

Universität Freiburg Institut für Informatik Georges-Köhler Allee, Geb. 51 D-79110 Freiburg

Fang Wei-Kleiner

fwei@informatik.uni-freiburg.de

Advanced Databases and Information Systems Summerterm 2019

Discussion on 27/06/2019

10. Sheet: Conjunctive Queries

Exercise 1 (Evaluation of conjunctive queries)

Consider the following sample instantiation $\mathcal I$ of a database.

Sales	PName	SNa	me	CName Meier Meier Smith Hofmann	Part	PName	Type
	Audi At Audi At Audi At Suzuki (8 Auto	phaus Wenz phaus Klein phaus Wenz porsport AG		rait	Audi A8 Audi A7 Suzuki GSX	Auto Auto Motorrad
	Cust	CName	CAddr		Supp	SName	SAddr
		Meier	Freiburg			Autohaus Wenz	Freiburg
		Smith	Freiburg			Autohaus Klein	Mannheim
		Hofmann	Mannheim			Motorsport AG	Mannheim

Compute the evaluation result of the following queries on instance \mathcal{I} and informally describe their meaning. Note that constants inside the queries are distinguished by *italic* font.

- a) q_1 : ans(C) \leftarrow Sales(P,S,C), Cust(C,Freiburg), Supp(S,Freiburg)
- b) q_2 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P,Auto)
- c) q_3 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P2,Auto)
- d) q_4 : ans(C1,C2) \leftarrow Cust(C1,Freiburg), Cust(C2,Freiburg), Sales(P1,S1,C1), Sales(P2,S2,C2), Supp(S1,X), Supp(S2,X)

Exercise 2 (Containment)

Consider the following pairs of Conjunctive Queries and decide for each pair q_i , q_i' if $q_i \sqsubseteq q_i'$, $q_i' \sqsubseteq q_i$, and $q_i \equiv q_i'$ holds. If such relationships hold provide the corresponding containment mappings. Otherwise, show that no such mapping exists.

- a) q_1 : ans(X,Y) \leftarrow R(X,Z), R(Z,T), S(T,Y) und q'_1 : ans(X,Z) \leftarrow R(X,X), S(X,Z)
- $\text{b)} \ \ q_2 \text{:} \ \text{ans}(\mathbf{X}) \leftarrow \mathtt{R}(\mathbf{X},\mathbf{Y}), \ \mathtt{S}(\mathbf{Y},\mathbf{Z}), \ \mathtt{S}(\mathbf{Y}',\mathbf{Z}') \ \text{und} \ \ q_2' \text{:} \ \text{ans}(\mathbf{Y}) \leftarrow \mathtt{S}(\mathbf{A},\mathbf{B}), \ \mathtt{R}(\mathbf{Y}',\mathbf{A}), \ \mathtt{R}(\mathbf{Y}',\mathbf{A})$
- c) q_3 : ans(U,Z) \leftarrow R(U,V), R(X,Y), S(Y,Z), S(V,X) und q_3 : ans(U,V) \leftarrow R(Y,U), R(U,X), S(U,V), S(X,Y)

Exercise 3 (Containment)

Consider the following pairs of Conjunctive Queries and decide if $q_i \sqsubseteq q_i'$, $q_i' \sqsubseteq q_i$, and $q_i \equiv q_i'$ hold using the method of the canonical instance.

- $\text{a)} \ \ q_1 \text{:} \ \text{ans}(\mathbf{X}) \leftarrow \mathtt{R}(\mathbf{X},\mathbf{Y},\mathbf{X}), \ \mathtt{R}(\mathbf{X},\mathbf{Z},\mathbf{Y}), \ \mathtt{S}(\mathbf{Y},\mathbf{X}) \ \text{und} \ \ q_1' \text{:} \ \text{ans}(\mathbf{X}) \leftarrow \mathtt{R}(\mathbf{X},\mathbf{Y},\mathbf{Z}), \ \mathtt{S}(\mathbf{Y},\mathbf{Z})$
- $\text{b)} \ \ q_2\text{:}\ \mathtt{ans}(\mathbf{X}) \leftarrow \mathtt{R}(\mathbf{X},\mathbf{Y}), \ \mathtt{R}(\mathbf{Y},\mathbf{Z}), \ \mathtt{R}(\mathbf{Z},\mathbf{X}) \ \ \mathtt{und} \ \ q_2'\text{:}\ \ \mathtt{ans}(\mathbf{X}) \leftarrow \mathtt{R}(\mathbf{X},\mathbf{Y}), \ \mathtt{R}(\mathbf{Y},\mathbf{Z}), \ \mathtt{R}(\mathbf{Z},\mathbf{U}), \ \mathtt{R}(\mathbf{U},\mathbf{V})$

Exercise 4 (NP-Completeness)

Prove the Conjunctive Query Containment problem is NP-Complete. To show NP-Hardness, you need to find an NP-Complete problem and make a reduction to the containment problem.