ЛЕКЦИЯ 10

СИНТЕЗ РЕГУЛЯТОРОВ С ИСПОЛЬЗОВАНИЕМ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

Существуют два подхода к синтезу регуляторов с использованием ИНС:

- косвенный;
- прямой.

NN Predictive Controller

u' - тестовое управляющее воздействие. y' - отклик модели.

$$I(u') = \sum_{j=1}^{N_2} [V - y'(t+j)]^2 + \sum_{j=1}^{N_u} [u'(t+j-1) - u'(t+j-2)]^2.$$

 N_2 и N_u - характеризуют глубину горизонта.

Это косвенный метод.

ОУ может отличаться от модели ОУ, в этом случае управление плохое.

NARMA-L2 регулятор

Прямой метод.

Регулятор - нейросетевая модель.

Если $W(p)=\frac{p-1}{T^2p^2+2\xi Tp+1}$ - обратить нельзя, т.к. правый нуль, регулятор будет неустойчив.

Если $W(p)=\frac{p+1}{T^2p^2+2\xi Tp+1}$ - можно обратить. $y[k+d]=N(y[k],y[k-1],\ldots,y[k-n+1],u[k],u[n-1],\ldots,u[k-n+1]),d\geq 1.$ Это модель NARMA.

Задаемся эталонной величиной выхода - ищем управление.

n - размер скользящего интервала.

Если u зависит не линейно от входящих в нее параметров, то решение найти проблематично.

Если провести линеаризацию данной модели, то получаем модель NARMA-L2. $y[k+d] = f(y[k], y[k-1], \dots, y[k-n+1], \dots, u[n-1], \dots, u[k-n+1]) + g(y[k], y[k-n+1])$ $u[k] = \frac{V-f(\ldots)}{g(\ldots)}$ (это если хотим, чтобы y[k+d] = V).

Минус данной модели в том, что не любую функцию можно обратить (надо статически устойчивый объект использовать).

Модель Reference Controller

Хотим минимизировать ошибку.

$$E(\omega) = \frac{1}{2}e^T e.$$

Обучающая выборка $\{V, y_{et}\}$.

V - вектор командного сигнала.

 y_{et} - эталонный выход системы управления.

$$e = y_{et} - y.$$

 $\frac{\partial y}{\partial u}$ - не получается вычислить аналитически, поэтому используем эталонную модель.

Необходимо вначале обучить эталонную модель, а потом, на основе ее, обучить регулятор.

Структура может быть персептрон (однослойный или многослойный).