In our first question we will create a linear model based on total population vs working population

2013: Total Labour Costs per Head ~ Business Births (divided with population of 2013)

call:

lm(formula = labourratio2013 ~ registratio2013, data = test)

Residuals:

Min 1Q Median 3Q Max -0.0047400 -0.0017672 0.0003785 0.0015150 0.0124289

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.009070 0.002657 -3.414 0.00186 **
registratio2013 4.226564 0.693581 6.094 1.07e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00321 on 30 degrees of freedom Multiple R-squared: 0.5531, Adjusted R-squared: 0.5382 F-statistic: 37.13 on 1 and 30 DF, p-value: 1.073e-06

2013: Total Labour Costs per Head ~ Business Births (divided with working population of 2013)

2.5 % 97.5 % (Intercept) -0.02201594 -0.001789187 business_ratio 2.10129745 5.387089738

call:

lm(formula = labour_ratio ~ business_ratio, data = test)

Residuals:

Min 1Q Median 3Q Max -0.0081746 -0.0031636 0.0004713 0.0019418 0.0212375

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.011903 0.004952 -2.404 0.0226 *
business_ratio 3.744194 0.804445 4.654 6.17e-05 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.005191 on 30 degrees of freedom Multiple R-squared: 0.4193, Adjusted R-squared: 0.4 F-statistic: 21.66 on 1 and 30 DF, p-value: 6.172e-05

Regarding also our labour costs per head ~ Unemployment ratio plot We realize that the confidence interval includes zero.

2.5 % 97.5 % (Intercept) 15180.2666 27055.8774 uemplo -744.3225 807.6306

call:

lm(formula = labour ~ uemplo, data = test)

Residuals:

Min 1Q Median 3Q Max -5056 -2744 -1036 1654 19727

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21118.07 2907.45 7.263 4.36e-08 ***
uemplo 31.65 379.96 0.083 0.934

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4621 on 30 degrees of freedom

Multiple R-squared: 0.0002313, Adjusted R-squared: -0.03309

F-statistic: 0.00694 on 1 and 30 DF, p-value: 0.9342

In the next trials we will use a new scenario for analysis on Council Areas, Electoral Wards, Intermediate Zones (32, 353, 1235 observations, equivalent).

This scenario might be used for prediction in the next assignment

Mean House sale price on 2012 ~ Number of dwellings per hectare (ratio) on 2012

Intermediate Zones (1235 observations)

```
2.5 % 97.5 % (Intercept) 149921.926 159475.1460 dwellings -1219.044 -693.5639
```

```
Residuals:

Min 1Q Median 3Q Max

-110510 -44806 -12987 28473 312991
```

Coefficients:

Residual standard error: 61470 on 1233 degrees of freedom Multiple R-squared: 0.03871, Adjusted R-squared: 0.03893 F-statistic: 50.99 on 1 and 1233 DF, p-value: 0.00000000001582

Electoral Wards (353 observations)

2.5 % 97.5 % (Intercept) 143985.136 156326.6927 dwellings -1011.809 169.4032

call:

lm(formula = price ~ dwellings, data = electoral)

Residuals:

Min 1Q Median 3Q Max -77446 -35918 -10950 25971 171338

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48500 on 351 degrees of freedom Multiple R-squared: 0.005574, Adjusted R-squared: 0.002741 F-statistic: 1.967 on 1 and 351 DF, p-value: 0.1616

0- Interval confidence confidence

Council Areas (32 observations)

2.5 % 97.5 % (Intercept) 135668.573 165462.844 dwellings -3303.661 3481.019

Residuals:

Min 1Q Median 3Q Max -43551 -26797 -9686 23903 67818

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 35220 on 30 degrees of freedom Multiple R-squared: 0.000095, Adjusted R-squared: -0.03324 F-statistic: 0.00285 on 1 and 30 DF, p-value: 0.9578

