Midterm Review

CS230 Fall 2018

Broadcasting

Calculating Means

How would you calculate the means across the rows of the following matrix? How about the columns?

$$M = \begin{bmatrix} 13 & 9 & 29 \\ 5 & 11 & 1 \end{bmatrix}$$

Calculating Means

How would you calculate the means across the rows of the following matrix? How about the columns?

$$M = \begin{bmatrix} 13 & 9 & 29 \\ 5 & 11 & 1 \end{bmatrix}$$

Rows: row mu = np.sum(M, axis=1) / M.shape[1]

Calculating Means

How would you calculate the means across the rows of the following matrix? How about the columns?

$$M = \begin{bmatrix} 13 & 9 & 29 \\ 5 & 11 & 1 \end{bmatrix}$$

```
Rows: row_mu = np.sum(M, axis=1) / M.shape[1]
Cols: col_mu = np.sum(M, axis=0) / M.shape[0]
```

Computing Softmax

How would you compute the softmax across the columns of the following matrix?

$$M = \begin{bmatrix} 20 & 1 \\ 3 & 24 \\ 31 & 13 \end{bmatrix}$$

Computing Softmax

How would you compute the softmax across the columns of the following matrix?

$$M = \begin{bmatrix} 20 & 1 \\ 3 & 24 \\ 31 & 13 \end{bmatrix}$$

```
exp = np.exp(M)
```

Computing Softmax

How would you compute the softmax across the columns of the following matrix?

$$M = \begin{bmatrix} 20 & 1 \\ 3 & 24 \\ 31 & 13 \end{bmatrix}$$

```
exp = np.exp(M)
smx = exp / np.sum(exp, axis=0)
```

$$X = \begin{bmatrix} 3 & 15 & 9 \\ 12 & 34 & 20 \\ 22 & 1 & 18 \end{bmatrix}, V = \begin{bmatrix} 6 \\ 11 \\ 20 \end{bmatrix}$$

$$X = \begin{bmatrix} 3 & 15 & 9 \\ 12 & 34 & 20 \\ 22 & 1 & 18 \end{bmatrix}, V = \begin{bmatrix} 6 \\ 11 \\ 20 \end{bmatrix}$$

$$X = \begin{bmatrix} 3 & 15 & 9 \\ 12 & 34 & 20 \\ 22 & 1 & 18 \end{bmatrix}, V = \begin{bmatrix} 6 \\ 11 \\ 20 \end{bmatrix}$$

```
sq diff = np.square(X-V)
```

$$X = \begin{bmatrix} 3 & 15 & 9 \\ 12 & 34 & 20 \\ 22 & 1 & 18 \end{bmatrix}, V = \begin{bmatrix} 6 \\ 11 \\ 20 \end{bmatrix}$$

```
sq_diff = np.square(X-V)
dists = np.sqrt(np.sum(sq_diff, axis=0))
```

$$X = \begin{bmatrix} 3 & 15 & 9 \\ 12 & 34 & 20 \\ 22 & 1 & 18 \end{bmatrix}, V = \begin{bmatrix} 6 \\ 11 \\ 20 \end{bmatrix}$$

```
sq_diff = np.square(X-V)
dists = np.sqrt(np.sum(sq_diff, axis=0))
nearest = np.argmin(dists)
```

L1/L2 Regularization

Logistic Regression and Separable Data

What's the issue with training a logistic regression model on the following data?

Logistic Regression and Separable Data

What's the issue with training a logistic regression model on the following data?

Logistic Regression and Separable Data

What's the issue with training a logistic regression model on the following data?

The parameters will tend to plus/minus infinity! So, it will never converge.

Solving the Exploding Weights Issue

What modification of the loss function can you implement so solve this issue? Write out the new loss function.

Solving the Exploding Weights Issue

What modification of the loss function can you implement so solve this issue? Write out the new loss function.

Add L2 Regularization

$$L(y, \hat{y}, w) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}) + \frac{\lambda}{2} \sum_{i=1}^{n} w_i^2$$

This new loss function will keep the magnitude of the weights from exploding!

Gradient of the New Loss

Compute the gradient of the weight vector with respect to this new loss function.

Gradient of the New Loss

Compute the gradient of the new loss function with respect to the weight vector.

$$\frac{dL}{dw} = (\hat{y} - y)x + \lambda w$$

Another Solution...

What is another, similar modification to the loss function that could help with this issue? Compute its gradient?

Another Solution...

What is another, similar modification to the loss function that could help with this issue? Compute its gradient?

Add L1 Regularization:

$$L(y, \hat{y}, w) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}) + \sum_{i=1}^{n} |w_i|$$
$$\frac{dL}{dw} = (\hat{y} - y)x + sign(w)$$

Backprop

 $L = (y_{pred} - y)^{3/2}$ where $y_{pred} = tanh(x) \cdot W$ Assume that $y_{pred} \in R^{1xn}$ and $x \in R^{1xm}$ Using backpropagation, obtain $\frac{\partial L}{\partial x}$

$$L = (y_{pred} - y)^{3/2}$$
 Ypred $\in \mathbb{R}^{1 \times n}$

$$y_{pred} = \tanh(n).W$$

$$\frac{\partial L}{\partial n} = ?$$

$$\frac{\partial L}{\partial n} = ?$$

$$\frac{\partial L}{\partial n} = \frac{\partial L}{\partial y_{pred}} \cdot \frac{\partial y_{pred}}{\partial t_{an} h(n)} \cdot \frac{\partial t_{an} h(n)}{\partial n}$$

$$= \frac{3}{2} (y_{pred} - y)^{\frac{1}{2}} \cdot W \cdot (1 - t_{an} h^{2}(n))$$

$$\frac{\partial L}{\partial n} = \frac{\partial L}{\partial y_{pred}} \cdot \frac{\partial y_{pred}}{\partial t_{anh}(n)} \cdot \frac{\partial n}{\partial t_{anh}(n)}$$

$$= \frac{3}{2} (y_{pred} - y)^{\frac{1}{2}} \cdot W \cdot (1 - t_{anh}^{2}(n))$$

$$= \frac{3}{2} \left(y_{\text{pred}} - y \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left(n \right) \right)^{\frac{1}{2}} \cdot \mathcal{W} \cdot \left(1 - \tanh^{2} \left($$

$$= \frac{3}{2} \left(y_{\text{pred}} - y \right)^{1/2} \cdot W \cdot \left(1 - \frac{1}{1} \times m \right)^{1/2}$$

$$= \frac{3}{2} \left(y_{\text{pred}} - y \right)^{1/2} \cdot W \cdot \left(1 - \frac{1}{1} \times m \right)^{1/2}$$

$$= \frac{3}{2} \left(y_{\text{pred}} - y \right)^{1/2} \cdot W \cdot \left(1 - \frac{1}{1} \times m \right)^{1/2}$$

CNN Input/Output Sizes

Basic (no padding, stride 1)

Input Filter

Input

Filter

Conv Output

Input

Filter

Conv Output

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Input Filter

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Input Filter Conv Output

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Shape = n + 2p - f + 1

Valid and Same Convolutions

Valid

- No padding
- Output shape -> n f + 1

Same

- Pad so that input is same as output size
- Output shape -> n + 2p f + 1

Input Filter

Shape = (n - f)/s + 1

Input

Filter

Conv Output

With Stride

n x n image

f x f filter

p padding

s stride

Output size \rightarrow (n + 2p - f)/s + 1

Maxpool

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

Size of output (n-f)/s + 1

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5
6	

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5
6	9

Input

2 x 2 Pooling layer with stride 2

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5
6	9

Input Output

Backprop

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5
6	9

-4	7
5	-6

Input to maxpool layer

Output of maxpool layer

Gradient w.r.t output

Backprop

?	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

-4	7
5	-6

Gradient w.r.t input

Gradient w.r.t output

ReLU

$$ReLU(x) = \max(0, x)$$

$$ReLU(x) = \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{otherwise.} \end{cases}$$

$$\frac{d}{dx}ReLU(x) = \begin{cases} 0, & \text{if } x < 0, \\ 1, & \text{otherwise.} \end{cases}$$

Maxpool

$$\begin{aligned} \operatorname{Maxpool}(m_{ij}) &= \begin{cases} 0, & \text{if } m_{ij} \neq \max(m) \\ x, & \text{if } m_{ij} = \max(m) \end{cases} \\ \frac{d}{dx} \operatorname{Maxpool}(m_{ij}) &= \begin{cases} 0, & \text{if } m_{ij} \neq \max(m) \\ 1, & \text{if } m_{ij} = \max(m) \end{cases} \end{aligned}$$

Backprop

Keep track of where the maximum value is

1	3	2	1
4	10	5	1
1	6	6	5
2	4	2	9

10	5
6	9

0	0	0	0
0	1	1	0
0	1	0	0
0	0	0	1

Input

Output

Mask

Backprop

0	0	0	0
0	1	1	0
0	1	0	0
0	0	0	1

-4	7
5	-6

0	0	0	0
0	-4	5	0
0	5	0	0
0	0	0	-6

Mask

Gradient w.r.t output

Gradient w.r.t input

Error Analysis

Dog Classifier

Trying to predict **dog** vs **not dog**.

Improving performance

Two kinds of errors - misclassification on **muffins** and **fried chicken**

Error analysis

- Get 100 examples on dev set

Image number	Classified as muffin	Classified as chicken	 Comments
1	Υ	-	
2	-	Υ	
	-	-	
100	-	Υ	
	5%	50%	

Error Analysis

Strategic Data Acquisition

Trigger Word Detection

Classification

Dropout

Less probability (p)
$$a^{(1)} = g(z^{(1)})$$

Respectively (p) $a^{(1)} = g(z^{(1)})$
 $a^{(1)} = h$ tandom tandom ($a^{(1)}$, shape) $< p$
 $a^{(1)} = a^{(1)} = a^{(1)}$
 $a^{(1)} = a^{(1)} = a^{(1)}$

Dane 7

Experted value of $a_i^{(i)}$ $= p \cdot a_i^{(i)} + (1-p) \cdot 0$ $= p \cdot a_i^{(i)}$ Nope.

At test time > keep all en, i.e.p=1

Experted nature = $\alpha_i^{(i)}$

: During training /= P to get same inputed

Batchnorm

$$\sigma_{B}^{2} = \frac{1}{m} \sum_{i=1}^{m} (z^{(i)} - \mu_{B})^{2}$$

$$z_{norm}^{(i)} = \frac{z^{(i)} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \varepsilon}}$$

 $Z = \{z^{(1)}, \dots, z^{(m)}\}$

 $\mu_{B} = \frac{1}{m} \sum_{i=1}^{m} z^{(i)}$

 $\tilde{z}^{(i)} = \gamma z_{norm}^{(i)} + \beta$