• 第五章 关系

- 5.1 关系的概念
 - 1.序偶的概念
 - 2.笛卡尔乘积及其性质
 - 3.关系的概念
- 5.2 二元关系的表示及其性质
 - 1.矩阵表示法
 - 2.图像表示法
 - 3.二元关系的性质
- 5.3 等价关系与划分
 - 1.等价关系
 - 2.覆盖与划分
- 5.4 相容关系与完全覆盖
- 5.5 关系的运算

第五章 关系

5.1 关系的概念

1.序偶的概念

序偶(有序对、二元组): 由两个固定次序个体所组成的序列,记作< x, y >。

序偶的顺序: 序偶< a,b >中, a被称为第一元素, b被称为第二元素, 仅有 $a=x \land b=y$ 时, 才有< a,b >=< x,y >。 **序偶的推广 - 多重序元**: 序偶可以推广至多重序元(n元组), 三重序元是一个序偶, 其第一元素为一序偶, 例如<< a,b >, c >。三重序元可以简写为< a,b,c >的形式。而对于N重序元(N≥3)而言,其第一元素为N-1重序元,可简写为<

 $x_1, x_2, x_3, ..., x_N >$ 之形式。其中第i元素 x_i 通常被称为N元组之第i坐标。

2.笛卡尔乘积及其性质

笛卡尔乘积: 给定两个集合A与B,由所有第一元素属于A,第二元素属于B的序偶所构成的集合,称为集合A与集合B的笛卡尔乘积,记作 $A \times B$,表示为 $A \times B = \{< x, y > | (x \in A) \bigwedge (y \in B) \}$ 。显然,两个集合的笛卡尔乘积是一个由序偶构成的集合。为了表示方便,可以记 $A \times A$ 为 A^2 , $A \times A \times A$ 为 A^3 ……。

定理1:

- **1.** $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- **2.** $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- **3.** $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- **4.** $(A \cap B) \times C = (A \times C) \cap (B \times C)$

定理2:

设A, B与C为任意三个集合,且 $C \neq \varnothing$,则有 $(A \times C) \subseteq (B \times C)$ 和 $(C \times A) \subseteq (C \times B)$ 都是 $A \subseteq B$ 的充要条件。

定理3:

设A, B, C, D为四个非空集合, 则 $(A \times B) \subseteq (C \times D)$ 的 充要条件为 $(A \subseteq C) \land (B \subseteq D)$ 。

3.关系的概念

关系: 设A、B为两个集合,则A \times B的任何一子集都称为A 到B的二元关系。

N元关系: 设 A_1 , A_2 , ..., A_N 是N个集合,则 $A_1 \times A_2 \times$... \times A_N 的任一子集都称为他们之间的一个N元关系。

常见的关系表示方法: 一般用大写字母表示二元关系,在数学中也常用一些特殊符号表示关系,如大于、小于等。此外,还有一种aRb的表示方法,等价于 $< a,b>\in R$,如果要表示 $< a,b>\notin R$,则记为aRb。而对于从A到A的二元关系,可以称之为A中的二元关系。

定义域: 若存在 $y \in Y$,使有 $< x, y > \in S$,则所有这样的 $x \in X$,被称为二元关系S的定义域,记为D(S)或dom(S),表示为 $D(S) = \{x | (\exists y) ((x \in X) \bigwedge (y \in Y) \bigwedge (< x, y > \in S))\}。$

值域: 若存在 $x \in X$,使有 $< x, y > \in S$,则所有这样的 $y \in Y$,被称为二元关系S的值域,记为R(S)或 $\mathrm{ran}(S)$,表示为 $R(S) = \{y | (\exists x) ((x \in X) \bigwedge (y \in Y) \bigwedge (< x, y > \in S))\}$

显而易见, $D(S) \subseteq X$, $R(S) \subseteq Y$ 。

设定X为一集合。

空关系: \emptyset 被称为X中的空关系。

全域关系: X^2 被称为X中的全域关系。

恒等关系: $I_X = \{ \langle x, x \rangle | x \in X \}$ 被称为X中的恒等关

系。

5.2 二元关系的表示及其性质

1.矩阵表示法

若给定两个有限集合 $X = \{x_1, x_2, ..., x_m\}$ 与 $Y = \{y_1, y_2, ..., y_n\}$, 且,R为X到Y的二元关系,若有

$$r_{ij} = \left\{ egin{array}{ll} 1 & \hbox{\it Z}\hskip-.05in x_i R y_j \ 0 & \hbox{\it Z}\hskip-.05in x_i R y_j \end{array}
ight.$$

则称矩阵 $[r_{ij}]$ 为R的关系矩阵,记作 \mathbf{M}_R 。

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

2.图像表示法

设 $X = \{x_1, x_2, ..., x_m\}$ 与 $Y = \{y_1, y_2, ..., y_n\}$,且,R为X到Y的二元关系。在图上画m个圈(顶点),表示 x_i ,画n个圈,表示 y_j ,如果 $x_i R y_j$,便在代表 x_i 与 y_j 的两顶点之间画一条有向的弧(边)。通过这种方法作出的图被称为R的关系图。如果是X内的二元关系,则可以只画一次X的元素。

3.二元关系的性质

设R是集合X中的二元关系。

自反关系: $(\forall x)(x \in X \rightarrow < x, x > \in R)$

反自反关系: $(\forall x)(x \in X \rightarrow < x, x > \notin R)$

对称关系: $(\forall x)(\forall y)((x \in X \land y \in Y \land < x, y > \in X)$

 $R) \rightarrow < y, x > \in R)$

反对称关系: $(\forall x)(\forall y)((x \in X \land y \in Y \land < x, y > \in X))$

 $R) \rightarrow \langle y, x \rangle \notin R$

传递关系: $(\forall x)(\forall y)(\forall z)((x \in X \land y \in Y \land z \in Z \land < y))$

 $(x,y) \in R \land < y,z > \in R) \rightarrow < x,z > \in R)$

5.3 等价关系与划分

1.等价关系

等价关系: 设R是集合X中的二元关系,若R是自反的、对称 的、传递的,则R是等价关系。

等价类: 设R是非空集合X中的等价关系,对于任一确定的 $x\in X$,均可以作一X的子集 $[x]_R$,称为由x生成(以x为代表元素的)R的等价类,表示为 $[x]_R=\{y|(y\in X)\bigwedge(<x,y>\in R)\}$ 。则所有与x有等价关系R的所有元素构成的集合便是 $[x]_R$ 。

定理1: 设R是集合X中的等价关系,对任-x,有 $x \in [x]_R$ 。

定理2: 设R是集合X中的等价关系,有

1. 对任意的 $x,y\in X$,要么是 $[x]_R=[y]_R$,要么是 $[x]_R\cap [y]_R=\varnothing$ 。

2. $\bigcup_{x \in X} [x]_R = X$

商集: 设R是集合X中的等价关系。由X中的各元素生成的R的等价类所有成的集合 $\{[x]_R|x\in X\}$ 称为X关于R的商集,记作X/R。 $X/R\subseteq \rho(X)$ 。

2.覆盖与划分

覆盖: 设X为非空集合(可以为无穷集合)。 $A=A_1,A_2,...,A_m$,其中集合 $A_i\subseteq X(i=1,2,...,m)$,且 $\bigcup_{i=1}^m A_i=X$,则称A为X的覆盖。

划分: 设A是X的覆盖,其对任意i,j,满足 $A_i \cap A_j = \emptyset$ ($i \neq j$),则称A为X的划分。

加细: 设A, B为X的两个划分, $A = \{A_1, A_2, ..., A_m\}$, $B = \{B_1, B_2, ..., B_n\}$, 若对于划分B的每一个类 B_i 都存在A

的一个类 A_j ,使得 $B_j\subseteq A_i$,则称B为A的加细,也说B加细了划分A。

真加细: 若B是A的加细, 且 $B \neq A$, 则称B是A的真加细。

定理1: 设R是非空集合X中的关系,则X对R的商集X/R是X的一种划分。

定理2: 设A是非空集合X的一种划分。 $A=\{A_1,A_2,...,A_n\}$ 中的关系R定义为 $\{< x,y>|(\exists A_i)(A_i\in A \land x\in A_i \land y\in A_i)\}$,则R是X中的等价关系。

定理3: 设 R_1 和 R_2 是非空集合X中的等价关系,则 $R_1=R_2$ 的充要条件为 $X/R_1=X/R_2$ 。

5.4 相容关系与完全覆盖

相容关系: 设R是集合X中的二元关系,如果R是自反的、对称的,则称R是相容关系。因为所有的相容关系都是自反且对称的,所以在用关系矩阵表示之时,可以仅记下矩阵做对角线以下的内容。

最大相容类: 设R是集合X中的相容关系。若有 $X_1 \subseteq X$,使得对于任意 $x,y \in X_1$,有 $< x,y > \in R$,而在 $X - X_1$ 中没有任何一个元素与 X_1 中的所有元素都存在R关系,则称 X_1 为由R产生的最大相容类。

完全覆盖: 由R产生的所有最大相容类所构成的集合称为集合X的完全覆盖,记作 $C_R(X)$ 。

定理1: 设R是集合X中的相容关系。对任 $-x \in X$,必存在 $-X_i \in C_R(X)$ 使得 $x \in X_i$ 。

定理2: 设R是非空有限集合X中的相容关系,则存在X的完全 覆盖 $C_R(X)$,且 $C_R(X)$ 是X的覆盖。

定理3: 给定集合X的一个覆盖 $A = \{A_1, A_2, ..., A_n\}$,由它确定的关系 $R = A_1 \times A_1 \cup A_2 \times A_2 \cup ... \cup A_n \times A_n$ 是相容关系。

5.5 关系的运算