Assignment1

Q1.

1. Study Merge Sort Algorithm:

- **Time Complexity:** Merge Sort has a worst-case and average-case time complexity of O(nlogn). It uses the divide-and-conquer approach:
 - o Divides the array into two halves.
 - Recursively sorts both halves.
 - Merges the two sorted halves.
- **Space Complexity:** Merge Sort requires additional space for the temporary arrays used during merging. This space complexity is O(n) in the traditional recursive implementation.

2. Single Processor Consideration:

• You are tasked with using a single processor, meaning parallelized versions of Merge Sort (such as parallelized merge) are not allowed. This setup will run standard Merge Sort sequentially.

• Single Processor Usage:

 C++ programs, by default, run in a single thread unless you explicitly use threading libraries like <thread>, OpenMP, or other parallel programming techniques. The code here does not use any such libraries, so it operates on a single thread and processor core.

• Merge Sort in the Code:

 Both the recursive and iterative versions of Merge Sort break the problem into smaller subproblems and solve them sequentially, without distributing the work across multiple threads or processors.

3. Improving Running Time:

- Optimization Techniques for Merge Sort:
 - Switch to Insertion Sort for Small Subarrays: For small subarrays (e.g., subarrays of size < 32), switching to Insertion Sort during the recursive calls can reduce the overhead of recursion. This can improve the running time in practice.
 - Avoiding Auxiliary Arrays: In place of using separate arrays for merging, you can use alternate strategies like alternating between two arrays to reduce memory usage.
 - Iterative Merge Sort: You can use an iterative version of Merge Sort (bottom-up merge sort) to avoid the overhead of recursion, which might reduce the constant factors impacting time performance.

4. Comparing Running Times of Two Methods of Merge Sort:

You could compare the recursive (top-down) and iterative (bottom-up) approaches:

- Recursive Merge Sort: Uses recursion and requires additional memory for stack calls.
- **Iterative Merge Sort:** Eliminates recursion but works similarly by merging subarrays of increasing sizes. It avoids the memory overhead of recursion and might perform slightly better on large input sizes.

1. Initial Implementation:

- Implement the Quicksort algorithm and test it using randomly synthesized lists of records.
- o Evaluate whether its time complexity is O(nlogn) based on experimental results.

2. Pivot Selection:

- Modify the Quicksort algorithm to select pivots randomly (instead of using a fixed strategy like picking the first element).
- Analyze the changes in time requirements and discuss whether the time complexity remains O(nlogn).

Steps for the Implementation and Experimentation:

1. Standard Quicksort Implementation:

- o Implement the recursive divide-and-conquer algorithm that uses a fixed pivot (e.g., first element).
- Generate several random lists of varying sizes (e.g., 100, 1,000, 10,000 elements) to test the performance.
- Measure the execution time and compare it against O(nlog@n)O(n \log n)O(nlogn) behavior.

2. Random Pivot Quicksort:

- o Modify the Quicksort algorithm to select a random pivot in each partitioning step.
- o Perform the same set of experiments with the same lists.
- Compare the time taken and check for changes in performance, especially looking for average case O(nlogn) and whether worst-case behavior is improved (since random pivot helps avoid consistently poor performance).

Experimental Justification:

- The original Quicksort with a fixed pivot can have poor performance on some inputs (e.g., already sorted lists), leading to O(n^2) time complexity.
- Random pivot selection generally improves performance by ensuring a more balanced partitioning, leading to expected O(nlogn) time complexity in most cases.