NPS ARCHIVE 1958 MACOMBER, M.

GEODETIC COMPUTATIONS ON A PROJECTION PLANE

MARK MORRIS MACOMBER

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

GEODETIC COMPUTATIONS ON A PROJECTION PLANE

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree Master of Science

By

MARK MORRIS MACOMBER, B. S.

The Ohio State University

1958

Approved by

Adviser
Institute of Geodesy, Photogrammetry and Cartography
Department of Geology

Maomber M

M. - 5

TABLE OF CONTENTS

		Page
CHAPTER I	Introduction	1
CHAPTER II	Terminology and Formulas	3
CHAPTER III	Investigation	14
CHAPTER IV	Applications	30
CHAPTER V	Conclusions	41
APPENDIX I	Triangulation Computation	42
APPENDIX II	Coefficients for Equations H and I	72
LITERATURE CITED		83

CHAPTER I

INTRODUCTION

Since man first realized that the earth was not a plane, his attempts to make computations on it have become more and more complicated with the passing of time. For a time, he considered the earth as a sphere. This had the effect of complicating his work, but the complications were relatively minor. Later he found that the earth was not a sphere, but more nearly an ellipsoid of revolution. He occupied himself for hundreds of years trying to find the parameters of this ellipsoid. With each new measurement came the possibility of new values for the parameters of this ellipsoid.

Computations on an ellipsoid are complicated. Most formulas are expressed in a series development, with each successive term of the series becoming increasingly complicated. The greater the distance to be computed, the greater the number of terms required to give a consistent degree of accuracy. There is no doubt that the computations made on a reference ellipsoid are correct, if a sufficient number of terms is considered. The fact that the location of the reference ellipsoid, with respect to any measurements made on the earth, is unknown, does not invalidate the purity of the mathematical processes, even though the geodetic positions and distances may be incorrect.

The problem to be considered in this paper is whether or not the complicated computations on an ellipsoid are warranted

in all cases, or whether simplified methods could be used for some work. This investigation considers geodetic computations on a projection plane, determining the limits within which plane coordinates may be used.

CHAPTER II

TERMINOLOGY AND FORMULAS

Geodesy is that branch of surveying which takes into account the curvature of the earth. The most common method of making geodetic computations is to compute approximate triangles from spherical angles in order to find the spherical excess, then, after allowing for spherical excess, correcting the observed angles by some provisional method, and computing lengths of sides of the preliminary triangles by the sine law. With these lengths, new positions are found by computing on a sphere whose radius is equal to the radius of curvature in the prime vertical at the initial point of each line. To the value obtained on the sphere is added a small correction which accounts for the difference between computing on the sphere and on the ellipsoid. This procedure yields preliminary positions. Using information computed during the preliminary position computation, conditions are imposed on the net, and a least squares adjustment of the triangulation is made which yields corrections to the observed directions. After these corrections are applied, it is necessary to recompute the triangles, and recompute the positions.

The method of making computations to be investigated in this paper is to work on an orthomorphic projection plane with plane coordinates. A Transverse Mercator projection will be used, with specifications conforming to the Universal Trans-

verse Mercator Grid system. Corrections will be added to observed directions to convert them to plane directions, preliminary positions will be determined by an intersection formula, and final positions will be obtained by a least squares adjustment. The corrections which convert from observed directions to plane directions are functions of the curvature of the earth, so the computations may be called geodetic, even though performed on a plane.

The following symbols will be used -

- φ Latitude, positive northward, measured from equator.
- λ. Longitude, positive eastward, measured from central meridian of the projection.
- ξ Plane coordinate in a generally north direction, positive to the northward, measured from the equator.
- η Plane coordinate in a generally eastward direction, positive to the eastward, measured from the central meridian of the projection.
- \propto Azimuth of a line, measured clockwise from the south.
- T Grid direction of the depiction of the geodesic on the projection plane, measured clockwise from the positive ξ axis.
- t Grid direction of the rectilinear chord joining two points on the projection plane, measured clockwise from the positive ξ axis.
- c meridian convergence, measured from the meridian to the ξ axis, positive if clockwise (point east of the

central meridian), negative if counterclockwise (point west of the central meridian).

- M Meridional distance from equator, positive northward.
- s Length of line on projection.
- S Length of line on ellipsoid.
- m Scale factor = $\lim \frac{s}{s}$ as S goes to zero.
- m Scale factor along the central meridian.
- $\xi_{r} m_0 M = f(\phi)$, whereas $\xi = f(\phi, \lambda)$.
- R Radius of curvature in the meridian.
- N Radius of curvature in the prime vertical.
- r Mean radius of curvature = (RN) 1/2.
- e² Square of the first eccentricity of the meridian.
- e'2- Square of the second eccentricity of the meridian.
- 9° 57.295 77951 degrees per radian.

The specifications for the Universal Transverse Mercator Grid system necessary for this study are —

- 1. Projection graticule is the Transverse Mercator.
- 2. Origin of grid coordinates is the intersection of the central meridian of each zone with the equator.
- 3. Unit of measurement is the meter.
- 4. Northing equals ξ in the northern hemisphere, ξ plus 10,000,000 in the southern hemisphere.
- 5. Easting equals 500,000 plus η .
- 6. The scale factor along the central meridian is 0.9996.
- 7. Grid zones run from 80° south to 80° north, and are bounded by meridians which are multiples of 6° .

The principle behind the Transverse Mercator Projection is:

- The reference ellipsoid is mapped conformally on a sphere.
- 2. The sphere is divided into tesserae by transverse meridians which run through poles on the equator whose longitude is that of the central meridian plus and minus 90°, and by transverse parallels, which intersect the transverse meridians at an angle of 90°.
- 3. The transverse meridians and parallels are developed in accordance with Mercator's principles for a loxodromic, conformal projection, the meridians becoming lines of constant ξ , while the parallels become lines of constant η .

Fig. 1

It has become standard practice, in many mapping agencies, to convert geographic coordinates to Universal Transverse Mercator Grid coordinates as soon as the geographic coordinates are determined, since it is in the rectangular form that the positions will ultimately be used. If the positions were to be computed directly in the rectangular system, it would not be necessary to convert to geographic coordinates en masse, since, in the majority of cases, the latitude and longitude are not desired, but the point is used only as control for graphic processes or for further computation.

Thomas (6) has developed the following formulas dealing with the transformation from geographic to grid coordinates and back, with convergence of the meridians, and with scale factor —

$$\xi_{r} = \xi_{r} + A_{2}\lambda^{2} + A_{4}\lambda^{4} + A_{6}\lambda^{6} + A_{8}\lambda^{8},$$
 (A)

$$A_2 = m_0 N \sin \varphi \cos \varphi / 2 \rho^2$$
,

$$A_4 = m_0 N \sin \varphi \cos^3 \varphi (5 - z^2 + 9n^2 + 4n^4) / 24 \rho^4$$
,

$$A_6 = m_0 N \sin \varphi \cos^5 \varphi (61 - 58z^2 + z^4 + 270n^2 - 330z^2n^2 + 445n^4 + 324n^6 - 680n^4z^2 + 88n^8 - 600n^6z^2 - 192n^8z^2) / 720p^6$$

$$A_8 = m_0 N \sin \varphi \cos^7 \varphi (1,385 - 3,111z^2 + 543z^4 - z^6) / 40,320 p^8,$$

 $z = \tan \varphi$, and

$$n^2 = e^{2\cos^2 \varphi}$$

$$\eta = B_1 \lambda + B_3 \lambda^3 + B_5 \lambda^5 + B_7 \lambda^7 , \qquad (B)$$

where

$$B_{1} = m_{o}N \cos \varphi / P,$$

$$B_{3} = m_{o}N \cos^{3}\varphi (1 - z^{2} + n^{2}) / 6P^{3},$$

$$B_{5} = m_{o}N \cos^{5}\varphi (5 - 18z^{2} + z^{4} + 14n^{2} - 58z^{2}n^{2} + 13n^{4} + 4n^{6})$$

$$- 64n^{4}z^{2} - 24n^{6}z^{2}) / 120P^{5}, \text{ and}$$

$$B_{7} = m_{o}N \cos^{7}\varphi (61 - 479z^{2} + 179z^{4} - z^{6}) / 5,040P^{7}.$$

$$c = c_{1}\lambda + c_{3}\lambda^{3} + c_{5}\lambda^{5} + c_{7}\lambda^{7},$$

$$(c)$$

where

$$C_1 = \sin \varphi$$
,

$$C_3 = z \cos^3 \varphi (1 + 3n^2 + 2n^4) / 3\rho^2$$
,
 $C_5 = z \cos^5 \varphi (2 - z^2 + 15n^2 + 35n^4 - 15n^2z^2 + 33n^6 - 50n^4z^2 + 11 n^8 - 60z^2n^6 - 24z^2n^8) / 15\rho^4$, and

$$C_7 = z \cos^7 \varphi (17 - 26z^2 + 2z^4) / 315 \rho^6$$

For the inverse problem it is necessary to find a value ϕ_1 which corresponds to ξ_1 = $\xi,~\eta_1$ = 0, and compute parameters such as z, n, R, N, etc. at ϕ_1 .

$$\varphi = \varphi_1 - D_2 \eta^2 + D_4 \eta^4 - D_6 \eta^6 + D_8 \eta^8 , \qquad (D)$$

$$\begin{split} \mathbf{D}_2 &= \mathbf{z_1}^{\mathcal{P}} / \ 2 \, \mathbf{m_0}^2 \mathbf{R_1} \mathbf{N_1} \ , \\ \mathbf{D}_4 &= \mathbf{z_1}^{\mathcal{P}} (5 + 3 \mathbf{z_1}^2 + \mathbf{n_1}^2 - 4 \mathbf{n_1}^4 - 9 \mathbf{n_1}^2 \mathbf{z_1}^2) \ / \ 24 \, \mathbf{m_0}^4 \mathbf{R_1} \mathbf{N_1}^3 \ , \\ \mathbf{D}_6 &= \mathbf{z_1}^{\mathcal{P}} (61 + 90 \mathbf{z_1}^2 + 46 \mathbf{n_1}^2 + 45 \mathbf{z_1}^4 - 252 \mathbf{z_1}^2 \mathbf{n_1}^2 - 3 \mathbf{n_1}^4 + 100 \mathbf{n_1}^6 \\ &- 66 \mathbf{z_1}^2 \mathbf{n_1}^4 - 90 \mathbf{z_1}^4 \mathbf{n_1}^2 + 88 \mathbf{n_1}^8 + 225 \mathbf{z_1}^4 \mathbf{n_1}^4 + 84 \mathbf{z_1}^2 \mathbf{n_1}^6 \\ &- 192 \mathbf{z_1}^2 \mathbf{n_1}^8) / \ 720 \, \mathbf{m_0}^6 \mathbf{R_1} \mathbf{N_1}^5 \ , \ \text{and} \\ \mathbf{D}_8 &= \mathbf{z_1}^{\mathcal{P}} (1,385 + 3,633 \mathbf{z_1}^2 + 4,095 \mathbf{z_1}^4 + 1,574 \mathbf{z_1}^6) \ / \ 40,320 \, \mathbf{m_0}^8 \mathbf{R_1} \mathbf{N_1}^7 \ . \end{split}$$

$$D_8 = z_1^{\rho(1,385 + 3,633z_1^2 + 4,095z_1^2 + 1,574z_1^2)} / 40,320 \text{ m}_{0}^{R_1N_1}.$$

$$\lambda = E_1 \eta - E_3 \eta^3 + E_5 \eta^5 - E_7 \eta^7 , \qquad (E)$$

where

$$\begin{split} \mathbf{E}_{1} &= \mathcal{P} / \mathbf{m}_{0} \mathbf{N}_{1} \cos \varphi_{1} , \\ \mathbf{E}_{3} &= \mathcal{P} (1 + 2\mathbf{z}_{1}^{2} + \mathbf{n}_{1}^{2}) / 6 \, \mathbf{m}_{0}^{3} \mathbf{N}_{1}^{3} \cos \varphi_{1} , \\ \mathbf{E}_{5} &= \mathcal{P} (5 + 6\mathbf{n}_{1}^{2} + 28\mathbf{z}_{1}^{2} - 3\mathbf{n}_{1}^{4} + 8\mathbf{z}_{1}^{2}\mathbf{n}_{1}^{2} + 24\mathbf{z}_{1}^{4} - 4\mathbf{n}_{1}^{6} + 4\mathbf{z}_{1}^{2}\mathbf{n}_{1}^{4} \\ &\quad + 24\mathbf{z}_{1}^{2}\mathbf{n}_{1}^{6}) / 120 \, \mathbf{m}_{0}^{5} \mathbf{N}_{1}^{5} \cos \varphi_{1} , \text{ and} \\ \mathbf{E}_{7} &= \mathcal{P} (61 + 662\mathbf{z}_{1}^{2} + 1,320\mathbf{z}_{1}^{4} + 720\mathbf{z}_{1}^{6}) / 5,040 \, \mathbf{m}_{0}^{7} \mathbf{N}_{1}^{7} \cos \varphi_{1} . \\ \mathbf{c} &= \mathbf{F}_{1} \mathbf{\eta} - \mathbf{F}_{3} \mathbf{\eta}^{3} + \mathbf{F}_{5} \mathbf{\eta}^{5} - \mathbf{F}_{7} \mathbf{\eta}^{7} , \end{split} \tag{F}$$

$$\begin{split} \mathbf{F}_1 &= \mathbf{z}_1 \mathcal{P} / \mathbf{m}_0 \mathbf{N}_1 \ , \\ \mathbf{F}_3 &= \mathbf{z}_1 \mathcal{P} \left(1 + \mathbf{z}_1^2 - \mathbf{n}_1^2 - 2\mathbf{n}_1^4 \right) / 3 \, \mathbf{m}_0^3 \mathbf{N}_1^3 \ , \\ \mathbf{F}_5 &= \mathbf{z}_1 \mathcal{P} \left(2 + 5\mathbf{z}_1^2 + 2\mathbf{n}_1^2 + 3\mathbf{z}_1^4 + \mathbf{z}_1^2 \mathbf{n}_1^2 + 9\mathbf{n}_1^4 + 20\mathbf{n}_1^6 - 7\mathbf{z}_1^2 \mathbf{n}_1^4 \right) \\ &\qquad \qquad - 27\mathbf{z}_1^2 \mathbf{n}_1^6 + 11\mathbf{n}_1^8 - 24\mathbf{z}_1^2 \mathbf{n}_1^8 \right) / 15 \, \mathbf{m}_0^5 \mathbf{N}_1^5 \ , \text{ and} \\ \mathbf{F}_7 &= \mathbf{z}_1 \mathcal{P} \left(17 + 77\mathbf{z}_1^2 + 105\mathbf{z}_1^4 + 45\mathbf{z}_1^6 \right) / 315 \, \mathbf{m}_0^7 \mathbf{N}_1^7 \ . \end{split}$$

$$m = m_0 + G_2 \lambda^2 + G_4 \lambda^4 + G_6 \lambda^6,$$
 (G)

where

$$G_2 = m_0 \cos^2 \varphi (1 + n^2) / 2 \rho^2$$
,
 $G_4 = m_0 \cos^4 \varphi (5 - 4z^2 + 14n^2 + 13n^4 - 28z^2n^2 + 4n^6 - 48z^2n^4 - 24z^2n^6) / 24\rho^4$, and

$$G_6 = m_0 \cos^6 \varphi (61 - 148z^2 + 16z^4) / 720 f^6$$
.

$$m = m_0(1 + H_2\eta^2 + H_4\eta^4 + H_6\eta^6) , \qquad (H)$$

where

$$\begin{aligned} &H_2 = (1 + n_1^2) / 2m_0^2 N_1^2 = 1 / 2m_0^2 r_1^2 , \\ &H_4 = (1 + 6n_1^2 + 9n_1^4 + 4n_1^6 - 24z_1^2 n_1^4 - 24z_1^2 n_1^6) / 24m_0^4 N_1^4 , \text{ and} \\ &H_6 = 1 / 720m_0^6 N_1^6 . \end{aligned}$$

The above formulas are applicable only to point-to-point coordinate transformation, and cannot be applied to a line on the projection plane. When a geodesic, other than the equator or the central meridian, is depicted on the projection plane, it is not a straight line, but a curve which is concave towards the central meridian. In order to work on the plane it is necessary to find the difference between the grid direction of the depiction of the geodesic and the grid direction of the rectilinear chord between the two terminals of the line.

Since a triangle on the ellipsoid has spherical excess, and the equivalent triangle on the projection plane has none,

it is obvious that the correction between geodesic and rectilinear chord must compensate for the effect of spherical excess.

This correction is called the T-t correction (Fig. 2). Hotine (3) has developed this correction as —

$$(T-t)_{1} = I_{1}(\xi_{2}-\xi_{1})\eta_{3} + I_{2}(\eta_{2}-\eta_{1})\eta_{3}^{2} - I_{3}(\xi_{2}-\xi_{1})\eta_{3}^{3} - I_{4}(\eta_{2}-\eta_{1})\eta_{3}^{4},$$
(I)

Fig. 2

where

$$I_{1} = \mathcal{P} / 2m_{0}^{2}R_{3}N_{3} ,$$

$$I_{2} = \mathcal{P}z_{3}n_{3}^{2} / m_{0}^{3}R_{3}N_{3}^{2} ,$$

$$I_{3} = \mathcal{P}(1 - n_{3}^{2}) / 6m_{0}^{4}R_{3}N_{3}^{3} ,$$

$$I_{4} = \mathcal{P}z_{3}n_{3}^{2} / 6m_{0}^{5}R_{3}^{2}N_{3}^{3} , \text{ and}$$

the subscript 3 indicates values at one-third of the way from P_1 to P_2 along the rectilinear chord, which means that coefficients

(J)

should be determined for $\xi_r = \frac{1}{3}(2\xi_{rl} + \xi_{r2})$, or for a value of φ corresponding to $M = \frac{1}{3}(2M_1 + M_2)$.

The above formulas are sufficient for all computations when working from or between known points. If, however, a line of known length on the ellipsoid is to be used, such as in the case of a base line or in trilateration, it is necessary to change the ellipsoidal length to conform to the varying scale factor on the projection plane.

$$\begin{split} & m = m_{o}(1 + H_{2}\eta^{2} + H_{4}\eta^{4} + H_{6}\eta^{6}), \; \text{but} \; m = \frac{ds}{dS}, \; \text{so} \\ & S = \int_{o}^{\frac{ds}{dS}} = \int_{o}^{\frac{ds}{dS}} (1 - H_{2}\eta^{2} - H_{4}\eta^{4} - H_{6}\eta^{6} + H_{2}^{2}\eta^{4} + 2H_{2}H_{4}\eta^{6} - H_{2}^{3}\eta^{6}), \\ & ds = \frac{d\eta}{\sin t}, \\ & S = \frac{s}{m_{o}} - \int_{\eta_{o}}^{\frac{\eta_{e}}{2}} \frac{H_{2}}{\sigma \sin t} \eta^{2} d\eta + \int_{\eta_{o}}^{\frac{\eta_{e}}{2}} \frac{(H_{2}^{2} - H_{4})}{m_{o} \sin t} \eta^{4} d\eta - \int_{\eta_{o}}^{\frac{\eta_{e}}{2}} \frac{(H_{2}^{3} - 2H_{2}H_{4} + H_{6})}{m_{o} \sin t} \eta^{6} d\eta, \\ & = \frac{s}{m_{o}} - \frac{H_{2}}{3m_{o} \sin t} (\eta_{2}^{3} - \eta_{1}^{3}) + \frac{(H_{2}^{2} - H_{4})}{5m_{o} \sin t} (\eta_{2}^{5} - \eta_{1}^{5}) - \frac{(H_{2}^{3} - 2H_{2}H_{4} + H_{6})}{7m_{o} \sin t} (\eta_{2}^{7} - \eta_{1}^{7}), \\ & \text{but} \; \frac{1}{\sin t} = \frac{s}{\eta_{2} - \eta_{1}}, \; \text{so} \\ & S = \frac{s}{m_{o}} (1 - \frac{H_{2}}{3} x \frac{\eta_{2}^{3} - \eta_{1}^{3}}{\eta_{2} - \eta_{1}} + \frac{H_{2}^{2} - H_{4}}{5} x \frac{\eta_{2}^{5} - \eta_{1}^{5}}{\eta_{2} - \eta_{1}} - \frac{H_{2}^{3} - 2H_{2}H_{4} + H_{6}}{7m_{o} \sin t} (\eta_{2}^{7} - \eta_{1}^{7}), \; \text{or} \\ & S = \frac{s}{m_{o}} (1 - J_{2}(\eta_{1}^{2} + \eta_{1}\eta_{2} + \eta_{2}^{2}) + J_{4}(\eta_{1}^{4} + \eta_{1}^{3}\eta_{2} + \eta_{1}^{2}\eta_{2}^{2} + \eta_{1}\eta_{2}^{3} + \eta_{2}^{4}) \end{split}$$

 $-J_6(\eta_1+\eta_1\eta_2+\eta_1\eta_$

$$J_2 = H_2 / 3$$
,
 $J_4 = (H_2^2 - H_4) / 5$, and
 $J_6 = (H_2^3 - 2 H_2 H_4 + H_6) / 7$.

The constants J_2 , J_4 , and J_6 must be determined for the mean footpoint latitude, where the footpoint latitude is that latitude corresponding to the given value of ξ if $\eta = 0$. In terms of rectangular coordinates, the constants will be determined for the mean value of ξ .

Equation J is quite unwieldy to use, becoming increasingly difficult as η increases. As a substitute, Tardi and Laclavere (5) have suggested using the following formula, where the subscripts 1 and 2 indicate the terminals of the line, and ½ indicates the mid-point —

$$\left(\frac{1}{m}\right)_{avg} = \frac{1}{6} \left(\frac{1}{m_1} + \frac{4}{m_{1/2}} + \frac{1}{m_2}\right)$$
 (K)

The scale obtained by use of this formula will be compared with that obtained by Equation J.

Equations A through K constitute all the equations necessary for transforming observations back and forth between the ellipsoid and the projection plane. These formulas are quite complicated, and it will be necessary to determine how many of the terms may be excluded without adversely affecting the accuracy of the computations, and to arrange the remaining terms in tabular or graphical format so that the equations may be used without undue difficulty.

CHAPTER III

INVESTIGATION

Before Using Equations A through K, it is necessary to determine the accuracy to be sought after, and to find the limits within which the equations may be used.

In geodetic computations, latitude and longitude are carried to thousandths of a second. For latitude, 0.001 seconds is equivalent to three centimeters, while for longitude, 0.00l seconds is equivalent to three centimeters multiplied by the cosine of the latitude, so it varies from three centimeters at the equator to slightly more than five millimeters at $\varphi = 80^{\circ}$. equalling one centimeter at about $\varphi = 70^{\circ}$. Consequently, computations will be carried out to millimeters, but positions will be rounded off to centimeters. For the inverse problem, positions will be computed in degrees and decimals in order to avoid the difficulties of working with the sexagesimal system. The one-thousandth part of a degree, which is equivalent to 3.6 seconds, will be referred to as a milli-degree, while the onemillionth part of a degree, which is equivalent to 0.0036 seconds, will be called a micro-degree. Geographic position computations will be performed to hundredths of a micro-degree, but the final positions will be rounded off to tenths of a micro-degree.

Azimuth is carried to hundredths of a second in first and second order work, and to tenths of a second in third order work. Computations will be carried to tenths of a micro-degree,

but the final result will be rounded off to the nearest microdegree.

Equations A through H will be analyzed using limits of λ of ten degrees and the square-root-of-ten degrees, and of η corresponding to these values of λ .

TABLE I Coefficients for the equation $\xi = \xi_r + A_2 \lambda^2 + A_4 \lambda^4 + A_6 \lambda^6 + A_8 \lambda^8$

(expressed in meters for λ in degrees)

φ	$A_2 \times 10^2$	A ₄ x 10 ⁴	$A_6 \times 10^6$	A ₈ x 10 ⁸
0	00 000.000	000.000	0.000	0.000
10	16 608.394	+205.595	+2.453	+0.029
20	31 222.685	+344.436	+3.432	+0.030
30	42 085.047	+377.580	+2.721	+0.011
40	47 883.665	+308.979	+0.884	-0.007
45	48 636.583	+248.809	+0.119	-0.010
50	47 911.716	+181.153	-0.420	-0.009
60	42 156.076	+ 53.914	-0.715	-0.003
70	31 303.457	- 23.624	-0.355	+0.001
80	16 661.114	- 34.431	-0.030	0.000
φ	A ₂ x 10	$A_4 \times 10^2$	$^{A_6} \times 10^3$	$A_8 \times 10^4$
φ 0	A ₂ x 10 0 000.000	A ₄ x 10 ²	A ₆ x 10 ³	A ₈ x 10 ⁴
	L	·		
0	0 000.000	0.000	0.000	0.000
0 10 20 30	0 000.000 1 660.839 3 122.268 4 208.505	0.000	0.000	0.000
0 10 20 30 40	0 000.000 1 660.839 3 122.268 4 208.505 4 788.366	0.000 +2.056 +3.444 +3.776 +3.090	0.000 +0.002 +0.003 +0.003 +0.001	0.000 0.000 0.000 0.000
0 10 20 30 40	0 000.000 1 660.839 3 122.268 4 208.505 4 788.366 4 863.658	0.000 +2.056 +3.444 +3.776 +3.090 +2.488	0.000 +0.002 +0.003 +0.003 +0.001 0.000	0.000 0.000 0.000 0.000 0.000
0 10 20 30 40 45 50	0 000.000 1 660.839 3 122.268 4 208.505 4 788.366 4 863.658 4 791.172	0.000 +2.056 +3.444 +3.776 +3.090 +2.488 +1.812	0.000 +0.002 +0.003 +0.003 +0.001 0.000	0.000 0.000 0.000 0.000 0.000 0.000
0 10 20 30 40 45 50 60	0 000.000 1 660.839 3 122.268 4 208.505 4 788.366 4 863.658 4 791.172 4 215.608	0.000 +2.056 +3.444 +3.776 +3.090 +2.488 +1.812 +0.539	0.000 +0.002 +0.003 +0.003 +0.001 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
0 10 20 30 40 45 50	0 000.000 1 660.839 3 122.268 4 208.505 4 788.366 4 863.658 4 791.172	0.000 +2.056 +3.444 +3.776 +3.090 +2.488 +1.812	0.000 +0.002 +0.003 +0.003 +0.001 0.000	0.000 0.000 0.000 0.000 0.000 0.000

By examining Tables I, II and III, it is seen that the equations given are satisfactory for λ = ± 10 $^{\circ}$ at all latitudes, and that as the latitude increases, it would be possible to

TABLE II

Coefficients for the equation $\eta = B_1 \lambda + B_3 \lambda^3 + B_5 \lambda^5 + B_7 \lambda^7$

(expressed in meters for λ in degrees)

φ	B ₁ x 10	B ₃ × 10 ³	B ₅ x 10 ⁵	$B_7 \times 10^7$
0 10 20 30 40 45 50 60 70 80	1 112 793.420 1 095 998.680 1 046 095.172 964 518.229 853 635.589 788 189.574 716 704.929 557 804.713 381 732.485 193 867.587	+5 687.842 +5 264.191 +4 096.475 +2 582.315 + 762.670 + 67.709 - 627.646 -1 414.777 -1 484.445 - 924.893	+43.845 +36.046 +16.846 - 4.023 -16.559 -18.512 -17.730 -10.856 - 0.300 + 0.627	+0.381 +0.260 +0.003 -0.188 -0.182 -0.133 -0.074 +0.010 +0.021 +0.004
φ	B ₁ x 10 ^{1/2}	B ₃ x 10 ^{1½}	B ₅ x 10 ^{2½}	$B_7 \times 10^{3\%}$
0 10 20 30 40 45 50 60 70 80	351 896.177 346 585.214 330 804.339 305 007.445 269 943.275 249 247.428 226 641.999 176 393.338 120 714.411 61 306.314	+179.865 +166.468 +129.542 + 81.660 + 24.118 + 2.141 - 19.848 - 44.739 - 46.942 - 29.248	+0.139 +0.114 +0.053 -0.013 -0.052 -0.059 -0.056 -0.034 -0.001 +0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

increase the value of λ to obtain a wider projection plane, without sacrificing any accuracy. In its cartographic application, the Universal Transverse Mercator Grid system is designed for zones with $\lambda=3^{\circ}$, but with a small overlap at the zone boundaries for surveying and artillery purposes. For the sake of convenience, the amount of overlap considered here was taken as the difference between three and the square root of ten. The second part of the first three tables is designed so that the values in the body of the table are the values in

TABLE III

$$c = c_1 \lambda + c_3 \lambda^3 + c_5 \lambda^5 + c_7 \lambda^7$$

(expressed in micro-degrees for λ in degrees)

φ	C ₁ x 10	$c_3 \times 10^3$	c ₅ x 10 ⁵	$c_7 \times 10^7$
0 10 20 30 40 45 50 60 70 80	0 000 000.0 1 736 481.8 3 420 201.4 5 000 000.0 6 427 876.1 7 071 067.8 7 660 444.4 8 660 254.0 9 396 926.2 9 848 077.5	00 000.0 17 438.6 31 218.0 40 465.2 38 758.5 36 264.8 32 408.4 22 095.6 11 188.0 3 017.1	000.0 +210.1 +322.9 +314.3 +180.5 +109.7 + 45.6 - 35.1 - 44.8 - 16.8	0.0 +2.3 +2.9 +1.7 0.0 -0.6 -0.8 -0.5 -0.1
φ	C ₁ x 10 ^{1/2}	c ₃ x 10 ^{11/2}	c ₅ x 10 ^{2½}	$c_7 \times 10^{3\%}$
0 10 20 30 40 45 50 60 70 80	000 000.0 549 123.8 1 081 562.6 1 581 138.8 2 032 672.9 2 236 068.0 2 422 445.2 2 738 612.8 2 971 569.0 3 114 235.5	000.0 551.5 987.2 1 279.6 1 225.7 1 146.8 1 024.8 698.7 353.8 95.4	0.0 +0.7 +1.0 +1.0 +0.6 +0.3 +0.1 -0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0

meters for Tables I and II, and in micro-degrees for Table III, when λ is at this adopted Universal Transverse Mercator Grid system limit. In each case, the last term of the equation may be eliminated. Figure 3 shows the extent of the projection plane (on one side of the central meridian only) as a function of latitude. By using a value of $\lambda = 10^{\circ}$, it would be possible to depict the area from Fort Worth, Texas, to Los Angeles, California, on one plane. This is more than ample for most triangulation nets.

Projection Plane Width as a function of latitude

Fig. 3

TABLE IV

$$\varphi = \varphi_1 - D_2 \eta^2 + D_4 \eta^4 - D_6 \eta^6 + D_8 \eta^8$$

(expressed in milli-degrees for $\boldsymbol{\eta}$ in meters)

	(- /
ξx10 ⁻⁶	D ₂ x 10 ¹²	$D_4 \times 10^{24}$	$D_6 \times 10^{36}$	D ₈ x 10 ⁴⁸
0 1 2 3 4 5 6 7 8 9	0000.00000 112.92484 231.43981 362.39609 515.78737 708.47016 973.16486 1385.23020 2169.61480 4450.36547	0000.00000 1.17600 2.51796 4.28769 6.94480 11.58640 21.26604 46.99011 148.94059 1143.10813	000.00000 0.01204 0.02767 0.05319 0.10469 0.23293 0.64304 2.51304 18.18890 569.22709	000.00000 0.00012 0.00031 0.00071 0.00179 0.00563 0.02440 0.17174 3.09524 356.27858
ξx10 ⁻⁶	D ₂ x10 ⁸ /E ₁	D ₄ x10 ¹⁶ /E ₁	D ₆ ×10 ²⁴ /E ₁	D ₈ x10 ³² /E ₁
0 1 2 3 4 5 6 7 8 9	000.00000 136.40139 259.13397 355.98854 417.48436 437.79482 415.24151 352.33909 255.43295 134.00879	0.00000 1.71580 3.15662 4.13741 4.54986 4.42432 3.87182 3.04007 2.06444 1.03648	0.00000 0.02122 0.03884 0.05042 0.05552 0.05496 0.04996 0.04135 0.02968	0.00000 0.00026 0.00049 0.00066 0.00077 0.00082 0.00081 0.00072 0.00059 0.00029
ξx10 ⁻⁶	D ₂ x10 ⁷ /E ₁ ²	D ₄ x10 ¹⁴ /E ₁	$D_6 \times 10^{21} / E_1^6$	D ₈ x10 ²⁸ /E ₁
0 1 2 3 4 5 6 7 8 9	00.00000 13.64014 25.91340 35.59885 41.74844 43.77948 41.52415 35.23391 25.54330 13.40088	0.00000 0.01716 0.03157 0.04137 0.04550 0.04424 0.03872 0.03040 0.02064 0.01036	0.00000 0.00002 0.00004 0.00005 0.00005 0.00005 0.00004 0.00003 0.00002	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

TABLE V Coefficients for the equation $\lambda = E_1 \eta - E_3 \eta^3 + E_5 \eta^5 - E_7 \eta^7$

(expressed in milli-degrees for $\boldsymbol{\eta}$ in meters)

	(011-11-11-11-1		1 21 110001	~,
ξx10 ⁻⁶	$E_1 \times 10^6$	E ₃ x 10 ¹⁸	E ₅ × 10 ³⁰	$E_7 \times 10^{42}$
0 1 2 3 4 5 6 7 8 9	8986.39390 9098.82588 9450.54504 10089.59511 11115.14797 12721.12362 15308.85909 19828.07533 29144.24802 57627.68868	37.09277 39.43536 47.22011 63.20573 94.17351 157.22636 301.95967 710.79751 2394.89065 19197.74878	0.22842 0.26448 0.39514 0.71243 1.49587 3.68694 11.22391 47.29804 355.28402	0.00162 0.00211 0.00411 0.01005 0.02931 0.10496 0.50088 3.75708 64.32891 8283.89718
ξx10 ⁻⁶	Elxlo4/El	$E_{3} \times 10^{12} / E_{1}^{3}$	E ₅ x10 ²⁰ /E ₁	E7x10 ²⁸ /E1
0123456789	10000.00000 10000.00000 10000.00000 10000.00000 10000.00000 10000.00000 10000.00000 10000.00000	51.11319 52.35158 55.94438 61.53684 68.57772 76.37460 84.16286 91.18097 96.74469	0.38976 0.42409 0.52417 0.68136 0.88169 1.10672 1.33484 1.54326 1.68971	0.00342 0.00409 0.00610 0.00944 0.01398 0.01947 0.02542 0.03118 0.03602 0.03925
ξx10 ⁻⁶	E1*10 ^{3½} /E1	E3×10 ^{10½} /E3	E ₅ x10 ^{17½} /E ₁	E7*10 ²⁴ /E7
0123456789	3162.27766 3162.27766 3162.27766 3162.27766 3162.27766 3162.27766 3162.27766 3162.27766 3162.27766	1.61634 1.65550 1.76912 1.94597 2.16862 2.41518 2.66146 2.88340 3.05934 3.17217	0.00123 0.00134 0.00166 0.00215 0.00279 0.00350 0.00422 0.00488 0.00534	0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001

TABLE VI

$$c = F_1 \eta - F_3 \eta^3 + F_5 \eta^5 - F_7 \eta^7$$

(expressed in micro-degrees for $\boldsymbol{\eta}$ in meters)

ξx10 ⁻⁶	F ₁ x 10 ⁶	F ₃ x 10 ¹⁸	F ₅ x 10 ³⁰	F ₇ x 10 ⁴²
0 1 2 3 4 5 6 7 8 9	0000000.0 1430656.9 2934256.6 4599726.7 6555921.3 9019124.3 12408164.3 17686980.3 27733076.1 56927366.0	00000.0 11948.1 26461.1 47341.8 82004.0 147950.4 295038.7 705870.8 2391723.4 19196199.6	000.0 123.6 305.1 653.3 1456.4 3660.4 11206.1 47286.4 359632.6 11557786.2	0.0 1.3 3.7 9.8 29.2 104.9 500.8 3757.0 64328.9 8283897.2
ξx10 ⁻⁶	F1x104/E1	F3x10 ¹² /E ₁	F ₅ ×10 ²⁰ /E ₁	F7x10 ²⁸ /E7
0 1 2 3 4 5 6 7 8 9	0 000000.0 1 572353.3 3 104854.3 4 558881.4 5 898186.2 7 089880.2 8 105218.2 8 920170.0 9 515797.4 9 878474.6	00000.0 15861.4 31350.0 46091.8 59715.8 71868.7 82233.8 90549.0 96616.7 100304.8	000.0 198.2 404.7 624.8 858.4 1098.7 1332.7 1542.9 1710.4 1818.5	0.0 2.5 5.4 9.2 13.9 19.4 25.4 31.2 36.0 39.2
-ξx10 ⁻⁶	F ₁ x10 ^{3½} /E ₁	F3x10 ^{10½} /E3	F ₅ x10 ^{17½} /E ₁ ⁵	F7x10 ^{24½} /E7
0 1 2 3 4 5 6 7 8 9	000000.0 497221.8 981841.1 1 441644.9 1 865170.2 2 242017.0 2 563095.0 2 820805.4 3 009159.4 3 123848.0	000.0 501.6 991.4 1457.6 1888.4 2272.7 2600.5 2863.4 3055.3 3171.9	0.0 0.6 1.3 2.0 2.7 3.5 4.9 5.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE VII

$$m = m_0 + G_2 \lambda^2 + G_4 \lambda^4 + G_6 \lambda^6$$

(dimensionless for λ in degrees)

φ	₂ x 10 ²	$G_4 \times 10^4$	₆ × 10 ⁶
0 10 20 30 40 45 50 60 70	0.015327 82253 0.014862 61867 0.013524 16410 0.011476 54617 0.008969 75130 0.007638 15029 0.006308 10286 0.003812 63490 0.001782 37081 0.000459 17694	+0.000196 92397 +0.000180 39090 +0.000136 56597 +0.000080 22432 +0.000028 75541 +0.000009 20031 -0.000004 97203 -0.000017 19540 -0.000013 40684 -0.000004 35159	+0.000002 39380 +0.000002 01954 +0.000001 12602 +0.000000 22258 -0.000000 27972 -0.000000 34828 -0.000000 32365 +0.000000 14655 +0.000000 00908 +0.000000 00013
φ	^G 2 x 10	₄ x 10 ²	^G 6 x 10 ³

It is more difficult to analyze the inverse equations, since they are functions of η , and the maximum η usable is a function of the latitude. For this reason, Tables IV, V and VI give values of the various terms for $\eta=1,000,000$, and in addition give values of the terms for such values of η that $E_1\eta=10^{0}$ for the middle part of the table, and $E_1\eta=10^{1/2}$ o for the last part of the table. From these it is seen that the equations are satisfactory out to a value of $E_1\eta=10^{1/2}$, without

TABLE VIII

Coefficients for the equation $m = m_0 (1 + H_2 \eta^2 + H_4 \eta^4 + H_6 \eta^6)$ (dimensionless for η in meters)

ξx10 ⁻⁶	H ₂ x 10 ¹²	$H_4 \times 10^{24}$	$^{\rm H}_{\rm 6} \times 10^{36}$
0 1 2 3 4 5 6 7 8 9	0.012382 97846 0.012378 86260 0.012366 93350 0.012348 39964 0.012325 12548 0.012299 42966 0.012273 84290 0.012250 85498 0.012232 67694 0.012221 04007	0.000026 24824 0.000026 21302 0.000026 11131 0.000025 95428 0.000025 75881 0.000025 54523 0.000025 33485 0.000025 14780 0.000025 00119 0.000024 90793	0.000000 02068 0.000000 02067 0.000000 02059 0.000000 02053 0.000000 02047 0.000000 02040 0.000000 02035 0.000000 02030 0.000000 02027

using the last term. When $E_1\eta$ is increased to 10° there is a loss of accuracy in the higher latitudes when converting from rectangular coordinates to longitude. This loss is caused primarily by the convergence of the meridians, a given arc at 80° being only one sixth the lineal distance of the same arc when measured at the equator. This slight loss in angular accuracy would probably be acceptable under most conditions.

Tables VII and VIII give factors affecting the scale factor. If $\lambda^O = 10^{\frac{1}{2}}$ or less, the last term of Equation G may be omitted. The last term of Equation H may be neglected for any value of η which corresponds to $\lambda^O = 10$ or less, for an accuracy of four parts per hundred million or better.

Equation I is more complicated than those heretofore encountered, as it is variable with ξ , η , difference in ξ and

TABLE IX

Factors affecting the (T-t) correction

Coefficients for Equation I in milli-degrees for η in meters

006111	crents for Equat	TOIL T TIL METER	aceteen 101 4	In meters
ξx10 ⁻⁶	I ₁ x 10 ¹⁰	$I_2 \times 10^{20}$	$I_3 \times 10^{25}$	$I_4 \times 10^{35}$
0 1 2 3 4 5 6 7 8 9	7.0949 24040 7.0925 65824 7.0857 30951 7.0751 11839 7.0617 76719 7.0470 54102 7.0323 93969 7.0192 22862 7.0088 07609 7.0021 40178	00.000 00000 23.381 77552 44.388 35104 60.910 50009 71.331 58182 74.684 84513 70.726 85122 59.928 54990 43.397 64799 22.751 63119	57.783 35594 57.764 27909 57.708 96956 57.622 98212 57.514 90771 57.395 46662 57.276 40567 57.169 33058 57.084 58741 57.030 30507	000.000 96.480 182.983 250.716 293.057 306.194 289.363 244.725 176.956 92.683
	on (milli-degree	es) per 10 ⁵ cha	nge in η or ζ,	at $\eta_3 = 10^6$
ξx10 ⁻⁶	-(T-t)1	(T-t) ₂	(T-t) ₃	(T-t)4
0 1 2 3 4 5 6 7 8 9	70.9492 70.9257 70.8573 70.7511 70.6178 70.4705 70.3239 70.1922 70.0881 70.0214	0.0000 0.0234 0.0444 0.0609 0.0713 0.0747 0.0707 0.0599 0.0434 0.0228	0.5778 0.5776 0.5771 0.5762 0.5751 0.5740 0.5728 0.5717 0.5708	0.0000 0.0001 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002
	on (milli-degree	s) per 10 ⁵ cha	nge in η or ξ ,	at $\eta_3 = 10^{5\%}$
ξx10 ⁻⁶	(T-t)1	(T-t) ₂	(T-t) ₃	(T-t)4
0 1 2 3 4 5 6 7 8 9	22.4361 22.4287 22.4070 22.3735 22.3313 22.2847 22.2384 22.1967 22.1638 22.1427	0.0000 0.0023 0.0044 0.0061 0.0071 0.0071 0.0060 0.0043 0.0023	0.0183 0.0183 0.0182 0.0182 0.0182 0.0181 0.0181 0.0181	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE X

$$S = \frac{s}{m_0} \left(1 - J_{2\eta_2 - \eta_1}^{\frac{3}{2} - \eta_1^3} + J_{4\eta_2 - \eta_1}^{\frac{5}{2} - \eta_1^5} - J_{6\eta_2 - \eta_1}^{\frac{7}{2} - \eta_1^7} \right)$$

(dimensionless for η in meters)

ξx10 ⁻⁶	$3J_2 \times 10^{12}$	5J ₄ x 10 ²⁴	7 ^J ₆ x 10 ³⁶
0	0.0123 82978	0.0001 27090	0.0000 01269
1	0.0123 78863	0.0001 27023	0.0000 01269
2	0.0123 66933	0.0001 26830	0.0000 01266
3 4	0.0123 48400	0.0001 26529	0.0000 01263
4	0.0123 25125	0.0001 26150	0.0000 01258
5	0.0122 99430	0.0001 25731	0.0000 01253
6	0.0122 73843	0.0001 25312	0.0000 01248
7	0.0122 50855	0.0001 24936	0.0000 01243
7 8	0.0122 32677	0.0001 24637	0.0000 01239
9	0.0122 21040	0.0001 24446	0.0000 01237

difference in η . The top third of Table IX gives the values of the coefficients I as a function of ζ , the middle third gives the magnitude of the individual terms of the correction, in milli-degrees, for a line 100,000 meters in ζ and 100,000 meters in η and with η_3 = 1,000,000 meters, while the bottom third gives the magnitude of the individual terms of the correction for a line of the same length, but with η_3 = 316,000 meters. Since there are so many variables involved, it is not possible to establish general rules about the necessity of including the various terms, but a decision will have to be made in this respect for each different line considered.

Equation J has been developed along lines suggested by Bomford (1). Bomford gives the equation to the J_2 term, then cites an unpublished paper of A. R. Robbins, which gives the

TABLE XI

Comparison of finite distance scale factors

obtained from Equations J and K

equation developed through the J_4 term, expressing it logarithmically. Tardi and Laclavere (5) give Equation J only through the J_2 term, then give Equation K and state that it is more accurate. Equation J has the drawback of having assumed a value of the radius of curvature in the prime vertical at the footpoint of the midpoint of the line, while

Equation K takes into account the change of radius of curvature with change of latitude, and performs a mechanical integration over the extent of the line in accordance with Simpson's rule.

In comparing Equation J with Equation K, the equations were put into the form —

$$S = \frac{s}{m_0} L ,$$

and the factor L was evaluated in each case. It should be kept in mind that the values given in Table X produce an error of twelve parts per billion caused by the elimination of the J_8 term. All of this error is caused by the effect of the H_2 and H_4 terms in the expansion of the reciprocal of the scale factor.

Table XI gives the factor L for four different lines considered. The line of constant η was originally tried at $\zeta=5\times10^6$, where the rate of change of the radius of curvature is a maximum. The agreement between the two equations was very good, because the rate of change is almost constant, even though maximum. In order to get the effect of the maximum value of the second derivative of the radius of curvature the line was moved to the vicinity of the equator. The lines tested were, of course, extreme in length, but they show a definite tendency on the part of Equation J to give inaccurate answers since no provision is made for the change of radius of curvature along the line.

The values given in the preceding tables were computed using the parameters of the International Ellipsoid.

The Army Map Service has tabulated the following factors for the International, Clarke 1866, Clarke 1880, Bessel and Everest (to 45° only) Ellipsoids in a series of Technical Manuals —

AMS Designation in this paper, or function title if no specific designation is available

I ξ_r , argument φ ,

II A_2 , argument φ ,

III A_h , argument φ ,

A_6
 $\frac{\text{N} \sin \varphi}{720} \cos^5 \varphi \text{ m}_0 (61 - 58z^2 + z^4 + 270n^2 - 330n^2z^2)\lambda^6$, arguments φ , λ ,

IV B_1 , argument φ ,

V B_3 , argument φ ,

$$B_{5} = \frac{N}{120} \cos^{5} \varphi m_{0} (5 - 18z^{2} + z^{4} + 14n^{2} - 58n^{2}z^{2})\lambda^{5},$$
arguments φ , λ ,

VII D_2 , argument φ_1 ,

VIII
$$\frac{z_1}{24 \, m_0^4 N_1^4} \, (5 + 3z_1^2 + 6n_1^2 - 6n_1^2 z_1^2 - 3n_1^4 - 9n_1^2 \sin^2 \varphi_1),$$

argument φ_1 ,

IX E_1 , argument φ_1 ,

 $X = E_3$, argument φ_1 ,

$$E_{5} = \frac{1}{120 \text{ m}_{0}^{5} \text{N}_{1}^{5} \cos \varphi_{1}} (5 + 28z_{1}^{2} + 24z_{1}^{4} + 6n_{1}^{2} + 8n_{1}^{2}z_{1}^{2}) \eta^{5},$$

arguments η , ϕ_1

XII C_1 , argument φ ,

AMS Designation in this paper, or function if no specific designation is available XIII C_3 , argument φ , $C_5 = \frac{1}{15} z \cos^5 \varphi \ (2 - z^2) \lambda^5, \text{ arguments } \varphi, \lambda,$ XV F_1 , argument φ_1 XVI F_3 , argument φ_1 $F_5 = \frac{z_1}{15m_0^5 N_1^5} (2 + 5z_1^2 + 3z_1^4) \eta^5, \text{ arguments } \varphi_1, \eta, \text{ and }$ XVIII H_3 , argument ξ .

 $\phi_{\mbox{\scriptsize l}}$ is obtained by inverse interpolation in AMS function I, and is then used as an argument for finding other factors.

The Army Map Service tables are sufficient for use within the standard Universal Transverse Mercator Grid system zones, but if the zone is extended, factors including additional terms must be computed.

This paper makes no attempt to present the factors necessary for the computation of Equations A through G. The transformation of coordinates, although important, is adequately dealt with in such publications as the Army Map Service Manuals, and the extension of the tables for zones wider than 6° can be performed by the individual desiring the information.

CHAPTER IV

APPLICATIONS

In order to compare the results of computation on a plane with ordinary ellipsoidal computations, a net given by Reynolds (4), which he adjusted by the direction method, will be computed on the plane and adjusted by the variation of coordinates method.

In this net, stations Garcena, Gorgora, Palo and Pedro are fixed in position, the fixed positions requiring that the lines Garcena-Gorgora and Palo-Pedro remain fixed in length and azimuth.

Palo
$$\varphi = 26.327 4864 \text{ N}, \lambda = 98.463 4022 \text{ W}$$

Pedro
$$\varphi = 26.2435389$$
 N, $\lambda = 98.4832561$ W

Garcena
$$\phi = 26.4489847$$
 N, $\lambda = 98.9288656$ W

Gorgora
$$\varphi = 26.423 \ 2164 \ N$$
, $\lambda = 99.009 \ 8733 \ W$

$$\propto$$
 Garcena-Gorgora = 70.559 036, \propto Palo-Pedro = 12.040 278

In the Universal Transverse Mercator Grid system, this net would fall in zone 14, with central meridian of 99° W, which would put all the stations within six tenths of a degree of the central meridian, making many of the (T-t) components negligible. For the sake of illustration, a non-standard zone will be used, with central meridian (λ_{\circ}) at 108° W, putting the net between 9 and 10 degrees from the central meridian.

Quite frequently preliminary positions are used for an extended period of time before the final adjustment is made, generally for some type of graphical plotting such as hydrographic survey control or photogrammetric compilation. The accuracy of the position used is not important in these cases, as a very large error must exist to become apparent through these graphical methods (at the most commonly used scales). The question of internal consistency is of far greater importance than that of the position used, since the computation of non-unique answers to a problem tends to confuse the survey personnel and waste time by their trying to find non-existent computational errors. In order to make each figure discrepancy free within itself, an engineers adjustment is included in the computation of the preliminary positions.

Computations for the preliminary positions will be made on a form designed to facilitate the following functions —

1. Using T (grid azimuth of the geodesic) values, a rough approximation of the coordinates of the new stations is obtained by use of intersection formulas,

- 2. Using these rough coordinates, (T-t) corrections are computed for enough lines to locate the new stations more accurately, then more accurate (T-t) corrections are computed for each line in the figure,
- 3. An engineers adjustment is performed on the plane angles to achieve internal consistency, and
- 4. Preliminary positions are computed by intersection formulas, working around the figure until a check is obtained on a previously known station.

Equation I is a function of φ , which is not explicitly known, and some variables which are known. φ can be computed from Equation D, but this is an undesirable addition to the required work. Since $\xi_{\mathbf{r}}$ is a function of φ , if ξ can be reduced to $\xi_{\mathbf{r}}$, this value could then be used as an argument for determining the various coefficients of Equation I. The coefficients I are slowly-changing functions of φ , so a rigorous correspondence between ξ and $\xi_{\mathbf{r}}$ is not required. Assuming a sphere of reasonable radius, $m_{\mathbf{r}}$, as in Fig. 5, by the cosine law we have

Fig. 5

$$\cos \left(90 - \frac{\xi_r}{m_o r}\right) = \cos \left(90 - \frac{\xi}{m_o r}\right) \times \cos \frac{\eta}{m_o r}, \text{ or }$$

$$\sin \frac{\xi_r}{m_o r} = \sin \frac{\xi}{m_o r} \times \cos \frac{\eta}{m_o r},$$

which may be expanded into series, as

$$\frac{\xi_{r}}{m_{o}r} - \frac{\xi_{r}^{3}}{3!m_{o}^{3}r^{3}} + \frac{\xi_{r}^{5}}{5!m_{o}^{5}r^{5}} - \dots = \left(\frac{\xi_{r}}{m_{o}r} - \frac{\xi^{3}}{3!m_{o}^{3}r^{3}} + \frac{\xi^{5}}{5!m_{o}^{5}r^{5}} - \dots\right) \times \left(1 - \frac{\eta^{2}}{2!m_{o}^{2}r^{2}} + \frac{\eta^{4}}{4!m_{o}^{4}r^{4}} - \dots\right),$$

$$\xi_{r} - \frac{\xi_{r}^{3}}{3!m_{o}^{2}r^{2}} + \frac{\xi_{r}^{5}}{5!m_{o}^{4}r^{4}} - \dots = \xi_{r} - \frac{\xi\eta^{2}}{2!m_{o}^{2}r^{2}} - \frac{\xi^{3}}{3!m_{o}^{2}r^{2}} + \dots,$$

$$\xi_{r} \doteq \xi \left(1 - \frac{\eta^{2}}{2m_{o}^{2}r^{2}}\right) = \xi \left(1 - H_{2}\eta^{2}\right).$$

As a starting point for the calculations it is necessary to find the convergence of the meridians at the four known points, and to find the correction between the projected geodesic and the rectilinear chord between the known points.

	Palo-Pedro)	Pedro	o-Palo	Garc	ena	-Gor	gora	Goi	gc	ra-C	Barcena
∝	12.040 278	נ 8	.9200	31 486	70	005	559 0	36	ä	250	°522	972
С	4.261 643	L	4.2	+0 085	L	+.0	67 99	95		L	1.027	7 542
T	187.778 63	7	7.79	91 401	246	5.4	+91 O	+1		66	.495	5 430
Gorgo	ora-Garcena	ξ ₃ =	2955	086.12;	ξ _{3r}	-	2925	434;	η3	***	901	363.40
Garce	ena-Gorgora	ξ ₃ =	2956	236.52;	ξ _{3r}	=	2926	398;	η3	=	904	008.28
Pedro	-Palo	ξ ₃ =	2940	882.19;	ξ _{3r}	=	2907	854;	η3	=	953	575 • 55
Palo-	-Pedro	ξ ₃ =	2944	056.86;	ξ _{3r}	=	2910	964;	η3	=	954	009.58

Line	Palo-Pedro	Pedro-Palo	Garcena-Gorgora	Gorgora-Garcena
ξ ₂ -ξ ₁	-9,524.01	+9,524.01	-3,451.20	+3,451.20
η2-η1	-1,302.09	+1,302.09	-7,934.64	+7,934.64
(T-t)	006 4300	+.006 4271	002 2079	+.002 2014
(T-t) ₂	000 0007	+.000 0007	000 0039	+.000 0039
(T-t) ₃	+.000 0477	000 0476	+.000 0147	000 0146
(T-t) ₄	negligible	negligible	negligible	negligible
(T-t)	006 3830	+.006 3802	002 1971	+.002 1907
T	187.778 637	7.791 401	246.491 041	66.495 430
t	187.785 020	7.785 021	246.493 238	66.493 239

The one micro-degree difference between forward and back-ward grid directions is not considered significant since the data were originally listed to the nearest hundredth of a second, which corresponds to 2.8 micro-degrees.

Computation of the preliminary positions and the adjustment of the net are given in Appendix I.

After preliminary positions had been determined, the net was adjusted by the method of variation of coordinates. For this method, error equations are written in the form —

$$\begin{aligned} \mathbf{v}_{\mathbf{i}\mathbf{j}} &= - \, \mathrm{d}\mathbf{z}_{\mathbf{i}} + \mathbf{a}_{\mathbf{i}\mathbf{j}} \mathrm{d}\eta_{\mathbf{j}} + \mathbf{b}_{\mathbf{i}\mathbf{j}} \mathrm{d}\xi_{\mathbf{j}} + \mathbf{a}_{\mathbf{j}\mathbf{i}} \mathrm{d}\eta_{\mathbf{i}} + \mathbf{b}_{\mathbf{j}\mathbf{i}} \mathrm{d}\xi_{\mathbf{i}} + \mathbf{1}_{\mathbf{i}\mathbf{j}}, \\ \text{where} \\ \mathbf{a}_{\mathbf{i}\mathbf{j}} &= -\mathbf{a}_{\mathbf{j}\mathbf{i}} = \mathcal{P}(\xi_{\mathbf{j}} - \xi_{\mathbf{i}}) \, / \, \mathbf{s}^2, \end{aligned}$$

$$b_{ij} = -b_{ji} = -\beta (\eta_{j} - \eta_{i}) / s^{2},$$

$$l_{ij} = \bar{t}_{ij} - (t_{oij} + \bar{z}_{i}), \text{ and, for convenience,}$$

$$\bar{z}_{i} = ([\bar{t}_{i}] - [t_{oi}]) / n.$$

It should be noted that z and n are here used in their usual sense for adjustments, as the constant station correction and the number of observations, respectively, and not as a shorthand notation as was the case in Chapters II and III.

In this method of adjustment, the number of unknowns is equal to three times the number of new stations plus the number of old stations, but of these only two times the number of new stations need be solved for, as the others are the orientation corrections (dz's) for which the numerical values are not explicitly required, and which are removed from the error equations by the use of Schreiber's first theorem.

The reasons for using this method of adjustment are

- 1. The number of unknowns for which solutions are obtained is quite frequently less than in other methods (in the sample net there were 18 normal equations as opposed to 27 by the direction correction method),
- 2. The standard error of the position of each station in each component can be readily obtained,
- 3. The tedious use of tables required for the formation of side and length equations is eliminated, and
- 4. After computation, the unknowns are simply added to the preliminary positions for the final answers, eliminating recomputation of triangles and positions, but requiring computation of tangent t and t if required.

The adjustment was carried out twice, using first the \mathbf{l}_1 and sum values shown, and secondly the \mathbf{l}_2 and sum values. The

TABLE XII
Geographic Positions

Station		Lati	tude	Corr.*	1	ongi	tude	Corr.*
Fordyce	26°	17'	47!!434	0	98°	34 1	451239	-0"00l
Eltoro	26	21	51.958	0	98	34	00.307	-0.002
Garcia	26	20	41.270	0	98	42	29.281	-0.002
Pancho	26	26	36.792	0	98	41	17.287	-0.002
Monument	26	21	16.682	0	98	46	02.967	-0.002
Corpus	26	26	28.446	0	98	45	56.996	-0.002
Grande	26	23	30.225	0	98	49	31.291	-0.00l
Hebron	26	27	00.537	0	98	53	03.822	-0.001
Ringold	26	22	30.754	0	98	53	30.365	-0.001
Garcena	26	26	56.345	0	98	55	43.916	0
Gorgora	26	25	23.579	0	99	00	35.544	0

^{*} When correction is applied, values will agree with those reported by Reynolds (4).

first set was obtained by using, for \bar{t} , the values used in the preliminary position computation. The result of this adjustment was that the values of latitude obtained agreed with the values obtained by Reynolds in his adjustment on the ellipsoid, but the longitudes disagreed slightly. Since the preliminary positions were rounded to the nearest centimeter, the values of \bar{t} between the preliminary positions might vary greatly from the values used in computing the positions, especially when short sides are involved. The l_2 values were computed using the \bar{t} values

TABLE XIII

Azimuths

Station	A	zimu	ith	Corr.*	Bac	k Az	imuth	Corr.*	To
Fordyce	253° 301	26 ¹ 27	51 " 76 1.66	+ !1 7 +.20	73 ⁰ 121	29' 29	56º60 34.59	+ %1 7 +.20	Palo Pedro
Eltoro	291 328 9	37 04 24	4.73 40.83 18.89	+.14 +.08 17	111 148 189	39 06 23	49.85 54.03 58.96	+.13 +.07 17	Palo Pedro Fordyce
Garcia	261 292	12 32	19.79 32.92	+.27 +.10	81 112	16 35	5.74 58.68	+.27	Eltoro Fordyce
Pancho	305 326 10	52 15 20	9.90 56.22 26.71	+.41 +.18 +.09	125 146 190	55 18 19	24.22 50.36 54.71	+.41 +.17 +.08	Eltoro Fordyce Garcia
Monument	218 280	46 2 4	22.49 31.05	+.16 +.24	38 100	48 26	29.5 1 5.90	+.16 +.23	Pancho Garcia
Corpus	268 331 0	_	3.85 6.59 19.05	+.31 +.26 +.26	88 15 1 180	07 41 59	8.41 38.93 16.40	+.30 +.25 +.25	Garcia
Grande	227 305	15 25	43.06 23.17	+.34	47 125	17 26	18.41 55.64	+•33	Corpus Monument
Hebron	274 312 317	44 11 41	51.18 20.76 11.46	+.21 +.11 01	94 132 137	48 14 42	01.27 27.91 46.03	+.21 +.10 01	Corpus Monument Grande
Ringold	185 254 280	03 32 23	40.99 48.39 8.92	+.06 01 +.08	5 74 100	03 34 26	52.79 34.63 27.61	+.07 01 +.07	
Garcena	268 335	19 37	26.89 47.13	+•37	88 155	20 38	38.20 46.53	+.37	Hebron Ringold
Gorgora	250 256 294	31 33 15	22.54 46.14 53.59	+.16 +.17 05	70 76 114	33 37 19	32.38 7.26 2.63		Hebron

^{*} When correction is applied, values will agree with those reported by Reynolds (4).

actually existing between the preliminary positions, and the corrections to the positions were recomputed. Had the preliminary positions been carried to a number of places commensurate with angles listed to the nearest micro-degree and with the distance involved, the values of \bar{t} taken from the preliminary position computation would have been satisfactory. The change between the first and second adjustments was very slight, and gave the results shown in Tables XII and XIII. Of a total of 29 lines involved, 14 were of slightly different lengths from the ones computed by Reynolds, with a relative accuracy of --Fordyce - Palo 1: 470 000, Hebron - Corpus 1: 440 000, Fordyce - Pedro 1: 490 000, Hebron - Monument 1: 440 000, 1: 220 000, Ringold - Monument 1: 480 000, Eltoro - Palo 1: 440 000, Garcena - Hebron 1: 170 000, Eltoro - Pedro Eltoro - Fordyce 1: 1 730 000, Garcena - Ringold 1: 810 000, 1: 410 000, Gorgora - Hebron 1: 490 000, Grande - Corpus 320 000, Gorgora - Ringold 1: 530 000. Grande - Monument 1: Those lines not listed agree in difference of latitude and difference of longitude with the values obtained by Reynolds. The above ratios are not in themselves accurate, since the positions were first rounded to the nearest centimeter on the plane, this rounded value was converted to geographic coordinates, rounded to the nearest tenth of a micro-degree, then changed to the sexagesimal system, and rounded to the nearest thousandth of a second for comparison with the values obtained by Reynolds. The order of magnitude of the ratios is indicative of the fact that

the computations on the plane, even out to $\lambda=10^{\circ}$, are satisfactory for all orders of geodetic computations. The azimuth differences are less than those which could be caused by possible rounding-off errors.

The standard error of an observation was computed to be \pm 125 micro-degrees, giving a probable error of \pm 0.30, as opposed to a value of \pm 0.32 obtained by Reynolds.

A time study was made between the computational method described herein, and the conventional method of logarithmic computation on the ellipsoid. Since the corrections and functions for the method on the plane were obtained from tables requiring extensive interpolation, the same type of tables were used in obtaining the functions required for conventional computation. in an attempt to make the comparison realistic. If extensive tables were available for both methods of computation, so that linear interpolation would be sufficient, a considerable saving of time would be effected in both methods. In the plane method, two approximations of the positions were made, the T-t corrections computed, an engineering adjustment made, and the 'final preliminary' positions computed. In the conventional method, the triangles were computed approximately in order to obtain the spherical excess, an engineering adjustment made, then the triangles recomputed, and preliminary positions determined. On the plane the computations took two hours thirty-one minutes. By the conventional method the computations took

three hours thirty-nine minutes, an increase of forty-five per cent. The saving of time in the adjustment procedure is obvious when the difference in the number of normal equations is considered. Similarly, the difference in time to compute an inverse position can readily be appreciated by anyone who has been confounded by the conventional method of computation, since

$$s = ((\Delta \xi)^2 + (\Delta \eta)^2)^{1/2}$$
, and

 $t = arc tan \Delta \eta / \Delta \xi$.

CHAPTER V

CONCLUSIONS

Computation of geodetic positions on a Transverse Mercator projection plane is considered feasible in those cases where the extent of the network does not exceed 20° of longitude. It is especially economical for those agencies which presently do mapping on the Universal Transverse Mercator Grid system, or which can conveniently convert to this system. The state plane coordinate grid systems are adequate for the areas they cover, but are limited in extent.

A natural result of the adoption of this system of computation would be the preparation of more extensive tables to enable linear interpolation. These tables could be obtained easily by interpolation in the tables given in Appendix II, or could be computed by the equations given in Chapter II.

Computation of positions on a plane is considered easier to comprehend than computation on the ellipsoid and should tend to eliminate the confusion experienced by those who compute by rote.

The time saving of thirty per cent over the conventional method of computation should entice those who compute preliminary positions to desire the method on the plane, especially where the computations are made in the field and other phases of operations are delayed until these computations can be completed.

APPENDIX I

TRIANGULATION COMPUTATION

TABLE XIV

Observational data

At Palo Pedro 0.000 000 Fordyce 61.458 758 Eltoro 99.623 625	At Pedro Fordyce 0.000 000 Eltoro 26.622 169 Palo 70.538 594	At Fordyce Garcia 0.000 000 Pancho 33.714 261 Eltoro 76.799 908 Palo 140.848 200
At Eltoro Palo 0.000 000 Pedro 36.460 119 Fordyce 77.787 383 Garcia 149.650 419 Pancho 194.305 672	At Garcia Monument 0.000 000 Corpus 51.259 306 Pancho 89.897 022 Eltoro 160.770 644 Fordyce 192.107 703	At Pancho Eltoro 0.000 000 Fordyce 20.396 331 Garcia 64.471 283 Monument 92.938 844 Corpus 142.249 786
At Monument Ringold 0.000 000 Grande 25.007 564 Hebron 31.799 875 Corpus 80.546 783 Pancho 118.331 944 Garcia 179.967 700	At Corpus Pancho 0.000 000 Garcia 63.584 364 Monument 92.904 419 Grande 139.204 178 Hebron 186.716 244	At Grande Ringold 0.000 000 Hebron 63.136 475 Corpus 152.685 811 Monument 230.846 958
At Hebron Corpus 0.000 000 Monument 37.441 819 Grande 42.939 022 Ringold 90.317 314 Gorgora 161.871 189 Garcena 173.596 636	At Garcena Hebron 0.000 000 Ringold 67.305 608 Gorgora 162.234 906	At Ringold Gorgora 0.000 000 Garcena 41.328 886 Hebron 70.744 011 Grande 140.229 353 Monument 166.068 583
At Fordyce Garcia 0.000 000 Pedro 188.850 961	At Gorgora Garcena 0.000 000 Hebron 6.040 025 Ringold 43.742 242	

Positions

Palo	Pedro	Garcena	Gorgora
2947 231.53	2937 707.52	2957 386.92	2953 935.72
954 443.61	953 141.52	906 653.16	898 718.52

ξ _B	2937 707.52	PEDRO	FORDYCE	η _B	953 141.52
$\xi_{\mathbf{A}}$	2947 231.53	B 10	C	$\eta_{\mathbf{A}}$	954 443.61
$\xi_{\rm B} - \xi_{\rm A}$	- 9 524.01	12	8 7	η _B - η _A	- 1 302.09
TAB	187.778 637			$\overline{\mathtt{T}}_{\mathtt{BA}}$	7.791 400
-1 + 2	61.458 758			+11 - 12	-43.916 425
T'AC	249.237 395	2/3		T'BD	323.874 975
-2 + 3	38.164 867	A PALO	***	+10 - 11	-26.622 169
T'AD	287.402 262	1720	D El TORO	T'BC	297.252 806
tan T'AC	+2.6377 03229	(T-t) _{AB}	-0.006 383	tan T'AD	-3.1905 62458
	-1.9413 86401				
	+4.5790 89630				-2.4606 80682

 $\xi_{i}^{!}-\xi_{A}=\frac{(\eta_{B}-\eta_{A})-\tan T_{Bi}^{!}(\xi_{B}-\xi_{A})}{\tan T_{Ai}^{!}-\tan T_{Bi}^{!}};\quad \eta_{i}^{!}=\eta_{A}+\tan T_{Ai}^{!}(\xi_{i}^{!}-\xi_{A}).$ $\xi_{3ij} = \frac{1}{3} (2\xi'_{ri} + \xi'_{rj}); \quad \eta_{3ij} = \frac{1}{3} (2\eta'_{i} + \eta'_{j})$ AC 2912 910 950 643.36 ; BC 2906 692 949 775.30 AD 2915 425 950 876.40 ; BD 2909 207 950 008.34 $(T-t) = I_1(\xi_j - \xi_i)\eta_3 + I_2(\eta_j - \eta_i)\eta_3^2 - I_3(\xi_j - \xi_i)\eta_3^3 - I_4(\eta_j - \eta_i)\eta_3^4$ Line AC BC BD AD $\xi_{j} = \xi_{i}$ = 4 322.23 + 3 354.15 + 5 201.78 +12 878.16 $\eta_{j} - \eta_{i}$ -11 400.76 -10 701.63 (T-t)₁ -.002 9078 +.002 2571 -10 098.67 - 9 399.54 +.003 4963 +.008 6580 $(T-t)_2$ - 62 - 58 55 51 $(T-t)_3$ + 214 - 166 -- 636 257

(T-t)₄ <u>negligible</u> <u>negligible</u> <u>negligible</u> <u>negligible</u>

+.003 4651

+.008 5893

(T-t) -.002 8926 +.002 2347

ξ _B 2937 7	07.52 PEDRO	FORDYCE	η _B	953 141.52
ξ _A 2947 2	· ·	C	$\eta_{\mathbf{A}}$	954 443.61
$\xi_{\rm B} - \xi_{\rm A}$ - 9 5	24.01	987	η _B - η _A	- 1 302.09
ŧ _{AB} 187.78	5 020		₹ _{BA}	7.785 020
-1' + 2' 61.45	5 268		+11' - 12'	-43.918 634
t"AC 249.24	0 288 1 2		t"BD	323.866 386
-2' + 3' <u>38.15</u>	9 740 A PALO	4 5 6	+10' - 11'	-26.617 045
t" _{AD} 287.40	TALO	ELTORO		297.249 341
AD				
tan t"AC +2.6381	05075 (T-t) _{AB}	006 3830	AD	.1909 98416
tan t"BC -1.9416			tan t" BD -0	.7301 11567
diff. +4.5797	79917		diff2	.4608 86849
-l' + 2' = -l + 2	+ (T-t)	(T-t) - etc		
	AB	AC		
$\xi_{\mathbf{C}}^{"}-\xi_{\mathbf{A}} = -4 3$	22.18; ξ <u>"</u> =	2942 909	•35; n" =	943 041.25.
	54.76; ξ" =	2950 586	.29; η <mark>"</mark> =	943 738.58
25, 25	_	2914 073	-	910 585
$\xi_{\mathbf{r}}^{\prime\prime} = \xi^{\prime\prime}(1 - H_2\eta^2)$	$\xi_{\mathbf{r}A}^{"} =$	2904 745	ru	918 130
	ξ" _B =	2304 74)	$\xi_{rD}^{"}=2$	910 1)0
£3	η3		⁸ 3	η3
AC 2912 910	950 642.82	; CA ^A 29	11 748	946 841.89
AD 2915 425	950 874.97	; DA 29	16 778	947 306.92
BC 2906 692	949 774.76	; CB 29	08 638	946 408.01
BD 2909 207	950 007.21	; DB 29	13 668	946 872.89
CD 2913 100	943 273.69		15 615	943 506.14
Line AC	AD	вс	BD	CD
$\xi_{i} - \xi_{i} - 4 322.18$	+ 3 354.76	+ 5 201.83	+12 878.77	+ 7 676.94
η - η 11 402.36	-10 705.03	-10 100.27	- 9 402.94	+ 697.33
$(T-t)_1 = .002 9077$	+.002 2574	+.003 4964	+.008 6584	+.005 1246
$(T-t)_2 - 62$	58	- 55	- 51	4
$(T-t)_3^2 + 214$	1 66	257	- 636	- 371
(T-t) ₄ negligible				
(T-t)002 8925				
		_		


```
Line CA DA CB DB
                                                              DC
\xi_{j} - \xi_{i} + 4322.18 - 3354.76 - 5201.83 - 12878.77 - 7676.94
\eta_{i} - \eta_{i} +11 402.36 +10 705.03 +10 100.27 + 9 402.94 - 697.33
(T-t), +.002 8961 -.002 2490 -.003 4840 -.008 6298 -.005 1258
(T-t)_2 + 61 +
                                   55 + 51 -
                       58 +
(T-t)_3 - 211 + 164 + 254 + 630 + 372
(T-t), negligible negligible negligible negligible negligible
(T-t) +.002 8811 -.002 2268 -.003 4531 -.008 5617 -.005 0890
-t'_{ij} + t'_{ik} = -ij + ik + (T-t)_{ij} - (T-t)_{ik}
                                   -t'_{CA} + t'_{CB} = e' = 48.009 095
-t'_{AC} + t'_{AD} = a' = 38.159740
-t'_{DA} + t'_{DB} = b' = 36.466 454 -t'_{BC} + t'_{BD} = f' = 26.617 044
-t'_{DB} + t'_{DC} = c' = 41.323791 -t'_{BD} + t'_{BA} = g' = 43.918634
-t'_{CD} + t'_{CA} = d' = 64.050 499 -t'_{AB} + t'_{AC} = h' = 61.455 268
                                         \mathbf{v}_{1} = -(\mathbf{a}^{\dagger} + \mathbf{b}^{\dagger} + \dots + \mathbf{h}^{\dagger})/8
                   v<sub>1</sub>
                         <sup>v</sup>2 <sup>v</sup>3
  38.159 740 -67 -13
                                          v_2 = (a^{\dagger} + b^{\dagger} - (e^{\dagger} + f^{\dagger}))/4
a i
   36.466 454 -65
                        -14
                                          subtract from a' and b',
b 1
CP
   41.323 791
                 -65
                                 -97
                                         add to e' and f'.
    64.050 499 -66
                                          v_3 = (c^{\mathfrak{q}} + d^{\mathfrak{q}} - (g^{\mathfrak{q}} + h^{\mathfrak{q}}))/4
d1
                                 -97
   48.009 095 -66 +14
                                          subtract from c' and d',
    26.617 044 -65 +13
                                          add to g' and h'.
f¹
    43.918 634 -65
gi
                                 +97
                                         \mathbf{v}_{h} = (\operatorname{sum} 1 - \operatorname{sum} 2)/\leq \delta,
    61.455 268 -66
h 8
                                 +97
                                         subtract from a", c", e",
                                         g", add to other angles.
                                 V4
a" 38.159 660 a 38.159 695
                                35 b" 36.466 375 b 36.466 340
c" 41.323 629 c 41.323 664 35 d" 64.050 336 d 64.050 301
e" 48.009 043 e 48.009 078
                                       f" 26.616 992 f 26.616 957
                                35
g" 43.918 666 g 43.918 701
                                       h" 61.455 299 h 61.455 264
                                 35
Log sin a" 9.790 8866 δ 9 6622
                                     Log sin b" 9.774 0429 810 2561
Log sin c" 9.819 7488 δ 8 6140
                                     Log sin d" 9.953 8461 δ 3 6887
Log sin e" 9.871 1352 δ 6 8227
                                     Log sin f" 9.651 3015 δ15 1255
Log sin g" 9.841 1320 δ 7 8715
                                    Log sin h" 9.943 7143 8 4 1231
   sum 1 9.322 9026
                                         sum 2 9.322 9049
```



```
T<sub>AB</sub> =187.778 637
                                         \bar{t}_{AB} = 187.785 020;
                                                                                                                       \overline{t}_{AC} + (T-t)_{AC} = \overline{T}_{AC} =
\bar{t}_{AB} + h = \bar{t}_{AC} = 249.240 284;
\bar{t}_{AC} + a = \bar{t}_{AD} = 287.399 979;
\bar{t}_{AD} + (T-t)_{AD} = \bar{T}_{AD} = \bar{t}_{AD} + (T-t)_{AD} = \bar{T}_{AD} = \bar{t}_{AD} = \bar{t}_{AD} + (T-t)_{AD} = \bar{T}_{AD} = \bar{t}_{
                                                                                                                            \overline{t}_{DA} + (T-t)_{DA} = \overline{T}_{DA} =
\bar{t}_{AD} + 180 = \bar{t}_{DA} = 107.399 979;
\overline{t}_{DA} + b = \overline{t}_{DB} = 143.866 319;
                                                                                                                             \overline{t}_{DB} + (T-t)_{DB} = \overline{T}_{DB} =
\bar{t}_{DB} + c = \bar{t}_{DC} = 185.189 983;
                                                                                                                             \bar{t}_{DC} + (T-t)_{DC} = \bar{T}_{DC} = 185.184 894
\bar{t}_{DC} + 180 = \bar{t}_{CD} = 5.189 983;
                                                                                                                      \bar{t}_{CD} + (T-t)_{CD} = \bar{T}_{CD} = 5.195 \text{ 071}
\bar{t}_{CD} + d = \bar{t}_{CA} = 69.240 284;
                                                                                                                             \overline{t}_{CA} + (T-t)_{CA} = \overline{T}_{CA} =
\bar{t}_{CA} + e = \bar{t}_{CB} = 117.249 362;
                                                                                                                             \overline{t}_{CB} + (T-t)_{CB} = \overline{T}_{CB} =
\bar{t}_{CB} + 180 = \bar{t}_{BC} = 297.249 362;
                                                                                                                             \overline{t}_{BC} + (T-t)_{BC} = \overline{T}_{BC} =
\bar{t}_{BC} + f = \bar{t}_{BD} = 323.866 319;
                                                                                                                       \bar{t}_{BD} + (T-t)_{BD} = \bar{T}_{BD} =
\bar{t}_{BD} + g = \bar{t}_{BA} = 7.785 020;
                                                                                                                                                                                     \overline{T}_{BA} = 7.791 400
\tan \bar{t}_{AD} -3.1910 07979 \tan \bar{t}_{DC}+0.0908 30854 \tan \bar{t}_{CB} -1.9416 73094
tan \bar{t}_{BD} = -0.7301 13360 tan \bar{t}_{AC} + 2.6381 04519 tan \bar{t}_{DB} = -0.7301 13360
diff. -2.4608 94619 diff. -2.5472 73665 diff. -1.2115 59734
\frac{(\eta_{B} - \eta_{A}) - \tan \bar{t}_{BD}(\xi_{B} - \xi_{A})}{\tan \bar{t}_{AD} - \tan \bar{t}_{BD}} = \xi_{D} - \xi_{A} = +3354.75; \quad \bar{\xi}_{D} = 2950586.28
                                                                                         = \eta_{D} - \eta_{A} = -10 705.03; \overline{\eta}_{D} = 943 738.58
\tan \bar{t}_{AD}(\xi_{D}-\xi_{A})
\frac{\tan \bar{t}_{AC}(\xi_{D}-\xi_{A}) - (\eta_{D}-\eta_{A})}{\tan \bar{t}_{AC} - \tan \bar{t}_{DC}} = \xi_{C}-\xi_{D} = -7676.92; \quad \bar{\xi}_{C} = 2942909.36
                                                                             = \eta_{C} - \eta_{D} = - 697.30; \bar{\eta}_{C} = 943 041.28
\tan \bar{t}_{DC}(\xi_{C} - \xi_{D})
\frac{\tan \bar{t}_{DB}(\xi_C - \xi_D) - (\eta_C - \eta_D)}{\tan \bar{t}_{CB} - \tan \bar{t}_{DB}} = \xi_B - \xi_C = -5 \text{ 201.83}; \quad \xi_B^* = 2937 \text{ 707.53}
\tan \bar{t}_{CB}(\xi_B - \xi_C)
                                                                   = \eta_B - \eta_C = +10 100.25; \eta_B^* = 953 141.53
Stations: A. Palo; B. Pedro; C. Fordyce; D. Eltoro.
```

Stations: A. Palo; B. Pedro; C. Fordyce; D. Eltoro.

Datum: North American 1913; Ellipsoid: Clarke 1866; λ 108°W

+.005 2758

- 379

negligible

+.005 2311

75

154

negligible

-.002 1411

68

 $(T-t)_{1}$

(T-t)2

(T-t)3

 $(T-t)_{L}$ (T-t)

+.002 9515

negligible

+.002 9232

71

212

+.010 3744

negligible

+.010 2935

745

64

ξ _B 2942 909.36 FORDYCE	GARCIA 11B 943 041.28
ξ _A 2950 586.28	9 n A 943 738.58
$\xi_{\rm B} - \xi_{\rm A}$ - 7 676.92 $^{\prime 2}$	$\eta_{\rm B} - \eta_{\rm A} - 697.30$
ŧ _{AB} 185.189 983	5.189 983
-1' + 2' <u>71.860.088</u>	+11' - 12' -43.090 853
t" _{AC} 257.050 071	5 6 t" _{BD} 322.099 130
-2' + 3' <u>44.647 881</u> 3	+10' - 11' -33.706 841
t" _{AD} 301.697 952 A	o PANCHO t"BC 288.392 239
	005 0800 to 14 3 6102 67/47
	AB005 0890 tan t" _{AD} -1.6192 67443
tan t" _{BC} = 3.0074 70979 (T-t) diff. +7.3562 82287	BA +.005 0879 tan t"BD -0.7785 03147 diff0.8407 64296
-1' + 2' = -1 + 2 + (T-t) _{AB}	- (T-t) _{AC} etc.
$\xi_{\rm C}^{"} - \xi_{\rm A} = -3 \ 233.35; \ \xi_{\rm C}^{"} =$	2947 352.93; η" = 929 677.35.
	2958 524.07; $\eta_C^{"} = 930 \ 885.18$.
$\xi_{\mathbf{r}}^{"} = \xi^{"}(1 - H_{2}\eta^{2})$ $\xi_{\mathbf{r}}^{"}A =$	2918 130 ξ" _C = 2915 891
ξ" _{rB} =	2910 585 ξ" _{rD} = 2926 862
ξ ₃ η ₃	ξ ₃
AC 2917 384 939 051.50	; CA 2916 137 934 364.42
AD 2921 041 939 454.11	
BC 2912 354 938 586.64	
BD 2916 011 938 989.25	
CD 2919 548 930 079.96	; DC 2923 205 930 482.57
Line AC AD	BC BD CD
ξξ 3 233·35 + 7 937·79	+ 4 443.57 +15 614.71 +11 171.14
η,-η, -14 061.23 -12 853.40	-13 363.93 -12 156.10 + 1 207.83
(T-t),002 1487 +.005 2772	+.002 9515 +.010 3759 +.007 3527
$(T-t)_{2}^{2}$ - 75 - 68	- 71 - 64 + 6
$(T-t)_3 + 154 - 379$	- 212 - 745 - 518
(T-t) negligible negligible	negligible negligible negligible
·	+.002 9232 +.010 2950 +.007 3015


```
Line
       CA DA
                                 CB
                                              DB
                                                         DC
\xi_{i}^{-} = \xi_{i}^{-} + 3 + 3 + 233.35 - 7 + 937.79 - 4 + 443.57 - 15 614.71 - 11 171.14
\eta_i - \eta_i +14 061.23 +12 853.40 +13 363.93 +12 156.10 - 1 207.83
(T-t)<sub>1</sub> +.002 1382 -.005 2531 -.002 9375 -.010 3311 -.007 3558
                     68 +
                                71 +
           74 +
                                              64 -
(T-t)_3 - 152 + 374 + 209 +
                                                735 +
                                                             519
(T-t)4 negligible negligible negligible negligible
(T-t) +.002 1304 -.005 2089 -.002 9095 -.010 2512 -.007 3045
-t'_{ij} + t'_{ik} = -ij + ik + (T-t)_{ij} - (T-t)_{ik}
                                 -t'_{CA} + t'_{CB} = e' = 31.342 099
-t'_{AC} + t'_{AD} = a' = 44.647 880
-t'_{DA} + t'_{DB} = b' = 20.401 373
                                 -t'_{BC} + t'_{BD} = f' = 33.706 889
-t'_{DB} + t'_{DC} = c' = 44.072 005
                                 -t'_{BD} + t'_{BA} = g' = 43.090 854
-t'_{CD} + t'_{CA} = d' = 70.878 793
                                  -t'_{AB} + t'_{AC} = h' = 71.860 088
                                v<sub>3</sub>
                                       v_1 = -(a'+b'+...h')/8
                        Ψ<sub>2</sub>
                  v<sub>1</sub>
                                       v_2 = (a'+b'-(e'+f'))/4
  44.647 880
                        -66
                  +2
                      -66
  20.401 373
b'
                  +2
                                      subtract from a' and b',
   44.072 005
                               +37
                                     add to e' and f'.
                  +3
   70.878 793
                                       v_z = (c'+d'-(g'+h'))/4
                +2
                               +35
                      +66
   31.342 099
                +2
                                       subtract from c' and d',
   33.706 889
                       +66
f'
                  +3
                                       add to g' and h'.
   43.090 854
                                      v_{\perp} = (sum 1 - sum 2)/28,
g1
                               <del>-</del>36
                  +2
   71.860 088
                               -36
                                       subtract from a", c", e"
h'
                  +3
                                       and g", add to others.
                               v4
a" 44.647 816 a 44.647 820
                               4 b" 20.401 309 b 20.401 305
                              4
c" 44.072 045 c 44.072 049
                                   d" 70.878 830 d 70.878 826
e" 31.342 167 e 31.342 171
                               4
                                    f" 33.706 958 f 33.706 954
g" 43.090 820 g 43.090 824
                                     h" 71.860 055 h 71.860 051
Log sin a" 9.846 7991 8 7 6736
                               Log sin b" 9.542 3192 ξ20 3802
Log sin c" 9.842 3360 δ 7 8295
                                 Log sin d" 9.975 3527 & 2 6279
Log sin e" 9.716 1267 δ12 4461
                                 Log sin f" 9.744 2504 δ11.3625
Log sin g" 9.8345204881025
                                 Log sin h" 9.977 8602 8 2 4833
   sum 1 9.239 7822
                                      sum 2 9.239 7825
```


Stations: A. Eltoro; B. Fordyce; C. Garcia; D. Pancho. Datum: North American 1913; Ellipsoid: Clarke 1866; λ_0 108°W

ξ _B	2947 353.92	GARCIA	MONUMENT	η_B	929 677.35
ξ_{A}	2958 524.00	10	9 /	ηA	930 885.24
$\xi_{\rm B} - \xi_{\rm A}$	-11 171.08	12	8 7	$\eta_B - \eta_A$	-1 207.89
$\overline{\mathtt{T}}_{\mathtt{AB}}$	186.163 905	. \		$\overline{\mathtt{T}}_{\mathtt{BA}}$	6.178 508
-1 + 2	28.467 561			+11 - 12	-38.637 716
T'AC	214.631 466	, /	5-14	T' _{BD}	327.540 792
-2 + 3	49.310 942	/23	# D	+10 - 11	-51 259 306
T'AD_	263.942 408	A PANCHO 	CORPUS	T'BC	276.281 486
tan T'	+0.6906 64641	(T-t), -	.007 3045	tan T' +	9.4232 39586
	-9.0847 99909				0.6360 69807
diff	+9.7754 64550	BA			10.0593 0939
$\xi_{i}^{!} - \xi_{A} = -$	$\frac{(\eta_B^{-\eta_A}) - \tan 2}{\tan T_{Ai} - \tan 2}$	Bi (SB-SA)	·; η; = η	A + tan Ti	$(\xi_{i}^{!}-\xi_{A}).$
O A	-10.505.37	•		•	923 629.53.
$\xi_{\rm D}^{\dagger} - \xi_{\rm A} =$	- 826.45			_	923 097.38.
$\xi_{\mathbf{r}}^{\dagger} = \xi^{\dagger}(1)$	L - H ₂ η ²)	ξrA	2926 859	10	2916 958
r	2	ξ'rB	2917 091	$\xi_{rD}' =$	2920 999
$\xi_{3ij} = \frac{1}{3}$	(2ξ'; + ξ'rj)	, η _{3ij} =	$: \frac{1}{3} \left(2\eta'_{i} \right)$	+ η' j)	
	ξ ₃	13		ξ3	η3
AC 292	23 559 928 4	+66.65 ;	BC 29	16 247	927 661.40
	26 751 928 2			19 439	927 484.01
(T-t) = 0	$(\xi_j - \xi_i)\eta_3 + 1$	₂ (η _j -η _i)η	$\frac{2}{3} - I_3(\xi_j)$	$-\xi_{i})\eta_{3}^{3} - I_{4}$	$(\eta_{j}-\eta_{i})\eta_{3}^{4}$
Line	AC	AD		BC	BD
ξj-ξi	-10 505.37	- 826.			
ηj-ηi	- 7 255.69	- 7 787.	84 -	6 047.80	- 6 5 79 . 95
$(T-t)_1$	- 7 255.69 006 9025	000 54	-29 +-	000 4370	+.006 7897
(T-t) ₂	- 38	-	40 -	31	- 34
(T-t)3	1.0-	+	38 _	31	1.00
	+ 485	т	_	91	- 476
				gligible	

$\xi_{\rm B}$ $\xi_{\rm A}$ $\xi_{\rm B}$ $\xi_{\rm A}$ $\xi_{\rm B}$ $\xi_{\rm B}$ $\xi_{\rm B}$ $\xi_{\rm B}$ $\xi_{\rm B}$ $\xi_{\rm B}$ $\xi_{\rm C}$ $\xi_{\rm B}$ $\xi_{\rm C}$ $\xi_{\rm B}$ $\xi_{\rm C}$ ξ_{\rm	24.00 B C 71.08 12 10 9 8 7 12 114 13 322 14 627 3 4 627	η_{B} 929 677.35 η_{A} 930 885.24 η_{B} - η_{A} - 1 207.89 \overline{t}_{BA} 6.171 208 +11' - 12' -38.637 155 t''_{BD} 327.534 053 +10' - 11' -51.252 998 t''_{BC} 276.281 055
tan t" AC +0.6908 4		tan t" _{AD} +9.4240 87580
tan t" $_{BC}$ $\frac{-9.0854}{+9.7762}$ 6		tan t" _{BD} <u>-0.6362 35023</u> diff. +10.0603 22603
	+ (T-t) _{AB} - (T-t) _{AC} etc.	
•	•	.77; η" = 923 627.79.
$\xi_D^{"} - \xi_A = -82$	$26.55; \xi_D^{"} = 2957 697$.45; η" = 923 095.76.
$\xi_{\mathbf{r}}^{"} = \xi^{"}(1 - H_2\eta^2)$	$\xi_{rA}^{"} = 2926 862$ $\xi_{rB}^{"} = 2915 891$	ξ" _{rC} = 2916 958 ξ" _{rD} = 2926 571
⁵ 3	η3	ξ ₃ η ₃
AC 2923 559	928 466.09 ; CA 292	20 256 926 046.94
	,	26 667 925 692.25
	·	16 602 925 644.31
		23 011 925 289.62
CD 2920 162	923 450.45 ; DC 292	23 367 923 273.10
Line AC	AD BC	BD CD
ξ_{i} - ξ_{i} -10 505.23	- 826.55 + 665.85	+10 344.53 + 9 678.68
$\eta_{i} - \eta_{i} - 7 257.45$	- 7 789.48 - 6 049.56	- 6 581.59 - 532.03
	000 5430 +.000 4371	
$(T-t)_2^-$ 38	- 40 - 31	- 34 - 3
	+ 38 - 31	
	negligible negligible	
(T-t)006 8577	000 5432 +.000 4309	+.006 7386 +.006 2808


```
Line
      CA
                    DA
                                CB DB
                                                         DC
\xi_{i} +10 505.23 + 826.55 - 665.85 -10 344.53 - 9 678.68
\eta_{j} - \eta_{i} + 7 \ 257.45 + 7 \ 789.48 + 6 \ 049.56 + 6 \ 581.59
                                                         532.03
(T-t)<sub>1</sub> +.006 8844 +.000 5415 -.000 4362 -.006 7735
                                                    -.006 3237
(T-t)_2 + 38 + 40 + 31 + 34 +
(T-t)_3 - 481 - 38 + 31 + 472 + 439
(T-t)4 negligible negligible negligible negligible negligible
(T-t) +.006 8401 +.000 5417 -.000 4300 -.006 7229 -.006 2795
-t'_{ij} + t'_{ik} = -ij + ik + (T-t)_{ii} - (T-t)_{ik}
-t'_{AC} + t'_{AD} = a' = 49.304 628
                                 -t'_{CA} + t'_{CB} = e' = 61.643 026
-t'_{DA} + t'_{DB} = b' = 63.591 629 -t'_{BC} + t'_{BD} = f' = 51.252 998
-t'_{DB} + t'_{DC} = c' = 29.319 612 -t'_{BD} + t'_{BA} = g' = 38.637 153
-t'_{CD} + t'_{CA} = d' = 37.784 602 -t'_{AB} + t'_{AC} = h' = 28.467 114
                                      v_1 = -(a'+b'+...h')/8
v<sub>1</sub>
a' 49.304 628 -95
                       <sup>v</sup>2 <sup>v</sup>3
                                     v_2 = (a!+b!-(e!+f!))/4
                       -58
   63.591 629 -96 -58
b i
                                     subtract from a' and b',
               -95
                       +13 add to e' and f'.
CI
   29.319 612
   37.784 602
                                     v_3 = (c^* + d^* - (g^* + h^*))/4
                -95
                              +13
d!
                <del>-</del>95 +58
   61.643 026
e t
                                      subtract from c' and d',
   51.252 998 -95 +58
f'
                                      add to g' and h'.
gi
   38.637 153 -95
                              -13
                                     \mathbf{v}_h = (\operatorname{sum} 1 - \operatorname{sum} 2)/28,
   28.467 114 -96
h *
                              -13
                                     subtract from a", c", e",
                                     g", add to other angles.
                              v4
a" 49.304 475 a 49.304 546
                                   ъч 63.591 475 в 63.591 404
                             71
c" 29.319 530 c 29.319 601
                             71
                                   d" 37.784 520 d 37.784 449
e" 61.642 989 e 61.643 060 71 f" 51.252 961 f 51.252 890
                              71 h" 28.467 005 h 28.466 934
g" 38.637 045 g 38.637 116
Log sin a" 9.8797754865188
                                 Log sin b" 9.952 1362 δ 3 7641
                                Log sin d' 9.787 2433 δ 9 7774
Log sin c" 9.689 9121 813 4963
Log sin e" 9.944 4852 & 4 0910
                                 Log sin f" 9.8920483860828
Log sin g" 9.795 4523 & 9 4825
                                 Log sin h" 9.678 2020 8 13 9797
   sum 1 9.309 6250
                                     sum 2 9.309 6298
```


Stations: A. Pancho; B. Garcia; C. Monument; D. Corpus. Datum: North American 1913; Ellipsoid: Clarke 1866; λ_0 108°W

ξ _B	2948 018.77	MONUMENT	$\eta_{ m B}$	923 627.84
ξ _A	2957 697.92	B 10 GRANDE	$\eta_{ ext{A}}$	923 095.82
$\xi_{\rm B} - \xi_{\rm A}$	- 9 678.65	12 987	$\eta_B - \eta_A$	+ 532.02
TAB	176.847 414	\backslash	$\overline{\mathtt{T}}_{\mathtt{BA}}$	356.859 974
-1 + 2	46.299 759		+1į - 12	-48.746 908
T'AC	223.147 173	12/2/6	T'BD	308.113 066
-2 + 3	47.512 066	A • D	+10 - 11	- 6.792 311
T'AD_	270.659 239	CORPUS HEBRON	T'BC	301.320 755
tan T'.	+0.9373 28942	(T-t) _{AB} 006 279	95 tan T'	-86.908 16376
		$(T-t)_{BA} + .006 280$		
diff	+2.5806 98665	BA BA		-85.633 41527
$\xi_{i}^{!}-\xi_{A} = -$	$\frac{(\eta_B - \eta_A) - \tan T}{\tan T_{Ai} - t}$	$\frac{\operatorname{Bi}(\xi_{\overline{B}}\xi_{A})}{\operatorname{an} T_{\overline{B}i}}; \eta_{i}^{i} =$	η _A + tan T _A	$i^{(\xi_i - \xi_A)}$.
$\xi_{C}^{\dagger} - \xi_{A} =$	-5 957.14;	ξ' _C = 2951 740	0.28; η; =	917 512.02.
$\xi_{D}^{\dagger} - \xi_{A} =$	+ 137.86;	•	•	911 114.25.
	•	$\xi_{rA}^{\dagger} = 2926 571$	D	2921 051
~ . ~ . / -	/ .	TA	TrG	
$\zeta_{\mathbf{r}}^{\dagger} = \zeta^{\dagger}(1$	- H ₂ η ²)	$\xi_{rB}^{!} = 2916 958$		2927 510
		ξ' _{rB} = 2916 958	$\xi_{rD}^{i}=$	2927 510
	(2ξ _{ri} + ξ _{rj});	$\xi_{rB}^{!} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{ij}^{!}$	$\xi_{rD}^{\dagger} = \frac{1}{1} + \eta_{j}^{\dagger}$	
$\xi_{3ij} = \frac{1}{3}$	(2ξ' _{ri} + ξ' _{rj}); ξ ₃	$\xi_{rB}^{!} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{1}$	β ξ' _{rD} = i + η' _j) ξ ₃	^η 3
$\xi_{3ij} = \frac{1}{3}$ AC 292	(2ξ' _{ri} + ξ' _{rj}); ξ 3 24 731 921 2	$\xi_{rB}^{i} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{i}$ 234.55 ; BC	β ξ' _{rD} = i + η' _j) ξ ₃ 2918 322	[¶] 3 921 589.23
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292	(25; + 5;); 53 24 731 921 2 26 884 919 3	$\xi_{rB}^{!} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{!}$ 234.55 ; BC 2	3 ξ' _{rD} = i + η' _j) ξ ₃ 2918 322 2920 475	[¶] 3 921 589.23 919 456.43
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292	(25; + 5;); 53 24 731 921 2 26 884 919 3	$\xi_{rB}^{i} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{i}$ 234.55 ; BC	3 ξ' _{rD} = i + η' _j) ξ ₃ 2918 322 2920 475	[¶] 3 921 589.23 919 456.43
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I	$(2\xi_{ri}^{i} + \xi_{rj}^{i});$ ξ_{3} $(24 731 921 26 884 919 36 16 16 16 16 16 16 16 16 16 16 16 16 16$	$\xi_{rB}^{!} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{!}$ 234.55 ; BC 234.55 ; BC $2(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8)$ AD	$\xi_{rD}^{3} = \xi_{rD}^{3} = \xi_{$	η ₃ 921 589.23 919 456.43 4 ^{(η} j ^{-η} i ^{)η} 3 BD
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I Line $\xi_{-} = \xi_{-}$	$(2\xi_{ri}^{!} + \xi_{rj}^{!});$ ξ_{3} $(24 731 921 26 884 919 16 16 16 16 16 16 16 16 1$	$\xi_{rB}^{\dagger} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{\dagger}$ 234.55 ; BC 101.96 ; BD $12(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8\eta_{i})$ 137.86	$\xi_{rD}^{3} = \xi_{rD}^{3} = \xi_{$	η ₃ 921 589.23 919 456.43 4 (η _j -η _i)η ₃ BD + 9 816.51
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I Line $\xi_{-} = \xi_{-}$	$(2\xi_{ri}^{!} + \xi_{rj}^{!});$ ξ_{3} $(24 731 921 26 884 919 16 16 16 16 16 16 16 16 1$	$\xi_{rB}^{\dagger} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{\dagger}$ 234.55 ; BC 101.96 ; BD $12(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8\eta_{i})$ 137.86	$\xi_{rD}^{3} = \xi_{rD}^{3} = \xi_{$	η ₃ 921 589.23 919 456.43 4 (η _j -η _i)η ₃ BD + 9 816.51
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I Line $\xi_{-} = \xi_{-}$	$(2\xi_{ri}^{!} + \xi_{rj}^{!});$ ξ_{3} $(24 731 921 26 884 919 16 16 16 16 16 16 16 16 1$	$\xi_{rB}^{\dagger} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{\dagger}$ 234.55 ; BC 101.96 ; BD $12(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8\eta_{i})$ 137.86	$\xi_{rD}^{3} = \xi_{rD}^{3} = \xi_{$	η ₃ 921 589.23 919 456.43 4 (η _j -η _i)η ₃ BD + 9 816.51
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 $$ $(T-t) = I$ Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ $(T-t)_{1}$	$(2\xi_{ri} + \xi_{rj});$ ξ_3 $(24 731 921 26 884 919 36 916 916 916 916 916 916 916 916 916 91$	$\xi_{rB}^{!} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{!}$ 234.55 ; BC 234.55 ; BC $2(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8)$ AD	$\xi_{rD}^{3} = \xi_{rD}^{3} = \xi_{$	η ₃ 921 589.23 919 456.43
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ (T-t) $(T-t)_{2}$ $(T-t)_{3}$	$(2\xi_{ri} + \xi_{rj});$ ξ_3 $(24 731 921 2)$ $(26 884 919 3)$ $(\xi_j - \xi_i)^{\eta_3} + 1$ $(\xi_j - \xi_i)^{\eta$	$\xi_{rB}^{\dagger} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{\dagger}$ 234.55 ; BC $2(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(\xi_{3})$ AD + 137.86 -11 981.57 +.000 0897 - 61 - 8	$\xi_{rD}^{3} = \xi_{rD}^{4} = \frac{1}{3} + \eta_{j}^{4}$ $\xi_{3}^{2} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $\xi_{3}^{2} = \frac{1}{3} + $	η ₃ 921 589.23 919 456.43
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = I Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ (T-t) $(T-t)_{2}$ $(T-t)_{3}$	$(2\xi_{ri} + \xi_{rj});$ ξ_3 $(24 731 921 2)$ $(26 884 919 3)$ $(\xi_j - \xi_i)^{\eta_3} + 1$ $(\xi_j - \xi_i)^{\eta$	$\xi_{rB}^{\dagger} = 2916 958$ $\eta_{3ij} = \frac{1}{3} (2\eta)_{3}^{\dagger}$ 234.55 ; BC $2(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}(8\eta)_{3}^{\dagger}$ AD $+ 137.86$ $-11 981.57$ $+ .000 0897$ $- 61$	$\xi_{rD}^{3} = \xi_{rD}^{4} = \frac{1}{3} + \eta_{j}^{4}$ $\xi_{3}^{2} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $\xi_{3}^{2} = \frac{1}{3} + $	η ₃ 921 589.23 919 456.43

ξ _B 2948 03	18.77 MONUM	ENT	η_{B}	923 627.84
ξ _A 2957 69	97.42 B 10	GRANDE	$\eta_{ m A}$	923 095.82
$\xi_{\rm B} - \xi_{\rm A} - 9.6^{\circ}$	78.65 12"	9/7	$\eta_B - \eta_A$	+ 532.02
t _{AB} 176.85	3 693	\\ \\ \\ \\	t _{BA}	356.853 693
-l' + 2' <u>46.29</u> '	7 339	\wedge	+11'-12'	<u>-48.746 964</u>
t" _{AC} 223.15	1 032 12/	26	t"BD	308.106 729
-21 + 31 <u>47.508</u>	A	4	+10' - 11'	<u>- 6.788 381</u>
t'' _{AD} 270.659	9 156 CORPU	S HEBRON	t"BC	301.318 348
tan t"AC +0.9374	55477 (T-t).	006 2795	tan t"8	36.919 10858
tan t"BC -1.6435 2				1.275 03886
diff. +2.5809 8	_	A		35.644 06972
		(m +)		
-l' + 2' = -l + 2	+ (T-t) _{AB} -	AC_etc		
$\xi_{\mathbf{C}}^{"} - \xi_{\mathbf{A}} = -5 99$	57.07; ζ" =	2951 740	.35; η" =	917 511.33.
	37.88; ξ" =		.30; η" =	911 111.38.
D A	2			2921 051
$\xi_{\mathbf{r}}^{"} = \xi^{"}(1 - H_2 \eta^2)$	ξ" = rA	2926 571 2916 958	10	2927 510
_	$\xi_{\mathbf{r}B}^{"}=$	2910 900	1 D	2727)10
ξ3	η ₃		⁵ 3	η ₃
AC 2924 731	921 234.32		22 891	919 372.83
AD 2926 884	919 101.01		27 197	915 106.19
BC 2918 322	921 589.00		19 687	919 550.17
BD 2920 475	919 455.69	•	23 993	915 283.53
CD 2923 204	915 378.01	; DC 29	25 357 	913 244.70
Line AC	AD	BC	BD	CD
ξ;-ξ; - 5 957.07	+ 137.88	+ 3 721.58	+ 9 816.53	+ 6 094.95
$\eta_{i} - \eta_{i} - 5 584.49$	-11 984.44	- 6 116.51	-12 516.46	- 6 399.95
$(T-t)_1003 8835$	+.000 0897	+.002 4271	+.006 3873	+.003 9482
$(T-t)_2 - 29$	- 61	- 31	- 64	- 32
$(T-t)_3^{-} + 268$	- 6	- 168	- 440	- 269
(T-t)4 negligible				
(T-t)003 8596				


```
DA CB DB DC
Line CA
\xi_{i}^{-}\xi_{i} + 5 957.07 - 137.88 - 3 721.58 - 9 816.53 - 6 094.95
\eta_{i}^{-} - \eta_{i} + 5 584.49 + 11 984.44 + 6 116.51 + 12 516.46 + 6 399.95
(T-t), +.003 8757 -.000 0893 -.002 4218 -.006 3583 -.003 9390
(T-t)_2 +
                28 +
                       60 +
                                     31 +
                                                       63 +
                                                                    32
              267 + 6 + 167 +
                                                     434 +
                                                                   268
(T-t), negligible negligible negligible negligible negligible
(T-t) +.003 8518 -.000 0827 -.002 4020 -.006 3086 -.003 9090
                                  RINGOLD
                                                          923 627.84
            2948 018.77
ER.
                          MONUMENT
                                              ηB
                          B 15
                                                          911 111.38
            2957 835.30
\xi_{\rm D}
                                              \eta_{D}
            - 9 816.53
\xi_{\rm R} - \xi_{\rm D}
                                                          +12 516.46
                                              \eta_B - \eta_D
                                   GRANDE
₹<sub>DB</sub>
            128.106 729
                                              ₹
BD
                                                          308.106 729
TDB
                                              T<sub>BD</sub>
            128.100 392
                                                          308.113 066
+15 - 11
                                                          -31.799 875
                                HEBRON
T'DE
            180.975 887
                                                          276.313 191
tan T'_{DE} +0.0170 34089 (T-t)_{DB} -.006 3086
\tan T'_{BE} = -9.0388 07244 (T-t)_{BD} + .006 3369
diff. +9.0558 41333
\xi'_{E} - \xi'_{D} = -8415.92; \quad \xi'_{E} = 2949419.38; \quad \eta'_{E} = 910968.02
\xi'_{rD} = 2927 510
                                     Line
                                                  DE
                                    \xi_{j}-\xi_{i} - 8 415.92 + 1 400.61
\xi'_{rB} = 2916 958
        = 2919 190
                                                  143.36 -12 659.82
                                     η<sub>i</sub>-η<sub>i</sub>
                                     (T-t)1
DE \xi_3 2924 737, \eta_3 911 063.26;
                                              -.005 4259 +.000 9113
                                     (T-t)<sub>2</sub>
BE \xi_3 2917 702, \eta_3 919 407.57.
                                                     1
                                                                    65
                                     (T-t)<sub>3</sub> +
                                                      366 -
                                                                    63
                                     (T-t) negligible negligible
                                     (T-t) -.005 3894 +.000 8985
                                                          308.106 729
           128.106 729
                                              Ŧ<sub>RD</sub>
-5' + 13' <u>52.874 576</u>
                                              +15' - 11' -31.794 437
                                              t"BE
                                                          276.312 292
            180.981 305
tan t"_{
m DE} +0.0171 28678 (T-t)_{
m DB} -.006 3086
\tan t''_{BE} = \frac{-9.0401\ 05040}{05040} (T-t)_{BD} + .006\ 3369
diff. +9.0572 33718
```



```
\xi'_{E} - \xi'_{D} = -8416.04; \xi'_{E} = 2949419.26; \eta'_{E} = 910967.22
                  \xi'_{rD} = 2927 510
              η<sub>3</sub>
                                     Eng
                                                  η3
     2924 737 911 063.32 ; ED
                                 2921 963
                                             911 015.27
DE
BE 2917 702 919 407.63 ; EB 2917 924 915 187.42
                                  2919 810 913 148.58
CE
     2920 431 915 329.95 ; EC
Line
        DE
                       ED
                                     BE
                                                   EB
       - 8 416.04 + 8 416.04
                                 + 1 400.49
                                               - 1 400.49
         144.16
                   + 144.16
                                  -12 660.62
                                               +12 660.62
\eta_i - \eta_i
       -.005 4260
(T-t)
                   +.005 4258
                                  +.000 9112
                                               -.000 9070
(T-t)2
                                         65
                                                      64
              1
                            1
     + 367
(T-t)3
                    - 367
                                         63
                                                      62
(T-t)4
      negligible
                   negligible
                                  negligible
                                               negligible
                   +.005 3892
                                 +.000 8984
                                               -.000 8944
(T-t)
       -.005 3894
Line
       CE
             EC
\xi_{i}^{-\xi_{i}} - 2 321.09 + 2 321.09
\eta_i - \eta_i - 6544.11 - 6544.11
(T-t), -.001 5035 +.001 4999
(T-t)_2 - 33 +
                      33
(T-t)_3 + 102 - 101
(T-t) negligible negligible
(T-t) -.001 4966 +.001 4931
```



```
٧٦
                          ٧٦
    47.508 123
                         -187
                                                                                    - 35
a'
                                                          d1
                                                                47.379 772
b' 42.942 848
                         -186
                                                          e I
                                                                69.489 238
                                                                                    - 35
k' 89.549 402
                      0
                                                                63.131 060
                                                                                   0
f' 25.841 618
                        + 95
                                                           i'
                                                                55 • 535 345
                                                                                    - 43
g' 25.006 055
                     + 95
                                                                46.297 339
                                                           j'
                                                                                  - 42
m' 129.152 137
                                                                78.167 401
                             0
                                                                                      0
                                                          n *
                                          V4
a" 47.507 936 a 47.507 799
                                                  b" 42.942 662 b 42.942 799
                                       137
d" 47.379 737 d 47.379 600
                                                  e" 69.489 203 e 69.489 340
                                        137
f" 25.841 713 f 25.841 576 137
                                                  g" 25.006 150 g 25.006 287
i" 55.535 302 i 55.535 165 137
                                                   j" 46.297 297 j 46.297 434
Log sin a" 9.867 6861 \delta 6 9437 Log sin b" 9.833 3169 \delta 8 1449
Log sin d" 9.866 7938 \delta 6 9750 Log sin e" 9.971 5570 \delta 2 8356
Log sin f" 9.639 3734 δ15 6506
                                             Log sin g" 9.626 0484 δ16 2502
Log sin i" 9.916 1775 δ 5 2026
                                             Log sin j" 9.859 0990 δ 7 2442
                                                     sum 2 9.290 0213
    sum 1 9.290 0309
               \bar{t}_{AB} = 176.853 693
                                                                 \overline{T}_{AB} = 176.847 414
\bar{t}_{AB} + j = \bar{t}_{AC} = 223.151 127;
\bar{t}_{AC} + 180 = \bar{t}_{CA} = 43.151 127;
                                             \overline{t}_{CA} + (T-t)_{CA} = \overline{T}_{CA} =
                                             \overline{t}_{AD} + (T-t)_{AD} = \overline{T}_{AD} =
\bar{t}_{AC} + a = \bar{t}_{AD} = 270.658 926;
\bar{t}_{AD} + 180 = \bar{t}_{DA} = 90.658 926;
                                             \overline{t}_{DA} + (T-t)_{DA} = \overline{T}_{DA} =
\bar{t}_{DA} + b = \bar{t}_{DC} = 133.601 725;
                                             \overline{t}_{DC} + (T-t)_{DC} = \overline{T}_{DC} =
\bar{t}_{DC} + 180 = \bar{t}_{CD} = 313.601 725;
                                             \overline{t}_{CD} + (T-t)_{CD} = \overline{T}_{CD} =
                                            \bar{t}_{DE} + (T-t)_{DE} = \bar{T}_{DE} = 180.975 936
\bar{t}_{DC} + d = \bar{t}_{DE} = 180.981 325;
\bar{t}_{DE} + 180 = \bar{t}_{ED} = 0.981 325;
                                            \bar{t}_{ED} + (T-t)_{ED} = \bar{T}_{ED} = 0.986 714
\bar{t}_{ED} + e = \bar{t}_{EC} = 70.470 665;
                                             \overline{t}_{EC} + (T-t)_{EC} = \overline{T}_{EC} =
                                             \overline{t}_{CE} + (T-t)_{CE} = \overline{T}_{CE} =
\bar{t}_{EC} + 180 = \bar{t}_{CE} = 250.470 665;
\bar{t}_{EC} + f = \bar{t}_{EB} = 96.312 241;
                                             t_{EB} + (T-t)_{EB} = T_{EB} =
\bar{t}_{EB} + 180 = \bar{t}_{BE} = 276.312 241;
                                             \bar{t}_{BE} + (T-t)_{BE} = T_{BE} =
\bar{t}_{BE} + g = \bar{t}_{BC} = 301.318 528;
                                           \overline{t}_{BC} + (T-t)_{BC} = \overline{T}_{BC} =
\bar{t}_{BC} + 180 = \bar{t}_{CB} = 121.318 528;
                                           \bar{t}_{CB} + (T-t)_{CB} = \bar{T}_{CB} =
                                                                 \overline{T}_{BA} = 356.859 974
\bar{t}_{BC} + i = \bar{t}_{BA} = 356.853 693;
```


tan t _{AC} +0.9374 58592		tan t _{AD} -86.9494 5040
tan \bar{t}_{BC} -1.6435 13571		tan t _{CD} - 1.0500 40144
diff. +2.5809 72163		diff85.8994 1026
tan t _{DE} +0.0171 29027		tan t _{EB} - 9.0401 78673
tan t _{CE} +2.8193 24651		$\tan \bar{t}_{CB} = 1.6435 13571$
diff2.8021 95624		diff 7.3966 65102
$(\eta_B - \eta_A) - \tan \bar{t}_{BC}(\xi_B - \xi_A)$; ; _ 5 05	57.05; $\xi_{\rm C}$ = 2951 740.37
tan tac - tan tac		
$\tan \bar{t}_{AC}(\xi_C - \xi_A)$	$= \eta_{C} - \eta_{A} = -558$	$34.48; \vec{\eta}_C = 917511.34$
$(\eta_C - \eta_A) - \tan \overline{t}_{CD}(\xi_C - \xi_A)$	· = EE. = + 13	37.83; $\overline{\xi}_{D} = 2957 835.25$
tan tan tan tan tan		
$\tan \ \overline{t}_{AD}(\xi_D - \xi_A)$	$= \eta_{D} - \eta_{A} = -11 98$	$34.35; \tilde{\eta}_{D} = 911 \ 111.47$
$(\eta_{C}-\eta_{D})$ - tan $\bar{t}_{CE}(\xi_{C}-\xi_{D})$	$y = \xi_{n} - \xi_{n} = -84$	16.01; $\overline{\xi}_{E} = 2949 419.24$
tan to tan to to tan to the total tan to the total tan to the tan total tan		
$\tan \ \overline{t}_{DE}(\xi_{E}^{}-\xi_{D}^{})$	$= \eta_E - \eta_D = - 14$	$+4.16; \bar{\eta}_{E} = 910 967.31$
$(\eta_C - \eta_E)$ - tan $\bar{t}_{CB}(\xi_C - \xi_E)$	- F F - 3 ho	$\xi_{\rm B}^{\circ} = 2948 \text{ ol} 8.77$
tan t _{EB} - tan t _{CB}	B E = T 40	B = 2970 010.//
$\tan \ \overline{t}_{EB}(\xi_B - \xi_E)$	$= \eta_B - \eta_E = +12 66$	$60.54; \eta_B^* = 923 627.85$

Stations: A. Corpus; B. Monument; C. Grande; D. Hebron;

E. Ringold

Datum: North American 1913; Ellipsoid: Clarke 1866; λ_0 108°W

ξ _B	2949 419.24	RINGOLD GARGARA	η _B	910 967.31
ξ_{A}	2957 835.25		$\eta_{\mathbf{A}}$	911 111.47
$\xi_{\rm B} - \xi_{\rm A}$	- 8 416.01		$\eta_{B} = \eta_{A}$	- 144.16
$\overline{\overline{T}}_{AB}$	180.975 936		$\overline{\mathtt{T}}_{\mathtt{BA}}$	0.986 714
-1 + 2	71.553 875		+11 - 12	-29.415 125
T'AC	252.529 811	. /2/5	6 T'BD	331.571 589
-2 + 3	11.725 447	3 4	+10 - 11	-41.328 886
T' _{AD}	264.255 258	HEBRON GARCENA	T'BC	290.242 703
		(T-t) _{AB} 005 3		
tan T'BC		$(T-t)_{BA} + .005 3$		
diff	+5.8890 40396		diff +	10.4814 9861
ζ' _i -ζ _A =	$\frac{(\eta_B^-\eta_A^-) - \tan \theta_A^-}{\tan T_{Ai}^+ - }$	$\frac{T_{Bi}^{i}(\xi_{B}-\xi_{A})}{\tan T_{Bi}^{i}}; \eta_{i}^{i}$	$= \eta_{A} + \tan T_{A}^{*}$	$i^{(\xi_{i}^{!}-\xi_{A})}$.
$\xi_{\mathbf{C}}^{\dagger} - \xi_{\mathbf{A}} =$	- 3 899.74	·; \$\dagger{\alpha}{\alpha} = 2953	935.51; η' =	898 720.61.
$\xi_{D}^{\dagger} - \xi_{A} =$	- 448.42	•	386.83; $\eta_{D}^{1} =$	906 654.14.
$\xi_{\mathbf{r}}^{\dagger} = \xi^{\dagger}(1)$	2,	$\xi_{rA}^{"} = 2927$	510 ξ_{rC}^{\dagger} =	2924 469
r 3 (1 - H ₂ η)	$\xi_{rB}^{"} = 2919$	190 $\xi_{rD}^{\dagger}=$	2927 363
	(25¦ + 5¦);	_	$\xi_{rD}' = \frac{\xi_{rD}'}{\eta_{i} + \eta_{j}}$	2927 363
	(25' + 5';);	$\eta_{3ij} = \frac{1}{3} (2$	η' _i + η' _j)	
$\xi_{3ij} = \frac{1}{3}$	(25'ri + 5'rj);	$\eta_{3ij} = \frac{1}{3} (2)$	^{ξη'} i + η'j) ^ξ 3	^η 3
$\xi_{3ij} = \frac{1}{3}$ AC 29	(25¦ + 5¦); ⁵ 3 26 496 906	$\eta_{3ij} = \frac{1}{3} (2)$ η_{3} 981.18 ; BC	ξ ₃ 2920 950	^η 3 906 885.08
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292	(25¦ + 5¦); ⁵ 3 26 496 906 27 461 909	$\eta_{3ij} = \frac{1}{3} (2)$ η_{3} 981.18 ; BC 625.69 ; BD	⁵ 3 2920 950 2921 914	¹ 3 906 885.08 909 529.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292	(25¦ + 5¦); ⁵ 3 26 496 906 27 461 909	$\eta_{3ij} = \frac{1}{3} (2)$ η_{3} 981.18 ; BC	⁵ 3 2920 950 2921 914	¹ 3 906 885.08 909 529.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 3	(25'; + 5';); 53 26 496 906 27 461 909 11(5; -5;) η 3 +	$\eta_{3ij} = \frac{1}{3} (2)$ η_{3} 981.18; BC 625.69; BD $I_{2}(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}$	$\xi_{\eta'_{i}} + \eta'_{j}$ ξ_{3} 2920 950 2921 914 ξ_{3} ξ_{3} ξ_{3}	η3 906 885.08 909 529.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 1 Line $\xi_{3ij} = \frac{1}{3}$	(25; + 5;); 53 26 496 906 27 461 909 I ₁ (5; -5;) η ₃ + AC - 3 899.74	$\eta_{3ij} = \frac{1}{3} (2)$	$\xi_{\eta'_{i}} + \eta'_{j}$ ξ_{3} 2920 950 2921 914 ξ_{3} ξ_{3} ξ_{3}	η3 906 885.08 909 529.59 4 ^{(η} j ^{-η} i ^{)η} 3 BD + 7 967.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 1 Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{j}$	(25; + 5;); 53 26 496 906 27 461 909 I ₁ (5; -5;) η ₃ + AC - 3 899.74 -12 390.86	$\eta_{3ij} = \frac{1}{3} (2)$	$\xi_{\eta'_{i}} + \eta'_{j}$ ξ_{3} 2920 950 2921 914 ξ_{3} ξ_{3} ξ_{3}	η3 906 885.08 909 529.59 4 ^{(η} j ^{-η} i ^{)η} 3 BD + 7 967.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 1 Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{j}$	(25; + 5;); 53 26 496 906 27 461 909 I ₁ (5; -5;) η ₃ + AC - 3 899.74	$\eta_{3ij} = \frac{1}{3} (2)$	ξ_{3} 2920 950 2921 914 $(\xi_{j} - \xi_{i})\eta_{3}^{3} - I$ BC + 4 516.27	η3 906 885.08 909 529.59 4 ^{(η} j ^{-η} i ^{)η} 3 BD + 7 967.59 - 4 313.17
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 293 (T-t) = 3 Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ $(T-t)_{1}$	(25; + 5;); 53 26 496 906 27 461 909 I ₁ (5; -5;) η ₃ + AC - 3 899.74 -12 390.86	$\eta_{3ij} = \frac{1}{3} (2)$	ξ_{3} 2920 950 2921 914 ξ_{3} ξ_{3} ξ_{3} 2920 950 2921 914 ξ_{3}	η3 906 885.08 909 529.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 3 Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ (T-t) (T-t) (T-t) 2	(25; + 5;); 53 26 496 906 27 461 909 I(5; -5;) η3 + AC - 3 899.74 -12 390.86002 5030 - 61	$\eta_{3ij} = \frac{1}{3}$ (2) η_{3} 981.18; BC 625.69; BD $I_{2}(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}$ AD - 448.42 - 4 457.33000 2886	$\xi_{\eta'}$ + η'_{j}) ξ_{3} 2920 950 2921 914 $(\xi_{j} - \xi_{i})\eta_{3}^{3} - I$ BC + 4 516.27 -12 246.70 +.002 8984 - 61	η3 906 885.08 909 529.59
$\xi_{3ij} = \frac{1}{3}$ AC 292 AD 292 (T-t) = 3 Line $\xi_{j} - \xi_{i}$ $\eta_{j} - \eta_{i}$ $(T-t)_{1}$ $(T-t)_{2}$ $(T-t)_{3}$	(25; + 5;); 53 26 496 906 27 461 909 1(5; -5;) \eta_3 + AC - 3 899.74 -12 390.86002 5030 - 61	$\eta_{3ij} = \frac{1}{3} (2)$ η_{3} 981.18; BC 625.69; BD $I_{2}(\eta_{j} - \eta_{i})\eta_{3}^{2} - I_{3}$ AD - 448.42 - 4 457.33000 2886 - 22	ξ_{3} 2920 950 2921 914 ξ_{3} BC + 4 516.27 -12 246.70 +.002 8984 - 61 - 194	η3 906 885.08 909 529.59 4 ^{(η} j ^{-η} i ⁾ η3 BD + 7 967.59 - 4 313.17 +.005 1283 - 22 - 346

ξ _B 2949 4:	19.24 RINGO	LD GORGORA	η_B	910 967.31
ξ _A 2957 8	35.25 B 10	C	η_{A}	911 111.47
$\xi_{\rm B} - \xi_{\rm A} = -8.43$	16.01 12	9/8 7	η _B - η _A	- 144.16
t _{AB} 180.98	1 325		t _{BA} .	0.981 325
-1' + 2' <u>71.550</u>	0 978		+11' - 12'	-29.414 827
t" _{AC} 252.532	2 303 / 2/	5- 6	t" BD	331.566 498
-2' + 3' 11.72	3 244 / 3 A	7		-41.326 667
t" _{AD} 264.259		GARCENA	t"BC	290.239 831
tan t"AC +3.1778 4	+0974 (T-t)	B005 3894	tan t" +9	.9406 63068
tan t"BC -2.7121 (tan t"BD -0	
diff. +5.8899 4		n.		.4821 1696
-1' + 2' = -1 + 2	+ (T-t) -	(T-t) etc		
	AB	AC = =	· 	
$\xi_{\rm C}^{11} - \xi_{\rm A} = -3.89$	99.74; 5 <u>"</u> =	2953 935	•51; η ^{ιι} =	898 718.72.
U 11	$48.48; \xi_{D}^{"} =$.77; η" =	906 653.26.
2 11		2927 510		924 469
$\xi_{\mathbf{r}}^{"} = \xi^{"}(1 - H_2 \eta^2)$	ξ ¹¹ rA F11	2919 190	ru	927 363
-	ξ"B	2)1) 1)0	ľν	.,
ξ3	η3		ξ3	η3
AC 2926 496	906 980.55		25 483	902 849.64
AD 2927 461	909 625.40		27 412	908 139.33
BC 2920 950	906 884.45	•	22 709	902 801.58
BD 2921 914	909 529.29	•	24 639	908 091.28
CD 2925 434	901 363.57	; DC 29	26 398	904 008.41
Line AC	AD	BC	BD	CD
ξξ 3 899.74	- 448.48	+ 4 516.27	+ 7 967.53	+ 3 451.26
$\eta_{i}^{-1} - 12 392.75$	- 4 458.21	-12 248.59	- 4 314.05	+ 7 934.54
(T-t) ₁ 002 5030	000 2887	+.002 8984	+.005 1282	+.002 2014
(T-t) = 61	- 22	- 61	- 22	+ 39
$(T-t)_3^- + 168$	+ 19	- 194	- 346	- 146
(T-t) negligible	negligible	negligible	negligible	negligible
(T-t)002 4923				


```
Line CA DA CB
                                        DB DC
\xi_{i}^{-}\xi_{i} + 3 899.74 + 448.48 - 4 516.27 - 7 967.53 - 3 451.26
\eta_{i} - \eta_{i} +12 392.75 + 4 458.21 +12 248.59 + 4 314.05 - 7 934.54
(T-t)_1 + .002 4916 + .000 2882 - .002 8854 - .005 1201 - .002 2079
(T-t)_2 + 61 +
                           22 + 60 + 21
                                                                   39
(T-t)_3 - 165 - 19 + 192 + 344 + 147
(T-t) negligible negligible negligible negligible negligible
(T-t) +.002 4812 +.000 2885 -.002 8602 -.005 0836 -.002 1971
-t'_{ij} + t'_{ik} = -ij + ik + (T-t)_{ij} - (T-t)_{ik}
-t'_{AC} + t'_{AD} = a' = 11.723 244 -t'_{CA} + t'_{CB} = e' = 37.707 558 -t'_{DA} + t'_{DB} = b' = 67.310 980 -t'_{BC} + t'_{BD} = f' = 41.326 668 -t'_{DB} + t'_{DC} = c' = 94.926 412 -t'_{BD} + t'_{BA} = g' = 29.414 827
-t'_{CD} + t'_{CA} = d' = 6.039734 -t'_{AB} + t'_{AC} = h' = 71.550978
                          v_2 v_3 v_1 = -(a'+b'+...h')/8
                  v<sub>1</sub>
   11.723 244
                                          v_2 = (a'+b'-(e'+f'))/4
a¹
                 <del>-</del>50
                          +1
   67.310 980 -50
                          0
                                          subtract from a' and b',
  94.926 412 -50
                                 -85 add to e' and f'.
                                 -85 v_3 = (c'+d'-(g'+h'))/4
   6.039 734
d!
                 -51
e' 37.707 558
                 -50
                           -1
                                          subtract from c' and d',
   41.326 668
                 <del>-</del>50
                                          add to g' and h'.
f'
                          0
   29.414 827 -50
                                 +85
                                      \mathbf{v}_{\perp} = (\operatorname{sum} 1 - \operatorname{sum} 2)/\mathbf{z}\delta,
   71.550 978 -50
                                 +85
h'
                                          subtract from a", c", e",
                                          g", add to other angles.
                                 v<sub>4</sub>
a" 11.723 195 a 11.723 148
                                      b" 67.310 930 b 67.310 977
                                41
c" 94.926 277 c 94.926 230
                                41 d" 6.039 598 d 6.039 645
e" 37.707 507 e 37.707 460
                                 41
                                       f" 41.326 618 f 41.326 665
g" 29.414 862 g 29.414 815
                                 41
                                        h" 71.551 013 h 71.551 060
Log sin a" 9.307 8888 & 36 5273
                                    Log sin b" 9.965 0190 8 3 1690
Log sin c" 9.998 3927 \delta - 6535
                                    Log sin d" 9.022 0808 871 6413
Log sin e" 9.7864893898046
                                    Log sin f" 9.819 7746 δ 8 6198
Log sin g" 9.691 1962 δ13 4439
                                   Log sin h" 9.977 0858 δ 2 5286
                                         sum 2 8.783 9602
    sum 1 8.783 9670
```



```
t_{AB} = 180.981 \ 325;
\overline{T}_{AB} = 180.975 \ 936
\overline{t}_{AC} = \overline{T}_{AC} = 252.532 \ 385;
\overline{t}_{AC} + (T-t)_{AC} = \overline{T}_{AC} = 180.975 \ 936
                      t_{AB} = 180.981 325;
\bar{t}_{AC} + a = \bar{t}_{AD} = 264.255 533; \bar{t}_{AD} + (T-t)_{AD} = \bar{T}_{AD} =
\bar{t}_{AD} + 180 = \bar{t}_{DA} = 84.255 533; \bar{t}_{DA} + (T-t)<sub>DA</sub> = \bar{T}_{DA} =
\bar{t}_{DA} + b = \bar{t}_{DB} = 151.566 510; \bar{t}_{DB} + (T-t)<sub>DB</sub> = \bar{T}_{DB} =
\bar{t}_{DB} + c = \bar{t}_{DC} = 246.492740; \ \bar{t}_{DC} + (T-t)_{DC} = \bar{T}_{DC} = 246.490543
\bar{t}_{DC} + 180 = \bar{t}_{CD} = 66.492740; \ \bar{t}_{CD} + (T-t)_{CD} = \bar{T}_{CD} = 66.494931
\bar{t}_{CD} + d = \bar{t}_{CA} = 72.532 385; \ \bar{t}_{CA} + (T-t)_{CA} = \bar{T}_{CA} =
\overline{t}_{CA} + e = \overline{t}_{CB} = 110.239 845; \quad \overline{t}_{CB} + (T-t)_{CB} = \overline{T}_{CB} =

\bar{t}_{CB} + 180 = \bar{t}_{BC} = 290.259 \text{ orb}, 

\bar{t}_{BC} + f = \bar{t}_{BD} = 331.566 \text{ 510}; 

\bar{t}_{BD} + (T-t)_{BD} = \bar{T}_{BD} = 0.981 \text{ 325};

\bar{T}_{BA} = 0.986 714

\tan \bar{t}_{AD} +9.9406 38690 \tan \bar{t}_{DC}+2.2990 45859 \tan \bar{t}_{CB} -2.7120 98808
tan \ \bar{t}_{BD} \ \underline{-0.5414} \ 53617 \ tan \ \bar{t}_{AC} + 3.1778 \ 56859 \ tan \ \bar{t}_{DB} \ \underline{-0.5414} \ 53617
diff. +10.4820 9231 diff. -0.8788 11000 diff. -2.1706 45191
\frac{(\eta_{B} - \eta_{A}) - \tan \bar{t}_{BD}(\xi_{B} - \xi_{A})}{\tan \bar{t}_{AD} - \tan \bar{t}_{BD}} = \xi_{D} - \xi_{A} = - \quad 448.48; \quad \bar{\xi}_{D} = 2957 \quad 386.77
                                      = \eta_{D} - \eta_{A} = -4458.21; \bar{\eta}_{D} = 906653.26
\tan \, \bar{t}_{AD}(\xi_D - \xi_A)
\frac{\tan \bar{t}_{AC}(\xi_D - \xi_A) - (\eta_D - \eta_A)}{-} = \xi_C - \xi_D = -3 + 51.25; \quad \bar{\xi}_C = 2953 + 935.52
      tan tan tan toc
                                                = \eta_{C} - \eta_{D} = -7934.58; \quad \overline{\eta}_{C} = 898718.68
\tan \bar{t}_{DC}(\xi_C - \xi_D)
\frac{\tan \bar{t}_{DB}(\xi_{C}-\xi_{D}) - (\eta_{C}-\eta_{D})}{\tan \bar{t}_{CB} - \tan \bar{t}_{DB}} = \xi_{B}-\xi_{C} = -4516.29; \quad \xi_{B}' = 2949419.23
                                = \eta_B - \eta_C = +12 248.64; \quad \eta_B^* = 910 967.32
\tan \bar{t}_{CB}(\xi_B - \xi_C)
```

Stations: A. Hebron; B. Ringold; C. Gorgora; D. Garcena. Datum: North American 1913; Ellipsoid: Clarke 1866; λ_{o} 108°W

v dz ₁ dz ₂ dz ₃ dz ₄ dz ₅ dz ₆ dz ₇ dz ₈ dz ₉ dz ₁₀ dz ₁₁ dz ₁₂ dz ₁₃ dη ₃		dn4	d & 4	^{dη} 5	dξ ₅	^{dη} 6	d\$6	d ₇	d 57	d ₁₈	dξ ₈	dη ₉	dξ ₉	^{dη} 10	^{₫ξ} 10	^{đη} 11	^{dξ} 11	11	12
1 -1 2 -1 3 -1	+2118.7	+2309.1	+4483.5															+ 20. +	47 73 25
4 -1 5 -1 6 -1 +1527.3	+4873.6	-1665.4	+4393.6																6 23
7 -1 8 -1 +1527.3 +2901.9	+4873.6								•									+ 194. + + 80. +	192 115
+7402.3 10 -1 + 889.9	- 672.4 -3870.1	-7402.3	+ 672.4	- 889.9	+3870.1													- 47 - 84 - 143	93
-1992.8 12 -1 13 -1	-3227.0	+2309.1	+4483.5 +4393.6			+1992.8	+3227.0											- 131 - 114	57 126
14 +7402.3 15 -1	- 672.4	-7402.3 -2284.7	+ 672.4		-02	+2284.7	+1778.6											+ 84. + + 114. + + 49. +	98
17 18 -1 + 889.9	-3870.1	-1283.6 -1283.6	-3860.5 -3860.5	+1283.6 +1283.6 - 889.9	+3860.5 +3860.5 +3870.1													+ 41. + - 31. +	43
19 20 -1 21 -1				-5069.7 -3942.8	+ 548.2 -2508.5 -9357.8	+5069.7	- 548.2	+3942.8	+2508.5		10357 8							- 64 - 27 + 81	18
20	-3227.0	-2284.7	-1778.6		-9357.8	+1992.8	+3227.0			+1030.0	+9227.0							+ 117. + + 48. +	· 118 · 35
24 25 -1 26		,		-5069.7	+ 548.2	+5069.7 +3692.0	- 548.2 -2550.6			-3692.0	+2550.6							+ 92. + - 88 - 170	103 83 172
27 28 -1				-3942.8	-2508.5	+ 771.9	-7273.7 -7273.7											+ 213. +	222
-1 30 -1 -1								+5902.0 +5119.2	+ 324.4	-5902.0	+9357.8 +2550.6 - 324.4 -2834.3 -6836.5 -4470.8	-5119.2	+4799.1			+ 55.0	+ 4780.3	- 23. + + 72. + - 252	45 246
32 -1 -1				-1030.0	-9357.8	+3692.0	-2550.6	- 55.0	-4700.3	+1030.0	+9357.8							- 104	· 208
35 · -1 36 -1								+5902.0	+ 324.4	-5902.0 -2222.9	- 324.4 -2834.3	±4159.7	+6836.5				+ 2834.3	+ 15. + + 67. + + 195. +	+ ८ ±७
37 -1 38 -1								+5119.2	-4799.1	- 494.6	-4470.8	-5119.2	+4799.1	+ 494.6	+4470.8			- 37· - 0 -	- 32 - 35
40 41 -1										-4159.7	-6836.5 -4470.8 -6836.5	+4159.7 +2758.5	+6836.5 -7777.0 -4694.7	-2758.5	+7777.0	+4471.0	+ 4694.7	0 +	. <u>3</u> 1
42 43 44 44										- 494.6	-4470.8	+2758.5	-7777.0	+ 494.6	+4470.8	.6906.0	226 6	+ 22. - + 64. +	. 80 -
45 -1 -1														-5560.8 -1518.4	-3010.9 -4117.8	+0000.0	- 110.0	0 + 0 + 0 + 22 + 64. + 557.6 + 139	<u>- 22</u> + 42
47 48 49								- 55.0	-4780.3	-2222.9	-2834.3					+ 55.0 +2222.9	+ 4780.3	+ 557.6 + 139 51 9 + 90 82	- 38° - 57
50 51 -1												-4471.0	-4694.7	-6806.0	+ 116.6	+4471.0 +6806.0 +1323.7	- 116.6 - 4206.7	6 - 82 7 +1053.1 +	- 59 + 53
52 53 54 -1															200	+1279.4	-12722.8 -12722.8	7 +1053.1 + 3 +1940.4 + 3 +2099.4 + - 44.4 -	+146
55 56 -1															-3010.9 -4117.8			+ 340.1 - + 485.6 -	- 473 - 249
57 58 -1	9														, , ,	+1323.7	- 4206.	7 +1056.1 + + 554.1 -	+ 38

v	dn ₃	dĘ3	dη ₄	d\$4	dη ₅	dξ ₅	^д η6	d \$ 6	^д 7	dξ ₇	dη ₈	dξ ₈	dη ₉	dξ ₉	dηlo	^{dξ} 10	dη ₁₁	^{dξ} 11	1,	sum	12	sum ₂
1 2	+2901.9	+2118.7	+2309.1	+4483.5				Ŷ.,											- 67. + 20.	+ 4953.7 + 6812.6	- 47· + 73·	+ 4973.7 + 6865.6
3 3s	+1675.4i	+1223.3i		+2588.5i +4393.6																0 . + 6793.3i + 2724.2		- 25. + 6821.0i + 2734.2
5	+1527.3	+4873.6	-1007.4	++/5/00															- 49.	+ 6351.9	- 23. + 18.	+ 6377.9 + 18.
6s	+1527.3	+4873.6	- 961.5i	+2536.71															+ 194.	+ 5240.1i + 6594.9	+ .6i + 192.	+ 5271.2i + 6592.9
8	+2901.9	+2118.7	-7402.3	+ 672.4	0.0	-0		_ 											+ 80.	+ 5100.7	+ 115.	+ 5135.7 - 64.
10	+ 889.9				- 889.9		+1992.8												- 84. - 143.	- 84. - 143.	- 93. - 151.	- 93. - 151.
11s 12	+4798.0i	- 347.51		+ 300.7i +4483.5 +4393.6	<u>- 398.0i</u>	+1730.8i	+ 891.21	+1443.11											0 - 131. - 114.	+ 4506.5i + 6661.6 + 2614.2		+ 4506.11 + 6735.6 + 2602.2
14 15	+7402.3	- 672.4	-7402.3 -2284.7	+ 672.4 -1778.6			+2284.7	+1778.6											+ 84. + 114.	+ 84. + 114.	+ 73• + 98•	+ 73· + 98·
16 16s	+3310.41	- 300.71	-1283.6 -4618.4i	-3860.5 +1748.7i		+3860.5 +1726.5i	+1021.71	+ 795.41												+ 49. L + 4258.71	+ 14. + •9i	+ 14. + 42 <u>58.7</u> i
17 18	+ 889.9	-3870.1	-1283.6	-3860.5	+1283.6	+3860.5 +3870.1											1		+ 41. - 31.	+ 41. - 31.	+ 43. + 3.	+ 43• + 3•
19 20					-5069.7 -3942.8	+ 548.2 -2508.5	+5069.7	- 548.2	+3942.8	+2508.5									- 64. - 27.	- 64. - 27.	- 19. - 18.	- 19. - 18.
21 21s	+ 398.0i		- 574.11	-1726.5i	-1030.0 -4315.0i	-9357.8 -1604.4i			+1763.3i	+1121.8i	+1030.0 + 460.6i				• • • • • •				+ 81.	+ 81.	- 8. + .4i	
22 23	-1992.8	- 3227.0	-2284.7	-1778.6			+2284.7	+3227.0											+ 117. + 48.	+ 117. + 48.	+ 118. + 35.	+ 118. + 35.
24 25		· · · · · ·			-5069.7	+ 548.2	+5069.7 +3692.0	- 548.2 -2550.6 -7273.7		<u> </u>	-3692.0	+2550.6					3 1			+ 92. - 88.	+ 103. - 83.	+ 103. - 83. - 172.
26 26s	- 891.2i	-1443.li	-1021.7i	- 795.41	-2267.2i	+ 245.11	+6176.51	-2400.li			-1651.11	+1140.6i							41			+ .4i
28					-3942.8	-2508.5	+ 771.9	-7273.7	- 771.9 +3942.8	+7273.7 +2508.5									- 12.	+ 213.	+ 222. - 26.	+ 222. - 26.
<u>29</u> 30					- 7	-			+5902.0	+ 324.4 -4799.1	-5902.0	- 324.4	-5119•2	+4799.1	_				+ 72.	- 23. + 72.	+ 45.	+ 4.
31 31s							+ 345.2i	-3252.9i	- 55.0 +6322.3i	-4780.3 + 235.8i			-2289.4i	+2146.2i				+ 4780.3 + 2137.8i	- •9:			· · · —
32 <u>33</u>					-1030.0	-9357.8	+3692.0	-2550.6			+1030.0	+2550.6					1		138.	- 104. - 138.	- 208. - 114.	- 208. - 114.
34 35									+5902.0	+ 324.4	-5902.0 -2222.9	- 324.4 -2834.3					+2222.9	+ 2834.3	+ 15. + 67.	+ 15. + 67.	+ 50. + 87.	+ 50. + 87.
36 37											-4159.7 - 494.6	-6836.5 -4470.8	+4159.7			+4470.8	•		+ 195. - 37.	+ 195. - 37.	+ 215. - 32.	+ 215. - 32.
37s 38					- 420.5i	-3820.3i	+1507.31	-1041.3i	+2409.51 +5119.2		-6303.8i	-1044.2i	-5119.2	+4799.1	+ 201.91	+1825.2i	+ 907.5i	+ 1157.1i	<u>8:</u>	i8i	8i - 35.	8i - 35•
39 40											-4159.7	-6836.5	+4159•7 +2758•5	+6836.5 -7777.0	-2758.5	+7777.0			0	0	+ 4. + 34.	+ 4. + 34.
41 41s									+2559.61	-2399.5i	-2079.8i	-3418.2i	-4471.0 -1336.1i	-4694.7 - 418.1i	-1379.2i	+3888.5i	+4471.0 +2235.5i	+ 4694.7 + 2347.4i	0	0	- 2. + .5i	- 2. + •5i
42 43											- 494.6		+2758.5	-7777.0	+ 494.6 -2758.5	+4470.8			+ 22. + 64.	+ 22. + 64.	- 80. + 7.	- 80.
44 45														.,,,	-6806.0 -5560.8	+ 116.6	+6806.0	- 116.6	- 38.	- 38. - 8702.1	- 120. - 229.	- 120. - 8800.7
46 468	- 										- 221 2t	_1000.41	+1233.6i	=3478.0i	-1518.4	-4117.8 +2341.5i	+3043.71	- 52.11	+ 557.6	- 5078.5 i - 6141.4i	+ 421.	- 5215.2 - 6354.4i
47 48									- 55.0	-4780.3		-2834.3	122//102	J., 600 <u>-</u>	,	,	+ 55:0	+ 4780.3 + 2834.3		+ 139.	- 389.	- 389.
49											-2222.9	=20)40)	-4471.0	-4694.7	-6806.0	+ 116.6	+4471.0	+ 4694.7 - 116.6	+ 90. - 82.	+ 90.	- 573. - 438.	- 573. - 438.
51							,		,							7 11000	+1323.7	- 4206.7	+1053.1		- 599· + 539·	- 599· - 2344·1
528									- 22.4i	-1951.5i	- 907.5i	-1157.11	-1825.3i	-1916.6i	-2778.5i	+ 47.6i	+6596.41	-12722.8 - 1933.8i	+1261.31	- 9503.0 L - 4587.5i	0	- 9983.4 - 5848.8i
52s 53 54 55 55s 56 57 58 58s															-5560.8	-3010.9	+12/9.4	-12722.8	+2099.4	- 9344.0 - 8616.1	+1334. - 863.	-10109.4 - 9434.7
55s								,							-3210.5i	-1738.3i	+ 738.7i	- 7345.5i	+1382.8i	+ 340.1	- 472. 6i	- 472. -11556.3i - 5883.2
57 57															-1210.4	-4117.8	+1323.7	- 4206.7	+1056.1	- 5150.5 - 1826.9	+ 381.	- 2502.1
<u>58в</u>											£				- 876.6i	-2377.4i	+ 764.21	- 2428.8i	+ 554.1 +1210.0i	+ 554.1 - 3708.5i	- 134. O	- 134. - 4918.6i

TABLE XVI
Symbolic
Error Equations

TABLE XVI

Symbolic error equations

TABLE XVII - Normal Equations

TABLE XVII

Normal Equations

	dn ₃	d\$3	đη ₄			αξ ₅	dη ₆	dξ ₆	dη ₇	ď57	d η ₈	αξ ₈	^д η ₉	a\$ ₉	d _¶ 10	^{αζ} 10	^{dη} 11	dξ ₁₁	1,	sum ₁	12	sum ₂
-1. + ·979373a			+.78824114	+.00967481	+.01839330	+.06144930	+.10772128	+-23955935	+.00900567	02401994	+.01620700	+.00635580	0	0	0	0	0	0	+ 551627		+ 505665 00495235	- 2594795
0 + .2031026 227558a	-1. +1.120409a	+ 89253115	+ 22368152 25061480	- 14722233 +.16494923	- 3436261 +.03850018	+ • 33593677	+ 2826790 03167 1 61	+.21294280	+ 2758635 03090800	06876948	- 1249457 +•01399903	+ 9021024	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	+ 1357219 + 1245182 01395113	+ 65213625	+ · 1415663 + 1312961 01471053	+ 64754394 + 65281404
0 8391417 +2.4590 71 a	0 + .2506148 734417a	-1.	+ 34124335	+ 21331436 62510921	- 7374544 +.21610806	+ 3121460 + 5690045 16674449	- 4536470 +.13293944	+.49193430	+.02424856	+ 4362610	- 2413864 +•07073732	+ 795513	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	Ū	- 808893 - 686139 +•02010703	+ 33678528	- 203704 - 134166 +.00393168	+ 52636312 + 34230502
0 + .5483820 683939a	0 3216108 + .401111a	0 + .6251092 779632a	-1.	+ 80180004	- 16262932 +.20283027	+.54105572	+ 2376897 02964451	- 2494508 +.03111135	+ 3732185	+ 2833353	+ 768730	+ 9116951 11370604	. 0	0 0 0	0 0 0	0 0 0	0 0 0	0	- 1480881 - 841240 +.01049189	+ 35965047	- 604252 +.00753619	+ 36202032
0 0806906 + .141806a	0 0495727 + .087119a	0 0893170 + .156966a	0 2028303 + .356454a	- ⊥•	+ 20305121	30608038	+.47797132	+.21638145	+.20101135	+.09305017	+.20432496	05323380	+.05839356	08712989	00149196	01348770	00746794	07479536	+ 249928 - 10895 +•00019147	+ 16636068	+ 32781	+ 16679744
0 + .4685334 255549a	0 5368124 + .292790a	0 + •5327892 - •290595a	0 4797534 + .261669a	0 + .3060804 166943a	- 1 •	+10//+///10	11542765	+.07949965	03248527	+.03365992	+.22536918	+ • 90530650	02692322	06301022	00406521	03675028	01835025	03008554	+ 225239 + 339369 00185100	+ 15605021	+ 2202736	+ 17468386
0 3346149 +1.003950a	0 + .1127909 338408a	0 2556601 + .767061a	0 0119257 + .035781a	0 5133015 +1.540066a	0 + .1154276 346319a	-1.	+)))23023	+.21154375	+.46332317	+.38824541	+.26899298	72039265	+.11783010	+.11735104	+.01049411	+.09486895	+:04685122	++03253527	- 337558 - 428230 +•01284825	- 1482898	- 253309 +.00760007	- 1307978
0 6430492 + .625414a	0 1292054 + .125662a	0 5035396 + .489731a	0 1156631 + .112491a	0 3006339 + .292389a	0 0550816 + .053571a	0 2115438. + .205742a	<u>-</u> 1.	+102019090	27906487	+ . 94408473	+.09423918	+.15392685	+.06648747	10748252	00207998	01880347	01025096	09034151	+ 447005 + 414630 -•00403259	+ 26046048	+ 666159	+ 26297576
0 0690596 + .085399a	0 + .1477444 182702a	0 0665404 + .082284a	0 + .0481134 + .059497a	0 3648826 + .451216a	0 + .1013369 125314a	0 4042887 + .499946a	0 + .2790649 345093a	·	+ 00000/11	+.15774782	+.44995228	27444706	+.48712128	31649074	03403864	+.20303802	+.11084361	+.31285440	+ 176400 - 161445 +•00199644	- 79716 1 3	+ 195616 - 183326 +.00226702	+ 64346 - 7993493
0 6416831 + .726092a	0 0294711 + .033348a	0 4697620 + .531556a	0 1059206 + .119854a	0 6234178 + .705424a	0 0248617 + .028132a	0 6517363 + .737468a	0 9000629 +1.018460a	0 1577478 + .178499a	-⊥•	+188893192 + 88374869	+ 27964563	+.30954493	 32075073	+.42861723	+.09307283	+ 7487533 -•08472469	+ 16713304	- 39561097 +.44765098	+ 2870182 + 3098877 03506514	+ 6285859	+ 3257754 + 3772661 04268930	+ 6959642
0 3500010 + .690772a	0 0478975 + .094532a	0 2524368 + .498217a	0 1620568 + .319840a	0 6402656 +1.263647a	0 1608665 + .317491a	0 6530945 +1.288966a	0 2203720 + .434932a	4940658 + .975103a	2796456 + .551917a	-1. +1.973629a	+ 50668082	+ 62559084 + 33158557 65442692	- 34105645 - 45170244 +.89149307	- 36994280 - 32465158 +.64074180	- 6203776 - 7154022 +.14119386	+ 15732156 + 11445258 22588674	+ 7211884 + 8376867 16532828	+ 3451712 - 16298489 + 32167172	+ 1201996 + 1979983 03907752	5510999 + 4540823	+ 406038 + 1899203 03748322	- 6306957 + 4460043
0	0 4710088 + .508987a	0	0	0 0800055	0 0271704	0 +1 -0244472	03649079	0 + •5489470	0 1265373	0 + .6544269	-1.	+300927745	- 59646074 - 4077481	-100849543 - 83639359	- 26580699 - 24245331 +.26200263	2004248612074197	+ 9710311 + 16172160	- 8865872 + 3475826	- 216621	- 19688299 - 11689273		- 21634417 - 11817614
0	0 + .0342258 059545a	0	0	0	00000652	06568774	0 + .1456080	08527918	0 + .0658730	0 8626574	00440625	-1. +1.739757a	+ 57479306	- 536507	- 13566115 - 17075176 +.29706650	+ 41090359	- 31918398	- 52801733	+ 2256073	- 581157 - 839132	+ 2941689 + 3293904 05730591	+ 104459 - 468244
0 + .0252264 016521a	0 4502080 + .294840a	0 + .1826407 119611a	0 3405890 + .223051a	0 + .3576206 234205a	0 9021741 + .590832a	0 + .2553275 167214a	0 8362797 + .547678a	0 + .4205052 275388a	0 7215516 + .472543a	0 0573011 + .037526a	0 9042444 + .592188a	0 0093339 + .006113a	-1.	+276240736	+ 11321552 - 19850505 +.13000059	-116197373 -112058002	- 20402190 + 8739162	5480465073392620	+ 3919080	- 29389592 - 37242201	+ 3293887 + 6002764 03931199	- 30014785 - 37863693
0 0272087 + .031629a	0 1825917 + .212254a	0 + .0472148 054885a	0 1757729 + .204327a	0 0310982 + .036150a	0 4100452 + .476657a	0 0427002 + .049637a	0 2833740 + .329408a	0 1052468 + .122344a	0 2399436 + .278922a	0 2334481 + .271372a	0 3926444 + .456429a	0 2982799 + .346735a	0 1300006 + .151119a	-1. +1.162449a	+101907269 + 86025266		- 47488472	- 56368418	+ 10560688 + 12899013 14994447	+ 19455272 + 12641392	+ 10528912 + 12908718 15005729	+ 19423497 + 12651098
0 + .3332604 590073a	0 3021734 + .535030a	0 + .3681341 651820a	0 0949379 + .168098a	0 + .9456758 -1.674419a	0. - •5271410 + •933359a	0 + .8291164 -1.468038a	.0 5060293 + .895978a	0 + .9332876 -1.652484a	0 3962124 + .701536a	0 + .9336041 -1.653044a	6823596 +1.208189a	+ .7689576 -1.361520a	0 7073081 +1.252363a	0 + .2042888 361715a	-1. +1.770605a	+180401014 + 56477860	- 13102039 + 22514851 - 39864915	- 32381838	+ 1371659 + 725892 01285268	+ 82780481 + 47336767	+ 2305300 + 819090 01450285	+ 83714122 + 47429965
0 2104428 + .761641a	0 + .1934502 700141a	0 2171268 + .785832a	0 + .0095313 034496a	0 7840343 +2.837600a	0 + .2142942 775580a	0 7707761 +2.789616a	0 + .4856237 -1.757584a	0 -1.0230399 +3.702617a	0 + .3608350 -1.305945a	0 9258472 +3.350854a	0 + .2573164 931287a	0 -1.0259718 +3.713228a	0 + .2674362 967913a	0 6334689 +2.292670a	0 3986492 +1.442803a	-1. +3.619230a	+ 89559693 + 27630187		- 3336660 + 3748808 13567798	+ 29964429 + 18210252	- 3182068 + 3990160 14441307	+ 30119021 + 18451604
0 5154902 + .243069a	0 3151330 + .148594a	0 2309597 + .108904a	0 4616974 + .217704a	0 8393018 + .395755a	0 9426808 + .444502a	0 -1.0808777 + .509666a	0 7950081 + .374870a	0 -1.1657415 + .549681a	0 -1.0315691 + .486415a	0 -1.2251969 + .577716a	0 9634152 + .454278a	0 -1.1666572 + .550113a	0 8439066 + .397927a	0 8400401 + .396103a	0 3833555 + .180763a	0 4766071 + .224734a	-1. + .471529a	+389991549 +212075907	- 44779124 - 26348222 +.12423958	+162191109 +185727686	- 45816018 - 26971054 +.12717642	+185104856
								Т		' indicates d				-8					+ 6811674 + 412651	- 18960966 + 412653	+ 7096453 + 424181	- 17963064 + 424180

TABLE XVIII

Forward solution of normal equations

	Qdn ₃	Qd \$	Qd 114	Qd \$4	Qdn ₅	Qa\$5	Qdη ₆	Qa _ξ	Qdn7	Qd & 7	Qd n ₈	Qd\$8	Qdn ₉	Qd & 9	Qdη ₁₀	Qd \(\)	Qd n	^{Qdζ} 11	
Qd n z	+ 5.938202																•		Qdn ₃
	- 1.728086	+ 2.439079																	Qd \$ 3
	+ 4.977148		+ 5.286009	•		•							1		1				Qdn4
Qd\$4	573971	+ .986662	890831	+ 1.846747									}						Qd 54
Qd ₁₅	+ 4.042434	- 1:690461	+ 3.637195	+ .356269	+10.104231														Qdη ₅
Qd & 5	981109	+ 1.765058	- 1.366326	+ 1.186595	- 2. 3 47304	+ 3.401614													Qd ξ_5
Qdn6	+ 4.294688	- 1.751620	+ 3.702010	+ .178657	+ 8.964512	- 2.105171	+10.416254												Qdn6
Qd\$6	+ .655795	+ 1.457494	+ .042632	+ .901922	- 1.568169	+ 2.358128	- 1.374486	+ 4.418483											Qd\$6
Qd 17	+ 2.810301	- 1.604952	+ 2.586125	+ .111132	+ 7.765574	- 1.725044	+ 7.729069	- 2.794960	+ 9.437046										Qdn ₇
Qd \$7	+ •557162	+ 1.009689	+ .043252	+ .746099	589386	+ 1.882263	288675	+ 3.056789	- 1.314699	+ 2.969585									Qd57
Qd n8	+ 2.963031	- 1.189157	+ 2:607561	+ .434863	+ 7.606302	- 1.102751	+ 7.579072	- 1.937830	+ 8.300268	812350	+ 9.150110								Qdn8
Qd\$8	945076	+ 1.544709	- 1.290314	+ .903254	- 2,698030	+ 2.994943	- 2.416931	+ 2.432534	- 2.279577	+ 1.951863	- 1.934200	+ 3.300419							Qd\$8
Qdn ₉	+ 1.902257	949864	+ 1.702717	+ .337638	+ 5.804347	690471	+ 5.741584	- 2.204810	+ 7.228333	- 1.338830	+ 6.965109	- 1 .13 6205	+ 7.341650						Qdn ₉
Qd Eg	428336	+ 1.013506	706039	+ .561458	- 1.838732	+ 1.895507	- 1.515050	+ 2.010631	- 1.954633	+ 1.764751	- 1.505009	+ 2.138514	- 1.440633	+ 2.155018					QdE9
Qdη10	+ .838838	215739	+ .667558	+331014	+ 2.508197	+ .168076	+ 2.544815	652099	+ 3.267175	283061	+ 3.217037	+ .001280	+ 3.439210	383593	+ 3.021421				Qdn 10
Qdξ ₁₀	800519	+ .871105	923342	+ .265308	- 2.653911	+ 1.412946	- 2.384733	+ 1.740346	- 2.917806	+ 1.408620	- 2 . 76 73 89	+ 1.753596	- 2.630906	+ 1.790768	- 1-123838	+ 2.415074			Qd\$10
						•		- 1.578918											Qd n
Qd ^E 11	+ .243069	+ .148594	+ .108904	+ .217704	+ • 395755	+ .444502	+ .509666	+ .374870	+ .549681	+ .486415	+ .577716	+ .454278	+ .550113	+ •397927	+ .396103	+ .180763	+ .224734	471529	Qd × 11
						all values	must be mult	ciplied by 10	to corres	pond to dt e	expressed in	micro-degrees	3						

TABLE XIX

Weight and correlate numbers

TABLE XX
Backward solution of normal equations

	solution 1	solution 2		solution 1	solution 2
dη ₃	+.00190457	01441978	d\$3	00624177	00450165
dn ₄	+.00123433	01670020	dξ ₄	+.00962389	+.00304986
$d\eta_5$	05058771	06515905	d\$5	+.02169006	+.02013833
dη ₆	02215786	04063546	d\$6	+.04139532	+.04292180
dη ₇	04477276	05687723	dŠ7	+.06188327	+.06374290
dη ₈	08070067	08832197	dξ ₈	+.04375713	+.05244688
dη ₉	08035734	09107229	d\$9	+.06916601	+.07686880
dη10	12890037	13174242	d٤_10	+.08886316	+.09182108
dη ₁₁	07646451	08379988	dξ ₁₁	+.12423958	+.12717642

Standard error of weight unit

TABLE XXI

Standard errors of unknowns

	m η	$^{m}\xi$
3	±.03	±.02
4	±.03	±.02
5	±.04	±.02
6	±.04	±.03
7	±.04	±.02
8	±.04	±.02
9	±.03	±.02
10	±.02	±.02
11	±.02	±.01

TABLE XXII

Preliminary and final positions Preliminary positions

Station	η	ξ	
Pedro	953 141.52	2937 707.52 Fix	ed
Palo	954 443.61	2947 231.53 Fix	ed
Eltoro	943 738.58	2950 586.28	
Fordyce	943 041.28	2942 909.36	
Garcia	929 677.35	2947 352.92	
Pancho	930 885.24	2958 524.00	
Corpus	923 095.82	2957 697.42	
Monument	923 627.84	2948 018.77	
Grande	917 511.34	2951 740.37	
Ringold	910 967.31	2949 419.24	
Hebron	911 111.47	2957 835.25	
Garcena	906 653.16	2957 386.92 Fix	ed
Gorgora	898 718.52	2953 935.72 Fix	ed

Final positions

Station	η	ξ
Eltoro	943 738.57 ± .03	2950 586.28 ± .02
Fordyce	943 041.26 ± .03	2942 909.36 ± .02
Garcia	929 677.28 ± .04	2947 352.94 ± .02
Pancho	930 885.20 ± .04	2958 524.04 ± .03
Corpus	923 095.76 ± .03	2957 697.48 ± .02
Monument	923 627.75 ± .04	2948 018.82 ± .02
Grande	917 511.25 ± .03	2951 740.44 ± .02
Ringold	910 967.18 ± .02	2949 419.33 ± .02
Hebron	911 111.39 ± .02	2957 835.38 ± .01

Standard error of an observation = ± 125 micro-degrees

APPENDIX II

COEFFICIENTS FOR EQUATIONS H AND I

The tables given in this appendix are arranged in the form of "Nutshell Tables" or "Taylor Tables" after Hirvonen (2). In these, functions of the various derivatives of the tabulated functions are given, so that the value desired may be arrived at by use of a Taylor's series, through the formula —

$$f(a+th) = f(a) + th f'(a) + ½ t^2h^2 f''(a) + ...,$$

where "a" denotes the values tabulated, "h" the unit of the last decimal given for "a", and "t" the fraction of the interval to be covered, or decimals of "h".

The following expressions are tabulated —

$$A = h f'(a)$$
.

$$B = \frac{1}{2} h^2 f''(a)$$
, etc.

In the terminology of the tables, the interpolation formula now reads

$$f(a+th) = \left\{ \left[(Dt + C)t + B \right]t + A \right\}t + f(a).$$

The interval of tabulation in these tables is "2h", which allows interpolation through less than "h" by interpolating either up or down, depending on which way is the shorter.

The units of the tabulated factors are such that when they are used with ξ and η in meters, the scale factor is obtained as a pure number, and the (T-t) correction is obtained in degrees.

TABLE XXIII

Factor H_2 as a function of ξ , International Ellipsoid

	2		20	Internationa.	DITTPOOTU	
ξx10 ⁻⁵	H ₂ x10	12		A	В	C
0	0.012382	97847		00000	-04151	0
2		81247	-	16594	4143	
4		31517		33119	4117	+ 3
6		48862		49509	4075	8
8		33618		65696	4016	11
10	0.012378		costs	81611	- 3940	+14
12		07394		97194	3849	17
14		97750	1	12378	3741	19
16		58189		27102	3618	22
18		89690		41306	3481	24
20	0.012366			54933	- 3330	+26
22	12363	70380	1	67928	3166	28
24	12360	22092	1	80241	2988	30
26	12356	49904	1	91820	2799	32
28		55330	2	02621	2600	34
30	0.012348	39965	-2	12602	- 2389	+36
32		05494		21723	2170	37
34		53669	2	29950	1942	39
36	12334	86309		37253	1708	40
38		05291		43603	1466	41
40	0.012325	12548		48975	- 1219	+41
42		10052	2	53354	969	42
44		99805	2	56723	715	43
46		83841	2	59071	459	43
48		64207			- 201	43
50	0.012299			- 1 -	- 56	+43
52		22175		59941	313	43
54		03885	2	58179	568	42
56		90136		55401	820	42
58		82945		51625	1067	41
60	0.012273				1312	+40
62		96124	2	41142	1549	39
64 66		20345		34482 26914	1780	38
		58800		18466	2003	37
68		13276			2219 + 2425	35 +34
70	0.012250	77115		99077	2622	32
72 74		89700		88214	2808	30
76		24739	1	76629	2983	28
78		83636	i	64366	3146	26
80	0.012232				3297	+24
82		78121		38006	3435	22
84		16021		24010	3561	20
86	12224			09541	3671	17
88		78133	-	94657	3769	15
90	0.012221		628	79412 -	3852	+13
, ,				. ,	7-7-	

TABLE XXIV

Factors H_4 and H_6 as functions of ξ , International Ellipsoid

ractors	114 and 116 as runction	no or co inco	ernational Ellipsoid
ξx10 ⁻⁵	H_{4} x10 ²⁴	A	H ₆ ×10 ³⁶
0	0.0000 26248	0	0.0000 00021
2	26247	- 1	21
4	26243	3	21
6	26235	4	21
8	26226	6	21
10	0.0000 26213	- 7	0.0000 00021
12	26198	8	21
14	26180	10	21
16	26159	11	21
18	26137	12	21
20	0.0000 26111	- 13	0.0000 00021
22	26084	14	21
24	26054	15	21
26	26023	16	21
28	25989	17	21
30	0.0000 25954	- 18	0.0000 00021
32	25918	19	21
34	25880	19	21
36	25840	20	21
38	25800	20	21
40	0.0000 25759	- 21	0.0000 00021
42	25717	21	21
44	25674	21	21
46	25631	22	20
48	25588	22	20
50	0.0000 25545	- 22	0.0000 00020
52	25502	21	20
54	25460	21	20
56	25417	21	20
58	25376	21	20
60 62 64 66 68	0.0000 25335 25295 25256 25219 25182	- 20 20 19 18 18	0.0000 00020 20 20 20 20 20
70 72 74 76 78	0.0000 25148 25115 25083 25054 25027	- 17 16 15 14 13	0.0000 00020 20 20 20 20 20
80 82 84 86 88	0.0000 25001 24978 24957 24938 24922	- 12 11 10 9 8	0.0000 00020 20 20 20 20 20
90	0.0000 24908	- 6	0.0000 00020

TABLE XXV

Factor I_1 as a function of ζ_r , International Ellipsoid

1 40 001		internatio	nai Ellipsoid	
$\xi_{\mathbf{r}} \mathbf{x} 10^{-5}$	1 ₁ *10 ¹²	A	В	C
0246802468024680246802468024680246802468	1 x10 12 1 x10 12 1 x10 12 1 x10 12 10 10 10 10 10 10	9508 18976 28366 37641 46760 55688 64388 72824 80962 109905 116093 121812 127038 131752 135936 147091 148436 149193 149358	- 2378 2374 2359 2359 2357 2205 2143 2073 1995 1908 1814 1712 1604 1490 - 1369 1243 1113 979 840 - 699 555 410 263 - 179 326 470 612 + 752 887 1020 1148 1271 + 1389 1502 1609	0235780112456790012222244555544433222109817
70 72	0.7019 22286 7016 88299	-1 19848 1 14063	+ 1389 1502	18
88 90	7004 30019 7003 13784 0.7002 14018	54235 - 45500	2159 + 2207	9 7

TABLE XXVI

Factor \mathbf{I}_2 as a function of $\boldsymbol{\xi}_r$, International Ellipsoid

	_	T.		
$\xi_{\mathbf{r}} \times 10^{-5}$	I ₂ xlo ¹⁸	A	В	C
rato	222	Δ.	D D	•
00	.0000 00000	+23785	000	-4
2	47538	23736	- 24	4
4	94880	23590	49	4
6	1 41832	23347		4
8		27747	73	4
	1 88203	23008	97	
10	.0002 33800	+22575	-120	-4
12	2 78440	22049	143	4
14	3 21938	21434	165	4
16	3 64119	20732	186	4
18	4 04811	19946	207	3
20	.0004 43851	+19080	-226	3 -3 3 3 3 2
22	4 81080	18137	245	3
24	5 16352	17122	262	フ ス
26	5 49524	16039	279	7 7
				2
28	5 80468	14894	294	
30	.0006 09060	+13690	- 308	-2
32	6 35191	12433	320	2
34	6 58761	11129	332	2
36	6 79680	9783	341	2
38	6 97869	8401	350	1
40	.0007 13263	+06988	- 356	-1
42	7 25807	5552	362	-1
44	7 35457	4096	366	0
46	7 42182	2628	368	0
48	7 45964	+01153	369	0
50	.0007 46793	-00323	- 369	Ö
52	7 44676	1794	367	0
			363	
54	7 39626	3254		+1
56	7 31672	4697	358	1
58	7 20853	6119	352	1
60	.0007 07216	-07513	-345	+1
62	6 90824	8874	336	2
64	6 71745	10198	326	2
66	6 50060	11479	315	2
68	6 25859	12713	302	2
70	.0005 99241	-13896	-289	+2
72	5 70314	15022	274	
74	5 39194	16088	259	3
76	5 06004	17091	242	3
78	4 70875	18026	225	3
80	.0004 33944	-18892	-207	ر ±3
82		19683	188	7 7
	3 95357 3 55363	20399	169	7
84	3 55262 3 3 3 3 4 4		149	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
86	3 13814	21036		2
88	2 71172	21592	129	5
90	.0002 27500	-22066	-108	+4

TABLE XXVII

Factors $\mathbf{I}_{\mathbf{3}}$ and $\mathbf{I}_{\mathbf{4}}$ as functions of $\boldsymbol{\zeta}_{\mathbf{r}}$, International Ellipsoid

1400015	2 7	COTOMB OF	r, Interna	oronar Brirpsora
ξ_{r} x10 ⁻⁵	1 ₃ x10 ²⁴	A	В	1 ₄ ×10 ³⁰
00 2 4 6 8	0.0057 78336 57 78259 57 78028 57 77645 57 77111	00000 - 77 153 229 305	- 19 19 19 19	0.0000 00000 196 392 585 777
10	0.0057 76428	-00378	- 18	0.0000 00965
12	57 75599	451	18	1149
14	57 74627	521	17	1328
16	57 73516	589	17	1502
1.8	57 72271	655	16	1669
20	0.0057 70897	-00719	- 15	0.0000 01830
22	57 69399	779	15	1983
24	57 67783	836	14	2128
26	57 66057	890	13	2264
28	57 64226	940	12	2390
30	0.0057 62298	-00987	- 11	0.0000 02507
32	57 60282	1029	10	2614
34	57 58184	1068	9	2710
36	57 56014	1102	8	2795
38	57 53780	1131	7	2868
40	0.0057 51491	-01157	- 6	0.0000 02931
42	57 49156	1177	5	2981
44	57 46785	1193	3	3019
46	57 44386	1204	2	3046
48	57 41971	1211	- 1	3060
50	0.0057 39547	-01212	0	0.0000 03062
52	57 37124	1209	+ 1	3052
54	57 34713	1201	3	3030
56	57 32322	1189	4	2996
58	57 29962	1171	5	2951
60 62 64 66 68	0.0057 27641 57 25368 57 23152 57 21002 57 18926	-01149 1123 1092 1057 1018	+ 6 7 8 9	0.0000 02894 2825 2746 2657 2557
70	0.0057 16933	-00975	+ 11	0.0000 02447
72	57 15030	928	12	2328
74	57 13224	877	13	2201
76	57 11523	824	14	2065
78	57 09932	766	15	1921
80	0.0057 08459	-00706	+ 15	0.0000 01770
82	57 07108	644	16	1612
84	57 05886	578	17	1448
86	57 04796	511	17	1279
88	57 03843	442	18	1105
90	0.0057 03031	-00371	+ 18	0.0000 00927

TABLE XXVIII

Factor H_2 as a function of ξ , Clarke 1866 Ellipsoid

ξx10 ⁻⁵	H ₂ x10 ¹²	Α	В	C
024680216802468024680246802468024680246802468777	0.012384 25700 12384 08984 12383 58900 12382 75655 12381 59597 0.012380 11195 12378 31061 12376 19931 12373 78675 12371 08274 0.012368 09836 12364 84583 12361 33835 12357 59021 12353 61664 0.012349 43372 12345 05843 12340 50838 12335 80194 12330 95802 0.012325 99607 12320 93592 12315 79775 12310 60207 12320 93592 12315 79775 12310 60207 12305 36950 0.012300 12077 12294 87665 12289 65775 12284 48464 12279 37760 0.012274 35663 12269 44126 12269 44126 12269 65070 12260 00349 12255 51766 0.012251 21059 12247 09887 12243 19829	00000 - 16711 33355 49860 66160 - 82190 97883 1 128001 1 42307 -1 56029 1 81514 1 93173 2 04050 -2 14099 2 23283 2 31568 2 38919 2 45310 -2 558518 2 60879 2 62494 2 61747 2 59772 2 53367 2 42806 2 36097 2 42806 2 36097 2 10605 2 00436 1 89495	- 4180 4172 4147 4103 4044 3968 3767 3644 3506 3353 3009 2618 2405 1955 1719 1476 2028 2185 1979 461 2028 3156 1792 2018 2185 1792 2185 1792 2185	0 36 91479246 91 34667901222333346 + 4444444 + 444444 + 333333333333
76 78 80 82 84 86 88	12239 52391 12236 08973 0.012232 90896 12229 99373 12227 35517 12225 00336 12222 94720 0.012221 19452	1 77827 1 65479 -1 52497 1 38933 1 24838 1 10269 95281 - 79930	3003 3169 + 3320 3459 3586 3697 3795 + 3878	28 26 +24 22 20 17 15 +13

TABLE XXIX

Factors H_4 and H_6 as functions of ξ , Clarke 1866 Ellipsoid

ractors	14 and 16 as 1	unctions of ζ , clarke	1000 EIIIpsolu
ξx10 ⁻⁵	H ₄ ×10 ²⁴	A	H ₆ ×10 ³⁶
0	0.0000 26258	0	0.0000 00021
2	26257	1	21
4	26253	3	21
6	26246	4	21
8	26236	6	21
10	0.0000 26223	7	0.0000 00021
12	26208	8	21
14	26190	10	21
16	26169	11	21
18	26146	12	21
20	0.0000 26120	- 13	0.0000 00021
22	26093	14	21
24	26063	15	21
26	26031	16	21
28	25998	17	21
30	0.0000 25962	- 18	0.0000 00021
32	25925	19	21
34	25887	19	21
36	25848	20	21
38	25807	21	21
40 42 44 46 48	0.0000 25765 25723 25680 25637 25594	- 21 21 22 22 22 22	0.0000 00021 21 21 20 20
50 52 54 56 58	0.0000 25550 25507 25464 25421 25380	= 22 22 21 21 21	0.0000 00020 20 20 20 20 20
60	0.0000 25338	- 20	0.0000 00020
62	25298	20	20
64	25259	19	20
66	25221	19	20
68	25185	18	20
70	0.0000 25150	- 17	0.0000 00020
72	25117	16	20
74	25085	15	20
76	25056	14	20
78	25028	13	20
80	0.0000 25003	- 12	0,0000 00020
82	24979	11	20
84	24958	10	20
86	24939	9	20
88	24923	8	20
90	0.0000 24909	∞ 6	0.0000 00020

TABLE XXX

Factor I_1 as a function of ξ_r , Clarke 1866 Ellipsoid

ractor il as a runction of Sr. Otalke 1000 Billipsold	•
$\xi_{r} \times 10^{-5}$ $I_{1} \times 10^{12}$ A B	C
0 0.7095 65658 0 -2395	0
2 7095 56081 - 9575 2390	
4 7095 27385 19111 2376	3
6 7094 79689 28568 2351	5
8 7094 13193 37907 2317	2 3 5 6
10 0.7093 28165 - 47091 -2274	8
12 7092 24955 56083 2221	10
14 7091 03987 64844 2158	11
16 7089 65757 73339 2088	13
18 7088 10829 81536 2009	14
20 0.7086 39837 - 89398 -1921	15
22 7084 53480 96896 1827	17
24 7082 52517 1 04000 1724	18
26 7080 37764 1 10680 1615	19
28 7078 10095 1 16912 1500	20
30 0.7075 70431 -1 22670 -1378	21
32 7073 19746 1 27932 1252	21
34 7070 59047 1 32679 1120	22
36 7067 89388 1 36891 985	23
38 7065 11852 1 40552 846	23
40 0.7062 27553 -1 43651 - 704	24
42 7059 37628 1 46178 559	24
44 7056 43232 1 48120 412	25
46 7053 45542 1 49473 264	25
48 7050 45738 1 50232 - 116	25
50 0.7047 45008 -1 50398 + 33	25
52 7044 44542 1 49970 180	25
54 7041 45521 1 48952 328	25
56 7038 49123 1 47349 473	24
58 7035 56511 1 45167 617	23
60 0.7032 68831 -1 42420 + 756	23
62 7029 87201 1 39118 894	22
64 7027 12722 1 35274 1027	22
66 7024 46457 1 30906 1156	21
68 7021 89438 1 26030 1281	20
70 0.7019 42661 -1 20668 +1400	19
72 7017 07076 1 14841 1513	18
74 7014 83590 1 08573 1621	17
76 7012 73063 1 01887 1721	16
78 7010 76299 94812 1816	15
80 0.7008 94054 - 87374 +1902	14
82 7007 27024 79603 1982	13
84 7005 75846 71527 2055	11
86 7004 41097 63179 2118	10
88 7003 23288 54592 2174	9
90 0.7002 22867 - 45797 +2222	7

TABLE XXXI

Factor I_2 as a function of ξ_r , Clarke 1866 Ellipsoid

		r		
ξ _r x10 ⁻⁵	1 ₂ x10 ¹⁸	A	В	C
00	+.0000 00000	+23954	-000	-4
2	47875	23905	- 25	4
4	95553	23757	49	4
6	1 42838	23512	73	4
8	1 89537	23171	97	4
10	+.0002 35458	+22731	-121	-4
12	2 80413	22205	144	4
14 16	3 24219 3 66697	21586 20878	166 188	4 4
18	4 07676	20070	208	
20	+.0004 46989	+19214	- 228	3 -3 3 3 3 2
22	4 84480	18264	247	- J
24	5 19998	17242	264	3
26	5 53402	16151	281	3
28	5 84560	14997	296	2
30	+.0006 13350	+13784	-310	-2
32	6 39661	12518	323	2
34	6 63392	11205	334	2 2 2
36	6 84452	9849	344	
38	7 02764	8457	352	1
40 42	+.0007 18260 7 30885	+07034 5587	- 359 364	-1
44	7 30885 7 40597	4121	368	1
46	7 47362	2643	371	-1
48	7 51163	+01157	372	0
50	+.0007 51991	-00329	-371	0
52	7 49851	1810	369	0
54	7 44759	3280	366	+1
56	7 36742	4734	361	1
58	7 25840	6165	355	1
60	+.0007 12101	-07569	-347	+1
62	6 95587	8940	338 338	1
64 66	6 76368 6 54526	10272 11562	328 317	2
68	6 30150	12805	304	2
70	+.0006 03341	-13995	-291	+2
72	5 74207	15129	276	
74	5 42865	16203	261	3
76	5 09439	17212	244	3
78	4 74062	18154	227	3 3 3 +3
80	+.0004 36872	-19024	-209	+3
82	3 98013	19821	190	3 3 3 3
84	3 57637 3 35800	20542	170	5
86 88	3 15899 2 72960	21183	150	2
90	2 72960 +.0002 28983	21743 -22220	130 - 109	ク +4
20	T . 0002 20707	-22220	-107	TT

TABLE XXXII

Factors I_3 and I_4 as functions of ξ_r , Clarke 1866 Ellipsoid

1400015	13 4114 43 1	ancerons or	r, Olaike	1000 EIIIpsolu
ξ_{r} x10 ⁻⁵	1 ₃ ×10 ²⁴	A	В	1 ₄ ×10 ³⁰
00	0.0057 78990	00000	- 1 9	0.0000 00000
2	57 78912	- 77	19	198
4	57 78681	154	19	395
	57 78295	231	19	590
6 8	57 77757	307	19	782
10	0.0057 77068	-00381	- 18	0.0000 00972
12	57 76233	453	18	1157
14	57 75256	524	18	1338
16	57 74137	594	17	
18		661	16	1512 1681
20	0.0057 71498	-00723	- 15	0.0000 01843
22	57 69991	784	15	1997
24	57 68362	842	14	2143
26	57 66624	896	13	2280
28	57 64781	947	12	2407
30	0.0057 62840	-00993	- 11	0.0000 02525
32	57 60810	1036	10	2632
34	57 58697	1075	9	2729
36	57 56512	1109	8	2814
38	57 54262	1140	7	2889
40	0.0057 51956	-01165	- 06	0.0000 02951
42	57 49605	1186	5	3002
44	57 47217	1202		3040
46	57 44801	1212	3 2	3066
48	57 42371	1219	- 01	3081
50	0.0057 39929	-01221	0	0.0000 03083
52	57 37489	1218	+ 01	3073
54	57 35061	1209	3	3051
56	57 32654	1197	4	3017
58	57 30277	1179	5	2971
60	0.0057 27942	-01157	+ 06	0.0000 02914
62	57 25652	1131	7	2845
64	57 23421	1099	8	2765
66	57 21258	1064	9	2675
68	57 19167	1025	ıó	2574
70	0.0057 17161	-00981	+ 11	0.0000 02464
72	57 15244	934	12	2344
74	57 13426	884	13	2215
76	57 11712	829	14	2078
78	57 10110	772	15	1934
80	0.0057 08627	-00711		0.0000 01781
82	57 07268	648	+ 15 16	1623
84	57 07260	583	16	
86				1458
	57 04939	515 445	17	1287
88	57 03981		17	1112
90	0.0057 03162	-00373	+ 18	0.0000 00933

LITERATURE CITED

- 1. G.Bomford. Geodesy. The Clarendon Press, Oxford, 1952.
- 2. R. A. Hirvonen. "Nutshell Tables of Mathematical Functions for Interpolation with Calculating Machines,"

 Bulletin Geodesique, Number 30, December 1953.
- 3. M. Hotine. "The Orthomorphic Projection of the Spheroid,"

 The Empire Survey Review, Numbers 62-66, 1946-47.
- 4. W. F. Reynolds. Manual of Triangulation Computation and Adjustment. Special Publication Number 138, U. S. Coast and Geodetic Survey, Department of Commerce, Washington, D. C., 1934.
- 5. P. Tardi and G. Laclavere. <u>Traite de Geodesie</u>. Gauthier-Villars, Paris, 1954.
- 6. P. D. Thomas. <u>Conformal Projections in Geodesy and Car-tography</u>. Special Publication Number 251, U. S. Coast and Geodetic Survey, Department of Commerce, Washington, D. C., 1952.

