	-	astro
	_	ge
	_	₹
		oun.
	4	p
		ď
		ota
		\geq
	<	₹
	•	9
		ਕ
	-	
	?	<u>а</u>
		1
		nuas
		nti
i	ζ	5
	,	es
	•	<u>ဗ</u>
		101
		str
		$\ddot{\Box}$
	_	ge
	_	g
	_	Label

Função Geradora de Momentos $\mathbb{E}\left[e^{tX}\right]$	$\frac{e^{bt} - e^{at}}{(b-a)t}$	$\exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$	$\frac{\lambda}{\lambda - t}$, $t < \lambda$	$\left(\frac{\lambda}{\lambda-t}\right)^r,\ t<\lambda$	Não é útil	A função caracteristica é $e^{lpha it - eta t }$	Não é útil	$\frac{e^{\alpha t}}{1 - (\beta t)^2}, t < 1/\beta$
$\begin{array}{l} \text{Momentos} \\ \mu_r' = E\left[X^r\right] \text{ ou} \\ \mu_r = E\left[(X-\mu)^r\right] \text{ ou} \\ \text{Cumulantes } K_t = ln\left[M_X(t)\right] \end{array}$	$\mu_r=0, ext{ para } r ext{ impar}$ $\mu_r=rac{(b-a)^r}{2^r(r+1)}, ext{ para } r ext{ par}$	$\mu_r=0,~\mathrm{p}/~r$ impar ; $\mu_r=rac{r!\sigma^r}{2^{r/2}(r/2)},~\mathrm{p}/~r$ par	$\mu_r' = \frac{\Gamma(r+1)}{\lambda^r}$	$\mu_j' = rac{\Gamma(r+j)}{\lambda^j \Gamma(r)}$	$\mu_r' = \frac{I\!\!B(r+a,b)}{I\!\!B(a+b)}$	Não existe	$\mu'_r = \exp\left[r\mu + \frac{r^2\sigma^2}{2}\right]$	$\mu_r=0, ext{ para } r ext{ impar}$ $\mu_r=r!eta^r, ext{ para } r ext{ par}$
$\begin{array}{c} \operatorname{Variancia} \\ \sigma^2 = I\!\!E \left[(X - \mu)^2 \right] \end{array}$	$\frac{(b-a)^2}{12}$	σ^2	$\frac{1}{\lambda^2}$	λ^2	$\frac{ab}{(a+b+1)(a+b)^2}$	Não existe	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$	$2\beta^2$
Média $\mu = I\!\!E[X]$	$\frac{a+b}{2}$	ф	7 7	$\lambda \mid r$	$\frac{a}{a+b}$	Não existe	$\exp\left[\mu + \frac{\sigma^2}{2}\right]$	σ
Espaço Paramétrico	$-\infty < a < b < \infty$	$\mu \in I\!\!R$ $\sigma > 0$	λ > 0	ν ν ο 0 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	o	$\alpha \in \mathbb{R}$ $\beta > 0$	$\mu \in \mathbb{R}$ $\sigma > 0$	$\alpha \in I\!\!R$ $\beta > 0$
Função densidade de probabilidade $f(.)$	$f(x) = \frac{1}{b-a} \frac{I(x)}{(a,b)}$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-(x-\mu)^2/2\sigma^2\right] \frac{I(x)}{(-\infty,\infty)}$	$f(x) = \lambda e^{-\lambda x} I(x)$ $(0, \infty)$	$f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} I(x)$ (0,\infty)	$f(x) = \frac{1}{\mathbb{B}(a,b)} x^{a-1} (1-x)^{b-1} I(x)$ (0,1)	$f(x) = \frac{1}{\pi \beta \{1 + [(x - \alpha)/\beta]^2\}} \prod_{(-\infty, \infty)} I(x)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp[-(\ln x - \mu)^2/2\sigma^2] I(x)$	$f(x) = \frac{1}{2\beta} \exp[- x - \alpha /\beta] I(x)$ $(-\infty, \infty)$
Nome das Famílias de Distribuições Paramétricas	Uniforme ou Retangular	Normal	Exponencial	Gama	Beta	Cauchy	Lognormal	Laplace ou Exponencial dupla