Tarea 4 Estadística Inferencial.

1.- Dada una v. a. con la función de densidad $f(x,\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}; x > 0; \theta > 0$. Deducir el estimador Máximo Verosímil del parámetro θ .

2.- Sea $X_1, X_2, ..., X_n$ una m. a. de una Distribución, a) $U(0, \theta)$ y b) $U(-\theta, \theta)$. Estimar por el Método de Momentos $\hat{\theta}$ y θ .

3.- Se selecciona una muestra de 2 elementos de una población que se distribuye de forma normal y queremos estimar la media poblacional a partir del siguiente estimador:

$$\hat{\mu} = \frac{3}{8}X_1 + \frac{2}{8}X_2$$

Determine si dicho estimador es insesgado, en caso de no serlo indique cuál es su sesgo y el error cuadrático medio (ECM), sabiendo que su $\sigma = 8$.

4.- Sea X una v.a. con distribución $Poisson P(\theta)$. Sea $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ cualquier estimador insesgado para $\tau(\theta) = \theta$, Calcular $CICR(\theta)$:

5.- La variable aleatoria poblacional "renta de las familias" del municipio de Monterrey se distribuye siguiendo un modelo $N(\mu,\sigma)$. Se extraen muestras aleatorias simples de tamaño 4. Como estimadores del parámetro μ , se proponen los siguientes:

$$\widehat{\mu_1} = \frac{x_1 + 2x_2 + 3x_3}{6}$$
 $\widehat{\mu_2} = \frac{x_3 - 4x_2}{-3}$ $\widehat{\mu_3} = \bar{x}$

¿Cuál es el más eficiente o el mejor estimador?