"Maths III"

* Lecture 2 x

* Examples on Chain Kule: -

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$\frac{d\omega}{dx} = y$$
, $\frac{\partial\omega}{\partial y} = x$, $\frac{dx}{dt} = -\sin t$, $\frac{dy}{dt} = \cos t$

$$\frac{d\omega}{dt} = \frac{y(-\sin t) + \alpha \cos t}{\cot - \sin t + \cos t}$$

$$= -\sin^2 t + \cos^2 t$$

$$= -\cos 2t$$

$$=$$
 GS2t

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

$$= y(-8int) + \alpha (6st + 1)$$

$$= sint(-8int) + (6s^2t + 1)$$

$$=$$
 sint(-sint) + Cos²t + 1
= - Sin²t + Cos²t + 1

$$=2\alpha x^{1}+2yx^{1}=2\alpha+2(7+8)=4r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial s}$$

4) if u= f(a,y), a=roso, y= rsind, show that (du) (du) = (du) + 1 (du) or redo $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial z} \frac{\partial z}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}.$ = GSO, du + SINO DU $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} +$ $\frac{\partial G}{\partial u} = \frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial x} + \frac{\partial u}{\partial u} \cdot \frac{\partial y}{\partial x}$ = -18ind, Du + 1060 Du $\left(\frac{\partial u}{\partial r}\right)^{2} + \frac{1}{r^{2}}\frac{\partial u}{\partial t}^{2} = \left(\frac{\sin^{2}\theta}{\cos^{2}\theta}\right)\left(\frac{\partial u}{\partial u}\right)^{2} + \left(\frac{\sin^{2}\theta}{\cos^{2}\theta}\right)\left(\frac{\partial u}{\partial u}\right)^{2}$ * Implicit differentiation* * theorem: if $F(\alpha, y)=0$ and y is function of α , then $\frac{dy}{d\alpha} = -\frac{F\alpha}{Fy}$ - example. Find by if $x^2 y^2 = 6xy$ $\rightarrow F(\alpha, y) = \alpha^2 + y^2 - 6\alpha y = 0$ $F\alpha = 2\alpha - 6y$, $Fy = 2y - 6\alpha$ $\frac{dy}{dx} = -\frac{Fx}{Fy} = \frac{2x-6y}{2y-6x}$

* theorem: if F(x,y,z)=0 and z=F(x,y), then: $\frac{\partial z}{\partial x}=\frac{F_{x}}{F_{z}}$, $\frac{\partial z}{\partial y}=\frac{F_{y}}{F_{z}}$.

- example: if $x^{3}+y^{2}+z^{3}+6xyz=1$, find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ $F(x,y,z) = \alpha^3 + y^3 + z^3 + 6xyz - 1 = 0$ $Fx = 3x^2 + 6yz$ $Fy = 3y^2 + 6xz$ $Fz = 3z^2 + 6xy$ * Homogeneous Functions* * The function $F(\alpha_1, \alpha_2, ..., \alpha_n)$ is homogeneous of degree P if $F(\lambda \alpha_1, ..., \lambda \alpha_n) = \lambda F(\alpha_1, ..., \alpha_n)$ example: $f(q,y) = \alpha^2 + 6\alpha y + y^2$ $\Rightarrow F(\lambda \alpha, \lambda y) = (\lambda \alpha)^2 + 6(\lambda \alpha)(\lambda y) + (\lambda y)^2$ $= \lambda^2 (\alpha^2 + 6\alpha y + y^2)$ $= \lambda^2 f(\alpha, y)$ The function is homogeneous of Second degree - example: $F(\lambda \alpha, \lambda y) = \alpha^{4}y^{2} \sin^{3}(\sqrt[3]{\alpha}), \text{ prove that: } \alpha \cdot \sqrt[3]{\alpha} + y \cdot \sqrt[3]{\alpha} = 64$ $F(\lambda \alpha, \lambda y) = (\lambda \alpha)^{4}(\lambda y)^{2} \sin^{3}(\lambda y) = \lambda^{6} F(\alpha, y)$ $= \lambda^{6} \alpha^{4}y^{2} \sin^{3}(\lambda y) = \lambda^{6} F(\alpha, y)$ The function is homogeneous of degree 6 then from Euler's theorem: 20F + y OF = 6F example 2: if u=tan d3+y3, prove that: a du +y du = Sin Qu \Rightarrow tanu= $\frac{\chi^3+y^3}{\chi^2+y} \Rightarrow (v)$, $V(\lambda \alpha, \lambda y) = \frac{\lambda^3 \alpha^3 + \lambda^5 y^3}{\lambda \alpha - \lambda y} = \frac{\lambda^2 \alpha^3 + y^3}{\alpha - y}$. V is homogeneous of degree 2 1 0 + 1 0 = V $v = \tan u$ $\frac{\partial v}{\partial x} = \sec^2 u \frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y} = \sec^2 u \frac{\partial u}{\partial y}$ a secu ou y secu ou = tan u 2 du +y du = 2 tanu sec2u = 2 Sinu . Cos2 U = 28inu Cosu = Sin 2 U