2019年全国硕士研究生入学统一考试 (数学 II)

一、选择题(1-8小题. 每小题4分,共32分.)

1 . 当 $x \to 0$ 时, 若 $x - \tan x$ 与 x^k 是同阶无穷小,则 $k = ($).				
	(A) 1	(B) 2	(C) 3	(D) 4
2	2. 曲线 $y = x \sin x + 2 \cos x \left(-\frac{\pi}{2} < x < \frac{3\pi}{2}\right)$ 的拐点是 ().			
	(A)(0,2)	(B) $(\pi, -2)$	$(C) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$(D)\left(\frac{3\pi}{2}, -\frac{3\pi}{2}\right)$
3	3. 下列反常积分发散的是().			
	$(A) \int_0^{+\infty} x e^{-x} dx$		$(B) \int_0^{+\infty} x e^{-x^2} dx$	
	(C) $\int_0^{+\infty} \frac{\arctan x}{1 + x^2} dx$	$\mathrm{d}x$	$(D) \int_0^{+\infty} \frac{x}{1+x^2} \mathrm{d}x$	
4	. 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (C_1 + C_2 x)e^{-x} + e^x$, 则 a, b, c 依 次为 ().			
	(A) 1,0,1	(B) 1,0,2	(C) 2,1,3	(D) 2, 1, 4
5	5. 已知平面区域 $D = \{(x,y) x + y \le \frac{\pi}{2} \}$, 若记			
	$I_1 = \iint_D \sqrt{x^2 + y^2} dx dy, I_2 = \iint_D \sin \sqrt{x^2 + y^2} dx dy, I_3 = \iint_D (1 - \cos \sqrt{x^2 + y^2}) dx dy$			
	则 (). (A) $I_3 < I_2 < I_1$	(B) $I_2 < I_1 < I_3$	(C) $I_1 < I_2 < I_3$	(D) $I_2 < I_3 < I_1$
6	. 设函数 <i>f</i> (x),g(x) f	的二阶导函数在 x =	a 处连续, 则 $\lim_{x\to a} \frac{f(x)}{f(x)}$	$\frac{g(x)-g(x)}{(x-a)^2}=0$ 是两条曲
	线 $y = f(x)$, $y = g(x)$ 在 $x = a$ 对应的点处相切及曲率相等的().			
	(A) 充分不必要条何	牛	(B) 充分必要条件	
	(C) 必要不充分条何	牛	(D) 既不充分也不少	必要条件

(C) 2

(D) 3

7. 设 A 是四阶矩阵, A* 为其伴随矩阵, 若线性方程组 Ax = 0 的基础解系中只有两

个向量,则 $r(A^*)=($).

(B) 1

(A) 0

8. 设 A 是三阶实对称矩阵, E 是三阶单位矩阵, 若 $A^2 + A = 2E$, 且 |A| = 4, 则二次型 $x^T A x$ 的规范形是(

(A)
$$y_1^2 + y_2^2 + y_3^2$$

(B)
$$y_1^2 + y_2^2 - y_3^2$$

(C)
$$y_1^2 - y_2^2 - y_3^2$$

(A)
$$y_1^2 + y_2^2 + y_3^2$$
 (B) $y_1^2 + y_2^2 - y_3^2$ (C) $y_1^2 - y_2^2 - y_3^2$ (D) $-y_1^2 - y_2^2 - y_3^2$

- 二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)
- 1. $\lim_{x\to 0} (x+2^x)^{\frac{2}{x}} =$ _____.
- **2.** 曲线 $\begin{cases} x = t \sin t \\ y = 1 \cos t \end{cases}$ 在 $t = \frac{3\pi}{2}$ 对应点处的切线在 y 的截距为 ______.
- **3.** 设函数 f(u) 可导, $z = yf\left(\frac{y^2}{x}\right)$, 则 $2x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\qquad}$.
- **4.** 曲线 $y = \ln \cos x$ ($0 \le x \le \frac{\pi}{6}$) 的弧长为 ______.
- **5.** 已知函数 $f(x) = x \int_{1}^{x} \frac{\sin t^2}{t} dt$, 则 $\int_{1}^{1} f(x) dx =$ ______.
- **6.** 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 1 & -1 & 1 \\ 3 & -2 & 2 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$, A_{ij} 表示元素 a_{ij} 的代数余子式, 则 $A_{11} A_{12} =$
- 三、解答题(1-5 题每题 10 分, 6-9 题每题 11 分, 共 94 分)
- **1.** 已知函数 $f(x) = \begin{cases} x^{2x}, & x > 0 \\ xe^x + 1, & x \le 0 \end{cases}$, 求 f'(x), 并求函数 f(x) 的极值.
- 2. 求不定积分 $\int \frac{3x+6}{(x-1)^2(x^2+x+1)} dx$.
- **3.** 设函数 y(x) 是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解.
 - (1) 求 v(x) 的表达式;
 - (2) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x) \}$, 求 D 绕 x 轴旋转一周所形成 的旋转体的体积.

- **4.** 设平面区域 $D = \{(x,y)||x| \le y, (x^2+y^2)^3 \le y^4\}$, 计算二重积分 $\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \, \mathrm{d}x \, \mathrm{d}y$.
- **5.** 设 n 是正整数, 记 S_n 为曲线求曲线 $y = e^{-x} \sin x (0 \le x \le n\pi)$ 与 x 轴所形成图形的面积, 求 S_n , 并求 $\lim_{n\to\infty} S_n$.
- **6.** 已知函数 u(x,y)满足关系式 $2\frac{\partial^2 u}{\partial x^2} 2\frac{\partial^2 u}{\partial y^2} + 3\frac{\partial u}{\partial y} = 0$. 求 a,b 的值, 使得在变换 $u(x,y) = v(x,y)e^{ax+by}$ 之下, 上述等式可化为函数 v(x,y) 的不含一阶偏导数的等式.
- 7. 已知函数 f(x) 在 [0,1] 上具有二阶导数,且 f(0)=0, f(1)=1, $\int_0^1 f(x) dx = 1$, 证明: (1) 至少存在一点 $\xi \in (0,1)$, 使得 $f'(\xi)=0$; (2) 至少存在一点 $\eta \in (0,1)$, 使得 $f''(\eta)<-2$.
- 8. 已知向量组 I: $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}$; 向量组 II: $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 0 \\ 2 \\ 1 a \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 3 \\ a^2 + 3 \end{pmatrix}$. 若向量组 I 和向量组 II 等价, 求常数 a 的值, 并将 β_3 用 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.
- **9.** 已知矩阵 $A = \begin{pmatrix} -2 & 2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

 (1) 求 x, y 之值; (2) 求可逆矩阵 P, 使得 $P^{-1}AP = B$.