Course Type	Course Code	Name of Course	L	T	Р	Credit
DC	MSC527	Machine Learning Lab.	0	0	2	2

Course Objective

In this laboratory course, one will be introduced to some popular machine learning techniques and give insights on how to apply these techniques to solve a new business related problem. The course will be taught with popular software like R, and Python.

Learning Outcomes

- To develop understanding in various types of machine learning algorithm
- To develop the skill in application software like Python or R for solving business application problems through machine learning.

Exp. No.	Topics	Lectures	Learning Outcome
	Supervised Learning:	8	Students will learn
1.	Linear Regression (with one variable and multiple		different types of
	variables), Gradient Descent;		supervised learning
2.	Classification (Logistic Regression, Overfitting,		algorithms:
	Regularization, Support Vector Machines);		classification/regression
3.	Artificial Neural Networks (Perceptron, Multilayer		problems.
	networks, and back-propagation);		
4.	Decision Trees.		
	Unsupervised Learning:	8	Students will learn to
5.	Clustering (K-means, Hierarchical);		find the structures and
6.	Dimensionality reduction;		patterns in the data.
7.	Principal Component Analysis;		
8.	Anomaly Detection.		
	Theory of Generalization:	6	Students will learn
9.	In-sample and out-of sample error,		different types of error,
10.	VC inequality, VC analysis,		and techniques to
11.	Bias and Variance Analysis.		minimize error in the model.
	Applications:	4	Students will learn the
12.	Spam Filtering, recommender systems, and others		implementation of
			different types of
			machine learning
			algorithms for real-life
			problems.
	Total	26	

Text Books:

- 1. "Understanding Machine Learning", Shai Shalev-Shwartz and Shai Ben-David. Cambridge University Press. 2017.
- 2. "Data Analytics using Python", Bharti Motwani, First Edition, Wiley India Pvt. Ltd., 2020.

Reference Books:

- 1. "Foundation of Data Science", Avrim Blum, John Hopcroft and Ravindran Kannan. January 2017.
- 2. "Machine Learning", Tom Mitchell, First Edition, McGraw-Hill, 1997.