Скопировать

Скопировать

Скопировать

у2020-4-2. Потоки

А. Просто поток

ограничение по времени на тест: 5 секунд ограничение по памяти на тест: 1024 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Дана система из узлов и труб, по которым может течь вода. Для каждой трубы известна наибольшая скорость, с которой вода может протекать через нее. Известно, что вода течет по трубам таким образом, что за единицу времени в каждый узел (за исключением двух источника и стока) втекает ровно столько воды, сколько из него вытекает.

Ваша задача — найти наибольшее количество воды, которое за единицу времени может протекать между источником и стоком, а также скорость течения воды по каждой из труб.

Трубы являются двусторонними, то есть вода в них может течь в любом направлении. Между любой парой узлов может быть более одной трубы.

Входные данные

В первой строке записано натуральное число N — количество узлов в системе ($2 \le N \le 100$). Известно, что источник имеет номер 1, а сток номер N. Во второй строке записано натуральное M ($1 \le M \le 5000$) — количество труб в системе. Далее в M строках идет описание труб. Каждая труба задается тройкой целых чисел A_i , B_i , C_i , где A_i , B_i — номера узлов, которые соединяет данная труба ($A_i \neq B_i$), а $C_i \ (0 \leq C_i \leq 10^4)$ — наибольшая допустимая скорость течения воды через данную трубу.

Выходные данные

В первой строке выведите наибольшее количество воды, которое протекает между источником и стоком за единицу времени. Далее выведите M строк, в каждой из которых выведите скорость течения воды по соответствующей трубе. Если направление не совпадает с порядком узлов, заданным во входных данных, то выводите скорость со знаком минус. Числа выводите с точностью 10^{-3} .

Примеры Скопировать входные данные 1 2 1 2 1 3 Скопировать выходные данные

В. Разрез

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 1024 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Найдите минимальный разрез между вершинами 1 и n в заданном неориентированном графе.

Входные данные

Выходные данные

На первой строке входного файла содержится n ($2 \le n \le 100$) — число вершин в графе и m ($0 \le m \le 400$) — количество ребер. На следующих m строках входного файла содержится описание ребер. Ребро описывается номерами вершин, которые оно соединяет, и его пропускной способностью (положительное целое число, не превосходящее $10\,000\,000$), при этом никакие две вершины не соединяются более чем одним ребром.

На первой строке выходного файла должны содержаться количество ребер в минимальном разрезе и их суммарная пропускная способность. На следующей строке выведите возрастающую последовательность номеров ребер (ребра нумеруются в том порядке, в каком они были заданы во входном файле).

Примеры Скопировать входные данные 3 3 1 2 3 1 3 5 3 2 7 Скопировать выходные данные 2 8 1 2

С. Улиточки

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 1024 мегабайта ввод: стандартный ввод вывод: стандартный вывод

числами от 1 до n и соединены дорожками (может быть несколько дорожек соединяющих две лужайки, могут быть дорожки, соединяющие лужайку с собой же). По соображениям гигиены, если по дорожке проползла улиточка, то вторая по той же дорожке уже ползти не может. Помогите Пете и Маше добраться до домика. Входные данные

Две улиточки Маша и Петя сейчас находятся в на лужайке с абрикосами и хотят добраться до своего домика. Лужайки пронумерованы

В первой строке файла записаны четыре целых числа -n, m, s и t (количество лужаек, количество дорог, номер лужайки с абрикосами и

номер домика). В следующих m строках записаны пары чисел. Пара чисел (x,y) означает, что есть дорожка с лужайки x до лужайки y (изза особенностей улиток и местности дорожки односторонние). Ограничения: $2 \le n \le 10^5, 0 \le m \le 10^5, s \ne t$.

Выходные данные

входные данные

Примеры

Если существует решение, то выведите YES и на двух отдельных строчках сначала последовательность лужаек для Машеньки (дам нужно пропускать вперед), затем путь для Пети. Если решения не существует, выведите NO. Если решений несколько, выведите любое.

3 3 1 3 1 2 1 3 2 3 Скопировать выходные данные YES 1 3 1 2 3

Примечание

Дан орграф, найти два непересекающихся по ребрам пути из S в t, вывести вершины найденных путей. D. Групповой турнир

ограничение по времени на тест: 2 секунды

ограничение по памяти на тест: 1024 мегабайта ввод: стандартный ввод вывод: стандартный вывод В нашем капиталистическом и меркантильном мире всё решают деньги, и даже спорт не стал исключением. Все команды-участницы уже

предстоящих игр. Однако, некоторые команды не поскупились и помимо покупки очков также купили ещё и результаты некоторых игр. Поначалу в федерации думали, что это им только упростит задачу: чем для большего числа игр результаты уже определены, тем меньше работы остаётся им. Но позже они поняли, что ошиблись. Они попросили вас стать участником их коррупционной схемы и помочь с распределением результатов игр предстоящего сезона. Местный хоккейный турнир проходит по круговой системе: в турнире участвуют N команд и каждая команда играет с каждой ровно одно игру. За игру команды получают очки по следующим правилам:

купили себе нужное количество очков в следующем сезоне, и местной федерации хоккея осталось только распределить результаты

• Если победителя удалось выявить в основное время матча, то ему достаётся 3 очка, а проигравшему — 0.

- Если основное время закончилось вничью и для выявления победителя понадобилось дополнительное время (овертайм), то победителю дают 2 очка, а проигравшему — 1 очко. Овертайм не ограничен во времени и длится до тех пор, пока одна из команд не
- забьёт гол. По итогам турнира очки команды определяются как сумма её очков по всем сыгранным играм.

Входные данные В первой строке входного файла содержится целое число N — количество участников турнира (2 $\leq N \leq$ 100). Команды занумерованы

числами от 1 до N.

Следующие N строк файла содержат по N символов и представляют собой турнирную таблицу на данный момент. Символ a_{ii} в строке i (1 $1 \leq i \leq N$) на позиции j (1 $1 \leq j \leq N$) означает результат игры команды номер i с командой номер j и может быть одним из:

• ' \mathbb{W} ' — означает, что команда i обыграет команду j в основное время матча; — команда i обыграет команду j в овертайме;

- команда i проиграет команде j в овертайме;
- команда i проиграет команде j в основное время матча; • '.' — если результат игры между командами i и j ещё не определён;
- '#' если i равно j, означает отсутствие данного матча, т. к. команда не может играть сама с собой.
- Гарантируется, что данная таблица корректна. Более формально: • $a_{ij} = ' \# '$ для всех i = j;

• если $a_{ij} = '$. ', то $a_{ji} = '$. ';

- a_{ii} = 'W' тогда и только тогда, когда a_{ji} = 'L'; • a_{ij} = 'w' тогда и только тогда, когда a_{ji} = 'l'.
- Последняя строка входного файла содержит N целых чисел p_i количество очков, которое требуется набрать i-й команде (1 $\leq i \leq N$).

Выходные данные В выходной файл выведите полностью заполненную турнирную таблицу в формате, аналогичном формату входного файла. Гарантируется, что решение существует. Если решений несколько, то можно вывести любое из них.

#..W

Пример входные данные

.#W. .1#. L..# 8 6 3 1 Скопировать выходные данные #wWW l#wW Ll#w LL1# Е. Великая стена ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 1024 мегабайта

ввод: стандартный ввод

вывод: стандартный вывод

У короля Людовика двое сыновей. Они ненавидят друг друга, и король боится, что после его смерти страна будет уничтожена страшными войнами. Поэтому Людовик решил разделить свою страну на две части, в каждой из которых будет властвовать один из его сыновей. Он посадил их на трон в города A и B, и хочет построить минимально возможное количество фрагментов стены таким образом, чтобы не существовало пути из города A в город B.

для строительства стены, в остальных же строительство невозможно. При поездках по стране можно перемещаться из клетки в соседнюю по стороне, только если ни одна из этих клеток не содержит горы или построенного фрагмента стены.

прямоугольника расположены горы, по остальным же можно свободно перемещаться. Кроме этого, ландшафт в некоторых клетках удобен

Страну, в которой властвует Людовик, можно упрощенно представить в виде прямоугольника $m \times n$. В некоторых клетках этого

Входные данные В первой строке входного файла содержатся числа m и n ($1 \le m, n \le 50$). Следующие m строк по n символов задают карту страны. Символы обозначают: «#» — гора, «.» — место, пригодное для постройки стены, «-» — место, не пригодное для постройки стены, «А» и «В» - города A и B.

Выходные данные В первой строке выходного файла должно быть выведено минимальное количество фрагментов стены F, которые необходимо построить.

Примеры

A# #B

Далее нужно вывести карту в том же формате, как во входном файле. Клетки со стеной обозначьте символом «+». Если невозможно произвести требуемую застройку, то выведите в выходной файл единственное число - 1.

входные данные 5 5

A#-	
.#.#-	
B	
выходные данные	Скопировать
3	
+	
A-+#-	
+#.#-	
B	
входные данные	Скопировать
1 2	
AB	
выходные данные	Скопировать
-1	
входные данные	Скопировать
2 2	
A#	
#B	
выходные данные	Скопировать
рыходные данные	CKOTHPODGID

Соревнования по программированию 2.0