Michael Grossberg

Intro to Data Science CS59969

Naive Bayes and Logistic Regression Classification

Naive Bayes Classifier

Conditional Probability

X = measurements C= condition

What we want to know

Normalized for fixed X

X = measurements C= condition

$$\sum_{i} P(C_{i}|X) = 1$$

$$X \text{ is fixed}$$

Whats our best guess?

X = measurements C= condition

$$C = \operatorname{argmax}_{C} P(C \mid X)$$

Maximum a posteriori (MAP) Estimate

Joint vs Conditional

$$P(C \mid X) P(X) = P(C,X)$$

$$P(C \mid X) = \frac{P(C,X)}{P(X)}$$

Joint vs Conditional

$$P(C \mid X) P(X) = P(C,X)$$
$$= P(X,C) = P(X \mid C) P(C)$$

$$P(C \mid X) = \frac{P(X \mid C) P(C)}{P(X)}$$

Bayes Theorem

Likelihood

Prior

P(C)

What is P(C) without knowing a measurements?

Maximum Likihood

What if we don't know P(C)?

$$P(C \mid X) = \frac{P(X \mid C) P(X)}{P(X)}$$

$$P(C|X) \propto P(X|C)$$

$$C = \operatorname{argmax}_{C} P(C \mid X) = \operatorname{argmax}_{C} P(C \mid X)$$

Normal Distribution

$$\mathcal{N}(X \mid \boldsymbol{\theta}) = \frac{1}{\sqrt{2\sigma^2\pi}} \exp(-(X-\mu)^2/2\sigma^2)$$

$$\boldsymbol{\theta} = (\mu, \sigma)$$

Given data what are the parameters?

$$P(Z \mid \boldsymbol{\theta}) = \mathcal{N}(Z \mid \boldsymbol{\theta})$$

Given data what are the parameters?

$$P(Z \mid \boldsymbol{\theta}) = \mathcal{N}(Z \mid \boldsymbol{\theta})$$

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathcal{N}(Z_1 | \boldsymbol{\theta}) \dots \mathcal{N}(Z_N | \boldsymbol{\theta})$$

Bayes

$$P(C | X_1, ..., X_N) \propto P(X_1, ..., X_N | C) P(C)$$

Independence

$$P(X_{1},...,X_{N}) = P(X_{1}) \cdots P(X_{N})$$

$$P(C|X_{1},...,X_{N}) = P(C|X_{1}) \cdots P(C|X_{N})$$
Different attributes

Usually Not True

Naive Bayes (Assume Independence)

$$P(C|X_1, ..., X_N) \propto P(C|X_1) \cdots P(C|X_N) P(C)$$
Argmax

Banana

Example

Fruit	Long	Sweet	Yellow	Total
Banana	400	350	450	500
Orange	0	150	300	300
Other	100	150	50	200
Total	500	650	800	1000

50% of the fruits are bananas 30% are oranges 20% are other fruits

$$P(Banana) = .5$$

 $P(Orange) = .3$
 $P(Other) = .2$

Priors

Measurement

Features

$$X_1 = long$$

 $X_2 = sweet$
 $X_3 = yellow$

What is it? Banana? Orange? or Other?

Naive Bayes Formula

Banana: P(Banana|Long, Sweet, Yellow) $P(Long|Banana) \cdot P(Sweet|Banana) \cdot P(Yellow|Banana) \cdot P(Banana)$ $P(Long) \cdot P(Sweet) \cdot P(Yellow)$ $=\frac{1}{P(evidence)}$ Orange: P(Orange|Long, Sweet, Yellow) = 0Other Fruit: P(Other|Long, Sweet, Yellow) $P(Long|Other) \cdot P(Sweet|Other) \cdot P(Yellow|Other) \cdot P(Other)$ $P(Long) \cdot P(Sweet) \cdot P(Yellow)$ P(evidence)

 $=\frac{1}{P(evidence)}$

Assuming Features Independent

Naive Bayes Formula

```
Banana:
                          P(Banana|Long, Sweet, Yellow)
      P(Long|Banana) \cdot P(Sweet|Banana) \cdot P(Yellow|Banana) \cdot P(Banana)
                            P(Long) \cdot P(Sweet) \cdot P(Yellow)
Orange:
                        P(Orange|Long, Sweet, Yellow) = 0
Other Fruit:
                           P(Other|Long, Sweet, Yellow)
          P(Long|Other) \cdot P(Sweet|Other) \cdot P(Yellow|Other) \cdot P(Other)
                            P(Long) \cdot P(Sweet) \cdot P(Yellow)
                              =rac{0.5	imes0.75	imes0.25	imes0.2}{P(evidence)}
                                    =\frac{1}{P(evidence)}
```

P(evidence)
same =>
irrelevant
for argmax

Naive Bayes: argmax

Banana:

$$P(Banana|Long, Sweet, Yellow) \\ = \frac{P(Long|Banana) \cdot P(Sweet|Banana) \cdot P(Yellow|Banana) \cdot P(Banana)}{P(Long) \cdot P(Sweet) \cdot P(Yellow)} \\ = \frac{0.8 \times 0.7 \times 0.9 \times 0.5}{P(evidence)} \\ = \frac{0.252}{P(evidence)}$$

Orange:

$$P(Orange|Long, Sweet, Yellow) = 0$$

Other Fruit:

$$P(Other|Long, Sweet, Yellow) \\ = \frac{P(Long|Other) \cdot P(Sweet|Other) \cdot P(Yellow|Other) \cdot P(Other)}{P(Long) \cdot P(Sweet) \cdot P(Yellow)} \\ = \frac{0.5 \times 0.75 \times 0.25 \times 0.2}{P(evidence)} \\ = \frac{0.01875}{P(evidence)}$$

Winner

Many Variations of Naive Bayes

$$p(C_k|x_1,\ldots,x_n)=rac{1}{Z}p(C_k)\prod_{i=1}^n p(x_i|C_k)$$

Gaussian naive Bayes
Multinomial naive Bayes
Bernoulli naive Bayes
... many more

Naive Bayes

Pros:

- Doesn't need lots of data
- Very fast
- Easy to interpret

Con:

Variables rarely really independent

Frequently works well enough (even if variables not independent)!

PCA can even help!

Logistic Regression (Classifier)

Study vs. Exam Success

A group of 20 students spend between 0 and 6 hours studying for an exam. How does the number of hours spent studying affect the probability that the student

will pass the exam?

Exam data

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

0= fail, 1=Pass

Want a function like this to represent probability

Logistic Regression Really Classifier (not regression)

Logistic Function

$$\sigma(t)=rac{e^t}{e^t+1}=rac{1}{1+e^{-t}}$$

Want prob =
$$0.0$$
 for x<<0
prob = 0.5 for x=0
prob = 1.0 for x>>0

1-variable Logistic Function

$$t = \beta_0 + \beta_1 x$$

Derived Probability

$$t = \beta_0 + \beta_1 x$$

Probability of passing exam =1/(1+exp(-(-4.0777+1.5046* Hours)))

From a curve fit

Hours of study	Probability of passing exam
1	0.07
2	0.26
3	0.61
4	0.87
5	0.97

2.5 hours ≈ coin flip chance of passing

5 hours < — greater than 97% chance of passing

logit

$$F(x) = rac{1}{1 + e^{-(eta_0 + eta_1 x)}} \qquad rac{F(x)}{1 - F(x)} = e^{eta_0 + eta_1 x}.$$

$$rac{F(x)}{1-F(x)}=e^{eta_0+eta_1 x}.$$

$$\ln\!\left(rac{F(x)}{1-F(x)}
ight)=eta_0+eta_1x,$$
 Linear

$$\beta_0 + \beta_1 x$$
,

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m$$
.

One Variable

Multi-Variable (linear classifier in a log space)