LOGISTIC REGRESSION

A REGRESSION WHICH IS NOT REGRESSION

What is Logistic Regression?

Form of regression that allows the prediction of discrete variables by a mix of continuous and discrete predictors

LOGISTIC REGRESSION

discrete predictors.

Logistic regression is often used bed relationship between the DV (a disc and a predictor is non-linear

Discrete data can only take on certain individual values.

Example 1

Number of pages in a book is a discrete variable.

Example 2

Length of a film is a continuous variable.

Continuous data can take on

Example 3

Shoe size is a Discrete variable. E.g. $5, 5\frac{1}{2}, 6, 6\frac{1}{3}$ etc. Not in between.

Example 4

Temperature is a continuous variable.

Example 5

Number of people in a race is a discrete variable.

Example 6

Time taken to run a race is a continuous variable

Discrete Variables

Whether or not a Person Smokes

$$Y = \begin{cases} Non - smoker \\ Smoker \end{cases}$$

Success of a Medical Treatment

$$Y = \begin{cases} Survives \\ Dies \end{cases}$$

Opinion Poll Responses

$$Y = \begin{cases} Agree \\ Neutral \\ Disagree \end{cases}$$

Linear vs Logistic Regression

Use Case 1: Diabetic Prediction

LOGISTIC REGRESSION MODELLING

W1,w2,w3,w4-Amount of each individual medical problem P(x) - Probability Calculation

Use Case 2: Spam Detection

Background

Y = A BINARY RESPONSE (DV)

1 POSITIVE RESPONSE (Success)

O NEGATIVE RESPONSE (Failure)

 $\square Q = (1-P)$

MAY THE ODDS BE EVER IN YOUR FAVOUR

names presented put

LOGISTIC REGRESSION

Assumptions

- •The only "real" limitation on logistic regression is that the outcome must be discrete.
- olf the outcome is continuous then multiple regression is more powerful given that the assumptions are met.
- Ratio of cases to variables using discrete variables requires that there are enough responses in every given category
- •Linearity in the logit the regression equation should have a linear relationship with the logit form of the DV. There is no assumption about the predictors being linearly related to each other.
- Absence of multicollinearity
- No outliers

Confusion Matrix

- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.

Classification Metrics

Accuracy:

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Recall:

$$Recall = \frac{TP}{TP + FN}$$

Precision:

$$Precision = \frac{TP}{TP + FP}$$

$$F_1$$
 score: $F_1 = -$

$$F_1 = \frac{1}{\frac{1}{Recall} + \frac{1}{Precision}}$$

Classification or Regression?

- •No of eggs in a basket =
- •No of kids in a class =
- •Volts of electricity=
- •No of Facebook likes =
- •Wind Speed =
- •Water temperature. =

