Intervals, Transformations, and Slope Solution (version 45)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6, -2) \cup (0, 4)$
Negative	$(-2,0) \cup (4,5)$
Increasing	$(-6, -5) \cup (-1, 3)$
Decreasing	$(-5, -1) \cup (3, 5)$
Domain	(-6,5)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 45)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=27$ and $x_2=90$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 22 & 90 \\ 27 & 22 \\ 90 & 94 \\ 94 & 27 \\ \hline \end{array}$$

$$\frac{g(90) - g(27)}{90 - 27} = \frac{94 - 22}{90 - 27} = \frac{72}{63}$$

The greatest common factor of 72 and 63 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{8}{7}$$

2