COGNOME:	
Nome:	
Numero di matricola:	Firma:

Elementi di Teoria della Computazione

Classe 3 (matricole congrue 2 modulo 3) – Proff. Anselmo - Zaccagnino

Appello del 21 luglio 2022

Attenzione:

Non voltare la pagina finché non sarà dato il via.

Inserire i propri dati nell'apposito spazio soprastante.

Dal via, avrete **2 ore** di tempo per rispondere alle domande.

La prova consta di 5 domande aperte, per un totale di 30 punti.

Si è ammessi all'**orale** se si ottengono almeno **15/30** punti.

Le ultime pagine, riservate ad **appunti**, non saranno lette, a meno che non sia espressamente indicato.

Non è consentito l'uso o la detenzione di libri, appunti, carta da scrivere, calcolatrici, cellulari, *smartwatch* e ogni strumento idoneo alla memorizzazione di informazioni o alla trasmissione di dati; ogni violazione darà luogo alle sanzioni previste dal Codice Etico e dal Regolamento Studenti dell'Università di Salerno.

NOTA: nel seguito 'MdT' sta per 'Macchina di Turing'

I fogli con gli esercizi 1 e 2 vanno consegnati al Prof. Zaccagnino I fogli con gli esercizi 3, 4 e 5 vanno consegnati alla Prof.ssa Anselmo

Esercizio 1/8	Esercizio 2/7	Esercizio 3/6	Esercizio 4/3	Esercizio 5/6	Totale/ 30

Esercizio 3 (6 punti)

Descrivere una **MdT** deterministica a singolo nastro sull'alfabeto $\Sigma = \{a, b\}$ che "**copia**" una stringa, cioè la MdT con $w \in \Sigma^*$ in input sul nastro, deve fermarsi con **w#w** sul nastro, dove # è un simbolo non appartenente a Σ .

La descrizione deve essere fornita tramite **settupla** o **diagramma di stato** e deve essere accompagnata da una descrizione **ad alto livello** che ne giustifichi il funzionamento.

Esercizio 4 (3 punti)

- a) **Definire** il linguaggio **A**_{TM} associato al problema dell'accettazione di una MdT.
- b) Siano A e B due linguaggi. **Definire** cosa significa che $A \leq_m B$, ovvero che A è **riducibile** mediante funzione a B.
- c) Fornire l'esempio di un linguaggio **decidibile L** tale che $L \leq_m A_{TM}$. È necessario **giustificare** la risposta mostrando, in particolare, la funzione di riduzione considerata.

Esercizio 5 (6 punti)

- a) **Definire** il linguaggio **3SAT**.
- b) **Definire** il linguaggio **VERTEX-COVER**.
- c) Siano A e B due linguaggi. **Definire** cosa significa che $\mathbf{A} \leq_{\mathbf{p}} \mathbf{B}$, ovvero che A è riducibile in tempo polinomiale a B.
- d) Data la seguente formula: $\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$ mostrare l'**immagine di** $\langle \phi \rangle$ nella riduzione 3SAT \leq_p VERTEX-COVER, come studiata.
- e) Mostrare (se esiste) un **assegnamento** per le variabili che soddisfa ϕ e un **corrispondente vertex-cover** nell'immagine di $\langle \phi \rangle$.

Pagina per appunti

Pagina per appunti