Matemática Discreta

Conjuntos

Universidade de Aveiro 2018/2019

http://moodle.ua.pt

Conjuntos e operações sobre conjuntos ●○○○○○ Propriedades

Famílias de conjuntos

Conjunto das partes

A noção de conjunto

Definição (de conjunto)

Um conjunto é uma coleção de objectos (que se designam por elementos do conjunto).

- • $x \in A$ (x pertence a A): x é um elemento de A.
- • $x \notin A$ (x não pertence a A): x não é um elemento de A.
- Consideramos os elementos dos conjuntos que estamos a estudar como pertencentes a um universo (ou conjunto universal) fixado, \mathcal{U} .
- Conjunto vazio (∅): conjunto sem elementos.

Conjuntos finitos e infinitos

Conjuntos finitos e infinitos

Um conjunto é finito quando é possível contar os elementos, ou seja, quando é o conjunto vazio ou um conjunto onde é possível estabelecer uma correspondência biunívoca entre os seus elementos e os elementos do conjunto $\{1, \ldots, n\}$ para algum $n \in \mathbb{N}$. Um conjunto é infinito quando não é finito.

Definição em extensão e em compreensão

- Em extensão: indicação exaustiva de todos os seus elementos (se o conjunto é finito).
- Em compreensão: indicação do predicado a satisfazer por todos os seus elementos.

Conjuntos e operações sobre conjuntos

Propriedades

Famílias de conjuntos

Conjunto das partes

Exemplo:

- *A* = {1,3,5,7} (descrição em extensão);
- $A = \{x : x \text{ \'e um inteiro positivo ímpar menor que 8}\}$ (descrição em compreensão).

Definição (igualdade de conjuntos)

Dados dois conjuntos A e B de elementos do conjunto universal \mathcal{U} , diz-se que A é igual a B (A = B) se A e B têm exactamente os mesmos elementos.

Exercício

Sejam $\mathcal{U} = \{3, 4, 5, 6, 7\}$ e $A = \{x : x \in \text{impar}\}$ e $B = \{x : x \text{ \'e primo}\}$. Mostre que A = B.

Descrição de conjuntos e igualdade de conjuntos

Definição (inclusão de conjuntos)

Sejam A e B dois conjuntos.

- Diz-se que A é um subconjunto de B (ou que A está contido em B) e escreve-se A ⊆ B, se todos os elementos de A pertencem a B.
- Diz-se que A é um subconjunto próprio de B (ou que A está contido estritamente em B) e escreve-se A ⊂ B, se A é um subconjunto de B e A ≠ B.

Sejam $A = \{x : P(x)\}\ e\ B = \{x : Q(x)\}\ subconjuntos de\ \mathcal{U}.$

Se, para todo $x \in \mathcal{U}$, $P(x) \Rightarrow Q(x)$, então $A \subseteq B$.

Se, para todo $x \in \mathcal{U}$, $P(x) \Leftrightarrow Q(x)$, então A = B.

Exercício: Sejam $\mathcal{U} = \mathbb{N}$, $A = \{x : x \text{ \'e m\'ultiplo de 4}\}$ e $B = \{x : x \text{ \'e par}\}$. Mostre que $A \subseteq B$.

Conjuntos e operações sobre conjuntos oooo•o

Propriedades

Famílias de conjuntos

Conjunto das partes

União e interseção de conjuntos

Sejam A e B dois conjuntos de um dado universo U. União de A e B:

$$A \cup B = \{x : (x \in A) \lor (x \in B)\}.$$

Interseção de A e B:

$$A \cap B = \{x : (x \in A) \land (x \in B)\}.$$

Diferença e diferença simétrica de conjuntos e complementar de um conjunto

Sejam A e B dois conjuntos de um dado universo U.

Diferença entre A e B:

$$A \backslash B = \{x : (x \in A) \land (x \notin B)\}.$$

Diferença simétrica entre A e B:

$$A\triangle B = \{x : (x \in A)\dot{\vee}(x \in B)\}.$$

Complementar de A:

$$A^c = \{x : x \notin A\}.$$

Conjuntos e operações sobre conjuntos

Propriedades

Famílias de conjuntos

Conjunto das partes

Propriedades

Sejam A e B dois conjuntos de um dado universo U.

1) Princípio de inclusão mútua:

$$A = B$$
 se e só se $A \subseteq B$ e $B \subseteq A$;

- 2) $\emptyset \subseteq A$;
- 3) $A \cap A^c = \emptyset$;
- 4) $A \setminus B = A \cap B^c$;
- 5) $(A \setminus B) \cap (B \setminus A) = \emptyset$;
- 6) Distributividade:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Propriedades (cont.)

- 7) $A \setminus A = \emptyset = \emptyset \setminus A$;
- 8) $A \setminus \emptyset = A$;
- 9) $A \setminus B = B \setminus A \Leftrightarrow A = B$;
- 10) $\emptyset^c = \mathcal{U} e \mathcal{U}^c = \emptyset$;
- 11) Dupla complementaridade: $(A^c)^c = A$;
- 12) Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$;
- 13) Associatividade: $A \cap (B \cap C) = (A \cap B) \cap C$ e $A \cup (B \cup C) = (A \cup B) \cup C$;
- 14) Leis de De Morgan: $(A \cap B)^c = A^c \cup B^c$ e $(A \cup B)^c = A^c \cap B^c$.

Conjuntos e operações sobre conjuntos

Propriedades

Famílias de conjuntos

Conjunto das partes

Famílias de conjuntos

Seja

$$\mathcal{A} = \{A_i\}_{i \in I},$$

onde, para cada índice i do conjunto I (o qual pode ser ser finito ou infinito), A_i é um conjunto.

União e interseção generalizadas

- $\bigcup A = \bigcup_{i \in I} A_i = \{x : x \in A_i, \text{ para algum } i \in I\}.$

Exercício: Considere $A = \{A_i\}_{i \in \mathbb{N}}$, onde $A_i = \begin{bmatrix} \frac{1}{i}, i \end{bmatrix}$. Determine $\bigcap A$ e $\bigcup A$.

Famílias disjuntas e dois a dois disjuntas

Uma família de conjuntos $\{A_i\}_{i\in I}$ diz-se:

disjunta se
$$\bigcap_{i \in I} A_i = \emptyset$$
;

dois a dois disjunta se $i \neq j \Rightarrow A_i \cap A_j = \emptyset$.

A união e interseção generalizadas gozam de propriedades análogas às propriedades da união e interseção de dois conjuntos.

Conjuntos e operações sobre conjuntos

Propriedades

Famílias de conjuntos ○○● Conjunto das partes

Exemplos de propriedades da união e interseção generalizadas

Leis de De Morgan generalizadas:

$$\left(\bigcap_{i\in I}B_i\right)^c=\bigcup_{i\in I}B_i^c\ \mathbf{e}\ \left(\bigcup_{i\in I}B_i\right)^c=\bigcap_{i\in I}B_i^c.$$

$$A \setminus \bigcap_{i \in I} B_i = \bigcup_{i \in I} (A \setminus B_i) \text{ e } A \setminus \bigcup_{i \in I} B_i = \bigcap_{i \in I} (A \setminus B_i).$$

Conjunto das partes

Definição (de conjunto das partes ou conjunto potência)

Dado um conjunto A, designa-se por conjunto das partes ou conjunto potência (ou, simplesmente, potência) de A e denota-se por $\mathcal{P}(A)$, o conjunto

$$\mathcal{P}(A) = \{X : X \subseteq A\}.$$

Nota: $\emptyset \in \mathcal{P}(A)$.

Exemplo: considerando o conjunto $A = \{1, 2, 3\}$, obtém-se

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Conjuntos e operações sobre conjuntos

Propriedades

Famílias de conjuntos

Conjunto das partes

Referências bibliográficas

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).