Lab 1: Modeling Packet Losses

1

Kyeong Soo (Joseph) Kim
Department of Communications and Networking
School of Advanced Technology
Xi'an Jiaotong-Liverpool University
24 March 2022

I. INTRODUCTION

You are to carry out the following tasks in this Lab:

- Use the Python scripts provided in the Appendix (also downloadable from the Learning Mall) to generate sample binary sequences, analyze their run length statistics, and plot histograms for run length distributions. Note that this is for your practice, and you don't have to submit anything.
- Model packet losses using a simple Gilbert model (SGM) and a Gilbert model (GM) based on the sample sequence of packet losses available on the ICE and carry out a simple statistical analysis of the constructed models. Details are given in Sec. III.

You need to submit the Lab report and program source code through the Learning Mall by the end of Sunday, 24 April 2022.

II. GILBERT-ELLIOTT MODEL

Here we introduce the Gilbert-Elliott model (GEM) [1], i.e., a generalised version of the SGM that we studied during the lectures. The GEM is a two-state Markov chain with state-dependent loss probabilities—i.e., (1-k) at GOOD and (1-h) at BAD state—as shown in Fig. 1. The GEM is quite straightforward

Fig. 1: Gilbert-Elliott model (GEM).

to understand and still useful in modeling burst packet loss with correlation. Transitions between the states are per-packet basis.

The transition matrix is given by

$$\mathbf{P} = \begin{bmatrix} (1-p) & q \\ p & (1-q) \end{bmatrix} \tag{1}$$

where p and q are transition probabilities from GOOD to BAD and from BAD to GOOD state, respectively. The steady state probability vector π satisfies the following conditions:

$$\boldsymbol{\pi} = \boldsymbol{P}\boldsymbol{\pi}, \ \mathbf{1}^t \boldsymbol{\pi} = 1, \tag{2}$$

where

$$\boldsymbol{\pi} = \left[\begin{array}{c} \pi_G \\ \pi_B \end{array} \right]. \tag{3}$$

The steady state probabilities exist for 0 < p, q < 1 and are given by

$$\pi_G = \frac{q}{p+q}, \ \pi_B = \frac{p}{p+q}. \tag{4}$$

From (4), we obtain the packet loss probability p_L as follows:

$$p_L = (1 - k)\pi_G + (1 - h)\pi_B. \tag{5}$$

The special cases of k=1 and k=1, h=0 are called a Gilbert Model (GM) and a simple Gilbert Model (SGM), respectively.

In case of the SGM, the probability distribution of loss run length conditioned on the observation of a transition from 0 to 1 (see Fig. 2) has a geometric distribution: For $k=1,2,\ldots,\infty$,

$$p_k \triangleq Prob \{ \text{Loss run length} = k | \text{Transition from 0 to 1 observed} \}$$

= $(1-q)^{k-1} q$. (6)

Fig. 2: Illustration of packet loss run length.

III. TASK: PACKET LOSS MODELING

To model packet losses with an SGM, we need to decide its transition probabilities p and q. There have been proposed many techniques for the SGM parameter estimation based on the measured loss trace, e.g., see [1] and [2]. Here we use a simple method proposed by Yajnik et al. [3], where p and q are estimated as follows:

$$p = \frac{n_{01}}{n_0}, \ q = \frac{n_{10}}{n_1} \tag{7}$$

where n_{01} is the number of times in the observed time series that 1 follows 0 and n_{10} is the number of times 0 follows 1. n_0 is the number of 0s and n_1 is the number of 1s in the trace.

In case of GM-based packet loss modeling, we need to decide the values of three parameters—i.e., p, q, and h. Gilbert suggested to estimate those model parameters from another set of three parameters that can be estimated from the measured loss trace [4]:

$$a = P(1), \ b = P(1|1), \ c = \frac{P(111)}{P(101) + P(111)},$$
 (8)

where $P(\cdot)$ is the probability of a given loss pattern and P(1|1) is a conditional probability. From the values of a, b, and c, we can obtain the three model parameters as follows:

$$1 - q = \frac{ac - b^2}{2ac - b(a + c)}, \ h = 1 - \frac{b}{1 - q}, \ p = \frac{aq}{1 - h - a}.$$
 (9)

For this task, you need to submit a Lab report and program source code summarizing the following activities:

¹Refer to the pages 1260-1261 of [4] for more details on this.

- 1) Create a Python script to build an SGM for a given trace based on the method described above and submit the source code with detailed comments.
- 2) Run the script over a sample binary sequence² and submit the following:
 - Estimated model parameters.
 - Histograms of run lengths for zero and one for both the sample binary sequence and the sequence generated by the constructed model.
 - Power spectral densities (PSDs) of sample binary sequence and the sequence generated by the constructed model.
 - Comparison (i.e., discussion) of the two sequences based on their histograms and PSDs.
- 3) Repeat the steps 1) and 2) for a GM this time.

APPENDIX PYTHON UTILITY FUNCTIONS

A. Generate a Loss Pattern based on SGM

```
#!/usr/bin/env python
   # -*- coding: utf-8 -*-
2
   ##
   # @file
               sgm_generate.py
   # @author
               Kyeong Soo (Joseph) Kim <kyeongsoo.kim@gmail.com>
   # @date
               2020-03-25
   # @brief A function for generating loss pattern based on simple Guilbert model.
10
   import numpy as np
11
   import sys
12
13
14
   def sgm_generate(len, tr):
15
16
       Generates a binary sequence of 0 (GOOD) and 1 (BAD) of length
17
       len from an SGM specified by a 2x2 transition probability matrix
18
       tr; tr[i, j] is the probability of transition from state i to
19
       state j.
20
21
       This function always starts the model in GOOD (0) state.
22
23
       Examples:
24
25
       import numpy as np
26
27
       tr = np.array([[0.95, 0.10],
28
                       [0.05, 0.90]])
29
       seq = sgm_generate(100, tr)
30
31
32
       seq = np.zeros(len)
33
34
       # tr must be 2x2 matrix
35
       tr = np.asarray(tr) # make sure seq is numpy 2D array
36
       if tr.shape != (2, 2):
37
           sys.exit("size of transition matrix is not 2x2")
38
```

²Refer to SciPy File IO (scipy.io) for loading MATLAB MAT files in Python.

```
39
        # create a random sequence for state changes
40
       statechange = np.random.rand(len)
41
42
        # Assume that we start in GOOD state (0).
43
       state = 0
44
45
        # main loop
46
       for i in range(len):
47
            if statechange[i] > tr[state, state]:
48
                # transition into the other state
49
                state ^= 1
50
            # add a binary value to output
51
            seq[i] = state
52
53
       return seq
54
55
56
   if __name__ == "__main__":
57
       import argparse
58
59
60
       parser = argparse.ArgumentParser()
       parser.add_argument(
61
            "-L",
62
            "--length",
63
            help="the length of the loss pattern to be generated; default is 10",
64
            default=10,
65
            type=int)
66
       parser.add_argument(
67
            "-T",
68
            "--transition",
69
           help="transition matrix in row-major order; default is \"0.95,0.10,0.05,0.90\"",
70
            default="0.95, 0.10, 0.05, 0.90",
71
            type=str)
72
       args = parser.parse_args()
73
       len = args.length
74
       tr = np.reshape(np.fromstring(args.transition, sep=','), (2, 2))
75
       print(sgm_generate(len, tr))
76
```

B. Obtain Run Lengths from a Binary Sequence

```
#!/usr/bin/env python
  # -*- coding: utf-8 -*-
  ##
  # @file
               binary_runlengths.py
               Kyeong Soo (Joseph) Kim <kyeongsoo.kim@gmail.com>
  # @author
  # @date
               2020-03-25
  # @brief
               A function for obtaining run lengths from a binary sequence.
10
  import numpy as np
11
12
13
  def binary_runlengths(seq):
14
15
       Generates a sequence of run lengths for zero (zerorl) and one
```

```
(onerl), respectively, for a given binary sequence seq.
17
18
19
       seq = (np.asarray(seq)).flatten() # make sure seq is numpy 1D array
20
21
       w = np.concatenate(([1], seq, [1])) # add 1 before and after seq
22
       zerorl = np.nonzero(np.diff(w) == 1)[0] - np.nonzero(np.diff(w) == -1)[0]
23
24
       w = np.concatenate(([0], seq, [0])) # auxiliary vector
25
       onerl = np.nonzero(np.diff(w) == -1)[0] - np.nonzero(np.diff(w) == 1)[0]
26
27
       return (zerorl, onerl)
28
```

REFERENCES

- [1] G. Haßlinger and O. Hohlfeld, "The Gilbert-Elliott model for packet loss in real time services on the Internet," in Proc. 2008 MMB, Mar. 2008, pp. 1–15.
- [2] M. Ellis, D. P. Pezaros, T. Kypraios, and C. Perkins, "A two-level Markov model for packet loss in UDP/IP-based real-time video applications targeting residential users," Computer Networks, vol. 70, pp. 384–399, Sep. 2014.
- [3] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, "Measurement and modelling of the temporal dependence in packet loss," in <u>Proc.</u> 1999 IEEE INFOCOM, vol. 1, Mar. 1999, pp. 345–352.
- [4] E. N. Gilbert, "Capacity of a burst-noise channel," Bell System Technical Journal, vol. 39, no. 5, pp. 1253-1265, Sep. 1960.