Zbiory uporządkowane

Relację binarną $R \subseteq X \times X$, która jest

• **zwrotna**, jeśli $\forall x \in X : xRx$

• **przechodnia**, jeśli $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$

• antysymetryczna, jeśli $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y$

nazywamy relacją (częściowego porządku) i oznaczamy ≤ .

Parę (X, \preceq) nazywamy zbiorem (częściowo) uporządkowanym:

X – zbiór podstawowy, \leq – relacja porządkująca X

Dwa elementy $x, y \in X$ nazywamy **porównywalnymi**,

jeśli
$$x \leq y$$
 lub $y \leq x$,

w przeciwnym przypadku są one nieporównywalne.

Jeśli każde dwa elementy $x, y \in X$ są porównywalne, to parę (X, \preceq) nazywamy zbiorem **liniowo uporządkowanym**.

W zbiorze uporządkowanym (X, \preceq) wprowadzamy oznaczenie:

$$x \prec y \iff x \leq y \land x \neq y$$

Jeżeli dla dwóch elementów $s, t \in X$ zachodzi $s \prec t$ i nie istnieje taki element $u \in X$, że $s \prec u$ i $u \prec t$, to s nazywamy **bezpośrednim poprzednikiem** t, a t – **bezpośrednim następnikiem** s.

Przykład zbioru uporządkowanego

 $X = \{ 2, 3, 5, 6, 10, 12, 25, 50, 70, 100 \},$

dla $a, b \in X$, $a \le b \iff b \mod a = 0$ (relacja podzielności).

Graf relacji:

 (X, \preceq) jest zbiorem częściowo uporządkowanym,

ale nie jest zbiorem liniowo uporządkowanym, bo ani (2, 3), ani (3, 2) nie należy do relacji.

 $3 \prec 12$, ale 3 nie jest bezpośrednim poprzednikiem 12, bo zachodzi:

$$3 \prec 6 i 6 \prec 12$$

Przykład zbioru uporządkowanego

$$X = \{ p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10} \}$$
 – zbiór procesorów; $w(p_i)$ – wydajność procesora i , $o(p_i)$ – opłacalność procesora i ; $p_i \preceq p_j \iff w(p_i) \le w(p_j) \land o(p_i) \le o(p_j) \quad (p_j$ "nie gorszy od" $p_i)$ $p_i = p_j \iff w(p_i) = w(p_j) \land o(p_i) = o(p_j) \quad (p_j$ "taki sam jak" $p_i)$ $p_i \prec p_j - p_j$ "lepszy od" p_i

procesory p_2 i p_3 są nieporównywalne, procesor p_{10} jest lepszy od p_6 i jest jego bezpośrednim następnikiem, procesor p_{10} jest lepszy od p_4 , ale nie jest jego bezpośrednim następnikiem. Wygodnym i czytelnym sposobem przedstawienia zbioru uporządkowanego (X, \preceq) jest tzw. **diagram Hassego**, na którym łączymy odcinkami <u>tylko</u> bezpośrednie poprzedniki z ich następnikami i następniki umieszczamy <u>powyżej</u> poprzedników.

Przykład diagramu Hassego

$$X = \{ 2, 3, 5, 6, 10, 12, 25, 50, 70, 100 \},$$

 $a \le b \iff b \mod a = 0.$

Diagram:

Przykład diagramu Hassego

 $X = \{ p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10} \}$ – zbiór procesorów; $p_i \leq p_j \Leftrightarrow p_j$ "nie gorszy od" p_i

Element $x_o \in X$ nazywamy **elementem maksymalnym** w zbiorze częściowo uporządkowanym (X, \preceq) , jeśli w zbiorze X nie istnieje element $x \neq x_o$, dla którego $x_o \preceq x$.

Element $x_0 \in X$ nazywamy **elementem minimalnym** w zbiorze częściowo uporządkowanym (X, \preceq) , jeśli w zbiorze X nie istnieje element $x \neq x_0$, dla którego $x \preceq x_0$.

Przykład

Procesory p_7 , p_9 , p_{10} są elementami maksymalnymi, a procesory p_1 , p_4 , p_5 są elementami minimalnymi.

Element $x_0 \in X$ nazywamy **elementem największym** w zbiorze częściowo uporządkowanym (X, \preceq) , jeśli dla każdego $x \in X$ zachodzi zależność $x \preceq x_0$.

Element $x_0 \in X$ nazywamy **elementem najmniejszym** w zbiorze częściowo uporządkowanym (X, \preceq) , jeśli dla każdego $x \in X$ zachodzi zależność $x_0 \preceq x$.

Przykład

$$X = \{ 5, 10, 25, 50, 100 \}, \qquad a \leq b \iff b \mod a = 0 ;$$

Element 100 jest elementem największym, a element 5 jest elementem najmniejszym,

Twierdzenie

W zbiorze częściowo uporządkowanym istnieje <u>co najwyżej jeden</u> <u>element największy</u> i <u>co najwyżej jeden element najmniejszy</u>.

Przy tym element największy jest elementem maksymalnym, a element najmniejszy jest elementem minimalnym.

Twierdzenie

W zbiorze <u>liniowo uporządkowanym</u> (X, \preceq) następujące stwierdzenia są równoważne:

- $x_0 \in X$ jest elementem największym,
- $x \leq x_0$ dla każdego $x \in X \setminus \{x_0\},$
- $x_0 \in X$ jest elementem maksymalnym.

Twierdzenie

W zbiorze <u>liniowo uporządkowanym</u> (X, \preceq) następujące stwierdzenia są równoważne:

- $x_0 \in X$ jest elementem najmniejszym,
- $x_0 \leq x$ dla każdego $x \in X \setminus \{x_0\},$
- $x_0 \in X$ jest elementem minimalnym.

Twierdzenie

Jeśli (X, \preceq) jest zbiorem <u>liniowo uporządkowanym</u> oraz X jest zbiorem skończonym i niepustym, to w (X, \preceq) istnieją elementy największy i najmniejszy.

Element $x_o \in X$ nazywamy **ograniczeniem dolnym** zbioru $A \subseteq X$, jeśli dla każdego $x \in A$ zachodzi zależność $x_o \preceq x$.

Element $x_0 \in X$ nazywamy **ograniczeniem górnym** zbioru $A \subseteq X$, jeśli dla każdego $x \in A$ zachodzi zależność $x \preceq x_0$.

Przykład

Procesor p_7 jest ograniczeniem górnym dla zbioru procesorów A; a procesor p_5 jest ograniczeniem dolnym dla zbioru A.

Jeśli zbiór ograniczeń górnych zbioru *A* ma element najmniejszy, to nazywamy go **kresem górnym** zbioru *A* i oznaczamy **sup** *A* (łac. *supremum* – wyżej stojące)

Jeśli zbiór ograniczeń dolnych zbioru *A* ma element największy, to nazywamy go **kresem dolnym** zbioru *A* i oznaczamy **inf** *A* (łac. *infimum* – niżej położone)

Przykład

Jeśli $x_0 = \sup A$ oraz $x_0 \in A$, to stosujemy zapis $x_0 = \max A$ (łac. maximum - największe)

Jeśli $x_0 = \inf A$ oraz $x_0 \in A$, to stosujemy zapis $x_0 = \min A$ (łac. minimum – najmniejsze)

np.
$$50 = \sup A \text{ i } 50 = \max A$$

Przykład

 $\{p_9, p_{10}\}$ jest zbiorem ograniczeń górnych dla zbioru procesorów B, ale w tym zbiorze nie ma elementu najmniejszego; zatem nie istnieje kres górny zbioru B.

Kres dolny oczywiście istnieje i $p_4 = \inf B$.

Pokryciem zbioru X nazywamy taką rodzinę jego podzbiorów $\{Y_1, Y_2, ..., Y_k\}$ $(Y_i \subseteq X)$, dla której zachodzi $X = Y_1 \cup Y_2 \cup ... \cup Y_k$. Zbiory $Y_1, Y_2, ..., Y_k$ pokrywają zbiór X.

Przykład

Rodzina { { 2, 3, 5}, {5, 6, 10, 12}, {25, 50}, {25, 50, 70, 100} }, jest pokryciem zbioru { 2, 3, 5, 6, 10, 12, 25, 50, 70, 100 },

Łańcuchem z zbiorze uporządkowanym (X, \preceq) nazywamy taki podzbiór $L \subseteq X$, w którym każde dwa elementy $x, y \in L$ <u>sa</u> <u>porównywalne</u>, tzn. zawsze zachodzi $x \preceq y$ lub $y \preceq x$.

Para złożona z łańcucha L i relacji porządku \leq obciętej do L tworzy zatem zbiór liniowo uporządkowany (L, \leq_L) .

Antyłańcuchem z zbiorze uporządkowanym (X, \preceq) nazywamy taki podzbiór $A \subseteq X$, w którym żadne dwa różne elementy $x, y \in L$ <u>nie są porównywalne</u>, tzn. zawsze zachodzi $x \preceq y \Leftrightarrow x = y$.

Przykład łańcucha i antyłańcucha

$$L = \{ p_3, p_5, p_7, p_8 \}$$
 lub $L = \{ p_2, p_5, p_{10} \}$;
 $A = \{ p_1, p_2, p_6 \}$ lub $A = \{ p_3, p_9, p_{10} \}$

Robert P. Dilworth (1914 – 1993, California)

Twierdzenie

W każdym skończonym zbiorze częściowo uporządkowanym (X, \preceq) maksymalna liczność antyłańcucha jest równa minimalnej liczbie łańcuchów pokrywających zbiór X.

Twierdzenie (dualne)

W każdym skończonym zbiorze częściowo uporządkowanym (X, \preceq) maksymalna liczność łańcucha jest równa minimalnej liczbie antyłańcuchów pokrywających zbiór X.

Przykład

Jeśli istnieją 3 łańcuchy, które pokrywają zbiór *X*, to maksymalna liczność antyłańcucha nie może być większa od 3.

Jeśli najliczniejszy łańcuch ma 4 elementy, to potrzeba nie mniej niż 4 antyłańcuchy, aby pokryć zbiór *X*.

Techniki rozwiązywania problemów kombinatorycznych

- zasada mnożenia
- zasada równoliczności
- zasada szufladkowa Dirichleta
- zasada włączania-wyłączania
- funkcje tworzące

Zasada mnożenia

Jeżeli rozważane są funkcje $f: X \to Y$,

dla których $X = X_1 \cup X_2$ i $Y = Y_1 \cup Y_2$ oraz spełnione są warunki

$$X_1 \cap X_2 = \emptyset$$
, $f(X_1) \subseteq Y_1$ if $f(X_2) \subseteq Y_2$,

to
$$|Fun(X, Y)| = |Fun(X_1, Y_1)| \cdot |Fun(X_2, Y_2)|$$

Jeżeli ponadto $Y_1 \cap Y_2 = \emptyset$,

to
$$|Inj(X, Y)| = |Inj(X_1, Y_1)| \cdot |Inj(X_2, Y_2)|$$

Przykład

Jaka jest maksymalna liczba tablic rejestracyjnych typu WI07049?

Tablica to zbiór 7 znaków $X = \{z_1, z_2, z_3, z_4, z_5, z_6, z_7\},\$

$$X_1 = \{z_1, z_2\}, X_2 = \{z_3, z_4, z_5, z_6, z_7\}, Y_1 - \text{zbi\'or liter}, Y_2 - \text{zbi\'or cyfr},$$

$$|X_1| = 2$$
, $|X_2| = 5$, $|Y_1| = 26$, $|Y_2| = 10$, $|Fun(X, Y)| = 26^2 \cdot 10^5$

Jaka jest maksymalna liczba tablic o różnych literach i różnych cyfrach?

$$|Inj(X, Y)| = 26^{2} \cdot 10^{5}$$

Zasada równoliczności

$$Bij(X, Y) \neq \emptyset \Rightarrow |X| = |Y|$$

Przykład

Dlaczego podziałów liczby n na k składników jest <u>tyle samo</u> co podziałów liczby n o największym składniku równym k? Bo możemy <u>wzajemnie jednoznacznie</u> przyporządkować podziałowi liczby n na k składników jego podział sprzężony, który jest podziałem liczby n o największym składniku równym k.

Zasada szufladkowa

Dla skończonych zbiorów X i Y, takich że $|X| > r \cdot |Y|$ dla r > 0: dla każdej funkcji $f \in Fun(X, Y)$ warunek $|f^{-1}(\{y\})| > r$ jest spełniony dla co najmniej jednego $y \in Y$.

(jeśli wkładamy n przedmiotów do m pudełek i $n > r \cdot m$, to w przynajmniej jednym pudełku znajdzie się ponad r przedmiotów)

Przykład

Dlaczego na egzaminie dla 401 studentów, na którym każdy student może dowolnie wybrać do rozwiązania 7 zadań z 9, będzie co najmniej 12 studentów rozwiązujących ten sam zestaw zadań?

Bo wszystkich zestawów, które mogą powstać jest $\binom{9}{7}$ = 36, a zatem

liczba studentów $401 > 11 \cdot 36 = 396$ i w twierdzeniu r = 11.