Revisiting Multi-Scale Feature Fusion for Semantic Segmentation

Tianjian Meng ¹ Golnaz Ghiasi ¹ Reza Mahjorian ² Quoc V. Le ¹ Mingxing Tan ¹ Google Research ² Waymo Inc.

{mengtianjian, tanmingxing}@google.com

Background Knowledge

- · Atrous Conv.
 - Problem
 - Hardware unfriendly
 - Long-ranged information could be irrelevant
 - Commonly Used Structure

Background Knowledge

• FPN vs BiFPN

^{*}EfficientDet:Scalable and Efficient Object Detection

Introduction

- Motivation
 - High resolution features require expensive compution and memory
 - Regular conv.s are difficult to obtain large receptive fields
 - Semantics of each pixel depend on both nearby and far-away context
- Contributions
 - Deeper feature extractor
 - Richer feature fusion

Method

Model	Enc	oder	Decoder		
Model	Width Dept		# channels	# repeats	
ESeg-Lite-S	0.4	0.6	64	1	
ESeg-Lite-M	0.6	1.0	80	2	
ESeg-Lite-L	1.0	1.0	96	3	
ESeg-S	1.0	1.1	96	4	
ESeg-M	1.4	1.8	192	5	
ESeg-L	2.0	3.1	288	6	

Table 3. Network size scaling configurations.

Figure 3. **ESeg network architecture**. The backbone [36] extracts $\{P_2 - P_5\}$ feature maps from the raw input images; Four additional feature maps $\{P_6 - P_9\}$ are added on top of these backbone features with simple average pooling. The decoder perform bidirectional multi-scale feature fusion [38] to strength the internal representations for each feature map. All feature maps are upsampled and combined with weighted sum to generate the final per-pixel prediction.

- Setting
 - 8 TPU 16 BS
 - Cosine LR decay
 - OHEM Strategy
 - Metrics: mIoU and pixACC (pixel accuracy)
 - Dataset: Cityscapes, ADE20K

Compare with SOTA

Model	val mIoU w/o extra data	val mIoU w/ extra data	Params	Ratio	FLOPs	Ratio
ESeg-S	80.1	81.7	6.9M	1x	34.5B	1x
Auto-DeepLab-S [24]	79.7	-	10.2M	1.5x	333B	9.7x
PSPNet (ResNet-101) [50]	79.7	□ (65.9M	9.6x	2018B	59x
OCR (ResNet-101) [45]	79.6	-	-	-	-	-
DeepLabV3+ (Xception-71) [8]	79.6		43.5M	6.3x	1445B	42x
DeepLabV3+ (ResNeXt-50) [53]	79.5	81.4	12		_	2
DeepLabV3 (ResNet-101) [6]	78.5	=	58.0M	8.4x	1779B	52x
ESeg-M	81.6	83.7	20.0M	1x	112B	1x
HRNetV2-W48 [35]	81.1	-	65.9M	3.3x	747B	6.7x
OCR (HRNet-W48) [45]	81.1	π.	83 7 8	57.00	-5%	-
ACNet (ResNet-101) [14]	80.9	-	-	-	-	-
Naive-Student [3]	80.7	83.4	147.3M	7.3x	3246B	29x
Panoptic-DeepLab (X-71) [10]	80.5	82.5	46.7M	2.3x	548B	4.9x
DeepLabV3 (ResNeSt-101) [48]	80.4†	-	-	i .	-	-
Auto-DeepLab-L [24]	80.3	2	44.4M	2.2x	695B	6.2x
HRNetV2-W40 [35]	80.2	-	45.2M	2.3x	493B	4.1x
Auto-DeepLab-M [24]	80.0	Ë	21.6M	1.1x	461B	4.1x
DeepLabV3 (ResNeSt-50) [48]	79.9†	-	-	-	-	-
OCNet (ResNet-101) [46]	79.6	-		T-1	-	-
ESeg-L	82.6	84.8	70.5M	1x	343B	1x
SegFormer-B5 [40]	82.4	=	84.7M	1.2x	1460B	4.3x

Table 4. **Performance comparison on CityScapes.** † denotes results using multi-scale evaluation protocol. All our models are evaluated in single-scale evaluation protocol.

Rank	Model	Mean † Category Time IoU (class) Time (ms)	Extra Training Data	Paper	Code	Result	Year	Tags 🗷
1	HRNetV2 + OCR +	84.5%	~	Segmentation Transformer: Object- Contextual Representations for Semantic Segmentation	0	Ð	2019	hrnet
2	Lawin+	84.4%	×	Lawin Transformer: Improving Semantic Segmentation Transformer with Multi- Scale Representations via Large Window Attention	0	Ð	2022	Transformer
3	EfficientPS	84.21%	~	EfficientPS: Efficient Panoptic Segmentation	0	Ð	2020	
4	Panoptic-DeepLab	84.2%	~	Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation	0	Ð	2019	

Model	mIoU	PixAcc
ESeg-M	46.0	81.3
OCR (ResNet-101) [45]	44.3/45.3†	1070
HRNetV2-W48 [35]	43.1/44.2†	-
Auto-DeepLab-M [24]	42.2†	81.1†
PSPNet (ResNet-101) [50]	42.0†	80.6†
Auto-DeepLab-S [24]	40.7†	80.6†
ESeg-L	48.2	81.8
DeepLabV3 (ResNeSt-101) [48]	46.9†	82.1†
ACNet (ResNet-101) [14]	45.9†	82.0†
OCR (HRNet-W48) [45]	44.5/45.5†	-
OCNet (ResNet-101) [46]	45.5†	-
DeepLabV3 (ResNeSt-50) [48]	45.1†	81.2†
Auto-DeepLab-L [24]	44.0†	81.7†
SETR [51]	46.3	-
Swin-S [26]	49.3†	1000
SegFormer-B4 [40]	50.3	_

Table 5. **Performance comparison on ADE20K.** † denotes results using multi-scale evaluation protocol. All our models are evaluated in single-scale evaluation protocol. Recent Transformer-based models are marked in gray.

Figure 1. Model Sizes vs. CityScapes validation mIoU. All models in the figure are using single-scale evaluation protocol. +data denotes using extra data for pretraining and self-training. The FLOPs are calculated at 1024×2048 input resolution. Our proposed ESeg models are much simpler, yet still outperform previous models by better quality and less computation cost.

Figure 4. Inference speed vs. CityScapes validation mIoU. Real-time ESeg family of models outperform previous models by a large margin with much faster speed.

Ablation Study

Encoder	Decoder	mIoU	FLOPs
	BiFPN (w/o atrous)	80.1	34.5B
EfficientNet-B1	DeepLabV3+ (w/ atrous)	79.4	91.8B
	DeepLabV3+ (w/o atrous)	78.8	49.9B
ResNet-50	BiFPN (w/o atrous)	78.9	188.0B
	DeepLabV3+ (w/ atrous)	77.8	324.3B
	DeepLabV3+ (w/o atrous)	77.4	230.3B

Table 8. **Encoder and decoder choices.** All models are trained with exactly the same training settings. BiFPN outperforms DeepLabV3+ [8] regardless whether atrous convolutions are used.