KU LEUVEN

Customer and Marketing Analytics

Introduction to assignment 1

Kathleen Cleeren

Different types of data

- Aggregation level:
 - At which level is the observation collected?
 - Aggregated
 - Disaggregated: individual data
- Time series versus cross-sectional
 - Periodicity of observations

Elasticities

Percentage change in output when the input increases with a particular percentage:

Elasticity =
$$\frac{Fraction\ change\ in\ q}{Fraction\ change\ in\ p} = \frac{(q_1 - q_0)/q_0}{(p_1 - p_0)/p_0}$$

Interpretation of price elasticities

Return = sales * price

Unit elasticity:

- percentage increase in sales = percentage decrease in price
- Price decreases have no effect on revenues

Interpretation of price elasticities

Return = sales * price

Elastic demand:

- Percentage increase in sales > percentage decrease in price
- Price decreases increase revenues

Interpretation of price elasticities

Return = sales * price

Inelastic demand:

- Percentage increase in sales < percentage decrease in price
- Price decreases decrease revenues

Why use elasticities?

- Unit free:
 - Independent of the industry
 - Independent of the size of the variables
- Interesting direct economic interpretation
- Can also be used for other input variables!

How to estimate an elasticity?

- Market response model that links an input variable to an output variable
- Linear model:
 - Constant change in output
 - Elasticity is dependent on the size of the input variable given that we look at a percentage change
- Log-log model:
 - Curvilinear relationship
 - Constant elasticity

Linear model: sales=2+5*input

Log-log model: log(sales)=2+5*log(input)

How to estimate an advertising elasticity?

Regress log(sales) on log(advertising):

$$log(sales) = \beta_0 + \beta_1 \log(advertising) + \varepsilon_t$$

Parameter of log(advertising) is the elasticity

Add environmental factors

- Not the focus of the model but:
 - Improve the fit of the model (don't forget "simpler is better")
 - Improve the estimation of the elasticities
 - Provide extra insights into the effect of the control variables
 - Extra validity checks

Specific time series controls

- Long-term trend
- Season

Long-term trend

Control for the long-term trend

- Add a trend variable to the model:
 - Create a variable that indicates the period of the observation:
 - Trend = 1 for the first observed period
 - Trend = 2 for the second observed period
 - •
 - Trend = N for the last observed period
- This is a linear trend

Season effect

Controlling for the effect of the season

- Create dummy variables to control for:
 - Season
 - OR month
 - OR trimester
 - 。 OR ...
- Only for datasets for which the periodicity is smaller than one year!

Adding dynamic effects

- Static model: "contemporaneous" relations
- Adding dynamic effects:
 - X influences sales in the future
 - X influences sales in the past

Adding dynamic effects

- Adding leads and lags
- Working with a predefined distribution of dynamic effects

Lags

Controlling for input from the past:

Creating lagged variables

Period	Input _t	Input _{t-1}	Input _{t-2}
1	100		
2	200	100	
3	300	200	100
4	400	300	200
5	500	400	300
6	600	500	400
7	700	600	500
8	800	700	600
9	900	800	700

Be careful!

- Make sure the dataset is correctly sorted
- Look at the missing values!

Deciding on the number of lags

. . .

Leads

Controlling for the influence of input in the future:

Forward looking

Creating lead variables

Period	Input _t	Input _{t+1}	Input _{t+2}
1	100	200	300
2	200	300	400
3	300	400	500
4	400	500	600
5	500	600	700
6	600	700	800
7	700	800	900
8	800	900	
9	900		

Deciding on the number of leads

. . .

Leads and lags

- Combination of leads and lags in one model is possible
- Very flexible way to control for dynamic effects
- Does not always lead to a simple model
- Interpretation can be hard

Stock variables

$$Stock_t = \alpha Input_t + (1 - \alpha) Stock_{t-1}$$

- Stock of input variable
- Effect of input dependent on:
 - Level of input in the same period
 - Stock of the previous period
- Weight of both components is determined by alpha

Predetermined distribution of values from the past

$$Stock_{t} = \alpha Input_{t} + (1 - \alpha) Stock_{t-1}$$

$$Stock_{t} = \alpha Input_{t} + (1 - \alpha) (\alpha Input_{t-1} + (1 - \alpha) Stock_{t-2})$$

$$Stock_{t} = \alpha Input_{t} + \alpha (1 - \alpha) Input_{t-1} + (1 - \alpha)^{2} Stock_{t-2}$$

 $Stock_t = \alpha \ Input_t + \alpha \ (1 - \alpha) \ Input_{t-1} + \dots + \alpha \ (1 - \alpha)^{n-1} Input_{t-n-1}$

Interpretation of alpha

$$Stock_t = \alpha Input_t + (1 - \alpha) Stock_{t-1}$$

- Alpha is the contemporaneous effect of the input
- 1 alpha is the carryover of the stock

Period	Input _t	$\mathbf{Stock_t} \\ \alpha = 0.1$	$\begin{array}{c} \textbf{Stock}_t \\ \alpha = 0.9 \end{array}$
0		0	0
1	300	30	270
2	0	27	27
3	0	24.3	2.7
4	100	31.87	90.27
5	0	28.683	9.027
6	400	65.8147	360.9027
7	0	59.23323	36.09027
8	0	53.30991	3.609027
9	0	47.97892	0.360903

Period	Input _t	$\begin{aligned} \textbf{Stock}_t \\ \alpha &= 0.1 \end{aligned}$	$\mathbf{Stock}_{t} \\ \alpha = 0.9$
0		0	0
1	300	30	270
2		27	27
	3 =0.1*300+0.9*0		2.7
4	100	31.87	90.27
5		28.683	9.027
6	400	65.8147	360.9027
7		59.23323	36.09027
8		53.30991	3.609027

Period	Input _t	$\begin{aligned} \textbf{Stock}_t \\ \alpha = 0.1 \end{aligned}$	$\mathbf{Stock_t} \\ \alpha = 0.9$	
			0	
			27	
			2.7	
4	100	31.87	90.27	
			9.027	
6	400	65.8147	36 =0.9*100+	-0 1*2 7
				U.1 Z.1
8		53.30991	3.609027	

Period	Input _t	$\mathbf{Stock_t} \\ \alpha = 0.1$	$\begin{array}{c} \textbf{Stock}_t \\ \alpha = 0.9 \end{array}$
0		0	0
1	300	30	270
2	0	27	27
3	0	24.3	2.7
4	100	31.87	90.27
5	0	28.683	9.027
6	400	65.8147	360.9027
7	0	59.23323	36.09027
8	0	53.30991	3.609027
9	0	47.97892	0.360903

Deciding on the correct value of alpha

- Estimate different models with stock variables on the basis of different values of alpha
- Select the model with the highest fit

Using stock variables to control for dynamic effects

- Number of parameters to estimate is limited (one coefficient and one alpha)
- Model is simple
- Interesting interpretation of alpha
- Assumes a fixed distribution of a decreasing impact

Assignment 1

- Measure and discuss the effectiveness of advertising expenditures of two brands after a product-harm crisis
- Build a market response model step by step
- Think about which variables to include and the implication of adding variables to the model
- Focus is on interpretation!

Different steps

- 1. Take a look at the data
- 2. Estimate the advertising elasticities
- 3. Add control variables
- 4. Add competition
- 5. Add dynamic effects
- 6. Critical reflection

Document to hand in

- Word document of maximum 15 pages (all included!)
- Line spacing 1.5; font size 12
- 1 document per team
- Hand in in paper by e-mail to <u>kathleen.cleeren@kuleuven.be</u> on Thursday March 12

Teams

Surname	Name	Team
Amidei	Juvenal Willi	А
Aslanidis	Odysseas	В
Belzaino	Salvatore	С
Bugge	Stephanie Caytlon	D
Cecchini	Oscar	Е
Diaz Fraga	Paul Alexander	Α
Ekel	Jeremy Mejia	В
Ghiani	Marco	С
Kantipudi	Venkata Sriharsha Chowdary	D
Melucci	Pierfrancesco	E
Awad	Mohamed Alaaeldin Mohamed	Α
Pantaleoni	Marco	В
Petruzzelli	Nicola	С
Rendine	Flavio	D
Ronsisvalle	Carlo Manfredi	Е
Saarinen	Veli Henrik	Α
Tedino	Simone	В
Vattikonda	Prasanth	С
Zalizniak	Valeriia	D
Zolezzi Labarca	Alejandro Andrés	Е