Exam Solutions

Your Name

June 25, 2025

Problem 1

(a)

Prove that one root of $x^3 + px^2 + qx + r = 0$ is the negative of another root if and only if r = pq.

Solution:

Let the roots be $\alpha, -\alpha, \beta$. Using Vieta's formulas:

- 1. Sum of roots: $\alpha \alpha + \beta = -p \Rightarrow \beta = -p$.
- 2. Sum of product of roots two at a time: $\alpha(-\alpha) + \alpha\beta + (-\alpha)\beta = q \Rightarrow -\alpha^2 = q$.
- 3. Product of roots: $\alpha(-\alpha)\beta = -r \Rightarrow -\alpha^2\beta = -r$.

Substitute $\beta = -p$ and $-\alpha^2 = q$:

$$q(-p) = -r \Rightarrow r = pq.$$

$$r = pq$$
 is the required condition.

(b)

Solve $x^4 - 2x^3 - 21x^2 + 22x + 40 = 0$, given that the roots are in arithmetic progression (AP).

Solution:

Let the roots be a-3d, a-d, a+d, a+3d. Using Vieta's formulas:

- 1. Sum of roots: $4a = 2 \Rightarrow a = \frac{1}{2}$.
- 2. Sum of product of roots two at a time:

But simplifying is easier using symmetric identity:

Sum of products two at a time = $6a^2 - 10d^2 = -21$.

Substituting $a = \frac{1}{2}$:

$$6\left(\frac{1}{4}\right) - 10d^2 = -21 \Rightarrow \frac{3}{2} - 10d^2 = -21 \Rightarrow d^2 = \frac{9}{4} \Rightarrow d = \pm \frac{3}{2}.$$

Then the roots are:

$$a \pm 3d = \frac{1}{2} \pm \frac{9}{2}, \quad a \pm d = \frac{1}{2} \pm \frac{3}{2} \Rightarrow \{-4, -1, 2, 5\}.$$

The roots are
$$-4, -1, 2, 5$$
.

(c)

Find all integral roots of $x^4 + 2x^3 + 4x^2 - 8x - 32 = 0$.

Solution:

Possible rational roots: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32$.

Try x = 2:

$$2^4 + 2(2)^3 + 4(2)^2 - 8(2) - 32 = 16 + 16 + 16 - 16 - 32 = 0.$$

Try x = -2:

$$(-2)^4 + 2(-2)^3 + 4(-2)^2 - 8(-2) - 32 = 16 - 16 + 16 + 16 - 32 = 0.$$

So factor:

$$(x-2)(x+2)(x^2+2x+8) = 0.$$

The integral roots are 2 and -2.

Problem 2

(a)

Find the polar representation of $z = \sin a + i(1 + \cos a)$.

Solution:

Modulus:

$$|z| = \sqrt{\sin^2 a + (1 + \cos a)^2} = 2\cos\left(\frac{a}{2}\right).$$

Argument:

$$\tan \theta = \frac{\sin a}{1 + \cos a} = \tan \left(\frac{a}{2}\right) \Rightarrow \theta = \frac{a}{2}.$$

$$z = 2\cos\left(\frac{a}{2}\right)\operatorname{cis}\left(\frac{a}{2}\right).$$

(b)

Find |z| and $\arg z$ for

$$z = \frac{(2\sqrt{3} + 2i)^8}{(1 - i)^6} + \frac{(1 + i)^6}{(2\sqrt{3} - 2i)^8}.$$

Solution:

Convert:

$$2\sqrt{3} + 2i = 4\operatorname{cis}\left(\frac{\pi}{6}\right), \quad 1 - i = \sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right).$$

So:

$$(2\sqrt{3} + 2i)^8 = 4^8 \operatorname{cis}\left(\frac{8\pi}{6}\right) = 4^8 \operatorname{cis}\left(\frac{4\pi}{3}\right), \quad (1 - i)^6 = 8\operatorname{cis}(-\frac{3\pi}{2}).$$

$$z = \left(\frac{4^8}{8}\operatorname{cis}\left(\frac{4\pi}{3} + \frac{3\pi}{2}\right) + \frac{8}{4^8}\operatorname{cis}\left(-\left(\frac{4\pi}{3} + \frac{3\pi}{2}\right)\right)\right)$$

$$|z| = \frac{4^8}{8} + \frac{8}{4^8}, \quad \arg z = \frac{5\pi}{6}.$$

(c)

Find the geometric image of |z+1+i| < 3 and $0 < \arg z < \frac{\pi}{6}$.

Solution:

A circular sector centered at -1-i with radius 3, between angles 0 and $\frac{\pi}{6}$.

Problem 3

(a)

Properties of *n*-th roots of unity U_n :

- $\varepsilon_j \cdot \varepsilon_k = \operatorname{cis}\left(\frac{2\pi(j+k)}{n}\right) \in U_n$.
- $\varepsilon_j^{-1} = \operatorname{cis}\left(-\frac{2\pi j}{n}\right) = \varepsilon_{n-j} \in U_n.$

Both properties hold.

(b)

Show $a^2 = 3k$ or $a^2 = 3k + 1$.

Solution:

All integers $a \equiv 0, 1, 2 \mod 3$:

$$a^2 \equiv 0^2 = 0, \ 1^2 = 1, \ 2^2 = 4 \equiv 1 \mod 3.$$

$$a^2 \equiv 0 \text{ or } 1 \mod 3 \Rightarrow a^2 = 3k \text{ or } 3k + 1.$$

(c)

- (i) gcd(n, n + 1) = 1. Find x, y such that nx + (n + 1)y = 1.
 - (ii) If gcd(a, c) = 1 and $b \mid c$, show gcd(a, b) = 1.

Solution:

- (i) gcd(n, n + 1) = 1 since they are consecutive. Try x = 1, y = -1.
- (ii) If $d = \gcd(a, b) > 1$, then $d \mid b \mid c \Rightarrow d \mid c$, contradicting $\gcd(a, c) = 1$.

Both statements are proven.

Problem 4

(a)

If $ac \equiv bc \pmod{n}$ and $\gcd(c, n) = 1$, then $a \equiv b \pmod{n}$.

Solution:

Multiply both sides by inverse of $c \mod n$:

$$c^{-1}ac \equiv c^{-1}bc \Rightarrow a \equiv b \pmod{n}$$
.

The result follows.

(b)

Solve $7x \equiv 8 \pmod{11}$.

Solution:

Inverse of 7 modulo 11 is 8. So:

$$x \equiv 8 \cdot 8 = 64 \equiv 9 \pmod{11}.$$

$$x \equiv 9 \pmod{11}$$
.

(c)

Solve:

$$\begin{cases} 2x + 3y \equiv 1 \pmod{6}, \\ x + 3y \equiv 5 \pmod{6}. \end{cases}$$

Subtract second from first:

$$x \equiv -4 \equiv 2 \pmod{6}, \quad \Rightarrow 3y \equiv -5 + 6 \equiv 1 \pmod{6} \Rightarrow y \equiv 1 \pmod{2}.$$

$$x \equiv 2 \pmod{6}, \quad y \equiv 1 \pmod{2}.$$

Problem 5

(a)

Show $G = \{2 \times 2 \text{ real matrices with non-zero determinant} \}$ is a non-abelian group under multiplication.

Group properties hold, and multiplication is not commutative.

(b)

Left-right cancellation implies abelian?

Solution:

Assume $xy = zx \Rightarrow y = z$ for all x. Take $z = y \Rightarrow xy = yx \Rightarrow G$ is abelian.

Statement true. D_3 is non-abelian and doesn't satisfy this.

(c)

Show $G = \{1, 5, 7, 11\}$ is a group under multiplication mod 12.

Cayley table shows closure, inverses, and identity. Group is valid.

Problem 6

(a)

 $H_n = \{nx \mid x \in \mathbb{Z}\}$ is subgroup of \mathbb{Z} . Show $H_2 \cup H_3$ is not.

 H_n is a subgroup; $H_2 \cup H_3$ not closed.

(b)

Show $|aba^{-1}| = |b|$.

$$(aba^{-1})^m = ab^m a^{-1} = e \Leftrightarrow b^m = e. \Rightarrow \boxed{|aba^{-1}| = |b|.}$$

(c)

 \mathbb{Z}_n is cyclic under addition mod n.

Generators: integers coprime to 48, i.e., $\phi(48) = 16$.

Subgroups: $\langle d \rangle$ for $d \mid 48$.