Concepto de Probabilidad: definición

Definición frecuentista de probabilidad

• Frecuencia relativa del suceso A.

$$f_r(A) = \frac{n_a}{n} \rightarrow n^\circ \text{ veces owilido}$$

$$P(A) = \lim_{n \to \infty} f_r(A) = \lim_{n \to \infty} \frac{n_a}{n}$$

Propiedades:

$$f_{r}(\Omega) = 1$$

$$0 \le f_{r}(A) \le 1$$

$$f_{r}(A \cup B) = f_{r}(A) + f_{r}(B) \quad si \quad A \cap B = \emptyset$$

Definición de Laplace de probabilidad

[A, An] = Milma protofición de ocurrir

Dados
$$A_1, A_2, ..., A_m$$
 tales que $A_i \cap A_j = \emptyset$ y $\bigcup_{i=1}^m A_i = \Omega$ e igualmente verosímiles:

$$P(A) = \frac{m_a}{m} = \frac{casos\ favorables}{casos\ posibles}$$

Sea
$$P: \mathcal{A} \to [0,1]$$
 tal que: $A \mapsto P(A)$

- $P(\Omega) = 1$
- $P(A) \ge 0$
- $P(A \cup B) = P(A) + P(B)$ si $A \cap B = \emptyset$

Axiomas de Kolmogórov

A la función P se le llama Función de probabilidad.

A la terna $(\Omega, \mathcal{A}, \mathcal{P})$ se le llama Espacio de probabilidad.

ψ ° σ

Se lanza un moneda perfecta.

Espacio muestral: $\Omega = \{ cara, cruz \}$

Algebra de sucesos asociada: $\mathcal{A} = \{ \emptyset, \Omega, \{ \text{cara} \}, \{ \text{cruz} \} \}$

Este conjunto es cerrado para la unión y complementación

Sobre la dupla (Ω, \mathcal{A}) definimos la función:

$$P: \mathcal{A} \to [0,1]$$

$$\varnothing \mapsto P(\varnothing) = 0$$

$$\Omega \mapsto P(\Omega) = 1$$

$$\{cara\} \mapsto P(\{cara\}) = \frac{1}{2}$$

$$\{cruz\} \mapsto P(\{cruz\}) = \frac{1}{2}$$

P verifica los axiomas de Kolmogórov.

La terna (Ω, \mathcal{A}, P) constituye un espacio de probabilidad.

Sea
$$P: \mathcal{A} \to [0,1]$$
 tal que: $A \mapsto P(A)$

- $P(\Omega) = 1$
- $P(A) \ge 0$
- $P(A \cup B) = P(A) + P(B)$ si $A \cap B = \emptyset$

Axiomas de Kolmogórov

A la función P se le llama Función de probabilidad.

A la terna $(\Omega, \mathcal{A}, \mathcal{P})$ se le llama Espacio de probabilidad.

Consecuencia de los axiomas:

• Si $A \subset B \Rightarrow P(A) \leq P(B)$

$$A \subset B \to B = A \cup (A^c \cap B) \xrightarrow{Ax.3} P(B) = P(A) + P(A^c \cap B)$$

$$\xrightarrow{Ax.2} P(A^c \cap B) \ge 0 \Rightarrow P(B) \ge P(A)$$

Sea $P: \mathcal{A} \rightarrow [0,1]$ tal que: $A \mapsto P(A)$

- $P(\Omega) = 1$
- $P(A) \ge 0$
- $P(A \cup B) = P(A) + P(B)$ si $A \cap B = \emptyset$

Axiomas de Kolmogórov

A la función P se le llama Función de probabilidad.

A la terna $(\Omega, \mathcal{A}, \mathcal{P})$ se le llama Espacio de probabilidad.

Consecuencia de los axiomas:

- Si A ⊂ B ⇒ P(A) ≤ P(B)
 P(A) ≤ 1

$$A \subset \Omega \Rightarrow P(A) \leq P(\Omega) = 1$$

Sea
$$P: \mathcal{A} \to [0,1]$$
 tal que: $A \mapsto P(A)$

- $P(\Omega) = 1$
- $P(A) \ge 0$
- $P(A \cup B) = P(A) + P(B)$ si $A \cap B = \emptyset$

Axiomas de Kolmogórov

A la función P se le llama Función de probabilidad.

A la terna $(\Omega, \mathcal{A}, \mathcal{P})$ se le llama Espacio de probabilidad.

Consecuencia de los axiomas:

- Si A ⊂ B ⇒ P(A) ≤ P(B)
 P(A) ≤ 1

 - $P(A^{C}) = 1 P(A)$

$$A \cup A^c = \Omega \Rightarrow P(A) + P(A^c) = P(\Omega) = 1$$

W

Ley aditiva de probabilidades Impliar Kanagerov

•
$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 si $A_i \cap B_j = \emptyset$; $i \neq j$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B \cup C) = [P(A) + P(B) + P(C)] [P(A \cap B) + P(A \cap C) + P(B \cap C)] + [P(A \cap B \cap C)]$
 - Generalización:
 - $P(A \cup B \cup C \cup D \cup ...) = [P(A)+P(B)+P(C)+P(D)+...]$ $-[P(A \cap B)+P(A \cap C)+P(A \cap D)+...]+[P(A \cap B \cap C)$ $+P(A \cap B \cap D)+...]-...$
- $P(\bigcup_{i} A_{i}) \leq \sum_{i} P(A_{i})$ Bonferroni

Ω

$$P(A \cup B)$$
 ?

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA

Universidad de Córdoba

DEPARTAMENTO DE ESTADÍSTICA

Ω

$$P(A \cup B) = \frac{8}{12} = \frac{2}{3}$$

$$P(A) = \frac{6}{12} = \frac{1}{2}$$

$$P(B) = \frac{4}{12} = \frac{1}{3}$$

$$P(A) = \frac{6}{12} = \frac{1}{2}$$

$$P(B) = \frac{4}{12} = \frac{1}{3}$$

$$P(A \cap B) = \frac{2}{12} = \frac{1}{6}$$

Ω

$$P(A \cup B) = \frac{8}{12} = \frac{2}{3}$$

$$P(A) = \frac{6}{12} = \frac{1}{2}$$

$$P(B) = \frac{4}{12} = \frac{1}{3}$$

$$P(B) = \frac{4}{12} = \frac{1}{3}$$

$$P(A \cap B) = \frac{2}{12} = \frac{1}{6}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{12} + \frac{4}{12} - \frac{2}{12} = \frac{8}{12} = \frac{2}{3}$$