Night 3

· .	Eunction	Derivitive	Antiderivitive
IJ	KXn	Derivitive Kn Xn-1	$\frac{1}{N+1}$ \times $N+1$ + C
	Sin X	COSX	-(05x+C
	Cos X	-sinx	Sinx+C
	Px	$([nb)*(b^*)$	$\frac{b^{x}}{\ln b}$ + C
	$\ln(x)$	X	X 1 1 X - X + C
	C also Expli	ex	e* + C

2)
$$4x^{2}+3x^{2}-5x+4=f(x)$$

 $8x+6x-5=f(x)$

4)
$$\int_{0}^{4} \sqrt{2x+1} \, dx$$
 $u = 2x+1$

$$\int_{1}^{4} \sqrt{u} \, \frac{du}{2} \, du^{2} 2dx$$

$$\frac{2}{3} \frac{3}{2} \frac{3}{2} \frac{1}{2} du$$

$$\frac{1}{3} (2x+1)^{3/2} \Big|_{0}^{4}$$

$$\frac{1}{3} (2x+1)^{3/2} \Big|_{0}^{4}$$

$$\frac{1}{3}(9)^{3/2} - \frac{1}{3}(1)^{3/2}$$

$$9 - \frac{1}{3} = 8^{\frac{2}{3}}$$

$$f(x) = \frac{m}{2} x^2 + bx + c$$

c)
$$f(x) = a_n x^{n-1}$$

 $\int f(x) = \frac{a_n}{n+1} x^{n+1} + b_x + c$

$$f(x) = (x^{3}-1)^{100} \qquad f(x) = x^{100} f(x) = 100 \times 9$$

$$f(x) = 100(x^{3}-1)^{100} x 3x^{2}$$

$$f(x) = 300 x^{2} (x^{3}-1)^{100}$$

$$\frac{d}{dx} = \left(\frac{x^{1/2}}{2}\right)\left(1-x\right) + \left(-1\right)\left(\sqrt{x}\right)$$

$$\frac{d}{dx} = \left(\frac{x^{1/2}}{2}\right)\left(1-x\right) + \left(-1\right)\left(\sqrt{x}\right)$$

$$\frac{x^{-1/2}\left(1-x\right)}{2\sqrt{x}} - \sqrt{x} = \frac{\left(1-x\right)}{2\sqrt{x}} - \sqrt{x}$$

6)
$$\int_{1}^{2} \times e^{-x} dx$$

Night 3 continued 8) $\int_{-\infty}^{\infty} x^n dx = \frac{1}{n+1} \times x^{n+1} + C \left| \begin{array}{c} 1 \\ 0 \end{array} \right| q = x^2$ Sinx dx = -cosx +clo Socos xdx = sinx+(10 lo ex dx = xlnx-x+clo Inx dx = ex+clo 11) a) [, 13 - 1 dx dy 1 x/2 ds - y2 +25 lo -12+2(1)= 2.72 - 1= 1.22 13)9) [2 2 45 dy dx 4 Sydy ¥ (= 25 / 2x) 4-X3+2 5 2 x2 +4 dx du = 3x2 d> 5 2 x2 +4 dx du = 3x2 d> 18 x2 +4 x du = 3x2 d> $du=3x^2dx$ 3 (108-103) = 1.308 4 5 8 1 du b) ∫∫xcosydydx > ∫° xsnu dx Josinu du $\times \int_0^{\infty} \cos y \, dy$ $\times \left(\sin y \int_0^{\infty} \right)$ -cosh 0 xsinx -(05)+ (050 Joxsin x2dy 6.4597 du=xdx

1 + (2-2/n2-2)-(2-1n1-1)

1 + -1.386 - 1 = -1.886

Night 3 + t density of Alluminum = 2.79/cm3 13) $y = x^2$, y = 10, x = 0 $\int_{0}^{10} \int_{0}^{15} 2.7 \, dx \, dy = M$ 2.7× 1/5 Slo 2.7× 1/5 Jo 2.7√5 dy $\int_{0}^{10} 2.75^{1/2} d5$ $\frac{2.7 \times \frac{2}{3}5^{3/2}}{0}$ M = 56.99Xcom=56.9 \$10 x x 2.7d x dy ycom=56.9 \$10 \$10 y x 2.7d x dy

Xrom=1.186 cm (com=6.002 cm) (Xcom = 1.186 cm)

Single Variable Calculus part of assignment

Exercise 1

```
In[13]:= D[x^n, x]
Out[13]= n x^{-1+n}
In[11]:= Integrate[x^n, x]
Out[11]= \frac{x^{1+n}}{1+n}
ln[18]:= D[Sin[x], x]
Out[18]= Cos [x]
In[19]:= Integrate[Sin[x], x]
Out[19]= -\cos[x]
In[20]:= D[Cos[x], x]
Out[20]= -Sin[x]
In[21]:= Integrate[Sin[x], x]
Out[21]= -\cos[x]
In[22]:= D[Exp[x], x]
Out[22]= \mathbb{e}^{x}
In[23]:= Integrate[Exp[x], x]
Out[23]= €X
In[24]:= D[Log[x], x]
Out[24]= \frac{1}{x}
In[25]:= Integrate[Log[x], x]
Out[25]= -x + x Log[x]
In[26] = D[b^x, x]
Out[26]= b^x Log[b]
```

Out[27]=
$$\frac{b^{x}}{Log[b]}$$

$$In[28]:= D[(4x^2) + (3x^2) - 5x + 4, x]$$

Out[28]=
$$-5 + 14 x$$

Exercise 3

$$ln[29] = D[((x^3) - 1)^100, x]$$

Out[29]=
$$300 x^2 \left(-1 + x^3\right)^{99}$$

Exercise 4

$$ln[31]:=$$
 Integrate[Sqrt[2x+1], {x, 0, 4}]

Out[31]=
$$\frac{26}{3}$$

Exercise 5

$$ln[32] = D[Sqrt[x] * (1-x), x]$$

Out[32]=
$$\frac{1-x}{2\sqrt{x}} - \sqrt{x}$$

Exercise 6

$$ln[33]:=$$
 Integrate [x * Exp[-x], {x, 1, 2}]

Out[33]=
$$\frac{-3 + 2 e}{e^2}$$

Exercise 7

$$ln[35]:= D[A * Exp[k * t], t]$$

Out[35]=
$$A e^{kt} k$$

Out[36]=
$$\frac{A e^{kt}}{k}$$

$$ln[37] = D[m * x + b, x]$$

$$ln[38]:=$$
 Integrate [m * x + b, x]

Out[38]=
$$b x + \frac{m x^2}{2}$$

$$ln[39] = D[a * (x^n) + b, x]$$

Out[39]=
$$a n x^{-1+n}$$

$$ln[40]:=$$
 Integrate [a * (x^n) + b, x]

Out[40]=
$$b x + \frac{a x^{1+n}}{1+n}$$

$$In[45]:=$$
 Clear[A, ω , φ]
$$D[A * Sin[\omega * t + \varphi], t]$$

Out[46]=
$$\mathbf{A} \omega \mathbf{Cos} [\varphi + \mathbf{t} \omega]$$

$$ln[47]:=$$
 Integrate [A * Sin [ω * t + φ], t]

$$\text{Out}[47] = \mathbf{A} \left(-\frac{\mathbf{Cos} [\varphi] \ \mathbf{Cos} [\mathsf{t} \, \omega]}{\omega} + \frac{\mathbf{Sin} [\varphi] \ \mathbf{Sin} [\mathsf{t} \, \omega]}{\omega} \right)$$

$$ln[48] = D[g * (x - h)^2 + k, x]$$

Out[48]=
$$2 g (-h + x)$$

$$ln[49]:=$$
 Integrate $[g * (x - h)^2 + k, x]$

Out[49]=
$$g h^2 x + k x - g h x^2 + \frac{g x^3}{3}$$

$$\label{eq:out[50]=0} \text{Out[50]= ConditionalExpression} \Big[\, \frac{1}{1+n} \, \text{, } \, \text{Re} \, \big[\, n \, \big] \, > \, - \, 1 \, \Big]$$

Out[51]=
$$1 - Cos[1]$$

$$ln[52]$$
:= Integrate [Cos[x], {x, 0, 1}]

$$ln[53]$$
:= Integrate[Exp[x], {x, 0, 1}]

Out[53]=
$$-1 + e$$

$$ln[54]:=$$
 Integrate [Log[x], {x, 0, 1}]

Out[54]=
$$-1$$

Exercise 9

In[55]:= Integrate
$$\left[d - \left(x^2\right), x\right]$$
Out[55]:= $dx - \frac{x^3}{3}$

In[57]:= Integrate[Integrate[1, {y, 0, x}], {x, 0, 1}]

Out[57]=
$$\frac{1}{2}$$

 $\label{eq:ln[67]:=} \mbox{RegionPlot[0 < x < 1 \&\& 0 < y < x, \{x, 0, 1\}, \{y, 0, 1\}]}$

 $_{\text{ln[63]:=}} \label{eq:lntegrate[1, {y, 0, Log[x]}], {x, 1, 2}]}$

Out[63]=
$$-1 + Log[4]$$

ln[59]:= Integrate[Integrate[1, {x, y, 2-y}], {y, 0, 1}] Out[59]= **1**

 $\label{eq:local_problem} \mbox{In[77]:= RegionPlot[0 < y < 1 && y < x < (2 - y), \{x, 0, 2\}, \{y, 0, 2\}]}$ 1.5 Out[77]= 1.0 0.5 0.5 0.0 1.0

Integrate[Integrate[1, {x, y, Exp[y]}], {y, 0, 1}]

Out[72]=
$$-\frac{3}{2} + \mathbb{C}$$

 $\label{eq:local_local_problem} $$ \ln[76] = $$ RegionPlot[0 < y < 1 \& y < x < Exp[y], \{x, 0, 2\}, \{y, 0, 2\}]$$$

Exercise 12

ln[78]:= Integrate[Integrate[1, {x, y, 1}], {y, 0, 1}]

Out[78]= $\frac{1}{2}$

ln[80]:= Integrate[Integrate[1, {x, Exp[y], 2}], {y, 0, Log[2]}] Out[80]= -1 + Log[4]

 $\label{eq:integrate} $$ \inf[83]:=$ Integrate[Integrate[x, \{y, 0, 1\}], \{x, 0, 1\}] + \\ Integrate[Integrate[-x, \{y, 1, 2\}], \{x, 1, 2\}] $$$

Out[83]= -1

ln[84]:= RegionPlot [0 < y < 1 && y < x < (2 - y), {x, 0, 2}, {y, 0, 2}]

Integrate[Integrate[x, {y, 0, 1}], {x, 0, 1}] +
 Integrate[Integrate[1, {y, Log[x], 2}], {x, 1, 2}]

Out[86]= $\frac{7}{2} - Log[4]$

Integrate [Integrate [(4 y) / ((x^3) + 3), {y, 0, 2x}], {x, 1, 2}] Out[87]= $\frac{8}{3} Log \left[\frac{11}{4} \right]$

In[89]:= Integrate [Integrate [x * Cos[y], {y, 0, x^2 }], {x, 0, 1}]

Out[89]=
$$Sin\left[\frac{1}{2}\right]^2$$

 $\label{eq:loss_loss} \mbox{ln[91]:= RegionPlot[0 < x < 1 \&\& 0 < y < x^2, \{x, 0, 1\}, \{y, 0, 1\}]}$


```
In[94]:= Integrate[Integrate[2.7, {x, 0, Sqrt[y]}], {y, 0, 10}]
Out[94]= 56.921
    [x_1, y_2] = [x_1, y_2] = [x_2, y_3] = [x_1, y_2] = [x_1, y_2] = [x_1, y_2] = [x_1, y_2] = [x_1, y_3] = [x_
Out[97]= 1.18629
    Integrate [Integrate [y * 2.7, {x, 0, Sqrt[y]}], {y, 0, 10}] / 56.9
Out[98]= 6.00221
```

2. Multiple Integrals

The main functions used in this section are the derivative **D**, the integral **Integrate**, and the function RegionPlot to visualize regions. To learn more about these functions you can either open up the Mathematica documentation in a new window, or you can get the basic syntax using a question mark before the function name and using shift+return.

? D

```
D[f, x] gives the partial derivative \partial f/\partial x.
D[f, \{x, n\}] gives the multiple derivative \partial^n f/\partial x^n.
D[f, x, y, ...] gives the partial derivative \cdots (\partial / \partial y) (\partial / \partial x) f.
D[f, \{x, n\}, \{y, m\}, ...] gives the multiple partial derivative \cdots (\partial^m / \partial y^m) (\partial^n / \partial x^n) f.
D[f, \{\{x_1, x_2, ...\}\}] for a scalar f gives the vector derivative (\partial f/\partial x_1, \partial f/\partial x_2, ...).
D[f, \{array\}] gives an array derivative. \gg
```

? Integrate

```
Integrate [f, x] gives the indefinite integral \int f dx.
Integrate[f, {x, x_{min}, x_{max}}] gives the definite integral \int_{x_{max}}^{x_{max}} f dx.
Integrate[f, {x, x_{min}, x_{max}}, {y, y_{min}, y_{max}}, ...] gives the multiple integral \int_{x_{max}}^{x_{max}} dx \int_{y_{max}}^{y_{max}} dy ... f.
Integrate[f, \{x, y, ...\} \in reg] integrates over the geometric region reg. \gg
```

? RegionPlot

RegionPlot[pred, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }] makes a plot showing the region in which pred is True. \gg

Here are some basic examples to get you started:

The derivative of x^n

$$n x^{-1+n}$$

The anti-derivative or indefinite integral of x^n

Integrate[x^n, x]

$$x^{1+n}$$

The definite integral of x^n from x = 1 to x = 2.

Integrate
$$[x^n, \{x, 1, 2\}]$$

$$\frac{-\;1\;+\;2^{1+n}}{\;}$$

The region in the plane bounded by y = x, x = 0, y = 2.

RegionPlot[y > x & y < 2 & x > 0, $\{x, -1, 3\}$, $\{y, -1, 3\}$]

The area of this region. Notice that the order of integration here really matters.

area = Integrate[1,
$$\{x, 0, 2\}$$
, $\{y, x, 2\}$]

2

The center of mass of this region, also known as the centroid for a geometrical shape.

```
xcom = Integrate[x, \{x, 0, 2\}, \{y, x, 2\}] / Integrate[1, \{x, 0, 2\}, \{y, x, 2\}]
ycom = Integrate[y, \{x, 0, 2\}, \{y, x, 2\}] / Integrate[1, \{x, 0, 2\}, \{y, x, 2\}]
2
3
4
3
```

Now we plot the plate and the center of mass of the plate and check that it makes sense.

 $Show[RegionPlot[y > x \& y < 2 \& x > 0, \{x, -1, 3\}, \{y, -1, 3\}], ListPlot[\{\{xcom, ycom\}\}]]$

