Delaunay Triangulations

Xiao-Ming Fu

Outlines

- Introduction
 - Convex hull
 - Triangulation
 - Delaunay triangulation
 - The Lawson Flip algorithm
- Properties
 - Empty Circle
 - Maximize the minimum angle
- Optimal Delaunay triangulation

Outlines

Introduction

- Convex hull
- Triangulation
- Delaunay triangulation
- The Lawson Flip algorithm
- Properties
 - Empty Circle
 - Maximize the minimum angle
- Optimal Delaunay triangulation

Convex polygon

• One can walk between any two vertices along a straight line without ever leaving the polygon.

Convex polygon

- A set $P \in \mathbb{R}^{\overline{d}}$ is convex if $\overline{pq} \in P, \forall p, q \in P$.
- An alternatively equivalent way to phrase convexity:
 - For every line $l \in \mathbb{R}^d$, the intersection $l \cap P$ is connected

• For any family $\{P_i\}$ of convex sets, the intersection $\cap_i P_i$ is convex.

Convex hull

• The convex hull of a finite point set $P \in \mathbb{R}^d$ forms a convex polytope, denoted as conv(P).

• Each $p \in P$ for which $p \notin conv(P \setminus \{p\})$ is called a vertex of conv(P).

• A vertex of conv(P) is also called an *extremal point* of P.

• A convex polytope in \mathbb{R}^2 is called a convex polygon.

An example of conv(P)

Trivial algorithms of Convex hull

- Carathéodory's Theorem
 - Test for every point $p \in P$ whether there are $q, r, s \in P \setminus \{p\}$ such that p is inside the triangle with vertices q, r, and s.
 - Runtime $O(n^4)$.
- The Separation Theorem:
 - Test for every pair $(p,q) \in P^2$ whether all points from $P \setminus \{p,q\}$ are to the left of the directed line through p and q (or on the line segment \overline{pq}).
 - Runtime $O(n^3)$.

Triangulation of polygon

• A triangulation nicely partitions a polygon into triangles, which allows, for instance, to easily compute the area or a guarding of the polygon.

ullet Another typical application scenario is to use a triangulation T for

interpolation.

Triangulation of a point set

• A triangulation should then partition the convex hull while respecting the points in the interior.

Definition

- A triangulation of a finite point set $P \subset R^2$ is a collection \mathcal{T} of triangles, such that:
 - (1) $conv(P) = \bigcup_{T \in \mathcal{T}} T$
 - (2) $P = \bigcup_{T \in \mathcal{T}} V(T)$
 - (3) For every distinct pair $T, U \in \mathcal{T}$, the intersection $T \cap U$ is either a common vertex, or a common edge, or empty.

Various triangulations

Delaunay triangulation

• Definition: For a given set P of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle

of any triangle in DT(P).

Empty Circle property

Empty Circle

Four points in convex position

(a) Delaunay triangulation.

(b) Non-Delaunay triangulation.

(c) Two Delaunay triangulations.

The Lawson Flip algorithm

- (1) Compute some triangulation of P
- (2) While there exists a subtriangulation of four points in convex position that is not Delaunay, replace this subtriangulation by the other triangulation of the four points.

Theorem

Let $P \subseteq R^2$ be a set of n points, equipped with some triangulation \mathcal{T} . The Lawson flip algorithm terminates after at most $\binom{n}{2} = O(n^2)$ flips, and the resulting triangulation D is a Delaunay triangulation of P.

Two-step proof:

- 1. The program described above always terminates.
- 2. The algorithm does what it claims to do, namely the result is a Delaunay triangulation.

The Lifting Map

• Given a point $p = (x, y) \in R^2$, its lifting l(p) is the point $l(p) = (x, y, x^2 + y^2) \in R^3$

Geometrically, l "lifts" the point vertically up until it lies on the unit

paraboloid:

Important property of the lifting map

- Lemma: Let $C \subseteq R^2$ be a circle of positive radius. The "lifted circle" $l(C) = \{l(p) | p \in C\}$ is contained in a unique plane $h(C) \subseteq R^3$.
- Moreover, a point $p \in \mathbb{R}^2$ is strictly inside (outside, respectively) of C if and only if the lifted point l(p) is strictly below (above, respectively) h(C).

(1) Termination

(a) Before the flip: the top two triangles of the tetrahedron and the corresponding non-Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the tetrahedron and the corresponding Delaunay triangulation in the plane.

(1) Termination

(1) Termination

• A Lawson flip can therefore be interpreted as an operation that replaces the top two triangles of a tetrahedron by the bottom two ones.

• If we consider the lifted image of the current triangulation, we therefore have a surface in \mathbb{R}^3 whose pointwise height can only decrease through Lawson flips.

• In particular, once an edge has been flipped, this edge will be strictly above the resulting surface and can therefore never be flipped a second time. Since n points can span at most $\binom{n}{2}$ edges, the bound on the number of flips follows.

(2) Correctness

• Locally Delaunay: Let Δ , Δ' be two adjacent triangles in the triangulation D that results from the Lawson flip algorithm. Then the circumcircle of Δ does not have any vertex of Δ' in its interior, and vice versa.

- Locally Delaunay
 ⇔ Globally Delaunay:
 - contradiction

Locally Delaunay ←⇒ Globally Delaunay

Figure 2.7: (a) Because τ 's open circumdisk contains v, some edge between v and τ is not locally Delaunay. (b) Because v lies above e_1 and in τ 's open circumdisk, and because w_1 lies outside τ 's open circumdisk, v must lie in τ_1 's open circumdisk.

Outlines

- Introduction
 - Convex hull
 - Triangulation
 - Delaunay triangulation
 - The Lawson Flip algorithm

Properties

- Empty Circle
- Maximize the minimum angle
- Optimal Delaunay triangulation

Maximize the minimum angle

Long and skinny triangles

Much closer to an equilateral triangle

Maximize the minimum angle

• Indeed, we will show that Delaunay triangulations maximize the smallest angle among all triangulations of a given point set.

 Note that this does not imply that there are no long and skinny triangles in a Delaunay triangulation.

 But if there is a long and skinny triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle in every triangulation of the point set.

Maximize the minimum angle

- A flip replaces six interior angles by six other interior angles, and we will actually show that the smallest of the six angles strictly increases under the flip.
 - Before the flip:

•
$$\alpha_1 + \alpha_2$$
, α_3 , α_4 , α_1 , α_2 , $\overline{\alpha_3} + \overline{\alpha_4}$

After the flip:

•
$$\alpha_1$$
, α_2 , $\overline{\alpha_3}$, $\overline{\alpha_4}$, $\underline{\alpha_1} + \alpha_4$, $\underline{\alpha_2} + \alpha_3$

•
$$\alpha_1 > \underline{\alpha_1}$$
, $\alpha_2 > \underline{\alpha_2}$, $\overline{\alpha_3} > \alpha_3$, $\overline{\alpha_4} > \alpha_4$
 $\underline{\alpha_1} + \alpha_4 > \alpha_4$, $\underline{\alpha_2} + \alpha_3 > \alpha_3$

induced eight angles.

Outlines

- Introduction
 - Convex hull
 - Triangulation
 - Delaunay triangulation
 - The Lawson Flip algorithm
- Properties
 - Empty Circle
 - Maximize the minimum angle
 - Euclidean Minimum Spanning Tree
- Optimal Delaunay triangulation

Optimal Delaunay triangulation

Thinking from surface approximation

$$E = \sum_{T \in \mathcal{T}} \int_{T} |\hat{u}(x) - u(x)| dx$$

 $\hat{u}(x)$: piecewise linear interpolation of u

 \mathcal{T} : a triangulation

Fix positions of vertices, Delaunay triangulation is optimal.

Update of vertices' positions

Fix the triangulation, update the vertices.

$$E = \sum_{T \in \mathcal{T}} \int |\hat{u}(x) - u(x)| dx = \sum_{T \in \mathcal{T}} \int \hat{u}(x) dx + C$$

$$= \sum_{T \in \mathcal{T}} \frac{|T|}{3} (u(p_i) + u(p_j) + u(p_k)) + C$$

$$\nabla E_{p_i} = \sum_{T \in \Omega(i)} \frac{\nabla |T|}{3} (u(p_i) + u(p_j) + u(p_k)) + \frac{|\Omega|}{3} \nabla u(p_i) = 0$$

Because
$$\sum_{T \in \Omega(i)} \frac{\nabla |T|}{3} u(p_i) = 0$$

$$\nabla u(p_i) = -\frac{1}{|\Omega|} \sum_{T \in \Omega(i)} \frac{\nabla |T|}{3} (u(p_j) + u(p_k))$$

Optimal Delaunay triangulation

- Alternately iterate:
 - Update triangulation
 - Update vertices
- Extension to any convex function u(x):
 - Delaunay triangulation → regular triangulation

$$u(x,y) = e^{\frac{(x^2+y^2)}{10}}$$

 $\Omega = [-5,5]^2$

