Intro: Asymptotic Notation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

Learning Objectives

- Understand the basic idea behind asymptotic runtimes.
- Describe some of the advantages to using asymptotic runtimes.

Last Time

Computing Runtimes Hard

- Depends on fine details of program.
- Depends on details of computer.

Idea

All of these issues can multiply runtimes by (large) constant.

Idea

All of these issues can multiply runtimes by (large) constant. So measure runtime in a way that ignores constant multiples.

Problem

Unfortunately, 1 second, 1 hour, 1 year only differ by constant multiples.

Solution

Consider asymptotic runtimes. How does runtime scale with input size.

Approximate Runtimes

	n	<i>n</i> log <i>n</i>	n^2	2 ⁿ
n = 20	1 sec	1 sec	1 sec	1 sec
n = 50	1 sec	1 sec	1 sec	13 day
$n = 10^2$	1 sec	1 sec	1 sec	$4 \cdot 10^{13}$ year
$n = 10^6$	1 sec	1 sec	17 min	
$n = 10^9$	1 sec	30 sec	30 year	
max <i>n</i>	10 ⁹	10 ^{7.5}	10 ^{4.5}	30

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

Intro: Big-0 Notation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

Learning Objectives

- Understand the meaning of Big-O
 notation.
- Describe some of the advantages and disadvantages of using Big-O notation.

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

f is bounded above by some constant multiple of g.

Example

$$3n^2 + 5n + 2 = O(n^2)$$
 since if $n \ge 1$,
 $3n^2 + 5n + 2 \le 3n^2 + 5n^2 + 2n^2 = 10n^2$.

Growth Rate

 $3n^2 + 5n + 2$ has the same growth rate as n^2

Using Big-O

We will use Big-O notation to report algorithm runtimes. This has several advantages.

Clarifies Growth Rate

Cleans up Notation

- $O(n^2)$ vs. $3n^2 + 5n + 2$.
- O(n) vs. $n + \log_2(n) + \sin(n)$.

Cleans up Notation

- $O(n^2)$ vs. $3n^2 + 5n + 2$.
- O(n) vs. $n + \log_2(n) + \sin(n)$.
- $O(n \log(n))$ vs. $4n \log_2(n) + 7$.
 - Note: $\log_2(n)$, $\log_3(n)$, $\log_x(n)$ differ by constant multiples, don't need to specify which.

Cleans up Notation

- $O(n^2)$ vs. $3n^2 + 5n + 2$.
- O(n) vs. $n + \log_2(n) + \sin(n)$.
- $O(n \log(n))$ vs. $4n \log_2(n) + 7$.
 - Note: $\log_2(n)$, $\log_3(n)$, $\log_x(n)$ differ by constant multiples, don't need to specify which.
- Makes algebra easier.

Can Ignore Complicated Details

No longer need to worry about:

Warning

- Using Big-O loses important information about constant multiples.
- Big-*O* is *only* asymptotic.

Intro: Using Big-0

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

Learning Objectives

- Manipulate expressions involving Big-O
 and other asymptotic notation.
- Compute algorithm runtimes in terms of Big-*O*.

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

$$7n^3 = O(n^3), \frac{n^2}{3} = O(n^2)$$

$$7n^3 = O(n^3), \frac{n^2}{3} = O(n^2)$$

 $n^a < n^b \text{ for } 0 < a < b$:
 $n = O(n^2), \sqrt{n} = O(n)$

Multiplicative constants can be omitted
$$7n^3 = O(n^3), \frac{n^2}{3} = O(n^2)$$

$$n^a < n^b \text{ for } 0 < a < b:$$

$$n = O(n^2), \sqrt{n} = O(n)$$

$$n^a < b^n (a > 0, b > 1)$$

$$n^a \prec b^n \ (a > 0, b > 1)$$
:
 $n^5 = O(\sqrt{2}^n), \ n^{100} = O(1.1^n)$

Multiplicative constants can be omitted:
$$7n^3 = O(n^3), \ \frac{n^2}{3} = O(n^2)$$

$$n^a \prec n^b \text{ for } 0 < a < b:$$

$$n = O(n^2), \ \sqrt{n} = O(n)$$

$$n^a \prec b^n \ (a > 0, b > 1):$$

$$n^5 = O(\sqrt{2}^n), \ n^{100} = O(1.1^n)$$

$$(\log n)^a \prec n^b \ (a, b > 0):$$

$$(\log n)^3 = O(\sqrt{n}), \ n \log n = O(n^2)$$

Multiplicative constants can be omitted:

Multiplicative constants can be omitted:
$$7n^3 = O(n^3), \frac{n^2}{3} = O(n^2)$$

 $n^a \prec n^b$ for $0 < a < b$:
 $n = O(n^2), \sqrt{n} = O(n)$
 $n^a \prec b^n \ (a > 0, b > 1)$:
 $n^5 = O(\sqrt{2}^n), \ n^{100} = O(1.1^n)$
 $(\log n)^a \prec n^b \ (a, b > 0)$:
 $(\log n)^3 = O(\sqrt{n}), \ n \log n = O(n^2)$

Smaller terms can be omitted: $n^2 + n = O(n^2), 2^n + n^9 = O(2^n)$

Recall Algorithm

Function FibList(n) create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i from 2 to n:

 $F[i] \leftarrow F[i-1] + F[i-2]$

return F[n]

Operation Runtime

Operation Runtime create an array F[0...n] O(n)

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)
$F[1] \leftarrow 1$	O(1)

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)
$F[1] \leftarrow 1$	O(1)
for i from 2 to n :	Loop $O(n)$ times

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)
$F[1] \leftarrow 1$	O(1)
for i from 2 to n :	Loop $O(n)$ times
$F[i] \leftarrow F[i-1] + F[i]$	-2] $O(n)$

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)
$F[1] \leftarrow 1$	O(1)
for i from 2 to n : Loop	O(n) times
$F[i] \leftarrow F[i-1] + F[i-2]$	O(n)
return $F[n]$	O(1)

Operation	Runtime
create an array $F[0 \dots n]$	O(n)
$F[0] \leftarrow 0$	O(1)
$F[1] \leftarrow 1$	O(1)
for i from 2 to n : Loop	O(n) times
$F[i] \leftarrow F[i-1] + F[i-2]$	O(n)
return $F[n]$	O(1)
Total:	

 $O(n)+O(1)+O(1)+O(n)\cdot O(n)+O(1)=O(n^2).$

Other Notation

Definition

For functions $f, g : \mathbb{N} \to \mathbb{R}^+$ we say that:

- $f(n) = \Omega(g(n))$ or $f \succeq g$ if for some c, $f(n) \ge c \cdot g(n)$ (f grows no slower than g).
- $f(n) = \Theta(g(n))$ or $f \asymp g$ if f = O(g) and $f = \Omega(g)$ (f grows at the same rate as g).

Other Notation

Definition

For functions $f, g : \mathbb{N} \to \mathbb{R}^+$ we say that:

• f(n) = o(g(n)) or $f \prec g$ if $f(n)/g(n) \rightarrow 0$ as $n \rightarrow \infty$ (f grows slower than g).

Asymptotic Notation

- Lets us ignore messy details in analysis.
- Produces clean answers.
- Throws away a lot of practically useful information.