PRINCIPLES OF MATHEMATICAL INDUCTION

EXERCISE - 01

CHECK YOUR GRASP

- Since product of any r consecutive integers (क्रमागत पूर्णांक) is divisible by r! and not divisible by r+1!.
 So given product of 4 consecutive integers is divisible by 4! or 24.
- 3. Let p(n) = n² + n = n(n + 1) is an odd integer since the product of two consecutive integers is always even. So hear principle of induction (आगमन सिद्धान्त) is not aplicable.
- 5. Since x^n+y^n is divisible (x+y) if n is odd. Here 2n-1 is odd $\forall n \in N$.
- 7. Here $T_n = n(n + 1)^2$ $\therefore S_n = \Sigma T_n = \Sigma n^3 + 2\Sigma n^2 + \Sigma n$ $= \frac{n^2(n+1)^2}{4} + 2 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$ $= \frac{1}{12}n(n+1)(n+2)(3n+5)$
- 8. Let three consecutive natural numbers are n, n+1, n+2, $P(n) = (n)^3 + (n+1)^3 + (n+2)^3$ $P(1)=1^3 + 2^3 + 3^3=36$, which is divisible by 2 and 9 $P(2) = (2)^3 + (3)^3 + (4)^3 = 99$, which is divisible by

9 (not by 2).

Hence P(n) is divisible $9 \forall n \in N$.

- 9. Let $P(n) = 11^{n+2} + 12^{2n+1}$ $P(1) = 11^3 + 12^3 = 23 \quad 133, \text{ which is divisible by } 133 \text{ but not by } 113 \text{ and } 123.$
- 10. Let $p(n) = 3^{4n+2} + 5^{2n+1}$ Here $P(1) = 3^6 + 5^3 = 9^3 + 5^3 = 14$ 61 Which is multiple of 14 but not of 16, 18 and 20.
- **12.** Let n is a positive integer.

$$P(n) = n^3 - n$$

P(1) = 0, which is divisible by for all $n \in N$

P(2) = 6, which is divisible by 6 (not by 4 and 9)

15. Let P(n) =
$$\frac{n^7}{7} + \frac{n^5}{5} + \frac{2n^3}{3} - \frac{n}{105}$$

$$P(1) = \frac{1}{7} + \frac{1}{5} + \frac{2}{3} - \frac{1}{105} = 1$$
 (integer)

$$P(2) = 2^4 \left(\frac{8}{7} + \frac{2}{5} + \frac{1}{3}\right) - \frac{2}{105} = 15 \text{ (integer) etc.}$$

Hence P(n) is an integer.

18. nth term of the given series

$$T_n = \frac{\frac{n}{2} \cdot \frac{n+1}{2}}{\Sigma n^3} = \frac{\frac{1}{4} n(n+1)}{\frac{1}{4} n^2 (n+1)^2} = \frac{1}{n(n+1)} = \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$\therefore \ \, S_n = \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + - - - + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

- 19. Let $P(n) = 7^{2n} 48n 1$ $P(1) = 7^2 48.1 1 = 0,$ which is divisible by for all $n \in N$ $P(2) = 7^4 48.2 1 = 2304,$ which is divisible by 2304 not by 25, 26 and 1234.
- **20.** Let n^{th} term of the series is T_n and $S_n = 4 + 14 + 30 + 52 + 80 + 114 + ---- + <math>T_n$..(i) $S_n = 4 + 14 + 30 + 52 + 80 + ---- + <math>T_n$..(ii) Subtract (ii) from (i) 0=(4 + 10 + 16 + 22 + 28 + 34 + ---- n terms) T_n $T_n = 4 + 10 + 16 + 22 + ---- n$ terms $= \frac{n}{2} [2 \quad 4 + (n-1)6] = n(3n+1) = 3n^2 + n$
- **21.** Let $P(n)=10^n+3.4^{n+2}+\lambda \text{ is divisible by 9}$ $\not\leftarrow n\in N$ $P(1)=10+3.4^3+\lambda=202+\lambda=207+(\lambda-5)$ Which is divisible by 9 if $\lambda=5$

22.
$$T_n = 1 + a + a^2 + \dots + a^{n-1} = \frac{1 - a^n}{1 - a}$$

$$S_{n} = \Sigma T_{n} = \frac{1}{(1-a)} [\Sigma 1 - \Sigma a^{n}]$$

$$= \frac{1}{(1-a)} [n - (a + a^{2} + a^{3} + ---- a^{n})]$$

$$= \frac{1}{(1-a)} \left[n - \frac{a(1-a^n)}{(1-a)} \right] = \frac{n}{1-a} - \frac{a(1-a^n)}{(1-a)^2}$$

25. Let
$$P(n) = \cos\theta \cdot \cos 2\theta \cdot \cos 4\theta - \cos 2^{n-1}\theta$$

$$P(1) = \cos\theta = \frac{2\sin\theta\cos\theta}{2\sin\theta} = \frac{\sin 2\theta}{2\sin\theta}$$

$$P(2) = \cos\theta \cos 2\theta = \frac{2(2\sin\theta\cos\theta)\cos 2\theta}{4\sin\theta}$$

$$= \frac{2\sin 2\theta \cos 2\theta}{4\sin \theta}$$

$$= \frac{\sin 4\theta}{4\sin \theta} = \frac{\sin 2^2 \theta}{2^2 \sin \theta}$$

Clearly,
$$P(n) = \frac{\sin 2^n \theta}{2^n \sin \theta}$$

28. Let
$$P(n)$$
 : $3^{n+1} < 4^n$

P(1): $3^2 < 4$ which is false

P(2) : $3^3 < 4^2$ which is false

P(3) : $3^4 < 4^3$ which is false

P(4): $3^5 < 4^4$ which is true

33. Let
$$P(n) : n^p - n$$

when
$$p = 2$$

$$P(n) = n^2 - n$$

P(1) = 0 which is divisible all $n \in N$

P(2) = 2 which is divisible by 2

P(3) = 6 which is divisible by 2

Hence P(n) is divisible by 2 when n is greater than 1.

35. By Theorem-II

EXERCISE - 02

1. $S(K) = 1 + 3 + 5 + \dots + (2K - 1) = 3 + K^2$

S(1) is not true

let S(K) is true then

$$S(K + 1) = 1 + 3 + 5 + \dots + (2K - 1) + (2K + 1)$$

$$= S(K) + (2K + 1)$$

$$= 3 + K^{2} + 2K + 1 = 3 + (K + 1)^{2}$$

Hence $S(K) \Rightarrow S(K + 1)$

2. Since
$$1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \cdots$$

$$n \text{ terms} = \frac{n(n+1)^2}{2} \text{, when n is even}$$

When n is odd the n^{th} term of series will be n^2 in this case, (n-1) is even

so for finding sum of first (n-1) terms of the series, we replacing n by (n-1) in the given formula.

So sum of first (n - 1) terms = $\frac{(n-1)n^2}{2}$

Hence sum of n terms of the series

= (the sum of (n - 1) terms + the n^{th} term)

$$= \ \frac{(n-1)n^2}{2} \ + \ n^2 \ = \ \frac{(n+1)n^2}{2}$$

$$\mathbf{3.} \qquad \qquad \mathbf{A}^2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$\therefore A^n = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

PREVIOUS YEAR QUESTION

Now
$$nA-(n-1)I=\begin{bmatrix}n&0\\n&n\end{bmatrix}-\begin{bmatrix}n-1&0\\0&n-1\end{bmatrix}=\begin{bmatrix}1&0\\n&1\end{bmatrix}=A^n$$

4.
$$\because \sqrt{n(n+1)} < \sqrt{(n+1)(n+1)}$$

i.e.
$$\sqrt{n(n+1)} \le n+1$$
 $\forall n \in N$

Hence statement-2 is true.

For n = 2 given result is true.

let it is true for $n = K \in N, K \ge 2$ then

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots \ldots + \frac{1}{\sqrt{K}} > \sqrt{K}$$

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots \ldots + \frac{1}{\sqrt{K}} + \frac{1}{\sqrt{K+1}} > \sqrt{K} + \frac{1}{\sqrt{K+1}}$$

$$= \frac{\sqrt{K(K+1)} + 1}{\sqrt{K+1}} > \frac{\sqrt{KK} + 1}{\sqrt{K+1}} = \sqrt{K+1}$$

(: by statement-2 $\sqrt{n(n+1)} \le n+1 \Rightarrow \sqrt{n} \le \sqrt{n+1}$)

$$\Rightarrow \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{K+1}} > \sqrt{K+1}$$

Hence statement-1 is true for every natural number $n \geq 2$.