ICLR'19 paper review 202111278 컴퓨터공학부 김환희

목차

- Overfitting
- Free
- SLAT (Single-step Latent Adversarial Training)
- GradAlign

Table 2: T	axonomy of	adversarial	training	covered in	this paper.
Table 2. I	axonomy or	auversariai	uanne	covered III	uns paper.

	Defence	Remark					
	FGSM-AT [6]	Train a model with FSGM adversarial examples					
	PGD-AT [37]	Train a model with PGD examples, import baseline					
	TLA [68]	Train a model with the triplet loss					
	ANL [22]	Inject adversarial perturbation into latent features					
	BAT [23]	Perturb both the image and the label during training					
	EAT [73]	Train a model with adversarial examples generated on other pre-trained models					
Conventional AT	PED [74]	Force non-maximal predictions as diverse as possible in an ensemble system					
Conventional A1	ALP [21]	Force adversarial examples and their corresponding natural samples to have similar output					
	FAT [76]	Train a model with friendly adversarial examples which do not cross the decision boundary too much					
	Overfitting [81]	leverage early stop to choose the best checkpoint to inference					
	Free [69]	Accelerate AT by recycling the gradient information					
	SLAT [70]	Accelerate AT with the single-step latent adversarial training (SLAT)					
	GradAlign [71]	Accelerate AT with GradAlign that aims to maximize the gradient alignment between x and x'					
	Fast AT [72]	Accelerate AT with R+FGSM [46], Cyclic learning rate [102], and Mixed-precision arithmetic [103]					

Overfitting

- L. Rice et al., (2020), Overfitting in adversarially robust deep learning, ICML
- Leverage early stop to choose the best checkpoint to inference
- Robust overfitting: epoch가 늘어남에 따라 test adversarial accuracy가 낮아진다.

	ROBUST TEST ERROR (%)		
REG METHOD	FINAL	BEST	DIFF
EARLY STOPPING W/ VAL	46.9	46.7	0.2
ℓ_1 REGULARIZATION	53.0 ± 0.39	48.6	4.4
ℓ_2 REGULARIZATION	55.2 ± 0.4	46.4	55.2
Ситоит	48.8 ± 0.79	46.7	2.1
MIXUP	49.1 ± 1.32	46.3	2.8
SEMI-SUPERVISED	47.1 ± 4.32	40.2	6.9

Free

- A. Shafahi et al., (2019), Adversarial training for free!, NeurIPS
- Accelerate AT by recycling the gradient information
- Adversarial training은 일반 training에 비해 3에서 30배까지 시간이 소요된다. 원인은 adversarial example을 만들기 위한 gradient 계산이다.
- Natural training을 웃도는 빠른 adversarial training method를 소개한다.

Table 1: Validation accuracy and robustness of CIFAR-10 models trained with various methods.

Training	Evaluated Against					
Training	Nat. Images	PGD-20	PGD-100	CW-100	10 restart PGD-20	Time (min)
Natural	95.01%	0.00%	0.00%	0.00%	0.00%	780
Free $m=2$	91.45%	33.92%	33.20%	34.57%	33.41%	816
Free $m=4$	87.83%	41.15%	40.35%	41.96%	40.73%	800
Free $m = 8$	85.96%	46.82%	46.19%	46.60%	46.33%	785
Free $m = 10$	83.94%	46.31%	45.79%	45.86%	45.94%	785
7-PGD trained	87.25%	45.84%	45.29%	46.52%	45.53%	5418

Table 2: Validation accuracy and robustness of CIFAR-100 models trained with various methods.

Training	Evalu	Training Time			
Training	Natural Images	PGD-20	PGD-100	(minutes)	
Natural	78.84%	0.00%	0.00%	811	
Free $m=2$	69.20%	15.37%	14.86%	816	
Free $m=4$	65.28%	20.64%	20.15%	767	
Free $m=6$	64.87%	23.68%	23.18%	791	
Free $m = 8$	62.13%	25.88%	25.58%	780	
Free $m = 10$	59.27%	25.15%	24.88%	776	
Madry et al. (2-PGD trained)	67.94%	17.08%	16.50%	2053	
Madry et al. (7-PGD trained)	59.87%	22.76%	22.52%	5157	

```
Algorithm 1 "Free" Adversarial Training (Free-m)
Require: Training samples X, perturbation bound \epsilon, learning rate \tau, hop steps m
1: Initialize \theta
 2: \delta \leftarrow 0
 3: for epoch = 1 \dots N_{ep}/m do
          for minibatch B \subset X do
                for i = 1 \dots m do
                     Update \theta with stochastic gradient descent
                            g_{\theta} \leftarrow \mathbb{E}_{(x,y)\in B}[\nabla_{\theta} l(x+\delta,y,\theta)]
                            g_{adv} \leftarrow \nabla_x l(x + \delta, y, \theta)
                            \theta \leftarrow \theta - \tau q_{\theta}
                      Use gradients calculated for the minimization step to update \delta
10:
11:
                            \delta \leftarrow \delta + \epsilon \cdot \text{sign}(g_{adv})
12:
                            \delta \leftarrow \text{clip}(\delta, -\epsilon, \epsilon)
13:
                end for
14:
          end for
15: end for
```

SLAT (Single-step Latent Adversarial Training)

- G. Y. Park et al., (2021), Reliably fast adversarial training via latent adversarial perturbation, ICCV
- Accelerate AT with the single-step latent adversarial training
- Approximated latent space perturbation을 이용해 빠르게 model을 training한다.

	Method	Standard	PGD-50-10	AutoAttack	Training time (min)
CIFAR-10	PGD-7	84.86±0.16	51.63±0.13	48.65±0.08	383.2
	FGSM-GA	82.88 ± 0.01	48.90 ± 0.37	46.22±0.30	297.9
	YOPO-5-3	82.35±1.78	34.23±3.61	32.79±3.65	62.5
	Free-AT $(m=8)$	76.57±0.19	44.15±0.30	41.02±0.20	119.4
	FGSM	87.42±1.08	0.01 ± 0.01	0.00 ± 0.00	100.5
0	FGSM-RS	90.76 ± 6.36	3.90 ± 4.06	0.44 ± 0.50	99.7
	FGSM-CKPT ($c=3$)	89.32 ± 0.10	40.83 ± 0.36	39.38 ± 0.24	121.4
	SLAT	85.91±0.31	47.06 ± 0.03	44.62±0.11	104.6
	PGD-7	59.59±0.17	29.58±0.24	26.00±0.20	392.1
- 20	FGSM-GA	58.63±0.17	27.53 ± 0.10	24.07 ± 0.15	240.5
CIFAR-100	YOPO-5-3	51.45±7.33	15.23±2.01	13.94±1.82	65.0
A.	Free-AT $(m=8)$	48.02±0.29	22.40±0.19	18.67±0.03	117.1
FA	FGSM	61.96±2.17	0.00 ± 0.00	0.00 ± 0.00	99.9
U	FGSM-RS	50.96±4.57	0.00 ± 0.00	0.00 ± 0.00	100.9
	FGSM-CKPT ($c=3$)	73.53 ± 0.65	0.66 ± 0.60	0.09 ± 0.09	101.5
	SLAT	59.56 ± 0.50	26.26 ± 0.47	23.02 ± 0.14	101.7
Tiny ImageNet	PGD-7	48.92±0.43	23.05±0.35	18.78±0.14	3098.3
	FGSM-GA	48.73 ± 0.14	22.62 ± 0.11	18.34 ± 0.07	2032.2
	YOPO-5-3	51.45±6.01	15.08±1.78	13.94±1.61	511.5
	Free-AT $(m=8)$	22.40 ± 0.17	9.05 ± 0.08	6.06 ± 0.18	911.6
	FGSM	36.47±11.75	8.68±12.27	6.63 ± 9.38	779.8
	FGSM-RS	42.13±14.98	10.32 ± 11.93	8.41±9.73	787.5
	FGSM-CKPT ($c = 3$)	61.64±2.24	5.91±6.68	5.26±5.98	753.0
	SLAT	48.77±0.25	20.21 ± 0.16	16.38 ± 0.16	785.5

```
Algorithm 1: Single-step Latent Adversarial Train-
ing method (SLAT)
 Input: Training iteration T, Number of samples N,
 Number of layers L, Training set \mathcal{D} = \{(x_i, y_i)\}_{i=1}^N,
 Subset of layer indexes K, Layer-wise step size \eta_k
  Output: Adversarially robust network f_{\theta}
  for t \leftarrow 1 to T do
      for i \leftarrow 1 to N do
          for k \in K do
               // Compute latent adversarial
                perturbations
               \delta_k(x_i) =
          for l \in \{0, ..., L-2\} do
               if l \in K then
                   // Propagate adversarial perturbations
                    forward
                  h_{l+1}(x_i) = f_{l+1}(h_l(x_i) + \delta_l(x_i))
                   h_{l+1}(x_i) = f_{l+1}(h_l(x_i))
          Optimize \theta by the objective
           \mathcal{L}(f_L(h_{L-1}(x_i)), y_i) using gradient
```

GradAlign

- M. Andriushchenko et al., (2020), Understanding and improving fast adversarial training, NeurIPS
- Accelerate AT with GradAlign that aims to maximize the gradient alignment between x and x'
- FastAT을 포함한 AT들엔 catastrophic overfitting 문제가 있다.
- Gradient alignment를 최대화해 catastrophic overfitting을 막는 새로운 정규화 방법을 제안한다.
- Gradient alignment: $\mathbb{E}_{(x,y)\sim D,\;\eta\sim\mathcal{U}([-\varepsilon,\varepsilon]^d)}\left[\cos\left(\nabla_x\,\ell(x,y;\theta),\nabla_x\,\ell(x+\eta,y;\theta)\right)\right],$

Figure 4: Visualization of the training process of standardly trained, FGSM trained, and PGD-10 trained ResNet-18 on CIFAR-10 with $\varepsilon=8/255$. All the statistics are calculated on the test set. Catastrophic overfitting for the FGSM AT model occurs around epoch 23 and is characterized by a sudden drop in the PGD accuracy, a gap between the FGSM and PGD losses, and a dramatic decrease of *local linearity*.

Figure 8: Accuracy (dashed line) and robustness (solid line) of different adversarial training (AT) methods on CIFAR-10 and SVHN with ResNet-18 trained and evaluated with different l_{∞} -radii. The results are obtained without early stopping, averaged over 5 random seeds used for training and reported with the standard deviation.