Date:

Aim of the Experiment:

Physical Computation of different Embedded System Projects using push-button switch interfacing with Raspberry Pi and LEDs.

Objective:

- 1) Implementation of **mini pedestrian crossing system** (simple traffic light control system) using multiple LEDs without push-button.
- 2) Study the **effect of Multithreading concept** on processing time of an embedded system using Micro-python script (e.g. Comparing the processing time to calculate the **square** and cube of a series of numbers with and without multithreading concept).
- 3) Implementation of mini pedestrian crossing system with proper control (**Puffin Crossing System**) based on the concept of **multi-threading** using multiple LEDs with a push-button and a buzzer.
- 4) Implementation of **Single player** based **Simple Reaction Timing Game** (Mental Chronometry) based on the concept of Interrupt Requests, or IRQs using a push-button.
- 5) Implementation of **Two player** based Simple Reaction Timing Game (**Mental Chronometry**) based on the concept of **Interrupt Requests**, or **IRQs** using a pushbutton.
- 6) Implementation of **changing the LED flashing rate** using pushbutton as external interrupts with external and internal Pull-up resistors.
- 7) Implementation of a **Digital Dice Game** using LEDs and Push-buttons.
- 8) Implementation of Lucky Day of the Week using LEDs and Push-buttons.

Components/Equipment/items Required:

SI	Name of the	Specification	Quantity
No.	Component/Equipment		
1	Raspberry Pi Pico	RP2040 microcontroller	1
		chip, 125MHz	
2	Raspberry Pi Pico cable	USB Type A to Micro-B	1
3	Resistors (carbon type)	$\frac{1}{4}$ watt (330 Ω)	10
4	LED	3mm, Red	8
5	Tactile Push Button	6 x 6 x 6 mm	2
	Switches		
6	Breadboard	840 Tie points	1
7	Jumper Wire		As per requirement

Circuit/Schematic Diagram:

Objective 1

(Figure 1: Circuit diagram for implementation of mini pedestrian crossing system.)

Objective 3

(Figure 2: Circuit diagram for implementation of Puffin crossing system.)

Objective 4

(Figure 3: Circuit diagram for implementation of Single player based Simple Reaction Timing Game.)

(Figure 4: Circuit diagram for implementation of Two player based Simple Reaction Timing Game.)

(Figure 5: Circuit diagram for implementation of changing the LED flashing rate using pushbutton with Pull-up resistors.)

(Figure 6: Circuit diagram for implementation of a Digital Dice Game using LEDs and Push-buttons.)

(Figure 7: Circuit diagram for implementation of Lucky Day of the Week using LEDs and Push-buttons.)

Observation:

Objective 1

(Figure 8: Simulation based electronic circuit for implementation of mini pedestrian crossing system.)

Figure 9: (Breadboard Schematic representation of an electronic circuit for implementation of mini pedestrian crossing system.)

Figure 10: (Hardware implementation based electronic circuit for implementation of mini pedestrian crossing system)

Objective 2

(Figure 11: Simulation based Comparing the processing time to calculate the square and cube of a series of numbers without multithreading concept.)

(Figure 12: Simulation based Comparing the processing time to calculate the square and cube of a series of numbers without multithreading concept.)

Objective 3

(Figure 13: Simulation based electronic circuit for implementation of Puffin crossing system.)

Figure 14: (Breadboard Schematic representation of an electronic circuit for implementation of Puffin crossing system.)

Figure 15: (Hardware implementation based electronic circuit for implementation of Puffin crossing system)

(Figure 16: Simulation based electronic circuit for implementation of Single player based Simple Reaction Timing Game.)

Figure 17: (Breadboard Schematic representation of an electronic circuit for implementation of Single player based Simple Reaction Timing Game.)

Figure 18: (Hardware implementation based electronic circuit for implementation of Single player based Simple Reaction Timing Game)

Objective 5

(Figure 19: Simulation based electronic circuit for implementation of Two player based Simple Reaction Timing Game.)

Figure 20: (Breadboard Schematic representation of an electronic circuit for implementation of Two player based Simple Reaction Timing Game.)

Figure 21: (Hardware implementation based electronic circuit for implementation of Two player based Simple Reaction Timing Game)

Objective 6

(Figure 22: Simulation based electronic circuit for changing the LED flashing rate using pushbutton with Pull-up resistors.)

Figure 23: (Breadboard Schematic representation of an electronic circuit for changing the LED flashing rate using pushbutton with Pull-up resistors.)

Figure 24: (Hardware implementation based electronic circuit for changing the LED flashing rate using pushbutton with Pull-up resistors.)

INTERNET OF THINGS (IOT) PROJECT USING PYTHON (CSE 4110)

Codes:

Objective 1

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 1")
print("Name: ; Registration No.: ")
print("Objective : 1 Implementation of mini pedestrian crossing system using multiple LEDs without push-button ")
```

Objective 2

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 2")
print("Name: ; Registration No.: ")
print("Objective : 2 Study the effect of Multithreading concept on processing
time of an embedded system using Micro-python script ")
```

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 3")
print("Name: ; Registration No.: ")
print("Objective : 3 Implementation of Puffin Crossing System based on the concept of multi-threading using multiple LEDs with a push-button and a buzzer.")
```

Objective 4

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 4")
print("Name: ; Registration No.: ")
print("Objective : 4 Implementation of Single player based Simple Reaction
Timing Game based on the concept of Interrupt Requests, or IRQs using a push-button.")
```

Objective 5

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 5")
print("Name: ; Registration No.: ")
print("Objective : 5 Implementation of Two player based Simple Reaction Timing
Game based on the concept of Interrupt Requests, or IRQs using a push-button.")
```

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 6")
print("Name: ; Registration No.: ")
print("Objective : 6 Implementation of changing the LED flashing rate using pushbutton as external interrupts with external and internal Pull-up resistors.")
```

Objective 7

```
print("Hello, Pi Pico!")
print("This is Experiment - 5 and Objective - 7")
print("Name: ; Registration No.: ")
print("Objective : 7 Implementation of a Digital Dice Game using LEDs and Push-buttons.")
```

Objective 8

Conclusion:

Precautions:

Post Experiment Questionnaire:

Answer all the Questions in brief with some appropriate examples.

- 1) List out the two main modules which can be used to handle threads in Python.
- 2) What is global interpreter lock (GIL) in Multi-threading?
- 3) Why interrupts? Differentiate between polling and interrupts through a real-life example.
- 4) Explain the RISING and FALLING in interrupts in Raspberry Pi.

Name of the Student Registration No Semester Branch, Section