Inférence des modèles SBM par des tenseurs trains pour l'identification des taxons pour le métabarcoding

Mohamed Anwar ABOUABDALLAH
Directed by : Nathalie Peyrard¹ Alain Franc² Olivier Coulaud³

¹ INRAØ, Unité MIAT, Toulouse, France

² INRA@, UMR BioGeCo, Pierroton & EPC INRA@ / Corrac Talence, France

³ Invia, HiePACS, Talence, France

Séminaire des doctorants

Scientific context

- Is there an adequacy between botanical and molecular classifications on a coarse taxonomic level ? (first year)
- How to scale up the SBM model to large datasets? (second and third years)

Summary

- 1 Introduction
 - Data set
 - High taxonomics levels
 - General approach
- 2 Adequacy between botanical and molecular classifications
 - 30 replicates
 - Presentation of the results
 - Which factors explain NMI ?
 - Whole dataset
- 3 Tensor trains approximation for SBM inference
 - Model parameters
 - SBM possible inferences methods
 - Putting SBM on a tensor train

Introduction

Data set

• 1458 trees from an experimental plot in Guyana.

Order, family, genus and species of each individual

AGGTGAAGTTAAAGGTTCTTATTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTA AGGTGAAGTTAAAGGTTCTTATTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTTAAAGGTTCATACTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTAAAAGGTTCATACTTAAACATCACTGCTGGTACAACGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTTAAAGGTTCATACTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTTAAGGTTCTTATTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTAG AGGTGAAGTTAAAGGTTCTTACTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTTAAAGGTTCTTACTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA AGGTGAAGTAAAAGGTTCATACTTAAACATCACTGCTGGTACAATGGAAGAAGTTTACACTCGTGCAGAATACGCTAAGAGCCTTGGTTCTGTAATTGTTATGATCGATTTA

DNA sequence of each individual.

Orders

Families

Genera

Species

The four steps of the approach

- Step 1 : Choice of sub-samples to study :
 - First experiment: 30 replicates: 10 orders and 20 families

Taxonomic level	Total	Selected
Orders	20	10
Families	56	20

- Our work :
 - Find families in orders;
 - And genera in families;

The four steps of the approach

- **Step 1**: Choice of sub-samples to study :
 - Second experiment: Whole dataset Selection :

Taxonomic level	sequences	Number of taxa	Minimal size	
Species	313	55	5	
Genera	845	36	10	
Families	1349	30	10	
Orders	1357	11	15	

The four steps of the approach

- Step 2: Building partitions with four methods for each sub-sample and with Smith Waterman and kmer dissimilarities:
 - M₁: Agglomerative Hierarchical Clustering (AHC)

• M₂ : Stochastic Block Model (SBM).

The four steps of the approach

- Step 3 : Comparing the classifications two by two
 - Using visual tools
 - Using NMI to characterize the adequacy/independence
- Step 4 : Analyse the different indices and visualise them
 - Using histogram representation
 - Computing statistics on the distribution (mean, median, ...)

Adequacy between botanical and molecular classifications

Results for the 30 replicates

		Families Genera		nera	Pooled		
Method		SW	kmers	SW	kmers	SW	kmers
AHC	Ward	1	0.61	0.83	0.73	0.87	0.71
	SL	0.88	0.54	0.75	0.59	0.76	0.58
	CL	0.85	0.63	0.75	0.71	0.75	0.67
SBM		0.57	0.52	0.82	0.66	0.68	0.63

Is there a correlation between r_{mean} value and NMI index ?

Smith Waterman dissimilarities

Results as a function of Taxonomic level

Evolution of NMI index as a function of Taxonomic levels:

kmer based distances

Sankey plots for genera

SL vs Botanics

Ward vs SBM vs Botanics

Interest of SBM models

The main differences between AHC and SBM:

- AHC produces community vs SBM produces classes (not necessary communities)
- Outputs of SBM are : Z and Λ .

Let's talk about Λ :

Case 1:

$$\Lambda = \begin{pmatrix} 2 & 9 & 11 \\ 6 & 3 & 7 \\ 8 & 5 & 1 \end{pmatrix}$$

There are 3 communities \implies SBM \simeq CAH

Interest of SBM models

Case 2:

$$\Lambda = \begin{pmatrix} 22 & 9 & 11 \\ 6 & 3 & 7 \\ 8 & 5 & 1 \end{pmatrix} \qquad \Lambda = \begin{pmatrix} 2 & 9 & 11 \\ 6 & 23 & 7 \\ 8 & 5 & 1 \end{pmatrix} \qquad \Lambda = \begin{pmatrix} 2 & 9 & 11 \\ 6 & 3 & 7 \\ 8 & 5 & 19 \end{pmatrix}$$

There are 2 communities \implies SBM (warning) \neq CAH

Case 3:

$$\Lambda = \begin{pmatrix} 22 & 9 & 11 \\ 6 & 23 & 7 \\ 8 & 5 & 19 \end{pmatrix}$$

There are no communities \implies SBM (warnings) \neq CAH

Tensor trains approximation for SBM inference

Model intuition

Data set

Representation as graph

Model parameters

Statistical model: SBM

Clusters inference

Let B be the number of classes $Z = (Z_1, \dots Z_n)^T \in \mathbb{M}_{n,B}([0,1])$

Model Hypothesis

- H₁ Knowing Z, distances are independent
- H_2 The latent variables $Z_{i.i=1....n}$ are iid in $\{1,...B\}$.

Parameters estimation

• $\Lambda \in \mathbb{M}_{B,B}, \lambda_{b,b'}$: The parameter of Poisson probability to have a distance d between a vertex of class b and a vertex of class b'.

$$\forall b, b' = 1, \dots, B, \lambda_{b,b'} = Z_b^T \Lambda Z_{b'}$$

- $D_{i,j}|Z_{i,b} = 1, Z_{j,b'} = 1 \sim \text{Pois}(\lambda_{b,b'})$
- $\alpha \in [0,1]^B, \alpha_i$: The probability of belonging to each cluster.
- Infering Z requires first to obtain $\hat{\theta}=(\hat{\alpha},\hat{\Lambda})$. We proceed by $\hat{\theta}_{mv}=\mathrm{argmax}(P(D|\theta))$
- Having Λ , α and D, we chose the most probable configuration for Z.

EM algorithm

$$Z = (Z_1, \dots Z_n)^T \in \mathbb{M}_{n,B}([0,1])$$

- Infering Z needs to obtain $\hat{\theta} = (\hat{\alpha}, \hat{\Lambda})$ we proceed by $\hat{\theta}_{mv} = \operatorname{argmax}(P(D|\theta))$
- The most naturel way is the EM algorithm. Each iteration involves two steps:
 - E-step : Compute : $Q(\theta, \theta^t) = \mathbb{E}_Z[\log P_{\theta}(D|Z)|\theta^t, D]$
 - M-step: $\theta^{(t+1)} = \operatorname{argmax}_{\theta} Q(\theta|A, \theta^t)$

Inference approach

There are two main classes of methods :

Monte-Carlo methods: characterize a distribution by randomly sampling values out of the distribution.

+ Precision : Accurate

Computation time : Slow

Inference approach

There are two main classes of methods:

Monte-Carlo methods: characterize a distribution by randomly sampling values out of the distribution.

- + Precision : Accurate
- Computation time : Slow

Variational methods: we assume the independence of the nodes knowing the graph to approximate marginal by mean field.

- Precision : Average accuracy
- + Computation time : Fast

Inference approach

 Our approach consists of using tensor trains to compute the marginals. It has already been adopted for Markov Random Field by Novikov.

Expectation of this approach:

- + Precision : Good to perfect accuracy
- + Computation time : Fast

Tensor train

Tensor Train

Apparoximation of the tensor T by another D such that $T \approx D$

$$T(x_1, \dots, x_d) = G_1^T[x_1]G_2^T[x_2]\dots G_d^T[x_d]$$

with
$$G_i^T[x_i] \in \mathbb{M}_{r_{i-1},r_i}(\mathbb{R})$$
 and $r_d = r_0 = 1$

- + Storage requires much less memory space
- + Can be used for matrices
- + Efficients operations

T

A

