Gestion de Portefeuille

TP-3: Modèle de Treynor Black

Patrick Hénaff

Février-Mars 2020

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(quantmod)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
library(broom)
```

Données

Séries de rendement quotidien pour 11 valeurs:

```
monthly.ret.file <- "./monthly.ret.rda"
load(monthly.ret.file)</pre>
```

Pour l'indice de marché, on utilise VT, un ETF "World Market":

```
VT.series.file <- "./ret.VT.rda"

if(!file.exists(VT.series.file)) {

sym <- "VT"

world.index <- Ad(getSymbols(sym, auto.assign=FALSE))

world.index.ret <- monthlyReturn(world.index)

colnames(world.index.ret) <- "Market"

save(world.index.ret, file=VT.series.file)
} else {
   load(VT.series.file)
}</pre>
```

Rendement moyen:

```
monthly.ret <- merge.xts(monthly.ret, world.index.ret, join="inner")
kable(colMeans(monthly.ret), "latex", escape=FALSE, col.names=c("$r$"), caption="Average monthly return</pre>
```

Table 1: Average monthly return

	r
AAPL	0.0220532
AMZN	0.0271364
MSFT	0.0169185
F	0.0139604
SPY	0.0086184
QQQ	0.0126927
XOM	0.0012265
MMM	0.0090297
HD	0.0191698
PG	0.0080793
KO	0.0096675
Market	0.0063881

Matrice de covariance des rendements:

```
kable(cov(monthly.ret), "latex", booktabs=T) %>%
kable_styling(latex_options="scale_down")
```

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	КО	Market
AAPL	0.0067861	0.0029132	0.0023909	0.0034726	0.0020525	0.0030696	0.0008125	0.0019703	0.0017385	0.0007716	0.0007773	0.0019879
AMZN	0.0029132	0.0081477	0.0025052	0.0026818	0.0019708	0.0029000	0.0008198	0.0013520	0.0018658	0.0001333	0.0011566	0.0020887
MSFT	0.0023909	0.0025052	0.0041486	0.0034082	0.0018237	0.0022291	0.0010236	0.0014625	0.0016284	0.0007682	0.0010500	0.0019091
F	0.0034726	0.0026818	0.0034082	0.0228940	0.0033899	0.0035843	0.0013655	0.0039663	0.0034734	0.0018252	0.0017233	0.0037993
SPY	0.0020525	0.0019708	0.0018237	0.0033899	0.0018541	0.0019954	0.0012216	0.0018248	0.0017008	0.0008786	0.0009489	0.0019549
QQQ	0.0030696	0.0029000	0.0022291	0.0035843	0.0019954	0.0025283	0.0009971	0.0018315	0.0018600	0.0007702	0.0008702	0.0020805
XOM	0.0008125	0.0008198	0.0010236	0.0013655	0.0012216	0.0009971	0.0024359	0.0015475	0.0011221	0.0006220	0.0007314	0.0012568
MMM	0.0019703	0.0013520	0.0014625	0.0039663	0.0018248	0.0018315	0.0015475	0.0033789	0.0018843	0.0010283	0.0008990	0.0018143
$^{ m HD}$	0.0017385	0.0018658	0.0016284	0.0034734	0.0017008	0.0018600	0.0011221	0.0018843	0.0034615	0.0008112	0.0007124	0.0015536
PG	0.0007716	0.0001333	0.0007682	0.0018252	0.0008786	0.0007702	0.0006220	0.0010283	0.0008112	0.0018438	0.0008778	0.0008302
KO	0.0007773	0.0011566	0.0010500	0.0017233	0.0009489	0.0008702	0.0007314	0.0008990	0.0007124	0.0008778	0.0020062	0.0010466
Market	0.0019879	0.0020887	0.0019091	0.0037993	0.0019549	0.0020805	0.0012568	0.0018143	0.0015536	0.0008302	0.0010466	0.0023080

taux sans risque

Le taux sans risque mensuel (annualisé) est obtenu de la Réserve Fédérale US.

```
tmp <- read.csv("DP_LIVE_01032020211755676.csv", header=TRUE, sep=";")[, c("TIME", "Value")]
dt <- ymd(paste(tmp$TIME, "-01", sep=""))-1
rf_rate <- xts(tmp$Value/100.0, dt)</pre>
```



```
AAPL
                            AMZN
                                       MSFT
                                                     F
## 2008-06-30 -0.11290069 -0.10156825 -0.02860143 -0.292647079 -0.083575759
## 2008-07-31 -0.05070466 0.04104724 -0.06506746 -0.002079304 -0.008985578
## 2008-09-30 -0.32955848 -0.09961634 -0.02198624 0.165918802 -0.094173681
## 2008-10-31 -0.05340487 -0.21330401 -0.16335732 -0.578846139 -0.165186687
## 2008-12-31 -0.07899032 0.20093672 -0.03857552 -0.148698828 0.009796723
## 2009-03-31 0.17702424 0.13350827 0.13746188 0.314999474 0.083310627
                   QQQ
                              MOX
                                         MMM
                                                     HD
## 2008-06-30 -0.09615030 -0.007097684 -0.10275897 -0.136855504 -0.079333799
## 2008-09-30 -0.15576296 -0.029371125 -0.04594999 -0.037367436 -0.001146315
## 2008-10-31 -0.15471594 -0.045583125 -0.05870276 -0.088837478 -0.067977481
## 2009-03-31 0.10316511 0.002945407 0.09370851 0.141905895 -0.022420454
##
                     ΚO
                             Market
                                            Rf
## 2008-06-30 -0.080159854 -0.0008065077 0.0023250000
## 2008-07-31 -0.009234303 -0.0268471854 0.0023250000
## 2008-09-30 0.030105361 -0.0910820596 0.0036000000
## 2008-10-31 -0.166793449 -0.2143686201 0.0019666667
## 2008-12-31 -0.034136711 0.0541143392 0.0008500000
## 2009-03-31 0.098898124 0.0883459620 0.0007416667
```

Estimation d'un modèle à un facteur

Choisir une période de 48 mois. A partir des examples présentés en cours, évaluer le modèle:

$$R_i(t) - R_f(t) = \alpha + \beta (R_M(t) - R_f(t)) + \epsilon(t)$$

en utilisant la fonction lm. Utilisez la fonction kable de knitr pour produire une présentation soignée des résultats.

```
nb.obs <- 48
Assets <- c("AAPL", "AMZN", "MSFT", "F", "XOM", "MMM", "HD",
                                                                       "PG",
                                                                                "KO")
r.set <- monthly.ret.2[1:nb.obs,]</pre>
r.set$SPY <- NULL</pre>
r.set$QQQ <- NULL</pre>
# Excess return
excess.r <- r.set[, c(Assets, "Market")]</pre>
for(i in seq_along(ncol(excess.r))) {
  excess.r[,i] <- excess.r[,i] - r.set$Rf
}
sigma2.M <- as.numeric(var(excess.r$Market))</pre>
r.M <- mean(excess.r$Market)</pre>
res <- data.frame(alpha=double(), beta=double(), sigma.e=double(), asset=character())</pre>
for(A in Assets) {
  tmp <- lm(paste(A, " ~ Market"), data=excess.r)</pre>
  alpha <- tmp$coefficients["(Intercept)"]</pre>
  beta <- tmp$coefficients["Market"]</pre>
  sigma.e <- glance(tmp)$sigma</pre>
  p.value <- tidy(tmp)$p.value[1]</pre>
  if(alpha>0) res <- rbind(res, list(alpha=alpha, beta=beta, sigma.e=sigma.e, p.value=p.value, asset=A)
rownames(res) <- res$asset</pre>
res$Mean <- apply(excess.r[, rownames(res)],2,mean)</pre>
res$Sd <- apply(excess.r[, rownames(res)],2, sd)</pre>
res$asset <- NULL
res_disp <- res[, c("alpha", "beta", "sigma.e", "p.value")]</pre>
colnames(res_disp) <- c("$\\alpha$", "$\\beta$", "$\\sigma_e$", "$Pr(>|t|)$")
kable(res_disp, "latex", booktabs=T, escape=FALSE) %>% kable_styling(latex_options="striped")
```

	α	β	σ_e	Pr(> t)
AAPL	0.0070516	0.9410955	0.0818077	0.5599770
AMZN	0.0160117	0.9205405	0.0764936	0.1606683
MSFT	0.0007420	0.6855290	0.0555355	0.9278776
F	0.0097772	2.2831124	0.1917387	0.7299182
MMM	0.0119003	0.7225732	0.0484812	0.1013119
$^{ m HD}$	0.0194094	0.7118749	0.0516044	0.0137477
PG	0.0028729	0.2927801	0.0425845	0.6480080
KO	0.0009564	0.4006184	0.0447764	0.8849566

Détermination du portefeuille actif

On rappelle que le poids de chaque titre dans le portefeuille actif est proportionel au ratio $\alpha_i/\sigma^2(\epsilon_i)$:

$$w_i = \frac{\alpha_i / \sigma^2(\epsilon_i)}{\sum_i \alpha_i / \sigma^2(\epsilon_i)}$$

Calculer les poids des actifs dans le portefeuille actif. Justifier votre choix d'inclure ou d'exclure tel ou tel instrument.

Seul HD a un α significatif, on décide néanmoins de retenir quelques titres avec des α élevés (AMZN, MMM et HD), ce qui donne le portefeuille actif suivant:

```
res.selected <- res[c("AMZN", "MMM", "HD"),]
w <- res.selected$alpha / res.selected$sigma.e^2
w <- w / sum(w)
names(w) <- rownames(res.selected)</pre>
```

Table 2: Poids dans le portefeuille actif, après sélection

	w_i
AMZN	0.1813664
MMM	0.3355667
HD	0.4830669

Calculez les valeurs suivantes concernant le portefeuille actif:

 R_A Excess de rendement

 $\alpha_A\,$ alpha du portefeuille actif

 β_A beta du portefeuille actif

 σ_A ecart-type du portefeuille actif

Les charactéristiques du portefeuille actif sont:

```
alpha.A <- sum(w * res.selected$alpha)
beta.A <- sum(w * res.selected$beta)
R.A <- alpha.A + beta.A * r.M
sigma2.e.A <- sum(w * res.selected$sigma.e^2)
sigma2.A <- beta.A^2 * sigma2.M + sigma2.e.A</pre>
```

α_A	β_A	R_A	$\sigma^2(e)_A$	σ_A^2
0.0162734	0.7533098	0.0247485	0.0031364	0.0052624

Détermination de la pondération entre le portefeuille actif et le portefeuille de marché.

On rappelle l'allocation de richesse au portefeuille actif:

$$w_A = \frac{\alpha_A \sigma_M^2}{\alpha_A \sigma_M^2 (1 - \beta_A) + R_M \sigma_A^2}$$

Avec:

$$R_A = \alpha_A + \beta_A R_M$$
$$\sigma_A^2 = \beta_A^2 \sigma_M^2 + \sigma^2(\epsilon_A)$$

```
w.A <- alpha.A * sigma2.M / (alpha.A * sigma2.M*(1-beta.A) + r.M * sigma2.A)
w.M <- 1-w.A
names(w.M) <- "Market"
w <- round(c(w * w.A, w.M),3)</pre>
```

L'allocation entre les titres du portefeuille actif et le portefeuille de marché est finalement:

	weight
AMZN	0.149
MMM	0.276
HD	0.397
Market	0.179

On note que le modèle accorde une grande importance au porte feuille actif, alors que la fiabilité des α est faible. Ce ci est est un biais connu du modèle de Treynor-Black.

Capital Allocation Line

Calculez l'espérance de rendement et le risque de quelques portefeuilles situés sur la "Capital Allocation Line" qui joint l'actif sans risque et le portefeuille risqué. Placez le portefeuille risqué, le portefeuille actif et le portefeuille de marché sur le graphique ci-dessous.

```
plot(Mean ~ Sd, data=res, xlim=c(0, 0.4), ylim=c(0, .05), xlab=expression(sigma),
        ylab="Excess Return", cex=.5, bty="n", cex.lab=1)
with(res, text(Mean ~ Sd, labels=row.names(res), pos=4, cex=0.5, col="blue"))

points(sigma.port, R.port, cex=.5, col="red")
text(sigma.port, R.port, labels="P", pos=2, col="red")

points(sqrt(sigma2.M), r.M, cex=.5, col="green")
text(sqrt(sigma2.M), r.M, labels="M", pos=2, col="green")

points(sqrt(sigma2.A), R.A, cex=.5, col="yellow")
text(sqrt(sigma2.A), R.A, labels="A", pos=2, col="yellow")

rf_last <- as.numeric(last(rf_rate/12))
abline(rf_last, R.port/sigma.port, col="red", lty=2, lwd=2)</pre>
```

