

CLAIMS

1. A compound of the formula

wherein A is of the formula

5

X and Y are each independently hydrogen, fluoro, chloro, bromo, or (C₁-C₆)alkyl;

R¹ is (C₂-C₆)alkyl, (C₃-C₆)alkenyl, or optionally substituted benzyl; wherein said benzyl
10 may be optionally substituted with one to three substituents independently selected from HO-, (C₁-C₆)alkyl-O-, halo and amino;

R² is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heterocyclyl, (C₁-C₉)heteroaryl, (C₆-C₁₀)aryl(C₁-C₄)alkyl, (C₁-C₉)heterocyclyl-(C₁-C₄)alkyl, (C₁-C₉)heteroaryl-(C₁-C₄)alkyl, or (C₃-C₁₀)cycloalkyl-(C₁-C₄)alkyl; wherein each of the aforesaid groups may optionally be substituted with one to three substituents independently selected from halo, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, or -CF₃;

R³ is hydrogen, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₁-C₉)heterocyclyl, (C₁-C₉)heteroaryl, or (C₆-C₁₀)aryl; wherein each of the aforesaid groups
20 may be optionally substituted with one to three substituents independently selected from HO-, (C₁-C₆)alkyl-O-, halo and amino;

R⁴ is HO- or R¹⁴R¹⁵N-;

R⁵ is a radical selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl-, (C₁-C₉)heteroaryl-, (C₁-C₉)heterocyclic-, -OH, (C₁-C₆)alkyl-O-, (C₃-C₁₀)cycloalkyl-O-, (C₆-C₁₀)aryl-O-, (C₁-C₉)heteroaryl-O-, (C₁-C₉)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-(C₁-C₆)alkyl-O-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl-O-, (C₁-C₉)heterocyclic-(C₁-C₆)alkyl-O-, R¹⁶R¹⁷N-(C=O)-, R¹⁶-(C=O)-(R²⁵-N)-, R¹⁶R¹⁷-N-SO₂-, R¹⁸-SO₂-, R¹⁸-SO₂-(NR¹⁹)-, R¹⁸-SO₃-, -C≡N, R¹⁸-(C=O)-O-, R¹⁸-(C=O)-, R¹⁶R¹⁷N-(C=O)-O-,

$R^{16}R^{17}N-(C=O)-(R^{25}N)-$, $R^{19}O-(C=O)-(R^{25}N)-$, and $R^{19}O-(C=O)-$; wherein each of said $(C_1-C_6)alkyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl$, $(C_1-C_9)heterocyclic$ moieties of said $(C_1-C_6)alkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl$, $(C_1-C_9)heterocyclic$, $(C_1-C_6)alkyl-O$, $(C_3-C_{10})cycloalkyl-O$, $(C_6-C_{10})aryl-O$, $(C_1-C_9)heteroaryl-O$, $(C_1-C_9)heterocyclic-O$,

5 $(C_3-C_{10})cycloalkyl-(C_1-C_6)alkyl-O$, $(C_6-C_{10})aryl-(C_1-C_6)alkyl-O$, $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl-O$ and $(C_1-C_9)heterocyclic-(C_1-C_6)alkyl-O$ radicals, may optionally be substituted with one to three substituents independently selected from the group consisting of $(C_1-C_6)alkyl$, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n$, $(C_1-C_9)heterocyclic$, halo, HO-, HO-(C=O)-, $R^{20}O-(C=O)-$,

10 $R^{21}-(C=O)-$, $R^{22}-CO_2-$, $N\equiv C-$, $R^{23}R^{24}N-$, $R^{23}R^{24}N-(C_1-C_6)alkyl$, $R^{23}R^{24}N-(C=O)-$, $R^{23}R^{24}N-SO_2-$, $R^{21}-SO_2-$, $R^{21}-SO_2-(NR^{21})-$, $R^{21}-SO_3-$, $R^{21}(C=O)-NH-$, $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-$; $R^{21}(C=O)-NH-(C_1-C_6)alkyl$; and

15 $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-(C_1-C_6)alkyl$; wherein said $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n$, $(C_1-C_9)heterocyclic$ substituents may optionally be substituted on a ring carbon or nitrogen by one to three members per ring independently selected from halo, $(C_1-C_6)alkyl$, and $(C_1-C_6)alkoxy$;

n is an integer from zero to four;

each of R^6 , R^7 , R^8 and R^9 is independently selected from the group consisting of hydrogen, $(C_1-C_6)alkyl$, fluoro and -OH;

20 each of R^{10} and R^{11} is independently selected from the group consisting of hydrogen and $(C_1-C_6)alkyl$;

each of R^{12} and R^{13} is independently selected from the group consisting of hydrogen, fluoro and $(C_1-C_6)alkyl$;

each of R^{14} and R^{15} is independently selected from hydrogen or $(C_1-C_4)alkyl$;

25 each of R^{16} and R^{17} is independently selected from hydrogen, $(C_1-C_6)alkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl$, $(C_1-C_9)heterocyclic$, $(C_1-C_9)heteroaryl(C_1-C_6)alkyl$, $(C_6-C_{10})aryl(C_1-C_6)alkyl$, $(C_1-C_9)heterocyclic(C_1-C_6)alkyl$, HO-(C_1-C_6)alkyl, amino-(C_1-C_6)alkyl, $(C_1-C_6)alkylamino-(C_1-C_6)alkyl$, and $[(C_1-C_6)alkyl]_2amino-(C_1-C_6)alkyl$; wherein said each of said $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl$, and $(C_1-C_9)heterocyclic$ moieties of said $(C_6-C_{10})aryl$,

30 $(C_1-C_9)heteroaryl$, $(C_1-C_9)heterocyclic$, $(C_6-C_{10})aryl-(C_1-C_6)alkyl$, $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl$ and $(C_1-C_9)heterocyclic-(C_1-C_6)alkyl$, may optionally be substituted with one to three substituents independently selected from the group consisting of halo, $(C_1-C_6)alkyl$ or $(C_1-C_6)alkoxy$, or R^{16} and R^{17} are taken together to form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, $(C_1-C_6)alkyl-piperazinyl$, or morpholinyl ring;

35 R^{18} is hydrogen, $(C_1-C_6)alkyl$, $(C_6-C_{10})aryl$ or $(C_1-C_9)heteroaryl$; wherein said $(C_1-C_6)alkyl$ may optionally be substituted with a substituent selected from the group consisting of HO-, amino, $(C_1-C_6)alkylamino$, $[(C_1-C_6)alkyl]_2amino$, $(C_6-C_{10})aryl$,

(C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, (C₁-C₆)alkoxy, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, (C₁-C₆)alkyl-(C=O)-, N≡C-, [(C₁-C₆)alkyl]₂N-(C=O)- and (C₁-C₆)alkyl(C=O)-NH-;

R¹⁹ is hydrogen or (C₁-C₆)alkyl;

R²⁰ is hydrogen or (C₁-C₆)alkyl;

5 R²¹ is hydrogen or (C₁-C₆)alkyl;

R²² is hydrogen or (C₁-C₆)alkyl;

each of R²³ and R²⁴ is independently selected from hydrogen, (C₁-C₆)alkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, (C₁-C₉)heteroaryl(C₁-C₆)alkyl, (C₆-C₁₀)aryl(C₁-C₆)alkyl, (C₁-C₉)heterocyclic(C₁-C₆)alkyl, HO-(C₁-C₆)alkyl, N≡C-(C₁-C₆)alkyl,

10 amino-(C₁-C₆)alkyl-, (C₁-C₆)alkylamino-(C₁-C₆)alkyl-, and [(C₁-C₆)alkyl]₂amino-(C₁-C₆)alkyl-; wherein each of said (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, and (C₁-C₉)heterocyclic moieties of said (C₆-C₁₀)aryl-, (C₁-C₉)heteroaryl-, (C₁-C₉)heterocyclic-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl, (C₁-C₉)heteroaryl-(C₁-C₆)alkyl and (C₁-C₉)heterocyclic-(C₁-C₆)alkyl, may optionally be substituted with one to three substituents independently selected from the group consisting of

15 halo, (C₁-C₆)alkyl or (C₁-C₆)alkoxy, or R²³ and R²⁴ are taken together to form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, (C₁-C₆)alkyl-piperazinyl, or morpholinyl ring;

R²⁵ is hydrogen or (C₁-C₆)alkyl;

or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1, wherein said compound has the formula

20

3. A compound according to claim 1, wherein said compound has the formula

4. A compound according to claim 1, wherein said compound has the formula

1a

5. A compound according to claim 1, wherein said compound has the formula

6. A compound according to claim 1, wherein said compound has the formula

5

7. A compound according to claim 1, wherein said compound has the formula

8. A compound according to claim 1, wherein said compound has the formula

1b

9. A compound according to claim 1, wherein said compound has the formula

10. A compound according to claim 1, wherein said compound has the formula

5

11. A compound according to claim 1, wherein said compound has the formula

12. A compound according to claim 1, wherein said compound has the formula

1c

13. A compound according to claim 1, wherein said compound has the formula

14. A compound according to claim 1, wherein said compound has the formula

5

15. A compound according to claim 1, wherein said compound has the formula

16. A compound according to any of the foregoing claims, wherein R¹ is ethyl or allyl.

17. A compound according to any of the foregoing claims, wherein R² is optionally substituted (C₆-C₁₀)aryl.
18. A compound according to claims 1-16, wherein R² is optionally substituted (C₁-C₉)heteroaryl.
- 5 19. A compound according to claims 1-16, wherein R² is optionally substituted (C₃-C₅)heteroaryl.
20. A compound according to claims 1-16, wherein R² is optionally substituted (C₁-C₉)heterocyclyl.
- 10 21. A compound according to claims 1-16, wherein R² is optionally substituted phenyl.
22. A compound according to claims 1-16, wherein R² is phenyl.
23. A compound according to claims 1-16, wherein R² is optionally substituted thiazolyl.
- 15 24. A compound according to claims 1-16, wherein R² is optionally substituted pyridyl.
25. A compound according to claims 1-16, wherein R² is optionally substituted oxazolyl.
26. A compound according to claims 1-16, wherein R² is optionally substituted pyridin-2-yl.
- 20 27. A compound according to claims 1-16, wherein R² is optionally substituted thiazol-2-yl.
28. A compound according to claims 1-16, wherein R² is optionally substituted oxazol-2-yl.
- 25 29. A compound according to claims 1-16, wherein R² is pyridin-2-yl; optionally substituted with a substituent selected from halo, CF₃, and (C₁-C₆)alkyl.
- 30 30. A compound according to claims 1-16, wherein R² is thiazol-2-yl; optionally substituted with a substituent selected from halo, CF₃, or (C₁-C₆)alkyl.
31. A compound according to claims 1-16, wherein R² is oxazol-2-yl; optionally substituted with a substituent selected from halo, CF₃, or (C₁-C₆)alkyl.
- 30 32. A compound according to claims 1-16, wherein R² is pyridin-2-yl.
33. A compound according to claims 1-16, wherein R² is thiazol-2-yl.
34. A compound according to claims 1-16, wherein R² is oxazol-2-yl.
35. A compound according to claims 1-16, wherein R² is (C₃-C₆)alkynyl.
36. A compound according to claims 1-16, wherein R² is (C₂-C₆)alkenyl.
- 35 37. A compound according to any of the foregoing claims, wherein R³ is hydrogen.

38. A compound according to claims 1-36, wherein R³ is (C₁-C₆)alkyl optionally substituted with a substituent selected from halo or hydroxy.

39. A compound according to claims 1-36, wherein R³ is methyl, ethyl or propyl.

40. A compound according to claims 1-36, wherein R³ is methyl.

5 41. A compound according to claims 1-36, wherein R³ is optionally substituted (C₁-C₉)heteroaryl.

42. A compound according to claims 1-36, wherein R³ is optionally substituted (C₁-C₉)heterocyclil.

43. A compound according to claims 1-36, wherein R³ is optionally substituted 10 (C₆-C₁₀)aryl.

44. A compound according to any of the foregoing claims, wherein R⁴ is HO-.

45. A compound according to claims 1-36, wherein R⁴ is R¹⁴R¹⁵N-.

46. A compound according to any of the foregoing claims, wherein R⁵ is -OH.

47. A compound according to claims 1-45, wherein R⁵ is (C₁-C₆)alkyl-O-, 15 (C₃-C₁₀)cycloalkyl-O-, (C₆-C₁₀)aryl-O-, (C₁-C₉)heteroaryl-O-, or (C₁-C₉)heterocyclic-O-, wherein each of said (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic moieties of said (C₁-C₆)alkyl-O-, (C₃-C₁₀)cycloalkyl-O-, (C₆-C₁₀)aryl-O-, (C₁-C₉)heteroaryl-O-, (C₁-C₉)heterocyclic-O- radicals may optionally be substituted with one to three substituents independently selected from (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, 20 (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, halo, HO-, HO-(C=O)-, R²¹-(C=O)-, R²²-CO₂- , N≡C-, R²³R²⁴N-, R²³R²⁴N-(C=O)-, R²¹(C=O)-NH-, R²¹(C=O)-[N-(C₁-C₆)alkyl]-.

48. A compound according to claims 1-45, wherein R⁵ is optionally substituted 25 (C₆-C₁₀)aryl-, (C₁-C₉)heteroaryl-, (C₁-C₉)heterocyclic-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl, (C₁-C₉)heteroaryl-(C₁-C₆)alkyl or (C₁-C₉)heterocyclic-(C₁-C₆)alkyl; optionally substituted with one to three substituents independently selected from (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, halo, HO-, HO-(C=O)-, R²¹-(C=O)-, R²²-CO₂- , N≡C-, R²³R²⁴N-, R²³R²⁴N-(C=O)-, R²¹(C=O)-NH-, R²¹(C=O)-[N-(C₁-C₆)alkyl]-.

30 49. A compound according to claims 1-45, wherein R⁵ is (C₆-C₁₀)aryl-(C₁-C₆)alkyl-O-, (C₁-C₉)heteroaryl-(C₁-C₆)alkyl-O-, (C₁-C₉)heterocyclic-(C₁-C₆)alkyl-O-, wherein each of said (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic moieties of said (C₆-C₁₀)aryl-(C₁-C₆)alkyl-O-, (C₁-C₉)heteroaryl-(C₁-C₆)alkyl-O-, and (C₁-C₉)heterocyclic-(C₁-C₆)alkyl-O-, may optionally be 35 substituted with one to three substituents independently selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl(CH₂)_n-, (C₁-C₉)heterocyclic, halo, HO-, HO-(C=O)-, R²⁰-O-(C=O)-,

$R^{21}-(C=O)-$, $R^{22}-CO_2-$, $N\equiv C-$, $R^{23}R^{24}N-$, $R^{23}R^{24}N-(C_1-C_6)alkyl-$, $R^{23}R^{24}N-(C=O)-$, $R^{21}(C=O)-NH-$, $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-$; $R^{21}(C=O)-NH-(C_1-C_6)alkyl-$; and $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-(C_1-C_6)alkyl-$; wherein said $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, $(C_1-C_9)heterocyclic$ substituents may optionally be substituted on a ring carbon or nitrogen by one to three members per ring independently selected from halo, $(C_1-C_6)alkyl$, and $(C_1-C_6)alkoxy$.

50. A compound according to claims 1-45, wherein R^5 is $(C_6-C_{10})aryl-(C_1-C_6)alkyl-O-$, $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl-O-$, $(C_1-C_9)heterocyclic-(C_1-C_6)alkyl-O-$, wherein each of said $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl$, $10(C_1-C_9)heterocyclic$ moieties of said $(C_6-C_{10})aryl-(C_1-C_6)alkyl-O-$, $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl-O-$, and $(C_1-C_9)heterocyclic-(C_1-C_6)alkyl-O-$, may optionally be substituted with a substituent selected from the group consisting of $(C_1-C_6)alkyl$, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, $(C_1-C_9)heterocyclic$, halo, HO-, HO-(C=O)-, $R^{20}-O-(C=O)-$, $R^{21}-(C=O)-$, $R^{22}-CO_2-$, $N\equiv C-$, $15R^{23}R^{24}N-$, $R^{23}R^{24}N-(C_1-C_6)alkyl-$, $R^{23}R^{24}N-(C=O)-$, $R^{21}(C=O)-NH-$, $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-$; $R^{21}(C=O)-NH-(C_1-C_6)alkyl-$; and $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-(C_1-C_6)alkyl-$; wherein said $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$; $(C_1-C_9)heterocyclic$ substituents may optionally be substituted on a ring carbon or nitrogen by one to three members per ring independently selected from halo, $(C_1-C_6)alkyl$, and $(C_1-C_6)alkoxy$.

20 51. A compound according to claims 1-45, wherein R^5 is $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl-O-$ optionally substituted with one to two substituents independently selected from the group consisting of $(C_1-C_6)alkyl$, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, $(C_1-C_9)heterocyclic$, halo, HO-, HO-(C=O)-, $R^{20}-O-(C=O)-$, $R^{21}-(C=O)-$, $R^{22}-CO_2-$, $N\equiv C-$, $R^{23}R^{24}N-$, $R^{23}R^{24}N-(C_1-C_6)alkyl-$, $R^{23}R^{24}N-(C=O)-$, $R^{21}(C=O)-NH-$, $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-$; $R^{21}(C=O)-NH-(C_1-C_6)alkyl-$; and $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-(C_1-C_6)alkyl-$; wherein said $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, $(C_1-C_9)heterocyclic$ substituents may optionally be substituted on a ring carbon or nitrogen by one to three members per ring independently selected from halo, $(C_1-C_6)alkyl$, and $(C_1-C_6)alkoxy$.

30 52. A compound according to claims 1-45, wherein R^5 is $(C_1-C_9)heteroaryl-(C_1-C_6)alkyl-O-$ optionally substituted with one to two substituents independently selected from the group consisting of $(C_1-C_6)alkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, halo, HO-, HO-(C=O)-, $R^{20}-O-(C=O)-$, $R^{21}-(C=O)-$, $R^{22}-CO_2-$, $N\equiv C-$, $R^{23}R^{24}N-$, $R^{23}R^{24}N-(C_1-C_6)alkyl-$, $R^{23}R^{24}N-(C=O)-$, $R^{21}(C=O)-NH-$, $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-$; $R^{21}(C=O)-NH-(C_1-C_6)alkyl-$; and $R^{21}(C=O)-[N-(C_1-C_6)alkyl]-(C_1-C_6)alkyl-$; wherein said $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, $(C_1-C_9)heteroaryl(CH_2)_n-$, $(C_1-C_9)heterocyclic$ substituents

may optionally be substituted on a ring carbon or nitrogen by one to two members per ring independently selected from halo, (C₁-C₆)alkyl, and (C₁-C₆)alkoxy;

wherein n is an integer from zero to two;

wherein each of R²³ and R²⁴ is independently selected from hydrogen, (C₁-C₆)alkyl,

5 (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, (C₁-C₉)heteroaryl(C₁-C₆)alkyl, (C₆-C₁₀)aryl(C₁-C₆)alkyl, (C₁-C₉)heterocyclic(C₁-C₆)alkyl, HO-(C₁-C₆)alkyl, amino-(C₁-C₆)alkyl-, (C₁-C₆)alkylamino-(C₁-C₆)alkyl-, and [(C₁-C₆)alkyl]₂amino-(C₁-C₆)alkyl-; wherein said each of said (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, and (C₁-C₉)heterocyclic moieties of said (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl-, (C₁-C₉)heterocyclic-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl,

10 (C₁-C₉)heteroaryl-(C₁-C₆)alkyl and (C₁-C₉)heterocyclic-(C₁-C₆)alkyl, may optionally be substituted with one to two substituents independently selected from the group consisting of halo, (C₁-C₆)alkyl or (C₁-C₆)alkoxy, or R²³ and R²⁴ are taken together to form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, (C₁-C₆)alkyl-piperazinyl or morpholinyl ring.

53. A compound according to claims 1-45, wherein R⁵ is optionally substituted (C₁-C₆)alkyl-O-.

54. A compound according to claims 1-45, wherein R⁵ is (C₁-C₆)alkyl-O- optionally substituted with one to three substituents independently selected from the group consisting of (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl and (C₁-C₉)heterocyclic; wherein said (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl(CH₂)_n-, (C₁-C₉)heterocyclic substituents may optionally be substituted on a ring carbon or nitrogen by one to three members per ring independently selected from halo, (C₁-C₆)alkyl, and (C₁-C₆)alkoxy.

55. A compound according to claims 1-45, wherein R⁵ is (C₁-C₆)alkyl-O- substituted with one substituent selected from the group consisting of halo, HO-, HO-(C=O)-, R²⁰-O-(C=O)-, R²¹-(C=O)-, R²²-CO₂-, N≡C-, R²³R²⁴N-, R²³R²⁴N-(C=O)-, R²¹(C=O)-NH-, and R²¹(C=O)-[N-(C₁-C₆)alkyl]-; wherein R²³ and R²⁴ is independently selected from hydrogen, (C₁-C₆)alkyl, (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, (C₁-C₉)heterocyclic, (C₁-C₉)heteroaryl(C₁-C₆)alkyl, (C₆-C₁₀)aryl(C₁-C₆)alkyl, (C₁-C₉)heterocyclic(C₁-C₆)alkyl, HO-(C₁-C₆)alkyl, N≡C-(C₁-C₆)alkyl, amino-(C₁-C₆)alkyl-, (C₁-C₆)alkylamino-(C₁-C₆)alkyl-, and [(C₁-C₆)alkyl]₂amino-(C₁-C₆)alkyl-; wherein said each of said (C₆-C₁₀)aryl, (C₁-C₉)heteroaryl, and (C₁-C₉)heterocyclic moieties of said (C₆-C₁₀)aryl-, (C₁-C₉)heteroaryl-, (C₁-C₉)heterocyclic-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl, (C₁-C₉)heteroaryl-(C₁-C₆)alkyl and (C₁-C₉)heterocyclic-(C₁-C₆)alkyl, may optionally be substituted with one to two substituents independently selected from the group consisting of halo, (C₁-C₆)alkyl or (C₁-C₆)alkoxy, or R²³ and R²⁴ are taken together to form an azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl ring.

56. A compound according to claims 1-45, wherein R⁵ is -C≡N, R¹⁶R¹⁷N-(C=O)-, R¹⁶R¹⁷-N-SO₂-, R¹⁸-SO₂-, R¹⁸-SO₂-(NR¹⁹)-, R¹⁸-SO₃-, R¹⁶-(C=O)-(R²⁵-N)-,

$R^{16}R^{17}N-(C=O)-(R^{25}-N)-$, $R^{19}-O-(C=O)-(R^{25}-N)-$, $R^{18}-(C=O)-O-$, $R^{18}-(C=O)-$, $R^{16}R^{17}N-(C=O)-O-$ or $R^{19}-O-(C=O)-$.

57. A compound according to claims 1-45, wherein R^5 is $R^{16}R^{17}N-(C=O)-$.

58. A compound according to claims 1-57, wherein X and Y are each hydrogen.

59. A compound according to claims 1-57, wherein one of X and Y is fluoro, chloro, or bromo.

60. A compound according to claims 1-57, wherein each of X and Y are independently selected from hydrogen, fluoro, chloro, or bromo.

61. A compound according to claims 1-57, wherein one of X and Y is (C_1-C_6)alkyl.

62. A compound according to claim 1, wherein said compound is
($2R$, $3S$, $4aR$, $10aR$)-4a-Ethyl-2-prop-1-ynyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,7-triol;

15 ($2R$, $3S$, $4aR$, $10aR$)-4a-Ethyl-7-(2-methylpyridin-3-ylmethoxy)-2-prop-1-ynyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3-diol;

15 ($2R$, $3R$, $4aR$, $10aR$)-7-[5-(2-Dimethylaminoethyl)-[1,2,4]oxadiazol-3-ylmethoxy]-4a-ethyl-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3-diol

20 ($2R$, $3R$, $4aR$, $10aR$)-4a-Ethyl-3-methyl-2-pyridin-2-yl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,7-triol;

20 ($2R$, $3R$, $4aR$, $10aR$)-4a-Ethyl-3-methyl-7-(2-methylpyridin-3-ylmethoxy)-2-pyridin-2-yl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3-diol;

25 ($2R$, $3S$, $4aR$, $10aR$)-4a-Ethyl-3-methyl-2-thiazol-2-yl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,7-triol;

25 ($2R$, $3S$, $4aR$, $10aR$)-4a-Ethyl-3-methyl-2-(4-methylthiazol-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,7-triol;

30 ($2R$, $3R$, $4aR$, $10aS$)-4a-Ethyl-2,3,7-trihydroxy-3-methyl-2-phenyl-2,3,4,4a,10,10a-hexahydro-1H-phenanthren-9-one;

30 ($2R$, $3R$, $4aR$, $10aS$)-4a-Ethyl-3,9-dimethyl-2-phenyl-1,2,3,4,4a,10a-hexahydrophenanthrene-2,3,7-triol;

35 ($2R$, $3R$, $4aR$, $10aR$)-3,4a-Diethyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,7-triol;

35 ($2R$, $3R$, $4aR$, $10aR$)-4a-Ethyl-7-(2-hydroxy-ethoxy)-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3-diol;

35 ($2R$, $3R$, $4aR$, $10aR$)-4a-Ethyl-7-(3-hydroxy-propoxy)-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3-diol;

35 ($2R$, $3R$, $4aR$, $10aR$)-4a-Ethyl-7-(4-hydroxy-butoxy)-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3-diol;

(4bR, 7R, 6R, 8aR)-4-(4b-Ethyl-6,7-dihydroxy-6-methyl-7-phenyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthren-2-yloxy)-butyronitrile;

(4bR, 7R, 6R, 8aR)-5-(4b-Ethyl-6,7-dihydroxy-6-methyl-7-phenyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthren-2-yloxy)-pentanenitrile;

5 (4bR, 7R, 6R, 8aR)-2-(4b-Ethyl-6,7-dihydroxy-6-methyl-7-phenyl-4b,5,6,7,8,8a,9,10-octahydro-phenanthren-2-yloxy)-acetamide;

(2R, 3R, 4aR, 10aR)-4a-Ethyl-7-(4-hydroxy-4-methyl-pentyloxy)-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3-diol;

10 (2R, 3R, 4aR, 10aR)-4a-Ethyl-7-(5-hydroxy-5-methyl-hexyloxy)-3-methyl-2-phenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3-diol;

(2R, 3R, 4aR, 10aR)-4a-Ethyl-3-methyl-2-prop-1-ynyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3,7-triol;

(2R, 3R, 4aR, 10aR)-4a-Ethyl-3-methyl-2-p-tolyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3,7-triol; and

15 (2R, 3R, 4aR, 10aR)-4a-Ethyl-3-methyl-2-propenyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene-2,3,7-triol.

63. A method of treating a disorder selected from the group consisting of inflammatory disorders, endocrine disorders; collagen diseases; dermatologic diseases; allergic states; ophthalmic diseases; respiratory diseases; hematologic disorders; neoplastic diseases; edematous states; and gastrointestinal diseases in a mammal comprising administering to said mammal a therapeutically effective amount of a compound according to claim 1.

64. A pharmaceutical composition for treating a disorder selected from the group consisting of inflammatory disorders, endocrine disorders; collagen diseases; dermatologic diseases; allergic states; ophthalmic diseases; respiratory diseases; hematologic disorders; neoplastic diseases; edematous states; and gastrointestinal diseases in a mammal comprising a therapeutically effective amount of a compound according to claim 1 or a salt or prodrug thereof, and a pharmaceutically acceptable carrier.

65. A method of treating inflammation in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of claim 1, an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug.

66. A pharmaceutical composition for the treatment of inflammation comprising an amount of a compound of claim 1 effective for treating inflammation, an isomer thereof, a prodrug of said compound or isomer, or a pharmaceutically acceptable salt of said compound, isomer or prodrug; and a pharmaceutically acceptable carrier, vehicle or diluent.