

Supervised Probabilistic Data Models

Why

We want to discuss an inductor's performance on consistent (but possibly incomplete) datasets.

We take two steps. First, put a measure on the set of training sets and only consider high-measure subsets. Second, consider predictors performing well in some tolerance.

Definition

Let (X, \mathcal{X}, μ) be a probability space and (Y, \mathcal{Y}) a measurable space. Let $f: X \to Y$ measurable. We call the pair $((X, \mathcal{X}, \mu), f)$ a (supervised) probabilistic data model.

We interpret μ as the data-generating distribution or underlying distribution and f as the correct labeling function. Many authors refer to a supervised probabilistic data model as the statistical learning (theory) framework.

Probable datasets

We put a measure on the set of datasets by using the product measure $(X^n, \mathcal{X}^n, \mu^n)$. We interpret this as a model for a training set of independent and identically distributed inputs.

For $\delta \in (0,1)$, $\mathcal{S} \subset X^n$ is $1-\delta$ -representative if $\mu^n(\mathcal{S}) \geq 1-\delta$. If \mathcal{S} is $1-\delta$ -representative for small δ , we think of \mathcal{S} as a set of "probable" or "reasonable" datasets. We call δ the confidence parameter.

Predictor error

The error of (measurable) $h: X \to Y$ (under μ and f) is

$$\mathbf{error}(h) = \mu(\{x \in \mathcal{X} \mid h(x) \neq f(x)\}).$$

We interpret this as the probability that the predictor mislabels a point. The accuracy of h is $1 - \operatorname{error}_{\mu,f}(h)$.

Since $(f,g) \mapsto \mu[f(x) \neq g(x)]$ is a metric on $L^2(X,\mathcal{X},\mu,Y)$ we can talk about the error as the "distance" from the correct label classifier. Thus we will say that $\varepsilon \in (0,1)$, (measurable) $h: \mathcal{X} \to \mathcal{Y}$ ε -approximates the correct labeling function f if $\operatorname{error}(h) \leq \varepsilon$. Roughly speaking, if $\varepsilon \ll 1$, the the error of the hypothesis is "fairly small." We call ε the accuracy parameter, since the accuracy of such a predictor is $1 - \varepsilon$.

We have softened that $h \equiv f$ to the error. We

If we interpretIt is a softened form of asking that $h \equiv f$.

Let $S = (x_1, y_1), \ldots, (x_n, y_n)$ a dataset of n paired records in $X \times Y$. The *empirical error* of h is The *dataset error* of an inductor $A : (X \times Y)^n \to \mathcal{M}_{X \to Y}$ on S is the error of the predictor A(S).

Since we have a measure on the set of datasets, we can talk of the

Other terminology

A hypothesis class is a subset of the measurable functions from $X \to Y$. Other names for the error of a classifier include the

 $generalization\ error,$ the risk or the $true\ error$ or loss.

