Corrigé 7 du jeudi 3 novembre 2016

Exercice 1.

Parmi les formulations suivantes, lesquelles sont équivalentes à "f est continue en x" (justifier les réponses):

1.) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \epsilon => |f(x) - f(y)| < \delta$ Considérons la fonction $f : \mathbb{R} \to \mathbb{R}$ donnée par

$$f(x) = \begin{cases} 1 & x \ge 0, \\ -1 & x < 0. \end{cases}$$

Alors, au point x=0, et pout tout $\epsilon>0$, il suffit de prendre $\delta=3$ pour vérifier la formulation. Pourtant f n'est pas continue en x. Cette formulation n'est donc pas équivalente à "f est continue en x"

2.) $\forall \delta > 0 \,\exists \epsilon > 0 \,\forall y : |x - y| < \epsilon \Longrightarrow |f(x) - f(y)| < \delta$

Cette formulation est clairement (en permutant les symboles ϵ et δ) équivalente à

2'.)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \delta => |f(x) - f(y)| < \epsilon$$
.

Montrons alors que les formulations 2'.), 3.) et 4.) sont équivalentes à la formulation "officielle"

5.) :
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| \leq \delta \Longrightarrow |f(x) - f(y)| \leq \epsilon$$

On procède cycliquement (c.f. ci-dessous) : 2'.) \Rightarrow 3.) \Rightarrow 4.) \Rightarrow 5.) \Rightarrow 2'.).

- 3.) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x y| \le \delta \Longrightarrow |f(x) f(y)| < \epsilon$
- 4.) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x y| < \delta = > |f(x) f(y)| \le \epsilon$
 - 2'.) \Rightarrow 3.): Soit $\epsilon > 0$. Par 2'.) $\exists \tilde{\delta} > 0 \,\forall y : |x y| < \tilde{\delta} => |f(x) f(y)| < \epsilon$. Posons $\delta = \frac{1}{2}\tilde{\delta}$. Ainsi, pour $y : |x y| \le \delta$, on a $|x y| < \tilde{\delta}$ et donc $|f(x) f(y)| < \epsilon$, ce qui montre 3.).
 - 3.) \Rightarrow 4.): Soit $\epsilon > 0$. Par 3.) $\exists \delta > 0 \,\forall y : |x y| \leq \delta => |f(x) f(y)| < \epsilon$. Ainsi, si $|x y| < \delta$, on a $|x y| \leq \delta$ ce qui implique $|f(x) f(y)| < \epsilon \leq \epsilon$, ce qui montre 4.).
 - 4.) \Rightarrow 5.): Soit $\epsilon > 0$. Par 4.) $\exists \tilde{\delta} > 0 \,\forall y : |x y| < \tilde{\delta} => |f(x) f(y)| \le \epsilon$. Posons $\delta = \frac{1}{2}\tilde{\delta}$. Ainsi, pour $y : |x y| \le \delta$, on a $|x y| < \tilde{\delta}$ et donc $|f(x) f(y)| \le \epsilon$, ce qui montre 5.).
 - 5.) \Rightarrow 2'.): Soit $\epsilon > 0$. Par 5.) $\exists \delta > 0 \, \forall y : |x-y| \leq \delta => |f(x)-f(y)| \leq \tilde{\epsilon} = \frac{1}{2}\epsilon$. Ainsi, pour $y : |x-y| < \delta$, on a $|x-y| \leq \delta$ et donc $|f(x)-f(y)| \leq \tilde{\epsilon} < \epsilon$, ce qui montre 2'.).

Exercice 2 (* A rendre).

Soit $I=]0,\infty[$ et $f:I\to\mathbb{R}$ définie par $f(x)=x\sin\left(\frac{1}{x}\right)$. Clairement f est continue.

En posant $g:[0,+\infty[\to\mathbb{R}$ telle que g(x)=f(x) si x>0 et g(0)=0, on peut voir que g est continue sur $[0,+\infty[$. Ainsi g est continue sur [0,2] et donc g est uniformément continue sur [0,2], ce qui implique que pour

 $\varepsilon > 0$ donné, il existe $\delta_1 > 0$ ($\delta_1 < 1$) tel que

si
$$x, y \in]0, 2], |x - y| \le \delta_1$$
 alors $|f(x) - f(y)| \le \varepsilon$.

Montrons que f est uniformément continue sur $[1, +\infty[$. En effet si $x, y \in [1, \infty[$ on a

$$|f(x) - f(y)| = \left| x \sin(1/x) - y \sin(1/y) \right|$$

$$\leq \left| (x - y) \sin(1/x) \right| + \left| y \left(\sin(1/x) - \sin(1/y) \right) \right|$$

$$\leq |x - y| + y \left| \sin(1/x) - \sin(1/y) \right|$$

$$\leq |x - y| + y \left| 2 \sin\left(\frac{1/x - 1/y}{2}\right) \cos\left(\frac{1/x + 1/y}{2}\right) \right|$$

$$\leq |x - y| + 2y \left| \sin\left(\frac{y - x}{2xy}\right) \cos\left(\frac{y + x}{2xy}\right) \right|.$$

Puisque $|\sin z| \le |z|$ et $|\cos z| \le 1$, $\forall z \in \mathbb{R}$, on a

$$|f(x) - f(y)| \le |x - y| + 2y \frac{|x - y|}{2xy} = |x - y| \left(1 + \frac{1}{x}\right) \le 2|x - y|.$$

En posant $\delta_2 = \min\left(\frac{\varepsilon}{2}, 1\right)$, on a

si
$$x, y \in [1, \infty[, |x - y| \le \delta_2 \text{ alors } |f(x) - f(y)| \le \varepsilon.$$

Enfin en posant $\delta = \min(\delta_1, \delta_2)$ on a

si
$$x, y \in]0, \infty[, |x - y| \le \delta \text{ alors } |f(x) - f(y)| \le \varepsilon.$$

Remarquons que si $x, y \in]0, \infty[$ vérifient $|x-y| \le 1$, on a forcément $(x \in [0,2] \text{ et } y \in [0,2])$ ou bien $(x \in [1,\infty[$ et $y \in [1,\infty[)$. En effet, supposons par l'absurde que $x \in [0,2] \setminus [1,\infty[$ et $y \in [1,\infty[\setminus[0,2]$. Ceci implique x < 1 et y > 2 et donc |x-y| > 1, ce qui est une contradiction.

Exercice 3.

Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction définie au voisinage de $a \in \mathbb{R}$ et supposons de plus que pour tout $\alpha \in \mathbb{R}$, il existe une suite $(a_n)_{n=0}^{\infty} \subset D$ telle que

$$a_n \neq a, \ f(a_n) \neq \alpha, \ \forall n \in \mathbb{N} \ \text{et} \ \lim_{n \to \infty} a_n = a.$$
 (*)

Montrons que s'il existe un nombre réel ℓ et une fonction

$$\delta: \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}$$

qui vérifient $x \in D$ et $\epsilon > 0$ tq $0 < |x - a| \le \delta(\epsilon) \Rightarrow |f(x) - \ell| \le \epsilon$, alors nécessairement $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$.

 $D\acute{e}monstration:$ Par l'absurde, supposons que l'on ait pas $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0.$

Alors il existe une suite $(\varepsilon_k)_{k\geq 0}$, $\varepsilon_k > 0$ telle que $\lim_{k\to\infty} \varepsilon_k = 0$ et un réel $\gamma > 0$ tels que $\delta(\varepsilon_k) > \gamma$, $\forall k \in \mathbb{N}$.

Par la propriété (*), il existe une suite $(a_n)_{n\geq 0}\subseteq D\setminus\{a\}$, telle que

$$\lim_{n \to \infty} a_n = a, \quad \text{et} \quad f(a_n) \neq \ell, \ \forall n \in \mathbb{N}.$$

Mais ceci implique l'existence de $N \in \mathbb{N}$ tel que

$$0 < |a_N - a| \le \gamma \le \delta(\varepsilon_k), \ \forall k \in \mathbb{N}.$$

Mais, par la définition de la fonction δ , ceci implique que

$$|f(a_N) - \ell| \le \varepsilon_k, \ \forall k \in \mathbb{N}.$$

Finalement, comme $\lim_{k\to\infty} \varepsilon_k = 0$, on doit obtenir $f(a_N) = \ell$, ce qui est absurde.