

Sistemi Operativi

Sistemi Operativi per Architetture Parallele

Docente:

William Fornaciari Politecnico di Milano fornacia@elet.polimi.it

© 2001 - William Fornaciari

Sommario

- Introduzione
- Sistemi Multiprocessore
- Sistemi Multicomputer

Introduzione

- Da quando il computer è stato inventato c'è sempre stata richiesta di una potenza di calcolo superiore a quella disponibile
 - Soluzioni
 - Processori con frequenza di clock più elevata
 - Limitazioni fisiche
 - » Dimensioni
 - » Calore
 - Sistemi Multiprocessore
 - Un singolo calcolatore con più processori
 - » Applicazioni tipiche: Number Crunching
 - Sistemi Multicomputer
 - Più calcolatori collegati tra di loro e cooperanti
 - » Problema principale: la comunicazione

Calcolatori Paralleli

- 3 -

© 2001 - William Fornaciari

Introduzione

- Le differenti tecnologie di interconnesione danno origine a differenti tipologie di architetture di sistema
 - Ad esempio:
 - Sistema Multiprocessore a Memoria Condivisa (a)
 - Multicomputer a Scambio di Messagi (b)
 - Sistema Distribuito (c)

Calcolatori Paralleli

- 4 -

Introduzione

- Sistema Multiprocessore a Memoria Condivisa
 - 2..1000 CPU che comunicano tramite memoria condivisa
 - Leggono e scrivono le stesse locazioni di memoria (10..50 ns)
 - Implementazione alquanto complessa
- Sistema Multicomputer a Scambio di Messagi
 - Varie coppie CPU-Memoria Locale collegate tramite una rete ad alta velocità (1..50 μs)
 - Più semplici da costruire ma più difficili da programmare
- Sistema Distribuito
 - Sono sistemi multicomputer collegati tramite una WAN (Wide Area Network)
 - Loosely-coupled vs. Tightly-coupled
 - I tempi di comunicazione (10..50 ms) impongono una differente utilizzazione di questi sistemi

Calcolatori Paralleli

- 5 -

© 2001 - William Fornaciari

- Generalità
- Aspetti HW
- Aspetti SW (SO)

- Sono sistemi in cui 2 o più CPU hanno pieno accesso ad una memoria condivisa
- I programmi vedono lo stesso spazio di indirizzamento (virtuale)
 - Un processore potrebbe fare una STORE e poi una LOAD nella stessa locazione di memoria e trovare un valore diverso perchè un altro processore l'ha modificata
 - Quando organizzata correttamente questa proprietà forma la base della comunicazione inter-processore
- A parte alcuni aspetti (sincronizzazione, scheduling) i SO per questi sistemi sono molto simili a quelli classici

Calcolatori Paralleli

- 7 -

© 2001 - William Fornaciari

- Aspetti HW
 - Una differenza tra sistemi multiprocessore è legata alla capacità di poter accedere con tempi uniformi a tutte le locazioni di memoria
 - UMA (Uniform Memory Acces)
 - Architetture UMA Simmetric Multi Processor basate su Bus
 - Architetture UMA basate su Crossbar Switch
 - Architetture UMA basate su Reti di Switch Multistadio
 - NUMA (Not Uniform Memory Access)

- Architetture UMA SMP basate su Bus
 - Bus singolo senza cache (a)
 - Contesa per l'accesso al bus: <32 CPU</p>
 - Bus singolo con cache (b)
 - Coerenza della cache
 - Bus singolo con cahe e memoria privata (c)
 - Compilatori appositi

Calcolatori Paralleli

- 9 -

© 2001 - William Fornaciari

Sistemi Multiprocessore

- Architetture UMA basate su Crossbar Switch
 - Permettono di superare le limitazioni imposte dal bus
 - Collegamenti tra n CPU e k memorie (crosspoint)
 - Pregio: Non-Blocking Network
 - Difetto: il numero di crosspoint cresce come n²

- Arch. UMA basate su Reti di Switch Multistadio
 - Usano reti costruite tramite switch 2x2
 - Pregio: ridotto numero di switch (Omega Network)
 - Il numero di switch cresce come (n/2)log₂n
 - Difetto: Blocking Network
 - E' possibile usare più switch per limitare i blocchi

Calcolatori Paralleli

- 11 -

© 2001 - William Fornaciari

Sistemi Multiprocessore

- Architetture NUMA
 - Indispensabili per poter collegare più di 100 processori
 - Esiste sempre un unico spazio di indirizzamento accessibile con operazioni di LOAD e STORE
 - Gli accessi remoti sono più lenti dei locali
 - Degrado di prestazioni: uso di cache per limitare i tempi
 - NC (Not-Cached) NUMA
 - CC (Cache-Coherent) NUMA

Calcolatori Paralleli

- 12 -

- Aspetti SW (SO)
 - Tipologie di SO per Architetture Multiprocessore
 - La Sincronizzazione nei Sistemi Multiprocessore
 - ▶ Lo *Scheduling* nei Sistemi Multiprocessore

Calcolatori Paralleli

- 13 -

© 2001 - William Fornaciari

- Tipologie di SO per Architetture Multiprocessore
 - Ogni CPU con il suo SO
 - Sistemi Multirpocessore Master-Slave
 - Sistemi Multiprocessore Simmetrici (SMP)

- Tipologie di SO per Architetture Multiprocessore
 - Ogni CPU con il suo SO (replicate solo le strutture dati)

- Pregi
 - Semplice: porzione di memoria privata ed estendibile
 - Condivisione di risorse (es. Dischi)
 - Comunicazioni inter-processore efficienti

Difetti

- Non c'e' condivisione di processi: carico sbilanciato
- Non c'e' condivisione di pagine: spreco di memoria e risorse
- Problemi di consistenza dei buffer per i dispositivi di I/O

Calcolatori Paralleli

- 15 -

© 2001 - William Fornaciari

Sistemi Multiprocessore

- Tipologie di SO per Architetture Multiprocessore
 - Sistemi Multiprocessore Master-Slave

- Pregi
 - Solo la CPU Master ha il SO
 - » Raccoglie tutte le chiamate di sistema
 - » Si occupa di smistare i processi: carico bilanciato
 - Condivisione di pagine
 - Una sola copia dei buffer per i dispositivi di I/O
- Difetti
 - Il problema è che al crescere del numero di CPU (>5) il Master diventa un collo di bottiglia

- Tipologie di SO per Architetture Multiprocessore
 - Sistemi Multiprocessore Simmetrici (SMP)

- Pregi
 - Esiste una sola copia di SO ma ogni CPU lo può eseguire
 - » Ogni CPU esegue le proprie chiamate di sistema
 - Processi e memoria vengono bilanciati dinamicamente
- Difetti
 - Necessità di eseguire il SO in mutua esclusione: LOCK
 - » Accesso al SO: collo di bottiglia!
 - » Dividere il SO in parti indipendenti accessibili in parallelo
 - » E'un'operazione complessa e problematica

Calcolatori Paralleli

- 17 -

© 2001 - William Fornaciari

- La Sincronizzazione nei Sistemi Multiprocessore
 - La sincronizzazione tra i processori è fondamentale, soprattutto per quanto riguarda l'accesso esclusivo a risorse critiche
 - Non basta più disabilitare gli interrupt
 - Non è più possibile basarsi sulla semplice istruzione TSL

- La TSL deve poter lockare anche il bus
 - » Ciò causa spreco di risorse e sovraccarico (spin lock)
- Esistono vari algoritmi per ridurre lo spreco di risorse
 - Tentativi ritardati, liste di attesa, etc.

- Lo Scheduling nei Sistemi Multiprocessore
 - Lo Scheduling nei Sistemi Multiporocessore è un problema bi-dimensionale: il SO deve decidere quale processo eseguire e su quale CPU eseguirlo
 - Timesharing
 - Space Sharing
 - Gang Scheduling

Calcolatori Paralleli

- 19 -

© 2001 - William Fornaciari

Sistemi Multiprocessore

- Lo Scheduling nei Sistemi Multiprocessore
 - Timesharing
 - Senza considerare le dipendenze tra processi si può utilizzare una singola tabella dei processi per tutto il sistema
 - Ogni processore libero esegue il successivo processo pronto (selezionato in base ad una qualche politica, es. priorità)

Calcolatori Paralleli

- 20 -

- Lo Scheduling nei Sistemi Multiprocessore
 - Timesharing
 - Pregi: bilanciamento del carico
 - Difetti
 - Contesa per l'accesso alla Tabella dei Processi
 - Poco sfruttamento della cache interna al processore
 - Miglioramenti
 - Affinity Scheduling: cercare di eseguire un processo sull'ultimo processore che l'ha eseguito
 - Two-level Algorithm: un gruppo di processi è assegnato ad una CPU che li gestisce con una struttura dati dedicata
 - Quando una CPU è idle prende un processo da qualcun'altra
 - » Bilanciamento del carico
 - » Massimizzazione della cache affinity
 - » Riduzione della contesa per la Tabella dei Processi

Calcolatori Paralleli

- 21 -

© 2001 - William Fornaciari

Sistemi Multiprocessore

- Lo Scheduling nei Sistemi Multiprocessore
 - Space Sharing
 - Un gruppo di k processi (thread) correlati viene assegnato a k CPU disponibili
 - In ogni istante l'insieme di CPU è staticamente partizionato in gruppi che eseguono processi tra loro correlati
 - Buono per lavori batch: si conoscono le relazioni tra i processi
 - » Shortest Job First, FIFO

- Lo Scheduling nei Sistemi Multiprocessore
 - Lo Space Sharing elimina l'overhead del cambio di contesto ma le CPU possono rimanere idle per molto tempo
 - Non considerando le relazioni tra i processi (thread) si possono avere inefficienze dovute alle comunicazioni

 Alcuni algoritmi cercano di effettuare in contemporanea lo scheduling nel tempo e nello spazio tenendo in considerazione le dipendenze/relazioni tra i processi (thread)

Calcolatori Paralleli

- 23 -

© 2001 - William Fornaciari

- Lo Scheduling nei Sistemi Multiprocessore
- Gang Scheduling: ha come obbiettivo quello di eseguire in contemporanea i processi (thread) correlati
 - Gruppi di processi (thread) correlati (gang) sono schedulati in modo indivisibile
 - I membri di una gang sono eseguiti simultaneamente in timesharing da più processori
 - I membri di una gang hanno i time slice coincidenti
 - » Allo scadere di ogni quanto tutte le CPU sono ri-schedulate

- Generalità
- Aspetti HW
- Aspetti SW (SO)

Calcolatori Paralleli

- 25 -

© 2001 - William Fornaciari

- I Sistemi Multiprocessore offrono un semplice modello per la comunicazione ma al crescere del numero di processori sono difficili da costruire e quindi molto costosi
- Sono quindi nati i Sistemi Multicomputer composti da CPU lascamente accoppiate che non condividono memoria
 - Cluster Computer
 - Cluster of Workstation (COWS)
- Si tratta in pratica di normali calcolatori collegati da una rete di interconnessione
 - Il problema questa volta è progettare efficacemente tale rete
 - Il compito è meno arduo rispetto a Sistemi Multiprocessore perchè i tempi in gioco sono di un ordine di grandezza superiore

- Aspetti HW
 - ► Il nodo base di un Multicomputer consiste in uno o più processori, memoria, un'interfaccia di rete e (alle volte) un hard disk
 - Tecnologie di Interconnesisone
 - Interfacce di Rete

Calcolatori Paralleli

- 27 -

© 2001 - William Fornaciari

- Tecnologie di Interconnesione
 - Ogni nodo è connesso ad altri nodi o a switch secondo una determinata topologia
 - Topologie Classiche
 - Stella (a)
 - Anello (b)
 - Grid o Mesh (c)
 - Scalabile
 - Diametro = $f(n^{1/2})$
 - Doppio Toro (d)
 - Tollerante ai guasti
 - Cubo (e)
 - Ipercubo (f)
 - Diametro = f(log₂n)

- Tecnologie di Interconnesione
 - Stategie di Switching
 - A pacchetto
 - Si trasferisce un pacchetto (per intero) alla volta
 - Store-and-forward Packet Switching
 - » Flessibile ed efficiente ma latenza cresce con la dimensione della rete
 - A circuito
 - Percorso predeterminato
 - Non ci sono salvataggi intermedi
 - » Occorre una fase di setup
 - Wormhole Routing
 - E' una via di mezzo tra le prime due strategie
 - » Un pacchetto è diviso in pezzi più piccoli che fluiscono man mano che il percorso viene stabilito

Calcolatori Paralleli

- 29 -

© 2001 - William Fornaciari

Sistemi Multicomputer

- Interfacce di Rete
 - Il modo con cui sono costruite e come interagiscono con CPU e RAM influiscono notevolmente sul SO
 - In genere sono dotate di RAM a bordo per mantenere un flusso continuo di bit durante la trasmissione/ricezione dei dati
 - Possono anche avere controller DMA e/o CPU a bordo

- Aspetti SW (SO)
 - La Comunicazione nei Sistemi Multicomputer
 - Lo Scheduling nei Sistemi Multicomputer
 - Bilanciamento del Carico nei Sistemi Multicomputer

Calcolatori Paralleli

- 31 -

© 2001 - William Fornaciari

Sistemi Multicomputer

- La Comunicazione nei Sistemi Multicomputer
 - Comunicazione di Basso Livello
 - Copia dei pacchetti

- Minimizzare le copie dei pacchetti: interfaccia di rete mappata in user-space
 - Problemi di condivisione tra processi
 - Problemi di accesso da parte del kernel
 - » Doppia interfaccia di rete

- La Comunicazione nei Sistemi Multicomputer
 - Comunicazione di Livello Utente
 - I processi si scambiano messaggi tramite opportune chiamate di sistema
 - Send and Receive
 - » In questo modo la comunicazione è esplicitamente gestita dall'utente
 - Queste comunicazioni possono essere blocccanti (sincrone) o non bloccanti (asincrone)
 - Nel secondo caso l'elaborazione può continuare a patto di non usare il buffer contenente il messaggio spedito/ricevuto fino a trasferimento completato
 - Servono dei meccanismi per avvisare il mittente che il buffer è utilizzabile
 - » Es. interrupt, pop-up thread

Calcolatori Paralleli

- 33 -

© 2001 - William Fornaciari

Sistemi Multicomputer

- La Comunicazione nei Sistemi Multicomputer
 - Remote Procedure Call (RPC)
 - Offrono un paradigma diverso da quello basatu sull'I/O
 - Chiamate a procedure rersidenti su un altro calcolatore
 - » Normale passaggio di parametri
 - » I processi utente fanno chiamate a procedura locali al *client stub* (che gira in spazio utente)
 - » Tali procedure hanno lo stesso nome di quelle server e si occupano del vero I/O

Calcolatori Paralleli

- 34 -

- La Comunicazione nei Sistemi Multicomputer
 - Distributed Shared Memory (DSM)
 - Permette di mantenere il concetto di memoria condivisa.
 - Con la DSM le pagine sono dislocate nelle varie memorie locali
 - Quando una CPU effettua una load (store) su una pagina che non ha, avviene una chiamata al sistema operativo che provvede a recuperarla facendosela spedire appena possibile
 - » Page fault remoto
 - Differenze con la vera Shared Memory
 - Sistemi Multprocessore (a)
 - » Gestione HW
 - Sistemi Multicomputer (b)
 - » Gestione SW (SO)

Calcolatori Paralleli

- 35 -

© 2001 - William Fornaciari

- Lo Scheduling nei Sistemi Multicomputer
 - Nei Sistemi Multiprocessore tutti i processi risiedono nella stessa memoria e potenzialmente ogni CPU può eseguirne uno qualunque
 - Nei Sistemi Multicomputer ogni CPU ha un certo insieme di processi da eseguire e non è fattibile (per l'elevato costo della comunicazione) uno scambio dinamico di questi
 - In pratica lo scheduling è locale e quindi quello classico
 - Diventa però fondamentale l'allocazione dei processi sui vari nodi ai fini del bilanciamento del carico e della minimizzazione delle comunicazioni inter-nodo

- Bilanciamento del Carico nei Sistemi Multicomputer
 - E' di estrema importanza proprio perchè lo scheduling locale non permette di intervenire a posteriori
 - Fondamentale differenza con i Sistemi Multiprocessore
 - Processor Allocation Algorithm
 - Graph-Theoretic Deterministic Algorithm
 - Sender-Initiated Distributed Heuristic Algorithm
 - Receiver-Initiated Distributed Heuristic Algorithm

Calcolatori Paralleli

- 37 -

© 2001 - William Fornaciari

Sistemi Multicomputer

- Bilanciamento del Carico nei Sistemi Multicomputer
 - Graph-Theoretic Deterministic Algorithm
 - Si basano su stime dei requisiti di CPU e memoria da parte dei processi e di traffico medio sulla rete
 - Cercano l'allocazione che minimizza il traffico sulla rete
 - Teoria dei grafi: insiemi di taglio tali da soddisfare dei vincoli (CPU e memoria) e minimizzarne altri

- Bilanciamento del Carico nei Sistemi Multicomputer
 - Sender-Initiated Distributed Heuristic Algorithm
 - Quando un processo viene creato esso è eseguito localmente a meno che il nodo in questione non sia sovraccarico
 - Il carico è calcolato con opportune metriche
 - Se il nodo è sovraccarico questo contatta altri nodi (a caso) e se ne trova uno con il carico più basso del suo gli spedisce il nuovo processo
 - Dopo k tentativi vani il processo è eseguito localmente

Calcolatori Paralleli

- 39 -

© 2001 - William Fornaciari

- Bilanciamento del Carico nei Sistemi Multicomputer
 - Receiver-Initiated Distributed Heuristic Algorithm
 - E' duale al precedente: quando un processo termina e il carico e basso, il nodo contatta (a caso) altri nodi in cerca di processi da eseguire
 - Dopo k tentativi smette di chiedere
 - In questo modo sistemi già carichi non sono costretti a fare lavoro in più per cercare collaboratori
 - Si crea motlo traffico quando il sistema è molto scarico
 - Si possono combinare i due algoritmi
 - Offerte e richieste simultanee
 - Alternativa migliore alla ricerca casuale
 - Elenco dei nodi spesso sovraccarichi
 - Elenco dei nodi spesso liberi