# Stochastic programming Lagrangian methods

Fabian Bastin bastin@iro.umontreal.ca Université de Montréal – CIRRELT – IVADO – Fin-ML

#### Motivation

Reference: Birge and Louveaux, Sections 3.4, 5.8 and 6.4.

We consider the general two-stage nonlinear program

$$\begin{split} &\text{inf } z \ = f^1(x) + \mathcal{Q}(x) \\ &\text{s.t. } g^1_i(x) \leq 0, \ i = 1, \ldots, m_1, \end{split}$$

where  $Q(x) = E_{\xi}[Q(x, \xi)]$ , and

$$\begin{split} Q(x,\xi) &= \inf \, f^2(y(\xi),\xi) \\ &\quad t.q. \, \, b_i^2(x,\xi) + g_i^2(y(\xi),\xi) \leq 0, \, \, i=1,\ldots,m_2. \end{split}$$

We assume that all functions  $f^2(\cdot, \xi)$ ,  $b_i^2(\cdot, \xi)$  et  $g_i^2(\cdot, \xi)$  are continuous in the first argument for any given  $\xi$ , and measurable in  $\xi$  for any fixed first argument.

## Properties - assumptions

We can extend the definitions of  $K_1$  and  $K_2$ .

$$\begin{split} K_1 &= \{x \,|\, g_i^1(x) \leq 0, \ i = 1, \dots, m_1\}, \\ K_2(\xi) &= \{x \,|\, \exists y(\xi) \ t.q. \ b_i^2(x,\xi) + g_i^2(y(\xi),\xi) \leq 0, \ i = 1, \dots, m_2\}, \\ K_2 &= \{x \,|\, \mathcal{Q}(x) < \infty\}. \end{split}$$

#### Assumptions.

- 1. Convexity. The function  $f^1$  is convex on  $\mathbb{R}^{n_1}$ ,  $g_i^1$  is convex on  $\mathbb{R}^{n_1}$  ( $i=1,\ldots,m_1$ ),  $f^2(\cdot,\xi)$  is convex on  $\mathbb{R}^{n_2}$  for all  $\xi \in \Xi$ ,  $g_i^2(\cdot,\xi)$  is convex on  $\mathbb{R}^{n_2}$  ( $i=1,\ldots,m_2$ ), for all  $\xi \in \Xi$ , and  $b_i^2(\cdot,\xi)$  is convex on  $\mathbb{R}^{n_1}$  ( $i=1,\ldots,m_2$ ), for all  $\xi \in \Xi$ .
- 2. Slater condition If  $Q(x) < \infty$ , for almost every (a.e.)  $\xi \in \Xi$ ,  $\exists$  some  $y(\xi)$  s.t.  $b_i^2(x,\xi) + g_i^2(y(\xi),\xi) < 0$  ( $i = 1, ..., m_2$ ).

## Second-stage properties

The Slater condition ensures that the strong duality still holds for the dual of the second stage subproblems and the KKT conditions are necessary and sufficient.

#### Theorem

Under assumptions 1 and 2, the recourse function  $Q(x, \xi)$  is a convex function in x for all  $\xi \in \Xi$ .

#### Theorem

If the recourse feasible set (i.e. in y, for given  $\xi$ ) is bounded for any  $x \in \mathbb{R}^{n_1}$ , then the function  $Q(x,\xi)$  is lower semi-continuous in x for all  $\xi \in \Xi$ .

### Lower semi-continuity

We say that a function f is lower semi-continuous in  $x_0$  if for every  $\varepsilon > 0$ ,  $\exists$  a neighborhood U of  $x_0$  such that  $f(x) > f(x_0) - \varepsilon$  for all  $x \in U$ . Equivalently

$$\liminf_{x\to x_0} f(x) \geq f(x_0),$$

where

$$\liminf_{x\to a} f(x) = \lim_{\varepsilon\to 0} \inf\{f(x): x\in \mathrm{dom}(f)\cap B(a;\varepsilon)\backslash\{a\}\}.$$

The function f is lower semi-continuous if it is lower semi-continuous in any point in its domain.

## Lower semi-continuity

A function is lower semi-continuous iff  $\{x \in X : f(x) > \alpha\}$  is an open set for every  $\alpha \in \mathbb{R}$ , or, in a similar way,  $\{x \in X : f(x) \le \alpha\}$  is a closed set for every  $\alpha \in \mathbb{R}$ .

Example of lower semi-continuous function

$$f(x) = \begin{cases} x & \text{if } x \le 1\\ x+1 & \text{if } x > 1 \end{cases}$$

# Convexity (cont'd)

#### Corollary

The expected recourse function Q(x) is a convex function in x.

#### Corollary

The feasible set  $K_2 = \{x \mid \mathcal{Q}(x) < \infty\}$  is closed and convex.

#### Corollary

If the recourse feasible set if bounded for any  $x \in \mathbb{R}^{n_1}$ , Q is a lower semi-continuous function.

#### Solution: existence

#### Theorem

If the recourse feasible set is bounded for any  $x \in \mathbb{R}^{n_1}$ ,  $K_1$  is bounded,  $f^1$  is continuous,  $g_i^1$  and  $g_i^2$  are continuous for every i, and  $K_1 \cap K_2 \neq \emptyset$ , then the nonlinear stochastic two-stage program has an optimal solution and the infimum is reached.

## Solution: optimality

#### Theorem

Assume that the Slater condition is satisfied, i.e. it exists a x such that  $x \in ri(dom(f^1(x)), x \in ri(dom(\mathcal{Q}(x)))$  and  $g_i^1(x) < 0$   $(i = 1, \ldots, m_1)$ .

 $x^*$  is optimal if and only if there exists  $\lambda^*$  such that  $(x^*, \lambda^*)$  satisfies the KKT conditions for the two-stage stochastic program, i.e.

- $x^* \in K_1$ ,
- $\lambda^* \geq 0$ ,
- $\lambda_{i}^{*}g_{i}^{1}(x^{*}) = 0, i = 1, ..., m,$
- $\bullet \ 0 \in \partial f^1(x^*) + \partial \mathcal{Q}(x^*) + \sum_{i=1}^{m_1} \lambda_i^* \partial g_i^1(x^*).$

#### Relative interior

The relative interior of a set S, denoted by ri(S), is defined as its interior within the affine envelop of S. In other words

$$\mathrm{ri}(S) = \{x \in S \,|\, \exists \,\, \varepsilon > 0, (B_{\varepsilon}(x) \cap \mathsf{aff}(S)) \subseteq S\},$$

where  $\operatorname{aff}(S)$  is the affine envelop of S, and  $B_{\varepsilon}(x)$  is a ball of radius  $\varepsilon$  centered at x. Any metric can be used for the ball construction: all define the same relative interior.

The affine envelop aff(S) of S is the set of all affine combinations of elements of S, i.e.

$$\mathsf{aff}(S) = \left\{ \sum_{i=1}^k \alpha_i x_i \, \middle| \, x_i \in S, \, \alpha_i \in \mathbb{R}, \, \sum_{i=1}^k \alpha_i = 1, k = 1, 2, \dots \right\}.$$

# Basic principle of Lagrangian approach

Since the problem is nonlinear, we have to rely on nonlinear techniques. The simplest ones aim to build a search direction and compute a step along this direction to reduce the objective.

- Problem: classical nonlinear methods assume that the (sub-)gradients of  $\mathcal{Q}$  are available and cheap to obtain. Not the case here.
- Link the first and second stages in order to avoid optimization subproblems when building search directions.

## Basic principle of Lagrangian approach (cont'd)

Let  $\pi$  be a vector of (dual) multipliers associated to the second-stage constraints. We can form a dual problem as follows:

$$\max_{\pi(\xi) \ge 0} w = \theta(\pi),$$

where

$$\begin{split} \theta(\pi) &= \inf_{x,y} \, f^1(x) + E_{\xi}[f^2(y(\xi),\xi)] + \\ & E_{\xi} \left[ \sum_{i=1}^{m_2} \pi_i(\xi) \left( b_i^2(x,\xi) + g_i^2(y(\xi),\xi) \right) \right] \\ & \text{s.t. } g_i(x) \leq 0, i = 1, \dots, m_1. \end{split}$$

We can see that we only consider the dual based on the second-stage constraints (linking first and second stages). We will establish some duality properties in case of finite distribution.

## Duality

#### Theorem

We assume that all the functions of the stochastic program are convex, and there exists a finite optimal value, as well as a point strictly satisfying all the constraints. Assume moreover that the support of  $\boldsymbol{\xi}$  is finite.

Then  $z \ge w$  for all  $x, y_1, \ldots, y_S$  feasible in the primal formulation and  $\pi_1, \ldots, \pi_S$  feasible in the dual formulation (weak duality).

Moreover, their optimal values coincide:  $z^* = w^*$  (strong duality).

We thus assume from now that  $\Xi$  is finite, and we will describe some procedures exploiting the Lagrangian function.

## Basic Lagrangian dual ascent method

Assumption: the dual problem always has a unique solution.

#### Algorithme 1: Lagrangian dual ascent method

- Step 0. Let  $\pi^{0,s} \ge 0$ , s = 1, ..., S,  $\pi^0 = (\pi^{0,1}, ..., \pi^{0,S})$ ,  $\nu = 0$ .
- Step 1. Given  $\pi = \pi^{\nu}$  in the dual problem, consider the solution  $(x^{\nu}, y_1^{\nu}, \dots, y_S^{\nu})$ . For  $s = 1, \dots, S$ , define

$$\hat{\pi}_{i}^{s} = b_{i}^{2}(x^{\nu}, s) + g_{i}^{2}(y_{s}^{\nu}, s).$$

If  $\hat{\pi}^{s} = 0$  for all s, stop.

Step 2. Choose a step  $\alpha^{\nu} \geq 0$  and set  $\pi^{\nu+1,s} = \max\{\pi^{\nu,s} + \alpha^{\nu}\hat{\pi}, 0\}$ . Set  $\nu := \nu + 1$  and check convergence. If we have not yet converged, return to Step 1.

### Properties - convergence

- Various strategies can be used to compute the step  $\alpha^{\nu}$ . Assume we compute the step to maximize  $\theta(\pi^{\nu} + \alpha \hat{\pi})$  on  $\alpha \geq 0$ . Under the assumption of unicity of dual solution, we can show that this algorithm always produces an ascent direction in  $\theta$ .
- Either the algorithm converges to an optimal solution, or, assuming a bounded set of optimal solutions, it produces an infinite sequence where all limit points are optimal.
- Good performance if the number of dual iterations is small compared to the number of function evaluations that would be required by solving the original problem directly.
- Solving the dual program may be time-consuming, but should nevertheless be easier than solving the original problem directly, as the constraints linking the two stages (i.e. involving x and  $y(\xi)$ ) now appear in the objective.

### Another approach: scenarios

As  $\Xi$  is finite, we can consider that S scenarios exist, and we can link a non-anticipative decision  $\hat{x}$  and the decisions of the scenario s with the terms  $(\hat{x} - x_k)$  in the objective function.

Consider the general problem

$$\begin{split} &\inf_{x \in \mathcal{N}} E\left[\sum_{t=0}^T f_{t+1}(\xi, x^t(\xi), x_{t+1}(\xi))\right], \\ &\mathrm{s.t.} \ x_t(\xi) \in X_t(\xi) \ \mathrm{a.s.}, \end{split}$$

where  $x_t$  is the decision at stage t, and  $x^t$  is the decisions history at stage t, i.e.  $x^t = \{x_1, \dots, x_t\}$ .  $\mathcal{N}$  designs the close linear subspace of nonanticipative processes. Denoting  $\mathcal{A}$  the  $\sigma$ -field of all the events (i.e. the collection of events subsets, with the probability measure associated to  $\boldsymbol{\xi}$ ).

### Nonanticipativity: 2 stages





#### Mathematically,

- the nonanticipativity aims to require that  $x^{t}(\xi)$  has to be  $\mathcal{A}^{t}$ -measurable, where  $\mathcal{A}^{t}$  is the  $\sigma$ -field of events until time t;
- or, in other words,  $x^t(\xi) = E[x^t(\xi) | \mathcal{A}^t]$  a.s., t = 0, ...;
- using the projection operator  $\Pi^t: z \to \Pi^t z := E[z|\mathcal{A}^t]$ , this is equivalent to

$$(I - \Pi^{t})x^{T} = 0, t = 0, \dots$$



# Nonanticipativity (cont'd)

Let  $S_s^t$  be the set of scenarios identical to the scenarios at time t. We then have to ensure that

$$x_{its} = x_{its'}, \ \forall i \in N, \ \forall t \in T, \ \forall s \in S, \ \forall s' \in S_s^t.$$

In other words, the scenarios share identical decisions as long as they share the same history, i.e. the observed realizations until a given stage are the same. As soon as the scenarios diverge, the associated decisions can be different.

Idea: explicitly include the nonanticipativity constraints, and place them in the objective function, rather than in the second stage constraints.

#### Dual ascent and scenarios

Consider the maximization of the dual built on the nonanticipativity constraints:

$$\max_{\pi(\xi) \ge 0} w = \theta(\pi),$$

where

$$\begin{split} \theta(\pi) &= \inf_{\mathbf{x} \in \mathcal{X}} \mathbf{z} = & \mathrm{E}\left[\sum_{t=0}^{T} f_{t+1}(\xi, \mathbf{x}^t(\xi), \mathbf{x}_{t+1}(\xi)\right] \\ &+ \mathrm{E}\left[\sum_{t=0}^{T} \pi^t(\xi) (\mathbf{I} - \Pi_t) \mathbf{x}^t(\xi)\right], \end{split}$$

where  $\pi^{t}$  corresponds to the components of  $\pi$  associated to the t first periods.

### Dual ascent and scenarios: two stages

We still have to describe the projection operator. For simplicity, consider two steps. The primal problem becomes (omitting all the constraints except the nonanticipativity ones)

$$\begin{aligned} &\text{min z } &= \sum_{s=1}^{S} p_s \left( f^1(x_s) + f^2(x_s, y_s) \right) \\ &\text{s.t. } x_s - \sum_{k=1}^{S} p_k x_k = 0, \ s = 1, \dots, S. \end{aligned}$$

The dual problem can now be written as

$$\begin{split} \max_{\pi} \theta(\pi) &= \min_{x,y} \sum_{s=1}^{S} p_s \Bigg( f^1(x_s) + f^2(x_s, y_s) \Big) \\ &+ \pi_s \left( x_s - \sum_{k=1}^{S} p_k x_k \right) \Bigg). \end{split}$$

### Dual ascent and scenarios: algorithm

#### Algorithme 2: Lagrandian dual ascent method

- Step 0. Let  $\pi^0 \ge 0$ ,  $\nu = 0$ .
- Step 1. Given  $\pi = \pi^{\nu}$  in the dual problem, compute the solution  $(x_1^{\nu}, \dots, x_S^{\nu}, y_1^{\nu}, \dots, y_S^{\nu})$ .
- Step 2. If  $x_s \sum_{k=1}^S p_k x_k = 0$ ,  $s = 1, \ldots, S$ , stop: the solution is optimal. Otherwise, define  $\hat{\pi}_s = x_s \sum_{k=1}^S p_k x_k$ , and go to Step 3.
- Step 3. Let  $\alpha^{\nu}$  maximize  $\theta(\pi^{\nu} + \alpha \hat{\pi})$  on  $\pi^{\nu} + \alpha \hat{\pi} \geq 0$ ,  $\alpha \geq 0$ . Set  $\pi^{\nu+1} = \pi^{\nu} + \alpha^{\nu} \hat{\pi}$ ,  $\nu = \nu + 1$ . Return to Step 1.

## Augmented Lagrangian

Unfortunately, this type of procedure is usually slow as there is a linearization at a single point of  $\theta$  only. It is nevertheless easy to implement and can give good results, especially for small size problems.

In order to improve the performances, we will turn to another technique inspired by nonlinear programming: augmented Lagrangian approaches.

The basic idea in an augmented Lagrangian procedure is to add a penalty on  $\theta(\pi)$  and to build iterations by including this term.

Moreover, with augmented Lagrangian techniques, we can try to exploit the problem structure in order to decompose the problem.

# Augmented Lagrangian and Stochastic Programming

We again develop the ideas in the two-stages contact, while the approach can be easily generalized in the multi-stage context.

Recall that we aim to solve

$$\max_{\pi(\xi) \ge 0} w = \theta(\pi),$$

where

$$\begin{split} \theta(\pi) &= \inf_{x \in \mathcal{X}} z = & E\left[\sum_{t=0}^T f_{t+1}(\xi, x^t(\xi), x_{t+1}(\xi)\right] \\ &+ E\left[\sum_{t=0}^T \pi^t(\xi)(I - \Pi_t) x^t(\xi)\right], \end{split}$$

Penalizing the nonanticipativity constraints, we obtain the following program, where  $\hat{\mathbf{x}}$  is nonanticipative,

# Augmented Lagrangian and SP (cont'd)

$$\begin{split} \theta(\rho) = &\inf z = f^1(\hat{x}) + \sum_{s=1}^S \left( p_s f^2(y_s, \xi_s) + \rho_s^T(x_s - \hat{x}) + \frac{r}{2} \|x_s - \hat{x}\|^2 \right) \\ \text{s.t. } g_i^1(\hat{x}) \leq 0, \ i = 1, \dots, m_1, \\ t_i^2(x_s, \xi_s) + g_i^2(y_s, \xi_S) \leq 0, \ i = 1, \dots, m_2, \ s = 1, \dots, S. \end{split}$$

r if the augmented Lagrangian penalty parameter, and  $\rho_s$  is the vector of dual variables associated to the nonanticipativity constraints of the scenario s.

The method that we will develop aims to contract the pair  $(\hat{\mathbf{x}}^{\nu+1}, \rho^{\nu+1})$  around a saddle point.

## Progressive hedging

- Main reference: R. T. Rockafellar and R. J.-B. Wets, Scenarios and policy aggregation in optimization under uncertainty, Mathematics of Operations Research 16(1):119-147(1991).
  - The paper focussed on the multistage version.
- The method performs a complete separation of the problems, scenario by scenario, at each iteration, reducing the cost per iteration.
- The number of iterations can however increase...
- But for structures problems, it is possible to exploit parallelism, and therefore solve large-scale problems.
- Observation: the Lagrangian function is not separable with respect to the scenarios due to the term  $(\hat{x} - x_s)$ .

## Progressing hedging: basic principle

Alternatively,

- 1. fix  $\hat{x}$  and obtain the solutions  $x_s$ , s = 1, ..., S,
- 2. fix  $x_s$ , s = 1, ..., S, and compute  $\hat{x}$ .

In other words, we work scenario by scenario, and we enforce progressively the nonanticipativity constraints.

At iteration  $\nu$ , we solve the subproblems

$$\begin{split} \text{inf } z = & \sum_{s=1}^{S} p_s \left( f^1(x_s) + f^2\left(y_s, \xi_s\right) + \left(\rho_s^{\nu}\right)^T \left(x_s - \hat{x}^{\nu}\right) + \frac{r}{2} \|x_s - \hat{x}^{\nu}\|^2 \right) \\ \text{s.t. } g_i^1(x_s) & \leq 0, \ i = 1, \dots, m_1, \ s = 1, \dots, S, \\ t_i^2\left(x_s, k\right) + g_i^2\left(y_s, \xi_s\right) & \leq 0, \ i = 1, \dots, m_2, \ s = 1, \dots, S. \end{split}$$

 $\hat{\mathbf{x}}^{\nu}$  is not necessarily a feasible solution!



## Decomposition

However, it is easy to decompose the problem! Algorithm:

- Step 0. Assume that we have a nonanticipative solution  $x^0$ , an initial vector of multipliers  $\rho^0$ , and r > 0.  $\nu \leftarrow 0$ . Go to Step 1.
- Step 1. Let  $(x_s^{\nu+1}, y_s^{\nu+1})$  be a solution of the previous Lagrangian program, for s = 1, ..., S. Set

$$\hat{\boldsymbol{x}}^{\nu+1} = \left(\hat{\boldsymbol{x}}_1^{\nu+1}, \dots, \hat{\boldsymbol{x}}_S^{\nu+1}\right)^T,$$

where 
$$\hat{x}_s^{\nu+1} = \sum_{s=1}^S p_s x_s^{\nu+1}, \ s=1,\dots,S.$$

### Decomposition (cont'd)

- Step 2. Let  $\rho_{s}^{\nu+1} = \rho_{s}^{\nu} + r(x_{s}^{\nu+1} \hat{x}_{s}^{\nu+1})$ , s = 1, ..., S. If  $\hat{x}^{\nu+1} = \hat{x}^{\nu}$  and  $\rho^{\nu+1} = \rho^{\nu}$ , stop:  $(\hat{x}^{\nu}, \rho^{\nu})$  is optimal. Otherwise, set  $\nu = \nu + 1$  and return to Step 1.
- Step 2 simply consists to take the expected value of  $\mathbf{x}^{\nu+1}$  as  $\hat{\mathbf{x}}^{\nu+1}$ .
- The basis of this approach is therefore the contraction of the pair  $(\hat{x}^{\nu}, \rho^{\nu})$  around a saddle point rather than a dual ascent strategy.
- In practice, the optimality test is replaced by a convergence test for instance if the following quantity is small enough (De Silva et Abramson):

$$\sqrt{\|\hat{x}^{\nu} - \hat{x}^{\nu+1}\|^2 + \sum_{s=1}^{S} p_s \|x_s^{\nu} - \hat{x}^{\nu}\|^2}.$$

#### Generalization

$$\begin{aligned} & \underset{x}{\text{min}} \ \sum_{s \in \mathcal{S}} p_s f\left(x^{(s)}, \xi^{(s)}\right) \\ & \text{s.t.} \ x^{(s)} \in \mathcal{X}^{(s)}, \\ & x_t^{(s)} \ \text{is nonanticipative}, \ t = 1, \dots, T. \end{aligned}$$

Nonanticipativity:

$$x_t^{(s)} = E\left[x_t^{(s')} \,\middle|\, s' \in \mathcal{S}_t^{(s)}\right],$$

where  $S_t^{(s)} = \left\{ s' \mid \bar{\xi}_t^{(s)} = \bar{\xi}_t^{(s')} \right\}$ . It can be reformulated as

$$x_t^{(s)} = \hat{x}_t^{(s)},$$

with

$$\hat{\boldsymbol{x}}_t^{(s)} = \frac{\sum_{s' \in \mathcal{S}_t^{(s)}} p_{s'} \boldsymbol{x}_t^{(s')}}{\sum_{s' \in \mathcal{S}_t^{(s)}} p_{s'}}.$$

#### Generalization

Augmented Lagrangian:

$$L(\mathbf{x}, \lambda, \rho) = E\left[f\left(\mathbf{x}^{(\mathbf{s})}, \xi^{(\mathbf{s})}\right) + \sum_{t=1}^{T} \left(\lambda_t^{(\mathbf{s})'}\left(\mathbf{x}_t^{(\mathbf{s})} - \hat{\mathbf{x}}_t^{(\mathbf{s})}\right) + \frac{\rho}{2} \left\|\mathbf{x}_t^{(\mathbf{s})} - \hat{\mathbf{x}}_t^{(\mathbf{s})}\right\|^2\right)\right],$$

where  $\lambda$  is the Lagrange multipliers vector associated to the NA constraints, and  $\rho > 0$  is a penalty parameter.

#### Generalization

Given  $\lambda$ , the augmented Lagrangian program is

$$\min_{\mathbf{x}} L(\mathbf{x}, \lambda, \rho)$$
s.t.  $\mathbf{x}^{(\mathbf{s})} \in \mathcal{X}^{(\mathbf{s})}, \mathbf{s} \in \mathcal{S}.$  (1)

In order to achieve full separability, fix  $\hat{x}_t^{(s)}$  and repeatedly solve the program by updating the Lagrange multipliers vector and the value of  $\hat{x}_t^{(s)}$  between consecutive resolutions.

## Progressive hedging algorithm (PHA)

- Step 0. Set  $\hat{\mathbf{x}}^{(s),0} = (\hat{\mathbf{x}}_1^{(s),0}, \dots, \hat{\mathbf{x}}_T^{(s),0})$  and  $\mathbf{k} = 0$ . Choose  $\lambda^{(s),0} = 0, \, \rho^0 > 0$ .
- Step 1. Compute  $\mathbf{x}^{(s),k+1} = (\mathbf{x}_1^{s,k+1}, \dots, \mathbf{x}_T^{s,k+1}),$  $\mathbf{x} = 1, \dots, S$ , by solving each scenario subproblem

$$\begin{split} & \underset{x^{(s)}}{\text{min }} f\left(x^{(s)}, \xi^{(s)}\right) + \sum_{t=1}^{T} \left(\lambda_{t}^{(s)'} \left(x_{t}^{(s)} - \hat{x}_{t}^{(s),k}\right) \right. \\ & \left. + \frac{\rho^{k}}{2} \left\|x_{t}^{(s)} - \hat{x}_{t}^{(s),k}\right\|^{2}\right) \\ & \text{s.t. } x^{(s)} \in \mathcal{X}^{(s)}. \end{split}$$

Step 2. For s = 1, ..., S, t = 1, ..., T, set

$$\hat{x}_t^{(s),k+1} = \frac{\sum_{s' \in \mathcal{S}_t^{(s)}} p_{s'} x_t^{(s'),k+1}}{\sum_{s' \in \mathcal{S}_t^{(s)}} p_{s'}}.$$

# Progressive hedging algorithm (PHA)

Step 3. Set  $\rho^{k+1}$  and

$$\lambda_t^{(s),k+1} = \lambda_t^{(s),k} + \rho^k \left( x_t^{(s),k+1} - \hat{x}_t^{(s),k+1} \right),$$

for  $t = 1, \dots, T$ ,  $s \in \mathcal{S}$ .

Step 4. Stop if convergence is achieved. Otherwise, set  $k \leftarrow k+1$  and return to Step 1.

## Convergence

#### Theorem

Assume that the initial nonlinear stochastic program has only convex functions and a finite optimal value, as well as a strictly feasible point. Assume moreover that the support of  $\xi$  is finite. The progressive hedging algorithm converges to an optimal solution  $\mathbf{x}^*, \rho^*$ .

- De Silva and Abramson have tested the progressive hedging algorithm for linear problems in portfolio management, proposed by Mulvey and Vladimirou.
- The subproblems where solved by means of interior points methods.
- Good speed-up convergence, but the algorithm remains sensitive to the choice of the penality parameter.