Introduction to Nonlinear Least Squares

Yang Lyu

VisNav

Spring 2023

In the previous lecture:

• Perception problem can systematically formulated using estimation theory

Motion estimation

In the previous lecture:

- Perception problem can systematically formulated using estimation theory
- Estimation theory:
 - (1) Maximum likelihood (ML) estimate,
 - (2) Maximum a-postiriori (MAP) estimate

Motion estimation

In the previous lecture:

- Perception problem can systematically formulated using estimation theory
- Estimation theory:
 - (1) Maximum likelihood (ML) estimate,
 - (2) Maximum a-postiriori (MAP) estimate

Which is this? ML or MAP?

Motion estimation

Compute 3D point from known poses

 $\mathbb{P}(y_1,\ldots y_N|x)$

Motion estimation

Time 1 Time 2 Time 3

In the previous lecture:

- Perception problem can systematically formulated using estimation theory
- Estimation theory:
 - (1) Maximum likelihood (ML) estimate,
 - (2) Maximum a-postiriori (MAP) estimate
- Abstract Model:

$$y_i = f_i(x) + n_i$$

state variable

 y_i measurements

 n_i noise

 \mathcal{X}

$$\hat{x} = \arg\min_{x} \sum_{i} ||y_i - f_i(x)||_{\Sigma_i}^2$$

Compute 3D point from known poses

Motion estimation

Time 2

Time 3

Time 1

In the previous lecture:

Perception problem can systematically formulated using estimation theory

- (1) Maximum likelihood (ML) estimate,
- (2) Maximum a-postiriori (MAP) estimate
- Abstract Model:

$$y_i = f_i(x) + n_i$$

x state variable

 y_i measurements

 n_i noise

If $n_i \sim \mathcal{N}(0, \Sigma_i)$ and independent across i

$$||z||_S = \sqrt{z^T S^{-1} z} \qquad S \succ 0$$

is called Mahalanobis distance.

$$\hat{x} = \arg\min_{x} \sum_{i} ||y_i - f_i(x)||_{\Sigma_i}^2$$

Compute 3D point from known poses

Motion estimation

Time 2

Time 3

Time 1

In the previous lecture:

Perception problem can systematically formulated using estimation theory

- (1) Maximum likelihood (ML) estimate,
- (2) Maximum a-postiriori (MAP) estimate
- Linear Model:

$$y_i = A_i x + n_i$$

x state variable

 y_i measurements

 n_i noise

If $n_i \sim \mathcal{N}(0, \Sigma_i)$ and independent across i

$$||z||_S = \sqrt{z^T S^{-1} z} \qquad S \succ 0$$

is called Mahalanobis distance.

$$\hat{x} = \arg\min_{x} \sum_{i} ||y_i - A_i x||_{\Sigma_i}^2$$

Today

- Nonlinear least squares problem
- Gauss-Newton Method

A quick detour

- Nonlinear optimization
- Convexity
- Optimality conditions
- Gradient descent and Newton's method

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- For our abstract model

$$r_i(x) = \sum_{i=1}^{-\frac{1}{2}} (y_i - f_i(x))$$

Linear model

$$r_i(x) = \sum_{i=1}^{-\frac{1}{2}} (y_i - A_i x)$$

$$y_i = f_i(x) + n_i$$

$$y_i = A_i x + n_i$$

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- if r(x) = Ax b we call it linear least squares problem

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- if r(x) = Ax b we call it linear least squares problem

Question: How do we solve this?

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

Nonlinear optimization problem

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- if r(x) = Ax b we call it linear least squares problem

Question: How do we solve this?

• Unconstrained nonlinear optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

Global minimum:

$$x^*$$
 is global minimum iff $g(x^*) \leq g(x)$ for all $x \in \mathbb{R}^n$

Local minimum:

$$x^*$$
 is a local minimum iff $\exists r > 0$ s.t. $g(x^*) \leq g(x)$ for all $x \in \mathcal{B}(x^*, r)$

$$\mathcal{B}(x,r) = \{ z \in \mathbb{R}^n \mid ||x - z|| \le r \}$$

• Unconstrained nonlinear optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

Necessary conditions for local minimum

$$x$$
 is a local minimum $\implies g'(x) = 0$ and $g''(x) \ge 0$

Sufficient conditions for local minimum

$$g'(x) = 0$$
 and $g''(x) > 0 \implies x$ is a local minimum of g

global minimum

$$n = 1$$

$$q:\mathbb{R} o \mathbb{R}$$

• Unconstrained nonlinear optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$q:\mathbb{R}^n\to\mathbb{R}$$

Necessary conditions for local minimum

$$x$$
 is a local minimum $\implies \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$

Sufficient conditions for local minimum

$$\nabla g(x) = 0$$
 and $\nabla^2 g(x) \succ 0 \implies x$ is a local minimum of g

Recall

$$\nabla g(x) = \begin{pmatrix} \frac{\partial g}{\partial x_1} \\ \frac{\partial g}{\partial x_2} \\ \vdots \\ \frac{\partial g}{\partial x_n} \end{pmatrix} \qquad \nabla^2 g(x) = \begin{pmatrix} \frac{\partial^2 g}{\partial x_1^2} & \frac{\partial^2 g}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 g}{\partial x_1 \partial x_n} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2^2} & \cdots & \frac{\partial^2 g}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 g}{\partial x_n \partial x_1} & \frac{\partial^2 g}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 g}{\partial x_n^2} \end{pmatrix}$$

Hessian

• Unconstrained nonlinear optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

Necessary conditions for local minimum

x is a local minimum
$$\implies \nabla g(x) = 0$$
 and $\nabla^2 g(x) \succeq 0$

Sufficient conditions for local minimum

$$\nabla g(x) = 0$$
 and $\nabla^2 g(x) \succ 0 \implies x$ is a local minimum of g

• Gradient descent converges to local minimum $x_{t+1} = x_t - \alpha_t \nabla g(x_t)$

• Unconstrained nonlinear optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

Necessary conditions for local minimum

x is a local minimum
$$\implies \nabla g(x) = 0$$
 and $\nabla^2 g(x) \succeq 0$

Sufficient conditions for local minimum

$$\nabla g(x) = 0$$
 and $\nabla^2 g(x) \succ 0 \implies x$ is a local minimum of g

Finding global minimum is hard!!

... possible with an added structure of convexity

• Convex optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

• g is convex iff for all $x_1, x_2 \in \mathbb{R}^n$ and $\theta \in [0, 1]$ we have

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

• Convex optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

• g is convex iff for all $x_1, x_2 \in \mathbb{R}^n$ and $\theta \in [0, 1]$ we have

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

Convex optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g: \mathbb{R}^n \to \mathbb{R}$$

• g is convex iff for all $x_1, x_2 \in \mathbb{R}^n$ and $\theta \in [0, 1]$ we have

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

• g is convex iff for all $x, y \in \mathbb{R}^n$ $g(y) \ge g(x) + \nabla g(x)^T (y - x)$

Convex optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

• g is convex iff for all $x_1, x_2 \in \mathbb{R}^n$ and $\theta \in [0, 1]$ we have

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

- g is convex iff for all $x, y \in \mathbb{R}^n$ $g(y) \ge g(x) + \nabla g(x)^T (y x)$
- g is convex iff for all $x \in \mathbb{R}^n$ $\nabla^2 g(x) \succeq 0$

Convex optimization problem:

$$\begin{array}{ll}
\text{Minimize} & g(x) \\
x \in \mathbb{R}^n
\end{array}$$

$$g:\mathbb{R}^n\to\mathbb{R}$$

- Local minima is also a global minima
- Necessary and sufficient condition

x is a global minima
$$\Leftrightarrow \nabla g(x) = 0$$
 and $\nabla^2 g(x) \succeq 0$

• Gradient descent converges to global minima

$$x_{t+1} = x_t - \alpha_t \nabla g(x_t)$$

Back to Nonlinear Least Squares Problem

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- if r(x) = Ax b we call it linear least squares problem

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0$$

Gradient descent algorithm converges to the global minimum

$$x_{t+1} = x_t - 2\alpha_t A^T (Ax_t - b)$$

• But, we can do much better (computationally) by exploiting the problem structure and using the optimality conditions

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0$$

• Recall: x is a global minima $\Leftrightarrow \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0 \longleftarrow$$

- Recall: x is a global minima $\Leftrightarrow \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$
- $\nabla g(x) = A^T A x A^T b$
- x is a global minima $\Leftrightarrow A^T A x = A^T b$

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0 \leftarrow$$

- Recall: x is a global minima $\Leftrightarrow \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$
- $\nabla g(x) = A^T A x A^T b$
- x is a global minima $\Leftrightarrow A^T A x = A^T b$

suffices to solve this linear system of equations

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0 \leftarrow$$

- Recall: x is a global minima $\Leftrightarrow \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$
- $\nabla g(x) = A^T A x A^T b$
- x is a global minima $\Leftrightarrow A^T A x = A^T b$

suffices to solve this linear system of equations

$$(A^T A)x = A^T b$$

• Assuming $A^TA \succ 0$

$$(A^T A)x = A^T b$$

- $L = \left(\begin{array}{cccc} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{array} \right)$
 - *Illustrative example*

- Assuming $A^TA \succ 0$
- Cholesky decomposition of A^TA

$$A^T A = L L^T$$

where L is a lower triangular and thus L^T is an upper triangular matrix

$$(A^T A)x = A^T b$$

- $L = \begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix}$
 - Illustrative example

- Assuming $A^TA \succ 0$
- Cholesky decomposition of A^TA

$$A^T A = L L^T$$

where L is a lower triangular and thus L^T is an upper triangular matrix

• We now have to solve $LL^Tx = A^Tb$. We solve it in two steps.

$$(A^T A)x = A^T b$$

- $L = \left(\begin{array}{cccc} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{array} \right)$
 - *Illustrative example*

- Assuming $A^TA \succ 0$
- Cholesky decomposition of A^TA

$$A^T A = L L^T$$

where L is a lower triangular and thus L^T is an upper triangular matrix

- We now have to solve $LL^Tx = A^Tb$. We solve it in two steps.
- Forward substitution: $Ly = A^Tb$ and obtain y
- Backward substitution: $L^T x = y$ and obtain x

QR Solver

$$(A^T A)x = A^T b$$

QR Solver

$$(A^T A)x = A^T b$$

• Perform QR factorization of A^TA

$$A^T A = QR$$

where $Q \in \mathbb{R}^{n \times n}$ s.t. $Q^T Q = I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular

$$(A^T A)x = A^T b$$

• Perform QR factorization of A^TA

$$A^T A = QR$$

where $Q \in \mathbb{R}^{n \times n}$ s.t. $Q^T Q = I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular

• Have to now solve $QRx = A^Tb$

$$(A^T A)x = A^T b$$

• Perform QR factorization of $A^T A$

$$A^T A = QR$$

where $Q \in \mathbb{R}^{n \times n}$ s.t. $Q^T Q = I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular

• Have to now solve $QRx = A^Tb$ multiply both sides by Q^T

$$(A^T A)x = A^T b$$

• Perform QR factorization of A^TA

$$A^T A = QR$$

where $Q \in \mathbb{R}^{n \times n}$ s.t. $Q^T Q = I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular

- Have to now solve $QRx = A^Tb$
- Equivalent to solving $Rx = Q^T A^T b$

multiply both sides by Q^T

$$(A^T A)x = A^T b$$

• Perform QR factorization of A^TA

$$A^T A = QR$$

where $Q \in \mathbb{R}^{n \times n}$ s.t. $Q^T Q = I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular

- Have to now solve $QRx = A^Tb$
- Equivalent to solving $Rx = Q^T A^T b$

multiply both sides by Q^T

can be solved by backward substitution

Cholesky vs QR Solver

$$(A^T A)x = A^T b$$

- QR is slower than Cholesky
- QR gives better numerical stability than Cholesky

$$\begin{array}{ll}
\text{Minimize} & ||Ax - b||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- The objective function is convex!

$$\nabla^2 g(x) = 2A^T A \succeq 0 \leftarrow$$

- Recall: x is a global minima $\Leftrightarrow \nabla g(x) = 0$ and $\nabla^2 g(x) \succeq 0$
- $\nabla g(x) = A^T A x A^T b$
- x is a global minima $\Leftrightarrow A^T A x = A^T b$

Back to Nonlinear Least Squares Problem

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- Linear least square if r(x) = Ax b. Solved!!

Back to Nonlinear Least Squares Problem

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- Linear least square if r(x) = Ax b. Solved!!

What if we linearize r(x) and solve it as a linear least square?

Linear Approximations

$$\begin{array}{ll}
\text{Minimize} & ||r(x)||^2 \\
x \in \mathbb{R}^n
\end{array}$$

- $r: \mathbb{R}^n \to \mathbb{R}^m$ and $r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- First-order Taylor approximation

$$r_i(x) \approx r_i(x_0) + \nabla r_i(x_0)^T (x - x_0)$$
 for every $i = 1, 2, ... m$

compile them to get

them to get
$$r(x) \approx r(x_0) + J(x_0)(x - x_0) \quad \text{where} \quad J(x_0) = \begin{pmatrix} \nabla r_1(x_0)^T \\ \nabla r_2(x_0)^T \\ \vdots \\ \nabla r_m(x_0)^T \end{pmatrix}$$

Holds for any $x_0 \in \mathbb{R}^n$

Minimize
$$||r(x)||^2$$

$$x \in \mathbb{R}^n$$
 Minimize $||r(x_0) + J(x_0)(x - x_0)||^2$

for any $x_0 \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m$ and $r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function

Substitute
$$d = (x - x_0)$$

Minimize $||r(x)||^2$
 $x \in \mathbb{R}^n$

Minimize $||r(x_0) + J(x_0)(x - x_0)||^2$

for any $x_0 \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function

Minimize
$$||r(x)||^2$$
 Minimize $||r(x_0) + J(x_0)d||^2$ $d \in \mathbb{R}^n$ for any $x_0 \in \mathbb{R}^n$

$$r : \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$$
 Get solution d^*

• $r_i(x)$ is the residual function

Solution will be $x = x_0 + d^*$

Minimize
$$||r(x)||^2$$
 $Minimize ||r(x_0) + J(x_0)d||^2$ $d \in \mathbb{R}^n$ for any $x_0 \in \mathbb{R}^n$

$$r : \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$$
 Get solution d^*

• $r_i(x)$ is the residual function

Solution will be $x = x_0 + d^*$ Will it? Yes or No?

Minimize
$$||r(x)||^2$$
 $Minimize ||r(x_0) + J(x_0)d||^2$ $d \in \mathbb{R}^n$ for any $x_0 \in \mathbb{R}^n$

$$r : \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$$
 Get solution d^*

• $r_i(x)$ is the residual function

Solution will be $x = x_0 + d^*$ No!

Minimize
$$||r(x)||^2$$
 Minimize $||r(x_t) + J(x_t)d||^2$ $d \in \mathbb{R}^n$ $d \in \mathbb{R}^n$ $r : \mathbb{R}^n \to \mathbb{R}^m$ and $r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$ Get solution d_t^*

- $r_i(x)$ is the residual function
- Iterate over $x_{t+1} = x_t + d_t^*$

Minimize
$$||r(x)||^2$$
 $x \in \mathbb{R}^n$
Minimize $||r(x)||^2$
 $d \in \mathbb{R}^n$
Linear least square $||r(x_t) + J(x_t)d||^2$

• $r: \mathbb{R}^n \to \mathbb{R}^m$ and $r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$

Get solution d_t^*

- $r_i(x)$ is the residual function
- Iterate over $x_{t+1} = x_t + d_t^*$

Minimize
$$||r(x)||^2$$
 $x \in \mathbb{R}^n$
Minimize $||r(x)||^2$
 $d \in \mathbb{R}^n$
Linear least square $||r(x_t) + J(x_t)d||^2$

• $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$

Get solution d_t^*

- $r_i(x)$ is the residual function
- Iterate over $x_{t+1} = x_t + d_t^*$

1. Start with an innitial guess x_0

For $t = 0, 1, 2, \dots$ until convergence

1. Start with an innitial guess x_0

For $t = 0, 1, 2, \dots$ until convergence

2. Linearize the residual function r(x) at x_t

$$r(x_t + d) \approx r(x_t) + J(x_t)d$$

1. Start with an innitial guess x_0

For $t = 0, 1, 2, \dots$ until convergence

2. Linearize the residual function r(x) at x_t

$$r(x_t + d) \approx r(x_t) + J(x_t)d$$

3. Solve the linear least squares problem to obtain the minimum d_t

Minimize
$$||r(x_t) + J(x_t)d||^2$$

$$d \in \mathbb{R}^n$$

$$A = J(x_t)$$

$$J(x_t)^T J(x_t) d = -J(x_t)^T r(x_t)$$

1. Start with an innitial guess x_0

For $t = 0, 1, 2, \dots$ until convergence

2. Linearize the residual function r(x) at x_t

$$r(x_t + d) \approx r(x_t) + J(x_t)d$$

3. Solve the linear least squares problem to obtain the minimum d_t

Minimize
$$||r(x_t) + J(x_t)d||^2$$

$$d \in \mathbb{R}^n$$

$$J(x_t)^T J(x_t) d = -J(x_t)^T r(x_t)$$

4. Update $x_{t+1} = x_t + d_t$

1. Start with an innitial guess x_0

For $t = 0, 1, 2, \dots$ until convergence

2. Linearize the residual function r(x) at x_t

$$r(x_t + d) \approx r(x_t) + J(x_t)d$$

3. Solve the linear least squares problem to obtain the minimum d_t

Minimize
$$||r(x_t) + J(x_t)d||^2$$

$$d \in \mathbb{R}^n$$

$$J(x_t)^T J(x_t) d = -J(x_t)^T r(x_t)$$

4. Update $x_{t+1} = x_t + \alpha_t d_t$

Minimize
$$||r(x)||^2 = \sum_{i=1}^m |r_i(x)|^2$$

 $x \in \mathbb{R}^n$

- $r: \mathbb{R}^n \to \mathbb{R}^m \text{ and } r(x) = [r_1(x), r_2(x), \dots r_m(x)]^T$
- $r_i(x)$ is the residual function
- Gauss-Newton Method
- Local convergence. Cannot ensure global convergence.

Summary

- Nonlinear least squares problem
- Linear least squares problem
 - Gradient descent
 - Cholesky solver
 - QR solver
- Gauss-Newton Method

A quick detour

- Nonlinear optimization
- Convexity
- Optimality conditions
- Gradient descent

Minimize
$$||r(x)||^2$$

Minimize
$$||Ax - b||^2$$
 $(A^T A)x = A^T b$

$$A^T A = L L^T$$

$$A^T A = QR$$

$$J(x_t)^T J(x_t) d = -J(x_t)^T r(x_t)$$
 $x_{t+1} = x_t + \alpha_t d_t$

Summary

- Nonlinear least squares problem
- Linear least squares problem
 - Gradient descent
 - Cholesky solver
 - QR solver
- Gauss-Newton Method

A quick detour

- Nonlinear optimization
- Convexity
- Optimality conditions
- Gradient descent

Minimize
$$||r(x)||^2$$

Minimize
$$||Ax - b||^2$$
 $(A^T A)x = A^T b$

$$A^T A = LL^T$$

$$A^T A = QR$$

$$J(x_t)^T J(x_t) d = -J(x_t)^T r(x_t)$$
 $x_{t+1} = x_t + \alpha_t d_t$

Next

- Issues with Gauss-Newton Method
- Levenberg-Marquardt Method
- Nonlinear least squares on Riemannian Manifolds