STOR 635 HW 3

BY AMEER QAQISH

January 31, 2022

1 Solutions

1. Let (Ω, \mathcal{F}, P) be a probability space. Let \mathcal{G} be a sub σ -field of \mathcal{F} and let X be a square integrable random variable in (Ω, \mathcal{F}, P) , that is, $X \in L^2(\Omega, \mathcal{F}, P)$. Show that there exists a unique $Z \in L^2(\Omega, \mathcal{G}, P)$ such that for every $Y \in L^2(\Omega, \mathcal{G}, P)$, E(XY) = E(ZY). Moreover, if $X_1, X_2 \in L^2(\Omega, \mathcal{F}, P)$ such that $X_1 \geq X_2$ almost surely, then $Z_1, Z_2 \in L^2(\Omega, \mathcal{G}, P)$ obtained by the above recipe for X_1, X_2 respectively should satisfy $Z_1 \geq Z_2$ almost surely.

Show that the Z obtained above (for X) satisfies the projection property: for any $W \in L^2(\Omega, \mathcal{G}, P), E[(X - Z)^2] \leq E[(X - W)^2].$

Proof. Note that $L^2(\Omega, \mathcal{G}, P)$ is a linear subspace of $L^2(\Omega, \mathcal{F}, P)$. Since $L^2(\Omega, \mathcal{G}, P)$ is complete, it is closed. By Hilbert space theory, we have the decomposition

$$L^2(\Omega, \mathcal{F}, P) = L^2(\Omega, \mathcal{G}, P) \oplus L^2(\Omega, \mathcal{G}, P)^{\perp}.$$

This means that for every $X \in L^2(\Omega, \mathcal{F}, P)$, there exist unique $Z \in L^2(\Omega, \mathcal{G}, P)$, $V \in L^2(\Omega, \mathcal{G}, P)^{\perp}$ such that

$$X = Z + V$$
.

For X = Z + V as above, set QX = Z. This defines $Q: L^2(\Omega, \mathcal{F}, P) \to L^2(\Omega, \mathcal{G}, P)$, the orthogonal projection of $L^2(\Omega, \mathcal{F}, P)$ onto $L^2(\Omega, \mathcal{G}, P)$. For future use, we note that Q is linear and that $\|QX\|_{L^2} \le \|X\|_{L^2}$ since $\|X\|_{L^2}^2 = \|Z\|_{L^2}^2 + \|V\|_{L^2}^2$.

Let $X \in L^2(\Omega, \mathcal{F}, P)$ be arbitrary. Write X = Z + V as above. Note that the inner product on $L^2(\Omega, \mathcal{F}, P)$ is given by (f, g) = E(fg). Thus for $Y \in L^2(\Omega, \mathcal{G}, P)$,

$$E(XY) = (Z+V,Y)$$

$$= (Z,Y)+(V,Y)$$

$$= (Z,Y)+0$$

$$= E(ZY).$$

Now we verify the projection property. Let $W \in L^2(\Omega, \mathcal{G}, P)$ be arbitary. By the Pythagorean theorem,

$$E((X - W)^{2}) = ||X - W||_{L^{2}}^{2}$$

$$= ||Z - W + V||_{L^{2}}^{2}$$

$$= ||Z - W||_{L^{2}}^{2} + ||V||_{L^{2}}^{2}.$$

Thus $E((X-W)^2)$ is minimal at W=Z. This proves the projection property.

Suppose $X_1, X_2 \in L^2(\Omega, \mathcal{F}, P)$ such that $X_1 \geq X_2$ almost surely. Let $Z_1 = QX_1$, $Z_2 = QX_2$. To show that $Z_1 \geq Z_2$ a.s., it suffices to show that $Z_1 - Z_2 = Q(X_1 - X_2) \geq 0$ a.s. Thus it suffices to show that if $X \in L^2(\Omega, \mathcal{F}, P)$ and $X \geq 0$ a.s., then $QX \geq 0$ a.s.

Section 1

So let $X \in L^2(\Omega, \mathcal{F}, P)$ with $X \geq 0$ be arbitrary. Let Z = QX. Note that all simple functions are in L^2 . Hence for any $A \in \mathcal{G}$,

Hence $\int_{\{Z<0\}} Z dP = 0$, so $\int_{\{Z<0\}} -Z dP = 0$. Since $-Z \ge 0$ on $\{Z<0\}$, this implies that -Z=0 a.s. on $\{Z<0\}$. Thus P(Z<0)=0. Thus $Z\ge 0$ a.s.

2. Use the above problem to show that conditional expectation exists and is unique, that is, for each $X \in L^1(\Omega, \mathcal{F}, P)$, there exists a unique $Z \in L^1(\Omega, \mathcal{G}, P)$ such that for any $F \in \mathcal{G}$, $\int_F X dP = \int_F Z dP$.

Proof. Let $X \in L^2(\Omega, \mathcal{F}, P)$ be arbitrary. By the monotonicity proved in problem 1,

$$\begin{aligned} |QX| &= |QX^{+} - QX^{-}| \\ &\leq |QX^{+}| + |QX^{-}| \\ &= QX^{+} + QX^{-} \\ &= Q(X^{+} + X^{-}) \\ &= Q|X|. \end{aligned}$$

Thus

$$||QX||_{L^{1}} = \int_{\Omega} |QX| dP$$

$$\leq \int_{\Omega} Q|X| dP$$

$$= \int_{\Omega} |X| dP$$

$$= ||X||_{L^{1}}.$$

We now use this estimate and the density of $L^2(\Omega, \mathcal{F}, P)$ in $L^1(\Omega, \mathcal{F}, P)$ to extend Q to a linear map on $L^1(\Omega, \mathcal{F}, P)$ satisfying the same estimate. Let $X \in L^1(\Omega, \mathcal{F}, P)$ be arbitrary. Pick $X_n \in L^2(\Omega, \mathcal{F}, P)$ with $X_n \to X$ in L^1 ; for example, take X_n to be simple functions converging to X pointwise with $|X_n| \leq |X|$. Note that

$$||QX_n - QX_m||_{L^1} = ||Q(X_n - X_m)||_{L^1} \le ||X_n - X_m||_{L^1} \to 0 \text{ as } n, m \to \infty.$$

Thus (QX_n) is a Cauchy sequence in $L^1(\Omega, \mathcal{G}, P)$, so there is an L^1 limit

$$QX := \lim_{n \to \infty} QX_n \in L^1(\Omega, \mathcal{G}, P).$$

We need to check that QX is independent of the sequence X_n . If $X'_n \in L^2(\Omega, \mathcal{F}, P)$ also converge to X in L^1 , then

$$\left\| QX - \lim_{n \to \infty} QX_n \right\|_{L^1} = \lim_{n \to \infty} \|QX_n - QX_n'\|_{L^1} \le \lim_{n \to \infty} \|X_n - X_n'\|_{L^1} = \|X - X\|_{L^1} = 0.$$

Thus QX is independent of the sequence X_n . With this in hand, it is easy to check that Q is linear and that $||QX||_{L^1} \le ||X||_{L^1}$ for all $X \in L^1(\Omega, \mathcal{F}, P)$.

Solutions 3

Now let $X \in L^1(\Omega, \mathcal{F}, P)$ be arbitrary. Let $Z = QX \in L^1(\Omega, \mathcal{G}, P)$. Pick $X_n \in L^2(\Omega, \mathcal{F}, P)$ with $X_n \to X$ in L^1 . Let $F \in \mathcal{G}$ be arbitrary. For each n, we have by problem 1 that

$$\int_F X_n \, dP = \int_F Q \, X_n \, dP.$$

By definition, $QX_n \to Z$ in L^1 . Thus letting $n \to \infty$ above gives

$$\int_{F} X \, dP = \int_{F} Z \, dP.$$

This proves existence. Now suppose $Z' \in L^1(\Omega, \mathcal{G}, P)$ is also a conditional expectation of X given \mathcal{G} . Then for every $A \in \mathcal{G}$, $\int_A X dP = \int_A Z dP = \int_A Z' dP$, so

$$\int_{A} (Z - Z') dP = 0.$$

Putting $A = \{Z - Z' > 0\} \in \mathcal{G}$ yields that Z - Z' = 0 a.e. on $\{Z - Z' > 0\}$, which implies that P(Z - Z' > 0) = 0. A similar argument yields P(Z - Z' < 0) = 0. Thus Z = Z' a.e. This proves uniqueness.

3. Let (Ω, \mathcal{F}, P) be a probability space. Let \mathcal{G} be a sub σ -field of \mathcal{F} and let X be an integrable random variable. Let U be a \mathcal{G} -measurable random variable such that $E(|UX|) < \infty$. Show that

$$E(UX) = E(UE(X|\mathcal{G})).$$

Proof. Suppose $Y: \Omega \to [0, \infty)$ is \mathcal{F} -measurable and integrable (actually, what follows still makes sense when Y is not integrable since $E(Y|\mathcal{G})$ still makes sense). For all $A \in \mathcal{G}$, we have

$$\int 1_A Y dP = \int 1_A E(Y|\mathcal{G}) dP.$$

By linearity, it follows that for nonnegative \mathcal{G} -measurable simple functions f,

$$\int fYdP = \int fE(Y|\mathcal{G}) dP.$$

By the monotone convergence theorem, the above holds for all \mathcal{G} -measurable $f:\Omega \to [0,\infty]$. In particular, if $fY \in L^1$, then $fE(Y|\mathcal{G}) \in L^1$. Note that $|U^{\pm}X^{\pm}| \leq |U| |X| \in L^1$. Thus $U^{\pm}E(X^{\pm}|\mathcal{G}) \in L^1$ as well. Thus by linearity of the integral on L^1 ,

$$\begin{split} \int UX &= \int (U^{+} - U^{-}) \, (X^{+} - X^{-}) \\ &= \int (U^{+} \, X^{+} - U^{+} \, X^{-} - U^{-} \, X^{+} + U^{-} \, X^{-}) \\ &= \int (U^{+} \, E(X^{+} | \, \mathcal{G}) - U^{+} \, E(X^{-} | \, \mathcal{G}) - U^{-} \, E(X^{+} | \, \mathcal{G}) + U^{-} \, E(X^{-} | \, \mathcal{G})) \\ &= \int (U^{+} \, E(X | \, \mathcal{G}) - U^{-} \, E(X | \, \mathcal{G})) \\ &= \int U \, E(X | \, \mathcal{G}). \end{split}$$

4 Section 1

4. Let (Ω, \mathcal{F}, P) be a probability space. Let \mathcal{G}, \mathcal{H} be sub σ -fields of \mathcal{F} such that $\mathcal{H} \subset \mathcal{G}$. Let X be an integrable random variable. Show

$$E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{H}), \quad E(E(X|\mathcal{H})|\mathcal{G}) = E(X|\mathcal{H}).$$

Proof. Let $A \in \mathcal{H}$. Since $A \in \mathcal{G}$,

$$E(E(X|\mathcal{G}) 1_A) = E(X 1_A) = E(E(X|\mathcal{H}) 1_A).$$

Thus $E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{H})$. Since $E(X|\mathcal{H})$ is \mathcal{H} -measurable, it is also \mathcal{G} measurable. Thus trivially, $E(E(X|\mathcal{H})|\mathcal{G}) = E(X|\mathcal{H})$.

5. Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{G} be a sub σ -field of \mathcal{F} . Show that if $\{X_n\}$ converges to X in L^p $(1 \le p < \infty)$ then $E(X_n | \mathcal{G}) \to E(X | \mathcal{G})$ in L^p .

Proof. Since conditional expectation is linear, it suffices to show that $||E(X|\mathcal{G})||_{L^p} \le ||X||_{L^p}$ for all $X \in L^p(\Omega, \mathcal{F}, P)$. So let $X \in L^p(\Omega, \mathcal{F}, P)$ be arbitrary. Note that $\varphi : [0, \infty) \to [0, \infty)$ defined by $\varphi(x) = x^p$ is convex since $\varphi''(x) = p(p-1)x^{p-2} \ge 0$ for all $x \ge 0$. Thus by monotonicity and Jensen's inequality,

$$|E(X|\mathcal{G})|^p \le E(|X||\mathcal{G})^p \le E(|X|^p|\mathcal{G}).$$

Integrating gives

$$||E(X|\mathcal{G})||_{L^p}^p \le E(E(|X|^p|\mathcal{G})) = E(|X|^p) = ||X||_{L^p}^p.$$

6. Let $\{X_i\}_{i\in\mathcal{I}}$ be a uniformly integrable family and $\{\mathcal{G}_j\}_{j\in\mathcal{J}}$ be a collection of sub σ -fields of \mathcal{F} . Show that the collection $\mathcal{U} \doteq \{E(X_i|\mathcal{G}_j): (i,j)\in\mathcal{I}\times\mathcal{J}\}$ is a u.i. family.

Proof. In homework 1, it was proved as a lemma that if μ is a finite measure, a collection $\mathcal{C} \subset L^1(\mu)$ is uniformly integrable if and only if

$$\lim_{a \to \infty} \sup_{f \in \mathcal{C}} \int (|f| - a)^+ d\mu = 0.$$

Let a > 0 be arbitrary. Note that the map $\varphi : \mathbb{R} \to [0, \infty)$ given by $\varphi(x) = x^+ = \max(x, 0)$ is convex since it is the maximum of two convex functions. Note also that φ is increasing. For $i \in \mathcal{I}$, $j \in \mathcal{J}$, we have by monotonicity and Jensen's inequality that

$$(|E(X_i|\mathcal{G}_j)|-a)^+ \le (E(|X_i||\mathcal{G}_j)-a)^+ = E(|X_i|-a|\mathcal{G}_j)^+ \le E((|X_i|-a)^+|\mathcal{G}_j).$$

Taking expectations gives

$$E((|E(X_i|\mathcal{G}_j)|-a)^+) \le E(E((|X_i|-a)^+|\mathcal{G}_j)) = E((|X_i|-a)^+).$$

Thus

$$\sup_{i \in \mathcal{I}, j \in \mathcal{J}} E((|E(X_i|\mathcal{G}_j)| - a)^+) \le \sup_{i \in \mathcal{I}} E((|X_i| - a)^+) \to 0 \text{ as } a \to \infty.$$

Thus \mathcal{U} is uniformly integrable.

Solutions 5

7. Let P and Q be two probability measures on (Ω, \mathcal{F}) such that $Q \ll P$. Let $\{\mathcal{G}_j : j \in \mathcal{J}\}$ be a collection of sub σ -fields of \mathcal{F} . Let $Q_j \doteq Q|_{\mathcal{G}_j}$ and $P_j = P|_{\mathcal{G}_j}$. Regarding Q_j, P_j as probability measures on (Ω, \mathcal{G}_j) , let X_j be the \mathcal{G}_j measurable random variable such that $X_j = \frac{d Q_j}{d P_j}$. Show $\{X_j : j \in \mathcal{J}\}$ is u.i. on (Ω, \mathcal{F}, P) .

Proof. Let $X = \frac{d \mathbf{Q}}{d \mathbf{P}}$. For all $A \in \mathcal{G}_j$, we have

$$\int_{A} X d\mathbf{P} = \mathbf{Q}(A)$$

$$= \mathbf{Q}_{j}(A)$$

$$= \int_{A} X_{j} d\mathbf{P}_{j}$$

$$= \int_{A} X_{j} d\mathbf{P}.$$

Thus $X_j = E(X | \mathcal{G}_j)$. Since $\{X\}$ is uniformly integrable, problem 6 implies $\{E(X | \mathcal{G}_j) : j \in \mathcal{J}\} = \{X_j : j \in \mathcal{J}\}$ is uniformly integrable.

8. Let $X, Y \in L^2$. Suppose E(X|Y) = Y and E(Y|X) = X. Show X = Y a.s.

Proof. We have

$$\begin{split} E((X-Y)^2) &= E(E(X^2+Y^2-2\,X\,Y|\,X)) \\ &= E(X^2+E(Y^2|\,X)-2\,E(X\,Y|\,X)). \end{split}$$

Note that in the setting of problem 3, replacing U with $1_A U$ for $A \in \mathcal{G}$ yields $E(UX|\mathcal{G}) = UE(X|\mathcal{G})$. Thus since $XY \in L^1$, $E(XY|X) = XE(Y|X) = X^2$. Thus

$$\begin{split} E((X-Y)^2) &= E(X^2 + E(Y^2|X) - 2\,X^2) \\ &= E(E(Y^2|X)) - E(X^2) \\ &= E(Y^2) - E(X^2). \end{split}$$

Swapping X and Y gives

$$E((X - Y)^2) = E(X^2) - E(Y^2) = -E((X - Y)^2).$$

Thus $E((X - Y)^2) = 0$, so X = Y.