Università degli Studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell'Ingegneria

Corso di Laurea Magistrale in Ingegneria Gestionale

# Temperature Forecasting

**Insegnamento: Data Science and Management** 

Studente: Rivi Riccardo

A.A.: 2022/2023

#### Jena Dataset

#### 1/1/2009 - 1/1/2017

- Date-time reference: riferimento temporale di una certa misurazione
- P (mbar): pressione atmosferica
- T (degC): temperatura in Celsius
- T (K): temperatura in Kelvin
- o  $T_{dew}$  (degC): temperatura di rugiada
- o  $VP_{max}$  (mbar): pressione di saturazione
- o  $VP_{act}$  (mbar): pressione di vapore nella miscela
- o  $VP_{def}$  (mbar): deficit di pressione di vapore:  $VP_{max} VP_{act}$
- o rh (%): umidità relativa
- sh (g/kg): umidità specifica
- $\circ$   $H_2$  OC (mmol/mol): concentrazione o frazione molare di vapore

- max wv (m/s): massima velocità del vento
- wd (deg): direzione del vento



## Settings

- Granularità: 10 min valori medi giornalieri
- Target: T (degC)
- Feature eliminata: T (K)
- Features aggiunte: TMax e TMin, temperature massime e minime giornaliere
- Lag temporale: 3 giorni
- Orizzonte di previsione: 1 giorno
- Repository: https://github.com/rrivi17/TemperatureForecasting

#### Matrice di Correlazione



## Matrice Scatter plot



#### Procedimento



## Metriche per Evaluation

$$MSE = \frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{y}_i - y_i|}{|y_i|} \times 100$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

#### **Cross Validation**



### Cella GRU



#### Cella GRU









#### Struttura GRU



## Learning Curve



## Residual Plot



#### **Evaluation-HoldOut**





#### **Evaluation-CV**





#### **Ttest**



## **Ttest**







#### Conclusioni

- SVR, Linear Regression e GRU i più prestazionali
- KNN e DecisionTree con performance ridotte
- KNN peggiore del NaiveForecast

## Grazie per l'attenzione