Questio	_		Mark
n Number	Answer		
22(a)	There is a (resultant) force on the electrons in the vertical direction	(1)	
	So the electrons are accelerated vertically	(1)	
	But in the horizontal direction the electrons have a constant speed	(1)	3
22(b)(i)	Use of $W = QV$	(1)	
	Use of $E_{\rm K} = \frac{1}{2}mv^2$	(1)	
	$v = 1.73 \times 10^7 \text{ (m s}^{-1}\text{)(minimum 3 sf required)}$	(1)	3
	Example of calculation $E_{\rm K} = 1.6 \times 10^{-19} \text{ C} \times 850 \text{ V} = 1.36 \times 10^{-16} \text{ J}$		
	$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \text{ C} \times 850 \text{ V}}{9.11 \times 10^{-31} \text{ kg}}} = 1.73 \times 10^7 \text{ m s}^{-1}$		
22(b)(ii)	Use of $s = ut$	(1)	
	Use of $F = EQ$	(1)	
	Use of $F = ma$	(1)	
	Use of $s = ut + \frac{1}{2}at^2$	(1)	
	$s = 0.028 \mathrm{m} (\text{Allow ecf from (b)(i)})$	(1)	5
	Example of calculation $t = \frac{7.5 \times 10^{-2} \text{ m}}{1.73 \times 10^{7} \text{ m s}^{-1}} = 4.34 \times 10^{-9} \text{ s}$		
	$F = 1.7 \times 10^4 \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{ C} = 2.72 \times 10^{-15} \text{ N}$		
	$a = \frac{2.72 \times 10^{-15} \text{ N}}{9.11 \times 10^{-31} \text{ kg}} = 2.99 \times 10^{15} \text{ m s}^{-2}$		
	$s = \frac{1}{2} \times 2.99 \times 10^{15} \text{ m s}^{-2} (4.34 \times 10^{-9} \text{ s})^2 = 0.028 \text{ m}$		

22(b)(iii)	Use of $F = BQv \sin \theta$ with $F = \frac{mv^2}{r}$ to obtain $\frac{e}{m} = \frac{v}{Br}$ Or Use of $p = mv$ with $r = \frac{p}{BQ}$ to obtain $\frac{e}{m} = \frac{v}{Br}$ $\frac{e}{m} = 1.65 \times 10^{11} \text{ C kg}^{-1}$ (ecf from (b)(i)) Substitutes standard values into $\frac{e}{m}$ Standard value of $\frac{e}{m} = 1.76 \times 10^{11} \text{ C kg}^{-1}$ calculated and comparison with experimental value and clear conclusion $\frac{\text{Example of calculation}}{m} = \frac{1.73 \times 10^7 \text{ m s}^{-1}}{3.0 \times 10^{-3} \text{ T} \times 3.5 \times 10^{-2} \text{ m}} = 1.65 \times 10^{11} \text{ C kg}^{-1}$ $\frac{e}{m} = \frac{1.6 \times 10^{-19} \text{ C}}{9.11 \times 10^{-31} \text{ kg}} = 1.76 \times 10^{11} \text{ C kg}^{-1}$	(1)(1)(1)	4
	Total for question 22		15