

planetmath.org

Math for the people, by the people.

direction cosines

Canonical name DirectionCosines
Date of creation 2013-03-22 17:16:32
Last modified on 2013-03-22 17:16:32

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872) Entry type Definition Classification msc 15A72 Classification msc 51N20

Related topic MutualPositionsOfVectors

Related topic EquationOfPlane
Defines direction numbers

If the non-zero vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ of \mathbb{R}^3 forms the angles α , β and γ with the positive directions of x-axis, y-axis and z-axis, respectively, then the numbers

$$\cos \alpha$$
, $\cos \beta$, $\cos \gamma$

are the *direction cosines* of the vector. Any triple l, m, n of numbers, which are http://planetmath.org/Variationproportional to the direction cosines, are *direction numbers* of the vector.

If $r = \sqrt{x^2 + y^2 + z^2}$ is the of \vec{r} , we see easily that

$$\cos \alpha = \frac{x}{r}, \cos \beta = \frac{y}{r}, \cos \gamma = \frac{z}{r}.$$

Conversely, the components of the vector on the coordinate axes may be obtained from

$$x = r \cos \alpha$$
, $y = r \cos \beta$, $z = r \cos \gamma$.

We also see that the direction cosines satisfy

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$