"Visit with us" Purchase Prediction

Problem Statement:

The Policy Maker of the company wants to enable and establish a viable business model to expand the customer base.

A viable business model is a central concept that helps you to understand the existing ways of doing the business and how to change the ways for the benefit of the tourism sector.

One of the ways to expand the customer base is to introduce a new offering of packages.

Currently, there are 5 types of packages the company is offering - Basic, Standard, Deluxe, Super Deluxe, King. Looking at the data of the last year, we observed that 18% of the customers purchased the packages.

However, the marketing cost was quite high because customers were contacted at random without looking at the available information.

The company is now planning to launch a new product i.e. Wellness Tourism Package. Wellness Tourism is defined as Travel that allows the traveler to maintain, enhance or kick-start a healthy lifestyle, and support or increase one's sense of well-being.

However, this time company wants to harness the available data of existing and potential customers to make the marketing expenditure more efficient.

Objective:

To predict which customer is more likely to purchase the newly introduced travel package.

• ProdTaken will be the dependent variable.

Data Description:

- CustomerID: Unique customer ID
- ProdTaken: Whether the customer has purchased a package or not (0: No, 1: Yes)
- · Age: Age of customer
- TypeofContact: How customer was contacted (Company Invited or Self Inquiry)
- CityTier: City tier depends on the development of a city, population, facilities, and living standards. The categories are ordered i.e. Tier 1 > Tier 2 > Tier 3
- Occupation: Occupation of customer
- · Gender: Gender of customer

- NumberOfPersonVisiting: Total number of persons planning to take the trip with the customer
- PreferredPropertyStar: Preferred hotel property rating by customer
- · MaritalStatus: Marital status of customer
- NumberOfTrips: Average number of trips in a year by customer
- Passport: The customer has a passport or not (0: No, 1: Yes)
- OwnCar: Whether the customers own a car or not (0: No, 1: Yes)
- NumberOfChildrenVisiting: Total number of children with age less than 5 planning to take the trip with the customer
- Designation: Designation of the customer in the current organization
- MonthlyIncome: Gross monthly income of the customer

Customer interaction data:

- PitchSatisfactionScore: Sales pitch satisfaction score
- ProductPitched: Product pitched by the salesperson
- NumberOfFollowups: Total number of follow-ups has been done by the salesperson after the sales pitch
- DurationOfPitch: Duration of the pitch by a salesperson to the customer

Libraries

```
%load_ext nb black
In [1]:
         # Library to suppress warnings or deprecation notes
         import warnings
         warnings.filterwarnings("ignore")
         # Libraries to help with reading and manipulating data
         import numpy as np
         import pandas as pd
         # Libraries to help with data visualization
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         # Libraries to split data, impute missing values
         from sklearn.model selection import train test split
         from sklearn.impute import SimpleImputer
         # Libraries to import decision tree classifier and different ensemble classifier
         from sklearn.ensemble import BaggingClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.ensemble import StackingClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn import tree
```

```
# Libtune to tune model, get different metric scores
from sklearn import metrics
from sklearn.metrics import (
    confusion_matrix,
    classification_report,
    accuracy_score,
    precision_score,
    recall_score,
    fl_score,
    roc_auc_score,
)
from sklearn.model_selection import GridSearchCV
```

Read Dataset

```
In [2]: data = pd.read_excel("Tourism.xlsx", sheet_name="Tourism")

df = data.copy()
```

Data Info/Details

```
In [3]:
           df.head()
             CustomerID ProdTaken
                                      Age TypeofContact CityTier DurationOfPitch Occupation
                                                                                                   Gender 1
Out[3]:
          0
                 200000
                                      41.0
                                               Self Enquiry
                                                                                  6.0
                                                                                          Salaried
                                                                                                   Female
                                                  Company
          1
                 200001
                                   0 49.0
                                                                                 14.0
                                                                                          Salaried
                                                                                                     Male
                                                    Invited
          2
                 200002
                                   1 37.0
                                               Self Enquiry
                                                                                 8.0 Free Lancer
                                                                                                     Male
                                                  Company
          3
                 200003
                                      33.0
                                                                                 9.0
                                                                                          Salaried
                                                                                                   Female
                                                    Invited
                                                                                            Small
                 200004
                                   0 NaN
                                               Self Enquiry
                                                                  1
                                                                                 8.0
                                                                                                     Male
                                                                                         Business
```

In [4]: df.tail()
Out[4]: CustomerID ProdTaken Age TypeofContact CityTier DurationOfPitch Occupation Gender

t[4]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	4883	204883	1	49.0	Self Enquiry	3	9.0	Small Business	Ма
	4884	204884	1	28.0	Company Invited	1	31.0	Salaried	Ма
	4885	204885	1	52.0	Self Enquiry	3	17.0	Salaried	Fema
	4886	204886	1	19.0	Self Enquiry	3	16.0	Small Business	Ма
	4887	204887	1	36.0	Self Enquiry	1	14.0	Salaried	Ма

Ou

```
In [5]: np.random.seed(2)
    df.sample(10)
```

Gend€	Occupation	DurationOfPitch	CityTier	TypeofContact	Age	ProdTaken	CustomerID		ut[5]:
Mal	Salaried	12.0	1	Self Enquiry	23.0	1	202055	2055	
Femal	Small Business	7.0	1	Company Invited	37.0	0	203626	3626	
Mal	Salaried	10.0	1	Self Enquiry	44.0	0	204812	4812	
Femal	Salaried	9.0	1	Self Enquiry	46.0	0	203047	3047	
Mal	Small Business	28.0	3	Company Invited	33.0	0	200121	121	
Femal	Salaried	6.0	1	Company Invited	26.0	0	200278	278	
Mal	Salaried	26.0	3	Self Enquiry	30.0	0	203507	3507	
Mal	Large Business	35.0	1	Self Enquiry	46.0	0	203536	3536	
Mal	Salaried	15.0	1	Self Enquiry	45.0	0	201623	1623	
Mal	Small Business	6.0	1	Self Enquiry	55.0	0	201740	1740	

```
In [6]: print(f"There are {df.shape[0]} rows and {df.shape[1]} columns.")
```

There are 4888 rows and 20 columns.

```
df[data.duplicated()].count()
In [7]:
Out[7]: CustomerID
                                      0
        ProdTaken
                                      0
        Age
                                      0
        TypeofContact
                                      0
        CityTier
                                      0
        DurationOfPitch
                                      0
        Occupation
        Gender
        NumberOfPersonVisiting
                                      0
        NumberOfFollowups
                                      0
        ProductPitched
        PreferredPropertyStar
                                      0
        MaritalStatus
                                      0
        NumberOfTrips
                                      0
        Passport
                                      0
        PitchSatisfactionScore
                                      0
        OwnCar
                                      0
        NumberOfChildrenVisiting
                                      0
        Designation
                                      0
        MonthlyIncome
                                      0
        dtype: int64
```

df.info()

In [8]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4888 entries, 0 to 4887
Data columns (total 20 columns):

#	Column	Non-1	Null Count	Dtype
0	CustomerID	4888	non-null	int64
1	ProdTaken	4888	non-null	int64
2	Age	4662	non-null	float64
3	TypeofContact	4863	non-null	object
4	CityTier	4888	non-null	int64
5	DurationOfPitch	4637	non-null	float64
6	Occupation	4888	non-null	object
7	Gender	4888	non-null	object
8	NumberOfPersonVisiting	4888	non-null	int64
9	NumberOfFollowups	4843	non-null	float64
10	ProductPitched	4888	non-null	object
11	PreferredPropertyStar	4862	non-null	float64
12	MaritalStatus	4888	non-null	object
13	NumberOfTrips	4748	non-null	float64
14	Passport	4888	non-null	int64
15	PitchSatisfactionScore	4888	non-null	int64
16	OwnCar	4888	non-null	int64
17	NumberOfChildrenVisiting	4822	non-null	float64
18	Designation	4888	non-null	object
19	MonthlyIncome	4655	non-null	float64
dt.vr	es: float64(7). int64(7).	object	(6)	

dtypes: float64(7), int64(7), object(6)

memory usage: 763.9+ KB

```
In [9]: df.isnull().sum()
```

```
Out[9]: CustomerID
                                       0
        ProdTaken
                                       0
        Age
                                     226
        TypeofContact
                                      25
        CityTier
                                       0
        DurationOfPitch
                                     251
        Occupation
                                       0
        Gender
                                       0
        NumberOfPersonVisiting
                                       0
                                      45
        NumberOfFollowups
        ProductPitched
                                       0
        PreferredPropertyStar
                                      26
        MaritalStatus
                                       0
                                     140
        NumberOfTrips
        Passport
                                       0
        PitchSatisfactionScore
                                       0
        OwnCar
                                       0
        NumberOfChildrenVisiting
                                      66
        Designation
                                       0
        MonthlyIncome
                                     233
        dtype: int64
```

```
In [10]: df.describe().T
```

Out[10]:		count	mean	std	min	25%	50%	
	CustomerID	4888.0	202443.500000	1411.188388	200000.0	201221.75	202443.5	21
	ProdTaken	4888.0	0.188216	0.390925	0.0	0.00	0.0	
	Age	4662.0	37.622265	9.316387	18.0	31.00	36.0	
	CitvTier	4888.0	1.654255	0.916583	1.0	1.00	1.0	

	count	mean	std	min	25%	50%
DurationOfPitch	4637.0	15.490835	8.519643	5.0	9.00	13.0
NumberOfPersonVisiting	4888.0	2.905074	0.724891	1.0	2.00	3.0
NumberOfFollowups	4843.0	3.708445	1.002509	1.0	3.00	4.0
PreferredPropertyStar	4862.0	3.581037	0.798009	3.0	3.00	3.0
NumberOfTrips	4748.0	3.236521	1.849019	1.0	2.00	3.0
Passport	4888.0	0.290917	0.454232	0.0	0.00	0.0
PitchSatisfactionScore	4888.0	3.078151	1.365792	1.0	2.00	3.0
OwnCar	4888.0	0.620295	0.485363	0.0	0.00	1.0
NumberOfChildrenVisiting	4822.0	1.187267	0.857861	0.0	1.00	1.0
MonthlyIncome	4655.0	23619.853491	5380.698361	1000.0	20346.00	22347.0

Initial EDA

• Passport, Age, and MonthlyIncome have the most correlation to ProdTaken.

```
In [12]: my_tab = pd.crosstab(index=df["ProdTaken"], columns="count")
    my_tab
```

```
Out[12]: col_0 count
```

ProdTaken

0 3968

1 920

```
In [13]: my_tab = pd.crosstab(index=df["Age"], columns="count")
   my_tab

Out[13]: col_0 count
```

Out[13]:	col_0	count
	Age	
	18.0	14
	19.0	32
	20.0	38
	21.0	41
	22.0	46
	23.0	46
	24.0	56
	25.0	74
	26.0	106
	27.0	138
	28.0	147
	29.0	178
	30.0	199
	31.0	203
	32.0	197
	33.0	189
	34.0	211
	35.0	237
	36.0	231
	37.0	185
	38.0	176
	39.0	150
	40.0	146
	41.0	155
	42.0	142
	43.0	130

44.0

105

col_0 count

```
Age
           45.0
                   116
           46.0
                   121
           47.0
                    88
           48.0
                    65
           49.0
                    65
           50.0
                    86
           51.0
                    90
           52.0
                    68
           53.0
                    66
           54.0
                    61
           55.0
                    64
           56.0
                    58
           57.0
                    29
           58.0
                    31
           59.0
                    44
           60.0
                    29
                     9
           61.0
           my tab = pd.crosstab(index=df["TypeofContact"], columns="count")
In [14]:
           my_tab
Out[14]:
                    col_0 count
            TypeofContact
                            1419
          Company Invited
              Self Enquiry
                           3444
           my_tab = pd.crosstab(index=df["CityTier"], columns="count")
In [15]:
           my_tab
            col_0 count
Out[15]:
          CityTier
                1
                    3190
                2
                     198
                3
                    1500
```

```
In [16]: my_tab = pd.crosstab(index=df["DurationOfPitch"], columns="count")
    my_tab
```

Out[16]: col_0 count

DurationOfPitch

Pitch	
5.0	6
6.0	307
7.0	342
8.0	333
9.0	483
10.0	244
11.0	205
12.0	195
13.0	223
14.0	253
15.0	269
16.0	274
17.0	172
18.0	75
19.0	57
20.0	65
21.0	73
22.0	89
23.0	79
24.0	70
25.0	73
26.0	72
27.0	72
28.0	61
29.0	74
30.0	95
31.0	83
32.0	74
33.0	57
34.0	50
35.0	66
36.0	44

```
col_0 count
          DurationOfPitch
                   126.0
                              1
                   127.0
                              1
           my_tab = pd.crosstab(index=df["Occupation"], columns="count")
In [17]:
           my_tab
                  col_0 count
Out[17]:
             Occupation
             Free Lancer
                             2
          Large Business
                Salaried
                         2368
          Small Business
                         2084
           my_tab = pd.crosstab(index=df["Gender"], columns="count")
In [18]:
           my_tab
            col_0 count
Out[18]:
          Gender
          Fe Male
                    155
          Female
                    1817
             Male
                   2916

    Have to correct this data entry error.

           my_tab = pd.crosstab(index=df["NumberOfPersonVisiting"], columns="count")
In [19]:
           my_tab
                          col_0 count
Out[19]:
          NumberOfPersonVisiting
                              1
                                    39
                              2
                                  1418
                                  2402
                                  1026
                              5
                                     3
           my_tab = pd.crosstab(index=df["NumberOfFollowups"], columns="count")
In [20]:
```

my_tab

Out[20]:

col_0 count

```
NumberOfFollowups
                         1.0
                               176
                         2.0
                               229
                         3.0
                              1466
                         4.0
                              2068
                         5.0
                               768
                         6.0
                               136
           my_tab = pd.crosstab(index=df["ProductPitched"], columns="count")
In [21]:
           my_tab
                   col_0 count
Out[21]:
          ProductPitched
                          1842
                   Basic
                  Deluxe
                          1732
                    King
                           230
                Standard
                           742
            Super Deluxe
                           342
           my_tab = pd.crosstab(index=df["PreferredPropertyStar"], columns="count")
In [22]:
           my_tab
                         col_0 count
Out[22]:
          PreferredPropertyStar
                                2993
                           3.0
                                 913
                           4.0
                                 956
                           5.0
           my_tab = pd.crosstab(index=df["MaritalStatus"], columns="count")
In [23]:
           my_tab
                 col_0 count
Out[23]:
          MaritalStatus
              Divorced
                         950
               Married
                        2340
                Single
                         916
             Unmarried
                         682
```

```
my_tab = pd.crosstab(index=df["NumberOfTrips"], columns="count")
In [24]:
           my_tab
                   col_0 count
Out[24]:
          NumberOfTrips
                     1.0
                           620
                    2.0
                          1464
                    3.0
                          1079
                    4.0
                          478
                    5.0
                          458
                    6.0
                           322
                     7.0
                           218
                    8.0
                           105
                    19.0
                    20.0
                             1
                    21.0
                             1
                    22.0
                             1
           my tab = pd.crosstab(index=df["Passport"], columns="count")
In [25]:
           my_tab
             col_0 count
Out[25]:
          Passport
                 0
                    3466
                    1422
           my_tab = pd.crosstab(index=df["PitchSatisfactionScore"], columns="count")
In [26]:
           my tab
                         col_0 count
Out[26]:
          PitchSatisfactionScore
                             1
                                 942
                             2
                                 586
                             3
                                1478
                             4
                                 912
                                 970
                             5
```

```
my_tab = pd.crosstab(index=df["OwnCar"], columns="count")
In [27]:
           my_tab
            col_0 count
Out[27]:
          OwnCar
                0
                   1856
                   3032
                1
           my_tab = pd.crosstab(index=df["NumberOfChildrenVisiting"], columns="count")
In [28]:
           my_tab
Out[28]:
                            col_0 count
          NumberOfChildrenVisiting
                              0.0
                                   1082
                                   2080
                              1.0
                              2.0
                                   1335
                              3.0
                                   325
           my_tab = pd.crosstab(index=df["Designation"], columns="count")
In [29]:
           my_tab
                  col_0 count
Out[29]:
             Designation
                    AVP
                           342
               Executive
                          1842
                Manager
                          1732
          Senior Manager
                           742
                     VΡ
                           230
           my tab = pd.crosstab(index=df["MonthlyIncome"], columns="count")
In [30]:
           my tab
                  col_0 count
Out[30]:
          MonthlyIncome
                 1000.0
                             1
                 4678.0
                             1
                16009.0
                             2
                             2
                16051.0
                16052.0
                             2
```

col_0 count

MonthlyIncome

•••	
38621.0	2
38651.0	2
38677.0	2
95000.0	1
98678.0	1

2475 rows × 1 columns

```
def histogram boxplot(data, feature, figsize=(15, 10), kde=False, bins=None):
In [31]:
              Boxplot and histogram combined
              data: dataframe
              feature: dataframe column
              figsize: size of figure (default (15,10))
              kde: whether to show the density curve (default False)
              bins: number of bins for histogram (default None)
              f2, (ax_box2, ax_hist2) = plt.subplots(
                  nrows=2,
                  sharex=True,
                  gridspec_kw={"height_ratios": (0.25, 0.75)},
                  figsize=figsize,
              sns.boxplot(data=data, x=feature, ax=ax box2, showmeans=True, color="violet"
              sns.histplot(
                  data=data, x=feature, kde=kde, ax=ax hist2, bins=bins, palette="winter"
              ) if bins else sns.histplot(data=data, x=feature, kde=kde, ax=ax hist2)
              ax hist2.axvline(data[feature].mean(), color="green", linestyle="--")
              ax hist2.axvline(data[feature].median(), color="black", linestyle="-")
```

```
In [32]: histogram_boxplot(data, "ProdTaken")
```


In [34]: histogram_boxplot(data, "CityTier")

In [36]:

histogram_boxplot(data, "NumberOfPersonVisiting")

In [38]: histogram_boxplot(data, "PreferredPropertyStar")

• There are a few outliers I will look into.

MonthlyIncome

• There are a few outliers I will look into.

```
In [45]:
          def labeled barplot(data, feature, perc=False, n=None):
              Barplot with percentage at the top
              data: dataframe
              feature: dataframe column
              perc: whether to display percentages instead of count (default is False)
              n: displays the top n category levels (default is None, i.e., display all le
              total = len(data[feature])
              count = data[feature].nunique()
              if n is None:
                  plt.figure(figsize=(count + 1, 5))
              else:
                  plt.figure(figsize=(n + 1, 5))
              plt.xticks(rotation=90, fontsize=15)
              ax = sns.countplot(
                  data=data,
                  x=feature,
                  palette="Paired",
                  order=data[feature].value_counts().index[:n].sort_values(),
              for p in ax.patches:
                  if perc == True:
```

```
label = "{:.1f}%".format(100 * p.get_height() / total)
else:
    label = p.get_height()

x = p.get_x() + p.get_width() / 2
y = p.get_height()

ax.annotate(
    label,
    (x, y),
    ha="center",
    va="center",
    size=12,
    xytext=(0, 5),
    textcoords="offset points",
)

plt.show()
```

In [46]: labeled_barplot(data, "TypeofContact", perc=True)


```
In [47]: labeled_barplot(data, "Occupation", perc=True)
```


• Most people are Salaried or Small Business.


```
In [49]: labeled_barplot(data, "ProductPitched", perc=True)
```


• The Basic and Deluxe package were pitched the most.

In [50]: labeled_barplot(data, "MaritalStatus", perc=True)

• There are more Married individuals.

In [51]: labeled_barplot(data, "Designation", perc=True)

• Executive and Manager are the most common positions.

```
In [52]: sns.swarmplot(df["ProdTaken"], df["Age"])
Out[52]: <AxesSubplot:xlabel='ProdTaken', ylabel='Age'>

60
50
30
20
```

ProdTaken

• Looks like people of age 26-36 are more likely to purchase a travel package.

i

ProductPitched

```
In [53]: gk = df.groupby("ProductPitched")
   gk.get_group("Basic")
```

Out[53]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	2	200002	1	37.0	Self Enquiry	1	8.0	Free Lancer	Ма
	3	200003	0	33.0	Company Invited	1	9.0	Salaried	Fema
	4	200004	0	NaN	Self Enquiry	1	8.0	Small Business	Ма
	5	200005	0	32.0	Company Invited	1	8.0	Salaried	Ма
	6	200006	0	59.0	Self Enquiry	1	9.0	Small Business	Fema
	••								•
488	31	204881	1	41.0	Self Enquiry	2	25.0	Salaried	Ма
488	2	204882	1	37.0	Self Enquiry	2	20.0	Salaried	Ма
488	4	204884	1	28.0	Company Invited	1	31.0	Salaried	Ма
488	6	204886	1	19.0	Self Enquiry	3	16.0	Small Business	Ма
488	37	204887	1	36.0	Self Enquiry	1	14.0	Salaried	Ма

```
In [54]: gk = df.groupby("ProductPitched")
    gk.get_group("Standard")
```

Out[54]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	8	200008	0	38.0	Company Invited	1	29.0	Salaried	Ма
	15	200015	0	29.0	Self Enquiry	1	27.0	Salaried	Fema
	22	200022	0	34.0	Self Enquiry	1	13.0	Salaried	Fe Ma
	28	200028	0	44.0	Self Enquiry	1	13.0	Small Business	Fema
	43	200043	0	27.0	Company Invited	3	14.0	Salaried	Ма
	•••								
	4852	204852	1	59.0	Self Enquiry	1	9.0	Large Business	Fema
	4856	204856	1	37.0	Self Enquiry	3	17.0	Small Business	Ма
	4870	204870	1	57.0	Self Enquiry	3	23.0	Salaried	Fema

	CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
4871	204871	1	41.0	Self Enquiry	3	23.0	Small Business	Ма
4885	204885	1	52.0	Self Enquiry	3	17.0	Salaried	Fema

```
In [55]: gk = df.groupby("ProductPitched")
   gk.get_group("Deluxe")
```

Out[55]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	0	200000	1	41.0	Self Enquiry	3	6.0	Salaried	Fema
	1	200001	0	49.0	Company Invited	1	14.0	Salaried	Ма
	9	200009	0	36.0	Self Enquiry	1	33.0	Small Business	Ма
	11	200011	0	NaN	Self Enquiry	1	21.0	Salaried	Fema
	20	200020	0	NaN	Company Invited	1	17.0	Salaried	Fema
	•••			•••					
	4876	204876	1	52.0	Self Enquiry	3	34.0	Salaried	Ма
	4877	204877	1	39.0	Company Invited	1	16.0	Salaried	Ма
	4878	204878	1	35.0	Self Enquiry	1	17.0	Small Business	Ма
	4880	204880	1	59.0	Self Enquiry	1	28.0	Small Business	Fema
	4883	204883	1	49.0	Self Enquiry	3	9.0	Small Business	Ма

1732 rows × 20 columns

```
In [56]: gk = df.groupby("ProductPitched")
    gk.get_group("Super Deluxe")
```

Out[56]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	18	200018	0	53.0	Self Enquiry	3	8.0	Salaried	Fema
	65	200065	0	55.0	Self Enquiry	1	14.0	Small Business	Fema
	90	200090	0	40.0	Company Invited	1	6.0	Salaried	Ма
	98	200098	0	58.0	Self Enquiry	3	16.0	Small Business	Ма

	CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
112	200112	0	54.0	Company Invited	2	32.0	Salaried	Fema
•••						•••		1
4775	204775	0	47.0	Self Enquiry	3	9.0	Small Business	Fema
4781	204781	0	51.0	Company Invited	1	9.0	Small Business	Fema
4808	204808	0	55.0	Self Enquiry	1	10.0	Salaried	Ма
4827	204827	1	46.0	Self Enquiry	3	20.0	Small Business	Ма
4865	204865	1	42.0	Company Invited	3	16.0	Salaried	Ма

```
In [57]: gk = df.groupby("ProductPitched")
    gk.get_group("King")
```

Out[57]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	25	200025	0	53.0	Self Enquiry	1	11.0	Salaried	Femal
	29	200029	0	46.0	Self Enquiry	3	8.0	Small Business	Femal
	45	200045	1	41.0	Self Enquiry	1	18.0	Large Business	Femal
	62	200062	0	50.0	Self Enquiry	1	13.0	Small Business	Femal
	105	200105	0	59.0	Company Invited	2	8.0	Salaried	Femal
	•••					•••			٠
	4772	204772	0	54.0	Self Enquiry	1	14.0	Small Business	Femal
	4783	204783	0	47.0	Self Enquiry	1	22.0	Salaried	Mal
	4812	204812	0	44.0	Self Enquiry	1	10.0	Salaried	Mal
	4813	204813	0	50.0	Self Enquiry	1	11.0	Small Business	Mal
	4816	204816	1	28.0	Self Enquiry	3	9.0	Small Business	Femal

230 rows × 20 columns

Designation

```
In [58]: gk = df.groupby("Designation")
   gk.get_group("Senior Manager")
```

Out[58]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	8	200008	0	38.0	Company Invited	1	29.0	Salaried	Ма
	15	200015	0	29.0	Self Enquiry	1	27.0	Salaried	Fema
	22	200022	0	34.0	Self Enquiry	1	13.0	Salaried	Fe Ma
	28	200028	0	44.0	Self Enquiry	1	13.0	Small Business	Fema
	43	200043	0	27.0	Company Invited	3	14.0	Salaried	Ма
	•••							•••	
	4852	204852	1	59.0	Self Enquiry	1	9.0	Large Business	Fema
	4856	204856	1	37.0	Self Enquiry	3	17.0	Small Business	Ма
	4870	204870	1	57.0	Self Enquiry	3	23.0	Salaried	Fema
	4871	204871	1	41.0	Self Enquiry	3	23.0	Small Business	Ма
	4885	204885	1	52.0	Self Enquiry	3	17.0	Salaried	Fema

```
In [59]: gk = df.groupby("Designation")
   gk.get_group("VP")
```

Gende	Occupation	DurationOfPitch	CityTier	TypeofContact	Age	ProdTaken	CustomerID		Out[59]:
Femal	Salaried	11.0	1	Self Enquiry	53.0	0	200025	25	
Femal	Small Business	8.0	3	Self Enquiry	46.0	0	200029	29	
Femal	Large Business	18.0	1	Self Enquiry	41.0	1	200045	45	
Femal	Small Business	13.0	1	Self Enquiry	50.0	0	200062	62	
Femal	Salaried	8.0	2	Company Invited	59.0	0	200105	105	
							•••	•••	
Femal	Small Business	14.0	1	Self Enquiry	54.0	0	204772	4772	
Mal	Salaried	22.0	1	Self Enquiry	47.0	0	204783	4783	

	CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
4812	204812	0	44.0	Self Enquiry	1	10.0	Salaried	Mal
4813	204813	0	50.0	Self Enquiry	1	11.0	Small Business	Mal
4816	204816	1	28.0	Self Enquiry	3	9.0	Small Business	Femal

```
In [60]: gk = df.groupby("Designation")
   gk.get_group("AVP")
```

Out[60]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	18	200018	0	53.0	Self Enquiry	3	8.0	Salaried	Fema
	65	200065	0	55.0	Self Enquiry	1	14.0	Small Business	Fema
	90	200090	0	40.0	Company Invited	1	6.0	Salaried	Ма
	98	200098	0	58.0	Self Enquiry	3	16.0	Small Business	Ма
	112	200112	0	54.0	Company Invited	2	32.0	Salaried	Fema
	•••								
	4775	204775	0	47.0	Self Enquiry	3	9.0	Small Business	Fema
	4781	204781	0	51.0	Company Invited	1	9.0	Small Business	Fema
	4808	204808	0	55.0	Self Enquiry	1	10.0	Salaried	Ма
	4827	204827	1	46.0	Self Enquiry	3	20.0	Small Business	Ма
	4865	204865	1	42.0	Company Invited	3	16.0	Salaried	Ма

342 rows × 20 columns

```
In [61]: gk = df.groupby("Designation")
    gk.get_group("Executive")
```

Out[61]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	2	200002	1	37.0	Self Enquiry	1	8.0	Free Lancer	Ма
	3	200003	0	33.0	Company Invited	1	9.0	Salaried	Fema
	4	200004	0	NaN	Self Enquiry	1	8.0	Small Business	Ма

	CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
5	200005	0	32.0	Company Invited	1	8.0	Salaried	Ма
6	200006	0	59.0	Self Enquiry	1	9.0	Small Business	Fema
•••	•••	•••		•••	•••	•••	•••	•
4881	204881	1	41.0	Self Enquiry	2	25.0	Salaried	Ма
4882	204882	1	37.0	Self Enquiry	2	20.0	Salaried	Ма
4884	204884	1	28.0	Company Invited	1	31.0	Salaried	Ма
4886	204886	1	19.0	Self Enquiry	3	16.0	Small Business	Ма
4887	204887	1	36.0	Self Enquiry	1	14.0	Salaried	Ма

Basic = Executive

Standard = Senior Manager

Deluxe = Manager

Super Deluxe = AVP

King = VP

Data Pre-processing

Outliers

NumberOfTrips

[62]:		df.groupb et_group(1		fTrip	s")				
2]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gender
	385	200385	1	30.0	Company Invited	1	10.0	Large Business	Male
	_	df.groupb et_group(2	- •	fTrip	os")				
:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	2829	202829	1	31.0	Company	1	11.0	Large	

Invited

Business

```
gk = df.groupby("NumberOfTrips")
In [64]:
           gk.get group(21.0)
               CustomerID ProdTaken Age TypeofContact CityTier DurationOfPitch Occupation Gender
Out[64]:
                                                Company
          816
                   200816
                                     39.0
                                                               1
                                                                           15.0
                                                                                    Salaried
                                                                                              Male
                                                  Invited
           gk = df.groupby("NumberOfTrips")
In [65]:
           gk.get group(22.0)
                CustomerID ProdTaken Age TypeofContact CityTier DurationOfPitch Occupation Gende
Out[65]:
                                                 Company
          3260
                    203260
                                    0 40.0
                                                                1
                                                                             16.0
                                                                                     Salaried
                                                                                               Mal
                                                   Invited
           • 19+ trips a year doesn't seem reasonable, so I will change each value to the median value of
             "NumberOfTrips" given their "Designation" position.
           gk = df.groupby("Designation")
In [66]:
           gk.get group("Executive").median()
Out[66]: CustomerID
                                        202444.5
          ProdTaken
                                              0.0
          Age
                                             32.0
          CityTier
                                              1.0
          DurationOfPitch
                                             13.0
          NumberOfPersonVisiting
                                              3.0
                                              4.0
          NumberOfFollowups
          PreferredPropertyStar
                                              3.0
          NumberOfTrips
                                              3.0
          Passport
                                              0.0
          PitchSatisfactionScore
                                              3.0
          OwnCar
                                              1.0
          NumberOfChildrenVisiting
                                              1.0
          MonthlyIncome
                                         20689.0
          dtype: float64
In [67]:
           df.iloc[[385, 2829], [13]] = 3.0
           gk = df.groupby("Designation")
In [68]:
           gk.get group("Manager").median()
Out[68]: CustomerID
                                        202441.5
          ProdTaken
                                              0.0
          Age
                                             36.0
          CityTier
                                              1.0
          DurationOfPitch
                                             14.0
          NumberOfPersonVisiting
                                              3.0
          NumberOfFollowups
                                              4.0
          PreferredPropertyStar
                                              3.0
          NumberOfTrips
                                              3.0
          Passport
                                              0.0
```

3.0

PitchSatisfactionScore

OwnCar NumberOfChildrenVisiting MonthlyIncome

dtype: float64

1.0 1.0 22922.0

```
In [69]: df.iloc[[816, 3260], [13]] = 3.0
```


MonthlyIncome

Out[71]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gender
	38	200038	0	36.0	Self Enquiry	1	11.0	Salaried	Female

```
In [72]: gk = df.groupby("MonthlyIncome")
   gk.get_group(98678.0)
```

Out[72]:		CustomerID	ProdTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	2482	202482	0	37.0	Self Enquiry	1	12.0	Salaried	Femal

• These two were pitched "Basic" and has "Executive" position, so will change MonthlyIncome to the median salary of the "Executive" position.

```
gk = df.groupby("MonthlyIncome")
In [73]:
           gk.get_group(1000.0)
               CustomerID ProdTaken Age TypeofContact CityTier DurationOfPitch Occupation
Out[73]:
                                                                                        Large
          142
                                               Self Enquiry
                                                                1
                   200142
                                     38.0
                                                                              9.0
                                                                                               Female
                                                                                     Business
           gk = df.groupby("MonthlyIncome")
In [74]:
           gk.get_group(4678.0)
                CustomerID ProdTaken Age TypeofContact CityTier DurationOfPitch Occupation Gende
Out[74]:
                                                                                         Large
          2586
                    202586
                                     0 39.0
                                                Self Enquiry
                                                                 1
                                                                               10.0
                                                                                                Femal
                                                                                      Business
```

• These two were pitched "Deluxe" and has "Manager" position, so will change MonthlyIncome to the median salary of the "Manager" position.

```
gk = df.groupby("Designation")
In [75]:
          gk.get group("Executive").median()
Out[75]: CustomerID
                                       202444.5
         ProdTaken
                                            0.0
                                           32.0
         Age
         CityTier
                                            1.0
         DurationOfPitch
                                           13.0
         NumberOfPersonVisiting
                                            3.0
                                            4.0
         NumberOfFollowups
         PreferredPropertyStar
                                            3.0
         NumberOfTrips
                                            3.0
         Passport
                                            0.0
         PitchSatisfactionScore
                                            3.0
         OwnCar
                                            1.0
         NumberOfChildrenVisiting
                                            1.0
         MonthlyIncome
                                        20689.0
         dtype: float64
          df.iloc[[38, 2482], [19]] = 20689.0
In [76]:
          gk = df.groupby("Designation")
In [77]:
          gk.get group("Manager").median()
Out[77]: CustomerID
                                       202441.5
         ProdTaken
                                            0.0
                                           36.0
         Age
         CityTier
                                            1.0
         DurationOfPitch
                                           14.0
         NumberOfPersonVisiting
                                            3.0
         NumberOfFollowups
                                            4.0
         PreferredPropertyStar
                                            3.0
```

NumberOfTrips	3.0
Passport	0.0
PitchSatisfactionScore	3.0
OwnCar	1.0
NumberOfChildrenVisiting	1.0
MonthlyIncome	22922.0
dtyne. float64	

In [78]: df.iloc[[142, 2586], [19]] = 22922.0

In [79]: histogram_boxplot(df, "MonthlyIncome")

Missing Value Treatment

In [80]:	df.isnull().sum()		
Out[80]:	CustomerID	0	
	ProdTaken	0	
	Age	226	
	TypeofContact	25	
	CityTier	0	
	DurationOfPitch	251	
	Occupation	0	
	Gender	0	
	NumberOfPersonVisiting	0	
	NumberOfFollowups	45	
	ProductPitched	0	
	PreferredPropertyStar	26	
	MaritalStatus	0	
	NumberOfTrips	140	
	Passport	0	

Data Cleaning

Gender typo

```
my tab = pd.crosstab(index=df["Gender"], columns="count")
In [90]:
          my_tab
           col_0 count
Out[90]:
          Gender
          Fe Male
                   155
          Female
                   1817
            Male
                  2916
In [91]:
          def changer(x):
               if x == "Fe Male":
                   return "Female"
               elif x == "Male":
                   return "Male"
               else:
                   return "Female"
          df["Gender"] = df.Gender.apply(changer)
In [92]:
          my tab = pd.crosstab(index=df["Gender"], columns="count")
          my tab
Out[92]:
           col_0 count
          Gender
          Female
                  1972
            Male
                  2916
```

Preparing data for modeling

Dummy Variables

```
df.info()
In [93]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4888 entries, 0 to 4887
         Data columns (total 20 columns):
              Column
                                        Non-Null Count Dtype
              CustomerID
                                        4888 non-null int64
          1
              ProdTaken
                                        4888 non-null int64
          2
              Age
                                        4888 non-null float64
          3
              TypeofContact
                                        4888 non-null
                                                        object
              CityTier
                                        4888 non-null
                                                        int64
          5
              DurationOfPitch
                                        4888 non-null
                                                        float64
          6
              Occupation
                                        4888 non-null
                                                        object
              Gender
                                        4888 non-null
                                                        object
```

```
NumberOfPersonVisiting
                               4888 non-null
                                               int64
 9
     NumberOfFollowups
                               4888 non-null
                                               float64
 10 ProductPitched
                               4888 non-null
                                               object
 11 PreferredPropertyStar
                               4888 non-null
                                               float64
 12 MaritalStatus
                               4888 non-null
                                               object
                               4888 non-null
                                               float64
 13 NumberOfTrips
                               4888 non-null
 14 Passport
                                               int64
 15 PitchSatisfactionScore
                               4888 non-null
                                               int64
                               4888 non-null
                                               int64
 17 NumberOfChildrenVisiting 4888 non-null
                                               float64
 18 Designation
                               4888 non-null
                                               object
 19 MonthlyIncome
                               4888 non-null
                                               float64
dtypes: float64(7), int64(7), object(6)
memory usage: 763.9+ KB
```

```
In [94]: df1 = pd.get_dummies(
    df,
    columns=[
        "TypeofContact",
        "Occupation",
        "Gender",
        "ProductPitched",
        "MaritalStatus",
        "Designation",
    ],
    drop_first=True,
)
```

```
In [95]: df1.drop(["CustomerID"], inplace=True, axis=1)
```

• Dropped "CustomerID" as it is usless.

```
In [96]: df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4888 entries, 0 to 4887
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	ProdTaken	4888 non-null	 int64
1	Age	4888 non-null	float64
2	CityTier	4888 non-null	int64
3	DurationOfPitch	4888 non-null	float64
4	NumberOfPersonVisiting	4888 non-null	int64
5	NumberOfFollowups	4888 non-null	float64
6	PreferredPropertyStar	4888 non-null	float64
7	NumberOfTrips	4888 non-null	float64
8	Passport	4888 non-null	int64
9	PitchSatisfactionScore	4888 non-null	int64
10	OwnCar	4888 non-null	int64
11	NumberOfChildrenVisiting	4888 non-null	float64
12	MonthlyIncome	4888 non-null	float64
13	TypeofContact_Self Enquiry	4888 non-null	uint8
14	Occupation_Large Business	4888 non-null	uint8
15	Occupation_Salaried	4888 non-null	uint8
16	Occupation_Small Business	4888 non-null	uint8
17	Gender_Male	4888 non-null	uint8
18	ProductPitched_Deluxe	4888 non-null	uint8
19	ProductPitched_King	4888 non-null	uint8

```
20 ProductPitched Standard
                                 4888 non-null
                                                uint8
 21 ProductPitched_Super Deluxe 4888 non-null
                                                uint8
 22 MaritalStatus_Married
                                4888 non-null
                                                uint8
 23 MaritalStatus Single
                                4888 non-null
                                                uint8
 24 MaritalStatus_Unmarried
                                4888 non-null
                                                uint8
25 Designation_Executive
                                4888 non-null
                                                uint8
 26 Designation_Manager
                                4888 non-null
                                                uint8
 27 Designation Senior Manager
                                4888 non-null
                                                uint8
 28 Designation VP
                                 4888 non-null
                                                uint8
dtypes: float64(7), int64(6), uint8(16)
memory usage: 572.9 KB
```

```
In [97]: df1.sample(10)
```

Out[97]:		ProdTaken	Age	CityTier	DurationOfPitch	NumberOfPersonVisiting	NumberOfFollowups	F
	2448	0	28.0	1	9.0	3	4.0	
	4233	0	33.0	3	15.0	4	5.0	
	2726	0	30.0	3	9.0	3	4.0	
	39	0	33.0	3	6.0	2	2.0	
	1347	0	36.0	2	8.0	3	4.0	
	1924	0	29.0	1	13.0	2	3.0	
	4701	0	56.0	1	9.0	4	4.0	
	2693	0	46.0	1	14.0	4	3.0	
	1211	0	37.0	3	6.0	2	5.0	
	1333	1	46.0	3	16.0	3	3.0	

10 rows × 29 columns

```
In [98]: plt.figure(figsize=(30, 14))
    sns.heatmap(df1.corr(), annot=True, vmin=-1, vmax=1, cmap="Spectral")
    plt.show()
```



```
In [99]: def boxplot(x):
    plt.figure(figsize=(7, 5))
    sns.boxplot(df1["ProdTaken"], x, palette="PuBu")
    plt.show()
```

```
In [100... boxplot(df1["Age"])
```



```
In [101... boxplot(df1["MonthlyIncome"])
```


In [103... boxplot(df1["Passport"])

Split Data

```
X = df1.drop("ProdTaken", axis=1)
In [104...
          y = df1["ProdTaken"]
          # Splitting data into training and test set:
In [105...
          X_train, X_test, y_train, y_test = train_test_split(
              X, y, test size=0.3, random state=1, stratify=y
          print(X train.shape, X test.shape)
          (3421, 28) (1467, 28)
          print("Number of rows in train data =", X train.shape[0])
In [106...
          print("Number of rows in test data =", X_test.shape[0])
         Number of rows in train data = 3421
         Number of rows in test data = 1467
In [107...
         print("Percentage of classes in training set:")
          print(y_train.value_counts(normalize=True))
          print("Percentage of classes in test set:")
          print(y test.value counts(normalize=True))
         Percentage of classes in training set:
               0.811751
               0.188249
         Name: ProdTaken, dtype: float64
         Percentage of classes in test set:
               0.811861
               0.188139
         Name: ProdTaken, dtype: float64
          y.value counts(1)
In [108...
```

```
Out[108... 0 0.811784
1 0.188216
```

Name: ProdTaken, dtype: float64

Model Evaluation

Model Prediction Errors

- 1. Predicting someone bought a travel package, but didn't (FP)
- 2. Predicting someone did not buy a travel package, but did. (FN)

Which is more important?

- 1. If the model predicted someone bought a travel package, but didn't, the model is giving a false sense of potential revenue and the marketing team will go after the wrong person.
- 2. If the model predicted someone not buying a travel package, but did, the model is also not reflective of the potential revenue. However, the marketing team will not spend money on this person.
 - If you advertise to the wrong people, you lose money.
 - If you don't advertise to the right people, you lose potential money.

Which metric to optimize?

I don't know how much anything costs, but to have a successful business, you have to make more money than you lose. Given the circumstance, I will be focusing mainly on the F1-score followed by precision. I think it is slightly more important to minimize false positives, so you can lower needless spending.

Functions for Model Evaluation

```
In [109... # defining a function to compute different metrics to check performance of a cla
def model_performance_classification_sklearn(model, predictors, target):
    """
    Function to compute different metrics to check classification model performa
    model: classifier
    predictors: independent variables
    target: dependent variable
    """

# predicting using the independent variables
    pred = model.predict(predictors)

acc = accuracy_score(target, pred) # to compute Accuracy
    recall = recall_score(target, pred) # to compute Recall
    precision = precision_score(target, pred) # to compute Precision
    f1 = f1_score(target, pred) # to compute F1-score

# creating a dataframe of metrics
df perf = pd.DataFrame(
```

```
{
    "Accuracy": acc,
    "Recall": recall,
    "Precision": precision,
    "F1": f1,
},
    index=[0],
)

return df_perf
```

```
In [110...
          def confusion_matrix_sklearn(model, predictors, target):
              To plot the confusion matrix with percentages
              model: classifier
              predictors: independent variables
              target: dependent variable
              y_pred = model.predict(predictors)
              cm = confusion_matrix(target, y_pred)
              labels = np.asarray(
                       ["{0:0.0f}]".format(item) + "\n{0:.2%}".format(item / cm.flatten().su
                      for item in cm.flatten()
              ).reshape(2, 2)
              plt.figure(figsize=(6, 4))
              sns.heatmap(cm, annot=labels, fmt="")
              plt.ylabel("True label")
              plt.xlabel("Predicted label")
```

Decision Tree, Random Forest, Bagging, and Tuned Models

Decision Tree

F1

Accuracy Recall Precision

```
1.0 1.0
         1.0
Testing performance:
                   Recall
                             Precision
    Accuracy
  0.881391 0.695652
                             0.680851 0.688172
                                                    - 1000
             1101
            75.05%
                                                    800
Frue label
                                                    - 600
                                                     400
                                   192
                                  13.09%
                                                     200
               0
                                    1
                    Predicted label
```

• The Decision Tree is overfitting.

Random Forest

```
# Fitting the model
In [112...
          rf estimator = RandomForestClassifier(random state=1)
          rf estimator.fit(X train, y train)
          # Calculating different metrics
          rf estimator model train perf = model performance classification sklearn(
              rf estimator, X train, y train
          print("Training performance:\n", rf estimator model train perf)
          rf_estimator_model_test_perf = model_performance_classification_sklearn(
              rf estimator, X test, y test
          print("Testing performance:\n", rf_estimator_model_test_perf)
          # Creating confusion matrix
          confusion matrix sklearn(rf estimator, X test, y test)
         Training performance:
             Accuracy Recall Precision
                 1.0
                         1.0
                                    1.0 1.0
         Testing performance:
                         Recall Precision
             Accuracy
           0.915474 0.586957
                                 0.94186 0.723214
```


- Random Forest is also overfitting
- Has a lot better precision than decision tree.

Bagging Classifier

```
# Fitting the model
In [113...
          bagging classifier = BaggingClassifier(random state=1)
          bagging_classifier.fit(X_train, y_train)
          # Calculating different metrics
          bagging_classifier_model_train_perf = model_performance_classification_sklearn(
              bagging classifier, X train, y train
          print("Training performance:\n", bagging_classifier_model_train_perf)
          bagging classifier model test perf = model performance classification sklearn(
              bagging classifier, X test, y test
          print("Testing performance:\n", bagging classifier model test perf)
          # Creating confusion matrix
          confusion matrix sklearn(bagging classifier, X test, y test)
         Training performance:
             Accuracy
                       Recall Precision
         0 0.994154 0.97205
                                0.996815 0.984277
         Testing performance:
             Accuracy
                         Recall Precision
           0.912747 0.626812 0.873737 0.729958
```


• Train and Test are closer, but still overfitting.

Bagging Classifier with weighted Decision Tree

```
bagging_wt = BaggingClassifier(
In [114...
              base_estimator=DecisionTreeClassifier(
                  criterion="gini", class weight={0: 0.19, 1: 0.81}, random state=1
              random state=1,
          bagging wt.fit(X train, y train)
Out[114... BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight={0: 0.19,
                                                                  random state=1),
                           random state=1)
          # Calculating different metrics
In [115...
          bagging_wt_classifier_model_train_perf = model_performance_classification_sklear
              bagging wt, X train, y train
          print("Training performance:\n", bagging wt classifier model train perf)
          bagging wt classifier model test perf = model performance classification sklearn
              bagging wt, X test, y test
          print("Testing performance:\n", bagging wt classifier model test perf)
          # Creating confusion matrix
          confusion matrix sklearn(bagging wt, X test, y test)
         Training performance:
             Accuracy
                         Recall Precision
            0.992985 0.967391 0.995208 0.981102
         Testing performance:
                         Recall Precision
             Accuracy
             0.90593 0.576087
                                 0.883333 0.697368
```


Tuned Decision Tree

```
# Choose the type of classifier.
In [116...
          dtree estimator = DecisionTreeClassifier(
              class_weight={0: 0.19, 1: 0.81}, random_state=1
          # Grid of parameters to choose from
          parameters = {
              "max depth": np.arange(2, 10),
              "min samples leaf": [5, 7, 10, 15],
               "max_leaf_nodes": [2, 3, 5, 10, 15],
              "min impurity_decrease": [0.0001, 0.001, 0.01, 0.1],
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.fl score)
          # Run the grid search
          grid obj = GridSearchCV(dtree estimator, parameters, scoring=scorer, n jobs=-1)
          grid obj = grid obj.fit(X train, y train)
          # Set the clf to the best combination of parameters
          dtree estimator = grid obj.best estimator
          # Fit the best algorithm to the data.
          dtree estimator.fit(X train, y train)
Out[116... DecisionTreeClassifier(class_weight={0: 0.19, 1: 0.81}, max_depth=6,
                                 max leaf nodes=15, min impurity decrease=0.0001,
                                 min samples leaf=5, random state=1)
In [117...
          # Calculating different metrics
          dtree estimator model train perf = model performance classification sklearn(
              dtree_estimator, X_train, y_train
          print("Training performance:\n", dtree estimator model train perf)
          dtree estimator model test perf = model performance classification sklearn(
              dtree estimator, X test, y test
```

```
print("Testing performance:\n", dtree_estimator_model_test_perf)
# Creating confusion matrix
confusion_matrix_sklearn(dtree_estimator, X_test, y_test)
```

```
Training performance:
                  Recall Precision
    Accuracy
                                                F1
                            0.409761 0.514451
   0.754458 0.690994
Testing performance:
    Accuracy
                  Recall Precision
                                            F1
   0.766871 0.684783
                            0.425676
                                        0.525
                                                 - 900
                                                  800
             936
  0
            63.80%
                                                  - 700
                                                  - 600
Frue label
                                                  - 500
                                                  400
                                  189
                                                  - 300
                                12.88%
                                                   200
                                                   100
              0
                                   1
                   Predicted label
```

- Model isn't overfitting and actually performing a little better on the test data.
- However, the model is very weak.

Tuned Random Forest

```
In [118...
          # Choose the type of classifier.
          rf tuned = RandomForestClassifier(
              class weight={0: 0.19, 1: 0.81}, random state=1, oob score=True, bootstrap=T
          parameters = {
              "max depth": list(np.arange(5, 30, 5)) + [None],
              "max_features": ["sqrt", "log2", None],
              "min samples leaf": np.arange(1, 15, 5),
              "min samples split": np.arange(2, 20, 5),
              "n_estimators": np.arange(10, 110, 10),
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.fl score)
          # Run the grid search
          grid obj = GridSearchCV(rf tuned, parameters, scoring=scorer, cv=5, n jobs=-1)
          grid_obj = grid_obj.fit(X_train, y_train)
          # Set the clf to the best combination of parameters
          rf tuned = grid obj.best estimator
          # Fit the best algorithm to the data.
          rf_tuned.fit(X_train, y_train)
```

```
Out[118... RandomForestClassifier(class_weight={0: 0.19, 1: 0.81}, max_depth=20, max_features=None, min_samples_split=7, n_estimators=40, oob_score=True, random_state=1)
```

```
In [119... # Calculating different metrics
    rf_tuned_model_train_perf = model_performance_classification_sklearn(
        rf_tuned, X_train, y_train
)
    print("Training performance:\n", rf_tuned_model_train_perf)
    rf_tuned_model_test_perf = model_performance_classification_sklearn(
        rf_tuned, X_test, y_test
)
    print("Testing performance:\n", rf_tuned_model_test_perf)

# Creating confusion matrix
    confusion_matrix_sklearn(rf_tuned, X_test, y_test)
```

```
Training performance:
    Accuracy Recall
                         Precision
                                              F1
   0.995031
                          0.974281 0.986973
                   1.0
Testing performance:
    Accuracy
                  Recall
                            Precision
     0.9182 0.673913
                            0.861111
                                       0.756098
                                                  - 1000
             1161
  0
            79.14%
                                                  - 800
Frue label
                                                  600
                                                  - 400
              90
                                  186
            6.13%
                                12.68%
                                                   200
              0
                                   1
                   Predicted label
```

Tuned random forest is overfitting.

Tuned Bagging Classifier

```
In [120... # Choose the type of classifier.
    bagging_estimator_tuned = BaggingClassifier(random_state=1)

# Grid of parameters to choose from
    parameters = {
        "max_samples": [0.7, 0.8, 0.9, 1],
        "max_features": [0.7, 0.8, 0.9, 1],
        "n_estimators": [10, 20, 30, 40, 50],
}

# Type of scoring used to compare parameter combinations
acc_scorer = metrics.make_scorer(metrics.recall_score)
```

```
# Run the grid search
grid_obj = GridSearchCV(bagging_estimator_tuned, parameters, scoring=acc_scorer,
grid_obj = grid_obj.fit(X_train, y_train)

# Set the clf to the best combination of parameters
bagging_estimator_tuned = grid_obj.best_estimator_

# Fit the best algorithm to the data.
bagging_estimator_tuned.fit(X_train, y_train)
```

Out[120... BaggingClassifier(max_features=0.9, max_samples=0.9, n_estimators=50, random state=1)

Training performance:
 Accuracy Recall Precision F1
0 1.0 1.0 1.0 1.0

Testing performance:
 Accuracy Recall Precision F1
0 0.920927 0.630435 0.925532 0.75

• The model is overfitting, but does okay in accuracy and precision.

Comparing Models

```
In [122... # training performance comparison
    models_train_comp_df = pd.concat(
```

```
dtree_model_train_perf.T,
        dtree_estimator_model_train_perf.T,
        rf estimator model train perf.T,
        rf_tuned_model_train_perf.T,
        bagging classifier model train perf.T,
        bagging estimator tuned model train perf.T,
        bagging_wt_classifier_model_train_perf.T,
    ],
    axis=1,
)
models train comp df.columns = [
    "Decision Tree",
    "Decision Tree Estimator",
    "Random Forest Estimator",
    "Random Forest Tuned",
    "Bagging Classifier",
    "Bagging Estimator Tuned",
    "Bagging WT",
print("Training performance comparison:")
models_train_comp_df
```

Training performance comparison:

Out[122...

	Decision Tree	Decision Tree Estimator	Random Forest Estimator	Random Forest Tuned	Bagging Classifier	Bagging Estimator Tuned	Bagging WT
Accuracy	1.0	0.754458	1.0	0.995031	0.994154	1.0	0.992985
Recall	1.0	0.690994	1.0	1.000000	0.972050	1.0	0.967391
Precision	1.0	0.409761	1.0	0.974281	0.996815	1.0	0.995208
F1	1.0	0.514451	1.0	0.986973	0.984277	1.0	0.981102

```
# testing performance comparison
In [123...
          models test comp df = pd.concat(
                   dtree model test perf.T,
                   dtree estimator model test perf.T,
                   rf_estimator_model_test_perf.T,
                   rf tuned model test perf.T,
                   bagging classifier model test perf.T,
                   bagging estimator tuned model test perf.T,
                   bagging wt classifier model test perf.T,
               ],
              axis=1,
          models_test_comp_df.columns = [
               "Decision Tree",
               "Decision Tree Estimator",
               "Random Forest Estimator",
               "Random Forest Tuned",
               "Bagging Classifier",
               "Bagging Estimator Tuned",
               "Bagging WT",
           1
```

```
print("Testing performance comparison:")
models_test_comp_df
```

Testing performance comparison:

Out[123...

	Decision Tree	Decision Tree Estimator	Random Forest Estimator	Random Forest Tuned	Bagging Classifier	Bagging Estimator Tuned	Bagging WT
Accuracy	0.881391	0.766871	0.915474	0.918200	0.912747	0.920927	0.905930
Recall	0.695652	0.684783	0.586957	0.673913	0.626812	0.630435	0.576087
Precision	0.680851	0.425676	0.941860	0.861111	0.873737	0.925532	0.883333
F1	0.688172	0.525000	0.723214	0.756098	0.729958	0.750000	0.697368

All models are overfitting, but I'd probably go with the Tuned Bagging Estimator because it has the best F1 and precision score with a decent recall. The Tuned Random Forest is a close second.

Feature Importance of Tuned Random Forest

```
Imp
                             0.128213
MonthlyIncome
                             0.126999
DurationOfPitch
                             0.124031
Passport
                             0.092030
NumberOfTrips
                             0.059737
Designation Executive
                            0.058289
CityTier
                             0.054476
NumberOfFollowups
                             0.049232
PitchSatisfactionScore
                             0.047970
PreferredPropertyStar
                            0.042039
MaritalStatus Single
                             0.024014
MaritalStatus Married
                             0.020730
TypeofContact_Self Enquiry
                             0.018915
MaritalStatus Unmarried
                             0.017503
NumberOfChildrenVisiting
                             0.017334
Gender Male
                             0.016597
NumberOfPersonVisiting
                             0.016295
Occupation Large Business
                             0.016172
Occupation_Salaried
                             0.009717
Occupation Small Business
                             0.009707
OwnCar
                             0.009458
Designation Manager
                             0.008301
ProductPitched Super Deluxe 0.008248
ProductPitched Standard
                             0.007614
ProductPitched Deluxe
                             0.007396
Designation Senior Manager 0.006039
Designation VP
                             0.001632
ProductPitched King
                             0.001312
```

```
In [125... feature_names = X_train.columns
   importances = rf_tuned.feature_importances_
   indices = np.argsort(importances)
```

```
plt.figure(figsize=(12, 12))
plt.title("Feature Importances")
plt.barh(range(len(indices)), importances[indices], color="violet", align="cente
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel("Relative Importance")
plt.show()
```


 Age, MonthlyIncome, DurationOfPitch, and Passport are the four most important features when it comes to purchasing a travel package.

Boosting: AdaBoost, Gradient Boost, XGBoost, Tuned Versions, and Stacking

AdaBoost

```
In [126... # Fitting the model
    ab_classifier = AdaBoostClassifier(random_state=1)
    ab_classifier.fit(X_train, y_train)
```

```
# Calculating different metrics
ab_classifier_model_train_perf = model_performance_classification_sklearn(
    ab_classifier, X_train, y_train
)
print(ab_classifier_model_train_perf)
ab_classifier_model_test_perf = model_performance_classification_sklearn(
    ab_classifier, X_test, y_test
)
print(ab_classifier_model_test_perf)

# Creating confusion matrix
confusion_matrix_sklearn(ab_classifier, X_test, y_test)
```


• Model is not overfitting, but very weak in terms of recall and F1.

Gradient Boost

```
# Fitting the model
In [127...
          qb classifier = GradientBoostingClassifier(random state=1)
          gb classifier.fit(X train, y train)
          # Calculating different metrics
          gb classifier model train perf = model performance classification sklearn(
              gb classifier, X train, y train
          print("Training performance:\n", gb_classifier_model_train_perf)
          gb classifier model test perf = model performance classification sklearn(
              gb classifier, X test, y test
          print("Testing performance:\n", gb classifier model test perf)
          # Creating confusion matrix
          confusion matrix sklearn(gb classifier, X test, y test)
         Training performance:
                         Recall Precision
             Accuracy
            0.883952 0.444099
                                      0.88 0.590299
```


- · Model is not really overfitting.
- Recall, precision, and F1 are better.

XGBoost

```
In [128...
          # Fitting the model
          xgb_classifier = XGBClassifier(random_state=1, eval_metric="logloss")
          xgb_classifier.fit(X_train, y_train)
          # Calculating different metrics
          xgb classifier model train perf = model performance classification sklearn(
              xgb classifier, X train, y train
          print("Training performance:\n", xgb classifier model train perf)
          xgb classifier model test perf = model performance classification sklearn(
              xgb classifier, X test, y test
          print("Testing performance:\n", xgb classifier model test perf)
          # Creating confusion matrix
          confusion_matrix_sklearn(xgb_classifier, X_test, y_test)
         Training performance:
                         Recall Precision
             Accuracy
                                                  F1
            0.999415 0.996894
                                      1.0 0.998445
         Testing performance:
                         Recall Precision
             Accuracy
            0.927062 0.710145
                                 0.878924 0.785571
```


• Model looks to be overfitting, but test performance is better than previous models.

Tuned AdaBoost

```
# Choose the type of classifier.
In [129...
          abc_tuned = AdaBoostClassifier(random_state=1)
          # Grid of parameters to choose from
          parameters = {
              # Let's try different max depth for base estimator
              "base estimator": [
                  DecisionTreeClassifier(max depth=1),
                  DecisionTreeClassifier(max depth=2),
                  DecisionTreeClassifier(max depth=3),
              "n estimators": np.arange(10, 110, 10),
              "learning rate": np.arange(0.1, 2, 0.1),
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.fl score)
          # Run the grid search
          grid obj = GridSearchCV(abc tuned, parameters, scoring=scorer, cv=5)
          grid obj = grid obj.fit(X train, y train)
          # Set the clf to the best combination of parameters
          abc tuned = grid obj.best estimator
          # Fit the best algorithm to the data.
          abc tuned.fit(X train, y train)
Out[129... AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max depth=3),
                             learning rate=1.1, n estimators=100, random state=1)
          # Calculating different metrics
In [130...
          abc_tuned_model_train_perf = model_performance_classification_sklearn(
              abc tuned, X train, y train
          print(abc tuned model train perf)
```

```
abc_tuned_model_test_perf = model_performance_classification_sklearn(
    abc_tuned, X_test, y_test
)
print(abc_tuned_model_test_perf)

# Creating confusion matrix
confusion_matrix_sklearn(abc_tuned, X_test, y_test)
```

F1

```
0.989184 0.951863
                              0.990307
                                          0.970705
                  Recall
   Accuracy
                           Precision
                                                  F1
                                          0.681733
   0.884799
                0.655797
                              0.709804
                                                     - 1000
              1117
  0
             76.14%
                                                     - 800
Frue label
                                                     - 600
                                                     400
                                    181
             6.48%
                                  12.34%
                                                      200
               0
                                     1
                     Predicted label
```

Recall Precision

Accuracy

Model is overfitting, but is stronger than the untuned AdaBoost.

Tuned Gradient Boost

```
# Choose the type of classifier.
In [131...
          gbc tuned = GradientBoostingClassifier(
              init=AdaBoostClassifier(random state=1), random state=1
          # Grid of parameters to choose from
          parameters = {
              "n estimators": [100, 150, 200, 250],
               "subsample": [0.8, 0.9, 1],
              "max features": [0.7, 0.8, 0.9, 1],
          }
          # Type of scoring used to compare parameter combinations
          scorer = metrics.make scorer(metrics.fl score)
          # Run the grid search
          grid obj = GridSearchCV(gbc tuned, parameters, scoring=scorer, cv=5)
          grid obj = grid obj.fit(X train, y train)
          # Set the clf to the best combination of parameters
          gbc tuned = grid obj.best estimator
          # Fit the best algorithm to the data.
          gbc tuned.fit(X train, y train)
```

```
In [132...  # Calculating different metrics
    gbc_tuned_model_train_perf = model_performance_classification_sklearn(
        gbc_tuned, X_train, y_train
)
    print("Training performance:\n", gbc_tuned_model_train_perf)
    gbc_tuned_model_test_perf = model_performance_classification_sklearn(
        gbc_tuned, X_test, y_test
)
    print("Testing performance:\n", gbc_tuned_model_test_perf)

# Creating confusion matrix
    confusion_matrix_sklearn(gbc_tuned, X_test, y_test)
```

```
Training performance:
    Accuracy    Recall    Precision    F
0    0.920491    0.613354    0.944976    0.743879
Testing performance:
    Accuracy    Recall    Precision    F1
0    0.883436    0.496377    0.810651    0.61573
```


Model is overfitting, but stronger than the untuned gradient boost.

Tuned XGBoost

```
In [133... # Choose the type of classifier.
    xgb_tuned = XGBClassifier(random_state=1, eval_metric="logloss")

# Grid of parameters to choose from
    parameters = {
        "n_estimators": [10, 30, 50],
        "scale_pos_weight": [1, 2, 5],
        "subsample": [0.7, 0.9, 1],
        "learning_rate": [0.05, 0.1, 0.2],
        "colsample_bytree": [0.7, 0.9, 1],
        "colsample_bylevel": [0.5, 0.7, 1],
        "max_depth": [3, 6, 9],
}
```

```
# Type of scoring used to compare parameter combinations
scorer = metrics.make_scorer(metrics.f1_score)

# Run the grid search
grid_obj = GridSearchCV(xgb_tuned, parameters, scoring=scorer, cv=5)
grid_obj = grid_obj.fit(X_train, y_train)

# Set the clf to the best combination of parameters
xgb_tuned = grid_obj.best_estimator_

# Fit the best algorithm to the data.
xgb_tuned.fit(X_train, y_train)
```

Out[133... XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=0.7, colsample_bynode=1, colsample_bytree=0.7, eval_metric='logloss', gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.2, max_delta_step=0, max_depth=9, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=50, n_jobs=12, num_parallel_tree=1, random_state=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=5, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)

Accuracy Recall Precision 0.999708 1.0 0.99845 0.999224 Testing performance: Recall Precision Accuracy 0.945467 0.84058 0.865672 0.852941 - 1000 1155 0 -78.73% 800 Frue labe - 600

Training performance:

• Model is overfitting a little bit, but is better than the untuned XGBoost.

Stacking

```
In [135...
          estimators = [
               ("Random Forest Tuned", rf tuned),
               ("Bagging Estimator Tuned", bagging_estimator_tuned),
               ("XGBoost Classifier", xgb_classifier),
          final estimator = xgb tuned
          stacking_classifier = StackingClassifier(
              estimators=estimators, final estimator=final estimator
          stacking_classifier.fit(X_train, y_train)
Out[135... StackingClassifier(estimators=[('Random Forest Tuned',
                                           RandomForestClassifier(class weight={0: 0.19,
                                                                                 1: 0.81},
                                                                  max depth=20,
                                                                   max features=None,
                                                                   min samples split=7,
                                                                   n estimators=40,
                                                                   oob score=True,
                                                                   random state=1)),
                                          ('Bagging Estimator Tuned',
                                           BaggingClassifier(max features=0.9,
                                                             max samples=0.9,
                                                             n estimators=50,
                                                             random state=1)),
                                          ('XGBoost Classifier',
                                           XGBClassifier(bas...
                                                            eval metric='logloss', gamma=0,
                                                            gpu id=-1,
                                                            importance_type='gain',
                                                            interaction constraints='',
                                                            learning rate=0.2,
                                                            max delta step=0, max depth=9,
                                                            min child weight=1,
                                                            missing=nan,
                                                            monotone constraints='()',
                                                            n_estimators=50, n_jobs=12,
                                                            num_parallel_tree=1,
                                                            random state=1, reg alpha=0,
                                                            reg lambda=1,
                                                            scale pos weight=5,
                                                            subsample=1,
                                                            tree method='exact',
                                                            validate parameters=1,
                                                            verbosity=None))
In [136...
          # Calculating different metrics
          stacking classifier model train perf = model performance classification sklearn(
               stacking classifier, X train, y train
          print("Training performance:\n", stacking classifier model train perf)
```

stacking classifier model test perf = model performance classification sklearn(

```
stacking_classifier, X_test, y_test
)
print("Testing performance:\n", stacking_classifier_model_test_perf)

# Creating confusion matrix
confusion_matrix_sklearn(stacking_classifier, X_test, y_test)
```

```
Training performance:
    Accuracy Recall Precision
   0.994446
                  1.0
                         0.971342 0.985463
Testing performance:
                  Recall Precision
    Accuracy
                                      0.790698
    0.91411 0.862319
                           0.730061
                                                1000
            1103
  0
                                                - 800
Frue label
                                                - 600
                                                 400
                                238
                                                 200
              0
                   Predicted label
```

Model is overfitting and has poor precision performance.

Comparing Models

```
# training performance comparison
In [137...
          models_train_comp_df = pd.concat(
                   ab classifier model train perf.T,
                   abc tuned model train perf.T,
                   gb classifier model train perf.T,
                   gbc_tuned_model_train_perf.T,
                   xgb classifier model train perf.T,
                   xgb tuned model train perf.T,
                   stacking classifier model train perf.T,
               ],
               axis=1,
          )
          models train comp df.columns = [
               "Adaboost Classifier",
               "Adabosst Classifier Tuned",
               "Gradient Boost Classifier",
               "Gradient Boost Classifier Tuned",
               "XGBoost Classifier",
               "XGBoost Classifier Tuned",
               "Stacking Classifier",
```

```
print("Training performance comparison:")
models_train_comp_df
```

Training performance comparison:

Out[137...

		Adaboost Classifier	Adabosst Classifier Tuned	Gradient Boost Classifier	Gradient Boost Classifier Tuned	XGBoost Classifier	XGBoost Classifier Tuned	Stacking Classifier
A	ccuracy	0.845367	0.989184	0.883952	0.920491	0.999415	0.999708	0.994446
	Recall	0.327640	0.951863	0.444099	0.613354	0.996894	1.000000	1.000000
Pı	recision	0.687296	0.990307	0.880000	0.944976	1.000000	0.998450	0.971342
	F1	0.443743	0.970705	0.590299	0.743879	0.998445	0.999224	0.985463

```
# test performance comparison
In [138...
          models_test_comp_df = pd.concat(
                  ab classifier model test perf.T,
                  abc tuned model test perf.T,
                  gb_classifier_model_test_perf.T,
                  gbc tuned model test perf.T,
                  xgb_classifier_model_test_perf.T,
                  xgb_tuned_model_test_perf.T,
                  stacking_classifier_model_test_perf.T,
              axis=1,
          models test comp df.columns = [
              "Adaboost Classifier",
              "Adabosst Classifier Tuned",
              "Gradient Boost Classifier",
              "Gradient Boost Classifier Tuned",
              "XGBoost Classifier",
              "XGBoost Classifier Tuned",
               "Stacking Classifier",
          print("Testing performance comparison:")
          models test comp df
```

Testing performance comparison:

Out[138...

	Adaboost Classifier	Adabosst Classifier Tuned	Gradient Boost Classifier	Gradient Boost Classifier Tuned	XGBoost Classifier	XGBoost Classifier Tuned	Stacking Classifier
Accuracy	0.847989	0.884799	0.867757	0.883436	0.927062	0.945467	0.914110
Recall	0.329710	0.655797	0.394928	0.496377	0.710145	0.840580	0.862319
Precision	0.705426	0.709804	0.801471	0.810651	0.878924	0.865672	0.730061
F1	0.449383	0.681733	0.529126	0.615730	0.785571	0.852941	0.790698

All models are overfitting, but I'd probably go with the Tuned XGBoost Claddifier if I had to pick from these as it has the best F1 and good precision and recall.

Feature Importance of Tuned XGBoost Model

```
Imp
Passport
                             0.161820
Designation_Executive
                             0.099646
MaritalStatus_Single
                             0.058996
ProductPitched Super Deluxe 0.049183
MaritalStatus_Unmarried
                             0.044578
                             0.040049
Designation VP
CityTier
                             0.037761
Designation Senior Manager
                             0.034663
Occupation Large Business
                             0.033176
ProductPitched Standard
                             0.033013
ProductPitched Deluxe
                             0.031652
NumberOfFollowups
                             0.027789
DurationOfPitch
                             0.027125
PreferredPropertyStar
                             0.027058
                             0.026332
Occupation Small Business
                             0.025358
NumberOfTrips
                             0.025134
PitchSatisfactionScore
                             0.024557
TypeofContact Self Enquiry
                             0.024534
ProductPitched King
                             0.024169
Designation Manager
                             0.022650
MonthlyIncome
                             0.022258
Gender Male
                             0.019705
MaritalStatus_Married
                             0.018686
OwnCar
                             0.017951
Occupation Salaried
                             0.017611
NumberOfChildrenVisiting
                             0.013943
NumberOfPersonVisiting
                             0.010603
```

```
In [140... feature_names = X_train.columns
    importances = xgb_tuned.feature_importances_
    indices = np.argsort(importances)

plt.figure(figsize=(12, 12))
    plt.title("Feature Importances")
    plt.barh(range(len(indices)), importances[indices], color="violet", align="center plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
    plt.xlabel("Relative Importance")
    plt.show()
```


 Passport, Designation_Executive, and MaritalStatus_Single are the three most importance features when it comes to purchasing a travel package.

Actionable Insights & Recommendations

The data show that people ~26-40, people with a MonthlyIncome of ~18,000-24,000, and people with a passport have a higher likelihood of buying a travel package.

It may be a good idea to pitch the new Wellness Tourism Package to young people in their late 20s/early 30s, as that age group are likely trying to maintain or even enhance their healthy lifestyle if they have one.

Another age group to pitch the new Wellness Tourism Package is people in their mid-40s/50s. They tend to become more conscious of their health and may want to get into a healthy lifestyle.

For this new Wellness Tourism Package, it may be benificial to collect data on the travel goals of individuals or their active/health level.