

Diagramas de Argumento

UNIVERSIDADE FEDERAL DE ALAGOAS Lógica Aplicada à Computação Prof. Rômulo Nunes de Oliveira

Visão geral do estudo da Lógica

Lógica: Argumentos

- A Lógica é o estudo de argumentos.
- Um argumento é uma sequencia de enunciados na qual um dos enunciados é a conclusão e os demais são premissas.

Na Lógica Informal temos:

- As premissas servem para provar, ou fornecer evidências para a conclusão.
- Um enunciado (ou proposição) é uma idéia (ou significado) expressa por uma sentença declarativa (afirmativa).
- Uma sentença declarativa é uma seqüência de palavras que expressa um enunciado.
- Uma sentença pode ser ambígua, podendo expressar um ou mais enunciados.

- Exemplos de sentenças:
 - O triângulo ABC é equilátero.
 - Sócrates é mortal.
- Os enunciados são ideias que podem ser verdadeiras ou falsas.

Lógica Informal: Argumentos (Exercícios)

Exercícios: Identificar as premissas [] e a conclusão () dos argumentos:

- 1) Ele é Leão, pois nasceu na 1º semana de agosto.
- (Ele é Leão), pois [nasceu na 1ª semana de agosto].

Lógica Informal: Argumentos (Exercícios)

 2) A economia não pode ser melhorada desde que o déficit comercial está crescendo todo dia.

• (A economia não pode ser melhorada) desde que [o déficit comercial está crescendo todo dia].

Lógica Informal: Argumentos (Exercícios)

3. Como o filme ainda não acabou eu não quero ir para cama.

Sol:

Como [o filme ainda não acabou,] (eu não quero ir para cama).

Lógica Informal: Argumentos Complexos

- Alguns argumentos se originam por etapas:
 - Uma conclusão é inferida de um conjunto de premissas;
 - essa conclusão (junto com outros enunciados) é <u>usada como premissa</u> para inferir uma outra conclusão, pode funcionar como uma premissa para uma outra conclusão, e assim por diante.

Lógica Informal: Argumentos Complexos

- As premissas que servem como conclusão de premissas anteriores chamam-se premissas não-básicas (ou conclusões intermediárias).
- As premissas que não são conclusões de premissas prévias chamam-se premissas básicas (ou suposições).

Lógica Informal: Argumentos Complexos: Exemplo

"Todos os números racionais podem ser expressos como quociente de dois inteiros. Contudo, π não pode ser expresso como quociente de dois inteiros. Portanto, π não é um número racional. Evidentemente, π é um número. Logo, existe pelo menos um número não-racional".

Lógica Informal: Argumentos Complexos

Forma Padrão desse argumento:

- Todos os números racionais podem ser expressos como quociente de dois inteiros.
- π não pode ser expresso como quociente de dois inteiros.
 (conclusão) π não é um número racional.
- π é um número.

(conclusão) Existe pelo menos um número não-racional.

Lógica Informal: Argumentos. Identificação

Um argumento ocorre só quando pretende-se provar uma conclusão a partir de um conjunto de premissas.

Esse propósito geralmente é expresso pelo uso de indicadores de inferência.

Lógica Informal: Argumentos. Indicadores de Inferência

INDICADORES DE CONCLUSÃO	INDICADORES DE PREMISSA
Expressões que assinalam que a sentença que os contém é uma conclusão.	Expressões que assinalam que a sentença que os contém é uma premissa.
Portanto, Por isso, Assim, Dessa maneira, Neste caso, Daí, Logo, De modo que, Então, Assim sendo, Podemos deduzir que,	Pois, Desde que, Como, Porque, Assumindo que, Visto que, Admitindo que, Em vista de, Dado que, Supondo que,

Lógica Informal: Argumentos. Indicadores de Inferência

- Indicador de conclusão entre duas sentenças: indica que a primeira é premissa e a segunda conclusão
- Ex: Ele não está em casa, portanto, ele foi pescar.
- Indicador de <u>premissa</u> entre duas sentenças: indica que a primeira é conclusão e a segunda premissa.
- Ex: Ele não está em casa, pois ele foi pescar.

Lógica Informal: Argumentos. Indicadores de Inferência

- Indicador de conclusão no início de uma sentença: indica que a sentença é conclusão das premissas anteriores.
- Ex: É verão e Amanhã é feriado. Portanto, vou à praia
- Indicador de premissa no início de uma sentença composta de duas sentenças: indica que a primeira é premissa e a segunda conclusão.
- Ex: <u>Desde que</u> uma frente fria está a caminho, é provável que chova

Lógica Informal: Argumentos. Indicadores de Inferência: Exercícios

"O composto ouro-argônio, provavelmente, não é produzido no laboratório, muito menos na natureza, desde que é difícil fazer o argônio reagir com qualquer outra coisa e desde que o ouro, também, forma poucos compostos."

Indicadores de Inferência: Exercícios

Solução:

"(O composto ouro-argônio, provavelmente, não é produzido no laboratório, muito menos na natureza), desde que [é difícil fazer o argônio reagir com qualquer outra coisa] e desde que [o ouro, também, forma poucos compostos]."

Lógica Informal: Argumentos. Indicadores de Inferência: Exercícios

"A inflação tem caído consideravelmente, enquanto as taxas de juros têm permanecido altas. Portanto, em termos reais, o empréstimo tornou-se mais caro desde que nessas condições, o dinheiro emprestado não pode ser pago em reais desvalorizados."

Lógica Informal: Argumentos. Indicadores de Inferência: Exercícios

Solução:

"A inflação tem caído consideravelmente, enquanto as taxas de juros tem permanecido altas]. Portanto, (em termos reais, o empréstimo tornou-se mais caro) desde que [nessas condições, o dinheiro emprestado não pode ser pago em reais desvalorizados]. "

Lógica Informal: Argumentos. Indicadores de Inferência:

- Para reconhecer se uma expressão é indicador de inferência, é necessário analisar o contexto:
- Ex. Passaram-se 6 anos desde que fomos à França.
- (Revela a duração, não uma inferência.)
- Ex. Ele estava zangado e ficou assim por vários dias.
- (Significa nessa condição e não "portanto".)

Lógica Informal: Argumentos. Indicadores de Inferência:

Muitas vezes os argumentos não apresentam indicadores de inferência. Nesses casos, é necessário uma análise mais rigorosa do contexto para entender as intenções do autor

Indicadores de Inferência: Podem estar ausentes

Ex.: "Al Capone foi imprudente. Se ele não fosse imprudente, o IRS jamais teria conseguido condená-lo por sonegar o imposto de renda."

Indicadores de Inferência: Podem estar ausentes

Ex.: "¹(Al Capone foi imprudente). ²[Se ele não fosse imprudente, o IRS jamais teria conseguido condená-lo por sonegar o imposto de renda.]"

- → Reescrevendo na forma padrão:
- Se Al Capone não fosse imprudente, o IRS jamais teria conseguido condená-lo por sonegar o imposto de renda.
- ♦ Al Capone foi imprudente.

Indicadores de Inferência: Podem estar ausentes

Ex.: "Os defensores do aborto são hipócritas. Eles, continuamente, contestam em altos brados a execução de criminosos ou a destruição de nossos inimigos. Mas eles nada vêem de errado com o assassinato de crianças inocentes."

Indicadores de Inferência: Podem estar ausentes

Ex.: "¹(Os defensores do aborto são hipócritas). ²[Eles, continuamente, contestam em altos brados a execução de criminosos ou a destruição de nossos inimigos]. ³[Mas eles nada vêem de errado com o assassinato de crianças inocentes.]"

→ Reescrevendo na forma padrão:

- Os defensores do aborto, continuamente, contestam em altos brados a execução de criminosos ou a destruição de nossos inimigos.
- Eles nada vêem de errado com o assassinato de crianças inocentes.

(conclusão) Os defensores de aborto são hipócritas.

Indicadores de Inferência: Podem estar ausentes

Ex.: "Você não precisa se preocupar com temperaturas abaixo de zero, em junho, mesmo nos picos mais altos. Nunca faz frio nos meses de verão e portanto_provavelmente nunca ocorrerá."

Indicadores de Inferência: Podem estar ausentes

Ex.: "¹(Você não precisa se preocupar com temperaturas abaixo de zero, em junho, mesmo nos picos mais altos). ²[Nunca faz frio nos meses de verão] e portanto_³[provavelmente nunca ocorrerá]."

→ Reescrevendo na forma padrão:

- Nunca ocorreu temperatura abaixo de zero, mesmo nos picos mais altos, nos meses de verão.
- Provavelmente nunca ocorrerá.
- Você não precisa se preocupar com temperaturas abaixo de zero, em junho, mesmo nos picos mais altos.

Diagrama de Argumento

 Maneira gráfica de representar a estrutura inferencial de um argumento.

Para diagramar um argumento fazemos o seguinte:

Como Diagramar?

- Circular os indicadores de inferência;
- Identificar cada enunciado e colocá-los entre colchetes numerando-os;
- Se várias premissas compõem uma etapa de raciocínio, escrever seus números numa fila, ligados pelo símbolo "+", e sublinhar a fila.
- Se uma etapa do raciocínio for formada por apenas uma premissa, escrever apenas o seu número.
- Desenhar uma seta para baixo a partir da fila de premissa(s) para o número que representa a conclusão da etapa.
- Repetir esse procedimento se o argumento contiver mais de uma etapa.

Diagrama de Argumento. Como diagramar um argumento:

Exercício

"Hoje é quarta-feira ou sexta-feira. Mas, não pode ser quarta-feira, pois o consultório do médico estava aberto esta manhã, e aquele consultório está sempre fechado às quartas. Portanto, hoje deve ser sexta-feira."

Diagrama de Argumento. Como diagramar esse argumento?

Identificar os indicadores de inferência:

"¹[Hoje é quarta-feira ou sexta-feira].
Mas, ²[não pode ser quarta-feira], pois
³[o con-sultório do médico estava aberto
esta ma-nhã], e ⁴[aquele consultório está
sempre fechado às quartas]. Portanto,
⁵[hoje deve ser sexta-feira]."

Diagrama de Argumento. Como diagramar esse argumento?

3 junto com 4 é justificativa para 2, o qual junto com 1 é justificativa para 5

- Cada seta representa uma etapa do raciocínio
- 3,4 e 1 são as premissas básicas
- 2 é premissa não-básica.
- 5 é a conclusão final

Diagrama de Argumento. Exemplo

"Watts está em Los Angeles e está, portanto, nos EUA e logo faz parte de uma nação plenamente industrializada. Assim, ele não faz parte do Terceiro Mundo, pois o Terceiro Mundo é caracterizado por nações em desenvolvimento e nações em desenvolvimento não estão por definição, plenamente industrializadas."

Diagrama de Argumento. Exemplo

Solução:

"1[Watts está em Los Angeles] e 2[está, portanto, nos EUA] e logo 3 faz parte de uma nação plenamente industrializada]. Assim, 4 ele não faz parte do Terceiro Mundo], pois 5 o Terceiro Mundo é caracterizado por nações em desenvolvimento] e 6 nações em desenvolvimento não estão por definição, plenamente industrializados]."

Diagrama de Argumento. Exemplo

Diagramação:

Diagrama de Argumento. Observação

- Em algumas sentenças aparecem locuções que não podem ser desmembradas em seus componentes:
 - ou...ou, se....então...., somente se, contanto que, se e somente se, nem...nem, a menos que, até, quando, antes que;
 - "desde que" e "porque" quando não utilizados como indicadores de premissas.

Diagrama de Argumento. Exemplo

"O Cheque perderá a validade a menos que ele seja descontado dentro de 30 dias. O cheque está datado de 2 de setembro e hoje é 6 de outubro. Portanto, o cheque não vale mais. Você não pode descontar um cheque que não vale. Assim, você não pode descontar este cheque."

Diagrama de Argumento. Exemplo

Solução:

"1 O Cheque perderá a validade a menos que ele seja descontado dentro de 30 dias]. 2[O cheque está datado de 2 de setembro] e ³[hoje é 6 de outubro]. Portanto, 4 o cheque não vale mais]. ⁵ Você não pode descontar um cheque que não vale]. Assim, ⁶[você não pode descontar este cheque]."

Diagrama de Argumento. Exemplo

Diagramação:

- Um argumento convergente contém várias etapas independentes que sustentam a mesma conclusão.
- O diagrama contém pelo menos um número com mais de uma seta apontando para uma mesma sentença.

"Os Silva devem estar em casa. A porta da frente está aberta, o carro está na entrada da garagem e a televisão está ligada, pois eu posso ver a sua luminosidade através da janela."

"¹[Os Silva devem estar em casa]. ²[A porta da frente está aberta], ³[o carro está na entrada da garagem] e ⁴[a televisão está ligada], pois ⁵[eu posso ver a sua luminosidade através da janela]."

Diagramação

Diagrama de Argumento. Enunciados Implícitos

Alguns argumentos são expressos de modo incompleto, o autor espera que os leitores percebam uma conclusão ou uma premissa não- estabelecida.

Exemplo:

"Estava certo que nenhum dos conselheiros do presidente tinha vazado a informação e, no entanto, realmente ela tinha sido vazada para a imprensa."

Diagrama de Argumento. Enunciados Implícitos: Exemplo

"¹[Estava certo que nenhum dos conselheiros do presidente tinha vazado a informação] e, no entanto, ²[realmente ela tinha sido vazada para a imprensa]."

conclusão implícita:

³[Alguém, além dos conselheiros do Presidente, vazou a informação para a imprensa.]

Diagrama de Argumento. Enunciados Implícitos: Exercício

"Se você fosse meu amigo, não falaria por trás de mim."

Solução:

- "¹[Se você fosse meu amigo, não falaria por trás de mim]."
 - premissa e conclusão não-estabelecidas:
 - premissa: ²[Você fala por trás de mim]
 - a conclusão: 3[Você não é meu amigo]

Avaliação de um Argumento

- Principal propósito de um argumento:
 - Demonstrar que uma conclusão é provável ou verdadeira.
- Como avaliar que um argumento atinge ou não esse propósito? (Se ele é válido?)

Avaliação de um Argumento

- Critérios usados para avaliar um argumento:
 - Se todas as premissas são verdadeiras;
 - Se, dada a verdade das premissas, a conclusão é ao menos provável;
 - Se as premissas são relevantes para a conclusão;
 - Se o argumento é indutivo e sua conclusão é duvidosa.

Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos

- Os argumentos podem ser classificados em duas_categorias:
 - Argumento dedutivo
 - Argumento cuja conclusão deve ser verdadeira se suas premissas básicas forem verdadeiras.
 Em outras palavras - um argumento é dedutivo quando: "se as premissas forem verdadeiras é impossível a conclusão ser falsa".
 - Argumento indutivo (ou dedutivo inválido)
 - Argumento cuja conclusão não é necessária, dadas suas premissas básicas.

Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos

Tradicionalmente o termo dedutivo inclui qualquer argumento que tenciona que a conclusão seja verdadeira dada a verdade das premissas. Neste sentido, diferencia-se os argumentos em Válidos e Inválidos

Validade e Probabilidade Indutiva.

Argumentos Dedutivo e Argumentos Indutivos. Exemplos

- Todo homem é mortal Sócrates é um homemonia pedinido Sócrates é mortal Sócrates é mortal
- 2). Frequentemente quando chove fica ndutive Dedutive nublado
 - Está chovendo
 - ♦ Está nublado

Validade e Probabilidade Indutiva.

Argumentos Dedutivo e Argumentos Indutivos. Exercícios

- **1**)
 - Não há registros de seres humanos com mais de 5 metros de altura.
 - Nunca tivemos um ser humano com mais de 5 metros de altura.
- **2**)
 - . Alguns porcos tem asas
 - . Todas as coisas aladas gorjeiam
 - ♦ Alguns porcos gorjeiam

Validade e Probabilidade Indutiva.

Argumentos Dedutivo e Argumentos Indutivos. Exercícios

- **3**)
 - . Se houver uma guerra nuclear, a civilização será destruída.
 - . Haverá uma guerra nuclear
 - A civilização será destruída por uma guerra nuclear.
- **4**)
 - . O cloreto de potássio é, quimicamente, muito similar ao sal de cozinha (cloreto de sódio).
 - O Cloreto de potássio tem sabor igual ao do sal de cozinha.

- Os conceitos de argumento dedutivo e indutivo são independentes da real veracidade ou falsidade das premissas e conclusão.
- A probabilidade de uma conclusão dado um conjunto de premissas básicas chama-se probabilidade indutiva.
- A probabilidade indutiva de um argumento dedutivo é igual a 1.
- A probabilidade indutiva de um argumento indutivo é menor que 1.

- Um argumento dedutivo no qual todas as premissas básicas são verdadeiras dizemos que é um argumento <u>correto</u>.
- Um argumento correto estabelece com certeza que sua conclusão é verdadeira (se verifica).
- Quando a probabilidade indutiva de um argumento indutivo é alta dizemos que ele é fortemente indutivo.

Argumento Dedutivo

Válido:

Quando as premissas são verdadeiras, a conclusão sempre é verdadeira

Inválido: Quando não é válido © *Argumento Indutivo*

Forte:

Premissas
fornecem uma
alta chance de
uma conclusão
verdadeira

Fraco:

Premissas
fornecem uma
baixa chance de
uma conclusão
verdadeira

- A lógica Clássica é Dedutiva. Está interessada em, a partir de proposições supostamente verdadeiras, atingir conclusões verdadeiras.
- Na vida real, nem sempre temos esse tipo de garantia. Muitas vezes raciocinamos por analogia, ou usando probabilidade.

Exemplo:

A vacina funcionou bem nos ratos. A vacina funcionou bem nos macacos. Logo, vai funcionar bem nos humanos.

- Surge espaço para a Lógica Informal, a qual trabalha com argumentos indutivos: sendo as premissas verdadeiras, a conclusão é provavelmente verdadeira.
- O problema é: qual o grau de probabilidade para que um argumento indutivo seja considerado Forte, ou Fraco? Qual deve ser o limite para diferenciá-los?

As vezes, quando chove fica nublado Está chovendo Está nublado

A maioria das vezes, quando chove fica nublado Indutivo Forte

Está chovendo Está nublado

Argumento Dedutivo e Argumento Indutivo: Exercícios

- Avalie os seguinte argumentos como indutivo ou dedutivo:
- **1**)
- . Todos têm um e um só pai biológico.
- . Os irmãos têm o mesmo pai biológico.
- . Ninguém é pai biológico de si mesmo.
- Não há pai biológico que seja também seu irmão.

Argumento Dedutivo e Argumento Indutivo: Exercícios

- **2**)
- . Os visitantes da china quase nunca contraem malária no país.
- . José está visitando a China.
- José não contrairá malária na China.
- 3)
- . Eu sonho com monstros.
- . Meu irmão sonha também com monstros.
- Todas as pessoas sonham com monstros.

Argumento Complexo

Exercícios

- Diagramar e avaliar os seguintes argumentos:
- "Todos os seus amigos são delinquentes. Assim, como José é um delinquente, ele deve ser um dos seus amigos delinquentes. Mas os delinquentes não podem ser bons amigos. Portanto, José não é um bom amigo para você."
- 2) "Todos os marcianos são bons beijadores. Alguns Marcianos têm várias bocas. Algumas coisas com várias bocas são bons beijadores."

Argumento Complexo

Exercícios

- 3) "Todos os argumentos são ou indutivos ou dedutivos. O que você está lendo agora é um argumento. Este argumento não é indutivo. Este argumento é dedutivo."
- 4) "Não existe o maior número primo. Mas de todos os números primos sempre podemos imaginar que certamente existe um maior. Logo, existem números primos maiores do que qualquer um que possamos imaginar."

Argumentos

- A Lógica Formal estuda o argumento dedutivo no sentido tradicional (dedutivo: qualquer argumento que tenciona que a conclusão seja verdadeira, dada a verdade das premissas)
- O objetivo da Lógica Formal é mostrar a validade de certas <u>formas de argumento</u> (estruturas).
- O estudo das formas de argumento facilita a verificação da validade dos argumentos.
- Na Lógica formal estudaremos formas básicas do raciocínio lógico de um ponto de vista sintático (gramatical) e em seguida os princípios semânticos que justificam estas formas de raciocínio.