$$T(n) = 27T(n/3) + n^2$$

$$T(n/3) = 27T(n/3/3) + (7/3)^2$$

$$= 27T(n/4) + n^2/4$$

$$T(n) = 27 | 27 | 1 | (n/q) + n_q^2 + n^2$$

$$729 | T(n/q) + 3n^2 + n^2$$

$$T(n/q) = 27T(n/3/q) + (n/q)^2$$

 $T(n) = 729 (27T(n/27) + n^2/81) + 3n^2 + n^2$

General form

$$T(n) = 2 \pm T(n/3k) + n^{2} \left[\frac{3}{3} \cdot \frac{1}{3} \cdot \frac{1}$$

b)
$$T(n) = 9T(n/4) + n$$

$$T(n) = 9T(n/4) + 0$$

$$T(n/6) = (9T(n/16) + 0/4)$$

$$T[n]_{\alpha} = [9T]_{0}_{16} + \%_{\alpha}$$

 $T[n] = 81 T[n]_{16} + [\%_{\alpha}]$

General form

$$T(n) = 9^{k} T(n/4^{k}) + n \left(\frac{9}{4} \right)^{k-1} + \frac{9}{4} \right)^{k-2} - \frac{9}{4} + \frac{9}{4}$$

$$9^{k} T(n/4^{k}) + n \left(\frac{1 - (\frac{9}{4})^{k}}{1 - \frac{9}{4}} \right)$$

$$T(n/u^{2} = 1) = 0 \log_{u} n = 2$$

$$T(n) = n^{\log_{u} 2} \frac{1}{(n/n)} + (1 - n^{\log_{u} 2} - \log_{u} 4) n \left(\frac{4}{5}\right)$$

O(Vn logn)

$$T(n) = 2T(\sqrt{n}) + 1$$

 $T(n) = 2T(\sqrt{n}) + 1$
 $T(\sqrt{n}) = 2T(n^{1/4}) + 1) T(n) = 4T(n^{1/4}) + 2 + 1$
 $T(\sqrt{n}) = 2T(n^{1/4}) + 1$

· . Master Theorem

```
e) Tin)=271n-2), Tio)=1, Tin)=1 f | Tin)=47(n/2)+n, Tin)=1
                                                                                                                                                      by using master Theorem (:)
                       T10)=1 7,
                                                                                                                                                          مردل ادط مده
                       711)=1 ]
                                                                                                                                                                                                                                                   logba = log2 4 = 2
                                                                                                                                                         420 / 221 / 120
                        T12) = 2T10) => 2
                                                                                                                                                                                                                                                                              logz 421 (logsasd)
                          T(3) = 2T(1) => 2
                                                                                                                                                                                                                            O ( nlog 24) = O [n2)
                         T(u) = 27/2) =>4
                                                                                                                                                 9) T(n) = 2T (3Tn)+1, T(3)=1
                         T(5) = 2T(3) => 4
                                                                                                                                                                                                                                                                         2 + TIdol = 31
                                                                                                                                                  T (30) = 27 (1 ) +1
                         T16) = 27/4)=> 87
                                                                                                                                                                                                                                                                               1/3/ = 2
                                                                                                                                                Tin 1=212T (nbp)+1)+1
                        T(7) = 2T(5) => 8 J
                                                                                                                                                           =4TIn17) +2+1
                                                                                                                                                                                                                                                                             login 15 = logi = (3) 1030 = 1
                 General form =>
                                                                                                                                               TIn1 = 4 12TIn 1/27) +1)+2+1
            torall ogg unmperz => 5/2/3 - 5 ws
                                                                                                                                                                                                                                                                               log2 n = 32 k = log2 by n
                                                                                                                                                    = 8T (n 1/27) +4+2+1
            for all even numbers = 2 2 (12)
                                                                                                                                                                                                                                                                         2 toalogn T(3) + 2 tog togn -1
                                                                                                                                                 General form
                                                                                                                                                  Tin) = 2k Tinka)k) + (2k+2k-2 ... 2/+1)
                                                  so we can say that
                                                                                                                                                                                                                                                                                              2. 2 log log n - 1
                                                                           01212)=>0(2)
                                                                                                                                                                                                                                                                                        (logan) log32
                                                                                                                                                                                                                                                                           O (nlogologo) => O((logo p3)2)
2)
                                                                                                                                                                         It divides n, subproblems with size n/2 and if we could
                            function fln)
                                                                                                                                                                          if - 1 base case (constant
                                                   if n <= 1
                                                                          print-line ( "## ")
                                                    else for int ton
                                                                                                                                                                                     T(n) = \Delta \cdot T(x) + 1
                                                                                                [ In/2 ]
                                                                                                                                                                                                                  T(N2) = 1/2 T(N4) +1
                                                                               end tol
                                                                                                                                                                                             T(n) = \frac{n^2}{2} \cdot T(\gamma_u) + \frac{n}{2}
           #for n | #Ines
                                                                                                                                                                                                                   T(1/4) = 1 - T(1/2)+1
               1-2 221
                                                                                          2^{k+(k-1)-\frac{1}{2}} = \frac{1}{2} \cdot \frac{
               22 4 3 8 23
                                                                                                                                                                                                                    T(n) = \left(\frac{n}{2}\right)^k, T(n_2 k) + \left(\frac{n}{2}\right)^{k-1} + \left(\frac{n}{2}\right)^{k-2} + \cdots + \frac{n}{2} + 1
           24 16 1024 210
                       32 32768 2
                                                                                                                                                                                                        (\frac{1}{2})^{\log_2 n}, T(\frac{1}{2})^{\log_2 n} + (\frac{1}{2})^{\log_2 n} \frac{1}{2} -1.
                                                                                                                                                                                             TII) = n=2k logen=k
                     64 2097152
                                                                                                                                                                                                                     \frac{1}{n^{\log_2 n}} = n^{\log_2 n - 1} = O(n^{\log n})
```

3)
$$T(n) = 3T(2n\alpha) + 1$$
It subdives 3 problem with size $2n/3$ and +1 for if
$$T(n) = 3T(2n/3) + 1$$

$$T(2n/3) = 3T([2n/3]^2 \cdot n) + 1$$

$$T(n) = 9T((2n/3)^2 \cdot n) + 3 + 1$$

$$General form$$

$$T(n) = 3^kT((2n/3)^2 \cdot n) + 3^{k-1} \cdot 3^{k-2} + \dots + 3^{k-2} \cdot 3^{k-2}$$
if we assume $t(n) = 1$

$$[2n/3] = 1 \quad n = (\frac{3}{2})^k \quad \log_{2n} = k \cdot \log_{2n} (\frac{3}{2})$$

$$k = \log_{3n/2} n$$

$$3^{\log_{2} n^{2}} + (23)^{\log_{2} n^{2}}) + 3^{\log_{2} n^{2}}$$

$$3^{\log_{2} n^{2}} + n^{\log_{2} n^{2}}$$

$$n^{\log_{2} n^{2}} + n^{\log_{2} n^{2}}$$

$$2 \cdot n^{\log_{2} n^{2}}$$

$$\Theta(n^{2}, 70^{9})$$

TA THE PARTY 4) since all quicksoit and insultangets are using specific algorithms. I enter some in puts for both algorithm the results are below

# Swap Operations		
# of inputsize (1000) Quick Soit		Insertion Sort
	4777	251971
	5427	255922
	7710	253611
	5409	247812
-4	28.35	253597
100	THE RESERVE OF THE PARTY OF THE	/

Quicksort Average =>15 334 Insertions of Average = 2252 5826 It is obvious insertion sort does too many namop operations according to avick soit.

Quicksort

Assume that it's pivot eleman (LLlow IT) will be placed In any position of ter Realinge

Aln) =
$$n+1 + \sum_{i=1}^{n} E(T_2) \times = 17.P.(x=1)$$

$$A(n-1) = n+1 + \sum_{i=1}^{n} E(T_2) \times = 17.P.(x=1)$$

$$A(n-1) = n+1 + \sum_{i=1}^{n} E(T_2) \times = 17.P.(x=1)$$

$$= n+1 + \sum_{i=1}^{n} A(i-i) + A(i-i) +$$

$$A(n) = n + 1 + 2/n LALO7 + A(1) + ... + A(n-1)$$

 $- n \cdot A(n) = n \cdot (n+1) + 2 LALO7 + ... + A(n-2)$

$$\frac{(n \cdot A \cdot (n)) = (n \cdot (n+1) + 2 \cdot L \cdot A \cdot L \cdot n - 1)}{(n \cdot A \cdot (n)) = (n-1) \cdot A \cdot (n-1)} = \frac{2}{(n+1)}$$

$$\frac{A(n)}{(n+1)} = \frac{A(n+1)}{(n+1)} = \frac{2}{(n+1)}$$

$$\frac{A(n)}{(n+1)} = \frac{1}{(n-1) + 2 \cdot A \cdot (n-1)}$$

change of variable:
$$t(n) = \frac{A(n)}{n+1} + \frac{1}{2} + \frac{$$

```
Quicksoit Pseude
  Procedure Quicksort (LI low: high?)
                                               01
      it high Now then
          call Rearrange (Lilburthigh), posta)
         call Quidsort [Llion poston -17]
                                               10
         call quicksoit [ Liposition+1: high])
     end 1+
en d
Procedure Rearrange (LLlow; high) parties
                                                10
      right = low
       1 eft = 11 g h + 1
       X=1 Llow]
            repeat right=right+i votil, Lright-]2x
       while right eleft do
            repeat left sleft -1 will Livetilex
             if right eleft do then
                  co 11 interchange | LLICH 17, Llight)
          end while
          position = let
          LIlow = Liposifion
           Lipaltion = x
       end
```

Let T: # of basic operations of step; Isis not

$$T = T_1 + T_2 + \dots + T_n$$

Alo1 = ELT7 = ELT, +T2 --- TA] ELT7 =
$$\Sigma^{\circ}$$
 ELT17
= ET177 + ELT27 +--- + ELTA7

to tervals that x

can tall in

$$E[T] = \left(\sum_{j=1}^{i=1} J_{i+1} + \frac{2i}{i+1} = \frac{i[1-i]}{[i+1]^2} + \frac{2i}{i+1} = \frac{i^2 - [i+1]}{2[i+1]} = \frac{i[1+3]}{2[i+1]}$$

$$\frac{1(i+3)}{2(i+1)} = \frac{1}{2} + \frac{1}{2(i+1)} + \frac{1}{1+1} = \frac{i^2 + i + 2i + 2 - 2}{2(i+1)} = \frac{1(i+3)}{2(i+1)}$$

$$7iqh f = 10w$$

$$(b) T(n) = 2T(n/2) + n^{2}$$

$$\log_{5} a = 3 \log_{2} 2 \quad d = 2$$

$$\log_{2} 2 < 2$$

$$O(n^{2})$$

C)
$$T(n) = T(n-1) + n$$

 $T(n-1) = T(n-1-1) + n-1$
 $t(n) = T(n-2) + n-1 + n$
 $t(n-2) = T(n-3) + n-2$
 $T(n) = T(n-3) + 3n-3$
 $T(n-2) = T(n-4) + n-3$

General form
$$T(n) = T(n-k) + kn - k$$

$$T(n) = T(n-k) + kn - k$$

$$T(n) = T(n-n) = n^2 + \frac{n(n+1)}{2}$$

$$\Theta(n^2)$$

We can say all relations
has same complexity so
it does not matter what
we will chase if the algorithms
have some complexities for
other cases.