Uncertainty Quantification for an Eckstein-Keane-Wolpin model with correlated input parameters

Master Thesis Presented to the

Department of Economics at the

Rheinische Friedrichs-Wilhelm-Universität Bonn

in Partial Fulfillment of the Requirements of the Degree of Master of Science (M.Sc.)

Supervisor: Prof. Dr. Philipp Eisenhauer

Submitted in January 2020 by:

Tobias Stenzel

Matriculation Number: 2971049

Contents

Al	bbreviations	Ι
Li	st of Figures	II
Li	st of Tables	III
1	Introduction	1
2	Uncertainty Quantification Framework	3
	2.1 Uncertainty Propagation	3
	2.2 Global Sensitivity Analysis	3
	2.2.1 Sobol' Indices	3
	2.2.2 Univariate Effects	5
	2.3 Surrogate Models and Spectral Expansions	5
3	Uncertainty Quantification in the Economic	
	Literature	6
4	Model and Estimation	12
	4.1 Keane and Wolpin (1994)	13
	4.2 Simulated Maximum Likelihood Estimation	16
	4.3 Numerical Implementation	19
	4.4 Estimation Results	19
	4.5 Quantity of Interest	22
5	Uncertainty Propagation	25
6	Global Sensitivity Analysis	25
	6.1 Sobol' Indices	25
	6.2 Univariate Effects	25
7	Discussion	25
8	Conclusion	25
Re	eferences	26
Αı	ppendix	29

Abbreviations

[see UQ book , center table, two horizontal lines to the top and at the bottom...]

List of Figures

1	Series of events	14
2	Correlations between estimates for important input parameters	21
3	Comparison of occupation paths between scenarios	22

List of Tables

1	Overview of UQ literature by keywords	6
2	Model Parametrization	24

1 Introduction

Structure: Need for UQ (incl. SA) - GSA - Importance measures - Dependent inputs - Goal of the thesis - Structure en passant

Uncertainty quantification (UQ) studies the components of a mathematical model that might contribute to its discrepancy from the real world. Modeling choices that cause such a discrepancy may be made because aspects of the real world are unknown to the modeler or because he intentionally chooses to simplify the model. Reasons for the latter can, for instance, be an emphasis on specific aspects of reality, algebraic ease, computation time, or numeric. UQ is a toolbox of methods that can help a researcher to reflect upon potential deficiencies of his model and to avoid the risk of overconfidence in his forecasts. Therefore, UQ is not only useful for improving the model but also crucial for providing differentiated, realistic forecasts, and well-founded thinking about useful policies.

In Economics, but of course also in other quantitative disciplines, one major challenge for using models to understand and quantify real-world phenomena, mechanisms, and effects is that model input parameters are often not well-known. In this case, usually, only some parameters that can describe a (joint) probability distribution of the model input parameters are available to the researcher. Consequently, the model outputs or quantities of interest (QoIs) inherit this lack of knowledge from the input parameters. Put differently, the uncertainty in the input parameters is propagated through the model towards the QoIs. This gives rise to important questions like "Given the uncertainty of the input parameters, what is the probability distribution of the model outputs?". For instance, a model might predict an interesting outcome given the means of the parameter estimates. However, there might be a considerable probability that the model predicts an entirely different outcome. Of course, such findings should be reported if possible. Other important questions are "To what extent does the uncertainty of one or more specific input parameters contribute to the uncertainty of some QoI?" and "In which direction does each parameter affect the QoI globally?". These questions aim to inspect the influence of each parameter's or parameter group's uncertainty on the uncertainty of the respective QoI. They are also posed to investigate what effect higher-probability parameter values besides the usual measures of location can have on the QoI. Answers to these questions can then be used to reduce the model uncertainty in two ways: On the one hand, by devoting additional research to important input parameters that have a large influence on the QoI and its uncertainty and, on the other hand, they allow making informed decisions on whether or not to consider the uncertainty of less important input parameters or to even simplify their representation in the model. These questions are a subset of what is covered by the discipline of UQ. The field provides the suitable methods to answer the above questions profoundly. Their importance implies that these methods should be an essential part of every quantitative, model-based research and practice.

The goal of this thesis is to answer the above questions for an important and well-known economic model, thereby providing a showcase for the application of uncertainty

quantification to Economics.

In section 2, I outline the general discipline of uncertainty quantification and present the subfields on Parameter Uncertainty that are featured in this thesis. These subfields are uncertainty propagation, global sensitivity analysis (GSA) and surrogate models. Uncertainty Propagation is the construction of probability distribution functions for QoIs by propagating the model input uncertainty. GSA contains measures that indicate how much of the QoIs uncertainty can be attributed to specific parameters and parameter groups. The thesis employs

'indices and univariate effects. uncertainty propagation and GSA can be computed in different ways. Besides Monte Carlo and quasi-Monte Carlo methods, one can also use surrogate models. A surrogate model substitutes the computation of a QoI via a model by approximating the QoI with one explicit, algebraic function of the model input parameters. They are used to save computation time if the evaluation of the original model is computationally expensive. This thesis uses both (quasi-)Monte Carlo methods and surrogate models to compute each result.

Section 3 gives an overview of the economic literature that uses UQ methods. It shows that, typically, economic research does not address the questions mentioned above, as the respective literature is small. Exceptions are Harenberg et al. (2019) [Name other authors].

Section 4 presents the model for which the UQ is implemented. It is the well-known Dynamic Discrete Occupational Choice model developed by Keane and Wolpin (1994) in the field of labour economics. The QoI is the effect of a \$2000 subsidy on occupation choices. This model output is chosen because the result is of high relevance for policy-makers and thus well-suited to illustrate the benefits of performing a structured UQ in quantitative studies of economic models that may have important real-world implications.

In Section 5, the results for the uncertainty propagation and global sensitivity analysis using Monte Carlo and quasi Monte Carlo methods are presented. [Add one sentence for the results.]

Section 6 shows the results for the same measures but computed by using a surrogate model. [Add one sentence for the results.]

Section 7 compares the two approaches and discusses the results. [Add two to three sentences for the results.]

Section 8 offers conclusions and indicates directions for future research.

2 Uncertainty Quantification Framework

[intrusive vs. non-intrusive.] mention European guidelines.

2.1 Uncertainty Propagation

2.2 Global Sensitivity Analysis

2.2.1 Sobol' Indices

$$S_i = \frac{\operatorname{Var}_i[Y|X_i]}{\operatorname{Var}[Y]} \tag{1}$$

$$S_i = \frac{\operatorname{Var}_i[\mathbb{E}_{\sim i}[Y|X_i]]}{\operatorname{Var}[Y]} \tag{2}$$

$$S_{ij} = \frac{\operatorname{Var}_{ij}[\mathbb{E}_{\sim\{i,j\}}[Y|X_i, X_j]]}{\operatorname{Var}[Y]} - S_i - S_j$$
(3)

$$S_{\mathbf{u}} = \frac{\operatorname{Var}_{\mathbf{u}}[\mathbb{E}_{\sim \mathbf{u}}[Y|X_{\mathbf{u}}]]}{\operatorname{Var}[Y]} - \sum_{\mathbf{w} \subset \mathbf{u}} S_{\mathbf{w}}$$

$$\tag{4}$$

$$S_i^{\mathrm{T}} = \sum_{i \in \mathbf{u}} S_{\mathbf{u}} \tag{5}$$

$$Var[Y] = Var_i[\mathbb{E}_{\sim i}[Y|X_i]] + \mathbb{E}_i[Var_{\sim i}[Y|X_i]]$$
(6)

$$1 = \frac{\operatorname{Var}_{i}[\mathbb{E}_{\sim i}[Y|X_{i}]]}{\operatorname{Var}[Y]} + \frac{\mathbb{E}_{i}[Var_{\sim i}[Y|X_{i}]]}{\operatorname{Var}[Y]}$$
(7)

$$1 = S_i + S_{\sim i}^T \tag{8}$$

$$S_{\sim i}^{T} = \frac{\mathbb{E}_{i}[\operatorname{Var}_{\sim i}[Y|X_{i}]]}{\operatorname{Var}[Y]}$$
(9)

$$S_i^T = \frac{\mathbb{E}_{\sim i}[\operatorname{Var}_i[Y|X_{\sim i}]]}{\operatorname{Var}[Y]}$$
 (10)

$$S_{\mathbf{u}}^{clo} = \frac{\operatorname{Var}_{\mathbf{u}}[\mathbb{E}_{\sim \mathbf{u}}[Y|X_{\mathbf{u}}]]}{\operatorname{Var}[Y]}$$
(11)

$$Y = \mathcal{M}(x) = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i \le j \le M} \mathcal{M}_{ij}(x_i, x_j) + \dots + \mathcal{M}_{12..M}(x)$$
 (12)

$$S_i = \frac{\text{Cov}[\mathcal{M}_i(x_i), Y]}{\text{Var}[Y]}$$
(13)

$$S_i = \frac{\text{Var}[\mathcal{M}_i(x_i)]}{\text{Var}[Y]} + \frac{\text{Cov}[\mathcal{M}_i(x_i)]}{\text{Var}[Y]}$$
(14)

$$S_i = \frac{\operatorname{Var}_i[\mathcal{M}_i(x_i)]}{\operatorname{Var}[Y]} \tag{15}$$

$$S_{ij} = \frac{\operatorname{Var}_{ij}[\mathcal{M}_{ij}(x_i, x_j)]}{\operatorname{Var}[Y]}$$
(16)

$$\operatorname{Var}[Y] = \sum_{i=1}^{M} \operatorname{Var}[\mathcal{M}_{i}(x_{i})] + \sum_{1 \leq i \leq j \leq M} \operatorname{Var}[\mathcal{M}_{ij}(x_{i}, x_{j})] + \dots + \operatorname{Var}[\mathcal{M}_{12..M}(\mathbf{x})]$$
 (17)

$$S_{i}^{T} = S_{i} + \sum_{j \neq i} S_{ij} + \sum_{1 \leq i \leq j \leq M, \{j,k\} \neq i} S_{ijk} + \dots = \sum_{i \in w} S_{w} = \frac{1}{\text{Var}[Y]} \sum_{i \in w} \text{Var}_{i}[\mathcal{M}_{w}(x_{w})]$$
(18)

$$S_{u}^{clo} = \frac{\operatorname{Var}_{u}[\mathcal{M}_{u}(x_{u})]}{\operatorname{Var}[Y]} + \sum_{w \subseteq u} \frac{\operatorname{Var}_{w}[\mathcal{M}_{w}(x_{w})]}{\operatorname{Var}[Y]}$$
(19)

2.2.2 Univariate Effects

2.3 Surrogate Models and Spectral Expansions

[Scheidegger: Also called Interpolator in the literature]

[Univariate Effects as a measure for comparative statics]

[Philipp: Please add a plot to your thesis (not our notebook) that implements the idea of the uncertainty cone in Figure 1. 2 in our textbook. For example, Figure 1 from KW97 could use such a cone for hte out of support predictions in the occupational shares.]

The need for UQ as an essential part of quantitative economic studies has long been recognized in the economics profession. Also GSA in particular has had strong advocates. However, the demanded evolution of research practice has only been met by a few publications until today. This literature review summarizes these publications with regards to the UQ subfields that are emphasized in the prior section. These are uncertainty propagation and GSA. Table 1 gives an overview of the major measures, methods and topics in the literature. I find 14 contributions that meet the described criteria. Arguably, because UQ is more accomplished in climatology, a large share of research comes from climate economics. The first publications tend to use the conceptually simple Monte Carlo uncertainty propagation. The majority of papers use surrogate models to save computation time. The later contributions focus on GSA. Harenberg et al. (2019) gives a well-argued explanation about why GSAs are better than LSAs. The recent works use more sophisticated methods like polynomial chaos expansions (as first applied in Harenberg et al. (2019)) or intrusive approaches (see, for instance, Scheidegger and Bilionis (2019)). This section concludes by explaining the choice of measures and methods made in this thesis and by comparing them to those used in the literature.

Table 1. Overview of UQ literature by keywords

Content	Number of articles
Climate economics	8
Uncertainty propagation	4
Sobol' indices	6
Univariate effects	4
Monte Carlo sampling	5
Surrogate models	8
Polynomial chaos expansions	2
Intrusive methods	2
	14

Harrison and Vinod (1992) suggest to use uncertainty propagation via Monte Carlo sampling for applied general equilibrium modeling to inspect the uncertainty in model inputs. As a showcase, they propagate the distributions of 48 elasticities through a taxation model by drawing 15,000 input parameter vectors. They analyse their results graphically, using a histogram for their QoI as well as confidence intervals for its mean. For further use, N denotes the size of a Monte Carlo sample.

¹See Hansen and Heckman (1996), Kydland (1992) and Canova (1994), amongst others.

²See Canova (1995) and Gregory and Smith (1995).

Canova (1994) proposes to perform a Monte Carlo uncertainty propagation to reflect upon the calibration of dynamic general equilibrium models. The author also addresses challenges and methods for parameter calibration. Canova illustrates his approach by plotting distributions and computing moments and prediction intervals for QoIs in an asset-pricing (N=10,000) and a real business cycle model (N=1,000). Moreover, he analyzes the QoIs' sensitivity towards the uncertainty of individual input parameters by propagating different specifications of input distributions.

More recent examples for Monte Carlo uncertainty propagation concern investigate climate models, such as Webster et al. (2012). Examples using Latin hypercube sampling are Mattoo et al. (2009) and Hope (2006).

Recently, Harenberg et al. (2019) compare measures from LSA to measures from GSA for multiple QoIs of the canonical, macroeconomic real business cycle model. Thereby, they provide a context for GSA within UQ. The computed sensitivity measures are Sobol' indices and univariate effects. They are obtained by polynomial chaos expansions. For this purpose, Harenberg et al. introduce the leave-one-out error estimator (see page XX) as a measure to select an orthogonal polynomial as the surrogate model. The authors come to the following conclusion: On the one hand, a LSA can easily be misleading because its perspective is not broad enough. In particular, they criticise the one-at-a-time approach on which LSAs rely. One-at-a-time methods base on changing one uncertain parameter while keeping the others constant. The choice of parameter combinations tends to be arbitrary. These methods are typically used in economics. The authors conclude that LSA is neither adequate for identifying the inputs that drive the uncertainty, nor does it allow to analyse interactions. On the other hand, a GSA can provide profound insights, and polynomial chaos expansions are a fast way to compute approximations for the respective global sensitivity measures.

Ratto (2008) presents global sensitivity measures for multiple variants of DSGE models computed by Monte Carlo methods and surrogate models. The first measure bases on the Smirnov test (see, e.g., Hornberger and Spear (1981)): The QoI range is partitioned into a desired set S, and an undesired set \overline{S} . Then a Monte Carlo sample of parameter vectors from the input distribution is propagated through the model. From the QoI realizations for each set, two cumulative distribution functions for each input parameter, one conditioned on QoI realizations in set S, and the other conditioned on realizations in set \overline{S} , are generated. For each input independently, it is tested whether the distributions differ. If they do, the parameters and their specific regions that lead to the undesired QoI realizations can directly be identified. The second measure is first-order Sobol' indices. Ratto computes them by employing two different surrogate models. The first surrogate is

obtained by state-dependent regression. The idea is to regress the QoI on (combinations of) input parameters. The second surrogate is a polynomial representation of the first one. The author finds that the surrogates provide a good fit for the Monte Carlo sample except for the distribution tails. The fit varies conditional on different input parameters. Ratto compares his results for the first-order Sobol' indices computed by both surrogates. The results show some differences in size but not in the ranking.

Saltelli and D'Hombres (2010) criticise the arbitrary input value choices in the sensitivity analysis design of the influential Stern (2007) report about the consequences of climate change. Particularly, Stern argue that their cost-benefit analysis' results about the economic impact of climate change are robust towards the uncertainty in their input parameters. Yet, Saltelli and D'Hombres (2010) contradict Stern's assertion by presenting a more thorough sensitivity analysis with parameter choices that better represent the original input distribution.

A series of papers (Anderson et al. (2014), Butler et al. (2014), Miftakhova (2018)) conducts sensitivity analyses for the Dynamic Integrated Climate-Economy (DICE) model in Nordhaus (2008). Each work concludes that a GSA is superior to a LSA for the same reasons as Harenberg et al. (2019). Furthermore, all contributions find that leaving some hypothetically low-impact parameters out of the sensitivity analyses lead Nordhaus to neglect the uncertainty in important parameters.

Anderson et al. (2014) use Sobol' Indices, the δ -sensitivity measure, and correlation measures for paired QoIs in their GSA. The δ -sensitivity measure (see, e.g., Borgonovo (2006)) is given by half the expectation value of the absolute difference between the unconditional distribution of a QoI and the QoI distribution conditioned on one specific, fixed input (group). Estimates for these measures are computed with the algorithm used in Plischke et al. (2013) applied to a Monte-Carlo sample (N=10,000). In Anderson et al. (2014), the δ -sensitivity measure is the main measure of sensitivity and used to rank the parameters in terms of their contributions to the model uncertainty. The authors also use a surrogate model obtained through Cut-HDMR (Cut-High Dimensional Model Representation; see, e.g., Ziehn and Tomlin (2009)) for graphical analyses of the interaction between input parameters.

Butler et al. (2014) also generate importance rankings for the uncertainty in input parameters. However, they use first, second and total order Sobol' indices instead of the δ -sensitivity measure. They compute the Sobol' indices based on Sobol' sequences (Sobol' (1967)) for the results and based on Latin Hypercube sampling (McKay et al. (1979)) as a check. The results in Butler et al. (2014) and Anderson et al. (2014) can not be compared as they analyse different QoIs.

Gillingham et al. (2015) conduct an UQ for six major climate models. They select three input parameters that are present in each model. The authors generate a surrogate

model from regressing several model outputs separately on a linear-quadratic-interaction specification of the three input parameters on 250 grid points. Then they draw 1,000,000 parameter vectors from the probability density function of the input parameters and evaluate the sample with the surrogate model. They find that the parametric uncertainty contributes to more than 90% whereas the differences in the six models contribute to less than 10% of the QoI variances for the year 2100. They also present QoI values for multiple percentiles of each input parameter.

Miftakhova (2018) applies the GSA procedure outlined by Harenberg et al. (2019). The importance ranking that she obtains from the polynomial-chaos-expansions-based Sobol' indices is different from the ranking that Anderson et al. (2014) obtain from the δ -sensitivity measure. Yet, this is not mentioned by Miftakhova. However, the author emphasizes that the standard procedure for obtaining Sobol' indices from a variance decomposition as used by Anderson et al. (2014) and Butler et al. (2014) is not feasible for the DICE model because a set of input parameters is calibrated jointly in order to let the model match some observables. Therefore, although these input parameters are not correlated in the classical sense, they are dependent. Hence, the variance-based Sobol decomposition is not applicable because the summands are not orthogonal to each other or, in other words, the input-specific variance terms contain a covariance component. Thus, they do not add to the total model variance. Miftakhova (2018) shows how the set of dependent input parameters can be changed to a set of independent parameters by changing the model structure: She includes uncertain observables as independent parameters and reformulates dependent input parameters as endogenous variables. These endogenous variables are functions of the remaining, formerly dependent parameters and the new input parameters.⁴

Most recently, Scheidegger and Bilionis (2019) made a noteworthy contribution that naturally connects the solution process of economic models to UQ with surrogate models. The difference to the prior contributions is that their method is intrusive instead of non-intrusive (see page XX). In particular, they conduct an uncertainty propagation and compute univariate effects. Scheidegger and Bilionis' approach is to solve very-high-dimensional dynamic programming problems by approximating and interpolating the value function with a combination of the active subspace method (see, e.g., Constantine (2015)) and Gaussian process regression (see, for example, Rasmussen and Williams (2005)) within each iteration of the value function iteration algorithm. The authors can apply their method up to a 500-dimensional stochastic growth model. Therefore, they can solve models that contain substantial parameter heterogeneity. The link to UQ is that one can also "directly solve for all possible steady state policies as a function of the economic states and parameters in a single computation" (Scheidegger and Bilionis, 2019, p. 4) from

³I do not have access to the numerical codes. Thus the reasons for the discrepancies remain unclear.

⁴For a discussion of more general methods to compute Sobol' indices in the presence of dependent input parameters see, e.g., Chastaing et al. (2015) and Wiederkehr (2018), with references therein.

the Value function interpolant. In other words, this step yields the QoI expressed by a surrogate model. Thus, to add an UQ, one has to, first, specify the uncertain parameters as continuous state variables, and second, assign a probability distribution to each of these parameters. Then (assuming the uncertain input parameters are independent), one provides a sample from each parameter's distribution as input to the Gaussian process regression to obtain a surrogate model. Following these steps, QoIs can be expressed as functions of the uncertain input parameters without much additional effort. Finally, by using a processed value function interpolant as a surrogate model, Scheidegger and Bilionis propagate the model uncertainty and depict univariate effects.

Building on the contributions by Harenberg et al. (2019) and Scheidegger and Bilionis (2019), Usui (2019) conducts a GSA based on Sobol' indices and univariate effects to study rare natural disasters in a dynamic stochastic economy. Because the repeated model evaluations required to construct an adequate surrogate model are too computationally expensive, they choose to apply a method similar to Scheidegger and Bilionis' intrusive framework. However different to Scheidegger and Bilionis (2019), they generate numerical approximates for their policy functions by time iteration collocation (see, e.g., Judd (1998)) with adaptive sparse grid (see Scheidegger et al. (2018)) instead of Gaussian machine-learning.

This thesis uses uncertainty propagation to obtain the probability distribution of a QoI given the total parameter uncertainty. This allows to compute simple descriptive statistics and to use visualizations for analysing the distribution's skewness and kurtosis.

Consider Canidou.2012 presentation for delta vs Sobol measures

Change for dependent input parameters: Additionally, the thesis follows a global instead of a local level of sensitivity analysis for the reasons explained in Harenberg et al. (2019). It does not compute the Smirnov-test-based measure in Ratto (2008) because I want to make more general statements about the uncertainty of a QoI rather than to focus on two specific partitions of the QoI's range. I also prefer Sobol' indices over the δ -sensitivity measure used in Anderson et al. (2014) because of two reasons: First, it is straightforward to compute Sobol' indices because the input parameters in the analysed model are assumed to be independent. This assumption is discussed critically at a later stage. Second, Sobol' indices are easy to interpret because they are scaled by the variance of the model given its total parametric uncertainty. As a second measure, the thesis computes univariate effects to show the relationship between a QoI and one input parameter over the whole parameter range. The two analysis parts are conducted based on both Monte Carlo sampling and polynomial chaos expansions. Therefore, these methods can be compared for a moderately large computational model with 26 uncertain input parameters. On the one hand, the slow convergence and high computation time of the Monte Carlo method is compared with the potential imprecision of the model approximation by orthogonal polynomials and

the numerical methods involved. On the other hand, the reversed opposite properties are what makes these methods appealing to use. Especially attractive is the elegant derivation of Sobol' indices and univariate effects from orthogonal polynomials.

So far, UQ has exclusively been applied to climate or macroeconomic models. This thesis is the first UQ for a labour economic model. Additionally, it is the first contribution that computes sensitivity indices for dependent input parameters. Therefore, the contributions of this thesis are, first, setting an example for best practices using UQ in microeconomic research and, second, providing an example for computing sensitivity indices in a more realistic model setup.

4 Model and Estimation

This section introduces the economic model whose uncertainty is quantified. It is the partial equilibrium, dynamic model of occupational choice developed in Keane and Wolpin (1994) (henceforth KW94). In their survey of dynamic discrete choice structural models, Aguirregabiria and Mira (2010) assign this model to the more general class of Eckstein-Keane-Wolpin models. I largely follow their notation to ease comparisons with other models and, most importantly, to ease the explanation of the estimation method. Besides applications to labour economics, Eckstein-Keane-Wolpin models are used to explain educational and occupational choices at the individual level.

The class of Eckstein-Keane-Wolpin models is structural. This means that, from the perspective of an econometrician, the model structure allows for the estimation of relationships between observable and unobservable variables. This requires the model to be solved for the agents' policy. The policy is the set of rules which describe the agents' optimal behaviour. The relationships between observables and unobservables are governed by exogenous parameters. These parameters may, for example, be utility parameters or distributional parameters which describe the processes of unobserved shocks. Therefore, the exogenous parameters can be estimated given a dataset of observable endogenous variables. Besides the observable states, the observable endogenous variables may also comprise of other parameters like, for instance, payoffs. Estimates for the exogenous parameters allow to use simulations (of states) in order to analyse counterfactual policy scenarios. These policies are represented by changes in some exogenous parameters. For instance, Keane and Wolpin (1997) obtain the following two results based on data from the NLSY79: First, unobserved heterogeneity in the endowment at age sixteen accounts for almost 90% of the variance in lifetime utility whereas shocks to productivity explain 10%. And second, a college tuition subsidy of 2,000 USD increases high school and college graduation by 3.5% and 8.4%, respectively.

As the research code for Keane and Wolpin (1997) is currently in alpha-version, this thesis studies the predecessor model in KW94. The main differences are that the model in KW94 does not contain unobserved permanent agent heterogeneity in endowment and that its choice-specific utility functions feature fewer covariates. This difference in complexity implies a decrease of the computational burden for the UQ but also a worse fit to the data. In fact, this thesis does not use estimates from real data but estimates from simulated data based on arbitrary parameters from KW94.

The section proceeds as follows: First, I introduce the KW94 model specification embedded in the more general Eckstein-Keane-Wolpin framework. This embedding provides additional context to the reader. In the next step, the estimation method simulated maximum likelihood is presented. This approach is used for the structural estimation

of the exogenous model parameters. After remarks on the numerical implementation, I show the estimation results. They include the estimates, the standard errors, and the correlations for all parameters. These results constitute the mean vector and the covariance matrix, which are used to characterize the joint input distribution for the UQ in the next section. The section ends by describing the QoI choice.

4.1 Keane and Wolpin (1994)

Aguirregabiria and Mira (2010) define Eckstein-Keane-Wolpin models by four characteristics. The first characteristic is that these models allow for permanent unobserved heterogeneity between agents. The simpler model by KW94 considered here does not use this option in contrast to Keane and Wolpin (1997). The other three characteristics are as follows:

- 1. Unobservable shocks ε_t do not have to be additively separable from the remainder of the utility functions.
- 2. Shocks ε_t can be correlated across choices a_t .
- 3. Observable payoffs, or wages, $W_{a,t}^-$ are not conditionally independent from the unobservable shocks ε_t given the observable choices a_t and the observable part of the state vector \mathbf{s}_t^- . The reason is that wage shocks enter the wage function directly. If the agent decides against choices with observable payoffs that depend on ε_t , these payoffs can not be observed. Therefore, positive shocks and the observation of payoffs for the same choice are positively correlated.

This paragraph describes the Eckstein-Keane-Wolpin model framework without permanent agent heterogeneity in the context of occupational choices as in KW94. In this setting, agents only differ in their draws of unobserved shocks ε_t .

In each period, a representative agent receives utility U. This utility depends on the state space and on choice a in period $t \in \{0, 1, 2, ..., T\}$. Choices are mutually exclusive. The state space is the set of information in each period which is relevant for present and future utilities. It is split into an observable part \mathbf{s}_{t}^{-} and an unobservable part $\mathbf{\varepsilon}_{t}$. Choice a_{t} itself is also a function of the state space. This function is the decision rule, or policy, under which the rational agent chooses his utility for period t. For convenience, or to view utility and choices from different angles, U is denoted as function of only the states, as a function of a_{t} and the states, or as a function of function $a_{t}(\mathbf{s}_{t}^{-}, \mathbf{\varepsilon}_{t})$ and the states.

For some occupation alternatives, utility and prior decisions may be intertemporally connected: Agents receive a higher utility if they accumulated skills in past occupations that are useful for these alternatives. Other occupations may not reward experience. The observable part of the state space comprises the period, the work experience and the choice in the previous period. The unobservable part of the state space consists of the alternative-specific shocks $\{\varepsilon_{a,t}\}_{a\in A}$. Figure 1 depicts the series of events.

Figure 1. Series of events

At the beginning of each period t, the agent recognizes the reward shocks $\{\varepsilon_{a,t}\}_{a\in A}$ (as opposed to the observer), and the shocks become part of the unobserved state space ε_t . Thus, the alternative-specific utilities $\{U(\mathbf{s}_t^-, \varepsilon_t, a_t)\}_{a\in A}$ are known to the agent in period t. However, he can only form expectations about rewards in the future as the alternative-specific shocks $\{\varepsilon_{a,t}\}_{a\in A}$ are stochastic. The specification in KW94 assumes the rewards shocks $\{\varepsilon_{a,t}\}_{a\in A}$ to be serially uncorrelated. Therefore, prior shocks do not enter the state space. Next, the agent chooses his occupation a_t based on the state space information and according to his policy rule $a_t(\mathbf{s}_t^-, \varepsilon_t)$. Then he receives the occupation-specific reward. The reward can be written as a function composition of utility and policy. This flow repeats for each t < T. The computation of the optimal policy is sketched in the next paragraph.

Agents are rational and forward-looking. Future utilities are subject to time discount factor $\delta \in [0, 1]$. Hence, they choose their optimal sequence of occupations by maximizing the remaining expected, discounted life-time utility. This maximal value is given by value function $V(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{\mathbf{t}})$ in (20). Like utility U, I also write value function V with different emphasis on occupation choice a_{t} .

$$V(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon_{t}}) = \max_{\{a\}_{t=0}^{T}} \left\{ \sum_{t=0}^{T} \delta^{t} \int_{\boldsymbol{\varepsilon_{t}}} U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon_{t}}, a_{t}) f(\boldsymbol{\varepsilon_{t}}) d^{|A|} \boldsymbol{\varepsilon_{t}} \right\}$$
(20)

Value V depends directly on time t because T is finite. Together with the discount factor δ , this typically induces life-cycle behaviour. For example, agents invest more in the earlier time periods and work (and consume) more in the following periods. As $\{\varepsilon_{a,t}\}_{a\in A}$ are the only random parameters and serially independent, the expectation of $U(\mathbf{s}_t^-, \mathbf{\varepsilon}_t, a_t)$ is given by the |A|-dimensional integral of U multiplied by the joint probability density function $f(\mathbf{\varepsilon}_t)$ with respect to $\mathbf{\varepsilon}_t$. |A| denotes the number of occupation choices.

Coursely sketched, the approach to solve the above maximization problem is given by the dynamic programming problem characterized by the Bellman equation (Bellman $(1957)).^5$

$$V(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon_{t}}) = \max_{a_{t}} \left\{ U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon_{t}}, a_{t}) + \delta \int_{\boldsymbol{\varepsilon_{t}}} \max_{a_{t+1}} V(\mathbf{s}_{\mathbf{t+1}}^{-}, \boldsymbol{\varepsilon_{t+1}}, a_{t+1}) f(\boldsymbol{\varepsilon_{t+1}}) d^{|A|} \boldsymbol{\varepsilon_{t+1}} \right\}$$
(21)

The Bellman equation shows, that solving for the whole sequence of policy functions $\{a\}_{t=0}^T$ is equivalent to solving iteratively for each optimal, period-specific policy function $a_t(\mathbf{s_t}^-, \boldsymbol{\varepsilon_t})$. For this purpose, choose a_t for each period such that the current period utility and the discounted expected future lifetime utility (given the optimal choice of a_{t+1}) are maximized. The finite time horizon eases the problem as the value function for the last period T simplifies to $V(\mathbf{s_T}^-, \boldsymbol{\varepsilon_T}) = \max_{a_T} U(\mathbf{s_T}^-, \boldsymbol{\varepsilon_T}, a_T)$. With this condition, the problem can be solved for all states by iterating backwards. By emphasizing the time dependence, the policies can also be summarized as one function $a(\mathbf{s_t}^-, \boldsymbol{\varepsilon_t})$. Given initial states and random draws for the unobservable shocks $\boldsymbol{\varepsilon_t}$ for each period, this policy is used to simulate the occupational paths for a number of agents.

This paragraph addresses the alternative-specific utility functions $\{U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{\boldsymbol{t}}, a_{t})\}_{a \in A}$ that finally pin down the model structure in KW94.

There are four different occupations, b, w, e and h, of which occupations b and w are defined by the same type of utility function. In the following, I will roughly explain how the first two utility functions model characteristics for working in the blue- and in the white-collar sector and how the latter two equations sketch receiving institutional education and staying at home. The parametrization that distinguishes the blue from the white-collar sector and additional intuition is given later in subsection Estimation Results and in Table 2.

It is assumed that there is a direct mapping from USD to utility. Based on this, the utility functions for occupation b and w, U_b and U_w , equal the occupation-specific wage, $W_{b,t}$ and $W_{w,t}$, in USD. The wage equations are given by the Mincer equation for earnings (Mincer (1958)):

$$U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{\mathbf{t}}, b) = W_{b,t}^{-} = \exp\left\{\beta^{b} + \beta_{e}^{b} x_{e,t} + \beta_{b}^{b} x_{b,t} + \beta_{bb}^{b} x_{b,t}^{2} + \beta_{w}^{b} x_{w,t} + \beta_{ww}^{b} x_{w,t}^{2} + \varepsilon_{b,t}\right\}$$

$$U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{\mathbf{t}}, w) = W_{w,t}^{-} = \exp\left\{\beta^{w} + \beta_{e}^{w} x_{e,t} + \beta_{w}^{w} x_{w,t} + \beta_{ww}^{w} x_{w,t}^{2} + \beta_{b}^{w} x_{b,t} + \beta_{bb}^{w} x_{b,t}^{2} + \varepsilon_{w,t}\right\}$$

$$(22)$$

Both equations comprise of a constant term, years of schooling $x_{e,t}$, linear and quadratic terms of occupation experience, and cross-occupational experience and the respective shocks in ε_t . β is the vector of coefficients that multiply the previously defined terms.⁶ These coefficients are called covariates by many structural economists.

The utilities for education, or schooling, and staying at home are given by the functions

⁵For more details, see Raabe (2019), p. 9-19.

⁶The notation for β includes two references. The superscript indicates the occupation-specific utility that contains the coefficients. The subscript indicates the occupation-specific experience or abbreviates the condition that regulates the coefficients. Thus, coefficients for constant terms do not have a subscript. Twice the respective subscript mark coefficients for quadratic terms.

in (23). These functions are also called non-pecuniary rewards.

$$U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{t}, e) = \beta^{e} + \beta_{he}^{e} \mathbf{1}(x_{e,t} \ge 12) + \beta_{re}^{e} (1 - \mathbf{1}(a_{t-1} = e)) + \varepsilon_{e,t}$$

$$U(\mathbf{s}_{\mathbf{t}}^{-}, \boldsymbol{\varepsilon}_{t}, h) = \beta^{h} + \varepsilon_{h,t}$$
(23)

 β^e is the consumption reward of schooling. Function $\mathbf{1}(x_{e,t} \geq 12)$ indicates whether an agent has completed high school. β^e_{he} is the tuition fee on higher or post-secondary education and β^e_{re} is an adjustment cost for returning to school when the agent chose another occupation the previous period $(a_{t-1} \neq e)$. β^h is the mean reward for staying at home.

Write $\{\varepsilon_{a,t}\}_{a\in A}$ as vector $\varepsilon_{a,t}$. It is assumed that $\varepsilon_{a,t}$ follows a joint normal distribution, such that $\varepsilon_{a,t} \sim \mathcal{N}(0, \Sigma_{\varepsilon})$. Σ_{ε} denotes the covariance matrix for shocks $\varepsilon_{a,t}$. σ_a^2 and $\sigma_{a(j),a(k\neq j)}^2$ denote the alternative-specific variances and covariances in Σ_{ε} . Shocks are serially uncorrelated. Indices $\{j,k\} \in \mathbb{N}$ are used to denote subsets of a.

Finally, there is a bijective mapping from periods t to age 16 to 65. The next subsection describes the estimation method.

4.2 Simulated Maximum Likelihood Estimation

To estimate the exogenous model parameters, the approach that this thesis and also KW94 uses is the simulated maximum likelihood method (Albright et al. (1977))⁷.

This method can be applied to a set of longitudinal data on occupational choices a_t and, if available, wages $W_{a,t}^-$ of a sample of $i \in I$ individuals starting from age 16. To distinguish from its functional form, let $W_{a(k),t}^-$ henceforth denote the measured wages. For each period t, the recorded choices $a_0, ..., a_{t-1}$ imply the occupation-specific experiences $x_{a,t}$. Together with t, they constitute the observable state vector $\mathbf{s}_{\mathbf{t}}^-$. Consequently, the measured, observable endogenous variables are $\mathbf{m} \stackrel{\text{def}}{=} (\mathbf{s}_{\mathbf{t}}^-, \mathcal{W}_{a,t}^-)$. Given this setup, the goal is to estimate the exogenous model parameters $\boldsymbol{\theta} \stackrel{\text{def}}{=} (\delta, \boldsymbol{\beta}, \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}})$. Thus, in the following, every probability is a function of the exogenous model parameters $\boldsymbol{\theta}$. The approach to compute the likelihood function $L_{\mathbf{m}}(\boldsymbol{\theta})$ of the observables in the data begins with the individual latent variable representation in period t.

$$a_t = \operatorname*{argmax}_{a} V(\mathbf{s}_{\mathbf{t}}^-, \boldsymbol{\varepsilon}_{\mathbf{t}}, a_t) \tag{24}$$

As a_t and $\mathbf{s}_{\mathbf{t}}^-$ are known, the next step is to derive the unobservable shocks $\boldsymbol{\varepsilon_t}$ in terms of a_t and $\mathbf{s}_{\mathbf{t}}^-$. Therefore, write the set of shocks for which the alternative-specific value function $V(\mathbf{s}_{\mathbf{t}}^-, \boldsymbol{\varepsilon_t}, a_t(j))$ is higher than the other value functions $V(\mathbf{s}_{\mathbf{t}}^-, \boldsymbol{\varepsilon_t}, a_t(k \neq j))$ as

$$\boldsymbol{\varepsilon_t}(a_t(j), \mathbf{s_t^-}) \stackrel{\text{def}}{=} \{ \boldsymbol{\varepsilon_t} | V(\mathbf{s_t^-}, \boldsymbol{\varepsilon_t}, a_t(j)) = \max_{a_t} V(\mathbf{s_t^-}, \boldsymbol{\varepsilon_t}, a_t) \}).$$
 (25)

⁷see Aguirregabiria and Mira (2010), p. 42-44 and Raabe (2019), p. 21-26 for more details.

⁸Improvements in this thesis' estimation over KW94 are that, first, it is not assumed that the standard errors of the parameters estimates are uncorrelated, and second, that β is not left out of the estimation.

Note that the set condition is a function of the unobservable model parameters $\boldsymbol{\theta}$.

Consider first the case of non-working alternatives $a_t(j) \in [e, h]$. The probability of choosing $a_t(j)$ is the probability of set $\varepsilon_t(a_t(j), \mathbf{s}_{\mathbf{t}}^-)$. This probability equals the integral of the probability distribution function $f(\varepsilon_t)$ over all elements of set $\varepsilon_t(a_t(j), \mathbf{s}_{\mathbf{t}}^-)$ with respect to ε_t . Formally,

$$p(a_t(j)|\mathbf{s}_{\mathbf{t}}^-) = \int_{\boldsymbol{\varepsilon_t}(a_t(j),\mathbf{s}_{\mathbf{t}}^-)} f(\boldsymbol{\varepsilon_t}) d^{|A|} \boldsymbol{\varepsilon_t}.$$
 (26)

The second case is $a_t(k) \in [b, w]$. Assuming the dataset contains wages for the working alternatives $a_t(k)$, the probabilities of choosing $a_t(k)$ take a few steps more to compute. In the first step, note from the wage equations that the alternative-specific shocks $\varepsilon_{a,t}$ are log normally distributed. Second, in contrary to the non-working alternatives, using (22), the shocks can directly be expressed as a function of the alternative-specific model parameters $\beta_{a(k)}$ by inserting the inferred alternative-specific experiences $x_{a(k),t}$ into $W_{a(k),t}$ and subtracting the expression from the observed wage $\mathcal{W}_{a(k),t}^-$ for each individual. Both wages are logarithmized. Thus,

$$\varepsilon_{a(k),t} = \ln(W_{a(k),t}^{-}) - \ln(W_{a(k),t}^{-}).$$
 (27)

Third, the alternative-specific shocks $\boldsymbol{\varepsilon}_{\boldsymbol{a},\boldsymbol{t}}$ are not distributed independently. Since $\boldsymbol{\varepsilon}_{a(k),t}$ can be inferred from the observed wage $\mathcal{W}_{a(k),t}^-$, the information can be used to form the expectation about the whole error distribution. Therefore, using the conditional probability density function $f(\boldsymbol{\varepsilon}_{\boldsymbol{t}}|\boldsymbol{\varepsilon}_{a(k),t})$, the probability of choosing occupation $a_t(k)$ conditional on observed states and wages writes

$$p(a_t(k)|\mathbf{s}_{\mathbf{t}}^-, W_{a(k),t}^-) = \int_{\boldsymbol{\varepsilon_t}(a_t(k),\mathbf{s}_{\mathbf{t}}^-)} f(\boldsymbol{\varepsilon_t}|\boldsymbol{\varepsilon}_{a(k),t}) d^{|A|} \boldsymbol{\varepsilon_t}.$$
 (28)

Applying integration by substitution yields the following expression for the probability of the observed wage:⁹

$$p\left(\mathcal{W}_{a(k),t}^{-}|\mathbf{s}_{\mathbf{t}}^{-}\right) = \omega_{t}^{-1} \frac{1}{\sigma_{a(k)}} \phi\left(\frac{\varepsilon_{a(k),t}}{\sigma_{a(k)}}\right)$$
(29)

Here, ω_t^{-1} is the Jacobian of the transformation from observed wage $W_{a(k),t}^-$ to error $\varepsilon_{a(k),t}$ in (27) and ϕ is the standard normal probability density function. Finally, the joint probability of observing choice $a_t(k)$ and wage $W_{a(k),t}^-$ conditional on the observed states is given by the product of the two probabilities in (28) and (29):

$$p\left(a_t(k), \mathcal{W}_{a(k),t}^-|\mathbf{s}_{\mathbf{t}}^-\right) = p\left(a_t(k)|\mathbf{s}_{\mathbf{t}}^-, \mathcal{W}_{a(k),t}^-\right) p\left(\mathcal{W}_{a(k),t}^-|\mathbf{s}_{\mathbf{t}}^-\right)$$
(30)

Based on these results, the likelihood contribution of one individual i can be written as the

⁹See Raabe (2019), p. 29 and p.39-40 for the complete derivation.

product of the probability to observe the measured endogenous variables for one individual and for one period over all time periods:

$$L_{\mathbf{m}}^{i}(\boldsymbol{\theta}) = P\left(\left\{a_{t}^{i}, \mathcal{W}_{a,t}^{-,i}\right\}_{t=0}^{T}\right) = \prod_{t=0}^{T} p\left(a_{t}^{i}, \mathcal{W}_{a,t}^{-,i}|\mathbf{s_{t}^{-,i}}\right)$$
(31)

Therefore, the sample likelihood is given by the product of the individual likelihoods over the whole sample of individuals:

$$L_{\mathbf{m}}(\boldsymbol{\theta}) = P(\{\{a_{t}^{i}, \mathcal{W}_{a,t}^{-,i}\}_{t=0}^{T}\}_{i \in I}) = \prod_{i \in I} \prod_{t=0}^{T} p(a_{t}^{i}, \mathcal{W}_{a,t}^{-,i} | \mathbf{s_{t}^{-,i}})$$
(32)

Since the probabilities are functions of the exogenous parameters $\boldsymbol{\theta}$, the simulated maximum likelihood estimator $\hat{\boldsymbol{\theta}}$ is the vector of exogenous parameters that maximizes (32). As maximum likelihoods estimates are asymptotically normal¹⁰, these results are taken as the mean vector for the input parameters in the uncertainty quantification.

The procedure to estimate the parameter vector $\boldsymbol{\theta}$ using the expressions for the likelihood is as follows: First, The optimization algorithm of choice proposes a parameter vector. Second, the model is solved via backward induction. Third, using the policy functions, the likelihood is computed. These steps are repeated until the optimizer has found the maximal likelihood.

Finally, the calculation of the estimator's covariance is described.¹¹ The result is used as the covariance matrix for the input parameters in the UQ.

The asymptotic covariance of a maximum likelihood estimator equals the inverse of the Fisher information matrix: $Var(\theta) = I(\theta)^{-1}$. In this thesis, the information matrix $I(\theta)$ is given by the variance of the scores of the parameters.¹² The scores $s(\theta)$ are the first derivatives of the likelihood function. This can be written in terms of sample and individual likelihoods. Formally, the relationships are given by

$$s(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \frac{\partial L_{\mathbf{m}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{i \in I} \frac{L_{\mathbf{m}}^{i}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \stackrel{\text{def}}{=} \sum_{i \in I} s_{i}(\boldsymbol{\theta}). \tag{33}$$

Having multiple individual likelihood contributions, the scores are in the form of the Jacobian matrix. Using the property that the expected values of scores, $\mathbb{E}[s(\theta)]$, are zero at the maximum likelihood estimator, the variance of the scores is given by (34). It is

¹⁰This property is an advantage of this thesis' estimation approach. It facilitates the uncertainty quantification via Monte Carlo sampling because there is a simple closed form for the (marginal) probability density available.

¹¹see Verbeek (2012), p. 184-186.

¹²The computation of $Cov(\boldsymbol{\theta})$ by using the Jacobian of the individual likelihood contributions is chosen over other approaches because, first, it yields no error in the inversion step of $I(\boldsymbol{\theta})$ and, second, the results are reasonably close to the similar specification in KW94.

equal to the inverse of the Fisher information matrix.

$$I^{-1}(\boldsymbol{\theta}) = Var(s(\boldsymbol{\theta})) = \mathbb{E}[s(\boldsymbol{\theta})s(\boldsymbol{\theta})']. \tag{34}$$

Hence, the estimator for the asymptotic covariance of the maximum likelihood estimator is given by

$$\hat{\text{Cov}}_{J}(\hat{\boldsymbol{\theta}}) = \left(\frac{1}{N} \sum_{i \in I} \mathbf{s}_{i}(\hat{\boldsymbol{\theta}}) \mathbf{s}_{i}(\hat{\boldsymbol{\theta}})'\right)^{-1}$$
(35)

The intuition behind the above expression is the following: Estimator $\hat{\boldsymbol{\theta}}$ maximizes the sample likelihood. This is equivalent to $\hat{\boldsymbol{\theta}}$ setting the sample scores to zero. However, the individual likelihood may not be zero at the optimal parameter vector for the sample likelihood. This variation is captured by the variance of the individual scores evaluated at $\hat{\boldsymbol{\theta}}$. The relations in (33) and (34) then imply that the inverse of the variance of the individual scores is equivalent to the variance of the maximum likelihood estimator.

4.3 Numerical Implementation

Besides the standard python libraries, the thesis uses the packages *respy* and *estimagic* to compute the QoI and to estimate the distribution of the input parameters. All other programs can be found in the *Master's Thesis Replication Repository*.

As standard deviations σ_a are restricted to positive numbers, drawing them from the unrestricted estimated joint normal distribution can lead to false results. Therefore, covariance matrix Σ_{ε} is written in terms of the lower triangular matrix Σ_{ε}^{c} obtained from the Cholesky decomposition of Σ_{ε} . The contained Cholesky factors are unrestricted and denoted by c_i and $c_{i,j}$. i and j are positional indices. Hence, estimates for the Cholesky parameters and their variation replace the respective estimates for Σ_{ε} in the specification presented in the previous subsection.

4.4 Estimation Results

This subsection presents estimates $\hat{\boldsymbol{\theta}}$ for the exogenous parameters and the standard errors $SE(\hat{\boldsymbol{\theta}})$. It also shows the correlations between important estimates.

The second column in Table 2 contains the estimates for the exogenous model parameters θ . They are obtained from a simulated dataset of 1000 individuals based on the arbitrary parametrization that is used in Data Set One in KW94.¹³ This parametrization has the following economic implications: Occupation in the white-collar sector is more skill-intensive

¹³see table 1, p. 658; In contrary to the computation of $Corr(\hat{\theta})$, it is sufficient to find the average likelihood instead of the sample likelihood in (32).

or, more technically, has higher returns to education and occupational experience than occupation in the blue-collar sector. Moreover, experience in the blue-collar sector is rewarded in the white-collar sector but not vice versa. Under this specific parametrization, the diagonal elements of the lower triangular matrix c_i coincide with the standard deviations of the utility shocks $\varepsilon_{a,t}$ and the non-diagonal elements $c_{i,j}$ equal the correlations between different alternative-specific shocks $\varepsilon_{a,t}$. The parameter estimates $\hat{\theta}$ are precise. This means they equal the parameters with which the model is simulated.

The third column shows this thesis' estimation of the standard errors $SE(\hat{\theta})$. The fourth column shows the standard errors computed in KW94. Given the differences between both estimation specifications, namely the inclusion of β and correlations between standard errors in this thesis, the estimates are reasonably similar. However, the one exception that stands out is the results for the non-diagonal Choleksy factors $c_{i,j}$.

I argue that this thesis' estimates are more precise than the estimates in KW94, and therefore, it is correct to use them in the subsequent Uncertainty Quantification. This claim is based on two reasons. These indicate that KW94, in fact, do not estimate the Cholesky factors, but the standard errors and correlations of shocks $\varepsilon_{a,t}$. Both expressions are equal for the parametrization in Table 2. Nonetheless, they are conceptually different. Therefore, measures for their variation, which, by construction, also consider parameter values other than the mean estimates, have to differ. The arguments are: First, own estimates of $SE(\hat{\theta})$ for the model in terms of standard deviations and correlations of shocks $\varepsilon_{a,t}$ are close to those in KW94. Second, the estimates in KW94 for the non-diagonal elements $c_{i,j}$, except of the estimate for $c_{1,2}$, would be unlikely corner solutions. For instance, fix the variance for the shocks in U_e , $\overline{\sigma_e^2}$, and write this variance in terms of the Cholesky factors such that $\overline{\sigma_e^2} = c_{3,1}^2 + c_{3,2}^2 + c_3^{214}$. There are no restrictions that can force the maximum likelihood estimator to attribute σ_e^2 mainly to c_3 . In fact and in line with the first argument, the size of the estimates for the standard errors of $c_{i,j}$ in KW94 correspond to the size that one would expect for standard deviations of correlation coefficients that range from -1 to 1. Cholesky coefficients, however, are unresticted, and therefore their standard errors have not to be in this specific size. These arguments undermine the credibility of the estimation results in KW94, and as a consequence, the thesis proceeds with the own estimates.

Figure 2 depicts the correlations between the estimates of important parameters in $\boldsymbol{\theta}$. In general, the share of high correlations is considerable. The coefficients that stand out are $\operatorname{corr}(\hat{\delta}, \hat{\beta}^e)$, $\operatorname{corr}(\hat{\delta}, \hat{\beta}^h)$, $\operatorname{corr}(\hat{\beta}^e, \hat{\beta}^w)$, $\operatorname{corr}(\hat{c}_3, \hat{\beta}^e)$ and $\operatorname{corr}(\hat{c}_4, \hat{\beta}^h)$ with -0.83, -0.31, 0.45, -0.34 and -0.82, respectively.

 $[\]overline{^{14}\text{In general}, \, \sigma_{i,j}^2 = \sum_{n=1}^j c_{j,n} c_{i,n}.}$

Figure 2. Correlations between estimates for important input parameters

The intuition behind these results can be obtained from the following insight: Negative correlations imply similar effects, and positive correlations imply opposing effects on the likelihood of observed endogenous variables \mathbf{m} . For instance, consider an individual that decides for a long occupation in the education sector in the first years and then continues to work in the white-collar sector for the rest of his life. The likelihood to observe this individual increases when δ rises because all individuals get more patient, and therefore, ceteris paribus, they invest more in education. However, the same likelihood also increases if the educational utility constant β^e rises. Hence, because they can compensate each other, the likelihood around the optimal parameter $\hat{\boldsymbol{\theta}}$ decreases less for changes of both parameters in opposing directions than for changes in the same direction. Therefore, parameters δ and β^e are negatively correlated in terms of the score function in (33) around $\hat{\boldsymbol{\theta}}$. It follows from (35) that their standard errors are negatively correlated.

The above example provides intuition for $\operatorname{corr}(\hat{\delta}, \hat{\beta}^e) = -0.83$ An analogous reasoning for the same example can explain $\operatorname{corr}(\hat{\delta}, \hat{\beta}^w) = -0.31$. Yet, this correlation is smaller because $U_{w,t}$ has less covariates than $U_{e,t}$. $\operatorname{corr}(\hat{c}_3, \hat{\beta}^e) = -0.34$ and $\operatorname{corr}(\hat{c}_4, \hat{\beta}^h) = -0.82$ can be explained by a similar argument: Individuals decide for occupation in education or home sector if the respective utilities are high. This can be achieved by high constant terms or by high positive shocks. The latter can only happen to some individuals if the Cholesky factors are because the factors are components of the respective shock variance. Shocks $\varepsilon_{a,t}$ are known to the agents prior to their decision a_t . Negative shocks have a smaller impact on choosing occupation e or h because individuals tend to decide against these alternatives anyway. Thus, c_3 and β^e , and c_4 and β^h can impact the likelihood in the

same direction. And therefore, their standard errors are negatively correlated. Moreover, the latter relationship is stronger because $U_{h,t}$ has a lower level and less covariates.

4.5 Quantity of Interest

The QoI is the effect of a 500 USD subsidy on annual tuition costs for higher education on the average years of education. Formally, $\beta_{he}^{e,pol} = \beta_{he}^{e} - 500$. In KW94, the effect is an increase of 1.44 years (see table 4, p. 668). The same figure computed with *respy* is 1.5.

Figure 3 depicts a comparison between the shares of occupations in the different sectors for a sample of 1000 individuals over their relevant lifetime between two scenarios. The left graph shows the occupation paths under baseline parametrization $\hat{\theta}$ and the right graph the paths for the same model with tuition subsidy.

Figure 3. Comparison of occupation paths between scenarios

The red, blue, white, and green lines mark the shares of individuals occupied in the education, blue-collar, white-collar, and home sector, respectively. Both graphs show the typical life-cycle behaviour. Many agents tend to invest in their education early and continue in the white-collar sector. Another large group works in the blue-collar, and some of them switch to the white-collar sector, as well. This switch is caused by an accumulated experience that is also rewarded in the white-collar sector and by positive shocks. As the relative participation in the home sector is low, this sector is relatively irrelevant for all ages. The QoI is the difference between the red line in the left graph and in the right graph, averaged over the number of years. The reason for this is that the vertical axis

4 Model and Estimation

can also be interpreted as the share of one year that the average agent is occupied in the education sector. Comparing both graphs, we can see that the tuition subsidy incentivises younger individuals to stay in the education sector and older individuals to work in the white-collar sector. The latter observation is a consequence of the first because education is rewarded in the white-collar sector.

The QoI, the impact of a 500 USD tuition subsidy for higher education on average schooling years, is chosen because it is relevant to society in many areas, for example, education, inequality, and economic growth. The discussion section expands on this point. The QoI's relevance allows me to illustrate the importance of UQ in economics in the context of political decisions.

The next section shows the results of the first part of the UQ, the Uncertainty Propagation.

 ${\bf Table~2.~Estimates~for~the~distribution~of~input~parameters}$

Parameter	Mean	Standard error (SE)	SE in KW94
General			
δ	0.95	0.00084	-
Blue-collar			
eta^b	9.21	0.013	0.014
eta_e^b	0.038	0.0011	0.0015
eta^b_b	0.033	0.00044	0.00079
eta^b_{bb}	-0.0005	0.000013	0.000019
eta_w^b	0.0	0.00067	0.0024
eta_{ww}^b	0.0	0.000029	0.000 096
White-collar			
eta^w	8.48	0.0076	0.0123
eta_e^w	0.07	0.00047	0.00096
eta_w^w	0.067	0.00055	0.00090
eta_{ww}^w	-0.001	0.000017	0.00007
eta_b^w	0.022	0.00033	0.0010
eta^w_{bb}	-0.0005	0.000021	0.000 030
Education			
eta^e	0.0	330	459
eta^e_{he}	0.0	155	410
eta^e_{re}	-4000	202	660
Home			
eta^h	17750	390	1442
Lower Triange	ular Cholesky Mo	atrix	
c_1	0.2	0.0015	0.0056
c_2	0.25	0.0013	0.0046
c_3	1500	108	350
c_4	1500	173	786
$c_{1,2}$	0.0	0.0064	0.023
$c_{1,3}$	0.0	143	0.412
$c_{2,3}$	0.0	116	0.379
$c_{1,4}$	0.0	232	0.911
$c_{2,4}$	0.0	130	0.624
$c_{3,4}$	0.0	177	0.870

5 Uncertainty Propagation

6 Global Sensitivity Analysis

[inlcude relative LOO error panel like in Miftakhova]

6.1 Sobol' Indices

6.2 Univariate Effects

[PCEs do not use Monte Carlo sampling, at least no converging one, i.e. a small number of evalations is enough]

7 Discussion

none

8 Conclusion

none Go over (especially capitalizazion of) References

References

- (1990). National longitudinal survey of youth 1979 cohort, 1979–1990 (rounds 1–11). Bureau of Labor Statistics.
- Aguirregabiria, V. and P. Mira (2010). Dynamic discrete choice structural models: A survey. *Journal of Econometrics* 156(1), 38–67.
- Albright, R. S., S. Lerman, and C. F. Manski (1977). Report on the Development of an Estimation Program for the Multinomial Probit Model. Cambridge Systematics.
- Anderson, B., E. Borgonovo, M. Galeotti, and R. Roson (2014). Uncertainty in climate change modeling: can global sensitivity analysis be of help? *Risk Analysis* 34(2), 271–293.
- Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.
- Borgonovo, E. (2006). Measuring uncertainty importance: investigation and comparison of alternative approaches. *Risk analysis* 26(5), 1349–1361.
- Butler, M. P., P. M. Reed, K. Fisher-Vanden, K. Keller, and T. Wagener (2014). Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. *Environmental modelling & software 59*, 10–29.
- Canova, F. (1994). Statistical inference in calibrated models. Journal of Applied Econometrics 9(1), 123-144.
- Canova, F. (1995). Sensitivity analysis and model evaluation in simulated dynamic general equilibrium economies. *International Economic Review* 36(2), 477–501.
- Chastaing, G., F. Gamboa, and C. Prieur (2015). Generalized sobol sensitivity indices for dependent variables: numerical methods. *Journal of Statistical Computation and Simulation* 85(7), 1306–1333.
- Constantine, P. G. (2015). Active subspaces: Emerging ideas for dimension reduction in parameter studies, Volume 2. SIAM.
- Gabler, J. (2019). A python tool for the estimation of (structural) econometric models.
- Gillingham, K., W. D. Nordhaus, D. Anthoff, G. Blanford, V. Bosetti, P. Christensen, H. McJeon, J. Reilly, and P. Sztorc (2015). Modeling uncertainty in climate change: A multi-model comparison. Technical report, National Bureau of Economic Research.
- Gregory, A. W. and G. W. Smith (1995). Business cycle theory and econometrics. *The Economic Journal* 105(433), 1597–1608.
- Hansen, L. P. and J. J. Heckman (1996). The empirical foundations of calibration. *Journal of economic perspectives* 10(1), 87–104.

References

- Harenberg, D., S. Marelli, B. Sudret, and V. Winschel (2019). Uncertainty quantification and global sensitivity analysis for economic models. *Quantitative Economics* 10(1), 1–41.
- Harrison, G. W. and H. Vinod (1992). The sensitivity analysis of applied general equilibrium models: Completely randomized factorial sampling designs. *The Review of Economics and Statistics* 74(2), 357–362.
- Hope, C. (2006). The marginal impact of co2 from page 2002: an integrated assessment model incorporating the ipcc's five reasons for concern. Integrated assessment 6(1).
- Hornberger, G. M. and R. C. Spear (1981). An approach to the preliminary analysis of environmental systems. *Journal of Environmental Management* 12, 7–18.
- Judd, K. L. (1998). Numerical Methods in Economics. MIT Press.
- Keane, M. P. and K. I. Wolpin (1994). The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. *Review of Economics and Statistics* 76(4), 648–672.
- Keane, M. P. and K. I. Wolpin (1997). The career decisions of young men. *Journal of Political Economy* 105(3), 473–522.
- Kydland, F. E. (1992). On the econometrics of world business cycles. *European Economic Review* 36 (2-3), 476–482.
- Mattoo, A., A. Subramanian, D. Van Der Mensbrugghe, and J. He (2009). Reconciling climate change and trade policy.
- McKay, M. D., R. J. Beckman, and W. J. Conover (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics* 21(2), 239–245.
- Miftakhova, A. (2018). Global sensitivity analysis in integrated assessment modeling. Working Paper.
- Mincer, J. (1958). Investment in human capital and personal income distribution. *Journal of Political Economy* 66(4), 281–302.
- Nordhaus, W. D. (2008). A question of balance: economic modeling of global warming. Yale University Press New Haven.
- OpenSourceEconomics (2019). respy. Python package for the simulation and estimation of a prototypical finite-horizon dynamic discrete choice model based on Keane & Wolpin (1997). https://github.com/OpenSourceEconomics/respy.

References

- Plischke, E., E. Borgonovo, and C. L. Smith (2013). Global sensitivity measures from given data. European Journal of Operational Research 226(3), 536–550.
- Raabe, T. (2019). A unified estimation framework for some discrete choice dynamic programming models. Master's thesis, Bonn Graduate School of Economics.
- Rasmussen, C. E. and C. K. I. Williams (2005). Gaussian Processes for Machine Learning. MIT press.
- Ratto, M. (2008). Analysing dsge models with global sensitivity analysis. *Computational Economics* 31(2), 115–139.
- Saltelli, A. and B. D'Hombres (2010). Sensitivity analysis didn't help. a practitioner's critique of the Stern review. *Global Environmental Change* 20(2), 298–302.
- Scheidegger, S. and I. Bilionis (2019). Machine learning for high-dimensional dynamic stochastic economies. *Journal of Computational Science* 33, 68–82.
- Scheidegger, S., D. Mikushin, F. Kubler, and O. Schenk (2018). Rethinking large-scale economic modeling for efficiency: optimizations for GPU and Xeon Phi clusters. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 610–619. IEEE.
- Sobol', I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math Math. Phys. 7(4), 784–802.
- Stenzel, T. (2020). Master's Thesis Replication Repository. Version: master. https://-github.com/HumanCapitalAnalysis/thesis-projects-tostenzel.
- Stern, N. H. (2007). The economics of climate change: the Stern review. Cambridge University press.
- Usui, T. (2019). Adaptation to rare natural disasters and global sensitivity analysis in a dynamic stochastic economy. *Working Paper*.
- Verbeek, M. (2012). A Guide to Modern Econometrics. Wiley.
- Webster, M., A. P. Sokolov, J. M. Reilly, C. E. Forest, S. Paltsev, A. Schlosser, C. Wang, D. Kicklighter, M. Sarofim, J. Melillo, et al. (2012). Analysis of climate policy targets under uncertainty. *Climatic change* 112(3-4), 569–583.
- Wiederkehr, P. (2018). Global sensitivity analysis with dependent inputs. Master's thesis, ETH Zurich, Zurich, Switzerland.
- Ziehn, T. and A. S. Tomlin (2009). Gui-hdmr-a software tool for global sensitivity analysis of complex models. *Environmental Modelling & Software* 24 (7), 775–785.

Appendix

none

none

Affidavit

"I hereby confirm that the work presented has been performed and interpreted solely by myself except for where I explicitly identified the contrary. I assure that this work has not been presented in any other form for the fulfillment of any other degree or qualification. Ideas taken from other works in letter and in spirit are identified in every single case."