Hồi qui tuyến tính

Ngô Minh Nhựt

Bộ môn Công nghệ Tri thức

2021

Hồi qui tuyến tính đơn biến

Phần 1

Máy học

Mục tiêu của máy học là tìm ra cấu trúc của dữ liệu quan sát hoặc mối quan hệ bên trong chúng

Source: Andrew Ng

Học giám sát

- Học: được cung cấp input và output tương ứng
- Suy luận: cho biết output của input mới

Hồi quy tuyến tính

- Học: được cung cấp input và output tương ứng
- Suy luận: cho biết output của input mới
- Output: giá trị thực liên tục

Tập huấn luyện

Giá nhà ở theo kích thước

x: Size (m2)	y: Price (millions VND)
20	600
50	876
80	1800
100	2000

m: số lượng mẫu

x: input

y: output/nhãn

(x, y): mẫu huấn luyện

(x⁽ⁱ⁾, y⁽ⁱ⁾): mẫu huấn luyện thứ i

- h: ánh xạ kích thước nhà sang giá
- Hồi qui tuyến tính: ánh xạ tuyến tính
- Trong bài giảng này: hồi qui tuyến tính đơn biến

- □ Tập huấn luyện: $(x^{(i)}, y^{(i)})$, i = 1, 2, ... m
- □ Hypothesis : $h(x) = \theta_0 + \theta_1 x$
 - x: input
 - h(x): output
- lacksquare Mục tiêu: xác định θ_0 và θ_1 để mô hình h(x) khớp với dữ liệu huấn luyện nhất
 - Cho x, xác định h(x), sao cho h(x) gần y nhất
 - x: input
 - h(x): output ước lượng
 - y: output thực tế

Giá nhà ở theo kích thước

x: Size (m2)	y: Price (millions VND)
20	600
50	876
80	1800
100	2000

 $Hypothesis: h(x) = \theta_0 + \theta_1 x$

x: input

h(x): output

 θ_0, θ_1 : tham số

Quá trình học: tìm ra $heta_0$, $heta_1$ từ tập huấn luyện

Hàm chi phí (cost function)

Lỗi của mô hình ứng với 1 input

$$\frac{1}{2}(h(x) - y)^2 = \frac{1}{2}(\theta_0 + \theta_1 x - y)^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Mục tiêu:
 - Xác định θ_0, θ_1 sao cho $J(\theta_0, \theta_1)$ đạt cực tiểu

- □ Hypothesis : $h_{\theta}(x) = \theta_0 + \theta_1 x$
- □ Tham số: θ_0 , θ_1
- Hàm chí phí:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2$$

- lacktriangle Mục tiêu: tìm giá trị $heta_0$, $heta_1$ sao cho $J(heta_0, heta_1)$ đạt cực tiểu
 - \bullet $Minimize_{\theta_0,\theta_1} J(\theta_0,\theta_1)$
- □ Để minh họa: $\theta_0 = 0$, $h_{\theta}(x) = \theta_1 x$

*
$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Thuật toán hạ dốc (gradient descent)

- Mục tiêu:
 - Xác định θ_0, θ_1 sao cho $J(\theta_0, \theta_1)$ đạt cực tiểu

Thuật toán hạ đốc (gradient descent)

- □ Hàm chi phí
- Mục tiêu:
 - Xác định θ_0 , θ_1 sao cho $J(\theta_0, \theta_1)$ đạt cực tiểu
- \Box Di tìm θ_0 , θ_1
 - Bắt đầu từ 1 điểm θ_0 , θ_1 nào đó (ví dụ: $\theta_0 = 0$, $\theta_1 = 0$)
 - Thay đổi giá trị của θ_0 , θ_1 cho đến khi $J(\theta_0,\theta_1)$ đạt cực tiểu
- □ Thay đổi θ_0 , θ_1 như thế nào?

Dạo hàm riêng phần:

$$\frac{dJ}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{dJ}{d\theta_1} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

□ Đạo hàm riêng phần:

$$\frac{dJ}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{dJ}{d\theta_1} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Vector gradient:

□ Đạo hàm riêng phần:

$$\frac{dJ}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{dJ}{d\theta_1} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

■ Vector gradient:

Hướng ngược với vector gradient làm cho hàm số giảm dần

Lặp cho đến khi hội tụ

```
 \theta_0 = \theta_0 - \alpha \frac{dJ}{d\theta_0} 
 \theta_1 = \theta_1 - \alpha \frac{dJ}{d\theta_1} 
 \theta_1 = \theta_1 - \alpha \frac{dJ}{d\theta_1}
```

- α là hệ số học
- Các bước thực hiện
 - Bước 1: tính vector gradient
 - Bước 2: cập nhật các thành phần của vector θ
 - Bước 3: tính lại chi phí và thông báo

Hệ số học

- Nếu α quá nhỏ thuật toán hội
 tụ chậm
- \square Nếu α quá lớn, thuận toán có thể không hội tụ

Source: Andrew Ng

Hồi qui tuyến tính đa biến

Phần 2

Tập huấn luyện

x: Size (m2)	y: Price (millions VND)
20	600
50	876
80	1800
100	2000

$$Hypothesis: h_{\theta}(x) = \theta_0 + \theta_1 x$$

Tập huấn luyện

x ₁ : Size (m ²)	x ₂ : Age (year)	x ₃ : Number of floor (m)	y: Price (millions VND)
20	5	1	600
20	8	3	876
80	10	3	1800
70	7	5	2000

(x⁽ⁱ⁾, y⁽ⁱ⁾): mẫu huấn luyện thứ i

x⁽ⁱ⁾: input của mẫu thứ i

 $x^{(i)}_{i}$: đặc trưng j của mẫu thứ i

n: số lượng đặc trưng

Dơn biến

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 giá trị đơn

Da biến

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
vector

Da biến

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
$$x \in \mathbb{R}^n, \qquad \theta \in \mathbb{R}^{n+1}$$

Đặt
$$\mathbf{x}_0$$
 = 1
$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix},$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

$$\rightarrow h_{\theta}(x) = \theta^T x$$

$$\theta, x \in \mathbb{R}^{n+1}$$

- Hypothesis
 - $\bullet h_{\theta}(x) = \theta^T x$
- Các tham số:
 - $\bullet \theta = [\theta_0, \theta_1, \theta_2, \dots \theta_n]^T$
- Hàm chi phí

Vector gradient:

$$\frac{dJ}{d\theta_i} = \frac{1}{m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$$

- j = 0, 1, 2, ..., n
- Repeat until convergence

```
\theta_{j} = \theta_{j} - \alpha \frac{dJ}{d\theta_{j}}
```

Chuẩn hóa đặc trưng

x ₁ : Size (m ²)	x ₂ : Age (year)	x ₃ : Number of floor (m)	y: Price (millions VND)
20	5	1	600
20	8	3	876
80	10	3	1800
70	7	5	2000

Chuẩn hóa đặc trưng

Hiệu chỉnh giá trị của các đặc trưng về cùng vùng biên độ

Source: Andrew Ng

Chuẩn hóa đặc trưng

Chuẩn hóa theo giá trị trung bình

$$x_j = \frac{x_j - \mu_j}{s_j}$$

- μ_i : giá trị trung bình
- s_i: độ lệch chuẩn
- □ Sau khi chuẩn hóa: $-1 \le x_j \le 1$

Hệ số học

- Kiểm tra J giảm qua các bước cập nhật hệ số
- J hội tụ khi J giảm ít hơn 0.001 (ε) sau mỗi lần lặp

Source: Andrew Ng

Hệ số học

- Hệ số học lớn, J có thể không hội tụ
- Hệ số học nhỏ, J hội tụ chậm
- Có thể thử: ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Source: Andrew Ng