Теория конечных автоматов

Практическое занятие 9

- 1) Все решения должны быть представлены нормальным алгоритмом Маркова с пояснениями к каждой формуле. Поведение алгоритма должно быть продемонстрировано на примерах.
- 2) В задачах рассматриваются только целые неотрицательные числа, если не сказано иное.
- 3) Под единичной системой счисления понимается запись неотрицательного числа с помощью единиц должно быть выписано столько единиц, какова величина числа.

Например: $2 \rightarrow 11$, $5 \rightarrow 11111$, $0 \rightarrow$ «пустое слово».

Задача 1. $A = \{a, b, c\}$. Если в слове P не менее двух символов, то переставить два первых символа.

Задача 2. $A = \{0, 1, 2\}$. Считая непустое слово P записью троичного числа, удалить из этой записи все незначащие нули.

Задача 3. $A = \{a, b, c\}$. Приписать слово abc справа к слову P.

Задача 4. $A = \{a, b, c\}$. Удалить из непустого слова P его последний символ.

Задача 5. $A = \{0,1\}$. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное учетверённому числу P, например, $101 \rightarrow 10100$.

Задача 6. $A = \{0,1\}$. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное неполному частному от деления числа P на 2, например, $1101 \rightarrow 110$.

Задача 7. $A = \{a, b\}$. В слове P все символы a заменить на b, а все (прежние) символы b — на a.

Задача 8. $A = \{a, b, c\}$. Удвоить каждый символ в слове P, например, $bacb \rightarrow bbaaccbb$.

Задача 9. $A = \{a, b\}$. Приписать слева к слову P столько единиц, сколько всего символов входит в P, например, $baab \rightarrow 1111baab$.

Задача 10. $A = \{a, b\}$. Пусть длина слова P кратна 3. Удалить правую треть этого слова.