Importing Libraries And Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
    confusion_matrix, classification_report, roc_auc_score,
    roc_curve, accuracy_score
)
```

```
df = pd.read_csv("/content/data.csv")
df.head(10)
```

	id	aiagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
0	842302	М	17.99	10.38	122.80	1001.0
1	842517	М	20.57	17.77	132.90	1326.0
2	84300903	М	19.69	21.25	130.00	1203.0
3	84348301	М	11.42	20.38	77.58	386.1
4	84358402	М	20.29	14.34	135.10	1297.0
5	843786	М	12.45	15.70	82.57	477.1
6	844359	М	18.25	19.98	119.60	1040.0
7	84458202	М	13.71	20.83	90.20	577.9
8	844981	М	13.00	21.82	87.50	519.8
9	84501001	М	12.46	24.04	83.97	475.9

Preprocessing The Dataset

```
df.describe()
```

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoo	
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000		
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104		
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129		
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000		
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000		
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000		
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000		
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000		
3 rows × 32 columns							

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
     Column
                               Non-Null Count
                                               Dtype
     _ _ _ _ _ _
                                                _ _ _ _ _
 0
     id
                               569 non-null
                                                int64
 1
     diagnosis
                               569 non-null
                                                object
 2
     radius_mean
                               569 non-null
                                                float64
 3
     texture_mean
                               569 non-null
                                                float64
 4
                               569 non-null
                                                float64
     perimeter_mean
 5
     area_mean
                               569 non-null
                                                float64
 6
     smoothness mean
                               569 non-null
                                                float64
 7
                                                float64
     compactness_mean
                               569 non-null
 8
     concavity_mean
                                                float64
                               569 non-null
 9
                                                float64
     concave points_mean
                               569 non-null
 10 symmetry_mean
                               569 non-null
                                                float64
     fractal_dimension_mean
                               569 non-null
                                                float64
 11
 12
                               569 non-null
                                                float64
     radius_se
 13
    texture_se
                               569 non-null
                                                float64
 14
     perimeter se
                               569 non-null
                                                float64
 15
    area_se
                               569 non-null
                                                float64
 16
     smoothness se
                               569 non-null
                                                float64
 17
     compactness se
                               569 non-null
                                                float64
 18
     concavity_se
                               569 non-null
                                                float64
 19
     concave points_se
                               569 non-null
                                                float64
 20
     symmetry se
                               569 non-null
                                                float64
 21 fractal_dimension_se
                                                float64
                               569 non-null
 22
    radius worst
                               569 non-null
                                                float64
 23
    texture worst
                               569 non-null
                                                float64
 24
     perimeter_worst
                               569 non-null
                                                float64
 25
                                                float64
     area_worst
                               569 non-null
 26
     smoothness_worst
                               569 non-null
                                                float64
 27
     compactness worst
                               569 non-null
                                                float64
 28
                               569 non-null
                                                float64
     concavity_worst
 29
     concave points_worst
                               569 non-null
                                                float64
```

30 symmetry_worst 569 non-null float64
31 fractal_dimension_worst 569 non-null float64
32 Unnamed: 32 0 non-null float64

dtypes: float64(31), int64(1), object(1) memory usage: 146.8+ KB df.isnull().sum()

10/24/25, 8:32 PM	Task 4 : Classification With Logistic Regression.ipynb - Colab

```
id 0
```

Train/Test Splitting The Dataset

Standardizing Features

radius_se

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Fitting The Model

```
y_pred = model.predict(X_test_scaled)
y_prob = model.predict_proba(X_test_scaled)[:, 1]
area worst 0
```

Evaluating With Confusion Matrix, Precision Etc.,

compactness_worst (

```
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.title("Confusion Matrix")
plt.xlabel("Predicted Labels")
```



```
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))
print("ROC-AUC Score:", roc_auc_score(y_test, y_prob))
Classification Report:
                           recall f1-score
               precision
                                               support
           0
                   0.97
                             0.99
                                       0.98
                                                    71
           1
                   0.98
                             0.95
                                       0.96
                                                    43
                                       0.97
                                                  114
    accuracy
                   0.97
                             0.97
                                       0.97
                                                  114
   macro avg
weighted avg
                   0.97
                             0.97
                                       0.97
                                                  114
Accuracy: 0.9736842105263158
ROC-AUC Score: 0.99737962659679
```

```
feature_importance = pd.DataFrame({
    'Feature': X train.columns,
    'Importance': np.abs(model.coef_[0])
}).sort_values(by='Importance', ascending=False)
plt.figure(figsize=(8, 5))
sns.barplot(data=feature_importance, x='Importance', y='Feature', palette='virid
plt.title("Feature Importance (Absolute Coefficients)")
plt.xlabel("Importance (|Coefficient|)")
```


Tuning Threshold

```
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure(figsize=(6,5))
plt.plot(fpr, tpr, label=f"AUC = {roc_auc_score(y_test, y_prob):.3f}")
plt.plot([0,1], [0,1], 'k--')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve - Logistic Regression")
plt.legend()
plt.show()
```



```
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

z vals = np.linspace(-10, 10, 100)
```