Różniczkowalność a ciągłość

Twierdzenie

Jeżeli funkcja jest różniczkowalna w pewnym punkcie, to jest w tym punkcie ciągła.

Nied
$$f'(x_0)$$
 is large.

Musimy pohoral ie

 $\lim_{x \to x_0} f(x) = f(x_0).$
 $\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} (x - x_0) \frac{f(x) - f(x_0)}{x - x_0} = 0$
 $\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} f(x) - f(x_0)$
 $\lim_{x \to x_0} f(x) - f(x_0) = 0$
 $\lim_{x \to x_0} f(x) - f(x_0) = 0$
 $\lim_{x \to x_0} f(x) - f(x_0) = 0$

Algebraiczne własności pochodnej

Twierdzenie

Jeżeli funkcje f i g są różniczkowalne w punkcie x_0 , to

$$(c \cdot f)'(x_0) = c \cdot f'(x_0)$$
 dla dowolnego $c \in \mathbb{R}$,

$$(f+g)'(x_0)=f'(x_0)+g'(x_0),$$

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0) \cdot g'(x_0),$$

$$\frac{\left(\frac{f}{g}\right)(x_{0}+h)-\left(\frac{f}{g}\right)(x_{0})}{h} = \frac{1}{h} \left[\frac{f(x_{0}+h)}{g(x_{0}+h)} - \frac{f(x_{0})}{g(x_{0}+h)}\right] = \frac{1}{h} \frac{f(x_{0}+h)g(x_{0})-f(x_{0})g(x_{0}+h)}{g(x_{0}+h)g(x_{0})} = \frac{1}{h} \frac{\left(f(x_{0}+h)-f(x_{0})g(x_{0}+h)-g(x_{0})\right)}{g(x_{0}+h)g(x_{0})} = \frac{1}{h} \frac{\left(f(x_{0}+h)-f(x_{0})g(x_{0}+h)-g(x_{0})\right)}{g(x_{0}+h)g(x_{0})} = \frac{1}{h} \frac{\left(f(x_{0}+h)-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})\right)}{h} = \frac{1}{h} \frac{\left(f(x_{0}+h)-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})\right)}{h} = \frac{1}{h} \frac{\left(f(x_{0}+h)-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})-f(x_{0})g(x_{0})\right)}{h} = \frac{1}{h} \frac{f(x_{0}+h)g(x_{0})-f(x_{0})g(x_{0})-f(x$$

Pochodna funkcji złożonej

Twierdzenie

Jeżeli funkcja g ma pochodną w punkcie x_0 , a funkcja f ma pochodną w punkcie $g(x_0)$, to

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

$$h(x) = f(g(x))$$

$$h(x) - h(x_0) = f(g(x)) - f(g(x_0))$$

$$x - x_0$$

$$f(g(x)) - f(p(x_0)) = f(x_0)$$

$$y = f(g(x)) - f(p(x_0)) = f(x_0)$$

$$y = f(g(x)) - f(x_0)$$

$$y = f(x_0)$$

$$f'(y_0) \text{ istricte} = \lim_{h \to 0} \frac{f(y_0 + h) - f(y_0)}{h} = f'(y_0)$$

$$f'(y_0) \text{ istricte} = \lim_{h \to 0} \frac{f(y_0 + h) - f(y_0)}{h} = \lim_{h \to 0} \frac{$$

Cus approisé impliture voinialouvelnoisé? f(x) = (x)Cipgle $\frac{x-0}{(x)-f(0)} = \frac{|x|-(0)}{|x|} = \frac{|x|}{|x|} = \begin{cases} 1, & x < 0 \\ 1, & x < 0 \end{cases}$ flo) vie istnieje NIE! MANAPARAMATAN Feht. Istnieje funkcje cipate, które nie posiadaje podrodnej u iednym punkcie.

Pochodne jednostronne

Jeżeli funkcja f jest określona w pewnym otoczeniu lewostronnym punktu x_0 , to granicę

$$f'_{-}(x_0) := \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0},$$

o ile istnieje, nazywamy pochodną lewostronną funkcji f w punkcie x_0 .

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$$

Pochodne jednostronne

Jeżeli funkcja f jest określona w pewnym otoczeniu lewostronnym punktu x_0 , to granicę

$$f'_{-}(x_0) := \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0},$$

o ile istnieje, nazywamy pochodną lewostronną funkcji f w punkcie x_0 .

Jeżeli funkcja f jest określona w pewnym otoczeniu lewostronnym punktu x_0 , to granicę

$$f'_{+}(x_0) := \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{h},$$

o ile istnieje, nazywamy pochodną prawostronną funkcji f w punkcie x_0 .

$$f'(x_0)$$
 istricte = $f'_+(x_0)$, $f'_-(x_0)$ istricty i $f'_-(x_0) = f'_+(x_0)$

Pochodna w przedziale domkniętym

Jeżeli funkcja f jest określona na przedziale (a, b) i ma pochodną prawostronną w a, to mówimy, że jest ona **różniczkowalna** w a.

Pochodna w przedziale domkniętym

Jeżeli funkcja f jest określona na przedziale [a, b) i ma pochodną prawostronną w a, to mówimy, że jest ona **różniczkowalna** w a.

Jeżeli funkcja f jest określona na przedziale (a, b] i ma pochodną lewostronną w b, to mówimy, że jest ona **różniczkowalna** w b.

$$f: [a,b] \rightarrow \mathbb{R}$$

$$f \text{ jest rain whowehere we } [a,b]$$

$$\equiv f'(x_0) = \begin{cases} f'_+(a) & \text{if } x_0 = a \\ f'_-(b) & \text{if } x_0 = b \end{cases}$$

Pochodna a zachowanie funkcji

Twierdzenie Fermata

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ osiąga w punkcie x_0 kres dolny lub górny swoich wartości oraz istnieje pochodna $f'(x_0)$, to

$$f'(x_0)=0.$$

Twierdzenie Rolle'a

Jeżeli funkcja f jest ciągła w przedziale [a, b] oraz różniczkowalna w przedziale (a, b), a dodatkowo f(a) = f(b), to istnieje taki punkt $c \in (a, b)$, że

$$f'(c)=0.$$

$$f(c) = \inf_{x \in [a,b]} f(x)$$

$$f(c) = \inf_{x \in [a,b]} f(x)$$

$$f(c) = \sup_{x \in [a,b]} f(x)$$

$$f(c) = \sup_{x \in [a,b]} f(x)$$

$$f(x) = \sup_{x \in [a,b]} f(x)$$

Twierdzenie Lagrange'a o wartości średniej

Jeżeli funkcja f jest ciągła w przedziale [a,b] oraz różniczkowalna w przedziale (a,b), to istnieje taki punkt $c \in (a,b)$, że

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

$$tg = \frac{f(b) - f(e)}{b - e}$$

$$tg = \frac{f(b) - f(e)}{b - e}$$

$$tg = \frac{f(b) - f(e)}{b - e}$$

$$tg(b) = f(b) - f(a)$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(a) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(a) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(b) - f(b) + \frac{f(b) - f(a)}{b - e}$$

$$tg(b) = f(b) - f(b) = 0$$

$$tg(b) = f($$

Nied
$$f: [a,b] \rightarrow \mathbb{R}$$
.

2alding ie $f'(x) \geq 0$ dle $x \in (a,b)$

The Lagrangea $\Rightarrow \bigvee f(b) - f(a) = f'(c)$
 $\Rightarrow f(b) - f(a) \geq 0$

Nied $x, y \in [a,b]$ $x < y$.

 $f(b) - f(a) \geq 0$

Nied $f(b) - f(a) \geq 0$

Nied $f(b) - f(a) \geq 0$
 $f(b) - f(a) = 0$

Pochodna a monotoniczność

Twierdzenie [a,b],[a,b),(a,b],(a,b)

Niech funkcja $f: I \to \mathbb{R}$ określona na dowolnym przedziale I będzie ciągła na I oraz różniczkowalna wewnątrz I. Wtedy:

$$\rightsquigarrow$$
 f jest stała na l \equiv f' = 0 wewnątrz l.

$$\rightsquigarrow$$
 f jest rosnącą na I \equiv f' \geqslant 0 wewnątrz I.

$$\leadsto$$
 f jest/malejąca na I \equiv f' \leqslant 0 wewnątrz I.

$$f(x) = \frac{1}{x} \qquad \int f = (-\infty, 0) \cup (0, +\infty)$$

$$f'(x) = -\frac{1}{x^2} < 0 \implies f \text{ moleje}$$

Pochodna a ścisła monotoniczność

Twierdzenie

Niech funkcja $f: I \to \mathbb{R}$ określona na dowolnym przedziale I będzie ciągła na I oraz różniczkowalna wewnątrz I. Jeżeli funkcja f' nie jest stale równa 0 na żadnym podprzedziale przedziału I, to

- \rightsquigarrow f jest **ściśle** rosnącą na I \equiv $f' \geqslant 0$ wewnątrz I.
- \rightsquigarrow f jest **ściśle** malejąca na I \equiv f' \leqslant 0 wewnątrz I.

Hissoln.

f'> 0 Heurphin I

f jest scisle vosipce.

f' ma shownense whole

miegse revous do

$$f(x) = x^{2}e^{-x}$$

$$f(x) = 2xe^{-x} + xe^{-x} \cdot (-1) = 2xe^{-x} - xe^{-x} = -xe^{-x}$$

$$= -xe^{-x} \cdot x \cdot (2-x)$$

$$\Rightarrow 0$$

$$f(x) = 2xe^{-x} + xe^{-x} \cdot (-1) = 2xe^{-x} - xe^{-x} = -xe^{-x}$$

$$= -xe^{-x} \cdot x \cdot (2-x)$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$= -xe^{-x} \cdot x \cdot (2-x)$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$= -xe^{-x} \cdot x \cdot (2-x)$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$\Rightarrow 0$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$\Rightarrow 0$$

$$\Rightarrow 0$$

$$f(x) = -xe^{-x} + xe^{-x} = -xe^{-x}$$

$$\Rightarrow 0$$

$$\Rightarrow$$

Ekstrema

Mówimy, że funkcja f ma w punkcie x_0 minimum lokalne, jeżeli

$$\bigvee_{\delta>0} f(x) \geqslant f(x_0).$$

$$\leq \sum_{\delta>0} (x_0,\delta) = (x_0 - \delta - x_0) \cup (x_0 + \delta)$$

$$\leq \sum_{\delta>0} (x_0,\delta) = (x_0 - \delta - x_0) \cup (x_0 + \delta)$$

Jeżeli nierówność \geqslant zamienimy na >, to powiemy, że jest to **minimum** lokalne właściwe.

Ekstrema

Mówimy, że funkcja f ma w punkcie x_0 maksimum lokalne, jeżeli

$$\bigvee_{\delta>0} \bigwedge_{x\in S(x_0,\delta)} f(x) \leqslant f(x_0).$$

Jeżeli nierówność \leq zamienimy na <, to powiemy, że jest to **maksimum lokalne właściwe**.

Warunek konieczny istnienia ekstremum

Twierdzenie Fermata

Jeśli funkcja $f:(a,b)\to\mathbb{R}$ ma w punkcie x_0 ekstremum lokalne i jest w tym punkcie różniczkowalna, to

$$f'(x_0) = 0.$$

$$y=f(x)$$
 (x_0-8,x_0+8)
 f obsept a do (x_0-8,x_0+6) osippa lanes dollary u . x_0 .

Storigens popuedile v . Formula

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

$$\xi_{1}(0) = 0$$

f'(xo) = D NIE GEST Hou unhiem istribula elistremum.

nountiem dostetensa

Warunek dostateczny istnienia ekstremum

Warunek dostateczny istnienia ekstremum

Niech funkcja $f:(a,b)\to\mathbb{R}$ będzie **ciągła** w punkcie x_0 oraz dla pewnego $\delta>0$ **różniczkowalna** w zbiorze $S(x_0,\delta)$.

- Jeżeli f'(x) < 0 dla każdego $x \in (x_0 \delta, x_0)$ oraz f'(x) > 0 dla każdego $x \in (x_0, x_0 + \delta)$, to f ma w punkcie x_0 minimum lokalne właściwe,
- Jeżeli f'(x) > 0 dla każdego $x \in (x_0 \delta, x_0)$ oraz f'(x) < 0 dla każdego $x \in (x_0, x_0 + \delta)$, to f ma w punkcie x_0 maksimum lokalne właściwe.

$$f(x) = xe^{-x}$$

$$f'(x) = e^{-x} \times (2-x)$$

$$x (-\infty,0) 0 (0,2) 2 (2,+\infty)$$
 $f(x) - 0 + 0$
 $f(x) - 0 + 0$