# Estimating mutual information using sparse regression

Charles Zheng

Stanford University

December 12, 2016

(Joint work with Yuval Benjamini.)

# Mutual information (Shannon 1948)



- $I(X; Y) \in [0, \infty]$ . (0 if  $X \perp Y$ ,  $\infty$  if X = Y and X continuous.)
- Symmetry: I(X; Y) = I(Y; X).
- Data-processing inequality

$$I(X; Y) \ge I(\phi(X); \psi(Y))$$

equality for  $\phi$ ,  $\psi$  bijections

# Applications of I(X; Y)

- Feature selection (Peng et al. 2005, Fleuret 2004, Bennesar et al. 2015)
- Structure learning for graphical models using conditional mutual information I(X; Y|Z) (Vastano and Swinney 1988, Cheng et al. 1997, Bach and Jordan 2002)
- Quantifying information capacity of neurons



Image credits: Quiroga et al. (2009).

# How to estimate I(X; Y)

Suppose we observe pairs  $(X_i, Y_i)_{i=1}^n$  iid from density p(x, y)

• Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

- Simply using plugging in kernel density estimate  $\hat{p}(x, y)$  leads to large bias (Beirlant et al. 2001)
- Jackknifed estimate gives better result (Ivanov and Rozhkova 1981)

$$\hat{I}(X;Y) = \frac{1}{n} \sum_{i=1}^{n} \log \left( \frac{\hat{p}_{-i}(x_i, y_i)}{\hat{p}_{-i}(x_i)\hat{p}_{-i}(y_i)} \right)$$

# Problems in high dimensions

- Density estimation is known to have exponential complexity with respect to dimensionality.
- Many applications with high-dimensional X, Y.
  - Gene expression time series
  - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.
- Other approaches: binning (Bialek et al. 1991, Paninski 2003), confusion matrix of a classifier (Treves 1997, Quiroga et al. 2009).

Idea: Use sparsity!

Monographs on Statistics and Applied Probability 143

# Statistical Learning with Sparsity

The Lasso and Generalizations

# Our proposal

Suppose we observe pairs  $(X_i, Y_i)_{i=1}^n$  iid from density p(x, y).

- **1** Estimate a (sparse) regression model for  $\mathbf{E}[y|x]$ .
- Estimate the noise model for Y.
- Estimate the identification risk p using cross-validation.
- **Q** Relate the identification risk to mutual information I(X; Y):

$$I(X;Y)\approx f(p)$$

where f is a function that we derive theoretically.

# Multiple-response regression

- Pairs  $(x_i, y_i)_{i=1}^n$ , where X is p-dimensional and Y is q-dimensional.
- Data matrices  $X_{n \times p}$ ,  $Y_{n \times q}$ .
- For each column of Y, fit sparse model  $Y^{(i)} \approx X^T \beta^{(i)} + \epsilon$ , e.g. by using elastic net (Zou 1998),

$$\hat{\beta}^{(i)} = \mathsf{argmin}_{\beta} || \boldsymbol{X}^T \beta^{(i)} - Y^{(i)} ||^2 + \lambda_2 || \beta^{(i)} ||_2^2 + \lambda_1 || \beta^{(i)} ||_1$$

# Regression vs Identification loss

- Independent test set  $(x_i^*, y_i^*)_{i=1}^k$ .
- Use model to predict  $\hat{y}_i^* = (x_i^*)^T \hat{B}$  for i = 1, ..., k.

Two ways to evaluate the predictive accuracy of the regression model:

• Regression (mean squared-error) loss:

$$MSE = \frac{1}{k} \sum_{i=1}^{k} ||y_i^* - \hat{y}_i^*||^2.$$

• Identification loss:

$$IdLoss_k = \frac{1}{k} \sum_{i=1}^{k} (1 - I\{\hat{y}_i^* \text{ is nearest neighbor of } y_i^*\}).$$

where "nearest neighbor" is with respect to Mahalanobis distance  $d(z, y) = (z - y)^T \hat{\Sigma}^{-1} (z - y)$ .

## Cross-validated loss

Leave-k-out cross-validation (LkoCV) can be used for both squared-error loss and identification loss.

- Start with a dataset  $(x_i, y_i)_{i=1}^N$ .
- Let n = N k. Consider all  $\binom{N}{k}$  partitions of the dataset into a test set (X, Y) and training set  $(X^*, Y^*)$ .
- For each partition, compute the loss.
- Define the LkoCV loss as the average loss over  $\binom{N}{k}$  partitions.

Computational note. One can subsample to avoid computing all  $\binom{N}{k}$  partitions. In particular, if m=N/k, then one can use m-fold cross-validation which uses m partitions that have disjoint test sets.

#### Identification loss and mutual information

Define the identification risk as the expected identification loss

$$IdRisk_k = \mathbf{E}[IdLoss_k]$$

• Define the Bayes risk as the identification risk given the *true* model parameters. Hence,

$$\mathsf{BayesRisk}_k \leq \mathsf{IdRisk}_k$$
.

• **High-dimensional result.** In a certain high-dimensional asymptotic regime, there exists a limiting functional relationship

Bayes risk = 
$$\pi_k(\sqrt{2I(X;Y)})$$

Resulting estimator:

$$\hat{I}_{IdLoss}(X;Y) = \frac{1}{2}(\pi_k^{-1}(IdLoss_k))^2$$

where  $IdLoss_k$  can either be the loss over a single test set of size k, or the LkoCV loss.

• Remark. Although  $IdLoss_k$  is unbiased for  $IdRisk_{k_1}g_k$  is nonlinear so

# Gaussian example

To help think about these problems, consider a concrete example:

- Let  $\boldsymbol{X} \sim N(0, I_d)$  and  $\boldsymbol{Y} | \boldsymbol{X} \sim N(\boldsymbol{X}, \sigma^2 I_d)$ .
- We draw stimuli  $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \sim N(0, I_d)$  i.i.d.
- For each stimulus  $\mathbf{x}^{(i)}$ , we draw observations  $\mathbf{y}^{(i,j)} = \mathbf{x}^{(i)} + \epsilon^{(i,j)}$ , where  $\epsilon^{(i,j)} \sim \mathcal{N}(0, \sigma^2 I_d)$ .



## Gaussian example

The mutual information is given by

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2} \log(1 + \frac{1}{\sigma^2}).$$

Define

$$Z_i = -\frac{1}{2\sigma^2}||Y^* - X_i||^2.$$

The Bayes risk can be written

$$\mathsf{BayesRisk} = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i].$$

- To make the problem even easier, we use another time-honored technique: the central limit theorem.
- Letting  $d \to \infty$ , the scores

$$Z_i = -\frac{1}{2\sigma^2}||\mathbf{Y} - \mathbf{x}||^2 = -\frac{1}{2\sigma^2}\sum_{i=1}^d ||Y_i - x_i||^2$$

have a jointly multivariate distribution in the limit:

$$\begin{bmatrix} Z_* \\ Z_1 \\ \vdots \\ Z_{K-1} \end{bmatrix} \xrightarrow{d} N \begin{pmatrix} \begin{bmatrix} -\frac{d}{2} \\ -\frac{d}{2} - \frac{d}{\sigma^2} \\ \vdots \\ -\frac{d}{2} - \frac{d}{\sigma^2} \end{bmatrix}, \begin{bmatrix} \frac{d}{2} & \frac{d}{2} & \cdots & \frac{d}{2} \\ \frac{d}{2} & \frac{d}{2} + \frac{2d}{\sigma^2} & \cdots & \frac{d}{2} + \frac{d}{\sigma^2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{d}{2} & \frac{d}{2} + \frac{d}{\sigma^2} & \cdots & \frac{d}{2} + \frac{2d}{\sigma^2} \end{bmatrix} \end{pmatrix}.$$

Assume  $(Z_*, Z_1, \dots, Z_{K-1})$  have a normal distribution with the given moments.

We can compute

$$\mathsf{BayesRisk}_k = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i]$$

by writing

$$Z_i = \frac{\mathsf{Cov}(Z_*, Z_i)}{\mathsf{Var}(Z_*)} (Z_* - \mathbf{E}Z_*) + \sqrt{\mathsf{Var}(Z_i) - \frac{\mathsf{Cov}(Z_*, Z_i)^2}{\mathsf{Var}(Z_*)}} W_i,$$

where  $W_i$  are i.i.d. standard normal.

This yields

$$\Pr[Z_* < \max_{i=1}^{K-1} Z_i] = \Pr[N(\mu, \nu^2) < \max_{i=1}^{K-1} W_i]$$

where

$$\mu = \frac{\mathbf{E}[Z_* - Z_i]}{\sqrt{\frac{1}{2}\mathsf{Var}(Z_i - Z_j)}}, \ \nu^2 = \frac{\mathsf{Cov}(Z_* - Z_i, Z_* - Z_j)}{\frac{1}{2}\mathsf{Var}(Z_i - Z_j)}$$

for  $i \neq j \neq K$ .

Finally, we get

$$\mathsf{BayesRisk} = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i] \to \pi_K \left(\frac{\sqrt{d}}{\sigma}\right)$$

where

$$\pi_K(\mu) = 1 - \int_{-\infty}^{\infty} \phi(z-\mu)(1-\Phi(z))^{K-1} dz.$$

## Sidenote: interpretation of $\pi_K$

The function  $\pi_K(\mu)$  gives the probability that a  $N(\mu,1)$  variable is smaller than the minimum of K-1 other N(0,1) variables (all independent.) Hence  $\pi_K(0) = \frac{K-1}{K}$  due to symmetry. (This is also the misclassification rate from pure guessing.)



Legend:  $K = \{$ 







Recall that

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2}\log(1 + \frac{1}{\sigma^2}),$$

while

BayesRisk<sub>k</sub> = 
$$\pi_K(\sqrt{d}/\sigma)$$
.

Hence Bayes risk is *not* a function of I(X; Y)!

# Gaussian example: Low SNR limit

However, what if we consider a limit where the noise level  $\sigma^2$  increases with d?

Fix some  $\sigma_1^2 > 0$ , and let  $\sigma_d^2 = d\sigma_1^2$ .

Then when d is large,

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2} \log(1 + \frac{1}{d\sigma_1^2}) \approx \frac{d}{2} \frac{1}{d\sigma^1} = \frac{1}{2\sigma_1^2}.$$

We get

Bayes risk = 
$$\pi_k(\sqrt{2I(\boldsymbol{X};\boldsymbol{Y})})$$

in the limit!

## Low SNR limit: generalization

In a sequence of gaussian models of increasing dimensionality with

$$\lim_{d\to\infty} I(\boldsymbol{X};\,\boldsymbol{Y}) \to \iota < 0,$$

we get an exact relationship between the limiting mutual information and the average Bayes error,

$$\mathsf{BayesRisk}_k = \pi_K(\sqrt{2\iota}).$$

This limiting relationship holds more generally!

#### Low SNR theorem

**Theorem.** Given an exponential family sequence model  $p_d(x, y)$ , for random variates  $(\mathbf{X}^{[d]}, \mathbf{Y}^{[d]}) \sim p_d(\mathbf{X}, \mathbf{Y})$ , we have

$$\lim_{d\to\infty} I(\boldsymbol{X}^{[d]},\boldsymbol{Y}^{[d]}) = \iota < \infty$$

for some constant  $\iota < \infty$ ; and the limiting K-class average Bayes error is given by

$$\lim_{d\to\infty} ABE = \pi_K(\sqrt{2\iota}).$$

# The low-SNR estimator of I(X; Y)

We are willing to bet that the relationship

$$\mathsf{ABE} \approx \pi_{\mathcal{K}}(\sqrt{2\iota})$$

holds in much greater generality than we managed to prove–namely, whenever  $I(X; Y) \ll p$ , and the scores  $Z_i$  are approximately jointly multivariate normal.

Based on these assumptions, our proposed estimator for mutual information is

$$\hat{l}_{ls}(\boldsymbol{X}; \boldsymbol{Y}) = \frac{1}{2} \pi_{\mathcal{K}}^{-1} (\widehat{\mathsf{ABE}})^2$$

where  $\widehat{\mathsf{ABE}}$  is the test error of the classifier. (The subscript  $\mathit{ls}$  stands for low-SNR.)

# Simulation study

#### Models.

• Multiple-response logistic regression model

$$X \sim N(0, I_p)$$
  $Y \in \{0, 1\}^q$   $Y_i | X = x \sim \mathsf{Bernoulli}(x^T B_i)$ 

where B is a  $p \times q$  matrix.

#### Methods.

- Nonparametric:  $\hat{l}_0$  naive estimator,  $\hat{l}_{\alpha}$  anthropic correction.
- ML-based:  $\hat{I}_{CM}$  confusion matrix,  $\hat{I}_F$  Fano,  $\hat{I}_{LS}$  low-SNR method.

# Fig 1. Low-dimensional results (q = 3)

Sampling distribution of  $\hat{I}$  for  $\{p=3, B=\frac{4}{\sqrt{3}}I_3, K=20, r=40\}$ . True parameter I(X;Y)=0.800 (dotted line.)



Naïve estimator performs best!  $\hat{l}_{LS}$  not effective.

# Fig 2. High-dimensional results (q = 50)

Sampling distribution of  $\hat{I}$  for  $\{p=50, B=\frac{4}{\sqrt{50}}I_{50}, K=20, r=8000\}$ . True parameter I(X;Y)=1.794 (dashed line.)



Non-parametric methods extremely biased.

# Fig 3. Dependence on n (q = 10)

Estimation path of  $\hat{I}_{LS}$  and  $\hat{I}_{\alpha}$  as n ranges from 10 to 8000.  $\{p=10,\ B=\frac{4}{\sqrt{10}}I_{10},\ K=20\}$ . True parameter I(X;Y)=1.322 (dashed line.)



Legend: 
$$\hat{l}_{LS}$$
,  $\hat{l}_{-} = \hat{l}_{0.5}$ ,  $\hat{l}_{-} = \hat{l}_{0.5}$ ,  $\hat{l}_{-} = \hat{l}_{0.9}$ .

# Fig 4. Dependence on true I(X; Y) (q = 10)

$$\{p = 10, B = [0, 200] \times \frac{1}{\sqrt{10}}I_{10}, r = 1000, K = 20\}.$$

## Estimated $\hat{l}$ vs true l.



Bands depict 80% central percentiles.

Legend: 
$$= \hat{l}_{LS}, = \hat{l}_0, = \hat{l}_{CM}, = \hat{l}_{F}.$$

# Fig 5. Dependence on K given fixed N (q=10)

Sampling distribution of  $\hat{I}_{LS}$  for  $\{p=10, B=\frac{4}{\sqrt{10}}I_{10}, N=80000\}$ , and  $K=\{5,10,15,20,\dots,80\}$ , r=N/k. True parameter I(X;Y)=1.322 (dashed line.)



Decreasing variance as K increases. Bias at large and small K.

# Fig 6. Non-identity B (q = 40)

p = 20 and q = 40, entries of B are iid N(0, 0.025). K = 20, r = 8000, true I(X; Y) = 1.86 (dashed line.)

## Sampling distribution of $\hat{l}$ .



#### Conclusions

- We derive a relationship between average Bayes error (ABE) and mutual information (MI), motivating a novel estimator  $\hat{I}_{LS}$ .
- Theory based on high dimensional, low SNR limit, where

$$\mathsf{ABE} \leftrightarrow \mathsf{MI}.$$

- In ideal settings for supervised learning, ABE can be estimated effectively and  $\hat{I}_{LS}$  can recover MI at much lower sample sizes than nonparametric methods.
- In simulations,  $\hat{I}_{LS}$  works better than Fano's inequality or the confusion matrix approach.

#### References

- Cover and Thomas. Elements of information theory.
- Muirhead. Aspects of multivariate statistical theory.
- van der Vaart. Asymptotic statistics.