

Data Science Jobs SQL Case Study

Presented by: Nitin Patial

Info

- Table Name salaries
- Total records 13972
- Total columns 11

<u>Datatype</u>
INT
TEXT
TEXT
TEXT
INT
TEXT
INT
TEXT
INT
TEXT
TEXT

Data View

select * from salaries;

	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
•	2024	SE	FT	AI Engineer	90000	USD	90000	AE	0	AE	L
	2024	SE	FT	Machine Learning Engineer	180500	USD	180500	US	0	US	M
	2024	SE	FT	Machine Learning Engineer	96200	USD	96200	US	0	US	M
	2024	SE	FT	Machine Learning Engineer	235000	USD	235000	AU	0	AU	M
	2024	SE	FT	Machine Learning Engineer	175000	USD	175000	AU	0	AU	M
	2024	MI	FT	Business Intelligence Developer	95413	USD	95413	US	100	US	M
	2024	MI	FT	Business Intelligence Developer	70692	USD	70692	US	100	US	M
	2024	SE	FT	Data Engineer	110000	USD	110000	UA	0	UA	M
	2024	SE	FT	Data Engineer	48000	USD	48000	UA	0	UA	M
	2024	SE	FT	Data Scientist	222300	USD	222300	US	0	US	М
	2024	SE	FT	Data Scientist	119700	USD	119700	US	0	US	M
	2024	SE	FT	Cloud Database Engineer	170375	USD	170375	US	100	US	M
	2024	SE	FT	Cloud Database Engineer	102500	USD	102500	US	100	US	М
	2024	SE	FT	Data Engineer	270000	USD	270000	AU	0	AU	M
	2024	CE	FT	Data Engineer	100000	LISD	190000	ALL	0	ALL	м

1- As a market researcher, your job is to investigate the job market for a company that analyzes workforce data. Your task is to know how many people were employed in different types of companies as per their size in 2021.

```
company_size,

COUNT(company_size) as "people_employed"

from salaries

where work_year=2021

group by 1

order by 2 desc;
```


company_size	people_employed
L	124
M	52
S	42

2- Imagine you are a Talent Acquisition specialist working for an International recruitment agency. Your task is to identify the top 3 job titles that command the highest average salary among part-time positions in the year 2023.

```
job_title, ROUND(AVG(salary_in_usd),2) as "avg_salary"
from salaries
where work_year=2023 AND employment_type="PT"
group by 1
order by 2 desc
limit 3;
```


job_title	avg_salary
Data Scientist	95650.00
Data Analyst	18160.00

3 - As a database analyst you have been assigned the task to select countries where average mid-level salary is higher than overall mid-level salary for the year 2023

```
company_location,ROUND(AVG(salary_in_usd),2) as "avg_salary"
from salaries
where work_year=2023 and experience_level="MI"
group by 1
having AVG(salary_in_usd)> (
select
    avg(salary_in_usd) as "overall_salary"
from salaries
where work_year=2023 and experience_level="MI");
```


company_location	avg_salary
US	132783.25
CA	129789.97
AU	195984.36
QA	300000.00
SA	134999.00

4-As a database analyst you have been assigned the task to Identify the company locations with the highest and lowest average salary for senior-level (SE) employees in 2023

```
CREATE DEFINER= root @ localhost PROCEDURE GetSeniorSalaryStats ()
BEGIN
    SELECT highest_location, highest_avg_salary, lowest_location, lowest_avg_salary FROM
    (SELECT company_location AS highest_location, AVG(salary_in_usd) AS highest_avg_salary
    FROM salaries
    WHERE work_year = 2023 AND experience_level = 'SE'
    GROUP BY company_location
    ORDER BY highest_avg_salary DESC
    LIMIT 1) AS t1
    CROSS JOIN
    (SELECT company_location AS lowest_location, AVG(salary_in_usd) AS lowest_avg_salary
    FROM salaries
    WHERE work_year = 2023 AND experience_level = 'SE'
    GROUP BY company_location
    ORDER BY lowest_avg_salary ASC
    LIMIT 1) AS t2;
```

call GetSeniorSalaryStats

highest_location	highest_avg_salary	lowest_location	lowest_avg_salary
IL	266468.5000	TR	18381.0000

5 - You're a Financial analyst working for a leading HR Consultancy, and your task is to assess the annual salary growth rate for various job titles. By calculating the percentage increase in salary from previous year to this year you aim to provide valuable insights into salary trends within different job roles.

```
with cte as (
select job_title,
    avg(case when work_year=2020 then salary_in_usd end) as "2020_y",
    avg(case when work_year=2021 then salary_in_usd end) as "2021_y",
    avg(case when work_year=2022 then salary_in_usd end) as "2022_y",
    avg(case when work_year=2023 then salary_in_usd end) as "2023_y",
    avg(case when work_year=2024 then salary_in_usd end) as "2024_y"
    from salaries
group by 1 )
select job_title,
    round((2021_y-2020_y)/2020_y,2)*100 as "%_rate_2021",
    round((2022_y-2021_y)/2021_y,2)*100 as "%_rate_2022",
    round((2023_y-2022_y)/2022_y,2)*100 as "%_rate_2023",
    round((2024_y-2023_y)/2023_y,2)*100 as "%_rate_2024"
from cte;
```


job_title	%_rate_2021	%_rate_2022	%_rate_2023	%_rate_2024
AI Engineer	NULL	NULL	NULL	2.00
Machine Learning Engineer	-49.00	102.00	27.00	2.00
Business Intelligence Developer	HULL	NULL	631.00	-12.00
Data Engineer	13.00	45.00	8.00	-1.00
Data Scientist	-7.00	72.00	19.00	-9.00
Cloud Database Engineer	HULL	HULL	-19.00	-4.00
Research Engineer	HULL	NULL	19.00	21.00
Data Analyst	28.00	39.00	0.00	1.00
Machine Learning Scientist	-27.00	-28.00	39.00	8.00
Applied Scientist	NULL	NULL	1.00	2.00
Data Science Manager	-25.00	34.00	4.00	-6.00
Research Scientist	-66.00	71.00	33.00	17.00
Prompt Engineer	HULL	NULL	NULL	77.00
Data Science	MULL	NULL	HULL	9.00
Data Science Consultant	-27.00	22.00	21.00	-2.00
Data Management Analyst	NULL	NULL	NULL	45.00
Research Analyst	HULL	NULL	NULL	41.00
Data Operations Analyst	NULL	NULL	4.00	-7.00
Data Management Consultant	NULL	NULL	NULL	MULL
Business Intelligence Analyst	NULL	NULL	NULL	-20.00
Analytics Engineer	NULL	NULL	16.00	2.00
Data Quality Analyst	HULL	NULL	HULL	-12.00
Data Architect	NULL	0.00	-3.00	2.00

6 - You've been hired by a global HR Consultancy to identify countries experiencing significant salary growth for entry-level roles. Your task is to list the top three countries with the highest salary growth rate from 2020 to 2023, helping multinational corporations identify emerging talent markets

```
with cte as (
select company_location,
    avg(case when work_year=2020 then salary_in_usd end) as "2020_y",
    avg(case when work_year=2021 then salary_in_usd end) as "2021_y",
    avg(case when work_year=2022 then salary_in_usd end) as "2022_y",
    avg(case when work_year=2023 then salary_in_usd end) as "2023_y"
from salaries
where experience_level="EN"
group by 1 )
select company_location,
    round((2021_y-2020_y)/2020_y,2)*100 as "%_rate_2021",
    round((2022_y-2021_y)/2021_y,2)*100 as "%_rate_2022",
    round((2023_y-2022_y)/2022_y,2)*100 as "%_rate_2023"
from cte;
```


company_location	/0_1ate_2021	/0_1ate_2022	/0_1ate_2023
US	-25.00	15.00	-1.00
LT	NULL	NULL	NULL
NL	NULL	NULL	-33.00
AU	HULL	86.00	-32.00
DE	42.00	-23.00	38.00
GB	NULL	-45.00	42.00
TR	NULL	HULL	NULL
CA	NULL	HULL	-13.00
MX	NULL	NULL	NULL
FR	-9.00	44.00	-45.00
Π	HULL	HULL	23.00
AS	HULL	177.00	NULL
EE	NULL	NULL	NULL
MT	NULL	NULL	NULL
ES	NULL	NULL	14.00
LB	NULL	NULL	NULL
RO	NULL	NULL	NULL
ZA	NULL	NULL	NULL
HU	NULL	NULL	143.00
NG	NULL	NULL	NULL
PT	NULL	NULL	11.00
UA	NULL	NULL	NULL
IN	NULL	-17.00	34.00

7- Picture yourself as a data architect responsible for database management. companies in US and AU(Australia) decided to create a hybrid model for employees they decided that employees earning salaries exceeding \$90000 USD, will be given work from home. You now need to update the remote work ratio for eligible employees, ensuring efficient remote work management while implementing appropriate error handling mechanisms for invalid input parameters.

```
update hybrid_model
set remote_ratio = 100
where company_location in ("US","AU") and salary_in_usd > 90000
select * from hybrid_model
```

work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
2024	SE	FT	AI Engineer	90000	USD	133956	AE	0	AE	L
2024	SE	FT	Machine Learning Engineer	180500	USD	268656	US	100	US	M
2024	SE	FT	Machine Learning Engineer	96200	USD	143184	US	100	US	M
2024	SE	FT	Machine Learning Engineer	235000	USD	349774	AU	100	AU	M
2024	SE	FT	Machine Learning Engineer	175000	USD	260470	AU	100	AU	M
2024	MI	FT	Business Intelligence Developer	95413	USD	161248	US	100	US	M
2024	MI	FT	Business Intelligence Developer	70692	USD	119470	US	100	US	M
2024	SE	FT	Data Engineer	110000	USD	163724	UA	0	UA	M
2024	SE	FT	Data Engineer	48000	USD	71443	UA	0	UA	M
2024	SE	FT	Data Scientist	222300	USD	330871	US	100	US	M
2024	SE	FT	Data Scientist	119700	USD	178161	US	100	US	M
2024	SE	FT	Cloud Database Engineer	170375	USD	253587	US	100	US	M
2024	SE	FT	Cloud Database Engineer	102500	USD	152561	US	100	US	M

8 - In year 2024, due to increase demand in data industry, there was increase in salaries of data field employees.

```
Entry Level-35% of the salary.
```

Mid junior – 30% of the salary.

Immediate senior level- 22% of the salary.

Expert level- 20% of the salary.

Director – 15% of the salary.

you have to update the salaries accordingly and update it back in the original database.

```
UPDATE hybrid_model

SET salary_in_usd=CASE

WHEN experience_level="EN" THEN salary_in_usd*1.35

WHEN experience_level="MI" THEN salary_in_usd*1.30

WHEN experience_level="SE" THEN salary_in_usd*1.22

WHEN experience_level="EX" THEN salary_in_usd*1.20

WHEN experience_level="DX" THEN salary_in_usd*1.15

ELSE salary_in_usd
```

ELSE salary_in_usd
END
where work_year=2024;
SELECT * FROM hybrid model:

work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
2024	SE	FT	AI Engineer	90000	USD	133956	AE	0	AE	L
2024	SE	FT	Machine Learning Engineer	180500	USD	268656	US	100	US	M
2024	SE	FT	Machine Learning Engineer	96200	USD	143184	US	100	US	M
2024	SE	FT	Machine Learning Engineer	235000	USD	349774	AU	100	AU	М
2024	SE	FT	Machine Learning Engineer	175000	USD	260470	AU	100	AU	M
2024	MI	FT	Business Intelligence Developer	95413	USD	161248	US	100	US	M
2024	MI	FT	Business Intelligence Developer	70692	USD	119470	US	100	US	М
2024	SE	FT	Data Engineer	110000	USD	163724	UA	0	UA	М
2024	SE	FT	Data Engineer	48000	USD	71443	UA	0	UA	M
2024	SE	FT	Data Scientist	222300	USD	330871	US	100	US	M
2024	SE	FT	Data Scientist	119700	USD	178161	US	100	US	М
2024	SE	FT	Cloud Database Engineer	170375	USD	253587	US	100	US	M
2024	SE	FT	Cloud Database Engineer	102500	USD	152561	US	100	US	М

9 - You are a researcher and you have been assigned the task to Find the year with the highest average salary for each job title.

```
with cte as (
    select
       work_year,job_title,avg(salary_in_usd) as "avg_salary"
    from salaries
    group by 1,2)
select
    job_title,work_year,avg_salary
from
    (select
        job_title,work_year,avg_salary,
        RANK() OVER(PARTITION BY job_title ORDER BY avg_salary DESC) as "rank_sal"
    FROM cte) t
where rank_sal=1;
```

job_title	work_year	avg_salary
Admin & Data Analyst	2022	60000.0000
AI Architect	2024	256637.5000
AI Developer	2022	275000.0000
AI Engineer	2024	164314.7857
AI Product Manager	2024	152650.0000
AI Programmer	2023	72858.8000
AI Research Engineer	2024	131666.5000
AI Research Scientist	2024	88888.0000
AI Scientist	2024	175000.0000
AI Software Engineer	2024	174100.0000
Analytics Engineer	2024	166020.1284
Analytics Engineerin	2023	399880.0000
Applied Data Scientist	2022	160800.0000
Applied Machine Lear	2023	141726.3333
Applied Machine Lear	2021	230700.0000
Applied Scientist	2024	193762.0870
Autonomous Vehicle	2023	120000.0000
AWS Data Architect	2023	258000.0000
Azure Data Engineer	2020	100000.0000
Azure Data Engineer	2023	100000.0000
BI Analyst	2023	131315.5926
BI Data Analyst	2020	98000.0000
BI Data Engineer	2023	60000.0000

10 - You have been hired by a market research agency where you been assigned the task to show the percentage of different employment type in different job roles, in the format where each row will be job title, each column will be type of employment type and cell value for that row and column will show the % value

```
COUNT(case when employment_type="FT" then 1 end) *100 /COUNT(*) as "FT",

COUNT(case when employment_type="PT" then 1 end) *100 /COUNT(*) as "PT",

COUNT(case when employment_type="CT" then 1 end) *100 /COUNT(*) as "CT",

COUNT(case when employment_type="FL" then 1 end) *100 /COUNT(*) as "FL"

from salaries

group by 1;
```

job_title	FT	PT	СТ	FL
AI Engineer	98.8764	0.0000	1.1236	0.0000
Machine Learning Engineer	99.7954	0.0000	0.1364	0.0682
Business Intelligence Developer	100.0000	0.0000	0.0000	0.0000
Data Engineer	99.8343	0.1326	0.0000	0.0331
Data Scientist	99.6521	0.2436	0.0696	0.0348
Cloud Database Engineer	100.0000	0.0000	0.0000	0.0000
Research Engineer	100.0000	0.0000	0.0000	0.0000
Data Analyst	99.6633	0.2886	0.0481	0.0000
Machine Learning Scientist	100.0000	0.0000	0.0000	0.0000
Applied Scientist	100.0000	0.0000	0.0000	0.0000
Data Science Manager	100.0000	0.0000	0.0000	0.0000
Research Scientist	100.0000	0.0000	0.0000	0.0000
Prompt Engineer	100.0000	0.0000	0.0000	0.0000
Data Science	99.4186	0.5814	0.0000	0.0000
Data Science Consultant	98.6301	0.0000	0.0000	1.3699
Data Management Analyst	100.0000	0.0000	0.0000	0.0000
Research Analyst	100,0000	0.0000	0.0000	0.0000
Data Operations Analyst	100.0000	0.0000	0.0000	0.0000
Data Management Consultant	100.0000	0.0000	0.0000	0.0000
Business Intelligence Analyst	98.3471	0.0000	1.6529	0.0000
Analytics Engineer	100.0000	0.0000	0.0000	0.0000
Data Quality Analyst	100.0000	0.0000	0.0000	0.0000
Data Architect	100.0000	0.0000	0.0000	0.0000