Pattern Recognition

Basics of Probability and Statistics

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

Set Notation

- A **set** is a collection of objects.
- The elements of a set are specified using {}.
 - $\circ A = \{2, 4, 6, 8\}$
 - $\circ A = \{even numbers less than 9\}$
- Given two sets A and B:
 - \circ The **union** of A and B ($A \cup B$) is the set of elements which belong to A or to B (or both).
 - \circ The **intersection** of A and B ($A \cap B$) is the set of elements which belong to both A and B.
 - \circ The **complement** of A (\overline{A}), is the set of all elements which do not belong to A.

Set Notation

- The **empty** set, written Ø or {}, means the set with no elements in it.
- A set C is a **subset** of A if all the elements in C are also in A.
- For example, let
 - O U = {all positive numbers ≤ 10}
 - $\circ A = \{2, 4, 6, 8\}$
 - \circ B = {1, 2, 3}
 - \circ C = {6, 8}

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

- Finite Equiprobable Spaces refer to cases where there are a finite number of equally likely outcomes.
 - If a coin is tossed 100 times, it's 50% be a head and 50% be a tail.
 - Probability of heads is 1/2
 - Probability of tails is 1/2
 - If a die is rolled 600 times, it's probable that each value (1,2,3,4,5,6) happen 100 times.
 - Probability of each value is 1/6

- Sample Space is the set of all possible outcomes of an experiment.
- **Event** is a subset of the sample space.
- Example: rolling a die
 - The sample space is the set {1,2,3,4,5,6}
 - The event of getting the value '6' is the subset {6}

The probability of an event A occurring is

$$P(A) = \frac{number\ of\ elements\ in\ A}{total\ number\ of\ elements\ in\ the\ sample\ space}$$

Example

A library has 20 programming books, 30 medical books, and 10 engineering books. What is the probability of choosing a programming book and an engineering book?

Solution

P(programming book) = 20/60 = 1/3

P(engineering book) = 10/60 = 1/6

Example

Two coins are tossed. Let A be the event 'two heads are obtained', and, B be the event 'one head and one tail is obtained'. Find P(A), P(B).

Solution

The sample space= $\{HH, HT, TH, TT\}$. $A = \{HH\}$. $B = \{HT, TH\}$.

Since there are 4 outcomes in the sample space.

$$P(A) = 1/4$$

 $P(B) = 2/4 = 1/2$

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

- If an event is a certainty, then its probability is one.
- Example

If a normal die is rolled, what is the probability that the number showing is less than 7?

Solution

Sample space = $\{1,2,3,4,5,6\}$

Event = $\{1,2,3,4,5,6\}$

Hence the probability (number is less than 7) = 6/6 = 1.

- If an event is **impossible**, then its probability is zero.
- Example

Find the probability of throwing an 8 on a normal die.

Solution

Sample space = $\{1,2,3,4,5,6\}$

Event = {}, i.e. the empty set.

Hence the probability of throwing an 8 is 0/6 = 0.

• Two events are **complementary** if they cannot occur at the same time and they make up the whole sample space.

Example

When a coin is tossed, the sample space is {H, T} and the events H = 'obtain a head' and T = 'obtain a tail' are complementary.

If we calculate the probabilities we find that

$$P(H) = 1/2$$
, $P(T) = 1/2$ and $P(H) + P(T) = 1$.

Example

A die is rolled. Let A be the event 'a number less than 3 is obtained' and let B be the event 'a number of 3 or more is obtained'.

```
Then P(A) = 2/6, and P(B) = 4/6.
```

So that P(A) + P(B) = 1.

- If two events are complementary, then their probabilities add up to 1.
- Example

A marble is drawn at random from a bag containing 3 red, 2 blue, 5 green and 1 yellow marble. What is the probability that it is not green?

Solution

the probability that the marble is green: P(G) = 5/11. the probability that it is not green, $P(\bar{G}) = 1 - 5/11 = 6/11$.

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

- Two events are incompatible, disjoint or mutually exclusive when two events cannot occur at the same time.
 - o we can never have a head and a tail side of a coin face up at the same time.
- **Example**: suppose a die is tossed. Then the events E = 'obtaining an even number' and O = 'obtaining a one' are mutually exclusive.

Exercise: What is the flaw in the following argument?

'Seventy percent of first year science students study mathematics. Thirty percent of first year science students study chemistry. If a first-year science student is selected at random, the probability that the student is taking maths is $\frac{70}{100}$, the probability that the student is taking chemistry is $\frac{30}{100}$, hence the probability that the student is taking maths or chemistry is

$$\frac{70}{100} + \frac{30}{100} = 1$$
 (i.e., a certainty).'

• Solution:

The two events are not mutually exclusive; therefore, we cannot add the probabilities.

That is, to count all students doing maths and/or chemistry, we need to count all the maths students, all the chemistry students, and subtract from this the number of students who were counted twice because they were in both classes.

$$P(M \cup C) = P(M) + P(C) - P(M \cap C)$$

To Summarise:

For any two events A and B, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

If A and B are mutually exclusive, then

$$P(A\cap B)=0,$$

A and B cannot happen together,

so that
$$P(A \cup B) = P(A) + P(B)$$
.

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

- A lecture on a topic of public health is held and 300 people attend. They are classified in the following way:
- If one person is selected at random, find the following probabilities:
 - P(a doctor is chosen);
 - P(a female is chosen);
 - P(a nurse is chosen);
 - P(a male is chosen);
 - P(a female nurse is chosen);
 - P(a male doctor is chosen).

Gender	Doctors	Nurses	Total
Female	90	90	180
Male	100	20	120
Total	190	110	300

- A lecture on a topic of public health is held and 300 people attend. They are classified in the following way:
- If one person is selected at random, find the following probabilities:
 - P(a doctor is chosen); 190/300
 - P(a female is chosen); 180/300
 - P(a nurse is chosen); 110/300
 - P(a male is chosen); 120/300
 - P(a female nurse is chosen); 90/300
 - P(a male doctor is chosen); 100/300

- Now suppose you are given the information that a female is chosen and you wish to find the probability that she is a nurse.
 - o P(nurse | female): "The probability that a chosen is a nurse, given that she is female"

•
$$P(nurse|female) = \frac{P(nurse \cap female)}{P(female)} = \frac{90}{200} / \frac{180}{200} = \frac{90}{100} = \frac{1}{200}$$

• **Definition:** The conditional probability of A given B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, provided that $P(B) \neq 0$.

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A),$$

Note that: P(A|B) is not the same as P(B|A).

- Exercise: find
 - P(female | nurse),
 - P(doctor | male),
 - P(male | doctor).

• Exercise: find

o P(female | nurse), $=\frac{90}{110}=\frac{9}{11}$, since there are 110 nurses and of these 90 are female.

$$\circ$$
 P(doctor | male), $=\frac{100}{120}=\frac{5}{6}$, since there are 120 males of whom 100 are doctors.

o P(male | doctor). =
$$\frac{100}{190} = \frac{10}{19}$$
, since there are 190 doctors and of these 100 are male.

• To summarize:

https://stats.stackexchange.com/questions/587109/why-is-the-denominator-in-a-conditional-probability-the-probability-of-the-condi

- To calculate P(A|B), choose the whole set of B, then from the set of B, choose A.
- To calculate P(B|A), choose the whole set of A, then from the set of A, choose B.

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

Definition:

Two events A and B are said to be **independent** if and only if P(A|B) = P(A), that is, when the conditional probability of A given B is the same as the probability of A.

- \circ The occurrence of A does not depend on the occurrence of B
- Example: tossing a coin, the probability to get heads does not depend on the probability of getting a tails.

 When two events are independent, the chance that both will happen is found by multiplying their individual chances.

A and B are independent events if and only if $P(A \cap B) = P(A) \cdot P(B)$.

Example

What is the probability of obtaining '6' and '6' on two successive rolls of a die?

Solution

P(obtaining 6 on a roll of a die) = 1/6. The two rolls are independent So P(6 and 6) = 1/6. 1/6 = 1/36.

• Example: A box contains three white cards and three black cards numbered:

One card is picked out of the box at random. If A is the event 'the card is black' and B is the event 'the card is marked 2', are A and B independent?

Solution

$$P(A) = 1/2.$$
 $P(B) = 1/2.$

$$P(A \cap B) = P(card \ is \ black \ and \ marked \ 2) = 1/6.$$

Now $1/6 \neq 1/2 \cdot 1/2$, so A and B are not independent.

Exercise

A couple has two children. Let A be the event 'they have one boy and one girl' and B the event 'they have at most one boy'. Are A and B independent?

Exercise

A couple has two children. Let A be the event 'they have one boy and one girl' and B the event 'they have at most one boy'. Are A and B independent?

Solution

Sample space = {GG, BG, GB, BB}. Note that a 'girl followed by a boy' is not the same event as 'a boy followed by a girl'.

A = {BG, GB}, B = {GG, BG, GB}, A \cap B = {BG,GB}, P(A \cap B) = 2/4 = 1/2 P(A).P(B) = 2/4 . 3/4 = 3/8 .

Since $P(A \cap B) \neq P(A)$. P(B), A and B are **not independent**.

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

Measures of Variations

Data

consist of information coming from observations, counts, measurements, or responses.

Statistics

is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

Two types of data sets

- **population** is the collection of all outcomes, responses, measurements, or counts that are of interest.
- sample is a subset, or part, of a population.

- parameter is a numerical description of a population characteristic.
- statistic is a numerical description of a sample characteristic.
 - Note that a sample statistic can differ from sample to sample, whereas a population parameter is constant for a population.

Two branches of statistics

- **Descriptive statistics** involves the organization, summarization, and display of data.
- Inferential statistics
 involves using a sample to draw conclusions about a population.
 A basic tool in the study of inferential statistics is probability.

Types of data

- Qualitative data consist of attributes, labels, or nonnumerical entries.
 - Gender, color, martial status.
- Quantitative data consist of numbers that are measurements or counts.
 - Age, height, weight, price

Task: What nominal and ordinal data?

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Variations

• A measure of central tendency is a value that represents a typical, or central, entry of a data set.

 The mean of a data set is the sum of the data entries divided by the number of entries.

$$\mu = \frac{\sum(X)}{N}$$

• **Example**: The weights for a sample of adults before starting a weight-loss study are listed. What is the mean weight of the adults?

• Solution:

$$\frac{274 + 235 + 223 + 268 + 290 + 285 + 235}{7} = 258.6$$

- The median of a data set is the value that lies in the middle of the data when the data set is ordered.
- **Example**: Find the median of the weights 274 235 223 268 290 285 235
- **Solution**: first order the data.

223 235 235 268 274 285 290

The median is the middle value, 268

- The mode of a data set is the entry that occurs with the greatest frequency.
 - A data set can have one mode, more than one mode, or no mode.
 - When no entry is repeated, the data set has no mode.
 - When two entries occur with the same greatest frequency, each entry is a mode and the data set is called bimodal.
- Example: Find the mode

274 235 223 268 290 285 235

• Solution: first order the data.

223 235 235 268 274 285 290

the mode is 235.

• Exercise: Find the mean, median, and mode of the ages.

Ages in a class						
20	20	20	20	20	20	21
21	21	21	22	22	22	23
23	23	23	24	24	65	

• Exercise: Find the mean, median, and mode of the ages.

	Ages in a class					
20	20	20	20	20	20	21
21	21	21	22	22	22	23
23	23	23	24	24	65	

• Solution:

Mean =
$$\frac{475}{20}$$
 = 23.8 years

Median =
$$\frac{21+22}{2}$$
 = 21.5 years

Mode: The entry occurring with the greatest frequency is 20 years.

• An **outlier** is a data entry that is far removed from the other entries in the

data set.

• While some outliers are valid data, other outliers may occur due to datarecording errors.

 Task: What is weighted mean? Compute the weighted mean of the following data:

Your grades from last semester are in the table. The grading system assigns points as follows: A = 4, B = 3, C = 2, D = 1, F = 0. Determine your grade point average (weighted mean).

Final Grade	Credit Hours
С	3
С	4
D	1
A	3
С	2
В	3

Content

Probabilities: Basic concepts in probability by Sue Gordon

Set Notation

Finite Equiprobable Spaces

Complementary Events

Mutually Exclusive Events

Conditional Probability

Independence

Statistics: Elementary Statistics by Ron Larson

Basic Definitions

Measures of Central Tendency

• Ways to measure the variation (or spread) of a data set.

 The range of a data set is the difference between the maximum and minimum data entries in the set.

Range = (Maximum data entry) - (Minimum data entry)

• Example: Find the range of the starting salaries for Corporation A.

• Solution:

Ordering the data helps to find the least and greatest salaries.

37 38 39 41 41 41 42 44 45 47

Minimum

Range = (Maximum salary) - (Minimum salary)

= 47 - 37

= 10

• Differences in range in a dataset

• The variance (or deviation) of an entry x in a population data set is the difference between the entry and the mean μ of the data set.

Deviation of
$$x = x - \mu$$

• Example: The mean starting salary is

$$\mu = 415/10 = 41.5$$

o the sum of the deviations is 0.

Salary (in 1000s of dollars)	Deviation (in 1000s of dollars) $x - \mu$	
41	-0.5	
38	-3.5	
39	-2.5	
45	3.5	
47	5.5	
41	-0.5	
44	2.5	
41	-0.5	
37	-4.5	
42	0.5	
$\Sigma x = 415$	$\Sigma(x-\mu)=0$	
The sum of the		

deviations is 0.

Population Variance
 is the average of the squares of the deviations.

$$variance = \sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

• Standard deviation is the square root of the population variance.

$$stdv = \sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

• Example: Find the population variance and standard deviation of the starting

salaries for Corporation A.

• Solution: we have 10 entries and $\Sigma(x) = 415$

$$0 \mu = \frac{415}{10} = 41.5$$

$$0 \sigma^2 = \frac{88.5}{10} = 8.9$$

$$0 \sigma = \sqrt{8.9} \approx 3$$

Salary x	Deviation x - μ	Squares $(x - \mu)^2$
41	-0.5	0.25
38	-3.5	12.25
39	-2.5	6.25
45	3.5	12.25
47	5.5	30.25
41	-0.5	0.25
44	2.5	6.25
41	-0.5	0.25
37	-4.5	20.25
42	0.5	0.25
$\Sigma x = 415$		$SS_x = 88.5$

- Interpreting Standard Deviation:
 - o it is a measure of the typical amount an entry deviates from the mean.
 - The more the entries are spread out, the greater the standard deviation.

- For data sets with distributions that are symmetric and bell-shaped, the standard deviation has these characteristics.
 - About 68% of the data lie within one standard deviation of the mean.
 - About 95% of the data lie within two standard deviations of the mean.
 - About 99.7% of the data lie within three standard deviations of the mean.

