

VERIFICATION OF TRANSLATION

I,	TOMORO ISHII	, maintaining my place of	of business at	MIYAZAKI
	INTERNATIONAL PAT	ENT AND TRADE MARK	OFFICE	, hereby
certify	that the attached pages of	English text are a true and	correct translati	ion of the Japanese
langua	ge patent application filed	on 13 March 2000, entitle	1 AQUEOUS G	LITTERING INK
COMI	POSITION, and assigned S	erial No. <u>09/523619</u> .		
		: .		
I additionally attest that I have knowledge of both the Japanese and the English languages and				
that I am further qualified by education, experience and vocation to make this verification. I				
affirm under the penalty of perjury under the laws of the United States that the foregoing is				
correct	to the best of my informat	tion and belief.		
			_	
Tor	ropo Ishin		June 1	4, 2000
Name:			Date ¹	

Abstract of Patent Publication(unexamined)No. 11029734

Publication No(unexamined) No. 11029734

Date of publication of application: 2.2.1999

Application number: 09199340

Date of filing: 8.7.1997

Title of invention: AQUEOUS METALLIC INK COMPOSITION

Applicant: SAKURA COLOR PRODUCTS CORPORATION

Inventor: YOSHIMURA YASUYUKI

MURATA NAOSHI SHIBUYA KENICHI

ABSTRACT:

PURPOSE: To provide the aqueous metallic ink composition being capable of forming a coated film with high fixability on non-absorbing areas while preventing the aging of concentration in color development.

CONSTITUTION: The aqueous metallic ink composition is obtained by comprising at least a brass powder pigment or an aluminum powder pigment, a colorant, water, and a water-soluble organic solvent, wherein natural polysaccharides and cellulose derivatives are contained.

Natural polysaccharides include microbial polysaccharides or derivatives thereof, water-soluble vegetable polysaccharides or derivatives thereof, and water-soluble animal polysaccharides or derivatives thereof.

Cellulose derivatives include carboxymethylcellulose or salts thereof, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxypropylethylcellulose.

The content of natural polysaccharides is 0.01-4% by weight with respect to the total amount of the ink composition. The content of cellulose derivatives is 0.01-40% by weight with respect to the total amount of the ink composition.

This is an English translation of ABSTRACT OF JAPANESE PATENT PUBLICATION (unexamined) NO. 11029734 translated by Tomoko Ishii.

DATE:

NAME:

May 28, 2000 Formsto Ish

FAÇADE ESAKA BLDG. 23-43, ESAKACHO ICHOME, SUITA OSAKA, JAPAN

SIGNATURE

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-29734

(43)公開日 平成11年(1999)2月2日

(51) Int.CL.6

鐵則配号

PΙ

C09D 11/18

11/08

CO9D 11/18 11/08

審査請求 未請求 請求項の数5 FD (全 8 頁)

(21)出職番号

特顧平9-199340

(71)出版人 390039734

(22)出願日

平成9年(1997)7月8日

株式会社サクラクレバス

大阪府大阪市中央区泰ノ宮中央1丁目6番

20号

(72)発明者 吉村 保幸

大阪府大阪市東成区中道1丁目10番17号

株式会社サクラクレバス内

(72)発明者 村田 直之

大阪府大阪市東成区中道1丁目10番17号

株式会社サクラクレバス内

(72)発明者 渋谷 健一

大阪府大阪市東成区中道1丁目10番17号

株式会社サクラクレバス内

(74)代理人 弁理士 宮崎 伊章

(54) 【発明の名称】 水性メタリックインキ組成物

(57)【要約】

【課題】 発色濃度の経時変化を抑制できるとともに、 非吸収面に対する定着性が高い塗膜を形成できる水性メ タリックインキ組成物を提供する。

【解決手段】 真鍮粉顔料又はアルミニウム粉顔料と、 若色剤と、水と、水溶性有機溶剤とを少なくとも含有し てなるインキ中に、天然多糖類及びセルロース誘導体を 含有させて水性メタリックインキ組成物を得る。天然多 糖類には、微生物産系多糖類又はその誘導体、水溶性植 物系多糖類又はその誘導体、水溶性動物系多糖類又はそ の誘導体が含まれる。セルロース誘導体には、カルボキ シメチルセルロース又はその塩、メチルセルロース、ヒ ドロキシエチルセルロース ヒドロキシブロピルセルロ ース、ヒドロキシプロピルメチルセルロース、ヒドロキ シブロビルエチルセルロースが含まれる。インキ組成物 全量に対して天然多糖類はり、01~4重量%。セルロ ース誘導体は $0.01\sim4.0$ 重量%含まれている。

【特許請求の範囲】

【論求項1】 金属粉顔料 着色剤 水及び水溶性有機 溶剤を少なくとも含有してなる水性メタリックインキ中 に、天然多糖類及びセルロース誘導体を含有することを 特徴とする水性メタリックインキ組成物。

【請求項2】 金属粉顔料が真鍮粉顔料又はアルミニウ ム粉顔料である請求項1記載の水性メタリックイン主組 万艺物。

【請求項3】 天然多糖類が、微生物産系多糖類又はそ の試導体、水溶性植物系多糖類又はその誘導体、および 10 水溶性動物系多糖類又はその誘導体から選択された少な くとも一種である請求項1又は2記載の水性メタリック インキ組成物。

【請求項4】 セルロース誘導体が カルホキシメチル セルロース又はその塩、メチルセルロース、ヒドロキシ エチルセルロース、ヒドロキシフロビルセルロース、ヒ 上ロキシブロビルスチルセルロースおよびヒトロキシブ ロビルエチルセルロースから選択された少なくとも一種 てある請求項1 2又は3記載の水性メタリックインキ 组成物。

【請求項5】 インキ組成物全量に対して、天然多糖類 0、01~4重量%、およびセルロース誘導体の 0.1 ~4.0 重量%を含有する請求項1及至4のいずれかの項 に記載の水性メタリックインキ組成物。

【発明の詳細な説明】

[0001]

【発明の信する技術分野】本発明は、水性メタリックイ ンキ組成物、特に基記用具インキ、印刷用インキ、塗料 関連分野において有用な水性メタリックインキ組成物に 関し、さらに詳しくは印字の発色濃度が高く、非吸収面 30 に対する定若性が優れた塗膜を形成できる水性メタリッ ケインキ組成物に関する。

[0002]

【従来の技術】従来、水性メタリックインキ組成物は、 例えば、金属粉顔料及び着色剤を含む水溶液に、必要に 応して水溶性有機溶剤を添加し、さらに、粘度調整剤な ととして水溶性樹脂を添加している。水性メタリックイ 1 キ組成物として、例えば、特別平8-199108号 では、金属粉顔料と、樹脂と、潤滑性を付与できる特定 の化合物と、水溶性有機溶剤と、水とを少なくとも含む。 ボールベン用水性顔料インキが開示されている。この文 献では、樹脂は、電着剤(ハインダー樹脂)および粘度 調整剤として用いており、ハインター樹脂には、例え は、水溶性アクリル樹脂やアクリルエマルジョンなどか 含まれ、粘度調整剤としては、ザンサンガムが好ましい と記載されるとともに、粘度調整剤としてのセルロース 誘導体は、ゲル化などを生しるため好ましくないと記載 されている。

[0003]

水溶性樹脂を一種含有した水性メタリックインキ組成物 を用いて、紙(例えば、慣用のコピー用紙など)などの 吸収面(水性インキを吸収又は浸透することかできる 面)に塗布すると、顔料(着色剤)が紙内部に浸透し、 時間の経過とともに(例えば、章記直後から章記数分後 にかけて) 塗膜の発色濃度が低下する。塗膜の印字尺は 画像が後み易くなるなどの問題も生じている。また、非 吸収面(水性インキをほとんど吸収又は浸透しない面) に対する塗膜の定着性(接着性)が低い。さらに、水溶 性樹脂として、セルロース誘導体のみを用いると、ケル 化などにより分散性が低下する場合が生しる。

【①①①4】本発明の目的は、塗膜の発色濃度の経時安 定性を改善できるとともに、非吸収面に対する塗膜の定 若性を向上できる水性メタリックインキ組成物を提供す ることにある。本発明の他の目的は「前記特性を有する とともに、分散性が高い水性メタリックインキ組成物を 提供することにある。

[0005]

【課題を解決するための手段】本発明者らは鋭意研究を 重ねた結果、金属粉顔料、着色剤、水及び水溶性有機溶 剤を少なくとも含有してなる水性メタリックインキ中 に、天然多糟類及びセルロース誘導体を含有させた水性 メタリックインキ組成物を用いると 発色濃度の経時安 定性が高く、さらに非吸収面に対する定着性が改善され た堂膜を形成できることを見出だし本発明を完成させる に至った。請求項1の発明は、金属粉顔料、着色剤、水 及び水溶性有機溶剤を少なくとも含有してなる水性メタ りっとインキ中は、天然多糖類及びセルロース誘導体を 含有することを特徴とする水性メタリックインキ組成物 である。

【0006】本発明の水性メタリックインキ組成物は、 天然多糖類及びセルロース誘導体を含有しているため、 着色剤が吸収面内部(例えば、画用紙などの内部)に視 透し難く、塗膜の発色濃度の低下を抑制できる。これ は セルロース誘導体を天然多糖類と組み合わせている とともに、セルロース誘導体で金属粉顔料をコーティン グしているため、金属粉顔料に対して、セルロース誘導 体の作用が有効に働くためてあると思われる。すなわ ち、セルロース誘導体のカルホキシル基及び。又はヒド ロキシル基が金属粉顔料に作用して、金属粉顔料の観水 性を強めるため、金属粉顔料と着色剤とのなしみ(結合 性)が高くなり、着色剤が金屑粉顔料に嫌捉され又は吸 若し、吸収面内への着色剤の吸収が抑制されるからであ ると思われる。また、天然多糖類及びセルロース誘導体 を含有していることにより「塗膜の非吸収面(例えば、 アート概等の面)に対する定着性が改善できる。これ は、セルロース誘導体のカルボキシル基及び「又はヒギ ロキンル基と、非吸収面とが水素結合による結合性を有 するためであると思われる。したかって、本発明の水性 【発明が解決しようとする課題】しかしながら、慣用の、50、メタリックインキ組成物は、天然多體類とセルロース誘

導体とを含有しているため、塗膜の発色濃度の低下を抑 制てきるとともに、非吸収面に対して登膜の定着性が高

【0007】さらに、天然多糖類及びセルロース誘導体 を含有しているため、水性メタリックインキ組成物の結 度を調整できるとともに、分散性を大きく向上できる。 これは、金属粉顔料がセルロース誘導体でコーティング されるため、インキ組成物中において金属イオンの溶出 を抑制でき、天幼多糖類に対する金属イオンの影響を抑 制又は防止できるからである。また、水性メタリックイー10 \pm 0、 $3\sim2$ 重量%である。天然多糖類の使用量が少なす シキ組成物は、セルロース誘導体を含有しているにもか かわらず、セルロース誘導体と天然多糖類とを組み合わ せて用いているため、高い分散安定性を有している。

【0008】天然多糖類としては、微生物産系多糖類又 はその誘導体、水溶性植物系多糖類又はその誘導体、お よび水溶性動物系多糖類又はその誘導体から選択された 少なくとも一種を用いることができる。また、セルロー ス誘導体には、カルボキシメチルセルロース又はその。 塩 メチルセルロース、ヒドロキシエチルセルロース。 ヒトロキシブロビルセルロース、ヒトロキシブロビルメー20 チルセルロースおよひヒドロキシプロビルエチルセルロ ースから選択された少なくとも一種が含まれる。天然多 糖類の含有量は、インキ組成物全量に対して、0、01 ~4 重量%であり、セルロース誘導体の含有量は、イン 宇組成物全量に対して()、()1~4()重量%である。

【0009】また、金属粉顔料としては、真鍮粉顔料や アルミニウム粉顔料を用いることができる。金属粉顔料 としては、特に「アルミニウム粉顔料を好適に使用でき る。

[0010]

【発明の実施の形態】

(天然多糖類) 本発明の水性メタリックインキ組成物の 特色は、天然多<mark>絶領</mark>とセルロース誘導体とを組み合わせ て用いている点にある。そのため、メタリックインキ中 の着色剤が、吸収面の内部に浸透するのを抑止すること かできるとともは、非吸収面に対する定着性を改善でき る。また、インキ組成物の分散性が高い。

【①①11】天然多糖類としては、微生物産系多糖類又 はその誘導体、水溶性植物系多糖類又はその誘導体、水 溶性動物系多糖類又はその誘導体を用いることができ

【0012】微生物産系多糖類又はその誘導体として は、倒えば、ブルラン、サンサンガム。ウェランガム、 ラムザンガム・サクシッグルカン、デキストランなどが 提示できる。

【1)113】水溶性植物系多糖類又はその誘導体には、 例えば、トラカンシガム クァーガム マラガム ロー カストビージカム、ガディカム、アラビノガラクタンガ ム」アラビアガム。カイスン・トガム、ペクチン。デン プン。サイリュームシードカム、カラギーセン。アルギー50 【0020】真鍮粉顔料としては、例えば、商品名:B

ン酸、寒天などか含まれる。水溶性動物系多糖類又はそ の試導体には、例えば、セラチン、カゼインなどか含ま

【0014】好ましい天然多糖類としては、微生物産系 多艦類又はその誘導体、特に、ザンサンガム、ウェラン ガム。ラムザンガムなどが挙げられる。

【0015】天然多糖類は単独で又は二種以上組み合わ せて使用できる。天然多糖類の使用量は、例えば、イン キ組成物至量に対して 0 . □ 1 ~ 4 重量%、好ましくは ぎると、アルミニウム粉顔料の分散性が低下し、アルミ ニウム粉顔料がは降する。一方、多すきると、インキ組 成物の粘度が高くなり、筆記性、印刷適正が低下する。 【1) () 1.6 】 (セルロース誘導体) セルロース誘導体と しては、例えば メチルセルロース ヒドロキンエチル セルロース、ヒトロキシプロピルセルロース、ヒドロキ シプロビルメチルセルロース、ヒドロキシプロビルエチ ルセルロース。カルボキシメチルセルロース又はその塩 (ナトリウム塩 アンモニウム塩など) などが挙げられ る。好ましいセルロース誘導体には、カルボキシメチル セルロース又はその塩、ヒドロキシエチルセルロース。 さらに好ましくはカルホキシメチルセルロース又はその 塩(ナトリウム塩やアンモニウム塩など)が含まれる。 これらのセルロース誘導体、特にカルボキシメチルセル ロース又はその塩は、アルミニウム粉顔料に対する作用 (前述のように、アルミニウム粉顔料の縄水性を高める 効果)を顕著に発現できる。

【0017】セルロース誘導体の数平均分子量は、特に 制限されないが、例えば、8,000~400,00 30 0 好ましくは10,000~100、000の範囲か ら選択できる。

【0018】セルロース誘導体は単独て又は二種以上組 み合わせて用いることがてきる。セルロース誘導体の使 用量は、例えば、インキ組成物全量に対して()、() 1 ~ 40重量%、好ましくはり、3~20重量%である。セ ルロース誘導体の使用量か少なすぎると、アルミニウム 枌顔料に対する着色剤の定着性が低下し、塗膜の発色濃 度の低下を抑制できない。一方、多すぎると、アルミニ ウム粉顔料間で凝集が起とり、粘度に対して影響(粘度 40 上昇! か生ずる。

【0.019】(金属粉顔料)金属粉顔料としては、金属 光沢を有するものが使用でき、水に対する分散性が高い ものが好ましい。金属粉顔料としては、リーフィングタ イブであってもよく、アンリーフィングタイプであって もよい。金属粉顔料としては、特に制限されず、例え は 真鍮粉顔料やアルミニウム粉顔料 特にアルミニウ 五粉顔料を好適に用いることができる。アルミニウム粉 顔料では、前記天然多糖類及びセルロース誘導体の作用 を顕著に発現できる。

S 605 (東洋アルミニウム社製)、商品名:BS 607(東洋アルミニウム社製)、商品名:プロンズバ ウダードー555(中島金属箔粉工業(株)製) 一商品 名:フロンスパウダーP-777(中島金属箔粉工業 (株) 製) などを用いることができる。

【ロ021】アルミニウム粉顔料としては、具体的に は、商品名:アルベーストWJP-U750(東准アル ミニウム社製) 商品名:アルベーストWE1200 (東洋アルミニウム社製)。 商品名:アルベーストWX M7675 (東洋アルミニウム社製) 商品名: アルベー10 -ーストWXM0630(東洋アルミニウム社製) 商品 名:1110叉(昭和アルミニウム社製)、商品名:2 172SW(昭和アルミニウム社製)、商品名、AW… 8080 (旭化成社製)。 商品名:A W-7000 R (旭化成社製)などか例示できる。

【0022】金属粉顔料(真鍮粉顔料。アルミニウム粉 顔料)の平均粒子径は、例えば、5~30 μm、好まし くは5~15μmである。平均粒子径がこれらの範囲、 特に5~15μmの金属粉顔料(真鍮粉顔料、アルミニ ウム粉顔料)は、筆記性、印刷適正が優れている。

【0023】金属粉顔料(真鍮粉顔料、アルミニウム粉 顔料)は単独で又は二種以上組み合わせて使用できる。 金属粉顔料(真鍮粉顔料。アルミニウム粉顔料)の使用 量は、例えば、インキ組成物全量に対して3~30重量 $ullet_0$ 、好ましくは $4\sim 1.5$ 重量%である。全層粉顔料の使 用量が過小であると、金属光沢が発現しない。一方、過 多であると、固形分が多くなるため。 インキ組成物の粘 度・流動性に影響が生じ、粘度の上昇や流動性の低下に より、睾記性などが低下する。

【111024】 (着色剤) 着色剤としては、水性インキに 30。 対して分散性が良好であれば特に制限なく使用できる。 したかって、着色剤は、水溶性の着色剤を好適に使用で きる。具体的には、着色剤には、例えば、フタロンアニ シα、コタロンアニンβ 塩素化フタロシアニン アン トラキアン、ベリレン、キナクリドン・シオキサジン、 シテトピロロピロール、イソイントリン、ファーネスカ 一ポン。アゾメチン、ナフトールなどが含まれる。

【0025】着色剤は単独で又は二種以上組み合わせて 使用できる。着色剤の使用量は、例えば、インキ組成物 全量に対してロ、ロ5~15重量% 好ましくは1~1。 ①重量%である。着色剤の使用量が過小であると、メタ リック調の塗膜が得られない。一方、過多であると、固 形分が多くなるため、インキ組成物の粘度・流動性に影 響が生し、粘度の上昇や流動性の低手により、筆記性な とが低下する。

【りり26】(水)水としては、慣用の水(例えば、イ オン交換水、蒸留水など)であれば何ら問題なく用いる ことかできる。水の使用量は、特に制限されず、他の成 分(天然多補類」セルロース誘導体、金属粉顔料・着色 剤・水溶性有機溶剤など)の種類や使用量や、目的とす。50~【0031】なお、水性メタリックインキ組成物の調製

るインキ組成物の粘度などに応じて選択することができ る。水の使用量は、広い範囲、例えば、インキ組成物全 置に対して1~80重量9→程度の範囲から選択できる。 好ましい水の使用量は、20~70重量%(さらに好ま) しくは30~60重量約)程度である。

【ロロ27】(水溶性有機溶剤)水溶性有機溶剤として は、ゲリコール類(例えば、エチレングリコール、ジエ チレングリコール、プロピレングリコールなど)。クリ コールエーテル類(例えば、エチレングリコールモノメ チルエーテルなど)、カルビトール類(例えば、シエチ レングリコールモンメチルエーテルなど)。 グリセリ ンートリヌチロールプロバンなどを好適に用いることが、 てきる。木溶性有機溶剤は単独で又は二種以上組み合わ せて使用できる。水溶性有機溶剤の使用量は、例えば、 インキ組成物全量に対して1~40重量%、好ましくは、 5~20重量%である。水溶性有機溶剤の使用量が過小 であると、インキ組成物が乾燥しやすく、ボールパン等 に用いると、目詰まりが起こり、途布できない。一方。 過多であると、愛布後、インキが乾燥しにくい。

【0028】本発明の永性メタリックインキ組成物に 20 は、必要に応じて、防錆剤(例えば、ベンゾトリアゾー ルートリルトリアソール シジクロニキシルアンモニウ ムナイトレートなど)、防腐防黴剤(倒えば、エンソイ ソチアゾリン系防腐防敵剤。ペンタクロロフェノール系 防腐防敵剤」とレゾール千防腐防黴剤など)、分散剤」 (例えば、水溶性アクリル樹脂。水溶性マレイン酸樹 脂 ・水溶性スチレン=アドリル共重合体、水溶性スチレ シーマレイン酸共重合体等の水溶性樹脂など)。 界面活 性剤 湿潤剤 消泡剤、L ハリング剤 凝集防止剤、p 日調整剤、擬塑性付与剤等の慣用の添加剤を添加しても

【0029】水性メタリックインキ組成物の粘度は、慣 用的に使用されている粘度。すなわち金属粉顔料が沈降 せず、基記性や印刷適正に適した粘度であれば、特に制 限されない。本発明において、水性メタリックインキ組 成物の粘度は、倒えば、20℃において、3、000~ 40、000でする、好ましくは3、000~15,0 **①Dcpsの範囲から選択できる。**

【0030】(製造方法)本発明の水性メタリックイン - キ組成物は、前記成分、金属粉顔料 - 着色剤、水 - 水溶 性有機溶剤、天然多糖類及びセルロース誘導体などを憤 用の方法により混合して調製できる。例えば、水と、水 宿性有機宿剤と 金属(真鍮粉顔料 アルミニウム粉顔 料)とを混合して全層粉顔料分散体を調製し、これに、 セルロース誘導体を投入する。この分散溶液に、着色剤 を投入して分散させ、さらに、天然多糖類と、必要に応 して各種添加剤とを投入して、水性メタリックイン主組 成物を調製できる。なお 着色剤は 予め分散剤により 分散させた着色剤分散体として用いてもよい。

13

ック調の筆跡が得られるとともに、非吸収面に対して接着性が高い筆跡が得られる。

[0046]

【発明の効果】本発明の水性メタリックインキ組成物を用いると、金属粉顔料、着色剤、水、水溶性有機溶剤、 天然多糖類及びセルロース誘導体を含有しているため、 発色濃度の高いメタリック調の塗膜を形成できるととも 14

に、非吸収面に対する定着性が高い登輳を形成できる。また、このインキ組成物は、分散性が高い。さらに、本発明では、セルロース誘導体で金属粉顔料(真鍮粉顔料やアルミニウム粉顔料など)かコーティングされているため、金属イオン(銅イオンやアルミニウムイオンなど)の溶出を抑制でき、天然多糖類に対する金属イオンの影響(例えば、粘度変化など)を抑制できる。