

EMG Tracking Controller with Integral Anti-Windup Compensation in Motorized FES Cycling Experiments

Evan R. Tulsky, Deze Liu, Jonathan Casas, Victor H. Duenas

Control Scheme

Introduction

 People with spinal cord injury experience weak muscle activations
 Functional Electrical Stimulation (FES)

activates paralyzed muscles and facilitates leg movement - An electric motor assists to delay the onset

of fatigue

- Electromyography sensor (EMG) measure
muscle activity and can be used to
customize the muscle stimulation patterns

cling test hed. lectromyography Sensor. C| Brushed

EMG Signal Processing

Apply a 3rd order Butterworth filter, cutoff frequency 10 Hz; Blank EMG vector $EMG_{LF}^{f} = [b_{11} \quad EMG_{LF}^{f}(11)...EMG_{LF}^{f}(L=6) \quad 0_{5}]$

Average EMG activation over each stimulus (16 ms) $s = \frac{1}{I - 15} ||EMG_{i,k}^c||_1$

Fig. 1. EMG over one of

Control Design

Integrate TMG sensor to motorized PES-cycling to incorporate human feedback
 Incorporate integral anti-windup compensation to ensure uporadic muscle
 contractions do not command high PES insure.

A simple degree—of the selection ary cycle and rider $M(q|\hat{q}) + C(q, \hat{q}) + G(q) + G(q) + G(q) + G(q)$

Except C is Q of C is Q is

Control Input $M_{ac} \triangleq k_1 e_s + k_{S_d} sgn(e_s) + p\hat{\theta} + k_2 ||y|||\hat{\theta}||sgn(e_s)$ $y = |q|, r = \lfloor \frac{1}{2} \rfloor$ $y = |q|, r = \lfloor \frac{1}{2} \rfloor$ $y = |q|, r = \lfloor \frac{1}{2} \rfloor$ $y = |q|, r = \lfloor \frac{1}{2} \rfloor$

Future Work

Conduct experiments on healthy bodied individuals
 Implement experiments in participants with
movement disorders
 Develop Extremum seeking controller to minimize