A.

```
DATA SUPPORT;
INFILE '/home/yeopdodo860/my_courses/tjp00/Roof_Support_stiffness_lengths.csv' delimiter=',' dsd;
INFUT Stiffness length;
FROC ANOVA DATA=SUPPORT;
CLASS length;
MODEL Stiffness = length;
MEANS length/Turkey;
RUN;
10
11
```


The ANOVA Procedure Tukey's Studentized Range (HSD) Test for Stiffness

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.

Alpha	0.05
Error Degrees of Freedom	30
Error Mean Square	1049.168
Critical Value of Studentized Range	4.10204
Minimum Significant Difference	50.22

Means	with the same letter	are not signif	ican	tly different
Τι	ikey Grouping	Mean	N	length
	A	437.17	7	12
	A			
В	A	407.38	7	10
В				
В	С	375.13	7	8
В	С			
В	С	368.06	7	6
	С			
	С	333.21	7	4

B. Answer the following.

1. State the null and alternate hypotheses.

 $H0: \mu A = \mu B = \mu C = \mu D = \mu E$

H1: At least one population mean is different from the others

2. State the sample means for each of the independent variables.

A: 333.214286

B: 368.057143 C: 375.128571 D: 407.357143 E: 437.171429

3. State the value of the hypothesis test statistic found by SAS.

F value: 10.48

4. State the *p*-value found by SAS.

<.0001

5. State whether this *p*-value would indicate "reject the null hypothesis" or "fail to reject the null hypothesis"

at the given level of significance.

p value would indicate reject the null hypothesis since alpha is 0.01 which is bigger than p value

6. State a conclusion in words, in the context of the given situation, i.e. using the variable names. **II.**

There is at least one different group in A, B, C, D, E groups from the length variables.

II. Multiple-Comparison ANOVA

```
1 DATA HORMONE;
2 DO ROW = 1 TO 5;
3 DO HORM= 1 TO 4;
4 INPUT HPERIOD @@;
 5 OUTPUT;
 6 END;
 7 END;
8 DATALINES;
9 13 17 7 14
10 21 13 20 17
11 18 15 20 17
12 7 11 18 10
136 11 15 8
14;
15 RUN;
16 PROC ANOVA DATA = HORMONE;
17 CLASS ROW HORM;
18 MODEL HPERIOD = ROW HORM;
19 MEANS ROW HORM/ TUKEY;
20 RUN;
21
22
```

The ANOVA Procedure

Class Level Information					
Class	Levels	Values			
ROW	5	12345			
HORM	4	1234			

Number of Observations Read 20 Number of Observations Used 20

The ANOVA Procedure Dependent Variable: HPERIOD

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	230.1000000	32.8714286	2.12	0.1202
Error	12	185.7000000	15.4750000		
Corrected Total	19	415.8000000			

R-Square	Coeff Var	Root MSE	HPERIOD Mean
0.553391	28.30092	3.933828	13.90000

Source	DF	Anova SS	Mean Square	F Value	Pr > F
ROW	4	200.3000000	50.0750000	3.24	0.0510
HORM	3	29.8000000	9.9333333	0.64	0.6026

The ANOVA Procedure

B. Answer the following.

1. State the null and alternate hypotheses.

 $H0: \mu A = \mu B = \mu C = \mu D = \mu E$

H1: At least one population mean is different from the others

2. State the sample means for each of the independent variables.

ROW 1: 17.750 ROW 2: 17.500 ROW 3: 12.750 ROW 4: 11.500 ROW 5: 10.000

3. State the value of the ANOVA hypothesis test statistic found by SAS.

F value: 2.12

4. State the ANOVA *p*-value found by SAS.

0.1202

5. State whether this ANOVA p-value would indicate "reject the null hypothesis" or "fail to reject the null

hypothesis" at the given level of significance.

The p value would indicate fail to reject the null hypothesis since the alpha is 0.05 < 0.1202

6. State a conclusion for the ANOVA in words, in the context of the given situation.

There is no group that has a significant difference with other groups

- 7. Interpret the Tukey method analysis to determine any significant differences.
- a. Write the 5 sample means in increasing order.

10.0 11.5 12.75 17.5 17.75

b. Use the SAS grouping information to determine whether each pairwise comparison indicates a significant difference: Underline each pair of means if there is *not* a significant difference indicated. Do

not underline a pair if there is a significant difference indicated.

10.0 11.5 12.75 17.5 17.75

9. Answer the questions, "What happens when Tukey's procedure is applied? Does the Tukey analysis

indicate which of the means is different from the rest?"

The Turkey's procedure makes easy to visualize the differences between the mean values and separate them in multiple groups by the differences.

III. Single-Factor ANOVA with differing sample sizes A.

```
1 DATA HORMONE;
 2 DO ROW = 1 TO 5;
 3 DO tomato = 1 TO 4;
 4 INPUT salinity @@;
 5 OUTPUT;
 6 END;
 7 END;
 8 DATALINES;
10 59.5 55.2 51.7 44.6
11 53.3 59.1 48.8 48.5
12 56.8 52.8 53.9 41.0
13 63.1 54.5 49.0 47.3
14 58.7 46.1
15;
16 RUN;
17 PROC GLM DATA = HORMONE;
18 CLASS ROW tomato ;
19 MODEL salinity = ROW tomato ;
20 LSMEANS ROW tomato / ADJUST = TUKEY;
21 RUN;
22
23
```

The GLM Procedure

Class Levels Value				
Chess	Levera.	Values		
WOR	5	12345		

Number	of Observati	oma Ri	ead 1th
Number	of Observati	ons th	16 Deep

The GLM Procedure Dependent Variable: salinity

Source	OF	Sum of Squares	Mean Square	F. Yakur	Free
Model		430,1499028	61,4409861	4.07	0.0227
Error	103	150.8528750	15.0852875		
Corrected Total	10	581.0027778			

R-Square	Coeff Var	Root MSE	salimity Mean
Ch. Statement	or personal free	To separate the	60 (1988)

Source	OF	1ype 1 55	Mean Square	F Value	$\mathcal{P}_T > \mathcal{P}$
WOW	4	11.5902778	2.89/9894	0.19	0.9370
tomato	3	418.5598250	139.5198750	9.25	0.0031

Source	DF	Type III SS	Mean Square	P Value	$\mathbb{P}_T \gg \mathbb{P}$
HOW	- 4	42.3871250	10.5967813	11.70	11.6075
Secondo.	- 4	419 9939590	T00 5708750	0.26	-0.0091

The GLM Procedure Least Squares Means Adjustment for Multiple Companisons: Tukey-Knamer

ROW	wellinity LSMEAN	LSWEAN Number
1	52.7500000	t t
2	52.4250000	2
3	51.1250000	
4	33.4750000	. 4
2	48 0962500	2

	Loss So Pr > x 5	or Htt: L)=LSW=	m(0)
10		2	- 3	4	- 3
1		0.9999	0.9733	0.9987	0.6746
2	0.9999		0.9882	0.9947	0.7280
3	0.9733	0.9882	5	0.9000	0.8902
4	0.0987	0.9947	0.9099		0.5578
3	0.6746	0.7280	0.8992	0.5578	

B. Answer the following.

1. State the null and alternate hypotheses.

$$H0: \mu A = \mu B = \mu C = \mu D$$

H1: At least one population mean is different from the others

2. State the sample means for each of the independent variables.

58.2800000

53.5400000

49.9725000

44.4725000

3. State the value of the ANOVA hypothesis test statistic found by SAS.

4. State the ANOVA *p*-value found by SAS.

0.0031

5. State whether this ANOVA *p*-value would indicate "reject the null hypothesis" or "fail to reject the null

hypothesis" at the given level of significance.

reject the null hypothesis since p value is 0.0031 < 0.05

6. State a conclusion for the ANOVA in words, in the context of the given situation.

There is at least one group is significantly different from others.

7. Interpret the Tukey method analysis to determine any significant differences by writing the sample means

in increasing order, and underlining (or not) as appropriate (as was done for part II).

1	2	3	4

8. State an appropriate conclusion to Tukey's procedure. Specifically, what do the overlapping significance connections imply?

The group 1,2,3 are significantly different from a group 4.

MINITAB

Α

Session

STAT>ANOVA>ONEWAY

One-way ANOVA: stiffness versus lengths

Method

Alternative hypothesis At least one mean is different

Significance level $\alpha = 0.01$

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

lengths 5 4, 6, 8, 10, 12

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value lengths 4 43993 10998 10.48 0.000

Error 30 31475 1049

Total 34 75468

Model Summary

S R-sq R-sq(adj) R-sq(pred) 32.3909 58.29% 52.73% 43.23%

Means

lengths N Mean StDev 99% CI 4 7 333.2 36.6 (299.5, 366.9) 6 7 368.1 28.6 (334.4, 401.7) 8 7 375.13 20.83 (341.46, 408.80) 10 7 407.4 44.5 (373.7, 441.0) 12 7 437.17 26.00 (403.50, 470.84)

Pooled StDev = 32.3909

4 [111]

B. Answer the following.

1. State the null and alternate hypotheses.

Null hypothesis: All means are equal

Alternative hypothesis: At least one mean is different

- 2. State the sample means for each of the independent variables.
- A: 333.2
- B: 368.1
- C: 375.13
- D: 407.4
- E: 437.17
- 3. State the value of the hypothesis test statistic found by SAS.
- F value : 10.48
- 4. State the *p*-value found by SAS.
- <.0000
- 5. State whether this p-value would indicate "reject the null hypothesis" or "fail to reject the null hypothesis"

at the given level of significance.

p value would indicate reject the null hypothesis since alpha is 0.01 which is bigger than p value

6. State a conclusion in words, in the context of the given situation, i.e. using the variable names. \mathbf{H} .

There is at least one different group in A, B, C, D, E groups from the length variables.

II. Multiple-Comparison ANOVA

A.

One-way ANOVA: 1.6, 3.8, 6, 10.2

Method

Null hypothesis All means are equal Alternative hypothesis At least one mean is different Significance level $\alpha=0.05$ Rows unused 2

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values Factor 4 1.6, 3.8, 6, 10.2

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value Factor 3 456.5 152.168 17.11 0.000 Error 14 124.5 8.893 Total 17 581.0

Model Summary

S R-sq R-sq(adj) R-sq(pred) 2.98207 78.57% 73.98% 65.08%

Means

Factor	N	Mean	StDev	95%	CI
1.6	5	58.28	3.60	(55.42,	61.14)
3.8	4	55.40	2.66	(52.20,	58.60)
6	4	50.85	2.43	(47.65,	54.05)
10.2	5	45.50	2.90	(42.64,	48.36)

Pooled StDev = 2.98207

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

N	Mean	Grouping
5	58.28	A
4	55.40	A B
4	50.85	вс
5	45.50	C
	5 4 4	N Mean 5 58.28 4 55.40 4 50.85 5 45.50

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests for Differences of Means

Difference	Difference	SE of			Adjusted
of Levels	of Means	Difference	95% CI	T-Value	P-Value
3.8 - 1.6	-2.88	2.00	(-8.69, 2.93)	-1.44	0.497
6 - 1.6	-7.43	2.00	(-13.24, -1.62)	-3.71	0.011
10.2 - 1.6	-12.78	1.89	(-18.26, -7.30)	-6.78	0.000
6 - 3.8	-4.55	2.11	(-10.68, 1.58)	-2.16	0.183
10.2 - 3.8	-9.90	2.00	(-15.71, -4.09)	-4.95	0.001
10.2 - 6	-5.35	2.00	(-11.16, 0.46)	-2.67	0.076

Individual confidence level = 98.85%

Tukey Simultaneous 95% CIs

Interval Plot of 1.6, 3.8, ...

One-way ANOVA: 1, 2, 3, 4, 5

Method

Null hypothesis All means are equal Alternative hypothesis At least one mean is different Significance level $\alpha = 0.05$

Factor Information

```
Factor Levels Values
Factor 5 1, 2, 3, 4, 5
```

Analysis of Variance

```
Source DF Adj SS Adj MS F-Value P-Value
Factor 4 200.3 50.08 3.49 0.033
Error 15 215.5 14.37
Total 19 415.8
```

Model Summary

```
S R-sq R-sq(adj) R-sq(pred) 3.79034 48.17% 34.35% 7.86%
```

Means

Factor	N	Mean	StDev	95%	CI
1	4	12.75	4.19	(8.71,	16.79)
2	4	17.75	3.59	(13.71,	21.79)
3	4	17.50	2.08	(13.46,	21.54)
4	4	11.50	4.65	(7.46,	15.54)
5	4	10.00	3.92	(5.96,	14.04)

Pooled StDev = 3.79034

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Factor	N	Mean	Grouping
2	4	17.75	A
3	4	17.50	A
1	4	12.75	A
4	4	11.50	A
5	4	10.00	A

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Factor	N	Mean	Grouping
2	4	17.75	A
3	4	17.50	A
1	4	12.75	A
4	4	11.50	A
5	4	10.00	A

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests for Differences of Means

Difference	Difference	SE of			Adjusted
of Levels	of Means	Difference	95% CI	T-Value	P-Value
2 - 1	5.00	2.68	(-3.28, 13.28)	1.87	0.375
3 - 1	4.75	2.68	(-3.53, 13.03)	1.77	0.424
4 - 1	-1.25	2.68	(-9.53, 7.03)	-0.47	0.989
5 - 1	-2.75	2.68	(-11.03, 5.53)	-1.03	0.840
3 - 2	-0.25	2.68	(-8.53, 8.03)	-0.09	1.000
4 - 2	-6.25	2.68	(-14.53, 2.03)	-2.33	0.188
5 - 2	-7.75	2.68	(-16.03, 0.53)	-2.89	0.072
4 - 3	-6.00	2.68	(-14.28, 2.28)	-2.24	0.219
5 - 3	-7.50	2.68	(-15.78, 0.78)	-2.80	0.085
5 - 4	-1.50	2.68	(-9.78, 6.78)	-0.56	0.979

Individual confidence level = 99.25%

Tukey Simultaneous 95% CIs

Interval Plot of 1, 2, ...

- B. Answer the following.
- 1. State the null and alternate hypotheses.

$$H0: \mu A = \mu B = \mu C = \mu D = \mu E$$

H1: At least one population mean is different from the others

2. State the sample means for each of the independent variables.

ROW 1: 17.750 ROW 2: 17.500 ROW 3: 12.750 ROW 4: 11.500 ROW 5: 10.000 3. State the value of the ANOVA hypothesis test statistic found by SAS.

F value: 2.12

4. State the ANOVA p-value found by SAS.

0.1202

5. State whether this ANOVA p-value would indicate "reject the null hypothesis" or "fail to reject the null

hypothesis" at the given level of significance.

The p value would indicate fail to reject the null hypothesis since the alpha is 0.05 < 0.1202

6. State a conclusion for the ANOVA in words, in the context of the given situation.

There is no group that has a significant difference with other groups

- 7. Interpret the Tukey method analysis to determine any significant differences.
- a. Write the 5 sample means in increasing order.

10.0 11.5 12.75 17.5 17.75

b. Use the SAS grouping information to determine whether each pairwise comparison indicates a significant difference: Underline each pair of means if there is *not* a significant difference indicated. Do

not underline a pair if there is a significant difference indicated.

10.0 11.5 12.75 17.5 17.75

9. Answer the questions, "What happens when Tukey's procedure is applied? Does the Tukey analysis

indicate which of the means is different from the rest?"

The Turkey's procedure makes easy to visualize the differences between the mean values and separate them in multiple groups by the differences.

III. Single-Factor ANOVA with differing sample sizes

A.

Session

Method

Null hypothesis All means are equal

Alternative hypothesis At least one mean is different

Significance level $\alpha = 0.05$

Rows unused

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Factor 4 1.6, 3.8, 6, 10.2

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Factor 3 456.5 152.168 17.11 0.000

Error 14 124.5 8.893

Total 17 581.0

Model Summary

S R-sq R-sq(adj) R-sq(pred) 2.98207 78.57% 73.98% 65.08%

Means

Factor N Mean StDev 95% CI 1.6 5 58.28 3.60 (55.42, 61.14) 3.8 4 55.40 2.66 (52.20, 58.60) 6 4 50.85 2.43 (47.65, 54.05) 10.2 5 45.50 2.90 (42.64, 48.36)

Pooled StDev = 2.98207

€ III

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

```
Factor N Mean Grouping
2 4 17.75 A
3 4 17.50 A
1 4 12.75 A
4 11.50 A
5 4 10.00 A
```

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests for Differences of Means

Difference	Difference	SE of			Adjusted
of Levels	of Means	Difference	95% CI	T-Value	P-Value
2 - 1	5.00	2.68	(-3.28, 13.28)	1.87	0.375
3 - 1	4.75	2.68	(-3.53, 13.03)	1.77	0.424
4 - 1	-1.25	2.68	(-9.53, 7.03)	-0.47	0.989
5 - 1	-2.75	2.68	(-11.03, 5.53)	-1.03	0.840
3 - 2	-0.25	2.68	(-8.53, 8.03)	-0.09	1.000
4 - 2	-6.25	2.68	(-14.53, 2.03)	-2.33	0.188
5 - 2	-7.75	2.68	(-16.03, 0.53)	-2.89	0.072
4 - 3	-6.00	2.68	(-14.28, 2.28)	-2.24	0.219
5 - 3	-7.50	2.68	(-15.78, 0.78)	-2.80	0.085
5 - 4	-1.50	2.68	(-9.78, 6.78)	-0.56	0.979

Individual confidence level = 99.25%

Tukey Simultaneous 95% CIs

Interval Plot of 1, 2, ...

One-way ANOVA: 1.6, 3.8, 6, 10.2

Method

One-way ANOVA: 1, 2, 3, 4, 5

Method

Null hypothesis All means are equal Alternative hypothesis At least one mean is different Significance level $\alpha = 0.05$ Rows unused 4

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values
Factor 5 1, 2, 3, 4, 5

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value Factor 4 200.3 50.08 3.49 0.033 Error 15 215.5 14.37 Total 19 415.8

Model Summary

S R-sq R-sq(adj) R-sq(pred) 3.79034 48.17% 34.35% 7.86%

Means

Factor	N	Mean	StDev	95%	CI
1	4	12.75	4.19	(8.71,	16.79)
2	4	17.75	3.59	(13.71,	21.79)
3	4	17.50	2.08	(13.46,	21.54)
4	4	11.50	4.65	(7.46,	15.54)
5	4	10.00	3.92	(5.96,	14.04)

Pooled StDev = 3.79034

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

```
Factor N Mean Grouping
2 4 17.75 A
3 4 17.50 A
1 4 12.75 A
4 11.50 A
5 4 10.00 A
```

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests for Differences of Means

Difference	Difference	SE of			Adjusted
of Levels	of Means	Difference	95% CI	T-Value	P-Value
2 - 1	5.00	2.68	(-3.28, 13.28)	1.87	0.375
3 - 1	4.75	2.68	(-3.53, 13.03)	1.77	0.424
4 - 1	-1.25	2.68	(-9.53, 7.03)	-0.47	0.989
5 - 1	-2.75	2.68	(-11.03, 5.53)	-1.03	0.840
3 - 2	-0.25	2.68	(-8.53, 8.03)	-0.09	1.000
4 - 2	-6.25	2.68	(-14.53, 2.03)	-2.33	0.188
5 - 2	-7.75	2.68	(-16.03, 0.53)	-2.89	0.072
4 - 3	-6.00	2.68	(-14.28, 2.28)	-2.24	0.219
5 - 3	-7.50	2.68	(-15.78, 0.78)	-2.80	0.085
5 - 4	-1.50	2.68	(-9.78, 6.78)	-0.56	0.979

Individual confidence level = 99.25%

Tukey Simultaneous 95% CIs

Interval Plot of 1, 2, ...

One-way ANOVA: 1.6, 3.8, 6, 10.2

- B. Answer the following.
- 1. State the null and alternate hypotheses.

 $H0: \mu A = \mu B = \mu C = \mu D$

H1: At least one population mean is different from the others

2. State the sample means for each of the independent variables.

58.2800000 53.5400000 49.9725000 44.4725000

3. State the value of the ANOVA hypothesis test statistic found by SAS.

4. State the ANOVA *p*-value found by SAS.

0.0031

5. State whether this ANOVA *p*-value would indicate "reject the null hypothesis" or "fail to reject the null

hypothesis" at the given level of significance.

reject the null hypothesis since p value is 0.0031 < 0.05

6. State a conclusion for the ANOVA in words, in the context of the given situation.

There is at least one group is significantly different from others.

7. Interpret the Tukey method analysis to determine any significant differences by writing the sample means

in increasing order, and underlining (or not) as appropriate (as was done for part II).

1	2	3	4

8. State an appropriate conclusion to Tukey's procedure. Specifically, what do the overlapping significance connections imply?

The group 1,2,3 are significantly different from a group 4.