Solutions to Selected Problems in

NUMERICAL OPTIMIZATION

by J. Nocedal and S.J. Wright

Second Edition

Solution Manual Prepared by:

Frank Curtis Long Hei Gabriel López-Calva Jorge Nocedal Stephen J. Wright

Contents

1	Introduction	6
2	Fundamentals of Unconstrained Optimization	6
	Problem 2.1	6
	Problem 2.2	7
	Problem 2.3	7
	Problem 2.4	9
	Problem 2.5	10
	Problem 2.6	10
	Problem 2.8	10
	Problem 2.9	11
	Problem 2.10	11
	Problem 2.13	12
	Problem 2.14	12
	Problem 2.15	12
	Problem 2.16	13
3	Line Search Methods	14
	Problem 3.2	14
	Problem 3.3	15
	Problem 3.4	15
	Problem 3.5	16
	Problem 3.6	17
	Problem 3.7	17
	Problem 3.8	18
	Problem 3.13	19
4	Trust-Region Methods	20
-	Problem 4.4	20
	Problem 4.5	20
	Problem 4.6	21
	Problem 4.8	22
	Problem 4.10	23
5	Conjugate Gradient Methods	23
	Problem 5.2	23
	Problem 5.3	_
	Problem 5.4	

	Problem 5.5	25
	Problem 5.6	25
	Problem 5.9	26
	Problem 5.10	27
6	Quasi-Newton Methods	28
	Problem 6.1	28
	Problem 6.2	29
7	Large-Scale Unconstrained Optimization	29
	Problem 7.2	29
	Problem 7.3	30
	Problem 7.5	30
	Problem 7.6	31
8	Calculating Derivatives	31
	Problem 8.1	31
	Problem 8.6	32
	Problem 8.7	32
9	Derivative-Free Optimization	33
	Problem 9.3	33
	Problem 9.10	33
10	Least-Squares Problems	35
	Problem 10.1	35
	Problem 10.3	36
	Problem 10.4	36
	Problem 10.5	38
	Problem 10.6	39
11	Nonlinear Equations	39
	Problem 11.1	39
	Problem 11.2	40
	Problem 11.3	40
	Problem 11.4	41
	Problem 11.5	41
	Problem 11.8	42
	Problem 11.10	42

12	Theory of Constrained Optimization	43
	Problem 12.4	43
	Problem 12.5	43
	Problem 12.7	44
	Problem 12.13	45
	Problem 12.14	45
	Problem 12.16	46
	Problem 12.18	47
	Problem 12.21	48
13	Linear Programming: The Simplex Method	49
	Problem 13.1	49
	Problem 13.5	50
	Problem 13.6	51
	Problem 13.10	51
14	Linear Programming: Interior-Point Methods	52
	Problem 14.1	52
	Problem 14.2	53
	Problem 14.3	54
	Problem 14.4	55
	Problem 14.5	55
	Problem 14.7	56
	Problem 14.8	56
	Problem 14.9	57
	Problem 14.12	57
	Problem 14.13	59
	Problem 14.14	60
15	Fundamentals of Algorithms for Nonlinear Constrained Op-	-
	timization	62
	Problem 15.3	62
	Problem 15.4	63
	Problem 15.5	63
	Problem 15.6	64
	Problem 15.7	64
	Problem 15.8	65

16	Quadratic Programming	66
	Problem 16.1	66
	Problem 16.2	67
	Problem 16.6	68
	Problem 16.7	68
	Problem 16.15	69
	Problem 16.21	69
17	Penalty and Augmented Lagrangian Methods	70
	Problem 17.1	70
	Problem 17.5	
	Problem 17.9	71
18	Sequential Quadratic Programming	72
	Problem 18.4	72
	Problem 18.5	73
19	Interior-Point Methods for Nonlinear Programming	74
	Problem 19.3	74
	Problem 19.4	
	Problem 19.14	

1 Introduction

No exercises assigned.

2 Fundamentals of Unconstrained Optimization

Problem 2.1

$$\frac{\partial f}{\partial x_1} = 100 \cdot 2(x_2 - x_1^2)(-2x_1) + 2(1 - x_1)(-1)$$

$$= -400x_1(x_2 - x_1^2) - 2(1 - x_1)$$

$$\frac{\partial f}{\partial x_2} = 200(x_2 - x_1^2)$$

$$\Rightarrow \nabla f(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$$

$$\frac{\partial^2 f}{\partial x_1^2} = -400[x_1(-2x_1) + (x_2 - x_1^2)(1)] + 2 = -400(x_2 - 3x_1^2) + 2$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{\partial^2 f}{\partial x_1 \partial x_2} = -400x_1$$

$$\frac{\partial^2 f}{\partial x_2^2} = 200$$

$$\Rightarrow \nabla^2 f(x) = \begin{bmatrix} -400(x_2 - 3x_1^2) + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$$

1.
$$\nabla f(x^*) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the only solution to $\nabla f(x) = 0$

2.
$$\nabla^2 f(x^*) = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix}$$
 is positive definite since $802 > 0$, and $\det(\nabla^2 f(x^*)) = 802(200) - 400(400) > 0$.

3. $\nabla f(x)$ is continuous.

(1), (2), (3) imply that x^* is the only strict local minimizer of f(x).

Problem 2.2

$$\frac{\partial f}{\partial x_1} = 8 + 2x_1$$

$$\frac{\partial f}{\partial x_2} = 12 - 4x_2$$

$$\Longrightarrow \nabla f(x) = \begin{bmatrix} 8 + 2x_1 \\ 12 - 4x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

One solution is $x^* = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

This is the only point satisfying the first order necessary conditions.

$$\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$$
 is not positive definite, since $\det(\nabla^2 f(x)) = -8 < 0$.

Therefore, x^* is **NOT** a minimizer. Consider $\min(-f(x))$. It is seen that $\nabla^2[-f(x)]$ is also not positive definite. Therefore x^* is **NOT** a maximizer. Thus x^* is a saddle point and only a stationary point.

The contour lines of f(x) are shown in Figure 1.

Problem 2.3

(1)

$$f_1(x) = a^T x$$
$$= \sum_{i=1}^n a_i x_i$$

$$\nabla f_1(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \dots \\ \frac{\partial f_1}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix} = a$$

$$\nabla^2 f_1(x) = \begin{bmatrix} \frac{\partial^2 f_1}{\partial x_1^2} & \frac{\partial^2 f_1}{\partial x_2 \partial x_1} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 \sum_i a_i x_i}{\partial x_s \partial x_t} \end{bmatrix} \begin{cases} s = 1 \dots n \\ t = 1 \dots n \end{cases} = 0$$

Figure 1: Contour lines of f(x).

$$f_{2}(x) = x^{T} A x = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

$$\nabla f_{2}(x) = \left[\frac{\partial f_{2}}{\partial x_{s}} \right]_{s=1\cdots n} = \left[\sum_{j} A_{sj} x_{j} + \sum_{i} A_{is} x_{i} \right]_{s=1\cdots n}$$

$$= \left[2 \sum_{j=1}^{n} A_{sj} x_{j} \right]_{s=1\cdots n} \quad \text{(since } A \text{ is symmetric)}$$

$$= 2Ax$$

$$\nabla^{2} f_{2}(x) = \left[\frac{\partial^{2} f_{2}}{\partial x_{s} \partial x_{t}} \right]_{s=1\cdots n} = \left[\frac{\partial^{2} \sum_{i} \sum_{j} A_{ij} x_{i} x_{j}}{\partial x_{s} \partial x_{t}} \right]_{s=1\cdots n}$$

$$= \left[A_{st} + A_{ts} \right]_{s=1\cdots n} = 2A$$

Problem 2.4

For any univariate function f(x), we know that the second oder Taylor expansion is

$$f(x + \Delta x) = f(x) + f^{(1)}(x)\Delta x + \frac{1}{2}f^{(2)}(x + t\Delta x)\Delta x^{2},$$

and the third order Taylor expansion is

$$f(x + \Delta x) = f(x) + f^{(1)}(x)\Delta x + \frac{1}{2}f^{(2)}(x)\Delta x^2 + \frac{1}{6}f^{(3)}(x + t\Delta x)\Delta x^3,$$

where $t \in (0,1)$.

For function $f_1(x) = \cos(1/x)$ and any nonzero point x, we know that

$$f_1^{(1)}(x) = \frac{1}{x^2} \sin \frac{1}{x}, \quad f_1^{(2)}(x) = -\frac{1}{x^4} \left(\cos \frac{1}{x} + 2x \sin \frac{1}{x} \right).$$

So the second order Taylor expansion for $f_1(x)$ is

$$\cos \frac{1}{x + \Delta x} = \cos \frac{1}{x} + \left(\frac{1}{x^2} \sin \frac{1}{x}\right) \Delta x$$
$$-\frac{1}{2(x + t\Delta x)^4} \left[\cos \frac{1}{x + t\Delta x} - 2(x + t\Delta x) \sin \frac{1}{x + t\Delta x}\right] \Delta x^2,$$

where $t \in (0, 1)$. Similarly, for $f_2(x) = \cos x$, we have

$$f_2^{(1)}(x) = -\sin x$$
, $f_2^{(2)}(x) = -\cos x$, $f_2^{(3)}(x) = \sin x$.

Thus the third order Taylor expansion for $f_2(x)$ is

$$\cos(x + \Delta x) = \cos x - (\sin x)\Delta x - \frac{1}{2}(\cos x)\Delta x^2 + \frac{1}{6}[\sin(x + t\Delta x)]\Delta x^3,$$

where $t \in (0,1)$. When x = 1, we have

$$\cos(1 + \Delta x) = \cos 1 - (\sin 1)\Delta x - \frac{1}{2}(\cos 1)\Delta x^2 + \frac{1}{6}[\sin(1 + t\Delta x)]\Delta x^3,$$

where $t \in (0,1)$.

Problem 2.5

Using a trig identity we find that

$$f(x_k) = \left(1 + \frac{1}{2^k}\right)^2 (\cos^2 k + \sin^2 k) = \left(1 + \frac{1}{2^k}\right)^2,$$

from which it follows immediately that $f(x_{k+1}) < f(x_k)$.

Let θ be any point in $[0, 2\pi]$. We aim to show that the point $(\cos \theta, \sin \theta)$ on the unit circle is a limit point of $\{x_k\}$.

From the hint, we can identify a subsequence $\xi_{k_1}, \xi_{k_2}, \xi_{k_3}, \ldots$ such that $\lim_{j\to\infty} \xi_{k_j} = \theta$. Consider the subsequence $\{x_{k_j}\}_{j=1}^{\infty}$. We have

$$\lim_{j \to \infty} x_{k_j} = \lim_{j \to \infty} \left(1 + \frac{1}{2^k} \right) \begin{bmatrix} \cos k_j \\ \sin k_j \end{bmatrix}$$

$$= \lim_{j \to \infty} \left(1 + \frac{1}{2^k} \right) \lim_{j \to \infty} \begin{bmatrix} \cos \xi_{k_j} \\ \sin \xi_{k_j} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}.$$

Problem 2.6

We need to prove that "isolated local min" \Rightarrow "strict local min." Equivalently, we prove the contrapositive: "not a strict local min" \Rightarrow "not an isolated local min."

If x^* is not even a local min, then it is certainly not an isolated local min. So we suppose that x^* is a local min but that it is not strict. Let \mathcal{N} be any nbd of x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}$. Because x^* is not a strict local min, there is some other point $x_{\mathcal{N}} \in \mathcal{N}$ such that $f(x^*) = f(x_{\mathcal{N}})$. Hence $x_{\mathcal{N}}$ is also a local min of f in the neighborhood \mathcal{N} that is different from x^* . Since we can do this for *every* neighborhood of x^* within which x^* is a local min, x^* cannot be an isolated local min.

Problem 2.8

Let S be the set of global minimizers of f. If S only has one element, then it is obviously a convex set. Otherwise for all $x, y \in S$ and $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

since f is convex. f(x) = f(y) since x, y are both global minimizers. Therefore,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(x) = f(x).$$

But since f(x) is a global minimizing value, $f(x) \leq f(\alpha x + (1 - \alpha)y)$. Therefore, $f(\alpha x + (1 - \alpha y)) = f(x)$ and hence $\alpha x + (1 - \alpha)y \in S$. Thus S is a convex set.

Problem 2.9

 $-\nabla f$ indicates steepest descent. $(p_k)\cdot(-\nabla f)=\|p_k\|\cdot\|\nabla f\|\cos\theta$. p_k is a descent direction if $-90^{\circ} < \theta < 90^{\circ} \iff \cos \theta > 0$.

$$\frac{p_k \cdot -\nabla f}{\|p_k\| \|\nabla f\|} = \cos \theta > 0 \qquad \iff \quad p_k \cdot \nabla f < 0.$$

$$\nabla f = \begin{bmatrix} 2(x_1 + x_2^2) \\ 2(x_1 + x_2^2) \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 2(x_1 + x_2^2) \\ 4x_2(x_1 + x_2^2) \end{bmatrix}$$

$$p_k \cdot \nabla f_k \Big|_{x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix} = -2 < 0$$

which implies that p_k is a descent direction.

$$p_k = \begin{pmatrix} -1\\1 \end{pmatrix}, \qquad x = \begin{pmatrix} 1\\0 \end{pmatrix}$$
$$f(x_k + \alpha_k p_k) = f((1 - \alpha, \alpha)^T) = ((1 - \alpha) + \alpha^2)^2$$

$$\Longrightarrow \frac{d}{d\alpha}f(x_k+\alpha_kp_k)=2(1-\alpha+\alpha^2)(-1+2\alpha)=0\quad \text{only when }\alpha=\frac{1}{2}.$$

It is seen that $\frac{d^2}{d\alpha^2} f(x_k + \alpha_k p_k) \Big|_{\alpha = \frac{1}{\alpha}} = 6(2\alpha^2 - 2\alpha + 1) \Big|_{\alpha = \frac{1}{\alpha}} = 3 > 0$, so $\alpha = \frac{1}{2}$ is indeed a minimizer.

Problem 2.10

Note first that

$$x_j = \sum_{i=1}^n S_{ji} z_i + s_j.$$

By the chain rule we have

$$\frac{\partial}{\partial z_i} \tilde{f}(z) = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial z_i} = \sum_{j=1}^n S_{ji} \frac{\partial f}{\partial x_j} = \left[S^T \nabla f(x) \right]_i.$$

For the second derivatives, we apply the chain rule again:

$$\frac{\partial^2}{\partial z_i \partial z_k} \tilde{f}(z) = \frac{\partial}{\partial z_k} \sum_{j=1}^n S_{ji} \frac{\partial f(x)}{\partial x_j}$$

$$= \sum_{j=1}^n \sum_{l=1}^n S_{ji} \frac{\partial^2 f(x)}{\partial x_j \partial x_l} \frac{\partial x_l}{\partial z_k} S_{lk}$$

$$= \left[S^T \nabla^2 f(x) S \right]_{ki}.$$

Problem 2.13

$$x^* = 0$$

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \left| \frac{k}{k+1} \right| < 1$$
 and $\frac{k}{k+1} \to 1$.

For any $r \in (0,1), \exists k_0$ such that $\forall k > k_0, \frac{k}{k+1} > r$.

This implies x_k is **not** Q-linearly convergent.

Problem 2.14

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = \frac{(0.5)^{2^{k+1}}}{((0.5)^{2^k})^2} = \frac{(0.5)^{2^{k+1}}}{(0.5)^{2^{k+1}}} = 1 < \infty.$$

Hence the sequence is Q-quadratic.

Problem 2.15

$$x_k = \frac{1}{k!} \qquad x^* = \lim_{n \to \infty} x_k = 0$$

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \frac{k!}{(k+1)!} = \frac{1}{k+1} \xrightarrow{k \to \infty} 0.$$

This implies x_k is Q-superlinearly convergent.

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = \frac{k!k!}{(k+1)!} = \frac{k!}{k+1} \longrightarrow \infty.$$

This implies x_k is **not** Q-quadratic convergent.

Problem 2.16

For k even, we have

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \frac{x_k/k}{x_k} = \frac{1}{k} \to 0,$$

while for k odd we have

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \frac{(1/4)^{2^k}}{x_{k-1}/k} = k \frac{(1/4)^{2^k}}{(1/4)^{2^{k-1}}} = k(1/4)^{2^{k-1}} \to 0,$$

Hence we have

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \to 0,$$

so the sequence is Q-superlinear. The sequence is not Q-quadratic because for k even we have

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = \frac{x_k/k}{x_k^2} = \frac{1}{k} 4^{2^k} \to \infty.$$

The sequence is however R-quadratic as it is majorized by the sequence $z_k = (0.5)^{2^k}$, $k = 1, 2, \ldots$ For even k, we obviously have

$$x_k = (0.25)^{2^k} < (0.5)^{2^k} = z_k,$$

while for k odd we have

$$x_k < x_{k-1} = (0.25)^{2^{k-1}} = ((0.25)^{1/2})^{2^k} = (0.5)^{2^k} = z_k.$$

A simple argument shows that z_k is Q-quadratic.

3 Line Search Methods

Problem 3.2

Graphical solution

We show that if c_1 is allowed to be greater than c_2 , then we can find a function for which no steplengths $\alpha > 0$ satisfy the Wolfe conditions.

Consider the convex function depicted in Figure 2, and let us choose $c_1 = 0.99$.

Figure 2: Convex function and sufficient decrease line

We observe that the sufficient decrease line intersects the function only once. Moreover for all points to the left of the intersection, we have

$$\phi'(\alpha) \le -\frac{1}{2}.$$

Now suppose that we choose $c_2 = 0.1$ so that the curvature condition requires

$$\phi'(\alpha) \ge -0.1. \tag{1}$$

Then there are clearly no steplengths satisfying the inequality (1) for which the sufficient decrease condition holds.

Problem 3.3

Suppose p is a descent direction and define

$$\phi(\alpha) = f(x + \alpha p), \qquad \alpha \ge 0.$$

Then any minimizer α^* of $\phi(\alpha)$ satisfies

$$\phi'(\alpha^*) = \nabla f(x + \alpha^* p)^T p = 0.$$
 (2)

A strongly convex quadratic function has the form

$$f(x) = \frac{1}{2}x^{T}Qx + b^{T}x, \qquad Q > 0,$$

and hence

$$\nabla f(x) = Qx + b. \tag{3}$$

The one-dimensional minimizer is unique, and by Equation (2) satisfies

$$[Q(x + \alpha^* p) + b]^T p = 0.$$

Therefore

$$(Qx+b)^T p + \alpha^* p^T Q p = 0$$

which together with Equation (3) gives

$$\alpha^* = -\frac{(Qx+b)^T p}{p^T Q p} = -\frac{\nabla f(x)^T p}{p^T Q p}.$$

Problem 3.4

Let $f(x) = \frac{1}{2}x^TQx + b^Tx + d$, with Q positive definite. Let x_k be the current iterate and p_k a non-zero direction. Let $0 < c < \frac{1}{2}$.

The one-dimensional minimizer along $x_k + \alpha p_k$ is (see the previous exercise)

$$\alpha_k = -\frac{\nabla f_k^T p_k}{p_k^T Q p_k}$$

Direct substitution then yields

$$f(x_k) + (1 - c)\alpha_k \nabla f_k^T p_k = f(x_k) - \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k} + c \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k}$$

Now, since $\nabla f_k = Qx_k + b$, after some algebra we get

$$f(x_k + \alpha_k p_k) = f(x_k) - \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k} + \frac{1}{2} \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k},$$

from which the first inequality in the Goldstein conditions is evident. For the second inequality, we reduce similar terms in the previous expression to get

$$f(x_k + \alpha_k p_k) = f(x_k) - \frac{1}{2} \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k},$$

which is smaller than

$$f(x_k) + c\alpha_k \nabla f_k^T p_k = f(x_k) - c \frac{(\nabla f_k^T p_k)^2}{p_k^T Q p_k}.$$

Hence the Goldstein conditions are satisfied.

Problem 3.5

First we have from (A.7)

$$||x|| = ||B^{-1}Bx|| \le ||B^{-1}|| \cdot ||Bx||,$$

Therefore

$$||Bx|| \ge ||x|| / ||B^{-1}||$$

for any nonsingular matrix B.

For symmetric and positive definite matrix B, we have that the matrices $B^{1/2}$ and $B^{-1/2}$ exist and that $||B^{1/2}|| = ||B||^{1/2}$ and $||B^{-1/2}|| = ||B^{-1}||^{1/2}$. Thus, we have

$$\begin{split} \cos\theta &= -\frac{\nabla f^T p}{\|\nabla f\| \cdot \|p\|} = \frac{p^T B p}{\|B p\| \cdot \|p\|} \\ &\geq \frac{p^T B p}{\|B\| \cdot \|p\|^2} = \frac{p^T B^{1/2} B^{1/2} p}{\|B\| \cdot \|p\|^2} \\ &= \frac{\|B^{1/2} p\|^2}{\|B\| \cdot \|p\|^2} \geq \frac{\|p\|^2}{\|B^{-1/2}\|^2 \cdot \|B\| \cdot \|p\|^2} \\ &= \frac{1}{\|B^{-1}\| \cdot \|B\|} \geq \frac{1}{M}. \end{split}$$

We can actually prove the stronger result that $\cos\theta \ge 1/M^{1/2}$. Defining $\tilde{p}=B^{1/2}p=-B^{-1/2}\nabla f$, we have

$$\begin{split} \cos\theta &= \frac{p^T B p}{\|\nabla f\| \cdot \|p\|} = \frac{\tilde{p}^T \tilde{p}}{\|B^{1/2} \tilde{p}\| \cdot \|B^{-1/2} \tilde{p}\|} \\ &= \frac{\|\tilde{p}\|^2}{\|B^{1/2}\| \cdot \|\tilde{p}\| \cdot \|B^{-1/2}\| \cdot \|\tilde{p}\|} = \frac{1}{\|B^{1/2}\| \cdot \|B^{-1/2}\|} \ge \frac{1}{M^{1/2}}. \end{split}$$

Problem 3.6

If $x_0 - x^*$ is parallel to an eigenvector of Q, then

$$\nabla f(x_0) = Qx_0 - b = Qx_0 - Qx^* + Qx^* - b$$

= $Q(x_0 - x^*) + \nabla f(x^*)$
= $\lambda(x_0 - x^*)$

for the corresponding eigenvalue λ . From here, it is easy to get

$$\nabla f_0^T \nabla f_0 = \lambda^2 (x_0 - x^*)^T (x_0 - x^*),
\nabla f_0^T Q \nabla f_0 = \lambda^3 (x_0 - x^*)^T (x_0 - x^*),
\nabla f_0^T Q^{-1} \nabla f_0 = \lambda (x_0 - x^*)^T (x_0 - x^*).$$

Direct substitution in equation (3.28) yields

$$||x_1 - x^*||_Q^2 = 0$$
 or $x_1 = x^*$.

Therefore the steepest descent method will find the solution in one step.

Problem 3.7

We drop subscripts on $\nabla f(x_k)$ for simplicity. We have

$$x_{k+1} = x_k - \alpha \nabla f$$
,

so that

$$x_{k+1} - x^* = x_k - x^* - \alpha \nabla f,$$

By the definition of $\|\cdot\|_Q^2$, we have

$$||x_{k+1} - x^*||_Q^2 = (x_{k+1} - x^*)^T Q(x_{k+1} - x^*)$$

$$= (x_k - x^* - \alpha \nabla f)^T Q(x_k - x^* - \alpha \nabla f)$$

$$= (x_k - x^*)^T Q(x_k - x^*) - 2\alpha \nabla f^T Q(x_k - x^*) + \alpha^2 \nabla f^T Q \nabla f$$

$$= ||x_k - x^*||_Q^2 - 2\alpha \nabla f^T Q(x_k - x^*) + \alpha^2 \nabla f^T Q \nabla f$$

Hence, by substituting $\nabla f = Q(x_k - x^*)$ and $\alpha = \nabla f^T \nabla f / (\nabla f^T Q \nabla f)$, we obtain

$$\begin{aligned} \|x_{k+1} - x^*\|_Q^2 &= \|x_k - x^*\|_Q^2 - 2\alpha \nabla f^T \nabla f + \alpha^2 \nabla f^T Q \nabla f \\ &= \|x_k - x^*\|_Q^2 - 2(\nabla f^T \nabla f)^2 / (\nabla f^T Q \nabla f) + (\nabla f^T \nabla f)^2 / (\nabla f^T Q \nabla f) \\ &= \|x_k - x^*\|_Q^2 - (\nabla f^T \nabla f)^2 / (\nabla f^T Q \nabla f) \\ &= \|x_k - x^*\|_Q^2 \left[1 - \frac{(\nabla f^T \nabla f)^2}{(\nabla f^T Q \nabla f) \|x_k - x^*\|_Q^2} \right] \\ &= \|x_k - x^*\|_Q^2 \left[1 - \frac{(\nabla f^T \nabla f)^2}{(\nabla f^T Q \nabla f) (\nabla f^T Q^{-1} \nabla f)} \right], \end{aligned}$$

where we used

$$||x_k - x^*||_Q^2 = \nabla f^T Q^{-1} \nabla f$$

for the final equality.

Problem 3.8

We know that there exists an orthogonal matrix P such that

$$P^TQP = \Lambda = \operatorname{diag} \{\lambda_1, \lambda_2, \cdots, \lambda_n\}.$$

So

$$P^{T}Q^{-1}P = (P^{T}QP)^{-1} = \Lambda^{-1}.$$

Let $z = P^{-1}x$, then

$$\frac{(x^Tx)^2}{(x^TQx)(x^TQ^{-1}x)} = \frac{(z^Tz)^2}{(z^T\Lambda z)(z^T\Lambda^{-1}z)} = \frac{(\sum_i z_i^2)^2}{(\sum_i \lambda_i z_i^2)(\sum_i \lambda_i^{-1} z_i^2)} = \frac{1}{\frac{\sum_i \lambda_i z_i^2}{\sum_i z_i^2} \cdot \frac{\sum_i \lambda_i^{-1} z_i^2}{\sum_i z_i^2}}$$

Let $u_i = z_i^2 / \sum_i z_i^2$, then all u_i satisfy $0 \le u_i \le 1$ and $\sum_i u_i = 1$. Therefore

$$\frac{(x^T x)^2}{(x^T Q x)(x^T Q^{-1} x)} = \frac{1}{(\sum_i u_i \lambda_i)(\sum_i u_i \lambda_i^{-1})} = \frac{\phi(u)}{\psi(u)},\tag{4}$$

where $\phi(u) = \frac{1}{\sum_i u_i \lambda_i}$ and $\psi(u) = \sum_i u_i \lambda_i^{-1}$. Define function $f(\lambda) = \frac{1}{\lambda}$, and let $\bar{\lambda} = \sum_i u_i \lambda_i$. Note that $\bar{\lambda} \in [\lambda_1, \lambda_n]$. Then

$$\phi(u) = \frac{1}{\sum_{i} u_i \lambda_i} = f(\bar{\lambda}). \tag{5}$$

Let $h(\lambda)$ be the linear function fitting the data $(\lambda_1, \frac{1}{\lambda_1})$ and $(\lambda_n, \frac{1}{\lambda_n})$. We know that

$$h(\lambda) = \frac{1}{\lambda_n} + \frac{\frac{1}{\lambda_1} - \frac{1}{\lambda_n}}{\lambda_n - \lambda_1} (\lambda_n - \lambda).$$

Because f is convex, we know that $f(\lambda) \leq h(\lambda)$ holds for all $\lambda \in [\lambda_1, \lambda_n]$. Thus

$$\psi(\lambda) = \sum_{i} u_i f(\lambda_i) \le \sum_{i} u_i h(\lambda_i) = h(\sum_{i} u_i \lambda_i) = h(\bar{\lambda}).$$
 (6)

Combining (4), (5) and (6), we have

$$\begin{array}{ll} \frac{(x^Tx)^2}{(x^TQx)(x^TQ^{-1}x)} & = & \frac{\phi(u)}{\psi(u)} \geq \frac{f(\bar{\lambda})}{h(\bar{\lambda})} \geq \min_{\lambda_1 \leq \lambda \leq \lambda_n} \frac{f(\lambda)}{h(\bar{\lambda})} \quad (\text{since } \bar{\lambda} \in [\lambda_1, \lambda_n]) \\ & = & \min_{\lambda_1 \leq \lambda \leq \lambda_n} \frac{\lambda^{-1}}{\frac{1}{\lambda_n} + \frac{\lambda_n - \lambda}{\lambda_1 \lambda_n}} \\ & = & \lambda_1 \lambda_n \cdot \min_{\lambda_1 \leq \lambda \leq \lambda_n} \frac{1}{\lambda(\lambda_1 + \lambda_n - \lambda)} \\ & = & \lambda_1 \lambda_n \cdot \frac{1}{\frac{\lambda_1 + \lambda_n}{2} (\lambda_1 + \lambda_n - \frac{\lambda_1 + \lambda_n}{2})} \quad (\text{since the minimum happens at } d = \frac{\lambda_1 + \lambda_n}{2}) \\ & = & \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2}. \end{array}$$

This completes the proof of the Kantorovich inequality.

Problem 3.13

Let $\phi_q(\alpha) = a\alpha^2 + b\alpha + c$. We get a, b and c from the interpolation conditions

$$\phi_{q}(0) = \phi(0) \implies c = \phi(0),
\phi'_{q}(0) = \phi'(0) \implies b = \phi'(0),
\phi_{q}(\alpha_{0}) = \phi(\alpha_{0}) \implies a = (\phi(\alpha_{0}) - \phi(0) - \phi'(0)\alpha_{0})/\alpha_{0}^{2}.$$

This gives (3.57). The fact that α_0 does not satisfy the sufficient decrease condition implies

$$0 < \phi(\alpha_0) - \phi(0) - c_1 \phi'(0) \alpha_0 < \phi(\alpha_0) - \phi(0) - \phi'(0) \alpha_0,$$

where the second inequality holds because $c_1 < 1$ and $\phi'(0) < 0$. From here, clearly, a > 0. Hence, ϕ_q is convex, with minimizer at

$$\alpha_1 = -\frac{\phi'(0)\alpha_0^2}{2\left[\phi(\alpha_0) - \phi(0) - \phi'(0)\alpha_0\right]}.$$

Now, note that

$$0 < (c_1 - 1)\phi'(0)\alpha_0$$

= $\phi(0) + c_1\phi'(0)\alpha_0 - \phi(0) - \phi'(0)\alpha_0$
< $\phi(\alpha_0) - \phi(0) - \phi'(0)\alpha_0$,

where the last inequality follows from the violation of sufficient decrease at α_0 . Using these relations, we get

$$\alpha_1 < -\frac{\phi'(0)\alpha_0^2}{2(c_1 - 1)\phi'(0)\alpha_0} = \frac{\alpha_0}{2(1 - c_1)}.$$

4 Trust-Region Methods

Problem 4.4

Since $\liminf \|g_k\| = 0$, we have by definition of the $\liminf that v_i \to 0$, where the scalar nondecreasing sequence v_i is defined by $v_i = \inf_{k \geq i} \|g_k\|$. In fact, since $\{v_i\}$ is nonnegative and nondecreasing and $v_i \to 0$, we must have $v_i = 0$ for all i, that is,

$$\inf_{k \ge i} \|g_k\| = 0, \text{ for all } i.$$

Hence, for any $i=1,2,\ldots$, we can identify an index $j_i\geq i$ such that $\|g_{j_i}\|\leq 1/i$, so that

$$\lim_{i \to \infty} \|g_{j_i}\| = 0.$$

By eliminating repeated entries from $\{j_i\}_{i=1}^{\infty}$, we obtain an (infinite) subsequence \mathcal{S} of such that $\lim_{i \in \mathcal{S}} \|g_i\| = 0$. Moreover, since the iterates $\{x_i\}_{i \in \mathcal{S}}$ are all confined to the bounded set \mathcal{B} , we can choose a further subsequence $\bar{\mathcal{S}}$ such that

$$\lim_{i \in \bar{\mathcal{S}}} x_i = x_{\infty},$$

for some limit point x_{∞} . By continuity of g, we have $||g(x_{\infty})|| = 0$, so $g(x_{\infty}) = 0$, so we are done.

Problem 4.5

Note first that the scalar function of τ that we are trying to minimize is

$$\phi(\tau) \stackrel{\text{def}}{=} m_k(\tau p_k^{\text{S}}) = m_k(-\tau \Delta_k g_k / \|g_k\|) = f_k - \tau \Delta_k \|g_k\| + \frac{1}{2} \tau^2 \Delta_k^2 g_k^T B_k g_k / \|g_k\|^2,$$