Digital Signal Processing

Lecture 12 – digital image processing 2

상명대학교 컴퓨터과학과 강상욱 교수

INTERPOLATION

What is image interpolation?

- An image f(x,y) tells us the intensity values when x and y are both integers.
- Image interpolation refers to the "guess" of intensity values at missing locations, i.e., x and y can be arbitrary.
- Note that it is just a guess. (Note that all sensors have finite sampling distance)
- It is about Digital to Analog conversion.

Why need image interpolation?

We want big images

- When we see a video clip on a PC, we like to see it in the full screen mode.
- Sometime, we need a smaller image as well.

We want good images

If some block of an image gets damaged during the transmission, we want to repair it.

We want cool images

Image can be rotated, warped or screwed to make funny and cool images.

Ex 1 - resolution enhancement

Ex 2 — Image inpainting

Ex 3 — Image warping

Upsampling

■ This image is too small for this screen:

- How can we make it 10 times as big?
- The simplest approach: repeat each row and column 10 times
- "Nearest neighbor interpolation"

Interpolation in 1-D

d = 1 in this example

- It is a discrete point--sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Interpolation in I-D

d = 1 in this example

- It is a discrete point--sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Interpolation in I-D

"Ideal" reconstruction

Nearest-reighbor interpolation

Linear interpolation

Gaussian reconstruction

Interpolation in 1-D

Original image: 🔊 x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

1-D zero-order (replication)

1-D first-order (Linear)

Linear interpolation example

Heuristic: the closer to a pixel, the higher weight is assigned Principle: line fitting to polynomial fitting (analytical formula)

$$f(n+a)=(1-a)\times f(n)+a\times f(n+1), 0$$

Note: when a=0.5, we simply have the average of two

Linear interpolation formula

```
f(n) = [0,120,180,120,0]
\downarrow \text{Interpolate at 1/2-pixel}
f(x) = [0,60,120,150,180,150,120,60,0], \text{ } x = n/2
\downarrow \text{Interpolate at 1/3-pixel}
f(x) = [0,20,40,60,80,100,120,130,140,150,160,170,180,...], \text{ } x = n/6
```

From I-D to 2-D

From 1-D to 2-D example

From 1-D to 2-D example

- Scaling
 - magnification
 - reduction
- Rotation