IPv6+创新与标准 (2022)

李振斌

华为首席IP协议专家 IETF互联网架构委员会(IAB)委员

李振斌

华为首席IP协议专家 IETF互联网架构委员会 (IAB) 委员 https://www.iab.org/about/iab-members/

- 负责华为IP协议创新研究和标准化工作。
- 2000年加入华为,曾负责华为IP操作系统 (VRP) 和MPLS子系统的架构设计和开发工作。
- 2015 2017年担任SDN架构师,负责控制器的研究、架构设计与开发等工作。
- 自2009年起积极参与IETF标准创新工作,持续推动了SDN的BGP、PCEP、Netconf/YANG等的协议创新和标准化。当前研究的重点包括SRv6、5G承载、Telemetry、网络智能等。
- 主导和参与的IETF RFC/草案累计100余篇(<u>www.ipv6plus.net/ZhenbinLi</u>),申请专利110多项,著有《SRv6网络编程:开启IP网络新时代》。
- 2019年3月当选IETF互联网架构委员会 (IAB) 委员,承担2019 2021年的互联网架构管理工作。 2021年3月获得连任,继续承担2021 - 2023年的互联网架构管理工作。

IPv6+: 面向5G和云的IP网络新时代

- IPv6重思考: 地址空间不足未能强烈驱动IPv6部署
- 5G改变了连接的属性,云改变了连接的范围
- IPv6+的使命:
 - 。 基于对IP可达性的亲和性,使得不同网络域间连接更容易
 - 。 基于IPv6扩展头/SRH等可扩展性支持更多种类的封装,满足新业务的需求。
 - □ 基于对IP亲和性和网络编程能力,实现IP承载网络与应用的融合,提升网络价值。

TITT

。 结合对更多地址空间的需求,进一步推广IPv6

IPv6扩展头/SRv6: 面向未来的网络可编程能力

IP连接的发展: 无连接 (IPv4/IPv6); 有连接 (MPLS); 智能连接 (SRv6/IPv6+)

IPv6+研究和标准的规划建议

IPv6+ 1.0: SRv6基础能力

- SRv6 VPN
- SRv6 TE
- SRv6 FRR

IPv6+ 2.0: 面向5G/云的新应用

- Network Slicing/VPN+
- OAM

 $\widehat{\mathbf{m}}$

- In-situ Telemetry/IFIT Path Segment
- BIERv6 Detnet

IPv6+ 3.0: APN6 - 感知应用的新网络架构体系

- · 转发面: IPv6扩展头传递应用信息给网络
- · 控制面:云/网络通过控制协议交互信息

GIP6: 通用IPv6 – IPv6新特性的通用应用

- · GIP6隧道: IP隧道统一支持IPv6新特性
- GIP6应用: SDWAN等

- SFC
- · SRv6压缩
- Path MTU

IPv6+标准整体布局与进展

IPv6+ 1.0: SRv6标准推动与实现部署双管齐下,支持互联互通

SRv6 基础特性趋于成熟

Service	Description	Status	Priority
Base	SRv6 Arch	0	Ι
Ваѕе	SRH	0	Ι
VPN	SRv6 VPN	0	Ι
IGP	ISIS for SRv6	0	Н
IGF	OSPFv3 for SRv6	0	М
SDN	BGP-LS for SRv6	0	М
Interface	PCEP for SRv6	0	М

O: Draft, No Risk △: Draft, With Risk ×: Incomplete Draft Page 7

成功完成多厂家SRv6互通测试,商业部署开启

- Implementations
 - Huawei: VRPV8; ATN、CX600、ME60、NE5000E、NE9000
 - Cisco: IOS XR/XE
 - Open Source: Linux, FD.io VPP; Wireshark, Tcpdump, Snort, IPtables, Nftables, etc.
- Inter-op tests:
 - EANTC 2019 Test cases: SRv6 VPN, TI-LFA
- Deployments:
 - Softbank
 - Illiad
 - LINE
 - China Telecom
 - China Unicom
 - CERNET2
 - MTN
- See draft-matsushima-spring-srv6-deployment-status for details

IPv6+ 1.0 (1) SRv6基础特性

Area	Topic	Draft	Vendors	Operators
Architecture	SRv6 Network Programming	RFC8986	Cisco/Huawei	Comcast/Bell Canada/Softbank
SRH	IPv6 Segment Routing Header (SRH)	RFC8754	Cisco/Huawei	Bell Canada/Softbank
IGP	ISIS Extensions for SRv6	draft-ietf-lsr-isis-srv6-extensions	Cisco/Huawei	Orange
IGP	OSPFv3 Extensions for SRv6	draft-ietf-lsr-ospfv3-srv6-extensions	Huawei/Cisco	
VPN	SRv6 VPN	RFC9252	Cisco/Huawei	Comcast/Bell Canada/Softbank/Orange
	BGP-LS for SRv6	draft-ietf-idr-bgpls-srv6-ext	Cisco/Huawei/Ericsson	Bell Canada/ Orange/AT&T
	SR Policy Architecture	RFC9256	Cisco	Bell Canada/BT/Microsoft
SDN Interface	BGP for SRv6	draft-ietf-idr-segment-routing-te-policy	Cisco/Huawei/Juniper	Microsoft/Google
ODIV III.CITACE	PCEP for SRv6	draft-ietf-pce-segment-routing-ipv6	Huawei/Cisco	China Telecom
	BGP Flowspec for SRv6	draft-ietf-idr-flowspec-srv6	Huawei	China Telecom

- · SR Policy Architecture和SRv6 VPN文稿正式发布成为RFC。
- · SRv6其他基础特性草案也已经通过WGLC,进入到RFC发布最后阶段。

m

IPv6+ 1.0 (2) SRv6模型

Area	Topic	Draft	Vendors	Operators
	SRv6 Base Yang	draft-ietf-spring-srv6-yang	Cisco/Huawei/Infinera/ Ciena/Ericsson	Bell Canada/ Softbank
	SRv6 TE Yang (SR Policy Yang)	draft-ietf-spring-sr-policy-yang	Cisco/Huawei/Juniper	Bell Canada/ Softbank
Yang	SRv6 ISIS Yang	draft-ietf-isis-srv6-yang	Cisco/Huawei	
Models	SRv6 OSPF Yang	draft-ietf-lsr-ospf-srv6-yang	Cisco/Huawei	
	SRv6 PCEP Yang	draft-ietf-pce-pcep-srv6-yang	Cisco/Huawei	
	SRv6 VPN YANG	draft-ietf-bess-srv6-services-yang	Cisco/Huawei	LINKEDIN/Orange

- · SRv6 YANG模型标准化与应用部署同步展开。
- · SRv6 IGP/VPN/PCEP的YANG模型接纳成为工作组草案,SRv6基础特性草案基本都被接纳成为工作组草案。

TITT

IPv6+ 1.0 (3) SRv6端到端保护与应用部署

Area	Topic	Draft	Vendors	Operators
	Mid-point Protection	draft-hu-spring-segment-routing- proxy-forwarding	Huawei/Juniper	China Telecom
Protection	Mid-point Protection	draft-chen-rtgwg-srv6-midpoint- protection	Huawei	China Telecom
	Egress Protection	draft-ietf-rtgwg-srv6-egress-protection	Huawei	China Telecom
SRv6	SRv6 Deployment Status	draft-matsushima-spring-srv6- deployment-status	Cisco/Huawei	Softbank
Deployment Migration	SRv6 Deployment Consideration	draft-tian-spring-srv6-deployment- consideration	Huawei	CAICT/China Telecom China Unicom/Unipay/MTN
SRv6 Security	SRv6 Security Framework	draft-li-spring-srv6-security- consideration	Huawei	CAICT China Telecom

· SRv6 Deployment Consideration增加了SRv6 Policy、行业网络、SRv6压缩等的部署。

SRv6头压缩发展历史2019-2022年, 方案: 5->2->1(C-SID)

- 1. 最初存在5种方案: CRH(J), uSID(C), G-SRv6(H), Unified SID(Z), vSID(Orange)
- 2. 后来G-SRv6与uSID得到业界的广泛支持,最终两个方案合并为一个C-SID方案,被接收为工作组草案。

 $\widehat{\mathbf{m}}$

3. 当前C-SID正在加速标准化。

G-SRv6/REPLACE-C-SID压缩原理(1)

基于共享前缀压缩

- 原生SRv6 SID为128bits IPv6地址,每个节点从自身的Locator地址空间中独立分配
- 而网络中节点的Locator绝大部分都是从<mark>同一个大段的地址空间中逐级分配的</mark>,该地址空间,称为Common Prefix
- 在一个SRH SR List中
 - Common Prefix在SRH中为冗余信息,可将其放到统一的位置:IPv6 DA
 - Node ID + Function ID 为有效信息,SRH中封装该信息熵即可,称为Compressed SID(C-SID)
 - Argument可选,通常为0,Padding字段通常为0,无用信息,可直接删除

Node Locator				
Common Prefix	Node-ID1	Func	Args(opt)	Padding
Common Prefix	Node-ID2	Func	Args(opt)	Padding
Common Prefix	Node-ID3	Func	Args(opt)	Padding
Common Prefix	Node-ID4	Func	Args(opt)	Padding
Common Prefix	Node-ID5	Func	Args(opt)	Padding
Common Prefix	Node-ID6	Func	Args(opt)	Padding
	Ĭ			
SRv6 SID List 16 Bytes * 6 = 96 Bytes				

Common Prefix in IPv6 DA			
Node-ID1	Func		
Node-ID2	Func		
Node-ID3	Func		
Node-ID4	Func		
Node-ID5	Func		
Node-ID6 Func			

SRv6 C-SID List 4 * 6 = 24 Bytes

G-SRv6/REPLACE-C-SID压缩原理 (2)

二维数组定位压缩SID

- SRH中的128bits中可封装4 * 32bits C-SID,通过**CL(Compressed SID left)**标识C-SID在128bits/32bits=4 SID小循环中的位置,取值0~3
- 更新后的C-SID = SRH[SL][CL],将该32bits C-SID拷贝到IPv6 DA[CP: CP+31]
- 定义COC(Continuation of Compression) Flavor,标识下一个SID是压缩后的C-SID,如果没有COC Flavor,标识下一个SID为128bits SRv6 SID
- COC flavor类似于PSP flavor,在IGP/BGP分配SRv6 SID时,通过控制面发布

伪代码

uSID/Next-C-SID方案: 共享前缀,移位更新

32bit C-SID举例

uSID 处理前	uSID-Block	Active C-SID	Next C-SID	Last C-SID
	bbbb:bbbb::/32	0100:0001	0200:0002	0300:0003
		Chifting		
		Shifting		
uSID 处理后	uSID-Block	Active C-SID	Next C-SID	EOC

原理

- · 控制面发布新的SID类型,以及对应的前缀路由 Block: C-SID
- 携带C-SID的载体 (C-SID Carrier) 为128bit的SRv6 SID, 其格式为:
 - **Active C-SID**: 当前活跃的SID, 举例中为32bits
 - Next C-SID: 下一个C-SID, 在处理后会被偏移到Active C-SID位置, 然后尾部补零
 - Last uSID: 本128bits中最后一个C-SID
 - o **EOC**(End of Carrier): C-SID的终止符,全0
 - 当检测Active C-SID为EOC时,终止C-SID的处理,执行END SID的操作,替换下一个 128bit SRv6 SID到DA中。

出于压缩效率考虑,uSID更倾向于使用16bit的SID进行压缩。使用16bit压缩SID,相比32bit开销更小,但对网络规划的要求更高,可扩展性也更差。

为了满足16bit压缩,引入全局SID和本地SID概念,在16bit C-SID中使用高4位用于区分全局和本地SID:

- 前4bit 0-D:表示全局SID,占用SID总数的14/16;0-DXXX 是全局C-SID,占14个4K SID资源
- 前4bit E-F: 表示本地SID, 占用SID总数的2/16; E-FXXX是本地C-SID, 占2个4K SID资源
- 一个Block中有14 x 4096 = 57344 个全局ID,用户表达节点的END SID,大规模组网受限,分层划分编码需更多bit,适合于中小规模的网络。
- 一个Block中有2 x 4096 = 8192个本地ID,用于END.X SID,业务SID,BSID等使用,资源扩展性受限。

一个uSID-Carrier 128bits处理完成后, SL减1, 处理下一个128bits

	Version	TC		Flow Label		
		Payloa	d Length	Next Header =43	Hop Limit	
			Destinatio	on Address		128 bits拷 贝
	Next H	eader	Hdr Ext Len	Routing Type	Segments Left	
	Last E	ntry	Flags	Ta	g	
			VPN SID ((128 bits)		
			Block (32 bits)		\mathcal{V}
ı				32 bits)		⋖ SL
ı				32 bits)		3L
(uSID7 (32 bits))
			SRv6 SID4	(128 bits)		
			Block (32 bits)		
			uSID1 (32 bits)		
				32 bits)		
				32 bits)		
				n TLV		
			Pay	load		

IPv6+ 2.0 (1) SRv6压缩和Path MTU

Area	Topic	Drafts	Vendors	Operators
	Compressed SRv6 SID List Requirements	draft-ietf-spring-compression- requirement	Huawei/Cisco/Juni per/ZTE/Nokia	China Mobile/China Telecom
	Compressed SRv6 SID List Analysis	draft-ietf-spring-compression-analysis	Huawei/Cisco/Juni per/ZTE/Nokia	China Mobile/China Telecom
Compression	Compressed SRv6 Segment List Encoding in SRH	draft-ietf-spring-srv6-srh-compression	Huawei/Cisco/ZTE	China Mobile/China Telecom/FT/Bell Canada/Alibaba
	Segment Identifiers in SRv6	draft-ietf-6man-sids	Cisco	
	Path MTU (PMTU) for SR Policy	draft-peng-spring-pmtu-sr-policy	Huawei/Cisco	Verizon
	Segment Routing Path MTU in BGP	draft-ietf-idr-sr-policy-path-mtu	Huawei	STC/China Telecom
PMTU	BGP-LS Extensions for Advertising Link MTU	draft-ietf-idr-bgp-ls-link-mtu	Huawei	China Telecom
	PMTU in PCEP	draft-ietf-pce-pcep-pmtu	Huawei	China Mobile/MTN
	PMTU in ISIS	draft-hu-lsr-isis-path-mtu	Huawei	China Telecom

- · SRv6 C-SID压缩方案在竞争方案中获得胜出,草案被工作组接纳。
- · 为解决SRv6 SID与IPv6地址的关系问题,6MAN工作组发布草案进行澄清,并已经被工作组接纳并通过了LC。
- Page 15 Path MTU通过路径MTU信息的获取来约束SRv6路径计算,多篇草案被工作组接纳。

VPN+: 使能承载网切片的架构与方案

网络切片管理

- ・ 网络切片生命周期管理
 - 创建, 监控, 调整, 删除
- ,端到端网络切片协同

网络切片实例化

- · 网络切片控制面信息收集与计算
 - 切片拓扑,资源及其他属性
- 网络切片数据面标识

SRv6/IPv6 based

底层网络资源切分

- 物理接口
- 逻辑子接口(FlexE,信道化子接口)
- 独立转发队列
- TSN

SRv6 VPN+协议扩展

数据平面

- 每个节点为不同网络切片分配独立的SRv6 Locator
- 每个网络切片的SRv6 SID继承该切片的Locator
- 使用一组SRv6 SID标识特定网络切片的拓扑和资源

• 控制平面

- 扩展协议发布每个网络切片的Locator, SID和资源属性信息
- 收集网络切片拓扑, 计算基于切片约束的转发表项

• IETF VPN+标准化进程

VPN+ Framework
 https://tools.ietf.org/html/draft-ietf-teas-enhanced-vpn-01 (工作组文稿)

- SR/SRv6 based VPN+
 https://tools.ietf.org/html/draft-ietf-spring-sr-for-enhanced-vpn
- IGP extensions for SR-based VPN+
 https://tools.ietf.org/html/draft-dong-lsr-sr-enhanced-vpn

SRv6 VPN+原型

已向多家运营商展示SRv6 VPN+网络切片原型并开展联合创新

基于IPv6数据面扩展支持网络切片标识

- 数据面使用两种转发标识的组合标识流量的二维转发需求(拓扑、 资源),指导切片报文转发
 - · IPv6目的地址/SRv6 SID用于在指定网络拓扑内寻址,找到出接口/下一跳
- · VTN-ID用于选择指定出接口下为该网络切片分配的子接口/转发资源
- 数据面扩展带来的好处:
 - · 对用于拓扑与切片资源相关处理的数据面标识进行解耦
 - · 减少需要为网络切片分配的Locator/SRv6 SID数量,降低转发表项规格要求

节点B转发表示例

Prefix	Next- hop	OutIf
A6::1	С	GE0/1/0
A6::2	G	GE0/2/0

MainIf	VTN-ID	SubIf
GE0/1/0	1	FlexE1
GE0/1/0	2	FlexE2
GE0/1/0	3	FlexE3
GE0/2/0	1	FlexE1
GE0/2/0	2	FlexE2
GE0/2/0	3	FlexE3

IPv6 VTN-ID扩展: tools.ietf.org/html/draft-dong-6man-enhanced-vpn-vtn-id

华为引领IP网络切片的标准发展

TITT

IPv6+ 2.0 (2) Network Slicing and VPN+

Area	Topic	Drafts	Vendors	Operators
Framework	IETF Network Slice General Framework	draft-ietf-teas-ietf-network-slices	Juniper/Ciena/ Futurewei	NTT, Telefonica, Microsoft
	VPN+ Framework	draft-ietf-teas-enhanced-vpn	Huawei	China Mobile/KDDI
	Resource-aware segments	draft-ietf-spring-resource-aware-segments	Huawei/Cisco	China Mobile/China Telecom/KDDI
	SR for VPN+	draft-ietf-spring-sr-for-enhanced-vpn	Huawei/Cisco	China Mobile/China Telecom/KDDI
SR切片	IGP Flex-Algo for SR-based VTN	draft-zhu-lsr-isis-sr-vtn-flexalgo	Huawei	China Telecom
SK则用	BGP-LS Flex-Algo for SR-based VTN	draft-zhu-idr-bgpls-sr-vtn-flexalgo	Huawei	China Telecom
	IGP Multi-Topo for SR-based VTN	draft-ietf-lsr-isis-sr-vtn-mt	Huawei	China Telecom
	BGP-LS Multi-Topo for SR-based VTN	draft-ietf-idr-bgpls-sr-vtn-mt	Huawei	China Telecom
	Scalability Considerations for NRP	draft-ietf-teas-nrp-scalability	Huawei/Juniper	China Mobile/China Telecom
	IPv6 HBH based VTN ID	draft-ietf-6man-enhanced-vpn-vtn-id	Huawei	China Telecom/Verizon
Slice ID切片	IGP for Scalable VPN+	draft-dong-lsr-sr-enhanced-vpn	Huawei	China Unicom/LGU+
Slice ID M/I	BGP-LS for Scalable VPN+	draft-dong-idr-bgpls-sr-enhanced-vpn	Huawei	China Unicom
	BGP SR Policy for NRP	draft-dong-idr-sr-policy-nrp	Huawei	China Unicom
	BGP Flowspec for network slice traffic steering	draft-dong-idr-flowspec-network-slice-ts	Huawei/ZTE	China Telecom/China Mobile
	Framework for End-to-End IETF Network Slicing	draft-li-teas-e2e-ietf-network-slicing	Huawei	China Unicom/China Telecom
跨域切片	IPv6 Encap for End-to-End IETF Network Slicing	draft-li-6man-e2e-ietf-network-slicing	Huawei	China Unicom/China Telecom
	SR for End-to-End IETF Network Slicing	draft-li-spring-sr-e2e-ietf-network-slicing	Huawei	China Unicom/China Telecom
层次化切片	Hierarchical IETF Network Slices	draft-dong-teas-hierarchical-ietf-network-slice	Huawei	

- · 网络切片架构基本成熟,切片通用架构和VPN+实现架构均进入WG LC阶段;
- · 基于SR SID的网络切片方案的多篇草案被IETF接纳,基于SID标识切片资源的理念被广泛认同;
- · 基于Slice ID的网络切片方案是当前切片标准化工作的重点,基于IPv6 HBH的切片ID封装被IETF接纳,控制面扩展正逐步收敛;
- · IP网络切片体系持续演进,跨域切片、层次化切片相关草案都已完成布局。

IFIT (In-situ Flow Info Telemetry) : 更有效的数据面监控机制

IFIT自动化部署和交互式Telemetry架构

IPv6+ 2.0 (3) IFIT (In-situ Flow Information Telemetry)

Area	Topic	Drafts	Vendors	Operators
Framework	In-situ Flow Information Telemetry Framework	draft-song-ifit-framework	Huawei	China Mobile/China Telecom/SKT/LGU+
	Clustered Alternate Marking Method	RFC 9342	Huawei	Telecom Italia
	Data Fields for In-situ OAM	RFC 9197	Cisco/Huawei	
	In-situ OAM Direct Exporting	RFC 9326	Huawei/Cisco	
Data plane format	Alternate-Marking Method	RFC 9341	Huawei/Ericsson	Telecom Italia
	Enhanced Alternate Marking Method	draft-zhou-ippm-enhanced-alternate-marking	Huawei	LGU+/China Mobile Telecom Italia
	IPv6 Application of the Alternate Marking	RFC 9343	Huawei	Telecom Italia, China Mobile, China Unicom
Encap type	In-situ OAM IPv6 Options	draft-ietf-ippm-ioam-ipv6-options	Cisco	
,	SRH for the Alternate Marking	draft-fz-spring-srv6-alt-mark	Huawei	Telecom Italia
	Multicast On-path Telemetry Solutions	draft-ietf-mboned-multicast-telemetry	Huawei/Ericsson	
	BGP SR Policy for IFIT	draft-ietf-idr-sr-policy-ifit	Huawei	China Mobile/Unipay
Control Plane	Path Computation Element Communication Protocol (PCEP) Extensions to Enable IFIT	draft-ietf-pce-pcep-ifit	Huawei	China Telecom/Unipay
	BGP Extension for Advertising In-situ Flow Information Telemetry (IFIT) Capabilities	draft-ietf-idr-bgp-ifit-capabilities	Huawei	China Telecom
YANG model	A YANG Data Model for In-Situ OAM	draft-ietf-ippm-ioam-yang	Huawei/Cisco	

- · 数据面方案文稿基本稳定,发布多篇RFC。
- · 用于IFIT的自动化部署的多篇控制面草案已经被工作组接纳。
 - 描述多种机制的组合和应用的IFIT架构是下一步推动的重点。

MSR6/BIERv6:新型无状态组播

- 基于BitString复制报文到指定的接收者,其中的每个bit代表一个接收者
- 通过在BIER报文头中携带BitString信息,实现无状态组播

IETF标准进展: MSR6 BOF

会议

- MSR6 Side Meeting @IETF112
 - https://trac.ietf.org/trac/ietf/meeting/wiki/112sidemeetings
- MSR6 BOF @IETF114
 - https://datatracker.ietf.org/group/msr6/about/

草案

IIII

Multicast Source Routing over IPv6 (msr6)

About	Documents	Meetings	History	Photos	Email expansions	List archive »	
WG	Name		М	ulticast So	urce Routing over IP	76	
	Acrony	m	m	sr6			
	Area		Ro	Routing Area <u>(rtg)</u>			
	State		ВС	OF Conclude	ed		
	Charte	r	(N	(None)			
Document dependencies Additional resources		ncies	☐ Show				
		s Zu	Zulip Stream				
Personnel Chairs Jen Linkova, Suresh Krishnan		Suresh Krishnan					
	Area D	irector	Al	varo Retana	1		
Mailing list Address		<u>m</u>	sr6@ietf.org	9.			
	To subs	scribe	<u>ht</u>	tps://www.i	etf.org/mailman/listin	fo/msr6	
	Archive	•	<u>ht</u>	tps://mailar	chive.ietf.org/arch/bro	owse/msr6/	
Chat	Room	address	ht	https://zulip.ietf.org/#narrow/stream/msr6		m/msr6	

SRv6 Path Segment & OAM: 更高效的路径标识与性能测量机制

 $\widehat{\mathbf{m}}$

IPv6+ 2.0 (5) SRv6 OAM and Path Segment

Area	Topic	Draft	Vendors	Operators
OAM	OAM in SRv6	RFC9259	Cisco/Huawei	Softbank/Bell Canada
O7 (IV)	SRv6 Light iOAM	draft-li-spring-light-weight-srv6-ioam	Huawei	China Mobile
	Use cases and Mechanisms of MPLS Path Segment	draft-ietf-spring-mpls-path-segment	Huawei/Cisco	China Mobile
	SRv6 Path Segment	draft-ietf-spring-srv6-path-segment	Huawei/Cisco	China Mobile/China Telecom
Dath Cognost	Path Segment and Bidir Path in BGP	draft-ietf-idr-sr-policy-path-segment	Huawei/Cisco	China Telecom/China Mobile
Path Segment	Path Segment and Bidir Path in BGP-LS	draft-ietf-idr-bgp-ls-sr-policy-path-segment	Huawei/Cisco	China Telecom/China Mobile
	Path Segment in PCEP	draft-ietf-pce-sr-path-segment	Huawei/Cisco/ZTE	China Mobile
	Bidir Path in PCEP	draft-ietf-pce-sr-bidir-path	Huawei/Cisco	China Mobile
	ID Space Delegation	draft-li-pce-controlled-id-space	Huawei	China Telecom

• SRv6 OAM已发布为RFC9259

俞

确定性网络核心技术

冗余传输 通过多路径同时传输流量来避免链路故障或其他因素造成的对包, 有效 提 升可靠性 • 报文复制,删除和重排 Elimination & Ordering Replication Client A PE2 CE₂ CE₁ PE₁ Client C Client B **TSN Network** TSN Link **DetNet Domain** 显式路径 指定DetNet流量的传输路径,以控制端到端时延 拥塞避免 Segment Routing 通过规避流量之间的冲突,避免拥塞造成的丢包和时延不确定性 • 资源预留 队列管理 (整形,调度等机制)

IPv6+ 2.0 (6) DetNet

Area	Topic	Drafts	Vendors	Operators
Architecture	DetNet Architecture	RFC8655	Huawei/Cisco/ Ericsson	
Controller	DetNet Controller Plane Framework	Draft-ietf-detnet-controller-plane-framework	Huawei/Ericsson	China Mobile
plane	RSVP for TSN Networks	draft-trossen-detnet-rsvp-tsn	Huawei/Siemens	
	IPv6 Options for Cyclic Queuing and Forwarding Variants	draft-yizhou-detnet-ipv6-options-for-cqf-variant	Huawei	China Mobile
	DetNet Enhanced Data Plane	draft-yzz-detnet-enhanced-data-plane	Huawei	China Mobile
Bounded	Segment Routing for Enhanced DetNet	draft-geng-spring-sr-enhanced-detnet	Huawei	
latency	ISIS-TE Extensions for Enhanced DetNet	draft-geng-lsr-isis-te-extension-enhanced-detnet	Huawei	
	BGP-LS Advertisement of IGP DetNet Extensions	draft-geng-idr-bgp-ls-enhanced-detnet	Huawei	
	SR Policy for enhanced DetNet	draft-zhang-sr-policy-enhanced-detnet	Huawei	
	PCEP for Enhanced DetNet	draft-zhang-pce-enhanced-detnet	Huawei	
	SRv6 for Redundancy Protection	draft-ietf-spring-sr-redundancy-protection	Huawei/Cisco	Verizon
Redundancy	Redundancy Policy for Redundancy Protection	draft-geng-spring-redundancy-policy	Huawei	Verizon
Protection	Advertising Redundancy Policy in BGP	draft-yang-idr-bgp-redundancy-policy	Huawei	
	PCEP Extensions to Redundancy Policy	draft-yang-pce-pcep-redundancy-policy	Huawei	
OAM	Echo Request/Reply for DetNet Capability Discovery	draft-tan-detnet-cap-discovery	Huawei	
YANG model	DetNet YANG Model	draft-ietf-detnet-yang	Huawei/ETRI	China Mobile

- · DetNet框架、YANG模型等草案已经被工作组接纳。
- · 增强的DetNet (有界时延) 数据面、控制面等的多篇草案形成较为完整的布局。
 - 冗余备份多篇草案布局,基于SR的冗余备份草案被工作组接纳。

基于SRv6的SFC: Stateless与Stateful方案

m

IPv6+ 2.0 (7) SFC

Area	Topic	Drafts	Vendors	Operators
	SR for SFC	draft-ietf-spring-sr-service-programming	Cisco/Huawei/ Nokia/Mellanox	Bell Canada/ Orange/AT&T/ Alibaba
	SR + NSH for Stateful SFC	draft-ietf-spring-nsh-sr	Huawei	Microsoft
	SR YANG model	draft-jags-spring-sr-service-programming-yang	Cisco/Huawei	Bell Canada/ LinkedIn
SFC	Control plane framework for SR SFC	draft-li-spring-sr-sfc-control-plane-framework	Huawei	Saudi Telecom
	BGP-LS extension for SR SFC	draft-ietf-idr-bgp-ls-sr-service-segments	Cisco/Huawei/ Ericsson	LinkedIn/Bell Canada/AT&T/ Orange/Alibaba
	ISIS extension for SR SFC	draft-xu-isis-service-function-adv	Huawei	Telefonica
	OSPF extension for SR SFC	draft-xu-ospf-service-function-adv	Huawei	Telefonica

应用感知的(Application-aware)IPv6网络

- 利用IPv6扩展头将应用信息及其需求传递给网络
- 根据携带应用信息,通过业务的部署和资源调整来保证应用的SLA要求

APN6的三要素

开放的应用信息携带

- 丰富的网络服务
- DiffServ
- H-QoS
- 网络切片
- DetNet
- SFC
- BIER6

● 更细粒度 (per packet vs. per flow, per node vs. E2E, individual vs. statistics, etc.)

 $\widehat{\mathbf{m}}$

● 综合测量 (per packet with per flow, per node with E2E, individual with statistics, in-band with out-band, passive with active, etc.)

标准进展: APN6获广泛关注,与多家运营商客户合署标准文稿,成功推动BOF

- Side Meetings @IETF105 & IETF108
- Hackathons @IETF108 & IETF109 & IETF110
- Demos @INFOCOM2020 & 2021
- APN Mailing List Discussions apn@ietf.org
- APN Interim Meeting @IETF 110-111
- APN BoF @IETF111, Approved! 30 July 2021, 1200-1400 PDT

TITT

https://github.com/APN-Community

https://www.ietf.org/blog/ietf109-bofs/https://www.ietf.org/blog/ietf110-bofs/

https://trac.tools.ietf.org/bof/trac/wiki/WikiStar

IPv6+ 3.0 (1) Application-aware Networking

Topic	Draft	Vendors	Operators/Academia
Problem Statement/ Usecases	draft-li-apn-problem-statement-usecases	Huawei	Bell Canada/China Telecom/China Mobile/China Unicom/Verizon/Toyota
Framework	draft-li-apn-framework	Huawei	Bell Canada/China Telecom/China Mobile/China Unicom/Verizon/Toyota
Gap Analysis	draft-peng-apn-scope-gap-analysis-00	Huawei	
	draft-liu-apn-edge-usecase	Huawei	China Mobile
Usecases	draft-zhang-apn-acceleration-usecase	Huawei	China Unicom
	draft-yang-apn-sd-wan-usecase	Huawei	China Mobile
	draft-li-apn-header	Huawei	
Data Plane	draft-li-apn-ipv6-encap	Huawei	
	draft-ietf-v6ops-hbh-00	Huawei	China Telecom/China Unicom/Verizon
Security/Privacy	draft-peng-apn-security-privacy- consideration	Huawei	
Control Plane	draft-peng-apn-bgp-flowspec-00	Huawei	Tsinghua University
YANG Model	draft-peng-apn-yang-00	Huawei	

- APN Proposed WG: https://datatracker.ietf.org/wg/apn/about/
- APN Mailing List: https://www.ietf.org/mailman/listinfo/apn

CAN典型应用: MEC中的AR/VR – 根据算力和网络状态综合调度引流

MTP(motion-to-photon)时延上限:包括帧渲染,时延需要少于20 ms以避免用户眩晕感,端到端时延组成如下:

- 1. 传感器采样时延: <1.5ms (客户端)
- 2. 显示刷新时延: ≈7.9 ms(客户端)
- 3. 使用GPU进行帧渲染**计算时延≈5.5ms** (服务器)
- 4. 网络时延(预算)=20-1.5-7.9-5.5 = 5.1ms(网络)

计算时延和网络时延同等重要!!

- 只根据计算负载选择边缘站点1,总时延≈22.4ms
- 只根据网络时延选择边缘站点2, 总时延≈23.4ms
- 同时根据计算负载和网络时延选择边缘站点,总时延≈19.4ms

仅通过优化网络或计算资源无法满足总时延要求, 无法找到最佳选择

需要将流量动态引导到合适的边缘节点**以在同时考虑网络和计算延迟的情况下满足端到端时延要求**

边缘站点2 网络时延:4ms 重载 计算时延 ≈10ms 总时延≈23.4ms 网络时延: 边缘站点3 5_{ms} 一般负载 计算时延 ≈5ms 总时延≈19.4ms

网络时延:9ms

时延≈1.5+7.9=9.4ms

客户端

边缘站点**1 轻载**

计算时延

≈4ms

总时延≈22.4ms

CAN Dyncast: 分布式算网一体统一调度

CAN Dyncast (Dynamic Anycast) 是算力路由的一种关键技术,继承Anycast的快,可靠,防DDOS的优点。

分布化的算力作为算力网络中的内生资源,通过动态任播CAN Dyncast拉通联接成网,为客户提供最佳的算力分配及网络连接实现边缘计算高可靠性 、系统 整体利用效率最优

APP3

MEC-2

APP1

控制面:通过网络协议分发计算节点的算力状态

信息,如BGP

数据面: 基于CAN Dyncast (Dynamic

Anycast) 服务标识、综合算力状态和网络状

态引导请求转发

IP 前缀	下一跳	CFN 算力值
APP1 Anycast IP	MEC-1	60
	MEC-2	20
	MEC-n	10

算力感知模块 中的扩散与同步

各APP路由及算力状态在网络

MEC-3

4 请求抵达目的MEC

站点进行处理

APP2

1用户发起对APP1的请求

- 网络设备基于应用在各 站点的算力信息及网络 状态进行选路
- 网络设备在会话表中添加条目, 对该请求进行会话保持

Anycast

MEC-n

算力感知模块

APP2

- 业务标识
- 算力度量(算力负载)
- 算力感知 (算力采集和诵告)

2 边缘计算节点将算力

状态通告给网络设备

1 算力信息的采集

- 调度算法
- 会话保持

IETF标准进展: CAN BOF

会议

- Dyncast Side Meeting @IETF109 & @IETF110
 - https://github.com/dyncast/ietf109
 - https://github.com/dyncast/ietf110
- CAN BOF @IETF113 @IETF115
 - https://datatracker.ietf.org/group/can/about/

Groups Documents Meetings Other jescia.chenxia@huawei.com Computing-Aware Networking (can) Documents Meetings History Photos Email expansions List archive » WG Name Computing-Aware Networking Acronym can Area Routing Area (rtg) State BOF Charter (None) Dependencies Document dependency graph (SVG) Chairs Linda Dunbar ⊠ Personnel Zhaohui Zhang 🖂 Area Director John Scudder 🖂 Mailing list Address dyncast@ietf.org To subscribe https://www.ietf.org/mailman/listinfo/dyncast Archive https://mailarchive.ietf.org/arch/browse/dyncast/ Room address xmpp:can@jabber.ietf.org?join Jabber chat Logs https://jabber.ietf.org/logs/can/

草案

Draft topic	Draft name
Computing-Aware Networking (CAN) Problem Statement and Use Cases	draft-liu-can-ps-usecases
Computing-Aware Networking (CAN) Gap Analysis and Requirements	draft-liu-can-gap-regs
Computing Resource Modeling for CAN	draft-liu-can-computing-resource-modeling

IPv6+ 3.0 (2) Computing-aware Routing

Area	Topic	Draft	Vendors	Operators/Academia
CAN	Computing-Aware Networking (CAN) Problem Statement and Use Cases	draft-liu-can-ps-usecases	Huawei	China Mobile/BT/Orange/Telefonica
	Computing-Aware Networking (CAN) Gap Analysis and Requirements	draft-liu-can-gap-reqs	Huawei/ZTE	China Mobile
	Computing Resource Modeling for CAN	draft-liu-can-computing-resource- modeling	Huawei/ZTE	China Mobile
Dyncast	Dynamic-Anycast (Dyncast) Use Cases & Problem Statement	draft-liu-dyncast-ps-usecases	Huawei	China Mobile/BT/Orange/Telefonica
	Dynamic-Anycast (Dyncast) Requirements	draft-liu-dyncast-gap-reqs	Huawei	China Mobile/BT
	Dynamic-Anycast Architecture	draft-li-dyncast-architecture	Huawei	China Mobile
	Providing Instance Affinity in Dyncast	draft-bormann-t2trg-affinity		TZI
	LISP Support for Dynamic Anycast Routing	draft-kjsun-lisp-dyncast		ETRI
	BGP NLRI App Meta Data for 5G Edge Computing Service	draft-dunbar-idr-5g-edge-service- metadata	Huawei	Verizon/Microsoft
Others	Use Cases for Computing-aware Software-Defined Wide Area Network(SD-WAN)	draft-zhang-dyncast-computing-aware- sdwan-usecase	Huawei	China Unicom
	Computing-aware SFC	draft-zhang-computing-aware-sfc-usecase	Huawei	China Unicom

CAN BOF: https://datatracker.ietf.org/wg/can/about/

CAN Mailing List: https://www.ietf.org/mailman/listinfo/can

IPv6扩展头使用总结

株土 水 4-	IPv6扩展头使用			
特性	HBH Header	Routing Header	DO Header	
SRv6 TE/FRR/VPN		V		
Network Slicing/VPN+	√	٧	V	
IFIT	V	V	V	
MSR6/BIERv6		٧	V	
APN6	٧	٧	√√	

GIP6: 多种隧道在支持IPv6新特性时存在挑战,隧道封装需要通用化

在IP业务的演进过程中,定义了许多类型的隧道,如VxLAN、GRE等;同时,基于IPv6网络,业界创新了很多新特性,如切片、IOAM等;在隧道向IPv6演进的过程中存在如下问题:

- 标准化工作繁重:上述的所有IP隧道都需要进行相应的扩展,会带来很多的标准化工作(譬如园区IPv4 VxLan支持切片需求)。
- 字段冗余: 有的IP隧道的功能实际IPv6自己就可以支持,比如基于UDP的隧道VXLAN等,希望能够利用UDP来实现负载分担,但IPv6的Flow Label可以实现这个功能,没有必要在用一个冗余的字段。
- **封装风格迥异**: 有的IP隧道有自己的特有Header,比如VXLAN隧道有VXLAN头,GRE隧道有GRE头,如果要支持新的特性,那就意味着要么使用IPv6已有的封装,要么在自己特有的隧道Header的基础上进行扩展。
 - -- 如果已经有特定的Header,并在已有 Header基础上进行扩展,就会跟已有新特性IPv6 Header的封装定义形成冗余。
 - -- 如果没有特定Header的IP隧道类型(如IP over IP),需要重新在IPv6扩展头中定义。这导致不同的IP隧道有不同的封装风格。

基于IPv6的通用隧道封装,Generalized IPv6 Tunnel (GIP6)

➤ GIP6: 定义一种通用的IPv6 隧道封装,简化隧道支持IPv6新特性相关的工作,解决当前面临的各种问题和挑战。

> 达到效果:

- 高扩展性:后续IPv6 Header扩展任何新功能,各种隧道都可以继承使用,不用单独定义
- 高效封装:去除重复字段,譬如VxLAN隧道可以不用UDP封装,再譬如可以去掉MPLS 熵标签等
- 高兼容性: 原有的隧道封装格式不用修改,保留原始定义(非重复),可以嵌入到GIP6中
- 高灵活性:和IPv6+技术完美融合,E2E路径灵活编程(不同隧道类型),譬如GIP6 for MPLS, GIP6 for VxLAN等等
- 高价值: 使得IPv6+技术更容易进入园区/DC......

▶ 封装格式:

- Option1:使用IPv6报文头和扩展头,支持隧道功能和IPv6新特性;推荐使用此封装。
- Option2:保留已有隧道扩展;使用IPv6报文头和扩展头,支持新增IPv6新特性;

Option 1 (Recommended)

Option 2

Generalize IPv6 Tunnel

Area	Topic	Drafts	Vendors	Operators
	Framework of Generalized IPv6 Tunnel (GIP6)	draft-li-rtgwg-generalized-ipv6-tunnel	Huawei	China Unicom/ Agricultural Bank of China
	Generalized IPv6 Tunnel for MPLS	draft-li-rtgwg-gip6-for-mpls	Huawei	
Generaliz ed IPv6	Generalized IPv6 Tunnel (GIP6) for QUIC	draft-li-rtgwg-gip6-for-quic	Huawei	
	Protocol Extension Requirements of Generalized IPv6 Tunnel	draft-li-rtgwg-gip6-protocol-ext-requirements	Huawei	China Unicom
	Generalized Arguments of SRv6 Segment	draft-lm-spring-srv6-generalized- arguments	Huawei	

GIP6应用:基于IPv6的SD-WAN

Ⅲ

GIP6应用: 基于IPv6的SD-WAN/CON

Area	Sub-Area	Topic	Drafts	Vendors	Operators
	Framework	Dynamic Networks to Hybrid Cloud DCs Problem Statement	draft-ietf-rtgwg-net2cloud-problem- statement	Huawei	FT/Verizon
		SR For SDWAN	draft-dukes-spring-sr-for-sdwan	Cisco	LinkedIn/Alibaba/Bell Canada
		SRv6 across SDWAN paths	draft-dunbar-sr-sdwan-over-hybrid- networks	Huawei	Verizon
		BGP Usage for SDWAN Overlay Networks	draft-ietf-bess-bgp-sdwan-usage	Huawei/Cisco/Juniper	Bell Canada
		BGP UPDATE for SDWAN Edge Discovery	draft-ietf-idr-sdwan-edge-discovery	Huawei	Verizon
SD-	Control Plane	Secure EVPN	draft-sajassi-bess-secure-evpn	Cisco/Juniper	
WAN		IPsec Key Exchange using a Controller	draft-carrel-ipsecme-controller-ike	Cisco	
		SDWAN WAN Ports Property Advertisement in BGP UPDATE	draft-dunbar-idr-sdwan-port-safi	Huawei	
		YANG Data Model for SD-WAN OSE service delivery	draft-wood-rtgwg-sdwan-ose-yang	Cisco/Huawei/HPE	
	Yang Models	A YANG Module for uCPE management	draft-shytyi-opsawg-vysm		SFR/Telecom ParisTech
		A YANG Data Model for SD-WAN Service Delivery	draft-sun-opsawg-sdwan-service-model	Huawei/Cisco	China Telecom
	Tunnal Cogmont	Tunnel Segment in Segment Routing	draft-li-spring-tunnel-segment	Huawei	
	Tunnel Segment	PCE-initiated IP tunnel	draft-chen-pce-pce-initiated-ip-tunnel	Huawei	
CON		IPv6 based Cloud-Oriented Networking	draft-li-rtgwg-ipv6-based-con-01	Huawei	

- · SDWAN的框架草案被工作组接纳,围绕多云场景的基于IPv6方案已经布局。
- · BGP for SDWAN的协议扩展草案被工作组接纳。
- · SRv6 SDWAN正在推动过程中。

IPv6+产业活动:中国IPv6+技术创新工作组

推进IPv6规模部署专家委员会

秘书处

IPv6+技术创新工作组

IPv6评测监测工作组

产学研用,多维融合

IPv6+产业活动: ETSI New ISG IPE (IPv6 Enhanced Innovation)

TITT

20 Members, 23 Participants, 1 Counsellor (Feb 2021)

华为在 "IPv6+" 部署覆盖运营商、金融、政府和教育

IPv6+系列书籍和视频,积极传播"IPv6+"理念

IPv6+实体书

IPv6+系列电子书

IPv6+系列视频

(多媒体) IPv6+系列 04 随流检测iFIT技 术介绍 01

(多媒体) IPv6+系列 03 网络切片 01

(多媒体) IP新技术进阶系列 - IPv6基础介

(多媒体) IP新技术进阶系列 - Segment Routing IPv6 (SRv6)

(多媒体) IP新技术进阶系列 - 公网IPv6 over SRv6 TE Policy深度解析

IPv6+系列书籍和视频, 积极传播 "IPv6+" 理念

IPv6+实体书

中文版: https://item.jd.com/12948440.html

英文版: https://www.amazon.com/SRv6-Network-Programming-Ushering-Communication/dp/1032016248

IPv6+系列电子书

中文版: https://e.huawei.com/cn/material/bookshelf/bookshelfview/202104/29153654
英文版: https://e.huawei.com/en/material/bookshelf/bookshelfview/202109/29105716

IPv6+系列视频

IPv6+创新与关键技术: https://www.bilibili.com/video/BV1FG4y1E7Xm/?spm_id_from=333.999.list.card_archive.click

中文版: https://support.huawei.com/enterprise/zh/routers/netengine-8000-pid-252772223/multimedia
英文版: https://support.huawei.com/enterprise/en/routers/netengine-8000-pid-252772223/multimedia

Thank you