Please amend the above-identified patent application, without prejudice, as follows: IN THE CLAIMS:

Amend claims 1, 14 and 15 by replacement as follows:

1. (2X amended) A process for preventing the migration of oxidised developer in a colour photographic material from a light sensitive silver halide emulsion layer in which it has been formed into another silver halide emulsion layer containing colour couplers comprising the steps of: incorporating a compound of the formula I

wherein, if n = 1,

 R_1 is a cyclic residue selected from naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino; or R_1 is a radical of formula II

$$\begin{array}{c}
R_{9} \\
R_{7} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(II),

and, if n = 2,

09/806,360

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -;

 R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen; chloro; hydroxy; C_1 - C_{25} -alkyl; C_7 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy; C_1 - C_{18} alkylthio; C_1 - C_4 alkylamino; di(C_1 - C_4 -alkyl)amino; C_1 - C_{25} alkanoyloxy; C_1 - C_{25} alkanoyloxy; C_3 - C_{25} alkanoyloxy which is

interrupted by oxygen, sulphur or $N - R_{14}$; $C_6 - C_9 cycloalkylcarbonyloxy; benzoyloxy or <math>C_1$ -

 C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring;

or R_4 is $-C_mH_{2m}-COR_{15}$, $-O-(C_vH_{2v})-COR'_{15}$, $-O-(CH_2)_q-OR_{32}$, $-OCH_2-CH(OH)-CH_2-R'_{15}$, $-OCH_2-CH(OH)-CH_2-OR_{32}$, or $-(CH_2)_qOH$;

or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of formula III

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

wherein R_1 is as defined above for n = 1;

 R_6 is hydrogen or, when R_4 is hydroxy, R_6 can also be C_1 - C_{25} alkyl or C_3 - C_{25} alkenyl; R_7 and R_9 , are each independently of one another hydrogen; halogen; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl

which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1-C_{25} alkylthio; C_3-C_{25} -alkenyl; C_3 -

 C_{2s} alkenyloxy; C_3 - C_{2s} alkynyl; C_3 - C_{2s} alkynyloxy; C_7 - C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; C_1 - C_4 alkyl-amino; C_1 - C_4 - C_4 alkyl-amino; C_1 - C_4

P

`)

09/806,360 - 3 - II/2-21851/A/PCT

 R_{a} , R_{10} and R_{11} are each independently of one another hydrogen; halogen; hydroxy; C_1 - C_{23} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkoxy; C_2 - C_{25} alkoxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} alkylthio; C_3 - C_{25} -alkenyl; C_3 - C_{25} -alkenyloxy; C_3 - C_{25} -alkynyloxy; C_7 - C_9 -phenylalkyl; C_7 - C_9 -phenylalkoxy; unsubstituted or C_1 - C_4 -alkyl-substituted phenyl; unsubstituted or C_1 - C_4 -alkyl-substituted or C_1 - C_4 -alkyl-substituted or C_5 - C_6 -cycloalkyl; unsubstituted or C_1 - C_4 -alkyl-substituted C_5 - C_6 -cycloalkyl; unsubstituted or C_1 - C_4 -alkyl-substituted C_5 - C_6 -cycloalkoxy; C_1 - C_4 -alkylamino; di(C_1 - C_4 -alkyl)amino; C_1 - C_{25} -alkanoyl; C_3 - C_{25} -alkanoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_{25} -alkanoylamino; C_3 - C_4 - C_5 -alkanoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 -alkanoylamino; C_3 - C_4 - C_5 -alkenoyl; C_3 - C_5 -alkenoyl; C_3 - C_5 -alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 -alkanoylamino; C_3 - C_3 - C_4 - C_4 -alkenoyl which is interrupted by oxygen, sulphur or C_3 - C_4 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_3 - C_4 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_3 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_3 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_5 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_5 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_5 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_5 - C_5 - C_5 -alkanoyl which is interrupted by oxygen, sulphur or C_5 - C_5

alkenoyloxy; C_3 - C_{25} alkenoyloxy which is interrupted by oxygen, sulphur or $N - R_{14}$; C_6 - C_{9} . cycloalkylcarbonyl; C_6 - C_9 cycloalkylcarbonyloxy; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-O-C_{12}$ $-O-C_{13}$ or $-O-C_{13}$

$$R_{20}$$
 R_{21} R_{20} R_{21} R_{20} R_{20} or, in formula II, R_{1} and R_{20} and R_{11} , together with the linking R_{11} R_{22}

carbon atoms, form a benzene ring;

 R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene;

 R_{14} is hydrogen or C_1 - C_8 alkyl;

 R_{15} and R'_{15} independently are hydroxy; $\left[--O^{-}\frac{1}{r}M^{r+}\right]$; C_{1} - C_{20} alkoxy; C_{3} - C_{20} alkoxy

interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_7 - C_{15} alkoxyphenoxy; or are C_5 - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy;

$$-N$$
 R_{25} ; or a group of the formula IIIa or IIIb

 \mathcal{D}

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl; R_{20} is hydrogen or C_1 - C_4 alkyl;

 R_{21} is hydrogen; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulphur or $N-R_{14}$ and which is unsubstituted or substituted at the phenyl moiety

by 1 to 3 C_1 - C_4 alkyl; or R_{20} and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl; R_{22} is hydrogen or C_1 - C_4 alkyl;

 R_{23} is hydrogen; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulphur or $N - R_{14}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate group; C_6 - C_6 cycloalkylcarbonyl; thenoyl; furoyl; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

09/806,360 - 6 - II/2-21851/A/PCT

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl;

R₂₆ is hydrogen or C₁-C₈alkyl;

 R_{27} is a direct bond; C_1 - C_{18} alkylene; C_2 - C_{18} alkylene which is interrupted by oxygen, sulphur or

 $N - R_{14}$; $C_2 - C_{18}$ alkenylene; $C_2 - C_{20}$ alkylidene; $C_7 - C_{20}$ phenylalkylidene; $C_5 - C_8$ cycloalkylene; $C_7 - C_{20}$

 C_8 bicycloalkylene; unsubstituted or C_1 - C_4 alkyl-substituted phenylene; or

$$R_{28}$$
 is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25} ;

R₂₉ is oxygen or -NH-;

R₃₀ is C₁-C₁₈alkyl or phenyl;

R₃₁ is hydrogen or C₁-C₁₈alkyl;

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is as a divalent group

-O-;

Q-C,-C,,alkylene-Q;

-O-CH,-CH(OH)-CH,-O-;

-Q-C,-C,,alkylene-Q-CO-C,H,,-O-;

-O-C,-C,,alkylene-O-CH,-CH(OH)-CH,-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L as a trivalent group is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group (-O-CH₂)₃C-CH₂OH; -Q-C₃H_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-;

 $-Q-C_3-C_{12}$ alkanetriyl $(-Q-CO-C_vH_{2v}-O-)_2$;

-O-C₃-C₁,alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-)₂; and

L as a tetravalent group is a tetravalent residue of a hexose or a hexitol;

 $-Q-C_4-C_{17}$ alkanetetryl($-Q-CO-C_vH_{2v}-O-)_3$;

-O-C₄-C₁, alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-)₃; Q-capped C₄-C₁, alkanetetryl; a group

$$\begin{array}{c} -O \\ CH_2 \\ -O \\ \end{array}$$
 or a group
$$\begin{array}{c} H_2 \\ C \\ C \\ \end{array}$$

M is an r-valent metal cation;

Q is oxygen or -NH-;

X is a direct bond, oxygen, sulphur or -NR₃₁-;

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene; Q-interrupted C_4 - C_{12} alkylene; phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂; Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-

 CH_2)₃C- CH_2OH , or a group $-C_aH_{2a}-N(C_bH_{2b}-)-C_cH_{2c}-$; and

Z as a tetravalent group is a tetravalent, carbon-ended residue of a hexose or a hexitol, C_4 -

 C_{12} alkanetetryl, a group C_{12} or a group C_{12} C_{13} C_{14} C_{15} C_{15

a, b, c and k independently are 1, 2 or 3;

m is 0 or a number from the range 1-12;

n is 1 or 2;

q is 1, 2, 3, 4, 5 or 6;

r is 1, 2 or 3; and

s is 0, 1 or 2;

v is 1, 2, 3, 4, 5, 6, 7 or 8;

provided that, when R_7 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or $N(R_{14})$ and R_9 is hydrogen, R_{10} is not identical with R_4 ; and when R_9 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or $N(R_{14})$ and R_7 is hydrogen, R_8 is not identical with R_4 , into an interlayer between the light sensitive silver halide emulsion layers thus scavenging the oxidized form of developer when migrating from the light sensitive silver halide emulsion layer in which it has been formed to the interlayer.

14. (2X amended) Compound of the formula V

$$R_2$$
 R_3
 R_4
 R_5
 R_7
 R_8
 R_{10}
 R_{11}
 R_{11}

wherein

 R_4 is -O-(C_vH_{2v})-CO R_{15} ; -O-(CH_2)_a-O R_{32} ;

-OCH₂-CH(OH)-CH₂-R₁₅; or -OCH₂-CH(OH)-CH₂-OR₃₂;

 $R_{_{15}} \text{ is hydroxy, } \left[- _{O} ^{-} \frac{1}{r} M^{r+} \right] \text{ , } C_{_{1}} \text{-} C_{_{20}} \text{alkoxy; } C_{_{3}} \text{-} C_{_{20}} \text{alkoxy interrupted by O and/or}$

substituted by a radical selected from OH, phenoxy, C₇-C₁₅alkylphenoxy, C₇-C₁₅alkoxyphenoxy;

or R_{1s} is C_s - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy; -N R_{25} ; or a group of formula

Illa or IIIb;

$$\begin{array}{c|c}
 & R_3 & R_2 \\
\hline
 & R_5 & R_1 & H & k
\end{array}$$
(IIIb);

 R_{32} is C_1-C_{18} alkanoyl; C_1-C_8 alkanoyl substituted by phenyl or C_7-C_{15} alkylphenyl; C_3-C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is, as a divalent group,

-O-;

Q-C,-C1,alkylene-Q;

-O-CH,-CH(OH)-CH,-O-;

-Q-C,-C_{1,2}alkylene-Q-CO-C₂H_{2v}-O-;

-O-C,-C,,,alkylene-O-CH,-CH(OH)-CH,-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L, as a trivalent group, is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group $(-O-CH_2)_3C-CH_2OH$; $-Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-$;

 $-Q-C_3-C_{12}$ alkanetriyl $(-Q-CO-C_vH_{2v}-O-)_2$;

 $-O-C_{3}-C_{12} \\ alkanetriyl(-O-CH_{2}-CH(OH)-CH_{2}-O-)_{2}; \ \ and$

L, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol;

 $\hbox{-Q-C}_4\hbox{-C}_{12} alkan etetryl \hbox{(-Q-CO-C}_v\hbox{H}_{2v}\hbox{-O-)}_3;$

09/806,360 - 10 - II/2-21851/A/PCT

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-)₃; Q-capped C₄-C₁₂alkanetetryl; a group

Q is oxygen or -NH-,

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene, Q-interrupted C_4 - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO_2 ; Z, as a trivalent group, is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- C_4)₃C- C_4 CH, or a group C_4 CH, or a group C_4 CH, and C_5 CH, and

Z, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12,

s is 1 or 2,

v is 1, 2, 3, 4, 5, 6, 7 or 8;

and all other residues are as defined in claim 1 for formula I if n is 1.

15. (amended) Process for stabilizing an organic material against deterioration by light, oxygen and/or heat, which process comprises incorporating a compound of the formula V according to claim 14 as stabilizer into said organic material.