

Real and Functional Analysis

Professor: Gianmaria Verzini

Last updated: December 22, 2024

This document is intended for educational purposes only. These are unreviewed notes and may contain errors.

Made by Roberto Benatuil Valera

Contents

1	\mathbf{Set}	Theory
	1.1	Basic notions
	1.2	Families of subsets
	1.3	Characteristic functions
	1.4	Equivalence relations and Quotient sets
2	Mea	sure Theory
	2.1	Measure spaces
	2.2	Generation of a σ -algebra
	2.3	Borel sets
	2.4	Measures
		2.4.1 Properties of measures
	2.5	Sets of measure zero, negligible sets, complete measures
	2.6	Towards the Lebesgue measure
		2.6.1 Carathéodory's criterion
	2.7	Lebesgue measure
	2.8	Measurable functions
		2.8.1 Operations on measurable functions
		2.8.2 Properties holding almost everywhere
		2.8.3 Simple functions
	2.9	Lebesgue integral
	2.0	2.9.1 Integral of non-negative simple functions
		2.9.2 Integral of non-negative measurable functions
		2.9.3 Integral of real-valued measurable functions
		2.9.4 Comparison between Riemann and Lebesgue integrals

Chapter 1

Set Theory

1.1 Basic notions

Definition 1.1.1. Let X, Y be sets. We say:

- X, Y are **equipotent** if there exists a bijection $f: X \to Y$.
- X has a cardinality greater or equal to Y if there exists an surjection f: $X \to Y$.
- X is **finite** if it is equipotent to $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. X is infinite otherwise.

Remark: X is infinite \iff it is equipotent to a proper subset of itself.

E.g.: The set of natural numbers \mathbb{N} is infinite. In fact, the set of even natural numbers $E = \{2, 4, 6, \ldots\} \subset \mathbb{N}$ is equipotent to \mathbb{N} , as we can define the bijection $f : \mathbb{N} \to E$ as f(n) = 2n.

Definition 1.1.2. Let X be an infinite set. We say X is **countable** if it is equipotent to \mathbb{N} . X is **uncountable** otherwise, in which case it is **more than countable**.

Definition 1.1.3. X has the **cardinality of the continuum** if it is equipotent to $[0,1] \subset \mathbb{R}$. Any such set is uncountable.

E.g.: We have that:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable.
- $\mathbb{R}, \mathbb{R}^n, (0,1), [0,1]$ are uncountable.
- Countable union of countable sets is countable.

1.2 Families of subsets

Let X be a set. The "Power set" of X is the set of all subsets of X, denoted by $\mathcal{P}(X)$.

$$\mathcal{P}(X) = \{ E : E \subseteq X \}$$

Note that $\mathcal{P}(X)$ has always a cardinality greater than X. For example, if $X = \mathbb{N}$, then $\mathcal{P}(X)$ has the cardinality of the continuum.

Definition 1.2.1. Let X be a set. A family of subsets of X is a set E such that:

$$E \subseteq \mathcal{P}(X)$$

We usually denote $E = \{E_i\}_{i \in I}$, where I is an index set.

Definition 1.2.2. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We define:

• The union of E as:

$$\bigcup_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for some } i \in I \}$$

• The intersection of E as:

$$\bigcap_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for all } i \in I \}$$

Definition 1.2.3. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We say F is **pairwise disjoint** if:

$$E_i \cap E_j = \emptyset \ \forall i, j \in I, i \neq j$$

Definition 1.2.4. We say that the family $E = \{E_i\}_{i \in I}$ of subsets of X is a **covering** of X if:

$$X = \bigcup_{i \in I} E_i$$

Any subfamily of E, $E' = \{E_i\}_{i \in I'}$ is a **subcovering** of X if it is a covering of X itself.

E.g.: Let $X = \mathbb{R}$. We define:

$$\mathcal{T} = \{ E \subset X : E \text{ is open} \}$$

We say that \mathcal{T} is the standard topology of X. More generally, this can be done in

"metric spaces" (X, d).

Properties of \mathcal{T} (open sets):

- $\emptyset, X \in \mathcal{T}$.
- Finite intersection of elements in \mathcal{T} is in \mathcal{T} .
- Arbitrary union of elements in \mathcal{T} is in \mathcal{T} .

We can also define **sequences of sets**. Let X be a set. A sequence of sets in X is a family of sets $\{E_n\}_{n\in\mathbb{N}}$.

Definition 1.2.5. Let X be a set. A sequence of sets $\{E_n\}_{n\in\mathbb{N}}$ is said to be:

• Increasing if:

$$E_n \subseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \uparrow$.

• Decreasing if:

$$E_n \supseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \downarrow$.

Let now $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X:

Definition 1.2.6. We define the following:

• The **limit superior** of $\{E_n\}$ as:

$$\limsup_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} E_k$$

• The **limit inferior** of $\{E_n\}$ as:

$$\liminf_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} E_k$$

• If the limit superior and limit inferior are equal, we say that

$$\lim_{n\to\infty} E_n = \limsup_{n\to\infty} E_n = \liminf_{n\to\infty} E_n$$

Exercise: Let X be a set and $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X. Prove that:

(i)
$$\{E_n\} \uparrow \Rightarrow \lim_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} E_n$$
 (ii) $\{E_n\} \downarrow \Rightarrow \lim_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} E_n$

1.3 Characteristic functions

Definition 1.3.1. Let X be a set and $E \subseteq X$. The characteristic function of E is the function $\mathbb{1}_E: X \to \{0,1\}$ defined as:

$$\mathbb{1}_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

This function is also called the **indicator function** of E.

Remark: Let $E, F \subseteq X$. We have that:

- $\mathbb{1}_{E \cap F} = \mathbb{1}_E \cdot \mathbb{1}_F$.
- $\mathbb{1}_{E \cup F} = \mathbb{1}_E + \mathbb{1}_F \mathbb{1}_{E \cap F}$.
- $\mathbb{1}_{E^c} = 1 \mathbb{1}_E$.

Equivalence relations and Quotient sets 1.4

Definition 1.4.1. A relation R on a set X is a subset of $X \times X$. For any $x, y \in X$, we say that x is related to y if $(x, y) \in R$. We denote this as xRy.

Definition 1.4.2. A relation R on a set X is an equivalence relation if it satisfies:

• Reflexivity:

$$xRx \ \forall x \in X$$

• Symmetry:

$$xRy \Rightarrow yRx \ \forall x,y \in X$$

• Transitivity:

$$xRy, yRz \Rightarrow xRz \ \forall x, y, z \in X$$

Every equivalence relation on X induces a partition of X. We define the equivalence class of $x \in X$ as:

$$[x] = \{ y \in X : xRy \}$$

The set of all equivalence classes is called the **quotient set** of X by R, denoted by X/R.

$$X/R = \{[x]: x \in X\}$$

E.g.: Let $X = \mathbb{Z} \times \mathbb{Z}_0$ such that $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$. We define the relation R on X as:

$$(a,b)R(c,d) \iff ad = bc$$

We can prove that R is an equivalence relation. The equivalence classes are:

$$[(a,b)] = \{(c,d) \in X : ad = bc\}$$

Notice that:

$$[(a,b)] = \{(a,b), (2a,2b), (3a,3b), \ldots\}$$

If we denote a class [(a,b)] as [a/b], then we have that:

$$X/R = \{ [a/b] : a, b \in \mathbb{Z}_0 \} = \mathbb{Q}$$

Chapter 2

Measure Theory

2.1 Measure spaces

Definition 2.1.1. Let X be a non-empty set. A family $\mathcal{M} \subseteq \mathcal{P}(X)$ is a σ -algebra if:

- (i) $\emptyset \in \mathcal{M}$.
- (ii) $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}\implies\bigcup_{n\in\mathbb{N}}E_n\in\mathcal{M}.$

If instead of (iii) we have that $E_1, E_2 \in \mathcal{M} \implies \mathbb{E}_1 \cup E_2 \in \mathcal{M}$, then \mathcal{M} is called an algebra.

Remark: If \mathcal{M} is a σ -algebra, then we say that (X, \mathcal{M}) is a measurable space. Any set $E \in \mathcal{M}$ is called a measurable set.

E.g.: Let $X \neq \emptyset$. Then:

- $\mathcal{P}(X)$ is a σ -algebra.
- $\{\emptyset, X\}$ is a σ -algebra.
- $\{\emptyset, E, E^c, X\}$ is a σ -algebra for any $E \subseteq X$.
- $X = \mathbb{R}$, $\mathcal{M} = \{E \subseteq \mathbb{R} : E \text{ is open}\}\$ is NOT a σ -algebra.

Properties 2.1.1. Let (X, \mathcal{M}) be a measurable space. Then:

- (i) $X = \emptyset^c \in \mathcal{M}$
- (ii) \mathcal{M} is also an algebra. Indeed, if $\{E_1, E_2\} \subseteq \mathcal{M}$, $E_n = \emptyset \ \forall n \geq 3$, then $E_1 \cup E_2 = \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M} \implies \bigcap_n E_n\in\mathcal{M}$.
- (iv) $E, F \in \mathcal{M} \implies E \setminus F \in \mathcal{M}$
- (v) $\Omega \subseteq X$. Then, the **restriction** of \mathcal{M} to Ω is:

$$\mathcal{M}|_{\Omega} := \{ F \subseteq \Omega : F = E \cap \Omega, E \in \mathcal{M} \}$$

Then, $(\Omega, \mathcal{M}|_{\Omega})$ is a measurable space.

2.2 Generation of a σ -algebra

Theorem 2.2.1. Take any family $A \subseteq \mathcal{P}(X)$. Then, it is well-defined the σ -algebra generated by A, denoted by $\sigma_0(A)$, as the smallest σ -algebra containing A. It is characterized by:

- (i) $\sigma_0(\mathcal{A})$ is a σ -algebra.
- (ii) $A \subseteq \sigma_0(A)$.
- (iii) If \mathcal{M} is a σ -algebra and $\mathcal{A} \subseteq \mathcal{M}$, then $\sigma_0(\mathcal{A}) \subseteq \mathcal{M}$.

Sketch of proof. Define $V = \{ \mathcal{M} \subseteq \mathcal{P}(X) : \mathcal{M} \text{ is } \sigma\text{-algebra}, \mathcal{A} \subseteq \mathcal{M} \}$. Notice that $V \neq \emptyset$ because $\mathcal{P}(X) \in V$. Then, define:

$$\sigma_0(\mathcal{A}) = \bigcap_{\mathcal{M} \in V} \mathcal{M}$$

Then, $\sigma_0(\mathcal{A})$ is a σ -algebra as it satisfies the properties of a σ -algebra, denoted in definition 2.1.1.

Remark: This is relevant. Often, to check that a σ -algebra has certain properties, it is enough to check the property on a set of generators.

2.3 Borel sets

Take (X, d) as a metric space, so that open sets are defined. Recall that:

$$\mathcal{T} = \{ E \subseteq X : E \text{ is open} \}$$

Definition 2.3.1. The σ -algebra generated by \mathcal{T} is called the **Borel** σ -algebra of X, denoted by:

$$\mathcal{B}(X) := \sigma_0(\mathcal{T})$$

Any set $E \in \mathcal{B}(X)$ is a **Borel set**.

Remark: The following are Borel sets:

- Open sets
- Closed sets
- Countable intersections of open sets $(G_{\delta}$ -sets)
- Countable unions of closed sets $(F_{\sigma}\text{-sets})$

We will deal with:

$$X = \mathbb{R} = (-\infty, \infty)$$

but also:

$$X=\overline{\mathbb{R}}=[-\infty,\infty]=\mathbb{R}\cup\{-\infty,\infty\}$$

Let us define the arithmetic operations on $\overline{\mathbb{R}}$. Let $a \in \mathbb{R}$:

- $a \pm \infty = \pm \infty$
- $a > 0: a \cdot \pm \infty = \pm \infty$
- $a < 0 : a \cdot \pm \infty = \mp \infty$
- $a=0:0\cdot\pm\infty=0$
- $\infty \infty$, ∞/∞ , 0/0 are not defined.

Also, the open intervals in $\overline{\mathbb{R}}$ are the following:

- (a,b), with $a,b \in \mathbb{R}$
- $[-\infty, b)$
- $(a, \infty]$

Remark: We have that:

$$\mathcal{B}(\mathbb{R}) := \sigma_0(\{\text{open sets}\})$$

$$= \sigma_0(\{(a,b) : a < b\})$$

$$= \sigma_0(\{[a,b] : a < b\})$$

$$= \sigma_0(\{(a,\infty) : a \in \mathbb{R}\})$$

$$\mathcal{B}(\overline{\mathbb{R}}) := \sigma_0(\{\text{open sets}\})$$
$$= \sigma_0(\{(a, \infty] : a \in \mathbb{R}\})$$

$$\mathcal{B}(\mathbb{R}^N) = \sigma_0(\{\text{open rectangles}\})$$

2.4 Measures

Let (X, \mathcal{M}) be a measurable space.

Definition 2.4.1. A function $\mu: \mathcal{M} \to [0, \infty]$ is a (positive) **measure** on \mathcal{M} if:

- (i) $\mu(\emptyset) = 0$
- (ii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}$, disjoint $\implies \mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mu(E_n)$

Note: To avoid nonsenses, we always assume that $\exists E \in \mathcal{M} \ s.t. \ \mu(E) < \infty$

Terminology: Let X, \mathcal{M}, μ defined as above:

- (X, \mathcal{M}, μ) is a measure space.
- If $\mu(X) = 1$, then (X, \mathcal{M}, μ) is a **probability space** and μ is a **probability measure**.

Definition 2.4.2. A measure μ is:

- 1. Finite if $\mu(X) < \infty$
- 2. σ -finite if $\exists \{E_n\}_{n\in\mathbb{N}} \subseteq \mathcal{M}$ s.t.

$$\mu(E_n) < \infty \ \forall n \in \mathbb{N} \quad \land \quad X = \bigcup_{n \in \mathbb{N}} E_n$$

E.g.: Some examples of measures are:

- 1. (Trivial measure): For any (X, \mathcal{M}) , define μ as $\mu(E) = 0 \ \forall E \in \mathcal{M}$
- 2. (Counting measure): For any (X, \mathcal{M}) , typically $\mathcal{M} = \mathcal{P}(X)$, define $\mu_{\#}$ as:

$$\mu_{\#}(E) = \begin{cases} \#\{\text{elements of } E\} & E \text{ finite} \\ \infty & \text{otherwise} \end{cases}$$

3. (Dirac measure): For any (X, \mathcal{M}) , pick $x_0 \in X$. Then, define δ_{x_0} as:

$$\delta_{x_0}(E) = \begin{cases} 1 & x_0 \in E \\ 0 & x_0 \notin E \end{cases}$$

2.4.1 Properties of measures

Theorem 2.4.1 (Basic properties). Let (X, \mathcal{M}, μ) be a measure space. Then:

- (i) μ is finitely additive: $E, F \in \mathcal{M}, E \cap F = \emptyset \implies \mu(E \cup F) = \mu(E) + \mu(F)$
- (ii) (Monotonicity): $E, F \in \mathcal{M}, E \subseteq F \implies \mu(E) \leq \mu(F)$
- (iii) (Excision property): $E, F \in \mathcal{M}, E \subseteq F, \mu(E) < \infty \implies \mu(F \setminus E) = \mu(F) \mu(E)$

Proof. The proof is straightforward:

(i) Let $E, F \in \mathcal{M}, E \cap F = \emptyset$. Then:

$$\mu(E \cup F) = \mu(E) + \mu(F)$$

Proof. Obvious, using $E_n = \emptyset$ for $n \ge 3$.

(ii) Let $E, F \in \mathcal{M}, E \subseteq F$. Then:

$$\mu(E) \le \mu(F)$$

Proof. Let $F = E \cup (F \setminus E)$. Then:

$$\mu(F) = \mu(E) + \mu(F \setminus E) \ge \mu(E)$$

(iii) Let $E, F \in \mathcal{M}, E \subseteq F, \mu(E) < \infty$. Then:

$$\mu(F \setminus E) = \mu(F) - \mu(E)$$

Proof. Let $F = E \cup (F \setminus E)$. Then:

$$\mu(F) = \mu(E) + \mu(F \setminus E)$$

This concludes the proof.

Theorem 2.4.2 (Continuity among monotone sequences). Let (X, \mathcal{M}, μ) be a measure space. Let $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M}$ be a sequence of measurable sets. Then:

(i) If $\{E_n\} \uparrow$, $E := \lim_n E_n = \bigcup_n E_n$, then:

$$\mu(E) = \lim_{n} \mu(E_n)$$

(ii) If $\{E_n\} \downarrow$, $E := \lim_n E_n = \bigcap_n E_n$, and $\mu(E_1) < \infty$, then:

$$\mu(E) = \lim_{n} \mu(E_n)$$

Proof. The proof goes as follows:

- (i) If $\mu(E_n) = \infty$ for some n, then the proof is trivial. Otherwise, let $F_1 = E_1$ and $F_n = E_n \setminus E_{n-1}$ for $n \ge 2$. Then, we can check that:
 - $F_n \in \mathcal{M}, \forall n \in \mathbb{N}$
 - $\{F_n\}$ is a disjoint sequence.
 - $E_n = \bigcup_{k=1}^n F_k$
 - Because of the disjointness, we have that:

$$\mu(E_n) = \sum_{k=1}^n \mu(F_k)$$

Then, we have that:

$$\mu(E) = \mu\left(\lim_{n} E_{n}\right) = \mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) =$$

$$= \mu\left(\bigcup_{n=1}^{\infty} F_{n}\right) = \sum_{n=1}^{\infty} \mu(F_{n}) =$$

$$= \sum_{n=1}^{\infty} (\mu(E_{n}) - \mu(E_{n-1})) = \lim_{n} \mu(E_{n})$$

- (ii) Define $G_n = E_1 \setminus E_n$. Then, check that:
 - $G_n \in \mathcal{M}, \forall n \in \mathbb{N}$
 - $\{G_n\} \uparrow$

By the previous result, we have that:

$$\mu\left(\bigcup_{n=1}^{\infty} G_n\right) = \lim_{n} \mu(G_n)$$

Then, on the right-hand side:

$$\lim_{n} \mu(G_n) = \lim_{n} \mu(E_1 \setminus E_n) =$$
$$= \mu(E_1) - \lim_{n} \mu(E_n)$$

On the left-hand side:

$$\mu\left(\bigcup_{n=1}^{\infty} G_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (E_1 \setminus E_n)\right) =$$

$$= \mu\left(E_1 \setminus \bigcap_{n=1}^{\infty} E_n\right) =$$

$$= \mu(E_1) - \mu(E)$$

Finally, we have that:

$$\mu(E_1) - \mu(E) = \mu(E_1) - \lim_{n} \mu(E_n)$$

And because $\mu(E_1) < \infty$, we have that:

$$\mu(E) = \lim_{n} \mu(E_n)$$

Remark: In (ii), the condition $\mu(E_1) < \infty$ is essential. Consider $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\#})$. Then, define the following sequence:

$$E_n = \{n, n+1, n+2, \ldots\}$$

Note that $E_n \subseteq E_{n-1}$. Also, note that for any $n \in \mathbb{N}$, we have that:

$$\mu_{\#}(E_n) = \infty$$

Then, we have that:

$$\mu_{\#}\left(\bigcap_{n} E_{n}\right) = \mu_{\#}(\emptyset) = 0$$

But:

$$\lim_{n} \mu_{\#}(E_n) = \infty$$

This shows that the condition $\mu(E_1) < \infty$ is essential.

Theorem 2.4.3 (σ -subadditivity). Let (X, \mathcal{M}, μ) be a measure space. Let $\{E_n\}_{n \in \mathbb{N}} \subseteq \mathcal{M}$ be a sequence of measurable sets. Then:

$$\mu\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} \mu(E_{n})$$

Proof. Let $F_1 = E_1$ and $F_n = E_n \setminus \left(\bigcup_{k=1}^{n-1} E_k\right)$ for $n \geq 2$. Then, we have that:

- $F_n \in \mathcal{M}, \forall n \in \mathbb{N}$
- $F_n \subseteq E_n, \forall n \in \mathbb{N}$
- $\{F_n\}$ is a disjoint sequence.
- $\bigcup_n E_n = \bigcup_n F_n$

Then, we have that:

$$\mu\left(\bigcup_{n} E_{n}\right) = \mu\left(\bigcup_{n} F_{n}\right) =$$

$$= \sum_{n} \mu(F_{n}) \leq \sum_{n} \mu(E_{n})$$

2.5 Sets of measure zero, negligible sets, complete measures

Definition 2.5.1. Let (X, \mathcal{M}, μ) be a measure space. Then:

- 1. A set $E \in \mathcal{M}$ is a **set of measure zero** if $\mu(E) = 0$.
- 2. A set $F \in X$ (not necessarily measurable) is a **negligible set** if $\exists E \in \mathcal{M}$ s.t. $F \subseteq E$ and E is a set of measure zero.

Definition 2.5.2. Let (X, \mathcal{M}, μ) be a measure space. Then, we say that μ is a **complete measure** (alternatively, that (X, \mathcal{M}, μ) is a **complete measure space**) all negligible sets are measurable.

Remark (Completion of a measure space): A measure space (X, \mathcal{M}, μ) may not be complete. However, we can define the following:

$$\overline{\mathcal{M}} = \{ E \subseteq X : \exists F_1, F_2 \in \mathcal{M} : F_1 \subseteq E \subseteq F_2, \mu(F_2 \setminus F_1) = 0 \}$$

One can show that $\overline{\mathcal{M}}$ is a σ -algebra, and that $\mathcal{M} \subseteq \overline{\mathcal{M}}$. Moreover, if E, F_1, F_2 are as above, define:

$$\overline{\mu}(E) = \mu(F_1) = \mu(F_2)$$

One can check that $(X, \overline{\mathcal{M}}, \overline{\mu})$ is a complete measure space.

2.6 Towards the Lebesgue measure

We would like to define a measure λ with $X = \mathbb{R}$ (or $X = \mathbb{R}^N$) s.t. $\forall a < b$:

- $\lambda((a,b)) = b a$ (length of the interval)
- $\forall E, \lambda(E+x) = \lambda(E)$ (translation invariance)

In principle, we would like to define it in $\mathcal{P}(\mathbb{R})$. Such a measure should satisfy $\lambda(\{a\}) = 0$.

Theorem 2.6.1 (Ulam). The only measure on $\mathcal{P}(\mathbb{R})$ that satisfies $\lambda(\{a\}) = 0 \ \forall a \in \mathbb{R}$ is the trivial measure.

Therefore, we need to choose an $\mathcal{M} \subseteq \mathcal{P}(\mathbb{R})$. We can construct one as follows:

- Starting family with a "measure", e.g., $\mathcal{T} = \{(a,b) : a < b\}$ and f((a,b)) = b a.
- Construct an "outer measure" μ^* on $\mathcal{P}(\mathbb{R})$.
- Restrict μ^* to a well-chosen σ -algebra $\mathcal{M} \subsetneq \mathcal{P}(\mathbb{R})$.

Definition 2.6.1. Let X be a set. An **outer measure** μ^* on X is a function

$$\mu^*: \mathcal{P}(X) \to [0, \infty]$$

such that:

- 1. $\mu^*(\emptyset) = 0$
- 2. (Monotonicity) $E \subseteq F \subseteq X \implies \mu^*(E) \leq \mu^*(F)$
- 3. (σ -subadditivity) $\{E_n\}_{n\in\mathbb{N}}\subseteq \mathcal{P}(X) \implies \mu^*\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq \sum_{n\in\mathbb{N}}\mu^*(E_n)$

Remark: Any measure μ is an outer measure. However, the converse is not true.

Proposition 2.6.2. Let $\mathcal{E} \subseteq \mathcal{P}(X)$, $f: \mathcal{E} \to [0, \infty]$. Assume that $\emptyset, X \in \mathcal{E}$, $f(\emptyset) = 0$. Then, $\forall E \subseteq X$ define:

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} f(A_n) : A_n \in \mathcal{E}, E \subseteq \bigcup_n A_n \right\}$$

Then, μ^* is an outer measure.

Proof. The proof is omitted.

Remark: In this generality, if $E \in \mathcal{E}$, then f(E) and $\mu^*(E)$ may not be equal. We can only guarantee that $\mu^*(E) \leq f(E)$.

E.g.: There are some important examples:

• $X = \mathbb{R}, \mathcal{E} = \{(a, b) : a, b \in \overline{\mathbb{R}}, a \leq b\}$

$$f((a,b)) = length((a,b)) = b - a$$

• $X = \mathbb{R}^N$, $\mathcal{E} = \{(a_1, b_1) \times \ldots \times (a_N, b_N) : a_i, b_i \in \overline{\mathbb{R}}, a_i \leq b_i\}$

$$f((\underline{a}, \underline{b})) = \text{volume}((\underline{a}, \underline{b})) = \prod_{i=1}^{N} (b_i - a_i)$$

In both cases, the outer measure μ^* is called the **Lebesgue outer measure**. We will denote it by λ^* (or λ_N^* in the second case). Note that in this case, $\lambda^*(E) = f(E)$ for any $E \in \mathcal{E}$.

Remark: Any μ measure on $\mathcal{P}(X)$ is an outer measure. However, the converse is not true. In particular, $\exists A, B \subseteq \mathbb{R}$ s.t. $A \cap B = \emptyset$ and $\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$.

2.6.1 Carathéodory's criterion

Definition 2.6.2 (Carathéodory's condition). Let μ^* be an outer measure on $\mathcal{P}(X)$. A ser $E \subseteq X$ is μ^* -measurable if $\forall A \subseteq X$:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Lemma 2.6.3 (Equivalence of Carathéodory's condition). *E* is μ^* -measurable $\iff \forall A \subseteq X, \ \mu^*(A) < \infty$:

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Proof. The proof is as follows:

 (\Rightarrow) : Trivial

 (\Leftarrow) : Let $A\subseteq X,$ such that $\mu^*(A)<\infty$ and:

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Then, notice that $\{A \cap E, A \cap E^c\}$ is a covering of A. By subadditivity:

$$\mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Therefore, we have that:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Meaning that E is μ^* -measurable. This concludes the proof.

Theorem 2.6.4 (Carathéodory). Let μ^* be an outer measure on $\mathcal{P}(X)$. The family:

$$\mathcal{M} = \{ E \subseteq X : E \text{ is } \mu^*\text{-measurable} \}$$

is a σ -algebra, and μ^* restricted to \mathcal{M} (denoted $\mu = \mu^*|_{\mathcal{M}}$) is a complete measure.

Remark: (X, \mathcal{M}, μ) as in the above theorem is sometimes called the "abstract Lebesgue measure space". We will only prove the completeness of μ .

Lemma 2.6.5. Let (X, \mathcal{M}, μ) be the measure space as in Carathéodory's theorem. Then, any $N \subseteq X$ s.t. $\mu^*(N) = 0$ is μ -measurable, i.e., $N \in \mathcal{M}$, and $\mu(N) = 0$.

Proof. We have to show that N satisfies Carathéodory's condition, or equivalently, that it satisfies the lemma 2.6.3. Let $A \subseteq X$ be arbitrary. Then, notice that:

$$\mu^*(A \cap N) \le \mu^*(N) = 0$$

Also, notice that:

$$\mu^*(A \cap N^c) \le \mu^*(A)$$

Therefore, we have that:

$$\mu^*(A \cap N) + \mu^*(A \cap N^c) \le 0 + \mu^*(A) = \mu^*(A)$$

By lemma 2.6.3, we have that N is μ^* -measurable. By Carathéodory's theorem, we have that N is μ -measurable. Finally, we have that $\mu(N) = \mu^*(N) = 0$.

Corollary 2.6.5.1. μ as in Carathéodory's theorem is a complete measure.

Proof. Let $N \subseteq E$, and $\mu(E) = 0$ $(E \in \mathcal{M})$. Then, we have that:

$$\mu(E) = 0 \implies \mu^*(E) = 0$$

By monotonicity, we have that:

$$\mu^*(N) \le \mu^*(E) = 0$$

Then, $\mu(N) = \mu^*(N) = 0$, thus $N \in \mathcal{M}$. This concludes the proof.

2.7 Lebesgue measure

Definition 2.7.1. Let $\mathcal{E} = \{(a, b) : a, b \in \overline{\mathbb{R}}, a \leq b\}$. Define:

$$\lambda^*((a,b)) = b - a$$

Then, λ^* is the **Lebesgue outer measure** on \mathbb{R} .

Theorem 2.7.1. Let λ^* be the Lebesgue outer measure on $\mathcal{E} = \{(a,b) : a,b \in \overline{\mathbb{R}}, a \leq b\}$. Then, by Carathéodory's theorem, the family:

$$\mathcal{L}(\mathbb{R}) = \{ E \subseteq \mathbb{R} : E \text{ is } \lambda^* \text{-measurable} \}$$

is a σ -algebra, called the **Lebesgue** σ -algebra, and λ^* restricted to $\mathcal{L}(\mathbb{R})$ (denoted $\lambda = \lambda^*|_{\mathcal{L}(\mathbb{R})}$) is a complete measure, called the **Lebesgue measure**.

Proof. The proof is omitted.

Remark: The measure space $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ is called the **Lebesgue measure space**.

Proposition 2.7.2. Let λ be the Lebesque measure on \mathbb{R} . Then:

- (i) $a \in \mathbb{R} \implies \{a\} \in \mathcal{L}(\mathbb{R}) \text{ and } \lambda(\{a\}) = 0$
- (ii) $E \subset \mathbb{R}$ at most countable $\Longrightarrow E \in \mathcal{L}(\mathbb{R})$ and $\lambda(E) = 0$

Proof. The proof is as follows:

(i) Let $a \in \mathbb{R}$. Then, we have that, for any $\varepsilon > 0$:

$$E_1 = (a - \varepsilon, a + \varepsilon), \quad , E_2 = E_3 = \dots = \emptyset$$

is a covering of $\{a\}$. Then, by definition of λ^* :

$$0 \le \lambda^*(\{a\}) \le \sum_{n=1}^{\infty} f(E_n) = 2\varepsilon$$

As ε is arbitrary, we have that $\lambda^*(\{a\}) = 0$. By Lemma 2.6.5, we then have that $\{a\} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\{a\}) = 0$.

(ii) Let $E \subseteq \mathbb{R}$ be at most countable. Then, we have that:

$$E = \bigcup_{a \in E} \{a\}$$

Because $\{a\} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\{a\}) = 0$, we have that $E \in \mathcal{L}(\mathbb{R})$ and:

$$\lambda(E) = \lambda\left(\bigcup_{a \in E} \{a\}\right) = \sum_{a \in E} \lambda(\{a\}) = 0$$

Remark: We can point out 2 important consequences of the above proposition:

1. Arguing as in (i), we can show that the Lebesgue measure is translation invariant. That is, $\forall E \in \mathcal{L}(\mathbb{R}), \forall x \in \mathbb{R}$:

$$\lambda(E+x) = \lambda(E)$$

2. In particular, since \mathbb{Q} is countable, we have that $\mathbb{Q} \in \mathcal{L}(\mathbb{R})$ and $\lambda(\mathbb{Q}) = 0$. In the measure sense, \mathbb{Q} has very few elements with respect to \mathbb{R} . On the other hand, \mathbb{Q} is dense in \mathbb{R} . In the topology sense, \mathbb{Q} has a lot of points.

Proposition 2.7.3. We have that: $\mathcal{B}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R})$

Proof. Since $\mathcal{B}(\mathbb{R}) = \sigma_0(\{(a, \infty) : a \in \mathbb{R}\})$, if we show that $(a, \infty) \in \mathcal{L}(\mathbb{R})$, $\forall a \in \mathbb{R}$, then the prop. follows.

Take $A \subset \mathbb{R}$, s.t. $\lambda^*(A) < \infty$. Then, we must show that:

$$\lambda^*(A) \geq \lambda^*(A \cap (a,\infty)) + \lambda^*(A \cap (-\infty,a])$$

Moreover, by a previous remark, one can assume that $a \notin A$. Then, take any countable covering of A by open intervals:

$$A \subseteq \bigcup_{n} I_n$$

Then, let us define $A_{left} = A \cap (-\infty, a]$ and $I_{n,left} = I_n \cap (-\infty, a]$. Then, we notice that $\{I_{n,left}\}$ is a covering of A_{left} .

In the same way, we define $A_{right} = A \cap (a, \infty)$ and $I_{n,right} = I_n \cap (a, \infty)$. Then, we notice that $\{I_{n,right}\}$ is a covering of A_{right} .

Then, we have that:

$$\lambda^*(A_{left}) \le \sum_n \lambda^*(I_{n,left})$$

$$\lambda^*(A_{right}) \le \sum_n \lambda^*(I_{n,right})$$

Summing both inequalities, we have that:

$$\lambda^*(A_{left}) + \lambda^*(A_{right}) \le \sum_n \lambda^*(I_{n,left}) + \sum_n \lambda^*(I_{n,right})$$
$$= \sum_n \lambda^*(I_n)$$

Taking the infimum over all countable coverings of A, we have that:

$$\lambda^*(A_{left}) + \lambda^*(A_{right}) \le \lambda^*(A)$$

Remark: In particular, we have that $\forall (a, b) \subset \mathbb{R}$:

$$(a,b) \in \mathcal{L}(\mathbb{R}), \quad \lambda((a,b)) = b - a$$

We know that:

$$\mathcal{B}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$$

Are these inclusions strict? We already know that $\mathcal{L}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$, by Ulam's theorem. In particular, $\exists E \subset \mathbb{R}$ not Lebesgue measurable (**Vitali sets**). More precisely:

$$\forall E \in \mathcal{L}(\mathbb{R}), \text{ s.t } \lambda(E) > 0, \exists V \subset E, \text{ s.t } V \notin \mathcal{L}(\mathbb{R})$$

The relation between $\mathcal{B}(\mathbb{R})$ and $\mathcal{L}(\mathbb{R})$ is more subtle. It is clarified by the following proposition:

Proposition 2.7.4 (Regularity of the Lebesgue measure). Let $E \in \mathbb{R}$. Then, the following are equivalent:

- (i) $E \in \mathcal{B}(\mathbb{R})$
- (ii) $\forall \varepsilon > 0, \exists A \subset \mathbb{R} \text{ open set s.t.}$

$$E \subset A$$
 and $\lambda^*(A \setminus E) < \varepsilon$

(iii) $\forall \varepsilon > 0, \exists G \subset \mathbb{R} \text{ of class } G_{\delta} \text{ s.t.}$

$$E \subset G$$
 and $\lambda^*(G \setminus E) = 0$

(iv) $\forall \varepsilon > 0, \exists C \subset \mathbb{R} \ closed \ set \ s.t.$

$$C \subset E$$
 and $\lambda^*(E \setminus C) < \varepsilon$

(v) $\forall \varepsilon > 0, \exists F \subset \mathbb{R} \text{ of class } F_{\sigma} \text{ s.t.}$

$$F \subset E$$
 and $\lambda^*(E \setminus F) = 0$

We get as a consequence the following:

Corollary 2.7.4.1. $\forall E \in \mathcal{L}(\mathbb{R}), \exists F, G \in \mathcal{B}(\mathbb{R}) \text{ s.t. } F \subset E \subset G \text{ and }$

$$\lambda(G \setminus F) = \lambda(G \setminus E) + \lambda(E \setminus F) = 0$$

In other words:

$$\mathcal{L}(\mathbb{R}) = \overline{\mathcal{B}(\mathbb{R})}$$

(But $\mathcal{L}(\mathbb{R}) \neq \mathcal{B}(\mathbb{R})$).

Proof. (Regularity of the Lebesgue measure). The proof goes as follows:

 $(i) \Rightarrow (ii)$:

Let $E \in \mathcal{B}(\mathbb{R})$. Note that, since $A \in \mathcal{L}(\mathbb{R})$ for all A open, we have that:

$$\lambda^*(A \setminus E) = \lambda(A \setminus E)$$

By definition of λ^* , we have that $\forall \varepsilon > 0$, $\exists \{I_n\}_{n \in \mathbb{N}}$ s.t.

$$E \subset \bigcup_{n} I_n$$
 and $\sum_{n} \lambda(I_n) < \lambda^*(E) + \varepsilon$

Then, set $A = \bigcup_n I_n$. We have that A is open, $E \subset A$ and:

$$\lambda(A) \le \sum_{n} \lambda(I_n) < \lambda(E) + \varepsilon$$

$$\implies \lambda(A \setminus E) = \lambda(A) - \lambda(E) < \varepsilon$$

 $(ii) \Rightarrow (iii) :$

Assume $\forall \varepsilon > 0$, $\exists A_{\varepsilon}$ open s.t. $E \subset A_{\varepsilon}$ and $\lambda(A_{\varepsilon} \setminus E) < \varepsilon$. Then, set $\varepsilon = 1/n$, $n \ge 1$ (for ease of notation, $A_n = A_{1/n}$) and define:

$$G = \bigcap_{n} A_n$$

Then, G is a G_{δ} set, $E \subset G$ and:

$$0 \le \lambda^*(G \setminus E) \le \lambda^*(A_n \setminus E) < 1/n$$

Taking the limit, we have that $\lambda(G \setminus E) = 0$.

 $(iii) \Rightarrow (i)$:

We know that $E \subset G$, $G \in \mathcal{L}(\mathbb{R})$ with $\lambda(G \setminus E) = 0$. Then, we have that:

$$E = G \setminus (G \setminus E) \in \mathcal{L}(\mathbb{R})$$

since $G \in \mathcal{L}(\mathbb{R})$ and $G \setminus E \in \mathcal{L}(\mathbb{R})$. The last is because it is a negligible set and λ is complete.

E.g. (Cantor set): Let $T_0 = [0, 1]$. Then, construct T_{n+1} from T_n (recursively) by removing the inner third part of every interval in T_n :

$$T_0 = [0, 1],$$

$$T_1 = [0, 1/3] \cup [2/3, 1],$$

$$T_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1], \dots$$

Then, define the **Cantor set** as:

$$C = \bigcap_{n} T_n$$

It can be proven that:

- C has the cardinality of \mathbb{R}
- $\lambda(C) = 0$
- C is compact
- C is nowhere dense (has no interior points), i.e., $int(C) = \emptyset$
- $\exists E \subset C \text{ s.t. } E \in \mathcal{L}(\mathbb{R}) \text{ but } E \notin \mathcal{B}(\mathbb{R})$

2.8 Measurable functions

Definition 2.8.1. Given $f: X \to Y$, it is well-defined the **preimage** (or counterimage) of f as:

$$f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X), \quad f^{-1}(E) = \{x \in X : f(x) \in E\}$$

Remark: Preimages work well with set operations:

- $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$
- $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$
- $f^{-1}(E \setminus F) = f^{-1}(E) \setminus f^{-1}(F)$

Note this is not true for images.

Definition 2.8.2. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. A function $f: X \to Y$ is **measurable** if $\forall E \in \mathcal{N}$, we have that $f^{-1}(E) \in \mathcal{M}$. We also say that f is $(\mathcal{M}, \mathcal{N})$ -measurable.

Proposition 2.8.1. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, and $\rho \subset \mathcal{N}$ s.t. $\mathcal{N} = \sigma_0(\rho)$. Then, $f: X \to Y$ is measurable $\iff \forall E \in \rho$, we have that $f^{-1}(E) \in \mathcal{M}$.

Proof. The proofs goes as follows:

- (\Rightarrow) : Trivial
- (\Leftarrow) : Define $\Sigma := \{E \subset Y : f^{-1}(E) \in \mathcal{M}\}$. We have:
 - $\rho \subset \Sigma$ as a consecuence of $(\forall E \in \rho, f^{-1}(E) \in \mathcal{M})$

• Σ is a σ -algebra (check as an exercise)

Then, we have that $\mathcal{N} = \sigma_0(\rho) \subset \Sigma$. Therefore, f is measurable.

Definition 2.8.3. Suppose that $\mathcal{M} \supseteq \mathcal{B}(X)$ and $\mathcal{N} = \mathcal{B}(Y)$. We say that $f: X \to Y$ is:

- Borel measurable if f is $(\mathcal{B}(X), \mathcal{B}(Y))$ -measurable.
- Lebesgue measurable if it is $(\mathcal{M}, \mathcal{B}(Y))$ -measurable.

Remark: If $f: X \to Y$ is Borel measurable, then it is Lebesgue measurable. The converse is not true.

Also, we never deal with $\mathcal{L}(Y)$.

Corollary 2.8.1.1. f is Borel measurable \iff $f^{-1}(E) \in \mathcal{B}(X), \ \forall E \in Y$ open. Also, f is Lebesgue measurable \iff $f^{-1}(E) \in \mathcal{M}, \ \forall E \in Y$ open.

Proof. It follows from the previous proposition, since $\mathcal{B}(Y) = \sigma_0(\{E \subset Y : E \text{ open}\}).$

Definition 2.8.4. We say that f is **continuous** \iff $f^{-1}(E) \subset X$ is open $\forall E \subset Y$ open.

Proposition 2.8.2. If $f: X \to Y$ is continuous, then f is Borel measurable (and thus Lebesgue measurable).

Proof. Let $E \subset Y$ be open. By continuity of f, we have that $f^{-1}(E)$ is open. Then $f^{-1}(E) \in \mathcal{B}(X)$, and thus f is Borel measurable.

Note that the proposition is false when $\mathcal{N} \supseteq \mathcal{B}(Y)$.

2.8.1 Operations on measurable functions

Proposition 2.8.3. Let $f: X \to Y$ be Lebesgue measurable, and $g: Y \to Z$ be continuous. Then:

$$g \circ f: X \to Z$$
 is Lebesgue measurable

Corollary 2.8.3.1. Let $f: X \to Y$ be Lebesgue measurable. Then:

- $f^+(x) = \max\{f(x), 0\}$ is Lebesgue measurable
- $f^-(x) = \max\{-f(x), 0\}$ is Lebesgue measurable
- $|f(x)| = f^+(x) + f^-(x)$ is Lebesgue measurable

Proof. Let f be Lebesgue measurable, and $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then, take $E \subset Z$ open. We have that:

$$(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E))$$

Since g is continuous, $g^{-1}(E)$ is open. Then, $f^{-1}(g^{-1}(E)) \in \mathcal{M}$

Proposition 2.8.4. Let $f, g: X \to \mathbb{R}$ be Lebesgue measurable, and $\Phi: \mathbb{R}^2 \to \mathbb{R}$ be continuous. Then, $h(x) = \Phi(f(x), g(x))$ is Lebesgue measurable.

Proof. Let $h(x) = \Phi(f(x), g(x)) = (\Phi \circ \Psi)(x)$, where $\Psi: X \to \mathbb{R}^2$ is defined as

$$\Psi(x) = (f(x), g(x))$$

Then, we should prove that Ψ is Lebesgue measurable for applying the previous proposition. For this, we have to show that $\forall (a, b) \times (c, d) \subset \mathbb{R}^2$, we have that:

$$\Psi^{-1}((a,b) \times (c,d)) = \{x \in X : f(x) \in (a,b), g(x) \in (c,d)\} \in \mathcal{M}$$

This can be done using the fact that f and g are Lebesgue measurable.

Corollary 2.8.4.1. Let $f, g: X \to \mathbb{R}$ be Lebesgue measurable. Then:

- \bullet f + g is Lebesgue measurable
- \bullet $f \cdot g$ is Lebesgue measurable

Proposition 2.8.5. Let (X, \mathcal{M}) be a measurable space (with $\mathcal{M} \supseteq \mathcal{B}(X)$), and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of Lebesgue measurable functions $f_n: X \to \mathbb{R}$. Then, the following functions are Lebesgue measurable:

- 1. $\sup_n f_n$
- 2. $\inf_n f_n$
- 3. $\limsup_{n} f_n$
- 4. $\liminf_n f_n$

In particular, if $\lim_n f_n$ exists, then it is Lebesgue measurable.

Proof. The proof goes as follows:

1. Since $\mathcal{B}(\mathbb{R}) = \sigma_0(\{(a, \infty) : a \in \mathbb{R}\})$, it is enough to show that $\forall a \in \mathbb{R}$, we have that:

$$(\sup_{n} f_n)^{-1}((a,\infty)) = \{x \in X : \sup_{n} f_n(x) > a\} \in \mathcal{M}$$

This can be done by using the fact that f_n is Lebesgue measurable. Indeed, we have that:

$$\{x \in X : \sup_{n} f_n(x) > a\} = \bigcup_{n} \{x \in X : f_n(x) > a\}$$
$$= \bigcup_{n} f_n^{-1}((a, \infty)) \in \mathcal{M}$$

because $f_n^{-1}((a,\infty)) \in \mathcal{M}$ for all n.

2. The proof is analogous to the previous case, taking that:

$$\inf_{n} f_n = -\sup_{n} (-f_n)$$

3. We have that:

$$\limsup_{n} f_n = \inf_{n} \sup_{k \ge n} f_k$$

4. We have that:

$$\liminf_{n} f_n = \sup_{n} \inf_{k \ge n} f_k$$

2.8.2 Properties holding almost everywhere

Definition 2.8.5. Let (X, \mathcal{M}, μ) be a complete measure space. We say that a property P(x) holds μ -almost everywhere (a.e) if:

$$\mu(\lbrace x \in X : P(x) \text{ is false} \rbrace) = 0$$

In other words, P(x) holds μ -almost everywhere if it holds everywhere except for a set of measure zero.

E.g.: Let $f(x) = x^2$. Is it true that f(x) > 0 a.e.?

We have that $\{x : x^2 \le 0\} = \{0\}$

- In $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$, the property is true a.e., since $\lambda(\{0\}) = 0$
- In $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mu_{\#})$ (counting measure), the property is false a.e., since $\mu_{\#}(\{0\}) = 1$

Proposition 2.8.6. Let (X, \mathcal{M}, μ) be a measure space:

- 1. $f: X \to \overline{\mathbb{R}}$ s.t. f = g a.e, with g measurable $\Longrightarrow f$ is measurable
- 2. $\{f_n\}_{n\in\mathbb{N}}$ a sequence of measurable functions s.t. $f_n\to f$ a.e., then f is measurable.

2.8.3 Simple functions

Definition 2.8.6. Let (X, \mathcal{M}) be a measurable space. A function $s: X \to \overline{\mathbb{R}}$ is measurable and **simple** if s is measurable and s(X) is a finite set:

$$s(X) = \{a_1, a_2, ..., a_k\}$$

where $a_i \in \overline{\mathbb{R}} \ \forall i$, with $a_i \neq a_j$ for $i \neq j$. Then, s can be written as:

$$s(x) = \sum_{i=1}^{k} a_i \cdot \chi_{A_i}(x)$$

where $A_i = s^{-1}(\{a_i\}), A_i \cap A_j = \emptyset$ for $i \neq j, \bigcup_{i=1}^k A_i = X$ and $A_i \in \mathcal{M}, \ \forall i$.

Particular case:

If $X = \mathbb{R}$ (or $(a, b) \subset \mathbb{R}$) and A_i is an interval $\forall i$, then s is called a **step function**.

On the other hand, $\chi_{\mathbb{Q}}$ is a simple function, but not a step function:

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Remark: One may define simple functions without measurability requirements.

Goal:

Approximate any measurable function $f: X \to \overline{\mathbb{R}}$ with (measurable and) simple functions.

Theorem 2.8.7 (Simple approximation theorem (SAT)). Take (X, \mathcal{M}) measurable space and $f: X \to [0, \infty]$, measurable. Then $\exists \{s_n\}_{n \in \mathbb{N}}$ a sequence of measurable, simple functions s.t. $s_1 \leq s_2 \leq ... \leq f$ pointwise (i.e., $\forall x \in X$) and:

$$\lim_{n \to \infty} s_n(x) = f(x) \quad \forall x \in X$$

Moreover, if f is bounded, the convergence is uniform:

$$\lim_{n \to \infty} \sup_{x \in X} |s_n(x) - f(x)| = 0$$

Proof. In case f is bounded, say $0 \le f < 1$.

For any $n \ge 1$, divide [0,1) into 2^n intervals of length 2^{-n} , and define:

$$A_n^{(i)} = \{ x \in X : \frac{i}{2^n} \le f(x) < \frac{i+1}{2^n} \}$$

and:

$$s_n(x) = \sum_{n=0}^{2^n - 1} \frac{i}{2^n} \cdot \chi_{A_n^{(i)}}(x)$$

One can show that such a sequence has the required properties

2.9 Lebesgue integral

- First, we will define the integral for non-negative simple (measurable) functions.
- Second, we will extend the definition to non-negative measurable functions.
- Finally, we will define the integral for general measurable functions.

2.9.1 Integral of non-negative simple functions

Definition 2.9.1. Let $s: X \to [0, \infty]$ be a measurable and simple function:

$$s = \sum_{i=1}^{k} a_i \cdot \chi_{A_i}$$

where $a_i \geq 0$ and $A_i \in \mathcal{M}$. Let $E \in \mathcal{M}$. Then, we define the **(Lebesgue) integral** of s over E as:

$$\int_{E} s \, d\mu = \sum_{i=1}^{k} a_{i} \cdot \mu(A_{i} \cap E)$$

Remark: There are some remarks:

- 1. $s:[a,b] \to [0,\infty), \ \mu,\mu=\lambda$ (Lebesgue measure) Then, $\int_{[a,b]} s \ d\mu =$ area under the graph of s in [a,b]
- 2. We are already using $0 \cdot \infty = 0$ in the definition. In particular,

$$a_i \cdot \mu(A_i \cap E) = \begin{cases} 0 & a_i = 0 \\ \infty & a_i > 0 \end{cases}$$

if
$$\mu(A_i \cap E) = \infty$$
.

3. $D \in \mathcal{M}$, then χ_D is a simple function, and:

$$\int_{E} \chi_{D} \, d\mu = \mu(D \cap E)$$

4. More generally, s simple and measurable, $E \in \mathcal{M}$, then:

$$\int_E s \, d\mu = \int_X s \cdot \chi_E \, d\mu$$

Properties 2.9.1 (Basic properties). Let $N, E, F \in \mathcal{M}, s_1, s_2 : X \to [0, \infty)$ simple and measurable functions. Then:

(i) If $\mu(N) = 0$, then:

$$\int_{\mathcal{N}} s_1 \, d\mu = 0$$

(ii) If $0 \le c \le \infty$, then:

$$\int_{E} c \cdot s_1 \, d\mu = c \cdot \int_{E} s_1 \, d\mu$$

(iii) $\int_E (s_1 + s_2) d\mu = \int_E s_1 d\mu + \int_E s_2 d\mu$

(iv) If $s_1 \leq s_2$, then:

$$\int_E s_1 \, d\mu \le \int_E s_2 \, d\mu$$

(v) if $E \subset F$, then:

$$\int_{E} s_1 \, d\mu \le \int_{E} s_1 \, d\mu$$

The properties (ii) and (iii) are called **linearity** of the integral. The properties (iv) and (v) are called **monotonicity** of the integral.

Proposition 2.9.1. Let $s: X \to [0, \infty)$ be a simple measurable function. Then, the function:

$$\phi(E) := \int_{E} s \, d\mu : \mathcal{M} \to [0, \infty]$$

is a measure on (X, \mathcal{M}) .

Proof. Let $s = \sum_{i=1}^k a_i \cdot \chi_{A_i}$, $0 \le a_i \le \infty$. We have to show that:

- 1. $\phi: \mathcal{M} \to [0, \infty]$?: Yes, since $s \ge 0$, $\phi(E) \ge 0$, $\forall E \in \mathcal{M}$.
- 2. $\phi(\emptyset) = 0$?: Yes, since $\int_{\emptyset} s \, d\mu = 0$, as $\mu(\emptyset) = 0$.
- 3. σ -additivity?: Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{M} , and $E = \bigcup_n E_n$. Then, we have that:

$$\phi(E) = \int_{E} s \, d\mu = \int_{X} s \cdot \chi_{E} \, d\mu = \sum_{i=1}^{k} a_{i} \cdot \mu(A_{i} \cap E)$$
$$= \sum_{i=1}^{k} a_{i} \cdot \mu\left(\bigcup_{n} A_{i} \cap E_{n}\right)$$

Since μ is σ -additive, we have that:

$$= \sum_{i=1}^{k} a_i \sum_{n} \cdot \mu(A_i \cap E_n)$$
$$= \sum_{n} \sum_{i=1}^{k} a_i \cdot \mu(A_i \cap E_n)$$
$$= \sum_{n} \int_{E_n} s \, d\mu = \sum_{n} \phi(E_n)$$

2.9.2 Integral of non-negative measurable functions

Definition 2.9.2. Let $f: X \to [0, \infty]$ be a measurable function, $E \in \mathcal{M}$. Then, we define the **(Lebesgue) integral** of f over E as:

$$\int_E f \, d\mu = \sup \left\{ \int_E s \, d\mu : s \text{ simple, measurable and } 0 \le s \le f \right\}$$

Remark: There are some remarks:

- 1. If f is simple, then the definition coincides with the previous one.
- 2. $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\#})$. Then $f : \mathbb{N} \to [0, \infty]$ is a sequence. Indeed, if we name $f_n = f(n)$, then:

$$\int_{\mathbb{N}} f \, d\mu_{\#} = \sum_{n} f_{n}$$

3. All the basic properties of the integral for simple functions above hold for this new definition.

Note: The following propositions assume that (X, \mathcal{M}, μ) is a complete measure space (needed for a.e. properties).

Proposition 2.9.2 (Chebychev's inequality). Let $f: X \to [0, \infty]$ be a measurable function, and $0 < c < \infty$. Then:

$$\mu(\{f \ge c\}) \le \frac{1}{c} \int_{\{f > c\}} f \, d\mu \le \frac{1}{c} \int_X f \, d\mu$$

where $\{f \ge c\} = \{x \in X : f(x) \ge c\}.$

Proof.

$$\int_X f \, d\mu \geq \int_{\{f < c\}} f \, d\mu \geq \int_{\{f < c\}} c \, d\mu = c \cdot \mu(\{f < c\})$$

Now we just divide by c.

Note: We have as a consequence the following lemmas:

Lemma 2.9.3 (Vanishing lemma). Let $f: X \to [0, \infty]$ be a measurable function, $E \in \mathcal{M}$:

$$\int_{E} f \, d\mu = 0 \iff f = 0 \text{ a.e. on } E$$

Proof. The proof goes as follows:

 (\Leftarrow) : Trivial

 (\Rightarrow) : We have to show that:

$$\mu(\{x \in E : f(x) > 0\}) = 0$$

Let us define $F = \{x : f(x) > 0\} = \bigcup_n F_n$, where $F_n = \{x : f(x) \ge 1/n\}$. Then, we have that:

$$F_n \subset F_{n+1} \quad \forall n$$

so $F_n \uparrow F$. Then, we have that:

$$\mu(F_n) \to \mu(F)$$

and:

$$0 \le \mu(F_n) = \mu(\{f \ge \frac{1}{n}\}) \le \frac{1}{1/n} \int_E f \, d\mu = 0$$

Then, $\mu(F) = 0$.

Remark: The vanishing lemma applies to **every f** once $\mu(E) = 0$, indeed, every property is true a.e. on negligible sets. "The Lebesgue integral does not see negligible sets".

Lemma 2.9.4. Let $f: X \to [0, \infty]$ be a measurable function. Then:

$$\int_X f\,d\mu < \infty \implies \mu(\{f=\infty\}) = 0$$

Proof. Exercise. (Hint: $\{f = \infty\} = \bigcap_n \{f \ge n\}$)

Theorem 2.9.5 (Monotone Convergence Theorem (MCT)). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to [0,\infty]$. Assume that:

(i)
$$f_n \leq f_{n+1} \quad \forall n$$

(ii)
$$\lim_{n\to\infty} f_n(x) = f(x)$$
 for $a.e.x \in X$

Then, we have that:

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

Remark: All assumptions are essential

Proof. The proof goes as follows:

Part 1:

Assume that assumptions (i) and (ii) hold $\forall x \in X$. We have some basic facts:

- $f(x) = \lim_{n \to \infty} f_n(x) \implies f(x) \ge 0$ and measurable.
- $\int_X f_n d\mu \le \int_X f_{n+1} d\mu$. Then, if we define:

$$\alpha_n = \int_Y f_n d\mu, \quad \alpha = \lim_{n \to \infty} \alpha_n$$

we have that $\alpha_n \leq \alpha_{n+1}$, so $\alpha_n \uparrow \alpha$. Moreover, we have that:

$$f_n(x) \le f(x) \implies \int_X f_n d\mu \le \int_X f d\mu$$

 $\implies \alpha \le \int_X f d\mu$

So, to complete part 1, we have to show that $\alpha \geq \int_X f d\mu$.

We use the definition of $\int_X f d\mu$:

Take any $s: X \to [0, \infty)$ simple, measurable and $0 \le s \le f$. Take also $0 \le c < 1$. Then, we have that:

$$0 < c \cdot s \le f$$

Take $f_n(x) \uparrow f(x) \ \forall x \in X$. Consider $E_n = \{x \in X : f_n(x) \ge c \cdot s(x)\} \in \mathcal{M}$. Then, we have that:

- (a) $E_n \subset E_{n+1}$: indeed, $x \in E_n \iff f_n(x) \ge c \cdot s(x) \implies f_{n+1}(x) \ge c \cdot s(x) \iff x \in E_{n+1}$
- (b) $\bigcup_n E_n = X$: indeed, either $f(x) = 0 \implies x \in E_n \ \forall n \ \text{or} \ f(x) > 0 \ \text{and} \ c \cdot s(x) < f(x)$. Since $f_n(x) \uparrow f(x)$, we have that $\exists N_0 \text{ s.t. } f_{N_0}(x) \geq c \cdot s(x)$. Then $x \in E_{N_0}$.

Then, we have that:

$$\alpha \ge \alpha_n = \int_X f_n \, d\mu \ge \int_{E_n} c \cdot s \, d\mu = c \cdot \int_{E_n} s \, d\mu$$
$$= c \cdot \phi(E_n)$$

(where $\phi(E) = \int_E s \, d\mu$ is a measure). Then, notice that $E_n \uparrow X$, so $\phi(E_n) \to \phi(X)$.

Then, we have that:

$$\alpha \ge c \cdot \phi(X) = c \cdot \int_X s \, d\mu$$

Then, $\forall c < 1, \forall s$:

$$\alpha \ge c \int_X s \, d\mu$$

If we take the limit $c \to 1$, we have that $\alpha \ge \int_X s \, d\mu$. And if we take the supremum over all s, we have that:

$$\alpha \geq \int_{X} f \, d\mu$$

<u>Part 2:</u>

Now, we have to show that the result holds for a.e. $x \in X$. Define

$$F = \{x \in X : \text{either } (i) \text{ or } (ii) \text{ fails} \}$$

Then we have that $\mu(F) = 0$, and $E = X \setminus F$. For any g (non-negative, measurable), we have that:

$$g - \chi_E \cdot g = 0$$
 a.e. on X

Then, we use the vanishing lemma to show that:

$$\int_{X} (g - \chi_{E} \cdot g) \, d\mu = 0$$

$$\iff \int_{X} g \, d\mu = \int_{E} g \, d\mu$$

Finally:

$$\int_X f \, d\mu = \int_E f \, d\mu = \lim_{n \to \infty} \int_E f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu$$

Remark: Note that we now have 2 ways to compute the integral of a non-negative measurable function:

- $\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu : s \text{ simple, measurable and } 0 \le s \le f \right\}$
- $\int_X f d\mu = \lim_{n\to\infty} \int_X f_n d\mu$ where $f_n \uparrow f$ simple and measurable functions.

Corollary 2.9.5.1 (Monotone convergence for series). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to [0,\infty]$. Then, we have that:

$$\int_X \sum_n f_n \, d\mu = \sum_n \int_X f_n \, d\mu$$

Proposition 2.9.6. Take $\Phi: X \to [0, \infty]$ measurable, $E \in \mathcal{M}$. Define:

$$\nu(E) = \int_E \Phi \, d\mu$$

Then, ν is a measure on (X, \mathcal{M}) . Moreover, for $f: X \to [0, \infty]$ measurable:

$$\int_X f \, d\nu = \int_X f \cdot \Phi \, d\mu$$

Proof. The proof goes as follows:

- $\nu: \mathcal{M} \to [0, \infty]$: Trivial
- $\nu(\emptyset) = 0$: Trivial
- σ -additivity: Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{M} , and $E = \bigcup_n E_n$. Then, we have that:

$$\nu(E) = \int_{E} \Phi \, d\mu = \int_{X} \Phi \cdot \chi_{E} \, d\mu = \sum_{n} \int_{X} \Phi \cdot \chi_{E_{n}} \, d\mu$$
$$= \sum_{n} \int_{E_{n}} \Phi \, d\mu = \sum_{n} \nu(E_{n})$$

Lemma 2.9.7 (Fatou). Let (X, \mathcal{M}, μ) be a complete measure space, and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions. Then:

$$\int_X \liminf_n f_n \, d\mu \le \liminf_n \int_X f_n \, d\mu$$

Proof. Recall that:

$$\liminf_{n} f_n = \lim_{n \to \infty} \left(\inf_{k \ge n} f_k \right)$$

$$= \sup_{n} \left(\inf_{k \ge n} f_k \right)$$

Then, we define:

$$g_n = \inf_{k > n} f_k$$

We have the following properties $\forall n$:

- g_n is measurable.
- $g_n \ge 0$
- $\bullet \ g_n \le g_{n+1}$
- $g_n \leq f_n$

Then, by the MCT, we have that:

$$\int_{X} \liminf_{n} f_n \, d\mu = \int_{X} \lim_{n} g_n \, d\mu = \lim_{n} \int_{X} g_n \, d\mu$$
$$= \liminf_{n} \int_{X} g_n \, d\mu \le \liminf_{n} \int_{X} f_n \, d\mu$$

2.9.3 Integral of real-valued measurable functions

Let $f: X \to \mathbb{R}$ be a measurable function. Then, we can write $f = f^+ - f^-$, where:

$$f^+(x) = \max\{f(x), 0\} \quad f^-(x) = \max\{-f(x), 0\}$$

Notice that $f^+, f^- \ge 0$ are measurable functions. Then, we define:

$$|f| = f^+ + f^-$$

We also notice that $|f| = f^+ + f^- \ge 0$ is measurable.

Definition 2.9.3. We say $f: X \to \mathbb{R}$ is **integrable** on X if it is measurable and:

$$\int_{X} |f| \, d\mu < \infty$$

We define the set of **integrable functions** as:

$$\mathcal{L}^1(X, \mathcal{M}, \mu) = \{f : X \to \mathbb{R} : f \text{ is integrable}\}\$$

For $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, and $E \in \mathcal{M}$, we define:

$$\int_E f \, d\mu = \int_E f^+ \, d\mu - \int_E f^- \, d\mu$$

Proposition 2.9.8. Let $f: X \to \mathbb{R}$ be a measurable function. Then:

- (i) $f \in \mathcal{L}^1 \iff |f| \in \mathcal{L}^1 \iff (f^+ \in \mathcal{L}^1 \text{ and } f^- \in \mathcal{L}^1)$
- (ii) (Triangular inequality):

$$\left| \int_{E} f \, d\mu \right| \le \int_{E} |f| \, d\mu$$

Proof. The proof goes as follows:

- (i) Trivial (but see next remark)
- (ii) We have that:

$$\left| \int_{E} f \, d\mu \right| = \left| \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu \right|$$

$$\leq \left| \int_{E} f^{+} \, d\mu \right| + \left| \int_{E} f^{-} \, d\mu \right| = \int_{E} f^{+} \, d\mu + \int_{E} f^{-} \, d\mu$$

$$= \int_{E} f^{+} + f^{-} \, d\mu = \int_{E} |f| \, d\mu$$

Remark: In general, it is not true that |f| measurable $\implies f$ measurable. Take $F \subset X, F \notin \mathcal{M}$ and:

$$f(x) = \chi_F(x) - \chi_{X \setminus F}(x)$$

Then, |f| = 1 is measurable, but f is not.

Proposition 2.9.9. We propose two properties:

- (i) $\mathcal{L}^1(X, \mathcal{M}, \mu)$ is a (real) vector space.
- (ii) The functional

$$I(\cdot) := \int_X \cdot d\mu : \mathcal{L}^1(X, \mathcal{M}, \mu) \to \mathbb{R}$$

 $is\ a\ linear\ functional.$

 ${\it Proof.}$ The proof sketch goes as follows:

Let $u, v \in \mathcal{L}^1(X, \mathcal{M}, \mu), \alpha, \beta \in \mathbb{R}$. We should show that:

$$\alpha u + \beta v \in \mathcal{L}^1(X, \mathcal{M}, \mu)$$

since:

$$|\alpha u + \beta v| \le |\alpha u| + |\beta v|$$

Then:

$$\int_X (\alpha u + \beta v) \, d\mu \le \int_X |\alpha u + \beta v| \, d\mu \le \int_X |\alpha u| \, d\mu + \int_X |\beta v| \, d\mu < \infty$$

since $|\alpha u|, |\beta v| \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Then, we have that $\alpha u + \beta v \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

For the second property, we have that:

$$I(\alpha u + \beta v) = \int_X (\alpha u + \beta v) d\mu = \alpha \int_X u d\mu + \beta \int_X v d\mu = \alpha I(u) + \beta I(v)$$

Remark: All the other basic properties of the integral of non-negative functions can be extended to the integral of real-valued functions.

Theorem 2.9.10 (Vanishing lemma). Let (X, \mathcal{M}, μ) be a complete measure space, and $f, g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Then:

$$f = g \ a.e. \iff \int_X |f - g| \, d\mu = 0 \iff \int_E (f - g) \, d\mu = 0 \ \forall E \in \mathcal{M}$$

Proof. The "difficult" part of the proof is:

$$\int_{E} (f - g) d\mu, \quad \forall E \in \mathcal{M} \implies f = g \text{ a.e.}$$

The proof goes as follows:

Let $E_1 = \{f \geq g\}$, and $E_2 = X \setminus E_1$. Then, we have that:

$$0 = \int_{E_1} (f - g) d\mu = \int_{E_1} (f - g)^+ d\mu$$
$$0 = \int_{E_2} (f - g) d\mu = -\int_{E_2} (f - g)^- d\mu$$

Then, we have that:

$$(f-g)^+=0$$
 and $(f-g)^-=0$ a.e. on X

Remark: In particular, for $u \in \mathcal{L}^1$:

$$\int_{E} u \, d\mu = 0 \, \forall E \in \mathcal{M} \implies u = 0 \text{ a.e.}$$

This is the same as:

$$\int_X u\varphi \,d\mu = 0 \quad \forall \varphi \text{ characteristic function } \Longrightarrow u = 0 \text{ a.e.}$$

This can be true also replacing φ by "something else". For instance, in the case of $u \in \mathcal{L}^1(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$:

$$\int_{\mathbb{R}} u\varphi \, d\lambda = 0 \quad \forall \varphi \in V \implies u = 0 \text{ a.e.}$$

where $V = \{C_0^{\infty}(\mathbb{R})\}$, or $V = \{C_0^0(\mathbb{R})\}$.

This is the "fundamental lemma of calculus of variations".

Theorem 2.9.11 (Dominated convergence theorem (DCT)). Let $(X, \mathcal{M}.\mu)$ be a complete measure space and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to \mathbb{R}$, and $f: X \to \mathbb{R}$. Assume that:

- (i) $|f_n| \leq g$ a.e. on X, $\forall n \in \mathbb{N}$, where $g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$
- (ii) $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. $x \in X$

Then, $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, and:

$$\lim_{n \to \infty} \int_E |f_n - f| \, d\mu = 0$$

In particular:

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

Proof. First, we have 2 basic facts:

- 1. $|f_n| \leq g$ a.e. on $X, \forall n \in \mathbb{N} \implies f_n \in \mathcal{L}^1(X, \mathcal{M}, \mu)$
- 2. $|f| \leq g$ a.e. on $X \implies f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$

Then, consider the sequence $h_n = 2g - |f_n - f|$. We have that:

- h_n is measurable.
- $h_n \le 2g$

• $h_n \ge 0$. Indeed:

$$|f_n - f| \le |f_n| + |f| \le 2g \implies 2g - |f_n - f| \ge 0$$

We now apply the Fatou's lemma to the sequence h_n :

$$\int_{X} (\liminf_{n} h_{n}) d\mu \le \liminf_{n} \int_{X} h_{n} d\mu$$
$$= \int_{X} 2g d\mu - \limsup_{n} \int_{X} |f_{n} - f| d\mu$$

Also, notice that:

$$\liminf_{n} h_n = 2g$$

Then, we have that:

$$\int_{X} 2g \, d\mu \le \int_{X} 2g \, d\mu - \limsup_{n} \int_{X} |f_{n} - f| \, d\mu$$

$$\implies \lim \sup_{n} \int_{X} |f_{n} - f| \, d\mu \le 0$$

Then, we have that:

$$\limsup_{n} \int_{X} |f_{n} - f| d\mu \ge \liminf_{n} \int_{X} |f_{n} - f| d\mu \ge 0$$

In the end:

$$\lim_{n} \int_{X} |f_n - f| \, d\mu = 0$$

Remark: If $\mu(X) < \infty$, then the constants are integrable. Then, if $|f_n(x)| \leq M$ a.e, for some $M \in \mathbb{R}$, then:

$$\lim_{n \to \infty} \int_{X} f_n \, d\mu = \int_{X} \lim_{n \to \infty} f_n \, d\mu$$

(We are using the DCT with g = M)

Corollary 2.9.11.1 (Dominated Convergence for series). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to \mathbb{R}$, s.t $f_n \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. If $\sum_n \int_X |f_n| d\mu < \infty$, then:

$$\int_X \sum_n f_n \, d\mu = \sum_n \int_X f_n \, d\mu$$

2.9.4 Comparison between Riemann and Lebesgue integrals

Theorem 2.9.12. Let $I = [a,b] \subset \mathbb{R}$ be a closed interval, and $f: I \to \mathbb{R}$. If f is **Riemann integrable** on I, then f is **Lebesgue integrable** on I, i.e., $f \in \mathcal{L}^1(I,\mathcal{L}(I),\lambda)$, and the two integrals coincide:

$$\int_{I} f \, d\lambda = \int_{a}^{b} f(x) \, dx$$

Theorem 2.9.13. Let $I = (\alpha, \beta)$, such that $-\infty \le \alpha < \beta \le \infty$. If |f| is **Riemann** integrable on I (in the generalized sense), then f is **Lebesgue integrable** on I:

$$\int_{I} f \, d\lambda = \int_{\alpha}^{\beta} f(x) \, dx$$

Remark: If the generalized Riemann integral of |f| diverges, then:

$$\int_{I} |f| \, d\lambda = \infty$$

but $\int_I f d\lambda$ is not defined (unless $f = \pm |f|$) and:

$$\int_{\alpha}^{\beta} f(x) dx$$
 and $\int_{I} f d\lambda$

are not related.