Docket No.: P-0670 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of :

Jeong Hoon CHOI :

Serial No.: New U.S. Patent Application

Filed: April 9, 2004

Customer No.: 34610

For: EFFICIENT ATM CELL SWITCHING METHOD USING ATM HEADER

HAVING END DESTINATION

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

U.S. Patent and Trademark Office 2011 South Clark Place Customer Window Crystal Plaza Two, Lobby, Room 1B03 Arlington, Virginia 22202

Sir:

At the time the above application was filed, priority was claimed based on the following application:

Korean Patent Application No. 10-2003-0031952, filed May 20, 2003.

A copy of each priority application listed above is enclosed.

P.O. Box 221200 Chantilly, Virginia 20153-1200 703 766-3701 DYK/tlg

Date: April 9, 2004

Respectfully submitted.
FLESHNER & KIM LLP

Daniel Y.J. Kim
Registration No. 36,186

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

10-2003-0031952

Application Number

2003년 05월 20일 MAY 20, 2003

Date of Application

엘지전자 주식회사

Applicant(s)

출

LG Electronics Inc.

2004

03 녀

80

인 :

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2003.05.20

【발명의 명칭】 에이티엠 셀 라우팅 방법

【발명의 영문명칭】 Method for Routing ATM Cell

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-2002-012840-3

【대리인】

【성명】 김영철

【대리인코드】 9-1998-000040-3

【포괄위임등록번호】 2002-027003-6

【대리인】

【성명】 김순영

【대리인코드】 9-1998-000131-1 2002-027004-3

【포괄위임등록번호】

【발명자】

【성명의 국문표기】 최정훈

【성명의 영문표기】 CHOI, Jeong Hoon

【주민등록번호】 750918-1655216

【우편번호】 520-824

【주소】 전라남도 나주시 금천면 오강리 280

【국적】 KR

【심사청구】 청구

【취지】 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

(인) 대리인 김영철

김순영 (인)

【수수료】

【기본출원료】 14 면 29,000 원 【가산출원료】 0 면 0 원

【우선권주장료】

0 건

0 원

【심사청구료】

3 항

205,000 원

【합계】

234,000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 ATM 셀 라우팅 방법에 관한 것으로, 셀 스위칭부에서 스위칭을 통해 유입된 셀의 종단 목적지를 결정하는 단계와; 상기 스위칭된 셀이 가공이 필요한 경우 상기 결정된 종단 목적지 정보를 셀에 삽입하는 단계와; 셀 가공부에서 상기 삽입된 종단 목적지 정보를 제외하고 상기 셀을 가공하는 단계와; 상기 셀 스위칭부에서 상기 가공된 셀의 종단 목적지 정보를 확인하여 해당 목적지로 셀을 송신하는 단계를 포함하는 것을 특징으로 함으로써, 셀 가공시반복되는 스위칭 동작을 제거하여 셀 처리 지연을 방지할 수 있고, 한정된 VPI/VCI 자원을 간단하고 효율적으로 운용할 수 있으며, 나아가 라우팅 정보를 저장해야 할 메모리의 크기도 소형화할 수 있는 효과가 있다.

【대표도】

도 4

【명세서】

【발명의 명칭】

에이티엠 셀 라우팅 방법{Method for Routing ATM Cell}

【도면의 간단한 설명】

도 1은 종래 ATM 셀 라우팅 절차를 나타내는 순서도.

도 2는 본 발명의 일 실시예에 따른 ATM 셀 처리 시스템의 개략적인 구성을 나타내는 도.

도 3은 본 발명의 일 실시예에 따른 ATM 셀 구조도.

도 4는 본 발명의 일 실시예에 따른 ATM 셀 라우팅 절차를 나타내는 순서도.

* 도면의 주요 부분에 대한 부호의 설명 *

10 : ATM 셀 처리 시스템 11 : 제 1큐

12 : 제 2큐 13 : 제 3큐

14 : 셀 스위칭부 15 : 셀 가공부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 ATM 셀 라우팅 방법에 관한 것으로, 특히 스위칭되어 종단 목적지가 결정된 셀을 가공하는 경우 해당 종단 목적지 정보를 보존하여 반복적인 일련의 스위칭 동작을 제거함

으로써, ATM 셀 처리 지연 및 시스템 부하를 감소시키고, VPI/VCI 자원의 낭비를 방지하도록 한 ATM 셀 라우팅 방법에 관한 것이다.

- 의반적으로 ATM 네트웍에서 가입자 보드내로 유입되는 셀 스트림(Stream)의 라우팅을 위해 셀 스위칭(Switching)부는 스위칭을 통해 해당 셀의 VPI/VCI를 변환하고 종단 목적지 (PHYO~PHYn)를 결정한 후, 해당 셀을 종단 목적지로 송신한다.
- <11> 그리고, 스위칭된 셀이 일정한 가공이 필요한 경우 해당 셀을 셀 가공부를 통해 가공한 후, 가공된 셀을 재스위칭하여 종단 목적지로 송신한다.
- 4 가공부는 셀 스위칭부로부터 전달받은 셀을 가공하여 셀 스위칭부로 반환한다. 이러한 셀 가공부는 기정의된 기능에 따라 해당 가공 동작을 수행하는데, ATM 네트웍에서 셀 가공부의 기능으로는 셀 타입(AAL type) 변환이나 특정 VPI/VCI를 가지는 셀 페이로드(Payload)의 특정 정보 변환 등이 있다.
- <13> 종래 ATM 셀 스트림의 라우팅 절차를 첨부한 도면 도 1을 참조하여 상세하게 설명하면 다음과 같다.
- 우선, 셀 스위칭부는 소정의 버스 중재 알고리즘(Arbitration Algorithm)을 통해 가입자 보드로 유입되는 모든 셀 스트림이 저장되는 제 1큐와 가공을 거친 셀이 저장되는 제 2큐에서 스위칭할 특정 셀을 선택한다(S101).

- <15> 그리고, 상기 선택된 셀의 VPI/VCI 정보가 저장되어 있는 셀 헤더(Header)의 4바이트를 읽어들여 내부의 라우팅 정보 테이블을 이용해 새로운 VPI/VCI로 변환하고 종단 목적지를 결정 하여 해당 셀을 스위칭한다(S102).
- <16>이후, 상기 스위칭된 셀이 가공이 필요한지 여부를 확인하여(S103), 가공이 필요없는 경우 상기 셀을 종단 목적지로 송신하고(S104), 가공이 필요한 경우 상기 셀을 제 3큐에 저장하여 셀 가공부를 통해 가공하게 한다(S105).
- <17> 상기 셀의 종단 목적지로의 송신 및 제 3큐로의 저장은 변환된 VPI/VCI 정보가 포함된 셀 헤더의 4바이트를 먼저 송신한 후, 제 1큐에 저장되어 있는 49바이트(5번째 바이트부터 53번째 바이트)를 송신한다.
- <18> 그러면, 셀 가공부는 제 3큐에서 53바이트의 셀을 읽어들여 기정의된 기능에 따라 해당 셀을 가공한 후 제 2큐에 저장한다. 이 때, 가공된 셀의 VPI/VCI는 변환되어 질 수 있고 기존 VPI/VCI를 유지할 수도 있다.
- <19> 전술한 바와 같이 종래 셀 스위칭부는 유입되는 셀을 스위칭하여 VPI/VCI를 변환하고 종단 목적지를 결정하며, 스위칭된 셀이 가공 과정을 거치는 경우 가공시 종단 목적지 정보가 소 실되므로 가공 된 셀의 라우팅을 위해 해당 셀을 재스위칭한다.
- 주, 셀 스위칭부는 소정의 버스 중재 알고리즘에 의해 가공된 셀을 선택하는 경우 처음 가입자 보드로 유입되는 셀을 스위칭했던 것과 마찬가지로, 재스위칭을 통해 가공된 셀 헤더의 4바이트 읽어들여 새로운 VPI/VCI로 변환하고, 종단 목적지를 결정한 후, 해당 목적지로 셀을 송신한다.

- <21> 따라서, 라우팅을 위해 모든 셀의 라우팅 정보를 가지고 있는 셀 스위칭부는 특히, 가공을 위해 셀 가공부로 전달되어지는 셀에 대해 제 3큐로의 라우팅 정보 및 가공후 제 2큐에서 종단 목적지로의 라우팅 정보를 별도로 가지고 있어야 한다.
- 그러므로, 종래에는 가공해야 할 한 개의 ATM 셀에 대해서는 2개의 라우팅 정보가 필요하게 되어 한정된 VPI/VCI 자원을 갖는 ATM 네트웍에서 자원 운용이 비효율적이고, 자원 관리가 복잡해지는 문제점이 있었다.
- 또한, 가공후 종단 목적지로의 중복적인 셀 스위칭으로 인해 셀 처리 지연이 발생하고, 셀 스위칭부의 부하가 증가하며 라우팅 정보를 저장해야 할 메모리의 크기가 증가되는 문제점이 있었다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로 그 목적은, 셀 스위칭부에서 스위칭된 셀이 가공을 요하는 경우 해당 셀의 종단 목적지 정보를 별도의 필드에 삽입하여 해당 셀에 추가하고, 셀 가공부에서 종단 목적지 정보를 제외한 셀 가공후 종단 목적지 정보를 가공된 셀에 삽입하여 셀 스위칭부로 반환함으로써, 셀 스위칭부에서 재스위칭없이 가공된 셀의 종단 목적지 정보를 확인하여 해당 셀을 종단 목적지로 송신하게 하는데 있다.

【발명의 구성 및 작용】

<25> 상술한 바와 같은 목적을 달성하기 위한 본 발명의 ATM 셀 라우팅 방법은, 셀 스위칭부에서 스위칭을 통해 유입된 셀의 종단 목적지를 결정하는 단계와; 상기 스위칭된 셀이 가공이

필요한 경우 상기 결정된 종단 목적지 정보를 셀에 삽입하는 단계와; 셀 가공부에서 상기 삽입된 종단 목적지 정보를 제외하고 상기 셀을 가공하는 단계와; 상기 셀 스위칭부에서 상기 가공된 셀의 종단 목적지 정보를 확인하여 해당 목적지로 셀을 송신하는 단계를 포함하는 것을 특징으로 한다.

- 바람직하게는, 상기 종단 목적지 정보를 삽입하는 단계는 상기 셀에 소정 바이트의 라우
 팅 정보 필드를 추가하는 단계와; 상기 추가된 라우팅 정보 필드에 상기 종단 목적지 정보를
 세팅하는 단계를 포함하는 것을 특징으로 한다.
- *27> 바람직하게는, 상기 셀을 가공하는 단계는 상기 삽입된 종단 목적지 정보를 해당 셀에서 분리하는 단계와; 상기 종단 목적지 정보가 분리된 셀을 기정의된 기능에 따라 가공하는 단계 와; 상기 가공된 셀에 상기 종단 목적지 정보를 다시 삽입하는 단계를 포함하는 것을 특징으로 한다.
- <28> 이하, 본 발명에 따른 실시예를 첨부한 도면을 참조하여 상세하게 설명한다.
- <29> 도 2는 본 발명의 ATM 셀 라우팅 방법에 적용되는 가입자 보드내 ATM 셀 처리 시스템을 개략적으로 도시한 도이다.
- <30> 도 2를 참조하면, ATM 셀 처리 시스템(10)은 제 1큐(11)와 제 2큐(12), 제 3큐(13), 셀스위칭부(14) 및 셀 가공부(15)로 구성된다.
- <31> 제 1큐(11)에는 가입자 보드로 유입되는 셀이 저장되고, 제 2큐(12)에는 셀 가공부(15)에서 가공된 셀이 저장되며, 제 3큐(13)에는 가공이 필요한 셀이 저장된다.

- 실 스위칭부(14)는 셀 스위칭을 위해 소정의 버스 중재 알고리즘(Arbitration
 Algorithm)을 통해 제 1큐(11)와 제 2큐(12)에 저장된 셀 중에서 특정 셀을 선택하고, 셀 스위
 칭을 통해 선택된 셀의 VPI/VCI를 새로운 VPI/VCI로 변환하고 해당 셀의 종단 목적지를 결정하여 해당 종단 목적지로 셀을 송신하여 라우팅을 수행하거나 가공이 필요한 경우 일정한 가공을 위해 제 3큐(13)에 셀을 저장 또는 보드 진단을 위해 루프백한다.
- 독히, 셀 스위칭부(14)는 셀 가공시 손실되는 종단 목적지 정보에 대한 라우팅 정보를 보존하기 위해 일정 바이트의 라우팅 정보 필드를 해당 셀에 추가하고 추가된 필드에 종단 목 적지 정보를 세팅한 후, 라우팅 정보 필드가 추가된 해당 셀을 제 3큐에 저장한다.
- <34> 그리고, 해당 셀이 가공되어 제 2큐에 저장되면 상기 라우팅 정보 필드에 저장되어 보존 된 종단 목적지 정보를 확인하여 재스위칭없이 해당 목적지로 셀을 송신한다.
- 도 2에 도시된 바와 같이, 본 발명에 의하면 종래와 달리 셀 가공시 라우팅 경로인 셀스위칭부(14)-제 3큐(13)-셀 가공부(15)-제 2큐(12)-셀 스위칭부(14)간에는 기존 53바이트의셀에 종단 목적지 정보가 세팅되는 a 바이트의 라우팅 정보 필드가 추가된 53+a 바이트의 셀인터페이스가 이루어진다.
- 도 3은 상기 라우팅 정보 필드가 추가된 ATM 셀의 구조를 예시한 도면으로서, 종단 목적
 지 정보에 대한 α바이트의 라우팅 정보 필드가 셀 헤더의 앞부분(빗금처리됨)에 추가되어 있다.
- 4 가공부(15)는 제 3큐(13)에 저장되어 있는 셀을 기정의된 기능에 따라 가공한 후 제 2큐(12)에 저장한다. 즉, 셀 가공부(15)는 제 3큐(13)의 셀 저장 여부를 확인하고 라우팅 정보 필드가 추가된 각 셀을 읽어들여 라우팅 정보 필드를 해당 셀에서 분리한 후, 라우팅 정보 필

드가 분리된 셀을 가공한 후, 가공된 셀에 상기 분리한 라우팅 정보 필드를 다시 추가하여 제 2큐(12)에 저장한다.

- <38> 도 4는 본 발명의 ATM 셀 라우팅 절차를 나타내는 순서도이다.
- <39> 도 4를 참조하면, 셀 스위칭부(14)는 제 1큐(11)와 제 2큐(12)에서 소정의 버스 중재 알 고리즘을 통해 라우팅할 특정 셀을 선택한다(S401).
- <40> 그리고, 선택된 셀이 제 1큐(11)에 저장된 셀인 경우 스위칭을 통해 해당 셀의 VPI/VCI를 변환하고 종단 목적지를 결정한다(S402,S403).
- 스테> 그런 다음, 상기 스위칭된 셀의 VPI/VCI 정보를 통해 해당 셀이 가공이 필요한지 여부를 확인하여(S404), 가공이 필요치 않은 경우 상기 결정된 종단 목적지로 해당 셀을 송신한다 (S405).
- -42> 그러나, 상기 확인 결과 셀 가공이 필요한 경우 해당 셀에 라우팅 정보 필드를 추가하고 , 추가된 라우팅 정보 필드에 상기 결정된 종단 목적지 정보를 삽입한 후, 라우팅 정보 필드가 추가된 셀을 제 3큐(13)에 저장한다(S406).
- -43> 그러면, 셀 가공부(15)는 제 3큐(13)에 저장된 셀에서 라우팅 정보 필드를 분리한 후 (S407), 라우팅 정보 필드가 분리된 셀을 기정의된 기능에 따라 가공한 후(S408), 가공된 셀에라우팅 정보 필드를 다시 추가하여 제 2큐(12)에 저장한다(S409).
- 어 후, 셀 스위칭부(14)는 버스 중재 알고리즘에 의해 상기 제 2큐(12)에 저장된 셀이 선택되면(S401), 해당 셀의 라우팅 정보 필드에 삽입된 종단 목적지 정보를 확인하여 (S402,S410), 해당 종단 목적지로 셀을 송신한다(S405).

또한, 본 발명에 따른 실시 예는 상술한 것으로 한정되지 않고, 본 발명과 관련하여 통상의 지식을 가진 자에게 자명한 범위 내에서 여러 가지의 대안, 수정 및 변경하여 실시할 수있다.

【발명의 효과】

- 이상과 같이, 본 발명은 셀 스위칭부에서 셀 가공시 해당 셀의 종단 목적지에 대한 라우팅 정보를 해당 셀에 추가된 라우팅 정보 필드에 삽입하고, 셀 가공부에서 라우팅 정보 필드를 제외한 셀 가공후 가공된 셀에 라우팅 정보 필드를 그대로 삽입하여 셀 스위칭부로 반환하며, 다시 셀 스위칭부는 가공된 셀의 라우팅 정보 확인을 통해 재스위칭없이 해당 셀을 종단 목적지로 라우팅함으로써, 셀 가공시 반복되는 스위칭 동작을 제거하여 셀 처리 지연을 방지할 수 있는 효과가 있다.
- 스리고, 셀 스위칭부는 해당 셀의 종단 목적지로의 라우팅 정보만 가지고 있으면 되므로 한정된 VPI/VCI 자원을 효율적으로 운용할 수 있고 자원 관리도 보다 간단하게 할 수 있으며, 나아가 라우팅 정보를 저장해야 할 메모리의 크기도 소형화할 수 있는 효과가 있다.

【특허청구범위】

【청구항 1】

ATM 셀 라우팅 방법에 있어서,

셀 스위칭부에서 스위칭을 통해 유입된 셀의 종단 목적지를 결정하는 단계와;

상기 스위칭된 셀이 가공이 필요한 경우 상기 결정된 종단 목적지 정보를 셀에 삽입하는 단계와;

셀 가공부에서 상기 삽입된 종단 목적지 정보를 제외하고 상기 셀을 가공하는 단계와;

상기 셀 스위칭부에서 상기 가공된 셀의 종단 목적지 정보를 확인하여 해당 목적지로 셀을 송신하는 단계를 포함하는 것을 특징으로 하는 에이티엠 셀 라우팅 방법.

【청구항 2】

제 1항에 있어서,

상기 종단 목적지 정보를 삽입하는 단계는, 상기 셀에 소정 바이트의 라우팅 정보 필드를 추가하는 단계와;

상기 추가된 라우팅 정보 필드에 상기 종단 목적지 정보를 세팅하는 단계를 포함하는 것을 특징으로 하는 에이티엠 셀 라우팅 방법.

【청구항 3】

제 1항에 있어서,

상기 셀을 가공하는 단계는, 상기 삽입된 종단 목적지 정보를 해당 셀에서 분리하는 단계와;

상기 종단 목적지 정보가 분리된 셀을 기정의된 기능에 따라 가공하는 단계와;

상기 가공된 셀에 상기 종단 목적지 정보를 다시 삽입하는 단계를 포함하는 것을 특징으로 하는 에이티엠 셀 라우팅 방법.

【도면】

【도 1】

[도 2]

[도 3]

[도 4]

.