

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

Goal of the project

 $x (\mu m)$

Aidala, K., Parrott, R., Kramer, T. et al. Imaging magnetic focusing of coherent electron waves. *Nature Phys* **3**, 464–468 (2007). https://doi.org/10.1038/nphys628

Quantum simulations of SPM images including small-angle scattering

Goal

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

Geometry of the system

System of square lattice:

- L = 250 nm
- W = 160 nm
- q = 20 nm
- d = 120 nm
- a = 1 nm
- t = 1 eV

Leads for the current of interest // QPCs

Leads to avoid reflections on walls // open device

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

Modes in the leads

The number of modes in the leads depends on :

- The number of atoms along the width of the lead, fixed to 20.
- The magnetic field *B*
 - → Varying to reach the resonances of the system
- The Fermi level E_F
 - → Tuned in order to have 1 or 2 modes

8 Modes in the leads

$$B = 10 \, \text{T}$$

→ The magnetic field slightly influences the bandstructure

$$B = 10 \,\mathrm{T}$$

10 Modes in the leads

$$B = 10 \text{ T}$$

11 Modes in the leads

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

Effect of E_F

Modes in the leads

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F

IV. Range of magnetic fields

- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

Range of magnetic fields

The cylotron radius of electrons in a magnetic field is given by:

$$r_c = \frac{\hbar k_F}{eB}$$

Since magnetic focusing occurs when $r_c = \frac{d}{2n}$, the resonant magnetic fields are :

$$B_n = n \frac{2\hbar}{ed} \sqrt{\frac{E_F}{t}}$$

Using
$$E_F=rac{\hbar^2 k^2}{2m^*}$$
 and $m^*=rac{\hbar^2}{2a^2t}$

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

 $E_F=0.07\,\mathrm{eV}$

No transmission?

Transmission versus B

Transmission versus B

 $E_F=0.07\,\mathrm{eV}$

- L = 500 nm
- W = 320 nm
- d = 280 nm
- q = 20 nm

20

 $E_F=0.07\,\mathrm{eV}$

Transmission versus B

Transmission with / mode in the leads

24

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes
- VI. SPM images

S

 $E_F=0.15\,\mathrm{eV}$

- I. Goal of the project
- II. Geometry of the system
- III. Modes in the leads
 - i. Effect of B
 - ii. Effect of E_F
- IV. Range of magnetic fields
- V. Transmission
 - i. 1 mode
 - ii. 2 modes

VI. SPM images

SPM images - approach

- 1. Choose magnetic field: $B_{1,exp}$
- 2. Calculate transmission without tip: T_{noTip}
 - 3. Add tip to system at (x_{tip}, y_{tip}) : positive Gaussian potential: $V = \eta E_F$
 - 4. Calculate transmission with tip: T_{Tip}

5. Store the difference in transmission in a 2D-matrix: $\Delta T_{array}[i,j] = T_{Tip} - T_{noTip}$

6. Plot ΔT_{array} with colorbar

29

terate over whole system

SPM images - expectations

$$\Rightarrow \Delta T \propto \cos(\phi - \phi_0)$$

 Phase of the deflected trajectory is proportional to the classical action accumulated along the trajectory:

$$\phi = \frac{S}{\hbar}$$

 This leads to an equation for the fringe spacing :

$$d = \frac{\lambda_F}{2} \csc\left(\frac{\theta}{2}\right)$$

$$\Rightarrow d_{min} = \frac{\lambda_F}{2} \text{ when } \theta = \pi$$

30 SPM images

Influence of the tip width

Influence of the tip width

Influence of the tip width

Influence of η – tip width of 2nm

0.005

0.008

0.002

0.000

-0.0

=0.0

Influence of η – tip width of 2nm

-0.03 -0.04

0.02

0.02

0.01

0.00

Influence of η – tip width of 2nm

0.06

0.04

0.04

0.02

0.00

Influence of η – tip width of 12nm

are present. These new interferences resemble to the ones in the article.

Influence of η – tip width of 12nm

Influence of η – tip width of 12nm

The fringe spacing should be close to $\lambda_F/2$ because of backscattering but is not observed on these images. The classical cyclotron orbit is clearly visible, although it was expected at weak focusing instead.

1st position: Blue region

1st position: Blue region

1st position: Blue region

2nd position: red region

2nd position: red region

2nd position: red region

2nd position: red region

48

3rd position: blue region

3rd position: blue region

3rd position: blue region

51

3rd position: blue region

52

0.0

58

The hopping function

The hopping function we used:

```
def hopping(site_i, site_j, Bfield):
    Returns the hopping between two sites when a magnetic field Bfield is applied
    xi, yi = site_i.pos
    xj, yj = site_j.pos
    hop = -tScaled * np.exp(1j*e_C/hbar_Js * Bfield * (yi+yj)/2 * (xj-xi))
    return hop
```

ightharpoonup The hopping is varying along y (as in the Hall bar from session 4) although it should vary along x

The hopping function

The hopping functions we should have used:

```
def hopping(site_i, site_j, Bfield):
   Returns the hopping between two sites when a magnetic field Bfield is applied
   xi, yi = site_i.pos
   xj, yj = site_j.pos
   hop = -tScaled * np.exp(1j*e_C/hbar_Js * Bfield * (xi+xj)/2 * (yi-yj))
    return hop
def hopping2(site_i, site_j, Bfield): # Hopping function for the leads on the left and on the right
   Returns the hopping between two sites when a magnetic field Bfield is applied
   xi, yi = site_i.pos
   xj, yj = site_j.pos
   hop = -tScaled * np.exp(1j*e_C/hbar_Js * Bfield * 1/2 * (yi-yj))
   return hop
```

 \rightarrow The hopping is now varying along x but is kept constant for the leads on the left and on the right

The hopping function

