- 2 空間内に , 3 点 $A_0(1,0,0)$, $A_1(1,1,0)$, $A_2(1,0,1)$ を通る平面 α と , 3 点 $B_0(2,0,0)$, $B_1(2,1,0)$, $B_2(\frac{5}{2},0,\frac{\sqrt{3}}{2})$ を通る平面 β を考える .
- (1) 空間の基本ベクトルを $\overrightarrow{e_1}=(1,0,0)$, $\overrightarrow{e_2}=(0,1,0)$, $\overrightarrow{e_3}=(0,0,1)$ とおくとき , ベクトル $\overrightarrow{OA_0}$, $\overrightarrow{A_0A_1}$, $\overrightarrow{A_0A_2}$, $\overrightarrow{OB_0}$, $\overrightarrow{B_0B_1}$, $\overrightarrow{B_0B_2}$ を $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ で表せ . ただし , O は空間の原点を表す .
- 原点 O と α 上の点 P を通る直線が β 上の点 P' も通っているとする . $\overrightarrow{OP} = \overrightarrow{OA_0} + a\overrightarrow{A_0A_1} + b\overrightarrow{A_0A_2} \text{ , } \overrightarrow{OP'} = \overrightarrow{OB_0} + p\overrightarrow{B_0B_1} + q\overrightarrow{B_0B_2} \text{ とおくとき , } a \text{ ,} b$ を p , q で表せ .
- (3) 点 P が α 上の点 A_0 を中心とする半径 1 の円 C の円周上を動くとき , 点 P' が動いてできる図形 C' の方程式を (2) の p , q で表し , C' が楕円であることを示せ .