tcpiplab

221501029潘泓旭

221501029@smail.nju.edu.cn

- 1.我的ID:172.24.38.17,TCP端口:2952
- 2.服务器端口:8080

```
    ▶ Internet Protocol Version 4, Src: 172.24.38.17, Dst: 114.212.10.193
    ▼ Transmission Control Protocol, Src Port: 2952, Dst Port: 8080, Seq: 151837, Ack: 1, Len: 1321 Source Port: 2952
    Destination Port: 8080
```

3.TCP(6)

```
...0 0000 0000 0000 = Fragment Offset: 0
Time to Live: 128
Protocol: TCP (6)
Header Checksum: 0xc11b [validation disabled]
[Header checksum status: Unverified]
```

4.20bytes,有效负载为总长度-报头长度=1341

```
▼ Internet Protocol Version 4, Src: 172.24.38.17, Dst: 114.212.10.193
0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
▶ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 1361
```

5.没分段,因为Don't fragment是Set,More fragments是Not set, fragment offset也为0

6. 59195,128

7.相对序列号为151837,绝对序列号为2818240797;根据三次握手,客户端发送SYN请求来建立连接,我找到发送的第一个请求并且发现我电脑把SYN标为151837从而建立连接,sequence number:2818240797是个随机值,以上是三次握手的第一步

```
Sequence Number: 151837 (relative sequence number)
Sequence Number (raw): 2818240797

[Next Sequence Number: 153158 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 973546000
0101 .... = Header Length: 20 bytes (5)
Flags: 0x018 (PSH, ACK)
```

8.381,153158(2818242118)Acknowledge number是前面那个的Next Sequence Number; 意思是服务器收到连接请求并且发送SYN-ACK确认,这是三次握手第二步骤

```
Sequence Number: 381 (relative sequence number)
Sequence Number (raw): 973546380
[Next Sequence Number: 386 (relative sequence number)]
Acknowledgment Number: 153158 (relative ack number)
Acknowledgment number (raw): 2818242118
```

9. 1

```
▼ Transmission Control Protocol, Src Port: 2952, Dst Port: 8080, Seq: 1, Ack: 1, Len: 728 Source Port: 2952 Destination Port: 8080 [Stream index: 3]
▶ [Conversation completeness: Incomplete, DATA (15)] [TCP Segment Len: 728]
Sequence Number: 1 (relative sequence number)
```

10.如表所示;

序列号	发送时间	ACK序号	接收时间	RTT	EstimatedRTT		
14	0.195109	24	0.196977	0.00187	0.001868		
28	0.197639	48	0.199928	0.00229	0.001920625		
41	0.198829	64	0.200847	0.00202	0.001932797		
55	0.199973	85	0.201926	0.00195	0.001935322		
69	0.200937	118	0.204686	0.00375	0.002162032		
81	0.200937	121	0.204686	0.00375	0.002360403		

 ${\tt EstimatedRTT=0.875*EstimatedRTT+0.125*SampleRTT}$

14 2023-12-17 03:29:43.195109	172.24.38.17	114.212.10.193	TCP	782 295	2 → 8080	[PSH, ACI	Seq=1 Ack=1
28 2023-12-17 03:29:43.197639	172.24.38.17	114.212.10.193	TCP	1514 2952	2 → 8080	PSH, ACK	(1 Seg=16789 A
41 2023-12-17 03:29:43.198829	172.24.38.17	114.212.10.193	TCP	1514 295	2 → 8080	[PSH, AC	K] Seq=32849 /
55 2023-12-17 03:29:43.199973	172.24.38.17	114.212.10.193	TCP	1514 295	2 → 8080	[PSH, AC	K] Seq=48909 A
69 2023-12-17 03:29:43.200937	172.24.38.17	114.212.10.193	TCP	1514 295	2 → 8080	[PSH, AC	K] Seq=64969 /
81 2023-12-17 03:29:43.200937	172.24.38.17	114.212.10.193	TCP	782 295	2 → 8080	[PSH, AC	K] Seq=82489
14 2023-12-17 03:29:43.1	95109	24 2023-12-17 03	:29:43.1969	77			
		48 2023-12-17 03					
28 2023-12-17 03:29:43.1	97639	46 2023-12-17 03	: 29:45.1999	20			
41 2023-12-17 03:29:43.19	98829	64 2023-12-17 03	:29:43.2008	47			
55 2023-12-17 03:29:43.1	00072	85 2023-12-17 03	. 20.42 2010	226			
69 2023-12-17 03:29:43.2	200937	118 2023-12-17 03	3:29:43.2046	86			
81 2023-12-17 03:29:43.2	00937	121 2023-12-17 0	3.29.43 2046	86			
01 2023 12 17 03.23.43.2	00337	121 2025-12-17 0	J. 2J. 4J. 2040	700			

(a) 发送时间

(b) 接收时间

- 11.由ACK号,可知长度各为
- 1)729-1=728
- 2)18249-729=17520
- 3)34309-18429=15880
- 4)50369-34309=16060
- 5)66429-50369=16060
- 6)83217-66429=16788

```
60 8080 → 2952 [ACK] Seq=1 Ack=729 W

60 8080 → 2952 [ACK] Seq=1 Ack=18249

60 8080 → 2952 [ACK] Seq=1 Ack=34309

60 8080 → 2952 [ACK] Seq=1 Ack=50369 W

60 8080 → 2952 [ACK] Seq=1 Ack=66429

60 8080 → 2952 [ACK] Seq=1 Ack=83217 W
```

12.30720字节(只需看第一个确认(窗口递增)),发送器永远不会因为接收器缓冲区空间不足而被抑制

13.没有,为此我检查了TCP数据段的序列号,发现是单调递增的

14.1460,注意到大致都是1460的倍数(16060=1460*11,17520=1460*12) 比1460大就可以识别发晚了的情况,我这里就都是这样的(汗颜) 15.可以通过第一个TCP数据的序列号和最后一个ACK的序列号计算,此处 取六个好了

(121-14)/(0.204686-0.195109)=11172.6(字节/秒)

