Deng-2018 Book Errata

Last Update: Tuesday, October 4, 2022

- In Deng-2018, typesetting errors appear frequently and this table lists what we found. Line numbers are approximate. Text me at 631-877-7979 if you see errors in this errata or additional errors in Deng-2018.
- For every five additional errors you find in Deng-2018, I will order you a copy of the book.

Page	Line	Formula with Typo(s)	Formula Corrected
26	14	$y' = 2(xy' + y)y^3$	$y' = 2(-xy' + y)y^3$
35	16	$y^{2}(xy'+1)(1+x^{4})^{\frac{1}{2}}=x$	$y^{2}(xy'+y)(1+x^{4})^{\frac{1}{2}}=x$
40	17	$(x) = 1 + x^2$	$A_0(x) = 1 + x^2$
87	14	_ <i>M</i>	_ M
		$y^{2}(xy' + 1)(1 + x^{4})^{\frac{1}{2}} = x$ $(x) = 1 + x^{2}$ $= \frac{M}{1 - \frac{1}{C_{1}} \exp(-Mkt)}$ $1 - \frac{1}{C_{1}} \exp(-Mkt) = 0$	Formula corrected $y' = 2(-xy' + y)y^{3}$ $y^{2}(xy' + y)(1 + x^{4})^{\frac{1}{2}} = x$ $A_{0}(x) = 1 + x^{2}$ $= \frac{M}{1 - \frac{1}{C_{1}} \exp(Mkt)}$ $1 - \frac{1}{C_{1}} \exp(Mkt) = 0$
87	16	$1 - \frac{1}{a} \exp(-Mkt) = 0$	$1 - \frac{1}{2} \exp(Mkt) = 0$
		\mathcal{C}_1	(same as above)
89	-2	Solving	Prove that
104	-5	$v_r = 245$	$v_T = -245$
117	~9	$v_r = 245$ $x_0 + \left(\frac{v}{k}\right)(1 - \exp(-kt))$	$v_T = -245$ $x_0 + \left(\frac{v_0}{k}\right)(1 - \exp(-kt))$
128	Fig 2.20	Wind velocity w pointing (north)	Wind velocity w pointing (south)
	_ ,	$\frac{\text{upward}}{\cdots (D - r_n)^{k_n} \lceil \rceil} = 0$	downward
185	Prob.	$\cdots (D-r_n)^{\kappa_n} = 0$	$\cdots (D - r_n)^{k_n} y(x) = 0$
	3.3.17		
195	(2)	wain(2w)	$xe^{-2x}\sin(3x)$
		$x\sin(3x)$, ,
195	18	$x\sin(3x)$	$xe^{-2x}\sin(3x)$
207	Prob. 3.4.7	$(x^2+1)\sin(\omega x)$	$(x+1)\sin(\omega x)$
213	5	$b_1(t)$	$b_2(t)$
	2nd DE of		
	(4.6)		
228	~15	$3 \times (4.33) + (\mathcal{D} + 7) \times (4.34)$	$(\mathcal{D} + 7)(4.33) + 3 \times (4.34)$
238	-8	$3 \times (4.33) + (\mathcal{D} + 7) \times (4.34)$ $V_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$	$(\mathcal{D} + 7)(4.33) + 3 \times (4.34)$ $V_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ $\lambda = 2$
244	6	$\lambda = 1$	$\lambda = 2$
256	Eq	= cx + exy	= cy + exy
	(4.62)	•	
265	-1	$-\frac{1}{s}\int_0^\infty t\ e^{-st}\ dt$	$-\frac{1}{s}\int_0^\infty t\ d(e^{-st})$
288	3	$\frac{1}{(s^2+l^2)^2}$	$\frac{1}{(s^2 + k^2)^2}$
288	5	$\mathcal{L}[\frac{k}{c}\cos(kt)]$	$\mathcal{L}[t\cos(kt)]$
291	2	$\int_0^\infty e^{-st_1} u(t_1)g(t_1)dt_1$	$\mathcal{L}[t\cos(kt)]$ $\int_{0}^{\infty} e^{-st_{1}} u(t_{1})g(t_{1})dt_{1} \int_{0}^{\infty} e^{-s\tau} f(\tau)d\tau$

298	~20		x(t)
			$=\frac{307}{294}\exp(-3t)$
			1228 7
			$+\frac{1228}{1225}\exp(4t)-\frac{7}{150}\cos 3t$
			122.3
			$-\frac{1}{150}\sin 3t + \frac{1}{7}t\exp(4t)$
302	21	t ft -t	\int_{t}^{t}
		$+4\int_0^{\infty} e^{-t} \sin 2\tau d\tau$	$-4\int_0^{\infty}e^{-t}\sin 2\tau d\tau$
302	26	$+4\int_0^t e^{-\tau} \sin 2\tau d\tau$ $e^{-t}I$	$-4\int_0^t e^{-\tau} \sin 2\tau d\tau$ $e^t I$
302	-1	$e^{-t}I = -\frac{1}{5}(\sin 2t + 2\cos 2t) + \frac{2}{5}e^{-t}$	1, 1, 2, 1, 2, 2, 1, 2, 1
		$e^{-t} = -\frac{1}{5}(\sin 2t + 2\cos 2t) + \frac{1}{5}e^{-t}$	$e^{t}I = -\frac{1}{5}(\sin 2t + 2\cos 2t) + \frac{2}{5}e^{t}$
306	1		$-\frac{\cos(\omega t) - \cos(\omega_1 t)}{2}$
			$-\frac{\cos(\omega t) - \cos(\omega_1 t)}{\omega^2 - \omega_1^2}$ $((s+1)\mathcal{L}\{\cos t\} + 4\mathcal{L}\{\sin t\})$
306	12	$((s+1)\mathcal{L}\{\cos t\}$	$((s+1)\mathcal{L}\{\cos t\} + 4\mathcal{L}\{\sin t\})$
		$-4\mathcal{L}\{\sin t\}$	
307	15	$-4\mathcal{L}\{\sin t\}$ e^{-3t} $e^{-3t} - e^{t}$	$4e^{-3t}$
307	-2	$\rho^{-3t} - \rho^t$	$\rho^{-3t} - \rho^t$
	_	$\frac{3}{-3-1}$	$4\frac{3}{-3-1}$
307	-1		$ \frac{4^{e^{-3t}} - e^t}{-3 - 1} \\ \frac{1}{5} (e^{2t} - e^{-3t}) \\ x'' - 2x' + x $
310	5.5.17	x'' + 2x' + x	5 ()
			$\begin{array}{c} x - 2x + x \\ 1 c \end{array}$
332	-1	$\frac{1}{2} \int (1 - \cos 2\theta) d\theta$ $\frac{\theta}{2} - \frac{\sin 2\theta}{4} + C$	$\frac{1}{2} \int (1 + \cos 2\theta) d\theta$ $\frac{\theta}{2} - \frac{\sin 2\theta}{4} + C$
333	1	$\frac{\theta}{2} - \frac{\sin 2\theta}{1} + C$	$\frac{\theta}{-} - \frac{\sin 2\theta}{+} + C$
222	2	2 4	2 4
333	2	$\frac{1}{2}(\theta - \sin\theta\cos\theta) + C$	$\frac{1}{2}(\theta + \sin\theta\cos\theta) + C$
333	3	$\frac{1}{2} \left(\theta - \frac{\tan \theta}{\sec^2 \theta} \right) + C$ $\left(\frac{dx}{dy} \right)^{-1} = 2xy^3 \left(\frac{dx}{dy} \right)^{-1} + 2y^4$	$\frac{1}{2}\left(\theta + \frac{\tan\theta}{\sec^2\theta}\right) + C$ $\left(\frac{dx}{dy}\right)^{-1} = -2xy^3 \left(\frac{dx}{dy}\right)^{-1} + 2y^4$
335	8	$(dx)^{-1}$ $(dx)^{-1}$	$(dx)^{-1}$ $(dx)^{-1}$
		$\left(\frac{1}{dv}\right) = \frac{2xy^3}{dv} \left(\frac{1}{dv}\right) + 2y^4$	$\left(\frac{dy}{dy}\right) = -2xy^3\left(\frac{dy}{dy}\right) + 2y^4$
		,	This fix will match with p26 line 14.
			Only one of the two is necessary.
343	12	$ \ln\frac{(u^3-u+1)(u+1)}{} $	$\ln \frac{(u^2 - u + 1)(u + 1)}{\ln (u^2 - u + 1)(u + 1)} = -\ln x + C_1$
		$\ln \frac{u}{u}$	$\ln \frac{u}{u} = -\ln x + C_1$
		$= -\ln x + C_1$	
			4
354	3	$\frac{1}{\beta}\arctan(u) + \frac{1}{2}\ln 1 + u^2 $	$\frac{1}{\beta}\arctan(u) - \frac{1}{2}\ln 1 + u^2 = \ln t + C$
		β	β 2
370	-3	$= \operatorname{III} \iota + \iota$. 21
		$(x^2+1)^{-\frac{1}{2}}$	$(x^2+1)^{\frac{1}{2}}$
371	3	$= -\ln x + C_1$ $= \frac{1}{\beta} \arctan(u) + \frac{1}{2} \ln 1 + u^2 $ $= \ln t + C$ $(x^2 + 1)^{-\frac{1}{2}}$ $= 2x(x^2 + 1)^{-\frac{1}{2}}$ dx 6.23% $r(t = 0) = 0$ $\sqrt{1 + u}$	$(x^{2} + 1)^{\frac{1}{2}}$ $= 2x(x^{2} + 1)^{\frac{1}{2}}$ dy 62.3% $x(t - 0) - P$
381	-2	dx	dy
383	11	6.23%	62.3%
397	-3 12	$r(t=0) = 0$ $\sqrt{1+u}$	$c(t = 0) = R$ $\sqrt{1 + u^2}$ $Z = \frac{Q_0}{r^2} + \frac{Q_0 t}{r} + C \exp(rt)$
413	12	VIII	$\sqrt{1+u^2}$
427	13, 18	Z	$Z = \frac{Q_0}{2} + \frac{Q_0 t}{2} + C \exp(rt)$
		$= \frac{Q_0}{r^2} + \frac{Q_0 t}{r} + C \exp(-rt)$ $\frac{W(t)}{dt}$	r^2 r
440	3, 8	W(t)	dW(t)
	=, =	$\frac{dt}{dt}$	$\frac{dt}{dt}$
	•		

440	16	×	=
451	3	$r_{1,2,,8} = 1, 3$	$r_{1,2,3,4,5,6,7,8}$
			$= 1, 1, 1, 2, 2, 3, \pm 3i$
462	-7	$y_C = c_1 \cos \omega t + c_2 \sin \omega t$	$y_C = c_1 \cos \omega x + c_2 \sin \omega x$
472	1	$A = \frac{1}{\omega^2}$	$A = \frac{1}{2\omega^2}$
474	(2,4)	ω^2	2ω²
474		$y_C(x)) = C_1 + C_2 \cos x$	$y_c(x)$
479	15	$\frac{3}{5}e^{4t}$	$-\frac{3}{5}e^{4t}$
479	17	$\frac{3}{5}e^{4t}$	$-\frac{3}{5}e^{4t}$
479	20	$C_1 + \frac{3}{5}$	$C_1 - \frac{3}{5}$
502	2,7	${\eta_1\choose\eta_2}'$	${\eta_1 \choose \eta_2}$
502	2	$\binom{\eta_1}{\eta_2} = \binom{-i}{1}$	$\binom{\eta_1}{\eta_2} = \binom{i}{1}$
502	7	$\binom{\eta_1}{\eta_2} = \binom{i}{1}$	$\binom{\eta_1}{\eta_2} = \binom{-i}{1}$
503	-3	$E_1 = \frac{1}{2} \binom{0}{-3}$	$E_1 = \frac{1}{2} \binom{-3}{0}$
530	20	e^{2t}	e^t
530	-1	$2s^2 + 4s + 13$	$2s^2 + 4s + 3$
552	4	$\frac{d}{dx}(\tan u) = \sec^2 u$	$\frac{d}{dx}(\tan x) = \sec^2 x$