

Linear Dimensionality Reduction: PCA

Qinliang Su (苏勤亮)

Sun Yat-sen University

suqliang@mail.sysu.edu.cn

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Motivation

 The dimensionality of many types of data is very high, e.g., the dimension of images below is as high as

$$256 \times 256 = 65536$$

 If we work on the raw data directly, the complexity of subsequent tasks (e.g., classification) could be extremely high

Why the dimensionality could be reduced?

The high-dimensional data often resides on a low-dimensional intrinsic space approximately

3-dimensional data lies on a 2-dimensional plane approximately

2-dimensional data lies on a 1-dimensional line approximately

The key is how to find *the principal directions* under which the dimensions of data can be significantly reduced

 For the real-world data, this is also possible to find the lowdimensional space

e.g., images of human face can be well represented with only several values if appropriate directions can be found

$$\boldsymbol{x} \approx \boldsymbol{\mu}_0 + a_1 \boldsymbol{\mu}_1 + \dots + a_7 \boldsymbol{\mu}_7$$

The raw image x that has 65536 values can be represented by only 7 values of $a_1, \dots a_7$

Outline

- Motivation
- Perspective 1: Minimizing the Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Re-representation under New Directions

How to represent orthogonal directions in high dimensional space?

A set of vectors u_i satisfying

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

where $\delta_{ij} = 1$ if i = j; 0 otherwise

Theorem: Under the M given orthogonal directions $\{u_i\}_{i=1}^M$, the best approximation to a data sample x is

$$\widetilde{\boldsymbol{x}} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_M \boldsymbol{u}_M$$

with the α_i equal to

$$\alpha_i = \boldsymbol{u}_i^T \boldsymbol{x}$$

Proof:

$$\|\boldsymbol{x} - \widetilde{\boldsymbol{x}}\|^2 = \left\|\boldsymbol{x} - \sum_{i=1}^{M} \alpha_i \boldsymbol{u}_i\right\|^2$$

$$= \|\mathbf{x}\|^2 - 2\sum_{i=1}^{M} \alpha_i \mathbf{u}_i^T \mathbf{x} + \sum_{i=1}^{M} \alpha_i^2$$

where we used $\mathbf{u}_i^T \mathbf{u}_j = 0$ for $i \neq j$ and 1 for i = j

This is a quadratic function, and can be minimized when $\alpha_i = \boldsymbol{u}_i^T \boldsymbol{x}$

Given the directions $\{u_i\}_{i=1}^M$, the best coefficient is $\alpha_i = u_i^T x$. But how to find the best directions is still unknown

Finding the Best Directions

• Goal: Given data samples $\{x^{(n)}\}_{n=1}^N$ from \mathbb{R}^D , finding M orthogonal directions u_i so that the original data can be best represented under them

$$\mathbf{x}^{(n)} \approx \sum_{i=1}^{M} \alpha_i^{(n)} \mathbf{u}_i$$

• Suppose the best directions $\{u_i\}_{i=1}^M$ are given, what are the best coefficients $\alpha_i^{(n)}$?

$$\alpha_i^{(n)} = \boldsymbol{u}_i^T \boldsymbol{x}^{(n)}$$

Instead of representing the data $x^{(n)}$ directly, we first center the data to the origin, *i.e.*, subtracting each data point $x^{(n)}$ by its mean

$$\mathbf{x}^{(n)} - \overline{\mathbf{x}}$$
, where $\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(n)}$

• The objective can now be described as minimizing the error between $x^{(n)} - \overline{x}$ and its best approximant $\widetilde{x}^{(n)} = \sum_{i=1}^{M} \alpha_i^{(n)} u_i$ in the $span(u_1, \dots, u_M)$

$$E = \frac{1}{N} \sum_{n=1}^{N} \left\| \left(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right) - \widetilde{\boldsymbol{x}}^{(n)} \right\|^{2}$$

where the best coefficient α_i is known equal to

$$\alpha_i = \boldsymbol{u}_i^T \big(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \big)$$

- Reformulating the reconstruction error E
 - a) Substituting $\widetilde{\boldsymbol{x}}^{(n)} = \sum_{i=1}^{M} \alpha_i^{(n)} \boldsymbol{u}_i$ into $E = \frac{1}{N} \sum_{n=1}^{N} \left\| \left(\boldsymbol{x}^{(n)} \overline{\boldsymbol{x}} \right) \widetilde{\boldsymbol{x}}^{(n)} \right\|^2$ and using $\boldsymbol{u}_i^T \boldsymbol{u}_i = \delta_{ij}$ gives

$$E = \frac{1}{N} \left(\sum_{n=1}^{N} \left\| \boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right\|^{2} - 2 \sum_{n=1}^{N} \sum_{i=1}^{M} \alpha_{i}^{(n)} \left(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right)^{T} \boldsymbol{u}_{i} + \sum_{n=1}^{N} \sum_{i=1}^{M} \left(\alpha_{i}^{(n)} \right)^{2} \right)$$

b) Substituting $\alpha_i^{(n)} = \boldsymbol{u}_i^T (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})$ gives

$$E = \frac{1}{N} \sum_{n=1}^{N} \left\| \boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right\|^2 - \sum_{i=1}^{M} \boldsymbol{u}_i^T \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}}) (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})^T \boldsymbol{u}_i$$

c) Writing it into a matrix form gives

$$E = \frac{1}{N} ||\boldsymbol{X} - \overline{\boldsymbol{X}}||_F^2 - \frac{1}{N} \sum_{i=1}^M \boldsymbol{u}_i^T \boldsymbol{S} \boldsymbol{u}_i$$

where $X \triangleq [x^{(1)}, x^{(2)}, \dots, x^{(N)}]$ and $\|\cdot\|_F$ is the Frobenius norm

• Minimizing $E = \frac{1}{N} ||X - \overline{X}||_F^2 - \frac{1}{N} \sum_{i=1}^M \boldsymbol{u}_i^T \boldsymbol{S} \boldsymbol{u}_i$ under the constraint $\boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$ is equivalent to maximize

$$\max_{\boldsymbol{u}_1 \cdots \boldsymbol{u}_M} \sum_{i=1}^M \boldsymbol{u}_i^T \boldsymbol{S} \boldsymbol{u}_i$$
$$s. t. : \boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$$

• Consider the simple case with M = 1. The problem is reduced to:

$$\max_{\boldsymbol{u}_1} \boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1$$
$$s.t.: \boldsymbol{u}_1^T \boldsymbol{u}_1 = 1$$

This is equivalent to maximize

$$\boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1 - \lambda (\boldsymbol{u}_1^T \boldsymbol{u}_1 - 1)$$

ightharpoonup Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting it to 0 gives

$$Su_1=\lambda u_1$$
,

from which we can see that u_1 should be the eigenvector of S

It can be further checked that it is the eigenvector w.r.t. to the largest eigenvalue that maximizes $u_1^T S u_1$

• For the case of M = 2, the problem becomes

$$\max_{\boldsymbol{u}_1,\boldsymbol{u}_2} \boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1 + \boldsymbol{u}_2^T \boldsymbol{S} \boldsymbol{u}_2$$
$$s.t.: \boldsymbol{u}_1^T \boldsymbol{u}_1 = 1, \boldsymbol{u}_2^T \boldsymbol{u}_2 = 1, \boldsymbol{u}_1^T \boldsymbol{u}_2 = 0$$

This is equivalent to maximize

$$u_1^T S u_1 - \lambda_1 (u_1^T u_1 - 1) + u_2^T S u_2 - \lambda_2 (u_2^T u_2 - 1)$$

under the constraint $\mathbf{u}_1^T \mathbf{u}_2 = 0$

 \triangleright Taking the derivative w.r.t. u_1 and u_2 and setting it to 0 gives

$$Su_1 = \lambda_1 u_1, \qquad Su_2 = \lambda_2 u_2,$$

- \Rightarrow u_1 and u_2 must be the eigenvectors of s
- \Rightarrow It can be seen that to maximize $u_1^T S u_1 + u_2^T S u_2$, u_1 and u_2 must be the eigenvectors *corresponding to the two largest eigenvalues*

For the case M > 1, the directions u_i are the eigenvectors of S corresponding to the largest M eigenvalues

Question: Will the eigenvectors u_i of S satisfy $u_i^T u_j = 0$ for $i \neq j$?

- For any $D \times D$ real symmetric matrix like $S \triangleq AA^T$, it has D eigenvectors that are orthogonal to each other
- For every $S \triangleq AA^T$, it can be decomposed as

$$S = U\Lambda U^T$$

where U is comprised of the eigenvectors of S and $UU^T = I$; Λ is a diagonal matrix composed of eigenvalues of S

Examples

Input data: each face image is a data point

Top 25 principal directions

$$\boldsymbol{x} \approx \overline{\boldsymbol{x}} + \alpha_1 \boldsymbol{u}_1 + \dots + \alpha_7 \boldsymbol{u}_7$$

Outline

- Motivation
- Perspective 1: Minimizing the Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Problem Formulation

• Goal: Given a dataset $\{x^{(n)}\}_{n=1}^{N}$, find orthogonal directions $\{u_k\}_{k=1}^{M}$ such that the variance of data projected onto these directions are maximized

Maximizing the variance is equivalent to *preserve the information* of original data as much as possible

- For the first direction u_1 , we hope the variance of projected data along the direction u_1 , i.e., $\{u_1^T x^{(n)}\}_{n=1}^N$, is maximized
 - The variance expression

$$var = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T} (\mathbf{x}^{(n)} - \overline{\mathbf{x}}) \right)^{2}$$

$$= \mathbf{u}_{1}^{T} \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{x}^{(n)} - \overline{\mathbf{x}} \right) (\mathbf{x}^{(n)} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1}$$

$$= \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

Subjecting to $u_1^T u_1 = 1$, as proved previously, the variance is maximized when u_1 is the eigenvector of S corresponding to the largest eigenvalue

• For the second direction u_2 , it also should maximize the variance

$$var = \boldsymbol{u}_2^T \boldsymbol{S} \boldsymbol{u}_2,$$

but should subject to the constraints $u_i^T u_j = \delta_{ij}$, that is,

$$\boldsymbol{u}_2^T \boldsymbol{u}_2 = 1 \qquad \boldsymbol{u}_1^T \boldsymbol{u}_2 = 0$$

• Due to u_1 being the eigenvector w.r.t. the largest eigenvalue, it can be proved that u_2 is the eigenvector of s corresponding the second largest eigenvalue

 u_i is the eigenvector of $S = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \overline{x}) (x^{(n)} - \overline{x})^T$ corresponding the i-th largest eigenvalue

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Singular Value Decomposition (SVD)

• For any $M \times N$ matrix A, it can always be decomposed as

- $U = [u_1, \dots, u_M]$ and $V = [v_1, \dots, v_N]$, with u_i and v_i being the i-th eigenvector of AA^T and A^TA , and $u_i^Tu_j = \delta_{ij}$ and $v_i^Tv_j = \delta_{ij}$
- Σ only has nonzero values on the diagonal, which are the squared root of eigenvalues of AA^T or A^TA (Nonzero eigenvalues of AA^T and A^TA are the same)

 Σ_{ii} is called *singular values* and are stored in a descending order

 Because Σ only has nonzero values on the diagonal, A can be expressed as

$$A = U'\Sigma'V'^T = \sum_{i=1}^r \Sigma_{ii} u_i v_i^T$$

where u_i and v_i are the *i*-th column of U and V; r is the number of nonzero diagonal elements in Σ

• The vector u_i in the SVD decomposition of A is the eigenvector of AA^T w.r.t. its i-th largest eigenvalues

• By setting $A = \widetilde{X}$ with $\widetilde{X} \triangleq \left[x^{(1)} - \overline{x}, x^{(2)} - \overline{x}, \cdots, x^{(N)} - \overline{x}\right]$, we can see that

$$AA^{T} = \sum_{n=1}^{N} (x^{(n)} - \overline{x})(x^{(n)} - \overline{x})^{T}$$
$$= N \cdot S$$

 \implies The eigenvectors of AA^T are the same as the matrix S

By performing SVD on \widetilde{X} , principal directions of data $\{x^{(n)}\}_{n=1}^{N}$ can be directly obtained, which are the columns of left SVD matrix U

Question:

Given the SVD decomposition of \widetilde{X} as shown below, what are the principle directions and the coefficients α_i 's for $\widetilde{x}^{(n)}$?

If only top two directions are kept, what are the coefficients α_i 's?

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Image Compression

Partition a 372×492 image below into many 12×12 patches

- Each patch is viewed as a data instance
- Performing PCA on the patches

Reconstruction Error vs # PCA components

Illustration of the top 6 PCA components

Reconstruction with the top 60 components

Reconstruction with the top 16 components

Denoising

Noisy Image

Denoised Image

Reconstructed from the top 15 principal components