Exam #2.	MANE-4100: Space Flight Mechanics A	pril 15, 2015
Lixaiii #2,		<u> </u>
<u></u>		
Topics cove i) ii) iii) iv) v)	rered: All prior topics + Kepler's Equations Orbit Determination Classical Orbit Elements Coordinate/basis Transformations	
Examinatio	on Rules:	
hand	um is Closed Book/Closed Note with the exception of a single sheet dwritten crib sheet. This crib sheet must be prepared by you and be to exam.	t of 8.5"x11" urned in with
_ Pay o	careful attention to notation! You will only be graded on the work you s	show!
exan	rk alone, no communication with any other students of any type at any tim period. ALL mobile devices must be turned off during the exam. No ckberry's, etc. are permitted	me during the o cell phones,
	otop computers may not be used on the exam in any capacity, but conveculators are permitted.	ntional pocket
_ Exan	m will be turned in to the instructor no later that 4:00 PM 4/15/11	
Put y	your name and ID number and signature in the spaces provided bel aining pages of this book should be void of any indication of your identi-	ow only. The ity.
In signing th	t of Student Conduct: his statement, I agree to follow a examination rules as given above and principles of academic integrity as described in the Rensselaer Handbook	in accord with
Name:		
Signature:		•

Problem 1 (120 points)

PLANES

An object is observed in space and is determined to have the initial position and velocity vectors $\vec{r}_0 = 2.1681\hat{i} - 2.1681\hat{j} - 1.7703\hat{k}$ [AU] and $\vec{v}_0 = -1.7884\hat{i} + 3.5719\hat{j} + 2.1883\hat{k}$ [AU/yr] expressed in terms of despun solar system reference frame (centered at the sun) where \hat{i},\hat{j},\hat{k} , are the unit basis vectors associated with the standard solar system reference frame (unit vectors \hat{i} and \hat{j} lie in the ecliptic plane with direction k being in the direction of the Earth's orbit angular momentum (not spin angular momentum) vector). $\mu_{sun} = 4\pi^2 \left[\frac{AU^3}{vr^2}\right]$

From this information determine:

D)

$$\Gamma_0 = |\vec{r_0}| = \sqrt{(2.168)^2 + (-2.168)^2 + (-1.770)^2} = \frac{3.541}{4} \frac{Au}{4}$$

orbit eccentricity e (28 pts), A) orbit eccentricity e (28 pts), orbit semimajor axis a [km] (19 pts) B)

its)
$$V_0 = |\vec{V_0}| = \sqrt{(-1.788)^2 + (3.572)^2 + (2.188)^2} = 4.554$$
 Augr 2

C) true anomaly θ [deg] (25 pts)

true anomaly
$$\theta$$
 [deg] (25 pts)

Orbit inclination i [deg]. (10 pts)

Right ascension of the ascending node Ω [deg]. (10 pts)

Argument of perigee ω [deg] (10 pts)

$$\frac{1.539}{1.579} \cdot 1.579 \cdot \frac{1}{1.579} \cdot 1.579 \cdot \frac{1}{1.579} \cdot 1.579 \cdot \frac{1}{1.579} \cdot \frac{1}{1.579}$$

E)

F) Argument of perigee ω [deg] (10 pts)

G) What are the actual anomaly values associated with each of the two locations at which this object crosses the ecliptic plane? (10 Pts) [Remember the definitions of the classical orbit parameters]

H) What is the object's orbit radius r at each of the two locations at which it crosses the ecliptic plane? Should we be worried? Why? (20 Pts)

A)
$$\vec{e} = \frac{\vec{v}_0 \times \vec{k}}{\sqrt{c}} - \frac{\vec{k}_0}{r_0} = -0.175 \hat{i} + 0.8750 \hat{j} + 0.429 \hat{k} \Rightarrow e = 1/\vec{e} \cdot \vec{e} = 0.99$$
 2
 $\varepsilon = \text{Energy} = \frac{1}{2} \vec{v}_0^2 - \frac{3}{r_0} = -0.778 (Au/r)^2$

B)
$$\alpha = \frac{-\alpha}{2E6} = 25.3377 AU$$

$$\hat{p} = \frac{1}{6} = -0.177\hat{i} + 0.884\hat{j} + 0.433\hat{k}, \quad \hat{w} = \frac{1}{h} = 0.354\hat{i} - 0.354\hat{j} + 0.866\hat{k}$$

$$\hat{q} = \hat{w} \times \hat{p} = -0.919\hat{i} - 0.306\hat{j} + 0.250\hat{k}$$

 $\vec{F}_0 = \vec{F}_0 \cdot \hat{\vec{F}} + \vec{F}_0 \cdot \hat{\vec{F}} = \vec{F}_0 \cdot \hat{\vec{F}} = -3.066 \, \text{AU} \, , \quad \vec{F}_2 = \vec{F}_0 \cdot \hat{\vec{F}} = -1.770 \, \text{AU} \, \left\{ \begin{array}{c} \vec{F}_0 \cdot \vec{F}_$

b)
$$i = \cos^{2}\left\{\frac{\hat{k} \cdot \hat{k}}{\hat{k}}\right\} = \frac{2}{30^{\circ}}$$
, E) $\hat{n} = \frac{\hat{k} \times \hat{k}}{|\hat{k} \times \hat{k}|} = 0.7071 + 0.7071 i \frac{2}{(\Omega.707)} = 45^{\circ}$
E) $\omega = \cos^{2}\left\{\hat{n} \cdot \hat{p}\right\} = 60^{\circ} \left(\text{or} - 60^{\circ}\right)$ AND $\omega = \sin^{2}\left\{(\hat{n} \times \hat{p}) \cdot \hat{w}\right\} = 60^{\circ} \left(\text{or} 120^{\circ}\right) \Rightarrow \omega = 60^{\circ}$

G)
$$\Theta_1 = -\omega = -60^\circ$$
, $\Theta_2 = \Theta_1 + 180^\circ = 120^\circ$

H)
$$R_1 = \frac{h^2}{u(1 + e\cos\theta_1)} = 0.338 AU$$

H)
$$R_1 = \frac{h^2}{u(1 + e\cos\theta_1)} = 0.338 \ AU$$
 $R_2 = r(\theta_2) = \frac{h^2}{u(1 + e\cos\theta_2)} = 1.000 \ (4)$

GOBJECT CAN IMPACT EARTH ON

Problem 2 (80 points)

Assume that for the problem 1) the following orbital parameters are given: e=0.95, $\theta_0=-135^\circ$, $i=10^\circ$, $\Omega=30^\circ$, $\omega=60^\circ$, a=24 [AU]:

- A) What is the period [in years] of this object's orbit. (5 pts)
- B) How long will it take [in years] for the object to get from its initial θ_0 position to the location where it will cross the ecliptic the second time [beginning at θ_0]) {The object should come uncomfortably close to the Earth's orbit at this second ecliptic crossing}(60 pts)
- Assuming the Earth is in an effectively circular orbit, and that its position in its orbit is described by its actual anomaly θ_{Earth} which is measured from the \hat{i} axis as indicated in the figure below. At the time this object is observed, what does the actual anomaly of the Earth need to be [in degrees] such that earth and this object would/might collide during the current orbit of the object? (15 pts)

