IN THE CLAIMS

Please cancel claims 5, 10, and 20 without prejudice.

Please amend the following claims which are pending in the present

application:

1. (Currently amended) A computer system comprising:

a frame;

a frame-level connector on the frame;

a chassis insertable into the frame;

a processor on the chassis;

a chassis-level connector, on the chassis, which mates with the frame-level

connector when the chassis is inserted into the frame;

a locking mechanism, connected between the frame and the chassis,

allowing for movement of the chassis into the frame but preventing movement of

the chassis out of the frame; [[and]]

a disengager, connected to the locking mechanism, which disengages the

locking mechanism to allow for movement of the chassis out of the frame[[.]];

<u>and</u>

a biasing component, connected between the frame and the chassis, which

biases the chassis after insertion of the chassis into the frame, a force created by

the biasing component moving the chassis out of the frame after the locking

mechanism disengages.

William E. Berry, et al. Application No.: 10/039,109

Examiner: Anthony Edwards
Art Unit: 2835

-2-

- 2. (Original) The computer system of claim 1 wherein the locking mechanism includes a ratchet gear having a plurality of ratchet teeth, and a ratchet pawl, movement of the chassis into the frame causing ratchet movement of the ratchet pawl sequentially into successive gaps between subsequent ones of the ratchet teeth, the ratchet pawl catching on a selected one of the ratchet teeth to prevent movement of the chassis in the opposite direction out of the frame.
- 3. (Original) The computer system of claim 2 wherein the disengager has an actuating portion manually movable, movement of the actuating portion causing disengagement of the ratchet pawl from the selected tooth to allow for movement of the chassis in the opposite direction out of the frame.
- 4. (Original) The computer system of claim 1 where mating of the chassis-level connector with the frame-level connector creates a force between the chassis-level connector and the frame-level connector which tends to disengage the chassis-level connector from the frame-level connector and movement of the chassis in the opposite direction.
- 5. (Cancelled)
- 6. (Currently amended) The computer system of claim [[5]] $\underline{1}$ wherein the force increases after the chassis-level connector mates with the frame-level

William E. Berry, et al.

Application No.: 10/039,109

- 3
Examiner: Anthony Edwards

Art Unit: 2835

connector and upon further movement of the chassis into the frame.

7. (Original) The computer system of claim 6, further comprising:

a mount structure, the frame-level connector being on the mount structure

and the mount structure being on the frame, said further movement moving the

mount structure relative to the frame.

8. (Original) The computer system of claim 7 wherein the biasing component

is a spring compressed between the mount structure and the frame.

9. (Currently amended) A computer system comprising:

a frame;

a frame-level connector on the frame;

a chassis insertable into the frame;

a processor on the chassis;

a chassis-level connector, on the chassis, which mates with the frame-level

connector when the chassis is inserted into the frame;

a ratchet mechanism, connected between the frame and the chassis,

including a ratchet gear having a plurality of ratchet teeth, and a ratchet pawl,

movement of the chassis into the frame causing ratchet movement of the ratchet

pawl sequentially into successive gaps between subsequent ones of the ratchet

teeth, the ratchet pawl catching on a selected one of the ratchet teeth to prevent

movement of the chassis in an opposite direction out of the frame; [[and]]

a disengager, connected to the ratchet pawl, having an actuating portion movable, movement of the actuating portion causing disengagement of the ratchet pawl from the selected tooth to allow for movement of the chassis out of

the frame[[.]] ; and

a biasing component, connected between the frame and the chassis, which

biases the chassis after insertion of the chassis into the frame, a force created by

the biasing component moving the chassis out of the frame after the locking

mechanism disengages.

10. (Cancelled)

11. (Currently amended) The computer system of claim [[10]] 9 wherein the

force increases after the chassis-level connector mates with the frame-level

connector and upon further movement of the chassis into the frame.

12. (Original) The computer system of claim 11, further comprising:

a mount structure, the frame-level connector being on the mount structure

and the mount structure being on the frame, said further movement moving the

mount structure relative to the frame.

13. (Original) The computer system of claim 12 wherein the biasing

component is a spring compressed between the mount structure and the frame.

14. (Original) A computer system, comprising:

a frame;

a mount structure movably on the frame;

a biasing component connected between the frame and the mount structure;

a frame-level connector on the mount structure;

a chassis;

a processor on the chassis;

a chassis-level connector on the chassis, the chassis being insertable in one

direction into the frame, movement of the chassis causing engagement of the

chassis-level connector with the frame-level connector and further movement of

the chassis into the frame causing movement of the mount structure relative to

the frame and an increase in a force created by the biasing component;

a locking mechanism, connected between the frame and the chassis, which

locks the chassis to the frame after said increase in force of the biasing

component; and

a disengager, connected to the locking mechanism, which disengages the

locking mechanism so that the chassis is moved in an opposite direction out of

the frame by said force of the biasing component.

15. (Original) The computer system of claim 14 wherein the locking

mechanism includes a ratchet gear having a plurality of ratchet teeth, and a ratchet pawl, movement of the chassis into the frame causing ratchet movement of the ratchet pawl sequentially into successive gaps between subsequent ones of the ratchet teeth, the ratchet pawl catching on a selected one of the ratchet teeth to prevent movement of the chassis in the opposite direction out of the frame.

16. (Original) The computer system of claim 15 wherein the disengager has an actuating portion manually movable, movement of the actuating portion causing disengagement of the ratchet pawl from the selected tooth to allow for movement of the chassis in the opposite direction out of the frame.

17. (Currently amended) A method of operating a computer system, comprising:

inserting a chassis, having a processor secured thereto, into a frame until a chassis-level connector on the chassis mates with a frame-level connector on the frame, wherein the frame-level connector is mounted to a mount structure movably mounted to the frame, the chassis being moved so that, after the chassis mates with the frame-level connector, the mount structure is moved relative to the frame, a locking mechanism allowing for movement of the chassis in one direction into the frame but simultaneously locking the chassis to the frame to prevent movement of the chassis in an opposite direction out of the frame; and disengaging the locking mechanism to allow for movement of the chassis in

William E. Berry, et al.

Application No.: 10/039,109

-7
Examiner: Anthony Edwards

Art Unit: 2835

the opposite direction out of the frame.

18. (Original) The method of claim 17 wherein the locking mechanism

includes a ratchet gear having a plurality of ratchet teeth, and a ratchet pawl,

movement of the chassis into the frame causing ratchet movement of the ratchet

pawl sequentially into successive gaps between subsequent ones of the ratchet

teeth, the ratchet pawl catching on a selected one of the ratchet teeth to prevent

movement of the chassis in the opposite direction out of the frame.

19. (Original) The method of claim 18 wherein the disengager has an actuating

portion manually movable, movement of the actuating portion causing

disengagement of the ratchet pawl from the selected tooth to allow for

movement of the chassis in the opposite direction out of the frame.

20. (Cancelled)

21. (Currently amended) The method of claim [[20]] 17 wherein movement of

the mount structure relative to the frame is against a force created by a biasing

component, the force moving the chassis in the opposite direction upon

disengagement of the locking mechanism.

William E. Berry, et al. Application No.: 10/039,109

039,109 - 8 -

Examiner: Anthony Edwards

Art Unit: 2835