Book's name: Advanced Computer Architecture by Kai Hwang

Parallel Computer Models

Parallel processing has emerged as a key enabling technology in modern computers, driven by the ever-increasing demand for higher performance, lower costs, and sustained productivity in real-life applications. Concurrent events are taking place in today's high-performance computers due to the common practice of multiprogramming, multiprocessing, or multicomputing.

Parallelism appears in various forms, such as lookahead, pipelining, vectorization, concurrency, simultaneity, data parallelism, partitioning, interleaving, overlapping, multiplicity, replication, time sharing, space sharing, multitasking, multiprogramming, multithreading and distributed computing at different processing levels.

Generation of Computer:

Generation	Tashnalagy and	Software and	Dannagantatirra
Generation	Technology and		Representative
	Architecture	Applications	Systems
First	Vacuum tubes and relav	Machine/assembly lan-	ENIAC,
(1945-54)	memories, CPU driven by	guages, single user, no sub-	Princeton IAS,
	PC and accumulator,	routine linkage,	IBM 701.
	fixed-point arithmetic.	programmed I/O using CPU.	
Second	Discrete transistors and	HLL used with compilers,	IBM 7090,
(1955-64)	core memories,	subroutine libraries, batch	CDC 1604,
	floating-point arithmetic,	processing monitor.	Univac LARC.
	I/O processors, multiplexed		
	memory access.		
Third	Integrated circuits (SSI/-	Multiprogramming and time-	IBM 360/370,
(1965-74)	MSI), microprogramming,	sharing OS, multiuser appli-	CDC 6600,
	pipelining, cache, and	cations.	TI-ASC,
	lookahead processors.		PDP-8.
Fourth	LSI/VLSI and semiconduc-	Multiprocessor OS, langua-	VAX 9000,
(1975-90)	tor memory, multiproces-	ges, compilers, and environ-	Cray X-MP,
	sors, vector supercomput-	ments for parallel processing.	IBM 3090,
	ers, multicomputers.		BBN TC2000.
Fifth	ULSI/VHSIC processors,	Massively parallel process-	Fujitsu VPP500,
(1991-	memory, and switches,	ing, grand challenge applica-	Cray/MPP,
present)	high-density packaging,	tions, heterogeneous	TMC/CM-5,
	scalable architectures.	processing.	Intel Paragon.

Elements of Modern Computers

Evolution of Computer Architecture

