Travaux Dirigés de Physique

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

TD n° 8	Oscillateurs électromécaniques du second ordre en régime transitoire	1	
Exercice n° 1 - Interprétation cinématique d'un tracé			
Exercice n° 2 - H	laut-parleur	1	
Exercice n° 3 - N	Masse au bout d'un ressort vertical	1	
Exercice n° 4 - N	Nasse oscillant sur un plan incliné	2	
Exercice n° 5 - E	nergie d'un oscillateur harmonique	2	
Exercice n° 6 - C	Oscillateur à deux ressorts	2	
Exercice n° 7 - N	Nodes propres	3	
Exercice n° 8 - C	Condition de glissement [®]	3	
Exercice n° 9 - P	Pendule électrostatique	3	
Exercice n° 10 - N	Mesure de viscosité avec un pendule simple	4	
Exercice n° 11 - R	Régime transitoire d'un ressort vertical	4	
Evercice nº 12 - F	tude d'un portrait de phase	4	

TD N° 8

Systèmes électriques et mécaniques en régime transitoire

FIGURE 8.1 – Système d'amortissement mécanique d'oscillations de la tour Taipei 101 à Taïwan.

Exercice n° 1 - Interprétation cinématique d'un tracé

On représente l'accélération a(t) d'un oscillateur harmonique sur la figure ci-contre.

- 1. Parmi les points numérotés de cette figure, lequel correspond à la situation où l'oscillateur se situe en $-X_m$?
- 2. Lorsque le point 4 est atteint, la vitesse de l'oscillateur est-elle positive négative ou nulle?
- 3. Lorsque le point 5 est atteint, la position de l'oscillateur est-elle X_m , $-X_m$, 0, entre $-X_m$ et 0 ou entre 0 et X_m ?

Exercice n° 2 - Haut-parleur

Un haut-parleur produit un son par l'intermédiaire de l'oscillation supposée harmonique d'une membrane dont l'amplitude est limitée à $1,00~\mu m$.

- 1. Pour quelle fréquence atteint-on une accélération a de la membrane égale à \overrightarrow{g} en norme?
- 2. Pour des fréquences plus élevées que celle trouvée à la question précédente, la norme a de l'accélération est elle plus grande ou plus petite que $||\overrightarrow{g}||$?

Exercice n° 3 - Masse au bout d'un ressort vertical

Considérons un objet M, supposé ponctuel, de masse m, accroché à un ressort de raideur k et de longueur à vide ℓ_0 , se déplaçant sans frottements le long de l'axe vertical Oz. On note $\overrightarrow{g} = g\overrightarrow{u_z}$ l'accélération de la pesanteur.

- (a) Etablir l'équation différentielle vérifiée par la cote verticale z(t) de M.
- (b) En déduire la position d'équilibre $z_{\text{éq}}$.
- (c) Posons $u(t) = z(t) z_{\text{éq}}$. Quelle est l'équation différentielle dont u(t) est solution? Commenter le résultat obtenu.
- (d) L'objet est lâché à t=0 depuis sa position d'équilibre avec une vitesse initiale $\overrightarrow{v}(0)=v_0\overrightarrow{u_z}$. Déterminer l'expression de u(t) à chaque instant.

2. Etude énergétique

Le mouvement de l'objet étant vertical, son énergie potentielle comporte non seulement le terme d'énergie potentielle élastique, mais aussi une énergie potentielle de pesanteur $E_{pp}=-mgz$.

- (a) Montrer que l'énergie potentielle totale peut être mise sous la forme $E_p = \frac{1}{2}ku^2 + \text{cte.}$
- (b) En déduire l'expression de l'énergie mécanique $E_{\rm m}$ en fonction de $m,\,v_0,\,\omega_0$ et d'une éventuelle constante additive. Commenter le résultat obtenu.

Exercice n° 4 - Masse oscillant sur un plan incliné

On considère un objet M, dont le poids vaut $||\overrightarrow{P}|| = 14,0$ N, pouvant glisser sans frottements sur un plan incliné d'un angle de $\theta = 40,0^{\circ}$ par rapport au plan horizontal. Cet objet est relié au sommet du plan incliné par un ressort supposé parfait de longueur à vide $\ell_0 = 0,450$ m et de constante de raideur k = 120 N.m⁻¹.

- 1. Déterminer la position d'équilibre de l'objet le long du plan incliné en choisissant pour origine du repère d'étude le sommet de celui-ci.
- 2. Si l'on tire l'objet légèrement vers le bas depuis sa position d'équilibre puis qu'on le lâche, quelle est la période des oscillations observées?

Exercice n° 5 - Energie d'un oscillateur harmonique

Une particule de masse m=10,0 g effectue un mouvement d'oscillations harmoniques d'amplitude 2 mm, d'accélération maximale absolue $a=8,0.10^3$ m.s⁻² et de phase à l'origine inconnue.

- 1. Déterminer successivement :
 - (a) la période du mouvement,
 - (b) la vitesse maximale de la particule,
 - (c) l'énergie mécanique totale de l'oscillateur.
- 2. Quelle est la norme de la force résultante subie par la particule lorsque celle-ci se trouve :
 - (a) à son élongation maximale?
 - (b) à la moitié de son élongation maximale?

Exercice n° 6 - Oscillateur à deux ressorts

On reprend l'exemple de l'expérience de cours n°1 dans laquelle une masselotte astreinte à se déplacer sans frottements sur un banc à coussins d'air est reliée de part et d'autre à deux ressorts identiques de longueur à vide ℓ_0 et de constante de raideur k.

Lorsque le système est à l'équilibre, les longueurs des ressorts sont identiques et valent $\ell_{\text{éq}}$, tandis que la masse se trouve à l'origine O de l'axe de translation orienté selon $\overrightarrow{u_x}$. On se place dans le référentiel terrestre, considéré comme galiléen. A t=0, le mobile est abandonné sans vitesse initiale d'une position $x_0 \neq 0$. On note L la distance fixe AB.

- 1. Etablir l'équation différentielle vérifiée par l'abscisse $\boldsymbol{x}(t)$ de la masse.
- 2. Montrer que ce système constitue un oscillateur harmonique dont on précisera la pulsation ω_0 et la période T_0 en fonction de k et m.
- 3. Donner l'expression de x(t) en tenant compte des conditions initiales.
- 4. Donner les expressions de l'énergie potentielle E_p , de l'énergie cinétique E_c et de l'énergie mécanique E_m du système en fonction des grandeurs k, x_0 , ω_0 et t. Par convention, l'origine de l'énergie potentielle élastique correspondra à la position d'équilibre : $E_p(x=0)=0$. Représenter l'allure de ces énergies en fonction du temps sur un même graphe.

Exercice n° 7 - Modes propres

Considérons deux anneaux M_1 et M_2 , de même masse m, assimilés à des points matériels, et astreints à glisser sans frottements sur une tige horizontale dans la direction Ox. L'anneau M_1 est accroché à un point fixe O, pris comme origine du repère d'étude, par l'intermédiaire d'un ressort de raideur k et de longueur à vide ℓ_0 . L'anneau M_2 est quant à lui accroché au mobile M_1 par l'intermédiaire d'un second ressort identique au précédent, son autre extrémité restant libre.

- 1. Déterminer les positions d'équilibre respectives $x_{1,\text{éq}}$ et $x_{2,\text{éq}}$ de M_1 et M_2 .
- 2. Etablir les équations différentielles du mouvement vérifiées par les positions $x_1(t)$ et $x_2(t)$ des mobiles M_1 et M_2 par rapport à O. On notera que ces équations différentielles sont couplées, c'est-à-dire qu'elles contiennent toutes les deux à la fois des termes en $x_1(t)$ et des termes en $x_2(t)$.

- 3. On pose $X_1(t)=x_1(t)-x_{1,\text{\'eq}}$ et $X_2(t)=x_2(t)-x_{2,\text{\'eq}}$
 - (a) Quel nom donne-t-on à ce type de variable? Que représentent-elles? Justifier l'intérêt de les introduire.
 - (b) On s'intéresse aux mouvements particuliers d'oscillations harmoniques possibles des deux anneaux à la même pulsation ω en l'absence de frottements, appelés modes propres. En notant $X_1(t) = X_{1m}\cos(\omega t + \varphi_1)$ et $X_2(t) = X_{2m}\cos(\omega t + \varphi_2)$, montrer qu'on obtient dans ce cas le

système :

$$\begin{cases} (2\omega_0^2 - \omega^2) X_1 - \omega_0^2 X_2 = 0 \\ -\omega_0^2 X_1 + (\omega_0^2 - \omega^2) X_2 = 0 \end{cases}$$

où ω_0 est une grandeur qu'on explicitera en fonction de k et m.

(c) En déduire les solutions ω_1 et ω_2 correspondant aux valeurs de ω recherchées.

Exercice n° 8 - Condition de glissement®

On considère dans cet exercice une masse placée sur un table oscillant horizontalement et sinusoïdalement ¹.

Quelle est l'amplitude maximale que l'on peut donner au mouvement de cette table avant d'observer le glissement de la masse sur celle-ci?

Exercice n° 9 - Pendule électrostatique

- 1. Déterminer l'équation différentielle du mouvement d'un pendule électrostatique de masse m, de longueur ℓ , portant une charge q positive et placé dans un champ électrostatique uniforme \vec{E} horizontal, orienté dans le sens des θ croissants. Le référentiel d'étude est supposé galiléen.
- 2. Déterminer l'angle θ_{eq} correspondant à la position d'équilibre du pendule.
- 3. Dans le cas de faibles oscillations autour de la position d'équilibre, déterminer la période des oscillations.

Exercice n° 10 - Mesure de viscosité avec un pendule simple

Une sphère de masse m et de rayon r, assimilée à un point matériel, est attachée à l'extrémité d'un fil inextensible, sans masse, de longueur ℓ . Elle peut osciller dans un milieu liquide dans lequel elle subit une force de frottement fluide $\overrightarrow{f} = -6\pi\eta r \overrightarrow{v}$ où \overrightarrow{v} est la vitesse de la sphère et η la viscosité du milieu. La position de la sphère est repérée par l'angle $\theta(t)$ formé à l'instant t par le fil avec la verticale descendante. On néglige la poussée d'Archimède devant les autres forces mises en jeu et on suppose que le fil reste constamment tendu au cours du mouvement.

- 1. Déterminer l'équation différentielle vérifiée par θ .
- 2. Dans le cas d'oscillations de faible amplitude, exprimer la pseudo-pulsation Ω en fonction des données.
- 3. En déduire l'expression de la viscosité η en fonction de la pseudo-période T, de la période propre T_0 en l'absence d'amortissement, de m et de r.
- 1. On donne le coefficient de frottement statique f=0,50 de la masse sur la table tel que, en l'absence de glissement, $\overrightarrow{R}_T \leq f \overrightarrow{R}_N$.

Exercice nº 11 - Régime transitoire d'un ressort vertical

Un ressort, de longueur à vide l_0 et de constante de raideur k est suspendu verticalement à un support fixe dans le référentiel d'étude. A l'instant t=0, on accroche une masse m à l'extrémité inférieure du ressort et on la lâche sans vitesse initiale. La masse subit des frottements fluides du type $\overrightarrow{f}=-\alpha \overrightarrow{v}$. La position de la masse, assimilée à un point matériel M, est repérée par sa cote z mesurée sur un axe vertical descendant ayant pour origine la position initiale de la masse.

- 1. Quelle sera la position z_{eq} de la masse lorsqu'elle aura atteint l'équilibre?
- 2. Déterminer l'équation différentielle vérifiée par z. On introduira z_{eq} , la pulsation propre ω_0 et la constante $\lambda = \frac{\alpha}{2m}$.
- 3. Quels sont les trois régimes possibles? Préciser les valeurs de λ correspondant à ces régimes. Tracer l'allure de z(t) pour ces trois régimes.
- 4. On suppose maintenant que les frottements sont suffisamment faibles pour que le régime soit pseudo-périodique et pour pouvoir considérer que la pseudo-période T du mouvement est égale à la période propre T_0 de l'oscillateur. Exprimer l'évolution z(t).

Exercice n° 12 - Etude d'un portrait de phase

On considère le portrait de phase d'un oscillateur harmonique amorti composé d'une masse m=500 g soumise à une force de rappel élastique (ressort de raideur k) et à une force de frottement fluide $-\alpha \vec{v}$ (\vec{v} étant la vitesse de la masse et x est l'écart à la position d'équilibre).

L'étude est réalisée dans le référentiel du laboratoire, supposé galiléen.

- 1. Déterminer la nature du régime de l'oscillateur.
- 2. Déterminer par lecture graphique :

- (a) la valeur initiale de la position x_0 et la valeur finale de la position x_f ;
- (b) la pseudo-période T_a ;
- (c) le décrément logarithmique.
- 3. En déduire la pulsation propre ω_0 , le facteur de qualité Q de l'oscillateur, la raideur k du ressort et le coefficient de frottement fluide α .