Matching Covered Graphs and Subdivision

Collomb Estelle, Boudier Thomas

25th November 2021

Table of Contents

- Objective
- 2 Definitions
- Main theorem and proof
- 4 Deduced theorem

Objective

Theorem 6

Every non-bipartite **matching covered** graphs contains a **nice** subgraph that is an odd **subdivision** of K_4 or \bar{C}_6 .

Theorem 1

A graph G has a perfect matching if and only if $c1(G-X) \le |X|$, for each set X of vertices.

Theorem 1

A graph G has a perfect matching if and only if $c1(G-X) \le |X|$, for each set X of vertices.

Definition

If the equality holds for some set X of vertices in the previous theorem, then X is a barrier.

Definition

A connected graph is matching covered if each of its edges lies in some perfect matching.

Definition

A connected graph is matching covered if each of its edges lies in some perfect matching.

Nice graphs

Definition

A subgraph H of matching covered graph G is nice if G-H has a perfect matching.

Bicritical Graphs

Definition

A graph is bicritical if deletion of any two of its vertices yields a graph having a perfect matching.

Brick

Definition

A brick is a 3-connected bicritical graph.

Brace

Definition

A bipartite graph is a brace if deletion of any four vertices, two from each color class, yields a graph having a perfect matching.

Tight-cut

Definition

For any subset X of the set of vertices of a graph G, the set of all edges of G with exactly one end in X is denoted by $\partial(X)$, and is referred to as a cut of G. If G is connected and $C := \partial(X)$. A cut $C := \partial(X)$ of G is tight if $|C \cap M| = 1$, for every perfect matching M of G.

Link between Brick and Brace

Definition

A matching covered graph which is free of nontrivial tight cuts is a brace if it is bipartite, and a brick if it is nonbipartite.

Ear

Definition

Let H be a subgraph of G. A path P in G - E(H) is an ear of H if both ends of P lies in H and P is internally disjoint of H.

Ear

Definition

Let H be a subgraph of G. A path P in G - E(H) is an ear of H if both ends of P lies in H and P is internally disjoint of H.

Ear

Definition

Let H be a subgraph of G. A path P in G - E(H) is an ear of H if both ends of P lies in H and P is internally disjoint of H.

Definition

An ear-decomposition of a matching covered graph G is a sequence $K_2 = G_0 \subset G_1 \subset ... \subset G_k = G$ of matching covered subgraphs of G_{i+1} where for $0 \le i < k$, G_{i+1} is the union of G_i and one or two vertex-disjoint ears of G_i .

Theorem 2

Every matching covered graph has an ear decomposition.

Theorem 2

Every matching covered graph has an ear decomposition.

Theorem 3

Every matching covered graph has an ear decomposition starting with any nice matching covered subgraph.

Theorem 3

Every matching covered graph has an ear decomposition starting with any nice matching covered subgraph.

Theorem 4

Any two edges of a matching covered graph lie in a nice circuit.

Theorem 4

Any two edges of a matching covered graph lie in a nice circuit C.

Proposition

Let C a nice circuit of G as in theorem 4. We can find a perfect matching M such that C is M-alternating.

Odd subdivision

Definition

An odd subdivision of a graph G is a graph obtained from G by subdividing each edge in an odd number of edges.

Main theorem

Theorem 6

Every non-bipartite matching covered graphs contains a nice subgraph that is an odd subdivision of K_4 or \bar{C}_6 .

Proof

By induction on |V(G)| + |E(G)|.

- Suppose that *G* has proper subgraph *H* non bipartite, matching covered and nice.
- By induction, *G* verifies Theorem 6.

Suppose G has a vertex u of degree 2.

• Contract *u* and it's neighbours to obtain *H*.

Suppose G has a vertex u of degree 2.

- Contract *u* and it's neighbours to obtain *H*.
- G non bipartite and matching covered $\Rightarrow H$ non bipartite and matching covered.

Suppose G has a vertex u of degree 2.

- Contract u and it's neighbours to obtain H.
- G non bipartite and matching covered ⇒ H non bipartite and matching covered.
- Find nice subgraph $H' \subset H$, odd subdivision of K_4 / \bar{C}_6 , and a perfect matching M of H H'.
- Extend the H' or M in G depending on the situation.

Suppose neither v and w belongs to H'.

- The subgraph H' exists in G.
- Y is matched in H H'; and we can extend M on G by adding either uv or uw.

Suppose exactly one of \underline{v} and w is in H'.

- The subgraph H' exists in G.
- Y is not matched in H H'; and we can extend M on G by adding either uv or uw.

Suppose both of v and w belongs to H'.

• In H', every vertex is at most of degree 3

Suppose both of v and w belongs to H'.

• In H', every vertex is at most of degree 3, hence one of v, w is of degree 1.

Suppose both of v and w belongs to H'.

- In H', every vertex is at most of degree 3, hence one of v, w is of degree 1.
- Extend H' on uv and uw. This extension is still an odd subdivision of K_4 or \bar{C}_6 : we replaced one edge by 3 edges.
- M do not need to be extended.

Suppose neither of case 1 and 2 applies. What is the objective?

• Find $H' \subset G$, odd subdivision of K_4 or \bar{C}_6 .

Suppose neither of case 1 and 2 applies. What is the objective?

- Find $H' \subset G$, odd subdivision of K_4 or \bar{C}_6 .
- All odd subdivisions of K_4 or \bar{C}_6 are non bipartite and matching covered

Suppose neither of case 1 and 2 applies. What is the objective?

- Find $H' \subset G$, odd subdivision of K_4 or \bar{C}_6 .
- All odd subdivisions of K_4 or \bar{C}_6 are non bipartite and matching covered $\Rightarrow H' = G$.

Suppose neither of case 1 and 2 applies. What is the objective?

- Find $H' \subset G$, odd subdivision of K_4 or \bar{C}_6 .
- All odd subdivisions of K_4 or \bar{C}_6 are non bipartite and matching covered $\Rightarrow H' = G$.
- No vertex of degree $2 \Rightarrow G$ is K_4 or \bar{C}_6 itself.

Suppose that none of the previous cases applies.

• G is non bipartite and matching covered \Rightarrow we can find an ear decomposition $K_2 := G_0, ... G_n := G$. (Theorem 2)

- G is non bipartite and matching covered \Rightarrow we can find an ear decomposition $K_2 := G_0, ... G_n := G$. (Theorem 2)
- G_{n-1} is a proper subgraph of G; so it must be bipartite, with sets A and B.

- G is non bipartite and matching covered \Rightarrow we can find an ear decomposition $K_2 := G_0, ... G_n := G$. (Theorem 2)
- G_{n-1} is a proper subgraph of G; so it must be bipartite, with sets A and B.
- No vertex of degree 2 in G so the ear we add from G_{n-1} to G_n are edges.

- G is non bipartite and matching covered \Rightarrow we can find an ear decomposition $K_2 := G_0, ... G_n := G$. (Theorem 2)
- G_{n-1} is a proper subgraph of G; so it must be bipartite, with sets A and B.
- No vertex of degree 2 in G so the ear we add from G_{n-1} to G_n are edges.
- To break bipartite property: add an edge with both ends in the same vertex group.

- G is non bipartite and matching covered \Rightarrow we can find an ear decomposition $K_2 := G_0, ... G_n := G$. (Theorem 2)
- G_{n-1} is a proper subgraph of G; so it must be bipartite, with sets A and B.
- No vertex of degree 2 in G so the ear we add from G_{n-1} to G_n are edges.
- To break bipartite property: add an edge with both ends in the same vertex group.
- We need to add at least two edges as *Gn* is matching covered.

• G_{n-1} is matching covered so for every two edges e_1 , e_2 we can find a nice circuit including them. (theorem 4)

- G_{n-1} is matching covered so for every two edges e_1 , e_2 we can find a nice circuit including them. (theorem 4)
- Choose e_1 and e_2 both sharing an end with α (or β)
- Build this way the smallest circuit C. α (or β) is now a chord of C.

- G_{n-1} is matching covered so for every two edges e_1 , e_2 we can find a nice circuit including them. (theorem 4)
- Choose e_1 and e_2 both sharing an end with α (or β)
- Build this way the smallest circuit C. α (or β) is now a chord of C.
- Let M_1 be a perfect matching of G_{n-1} such that C is M_1 —alternating.

Proposition 7

If γ is a chord of C different from α (or β) then γ crosses α (or β).

Proposition 7

If γ is a chord of C different from α (or β) then γ crosses α (or β).

Proof

Suppose α do not cross γ . Then the circuit $C' \cup \{\gamma\}$ (or $C'' \cup \{\gamma\}$) is nice, and strictly smaller than C.

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α .

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α . Note that D also contains β as |D| is even.

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α . Note that D also contains β as |D| is even. Let $G' := G[C \cup D]$

• *G'* is nice:

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α . Note that D also contains β as |D| is even. Let $G' := G[C \cup D]$

- G' is nice: C and D are both M_1 alternating and M_1 is a perfect matching of G.
- G' is matching covered

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α . Note that D also contains β as |D| is even. Let $G' := G[C \cup D]$

- G' is nice: C and D are both M_1 alternating and M_1 is a perfect matching of G.
- G' is matching covered by $C \setminus M_1$; $D \setminus M_1$ and M_1 .
- G' not bipartite: $(\alpha \in D \text{ induces an odd cycle})$

Let M be a perfect matching of G containing α and β . Build D a M_1 alternating circuit of $M \triangle M_1$ containing α . Note that D also contains β as |D| is even. Let $G' := G[C \cup D]$

- G' is nice: C and D are both M_1 alternating and M_1 is a perfect matching of G.
- G' is matching covered by $C \setminus M_1$; $D \setminus M_1$ and M_1 .
- G' not bipartite: $(\alpha \in D \text{ induces an odd cycle})$

Conclusion: $G = G[C \cup D]$.

• Case 1: not possible: $\alpha \in D$ is a chord of C.

- Case 1: not possible: $\alpha \in D$ is a chord of C.
- Case 2: D which is M_1 and M alternating makes it impossible.

- Case 1: not possible: $\alpha \in D$ is a chord of C.
- Case 2: D which is M_1 and M alternating makes it impossible.
- So *G* is cubic.

Proof: case 3; α, β cross

Suppose that α and β crosses. Then a_1, b_1, a_2, b_2 appears in this order in C; hence $G = K_4$.

Proof: case 3; α, β cross

Suppose that α and β crosses. Then a_1, b_1, a_2, b_2 appears in this order in C; hence $G = K_4$.

Note that we can't have other vertices (between a_1 , b_1 for instance) without forcing G to have bipartite proper subgraph with an odd subdivision ...

Suppose α and β do not cross.

• a_1, a_2, b_1, b_2 appears in this order in C.

Suppose α and β do not cross.

- a_1, a_2, b_1, b_2 appears in this order in C.
- Path from a_1 to a_2 that doesn't contains b_1 must have a vertex $b \in B$.

Suppose α and β do not cross.

- a_1, a_2, b_1, b_2 appears in this order in C.
- Path from a_1 to a_2 that doesn't contains b_1 must have a vertex $b \in B$.
- Proposition 7: a chord γ starting in b must cross α .

Suppose α and β do not cross.

- a_1, a_2, b_1, b_2 appears in this order in C.
- Path from a_1 to a_2 that doesn't contains b_1 must have a vertex $b \in B$.
- Proposition 7: a chord γ starting in b must cross α .
- Obtained graph is \bar{C}_6

Deduced theorem

Lemma 8

Let G be a brick, $e, f \in E(G)$ such that any perfect matching that contains one of these edges also contains the other. Then G - e - f is bipartite.

Deduced theorem

Theorem 9

Let G be a brick different from K_4 and \bar{C}_6 . Then G has an edge e such that G - e is matching covered.

Deduced theorem

Theorem 9

Let G be a brick different from K_4 and \bar{C}_6 . Then G has an edge e such that G - e is matching covered.

Proof

- 1. Theorem 6 and 3 : G has an ear-decomposition in which the first non-bipartite graph is an odd subdivision of K_4 and \bar{C}_6
- **2.** Lemma 8 : G_{k-1} is either bipartite or $G_k = G$ arises from G_{k-1} by adding a single edge.
- **3.** G different from K_4 and \bar{C}_6 then G_{k-1} can not be bipartite. G_k arises from G_{k-1} by the adjunction of a single ear e.
- **3.** $G_{k-1} = G e$ is matching covered