FORMAL LANGUAGES AND AUTOMATA 22AIE302

Ayswarya R Kurup

10 July 2024

About the Course

References

- Formal Language and Automata', Peter Linz, Fifth edition, 2012.
- 2 Introduction to Automata Theory, Languages and Computation', J.E.Hopcroft, R.MotwaniandandJ.D.Ullman, Pearson, 2001.
- 3 Elements of the Theory of Computation', H.R.Lewis and C.H.Papadimitriou, Prentice Hall, 1997/Pearson 1998.

Course Outcomes

- Analyse formalisms and write formal proofs for properties
- Use grammatical notations to represent sequence manipulation problems
- 3 Apply various formal grammars to the problem-solving avenues
- Identify limitations of some computational models and possible methods of proving them

Evaluation Pattern

Assessment	Weightage(%)
Assignments	30
Quiz with equal credits	20
Midterm Examination	20
End Semester Examination	30

Pre-requisites

- Data Structures
- Discrete Mathematics

Syllabus I

- Introduction to Automata and formal language: Finite State machines – Deterministic finite state machine, Non-Deterministic finite state machine, Equivalence of NFA and DFA, Minimization of Finite State Machine, Regular Expression, Regular Language, Properties of Regular Languages.
- 2 Context Free Grammar: Pushdown Automata, Variants of Pushdown automata, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress Equivalence between PDA and CFG, Context Free Language, Properties of CFL, Normal Forms.
- 3 Context Sensitive Language: Linear Bound Automata, Turing Machine, Variants of Turing Machine, Decidability, Post correspondence problem, Introduction to undecidable problems.

Why Formal Languages and Automata?

1 3-coloring problem (Graph coloring): Determine whether it is possible to color using three colors $\{1,2,3\}$ provided no adjacent nodes have same color

- **2** A computer with input X: do the program halt on X?
- Shortest path/ route problem: "I want to drive from Ettimadai to Coimbatore", which is the shortest route?

- Every computational problem can be represented as a string input to a computer / device
- String will be over an alphabet denoted by Σ
- Problem can be viewed as a decision problem

Alphabets

- Set of symbols: a finite set, Σ
- Examples:
 - Binary: $\Sigma = \{0, 1\}$
 - Decimal: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - All lower case letters: $\Sigma = \{a, b, c, ..., x, y, z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\Sigma = \{a, c, g, t\}$
- $N = \{0, 1, 2, 3, ...\}$ cannot be an alphabet since it is infinite

Strings

- ullet Finite collection of symbols from chosen from alphabet set Σ
- A string of length n over an alphabet Σ is an ordered n-tuple of elements of Σ
- $\Sigma = \{a,b\}$ then $\{\epsilon,ba,bab,aab\}$ are examples of strings over Σ
- If $\Sigma = \{a\}$ then $\Sigma^* = \{\epsilon, a, aa, aaa, ...\}$
- Length of a string w: |w| number of symbols
- Example: w = 010100 |w| = 6
- If |w|=0, ϵ , empty string (epsilon) or λ (lambda)
- $\epsilon w = w \epsilon = w$

String Operations

- **1** Concatenation (x = ab, y = bc, xy = abbc)
- **2** Reversal $(x = ab, x^R = ba)$
- 3 € denotes empty string

$$|\epsilon| = 0$$

- **4** $x^K = xxx...$: x is repeated or concatenated k times $x^0 = \epsilon$
- **5** Kleene star of x, denoted by x^*

$$x^* = \text{set of all } x^k \qquad \qquad = \{x^k | k \ge 0\}$$

- **6** Σ^* : Set of all strings over Σ of finite length
- **7** Substring: V is a substring of W, if there exist strings X and Y

$$W = XVY$$

Example: "get" is a substring of together

f 8 A language over Σ is a set of strings over Σ

$$A\subseteq \Sigma^*$$

String Operations..

" A language over Σ is a set of strings over Σ "

Examples: set of all binary strings with an odd number of 1's is a language over $\{0,1\}$

Set of all dictionary words is a language over the English alphabet

Note: Σ^* is also a language

is also a language

Describing languages

- **1** Brute Force Listing: $\{a, ab, abb, ..\}$
- **2** Language Operations: ab^*
- **3** Other set theoretic operations

Refresher of Discrete Mathematics

Set Theory

- $A = \{a, b, c\}$
 - A is the set whose elements a, b, and c
- $\bullet \ W = \{x : x \in N\}$
 - W equals the set of all x such that x is a natural number
- Empty set: $\emptyset = \{\}$

Set Operations

- Union: $A \cup B$
- Intersection: $A \cap B$
- Elements that are in A but not in B: A-B (Complement of B relative to A)
- Complement of A: A^c
- A is a subset of B: $A \subset B$
- Cartesian product: $A \times B$ (set of all ordered pairs in the form (a, b))
- Function: $f: A \to B$ (* Function from A to B is a subset of $A \times B$)

Set Theory..

Power Set

- P(X) is the power set of X
 - Collection of all subsets of X
- |X| is the number of elements in the set X
 - $|P(X)| = 2^{|X|}$
 - $A = \{x, y, z\}$
 - $\bullet \ \ P(A) = \{\{x\}, \{y\}, \{z\}, \{x,y\}, \{y,z\}, \{x,z\}, \{x,y,z\}, \{\}\}$

AUTOMATA

- Automata Theory: Study of abstract computing devices
- Abstract devices are (simplified) models of real computations
- Computations happen everywhere: On your laptop, on your cell phone, in nature, ...
- Used in model-checking

Figure: General model of an automata

- Accepter: Automaton whose output response is limited to a simple "ves" or "no"
- Transducer: Automaton, capable of producing strings of symbols as output

A simple circuit

• Input: switch

• Output: light bulb

• Actions / transitions : flip switch

• States: on, off

A DESIGN PROBLEM

Can you design a circuit where the light is on if and only if all the switches were flipped exactly the same number of times?

A DESIGN PROBLEM...

- Such devices are difficult to reason about, because they can be designed in an infinite number of ways
- By representing them as abstract computational devices, or automata, we will learn how to answer such questions

Various types of Automata

Finite automata	Devices with a finite amount of memory. Used to model "small" computers.
Push-down automata	Devices with infinite memory that can be accessed in a restricted way.
	Used to model parsers, compiler for programming languges etc.
Turing Machines	Devices with infinite memory.
	Used to model any computer.
Time-bounded Turing Machines	Infinite memory, but bounded running time.
	Used to model any computer program that runs in a "reasonable" amount of time.

Finite Automata

- Computers with a limited amount of memory
- State based devices
- Examples: Timers, Door open / close, thermostat
- States acts as the memory

WHY STUDY FINITE AUTOMATA?

- Used for design and verification of circuits and communication protocols
- Used for text-processing applications like text editors, t
- An important component of compilers lexical analysers in programming languages
- Network Protocol Analysis
 - Ex: variable checking
- Identify simple patterns of events DNA sequencing

Deterministic Finite Automata (DFA)

- For every combination of current state and an input symbol, there is precisely one next state
- Definition: A deterministic finite automata is defined by a 5-tuple (Q,Σ,δ,q_0,F)
 - Q is a finite set of states
 - Σ is a finite alphabet
 - $\delta: Q \times \Sigma \to Q$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of accepting states

DFA..

 $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1, w_2, ...w_n$ if there is a sequence of states $r_0, r_1, ...r_n$ iff

- $\mathbf{1} r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, \ \forall \ 0 \le i \le n-1$
- $r_n \in F$

 ${\cal M}$ recognizes the language A if

$$A = \{w | M \text{ accepts } w\}$$

$$denoted \ \ by \qquad \ \ \, L(M) = A$$

Languages

- ullet The language is a collection of appropriate strings, denoted by L
- L is a language over alphabet set Σ , only if $L \subseteq \Sigma^*$
- Examples:
 - If L takes all possible strings consisting of n 0's followed by n 1's over $\Sigma = \{0, 1\}$:
 - $S = \{\epsilon, 01, 00011, 0011, 0101, 000111, ...\}$
 - L = $\{\epsilon, 01, 0011, 000111, ...\}$ L $\subseteq \Sigma^*$
- If L takes all possible strings of with equal number of 0's and 1's over $\Sigma = \{0,1\}$:
- $L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots\}$ $L = \{\}$,
- Ø denotes the Empty language

Regular Language

- A language is regular if it is recognized by some finite automaton
- The collection of all strings that are recognized by a finite automata