Exercices CONVEXITY TOOLS

Université Paris-Saclay

*6

EXERCICE 1 (*Logistic loss*). — Prove that function $x \mapsto \log(1 + e^{-x})$ defined on \mathbb{R} is smooth.

EXERCICE 2 (*Characterization of Lipschitz continuity with subgradients*). — Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper convex function, $\|\cdot\|$ a norm on \mathbb{R}^d , and L > 0. Prove that f is L-Lipschitz on int dom f with respect to $\|\cdot\|$ if, and only if:

$$\forall x \in \operatorname{int} \operatorname{dom} f, \ \forall y \in \partial f(x), \quad \|y\|_* \leqslant L.$$

EXERCICE 3. — Let $\|\cdot\|$ be a norm in \mathbb{R}^d , B its closed unit ball, and $\|\cdot\|_*$ its dual norm. Prove that $I_B^* = \|\cdot\|_*$.

EXERCICE 4. — Let $y \in \mathbb{R}^d$, a > 0, $b \in \mathbb{R}$ and $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper, convex, lower semicontinuous function. Compute the Legendre–Fenchel transform of the following functions:

a)
$$x \in \mathbb{R} \mapsto e^x$$

c)
$$x \in \mathbb{R}^d \mapsto \max(1 - \langle \gamma, x \rangle, 0)$$

b)
$$x \in \mathbb{R}^d \mapsto \langle \gamma, x \rangle$$

d)
$$x \in \mathbb{R}^d \mapsto a f(x) + b + \langle \gamma, x \rangle$$

EXERCICE 5. — Let $\|\cdot\|$ be a norm in \mathbb{R}^d , $\|\cdot\|_*$ its dual norm, $1 < p, q < +\infty$ such that 1/p + 1/q = 1 and $x, y \in \mathbb{R}^d$. Prove that

$$\langle x, y \rangle \leqslant \frac{1}{p} \|x\|^p + \frac{1}{q} \|y\|_*^q.$$

EXERCICE 6. — Let $1 . Prove that function <math>x \mapsto \frac{1}{2} \|x\|_p^2$ defined on \mathbb{R}^d is (p-1)-strongly convex with respect to $\|\cdot\|_p$.

EXERCICE 7 (*Entropic regularizer*). — Let $h_{\text{ent}}: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be defined as

$$h_{\text{ent}}(x) = \begin{cases} \sum_{i=1}^{d} x_i \log x_i & \text{if } x \in \Delta_d \\ +\infty & \text{otherwise,} \end{cases}$$

with convention $0 \log 0 = 0$.

- 1) Prove that $b_{\rm ent}$ is lower semicontinuous and convex.
- 2) Express the Bregman divergence associated with b_{ent} .
- 3) Prove that h_{ent} is 1-strongly convex with respect to $\|\cdot\|_1$.

