

* 默认所有样本具有随机性和足够大

对样本的附加条件

- 1. 样本观测数**<总体的5%**
- 2. 每个类别的观测量>10

使用CI估计 单个总体的类别之间 的比例分布

$$CI_{1-\alpha} = p_1 \pm Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{p_1(1-p_1)}{n}}$$

$$CI_{1-\alpha} = p_1 \pm (Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{p_1(1-p_1)}{n} + \frac{1}{2n}})$$

* 下方为修正后的CI

计算原理

每个类别的观测数 $\sum x_i \sim B(n, p_i)$,其中n是样本观测数, p_i 是总体比例,当样本满足附加条件时, $\sum x_i \sim N(np_i, np_i(1-p_i))$,得到比例的分布 $p = \frac{\sum x_i}{n} \sim N\left(p_i, \frac{p_i(1-p_i)}{n}\right)$,使用观测到的 $p_1 = \frac{\sum x_i}{n}$ 估计 p_i ,得到枢轴量 $p_1 \sim N\left(p_i, \frac{p_1(1-p_1)}{n}\right)$

* 下方为修正后的CI

差异的置信区间

两个总体

使用zTest的NHST

枢轴量 $p_1 - p_2$, 如上所示 $H_0: P_1 = P_2$ 设u服从Z分布,则有p-value,以下的显著指实际显著性 双侧检验: $p = P(|u| \ge |\frac{p_1 - p_2}{\sigma}|)$, 当p1, p2**相当**时 左侧检验: $p = P(u \leq \frac{p_1 - p_2}{\sigma})$,当p1**显著小于**p2时 右侧检验: $p = P(u \ge \frac{p_1 - p_2}{r})$, 当p1**显著大于**p2时 不难发现单边检验的p-value更小,统计显著性更高

- * 仅两个总体可以使用zTest
- * 使用z分布求CI和NHST时,样本必 须服从附加条件(见上一页)

属于假设检验 H_0 : 一个类别占**所有类别的比例在所有总体中相同** 即 $p_{11} = p_{12} = p_{13}$; $p_{21} = p_{22} = p_{23}$;

上方松哈**貌们**很小会田左夕个米则由

'下刀'他独 犹以 似少云用仁多一笑冽'	Τ',			
即r ≥ 3很少见		样本1	样本2	样本3
	类别A	Obs11	Obs12	Obs13
	类别B	Obs21	Obs22	Obs23
	类别C	Obs31	Obs32	Obs33

 $RC联表的\chi^2$ 检验

	样本1	样本2	样本3
类别A	Exp11	Exp12	Exp13
类别B	Exp21	Exp22	Exp23
类别C	Exp31	Exp32	Exp33

多个总体

多个独立总体的类别

比例差异比较

Obs和Exp分别是观测数和期望数

, $Exp_{kj} = \sum_{i} Obs_{ij} \cdot \frac{\sum_{i} Obs_{ki}}{\sum_{i} \sum_{i} Obs_{ij}}$

得到 $\sum_{i} \sum_{j} \frac{(O_i - E_i)^2}{E_i} \sim \chi^2$, df=(r-1)(c-1),

为了保证行列之和不变各自-1. 对 χ^2 进行NHST

卡方检验的效应量

Cramer's V= $\sqrt{\frac{\chi^2}{N \cdot \min{(r-1,c-1)}}}$ 表征**总体对比例不同的关联**

0.1<V<0.2为弱关联

0.2<V<0.5为中等关联

V>0.5为强关联

卡方检验的条件

- * 各个单元格独立观测
- * 2x2表:
- 1. $E_{ii} \ge 10$
- 2. $5 \le E_{ii} < 10$,使用Yate's correction(仍是卡方检验)
- 3. E_{ii} < 5,使用Fisher's Exact Test(不是卡方检验)
- * 大干2x3表:
 - 1. E<5的单元格小于20%
 - 2. 可以合并几列再做

检验原理

Obs和Exp分别是**观测数**和**期望数** Exp_i 是利用假设的分布和观测数构造的期望分布 当总体满足假设期望**(H0)**时, $\sum_i \frac{(O_i - E_i)^2}{E_i} \sim \chi^2$ **df=c-q-1**,其中**c是样本数**,**q**是构造Exp时**用到的Obs**的函数的**个数**(如Exp~N(mean(Obs),SD(Obs),q=2),**-1**是为了保证**总数不变**

进行NHST

单个类别的<mark>计数</mark>在 总体中的分布 (Goodness of Fit 卡方检验)

* 使用GoF对正态分布的检验是最准确的

	样本1	样本2	样本3	样本4
某个类别	Obs1	Obs2	Obs3	Obs4

	样本1	样本2	样本3	样本4
某个类别	Exp1	Exp2	Exp3	Exp4

每个样本应当是独立的

统计人群中身高的分布,样本为不同身高区间的人数

统计不同城市某种疾病的阳性率, 样本为不同城市患病 人数(在每个城市抽样数一定的条件下)

* 如何计算略去

example

卡方检验表面剂量与治疗效果具有**显著**的**弱关联性** (**chi2(df)**=14.23,**p**<.001,**Cramer's V**=0.18)

example

通过检验,感染人数的分布**显著服从/不服从** XX**分布**,**chi2(df,N)=**xx,**p**=.xxx 其中N是样本观测量