Dr. D. Frettlöh 19. August 2013

Tabelle von Ableitungs- und Stammfunktionen

Ableitung $f'(x)$	Funktion $f(x)$	Stammfunktion $F(x)$
		(eigentlich immer $+ C$)
$\alpha x^{\alpha-1}$	$x^{\alpha} \ (\alpha \in \mathbb{R})$	$\begin{cases} \frac{1}{\alpha+1} x^{\alpha+1} & \text{wenn } \alpha \neq -1 \\ & \ln x & \text{wenn } \alpha = -1 \end{cases}$
9.0	$\sqrt[n]{x} = x^{1/n}$	
S.O.		S.O.
S.O.	$\frac{1}{x^{\alpha}} = x^{-\alpha}$	S.O.
$\alpha e^{\alpha x}$	$e^{\alpha x}$	$\frac{1}{\alpha}e^{\alpha x}$
$\ln(a)a^x$	a^x	$\frac{a^x}{\ln a}$
$\frac{1}{x}$	$\ln x$	$x(\ln x - 1)$
$\cos(x)$	$\sin x$	$-\cos x$
$-\sin(x)$	$\cos x$	$\sin x$
	$\frac{1}{\cos(x)^2} = 1 + \tan(x^2)$	$\tan(x) = \frac{\sin(x)}{\cos(x)}$
	$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$-\ln\cos(x)$
	$\sqrt{a^2-x^2}$	$\frac{a^2}{2}\arcsin\left(\frac{x}{a}\right) + \frac{x}{2}\sqrt{a^2 - x^2}$
	$\sqrt{a^2+x^2}$	$\frac{a^2}{2}\operatorname{arsinh}\left(\frac{x}{a}\right) + \frac{x}{2}\sqrt{a^2 + x^2}$
	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x$
	$\frac{1}{x^2+1}$	$\arctan x$
	$\sinh x$	$\cosh x$
	$\cosh x$	$\sinh x$
	$\tanh x$	$\ln \cosh x$
	$\coth x$	$\ln \sinh x $
	$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{arsinh} x$
	$\frac{1}{\sqrt{x^2-1}}$	(x > 1:) arcosh x
	$\frac{1}{1-x^2}$	(x < 1:) artanh x
	$\frac{1}{1-x^2}$	(x > 1:) arcoth x

1