BnoC Status Report

Tim Williams on behalf of the BnoC PWG

84th LHCb week

13/06/2017

PWG Organisation

- WG Convenors: Stefano Perazzini, Sean Benson
- Sub-WG Convenors:
 - 3 Body: Rafael Coutinho, Eli Ben-Haim
 - 2 & 4 Body: Roberta Cardinale, Laurence Carson
- Regular BiWeekly Meetings: Thursdays 2PM

Link to BnoC Twiki Page

PWG Liaisons

Current Liaisons

- Simulation: Maria Vieites Diaz
- Stripping: Alvaro Gomes Dos Santos Neto
- Trigger: Andrea Merli
- Tracking: Gediminas Sarpis
- Flavour Tagging: Julian Garcia
- PID: Abhijit Mathiad
- Calo Tools: Jason Andrews
- Statistics and ML Tools: Timon Schmelzer

Thanks for all your work!

BnoC Physics Case

- Study decays of *b*-hadrons to charmless hadronic final states:
 - $b \rightarrow u$ tree level decays
 - $b \rightarrow s$, d penguin decays
- Measurements of branching fractions and CPV observables provide tests of standard model and searches for new physics
- 2 & 4 Body Examples: Searches for B→baryon decays,
 Angular analysis of B→VV decays, time (in)dependent CPV
- 3 Body Examples: Dalitz analyses and CPV observables, Bc decays, searches for unobserved decays

BnoC Activities

- Currently in review: 6 Analyses in WG review, 7 with review committee & 1 in collaboration wide review
- Since last LHCb week:
 - 2 Papers Published:
 - 4.1 σ evidence for the decay $B^+ \rightarrow p\overline{\Lambda}$ (LHCb-PAPER-2016-048)
 - Upper limit on $\mathcal{B}(B_s^0 \to \phi \eta') < 0.82 \times 10^{-6}$ at 90% CL. (LHCB-PAPER-2016-060)
 - 2 Papers Submitted:
 - First observation of a baryonic B_s^0 decay (LHCB-PAPER-2017-012)
 - Observation of the charmless baryonic decays $B^0_{(s)} \rightarrow p\overline{p}h^+h^-$ (LHCb-PAPER-2017-005)
- 32 Analyses in preparation only able to present a few today.
- Details of all past and present analyses can be found in the WG database

$B^0_{(s)}{ ightarrow} p\overline{p}$ Update

$B_{(s)}^0 \rightarrow p\overline{p}$ Motivation and Status

Motivation

- No baryonic 2 body charmless B^0 decay has been observed.
- $B^0_{(s)} \rightarrow p\overline{p}$ decays predicted to be simplest to search for experimentally
- Previous analysis using 2011 data saw 3.3σ evidence for $B^0 \rightarrow p\overline{p}$ but no evidence for the suppressed $B_s^0 \rightarrow p\overline{p}$ seen.
- Hopefully addition of 2012 data can lead to an observation.
- Branching fraction results using 2011 data:

$$\mathcal{B}(B^0 \to p\overline{p}) = (1.47^{+0.62}_{-0.51}^{+0.62}_{-0.14}) \times 10^{-8}$$

 $\mathcal{B}(B^0_s \to p\overline{p}) = (2.84^{+2.03}_{-1.68}^{+0.08}_{-0.18}) \times 10^{-8}$

 All previous theory calculations ruled out by at least 1 order of magnitude!

Selection

- PID Selection optimises ${\rm DLL}_{p\pi}$ and ${\rm DLL}_{pK}$ cuts for Punzi FoM with $a=5\sigma$
- MVA selection (applied after PID selection) makes use of MLP with 10 variables, again optimised for Punzi FoM.

- Normalisation channel, $B^0 \rightarrow K^+\pi^-$, PID selection optimised for maximum selection efficiency whilst rejecting various mis-ID backgrounds.
- Similar MLP also used in normalisation channel, but optimised for signal significance.

Fits.

• **Normalisation channel:** Mass fit seperated by charge due to known production assymmetries

• **Signal channel:** Only signal and combinatorial background present - $38.7 \pm 8.4(statonly)$ $B^0 \rightarrow p\overline{p}$ decays observed!

Results and Outlook

- First observation of $B^0 \to p\overline{p}$ with significance of 5.3σ -first obseration of 2 body charmless baryonic B^0 decay!
- $\mathcal{B}(B^0 \to p\overline{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$.
- $B_s^0 \rightarrow p\overline{p}$ yield of only 1.5 \pm 4.4 events, limit set using Feldman-Cousins method.

- $\mathcal{B}(B_s^0 \to p\overline{p}) < 1.5 \times 10^{-8}$ at 90% confidence level.
- Analysis close to publication, paper currently in collaboration wide review.

Backup

Backup