Complements

$$2's = 1's + 1$$

TO SIMPLIFY THE SUBTRACTION OPERATION AND FOR LOGICAL MANIPULATIONS USE

Complements

Complements

 Are used in digital computers (ALU) to simplify the subtraction operation and for logical manipulations

Complements; r's & (r-1)'s

 Are used in digital computers (ALU) to simplify the subtraction operation and for logical manipulations

-
$$r's$$
 or $N(r)$ complement - $(r-1)'s$ or $N(r-1)$ complement

Complements; 2's

- Decimal: r's = 10's
- Binary: r's = 2's

Complements; 2's & 1's

- Decimal: r's = 10's
- Binary: r's = 2's

- Decimal: (r-1)'s = 9's
- Binary: (r-1)'s = 1's

N(r) Complement-formula

$$N(r) = r^n - N$$

r = our base

n = integer digits of the number

N = our number

N(r) = r's complement of N

DECIMAL NUMBER EXAMPLE

• 52520.0

Example

· 52520.0

$$n = 5$$

$$r = 10$$

$$N = 52520$$

$$N(r) = r^n - N$$

· 52520.0

$$n = 5$$

$$r = 10$$

$$N = 52520$$

$$N(r) = r^n - N$$

Answer = $10^5 - 52520 = 47480$

· 52520.0

$$n = 5$$

$$r = 10$$

$$N = 52520$$

 $N(10) = 10^5 - 52520 = 47480$

Note: 52520+47480 = 100000 = 10⁵

BINARY NUMBER EXAMPLE

Find r's (2's) complement: 101100

101100

NewExample

$$N(r) = r^n - N$$

Find r's (2's) complement: 101100

$$n = 6$$

$$r = 2$$

$$N = 101100$$

$$N(r) = r^n - N$$

Find r's (2's) complement: 101100

101100

```
n = 6
                                         N(r) = r^n - N
r = 2
N = 101100
    N(2) = (2^6)_{10}
                            - (101100)<sub>2</sub>
          = (64)_{10}
                          - (101100)<sub>2</sub>
          = (1000000)_2 - (101100)_2
          = (0010100)_2
```

N(r-1) complement-formula

$$N(r-1) = r^{n} - r^{-m} - N$$

where,

- m = number of fraction digits of N
- N = our number
- r = base
- n = number of integer digits of N
- N(r-1) = (r-1)'s complement of N

DECIMAL NUMBER EXAMPLE

Find r-1 (9's) complement of 52520

•
$$r = 10$$

- n = 5
- m = 0

Example

$$N(r-1) = r^{n} - r^{-m} - N$$

(r-1) 9's complement of 52520

•
$$r = 10$$

•
$$n = 5$$

•
$$m = 0$$

$$N(r-1) = r^{n} - r^{-m} - N$$

$$N(9) = 10^5 - 10^0 - 52520$$

= 47479

(r-1) 9's complement of 52520

- r = 10
- n = 5
- m = 0
- N = 52520

$$N(9) = 10^5 - 10^0 - 52520$$

= 47479

Note: 52520+47479 = 99999 = 10⁵ - 1

BINARY NUMBER EXAMPLE

Find (r-1) 1's complement of (101100)2

•
$$r = 2$$

•
$$n = 6$$

- m = 0
- N = 101100

NewExample

$$N(r-1) = r^{n} - r^{-m} - N$$

(r-1) 1's complement of (101100)2

•
$$r = 2$$

•
$$n = 6$$

•
$$m = 0$$

•
$$N = 101100$$

$$N(r-1) = r^{n} - r^{-m} - N$$

$$N(1) = 2^6 - 2^0 - (101100)_2$$

$$= (1000000)_2 - (1)_2 - (101100)_2$$

$$= (010011)_2$$

$$N(1) = 1's$$

1's complement; Quick method

- Easy memorization rule for finding the 1's complement (binary).
 - -Change 1's to 0's and 0's to 1's

$$a = 1101001$$
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
1's of $a = 0010110$

2's complement; Quick method?

•
$$2's = 2^{n} - N$$

• $1's = 2^{n} - 2^{-m} - N$

•
$$2's = 2^{n} - N$$

• $1's = 2^{n} - 2^{-m} - N$
or
• $1's = 2^{n} - N - 2^{-m}$

•
$$2's = 2^{n} - N$$

• $1's = 2^{n} - 2^{-m} - N$
or
• $1's = 2^{n} - N - 2^{-m}$
or
 $1's = 2's - 2^{-m}$

2's = 1's + 1

•
$$2's = 2^{n} - N$$

• 1's =
$$2^{n}- 2^{-m} - N$$

or

• 1's =
$$2^n - N - 2^{-m}$$

or
1's = $2's - 2^{-m}$
or

•
$$2's = 1's + 2^{-m}$$
, for $m = 0$

•
$$2$$
's = 1 's + 1

2's complement-example

1's complement

2's complement

1	0	1	0	1	0	0		
0	1	0	1	0	1	0		1's
					+	1		
0	1	0	1	1	0	0	—	2's

Why do we learn about complements?

- To simplify subtraction ...
- Subtraction performed by digital computers is much more efficient using 2's complements

Binary Subtraction

using Complements

(M-N) algorithm using (2's)

- 1. Find 2's complement of N
- 2. Add M to 2's complement of N
 - a) If an end carry occurs, discard it and whatever is left is your answer
 - b) If an end carry does not occur, take the 2's complement of the number obtained in step
 1 and place a minus (-) sign in front of it

Subtract 84-68, using 2's complement

- M = 1010100 = 84
- -N = 1000100 = -68

Subtraction using complements (M-N)

- M = 1010100 = 84
- -N = 1000100 = -68

.

Subtraction using complements (M-N)

Overflow

- Note that the answer (10010000) is 8-bits long, while the inputs were only 7 bits. This is ... overflow
- The answer 10010000 is correct, but the result cannot be used in further computations

Subtract 68-84, using 2's complement

Subtract 68-84, using 2's complement

•
$$M = 1000100 = 68$$

•
$$-N = -1010100 = -84$$

-16

Subtraction using complements

Subtraction using complements

```
2's of 1010100 ?
• M = 100 0100 = 68
                           1's = 0101011
• -N = -1010100 = -84
                 -16
Therefore,
                                  0101100
     100 0100
   + 010 1100
  NC 111 0000
```

The answer is: -2's of $(111\ 0000) = -10000 = (-16)10$

Therefore...

```
M - N = M + 2's comp. of N
= M + \{ (1's comp. of N) + 1 \}
```

Therefore...

```
M-N = M + 2's comp. of N
= M + { (1's comp. of N) + 1 }
(Will be realized with gates...)
```

To avoid using the minus sign ... in front of ...

To avoid using the minus sign ... in front of ...

· Use signed binary numbers

Signed binary numbers

 Positive numbers (binary) are represented by placing a bit (0) in the leftmost position

Signed binary numbers

- Positive numbers (binary) are represented by placing a bit (0) in the leftmost position
- Negative numbers use a bit (1) in the leftmost position
 - \triangleright bit 0 = + (Positive number)
 - bit 1 = (Negative number)

Examples: Signed/unsigned binary numbers

01001 = 9; if unsigned
 01001 = +9; if signed
 11001 = 25; if unsigned
 11001 = -9; if signed

• +9 signed

0000 1001

• +9 signed 0000 1001

-9 singed - mag. 1000 1001

- +9 signed 0000 1001
- -9 singed mag. 1000 1001
- -9 singed mag.1's 1111 0110

- +9 signed
- -9 singed mag.
- -9 singed mag.1's

0000 1001

1000 1001

1111 0110

+ 1

-9 singed - mag. 2's

1111 0111

Addition of signed numbers: 2's complement

$$(-6) + 13 = 7$$

- 6+ 13+ 7

- 6+ 13+ 7

```
2's of (0000\ 0110) = 6
                                  1111 1001
+ 13
                                          +1
                                  1111 \ 1010 = (-6)
     1111 1010
    +0000\ 1101 = (+13)10
    1 0000 0111
```

```
2's of (0000\ 0110) = 6
+ 13
                                  1111 1001
                                          +1
                                 1111 \ 1010 = (-6)
   1111 1010
  +0000\ 1101 = (+13)10
  1 0000 0111
                          Answer: (0000\ 0111)_2 = (7)_{10}
              out
```

$$6 + (-13) = -7$$

$$(0000\ 1101) = 13$$


```
• + 6

• - 13

- 7

- 7

2's of (0000 \ 1101) = 13

1111 0010

+1

1111 0011 = -13

0000 0110 = + 6

+1111 0011 = 2's of (-13)10
```

00000 111

```
2's of (0000 1101) = 13
+ 6
 - 13
                                   1111 0010
                                           +1
  - 7
                                  1111\ 0011 = -13
   0000\ 0110 = +6
  +1111 \ 0011 = 2's of (-13)_{10} \leftarrow
   1111 1001 = (-7)10, in 2's complement form
    0000 0110
         + 1
```

$$(-6) + (-13) = -19$$

```
2's of 6 = 1111 1010
- 13
                   2's of 13 = 1111 0011—
- 19
        1111 1010
       +1111 0011 ←
      1 1110 1101
```

```
2's of 6 = 1111 1010
- 13
                   2's of 13 = 1111 0011—
- 19
        1111 1010
       +1111 0011 ←
      1 1110 1101
      out
```

```
2's of 6 = 1111 1010
- 13
                     2's of 13 = 1111 0011—
- 19
         1111 1010
        +1111 0011 ←
       1 1110 1101
                     Answer: 1110 1101 ← (-19)10, in 2's comp.form
      out
```

Procedure:

- 1. If both numbers are positive the addition is as known (discard the carry if any)
- 2. If one of the numbers is negative, then:
 - a) Find the 2's complement of the negative number
 - b) Add the result of (a) to the positive number (discard the carry if any)

Signed 2's complement

 Is the most preferable form in computing (CMPT280)

