MACHINE LEARNING IN R: PACKAGE MLR

Bernd Bischl Computational Statistics, LMU

WORKSHOP DOCUMENTATION

goo.gl/DYzSmA

AGENDA

- About mlr
- Features of mlr
 - ► Tasks and Learners
 - Train, Test, Resample
 - Benchmarking
 - Hyperparameter Tuning
 - Nested Resampling
 - Performance Visualization
 - ▶ Parallelization
- iml Interpretable Machine Learning
- mlrMBO Bayesian Optimization
- mlrCPO Composable Preprocessing
- OpenML
- Outlook and mlr contribution

MACHINE LEARNING

Machine Learning is a method of teaching computers to make predictions based on some data

MOTIVATION

THE GOOD NEWS

- CRAN serves hundreds of packages for machine learning
- Often compliant to the unwritten interface definition:

```
> model = fit(target ~ ., data = train.data, ...)
> predictions = predict(model, newdata = test.data, ...)
```

THE BAD NEWS

- Some packages API is "just different"
- Functionality is always package or model-dependent, even though the procedure might be general
- No meta-information available or buried in docs

Our goal: A domain-specific language for many machine learning concepts!

ABOUT

Project home page

https://github.com/mlr-org/mlr

- <u>Cheatsheet</u> for an quick overview
- ► <u>Tutorial</u> for m|r documentation with many code examples
- Ask questions in the <u>GitHub issue tracker</u>
- 8-10 main developers, quite a few contributors, 4 GSOC projects in 2015/16 and one coming in 2017
- About 20K lines of code, 8K lines of unit tests

MOTIVATION: MLR

 Unified interface for the basic building blocks: tasks, learners, hyperparameters, . . .

R Example

The mlr process

R Example: Titanic

Titanic: Machine Learning from Disaster

- Titanic sinking on April 15, 1912
- Data provided on our website goo.gl/DYzSmA
- 809 out of 1309 passengers got killed
- Task
 - Can we predict who survived?
 - Why did people die / Which groups?

R Example: Data set

Data Dictionary

```
Survived Survived, 0 = No, 1 = Yes
Pclass Ticket class, from 1st to 3rd
```

Sex Sex

Age Age in years

Sibsp # of siblings/ spouses
Parch # of parents/ children

Ticket Ticket number
Fare Passenger fare
Cabin Cabin number

Embarked Port of Embarkation

Preprocessing I

■ Load the input data

```
> load("data.rda")
> print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
                        na mean min
                                    max nlevs
##
                  type
         name
                factor
## 1
       Pclass
                         0
                             NA 277
                                    709
## 2
     Survived
                factor 0
                          NA 500
                                    809
## 3
         Name character 0 NA
                                      2 1307
                factor
                          NA 466 843
##
          Sex
## 5
               numeric 263 30
                                   80
          Age
        Sibsp
               numeric
                                   8
##
## 7
        Parch
               numeric
## 8
       Ticket
                factor
                             NA
                                    11
                                          929
## 9
         Fare
               numeric 1
                             33
                                 0 512
  10
        Cabin
                factor
                             NA
                                 1 1014
                                          187
                                   914
## 11
     Embarked
             factor
                             NA
                                            4
```

Preprocessing II

- NB: All preprocessing steps are really naive, later we show better preprocessing with mlrCPO
- Set empty factor levels to NA

```
> data$Embarked[data$Embarked == ""] = NA
> data$Embarked = droplevels(data$Embarked)
> data$Cabin[data$Cabin == ""] = NA
> data$Cabin = droplevels(data$Cabin)
```

Preprocessing III

```
> # Price per person, multiple tickets bought by one
> # person
> data$farePp = data$Fare / (data$Parch + data$Sibsp + 1)
>
> # The deck can be extracted from the the cabin number
> data$deck = as.factor(stri_sub(data$Cabin, 1, 1))
>
> # Starboard had an odd number, portside even cabin
> # numbers
> data$portside = stri_sub(data$Cabin, 3, 3)
> data$portside = as.numeric(data$portside) %% 2
>
> # Drop stuff we cannot easily model on
> data = dropNamed(data,
+ c("Cabin", "PassengerId", "Ticket", "Name"))
```

Preprocessed data

```
> print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
            type na mean min max nlevs
##
       name
      Pclass factor 0
                       NA 277 709
## 2
    Survived factor 0 NA 500 809
        Sex factor 0
                       NA 466 843
## 3
## 4
       Age numeric 263 30
                         0 80
                     0 0 8
## 5
      Sibsp numeric
## 6 Parch numeric 0 0 0 9
## 7 Fare numeric 1 33 0 512
    Embarked factor 2
                       NA 123 914
## 8
      farePp numeric 1 21 0 512
## 9
       deck factor 1014 NA 1 94
## 11 portside numeric 1059 0 0 1
```

IMPUTATION

- Remove missing values
- Impute numerics with median and factors with a seperate category
- NB: This is really naive, we should probably use multiple imputation and embed this in cross-valdiation

Tasks I

■ Create classification problem

```
> task = makeClassifTask(id = "titanic", data = data,
+ target = "Survived", positive = "1")
```

Tasks II

```
> print(task)
## Supervised task: titanic
## Type: classif
## Target: Survived
## Observations: 1309
## Features:
## numerics factors ordered functionals
##
## Missings: FALSE
## Has weights: FALSE
## Has blocking: FALSE
## Has coordinates: FALSE
## Classes: 2
## 0 1
## 809 500
## Positive class: 1
```

WHAT LEARNERS ARE AVAILABLE? I

CLASSIFICATION (84)

- LDA, QDA, RDA, MDA
- Trees and forests
- Boosting (different variants)
- SVMs (different variants)
-

Clustering (9)

- K-Means
- FM
- DBscan
- X-Means
-

REGRESSION (61)

- Linear, lasso and ridge
- Boosting
- Trees and forests
- Gaussian processes
-

SURVIVAL (12)

- Cox-PH
- Cox-Boost
- Random survival forest
- Penalized regression
- ...

WHAT LEARNERS ARE AVAILABLE? II

■ Explore all learners via <u>tutorial</u>

Class / Short Name / Name	Packages	Num.	Fac.	Ord.	NAs	Weights	Props	Note
classif.ada	ada rpart	Х	Х	oru.	IIAS	weights	prob twoclass	xval has been set to 0 by default for spe
ada Boosting								
classif.adaboostm1 ndaboostm1 nda Boosting M1	RWeka	Х	X				prob twoclass multiclass	NAs are directly passed to WEKA with na.ac
classif.bartMachine bartmachine	<u>bartMachine</u>	Х	Х		Х		prob twoclass	use_missing_data has been set to TRUE
Bayesian Additive Regression Trees								
classif.binomial	stats	Х	X			Х	prob twoclass	Delegates to glm with freely choosable bin

WHAT LEARNERS ARE AVAILABLE? III

■ Or ask mlr

```
> listLearners("classif", properties = c("prob",
   "multiclass"))[1:5, c(1,4,13,16)]
##
               class package prob multiclass
## 1 classif.adaboostm1
                         RWeka TRUE
                                         TRUE
## 2
     classif.boosting adabag,rpart TRUE
                                         TRUE
## 3
          classif.C50 C50 TRUE TRUE
## 4 classif.cforest
                       party TRUE
                                       TRUE
## 5 classif.ctree
                         party TRUE
                                         TRUE
```

Train model I

- Create a learner
- Output prosterior probs instead of a factor of class labels

```
> lrn = makeLearner("classif.randomForest",
+ predict.type = "prob")
```

- Split data into a training and test data set (neccessary for performance evaluation)
- And train a model

```
> n = nrow(data)
> train = sample(n, size = 2/3 * n)
> test = setdiff(1:n, train)
>
> mod = train(lrn, task, subset = train)
```

PREDICTIONS I

■ Make predictions for new data

PREDICTIONS II

■ Evaluate predictive performance

```
> performance(pred, measures = list(mlr::acc, mlr::auc))
## acc auc
## 0.8169336 0.8760819
```

RESAMPLING

- Aim: Assess the performance of a learning algorithm
- Uses the data more efficiently then simple train-test
- Repeatedly split in train and test, then aggregate results.

Cross Validation

- Most popular resampling strategy: Cross validation with 5 or 10 folds
- Split the data into k roughly equally-sized partitions
- Use each part once as test set and joint k-1 other parts to train
- Obtain k test errors and average them

Example of 3-fold cross-validation

Iteration 1	Test	Train	Train
Iteration 2	Train	Test	Train
Iteration 3	Train	Train	Test

CROSSVALIDATION IN MLR I

```
> rdesc = makeResampleDesc("CV", iters = 3,
   stratify = TRUE)
> r = resample(lrn, task, rdesc,
   measures = list(mlr::acc, mlr::auc))
> print(r)
## Resample Result
## Task: titanic
## Learner: classif.randomForest
## Aggr perf: acc.test.mean=0.7906791,auc.test.mean=0.8548651
## Runtime: 4.30436
```

CROSSVALIDATION IN MLR II

```
> head(r$measures.test)
##
    iter
              acc
                       auc
## 1 1 0.7917620 0.8678310
## 2 2 0.7912844 0.8518965
## 3 3 0.7889908 0.8448679
> head(as.data.frame(r$pred))
##
    id truth prob.0 prob.1 response iter set
          0 0.522 0.478
## 1 3
                                    1 test
## 2 4
          0 0.462 0.538
                                   1 test
## 3 10
          0 0.926 0.074
                               0 1 test
          0 0.566 0.434
                               0 1 test
## 4 26
                               1 1 test
          0 0.448 0.552
## 5 35
## 6 39
          0 0.402 0.598
                                 1 test
```

RESAMPLING METHODS IN MLR

Methods	Parameter
CV	iters
	stratify
LOO	
RepCV	reps
	folds
	stratify
Bootstrap	iters
	stratify
Subsample	iters
	split
	stratify
Holdout	split
	stratify

Benchmarking and Model Comparison I

- Comparison of multiple models on multiple data sets
- Aim: Find best learners for a data set or domain, learn about learner characteristics, . . .

```
> bmr = benchmark(list.of.learners, list.of.tasks, rdesc)
```

R Example: Algorithms I

■ Benchmark experiment - Compare 4 algorithms

```
> set.seed(3)
>
> learners = c("glmnet", "naiveBayes", "randomForest",
+    "ksvm")
> learners = makeLearners(learners, type = "classif",
+    predict.type = "prob")
>
> bmr = benchmark(learners, task, rdesc,
+    measures = mlr::auc)
```

R Example: Algorithms II

Access aggregated results

```
> getBMRAggrPerformances(bmr, as.df = TRUE)

## task.id learner.id auc.test.mean
## 1 titanic classif.glmnet 0.8402273

## 2 titanic classif.naiveBayes 0.8011408
## 3 titanic classif.randomForest 0.8571534
## 4 titanic classif.ksvm 0.8292053
```

R Example: Algorithms III

- Access more fine-grained results
- Many more getters for predictions, models, etc.

```
> head(getBMRPerformances(bmr, as.df = TRUE), 4)

## task.id learner.id iter auc
## 1 titanic classif.glmnet 1 0.8378909

## 2 titanic classif.glmnet 2 0.8136701

## 3 titanic classif.glmnet 3 0.8691209

## 4 titanic classif.naiveBayes 1 0.8006653
```

R Example: Algorithms IV

> plotBMRBoxplots(bmr)

PERFORMANCE MEASURES

- Different performance measures for different types of learning problems
- mlr has 71 performance measures implemented
- See all via https://mlr-org.github.io/mlr/articles/ tutorial/devel/measures.html or listMeasures()

mlr 2.13		tarted	Basi	cs 🕶	Advan	ced 🕶	Exten	ding 🕶	Appe	endix 🕶	mlr-org	Packages ▼ Search
ID / Name	Minim.	Best	Worst	Multi	Pred.	Truth	Probs	Model	Task	Feats	Aggr.	Note
acc Accuracy		1	0	х	Х	х					test.mean	Defined as: mean(response == truth)
auc Area under the curve		1	0		Х	Х	Х				test.mean	Integral over the graph that results f and tpr for many different threshold
bac Balanced accuracy		1	0	Х	Х	Х					test.mean	For binary tasks, mean of true positi negative rate.
ber Balanced error rate	х	0	1	Х	х	х					test.mean	Mean of misclassification error rates classes.
brier Brier score	Х	0	1		х	х	х				test.mean	The Brier score is defined as the que between the probability and the validation of the validation one vs. all comparisons and for a bilidation of the validation of validation of the validation of the validation of valid
brier.scaled Brier scaled		1	0		Х	х	Х				test.mean	Brier score scaled to [0,1], see http://www.ncbi.nlm.nih.gov/pmc/a
f1 F1 measure		1	0		Х	Х					test.mean	Defined as: 2 * tp/ (sum(truth == pos sum(response == positive))

PERFORMANCE MEASURE FOR CLASSIFICATION I

- In our Titanic example we have a classification problem
- Confusion matrix: contingency table of predictions \hat{y} and true labels y

		Diagnostic Te	sting Measures		
		Actual	Class y		
		Positive	Negative		
\hat{y}	Test outcome positive	True positive	False positive (FP, Type I error)	$\frac{\text{Precision} =}{\text{#TP}}$ $\frac{\text{#TP} + \text{#FP}}{\text{#TP} + \text{#FP}}$	
outcome	Test outcome negative	False negative (FN, Type II error)	True negative (TN)	Negative predictive value = $\frac{\#TN}{\#FN + \#TN}$	
		$Sensitivity = \frac{\#TP}{\#TP + \#FN}$	$Specificity = \\ \frac{\#TN}{\#FP + \#TN}$	$\begin{array}{c} Accuracy = \\ \frac{\#\mathrm{TP} + \#\mathrm{TN}}{\#\mathrm{TOTAL}} \end{array}$	

PERFORMANCE MEASURE FOR CLASSIFICATION II

 For classification performance measure the True Positive Rate (TPR) and the False Positive Rate (FPR) are plotted → ROC Curve (Receiver Operating Characteristic)

 For measuring the performance we can caluculate the area under the ROC curve (AUC)

R Example: Random Forest I

■ The Random Forest seems to work best, lets have a closer look

```
> res = holdout(lrn, task)
> df = generateThreshVsPerfData(res$pred,
+ list(fpr, tpr, acc))
> plotROCCurves(df)
```

R EXAMPLE: RANDOM FOREST II

R Example: Random Forest III

HYPERPARAMETER TUNING

- Optimize parameters or decisions for ML algorithm w.r.t. the estimated prediction error
- Tuner proposes configuration, eval by resampling, tuner receives performance, iterate

GRID SEARCH

Try all combinations of finite grid

 \sim Inefficient, combinatorial explosion, searches irrelevant areas

RANDOM SEARCH

Unformly randomly draw configurations,

→ Scales better then grid search, easily extensible

TUNING IN MLR I

- Create a set of parameters
- Here we optimize an RBF SVM on logscale

```
> lrn.ksvm = makeLearner("classif.ksvm",
+    predict.type = "prob")
>
> par.set = makeParamSet(
+    makeNumericParam("C", lower = -8, upper = 8,
+         trafo = function(x) 2^x),
+    makeNumericParam("sigma", lower = -8, upper = 8,
+         trafo = function(x) 2^x)
+ )
```

TUNING IN MLR II

Optimize the hyperparameter of learner

```
> tune.ctrl = makeTuneControlRandom(maxit = 10L)
> tr = tuneParams(lrn.ksvm, task = task, par.set = par.set,
+ resampling = rdesc, control = tune.ctrl,
+ measures = mlr::auc)
```

TUNING IN MLR III

```
> head(as.data.frame(tr$opt.path))[, c(1,2,3,7)]
                sigma auc.test.mean exec.time
##
## 1 7.803771 2.0060031
                         0.7570655
                                      2.54
## 2 -4.374242 -0.3324129 0.8160881
                                      0.82
## 3 -5.417617 3.5509443 0.7770489
                                      0.89
## 4 2.076026 -1.9390989 0.8135859
                                      0.77
## 5 1.887830 -4.4571549 0.8321945
                                      0.82
## 6 -2.167479 2.1372494 0.7861856
                                      0.86
```

R Example: Tuning I

- We used all algorithms in their default settings
- Hopefully tuning will improve the performance
- Nested cross validation to get true out-of-sample predictions

```
> classif.ksvm.tuned = makeTuneWrapper(
+ lrn.ksvm, resampling = rdesc,
+ par.set = par.set, control = tune.ctrl)
> bmr2 = benchmark(classif.ksvm.tuned, task, rdesc)
```

makeTuneWrapper: Fuses a base learner with a search strategy to select its hyperparameters

R Example: Tuning II

> plotBMRBoxplots(mergeBenchmarkResults(list(bmr, bmr2)))

NESTED RESAMPLING I

- Danger of overfitting if hyperparameter and performance evaluation on the same test set
- Solution: 3-way split into training, optimization and test set

NESTED RESAMPLING EXAMPLE I

- We show nested resampling with tuning
- Therefore we need an additional inner resampling loop

```
> inner.rdesc = makeResampleDesc("Subsample", iters = 2)
> 
> classif.ksvm.inner = makeTuneWrapper(
+ lrn.ksvm, resampling = inner.rdesc,
+ par.set = par.set, control = tune.ctrl,
+ measures = mlr::auc)
```

NESTED RESAMPLING EXAMPLE II

■ We use rdesc for the outer loop

```
> r.nest = resample(classif.ksvm.inner, task,
+ resampling = rdesc, extract = getTuneResult,
+ measures = mlr::auc)
> r.nest

## Resample Result
## Task: titanic
## Learner: classif.ksvm.tuned
## Aggr perf: auc.test.mean=0.8373767
## Runtime: 13.2617
```

NESTED RESAMPLING EXAMPLE III

```
> r.nest$extract
## [[1]]
## Tune result:
## Op. pars: C=3.39; sigma=0.0317
## auc.test.mean=0.8448094
##
## [[2]]
## Tune result:
## Op. pars: C=0.859; sigma=0.0454
## auc.test.mean=0.8439726
##
## [[3]]
## Tune result:
## Op. pars: C=173; sigma=0.00819
## auc.test.mean=0.8462711
```

PARALLELIZATION

- We use our own package: parallelMap
- Setup:

```
> parallelStart("multicore")
> benchmark(...)
> parallelStop()
```

- Backends: local, multicore, socket, mpi and batchtools
- The latter means support for: makeshift SSH-clusters, Docker swarm and HPC schedulers like SLURM, Torque/PBS, SGE or LSF
- Levels allow fine grained control over the parallelization
 - mlr.resample: Job = "train / test step"
 - ▶ mlr.tuneParams: Job = "resample with these parameter settings"
 - mlr.selectFeatures: Job = "resample with this feature subset"
 - mlr.benchmark: Job = "evaluate this learner on this data set"

Interpretable Machine Learning

- iml Interpretable Machine Learning https://github.com/christophM/iml
- Background
 - Machine learning has a huge potential
 - Lack of explanation hurts trusts and creates barrier for machine learning adoption
 - Interpretation of the behaviour and explanation of predictions of machine learning model with Interpretable Machine Learning

SUPPORTED METHODS

- Model-agnostic interpretability methods for any kind of machine learning model
- Supported are
 - ► Feature importance
 - Partial dependence plots
 - Individual conditional expectation plots
 - ▶ Tree surrogate
 - Local interpretable model-agnostic explanations
 - Shapley value

ONE IML MODEL FOR ALL METHODS I

■ Use iml package

```
> library(iml)
```

- We use our trained model mod
- We need training data from the index vector train

```
> mod

## Model for learner.id=classif.randomForest; learner.class=clas
## Trained on: task.id = titanic; obs = 872; features = 10
## Hyperparameters:
```

ONE IML MODEL FOR ALL METHODS II

- Extract features
- Create IML model

```
> X = dropNamed(train.data, "Survived")
> iml.mod = Predictor$new(mod, data = X,
+ y = train.data$Survived, class = 2)
```

FEATURE IMPORTANCE

■ What were the most important features?

```
> imp = FeatureImp$new(iml.mod, loss = "ce")
> plot(imp)
```


PARTIAL DEPENDENCE PLOTS

■ How does the "passenger class" influence the prediction on average?

```
> pdp = PartialDependence$new(iml.mod, feature = "Pclass")
> plot(pdp)
```


LOCAL LINEAR MODELS (LIME)

Explain a single prediction with LIME

59 / 96

EXPENSIVE BLACK-BOX OPTIMIZATION

- mlrMB0 Bayesian Optimization and Model-Based Optimization https://github.com/mlr-org/mlrMB0
- Goal: optimize expensive black box functions by model-based optimization (aka Bayesian optimization)

MLRMBO: MODEL-BASED OPTIMIZATION TOOLBOX

- Any regression from mlr
- Arbtritrary infill
- Single or multi-crit
- Multi-point proposal
- Via parallelMap and batchtools runs on many parallel backends and clusters
- Algorithm configuration
- Active research

MLRMBO I

Create an unified interface with the general mlrMBO workflow

- Define objective function and its parameters using the package smoof
- 2. Generate initial design (optional)
- 3. Define mlr' learner for surrogate model (optional)
- 4. Set up a **MBO control** object
- 5. Start the optimization with mbo()

MLRMBO II

Supported are

- Efficient global optimization (EGO) of problems with numerical domain and Kriging as surrogate
- Using arbitrary regression models from mlr as surrogates
- Built-in parallelization using multi-point proposals
- Mixed-space optimization with categorical and subordinate parameters, for parameter configuration and tuning
- Multi-criteria optimization

FROM NORMAL MBO TO HYPERPARAMETER TUNING

HYPERPARAMETER TUNING

EXAMPLE: PACKAGES AND CONFIGURATION

```
> library(mlrMBO) # Bayesian Optimization in R
> library(ParamHelpers) # Objects for parameter spaces
> library(smoof) # Interface for objective functions
> set.seed(2)
```

We run all optimization with VERY fey evals to reduce time and log output

```
> iters = 5
```

EXAMPLE: MIXED SPACE OPTIMIZATION

■ Extend our parameter set from Titanic example

```
> par.set = makeParamSet(
+ makeNumericParam("C", lower = -8, upper = 8,
+ trafo = function(x) 2^x),
+ makeNumericParam("sigma", lower = -8, upper = 8,
+ trafo = function(x) 2^x)
+ )
```

OBJECTIVE FUNCTON

- We use our Titanic task
- Create a single objective function

```
> svm = makeSingleObjectiveFunction(name = "svm.tuning",
+ fn = function(x) {
 # remove inactive parameters coded with `NA`
+ x = x[!vlapply(x, is.na)]
+ lrn = makeLearner("classif.ksvm", par.vals = x)
+ crossval(lrn, task, iters = 2, show.info = FALSE) $aggr
  },
+ par.set = par.set,
  noisy = TRUE,
   has.simple.signature = FALSE,
+ minimize = TRUE
> ctrl = makeMBOControl()
> ctrl = setMBOControlTermination(ctrl, iters = iters)
```

MBO LEARNER I

- Parameter set is not a suitable surrogate
- Use random Forest with imputation for non-active parameters

```
> makeMBOLearner(ctrl, svm)

## Learner regr.km from package DiceKriging
## Type: regr
## Name: Kriging; Short name: km
## Class: regr.km
## Properties: numerics,se
## Predict-Type: se
## Hyperparameters: jitter=TRUE,covtype=matern3_2,optim.method=g
```

MBO LEARNER II

```
> res = mbo(svm, control = ctrl)
> print(res)
## Recommended parameters:
## C=-0.305; sigma=-2.19
## Objective: y = 0.202
##
## Optimization path
## 8 + 5 entries in total, displaying last 10 (or less):
                    sigma y dob eol error.message exec.
##
## 4 -7.7416820 -6.333102 0.3819584
                                       NA
                                                    <NA>
## 5 4.9360370 3.099967 0.3307725
                                     O NA
                                                    < NA >
## 6
     -0.8946519 -3.522210 0.2054917
                                      O NA
                                                    < NA >
## 7
     -4.4789734 4.361640 0.3819677
                                      O NA
                                                    <NA>
## 8 6.8105644 -4.292903 0.2177382
                                      O NA
                                                    < NA >
                                        NA
                                                    < NA >
## 9
      4.2962856 -2.585426 0.2207811
## 10 7.9947749 -3.508953 0.2360599
                                      2 NA
                                                    < NA >
## 11 1.8919236 -4.051119 0.2207683
                                      3 NA
                                                    < NA >
## 12 -0.3054272 -2.186221 0.2024371
                                      4 NA
                                                    < NA >
## 13 -0.1544471 -2.866955 0.2024441
                                      5
                                        NA
                                                    <NA> mlr
                                                         70 / 96
## orror model train time prop type propose time
```

RESULTS

```
> op = as.data.frame(res$opt.path)
> plot(cummin(op$y), type = "1", ylab = "mmce",
+ xlab = "iteration")
```


REFERENCES

- mlrMB0 Paper on arXiv (under review) https://arxiv.org/abs/1703.03373
- Bischl, Wessing et al: MOI-MBO: Multiobjective infill for parallel model-based optimization, LION 2014
- Horn, Wagner, Bischl et al: Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark, EMO 2014

MLRCPO I

mlrCPO - Composable Preprocessing Operators for mlr https://github.com/mlr-org/mlrCPO

```
> library(mlrCPO)
```

 Preprocessing operations (e.g. imputation or PCA) as R objects with their own hyperparameters

```
> operation = cpoScale()
> print(operation)
## scale(center = TRUE, scale = TRUE)
```

MLRCPO II

- Objects are handled using the "piping" operator %>>%:
- Composition:

```
> imputing.pca = cpoImputeMedian() %>>% cpoPca()
```

Application to data

```
> task %>>% imputing.pca
```

Combination with a Learner to form a machine learning pipeline

```
> pca.rf = imputing.pca %>>%
+ makeLearner("classif.randomForest")
```

MLRCPO EXAMPLE: TITANIC I

The feature engineering and preprocessing steps done on the Titanic dataset, using mlrCPO:

```
> # Add interesting columns
> newcol.cpo = cpoAddCols(
+ farePp = Fare / (Parch + Sibsp + 1),
+ deck = stri_sub(Cabin, 1, 1),
+ side = {
+ digit = stri_sub(Cabin, 3, 3)
+ digit = suppressWarnings(as.numeric(digit))
+ c("port", "starboard")[digit %% 2 + 1]
+ })
```

MLRCPO EXAMPLE: TITANIC II

```
> # drop uninteresting columns
> dropcol.cpo = cpoSelect(names = c("Cabin",
+ "Ticket", "Name"), invert = TRUE)
>
> # impute
> impute.cpo = cpoImputeMedian(affect.type = "numeric") %>>%
+ cpoImputeConstant("__miss__", affect.type = "factor")
```

MLRCPO EXAMPLE: TITANIC III

```
> train.task = makeClassifTask("Titanic", train.data,
+ target = "Survived")
>
> pp.task = train.task %>>% newcol.cpo %>>%
+ dropcol.cpo %>>% impute.cpo
```

■ Advantage: Different preprocessing steps can be tried by preparing different CPO objects (→ "strategy pattern").

Transformation of New Data

- New data (e.g. for testing, prediction) must also be preprocessed, in same order and with same hyperparameters
- Preprocessing parameters (e.g. PCA matrix) should only depend on training data
- Use retrafo() to get retrafo information to use on test data
- Object of type CPOTRained, behaves very similar to CPO

```
> # get retransformation
> ret = retrafo(pp.task)
> # can be applied to data using the %>>% operator,
> # just as a normal CPO
> pp.test = test.data %>>% ret
```

COMBINATION WITH LEARNERS

- Attach one or more CPO to a Learner to build machine learning pipelines
- Autotmatically handles preprocessing of test data

```
> learner = newcol.cpo %>>% dropcol.cpo %>>%
+ impute.cpo %>>% makeLearner("classif.randomForest",
+ predict.type = "prob")
>
> # the new object is a "CPOLearner", subclass of "Learner"
> inherits(learner, "CPOLearner")
## [1] TRUE
> # train using the task that was not preprocessed
> ppmod = train(learner, train.task)
```

TUNING WITH MLRCPO I

- CPO hyperparameters can be tuned in combination with Learner parameters
- Tuning can be done using tuneParams() function from mlr

TUNING WITH MLRCPO II

```
> tuneParams(learner, train.task, cv3, par.set = ps,
+ control = makeTuneControlRandom(maxit = 10L),
+ measures = mlr::auc)

## Tune result:
## Op. pars: ntree=460; mtry=3
## auc.test.mean=0.8604592
```

MLRCPO III

- listCPO() to show available CPOs
- Currently 69 CPOs, and growing: imputation, feature type conversion, target value transformation, over/undersampling, ...
- "cbind" CPO combines different preprocessing outputs of the same data

```
> scale = cpoSelect(pattern = "Fare", id = "first") %>>%
+ cpoScale(id = "scale")
> scale.pca = scale %>>% cpoPca()
> cbinder = cpoCbind(scale, scale.pca, cpoSelect(
+ pattern = "Age", id = "second"))
> result = train.data %>>% cbinder
> result[1:3, ]
##
        Fare PC1
                          Age
## 1 3.768222 3.768222 29.0000
## 2 2.512035 2.512035 0.9167
## 4 2.512035 2.512035 30.0000
```

MLRCPO IV

- CPO "multiplexer" enables tuning over different distinct preprocessing operations
- Custom CPOs can be created using makeCPO()
- Further documentation in the vignettes:

```
> vignette("a_1_getting_started")
```

OPENML

Main idea: Make ML experiments reproducible, computer-readable and allow collaboration with others.

OPENML R-PACKAGE

https://github.com/openml/r

Tutorial

■ Caution: Work in progress

CURRENT API IN R

- Explore and Download data and tasks
- Register learners and upload runs
- Explore your own and other people's results

OPENML ACCOUNT

Install the openML package and either farff or RWeka

```
> library("OpenML")
```

- You need an openML API key to talk to the server
- Create an account on https://www.openml.org/register

```
> setOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")
>
> # Permanently save your API disk to your config file
> saveOMLConfig(apikey = "c1994...47f1f", overwrite=TRUE)
```

■ Find your own API key in account settings API Authentication

OPENML DATA AND TASKS I

■ You can access all datasets or tasks

```
> datasets = listOMLDataSets()
> datasets[1:3, c(1,2,11)]
## data.id name number.of.features
## 1 2
             anneal
                                 39
## 2
         3 kr-vs-kp
                                 37
## 3
         4
             labor
                                 17
> tasks = listOMLTasks()
> tasks[1:3, 1:4]
## task.id
                         task.type data.id name
         2 Supervised Classification 2 anneal
## 1
         3 Supervised Classification 3 kr-vs-kp
## 2
         4 Supervised Classification 4 labor
## 3
```

OPENML DATA AND TASKS II

Search for data on https://www.openml.org/home

OPENML TITANIC DATASET

■ We download the Titanic dataset from OpenML

```
> listOMLDataSets(data.name = "titanic")[, 1:5]

## data.id name version status format
## 1 40704 Titanic 2 active ARFF
## 2 40945 Titanic 1 active ARFF
> titanic = getOMLDataSet(data.id = 40945L)
```

OPENML TITANIC TASK

■ We also can directly load the Titanic classification task

```
> listOMLTasks(data.name = "titanic")[1:2, 1:4]
## task.id
                          task.type data.id name
## 1 145769
                         Clustering 40704 Titanic
## 2 146230 Supervised Classification 40704 Titanic
> titanic.task = getOMLTask(task.id = 146230)
> titanic.task
##
## OpenML Task 146230 :: (Data ID = 40704)
   Task Type : Supervised Classification
##
## Data Set : Titanic :: (Version = 2, OpenML ID =
## Target Feature(s) : class
## Estimation Procedure: Stratified crossvalidation (1 x 10 f
## Evaluation Measure(s): precision
```

OPENML AND MLR

- We can use OpenML and mlr together
- Use mlr for learner and use the task that we've got from OpenML

```
> lrn = makeLearner("classif.randomForest", mtry = 2)
> run.mlr = runTaskMlr(titanic.task, lrn)
> run.mlr$bmr$results

## $Titanic
## $Titanic$classif.randomForest
## Resample Result
## Task: Titanic
## Learner: classif.randomForest
## Aggr perf: ppv.test.join=0.7692308,timetrain.test.sum=3.94000
## Runtime: 4.17194
```

OPENML UPLOAD

- You can upload your own data sets to OpenML
- Three steps are neccessary
 - makeOMLDataSetDescription: create the description object of an OpenML data set
 - 2. makeOMLDataSet: convert the data set into an OpenML data set
 - 3. uploadOMLDataSet: upload the data set to the server
- We can upload our Titanic data set to OpenML

```
> titanic.desc = makeOMLDataSetDescription(name = "titanic",
+ description = "Titanic data set ...")
>
> titanic.data = makeOMLDataSet(desc = titanic.desc,
+ data = data, target.features = "Survived")
>
> # titanic.id = uploadOMLDataSet(titanic.data)
```

There is more ...

- Regression, Clustering and Survival analysis
- Cost-sensitive learning
- Multi-Label learning
- Imbalancy correction
- Wrappers
- Bayesian optimization
- Multi-criteria optimization
- Ensembles, generic bagging and stacking
-

WE ARE WORKING ON

- Even better tuning system
- More interactive and 3D plots
- Large-Scale learning on databases
- Time-Series tasks
- Large-Scale usage of OpenML
- auto-mlr
- **.** . . .

MLR CONTRIBUTION

- Write an issue on Git
- We are founding an association Machine Learning in R e.V subscribe for updates contact.mlr.org@gmail.com

Thanks!