

Reconhecimento de padrões e aprendizagem computaciona

Classificação de imagens

Conceito

Classificação é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos.

Imagem espectral

A informação espectral de uma cena pode ser representada por uma imagem espectral, na qual cada "pixel" tem coordenadas espaciais x, y e uma informação espectral L, que representa a radiância do alvo nas k bandas espectrais amostradas.

Tipos de classificação

Pixel a Pixel

- Utilizam apenas a informação espectral de cada pixel para achar regiões homogêneas.
- Podem ser separados em métodos estatísticos (utilizam regras da teoria de probabilidade) e determinísticos (não utilizam probabilidade).

Por regiões

- Além de informação espectral de cada pixel, utilizam a relação com seus vizinhos.
- Procuram reconhecer áreas homogêneas da imagem, baseados nas propriedades espectrais e espaciais de imagens.
- A informação de borda é utilizada inicialmente para separar regiões.

Segmentação de imagens

É o processo de divisão de uma imagem em regiões uniformes (conjuntos de pixels contíguos) que devem corresponder às áreas de interesse.

Métodos de segmentação

Crescimento de regiões

 O crescimento de regiões utiliza medidas estatísticas de similaridade e agregação para realizar o agrupamento de dados.

Detecção de bacias

- Deve ser feita sobre uma imagem resultante da extração de bordas (filtro de Sobel).
- Pressupõe uma certa representação topográfica para a imagem.

Classificação e Segmentação

A estratégia da segmentação seguida da classificação aproxima-se muito do procedimento de interpretação visual, pois primeiramente se delimitam as unidades homogêneas da paisagem e depois atribuí-se uma classe.

Além disso, o mapa resultante não apresenta um aspecto salpicado como ocorre na classificação pixel-a-pixel, evitando-se operações de pós-processamento ou generalização.

Um exemplo visual apresentado por Centeno 2014.

4	57	3	3	3	2	2	1	2	3	2	3	3
1		1	1	1	1	6	81	141	154	140	138	117
1	1	1	1	1	1	96	207	192	198	194	194	199
117	82	8	2	1	0	30	189	196	190	187	191	191
176	219	203	77	2	1	1	27	105	180	193	192	191
87	152	199	146	14	2	1	1	1	19	52	78	122
168	161	77	134	14	2	1	1	1	1	1	1	1
34	65	93	7	3	15	71	9.0	1	1	0	1	1
143	91	38	106	129	161	192	205	60	1	0	1	1
144	150	174	216	219	219	215	223	192	60	1	1	1
157	209	206	208	213	207	214	214	201	196	35	2	3
187	202	205	217	217	215	205	206	208	172	25	2	11
195	196	192	211	221	219	205	189	101	23	7	3	12
197	192	188	209	212	210	137	29	0	0	2	3	2

4	57	3	3	3	2	2	1	2	3	2	3	3
1-	\rightarrow 1	41	1	1	1	6	81	141	154	140	138	117
1-	1	K 1	1	1	1	96	207	192	198	194	194	199
117	8.2	8	2	1	0	30	189	196	190	187	191	191
176	219	203	77	2	1	1	27	105	180	193	192	191
87	152	199	146	14	2	1	1	1	19	52	78	122
168	161	77	134	14	2	1	1	1	1	1	1	1
34	65	93	7	3	15	71	90	1	1	0	1	1
143	91	38	106	129	161	192	205	60	1	0	1	1
144	150	174	216	219	219	215	223	192	60	1	1	1
157	209	206	208	213	207	214	214	201	196	35	2	3
187	202	205	217	217	215	205	206	208	172	25	2	11
195	196	192	211	221	219	205	189	101	23	7	3	12
197	192	188	209	212	210	137	29	0	0	2	3	2

	57	-	3	3	2	2	1	2	3	2	3	3
			1	1	1	6	81	141	154	140	138	117
			1	1	1	96	207	192	198	194	194	199
117	82	8	2	1	0	30	189	196	190	187	191	191
176	219	203	77	2	1	1	27	105	180	193	192	191
87	152	199	146	14	2	1	1	1	19	52	78	122
168	161	77	134	14	2	1	1	1	1	1	1	1
34	65	93	7	3	15	71	90	1	1	0	1	1
143	91	38	106	129	161	192	205	60	1	0	1	1
144	150	174	216	219	219	215	223	192	60	1	1	1
157	209	206	208	213	207	214	214	201	196	35	2	3
187	202	205	217	217	215	205	206	208	172	25	2	11
195	196	192	211	221	219	205	189	101	23	7	3	12
197	192	188	209	212	210	137	29	0	0	2	3	2

	57		← 3	3	2	2	1	2	3	2	3	3
	-		← 1	1	1	6	81	141	154	140	138	117
	1	-	- 1	1	1	96	207	192	198	194	194	199
117	82	8	2	1	0	30	189	196	190	187	191	191
176	219	203	7.7	2	1	1	27	105	180	193	192	191
87	152	199	146	14	2	1	1	1	19	52	78	122
168	161	77	134	14	2	1	1	1	1	1	1	1
34	65	93	7	3	15	71	90	1	1	0	1	1
143	91	38	106	129	161	192	205	60	1	0	1	1
144	150	174	216	219	219	215	223	192	60	1	1	1
157	209	206	208	213	207	214	214	201	196	35	2	3
187	202	205	217	217	215	205	206	208	172	25	2	11
195	196	192	211	221	219	205	189	101	23	7	3	12
197	192	188	209	212	210	137	29	0	0	2	3	2

Algoritmos classificadores

É o processo de associar os pixels da imagem a classes individuais que representam os objetos reais, com base nos seus valores digitais. Se um pixel satisfaz um determinado conjunto de critérios, ele é associado à classe.

Paradigmas de classificação

Não supervisionado

- Requer pouca ou nenhuma participação do analista no processo de classificação.
- Sendo utilizado quando não se tem suficientes conhecimentos acerca da área, ou quando desejamos fazer uma classificação exploratória da imagem.

Supervisionado

- Envolve duas etapas, o treinamento e a classificação.
- Amostras das classes são fornecidas previamente pelo analista.
- O treinamento consiste em reconhecer a assinatura espectral de cada uma das classes adotadas para o estudo da área.

Algoritmos

Não supervisionado

Isodata, K-Médias, outros

Supervisionado Paralelepípedo, Distância mínima euclidiana, MAXVER, Mahalanobis, outros

Não supervisionado - K-Médias

Supervisionado - Distância mínima euclidiana

O valor espectral dos pixels representa uma mistura de superfícies. Logo atribui-se um pixel à classe que ele está mais próximo.

Distância euclidiana

$$DIST = \sqrt{\sum (VB_{ijk} - \bar{x}_{ck})^2}$$
 (1)

em que VB_{ijk} é o valor de um pixel ij na banda k, \bar{x}_{ck} é a média da classe c na banda k, c é o número de classes envolvidas na classificação e k é o número de bandas envolvidas na classificação.

Exemplo

Classes	x banda 4	s banda 4	x banda 5	s banda 4
Residencial	36,5	4,53	55,7	10,72
Comercial	54,8	3,88	77,4	11,16
Pântano	20,2	1,88	28,2	4,31
Floresta	39,1	5,11	35,5	6,41
Água	9,3	0,56	5,2	0,71

A qual classe o pixel b4 = 40 e b5 = 40 deverá ser associado?

Exemplo resolução

Residencial:
$$\sqrt{(40-36,5)^2+(40-55,7)^2}=16,04$$

Comercial:
$$\sqrt{(40-54,8)^2+(40-77,4)^2}=40,22$$

Pântano:
$$\sqrt{(40-20,2)^2+(40-28,2)^2}=23,04$$

Floresta:
$$\sqrt{(40-39,1)^2+(40-35,5)^2}=4,59$$

Água:
$$\sqrt{(40-9,3)^2+(40-5,2)^2}=46,4$$