Theory Notes

Dav King

Overview/Background

Variable selection is important in high-dimensional settings: We often expect that only a small handful of the predictors are actually associated with the outcome, but when we include many in the model, we have issues with computational complexity, sparse solutions, and potentially issues with finding variables significant which are not actually meaningful predictors.

Why is a Bayesian approach potentially better? Bayesian methods allow us to introduce prior information on the betas, which can help us introduce known structure into the variable selection setting and also stabilize inferences in high-dimensional settings (Lu & Lou, 2022).

Priors

Spike-and-Slab Priors

The spike-and-slab prior is a two-point mixture on the β_j , which forces some of the β_j to zero and estimates the coefficients of the others. The generic form of the spike-and-slab prior is

$$\beta_j | \gamma_j \sim \gamma_j \phi_1(\beta_j) + (1-\gamma_j) \phi_0(\beta_j), \qquad \sim \pi(\)$$

In this case, $\phi_1(\beta_j)$ is a diffuse "slab distribution" so that the β_j can reach their true coefficients, and $\phi_0(\beta_j)$ is a concentrated "spike distribution" pulling effects to 0, and γ_j is a binary latent indicator representing the 2^p possible models (Lu & Lou, 2022).

Shrinkage Priors

Hybrid Priors

Other Methods

Bayesian Model Averaging

Best Subset Selection

References

Lu, Z., & Lou, W. (2022). Bayesian approaches to variable selection: A comparative study from practical perspectives. *The International Journal of Biostatistics*, 18(1), 83–108. https://doi.org/10.1515/ijb-2020-0130