Homework 4

Minxuan Wang

November 2017

Question 1

```
a.
data.cost<-read.table("TableF4-4.txt",head=TRUE)</pre>
attach(data.cost)
## Compute each terms
lnCPf<-log(cost/pf)</pre>
lnQ<-log(q)
lnQ2<-0.5*(lnQ)^2
lnPkPf<-log(pk/pf)</pre>
lnPlPf<-log(pl/pf)</pre>
## Linear regression
fitlm_cost<-lm(lnCPf~lnQ+lnQ2+lnPkPf+lnPlPf)</pre>
summary(fitlm cost)
##
## Call:
## lm(formula = lnCPf ~ lnQ + lnQ2 + lnPkPf + lnPlPf)
##
## Residuals:
##
      Min
               1Q
                   Median
                               3Q
                                     Max
## -0.42576 -0.08891 -0.00223 0.08404 0.37363
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.818163   0.252439 -27.009   < 2e-16 ***
## lnQ
             ## lnQ2
            ## lnPkPf
## lnPlPf
            ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1378 on 153 degrees of freedom
## Multiple R-squared: 0.9922, Adjusted R-squared: 0.992
## F-statistic: 4880 on 4 and 153 DF, p-value: < 2.2e-16
```

```
## Asymptotic covariance matrix
cov_matrix<-vcov(fitlm_cost)</pre>
cov_matrix
##
                (Intercept)
                                    lnQ
                                                lnQ2
                                                            1nPkPf
## (Intercept) 0.0637255474 -0.0023838181 3.104204e-04 3.994585e-03
## ln0
             ## lnQ2
             0.0003104204 -0.0001335824 1.870819e-05 -1.493338e-05
## lnPkPf
              ## lnPlPf
             -0.0104712922 -0.0001995679 2.453652e-05 -1.019813e-03
##
                    lnPlPf
## (Intercept) -1.047129e-02
## lnQ
          -1.995679e-04
## lnQ2
              2.453652e-05
## lnPkPf
             -1.019813e-03
## lnPlPf
           2.171313e-03
b.
## Compute delta f
delta_f<-1-coefficients(fitlm_cost)[4]-coefficients(fitlm_cost)[5]</pre>
delta f
##
     1nPkPf
## 0.6855215
estmean<-coef(fitlm cost)[4:5]
estvar<-vcov(fitlm cost)[4:5,4:5]
## Estimate the asymptotic standard error
library("msm")
## Warning: package 'msm' was built under R version 3.4.2
deltamethod(~1-x1-x2, estmean, estvar)
## [1] 0.04200352
C.
beta<-coefficients(fitlm cost)[2]</pre>
gamma<-coefficients(fitlm_cost)[3]</pre>
est.Q<-exp((1-beta)/gamma)</pre>
est.Q
##
      lnQ
## 18177.1
est.Q mean<-coef(fitlm cost)[2:3]</pre>
est.Q_var<-vcov(fitlm_cost)[2:3,2:3]</pre>
## Standard error
se.Q<-deltamethod(~exp((1-x1)/x2),est.Q_mean,est.Q_var)
```

```
lowerbound<-est.O-qnorm(0.975)*se.O
upperbound<-est.Q+qnorm(0.975)*se.Q
## 95% confidence interval
IC<-c(lowerbound,upperbound)</pre>
IC
##
        lnQ
                 1n0
## 10537.96 25816.25
d.
## Pick out the firms sets
firms1<-subset(data.cost,data.cost$q>=lowerbound)
firms2<-subset(firms1,firms1$q<=upperbound)</pre>
## Compute the number of firms that reached the efficient scale
length(firms2$q)
## [1] 28
```

Question 2

```
a.
```

```
setwd("D:/Econ 403A/Homework 4")
merged.data<-read.csv("Koop-Tobias.csv") # Get from NYU Stern</pre>
## Define the variables name in R
educ<-merged.data$EDUC
logwage<-merged.data$LOGWAGE</pre>
potexper<-merged.data$POTEXPER</pre>
ability<-merged.data$ABILITY
mothered<-merged.data$MOTHERED
fathered<-merged.data$FATHERED
brknhome<-merged.data$BRKNHOME
siblings<-merged.data$SIBLINGS
## Linear regression
lm1<-lm(logwage~educ+potexper+ability)</pre>
lm1
##
## Call:
## lm(formula = logwage ~ educ + potexper + ability)
##
## Coefficients:
## (Intercept)
                        educ
                                 potexper
                                                ability
##
       1.02723
                     0.07376
                                  0.03949
                                                0.08289
```

```
lm2<-lm(logwage~-1+mothered+fathered+brknhome+siblings)
lm2

##
## Call:
## lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
## siblings)
##
## Coefficients:
## mothered fathered brknhome siblings
## 0.11735 0.04222 0.03219 0.11696</pre>
```

b/c.

The F-test is the statistic for the hypothesis test with null hypothesis and alternate hypothesis:

H0: All non-constant coefficients in the regression equation are zero Ha: At least one of the non-constant coefficients in the regression equation is non-zero.

```
summary(lm1)
##
## Call:
## lm(formula = logwage ~ educ + potexper + ability)
##
## Residuals:
       Min
                 10
                     Median
                                  3Q
                                          Max
## -2.52891 -0.27558 0.02441 0.30914 2.13659
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0272291 0.0300415 34.19 <2e-16 ***
## educ
            0.0737621 0.0022143 33.31 <2e-16 ***
## potexper
              0.0394896 0.0008984 43.96 <2e-16 ***
## ability
              0.0828907 0.0046000 18.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4803 on 17915 degrees of freedom
## Multiple R-squared: 0.1734, Adjusted R-squared: 0.1733
## F-statistic: 1253 on 3 and 17915 DF, p-value: < 2.2e-16
summary(lm2)
##
## Call:
## lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
      siblings)
##
## Residuals:
```

```
Min 1Q Median 3Q
## -2.7575 -0.3187 0.0890 0.4880 3.0361
##
## Coefficients:
           Estimate Std. Error t value Pr(>|t|)
##
## mothered 0.117348 0.001878 62.474
                                       <2e-16 ***
## fathered 0.042223
                     0.001760 23.990
                                       <2e-16 ***
## brknhome 0.032193
                              2.362
                     0.013629
                                       0.0182 *
                                       <2e-16 ***
## siblings 0.116962 0.002011 58.148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6609 on 17915 degrees of freedom
## Multiple R-squared: 0.9214, Adjusted R-squared: 0.9214
## F-statistic: 5.248e+04 on 4 and 17915 DF, p-value: < 2.2e-16
```

p-value: < 2.2e-16, which means that we reject the H0, model has predictive capability.

Numerically, we can the defination of F statistic (using the first model as an example):

```
anova(lm1)
## Analysis of Variance Table
## Response: logwage
##
                Df Sum Sq Mean Sq F value
                                              Pr(>F)
## educ
                 1 385.5 385.51 1671.19 < 2.2e-16 ***
                 1 406.7 406.67 1762.92 < 2.2e-16 ***
## potexper
## ability
                 1
                     74.9 74.91 324.72 < 2.2e-16 ***
## Residuals 17915 4132.6
                             0.23
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## SS(Regression)=SS(Total)-S(Residual)
## Get the SST value
SST_1<-var(logwage)*(nrow(merged.data)-1)</pre>
## Get the SSE value
SSE_1<-sum(lm1$residual^2)</pre>
## Get the SSR value
SSR_1<-SST_1-SSE_1
## Get the degree of freedom
dfE 1<-lm1$df.residual</pre>
dfReg_1<-nrow(merged.data)-1-dfE_1</pre>
MSreg_1<-SSR_1/dfReg_1
```

```
MSE_1<-SSE_1/dfE_1
Fstat_1<-MSreg_1/MSE_1
pvalue_1<-pf(Fstat_1,dfReg_1,dfE_1,lower.tail=FALSE)</pre>
```

d. Wald test

```
library(survey)
## Warning: package 'survey' was built under R version 3.4.2
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
##
       dotchart
regTermTest(lm2, "mothered")
## Wald test for mothered
## in lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
       siblings)
## F = 3902.977 on 1 and 17915 df: p= < 2.22e-16
regTermTest(lm2, "fathered")
## Wald test for fathered
## in lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
##
       siblings)
## F = 575.5141 on 1 and 17915 df: p= < 2.22e-16
regTermTest(lm2, "brknhome")
## Wald test for brknhome
## in lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
##
       siblings)
## F = 5.579391 on 1 and 17915 df: p= 0.018184
regTermTest(lm2, "siblings")
## Wald test for siblings
## in lm(formula = logwage ~ -1 + mothered + fathered + brknhome +
       siblings)
## F = 3381.22 on 1 and 17915 df: p = \langle 2.22e-16 \rangle
```

Question 3

```
(i).
load("D:/Econ 403A/Homework 4/401ksubs.RData")
attach(data)
nettfa<-data$nettfa
mean(nettfa)
## [1] 19.07168
sd(nettfa)
## [1] 63.96384
max(nettfa)
## [1] 1536.798
min(nettfa)
## [1] -502.302
(ii).
## T test
nettfa 0<-subset(nettfa,data$e401k==0)</pre>
nettfa_1<-subset(nettfa,data$e401k==1)</pre>
t.test(nettfa_0,nettfa_1,
alternative="two.side",
paired=FALSE,
var.equal=FALSE,
conf.level=.95)
##
##
   Welch Two Sample t-test
##
## data: nettfa_0 and nettfa_1
## t = -13.099, df = 6072.2, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -21.68060 -16.03604
## sample estimates:
## mean of x mean of y
## 11.67677 30.53509
```

From the result of t.test, p-value < 2.2e-16, which means we should reject the H0: the average nettfa does not differ by 401(k) eligibility status. The dollar amount difference is:

```
mean(nettfa_1)-mean(nettfa_0)
## [1] 18.85832
```

```
(iii).
```

```
e401k<-data$e401k
inc2<-incsq
age2<-agesq
fitlm=lm(nettfa~inc+inc2+age+age2+e401k)
summary(fitlm)
##
## Call:
## lm(formula = nettfa \sim inc + inc2 + age + age2 + e401k)
## Residuals:
              1Q Median
      Min
                                   Max
##
                             3Q
## -516.66 -15.63 -3.27
                           6.05 1464.79
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.0852038 9.9597050 2.318 0.020479 *
## inc -0.2784651 0.0745386 -3.736 0.000188 ***
             0.0102601 0.0005869 17.481 < 2e-16 ***
## inc2
            -1.9718860 0.4833774 -4.079 4.55e-05 ***
## age
## age2
             9.7046880 1.2774063 7.597 3.32e-14 ***
## e401k
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.16 on 9269 degrees of freedom
## Multiple R-squared: 0.2018, Adjusted R-squared: 0.2014
## F-statistic: 468.7 on 5 and 9269 DF, p-value: < 2.2e-16
```

From the p-value, this regression model is statistically significant. So the linear equations are:

when e401k=1, $nettfa = -23.24 + 0.008109 \times incsq + 0.01221 \times agesq + 8.166$ when e401k=0, $nettfa = -23.24 + 0.008109 \times incsq + 0.01221 \times agesq$ The estimated dollar effect of 401(k) eligibility is 8.166

(iv).

```
## Regress the model with interaction term
fitlm_2=lm(nettfa~inc+inc2+age+age2+I(e401k*age_41)+e401k)
summary(fitlm_2)

##
## Call:
## lm(formula = nettfa ~ inc + inc2 + age + age2 + I(e401k * age_41) +
## e401k)
##
## Residuals:
```

```
Min
              10 Median 30
                                  Max
## -518.62 -14.96
                 -2.51
                           4.26 1460.05
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                        3.204 0.00136 **
                  32.3630674 10.1011940
## inc
                  -0.2789400 0.0744320 -3.748 0.00018 ***
## inc2
                   0.0102339 0.0005861 17.461 < 2e-16 ***
                  ## age
                   0.0349726 0.0055409 6.312 2.89e-10 ***
## age2
## I(e401k * age_41) 0.6379022 0.1214841 5.251 1.55e-07 ***
                   9.5846941 1.2757839 7.513 6.32e-14 ***
## e401k
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.08 on 9268 degrees of freedom
## Multiple R-squared: 0.2042, Adjusted R-squared: 0.2037
## F-statistic: 396.3 on 6 and 9268 DF, p-value: < 2.2e-16
```

The interaction term is significant because p-value=1.55e-07(t=5.251), the coeffecient is 0.638.

(v).

The coefficient on e401k at age 41 in these two regressions are 9.705(in part iii the influences at all ages are same) and 9.585, it doesn't differ a lot.

(vi).

```
## Define the dummy virables
fsize1<-as.numeric(fsize==1)</pre>
fsize2<-as.numeric(fsize==2)</pre>
fsize3<-as.numeric(fsize==3)</pre>
fsize4<-as.numeric(fsize==4)
fsize5<-as.numeric(fsize>=5)
## Add dummy virables to regression model
fitlm 3<-lm(nettfa~inc+inc2+age+age2+e401k+fsize5+fsize2+fsize3+fsize4)</pre>
summary(fitlm 3)
##
## Call:
## lm(formula = nettfa \sim inc + inc2 + age + age2 + e401k + fsize5 +
##
       fsize2 + fsize3 + fsize4)
##
## Residuals:
                10 Median
##
       Min
                                  30
                                         Max
## -517.55 -16.09 -3.16
                               6.48 1461.84
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) 16.3366003 10.1156944
                                     1.615 0.106350
              ## inc
              0.0100454 0.0005894 17.042 < 2e-16 ***
## inc2
             -1.4948962 0.4946402 -3.022 0.002516 **
## age
             0.0289958 0.0056991 5.088 3.69e-07 ***
## age2
## e401k
              9.4552262 1.2778223
                                     7.399 1.49e-13 ***
## fsize5
              -7.3608890 2.1006137 -3.504 0.000460 ***
## fsize2
              -0.8589355 1.8180426 -0.472 0.636616
              -4.6651683 1.8768488 -2.486 0.012949 *
## fsize3
              -6.3147522 1.8679912 -3.381 0.000727 ***
## fsize4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.11 on 9265 degrees of freedom
## Multiple R-squared: 0.2037, Adjusted R-squared: 0.2029
## F-statistic: 263.3 on 9 and 9265 DF, p-value: < 2.2e-16
(vii).
## Define five conditions
data fsize1<-subset.data.frame(data,fsize1=="1")</pre>
data_fsize2<-subset.data.frame(data,fsize2=="1")</pre>
data fsize3<-subset.data.frame(data,fsize3=="1")</pre>
data fsize4<-subset.data.frame(data,fsize4=="1")</pre>
data_fsize5<-subset.data.frame(data,fsize5=="1")</pre>
## Run the regression
unreg.1<-lm(nettfa~inc+incsq+age+agesq+e401k,data=data fsize1)
unreg.2<-lm(nettfa~inc+incsq+age+agesq+e401k,data=data_fsize2)
unreg.3<-lm(nettfa~inc+incsq+age+agesq+e401k,data=data_fsize3)
unreg.4<-lm(nettfa~inc+incsq+age+agesq+e401k,data=data_fsize4)
unreg.5<-lm(nettfa~inc+incsq+age+agesq+e401k,data=data fsize5)
## review the regression results
anova(unreg.1)
## Analysis of Variance Table
##
## Response: nettfa
##
              Df Sum Sq Mean Sq F value
                                            Pr(>F)
## inc
             1 377482 377482 190.5175 < 2.2e-16 ***
## incsq
                                  0.0698 0.791614
              1
                     138
                            138
              1 167370 167370 84.4727 < 2.2e-16 ***
## age
## agesq
                                 8.1426 0.004368 **
               1
                   16133
                         16133
                   20343 20343 10.2675 0.001375 **
## e401k
               1
## Residuals 2011 3984498
                           1981
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(unreg.2)
```

```
## Analysis of Variance Table
##
## Response: nettfa
              Df
                  Sum Sq Mean Sq F value Pr(>F)
               1 2226203 2226203 419.9206 < 2.2e-16 ***
## inc
                  417545 417545 78.7599 < 2.2e-16 ***
## incsq
               1
               1
                  648380 648380 122.3016 < 2.2e-16 ***
## age
                                           0.02097 *
## agesq
               1
                   28296
                          28296
                                 5.3374
                           86407 16.2987 5.596e-05 ***
## e401k
                   86407
               1
## Residuals 2193 11626157 5301
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(unreg.3)
## Analysis of Variance Table
##
## Response: nettfa
            Df Sum Sq Mean Sq F value Pr(>F)
               1 1082008 1082008 293.3108 < 2.2e-16 ***
## inc
               1 172252 172252 46.6939 1.128e-11 ***
## incsq
               1 156847 156847 42.5181 9.042e-11 ***
## age
## agesq
               1
                  10535 10535 2.8558 0.091215.
                   25154
                         25154
                                 6.8187 0.009095 **
## e401k
               1
## Residuals 1823 6724953
                          3689
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(unreg.4)
## Analysis of Variance Table
##
## Response: nettfa
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## inc
               1 1174297 1174297 469.6041 < 2.2e-16 ***
## incsq
               1 174827 174827 69.9137 < 2.2e-16 ***
                  84461
                          84461 33.7760 7.188e-09 ***
## age
               1
## agesq
               1
                    998
                            998
                                0.3993 0.5275255
                  27402 27402 10.9582 0.0009486 ***
## e401k
               1
## Residuals 1984 4961213
                          2501
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
anova(unreg.5)
## Analysis of Variance Table
##
## Response: nettfa
##
              Df Sum Sq Mean Sq F value
                                         Pr(>F)
               1 543363 543363 249.3919 < 2.2e-16 ***
## inc
## incsq 1 133188 133188 61.1306 1.139e-14 ***
```

```
## age
                  12314
                          12314
                                  5.6520 0.0175870 *
                                  0.0034 0.9535194
## agesq
               1
                      7
                              7
                   31829
                          31829 14.6090 0.0001389 ***
## e401k
               1
## Residuals 1234 2688580
                           2179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(fitlm 3)
## Analysis of Variance Table
## Response: nettfa
##
                  Sum Sq Mean Sq F value
              Df
                                             Pr(>F)
## inc
             1 5381009 5381009 1649.9986 < 2.2e-16 ***
## inc2
              1
                  936033 936033 287.0193 < 2.2e-16 ***
             1 1043721 1043721 320.0400 < 2.2e-16 ***
## age
## age2
               1 107848 107848 33.0698 9.173e-09 ***
             1 188589 188589 57.8278 3.140e-14 ***
## e401k
## fsize5
                  19656 19656 6.0272 0.0141055 *
               1
## fsize2
               1
                   11439 11439 3.5075 0.0611213 .
## fsize3
                    2618 2618 0.8028 0.3702758
               1
## fsize4
                           37269
                   37269
               1
                                  11.4278 0.0007265 ***
## Residuals 9265 30215207
                           3261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Calculate sum of squared residuals for each regression
SSR_ur<-sum(anova(unreg.1)[6,2],anova(unreg.2)[6,2],anova(unreg.3)[6,2],
anova(unreg.4)[6,2],anova(unreg.5)[6,2])
SSR_ur
## [1] 29985400
SSR_r<-anova(fitlm_3)[10,2]
SSR r
## [1] 30215207
## Computing the Chow test statistic (F-test)
Chow.F.statistic<-((SSR_r-SSR_ur)/SSR_ur)*(9245/20)
Chow.F.statistic
## [1] 3.542674
## Calculate P-value
1-pf(Chow.F.statistic, 20, 9245)
## [1] 1.424927e-07
```

From the result we can see the p-value is essentially zero. In this case, there is strong evidence that the slopes change across family size.

Question 4

(i).

```
## Estimate simple linear probability model
fitlm_e401k=lm(e401k~inc+inc2+age+age2+male,data=data)
summary(fitlm_e401k)
##
## Call:
## lm(formula = e401k \sim inc + inc2 + age + age2 + male, data = data)
##
## Residuals:
                1Q Median
##
       Min
                                3Q
                                       Max
## -0.6970 -0.3719 -0.2149 0.4870 0.9155
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.063e-01 8.110e-02 -6.243 4.48e-10 ***
## inc
                1.245e-02 5.929e-04 20.993 < 2e-16 ***
## inc2
               -6.165e-05 4.732e-06 -13.028 < 2e-16 ***
                2.651e-02 3.922e-03 6.758 1.49e-11 ***
## age
## age2
               -3.053e-04 4.501e-05 -6.782 1.26e-11 ***
## male
               -3.533e-03 1.208e-02 -0.292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4648 on 9269 degrees of freedom
## Multiple R-squared: 0.09428,
                                    Adjusted R-squared: 0.09379
## F-statistic:
                  193 on 5 and 9269 DF, p-value: < 2.2e-16
library(RCurl)
## Loading required package: bitops
## Import the function
url_robust<-"https://raw.githubusercontent.com/IsidoreBeautrelet/econom</pre>
ictheoryblog/master/robust summary.R"
eval(parse(text=getURL(url robust,ssl.verifypeer=FALSE)),envir=.GlobalE
nv)
## Use new summary function
summary(fitlm e401k,robust=TRUE)
##
## Call:
## lm(formula = e401k \sim inc + inc2 + age + age2 + male, data = data)
##
## Residuals:
##
                10 Median
                                3Q
                                       Max
## -0.6970 -0.3719 -0.2149 0.4870 0.9155
```

```
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.063e-01 7.855e-02 -6.445 1.21e-10 ***
## inc
             1.245e-02 6.003e-04 20.734 < 2e-16 ***
          -6.165e-05 5.004e-06 -12.320 < 2e-16 ***
## inc2
## age
             2.651e-02 3.823e-03 6.932 4.41e-12 ***
## age2
             -3.053e-04 4.375e-05 -6.977 3.22e-12 ***
             -3.533e-03 1.205e-02 -0.293
## male
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4648 on 9269 degrees of freedom
## Multiple R-squared: 0.09428,
                                Adjusted R-squared:
## F-statistic: 209.5 on 5 and 9269 DF, p-value: < 2.2e-16
```

All the parameters are statistical significant:

$$e4\hat{0}1k = -0.506 + 0.0124 \times inc - 0.000062 \times inc^2 + 0.0265 \times age - 0.00031 \times age^2 - 0.0035 \times male$$

From the two summaries, we can see the Std.Error are almostly the same. So there are no important differences.

(ii).

Notice that the approximate estimator of the random error term μ_i is expressed by the residual e_i , such that we get:

$$Var(\mu_i) = E(\mu_i^2) \approx e_i^2$$

$$e_i = Y_i - (\hat{Y}_i)_{ols}$$

We can write this as a regression model in a simple way.

$$e_i^2 = \alpha_0 + \alpha_1 X_i + \alpha_2 X^2 + v$$

The restrictions are $\alpha_0 = 0$, $\alpha_1 = 1$, and $\alpha_2 = -1$. In the oringinal linear probability model:

$$\hat{Y}_i = \beta_0 + \beta_i X_i$$

So, when we run the regression e_i^2 on \hat{y}_i and y_i^2 , the intercept estimates should be close to zero, the coefficient on \hat{y}_i should be close to 1, and the coefficient on \hat{y}_i^2 should be close to –1.

(iii).

```
## Get the residual squared sequence
u2<-fitlm e401k$residuals^2
## Do the linear regression ui2 on yi and yi2
y<-fitted(fitlm e401k)
summary(lm(u2~y+I(y^2)))
##
## Call:
## lm(formula = u2 \sim y + I(y^2))
## Residuals:
       Min
                1Q Median
                                 3Q
                                        Max
## -0.13158 -0.11178 -0.07017 0.06353 0.76870
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.009033 0.010915 -0.828 0.408
## y 1.009682 0.057717 17.494
                                          <2e-16 ***
## I(y^2)
           ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.154 on 9272 degrees of freedom
## Multiple R-squared: 0.06274, Adjusted R-squared: 0.06254
## F-statistic: 310.3 on 2 and 9272 DF, p-value: < 2.2e-16
```

The White F statistic is about 310.3, which is very significant. The coefficient on $e4\hat{0}1k$ and $e4\hat{0}1k^2$ is 1.0097 and -0.9703, the intercept is -0.009. The coefficient estimates roughly correspond to the theoretical values described in part (ii).

(iv).

```
## Compute the upper bound and lower bound of fitted values
max(y)
## [1] 0.6971899
min(y)
## [1] 0.02991716
```

```
## Fit a WLS model using weights=1/(fitted values)
fitlm e401k.wls=lm(e401k~inc+inc2+age+age2+male,data=data,weights=1/y)
summary(fitlm_e401k.wls)
##
## Call:
## lm(formula = e401k \sim inc + inc2 + age + age2 + male, data = data,
                       weights = 1/y)
##
## Weighted Residuals:
                       Min
                                                      10 Median
##
                                                                                                             30
                                                                                                                                     Max
## -0.8569 -0.6056 -0.4495 0.6743 3.1585
##
## Coefficients:
##
                                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.841e-01 7.089e-02 -6.829 9.08e-12 ***
## inc
                                                   1.277e-02 5.192e-04 24.588 < 2e-16 ***
                                                 -6.166e-05 3.963e-06 -15.557 < 2e-16 ***
## inc2
                                                   2.500e-02 3.489e-03 7.165 8.38e-13 ***
## age
                                                  -2.901e-04 3.992e-05 -7.269 3.93e-13 ***
## age2
## male
                                                  -3.239e-03 1.127e-02 -0.287
                                                                                                                                                                    0.774
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7757 on 9269 degrees of freedom
## Multiple R-squared: 0.103, Adjusted R-squared: 0.1025
## F-statistic: 212.8 on 5 and 9269 DF, p-value: < 2.2e-16
e401k = -0.4841 + 0.01277 \times inc - 0.000062 \times inc^2 + 0.025 \times age - 0.000062 \times inc^2 + 0
0.00029 \times age^2 - 0.00324 \times male
```

They doesn't differ in important ways from the OLS estimates.

Question 5

(i).

```
fitlm2<-lm(nettfa~inc+inc2+age+age2+male+e401k)</pre>
summary(fitlm2)
##
## Call:
## lm(formula = nettfa \sim inc + inc2 + age + age2 + male + e401k)
##
## Residuals:
       Min
                1Q Median
                                 3Q
                                        Max
##
## -516.00 -15.84 -3.19
                               6.09 1465.14
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) 21.1977926 9.9922112 2.121 0.033912 *
## inc
           ## inc2
            0.0102160 0.0005871 17.400 < 2e-16 ***
           ## age
           0.0345662 0.0055482 6.230 4.86e-10 ***
## age2
## male
           3.3690485 1.4858129
                               2.267 0.023384 *
## e401k
           9.7134817 1.2771269 7.606 3.11e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.15 on 9268 degrees of freedom
## Multiple R-squared: 0.2022, Adjusted R-squared: 0.2017
## F-statistic: 391.6 on 6 and 9268 DF, p-value: < 2.2e-16
```

 $nettfa = 21.198 - 0.27 \times inc + 0.0102 \times inc^2 - 1.940 \times age + 0.0346 \times age^2 + 3.369 \times male + 9.713 \times e401k$

The coefficient on e401k is 9.713, which means when other terms are fixed, the mean of net financial assets of a family with e401k=1 is about 9713 greater than the family with e401k=0.

(ii).

Same as the previous question, we pick out the residuals first and then do the regression of $\hat{\mu}_i^2$ on inc, inc^2 , age, age^2 , male and e401k.

```
## Define the square of residuals
u2_2<-fitlm2\$residuals^2
## Regress the linear model
summary(lm(u2 2~inc+inc2+age+age2+male+e401k))
##
## lm(formula = u2 2 \sim inc + inc2 + age + age2 + male + e401k)
##
## Residuals:
##
               1Q Median
      Min
                              3Q
                                     Max
## -119297 -2835 -615
                             816 2133263
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 14762.8872 7708.2376 1.915
                                            0.0555 .
## inc
               -433.6569
                           57.5564 -7.534 5.36e-14 ***
## inc2
                            0.4529 12.801 < 2e-16 ***
                  5.7980
              -525.2654
## age
                          372.9660 -1.408
                                            0.1591
## age2
                 8.0599
                            4.2800 1.883
                                            0.0597 .
              928.3227 1146.1926
## male
                                   0.810
                                            0.4180
## e401k
                399.3052
                          985.2071
                                     0.405
                                            0.6853
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44090 on 9268 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: 0.03675
## F-statistic: 59.97 on 6 and 9268 DF, p-value: < 2.2e-16
```

 R^2 =0.0374, F-Statistic is 59.97, p-value: < 2.2e-16. So this model could have heteroskedasticity, which means given the explanatory variablees, the variance of series error is not equal to 0.

(iii).

```
library(L1pack)
## Warning: package 'L1pack' was built under R version 3.4.2
fitlad<-lad(nettfa~inc+inc2+age+age2+male+e401k)</pre>
summary(fitlad)
## Call:
## lad(formula = nettfa \sim inc + inc2 + age + age2 + male + e401k)
##
## Residuals:
                10
                     Median
##
       Min
                                  3Q
                                         Max
                               8.925 1501.617
## -506.360 -5.576
                      0.000
##
## Coefficients:
               Estimate Std.Error Z value p-value
## (Intercept) 12.4912 7.0686
                                1.7671 0.0772
## inc
            -0.2616 0.0528 -4.9559 0.0000
            0.0071 0.0004
                               17.0604 0.0000
## inc2
            -0.7227 0.3420 -2.1130 0.0346
## age
             0.0111 0.0039
## age2
                                2.8214 0.0048
              1.0188 1.0511
## male
                                0.9693 0.3324
## e401k
             3.7373 0.9035 4.1367 0.0000
##
## Degrees of freedom: 9275 total; 9268 residual
## Scale estimate: 28.58673
## Log-likelihood: -43588.01 on 8 degrees of freedom
```

The lad estimate model is:

```
nettfa = 12.4912 - 0.2616 \times inc + 0.0071 \times inc^2 - 0.7227 \times age + 0.0111 \times age^2 + 1.0188 \times male + 3.7373 \times e401k
```

 β_6 is the cofficient of e401k, β =3.7373, which means when other terms are fixed, the median net financial assets of a family whoes e401k=1 is about 3737 greater than the family with e401k=0.

(iv).

401(k) eligibility has a larger effect on mean wealth than on median wealth, which means the 401(k) eligibility has a larger effect when net financial assets are in a high level.