有限群的复表示论概览——表示论专题 I

August 25, 2020

本讲义所涉及的群均是有限群,表示均是复表示,即涉及的域都是 \mathbb{C} . 选择 \mathbb{C} 作为主要研究对象的理由是: (1) 特征零; (2) 代数闭; (3) 大家熟悉.

0、前言

本文旨在以复表示为例,介绍简单的有限群表示论,具体包括酉表示、特征标理论、Fourier 变换、Burnside 定理、诱导表示等,讲究快速上手速战速决,有线性代数和抽象代数的基础即可阅读. 虽然读起来可能会有点无聊,但是一想到在这么短的篇幅内就能一瞥有限群表示论的大概,相比之下忍受这些无聊都是小问题了(读者不妨换位思考,揣摩一下笔者写这份讲义时的心情).

有限群表示论作为一个工具,其实用性自不必说,故前言就此打住,爱看不看!

参考文献

- [1] B. Steinberg. Representation Theory of Finite Groups. Springer.
- [2] 丘维声. 有限群和紧群的表示论. 北京大学出版社.
- [3] 孟道骥,朱萍. 有限群表示论. 科学出版社.
- [4] P. Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 11. Institute of Mathematical Statistics, Hayward, CA, 1988.
- [5] 朱子阳. Galois 理论——代数数论初探. http://www.cnblogs.com/zhuziyangcnu/.
- [6] 维基百科: Feit-Thompson theorem.
- [7] W. Feit, J.G. Thompson. Solvability of groups of odd order. Pacific Journal of Mathematics, 13:775–1029.
- [8] R. Solomon. A brief history of the classification of the finite simple groups. Bull. AMS, 38(3):315–352, DOI:10.1090/S0273-0979-01-00909-0.
- [9] D.Gorenstein. Classifying the finite simple groups. Bull. AMS, 14(1986):1-98.
- [10] T. Dokchitser. https://people.maths.bris.ac.uk/~matyd/GroupNames/index.html.
- [11] E. Kowalski. An Introduction to the Representation Theory of Groups(GSM155). AMS.
- [12] S. Lang. Algebra(GTM211). Springer.

朱子阳1,2020年7月于首都师范大学

¹邮箱 zhuziyang98@163.com

1、基本定义与基本结论

定义 1(表示) 群 G 的一个 (复) 表示是指群同态 $\varphi: G \to GL(V)$,其中 V 是一个非零有限维 \mathbb{C} -线性空间 (当然 \mathbb{C} 可以换成一般的域,但本文暂不讨论这类情况),V 的维数称为该表示的**维数**,记作 $\deg(\varphi)$. 对任意 $g \in G$, $\varphi(g): V \to V, v \mapsto \varphi(g)(v)$ 是 V 的一个可逆线性变换,为避免符号混乱将 $\varphi(g)$ 记为 φ_g .

例 (1)G 的平凡表示是指 $\varphi:G\to\mathbb{C}^*, \varphi_g=1$; (2) 一个非平凡的表示 $\varphi:\mathbb{Z}/n\mathbb{Z}\to\mathbb{C}^*, \varphi_{[m]}=e^{2\pi\operatorname{im}/n}$. 定义 2(等价关系) 有时两个看似不同的表示其实蕴含了同样的信息,为此我们给出两个表示等价的概念. 群 G 的两个复表示 $\varphi:G\to GL(V)$ 与 $\psi:G\to GL(W)$ 称为是等价的 (记作 $\varphi\sim\psi$),如果存在 \mathbb{C} -线性空间的同构 $T:V\to W$,使得对任意 $g\in G$, $\psi_g=T\varphi_gT^{-1}$ (即 $\psi_gT=T\varphi_g$). 也就是说,两个复表示 φ 与 ψ 等价当且仅当有共轭关系的交换图:

$$V \xrightarrow{\varphi_g} V$$

$$T \downarrow \qquad \qquad \downarrow T$$

$$W \xrightarrow{\psi_g} W.$$

定义 3(不变子空间) 与线性代数类似,给定表示 $\varphi:G\to GL(V)$,子空间 $W\subseteq V$ 称为是G- 不变子空间,如果对任意 $g\in G$ 以及任意 $w\in W$, $\varphi_g(w)\in W$.

定义 4(直和) 设 $\varphi: G \to GL(V_1)$ 与 $\psi: G \to GL(V_2)$ 是两个复表示,它们的直和定义为 $\varphi \oplus \psi: G \to GL(V_1 \oplus V_2), (\varphi \oplus \psi)_g(v_1, v_2) = (\varphi_g(v_1), \psi_g(v_2))$. 特别地,如果将 V_1, V_2 等同于 $\mathbb{C}^m, \mathbb{C}^n$,那么 $(\varphi \oplus \psi)_g = \begin{pmatrix} \varphi_g & 0 \\ 0 & \psi_g \end{pmatrix}$.

定义 5(子表示) 设 $\varphi: G \to GL(V)$ 是一个表示. 如果 $W \subseteq V$ 是 G- 不变子空间,则可将 φ 限制到 W 上得到表示 $\varphi|_W: G \to GL(W), (\varphi|_W)_g(w) = \varphi_g(w)$,称为 φ 的一个子表示. 如果 $V_1, V_2 \subseteq V$ 是 G- 不变子空间且 $V = V_1 \oplus V_2$,则利用线性代数的工具易证 φ 等价于直和 $\varphi|_{V_1} \oplus \varphi|_{V_2}$.

定义 6(不可约表示) 一个非零表示 $\varphi: G \to GL(V)$ 称为是不可约的,如果 V 只有平凡的 G-不变子空间 $\{0\}, V$. 表示 $\varphi: G \to GL(V)$ 称为是完全可约的,如果 $V = \bigoplus_i V_i$,其中 V_i 是 G-不变子空间且 $\varphi|_{V_i}$ 是不可约表示(即 φ 等价于一些不可约表示的直和). 群 G 的一个非零表示 φ 称为是可分解的,如果 $V = V_1 \oplus V_2$,其中 V_1, V_2 均是非零 G-不变子空间(即 φ 是其子表示的直和);否则称为不可分解的.显然等价于一个可分解(不可约、完全可约)表示的表示也是可分解(不可约、完全可约)的.对复表示而言,可分解 $\stackrel{\mathcal{C}=10}{\longleftarrow}$ 可约(但对其它域上的表示则不然,表示论中经常要求域的特征不整除群 G 的阶,否则需要一种叫模表示的理论).

对于 2 维复表示, 线性代数的方法给了我们如下断言:

命题 7 设 $\varphi: G \to GL(V)$ 是 2 维复表示,则 φ 不可约当且仅当所有 φ_g 之间没有共同的特征向量.

证明思路 φ 可约等价于 V 有 1 维 G-不变子空间,即存在非平凡 $\mathbb{C}v$. 此时 v 就是所有 φ_g 的特征向量. 定义 8(酉表示) \mathbb{C} -线性空间 V 上的 (复) 内积是指映射 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$,满足 $\langle c_1v_1 + c_2v_2, w \rangle = c_1\langle v_1, w \rangle + c_2\langle v_2, w \rangle$ 、 $\langle v, w \rangle = \overline{\langle w, v \rangle}$ 和 $\langle v, v \rangle \geq 0$, $\langle v, v \rangle = 0 \Leftrightarrow v = 0$ 这三个条件. 设 V 是配备了复内积的 \mathbb{C} -线性空间,复表示 $\varphi : G \to GL(V)$ 称为是**酉表示**,如果对任意 $g \in G$, $v, w \in V$, $\langle \varphi_g(v), \varphi_g(w) \rangle = \langle v, w \rangle$. 若记 GL(V) 的酉变换子群为 U(V),则上述表示 φ 可以视作 $\varphi : G \to U(V) \subseteq GL(V)$.

例 (1) 易证 $U(\mathbb{C}^1) \cong SO(2) := \{z \in \mathbb{C} : |z| = 1\}$. 因此 1 维酉表示即同态 $\varphi : G \to SO(2)$. 例如 $\varphi : \mathbb{R} \to SO(2), t \mapsto e^{2\pi i t}$ 就是一个 1 维酉表示.

命题 9 设 $\varphi: G \to GL(V)$ 是一个酉表示,那么 φ 无非两种情况:不可约或可分解.

证明思路 若 φ 可约,则有非平凡 G-不变子空间 W. 验证 W^{\perp} 也是 G- 不变子空间且 $V = W \oplus W^{\perp}$. **重 2 2 10** 有限群的复表示 $\varphi: G \to GL(V)$ 总与某个酉表示等价. 因此每个不可分解复表示不可约.

证明思路 由于等价性 (定义 2),故考虑 $V=\mathbb{C}^n$ 的情况,证 φ 是酉表示即可. 设 $\langle\cdot,\cdot\rangle$ 是 \mathbb{C}^n 上的标准内积,在 $V=\mathbb{C}^n$ 上定义 $[v,w]:=\sum_{g\in G}\langle\varphi_g(v),\varphi_g(w)\rangle$,验证 $[\cdot,\cdot]$ 是内积,则 φ 在该内积下是酉表示.■

定理 11(Maschke) 有限群 G 的复表示 $\varphi: G \to GL(V)$ 一定是完全可约的(对一般域 K 上的表示而言 需要增加条件 $\operatorname{Char}(K) \nmid |G|$).

证明思路 对 $\dim(V)$ 作第二类数学归纳法. 可递推是因为若 φ 可约 (不可约即证毕),则可分解.■

综上所述,任何有限群的复表示 $\varphi: G \to GL(\mathbb{C}^n)$ 均等价于 diag $(\varphi_1, \dots, \varphi_m)$, 其中 φ_i 不可约.

定义 12(表示间的态射) 设有复表示 $\varphi: G \to GL(V)$ 及 $\psi: G \to GL(W)$. 一个从 φ 到 ψ 的态射是指一个 \mathbb{C} - 线性映射 $T: V \to W$ (不一定可逆!),使得对任意 $g \in G$, $T\varphi_g = \psi_g T$. 也就是说有交换图:

$$V \xrightarrow{\varphi_g} V$$

$$T \downarrow \qquad \qquad \downarrow T$$

$$W \xrightarrow{\psi_g} W.$$

所有从 φ 到 ψ 的态射作成的集合记为 $\operatorname{Hom}_G(\varphi,\psi)$,它是线性空间 $\operatorname{Hom}_{\mathbb{C}}(V,W)$ 的子集. 特别地,如果可逆线性映射 $T \in \operatorname{Hom}_G(\varphi,\psi)$,由定义 2 知 $\varphi \sim \psi$.

命题 13 实际上, 验证定义可知 $\operatorname{Hom}_G(\varphi,\psi)$ 是线性空间 $\operatorname{Hom}_{\mathbb{C}}(V,W)$ 的线性子空间.

命题 **14(核与像)** 设 $V \xrightarrow{T} W \in \operatorname{Hom}_G(\varphi, \psi)$,则 $\ker(T)$ 是 V 的 G- 不变子空间; $\operatorname{Im}(T)$ 是 W 的 G- 不变子空间.

证明思路 以核为例,任意 $v \in \ker(T)$ 及 $g \in G$, $T\varphi_g(v) = \psi_g Tv = 0.$

下面的引理告诉我们,不可约表示之间的态射是非常有限的.

引理 15(Schur) 设 φ , ψ 是群 G 的不可约复表示, $T \in \operatorname{Hom}_G(\varphi, \psi)$. 则无非只有两种情况: T 可逆或 T=0. 此外,如果 $\varphi \nsim \psi$,则 $\operatorname{Hom}_G(\varphi, \psi)=\{0\}$; 如果 $\varphi=\psi$,则存在 $\lambda \in \mathbb{C}$ 使得 $T=\lambda E$ (单位阵). 因此,如果 $\varphi \sim \psi$ 均是不可约复表示,那么 $\dim \big(\operatorname{Hom}_G(\varphi, \psi)\big)=1$.

证明思路 如果 $T \neq 0$,由于不可约表示没有非平凡的 G-不变子空间,根据命题 14 知 T 既单又满. 注意到当 λ 是 T 的特征值时 $\lambda E - T$ 不可逆,故 $\lambda E - T = 0$,证得后半部分.

推论 16 任何 Abel 群 G 的不可约复表示 $\varphi: G \to GL(V)$ 是都是 1 维的. 因此对任何 Abel 群 G 的任何 复表示 $\varphi: G \to GL(\mathbb{C}^n)$ 而言,线性变换 φ_g 均可对角化.

证明思路 任取 $h \in G$,则有 $\varphi_h \in \operatorname{Hom}_G(\varphi, \varphi)$,由引理 15 知存在 λ_h 使 $\varphi_h = \lambda_h E$. 此时 V 有 G- 不变子空间 $\mathbb{C}v(v \in V)$ 中随便取定的一个向量),由表示不可约得 $V = \mathbb{C}v.\blacksquare$

推论 17 设 $A \in GL(\mathbb{C}^n)$ 满足 $A^k = E$, 那么 A 的特征值在 k 次单位根中取.

证明思路 用线性代数的手段很容易证明该命题,但我们给出表示论的方法. 考虑复表示 $\varphi: \mathbb{Z}/k\mathbb{Z} \to GL(\mathbb{C}^n), [t] \mapsto A^t$,由推论 16 知存在 $T \in GL(\mathbb{C}^k)$ 使得 $T^{-1}AT$ 是对角阵,记为 D. 显然 $D^k = T^{-1}A^kT = E$. 下面介绍一个重要的概念: 正交性.

定义 18(群代数) 设 G 是群,G 的群代数L(G) 是指配备了内积 $\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$ 的 \mathbb{C} -线性空间 $\{f: G$ 上的复值函数 $G \xrightarrow{f} \mathbb{C}\}$,其上的运算皆是逐点定义.

定理 19(Schur 正交关系) 设 $\varphi: G \to U(\mathbb{C}^n)$ 与 $\psi: G \to U(\mathbb{C}^m)$ 是不等价的不可约酉表示. 考虑 L(G) 中的复值函数 $\varphi_{ij}: G \to \mathbb{C}$, $\varphi_{ij}(g)$ 规定为矩阵 φ_g 的 i 行 j 列的元素,那么对按定义 18 赋予的内积而言有:

$$(1)\langle\varphi_{i,i},\psi_{kl}\rangle=0$$
:

$$(2)\langle \varphi_{ij}, \varphi_{kl} \rangle = \begin{cases} \frac{1}{n} & i = k \perp j = l, \\ 0 & \pm \ell. \end{cases}$$

证明思路 逐一证明如下断言: (断言 i)设 $\varphi: G \to GL(V)$ 和 $\psi: G \to GL(W)$ 是两个复表示, $T: V \to W$ 是线性映射,那么 $P: \operatorname{Hom}_{\mathbb{C}}(V,W) \to \operatorname{Hom}_{G}(\varphi,\psi), T \mapsto P(T) := \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} T \varphi_{g}$ 是线性满射. 这需要验证 $P(T) \in \operatorname{Hom}_{G}(\varphi,\psi)$ 且 P 确实是线性映射。由 $P(T) = \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} \psi_{g} T = T$ 知,如果 $T \in \operatorname{Hom}_{G}(\varphi,\psi)$,那么 P(T) = T,因此 P 满.

(断言 ii)设 $\varphi: G \to GL(V)$, $\psi: G \to GL(W)$ 是 G 的不可约复表示, $T: V \to W$ 是线性映射,那么 $\varphi \nsim \psi$ 蕴含 P(T) = 0; $\varphi = \psi$ 蕴含 $P(T) = \frac{\operatorname{tr}(T)}{\dim(V)} E$. 前者由引理 15 给出,后者也是根据引理 15:在这个情况下存在 $\lambda \in \mathbb{C}$ 使 $P(T) = \lambda E$. 此时目标变成确定 λ . 注意到 $\operatorname{tr}(\lambda E) = \lambda \dim(V)$,因此 $P(T) = \frac{\operatorname{tr}(P(T))}{\dim(V)} E$. 而 $\operatorname{tr}(P(T)) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\varphi_{g^{-1}} T \varphi_{g}) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(T) = \operatorname{tr}(T)$,故结论成立.

(断言 iii)设 $\varphi: G \to U(\mathbb{C}^n)$, $\psi: G \to U(\mathbb{C}^m)$ 是酉表示,记 $A = E_{ki} \in \operatorname{Mat}_{mn}(\mathbb{C})$ (即 k 行 i 列为 1,其余为 0 的 $m \times n$ 阶矩阵),则 $P(A)_{lj} = \langle \varphi_{ij}, \psi_{kl} \rangle$. 注意到 ψ_g 是酉矩阵,因此 $\psi_{g^{-1}} = \psi_g^*$ (共轭转置),

即 $\psi_{lk}(g^{-1}) = \overline{\psi_{kl}(g)}$. 据此计算 $P(A)_{lj} = \frac{1}{|G|} \sum_{g \in G} (\psi_{g^{-1}} E_{ki} \varphi_g)_{lj} = \frac{1}{|G|} \sum_{g \in G} \psi_{lk}(g^{-1}) \varphi_{ij}(g) = \langle \varphi_{ij}, \psi_{kl} \rangle$. 第二个等号是根据线性代数的结论 $\left((a_{ij}) E_{ki}(b_{ij}) \right)_{lj} = \sum_{x,y} a_{lx}(E_{ki})_{xy} b_{yj} = a_{lk} b_{ij}$ 得到.

(断言 iv)定理 19 成立. 取 $A = E_{ki}.(1)$: 由断言 ii 有 P(A) = 0. 而断言 iii 揭示 $P(A)_{lj} = \langle \varphi_{ij}, \psi_{kl} \rangle = 0$: (2): 由断言 ii 知 $P(A) = \frac{\operatorname{tr}(E_{ki})}{\dim(V)}E = \frac{\delta_{ik}}{n}E$, 再利用断言 iii 得 $\frac{\delta_{ik}}{n}E_{lj} = \frac{\delta_{ik}\delta_{lj}}{n} = \langle \varphi_{ij}, \varphi_{kl} \rangle$.

推论 20 群 G 的不可约复表示在等价的意义下只有有限多个 (更精确地,见定理 25). 特别,由定理 19(2) 知不可约酉表示 φ 对应了 L(G) 的一个势为 $\deg(\varphi)^2$ 的正交集 $\{\varphi_{ij}: i, j=1,\cdots,\deg(\varphi)\}$.

证明思路 由定理 10,只需证明 G 的酉表示有有限个即可. 注意到 $\dim(L(G)) = |G|$,由定理 19(1) 知每一个非零不可约酉表示均要对抬高群代数的维数作出贡献,因此它们至多为 |G| 个.■

定义 + 命题 21(特征标) 设 $\varphi: G \to GL(V)$ 是一个复表示,复值函数 $\chi_{\varphi}: G \to \mathbb{C}, g \mapsto \operatorname{tr}(\varphi_g)$ 称为 φ 的特征标 (由于迹是相似不变量,故良好定义),显然 $\chi_{\varphi}(1) = \dim(V) = \deg(\varphi)$. 易见对 1 维复表示 φ 而言有 $\chi_{\varphi} = \varphi$,此时可以混淆 χ_{φ} 与 φ . 特别当 φ 不可约时特征标亦称为不可约特征标. 若取 $V = \mathbb{C}^n$, $\varphi_g = (\varphi_{ij}(g))$,那么有公式 $\chi_{\varphi}(g) = \sum_{i=1}^n \varphi_{ii}(g)$. 当然与之前类似,由于迹是相似不变量 $(\operatorname{tr}(AB) = \operatorname{tr}(BA))$,因此等价的表示有相同的特征标. 同样由 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ 可以得到等式 $\chi_{\varphi}(g) = \chi_{\varphi}(hgh^{-1})$,其中 $g, h \in G$.

定义 22(类函数) 函数 $f \in L(G)$ 称为是类函数,如果对任意 $g,h \in G$,成立等式 $f(g) = f(hgh^{-1})$. 等价地,这相当于是说对任意 $g \in G$,f 是定义在 $\{g$ 的共轭元 $\}$ 这个集合上的常值函数(或者说,若记 C_g 为 G 中元素 g 所在的共轭类,那么 $f(C_g)$ 是良好定义的并且其值就是 f(g),这样就可以确定一个从共轭类映到 $\mathbb C$ 的函数). 通常将 L(G) 中所有类函数作成的集合记为 Z(L(G))(见命题 43). 命题 21 已经告诉我们, $\chi_{\varphi} \in Z(L(G))$.

命题 23 事实上,Z(L(G)) 是线性空间 L(G) 的 |C(G)| 维线性子空间,这里 C(G) 指 G 的所有共轭类作成的集合.

证明思路 子空间的验证直接依照定义. 关于维数,定义类函数 $\delta_C: G \to \mathbb{C}, \delta_C(g) = \begin{cases} 1 & g \in C \\ 0 & g \notin \mathbb{C} \end{cases}$,下证 $\{\delta_C: C \in C(G)\}$ 构成 Z(L(G)) 的基即可. 显然任意 $f \in Z(L(G))$ 均可写成线性组合 $f = \sum_{C \in C(G)} f(C) \delta_C$,并且根据 $\langle \delta_C, \delta_{C'} \rangle = \frac{1}{|G|} \sum_{g \in G} \delta_C(g) \overline{\delta_{C'}(g)} = \begin{cases} \frac{|C|}{|G|} & C = C' \\ 0 & C \neq C' \end{cases}$ 知 $\{\delta_C: C \in C(G)\}$ 实际上是正交集,因此其元素必定线性无关.■

下面两个定理揭示了不可约特征标在 L(G) 上的正交关系.

定理 24(正交关系 I) 设 φ , ρ 为群 G 的不可约复表示,那么 $\langle \chi_{\varphi}, \chi_{\rho} \rangle = \begin{cases} 1 & \varphi \sim \rho \\ 0 & \varphi \nsim \rho \end{cases}$. 因此 G 的所有不可约特征标构成了 Z(L(G)) 中的一个正交集 (实际上还是基,证明见定理 25).

证明思路 根据定理 10, 不失一般性考虑 $\varphi: G \to U(\mathbb{C}^n), \rho: G \to U(\mathbb{C}^m)$ 为酉表示. 由定义 18, $\langle \chi_{\varphi}, \chi_{\rho} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{\varphi}(g) \overline{\chi_{\rho}(g)} = \frac{1}{|G|} \sum_{g \in G} \sum_{i=1}^{n} \varphi_{ii}(g) \sum_{j=1}^{m} \overline{\rho_{jj}(g)} = \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \varphi_{ii}(g), \rho_{jj}(g) \rangle$, 再利用定理 19 计算 $\langle \varphi_{ii}, \rho_{jj} \rangle$ 即可.■

定理 25 在等价的意义下,设群 G 的所有不可约复表示为 $\varphi_1, \cdots, \varphi_s$,那么由所有不可约特征 标 $\chi_{\varphi_1}, \cdots, \chi_{\varphi_s}$ 构成的正交集 (定理 24 已断言其正交性) 实际上就是 Z(L(G)) 的一组基. 因此 $s = \dim(Z(L(G))) = |C(G)|$. 我们还有推论: 有限群 G 是 Abel 群当且仅当 |G| = |C(G)| = s,当且仅当其恰好有 |G| 个不可约复表示的等价类.

证明思路 对任意类函数 f 而言可以验证有线性组合 (参照定理 19 的证明):

$$f(x) = \frac{1}{|G|} \sum_{g \in G} f(g^{-1}xg) = \frac{1}{|G|} \sum_{g \in G} \sum_{i,j,k} c_{ijk} \varphi_{k,ij}(g^{-1}xg) = \sum_{i,j,k} c_{ijk} \frac{1}{|G|} \sum_{g \in G} \varphi_{k,ij}(g^{-1}xg)$$

$$=\sum_{i,j,k}c_{ijk}\Big[\frac{1}{|G|}\sum_{g\in G}\varphi_{k,g^{-1}}\varphi_{k,x}\varphi_{k,g}\Big]_{ij}=\sum_{i,j,k}c_{ijk}[P(\varphi_{k,x})]_{ij}=\sum_{i,j,k}c_{ijk}\frac{\operatorname{tr}(\varphi_{k,x})}{\operatorname{deg}(\varphi_{k})}E_{ij}=\sum_{i,k}\Big(c_{iik}\frac{1}{\operatorname{deg}(\varphi_{k})}\Big)\chi_{\varphi_{k}}(x).\blacksquare$$

定义 26(直和分解与重数) 如果表示 $\rho \sim \bigoplus_{i=1}^{s} (m_i \varphi_i)$,其中所有 φ_i 不可约、 $i \neq j \Rightarrow \varphi_i \nsim \varphi_j$ 且 $m_i \varphi_i := \varphi_i \oplus \cdots \oplus \varphi_i$ (即把不可约表示 φ_i 直和 m_i 次),那么 m_i 称为是 ρ 中 φ_i 的重数. 如果 $m_i > 0$,则称 φ_i

是 ρ 的一个**不可约成分**. 此时显然有 $\deg(\rho) = \sum m_i \deg(\varphi_i)$. 定理 11 告诉我们,所有复表示完全可约,因此上述直和分解总是存在,但分解的唯一性还未知,这关系到该定义是否良好. 为断言唯一性 (定理 28),我们利用特征标理论给出分析.

引理 27 设 $\varphi = \rho \oplus \psi$,那么显然有 $\chi_{\varphi} = \chi_{\rho} + \chi_{\psi}$. 因此任何特征标都是一些不可约特征标的整线性组合. 定理 28(唯一性) 设表示 $\rho \sim \bigoplus_{i=1}^{s} (m_i \varphi_i)$,那么重数 $m_i = \langle \chi_{\rho}, \chi_{\varphi_i} \rangle$,因此 ρ 的直和分解在等价的意义下唯一 (因为等价的表示有相同的特征标). 兹断言定义 26 确实良好.

证明思路 由引理 27, $\chi_{\rho} = \sum_{i=1}^{s} m_i \chi_{\varphi_i}$. 根据定理 24, $\langle \chi_{\rho}, \chi_{\varphi_i} \rangle = \sum_{j=1}^{s} m_j \langle \chi_{\varphi_j}, \chi_{\varphi_i} \rangle = m_i$.

推论 29 复表示 ρ 不可约当且仅当 $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$.

证明思路 设 $\rho \sim \bigoplus_{i=1}^s (m_i \varphi_i)$,那么 $\langle \chi_\rho, \chi_\rho \rangle = m_1^2 + \cdots + m_s^2$.

作为直和分解的一个可计算的例子,我们介绍一下正则表示:

定义 30(正则表示) 设 X 是有限集,定义由 X 生成的线性空间为 $\mathbb{C}X := \{\sum_{x \in X} c_x x : c_x \in \mathbb{C}\}$,其上的运算均是逐点定义. 线性空间 $\mathbb{C}X$ 上可以配备内积 $\langle \sum_{x \in X} a_x x, \sum_{x \in X} b_x x \rangle := \sum_{x \in X} a_x \overline{b_x}$ 使之成为内积空间. 有限群 G 的 (左) 正则表示是指同态 $\mathcal{L}: G \to GL(\mathbb{C}G)$, $\mathcal{L}_g(\sum_{h \in G} c_h h) := \sum_{h \in G} c_h g h = \sum_{x \in G} c_{g^{-1}x} x$. 类似地通过右乘可以定义 (右) 正则表示 \mathcal{R} ,不过为图方便本文的讨论都以 (左) 正则表示为例. 事实上验证定义可知正则表示是酉表示 (即任意 \mathcal{L}_g 保持内积). 特别地,我们甚至可以描述清楚它的分解及其相关特性:

定理 31 设 \mathcal{L} 是 G 的正则表示,则存在分解 $\mathcal{L} \sim \bigoplus_{i=1}^{s} \left(\deg(\varphi_i) \varphi_i \right)$,其中 φ_i 是不可约 (酉) 表示且两两不等价.

证明思路 根据定理 28,问题转化为 $\langle \chi_{\mathcal{L}}, \chi_{\varphi_i} \rangle$ 的计算. 通过线性代数的操作易得 $\chi_{\mathcal{L}}(g) = \begin{cases} |G| & g = 1 \\ 0 & g \neq 1 \end{cases}$

据此照定义 18 给予的内积表达式验证得 $\langle \chi_{\mathcal{L}}, \chi_{\varphi_i} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{\mathcal{L}}(g) \overline{\chi_{\varphi_i}(g)} = \frac{1}{|G|} |G| \overline{\chi_{\varphi_i}(1)} = \deg(\varphi_i).$ ■

推论 32 依照定理 31 有 $\chi_{\mathcal{L}} = \sum_{i=1}^{s} \deg(\varphi_i) \chi_{\varphi_i}$,取其在 g=1 处的值得等式 $|G| = \sum_{i=1}^{s} \deg(\varphi_i)^2$. 据此 计算维数可知通过推论 20 得到的正交集 $\{\varphi_{k,ij}: k=1,\cdots,s; i,j=1,\cdots,\deg(\varphi_k)\}$ 实际上是 L(G) 的一组基. 下面我们给出特征标表的概念.

定义 33(特征标表) 设 G 是有限群,取出它的所有不可约特征标为 χ_1, \dots, χ_s . 定理 25 告诉我们 s = |C(G)|. 再设 G 的共轭类为 C_1, \dots, C_s . 在这个条件下,群 G 的**特征标表**是指 $s \times s$ 阶矩阵 $\Lambda_{ij} := \chi_i(C_j)$. 定理 34(正交关系 II) 特征标表的列向量在 $\mathbb C$ 的标准内积下两两正交,因此特征标表是可逆矩阵.

证明思路 即计算 $\sum_{i=1}^{s} \chi_i(C) \overline{\chi_i(C')}$ 或者 $\sum_{i=1}^{s} \chi_i(g) \overline{\chi_i(h)}$. 回顾命题 23 证明中定义的类函数 δ_C ,注意到 $\{\delta_C: C \in C(G)\}$ 与 $\{\chi_1, \cdots, \chi_s\}$ 是内积空间 Z(L(G)) 的两组基,线性代数告诉我们成立等式 $\delta_C = \sum_{i=1}^{s} \langle \delta_C, \chi_i \rangle \chi_i$. 此时对某个 $h \in C$,有:

$$\delta_C(g) = \sum_{i=1}^s \langle \delta_C, \chi_i \rangle \chi_i(g) = \sum_{i=1}^s \frac{1}{|G|} \sum_{x \in G} \delta_C(x) \overline{\chi_i(x)} \chi_i(g) = \sum_{i=1}^s \frac{1}{|G|} \sum_{x \in C} \overline{\chi_i(x)} \chi_i(g) = \frac{|C|}{|G|} \sum_{i=1}^s \chi_i(g) \overline{\chi_i(h)}.$$

上式当 $g \in C$ 时为 1, 其余为 0.■

事实上,特征标表是线性空间 Z(L(G)) 中,正交基 $\{\chi_1, \cdots, \chi_s\}$ 到正交基 $\{\delta_C : C \in C(G)\}$ 的过渡矩阵. 作为一个例子,我们尝试计算一下 Abel 群 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ 的特征标表. 在这之前我们解决一个更广的问题: 如何在等价的意义下确定任意有限 Abel 群的所有不可约复表示? 根据有限 Abel 群的结构定理 (有限 Abel 群一定同构于若干剩余类群的直和),在知悉 $\mathbb{Z}/n\mathbb{Z}$ 的所有不等价的不可约复表示就是 $\varphi_k : \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}^*, [m] \mapsto e^{2km\pi i/n}(k=0,\cdots,n-1)$ 的前提下,不失一般性只需讨论两个 Abel 群直和的情况.

命题 35 设 G_1, G_2 都是有限 Abel 群,若记它们的所有不等价不可约 (1 维) 复表示分别为 $\varphi_1, \dots, \varphi_{|G_1|}$ 和 $\psi_1, \dots, \psi_{|G_2|}$,那么所有复值函数 $\alpha_{ij}: G_1 \times G_2 \to \mathbb{C}^*, (g_1, g_2) \mapsto \varphi_i(g_1)\psi_j(g_2)$ 确定了 $L(G_1 \times G_2)$ 的一组基.

证明思路 验证 α_{ij} 是同态是容易的. 注意到有 $\langle \alpha_{ij}, \alpha_{kl} \rangle = \frac{1}{|G_1||G_2|} \sum_{(g_1,g_2) \in G_1 \times G_2} \alpha_{ij}(g_1,g_2) \overline{\alpha_{kl}(g_1,g_2)} = \left(\frac{1}{|G_1|} \sum_{g_1 \in G_1} \varphi_i(g_1) \overline{\varphi_k(g_1)}\right) \cdot \left(\frac{1}{|G_2|} \sum_{g_2 \in G_2} \psi_j(g_2) \overline{\psi_l(g_2)}\right) = \langle \varphi_i, \varphi_k \rangle \langle \psi_j, \psi_l \rangle$,因此含有 $|G_1 \times G_2|$ 个元素的集合 $\{\alpha_{ij} : i = 1, \cdots, |G_1|; j = 1, \cdots, |G_2|\}$ 是正交的,据定理 24 和定理 25 知该集合就是 $G_1 \times G_2$ 的所有不等价不可约复表示.■

例 我们已经知道,群 $\mathbb{Z}/2\mathbb{Z}$ 的两个不等价不可约复表示为 $\varphi_0:[0],[1]\mapsto 1,1$ 和 $\varphi_1:[0],[1]\mapsto 1,-1$,

其特征标表是
$$\begin{pmatrix} \chi_{\varphi_0}[0] & \chi_{\varphi_0}[1] \\ \chi_{\varphi_1}[0] & \chi_{\varphi_1}[1] \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
. 据此依照命题 35 计算得 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ 的特征标表为 $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$. 关于群论和特征标理论更多有用的事实见网站 [10].

定义 4 给出了同一个群 G 上两个表示直和的概念,这是一种构造新表示的办法. 而接下来我们要介绍另一种办法 (当然还有很多其他办法): 张量积和外张量积. 有了这个概念之后,我们顺带可以给出命题 35 在一般情形下的推广 (命题 38).

定义 36(张量积) 设 $\varphi: G \to GL(V)$ 和 $\psi: G \to GL(W)$ 是 G 的两个复表示. 定义 φ 和 ψ 的张量积表示 为 $\varphi \otimes \psi: G \to GL(V \otimes_{\mathbb{C}} W), g \mapsto \varphi(g) \otimes \psi(g)$ (注意 $(\varphi_g \otimes \psi_g)(v \otimes w) = \varphi_g(v) \otimes \psi_g(w)$). 容易验证其是良好定义的. 倘若取 $V = \mathbb{C}^n, W = \mathbb{C}^m$,那么 $\chi_{\varphi \otimes \psi}(g) = \operatorname{tr}((\varphi \otimes \psi)_g) = \operatorname{tr}(\varphi_g \otimes \psi_g) = \operatorname{tr}(\varphi_g) \cdot \operatorname{tr}(\psi_g) = \chi_{\varphi}(g) \cdot \chi_{\psi}(g)$,套用下面定义 44 中规定的乘法运算,我们有 $\chi_{\varphi \otimes \psi} = \chi_{\varphi} \cdot \chi_{\psi}$. 这也就是说,群 G 的两个特征标的乘积仍是 G 的一个特征标.

定义 37(外张量积) 设 $\varphi_1: G_1 \to GL(V), \varphi_2: G_2 \to GL(W)$ 是复表示,定义 φ_1 和 φ_2 的 (外) 张量积表示为群 $G_1 \oplus G_2$ 的复表示 $\varphi_1 \boxtimes \varphi_2: G_1 \oplus G_2 \to GL(V \otimes_{\mathbb{C}} W), (\varphi_1 \boxtimes \varphi_2)(g_1, g_2)(v \otimes w) := \varphi_1(g_1)(v_1) \boxtimes \varphi_2(g_2)(v_2).$

命题 38 设 G_1, G_2 都是有限群,若记它们的所有不等价不可约复表示分别为 $\varphi_1, \dots, \varphi_s$ 和 ψ_1, \dots, ψ_t ,则 $\{\varphi_i \boxtimes \psi_j : i = 1, \dots, s; j = 1, \dots, t\}$ 正好是 $G_1 \oplus G_2$ 的所有不等价不可约复表示. 此外,若 G_1, G_2 的特征标表分别为 Λ_1, Λ_2 ,则 $G_1 \oplus G_2$ 的特征标表为矩阵的张量 $\Lambda_1 \boxtimes \Lambda_2$.

证明参考 见 [11] 命题 2.3.23.■

对于非 Abel 的有限群, [2] 中推论 1.5.1 还有如下描述:

命题 39(提升) 设 G 是有限群,则 G 的所有不等价不可约 1 维复表示有 [G:G'] 个([1] 引理 6.2.7 断言: 若 G' 是 G 的换位子群,则存在一一对应 $\{G$ 的 1 次复表示 $\}$ \leftrightarrow $\{Abel 群 G/G'$ 的不可约复表示 $\}$, $\varphi \to G/G' \to \mathbb{C}^*$, $\psi \pi \leftarrow \psi$,其中 $\pi:G \to G/G'$ 是典范同态. 因此 G 有 |G/G'| = [G:G'] 个 1 维复表示).

接下来,作为本节的结束,我们介绍一些特征标表在群论中的应用.

- **命题 40** (1) 设 N 是有限群 G 的正规子群,又设 $\varphi_1, \cdots, \varphi_s$ 是 G 的所有不等价不可约复表示,则 N 一定是若干个 $\ker(\varphi_i)$ 的交. 容易验证 $\ker(\varphi_i) = \{g \in G : \chi_{\varphi_i}(g) = \chi_{\varphi_i}(1)\}$,这给出了用特征标表计算 G 所有正规子群的一个方法. 特别地由命题 39,G 的换位子群是所有 1 次复表示的核的交.
- (2) 往后看看 Burnside 定理 (定理 49) 证明中断言 iii 的证明方法,我们还可以用特征标表判断群是否为单群: 设 G 是有限群, $\varphi_1, \dots, \varphi_s$ 是 G 的所有不等价不可约复表示,则 G 是单群的充要条件为这些 $\varphi_1, \dots, \varphi_s$ 中除了平凡表示外,其余所有 $\ker(\varphi_i) = \{1\}$.
- (3) 由定理 34,可以从特征标表求出 G 共轭类里的元素个数: $|C_g| = \frac{|G|}{\sum_{i=1}^s \chi_i(g) \chi_i(g)}$. 特别地,我们还可以计算 G 的中心:由于正规子群 Z(G) 中元素共轭类的势均为 1,因而 Z(G) 就是使 $|C_g| = 1$ 的所有 g 的并.

证明参考 见 [2]Chapter3.4, 此书该章节还展示了一些其他的应用.■

注意 特征标表相同的两个群不一定同构. 例如二面体群与四元数群.

2、有限群上的 Fourier 分析

本节的目标是建立有限群上的 Fourier 分析理论,所有定义与结论均是标准 Fourier 理论的变形.

定义 41(卷积) 设 G 是有限群, $a,b \in L(G)$.a 和 b 的卷积是指映射 $a*b:G \to \mathbb{C}, x \mapsto \sum_{y \in G} a(xy^{-1})b(y)$. 显然 $a*b \in L(G)$,我们希望在这个卷积运算下线性空间 L(G) 还有其他的结构.

命题 **42** (L(G), +, *) 是含幺环.

证明思路 结合律由等式 $[(a*b)*c](x) = \sum_{y \in G} [a*b](xy^{-1})c(y) = \sum_{y \in G} \sum_{z \in G} a(xy^{-1}z^{-1})b(z)c(y) = \sum_{y \in G} \sum_{u \in G} a(xu^{-1})b(uy^{-1})c(y) = \sum_{u \in G} a(xu^{-1})\sum_{y \in G} b(uy^{-1})c(y) = \sum_{u \in G} a(xu^{-1})[b*c](u) = [a*(b*c)](x)$

给出,分配律显然. 对于幺元的存在性,定义 $\delta_g(x) = \begin{cases} 1 & x = g \\ 0 & x \neq g \end{cases}$,等式 $a * \delta_1(x) = \sum_{y \in G} a(xy^{-1})\delta_1(y) = a(x)$

告诉我们 δ_1 就是单位. \blacksquare

命题 43 L(G) 作为环,其中心正是 Z(L(G)). 因此当 G 是 Abel 群时,L(G) 是一个交换 \mathbb{C} -代数.

证明思路 设 f 是类函数,于是有 $f*a(x) = \sum_{y \in G} f(y^{-1}x)a(y) = \sum_{z \in G} f(z)a(xz^{-1}) = a*f(x)$. 反过来,设 f 满足对任意 $\delta_z \in L(G)$, $\delta_z * f = f * \delta_z$,那么有 $f(z^{-1}x) = f(xz^{-1})(\forall x, z \in G)$,此时取 x = yz 即可.

L(G) 上有了卷积运算之后,我们便可给出 Fourier 变换. 确切的说,它既是一个 \mathbb{C} -线性空间同构,也是一个环同构 (定理 45、定理 46).

首先考虑有限 Abel 群的情形.

定义 + 命题 44(对偶群) 设 G 是有限 Abel 群. 容易验证集合 $\hat{G} := \{\chi : G \to \mathbb{C}^* | \chi$ 是不可约特征标} 在配备了运算 $(\chi_1 \cdot \chi_2)(g) := \chi_1(g)\chi_2(g)$ 之后作成一个阶为 |G| 的 Abel 群,称为 G 的对偶群(事实上,由于 G 是 Abel 群,可以发现 \hat{G} 中的元素无非就是所有的群同态 $G \to S^1$,由此关于对偶群封闭性的验证即是显然).

证明思路 封闭:由定义 36 给出;结合律和交换律显然;单位元是 $\chi:g\mapsto 1 (\forall g\in G);\chi$ 的逆元是 $\overline{\chi}.\blacksquare$ 定理 45(Abel 群的 Fourier 变换) 设 $f:G\to\mathbb{C}$ 是复值函数,定义其 Fourier 变换为 $\widehat{f}:\widehat{G}\to\mathbb{C},\chi\mapsto |G|\langle f,\chi\rangle=\sum_{g\in G}f(g)\overline{\chi(g)}$ (读者不妨将其与数学分析中的 Fourier 系数对应起来).函数 \widehat{f} 在每个不可约特征标(基) χ 处的取值称为 f 的 Fourier 系数.在这个定义下,我们有:

- (1) 由于不可约特征标 χ 也是复值函数,因此定理 24 蕴含 $\widehat{\chi}(\rho) = \begin{cases} |G| & \chi = \rho \\ 0 & \text{其他} \end{cases}$,即 $\widehat{\chi} = |G|\delta_{\chi}$;
- (2) 根据线性代数的等式 $f = \sum_{\chi} \langle f, \chi \rangle_{\chi}$,我们有逆变换: 若 $f \in L(G)$,则 $f = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \widehat{f}(\chi)\chi$ (此即 Fourier 展开,读者不妨将其与数学分析中的 Fourier 展开对应起来,展开式各项的系数就是 Fourier 系数);
 - (3) 由于逆变换的存在, 我们有 \mathbb{C} -线性空间的同构 $L(G) \to L(\widehat{G}) \cong \mathbb{C}^{|G|}, f \mapsto \widehat{f};$
- (4) 规定 $L(\hat{G})$ 上的乘法为逐点相乘 $(\hat{f} \cdot \hat{g})(x) := \hat{f}(x)\hat{g}(x)$ 使之成为一个交换幺环 (单位是常值映射 $x \mapsto 1$),那么上述同构诱导了交换幺环的同构 $(L(G), +, *) \to (L(\hat{G}), +, \cdot) \cong (\mathbb{C}^{|G|}, +, \cdot), f \mapsto \hat{f}$. 此时这还是一个交换 \mathbb{C} -代数同构.

证明思路 只证 (4),只需要证明 $\widehat{a * b} = \widehat{a} \cdot \widehat{b}$ 即可. 这由下式给出:

$$\widehat{a*b}(\chi) = \sum_{y \in G} b(y) \sum_{x \in G} a(xy^{-1}) \overline{\chi(x)} = \sum_{y \in G} b(y) \sum_{z \in G} a(z) \overline{\chi(z)} \overline{\chi(y)} = \sum_{z \in G} a(z) \overline{\chi(z)} \sum_{y \in G} b(y) \overline{\chi(y)} = \widehat{a}(\chi) \widehat{b}(\chi). \blacksquare$$

例 设 $f,g:\mathbb{Z}\to\mathbb{C}$ 满足:存在正整数 $n,\ f(n+x)=f(x),g(n+x)=g(x)(\forall x\in\mathbb{Z}),\ \overline{f},\overline{g}:\mathbb{Z}/n\mathbb{Z}\to\mathbb{C}$ 为其自然的诱导映射. 此时我们利用有限 Abel 群的 Fourier 理论将关于 $\overline{f},\overline{g}$ 的公式过渡到 f,g 上 (即限定在一个周期内,这与数学分析中周期函数的 Fourier 理论类似). 分别依据定义 41、定义 44 和定理 45,我们得到: $(f*g)(m):=\sum_{k=0}^{n-1}\overline{f}([m-k])\overline{g}([k])=\sum_{k=0}^{n-1}f(m-k)g(k),\ \widehat{\mathbb{Z}/n\mathbb{Z}}=\{\chi_k:[m]\mapsto e^{2\pi\,ikm/n}|k=0,\cdots,n-1\}\cong\mathbb{Z}/n\mathbb{Z},\chi_l\leftrightarrow[l].$ 函数 f 的 Fourier 变换为 $\widehat{f}(l):=\sum_{k=0}^{n-1}\overline{f}([k])\overline{\chi_l([k])}=\sum_{k=0}^{n-1}f(k)e^{-2\pi\,ilk/n},$ 此时逆变换 $f(l)=\frac{1}{n}\sum_{k=0}^{n-1}\widehat{f}([k])\chi_k([l])=\frac{1}{n}\sum_{k=0}^{n-1}\widehat{f}(k)e^{2\pi\,ilk/n}.$

接下来直接给出有限非 Abel 群一般情形的结论,证明略过 (有限 Abel 群情形的特殊性在于其不可约复表示都是 1 维的).

定理 46(非 Abel 群的 Fourier 变换) 设 G 是有限群,记 G 的所有不等价的不可约复 (酉) 表示为 $\varphi_1, \dots, \varphi_s$. 定义映射 $T: L(G) \to \operatorname{Mat}_{\deg(\varphi_1)}(\mathbb{C}) \times \dots \times \operatorname{Mat}_{\deg(\varphi_s)}(\mathbb{C}), f \mapsto (\widehat{f}(\varphi_1), \dots, \widehat{f}(\varphi_s))$,其中 $\widehat{f}(\varphi_k)_{ij} := |G|\langle f, \varphi_{k,ij} \rangle = \sum_{g \in G} f(g) \overline{\varphi_{k,ij}(g)}$. 称 T(f) 为 f 的 Fourier 变换. 在这个定义下,我们有:

- (1) 逆变换: 若 $f \in L(G)$,则 $f = \frac{1}{|G|} \sum_{i,j,k} \deg(\varphi_k) \widehat{f}(\varphi_k)_{ij} \varphi_{k,ij}$;
- (2) 由于逆变换的存在,我们有 \mathbb{C} -线性空间的同构 $L(G) \to \operatorname{Mat}_{\operatorname{deg}(\varphi_1)}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{\operatorname{deg}(\varphi_s)}(\mathbb{C}), f \mapsto T(f);$
- (3) 规定 $\operatorname{Mat}_{\operatorname{deg}(\varphi_1)}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{\operatorname{deg}(\varphi_s)}(\mathbb{C})$ 上的乘法为逐点相乘使之成为一个含幺环,那么上述同构诱导了含幺环的同构 $(L(G), +, *) \to (\operatorname{Mat}_{\operatorname{deg}(\varphi_1)}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{\operatorname{deg}(\varphi_s)}(\mathbb{C}), +, \cdot), f \mapsto T(f)$.
 - 例 关于这套 Fourier 理论的一个实际应用见 [4]. 由于其涉及到大量数理统计,限于篇幅按下不表.

3、两巨头

本节主要利用表示论的技巧证明群论中的两个重要定理 (定理 47, 定理 49), 并介绍它们的应用.

定理 47(维数) 设 φ 是有限群 G 的一个不可约复表示,那么 $\deg(\varphi)||G|$.

证明思路 依次证明如下断言: (断言 i) 设 χ 是 G 的一个特征标,那么对任意 $g \in G$, $\chi(g)$ 是代数整数 (即它属于 \mathbb{Z} 在 \mathbb{C} 中的整闭包). 考虑表示 $\varphi: G \to GL(\mathbb{C}^n)$,由于 $g^{|G|} = 1$,因此 $\varphi_g^{|G|} = E$. 根据推论 17, φ_g 可对角化且特征值是一些 |G| 次单位根 (它们是代数整数),因此 $\chi_{\varphi}(g) = \operatorname{tr}(\varphi_g)$ 当然也是代数整数.

(断言 iii) 定理 47 成立. 由定理 24, $\frac{|G|}{\deg(\varphi)} = \sum_{g \in G} \frac{\chi_{\varphi}(g)}{\deg(\varphi)} \overline{\chi_{\varphi}(g)}$. 设 C_1, \cdots, C_s 是 G 的所有共轭类,前式蕴含 $\frac{|G|}{\deg(\varphi)} = \sum_{i=1}^s \sum_{g \in C_i} \frac{\chi_{\varphi}(g)}{\deg(\varphi)} \overline{\chi_{\varphi}(g)} = \sum_{i=1}^s \sum_{g \in C_i} \frac{\chi_{\varphi}(g)}{\deg(\varphi)} \overline{\chi_{\varphi}(C_i)} = \sum_{i=1}^s \frac{|C_i|}{\deg(\varphi)} \chi_{\varphi}(C_i) \overline{\chi_{\varphi}(C_i)}$,而根据断言 ii,这是一个代数整数. 由于有理数中的代数整数一定是整数,因此 $\frac{|G|}{\deg(\varphi)} \in \mathbb{Z}$.

我们来看看该定理在 p 群理论中的一个应用.

推论 48 设 $G \in p^2$ 阶群, $p \in p$ 是素数, 则 $G - p \in p$ Abel 群.

证明思路 设 G 的所有不可约复表示为 $\varphi_1, \cdots, \varphi_s$ (在等价的意义下),根据定理 47, $\deg(\varphi_i)$ 在 $1, p, p^2$ 中取值. 由推论 32 知 $p^2 = |G| = \sum_{i=1}^s \deg(\varphi_i)^2$,注意到 G 一定有维数 1 的平凡表示,故这些 φ_i 全都只能是 1维的,因此 s = |G|. 利用定理 25 得 G 是 Abel 群.■

定理 49(Burnside^{1st}) 设 G 是 p^aq^b 阶群, p,q 均是素数, $a,b \ge 0$, 则 G 可解.

证明思路 将证明分解为如下步骤: (断言 i) 设 $\lambda_1, \dots, \lambda_s$ 是一些 n 次单位根,则 $|\lambda_1 + \dots + \lambda_s| \leq s$,当且仅当 $\lambda_1 = \dots = \lambda_s$ 时取等号. 这是显然的.

(断言 ii)设 G 是有限群,C 是 G 的某个共轭类,又设 $\varphi:G\to GL(\mathbb{C}^s)$ 是不可约复表示,s 与 |C| 互素,则要么存在 $\lambda\in\mathbb{C}^*$ 使得对任意 $g\in C$ 均有 $\varphi_g=\lambda E$; 要么任意 $g\in C$ 均有 $\chi_{\varphi}(g)=0$. 由推论 17 知 φ_g 可对角化且特征值是 s 个 |G| 次单位根,这些单位根之和即 $\chi_{\varphi}(g)$. 依照断言 i, $|\chi_{\varphi}(g)|\leq s$. 设存在 $u,v\in\mathbb{Z}$ 使得u|C|+vs=1,那么 $u\frac{|C|}{s}\chi_{\varphi}(g)+v\chi_{\varphi}(g)=\frac{\chi_{\varphi}(g)}{s}$ 。定理 47 证明中的断言 i、断言 ii 告诉我们 $\chi_{\varphi}(g),\frac{|C|}{s}\chi_{\varphi}(g)$ 均是代数整数,因此 $\chi_{\varphi}(g)$ 也是代数整数。设它在 $\mathbb{Q}[x]$ 中的极小首一多项式为 $p(x)\in\mathbb{Z}[x](\mathbb{Q}[5]$ 推论 5),Galois 理论告诉我们 p(x) 所有根相乘得到的 p(x)0 所有根相乘得到的 p(x)2 是代数整数,故 p(x)3 是一个证证 p(x)3 是一个证证 p(x)4 是一个证证 p(x)5 是一个证证 p(x)6 是一个证证

(断言 iii)设 G 是有限群,若存在某个共轭类 C 使得 $|C|=p^t$,p 是素数且 $t\geq 1$,则 G 一定不是单群. 取出 G 的所有不等价的不可约复表示为 G $\stackrel{\varphi_1}{\to} \mathbb{C}^*$ (平凡表示), \dots , φ_s . 依照定理 31 考虑正则表示及其分解 $\mathcal{L}\sim \bigoplus_{i=1}^s \deg(\varphi_i)\varphi_i$,由此式立得 $\chi_{\mathcal{L}}(g)=1+\sum_{i=2}^s \overline{\chi_{\varphi_i}(1)}\chi_{\varphi_i}(g)$. 取 $1\neq g\in C$ (注意单位元的共轭类只有它自己),由定理 34 上式 =0. 因此可设存在 $2\leq r\leq s$ 使得 $\chi_{\varphi_i}(g)\neq 0$, $i=2,\cdots,r$,其余为 0. 此外,若对每个 $2\leq i\leq r$ 都有 $p|\chi_{\varphi_i}(1)$,设 $\chi_{\varphi_i}(1)=k_ip$,则仍由上式可得 $\frac{1}{p}=-\sum_{i=2}^r k_i\chi_{\varphi_i}(g)$,这右边是一个代数整数,因此 $\frac{1}{p}\in\mathbb{Z}$,显然不可能. 所以存在 $2\leq a\leq r$ 使得 $p\nmid\chi_{\varphi_a}(1)$,即 $(|C|,\chi_{\varphi_a}(1))=1$. 根据断言 ii,只能出现前一种情况,即 $\varphi_a(g)=\lambda E$. 倘若 G 是单群,此时 $\ker(\varphi_i)=\{1\}(i>1)$,故 φ_a 只能是单射,即 $G\cong \operatorname{Im}(\varphi_a)$. 而 $\varphi_a(g)$ 作为一个矩阵一定落在 $Z(\operatorname{Im}(\varphi_a))$ 之中,这推出 $g\in Z(G)$ 从而 $|C|=|C_g|=|G|$,与单位元单独成类矛盾. 故 G 非单.

(断言 iv)定理 49 成立. 若 $|G|=p^a$,显然它可解 (有限 p 群皆可解). 于是只需讨论 $p \neq q, a > 0, b > 0$ 的情况. 对 |G| 作归纳法. 根据 Sylow 定理,G 有 q^b 阶子群 H. 取 $1 \neq g \in Z(H)$,则 $H \subseteq \{x \in G : xg = gx\} := \Delta_g$ (共轭作用下的稳定子群). 因此 $p^a = [G:H] = [G:\Delta_g] \cdot [\Delta_g:H]$,这推出 $[G:\Delta_g] = p^l$,其中 $l \geq 0$. 如果 l = 0,则 $G = \Delta_g$,此时取正规子群 $\langle g \rangle$,由归纳假设 $\langle g \rangle$ 与 $G/\langle g \rangle$ 可解得 G 可解. 当 l > 0 时,注意到 $[G:\Delta_g]$ 实际上就是 $g \in G$ 的共轭元个数 (或 g 所在轨道的长度),根据断言 iii 知 G 非单. 再运行一遍归纳假设知 G 可解 (实际上我们在证明 p^aq^b 阶非单群可解).■

关于可解群, Burnside 还有如下猜想:

猜想 + 定理 50(Burnside-Feit-Thompson) 奇数阶群皆可解.

这个猜想于 1964 年被 W.Feit 和 J.G.Thompson 解决 (后称 Feit-Thompson 定理),证明长达 255 页,见 [6] 和 [7]. 该猜想的解决直接大大推进了有限单群的分类工作,于 1983 年被 D.Gorenstein 声称解决,算上之前所有人的工作,整个有限单群分类定理的证明传闻长达五千多页,证明前后的故事像小说一样此起彼伏精彩纷呈,见 [8] 和 [9]. 但是这个超长证明的正确性貌似至今无明确定论,幸运的是它是否正确都与我无关.

定理 51(Burnside^{2st}) 设 G 是奇数阶群,若以 s 记 G 共轭类的个数,那么有 $s \equiv |G| \pmod{16}$.

证明参考 这个证明需要用到实表示的概念,见[1]Chapter9,本文限于篇幅暂且略过.■

4、诱导表示

本节考虑这样的问题:设 H 是有限群 G 的子群,如何将 G 上的表示论限制到子群 H 上?反过来又如何将子群 H 上的表示论过渡到大群 G?在知悉方法之后,这些操作前后的特征标又有什么关系?我们将建立诱导表示的理论来回答这几个问题.

定义 52(限制) 设 $f: G \to \mathbb{C}$ 是一个复值函数,H 是 G 的子群,则可将 f 限制到 H 上得到新的复值函数 $\mathrm{Res}_H^G f: H \to \mathbb{C}, h \mapsto f(h)$. 容易验证 $\mathrm{Res}_H^G : Z(L(G)) \to Z(L(H)), f \mapsto \mathrm{Res}_H^G f$ 是 \mathbb{C} -线性映射.

定义 + 命题 53(诱导) 设 $H \subseteq G$. 定义 \mathbb{C} -线性映射 $L(H) \to L(G), f \mapsto \widetilde{f} := \begin{cases} f(x) & x \in H \\ 0 & x \notin H \end{cases}$. 再定义映

射 $\operatorname{Ind}_H^G: Z(L(H)) \to Z(L(G)), \operatorname{Ind}_H^G f(g) := \frac{1}{|H|} \sum_{x \in G} \widetilde{f}(x^{-1}gx)$,称为 f 的**诱导**. 这仍是一个 \mathbb{C} -线性映射. Res 和 Ind 之间具有下述被称为 Frobenius 对换的联系:

定理 **54(Frobenius)** 设 $H\subseteq G$, f,g 分别是 H,G 上的类函数,则有公式 $\langle \operatorname{Ind}_H^G f,g \rangle = \langle f,\operatorname{Res}_H^G g \rangle$. 证明思路 根据定义,有

$$\langle \operatorname{Ind}_H^G f, g \rangle = \frac{1}{|G|} \sum_{x \in G} \operatorname{Ind}_H^G f(x) \overline{g(x)} = \frac{1}{|G|} \sum_{x \in G} \frac{1}{|H|} \sum_{y \in G} \widetilde{f}(y^{-1}xy) \overline{g(x)}$$

$$=\frac{1}{|G|\cdot|H|}\sum_{y\in G}\sum_{x\in G}\widetilde{f}(y^{-1}xy)\overline{g(x)}=\frac{1}{|G|\cdot|H|}\sum_{y\in G}\sum_{z\in H}f(z)\overline{g(z)}=\frac{1}{|G|}\sum_{y\in G}\langle f,\mathrm{Res}_H^Gg\rangle=\langle f,\mathrm{Res}_H^Gg\rangle.\blacksquare$$

命题 55 设 $H\subseteq G$ 是子群,G 有左陪集分解 $G=\bigsqcup_{i=1}^m t_i H$,则对任意 $f\in Z(L(H))$,有 $\operatorname{Ind}_H^G f(g)=\sum_{i=1}^m \widetilde{f}(t_i^{-1}gt_i)$.

证明思路 按照定义直接计算即可: $\operatorname{Ind}_H^G f(g) = \frac{1}{|H|} \sum_{x \in G} \widetilde{f}(x^{-1}gx) = \frac{1}{|H|} \sum_{i=1}^m \sum_{h \in H} \widetilde{f}(h^{-1}t_i^{-1}gt_ih) = \frac{1}{|H|} \sum_{i=1}^m \sum_{h \in H} \widetilde{f}(t_i^{-1}gt_i) = \frac{1}{|H|} \sum_{h \in H} \widetilde{f}(t_i^{-1}gt_i).$

设 $\varphi:G\to GL(V)$ 是 G 的复表示,H 是 G 的子群,那么 φ 可自然地从 G 限制到 H 上得到**限制表** 示 $\mathrm{Res}_H^G \varphi:H\to GL(V)$. 如果 $h\in H$,那么还成立等式 $\chi_{\mathrm{Res}_H^G \varphi}(h)=\mathrm{tr}(\mathrm{Res}_H^G \varphi(h))=\mathrm{tr}(\varphi_h)=\chi_{\varphi}(h)=\mathrm{Res}_H^G \chi_{\varphi}(h)$. 因此我们有 $\chi_{\mathrm{Res}_H^G \varphi}=\mathrm{Res}_H^G \chi_{\varphi}$,即特征标的限制仍为特征标. 当然,我们也有诱导表示的概念,它也满足特征标的诱导仍为特征标 (定义 + 定理 56),只是构造较为复杂.

定义 + 定理 56 设 H 是 G 的子群且 [G:H]=m,又设 G 有左陪集分解 $G=\bigsqcup_{i=1}^m t_i H$ (不失一般性设 $t_1=1$), $\varphi:H\to GL(\mathbb{C}^n)$ 是 H 的复表示,定义 G 上的映射 $\widetilde{\varphi}(x):=\begin{cases} \varphi(x) & x\in H\\ O & x\notin H \end{cases} \in \mathrm{Mat}_n(\mathbb{C})$,那么映射

$$\operatorname{Ind}_{H}^{G}\varphi:G\to GL(\mathbb{C}^{mn}),g\mapsto \left(\widetilde{\varphi}(t_{i}^{-1}gt_{j})\right)_{ij}=\left(\begin{array}{cccc}\widetilde{\varphi}(t_{1}^{-1}gt_{1})&\widetilde{\varphi}(t_{1}^{-1}gt_{2})&\cdots&\widetilde{\varphi}(t_{1}^{-1}gt_{m})\\ \widetilde{\varphi}(t_{2}^{-1}gt_{1})&\widetilde{\varphi}(t_{2}^{-1}gt_{2})&\cdots&\vdots\\ \vdots&\vdots&\ddots&\widetilde{\varphi}(t_{m-1}^{-1}gt_{m})\\ \widetilde{\varphi}(t_{m}^{-1}gt_{1})&\cdots&\widetilde{\varphi}(t_{m}^{-1}gt_{m-1})&\widetilde{\varphi}(t_{m}^{-1}gt_{m})\end{array}\right)$$

是 G 的一个 $m \times n$ 维复表示 (称为诱导表示),并且 $\chi_{\operatorname{Ind}_H^G \varphi} = \operatorname{Ind}_H^G \chi_{\varphi}$.

证明思路 利用线性代数的技巧不厌其烦地验证 $\operatorname{Ind}_H^G \varphi$ 是同态即可. 等式 $\chi_{\operatorname{Ind}_H^G \varphi} = \operatorname{Ind}_H^G \chi_{\varphi}$ 可由 $\chi_{\operatorname{Ind}_H^G \varphi}(g) = \operatorname{tr} \left(\operatorname{Ind}_H^G \varphi(g) \right) = \sum_{i=1}^m \operatorname{tr} \left(\widetilde{\varphi}(t_i^{-1}gt_i) \right) = \sum_{i=1}^m \widetilde{\chi}_{\varphi}(t_i^{-1}gt_i) = \operatorname{Ind}_H^G \chi_{\varphi}$ 给出.

例 考虑 G 的平凡子群 $\{1\}$. 设 χ_1 是 $\{1\}$ 上平凡表示对应的特征标,则 $\operatorname{Ind}_{\{1\}}^G\chi_1(g) = \begin{cases} |G| & g=1\\ 0 & g \neq 1 \end{cases}$. 即

 $\operatorname{Ind}_{\{1\}}^G \chi_1$ 是 G 正则表示的特征标 (定理 31). 这个例子告诉我们: 子群上的不可约特征标诱导到大群之后虽然 还是特征标,但不一定是不可约的. 我们很关心这些诱导的特征标何时不可约,而这正是我们要介绍的 Mackey 的工作 (定理 61). 首先引入定义.

定义 57(无交) 两个复表示 φ 和 ψ 称为无交,如果它们没有重合的不可约成分 (等价意义下).

命题 58 表示 φ 和 ψ 无交当且仅当 χ_{φ} 和 χ_{ψ} 正交.

证明思路 设 $\varphi \sim \bigoplus_{i=1}^s m_i \varphi_i, \psi \sim \bigoplus_{i=1}^s n_i \varphi_i, \ \mathbb{M} \langle \chi_{\varphi}, \chi_{\psi} \rangle = \sum_{i=1}^s m_i n_i, \ \mathrm{其中} \ m_i, n_i \ \mathrm{‡}$ 负.

定义 59(双陪集) 设 H,K 是 G 的子群,定义 $H \times K$ 在 G 上的作用为 $(h,k)(g) := hgk^{-1}$. 此时, $g \in G$ 在该作用下的轨道 $HgK = \{hgk : h \in H, k \in K\}$ 称为是 g 的双陪集. 记 G 所有双陪集作成的集合为 $H \setminus G/K$. 可以验证, $G = \bigcup_{L \in H \setminus G/K} L$; 当 H 是 G 的正规子群时,特别地我们有 $H \setminus G/H = G/H$.

定理 60(Mackey) 设 H,K 是 G 的子群,S 为 $H\backslash G/K$ 中每个双陪集各贡献一个代表元作成的集合,则对任意 $f\in Z(L(K))$,等式 $\mathrm{Res}_H^G \mathrm{Ind}_K^G f(x) = \sum_{s\in S} \mathrm{Ind}_{H\cap sKs^{-1}}^H \mathrm{Res}_{H\cap sKs^{-1}}^{sKs^{-1}} f(s^{-1}xs)$ 给出了一个从 Z(L(K)) 到 Z(L(H)) 的映射 $f\mapsto \mathrm{Res}_H^G \mathrm{Ind}_K^G f$.

证明思路 对任意 $s \in S$,设 H 有左陪集分解 $H = \bigsqcup_{v \in V_s} v(H \cap sKs^{-1})$. 此时 $HsK = \bigsqcup_{v \in V_s} vsK(见 [12] \text{Chapter 1.12}$,习题 8). 记 $T_s := \{vs: v \in V_s\}$,我们还可以证明 $T := \bigsqcup_{s \in S} T_s$ 是无交并. 综上我们有 $G = \bigsqcup_{s \in S} HsK = \bigsqcup_{v \in V_s} vsK = \bigsqcup_{s \in S} \bigsqcup_{t \in T_s} tK = \bigsqcup_{t \in T} tK$,而右边是 K 的陪集 $tK, t \in T$ 的无交并. 由命题 55,结合代换 t = vs,我们有

$$\operatorname{Ind}_{K}^{G} f(x) = \sum_{t \in T} \widetilde{f}(t^{-1}xt) = \sum_{s \in S} \sum_{t \in T_{s}} \widetilde{f}(t^{-1}xt) = \sum_{s \in S} \sum_{v \in V_{s}} \widetilde{f}(s^{-1}v^{-1}xvs) = \sum_{s \in S} \sum_{v \in V_{s}, v^{-1}xv \in sKs^{-1}} f(s^{-1}v^{-1}xvs)$$

$$= \sum_{s \in S} \sum_{v \in V_s, v^{-1}xv \in H \cap sKs^{-1}} \mathrm{Res}_{H \cap sKs^{-1}}^{sKs^{-1}} f(s^{-1}v^{-1}xvs) = \sum_{s \in S} \mathrm{Ind}_{H \cap sKs^{-1}}^{H} \, \mathrm{Res}_{H \cap sKs^{-1}}^{sKs^{-1}} f(s^{-1}xs). \blacksquare$$

定理 61(Mackey 不可约准则) 设 H 是 G 的子群, $\varphi: H \to GL(\mathbb{C}^n)$ 是复表示,则 $\operatorname{Ind}_{H}^{G}\varphi$ 不可约当且仅当: $(1)\varphi$ 不可约; (2) 对任意 $s \notin H$,子群 $H \cap sHs^{-1}$ 上的两个表示 $\operatorname{Res}_{H \cap sHs^{-1}}^{H}\varphi$ 和 $\operatorname{Res}_{H \cap sHs^{-1}}^{sHs^{-1}}\varphi(s^{-1}(\square)s)$ 是无交的.

证明思路 设 G 有双陪集分解 $G = \bigsqcup_{s \in S} HsH$,不失一般性设 $1 \in S$. 对单位元 1 而言, $H \cap sHs^{-1} = H$, $\varphi(s^{-1} \square s) = \varphi(\square)$,平凡. 由定理 60 知 $\mathrm{Res}_H^G \mathrm{Ind}_H^G \chi_\varphi = \chi_\varphi + \sum_{s \in S \setminus \{1\}} \mathrm{Ind}_{H \cap sHs^{-1}}^H \mathrm{Res}_{H \cap sHs^{-1}}^{sHs^{-1}} \chi_\varphi(s^{-1} \square s)$ (此 时 $s \neq 1$). 再根据定理 54,我们有

$$\langle \operatorname{Ind}_H^G \chi_\varphi, \operatorname{Ind}_H^G \chi_\varphi \rangle = \langle \operatorname{Res}_H^G \operatorname{Ind}_H^G \chi_\varphi, \chi_\varphi \rangle = \langle \chi_\varphi, \chi_\varphi \rangle + \sum_{s \in S \setminus \{1\}} \langle \operatorname{Ind}_{H \cap sHs^{-1}}^H \operatorname{Res}_{H \cap sHs^{-1}}^{sHs^{-1}} \chi_\varphi(s^{-1} \Box s), \chi_\varphi \rangle$$

$$= \langle \chi_{\varphi}, \chi_{\varphi} \rangle + \sum_{s \in S \setminus \{1\}} \langle \operatorname{Res}_{H \cap sHs^{-1}}^{sHs^{-1}} \chi_{\varphi}(s^{-1} \Box s), \operatorname{Res}_{H \cap sHs^{-1}}^{H} \chi_{\varphi} \rangle.$$

不难发现 $\langle \operatorname{Ind}_H^G \chi_{\varphi}, \operatorname{Ind}_H^G \chi_{\varphi} \rangle = 1$ 当且仅当 $\langle \chi_{\varphi}, \chi_{\varphi} \rangle = 1$,并且对所有 $s \in S \setminus \{1\}$,有

$$\langle \operatorname{Res}_{H \cap sHs^{-1}}^{sHs^{-1}} \chi_{\varphi}(s^{-1} \Box s), \operatorname{Res}_{H \cap sHs^{-1}}^{H} \chi_{\varphi} \rangle = 0.$$

因此根据推论 29, $\operatorname{Ind}_H^G \chi_\varphi$ 不可约当且仅当 φ 不可约并且 (2) 中所列的两个表示对任意 $s \in S \setminus \{1\}$ 无交 (命题 58). 注意到任意 $s \notin H$ 均可调整 S 的选取使得 $s \in S \setminus \{1\}$,故定理成立.