typů kontrolérů. Nabízíme i síťovou kartu VL Bus.

Současně připravujeme ovládání a řízení systémů průmyslové televize pomocí počítače. Tady se stýkají dvě důležité aktivity naší firmy a výsledkem by měl být systém vizuální kontroly řízený počítačem, včetně možnosti nahrání snímaného obrazu a zvuku na pevný disk počítače a ovládání všech komponentů systému (otočné hlavy, kvadrátory apod.) přes klávesnici počítače.

Zmínil jste se o profesionálním nářadí Bernstein.

Jak jsem již řekl, jedná se o jednu z posledních aktivit naší firmy. Na našem trhu neustále chybělo spolehlivé a kvalitní nářadí pro práci s elektronickými součástkami a pro servisní činnost. Některé firmy sice začali prodávat různé nářadí pro elektroniku od výrobců z dálšího východu, ale toto nářadí zdáleka nesplňuje požadavky na kvalitu ("nočníková" ocel), které si klademe i u ostatního sortimentu. Po té měř ročním hledání po světových trzích jsme dospěli k dohodě s německou firmou BERNSTEIN, která vyrábí velmi kvalitní nářadí se zaměřením právě na elektroniku a v sortimentu, který jsme jinde nenašli. Katalog této firmy obsahuje téměř 1400 položek nářadí (od šroubováků, kleští, štipáček, ladicích klíčů, pinzet pro SMD, speciálních nástrojů až po celé servisní kufry a sady nástrojů). Od léta loňského roku můžeme uspokojit i ty nejnáročnější požadavky servisních techniků na kvalitu nářadí. Štípačkami na součástky BERNSTEIN

bez problémů přeštipnete papír nebo vlas. A vybrat si je můžete skoro ze dvou set typů a provedení. Servisní kufry pro práci v terénu jsou vyráběny jako prachuvzdorné, voduvzdorné, odolávají kyselinám a nárazům. Některé jsou s antistatickou úpravou vnitřku. Do tohoto sortimentu také patří i páječky od různých firem.

Můžete nám říci něco bližšího o páječkách, to býval vždy uzký sortiment?

Náš klient si může vybrat z celého sortimentu páječek firmy ERSA. Od malých ručních bez regulace teploty, přes páječky s regulací, páječky na baterii (tedy dobijecí), plynové páječky až po laboratorní stanice s odsáváním nebo horkovzdušném. Sortiment zahrnuje samozřejmě i páječky pro SMD. Na tento rok připravujeme dodávky páječek u nás méně známé firmy ESDYN. I zde se jedná o široké spektrum zařízení zahrnující například přípravky pro měření teploty pájeného místa, nebo podávací antistatické podtlakové přípravky pro součástky SMD (tzw. vakuové pinzety).

Rovněž páječky japonské firmy HAKKO bychom rádi představili našim zákazníkům. Zde jsou takové zajímavosti jako páječky s programovou magnetickou kartou, zařízení pro odpájení součástek sadou výměnných nástavců, nebo automatická stanice pro pájení a odpájení součástek na počítačových deskách. Bez zajímavosti nejsou ani zařízení pro rovnání nebo naopak ohýbání vývodů IO před osazením do desky s plošnými spoji.

Zmínil jste se o zařízení pro tepelnou vazbu firmy SWEDEX. To asi nemá příliš společného s elektronikou?

Přímo ne, ale jistě znáte "pořádek" na stole techniků - poházené rozpadlé manuály a katalogové listy. Nebo si zkuste vyrobit pékně svázanou dokumentaci pro počítače, či program. To vše elegantně zvládne zařízení pro tepelnou vazbu firmy SWEDEX, kterou na našem trhu zastupujeme. Je to jednoduchý a pohodlný způsob jak v kancelářských podmínkách vyrobit z volně ložených listů úhledně svázanou brožuru a to během jedné minuty. Kapacita svázání je až do 550 listů běžného 80 g papíru formátu A4, nebo je možné vázat i počítačové sestavy do šíře 370 mm. Vazba se provádí do speciálních desek, které si klient může vybrat ze širokého spektra barev a provedení. Není vyloučen ani potisk desek podle přání klienta. Záruka je i na tato zařízení 24 měsíců.

Kam se může zákazník na vás obrátit?

Každý se může s námi spojit buď na adresu našeho obchodního oddělení U starého stadionu 3, Praha – Radotín, tel: 02/556 421, 594 502, 594 585, fax: 02/594 585, nebo v naší klatovské pobočce Vídeňská 32, Klatovy, tel/fax: 0186/24194.

Děkuji za rozhovor.

Ing. Josef Kellner

ČETLI JSME

Žalud, V.: RADIOELEKTRONIKA. Vydalo nakladatelství ČVUT, 1993, rozsah 433 stran A5, 163 obrázků, cena 88 Kč.

Publikace shrnuje v úvodní části teoretické základy radioelektroniky a v dalších částech pak postupně probírá radioelektronické součástky, zabývá se analýzou a syntézou zesilovaců, směšovačů, modulátorů a dalších obvodů. Pozornost je věnována i radiové komunikaci a některým dalším aplikacím elektroniky. Z obsahu knihy: Teoretické základy radioelektroniky, analogová a diskrétní modulace, radioelektronické součástky, pasivní a aktivní radioelektronické obvody, radioelektronické subsystémy, radiokomunikační systémy, radioelektronická účelová zařízení, elektromagnetická kompatibilita, počítačem podporovaný návrh radioelektronických zařízení.

Popolanský, F.: Jmenovitá napětí, vydalo nakladatelství STRO-M v knižnici Elektro, 1993, rozsah 56 stran A5, cena 51 Kč.

Příručka komentuje revidovanou ČSN 33 0120 Jmenovitá napětí, která je překladem IEC 38 Normalizovaná napětí. Pracovníky v oboru elektro jistě zaujme skutečnost, že stávající hodnota jmenovitého napětí 380/220 V je podle této normy nahrazena jmenovitým napětím 400/230 V. Příručka rovněž pojednává o vývoji a současném stavu jmenovitých napětí v mezinárodní normalizaci i v ČR a SR. Důležitá je část pojednávající o úkolech vyplývajících z nových hodnot jmenovitých napětí v ČR a SR. V příloze se čtenáři mají možnost seznámit se současnými hodnotami jmenovitých napětí v nejrůznějších státech celého světa.

Dosud vyšlé svazky v knižnici Elektro:
Pomůcka pro oceňování elektromontážních prací (104 Kč);
Provádění revizí elektrických zařízení (74 Kč);
Pomůcka pro oceňování elektrických rozváděčů nn (84 Kč);
Plastový elektroinstalační kanál EVAK (26 Kč);
Bezpečnost elektrických obvodů různých druhů (63 Kč).

Všechny tituly si můžete zakoupit nebo objednat na dobríku v prodejně technické literatury BEN, Věšínova 5, 100 00 Praha 10 - Strašnice, tel. (02) 781 84 12, fax 782 27 75, která je asi 200 metrů od stanice metra Strašnická (trasa metra A).

Zájemci ze Slovenska mohou psát na adresu : BEN - technická literatura, ul. Hradca Králova 4, 974 01 Banská Bystrica, tel. (088) 350 12.

AMATÉRSKÉ RADIO SEZNA MUJE

Telefonní záznamník PANASONIC KX-T1455

Celkový popis

Záznamník telefonátu Panasonic KX-T1455 je velice univerzální přístroj, který, kromě funkce, uvedené v titulu, umí ještě řadu dalších věcí. Přístroj se připojuje velmi jednoduše „do série“ s telefonním přístrojem a jedinou podmínkou jeho funkce je zajistit mu napájení síťovým napájecem, který je dodáván jako příslušenství. Na našem trhu již existuje více podobných přístrojů, tento jsem však vybral proto, že má, podle mého názoru, řadu předností, mezi něž radím i to, že sdělení volajícímu je nahráno na pásek v kazetě a není použit digitální záznam, který je mnohdy velice nesrozumitelný a kromě toho ještě navíc časově značně omezený.

Popisovaný záznamník umožňuje sdělit volajícímu libovolně dlouhý vzkaz, aniž by zaznamenal případné vzkazy volajícího. Může též zaznamenat vzkaz volajícího buď v délce omezené na jeden minutu nebo v libovolné délce (dokud volající hovoří). K tomu účelu je vybaven dvěma kazetami s páskem. Na jedné je zaznamenáno sdělení volaného, na druhou se nahrávají vzkazy volajících.

Pokud je záznamník ve funkci, lze kdykoli do hovoru vstoupit zvednutím sluchátka. Záznam se v tom případě automaticky ukončí. Aby nebylo nutno záznamník odpojovat v případě, že je volaný přítomen, lze na něm nastavit automatické spouštění buď po dvou nebo po čtyřech vyzváněcích tónech. Pokud je volaný doma, v této době telefon zvedne a tím je činnost záznamníku pro tento hovor zrušena.

Pokud probíhá telefonické spojení, lze kdykoli tento hovor stisknutím jediného tlačítka současně nahrávat. V takovém případě by patrně bylo vhodné na to druhého účastníka hovoru upozornit, i když záznamník každých 15 sekund vyše do hovoru akustický signál jako upozornění, že je hovor nahráván. Toto upozornění však nemusí druhý účastník správně pochopit.

Počet zaznamenaných vzkazů je indikován na dvoumístném displeji. Tyto vzkazy (i případně zaznamenané hovory) si můžete kdykoli poslechnout po návratu a buď je ponechat, nebo je vymazat zrychlenou funkcí (při převinutí). Existuje však ještě další možnost jak tyto vzkazy odposlechnout, případně jak udělit přístroji jiné informace. Pokud si k záznamníku pořídíte tzv. Tone Dialer (mohli bychom tento doplněk nazvat dálkovým ovladačem), můžete nahrané vzkazy odposlechnout z kteréhokoli telefonu tak, že zavoláte telefonní číslo, na

které je váš záznamník připojen a vyšlete tímto ovladačem dvojitý akustický signál. Záznamník vám bude reproducovat všechny vzkazy, které přijal. Tímto způsobem můžete však realizovat řadu dalších funkcí záznamníku, například namluvit nový úvodní text, pokud by to bylo z jakéhokoli důvodu potřebné, případně došlé vzkazy smazat atd. Vyslaný signál je individuální, takže se tyto informace nemohou dostat do nepovolaných rukou (či uši).

Tím však nejsou všechny funkce záznamníku zcela vyčerpány. Přístroj umožňuje též zanechat při odchodu z prostoru, kde je záznamník umístěn, libovolný vzkaz dalším osobám. Pokud je, kromě zaznamenaných telefonických vzkazů, nahrán ještě tento osobní vzkaz, je na to na displeji přístroje upozorněno. Přístroj lze též využít k hlasitému příposlechu probíhajícího telefonického hovoru.

Funkce přístroje

Všechny základní funkce záznamníku jsem popsal již v předešlých odstavcích. Mohu jen potvrdit, že pokud si majitel pečlivě pročte návod k použití, bude ovládání všech funkcí záznamníku jasné a přehledné.

Za velkou přednost tohoto přístroje považuji použití dvou standardních kazet, neboť to zajišťuje kvalitní záznam úvodního textu (jak jsem se již zmínil) a dále to umožňuje kazetu se vzkazy kdykoli z přístroje vyjmout a vzkazy reprodukovat na jakémkoli jiném magnetofonu. Možnost hlasitého příposlechu probíhajícího hovoru, stejně tak jako možnost tento hovor zaznamenat, považuji též za mimořádně výhodné, hlavně proto, že tyto úkony lze jednoduše uskutečnit stisknutím jediného tlačítka. Na

rozdíl od některých jiných přístrojů, s nimiž jsem se setkal, považuji ovládání tohoto přístroje za velmi zdařilé a (po seznámení se s jeho principy) i velmi snadné.

Výhodný je i zmíněný dálkový ovladač, který má rozměry 9 x 5,5 x 1,5 cm a váží něco málo přes 50 g. Lze ho proto nosit sebou bez nejmenších problémů a zajistit si tím možnost průběžných informací o tom, co je doma (či v kanceláři) nového, případně udělovat záznamníku další povely. Ovladač je napájen dvěma knoflíkovými článci typu SR 43 (nebo G 12). Zde však musím upozornit na to, že u dálkového ovladače není nikde naznačena polarita napájecích článků, což může netechnikovi způsobit značné problémy při jejich vkládání nebo nahradě. Dále je vhodné připomenout, že funkci dálkového ovladače může nahradit použití telefonu, který má možnost tónové volby. To znamená, že zavoláte telefonní číslo vašeho záznamníku, přepnete telefon, kterým voláte, na tónovou volbu a pak zvolíte číslo kódu vašeho záznamníku. Bohužel však u nás nejsou telefonní přístroje s možností v tónové volbě příliš rozšířené. Proto je v každém případě výhodnější mít při sobě pro tyto případy dálkový ovladač.

Závěr

Záznamník telefonátu Panasonic KX-T1455 považuji za velice dobře vyřešený přístroj, který pro ty, kteří takové zařízení z jakéhokoli důvodu potřebují, neznamená obvykle nedostupný finanční výdaj.

Záznamník, který nám k testu poskytla firma MAREX v Praze 2, Francouzská 32, je u této firmy k dostání za 3700 Kč. V této ceně je zahrnut i síťový napáječ

Pozvánka na výstavu telekomunikací

TELECOM – to není jen název státního podniku, který v současné době nabízí prakticky monopolně na území naší republiky telekomunikační služby, ale také logo (doplňené zkratkou letopočtu) superveletrhu telekomunikační techniky a všeho, co s touto technikou souvisí. I když tradici má především hlavní světová výstava pořádaná každý čtvrtý rok v Ženevě (naposled v roce 1991 a referát o ní najdete např. v AR 3/1992), v mezdobí se pořádají tyto výstavy zaměřené na telekomunikace na jednotlivých kontinentech. Hlavním pořadatelem je vždy ITU a hostitelskou zemí letošní výstavy je Egypt. Není to první, ale již třetí výstava na tomto kontinentě – první se konala v roce 1986, další v roce 1990 v Harare (Zimbabwe).

Africa TELECOM

94

Přesto, že je pro většinu výrobců Zimbabwe země vzdálená, poslední výstavy se zúčastnilo více jak 124 organizací z 22 zemí. Návštěvníků bylo „jen“ 11 000, ovšem mezi nimi 29 ministrů a 145 ředitelů velkých telekomunikačních společností z 94 zemí světa. Oproti návštěvnosti ženevské světové výstavy je to sice zanedbatelný počet, ovšem pořadatelé africké výstavy, také díky atraktivnosti města a pochopitelně stále se rozšiřujícímu zájmu o prostředky telekomunikačních služeb, počítají letos s návštěvností daleko větší. Afrika a Střední východ je ohromný region, který ke svému rozvoji bude telekomunikační techniku nezbytně potřebovat. Některé oblasti jsou již dnes na vysoké úrovni – např. Spojené Arabské Emiráty evidují 3 telefonní připojky na každých 10 obyvatel! Na druhé straně státy střední a západní Afriky vykazují jen 3 telefonní připojky na 1000 obyvatel.

Pohled na vstupní halu výstavního centra

a obě kazety s páskem. Dálkový ovladač (Tone Dialer KXT-41) lze zakoupit zvlášť za 285 Kč.

Vzhledem k tomu, že cena dálkového ovladače je velice nízká, domnívám se, že je vhodné dokoupit ho automaticky se záznamníkem, protože uživateli poskytne mnoho doplňkových a velmi užitečných funkcí navíc.

Závěrem tedy mohu jen konstatovat, že popisovaný záznamník vzhledem

Tyto extrémy se budou postupně vyrovnávat, pochopitelně rozšiřováním současných možnosti. Egypt samotný předpokládal ve svém plánu telefonizaci investovat v letech 1992–97 postupně přes 1,5 miliardy US \$. Vzhledem k ohromným kontrastům na tomto kontinentu se do konce tisíciletí předpokládá realizace velkých programů, na kterých mají zájem participovat všechny významné koncerny telekomunikační techniky, neboť vzhledem k tomu, že neexistuje rozvinutý telekomunikační průmysl, většina zařízení bude importována. K překonávání na jedné straně zahuštěné infrastruktury ve velkoměstech a na druhé straně rozlohy velkých neobydlených území bylo nezbytné využít a postupně připravovat realizaci projektu RASCOM (regionální africký systém satelitní komunikace).

Letošní výstava se koná ve dnech 25.–29. dubna 1994 v novém káhirském mezinárodním konferenčním centru (Cairo International Conference Centre – CICC), které je vzdáleno jen 10 minut jízdy od mezinárodního letiště. Výstavní klimatizované haly (mimo konferenční sály) vybudované v ultramoderném stylu mají rozlohu 8000 m². Již koncem října loňského roku byla uzávěrka přihlášek vystavovatelů. Současně s výstavou budou probíhat přednášky zaměřené na usměrnování rozvoje telekomunikací v tomto regionu, financování rozvoje infrastruktury, privatizaci, vzájemnou spolupráci jednotlivých zemí v otázkách normalizace, na koordinaci strategie tarifikací ap. Pro toho, kdo se na výstavu do Egypta nedostane, máme útěchu – začátkem října 1995 se opět koná světová výstava v Ženevě TELECOM 95, kam je to přeci jen blíže.

QX

ČETL JSME

Kadlčák, J.; Prostecký, M.: Požadavky ke zkouškám operátorů amatérských rádiových stanic. Vydal Český radioklub ve vydavatelství Magnet-Press, Praha 1993, 144 s. A5, doporučená cena 60 Kč.

Chcete získat koncesi na amatérskou vysílaci stanici? Nevíte, jak na to? Co všechno se k tomu musí člověk naučit?

Odpověď na tyto a všechny související otázky právě vyslá a u nás už dlouho chybějící kniha „Požadavky ke zkouškám operátorů amatérských rádiových stanic“. Kniha je sice určena především těm, kdo mají zájem teprve se stát radioamatéry (tedy začátečníkům), ale ucelenosť a aktuálnost v ní obsažených informací uvítá i každý dlouholetý a zkušený ham (zcela aktuální seznam zemí DXCC, kompletní souhrn všech vyhlášek a předpisů, týkajících se amatérského vysílání, bandplány od KV až po UKV, převody operátorských tříd v rámci CEPT atd.).

Radioamatérským předpisům a provozu radioamatérských stanic je věnována necelá polovina knihy a je v ní obsaženo vše od pasáží, týkajících se radioamatérské služby, v mezinárodním Radiokomunikačním rádu přes v CR platné vyhlášky pro radioamatéry (390/92 Sb., 74/93 Sb.) až po jednotlivé konkrétní otázky, které bude uchazečům o koncesi zkušební komise Českého telekomunikačního úřadu klást. Dále v této části knihy najdete kompletní radioamatérský Q-kódex, přehled používaných zkratek, vzory radioamatérských spojení v českém i ve světových jazycích aj.

V druhé polovině knihy jsou vysvětleny základy elektrotechniky a rádiového přenosu včetně šíření rádiových vln a souvisejících bezpečnostních předpisů (zdroje, elektronky, polovodiče, základní elektronické obvody, modulace, klíčování, přijímače, vysílače, antény, měření atd.) v minimálním rozsahu, nutném k úspěšnému zvládnutí zkoušky.

Úhrnem dostává čtenář do rukou publikaci, v níž najde přehledně uspořádané všechny otázky, které mu mohou být položeny u radioamatérských zkoušek, a také všechny odpovědi na ně. Zájemci si mohou tuto knihu objednat nebo osobně zakoupit u těchto prodejců:

1) AMA

Klatovská 115

320 17 Plzeň, tel./fax: (019) 27 10 18

2) BEN – technická literatura

Věšínova 5

100 00 Praha 10, tel. (02) 781 84 12, fax: (02) 782 27 75

3) ELIX

Klapkova 48

180 00 Praha 8-Kobylisy, tel./fax: (02) 840 447 nebo (02) 888 184

4) GES electronics

Mikulášské nám. 7

301 45 Plzeň, tel.: (019) 41 881, fax: (019) 221 085

5) GES electronics

Gočárova 514

500 10 Hradec Králové, tel.: (049) 26 978, fax: (049) 26 132

-dva-

JAK NA TO

Jednoduchý voltmetr pro akumulátory 12 V

V prodejnách starších náhradních dílů a příslušenství automobilů lze levně zakoupit zapouzdřené nebo pod-panelové provedení měřidel palivoměrů z různých typů vozidel pro napětí palubní sítě 12 nebo 24 V. Z těchto měřidel lze poměrně snadno zhotovit citlivý „toleranční“ voltmetr pro akumulátory s napětím 12 V, který indikuje jednak průběh napětí 12,6

Obr. 1. Zapojení voltmetu

až 16,2 V při nabíjení, nebo jím lze zjišťovat stav vybití akumulátoru ve vybíjecím pásmu 10,8 až 12,6 V.

Z obr. 1 vyplývá, že se jedná o dvoucívkové poměrové elektromagnetické měřidlo bez vlastního direktivního momentu – pružin. Každá z cívek působí pohyb ukazatele v opačném směru, a ukazatel se ustálí v poloze, kdy se jejich silové působení vyrovná. Pro účely „tolerančního“ voltmetru je cívka L1 napájena proudem teprve tehdy, přesáhne-li vstupní napětí U velikost Zenerova napětí diody D1. Hodnota rezistoru R1 ovlivňuje nastavení ukazatele měřidla při jmenovitém vstupním napětí 12,6 V na zvolenou značku původní stupnice měřidla (3/4, 1/4 ap.) a s jeho odporem lze experimentovat. Přídavný obvod a prvky R2, D2 omezuje působení cívky L2 pro větší vstupní napětí, rozšířuje pásmo 10,8 až 16,2 V na větší část původní stupnice, není však nezbytný. Některé palivoměry mají v poloze 0 nebo 1 nevhodný průběh momentu měřidla a dochází ke stlačení některého z pásem napětí. Potom lze vývody B, C cívek vzájemně zaměnit.

V tab. 1 jsou uvedeny polohy ukazatele na původní stupni pro jmenovité a obě hraniční napětí u dvou typů

Tab. 1. Údaj stupnice palivoměru při jmenovitém a krajních napětích

Palivoměr	Napětí-údaj stupnice	10,8 V	12,6 V	16 V	Součásti
12 V	0	1/4	2/3	R1, D1	
24 V	1	1/2	1/4	R1, D1, R2, D2	
24 V	1	3/4	1/2	R1, D1	

namátkově zakoupených palivoměrů. Vodorovná montáž je žádoucí pro dosažení maximální citlivosti měřidla a v této poloze je vhodné měřidlo nastavit a ocejchovat. Malý počet součástí umožňuje je přišroubovat na vývody A, B, C a samonosně pospájet. Potom měřidlo umístíme do vhodné krabičky a opatříme zdírkami.

Měřidlo se nejlépe cejchuje regulačním zdrojem stabilizovaného napětí a paralelně připojeným voltmetrem s přesností do 1,5 %.

U většiny palivoměrů na napětí 12 V postačují součásti R1, D1, případně mírná změna odporu rezistoru R1, který lze nahradit trimrem 470, aby chom při napětí 12,6 V „dopravil“ ručku např. na údaj 1/4 nebo 3/4 původní stupnice. U palivoměrů na napětí 24 V se použijí všechny součásti schématu a výchylka ručky se nastaví rezistorem R2. Jednodušší zapojení pouze se součástmi R1, D1 je ovšem také použitelné.

Pro akumulátory 6 nebo 24 V se použije palivoměr na příslušné napětí a dioda D1 na napětí 5 nebo 20 V. Odpor rezistoru R1 je však nutno vyzkoušet a dostatečně proudově dimenzovat diody.

Ing. Jaroslav Lokvenc

Úprava dálkového ovládání CD přehrávače LLAKER

Před časem jsem si zakoupil CD přehrávač LLAKER CD 96. Přístroj je vybaven dálkovým ovládáním, jehož funkce byla v původním provedení naprostě neuspokojivá. Ovladač bylo nutno namířit přímo na přístroj a i potom bylo často nutno při větší vzdálenosti tisknout tlačítka několikrát.

Důvodem problémů je nevhodné umístění čidla dálkového ovládání. Zjistil jsem, že čidlo je uloženo ve stínícím krytu s malou dírkou přelepenou infračerveným filtrem a vzdáleno téměř centimetr od okénka v čelním panelu. Po vyjmutí desky nesoucí tlačítka, display a čidlo dálkového ovládání jsem opatrně čidlo vypájel a nad-

stavil vývody, včetně stínění, o takovou délku, aby se čelo stínícího krytu přitisklo k čelnímu panelu. Abych se přesvědčil, že umístění otvoru v krytu čidla bude přesně souhlasit s okénkem čelního panelu, odlepil jsem infračervený filtr. Zde patrně byla příčina malé citlivosti dálkového ovládání, protože proužek lepidla byl nanesen přímo přes otvor. Filtr jsem přilepil zpět (původním lepidlem) tak, aby před otvorem byl pouze filtr a desku připevnil na původní místo.

Při úpravě není nutno rozpojovat konektory, ani vyjmát hlavní desku, je pouze nutno dbát opatrnosti při pájení citlivého čidla. Pro nastavení vývodů stínění doporučuji používat pásek plechu nebo tlustší drát, aby nedošlo k deformaci vývodů čidla po přitažení šroubů desky.

Po úpravě je možno spolehlivě ovládat přístroj z kteréhokoli místa místnosti, přičemž odraz signálů dálkového ovládání od nábytku a stěn je natolik dostatečný, že není nutno ani přibližně mířit ovladačem na přístroj.

Miroslav Žallmann

Amplitudová detekce s malým zkreslením

Ve většině tranzistorových přijímačů je na detekčním stupni použita polovodičová dioda, jejíž nelinearity v oblasti malých signálů nedovoluje dosahnut dostatečné kvality nf signálu. Zapojení s operačním zesilovačem jsou sice známá stejně jako použitelný synchronní detektor, ale zapojení je poměrně složité a z komerčních cenových důvodů se používá jen velmi zřídka. Jednoduše však můžeme snížit zkreslení vznikající na detekčním stupni použitím tranzistoru podle schématu na obr. 1. Přitom C1, L1, L2, R2 a C3 jsou již obvyklé součásti upravovaného přijímače. Funkčně je zapojení shodné s obyčejnou detekční diodou, tranzistor je vhodnější křemíkový – koeficient harmonických kmitočtů na výstupu se zmenší asi na 1/3 oproti zapojení s diodou. V upravovaném přijímači vyměníme diodu za T1, R1 a C2.

Podle YU-Radio 7-9/92

Obr. 1. Amplitudová detekce s malým zkreslením

PHILIPS service nabízí: servisní sady pro videorekordéry a TV přijímače Philips - na str. VII

MODULY PRO NEPÁJIVÉ KONTAKTNÍ POLE

(Pokračování)

V minulém čísle jsme slíbili obrázky 7 a 8 – na obr. 7 je indikace provozního stavu nějakého zařízení, na obr. 8 indikace s LED v obvodech střídavého proudu s malým střídavým napětím (podle napětí se volí jak dioda, tak předřadný rezistor).

Obr. 7
Obr. 8

Císelcové integrované obvody

Nejlevnějšími a tedy asi nejpoužívanějšími budou pro vás asi integrované obvody, označované jako řada TTL. Tato písmena znamenají „tranzistor-tranzistor-logika“, tj. logické funkce jsou zajišťovány činností tranzistorů. Diody a rezistory v obvodech mají jen vedlejší funkce na rozdíl od řady DTL (dioda-tranzistor-logika) nebo RTL (rezistor-tranzistor-logika). Obr. 7, 8

Obvod TTL vychází z technologie, která sjednocuje na malé základní křemíkové destičce (čipu) – do velikosti asi jednoho čtverečního milimetru – několik funkčních prvků. Funkční prvky vytvářejí funkční celky, jejichž vstupy a výstupy jsou přivedeny k vývodům, kterých je relativně málo. Ochranné pouzdro je s ohledem na vývody, jejichž rozteč musí odpovídat stanovené síti děr v deskách s plošnými spoji, několikrát větší, než aktivní plocha obvodu. Posudte sami: na obr. 9 je schéma zapojení jednoho ze čtyř dvoustupových hradel obvodu 7400 (toto označení zachovává většina výrobců a do-

Obr. 9

plňuje je svými znaky, např. MH7400 je uvedená čtevčice hradel, vyrobená podnikem TESLA atd.). Pouzdro obvodu má v tomto případě i s vývody rozměr 19 x 7,5 mm a uvnitř je integrováno na asi 1 mm² 16 tranzistorů, 16 rezistorů a 4 diody.

Při pokusu nahradit tato čtyři hradla běžnými součástkami (při tom by asi chyběly tranzistory s několika emitoru, které jsou zapojeny jako vstupy hradla) byste potřebovali zhruba 90 pájecích bodů, zatímco 7400 jich má jen 14. Také prostor pro umístění součástek by byl nutně větší.

V zapojení určité konstrukce nemusí být však výhody (méně součástek, menší po-

třebný prostor atd.) při zapojení integrovaného obvodu tak velké. Např. se dvěma tranzistory, dvěma rezistory a jedním kondenzátorem lze sestavit multivibrátor (obr. 10) – při použití hradel je třeba zapojit polovinu pouzdra (dvě hradla) a mimoto ještě dva rezistory, dva kondenzátory, případně ještě dvě diody. K tomu připočítejte použité součástky uvnitř obvodu: 8 rezistorů, 8 tranzistorů a dvě diody! Úspora místa je tedy problematická. Proto se před návrhem své-

(např. Centrofix 1736) nebo sestavovat celý obrazec ze suchých obtisků (propisoty). Pro objímku integrovaného obvodu použijte hotový obrazec, který najdete na archu propisotu (viz obr. 11). Seřidte jej přesně na předvrtné krajní dírky a přeneste zbývající body na desku. Pak desku vyleptejte v zahľubovači (chlorid železitý). Po vyleptání budete mít přesné naznačena i zbývající místa pro vyrtání všech děr ve správných roztečích vývodů integrovaného obvodu či jeho objímky.

Obr. 11

Obr. 10

ho zařízení nejprve rozhodněte, který způsob zapojení bude výhodnější z hlediska místa, počtu potřebných součástek, využití celého pouzdra integrovaného obvodu, provedení desky s plošnými spoji i z hlediska ceny součástek.

Pouzdra s použitými integrovanými obvody v našich modulech mají vývody ve dvou řadách po sedmi, příp. osmi (DIL 14, DIL 16); rozteče děr pro vývody jsou 2,5 mm, vzdálenost řad od sebe 7,5 mm. To platí nejen pro obvody TTL, ale např. i pro obvody CMOS, které najdete v některých novějších zapojeních modulů. Při obdobné funkci hradel jsou obvody CMOS výhodnější zejména proto, že potřebují ke své činnosti podstatně menší proud a pracují při napětí od 3 do 15 V.

Proto mohou být zdroje pro jejich napájení malé, jejich provoz je úsporný. Nevhodou pro mladého konstruktéra je malá odolnost obvodů CMOS proti výbojům statické elektřiny, musíte s nimi zacházet jako „v bavínce“. Místo baňátky však použijete hliníkovou fólii či jiným způsobem zkrátujete vývody pouzdra (většinou je tak dostanete již v obchodě) do dobré, než budete mít všechny ostatní součástky připájené v desce, a to včetně objímky pro integrovaný obvod. Pak teprve obvod opatrně vyjměte (nedotýkejte se přitom vývodů) a zasuňte jej pokud možno na první pokus do objímky – pozor na správnou polohu!

Při pájení integrovaných obvodů přímo do desek s plošnými spoji hrozí při nepřesné vyvrtání děrách, že se při nasouvání obvodu plastový materiál pouzdra roztrhne. To může vést k poškození i vlastního obvodu. Proto lze při práci na desce doporučit:

Připravte si nejprve obrazec spojů na papír. Ten upevněte lepicí páskou ke kplexitu a malým důlčíkem naznačte místa, kde budou pájecí body. U vývodů pro integrovaný obvod však takto k vrtání připravte jen dva krajní body (např. vývod 1 a 8 u DIL 14 nebo 1 a 9 u DIL 16). Pak všechna naznačená místa provrťte, plochu desky dobře začistěte velmi jemným smirkovým papírem, případně ještě „přegumujte“ tvrdou pryží. Pak už nesahejte prsty na plochu, aby se nezamastila. Body okolo vyvrtaných děr můžete kreslit vodostálým značkovačem

Moduly s číselovými obvody, které v další kapitole najdete, dokážete sestavit i bez hlubší znalosti problémů číselcové techniky. Nejsou popisovány celé sestavy, ale pouze jednotlivé díly (např. generátor impulsů, dělička 2:1 či 10:1 a jiné). Tyto moduly umožňují sestavit přístroje, které vás zajímají, např. stopky, hodiny, čítač... možností je mnoho. Předpokládáme však zájem, a proto i podrobnější studium literatury, ke kterému může přispět i následující úvod do funkce hradel.

Funkce hradel

Od zapojení hradla z obr. 9 jsou odvozena hradla s několika vstupy – první tranzistor má tedy příslušný počet emitorů a zbývající část zapojení zůstává.

Výstup hradla má označení Y a podle připojení vstupů na něm může být napětí buď velké (nejméně 2,4 V) nebo malé úrovně (max. 0,4 V), tyto úrovně platí pouze pro TTL. První z uvedených stavů se nazývá logická jednička (log. 1; označuje se také H podle „high“ – vysoký), druhý stav je logická nula (log. 0; nebo L podle „low“ – nízký). Výstupní úroveň je závislá na stavu vstupního tranzistoru, je-li uzavřen, uzavírá se také výstupní tranzistor T4, viz obr. 9. Výstupní tranzistor T3 je otevřen, neboť jím přes rezistor 1,6 kΩ prochází proud báze. Na výstupu je tedy úroveň log. 1 (H). Otevřený výstupní tranzistor otevří výstupní tranzistor T4 a na výstupu Y je úroveň log. 0 (L). Na tento výstup lze připojit např. vstup dalšího hradla, tím se prakticky propojí „na zem“, tj. zbytkové napětí menší než 0,4 V (log. 0) je na výstupu hradla typů 7400, 7410, 7420, 7430 apod. tak dlouho, pokud není připojeno více než deset dalších vstupů. Znamená to, že mají tzv. logický zisk N = 10.

Stav tranzistoru T2 hradla závisí opět na několikaemitorovém tranzistoru T1. Jsou-li vstupy (emitory) připojeny na úroveň log. 1 (příp. na kladný pól zdroje), prochází přes rezistor 4 kΩ a přechod báze-kolektor T1 proud. Proto tranzistor T2 vede a otevírá výstupní tranzistor T4, tzn., že úroveň log. 1 na vstupech hradla vyvolá úroveň log. 0 na výstupu. To se dá vyjádřit vzorcem Y = A · B (čti: negace A krát B). Pokud je alespoň jeden ze vstupů připojen na log. 0 (méně než

0,4 V), teče proud přes rezistor 4 kΩ a přechod báze-emitor do „země“. Na výstupu Y je v tomto případě úroveň log. 1.

Pro obvody TTL platí, že při každém propojení hradel musí výstupem s úrovní log. 0 procházet proud každého z propojených vstupů (u vyjmenovaných typů je to asi 1,6 mA). Při úrovni log. 1 na výstupu teče obvodem proud jen několik mikroampérů. Čím větší je proud, procházející výstupem hradla

Obr. 12.

při úrovni log. 0, tím větší je i jeho „nulová“ úroveň. Proto je nutno omezit počet hradel

Hrátky s nepájivým kontaktním polem

555 jako monostabilní obvod

(Pokračování)

Dalším velmi často používaným zapojením časovače 555 je monostabilní klopny obvod. Příkladem praktické aplikace této funkce je např. časový spínač pro intervaly několika sekund, příp. několika desítek sekund příp. minut (například pro fotokomoru).

Obr. 7.

Obr. 8.

Experimentální zapojení, v němž lze tuto funkci prověřit, je na obr. 7, jeho realizace na propojovacím poli na obr. 8. Časoměrným prvkem je opět kondenzátor C, dobu kyvu obvodu spoluurčuje odporník nastavený na potenciometru P. Po připojení napájecího napětí obvod zůstává v klidu (kontrolní svítivá dioda LED nesvítí), kondenzátor C zůstává ve vybitém stavu díky otevření vybíjecího tranzistoru (vývod 7). Funkci obvodu odstartujeme krátkým uzemněním spouštěcího vstupu (2). Časoměrný kondenzátor se nyní nabíjí přes P až do napětí 2/3 U_{cc}, pak se komparátor překlopí a zpětně vynuluje klopny obvod R-S (viz obr. 1). Dobu kyvu obvodu můžeme ve velmi širokých mezích ovlivnit volbou kapacity kondenzátoru C a obou časoměrných odporů.

Impuls lze kdykoli přerušit uzemněním svorky 4, což způsobí okamžité vynulování klopného obvodu R-S, otevření vybíjecího tranzistoru a vybití časoměrného kondenzátoru.

V tomto zapojení se často využívají možnosti, které poskytuje tzv. vstup IN – vývod 5, k němuž se připojí výstup externího děliče napětí zapojeného mezi vývody 1 a 8 obvodu, jímž lze v určitých mezích měnit prahové napětí, na které komparátor K1 reaguje (není zakresleno). Toto opatření slouží například k přesnému seřízení trvání kyvu obvodu – tzn. k vyloučení vlivu to-

stejného typu, propojených k jednomu výstupu, nejvyšše na deset. Potřebujete-li připojit větší počet vstupů, použijte výkonový logický člen, např. 7437, obr. 12. Jeho zapojení je obdobné, jen výstupní obvod je „posílen“, tranzistor T3 z obr. 9 je nahrazen dvěma tranzistory v Darlingtonově zapojení a kolektorový rezistor je menší.

(Pokračování)

lerance použitych součástí (například kapacity elektrolytického kondenzátoru).

Upozorněme ještě na další možnost monostabilního obvodu s použitím časovače 555 – zapojení lze opatřit samochinným spouštěním (autostartem), které způsobí, že obvod překývne okamžitě po připojení napájecího napětí. Modifikace vstupu je pro tento případ

Obr. 9.

na obr. 9. Před připojením napájecího napětí se kondenzátor C nachází ve vybitém stavu, v okamžiku připojení napětí představuje zkrat – rovnocenný krátkému uzemnění spouštěcího vstupu. Obvod samočinně překývne.

Výhodou integrovaného obvodu je značná nezávislost funkce na napájecím napětí. Vzhledem k tomu, že prahová napětí komparátorů jsou odvozena z téhož napětí, z něhož se časoměrný kondenzátor nabíjí, změny napájecího napětí neovlivňují kvantitativní generátor ani dobu kyvu monostabilního obvodu. Toto tvrzení si můžete ověřit pokusem – zvětšením napájecího napětí až do 17 V (musí

NÁŠ KVÍZ

Úloha č. 9

Kvízové úlohy, zaměřené na spojování rezistorů, kolují mezi odborníky ve značném počtu a budí vždy zájem. Pro tento měsíc vybíráme jednu z nejpůvabnejších.

Představte si krychli, sestavenou ze dvanácti stejných rezistorů, například o odporu 100 Ω – symbolicky je naznačena na obr. 1 (pro jednoduchost jsme rezistory nekreslili, leží na hranách

Obr. 1

krychle). Otázky máme dvě, velmi podobné:

1) jaký odpór naměříme mezi uzly na hlavní uhlopříčce (diagonále) krychle (obr. 1a),

2) jaký odpór naměříme, připojíme-li ohmmetr k libovolné hraně krychle (obr. 1b)?

Úloha je malinko obtížnější, jestliže jste však pozorně sledovali naše dosavadní úlohy o rezistorech, měli byste si s ní poradit. Své řešení a výsledek si porovnejte s naším, uveřejněným na str. 8.

Úloha č. 10

Měření na elektrických obvodech přináší nejedno překvapení, zvláště, bude me-li se snažit porovnat své výsledky s výsledky výpočtu. Pan X se rozholil prověřit svůj novoučíčký digitální měřicí přístroj. Nejprve změřil napětí v síti, zjistil, že se shoduje se jmenovitým, $U = 220$ V. Potom si vzal dvě žárovky se jmeno-

vitým příkonem 40 a 60 W, do přívodu stolní lampy zařadil měřicí přístroj, přepnul na měření proudu a naměřil proudy $I_1 = 0,19$ A a $I_2 = 0,27$ A. Jelikož, jak známo, výkon = napětí krát proud, zjistil, že žárovky odebírají předpokládaný výkon 41,8 a 59,4 W, což dobře odpovídá předpokladům.

Pana X ještě napadlo zkontrolovat odpory vlákná obou žárovek. Přístroj přepnul na měření odporu a naměřil 89,3 (u méně výkonné) a 68,7 Ω u výkonnější žárovky. Z naměřeného napětí a proudu lze odpory vlákná rovněž stanovit, jak známo $R = U/I$. Dosadil naměřené údaje a zkoupněl. Podle výpočtu by odpory vláken měly být 1157,9, popř. 814,8 Ω. Diametrální rozdíl nemůže vysvětlit nepřesnost měření ani zaokrouhlení výsledků výpočtu. V čem je chyba? Kdyby naměřené odpory vlákná skutečně platily, menší žárovka by měla odebírat proud 2,46 A a její příkon by měl být 542 W!!!

V čem se stala chyba?

te však přiměřeně zvětšit odpor předřadného rezistoru svítivé diody).

Monostabilní obvod lze startovat i primitivním „senzorem“ tak, že se odpor rezistoru R1 v obr. 7 zvětší na několik megaohmů (použili jsme 3,8 MΩ) a mezi vývody 1–2 IO se zapojí dve dotykové plošky (například z kousku kuprexitu). Obvod reaguje na dotyk prstem (s nepříliš suchou pokožkou) – vyzkoušejte.

Výstupem časovače 555 (který lze zatížit až proudem 200 mA) můžeme ovládat různé typy nejen elektromagnetických relé, ale i bezkontaktních spí-

Obr. 10.

nač. Pro informaci uvádíme na obr. 10 modernější verzi – připojení „optotriaku“ s připojeným výkonovým spínacím triakem. Zapojení umožňuje dokonale izolačně oddělit elektronické obvody od obvodů silových. Přezkoušení

tohoto zapojení doporučujeme jen zkušeným amatérům.

Pro zájemce s hlubším zájmem ještě uvedeme vzorce pro dimenzování popsaných obvodů: Označíme-li v zapojení generátoru na obr. 6 časoměrné odpory (v obrázku P a R) R1 a R2, pro dobu periody T platí

$$T = 0,693(R1 + R2)C$$

[s; Ω, F].

Pro dobu kyvu T_k monostabilního obvodu platí vzorec

$$T_k = 1,1RC$$

[s; Ω, F].

-II-

Náš kvíz

Řešení úlohy č. 9

Klíčem k řešení (postupu existuje několik) může být pravidlo, které jsme si ujasnili v souvislosti se spojením pěti rezistorů do můstku. V sérioparalelním elektrickém obvodu (který se skládá z lineárních prvků) smíme navzájem spojit užly se stejným potenciálem. Takových bodů ve schématu najdeme několik. Budeme-li obvod napájet elektrickým proudem do hlavní uhlípříčky, snadno usoudíme, že stejně napětí mají trojice zakroužkovaných a stejně označených uzlů A-A-A a B-B-B (obr. 2a). Propojime-li je mezi sebou a obvod pozorně překreslíme, obdržíme jednoduché náhradní schéma, skládající se ze sériového spojení tří, šesti a tří paralelně spojených rezistorů tak, jak je to uvedeno na obr. 3a. Výpočet necháme na vás, výsledný odpor je 83,33 Ω.

Ve schématu krychle, napájené do jedné hrany, nalezneme dvě dvojice „ekvipotenciálních“ uzlů A-A a B-

B (obr. 2b). Pozorným překreslením získáme náhradní schéma, uvedené na obr. 3b. Výpočet výsledného odporu je o něco pracnější, ale rovněž zvládnutelný pomocí nejzákladnějších pouček – je 58,33 Ω.

Řešení úlohy č. 10

K vysvětlení zjištěných rozporů stačí jediná věta: rozdíly způsobuje teplotní závislost odporu kovů, konkrétně kovového svítícího vlákna. Odpor kovů se s rostoucí teplotou zvětšuje, neuvědomujeme si však, že změna může být tak výrazná. Vzorec pro výpočet změny odporu nalezneme v každé učebnici fyziky a zní

Obr. 2

$$R_t = R_0 \cdot (1 + (T - T_0) \cdot k t)$$

kde R_t je výsledný odpor při teplotě T , R_0 odpor při výchozí teplotě, T_0 výchozí teplota, T teplota rozžhaveného vlákna, k t teplotní součinitel odporu.

Proudový náraz, který při zapínání zatěžuje nezahřáté vlákno, citelně zkracuje dobu života zejména výkoných žárovek např. projektorů, proto se vlákno této typu žárovek nejprve často předžhavuje zmenšeným napětím. Jevu se dá využít i k měření teplosty elektromotorů za provozu – porovnáním odporu vinutí za studena a při provozu při trvalém zatížení.

-II-

Obr. 3

článek-reklamy o bodových maticových displejích a aktivních maticích LCD. V druhém oddílu časopisu je jako první článek o generátorech funkcí, zpracovaný ve formě otázek používatele a odpovědí na ně. Jako druhý je článek Jak porozumět napájecím zdrojům pro sběrnice VXI, na něj navazuje článek Virtuální nástroje – co to je a kde se používají (se zretelem k použití v počítačích). Článek Testovací systémy SCSI (Small Computer System Interface) se mění – to je název dalšího článku, popisujícího novinky ve zkoušení periferii a sběrníku.

V oddílu časopisu, který je nazván Elektronické výrobky, jsou uvedeny nové napájecí zdroje nejrůznějších výrobců (Hewlett-Packard, B&K Precision, Sorenson Co. atd.) a jejich vlastnosti. Další oddíl časopisu se nazývá Product Update (update – aktualizovat) a začíná článek Motory a řízení a přináší přehled nejrůznějších typů a druhů motorů a motorků pro nejrůznější použití. Následuje článek, věnovaný bezkartáčovým motorům. Strany 69 až 86 jsou věnovány přehledu novinek na trhu (včetně nových integrovaných obvodů s nejstručnější charakteristikou). Na str. 89 až 100 jsou pak podrobněji popsány další nové integrované obvody s adresami výrobců. V oddílu, který následuje, jsou stejným způsobem, tj. s popisem a adresou výrobců, uvedeny nové počítače, jejich díly a periferie (str. 103 až 108), součástky a podsestavy (str. 111 až 120), testovací a měřicí přístroje a přípravky (str. 123 až 129), napájecí zdroje (str. 131 až 142), optoelektronické přístroje a součástky (str. 143 až 149), nástroje, náradí a software (str. 153 až 159), skřínky a spojovací materiál – konektory (str. 161 až 167). Dalších 6 stran přináší přehled o novinkách v elektronické literatuře a obsah je začleněn rubrikou Výrobci představují své novinky (celkem 8 stran po 9 výrobcích/str.).

Casopis má celkem 184 stran formátu A4, vydává jej HEARST Business Communications Inc. v Garden City (stát N.Y.). Je to měsíčník, roční předplatné v USA stojí 50 \$, předplatné na tři roky 125 \$. Jednotlivé číslo stojí 5 \$.

ELECTRONIC PRODUCTS

A Hearst Business Publication

INFORMACE, INFORMACE...

V minulých číslech jsme vám představili časopisy z knihovny STAR MAN Bohemia, které byly určeny především pro ty, jimž se elektronika a výpočetní technika stala koníčkem. Dnes jsme vybrali časopis poněkud jiného typu: ELECTRONIC PRODUCTS, který má podtitulek „The engineer's magazine of product technology“. Časopis je tedy určen spíše pro techniky s výšším odborným vzděláním. Cervnové číslo z loňského roku, jehož stručný obsah je uveden dále, bylo věnováno téměř výhradně všemu, co souvisí s testováním a měřením.

Jako úvodník je v tomto čísle článek šéfredaktora časopisu o publikaci, vydané NIST, což je zkratka Národního institutu pro standardy a technologii (National Institute of Standards and Technology), v níž jsou detailně probrány potřeby takových měření, která by posílila americkou schopnost soutěžit se světovou výrobou elektronických zařízení.

První z hlavních článků je věnován pouzdření standardních obvodů MCM, což je zkratka pro „multichip“, tj. integrované obvody, které mají na základní desce několik chipů. Následují

Digitální síťový wattmetr a elektroměr PAM 1

Ing. Miroslav Věříš, Jan Věříš

VYBRALI JSME NA
OBÁLKU

Činný příkon je jedna ze základních charakteristik každého elektrického spotřebiče. U spotřebičů, které jsou regulovány nebo občas zapínány, je dalším důležitým údajem spotřeba elektrické energie za delší časový úsek (den, týden, měsíc) nebo energie spotřebovaná na realizaci nějakého úkonu. Podle tohoto údaje můžeme teprve hodnotit skutečný stav spotřebiče, případně úroveň jeho obsluhy. Jedná se o chladničky, mrazáky, pračky, žehličky, různé ohříváče, topení, čerpadla apod. Je zajímavé a poučné zjišťovat spotřebu některých elektrických zařízení v domácnosti za určitý čas nebo pracovní cyklus.

Podobné aplikace lze nalézt ve službách a ve výrobě. Spotřeba energie určitého stroje, pracoviště, za danou dobu může být dobrým vodítkem k určení jeho ekonomického využití. Použití běžného elektroměru s indukčním měřicím ústrojím by bylo pro tyto účely těžkopádné a nákladné. Z těchto důvodů jsme se rozhodli zkonstruovat přístroj, který umožnuje snadno měřit nejen činný příkon, ale i spotřebovanou elektrickou energii.

Základní technické údaje

Wattmetr

Měří činný elektrický výkon odebraný nebo i dodaný (znaménko -).

Měřicí rozsah: 2000 W s rozlišením 1 W.

Jmenovité napětí: 220 V -20 % +15 %, 50 Hz.

Max. efektivní proud: 10 A, špičkový proud max. 100 A.

Ubytek na proudovém bočníku: max. 30 mV.

Vlastní spotřeba: 0,4 W.

Indikace: displej LCD 3 1/2 místa.

Přesnost: +3 % při pečlivém nastavení i větší.

Elektroměr

Měřicí rozsahy: 2 kWh – rozlišení 1 Wh,
20 kWh – rozlišení 10 Wh.

Přesnost: přídavná chyba k chybě wattmetru +2 %.

Možnost nulování: v libovolném okamžiku přepínačem rozsahu při současném stisknutí tlačítka funkce.

Zálohová paměť: uchová naměřenou hodnotu i při odpojení do sítě.

Rozměry: 165 x 82 x 45 mm.

Hmotnost: 450 g včetně zásuvky a síťové šňůry.

Rozbor řešení
Wattmetr vychází z konstrukce uveřejněné v [1]. Zde je také uveden princip a teoretický rozbor použitého zapojení.

Elektroměr: elektrická energie A spotřebovaná od počátku měření $t = 0$ do času $t = t_1$ je dána vztahem

$$A = \int_0^{t_1} P(t) dt, \quad (1)$$

kde $P(t)$ je výkon jako funkce času. V našem případě odebíráme příkon wattmetru ne plynule, ale v pravidelných časových intervalech daných dobou převodu převodníku A/D. Pokud získáme z převodníku při každém i -ém převodu počet pulsů n_i , který bude úměrný přes konstantu úměrnosti k měřenému příkonu P , můžeme integrál (I) nahradit sumou:

$$A = \int_0^{t_1} P(t) dt = k \sum_{i=1}^m n_i, \quad (2)$$

kde m je počet měření v čase od $t = 0$ do $t = t_1$. Pro měření elektrické práce bude stačit získané pulsy sečist a počet nasčitaných pulsů bude úměrný spotřebované elektrické práci. Podle těchto požadavků bylo navrženo blokové schéma měřiče elektrické práce (elektroměru), obr. 1, které je ještě doplněno o tlačítka funkci, přepínač rozsahu a převodník D/A, který umožnuje zobrazit naměřenou elektrickou práci na již použitém převodníku A/D s displejem.

Popis zapojení

Celkové schéma měřiče je na obr. 2 a 3, čemu odpovídá i umístění na dvou deskách s plošnými spoji.

Napájecí napětí je získáváno přímo ze sítě přes pojistku Po, ochranný rezistor R16 a kondenzátor C8, diody D5, D6 a je stabilizováno Zenerovou diodou D7. Toto napětí je připojeno na IO2, kde se rozdělí na +2,8 V – stabilizováno uvnitř obvodu – a na zbytek -9,2 V. Z IO2 je ještě použito napětí -3 V (výstup TEST – vývod 37), které tvoří číslicovou zem pro IO7, aby rozhodovací úroveň mezi H-L byla přibližně 0 V. Tato napětí slouží k napájení všech obvodů měřiče.

Pro zálohování čítačů je použit článek B (z hodinek) o napětí 1,55 V (stříbro-oxidový). Napětí na zálohovaných IO8 a IO9 je při odpojení od sítě 1,2 V, což ještě stačí k tomu, aby si tyto obvody zachovaly svůj stav. Tranzistor T3 spíná plné napájecí napětí pro IO8 a IO9, pokud je přístroj zapojen na síť. Provozní napájecí napětí 2,8 V pro ostatní IO stačí (při použitých kmitočtech) pro jejich spolehlivou funkci.

Wattmetr je popsán v [1], jeho spínače s tranzistory KF520 byly nahrazeny spolehlivějším obvodem 4053, výstupní operační zesilovač byl vypuštěn, což umožňuje plovoucí vstup 7106. Rovněž kompa-

Obr. 1. Blokové schéma P-A metru

Obr. 2. Schéma zapojení desky 1

rátor byl vypuštěn a obvod IO7 je ovládán přes R20 přímo síťovým napětím, jehož velikost omezují záchranné diody vestavěné na vstupech IO7. Výstupní napětí z wattmetru je filtrováno (R33, R34, C13) a vedení přes přepínač IO1 na vstupy IO2 (7106),

Elektroměr

Obvod 7106 nemá žádný vývod, kde by byl ve vhodné formě dostupný digitální výstup z převodníku A/D. Bylo nutné hledat cestu, jak vhodný signál získat. Z funkce obvodu 7106, která je popsána v [2] a [3], vyplývá, že kondenzátor C_{ref} (C_3) je některým svým vývodem spojen se zemí (úroveň L) pouze po dobu integrace referenčního napětí. Tato doba je úměrná měřenému vstupnímu napětí. Po zbytek času do dalšího převodu je kondenzátor C_3 připojen na referenční napětí, nebo je „ve vzduchu“, tedy není připojen nikam. Pokud volíme odpory rezistorů R5, R6, R7 v děliči pro referenční napětí tak, aby potenciál na svorkách Ref Lo a Ref Hi byl blízký kladnému napájecímu napětí (úroveň H), pak můžeme napětí na kondenzátoru C_3 ovládat hradlo, a tím i počet impulsů z oscilátoru IO2, které budeme dále číst.

Vlastní kondenzátor C_3 je nabit na referenční napětí – 100 mV. Toto napětí nemá praktický vliv na stav úrovně (L, H) ovládající hradlo. Kondenzátor C_4 udržuje úroveň H v době, kdy kondenzátor C_3 není nikam připojen. Abychom dosáhli lepší stabilitu kmitočtu, je oscilátor, který ovládá činnost IO2, řízen krystalem z hodinek (o kmitočtu 32 768 Hz). Snazší nasazení oscilací umožňuje kondenzátor C_2 (5 až 20 pF). Z vývodu OSC3 IO2 se odebírájí přes oddělovací rezistor R4 hodinové impulsy, které jsou hradlovány v IO3 signálem odvozeným z C_3 . Takto získané sérii impulsů je nutno dále zpracovávat: Vymazat první čtyři, při kterých IO2 rozhoduje o polaritě vstupního napětí, a další vhodně dělit tak, aby se jejich počet pro 2 kWh nebo 20 kWh blížil 2000, což umožní co nejlépe využít rozlišovací schopnosti obvodu 7106. Tuto funkci uskutečňují obvody:

- IO3 – odečte 4 impulsy a dělí 1:4,
- IO4 – dělí 9 a při rozsahu 20 kWh ještě dělí 10,
- IO8 – dělí 100,
- IO9 – dělí 8 a dále 2^n , tento dělič je součástí převodníku D/A.

Převodník D/A je tvořen váhovými

rezistory zapojenými na výstupy binárního čítače IO9 a na operační zesilovač IO6.4, který převádí stav čítače na odpovídající napětí. Toto napětí se přivede při stisknutí tlačítka TI přepínačem tvořeným IO1 na D/A převodník 7106 (IO2) a zobrazí se na displeji. Integrovaný obvod IO5, rezistory R10, R11, R12, R13, R14 a kondenzátor C5 slouží spolu s přepínačem Př k ovládání desetiných teček a, je-li ještě stisknuto tlačítko TI, ke generaci脉su pro nulování čítačů IO8 a IO9.

Mechanická konstrukce

Celý měřič je vestavěn do elektroinstalační „dvoukrabice“, viz obr. 4, 5, 6. V jedné polovině je umístěna zásuvka pro připojení měřeného spotřebiče a proudový bočník R_z , tvořený manganinovým drátem o $\varnothing 1,5$ mm délky asi 4 cm.

Deska 2 (obr. 7) je přišroubována ke krabici, deska 1 (obr. 8) je přichycena na kryt vyrobený z organického skla tl. 2 mm pomocí sloupků rámečku displeje.

Při mechanické konstrukci je nutné dbát na to, aby při provozu nemohl nastat dotyk s jakoukoli vodičovou částí přístroje. Použité tlačítka

$D_{10} = KAS34$
 $T_{1,2} = BF245A$
 $T_3 = KC638$
 $IO6 = 064 \text{ (TL nəlo B)}$

Obr. 3. Schéma zapojení desky 2

síti, proto musíme při oživování použít izolační transformátor 220 V/220 V, dimenzovaný na dostatečný výkon (pokud budeme při cejchování zapojovat přístroj k výkonnějším spotřebičům). Osazenou a zkontrolovanou desku 2 zapojíme vývody A, B, zem, 220 V na proudový bočník Rb a zásuvku. Přivedeme napětí 220 V a na Zenerově diodě D7 by mělo být napětí 12 V.

Dále propojíme desku 1 s deskou 2. Bude-li vše v pořádku, pak se po zasunutí objeví na displeji 000. Zkontrolujeme s napětí a průběhy střídavých napětí podle osciloskopu, jak je naznačeno na schématech.

Je-li vše v pořádku, začneme nastavovat wattmetr. Zatížíme přístroj pokud možno co největším odpovídajícím spotřebičem (jak nám dovolí oddelovací a regulační transformátor, alespoň 200 W). Odbočkou B na bočníku Rb nastavíme skutečný odebraný výkon (kontrolujeme voltmeter).

Tl musí být celé z plastické hmoty a použitý dvoupólový přepínač musí mít dostatečně dlouhou (8 mm) ovládací pásku z plastické hmoty, na kterou navlékneme „clonku“ z izolantu (pryže), která zakrývá ze spodu otvor v krytu s dostatečným přesahem v obou polohách přepínače Př.

Kondenzátor C3 je vhodné stínit tenkým izolovaným pláštěm s rozmě-

ry o něco většími, než jsou rozměry kondenzátoru. Tento pláštek umístíme mezi kondenzátory C3 a izolační kryt přístroje. Na IO2 a displej je vhodné použít objímku. Osvědčil se jednorádkový lámací „sokol“ SIL 2OP od firmy GM electronic.

Oživení a nastavení přístroje
Přístroj je galvanicky spojen se

Obr. 5. Rozebraný přístroj (strana součástek)

Obr. 6. Rozebraný přístroj (strana spojů)

rem a ampérmetrem, nebo jiným wattmetrem). Dále měníme napájecí napětí o +15 % a potenciometrem P1 opět nastavíme skutečný výkon. Tento postup je nutné několikrát opakovat, neboť obě nastavení se ovlivňují. Nepodaří-li se přístroj nastavit při všech napájecích napětích, musíme pečlivě vybrat dvojici shodných tranzistorů T1 a T2. Na pečlivosti těchto úkonů závisí přesnost přístroje.

Nastavení elektroměru: stiskneme tlačítko T1 a současně přepneme přepínač Př – tím přístroj vynulujeme a na displeji se objeví 000. Pokud se na posledním místě objeví nějaký údaj, je nutné vyrovnat offset operačního zesilovače IO6.4 pokusně vybraným rezistorem R37 (100 kΩ až 10 MΩ), který podle potřeby připojujeme na + nebo -.

Potom odpojíme vývod f od desky 1 a přes ochranný rezistor (100 až 1000 kΩ) na něj přivedeme signál z tónového generátoru nebo z jiného zdroje impulsů o amplitudě několika voltů a vhodném kmitočtu (kHz). Čítač by měl čitat, což při stisknutém tlačítku T1 displej indikuje. Dodávku impulsů na přívod f přerušíme v okamžiku, kdy je na vývodech 7, 5, 4, 6, 12, 13, 14, 15 IO9 úroveň H (2,8 V) – kontrolujeme voltmetrem. Potenciometrem P2, při stisknutém tlačítku T1, nastavíme na displeji 250 a připojíme zdroj impulsů. Pokračujeme v čítání.

Jakmile se na vývodech 7, 5, 4, 6, 12, 13, 14, 15 a 1 IO9 objeví úroveň H, potenciometrem P3 nastavíme na displeji 500 (stisknuté T1).

Potenciometrem P4 (stisknuté T1) nastavíme na displeji 1000, jestliže úroveň H se objevila i na vývodu 2 IO9. Číslo 1999 nastavíme na displeji potenciometrem P5 (stisknuté T1), když máme úroveň H na všech výstupech IO9 – tedy i na vývodu 3. Po-

stup pro jistotu zopakujeme. Tím je přístroj nastaven a zbývá prakticky ověřit všechny funkce.

Závěr

Přístroj se ukázal v provozu jako užitečný a spolehlivý, přestože jsou v popsaném řešení použita některá zjednodušení, se kterými by profesionálové nemuseli souhlasit. Např. je použito menší napájecí napětí pro IO než doporučuje výrobce. Zkoušky však ukázaly, že integrované obvody řady 4000 pracují již od napětí 1,2 až 2,1 V podle typu a výrobce. Výrobky stejného typu od různých výrobců se od sebe značně liší.

Dále bylo zjištěno, že si integrované obvody zachovají původní stav výstupů i při napětí o něco větším než 1 V. Při tomto napájecím napětí odebírá obvod ze zdroje pouze několik μ A, i když jsou výstupy zatíženy rezistory 10 kΩ. Po zapnutí většího napájecího napětí se původní stav opět obnoví. To dovolilo zálohovat tyto IO jediným článkem z hodinek. Přístroj tedy nejen měří, ale naměřené údaje si pamatuje i po odpojení síťového napětí.

Dalším poněkud neobvyklým řešením je získání digitálních dat z obvodu 7106. Převádět výstupní signály pro displej LCD do formy vhodné pro další zpracování v číslicových obvodech bylo těžkopádné a složité. Uvedené řešení dovolilo využít IO2 (7106) vlastně dvakrát a tím se celé zapojení značně zjednodušilo. Při troše pečlivosti lze za přijatelnou cenu postavit přístroj, který umožní získat zajímavé a užitečné informace.

Použitá literatura

- [1] Věříš, M. a J.: Digitální sítový wattmetr DSW1, AR 6/92, s. 250 až 253.
- [2] Katalogový list ICL 7106/ICL 7107 fy Intersil Best-Nr-176907.

[3] Konstrukční katalog polovodičových součástek fy TESLA: Analogové integrované obvody pro převodníky, 1987.

[4] Teize - Schenk: Halbleiter-Schaltungstechnik, Berlin: Springer Verlag 1978.

[5] Höhne: Einfacher P-U Konverter zum Messung der Wirkleistung, Radio Fernsehen Elektronik č. 10/91, s. 624 až 626.

Seznam součástek

Rezistory (můžeme použít nejmenší typ např. miniaturní metalizované odpory RR od fy GM nebo TR 151, 191. Pouze rezistory R19, R20 musí mít trvalé povolené střídavé provozní napětí 350 V)

R1	1MΩ
R2, R3	470 kΩ
R4	100 kΩ
R5	10 kΩ
R6	1 kΩ
R7	18 kΩ
R8	820 kΩ
R9 až R14	1 MΩ
R15	47 kΩ
R16	680 Ω
R17, R18	2,7 kΩ
R19, R20	1,5 MΩ/350 V
R21 až R24	10 kΩ, 1 %
R25	3,9 kΩ
R26	330 Ω
R27	68 kΩ
R28	68 kΩ
R29, R30	100 kΩ
R31	330 Ω
R32	6,8 kΩ
R33, R34	220 kΩ
R35	15 kΩ
R36	22 kΩ
R37	100 kΩ až 10 MΩ
R38	680 Ω
R39	22 kΩ
R40	1,8 MΩ
R41	47 kΩ
R42 až R44	10 MΩ
R45	5 MΩ
R46	2,5 MΩ
R47	1,25 MΩ
R48	625 kΩ, 1 % } možno složit
R49	312 kΩ, 1 % } ze dvou
R50	156 kΩ, 1 % } kusů v sérii
R51	56 kΩ
R52	27 kΩ
R53	15 kΩ
R54	1 MΩ
Rb	bočník je z manganinového drátu o Ø 1,5 mm, délky asi 4 cm

Obr. 7. Deska 1 s plošnými spoji

C6

Obr. 8. Deska 2 s plošnými spoji

C7

Odporové trimry (vyhoví typ TP 008)

P1	100 kΩ
P2	22 kΩ
P3	33 kΩ
P4	22 kΩ
P5	4,7 kΩ

Kondenzátory

C1	220 nF/63 V, fóliový
C2	10 pF, keramický
C3	100 nF/63 V, fóliový
C4	33 pF, styroflex, keramika
C5	100 nF/63 V
C6	220 nF/63 V
C7	470 nF/63 V
C8	150 nF/630 V
C9,C10	47 µF/25 V, TF 009

C11, C12

C11, C12	15 µF/16 V, tantal. kapka
C13	220 nF/63 V, fóliový
C14	470 nF/10 V, tantal. kapka
C15	10 nF/63 V, keramický

Polovodičové součástky

D1 až D4	KA207 (1N4148)
D5, D6	KY130/600 (1N4007)
D7	ZD0,5/12 V (BZX83/12V)
D8, D9	KA207 (1N4148)
D10	KAS34
T1	BF245A } párované
T2	BF245A }
T3	KC638 (BC640)
IO1	4053
IO2	7106

IO3	4518
IO4	4518
IO5	4030
IO6	TL064
IO7	4053
IO8	4518
IO9	4020

Ostatní součástky

Krystal 32 768 Hz, pouzdro TC 38 od fy GM electronic	
Po trubičková pojistka 0,1 A/250 V	
Displej 4DR821 s objímkou	
Přepínač dvoupólový posuvný S-02	
T tlacičko do plošných spojů z izolační hmoty DT6	
článek B: stříbro – oxidový např. 5R45	

Regulovatelný zdroj pro páječku SMT

S rozšiřováním techniky povrchové montáže SMT se zvětšuje i potřeba vhodného náradí. To je však málo k dostání a navíc dosti drahé. V časopise Elektor bylo uveřejněno jednoduché zapojení zdroje pro miniaturní páječku, vhodnou pro domácí použití při práci se součástkami pro povrchovou montáž SMD.

Kdo se již pokušel pájet v technice povrchové montáže subminiaturní součástky obyčejnou páječkou, jistě zjistil, že je její hrot pro tak malé součástky (které jsou navíc z části bezvodové) prostě příliš velký. Navíc je jeho značná tepelná kapacita a nedefinovatelná teplota velkým nebezpečím pro čipové keramické součástky, kterým způsobuje tepelný šok (mohou popraskat). Navíc tekutá pájka ohřátá na vysokou teplotu rychle rozpouští na čelech čipů nanesené vodivé povlaky (třeba až na holou keramiku - součástka se nedá pájet a je nepoužitelná).

V popisovaném návodu je využito miniaturní páječky s jmenovitým příkonem 8 W při napětí 12 V, která je běžně k dostání. Napájecí napětí je nastavitelné a tím i teplota hrotu. Indikace teploty je elektronická.

Obr. 1. Zapojení regulovatelného zdroje

Pájecí souprava se skládá ze tří částí: regulovatelného zdroje, teplotního indikátoru a vlastní páječky.

Regulovatelný zdroj

Jednoduché zapojení regulovatelného síťového zdroje s proměnným výstupním napětím je na obr. 1. Po transformaci síťového napětí transformátorem Tr je jeho sekundární napětí usměrněno diodami D1 až D4, filtrováno kondenzátorem C1 a přivedeno na vstup monolitického stabilizátoru IO1 (LM317). Jeho výstupní napětí (mezi vývody 1 a 2) je konstantní (1,2 V) a je současně úbytkem na odporu R4. Poměr mezi odporem rezistoru R4 a náhradním odporem větve R2, R3 a P1 určuje výstupní napětí zdroje. Při zvolených odporech lze nastavit potenciometrem P1 napětí na výstupu od 6,8 V do 11,8 V.

Rezistor R6 má v zapojení dvojí úlohu: zabraňuje přílišnému zvětšení

výstupního napětí v případě přerušení potenciometru P1 a navíc ovlivňuje jeho charakteristiku natolik, že není lineární, nýbrž logaritmická. To je výhodné pro přesné nastavení nižších teplot.

Indikátorem zapnutí zdroje je dioda D11. Záporný vývod zdroje a páječky je spojen rezistorem R5 se zemí a zabraňuje tak vytváření elektrostatického náboje při pájení.

Indikace teploty

Druhou částí pájecí soupravy je indikátor teploty s deseti světelnými diodami, který ukazuje výstupní napětí regulovatelného zdroje a tím i teplotu hrotu páječky. Samozřejmě by byla lepší páječka s integrovaným tepelným čidlem, se kterým by bylo

dem k tomu, že každou diodou protéká proud přibližně 10 mA, zvětšuje se se stoupajícím napětím i ztrátový výkon IO2. Bez dalších uprav protéká obvodem IO2 při napájecím napětí 12 V již 100 mA. Protože na každé svítivé diodě vzniká úbytek asi 2 V, musí IO2 vyzářit tepelný výkon přibližně 1 W. Podle katalogových údajů je však maximální přípustný ztrátový výkon jen 625 mW. Proto je nutné ztrátový výkon IO2 zmenšit. Tomu slouží rezistor R10. Čím více diod svítí, tím větší je úbytek na R10 a tím více výkonu se na něm přeměnuje v teplo. Právě tento výkon však nemusí odvádět pouzdro integrovaného obvodu IO2 a jeho ztrátový výkon je tím zmenšen.

Rezistory R8 a R9 určují pracovní oblast, tedy horní a spodní prahové úrovni řetězce komparátorů v IO2. K jejich vytvoření je použito vnitřního referenčního napětí 1,25 V (REF-OUT, vývod 7). Při udaných odporech rezistorů jsou hraniční prahová napětí 1,8 V a 3 V. Napětí 1,8 V (nebo větší) na signálovém vstupu SIG (vývod 5) rozsvítí první diodu, při napětí větším než 3 V svítí všechny diody.

Na vstupu indikátoru teploty (připojuje se na výstup regulovatelného zdroje) je zapojen napěťový dělič z rezistorů R6, R7 a trimru P2. Tento dělič zmenšuje indikované vstupní napětí čtyřikrát (za předpokladu nulového vstupního proudu na vývodu 5 by měl být odpor R9 jen 2,4 kΩ), takže na vstupu SIG je napětí 1,75 V až 3 V, které odpovídá zvoleným prahovým úrovním obvodu IO2.

Konstrukce

Ve vzorku jsou pro indikaci teploty použity různobarevné svítivé diody - ve čtvercovém provedení, které tvoří souvislou řadu (v panelu pájecí soupravy je pro ně podlouhlý výrez, jehož zhotovení je podle návodu snadnější než vrtání deseti kulatých otvorů do plastového pouzdra). Prvé tři diody jsou červené, čtyři další zelené a poslední tři oranžové.

Obr. 2. Zapojení indikátoru teploty

Integrovaný stabilizátor IO1 je připevněn na chladiči.

Oba elektronické díly pájecí soupravy byly postaveny na deskách s plošnými spoji (zdroj s transformátorem a chladičem je na desce 125 x 72 mm, indikátor teploty je na desce 72 x 28 mm).

Uvádění do chodu

Po zapnutí zdroje musí svítit LED11. Je-li P1 vytíčen vlevo, nesmí svítit žádná jiná dioda. Není-li tomu tak, musíme otáčet P2 tak dlouho, až všechny diody pohasnou a pak opět v protisměru, až první dioda začne svítit (nastavení nuly). Při otáčení potenciometrem P1 doprava se musí rozsvěcovat další diody a vytvořit svítící řadu. Pak je možno připojit páječku a pájet první SMD.

Obměny

Zdroj pájecí soupravy je vlastně pro tento speciální případ přizpůsobený stejnosměrný zdroj, který je možno provedením malých změn použít jako univerzální napájecí zdroj. K tomu je zapotřebí pouze nahradit rezistor R2 drátovým můstekem na desce s plošnými spoji, vypustit R3, odpor rezistoru R9 zmenšit na 100 Ω a R7 na 1 k Ω . Tako upravený zdroj stejnosměrného napětí má rozsah výstupního napětí od 1,25 do 12 V a může dodávat maximální proud 800 mA.

Závěrem

Zapojení na obr. 2 je vlastně elektronickým přepychem. Pro indikaci teploty, která přímo souvisí s výstupním napětím regulovatelného zdroje, by postačilo jednoduché ručkové měřidlo se stupnicí ve stupních Celsius nebo ještě jednodušeji stupnice pod knoflíkem potenciometru.

Stavebnici se všemi díly (avšak bez páječky) nabízí např. firma Geist Electronic-Versand za 72,40 DM. Páječka je pod názvem Mikro-Lötkolben k dostání za 8,90 DM u firmy Conrad (obj. číslo 81 20 48-55, v katalogu Electronic Welt 94 na s. 830).

Pokud chcete začít s technikou povrchové montáže a nemáte jinou vhodnou páječku, je zde popisovaná možnost nastavení teploty proměnným napětím u obvyklé páječky s miniaturním hrotom a malým výkonem dobrým kompromisem. Je to levné a často postačující řešení.

J. Hájek

Literatura

[1] Will, T.: SMD-Lötstation. Kompakte Temperatureinstellung für SMD-Bestückung. Elektor 1993, č. 6, s. 31 až 33.

[2] Hájek, J.: Pájení (A A řada SMT svazek 9), Praha 1993.

Indikátor vybuzení pro stereozesilovač

Na stránkách AR vyšlo několik způsobů řešení indikátoru vybuzení s využitím obvodu A277D. Jelikož tento obvod již není na trhu, použil jsem IO U267B2, který je možno koupit v prodejně KTE v Praze 1 ve Spálené ulici. Jeho cena je však podstatně vyšší (69 Kč), takže celý modul vyjde asi na 200 Kč.

Použitý obvod rozlišuje špičkovou amplitudu signálu a indikuje ji od -20 do + 3 dB. Zapojení je velmi jednoduché (obr. 1), a tím i obrazec plošných spojů. Deska s plošnými spoji je oboustranná, symetrická podle osy (obr. 2). Uspořádání součástek je shodné na obou stranách destičky – pro jeden kanál na lici, pro druhý na rubu (obr. 3). Střední spoj kladného napájecího napětí je na obou stranách a jeho propojení se zajistí buď použitím dutého nýtka v místě připojení přívodu, nebo propájením vývodu R4 v bodě „a“ na obou stranách. LED samozřejmě směřují jen jedním směrem, takže polovina diod je připojena ze strany spojů. Jsou těsně u sebe a je třeba dbát, aby byly v jedné rovině, neboť tvoří barevný pásek. Délku vývodů je možno ponechat nebo je zkrátit a celý modul se pak upevní na čelní panel distančními sloupky vhodné délky.

Vstupy se připojí k výstupům zesilovače nebo ke konektoru pro reproduktor v bodech označených šípkou.

Obr. 1 Schéma zapojení

Obr. 2 Deska s plošnými spoji a rozmištění součástek (Deska je oboustranná, viz text)

Napájecí napětí +15 V je ve většině zesilovačů k dispozici. Dioda D6 signalizuje zapnutý stav zesilovače, oba pásky LED pak současně vybuzení levého a pravého kanálu a nastavení balance. Citlivost indikace je možno ovlivnit pomocí odporů rezistorů R2 a R3. Celkový odběr modulu je 54 mA.

C8

Obr. 3. Provedení modulu (pohled shora)

Seznam součástek

R1	1,1 k Ω – 2 ks
R2, R3	51 k Ω – 4 ks
R4	680 Ω – 1 ks
C	680 nF/35 V = 2 ks – tantal. kapky
D7	KA261 – 2 ks
LED ploché 3 x 5 mm:	
D1, D2	zelená – 4 ks
D3, D6	žlutá – 3 ks
D4, D5	červená – 4 ks
IO	U267B2 – 2 ks

Literatura

[1] AR-B č. 4/84, s. 155.

Jaromír Novák

Pozn. redakce:

Jako IO lze v zapojení použít několik typů IO výrobce AEG – Telefunken, které se od sebe liší prahovými napětími pro spínání jednotlivých LED podle uvedené tabulky:
U237B: 0,2 V, 0,4 V, 0,6 V, 0,8 V, 1,0 V
U247B: 0,1 V, 0,3 V, 0,5 V, 0,7 V, 0,9 V
U257B: 0,18 V/-15 dB, 0,5 V/-6 dB, 0,84 V/-1,5 dB, 1,19 V/+1,5 dB, 2,0 V/+6 dB
U267B: 0,1 V/-20 dB, 0,3 V/-10 dB, 0,71 V/-3 dB, 1,0 V/0 dB, 1,41 V/+3 dB
Všechny obvody lze vzájemně zaměnit bez úpravy.

Kódovaný „infraovladač“ se zákaznickým IO MUFE005

Ovladač slouží jako dálkové ovládání jednoduchých úkonů, jako například zapnutí/vypnutí špatně dostupné zásuvky, spotřebiče, otevření/zavření garážových a jiných vrat a k dalším podobným účelům. Ovladač je schopen pracovat jak ve tmě, tak při plném denním či umělém osvětlení, včetně zářivkového.

Celá koncepce ovladače vychází ze zákaznického integrovaného obvodu (ZIO) MUFE005 (viz AR-A1/94), a proto existují dvě varianty ovladače: A – je jednodušší, určená pro ovládání jen jednoho ovládacího místa; B – složitější pro ovládání několika míst.

Technické parametry

Vysílač:	
Napájecí napětí:	9 V.
Proud v klidu:	10 μ A.
Proud při vysílání:	200 mA.
Přijímač:	
Napájecí napětí:	9 V.
Proud v klidu:	2 mA.
Proud při příjmu:	4 mA.
(uvádí se bez proudu případného ovládacího relé)	
Max. proud výstupem:	1 A.
Max. napětí výstupu:	35 V.

Princip kódovaného ovládání

ZIO má 23 vstupů pro binární přednastavení kódu, teoretické množství kódů je tedy 2^{23} , což je celkem 8 388 608. Na přijímací straně je ale ZIO pevně přednastaveno pro přijetí jen jednoho kódu ze všech možných, proto se možnosti obvodu zužují, máme-li zachovat rozumnou, tedy malou složitost zapojení. U varianty A je situace jednoduchá – na vysílači straně se u ZIO přednastaví natrvalo jeden kód, na přijímací straně tentýž, a vysílání se spouští přivedením + na vstup INST ZIO. U varianty B je situace poněkud složitější. Podle požadovaného vysílačního kódu musíme také přivést + na vstup INST, ale zároveň musíme navolit potřebný kód, protože na přijímací straně má každý ZIO přednastaven svůj vlastní kód, na který reaguje. Pro každý přijímací místo musí být tedy jeden přijímací ZIO. Na straně vysílače lze uvedenou situaci vyřešit následujícím způsobem podle obr. 1.

Pro každý vysílaný kód se přes rezis-

tor Ri „prizemní“ jeden ze vstupů LCi a přes oddělovací diodu Di se tento vstup připojí na INST. Na vstupy LCi se připojí ovládací prvky (klávesnice, spínače apod.). Připojením libovolného z ovládacích prvků na + se zároveň přivede + na vstup LCi, čímž se navolí kód (ostatní LCi zůstávají na 0) a zároveň se tím odstartuje vysílání kódu přivedením + na INST přes oddělovací diodu Di.

Z uvedeného vyplývá, že maximální počet ovládaných míst je 23, avšak v tom případě ztrácíme výhodu nastavení velkého počtu kódů. Připustíme-li kompromis mezi počtem ovládaných míst a maximálním počtem kódů, můžeme udělat následující: snížme počet ovládaných míst např. na 10. Pak zůstává na pevné přednastavení (bez možnosti změny) 13 vstupů LC, tedy $2^{13} - 8192$ kódů. Nás vysílač pak bude ovládat 10 různých míst s tím, že může být jedním z více než 8 tisíc ovládačů, které se navzájem nemohou ovlivnit, (mají-li oněch 13 vstupů LC přednastaveno různě). Obdobně můžeme ovládat jen 3 místa, zůstává nám již 20 vstupů LC na pevné přednastavení. Takových „neovlivňujících se“ ovládačů pak může být $2^{20} - 1\ 048\ 576$. Pravděpodobnost shody dvou pevně přednastavených kódů se tedy zmenšuje se snížováním počtu ovládaných míst. Z tohoto vyplývá koncepce našeho infraovládače – každý si může přednastavit „svůj“ kód, kompromis v finálního zařízení byl zvolen na počtu 4, ovládaná místa na úrovni 2¹⁹ přednastavitele kódů (přes půl milionu) – obr. 2.

Obr. 1. Vysílač

Obr. 2. Koncepce ovladače

Infraspojení

Celou část spojení v infračervené oblasti je třeba rozdělit na dvě části – vysílač a přijímač.

Blokové schéma je na obr. 3. Schéma zapojení vysílače je na obr. 4, schéma přijímače je na obr. 5. Vysílač obsahuje kodér s ovládacím prvkem (a). Signál z kodéru spouští generátor 20 kHz (b), jehož signál se přivádí na vlastní vysílač (c) tvorený zesilovačem a vysílacími infračervenými diodami.

Přijímač obsahuje přijímací infračervený tranzistor (d), na který je navázán tranzistorový zesilovač s kmitočtově závislou zpětnou vazbou (e). Za ním následuje tvarovač (f), který vyrábí digitální signál pro dekodér (g). Nakonec následuje výstupní logika (h) s koncovým výkonovým stupněm.

Ovládáme-li více míst jedním společným přijímačem, pak dekodérů s výstupní logikou může být připojeno na tvarovač libovolné množství.

Vysílaný kódový signál je modulován 20 kHz proto, aby se odstranil vliv sítě při osvětlení (např. zářivkami), dále pak proto, že střída signálu 20 kHz 1:3 (obr. 6) umožňuje zvětšit výkon vysílačích diod v impulsu, a tím dosáhnout většího dosahu: Zesilovač v přijímači (díky zpětné vazbě) zesiluje nejvíce právě signál o kmitočtu 20 kHz. Zesílený signálem se nabíjí kondenzátor tvarovače C. Po nabití na určité napětí vůči Ucc se otevře tranzistor T5 a na výstupu se objeví +. Součástí výstupní logiky je dělička dvěma, která po každém přijetí kódované sequenze překlopí. Na jejím výstupu pak může být např. relé, kterým již můžeme spínat 220 V pro pohon např. garážových vrat.

Pro rozšíření přijímače o jeden další kód se k MUFE005D připojí další ZIO s vlastní předvolbou a výkonovým výstupem.

Mechanické uspořádání

Vysílač i přijímač jsou navrženy na jednostranné desce s plošnými spoji o rozměrech 50 x 60 mm, přijímací fototranzistor je vhodné krýt filtrem, který odstraní dopadání parazitního viditelného spektra světla na jeho systém. Světlo totiž může zavést fototranzistor do mimoúpravní oblasti a tak zmenšit dosah spojení.

Obr. 3. Blokové schéma

Obr. 6. Vysílaný sig.

Obr. 4. Schéma přijímače

Obr. 5. Schéma vysílače

Kompletní sádu součástek, včetně desek s plošnými spoji, nebo osazené a oživené moduly dodává ELSYT s. p., K Moravíně 3, Praha 9, 190 00, tel., (02) 82 40 41, 82 08 37, pí Mile-

rová. Samotný ZIO MUFE005 dodává ASI Centrum s. r. o., Novodvorská 994, Praha 4, tel./fax (02) 47 22 164.

	sady součástek	osazené desky
Varianta A	vysílač 320,- Kč přijímač 290,- Kč	380,- Kč 350,- Kč
Varianta B	vysílač 360,- Kč	420,- Kč
cena přijímače je jako u varianty A, rozšíření o každý další kód		
	180,- Kč	220,- Kč

Nabíjení NiCd a olověných akumulátorů

V poslední době se rozrostly možnosti použití NiCd akumulátorů nejen při napájení měřicích přístrojů, ale v modelářství, u ručního elektrického náradí, bezdrátových telefonů, CB vysílačů, počítačů apod. Používají se akumulátory o kapacitě (C) od 100 mA/h převážně do 4 A/h, mnohdy jsou však znalosti uživatelů o způsobech použití, skladování a nabíjení těchto akumulátorů minimální. Proto nebude na škodu shrnout některé známé i méně známé zásady, které nás povedou k jejich účinnějšímu a ekonomičtějšímu využití. Jedná se především o režim nabíjení, protože na režimu nabíjení závisí doba života akumulátorů a možnost optimálního odběru energie.

Při nabíjení má napětí méně důležitou úlohu, proto nabíjecí zařízení, které indikuje jen napětí, nedává vlastně žádnou použitelnou informaci, protože napětí je silně závislé na nabíjecím proudu, na stáří článků, na jejich stavu, teplotě, typu i výrobci.

Když akumulátor NiCd (v dalším jen akumulátor) chceme udržovat ve stále nabitém (pohotovostním stavu), postačuje takový nabíjecí proud, který nahrazuje ztráty vzniklé samovybíjením. V tomto případě u sintrovaných akumulátorů je nabíjecí proud 0,01 až 0,05 C. Např. u akumulátoru s C=500 mA/h to bude 5 až 25 mA. Sintrované (spékáné práškové kovy) akumulátory mají větší samovybíjecí ztráty, proto proud pro stálé dobíjení bývá 0,02 až 0,1 C, tj. 10 až 50 mA u C=500 mA/h.

Modeláři většinou nepotřebují mít akumulátory v stálé pohotovosti, proto se doporučuje, aby akumulátory zůstaly po skončení použití v takovém stavu, v jakém jsou. Když přece jen potřebujeme stálou pohotovost (dlouhodobě), postačí u sintrovaných akumulátorů denně na půl až na jednu hodinu nabíjet je proudem 0,1 až 0,3 C. Stálým nabíjením akumulátorů bez občasného vybijení se vytváří jev, že se stávají „línými“, tj. po uvedení do provozu nejsou schopny odevzdat větší proud, protože na elektrodách se zvětšíly krystaly, čímž se zvětší vnitřní odpor článků. Podobný jev nastává i u akumulátorů, které byly vybité jen částečně a potom byly plně nabity. Příčina tohoto jevu je stejná, jako u předešlého případu. Naštěstí tyto neuctnosti se dají lehce odstranit tím, že články vybijeme na 0,5 až 0,8 V/článek a potom je znova nabijeme.

U akumulátorů normální nabíjení trvá 14 až 16 hodin proudem 0,1 C. U sintrovaných akumulátorů dodržovat tento čas není tak nutné, jeho překročením i o několik hodin se nic nestane. Přesto nenechávejme akumulátory zbytečně přebíjet, mohla by se zvýšit jejich teplota a mohou se poškodit.

V modelářských závodech se většinou používá metoda rychlonabíjení,

většinou však raději zůstaňme u normálního nabíjecího režimu:

– Nové nebo i dlouho nepoužité akumulátory nabíjíme alespoň dvakrát normálně a vybijeme nevelkým proudem.

– Když byl akumulátor v provozu „hluboce“ vybit, musíme vycházet z předpokladu, že u některých článků se mohla změnit polarita. V tomto případě nabíjíme proudem 0,1 C po dobu 16 h.

– Spojujeme-li články s různou „mluvostí“, také nabíjíme proudem 0,1 C po dobu 16 h.

– Jestliže jsou články velmi různé, např. po častém rychlonabíjení. Proto po max. deseti rychlonabíjeních použijeme jedno normální nabíjení.

Nezapomeňme na jednu zásadu při sestavování několika článků v baterii: celá baterie má takovou kvalitu, jako nejhorší článek v sestavě!

U zrychleného nabíjení výrobci sintrovaných akumulátorů doporučují proud 0,3 až 0,5 C, je povolen i přebíjení o 1 až 2 hod. U normálních akumulátorů tuto dobu překročit nesmíme, proto u vybitého 500 mA/h akumulátoru se doporučuje nabíjet asi 4 hodiny proudem 100 mA a potom pokračovat proudem 0,1 C.

Rychlonabíjení je možné výhradně u sintrovaných akumulátorů s kapacitou článků 500 mA/h nebo větší (proudem 1 až 5 C), tak lze dosáhnout plného nabíjení za 15 až 60 minut. Překročíme-li tuto dobu, je pravděpodobné, že poškodíme akumulátor. Proto používaným kompromisem bývá nabíjecí proud odpovídající jen asi 2 C. Při rychlonabíjení bude mít akumulátor menší kapacitu v tom případě, když budeme odebírat menší proud. V tomto případě bude jej lepší nabíjet normálně proudem 0,1 C. Při odběru většího proudu (větší motor) měření ukazuje, že kapacita akumulátoru se s rychlonabíjením zvětšuje, napětí článků bude větší, vnitřní odpor článků se zmenší. Musíme však dávat pozor na teplotu článků, při oteplení na 45 °C má akumulátor už jen 70 % kapacity.

Obr. 1. Jednoduchá „multinabíječka“

Každý, kdo pracuje s akumulátory, nezbytně potřebuje nabíjecí zařízení. Závisí na množství, kapacitě a frekvenci nabíjení, aby si každý pro sebe vybral nejhodnější model. Proto uvedeme několik možností nabíječek, jednodušších i složitějších.

Poměrně velmi jednoduchou multinabíječkou je konstrukce podle obr. 1. S její pomocí můžeme nabíjet najednou až šest akumulátorů stejného nebo různého typu, u každého nabíjeného akumulátoru můžeme nastavit individuálně nabíjecí proud, dokonce v omezené míře i rychlonabíjet, musíme však dobré hlídat nabíjecí dobu. Na čtyřech výstupech lze nabíjet proudem do 100 mA, u dvou do 500 mA. Na každém výstupu můžeme nabíjet od jednoho do deseti článků, od knoflíkových počínaje (C=250 mA) až po monočlánky (C=4 Ah) v režimu normálního nabíjení.

Použijeme transformátor 40 až 50 VA se sekundárním napětím asi 2 x 15 V/0,6 A (např. ZVS Dubnica, typ 9WN 661 17.1 nebo pod.). Střední vývod sekundárního vinutí bude sloužit jako společná zem, z jedné půlky vinutí vydělíme čtyři výstupy přes omezovací rezistory TR 521, malé drátové potenciometry TP 680 (nebo lépe WN 69170), přes diody a panelové miliampérmetry (libovolného typu – třeba bazarové – upravené na proud 100 mA) a ukončíme je miniaturními barevnými krokodýlkami.

Obr. 2. Změna napětí, teploty a tlaku během nabíjení

Druhá půlka sekundárního vinutí bude mít dva obdobné výstupy pro zařízení až 500 mA (přes panelová měřidla s rozsahem 500 mA). Na vývody bude nejvhodnější použít dvojice barevných izolovaných vodičů z plochých kabelů.

Nabíjecí dobu určíme podle uvedených zásad, musíme ji však hlídat, případně i pomocí časového spínače pro dlouhé časy. Celá nabíječka byla umístěna ve skřínce o rozměrech 190 x 150 x 80 mm. Po zapnutí nabíječky na síť „vytočíme“ potenciometry na minimum, připojíme akumulátory a příslušným potenciometrem nastavíme na měřidlech potřebné nabíjecí proudy, které se nemění během celého nabíjecího cyklu (nebo jen nepodstatně). Po uplynutí stanovené doby plně nabité akumulátoru odpojíme.

Poněkud větší péči vyžaduje rychlonabíjení. Je třeba znát stav akumulátoru, abychom se vyhnuli přebíjení, které pro akumulátor (i pro jeho majitele) představuje katastrofu.

Dobu nabíjení určujeme tak, že článek předtím vybití na 0,8 V uvedeme do provozuschopného stavu. Protože doveďme udržet konstantní nabíjecí proud, určíme i přesný čas nabíjení. Různost článku, nestejně množství zbylé energie a ztráty však vyžadují, že musíme dodat 1,1 až 1,4krát více energie. Pro bezpečnost tuto hodnotu stanovíme 1 a tak určíme dobu nabíjení. Po uplynutí této doby zmenšíme proud a tak dokončíme nabíjení:

Kapacita článků [Ah]	0,5	1,2	1,8	4
Proud 2C [A]	1	2,4	3,6	8

Theoretická nabíjecí doba:

33 až 42 minut.

Praktická nabíjecí doba: 30 minut.

Theoretickou nabíjecí dobu v minutách počítáme:

$$t = 1,1 \text{ až } 1,4 \cdot (C/I) \cdot 60 [\text{min}; \text{Ah}; \text{A}]$$

Počítáme s činitelem 1 a s touto zkrácenou dobou např. akumulátor o $C=1,2$ Ah nabíjíme 30 minut proudem 2,4 A a pak dobijíme proudem 0,1 až 0,3 C.

Jsou-li články dobré, během rychlonabíjení se neohřívají. Teprve těsně před jejich 100% nabitím začíná uvolňování kyslíku a tím se zvětšuje vnitřní tlak a zvyšuje teplota. V tomto stadiu přerušíme nabíjení. Oteplování nejlépe zjistíme doteckem, články mají mít přibližně stejnou teplotu. Když bude teplota článku značně odlišná, znamená to, že už dávno nebyly nabíjeny normálně. Ani když se po normálním nabíjení tento stav nezlepší, článek, který se silně ohřívá, bude třeba vyměnit. Jsou známa zařízení, která kontrolují teplotu a odpojí nabíjení při zvýšení teploty, hledání článku však problém není vyřešen. U zapouzdřených akumulátorů se teplota nedá dobře kontrolovat.

Již bylo řečeno, že ze samotného napětí článků mnoho nezjistíme, změna napětí článků však přece něco nazna-

čuje. Závislost mezi zvětšováním nebo zmenšováním napětí, vnitřním tlakem a teplotou během nabíjení ukazuje obr. 2. Změnu napětí během nabíjení můžeme dělit na tři úseky:

– Začátek – napětí se postupně zvětšuje.

– Nabítí – mezi nabíjením na 75 a 100 % je možno pozorovat úsek, ve kterém se napětí zvětšuje rychleji.

– Přebíjení – nastává pokles napětí.

Tyto změny (zvláště u několika článků v sérii) je možné pozorovat i DVM, ale po celou dobu bychom museli sedět u nabíjeného akumulátoru a neustále pozorovat stupnice. Proto bude výhodnější toto hlídání svěřit automaticce a tak vyloučit subjektivní – nespolehlivý – faktor. Automaticku bude řídit napětí, které při náznamu, že nastává jeho pokles, odpojí nabíjecí proud.

Na obr. 3 je diferenční metoda kontroly. Ze zdroje se řídí nabíjení 4 až 7 článků. Neinvertující vstup OZ přes filtr RC je připojen na kladný pól akumulátoru. Vstupy OZ jsou spojeny rezistorom s velkým odporem, přes který je nabíjen kvalitní fóliový kondenzátor C. Na začátku nabíjení má neinvertující vstup kladný (invertující záporný) potenciál a výstup OZ je ve stavu H, tím by otevří tranzistor T, ale jeho emitor je odpojen. Stiskneme-li tlačítko TI, zapojíme tranzistor, relé Re sepne. Jeho kontakty re1 připojí emitor T1 na zem, re2 připojí nabíjecí proud na akumulátor, LED se rozsvítí. Napětí na akumulátoru se bude zvětšovat, kondenzátor C bude mít stále větší napětí. Když je na akumulátoru dosažen stav plného napětí, dalším dobíjením se jeho napětí poněkud zmenší, na C zůstává napětí větší, OZ mění svůj stav a na jeho výstupu se objeví L, tranzistor se uzavře, relé odpadne, LED zhasne, nabíjení je ukončeno.

Aby automaticka pracovala správně, je třeba dodržovat tyto zásady:

– Automatiku připojíme jen u rychlonabíjení.

– Rychlonabíjení použijeme jen u sintrovaných akumulátorů.

– Nabíjecí proud má být alespoň 1 C, ale lépe 2 C.

– Proud v poslední fázi nabíjení nemůže být změněn.

– Nesmí být nabíjen vadný článek.

– Články musí být předem zformovány, u nových nebo dlouho skladovaných mají předcházet alespoň 2 cykly normálního nabíjení a vybíjení. Tyto články se během nabíjení mohou dostat do stavu, při němž se napětí bude rychle zvětšovat a potom se značně zmenší. Tento stav automatica špatně zaregistrouje a pak na něj falešně reaguje. Tento jev lze odstranit tak, že automatiku zapojíme po pěti až deseti minutách.

Stává se, že potřebujeme nabíjet baterie a sítové napětí není poblíž. V tomto případě můžeme k nabíjení používat jako zdroj akumulátor motorového vozidla 12 V, jsme však do určité míry omezeni jeho napětím. Když budeme nabíjet proudem odpovídajícím 2 C, konečné napětí na článek může být 1,6 až 1,8 V, a tak lze nabíjet max. 7 článků, avšak i tak se může stát u starších nabíjených akumulátorů, že ke konci nabíjecí doby pro zvětšení vnitřního odporu se nabíjecí proud zmenší.

Přímé nabíjení osmi článků může poškodit jak nabíjený, tak zdrojový akumulátor, proto raději tuto možnost použijeme až v nejkrácejší nouzi tak, že mezi automobilový akumulátor a nabíjený akumulátor zařadíme ampérmetr s rozsahem alespoň 6 A. Při zapnutí výklopy určitě půjde „za roh“, za chvíli se proud zmenší na 3 až 4 A. Po 15 až 25 minutách (podle druhu a stavu nabíjených akumulátorů) proud dosáhne minimální velikosti. Když se články oteplovaly, ihned ukončíme nabíjení. Když byl některý článek vadný, tento způsob nabíjení raději ani nezkoušejme.

Obr. 5 Měnič pro proud 2 až 2,5 A

Když máme větší počet článků, akumulátor složený z nich rozebereme a nabijíme po částech. Lepším řešením v tomto případě bude použít měnič, a tak získat větší napětí. Na obr. 4 je jednoduchý beztransformátorový měnič s obvodem 555, který kmitá na kmotku kolem 3 kHz. Na výstupu napětí zdvojujeme a dostaneme kolem 22 až 23 V, které se po zatížení (50 mA) zmenší asi na 20 V. Tím můžeme nabíjet akumulátor složený ze čtyř až čtrnácti článků.

Měnič pro rychlonabíjení je na obr. 5. Mezi záporným polem akumulátoru (uzemněný u auta) a bodem A může těcí proud kolem 25 A (při asi 20 V a mezi zemí a bodem B -8 V), takže mezi A a B dostaneme 28 V. Tranzistory jsou komplementární v Darlingtonové zapojení (60 V, 8 A), jsou připevněny na chladiči. Diody jsou použity rychlé – Schottkyho. Když na vývod 4 u obvodu 555 přivedeme záporné napětí, oscilátor přestane kmitat.

Transformátorový měnič s výkonomi tranzistory FET je na obr. 6. Transformátor měniče je navinut na feritovém hříškovém jádře o Ø 36 až 42 mm. Jedná se o autotransformátor, sekundární vinutí není odděleno od primárního. Primární vinutí má lakovaný drát o průměru 1 až 1,2 mm, obě vinutí mají 10,5 závitů, sekundární vinutí podle potřeby navineme drátem stejněho průměru, na 1 V počítáme jeden závit. Důležité je správné zapojení začátku a konce vinutí. Tranzistory FET musí mít chlazení, jsou-li odizolovány, mohou být i na společném chladiči. Diody musí být dimenzovány na 4 až 6 A a mají být rychlé.

Akumulátory během nabíjení mají mít stejný nabíjecí proud. To znamená, že jak u síťových nabíječů, tak u měničů bychom měli použít zdroj konstantního proudu.

Na obr. 7 je zdroj proudu s tranzistorem. Nabijecí proud nastavíme potenciometrem P na požadovanou velikost. Chceme-li použít větší proud, zmenšíme odpor rezistoru R, přes který protéká plný nabijecí proud. Bude-li třeba, tranzistor umístíme na chladič. Zatížení R počítáme: $P = IR$

Na obr. 7b je dvoutranzistorový zdroj proudu, kde nabíjecí proud nastavíme volbou R, rezistor určuje maximální

Obr. 6. Měnič s transformátorem a výkonovými FET

proud, potenciometrem můžeme proud zvětšovat. Celkový odpor se pohybuje mezi 100 až 200 Ω . Ztrátové výkony rezistorů R počítáme podle předešlého vzorce.

Zdroj na obr. 7c je možné zatížit až 5 A, když budou tranzistory na odpovídajícím chladiči. Při nastavení P2 „vypočíme“ na maximální odpor, trimrem P1 nastavíme největší proud, potom potenciometrem P2 můžeme měnit proud od 0,5 do 5 A.

Jako zdroj proudu můžeme použít i monolitické stabilizátory. Na obr. 8a je zdroj s obvodem 7805, změnou R je možné měnit nabíjecí proud. Bude-li IO na chladiči, zdroj můžeme zatížit až 1 A, použijeme-li 78H05 nebo LM223K až 3 A.

Na obr. 8b je použit levný regulovatelný stabilizátor LM317, kterým můžeme nastavit proud i napětí až do 1,5 A. Vzorec udává, jak určit R při regulaci proudu.

Zapojení na obr. 8c může sloužit jako zdroj proudu nejen pro akumulátory NiCd, ale i pro olověné, může dávat proud až 2 A.

Vedle uvedených stabilizátorů můžeme použít i jiné, na větší proudy: LM350K na 3 A, LM338K na 5 A – jsou však mnohem dražší.

Pro odpojovací a kontrolní automatu při rychlonabíjení použijeme zapojení podle obr. 3.

Obr. 7. Tranzistorové zdroje proudu

Pro vizuální kontrolu je výhodné, abychom do nabíjecích zařízení vestavěli měřicí přístroje.

V zájmu zformování optimální krytalické struktury povrchu elektrod NiCd akumulátorů před nabíjením je třeba akumulátor vybit na 0,8 až 0,9 V na článek. Protože vybijení má být uskutečňováno větším proudem, můžeme vybijet např. velkou autožárovkou a vybijení sledujeme digitálním voltmetrem. Tato metoda je sice levná, ale nudná a hlavně nespolehlivá. Automatickým vybijením dosáhneme lepšího a spolehlivějšího výsledku, můžeme vybit baterii složenou ze 6 až 14 článků proudem až 3 A. Vybijecím „odporem“ bude výkonový FET BUZ11, a vybijecí proud nastavíme tak, že na jeho elektrodu G přivádíme regulovatelné napětí. Vybijecí proud zůstává konstantní.

Vybijecí zařízení je na obr. 9. Při připojení akumulátoru má výstup bistabilního multivibrátoru s tranzistory T1 a T2 stav L, T3 je proto uzavřen. Po nastartování tlačítkem TI klopný obvod mění svůj stav, na jeho výstupu bude stav H a přes T3 protéká vybijecí proud. Druhá polovina IO pracuje jako komparátor a sleduje napětí akumulátoru. Na neinvertující vstup (5) je připojeno stabilizované napětí 5 V, na invertujícím vstupu (6) bude napětí děliče (o tom později). Pokud toto napětí z děliče bude větší než 5 V, výstup komparátoru bude ve stavu L. Když se však napětí (vlivem vybijení) na vstupu komparátoru zmenší pod úroveň referenčního napětí 5 V, výstup komparátoru mění svůj stav na H, překlopí se T1, T2 a uzavře se T3. Napětí na výstupu bistabilního obvodu řídíme i T4, který napájí bzučák. Při zapojení akumulátoru na začátku, kdy je T3 ještě uzavřen, zazní signál, po nastartování však umílkne, znovu však zazní po skončení vybijení.

Mezi body ABC na obr. 9 je připojen některý z děličů podle obr. 10 a nebo 10b. Nevhodou děliče 10a s potenciometrem je, že stupnice nebude lineární, při několika článkách akumulátoru budou body nastavení „husté“, nastavení bude velmi obtížné.

Výhodnější, i když komplikovanější, bude řešení podle obr. 10b, u něhož je použit otočný přepínač nebo lsostat.

Řechněme, že budeme vybijet článek na 0,9 V. Např. při sedmi článkách bude $U_{AB} = 0,9 \cdot 7 = 6,3$ V. Podle toho vypočteme, jaké bude napětí v případě šesti až čtrnácti článků. Výsledné napětí podle obr. 11 budeme dělit tak, že na R2 (1 kΩ) případně vždy přesně 5 V a zbytek bude na odporu $U_{AB} - 5 = R_x$, který se skládá z rezistoru a odporového trimru. Celý dělič umístíme na samostatnou desku s plošnými spoji a po zapojení nastavíme digitálním voltmetrem jednotlivé odpory podle výpočtu.

Nezapomeňme, že při použití stabilizátoru 7805 dostaneme na jeho výstupu 5 V jen tehdy, bude-li vstupní napětí (tedy napětí akumulátoru) alespoň 7 V, toho však ke konci vybijení p řestí nebo sedmi článkách již nedosáhneme.

Tento jev však odstraníme tím, že

Obr. 10. Děliče pro vybijec

Obr. 9. Automatické vybijecí zařízení

u vývodu 6 nastavíme takové napětí, jaké bude na vývodu 5. Budeme-li mít k dispozici jiný stabilizátor (4 V), můžeme upravit komparační obvod a tyto problémy budou odstraněny.

Výkonový FET montujeme na chladicí. Při uvádění do provozu nastavíme P2 a P3 do střední polohy, přepínač podle počtu použitých článků a připojíme akumulátor. Má zaznít signál. Stiskneme tlačítko startu, bzučák zmlkne a ampérmetr má ukázat protékající proud. Pomoci P3 proud zvětšíme (P2 zmenšíme) tak, aby při maximálním vytocení P3 měřidlo ukázalo 3 A.

Ještě jeden užitečný přístroj můžeme použít při manipulaci s akumulátory: měřič skutečné kapacity akumulátoru. Přístroj je vlastně také vybiječ akumulátoru, ale přizpůsobený k tomu, aby bylo možné zjistit, jaká je skutečná kapacita našeho akumulátoru v době měření (při různých vybijecích prudech). Zapojení tohoto užitečného přístroje bylo uveřejněno v AR B4/1990.

Protože na našem trhu se konečně objevily i hermeticky uzavřené olověné akumulátory nejrůznějšího provedení, nebude na škodu, když popísemme některé nabíječky pro tyto akumulátory. Předem je třeba říci, že u olověných akumulátorů se nemůže jednat o žádné rychlonabíjení, musíme dodržovat nabíjecí proud 0,1 C (nebo méně). Akumulátory je třeba nabíjet max. na napětí 2,4 V článek, neponechávat je vybité, nabíjet je jednou za dva měsíce a jednou za čas bude dobré je také vybit asi na 1,8 V/článek. Nabíjet je nejlepší automaticky, vybijet je možné podobně jako u akumulátorů NiCd, jen jinými prudy. Naštěstí tyto moderní akumulátory nepotřebují žádné doplňování a měření elektrolytu, jak jsme byli zvyklí u klasických olověných akumulátorů. Tyto akumulátory bývají na 6 nebo 12 V, jsou určeny především pro modeláře, jejich kapacita se pohybuje od 1,2 do 10 Ah. Nabíječky jsou určeny pro nabíjecí prudy asi 0,1 C.

Obr. 11. Výpočet děliče

Nabíječky olověných akumulátorů (na rozdíl od předešlých) nejsou zdrojem konstantního proudu, jejich nabíjecí proud je řízen napětím připojeného akumulátoru, to znamená, že při zvětšování napětí (20 až 30 %) nabíjeného akumulátoru se zmenší nabíjecí proud, což má určité výhody:

– Je možné i zformování olověných akumulátorů při uvádění do provozu podle pokynů výrobce.

– Hodí se pro nabíjení „hluboce“ vybitých, nebo delší dobu odstavených olověných akumulátorů.

– Dají se použít pro zálohované náhradní zdroje nabíjením velmi malým proudem.

– Lze je použít i pro nabíjení menším proudem než 0,1 C.

Na obr. 12 je jednoduchá automatická nabíječka pro olověný akumulátor. Transformátor si zvolíme podle předpokládaného nabíjecího proudu. Např. bude-li max. nabíjecí proud do 1 A (maximální kapacita akumulátoru

tuje akumulátor a velký proud přeruší pojistku, kterou si zvolíme tak, aby se přetavila o něco větším proudem, než maximálně použijeme při nabíjení. Proto na místě D6 zvolíme některý výkonový typ.

Na obr. 13 je tyristorová nabíječka na olověném akumulátoru. O transformátoru, diodách v můstku D1 až D4 a Po2 platí, co bylo řečeno v předešlé statii „Zapalovací“ obvod tyristoru Ty1 se skládá z R1, P1, D5. Tyristor se otevře, když na jeho řídicí elektrodě (podle použitého typu) – bude napětí o 2 až 3 V větší než je napětí na katodě (tj. napětí akumulátoru). Tyristor vede každou půlperiodu a zůstává v tomto stavu, pokud protékající proud bude větší než jeho přidržný proud. Velikost „zapalovacích“ impulsů (a tím i proud) regulujeme potenciometrem P1. Doba otevření tyristoru t je závislá na napětí akumulátoru. Na obr. 13 je průběh napětí tyristoru v závislosti na napětí akumulátoru. Když nastane stav, že

nabíjecí proud zvětšováním napětí na akumulátoru zmenší, při úplném nabíjení akumulátoru se zmenší téměř na nulu, max. nabíjecí proud a jeho pokles na minimum nastavujeme trimry P1 a P2. KL

Ročenka Rádiotechniky 1993 a Rádiotechnika 1/1988

Obr. 12. Automatická nabíječka pro olověný akumulátor

do 10 Ah), vystačíme s transformátorem asi 25 VA. V tomto případě diody D1 a D4 mohou být 1N4002 nebo pod. Pro automobilový akumulátor do 50 Ah má být transformátor 65 až 80 VA, sekundární vinutí na 5 A, diody KY710, 1N5402 nebo pod., R1 asi 0,5 Ω.

Při zapojení akumulátoru na nabíječku je P1 (drátový 2 W) nastaven na maximální odpor, do akumulátoru neteče žádný proud, otáčíme P1 a nastavíme potřebný nabíjecí proud, kterým řídíme otevíráni tranzistorů T1 a T2 v Darlingtonově zapojení. Proud akumulátoru omezuje R1 = 10 až 15 Ω/5 W. Během nabíjení se zvětšuje napětí na akumulátoru, až na trimru P2 dosáhne určité velikosti, otevří se T3 a postupně uzavírá (až do úplného uzavření) T1, T2. Tím je nabíjení ukončeno. Zařízení nastavujeme na plně nabitému akumulátoru tak, že nejprve P1 vytocíme na minimální odpor a s P2 nastavíme nabíjecí proud na nulu. Tento stav má nastat při napětí na akumulátoru 14,5 až 14,7 V.

Dioda D6 má chránit zařízení před obráceným připojením akumulátoru k nabíječce. V tomto případě D6 zkra-

kondenzátor C se přes P2 nabije na napětí, při kterém D6 začíná vést, otevří se Ty2, tím se mezi P1 a R2 zmenší napětí. Postupně se uzavírá Ty1. Dalším zvětšením napětí na akumulátoru tento proces pokračuje a v okamžiku, kdy proud Ty1 zmenší pod úroveň přidržného proudu, se Ty1 uzavře, Ty2 vede a nabíjení je ukončeno.

Nabíječku nastavujeme při plně nabitém akumulátoru. P1 nastavíme na maximální proud Ty1, P2 do stavu, kdy přes Ty1 přestane téci proud. Samočinné odpojení akumulátoru má nastat, když na něm napětí dostoupilo 14,5 až 14,7 V. To záleží i na stavu akumulátoru, na jeho stáří, atd.

Nabíječka na obr. 14 je univerzální, tj. přepínačem Př můžeme přepnout na nabíjení 6 nebo 12 voltového aku-

Obr. 13. Tyristorová nabíječka a průběh nabíjení

Obr. 14. Nabíječka na 6 a 12 V

TYP	D	U	V_c	P_{tot}	U_{DG}	U_{DS}	$+U_{\text{GS}}$	U_{DGR}	U_{GDO}	I_{D}	V_K	R_{thjC}	$R_{\text{thja+}}$	U_{DS}	U_{GS}	I_{DS}	y_{21S} [S]	$R_{\text{DS(ON)}} + [\Omega]$	$-U_{\text{GS(TO)}}$	C_I	$t_{\text{ON+}}$	P	V	Z		
IRF231		↑	POKR:	100	6	150	10	5A	<0,4+																	
IRF231R		SMnav	150mJ	25	36+	150	0	<0,25																TO	IR	31
IRF232		SMnen	SP	25	75	200R	20	8	150	1,6	10	>8A	4,8 >3		2-4	600	30+	TO	SI	TO	H	31	T1N			
IRF232R		SMnav	150mJ	100	5	150	10	5A	<0,6+		200	0	<0,25											TO	IR	31
IRF233		SMnen	SP	25	75	150R	20	8	150	1,6	10	>8A	4,8 >3		2-4	600	30+	TO	SI	H	31	T1N				
IRF233R		SMnav	150mJ	100	5	150	10	5A	<0,6+		150	0	<0,25										TO	IR	31	
IRF234		SMnav	SP	25	75	250R	20	8,1	150		10	>8,1	4,3 >2,9		2-4	600	14+	TO	H	31	T1N					
			180mJ	100	5,1	250R	20	8,1	150		10	<0,45+											TO	204AA		
IRF235		SMnav	SP	25	75	250R	20	6,5	150		10	>6,5A	4,3 >2,9		2-4	600	14+	TO	H	31	T1N					
			180mJ	100	4,1	250R	20	6,5	150		10	<0,68+											TO	204AA		
IRF236		SMnav	SP	25	75	275R	20	8,1	150		10	>8,1A	4,3 >2,9		2-4	600	14+	TO	H	31	T1N					
			180mJ	100	5,1	275R	20	8,1	150		10	<0,45+											TO	204AA		
IRF237		SMnav	SP	25	75	275R	20	6,5	150		10	>6,5A	4,3 >2,9		2-4	600	14+	TO	H	31	T1N					
			180mJ	100	4,1	275R	20	6,5	150		10	<0,68+											TO	204AA		
IRF240		SMnen	SP	25	125	200R	20	18	150	1	10	>18A	9 > 6,7		2-4	1275	30+	TO	H	31	T1N					
IRF240R		SMnav	SP	580mJ	100	200R	20	11	150	1	10	10A	<0,18+										TO	204AE		
IRF241		SMnen	SP	25	125	150R	20	18	150	1	10	>18A	9 > 6,7		2-4	1275	30+	TO	H	31	T1N					
IRF241R		SMnav	SP	580mJ	100	150	20	11	150	1	10	10A	<0,18+										TO	204AE		
IRF242		SMnen	SP	25	125	200R	20	16	150	1	10	>16A	9 > 6,7		2-4	1275	30+	TO	H	31	T1N					
IRF242R		SMnav	SP	580mJ	100	200R	20	10	150	1	10	10A	<0,22+										TO	204AE		
IRF243		SMnen	SP	25	125	150R	20	16	150	1	10	>16A	9 > 6,7		2-4	1275	30+	TO	H	31	T1N					
IRF243R		SMnav	SP	580mJ	100	150	20	10	150	1	10	10A	<0,22+										TO	204AE		
IRF244		SMnav	SP	25	125	250R	20	14	150	1	10	>14A	10 > 6,7		2-4	1300	24+	TO	H	31	T1N					
			550mJ	100	8,8	250R	20	14	150	1	10	8A	<0,28+									TO	204AA			
IRF245		SMnav	SP	25	125	250R	20	13	150	1	10	>13A	10 > 6,7		2-4	1300	24+	TO	H	31	T1N					
			550mJ	100	8	250R	20	13	150	1	10	8A	<0,34+									TO	204AA			
IRF246		SMnav	SP	25	125	275R	20	14	150	1	10	>14A	10 > 6,7		2-4	1300	24+	TO	H	31	T1N					
			550mJ	100	8,8	275R	20	14	150	1	10	8A	<0,28+									TO	204AA			
IRF247		SMnav	SP	25	125	275R	20	13	150	1	10	>13A	10 > 6,7		2-4	1300	24+	TO	H	31	T1N					
			550mJ	100	8	275R	20	13	150	1	10	8A	<0,34+									TO	204AA			
IRF250		SMnen	SP	25	150	200R	20	30	150	0,83	10	>30A	19 > 13		2-4	2000	30+	TO	H	31	T1N					
IRF250R		SMnav	SP	910mJ	100	200R	20	19	150	0,83	10	16A	<0,085+										TO	204AE		
IRF251		SMnen	SP	25	150	150R	20	30	150	0,83	10	>30A	19 > 13		2-4	2000	30+	TO	H	31	T1N					
IRF251R		SMnav	SP	910mJ	100	150	20	30	150	0,83	10	16A	<0,085+										TO	204AE		
IRF252		SMnen	SP	25	150	200R	20	25	150	0,83	10	>25A	19 > 13		2-4	2000	30+	TO	H	31	T1N					
IRF252R		SMnav	SP	910mJ	100	200R	20	16	150	0,83	10	16A	<0,12+										TO	204AE		
IRF253		SMnen	SP	25	150	150R	20	25	150	0,83	10	>25A	19 > 13		2-4	2000	30+	TO	H	31	T1N					
IRF253R		SMnav	SP	910mJ	100	150	20	16	150	0,83	10	16A	<0,12+										TO	204AE		
IRF254		SMnav	SP	25	150	250R	20	22	150	0,83	10	>22A	17 > 11		2-4	2700	29+	TO	H	31	T1N					
			1000mJ	100	14	250R	20	22	150	0,83	10	12A	<0,14+									TO	204AE			
IRF255		SMnav	SP	25	150	250R	20	20	150	0,83	10	>20A	17 > 11		2-4	2700	29+	TO	H	31	T1N					
			1000mJ	100	12	250R	20	20	150	0,83	10	12A	<0,17+									TO	204AE			
IRF256		SMnav	SP	25	150	275R	20	22	150	0,83	10	>22A	17 > 11		2-4	2700	29+	TO	H	31	T1N					
			1000mJ	100	14	275R	20	22	150	0,83	10	12A	<0,14+									TO	204AE			
IRF257		SMnav	SP	25	150	275R	20	20	150	0,83	10	>20A	17 > 11		2-4	2700	29+	TO	H	31	T1N					
			1000mJ	100	12	275R	20	20	150	0,83	10	12A	<0,17+									TO	204AE			
IRF320		SMnen	SP	25	50	400R	20	3,3	150	2,5	10	>3,3A	2,7 > 1,8		2-4	450	15+	TO	H	31	T1N					
			100	25	2,1	400R	20	3,3	150	2,5	10	1,8A	<1,8+									TO	204AA			
IRF321		SMnen	SP	25	50	350R	20	3,3	150	2,5	10	>3,3A	2,7 > 1,8		2-4	450	15+	TO	H	31	T1N					
			100	25	2,1	350R	20	3,3	150	2,5	10	1,8A	<1,8+									TO	204AA			
IRF322		SMnen	SP	25	50	400R	20	2,8	150	2,5	10	>2,8A	2,7 > 1,8		2-4	450	15+	TO	H	31	T1N					
			100	25	1,8	400R	20	2,8	150	2,5	10	1,8A	<2,5+									TO	204AA			
IRF323		SMnen	SP	25	50	350R	20	2,8	150	2,5	10	>2,8A	2,7 > 1,8		2-4	450	15+	TO	H	31						

TYP	D	U	$\frac{I}{V}$ C a	P _{tot}	U _{DG}	U _{DS}	+U _{GS}	I _D	I _K	R _{thjc}	R _{thja+}	U _{DS}	U _{GS}	I _{DS}	y _{21S} [S]	-U _{GS(TO)}	C _I	t _{ON+}	P	V	Z	
			[°C]	max [W]	U _{DGR}	U _{GD0}	max [V]	max [A]	g _{j+}	max [°C]	max [k/W]	[V]	U _{G2S+}	I _{GS+}	r _{DS(ON)} + [Ω]	[V]	max [pF]	max [ns]				
IRF323	↑	POKR:	100 25	100 25				1,8 11+				350	10 0	1,8A <0,25	<2,5+	2-4	450	45-	TO 204AA	H	31	T1N
IRF330	SMnen	SP	25	300mJ	75	400R	400	20	5,5	150	1,67		10 10 0	>5,5A 3A <0,25	4>2,9 <1+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF330R	SMnav	SP	100 25	300mJ	75	350R	350	20	5,5 3,5 22+	150	1,67		10 10 0	>5,5A 3A <0,25	4>2,9 <1+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF331	SMnen	SP	25	300mJ	75	350R	350	20	5,5 3,5 22+	150	1,67		10 10 0	>5,5A 3A <0,25	4>2,9 <1+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF332	SMnen	SP	25	300mJ	75	400R	400	20	4,5 3 18+	150	1,67		10 10 0	>4,5A 3A <0,25	4>2,9 <1,5+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF333	SMnen	SP	25	300mJ	75	350R	350	20	4,5 3 18+	150	1,67		10 10 0	>4,5A 3A <0,25	4>2,9 <1,5+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF333R	SMnav	SP	100 25	300mJ	75	350R	350	20	4,5 3 18+	150	1,67		350 0	>4,5A 3A <0,25	4>2,9 <1,5+	2-4	700	17+ 56-	TO 204AA	H SI	31	T1N
IRF340	SMnen	SP	25	520mJ	125	400R	400	20	10 6,3 40+	150	1		10 10 0	>10A 5,2A <0,25	8>5,8 <0,55+	2-4	1250	21+ 75-	TO 204AA	H SI	31	T1N
IRF341	SMnen	SP	25	520mJ	125	350R	350	20	10 6,3 40+	150	1		10 10 0	>10A 5,2A <0,25	8>5,8 <0,55+	2-4	1250	21+ 75-	TO 204AA	H SI	31	T1N
IRF341R	SMnav	SP	100 25	520mJ	125	350R	350	20	10 6,3 40+	150	1		350 0	>10A 5,2A <0,25	8>5,8 <0,55+	2-4	1250	21+ 75-	TO 204AA	H SI	31	T1N
IRF342	SMnen	SP	25	520mJ	125	400R	400	20	8,3 5,2 33+	150	1		10 10 0	>8,3A 5,2A <0,25	8>5,8 <0,8+	2-4	1250	21+ 75-	TO 204AA	H SI	31	T1N
IRF343	SMnen	SP	25	520mJ	125	350R	350	20	8,3 5,2 33+	150	1		10 10 0	>8,3A 5,2A <0,25	8>5,8 <0,8+	2-4	1250	21+ 75-	TO 204AA	H SI	31	T1N
IRF350	SMnen	SP	25	700mJ	150	400R	400	20	15 9 60+	150	0,83		10 10 0	>15A 8A <0,25	10>8 <0,3+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF350R	SMnav	SP	100 25	700mJ	150	400R	400	20	15 9 60+	150	0,83		400 0	>15A 8A <0,25	10>8 <0,3+	2-4	2000	35+ 150-	TO 204AA	H IX	31	ST, SI
IRF351	SMnen	SP	25	700mJ	150	350R	350	20	15 9 60+	150	0,83		10 10 0	>15A 8A <0,25	10>8 <0,3+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF351R	SMnav	SP	100 25	700mJ	150	350R	350	20	15 9 60+	150	0,83		350 0	>15A 8A <0,25	10>8 <0,3+	2-4	2000	35+ 150-	TO 204AA	H IX	31	ST, SI
IRF352	SMnen	SP	25	700mJ	150	400R	400	20	13 8 52+	150	0,83		10 10 0	>13A 8A <0,25	10>8 <0,4+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF352R	SMnav	SP	100 25	700mJ	150	400R	400	20	13 8 52+	150	0,83		400 0	>13A 8A <0,25	10>8 <0,4+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF353	SMnen	SP	25	700mJ	150	350R	350	20	13 8 52+	150	0,83		10 10 0	>13A 8A <0,25	10>8 <0,4+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF353R	SMnav	SP	100 25	700mJ	150	350R	350	20	13 8 52+	150	0,83		350 0	>13A 8A <0,25	10>8 <0,4+	2-4	2000	35+ 150-	TO 204AA	H IX	31	T1N
IRF360	SMnav	SP	25	980mJ	300	400R	400	20	25 16 100+	150	0,42		10 10 0	>25A 14A <0,25	21>14 <0,2+	2-4	4000	33+ 120-	TO 204AE	H	31	T1N
IRF362	SMnav	SP	25	980mJ	300	400R	400	20	22 14 88+	150	0,42		400 0	>22A 14A <0,25	21>14 <0,25+	2-4	4000	33+ 120-	TO 204AE	H	31	T1N
IRF420	SMnen	SP	25	100	50	500R	500	20	2,5 1,6 10+	150	2,5		10 10 500	>2,5A 1,4A <0,25	2,3>1,5 <3+	2-4	300	15+ 42-	TO 204AA	H	31	T1N
IRF421	SMnen	SP	25	100	50	450R	450	20	2,5 1,6 10+	150	2,5		10 10 450	>2,5A 1,4A <0,25	2,3>1,5 <3+	2-4	300	15+ 42-	TO 204AA	H	31	T1N
IRF422	SMnen	SP	25	100	50	500R	500	20	2,2 1,4 8+	150	2,5		10 10 500	>2,2A 1,4A <0,25	2,3>1,5 <4+	2-4	300	15+ 42-	TO 204AA	H	31	T1N
IRF423	SMnen	SP	25	100	50	450R	450	20	2,2 1,4 8+	150	2,5		10 10 450	>2,2A 1,4A <0,25	2,3>1,5 <4+	2-4	300	15+ 42-	TO 204AA	H	31	T1N
IRF430	SMnen	SP	25	300mJ	75	500R	500	20	4,5 3 18+	150	0,83		10 10 500	>4,5A 2,5A <0,25	3,2>2,7 <1,5+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF430R	SMnav	SP	100 25	300mJ	75	500R	500	20	4,5 3 18+	150	0,83		0	>4,5A 2,5A <0,25	3,2>2,7 <1,5+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF431	SMnen	SP	25	300mJ	75	450R	450	20	4,5 3 18+	150	0,83		10 10 450	>4,5A 2,5A <0,25	3,2>2,7 <1,5+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF431R	SMnav	SP	100 25	300mJ	75	450R	450	20	4,5 3 18+	150	0,83		0	>4,5A 2,5A <0,25	3,2>2,7 <1,5+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF432	SMnen	SP	25	300mJ	75	500R	500	20	4 2,5 16+	150	0,83		10 10 500	>4A 2,5A <0,25	3,2>2,7 <2+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF433	SMnen	SP	25	300mJ	75	450R	450	20	4 2,5 16+	150	0,83		10 10 450	>4A 2,5A <0,25	3,2>2,7 <2+	2-4	600	17+ 53-	TO 204AA	H SI	31	T1N
IRF440	SMnen	SP	25	510mJ	125	500R	500	20	8 5 32+	150	1		10 10 500	>8A 4,4A <0,25	7,5>4,9 <0,85+	2-4	1225	21+ 74-	TO 204AA	H SI	31	T1N
IRF441	SMnen	SP	25	510mJ	125	450R	450	20	8 5 32+	150	1		10 10 450	>8A 4,4A <0,25	7,5>4,9 <0,85+	2-4	1225	21+ 74-	TO 204AA	H SI	31	T1N
IRF441R	SMnav	SP	100 25	510mJ	125	450R	450	20	8 5 32+	150	1		10 10 450	>8A 4,4A <0,25	7,5>4,9 <0,85+	2-4	1225	21+ 74-	TO 204AA	H SI	31	T1N
IRF442	SMnen	SP	25	510mJ	125	500R	500	20	7 4,4 28+	150	1		10 10 500	>7A 4,4A <0,25	7,5>4,9 <1,1+	2-4	1225	21+ 74-	TO 204AA	H SI	31	T1N

Katalogy ECA

ECA

Každý servisní technik nebo vývojář se čas od času potýká s problémem identifikace nebo náhrady vadné součástky. Vytipování vadné součástky je polovina úspěchu jeho práce. Druhou polovinou je co nejpřesnější určení náhrady a samozřejmě vlastní výměna. Ne vždy lze logickou úvahou snadno vysledovat cesty a rozlišit orientaci a funkci vývodů. Pokaždé také nemáme po ruce ekvivalentní náhradu. Je nutno ji hledat, a najít takovou, aby po opravě zůstaly opravovanému zařízení (pokud možno) všechny původní parametry.

V mnoha případech se lze spolehnout na katalogy německé firmy ECA. Ta má v Evropě již dlouholetou tradici ve vydávání přehledových katalogů polovodičových součástek. Svůj věhlas si firma ziskala především precizním a přehledným zpracováním informací v katalozích. Již na dálku poznáme katalogy podle jasně žluté obálky. Také formát "ležatý A5" se stal charakteristickou vlastností. Všechny důležité texty celé edice jsou napsány v pěti jazyčích - anglicky, německy, italsky, francouzsky, španělsky.

Mezi nejznámější z edic patří úvodní katalogy VRT 1 a VRT 2. Oba obsahují informace především o tranzistorech, diodách, integrovaných obvodech, tyristorech, triacích a dalších polovodičových součástkách. VRT 1 obsahuje informace o polovodičových součástkách, jejichž označení začíná písmenovým kódem A...Z. V katalogu je uvedeno

přibližně 30 000 různých typů součástek spolu s asi 85 000 ekvivalenty. VRT 2 je určen pro polovodiče začínající označením 1N...60000...μ. Katalogy VRT 1 a VRT 2 jsou vhodné zejména pro prodejny elektrotechnických součástek a servisy, které se zabývají opravami zahraniční techniky.

Podívejme se nyní na přehlednost těchto katalogů. V úvodu jsou popsány v pěti jazyčích veškeré zkratky a použití katalogu.

Na obrázku je ukázka uspořádání informací v hlavní části katalogu. Přesto, že nadpisy sloupců nejsou v češtině, není třeba k nim co dodávat. Za zmínu však stojí způsob vyhledání zapojení vývodů součástky. Ve sloupci Bild - Fig. je např. kód 17j. Na konci katalogu jsou pod číselným označením výkresy pouzder (viz. pouzdro č.17). V tabulce nalezneme pod písmenem j zapojení vývodů u výkresu č.17 - tzn. BCEC. Pro úplnost informací je v posledním sloupci odkaz na ostatní katalogy edice, kde je možno najít podrobnější informace o typu.

Množství polovodičových součástek se zvětšuje a tak katalogy nabývají nejen na tloušťce, ale i na velikosti stránky. Nová řada

ECA katalog	počet stran	cena v SRN [DM]	MC [Kč]
vrt 1	548	35,80	552,-
vrt 2	560	35,80	552,-
DDV1	368	59,00	890,-
DDV2	282	49,00	754,-
transistor 1	282	24,80	382,-
transistor 2	442	24,80	382,-
TDV1	374	59,00	895,-
tdv 2	800	42,00	647,-
tdv 3	544	38,80	598,-
TDV4	626	69,00	998,-
lin 1	458	28,80	444,-
lin 2	256	28,80	444,-
tht 1	560	35,80	552,-
opto	122	16,80	259,-
cmos 4000	528	35,80	552,-
cmos 7400	368	30,80	475,-
TTL7400		69,00	998,-
mem	552	35,80	552,-

Tučně vytisklé katalogy jsou již nová aktualizovaná vydání formátu A4.

Typ Type · Tipo	Art Device Genre Specie	Kurzbeschreibung Short description · Description succ. Descrizione somm. · Descripción breve	Bild Fig.	Vergleichstypen Comparison types · Types d'équivalence Tipi corrispondenti · Tipos de repuesto	ECA-Bd. Volume Tome Tomo
ESM					
ESM 22-100...600	Triac	100...600V. 2,5A. Igt/Ih<40/<30mA	2m	T2303.... TAG 208....	tht
ESM 23-100...600	Triac	100...600V. 6A. Igt<80mA	22m	TAG 260.... TAG 265.... T 4700....	tht
ESM 28	Si-N	NF-L. 30V. 4A. 25W. 3MHz	17j	BD 243. BD 533. BD 539. BD 947. ++	tdv2
ESM 29	Si-P	NF-L. 30V. 4A. 25W. 3MHz	17j	BD 244. BD 534. BD 540. BD 948. ++	tdv2
ESM 168	LIN-IC	Prellschutz-Flipflop/chatter suppress.	5	—	
ESM 188M:450...750	F-Thy	TV-HA. 450...750V. 5A. Igt<60mA <2,4μs	22a	S 3703 ... (BSICC01...H. TD3F...H) ¹	tht
ESM 189M:450...750	F-Thy	TV-HA. 450...750V. 5A. Igt<60mA <5μs	22a	S 6080C ... (BSICC01...R. TD3F...R) ¹	tht
ESM 206 EV	CMOS-IC	Schrittmotorstg./stepper motor control	14-DIP	—	
ESM 217	Si-N-Darl	NF-L. 60V. 10A. 70W. >4MHz. B>1000	17j	BDT 63(A...C). BDW 93A...C. BDX 33A...D. ++	tdv2
ESM 218	Si-N-Darl	=ESM 217: 80V	17j	BDT 63A...C. BDW 93B...C. BDX 33B...D. ++	tdv2
ESM 222 R	LIN-IC	=TDA 1042: profess. Version	23(8Pin)	—	
ESM 227(A)	LIN-IC	Motorregler/speed ctrl.. 3,8...18V.1,8A	14-QIP	UL 1901	
ESM 227 N	LIN-IC	=ESM 227: Gehäuse/case/fig. →	14-QIP+d	—	

PIN-Code

Transistor + Darlington				Thyristoren, Triac, Tetroden			
1	2	3	4	1	2	3	4
a	G	B	C	a	K	G	A
b	E	C	B	b	K	A	G
c	B	C	E	c	G	A	K
d	B	E	C	d	A	K	G
e	C	B	E	e	K	A	G
f	C	E	B	f	G (A)**	K	A
g	E	B	C	g	K	Ga	A
h	E	C	B	h	Gk	A	Ga
i	B	C	E	j	A1	A2	G
							A2

katalogů má proto již formát A4, a to je již skutečný "lexikon"! Katalog TTL7400 je momentálně rozprodán a očekává se nové aktualizované vydání. Do tabulky jsme seřadili všechny díly edice, včetně aktuálních cen převzatých z ceníku firmy BEN.

Ing. Květoslav Holub

* * *

Katalogy ECA můžete zakoupit nebo objednat na dobríku v prodejně technické literatury BEN, Věžnová 5, 100 00 Praha 10 - Strašnice, tel. (02) 781 84 12, fax 782 2775.

Zájemci ze Slovenska mohou psát na adresu: BEN-technická literatura, ul. Hradce Králové 4, 974 01 Banská Bystrica, tel. (088) 350 12.

Operační zesilovače TS271

Tentokrát bych chtěl seznámit čtenáře s operačními zesilovači řady TS271. Tyto obvody jsou vyrobeny technologií CMOS a jejich vlastnosti je předurčují pro napájení malým napětím nebo z baterií. Mají výborný poměr mezi rychlostí přeběhu a odběrem proudu ze zdroje, velký vstupní odpor je srovnatelný s OZ vybavenými tranzistory J-FET na vstupu – např. s obvody řady TL081. Obvody řady TS271 se vyrábějí jako jednoduché, dvojitě a čtyřnásobné.

TS271 je jednoduchý operační zesilovač s vnějším nastavením klidového odběru a vstupní napěťové nesymetrie. Vývody jsou zapojeny stejně jako u obvodu μA776. Odběr proudu v klidu lze nastavit vnějším rezistorem zapojeným mezi vývod 8 a nulové (záporné) napájecí napětí. Klidový proud je pak asi šestinásobkem proudu protékajícího tímto rezistorem. Klidový proud se zpravidla nastavuje tak, aby obvod měl v dané aplikaci vyhovující dynamické vlastnosti. Se zmenšujícím se klidovým odběrem se

proud je nalevo od přerušované čáry a u obvodu TS271 není použit. Protože se klidový proud nedá nastavit, vyrábí se obvod TS272 ve třech variantách s klidovým odběrem asi 10, 150 a 1000 μ A pro každý systém.

Také čtyřnásobný zesilovač TS274 má standardní zapojení vývodů. Lze jej použít místo obvodů LM324 nebo TL084. Jinak platí vše, co bylo napsáno o TS272.

Základní parametry řady TS271 jsou v tab. 1. Při aplikaci obvodů je nutno si uvědomit, že mezní napájecí napětí je jen 12 V, popř. ± 6 V. Výstupní proud při zkratu na záporné napájecí napětí je asi 60 mA, při zkratu na kladné napětí asi 45 mA a je prakticky nezávislý na velikosti klidového proudu. Další zajímavou vlastností je rozsah vstupních napětí, které je OZ schopen zpracovat. Experimentálně jsem ověřil, že vstupní napětí se může pohybovat od $-0,5$ V do $U_{cc} - 1,4$ V (při nesymetrickém napájení). To umožňuje v mnoha případech zpracová-

Obr. 1. Vnitřní zapojení obvodů řady TS271

zmenšuje rychlosť přeběhu zesilovače. Ostatní vývody odpovídají běžným OZ. Vstupní napěťovou nesymetrii lze vykompenzovat odporovým trimrem zapojeným mezi vývody 1 a 5, běžec trimru pak na „nejzápornější“ napájecí napětí (vývod 4). Obvod má vnitřní kmitočtovou kompenzaci a nevyžaduje proto vnější kondenzátor.

Dvojitý zesilovač TS272 má standardní zapojení vývodů. Lze jím proto přímo nahradit známé obvody jako např. MA1458, TL082 či LM358, pokud vyhoví napájecí napětí. Tento OZ nepoužívá vnější rezistor a klidový proud je nastaven vnitřním obvodem. Vnitřní struktura jednoho zesilovače je na obr. 1. Obvod pro nastavení klidového

Obr. 2. Závislost klidového odběru proudu na teplotě

vat vstupní napětí s úrovněmi okolo 0 V bez potřeby zdroje záporného napětí. Pro TS272 a TS274 je na obr. 3 závislost klidového proudu na napájecím napětí a na obr. 2 na teplotě. Na konci typového označení jsou ještě písmena C(0 až +70

Základní parametry obvodů řady TS271

Napájecí napětí max.	12 V.
Napájecí napětí dopor.	4 až 10 V.
Vstupní napětí*	-0,3 až +12 V.
Rychlosť přeběhu (šířka pásmá)	
TS271 $I_B = 1,5 \mu$ A	0,04 V/ μ s (0,1 MHz),
$I_B = 25 \mu$ A	0,6 V/ μ s (0,7 MHz),
$I_B = 130 \mu$ A	4,5 V/ μ s (2,3 MHz),
TS272 (TS274)	5,5 V/ μ s (3,5 MHz),
TS27M2 (TS27M4)	0,6 V/ μ s (1 MHz),
TS27L2 (TS27L4)	0,04 V/ μ s (0,1 MHz).
Úroveň výstupního napětí (při $U_{cc} = 10$ V)	
H	min. +8,5 V,
L	max. +50mV.
Vstupní proud	typ. 1 pA.
Potlačení souhlasného signálu (SMR)	80 dB.
Citlivost na změnu napájecího napětí (SVR)	
TS271 ($I_B = 130 \mu$ A), TS272, TS274 ostatní	79 dB. 80 dB.

* Vstupní napětí nesmí být větší než kladné napájecí napětí

Obr. 3. Závislost klidového odběru proudu na napájecím napětí

$^{\circ}$ C), I(-40 až +105 $^{\circ}$ C) a M(-55 až +125 $^{\circ}$ C) určující rozsah pracovní teploty, dále pak N(plast), J(keramika) nebo D(plast-SMT), určující typ pouzdra a případně písmena A(<5 mV), B(<2 mV) určující maximální vstupní napěťovou nesymetrii. Není-li značeno, je nesymetrie menší než 10 mV.

Některé obvody řady TS271 nabízí firma GM electronic.

Jaroslav Belza

ANTÉNA
NA „PREMIÉRU“
(K24)

Modré svítivé diody s větším jasem

Několik let již nabízí firma Siemens jako doplňkové součástky svítivé diody s modrým svitem, vyrobené na bázi karbídu křemíku, za cenu okolo 20 DM za kus. Modré diody se používají především v lékařských analyzátorech. Další možné použití, jako modrá kontrolka sepnutých dálkových světel v automobilech, nenašlo odezvu především pro vysokou cenu diod, ale i pro poměrně malý jas. Zlepšenou výrobni technologií se však již podařilo zvětšit jas dvojnásobně a současně drasticky snížit cenu.

Při nákupu více než 10 000 kusů nabízí letos firma Siemens modré svítivé diody za cenu nižší než 2 DM. Během dvou let se má i tato cena snížit na polovinu. Proto tento výrobce rozšířuje sortiment modrých diod o další tři typy s průměrem pouzdra 5 mm, 3 mm a v provedení SMT. Zvláště diody SMT-TOPLED, ale i SMT-MULTILED se dvěma modrými čipy, se nabízejí v důsledku svých zvláštních optických vlastností jako kontrolky dálkových světel v automobilech.

Siemens je prvním výrobcem, který dodává nejen jednoduché modré svítivé diody, ale i diody ve vhodném pouzdru, které umožňuje dobrý odraz světla od pozadí. Toto provedení je vhodná alternativa kontrolních žárovek pro automobily. Pro

venkovní použití, jako např. světelné nápisu a noviny, nabízí diody s průměrem pouzdra 5 mm a úzkým vyzařovacím úhlem, jejichž jas je větší než 6 mcd při proudu 20 mA.

Všechny typy svítivých diod s modrým jasem dodává Siemens v bezbarvém (čirém) pouzdru. Jejich elektrické vlastnosti jsou v tab. 1. Jsou vyrobeny na bázi karbídu křemíku. Jejich hlavní použití je jako optický indikátor stavu, jsou vhodné pro spektroskopii a chemické analyzátoře. Diody v pouzdro P-LCC-2 jsou vhodné k osvětlování pozadí, navazování světlovodů a čoček. Jsou dodávány na „filmovém“ pásu šířky 8 mm, který je vhodný pro všechny používané techniky povrchové montáže součástek na desky s plošnými spoji. Tepelný odpor 400 K/W těchto diod platí při montáži na desku s plošnými spoji s měděnou vrstvou s plochou větší než 16 mm². Vnější provedení spolu s hlavními rozměry všech dodávaných typů diod jsou na obr. 1 a 2. Podrobné elektrické údaje mezní a charakteristické jsou v tab. 2.

Je mnoho dalších oborů, kde se vyžaduje používání modré svítivých diod. Tato skutečnost urychluje jejich technologický vývoj a cenový pokles. Je zcela jisté, že v příštích letech nebude patřit modré svítivé diody mezi exotické součástky naší mikroelektroniky. *Bližší informace – distributor fy DOE – tel./fax 02/6433765.*

Vít. Stříž

Obr. 2.

[1] Katalogové listy Siemens

Tab. 1. Základní údaje modré svítivých diod Siemens

TYP	Průměr pouzdra [mm]	Jas $I_V = 20 \text{ mA}$ [mcd]	Objednací číslo	Pouzdro (obj.)
LB 5410-G0	5	6 > 1,6	Q62703-Q5700	T 1 3/4 (1a)
LB 3331-F0	3	3 > 1,0	Q62703-Q2557	T 1 (1b)
LB T670-A0	3x3,4x2,1	0,35 > 0,1 0,65 m1m	Q62703-Q2558	SMT-TOPLED P-LCC-2 (2)

SMT-TOP-LED ® je registrovaná ochranná značka firmy Siemens

Tab. 2. Elektrické údaje světelných diod s modrým svitem LB 5410-G0, LB 3331-F0, LB T670

Mezní údaje:	
Závěrný napětí	$U_R = \text{max } 5 \text{ V}$
Propustný proud	$I_F = \text{max } 50 \text{ mA}$
Proudový náraz v propustném směru $t < 10 \mu\text{s}, D = 0,005$	$I_{FM} = \text{max } 500 \text{ mA}$
Ztrátový výkon	$P_{tot} = \text{max } 180 \text{ mW}$
Teplota přechodu	$\Delta_j = \text{max } 100 \text{ }^\circ\text{C}$

Tepelný odpor přechod-okolí	$R_{thja} = \text{max } 400 \text{ K/W}$
Rozsah pracovní teploty	$\vartheta_{top} = -55 \text{ až } +100 \text{ }^\circ\text{C}$
Rozsah skladovací teploty	$\vartheta_{stg} = -55 \text{ až } +100 \text{ }^\circ\text{C}$
Charakteristické údaje:	
Jas	
$I_F = 20 \text{ mA}$	LB5410 $I_V = \text{typ. } 6, \text{ min } 1,6 \text{ mcd}$ LB3331 $I_V = \text{typ. } 3, \text{ min } 1,0 \text{ mcd}$ LB T670 $I_V = \text{typ. } 0,35, \text{ min } 0,1 \text{ mcd}$
Vlnová délka vyzářeného světla	$\lambda = \text{typ. } 467 \text{ nm}$
Vlnová délka dominantní	$\lambda_{dom} = \text{typ. } 480 \text{ nm}$
Spektrální šířka pásmá pri 50 % $I_{rel max}$, $I_F=20 \text{ mA}$	$\Delta\lambda = \text{typ. } 75 \text{ nm}$
Vyzařovací úhel pri 50 % I_V	LB5410 $2\varphi = \text{typ. } 35^\circ$ LB3331 $2\varphi = \text{typ. } 40^\circ$ LB T670 $2\varphi = \text{typ. } 120^\circ$
Propustné napětí $I_F = 20 \text{ mA}$	$U_F = \text{typ. } 3,1; \text{ max } 4 \text{ V}$
Závěrný proud $U_R = 5 \text{ V}$	$I_R = \text{typ. } 0,01; \text{ max } 10 \mu\text{A}$
Kapacita $U_R = 0 \text{ V}, f = 1 \text{ MHz}$	$C_0 = \text{typ. } 50 \text{ pF}$

Zajímavé tremolo pro kytaru

Většina elektrických kytar má dva snímací magnety, které jsou umístěny v různých pozicích vůči kobylce. Na kytáře pak máme obvykle přepínač, kterým můžeme volit různé zabarvení zvuku podle toho, který ze snímače zapojíme na vstup zesilovače. Popsaný přípravek přepíná oba snímače, takto se dosáhne zajímavého zvukového efektu.

Zapojení pracuje principiálně tak, že paralelně ke snímacím magnetům jsou připojeny tranzistory T1 a T4, přepínače astabilním multivibrátorem. Ten, který je právě sepnut ve vodivém stavu, prakticky zkratuje snímač, na který je zapojen, a tím sníží amplitudu výstupního napětí z něj. Velikost odporu tandemového potenciometru

„hloubka“ P1A, B je odvislá od vnitřního odporu snímače a bude 1 kΩ nebo menší. Přípravek můžeme umístit přímo na kytaře spolu s další elektronickou výbavou – pak nepotřebujeme žádný speciální připojný kabel. Díky

malé spotřebě (asi 1,5 mA) vydrží baterie dlouho a její odepínání můžeme zajistit i využitím přepínačního kontaktu na zásuvce pro připojný kabel k zesilovači.

Podle YU-Radio 7-9/92 2QX

Obr. 1. Zapojení tremola. Potenciometrem P1B se řídí nastavení hloubky tónu

COMPUTER

HARDWARE & SOFTWARE
MULTIMÉDIA

hobby

Rubriku připravuje Ing. Alek Myslík. Kontakt pouze písemně na adresu: INSPIRACE, V Olšinách 11, 100 00 Praha 10

MĚŘENÍ vybíjecích charakteristik AKUMULÁTORŮ

J. Skolka ve spolupráci s firmou FCC Folprecht spol. s r. o.

Ve věku přenosných počítačů, telefonů, radiostanic a dalších přístrojů stoupá i spotřeba akumulátorů a akumulátorových baterií všeho druhu. K napájení přenosných přístrojů se nejčastěji používají akumulátorové baterie složené z nikloadmiových článků (NiCd). Životnost této baterie závisí na mnoha faktorech. Jedním z nejdůležitějších je i shodnost vybíjecí charakteristiky (a tím i ampérhodinové kapacity) všech článků v baterii. Vybíjí-li se jeden článek v baterii rychleji než ostatní, dojde k jeho přepólování vybíjecím proudem a rychlému následnému zničení. Celá baterie se pak jeví jako nepoužitelná, přestože je většina jejích článků v pořádku.

Jediný způsob, jak sestavit akumulátorovou baterii s dlouhou životností, je individuálně změřit vybíjecí charakteristiky článků. Znamená to článek nabít a měřit závislost $U_{\text{cl}} = f(t)$ (kde U_{cl} je napětí na vybíjeném článku a t je čas) při vybíjecím proudu zhruba odpovídajícím skutečným provozním podmínkám baterie. Měření se ukončí, klesne-li napětí

MĚŘENÍ * ŘÍZENÍ * OVLÁDÁNÍ POČÍTAČEM s FCC Folprecht

na článku pod 1 V. Do baterie se pak snažíme vybrat články se shodnou vybíjecí charakteristikou. Požadavek měření vybíjecí charakteristiky v podmínkách blízkých provozním je důležitý např. u akumulátorů používaných v modelech, neboť ty jsou často provozovány v extrémních podmínkách. Zapojení obvodu pro měření vybíjecí charakteristiky je na obr. 1, příklady vybíjecích charakteristik na obr. 2.

Ruční měření vybíjecích charakteristik vyžaduje pečlivou obsluhu a je náročné na čas. Nabízí se automatizace celého procesu pomocí počítače. A prá-

Obr. 1. Základní zapojení pro měření vybíjecích charakteristik

vě k tomuto účelu se výborně hodí I/O karty. Popisovaný přípravek byl zhotoven pro připojení k I/O kartě PCL-AMA,

Obr. 2. Příklad vybíjecích charakteristik článků

Přestože každý z lidí okolo počítačů dělá jako že „bébéeska“ je všeobecně známá záležitost, již mnohokrát jsem se přesvědčil, že se za suverénním používáním tohoto pojmu skrývá jen mlhavá představa o tom, co to vlastně doopravdy je a k čemu je to vůbec dobré. Ti upřímnější se pak třeba začnou opatrně vyptávat... Protože si myslím, že je to zatím přes své velmi rozsáhlé možnosti velmi málo využívaná oblast využití počítačů, napsal jsem toto povídání.

Tedy co to je „bébéeska“? BBS je zkratka z anglického Bulletin Board System, což je doslova přeloženo něco jako nástěnka nebo systém nástěnek. Její poslání je v podstatě stejně jako u klasické korkové nástěnky, kam se špendlíčky připínají různé zprávy, vyhlášky, zajímavé informace ap. - sdílení a šíření informací.

Je to něco jako klub, s knihovnou, čítárnou a nástěnkou. Můžete přijít, podívat se na nástěnce co je nového, jaké jsou příručky v článcích (bulletiny) nebo v knihách (soubory), něco si na místě přečíst, něco si „vzít“ domů. Máte-li nějaký problém, jistě v knihovně najdete nějaký materiál, který vám ho pomůže rozrešit. Pokud jste stálým návštěvníkem, máte tam někde svoji příhrádku, kde vám ostatní mohou nechat vzkazy. I vy můžete nechat vzkaz jim zase v jejich příhrádce. Chcete-li si jen tak popo-

vídat, najdete jistě nějaký diskusní kroužek na téma, které vás zajímá, a můžete si popovídat - buď na místě, nebo nechat v klubu svůj názor a příště zjistit reakce ostatních. Najdete tam i seznam všech návštěvníků klubu a můžete se s nimi spojit buď prostřednictvím klubu, nebo i mimo něj.

A to všechno můžete, aniž vytáhnete paty z domova, ze svého kresla u svého počítače. Protože to všechno umí BBS. Jak to všechno vypadá v elektronické podobě?

Do klubu musíte nějak dojet. Tuto roli zastoupí telefon a váš modem (připojený k počítači). Vytvoříte číslo a BBS se vám představí - nějakými zdvořlostními frázemi na obrazovce a samozřejmě svým jménem a místem. Poté se vás zeptá na jméno. Vytukáte ho na klávesnici svého počítače. Jste-li v klubu poprvé, zeptá se vás, chcete-li se stát čle-

nem, a při kladné odpovědi vám položí několik dalších otázek. Po jejich zodpovězení si zvolíte heslo - to bude vaše legitimace ke vstupu. Celý dialog probíhá na obrazovce počítače v textovém režimu. Nemůže se stát, že byste nevěděli jak dál, dostáváte naprostě přesné a jednoznačné instrukce. Po „vpuštění“ dovnitř máte jako nováček možnost se porozhlédnout a zjistit, co se tam všechno dá dělat. Na obrazovce je to realizováno tak, že se objeví základní menu (vypadá třeba jako na obr. 1). Můžete si obvykle prohlédnout nástěnku se základními pokyny a instrukcemi, i s aktuálními zprávami a informacemi. Zjistíte, že v klubu je bohatá knihovna, odkud si můžete ne jako v obvyklé knihovně pouze vypůjčit, ale přímo okopírovat množství zajímavých programů a textů (ty si pak prohlédnete v klidu po odchodu z BBS). Najdete i zajímavé diskusní

jejíž popis byl uveřejněn v AR 12/93. Díky kompatibilitě karty PCL-AMA funguje i s kartami ADVANTECH PCL-711, 812, 718, 818.

Celkové zapojení přípravku pro testování šesti akumulátorů je na obr. 3. Jde prakticky o multiplexer s dvojpólovými relé pro sedm měřicích míst. Šest měřicích míst je určeno pro měření napětí článků testované baterie, sedmé měřicí místo ke snímání vybíjecího proudu na měřicím odporu R9. Osmé relé spíná proudový okruh. Relé jsou ovládána přes pomocné tranzistory přímo z digitálních výstupů karty PCL-AMA (konektor K1), výstup multiplexera je připojen na analogový vstup karty (konektor K3). Vybjíjecí odpór Rz je externí. Praktické provedení přípravku může vypadat např. jako na fotografii na předchozí straně. Spodní část zařízení tvoří přímo držák akumulátorů (určeno pro velikost Baby). Na něm je upevněna deska spojující se šesti relé, zdířkami pro připojení vybíjecího odporu a konektory PSL20W. S kartou PCL-AMA (v pravé části fotografie) je zařízení spojeno dvěma plochými kably s konektory PFL20. Z karty je rovněž přivedeno napájecí napětí 12 V pro relé.

Postup měření vybíjecích charakteristik vypýlává již ze samotného principu. Po startu měření musí program zajistit sepnutí relé Re8. Pak v nastavených intervalech cyklicky spíná relé Re1 až

Obr. 3.
Zapojení
přípravku pro
testování
akumulátorů

Re7 a měří napětí na vybíjených článkích a pro kontrolu i vybíjecí proud. Naměřené hodnoty jsou ukládány do souboru. Po poklesu napětí na některém z článků pod 1 V je měření zastaveno rozepnutím relé Re8. Naměřené hodnoty lze pak zpracovat např. tabulkovým kalkulátorem (Lotus 123, Quattro, Excel) do podobného grafu jako na obr. 2.

kroužky, tzv. *konference*, a to nejen na technická téma z oblasti počítačů a programování, ale někdy i na zcela lidská téma jako je věrnost, sex, filozofie ap. A pokud vás žádné téma nezaujme, můžete založit svůj vlastní kroužek, „hadhodit“ téma a čekat, kdo se přidá. V další části BBS můžete najít třeba technické informace o nejrůznějších výrobcích, ceníky různých firem, katalogy volně šířených programů ap.

Ze začátku vám z toho půjde hlava kolem, budete tam trochu bloudit a mnohokrát se dostanete na místo, kde už jste jednou byli, přestože jste chtěli někam jinam. Tak jak v reálu bloudíte chodbami a místnostmi, v BBS bloudíte spletitým systémem menu, nabídek, které tvoří cestičku k vašemu cíli. Lze to trochu přirovnat i k orientaci ve vašem vlastním počítači - v některých adresářích máte programy, v jiných rozdělanou práci, jinde zase obrázky, a tzv. *shell*/vám umožňuje se pohodlně mezi jednotlivými adresáři pohybovat a hledat v nich. BBS je samozřejmě také takový počítač, přístupný ale všem, a obvykle několika „návštěvníkům“ současně.

Když už jste v BBS po několikáté, lepe se v ní orientujete, víte kde je co a jdete tam už za nějakým účelem. Podívat se co je nového, nechat zprávu kamarádovi, nebo si naopak vyzvednout vzkaz. Zprávy jsou na BBS *veřejné* a *soukromé*. Ktém veřejným má přístup každý návštěvník, a každý na ně také může reagovat. Soukromé zprávy jsou určené pouze určité osobě nebo skupině osob a nikdo jiný k nim nemá přístupová práva.

Co to jsou *přístupová práva*? Ne každý může všechno. Jednak proto, že to třeba ještě neumí a musí nejprve prokázat, že se to už naučil, jednak třeba proto, že není dostatečně „důvěryhodný“, nebo proto, že určité informace jsou určeny někomu jinému, jindy zase protože jde o placené služby, které si musíte nejdříve předplatit. Podle nejrůznějších kritérií a jejich splnění vám úroveň přístupových práv k jednotlivým oblastem BBS určuje částečně automaticky systém, hlavně a definitivně ale systémový operátor, tzv. *sysop* - je to šéf BBS, něco jako vedoucí klubu, knihovny a čítárny. S přístupovými právy je to stejně jako na běžné počítačové síti propojené kabelem.

Na BBS narazíte ještě na jedno omezení. Pro každou svoji „návštěvu“ a pro každý den máte určitý časový limit. Je to proto, že na rozdíl od klubu, kam můžete jednou dveřmi vejít mnoho návštěvníků, dveřmi do BBS je telefonní linka (obvykle několik), a tu držíte obsazenou po celou dobu svojí návštěvy. Aby se dostalo i na ostatní, je obvyklý časový limit 30 až 60 minut, často je to i limit na celý den, tzn. že můžete pracovat třeba 3x denně po 20 minutách, ale jen jednou denně, zdržíte-li se 60 minut.

Stanete-li se členem klubu, budete třeba chtít také svoji „příhrádku“, tzv. *mail box*. Tam máte přístup pouze vy a ti, kterým k tomu dáte souhlas (hes-

Obr.1.
Hlavní
menu
RBBS-PC

```

Check conferences for mail ([V],N)? y
Checking Message Bases...
MAIN : 8 new message(s)
RBBS-PC 17.3B Node 1

Caller # 15 * active msgs: 2 Next msg # 3 Last msg read: 2
48 min left
MAIN command <?,A,B,C,F,M,I,P,Q,R,S,T,W,X?> ?
----->>> RBBS-PC MAIN MENU RBBS-in-a-Box <<-----
MAIL SYSTEM UTILITIES ELSEWHERE
[+]Enter Messages [+]Answer Questions [+]Help (or ?) [*]Logs
[+]Kill Messages [+]Bulletins [+]Join Conferences [+]Files
[+]Personal Mail [+]Comment to Sysop [+]View Conf. Mail [+]Goodbye
[+]Read Messages [+]Initial Welcome [+]Expert on/off [*]Quit
[+]Scan Messages [+]Operator Page [*]Utilities
[+]Topic of Msgs [+]Who's on * = unavailable [*]Library

Current time: 9:56 PM Minutes remaining: 48 Security: 30
48 min left
MAIN command <?,A,B,C,F,M,I,P,Q,R,S,T,W,X?> ? - 3B ALEX MYSLIK PRAGA 21:55:22
Node 1 RUL

```

lo). Přístup se samozřejmě rozlišuje „ukládací“ a „čtecí“. To, že vám někdo může nechat vzkaz nebo nějaký materiál ve vaši příhrádce, ještě neznamená, že si také může přečíst všechno, co tam už máte. Takový *mail box* má svoje výhody. Potřebujete-li někomu něco sdělit, dáte to do jeho schránky a je to. Ne musíte stokrát za den vytáčet jeho telefonní číslo a zkoušet, jestli už je doma. Až příde domů, zavolá si BBS a „vyzvedne“ si všechnu svoji „poštu“. Také proto se tomu říká elektronická pošta, *E-mail*. Nemusíte ji samozřejmě číst na BBS, příslušné soubory si přehrajete na svůj počítač a přečtete si je později.

Nejčastěji si asi budete chtít nahrávat (*download*) některé z volně šířených programů. Bývá jich na každé BBS dost a jejich knihovnu rozšiřují sami uživatelé. Je totiž dobrým zvykem - a na některých BBS i povinností - také do společné knihovny něco nahrávat (*upload*). Třeba programy, které jste sehnali někde jinde, nebo zajímavé technické informace ap. Některé BBS sledují poměr *download/upload* jednotlivých uživatelů a upravují podle toho i jejich přístupová práva nebo časy „pobytu“.

Celou činnost BBS řídí tzv. *sysop*, systémový operátor. Tvoří organizační uspořádání a obsah BBS, sleduje obsah souborů a veřejných zpráv od uživatelů a většinou vykonává určitou cenzuru, tj. určuje které z od uživatelů nahraných souborů ponechá na BBS k obecnému přístupu a které vyřadí. Kapacita pevného disku je konečná a nelze tam nechat všechno, samozřejmě i proto, že ne vše má potřebnou „úroveň“. Sysop sleduje namátkově i komunikaci jednotlivých uživatelů a může vyřadit ty, kteří nedodržují pravidla a podmínky své účasti. Má možnost měnit konfiguraci systému, podle situace a množství uživatelů měnit přístupová práva a časy, měnit zařazení jednotlivých zpráv, bulletinů nebo programů atd. Je to mnoho práce a bylo by dobré, abyste za každou BBS viděli nejen automaticky pracující počítač, ale hlavně člověka, jejího *sysopa*. Můžete s ním kdykoli i osobně navázat kontakt, buď přímo, je-li zrovna u počítače v době vaší komunikace s BBS, nebo mu necháte dotaz či vzkaz a on se vám ozve sám, popř. nechá odpověď.

Práce s BBS má také samozřejmě svoje „háčky“. Telefonní dráty jsou jen dva a jsou „tenké“ - všechny informace

tam i zpátky musí procházet sériově a rychlosť komunikace s BBS tedy není taková, na jakou jste zvyklí u svého počítače. A vyberete-li si nějaký program, který si chcete „odnést“ nahrávat, musíte se smířit s tím, že to bude dost dlouho trvat. Umíte si to sami spočítat - při zátku ještě nejčastěji používané rychlosti 2400 Bd se v ideálním případě přenesne za sekundu $2400/8 = 300$ bajtů (znaků). Jsou v tom ale i různé provozní znaky a komunikace mezi vaším počítačem a BBS, takže ve skutečnosti je to ještě o cca 10% méně. To ovšem za předpokladu, že jde vše hladce. Jakmile je na lince rušení (a to na českých linkách tedy je), počítače si nepotvrzené bloky předávají opakováně tak dlouho, až je přenos bez chyby. A čas běží ... Jen pro orientaci, soubor o délce řekneme 100 kB se bude za dobrých podmínek přenášet asi 7 až 8 minut. A samozřejmě nejde jen o čas. Telefonní počítaadlo vám neúprosně počítá impulsy a vás účet roste. Takže ty programy zas tak úplně zádarmo nejsou.

A tak hlavně díky počítačové komunikaci byly využity všechny ty dokonalé komprimací programy (PKZIP, LHA, ARJ a další), protože poloviční délka souboru se přenáší poloviční dobu a stojí poloviční poplatky. A ze stejněho důvodu byly využity i nejrůznější dokonalé komunikační programy, které vám umožňují vytvořit si ovládací makrosoubory a co nejrychleji se jim v síti menu té které BBS dostat tam, kam potřebujete, popř. rovnou automaticky nahrávat bez vašeho zásahu na váš počítač např. všechny nové programy nebo zprávy nebo poštu (ap.) od vaší minulé „návštěvy“.

Tak to je BBS. Funguje jich už i u nás velmi mnoho, mají ji všechny počítačové časopisy (můžete jejich prostřednictvím komunikovat s redakcemi časopisů), má je hodně počítačových firem. Mohou být prostředkem obchodu s informacemi, prostředkem vlastní reklamy, ale pořád často ještě prostředkem čistého a nadšeného bezplatného šíření a sdílení informací, jako v době svého vzniku před více než deseti lety v USA.

Můžete si udělat snadno i svoji BBS. Potřebujete k tomu počítač, modem a telefonní linku. Je dostatek volně šířených programů, umožňujících téměř okamžitě začít - jeden takový popisujieme v rubrice Volně šířené programy v tomto čísle AR.

MULTIMÉDIA

PRAVIDELNÁ ČÁST COMPUTER HOBBY, PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMOU OPTOMEDIA

Tak jak získávají multimédia stále větší popularitu a využití, klesají ceny jednotlivých jejich komponentů úměrně rostoucímu počtu vyráběných kusů. Jejich dostupnost se tím tak rozšiřuje i pro ty, kteří mají hodně hluboko do kapsy, ale přesto by chtěli např. svůj počítač „slyšet“. Není to tak dlouho, co zvuková karta poprvé klesla pod 10 000 Kč, potom pod 5000 Kč, a teď už se ty nejlevnější blíží hranici 1000 Kč. S jednou takovou, umožňující ozvučení počítačových her a jiných méně náročných aplikací, jsme se díky firmě OPTOMEDIA seznámili a tímto vám ji představujeme.

ZVUKOVÁ KARTA

Karta PC Symphony je opravdu asi minimalizací toho, co je potřebné k základnímu ozvučení počítače. Na desce o rozměrech 11 x 6,5 cm, která je určena k zasunutí do osmibitového slotu, je celkem 8 integrovaných obvodů, ten „hlavní“ je YAMAHA YM3812 (popř. jeho ekvivalent). Zbývající IO jsou většinou logické obvody řady 74ALS... Na zadním panýku je konektor pro připojení sluchátek nebo reproduktorků (miniaturní stereo-jack) a otočný regulátor hlasitosti. Žádný další nastavovací prvek na desce není.

Obdobně „chudý“ je i čtyřstránkový návod, ze kterého se kromě standardního postupu instalace nedá nic užitečného ani zajímavého zjistit.

Součástí kompletu jsou dva „hi-fi“ reproduktorky ve světlých plastových krabičkách 105x75x60 mm.

Karta je kompatibilní s výrobky AdLib. Většina her i jiných „ozvučených“ programů se dá přímo nastavit na tento standard, pro některé je třeba nainstalovat ovládač (driver) AdLib. Ten není součástí PC Symphony, ale dodává ho z vlastní iniciativy jako shareware (zdarma) přímo firma Optimedia.

Praktické zkušenosti

Karta PC Symphony nemá žádné nastavovací prvky ani doprovodný software. Celá instalace tedy spočívá v jejím zasunutí do volného slotu počítače.

Aby se v počítači nějak projvila, je nutné spustit program, který spolupracuje s kartou AdLib. Protože karta neumí formát zvukových souborů .WAV, zůstanou např. Windows nadále němá.

Jak jsem se již zmínil, Optimedia dodává ke kartě sharewarový ovládač, prostřednictvím kterého karta soubory .WAV přehraje. Nainstaluje se spisovným způsobem přes Control Panel a jeho ikonu Drivers z dodané diskety (zvolíte „jiný ovládač, neuvedený v nabídce“ v nabídce Control Panelu).

Základní vlastnosti

- pro PC XT, AT, 386, 486, PS2
- 11 hlasů
- vestavěný zesilovač 4 W
- kompatibilní s AdLib Music Card
- současně 9 hlasů nebo 6 hlasů a 5 rytmů
- HW nastavení hlasitosti
- výstup buď na interní reproduktor nebo na externí stereo sluchátka nebo reproduktorky 4/8 W
- standardně dodávaná se dvěma reproduktorky

OPTOMEDIA
SPOL. S R. O.
Letenské náměstí 5, 170 00 Praha 7
tel. (02) 37 54 69, fax (02) 37 49 69

Po restartu Windows (nutném k nainstalování ovládače) se z reproduktorků určité zvuky ozvou. Jsou asi o něco lepší než ty, jež se „linou“ z vestavěného reproduktoru počítače, ale k hi-fi to má daleko. Navíc přehrávání souborů .WAV plně zaměstná počítač, takže přitom nelze dělat nic dalšího (ani přerušit přehrávání), a každá automatická (prioritní) činnost počítače (např. komunikace cache s pevným diskem) naopak přeruší s nepříjemným škrnutím přehrávání. Kvalita při tomto použití bohužel neodpovídá ani tak nízké ceně. Soubory MIDI přehrávat v této konfiguraci nejdou.

S napětím jsem proto přešel k vykoušení s aplikací, která „umí“ AdLib. Použil jsem hru Wolfenstein-3D, která

je na jedné disketě 1,4 MB ke kartě přidávána (stručný popis hry uvádíme). Výsledek poněkud napravil předchozí dojem - z reproduktorků se ozvala přijemná a čistá hudba i příslušné zvukové efekty (hudba zřetelně MIDI, zvukové efekty vzorkované). Manipulace s myší nebo klávesnicí se v reprodukci nikterak neprojevovala a vše fungovalo tak, jak by si člověk představoval, že to má být.

Třetí zkoušku, která se přímo nabízí, jsem bohužel nemohl udělat. Chtělo by to originální ovládače ke kartě AdLib a vyzkoušet PC Symphony s nimi. Bohužel je nemám.

A tak lze říci, že karta splňuje své poslání - být levným doplňkem světa her, které jejím prostřednictvím získají život a úplnost. Za tu cenu by si asi nikdo podobné zařízení sám nepostavil - a to jsou v ní ještě zahrnutý dva reproduktorky (samotné by jistě stál dvě tři stovky), a první díl jedné z nejznámějších her.

WOLFENSTEIN 3-D

(Apogee Software Productions)

Neuvěřitelně dokonalá trojrozměrná akční hra ve 256 barvách. Je druhá světová válka. Jako William „B. J.“ Blazkowicz, jeden z nejlepších rozvědčíků tajné služby spojeneckých vojsk, jste pověřeni velmi významným úkolem. Podle neověřených zpráv provádějí nacisté v podzemí Castle Hollehammeru významné pokusy. Rozkaz zní: získat materiály o těchto pokusech, které mají krycí jméno „Operation Eisenfaust“. Naneštěstí jste odhalení a deportován do podzemní věznice Castle Wolfenstein, odkud je nesmírně těžké uprchnout. Jednoho dne se vám s nezbytnou dávkou štěstí podaří přemoci stráž. Máte svůj nůž, strážníkovu pistoli a páru nábojů. Čeká vás devět pater hlídaných po zuby ozbrojenými vojáky. Dokážete se dostat na svobodu? Nezbývá vám nic jiného, než se bít o život. Časem se vám snad podaří ukořistit někde i automatickou zbraň, která vám výrazně pomůže v boji proti nacistickým vězničákům. Vás úspěch závisí nejen na přesné střelbě, ale také na důvtipu. V jednotlivých patrech musíte hledat výťah, který vás vyvezne zase o kousek blíž k modré obloze. Někde budete muset dokonce objevit i tajné dveře, které skrývají klíč k další cestě. Naprostě super VGA grafika, téměř dokonalá iluze trojrozměrného prostoru. Škoda že jde zrovna o střílení a zabíjení (vzhledem k velmi sugestivnímu zobrazení tohoto není hra vhodná pro děti).

AVerKey

Malá obrazovka počítačového monitoru není příliš vhodná pro předvádění čehokoliv většímu počtu lidí. Ještě tak jeden dva vám mohou koukat přes rameno, ale další už toho většinou moc nevidí. Prezentace připravená na notebooku je v něm „uvězněná“ a můžete ji ukázat tak nejvíce svému kolegovi (a nesmí se dívat moc ze strany). Ale téměř všude stojí nějaký televizor a velikost jeho obrazovky je už i pro kolektivní „koukaní“ vhodná. Stačí k němu jen počítač připojit.

Televizor jistě není tak kvalitním zobrazovacím zařízením jako monitor, pro měnící se obrázky je však velmi využitelný (večer se na něj nakonec vydržíte dívat dlouhé hodiny). Počítač k němu můžete připojit např. pomocí této malé krabičky s názvem AVerKey. Je to kompaktní přídavné zařízení k PC, které převede standardní VGA zobrazení do normy PAL nebo NTSC běžných videozařízení. Znamená to, že můžete nejen svoje prezentace, naskenované obrázky a multimediální „pořady“ ukazovat ostatním na velké obrazovce obyčejného televizoru, ale můžete je samozřejmě i nahrát na videokazetu ve videorekordéru.

AVerKey se připojuje vně počítače, mezi jeho VGA výstup a monitor. Monitor můžete k zařízení opět připojit a sledovat tak obraz zároveň na televizoru i monitoru. U notebooků se připojuje do konektoru pro externí monitor. Přestože většina notebooků má zatím monochro-

matický displej, výstup pro externí monitor je barevný a vás notebook bude na televizoru dělat pěkné barevné obrázky.

Zařízení umí zpracovat zobrazení VGA 640x480 s 256 až 65 536 barvami, pro systémy PAL dokonce i SVGA 800x600 (používá-li VGA karta chip Cirrus nebo Tseng ET-4000). V zařízení je vestavěn velmi užitečný *flicker filter*, který odstraňuje některé nežádoucí efekty vznikající při převodu VGA na video. Pokud jste ted někdo zklamaně poznámeni „*a 1024x768 ne?*“, je nutné si uvědomit, kolik je rozlišovací schopnost televizní obrazovky (v nejlepším případě jen o něco přesahuje základní VGA rozlišení), a že při převodu formátu 1024x768 by se už některé čáry a detaily mohly nenávratně ztratit. Zkuste si vybavit jak to dopadne, předkládá-li vám někdo v televizním vysílání příliš malá písmenka - jsou nečitelná.

Dopravný program *averkey.exe* umožňuje pomocí kombinací *Alt-Ctrl-*

šipky posouvat obraz na obrazovce televizoru ve všech směrech a nastavit tedy jeho optimální umístění. Stiskem *Alt-Ctrl-O* přepínáte dvojí způsob zobrazení - buď na celou šířku obrazovky, nebo na celou výšku obrazovky (poměr stran obrázku VGA není stejný jako poměr stran obrazovky). Program *averkey* je nutný k tomu, aby zařízení vůbec fungovalo (to z návodu nikterak nevyplývá a dost dlouho mi trvalo, než jsem na to přišel). Program zabírá v paměti asi 3 kB, na disketě je i varianta pro Windows.

AVerKey má kromě standardního vstupu a výstupu ještě vstup RGB-video, výstup S-VHS a regulaci kontrastu (šroubovákem). Je napájen z externího síťového napáječe 9 V/500 mA.

Praktické zkušenosti jsou překvapivě dobré a zařízení opravdu ve velmi dobré kvalitě zobrazuje výstup počítače na obrazovce televizoru. Cena včetně DPH je (u firmy OPTOMEDIA) těsně pod 10 000 Kč.

VOLNĚ ŠÍŘENÉ PROGRAMY

ČÁST COMPUTER HOBBY PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMAMI FCC FOLPRECHT A JIMAZ

RBBS-PC

Autor: L. D. Jones, T. Mack, RBBS-PC of Chicago, P. O. Box 127, LaGrange, IL 60525, USA.

HW/SW požadavky: libovolné PC.

RBBS-PC je jedním z nejrozšířenějších komunikačních programů BBS (Bulletin Board Service) v USA. Podle různých renomovaných časopisů je „nejpopulárnější“, „nejjednodušší“, „průmyslový standard“, „nejlepší volba“ atd. Na CD-ROM je 36. verze od doby jeho prvního zveřejnění v červnu 1983 (označená CPC17-3). S RBBS-PC je vždy šířen i zdrojový kód, což přispívá k možnosti rozšiřování a zdokonalování programu i samotními uživateli.

RBBS-PC je určen k volnému šíření, a i když je žádoucí registrace, není nutné nic platit. Hlavním záměrem autorů je podpořit volnou výměnu informací všeho druhu mezi všemi, kdo je mají, a těmi, kdo je potřebují. Je to úplný dálkově (přes telefonní linku a modem) ovladatelny komunikační systém, umožňující

- bulletiny,
- elektronickou poštu,
- výměnu souborů (*download, upload*),
- překládání dotazníků sestavených *sysopem*,
- přístup k dalším aplikacím prostřednictvím RBBS (tzv. *doorin*g),
- dálkové ovládání čehokoliu autorizovanou osobou.

RBBS-PC lze nainstalovat během maximálně deseti minut. Jenom velmi stručně, formou pouhého výčtu, uvedeme její možnosti. Není jakkoli ohrazen počet různých konferencí, počet zanechaných zpráv, počet souborů které lze na BBS nebo z ní nahrát, počet posílaných bulletinů, nejrůznějších komunikačních protokolů, externích aplikací, online dotazníků a otázek v nich. Program má 66536 úrovní bezpečnosti, může registrovat až 32767 volajících a podporuje rychlosť do 19200 baudů. Každá zpráva může mít maximálně 6128 znaků a 99 rádků, současně může BBS používat až 36 uživatelů přes 8 sériových portů jednoho počítače (multiuser). V příslušných souborech je více než 220 stránek úplné technické dokumentace a k dostání je i tištěná podrobná příručka. Privilégia a úrovně každého uživatele mohou být různé pro různé konference a oblasti. Konference mohou být veřejné (přístupné všem), soukromé (pouze pro vyjmenované účastníky nebo na heslo) a polosoukromé (pouze pro uživatele s určitou a vyšší úrovni přístupu). Každá konference může mít svůj sys-

tém menu, svoje nápovědy, příkazy, soubory pro download, zprávy a informační bulletiny.

Po přihlášení může být uživatel automaticky informován o své elektronické poště, veškeré nebo jen nové, o nových zprávách, bulletinech, nových souborech k nahrání ap.

Zanechávané zprávy mohou být veřejné, soukromé, jištěné heslem, dostupné až po přečtení sysopem, rychle přehlédnutelné s potřebnými údaji o původu a čase ap. Ke každé zprávě může být zobrazeno jméno autora a adresata, čas uložení a čas vyzvednutí zprávy, její téma, do které konference patří a jakou úroveň přístupu (bezpečnosti) vyžaduje. Podle všech těchto údajů a samozřejmě podle jakéhokoliv textového řetězce lze mezi zprávami vyhledávat. Je vestavěný jednoduchý textový editor.

Pro uložení souborů k nahrávání (*download*) může být až 10 000 adresářů a program dokáže zjistit přítomnost udaného souboru. Systém automaticky vytváří seznam souborů, které jsou k dispozici volajícím, včetně jejich krátké charakteristiky. Soubory mohou být označeny úrovní přístupu nebo heslem, potřebnými k jejich nahrání. Archivní soubory si může uživatel před případným nahráním prohlédnout. Ostatní soubory může před nahráním zkomprimovat do jednoho archivního souboru.

Ke komunikaci lze použít jednak některý ze základních interních komunikačních protokolů, jednak libovolný externí komunikační protokol.

Sysop může stanovit každému uživateli různě úrovně přístupu pro různé úkony v systému.

Systém RBBS-PC automaticky sleduje čas, dobu přihlášení uživatele, čas strávený nahráváním souborů z a do BBS, jejich poměr, a může z nich vytvářet nejrůznější omezení. Sysop může stanovovat časová omezení pro jednu „session“ a pro jeden den pro každého uživatele, v závislosti na úrovni přístupu a jiných údajích.

Program umožňuje ošetření neobvyklých, podobných i stejných jmen uživatelů, můžete vkládat různá poděkování a jiné zdvořilosti. Umí upozornit sysopa na přihlášení se určitých uživatelů. Automaticky vyřazuje z evidence uživatele po určitou (předem stanovenou) dobu neaktivní. Od prvního přihlášení si program pamatuje všechna specifika uživatele - preferovaný komunikační protokol, typ displeje, počet řádek na obrazovce, okraje a další údaje.

Sysopovi RBBS-PC umožňuje evidenci a nahrávání aktivit kterýchkoliv uživatelů, prohlížení všech zpráv, vyřazování uživatelů, vstupování do komunikace uživatele s BBS, přidělování úrovní přístupu uživatelům i objektům BBS. Kdykoliv si sysop může vyvolat veškeré údaje o uživateli a prohlížet si je, aniž by to ovlivňovalo práci uživatele. Může se stavat libovolné množství dotazníků s libovolným počtem otázek, které jsou překládány buď všem, nebo jen některým uživatelům. Na základě odpovědí uživatele mu systém sám může přidělit např. odpovídající úroveň přístupu.

RBBS-PC obsahuje automatický (volitelný) systém subskripcí (předplatného), který eviduje předplatné, jeho čerpání, upozorňuje uživatele na dočerpání předplatného, automaticky snižuje úroveň přístupu po vyčerpání předplatného.

Kompletní „běbéesku“ RBBS-PC lze získat i na CD-ROM RBBS in a box, dostupném u firmy OPTOMEDIA, který navíc k okamžitému použití pro nainstalovanou BBS, ale samozřejmě i bez ní, obsahuje přes 15 000 volně šířených programů (shareware, freeware), zabírajících po rozbalení téměř 1,4 GB. Jsou roztrídit podle témat do následujících skupin:

1 Communications, 2 Word Processing/Editors, 3 Database Management, 4 Educational, 5 Finance/Productivity, 6 Spreadsheets, 7 Languages/Programming, 8 Music/Posters/Graphics, 9 Unprotects/Patches, 10 Games/Entertainment, 11 Utilities - General, 12 Utilities - Keyboard, 13 Utilities - Disk, 14 Utilities - File, 15 Utilities - Print, 16 Utilities - Screen, 17 Utilities - Batch, 18 Science/Math/Engineer, 19 Lotus 123/Symphony, 20 Microsoft Windows, 30 Networking (LAN), 40 Desktop Publishing, 50 Turbo Pascal Prgms, 90 Miscellaneous/Info, 95 RBBS-PC System Files.

KUPÓN FCC-AR 2/94

přiložte-li tento vystřílený kupón k vaší objednávce volně šířených programů od FCC Folprecht, dostanete slevu 10%.

SHAREWARE

Programy od FCC Folprecht
si můžete objednat na adresu

FCC Folprecht, s. r. o.
Velká hradební 48
400 01 Ústí nad Labem

MisterMind

Autor: James M. Curran, 24 Green-dale Road, Cedar Grove, NJ 07009-1313, USA.

HW/SW požadavky: Windows 2.x (funguje i na 3.x) a odpovídající počítač.

Hra MisterMind je moderní varianta hry známé velmi dlouho pod různými názvy - Bagels, Bulls and Cows, nejčastěji asi jako Master Mind. Úkolem hráče je na co nejméně pokusů určit postavení různobarevných figur, zvolené protihráčem. Přitom se mu dostává jen dílčích odpovědí. Podobná varianta hry

používá místo figur a jejich barev čísla 1 až 9.

V klasické hře rozmisťuje figury protihráč - v počítačové variantě počítač, můžete tedy hrát sami. Vy se pokusíte uhodnout rozestavení, a počítač vám oznámí, kolik figur správné barvy je na správném místě (ale ne které) a pak kolik dalších figur má správnou barvu ale nejsou na správném místě.

V programu MisterMind (to i není překlep ale odlišení se od chráněného názvu) můžete rozestavět až 9 figur a vybírat z až 10 barev. Používáte myš nebo klávesnici. Uděláte-li chybu, můžete se vrátit klávesou *backspace*.

Rozehranou hru můžete uložit do souboru a dohrát ji jindy.

Hra MasterMind je tvorena jediným souborem dlouhým asi 25 kB s jednoduchým v sobě obsaženým návodem. Autor požaduje registraci s nějakým finančním příspěvkem, jeho výši nechává vaši úvaze. Program MasterMind najdete např. na CD-ROM RBBS in a Box.

418, 594 (222, -55) [0, 0, 1024, 768]

POS

Autor: David A. Feinleib, 1430 Mass. Ave., Suite 306-42, Cambridge, MA 02138, USA.

HW/SW požadavky: Windows 3.x.

Tato utilitka patří do „rodiny“ spolu s MEM, WinClock a dalšími. V jedné řádce ukazuje aktuální pozici kurzoru myši v souřadnicích X, Y, popř. další údaje. Souřadnice vycházejí z předpokladu, že levý horní roh obrazovky má souřadnice 0, 0. Dále mohou být současně zobrazovány souřadnice relativní k pracovnímu oknu právě aktivní aplikace. Nakonec třetí současně zobrazitelný údaj je velikost a souřadnice levého horního rohu okna, ve kterém se kurzor právě nalézá. Okénko s údaji je neustále vidět, nelze ho překrýt jinou aplikací. Pod položkou Preferences systémového menu lze nastavit vzhled i obsah okénka programu POS.

Registrační poplatek za POS je pouhých 5 \$. Program má 23 kB a je z CD-ROM Power Tools.

nahořu nebo dolů. Zároveň se v grafu pohybuje vodorovná přímka, jejíž umístění je úměrné průměrné (střední) zátěži. Okénko s grafem může být s nadpisem, bez nadpisu, nebo i bez rámečku. Je nastavitelná barva grafu, pozadí i přímky průměrné zátěže. Autor vtipně označuje svůj výtvor jako Postcard-ware. Nechce žádný registrační poplatek, ale prosí o pohlednici, dopis, popř. ale spřízprávou přes E-mail.

Utilitka má 85 kB a je z CD-ROM Power Tools.

FOREIGNER

Autor: L.G. Goldsborough, Brandon University, Brandon, Manitoba, Canada R7A 6A9.

HW/SW požadavky: Windows 3.x.

Foreigner je alternativou k různým programům typu *Character map*. Okénko s nastavitelným počtem „tlačítka“ (do 96) umožňuje přenášet na clipboard nebo přímo do textu znaky ze souboru ANSI nebo Symbol. Je možné si vytvořit z těchto dvou souborů vlastní sadu znaků, kterých může být třeba jen 10, v libovolném pořadí, např. těch nejčastěji používaných. Vyhledání a přenesení znaku je potom velmi rychlé. Program umí zůstat trvale viditelný, tzn. nezmizí vám „vespoď“ po návratu do původní aplikace. Z programů, které umějí vytvářet makra (WinWord, Excel, AmiPro), můžete Foreigner volat přímo. Můžete nastavit, co má udělat Foreigner po stisku tlačítka - bud se ukončí, nebo se zmenší do ikony, nebo zůstane aktivní.

Foreigner je freeware, autor nechce žádné poplatky, ale uvítá všechny přípomínky a hodnocení tohoto programku (je dlouhý 22 kB). Našli jsme ho rovněž na CD-ROM Power Tools.

INFORMANT

Autor: James Straub, P. O. Box 85, Nesconset, NY 11767, USA.

HW/SW požadavky: Windows 3.x.

Informant ukazuje „zátěž“ vašeho systému při práci ve Windows formou dvourozměrného grafu pohybujícího se v čase. Podle toho čím víc se váš počítač zrovna zabývá, stoupá křivka

Dostáváme od vás mnoho dotazů, kde si lze opatřit CD-ROM Power Tools, z kterého bylo v této rubrice v poslední době popisováno mnoho programů. Tedy - tento i další CD-ROMy s volně šířenými programy, např. tentokrát popisovaný RBBS in a box, nám půjčuje firma

která je i prodává a můžete se na ni obrátit. Některé z nich jsou i součástí kompletů pro multimédia. Ceny CD-ROM se pohybují od cca 1400 do 2500 Kč za jeden kus.

(Jednotlivé programy z této rubriky, i když jsou z CD-ROM, vám samozřejmě zašle firma FCC Folprecht.)

VYBRANÉ PROGRAMY

**COMPUTER
JIMAZ**

Clock Manager

Autor: Graphical Dynamics, Inc.,
2701 California Ave SW #301, Seattle,
WA 98136, USA.

HW/SW požadavky: Windows.

Inteligentní „superbudík“ pro Microsoft Windows. Umožňuje nastavit téměř libovolné množství alarmů: u každého se zadává čas, hlášení (zpráva, která se má zobrazit v určený čas) a volitelně melodie, která se má přehrát (buďto „odpihaná“ melodie, nebo zvukový soubor ve formátu „.WAV“). Navíc je možné v zadání okamžík automaticky spustit téměř libovolný program (pro Windows nebo pro DOS), nebo aktivovat okno již spuštěného programu (případně v závislosti na tom, zda je či není ten který program spuštěn, udělat to, nebo ono; „spustitelné operace“ zahrnují například odchod z MS Windows, restartování Windows, nebo rebootování počítače). Po spuštění programu můžete simulovat vstup z klávesnice, a to nejen běžné (alfanumerické) znaky, ale i kombinace s jakýmkoli jinými klávesami. Sekvence lze prokládat i časovými prodlevami. Uvedené schopnosti činí z Clock Manageru ideální nástroj pro automatizované spouštění rutinných úkonů pod MS Windows. Koho ani dosud vyjmenované možnosti nepresvědčily, bezpochyby kapituluje před tzv. „WIL“, tj. *Windows Interpretive Language*, která je součástí kompletu Clock Manager. Jedná se o mocný, nicméně lehce zvládnutelný strukturovaný programovací jazyk, který umožňuje psát i velmi složité „dávky“ pro MS Windows. Příměr k dávkovým souborům však pokulhává - to, co dokážete s WIL, se Vám dávkovým souborem nikdy nepodaří. Můžete totiž spouštět programy pro MS Windows (!!) i pro DOS, a to jeden po druhém, nebo jako více úloh pracujících současně, simuloval pro tyto programy vstup z klávesnice, měnit umístění a rozměry oken, zobrazovat libovolná hlášení nebo informace, vyžadovat od uživatele zadání/výbrání údajů (Ano/Ne/Nic, vstup textu,

Obrazovka
Clock
Manageru

výběr ze seznamu hodnot...), manipulovat se soubory (i číst a zapisovat), kopírovat text z a na clipboard Windows, provádět aritmetické operace a operace se znakovými řetězci, či větvit provedení dávky příkazy typu „if, then“. WIL má i prostředky pro použití DDE, multimédií a síťový provoz. A těž pozor - předefinováním chybavých hlášení v konfiguračním souboru můžete WIL přinutit, aby všechna (nejen uživatelsky definovaná, ale i interní) hlášení zobrazoval česky! Kromě buzení a časovaného spouštění programů umí Clock Manager ještě jednu užitečnou drobnost: dokáže zařídit, že se v nadpisu pracovního okna zobrazuje průběžně se aktualizující datum/čas. Hodiny jsou vidět pořád - přesouvají se vždy do okna, ve kterém právě pracujete - a přesto nezabírají ani kousínek pracovní plochy! Profesionálně zpracovaný program obsahuje i luxusní setup, který se postará o nakopírování potřebných souborů do vybraného adresáře a může upravit soubor WIN.INI tak, aby se Clock Manager spouštěl automaticky při každém spuštění Windows. Program doplňuje podrobná ilustrovaná návodová.

Registraci poplatek je 50 \$ (získáte nejnovější verzi programu bez registracních upomínek, ilustrovaný tištěný

návod a prémiovou utilitu JumpStart), zkušební lhůta činí 30 dní. Program Clock Manager zabere po rozbalení asi 1,1 MB; najdete jej na disketách 5,25DD-0121 a 5,25DD-0122 (nebo 3,5DD-0062) fy JIMAZ.

Wssindex

Autor: Bob Babcock, WSS Division of DDC, 4 Reeves Rd, Bedford, MA 01730, USA.

Wssindex je katalogový program pro evidenci souborů na disketách a discích. Program vytváří a udržuje databázi obsahující pro každý evidovaný soubor veškeré informace dostupné příkazem *dir* MS DOSu (jména souborů, délky, data/časy poslední aktualizace, atributy) a další informace. Do databáze je možné zcela automaticky zaznamenávat např. soubory z archivů ARC, ARJ, HYP, LBR, LZH, PAK, SDN, ZIP a ZOO (včetně samorozbalovacích ARJ, LZH a ZIP), u obrázků ve formátech BMP, GIF, PCX, JPEG a TIF je možné automaticky ukládat rozměry (v pixlech) a počet barev v paletě. Rozsah databáze je omezen jen kapacitou dostupné operační paměti (databáze se uchovává celá v paměti RAM) na asi 10 až 12 000 souborů. Databázi souborů je možné prohlížet interaktivně, případně její obsah tisknout seřazený podle různých kritérií (tisknutí můžete i štítky a obálky na diskety). Díky pružnému systému definičních souborů dokáže Wssindex spolupracovat téměř s libovolnou tiskárnou. Programový komplet obsahuje pro nejpoužívanější tiskárny definiční soubory už hotové, další si můžete snadno vytvořit.

Registraci poplatek je 35 \$, zkušební doba je sedesát dní. Komerční verze, Wssindex/Extended, pojme do databáze údaje až o 100 000 souborech (pod OS/2 a Windows i více). Cena tohoto programu je 50 \$. Wssindex zabírá po rozbalení přibližně 680 kB a je na disketách 5,25DD-0109 a 3,5DD-0054 fy JIMAZ.

GIFLITE

Autor: White River Software, Box 938, Unit 105, St. Catharines, ON L2R 6Z4, Canada.

HW/SW požadavky: DOS 2.2+, 75 kB místa na disku, 300 kB RAM, využívá i EMS/XMS, je-li dostupná.

Komprimační program pro soubory GIF (87a/89a), které dokáže zkomprimovat o 15-35% (!!), přičemž výsledný obrázek se dá normálně zobrazovat jako kterýkoliv nezkomprimovaný GIF. Komprimovaný GIF je lidským okem téměř nerozeznatelný od původního (přestože na náhodně vybraných obrázcích předvedl GIFLITE zcela skvělou práci, k jisté ztrátě detailu pravděpodobně za určitých okolností dojít může). Volně šířitelná verze je poněkud omezena: komprimovaný obrázek je omezen na 640x480 pixelů, navíc GIFLITE přidá ke každému komprimovanému obrázku GIF svůj header (v registrované verzi je to možné zakázat).

Registrační poplatek je 20 \$, zkušební lhůta 15 dní. Program najdete na disketu číslo 5,25DD-0060 (nebo 3,5 DD-0047) fy JIMAZ.

TVGen

Autor: BOCIAN Software, Junácká 15/1623, 169 00 Praha 6.

HW/SW požadavky: Turbo Pascal 6.0 (+Turbo Vision), přibližně 740 kB místa na disku.

Generátor zdrojových kódů, prostředek z rodiny produktů CASE (Computer Aided Software Engineering). TVGen pracuje v prostředí Turbo Vision od firmy Borland (součást Turbo Pascalu od verze 6.0) a je určen těm, kdo mají s programováním v tomto prostředí zkušenosť. Jeho cílem je pomoci odstranit rutinní práci při programování uživatelských prostředí aplikací. TVGen umožňuje interaktivní návrh dialogů, systému menu a tzv. *status line*. Podle návrhu pak vygeneruje zdrojové texty fragmentů budoucího programu (ty lze většinou použít přímo jako *include* soubory pro vytvoření aplikace). TVGen může generovat čtyři typy hlavních (samostatné

existence schopných) objektů, které autor označuje DIALOG (dialogová okénka), STATUSLINE (stavová řádka), MENU BOX a MENU BAR (dvě součásti pull-down menu systému). Tyto obsahují další objekty - statický text, tlačítka, okénka pro vstup dat, seznamy zaškrťvacích položek, popisky a další objekty známé z Turbo Vision - repertoár odpovídá Turbo Vision. Práci s programem lze charakterizovat jako nesmírně snadnou až směšně jednoduchou. Umožňuje totiž realizovat návrh jednotlivých objektů tak, jak probíhá v hlavě programátora: „...takže to bude okénko asi tak veliké, jmenovat se bude VSTOP DAT, dám sem tři tlačítka, stručný text, sem okénko pro vstup dat s popisem, horké klávesy budou asi T, X a Q...“. Na všechny údaje se program sám ptá, poloha čehokoliv se vždy nastavuje myší a opravy nejsou těžší, nežli počáteční tvorba. Program sice umožňuje pracovat v dané chvíli jen s jediným objektem, vyrovnává však tento handicap tím, že umí rozpracovaný objekt uložit na disk a později se k němu vrátit. Samotný TVGen je vytvořen rovněž v Turbo Vision (mimořádce - návod se dost často odkazuje na originální dokumentaci k Turbo Vision), vzhled si nezadá s žádným vývojovým prostředím fy Borland: pull-down menu, nápověda pro všechny položky menu, ovládání myší (nemáte-li ji k dispozici, dokáže ji program emulovat z klávesnice). Standardně se sice program hlásí anglicky, nicméně na požadání začne mluvit i česky (Kamenický i LATINSKY), nebo „cesky“. Vlastnost nadmíru příjemná, pohřichu nepříliš rozšířená... Samozřejmostí jsou ukázkové soubory, které demonstrují vymoženosti TVGen-u.

Registrační poplatek je sice všude zmiňován, ale nikde není uvedena přesná výše, zkušební lhůta není uvedena. Pozn.: jedná se o starší verzi systému TVGen, který se v současné době šíří ve verzi 2.0. Po zaplacení registračního poplatku obdrží uživatel knihovnu speciálních objektů pro Turbo Vision a demo verzi TVGen 2.0. TVGen je na disketách číslo 5,25DD-0123 nebo 3,5DD-0059 fy JIMAZ.

The Laughing Dog Screen Maker

Autor: Jeff Sloan, Yardbird Software, Box 4646, West Hills, CA 91308, USA.

HW/SW požadavky: CGA/HGC+, 512 kB RAM (vhodná je Microsoft kompatibilní myš), přibližně 620 kB místa na disku.

Screen Maker je program usnadňující tvorbu textových obrazovek. Základem systému je editor, jehož funkce nabízejí pohodlný způsob kreslení různých rámečků, čar a okének (vše v barevném provedení) a jejich úprav (včetně blokových funkcí move, cut a paste). Editor se ovládá velice snadno myší (základní příkazy lze volit jak myší, tak pomocí klávesnicové zkratky), nebo z roletového menu (každý příkaz je pečlivě popsán v kontextově orientované návědě). Editované textové obrazovky si program interně uchovává ve speciálním formátu, nabízí ale export do prostých ASCII textových a pseudografických souborů, binárních souborů, postscriptových EPS souborů pro DTP, speciálních „@color codes“ souborů použitelných v BBS systémech WildCat! a PCBoard, nebo dokonce do .COM souborů, které dotyčnou obrazovku po spuštění zobrazí a po stisku klávesy se vrátí do DOSu (s kódem stisknuté klávesy, což je výhodné při použití v dálkových souborech). Specialitou je možnost generovat zdrojový kód, obsahující vytvořenou obrazovku v několika dialektech jazyků BASIC (Microsoft Quick Basic, GW Basic a BSAVE formát), C (Microsoft C, Turbo C), Turbo PASCAL a v assembleru kompatibilním s MASM (program v zásadě vygeneruje zdrojový kód programu, který funguje stejně jako výše zmíněný soubor .COM). Při kteřémkoliv exportu lze volit mezi barevným a monochromatickým uložením. Užitečnou pomůckou je program i pro profesionální programátory. Umožňuje totiž navrhnut kompletní uživatelské rozhraní programu v textovém režimu a převést je s využitím doprovodného programu LDOGSHOW) zákazníkovi mnohem dříve, než je vytvořena byť jediná řádka zdrojového textu. Co víc, i zákazník neprogramátor se může podílet na vývoji uživatelského rozhraní, protože si dokáže sám a snadno navrhnout menu, rámečky, dialogová okénka... Další doprovodný program, LDOGRAB, umí sejmout textovou obrazovku do souboru. Tento soubor se dá načíst do editoru, tam upravit a nakonec reexportovat do požadovaného formátu (např. pro použití v DTP), nebo tisknout na postscriptových a EPSON či HP LaserJet kompatibilních tiskárnách.

Registrační poplatek je 45 \$, zkušební lhůta 30 dní. Diskety 5,25DD-0110 nebo 3,5DD-0055 fy JIMAZ.

JIMAZ spol. s r. o.

prodejna a zásilková služba

Heřmanova 37, 170 00 Praha 7

Vytvořit tabulku, jakou vidíte na obrázku, určitě nebude trvat déle než pár minut.

Pozemní radarová a radionavigační zařízení nacistického Německa v oblasti Normandie

Dokončení

X-Gerät, Y-Gerät

Stejně jako předešlé zařízení Knickebein (AR-A12/93) sloužilo i toto zařízení k navádění letadel, hlavně pak bombardérů, proti spojeneckým cílům umístěným v Anglii. Princip byl následující. Bombardéry byly řízeny jednou ze dvou stanic na výběžku Hague jedním řídícím svazkem, doplněným druhým svazkem z druhé stanice. Když byla letadla 30 km od cíle, zachytily bombardéry vysílání prvního příčného svazku jedné ze stanic v Pas-de-Calais, dále 15 km před cílem druhý svazek a 5 km před cílem pak poslední svazek, který signalizoval uvést do chodu zařízení na palubě letounu, které po odpočtu začalo svrhávat bomby na cíl (obr. 12).

Y-Gerät, neboli Wotan II sloužil výlučně pro bombardéry umístěné na základně v Poix. Stanice vysílala modulovaný signál o kmitočtu 42,5 MHz k informaci bombardérů letících na cíl. Tento signál vyznačoval dráhu, která se měla sledovat, a zároveň neustále udával uraženou vzdálenost (obr. 13).

Rádiové charakteristiky

X-Gerät:

dosa: 320 km;
kmitočet: 66 až 77 MHz;
šířka svazku: 5 obl. sekund.

Přesnost navedení na vzdálenost 320 km byla asi 10 m!! Pro čtenáře, kteří mají hlubší zájem o toto zařízení, doporučuji časopis Amatérské rádio č. 3 a 4/90, kde pod názvem „Souboj paprsků“ je velice podrobně popsáno celé zařízení, včetně protioperací Angličanů.

Bernhard (FUSAN 724, 725 obr. 14, 15, 16)

Na okraji městečka St. Pierre-Eglise umístila Luftwaffe velký radionavigační komplex. Tento pozemní vysílač byl impozantním, údajně otočným celkem. Na začátku roku 1944 byly v provozu tři tato zařízení z pěti uvažovaných, ve Francii jediné svého druhu. Toto zařízení mělo přímé spojení s dálkopisným strojem v letadlech FUG 120 Bernhardine. Po minutě předávalo zprávy s těmito údaji: identifikace vysílacích stanic, zaměření letadel vůči nim, poloha, výška a směr letu, počet letadel.

Vlastnosti tohoto zařízení byly podivuhodné, pro letadlo letící v 5000 m byl dosah přístroje asi 400 km!

Zhodnocení radarových a radionavigačních zařízení

Na závěr tohoto článku zhodnoříme úspěšnost jednotlivých zařízení v podmírkách, pro které byla konstruována, tj. v boji a válečných akcích.

Pokud jde o radarové stanice, jak pro

Obr. 13. Vysílací stanoviště navigačního zařízení „Y-Gerät“. Umístění jednotlivých vysílačů a krycí názvy:

Y 1: Cassel (Berta),
Y 2: Marguise Boursin (Gustav),
Y 3: St-Martin-aux-Buneaux (Cicero),
Y 4: Pacuel (Dora),
Y 5: Landes de Jobourg (Anton),
Y 6: La Feuille Morlaix (Emil)

Další základny, pro které sloužil uvedený systém, byla letiště v Cherbourg a Cassel. Přijímací zařízení nosily bombardéry typu He 111.

Luftwaffe, tak pro Kriegsmarine plnily velice dobře svůj účel, hlavně pak včasné výstrahy, což mělo negativní dopad na akce spojeneckých bombardérů. Technická úroveň těchto zařízení byla natolik vyspělá, že vedla Angličany k akci, při které byly získány hlavní součásti radaru Würzburg Riese, a to v noci z 27. na 28. února 1942, kdy vzdušný výsadek 120 britských parašutistů přepadl radarovou stanici na francouzském pobřeží u Brunevalu, demontoval důležité součásti a pak se pomocí rychlých člunů stáhl zpět.

Obr. 12. Princips činnosti rádiového naváděcího systému X-Gerät (bez měřítka)

Obr. 14. „Bernhard“ – radionavigační komplex, plán umístění jednotlivých objektů (měřítko 1:1000). A – jednotlivé betonové objekty s elektronikou. Zároveň sloužily jako podstavec antén. B – objekty, ve kterých byla napájecí soustrojí (elektrárny), zároveň sloužily jako pozorovací stanoviště

◀ Obr. 15. Snímek komplexu Bernhard z roku 1946(!)

▶ Obr. 16. Tentýž objekt v roce 1992

Při vylodění spojenců v Normandii však radarové stanice selhaly. Částečně díky bombardování spojenců, při němž bylo šest velkých radarových stanic zničeno, částečně pak díky rušení, takže například mezi 1. a 4. hodinou ranní v úseku mezi Barfleurem a Le Havre nefungovala ani jedna radarová stanice. Naopak radarové stanice severně od Dieppe byly záměrně ponechány v činnosti a spolu s klamnými pohyby plavidel v pobřeží Anglie byl vytvořen u Němců dojem, že vylodění v Normandii je fingované a hlavní úder přijde do prostoru Calais, čímž tisíce německých vojáků čekaly v Atlantickém valu na úder, který nikdy v prostoru Calais z moře nepřišel.

Pokud jde o radionavigační zařízení Knickebein, X-Gerät a Y-Gerät, pak konkrétně s typem X-Gerät měli Němci skvělé výsledky v přesnosti navedení bombardérů na cíl. Angličané však nespali a poměrně brzy začali s rušením naváděcích paprsků. Dopustili se však při vyhodnocování tragické chyby. Při vyhodnocování signálů X-Gerät špatně stanovili modulační kmitočet, který byl 2000 Hz, zatímco Britové používali 1500 Hz. Tato chyba měla na svého stovky lidských životů. Angličané se totiž díky tomu, že četli tajné zprávy Němcka (dešifrovacím strojem ENIGMA), dozvěděli o letecké operaci „Měsíční sonáta“, což byl nálet na Wolverhampton, Birmingham a Coventry. Díky zmíněné chybě v noci sice rušičky pracovaly, co mohly, ale pochopitelně bez účinku. Město Coventry mělo těžké ztráty na životech, o materiálních

škodách nemluvě. Angličané záhy zjistili podle přístroje vyloveného ze sestřeleného německého bombardéru u pobřeží Anglie, kde se dopustili chyby, a provedli opatření. Bohužel, pro Coventry pozdě.

Postup spojenců ve Francii vyřadil tyto naváděcí stanice, takže letadla Němců mohla být pak naváděna přímo palubními radary,imoto si nad území Anglie troufala stále méně.

Zdeněk Hák

Prameny a použitá literatura

- [1] Hubáček, M.: Invaze.
- [2] Chazette, A.: Le mur de l'Atlantique en Normandie.
- [3] Chazette, A.: Les canons de Hitler trent sur l'Angleterre.
- [4] Vlastní průzkum na místě, (r. n. komplex Bernhard).
- [5] Peček, J.: Souboj paprsků. AR-A č. 3, 4/1990.

Nový transceiver od JRC

Každý nový transceiver firmy JRC dokáže překvapit i radioamatéra na ledacos zvyklého. U nás je tato firma, zabývající se výrobou špičkových profesionálních komunikačních zařízení, mezi radioamatéry méně známá především proto, že její výrobky patří do vyšší cenové třídy. Ovšem za vyšší cenu dostává zákazník zařízení, které je oproti jiným známějším firmám vždy o krůček vpředu. Tentokrát firma překvapila transceiverem JST245 (příp. JST145, který je stejný, ale bez pásmu 56 MHz). Je to první zařízení se všemi radioamatérskými pásmi 1,8 až 56 MHz s výstupním výkonem řiditelným mezi 10 až 150 W. K přednostem patří špičkový přijímačový vstup s dynamickým rozsahem přes 100 dB, I_p 3. rádu se pohybuje v oblasti přes +20 dBm (!), což zajišťuje čtverice FET ve směšovači. Šíře pásmá je řiditelná elektronicky mezi 2,4 kHz a 800 Hz s možností použít krystalové filtry ve 2. nebo 3. mezifrekvenci, přijímač má čtyřnásobné směšování. QSK s interním klíčem umožňuje BK provoz až do rychlosti

300 zn/min., při SSB je použit vf procesor. Koncový stupeň je osazen tranzistory MOSFET, výstupní signál lze přepínat do tří připojených antén. Spínáný zdroj zajišťuje napájení ze sítě.

Dipól s trapy pro WARC pásmá

V 10. čísle časopisu Old Man 1992 popisuje HB9ALT zajímavý dipól, který by řadě našich stanic mohl posloužit jako dodatečné vybavení ke stávajícím anténám. Význam pásem WARC 10 a 18 MHz při klesající sluneční činnosti poroste – to prvé bude pásmo, kde bude možné pracovat v době zavření pásem vyšších (a tato období budou stále častější), druhé bude vedle 14 MHz nejvyšším pásmem, kde se bude odbývat v období minima a sluneční aktivity DX provoz. Dipól pro obě pásmá s velmi dobrým ČSV můžeme doplnit případně i dalším pomocným dipólem pro 24 MHz, ten nám pomůže v letní době snadno navazovat spojení při mimořádné E vrstvě. Kondenzátory v trapezech jsou z kousků souosého kabelu – musí volně viset kolmo k cívce trapu, jinak nedosáhneme dále uvedené hodnoty ČSV.

MHz	ČSV	MHz	ČSV
18,070	1,05	10,100	1,2
18,100	1,1	10,125	1,1
18,168	1,35	10,150	1,05

OK2QX

Obr. 2. Detail trapu. Souosý kabel s délkou podle kapacity (28 PF)

Měření vyzařovaných spekter vysílačů na setkání Holice 1993

Ing. Pavel Zaněk, OK1DNZ

Na mezinárodním radioamatérském setkání v Holicích 1993, konaném ve dnech 10. až 12. září 1993, probíhalo bezplatné měření parametrů radiostanic v pásmech CB, KV, VKV, UHF a 1296 MHz. Měření bylo prováděno pracovníky HTT TESLA Pardubice. Část přístrojového vybavení též zapůjčilo zastoupení firmy Rohde & Schwarz v Praze. K dispozici byly následující přístroje: Radiokomunikační testery radiostanic – Schlumberger SI 4031 a Rohde & Schwarz CMS 57, spektrální analyzátor Advantest R 3261, signální generátor Adret 7200A, třidutinový odlaďovač 643327 Kathrein pro pásmo 144 až 174 MHz a průchozí zátěž RBU 50 Ω s útlumem 30 dB Rohde & Schwarz. Toto vybavení bylo doplněno přístroji nutnými pro měření a tisk zjištovaných parametrů RDST (tiskárna Hewlett Packard 2225 AB, přípravky pro měření fázových šumů, zdroje...).

Z provedených počtů měření vyplývá, že provoz FM v pásmu 145 MHz je mezi radioamatéry velmi rozšířen a využíván. Osobně jsem měřil spektra radioamatérských vysílačů. Jelikož otázka elektromagnetické kompatibilita (EMC) je neustále aktuální, chtěl bych následující řádky věnovat zhodnocení naměřených údajů.

§ 20 Povolovacích podmínek pro amatérské rádiové stanice uvádí, že nežádoucí vyzařování vysílačů mimo minimální potřebnou šířku pásmá musí být udržováno na nejnižší dosažitelné hodnotě, odpovídající platným československým státním normám, radiokomunikačnímu rádu a doporučením CCIR. Odpovídající normou je norma „Radiostanice s úhlovou modulací pro pozemní pohyblivou službu“ – ČSN 36 7110, která zavádí normu ST SEV 4280–83 jako českou státní normu a v několika bodech ji doplňuje. Podle uvedené ČSN může úroveň nežádoucích vysokofrekvenčních úzkopásmových složek výkonu vysílače být nejvýše:

1. 2,5 μ W na harmonických kmitoč-

tech pro výkon vysílače do 25 W. – 70 dB vůči výkonu vysílače na harmonických kmitočtech při výkonech nad 25 W

2. 0,25 μ W na ostatních kmitočtech pro výkon vysílače do 25 W. – 80 dB vůči výkonu vysílače na ostatních kmitočtech při výkonu větším než 25 W.

Dále je v článku 4.3.10. uvedena metoda měření a v tabulce 5 jsou specifikovány parametry měřicích přístrojů. (Mimořáděm měření úrovně nežádoucích vf úzkopásmových složek výkonu vysílačů 145 MHz na setkáních Holice 1991, 1992 prováděné pracovníkem Inspektorátu radiokomunikací neodpovídalo výše uvedené ČSN.) A nyní stručně k popisu metody měření s konkrétním přístrojovým vybavením.

Schéma měření je uvedeno na obr. 1. Měřený TX (1) byl zakončen zátěží RBU (2) a z 30 dB odbočnice byl signál veden na třidutinový odlaďovač 643327 Kathrein (3), naladěný na pracovní kmitočet vysílače. Dále již byl připojen spektrální analyzátor Advantest R 3261 (4) s tiskárnou HP 2225 AB (5). Proměřované vysílače měly většinou výstupní výkon do 25 W. Z obrazovky analyzátoru bylo tedy možné číst absolutní úrovně nežádoucích vf úzkopásmových složek výkonu vysílače v dBm. Proměřované kmitočtové pásmo bylo nastaveno na 0 až 500 MHz (měřeno do třetí harmonické s příslušnou rezervou).

Celkem bylo měřeno 60 ks radiostanic schopných provozu FM v pásmu 145 MHz. Rozdělme nyní měřená zařízení do tří kategorií:

1. Zařízení radioamatérské konstrukce.
2. Přeladěné profesionální zařízení původně určené pro jiné pásmo.
3. Profesionální zařízení určené pro pásmo 145 MHz, schopné provozu FM.

V kategorii 1. byly proměřeny 3 ks TCVR M02 s nevhovujícím nehar-

monickým vyzařováním. Povolená mez byla překročena až 100x.

V kategorii 2. bylo změřeno 16 zařízení. Jednalo se o typy VXW 020, VNX 100, VR 20 a LEN BM 160. Zde výhově pouze dvě upravené RDST VR 20 (tedy 12,5 %). Některé RDST neúměrně překračovaly povolenou mez neharmonického vyzařování až 40 000krát!

V kategorii 3. bylo změřeno 43 ks zařízení různých výrobců (Kenwood, Alinco, Icom, Racom...). 6 ks zařízení (tedy 14,0 %) nevyhovovalo. Dále je uveden typ zařízení a kolikrát překračuje povolenou mez; FT 290RII – 1,6x neharm., TS 700S – 1,6x neharm., TR 9130 – 2x neharm., Sněžka – 2,5 až 3x harm., 2 ks R2FH – až 4x 2. harm. Jiné kusy výše uvedených typů zařízení již povolenou úroveň splňovaly. Jedná se tedy o malou rezervu v parametru oproti ČSN. Vlivem tolerancí dojde potom k nepatrnému překročení povolené meze. Některá zařízení (IC-W2E, DR 599...) vykazovala šum kolem nosné. Z časových důvodů a z důvodu změny zapojení měřicího pracoviště nebyl tento šum proměřován ve smyslu ČSN 36 7110, článek 4.3.25, resp. článek 4.3.9, i když vybavení bylo k dispozici.

Několik slov závěrem

Z uvedené statistiky jsou zřejmě následující okolnosti. 71,7 % radioamatérů používá profesionální zařízení. Lze konstatovat, že současné modely TCVR světových firem bez problémů vyhoví úrovni nežádoucích vf úzkopásmových složek podle citované ČSN. Firmy dokonce vyzkoušely dostatečnou rezervu v tomto parametru. Minimální výkon, který lze popsanou metodou zjistit, je 1 nW. Některá zařízení (CT 170) mají úroveň neharmonického vyzařování pod touto mezí! Skutečné neharmonické vyzařování je tedy více než 250x menší než připouští norma. Rovněž harmonické vyzařování bývá daleko menší než povolená mez. U CT 170 je skutečné harmonické vyzařování 400x menší než připouští ČSN.

Zbývající procenta radioamatérů používají zařízení kategorie 1. a 2. Tyto kategorie mají jednu společnou vlastnost. Autor zapojení

Obr. 1. Schéma měření nežádoucích vf úzkopásmových složek výkonu vysílače

TCVR, resp. úpravy zapojení profesionální RDST pro provoz na pásmu 145 MHz provozem FM většinou nedisponeje příslušnou, dosti drahou měřicí technikou. Zrodí se tak nové zařízení (upravená RDST), které svými parametry neodpovídá normě. Takováto zařízení jsou pak hojně reprodukovaná radioamatéry. Radioamatérůvi postačí, když se dovolá a neruší v blízkém okolí a nebo o rušení neví. Zkonstruovat nebo přestavět (provést větší úpravy) RDST tak, aby vyhovovala ČSN, bez patřičné měřicí techniky je nemožné. To by si měl uvědomit každý konstruktér. Zařízení kategorie 2) v původním určeném pásmu vyhovovala ČSN 36 7110. Degradace parametrů nastává vlastním zásahem.

Co bývá nejčastěji zdrojem ne-harmonického vyzařování? V systémech s PLL to bývá referenční krytalový oscilátor, který s kmitočtem vysílače vytváří celé intermodulační spektrum okolo kmitočtu vysílače. Má-li zařízení VFO, pak obdobným způsobem dochází k intermodulaci mezi tímto kmitočtem a kmitočtem vysílače. Stejným zásobem může docházet k vzájemným intermodulacím mezi kmitočtem hodinového krystalu systému mikroprocesorového řízení, kmitočtem modulátoru – VCXO, kmitočtem krytalového oscilátoru pro druhé směšování a kmitočty vysílače. Často též bývá přebuzen směšovač vysílače. Lokalizovat místo vzniku největší části rušivého produktu bývá doslova nesnadné a bez solidní měřicí techniky nemožné. Totéž platí i o vzájemných vazbách zdrojů kmitočtu do místa, kde k intermodulaci dochází. Někdy stačí jen relativně malý zásah a spektrum se rapidně vycistí, jindy je nutný radikální zásah.

Při nevyhovujícím harmonickém vyzařování je pomoc jednoduchá. Stačí patřičně zvětšit stupeň filtrace nebo doplnit TCVR externí dolní propustí takového rádu, aby externí filtr pomohl potlačit harmonické produkty pod stanovenou mez. Pozor na „obtékání“ filtru na vyšších kmitočtech.

Úmyslně jsem neporovnával různé typy radiostanic mezi sebou. Co se týče kvality zařízení, je nutné hodnotit celý soubor parametrů radiostanic jako poskytovaný komfort a možnosti obsluhy, kategorii radiostanice, cenu..., atd. Příspěvek na toto téma ohledně dalších parametrů uvedených v ČSN 36 7110 lze nalézt v lit. [3].

Literatura

[1] Radiostanice s úhlovou modulací pro pozemní pohyblivou službu. Typy, základní parametry, obecné technické požadavky a metody měření. ČSN 36 7110.

[2] Povolovací podmínky pro amatérské vysílací rádiové stanice.

[3] Prouza, Milan: Radioamatér a normy. Sborník příspěvků Holice 1992.

KV

Kalendář závodů na únor a březen 1994

16. 2.	AGCW Semiautomatic	CW	19.00–20.30
19.–20. 2.	ARRL DX contest	CW	00.00–24.00
19.–20. 2.	RSGB 7 MHz	CW	12.00–09.00
25. 2.	Kuwait National Day	MIX	00.00–24.00
27. 2.	OK-QRP contest	CW	06.00–07.30
26.–27. 2.	CQ WW 160 m DX contest	SSB	22.00–16.00
26.–27. 2.	French DX (REF contest)	SSB	06.00–18.00
26.–27. 2.	European Community (UBA)	CW	13.00–13.00
26.–28. 2.	YL – OM International	CW	14.00–02.00
5.–6. 3.	ARRL DX contest	SSB	00.00–24.00
6. 3.	DARC Corona 10 m	DIGI	11.00–17.00
11.–13. 3.	Japan DX contest	CW	23.00–23.00
12. 3.	OM Activity contest	MIX	05.00–07.00
12.–13. 3.	YL – ISSB QSO party	SSB	00.00–24.00
12.–13. 3.	DIG QSO Party	FONE	viz podm.
13. 3.	UBA 80 m	SSB	06.00–10.00
29.–20. 3.	Union of Club Contest	viz podm.	
29.–20. 3.	Internat. SSTV DARC	SSTV	12.00–12.00
19.–21. 3.	B. A. R. T. G. Spring	RTTY	02.00–02.00
20. 3.	U – QRQ – C	CW	02.00–08.00
26.–27. 3.	CQ WW WPX contest	SSB	00.00–24.00

Kde najdete podmínky závodů?

V kalendáři nejsou údaje o závodech, kde se nepodařilo zjistit aktualizované podmínky. Pokud je máte vy, zašlete nám je ke zveřejnění! V dřívějších ročnících červené řady Amatérského rádia v rubrice KV jsou podmínky zveřejněny takto: CQ WW 160 m, YL ISSB' er a YL–OM minutlé číslo AR, REF AR 1/91, UBA 12/92, ARRL DX 1/93, RSGB 7 MHz a AGCW Semiautomatic AR 2/92 (viz také všeobecné podm. RSGB AR 5/93), Kuwait Day AR 2/93, OK-QRP contest AR 2/90, VFDB-Z AR 10/91, UBA 80 m AR 2/92, Union of Club AR 3/92, B. A. R. T. G. AR 2/93, U–QRQ–C AR 3/91, CQ–WPX AR 2/93.

DIG QSO Party

pořádá každoročně německý klub „lovců diplomů“ jako dva samostatné závody: **FONE**: druhý víkend v březnu, CW stejně v dubnu. Závodí se v sobotu od 12.00 do 17.00 UTC na 14.125–14.3, 21.15–21.35 a 28.3–28.6 MHz SSB, event. 14.0–14.06, 21.0–21.15 a 28.0–28.2 MHz provozem CW a v neděli od 07.00 do 09.00 UTC na 3.6–3.65 a 3.7–3.775 MHz SSB nebo 3.51–3.56 MHz CW a od 09.00 do 11.00 UTC na 7.045–7.1 SSB nebo 7.0–7.035 MHz provozem CW. Závodu se mohou zúčastnit koncesovaní radioamatéři i posluchači. Předává se jen RS nebo RST, členové klubu DIG navíc své členské číslo a s jednou stanicí lze na každém pásmu navázat jedno spojení. Spojení se členem DIG se hodnotí deseti body, spojení s nečlenem klubu jedním bodem. V pásmech 10, 15 a 20 metrů se nenavazují spojení se stanicemi vlastní

země. Násobiči jsou: a) jednotliví členové DIG bez ohledu na pásmo a b) jednotlivé země DXCC na každém pásmu zvlášť. Posluchači zapisují spojení členů DIG, každého mohou mít v deníku maximálně 10x. Deníky je třeba zaslat do konce května na adresu: Karl-D. Heinen, DF2KD, Postfach 221, 53922 Kall, BRD.

Internationaler SSTV Kontest des DARC

Závodu se mohou zúčastnit všechny stanice pracující provozem SSTV, bez použití pozemních převáděčů. Povolena jsou spojení crossband a přes satelity – musí však být v deníku vyznačena. Třídy: 1–KV s jedním vysílačem, 2–KV posluchači, 3–VKV vysílací stanice, 4–VKV posluchači. Je možné se přihlásit kombinovaně – např. 1+3, 1+4, 2+4 ap., ale z jednoho stanoviště a pod jedním volacím znakem. Výzva je CQ SSTV (je možno dávat i SSB). Vyměňuje se volací znak + RST + poř. číslo od 001; posluchači zapisují volací značku, vyslané RST, vyslané číslo, značku protistanice. Pokud slyší obě stanice, zapisují oba vyslané kody. Každou stanici si mohou v deníku zaznamenat jen jednou jako stanici poslouchanou – jako protistantici je možné jednu a touž stanici zaznamenat dle libosti. Bodování: za každé spojení na KV a UKV do 400 MHz 1 bod, 400–1000 MHz 2 body, 1–2 GHz 5 bodů, nad 2 GHz 10 bodů. Násobiče ve třídách 3 a 4 nejsou, ve třídách 1 a 2 kontinenty, země DXCC a WAE. Deníky odeslete do poloviny dubna na: Alfred Schlendermann, DL9GS, Postfach 10 22 01, 4630 Bochum 1, BRD. **Pozor!** na tuto adresu se zasílají i deníky DARC Corona RTTY závodu.

Japan International DX Contest

pořádá dvakrát do roka japonský časopis „Five Nine“ s cílem navázat co nejvíce počet spojení s japonskými stanicemi. Druhý pátek od 23.00 UTC až neděle do 23.00 v březnu je CW část, v listopadu SSB část. Spojení se navazují jen s japonskými stanicemi v pásmech 3.5 až 28 MHz mimo WARC, z jednoho pásmu na druhé je možné přejít až po 10 minutách provozu, stanice může pracovat pouze s jedním signálem. **Kategorie:** A) jeden operátor (pouze 30 hodin provozu) jedno pásmo nebo všechna pásmá, B) více operátorů všechna pásmá. Vyměňuje se kód složený z RS(T) a pořadového čísla spojení, japonské stanice předávají RS(T) a číslo prefektury (1–50). **Bodování:** spojení v pásmech 3,5 a 28 MHz 2 body, na ostatních pásmech 1 bod. Násobiči jsou prefektury, dále Ogasawara, Minami Torishima a Okino Torishima na každém pásmu zvlášť. **Diplomy** obdrží vítězové z jednotlivých zemí. Deníky zašlete do měsíce po ukončení závodu na adresu: Five Nine Magazine, P. O. Box 8, Kamata, Tokyo 144, Japan. Kdo naváže spojení se všemi 47 japonskými prefekturami (mimo ostrovních 48, 49 a 50) obdrží

speciální diplom, a to bez zaslání QSL. Výsledky obdrží účastníci, kteří s deníkem zašlou obálku se zpáteční adresou (SAE) a 1 IRC.

OM Activity Contest

SZR vypisuje dlouhodobou soutěž za účelem zvýšení provozní zručnosti radioamatérů pro stanice jednotlivců a klubové stanice Slovenska i České republiky.

Termín: 1x v měsíci, vždy druhou sobotu v měsíci.

Etapy: 1. od 06.00 do 06.59 místního času provoz CW,
2. od 07.00 do 08.00 místního času provoz SSB.

Pásma: pouze 80 m úsek pro CW 3520–3560 kHz,
SSB 3700–3770 kHz.

Kategorie: 1. QRO – s doporučením maximálního výkonu 100 W,
2. QRP – maximální výkon 5 W, příkon max. 10 W.

Závod je vypsán jen pro jednotlivce, klubová stanice může být obsluhována jen jedním operátorem.

Kód: Vyměňuje se kód složený z RS(T) a pořadového čísla, spojení počinaje 001.

Bodování: za úplné spojení CW nebo SSB se počítá 1 bod. Za spojení se stejnou stanicí na obou módech se připočítává dodatkový bod – tzn. že za spojení s jednou a touž stanicí na CW i SSB jsou tři body.

Násobiče: Násobiči jsou poslední písma značky protistánice jednou za závod – tzn. maximální počet násobičů je 26.

Konečný výsledek: součet bodů se vynásobi součtem násobičů.

Hlášení: z každé etapy OM-AC se zasílá hlášení na korespondenčním lístku nejpozději v pátek po závode na adresu vyhodnocovatele:

Ivan Fraštacký – OM3IF, Levárska 9, 841 04 Bratislava 4.

Vyhodnocení: Každá etapa se vyhodnotí zvlášť a výsledky budou ohlášené ve vysílání OM3KAB (a OK1CRA). Zúčastněné stanice mohou při zaslání SASE obdržet výsledkovou listinu. Celoroční vyhodnocení bude zveřejněno v Radiožurnále a slavnostní vyhlášení prvních tří v každé kategorii bude na setkání radioamatérů ve Vysokých Tatrách. Stanice nebude hodnocena, jakmile poruší soutěžní nebo povolovací podmínky, nebo zašle hlášení neúplné, resp. po termínu (rozhodné je datum pošt. razítka).

Pozn.: Vyhodnocovatel má právo před vyhlášením celoročních výsledků si vyžádat kopii staničního deníku z určité etapy. Pokud stanice nezašle kopii deníku do 7 dnů, nebude v celoročním hodnocení klasifikována. Celoroční cyklus závodů začíná v listopadu a končí v říjnu následujícího roku.

Vzor měsíčního hlášení:

Značka stanice: OK1ABC

Měsíc a rok: únor 1994

Počet spojení CW SSB

Počet bodů CW SSB dodatkových

Počet násobičů

Výsledek (součet bodů x násobiče)

Prohlašuji na svou čest, že jsem dodržel soutěžní a povolovací podmínky. Rozhodnutí soutěžní komise považuju za konečné.

QX

Předpověď podmínek šíření KV na únor 1994

Očekávané vyhlazené průměry čísla skvrn R12 v únoru až říjnu 1994, laskavě poskytnuté Dr. A. Koeckelenberghem ze Sunspot Data Index Centre v Bruselu, zní na 43, 42, 39, 37, 35, 33, 31, 29 a 27 + 11. O málo optimističtější byly v National Geophysical Data Center v Boulderu, Colorado, s řadou 49, 48, 47, 46, 44, 43, 40, 39, 37 a 36. National Research Council poblíže Pentictonu v kanadské provincii Britská Kolumbie dodal pro stejné období předpověď slunečního toku: 120, 122, 121, 120, 119, 116, 113, 113 a 110. Stále je v posledním případě patrný předpoklad živějšího vývoje a vzestupu sluneční radiace během letošního jara. O něco lepší proti vypočteným by celkově měly být i podmínky šíření KV na většině rozsahu, jak je obvyklé, převládá-li celkově vzestup mýry ionizace v ionosféře nad rekombinací.

I na nejkratších pásmech KV včetně desetimetrového dojde v lepších dnech ke kratšímu odpolednímu otevření transatlantické trasy z Evropy až na severovýchodní pobřeží USA a Kanady a jeho pravděpodobnost poroste s tím, jak nad ní bude později a později zapadat a z většího úhlu svítit Slunce. Většinou budou výskytu většího množství signálů v pásmech

mech 24 a 28 MHz spíše něčím výjimečnějším. Pásma 21 MHz se bude otevírat sice pravidelně, do vyšších šířek, ale zase ještě méně ochotně, než vloni na podzim, a pokračovat bude přesun provozu DX směrem níže na 14 MHz. Horní konec pásm 10 MHz se mezikámenem osvědčil pro automatický forwarding zpráv mezi BBS a v letech slunečního minima se jej zde častěji budou pokoušet provozovat i stanice z jiných oblastí, než je doporučeno poslední konferenci IARU. Navíc tu bývá často možné vkládání a vybíráni vlastních osobních zpráv, což občas dělá i stanice ze zemí s tak hustou a fungující sítí PR, jako je Německo.

Proti podzimu a začátku zimy čekáme o poznání častější a mírně stabilnější otevření DX na dolních pásmech KV, samozřejmě 7 MHz, relativně nápadnější na 3,5 MHz (zajímavým indikátorem bývá maják OK0EN s QRP na kmotru 3600 kHz, QSL via OK1DUB) a konstatování plati i pro pásmo 160 metrů.

Závěrem se ještě ohlédneme zpět, do měsíce září 1993. O tom, že sluneční aktivita klesá, píšeme na tomto místě již několik let a tak není divu, že proklesala až k průměrnému číslu skvrn $R=21,7$. Po jeho dosazení na místo posledního člena ve vzorce pro výpočet klozavého průměru jsme dostali za září 1993 $R12=66,5$. Měření slunečního toku dopadla v jednotlivých dnech následovně: 86, 81, 80, 79, 80, 79, 78, 79, 79, 79, 79, 80, 82, 85, 88, 85, 85, 84, 80, 80, 79, 82, 90, 96, 106, 104, 111, 116 a 121, průměr je pouze 87,1. Magická stovka v R12 a spolu i možnost pravidelného otevření nejkratších pásem KV pro mezikontinentální

provoz se stále ještě vzdalují. Ve středních šírkách Evropy se v poledních maximech nejlepších dnů (1. 9. a 19. 9.), anebo při klidné fázi poruchy (3. 9.), pohybovaly kritické kmitočty f0F2 těsně nad 7 MHz, jinak ale jen nad 6 MHz a v nejběžnějších dnech (při záporných fázích poruch 4. 9., 13. 9. a 21. 9.) se vůbec nepřehouply přes 5 MHz. Možnosti komunikace na kmitočtech nad 15 MHz přitom

(5.–6. 9., 14.–15. 9. a 24.–25. 9.) částečně zachraňovala jen sporadická vrstva E subpolárního typu. Způsobovala ale četné úniky a případně i odstínění signálů, jimž stála v cestě. Protipólem takového vývoje byly zejména dny 1.–2. 9. a 23. 9., případně i 10.–11. 9., 18.–19. 9. a 27.–28. 9.

OK1HH

- Radioamatéři – Srbové v Bosně začali používat nikým neodsouhlasený prefix X5 místo bosenskými úřady vydávaného T9. Pochopitelně takový QSL lístek, pokud jej vůbec někdo dostane, nemůže být za Bosnu a Hercegovinu uznán!

- Ostrov Pitcairn má v současné době celkem 59 obyvatel, z toho je 12 radioamatérů!!

QX

Sdružení radioamatérů železničářů – odbročka FIRAC u nás

Prvé ohlasy na to, že v Evropě pracují radioamatérské organizace, přičemž společným jmenovatelem jejich členstva je příslušnost k železničářské profesi, pronikly do Československa již koncem 60. let. Samotná organizace FIRAC byla oficiálně založena v září roku 1964 v Hamburku a přihlásila se brzy mezi členy FISAIC, což je jedna z mezinárodních organizací, o které jsme u nás dlouho neměli vědět a která se v umění, kultuře a jiných oblastech neprofesionálních aktivit stará o účelné využití volného času železničáků.

Prvě snahy o kontakt prostřednictvím Svazarmu byly vyloženě negativní, FMD odkazovalo jen na Svazarm a o ničem raději nechtělo slyšet. Neoficiálně, ale zato důrazně bylo doporučeno, aby se aktivity ve směru založení jakékoli takové organizace nevyvíjela. Nicméně občasné kontakty na pásmech i písemné naznačovaly, že ze strany organizace FIRAC je zájem o to, aby odbročka v Československu byla založena. Proto byla ihned, jakmile to bylo možné, zveřejněna v AR i RZ

výzva, aby se přihlásili radioamatéři – železničáři. Tak jsme sestavili první seznam radioamatérů a současně železničářů; postupně jsme získali adresy 128 osob, přicházejících v úvahu.

Se stanovami FIRAC, upravenými pro naši potřebu, jsme se v závěru roku 1990 stali oficiální organizací s působností na celém území bývalé ČSFR. Již předtím, 6. října 1990 jsme byli přijati jako další samostatná odbročka do FIRAC. V závěru roku 1990 pak byla i u nás založena sekce FISAIC, kterou mělo na starosti ÚŘ ČSD a které jsme se stali jako již konsolidovaná československá odbročka FIRAC členy. Pro zajímavost uvádíme některé odstavce ze změněných stanov, které byly schvalovány na valné hromadě v závěru loňského roku:

Sdružení radioamatérů-železničářů (dále jen Sdružení) je dobrovolným sdružením radioamatérů pracujících na železnici, ev. majících osobní vztah k železniční technice či provozu a spolupracuje s mezinárodní organizací F. I. R. A. C. (Fédération Internationale des Radio-Amateurs Cheminots), pracující v rámci mezinárodního osvětového svazu železničářů – F. I. S. A. I. C.

Cílem sdružení je mj. péče o přátelství a spolupráci radioamatérů-železničářů všech zemí, spolupráce s ostatními národními odbročkami F. I. S. A. I.

C., podporovat mezinárodní i národní setkání a akce F. I. S. A. I. C., pořádat radioamatérské soutěže a závody, vydávat adresář FIRAC a informace pro všechny radioamatéry, podilet se na práci v organizaci, zastupující radioamatéry v IARU atd.

Loňský kongres (valná hromada) včetně obvyklé pracovní schůzky prezidentů národních organizací se konal v Budapešti za účasti asi 200 radioamatérů ze 16 zemí a prakticky stejněho počtu rodinných příslušníků, pro které byl také připraven hodnotný program. Učast tam – to nebylo jen navázání osobních kontaktů a projednání klubových záležitostí, byl to i odpočinkový víkend, ve kterém bylo možné vysílat pod značkou HG32FC, prohlédnout si město i paměti hodnosti v okolí a prostě zapomenout na denní starosti. Na valné hromadě F. I. R. A. C. se volí na další období předsednictvo, je přednesena zpráva o činnosti, finančním hospodaření, projednávají se doslehlé námyty od členů.

Naši odborce se dosud podařilo zorganizovat např. vysílání speciální stanice TP5OK ze Štrasburku u příležitosti oficiálního přijetí Československa do Rady Evropy. Nikdo jiný z OK-OL-OM odtamtud dosud nevysílal. Vloni zase prvou českou IOTA expedici. Většina mezinárodních akcí však dosud probíhá bez naší účasti, neboť finanční částky požadované pořádajícími organizacemi jsou nad naše ekonomické možnosti.

FIRAC pořádá každoročně mezinárodní závody a těch se účastníme i pod značkou OK5SAZ, což je značka klubové stanice FIRAC u nás, pod kterou může pracovat každý člen, který projeví zájem; podmínkou je pochopitelně slušná reprezentace značky. Chtěl bych upozornit na oficiální diplom FIRAC, který byl nově vytiskněn, je skutečně hezký a zatím jsou vydány pouze 3 ks – každý má tedy možnost získat nízké pořadové číslo. Pro základní třídu je třeba navázat spojení s 25 členy nejméně ve čtyřech odbročkách (úplné podmínky byly zveřejněny v časopise AMA a na vyžádání SASE vám je mohu zaslavit), členy FIRAC najdete např. v neděli od 09.00 místního času na 3630 kHz, nebo od 09.30 UTC na 14 315 kHz, případně v závodech, které jsou na KV každoročně poslední víkend v říjnu (CW) a druhý víkend v listopadu (SSB).

Znáte DIG klub?

Možná ne, a je to škoda. Je z radioamatérských klubů pravděpodobně neaktivitnější (dokonce naše odbročka je takto uznávána mezi odbročkami DIG v ostatních zemích a je sympathetic).

ké, že své členy „nekastuje“ podle žádných hledisek. Kdo splní podmínky, které jsou stejné u nás jako v Německu nebo v Kanadě (tzn. vlastní alespoň 25 radioamatérských diplomů a z toho alespoň 3 vydané klubem DIG), může se stát členem. U nás je předsedou oddílu OK1AR, Zdeněk Říha, Partyzánská 94, 441 01 Podbořany. Celkem má klub DIG přes 5000 členů v nejrůz-

nějších zemích světa a najdete je v okolí kmitočtů 7035, 7077, 14 035, 14 277, 21 035, 21 377 kHz a dalších, včetně VKV.

Každý týden jsou organizovány v pásmu 80 m evropské kroužky členů (středa, 3555 kHz od 18.00 UTC a čtvrtok, 3667 kHz ve stejný čas). Náš kroužek je vždy první pondělí v měsíci od 16.00 UTC na 3777 kHz, řídící sta-

nice OK5DIG se nedá na pásmu přehlédnout. Jak mezinárodních, tak našich kroužků se může zúčastnit kdokoli, tedy nejen členové! Klub vydává řadu diplomů a pořádá závody – prvního se můžete zúčastnit již v březnu. Jakékoli bližší informace získáte „z první ruky“ právě při spojení v tomto kroužku.

QX

INZERCE

Inzerci přijímá poštou a osobně Vydavatelství Magnet-Press, Inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. (02) 24 22 73 84–92, linka 341, fax (02) 24 21 73 15. Uzávěrka tohoto čísla byla 23.12. 1993, do kdy jsme museli obdržet úhradu za inzerát. Text piše čitelně hůlkovým písmem nebo na stroji, aby se předešlo chybám vznikajícím z nečitelnosti předlohy. Cena za první rádeč činí 60 Kč a za každý další (i započatý) 30 Kč. Daň z přidané hodnoty (5 %) je v ceně inzerátu. Platby přijímáme vyhradně na složence našeho vydavatelství, kterou Vám záležíme i s udanou cenou za uveřejnění inzerátu.

PRODEJ

Osciloskop S1-94, nový, 10 MHz, sonda 1:10, příslušenství, dokumentace. Tel. (02) 798 22 17.

Osciloskop S1-94, nový, 10 MHz, sonda 1:10, dokumentace s elek. schématy. Brühová, tel. 02/36 78 12.

Konvertor KV CCIR/OIRT alebo OIRT/CCIR (130), záruka: 1 rok. Ing. Vojtech Košá, 059 83 Nová Polianka 5.

Avomet II (800) RLC můstek ICOMET (800), přijímač PIONYR (80 M) (800). VI. Hunčovský, Zd. Štěpánka 2813, 434 01 Most.

Kvalitné reprovýlinky s bezinduktivním plast. kondenz., strmosti 12 dB, 3/2 pásmo (290, 199), rôzne reproboxy 24–1501 (050–3400), neosadené tov. 401 (290), kalot. AZSK 25/4 40 W (350), B113, HC43 (380, 280), kov. skrinky (190), výbojky IFK 120 (75), NiCd 4000 mAh (120), nabíjačky (175, 250), eluty 100G/50, 18G/63, 16G/30, 64G/9V (390, 110, 60, 70), elox. chladiče 110x80 (19), relé 12–48 V až pozl. (15–35), rôzne MP40, 80 (70–110), 7427, 74, 85, 93, 75160, 161 (5–8), KT205/600, 505, 7805 (5, 4, 9), BC237/B (2). Inform. na t. č. (07) 72 55 15 alebo za známkou, Jaromír Kupčoč, Kuklovská 18, 841 05 Bratislava, Slovensko.

Kond. 1G/160 V (30), 2G2/160 V (40), 4G7/63 V (35), rozběh. kond. 8 mF/250 V (25). Vše nové. Dobírkou. Fr. Vojtík, Sušavská 252, 386 01 Strakonice 3.

Měřicí televizor AMS 531 vč. kompl. čs. tech. dok. (19 800), Osciloskop MB430 (1000), Osciloskop H313–SNS (1200), RLCmost–SNS (500), Ohmmetr OMEGA 1 (500), UHF konvertor (120). Měřič MGF hlav (400). Digit. vf. milivoltmetr do 1 GHz (3800) – vše plně funkční. P. Říha, Družstevní 1417, 539 01 Hlinsko v. Č., tel. (0454) 215 66 večer.

Tovární měřicí přístroje k měření radioaktivity: dozimetrický indikátor – ind. doutnavkou a akusticky, napájení – 1x monočlánek, měřič radioaktivnosti – 4 rozsahy, ind. měřidlem a akusticky. V obou je čidlem „GM“ trubice! Cena za kompletní sadu (vč. brašny, sluchátek 4000 Ω a dvou kusů náhr. „GM“ trub.) 70 a 210 Kč. P. Res. Podlesí 4935, 760 05 Zlín. **RX R323 20–100 MHz**, R313 60–300 MHz, oba CW AM FM SSB, UFB stav, elky, doku-

mentace. Kus 3500. Ing. I. Vávra, Pejovové 3121, 143 00 Praha 4-Modřany.

Osciloskop C-94, nový. Tel. (02) 786 49 38. **Osciloskop C1-91**, 2 kanály, rozsah 100 MHz, zabudovaný měřák I, U, R. K. Jonáš, 531 01 Chrudim II/793, tel. (0455) 430 38.

Nové K6304 (1000), Consul 212–14 (2500), B10S4101, DG7-123 (800, 400), SL1452+0FWY6950 (900). Možná dohoda. P. Dvořák, Slunná 21, 789 01 Zábřeh.

Mikropresesory INTEL I752BH (1090), dekódér VideoCrypt SVA1X (6200). Jakub Změlik, Foltýnova 15, 635 00 Brno.

Mikropresesory INTEL 87C51FA, keramické pouzdro, EPROM 8 kB, v těži množstvím (900 Kč). Jakub Změlik, Foltýnova 15, 635 00 Brno.

KOUPĚ

Směšovač VZ07 nebo zahr. typ SRA-1, MD 108; min. krystal 480 kHz; přep. lištu zázn. – sním. na B 100. J. Turneber, Prokopov 15, 671 54 Hostim.

Koupím od radioamatérů pamětníků staré funkční nožičkové lampy např. RE 034, A 410, RES 164, MARS G, D1, E, případně ještě starší lampy se žárovkovým závitem, též kryštalky a lampová rádia. Miroslav Hudec, Zbožská 2169, 288 02 Nymburk.

Staré německé radio stanice „Wehrmacht a Luftwaffe“ i nefunkční na náhradní díly. E. END, Finkenstieg 1.W-8688 Marktleuthen, BRD.

Něm. přístroje z 2. svět. války (vysílače, přijímače aj.). Dr. G. Domorazek, Rilkestr. 19a, D-93138 Lappersdorf, BRD, tel.: 0941/822 75.

RŮZNÉ

Hledám: elektronky něm. výroby do r. 1945, velmi staré elky všeho druhu, také pokusné! Něm. rádiová zařízení a dokumentaci. Protihodnotou DM nebo amat. zařízení dle hodiny. Adr. J. Russmann, Alter Muehlenweg 15, 29525 Uelzen 3, BRD.

Vyměním moderní transceiver za staré německé radio stanice Wehrmacht FuHe až f. FuPea/b a c, E52(Köln), E53(Ulm) a E08268(Schwabenland), též radarová a anténní příslušenství. B. Fröhlich, Nelkenweg 4, 71554 Weissach im Tal, BRD.

Montáže TV i SAT antén, rozvodů VIDEO, SAT, R i TV signálů.

Výroba a dobírkový prodej selekt. slučovačů-pásmové: VHF/UHF; I+II/III; I+II/III/V+V; I/II/III/IV+V; K1/KV/K CCR. Kanálové UHF, dva vstupy (56, 68, 135, 165, 100, 110), pro skupiny kanálů UHF-min. odstup 3 kanály, pro VHF-min. odstup 1 kanál (115, 110). Kanálové propusti jednodstupňové a velmi selektivní třistupňové (65, 245) – průchozí pro napájecí napětí pro K... UHF. Kanál zádrž: jednodstupňový a výkonné třistupňové (55, 135). Domovní ŠP zes. 48–860 MHz se stabiliz. zdrojem 12 V: 3 vstupy typ ŠPZ 20; 4 vstupy ŠPZ 20/4, s odnímatelným zdrojem ŠPZ 20/a; ŠPZ 20/4a, zisk: I–III/21 dB, IV+V/22–24 dB (730, 778, 768, 816), ŠPZ 10a (koncový výkonový zes. modul k ŠPZ 20/a); ŠPZ 20/4a, zisk 10 dB/48–860 MHz (138). Nízkošum předzes. UHF: 28–24 dB, 17–14 dB s BFG65 (175, 135). VHF: III nebo VKV CCIR 23/25 dB (185). Ultraselekt. kanál předzes. K6... K12/23/1,8 dB (250). A jiné dle spec. poža-

davků. Vše osazeno konektory. Záruka 18 měsíců. Dohoda cen možná. **UNISYSTEM**, **Voleský**, Blahoslavova 30, 757 01 Valašské Meziříčí, tel. (0651) 236 22.

Václav Paleček, Pod kovárnou 126, 251 64 Mnichovice zaslal:

článek trubíkový v balíčku – Ø 1 mm dl. 4,5 m za 11.– Kč. Při odběru min. 30 ks za 9.– Kč. Distanční sloupek ocel. šestihran 7 mm, délka 6; 8; 10 a 12 mm, vnitřní závit M3, cena do 2.– Kč. Možné galvan. pokovení. Možno i jiné délky do 26 mm a cena 3.– Kč.

Nabízíme: kompletní stavebnici nabíječky akumulátorů 12 V/5 A (8 A) s regulací proudu dle AR 9/92 (profí skříňka a transformátor, součástky, DPS, šňůry, krokosvorky atd.) za 700 (850) Kč, sady součástek včetně DPS: zpětnovazební regulátor otáček vrtačky 500 W dle AR 10/90 za 190 Kč, cyklovač stěračů s pamětí pro Š 105/120 nebo Favorita dle AR 7/91 za 100 Kč, trojbarevná blikající hvězdička na výnoční stromeček (33 x dioda LED) dle AR 10/91 za 190 Kč, nabíječka akumulátorů s regulací proudu 12 V/5 A (8 A) dle AR 9/92 za 220 (250) Kč, obousměrný regulátor otáček pro RC modely dle AR 3/93, varianta 10 A za 400 Kč, varianta 20 A za 600 Kč. Množstevní slevy. Obj.: **BEL. Ing. Budinský, Čínská 7, 160 00 Praha 6, tel. (02) 342 92 51.**

Elektromag. čerpadlo průtok 0,7 l/min.; tlak 5 atm; napájení 220 V. Původně N.D. do kávovaru, cena 1 ks 100 Kč + dobírka. **M. Valach, Luční 48, 747 22 Dolní Benešov-Zábřeh.**

ROZPRODÁM nahrané kazety a diskety s manuály pro ZX Spectrum, Didaktik. Levné. Při větším odběru sleva. Dále sháním majitele VIDEODIGITIZERU pro Didaktik Gama. Dohoda jistá. Podrobnosti proti ofr. obálcové na adresu: **Fr. Chaloupka, Dr. Znojemského 502, 539 73 Skuteč.**

Koncové zesiňovače s ochranou proti zkratu na výstupu – osazené a oživené desky 1x200 W sin./4 (420), 2x 50W sin./4 (430) + pošt. Ing. Josef Sedlák, J. Kotase 31, 705 00 Ostrava. Zákl. desku PC/XT RAM 640 kB PC/XT-10 MHz (950), FD 360 kB TEAC (650), tiskárnu D-100M, vhodnou pro připojení k ZX spectrum (2650) + poštovné. Ing. Josef Sedlák, J. Kotase 31, 705 00 Ostrava.

Přijímač DTMF s odpovídáčem (vhodný pro radioprovoz, dálk. ovl. apod.). Cena stavebnice se sel. volby dobírkou 790 Kč + poštovné. Vrábí a dodává **DELMO, Přístavní 38, 170 00 Praha 7**, tel. (02) 683 23 38.

ODKOUPIME VAŠE NADNORMATIVNÍ ZASOBY SOUČÁSTEK. Nabídky písemně na adresu: **Fa BARNY, J. Brabcová 2905/13, 702 00 Ostrava 1.**

KVK-FM-MINI – přijímač AR A7/93. Sada součástek 199 Kč, osazená a oživená deska 239 Kč + poštovné. **DAVID-elektronik, Teyschovia 15, 635 00 Brno**

Nabízíme databáze kuržů akcí obchodovaných v RM-Systému a na pražské burze (50 Kč + 50 Kč), pro PC (QPRO, 1-2-3, DBASE) vždy posledních 8 kol. Ing. Bubeníček, Mařáková 1108, 570 01 Litomyšl, tel. (0464) 512 22.

Prodej optosoučástek KINGBRICHT (bohatý sortiment LED diod, modré LED, různé typy displejů a maticovek, infradiody atd.) a pamětí za nízké ceny. Seznam za 3 Kč známkou. Platí stále. **ELEKTRONIKA – F. Borýsek, 687 64 Horní Němčí 283.**

FAN radio

antény a radiostanice s.r.o.

P.O.Box 77, 324 23 PLZEŇ 23
sídlo : SOU, Borská 55
tel. (019) 27 45 08
fax (019) 27 62 48

- > vysílací antény pro VKV a UKV pásmo
- > vysílací antény pro CB pásmo
- > příslušenství a náhradní díly pro antény
- > koaxiální kabely, konektory, přepínače
- > PSV-metry, W-metry, výstřední zosilovače
- > napájecí zdroje, nabíječe, měniče napětí
- > občanské CB radiostanice
- > příslušenství pro radiostanice

Pro profesionály

na VKV a UKV pásmech 135-207 MHz, 397-480 MHz, 820-960 MHz nabízíme :

- základnové antény s vertikální polarizací a s kruhovým či směrovým diagramem pro těžké povětrnostní podmínky
- kvalitní vozidlové antény pro radiové sítě
- vozidlové antény pro radiotelefony v pásmech 450 a 900 MHz s moderním designem a v různém barevném provedení za velice příznivé ceny
- magnetické držáky, zářice a duplexery pro vozidlové antény
- konektory N, BNC a PL a jiný spojovací a montážní materiál

Vyřízení objednávky pro maloobděratele na dobírku usnadní náš katalog s aktuálním ceníkem a objednávkovým listem, který posíláme zdarma

Obchodníkům a montážním firmám poskytujeme výhodné rabaty

Naše ceny jsou bezkonkurenční - zajišťujeme velkoobchodní činnost pro firmu Sirtel v ČR

SEZNAM INZERÁTŮ V TOMTO ČÍSLU

ADICOM datové přepínače	XXII	GM electronic – elektronické součástky	II-V
AGB – elektronické součástky	XV	GRUNDIG – meracia technika	XXXIII
ALB Forming – parabolické antény	XXXV	Hadex – elektronické součástky	XIII
AMIT – emulátory, programátory aj.	XXIV	IdentCode – komponenty tisku čárového kódu	VII
A.P.O. – ELMOS – programovatelný regulátor	XXVI	INSOFT – programy pro účetnictví	XXX
APRO – OrCAD, návrh DPS aj.	XXVIII	Jablotron – prog. digitální klávesnice	XII, XXXIII
AV Elektronik – polovodiče, náhradní díly aj.	IX	J. J. Sat – satelitní technika	XVI
AVIS – konvertory zvuku	XXXV	KOTLIN – indukční snímače	XXX
Buček – elektronické součástky	XXI	KTE – konektory, filtry, termistory aj.	X-XI
CADware – programy pro pl. spoje	VII a XXII	MACH – snímače, čivky, regul. teploty aj.	XXXIII
ComAp – programátory	XXX	Magnet Press – Slovakia – objednávka AR	XXXII
Commec – měřicí, záznam. aj. jednotky	XXVII	MEDER – relé, senzory aj.	XXX
Dataputer – konkurs na výrobu řadiče disk. jedn.	XXXII	MICRODATA – snímače čár. kódu, software aj.	XXVIII
DFC – diagnostika PC/AT	XXVII	MICROCON – pohony s krokovými motory	XXVII
ECOM – elektronická relé	XIV	MICRONIX – měřicí přístroje	VIII
ECS Brno – přístrojové skřínky (stavebnice)	VII	MIKROKOM – měřicí úrovň TV SAT	XXV
ELATEC – mikroprocesor, EEPROM, LCD, aj.	XXIX	NEON – elektronické součástky	XXII
ELEKTROSOUND – stavebnice konc. zesilovače	XXXIII	ODRA – mikropásky s regul. teploty	XXVII
ELFA – optoelektronické snímače	XXX	Philips – servisní sady TV a video	VII
ELIX – satelitní a komunikační technika	I	Polanka – Lukáč – slúdové kondenzátory	XXVII
ELNEC – výměna EPROM	XXVIII	ProSys – návrh a výroba DPS	XXVIII
ELNEC – programátor	XXVI	RaC – polovodičové součástky	XXX
ELMECO – polovodičové součástky	XXVII	RENTIME – prodej polovodičů	XXIII
ELSYST – výroba transformátorů	VII	SAMER – paměti, síť. karty, teletext aj.	XXXII
EMPOS – kapesní multimeter	XXXI	SAMO – prevodníky analogových signálů	XXVIII
ENIKA – konstrukční součástky	IV	SCHURICHT – součástky, prevodníky, avometry aj.	XXIX
ERA components – obvody fy SGS Thompson	XXXII	Solutron – konvertory zvuku	VII
EURO – SAT – zabezpečovací systémy	XXV	STARTRANS – mikroprocesory 8 bit	XXXII
EUROTEL – nabídka zaměstnání	XXXIII	TEROZ – televizní rozvody	XXXV
EZK – polovodičové součástky	XXVII	TES elektronika – dekodéry, směšovače, konvertory aj.	XXVIII
FAN radio – antény a radiostanice	44	VEGA – regulátor teploty	XXVII
FUNKAMATEUR – objednávka německého časopisu	XXII	VILBERT – náhradné diely spotreb. el.	XXVI
GES – elektronické součástky	XVII-XX	Vítkovice – kapesní zdroj proudu	XXII
GHV Trading – měřicí přístroje	XXXIV	Zaklad Elektroniczny – přístr. pro regener. obrazovek	XXX