§ 6. Реальные газы

При решении задач этого раздела используются данные таблиц 3,6,7,8,10 из приложения, кроме того, следует учесть указание к § 5. В задаче 6.8 дан авторский вариант решения.

6.1. В каких единицах системы СИ выражаются постоянные **а** и **b**, входящие в уравнение Ван-дер-Ваальса?

Решение:

Постоянные a и b из уравнения Ван-дер-Ваальса выражаются соотношениями $a = \frac{27T_{\kappa}^2R^2}{64p_{\kappa}}$; $b = \frac{T_{\kappa}R}{8p_{\kappa}}$. Подставив единицы измерения величин, входящих в данные уравнения, получим $[a] = \left[\frac{\Pi a \cdot m^3}{\text{моль}^2}\right]$; $[b] = \left[\frac{m^3}{\text{моль}}\right]$.

6.2. Пользуясь данными о критических величинах T_{κ} и p_{κ} **для** некоторых газов (смотри таблицу), найти для них постоянные a и b, входящие в уравнение Ван-дер-Ваальса.

Решение:

Постоянные a и b из уравнения Ван-дер-Ваальса выра-

жаются соотношениями
$$a = \frac{27T_{\kappa}^2R^2}{64p_{\kappa}}$$
; $b = \frac{T_{\kappa}R}{8p_{\kappa}}$. Восполь-

зовавшись данными о критических величинах T_{κ} и p_{κ} из **таблицы** 7, составим следующую таблицу:

Вещество	а. Па·м ⁶ /моль ²	b , 10^{-5} м 3 /моль
Водяной пар	0.556	3,06
Углекислый газ	0.364	4,26
Кислород	0.136	3,16
Аргон	0.136	3,22
Азот	0.136	3,85
Водород	0.0244	2.63
Гелий	0.00343	2.34

6.3. Какую температуру T имеет масса m = 2 г азота, занимающего объем V = 820 см³ при давлении p = 0.2 МПа? Газ рассматривать как: а) идеальный; б) реальный.

Решение:

- а) Идеальные газы подчиняются уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $T = \frac{\mu pV}{mR} = 280 \, \mathrm{K}$.
- б) Реальные газы подчиняются уравнению Ван-дер-Ваальса $\left(p + \frac{m^2}{\mu^2} \frac{a}{V^2}\right) \left(V \frac{m}{\mu}b\right) = \frac{m}{\mu}RT$, следовательно, температу-

ра
$$T = \frac{\mu}{mR} \left(p + \frac{m^2}{\mu^2} \frac{a}{V^2} \right) \left(V - \frac{m}{\mu} b \right) = 280 \text{ K. Таким образом,}$$

при данном давлении газ ведет себя как идеальный.

6.4. Какую температуру T имеет масса m = 3.5 г кислорода занимающего объем V = 90 см³ при давлении p = 2.8 МПа? Газ рассматривать как: а) идеальный; б) реальный.

Решение:

Если рассматривать кислород в данных условиях как идеальный газ, то его состояние описывается уравнением

Менделеева — Клапейрона:
$$pV = \frac{m}{\mu}RT$$
, откуда $T = \frac{\mu pV}{mR}$,

$$T = \frac{0.032 \cdot 2.8 \cdot 10^6 \cdot 90 \cdot 10^{-6}}{3.5 \cdot 10^{-3} \cdot 8.31} = 277 \,\mathrm{K}$$
. Если рассматривать газ

как реальный, то его состояние описывается уравнением

Ван-дер-Ваальса:
$$\left(p + \frac{m^2}{\mu^2} \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right) = \frac{m}{\mu}RT$$
. Восполь-

зовавшись полученными в задаче 6.2 константами a и b, выразим из последнего уравнения температуру

$$T = \frac{\mu(p + (m^2 / \mu^2)(a/V^2))(V - bm/\mu)}{mR}$$
. Подставляя в полу-

ченное выражение числовые данные, найдем
$$T = \frac{0.032 \left(2.8 \cdot 10^6 + \frac{3.5^2 \cdot 10^{-6}}{0.032^2} \frac{0.136}{90^2 \cdot 10^{-12}}\right)}{3.5 \cdot 10^{-3} \cdot 8.31} \times \frac{\left(90 \cdot 10^{-6} - \frac{3.5 \cdot 10^{-3}}{0.032} 3.16 \cdot 10^{-5}\right)}{3.5 \cdot 10^{-3} \cdot 8.31} = 285.7 \text{ K}.$$

6.5. Масса m = 10 г гелия занимает объем V = 100 см³ при давлении p = 100 МПа. Найти температуру T газа, считая его: а) идеальным; б) реальным.

Решение:

Идеальный газ подчиняется уравнению Менделеева — Клапейрона: $pV = \frac{m}{\mu}RT$, откуда $T = \frac{\mu pV}{mR}$; T = 482 К.

Состояние реального газа описывается уравнением Ван-дер-Ваальса, откуда выразим температуру $T = \frac{\mu \left(p + \left(m^2 / \mu^2\right) \left(a / V^2\right)\right) \left(V - bm / \mu\right)}{mR}$ (см. задачу 6.4).

Значения постоянных a и b были получены в задаче 6.2. **Подставив** числовые данные, найдем T = 204 К.

6.6. Количество $\nu=1$ кмоль углекислого газа находится при температуре $t=100^{\circ}$ С. Найти давление p газа, считая его: **а)** реальным; б) идеальным. Задачу решить для объемов $V_1=1\,\mathrm{m}^3$ и $V_2=0.05\,\mathrm{m}^3$.

Решение:

а) Для реального газа, согласно уравнению Ван-дер-Вааль-

ca,
$$\left(p + v^2 \frac{a}{V^2}\right) (V - vb) = vRT$$
, откуда $p = \frac{vRT}{V - vb} - v^2 \frac{a}{V^2}$. В

таблице из задачи 6.2 найдем для углекислого газа:

 $a=0,364~\Pi a \cdot m^6/$ моль² ; $b=4,26\cdot 10^{-5}~m^3/$ моль. Подставив числовые данные, получим $p_1=2,87~\mathrm{M\Pi a}$; $p_2=277~\mathrm{M\Pi a}$. б) Согласно уравнению Менделеева — Клапейрона pV=vRT, откуда $p=\frac{vRT}{V}$. Подставив числовые данные, получим $p_1=3,09~\mathrm{M\Pi a}$; $p_2=61,8~\mathrm{M\Pi a}$.

6.7. В закрытом сосуде объемом $V = 0.5 \text{ м}^3$ находится количество v = 0.6 кмоль углекислого газа при давлении $p = 3 \text{ М}\Pi a$. Пользуясь уравнением Ван-дер-Ваальса, найти, во сколько раз надо увеличить температуру газа, чтобы давление увеличилось вдвое.

Решение:

Из уравнения Ван-дер- заальса
$$T_1 = \frac{\mu}{mR} \left(p + \frac{m^2}{\mu^2} \frac{a}{V^2} \right) \times \left(V - \frac{m}{\mu} b \right); \quad T_2 = \frac{\mu}{mR} \left(2p + \frac{m^2}{\mu^2} \frac{a}{V^2} \right) \left(V - \frac{m}{\mu} b \right)$$
 (см. задачу 6.3). Тогда $\frac{T_2}{T_1} = \frac{2p + p_1}{p + p_1}$, где $p_1 = \frac{v^2 a}{V^2}; \frac{T_2}{T_1} = 1.85$.

6.8. Количество v = 1 кмоль кислорода находится при температуре $t = 27^{\circ}$ С и давлении p = 10 МПа. Найти объем V газа, считая, что кислород при данных условиях ведет себя как реальный газ.

Решение:

Чтобы найти объем из уравнения Ван-дер-Ваальса, необходимо решить уравнение третьей степени. В результате мы получили бы три корня, один из которых соответствует газообразному состоянию вещества. Его можно найти более простым методом последовательных приближений. Из уравнения Ван-дер-Ваальса для некоторого количества ν

кислорода имеем
$$V = \frac{vRT}{p + v^2 a/V^2} + vb = \frac{vRT}{p + p_i} + vb$$
 — (1). В качестве первого приближения возьмем объем, получаемый из уравнения Менделеева — Клапейрона $V_1 = \frac{vRT}{p} = 0.24 \,\mathrm{m}^3$. Тогда $p_i = \frac{v^2 a}{V_1^2} = 2.4 \,\mathrm{MПa}$. Подставляя p_i в (1), получим второе приближение $V_2 = 0.232 \,\mathrm{m}^3$. Тогда $p_i = \frac{v^2 a}{V_2^2} = 2.53 \,\mathrm{MПa}$, откуда третье приближение $V_3 = 0.231 \,\mathrm{m}^3$. Далее $p_i = \frac{v^2 a}{V_3^2} = 2.55 \,\mathrm{MПa}$; $V_4 = 0.231 \,\mathrm{m}^3$. Гажим образом, искомый объем $V = 231 \,\mathrm{n}$.

6.9. Количество v = 1 кмоль азота находится при температуре $t = 27^{\circ}$ С и давлении p = 5 МПа. Найти объем V газа, считая, что азот при данных условиях ведет себя как реальный газ.

Решение:

Решая задачу аналогично задаче 6.8, найдем V = 490 л

6.10. Найти эффективный диаметр σ молекулы кислорода, **считая** известными для кислорода критические значения T_{κ} и \mathcal{P}_{κ} .

Решение:

Решение: Поскольку
$$b \approx 4V$$
, где V — объем всех молекул, $V = V_0 N_A$, где V_0 — объем одной молекулы, и, кроме того, $b = \frac{T_{\kappa}R}{8p_{\kappa}}$, то $4V_0 N_A = \frac{T_{\kappa}R}{8p_{\kappa}}$. Отсюда $V_0 = \frac{RT_{\kappa}}{32N_A p_{\kappa}} = \frac{4}{3}\pi r^3 = \frac{1}{6}\pi\sigma^3$. Отсюда $\sigma = \sqrt[3]{\frac{3RT_{\kappa}}{16\pi N_A p_{\kappa}}}$; $\sigma = 294 \cdot 10^{-12} \, \text{м}$.

6.11. Найти эффективный диаметр σ молекулы азота двумя способами: а) по данному значению средней длины свободного пробега молекул при нормальных условиях $\overline{\lambda} = 95$ нм; б) по известному значению постоянной b в уравнении Ван-дер-Вальса.

Решение:

а) Средняя длина свободного пробега молекул (см. задачу 5.120) $\lambda = \frac{kT}{\sqrt{2\pi\sigma^2p}}$, следовательно, $\sigma^2 = \frac{kT}{\sqrt{2\pi p\lambda}}$. Тогда $\sigma = \sqrt{\frac{kT}{\sqrt{2\pi p\lambda}}}$; $\sigma = 298\cdot 10^{-12}\,\mathrm{m}$. б) Постоянная Ван-дер-Ва-альса b, вычисленная по формуле $b = \frac{2}{3}N_\mathrm{A}\pi\sigma^3$, откуда $\sigma^3 = \frac{3b}{2\pi N}$. Тогда $\sigma = \sqrt[3]{\frac{3b}{2\pi N}}$; $\sigma = 313\cdot 10^{-12}\,\mathrm{m}$.

6.12. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул углекислого газа при нормальных условиях. Эффективный днаметр σ молекулы вычислить, считая известными для углекислого газа критические значения T_{κ} и p_{κ} .

Решение: Критическое давление и критическая температура соответственно равны: $p_{\kappa} = \frac{a}{27b^2} - (1)$ и $T_{\kappa} = \frac{8a}{27bR} - (2)$. Из (1) $a = 27b^2p_{\kappa}$, подставим в (2) $T_{\kappa} = \frac{8 \cdot 27b^2p_{\kappa}}{27bR} = \frac{8bp_{\kappa}}{R}$. Тогда постоянная Ван-дер-Ваальса $b = \frac{T_{\kappa}R}{8p_{\kappa}}$. Эффективный диаметр молекулы (см. задачу 6.11(5)) $\sigma = \sqrt[3]{\frac{3b}{2\pi N_{\kappa}}} = \sqrt[3]{\frac{3T_{\kappa}R}{16\pi p_{\kappa}N_{\kappa}}} = \sqrt[3]{\frac{3T_{\kappa}R}{16\pi p_{\kappa}N_{\kappa}}}$. Тогда средняя длина

свободного пробега молекул газа
$$\lambda = \frac{kT}{\sqrt{2\pi\sigma^2}p} =$$

$$=\frac{kT}{\sqrt{2\pi p(3T_{\rm K}k/(16\pi p_{\rm K}))^{\frac{2}{3}}}}$$
; $\lambda = 80$ HM.

6.13. Найти коэффициент диффузии D гелия при температуре $t=17^{\circ}$ С и давлении p=150 КПа. Эффективный диаметр атома σ вычислить, считая известными для гелия критические значения T_{κ} и p_{κ} .

Решение:

Средняя длина свободного пробега молекул (см. задачу

6.12)
$$\lambda = \frac{kT}{\sqrt{2\pi p}(3T_{\kappa}k/(16\pi p_{\kappa}))^{\frac{2}{3}}}$$
. Коэффициент диффузии

$$D = \frac{1}{3} \overline{v} \lambda$$
, где $\overline{v} = \sqrt{\frac{8RT}{\pi \mu}}$ — средняя арифметическая

скорость молекул гелия. Тогда коэффициент диффузии

$$D = \frac{1}{3} \sqrt{\frac{8RT}{\pi \mu}} \frac{kT}{\sqrt{2\pi p} (3T_{\kappa}k / (16\pi p_{\kappa}))^{\frac{3}{2}}}; D \approx 3.5 \cdot 10^{-5} \,\text{m}^2/\text{c}.$$

6.14. Построить изотермы p = f(V) для количества V = 1 кмоль углекислого газа при температуре t = 0° С. Газ рассматривать как: а) идеальный; б) реальный. Значения V (в л/моль) для реального газа взять следующие: 0,07, 0,08, 0,10, 0,12, 0,14, 0,16, 0,18, 0,20, 0,25, 0,30, 0,35 и 0,40; для идеального газа — в интервале $0,2 \le V \le 0,4$ л/моль.

Решение:

- а) Для идеального газа, исходя из уравнения Менделеева — Клапейрона, имеем pV = vRT, отсюда $p = \frac{vRT}{v}$.
- б) Для реального газа из уравнения Ван-дер-Ваальса

$$\left(p + v^2 \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right) = vRT$$
 имеем $p + v^2 \frac{a}{V^2} = \frac{vRT}{V - vb}$ или $p = \frac{vRT}{V - vb} - v^2 \frac{a}{V^2}$. Зависимость $p(V)$ дана в таблицах и на графике, где верхняя изотерма соответствует идеальному газу, нижняя — реальному.

Для реального газа:

<i>V</i> , л/моль	0,07	0.08	0,09	0.10	0.12	0,14	0.16	0.18	0.20	0,25	0.30	0.35	0.40
<i>P</i> .10 ⁴ Па	85.1	37.8	29,2	31,2	40,3	47,2	51,1	52,8	53,1	51,1	47,7	44,1	40.1

Для идеального газа:

Г, л/моль	0.20	0.22	0,23	0,25	0.27	0.28	0,30	0,32	0,33	0.35	0,37	0,38	0,-+
<i>P</i> ,10⁴ Па	85.1	37.8	29,2	31,2	40,3	47,2	51.1	52,8	53,1	51,1	47,7	44,1	40.7

6.15. Найти давление p_i , обусловленное силами взаимодействия молекул, заключенных в количестве $\nu=1$ кмоль газа при нормальных условиях. Критическая температура и кризическое давление этого газа равны $T_{\rm k}=417~{\rm K}$ и $p_{\rm k}=7.7~{\rm M}\Pi{\rm a}$.

Решение:

давление, обусловленное силами взаимодействия молекул

$$p_i = \frac{m^2}{\mu^2} \frac{a}{V^2} = v^2 \frac{a}{V^2}$$
, где $a = \frac{27T_{\kappa}^2 R^2}{64p_{\kappa}}$ — постоянная Ван-

дер-Ваальса. Тогда $p_i = \frac{27v^2T_{\rm K}^2R^2}{64p_{\rm K}V^2}$. Из уравнения Менде-

леева — Клапейрона
$$pV = \nu RT$$
 выразим объем $V = \frac{\nu RT}{p}$,

. **тогда**
$$V^2 = \frac{v^2 R^2 T^2}{p^2}$$
, следовательно, окончательно

$$\mathbf{p}_{i} = \frac{27v^{2}T_{\kappa}^{2}R^{2}p^{2}}{64p_{\kappa}v^{2}R^{2}T^{2}} = \frac{27T_{\kappa}^{2}p^{2}}{64p_{\kappa}T^{2}}; \ p_{i} = 1.31 \,\text{kHa}.$$

6.16. Для водорода силы взаимодействия между молекулами незначительны; преимущественную роль играют собственные размеры молекул. Написать уравнение состояния такого полундеального газа. Какую ошибку мы допустим при нахождении количества водорода v, находящегося в некотором объеме при температуре t = 0° С и давлении p = 280 МПа, не учитывая собственного объема молекул?

Решение:

Поскольку силы взаимодействия между молекулами водорода незначительны, то в уравнении Ван-дер-Ваальса можне не учитывать параметр p_i . Уравнение такого газа будет

иметь вид
$$p\left(V - \frac{m}{\mu}b\right) = \frac{m}{\mu}RT$$
 — (1). Количество ν водо-

рода без учета собственного объема молекул можно найти

из уравнения Менделеева — Клапейрона:
$$v = \frac{pV}{RT}$$
 — (2). С

Учетом собственного объема молекул из уравнения (1)

$$RT + pb$$

$$\delta = \frac{v - v'}{v'}$$
. Подставляя в последнее уравнение (2) и (3), получим $\delta = \frac{pb}{RT}$; $\delta = 0.33 = 33\%$.

6.17. В сосуде объемом V = 10 л находится масса m = 0.25 кг азота при температуре $t = 27^{\circ}$ C. Какую часть давления газа составляет давление, обусловленное силами взаимодействия молекул? Какую часть объема сосуда составляет собственный объем молекул?

Решение:

Давление, обусловленное силами взаимодействия молекул $p_{i} = \frac{m^{2}}{U^{2}} \frac{a}{V^{2}}$. Из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$ имеем $p = \frac{m}{\mu}\frac{RT}{V}$, тогда $\frac{p_i}{n} = \frac{m^2}{\mu^2}\frac{a}{V^2}\frac{\mu}{m}\frac{V}{RT} =$ $=\frac{m}{n}\frac{a}{VRT}$; $\frac{p_{i}}{p}=4.9\%$. Собственный объем молекул найдем, воспользовавшись постоянной в Ван-дер-Ваальса. равной учетверенному объему молекул, содержащихся в одном моле реального газа. В уравнении Ван-дер-Ваальса $\left(p + \frac{v^2 a}{V^2}\right)(V - vb) = vRT$ поправка vb означает учетверенный объем молекул всего газа, т.е. $vb = 4V_1$. От $V_i = \frac{vb}{4}$ или $V_i = \frac{m}{4\mu}b$, тогда $\frac{V_i}{V} = \frac{mb}{4\mu V}$; $\frac{V_i}{V} = \frac{0.25 \cdot 3.85 \cdot 10^{-5}}{4.0.028 \cdot 10^{-2}} = 0.85\%$.

340

6.18. Количество v = 0.5 кмоль некоторого газа занимает объем $V_1 = 1 \,\mathrm{m}^3$. При расширении газа до объема $V_2 = 1.2 \,\mathrm{m}^3$ была совершена работа против сил взаимодействия молекул $A = 5,684 \,\mathrm{k}$ Дж. Найти постоянную a, входящую в уравнение ван-дер-Ваальса.

Решение:

Работа, совершенная против сил взаимодействия молекул, $A = \int_{\Gamma_1}^{\Gamma_2} p_i dV$, где $p_i = \frac{m^2 a}{\mu^2 V^2}$. Таким образом, $A = \frac{m^2 a}{\mu^2} \int_{\Gamma_1}^{V_2} \frac{dV}{V^2} = \frac{m^2 a}{\mu^2} \left(\frac{1}{V_1} - \frac{1}{V_2} \right) = \frac{m^2 a (V_2 - V_1)}{\mu^2 V_1 V_2}$, откуда выразим $a = \frac{A \mu^2 V_1 V_2}{m (V_2 - V_1)} = \frac{A V_1 V_2}{v^2 (V_2 - V_1)} = 0.136 \, \Pi \text{a} \cdot \text{м}^6 / \text{моль}^2$.

6.19. Масса $m=20\,\mathrm{kr}$ азота аднабатически расширяется в вакуум от объема $V_1=1\,\mathrm{m}^3$ до объема $V_2=1\,\mathrm{m}^3$. Найти понижение температуры ΔT при этом расширении, считая известной для азота постоянную a, входящую в уравнение Ван-дер-Ваальса (смотри ответ 6.2).

Решение:

Работа газа при адиабатическом расширении $A = \frac{RT_1}{\gamma - 1} \times$

$$\times \frac{m}{\mu} \left(1 - \frac{T_2}{T_1} \right) = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \frac{T_1 - T_2}{T_1} ; \qquad A = \frac{R}{\gamma - 1} \frac{m}{\mu} (T_1 - T_2) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma - 1} \times \frac{R}{\mu} \left(T_1 - T_2 \right) = \frac{R}{\gamma$$

$$\times \frac{m}{\mu} \Delta T$$
, где $\gamma = \frac{i+2}{i}$ — показатель адиабаты, тогда $\gamma - 1 =$

$$=\frac{i+2}{i}-\frac{i}{i}=\frac{2}{i}$$
. Следовательно, работа $A=\frac{iR}{2}\frac{m}{\mu}\Delta T$ — (1).

С другой стороны, работа, совершенная против сил вза-341

имодействия молекул,
$$A=\int\limits_{V_1}^{V_2}p_idV$$
, где $p_i=\frac{m^2a}{\mu^2V^2}$, значит, $A=\frac{m^2a}{\mu^2}\int\limits_{V_1}^{V_2}\frac{dV}{V^2}=\frac{m^2a}{\mu^2}\left(\frac{1}{V_1}-\frac{1}{V_2}\right)=\frac{m^2a(V_2-V_1)}{\mu^2V_1V_2}$ (2). Г. к. в (1) и (2) левые части равны, то можно приравнять и правые части, тогда $\frac{iR}{2}\frac{m}{\mu}\Delta T=\frac{m^2a(V_2-V_1)}{\mu^2V_1V_2}$, отлуда $\Delta T=\frac{2ma(V_2-V_1)}{iR\mu V_1V_2}$; $\Delta T=2.33$ К.

6.20. Количества v = 0.5 кмоль трехатомного газа ад батически расширяется в вакуум от объема $V_1 = 0.5 \text{ м}^3$ до объема $V_2 = 3 \text{ м}^3$. Температура газа при этом понижается на $\Delta T = 1.1 \text{ LK}$. Найти постоянную a, входящую в уравнение Ван-дер-Ваале a.

Решение:

Понижение температуры при расширении (см. задачу 6.19) $\Delta T = \frac{2ma(V_2 - V_1)}{iR\mu V_1 V_2} = \frac{2va(V_2 - V_1)}{iRV_1 V_2}$. Т. к. газ трехатомный, то число степеней свободы i = 6. Следовательно, постоянияя Ван-дер-Ваальса $a = \frac{\Delta TiRV_1 V_2}{2\nu(V_2 - V_1)}$; $a = 0.364\,\mathrm{Ha\cdot m^6/monb^2}$.

6.21. Какое давление p надо приложить, чтобы углекиелый газ превратить в жидкую углекиелоту при температурах $t_1 = 31^{\circ}$ С и $t_2 = 50^{\circ}$ С? Какой наибольший объем V_{max} межет занимать масса m = 1 кг жидкой углекиелоты? Каково наибольшее давление p_{max} насыщенного пара жидкой углекиелоты?

Решение:

Температура $t_1 = 31^{\circ} \text{ C}$ — критическая температура углекислого газа, тогда необходимое давление $p = p_{\kappa} = 7,38 \, \text{МПа.}$ Поскольку температура t_2 больше критической температуры, то ни при каком давлении нельзя превратить углекислый газ в жидкую кислоту.

Наибольший объем
$$V_{max}=\frac{3b}{\mu}=2.9\,\mathrm{л};$$
 наибольшее давление $p_{max}=p_{\kappa}=7.38\,\mathrm{M}\Pi\mathrm{a}.$

6.22. Найти плотность ρ_{κ} водяного пара в критическом состоянии, считая известной для него постоянную b, входящую в уравнение Ван-дер-Ваальса (смотри ответ 6.2).

Решение:

Критический молярный объем водяного пара $V_{0s} = 3b$. То-

гда критическая плотность
$$\rho_{\kappa} = \frac{\mu}{V_{0\kappa}} = \frac{\mu}{3b}$$
; $\rho_{\kappa} = 196 \, \text{кг/м}^3$.

6.23. Найти плотность ρ_{κ} гелия в критическом состоянии, **ечитая** известными для гелия критические значения T_{κ} и p_{κ} .

Решение:

Критическая плотность реального газа (см. задачу 6.22)

$$\rho_{\kappa} = \frac{\mu}{3b}$$
. Постоянная Ван-дер-Ваальса $b = \frac{T_{\kappa}R}{8p_{\kappa}}$, тогда

$$\rho_{\kappa} = \frac{8p_{\kappa}\mu}{3T_{\kappa}R}$$
; $\rho_{\kappa} = 56.77 \text{ K}\Gamma/\text{M}^3$.

6.24. Количество $\nu = 1$ кмоль кислорода занимает объем V = 56 л при давлении p = 93 МПа. Найти температуру t газа, пользуясь уравнением Ван-дер-Ваальса.

Решение:

Если ввести приведенные величины $\pi = \frac{p}{p_{\kappa}}$; $\tau = \frac{f}{T_{\kappa}}$; $\omega = \frac{V_0}{V_{0\kappa}}$, то приведенное уравнение Ван-дер-Ваальса для одного моля имеет вид $\left(\pi + \frac{3}{\omega^2}\right)(3\omega - 1) = 8\tau$, откуда $\tau = \frac{1}{8}\left(\pi + \frac{3}{\omega^2}\right)(3\omega - 1)$. Найдем приведенные величины: приведенный молярный объем $\omega = \frac{V_0}{V_{0\kappa}}$, где $V_0 = \frac{V}{V_0}$; $V_0 = 0.56 \cdot 10^{-4} \, \mathrm{m}^3$ /моль и $V_{0\kappa} = 3b = \frac{3T_{\kappa}R}{8p_{\kappa}}$; $V_{0\kappa} = 9.5 \cdot 10^{-5} \, \mathrm{m}^3$ /моль, тогда $\omega = 0.59$; приведенное давление $\pi = \frac{p}{p_{\kappa}} = 18.4$. Тогда $\tau = 2.6$ и, следовательно, $T = \tau T_{\kappa} = 400 \, \mathrm{K}$.

6.25. Количество $\nu = 1$ кмоль гелия занимает объем $V = 0.237 \,\mathrm{m}^3$ при температуре $t = -200^{\circ}$ С. Найти давление ρ газа, пользуясь уравнением Ван-дер-Ваальса в приведенных величинах.

Решение:

Если ввести приведенные величины $\pi = \frac{p}{p_{\rm K}}$; $\tau = \frac{T}{T_{\rm K}}$; $\omega = \frac{V_0}{V_{0\rm K}}$, то приведенное уравнение Ван-дер-Ваальса для одного моля имеет вид $\left(\pi + \frac{3}{\omega^2}\right)(3\omega - 1) = 8\tau$, откуда

$$\pi + \frac{3}{\omega^2} = \frac{8\tau}{3\omega - 1}$$
 или $\pi = \frac{8\tau}{3\omega - 1} - \frac{3}{\omega^2}$. Найдем приведенные

величины: приведенная температура $\tau = \frac{T}{T}$; $\tau = 14.03$;

приведенный молярный объем $\omega = \frac{V_0}{V_{0\nu}}$, где $V_0 = \frac{V}{v}$;

$$V_0 = 2,37 \cdot 10^{-4} \,\mathrm{M}^3/\mathrm{MOЛЬ}$$
 и $V_{0\kappa} = 3b = \frac{3T_{\kappa}R}{8p_{\kappa}}$; $V_{0\kappa} = 7,05 \times 10^{-4} \,\mathrm{M}^3/\mathrm{MOЛЬ}$

 $\times 10^{-5}\,\mathrm{M}^3/\mathrm{MOЛЬ}$, тогда $\omega=3.36$. Следовательно, приведенное давление $\pi=12.09$. Окончательно давление газа $p=\pi p_{\kappa}$; $p=2.78\,\mathrm{M}\Pi a$.

6.26. Во сколько раз давление газа больше его критического давления, если известно, что его объем и температура вдвое больше критических значений этих величин?

Решение:

По условию $\tau = 2$, $\omega = 2$. Исходя из приведенного уравнения Ван-дер-Ваальса для одного моля, приведенное давление (см. задачу 6.25) $\pi = \frac{8\tau}{3\omega - 1} - \frac{3}{\omega^2}$; $\pi = 2,45$.