Esonero di MATEMATICA DISCRETA 1

Informatica (corso A)

20 novembre 2020

	Nome e cognome
1.	Stabilire se la seguente proposizione è vera e scriverne la negazione
	$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{N} \exists z \in \mathbb{Z} \ \text{tali che} \ x + 2y = 2x + zx.$

¹Tutte le risposte devono essere giustificate

2. Utilizzando il principio d'induzione completa, verificare che per ogni $n\in\mathbb{N}$ risulta:

$$\sum_{n=0}^{n} (2i+1) = (n+1)^{2}.$$

3. Verificare che la relazione su \mathbb{Z} :

$$\mathcal{R} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : 2 \mid (a^3 - b^3)\}$$

è di equivalenza e verificare che la classe di equivalenza di 0 rispetto a \mathcal{R} è l'insieme dei numeri pari, ovvero:

$$[0]_{\mathcal{R}} = \{x \in \mathbb{Z} : \exists h \in \mathbb{Z} \text{ tale che } x = 2h\} = \{x \in \mathbb{Z} : 2 \mid x\}.$$

- 4. Sono assegnati gli insiemi $A=\{1,2\},\,B=\{a,b,c,d,e\}.$
 - (a) Stabilire se esistono funzioni ingettive di A in B e in caso affermativo determinarne il numero e scriverle tutte, usando il modello delle parole e aiutandosi con un opportuno diagramma;
 - (b) Stabilire se esistono funzioni surgettive di A in B e in caso affermativo determinarne il numero e scriverle tutte, usando il modello delle parole e aiutandosi con un opportuno diagramma.
 - (c) stabilire se esistono funzioni bigettive tra $A \in B$.

- 5. Rispondere ad almeno una delle seguenti domande:
 - (a) Sia A insieme finito, con |A|=n. Quanto vale $|\mathcal{P}(A)|$? Dare una dimostrazione del risultato.
 - (b) Siano A un insieme non vuoto, \mathcal{R} una relazione di equivalenza su A e, per ogni $x \in A$, sia $[x]_{\mathcal{R}}$ la classe di equivalenza di x rispetto a \mathcal{R} . Provare che

$$(a,b) \notin \mathcal{R} \Leftrightarrow [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset.$$

(c) Qual è la formula che esprime il numero delle disposizioni con ripetizioni di k elementi in classe n? Come si dimostra la formula?