

rigure 1

igure 6

Figure 7

Figure 9

Figure 11

Figure 13

Figure 15

Figure 17

Figure 19

Figure 23

Figure 24

258) Amd: 1-Note Commodual 19

Figure 25

5	- manadana	5	ב מייינית או מיסייני במסדים מתחיווים	;	The state of the s		
-	cyclo-Gly	2	1:pro4(2545)	က	3:pro4(2R4R)	4	1:pro4(2S4S)
5	3:pro4(2R4R)	9	1:pro4(2S4S)	7	3:pro4(2R4R)	∞	1:pro4(2S4S)
6	cyclo-Gly						

Compound 22 Formula weight: 1455.3 daltons

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.	Compound 44	ınıa	TOTALINA WEIGHT. 1400.0 UMITOILS	a.t.O.I	2		
6 3:pro4(2R4R) 7 1:pro4(2S4S) 8 10 3:pro4(2R4R) 11 cyclo-Gly		H ₂ N-1:pro4(2S4S)	2	3:pro4(2R4R)	က	1:pro4(2S4S)	4	3:pro4(2R4R)
11	2	1:pro4(2S4S)	9	3:pro4(2R4R)	7	1:pro4(2S4S)	∞	3:pro4(2R4R)
	6	1:pro4(2S4S)	10	3:pro4(2R4R)	11	cyclo- Gly		

pound 23 Formula weight: 1869.7 daltons

	compound to	II W	romma weight, 1003.1 daicoms	S			
1	1 H ₂ N-3:pro4(2R4R)	2	2 1:pro4(2S4S)	1	3 3:pro4(2R4R)	Į	4 1:pro4(2S4S)
50.	3:pro4(2R4R)	9	1:pro4(2S4S)	7	7 3:pro4(2R4R)	∞.	1:pro4(2S4S)
6	3:pro4(2R4R)	10	10 3:pro4(2R4R)	11	11 3:pro4(2R4R)	12	12 3:pro4(2R4R)
13	3:pro4(2R4R)	14	cyclo-Gly				

Compound 24 Formula weight: 2500.0 daltons

	Compound 64 r		romina weight: 2000.0 daitons	C C S	COIIS		
	cyclo- Gly	2	2 1:pro4(2S4S)	3	3 3:pro4(2R4R)	4	4 1:pro4(2S4S)
5	3:pro4(2R4R)		6 1:pro4(2545)	_	7 3:pro4(2R4R)	∞	3 1:pro4(254S)
6	3:pro4(2R4R)	10	10 4:pro4(2R4S) 11	11	1:pro4(2S4S)	12	12 1:pro4(2S4S)
13	13 3:pro4(2R4R)	14	1:pro4(2545)	15	15 3:pro4(2R4R)		16 1:pro4(2S4S)
17	3:pro4(2R4R) 18 1:pro4(2S4S) 19	18	1:pro4(254S)	19	3:pro4(2R4R)		

Figure 26