Universidad Nacional Autónoma de México

Facultad de Ingeniería

Práctica 1: Parámetros básicos de señales en el tiempo

Alumno: Alfonso Murrieta Villegas

Profesora: Alejandra Vasquez

Grupo de teoría: 5

Grupo de laboratorio: 20

Objetivos:

• El alumno utilizará herramientas de simulación para medir y analizar parámetros básicos en algunas señales periódicas.

Software: Multisim

Desarrollo de la práctica

1) Realice la simulación del circuito mostrado en la Figura 1.1. Tome las mediciones necesarias para completar la tabla:

Escala Horizontal: 500 us/div	Vpico-pico: 20 V	Período de la señal : 1 ms
Escala Vertical: 5v/div	Vrms: 7.071 V	Frecuencia de la señal: 1Khz

2) Con los datos medidos calcule el factor de cresta de la señal y compárelo con el valor teórico. Anote sus cálculos y conclusiones.

$$F.\,C.=rac{Vpico}{Vrms}=rac{10}{7.071}\simeq 1.4142=\sqrt{2}$$

3) Modifique la configuración del generador de funciones para obtener una señal triangular de 10 volts pico, 5 kHz y un ciclo de trabajo del 50%, Figura 1.2. Tome las mediciones necesarias para completar la tabla.

Escala Horizontal: 100 us/div	Vpico-pico: 20 V	Período de la señal : 200 us
Escala Vertical: 5 V/div	Vrms: 5.774 V	Frecuencia de la señal: 5 khz

4) Utilice los datos obtenidos para calcular el factor de cresta de la señal y compárelo con el valor teórico. Anote sus cálculos y conclusiones.

$$F.\,C.=rac{Vpico}{Vrms}=rac{10}{5.774}=1.7319\simeq\sqrt{3}$$

5) Modifique la frecuencia de la señal a 2 kHz, y el ciclo de trabajo de la señal al 1%, 10%, 30%, 60%, 90% y 99%. Incluya el oscilograma con un ciclo de trabajo del 99%.

6) Configure el generador de funciones para obtener una tren de pulsos periódico de 10 Vpico, 10 kHz, y 50 % de ciclo de trabajo, Figura 1.3. Realice las mediciones necesarias para completar la tabla.

Escala Horizontal: 20 us/div	Vpico-pico: 20 V	Período de la señal : 1 ms
Escala Vertical: 5v/div	Vrms: 9.99999 V	Frecuencia de la señal: 1Khz

7) Utilice los datos obtenidos para calcular el factor de cresta de la señal y compárelo con el valor teórico. Anote sus cálculos y conclusiones.

$$F.\,C. = rac{Vpico}{Vrms} = rac{10}{9.9999} = 1.0001 \simeq 1$$

8) Modifique la frecuencia del tren de pulsos a 10 kHz y el ciclo de trabajo a 5%, 20% 40% y 99%. Incluya el oscilograma con un ciclo de trabajo del 99%.

9) Configure un tren de pulsos periódico a 2 V pico-pico, 1 kHz, ciclo de trabajo del 50%, y un voltaje de offset de -2 volts. Ajuste el osciloscopio a un acoplamiento AC, y una escala vertical de 1 V/ Div. Modifique el tipo de acoplamiento a DC, compare los oscilogramas y anote sus comentarios y conclusiones. Incluya los dos oscilogramas.

Acoplamiento AC

Acoplamiento DC

Observación: Como podemos observar en las capturas de pantalla superiores, la señal generada tiene un offset el cual inmediatamente es descartado por el acoplamiento AC esto debido a que intervienen capacitores para el filtrado, mientras que en el acomplamiento DC observamos que la señal es directamente lo establecido en el generador de señales.

Conclusión

En la presente práctica aprendimos a utilizar Multisim como herramienta de simulación de circuitos electrónicos, esto con el objetivo de poder medir y analizar parámetros como son la amplitud, período, voltaje pico -pico, voltaje rms, particularmente en el apartado de los distintos tipos de acoplamientos, también aprendimos a modificar el offset de una señal.

Por último y como uno de los apartados más importantes, aprendimos a obtener de señales periódicas como señales triangulares, tren de pulso y señales senoidales, parámetros relevantes como son el factor de cresta y la importancia del ciclo de trabajo.

Referencias

- 1) Recuperado el 30 de septiembre de 2020, de https:<u>www.learningaboutelectronics.com/articulo</u> <u>s/voltaje-rms.php</u>
- 2) Carlson, Bruce. Communication Systems. New York, McGraw Hill, 2005.
- 3) Haykin, Simon. Communication. Systems. New York. Wiley, 2009.