

Instructor: Zhenyu (Henry) Huang (509) 438-7235, h_zyu@yahoo.com

EE 521: Analysis of Power Systems

Lecture 15 Intro to Stability Concepts

Fall 2009

Mondays & Wednesdays 5:45-7:00 August 24 – December 18 Test 216

Topics

- Why to study stability problems
- Types of power system stability problems
 - Angular stability
 - Transient stability
 - Small signal stability
 - Voltage stability
 - Large-disturbance voltage stability
 - Small-disturbance voltage stability
- Power-Angle Equation
- Power-Voltage Curve

Power System Structure

- Power flow studies the network, with generation and load given – steady state analysis
- What about sudden changes in generation and load?
- What about sudden changes in the network?

Power System Stability

- Power system stability studies the behavior of power systems under conditions such as sudden changes in generation or load or short circuit on transmission lines
 - The study evaluates the impact of disturbances on the behavior of power systems

Power System Dynamics

- Power systems are highly dynamic
 - Constant energy conversion from one form to another
 - Generation: natural energy forms (potential, thermal, kinetic) → kinetic energy → electricity
 - Load: electricity → useful forms (light, mechanical, thermal)
 - Constant balance of generation and load
 - No large storage of electricity
- Therefore, power system stability is an important and challenging problem
 - More complex due to interconnection and new technology
 - Less margin due to economic and environmental constraints

Dynamic System Examples

- Can it reach a steady state?
- Can it remain in a steady state?

Power System Stability Categories

	Generation (Angle Stability)	Load (Voltage Stability)	
Large Disturbance	Transient Stability	Large Disturbance Voltage Stability	Can the system reach a steady state?
Small Disturbance	Small Signal Stability	Small Disturbance Voltage Stability	Can the system remain at a steady state?
	How much power can be transferred from the generator to the system?	How much power can be transferred from the system to the load?	

Analytical Tools for Stability Studies

- Slide rules and mechanical calculators
- Network analyzers
 - Scaled model of a real system
- Electronic analog computers
- Digital computers
- High performance computers
 - Parallel computing hardware and software

Purposes of Stability Studies

- Planning
 - Transmission expansion (new lines, new substations, ...)
 - Voltage support (Var supply)
- Design
 - Control design: excitation, Power System Stabilizers, FACTS devices
 - Relay settings
- Operation
 - Transfer limits
 - Load shedding schemes
 - Remedial action schemes

Generator Stability (Angle Stability)

- Study the interaction between a generator and the system.
 - How much power can be transferred to the system?
- The dynamics of generators are represented by differential equations
- Numerous coupled differential equations are necessary to fully model a generator
- Numerical integration is a common method to solve the differential equations

Single-Machine-Infinite-Bus System

Power-Angle Equation

Phasor diagram:

By definition:

$$P = VI \cos \theta$$

From the phasor diagram:

$$XI\cos\theta = E'\sin\delta$$

$$P = \frac{E'V}{X}\sin\delta = \frac{E'V}{X'_d + X_L}\sin\delta$$

Maximum Power Transfer

$$P = \frac{E'V}{X}\sin\delta = \frac{E'V}{X'_d + X_L}\sin\delta$$

Observations:

- 1. Maximum power transfer at $\delta = 90^{\circ}$.
- 2. With a given mechanical power input P_m to the generator, the operating point, i.e. δ , can be found at the intersection point.
- 3. There exist two operating points. Only the smaller one is stable.

Example: Power-Angle Equation

- See notes.
 - Normal operation.
 - 3-phase-ground fault.
 - Tripping a line to clear the fault.

Load Stability (Voltage Stability)

- Study the interaction between the system and the load.
 - How much power can be transferred to the load from a system without voltage collapse?
- Voltage stability is highly affected by load characteristics
 - ZIP load (algebraic equations)
 - Motor load (differential equations)
- Load modeling is very challenging due to diversity, variability, and aggregation.
 - Many efforts are ongoing (e.g. WECC)

Bulb Examples

- 10 Volt battery
 - Internal resistance of 1 Ohm
- 20 Watt Light bulbs
 - Each light bulb resistance is 5 Ohms

Why the room becomes darker with more bulbs added?

Power-Voltage Curve

Maximum Power Transfer

$$\left(\frac{1}{R_{sys}}\right)V^2 - \left(\frac{E}{R_{sys}}\right)V + P = 0$$

Observations:

- 1. Maximum power transfer at V = E/2, i.e. $R_{load} = R_{sys}$.
- 2. With a given constant load P_{load} , the operating point, i.e. V, can be found at the intersection point.
- 3. There exist two operating points. Only the higher voltage point is feasible.

Voltage vs. Power Curve

Power-Voltage Curve for AC Systems

Assignments (due: October 26):

- 1. Derive the power-voltage equation with a purely resistive load, i.e. Q = 0.
- 2. Determine maximum power transfer.
- 3. Determine the condition where the maximum power transfer occurs.

Questions?

