7	
=>	and I live of everything
7	Continue function defined extegriting
	delived for Positive real non
	gamma function difined everything Cucept mon-positive integers defined for Positive real now Gamma function: *[e**x**du
_ - >	Converts ses function seal variable
	to a function Complex Vaxiable 8
-	Converts de function seal variable to a function Complex Variable se Cin come Gees ingonaxy partis D
· ·	
	Advantage of Esplace.
->	Jurns Dillexential equation into
	algebraic equation and Convolution
	Turne Differential equation into algebraic equation and Convolution into multiplication intoplace domain
7	et, tant-) not exponential oxdex
-)	Piecowie cont. on [0,00)
->	S-Shifting theorem - Shifting happens
	in Sdomain
4 1	
7	Transform of desirative > Same thing
4	os above.
-	

	•
-7	This can be extended of for nih order derivative.
	derictive.
	Cheravano
	initial value problems
	Trital Value PROSTORMS
1	ica dilla lila untion along with
	is a differential equation along with an appropriate initial Condition
	an appropriate initial concerns
-	D'Unit Step fanction
	no 11 1 de seile lindiase
->	Asso called as Heaviside function
->	Discout function
-7	O for my and
En.	Voltage suitched on loff. Fox Calculations it is possible. Capculer
	los Calculations 11 15 pessione
	Unit stepfunction is found bounded. Dut
₽ P	its not stable lose because the absolut
	its not stable to second second
10.7	integral is infinite.
-	D , , , , , , , , , , , , , , , , , , ,
	Dioac Delfa.
	Sin alleath
ausile	isy O(f-a) > (o otherwise.
fai	isy of (f-a) > (h a L E L ath oftenise.
	8(t-a) = lim g(t-a).

7	Disa Delfa is not a femation, as it has nothing to do with real line
	and everything to do with what occur
	if we integrate wonit against stanster
-	function.
4	Convolution Theorem
	COMYDIMETISTI TRESSEM
->	Greometrical > asea
→ →	Physical -> Amount.
ب	Convolution is a mathematical operso
	on two function that produces a
	thirst function expossing how the
	thirst function expossing how the shape of one is modified by the other
-5	imp digital Signal Processing
->	commutative, dist sibulive, also ciativ

	Periodic function.
	+(xxT)= fix T - non Bear posilio
-	+ (xc+1) = +110) - non Bero positi
	E . T /
	Fousies Tonnyoum
	To find difficult Integral.
->	If the period used in c to ct 2t is
	If the period used in c to ct 2t is infinity fouriex series changes to fourier Transform
	Jamesound.
Hion	Sarjes
	Foxuriex Series - Enousion of
	Unlamilier Constinu in terms of
	Formilier Serier - Expansion of Unfamilier function in terms of the periodiz functions. Basic
	pesione fant froms.
	The Land Translation is and
	The foursier Transform is an important image procession tool which is used to decompose an image into its Sine and Cosine Components.
3	Impostant image procession root Linear
	is used to decompose an image into its
	Sine and Cosine Component.
->	Foursies Transform decomposes any function into sum of basic simple sinusoids.
	function into sum of basic
	cimple sinusoids.

-	
	Self seupsoxal ox Hankel transform Transform of desivative
	9/ f (e) is Cont. f (t) is pute Diecewise Continuosly differentiable fA) f(t) are absolutely integrable in (-0,00) and lim f(t) =0 then t->to
	F (fix) = (is) F(s)
3	
4	
4	
1	man de la contraction de la co
<u> </u>	
-	