Олимпиада ИТМО 2020

- 1. Посчитайте $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$. 2. Пусть A и B две ортогональные матрицы $n\times n$ с вещественными элементами. Чему равно максимальное значения $\det(A+B)$? (Найти и доказать.)
 - 3. Найдите $\max_{\substack{a,b,c>0\\a+b+c=1}} a + \sqrt{b} + \sqrt[3]{c}$.
- **4.** Найдите все корни, включая комплексные, у полинома $(x+1)^{90} + (x-1)^{90}$. **5.** Двумерный квадрат со стороной 10 содержится в n-мерном кубе со стороной 1. При каком
- минимальном n это выполнимо? **6.** Пусть $f: \mathbb{R} \to \mathbb{R}$ и f(1) = 1. Найдите все функции f, такие что $f(\frac{1}{x}) = \frac{1}{x^2} \cdot f(x)$ при $x \in \mathbb{R} \setminus \{0\}$ и f(x+y) = f(x) + f(y) при $x, y \in \mathbb{R}$.
 - 7. Найдите все функции f, удовлетворяющие $(1+x^2)f'(x) + xf(x) = 1$.
- 8. Найдите все точки P=(r,0) на горизонтальной оси с $r\in\mathbb{Q}$, такие что расстояния от P до вершин квадрата $(\pm 1, \pm 1)$ рациональны.
- 9. Посчитайте $\det \begin{pmatrix} a & b & b & b & b \\ a & c & d & d & d \\ a & c & e & f & f \\ a & c & e & g & h \\ a & c & e & g & i \end{pmatrix}$.

 10. Пусть $P(x) = 2x^3 3x^2 + 2$, $A = \{P(n) \mid n \in \mathbb{N} \cup \{0\}, n \leq 1999\}$, $B = \{p^2 + 1 \mid p \in \mathbb{N} \cup \{0\}\}$ и $C = \{q^2 + 2 \mid q \in \mathbb{N} \cup \{0\}\}$. Докажите, что множества $A \cap B$ и $A \cap C$ содержат одинаковое число элементов.

Олимпиада ИТМО 2020

- 1. Посчитайте $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$. 2. Пусть A и B две ортогональные матрицы $n\times n$ с вещественными элементами. Чему равно максимальное значения $\det(A+B)$? (Найти и доказать.)
 - 3. Найдите $\max_{\substack{a,b,c>0\\a+b+c=1}} a + \sqrt{b} + \sqrt[3]{c}$.
- **4.** Найдите все корни, включая комплексные, у полинома $(x+1)^{90} + (x-1)^{90}$. **5.** Двумерный квадрат со стороной 10 содержится в n-мерном кубе со стороной 1. При каком минимальном n это выполнимо?
- **6.** Пусть $f: \mathbb{R} \to \mathbb{R}$ и f(1) = 1. Найдите все функции f, такие что $f(\frac{1}{x}) = \frac{1}{x^2} \cdot f(x)$ при $x \in \mathbb{R} \setminus \{0\}$ и f(x+y) = f(x) + f(y) при $x,y \in \mathbb{R}$.
 - 7. Найдите все функции f, удовлетворяющие $(1+x^2)f'(x) + xf(x) = 1$.
- 8. Найдите все точки P = (r, 0) на горизонтальной оси с $r \in \mathbb{Q}$, такие что расстояния от P до вершин квадрата $(\pm 1, \pm 1)$ рациональны.
- 9. Посчитайте $\det \begin{pmatrix} a & b & b & b & b \\ a & c & d & d & d \\ a & c & e & f & f \\ a & c & e & g & h \\ a & c & e & g & i \end{pmatrix}$.

 10. Пусть $P(x) = 2x^3 3x^2 + 2$, $A = \{P(n) \mid n \in \mathbb{N} \cup \{0\}, n \leq 1999\}$, $B = \{p^2 + 1 \mid p \in \mathbb{N} \cup \{0\}\}$ и $C = \{q^2 + 2 \mid q \in \mathbb{N} \cup \{0\}\}$. Докажите, что множества $A \cap B$ и $A \cap C$ содержат одинаковое число элементов.

1