COURSE 10

The sum of two subspaces. Linear maps

Let $(K, +, \cdot)$ be a field and let V be a vector space over K.

We remind from the previous course:

- For $S \subseteq V$ the following conditions are equivalent:
- 1) $S \leq_K V$.
- 2) The following conditions hold for S:
 - α) $0 \in S$;
 - β) $\forall x, y \in S$, $x + y \in S$;
 - γ) $\forall k \in K$, $\forall x \in S$, $kx \in S$.
- 3) The following conditions hold for S:
 - α) $0 \in S$;
 - δ) $\forall k_1, k_2 \in K$, $\forall x, y \in S$, $k_1 x + k_2 y \in S$.
- If $X \subseteq V$ then $\langle X \rangle = \bigcap \{S \leq_K V \mid X \subseteq S\}$ is the subspace generated by X.
- We have:
 - (i) If $S \leq_K V$ then $\langle S \rangle = S$.
 - (ii) If $X \subseteq V$ then $\langle \langle X \rangle \rangle \subseteq \langle X \rangle$.
 - (iii) If $X \subseteq Y \subseteq V$ then $\langle X \rangle \subseteq \langle Y \rangle$.
- If $\emptyset \neq X \subseteq V$ then $\langle X \rangle$ is the set of all finite linear combinations of vectors of \mathbf{X} . In particular, if $x_1, \ldots, x_n \in V$ then

$$\langle x_1, \dots, x_n \rangle = \{k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n\}.$$

Remark 1. Notice that a linear combination of linear combinations is again a linear combination.

Examples 2. (a) Consider the real vector space \mathbb{R}^3 . Then

$$\langle (1,0,0), (\underline{0,1,0}), (0,0,1) \rangle = \{k_{\underline{1}}(1,0,0) + k_{\underline{2}}(0,1,0) + k_{\underline{3}}(0,0,1) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \{k_{\underline{1}}(1,0,0) + k_{\underline{2}}(0,1,0) + k_{\underline{3}}(0,0,1) \mid k_1, k_2, k_3 \in \mathbb{R}\}$$

=
$$\{(k_1, 0, 0) + (0, k_2, 0) + (0, 0, k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \{(k_1, k_2, k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \mathbb{R}^3$$
.

Hence \mathbb{R}^3 is generated by the three vectors (1,0,0),(0,1,0),(0,0,1).

(b) More generally, the subspaces of \mathbb{R}^3 are the trivial subspaces, the lines containing the origin and the planes containing the origin.

If $S, T \leq_K V$, the smallest subspace of V which contains the union $S \cup T$ is $\langle S \cup T \rangle$. We will show that this subspace is the sum of the given subspaces.

Definition 3. Let V be a vector space over K and let $S, T \leq_K V$. Then we define the sum of the subspaces S and T as the set

$$S + T = \{ s + t \mid s \in S, \ t \in T \}.$$

If $S \cap T = \{0\}$, then S + T is denoted by $S \oplus T$ and is called the **direct sum** of the subspaces Sand T.

Remarks 4. a) If V is a K-vector space, $V_1, V_2 \leq_K V$, then $V = V_1 \oplus V_2$ if and only if

$$V = V_1 + V_2$$
 and $V_1 \cap V_2 = \{0\}.$

Under these circumstances, we say that V_i (i = 1, 2) is a **direct summand** of V.

b) If
$$V_{1}, V_{2}, V_{3} \leq_{K} V$$
 and $V = V_{1} \oplus V_{2} = V_{1} \oplus V_{3}$, we cannot deduce that $V_{2} = V_{3}$.

 $\underline{Ex}: V = \mathbb{R}^{2}$, $K = \mathbb{R}$, $V_{1} = \{(a, 0) | a \in \mathbb{R}\} \leq_{\mathbb{R}} \mathbb{R}^{2}$
 $V_{2} = \{(a, 0) | b \in \mathbb{R}\} \leq_{\mathbb{R}} \mathbb{R}^{2}$
 $V_{3} = \{(a, 0) | (a, 0) | a, b \in \mathbb{R}\} = \mathbb{R}^{2}$
 $V_{1} + V_{2} = \{(a, 0) + (a, 0)\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{1} + V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{2} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a + a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$
 $V_{3} = \{(a, 0) + (a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \{(a, 0) | a, c \in \mathbb{R}\} = \mathbb{R}^{2}\}$

-> c) The property of a subspace of being a direct summand is transitive. (during the seminar)

Theorem 5. Let V be a vector space over K and let $S, T \leq_K V$. Then

Proof. 7)
$$S+7 \leq_{K} \vee$$

The section is later to the vector space of the land to $S+T \leq_{K} \vee$.

Proof. 7) $S+7 \leq_{K} \vee$

The section is later to the vector space of the land to $S+T \leq_{K} \vee$

The section is later to the vector space of the land to $S+T \leq_{K} \vee$

The later to the vector space of the land to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The later to the vector space of the later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The later to $S+T \leq_{K} \vee$

The later to the later to $S+T \leq_{K} \vee$

The lat

$$\frac{5}{3} \frac{7}{7}$$

$$\frac{7}{3} \frac{7}{7}$$

$$\frac{11}{11}) + x \in S+T, \exists A \in S, \exists A \in T: x = A+t \in A$$

$$SUT \qquad SUT \qquad A \qquad A \leq kV$$

$$A \qquad A$$

a = KI *

Remarks 6. (1) Actually, a more general result can be proved: if $S_1, \ldots, S_n \leq_K V$ then

$$S_1+\cdots+S_n=\langle S_1\cup\cdots\cup S_n
angle.$$
 however

(2) Moreover, if $X_i \subseteq V$ (i = 1, ..., n), then $\langle X_1 \cup \cdots \cup X_n \rangle = \langle X_1 \rangle + \cdots + \langle X_n \rangle$.

$$\xrightarrow{\text{prof}}$$
: \subseteq " $X_i \subseteq \langle X_i \rangle \subseteq \langle X_i \rangle + ... + \langle X_n \rangle$, $i = \overline{I_i \alpha} \Longrightarrow$

$$\rightarrow$$
 \times , $\cup ... \cup \times_{n} \subseteq \langle X_{1} \rangle + ... + \langle X_{n} \rangle (\subseteq_{K} \vee)$

$$\Rightarrow$$
 $\langle x, u...ux_{n} \rangle \subseteq \langle x_{1} \rangle + ... + \langle x_{n} \rangle$

$$\Rightarrow \langle x_1 \rangle + ... + \langle x_n \rangle \subseteq \langle x_1 \cup ... \cup x_n \rangle + ... + \langle x_1 \cup ... \cup x_n \rangle \subseteq \langle x_1 \cup ... \cup x_n \rangle,$$

$$\leq \langle x_1 \cup ... \cup x_n \rangle,$$

$$\leq \langle x_1 \cup ... \cup x_n \rangle,$$

$$\leq \langle x_1 \cup ... \cup x_n \rangle,$$

endouvorphism = bijectre lihear mas endomorphism = linear map from a v.s. into itself automorphism = bijectre endour. **Definition 7.** Let V and V' be vector spaces over K. The map $f: V \to V'$ is called a (vector space) homomorphism or a linear map (or a linear transformation) if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in V,$$
$$f(kx) = kf(x), \ \forall k \in K, \ \forall x \in V.$$

The (vector space) isomorphism, endomorphism and automorphism are defined as usual.

We will mainly use the name linear map or K-linear map.

 \rightarrow Remarks 8. (1) When defining a linear map, we consider vector spaces over the same field K. (2) If $f: V \to V'$ is a K-linear map, then the first condition from its definition tells us that f is a group homomorphism between (V, +) and (V', +). Thus we have

$$f(0) = 0'$$
 and $f(-x) = -f(x), \forall x \in V$.

We denote by $V \simeq V'$ the fact that two vector spaces V and V' are isomorphic and

$$\text{$V=V'$} \Longrightarrow \text{$Hom_K(V,V')=\{f:V\to V'\mid f\text{ is a K-linear map}\}$,}$$

$$Aut_K(V) = \{f : V \to V \mid f \text{ is a K-isomorphism} \}.$$

Theorem 9. Let V, V' be K-vector spaces. Then $f: V \to V'$ is a linear map if and only if

$$f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2), \ \forall k_1, k_2 \in K, \ \forall v_1, v_2 \in V.$$

Proof.

Proof.

$$\Rightarrow \text{ det } k_1, k_2 \in C, \text{ } v_1, v_2 \in V. \qquad (*)$$

$$f(k_1v_1 + k_2v_2) = f(k_1v_1) + f(k_2v_2) = k_1f(v_1) + k_2f(v_2).$$

$$f(k_1v_1 + k_2v_2) = f(k_1v_1) + f(k_2v_2) = k_1f(v_1) + k_2f(v_2).$$

$$\iff \text{ det up take } k_1 = k_2 = l \text{ in } (*)$$

$$(*) \Rightarrow f(v_1 + v_2) = f(v_1) + f(v_2), \text{ } t_1, t_2 \in V.$$

$$\text{ det up take } k_2 = 0 \text{ in } (*) \text{ } (k_1 = k, v_1 = v)$$

$$\text{ det up take } k_2 = 0 \text{ in } (*) \text{ } (k_1 = k, v_1 = v)$$

$$\text{ (*) } \Rightarrow f(kv) = k f(v_1), \text{ } t \in K, \text{ } t \in V.$$

One can easily prove by way of induction the following:

Corollary 10. If $f: V \to V'$ is a linear map, then

$$f(k_1v_1+\cdots+k_nv_n)=k_1f(v_1)+\cdots+k_nf(v_n),\ \forall v_1,\ldots,v_n\in V,\ \forall k_1,\ldots,k_n\in K.$$

Examples 11. (a) Let V and V' be K-vector spaces and let $\underline{f}: V \to V'$ be defined by f(x) = 0', for any $x \in V$. Then f is a K-linear map, called the **trivial linear map**.

(b) Let V be a vector space over K. Then the identity map $1_V: V \to V$ is an automorphism of V.

 $I_{\nu}(x) = x$

(c) Let V be a vector space and $S \leq_K V$. Define $i: S \to V$ by i(x) = x, for any $x \in S$. Then i is a K-linear map, called the inclusion linear map.

(d) Let us consider $\varphi \in \mathbb{R}$. The map

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

(during the securar) i.e. the plane rotation with the rotation angle φ , is a linear map.

(e) If $a, b \in \mathbb{R}$, $\underline{a < b}$, $\underline{I = [a, b]}$, and $\underline{C}(I, \mathbb{R}) = \{f : \overline{I \to \mathbb{R} \mid f \text{ continuous on } I\}}$, then

$$F: C(I, \mathbb{R}) \to \mathbb{R}, \ F(f) = \int_a^b f(x) dx$$

is a linear map. Letween C(I, R) and R

As in the case of group homomorphisms, we have the following:

Theorem 12. Let V, V', V'' be K-vector spaces.

(i) If $f:V\to V'$ and $g:V'\to V''$ are K-linear maps (isomorphisms) then $g\circ f:V\to V''$ is a K-linear map (isomorphism).

(ii) If $f: V \to V'$ is an isomorphism of K-vector spaces then $f^{-1}: V' \to V$ is again an isomorphism of K-vector spaces.

Proof.

(i) Let U1, U2 & V, K1, K2 & K, (90f) (kiv,+kiv2)= kigof) (7)+ ke (90f) (Ve). (90f) (k1v,+k2v2) = 9(f(k1v,+k2v2)) = 9(k1f(v1)+k2f(v2))= $= k_1 g(f(u_1)) + k_2 g(f(u_2)) = k_1 (g \circ f)(v_1) + k_2 (g \circ f)(u_2).$

(ii)
$$\forall v_1', v_2' \in V', \forall k_1, k_2 \in K$$

 $f(k_1, v_1' + k_2, v_2') = k_1 f(v_1') + k_2 f'(v_2')$

$$v_1' \in V'$$
, f dijective $\Longrightarrow \overline{f}'(v_1) \in V'$: $f(v_2) = v_1' \Longrightarrow v_2 = \overline{f}'(v_1')$
 $v_2' \in V'$, $-\infty$ $\Longrightarrow \overline{f}'(v_2) = \overline{f}'(v_2')$

$$\frac{1}{f'(k_1v_1'+k_2v_2')} = \frac{1}{f'(k_1f(v_1)+k_2f(v_2))} = \frac{1}{f'(k_1f(v_1)+k_2f(v_2))} = \frac{1}{f'(k_1v_1'+k_2v_2')} = \frac{1}{f'(k_1f(v_1)+k_2f(v_2))} = \frac{1}$$

$$= \int_{-\infty}^{\infty} \left(f(k_1 \sigma_1 + k_2 \sigma_2) \right) = k_1 \sigma_1 + k_2 \sigma_2 = k_1 f(\sigma_1) + k_2 f(\sigma_2).$$
Obviously f' is Girchive => f' isom.

Definition 13. Let $f: V \to V'$ be a K-linear map. Then the set

$$Ker f = \{x \in V \mid f(x) = 0'\}$$

is called the **kernel** of the K-linear map f and the set

$$Im f = \{f(x) \mid x \in V\} = f(V) \leq V'$$

is called the **image** of the K-linear map f.

Theorem 14. Let $f: V \to V'$ be a K-linear map. Then we have

- 1) $\operatorname{Ker} f \leq_K V$ and $\operatorname{Im} f \leq_K V'$.
- \rightarrow 2) f is injective if and only if $Ker f = \{0\}$.

Proof.

1)
$$Imf = f(V) \leq_K V'$$
 ('homework)

 $A = V \leq_K V$ Seminar: $A \leq_K V \implies f(A) = \{f(\alpha) | \alpha \in A\} \leq_K V'$
 $Ker f \leq_K V$ $f(0) = 0' \implies 0 \in Ker f$.

Let $x; y \in Ker f$, $x + y \in Ker f$
 $f(x + y) \stackrel{!}{=} f(x) + f(y) = 0' + 0' = 0'$

Let $\alpha \in K$, $x \in Ker f$
 $f(\alpha \times) = \alpha f(x) = \alpha \cdot 0' = 0'$

2)
$$f i u j \in \mathbb{R}$$
 Kerf = $\{0\}$
 $\Rightarrow \quad \text{Let } x \in \text{Ker } f \Rightarrow f(x) = 0' = f(0) \Rightarrow f(u) = 0$
 $f i u j \in \mathbb{R}$

$$\stackrel{\text{def}}{=} \frac{x \cdot y \in V}{\text{febeur}}, \quad \frac{f(x) = f(y)}{\text{febeur}} \Rightarrow f(x) - f(y) = 0 \stackrel{\text{def}}{=} x - y \in \text{(cerf} = \{0\} \implies x - y = 0\}$$

$$\implies x = y. \quad \text{Thus } f(x).$$

Theorem 15. Let $f: V \to V'$ be a K-linear map and let $X \subseteq V$. Then

$$f(\langle X \rangle) = \langle f(X) \rangle$$
.

Proof.
$$\bar{i}$$
) $X = \emptyset \Rightarrow$
 $f(\langle \emptyset \rangle) = \{0\} = 1 f(0)\} = \{0'\} = \langle \emptyset \rangle = \langle f(\emptyset) \rangle$
 $\bar{i}i)$ $x \neq \emptyset$
 $f(\langle X \rangle) = f\{\} k_1 x_1 + \dots + k_n x_n f(i) k_1 \in K_1 x_i \in X, i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(k_1 x_1 + \dots + k_n x_n) f(i) \in K_1 x_i \in X, i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(k_1 x_1 + \dots + k_n x_n) f(i) \in K_1 x_i \in X, i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(k_1 y_1 + \dots + f(k_n y_n) f(i) \in K, y_i \in f(x_i), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_1 y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_i), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_1 y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n y_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n y_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n y_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_1 + \dots + f(x_n y_n) f(i) \in K, y_i \in f(x_n y_n), i = \overline{f_i \alpha_i}, u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in \mathbb{N}^+ \} = \{f(x_n y_n) f(i) \in K, y_n \in f(x_n y_n), u \in$

COURSE 11

Theorem 16. Let V and V' be vector spaces over K. For any $f, g \in Hom_K(V, V')$ and for any $k \in K$, we consider $f + g, k \cdot f \in Hom_K(V, V')$,

$$(f+g)(x) = f(x) + g(x), \ \forall x \in V,$$
$$(kf)(x) = kf(x), \ \forall x \in V.$$

These equalities define an addition and a scalar multiplication on $Hom_K(V, V')$ and $Hom_K(V, V')$ is a vector space over K.

Proof.

Corollary 17. If V is a K-vector space, then $End_K(V)$ is a vector space over K.

Remarks 18. a) Let V be a K-vector space. From Theorem 12 one deduces that $End_K(V)$ is a subgroupoid of (V^V, \circ) and from Example 11 (b) it follows that $(End_K(V), \circ)$ is a monoid. Moreover, the endomorphism composition \circ is distributive with respect to endomorphism addition +, thus $End_K(V)$ also has a unitary ring structure, $(End_K(V), +, \circ)$.

b) The set $Aut_K(V)$ is the group of the units of $(End_K(V), \circ)$.