Content-based Image and Video Retrieval

Fall 2012/2013

Visual Descriptors

02.10.2012

Visual Descriptors

- Descriptors for image retrieval should be
 - Discriminative
 - Robust against image transformations
 - Robust against object transformations, viewpoint and occlusion
 - Efficient to compute

Visual Descriptors

- Color Descriptors
- Texture Descriptors
- Local Descriptors
 - Bag-of-Words

What is color

- A perceptual attribute of objects and scenes constructed by the visual system
- A quantity related to the wavelength of light in the visible spectrum

Color Matching Process

Basis for industrial standards

Color Matching

Conclusion from Color Matching

- Three primaries are sufficient for most people to reproduce arbitrary colors
 - The human eye normally contains only three types of color receptors, called cone cells
 - Each color receptor responds to different ranges of the color spectrum
 - Humans respond to the light stimulus via a three dimensional sensation, which generally can be modeled as a mixture of three primary colors

Color Models

- Different ways of parameterizing 3D color space, e.g.
 - RGB
 - XYZ
 - CMY
 - HSV
 - ...

RGB color model

- Official standard:
 - R=645nm, G=526nm, B=444nm

RGB Color Cube

RGB Spectral Colors

 Amounts of RGB primaries needed to display spectral colors

XYZ Color Model (CIE)

- XYZ colorspace is a linear transform of RGB so that all pure wavelengths have positive values
- XYZ spectral colors

CIE: Commission Internationale de l'Eclairage

XYZ and RGB

 Linear transformation reparameterizes color space

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = 1 - x - y$$

CIE xy chromaticity diagram

HSV Color Space

H(Hue), S(Saturation), V(Value)

Closely related to human perception (hue,

colorfulness and brightness)

$$H = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right\}$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$V = \frac{R + G + B}{3}$$

Channels in RGB and HSV

red

green

blue

hue

saturation

Intensity (value)

Chromatic Color Spaces

- Two color channels containing chrominance (color) information
 - HS (take from HSV)
 - Normalized rg from RGB
 - r = R / (R+G+B)
 - g = G / (R+G+B)
 - b = B / (R+G+B)
- Motivation: sometimes it is argued that chromatic color models are more robust against illumination variations such as highlighting, shade, shadow, etc.

Color Histogram

- A color histogram represents the distribution of colors where each histogram bin corresponds to a color in the quantized color space
- Color histogram as feature descriptor
 - Color space selection
 - Color space quantization
 - Histogram computation
 - Histogram distance metrics

Color Histogram

Pros and Cons

Pros

- Easy and fast to compute
- Compact representation of color information
- Can easily be normalized so that different image histograms can be compared

Cons

- Local information (not able to extract spatial localized feature)
- fixed-size structures, cannot achieve a balance between expressiveness and efficiency

Color Moments

- Central moments are statistics
 - First order = mean
 - Second order = variance
 - Third order = skew
 - Fourth order = kurtosis
 - High order moments are less intuitive

$$m_1 = 132.4$$

 $m_2 = 2008.2$
 $m_3 = 4226$
 $m_4 = 12.6 \times 10^6$

 $m_d = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^d$

For color images, take moments of each band

Color Correlogram

- Describe global distribution of local spatial correlation of colors
- A table indexed by color pairs, $P(c_i, c_j, d)$ specifies the probability of finding a pixel of color c_j at a distance d from a pixel of color c_i in the image

e.g. P (Red, Orange, 4.42) = Probability of

 An Autocorrelogram captures spatial correlation between identical colors => subset of correlograms

AutoCorrelogram

Circular kernel Correlogram

radius r = distance between regions

other radii

Maximum Correlation: (radius of kernel r = distance between regions)

Correlation decreases as difference between radius and distance increase

Robust to Pose Changes

(See Savarese et al.)

Invariant to Geometric Transformations

Properties of Correlogram

- Invariant to translation
- Circular kernels induce rotational invariance
 - Rectangular kernels computationally more efficient
- Robust to affine, perspective transformations
- Robust to general object pose changes
- Not invariant with respect to scale! => learn with multiple training images at multiple scales
- Can be computed in O(K*N²), K<<N

Texture

What is Texture?

- Often used to represent all the "details" in the image
- One or more basic local patterns that are repeated in a periodic manner

Discrimination

Goal of texture analysis

 Compare textures and decide if they're made of the same thing

What is Texture?

Texture Analysis

- Two approaches for texture analysis:
 - Structural (top down)
 - Decompose image into basic elements or texels (textons)
 - Convenient for artificial textures

Artificial textures

- Statistical (bottom up)
 - Texture is property that can be derived from the statistics of small group of pixels, such as mean and variance
 - Convenient for natural textures

Natural textures

Statistical Approach

 Not always easy to define and segment out texels, especially for natural scenes

Look like similar, but difficult to see a texel structure; might have similar statistics

- Numeric quantities or statistics that describe a texture can be computed from the gray level values (or colors) alone
- Less intuitive, but computationally efficient
- It can be used for both classification and segmentation
- Alternatives:
 - Co-occurrence matrices
 - Edge histogram
 - Wavelets
 - etc...

Texture Models

- Transform an image window into a set of numbers (feature vector)
- Patches of the same texture should cluster in feature space

- Textures are made up of repeated subelements, with similar statistical properties
- Problem: find the subelements and represent their statistics

Identifying subelements

- Look for specific shapes
 - But: no known canonical set of textons
- Use a set of filters that capture simple pattern elements

- Human vision suggests spots and oriented filters at different scales
 - Spots: typically symmetric Gaussians
 - Bars: typically oriented Gaussians

Choice of Filters

- No obvious advantage to any type of oriented filters
 - Weighted sum of Gaussians
 - Gabor filters
 - Wavelets
- How many filters?
 - Literature suggests 4-11 scales and 2-18 orientations (typically 6 orientations suffice)
- Tradeoff: detail of representation versus cost of computation

Gabor Filters

- 2-D sine waves modulated by a Gaussian envelope.
- Good models of the receptive fields found in simple cells of the primary visual cortex.
- 2D Gabor filter at different scales and orientations (spatial domain):

Typical: 5 scales, 8 orientations

Gabor Wavelet Transform

For a given image *l(x,y)*, perform convolution with gabor filter kernels

$$G_{mn}(x,y) = \sum_{s=0}^{S} \sum_{t=0}^{T} I(x-s, y-t) g_{m,n}(s,t)$$

Compute magnitude with real and imaginary part responses

Example filter response in magnitude with corresponding gabor filter (real part)

Gabor Filter Feature

- Each channel in the filter bank filters a specific type of texture
- Gabor feature descriptor
 - Computes the energy and energy deviation for each channel
 - Computes mean and standard variation of frequency coefficients

$$F = \{f_{DC}, f_{SD}, \mu_1, ..., \mu_{N, \sigma_1}, ..., \sigma_N\}$$

- Distance metric
 - L1 distance (in MPEG-7)

Other Models: Co-occurrence Matrix

- The intensity histogram is very limited in describing a texture (e.g - checkerboard versus white-black regions.
- Use higher-level statistics: Co-occurrence Matrix (Pairs distribution).
- Let f(m,n) be a gray-level image. Then the cooccurrence matrix C_d is defined as follows:

$$C_d(i,j) = |\{(m,n)|f(m,n) = i \text{ and } f(m+dm,n+dn) = j\}|$$

where d = (dm, dn) is displacement, the value of $C_d(i,j)$ indicates how many times value i co-occurs with value j in some designated spatial relationship

Co-occurrence Matrix

1	1	0	0
1	1	0	0
0	0	2	2
0	0	2	2
0	0	2	2
0	0	2	2

$$d=(3,1)$$

co-occurrence matrix

gray level image

Variations

- Two variations:
 - Normalized co-occurrence:

$$N_{d}(i,j) = \frac{C_{d}(i,j)}{\sum_{i} \sum_{j} C_{d}(i,j)}$$
 \Rightarrow $0 \le N_{d} \le 1$
 N_{d} can be thought of as probabilities

Symmetric co-occurrence:

$$S_{\boldsymbol{d}}(i,j) = C_{\boldsymbol{d}}(i,j) + C_{-\boldsymbol{d}}(i,j)$$

groups pairs of symmetric adjacencies

Co-occurrence Matrices

- Co-occurrence matrices capture properties of a texture, but they are not compact; instead, numeric features can be computed from them to be used in further analysis
 - Energy = $\sum_{i} \sum_{j} N_d^2(i,j)$
 - Entropy = $-\sum_{i}\sum_{j}N_{d}(i,j)\log_{2}N_{d}(i,j)$
 - Contrast = $\sum_{i} \sum_{j} (i-j)^2 N_d(i,j)$
 - Homogeneity = $\sum_{i} \sum_{j} \frac{N_d(i,j)}{1+|i-j|}$
 - Correlation = $\sum_{i} \sum_{j} \frac{(i \mu_i)(j \mu_j)N_d(i,j)}{\sigma_i \sigma_j}$

 μ_i , μ_j , σ_i , σ_j are means and standard deviations of the rows and column sums:

$$N_d(i) = \sum_j N_d(i,j)$$

- How to choose d?
 - One solution is to select value(s) of d that have the most structure; i.e., to maximize

 $\sum \sum \frac{N_d^2(i,j)}{N_d(i)N_d(j)} - 1$

Other Models: Edge Histogram

- Captures the spatial distribution of different types of edges
 - Partition image into large local regions
 - Partition each local region into small image patches
 - Quantize each patch as horizontal, vertical, diagonal
 - Use gradient filters
 - Collect results into local region histograms
 - Perform matching based on histograms

Edge Histogram Descriptor

 Edge Histogram Descriptor (EHD) in MPEG-7 for calculating frame similarity

A 5-bin histogram in for each sub-image

Spatial Information

- In which image areas should the descriptors be computed?
 - Whole image?
 - Sub-windows?
- Some spatial information can be kept by extracting descriptors on subwindows
- Other approaches
 - Local descriptors / key point detection
 - Image segmentation
 - → next week

. .