Announcements for Monday, 25NOV2024

- Students requiring ODS accommodations for Exam 3 and the Final Exam
 - Today is the deadline to submit requests for final exams and all remaining exams for the Fall semester
- Week 12 Homework Assignments available on eLearning
 - Graded and Timed Quiz 11 "Thermochemistry" due tonight at 6:00 PM (EST)
- This Week: Changes in Designation of Class Days
 - There **ARE** recitations this week
 - Tomorrow, 26NOV2024, is *Thursday Classes*
 - Wednesday, 27NOV2024, is *Friday Classes*
- Thanksgiving Break
 - Thursday, 28NOV2024 Sunday, 01DEC2024
 - No classes for the entire university

ANY GENERAL QUESTIONS? Feel free to see me after class!

- A deep-sea diver exhales a 15.0-mL bubble of air at a depth where the pressure is 12.0 atm and the temperature is 8.0 °C. What is the volume of the bubble at the surface, where the atmospheric pressure is 770 torr and the temperature is 20.0 °C? 185 mL
- A sample of gas at 100 °C and 1.05 atm occupies a volume of 825 mL. To what temperature must the gas be brought so that it occupies a volume of 1.50 L at 0.985 atm? 363 °C (636 K)
- A 10.00-g sample of $CH_4(g)$ initially at a pressure of 888 Torr and occupying a rigid container with a constant volume is heated from 62 °C to 458 °C. What mass of methane needs to be removed to maintain a constant pressure within the container? 5.42 g

8.0 g of $CH_4(g)$ is added to a rigid container at 0 °C and exerts a pressure of 650 torr. An amount of $O_3(g)$ is added to the container, causing the pressure to increase to 2600 torr. What mass of $O_3(g)$ was added? 72 g

$$PV = nRT \xrightarrow{\text{constant V \& T}} \frac{P}{n} = \frac{RT}{V} = constant \implies \frac{P_1}{n_1} = \frac{P_2}{n_2}$$

$$8.0 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g}} = 0.50 \text{ mol gas} = n_1$$

$$650 \text{ torr} = P_1$$

$$2600 \text{ torr} = P_2$$

$$n_2 = \frac{P_2 n_1}{P_1} = \frac{(2600 \text{ torr})(0.50 \text{ mol})}{650 \text{ torr}} = 2.00 \text{ mol gas }$$
Total (i. e., initial gas + added gas)

moles of O_3 added = 2.00 mol Total – 0.50 mol initial = 1.5 mol O_3 added

1.5 mol
$$O_3 \times \frac{48.0 \text{ g}}{1 \text{ mol } O_3} = 72 \text{ g } O_3 \text{ added}$$

• A 10.0-L cylinder contains 55.0 g $CO_2(g)$ at a temperature of 325 °C. What is the pressure (in atm) within the cylinder? **6.13 atm**

• What mass of $NH_3(g)$ will exert the same pressure as 12 mg of $H_2S(g)$ in the same container under the same conditions? 6.0 mg

• How many gas particles are in a bedroom measuring 3.65 m \times 3.05 m \times 2.40 m at room temperature (25 °C) and standard atmospheric pressure (1.0 atm)? **6.6**×**10**²⁶ particles

Going Beyond PV = nRT

other gas properties can be calculated from the ideal gas law by making mathematical substitutions and rearrangements

- Molar Volume = the volume occupied by 1 mole of gas at specific temperature and pressure
 - Standard Temperature and Pressure (STP) = 0 °C (273.15 K) and 1.0 atm
 - for an ideal gas at STP, the molar volume is...
 - this is one way we can tell that a gas is behaving ideally
 - molar volume is *independent* of gas identity

Going Beyond PV = nRT

2. Gas Density (d) = mass of gas per unit volume

•
$$d = \frac{PM}{RT}$$

- for gases, density is usually given in g/L
- gases with molar masses less than that of air ($\sim 28.8 \text{ g/mol}$) tend to rise in air
 - balloons filled with He or H₂ float

Try This

The density of sulfur vapor at 445 °C and 755 mmHg is 4.33 g/L. What is the molecular formula of sulfur vapor? S_8 (256 g/mol)

$$P = 755 \text{ mmHg} \times \frac{1 \text{ atm}}{760 \text{ mmHg}} = 0.9934 \text{ atm}$$
 $T = 445 + 273 = 718 \text{ K}$

$$d = \frac{PM}{RT} \longrightarrow M \text{ of } S_x = \frac{dRT}{P} = \frac{(4.33 \text{ g/L}) (0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K})(718 \text{ K})}{0.9934 \text{ atm}}$$

$$\mathcal{M}$$
 of $S_x = 256$ g/mol

$$x = \frac{256 \text{ g/mol}}{32 \text{ g/mol}} = 8$$

• The oil produced from eucalyptus leaves contains the volatile organic compound eucalyptol. At 190. °C, a sample of eucalyptol vapor had a density of 0.400 g/L and a pressure of 60.0 torr. Calculate the molar mass of eucalyptol.

• 50.0 g of an unknown gas occupies a volume of 7.686 L at STP. Identify the unknown gas from the following: He, Ne, Ar, Xe, HI, or SF₆?

 Consider a balloon filled with helium at 27 °C at atmospheric pressure. To what temperature should the helium be brought to cause an increase in density by a factor of 1.5?

Properties of Gas Mixtures

- gas samples are usually impure and contain other gaseous impurities
- dry air is a mixture of gases
- working with gas mixtures requires that we work with each component individually
 - gases within a mixture behave independently of one another
 - the pressure exerted by a particular component in a gas mixture would be the same as if the component was by itself

TABLE 10.2 Composition of Dry Air

Gas	Percent by Volume (%)
Nitrogen (N ₂)	78
Oxygen (O ₂)	21
Argon (Ar)	0.9
Carbon dioxide (CO ₂)	0.04

© 2018 Pearson Education, Inc.

Pressure of Gas Mixtures

consider the following scenario

- container at constant volume and temperature
- a mixture of two gases
 - 5 moles gas A 🌒
 - 10 moles gas B

What is the *total* pressure within the container?

What is the *pressure of each* component in the mixture?

How is partial pressure of each component related to the amount (in moles) of each component?

container

volume = 70. L temperature = 341 K

Total Pressure of the Gas Mixture

PV = nRT

$$P_{total} = \frac{n_{total}RT}{V}$$

$$= \frac{(15 \text{ mol})(0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}})(341 \text{ K})}{70. \text{L}}$$

$$P_{total} = 6.0 atm$$

P_{total} depends *only* on the total amount of gas particles and NOT on their individual identities

<u>container</u>

volume = 70. L temperature = 341 K

Partial Pressures of Each Component

we can treat each component separately

container

volume = 70. L temperature = 341 K

$$P_{\text{gas A}} = \frac{n_{\text{gas A}} RT}{V} = 2.0 \text{ atm}$$

$$P_{\text{gas B}} = \frac{n_{\text{gas B}} RT}{V} = 4.0 \text{ atm}$$

Partial Pressure vs. Amount

the partial pressure of a component only depends on its relative amount within the mixture

mole fraction (χ) = gives the relative amount of each component within a mixture

$$\chi_{gas\,A} = \frac{n_A}{n_{total}}$$

$$\chi_{gas\,B} = \frac{n_B}{n_{total}}$$

$$P_{gas\,A} = \chi_{gas\,A} P_{total}$$
 $P_{gas\,B} = \chi_{gas\,B} P_{total}$

$$P_{gas\,B} = \chi_{gas\,B} \, P_{total}$$

$$P_{gas A} + P_{gas B} = P_{total}$$
2.0 atm + 4.0 atm = 6.0 atm

Dalton's Law of Partial Pressures

Collecting Gases over Water

 a common laboratory technique used for gaseous products

- gases generated from a reaction are collected over water
 - $Zn(s) + 2 HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$
- the total pressure (P_{total}) over the water is due to a *mixture of gases*
 - P_{gas} = pressure of the generated gas
 - P_{water} = the partial pressure of water at a given temperature (i.e., the vapor pressure of water)

© 2018 Pearson Education, Inc.

$$P_{total} = P_{gas} + P_{water}$$

Vapor Pressure of Water

vapor pressure =

pressure exerted on the surface of a liquid by its vapor

- vapor pressure increases with increasing temperature
 - higher temperature = more evaporation of liquid = higher vapor pressure
- when vapor pressure equals atmospheric pressure, the liquid boils

TABLE 10.3 Vapor Pressure of Water versus Temperature

Temper	ature	Pressu (mmHg	Temperature (°C)	Pressure (mmHg)
0		4.58	55	118.2
5		6.54	60	149.6
10		9.21	65	187.5
15		12.79	70	233.7
20		17.55	75	289.1
25		23.78	80	355.1
30		31.86	85	433.6
35		42.23	90	525.8
40		55.40	95	633.9
45		71.97	100	760.0
50		92.6		

A mixture of $CO_2(g)$ and $O_2(g)$ that is 60.0% carbon dioxide by mass exerts a pressure of 894 torr at 25 °C. What percentage of the total pressure is due to the partial pressure of the oxygen gas?

- A container holds equal masses of He, CO₂, and Ar. The pressure within the container at 156 °C is 18.4 atm. What is the partial pressure of Ar?
- In the reaction of Zn with excess HCl(aq), 0.010 mol $H_2(g)$ was collected over water at 25 °C and a total pressure of 802.8 mmHg. What volume of hydrogen gas was collected? The vapor pressure of water at 25 °C is 23.78 mmHg.
- At 2730 °C, hydrogen molecules dissociate into hydrogen atoms according to the equation $H_2(g) \rightarrow 2$ H(g). 10.0 g $H_2(g)$ is placed into a 100.0-L container, sealed and heated to 2730 °C so that the hydrogen molecules begin to dissociate. What is the partial pressure of hydrogen molecules and the total pressure within the container once 25% of H_2 has dissociated?