

LOCALLY PRIVATE GRAPH NEURAL NETWORKS

Sina Sajadmanesh Daniel Gatica-Perez

Idiap Research Institute

ACM SIGSAC Conference on Computer and Communications Security – November 2021

Introduction

Learning Graph Neural Networks (GNNs) with node data privacy

Motivating Example:

- A social network server (e.g., Facebook) wishes to train a GNN over the graph of users
- Need to access user's personal data, such as mobile sensor data for training a better model

Learning Graph Neural Networks (GNNs) with node data privacy

Motivating Example:

- A social network server (e.g., Facebook) wishes to train a GNN over the graph of users
- Need to access user's personal data, such as mobile sensor data for training a better model

Assumptions:

- Graph topology is public to the server
- Node data (features/labels) are private to nodes

Problem:

 How to let the server train a GNN without giving up private node data?

LOCALLY PRIVATE GNN

Our Approach: Preserve the privacy of nodes using Local Differential Privacy

- ► Multi-bit mechanism for high-dimensional feature perturbation
- ► KProp layer for better feature and label estimation
- ► Drop algorithm for learning with privatized labels

LOCAL DIFFERENTIAL PRIVACY (LDP)

Procedure

- ► Data holders perturb their data using a randomized mechanism
- ► The aggregator estimates the target statistics by aggregating perturbed data
 - The noise cancels out through aggregation

Image Credit: Bennett Cyphers 3/22

LOCAL DIFFERENTIAL PRIVACY (LDP)

Procedure

- ► Data holders perturb their data using a randomized mechanism
- The aggregator estimates the target statistics by aggregating perturbed data
 - The noise cancels out through aggregation

Definition

a randomized mechanism \mathcal{M} satisfies ϵ -LDP if for all pairs of private data x_1 and x_2 , and for all outputs x' of \mathcal{M} , we have:

$$\Pr[\mathcal{M}(x_1) = x'] \le e^{\epsilon} \Pr[\mathcal{M}(x_2) = x']$$

Image Credit: Bennett Cyphers 3/22

WHY LOCAL DP?

GNN objective: learn a representation vector for every node

AGGREGATE: nodes aggregate their neighbors' representation vector using a permutation invariant function (e.g., mean, sum, or max)

UPDATE: a neural network generates new node representations from aggregated vectors

WHY LOCAL DP?

GNN objective: learn a representation vector for every node

AGGREGATE: nodes aggregate their neighbors' representation vector using a permutation invariant function (e.g., mean, sum, or max)

UPDATE: a neural network generates new node representations from aggregated vectors

Private neighborhood aggregation with LDP

- ► Node features are perturbed by injecting noise
- ► The neighborhood aggregation cancels out the noise

CHALLENGES

High-dimensional features

- ► The total privacy budget of a node scales with the number of features
 - Keeping the total privacy budget small \rightarrow Too much noise!

Multi-bit Encoder

- ► Runs at user-side
- Performs randomized feature selection, perturbation, and compression
- ► Introduces bias into the features

Multi-bit Rectifier

- ► Runs at server-side
- ► Performs feature decompression and debiasing

CHALLENGES

Small neighborhoods

- ► Lots of the nodes have too few neighbors
 - Noise won't cancel out if the neighborhood size is small

CHALLENGE: SMALL NEIGHBORHOODS

Our solution: KProp denoising layer

- Expands the neighborhood to the nodes that are up to K-hops away
- ► Applies *K* consecutive linear **AGGREGATE** functions
 - No non-linearity in between
- ► Can be prepended to any GNN architecture
 - Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), GraphSAGE, . . .

LABEL PRIVACY

Randomized Response for label perturbation

- ► True label y
- ► Perturbed label **y**′
- ► Number of classes c
- ightharpoonup DP privacy budget ϵ

$$y' = \left\{ egin{array}{ll} y & \text{w.p.} & rac{e^{\epsilon}}{e^{\epsilon} + c - 1} \ & \text{another random label} & \text{o.w.} \end{array} \right.$$

LEARNING WITH NOISY LABELS

KProp for label denoising

- ► Neighboring nodes tend to have similar labels
- Node label can be estimated by aggregating neighboring labels
- ► KProp can help overcoming small neighborhoods

LEARNING WITH NOISY LABELS

KProp for label denoising

- ► Neighboring nodes tend to have similar labels
- Node label can be estimated by aggregating neighboring labels
- ► KProp can help overcoming small neighborhoods

How to find best KProp iteration (and other hyper-parameters) without clean labels?

LEARNING WITHOUT CLEAN DATA

- ► Validation data is used for model selection and early stopping
- ► No clean data for validation in our problem due to privacy
 - More realistic assumption in real-world scenarios
- ▶ Need alternative methods to **prevent overfitting** and **selecting hyper-parameters**

PREVENTING OVERFITTING

Prevent overfitting the recovered labels

- ► We want the GNN to be the **predictor of true labels**, not the recovered ones
- ► The predictions should go through the same process as the labels
 - We apply RR and KProp on predictions as well

PREVENTING OVERFITTING

Prevent overfitting the noisy labels

- Overfitting still happens if KProp step is not enough for efficient denoising
- ► RR gives us an expected label accuracy:

$$p(y'=y) = \frac{e^{\epsilon}}{e^{\epsilon} + c - 1}$$

- ► We stop training when GNN's accuracy for predicting noisy labels goes beyond this value
 - Achieving a higher accuracy is a signal of overfitting

FINAL ALGORITHM: LABEL DENOISING WITH PROPAGATION (DROP)

Model selection using Forward Correction loss

- Calculated between noisy labels and noisy predictions
- ► An unbiased estimator for the true loss

EXPERIMENT SETTING

- ► Learning Task: Node Classification
- ► Backbone Model: 2-layer GNN
 - Default: GraphSAGE
- ► KProp Aggregation: GCN

Datasets

DATASET	CLASSES	Nodes	EDGES	FEATURES	Avg. Degree
CORA	7 categories	2,708 DOCUMENTS	5,278 citations	1,433	3.90
Pubmed	3 categories	19,717 DOCUMENTS	44,324 citations	500	4.50
FACEBOOK	4 CATEGORIES	22,470 PAGES	170,912 LIKES	4,714	15.21
LASTFM	10 countries	7,083 users	25,814 FRIENDSHIPS	7,842	7.29

PRIVACY VS. ACCURACY TRADE-OFF

Base GNN: **GraphSAGE**

LPGNN is very robust to noisy features!

LastFM

1.0

 $\epsilon_y = 1^{-1}$

 $\epsilon_V = 2$ \triangle $\epsilon_V = 3$

 $\Delta \epsilon_V = \infty$

2.0 3.0 inf

COMPARISON OF GNN ARCHITECTURES

► Dataset: Facebook

Feature-dependent models suffer at high-privacy regimes!

COMPARISON AGAINST PRIVACY-FREE FEATURES

- ► Base GNN: **GraphSAGE**
- ▶ Label privacy budget $\epsilon_y = 1$

FEATURE	Cora	PUBMED	FACEBOOK	LASTFM
ALL ONES	22.6 ± 5.0	38.9 ± 0.4	29.0 ± 1.4	19.6 ± 1.8
One-Hot Degree	44.4 ± 3.5	52.5 ± 5.7	77.2 ± 0.3	66.4 ± 1.6
RANDOM	26.4 ± 3.0	56.0 ± 1.3	35.2 ± 5.6	32.3 ± 6.3
MULTI-BIT $(\epsilon_{\scriptscriptstyle X}=1)$	69.3 ± 1.2	74.9 ± 0.3	84.9 ± 0.2	82.1 \pm 1.0

Meaningful node features, even privatized, are very helpful!

COMPARISON OF LDP MECHANISMS

- ► Base GNN: **GraphSAGE**
- ▶ Label privacy budget $\epsilon_y = \infty$

DATASET	MECHANISM	$\epsilon_{\rm X}=0.1$	$\epsilon_{X}=1$	$\epsilon_X = 2$
CORA	Laplace	57.8 ± 2.3	61.9 ± 3.1	58.1 ± 2.1
	GAUSSIAN	62.7 ± 2.8	67.5 ± 3.0	77.2 ± 1.9
	Multi-bit	$\textbf{64.6} \pm \textbf{3.2}$	$\textbf{83.9} \pm \textbf{0.4}$	$\textbf{84.0} \pm \textbf{0.3}$
FACEBOOK	Laplace	72.5 ± 2.1	85.4 ± 0.4	84.8 ± 1.6
	GAUSSIAN	85.6 ± 0.7	92.0 ± 0.1	92.4 ± 0.2
	Multi-bit	$\textbf{91.0} \pm \textbf{0.4}$	92.7 ± 0.1	92.9 ± 0.1

Perturbing fewer features but with higher privacy budget is better!

EFFECT OF KPROP IN PERFORMANCE IMPROVEMENT

► Dataset: Pubmed

► Base GNN: **GraphSAGE**

KProp significantly boosts accuracy, especially at larger noises!

COMPARISON OF DIFFERENT LEARNING ALGORITHMS

► Base GNN: **GraphSAGE**

Feature privacy budget $\epsilon_x = 1$

DATASET	ϵ_{y}	CROSS ENTROPY	Forward Correction	DROP
CORA	0.5	18.6 ± 1.3	18.6 ± 2.5	42.9 ± 1.5
	1.0	25.5 ± 1.7	37.1 ± 2.5	69.3 ± 1.2
	2.0	52.9 ± 2.1	75.1 ± 1.0	$\textbf{78.4} \pm \textbf{0.7}$
LASTFM	0.5	21.1 ± 4.6	44.9 ± 5.3	70.0 ± 3.0
	1.0	28.4 ± 2.5	58.5 ± 3.6	$\textbf{82.1} \pm \textbf{1.0}$
	2.0	56.8 ± 2.8	79.2 ± 1.3	$\textbf{85.7} \pm \textbf{0.7}$

DROP significantly outperforms baseline methods!

Summary

- ▶ Proposed a privacy-preserving GNN based on local differential privacy
 - Multi-bit mechanism for high-dimensional feature perturbation
 - KProp for feature and label denoising
 - Drop algorithm for learning with noisy labels
- ► GNN models demonstrate graceful accuracy-privacy trade-off
 - Feature privacy almost comes for free in simpler models
 - Label privacy with low privacy budget gives acceptable accuracy

THANK YOU!

sajadmanesh@idiap.ch
sajadmanesh

Multi-bit Encoder (user-side):

- ► Feature selection: pick *m* out of *d* dimensions uniformly at random
- **Perturbation:** perturb selected features using **1-bit mechanism** with ϵ/m privacy budget per feature:

$$x_{v,i}^{\star} \sim \text{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{x_{v,i}-\alpha}{\beta-\alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

▶ Compression: Map 1-bit output to either -1 or 1, return 0 for non-selected

Theorem: The multi-bit mechanism satisfies ϵ -LDP for each node.

Multi-bit Encoder (user-side):

- ► Feature selection: pick *m* out of *d* dimensions uniformly at random
- **Perturbation:** perturb selected features using **1-bit mechanism** with ϵ/m privacy budget per feature:

$$x_{v,i}^{\star} \sim \text{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{x_{v,i}-\alpha}{\beta-\alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

► Compression: Map 1-bit output to either -1 or 1, return 0 for non-selected

Theorem: The multi-bit mechanism satisfies ϵ -LDP for each node.

This process introduces bias into the features

Multi-bit Rectifier (server-side):

▶ Decompression and de-biasing: reverse the encoder's mapping:

$$X'_{\nu,i} = \frac{d(\beta - \alpha)}{2m} \cdot \frac{e^{\epsilon/m} + 1}{e^{\epsilon/m} - 1} \cdot X^{\star}_{\nu,i} + \frac{\alpha + \beta}{2}$$

▶ Optimal *m* is found by minimizing the rectifier's variance:

$$m^* = \max(1, \min(d, \lfloor \frac{\epsilon}{2.18} \rfloor))$$