Digital Signal Processing

ICT 41205 Digital Control Systems

Nimal Skandhakumar

Faculty of Technology
University of Sri Jayewardenepura

What is Digital Signal Processing (DSP)?

- Analog-to-digital conversions
- Perform processing on these numbers with a digital processor
- Digital-to-analog conversion

- Represent signals by a sequence of numbers
 - Analog input Analog output
 - Digital recording of music
 - Analog input Digital output
 - Touch tone phone dialling
 - Digital input Analog output
 - Text to speech

Why do we need a DSP?

- DSP processor is designed for high speed data-manipulation
 - Audio, comms, image manipulation, data acquisition and control
- Cannot use a general-purpose microprocessor
 - Operations done in few clock cycles (e.g. Y=mX+C)
- Most DSPs have a single operation
 - Does Y=mX+C in one operation
- DSP will perform in a single cycle implementing all shift and add operations in parallel
 - Makes chip much more complex
 - If the DSP is not fast enough then an analogue circuit or a specialised DSP chip is required

DSP – Applications

- Sound applications
 - Compression, enhancement, special effects, synthesis, recognition
 - Cell Phones, MP3 Players, Movies, Dictation, Text-to-speech
- Communication
 - Modulation, coding, detection, equalization, echo cancellation
 - Cell Phones, dial-up modem, DSL modem, Satellite Receiver
- Automotive

• ABS, GPS, Active Noise Cancellation, Cruise Control, Parking

DSP – Applications

- Medical
 - Magnetic Resonance, Tomography, Electrocardiogram
- Military
 - Radar, Sonar, Space photographs, remote sensing
- Image and Video Applications
 - DVD, JPEG, Movie special effects, video conferencing
- Mechanical
 - Motor control, process control, oil and mineral prospecting

DSP – Advantages

- High Accuracy
 - Digital circuits are less sensitive to tolerances of components.
- Cheaper
 - Digital circuits can be reproduced easily in large quantities at lower cost.
- Flexibility
 - DSP System can be easily reconfigured only by changing the program.
- Ease of storage
 - Digital signals are easily stored without loss of quality of signal reproduction.
- High sophistication
 - Sophisticated signal processing algorithms can be implemented easily.

DSP – Disadvantages

Bandwidth

• The digital communications require a greater bandwidth than analogue to transmit the same information.

Limiting speed of processors

 When analogue signal is changing very fast, it is difficult to convert digital form (beyond 100KHz range).

Loss of information

Information loss during sampling and quantization round-off errors.

Non-reversible

• When the signal is weak, within a few tenths of millivolts, we cannot amplify the signal after it is digitised.

DSP – Architecture

DSP

ADC

ADC

Memory

Ports
serial
Parallel

- DAC and ADC
- Ports
 - To communicate with other devices through a serial or a parallel port
- Memory
 - Holds the data and instructions to be used
- Central ALU
 - Performs the major functions very fast
- Aux ALU
 - Maybe present and performs similar operations in parallel

DSP – Hardware

• DSPs can be purchased in three forms:

• In DSP, the term "core" refers to the section of the processor where the key tasks are carried out, including the data registers, multiplier, ALU, address generator, and program sequencer.

2. as a processor

 A complete processor requires combining the core with memory and interfaces to the outside world.

3. as a board level product

 These have such features as extra memory, A/D and D/A converters, EPROM sockets, multiple processors on the same board, and so on.

DSP – Techniques

- Most DSP techniques are based on a divide-and-conquer strategy called superposition.
- The signal being processed is broken into simple components, each component is processed individually, and the results reunited.
- This approach has the tremendous power of breaking a single complicated problem into many easy ones.
- Superposition can only be used with linear systems, a term meaning that certain mathematical rules apply.
- Fortunately, most of the applications encountered in science and engineering fall into this category.

DSP – Techniques

- There are 2 important concepts in linear systems DSP.
- Synthesis
 - Combining multiple signals through scaling and addition.
- Decomposition
 - Take one signal and break it into multiple signals.
- E.g.
- The figure shows three signals: $x_0[n]$, $x_1[n]$ and $x_2[n]$ are added 2018/10/08 form a fourth signal, x[n].

DSP - Programming

- High level language programmes easier to write/Assembler faster execution
- Can combine both in a DSP programme
- Time critical sections in assembler
- Other sections in HLL

DSP - Tools

Simulators

- Software implementation of the chip
- Used to try out programme design before a more costly implementation

Emulators

- Allows direct control and debug the results of instructions on a DSP
- Emulator runs on PC but exerts control over DSP
- Possible to see all the internal changes in the device at each step
- Can execute instructions one step at time and check outputs such as voltage levels to monitor affects etc.

DSP - Tools

Debugger

- Has a user interface on PC to modify and control the execution on the chip
- Contents of DSP processor memory is loaded into debugger interface
- Loaded from either emulator or serial comms link to DSP
- Used to display programme execution info in a useful format for the programmer
- Advantage over emulators allows user to operate in real time and designer to see performance of chip in operation

Fundamentals of Radio Communications

What is Communication?

What is a radio wave?

- Energy is pumped into the atmosphere to compress molecules together.
- The high point of the energy which squashes the molecules closer together is called the crest of the wave.
- The low point of the energy, when the molecules are far apart, is called the trough of the wave.
- The number of waves passing by in a single second that would be the frequency.
- The distance between the same positions on two waves is the wavelength.

AM Radio

ubmarine comms

Propagation

- Radio waves propagate differently depending on their wave length
 - Line of sight
 - VHF/UHF bands travels in a straight line
 - Curve around the horizon or the curvature of the Earth
 - Lower short wave
 - Bounces off a top layer of the atmosphere
 - Higher short wave

Repeaters

2018/10/08

- The repeater needs to receive the frequency that the caller transmitted with.
- Then the repeater re-transmits that same message down to the user on the other side of the mountain.
- It works similarly to the satellite discussed with VHF radio propagation.

19

Modulation

- A carrier wave is a pure wave of constant frequency, like a sine wave.
- To include speech information or data information, another wave needs to be imposed, called an input signal, on top of the carrier wave.
- This process of imposing an input signal onto a carrier wave is called modulation.

Modulation

- Why have carrier waves in modulation at all? Why not simply use the input signal directly?
- The input signals could be carried (without a carrier wave) by very low frequency electromagnetic waves.
- The problem, however, is that this will need quite a bit of amplification in order to transmit those very low frequencies.
- The input signals themselves do not have much power and need a fairly large antenna in order to transmit the information.

Modulation

- Modulation changes the shape of a carrier wave to somehow encode the speech or data information that we were interested in carrying.
- There are different strategies for modulating the carrier wave based on the basic properties of any wave:
 - 1. Amplitude the height of the wave
 - 2. Frequency a number of waves passing through in a given second
 - 3. Phase where the phase is at any given moment.

Amplitude Modulation (AM)

- Tweak the height of the carrier.
- If an input signal's height varies with the loudness of a user's voice and then adds this to the carrier.
- The carrier's amplitude will change corresponding to the input signal that's been fed into it.

Frequency Modulation (FM)

- Frequency of an input signal can also be changed.
- If this input signal is added to the pure carrier wave, it will thereby change the frequency of the carrier wave.
- In that way, users can use changes of frequency to carry speech information.

Digital Modulation

- Modulation schemes can be analog or digital.
- In digital modulation scheme, voice is sampled at some rate and then compressed and turned into a bit stream.
- This in turn is created into a particular kind of wave which is then superimposed on the carrier.

How does an FM Transceiver work?

Channel Spacing

- Radio spectrum is very limited.
- Every user of radio spectrum needs a "pipeline" or block of pipelines in order to communicate over.
- These pipelines are called channels and they are differentiated by their frequency.

- Wideband channels occupy 25 kilohertz of radio spectrum
- Narrowband channel is half that size and occupies 12.5 kilohertz
- Ultra narrowband is half the size again at 6.25 kilohertz

Multiple Access

- An RF channel occupies a certain amount of radio spectrum.
- How to efficiently use of this small?
- There are two different techniques:
 - Frequency division multiple access (FDMA)
 - There is only one conversation and one user at a time per radio channel. More radio channels require more frequencies.
 - Time division multiple access (TDMA)
 - It allows two users to occupy the same channel at what appears to them to be the same time.
 - This process is so fast that each user thinks they have exclusive use of the frequency channel.

2018/10/08 ICT 41205