Faculty of Philosophy

Formal Logic

Lecture 10

Peter Smith

- The material conditional again
- 'Only if' and the biconditional
- Expressive adequacy
 The basic 'adequacy theorem'
 De Morgan's Laws
 Other adequate sets of connectives

The material conditional '⊃' defined

We arrived at the following definition:

φ	ψ	$(\phi\supset\psi)$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

This is standardly known as the material conditional or the truth-functional conditional: the best shot at an if-like truth-function rendering indicative conditionals.

More apparent differences between 'if' and '⊃'

- We noted yesterday some apparent divergencies between ordinary 'if' and the truth-functional '⊃'. Here are two more examples.
- Note that the following two arguments are trivially valid by the truth-table test
 - A. $\neg P$ hence $(P \supset Q)$
 - B. Q hence $(P \supset Q)$

But compare

- A'. The bomb will not drop; hence if it drops, we survive.
- B'. I will ski tomorrow; hence if I break my leg today, I will ski tomorrow

Can we deal with these by treating future indicatives as possible world conditionals??? What about . . .

- A". It isn't cold; hence if it is cold then it's hot.
- B". It is hot; hence if it is cold then it is hot.

A logical health warning

- There are close connections but also apparent differences between 'if' and '⊃'.
- A suggestion: we use 'if P, then Q' to both (a) assert $(P \supset Q)$, and (b) signal that we are prepared to use modus ponens.
- ▶ That explains why the inference $\neg P$ hence if P then Q strikes us as unacceptable. For while $\neg P$ warrants $(P \supset Q)$, we wouldn't be prepared to use modus ponens with the material conditional if $\neg P$ is our reason for believing it. If we discover that in fact P, we wouldn't go on to use modus ponens to conclude Q, we'd retract $(P \supset Q)$!
- ▶ For more discussion of the relationship, see *IFL*, Ch. 15.
- ▶ Warning: translating 'if' by '⊃' arguably doesn't capture all the content of the ordinary language conditional (though maybe the translation gets the truth-relevant content right).

'Only if' and the biconditional

- The material conditional again
- Only if' and the biconditional
- Expressive adequacy
 The basic 'adequacy theorem'
 De Morgan's Laws
 Other adequate sets of connectives

'Only if'

- ► Compare If P, then Q and P only if Q.
- Suppose If P, then Q. Then P's truth gives us the truth of Q too − so that means we only get P if we get Q too, i.e. P only if Q.
- Suppose P only if Q. Then if we have P true then we get Q too, i.e. If P, then Q.
- In sum, (in many cases) If P, then Q is equivalent to P only if Q.
- ► For example: compare 'If Einstein is right, the velocity of light is constant' and 'Einstein is right only if the velocity of light is constant'.

'If' and 'only if'

- So P, if Q is equivalent to If Q, then P is equivalent (in many cases) to Q only if P is equivalent to Only if P, Q.
- ▶ But of course *P*, if *Q* is not equivalent to *P*, only if *Q*.
- ▶ The joint assertion of P, if Q and P, only if Q i.e. the assertion P if and only if Q is the biconditional.

The material biconditional -1

- ▶ The only truth functional rendition of P, only if Q is $(P \supset Q)$ (or an equivalent).
- ▶ The only truth functional rendition of P, if Q is $(Q \supset P)$ (or an equivalent).
- ▶ The only truth functional rendition of P if and only if Q is therefore $((P \supset Q) \land (Q \supset P))$ (or an equivalent)
- Call that the material biconditional.

The material biconditional – 2

It is standard to add another symbol to abbreviate the material biconditional

φ	ψ	$ ((\phi \supset y))$	$p) \wedge (1$	$\psi \supset \phi$	$\parallel (\phi \equiv \psi)$
	Т		Т	t	T
Т	F	f	F	t	F
F	Т	t	F	f	F
F	F	t	Т	t	T

The usual basic repertoire of truth-functional connectives is thus \neg , \wedge , \vee , \supset , \equiv .

But why stop there?

Expressive adequacy

- The material conditional again
- 'Only if' and the biconditional
- Expressive adequacy
 The basic 'adequacy theorem'
 De Morgan's Laws
 Other adequate sets of connectives

Examples so far

- ▶ We saw that exclusive disjunction $(\phi \otimes \psi)$ can be defined using the basic three connectives. $(\phi \otimes \psi)$ is equivalent to $((\phi \lor \psi) \land \neg ((\phi \land \psi)).$
- Likewise, $(\phi \supset \psi)$ is equivalent to $(\neg \phi \lor \psi)$ and to $\neg (\phi \land \neg \psi)$. So we don't need to add a new connective to express the material conditional.
- ▶ Similarly, we don't need to add a new connective to express the material biconditional. We can express the truth-function $(\phi \equiv \psi)$ using ' \wedge ' and \supset , and hence ' \wedge ', ' \vee ' and ' \neg '.

Generalizing

The point now generalizes:

Every truth-functional combination of atomic wffs can be expressed using just ' \land ', ' \lor ' and ' \neg '.

- Definition: A truth-functional combination of atomic wffs is one whose truth-value is determined for each assignment of values to its atoms.
- ► Equivalently: A truth-functional combination of atomic wffs is one that can be defined by a truth-table.
- ▶ The result that every truth-functional combination of atomic wffs can be expressed using just '∧', '∨' and '¬' is often put this way: the set of connectives '∧', '∨' and '¬' is expressively adequate.
- ► The result is a metalogical theorem.

- The result to be proved is essentially this. If we define a new connective by a truth-table, then we can mock-up an equivalent to any wff involving that connective using '∧', '∨' and '¬'.
- ► For example, suppose the connective ♣ is defined by

Р	Q	R	$\clubsuit(P,Q,R)$
Т	Т	Т	F
Т	Т	F	Т
Т	F	Т	F
Т	F	F	F
F	Т	Т	F
F	Т	F	Т
F	F	Т	Т
F	F	F	F

Now, take the lines on which A(P, Q, R) is true and write down the conjunction which 'describes' that line (we'll be careless about brackets to promote readability):

Р	Q	R	. (P, Q, R)	
Т	Т	Т	F	
Т	Т	F	T	$(P \wedge Q \wedge \neg R)$
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	Т	$(\neg P \land Q \land \neg R)$
F	F	Т	T	$(\neg P \land \neg Q \land R)$
F	F	F	F	,

Now write down the disjunction of the conjunctions which 'describe' the lines where $\P(P,Q,R)$ is true (again being careless about brackets to promote readability):

P	Q	R	. (P, Q, R)	
Т	Т	Т	F	
Т	Т	F	Т	$(P \wedge Q \wedge \neg R)$
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	T	$(\neg P \land Q \land \neg R)$
F	F	Т	T	$(\neg P \land \neg Q \land R)$
F	F	F	F	

$$((P \land Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R))$$
 is then true on exactly the same lines as $\P(P, Q, R)$.

- ▶ The trick is to write down a suitable conjunction of atoms and negated atoms to describe each line with $\clubsuit(P, Q, R)$ is true, and then disjoin the results.
- ► That works for any table defining any connective ♣ connecting any number of atoms unless ♣ generates a contradiction and is always false. But obviously we can write down an always-false wff using just '∧', '∨' and '¬'.
- So every truth-function can be expressed just using '∧', '∨' and '¬'. QED

De Morgan's Laws

Now note we have the following:

φ	ψ	$(\phi \wedge \psi)$	¬(-	$\neg \phi \lor \neg \psi)$
Т	Т	Т	Т	f
Т	F	F	F	t
F	T F	F	F	t
F	F	F	F	t

So ' \wedge ' can be defined in terms of ' \vee ' and ' \neg '. So ' \vee ' can be defined in terms of ' \wedge ' and ' \neg '.

Expressive adequacy again

- The set of connectives {∧, ∨, ¬} is expressively adequate − i.e. gives us enough to express every truth-function. [This is the key result.]
- Since we can define '∧' can be defined in terms of '∨' and '¬', the set of connectives {∨, ¬} is expressively adequate.
- Since we can define '∨' can be defined in terms of '∧' and '¬', the set of connectives {∧, ¬} is expressively adequate.
- We can also define '∧' and '∨' in terms of '⊃' and '¬', so the set of connectives {⊃,¬} is expressively adequate.
- ▶ The set of connectives $\{\land, \lor\}$ is not expressively adequate.
- ▶ There's a two-place connective (the Sheffer stroke) in terms of which we can define '∧', '∨' and '¬'. So the Sheffer stroke is expressively adequate all by itself. (*IFL*, ch. §11.8)