Differential and Analytic Geometry

Lecture 5, Monday July 17, 2023 Ari Feiglin

Let $\gamma \colon [0, L] \longrightarrow \mathbb{R}^2$ be a natural parameterization, then $T = \gamma'$ and $k(s) = \langle T', N \rangle$. Suppose T(0) has an angle of θ_0 then let us define

$$\theta(s) = \int_0^s k(p) \, dp + \theta_0$$

And we define the curve

$$\beta(s) = \gamma(0) + \begin{pmatrix} \int_0^s \cos(\theta(s)) \, dp \\ \int_0^s \sin(\theta(s)) \, dp \end{pmatrix}$$

Now, notice that

$$\beta'(s) = \begin{pmatrix} \cos(\theta(s)) \\ \sin(\theta(s)) \end{pmatrix}$$

And since $\|\beta'\| = 1$, β is a natural parameterization. And further

$$\beta''(s) = \theta'(s) \cdot \begin{pmatrix} -\sin(\theta(s)) \\ \cos(\theta(s)) \end{pmatrix} = \theta'(s) \cdot R_{\frac{\pi}{2}} \beta'(s)$$

Which means that

$$k_{\beta}(s) = \langle \beta''(s), N_{\beta}(s) \rangle = \langle \theta'(s) \cdot R_{\frac{\pi}{2}} \beta'(s), R_{\frac{\pi}{2}} \beta'(s) \rangle = \theta'(s) \langle \beta'(s), \beta'(s) \rangle = \theta'(s) = k(s)$$

(The third equality is since $R_{\frac{\pi}{2}}$ is orthogonal.) So the curvature of β is equal to that of γ . Now,

$$T_{\beta}(0) = \beta'(0) = \begin{pmatrix} \cos(\theta(0)) \\ \sin(\theta(0)) \end{pmatrix} = \begin{pmatrix} \cos(\theta_0) \\ \sin(\theta_0) \end{pmatrix} = T(0)$$

And $\beta(0) = \gamma(0)$.

So by the fundamental theorem of curves, since $k_{\beta} = k_{\gamma}$, $\beta(0) = \gamma(0)$, and $T_{\beta}(0) = T_{\gamma}(0)$, we have that $\beta = \gamma$. This means that

$$T_{\gamma}(s) = T_{\beta}(s) = \beta'(s) = \begin{pmatrix} \cos(\theta(s)) \\ \sin(\theta(s)) \end{pmatrix}$$

So θ is the angle function of γ (ie. it gives the angle of γ). So we have proven the following proposition:

Proposition 5.1:

If $\gamma \colon [0, L] \longrightarrow \mathbb{R}^2$ is a regular smooth curve, then its angle is given by

$$\theta_{\gamma}(s) = \int_0^s k_{\gamma}(p) \, dp + \theta_0$$

where θ_0 is the angle of $T_{\gamma}(0)$.

Definition 5.2:

If $\gamma: [0,L] \longrightarrow \mathbb{R}^2$ is a natural parameterization, then we define

$$K_{\gamma} = \int_{0}^{L} k_{\gamma}(s) \, ds$$

to be the total curvature of γ .

So by the above definitions,

$$K_{\gamma} = \theta_{\gamma}(L) - \theta_{\gamma}(0)$$

So K_{γ} can also be thought of the total difference in the angle of γ .

Example 5.3:

If γ is a circle, then intuitively $K_{\gamma} = 2\pi$ since the total difference in the angle of the curve is 2π . And since the natural parameterization is given by a curve from $[0, 2\pi R]$ whose curvature is $\frac{1}{R}$ and thus

$$K_{\gamma} = \int_0^{2\pi R} \frac{1}{R} = 2\pi$$

as expected.

Definition 5.4:

A smooth curve $\gamma: [a, b] \longrightarrow \mathbb{R}^n$ is n-closed if $\gamma^{(k)}(a) = \gamma^{(k)}(b)$ for every $0 \le k \le n$. If γ is n-closed for every n, then γ is called closed.

Proposition 5.5:

If γ is a 1-closed regular smooth curve then $K_{\gamma} = 2\pi n$ for some $n \in \mathbb{Z}$.

Proof:

Since γ is 1-closed, $\gamma'(0) = \gamma'(L)$. But recall that

$$\gamma'(s) = \begin{pmatrix} \cos(\theta(s)) \\ \sin(\theta(s)) \end{pmatrix}$$

So we have that

$$\begin{pmatrix} \cos(\theta(0)) \\ \sin(\theta(0)) \end{pmatrix} = \begin{pmatrix} \cos(\theta(L)) \\ \sin(\theta(L)) \end{pmatrix}$$

Which is if and only if $\theta(L) = \theta(0) + 2\pi n$ for some $n \in \mathbb{Z}$, and so $K_{\gamma} = 2\pi n$ as required.

Definition 5.6:

If γ is a 1-closed regular smooth curve, then $\frac{1}{2\pi}K_{\gamma}$ is called γ 's winding number (about 0).

Theorem 5.7 (Hopf's Theorem):

If $\gamma \colon [0, L] \longrightarrow \mathbb{R}^2$ is a closed natural parameterization, then γ is injective (other than at the points 0 and L).

We will not be proving this theorem.

This means that if γ is closed, then $K_{\gamma} = \pm 2\pi$. This is because the winding number is ± 1 , as otherwise γ would have to intersect with itself. The sign of K_{γ} correlates with its orientation. We will prove this formally:

Proof:

Suppose $\gamma(0)=0$, and $T(0)=\begin{pmatrix}1\\0\end{pmatrix}$, and $0\leq\gamma_1(s)$ for every $s\neq0,T$ (we can get to this via an isometry). Let $B=\{(x,y)\mid 0\leq x\leq y\leq T\}$ and we define a function $g\colon B\longrightarrow [-1,1]$ by

$$g(s,t) = \begin{cases} \frac{\gamma(t) - \gamma(s)}{\|\gamma(t) - \gamma(s)\|} & s \neq t \text{ and } s \neq 0, t \neq T \\ \gamma'(s) & s = t \\ -\gamma'(0) & s = 0 \text{ and } t = T \end{cases}$$

g is therefore continuous. Let us define $\alpha_0(t)$ to be the line which connects (0,0) to (T,T), ie. $\alpha_0(t)=t(T,T)$. Thus α_0 is contained within B. Then

$$g(\alpha_0(s)) = \gamma'(s) = \begin{pmatrix} \cos(\theta_0(s)) \\ \sin(\theta_0(s)) \end{pmatrix}$$

Where θ_0 is $g \circ \alpha_0$'s angle function. Thus

$$K = \theta_0(T) - \theta_0(0)$$