Friedrich-Ebert-Schule Esslingen FES

Sensorschaltungen mit OPV

Datum: 08.01.2023
1_5_3_Konstantstromquelle_mit_LM317.docx

1mA Konstantstromquelle mit LM317

1.5.3.1

Die Stromquelle für die 4-Leiter-Messschaltung ist mit einem LM317-Spannungsregler aufzubauen.

Schaltung:

Multisim Live: https://kurzelinks.de/vvo9

Arbeitsauftrag:

- 1. Im Datenblatt (Rückseite) ist die Schaltung einer 100mA Stromquelle angegeben. Analysieren Sie die Funktionsweise der Schaltung.
- 2. Berechnen Sie R_{ref} für einen Konstantstrom von 1mA.
- 3. Der Ausgangsstrom des LM317 darf einen bestimmten Wert (Datenblatt) nicht unterschreiten, da der Regler sonst die Referenzspannung nicht mehr ausregeln kann. R $_p$ ist so zu dimensionieren, dass dieser Strom bei maximaler Belastung (R_{Load} = 100 Ω) nicht unterschritten wird. Verwenden Sie die Reihe E12 für R_p .
- 4. Beurteilen Sie die Stabilität der Schaltung mit Hilfe des Datenblatts (Temperaturdrift, Änderung der Versorgungsspannung, ...).

Dokumentieren Sie Ihre Ergebnisse im Versuchsprotokoll.

Friedrich-Ebert-Schule Esslingen FES

Sensorschaltungen mit OPV

Name: Rahm
Datum: 08.01.2023
1_5_3_Konstantstromquelle_mit_LM317.docx

1mA Konstantstromquelle mit LM317

1.5.3.2

Electrical Characteristics (Note 2)

Parameter	Conditions	Min	Тур	Max	Units
Line Regulation	$T_J = 25^{\circ}C$, $3V \le (V_{IN} - V_{OUT}) \le 40V$, $I_L \le 20mA$ (Note 3)		0.01	0.04	%/V
Load Regulation	$T_J = 25^{\circ}C$, $5mA \le I_{OUT} \le I_{MAX}$, (Note 3)		0.1	0.5	%
Thermal Regulation	T _J = 25°C, 10ms Pulse		0.04	0.2	%/W
Adjustment Pin Current			50	100	μА
Adjustment Pin Current	5mA ≤ I _L ≤ 100mA		0.2	5	μА
Change	$3V \le (V_{IN} - V_{OUT}) \le 40V, P \le 625mW$				
Reference Voltage	3V ≤ (V _{IN} – V _{OUT}) ≤ 40V, (Note 4)	1.20	1.25	1.30	V
	5mA ≤ I _{OUT} ≤ 100mA, P ≤ 625mW				
Line Regulation	3V ≤ (V _{IN} – V _{OUT}) ≤ 40V, I _L ≤ 20mA (Note 3)		0.02	0.07	%/V
Load Regulation	5mA ≤ I _{OUT} ≤ 100mA, (Note 3)		0.3	1.5	%
Temperature Stability	$T_{MIN} \le T_{J} \le T_{Max}$		0.65		%
Minimum Load Current	$(V_{IN} - V_{OUT}) \le 40V$		3.5	5	mA
	$3V \le (V_{IN} - V_{OUT}) \le 15V$		1.5	2.5	
Current Limit	$3V \le (V_{IN} - V_{OUT}) \le 13V$	100	200	300	mA
	$(V_{IN} - V_{OUT}) = 40V$	25	50	150	mA
Rms Output Noise, % of V _{OUT}	$T_J = 25^{\circ}C, 10Hz \le f \le 10kHz$		0.003		%
Ripple Rejection Ratio	V _{OUT} = 10V, f = 120Hz, C _{ADJ} = 0		65		dB
	$C_{ADJ} = 10 \mu F$	66	80		dB
Long-Term Stability	T _J = 125°C, 1000 Hours		0.3	1	%
Thermal Resistance	Z Package 0.4" Leads		180		.c\M
Junction to Ambient	Z Package 0.125 Leads		160		.C\M
	SO-8 Package		165		.c/M
	6-Bump micro SMD		290		.c\M

Reference Voltage Temperature Stability

