

Tarea 2 - Sección 3

27 de agosto de 2025

 $2^{\underline{0}}$ semestre 2025 - Profesores M. Arenas - A. Kozachinskiy - M. Romero

Requisitos

- La tarea es **individual**. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Cada pregunta tiene una nota de 1 a 7 (hay 1 punto base). La nota final es el promedio de ambas preguntas.
- Entrega: Hasta las 23:59 del viernes 05 de septiembre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución y un zip conteniendo el archivo .tex que compila su tarea. Si su .tex hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas (salvo que utilice algún cupón #problemaexcepcional).
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Pregunta 1

Considere el vocabulario $\mathcal{L} = \{Capital, MismoPais, Vuelo\}$, donde Capital tiene aridad 1, MismoPais tiene aridad 2, y Vuelo tiene aridad 2. Considere la siguiente interpretación \mathcal{I} :

```
\mathcal{I}(dom) = \text{conjunto de todas las ciudades del mundo.} \mathcal{I}(Capital(x)) = x \text{ es capital.} \mathcal{I}(MismoPais(x,y)) = x \text{ e } y \text{ están en el mismo país.} \mathcal{I}(Vuelo(x,y)) = \text{hay un vuelo directo desde } x \text{ a } y.
```

Escriba fórmulas $\alpha(x)$ y $\beta(x)$ en la lógica de predicados sobre \mathcal{L} tal que:

- (a) (3.0 pts) $\llbracket \alpha \rrbracket_{\mathcal{I}} = \text{hay un vuelo directo desde } x \text{ hacia una ciudad fuera del país.}$
- (b) $(3.0 \text{ pts}) [\![\beta]\!]_{\mathcal{I}} = \text{se puede llegar desde } x$ a la capital del mismo país en a lo más 2 escalas.

(**Observación:** Si x es la capital de su país, el predicado anterior se considera verdadero.)

Pregunta 2

Considere las siguientes dos fórmulas de la lógica de predicados, sobre el vocabulario $\mathcal{L} = \{P, A\}$, donde P tiene aridad 1 y A tiene aridad 2.

$$\phi = \forall x \exists y (P(y) \land A(x,y)),$$

$$\psi = \exists x \forall y \forall z \Big((P(y) \land P(z) \land A(x,y) \land A(x,z)) \to (A(y,z) \lor A(z,y) \lor y = z) \Big),$$

y la intepretación \mathcal{I} :

$$\mathcal{I}(dom) = \mathbb{N}.$$

 $\mathcal{I}(P(x)) = x \text{ es primo.}$
 $\mathcal{I}(A(x,y)) = x + 10^9 \le y.$

- (a) (3.0 pts) Calcule el valor de verdad de $[\![\phi]\!]_{\mathcal{I}}$. Argumente su respuesta.
- (b) (3.0 pts) Calcule el valor de verdad de $[\![\psi]\!]_{\mathcal{I}}$. Argumente su respuesta.

(Hint: investigue sobre la twin prime conjecture https://en.wikipedia.org/wiki/Twin_prime)