Measurement of the form factors in semileptonic decays of Λ_c

Relevance

- Test of Heavy Quark Effective Theory (HQET) predictions in the charm baryon sector
- Test of lattice QCD
- Information for the determination of CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$ in Λ_b^0 decays

Belle detector

 $\sqrt{s} = 10.58 \text{ GeV}$

 $L_{\rm int} \sim 1 {\rm ~ab^{-1}}$

$\Lambda_c^+ \to \Lambda l^+ \nu_l$ in HQET

In the case of semileptonic transition from heavy to light quark only two independent form factors, $f_1(q^2)$ and $f_2(q^2)$, are required

 $\alpha_{\Lambda} \approx 0.64$

$$\alpha_{\Lambda_c}(q^2, f_1, f_2)$$

CLEO experiment

$$f = \frac{f(q_{max}^2)}{\left(1 - \frac{q^2}{M_{pole}^2}\right)^2} \left(1 - \frac{q_{max}^2}{M_{pole}^2}\right)^2$$

$$\langle q^2 \rangle = 0.67 \text{ GeV}^2$$

$$R = \frac{f_2}{f_1} = -0.31 \pm 0.07$$

$$\alpha_{\Lambda_c} = -0.86 \pm 0.04$$

$$M_{pole} = 2.21 \pm 0.16 \text{ GeV}$$

Objectives

- 1. Make a selection of the semileptonic decay $\Lambda_c^+ \to \Lambda l^+ \nu_l$ with $\Lambda \to p\pi^-$
- 2. Define the polarization of Λ_c^+ and Λ
- 3. Measure form factors