Date: March 5, 2024

Email: sohamc@cmi.ac.in

Course: Expander Graphs and Applications

# Problem 1 Problem 4.9 (The Replacement Product): Pseudorandomness By Salil Vadhan

Given a  $D_1$ -regular graph  $G_1$  on  $N_1$  vertices and a  $D_2$ -regular graph  $G_2$  on  $D_1$  vertices consider the following graph  $G_1(\widehat{r})G_2$  on vertex set  $[N_1] \times [D_1]$ : vertex (u,i) is connected to (v,j) iff

- (a) u = v and (i, j) is an edge in  $G_2$  or,
- (b) v is the i'th neighbour of u in  $G_1$  and u is the jth neighbor of v.

That is, we "replace" each vertex v in  $G_1$  with a copy of  $G_2$ , associating edge incident to v with one vertex of  $G_2$ .

1. Prove that there is a function g such that if  $G_1$  has spectral expansion  $\gamma_1 > 0$  and  $G_2$  has spectral expansion  $\gamma_2 > 0$  (and both graphs are undirected) then  $G_1(\widehat{\mathfrak{p}})G_2$  has spectral expansion  $g(\gamma_1, \gamma_2, D_2) > 0$ .

[Hint: Note that  $(G_1(r)G_2)^3$  has  $G_1(z)G_2$  as a subgraph]

- 2. Show how to convert an explicit construction of constant degree (spectral) expanders into an explicit construction of degree 3 (spectral) expanders.
- 3. Without using Theorem 4.14, prove an analogue of Part 1 for edge expansion. That is, there is a function h such that if  $G_1$  is an  $\left(\frac{N_1}{2}, \epsilon_1\right)$  edge expander and  $G_2$  is a  $\left(\frac{D_1}{2}, \epsilon_2\right)$  edge expander then  $G_1(\widehat{\Gamma})G_2$  is a  $\left(\frac{N_1D_1}{2}, h(\epsilon_1, \epsilon_2, D_2)\right)$  edge expander where  $h(\epsilon_1, \epsilon_2, D_2) > 0$  if  $\epsilon_1, \epsilon_2 > 0$ .

[Hint: Given any set S of vertices of  $G_1(\widehat{r})G_2$ , partition S into the clouds that are more than "half-full" and those that are not]

4. Prove that the functions  $g(\gamma_1, \gamma_2, D_2)$  and  $h(\epsilon_1, \epsilon_2, D_2)$  must depend on  $D_2$  by showing that  $G_1(r)G_2$  cannot be a  $\left(\frac{N_1D_1}{2}, \epsilon\right)$  edge expander if  $\epsilon > \frac{1}{D_1+1}$  and  $N_1 \geq 2$ 

### Solution:

1. Let  $A_1$  and  $A_2$  denote the normalized adjacency matrices of  $G_1$  and  $G_2$  respectively. The degree of the new graph  $G_1(\widehat{r})G_2$  is  $D_2 + 1$ . Now denote  $B \triangleq I_{N_1} \otimes A_2$  and A be a  $N_1 \cdot D_1 \times N_1 \cdot D_1$  matrix where

$$A[(u,i),(v,j)] = \begin{cases} 1 & \text{when } i \text{th neighbor of } u \text{ is } v \text{ and } j \text{th neighbor of } v \text{ is } u \text{ in } G_1 \\ 0 & \text{otherwise} \end{cases}$$

Therefore the adjacency matrix of the graph  $G_1(\widehat{\mathbf{r}})G_1$  is  $A+D_2B$ . Therefore the normalized adjacency matrix, M

$$M \triangleq \frac{A + D_2 B}{D_2 + 1}$$

Now notice the graph  $(G_1(\overline{x})G_2)^3$  contains the graph  $G_1(\overline{z})G_2$  as a subgraph. Hence

$$M^{3} = \left[\frac{A + D_{2}B}{D_{2} + 1}\right]^{3} = \frac{D_{2}^{2}}{(D_{2} + 1)^{3}}BAB + \left[1 - \frac{D_{2}^{2}}{(D_{2} + 1)^{3}}\right]C$$

for some matrix C. Lets denote  $p := \frac{D_2^2}{(D_2+1)^3}$ . Then  $M^3 = pBAB + (1-p)C$ . Hence for any  $v \perp u$  where u is the uniform vector we have

$$||M^3v|| \le p||BABv|| + (1-p)||Cv||$$

Now we can think as C is a normalized adjacency matrix of an undirected graph. Hence for all  $v \perp u$  we have  $||Cv|| \leq ||v||$ . Now we know for all  $v \perp u$ 

$$||BABv|| \le (\lambda_1 + \lambda_2 + \lambda_2^2)||v||$$

where  $\lambda_1 = 1 - \gamma_1$  and  $\lambda_2 = 1 - \gamma_2$ . Hence

$$||M^3v|| \le p(\lambda_1 + \lambda_2 + \lambda_2^2)||v|| + (1-p)||v|| = [p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1-p)]||v||$$

Now

$$1 - [p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1 - p)] = 1 - (1 - p) - p(\lambda_1 + \lambda_2 + \lambda_2^2)$$
$$= p - p(\lambda_1 + \lambda_2 + \lambda_2^2)$$
$$= p[1 - (\lambda_1 + \lambda_2 + \lambda_2^2)]$$

Now we know

$$\lambda_1 + \lambda_2 + \lambda_2^2 < 1 \iff 0 < 1 - (\lambda_1 + \lambda_2 + \lambda_2^2) < 1$$
 and  $0$ 

Then  $0 < p[1 - (\lambda_1 + \lambda_2 + \lambda_2^2)] < 1$ . Hence

$$0 < p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1 - p) < 1$$

Therefore for all  $v \perp u$ ,

$$||Mv|| \le [p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1-p)]^{\frac{1}{3}} ||v||$$

Now

$$[p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1-p)]^{\frac{1}{3}} = [1 - p[1 - (\lambda_1 + \lambda_2 + \lambda_2^2)]]^{\frac{1}{3}}$$

$$\leq 1 - \frac{1}{3}p[1 - (\lambda_1 + \lambda_2 + \lambda_2^2)] < 1$$

So

$$g(\gamma_1, \gamma_2, D_2) = 1 - \left[ p(\lambda_1 + \lambda_2 + \lambda_2^2) + (1-p) \right]^{\frac{1}{3}} > 0$$

2.

**Problem 2** Problem 4.10 (Unbalanced Vertex Expanders and Data Structures): Pseudorandomness By Salil Vadhan

Consider a  $(K, (1 - \epsilon)D)$  bipartite vertex expander G with N left vertices, M right vertices and left degree D.

- 1. For a set S of left vertices, a  $y \in N(S)$  is called a *unique* neighbor of S if y is incident to exactly one edge from S. Prove that every left-set S of size at most K has at least  $(1 2\epsilon)D|S|$  unique neighbors.
- 2. For a set S of size at most  $\frac{K}{2}$ , prove that at most  $\frac{|S|}{2}$  vertices outside S have at least  $\delta D$  neighbors in N(S) for  $\delta = O(\epsilon)$ .

# Solution:

1. Let U be the set of unique neighbors in N(S). Denote  $T = \Gamma(S) - U$ . Then we have  $|U \cup T| \ge (1 - \epsilon)D|S|$ . Now we will count the number of edges between S and  $\Gamma(S)$ . From each vertex in S there are D edges going out. Hence total D|S| many edges are going out from S. Now in  $\Gamma(S)$  for each vertex in U there is exactly

one edge coming from S and for each edge in T there are at least 2 edges coming from S. Hence there are at least |U| + 2|T| many edges are coming towards  $\Gamma(S)$ . Hence we have:

$$|U| + 2|T| \le D|S| \iff |U| + 2(|\Gamma(S)| - |U|) \le D|S|$$
  
$$\iff |U| \ge 2|\Gamma(S)| - D|S| \ge (1 - \epsilon)D|S| - D|S| = (1 - 2\epsilon)D|S|$$

Hence there are at least  $(1 - 2\epsilon)D|S|$  unique neighbors.

2.

#### Problem 3 Problem 5.5 (LDPC Codes): Pseudorandomness By Salil Vadhan

Given a  $D_1$ -regular graph  $G_1$  on  $N_1$  vertices and a  $D_2$ -regular graph  $G_2$  on  $D_1$  vertices consider the following graph  $G_1(\hat{r})G_2$  on vertex set  $[N_1] \times [D_1]$ : vertex (u,i) is connected to (v,j) iff

- (a) u = v and (i, j) is an edge in  $G_2$  or,
- (b) v is the i'th neighbor of u in  $G_1$  and u is the jth neighbor of v.

That is, we "replace" each vertex v in  $G_1$  with a copy of  $G_2$ , associating edge incident to v with one vertex of  $G_2$ .

1. Prove that there is a function g such that if  $G_1$  has spectral expansion  $\gamma_1 > 0$  and  $G_2$  has spectral expansion  $\gamma_2 > 0$  (and both graphs are undirected) then  $G_1(\widehat{\mathfrak{p}})G_2$  has spectral expansion  $g(\gamma_1, \gamma_2, D_2) > 0$ .

[Hint: Note that  $(G_1(r)G_2)^3$  has  $G_1(z)G_2$  as a subgraph]

- 2. Show how to convert an explicit construction of constant degree (spectral) expanders into an explicit construction of degree 3 (spectral) expanders.
- 3. Without using Theorem 4.14, prove an analogue of Part 1 for edge expansion. That is, there is a function h such that if  $G_1$  is an  $\left(\frac{N_1}{2}, \epsilon_1\right)$  edge expander and  $G_2$  is a  $\left(\frac{D_1}{2}, \epsilon_2\right)$  edge expander then  $G_1(\widehat{\mathbf{r}})G_2$  is a  $\left(\frac{N_1D_1}{2}, h(\epsilon_1, \epsilon_2, D_2)\right)$  edge expander where  $h(\epsilon_1, \epsilon_2, D_2) > 0$  if  $\epsilon_1, \epsilon_2 > 0$ .

[Hint: Given any set S of vertices of  $G_1(\widehat{r})G_2$ , partition S into the clouds that are more than "half-full" and those that are not]

4. Prove that the functions  $g(\gamma_1, \gamma_2, D_2)$  and  $h(\epsilon_1, \epsilon_2, D_2)$  must depend on  $D_2$  by showing that  $G_1(\widehat{\Gamma})G_2$  cannot be a  $\left(\frac{N_1D_1}{2}, \epsilon\right)$  edge expander if  $\epsilon > \frac{1}{D_1+1}$  and  $N_1 \geq 2$ 

#### **Problem 4**

Given a  $D_1$ -regular graph  $G_1$  on  $N_1$  vertices and a  $D_2$ -regular graph  $G_2$  on  $D_1$  vertices consider the following graph  $G_1(\widehat{\Gamma})G_2$  on vertex set  $[N_1] \times [D_1]$ : vertex (u,i) is connected to (v,j) iff

- (a) u = v and (i, j) is an edge in  $G_2$  or,
- (b) v is the i'th neighbor of u in  $G_1$  and u is the jth neighbour of v.

That is, we "replace" each vertex v in  $G_1$  with a copy of  $G_2$ , associating edge incident to v with one vertex of  $G_2$ .

1. Prove that there is a function g such that if  $G_1$  has spectral expansion  $\gamma_1 > 0$  and  $G_2$  has spectral expansion  $\gamma_2 > 0$  (and both graphs are undirected) then  $G_1(\widehat{\mathfrak{p}})G_2$  has spectral expansion  $g(\gamma_1, \gamma_2, D_2) > 0$ .

[Hint: Note that  $(G_1(r)G_2)^3$  has  $G_1(z)G_2$  as a subgraph]

- 2. Show how to convert an explicit construction of constant degree (spectral) expanders into an explicit construction of degree 3 (spectral) expanders.
- 3. Without using Theorem 4.14, prove an analogue of Part 1 for edge expansion. That is, there is a function h such that if  $G_1$  is an  $\left(\frac{N_1}{2}, \epsilon_1\right)$  edge expander and  $G_2$  is a  $\left(\frac{D_1}{2}, \epsilon_2\right)$  edge expander then  $G_1(\widehat{\Gamma})G_2$  is a  $\left(\frac{N_1D_1}{2}, h(\epsilon_1, \epsilon_2, D_2)\right)$  edge expander where  $h(\epsilon_1, \epsilon_2, D_2) > 0$  if  $\epsilon_1, \epsilon_2 > 0$ .

[Hint: Given any set S of vertices of  $G_1(\widehat{r})G_2$ , partition S into the clouds that are more than "half-full" and those that are not]

4. Prove that the functions  $g(\gamma_1, \gamma_2, D_2)$  and  $h(\epsilon_1, \epsilon_2, D_2)$  must depend on  $D_2$  by showing that  $G_1(\widehat{\Gamma})G_2$  cannot be a  $\left(\frac{N_1D_1}{2}, \epsilon\right)$  edge expander if  $\epsilon > \frac{1}{D_1+1}$  and  $N_1 \geq 2$