

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Bayesian Statistics and Data Analysis Lecture 1

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Section 1

Introduction

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Decision making in case of uncertainties

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Bayesian Analysis

- Bayesian probability theory
 - uncertainty is presented with probabilities
 - probabilities are updated based on new information
- Thomas Bayes (170?–1761)
 - English nonconformist, Presbyterian minister, mathematician
 - considered the problem of inverse probability
 - significant part of the Bayesian theory
- Bayes did not invent all, but was first to solve problem of inverse probability in special case
- Modern Bayesian theory with rigorous proofs developed in 20th century

- Introduction
- Bayesian Statistical Inference
- · Probabilistic Modeling
- Bayesian Computation

Term Bayesian used first time in mid 20th century

- Earlier there was just "probability theory"
 - concept of the probability was not strictly defined, although it was close to modern Bayesian interpretation
 - in the end of 19th century there were increasing demand for more strict definition of probability (mathematical and philosophical problem)
- In the beginning of 20th century frequentist view gained popularity
 - accepts definition of probabilities only through frequencies
 - does not accept inverse probability or use of prior
 - gained popularity due to apparent objectivity and "cook book" like reference books
- R. A. Fisher used in 1950 first time term "Bayesian" to emphasize the difference to general term "probability theory"
 - term became quickly popular, because alternative descriptions were longer

Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Uncertainty and probabilistic modeling

- Two types of uncertainty: aleatoric and epistemic
- Representing uncertainty with probabilities
- Updating uncertainty

Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Two types of uncertainty

- Aleatoric uncertainty due to randomness
 - we are not able to obtain observations which could reduce this uncertainty
- Epistemic uncertainty due to lack of knowledge
 - we are able to obtain observations which can reduce this uncertainty
 - two observers may have different epistemic uncertainty

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Section 2

Bayesian Statistical Inference

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Probability in Bayesian Statistics

- Uncertainty and knowledge is expressed as probability distributions, why?
 - Analogy to physical randomness
 - Knowledge as coherence of bets (the Dutch book)
- Everyone can have their own 'subjective' uncertainty, e.g. P(rain tomorrow), P(Magdalena Andersson will be the next primeminister)
- Frequency arguments can be difficult in some situations:
 P(other life in the universe)
- Bayesian epistemiology
 - State of knowledge is a probability distribution,
 - e.g. unlike Popperian aproaches, we can talk about P(black swan)
 - Research in Philisophy of Science

- Introduction
- Bayesian Statistical Inference
- · Probabilistic Modeling
- Bayesian Computation

Statistical inference

- Draw conclusions of unobserved entities, based on data
- Different types of unobserved entities
 - potentially observed: future observations, treatment effects
 - parameters: data-generating process (e.g. regression coefficients)

Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Parameters, data, and predictions

- Model parameters: $\theta = (\theta_1, ..., \theta_p)$
- Observed data: $y = (y_1, ..., y_n)$
 - y_i can be a vector and is assumed to be random
- Potentially observed data: $\tilde{y} = (\tilde{y}_1, ..., \tilde{y}_m)$
- Observed (known) covariates: x
- We assume *exchangeability* of the observations:

$$p(y_1,...,y_n)$$

• Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Notation

- $p(\cdot|\cdot)$: conditional pdf/pmf
- $p(\cdot)$: marginal pdf/pmf
- $P(\cdot)$ or $Pr(\cdot)$: probability, e.g. $P(\theta > 0) = \int_0^\infty p(\theta) d\theta$
- Random variable: $\theta \sim N(\mu, \sigma)$
- pdf/pmf: $p(\theta) = N(\theta|\mu,\sigma)$

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

The basic steps of Bayesian inference

- 1. Setting up a full probability model $p(y|\theta) \cdot p(\theta) = p(y,\theta)$
- 2. Conditioning on observed data y to calculate the posterior distribution $p(\theta|y)$
- 3. Evaluate the model. If not satisfied, go back to 1.

Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Bayesian Inference I

- Bayesian conclusions about θ or \tilde{y} are made using probabilities, conditional on data y
- We state our uncertainty about θ or \tilde{y} as distributions
 - potentially observed: $p(\tilde{y}|y)$
 - parameters: $p(\theta|y)$
- We implicitly condition on x, i.e. $p(\theta|y) = p(\theta|y,x)$

Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Bayesian Inference: Setting up the model

• Start out with a model: a *joint distribution* for data and parameters:

$$p(y,\theta) = p(y|\theta)p(\theta)$$

- $p(y|\theta)$ is our data model, and when conditioned on y, the *likelihood*
- $p(\theta)$ is our prior distribution for our parameters

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Bayesian Inference: Computing the posterior

 Conditioning on data y, using Bayes theorem, we can the compute the posterior distribution

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

where

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

- p(y) is the marginal likelihood
- $p(\theta|y)$ summarize our knowledge about θ
- Bayesian statistics obey the *likelihood principle*: data only affects $p(\theta|y)$ through the likelihood $p(y|\theta)$

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Predictions

- How to do inference on an unknown (potential) observable \tilde{y} ? E.g. a future observation
- We use our data model and our posterior and marginalize over the uncertainty

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

- The posterior predictive distribution
- 'An average of conditional predictions over the posterior distribution'

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Example: Updating uncertainty

- Probability of red $\frac{\#\mathrm{red}}{\#\mathrm{red} + \#\mathrm{vellow}} = \theta$
- $p(y = red | \theta) = \theta$ aleatoric uncertainty
- $p(\theta)$ epistemic uncertainty
- Picking many chips updates our uncertainty about the proportion
- $p(\theta|y = \text{red}, \text{yellow}, \text{red}, \text{red}, \dots) = ?$
- Bayes rule $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

- Introduction
- Bayesian Statistical Inference
- · Probabilistic Modeling
- Bayesian Computation

Model vs. Likelihood

Bayes rule

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} \propto p(y|\theta)p(\theta)$$

- Data model: $p(y|\theta)$ as a function of y given fixed θ describes the aleatoric uncertainty
- Likelihood: $p(y|\theta) = L(\theta|y)$ as a function of θ given fixed y provides information about epistemic uncertainty, but is not a probability distribution, why?
- Bayes rule combines the likelihood with prior uncertainty $p(\theta)$ and transforms them to updated posterior uncertainty $p(\theta|y)$

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Example application: Effects on roaches

- Question: Effect of treamtments on captured roaches
- Outcome (y): The number of roaches
- Coeffcients (x): Treatment, Senior home, Pre-treatment number of roaches
- Data model:

$$p(y|\theta) = Po(\lambda) = \frac{1}{v!}\lambda^y \exp(\lambda)$$

where

$$\lambda = \exp(\alpha + \beta X)$$

Prior:

$$p(\theta) = p(\alpha) = p(\beta_k) = N(\theta|\mu,\sigma)$$

Posterior:

$$p(\alpha, \beta|y) \propto N(\alpha|\mu, \sigma) \prod_{k=1}^{K} N(\beta_{k}|\mu, \sigma) \prod_{k=1}^{N} Po(\exp(\alpha + \beta x))$$

Predictive distribution:

$$p(\tilde{y}|y,\tilde{x}) = \int Po(\exp(\alpha + \beta \tilde{x}))p(\alpha,\beta|y)d\alpha d\beta$$

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Section 3

Probabilistic Modeling

21/34

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

The art of probabilistic modeling

- Subjectivity: we need to specify both $p(\theta)$ and $p(y|\theta)$
- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
 - computational challenges
- Other parts of the art of probabilistic modeling are, for example,
 - model checking/assesment: is data in conflict with our prior knowledge?
 - model choice: which model should we use?
 - presentation: presenting the model and the results to the application experts

UPPSALA UNIVERSITET

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Example applications

- Galaxy clusters for cosmology
- Coagulation of blood
- Gene regulation
- Pharmacokinetics and -dynamics
- Decision support
- Effects of nutrition for diabetes
- Evolutionary anthropology
- Clinical trial designs
- Daily demand for gas
- Brain structure trees
- School enrollment
- Sports
- Product demand

- Cocoa bean fermentation
- Marine propulsion power
- Alcohol consumption trends
- Flood probability
- Instantaneous heart rate distributions
- Drug dosing regimens in pediatrics
- Human T stem cell memory cells
- Fairness in university admission policies
- Destruction of bacteria and bacterial spores under heat

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Benefits and problems when going Bayesian

- Benefits of Bayesian approach
 - integrate over uncertainties to focus to interesting parts
 - straight-forward predictive distributions
 - use relevant prior information
 - hierarchical models
 - model checking and evaluation
 - easier interpretation of uncertainty intervals
- Complications of Bayesian approach
 - most models does not have nice analytical posteriors
 - we need to approximate our posterior
 - can be computationally costly

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Section 4

Bayesian Computation

25/34

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Computation

We need to be able to compute expectations with respect to posterior distribution $p(\theta|y)$

$$\mathrm{E}_{ heta|y}[g(heta)] = \int p(heta|y)g(heta)d heta$$

- Analytic
 - only for very simple models
- Monte Carlo, Markov chain Monte Carlo
 - generic
- Distributional approximations
 - e.g. Laplace, variational inference
 - less generic, but can be much faster with sufficient accuracy

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Probabilistic programming

Enables agile workflow for developing probabilistic models

language - automated inference - diagnostics

- Introduction
- Bayesian Statistical Inference
- · Probabilistic Modeling
- Bayesian Computation

Binomial model for treatment/control comparison

- Two groups of patients: treatment and control
 - Binary outcome
 - Is the treatment useful?

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Binomial model for treatment/control comparison

```
data {
  int < lower=0 > N1:
  int < lower = 0 > v1;
  int < lower = 0 > N2:
  int < lower = 0 > y2;
parameters {
  real < lower = 0 , upper = 1 > theta1;
  real < lower=0, upper=1> theta2;
model {
  theta1 ~ beta(1,1);
  theta2 ~ beta(1,1);
  y1 ~ binomial(N1, theta1);
  y2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio:
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```


- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Binomial model for treatment/control comparison

RStanARM

```
 \begin{array}{ll} fit\_bin2 <\!\!- stan\_gIm\left(y/N \ ^{\sim} grp2 \, , \ family = binomial\left(\right) , \\ data = d\_bin2 \, , \ weights = N \right) \end{array}
```


Introduction

- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Modeling nature

- Drop a ball from different heights and measure time
 - Newton
 - air resistance, air pressure, shape and surface structure of the ball
 - relativity
- Taking into account the accuracy of the measurements, how accurate model is needed?
 - often simple models are adequate and useful
 - All models are wrong, but some of them are useful, George P. Box

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Recap: Uncertainty and probabilistic modeling

- Two types of uncertainty: aleatoric and epistemic
- Representing uncertainty with probabilities
- Updating uncertainty

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Rest of the course

- Basic models which can be used as building blocks
- Basic computation of posterior distributions
- Typical simple scientific data analysis cases
 - e.g. comparison of treatments
- Presentation of the results

- Introduction
- Bayesian Statistical Inference
- Probabilistic Modeling
- Bayesian Computation

Ambiguous notation in statistics

In $p(y|\theta)$

- y can be variable or (observed) value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ we could clarify by using P_Y , P_Θ , p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- $P_{\Theta}(Y = y | \Theta)$ is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta=\theta)$ is a probability density function, sampling distribution, observation model
- $p(Y = y | \Theta = \theta)$ is a density
- $p_{\Theta}(Y = y | \Theta)$ is a likelihood function (can be discrete or continuous)