Gradient Boosting Machines (GBM) in R

Szilárd Pafka, PhD Chief Scientist, Epoch

R-Ladies Meetup Budapest January 2018

Edit profile

Szilard

@DataScienceLA

physics PhD, chief (data) scientist, meetup organizer, datascience.la, (visiting) professor, machine learning benchmarks

Santa Monica, California S linkedin.com/in/szilard

198 Following **2,067** Followers

Disclaimer:

I am not representing my employer (Epoch) in this talk

results etc. mentioned in this talk

I cannot confirm nor deny if Epoch is using any of the methods, tools,

Source: Andrew Ng

Params	AUC	Time (s)	Epochs
<pre>default: activation = "Rectifier", hidden = c(200,200)</pre>	73.1	270	1.8
hidden = $c(50,50,50,50)$, input_dropout_ratio = 0.2	73.2	140	2.7
hidden = $c(50,50,50,50)$	73.2	110	1.9
hidden = c(20,20)	73.1	100	4.6
hidden = c(20)	73.1	120	6.7
•••			
RectifierWithDropout, c(200,200,200,200), dropout=c(0.2,0.1,0.1,0)	73.3	440	2.0
ADADELTA rho = 0.95, epsilon = 1e-06	71.1	240	1.7
rho = 0.999, epsilon = 1e-08	73.3	270	1.9
adaptive = FALSE default: rate = 0.005, decay = 1, momentum = 0	73.0	340	1.1
rate = 0.001, momentum = 0.5 / 1e5 / 0.99	73.2	410	0.7
rate = 0.01, momentum = 0.5 / 1e5 / 0.99	73.3	280	0.9
rate = 0.01, rate_annealing = 1e-05, momentum = 0.5 / 1e5 / 0.99	73.5	360	1
rate = 0.01, rate_annealing = 1e-04, momentum = 0.5 / 1e5 / 0.99	72.7	3700	8.7
rate = 0.01, rate_annealing = 1e-05, momentum = 0.5 / 1e5 / 0.9	73.4	350	0.9

XGBoost A Scalable Tree Boosting System June 02, 2016

5,632 views

Szilard @DataScienceLA · 2 Nov 2016
Can anyone beat GBMs with deep learning (ahem, Al) on the airline dataset (or generally tabular/business data)? github.com/szilard/benchm...

ali

MODEL	1st	2ND
BST-DT RF	$0.580 \\ 0.390$	$0.228 \\ 0.525$
BAG-DT SVM	0.030	0.323 0.232 0.008
ANN KNN	0.000	0.003 0.007 0.000
BST-STMP	0.000	0.000 0.000 0.000
LOGREG	0.000	0.000 0.000 0.000
1112	0.000	0.000

		-
AVG	1st	2ND
RF	0.727	0.207
ANN	0.053	0.172
BSTDT	0.059	0.228
SVM	0.043	0.195
LR	0.089	0.132
BAGDT	0.002	0.012
KNN	0.023	0.045
BSTST	0.004	0.009
PRC	0	0
NB	0	0

An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf

MODEL	1st	2ND
BST-DT RF BAG-DT SVM ANN KNN BST-STMP DT LOGREG NB	0.580 0.390 0.030 0.000 0.000 0.000 0.000 0.000 0.000	0.228 0.525 0.232 0.008 0.007 0.000 0.000 0.000 0.000

			-
	AVG	1st	2ND
	RF	0.727	0.207
	ANN	0.053	0.172
١	BSTDT	0.059	0.228
1	SVM	0.043	0.195
1	LR	0.089	0.132
	BAGDT	0.002	0.012
	KNN	0.023	0.045
	BSTST	0.004	0.009
	PRC	0	0
	NB	0	0

An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
 - 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

- - - $\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}.$

 - (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
 - (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.

 - 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions R_{im} , $j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Szilard @DataScienceLA · Jun 17

What's the typical size of datasets you are analyzing?

18% <100MB

48% 100MB-10GB

18% 10GB-1TB

16% >1TB

151 votes · Final results

Szilard @DataScienceLA · Jun 17

What's the typical size of datasets you are analyzing?

18% <100MB

48% 100MB-10GB

18% 10GB-1TB

16% >1TB

151 votes · Final results

DATASETS

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology

Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology

Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Model	vCPU	Mem (GiB)
r3.8xlarge	32	244
x1.32xlarge	128	1,952

```
distribution = c("AUTO", "gaussian", "bernoulli", "multinomial", "poisson",
   "gamma", "tweedie", "laplace", "quantile", "huber"), quantile_alpha = 0.5,
   tweedie_power = 1.5, huber_alpha = 0.9, ntrees = 50, max_depth = 5,
   min_rows = 10, learn_rate = 0.1, learn_rate_annealing = 1,
   sample_rate = 1, sample_rate_per_class, col_sample_rate = 1,
   col_sample_rate_change_per_level = 1, col_sample_rate_per_tree = 1,
   nbins = 20, nbins_top_level = 1024, nbins_cats = 1024,
   validation_frame = NULL, balance_classes = FALSE, class_sampling_factors,
```

h2o.qbm(x, y, training_frame, model_id, checkpoint, ignore_const_cols = TRUE,

max_after_balance_size = 5, seed, build_tree_one_node = FALSE,

keep_cross_validation_fold_assignment = FALSE,

"Binary", "Eigen"))

score_each_iteration = FALSE, score_tree_interval = 0,

weights_column = NULL, min_split_improvement = 1e-05,

"MSE", "AUC", "misclassification", "mean_per_class_error"),

"RoundRobin"), max_abs_leafnode_pred, pred_noise_bandwidth = 0.

nfolds = 0, fold_column = NULL, fold_assignment = c("AUTO", "Random",
"Modulo", "Stratified"), keep_cross_validation_predictions = FALSE.

stopping_rounds = 0, stopping_metric = c("AUTO", "deviance", "logloss".

stopping_tolerance = 0.001, max_runtime_secs = 0, offset_column = NULL,

histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",

categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",

Arno Candel in GBM, R, Technical, Tutorials | June 16, 2016

H2O GBM Tuning Tutorial for R

In this tutorial, we show how to build a well-tuned H2O GBM model for a supervised classification task. and use a small dataset to allow you to reproduce these results in a few minutes on a laptop. This script ca dreds of GBs large and H2O clusters with dozens of compute nodes.

(i) machinelearningmastery.com/configure-gradient-boosting-algorithm/

Start Here

Search...

How to Configure the Gradient Boosting Algorithm

by Jason Browniee on September 12, 2016 in XGBoost

Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

xgboost: Extreme Gradient Boosting

h2o: R Interface for H2O

Simple/limited/incomplete benchmark

Simple/limited/incomplete benchmark

Tool	Version	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	cran 3.10.4.6	25	140	0.762	0.776
xgboost	cran 0.6-4	20	290	0.750	0.751
lightgbm	github 97ca38d	6	50	0.764	0.775

x1.32xlarge (128 cores)

16 cores vs 1:

Tool	1M data	10M/100M
lightgbm	4x	6x
xgboost	6x	4x
h2o	6x	12x

16 cores:

Tool	Time [s]
xgboost	4
lightgbm	0.5
h2o	10

szilard / GBM-perf

GBM: 100 trees, depth 10, learning rate 0.1

On r4.8xlarge (32 cores, 250GB RAM)

Tool	Version	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	cran 3.10.4.6	25	140	0.762	0.776
xgboost	cran 0.6-4	20	290	0.750	0.751
xgboost hist	github 6776292	20	170	0.766	0.772
lightgbm	github 97ca38d	6	50	0.764	0.775

With GPU support on p2.xlarge (Tesla K80, 12GB)

Tool	Version	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o xgboost	deep water 3.11.0.266	20	180	0.715	0.708
xgboost hist	github 64c8f6f	6	50	0.750	0.740
lightgbm	github 1d5867b	30	120	0.771	0.789

R code (hands-on)

- Gaussian Processes (GP)
- Tree of Parzen Estimators (TPE)
- Sequential Model-based Algorithm Configuration (SMAC)

"Level-zero" data

$$n\left\{ \begin{bmatrix} p_1 \end{bmatrix} \cdots \begin{bmatrix} p_L \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \rightarrow n \left\{ \begin{bmatrix} & Z & \\ & Z & \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \right\}$$

"Level-one" data

More:

szilard / GBM-tuneszilard / GBM-perfszilard / GBM-multicore

@DataScienceLA

in linkedin.com/in/szilard

github.com/szilard