Лабораторная работа N2

Ссылки, таблицы и формулы в несколько строк $7 \ {\rm мартa} \ 2022 \ {\rm г}.$

1 Первое задание

2 Второе задание. Малые таблицы. 1

Инено понашимея эн	Число частей при делении		
Число делящихся эле	пространства	плоскости	прямой
	плоскостями	прямыми	точками
0	1	1	1
1	2	2	2
2	4	4	3
3	8	7	4
4	15		5
n			n+1

3 Третье задание

4 Четвертое задание. Нумерация и системы. 1

5. Семи неравенствам

$$2x_1 + 3x_2 \leqslant 6,\tag{1}$$

$$x_1 + x_2 \leqslant 2,\tag{2}$$

$$-x_1 - 3x_2 \leqslant 3,\tag{3}$$

$$2x_1 \leqslant 3,\tag{4}$$

$$-x_1 \leqslant 3,\tag{5}$$

$$-3x_1 + 7x_2 \leqslant 21, (6)$$

$$x_1 - 3x_2 \leqslant 3 \tag{7}$$

5 Пятое задание. Нумерация и системы. 2

75. 1) Пусть f — непрерывная на X функция, $a,b \in R, a < b$. Доказать, что функция

$$f(a;b;x) = \begin{cases} f(x), & \text{если } a \leqslant f(x) \leqslant b, \\ a, & \text{если } f(x) < a, \\ b, & \text{если } f(x) > b, \end{cases}$$

также непрерывна на X.

6 Шестое задание. Стандартные длинные формулы

С другой стороны известно, что монотонно возрастающая ограниченная последовательность чисел имеет конечный предел. Следовательно, если мы докажем, что последовательность чисел x_n ограничена, то будет доказана и содимость ряда (26). Положим

$$y_{2n} = 1 - \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} - \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} - \frac{1}{6^{\alpha}} + \dots$$
$$\dots \frac{1}{(2n-1)^{\alpha}} - \frac{1}{(2n)^{\alpha}}.$$

Так как

$$y_{2n} = 1 - \left(\frac{1}{2^{\alpha}} - \frac{1}{3^{\alpha}}\right) - \left(\frac{1}{4^{\alpha}} - \frac{1}{5^{\alpha}}\right) - \dots - \left(\frac{1}{(2n-2)^{\alpha}} - \frac{1}{(2n-1)^{\alpha}}\right) - \frac{1}{(2n)^{\alpha}}.$$

то (числа в каждой скобке положительны)

$$y_{2n} < 1$$
.

С другой стороны,

$$y_{2n} = 1 - \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} - \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} - \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n-1)^{\alpha}} - \frac{1}{(2n)^{\alpha}} = \left(1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n-1)^{\alpha}} + \frac{1}{(2n)^{\alpha}}\right) - \frac{1}{(2n)^{\alpha}} - 2\left(\frac{1}{2^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n)^{\alpha}}\right) = \frac{1}{(2n-1)^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \frac{1}{(2n-1)^{\alpha}} + \frac{1}{(2n)^{\alpha}}\right) - \frac{2}{2^{\alpha}}\left(1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}\right).$$

Так как $x_n = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}$, то

$$y_{2n} = x_{2n} - \frac{2}{2^\alpha} x_n.$$

7 Вопросы.

- 1. Как отформатировать date, чтобы в заголовке была нужная мне дата?
- 2. Задание 4: 1) Нужно ли добавлять номер страницы, как на скриншоте справа снизу?
- 2) Нужно ли делать отступ с фразой "5. Семи неравенствам как на скриншоте. И если нужно, то как?
- 3) У меня получились большие отступы между неравенствами. Большой ли это недочет и как его исправить?
- 3. Как сделать так, чтобы этот текст не слипался в абзацы? Как сделать так, чтобы самое первое предложение начиналось с абзаца? Это касается и заданий 6, 5 4. Задание 6: 1) Нет 100-процентного совпадения с оригиналом.