

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

USING NUMBERS

SEC204

Overview

- Introduction Assignment Project Exam Help
- Integer arithmetic

https://tutorcs.com

WeChat: cstutorcs

Assignment Project Exam Help

https://tutorcs.com

NUMERIC DATA TYPES

- The core numeric data types for the IA32 platform are:
 - Unsigned integers
 - Signed integersignment Project Exam Help

 - Binary-coded decimal
 Packed binary-coded decimal

 - Single-precision floating point
 Double-precision floating point
 - Double-extended floating point

STANDARD INTEGER SIZES

- The basic IA-32 platform supports 4 integer sizes:
 - Byte: 8 bits
 - Word: 16 bitssignment Project Exam Help
 - Doubleword: 32 bits
 - Quadword: 64 bits //tutorcs.com

WeChat: cstutorcs

- What is the range of unsigned integers you can represent with a word?
- What is the range of signed integers (two's complement) you can represent with a word?

Assignment Project Exam Help

https://tutorcs.com

INTEGER AROTHER CONTEST

ADDITION

- add source, destination
 Adds source to destination. The result of the addition is placed in destination
- Can define the size Assignment Project Exam Help

```
• addl:1 for 32-bit long word value
```

- addw: w for 16-bithttps://autorcs.com
- addb:b for 8-bit byte value

WeChat: cstutorcs

• Create an assembly program addnum.s that performs the following functionality

```
int main() {
   int data = -40;
   int b = 0;
   data = data +(-10)+(-200)+80+210
   return 0;
}
```

In command line:

```
$ as —o addnum.o addnum.s
$ ld —o addnum addnum.o
$ ./addnum
$ echo $?
```

SUBTRACTION

- sub source, destination
 Subtracts source from destination (destination-source). The result of the subtraction is placed in destination Assignment Project Exam Help
- Can define the size of data element to be moved
 - subl: 1 for 32-bithtops: watth OFCISCOM
 - subw: w for 16-bit word value
 - subb: b for 8-bit Wte Charte cstutorcs
- Create an assembly program subnum.s that performs the following functionality

```
int main() {
   int data = 100;
   int b = 20;
   data = data -b -b -b -b -b -b
return 0;
}
```

In command line:

```
$ as -o subnum.o subnum.s
$ ld -o subnum subnum.o
$ ./subnum
$ echo $?
```

INCREMENTING, DECREMENTING

- inc destination Increases destination by 1.
- dec destination by 1. dec destination by 1.
- Create an assembly programpe unity of that performs the following functionality:

```
int main() {
    int data = 50;
    int b = 20;
    for (b=20; b<data; b=b+1) {
        printf("value of b: %d\n", b);
    }
return 0;
}</pre>
```

In command line:

```
$ as -o count50.o count50.s
$ ld -dynamic-linker /lib/ld-
linux.so.2 -lc -o count50
count50.o
$ ./count50
$ echo $?
```

MULTIPLICATING

mul source
 For unsigned integers. The destination is implied (DX:AX) and is double the size of source.
 mov \$5, %eax

Assignment Project Exam Help

mull \$10 movl %eax, result https://tutorcs.com Result has value of 50.

WeChat: cstutorcs

Assemble, link and run program multest.s from DLE

MULTIPLICATING

```
# multest.s - An example of using the MUL instruction
.section .data
data1:
   .int 315814
                   Assignment Project Exam Help call prints
data2:
   .int 165432
#quad is 64-bits
                         https://tutorcs.com
result:
   .quad 0
output:
   asciz "The result is %q\\neChat: cstutorcs"
.section .text
.globl start
_start:
  nop
  movl data1, %eax
  mull data2
  movl %eax, result
  movl %edx, result+4
  pushl %edx
```

Cont:

pushl %eax pushl \$output add \$12, %esp pushl \$0 call exit

MULTIPLICATING

- imul source
 For signed integers. The destination is implied (DX:AX) and is double the size of source.

 imul source

 imul source
- imul source, destination

 For signed integers. The destination must be a register.

 https://tutorcs.com
- imul multiplier, source, destination

 For signed integers. Multiplier is a value, source can be a register or value in memory, destination must be a register. Multiplier * source = destination

DIVISION

• div divisor
For unsigned integers. The divident is implied and must be stored in the AX register (if 16-bits), the DX:AX registers (if 32-bits), or the EDX:EAX (if 64-bits).

Assignment Project Exam Help

Dividend	Divident Size. //tu	Quotient COM	Remainder
AX	16bits	AL	АН
DX:AX	32biWeChat:	estutores	DX
EDX:EAX	64bits	EAX	EDX

DIVIDING

```
# divtest.s - An example of the DIV instruction
.section .data
dividend:
   .quad 8335
                   Assignment Project Exam Helpoushl remainder
divisor:
   .int 25
quotient:
                         https://tutorcs.com
   .int 0
remainder:
   .int 0
                         WeChat: cstutorcs
output:
   .asciz "The quotient is %d, and the remainder is %d\n"
.section .text
.globl start
_start:
  nop
  movl dividend, %eax
  movl dividend+4, %edx
  divl divisor
```

Cont:

mov1 %eax, quotient movl %edx, remainder pushl quotient pushl \$output call printf add \$12, %esp pushl \$0 call exit

SIGNED DIVISION

• idiv divisor
For signed integers. The divident is implied and must be stored in the AX register (if 16-bits), the DX:AX registers (if 32-bits), or the EDX:EAX (if 64-bits).

Assignment Project Exam Help

Dividend	Divident Size. //tu	Quotient COM	Remainder
AX	16bits	AL	АН
DX:AX	32bitWeChat:	estutores	DX
EDX:EAX	64bits	EAX	EDX

MULTIPLYING, DIVIDING BY SHIFTING

• sal destination sal shifter, destination

Shift arithmetic left, If used, shifter specifies the number of bits to shift. In binary, sal multiplies by 2. Assignment Project Exam Help

https://tutorcs.com

• sar destination sar shifter, destinate cstutorcs Shift arithmetic right. If used, shifter specifies the number of bits to shift. In binary, sar divides by 2.

LOGICAL OPERATIONS

• AND, OR, XOR xor source, destination

Performs logical XOR function. Destination holds the result. Same format for AND, OR.

Assignment Project Exam Help

https://tutorcs.com

not destination
 Performs a NOT instruction. Fact bit of destination is inverted.

FURTHER READING

• Professional Assembly Language, chapters 7-8

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs