

Session 7 – Classification

Application on image classification

A bit of Context

Machine Learning

Deep Learning

Binary classification

Multiclass Classification

One vs all (OVA) or One vs Rest (OVR)

One vs one

Multilabel Clssification

Multi-Output Classification

- Generalization of multi-label classification where each label can be multi-class.
- Example: System that removes noise from images

Input: Image + Noise

Output: Image without noise

Output: Multi-output
Multi-label: one label per pixel
Each label can have multiple
values: Pixel intensity ranges
From 0 to 255
Output 1: Pixel intensity 1
:
:
:
Output n: Pixel intensity n

KNN Classifier

Recommending Apps

Gender	Age	Арр
F	15	
F	25	
M	32	2
F	40	
M	12	.
M	14	0

Recommending Apps

Gender	Age	Арр
F	15	
F	25	
M	32	8
F	40	
M	12	
M	14	

Recommending Apps

Gender	Age	App
F	15	
F	25	
M	32	3
F	40	
M	12	
M	14	

Recommending Apps

Gender	Age	Арр
F	25	
M	32	<u> </u>
F	40	

Recommending Apps

Gender	Age	Арр
F	25	
M	32	8
F	40	

Other Classifiers

SVM Family

- Support Vector Machine Classifier can use different Kernels
 - Linear
 - Polynomial
 - Radial

Bagging Family

• Random Forest Classifier

Boosting Family

- Gradient Boosting Classifier (GBM)
- XGBoost
- LightGBM
- Catboost

Model Evaluation

Confusion Matrix (Binary outcome or target)

How good is our model in predicting positive outcome (yes)?

- Examine the classification table
 - The rows represent the actual classes of the sample
 - The columns represent the predicted classes –
 based on a cutoff probability value of 0.5
 - True negatives are the NO, predicted as NO (TN)
 - False positives are NO, predicted as YES (FP)
 - True positives are YES, predicted as YES (TP)
 - False negatives are YES, predicted as N (FN)

Confusion Matrix No		Predicted		
		Yes	Total	
	No	TN	FP	Actual -
Actual	Yes	FN	TP	Actual +
	Total	Predicted -	Predicted +	Sample size

$$Accuracy = \frac{TN + TP}{Sample \ size} \Leftrightarrow Error \ rate = 1 - Accuracy$$

$$Precision = \frac{TP}{Predicted +}$$

$$Sensitivity(Recall) = \frac{TP}{Actual +} = True \ positive \ rate \ (TPR)$$

$$Specificity = \frac{TN}{Actual -} = 1 - FPR (False positive \ rate)$$

$$F_1 Score = \frac{2 \times Recall \times Precision}{Recall + Precision}$$

The ROC AUC (AUROC)

Using these performance indicators usually makes several assumptions

- The 0.5 cutoff assumes approximately balanced datasets
- The reliance on accuracy or error rate assumes equivalent costs of misclassification

☐ Assume we have very unbalanced dataset

- Ex: Fraud detection: less than 5% of people are considered fraudulent
 - Any model predicting always people to be non fraudulent will have an accuracy of 95% or more
 - If 95% of the sample is negative, is it realistic to choose a probability of 0.5 to assign to the positive class?
 - In a dataset of this type, the sensitivity is going to be very low while the specificity very high
 - Any indicator based on some threshold for class assignment is problematic for unbalanced dataset
- □One solution is to use a performance indicator that is threshold independent : the AUC (Area under the ROC Curve)

Cohen's Kappa

 Compares the actual (observed) accuracy to a random classifier's (expected) accuracy

Better than the Accuracy

- More robust to imbalanced datasets
- Applicable to multiclass classification
- Remains threshold dependent
- Fairly good classifier : $\kappa > 0.60$

$$\kappa = \frac{p_0 - p_e}{1 - p_e}$$

 p_0 : probability of observed agreement p_e : probability of expected (by chance) agreement