JULY 30, 2008 REV. F

### **FEATURES**

■ Low Noise: 40µV Possible

■ High Accuracy: 1%

■ Reverse Battery Protection

■ Low Dropout: 340mV at Full Load

■ Low Quiescent Current: 90µA

Zero Off-Mode Current

Fixed Output: 1.2V, 1.5V, 1.8V, 2.5V, 3.0V, 3.1V, 3.3V, 5.0V. Adj. Output also available.

Available in RoHS Compliant, Lead Free Packages: 5 Pin SOT-23, 8 Pin Narrow

SOIC and 8 pin 2X3 DFN



### **APPLICATIONS**

- Battery Powered Systems
- Cordless Phones
- Radio Control Systems
- Portable/Palm Top/Notebook Computers
- Portable Consumer Equipment
- Portable Instrumentation
- Bar Code Scanners
- SMPS Post Regulators

### **DESCRIPTION**

The SPX3819 is a positive voltage regulator with a low dropout voltage and low noise output. In addition, this device offers a very low ground current of  $800\mu A$  at 100mA output. The SPX3819 has an initial tolerance of less than 1% max and a logic compatible ON/OFF switched input. When disabled, power consumption drops to nearly zero. Other key features include reverse battery protection, current limit, and thermal shutdown. The SPX3819 includes a reference bypass pin for optimal low noise output performance. With its very low output temperature coefficient, this device also makes a superior low power voltage reference.

The SPX3819 is an excellent choice for use in battery-powered applications such as cordless telephones, radio control systems, and portable computers. It is available in several fixed voltages -- 1.2V, 1.5V, 1.8V, 2.5V, 3.0V, 3.1V, 3.3V, 5.0V -- or with an adjustable output. This device is offered in 8 pin NSOIC, 8 pin DFN and 5-pin SOT-23 packages.

### TYPICAL APPLICATION CIRCUIT



| Power Dissipation                    | Internally Limited |
|--------------------------------------|--------------------|
| Lead Temp. (Soldering, 5 Seconds)    | 260°C              |
| Operating Junction Temperature Range | -40°C to +125°C    |
| Input Supply Voltage                 | 20V to +20V        |
| Enable Input Voltage                 | 20V to +20V        |

# RECOMMENDED OPERATING CONDITIONS

| Input Voltage                        | +2.5V to+16V            |
|--------------------------------------|-------------------------|
| Operating Junction Temperature Range | -40°C to +125°C         |
| Enable Input Voltage                 | 0.0V to V <sub>IN</sub> |

# **ELECTRICAL CHARACTERISTICS**

 $T_J=25^{\circ}C$ ,  $V_{OUT}+1V$ , for 1.2V Option  $V_{IN}=V_{OUT}+1.2V$   $I_L=100\mu A$ ,  $C_L=1\mu F$ , and  $V_{ENABLE} \ge 2.4V$ . The  $\bullet$  denotes the specifications which apply over full operating temperature range -40°C to +85°C, unless otherwise specified.

| PARAMETER                                                     | MIN      | TYP       | MAX          | UNITS             | • | CONDITIONS                                                                               |
|---------------------------------------------------------------|----------|-----------|--------------|-------------------|---|------------------------------------------------------------------------------------------|
| Output Voltage Tolerance                                      | -1<br>-2 |           | +1<br>+2     | %                 | • |                                                                                          |
| Output Voltage Temperature Coef.                              |          | 57        |              | ppm/°C            |   |                                                                                          |
| Line Regulation                                               |          | 0.04      | 0.1<br>0.2   | %/V               | • | VIN = VOUT +1 to 16V and VEN ≤ 6V<br>VIN = VEN =VOUT +1 ≤ 8V                             |
|                                                               |          |           | 0.2          |                   |   | VIN = VEN =VOUT +1 to 16V<br>Ta = 25°C to 85°C                                           |
| Load Regulation                                               |          | 0.05      | 0.4          | %                 |   | I <sub>L</sub> = 0.1mA to 500mA                                                          |
| Dropout Voltage<br>(V <sub>IN</sub> -V <sub>O</sub> )(Note 2) |          | 10        | 60<br>80     | mV                | • | I <sub>L</sub> = 100μA                                                                   |
|                                                               |          | 125       | 175<br>250   | mV                | • | I <sub>L</sub> = 50mA                                                                    |
|                                                               |          | 180       | 350<br>450   | mV                | • | I <sub>L</sub> = 150mA                                                                   |
|                                                               |          | 340       | 550<br>700   | mV                | • | IL = 500mA                                                                               |
| Quiescent Current (I <sub>GND</sub> )                         |          | 0.05      | 3<br>8       | μА                | • | V <sub>ENABLE</sub> ≤ 0.4V<br>V <sub>ENABLE</sub> ≤ 0.25V                                |
| Ground Pin Current (I <sub>GND</sub> )                        |          | 90        | 150<br>190   | μА                | • | $I_L = 100 \mu A$                                                                        |
|                                                               |          | 250       | 650<br>900   | μА                | • | I <sub>L</sub> = 50mA                                                                    |
|                                                               |          | 1.0       | 2.0<br>2.5   | mA                | • | I <sub>L</sub> = 150mA                                                                   |
|                                                               |          | 6.5       | 25.0<br>30.0 | mA                | • | I <sub>L</sub> = 500mA                                                                   |
| Ripple Rejection (PSRR)                                       |          | 70        |              | dB                |   |                                                                                          |
| Current Limit (I <sub>LIMIT</sub> )                           |          | 800       | 950          | mA                | • | V <sub>OUT</sub> = 0.0V                                                                  |
| Output Noise (e <sub>NO</sub> )                               |          | 300       |              | $\mu V_{RMS}$     |   | I <sub>L</sub> =10mA, C <sub>L</sub> =1.0μF, C <sub>IN</sub> =1μF, (10Hz-100kHz)         |
|                                                               |          | 40        |              | μV <sub>RMS</sub> |   | $I_L$ =10mA, $C_L$ =10 $\mu$ F, $C_{BYP}$ =1 $\mu$ F, $C_{IN}$ =1 $\mu$ F, (10Hz-100kHz) |
| Input Voltage Level Logic Low (V <sub>IL</sub> )              |          |           | 0.4          | V                 |   | OFF                                                                                      |
| Input Voltage Level Logic High (V <sub>IH</sub> )             | 2        |           |              | V                 |   | ON                                                                                       |
| ENABLE Input Current                                          |          | 0.01<br>3 | 2<br>20      | μА                |   | $V_{IL} \le 0.4V$<br>$V_{IH} \ge 2.0V$                                                   |
| Thermal Resistance (Note 1)                                   |          | 191       |              | °C/W              | • | SOT-23-5 / Junction to Ambient                                                           |
| , ,                                                           |          | 128.4     |              | °C/W              | • | NSOIC-8 / Junction to Ambient                                                            |
|                                                               |          | 59        |              | °C/W              | + | DFN-8 / Junction to Ambient                                                              |

### NOTES

Note 1: The maximum allowable power dissipation is a function of maximum operating junction temperature,  $T_{J(max)}$  the junction to ambient thermal resistance, and the ambient  $\theta_{JA}$ , and the ambient temperature  $T_A$ . The maximum allowable power dissipation at any ambient temperature is given:  $P_{D(max)} = (T_{J(max)} - T_A)/\theta_{JA}$ , exceeding the maximum allowable power limit will result in excessive die temperature; thus, the regulator will go into thermal shutdown. The  $\theta_{JA}$  of the SPX3819 is 220°C/W mounted on a PC board.

Note 2: Not applicable to output voltage 2V or less.



Ground Current vs Load Current



Ground Current vs Input Voltage



Ground Current vs Load Current in Dropout



Output Voltage vs Input Voltage



Dropout Voltage vs Load Current



Output Voltage vs Load Current



Ground Current vs Temperature with 100µA Load



Ground Current vs Temperature with 50mA Load



Ground Current vs Temperature with 500mA Load



Ground Current vs Temperature in Dropout



ENABLE Voltage, ON threshold, vs Input Voltage



Output Voltage vs Temperature



Output Noise vs Bypass Capacitor Value  $I_L = 10mA$ , 10Hz - 100kHz



Line Transient Response for 3.3V Device



Load Transient Response for 3.3V Device

The SPX3819 requires an output capacitor for device stability. Its value depends upon the application circuit. In general, linear regulator stability decreases with higher output currents. In applications where the SPX3819 is sourcing less current, a lower output capacitance may be sufficient. For example, a regulator outputting only 10mA, requires approximately half the capacitance as the same regulator sourcing 150mA.

Bench testing is the best method for determining the proper type and value of the capacitor since the high frequency characteristics of electrolytic capacitors vary widely, depending on type and manufacturer. A high quality  $2.2\mu F$  aluminum electrolytic capacitor works in most application circuits, but the same stability often can be obtained with a  $1\mu F$  tantalum electrolytic.

With the SPX3819 adjustable version, the minimum value of output capacitance is a function of the output voltage. The value decreases with higher output voltages, since closed loop gain is increased.

# **Typical Applications Circuits**

A 10nF capacitor on the BYP pin will significantly reduce output noise, but it may be left unconnected if the output noise is not a major



Figure 1. Standard Application Circuit

concern. The SPX3819 start-up speed is inversely proportional to the size of the BYP capacitor. Applications requiring a slow rampup of the output voltage should use a larger  $C_{\rm BYP}$ . However, if a rapid turn-on is necessary, the BYP capacitor can be omitted.

The SPX3819's internal reference is available through the BYP pin.

Figure 1 represents a SPX3819 standard application circuit. The EN (enable) pin is pulled high (>2.0V) to enable the regulator.

To disable the regulator, EN < 0.4V.

The SPX3819 in Figure 2 illustrates a typical adjustable output voltage configuration. Two resistors ( $R_1$  and  $R_2$ ) set the output voltage. The output voltage is calculated using the formula:

$$V_{OUT} = 1.235 V x [ 1 + R_1/R_2 ]$$

 $R_2$  must be > 10 k $\Omega$  and for best results,  $R_2$  should be between 22 k $\Omega$  and 47k $\Omega$ .



Figure 2. Typical Adjustable Output Voltage Configuration

| Pin #<br>nSOIC | Pin #<br>DFN | Pin #<br>SOT-3 | Pin Name             | Description                                                                                     |
|----------------|--------------|----------------|----------------------|-------------------------------------------------------------------------------------------------|
| 2              | 3            | 1              | $V_{_{\mathrm{IN}}}$ | Supply Input                                                                                    |
| 5-8            | 7            | 2              | GND                  | Ground                                                                                          |
| 3              | 5            | 5              | V <sub>OUT</sub>     | Regulator Output                                                                                |
| 1              | 1            | 3              | EN                   | Enable(input). CMOS compatible control input. Logic high = enable; logic low or open = shutdown |
| 4              | 8            | 4              | ADJ/BYP              | Adjust(input). Feedback input.<br>Connect to resistive voltage-divider<br>network               |
| -              | 4, 6         | -              | NC                   | No Connect                                                                                      |

# **PACKAGE: PINOUTS**



Note: The bottom exposed pad for the SPX3819 DFN package is connected to GND.





**SYMBOLS** 

DIMENSIONS IN MM (Control Unit)

DIMENSIONS IN INCH (Reference Unit)

≦ 1.35

NOM

MZ

MOM

A2

1.25 0.10

σ

0.31

C

0.17

0.25 0.51 1.65 0.25 1.75 AX XAX

0.010

0.065 0.020

0.010 0.069 MAX

0.049 0.012 0.007

0.004 0.053

四

3.90 BSC 6.00 BSC

1.27 BSC

 $\infty$ 

P:n

SOICN

JEDEC

MS-012 Variation AA

REV.

DISCRIPTION DRAWING ORIGINATION

REVISION HISTORY

C œ

CHANGE DRAWING LOGO ADN COMPANY NAME

DRAWING FORMAT MODIFICATION

08/16/05 07/19/06

| | | | |

DATE

APP'D

11/16/07

۲

Top View

꼬

0.07

0.003 0.003

Z

0.07

0.25 BSC

0.010 BSC 0.041 REF

1.04 REF

0.40

0.25

0.50 .27

0.016

0.010

0.020 0.050

0.050 BSC 0.154 BSC 0.236 BSC

θ

ငံကြံ ငြံ

င်္ကက် ငံ

15; ထံ

4.90 BSC

0.193 BSC

 $\infty$ 



Side View



Front View

| Packaging Approval: | Powering Connectivity | EXAR |
|---------------------|-----------------------|------|
|                     | ~                     |      |

Date:

/16/07

# EXAR CORPORATION

8 PIN SOICN PACKAGE OUTLINF

| Revision: | Drawing No: | 0<br> <br> -                |
|-----------|-------------|-----------------------------|
| on:       | ng 1        | -<br>-                      |
| С         | Vo:         |                             |
| Sheet:    | 8-PIN SOICN | O FIN SUICN FACKAGE UUTLINE |
| 1 OF      | SOICN       | OUILINE                     |
| _         |             | '                           |





| CHANGE DRAWING LOGO AND COMPANY NAME | ADD LAND PATTERN RECOMMENDATION | DRAWING FORMAT MODIFICATION | DRAWING ORIGINATION | DISCRIPTION | REVISION HISTORY |
|--------------------------------------|---------------------------------|-----------------------------|---------------------|-------------|------------------|
| 11/21/07                             | 11/02/06                        | 07/25/06                    | 10/3/05             | DATE        |                  |
| JL                                   | JL                              | JL                          | JL                  | APP'D       |                  |

| <b>I</b> [     | ű         |                          |                  | 5        |                        | Z       |
|----------------|-----------|--------------------------|------------------|----------|------------------------|---------|
|                | 10°       | 5°                       | 15°              | 10°      | 5.                     | θ1      |
|                | 4°        | oʻ                       | α̈́              | 4°       | oʻ                     | θ       |
| 0.010          |           | 0.004                    | 0.25             |          | 0.10                   | R1      |
|                |           | 0.004                    | 1                |          | 0.10                   | R       |
| C              | 0.010 BSC | 0.                       | ő                | 0.25 BSC | 0                      | L2      |
| Ti             | 0.024 REF | 0.                       | <del>'</del>     | 0.60 REF | 0                      | L1      |
| 0.024          | 0.018     | 0.012                    | 0.60             | 0.45     | 0.30                   | _       |
| ကြ             | 0.075 BSC | 0                        | Ö                | 1.90 BSC |                        | e1      |
| ဂိ             | 0.038 BSC | 0                        | Ö                | 0.95 BSC | 0                      | Ф       |
| č              | 0.063 BSC | 0                        | Ö                | 1.60 BSC |                        | E1      |
| 8              | 0.111 BSC | 0                        | Ö                | 2.80 BSC | 2                      | Е       |
| S              | 0.115 BSC | 0                        | Ö                | 2.90 BSC | 2                      | D       |
| 0.009          | —         | 0.003                    | 0.22             |          | 0.08                   | c       |
| 0.020          | _         | 0.012                    | 0.50             |          | 0.30                   | Ь       |
| 0.051          | 0.045     | 0.036                    | 1.30             | 1.15     | 0.90                   | A2      |
| 900.0          |           | 0.000                    | 0.15             |          | 0.00                   | A1      |
| 0.057          |           |                          | 1.45             |          |                        | А       |
| MAX            | NOM       | MZ                       | MAX              | MON      | <u>N</u>               |         |
| N IN(<br>Unit) | \ \ \ _   | DIMENSIONS<br>(Reference | : IN MM<br>∪nit) |          | DIMENSIONS<br>(Control | STOBMAS |
| n<br>A         | Variation | MO-178 \                 |                  | ) JEDEC  | SOT-23                 | 5 Pin S |
|                |           |                          |                  |          |                        |         |



# EXAR CORPORATION

| 5 PIN SOT-23 PACKAGE |
|----------------------|
| No: 5-PIN SOT-23     |

| Part Number        | Accuracy | MSL Level  | Status | Package  | Pack Type   | Quantity | RoHS |
|--------------------|----------|------------|--------|----------|-------------|----------|------|
| SPX3819S-L/TR      | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-1-8/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-2-5/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-3-0/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-3-1/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-3-3/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-5-0/TR  | 0.01     | L1 @ 260ºC | Active | NSOIC8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L         | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-1-8     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-2-5     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-3-0     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-3-1     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-3-3     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819S-L-5-0     | 0.01     | L1 @ 260ºC | Active | NSOIC8   | TUBE        | 98       | Yes  |
| SPX3819M5-L        | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-1-2    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-1-5    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-1-8    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-2-5    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-3-0    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-3-1    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-3-3    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L-5-0    | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Not in Bulk | 2500     | Yes  |
| SPX3819M5-L/TR     | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-1-2/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-1-5/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-1-8/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-2-5/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-3-0/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-3-1/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-3-3/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819M5-L-5-0/TR | 0.01     | L1 @ 260ºC | Active | SOT-23-5 | Tape & Reel | 2500     | Yes  |
| SPX3819R2-L-1-2    | 0.01     | L1 @ 250ºC | Active | DFN8     | Not in Bulk | 3000     | Yes  |
| SPX3819R2-L-1-2/TR | 0.01     | L1 @ 250ºC | Active | DFN8     | Tape & Reel | 3000     | Yes  |
| SPX3819S-L-1-2/TR  | 0.01     | L1 @ 260°C | Active | SOIC-8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-1-5/TR  | 0.01     | L1 @ 260ºC | Active | SOIC-8   | Tape & Reel | 2500     | Yes  |
| SPX3819S-L-1-2     | 0.01     | L1 @ 260ºC | Active | SOIC-8   | TUBE        | 98       | Yes  |
| SPX3819S-L-1-5     | 0.01     | L1 @ 260ºC | Active | SOIC-8   | TUBE        | 98       | Yes  |

# For further assistance:

Email: customersupport@exar.com

EXAR Technical Documentation: http://www.exar.com/TechDoc/default.aspx?



Exar Corporation Headquarters and Sales Office 48720 Kato Road Fremont, CA 94538 main: 510-668-7000

fax: 510-668-7030

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.