A3 Q1-2024

August 14, 2024

# 1 Computer Vision 2024 Assignment 3: Deep Learning for Perception Tasks

This assignment contains 2 questions. The first question probes understanding of deep learning for classification. The second question is a more challenging classification experiment on a larger dataset. Answer the questions in separate Python notebooks.

#### 1.1 Question 1: A simple classifier, 20 marks

For this exercise, we provide demo code showing how to train a network on a small dataset called Fashion-MNIST. Please run through the code "tutorial-style" to get a sense of what it is doing. Then use the code alongside lecture notes and other resources to understand how to use pytorch libraries to implement, train and use a neural network.

For the Fashion-MNIST dataset the lables from 0-9 correspond to various clothing classes so you might find it convenient to create a python list as follows:

class\_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

You will need to answer various questions about the system, how it operates, the results of experiments with it and make modifications to it yourself. You can change the training scheme and the network structure.

Organize your own text and code cell to show the answer of each questions.

Detailed requirements:

#### Q1.1 (1 point)

Extract 3 images of different types of clothing from the training dataset, print out the size/shape of the training images, and display the three with their corresponding labels.

#### Q1.2 (2 points)

Run the training code for 10 epochs, for different values of the learning rate. Fill in the table below and plot the loss curves for each experiment:

| Lr   | Accuracy |
|------|----------|
| 1    |          |
| 0.1  |          |
| 0.01 |          |

| Lr    | Accuracy |
|-------|----------|
| 0.001 |          |

## Q1.3 (3 points)

Report the number of epochs when the accuracy reaches 85%. Fill in the table below and plot the loss curve for each experiment:

| Lr    | Accuracy | Epoch |
|-------|----------|-------|
| 1     |          |       |
| 0.1   |          |       |
| 0.01  |          |       |
| 0.001 |          |       |

## Q1.4 (2 points)

Compare the results in table 1 and table 2, what is your observation and your understanding of learning rate?

#### Q1.5 (5 points)

Build a wider network by modifying the code that constructs the network so that the hidden layer(s) contain more perceptrons, and record the accuracy along with the number of trainable parameters in your model. Now modify the original network to be deeper instead of wider (i.e. by adding more hidden layers). Record your accuracy and network size findings. Plot the loss curve for each experiment. Write down your conclusions about changing the network structure?

| Structures | Accuracy | Parameters |
|------------|----------|------------|
| Base       |          |            |
| Deeper     |          |            |
| Wider      |          |            |

#### Q1.6 (2 points)

Calculate the mean of the gradients of the loss to all trainable parameters. Plot the gradients curve for the first 100 training steps. What are your observations? Note that this gradients will be saved with the training weight automatically after you call loss.backwards(). Hint: the mean of the gradients decrease.

For more exlanation of q1.7, you could refer to the following simple instructions:  $https://colab.research.google.com/drive/1XAsyNegGSvMf3\_B6MrsXht7-fHqtJ7OW?usp=sharing$ 

#### Q1.7 (5 points)

Modify the network structure and training/test to use a small convolutional neural network instead of an MLP. Discuss your findings with reheard to convergence, accuracy and number of parameters, relative to MLPs.

Hint: Look at the structure of the CNN in the Workshop 3 examples.

**NOTE**: For consistency with the original data set, we call our validation data "test\_data". It is important to keep in mind though that we are using the data for model validation and not for testing the final, trained model (which requires data not used when training the model parameters).

We pass the Dataset as an argument to DataLoader. This wraps an iterable over our dataset and supports automatic batching, sampling, shuffling, and multiprocess data loading. Here we define a batch size of 64, i.e. each element in the dataloader iterable will return a batch of 64 features and labels.

```
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
```

Add in a code cell to inspect the training data, as per Q1.1. Each element of the training\_data structure has a greyscale image (which you can use plt.imshow(img[0,:,:]) to display, just like you did in previous assignments.

#### 1.1.1 Question 1.1



Shape: torch.Size([28, 28])



Shape: torch.Size([28, 28])

Label: Coat



Shape: torch.Size([28, 28])

To define a neural network in PyTorch, we create a class that inherits from nn.Module. We define the layers of the network in the init function and specify how data will pass through the network in the forward function. To accelerate operations in the neural network, we move it to the GPU if available.

```
Using cuda device
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
     (0): Linear(in_features=784, out_features=512, bias=True)
     (1): ReLU()
     (2): Linear(in_features=512, out_features=512, bias=True)
     (3): ReLU()
     (4): Linear(in_features=512, out_features=10, bias=True)
    )
)
```

In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and backpropagates the prediction error to adjust the model's parameters.

## 1.1.2 Question 1.2

Test Error:

Accuracy: 10.0%, Avg loss: 2.305843

Training for 10 epochs with learning rate: 1 Epoch 1 Test Error: Accuracy: 10.6%, Avg loss: 2.325459 Epoch 2 -----Test Error: Accuracy: 10.0%, Avg loss: 2.305836 Epoch 3 \_\_\_\_\_ Test Error: Accuracy: 16.0%, Avg loss: 2.168829 Epoch 4 Test Error: Accuracy: 20.0%, Avg loss: 3.489796 Epoch 5 \_\_\_\_\_ Test Error: Accuracy: 10.0%, Avg loss: 2.305837 Epoch 6 Test Error: Accuracy: 10.0%, Avg loss: 2.305836 Epoch 7 Test Error: Accuracy: 10.0%, Avg loss: 2.305832 Epoch 8 -----Test Error: Accuracy: 10.0%, Avg loss: 2.305843 Epoch 9

# Epoch 10

· -----

Test Error:

Accuracy: 10.0%, Avg loss: 2.305843



#### Done!

Training for 10 epochs with learning rate: 0.1

Epoch 1

· -----

Test Error:

Accuracy: 79.1%, Avg loss: 0.548591

Epoch 2

-----

Test Error:

Accuracy: 82.7%, Avg loss: 0.468552

Epoch 3

\_\_\_\_\_

Test Error:

Accuracy: 84.5%, Avg loss: 0.422756

# Epoch 4

\_\_\_\_\_

Test Error:

Accuracy: 85.0%, Avg loss: 0.409166

Epoch 5

\_\_\_\_\_

Test Error:

Accuracy: 85.7%, Avg loss: 0.392113

Epoch 6

-----

Test Error:

Accuracy: 86.2%, Avg loss: 0.376008

Epoch 7

\_\_\_\_\_

Test Error:

Accuracy: 86.7%, Avg loss: 0.365362

Epoch 8

-----

Test Error:

Accuracy: 86.9%, Avg loss: 0.355892

Epoch 9

-----

Test Error:

Accuracy: 87.5%, Avg loss: 0.344796

Epoch 10

-----

Test Error:

Accuracy: 87.5%, Avg loss: 0.343784



Done!

Training for 10 epochs with learning rate: 0.01

Epoch 1

-----

Test Error:

Accuracy: 71.0%, Avg loss: 0.799084

Epoch 2

-----

Test Error:

Accuracy: 77.9%, Avg loss: 0.636381

Epoch 3

\_\_\_\_\_

Test Error:

Accuracy: 79.8%, Avg loss: 0.573668

Epoch 4

\_\_\_\_\_

Test Error:

Accuracy: 80.6%, Avg loss: 0.542203

# Epoch 5

\_\_\_\_\_

Test Error:

Accuracy: 81.2%, Avg loss: 0.520829

Epoch 6

\_\_\_\_\_

Test Error:

Accuracy: 81.7%, Avg loss: 0.505264

Epoch 7

-----

Test Error:

Accuracy: 82.3%, Avg loss: 0.492061

Epoch 8

\_\_\_\_\_

Test Error:

Accuracy: 82.6%, Avg loss: 0.481247

Epoch 9

\_\_\_\_\_

Test Error:

Accuracy: 82.9%, Avg loss: 0.471502

Epoch 10

-----

Test Error:

Accuracy: 83.4%, Avg loss: 0.461915



Done!

Training for 10 epochs with learning rate: 0.001

Epoch 1

-----

Test Error:

Accuracy: 45.7%, Avg loss: 2.147619

Epoch 2

-----

Test Error:

Accuracy: 57.9%, Avg loss: 1.872733

Epoch 3

-----

Test Error:

Accuracy: 62.3%, Avg loss: 1.504780

Epoch 4

-----

Test Error:

Accuracy: 63.7%, Avg loss: 1.243046

Epoch 5

\_\_\_\_\_

Test Error:

Accuracy: 64.7%, Avg loss: 1.081236

Epoch 6

-

Test Error:

Accuracy: 66.1%, Avg loss: 0.976525

Epoch 7

\_\_\_\_\_

Test Error:

Accuracy: 67.3%, Avg loss: 0.904825

Epoch 8

\_\_\_\_\_\_

Test Error:

Accuracy: 68.8%, Avg loss: 0.853037

Epoch 9

-----

Test Error:

Accuracy: 69.9%, Avg loss: 0.813733

Epoch 10

-----

Test Error:

Accuracy: 71.5%, Avg loss: 0.782497



## Done!

| Lr    | Accuracy           |
|-------|--------------------|
| 1     | 10.0 %             |
| 0.1   | 87.47%             |
| 0.01  | 83.37%             |
| 0.001 | 71.46000000000001% |

# 1.1.3 Question 1.3

Training with learning rate: 1 until reaching 85% accuracy

Epoch 1

-----

Test Error:

Accuracy: 31.1%, Avg loss: 1.634982

Epoch 2

\_\_\_\_\_

Test Error:

Accuracy: 31.7%, Avg loss: 1.732914

Epoch 3

-----

Test Error: Accuracy: 19.8%, Avg loss: 1.780719 Epoch 4 -----Test Error: Accuracy: 25.1%, Avg loss: 1.733612 Epoch 5 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.723234 Epoch 6 -----Test Error: Accuracy: 19.9%, Avg loss: 1.718504 Epoch 7 -----Test Error: Accuracy: 20.0%, Avg loss: 1.717508 Epoch 8 -----Test Error: Accuracy: 19.9%, Avg loss: 1.709712 Epoch 9 \_\_\_\_\_ Test Error: Accuracy: 20.0%, Avg loss: 1.737512 Epoch 10 Test Error: Accuracy: 28.7%, Avg loss: 1.639009 Epoch 11 Test Error: Accuracy: 20.0%, Avg loss: 1.711416

Epoch 12 \_\_\_\_\_ Test Error: Accuracy: 20.0%, Avg loss: 1.710934

| Epoch 13                        |     |       |          |
|---------------------------------|-----|-------|----------|
| Test Error: Accuracy: 19.9%,    | Avg | loss: | 1.724419 |
| Epoch 14                        |     |       |          |
| Test Error:<br>Accuracy: 19.9%, | Avg | loss: | 1.715178 |
| Epoch 15                        |     |       |          |
| Test Error: Accuracy: 19.9%,    | Avg | loss: | 1.710580 |
| Epoch 16                        |     |       |          |
| Test Error: Accuracy: 19.8%,    | Avg | loss: | 1.727894 |
| Epoch 17                        |     |       |          |
| Test Error: Accuracy: 19.9%,    | Avg | loss: | 1.721424 |
| Epoch 18                        |     |       |          |
| Test Error: Accuracy: 20.0%,    | Avg | loss: | 1.732628 |
| Epoch 19                        |     |       |          |
| Test Error: Accuracy: 19.9%,    | Avg | loss: | 1.722661 |
| Epoch 20                        |     |       |          |
| Test Error: Accuracy: 19.9%,    | Avg | loss: | 1.718941 |
| Epoch 21                        |     |       |          |
| Test Error:<br>Accuracy: 19.9%, |     |       |          |
| Epoch 22                        |     |       |          |

Test Error:

Accuracy: 19.9%, Avg loss: 1.715571 Epoch 23 Test Error: Accuracy: 19.9%, Avg loss: 1.715567 Epoch 24 Test Error: Accuracy: 19.9%, Avg loss: 1.713838 Epoch 25 \_\_\_\_\_ Test Error: Accuracy: 20.0%, Avg loss: 1.718623 Epoch 26 .\_\_\_\_\_ Test Error: Accuracy: 20.0%, Avg loss: 1.716997 Epoch 27 Test Error: Accuracy: 19.9%, Avg loss: 1.725365 Epoch 28 \_\_\_\_\_ Test Error: Accuracy: 19.8%, Avg loss: 1.731262 Epoch 29 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.720152 Epoch 30 -----Test Error: Accuracy: 19.9%, Avg loss: 1.718114 Epoch 31 -----

Test Error:

Accuracy: 19.9%, Avg loss: 1.717693

Epoch 32

-----Test Error: Accuracy: 19.9%, Avg loss: 1.717455 Epoch 33 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717385 Epoch 34 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717354 Epoch 35 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717340 Epoch 36 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717333 Epoch 37 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717328 Epoch 38 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717323 Epoch 39 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717320 Epoch 40 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717316 Epoch 41 Test Error:

Accuracy: 19.9%, Avg loss: 1.717313

17

| Epoch 42                                        |
|-------------------------------------------------|
| Test Error: Accuracy: 19.9%, Avg loss: 1.717510 |
| Epoch 43                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717390 |
| Epoch 44                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717342 |
| Epoch 45                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717320 |
| Epoch 46                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717309 |
| Epoch 47                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717304 |
| Epoch 48                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717301 |
| Epoch 49                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717299 |
| Epoch 50                                        |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717298 |
| Epoch 51                                        |

Test Error: Accuracy: 19.9%, Avg loss: 1.717298 Epoch 52 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717297 Epoch 53 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717297 Epoch 54 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717296 Epoch 55 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717295 Epoch 56 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717371 Epoch 57 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717225 Epoch 58 Test Error: Accuracy: 19.9%, Avg loss: 1.717389 Epoch 59 -----

Test Error:

Accuracy: 19.9%, Avg loss: 1.717333

Epoch 60

\_\_\_\_\_

Test Error:

Accuracy: 19.9%, Avg loss: 1.717314

| Epoch 61                                           |
|----------------------------------------------------|
| Test Error:<br>Accuracy: 19.9%, Avg loss: 1.717304 |
| Epoch 62                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717299    |
| Epoch 63                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717297    |
| Epoch 64                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717295    |
| Epoch 65                                           |
|                                                    |
| Epoch 66                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717294    |
| Epoch 67                                           |
| Test Error:<br>Accuracy: 19.9%, Avg loss: 1.717294 |
| Epoch 68                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717294    |
| Epoch 69                                           |
| Test Error: Accuracy: 19.9%, Avg loss: 1.717294    |
| Epoch 70                                           |

Test Error:

Accuracy: 19.9%, Avg loss: 1.717294 Epoch 71 Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 72 Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 73 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 74 .\_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 75 Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 76 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 77 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 78 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717293 Epoch 79 -----Test Error:

nocuracy

Accuracy: 19.9%, Avg loss: 1.717293

Epoch 80

-----Test Error: Accuracy: 19.9%, Avg loss: 1.717291 Epoch 81 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717275 Epoch 82 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717284 Epoch 83 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717289 Epoch 84 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717291 Epoch 85 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717293 Epoch 86 \_\_\_\_\_ Test Error: Accuracy: 19.9%, Avg loss: 1.717293 Epoch 87 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 88 -----Test Error: Accuracy: 19.9%, Avg loss: 1.717294 Epoch 89 Test Error:

Accuracy: 19.9%, Avg loss: 1.717294

| Epoch 90                     |        |        | _           |
|------------------------------|--------|--------|-------------|
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | 717294      |
| Epoch 91                     |        |        | _           |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | -<br>717294 |
| Epoch 92                     |        |        | _           |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | -<br>717294 |
| Epoch 93                     |        |        |             |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | -<br>717294 |
| Epoch 94                     |        |        | _           |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | 717301      |
| Epoch 95                     |        |        |             |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | -<br>717294 |
| Epoch 96                     |        |        |             |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | -<br>717293 |
| Epoch 97                     |        |        | _           |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | 717293      |
| Epoch 98                     |        |        | _           |
| Test Error: Accuracy: 19.9%, | Avg lo | ss: 1. | 717293      |
| Epoch 99                     |        |        |             |

Test Error:

Accuracy: 19.9%, Avg loss: 1.717275

Epoch 100

\_\_\_\_\_

Test Error:

Accuracy: 19.9%, Avg loss: 1.717293



Got accuracy 19.9% in 100 epochs

Training with learning rate: 0.1 until reaching 85% accuracy

Epoch 1

-----

Test Error:

Accuracy: 79.2%, Avg loss: 0.549380

Epoch 2

\_\_\_\_\_

Test Error:

Accuracy: 81.7%, Avg loss: 0.488078

Epoch 3

-----

Test Error:

Accuracy: 83.9%, Avg loss: 0.432620

Epoch 4

·

Test Error:

Accuracy: 85.0%, Avg loss: 0.406970



Got accuracy 85.0% in 4 epochs

Training with learning rate: 0.01 until reaching 85% accuracy

Epoch 1

-----

Test Error:

Accuracy: 71.4%, Avg loss: 0.786560

Epoch 2

-----

Test Error:

Accuracy: 78.1%, Avg loss: 0.628442

Epoch 3

-----

| Test Error: Accuracy: 80.1%, | Avg | loss: | 0.564828 |
|------------------------------|-----|-------|----------|
| Epoch 4                      |     |       |          |
| Test Error: Accuracy: 81.0%, | Avg | loss: | 0.534048 |
| Epoch 5                      |     |       |          |
| Test Error: Accuracy: 81.4%, | Avg | loss: | 0.514789 |
| Epoch 6                      |     |       |          |
| Test Error: Accuracy: 81.9%, | Avg | loss: | 0.499682 |
| Epoch 7                      |     |       |          |
| Test Error: Accuracy: 82.4%, | Avg | loss: | 0.488341 |
| Epoch 8                      |     |       |          |
| Test Error: Accuracy: 82.8%, | Avg | loss: | 0.478040 |
| Epoch 9                      |     |       |          |
| Test Error: Accuracy: 83.1%, | Avg | loss: | 0.468833 |
| Epoch 10                     |     |       |          |
| Test Error: Accuracy: 83.4%, | Avg | loss: | 0.460445 |
| Epoch 11                     |     |       |          |
| Test Error: Accuracy: 83.7%, | Avg | loss: | 0.452654 |

Test Error:
 Accuracy: 83.7%, Avg loss: 0.452654

Epoch 12
----Test Error:
 Accuracy: 83.9%, Avg loss: 0.445611

## Epoch 13

\_\_\_\_\_\_

Test Error:

Accuracy: 84.2%, Avg loss: 0.438925

## Epoch 14

-----

Test Error:

Accuracy: 84.5%, Avg loss: 0.432429

## Epoch 15

-----

Test Error:

Accuracy: 84.7%, Avg loss: 0.426582

#### Epoch 16

\_\_\_\_\_

Test Error:

Accuracy: 84.9%, Avg loss: 0.420812

#### Epoch 17

-----

Test Error:

Accuracy: 85.1%, Avg loss: 0.415439



| Training with learning rate: 0.001 until reaching 85% accuracy Epoch 1 |
|------------------------------------------------------------------------|
| Test Error: Accuracy: 44.6%, Avg loss: 2.158727                        |
| Epoch 2                                                                |
| Test Error: Accuracy: 56.0%, Avg loss: 1.884165                        |
| Epoch 3                                                                |
| Test Error: Accuracy: 60.1%, Avg loss: 1.518632                        |
| Epoch 4                                                                |
| Test Error: Accuracy: 63.1%, Avg loss: 1.256925                        |
| Epoch 5                                                                |
| Test Error: Accuracy: 64.5%, Avg loss: 1.092697                        |
| Epoch 6                                                                |
| Test Error: Accuracy: 65.5%, Avg loss: 0.985632                        |
| Epoch 7                                                                |
| Test Error: Accuracy: 66.7%, Avg loss: 0.912364                        |
| Epoch 8                                                                |
| Test Error: Accuracy: 67.9%, Avg loss: 0.859665                        |
| Epoch 9                                                                |
| Test Error:                                                            |

Got accuracy 85.1% in 17 epochs

Accuracy: 69.0%, Avg loss: 0.820010 Epoch 10 Test Error: Accuracy: 70.2%, Avg loss: 0.788707 Epoch 11 Test Error: Accuracy: 71.7%, Avg loss: 0.762809 Epoch 12 \_\_\_\_\_ Test Error: Accuracy: 73.0%, Avg loss: 0.740516 Epoch 13 .\_\_\_\_\_ Test Error: Accuracy: 74.0%, Avg loss: 0.720752 Epoch 14 Test Error: Accuracy: 74.7%, Avg loss: 0.702868 Epoch 15 \_\_\_\_\_ Test Error: Accuracy: 75.5%, Avg loss: 0.686487 Epoch 16 \_\_\_\_\_ Test Error: Accuracy: 76.2%, Avg loss: 0.671413 Epoch 17 -----Test Error: Accuracy: 76.8%, Avg loss: 0.657507 Epoch 18 -----Test Error:

Accuracy: 77.3%, Avg loss: 0.644687

Epoch 19

-----Test Error: Accuracy: 77.8%, Avg loss: 0.632875 Epoch 20 -----Test Error: Accuracy: 78.3%, Avg loss: 0.622000 Epoch 21 -----Test Error: Accuracy: 78.8%, Avg loss: 0.611985 Epoch 22 -----Test Error: Accuracy: 79.0%, Avg loss: 0.602748 Epoch 23 -----Test Error: Accuracy: 79.4%, Avg loss: 0.594212 Epoch 24 \_\_\_\_\_ Test Error: Accuracy: 79.6%, Avg loss: 0.586310 Epoch 25 \_\_\_\_\_ Test Error: Accuracy: 79.8%, Avg loss: 0.578991 Epoch 26 -----Test Error: Accuracy: 80.1%, Avg loss: 0.572203 Epoch 27 -----Test Error: Accuracy: 80.3%, Avg loss: 0.565890 Epoch 28 Test Error:

Accuracy: 80.5%, Avg loss: 0.560005

30

| Epoch 29                     |     |       |          |
|------------------------------|-----|-------|----------|
| Test Error: Accuracy: 80.7%, | Avg | loss: | 0.554508 |
| Epoch 30                     |     |       |          |
| Test Error: Accuracy: 80.8%, | Avg | loss: | 0.549356 |
| Epoch 31                     |     |       |          |
| Test Error: Accuracy: 81.0%, | Avg | loss: | 0.544522 |
| Epoch 32                     |     |       |          |
| Test Error: Accuracy: 81.1%, | Avg | loss: | 0.539977 |
| Epoch 33                     |     |       |          |
| Test Error: Accuracy: 81.2%, | Avg | loss: | 0.535708 |
| Epoch 34                     |     |       |          |
| Test Error: Accuracy: 81.4%, | Avg | loss: | 0.531698 |
| Epoch 35                     |     |       |          |
| Test Error: Accuracy: 81.5%, | Avg | loss: | 0.527926 |
| Epoch 36                     |     |       |          |
| Test Error: Accuracy: 81.6%, | Avg | loss: | 0.524375 |
| Epoch 37                     |     |       |          |
| Test Error: Accuracy: 81.7%, |     |       |          |
| Epoch 38                     |     |       |          |

Test Error: Accuracy: 81.8%, Avg loss: 0.517852 Epoch 39 -----Test Error: Accuracy: 81.8%, Avg loss: 0.514842 Epoch 40 \_\_\_\_\_ Test Error: Accuracy: 81.9%, Avg loss: 0.511983 Epoch 41 \_\_\_\_\_ Test Error: Accuracy: 81.9%, Avg loss: 0.509265 Epoch 42 -----Test Error: Accuracy: 82.1%, Avg loss: 0.506672 Epoch 43 -----Test Error: Accuracy: 82.1%, Avg loss: 0.504191 Epoch 44 -----Test Error: Accuracy: 82.2%, Avg loss: 0.501816 Epoch 45 Test Error: Accuracy: 82.2%, Avg loss: 0.499543 Epoch 46 -----Test Error: Accuracy: 82.3%, Avg loss: 0.497365

Epoch 47 \_\_\_\_\_ Test Error: Accuracy: 82.3%, Avg loss: 0.495273

| Epoch 48                     |     |       |          |
|------------------------------|-----|-------|----------|
| Test Error: Accuracy: 82.5%, | Avg | loss: | 0.493264 |
| Epoch 49                     |     |       |          |
| Test Error: Accuracy: 82.6%, | Avg | loss: | 0.491333 |
| Epoch 50                     |     |       |          |
| Test Error: Accuracy: 82.7%, | Avg | loss: | 0.489467 |
| Epoch 51                     |     |       |          |
| Test Error: Accuracy: 82.8%, | Avg | loss: | 0.487663 |
| Epoch 52                     |     |       |          |
| Test Error: Accuracy: 82.8%, | Avg | loss: | 0.485915 |
| Epoch 53                     |     |       |          |
| Test Error: Accuracy: 82.8%, | Avg | loss: | 0.484231 |
| Epoch 54                     |     |       |          |
| Test Error: Accuracy: 82.9%, | Avg | loss: | 0.482603 |
| Epoch 55                     |     |       |          |
| Test Error: Accuracy: 82.9%, | Avg | loss: | 0.481026 |
| Epoch 56                     |     |       |          |
| Test Error: Accuracy: 82.9%, | Avg | loss: | 0.479494 |
| Epoch 57                     |     |       |          |

Test Error:

Accuracy: 83.0%, Avg loss: 0.478003 Epoch 58 Test Error: Accuracy: 83.1%, Avg loss: 0.476550 Epoch 59 Test Error: Accuracy: 83.0%, Avg loss: 0.475135 Epoch 60 \_\_\_\_\_ Test Error: Accuracy: 83.1%, Avg loss: 0.473756 Epoch 61 .\_\_\_\_\_ Test Error: Accuracy: 83.2%, Avg loss: 0.472409 Epoch 62 Test Error: Accuracy: 83.2%, Avg loss: 0.471092 Epoch 63 \_\_\_\_\_ Test Error: Accuracy: 83.3%, Avg loss: 0.469807 Epoch 64 \_\_\_\_\_ Test Error: Accuracy: 83.3%, Avg loss: 0.468551 Epoch 65 -----Test Error: Accuracy: 83.4%, Avg loss: 0.467321 Epoch 66 -----Test Error:

Accuracy: 83.5%, Avg loss: 0.466120

Epoch 67

-----Test Error: Accuracy: 83.5%, Avg loss: 0.464936 Epoch 68 -----Test Error: Accuracy: 83.5%, Avg loss: 0.463773 Epoch 69 -----Test Error: Accuracy: 83.6%, Avg loss: 0.462631 Epoch 70 -----Test Error: Accuracy: 83.6%, Avg loss: 0.461511 Epoch 71 -----Test Error: Accuracy: 83.7%, Avg loss: 0.460414 Epoch 72 \_\_\_\_\_ Test Error: Accuracy: 83.7%, Avg loss: 0.459334 Epoch 73 \_\_\_\_\_ Test Error: Accuracy: 83.7%, Avg loss: 0.458273 Epoch 74 -----Test Error: Accuracy: 83.8%, Avg loss: 0.457226 Epoch 75 \_\_\_\_\_ Test Error: Accuracy: 83.8%, Avg loss: 0.456194 Epoch 76 Test Error:

Accuracy: 83.9%, Avg loss: 0.455172

| Epoch 77                     |     |       |          |
|------------------------------|-----|-------|----------|
| Test Error: Accuracy: 83.9%, | Avg | loss: | 0.454163 |
| Epoch 78                     |     |       |          |
| Test Error: Accuracy: 83.9%, | Avg | loss: | 0.453170 |
| Epoch 79                     |     |       |          |
| Test Error: Accuracy: 84.0%, | Avg | loss: | 0.452188 |
| Epoch 80                     |     |       |          |
| Test Error: Accuracy: 84.0%, | Avg | loss: | 0.451215 |
| Epoch 81                     |     |       |          |
| Test Error: Accuracy: 84.0%, | Avg | loss: | 0.450259 |
| Epoch 82                     |     |       |          |
| Test Error: Accuracy: 84.1%, | Avg | loss: | 0.449316 |
| Epoch 83                     |     |       |          |
| Test Error: Accuracy: 84.1%, | Avg | loss: | 0.448389 |
| Epoch 84                     |     |       |          |
| Test Error: Accuracy: 84.1%, | Avg | loss: | 0.447481 |
| Epoch 85                     |     |       |          |
| Test Error: Accuracy: 84.1%, | Avg | loss: | 0.446587 |
| Epoch 86                     |     |       |          |

Test Error: Accuracy: 84.1%, Avg loss: 0.445702 Epoch 87 -----Test Error: Accuracy: 84.1%, Avg loss: 0.444826 Epoch 88 \_\_\_\_\_ Test Error: Accuracy: 84.2%, Avg loss: 0.443952 Epoch 89 \_\_\_\_\_ Test Error: Accuracy: 84.2%, Avg loss: 0.443094 Epoch 90 -----Test Error: Accuracy: 84.2%, Avg loss: 0.442246 Epoch 91 -----Test Error: Accuracy: 84.2%, Avg loss: 0.441408 Epoch 92 -----Test Error: Accuracy: 84.2%, Avg loss: 0.440574 Epoch 93 Test Error: Accuracy: 84.2%, Avg loss: 0.439750 Epoch 94 \_\_\_\_\_ Test Error: Accuracy: 84.2%, Avg loss: 0.438933

Epoch 95
----Test Error:
Accuracy: 84.3%, Avg loss: 0.438133

# Epoch 96

\_\_\_\_\_

Test Error:

Accuracy: 84.3%, Avg loss: 0.437340

# Epoch 97

-----

Test Error:

Accuracy: 84.3%, Avg loss: 0.436551

# Epoch 98

-----

Test Error:

Accuracy: 84.3%, Avg loss: 0.435774

# Epoch 99

-----

Test Error:

Accuracy: 84.4%, Avg loss: 0.435004

# Epoch 100

\_\_\_\_\_

Test Error:

Accuracy: 84.4%, Avg loss: 0.434238



```
Got accuracy 84.4% in 100 epochs
Lr Accuracy Epoch
1 19.86999999999997% 100
0.1 85.0 % 4
0.01 85.11% 17
0.001 84.41% 100
```

After some investigation, it woas found that for a learning rate of 1, the accuracy was not able to increase to reach 85%. This can be seen in thee above running of code, where a limit of 100 epochs was chosen and if the accuracy had not reached 85% by this time, then the attempt was abandoned and the accuracy achieved was included in the table as it was found after 100 epochs. This may be the case because the learning rate was too high for the data, and the model is not able to converge. This can be seen in the outputs above for the learning rate of 1, where the loss does not reduce as the model is trained further.

## 1.1.4 Question 1.4

In comparing the results of the tables generated in Question 1.2 and Question 1.3, it is clear that as the learning rate decreases, the number of epochs required to reach a higher accuracy increases. However, with very high training rates, in this case, a training rate of 1, the model does not converge and the training loss does not reduce with more training of the model. The other training rates are able to successfully achieve an accuracy of over 85%, with the training with a higher learning rate able to achieve this in less epochs than when training at a lower learning rate. This indicates that the number of epochs to achieve a given accuracy and the learning rate are inversely proportional.

### 1.1.5 Question 1.5

### Base model

```
Using cuda device
BaseNeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear relu stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
Training for 10 epochs with learning rate: 0.001
Epoch 1
loss: 2.284023
               Γ
                     0/600001
loss: 2.290835
               [ 6400/60000]
               [12800/60000]
loss: 2.265380
               [19200/60000]
loss: 2.270940
```

```
loss: 2.243598
               [25600/60000]
loss: 2.206037
               [32000/60000]
loss: 2.221762
               [38400/60000]
loss: 2.181980
               [44800/60000]
loss: 2.179144 [51200/60000]
loss: 2.147452 [57600/60000]
Test Error:
```

\_\_\_\_\_

Accuracy: 40.1%, Avg loss: 2.142791

### Epoch 2

loss: 2.149441 [ 0/60000] loss: 2.148928 [ 6400/60000] loss: 2.080436 [12800/60000] loss: 2.106400 [19200/60000] loss: 2.039692 [25600/60000] loss: 1.974602 [32000/60000] loss: 2.013869 [38400/60000] loss: 1.931974 [44800/60000] loss: 1.941559 [51200/60000] loss: 1.859566 [57600/60000]

Test Error:

Accuracy: 59.1%, Avg loss: 1.860429

# Epoch 3

\_\_\_\_\_

loss: 1.893269 [ 0/60000] loss: 1.866668 [ 6400/60000] loss: 1.738171 [12800/60000] loss: 1.790199 [19200/60000] loss: 1.670210 [25600/60000] loss: 1.624490 [32000/60000] loss: 1.650172 [38400/60000] loss: 1.556689 [44800/60000] loss: 1.581340 [51200/60000] loss: 1.470580 [57600/60000]

Test Error:

Accuracy: 63.0%, Avg loss: 1.491480

### Epoch 4

0/60000] loss: 1.555546 [ loss: 1.528811 [ 6400/60000] loss: 1.367295 [12800/60000] loss: 1.445729 [19200/60000] loss: 1.324501 [25600/60000] loss: 1.327525 [32000/60000] loss: 1.337986 [38400/60000] loss: 1.272002 [44800/60000] loss: 1.306239 [51200/60000] loss: 1.204455 [57600/60000]

Test Error:

Accuracy: 64.1%, Avg loss: 1.231390

#### Epoch 5

loss: 1.303394 [ 0/60000]
loss: 1.297739 [ 6400/60000]
loss: 1.118882 [12800/60000]
loss: 1.228072 [19200/60000]
loss: 1.102585 [25600/60000]
loss: 1.134993 [32000/60000]
loss: 1.149452 [38400/60000]
loss: 1.096211 [44800/60000]
loss: 1.135401 [51200/60000]

Test Error:

loss: 1.050895

Accuracy: 64.9%, Avg loss: 1.072112

[57600/60000]

## Epoch 6

-----

0/60000] loss: 1.135810 [ loss: 1.153235 [ 6400/60000] loss: 0.957845 [12800/60000] loss: 1.094771 [19200/60000] loss: 0.966929 [25600/60000] loss: 1.006675 [32000/60000] loss: 1.032828 [38400/60000] loss: 0.984467 [44800/60000] loss: 1.023184 [51200/60000] loss: 0.954934 [57600/60000]

Test Error:

Accuracy: 66.1%, Avg loss: 0.969634

### Epoch 7

-----

loss: 1.019201 [ 0/60000] loss: 1.059063 [ 6400/60000] [12800/60000] loss: 0.847920 [19200/60000] loss: 1.006525 loss: 0.881433 [25600/60000] loss: 0.916493 [32000/60000] loss: 0.955606 [38400/60000] loss: 0.911418 [44800/60000] loss: 0.944783 [51200/60000] loss: 0.890385 [57600/60000]

```
Test Error:
```

Accuracy: 67.6%, Avg loss: 0.899625

## Epoch 8

loss: 0.933820 [ 0/60000] loss: 0.993384 [ 6400/60000] loss: 0.768984 [12800/60000] loss: 0.944020 [19200/60000] loss: 0.824278 [25600/60000] loss: 0.850733 [32000/60000] loss: 0.900565 [38400/60000] loss: 0.862198 [44800/60000] loss: 0.887918 [51200/60000]

Test Error:

loss: 0.843293

Accuracy: 68.7%, Avg loss: 0.848962

[57600/60000]

## Epoch 9

\_\_\_\_\_

loss: 0.868239 [ 0/60000]
loss: 0.943619 [ 6400/60000]
loss: 0.709608 [12800/60000]
loss: 0.897078 [19200/60000]
loss: 0.783413 [25600/60000]
loss: 0.801366 [32000/60000]
loss: 0.858411 [38400/60000]
loss: 0.827493 [44800/60000]
loss: 0.844995 [51200/60000]
loss: 0.806761 [57600/60000]

Test Error:

Accuracy: 70.0%, Avg loss: 0.810308

## Epoch 10

\_\_\_\_\_

loss: 0.815688 [ 0/60000] loss: 0.903373 [ 6400/60000] loss: 0.663068 [12800/60000] loss: 0.860377 [19200/60000] loss: 0.752300 [25600/60000] loss: 0.763325 [32000/60000] loss: 0.823931 [38400/60000] loss: 0.801608 [44800/60000] loss: 0.811533 [51200/60000] loss: 0.776827 [57600/60000]

Test Error:

Accuracy: 71.5%, Avg loss: 0.779326



Model accuracy is: 0.715 Model has 669706 parameters

## Wider model

```
Using cuda device
WiderNeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=1024, bias=True)
    (1): ReLU()
    (2): Linear(in_features=1024, out_features=1024, bias=True)
    (3): ReLU()
    (4): Linear(in_features=1024, out_features=10, bias=True)
  )
)
Training for 10 epochs with learning rate: 0.001
Epoch 1
loss: 2.294228
                [
                     0/60000]
loss: 2.282108 [ 6400/60000]
loss: 2.250143 [12800/60000]
loss: 2.246608
               [19200/60000]
```

```
loss: 2.225414 [25600/60000]
loss: 2.173778 [32000/60000]
loss: 2.183649 [38400/60000]
loss: 2.134665 [44800/60000]
loss: 2.140521 [51200/60000]
loss: 2.086738 [57600/60000]
```

Accuracy: 50.7%, Avg loss: 2.084289

### Epoch 2

\_\_\_\_\_ loss: 2.098476 [ 0/60000] loss: 2.086004 [ 6400/60000] loss: 2.005016 [12800/60000] loss: 2.032051 [19200/60000] loss: 1.948710 [25600/60000] loss: 1.881223 [32000/60000] loss: 1.903079 [38400/60000] loss: 1.806126 [44800/60000] loss: 1.830235 [51200/60000] loss: 1.723341 [57600/60000]

Test Error:

Accuracy: 58.9%, Avg loss: 1.732546

# Epoch 3

\_\_\_\_\_

loss: 1.776526 [ 0/60000] loss: 1.744135 [ 6400/60000] loss: 1.603045 [12800/60000] loss: 1.661202 [19200/60000] loss: 1.522103 [25600/60000] loss: 1.495981 [32000/60000] loss: 1.502928 [38400/60000] loss: 1.412930 [44800/60000] loss: 1.452959 [51200/60000] loss: 1.330293 [57600/60000]

Test Error:

Accuracy: 63.3%, Avg loss: 1.360404

### Epoch 4

-----

loss: 1.430295 [ 0/60000] loss: 1.409116 [ 6400/60000] loss: 1.241252 [12800/60000] loss: 1.340417 [19200/60000] loss: 1.198205 [25600/60000] loss: 1.216638 [32000/60000] loss: 1.225267 [38400/60000] loss: 1.158432 [44800/60000] loss: 1.203346 [51200/60000] loss: 1.100107 [57600/60000]

Test Error:

Accuracy: 65.0%, Avg loss: 1.128813

## Epoch 5

loss: 1.195606 [ 0/60000] loss: 1.200710 [ 6400/60000] loss: 1.013940 [12800/60000] loss: 1.153067 [19200/60000] loss: 1.008445 [25600/60000] loss: 1.044112 [32000/60000] loss: 1.069519 [38400/60000] loss: 1.011380 [44800/60000] loss: 1.057445 [51200/60000] loss: 0.971611 [57600/60000]

Test Error:

Accuracy: 66.3%, Avg loss: 0.992829

## Epoch 6

\_\_\_\_\_

0/60000] loss: 1.045995 [ loss: 1.076968 [ 6400/60000] loss: 0.872110 [12800/60000] loss: 1.040059 [19200/60000] loss: 0.899170 [25600/60000] loss: 0.932844 [32000/60000] loss: 0.976365 [38400/60000] loss: 0.923609 [44800/60000] loss: 0.965178 [51200/60000] loss: 0.892231 [57600/60000]

Test Error:

Accuracy: 67.9%, Avg loss: 0.906997

#### Epoch 7

loss: 0.943602 [ 0/60000]

loss: 0.997531 [ 6400/60000] loss: 0.777510 [12800/60000]

loss: 0.965532 [19200/60000]

loss: 0.831394 [25600/60000]

loss: 0.856613 [32000/60000] loss: 0.914690 [38400/60000]

loss: 0.867946 [44800/60000]

loss: 0.902151 [51200/60000]

loss: 0.838382 [57600/60000]

```
Test Error:
```

Accuracy: 69.0%, Avg loss: 0.848338

### Epoch 8

loss: 0.868571 [ 0/60000] loss: 0.940954 [ 6400/60000] loss: 0.710481 [12800/60000] loss: 0.912355 [19200/60000]

loss: 0.785823 [25600/60000]

loss: 0.801800 [32000/60000] loss: 0.869935 [38400/60000]

loss: 0.830706 [44800/60000] loss: 0.856643 [51200/60000] loss: 0.798754 [57600/60000]

Test Error:

Accuracy: 70.7%, Avg loss: 0.805432

## Epoch 9

\_\_\_\_\_

loss: 0.810451 [ 0/60000] loss: 0.896896 [ 6400/60000] loss: 0.659963 [12800/60000] loss: 0.872424 [19200/60000] loss: 0.752532 [25600/60000] loss: 0.760932 [32000/60000] loss: 0.834525 [38400/60000] loss: 0.803977 [44800/60000] loss: 0.821726 [51200/60000] loss: 0.767446 [57600/60000]

Test Error:

Accuracy: 71.9%, Avg loss: 0.771980

## Epoch 10

\_\_\_\_\_

loss: 0.763295 [ 0/60000] loss: 0.860174 [ 6400/60000] loss: 0.620027 [12800/60000] loss: 0.840867 [19200/60000] loss: 0.726688 [25600/60000] loss: 0.729305 [32000/60000] loss: 0.804698 [38400/60000] loss: 0.783319 [44800/60000] loss: 0.793652 [51200/60000] loss: 0.741340 [57600/60000]

Test Error:

Accuracy: 73.2%, Avg loss: 0.744473



Model accuracy is: 0.7323 Model has 1863690 parameters

# Deeper model

```
Using cuda device
DeeperNeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=512, bias=True)
    (5): ReLU()
    (6): Linear(in_features=512, out_features=512, bias=True)
    (7): ReLU()
    (8): Linear(in_features=512, out_features=10, bias=True)
  )
Training for 10 epochs with learning rate: 0.001
Epoch 1
```

```
loss: 2.308864 [
                    0/60000]
loss: 2.305411 [ 6400/60000]
loss: 2.304214
               [12800/60000]
loss: 2.298974
               [19200/60000]
loss: 2.305872
               [25600/60000]
loss: 2.302269
               [32000/60000]
loss: 2.297973
               [38400/60000]
loss: 2.301029 [44800/60000]
loss: 2.302034 [51200/60000]
loss: 2.294982
               [57600/60000]
Test Error:
Accuracy: 10.9%, Avg loss: 2.298675
Epoch 2
loss: 2.303227 [
                    0/60000]
loss: 2.300767 [ 6400/60000]
loss: 2.298394 [12800/60000]
loss: 2.294687 [19200/60000]
loss: 2.300640 [25600/60000]
loss: 2.295948 [32000/60000]
loss: 2.293504 [38400/60000]
loss: 2.294982 [44800/60000]
loss: 2.296152 [51200/60000]
loss: 2.289225 [57600/60000]
Test Error:
Accuracy: 18.3%, Avg loss: 2.292671
Epoch 3
-----
loss: 2.297134 [
                    0/60000]
loss: 2.295576 [ 6400/60000]
loss: 2.291838 [12800/60000]
loss: 2.289579 [19200/60000]
loss: 2.294342 [25600/60000]
loss: 2.288192 [32000/60000]
loss: 2.287678 [38400/60000]
loss: 2.287238 [44800/60000]
loss: 2.288347 [51200/60000]
loss: 2.281404 [57600/60000]
Test Error:
Accuracy: 32.1%, Avg loss: 2.284543
Epoch 4
loss: 2.288868 [
                    0/60000]
loss: 2.288630 [ 6400/60000]
```

loss: 2.282728 [12800/60000]

```
loss: 2.282163 [19200/60000]
loss: 2.285621 [25600/60000]
loss: 2.276428 [32000/60000]
loss: 2.278496 [38400/60000]
loss: 2.275411 [44800/60000]
loss: 2.276236 [51200/60000]
loss: 2.268576 [57600/60000]
```

Accuracy: 37.5%, Avg loss: 2.271610

# Epoch 5

\_\_\_\_\_

```
loss: 2.275932 [
                     0/60000]
loss: 2.277426 [ 6400/60000]
loss: 2.267933 [12800/60000]
loss: 2.269371
               [19200/60000]
loss: 2.271265
               [25600/60000]
loss: 2.256174
               [32000/60000]
loss: 2.262405
               [38400/60000]
loss: 2.254585
               [44800/60000]
loss: 2.254651
               [51200/60000]
loss: 2.244685
                [57600/60000]
```

Test Error:

Accuracy: 36.9%, Avg loss: 2.248066

#### Epoch 6

\_\_\_\_\_

```
loss: 2.252879 [
                     0/60000]
loss: 2.256568 [ 6400/60000]
loss: 2.240787 [12800/60000]
loss: 2.244942
               [19200/60000]
loss: 2.243276
               [25600/60000]
loss: 2.217571
                [32000/60000]
loss: 2.230319
               [38400/60000]
loss: 2.213525
               [44800/60000]
loss: 2.211298 [51200/60000]
loss: 2.195366
               [57600/60000]
```

Test Error:

Accuracy: 35.2%, Avg loss: 2.200115

### Epoch 7

\_\_\_\_\_

loss: 2.207201 [ 0/60000] loss: 2.212687 [ 6400/60000] loss: 2.184900 [12800/60000] loss: 2.192368 [19200/60000] loss: 2.182794 [25600/60000] loss: 2.135795 [32000/60000] loss: 2.159876 [38400/60000] loss: 2.124000 [44800/60000] loss: 2.116314 [51200/60000] loss: 2.087010 [57600/60000]

Test Error:

Accuracy: 34.5%, Avg loss: 2.095847

# Epoch 8

\_\_\_\_\_

loss: 2.109983 [ 0/600001 loss: 2.113041 [ 6400/60000] loss: 2.060632 [12800/60000] loss: 2.073324 [19200/60000] loss: 2.042734 [25600/60000] loss: 1.972249 [32000/60000] loss: 2.004576 [38400/60000] loss: 1.938589 [44800/60000] loss: 1.924908 [51200/60000] loss: 1.869776 [57600/60000]

Test Error:

Accuracy: 45.9%, Avg loss: 1.881745

# Epoch 9

\_\_\_\_\_

loss: 1.918547 [ 0/60000] loss: 1.898183 [ 6400/60000] loss: 1.799175 [12800/60000] loss: 1.813821 [19200/60000] loss: 1.739024 [25600/60000] loss: 1.689274 [32000/60000] loss: 1.699228 [38400/60000] loss: 1.618214 [44800/60000] loss: 1.625353 [51200/60000] loss: 1.537084 [57600/60000]

Test Error:

Accuracy: 44.0%, Avg loss: 1.548805

# Epoch 10

\_\_\_\_\_

loss: 1.628103 [ 0/60000] loss: 1.583613 [ 6400/60000] [12800/60000] loss: 1.451048 loss: 1.486290 [19200/60000] loss: 1.428170 [25600/60000] loss: 1.412671 [32000/60000] loss: 1.420581 [38400/60000] loss: 1.359449 [44800/60000] loss: 1.386141 [51200/60000] loss: 1.309399 [57600/60000]

Test Error:

Accuracy: 49.7%, Avg loss: 1.317051



Model accuracy is: 0.497 Model has 1195018 parameters

Structures Accuracy Parameters base 71.5 % 669706

wider 73.229999999999% 1863690

deeper 49.7 % 1195018

From the results above, the wider network structure was able to achieve a slightly better accuracy than the base model, but the deeper model actually had an accuracy reduction. It is possible that the network needs more training as it now has more parameters, and this should be tested to see if that is the case. We can test training the same deeper model but with more epochs to see if the accuracy improves.

# Deeper model with more epochs

Training for 50 epochs with learning rate: 0.001

Epoch 1

-----

```
loss: 2.306122 [
                    0/60000]
loss: 2.302324 [ 6400/60000]
loss: 2.298337
               [12800/60000]
loss: 2.298876
               [19200/60000]
loss: 2.298498
               [25600/60000]
loss: 2.297678
               [32000/60000]
loss: 2.302513
               [38400/60000]
loss: 2.299364
               [44800/60000]
loss: 2.301500 [51200/60000]
loss: 2.297606
               [57600/60000]
Test Error:
Accuracy: 14.5%, Avg loss: 2.296031
Epoch 2
loss: 2.299687 [
                    0/60000]
loss: 2.296878 [ 6400/60000]
loss: 2.291625 [12800/60000]
loss: 2.293523 [19200/60000]
loss: 2.292868 [25600/60000]
loss: 2.290528
               [32000/60000]
loss: 2.296480 [38400/60000]
loss: 2.292460 [44800/60000]
loss: 2.294390
               [51200/60000]
loss: 2.290358 [57600/60000]
Test Error:
Accuracy: 22.5%, Avg loss: 2.288619
Epoch 3
-----
loss: 2.292092 [
                    0/60000]
loss: 2.290196 [ 6400/60000]
loss: 2.283271 [12800/60000]
loss: 2.286692 [19200/60000]
loss: 2.285498 [25600/60000]
loss: 2.280947
               [32000/60000]
loss: 2.288521 [38400/60000]
loss: 2.282939
               [44800/60000]
loss: 2.284654 [51200/60000]
loss: 2.280222 [57600/60000]
Test Error:
Accuracy: 32.7%, Avg loss: 2.278043
Epoch 4
loss: 2.281410 [
                    0/60000]
loss: 2.280589 [ 6400/60000]
```

loss: 2.271055 [12800/60000]

```
loss: 2.276355 [19200/60000]
loss: 2.274150 [25600/60000]
loss: 2.265912 [32000/60000]
loss: 2.275970 [38400/60000]
loss: 2.267357 [44800/60000]
loss: 2.268623 [51200/60000]
loss: 2.263568 [57600/60000]
```

Accuracy: 34.1%, Avg loss: 2.260629

# Epoch 5

-----

loss: 2.264105 [ 0/60000] loss: 2.264619 [ 6400/60000] loss: 2.250670 [12800/60000] loss: 2.258639 [19200/60000] loss: 2.254504 [25600/60000] loss: 2.239305 [32000/60000] loss: 2.253822 [38400/60000] loss: 2.239129 [44800/60000] loss: 2.239439 [51200/60000] loss: 2.231955 [57600/60000]

Test Error:

Accuracy: 30.5%, Avg loss: 2.228109

### Epoch 6

\_\_\_\_\_

loss: 2.232272 [ 0/60000] loss: 2.234218 [ 6400/60000] loss: 2.211771 [12800/60000] loss: 2.223506 [19200/60000] loss: 2.215447 [25600/60000] loss: 2.186414 [32000/60000] loss: 2.209352 [38400/60000] loss: 2.181425 [44800/60000] loss: 2.178585 [51200/60000] loss: 2.165749 [57600/60000]

Test Error:

Accuracy: 29.6%, Avg loss: 2.160384

### Epoch 7

\_\_\_\_\_

loss: 2.167090 [ 0/60000] loss: 2.168939 [ 6400/60000] loss: 2.128812 [12800/60000] loss: 2.146444 [19200/60000] loss: 2.128064 [25600/60000] loss: 2.074512 [32000/60000] loss: 2.109255 [38400/60000] loss: 2.053948 [44800/60000] loss: 2.045877 [51200/60000] loss: 2.022367 [57600/60000]

Test Error:

Accuracy: 38.8%, Avg loss: 2.013637

# Epoch 8

-----

loss: 2.029922 [ 0/600001 loss: 2.022650 [ 6400/60000] loss: 1.945439 [12800/60000] loss: 1.971844 [19200/60000] loss: 1.924621 [25600/60000] loss: 1.856316 [32000/60000] loss: 1.891286 [38400/60000] loss: 1.798473 [44800/60000] loss: 1.799883 [51200/60000] loss: 1.751824 [57600/60000]

Test Error:

Accuracy: 42.6%, Avg loss: 1.734861

### Epoch 9

\_\_\_\_\_

loss: 1.783302 [ 0/60000] loss: 1.750264 [ 6400/60000] loss: 1.619721 [12800/60000] loss: 1.664525 [19200/60000] loss: 1.597832 [25600/60000] loss: 1.553546 [32000/60000] loss: 1.577017 [38400/60000] loss: 1.488329 [44800/60000] loss: 1.517901 [51200/60000] loss: 1.445644 [57600/60000]

Test Error:

Accuracy: 43.3%, Avg loss: 1.445689

# Epoch 10

------

loss: 1.523915 [ 0/60000] loss: 1.487930 [ 6400/60000] [12800/60000] loss: 1.342559 loss: 1.412391 [19200/60000] loss: 1.356689 [25600/60000] loss: 1.345698 [32000/60000] loss: 1.359540 [38400/60000] loss: 1.297171 [44800/60000] loss: 1.324786 [51200/60000]

```
loss: 1.262741 [57600/60000]
Test Error:
Accuracy: 51.4%, Avg loss: 1.267291
Epoch 11
loss: 1.352653 [
                    0/60000]
loss: 1.327062 [ 6400/60000]
loss: 1.166540 [12800/60000]
loss: 1.262613 [19200/60000]
loss: 1.197061 [25600/60000]
loss: 1.214414 [32000/60000]
loss: 1.237640 [38400/60000]
loss: 1.180329
               [44800/60000]
loss: 1.205886
               [51200/60000]
loss: 1.154961
               [57600/60000]
Test Error:
Accuracy: 55.5%, Avg loss: 1.155002
Epoch 12
______
loss: 1.242293 [
                    0/60000]
loss: 1.228773 [ 6400/60000]
loss: 1.043730 [12800/60000]
loss: 1.163547 [19200/60000]
loss: 1.081263 [25600/60000]
loss: 1.117114 [32000/60000]
loss: 1.155961 [38400/60000]
loss: 1.097171
               [44800/60000]
```

loss: 1.116146 [51200/60000] loss: 1.078036 [57600/60000] Test Error:

Accuracy: 57.8%, Avg loss: 1.073490

Epoch 13

\_\_\_\_\_ loss: 1.154626 [ 0/60000] loss: 1.159131 [ 6400/60000] loss: 0.951020 [12800/60000] loss: 1.089053 [19200/60000] loss: 0.991610 [25600/60000] loss: 1.035482 [32000/60000] loss: 1.090563 [38400/60000] loss: 1.031257 [44800/60000] loss: 1.039475 [51200/60000] loss: 1.016046 [57600/60000] Test Error:

Accuracy: 61.3%, Avg loss: 1.007990

```
Epoch 14
loss: 1.077340 [ 0/60000]
loss: 1.101772 [ 6400/60000]
loss: 0.878248 [12800/60000]
loss: 1.026296 [19200/60000]
loss: 0.923819 [25600/60000]
loss: 0.960708 [32000/60000]
loss: 1.033873
               [38400/60000]
loss: 0.977396
               [44800/60000]
loss: 0.970152
               [51200/60000]
loss: 0.966169
                [57600/60000]
Test Error:
Accuracy: 64.3%, Avg loss: 0.953208
Epoch 15
loss: 1.007594 [
                    0/60000]
loss: 1.049870 [ 6400/60000]
loss: 0.819603 [12800/60000]
loss: 0.971342 [19200/60000]
loss: 0.875097 [25600/60000]
loss: 0.893968
               [32000/60000]
loss: 0.986760
               [38400/60000]
loss: 0.935234
               [44800/60000]
loss: 0.910296
               [51200/60000]
loss: 0.928349
               [57600/60000]
Test Error:
Accuracy: 66.2%, Avg loss: 0.909262
```

# Epoch 16

----loss: 0.948586 [ 0/60000] loss: 1.004184 [ 6400/60000] loss: 0.772376 [12800/60000] loss: 0.924821 [19200/60000] loss: 0.840641 [25600/60000] loss: 0.838737 [32000/60000] loss: 0.949472 [38400/60000] loss: 0.903787 [44800/60000] loss: 0.862694 [51200/60000] loss: 0.901117 [57600/60000] Test Error: Accuracy: 67.4%, Avg loss: 0.875718

# Epoch 17

```
loss: 0.901775 [
                    0/60000]
loss: 0.966237 [ 6400/60000]
loss: 0.734105
               [12800/60000]
loss: 0.888489
               [19200/60000]
loss: 0.814510
               [25600/60000]
loss: 0.795238
               [32000/60000]
loss: 0.920913
               [38400/60000]
loss: 0.879435
               [44800/60000]
loss: 0.827484
               [51200/60000]
loss: 0.881058
               [57600/60000]
Test Error:
Accuracy: 68.4%, Avg loss: 0.850340
Epoch 18
loss: 0.864785 [
                    0/60000]
loss: 0.936361 [ 6400/60000]
loss: 0.702215 [12800/60000]
loss: 0.861315 [19200/60000]
loss: 0.792852 [25600/60000]
loss: 0.760342 [32000/60000]
loss: 0.898786 [38400/60000]
loss: 0.859002 [44800/60000]
loss: 0.801129
               [51200/60000]
loss: 0.864530 [57600/60000]
Test Error:
Accuracy: 69.3%, Avg loss: 0.830026
Epoch 19
-----
loss: 0.834160 [
                    0/60000]
loss: 0.912166 [ 6400/60000]
loss: 0.674668 [12800/60000]
loss: 0.840026 [19200/60000]
loss: 0.773553
               [25600/60000]
loss: 0.730873
               [32000/60000]
loss: 0.880459
               [38400/60000]
loss: 0.840918
               [44800/60000]
loss: 0.780594 [51200/60000]
loss: 0.849166 [57600/60000]
Test Error:
Accuracy: 70.2%, Avg loss: 0.812432
Epoch 20
loss: 0.807236 [
                    0/60000]
loss: 0.891442 [ 6400/60000]
```

loss: 0.650463 [12800/60000]

```
loss: 0.822276 [19200/60000]
loss: 0.755365
               [25600/60000]
loss: 0.704507
                [32000/60000]
loss: 0.864304
                [38400/60000]
loss: 0.824860
                [44800/60000]
loss: 0.763973
                [51200/60000]
loss: 0.833845
                [57600/60000]
```

Accuracy: 71.1%, Avg loss: 0.796196

#### Epoch 21

\_\_\_\_\_

loss: 0.782547 [ 0/60000] loss: 0.872811 [ 6400/60000] loss: 0.628453 [12800/60000] loss: 0.806294 [19200/60000] loss: 0.738005 [25600/60000] loss: 0.680306 [32000/60000] loss: 0.849068 [38400/60000] loss: 0.810279 [44800/60000] loss: 0.749507 [51200/60000] loss: 0.818249 [57600/60000]

Test Error:

Accuracy: 71.7%, Avg loss: 0.780572

#### Epoch 22

\_\_\_\_\_

loss: 0.759161 [ 0/60000] loss: 0.855387 [ 6400/60000] loss: 0.607955 [12800/60000] loss: 0.791616 [19200/60000] loss: 0.721758 [25600/60000] loss: 0.657569 [32000/60000] loss: 0.834254 [38400/60000] loss: 0.796822 [44800/60000] loss: 0.736467 [51200/60000] loss: 0.801973 [57600/60000]

Test Error:

Accuracy: 72.4%, Avg loss: 0.765100

### Epoch 23

\_\_\_\_\_

loss: 0.736595 [ 0/60000] loss: 0.838498 [ 6400/60000] loss: 0.588450 [12800/60000] loss: 0.777942 [19200/60000] loss: 0.706268 [25600/60000] loss: 0.635870 [32000/60000] loss: 0.819342 [38400/60000] loss: 0.784271 [44800/60000] loss: 0.724215 [51200/60000] loss: 0.784922 [57600/60000]

Test Error:

Accuracy: 73.1%, Avg loss: 0.749538

# Epoch 24

loss: 0.714381 [ 0/600001 loss: 0.822027 [ 6400/60000] loss: 0.569857 [12800/60000] loss: 0.764798 [19200/60000] loss: 0.691474 [25600/60000] loss: 0.615320 [32000/60000] loss: 0.804180 [38400/60000] loss: 0.772915 [44800/60000] loss: 0.712534 [51200/60000] loss: 0.767355 [57600/60000] Test Error:

Accuracy: 73.5%, Avg loss: 0.733994

## Epoch 25

loss: 0.692518 [ 0/60000] loss: 0.806192 [ 6400/60000] loss: 0.552165 [12800/60000] loss: 0.752313 [19200/60000] loss: 0.677679 [25600/60000] loss: 0.596100 [32000/60000] loss: 0.788636 [38400/60000] loss: 0.762620 [44800/60000] loss: 0.701335 [51200/60000] loss: 0.750021 [57600/60000]

Test Error:

Accuracy: 74.0%, Avg loss: 0.718616

# Epoch 26

loss: 0.671017 [ 0/60000] loss: 0.790676 [ 6400/60000] loss: 0.535506 [12800/60000] loss: 0.740331 [19200/60000] loss: 0.664943 [25600/60000] loss: 0.578322 [32000/60000] loss: 0.772950 [38400/60000] loss: 0.753199 [44800/60000] loss: 0.691031 [51200/60000] loss: 0.733065 [57600/60000]

Test Error:

Accuracy: 74.7%, Avg loss: 0.703705

#### Epoch 27

\_\_\_\_\_

loss: 0.649934 [ 0/60000]
loss: 0.775592 [ 6400/60000]
loss: 0.520100 [12800/60000]
loss: 0.728721 [19200/60000]
loss: 0.653201 [25600/60000]
loss: 0.562532 [32000/60000]
loss: 0.757200 [38400/60000]
loss: 0.744808 [44800/60000]
loss: 0.681416 [51200/60000]

Test Error:

loss: 0.717162

Accuracy: 75.3%, Avg loss: 0.689523

[57600/60000]

#### Epoch 28

\_\_\_\_\_

loss: 0.629660 [ 0/60000]
loss: 0.761243 [ 6400/60000]
loss: 0.506144 [12800/60000]
loss: 0.717210 [19200/60000]
loss: 0.642926 [25600/60000]
loss: 0.548945 [32000/60000]
loss: 0.741293 [38400/60000]
loss: 0.737261 [44800/60000]
loss: 0.672617 [51200/60000]
loss: 0.702457 [57600/60000]

Test Error:

Accuracy: 75.8%, Avg loss: 0.676333

#### Epoch 29

\_\_\_\_\_

loss: 0.610807 [ 0/60000] loss: 0.747840 [ 6400/60000] loss: 0.493583 [12800/60000] loss: 0.705898 [19200/60000] loss: 0.633891 [25600/60000] loss: 0.537287 [32000/60000] loss: 0.725714 [38400/60000] loss: 0.730368 [44800/60000] loss: 0.664713 [51200/60000] loss: 0.689077 [57600/60000]

Test Error:

Accuracy: 76.0%, Avg loss: 0.664105

```
Epoch 30
loss: 0.593529 [
                    0/60000]
loss: 0.735634 [ 6400/60000]
loss: 0.482178 [12800/60000]
loss: 0.694763 [19200/60000]
loss: 0.626102 [25600/60000]
loss: 0.527600 [32000/60000]
loss: 0.710600
               [38400/60000]
loss: 0.724381
               [44800/60000]
loss: 0.657442
               [51200/60000]
loss: 0.676704
               [57600/60000]
Test Error:
Accuracy: 76.4%, Avg loss: 0.652898
Epoch 31
loss: 0.578105 [
                    0/60000]
loss: 0.724276 [ 6400/60000]
loss: 0.472014 [12800/60000]
loss: 0.683844 [19200/60000]
loss: 0.619983 [25600/60000]
loss: 0.519652 [32000/60000]
loss: 0.695616 [38400/60000]
loss: 0.718741
               [44800/60000]
loss: 0.650779
               [51200/60000]
loss: 0.665157
               [57600/60000]
Test Error:
Accuracy: 76.8%, Avg loss: 0.642701
Epoch 32
-----
loss: 0.563749 [
                    0/60000]
loss: 0.713810 [ 6400/60000]
loss: 0.462811 [12800/60000]
loss: 0.673465 [19200/60000]
loss: 0.614912 [25600/60000]
loss: 0.513277 [32000/60000]
loss: 0.681183 [38400/60000]
loss: 0.713297
               [44800/60000]
loss: 0.644355
               [51200/60000]
```

Test Error:
Accuracy: 77.3%, Avg loss: 0.633407

Epoch 33

loss: 0.654710

\_\_\_\_\_

[57600/60000]

```
loss: 0.550839 [
                    0/60000]
loss: 0.704265
               [ 6400/60000]
loss: 0.454300
               [12800/60000]
loss: 0.663350
               [19200/60000]
loss: 0.610819
               [25600/60000]
loss: 0.508150
               [32000/60000]
loss: 0.667375
               [38400/60000]
loss: 0.708490
               [44800/60000]
loss: 0.638419
               [51200/60000]
loss: 0.645172
               [57600/60000]
Test Error:
Accuracy: 77.7%, Avg loss: 0.624922
Epoch 34
loss: 0.538917 [
                    0/60000]
loss: 0.695499 [ 6400/60000]
loss: 0.446397 [12800/60000]
loss: 0.653513 [19200/60000]
loss: 0.607476 [25600/60000]
loss: 0.503948 [32000/60000]
loss: 0.654201 [38400/60000]
loss: 0.704106 [44800/60000]
loss: 0.633003
               [51200/60000]
loss: 0.636184 [57600/60000]
Test Error:
Accuracy: 78.0%, Avg loss: 0.617137
Epoch 35
-----
loss: 0.528078 [
                    0/60000]
loss: 0.687496 [ 6400/60000]
loss: 0.439091 [12800/60000]
loss: 0.644008 [19200/60000]
loss: 0.604467
               [25600/60000]
loss: 0.500318 [32000/60000]
loss: 0.641796 [38400/60000]
loss: 0.700179
               [44800/60000]
loss: 0.628062 [51200/60000]
loss: 0.627720 [57600/60000]
Test Error:
Accuracy: 78.3%, Avg loss: 0.609993
Epoch 36
loss: 0.518074 [
                    0/60000]
loss: 0.680085 [ 6400/60000]
```

loss: 0.432359 [12800/60000]

```
loss: 0.634908 [19200/60000]
loss: 0.601645 [25600/60000]
loss: 0.497187 [32000/60000]
loss: 0.630043 [38400/60000]
loss: 0.696826 [44800/60000]
loss: 0.623565 [51200/60000]
loss: 0.619728 [57600/60000]
```

Accuracy: 78.5%, Avg loss: 0.603351

#### Epoch 37

-----

loss: 0.508850 [ 0/60000] loss: 0.673258 [ 6400/60000] loss: 0.426279 [12800/60000] loss: 0.626269 [19200/60000] loss: 0.599125 [25600/60000] loss: 0.494407 [32000/60000] loss: 0.618831 [38400/60000] loss: 0.693839 [44800/60000] loss: 0.619322 [51200/60000] loss: 0.612080 [57600/60000]

Test Error:

Accuracy: 78.8%, Avg loss: 0.597170

#### Epoch 38

-----

loss: 0.499945 [ 0/60000] loss: 0.666881 [ 6400/60000] loss: 0.420747 [12800/60000] loss: 0.618004 [19200/60000] loss: 0.596611 [25600/60000] loss: 0.491839 [32000/60000] loss: 0.608018 [38400/60000] loss: 0.691193 [44800/60000] loss: 0.615308 [51200/60000] loss: 0.604801 [57600/60000]

Test Error:

Accuracy: 79.0%, Avg loss: 0.591356

### Epoch 39

\_\_\_\_\_

loss: 0.491446 [ 0/60000] loss: 0.660997 [ 6400/60000] loss: 0.415847 [12800/60000] loss: 0.610229 [19200/60000] loss: 0.594264 [25600/60000] loss: 0.489359 [32000/60000] loss: 0.597889 [38400/60000] loss: 0.688754 [44800/60000] loss: 0.611524 [51200/60000] loss: 0.597871 [57600/60000]

Test Error:

Accuracy: 79.2%, Avg loss: 0.585928

### Epoch 40

-----

loss: 0.483303 [ 0/600001 loss: 0.655494 [ 6400/60000] loss: 0.411256 [12800/60000] loss: 0.602872 [19200/60000] loss: 0.591780 [25600/60000] loss: 0.486836 [32000/60000] loss: 0.588195 [38400/60000] loss: 0.686732 [44800/60000] loss: 0.608236 [51200/60000] loss: 0.591368 [57600/60000]

Test Error:

Accuracy: 79.4%, Avg loss: 0.580833

### Epoch 41

\_\_\_\_\_

loss: 0.475491 [ 0/60000] loss: 0.650330 [ 6400/60000] loss: 0.407075 [12800/60000] loss: 0.595985 [19200/60000] loss: 0.589398 [25600/60000] loss: 0.484296 [32000/60000] loss: 0.579070 [38400/60000] loss: 0.685230 [44800/60000] loss: 0.605256 [51200/60000] loss: 0.585142 [57600/60000]

Test Error:

Accuracy: 79.6%, Avg loss: 0.576029

# Epoch 42

\_\_\_\_\_

loss: 0.468047 [ 0/60000] loss: 0.645521 [ 6400/60000] loss: 0.403215 [12800/60000] loss: 0.589711 [19200/60000] loss: 0.586836 [25600/60000] loss: 0.481520 [32000/60000] loss: 0.570493 [38400/60000] loss: 0.684234 [44800/60000] loss: 0.602743 [51200/60000] loss: 0.578953 [57600/60000]

Test Error:

Accuracy: 79.8%, Avg loss: 0.571501

#### Epoch 43

\_\_\_\_\_

loss: 0.461098 [ 0/60000] loss: 0.641064 [ 6400/60000] loss: 0.399692 [12800/60000] loss: 0.583801 [19200/60000] loss: 0.583525 [25600/60000] loss: 0.478781 [32000/60000] loss: 0.562658 [38400/60000] loss: 0.683396 [44800/60000]

loss: 0.683396 [44800/60000]

loss: 0.573478 [57600/60000]

Test Error:

Accuracy: 80.0%, Avg loss: 0.567236

## Epoch 44

\_\_\_\_\_

loss: 0.454356 [ 0/60000]
loss: 0.636822 [ 6400/60000]
loss: 0.396659 [12800/60000]
loss: 0.577901 [19200/60000]
loss: 0.580143 [25600/60000]
loss: 0.476183 [32000/60000]
loss: 0.554837 [38400/60000]
loss: 0.682870 [44800/60000]
loss: 0.598588 [51200/60000]
loss: 0.568286 [57600/60000]

Test Error:

Accuracy: 80.1%, Avg loss: 0.563164

# Epoch 45

\_\_\_\_\_

loss: 0.447800 [ 0/60000] loss: 0.632550 [ 6400/60000] loss: 0.393864 [12800/60000] loss: 0.572657 [19200/60000] loss: 0.576576 [25600/60000] loss: 0.473569 [32000/60000] loss: 0.547286 [38400/60000] loss: 0.682229 [44800/60000] loss: 0.596418 [51200/60000] loss: 0.563273 [57600/60000]

Test Error:

Accuracy: 80.2%, Avg loss: 0.559284

```
Epoch 46
loss: 0.441505 [ 0/60000]
loss: 0.628285 [ 6400/60000]
loss: 0.391154 [12800/60000]
loss: 0.567797
               [19200/60000]
loss: 0.572780 [25600/60000]
loss: 0.470926
               [32000/60000]
loss: 0.540025
               [38400/60000]
loss: 0.681747
               [44800/60000]
loss: 0.594529
               [51200/60000]
loss: 0.558585
               [57600/60000]
Test Error:
Accuracy: 80.3%, Avg loss: 0.555566
Epoch 47
loss: 0.435469 [
                    0/60000]
loss: 0.624192 [ 6400/60000]
loss: 0.388531 [12800/60000]
loss: 0.563237 [19200/60000]
loss: 0.568618 [25600/60000]
loss: 0.468432 [32000/60000]
loss: 0.532986 [38400/60000]
loss: 0.681074
               [44800/60000]
loss: 0.592820
               [51200/60000]
loss: 0.553898
               [57600/60000]
Test Error:
Accuracy: 80.4%, Avg loss: 0.552023
Epoch 48
-----
loss: 0.429845 [
                    0/60000]
loss: 0.620076 [ 6400/60000]
loss: 0.386105 [12800/60000]
loss: 0.558812 [19200/60000]
loss: 0.564571 [25600/60000]
loss: 0.465895 [32000/60000]
loss: 0.526224 [38400/60000]
loss: 0.680504 [44800/60000]
loss: 0.591107
               [51200/60000]
loss: 0.549362
               [57600/60000]
```

Accuracy: 80.5%, Avg loss: 0.548645

# Epoch 49

\_\_\_\_\_

```
loss: 0.424296 [
                     0/60000]
loss: 0.616190
               [ 6400/60000]
loss: 0.383679
                [12800/60000]
loss: 0.554370
                [19200/60000]
loss: 0.560642
                [25600/60000]
loss: 0.463336
                [32000/60000]
loss: 0.519838
                [38400/60000]
loss: 0.680078
                [44800/60000]
loss: 0.589292
                [51200/60000]
loss: 0.545156
                [57600/60000]
```

Accuracy: 80.5%, Avg loss: 0.545368

# Epoch 50

loss: 0.418958 [ 0/60000] loss: 0.612306 [ 6400/60000] loss: 0.381352 [12800/60000] loss: 0.550164 [19200/60000] loss: 0.556548 [25600/60000] loss: 0.460808 [32000/60000] loss: 0.513494 [38400/60000] loss: 0.679798 [44800/60000] loss: 0.587409 [51200/60000] loss: 0.541127 [57600/60000]

Test Error:

Accuracy: 80.6%, Avg loss: 0.542195



Deeper model accuracy is: 0.8062 Training for 50 epochs with learning rate: 0.001 Epoch 1

```
loss: 2.303873 [
                     0/60000]
loss: 2.292670
                [ 6400/60000]
loss: 2.281146
                [12800/60000]
loss: 2.271633
                [19200/60000]
loss: 2.256431
                [25600/60000]
loss: 2.224319
                [32000/60000]
loss: 2.234491
                [38400/60000]
loss: 2.198293
                [44800/60000]
loss: 2.193406
                [51200/60000]
```

loss: 2.169432 [57600/60000] Test Error:

Accuracy: 46.5%, Avg loss: 2.163906

## Epoch 2

1.--. 0 474407 [ 0/60000]

loss: 2.171407 [ 0/60000] loss: 2.161674 [ 6400/60000] loss: 2.115687 [12800/60000]

```
loss: 2.130499
               [19200/60000]
loss: 2.078270
                [25600/60000]
loss: 2.022399
                [32000/60000]
loss: 2.050585
                [38400/60000]
loss: 1.973611
                [44800/60000]
loss: 1.977142
                [51200/60000]
loss: 1.915118
               [57600/60000]
```

Accuracy: 59.2%, Avg loss: 1.910656

#### Epoch 3

\_\_\_\_\_

loss: 1.940034 [ 0/60000] loss: 1.907181 [ 6400/60000] loss: 1.806028 [12800/60000] loss: 1.842938 [19200/60000] loss: 1.730339 [25600/60000] loss: 1.684275 [32000/60000] loss: 1.706461 [38400/60000] loss: 1.606690 [44800/60000] loss: 1.627955 [51200/60000] loss: 1.527157 [57600/60000]

Test Error:

Accuracy: 60.8%, Avg loss: 1.541754

### Epoch 4

\_\_\_\_\_

loss: 1.609476 [ 0/60000] loss: 1.562255 [ 6400/60000] loss: 1.427720 [12800/60000] [19200/60000] loss: 1.492257 loss: 1.370719 [25600/60000] loss: 1.365842 [32000/60000] loss: 1.379410 [38400/60000] loss: 1.304386 [44800/60000] loss: 1.335701 [51200/60000] loss: 1.235417 [57600/60000]

Test Error:

Accuracy: 63.0%, Avg loss: 1.262464

### Epoch 5

\_\_\_\_\_

loss: 1.344014 [ 0/60000] loss: 1.310780 [ 6400/60000] loss: 1.161917 [12800/60000] loss: 1.259528 [19200/60000] loss: 1.133491 [25600/60000] loss: 1.157936 [32000/60000] loss: 1.178953 [38400/60000] loss: 1.119257 [44800/60000] loss: 1.154473 [51200/60000] loss: 1.070377 [57600/60000]

Test Error:

Accuracy: 64.6%, Avg loss: 1.091809

# Epoch 6

-----

loss: 1.167542 [ 0/600001 loss: 1.154522 [ 6400/60000] loss: 0.990726 [12800/60000] loss: 1.117895 [19200/60000] loss: 0.988400 [25600/60000] loss: 1.022370 [32000/60000] loss: 1.058441 [38400/60000] loss: 1.005863 [44800/60000] loss: 1.039830 [51200/60000] loss: 0.970029 [57600/60000]

Test Error:

Accuracy: 65.9%, Avg loss: 0.983853

### Epoch 7

\_\_\_\_\_

loss: 1.047385 [ 0/60000] loss: 1.055334 [ 6400/60000] [12800/60000] loss: 0.875890 loss: 1.024784 [19200/60000] loss: 0.898206 [25600/60000] loss: 0.928615 [32000/60000] loss: 0.981039 [38400/60000] loss: 0.933747 [44800/60000] loss: 0.961509 [51200/60000] loss: 0.903657 [57600/60000]

Test Error:

Accuracy: 67.2%, Avg loss: 0.911069

# Epoch 8

-----

loss: 0.960051 [ 0/60000] loss: 0.987547 [ 6400/60000] loss: 0.794683 [12800/60000] loss: 0.959304 [19200/60000] loss: 0.838598 [25600/60000] loss: 0.860607 [32000/60000] loss: 0.927812 [38400/60000] loss: 0.886178 [44800/60000] loss: 0.905227 [51200/60000] loss: 0.856294 [57600/60000]

Test Error:

Accuracy: 68.2%, Avg loss: 0.858987

## Epoch 9

-----

loss: 0.893278 [ 0/60000] loss: 0.936911 [ 6400/60000] loss: 0.734503 [12800/60000] loss: 0.910322 [19200/60000] loss: 0.796240 [25600/60000] loss: 0.809208 [32000/60000] loss: 0.887725 [38400/60000]

loss: 0.853156 [44800/60000] loss: 0.862515 [51200/60000]

loss: 0.820264 [57600/60000]

Test Error:

Accuracy: 69.4%, Avg loss: 0.819476

## Epoch 10

\_\_\_\_\_

loss: 0.839695 [ 0/60000] loss: 0.896534 [ 6400/60000] loss: 0.687726 [12800/60000] loss: 0.872095 [19200/60000] loss: 0.764598 [25600/60000] loss: 0.769333 [32000/60000] loss: 0.855130 [38400/60000] loss: 0.828629 [44800/60000] loss: 0.828728 [51200/60000] loss: 0.791319 [57600/60000]

Test Error:

Accuracy: 70.8%, Avg loss: 0.787981

# Epoch 11

\_\_\_\_\_

loss: 0.794974 [ 0/60000] loss: 0.862666 [ 6400/60000] loss: 0.649913 [12800/60000] loss: 0.841434 [19200/60000] loss: 0.739528 [25600/60000] loss: 0.737574 [32000/60000] loss: 0.827203 [38400/60000] loss: 0.809241 [44800/60000] loss: 0.801141 [51200/60000] loss: 0.766895 [57600/60000]

Test Error:

Accuracy: 72.0%, Avg loss: 0.761764

```
Epoch 12
loss: 0.756405 [ 0/60000]
loss: 0.833272 [ 6400/60000]
loss: 0.618174 [12800/60000]
loss: 0.816291 [19200/60000]
loss: 0.718671 [25600/60000]
loss: 0.711576 [32000/60000]
loss: 0.802181
               [38400/60000]
loss: 0.793036
               [44800/60000]
loss: 0.777932
               [51200/60000]
loss: 0.745514
               [57600/60000]
Test Error:
Accuracy: 73.3%, Avg loss: 0.739154
Epoch 13
loss: 0.722454 [
                    0/60000]
loss: 0.807023 [ 6400/60000]
loss: 0.590794 [12800/60000]
loss: 0.795077
               [19200/60000]
loss: 0.700669
               [25600/60000]
loss: 0.689929
               [32000/60000]
loss: 0.779207
               [38400/60000]
loss: 0.778795
               [44800/60000]
loss: 0.757979
               [51200/60000]
loss: 0.726265
               [57600/60000]
Test Error:
Accuracy: 74.2%, Avg loss: 0.719100
Epoch 14
-----
loss: 0.692237 [
                    0/60000]
loss: 0.783131 [ 6400/60000]
loss: 0.566655 [12800/60000]
loss: 0.776837
               [19200/60000]
loss: 0.684880
               [25600/60000]
loss: 0.671718 [32000/60000]
loss: 0.757862
               [38400/60000]
loss: 0.765968
               [44800/60000]
loss: 0.740439
               [51200/60000]
loss: 0.708884
               [57600/60000]
Test Error:
```

Epoch 15

Accuracy: 74.9%, Avg loss: 0.700972

```
loss: 0.664933 [
                    0/60000]
loss: 0.761112 [ 6400/60000]
loss: 0.545297
               [12800/60000]
loss: 0.760738
               [19200/60000]
loss: 0.670889
               [25600/60000]
loss: 0.656096
               [32000/60000]
loss: 0.737731
               [38400/60000]
loss: 0.754223 [44800/60000]
loss: 0.724762 [51200/60000]
loss: 0.692910
               [57600/60000]
Test Error:
Accuracy: 75.8%, Avg loss: 0.684374
Epoch 16
loss: 0.640301 [
                    0/60000]
loss: 0.740805 [ 6400/60000]
loss: 0.526202 [12800/60000]
loss: 0.746212 [19200/60000]
loss: 0.658458 [25600/60000]
loss: 0.642361 [32000/60000]
loss: 0.718656 [38400/60000]
loss: 0.743339 [44800/60000]
loss: 0.710708
               [51200/60000]
loss: 0.678007
               [57600/60000]
Test Error:
Accuracy: 76.6%, Avg loss: 0.669057
Epoch 17
-----
loss: 0.617968 [
                    0/60000]
loss: 0.722022 [ 6400/60000]
loss: 0.509044 [12800/60000]
loss: 0.733012 [19200/60000]
loss: 0.647218 [25600/60000]
loss: 0.630369 [32000/60000]
loss: 0.700783 [38400/60000]
loss: 0.733483
               [44800/60000]
loss: 0.698288 [51200/60000]
loss: 0.663941 [57600/60000]
Test Error:
Accuracy: 77.2%, Avg loss: 0.654930
Epoch 18
loss: 0.597719 [
                    0/60000]
loss: 0.704612 [ 6400/60000]
```

loss: 0.493512 [12800/60000]

loss: 0.720886 [19200/60000] loss: 0.637213 [25600/60000] loss: 0.619732 [32000/60000] loss: 0.684095 [38400/60000] loss: 0.724577 [44800/60000] loss: 0.687314 [51200/60000] loss: 0.650693 [57600/60000]

Test Error:

Accuracy: 77.8%, Avg loss: 0.641852

#### Epoch 19

\_\_\_\_\_\_

loss: 0.579285 [ 0/60000] loss: 0.688543 [ 6400/60000] loss: 0.479381 [12800/60000] loss: 0.709693 [19200/60000] loss: 0.628206 [25600/60000] loss: 0.610176 [32000/60000] loss: 0.668577 [38400/60000] loss: 0.716611 [44800/60000] loss: 0.677698 [51200/60000] loss: 0.638301 [57600/60000]

Test Error:

Accuracy: 78.4%, Avg loss: 0.629749

#### Epoch 20

-----

loss: 0.562499 [ 0/60000] loss: 0.673659 [ 6400/60000] loss: 0.466497 [12800/60000] loss: 0.699337 [19200/60000] loss: 0.619986 [25600/60000] loss: 0.601518 [32000/60000] loss: 0.654112 [38400/60000] loss: 0.709602 [44800/60000] loss: 0.669386 [51200/60000] loss: 0.626625 [57600/60000]

Test Error:

Accuracy: 78.8%, Avg loss: 0.618569

#### Epoch 21

\_\_\_\_\_

loss: 0.547125 [ 0/60000] loss: 0.659857 [ 6400/60000] loss: 0.454773 [12800/60000] loss: 0.689606 [19200/60000] loss: 0.612464 [25600/60000] loss: 0.593709 [32000/60000] loss: 0.640730 [38400/60000] loss: 0.703518 [44800/60000] loss: 0.662297 [51200/60000] loss: 0.615599 [57600/60000]

Test Error:

Accuracy: 79.1%, Avg loss: 0.608258

# Epoch 22

loss: 0.533147 [ 0/600001 loss: 0.647070 [ 6400/60000] loss: 0.444088 [12800/60000] loss: 0.680515 [19200/60000] loss: 0.605524 [25600/60000] loss: 0.586550 [32000/60000] loss: 0.628334 [38400/60000] loss: 0.698401 [44800/60000] loss: 0.656289 [51200/60000] loss: 0.605133 [57600/60000]

Test Error:

Accuracy: 79.3%, Avg loss: 0.598758

#### Epoch 23

loss: 0.520366 [ 0/60000] loss: 0.635235 [ 6400/60000] loss: 0.434305 [12800/60000] loss: 0.671958 [19200/60000] loss: 0.599038 [25600/60000] loss: 0.579916 [32000/60000] loss: 0.616958 [38400/60000] loss: 0.694093 [44800/60000] loss: 0.651202 [51200/60000] loss: 0.595192 [57600/60000]

Test Error:

Accuracy: 79.7%, Avg loss: 0.590007

# Epoch 24

-----

loss: 0.508569 [ 0/60000] loss: 0.624258 [ 6400/60000] loss: 0.425347 [12800/60000] loss: 0.663801 [19200/60000] loss: 0.592908 [25600/60000] loss: 0.573849 [32000/60000] loss: 0.606550 [38400/60000] loss: 0.690574 [44800/60000] loss: 0.646927 [51200/60000] loss: 0.585800 [57600/60000]

Test Error:

Accuracy: 79.9%, Avg loss: 0.581953

#### Epoch 25

\_\_\_\_\_

loss: 0.497583 [ 0/60000] loss: 0.614092 [ 6400/60000] loss: 0.417150 [12800/60000] loss: 0.656061 [19200/60000] loss: 0.586992 [25600/60000] loss: 0.568170 [32000/60000] loss: 0.596982 [38400/60000] loss: 0.687713 [44800/60000]

loss: 0.643338 [51200/60000]

loss: 0.576842 [57600/60000]

Test Error:

Accuracy: 80.3%, Avg loss: 0.574541

#### Epoch 26

\_\_\_\_\_

loss: 0.487424 [ 0/60000]
loss: 0.604684 [ 6400/60000]
loss: 0.409593 [12800/60000]
loss: 0.648730 [19200/60000]
loss: 0.581309 [25600/60000]
loss: 0.562854 [32000/60000]
loss: 0.588233 [38400/60000]
loss: 0.685531 [44800/60000]
loss: 0.640369 [51200/60000]
loss: 0.568245 [57600/60000]

Test Error:

Accuracy: 80.6%, Avg loss: 0.567716

## Epoch 27

\_\_\_\_\_

loss: 0.477984 [ 0/60000] loss: 0.595962 [ 6400/60000] loss: 0.402559 [12800/60000] loss: 0.641799 [19200/60000] loss: 0.575764 [25600/60000] loss: 0.557817 [32000/60000] loss: 0.580209 [38400/60000] loss: 0.683882 [44800/60000] loss: 0.637708 [51200/60000] loss: 0.559995 [57600/60000]

Test Error:

Accuracy: 80.8%, Avg loss: 0.561416

```
Epoch 28
loss: 0.469170 [
                    0/60000]
loss: 0.587876 [ 6400/60000]
loss: 0.396000 [12800/60000]
loss: 0.635168
               [19200/60000]
loss: 0.570320
               [25600/60000]
loss: 0.553035
               [32000/60000]
loss: 0.572849
               [38400/60000]
loss: 0.682612
               [44800/60000]
loss: 0.635281
               [51200/60000]
loss: 0.552107
               [57600/60000]
Test Error:
Accuracy: 80.9%, Avg loss: 0.555589
Epoch 29
loss: 0.460853 [
                    0/60000]
loss: 0.580326 [ 6400/60000]
loss: 0.389951 [12800/60000]
loss: 0.628756 [19200/60000]
loss: 0.564975
               [25600/60000]
loss: 0.548358
               [32000/60000]
loss: 0.566060
               [38400/60000]
loss: 0.681749
               [44800/60000]
loss: 0.633066
               [51200/60000]
loss: 0.544506
               [57600/60000]
Test Error:
Accuracy: 81.0%, Avg loss: 0.550182
Epoch 30
-----
loss: 0.453028 [
                    0/60000]
loss: 0.573295 [ 6400/60000]
loss: 0.384339 [12800/60000]
loss: 0.622593 [19200/60000]
loss: 0.559784
               [25600/60000]
loss: 0.543809
               [32000/60000]
loss: 0.559774
               [38400/60000]
loss: 0.681126
               [44800/60000]
loss: 0.630988
               [51200/60000]
loss: 0.537200
               [57600/60000]
Test Error:
Accuracy: 81.1%, Avg loss: 0.545153
```

Epoch 31

```
loss: 0.445685 [
                    0/60000]
loss: 0.566751
               [ 6400/60000]
loss: 0.379096
               [12800/60000]
loss: 0.616717
               [19200/60000]
loss: 0.554693
               [25600/60000]
loss: 0.539456
               [32000/60000]
loss: 0.553990
               [38400/60000]
loss: 0.680672
               [44800/60000]
loss: 0.629022
               [51200/60000]
loss: 0.530216
               [57600/60000]
Test Error:
Accuracy: 81.2%, Avg loss: 0.540475
Epoch 32
loss: 0.438745 [
                    0/60000]
loss: 0.560635 [ 6400/60000]
loss: 0.374175 [12800/60000]
loss: 0.611052 [19200/60000]
loss: 0.549627
               [25600/60000]
loss: 0.535169
               [32000/60000]
loss: 0.548627
               [38400/60000]
loss: 0.680392 [44800/60000]
loss: 0.627125
               [51200/60000]
loss: 0.523505 [57600/60000]
Test Error:
Accuracy: 81.3%, Avg loss: 0.536104
Epoch 33
-----
loss: 0.432170 [
                    0/60000]
loss: 0.554922 [ 6400/60000]
loss: 0.369555 [12800/60000]
loss: 0.605577
               [19200/60000]
loss: 0.544604 [25600/60000]
loss: 0.530948 [32000/60000]
loss: 0.543611 [38400/60000]
loss: 0.680160
               [44800/60000]
loss: 0.625264 [51200/60000]
loss: 0.517067 [57600/60000]
Test Error:
Accuracy: 81.4%, Avg loss: 0.532016
Epoch 34
loss: 0.425933 [
                    0/60000]
loss: 0.549605 [ 6400/60000]
```

loss: 0.365209 [12800/60000]

```
loss: 0.600231 [19200/60000]
loss: 0.539660 [25600/60000]
loss: 0.526772 [32000/60000]
loss: 0.538898 [38400/60000]
loss: 0.679980 [44800/60000]
loss: 0.623436 [51200/60000]
loss: 0.510915 [57600/60000]
```

Test Error:

Accuracy: 81.5%, Avg loss: 0.528183

#### Epoch 35

loss: 0.419950 [ 0/60000] loss: 0.544604 [ 6400/60000]

loss: 0.361110 [12800/60000] loss: 0.595054 [19200/60000]

loss: 0.534813 [25600/60000] loss: 0.522702 [32000/60000] loss: 0.534482 [38400/60000]

loss: 0.679793 [44800/60000] loss: 0.621551 [51200/60000]

loss: 0.505032 [57600/60000]

Test Error:

Accuracy: 81.7%, Avg loss: 0.524572

#### Epoch 36

-----

loss: 0.414200 [ 0/60000] loss: 0.539942 [ 6400/60000]

loss: 0.357218 [12800/60000] loss: 0.590063 [19200/60000] loss: 0.530064 [25600/60000]

loss: 0.518742 [32000/60000]

loss: 0.530371 [38400/60000] loss: 0.679609 [44800/60000]

loss: 0.619621 [51200/60000]

loss: 0.499419 [57600/60000]

Test Error:

Accuracy: 81.8%, Avg loss: 0.521174

#### Epoch 37

\_\_\_\_\_

loss: 0.408698 [ 0/60000] loss: 0.535579 [ 6400/60000] loss: 0.353549 [12800/60000] loss: 0.585233 [19200/60000] loss: 0.525392 [25600/60000] loss: 0.514843 [32000/60000] loss: 0.526397 [38400/60000] loss: 0.679338 [44800/60000] loss: 0.617659 [51200/60000] loss: 0.494079 [57600/60000]

Test Error:

Accuracy: 82.0%, Avg loss: 0.517968

# Epoch 38

-----

loss: 0.403414 [ 0/600001 loss: 0.531500 [ 6400/60000] loss: 0.350066 [12800/60000] loss: 0.580510 [19200/60000] loss: 0.520799 [25600/60000] loss: 0.511017 [32000/60000] loss: 0.522680 [38400/60000] loss: 0.678944 [44800/60000] loss: 0.615709 [51200/60000] loss: 0.488982 [57600/60000]

Accuracy: 82.0%, Avg loss: 0.514935

### Epoch 39

Test Error:

\_\_\_\_\_

loss: 0.398317 [ 0/60000] loss: 0.527636 [ 6400/60000] loss: 0.346736 [12800/60000] loss: 0.575945 [19200/60000] loss: 0.516323 [25600/60000] loss: 0.507284 [32000/60000] loss: 0.519138 [38400/60000] loss: 0.678487 [44800/60000] loss: 0.613748 [51200/60000] loss: 0.484179 [57600/60000]

Test Error:

Accuracy: 82.1%, Avg loss: 0.512062

# Epoch 40

\_\_\_\_\_

loss: 0.393425 [ 0/60000] loss: 0.523959 [ 6400/60000] loss: 0.343545 [12800/60000] loss: 0.571548 [19200/60000] loss: 0.511949 [25600/60000] loss: 0.503585 [32000/60000] loss: 0.515781 [38400/60000] loss: 0.677981 [44800/60000] loss: 0.611740 [51200/60000] loss: 0.479623 [57600/60000]

Test Error:

Accuracy: 82.2%, Avg loss: 0.509328

#### Epoch 41

\_\_\_\_\_

loss: 0.388678 [ 0/60000] loss: 0.520578 [ 6400/60000] loss: 0.340496 [12800/60000] loss: 0.567305 [19200/60000] loss: 0.507701 [25600/60000] loss: 0.499994 [32000/60000] loss: 0.512593 [38400/60000]

loss: 0.677378 [44800/60000]

loss: 0.609739 [51200/60000] loss: 0.475284 [57600/60000]

Test Error:

Accuracy: 82.2%, Avg loss: 0.506727

#### Epoch 42

\_\_\_\_\_

loss: 0.384083 [ 0/60000]
loss: 0.517398 [ 6400/60000]
loss: 0.337565 [12800/60000]
loss: 0.563235 [19200/60000]
loss: 0.503554 [25600/60000]
loss: 0.496431 [32000/60000]
loss: 0.509514 [38400/60000]
loss: 0.676646 [44800/60000]
loss: 0.607716 [51200/60000]
loss: 0.471181 [57600/60000]

Test Error:

Accuracy: 82.2%, Avg loss: 0.504249

## Epoch 43

\_\_\_\_\_

loss: 0.379638 [ 0/60000] loss: 0.514382 [ 6400/60000] loss: 0.334762 [12800/60000] loss: 0.559277 [19200/60000] loss: 0.499467 [25600/60000] loss: 0.493009 [32000/60000] loss: 0.506529 [38400/60000] loss: 0.675821 [44800/60000] loss: 0.605699 [51200/60000] loss: 0.467293 [57600/60000]

Test Error:

Accuracy: 82.3%, Avg loss: 0.501885

# Epoch 44

loss: 0.375344 [ 0/60000] loss: 0.511530 [ 6400/60000] loss: 0.332111 [12800/60000] loss: 0.555430 [19200/60000] loss: 0.495519 [25600/60000] loss: 0.489661 [32000/60000] loss: 0.503663 [38400/60000] loss: 0.674823 [44800/60000] loss: 0.603631 [51200/60000] loss: 0.463592 [57600/60000]

Test Error:

Accuracy: 82.4%, Avg loss: 0.499625

# Epoch 45

\_\_\_\_\_

loss: 0.371173 [ 0/60000] loss: 0.508784 [ 6400/60000] loss: 0.329526 [12800/60000] loss: 0.551710 [19200/60000] loss: 0.491672 [25600/60000] loss: 0.486396 [32000/60000] loss: 0.500909 [38400/60000] loss: 0.673726 [44800/60000] loss: 0.601543 [51200/60000] loss: 0.460097 [57600/60000]

Test Error:

Accuracy: 82.4%, Avg loss: 0.497460

# Epoch 46

-----

loss: 0.367093 [ 0/60000] loss: 0.506171 [ 6400/60000] loss: 0.327002 [12800/60000] loss: 0.548180 [19200/60000] loss: 0.487933 [25600/60000] loss: 0.483258 [32000/60000] loss: 0.498213 [38400/60000] loss: 0.672559 [44800/60000] loss: 0.599544 [51200/60000] loss: 0.456784 [57600/60000]

Test Error:

Accuracy: 82.6%, Avg loss: 0.495381

## Epoch 47

\_\_\_\_\_

```
loss: 0.363121 [
                    0/60000]
loss: 0.503684 [ 6400/60000]
loss: 0.324557
               [12800/60000]
loss: 0.544768
               [19200/60000]
loss: 0.484304
               [25600/60000]
loss: 0.480249
               [32000/60000]
loss: 0.495595
               [38400/60000]
loss: 0.671296 [44800/60000]
loss: 0.597470
               [51200/60000]
loss: 0.453647
               [57600/60000]
Test Error:
Accuracy: 82.7%, Avg loss: 0.493383
Epoch 48
loss: 0.359290 [
                    0/60000]
loss: 0.501274 [ 6400/60000]
loss: 0.322188 [12800/60000]
loss: 0.541475 [19200/60000]
loss: 0.480774 [25600/60000]
loss: 0.477294 [32000/60000]
loss: 0.493041 [38400/60000]
loss: 0.669907 [44800/60000]
loss: 0.595427
               [51200/60000]
loss: 0.450703 [57600/60000]
Test Error:
Accuracy: 82.7%, Avg loss: 0.491458
Epoch 49
-----
loss: 0.355578 [
                    0/60000]
loss: 0.498993 [ 6400/60000]
loss: 0.319940 [12800/60000]
loss: 0.538331 [19200/60000]
loss: 0.477325 [25600/60000]
loss: 0.474424 [32000/60000]
loss: 0.490540 [38400/60000]
loss: 0.668574 [44800/60000]
loss: 0.593414 [51200/60000]
loss: 0.447911 [57600/60000]
Test Error:
Accuracy: 82.7%, Avg loss: 0.489601
Epoch 50
loss: 0.351914 [
                    0/60000]
loss: 0.496841 [ 6400/60000]
```

loss: 0.317769 [12800/60000]

loss: 0.535295 [19200/60000] loss: 0.473950 [25600/60000] loss: 0.471680 [32000/60000] loss: 0.488097 [38400/60000] loss: 0.667117 [44800/60000] loss: 0.591421 [51200/60000] loss: 0.445266 [57600/60000]

Test Error:

Accuracy: 82.8%, Avg loss: 0.487809



### Base model accuracy is: 0.8275

After incressing the number of epochs used to train the model, it can be seen that the accuracy for the deeper model has continued to increase and the loss was able to continue decreasing as more epochs were trained. From the above graphs comparing the loss as the deeper model and the base model are trained, it seems that the loss of the deeper model can continue to decrease, while the loss of the base model has flattened out. This may indicate that the deeper model can be trained further to continue improving the accuracy, while the base model is not able to be trained further.

# 1.1.6 Question 1.6



As shown above, the mean of the gradients of loss has been calculated for the first 100 steps in the training. This has then been plotted on a graph. It can be seen in the graph that over the training for the first 100 steps, the gradients curve decreases.

# 1.1.7 Question 1.7

```
Finished Training
Accuracy of the network on the test images: 87.29 %
Accuracy for class: T-shirt/top is 81.7 %
Accuracy for class: Trouser is 98.2 \%
Accuracy for class: Pullover is 60.9 %
Accuracy for class: Dress is 88.5 %
Accuracy for class: Coat is 84.5 %
Accuracy for class: Sandal is 96.3 %
Accuracy for class: Shirt is 73.0 %
Accuracy for class: Sneaker is 96.6 %
Accuracy for class: Bag
                          is 97.5 \%
Accuracy for class: Ankle boot is 95.7 %
                      Parameters
Structures Accuracy
Base MLP
           71.5
                     % 669706
```

Wider MLP 73.2299999999999% 1863690

Deeper MLP 49.7 % 1195018 CNN 87.29 % 46982

From the results above, the convolutional neural network was able to achieve results with better accuracy to the MLP that was trained with the same learning rate. A result of 87% accuracy as able to be achieved with the CNN compared to only 72% for the base MLP, 73% for the wider MLP and 50% for the deeper MLP when training for just 10 epochs.

Because of this, it is clear that the CNN is able to converge in less epochs than the MLP model, achieving a higher accuracy with less training time. When comparing the number of parameters across models, it is also clear that this CNN has far less parameters, than any of the MLP models tested. With less than one tenth the number of parameters in the base MLP, and an even smaller percentage of the number of parameters in the wider or deeper MLPs tested.

We can also see that the accuracies found for classifying the images into classes was very high for the CNN model, often approaching 100%, especially for the trousers, sneakers, sandals, bag, and ankle boot. But the accuracy for the pullover was quite low in comparison, only 61%. This may indicate that more training is needed for that particular class of image or that there are less features available in pullover images to effectively match on.

Given this, it is likely that a CNN is a better method to classify these images compared to using a MLP to do the same task.