

TD - Semantics and Verification

V- More Topology on Infinite Words Friday 18th February 2022

TA: Ralph Sarkis ralph.sarkis@ens-lyon.fr

We recall that

- Given sets X and Y and a function $f: X \to Y$, we define $f^{-1}(B) = \{x \mid f(x) \in B\}$ for $B \subseteq Y$.
- Given topological spaces X and Y, a function $X \to Y$ is continuous iff $f^{-1}(B)$ is open whenever B is open.
- A clopen is a set that is both open and closed.
- For a set A, a property $P \subseteq (2^A)^{\omega}$ is said obversable if P is a clopen.
- For a topological space (X,\mathcal{U}) , a set $A\subseteq X$ is compact if every open cover of A has a finite subcover. If X is compact, (X,\mathcal{U}) is called a compact space.
- A topological space (X, \mathcal{U}) is Hausdorff if for any distinct points $x, y \in X$, there are disjoint opens U, V such that $x \in U$ and $y \in V$.

${f Exercise} \,\, {f 1}.$

Show that $P \subseteq A^{\omega}$ is a liveness property if and only if it is dense.

Exercise 2.

For the following subsets $P_i \subseteq A^{\omega}$: (i) is P_i open? closed? dense?, (ii) compute the closure of P_i , (iii) compute the decomposition of P_i as the intersection of a closed and a dense subset of A^{ω} .

- 1. Let $A = \{a, b\}$.
 - (a) $P_1 = \{ \mathbf{b} \cdot \boldsymbol{\sigma} \mid \boldsymbol{\sigma} \in A^{\omega} \}$
 - $\text{(b)}\ \ P_2 = \{\sigma \in A^\omega \mid \sigma(0) = \mathtt{a} \wedge \exists i, \sigma(i) = \mathtt{b}\}$
- 2. Let $A = \{a, b\}$.
 - (a) $P_3 = \{a^{\omega}\}$
 - (b) $P_4 = \{ \sigma \in A^\omega \mid \exists! i, \sigma(i) = b \}$
- 3. Let $A = \{a, b\}$.
 - (a) $P_5 = \{ \sigma \in A^\omega \mid \exists^\infty i, \sigma(i) = b \}$
 - (b) $P_6 = \{ \sigma \in A^\omega \mid \forall^\infty i, \sigma(i) = \mathbf{a} \}$
- 4. Let $A = \{a, b, c\}$.
 - (a) $P_7 = \{ \sigma \in A^\omega \mid \exists^\infty i, \sigma(i) = \mathbf{a} \text{ and there are arbitrarily large consecutive sequences of bs} \}$
 - (b) $P_8 = \{ \sigma \in A^\omega \mid \exists^\infty i, \sigma(i) = \mathbf{a} \land \exists k > i, \sigma(k) = \mathbf{b} \}$

Exercise 3.

Show that $f: A^{\omega} \to B^{\omega}$ is continuous iff

$$\forall n \in \mathbb{N}, \ \forall \alpha \in A^{\omega}, \ \exists k \in \mathbb{N}, \ \forall \beta \in A^{\omega} \Big(\beta(0) \cdots \beta(k) = \alpha(0) \cdots \alpha(k) \Rightarrow$$
$$f(\beta)(0) \cdots f(\beta)(n) = f(\alpha)(0) \cdots f(\alpha)(n) \Big)$$

Exercise 4.

Let A be a set.

- 1. Show that ext(u) is a clopen for every $u \in A^*$.
- 2. Show that for every finite subset $U \subseteq A^*$, ext(U) is a clopen.
- 3. Let $A = \mathbb{N}$. Show that there is no finite $U \subseteq \mathbb{N}^*$ such that $\text{ext}(U) = \text{ext}(\mathbb{N}_{>0})$.

Exercise 5.

Show that a closed subset of a compact space is compact.

Exercise 6.

Show that if A is infinite, then A^{ω} is not compact.

Exercise 7.

Let AP be a finite set. Show that $P \subseteq (2^{AP})^{\omega}$ is observable iff there is a finite $W \subseteq (2^{AP})^*$ such that P = ext(W).

Exercise 8.

Let A be a set. Show that A^{ω} is Hausdorff.

Exercise 9.

Let AP be a finite set, recall that two MLM formulas φ and ψ are said to be logically equivalent, denoted $\varphi \equiv \psi$ if for any valuation ρ , $[\![\varphi]\!]_{\rho} = [\![\psi]\!]_{\rho}$. Show that the following equivalences hold.

$$\varphi \wedge \neg \varphi \equiv \bot \qquad \bigcirc (\varphi \vee \psi) = \bigcirc \varphi \vee \bigcirc \psi \qquad \bigcirc (\neg \varphi) = \neg \bigcirc \varphi$$

Exercise 10.

Let $AP = \mathbb{N}$ and $2\mathbb{N} \subseteq AP$ be the set of even numbers. Show that there is no closed LML-formula ϕ such that $\llbracket \phi \rrbracket = \operatorname{ext}(2\mathbb{N})$.