Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$5\left(2+\sqrt{3}\right)=10+5\sqrt{3}$	3p
	$5(2+\sqrt{3})-5\sqrt{3}=10+5\sqrt{3}-5\sqrt{3}=10$	2p
2.	$f(1) = a \Rightarrow 1 + 3 = a$	3 p
	a = 4	2p
3.	2x+1=5	3p
	x=2 care verifică ecuația	2 p
4.	Sunt 9 numere de două cifre care sunt divizibile cu 10, deci sunt 9 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{9}{1} = \frac{1}{1}$	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	2p
5.	$AB = \sqrt{(2-3)^2 + (5-5)^2}$	3p
	AB=1	2p
6.	$\sin 30^\circ = \frac{1}{2}, \cos 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin^2 30^\circ + \cos^2 45^\circ = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det A = \begin{vmatrix} 4 & 8 \\ 1 & 2 \end{vmatrix} =$	2p
	$=4 \cdot 2 - 1 \cdot 8 = 0$	3р
b)	$B+C = \begin{pmatrix} 4 & 2+x \\ 1 & 2 \end{pmatrix}$	3 p
	$ \begin{pmatrix} 4 & 2+x \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix} \Rightarrow x = 6 $	2p
c)	$B \cdot B = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$	3p
	$B \cdot B + B = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
2.a)	$0 \circ (-4) = 0 \cdot (-4) + 4 \cdot 0 + 4 \cdot (-4) + 12 =$	3 p
	=-16+12=-4	2p
b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4 pentru orice numere reale x şi y	3 p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Varianta 1

c)	$(x+4)^2-4=12$	2p
	$x^2 + 8x = 0 \Rightarrow x_1 = -8 \text{si} x_2 = 0$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1}{x} - \left(-\frac{1}{x^2}\right) =$	3 p
	$= \frac{1}{x} + \frac{1}{x^2} = \frac{x+1}{x^2}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) =$	3р
	$=\frac{2+1}{2^2}=\frac{3}{4}$	2 p
c)	y - f(1) = f'(1)(x-1)	2p
	f(1) = -1, $f'(1) = 2$, deci ecuația tangentei este $y = 2x - 3$	3 p
2.a)	$\int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3p
	$=e^1-e^0=e-1$	2p
b)	$F'(x) = \left(e^x - \frac{x^2}{2} - 1\right)' = e^x - x =$	3р
	= f(x) pentru orice număr real x , deci F este o primitivă a funcției f	2 p
c)	$\int_{0}^{1} F(x) dx = \int_{0}^{1} \left(e^{x} - \frac{x^{2}}{2} - 1 \right) dx = \int_{0}^{1} e^{x} dx - \int_{0}^{1} \frac{x^{2}}{2} dx - \int_{0}^{1} dx =$	2p
	$=e^{x}\left \frac{1}{0} - \frac{x^{3}}{6}\right ^{1}_{0} - x\left \frac{1}{0} = e - 1 - \frac{1}{6} - 1 = e - \frac{13}{6}$	3p