M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

K-vecinos más cercanos (K nearest neighbors, KNN)

- Midiendo distancias entre los datos
- Estableciendo el valor de k
- Resolviendo empates

Introducción

- KNN representa el modelo por medio del conjunto de entrenamiento al completo
 - (Tan simple como eso)
- No hay más modelo que almacenar el conjunto de datos de entrenamiento
 - No es necesaria una etapa de aprendizaje
 - (Algunas implementaciones utilizan estructuras complejas para simplificar)

Introducción

- Principio "Dime con quién andas..."
 - Se basa en calcular la clasificación directamente a partir de los ejemplos
- Clasificar ejemplos a partir de los ejemplos más "cercanos".
 - Necesitamos medir "Distancias" entre ejemplos.
 - En la mayoría de los casos, los ejemplos serán elementos numéricos
 - La distancia Euclídea puede ser una opción razonable.

Introducción

- Ejemplo de los métodos de aprendizaje "vago"
 - No hay modelo por detrás
- Cada dato de la muestra de entrenamiento se puede ver como un caso resuelto
- Para un dato nuevo, buscamos casos "más parecidos" y le aplicamos la misma solución

"if it walks like a duck, looks like a duck, and talks like a duck, it is probably a duck.

.

- Ciertos métodos de minería de datos se basan o necesitan calcular "distancias" entre diferentes datos
 - Y KNN es uno de ellos
 - Se basa en medir distancias entre los datos disponibles y el nuevo ejemplo
 - Para ello, mide la distancia entre el nuevo ejemplo y los ejemplos almacenados, y clasifica el nuevo por el voto de sus vecinos

6

- Casos "más parecidos" = Casos a menor distancia
- ¿Os suena de algo?

 ϵ

- Hay múltiples medidas de distancia
 - Las distancias más comunes son las euclídeas
 - Norma L2: raíz cuadrada de la suma de los cuadrados de las diferencias entre x e y en cada dimensión
 - La noción más común de distancia
 - Norma L1: suma de las diferencias en cada dimensión
 - Distancia de Manhattan: distancia si sólo te mueves a través de las coordenadas
 - Norma L∞: máxima distancia de las diferencias entre x e y en cada dimensión

- Una medida de distancia <d(x,y)> debe cumplir
 - Debe de ser mayor que cero
 - Es igual a cero si sólo si ambos elementos son iguales
 - \circ Es simétrica (d(x,y)=d(y,x))
 - La distancia entre x e y es menor o igual que la distancia entre x y z más la distancia entre z e y
 - Desigualdad triangular
 - d(x,y) < d(x,z) + d(z,y)
 - d(x,z) < d(x,y) + d(y,z)
 - d(y,z) < d(y,x) + d(x,z)

- A quién se parece más Pedro?
 - (1) Pedro: Salario = 25.000, Edad= 30
 - (2) Juan: Salario = 27.000, Edad= 50
 - (3) Daniel: Salario = 20.000, Edad= 32
 - A Juan, que gana parecido pero es más senior.
 - A Daniel, que tiene una edad parecida pero cobra una cantidad menor
- Por qué?
- Cómo lo mido (numéricamente)?

- A quién se parece más Pedro?
 - (1) Pedro: Salario = 25.000, Edad= 30
 - (2) Juan: Salario = 27.000, Edad= 50
 - (3) Daniel: Salario = 20.000, Edad= 32
 - Parece lógico que Pedro se parece a Daniel
 - Pero si "pinto los datos y mido"
 - Pedro está más cerca de Juan
- Esto se debe a
 - 20 unidades (años) "no son nada" al lado de 2.000 unidades (euros)

- Para medir la distancia entre las instancias de datos, es recomendable que todos los atributos estén en la misma escala
 - Normalización: escala los valores numéricos de manera que estén en el Rango [0,1]
 - Estandarización: hace que la distribución de los datos sea normal (En el sentido estadístico de la palabra)
 - Nota, hay otras muchas maneras de normalizar/estandarizar datos, estas dos son las (sumamente) más comúnes y utilizadas

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}} \qquad x_{new} = \frac{x - \mu}{\sigma}$$

- Tanto normalizar como estandarizar tienen sus ventajas e inconvenientes:
 - Normalizar nos asegura que los valores estarán entre 0 y 1, para todos los atributos (Estandarizar, no)
 - Estandarizar mitiga el efecto negativo de los outliers, hace que los datos estén "mejor distribuidos", lo que facilita la tarea de minería (Normalizar, no)

- Otras (de las muchas existentes) distancias
 - Hamming: número de elementos diferentes
 - Útil para datasets con atributos categóricos
 - Diferencia de ranking
 - Atributos ordinales
 - Distancia de editado
 - Cuando los datos son strings: El menor número de inserciones y borrados (y modificaciones, en ciertas ocasiones) necesarios para pasar de la cadena x a la cadena y
 - Matriz de distancias específica

	Ingeniero	Empresariales	Abogado
Ingeniero	0	0.5	1
Empresariales	0.5	0	0.5
Abogado	¹ 13	0.5	0

Distancias en KNN

- Para ver los vecinos que son más parecidos, utilizamos medidas de distancia
 - Si los atributos no son numéricos:
 - Categorías → Dummy variables
 - Categorías (con orden) → numérico
 - Texto \rightarrow Bag of words
 - o Podemos usar medidas de distancia específicas
 - Si los atributos no tienen escala similar, podemos normalizar/estandarizar
- Otras cuestiones
 - ¿Qué valor de k usar?
 - ¿Cómo resolver empates?

Estableciendo el valor de K

- Si k es muy bajo
 - Puede ser muy sensible al ruido (y outliers)
 - Overfitting
- Si k es muy alto
 - Puede estar influenciado por la "mayoría no parecida"
 - ¿Y si K es igual al número de datos?
- Algunos criterios
 - K=raíz(N)
 - Probar diferentes K
 - Validación cruzada

Rompiendo empates

- ¿Qué hacer si entre los K vecinos más cercanos hay empate en las clases?
 - Intentar evitar el empate
 - Utilizar K impar si tenemos 2 clases
 - Si no se puede evitar (3 o más clases)
 - Tomar la clase del vecino más cercano
 - Tomar la clase con menor distancia promedio
 - Incrementar el valor de K (tomar un nuevo vecino) para romper el empate

Algunas variantes

- Variante en KNN:
 - Para cada clase, sumar la similitud (con el que se quiere clasificar) de cada ejemplo de esa clase que esté entre los k más cercanos. Devolver la clase con mayor puntuación.
 - Así un ejemplo cuenta más cuanto más cercano esté
- Adaptable a Regresión:
 - o dar como salida el valor ... de los k vecinos más cercanos
 - Medio
 - Mediano
 - Modal

Resúmen

Ventajas:

- (Muy) Simple
- No hay que hacer presunciones sobre los datos
- Entrenamiento rápido (o nulo)

Desventajas

- No produce un modelo.
- Hay que elegir el número de vecinos a considerar
- Tarda en clasificar
 - ¿Y si tenemos millones de datos?
- La maldición de la dimensionalidad
 - Si tenemos muchos atributos, las distancias serán similares

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

