Insper

Fundamentos de aprendizagem estatística

Aula 1

Magno Severino PADS - Modelos Preditivos 23/04/2021

Referências bibliográficas do curso

- An Introduction to Statistical Learning: with Applications in R. James, G. and Witten, D. and Hastie, T. and Tibshirani, R. 2013.
- The Elements of Statistical Learning. Hastie, T. and Tibshirani, R. and Friedman, J. 2017.
- R for Data Science Wickham, H. and Grolemund, G. 2017.
- Aprendizado de Máquina, uma abordagem estatística. Izbicki, R. and Santos, T. 2020

Critério de avaliação

• Quiz: 10%

• Listas: 20%

• Atividade integradora: 70%

• Seminário (extra): até 5%

Objetivos de aprendizagem

Ao final dessa aula você deverá ser capaz de

- Diferenciar um problema de regressão e um de classificação.
- Conceituar o que é um modelo estatístico.
- Definir os dois objetivos de modelagem (predição e inferência).
- Compreender o *trade-off* entre interpretabilidade e flexibilidade de um modelo.
- Compreender como mensurar o erro de um modelo.
- Conceituar a decomposição do erro em viés e variância.

Modelos supervisionados

Modelos não supervisionados

Modelos supervisionados

- Regressão linear
- Regressão Logística
- Regularização
- Árvore de Classificação
- Árvore de Regressão
- Bootstrap e Bagging
- Floresta Aleatória
- Boosting

Modelos não supervisionados

- Redução de dimensão
- Escalonamento multidimensional
- Análise de agrupamento
- K-médias
- Text mining

Modelos supervisionados

- Regressão linear
- Regressão Logística
- Regularização
- Árvore de Classificação
- Árvore de Regressão
- Bootstrap e Bagging
- Floresta Aleatória
- Boosting

Modelos preditivos

Modelos não supervisionados

- Redução de dimensão
- Escalonamento multidimensional
- Análise de agrupamento
- K-médias
- Text mining

Modelagem preditiva avançada

Modelos supervisionados

- Problemas de regressão
 Problemas de classificação

Modelos supervisionados

Problemas de regressão
 Problemas de classificação

Idade	Anos de escolaridade	Salário
28	13	R\$ 6357,70
33	15	R\$ 7035,38
45	11	R\$ 9853,98
:	:	:
40	9	R\$ 1150,76

Modelos supervisionados

Problemas de regressão

• Problemas de classificação

Idade	Anos de escolaridade	Salário
28	13	R\$ 6357,70
33	15	R\$ 7035,38
45	11	R\$ 9853,98
:	:	i
40	9	R\$ 1150,76

Modelos supervisionados

Problemas de regressão

rio
7,70
5,38
3,98
0,76

• Problemas de classificação

Idade	Salário	Tem graduação
28	R\$ 6357,70	Não
33	R\$ 7035,38	Sim
45	R\$ 9853,98	Sim
:	:	:
40	R\$ 1150,76	Não

Modelos supervisionados

Problemas de regressão

Idade	Anos de escolaridade	Salário
28	13	R\$ 6357,70
33	15	R\$ 7035,38
45	11	R\$ 9853,98
:	:	i i
40	9	R\$ 1150,76
	8	

• Problemas de classificação

Idade	Salário	Tem graduação
28	R\$ 6357,70	Não
33	R\$ 7035,38	Sim
45	R\$ 9853,98	Sim
:	i i	i
40	R\$ 1150,76	Não

Modelos supervisionados

Problemas de regressão

Idade Anos de escolaridade Salário

28 13 R\$ 6357,70 33 15 R\$ 7035,38 45 11 R\$ 9853,98 : : : Problemas de classificação

Idade	Salário	Tem graduação
28	R\$ 6357,70	Não
33	R\$ 7035,38	Sim
45	R\$ 9853,98	Sim
:	:	ŧ
40	R\$ 1150,76	Não

Regularização

R\$ 1150,76

Regressão linear

40

Árvore de Regressão

Bootstrap e Bagging

Floresta Aleatória

Boosting

Regressão Logística

Árvore de Classificação

[1] Fonte: livro R for Data Science Wickham, H. and Grolemund, G. 2017.

Caso: advertising 1

Caso: advertising ¹

Como cientista de dados, você deve fornecer ideias sobre como estimar as vendas de um determinado produto baseado no total investido em mídia (jornal, rádio e TV).

Para isso, foram coletados o total de vendas e o valor investido em cada uma das mídias consideras em 200 mercados diferentes.

	TV \$	radio 🖣	newspaper 🖣	sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9

Showing 1 to 5 of 200 entries

Previous 1 2 3 4 5 ... 40 Next

[1] Fonte: livro An Introduction to Statistical Learning with Applications in R.

Visualização dos dados

Visualização dos dados

Um pouco de nomenclatura e notação

- sales: variável resposta, variável dependente, target, output.
 - \circ Geralmente é denotada por Y.
- newspaper, radio, TV: variáveis explicativas, variáveis independentes, variáveis preditoras, *inputs*, *features*.
 - \circ Geralmente são denotadas por X, com um subscrito para distinguí-las.
 - \circ Por exemplo, X_1 para newspaper, X_2 para radio e X_3 para TV.

Estudando a relação entre variáveis

Assumimos que existe uma relação entre as preditoras, X_1, X_2, X_3 (jornal, rádio e TV), e a resposta que pode ser escrita da seguinte forma

$$Y=f(X_1,X_2,X_3)+\epsilon,$$

em que f é uma função desconhecida das preditoras e ϵ é um erro aleatório que é independente de $X=(X_1,X_2,X_3)$ com média zero.

Quando Y é uma variável quantitativa, dizemos que estamos tratando de um problema de **regressão**.

Notação

Observação	newspaper	radio	TV	sales
1	$69,\!2$	$37,\!8$	230,0	$22,\!1$
2	$45,\!1$	$39,\!3$	$44,\!5$	$10,\!4$
•	•	•	•	•
200	8,7	8,6	232,0	13,4

Observação	X_1	X_2	X_3	Y
1	X_{11}	X_{12}	X_{13}	Y_1
2	X_{21}	X_{22}	X_{23}	Y_2
• •	•	•	•	•
200	$X_{200;1}$	$X_{200;2}$	$X_{200;3}$	Y_{200}

Notação geral

Observação	X_1	X_2		X_p	Y
1	X_{11}	X_{12}	• • •	X_{1p}	Y_1
2	X_{21}	X_{22}		X_{2p}	Y_2
•	•	:	•	•	:
n	X_{n1}	X_{n2}	• • •	X_{np}	Y_n

O conjunto das p preditoras pode ser representado por $X=(X_1,X_2,\ldots,X_p)$.

 X_j é a preditora j.

 X_{ij} é o valor da preditora j na i-ésima observação.

Generalizando

Considere que seja observada uma variável quantitativa Y e p preditoras $X = (X_1, X_2, \dots, X_p)$.

Assumimos que existe uma relação entre essas medidas que pode ser escrita de forma geral como

$$Y = f(X) + \epsilon$$
,

Note que f representa a informação sistemática que X fornece de Y.

Novamente, ϵ é um erro aleatório que é independente de X com média zero. Ele representa fatores que afetam Y, mas não estão relacionados aos valores das preditoras X.

Porque estimar f?

Existem duas principais razões: predição e inferência.

Inferência

O interesse está centrado em entender como Y varia de acordo com os valores de (X_1, \ldots, X_p) :

- Quais variáveis (X_j) estão associadas com a resposta (Y)?
- Qual a relação entre a resposta (Y) e cada preditora?
- A relação entre Y e cada preditora pode ser representada adequadamente usando uma equação linear, ou é uma relação mais complicada?

Caso: advertising

- Qual mídia contribui para o total vendas?
- Qual mídia gera o maior aumento no total vendas?
- Qual o aumento esperado no total de vendas dado um acrescimo no investimento de propaganda em TV?

Predição

- Em algumas situações, queremos apenas estimar o valor de Y dadas as variáveis preditoras (X_1, \ldots, X_p) .
- Estimativa para f: \hat{f} .
- Nesse caso, trata-se a função preditora \hat{f} como uma caixa preta.
- Não há interesse particular na forma de \hat{f} , desde que ela gere boas predições para Y.
- Este é o foco deste curso.

Caso: advertising

• Qual o total de vendas previsto para um produto em que foi investido 32,0 em newspaper, 24,3 em radio e 142,5 em TV?

Como estimar f?

- Considere que foi observado um conjunto de dados tamanho n.
- Essas observações são chamadas de **conjunto de treino/treinamento**, pois serão usadas para treinar o modelo para estimar f.
- Seja $x_i = (x_{i1}, \dots, x_{ip})$ o vetor que presenta os valores das p preditoras na oservação i.
- Dados de treino: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- No caso advertising, n = 200 e p = 3.
- Aprendizagem **supervisionada** (quando Y é conhecido).
- Ideia: utilizar a informação contida nos dados de treinamento para construir uma função \hat{f} , que será nossa estimativa para f, e assim prever

$$\hat{Y} = \hat{f}(X).$$

Visualização dos dados

Modelo linear

Modelo linear

Modelo polinomial

Modelo polinomial

Erro redutível e irredutível

• Em geral, \hat{f} não é uma estimativa perfeita para f, essa "imperfeição" produz um erro:

$$Y-\hat{Y}
eq 0.$$

- Esse erro é *redutível*, pois pode-se melhorar a acurácia de \hat{f} utilizando um modelo mais apropriado para aprender sobre f.
- Lembre que

$$Y = f(X) + \epsilon$$
,

ou seja, Y também é uma função de ϵ , que não pode ser predito através de X.

- A variabilidade associada ao ϵ afeta a acurácia das predições.
- Esse erro é conhecido como erro irredutível.
- Considere uma \hat{f} e um conjunto de preditoras X. Se fixarmos \hat{f} e X, então

$$E(Y - \hat{Y})^2 = E(f(X) + \epsilon - \hat{f}(X))^2$$

$$= \underbrace{[f(X) - \hat{f}(X)]^2}_{ ext{redutível}} + \underbrace{\operatorname{Var}(\epsilon)}_{ ext{irredutível}}.$$

Formas de estimar f

Modelos paramétricos

1. Assume-se a forma de f. Por exemplo, que f é linear:

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

2. Agora o problema é estimar os coeficientes $\beta_0, \beta_1, \dots, \beta_p$ a partir do conjunto de treinamento.

Modelos não-paramétricos

- Não assume nenhuma forma para a função f.
- Busca uma função que seja o mais próximo possível dos pontos no conjunto de treinamento.

Modelo menos flexível

Modelo muito flexível

Relação entre interpretabilidade e flexibilidade

[1] Figura: pág. 25 de An Introduction to Statistical Learning with Applications in R.

Resumindo...

- Definição de variável resposta Y e variáveis preditoras $X=(X_1,\ldots,X_p)$.
- Quando Y é quantitativa, dizemos estar tratando de um problema de **regressão**.
- Modelo: $Y = f(X) + \epsilon$, f é desconhecida.
- Queremos estimar f para fazer inferência ou predição.
- Estimativa de f: \hat{f} .
- O erro de \hat{f} pode ser decomposto em
 - erro **redutível**: $[f(X) \hat{f}(X)]^2$, • erro **irredutível**: $Var(\epsilon)$.
- Relação entre interpretabilidade e flexibilidade.

Proximo passo: prática em R

```
library(tidvverse)
dados <- read csv("Advertising.csv")</pre>
dados %>%
  ggplot(aes(x=TV, y=sales)) +
  geom point(col="darkred") +
  labs(y="Sales", x="TV")
dados %>%
  ggplot(aes(x=radio, y=sales)) +
  geom point(col="darkred") +
  labs(y="Sales", x="Radio")
dados %>%
  ggplot(aes(x=newspaper, y=sales)) +
  geom point(col="darkred") +
  labs(y="Sales", x="Newspaper")
fit lm <- lm(sales ~ ., data=dados)</pre>
pred <- predict(fit lm)</pre>
```

Avaliando a qualidade do ajuste

- Precisamos de uma maneira de medir a performance de um método de aprendizagem estatística.
- Quão boas as predições são em relação aos dados observados?
- No contexto de regressão, a medida mais utilizada é o *erro quadrático médio* (MSE *mean squared error*):

$$MSE = rac{1}{n}\sum_{i=1}^{n}(y_i - \hat{f}\left(x_i
ight))^2.$$

- $\hat{f}(x_i)$ é a predição que \hat{f} dá para a i-ésima observação.
- MSE vai ser pequeno se as predições forem próximas dos valores verdadeiros.
- MSE de treino: calculado com as observações do conjunto de treino/treinamento.

Valor esperado

• Variável aleatória discreta

prêmio	$P(\mathrm{pr\hat{e}mio})$
50	$0,\!7$
100	0,2
200	0,1

$$E(\text{premio}) = 50 \times 0.7 + 100 \times 0.2 + 200 \times 0.1.$$

Valor esperado

• Variável aleatória contínua: o tempo de espera em uma estação de metrô segue uma distribuição exponencial com média de 15 minutos. $X \sim \text{Exp}(\lambda = 1/15)$.

$$E(X)=\int_0^\infty x f(x) dx=15.$$

Erro de predição esperado

• Em termos matemáticos, o erro de predição esperado é dado por

$$E[(Y - f(x))^2].$$

- Objetivo: encontrar uma função $g: \mathbb{R}^p \to \mathbb{R}$ que minimize o erro de predição.
- Suponha que $(X,Y) \sim F_{X,Y}$.
- $E[(Y f(x))^2] = \int (y f(x))^2 dF_{X,Y}(x,y)$.
- Utilizando as propriedades da esperança condicional, podemos reescrever a expressão acima

$$egin{aligned} E[(Y-f(x))^2] &= E[E[(Y-f(x)^2)|X]] \ &= \int E[(Y-f(x))^2|X=x] dF_X(x). \end{aligned}$$

• Então, basta encontrar f que minimize o integrando $E[(Y-f(x))^2|X=x]$.

- Minimizar $E[(Y f(x))^2 | X = x]$.
- Desenvolvendo o produto notável do tipo $(a + b)^2$, temos:

$$egin{aligned} E[(Y-f(x)^2)|X=x] &= E[Y^2-2Yf(x)+f^2(x)|X=x] \ &= E[Y|X=x]-2f(x)E[Y|X=x]+f^2(x). \end{aligned}$$

• Derivando em relação à f(x) e igualando a zero:

$$-2E[Y|X = x] + 2f(x) = 0.$$

• Logo, a função f que minimiza o erro de predição esperado é a função de regressão

$$f(x) = E[Y|X = x].$$

- Problema?
- Na prática, trabalhamos com amostras e não sabemos a distribuição $F_{X,Y}!$

E agora?

- A solução de E[Y|X=x] depende de quantidades desconhecidas, $F_{X,Y}$.
- Entretanto, uma boa estimativa para E[Y|X=x] nos fornecerá um bom preditor para Y.
- Considere uma amostra $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$ dos dados.
- Ideia central da aprendizagem estatística: utilizar a informação contida na amostra para construir uma função $\hat{f}: \mathbb{R}^p \to \mathbb{R}$ que será a estimativa para f.

Revisando

• Lembre-se que estamos considerando o modelo aditivo

$$Y = f(X) + \epsilon$$
,

em que X é o vetor de preditoras, com distribuição F_X e o erro aleatório ϵ tem média 0, variância σ^2 e é independente de X.

- A utilização do modelo aditivo nos permite decompor o erro de predição esperado $E[(Y \hat{f}(X))^2]$ em fatores interpretáveis: erro redutível e erro irredutível.
- Além disso, ele pode ser escrito como

$$egin{aligned} E[(Y-\hat{f}\,(x))^2] &= E[E[(Y-\hat{f}\,(x))^2|X]] \ &= \int E[(Y-\hat{f}\,(x))^2|X=x] dF_X(x). \end{aligned}$$

Relação entre viés e variância

- $Var(\theta) = E(\theta^2) E^2(\theta);$
- Viés $(\theta) = E(\hat{\theta}) \theta;$
- $ext{MSE}(\hat{ heta}) = E[(\hat{ heta} heta)^2] = ext{Vi\'es}^2(heta) + ext{Var}(\hat{ heta}).$

Decomposição do erro em viés e variância

• Podemos decompor $E[(Y - \hat{f}(X))^2]$ em termos de viés e variância:

$$egin{aligned} E[(Y-\hat{f}\left(x
ight))^2] &= \int (\operatorname{Vies}^2(\hat{f}\left(x
ight)) + \operatorname{Var}(\hat{f}\left(x
ight))) dF_X(x) + \sigma^2 \ &= \int \operatorname{MSE}[\hat{f}\left(x
ight)] dF_X(x) + \sigma^2. \end{aligned}$$

• O resultado acima nos diz que para minimizar o erro de predição esperado, temos que selecionar um método de aprendizagem estatística que tenha baixo viés e baixa variância simultaneamente.

Viés e variância em três cenários

Trade-off entre viés e variância

- Dados de treinamento são usados para estimar f.
- Diferentes conjuntos de dados de treinamento geram \hat{f} distintas.
- Idealmente, \hat{f} não deve variar tanto ao usar um conjunto de treinamento diferente.
- Decomposição do erro:

$$ext{MSE}[\hat{f}\left(x
ight)] = ext{Vies}^{2}[\hat{f}\left(x
ight)] + ext{Var}[\hat{f}\left(x
ight)]$$

- A variância de um método de aprendizagem estatística mede o quanto a estimativa \hat{f} muda conforme treinamos o modelo com novos dados de treinamento.
- O viés de um método de aprendizagem mede o quanto \hat{f} difere em média de f sob replicação do processo de aprendizagem.
- Em geral, modelos mais flexíveis apresentam alta variância e baixo viés.
- Trade-off: é fácil diminuir o viés do aprendizado aumentando a sua variância (e vice-versa).

Simulação

- Estamos interessados em prever a renda anual Y de uma pessoa que possui x anos de escolaridade.
- Considere que a função que relaciona anos de escolaridade com a renda anual é

$$Y=f(x)=45 imes anhigg(rac{x}{1,9}-7igg)+57.$$

Geração de dados

- Vamos considerar pessoas com anos de estudo distribuídos uniformemente entre 8 e 18, ou seja, $X \sim U(8, 18)$.
- Para simular a realidade, adicionamos um erro:

$$Y = f(x) + \sigma^2$$
.

- O erro aleatório σ^2 segue uma distribuição normal com média 0 e desvio padrão 4, ou seja, $\sigma^2 \sim N(0, 4^2)$.
- Objetivo: avaliar o modelo para previsão Y quando x=10.

•
$$f(10) = 14, 7$$
.

Como fazer no R?

```
n_obs <- 30

valor_x <- runif(n = n_obs, min = 8, max = 18)

valor_y <- 45*tanh(valor_x/1.9 - 7) + 57 + rnorm(n = n_obs, mean = dados <- tibble(x = valor_x, y = valor_y)

dados %>%
    ggplot(aes(x, y)) + geom_point()
```

Dados gerados

Veja abaixo uma amostra de 30 "pessoas" com anos de estudo e salário anual (x_i, y_i) gerados de acordo com a definição anterior.

Dados gerados

Veja abaixo uma amostra de 30 "pessoas" com anos de estudo e salário anual (x_i, y_i) gerados de acordo com a definição anterior.

Várias amostras

Modelo médio

Considerando os 100 conjuntos de dados gerados e $\hat{f}(x) = \frac{1}{30} \sum_{i=1}^{30} Y_i$.

Considerando 100 modelos com 2 graus de liberdade.

Considerando 100 modelos com 7 graus de liberdade.

Considerando 100 modelos com 10 graus de liberdade.

Considerando 100 modelos com 18 graus de liberdade.

Qual a relação desta figura com o slide anterior?

Trade-off viés e variância

Problema

- Na prática, não conhecemos a função $f(\cdot)!$
- Como estimar o erro de predição $(f(x_i) \hat{f}(x_i))^2$?
- Alternativa: considerar a diferença $(y_i \hat{f}(x_i))^2$

$$rac{1}{n}\sum_{i=1}^n(y_i-\hat{f}\left(x_i
ight))^2.$$

• Mas existe um problema!

Erro quadrático médio de treinamento

O que fazer se não houver conjunto de teste?

- MSE de teste: calculado com dados que não pertencem ao conjunto de treinamento.
- Essa métrica é utilizada na seleção de modelos.
- Na prática não há um conjunto de teste disponível.
- Alternativas:
 - Validation set approach;
 - Cross validation;
 - Bootstrap;
 - $\circ \rightarrow$ assunto das próximas aulas!

Erro quadrático médio de treinamento e de teste

Resumindo...

- Definição de variável resposta Y e variáveis preditoras $X=(X_1,\ldots,X_p)$.
- Quando Y é quantitativa, dizemos estar tratando de um problema de **regressão**.
- Modelo: $Y = f(X) + \epsilon$, f é desconhecida.
- Queremos estimar f para fazer inferência ou predição.
- Estimativa de f: \hat{f} .
- O erro de \hat{f} pode ser decomposto em
 - $\circ \ \ {
 m erro} \ {
 m redutível} \colon [f(X) \hat{f}\left(X
 ight)]^2,$
 - \circ erro **irredutível**: $Var(\epsilon)$.
- Relação entre interpretabilidade e flexibilidade.
- Qualidade de um ajuste pode ser avaliada através do $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{f}(x_i))^2$.
- Trade-off entre viés e variância: $\mathrm{MSE}[\hat{f}(x)] = \mathrm{Vies}^2[\hat{f}(x)] + \mathrm{Var}[\hat{f}(x)].$
- Performance do modelo deve ser avaliada no conjunto de teste.

Referências

An Introduction to Statistical Learning: with Applications in R. James, G. and Witten, D. and Hastie, T. and Tibshirani, R. 2013.

Notas de aulas prof. Tiago Mendonça. Curso PADS Modelos Preditivos.

Obrigado!

magnotfs@insper.edu.br