Sejam f e g dois polinômios não identicamente nulos com coeficientes inteiros e deg $f > \deg g$. Suponha que existem infinitos primos p para os quais o polinômio pf + g possui raíz racional. Prove que f possui raíz racional.

Pf +	∂	possui	roiz rocion	nd pero infin	<u> </u>
(p,	+ f -	g) (Xi)	=0.		f(x)=\(\Sigma\) c; x
	y	i pa·	à n \ \\ \\ \	=o yulon	
74		9(**/y;)	h h		
5P G	P	yi		, do 5 🛴 .	
		P; ≤ Y; €			h=desf
f	· (×;) yin t	$g\left(\frac{x_i}{y_i}\right)$	y_i^{n-1} y_i p_i	20
			Abstrato		
Logo g		g = n-1, $f(x)$			
P		$\frac{f}{g}\left(\frac{x_{i}}{y_{i}}\right)$			

