Inpatient Length of Stay

By: Saif Rahman

AGENDA

O1
INDUSTRY INTRODUCTION

04
MODELLING

02

05

DATASET

NEXT STEPS

03

DATA PRE-PROCESSING

INDUSTRY INTRODUCTION

INDUSTRY: HEALTHCARE

- In 2018, the US had over 36.3 million hospital admissions
- Large amounts of patient information
- Strong need for data scientists to improve patient care quality

INDUSTRY INTRODUCTION

DATASET: EXPLORATION

DATA PRE-PROCESSING

datal['Patient Disposition'].value counts() Home or Self Care 1572079 Home w/ Home Health Services 304373 Skilled Nursing Home 224088 Expired 51020 Left Against Medical Advice 47065 Inpatient Rehabilitation Facility 44544 Short-term Hospital 40553 Hospice - Medical Facility 12666 Psychiatric Hospital or Unit of Hosp 12096 Hospice - Home 10742 Another Type Not Listed 8351 Facility w/ Custodial/Supportive Care 6680 Court/Law Enforcement 3887 Medicare Cert Long Term Care Hospital 3445 Cancer Center or Children's Hospital 2906 Hosp Basd Medicare Approved Swing Bed 1550 Federal Health Care Facility 621 Critical Access Hospital 153 Medicaid Cert Nursing Facility 112 Name: Patient Disposition, dtype: int64

<u>FILTERED</u>

Home	1857962
Other	331028
Facility	63906
Hospital	58219

DATA PRE-PROCESSING

ENCODED

```
array([0.0008961 , 0.0025373 , 0.00446581, 0.05177328, 0.00731552, 0.0017948 , 0.00591922, 0.00052096, 0.00094803, 0.0450843 , 0.02810159, 0.00097053, 0.00507764, 0.00239927, 0.00025529, 0.00268052, 0.00228937, 0.00030678, 0.00199514, 0.01222484, 0.00165202, 0.00463283, 0.01277306, 0.00069447, 0.002334528, 0.0019973 , 0.00060447, 0.00474663, 0.00307903, 0.0024737 , 0.00124442, 0.00293235, 0.0052122 , 0.00511225, 0.00393663, 0.00421615, 0.00953133, 0.0027649, 0.00195274, 0.00020034, 0.00603908, 0.01394651, 0.01681872, 0.0019947, 0.00289211, 0.01362286, 0.00183634, 0.00481586, 0.05064222, 0.07979482, 0.10617775, 0.1704225 , 0.08432943, 0.02433241, 0.06781575, 0.07763309])
```

DATA PRE-PROCESSING

ENGINEERED

```
data['num_typologies'].value_counts()

2 918736
1 725011
3 667368
Name: num_typologies, dtype: int64
```

DATA PREPROCESSING

FEATURE SELECTION

```
drop_features = ['Payment Typology 1', 'Payment Typology 2', 'Payment Typology 3', 'Total Charges', 'Length of Stay']

X = pd.get_dummies(data.drop(columns=drop_features), drop_first=True)
X = X.rename(columns=col_renamer(X.columns)) # apply column renamer
y = data['Length of Stay']

X.shape
(2311115, 59)
X. **Total Charges', 'Length of Stay']
```

MODELLING: METRICS

$$R^2 = 1 - \frac{SSE}{SST}$$

A statistical measure of how close the data are to the fitted regression line, 'goodness of fit`. Representing a value from 0 to 1.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}} \quad \longrightarrow \quad$$

Indicates the absolute fit of the model to the data; how close the observed data points are to the model's predicted values.

MODELLING: MACHINE LEARNING

Linear Regression

R2 Score: 0.231 RMSE: 6.962 Ridge Regression

R2 Score: 0.231 RMSE: 6.962 Lasso Regression

R2 Score: 0.23 RMSE: 6.965 Decision Tree Regression

R2 Score: 0.384 RMSE: 6.231

R² of **0.384** indicates that 38.4% of the variability in the outcome data cannot be explained by the model

MODELLING: Decision Tree

- Pipeline implementation using StandardScaler()
- Hypertuned using grid search → Optimal tree with max_depth of 10

MODELLING: **DECISION TREE**

Incorrect Prediction:

Patient #298284

- Predicted Stay: 120 days
- Actual Stay: 1 day

MODELLING: APPLICATION

- Predicting length of stay for inpatient organization and scheduling
- Determining amount of resources that must be allocated for patients
- Key metric for predicting total charges
- Additional information for patients to evaluate their situation

NEXT STEPS

Next Steps

- Additional patient information
- Better feature engineering
- Dealing with categorical columns
- Implementing a neural network

Github Link: