Matematika 4 — Logika pre informatikov Teoretická úloha 12

Riešenie hodnotenej a prémiovej časti tejto úlohy **odovzdajte** najneskôr v pondelok **25. mája 2020 o 12:20** cez odovzdávací formulár pre tu12¹.

Odovzdávajte URL odkaz na

- jeden PDF dokument s právom na komentovanie nahratý na Google Drive; dokument musí obsahovať celé riešenie vrátane rezolvenčného dôkazu;
- **export z editora rezolvenčných dôkazov**⁴, ak ho použijete pri riešení; čitateľný dôkaz sa musí nachádzať aj v PDF, aby sme ho mohli komentovať.

Neodovzdávajte: priečinky; dokumenty s riešeniami viacerých úloh.

Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Na riešenia všetkých úloh sa vzťahujú všeobecné **pravidlá**².

Čísla úloh v zátvorkách odkazujú do zbierky³, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Riešenia niektorých úloh môžete skontrolovať pomocou editora rezolvenčných dôkazov⁴.

Ak nie je uvedené inak, v každom použitom jazyku \mathcal{L} logiky prvého rádu predpokladáme množinu indivíduových premenných $\mathcal{V}_{\mathcal{L}} = \{k, l, m, ..., x, y, z, k_1, l_1 m_1, ..., x_1, y_1, z_1, k_2, l_1 m_2, ...\}.$

Cvičenie 12.1. (7.7.3) Zistite, či sú nasledujúce dvojice postupností symbolov unifikovateľné, a nájdite ich najvšeobecnejší unifikátor.

a) Arabela	prvý_majiteľ(x)
b) kupujúci(Kolobežka6259, y)	kupujúci $(t, prvý_majiteľ(t))$
c) $predaj(x, prvý_majiteľ(t), t, p)$	predaj(x, y, Kolobežka6259, 35eur)
d) predaj (u, u, w, r)	predaj(kupujúci(y,t),y,t,p)
e) predaj(x, lngrid, t, cena(t))	predaj(kupujúci(y,t),y,t,p)

¹ https://forms.gle/PUqqH4CFnD6Z3JnG8

² https://dai.fmph.uniba.sk/w/Course:Mathematics 4/sk#pravidla-uloh

³ https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf

⁴ https://norbertju.github.io/ResolutionEditor/

Cvičenie 12.2. (7.7.4) Sfaktorizujte klauzuly:

- a) $\neg dama(x) \lor urazil(y, x) \lor \neg dama(Milagros)$
- b) \neg chráni(osobný_strážca(x), x) $\lor \neg$ chráni(x, y)

Cvičenie 12.3. (7.7.5) V rezolvenčnom kalkule dokážte nesplniteľnosť množín klauzúl:

a)
$$T = \{(\check{s}tek\acute{a}(x) \lor \neg pes(x)), (\neg pes(x) \lor hryzie(x)), (\neg pes(x) \lor \neg \check{s}tek\acute{a}(x) \lor \neg hryzie(x)), pes(Dunčo)\}$$

b)
$$T = \{(dom(x) \lor strom(y) \lor pri(x, y)), (strom(y) \lor \neg pri(x, y)), (\neg dom(x) \lor \neg strom(y))\}$$

c)
$$T = \{(c(x, y) \lor b(x)), (\neg c(x, L) \lor a(L)), (c(P, y) \lor \neg b(P)), (\neg a(y) \lor \neg c(x, y))\}$$

Cvičenie 12.4. (7.7.9) Uvažujme nasledovné tvrdenia a ich formalizáciu v jazyku logiky prvého rádu *bez rovnosti* \mathcal{L} , kde $\mathcal{C}_{\mathcal{L}} = \{\text{Hanka}\}, \mathcal{F}_{\mathcal{L}} = \emptyset$ a $\mathcal{P}_{\mathcal{L}} = \{\text{autíčko}^1, \text{bábika}^1, červené}^1, dievčenské}^1, hračka}^1, hračkarstvo}^1, chlapčenské}^1, matfyzáčka}^1, P^1, šaty^1, mama^2, má^2, zakúpené v^2, kúpi}^3\}:$

 (A_1) Autíčka sú chlapčenské hračky a bábiky sú dievčenské hračky.

$$\forall x (\operatorname{auti\check{c}ko}(x) \to \operatorname{chlap\check{c}ensk\acute{e}}(x) \land \operatorname{hra\check{c}ka}(x)) \land \\ \forall x (\operatorname{b\acute{a}bika}(x) \to \operatorname{diev\check{c}ensk\acute{e}}(x) \land \operatorname{hra\check{c}ka}(x))$$

 (A_2) Hanka má dve autíčka.

$$\exists x \, \exists y (P(x) \land \neg P(y) \land ma(Hanka, x) \land autičko(x) \land ma(Hanka, y) \land autičko(y))$$

(A₃) Každá hračka bola zakúpená v hračkárstve.

$$\forall x (\text{hračka}(x) \rightarrow \exists y (\text{zakúpené_v}(x, y) \land \text{hračkárstvo}(y)))$$

(A₄) Každé dievča má aspoň jednu dievčenskú hračku.

$$\forall x (\text{dievča}(x) \rightarrow \exists y (\text{m\'a}(x, y) \land \text{dievčensk\'e}(y) \land \text{hračka}(y)))$$

 (A_5) Hanka je dievča, ktoré má bábiku, ktorá má červené šaty.

(dievča(Hanka)
$$\land$$
 $\exists x (má(Hanka, x) \land bábika(x) \land \exists y (má(x, y) \land červené(y) \land šaty(y))))$

 (A_6) Každá mama kúpi svojmu dieťaťu nejakú hračku.

$$\forall x \, \forall y (\text{mama}(x, y) \rightarrow \exists z (\text{hračka}(z) \land \text{kúpi}(x, y, z)))$$

 (A_7) Dievčatá, ktoré majú nejakú chlapčenskú hračku, sa stanú matfyzáčkami.

$$\forall x (\text{dievča}(x) \rightarrow (\exists y (\text{hračka}(y) \land \text{chlapčensk\'e}(y)) \rightarrow \text{matfyz\'ačka}(x)))$$

Zistite pomocou rezolvencie, či sa Hanka stane matfyzáčkou, teda, či z teórie $T=\{A_1,\dots,A_7\}$ vyplýva formula:

matfyzáčka(Hanka)

Hodnotená časť

Úloha 12.5. (7.7.11) Uvažujme nasledujúce tvrdenia:

- (V_1) Každý vták spí na nejakom strome.
- (V_2) Potápky sú vtáky a sú tiež vodnými živočíchmi.
- (V_3) Strom, na ktorom spí nejaký vodný vták, sa nachádza blízko jazera.
- (V_4) Všetko, čo spí na niečom, čo sa nachádza blízko nejakého jazera, sa živí rybami.

Vyriešte nasledujúce úlohy:

- a) Sformalizujte tvrdenia ako teóriu $T=\{V_1,\dots,V_4\}$ vo vhodnom jazyku logiky prvého rádu.
 - Zvoľte predikátové a funkčné symboly podľa potreby tak, aby formalizácia dávala zmysel, teda aby sformalizované pojmy neboli izolované a formalizácia bola splniteľná.
- b) Upravte teóriu T na ekvisplniteľnú klauzálnu teóriu T^{\prime} .
- c) Pre nasledujúcu otázku sformulujte príslušný logický problém a zodpovedzte problém aj otázku pomocou rezolvencie pre logiku prvého rádu:

Je na základe tvrdení V_1 – V_4 pravda, že každá potápka sa živí rybami?

Prémiová časť

Prémiová úloha 12.6. (1 bod, 4.3.1) Dokážte alebo vyvráťte:

- a) Nech A je prvorádová formula bez kvantifikátorov, rovnosti, premenných a funkčných symbolov (môže obsahovať konštanty). Výrokovú formulu B vytvoríme tak, že každú predikátovú atomickú formulu tvaru $P(a_1,a_2,\ldots,a_n)$ v A nahradíme výrokovou premennou $P_a_1 a_2 \ldots a_n$.
 - *B* je výrokovologicky splniteľná vtt *A* je prvorádovo splniteľná.
- b) Ak vo výrokovologickej tautológii nahradíme všetky výrokové premenné prvorádovými formulami (tak, že za tú istú premennú vždy dosadíme tú istú formulu), dostaneme platnú prvorádovú formulu.

Prémiová úloha 12.7. (0,5 bodu, 4.3.4) Zadefinujte vzťah *z teórie T vyplýva formula X* ($T \models X$) a pojem *nesplniteľná formula* vo výrokovej logike.

Dokážte alebo vyvráťte: Nech S je množina výrokových formúl a nech X je výroková formula. Ak X je nesplniteľná a $S \models X$, tak S je nesplniteľná.