Computer Architectures Exam of 28.4.2020 - part I

First name, Last name, ID.....

Question #1

Let consider the Branch Prediction Mechanism based on the Branch Target Buffer (BTB). You are requested to

- 1. Describe the architecture of a BTB
- 2. Describe in details the behavior of a BTB: when it is accessed, which input and output information are involved with each access
- 3. Assuming that the processor uses 32 bit addresses, each instruction is 4 byte wide, and the BTB is composed of 8 entries, clarify the content and size of the fields composing each BTB entry
- 4. Using the same assumptions of the previous point, identify the final content of the BTB if
 - The BTB is initially empty (i.e., full of 0s)
 - The following instructions are executed in sequence
 - 1.d f1, v1 (r1) located at the address 0x00A50050
 - bnez r2,11 located at the address 0x00A50054; the branch is taken, and the branch target address is 0x00A60050
 - bez r4, 12 located at the address 0x00A60050; the branch is not taken.

Computer Architectures Exam of 28.4.2020 - part I

First name, Last name, ID.....

Question #2

Let consider a superscalar MIPS64 architecture implementing dynamic scheduling, speculation and multiple issue and composed of the following units:

- An issue unit able to process 2 instructions per clock period; in the case of a branch instruction only one instruction is issued per clock period
- A commit unit able to process 1 instruction per clock period
- The following functional units (for each unit the number of clock periods to complete one instruction is reported):
 - o 1 unit for memory access:1 clock period
 - o 1 unit for integer arithmetic instructions: 1 clock period
 - o 1 unit for branch instructions: 1 clock period
 - o 1 unit for FP multiplication (pipelined): 6 clock periods
 - o 1 unit for FP division (unpipelined): 8 clock periods
 - 1 unit for other FP instructions (pipelined): 2 clock periods
- 1 Common Data Bus.

Let also assume that

- Branch predictions are always correct
- All memory accesses never trigger a cache miss.

You should use the following table to describe the behavior of the processor during the execution of the first 2 iterations of a cycle composed of the following instructions, computing the total number of required clock cycles. Registers f11 and f12 store two constants.

# iteration		Issue	EXE	MEM	CDB	COMMIT
1	l.d f1,v1(r1)					
1	I.d f2,v2(r1)					
1	l.d f3,v3(r1)					
1	div.d f5, f3, f11					
1	sub.d f4, f1, f2					
1	add.d f6, f4, f5					
1	div.d f7,f6,f12					
1	s.d f7,v4(r1)					
1	daddui r1,r1,8					
1	daddi r2,r2,-1					
1	bnez r2,loop					
2	l.d f1,v1(r1)					
2	I.d f2,v2(r1)					
2	l.d f3,v3(r1)					
2	div.d f5, f3, f11					
2	sub.d f4, f1, f2					
2	add.d f6, f4, f5					
2	div.d f7,f6,f12					
2	s.d f7,v4(r1)					
2	daddui r1,r1,8					
2	daddi r2,r2,-1					
2	bnez r2,loop					