

Spectral Clustering

Let G be a graph, G(V, E), where $V = \{1, 2, 3, \dots, n\}$

The Laplacian matrix:

$$L_G = \underbrace{D_G}_{\text{Diagonal matrix}} - \underbrace{A_G}_{\text{adjancency matrix}}$$
 with degrees of each vertex

 L_G is a PSD Matrix whose eigenvalues are

$$0 = \lambda_1 \le \underbrace{\lambda_2}_{\mathsf{Fiedler\ value}} \le \lambda_3 \le \dots \le \lambda_n$$

An eigenvector with eigenvalue λ_2 is called the <u>Fiedler vector</u> of \vec{W} .

Spectral Clustering

We will use \vec{W} , L_G to understand clusters in a graph.

$$A = \{4, 5, 6, 7, 8\}, |A| = 5$$

Notation

If X, Y are sets
$$X$$
 $Y = \{x \in X | x \notin Y\}$

$$|x| = \text{size of } x$$

Cut

Definition

A cut is G is a partition of V into two sets, A and V A, when AV. (The cut induced by A)

Notation

If X, YV, let E(X,Y) denote all edges with one certex in X and one vertex in Y.

$$E(A, V A) = \{\{1, 6\}\}\$$

Definition

The density of the cut induced by A is:

Sparsest cut

Definition:

Let denote the smallest possible desnity of ca cut in G. Any cut with density is called a sparesest cut in G.

Example in Julia

Need to figure out how to make code look pretty in Latex

Exploring

$$Q(\vec{x}) = n \cdot \frac{\sum_{\{i,j\} \in E(G)} (x_i - x_j)^2}{\sum_{1 \le i < j \le n} (x_i - x_j)^2}$$

Let $A \subseteq V$,

$$A = \{4, 5, 6, 7, 8\}, \ \vec{C}_A = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Exploring

Need to add a visual representation demonstrating the Graph Laplacian and the example in code. About the information we can extract from the Graph Laplacian.

Conclusion

here we go: