A Preliminary Analysis on the Effect of Randomness in a CEGAR Framework

Ákos Hajdu^{1,2}, Zoltán Micskei¹

¹Budapest University of Technology and Economics,
Department of Measurement and Information Systems

²MTA-BME Lendület Cyber-Physical Systems Research Group

25th Minisymposium of DMIS, 29.01.2018.

Background – Formal verification

Motivation

- Theta verification framework
 - Abstraction refinement-based algorithms
 - Easy development, evaluation, combination
 - Many strategies and configurations
 - Open source: github.com/FTSRG/theta

- Strategies are becoming more advanced
 - Difficult to evaluate performance of a configuration
 - Performance influenced by unintentional factors

The experiment

- Randomize some external factors
 - Search strategy
 - Good configuration may be guided in a bad direction

- Variable naming
 - Algorithms rely on logic (SMT)
 - Affect their order in collections
 - Influence inner heuristics of solvers

Variables of the experiment

- Input variables: model
 - Category (hw, sw (locks, eca, ssh), plc)
 - Model name

- Input variables: configuration
 - Domain of abstraction (Pred./Expl.)
 - Refinement strategy (Binary/Sequence itp.)
 - Randomized factor (Search/Variables/Deterministic)
 - \rightarrow 2 x 2 x 3 = 12 configurations

Variables of the experiment

- Output metrics
 - Did the configuration terminate successfully
 - Execution time
 - Number of refinement iterations
 - Size of the ARG (Abstract Reachability Graph)
 - Depth of the ARG
 - Length of the counterexample (cex)

Measurement procedure

- 30 input models
 - 10 hardware (benchmarks from HWMCC)
 - 15 software (benchmarks from SV-COMP)
 - 5 PLCs (from CERN)
- 12 algorithm configurations
- Repeated 30 times with different seeds
- Timeout 180s

- → 10 800 runs, 7 080 successful, ~10 days CPU time
- → Raw data, analysis scripts and detailed report is available at doi.org/10.5281/zenodo.1117853

Research questions

- RQ1: success rates of randomized configurations
 - Can randomized configurations verify models that the deterministic ones cannot?
- RQ2: variation of output metrics
 - O How does randomization affect variation?
 - Which yields greater variation (search/variable names)?

- Validity
 - External: representative input models
 - Internal: repetitions, dedicated machines

Overview

Distribution and range of output metrics

Overview

Overview

RQ1: success rates

RQ1: success rates

- Analysis of individual cases
 - o 1394444p22
 - Large model, 8600 variables, formula with size 1.6x10⁵
 - Deterministic fails to prove infeasibility of a counterexample
 - Randomized quickly finds feasible one in some runs
 - o intel001
 - Counterexample refutation formulas become large (4.4x10⁴)
 - Randomized can find smaller refutations
 - s3_srvr_4
 - Deterministic runs slightly out of time
 - Unnecessary refutation formulas discovered

RQ2: variations

Lessons learned & plans

- Lessons learned
 - Randomized factors introduce great variations
 - Might even influence the success of verification

- Plans
 - Consider randomized strategies as viable option
 - E.g., random search besides BFS/DFS
 - Improve shortcomings of the algorithm
 - E.g., consider multiple counterexamples for refinement

Conclusions

- Theta framework
 - Abstraction refinement-based algorithms
 - Various configurations
- Randomized search/variable names
 - Great variation in the output metrics
 - Influence the success of verification
 - Analysis of specific cases
- Future work
 - More models and repetitions
 - More factors to randomize

→ inf.mit.bme.hu/en/members/hajdua

Models

Model	Inputs	Latches	AndGates
hw/139444p22	244	322	5549
hw/6s282b01	44	637	3185
hw/beemadd3b1	60	56	876
hw/bj08amba4g5	11	33	13585
hw/bobtuint12neg	212	207	1937
hw/intel001	31	23	240
hw/mentorbm1p04	100	2373	17508
hw/oski15a14b16s	1023	3451	33367
hw/pdtvistwoall1	6	31	725
hw/texaspimainp08	14	42	1955

Model	Locs	Edges	Assigns	Assumes	Havocs
eca/prob1_lab15	317	393	236	156	1
eca/prob1_lab19	322	403	236	166	1
eca/prob2_lab57	312	408	211	196	1
		1436	1081	354	1
eca/prob3_lab03	1261				
eca/prob3_lab48	1280	1474	1081	392	1
locks/locks_10_2	26	36	10	24	2
locks/locks_11_8	16	21	5	14	2
locks/locks_14_1	9	10	2	6	2
locks/locks_15_0	9	10	2	6	2
locks/locks_5_4	13	16	4	10	2
plc/plc1	66	70	51	11	8
plc/plc2	175	196	135	40	21
plc/plc3	175	196	135	40	21
plc/plc4a	175	196	135	40	21
plc/plc4b	175	196	135	40	21
ssh/s3_clnt_1	187	262	79	154	29
ssh/s3_clnt_3	193	268	85	154	29
ssh/s3_srvr_1	233	323	102	184	37
ssh/s3_srvr_3	230	320	100	184	36
ssh/s3_srvr_4	230	320	100	184	36

DET

VARS

Distributions of execution time EB-D EB-S EB-V ES-D ES-S ES-V PB-D PB-S PB-V PS-D PS-S PS-V eca/prob1 lab15 eca/prob1 lab19 eca/prob2_lab57 eca/prob3_lab03_ eca/prob3 lab48 hw/139444p22 hw/6s282b01 hw/beemadd3b1 hw/bj08amba4g5 hw/bobtuint12neg hw/intel001 hw/mentorbm1p04 hw/oski15a14b16s Randomized hw/pdtvistwoall1 DET hw/texaspimainp08 **SEARCH** locks/locks 10 2 locks/locks 11 8 VARS locks/locks 14 1 locks/locks_15_0 locks/locks 5 4 plc/plc1 plc/plc2 plc/plc3 plc/plc4a plc/plc4b ssh/s3 clnt 1 ssh/s3 clnt 3 ssh/s3 srvr 1 ssh/s3 srvr 3 ssh/s3 srvr 4 1e+03 -1e+04 -1e+05 -1e+03-1e+05-1e+03-1e+04-1e+03 -1e+04 -1e+05 -1e+04 -1e+03-1e+04 -1e+03 -1e+04 -1e+05 -1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+03 1e+03 1e+04 1e+05

TimeMsRSD IterationsRSD ArgSizeRSD ArgDepthRSD CexLenRSD variable

Architecture of Theta

