

CE 3354 ENGINEERING HYDROLOGY

LECTURE 7: FLOOD FREQUENCY (BULLETIN 17B)

OUTLINE

- Probability estimation modeling (continued)
- Bulletin 17B

- Examine concepts using annual peak discharge values for Beargrass Creek
- Data are on class server

Take the raw data, and sort small to big

	Chart 5	‡	8 0	(fx		
	A B		С	D	Е	
1	Step 1: Sort Data (Sma		all to Big E	xceedence	Probabilities	s)
2	Step 2: Cor	mpute Empi	rical Cumula	tive Probab	ility Estimate	by '
3	How Mar		Entries?	31	<= N	
4				32	< N+1	
5						
6	Step 3: Plo	t the Magnit	udes versus	Cumulative	Probability	
7						
8	Rank	Qp (cfs)	Weibull-PP			
9	1	707	0.03125			
10	2	712	0.0625			
11	3	768	0.09375			
12	4	791	0.125			
13	5	839	0.15625			
14	6	874	0.1875			
15	7	884	0.21875			
16	8	898	0.25			
17	9	918	0.28125			
18	10	976	0.3125			
19	11	1060	0.34375			
20	12	1150	0.375			
21	13	1170	0.40625			
22	14	1220	0.4375			
23	15	1240	0.46875			
24	16	1250	0.5			
25	17	1290	0.53125			
26	18	1320	0.5625			
27	19	1450	0.59375			
28	20	1490	0.625			
29	21	1570	0.65625			
30	22	1750	0.6875			
31	23	1810	0.71875			
32	24	2080	0.75			
33	25	2120	0.78125			
34	26	2150	0.8125			
35	27	2270	0.84375			
36	28	2400	0.875			
37	29	3300	0.90625			
38	30	3920	0.9375			
39	31	5200	0.96875			
40						

Write the ranks (1,2, ... N)

				(e fx		
Chart 5 #			8 0			
	Α	В	С	D	Е	
1			all to Big E			
2	Step 2: Cor	mpute Empir	rical Cumula	tive Probab	ility Estimate	e by
3		How Many	Entries?	31		
4				32	< N+1	
5						
6	Step 3: Plo	t the Magnit	udes versus	Cumulative	Probability	
7						
8	Rank	Qp (cfs)	Weibull-PP			
9	1	707	0.03125			
10	2	712	0.0625			
11	3	768	0.09375			
12	4	791	0.125			
13	5	839	0.15625			
14	6	874	0.1875			
15	7	884	0.21875			
16	8	898	0.25			
17	9	918	0.28125			
18	10	976	0.3125			
19	11	1060	0.34375			
20	12	1150	0.375			
21	13	1170	0.40625			
22	14	1220	0.4375			
23	15	1240	0.46875			
24	16	1250	0.5			
25	17	1290	0.53125			
26	18	1320	0.5625			
27	19	1450	0.59375			
28	20	1490	0.625			
29	21	1570	0.65625			
30	22	1750	0.6875			
31	23	1810	0.71875			
32	24	2080	0.75			
33	25	2120	0.78125			
34	26	2150	0.8125			
35	27	2270	0.84375			
36	28	2400	0.875			
37	29	3300	0.90625			
38	30	3920	0.9375			
39	31	5200	0.96875			
40						

Apply Weibull PP Formula

$$PP = \frac{i}{N+1}$$

h						
	Chart 5	‡	8 🕏	(fx		
	Α	В	С	D	E	
1	Step 1: So	rt Data (Sm	all to Big E	xceedence	Probabilities	s)
2	Step 2: Compute Empir					
3		How Many	Entries?	31	<= N	
4			32		< N+1	
5						
6	Step 3: Plot	t the Magnit	udes versus	Cumulative	Probability	
7						
8	Rank	Qp (cfs)	Weibull-PP			
9	1	707				
10	2	712	0.0625			
11	3	768	0.09375			
12	4	791	0.125			
13	5	839	0.15625			
14	6	874	0.1875			
15	7	884	0.21875			
16	8	898	0.25			
17	9	918	0.28125			
18	10	976	0.3125			
19	11	1060	0.34375			
20	12	1150	0.375			
21	13	1170	0.40625			
22	14	1220	0.4375			
23	15	1240	0.46875			
24	16	1250	0.5			
25	17	1290	0.53125			
26	18	1320	0.5625			
27	19	1450	0.59375			
28	20	1490	0.625			
29	21	1570	0.65625			
30	22	1750	0.6875			
31	23	1810	0.71875			
32	24	2080	0.75			
33	25	2120	0.78125			
34	26	2150	0.8125			
35	27	2270	0.84375			
36	28	2400	0.875			
37	29	3300	0.90625			-
38	30	3920	0.9375			
39	31	5200	0.96875			
40						

Build Empirical CDF Plot

- At this point, can only evaluate the empirical CDF to infer probability and magnitudes within the range of observation (interpolation).
- The next step is to fit a probability distribution to allow extrapolation
 - Normal
 - Gumbell
 - Log-Normal

Beargrass creek example

- Fit Normal Distribution (conventional MOM)
- **7** CMM pp. 363-377

Beargrass creek example

- Fit Gumbell Distribution (conventional MOM)
- **7** CMM pp. 363-377

- Using the Distribution
- Once Fit, the distribution parameters are used to estimate magnitudes for arbitrary probabilities.
- Estimate discharge for20-yr ARI

8	5200	0.96875	0.999838	0.000966	
9					
0	Estimate 20-y	r magnitude			
1	Step #1	Probability	=1/20	0.05	
2					
3	Step#2	Find value	that makes	CDF = 1-0.0	5 = 0.95
4					
5		Value =	2590	CDF=	0.950
6					
7					

- Using the Distribution
- Once Fit, the distribution parameters are used to estimate magnitudes for arbitrary probabilities.
- Estimate discharge for 100-yr ARI

8	5200	0.96875	0.999838	0.000966	
9					
0	Estimate 100-	•			
1	Step #1	Probability	=1/100	0.01	
2					
3	Step#2	Find value	that makes (CDF = 1-0.0	1 = 0.99
4					
5		Value =	3346	CDF=	0.990
5					
2 3 4 5	Step#2				

Beargrass creek example

- Fit LogNormal Distribution (conventional MOM)
- **7** CMM pp. 363-377

Beargrass creek example

- Using the Distribution
- Once Fit, the distribution parameters are used to estimate magnitudes for arbitrary probabilities.
- Estimate discharge for 20-yr ARI

2	31	5200	3.716003	0.96875	0.995382	
3						
4	Estimate 20					
5	Step #1	Probability	=1/20	0.05		
5						
7	Step#2	Find value	that makes (CDF = 1-0.0	5 = 0.95	
В		Q	log10(Q)			
9	Value =	3200	3.50515	CDF=	0.950	
O						
7						

Probability estimation MODELING

- Rank observations
- Compute plotting positions
- Plot Empirical Cumulative Distribution
- Select Probability Model (Normal, Gumbell, ...)
- Fit the model to the Empirical Cumulative Distribution
- Use the model to infer magnitudes at desired cumulative probabilities

Bulletin 17B Methods

If the gauging record covers a sufficient period of time, it is possible to develop a flow-frequency relation by statistical analysis of the series of recorded annual maximum flows. The designer can then use the flow-frequency relation in one of two ways:

- If the facility site is near the gauging station on the same stream and watershed, the
 designer can directly use the discharge obtained from the flow-frequency relation for
 the <u>design AEP</u>.
- If the facility site is on the same stream, but not proximate to the gauging station, it may be possible to <u>transpose gauge analysis results</u>.

Widely accepted and applied guidelines for statistical analyses of stream gauge data are published in Guidelines for Determining Flood Flow Frequency, <u>Bulletin #17B</u> (IACWD 1982). Procedures from Bulletin #17B, with some Texas-specific refinements, as outlined in this manual, are recommended. They include:

- Obtaining a sufficiently large sample of streamflow data for <u>statistical analysis</u>,
- Using the <u>log-Pearson type III</u> distribution fitting procedure,
- Using a weighted skew value,
- · Accommodating outliers,
- <u>Transposing</u> gauge analysis results, if necessary and appropriate.

Bulletin 17B Methods

- Easiest is to use USGS PeakFQ computer program
 - **→** Implements CMM pp 398-405 (with quite a bit of added features)
- The input file is a fixed format "CARD-IMAGE" file
 - Cannot contain TABS, must use whitespace
 - Download from USGS website
- Do an Example with BEARGRASS CREEK to illustrate input file format

BULLETIN 17B Methods

- Bulletin 17B included on server
- PeakFQ user manual included on server (need to get file formats correct)
- Outlier analysis is semi-automated
 - PeakFQ will report if there are high and low outliers above/below criterion
 - User must then flag values (use a minus sign to skip a value) and re-analyze

TRANSPOSITION OF GAGE RESULTS

Transposition of Gauge Analysis Results

If gauge data are not available at the design location, discharge values can be estimated by transposition if a peak flow-frequency curve is available at a nearby gauged location. This method is appropriate for hydrologically similar watersheds that differ in area by less than 50 percent, with outlet locations less than 100 miles apart.

From the research of Asquith and Thompson 2008, an estimate of the desired AEP peak flow at the ungauged site is provided by Equation 4-10:

$$Q_1 = Q_2 \sqrt{\frac{A_1}{A_2}}$$

Equation 4-10.

Where:

Q₁ = Estimated AEP discharge at ungauged watershed 1

Q₂ = Known AEP discharge at gauged watershed 2

 A_1 = Area of watershed 1

 A_2 = Area of watershed 2

SUMMARY

- Probability estimation modeling fits probability distributions to observations
- The fitted distributions are used to extrapolate and estimate magnitudes associated with arbitrary probabilities
- Examples with Normal, LogNormal, and Gumbell in Excel were presented
- Bulletin 17B using PeakFQ was demonstrates as was outlier identification (using the software)
 - Newer software in next few years will replace PeakFQ

NEXTTIME

- Precipitation
- Design Storms
 - **7** TP40
 - **7** HY35
- Intensity-Duration-Frequency
 - NOAA Atlas 14
 - EBDLKUP