Sprawdzanie prawdziwości praw Ohma i Kirchoffa

Hubert Ładziński

31 maja 2017

1 Streszczenie

W pracy badano zgodność praw Ohma i Kirchoffa z rzeczywistością. Wyniki pomiarów potwierdzaja ich słuszność, tak sprawdzone prawa posłużyły do wyznaczenia siły elektromotorycznej $\varepsilon=1,538$ [V] oraz oporu baterii $r_w=0,0005$ [Ω].

2 Wstęp

Prawdziwość prawa Ohma sprawdzano wybierając jeden z oporników kiloomowych, który następnie włączono do układu z zasilaczem prądu stałego i mierzono napięcie oraz natężenie na tym oporniku ośmiokrotnie zmieniając napięcie. Kolejne doświadczenie polegało na zbudowaniu układu widocznego na rysunku 1 z oporników $R_1,\,R_2$ oraz R_3 połączonych szeregowo podłączonych do zasilacza prądu stałego, następnie zmierzono napięcia na poszczególnych opornikach oraz na całym układzie. Trzecie doświadczenie było analogiczne do drugiego ale z opornikami połaczonymi równolegle, w tym doświadczeniu mierzono natężenie na poszczególnych opornikach i całości układu. Ostatnią częścią badań był układ z baterią i opornikiem poniżej $1 \text{ k}\Omega$, w tej części mierzono napięcie na baterii i natężenie w obwodzie. Pomiar powtórzono pięciokrotnie z wykorzystaniem różnych oporników. Dane zebrane w doświadczeniu czwartym pozwoliły z wykorzystaniem praw Ohma i Kirchoffa wyznaczyć opór wewnętrzny i siłę elektromotoryczną baterii. W raporcie zostanie również przedstawiona wizualna weryikacja oceny zgodności modelowego rozkładu Gaussa z doświadczalnym rozkładem wyników pomiaru okresu drgań wahadła.

3 Układ doświadczalny i pomiary

Do pomiarów napięcia i natężenia używano miernika Brymen 805, przy pomiarach natężenia używano miernika CHY. W pierwszym doświadczeniu podłączono opornik 83 k Ω jak zostało to opisane we wstępie. Wyniki tej części znajdują się w tabelii numer 1.

Tabela 1: Pomiar napięcia i natężenia na oporniku 83 k Ω

	1	2	3	4	5	6	7	8
Napięcie[V]	1,073	1,520	1,991	2,578	2,980	3,485	3,992	4,56
Natężenie $[\mu A]$	13,0	18,4	24,1	31,2	36,1	42,2	48,4	55,4

W doświadczeniu numer 2 użyto oporników $R_1=83,3$ k Ω , $R_2=81,3$ k Ω oraz $R_3=94,4$ k Ω . Dla pięciu różnych napieć A-D mierzono napięcia na poszczególnych opornikach miernikiem Brymen 805. Wyniki znajdują sie w tabelii numer 2. W doświadczeniu 3 użyto tych samych oporników co w doświadczeniu

Rysunek 1: Obwód z doświadczenia 2

Tabela 2: Dane z doświadczenia 2

	1	2	3	$\mid 4 \mid$	5
V_{A-B} [V]	0,321	0,499	0,652	0,817	0,943
V_{B-C} [V]	0,313	0,486	0,635	0,796	0,919
V_{C-D} [V]	0,362	0,564	0,738	0,924	1,066
V_{A-D} [V]	1,002	1,561	2,037	2,550	2,944

2, połączenie zostało zmienione na równoległe a pomiar obejmował mierzenie miernikiem Brymen 805 natężenie na poszczególnych opornikach oraz na całości. Opór całkowity układu R_c wyniósł 28,71 k Ω . Wyniki znajduja się w tabeli 3.

Tabela 3: Wyniki doświadczenia 3

	R1	R2	R3	Całość
$Natężenie[\mu A]$	19,9	19,4	16,5	56,2

Przy doświadczeniu z baterią zostało użytych 5 oporników $R_1=476~\Omega,~R_2=51,7~\Omega,~R_3=29,6~\Omega,~R_4=225,5~\Omega$ oraz $R_5=72,8~\Omega$. Po kolei każdy z oporników był wpinany do układu przedstawionego na rysunku 2 w miejsce opornika R. Następnie mierzono napięcie i natężenie w obwodzie odpowiednio miernikami Brymen 805 i CHY. Wyniki pomiarów znajdują się w tabeli 4.

Rysunek 2: Obwód z doświadczenia z baterią

Tabela 4: Wyniki pomiarów z części z baterią

	1	2	3	4	5
Napięcie [V]	1,538	1,526	1,517	$1,\!534$	1,528
Natężenie [mA]	3,2	27,5	45,3	6,7	20
Opornik $[\Omega]$	476	51,7	29,6	225,5	72,8

4 Analiza danych

Z użyciem danych widniejących w tabeli 1, narysowano wykres numer 1 napięcia od natężenia. Parametry prostej wizualnego najlepszego dopasowania obliczono z punktów (27.5, 2.25) oraz (47.5, 3.875). Prosta ma postać $U(I)=0,08125[M\Omega]I[\mu A]+0,015625[V]$. Porównując z prawem Ohma 1, które mówi o wprost proporcjonalnej zależności między napięciem i natężeniem

$$U = RI \tag{1}$$

można śmiało stwierdzić, że wyniki pomiarów potwierdzają jego słuszność.

Dane uzyskane w doświadczeniu 2 posłużą do sprawdzenia prawdziwości II prawa Kirchoffa, które mówi że suma spadków napięć na oporach musi się równać sile elektromotorycznej w obwodzie, za którą przyjmiemy V_{A-D} . Różnica $|V-V_{A-D}|=(0,006\pm0,0048)[V]$, gdzie

$$V = V_{A-B} + V_{B-C} + V_{C-D} = 0,996[V]$$
(2)

daje wynik bliski zeru i osiąga 1,25 odchyleń standardowych przez co zarówno wartość V jak i pomiar V_{A-D} można uznać za te same wielkości.

Podobnie postępujemy w przypadku wyników z doświadczenia 3. Za ich pomocą sprawdzimy słuszność wzoru na opór zastępczy w przypadku połączenia równoległego wynikającego z praw Kirchoffa. Liczymy różnicę $|R_c-R|=(0,055\pm0,16)[k\Omega]$ gdzie

$$R = \frac{R_1 R_2 R_3}{R_1 R_3 + R_2 R_3 + R_1 R_2} \tag{3}$$

Wynik osiąga 0.34 odchyleń standardowych co pozwala uznać obydwie wielkości za jednakowe.

Według tego samego schematu postępujemy sprawdzając prawdziwość I prawa Kirchoffa na podstawie wyników z doświadczenia 3. Różnica $|I - I_c| = (0, 4 \pm 1, 28)[\mu A]$ gdzie

$$I = I_{R1} + I_{R2} + I_{R3} \tag{4}$$

W tym przypadku wynik osiąga 0,31 odchyleń standardowych co również wskazuje na pomiar jednakowej wielkości fizycznej.

W przypadku doświadczenia z baterią narysowano wykres 2 napięcia od natężenia. Parametry prostej najlepszego wizualnego dopasowania obliczono z punktów (25,1.52625) i (27.5, 1.525), wynoszą $U(I)=-0,0005[k\Omega]I[mA]+1,5387[V]$. Na podstawie równania 5 wyprowadzonego z II prawa Kirchoffa

$$U = \varepsilon - Ir_w \tag{5}$$

można wyznaczyć zarówna opór wewnętrzny baterii $r_w=0,5[\Omega]$ oraz SEM $\varepsilon=1,5387[V].$

5 Ocena drgań wahadła z rozkładem Gaussa

Na histogram numer 1 216 pojedyńczych drgań wahadła zostały naniesione i połączone punkty gęstości rozkładu Gaussa. W wyniku czego zostały uwzględnione błędy losowe co sprawiło, że rozkład stał się bardziej równomierny co do pola pod powierzchnią w odpowiadających "symetrycznych" przedziałach.

6 Dyskusja i wnioski

Dane z pierwszego doświadczenia, wykres 1 oraz prosta nakreślona na wykresie potwierdziły wprost proporcjonalną zależność napięcia od natężenia na oporniku. Natomiast reszta doświadczeń potwierdziła zarówno I jak i II prawo Kirchoffa oraz prawdziwość wzorów na opór zastępczy oporników z nich wynikający. Pomiar natężenia i napięcia w układzie z baterią pomógł również powiązać prawa Kirchoffa z oporem wewnętrznym baterii i SEM.