Continuum-Limit Extrapolation of the Pure SU(3) Deconfinement Temperature Using Bayesian Model Averaging

Kai Ebira, University of Utah

with Coleman Rohde, David Clarke, Daeton McClure

Lattice Field Theory: The Basics

Definition: LFT is a non-perturbative approach to quantum field theory on a discretized spacetime lattice

- Replaces continuous spacetime with a grid of points
- Can be simulated on a computer

Enables numerical calculations of quantum field theories, especially useful for

strong interactions

Lattice Parameters and Their Implications

Lattice spacing a: Distance between adjacent points on the lattice

Smaller a→ closer approximation to continuum

Finite lattice size L: Total extent of the lattice

• Larger $L \rightarrow$ better representation of infinite volume

Lattice Parameters and Their Implications

Reaching the Continuum Limit

Definition: Process of taking lattice spacing $a \rightarrow 0$

Importance:

• Removes discretization artifacts $X_{Latt} = X_{Cont} + a^2c_1 + \sum_{i=2}^{\infty} a^{2i}c_i$

This talk: Focus on continuum-limit extrapolation of SU(3) deconfinement temperature

Gauge Observables

Plaquettes: Elementary closed loops on the lattice

Used to construct the gauge action

Polyakov loops: Measurement of loops wrapping around the temporal direction

- Order parameter for **deconfinement transition**
- Used for: $\beta_c o T_c$

$$P_{ec x} \equiv rac{1}{3} {
m tr} \prod_{t=0}^{N_{ au}-1} U_4(ec x,t) \, .$$

Sampling Gauge Configurations

Use Markov chains to sample SU(3) configurations

$$C_1 \to C_2 \to \ldots \to C_n$$

ullet Because $C_i \leftarrow C_{i-1}$, there is inherent correlation

Want: Effectively independent configurations, separate measurements with many intermediate configurations (500)

Near the phase transition → even more intermediate configurations

Computational Challenges

Computational complexity:

Scales with volume

$$Cost \propto N_s^3 \cdot N_{ au}$$

- Scales with decreasing quark mass
- Requires repeating measurements at different spacings

$$X_{Latt} = X_{Cont} + a^2c_1 + \sum_{i=2}^{\infty}a^{2i}c_i$$

	Pure SU(3) (infinite quark mass)	Nf 2+1 HISQ (physical quark mass)
Hardware	A100	A100
Dimensions	72^3 * 12	32^3 * 10
Time	19 Hrs	72 Hrs
Configurations	1000	48

Parallel Computing and Optimizations

Parallel Computing Strategies:

- Use of MPI (Message Passing Interface)
- Use of GPUs (massively parallel processors)

C++ Optimizations:

- Low-level control for performance optimization
- Custom memory allocators for lattice objects
- Cache-friendly data structures
- Vectorization of critical code sections

Pure SU(3)	A100	RTX 3090
Configurations	1000	1000
Dimensions	72^3 * 12	72^3 * 12
Time	19 Hrs	72 Hrs

Image credit: NVIDIA

Finite-Size Effects

Lattice spacing and extent introduce systematics:

- Minimum distance (lattice spacing)
- Maximum distance (lattice extent)

Aim to check if these systematics are more than our statistical error

Check our measurements over increasing N_s with fixed $N_ au$ to determine this

We find that finite-size effects shifts our central value by about 0.1%

Finite-Size Scaling in SU(3)

$first\ order \Rightarrow \chi_{max} \sim N_s^3$

Fukugita, M., Okawa, M., & Ukawa, A. (1989). Order of the deconfining phase transition in SU(3) lattice gauge theory. *Phys. Rev. Lett.*, 63(17), 1768–1771. doi:10.1103/PhysRevLett.63.1768

Bayesian Model Averaging (BMA)

$$\langle a
angle = \sum_{M} \langle a
angle_{M} P(M|D)$$
 $\sigma_{a}^{2} = \langle a^{2}
angle - \langle a
angle^{2}$

BMA is a statistical technique that aims to account for model uncertainty by combining predictions from multiple models, weighted by their estimated likelihoods

$$= \sum_{M} \sigma_{M}^{2} P(M|D) + \sum_{M} \langle a \rangle_{M}^{2} P(M|D) - \langle a \rangle^{2}$$
"Statistical noise" "model spread"

Summary of Statistics

N_tau	6	8	10	12	14	16	18	20
N_conf	1.0e4	1.0e4	1000	1.0e4	~860	8000	4000	1300

(One to two orders of magnitude fewer than literature)

Francis, A., Kaczmarek, O., Laine, M., Neuhaus, T., & Ohno, H. (2015). Critical point and scale setting in SU(3) plasma: An update. *Phys. Rev. D*, 91(9), 096002. doi:10.1103/PhysRevD.91.096002

Continuum-Limit Extrapolation

$$egin{aligned} X_{Latt} &= X_{Cont} + a^2 c_1 + \sum_{i=2}^{\infty} a^{2i} c_i \ & T = rac{1}{a(eta) N_{ au}} \end{aligned}$$

Literature w/ BMA	0.7420(54)
Literature	0.7457(45)

Francis, A., Kaczmarek, O., Laine, M., Neuhaus, T., & Ohno, H. (2015). Critical point and scale setting in SU(3) plasma: An update. *Phys. Rev. D*, 91(9), 096002. doi:10.1103/PhysRevD.91.096002

Literature	SRI w/ RW	SRI w/ Splines
0.7457(45)	0.724(15)	0.7429(50)

Summary

- Both RW and spline results agree with literature value of Td
- Found some modest finite-size effects
- Literature error is arguably slightly underestimated according to BMA

Thank you!