CS4238: Computer Security Practice

Lecture 2: Networking Overview & Configuration, Attack Framework, Reconnaissance

Slides by: LIANG Zhenkai, Roland YAP & SUFATRIO

Outline

- Networking Overview
- Network Configuration: Linux desktop

Networking Overview

(Chapter 2 of the Reference book 1)

Relevant Networking Concepts

- TCP/IP Layers
 - Application
 - Transport
 - Network
 - Data Link
 - Physical
- TCP and UDP
- IP and ICMP

- Routing
 - NAT
- Firewall
- Ethernet and 802.11
 - ARP
- SSL and TLS
- IPSec and VPN

TCP/IP Layers

Source: Skoudis & Liston, Counter Hack Reloaded

Transport Layer

TCP

TCP header format:

Source: Wikipedia

TCP Connection Management

TCP three-way handshake:

TCP connection termination:

UDP

- Connectionless transport protocol
- UDP header format:

Source: Wikipedia

 Used among others by DNS (port 53), BOOTP/DHCP (port 67 & 68), TFTP (port 69), SNMP (port 161)

Network Layer

Importance of IP:

- "Anything over IP and IP over anything"
- The waist (glue point) of protocol-stack's hourglass
- IP header format:

Bit	0	1	2	3	4	5	6	7	8	9	10	1	1 12	13	14	1	5 16	17	18	1	9 20	2	1 22	2	23	24	25	26	27	28	29	30	31
0		Version IHL				DSCP						E	CN		Total Length						il.												
32		Identification							Flags Fragment Offset																								
64		Time To Live Protocol									Header Checksum																						
96		Source IP Address																															
128		Destination IP Address																															
160																																	
192		Ontions (if ILLI > 5)																															
224		Options (if IHL > 5)																															
256																																	

Source: Wikipedia

IP Packet Fragmentation & Reassembly

- Goal: To optimize packet length for various communication links with different maximum transmission unit (MTU)
- Two flag bits in IP header:
 - Don't Fragment bit
 - More Fragment bit
- Other related IP header fields:
 - Identification: set to a unique value
 - Fragment Offset: where a fragment needs to be positioned during the reassembly

IPv4 Address

Dotted-decimal notation:

An IPv4 address (dotted-decimal notation)

- Network address and host address components
- Classful network architecture (1981-1993):
 - Now only for default configuration of subnet masks
- Classless Inter-Domain Routing (CIDR):
 - Variable-length subnet masking (VLSM)
 - CIDR notation (e.g. 192.168.2.0/24)

IPv4 Address

- Special IP addresses:
 - Localhost address: 127.0.0.1
 - Private addresses:
 - 10.0.0.0 10.255.255.255: 24-bit host ID (24-bit block)
 - 172.16.0.0 172.31.255.255: 20-bit host ID (20-bit block)
 - **192.168.0.0 192.168.255.255**: 16-bit host ID (16-bit block)
 - Not routable on the public Internet
 - Usually used together with NAT or proxy
 - Automatic Private IP Addressing (APIPA) or auto-IP address: 169.254.1.0 – 169.254.254.255
 - E.g. when DHCP server is unavailable

Protocols on Top of IP

Some of the common payload protocols are:

Protocol Number	Protocol Name	Abbreviation
1	Internet Control Message Protocol	ICMP
2	Internet Group Management Protocol	IGMP
6	Transmission Control Protocol	TCP
17	User Datagram Protocol	UDP
41	IPv6 encapsulation	ENCAP
89	Open Shortest Path First	OSPF
132	Stream Control Transmission Protocol	SCTP

Source: Wikipedia

ICMP

- A supporting protocol for sending error messages and operational information
- Used by ping and traceroute tools
- ICMP header format:

Source: Wikipedia

- Some control messages (with their ICMP Types):
 - Echo Reply (0), Destination Unreachable (3), Redirect Message (5), Echo Request (8), Time Exceeded (11), Parameter Problem: Bad IP header (12)

Special Network Devices

Network Address Translation (NAT)

- Necessary for private networks using private IP addresses to access the Internet
- Example:

Source: Skoudis & Liston, Counter Hack Reloaded

 Possible address mappings: to a single external IP address, 1-1 mapping, dynamic address mapping

Firewall

- Control flow of traffic between networks
- Different types of firewalls (based on network layer operations):
 - Traditional packet filters:
 - Check the following: source IP address, destination IP address, source TCP/UDP port, destination TCP/UDP port, TCP control bits, protocol in use, direction, interface
 - Stateful packet filters: keeps track of a state table
 - Proxy-based firewalls
- Question: Differences with network-based IDS?

Source: Wikipedia

Traceroute & Firewall: Extra Notes

- traceroute (UNIX):
 - Sends UDP packets by default
 - Can sends ICMP Echo Request (-I), or arbitrary protocol (-P)
- tracert (Windows):
 - sends ICMP Echo Request by default
- Firewalls usually blocks ICMP or unwelcome UDP!
- Other variants that use TCP SYN packets:
 - tcptraceroute (https://linux.die.net/man/1/tcptraceroute)
 - tctrace
 (http://manpages.ubuntu.com/manpages/cosmic/man1/tctrace.1.html)

Data Link Layer

Ethernet and 802.11

- Ethernet:
 - 48-bit MAC address
- Address Resolution Protocol (ARP):
 - Map logical IP address (layer 3) to physical MAC address (layer 2)
 - ARP Cache table for minimizing future ARP traffic
- Hubs vs switches:
 - Switches offer improved performance and better security
- 802.11: attacks on Ethernet are applicable too

Common Network Services

- telnet
- ssh
- ftp
- http
- r-commands: rlogin, rsh, rcp
- DNS
- NFS
- X Windows

Network Configuration: Linux Desktop

Setting up a Computer

Computer Network Configuration

- Information needed to connect a computer to the Internet:
 - IP Address
 - Network mask
 - Gateway
 - DNS server
- How to **obtain** such information?
 - Automatic setting through DHCP
 - Manual setting

Configuration in Ubuntu Linux

"System Settings" → "Network"

Automatic Network Settings (DHCP)

- Select your network interface, and click the "Options" button
- Select "IPv4 Settings" tab
- Set method to "Automatic (DHCP)" in order to automatically obtain network settings from DHCP server

Consistent Network Device Naming

- A convention for naming Ethernet adapters in Linux
- Created ~2009 to replace the old ethX naming:
 - Issues on multihomed machines
 - NICs would be named based on the order in which they were found by the kernel as it booted
 - Removing existing or adding new interfaces?
- Device naming rules:
 - Onboard interfaces at firmware index nos: eno[1-N]
 - Interfaces at PCI Express hotplug slot nos: ens[1-N]
 - Adapters in the specified PCI slot, with slot index no on the adapter enp<PCI-slot>s<card-index-no>

Manual Network Settings

Editing Wired connection 1 Connection name: Wired connection 1 Set method to "Manual" Connect automatically Wired 802.1x Security IPv4 Settings IPv6 Settings Method: Manual Addresses Address Netmask Add Gateway IP Address 192.168.100.123 255.255.255.0 192.168.100.1 Delete Network mask DNS servers. 8.8.8.8 Search domains: Gateway DHCP client ID: DNS server Require IPv4 addressing for this connection to complete Routes... Available to all users Cancel Save...

Configuration in Kali Linux

NetworkManager setting interface:

31

Network Setting File and Commands

- Manual network setting steps:
 - ifdown < network-device>
 - Modify /etc/network/interfaces
 - ifup <network-device>
- Setting /etc/network/interfaces for a plain DHCP configuration:

```
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp
```

Network Setting File and Commands

 Setting /etc/network/interfaces for a static IP configuration:

```
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 192.168.0.3
netmask 255.255.255.0
broadcast 192.168.0.255
network 192.168.0.0
gateway 192.168.0.1
```

Configuring Kali Linux: Services

Managing services:

- E.g. ssh:
 - systemctl start ssh
 - systemctl enable ssh
 - systemctl reload ssh

E.g. Apache:

- systemctl start apache2
- a2enmod *module*
- a2dismod *module*

Test Your Configuration

- If your setting steps, you should be able to connect to the Internet:
- Troubleshooting: if your Internet connection doesn't work, try to diagnose it:
 - Can you reach your gateway? (use ping command)
 - Note that ping may not work for various reasons
 - Can you reach your DNS server? (use ping command)
 - Can you resolve a domain name? (use nslookup)

Some Useful Commands

- Check and start/stop network interfaces using ifconfig:
 - List network interfaces:
 - All interfaces (up and down) whose drivers are loaded:

```
$ ifconfig -a
```

All interfaces that are up:

```
$ ifconfig
```

A particular interface (e.g. eth0):

```
$ ifconfig eth0
```

Start and stop a network interface (e.g. eth0):

```
$ ifconfig eth0 down
```

\$ ifconfig eth0 up

Some Useful Commands

- Newer ip command from iproute2:
 - List network interfaces:
 - All interfaces (up and down) whose drivers are loaded:

```
$ ip addr show
```

A particular interface (e.g. eth0):

```
$ ip addr show eth0
```

- IPv4 or IPv6 addresses only:
- \$ip -4|-6 addr show
- Start and stop a network interface (e.g. eth0):

```
$ ip link set eth0 down
```

\$ ip link set eth0 up

Linux Network Commands: Deprecated and New

- Old-style network utilities from net-tools (ifconfig, route, ...) are <u>supposed</u> to be replaced by iproute2:
 - ifconfig → ip
 - route \rightarrow ip
 - $arp \rightarrow ip$
 - netstat \rightarrow ss (socket statistics)
- Sample command comparisons:
 - route -n VS ip route show
 - route add default gw <gateway-IP-addr> vs ip route add default via <gateway-IP-addr>

References: ip Command

- https://phoenixnap.com/kb/linux-ipcommand-examples
- https://www.howtogeek.com/657911/h ow-to-use-the-ip-command-on-linux/