	Date 16.9	.23
RG flows & bifurcations 1608-06638		
Motivatrus -		
$RG - flow \frac{d\lambda^{i}}{dt} = -\beta^{i}(\lambda), t = -lu\mu$		
>> energy scale & 1.05 x 9 & 17: 1 = parameter		
motion in the space of fair Ey		
energy scale & 105x9 & 17:, 1= parameter motion in the space of spije7 HG-flow = clynamical system on 7		
Freed - point = CFT TY (E)ZISI		
-> mathematics of dynamical system helps? (tex	-60° 4705	·
In particular, consider strongest version of e-theorem.	1-3-4	
RG-flow = gradient flow		
B6" grad_flow z'232" \ L=		··· —-
() \$6" grad_flow 2 33')	→ 1R	
(では、する) (CFT)なりによる。 (CFT)なりにより (CFT)なりにより (CFT)なりにより (CFT)なりにより (CFT)なりにより (CFT)なりにより (できてきるこう)		
tor gradient flows. We can use Bott - Morse theory		
> Necessary and on the topology of 7.		
structure of F.P.s i		
(c.c.) flow 8"3 33.)		
Once Conjecture: Conjecture:		
process of gradian KG-flow breaks when		
MUV < MIR. M= H(Spin-O relevant ons)	CF7	
6 C 7 (1 (8 (V) - C	<u> </u>	
12 TP dator mather 6-8007		
		LUS

Works
hove hiza happins because some troelevant ops
Cross through marginaling
(dauperenely irrelevant op.")
Of How often does marginality crossing" occur?
- examples from cl=4 N=1. theories (1703.01474)
- lower end of the conformal window (=0 202) - AdSICFT?
Q2 What happens at 'marginality conssing"? - use bifur control theory
Bifurcation of RG-flow
couplings d' parameter X EX.
$\frac{d\lambda^i}{dt} = -\beta^i(\lambda)$ $\frac{VS}{dt} = -\beta^i(\lambda)$ $\frac{e.s.}{dt} = 4-\epsilon$
No. Nr. (FERE #570~
bifarcation: change of FPs as
parameters {x} vary

1) Saddle - hode

$$\frac{d\lambda}{dt} = \lambda^2 - \chi \qquad | coupling = \lambda$$

1 parameter : X

XCO -> no solution for B=0

(x=02" FP5

TOC703)

Stable

(X=0 2° stable (austable 5" b'h3)

	70 700000	Ditun Cation	理論のしてる 種紙で
	er SI-paramet		ystem.
	11- complex	ξ λ.	
w;~f\	$\frac{d\lambda}{dt} = \beta($	à∶ ≈)	
generic cond. Sex	bobla ~-~ ~		=0. @ biturcatiun pt
7	urcation. SCVITICAL - B=	<u>@</u>	`. <u> </u>
	rfielk: B=	-	
higher codi	bifurcamm.	η) σεβ.	-o. @
=> \unsatis	stied wlo fine	-tunne "1	
			
	transcrit. bifu		
	B(1:x) = 22	1-73.	
	-> β (); x)=	$\alpha + 2\lambda - \lambda^2$	<u>, </u>
ー しょっー1-		7 ₄	
		uco	
			_/
	✓ <u> </u>		/

pitchfoolk bifurcation. B(7:x) -> B(7:x) = u + x7 +v12-73

_unfolding_parameter

pitchfolk -> Saddle - wodes

(Symmetry 7 -- 7 forbids ulv.)

(スキームをかよてキ ナナ夫

-7-67)-

 $\frac{d\lambda'}{dt} = \frac{d\lambda}{d\lambda} = \frac{d\lambda'}{d\lambda'} \beta(\lambda(\lambda')) = \beta'(\lambda')$

生tour)

Higher Tordon cornection

Example: Transcrit, bifurcation

B= x7-72.

B= xy-y2- 3.

(こりれるような=エもなるかも)

Operatur dimension @ x=xcrit

J = {diBj}: matrix

Q D What happons Q N= NErit? @ Value of Nont? Cocaplings: 24- Form; = A (Ta Ia) + Nt (Ta Ja Ja Ja Ja) preserve only + Nf (Ia) = D (Ia) = Nf (Ia) property 20cv4)~20(v4) ×0(1) Presume SU (2N/) (Fiers 83 24 =0 47 004 mass = m (yay 4 - Yang yang) preserve only SU(N+)-SU(N+)+U(1), + m 4,4° breaks P consider 3 - couplings system fee, 7. 1? (conf. phase To z SU(2Nf) (7 BB & Ton approach 1) large Ny. RG-flow egu. (1- (oup) é = e - Nt e4 -7-22+4e2)+18e2/+9Nje4 -7+212+2202 D => 6x = Nt. , 3 pecomes 7-compling 54216m {},}

=> () = 9N4et-)-)2= 21 = -1= unfolding param. of transcrit. bitarcation.
-)
2) ε -expansion around $d = 4$. $d = 4 - \varepsilon , 1 - (\omega \varphi) \qquad (\bar{\psi} \partial_{\bar{\varphi}} \bar{\psi})^{2}$ $\rightarrow \text{Anom. olim. of } \mathcal{O}_{\bar{\varphi}} . \mathcal{O}_{\bar{\varphi}}$ $d - \Delta 4 - F_{erm} = \cdots$ $\sim 0.54 \left(\frac{N_{f}}{N_{f}} - \frac{N_{f}}{N_{f}} \right) . N_{f}^{cort} \simeq 2.7$ $\text{transcrit. bifurcation?} \qquad (11 = 71 = 217 - 10) \rightarrow \text{transcrit.}$ $\Rightarrow \text{recent } \varepsilon - \varepsilon - \varphi ansion \text{ analysis}$ $\Rightarrow \text{prefers 'saddle - acese bifurcation'}$