Experimental Setup

เนื่องจากข้อมูลมีขนาดกลาง คือ 3156 ประโยคจึงแบ่งสัดส่วนเป็น dev 20% และ train 80% ของข้อมูลทั้งหมด

ประกอบกับ Label distribution ไม่สมดุลเท่าที่ควร เนื่องจากแต่ละ label มีจำนวนที่ต่าง กันมากๆ ทั้ง polarity label และ aspect label ดังรูป

positive 1876
negative 715
neutral 398
conflict 167
Name: polarity, dtype: int64

food 1051
anecdotes/miscellaneous 956
service 506
ambience 368
price 275
Name: aspectCategory, dtype: int64

ดังนั้น จึงเหมาะกับสัดส่วน 80 : 20 มากที่สุด training data จะได้ไม่น้อยเกินไป เพื่อให้ โมเดลได้เรียนรู้ในตอนเทรนมากที่สุด

Model

ทดลองทั้งหมด 3 รูปแบบ คือ

Logistic regression(1)

Feature : [tokenize] + [contractions หรือ การเปลี่ยนรูปคำย่อต่างๆ เช่น is'nt ---> is not] + [unigram และ bigram] และแปลงให้เป็น sparse feature matrix

Feature นี้น่าจะเป็นผลดีต่อประสิทธิภาพของโมเดล เพราะ การเปลี่ยนคำย่อทำให้มีรูป เต็มของ not ในประโยค โมเดลสามารถเรียนรู้ได้ง่ายขึ้นใน label negative หรือ conflict ส่วน การทำ unigram และ bigram น่าจะทำให้โมเดลทำนายจากบริบทของแต่ละคำในประโยคได้มาก ขึ้น และการแปลงให้เป็น sparse feature matrix จะทำให้ค่าส่วนใหญ่ใน matrix เป็น 0 ประหยัด เนื้อที่และเวลาในการประมวลผลมากกว่า dense feature matrix

Logistic regression(2)

Feature : [tokenize] + [contractions หรือ การเปลี่ยนรูปคำย่อต่างๆ เช่น is'nt ---> is not] + [กรองให้เหลือแต่ คำนาม คำคุณศัพท์ คำกริยา และ คำกริยาวิเศษณ์ด้วย nltk pos tagger] และแปลงให้เป็น sparse feature matrix

Feature นี้น่าจะเป็นผลดีต่อประสิทธิภาพของโมเดล เพราะ การเปลี่ยนคำย่อทำให้มีรูป เต็มของ not ในประโยค โมเดลสามารถเรียนรู้ได้ง่ายขึ้นใน label negative หรือ conflict ส่วน การกรองให้เหลือเพียง คำนาม คำคุณศัพท์ คำกริยา และคำกริยาวิเศษณ์เพราะคำเหล่านี้สำคัญ ในการสื่อถึง sensiment รวมถึง aspect มากกว่าคำชนิดอื่นๆ และการแปลงให้เป็น sparse feature matrix จะทำให้ค่าส่วนใหญ่ใน matrix เป็น 0 ประหยัดเนื้อที่และเวลาในการประมวล ผลมากกว่า dense feature matrix

Neural network

Feature: [tokenize] + [contractions หรือ การเปลี่ยนรูปคำย่อต่างๆ เช่น is'nt ---> is not] + [กรองให้เหลือแต่ คำนาม คำคุณศัพท์ คำกริยา และ คำกริยาวิเศษณ์ด้วย nltk pos tagger] คล้ายๆกับ logistic regression (2) และเลือกใช้ Pre-train Word Embedding เนื่องจาก เห็นว่าเป็นข้อมูลขนาดใหญ่ รวมถึงมีคลังของศัพท์ว่าคำไหนใช้ในบริบทไหน น่าจะทำให้โมเดล เรียนรู้จากคำเหล่านั้นได้มากขึ้น แต่อย่างไรก็ตามเนื่องจากจำนวนข้อมูลในEmbedding นั้นใหญ่ เกินไปจึงเลือกเฉพาะคำที่มีอยู่ในไฟล์เทรนมาหา word embedding

เลือกใช้ Neural network แบบ Bidirectional LSTM เพราะมีความสามารถในเรื่อง classification

Hidden Layers: มีการใช้Hidden Layers หลายชั้นเพื่อให้โมเดลมีการ back Propagate เพราะคาดว่าจะทำให้โมเดลได้เรียนรู้จากความผิดพลาดและปรับปรุงให้ได้ผลลัพท์ที่แม่นยำที่สุด นอกจากนี้มีการใช้ Drop Out ระหว่าง hidden layer เพื่อลดโอกาสในการเกิด Overfit เท่าที่จะ ทำได้

Results

โมเดลแรกได้ผลแย่สุด เพราะอาจไม่เกี่ยวกับบริบท โมเดลต่อมามีการกรองคำ คำประเภทคำนาม กริยา คุณศัพท์ กริยาวิเศษณ์จึงน่าจะมีผลมาก และสุดท้ายใช้ Model ที่ซับซ้อนขึ้นมาจึงมีค่ามาก ที่สุด

Loggistic regression Uni+Bi(1):

=== CLASSIFICATION : ASPECT === class name precision recall F1-score support food 0.849 0.778 0.812 203 0 food (price 0.727 0.133 0.225 60 1 price (service 0.866 0.558 0.678 104 2 service (amblence 0.769 0.892 0.412 71 3 amblence (anecdotes/miscellaneous 0.744 0.794 0.768 194 4 anecdotes/miscellaneous (an

5		MACRO	AVG	0.791 0	.509	0.579
6		MICRO	AVG	0.801 0	.630	0.705
==	= CLASSIFIC	ATION : SE	NTIMENT =	==		
)	class name	precision	recall	F1-score	support	
0	positive	0.721	0.895	0.799	306	
1	negative	0.530	0.280	0.366	125	
2	noutnal	0 522	0.216	0.200	74	

2	neutral	0.533	0.216	0.308	74
3	conflict	0.429	0.375	0.400	24
4	MACRO AVG	0.553	0.442	0.468	529
5	MICRO AVG	0.672	0.631	0.651	529
==	= CLASSIFIC				NOON COUNTY
		precision	recall	F1-score	support
0	MICRO AVG	0.539	0.424	0.475	632

Logistic regression-Unigram(2):

		class na	me pre	cision	recall	F1	-score	sup
0		fo	od	0.878	0.778		0.825	
1		pri	.ce	0.889	0.267		0.410	
2		servi	ce	0.881	0.567		0.690	
3		ambien	ice	0.882	0.423		0.571	
4	anecdotes/	miscellaned	us	0.773	0.789		0.781	
5		MACRO A	VG	0.860	0.565		0.655	
6		MTCRO A	VG	0.837	0.658		0.737	
		ATION : SEN	TIMENT :					
		ATION : SEN	TIMENT :		one sun	nont		
==	class name	ATION : SEN	TIMENT :	F1-sc	1000			
0	class name positive	ATION : SEN precision 0.761	TIMENT : recall 0.863	F1-sc 0.	809	306		
0	class name positive negative	ATION : SEN precision 0.761 0.596	recall 0.863	F1-sc 0. 0.	809 541	306 125		
0	class name positive negative	ATION : SEN precision 0.761	recall 0.863	F1-sc 0. 0.	809 541	306 125		
0 1 2	class name positive negative neutral	ATION : SEN precision 0.761 0.596	recall 0.863 0.496 0.297	F1-sc 0. 0.	809 541 396	306 125		
0 1 2	class name positive negative neutral conflict	ATION : SEN precision 0.761 0.596 0.595	recall 0.863 0.496 0.297 0.083	F1-sc 0. 0. 0.	809 541 396 121	306 125 74 24		

203

==	= CLASSIFIC	ATION : OVE	RALL ===		
		precision	recall	F1-score	support
0	MICRO AVG	0.586	0.460	0.516	632

Neural Network:

		class na	ame pred	ision	recall	F1-score	suppor
0		fo	ood	0.847	0.897	0.871	2
1		pri	ce	0.727	0.133	0.225	
2		servi	ice	0.942	0.625	0.751	1
3		ambier	nce	0.826	0.535	0.650	
4	anecdotes/	miscellaneo	ous	0.846	0.680	0.754	1
5		MACRO A	AVG	0.838	0.574	0.650	63
6		MICRO A	AVG	0.855	0.672	0.753	6
2	negative neutral	0.437	0.419	0.	428	74	
	conflict						
4	MACRO AVG	0.515	0.473	0.	490	529	
5	MICRO AVG	0.714	0.671	0.	692	529	
==	= CLASSIFIC	ATION : OVE	RALL ===				
		precision	recall	F1-sc	ore supp	ort	
α	MICRO AVG	0.608	0.478	0.	535	632	

Conclusion

<u>เลือกใช้โมเดล Neural Network เนื่องจากเป็นโมเดลที่แม่นยำมากที่สุด</u>คิดว่าได้ผลดีกว่า logistic regression เนื่องจาก neural network เป็นโมเดลที่ซับซ้อนกว่า เปรียบเสมือน logistic regression หลายๆอันมารวมกัน และ word-embedding ใช้ดูความเชื่อมโยงทางบริบทได้ดีกว่า unigram ผสมกับ bigram ด้วย แต่คะแนนไม่ห่างมากอาจเนื่องมาจากการ overfitting ของ ข้อมูล (ค่า validation accuracy มักจะต่ำกว่าค่า training accuracy เมื่อดูจาก history)