第1.2.2节 函数的极限

本节内容:

- 一、自变量趋于有限值时函数的极限
- 二、自变量趋于无穷大时函数的极限

对 y = f(x), **自变量变化过程的六种形式**:

$$(1) x \to x_0$$

$$(4) x \to \infty$$

$$(2) x \rightarrow x_0^+$$

$$(5) x \rightarrow +\infty$$

(3)
$$x \to x_0^-$$

(6)
$$x \rightarrow -\infty$$

一、自变量趋向无穷大时函数的极限

观察函数 $\frac{\sin x}{x}$ 当 $x \to \infty$ 时的变化趋势.

问题: 函数 y = f(x) 在 $x \to \infty$ 的 过程中,对应 函数 值 f(x) 无限 趋近于 确定 值 A.

通过上面演示实验的观察:

当
$$x$$
 无限增大时, $f(x) = \frac{\sin x}{x}$ 无限接近于 0.

问题: 如何用精确的数学数学语言刻划函数"无限接近".

$$|f(x)-A|<\varepsilon$$
表示 $|f(x)-A|$ 任意小;

|x| > X 表示 $x \to \infty$ 的过程.

定义 1 如果对于任意给定的正数 ε (不论它多么小), 总存在着正数 X,使得对于适合不等式 |x|>X 的一切 x,所对应的函数值 f(x)都满足不等式

$$|f(x)-A|<\varepsilon,$$

那末常数A就叫函数f(x)当 $x \to \infty$ 时的极限, 记作 $\lim_{x \to \infty} f(x) = A \quad \text{或} \quad f(x) \to A(\exists x \to \infty)$

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow$$

 $\forall \varepsilon > 0, \exists X > 0,$ 使当|x| > X时, 恒有 $|f(x) - A| < \varepsilon$.

2、几何解释:

直线y = A 为曲线 y = f(x) 的水平渐近线

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow$$

例1 证明
$$\lim_{x\to\infty}\frac{\sin x}{x}=0$$
.

$$y = \frac{\sin x}{x}$$

$$||\mathbf{i}|| \cdot ||\mathbf{sin}|| x - 0| = ||\mathbf{sin}|| x|| < \frac{1}{|x||}$$

$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon}$,则当 $|x| > X$ 时恒有

$$\left|\frac{\sin x}{x} - 0\right| < \frac{1}{|x|} < \frac{1}{X} = \varepsilon, \quad \text{in } \lim_{x \to \infty} \frac{\sin x}{x} = 0.$$

定义:如果 $\lim_{x\to\infty} f(x) = c$,则直线y = c是函数y = f(x)

的图形的水平渐近线.

3、另两种情形 (单侧极限)

$$1^0$$
. $x \to +\infty$ 情形: $\lim_{x \to +\infty} f(x) = A$

 $\forall \varepsilon > 0, \exists X > 0,$ 使当x > X时, 恒有 $|f(x) - A| < \varepsilon$.

$$2^0$$
. $x \to -\infty$ 情形: $\lim_{x \to -\infty} f(x) = A$

 $\forall \varepsilon > 0, \exists X > 0,$ 使当 $\underline{x < -X}$ 时, 恒有 $|f(x) - A| < \varepsilon$.

4、单侧极限与双侧极限的关系

定理: $\lim_{x\to\infty} f(x) = A \Leftrightarrow \lim_{x\to+\infty} f(x) = A \perp \lim_{x\to-\infty} f(x) = A$.

例如,

$$\lim_{x \to +\infty} (\frac{1}{2})^x = 0$$

$$\lim_{x \to -\infty} (\frac{1}{2})^x = \infty \ \overline{A}$$

$$\lim_{x\to -\infty} e^x = 0$$

$$\lim_{x\to +\infty} e^x = \infty \ \overline{A}$$

二、自变量趋向有限值时函数的极限

1. $x \rightarrow x_0$ 时函数极限的定义

例如:函数y=5x+1在 $x\to 1$ 的过程中,对应函数值 f(x)无限<u>趋近于</u>确定值 6.

$$|f(x)-6| < \varepsilon$$
 表示 $f(x)-6|$ 任意小

$$0 < |x-1| < \delta$$
 表示 $x \to 1$ 的过程

x = 1的去心 δ 邻域, δ 体现x接近1程度.

定义 如果对于任意给定的正数 ε (不论它多么小), 总存在正数 δ 使得对于适合不等式 $0<|x-x_0|<\delta$ 的一切x, 函数值 f(x)都满足不等式 $|f(x)-A|<\varepsilon$, 常数A就叫函数 $f(x)x\to x_0$ 时的极限, 记作 $\lim_{x\to x_0}f(x)=A$ 或 $f(x)\to A$ (当 $x\to x_0$)

注意:函数极限与f(x)在点 x_0 是否有定义无关.

几何解释: 这表明:

极限存在

──≫函数局部有界

例3 证明
$$\lim_{x\to x_0} x = x_0$$
.

证
$$|f(x)-A|=|x-x_0|$$
, 任给 $\varepsilon>0$, 取 $\delta=\varepsilon$, 当 $0<|x-x_0|<\delta=\varepsilon$ 时,

$$|f(x)-A|=|x-x_0|<\varepsilon$$
成立, $\lim_{x\to x_0}x=x_0$.

例4. 证明 $\lim_{x\to 1} (2x-1)=1$

证:
$$|f(x)-A| = |(2x-1)-1| = 2|x-1|$$
 $\forall \varepsilon > 0$, 欲使 $|f(x)-A| < \varepsilon$, 只要 $|x-1| < \frac{\varepsilon}{2}$,

取
$$\delta = \frac{\varepsilon}{2}$$
,则当 $0 < |x-1| < \delta$ 时,必有

$$|f(x)-A| = |(2x-1)-1| < \varepsilon$$
 :: $\lim_{x \to 1} (2x-1) = 1$

例5 证明
$$\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$$
.

证 函数在点x=1处没有定义.

要使 $|f(x)-A|<\epsilon$, 只要取 $\delta=\epsilon$,

$$\therefore \lim_{x\to 1}\frac{x^2-1}{x-1}=2.$$

2. 单侧极限

例如,

设
$$f(x) = \begin{cases} 1-x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$

证明 $\lim_{x\to 0} f(x) = 1$.

x从左侧无限趋近 x_0 ,记作 $x \to x_0^-$

x从右侧无限趋近 x_0 ,记作 $x \to x_0^+$

记作
$$\lim_{x \to x_0^-} f(x) = A$$
 或 $f(x_0^-) = A$.

右极限
$$\forall \varepsilon > 0, \exists \delta > 0,$$
使当 $x_0 < x < x_0 + \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$.

记作
$$\lim_{x \to x_0^+} f(x) = A$$
 或 $f(x_0^+) = A$.

注:
$$\{x | 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$$

定理3.

$$\lim_{x \to x_0} f(x) = A \Longrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$

例7 验证
$$\lim_{x\to 0} \frac{|x|}{x}$$
 不存在.

$$\lim_{x\to 0^{-}} \frac{|x|}{x} = \lim_{x\to 0^{-}} \frac{-x}{x}$$

$$= \lim_{x\to 0^{-}} (-1) = -1$$

$$\lim_{x\to 0^{+}} \frac{|x|}{x} = \lim_{x\to 0^{+}} \frac{x}{x} = \lim_{x\to 0^{+}} 1 = 1$$

$$\lim_{x\to 0} f(x)$$
 不存在.

例8. 设函数

$$f(x) = \begin{cases} x - 1, & x < 0 \\ 0, & x = 0 \\ x + 1, & x > 0 \end{cases} \qquad y = x - 1 \qquad x$$

讨论 $x \to 0$ 时 f(x) 的极限是否存在.

解: 利用定理. 因为

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = -1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x + 1) = 1$$

显然 $f(0^{-}) \neq f(0^{+})$, 所以 $\lim_{x\to 0} f(x)$ 不存在.

三、函数极限的性质

1. 局部有界性

定理 若 $\lim_{x \to x_0} f(x) = A$,则 3 常数M > 0和 $\delta > 0$, 使当 $x \in U^0(x_0, \delta)$ 时,有 $|f(x)| \leq M$.

2. 唯一性

定理 若 $\lim_{x \to \infty} f(x)$ 存在,则极限唯一.

3. 局部保号性

定理3(保号性)若 $\lim_{x\to x_0} f(x) = A$,且A > 0(或A < 0),

则 $\exists \delta > 0$, 当 $x \in U^0(x_0, \delta)$ 时, f(x) > 0(或f(x) < 0).

4.子列收敛性(函数极限与数列极限的关系)

设在过程 $x \to a(a$ 可以是 $x_0, x_0^+, \mathbf{o}x_0^-)$ 中有数列 $x_n (\neq a)$,使得 $n \to \infty$ 时 $x_n \to a$.则称数列 $\{f(x_n)\}$,即 $f(x_1)$, $f(x_2)$,…, $f(x_n)$,…为函数f(x) 当 $x \to a$ 时的子列.

若
$$\lim_{x\to a} f(x) = A$$
,数列 $f(x_n)$ 是 $f(x)$ 当 $x\to a$ 时的一个子列,则有 $\lim_{n\to\infty} f(x_n) = A$.

$$\mathbf{i}\mathbf{E} :: \lim_{x \to x_0} f(x) = A$$

$$\therefore \forall \varepsilon > 0, \exists \delta > 0, \notin \exists 0 < |x - x_0| < \delta \text{时,} 恒有$$
$$|f(x) - A| < \varepsilon.$$

又
$$:\lim_{n\to\infty}x_n=x_0$$
且 $x_n\neq x_0$

 \therefore 对上述 $\delta > 0$, $\exists N > 0$, 使当n > N时, 恒有 $0 < |x_n - x_0| < \delta$.

从而有 $|f(x_n)-A| < \varepsilon$, 故 $\lim_{n\to\infty} f(x_n) = A$.

例如,
$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{n\to\infty}n\sin\frac{1}{n}=1,$$

$$y = \frac{\sin x}{x}$$

$$\lim_{n\to\infty}\sqrt{n}\sin\frac{1}{\sqrt{n}}=1, \quad \lim_{n\to\infty}\frac{n^2}{n+1}\sin\frac{n+1}{n^2}=1$$

函数极限与数列极限的关系

函数极限存在的充要条件是它的任何子列的极限都存在,且相等.

Heine定理,又称归并原则

★ 函数极限与子数列极限的关系

函数极限存在的充要条件是它的任何子列的极限 都存在且相等. 即

$$\lim_{x \to x_0} f(x) = A \longrightarrow \forall \{x_n\}: x_n \neq x_0, f(x_n)$$
有定义,
$$x_n \to x_0 \quad (n \to \infty), \text{ film } f(x_n) = A$$
$$x_n \to \infty$$

说明: 此定理常用于判断函数极限不存在.

- 法1 找一个数列 $\{x_n\}$: $x_n \neq x_0$, 且 $x_n \to x_0$ $(n \to \infty)$, 使 $\lim_{n \to \infty} f(x_n)$ 不存在.
- 法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x'_n\}$, 使 $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x'_n)$

例9 证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证
$$\mathbb{R}\left\{x_{n}\right\} = \left\{\frac{1}{n\pi}\right\}$$

$$y = \sin \frac{1}{x}$$
-0.75 -0.5 -0.25 0.25 0.5 0.75

$$\lim_{n\to\infty}x_n=0,\quad \underline{\exists} x_n\neq 0;\quad \overline{\exists} \lim_{n\to\infty}\sin\frac{1}{x_n}=\lim_{n\to\infty}\sin n\pi=0,$$

$$\overline{\prod} \lim_{n\to\infty} \sin\frac{1}{x'_n} = \lim_{n\to\infty} \sin(2n\pi + \frac{\pi}{2}) = \lim_{n\to\infty} 1 = 1,$$

二者不相等,故 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

四、小结

函数极限的统一定义

$$\lim_{n\to\infty} f(n) = A;$$

$$\lim_{x\to\infty} f(x) = A; \quad \lim_{x\to+\infty} f(x) = A; \quad \lim_{x\to-\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A.$$

过 程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$	
时 刻	$oldsymbol{N}$				
从此时刻以后	n > N	x > N	x > N	x < -N	
f(x)	$ f(x)-A <\varepsilon$				

过 程	$x \rightarrow x_0$	$x \rightarrow x_0^+$	$x \rightarrow x_0^-$	
时 刻	δ			
从此时刻以后	$\left 0 < x - x_0 < \delta \right $	$0 < x - x_0 < \delta$	$-\delta < x - x_0 < 0$	
f(x)	$ f(x)-A <\varepsilon$			

思考题

试问函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ 10, & x = 0 \text{ 在 } x = 0 \text{ 处} \end{cases}$$

的左、右极限是否存在? 当 $x \to 0$ 时,f(x)的极限是否存在?

思考题解答

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (5+x^{2}) = 5, \quad 左极限存在,$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x \sin \frac{1}{x} = 0,$$
 右极限存在,

$$: \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x) : \lim_{x \to 0} f(x)$$
不存在.

思考与练习

- 1. 若极限 $\lim_{x \to x_0} f(x)$ 存在,是否一定有 $\lim_{x \to x_0} f(x) = f(x_0)$
- 2. 设函数 $f(x) = \begin{cases} ax^2, & x \le 1 \\ 2x+1, & x > 1 \end{cases}$ 且 $\lim_{x \to 1} f(x)$ 存在,则 a = 3.
- 3. 用函数极限的定义证明:

(1)
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2$$
 (2)
$$\lim_{x \to +\infty} \frac{\sin x}{\sqrt{x}} = 0$$

例6 证明: 当 $x_0 > 0$ 时, $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

if
$$|f(x) - A| = |\sqrt{x} - \sqrt{x_0}| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| \le \frac{|x - x_0|}{\sqrt{x_0}}$$

任给 $\varepsilon > 0$,要使 $|f(x) - A| < \varepsilon$,只要 $|x - x_0| < \sqrt{x_0} \varepsilon$ 且 $x \ge 0$. 而 $x \ge 0$ 可用 $|x - x_0| \le x_0$ 保证.

取
$$\delta = \min\{x_0, \sqrt{x_0}\varepsilon\}, \quad \leq 0 < |x-x_0| < \delta$$
时,

就有
$$|\sqrt{x}-\sqrt{x_0}|<\varepsilon$$
,

$$\therefore \lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}.$$