AULA 3 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

Seja uma dada sequência (array) de números inteiros não ordenada. Pretende-se determinar quantos elementos da sequência são diferentes dos elementos anteriores. Ou seja:

array [i]
$$\neq$$
 array [i–1], para i > 0

- Implemente uma função inteira **eficiente** e **eficaz** que determina quantos elementos (resultado da função) de uma sequência com n elementos (sendo n > 1) respeitam esta propriedade.

 <u>Depois de validar o algoritmo apresente-o no verso da folha</u>
- Determine experimentalmente a **complexidade do número de comparações** efectuadas envolvendo elementos da sequência. Considere as seguintes dez sequências de dez inteiros todas diferentes e que cobrem todas as situações possíveis distintas de execução do algoritmo. Calcule para cada uma delas o número de elementos que obedecem à condição e o número de comparações executadas.

3	3	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	3	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	9	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	9	3	0	Resultado	N° de operações

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de comparações efectuadas podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exacta e simplificada. <u>Faça a análise no verso da folha</u>
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.

Nome: N° mec:

APRESEN	TAÇÃO DO ALGORITMO
Análise F	Formal do Algoritmo
E(N) =	

NOME: N° MEC:

Seja uma dada sequência (*array*) de números inteiros não ordenada. Pretende-se determinar qual é o primeiro elemento da sequência que tem mais elementos menores do que ele atrás de si, indicando a posição (índice do array) onde ele se encontra.

- Implemente uma função inteira **eficiente** e **eficaz** que determina a posição do primeiro elemento da sequência (resultado da função) de uma sequência com n elementos (sendo n > 1) que tem mais predecessores menores do que ele. <u>Depois de validar o algoritmo apresente-o no verso da folha</u>
- Determine experimentalmente a **complexidade do número de comparações** efectuadas envolvendo elementos da sequência. Considere as sequências anteriormente indicadas de dez inteiros e outras sequências diferentes à sua escolha. Calcule para cada uma delas a posição do elemento e o número de comparações executadas.

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de comparações efectuadas podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exacta e simplificada. <u>Faça a análise no verso da folha</u>
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.

Nome: N° mec:

Guião das Aulas Práticas	10	
	Apresentação do Algoritmo	
	Análise Formal do Algoritmo	
E(N) =		

Nome: N° MEC: