Avaliação de Desempenho

Filas MMm

Fila M/M/m

- Tempo entre chegadas é distribuído exponencialmente
- Há *m* servidores
- Tempo de serviço tem distribuição exponencial
- Não há limitação do buffer ou do tamanho da população
- Disciplina de serviço é FCFS

Variáveis

Número de Elementos no Sistema

Diagrama de transição para sistema MMm

 Estado estacionário (tempo de observação muito grande)

Parâmetros da fila M/M/m

PARÂMETROS		
Taxa de chegada	λ	
Tempo médio entre chegadas	$1/\lambda$	
Número de servidores	m	
Taxa de serviço em cada servidor	μ	
Tempo médio de serviço ($E[S]$)	$1/\mu$	
Intensidade de tráfego (ρ) = Utilização média de cada servidor	$\lambda/m\mu$	
Condição de estabilidade	$\lambda < m\mu$ ou $\rho < 1$	

Probabilidades da fila M/M/m

PROBABILIDADES		
Probabilidade de não haver nenhuma tarefa no sistema	$P[N=0] = P_0 = \left[1 + \frac{(m\rho)^m}{m! (1-\rho)} + \sum_{n=1}^{m-1} \frac{(m\rho)^n}{n!}\right]^{-1}$	
Probabilidade de haver <i>n</i> tarefas no sistema	$P[N = n] = \frac{(m\rho)^n}{n!} P_0, \qquad n < m$ $P[N = n] = \frac{\rho^n m^m}{m!} P_0, \qquad n \ge m$	
Probabilidade de haver m ou mais tarefas no sistema (ε)	$\varepsilon = \frac{P_0(\rho^m m^m)}{m! (1 - \rho)}$ $\varepsilon = P[N m]$	

Probabilidades da fila M/M/m

PROBABILIDADES			
Função de distribuição acumulada do tempo de espera	$F_w(w) = 1 - (\varepsilon \cdot e^{-m\mu(1-\rho)w})$		
Função de distribuição acumulada do tempo de resposta	$F_R(r) = 1 - e^{-\mu r} - \frac{\varepsilon}{1 - m + m\rho} e^{-m\mu(1 - \rho)r}$ $F_R(r) = 1 - e^{-\mu r} - \varepsilon \mu r e^{-m\mu r}$	$ \rho \neq (m-1)/m $ $ \rho = (m-1)/m $	

Médias da fila M/M/m

MÉDIAS		
Número médio de tarefas no sistema	$E[N] = m\rho + (\varepsilon\rho) / (1-\rho)$	
Número médio de tarefas na fila	$E[N_q] = (\varepsilon \rho) / (1-\rho)$	
Número médio de tarefas sendo servidas	$E[N_s] = m\rho$	
Tempo de resposta médio	$E[R] = \frac{1}{\mu} + \frac{\varepsilon}{m\mu(1-\rho)}$	
Tempo na fila médio médio	$E[W] = \frac{\varepsilon}{m\mu(1-\rho)}$	
Tempo de serviço médio	$E[S] = \frac{1}{\mu}$	

- Um servidor web recebe solicitações em uma taxa de 3000 chegadas por minuto. A taxa de serviço do servidor é 58,8235 solicitações por segundo.
- Qual é o tempo de serviço médio?
- Qual é o tempo de resposta médio?
- Qual é o tamanho médio da fila?
- Qual é a probabilidade de o servidor ficar ocioso?
- Qual é a probabilidade de haver mais do que 3 tarefas no sistema?
- Qual é a probabilidade de o tempo de resposta ser menor do que 0,5 segundos?

Um servidor web recebe solicitações em uma taxa de 3000 chegadas por minuto. A taxa de serviço do servidor é 58,8235 solicitações por segundo.

$$\lambda = 3000/60 = 50$$
 solicitações por segundo
 $\mu = 58,8235$ solicitações por segundo
fila = FilaMMm(50, 58.8235, 1)

Qual é o tempo de serviço médio?

$$E[S] = 0.017$$
 segundos

Qual é o tempo de resposta médio?

fila.E_R
$$E[R] = 0,1133$$
 segundoss

Qual é o tamanho médio da fila?

$$E[N_q] = 4,8167$$

• Um servidor web recebe solicitações em uma taxa de 3000 chegadas por minuto. A taxa de serviço do servidor é 58,8235 solicitações por segundo.

```
\lambda = 3000/60 = 50 solicitações por segundo

\mu = 58,8235 solicitações por segundo

fila = FilaMMm(50, 58.8235, 1)
```

Qual é a probabilidade de o servidor ficar ocioso?

fila.pmf_N(0)
$$P[N=0] = 0.1500$$

• Qual a probabilidade de haver mais do que 2 tarefas no sistema

$$1-(fila.pmf_N(0)+fila.pmf_N(1)+fila.pmf_N(2))$$
 $P[N>2] = 0,6141$

• Qual é a probabilidade de o tempo de resposta ser menor do que 0,5 segundos?

fila.cdf_
$$R(0.5)$$
 $P[R<0.5] = 0.9879$

- Um sistema com um único servidor recebe 4 tarefas por segundo, com os tempos distribuídos exponencialmente. O tempo de serviço médio é de 0,208 segundos.
- Dados: $\lambda = 4$ E[S] = 0,208 m = 1 $\mu = 1/E[S] = 1/0,208 = 4,8$ tarefas por segundo fila1 = FilaMMm(4, 4.8, 1)
- Qual é o tempo de resposta médio? fila1.E_R
 - E[R] = 1,2500 segundos

- Suponha que foi comprado outro servidor para o sistema, e que metade do fluxo de entrada seja direcionado para cada servidor.
- Dados: $\lambda = 2$ E[S] = 0,208 m = 1 $\mu = 1/E[S] = 1/0,208 = 4,8$ tarefas por segundo fila2 = FilaMMm(2, 4.8, 1)
- Qual é o tempo de resposta médio? fila2.E_R

$$E[R] = 0.3571$$
 segundos

- Suponha que foi comprado outro servidor para o sistema, e que os dois servidores vão ser utilizados sejam através de uma fila única (M/M/2).
- Dados: $\lambda = 4$ E[S] = 0,208 m = 2 $\mu = 1/E[S] = 1/0,208 = 4,8$ tarefas por segundo fila3 = FilaMMm(4, 4.8, 2)
- Qual é o tempo de resposta médio?

fila3.E_R
$$E[R] = 0.2521 \text{ segundos}$$

- Suponha que em vez de comprar dois servidores, foi comprado um servidor duas vezes mais rápido.
- Dados: $\lambda = 4$ E[S] = 0,104 m = 1 $\mu = 1/E[S] = 1/0,104 = 9,6$ tarefas por segundo fila4 = FilaMMm(4, 9.6, 1)
- Qual é o tempo de resposta médio? fila4.E R

E[R] = 0.1786 segundos

Comparação dos Modelos

- Uma fila M/M/2 é melhor do que 2 filas M/M/1
- Este resultado é sempre válido: fila única é sempre melhor do que múltiplas filas onde a taxa de serviço é igual
- A melhor solução é a última, onde a taxa de serviço foi dobrada
 - Em muitos casos pode ser a solução mais cara
 - A decisão por uma ou outra escolha deve ser feita por uma análise de custo/benefício

Avaliação de Desempenho

Filas MMm