COGS 118A Introduction to Machine Learning I Midterm Exam II Practice Problems

Instructor: Prof. Zhuowen Tu

1. Shattering

Use shattering to derive the VC-dimension for classifiers below. Show your work.

$$1) f(x, w, b) = sign(wx + b)$$

2)
$$f(x,q,b) = sign(qx^2 + b)$$

3)
$$f(x, w, b) = sign((wx + b)^2)$$

where $x, w, q, b \in \mathbb{R}$ and w, q, b are free parameters. Besides, sign(x) is defined as

$$sign(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0. \end{cases}$$

Ans:

See HW5 Solution.

2. Logistic Regression

In logistic regression model, y is the label for each data point, and it can be either 0 or 1. Here, we define our approximate function to

$$p(y = 1|\mathbf{x}) = h(\mathbf{x}; \mathbf{w}, b) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

where $\mathbf{x} \in \mathbb{R}^m$ is the feature, and b is the bias, and $\mathbf{w} \in \mathbb{R}^K$ contains the set of parameters $\mathbf{w} = (w_0, w_1, ..., w_m)$. The output of $h(\mathbf{x}; \mathbf{w}, b)$ is called the confidence. When $h(\mathbf{x}; \mathbf{w}, b) >= 0.5$, the classifier outputs 1 for the given \mathbf{x} ; otherwise, the classifier outputs 0.

The goal is to train a classifier based on logistic regression to predict the correct label y_i from the given feature \mathbf{x}_i . We define a loss function which measures the distance between the correct label and the prediction from the classifier, as is shown below:

$$\mathcal{L}(\mathbf{w}) = -\sum_{i} \ln p(y_i|\mathbf{x}_i; \mathbf{w}, b)$$

where

$$p(y_i|\mathbf{x}_i;\mathbf{w}+b) = \frac{1}{1 + e^{-(2y_i - 1) \times (\mathbf{w}^T \mathbf{x}_i + b)}},$$

which is called the sigmoid function.

The training procedure is to minimize the loss function on the training set. Consider **gradient descent** method to find the optimal \mathbf{w}^* in $h(\mathbf{x}; \mathbf{w}, b)$.

- (a) Derive $\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}}$.
- (b) Suppose that the learning rate is denoted as α . Write down the update rule for w.

Ans:

See HW4 Solution.

3. Linear Discriminative Analysis

Consider a dataset which has two classes $y \in \{-1, +1\}$. For y = -1, there are two data points $\mathbf{x}_1 = [2, 5]^{\top}, \mathbf{x}_2 = [2, 1]^{\top};$ for y = +1, there are two data points $\mathbf{x}_3 = [5, 3]^{\top}, \mathbf{x}_4 = [7, 3]^{\top}.$ Now we have two options to project the data points, $\mathbf{w}_1 = [1, 0]^{\top}$ and $\mathbf{w}_2 = [0, 1]^{\top}.$ Please compare which projection is better based on the Fisher's linear discriminant analysis.

Hint: The Fisher's linear discriminant analysis is defined to maximize the criterion function:

$$S(\mathbf{w}) = \frac{\sigma_{\text{between}}^2}{\sigma_{\text{within}}^2} = \frac{\left(\mathbf{w}^{\top} \mu_0 - \mathbf{w}^{\top} \mu_1\right)^2}{\mathbf{w}^{\top} (\Sigma_1 + \Sigma_0) \mathbf{w}}$$

Ans:

We can get $\mu_0 = [2,3]^{\top}$, $\mu_1 = [6,3]^{\top}$. Then for $\mathbf{w}_2 = [0,1]^{\top}$, $S(\mathbf{w}) = 0$; for $\mathbf{w}_1 = [1,0]^{\top}$, $S(\mathbf{w}) > 0$.

So $\mathbf{w}_1 = [1, 0]^{\mathsf{T}}$ is better projection according to Fisher's linear discriminant analysis. It is also recommended to plot these points to see why $\mathbf{w}_1 = [1, 0]^{\top}$ is a better projection.

4. Support Vector Machine

Consider a dataset $\{(\mathbf{x}^{(i)}, y^{(i)})\}$ where $\mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}]^{\top}$ and $y^{(i)} \in \{-1, +1\}$, which is shown in the figure below. Suppose we have trained a support vector machine (SVM) on the dataset, which has the **decision boundary** $\mathbf{w} \cdot \mathbf{x} + b = 0$, **positive plane** $\mathbf{w} \cdot \mathbf{x} + b = +1$ and **negative plane** $\mathbf{w} \cdot \mathbf{x} + b = -1$. The SVM is optimized as following:

Find:
$$\arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

Subject to: $\mathbf{w} \cdot \mathbf{x}^{(i)} + b \ge +1$, if $y^{(i)} = +1$
 $\mathbf{w} \cdot \mathbf{x}^{(i)} + b \le -1$, if $y^{(i)} = -1$.

- 1) Please draw the decision boundary, positive plane and negative plane in the figure below.
- 2) Calculate the \mathbf{w} and b from your drawn positive plane and negative plane.
- 3) Calculate the size of the margin.
- **4)** Calculate the hinge loss for data points: $([3,4]^{\top},1), ([2,1]^{\top},1), ([2,1]^{\top},-1), ([2,3]^{\top},-1).$

Ans:

- 1) The decision boundary is plotted as above. You should be able to draw the decision boundary that maximizes the margin.
- 2) $\mathbf{w} = [-1, -1]^{\top}, b = 5.$
- 3) The size of the margin can be computed using $\frac{2}{||\mathbf{w}||} = \sqrt{2}$.
- 4) The hinge loss of $([3,4]^{\top},1),([2,1]^{\top},1),([2,1]^{\top},-1),([2,3]^{\top},-1)$ are 3, 0, 3, 1 respectively.

5. Regression

You are given data $S = \{(x_i, y_i), i = 1, ..., n\}$. The data are expressed as matrices $X = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^{\top}$ and $Y = [y_1, y_2, ..., y_n]^{\top}$ where \mathbf{x}_i is $[1, x_i, x_i^2]^{\top}$. The parabola function is defined as: $f(x; W) = w_0 + w_1 x + w_2 x^2 = \mathbf{x}^{\top} W$ where \mathbf{x} is $[1, x, x^2]^{\top}$ and W is $[w_0, w_1, w_2]^{\top}$. We consider a loss function with combined L_1 loss term and L_2 loss term as follows:

$$\mathcal{L} = \sum_{i=1}^{N} \alpha \frac{1}{2} (y_i - f(x_i; W))^2 + (1 - \alpha) |y_i - f(x_i; W)|$$

where α is the weight of L_2 loss term. We wish to optimize W using gradient descent.

- (a) Obtain the gradient $\frac{\partial g(W)}{\partial W}$.
- (b) If λ denotes learning rate, what is the update rule for W?

Ans:

See HW4 Solution.

6. Cross Validation

Given a dataset $S = \{(x^{(i)}, y^{(i)})\}$ where $x^{(i)} \in \mathbb{R}$, $y^{(i)} \in \{-1, +1\}$ and |S| = 6. The items in the dataset are given below:

$$(x^{(1)}, y^{(1)}) = (1, -1), \quad (x^{(2)}, y^{(2)}) = (2, -1), \quad (x^{(3)}, y^{(3)}) = (3, +1),$$

 $(x^{(4)}, y^{(4)}) = (4, -1), \quad (x^{(5)}, y^{(5)}) = (5, +1), \quad (x^{(6)}, y^{(6)}) = (6, +1).$

Suppose you are training a linear classifier f(x; a, b) = sign(ax+b) with 2-fold cross validation:

1) Split the dataset S into:

$$S_1 = \{(x^{(1)}, y^{(1)}), (x^{(3)}, y^{(3)}), (x^{(4)}, y^{(4)})\}$$

$$S_2 = \{(x^{(2)}, y^{(2)}), (x^{(5)}, y^{(5)}), (x^{(6)}, y^{(6)})\}$$

- 2) Train the classifier f(x; a, b) on S_1 , get the parameters $a_1 = 2, b_1 = -5$ and then validate the classifier on S_2 .
- 3) Train the classifier f(x; a, b) on S_2 , get the parameters $a_2 = 2, b_2 = -7$ and then validate the classifier on S_1 .

Please finish the tasks below:

- (a) Calculate the average training accuracy in the 2-fold cross validation.
- (b) Calculate the average validation accuracy in the 2-fold cross validation.

Ans:

a) Predicts the labels of the training set S1:

 $\hat{y}_1 = -1, \hat{y}_3 = 1, \hat{y}_4 = 1$, so the training accuracy is 2/3.

Predicts the labels of the training set S2:

s $\hat{y}_2 = -1$, $\hat{y}_5 = 1$, $\hat{y}_6 = 1$, so the training accuracy is 1.

The average training accuracy is 5/6

b) Predicts the labels of the validation set S2:

 $\hat{y}_2 = -1, \hat{y}_5 = 1, \hat{y}_6 = 1$, so the validation accuracy is 1.

Predicts the labels of the validation set S1:

 $\hat{y}_1 = -1, \hat{y}_3 = -1, \hat{y}_4 = 1$, so the validation accuracy is 1/3.

The average validation accuracy is 2/3