Отчет по 6 лабораторной работе

РАСПРЕДЕЛЕННЫЕ ЭВОЛЮЦИОННЫЕ АЛГОРИТМЫ

В ходе выполнения данной лабораторной работы необходимо решить задачу оптимизации некой функции с использованием распределенных моделей эволюционных алгоритмов. В качестве задачи необходимо реализовать следующее:

- 1. Установить параметры ген. Алгоритма
- 2. Реализовать инициализацию индивида
- 3. Реализовать мутацию индивидов
- 4. Реализовать кроссовер
- 5. Подобрать параметры модели

Лабораторная работы выполнялась на языке java в IDE IntelliJ

Реализация инициализации индивидов:

Согласно условию, значение индивида должно быть в рамках от -5 до 5 включительно. В качестве реализации функции рандома использовалось random.nextDouble() который возвращает случайное число от 0 до 1. Сама формула получения значения индивида имеет следующий вид:

solution[ind] = rangeMin + (rangeMax - rangeMin) * random.nextDouble();

Реализация мутации:

Реализация мутации состоит в том что мы изменяем значение (ген) на значение находящийся в некой окрестности. Формула состоит в следующем:

number = a * random.nextGaussian() + population.get(parent)[ind]; , где а это параметр который указывает на уровень исследования окрестностей точки.

Также мы можем взять абсолютно случайное значение в рамках заданной задачи по формуле представленной в инициализации.

Реализация кроссовера:

Кроссовер состоит в том, что один ребенок получает часть значений 1 родителя и часть значений является комбинацией 1 и 2 родителя. Второй ребенок получает значения, наоборот.

Установка параметра мутации а: в ходе проведенного тестирования было выявлено что поиск в окрестностях не эффективен. Также есть лишь малая вероятность того, что мутация будет проведена над элементом.

Размер популяции на всех тестах был равен 100, количество итераций равно 1000, размер проблемы 100. В островной модели использовались 3 острова и 50 эпох.

Сравнивалось 3 модели:

- SingleThread однопоточная модель
- Master-slave распределенная модель
- Islands остравная модель

Архитектура	Сложность проблемы	Время выполнения (в	Результат
		милисек.)	
SingleThread	0	2113	0

Master-slave	0	487	0
Islands	0	48205	0
SingleThread	1	8628	7.37
Master-slave	1	760	7.69
Islands	1	59494	9.994
SingleThread	2	13986	7.38
Master-slave	2	909	7.73
Islands	2	68235	9.995
SingleThread	3	14899	7.41
Master-slave	3	940	7.79
Islands	3	71869	9.992
SingleThread	4	19138	7.36
Master-slave	4	1121	7.63
Islands	4	92568	9.992
SingleThread	5	23029	7.44
Master-slave	5	1541	7.73
Islands	5	112209	9.994

График зависимости времени выполнения SingleThread от сложности проблемы

График зависимости времени выполнения Master-slave от сложности проблемы

График зависимости времени выполнения Islands от сложности проблемы

Ответы на вопросы:

- 1. Распределенный алгоритм позволяет крайне сильно оптимизировать вычисление фитнесс функции, а островной улучшить качество решения. Нельзя сказать однозначно какой алгоритм лучших поскольку их следует использовать в различных ситуациях.
- 2. Увеличение размерности проблемы имеет слабое влияние на скорость распределенного алгоритма и более высокою на островную модель.
- 3. Увеличение размера популяции оказывает влияние на производительность как на распределенный алгоритм, так и на островную модель (в меньшей степени) за счет того, что происходит распределение популяции на несколько объектов.
- 4. Теоретически мы ограничены как ресурсами на выполнение селекционной стратегии между островами, так и размером популяции, которая так же уменьшается с ростом количества островов.