2.3

L:
$$R^4 \longrightarrow R^3$$
 defined by

 $L([x,y,z,t]) = [x-y+z+t, x+zz-t, x+y+3z-3t]$

Usual basis of $R^4 = [(1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]$

Hen,

 $L([1,0,0,0]) = [1,1,1]$, $L([0,1,0,0]) = [-1,0,1]$
 $L([0,0,1,0]) = [1,2,3]$ $L([0,0,0,1]) = [1-1,-3]$

By Limplified span melked

Let $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix}$

$$RREF(A) = \begin{cases} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$

Basis of Range (L) is
$$B = \{[1,0,-1], [0,1,2]\}$$
 — $(2M)$

Range (L) = $\{[a,b,2b-a]; a,b \in R\}$ — $(2M)$

Seemd method By independence feet method

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{bmatrix}$$

$$RREF(A) = \begin{cases} 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{cases}$$

Basis of Rarge (L) =
$$\{[1,1,1], [-1,0,1]\}$$

 $\text{Rim}(\text{Rarge}(L)) = 2$
 $\text{Rarge}(L) = \{[a-6,a,a+6]; a,b \in R\}$

L[1, y, z, t] = [1-y+2+t, x+2x-t, x+y+3z-3t] = [0,0,0]

$$M = (L10) = \begin{bmatrix} 1 & -1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & -1 & 1 & 0 \\ 1 & 1 & 3 & -3 & 1 & 0 \end{bmatrix}$$

Hence

$$x-y+2+t=0$$

 $y+z-2t=0$

$$T(f) = \begin{cases} f(0) \\ |f(-2)| + |f(2)| \end{cases}$$

let
$$f, g \in V$$
 $f:t$
 $f(x) = 1$; $g(x) = \infty$

Then we have $(f+g)(x) = x+1$
 $T(f+g) = \begin{bmatrix} 1+0 \\ 1-11+131 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
 $T(f) = \begin{bmatrix} 1+1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1+1 \\ 4 \end{bmatrix} =$