Examen de fin d'études secondaires 2014

Sections: C et D

Branche: Mathématiques II

Numéro d'ordre du candidat

Exercice 1 (3+4+6=13 points)

- 1) Démontrer que $(\forall a \in \mathbb{R}_+^* \setminus \{1\}), (\forall x \in]0; +\infty[), (\forall r \in \mathbb{R}) : \log_a(x^r) = r \cdot \log_a(x)$
- 2) Résoudre dans R et préciser à chaque fois l'ensemble des solutions :

a)
$$3(e^x + 1) = 2e^{-x} \cdot (1 - e^x)$$

a)
$$3(e^x + 1) = 2e^{-x} \cdot (1 - e^x)$$
 b) $\log_{\frac{1}{5}}(5 - x) + \log_5(2x - 1) \le \frac{1}{2} \cdot \log_{\sqrt{5}}(x + 3)$

Exercice 2 (3+4=7 points)

Calculer, en justifiant, les limites suivantes :

a)
$$\lim_{x \to 0} \frac{\arctan(2x)}{\log(1-x)}$$

b)
$$\lim_{x \to +\infty} \left(\frac{3x+4}{3x-1} \right)^{6x}$$

Exercice 3 (3+4+1+2+2+5=17 points)

Soit la fonction f définie par : $f(x) = x^3 \cdot \ln(x) - x^3$

- 1) Déterminer le domaine de définition de la fonction f et étudier le comportement asymptotique de f.
- Etudier le sens de variation de f, déterminer le(s) extrema(s) éventuel(s) et dresser le tableau de variation de f.
- Déterminer l'intersection de la courbe C_f de f avec l'axe des abscisses.
- Déterminer une équation de la tangente t_1 à la courbe \mathcal{C}_f de f au point d'abscisse 1.
- Tracer la courbe C_f de f ainsi que la tangente t_1 dans un repère orthonormé d'unité 2 cm.
- 6) Calculer l'aire A_{λ} de la partie du plan délimitée par la courbe C_f de f, l'axe des abscisses et les droites d'équations $x = \lambda$ et x = e avec $0 < \lambda < e$. Calculer ensuite la limite de A_{λ} si λ tend vers 0.

Exercice 4 (3+4=7 points)

Soit la fonction f définie par : $f(x) = 2x - 3 + \frac{\ln(2x)}{2x - 4}$

- 1) Déterminer le domaine de définition de la fonction f et montrer que la droite Δ d'équation y=2x-3 est une asymptote oblique à la courbe C_f de f.
- 2) Etudier la position de la courbe C_f de f par rapport à son asymptote oblique Δ sur tout le domaine de la fonction.

Exercice 5 (6+4=10 points)

Calculer les intégrales suivantes :

a)
$$\int_0^{\frac{\pi}{2}} e^{-2x} \cdot \sin(4x) \ dx$$
 b) $\int \frac{5x-3}{\sqrt{9-x^2}} \ dx$

TOURNER S.V.P. ↔

Exercice 6

(2+4=6 points)

On donne la fonction
$$f$$
 définie sur $\mathbb{R} \setminus \{1\}$ par :
$$f(x) = \frac{3x^3 - 6x^2 + 4x + 3}{(x-1)^2}$$

- 1) Déterminer $a, b, c \in \mathbb{R}$ tels que $(\forall x \in \mathbb{R} \setminus \{1\})$: $f(x) = ax + \frac{b}{x-1} + \frac{c}{(x-1)^2}$
- 2) Déterminer sur un intervalle I à préciser la primitive F de f qui prend la valeur 7 en x=0.