ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Assignatura: Senyals i Sistemes II Primer Control T07

Data: 26 d'Octubre de 2007 Número d'identificació de la prova: 230 11485 59 0 00

Professors: G. Haro, J. Hernando, J.B. Mariño, E. Monte, P. Salembier

Temps: 1 h 30 min

- Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents
- Totes les marques del full de respostes s'han de fer en llapis (B, HB preferiblement)
- Les preguntes poden tenir més d'una resposta correcta (tres com a màxim). Les respostes errònies resten punts.
 Utilitzeu la numeració de la dreta (opció d'anul·lar respostes)
- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil

Figura 1

- 1. En el esquema de la figura 1 con $F_m = 8$ kHz, los filtros antialiasing y reconstructor se suponen ideales con frecuencias de corte de $F_A = F_R$, $x(t) = 1 + \cos(\pi F_m t) + \cos(\pi F_m t)$ y el sistema discreto tiene como respuesta impulsional h[n]. Se cumple que:
 - **1A:** Si $F_A = F_R = 5$ kHz y $h[n] = \{1, 2, -2, -1\}$, y(t) se compone de dos tonos a frecuencias $F_m/2$ y $F_m/4$, sin componente continua.
 - **1B:** Si $F_A = F_R = 7$ kHz y $h[n] = \{1, 2, -2, -1\}$, y(t) se compone de dos tonos a frecuencias $F_m/2$ y $F_m/4$, sin componente continua.
 - **1C:** Si $F_A = F_R = 7$ kHz y $h[n] = \{1,1,1,1\}$, y(t) únicamente tendrá la componente continua.
 - **1D:** Si $F_A = F_R = 5$ kHz y $h[n] = \{1, 1, 1, 1\}$, y(t) tendrá la componente a $F_m/4$ y la componente continua.
- 2. Señale las afirmaciones correctas:
 - **2A:** La conversión A/D con F_M = 8kHz de una sinusoide analógica de pulsación = 1000 rad/s genera una secuencia periódica.
 - **2B:** Si x[n] es una sinusoide discreta periódica, y[n] = x[Nn] también es periódica.
 - 2C: Si x[n] es una sinusoide discreta NO periódica, su conversión D/A será una señal analógica NO periódica.
 - **2D:** Si x[n] es una sinusoide discreta periódica, $y[n] = (-1)^n x[n]$ también es periódica.
- 3. Sea la secuencia periódica $x[n] = \{...-1,0,1,0,-1,0,1,0,-1,0,...\}$. Señale las afirmaciones correctas:
 - **3A:** $x[n] = z^n$ para un $z \in C$.
 - **3B:** Es un tono de pulsación $\pi 3/2$.
 - **3C:** Es un tono de pulsación $\pi/2$.
 - **3D:** Es un tono de frecuencia $\pi/6$ Hz.
- 4. Si y[n] = h[n] * x[n], señale las afirmaciones correctas:
 - **4A:** y[n-2M] = h[n-M] * x[n-M]
 - **4B:** $a^n y[n] = (a^n h[n]) * (a^n x[n])$
 - **4C:** y[-n] = h[n] * x[-n]
 - **4D:** y[Nn] = h[n] * x[Nn]
- 5. Suponiendo causalidad y reposo, diga qué pares EDF-respuesta impulsional son ciertas:
 - **5A:** $y[n] = -y[n-1] + x[n] \Rightarrow h[n] = u[n]$
 - **5B:** $y[n] = y[n-1] x[n] \Rightarrow h[n] = (-1)^n u[n]$
 - **5C:** $y[n] = y[n-1] x[n] \Rightarrow h[n] = -u[n]$
 - **5D:** $y[n] = -y[n-1] x[n] \Rightarrow h[n] = (-1)^{n+1}u[n]$

- Dados los sistemas siguientes: $T_1\{x[n]\} = x[-n+1]$, $T_2\{x[n]\} = x[2n]$, $T_3\{x[n]\} = x[n^2]$ Indicar las afirmaciones
 - $T_2\{T_3\{T_1\{x[n]\}\}\}\} = x[-2n^2 + 4]$ 6A:
 - $T_2\{T_1\{T_2\{x[n]\}\}\}\} = x[-2n^2 + 2]$
 - **6C:** $T_1\{T_2\{T_3\{x[n]\}\}\}\} = x[4n^2 8n + 4]$
 - **6D:** $T_1\{T_2\{T_2\{x[n]\}\}\}\$ es invariante
- 7. Considere la señal:

$$x[n] = \begin{cases} (1/2)^n & 0 \le n \le M - 1 \\ 0 & otros \ casos \end{cases}$$

Señale las afirmaciones correctas:

- **7A:** $x[n] \leftarrow FT \rightarrow \frac{1}{1 0.5e^{-j\omega}}$
- **7B:** x[n]*x[-n] tiene una duración de 2M-1 muestras. **7C:** $TF\{x[n]*x[-n]\}$ no tiene parte imaginaria.
- **7D:** $TF\{x[n]*x[-n]\}$ es una función par.
- Si un sistema té una resposta frequencial real i parella tal que

quina de les següents respostes pot ser certa?:

- si x[n] = 1, llavors y[n] = 0.
- si l' entrada és la sequència periòdica $x[n]=\{..., 0, 1, 0, -1, \underline{0}, 1, 0, -1 ...\}$, llavors y[n]=1.
- **8C:** $\sum_{k=1}^{\infty} h[k] = 0$
- h[0]=18D:
- Señale los pares de secuencia y transformada correctas:
 - **9A:** $DFT_N^{-1}\{1\} = \delta[n]$ $0 \le n \le N-1$
 - 9B:
 - $F\{1\} = \delta(\omega)$ $F^{I}\{1\} = \delta[n]$ 9C:
 - $F'\{1\} = \delta[n]$ $DFT_N\{1\} = \delta[k]$ $0 \le k \le N-1$ 9D:
- 10. Sea x[n] una secuencia cuyas muestras no nulas están confinadas al intervalo [0, N-1] y X[k] su transformada discreta de Fourier (DFT) con N muestras. Se puede afirmar que:
 - **10A:** La DFT con N muestras de x[-n] es X[-k].
 - **10B:** La DFT con M>N muestras de x[n] es X[k].
 - **10C:** $F\{x[n] * x[n]\}_{\omega = \frac{2\pi k}{N}} = X^2[k]$, donde $F\{\}$ representa la transformada de Fourier.
 - **10D:** DFT⁻¹ $\{X^2[k]\} = x[n] * x[n]$, donde DFT⁻¹ $\{\}$ representa la transformada discreta de Fourier inversa con N muestras.