FATEC Mogi Mirim

Curso: Análise e Desenvolvimento de Sistemas

Disciplina: Linguagem de Programação

Prof. M.Sc. Marcos Roberto de Moraes

Lista de Exercícios: Desafios de Lógica em C

Lista de Exercícios de Revisão em C

Exercício 1: O Tesouro do Faraó

Cenário: Um arqueólogo encontrou uma sala secreta na pirâmide de Quéops. A sala contém vários baús, e dentro de cada um há uma certa quantidade de moedas de ouro. Para catalogar a descoberta, o arqueólogo precisa somar o total de moedas. Ele irá inserir a quantidade de moedas de cada baú, uma por vez. O processo termina quando ele insere o valor 0, indicando que não há mais baús para contar. A máquina de contagem não aceita valores negativos, pois não é possível ter uma quantidade negativa de moedas.

Tarefa: Crie um programa que leia a quantidade de moedas de vários baús e calcule o total. O programa deve parar de ler valores quando o número 0 for digitado. Garanta que o programa só aceite valores positivos ou o zero.

Exemplo de Entrada e Saída:

<u> </u>	
Entrada	Saída
150	Valor invalido. Digite novamente.
300	Total de moedas encontradas:
50	700
-20	
200	
0	

Exercício 2: A Competição de Levantamento de Peso

Cenário: Em uma competição de levantamento de peso, vários atletas tentarão levantar o maior peso possível. O programa primeiro precisa saber quantos atletas irão competir. Em seguida, para cada atleta, o peso levantado (em quilos) é registrado. Ao final, o programa deve anunciar o maior peso que foi levantado na competição.

Tarefa: Faça um programa que leia o número de competidores e, em seguida, o peso levantado por cada um deles. O programa deve encontrar e exibir o maior peso registrado. Valide as entradas: o número de competidores não pode ser zero ou negativo, e o peso levantado por cada um também não pode ser negativo.

Exemplo de Entrada e Saída:

Entrada	Saída
4	O maior peso levantado na com-
120	peticao foi: 155 kg.
155	
143	
152	

Exercício 3: O Robô Agrônomo

Cenário: Um robô agrônomo está analisando a umidade do solo em diferentes pontos de uma plantação. Para cada medição, ele gera um valor inteiro que representa o nível de umidade. A umidade é classificada da seguinte forma:

- 0 a 30: Solo seco. Regar imediatamente.
- 31 a 70: Umidade ideal.
- 71 a 100: Solo encharcado. Drenagem necessária.

O robô fará medições contínuas até que um valor de 999 seja inserido, indicando o fim da análise. Valores fora da faixa de 0 a 100 são considerados erros de leitura e devem ser ignorados.

Tarefa: Crie um programa que leia vários níveis de umidade e, para cada um, imprima a classificação correspondente. O programa deve ignorar valores inválidos (menores que 0 ou maiores que 100) e parar quando 999 for digitado.

Exemplo de Entrada e Saída:

Entrada	Saída
25	Solo seco. Regar imediatamente.
75	Solo encharcado. Drenagem ne-
-10	cessaria.
50	Valor invalido. Ignorando.
101	Umidade ideal.
999	Valor invalido. Ignorando.
	Analise finalizada.

Exercício 4: A Sequência de Tribonacci

Cenário: Um matemático está estudando uma variação da sequência de Fibonacci chamada "Tribonacci". Nela, cada termo é a soma dos três termos anteriores. Os três primeiros termos são 0, 1, 1. Assim, a sequência começa: 0, 1, 1, 2, 4, 8, 15, 29, O matemático quer saber qual é o N-ésimo termo dessa sequência.

Tarefa: Escreva um programa que, dado um número N, calcule e exiba o N-ésimo termo da sequência de Tribonacci. O valor de N deve ser um inteiro positivo.

Exemplo de Entrada e Saída:

Entrada	Saída
8	O 8ž termo de Tribonacci e: 15

Exercício 5: O Decodificador Numérico

Cenário: Uma mensagem secreta foi interceptada como um único número inteiro longo. Para decodificá-la, é preciso primeiro inverter a ordem dos seus dígitos. Por exemplo, se o número interceptado for 12345, o número invertido será 54321.

Tarefa: Faça um programa que leia um número inteiro positivo e imprima esse número com seus dígitos invertidos. O programa não deve aceitar números negativos ou zero.

Exemplo de Entrada e Saída:

Entrada	Saída
951753	O numero invertido e: 357159

Exercício 6: O Desenhista de Pirâmides

Cenário: Um artista digital precisa de um programa que desenhe uma pirâmide de números. A pirâmide deve ter um número de linhas especificado pelo usuário. Cada linha i da pirâmide deve conter o número i repetido i vezes.

Tarefa: Crie um programa que peça ao usuário um número de linhas e desenhe uma pirâmide numérica conforme o padrão abaixo. O número de linhas deve ser um inteiro positivo.

Exemplo de Entrada e Saída:

Entrada	Saída
5	1
	2 2
	3 3 3
	$4\ 4\ 4\ 4$
	5 5 5 5 5

Exercício 7: O Jogo de Ímpar ou Par

Cenário: Dois jogadores, você e o computador, vão disputar uma partida de "Ímpar ou Par". O jogo continua até você decidir parar. Em cada rodada:

- Você escolhe se quer "ímpar"ou "par"(digitando 1 para Ímpar ou 2 para Par).
- Você digita um número inteiro não negativo.
- O computador escolhe um número aleatoriamente usando a função rand() da biblioteca stdlib.h. Para usar rand(), inclua #include <stdlib.h> e inicialize a semente com srand(time(NULL)) (requer #include <time.h>) no início do programa. Gere um número entre 0 e 10 com rand() % 11.
- A soma do seu número com o do computador é calculada.
- Se a soma for par e você escolheu "par", você vence. Se a soma for ímpar e você escolheu "ímpar", você vence. Caso contrário, você perde.

- O programa deve registrar e exibir um placar de vitórias e derrotas.
- Após cada rodada, o programa pergunta se você quer jogar novamente (1 para Sim, 0 para Não).

Tarefa: Implemente o jogo "Ímpar ou Par"com as regras acima. Valide todas as entradas do usuário.

Exemplo de Interação:

Entrada	Saída
— Nova Rodada —	— Nova Rodada —
Escolha (1-Impar ou 2-Par): 2	Escolha (1-Impar ou 2-Par): 2
Digite seu numero ($>=0$): 3	Digite seu numero ($>= 0$): 3
Jogar novamente (1-Sim, 0-Nao)?	Voce jogou 3 e o computador jo-
1	gou 7. A soma e 10.
— Nova Rodada —	Voce VENCEU!
Escolha (1-Impar ou 2-Par): 1	Placar: 1 Vitoria(s), 0 Derrota(s)
Digite seu numero ($>=0$): 5	Jogar novamente (1-Sim, 0-Nao)?
Jogar novamente (1-Sim, 0-Nao)?	1
0	— Nova Rodada —
	Escolha (1-Impar ou 2-Par): 1
	Digite seu numero ($>= 0$): 5
	Voce jogou 5 e o computador jo-
	gou 4. A soma e 9.
	Voce VENCEU!
	Placar: 2 Vitoria(s), 0 Derrota(s)
	Jogar novamente (1-Sim, 0-Nao)?
	0
	Fim de jogo!