

Что же такое алгоритм?

В начале 20-го века Давид Гильберт провозгласил цель выработать набор начальных утверждений, из которых вся остальная математика бы вытекала как следствие.

Гедёль покончил с этими надеждами, показав что любая формальная система обречена быть или неполной или иметь внутри противоречие.

Спустя время, Алонсо Черт и Алан Тьюринг независимо друг от друга показали важные результаты во многом основанные на работах Гедёля, суть которых в ограниченности алгоритмов, являл по сути тот же результат с несколько иного ракурса.

Машина Тьюринга (МТ)

лента

 m-4	m-3	m-2	m-1	m	m+1	m+2	m+3	m+4	
 0	1	0	1	1	0	1	1	0	

- * Состояния $Q = \{A, B, C, HALT\}$
- * Алфавит ленты $\Gamma = \{0,1\}$
- * Пустой символ b=0
- * Алфавит ввода $\Sigma = \{1\}$
- * Начальное состояние $q_0 = A$
- * Множество конечных состояний $F = \{HALT\}$
- * Функция переходов

$$\delta: (Q \backslash F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

	State a			State b			State c		
	Write	Move	Next	Write	Move	Next	Write	Move	Next
0	1	R	b	1	L	Α	1	L	В
1	0	R	С	1	R	Н	0	R	Н

Соответствие натуральному ряду

Поставим в соответствие каждой MT_i некоторое достаточное большое натуральное число i, причем в бинарной записи (алфавит ленты MT).

Причем сразу оговорим, что такое соответствие всегда достижимо.

Состояния перечислимы, функции перехода любой MT_i так же $MT_i o i \in N$. Данные по определённом протоколу записываются в конец этого числа

Кортеж $\{MT_i,I\}$ можно закодировать в виде одного сколь угодно большого числа $n\in N$. Воспользовавшись неким подобием алгоритма Хафмана, где у описателей полей будут уникальные не перепутываемые двоичные коды. При этом $\exists k\in N: \not\exists MT_k$ но такие пропуски не должны нас смущать так как ни на что не влияют в рассуждениях. К примеру на рисунке числу $k-1\in N: \not\exists MT_{k-1}$ поэтому числам $n+1,n+2,...\in N: \not\exists \{MT,I\}$

	k-1	k	k+1
k-1		$\frac{A}{n+1}$	$\frac{1}{n+2}$
k	$MT_k(k-1)$	$MT_k(k)$ $n+3$	$MT_k(k+1)$ $n+6$
k+1	$MT_{k+1}(k-1)$ $n+4$	$MT_{k+1}(k)$ $n+5$	$MT_{k+1}(k+1)$

Описание

Проблема заключается в том, чтобы посмотреть на компьютерную программу и выяснить, будет ли программа работать вечно или нет. *Мы говорим, что программа "решает проблему остановки", если она может посмотреть на любую другую программу и сказать, будет ли эта другая программа работать вечно или нет.* При этом обои эту проблему по тайм-ауту не получится, поскольку существуют задачи требующие огромного времени для исполнения в силу своей природы.

Понятие МТ эквивалентно-«изоморфно» понятию алгоритм, а соотвественно любому языку программирования. Поэтому можно пользоваться такой абстракций как функция или подзадача и вообще псевдокодом как таковым, эквивалентность выводов. Получив некий вывод для псевдокода, этот вывод можно распространить на изоморфный языку программирования МТ.

К примеру Ф1 программа и «изоморфная» ей МТ зациклится а Ф2 наоборот сразу остановится

функция Ф1(): делай_если Истина: продолжай

Анализатор

Предположим анализатор показывающий остановится ли произвольная МТ существует. Нас не интересует тело этой МТ (равно программы). Оно может быть сколь угодно сложным но конечным.

И нам не важно в какой кодировке анализатор <u>воспринимает</u> подаваемые ему на входную ленту МТ (но не интерпретирует иначе бы он зациклился!), эта кодировка может (и скорее всего не совпадает и кодировок таких и анализаторов может быть не один) не совпадать с избранной нами для перечисления натуральным рядом числе всех существующих MT_i . Но тем не менее, кодировка (исследуемой МТ записанной на ленту) хоть и не обязана совпадать, но будет во всем подобна нашей.

функция А(ПАФ, И):
если ПАФ(И) не остановится то:
верни Истина
иначе:
верни Ложь

Анализатор на вход получает два аргумента. Исследуемую МТ (ПАФ - произвольную анализируемую функцию) и аргументы исследуемой МТ. Это как два подряд идущих натуральных числа или как одно большое.

Сам А отображен в виде функции, для простоты анализа, но в силу изоморфности языка МТ, на суть рассуждений это не влияет.

Неизбежное наличие

Существование анализатора мы лишь предположили как гипотезу, а вот существование МТ содержащего его вызов мы не имеем права не предполагать. Натуральный ряд чисел пробегает все значения и содержит в себе всевозможные комбинации из всех существующих алгоритмов и данных к ним.

Натуральный ряд	Декодированный вызов
n	Ф(n ~ MT_n)
m	Ф(m ~ MT_m)
k	Ф(k ~ MT_k)

А раз так значит в натуральном ряде найдется вызов функции $\Phi(\Phi)$! С описанным ниже действием.

функция ПА(П):
верни А(П, П)

функция А(П, И):
если П(И) не остановится то:
верни Истина
иначе:
верни Ложь

Делаем вызов

Теперь раз существование Ф неизбежно. То на ленте неизбежно будет существовать вызов Ф(Ф).

функция ПА(П):
верни А(П, П)

функция А(П, И): если П(И) не остановится то: верни Истина иначе: верни Ложь

Шаг	Действие						
0	Ф(Ф) - вызываем Ф на вход Ф						
1	ПА(Ф) - вызываем предикат						
2	А(Ф, Ф) - вызываем анализатор на Ф и в качестве аргумента Ф						
3	А(Ф, Ф) вернул истину, считает что Ф(Ф)	А(Ф, Ф) вернул ложь, считает что Ф(Ф)					
4	Вызов Ф(Ф) который мы сделали заканчивается	Вызов который мы сделали зацикливается					
5	Противоречие!	Противоречие!					

Единственное неоправданное допущение которое мы сделали - это существование универсальной MT анализатора. Что в силу полученного в процессе доказательства противоречия отвергаем

Автор презентации: Nibiru Official https://www.youtube.com/channel/UC7WnH1_cYEm_XWsWyQ7ACgA

