Con. 7039-13.

www.campuskeeda.com

Random Tirned-Andru

GS-8778

(3 Hours)

Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions out of remaining six questions.
 - (3) Assume any suitable data wherever required but justify the same.
- 1. Attempt any four questions.
 - State the Chebyshev's Inequality and explain. What do you mean by steady state distribution of Markov Chain?
 - (c) Suppose X and Y are two Random variables when do you say that X and Y are (a) Orthogonal (b) Uncorrelated.
 - What is the difference between a Random Variable and Random Process?
 - State and explain Baye's Theorem.
- (a) A certain test for a particular Cancer is known to be 95% accurate. A person submits 10 to the test and the result are positive. Suppose that the person comes from a population of 100,000 (one Lakh), where 2000 people suffer from that disease. What can we conclude about the probability that the person under test has that particular cancer?
 - (b) Explain with suitable examples Continuous, Discrete and Mixed type Random variable.
- (a) Explain the concept of conditional probability and the properties of conditional probability.
 - (b) Suppose that 3 balls are randomly selected from a urn containing 3 red, 4 white 10and 5 blue balls. If we let X and Y denote respectively the number of red and white balls chosen.
 - (i) The Joint probability distribution of (X, Y)
 - Probability Mass Function of X.
 - Probability Mass Function of Y. (iii)
- 4. (a) Suppose $f_X(x) = \frac{2x}{\pi^2}$, $0 < x < \pi$ 10 and $y = \sin x$ Determine $f_v(y)$.
 - Compare PDF of Binomials and Poisson Random Variable.

A space craft has 100,000 components. The probability of any one component being defective is 2×10^{-5} . The mission will be in danger if five or more components becomes defective. Find the probability of such an event.

10

www.campu

Con.	7039–	GS-87	778-	13.

5.	(b)	Define Central Limit theorem and give it's significance. Describe the sequence of Random variables. State and prove Chapman - Kolmogorov equation.	1
		Explain what do you mean by? (i) Deterministic system (ii) Stochastic system (iii) Memoryless system. Prove that if Input to memoryless system is strict sense stationary (SSS) process	1
		x(t), then output $y(t)$ is also SSS. If a Random process $\{x(t)\}$ is given by $x(t)=10\cos(100t+\theta)$ where θ is uniformly distributed over $(-\pi, \pi)$, prove that $\{x(t)\}$ is correlation Ergodic.	

- 7. (a) Explain power spectral density function. State it's important properties and prove 10 any one of the property.
 - (b) Consider a Random process x(t) that assumes the values ± 1 . Suppose that $x(0) = \pm 1$ with probability 1/2, and suppose that x(t) then changes polarity with each occurrence of an event in a Poisson process of rate α . Find the mean, variance and Auto Covariance of x(t).