1.3	1	Solve the following congruence	
		d $19x \equiv 1 \pmod{36}$	
		Ans	
	4	. Solve the following congruence: $20x \equiv 12 \pmod{72}$	
	Ans		
	7	The smallest positive solution of the congruence $ax \equiv 0 \pmod{n}$ is called the additional order of a modulo n . Find the additive orders of each of the following elements, solving the appropriate congruences.	
		b 7 modulo 12	
		Ans	
		d 12 modulo 18	
		Ans	
	14	Find the units digit of $3^{29}+11^{12}+15$.	
		${\it Hint}$: Choose an appropriate modulus n , and then reduce modulo n .	
	Ans		
	16	Solve the following congruences by trial and error.	
		a $x^3 + 2x + 2 \equiv 0 \pmod{5}$	
		Ans	
	20	Solve the following system of congruences.	
		$2x \equiv 5 \pmod{7}$ $3x \equiv 4 \pmod{8}$	
	Ans		

1.4 2 Make multiplication tables for the following sets.

	$oldsymbol{b} \ \mathbb{Z}_7$
	Ans
	\mathbf{c} \mathbb{Z}_8
	Ans
6	Let m and n be positive integers such that $m \mid n$. Show that for any integer a , the congruence class $[a]_m$ is the union of the congruence classes $[a]_n, [a+m]_n, [a+2m]_n, \ldots, [a+n-m]_n$
Ans	
9	Let $(a,n)=1$. The smallest positive integer k such that a $a^k\equiv 1\pmod n$ is called the multiplicative order of $[a]$ in \mathbb{Z}_n^\times
	b Find the multiplicative orders of $[2]$ and $[5]$ in \mathbb{Z}_{17}^{\times} .
4	Ans
10	Let $(a,n)=1$. If $[a]$ has multiplicative order k in \mathbb{Z}_n^{\times} , show that $k\mid \varphi(n)$.
Ans	$= \cdots (((((((((((((((((($
12	An element [a] of its raid to be idempotent if [a] ² [a]
13	An element $[a]$ of is said to be idempotent if $[a]^2[a]$.
	b Find all idempotent elements of \mathbb{Z}_{10}^{\times} and \mathbb{Z}_{30}^{\times} .
15	If n is not a prime power, show that \mathbb{Z}_n has an idempotent element different from $[0]$ and $[1]$. Hint: Suppose that $n=bc$, with $(b,c)=1$. Solve the simultaneous congruences $x\equiv 1\pmod b$ and $x\equiv 0\pmod c$.
Ans	
20	Show that $\varphi(1)+\varphi(p)+\ldots+\varphi(p^{\alpha})=\varphi^{\alpha}$ for any prime number p and any positive integer α .
Ans	

26 Let p=2k+1 be a prime number. Show that if a is an integer such that $p \nmid a$, then either $a^k \equiv 1 \pmod p$ or $a^k \equiv -1 \pmod p$

Ans □