Abyan Ardiatama

24060120140161

Praktikum ke-2 Machine Learning

Memuat dataset ke dalam google colab menggunakan pandas dengan memasukkan url dan nam atributnya

```
import pandas
#Memuat Dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/blood-transfusi
#names = ['mpg','cylinders','displacement','horsepower','weight']
dataset = pandas.read_csv(url)
```

print(dataset)

0 1 2 3 4	Recency (month	s) Frequ 2 0 1 2	uency (times) 50 13 16 20 24	Monetary	12 3 4	ood) \ 2500 3250 4000 5000
743 744 745 746 747	•	23 21 23 39 72	2 2 3 1 1			500 500 750 250 250
0 1 2 3 4	Time (months) 98 28 35 45	whether	he/she donate	d blood in	March 20	007 1 1 1 1 0
743 744 745 746 747	38 52 62 39 72				•	0 0 0 0 0

[748 rows x 5 columns]

▼ Membagi dataset menjadi 80% data training dan 20% data validasi

```
from sklearn import*
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(

# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
```


###Memvalidasi dataset pada 5 algoritma decision tree, dan Logistic Regression) Memvalidasi dataset pada 5

Memvalidasi dataset pada 5 algoritma (KNN,gaussian,svc, decision tree, dan Logistic Regression)

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import*
# Spot Check Algorithms
models = []
models.append(('KNN', KNeighborsClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))
# evaluate each model in turn
results = []
names = []
for name, model in models:
  kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=seed)
  cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold
  results.append(cv_results)
  names.append(name)
  error_score='raise'
  msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
  print(msg)
    KNN: 0.757521 (0.021764)
    NB: 0.769314 (0.049525)
    SVM: 0.762619 (0.028621)
    CART: 0.724090 (0.051401)
    LR: 0.777675 (0.037171)
```

▼ Meguji keakuratan metode yang memiliki akurasi perkiraan tertinggi

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
# Make predictions on validation dataset
LR = LogisticRegression(solver='liblinear', multi_class='ovr')
LR.fit(X_train, Y_train)
predictions = LR.predict(X validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
    0.75333333333333333
     [[107
            51
            6]]
      [ 32
                                recall f1-score
                   precision
                                                    support
                        0.77
                                            0.85
                                  0.96
                                                        112
                        0.55
                1
                                  0.16
                                            0.24
                                                         38
                                            0.75
                                                        150
        accuracy
                        0.66
                                  0.56
                                            0.55
                                                        150
       macro avg
    weighted avg
                        0.71
                                  0.75
                                            0.70
                                                        150
```

Colab paid products - Cancel contracts here