Workflow for Identifying Key Genes in Severe Asthma Gal Carmely and Ran Benayoun

Disease of Choice

Asthma

Biological Questions to Answer

- What are the key differentially expressed genes (DEGs) between mild-moderate and severe asthma?
- How do these genes contribute to asthma progression?
- Can specific genes be used as biomarkers for diagnosing severe asthma?
- What pathways are involved in the transition from mild-moderate to severe asthma?
- Are there potential drug interactions that may influence these genes?

Approach Using the Dataset

- Use transcriptomic data from the **GEO** database to identify DEGs.
- Perform Gene Set Enrichment Analysis (GSEA) to find pathways related to asthma severity.
- Validate findings using an external dataset.

Secondary Analysis Plan

- **Pathway enrichment analysis** to determine which biological processes are altered in severe asthma.
- ROC (Receiver Operating Characteristic) analysis to assess the diagnostic power of identified genes.
- Analyze potential drug interactions with the key genes using the Comparative Toxicogenomics Database (CTD).

Table of Collected Datasets

Dataset Accession ID	Link to Dataset	Type of Data	Gene Expression Format	Data Description
CTD Database	https://ctdbase.org/	Chemical- Gene	N/A	Interaction data between asthma-related genes and drugs
		Interactions		
GSE201955	https://www.ncbi.nlm.nih.gov/ge o/query/acc.cgi?acc=GSE201955	Bulk RNA-Seq	Raw count	DNA methylation signatures in airway cells (epithelial) from adult children of asthmatic mothers reflect subtypes of severe asthma 42 non-asthma, 88 asthma
GSE58434	https://www.ncbi.nlm.nih.gov/ge o/query/acc.cgi?acc=GSE58434	Bulk RNA-Seq	Raw Count	Fatal Asthma (n=6) vs. Control (n=12) Human Airway Smooth Muscle Transcriptome Changes in Response to Vitamin D or Albuterol
GSE152004	https://www.ncbi.nlm.nih.gov/ge o/query/acc.cgi?acc=GSE152004	Bulk RNA-Seq	Raw Count	derived from nasal epithelium cells (NECs) contains 257 asthmatic and 136 control subjects

GSE used in:

<u>Development and validation of asthma risk prediction models using co-expression gene modules and machine learning methods</u>

https://www.nature.com/articles/s41598-023-35866-2#Sec2

Based on methods:

<u>Identification of key genes and pathways between mild-moderate and severe asthmatics via bioinformatics analysis</u>

https://www.nature.com/articles/s41598-022-06675-w#Sec11