А.В.Пастор

Дискретная математика

Глава 8. Дискретная вероятность и вероятностные методы

А.В.Пастор

15.05.2023

А.В.Пастор

- 1. А. Н. Ширяев, Вероятность. М.: МЦНМО, 2007.
- 2. П. Эрдёш, Дж. Спенсер, *Вероятностные методы в комбинаторике*. М.: Мир, 1976.
- 3. S. Jukna, Extremal Combinatorics: With Applications in Computer Science. Springer, 2001.

Слайды по дискретной математике будут публиковаться по адресу https://logic.pdmi.ras.ru/~pastor/ITMO/2022-23/

Дискретное вероятностное пространство

- Дискретным вероятностным пространством называется упорядоченная пара (Ω, P) , где Ω — конечное множество и $P: \Omega \to [0,1]$ — такая функция, что $\sum_{\omega \in \Omega} P(\omega) = 1$.
- Элементы множества Ω называются элементарными событиями, а само Ω — пространством элементарных событий или пространством исходов.
- Величина $P(\omega)$, где $\omega \in \Omega$, называется вероятностью элементарного события ω . Функция P называется распределением вероятностей.
- Событием называется любое подмножество $A \subset \Omega$.
- Вероятностью события $A \subset \Omega$ называется величина $P(A) \stackrel{\text{def}}{=} \sum_{\omega \in A} P(\omega)$.
- Ø невозможное событие. Очевидно, что его вероятность равна нулю. Но могут быть и другие события, имеющие нулевую вероятность.

Замечание

Определение

• Тогда $\forall i \ (0 < p_i < 1)$ и $p_1 + \ldots + p_n = 1$.

- Дискретная вероятность. А.В.Пастор

Дискретная MATEMATINES Глава 8.

Дискретное вероятностное пространство: примеры

- 1. Пусть мы n раз подбросили монетку и после каждого подбрасывания отмечаем, упала ли она орлом или решкой.
 - Если выпал орел, будем писать 1, а если выпала решка 0.
 - Элементарным событием будем считать совокупность результатов всех n подкидываний.
 - То есть $\Omega = \{(a_1, \dots, a_n) \mid \forall i \ a_i \in \{0, 1\}\} = \{0, 1\}^n$. Элементы Ω соответствуют подмножествам [1..n] случайное подмножество.
 - Будем считать, что вероятности всех элементарных событий равны. Тогда $\forall \omega \in \Omega \ (P(\omega) = \frac{1}{2n}).$
 - В получившемся вероятностном пространстве можно рассмотреть, например, следующие события.
 - А: "При первом подбрасывании выпал орел";
 - В: "При втором подбрасывании выпала решка";
 - С: "Результаты первого и второго подбрасываний одинаковы".
 - Легко видеть, что $P(A) = P(B) = P(C) = \frac{1}{2}$.

Определение

Распределение вероятностей называется *равномерным*, если вероятности всех элементарных событий равны.

Дискретная математика. Глава 8. Дискретная вероятность.

- 2. Снова подбросим n раз монетку. Но распределение вероятностей выберем другое.
 - Пусть $p, q \ge 0$ таковы, что p + q = 1.
 - Обозначим через $s(\omega)$ число выпавших орлов в элементарном событии ω . (T. e. $s(a_1, \ldots, a_n) = a_1 + \ldots + a_n$).
 - Пусть $P(\omega) \stackrel{\text{def}}{=} p^{s(\omega)} q^{n-s(\omega)}$.
 - Заметим, что $\sum_{\omega \in \Omega} P(\omega) = \sum_{k=0}^{n} C_{n}^{k} p^{k} q^{n-k} = (p+q)^{n} = 1$, следовательно, (Ω, P) дискретное вероятностное пространство.
 - Рассмотрим следующие события:

$$-S_i \stackrel{\mathrm{def}}{=} \{\omega \in \Omega \mid s(\omega) = i\}$$
, где $i \in [0..n]$, — "выпало ровно i орлов"; $-T_j \stackrel{\mathrm{def}}{=} \{(a_1, \dots, a_n) \in \Omega \mid a_j = 1\}$, $j \in [1..n]$, — "на j -м шаге выпал орёл".

- Легко видеть, что $P(S_i) = C_n^i p^i q^{n-i}$;
- Далее, $P(T_i) = \sum_{k=0}^{n-1} C_{n-1}^k p^{k+1} q^{n-1-k} = p(p+q)^{n-1} = p$.
- Последнее равенство означает, что на i-м шаге с вероятностью p выпадет орел и с вероятностью q решка.

множества $\Omega.$

А.В.Пастор

- ullet Тогда $P(S_0) + P(S_1) + \ldots + P(S_n) = 1.$
- ullet Это означает, что S_i можно рассматривать как элементарные события.
- Более точно, пусть $\Omega' = \{S_0, S_1, \dots, S_n\}$ и $P(S_i) = C_n^i p^i q^{n-i}$. Тогда пара (Ω', P) является дискретным вероятностным пространством.

Определение

Распределение вероятностей, задаваемое формулой $P(S_i) = C_n^i p^i q^{n-i}$, называется биномиальным.

Замечание

- На самом деле, рассуждения из второго примера хочется проводить в обратную сторону: сказать, что при каждом подбрасывании монетки орел выпадает с вероятностью p, а решка с вероятностью q, и из этого вывести вероятности других событий.
- Для того, чтобы делать это корректно, нам нужно будет ввести понятия условной вероятности и независимых событий.

Условная вероятность

- Пусть (Ω, P) дискретное вероятностное пространство; $A, B \subset \Omega$.
- Будем обозначать через AB событие, задаваемое множеством $A \cap B$. (Т. е. AB это событие, означающее то, что одновременно произошли события A и B.)

Определение

Пусть P(B) > 0. Тогда *условной вероятностью* события A при условии события B называется величина $P(A \mid B) \stackrel{\text{def}}{=} \frac{P(AB)}{P(B)}$.

Замечание

То есть мы предполагаем, что событие ${\cal B}$ выполнено: рассматриваем только те исходы, при которых это так. И считаем среди них долю тех исходов, для которых выполнено ${\cal A}$. Эта доля и есть условная вероятность.

Лемма (Формула Байеса)
$$P(B \mid A) = \frac{P(B)P(A|B)}{P(A)}.$$

Доказательство.
$$P(B \mid A)P(A) = P(AB) = P(B)P(A \mid B)$$
.

Дискретная математика. Глава 8. Дискретная вероятность.

Теорема (Формула полной вероятности) Пусть $\Omega = B_1 \cup \ldots \cup B_m$ — разбиение Ω и $\forall i \ P(B_i) > 0$. Тогда $P(A) = \sum_{i=1}^{m} P(A \mid B_i) P(B_i)$.

Формула полной вероятности

Доказательство. Пусть $A_i \stackrel{\text{def}}{=} AB_i = A \cap B_i$. • Тогда $A = A_1 \cup ... \cup A_m$ — разбиение A.

• Следовательно, $P(A) = \sum_{i=1}^{m} P(A_i) = \sum_{i=1}^{m} P(A \mid B_i) P(B_i)$.

Теорема (Байеса)

Пусть $\Omega = B_1 \cup \ldots \cup B_m$ — разбиение Ω и $\forall i \ P(B_i) > 0$.

Тогда $P(B_i \mid A) = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{m} P(A|B_i)P(B_i)}$.

Доказательство. $P(A \mid B_i)P(B_i) = P(AB_i); \sum_i P(A \mid B_i)P(B_i) = P(A).$

• Тогда $\frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{m}P(A|B_i)P(B_i)} = \frac{P(AB_i)}{P(A)} = P(B_i \mid A).$

Дискретная математика Глава 8.

Дискретная вероятность.

Определение

- События A и B независимы, если P(AB) = P(A)P(B).
- ullet События A_1,\ldots,A_n независимы, если для любых $k\in[1..n]$ и

$$1 \leq i_1 < i_2 < \ldots < i_k \leq n$$
 выполнено $P(A_{i_1} \ldots A_{i_k}) = P(A_{i_1}) \ldots P(A_{i_k}).$

Замечание

• Независимость не означает отсутствия пересечения.

Если $A \cap B = \emptyset$, то события A и B зависимы!

- Попарная независимость n событий не означает того, что все n событий независимы.
 - ▶ Например, события A, B и C из первого примера попарно независимы. Но все вместе они зависимы: P(ABC) = 0, но $P(A)P(B)P(C) = \frac{1}{8}$.
- Во втором примере события T_1, \ldots, T_n независимы (напомним, что T_j это событие "на j-м шаге выпал орёл").

Утверждение

Eсли A и B независимы, то A и \overline{B} тоже независимы.

Доказательство.

$$P(A\overline{B}) = P(A) - P(AB) =$$

$$= P(A) - P(A)P(B) =$$

$$= P(A)(1 - P(B)) = P(A)P(\overline{B}).$$

Замечание

- Аналогично можно доказать, что если события $A_1, \dots, A_i, \dots, A_n$ независимы, то и $A_1, \dots, \overline{A_i}, \dots, A_n$ независимы.
- Тогда независимым будет также и любой набор событий вида A_1', \dots, A_n' , где для любого j событие A_j' это либо A_j , либо $\overline{A_j}$.

Случайные величины

• Пусть (Ω, P) — дискретное вероятностное пространство.

Определение

ullet Случайной величиной называется произвольное отображение $\xi\colon\Omega o\mathbb{R}.$

Примеры

- 1. Если Ω множество результатов n подбрасываний монетки, то $s(\omega)$ (количество выпавших "орлов") является случайной величиной.
- 2. Каждому событию $A \subset \Omega$ соответствует случайная величина, являющаяся характеристической функцией множества A: $\chi_A(\omega) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} 0, & \omega \notin A \\ 1, & \omega \in A. \end{array} \right.$
- Пусть $\xi \colon \Omega \to \mathbb{R}$ случайная величина и $X = \xi(\Omega)$ множество значений случайной величины ξ . Тогда мы можем рассматривать события вида $\xi(\omega) = x$, где $x \in X$, или $\xi(\omega) \in B$, где $B \subset X$. Тем самым, мы получаем распределение вероятностей на множестве X.

математика. Глава 8. Дискретная вероятность.

Лискретная

- ullet Пусть $X=\{x_1,\ldots,x_m\}.$ Тогда $P_\xi(x_i)\stackrel{\mathrm{def}}{=} P(\{\omega\in\Omega\mid \xi(\omega)=x_i\}).$
- ullet Очевидно, что $P_{\xi}(x_1) + \ldots + P_{\xi}(x_m) = 1.$
- Следовательно, (X, P_{ξ}) дискретное вероятностное пространство.
- ullet Функция P_{ξ} называется распределением случайной величины $\xi.$
- Для обозначения индуцированной вероятности мы также будем использовать также обозначение $P\{\xi=x_i\}$.

Определение

Случайные величины $\xi_1,\dots,\xi_r\colon\Omega o X$ называются *независимыми*, если $\forall t_1,\dots,t_r\in X$ ($P\{\xi_1=t_1,\dots,\xi_r=t_r\}=P\{\xi_1=t_1\}\dots P\{\xi_r=t_r\}$).

Замечание

Если события A_1, \dots, A_r независимы если и только если их характеристические функции $\chi_{A_1}, \dots, \chi_{A_r}$ — независимые случайные величины.

Определение

- Пусть $\xi \colon \Omega \to X$ случайная величина.
- ullet Математическим ожиданием случайной величины ξ называется число

$$\boldsymbol{\mathsf{E}}\boldsymbol{\xi} \stackrel{\mathrm{def}}{=} \sum_{\omega \in \Omega} \xi(\omega) P(\omega).$$

Замечание

- Очевидно, что $E\xi = \sum_{x \in X} x P\{\xi = x\}.$
- Если $\xi_1, \dots, \xi_r \colon \Omega \to X$ случайные величины, то $E(\xi_1 + \dots + \xi_r) = E\xi_1 + \dots + E\xi_r$.
- Другое обозначение для математического обозначения: $M\xi$.

Теорема

Если случайные величины $\xi_1, \dots, \xi_r \colon \Omega \to X$ независимы, то $E(\xi_1 \dots \xi_r) = E\xi_1 \dots E\xi_r$.

Доказательство. Пусть случайная величина $\xi_1 \dots \xi_r$ принимает значения из множества \mathcal{X}_r .

- Заметим, что \mathcal{X}_r состоит из произведений вида $x_1 \dots x_r$, где $\forall i \ (x_i \in X)$.
- Тогда

$$E(\xi_{1} \dots \xi_{r}) = \sum_{x \in \mathcal{X}_{r}} xP\{\xi_{1} \dots \xi_{r} = x\} =$$

$$= \sum_{x_{1}, \dots, x_{r} \in X} x_{1} \dots x_{r} P\{\xi_{1} = x_{1}, \dots, \xi_{r} = x_{r}\} =$$

$$= \sum_{x_{1}, \dots, x_{r} \in X} x_{1} \dots x_{r} P\{\xi_{1} = x_{1}\} \dots P\{\xi_{r} = x_{r}\} =$$

$$= \left(\sum_{x \in X} x_{1} P\{\xi_{1} = x_{1}\}\right) \dots \left(\sum_{x \in X} x_{r} P\{\xi_{r} = x_{r}\}\right) = E\xi_{1} \dots E\xi_{r}. \quad \Box$$

- Основная идея: если нам нужно доказать существование объекта, обладающего нужным нам свойством, выбираем случайный объект и оцениваем вероятность того, что требуемое свойство выполняется. Если эта вероятность больше нуля (или, что эквивалентно, если вероятность того, что свойство не выполняется, меньше единицы), то интересующий нас объект существует.
- В простейшем варианте этот метод эквивалентен уже известному вам из курса теории графов методу оценки числа возможных конфигураций. Но бывают и более сложные случаи.
- В качестве первого примера докажем новым способом нижнюю оценку числа Рамсея. Фактически это будет то же самое доказательство, которое вы уже знаете, только пересказанное на языке теории вероятностей.
- Напомним, что числа Рамсея r(m,n) это наименьшее из всех таких чисел $x \in \mathbb{N}$, что при любой раскраске рёбер полного графа на x вершинах в два цвета обязательно найдётся клика на n вершинах с рёбрами цвета 1 или клика на m вершинах с рёбрами цвета 2.

Для любого натурального $k \geq 2$ выполняется неравенство $r(k,k) \geq 2^{k/2}$.

Доказательство. Пусть $k \ge 3$ и $n < 2^{k/2}$ (случай k = 2 тривиален).

- Рассмотрим полный граф G на n вершинах и раскрасим его ребра в два цвета случайным образом.
 - ▶ То есть мы C_n^2 раза подбрасываем монетку и выбираем цвет очередного ребра в зависимости от результата подбрасывания.
 - Все исходы равновероятны. То есть каждое ребро может быть покрашено в цвет 1 или в цвет 2 с вероятностью 1/2 и все эти события независимы.
- Для любого подмножества $S \subset V(G)$, где |S| = k, определим событие A_s : "все ребра подграфа G(S) одноцветны". Тогда $P(A_S) = 2 \cdot 2^{-C_k^2}$.
- Тогда

$$P(\bigcup_{|S|=k}A_S) \leq \sum_{|S|=k} P(A_S) = 2 \cdot 2^{-C_k^2} \cdot C_n^k = \frac{2}{2^{k(k-1)/2}} \cdot \frac{n(n-1)...(n-k+1)}{k!} < \frac{2}{2^{k(k-1)/2}} \cdot \frac{n^k}{k!} < \frac{2}{2^{k(k-1)/2}} \cdot \frac{2^{k^2/2}}{k!} = \frac{2^{(k+2)/2}}{k!} < 1$$
, при $k \geq 3$.

• Следовательно, существует раскраска, при которой n нет одноцветной клики размера k.

Глава 8. Дискретная вероятность.

Лискретная

Турнир с наименьшим ациклическим подтурниром • Обозначим через v(n) наибольшее целое число, для которого всякий

турнир на n вершинах содержит ациклический подтурнир на v(n) вершинах.

• Другими словами, v(n) — это такое наибольшее целое число v, что

в любом турнире T с множеством вершин $V(T) = \{u_1, \ldots, u_n\}$ можно выбрать такую последовательность вершин $(u_{i_1}, \ldots, u_{i_v})$, что все стрелки между её вершинами будут направлены слева направо $(\tau. e. при \ 1 \leq k < \ell \leq n$ имеем $u_{i_k}u_{i_\ell} \in A(T))$.

 $v(n) \leq 1 + [2\log_2 n].$ Доказательство. Пусть $t \geq 2 + [2\log_2 n].$

Teopeма (P. Erdös, L. Moser, 1964)

• Нужно доказать, что существует такой турнир на n вершинах, в котором нет ациклического подтурнира на t вершинах.

- Построим случайный турнир на n вершинах.
 - ▶ То есть зафиксируем множество вершин $V(T) = \{u_1, \dots, u_n\}$ и зададим направления его стрелок при помощи C_n^2 подбрасываний монетки.
 - ▶ Все исходы равновероятны. То есть каждая стрелка может быть направлена в любую из двух сторон с вероятностью 1/2 и все эти события независимы.

математика. Глава 8. Дискретная вероятность.

Дискретная

- Пусть $\mathcal{P} = \{(u_{i_1}, \dots, u_{i_t}) \mid i_k \neq i_\ell \text{ при } k \neq \ell\}$ множество всех последовательностей из t различных вершин.
- Для каждой последовательности $S = (u_{i_1}, \dots, u_{i_t}) \in \mathcal{P}$ определим событие A_S : $\forall k, \ell \in [1..t] (k < \ell \to u_{i_k} u_{i_\ell} \in A(\mathcal{T}))$.
 - ▶ Тогда $P(A_S) = 2^{-C_t^2} = 2^{-\frac{t(t-1)}{2}} \le 2^{-\frac{t(1+|2\log_2 n|)}{2}} \le 2^{-t\log_2 n} = n^{-t}.$
 - lacktriangleright Всего последовательностей $|\mathcal{P}| = A_n^t = n(n-1)\dots(n-t+1) < n^t.$
- ullet Тогда $P(\cup_{S\in\mathcal{P}}A_S)\leq \sum_{S\in\mathcal{P}}P(A_S)< n^tn^{-t}=1.$
- Следовательно, найдется турнир в котором нет ациклического подтурнира на t вершинах.

Замечание

- R. Stearns доказал, что $v(n) \ge 1 + [\log_2 n]$.
- Тем самым, $1 + [\log_2 n] \le v(n) \le 1 + [2 \log_2 n]$.

(n, k)-универсальные множества • Пусть $a = (a_1, \dots, a_n) \in \{0, 1\}^n - 0$ -1 вектор и

 $S = \{i_1, \dots, i_k\}$ — набор координат $(1 \le i_1 < \dots < i_k \le n)$.

ullet Тогда $a|_S\stackrel{\mathrm{def}}{=}(a_{i_1},\ldots,a_{i_k})$ — проекция вектора a на координаты из S.

ullet Аналогично, если $A\subset \{0,1\}^n$, то $A|_S\stackrel{\mathrm{def}}{=}\{(a_{i_1},\ldots,a_{i_k})\mid (a_1,\ldots,a_n)\in A\}$ — проекция множества A на координаты из S.

Определение

Множество $A \subset \{0,1\}^n$ называется (n,k)-универсальным, если для любого набора координат $S = \{i_1,\ldots,i_k\}$, где $1 \leq i_1 < \ldots < i_k \leq n$, проекция $A|_S$ содержит все 2^k возможных комбинаций нулей и единиц.

Teopeма (D. J. Kleitman, J. Spencer, 1973)

Пусть $n, k, r \in \mathbb{N}$ таковы, что $n \geq k$ и $C_n^k 2^k (1 - 2^{-k})^r < 1$. Тогда существует (n, k)-универсальное множество размера r.

Доказательство. Рассмотрим *случайную матрицу М* размера $n \times r$ с коэффициентами из $\{0,1\}$.

математика. Глава 8. Дискретная вероятность.

Лискретная

А.В.Пастор

- То есть мы nr раз подкидываем монетку и определяем значения всех коэффициентов m_{ij} этой матрицы. Каждый из коэффициентов будет равен 0 или 1 с вероятностью 1/2 и все эти события независимы.
- Обозначим через A множество строк матрицы M. Её i-ю строку будем обозначать a_i .
- Для фиксированного набора координат $S = \{j_1, \ldots, j_k\}$, где $1 \leq j_1 < \ldots < j_k \leq n$, и фиксированного вектора $v \in \{0,1\}^k$ посчитаем вероятность того, что проекция A на координаты из S не содержит v.

•
$$P(v \notin A|_S) = \prod_{i=1}^r P(v \neq a_i|_S) = \prod_{i=1}^r (1-2^{-k}) = (1-2^{-k})^r$$
.

• Тогда вероятность того, что множество A не является (n,k)-универсальным не превосходит $C_n^k 2^k (1-2^{-k})^r < 1$.

Для того, чтобы показать, как из этой теоремы следует существование (n,k)-универсального множества малого размера, нам потребуется следующая лемма.

Дискретная

А. В. Пастор

Лемма

При всех $x \in \mathbb{R}$ выполнено неравенство $e^x > x + 1$, причем равенство достигается только при x = 0.

Доказательство. Рассмотрим функцию $f(x) = e^x - x - 1$.

- $f'(x) = e^x 1$, следовательно, f'(x) < 0 при x < 0 и f'(x) > 0 при x > 0.
 - Тогда f(x) убывает на $(-\infty,0)$ и возрастает на $(0,+\infty)$.
- Таким образом, при $x \neq 0$ имеем f(x) > f(0) = 0. Следствие (A. K. Chandra, L. Kou, G. Markowsky, S. Zaks, 1983)

При любых n > 2 и k > 4 существует (n, k)-универсальное множество размера не более $\lceil k2^k \ln n \rceil$.

Доказательство. Пусть $r = \lceil k2^k \ln n \rceil$. Тогда

- $C_n^k 2^k (1-2^{-k})^r < \frac{n^k}{k!} \cdot 2^k e^{-r/2^k} \le \frac{(2n)^k}{k!} \cdot e^{-k \ln n} = \frac{(2n)^k}{k!} \cdot n^{-k} = \frac{2^k}{k!} < 1.$
- Следовательно, по теореме Клейтмана-Спенсера существует (n, k)-универсальное множество размера r.

(n,k)-универсальные множества малого размера

Дискретная математика. Глава 8. Дискретная вероятность.

А.В.Пастор

Замечание

На самом деле можно доказать, что (n,k)-универсальные множества размера не более $\lceil k2^k \ln n \rceil$ существуют при любых $k \in \mathbb{N}$ и $n \geq 2$.

А.В.Пастор

• Использование математического ожидания в доказательстве комбинаторных фактов основывается на следующих фактах.

Утверждение

- Пусть (Ω, P) дискретное вероятностное пространство и $\xi \colon \Omega \to X$ случайная величина, такая, что $E(\xi) \ge \lambda$. Тогда существует элементарное событие $\omega \in \Omega$, такое, что $\xi(\omega) \ge \lambda$.
- Аналогично, если $E(\xi) \leq \lambda$, то существует элементарное событие $\omega \in \Omega$, такое, что $\xi(\omega) \leq \lambda$.

Доказательство.

- Докажем первое утверждение (второе доказывается аналогично).
- Предположим противное: пусть $\forall \omega \in \Omega \, (\xi(\omega) < \lambda)$.
- Тогда $E(\xi) = \sum_{\omega \in \Omega} P(\omega) \xi(\omega) < \lambda \sum_{\omega \in \Omega} P(\omega) = \lambda$. Противоречие.

Теорема (Неравенство Маркова)

- Пусть (Ω, P) дискретное вероятностное пространство, $\xi \colon \Omega \to X$ случайная величина, принимающая неотрицательные значения, и $\lambda \in \mathbb{R}_+$.
- Тогда $P\{\xi \geq \lambda\} \leq \frac{E\xi}{\lambda}$.

Доказательство.

•
$$E\xi = \sum_{x \in X} xP\{\xi = x\} \ge \sum_{x \ge \lambda} \lambda P\{\xi = x\} = \lambda P\{\xi \ge \lambda\}.$$

Для любого $n \in \mathbb{N}$ существует турнир на n вершинах, в котором есть как минимум $\frac{n!}{2^{n-1}}$ гамильтоновых путей.

Доказательство. Рассмотрим случайный турнир T на множестве вершин $V(T) = \{u_1, \dots, u_n\}$.

- Как и раньше, ориентация всех стрелок определяется при помощи C_n^2 подбрасываний монетки; каждая стрелка будет ориентированна в любую из сторон с вероятностью $\frac{1}{2}$ и все эти события независимы.
- Для каждой перестановки $\sigma \in \mathcal{S}_n$ обозначим через ξ_σ характеристическою функцию следующего события:
- "последовательность вершин $(u_{\sigma(1)}, \ldots, u_{\sigma(n)})$ гамильтонов путь".
- Тогда $E\xi_{\sigma} = \frac{1}{2^{n-1}}$.
- Пусть $\xi(T) \stackrel{\text{def}}{=} \sum_{\sigma \in S_n} \xi_{\sigma}(T)$ случайная величина, означающая количество гамильтоновых путей в случайном турнире T.
- Тогда $E(\xi) = \sum_{\sigma \in S_n} E(\xi_{\sigma}) = \frac{n!}{2^{n-1}}$.
- Следовательно, существует турнир T, для которого $\xi(T) \geq \frac{n!}{2n-1}$.

Дискретная математика. Глава 8. Дискретная вероятность.

Доминирующие множества большого размера

В графе G множество $S \subset V(G)$ называется доминирующим, если $V(G) = S \cup N_G(S)$ (т. е. если любая вершина графа либо принадлежит S,

либо смежна с вершиной из S).

Определение

образом.

Пусть v(G) = n и $\delta(G) = d$. Тогда в графе G есть доминирующее множество размера не более $n \frac{1 + \ln(d+1)}{d+1}$. Доказательство. Выделим случайное подмножество $S \subset V(G)$ следующим

- Каждая вершина будет включаться в S с вероятностью $p = \frac{\ln(d+1)}{d+1}$. Все эти события независимы.
- Тогда |S| случайная величина; E(|S|) = np.
- Для каждого подмножества $S \subset V(G)$ определим подмножество
- $\overline{S} \stackrel{\text{def}}{=} V(G) \setminus (S \cup N_G(S)).$ Очевидно, что тогда $S \cup \overline{S}$ доминирующее множество.

Глава 8. Дискретная вероятность.

А.В.Пастор

Дискретная

- Оценим математическое ожидание случайной величина $|\overline{S}|$.
- Для этого для каждой вершины $v \in V(G)$ рассмотрим случайную величину ξ_v , являющуюся характеристической функцией события " $v \in \overline{S}$ ".
- ullet Тогда $E\xi_{v}=(1-p)^{d_{G}(v)+1}\leq (1-p)^{d+1}.$
- Следовательно, $E(|\overline{S}|) = \sum_{v \in V(G)} E\xi_v \le n(1-p)^{d+1} \le ne^{-p(d+1)}$.
- Таким образом, $E(|S|+|\overline{S}|) \le np+ne^{-p(d+1)}=n\frac{1+\ln(d+1)}{d+1}$, откуда и следует существование доминирующего множества размера не более $n\frac{1+\ln(d+1)}{d+1}$.

А.В.Пастор

• Ниже мы переведем на вероятностный язык доказательство еще одной известной вам из курса теории графов теоремы.

Teopeма (P. Erdös, 1959)

Пусть $k,g \in \mathbb{N}$, $k,g \geq 3$. Тогда существует граф G с $g(G) \geq g$ и $\chi(G) \geq k$. Доказательство (Alon-Spencer, 1992).

- Зафиксируем число $\theta \in (0, \frac{1}{g})$.
- Выберем достаточно большое n (насколько большим его нужно взять, мы определим позже) и рассмотрим случайный граф G на n вершинах, в котором каждая пара вершин соединяется ребром с вероятностью $p=n^{\theta-1}$ (как и раньше, все такие события независимы).
- Рассмотрим случайные величины ξ_i количество циклов длины i в графе G, а также $\xi = \sum_{i=3}^{g-1} \xi_i$ количество циклов, длина которых меньше g.
- Оценим математическое ожидание этих случайных величин.

О графах с большим обхватом и хроматическим числом

Утверждение 1 $P\{E\xi \geq \frac{n}{2}\} \xrightarrow[n \to \infty]{} 0.$

Доказательство. В графе G есть $n^{\underline{i}} = n(n-1)\dots(n-i+1)$ последовательностей вершин длины i.

- ightharpoonup Каждая из них задает цикл длины i с вероятностью p^i .
- ▶ Каждый цикл длины і задается 2і такими последовательностями.
- Итого, $E\xi_i = \frac{n^i}{2i} \cdot p^i \le \frac{(np)^i}{2i} = \frac{n^{\theta i}}{2i}.$
- ullet Тогда $E\xi = \sum\limits_{i=3}^{g-1} E\xi_i \leq \sum\limits_{i=3}^{g-1} rac{n^{ heta i}}{2i} \leq n^{ heta g} \sum\limits_{i=3}^{g-1} rac{1}{2i}.$
- По неравенству Маркова получаем, что $P\{E\xi \geq \frac{n}{2}\} \leq \frac{2E\xi}{n} \leq n^{\theta g-1} \sum_{i=3}^{g-1} \frac{1}{i}$.
- Заметим, что $\theta n-1<0$. Следовательно, $n^{\theta g-1}\sum\limits_{i=2}^{g-1}\frac{1}{i}\xrightarrow[n\to\infty]{}0.$
- Таким образом, $P\{E\xi \geq \frac{n}{2}\} \longrightarrow 0$.

Глава 8. Дискретная вероятность. А.В.Пастор

Дискретная

. В. Пастор

О графах с большим обхватом и хроматическим числом • Пусть $m = \lceil \frac{5}{2} \ln n \rceil$. Далее мы оценим вероятность того, что $\alpha(G) \ge m$.

▶ Отметим, что $m \ge 5n^{1-\theta} \ln n \xrightarrow[n \to \infty]{} \infty$. В частности, при достаточно больших n, число m будет натуральным.

Утверждение 2

$$P\{\alpha(G)\geq m\}\xrightarrow[n\to\infty]{}0.$$

Доказательство. Для любого подмножества $S \subset V(G)$, где |S| = m, вероятность того, что S — независимое множество, равна $(1-p)^{C_m^2}$.

- ullet Тогда $P\{lpha(\mathcal{G}) \geq m\} \leq C_n^m \cdot (1-p)^{C_m^2} < n^m \cdot (e^{-p})^{rac{m(m-1)}{2}} = \left(ne^{-rac{p(m-1)}{2}}
 ight)^m.$
 - $p(m-1) \ge 5 \ln n p > 4 \ln n.$

▶ Заметим, что при m > 2 выполнено неравенство

- lacktriangle Следовательно, $e^{-rac{p(m-1)}{2}} \leq e^{-2\ln n} = rac{1}{n^2}.$
- ▶ Тогда $\left(ne^{-\frac{p(m-1)}{2}}\right)^m \leq \frac{1}{n^m} \xrightarrow[n \to \infty]{} 0.$
- Таким образом, $P\{\alpha(G) \ge m\} \xrightarrow[n \to \infty]{} 0$.

математика. Глава 8. Дискретная вероятность.

Лискретная

О графах с большим обхватом и хроматическим числом

- Дискретная математика. Глава 8. Дискретная вероятность.
 - А.В.Пастор

- ullet Итак, мы доказали, что $P\{E\xi\geq rac{n}{2}\}\xrightarrow[n o\infty]{}0$ и $P\{lpha(G)\geq m\}\xrightarrow[n o\infty]{}0.$
- Следовательно, при достаточно больших n каждая из вышеприведенных вероятностей будет меньше $\frac{1}{2}$.
- Выберем n настолько большим, чтобы выполнялись оба условия: $P\{E\xi \geq \frac{n}{2}\} < \frac{1}{2}$ и $P\{\alpha(G) \geq m\} < \frac{1}{2}$.
- ullet Тогда найдется такой граф G, что v(G)=n, lpha(G)< m и в G есть не более $rac{n}{2}$ циклов, длина которых меньше g.
- Удалим из каждого такого цикла по вершине. Получим граф G', такой, что $v(G') \geq \frac{n}{2}$, $g(G') \geq g$ и $\alpha(G') \leq \alpha(G) \leq m-1 \leq 5n^{1-\theta} \ln n$.
- Тогда $\chi(G') \ge \frac{v(G')}{\alpha(G')} \ge \frac{n/2}{5n^{1-\theta} \ln n} = \frac{n^{\theta}}{10 \ln n}$, что больше k при достаточно большом n.