#EX.NO :1.a Basic Practice Experiments(1 to 4)

#DATA: 30.07.2024

#NAME: gowtham br #ROLL NO: 230701524

#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

data=pd.read_csv('Iris.csv') data

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm \
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

	Species
0	Iris-setosa
1	Iris-setosa
2	Iris-setosa
3	Iris-setosa
4	Iris-setosa
145	Iris-virginica
146	Iris-virginica
147	Iris-virginica
148	Iris-virginica
1/0	Tric virginics

[150 rows x 6 columns]

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data

columns (total 6 columns):

Column Non-Null Count Dtype

0	Id	150 non-null	int64		
1	SepalLengthCm	150 non-null	float64		
2	SepalWidthCm	150 non-null	float64		
3	PetalLengthCm	150 non-null	float64		
4	PetalWidthCm	150 non-null	float64		
5	Species	150 non-null	object		
dtypes: float64(4), int64(1), object(1) memory					

usage: 7.2+ KB

data.describe()

Id SepalLengthCm SepalWidthCm PetalLengthCm

	ra ocpailengenem s	separtia circiii i c	carecingarien
PetalWidthCm			
count 150.00000	0 150.000000	150.000000	150.000000
150.000000			
mean 75.5000	00 5.843333	3.054000	3.758667
1.198667			
std 43.4453	68 0.828066	0.433594	1.764420
0.763161			
min 1.0000	00 4.300000	2.000000	1.000000
0.100000			
25% 38.2500	00 5.100000	2.800000	1.600000
0.300000			
50% 75.5000	5.800000	3.000000	4.350000
1.300000			
75% 112.7500	00 6.400000	3.300000	5.100000
1.800000			
max 150.0000	7.900000	4.400000	6.900000
2.500000			

data.value_counts('Species')

Species Iris-secosa Iris-50 50 versicolor Irisvirginica

Name: count, dtype: int64

sns.countplot(x='Species',data=data,) plt.show()

dummies=pd.get_dummies(data.Species)

FinalDataset=pd.concat([pd.get_dummies(data.Species),data.iloc[:,
[0,1,2,3]]],axis=1)

FinalDataset.head()

	Iris-setosa Iris-ver	sicolor Iris-virginica I	d True		SepalLengthCm	\
0		False	False	1	5.1	
1	True	False	False	2	4.9	
2	True	False	False	3	4.7	
3	True	False	False	4	4.6	
4	True	False	False	5	5.0	
	SenalWidthCm Pet	all engthCm				

	Separwiduiciii	retailenguich
0	3.5	1.4
1	3.0	1.4
2	3.2	1.3
3	3.1	1.5
4	3.6	1.4

sns.scatterplot(x='SepalLengthCm',y='SepalWidthCm',hue='Species',data= data,)

<Axes: xlabel='SepalLengthCm', ylabel='SepalWidthCm'>

sns.scatterplot(x='PetalLengthCm',y='PetalWidthCm',hue='Species',data= data,)
<Axes: xlabel='PetalLengthCm', ylabel='PetalWidthCm'>

sns.pairplot(data,hue='Species',height=3);

plt.show()
sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'PetalLeng
thCm').add_legend();
plt.show();

 $sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'PetalWidthCm').add_legend();\\plt.show();$

 $sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'SepalLeng thCm').add_legend();\\plt.show();$

sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'SepalWidt
hCm').add_legend();
plt.show();


```
1
new_array=array.reshape(3,3)
new_array
array([[39, 97, 88],
       [58, 29, 87],
       [27, 88, 91]])
new_array.ndim
2
new_array.ravel()
array([39, 97, 88, 58, 29, 87, 27, 88, 91])
newm=new_array.reshape(3,3)
newm
array([[39, 97, 88],
       [58, 29, 87],
       [27, 88, 91]])
newm[2,1:3]
array([88, 91])
newm[1:2,1:3]
array([[29, 87]])
new_array[0:3,0:0]
array([], shape=(3, 0), dtype=int32) new_array[1:3]
array([[58, 29, 87],
       [27, 88, 91]])
#EX.NO:2 Outlier detection
#DATA: 13.08.2024
#NAME: Gowthambr
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c
import numpy as np import
warnings
warnings.filterwarnings('ignore')
```

```
array=np.random.randint(1,100,16) array
array([37, 15, 49, 89, 30, 47, 2, 86, 53, 63, 41, 46, 42, 27, 5,
97])
array.mean() 45.5625
np.percentile(array, 25) 29.25
np.percentile(array,50) 44.0
np.percentile(array,75) 55.5
np.percentile(array, 100) 97.0
#outliers detection
def outDetection(array): sorted(array)
     Q1,Q3=np.percentile(array,[25,75])
    IQR=Q3-Q1
    lr=Q1-(1.5*IQR)
    ur = Q3 + (1.5*IQR)
    return Ir,ur
Ir,ur=outDetection(array) Ir,ur
(-10.125, 94.875)
import seaborn as sns
%matplotlib inline
sns.displot(array)
<seaborn.axisgrid.FacetGrid at 0x20d7cda3b50>
```


sns.distplot(array)

<Axes: ylabel='Density'>

new_array=array[(array>lr) & (array<ur)] new_array
array([37, 15, 49, 89, 30, 47, 2, 86, 53, 63, 41, 46, 42, 27, 5])
sns.displot(new_array)
<seaborn.axisgrid.FacetGrid at 0x20d7d02d950>

Ir1,ur1=outDetection(new_array) Ir1,ur1
(-5.25, 84.75)
final_array=new_array[(new_array>Ir1) & (new_array<ur1)] final_array
array([37, 15, 49, 30, 47, 2, 53, 63, 41, 46, 42, 27, 5])
sns.distplot(final_array)
</pre>
<Axes: ylabel='Density'>

#EX.NO :3 Missing and inappropriate data #DATA : 20.08.2024

#NAME: Gowtham.br

#ROLL NO: 230701524

#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c

import numpy as np import pandas as pd import warnings

warnings.filterwarnings('ignore')

df=pd.read_csv("Hotel_Dataset.csv") df

	CustomerID Age	e_Group	Rating(1-5)	Hotel	FoodPreference	Bill
0	1	20-25	4	Ibis	veg	1300
1	2	30-35	5	LemonTree	Non-Veg	2000
2	3	25-30	6	RedFox	Veg	1322
3	4	20-25	-1	LemonTree	Veg	1234

4	5	35+	3	Ibis	Vegetarian	989
5	6	35+	3	Ibys	Non-Veg	190 9
6	7	35+	4	RedFox	Vegetarian	100 0
7	8	20-25	7	LemonTree	Veg	299 9
8	9	25-30	2	Ibis	Non-Veg	345 6
9	9	25-30	2	Ibis	Non-Veg	345 6
10	10	30-35	5	RedFox	non-Veg	-6755

	NoOfPax	EstimatedSalary	Age_Group.1
0	2	40000	20-25
1	3	59000	30-35
2	2	30000	25-30
2	2	120000	20-25
4	2	45000	35+
4 5	2	122220	35+
6	-1	21122	35+
7	-10	345673	20-25
8	3	-99999	25-30
9	3	-99999	25-30
10	4	87777	30-35
3	False		
4 f.d	uplic atest ()		
5	False		
6	False		
7	False		
8	False		
9	True		
10	Falco		
dtyp	e: bool		

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11 entries, 0 to 10
Data columns (total 9 columns):

#	Column `	Non-Null Count	Dtype
0	CustomerID	11 non-null	int64
1	Age_Group	11 non-null	object
2	Rating(1-5)	11 non-null	int64

3	Hotel	11 non-null	object
4	FoodPreference	11 non-null	object
5	Bill	11 non-null	int64
6	NoOfPax	11 non-null	int64
7	EstimatedSalary	11 non-null	int64
8	Age_Group.1	11 non-null	object
alder over	:	1/43	

dtypes: int64(5), object(4) memory usage: 924.0+ bytes

df.drop_duplicates(inplace=True) df

	CustomerID Age	_Group	Rating(1-5)		Hotel F	oodPreference Bi	II
0	1	20-25	4	1	Ibis	veg	1300
1	2	30-35	5	5	LemonTree	Non-Veg	2000
2	3	25-30	6	5	RedFox	Veg	1322
3	4	20-25	-1	L	LemonTree	Veg	1234
4	5	35+	3	3	Ibis	Vegetarian	989
5	6	35+	3	3	Ibys	Non-Veg	1909
6	7	35+	4	1	RedFox	Vegetarian	1000
7	8	20-25	7	7	LemonTree	Veg	2999
8	9	25-30	2	2	Ibis	Non-Veg	3456
10	10	30-35	5	5	RedFox	non-Veg	-6755

	NoOfPax	EstimatedSalary	Age_Group.1
0	2	40000	20-25
1	3	59000	30-35
2	2	30000	25-30
3	2	120000	20-25
4	2	45000	35+
5	2	122220	35+
6	-1	21122	35+
7	-10	345673	20-25
8	3	-99999	25-30
10	4	87777	30-35

len(df)

10

```
index=np.array(list(range(0,len(df))))
df.set_index(index,inplace=True)
index
```

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

df

	e_Group	Rating(1-5)		Hotel Fo	oodPreference Bi	ll
1	20-25		4	Ibis	veg	1300
2	30-35		5	LemonTree	Non-Veg	2000
3	25-30		6	RedFox	Veg	1322
4	20-25		-1	LemonTree	Veg	1234
5	35+		3	Ibis	Vegetarian	989
					_	1909
				·	_	
					_	1000
			-			2999
9	25-30		2	Ibis	Non-Veg	3456
10	30-35		5	RedFox	non-Veg	-6755
400 590 300 1200 450 1222 211 3456	00 00 00 00 00 00 20 22 73	20-25 30-35 25-30 20-25 35+ 35+ 35+ 20-25 25-30				
	1 2 3 4 5 6 7 8 9 10 matedSala 400 590 300 1200 450 1222 211 3456 -999	1 20-25 2 30-35 3 25-30 4 20-25 5 35+ 6 35+ 7 35+ 8 20-25 9 25-30 10 30-35	1 20-25 2 30-35 3 25-30 4 20-25 5 35+ 6 35+ 7 35+ 8 20-25 9 25-30 10 30-35 matedSalary Age_Group.1 40000 20-25 59000 30-35 30000 25-30 120000 20-25 45000 35+ 122220 35+ 21122 35+ 345673 20-25 -99999 25-30	1 20-25 4 2 30-35 5 3 25-30 6 4 20-25 -1 5 35+ 3 6 35+ 3 7 35+ 4 8 20-25 7 9 25-30 2 10 30-35 5 matedSalary Age_Group.1 40000 20-25 59000 30-35 30000 25-30 120000 20-25 45000 35+ 122220 35+ 21122 35+ 345673 20-25 -99999 25-30	1 20-25 4 Ibis 2 30-35 5 LemonTree 3 25-30 6 RedFox 4 20-25 -1 LemonTree 5 35+ 3 Ibis 6 35+ 3 Ibys 7 35+ 4 RedFox 8 20-25 7 LemonTree 9 25-30 2 Ibis 10 30-35 5 RedFox matedSalary Age_Group.1 40000 20-25 59000 30-35 30000 25-30 120000 20-25 45000 35+ 122220 35+ 21122 35+ 345673 20-25 -99999 25-30	1 20-25

 $\label{eq:dfdf} $$ df.drop(['Age_Group.1'],axis=1,inplace=True) df $$$

Custome	rID Ag	ge_Group	Rating(1-5)		Hotel FoodPr	eference Bill	
NoOfPax \							
0	1	20-25		4	Ibis	veg	130
							U

2						
1	2	30-35	5	LemonTree	Non-Veg	2000
3 2 2 3 2	3	25-30	6	RedFox	Vog	1322
2	3	25-30	0	Reurox	Veg	1322
3	4	20-25	-1	LemonTree	Veg	1234
2 4	5	35+	3	Ibis	Vegetarian	989
2	3	33 T	J	IDIS	vegetariari	909
2 5 2	6	35+	3	Ibys	Non-Veg	1909
2 6	7	35+	4	RedFox	Vegetarian	1000
-1	,	33 T	4	Redi Ox	vegetariari	1000
7	8	20-25	7	LemonTree	Veg	2999
-10 8	9	25-30	2	Ibis	Non-Veg	3456
3	J	23 30	2	IDIS	Non veg	J -1 50
8 3 9 4	10	30-35	5	RedFox	non-Veg	-6755
4						
E	EstimatedSalary					
0	•					
^	4000					
0 1						
_	5900					
0						
2	3000					
0	3000					
3						
df C	ustamarID las[df	CustomorT	D < 01 - nn na	n		

 $\label{eq:customerID} $$ df.CustomerID<0]=np.nan $$ df.Bill.loc[df.Bill<0]=np.nan $$ df.EstimatedSalary.loc[df.EstimatedSalary<0]=np.nan $$ df.EstimatedSalary<0]=np.nan $$ df.EstimatedSalary<0.$

	CustomerID A	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill
0	1.0	20-25	4	Ibis	veg	1300.0
1	2.0	30-35	5	LemonTree	Non-Veg	2000.0
2	3.0	25-30	6	RedFox	Veg	1322.0
3	4.0	20-25	-1	LemonTree	Veg	1234.0
4	5.0	35+	3	Ibis	Vegetarian	989.0
5	6.0	35+	3	Ibys	Non-Veg	1909.0

6	7.0	35+	4	RedFox	Vegetarian	1000.0
7	8.0	20-25	7	LemonTree	Veg	2999.0
8	9.0	25-30	2	Ibis	Non-Veg	3456.0
9	10.0	30-35	5	RedFox	non-Veg	NaN
0 1 2 3 4 5 6 7 8 9	NoOfPax 2 3 2 2 2 -1 -10 3 4	EstimatedSala 40000 59000 30000 120000 45000 122220 21122 345673 Na 87777	.0 .0 .0 .0 .0 .0 .0			
df['NoOfPax'].lo	c[(df['NoOfPax	']< <mark>1</mark>) (df['No	oOfPax']> <mark>20</mark>)]	=np.nan df	
\	CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill
0	1.0	20-25	4	Ibis	veg	1300.0
1	2.0	30-35	5	LemonTree	Non-Veg	2000.0
2	3.0	25-30	6	RedFox	Veg	1322.0
3	4.0	20-25	-1	LemonTree	Veg	1234.0
4	5.0	35+	3	Ibis	Vegetarian	989.0
5	6.0	35+	3	Ibys	Non-Veg	1909.0
6	7.0	35+	4	RedFox	Vegetarian	1000.0
7	8.0	20-25	7	LemonTree	Veg	2999.0
8	9.0	25-30	2	Ibis	Non-Veg	3456.0
9	10.0	30-35	5	RedFox	non-Veg	NaN
0 1 2	NoOfPax 2.0 3.0 2.0	EstimatedSala 40000 59000 30000	.0 .0			

```
3
        2.0
                       120000.0
4
        2.0
                        45000.0
5
        2.0
                       122220.0
6
        NaN
                        21122.0
7
        NaN
                       345673.0
8
        3.0
                            NaN
                        87777.0
9
        4.0
df.Age_Group.unique()
array(['20-25', '30-35', '25-30', '35+'], dtype=object) df.Hotel.unique()
array(['Ibis', 'LemonTree', 'RedFox', 'Ibys'], dtype=object)
df.Hotel.replace(['Ibys'],'Ibis',inplace=True)
df.FoodPreference.unique
<box>
<br/>bound method Series.unique of 0</br>
                                                   veg
1
         Non-Veg
2
               Ve
3
            g Veg
4
       Vegetarian
5
         Non-Veg
6
       Vegetarian
7
              Ve
Name: FoodPreference, dtype: object>
df.FoodPreference.replace(['Vegetarian','veg'],'Veg',inplace=True)
df.FoodPreference.replace(['non-Veg'],'Non-Veg',inplace=True)
df.EstimatedSalary.fillna(round(df.EstimatedSalary.mean()),inplace=Tru e)
df.NoOfPax.fillna(round(df.NoOfPax.median()),inplace=True)
df['Rating(1-5)'].fillna(round(df['Rating(1-5)'].median()),
inplace=True) df.Bill.fillna(round(df.Bill.mean()),inplace=True)
df
   CustomerID Age_Group Rating(1-5)
                                                  Hotel FoodPreference
                                                                               Bill
0
                                                                             1300.0
            1.0
                     20-25
                                                    Ibis
                                                                      Veg
                                             LemonTree
1
            2.0
                     30-35
                                                                  Non-Veg
                                                                             2000.0
2
            3.0
                     25-30
                                                 RedFox
                                                                      Veg
                                                                             1322.0
3
            4.0
                     20-25
                                         -1
                                             LemonTree
                                                                      Veg
                                                                             1234.0
4
            5.0
                       35+
                                          3
                                                     Ibis
                                                                      Veg
                                                                              989.0
5
            6.0
                       35+
                                          3
                                                    Ibis
                                                                  Non-Veg
                                                                             1909.0
```

6	7.0	35+	4	RedFox	Veg	1000.0
7	8.0	20-25	7	LemonTree	Veg	2999.0
8	9.0	25-30	2	Ibis	Non-Veg	3456.0
9	10.0	30-35	5	RedFox	Non-Veg	1801.0
0	NoOfPax E	EstimatedSalary 40000.0				

	NoOfPax	EstimatedSalary
0	2.0	40000.0
1	3.0	59000.0
2	2.0	30000.0
3	2.0	120000.0
4	2.0	45000.0
5	2.0	122220.0
6	2.0	21122.0
7	2.0	345673.0
8	3.0	96755.0
9	4.0	87777.0

#EX.NO:4 Data Preprocessing

#DATA : 27.08.2024

#NAME: Gowtham.br #ROLL NO: 230701524

#DEPARTMENT : B.E COMPUTER SCIENCE AND ENGINEERING - c

import numpy as np import pandas as pd import warnings

warnings.filterwarnings('ignore')

df=pd.read_csv("pre_process_datasample.csv") df

	Country Ag Salary Pur			chased
0	France	e	72000.0	N
1	Spain	44.0	48000.0	0
2	German	27.0	54000.0	Yes
	У	30.0	61000.0	No
3	Spain	38.0	Na	No
4	German	40.0	N	Yes
	У	35.0	58000.0	Yes
5	France	Na	52000.0	No
6	Spain	N	79000.0	Yes
7	Franco	1Q N	ልፈሀሀሀ ሀ	No

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
 #
     Column
                  Non-Null Count
                                    Dtype
 0
                  10 non-null
                                    object
     Country
                                    float64
 1
                  9 non-null
     Age
 2
     Salary
                  9 non-null
                                    float64
3
     Purchased 10 non-null
                                    object
dtypes: float64(2), object(2)
memory usage: 452.0+ bytes
df.Country.mode()
     France
Name: Country, dtype: object
df.Country.mode()[0] 'France'
type(df.Country.mode())
pandas.core.series.Series
df.Country.fillna(df.Country.mode()[0],inplace=True)
df.Age.fillna(df.Age.median(),inplace=True)
df.Salary.fillna(round(df.Salary.mean()),inplace=True) df
   Country
              Aq
                     Salary Purchased
0
    France
                    72000.0
                                       N
             e
                    48000.0
1
     Spain
             44.0
                                       0
2 German
                    54000.0
                                     Yes
             27.0
```

	У	30.0	61000.0	No
3	Spain	38.0	63778.0	No
4	German	40.0	58000.0	Yes
	У	35.0	52000.0	Yes
5	France	38.0	79000.0	No
6	Spain	48.0	83000.0	Yes
βd	.get_dumr	ni ES(df. C	<i>:6</i> ₹6₹6000000000000000000000000000000000	No
	France C	Germany	Spain	
0	True	False	False	
1	False	False	True	
2	False	True	False	
3	False	False	True	
4	False	True	False	

```
5
     True
               False
                       False
6
     False
               False
                        True
7
      True
               False
                       False
8
     False
                True
                       False
9
      True
               False
                       False
updated_dataset=pd.concat([pd.get_dummies(df.Country),df.iloc[:, [1,2,3]]],axis=1)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
     Column
                  Non-Null Count
                                    Dtype
____
 0
     Country
                  10 non-null
                                    object
                  10 non-null
                                     float64
 1
     Age
 2
                                     float64
     Salary
                  10 non-null
3
     Purchased 10 non-null
                                    object
dtypes: float64(2), object(2)
memory usage: 452.0+ bytes
updated_dataset.Purchased.replace(['No','Yes'],[0,1],inplace=True)
#EX.NO:5 EDA-Quantitative and Qualitative plots #DATA:
27.08.2024
#NAME: Gowtham.br
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv("pre_process_datasample.csv") df
   Country
                     Salary Purchased
              Ag
0
    France
             е
                    72000.0
                                      N
             44.0
                    48000.0
1
     Spain
                                      0
2
                    54000.0
                                    Yes
  German
             27.0
                    61000.0
             30.0
                                     No
   У
3
     Spain
             38.0
                        Na
                                     No
             40.0
                    Ν
                                    Yes
4
  German
             35.0
                    58000.0
                                    Yes
   У
5
                    52000.0
                                     No
    France
              Na
6
                    79000.0
                                    Yes
     Spain
             N
                    0.00028
    Franco
             1Q N
                                     No
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
 #
     Column
                  Non-Null Count
                                    Dtype
 0
                  10 non-null
                                    object
     Country
                                    float64
 1
                  9 non-null
     Age
 2
     Salary
                  9 non-null
                                    float64
3
     Purchased 10 non-null
                                    object
dtypes: float64(2), object(2)
memory usage: 452.0+ bytes
df.Country.mode()
     France
Name: Country, dtype: object
df.Country.mode()[0] 'France'
type(df.Country.mode())
pandas.core.series.Series
df.Country.fillna(df.Country.mode()[0],inplace=True)
df.Age.fillna(df.Age.median(),inplace=True)
df.Salary.fillna(round(df.Salary.mean()),inplace=True) df
   Country
              Aq
                     Salary Purchased
0
    France
                    72000.0
                                       N
             e
                    48000.0
1
     Spain
             44.0
                                       0
2 German
                    54000.0
                                     Yes
             27.0
```

	У	30.0	61000.0	No
3	Spain	38.0	63778.0	No
4	German	40.0	58000.0	Yes
	У	35.0	52000.0	Yes
5	France	38.0	79000.0	No
6	Spain	48.0	83000.0	Yes
βd	.get_dumr	ni ES(df. C	<i>:6</i> ₹6₹6000000000000000000000000000000000	No
	France C	Germany	Spain	
0	True	False	False	
1	False	False	True	
2	False	True	False	
3	False	False	True	
4	False	True	False	

```
5
     True
              False
                      False
6
     False
                      True
              False
7
     True
              False
                      False
8
     False
               True
                      False
9
     True
              False
                      False
```

 $\label{local_dataset} $$ updated_dataset=pd.concat([pd.get_dummies(df.Country),df.iloc[:, [1,2,3]]],axis=1)$ $$ updated_dataset $$$

	France (Germany	Spain	Ag	Salary Pur	chased		
0	True	False	False	е	72000.0	N		
1	False	False	True	44.0	48000.0	0		
2	False	True	False	27.0	54000.0	Yes		
3	False	False	True	30.0	61000.0	No		
4	False	True	False	38.0	63778.0	No		
5	True	False	False	40.0	58000.0	Yes		
6	False	False	True	35.0	52000.0	Yes		
7	True	False	False	38.0	79000.0	No		
8	False	True	False	48.0	83000.0	Yes		
۵	Truo	Falco	Falco	50 O	67በበበ በ	No		
٦٤ : ٣	de :e. ()							

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10 entries, 0 to 9 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Country	10 non-null	object
1	Age	10 non-null	float64
2	Salary	10 non-null	float64
3	Purchased	10 non-null	object

dtypes: float64(2), object(2) memory usage: 452.0+ bytes

updated_dataset

	France (Germany Spa	in Ag	Salary F	Purchased
0	True	False Fal	se e	72000.0	N
1	False	False Tr	ue 44.0	48000.0	0
2	False	True Fal	se 27.0	54000.0	Yes
3	False	False Tr	ue 30.0	61000.0	No
4	False	True Fal	se 38.0	63778.0	No
5	True	False Fal	se 40.0	58000.0	Yes
6	False	False Tr	ue 35.0	52000.0	Yes
7	True	False Fal	se 38.0	79000.0	No
8	False	True Fal	se 48.0	83000.0	Yes
۵	Truo	Ealco Eal	CO FO O	67በበበ በ	No

```
#EX.NO :5 EDA-Quantitative and Qualitative plots #DATA :
```

03.09.2024

#NAME: Gowtham.br

#ROLL NO: 230701524

#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c

import seaborn as sns import pandas as pd import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

tips=sns.load_dataset('tips') tips.head()

	total_bill	tip	sex sn	noker	day	time size	
0	16.99	1.01	Female	N	Sun	Dinner	2
1	10.34	1.66	Male	0	Sun	Dinner	3
2	21.01	3.50	Male	N	Sun	Dinner	3
3	23.68	3.31	Male	0	Sun	Dinner	2
4	24.59	3.61	Female	N	Sun	Dinner	4

sns.displot(tips.total_bill,kde=True)

<seahorn axisorid FacetGrid at 0x20d7dc69390>

sns.displot(tips.total_bill,kde=False)

<seaborn.axisgrid.FacetGrid at 0x20d7dc22790>

sns.jointplot(x=tips.tip,y=tips.total_bill)

<seaborn.axisgrid.JointGrid at 0x20d7dc2f2d0>

sns.jointplot(x=tips.tip,y=tips.total_bill,kind="reg")
<seaborn.axisgrid.JointGrid at 0x20d7ed32450>

sns.jointplot(x=tips.tip,y=tips.total_bill,kind="hex")
<seaborn.axisgrid.JointGrid at 0x20d7ed7d350>

sns.pairplot(tips)

<seaborn.axisgrid.PairGrid at 0x20d7f1c9cd0>

tips.time.value_counts() time

Name: count, dtype: int64 Lunch 6 sns.pairplot(tips,hue='time')

<seaborn.axisgrid.PairGrid at 0x20d7cc27990>

sns.heatmap(tips.corr(numeric_only=True),annot=True)

<Axes: >

sns.boxplot(tips.total_bill)

<Axes: ylabel='total_bill'>

sns.boxplot(tips.tip)

<Axes: ylabel='tip'>

sns.countplot(tips.day)

<Axes: xlabel='count', ylabel='day'>

sns.countplot(tips.sex)

<Axes: xlabel='count', ylabel='sex'>

tips.sex.value_counts().plot(kind='pie')

<Axes: ylabel='count'>

tips.sex.value_counts().plot(kind='bar')

<Axes: xlabel='sex'>

sns.countplot(tips[tips.time=='Dinner']['day'])

<Axes: xlabel='count', ylabel='day'>


```
#EX.NO:6 Random Sampling and Sampling Distribution
#DATA : 10.09.2024
#NAME: Gowtham.br
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - c
import numpy as np
import matplotlib.pyplot as plt
population_mean = 50
population_std = 10
population_size = 100000
population = np.random.normal(population_mean, population_std, population_size)
sample_sizes = [30, 50, 100]
num_samples = 1000
sample means = \{\}
for size in sample_sizes:
   sample_means[size] = []
   for _ in range(num_samples):
      sample = np.random.choice(population, size=size, replace=False)
      sample_means[size].append(np.mean(sample))
```


#EX.NO:7 Z-Test #DATA:10.09.2024

```
#NAME: GOWTHAM.BR
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - C
import numpy as np
import scipy.stats as stats
sample_data = np.array([152, 148, 151, 149, 147, 153, 150, 148, 152,
149,151, 150, 149, 152, 151, 148, 150, 152, 149, 150,148, 153, 151,
150, 149, 152, 148, 151, 150, 153])
population mean = 150
sample_mean = np.mean(sample_data)
sample std = np.std(sample data, ddof=1)
n = len(sample_data)
z_statistic = (sample_mean - population_mean) / (sample_std / np.sqrt(n))
p value = 2 * (1 - stats.norm.cdf(np.abs(z statistic)))
# Assuming sample_mean, z_statistic, and p_value have already been
calculated:
print(f"Sample Mean: {sample mean:.2f}\n")
print(f"Z-Statistic: {z_statistic:.4f}\n") print(f"P-
Value: {p_value:.4f}\n")
# Significance level
alpha = 0.05
# Decision based on p-value
if p value < alpha:
    print("Reject the null hypothesis: The average weight is significantly different
from 150 grams.")
else:
    print("Fail to reject the null hypothesis: There is no significant difference in
average weight from 150 grams.")
Sample Mean: 150.20
Z-Statistic: 0.6406
P-Value: 0.5218
Fail to reject the null hypothesis: There is no significant difference in average weight
from 150 grams.
#EX.NO:8 T-Test
#DATA: 08.10.2024
#NAME: GANESHAN M
```

```
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - C
import numpy as np
import scipy.stats as stats
np.random.seed(42)
sample size = 25
sample data = np.random.normal(loc=102, scale=15, size=sample size)
population_mean = 100
sample mean = np.mean(sample data)
sample_std = np.std(sample_data, ddof=1)
n = len(sample_data)
t_statistic, p_value = stats.ttest_1samp(sample_data,population_mean)
# Assuming sample mean, t statistic, and p value have already been
calculated:
print(f"Sample Mean: {sample mean:.2f}\n")
print(f"T-Statistic: {t_statistic:.4f}\n") print(f"P-
Value: {p_value:.4f}\n")
# Significance level
alpha = 0.05
# Decision based on p-value
if p value < alpha:
    print("Reject the null hypothesis: The average IQ score is significantly different
from 100.")
else:
    print("Fail to reject the null hypothesis: There is no significant difference in
average IQ score from 100.")
Sample Mean: 99.55
T-Statistic: -0.1577
P-Value: 0.8760
Fail to reject the null hypothesis: There is no significant difference in average IQ
score from 100.
#EX.NO:9 Annova TEST
#DATA : 08.10.2024
#NAME: GOWTHAM.BR
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - C
import numpy as np
import scipy.stats as stats
```

```
from statsmodels.stats.multicomp import pairwise tukeyhsd
np.random.seed(42)
n plants = 25
growth A = np.random.normal(loc=10, scale=2, size=n plants) growth B =
np.random.normal(loc=12, scale=3, size=n_plants) growth_C =
np.random.normal(loc=15, scale=2.5, size=n_plants)
all_data = np.concatenate([growth_A, growth_B, growth_C])
treatment_labels = ['A'] * n_plants + ['B'] * n_plants + ['C'] * n_plants
f_statistic, p_value = stats.f_oneway(growth_A, growth_B, growth_C)
mean A = np.mean(growth A)
mean B = np.mean(growth B)
mean_C = np.mean(growth_C)
print(f"Treatment A Mean Growth: {mean_A:.4f}")
print(f"Treatment B Mean Growth: {mean B:.4f}")
print(f"Treatment C Mean Growth: {mean_C:.4f}")
print(f"F-Statistic: {f statistic:.4f}") print(f"P-Value:
{p_value:.4f}")
alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: There is a significant difference in
mean growth rates among the three treatments.") else:
    print("Fail to reject the null hypothesis: There is no significant difference in
mean growth rates among the three treatments.")
if p value < alpha:
    tukey_results = pairwise_tukeyhsd(all_data, treatment_labels, alpha=0.05)
    print("\nTukey's HSD Post-hoc Test:")
    print(tukey results)
Treatment A Mean Growth: 9.6730
Treatment B Mean Growth: 11.1377
Treatment C Mean Growth: 15.2652
F-Statistic: 36.1214
P-Value: 0.0000
Reject the null hypothesis: There is a significant difference in mean growth rates
among the three treatments.
Tukey's HSD Post-hoc Test:
Multiple Comparison of Means - Tukey HSD, FWER=0.05
```

```
______
=========
group1 group2 meandiff p-adj lower upper reject
     Α
            В
                1.4647 0.0877 -0.1683 3.0977
                                                False
     Α
            С
                          0.0 3.9593 7.2252
                5.5923
                                                 True
            С
                           0.0 2.4946 5.7605
     В
                4.1276
                                                 True
#EX.NO:10 Feature Scaling
#DATA : 22.10.2024
#NAME: GOWTHAM.BR
#ROLL NO: 230701524
#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING -C
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv('pre_process_datasample.csv')
df.head()
   Country
            Ag
                  Salary Purchased
                  72000.0
                                   N
0
   France
            e
     Spain 44.0 48000.0
1
                                   0
            27.0 54000.0
2 German
                                 Yes
            30.0 61000.0
                                 No
3
     Spain 38.0 Na
                                  No
df.Country.fillna(df.Country.mode()[0],inplace=True)
features=df.iloc[:,:-1].values
features
array([['France', 44.0, 72000.0],
       ['Spain', 27.0, 48000.0],
       ['Germany', 30.0, 54000.0],
       ['Spain', 38.0, 61000.0],
       ['Germany', 40.0, nan],
       ['France', 35.0, 58000.0],
       ['Spain', nan, 52000.0],
       ['France', 48.0, 79000.0],
       ['Germany', 50.0, 83000.0],
       ['France', 37.0, 67000.0]], dtype=object)
label=df.iloc[:,-1].values
from sklearn.impute import SimpleImputer
age=SimpleImputer(strategy="mean",missing_values=np.nan)
Salary=SimpleImputer(strategy="mean",missing_values=np.nan)
age.fit(features[:,[1]])
```

```
SimpleImputer()
Salary.fit(features[:,[2]])
SimpleImputer() SimpleImputer()
SimpleImputer()
features[:,[1]]=age.transform(features[:,[1]])
features[:,[2]]=Salary.transform(features[:,[2]]) features
array([['France', 44.0, 72000.0],
        ['Spain', 27.0, 48000.0],
        ['Germany', 30.0, 54000.0],
        ['Spain', 38.0, 61000.0],
        ['Germany', 40.0, 63777.7777777778],
        ['France', 35.0, 58000.0],
        ['Spain', 38.777777777778, 52000.0],
        ['France', 48.0, 79000.0],
        ['Germany', 50.0, 83000.0],
        ['France', 37.0, 67000.0]], dtype=object)
from sklearn.preprocessing import OneHotEncoder oh =
OneHotEncoder(sparse_output=False)
Country=oh.fit transform(features[:,[0]])
Country
  array([[1., 0., 0.],
         [0., 0., 1.],
          [0., 1., 0.],
          [0., 0., 1.],
          [0., 1., 0.],
          [1., 0., 0.],
          [0., 0., 1.\overline{]},
          [1., 0., 0.],
         [0., 1., 0.],
         [1., 0., 0.]
final_set=np.concatenate((Country,features[:,[1,2]]),axis=1) final_set
array([[1.0, 0.0, 0.0, 44.0, 72000.0],
        [0.0, 0.0, 1.0, 27.0, 48000.0],
        [0.0, 1.0, 0.0, 30.0, 54000.0],
        [0.0, 0.0, 1.0, 38.0, 61000.0],
        [0.0, 1.0, 0.0, 40.0, 63777.7777777778],
        [1.0, 0.0, 0.0, 35.0, 58000.0],
        [0.0, 0.0, 1.0, 38.777777777778, 52000.0],
```

```
[1.0, 0.0, 0.0, 48.0, 79000.0],
       [0.0, 1.0, 0.0, 50.0, 83000.0],
       [1.0, 0.0, 0.0, 37.0, 67000.0]], dtype=object)
from sklearn.preprocessing import StandardScaler sc=StandardScaler()
sc.fit(final set)
feat standard scaler=sc.transform(final set)
feat_standard_scaler
array([[ 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
          7.58874362e-01, 7.49473254e-01],
       [-8.16496581e-01, -6.54653671e-01, 1.52752523e+00,
        -1.71150388e+00, -1.43817841e+00],
       [-8.16496581e-01, 1.52752523e+00, -6.54653671e-01,
        -1.27555478e+00, -8.91265492e-01],
       [-8.16496581e-01, -6.54653671e-01, 1.52752523e+00,
        -1.13023841e-01, -2.53200424e-01],
       [-8.16496581e-01, 1.52752523e+00, -6.54653671e-01,
          1.77608893e-01, 6.63219199e-16],
       [1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
        -5.48972942e-01, -5.26656882e-01],
       [-8.16496581e-01, -6.54653671e-01, 1.52752523e+00,
          0.0000000e+00, -1.07356980e+00],
       [1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
          1.34013983e+00, 1.38753832e+00],
       [-8.16496581e-01, 1.52752523e+00, -6.54653671e-01,
          1.63077256e+00, 1.75214693e+00],
       [ 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
        -2.58340208e-01, 2.93712492e-01]])
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler(feature\_range=(0,1))
mms.fit(final set)
feat_minmax_scaler=mms.transform(final_set)
feat minmax scaler
                    , 0.
  array([[1.
                                  , 0.
                                                0.73913043, 0.685714291,
        ٢٥.
                      0.
                                   1.
                                               , 0.
                                                              0.
        [0.
                    , 1.
                                   0.
                                               , 0.13043478, 0.17142857],
                                                0.47826087, 0.37142857],
        [0.
                      0.
                                   1.
                                               , 0.56521739, 0.45079365],
                                   0.
        [0.
                    , 1.
                                              , 0.34782609,
        [1.
                      0.
                                   0.
                                                              0.28571429],
                                                 0.51207729, 0.11428571],
        [0.
                                   1.
                      0.
        [1.
                                   0.
                                                0.91304348, 0.88571429],
        [0.
                      1.
                                   0.
                                                              1.
                                 , 0.
                                               , 0.43478261, 0.54285714]])
        [1.
#EX.NO:11 Linear Regression
```

#DATA : 29.10.2024

#NAME: GOWTHAM.BR #ROLL NO: 230701524

#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - C

import numpy as np
import pandas as pd
df = pd.read_csv('Salary_data.csv') df

0	YearsExperience Salary
0	1.1 39343
1	1.3
_	46205
2	1.5
	37731
3	2.0
	43525
4	2.2
	39891
5	2.9
	56642
6	3.0
7	60150
/	3.2 54445
8	3.2
0	64445
9	3.7
,	57189
10	3.9
	63218
11	4.0
	55794
12	4.0
	56957
13	4.1
	57081
14	4.5

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns):

Column Non-Null Count Dtype

0 YearsExperience 30 non-null float64 1 30 non-null int64 Salary dtypes: float64(1), int64(1) memory usage: 612.0 bytes df.dropna(inplace=True); df YearsExperience Salary 0 1.1 39343 1 1.3 46205 2 1.5 37731 3 2.0 43525 4 2.2 39891 5 2.9 56642 6 3.0 60150 7 3.2 54445 8 3.2 64445 9 3.7 57189 10 3.9 63218 11 4.0 55794 12 4.0 56957 13 4.1 57081 14 4.5 df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns): Non-Null Count # Column Dtype 0 YearsExperience 30 non-null float64 1 30 non-null int64 Salary

```
dtypes: float64(1), int64(1) memory usage: 612.0 bytes
```

df.describe() #descripte statical report # find
out IYER FOR BELOW META DATA

	YearsExperience	Salary
count	30.000000	30.000000
mean	5.313333	76003.000000
std	2.837888	27414.429785
min	1.100000	37731.000000
25%	3.200000	56720.750000
50%	4.700000	65237.000000
75%	7.700000	100544.750000
max	10.500000	122391.000000

features = df.iloc[:,[0]].values # : - > all row , 0 -> first column #iloc index based

selection loc location based sentence

label = df.iloc[:,[1]].values

1.3],

features

array([[1.1],

```
1.5],
[ 2. ],
[2.\overline{2}],
[ 2.9],
[ 3. ],
[3.\overline{2}],
[ 3.2],
 3.7],
[ 3.9],
[ 4. ],
[ 4. ],
  4.1],
  4.5],
 4.9],
 5.1],
[ 5.3],
 5.9],
[ 6. ],
 6.8],
 7.1],
 7.9],
 8.2],
[ 8.7],
[ 9. ],
```

```
[ 9.5],
        [ 9.6],
        [10.3],
        [10.5]
label
 array([[ 39343],
          46205],
          37731],
          43525],
         [ 39891],
          56642],
          60150],
          54445],
          64445],
          57189],
          63218],
          55794],
          56957],
          57081],
         [ 61111],
          67938],
         [ 66029],
         83088],
         [ 81363],
         [ 93940],
         [ 91738],
        [ 98273],
        [101302],
        [113812],
        [109431],
        [105582],
        [116969],
        [112635],
        [122391],
        [121872]], dtype=int64)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =
train_test_split(features,label,test_size=0.2,random_state=23) # x
independent input train 80 % test 20 %
y is depenent ouput
0.2 allocate test for 20 % automatically train for 80 % ""
'\ny is depenent ouput\n0.2 allocate test for 20 % automatically train for 80 %\n'
```

```
from sklearn.linear model import LinearRegression model =
LinearRegression() model.fit(x_train,y_train)
sk - size kit
linear means using linear regression fit
means add data
'\nsk - size kit \nlinear means using linear regression \nfit means add data \n'
model.score(x_train,y_train)
accuracy calculating
96 % ""
'\naccuracy calculating\n96 %\n'
model.score(x_test,y_test)
accuracy calculating
91 % "
'\naccuracy calculating\n91 %\n'
model.coef
array([[9281.30847068]])
model.intercept_
array([27166.73682891])
import pickle
pickle.dump(model,open('SalaryPred.model','wb')) ""
pickle momory obj to file "
'\npickle momory obj to file\n\n'
model = pickle.load(open('SalaryPred.model','rb'))
yr_of_exp = float(input("Enter years of expreience: ")) yr_of_exp_NP =
np.array([[yr_of_exp]])
salary = model.predict(yr_of_exp_NP)
print("Estimated salary for {} years of expreience is {} . ".format(yr_of_exp,salary))
```

Enter years of expreience: 24

Estimated salary for 24.0 years of expreience is [[249918.14012525]].

print(f" Estimated salary for {yr_of_exp} years of expreience is
{salary} . ")

Estimated salary for 24.0 years of expreience is [[249918.14012525]].

#EX.NO:12 Logistic Regression

#DATA : 05.11.2024

#NAME: GOWTHAM.BR #ROLL NO: 230701524

#DEPARTMENT: B.E COMPUTER SCIENCE AND ENGINEERING - C

import numpy as np import pandas as pd import warnings

warnings.filterwarnings('ignore')

df=pd.read_csv('Social_Network_Ads.csv.csv') df

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	1 9	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

[400 rows x 5 columns]

df.tail(20)

	User ID	Gender	Age Es	timatedSalary Purchased	
380	15683758	Male	42	64000	0
381	15670615	Male	48	33000	1
382	15715622	Female	44	139000	1
383	15707634	Male	49	28000	1
384	15806901	Female	57	33000	1
385	15775335	Male	56	60000	1
	15724150	Female	49	39000	1
387	15627220	Male	39	71000	n

```
388
     15672330
                   Male
                          47
                                          34000
                                                           1
389
     15668521
                          48
                                          35000
                                                           1
                Female
390
     15807837
                          48
                                                           1
                   Male
                                          33000
391
     15592570
                   Male
                          47
                                          23000
                                                           1
392
     15748589
                Female
                          45
                                          45000
                                                           1
                                                           1
393
     15635893
                   Male
                          60
                                          42000
394
     15757632
                Female
                          39
                                          59000
                                                           0
                                                           1
395
                Female
                          46
     15691863
                                          41000
396
     15706071
                   Male
                          51
                                          23000
                                                           1
                          50
                                                           1
397
     15654296
                Female
                                          20000
398
                          36
                                                           0
     15755018
                   Male
                                          33000
399
     15594041
                Female
                          49
                                          36000
                                                           1
df.head(25)
     User ID Gender Age EstimatedSalary Purchased
    15624510
                 Male
                         19
                                                         0
0
                                         19000
                                                         0
1
    15810944
                 Male
                         35
                                         20000
2
                                                         0
    15668575 Female
                         26
                                        43000
3
                         27
                                                         0
    15603246
               Female
                                         57000
4
    15804002
                 Male
                         19
                                         76000
                                                         0
5
                                                         0
    15728773
                 Male
                         27
                                         58000
6
    15598044 Female
                         27
                                                         0
                                         84000
7
                         32
                                                         1
    15694829
               Female
                                       150000
8
                         25
                                                         0
    15600575
                 Male
                                         33000
9
                                                         0
    15727311 Female
                         35
                                         65000
10 15570769 Female
                         26
                                         80000
                                                         0
11 15606274 Female
                         26
                                         52000
                                                         0
12 15746139
                 Male
                         20
                                        86000
                                                         0
13 15704987
                 Male
                         32
                                         18000
                                                         0
14 15628972
                 Male
                         18
                                         82000
                                                         0
15 15697686
                 Male
                         29
                                         80000
                                                         0
16 15733883
                         47
                                                         1
                 Male
                                         25000
17 15617482
                         45
                                                         1
                 Male
                                         26000
18 15704583
                 Male
                         46
                                         28000
                                                         1
19 15621083 Female
                         48
                                         29000
                                                         1
20 15649487
                 Male
                         45
                                         22000
                                                         1
21 15736760 Female
                         47
                                                         1
                                         49000
                         48
22 15714658
                 Male
                                        41000
                                                         1
23 15599081 Female
                         45
                                         22000
                                                         1
features = df.iloc[:,[2,3]].values label =
df.iloc[:,4].values features
 array([[
             19,
                   19000],
             35,
                   20000],
             26,
                   43000],
             27,
                   57000],
```

```
19,
     76000],
27,
     58000],
27,
     84000],
32,
    150000],
25,
     33000],
35,
     65000],
26,
     80000],
26,
     52000],
20,
     86000],
32,
     18000],
18,
     82000],
29,
     80000],
47,
     25000],
45,
     26000],
46,
     28000],
48,
     29000],
45,
     22000],
47,
     49000],
     41000],
48,
45,
     22000],
46,
     23000],
47,
     20000],
49,
     28000],
47,
     30000],
29,
     43000],
31,
     18000],
31,
     74000],
27, 137000],
21,
     16000],
28,
     44000],
27,
     90000],
     27000],
35,
33,
     28000],
30,
     49000],
26,
     72000],
     31000],
27,
27,
     17000],
33,
     51000],
35, 108000],
30,
     15000],
28,
     84000],
23,
     20000],
25,
     79000],
27,
     54000],
30, 135000],
31,
     89000],
24,
     32000],
18,
     44000],
29,
     83000],
```

```
35,
     23000],
27,
     58000],
24,
     55000],
23,
     48000],
28,
     79000],
22,
     18000],
32,
    117000],
27,
     20000],
25,
     87000],
23,
     66000],
32, 120000],
59,
     83000],
24,
     58000],
24,
     19000],
23,
     82000],
22,
     63000],
31,
     68000],
25,
     80000],
24,
     27000],
20,
     23000],
33, 113000],
32,
     18000],
34, 112000],
18,
     52000],
22,
     27000],
28,
     87000],
26,
     17000],
30,
     80000],
39,
     42000],
20,
     49000],
35,
     88000],
30,
     62000],
31, 118000],
24,
     55000],
28,
     85000],
26,
     81000],
35,
     50000],
22,
     81000],
30, 116000],
26,
     15000],
29,
     28000],
29,
     83000],
35,
     44000],
35,
     25000],
28,
    123000],
35,
     73000],
28,
     37000],
27,
     880001,
28,
     59000],
```

```
32,
     86000],
33, 149000],
19,
     21000],
21,
     72000],
26,
     35000],
27,
     89000],
26,
     86000],
38,
     80000],
39,
     71000],
37,
     71000],
38,
     61000],
37,
     55000],
42,
     80000],
40,
     57000],
     75000],
35,
     52000],
36,
     59000],
40,
41,
     59000],
     75000],
36,
37,
     72000],
40,
     75000],
35,
     53000],
41,
     51000],
39,
     61000],
42,
     65000],
26,
     32000],
30,
     17000],
26,
     84000],
31,
     58000],
33,
     31000],
30,
     87000],
21,
     68000],
28,
     55000],
23,
     63000],
20,
     82000],
30, 107000],
28,
     59000],
19,
     25000],
19,
     85000],
18,
     68000],
35,
     59000],
30,
     89000],
34,
     25000],
24,
     89000],
27,
     96000],
41,
     30000],
29,
     61000],
     74000],
20,
26,
     15000],
```

```
41,
     45000],
31,
     76000],
36,
     50000],
40,
     47000],
31,
     15000],
46,
     59000],
29,
     75000],
26,
     30000],
32, 135000],
32, 100000],
25,
     90000],
     33000],
37,
35,
     38000],
33,
     69000],
18,
     86000],
22,
     55000],
35,
     71000],
29, 148000],
29,
     47000],
21,
     88000],
34, 115000],
26, 118000],
34,
     43000],
34,
     72000],
23,
     28000],
35,
     47000],
25,
     22000],
24,
     23000],
31,
     34000],
26,
     16000],
     71000],
31,
32, 117000],
33,
     43000],
33,
     60000],
31,
     66000],
20,
     82000],
33,
     41000],
35,
     72000],
28,
     32000],
24,
     84000],
19,
     26000],
29,
     43000],
19,
     70000],
28,
     89000],
34,
     43000],
30,
     79000],
20,
     36000],
     80000],
26,
35,
     22000],
```

```
35,
     39000],
49,
     74000],
39, 134000],
41,
     71000],
58, 101000],
47,
     47000],
55, 130000],
52, 114000],
40, 142000],
46,
     22000],
48,
     96000],
52, 150000],
59,
     42000],
35,
     58000],
47,
     43000],
60, 108000],
49,
     65000],
40,
     78000],
46,
     96000],
59, 143000],
41,
     80000],
35,
     91000],
37, 144000],
60, 102000],
35,
     60000],
37,
     53000],
36, 126000],
56, 133000],
40,
     72000],
42,
     80000],
35, 147000],
     42000],
39,
40, 107000],
49,
     86000],
38, 112000],
     79000],
46,
40,
     57000],
     80000],
37,
46,
     82000],
53, 143000],
42, 149000],
38,
     59000],
50,
     88000],
56, 104000],
41,
     72000],
51, 146000],
35,
     50000],
57, 122000],
41,
     52000],
```

```
35,
     97000],
44,
     39000],
37,
     52000],
48, 134000],
37, 146000],
50,
     44000],
52,
     90000],
41,
     72000],
40,
     57000],
58,
     95000],
45, 131000],
35,
     77000],
36, 144000],
55, 125000],
35,
     72000],
48,
     90000],
42, 108000],
40,
     75000],
37,
     74000],
47, 144000],
40,
     61000],
43, 133000],
59,
     76000],
60,
     42000],
39, 106000],
57,
     26000],
57,
     74000],
38,
     71000],
49,
     88000],
52,
     38000],
     36000],
50,
59,
     88000],
35,
     61000],
37,
     70000],
52,
     21000],
48, 141000],
37,
     93000],
37,
     62000],
48, 138000],
41,
     79000],
37,
     78000],
39, 134000],
49,
     89000],
55,
     39000],
37,
     77000],
35,
     57000],
36,
     63000],
42,
     730001,
43, 112000],
```

```
45,
     79000],
46, 117000],
58,
     38000],
48,
     74000],
37, 137000],
37,
     79000],
40,
     60000],
42,
     54000],
51, 134000],
47, 113000],
36, 125000],
38,
     50000],
42,
     70000],
39,
     96000],
38,
     50000],
49, 141000],
39,
     79000],
39,
     75000],
54, 104000],
35,
     55000],
45,
     32000],
36,
     60000],
52, 138000],
53,
     82000],
41,
     52000],
48,
     30000],
48, 131000],
41,
     60000],
41,
     72000],
42,
     75000],
36, 118000],
47, 107000],
38,
     51000],
48, 119000],
42,
     65000],
     65000],
40,
57,
     60000],
36,
     54000],
58, 144000],
35,
     79000],
     55000],
38,
39, 122000],
53, 104000],
35,
     75000],
38,
     65000],
47,
     51000],
47, 105000],
41,
     63000],
53,
     72000],
```

```
54, 108000],
39,
     77000],
38,
     61000],
38, 113000],
37,
     75000],
42,
     90000],
37,
     57000],
36,
     99000],
60,
     34000],
54,
     70000],
41,
     72000],
40,
     71000],
42,
     54000],
43, 129000],
53,
     34000],
47,
     50000],
     79000],
42,
42, 104000],
59,
     29000],
58,
     47000],
46,
     88000],
38,
     71000],
54,
     26000],
60,
     46000],
60,
     83000],
39,
     73000],
59, 130000],
37,
     80000],
46,
     32000],
46,
     74000],
     53000],
42,
41,
     87000],
58,
     23000],
42,
     64000],
48,
     33000],
44, 139000],
49,
     28000],
57,
     33000],
56,
     60000],
49,
     39000],
39,
     71000],
47,
     34000],
48,
     35000],
48,
     33000],
47,
     23000],
45,
     45000],
60,
     42000],
39,
     590001,
46,
     41000],
     23000],
51,
```

```
50, 20000],
          36, 33000],
          49, 36000]], dtype=int64)
label
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1,
      1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
      0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0,
      0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0,
      0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0,
      0,
      0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
1,
      0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1,
0,
      1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1,
0,
      1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
1,
      0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,
1,
      1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1,
1,
      0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
0,
      1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0,
1,
      0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
1,
      1, 1, 0, 1], dtype=int64)
from sklearn.model selection import train test split from
sklearn.linear model import LogisticRegression
# Assuming `features` and `label` are already defined
for i in range(1, 401):
```

```
x_train, x_test, y_train, y_test = train_test_split(features, label,
test_size=0.2, random_state=i)
    model = LogisticRegression() model.fit(x_train,
    y_train)

train_score = model.score(x_train, y_train)
    test_score = model.score(x_test, y_test)

if test_score > train_score:
    print(f"Test Score: {test_score:.4f} | Train Score:
{train_score:.4f} | Random State: {i}")
```

Test Score: 0.9000 | Train Score: 0.8406 | Random State: 4 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 5 Test Score: 0.8625 | Train Score: 0.8594 | Random State: 6 Test Score: 0.8875 | Train Score: 0.8375 | Random State: 7 Test Score: 0.8625 | Train Score: 0.8375 | Random State: 9 Test Score: 0.9000 | Train Score: 0.8406 | Random State: 10 Test Score: 0.8625 | Train Score: 0.8562 | Random State: 14 Test Score: 0.8500 | Train Score: 0.8438 | Random State: 15 Test Score: 0.8625 | Train Score: 0.8562 | Random State: 16 Test Score: 0.8750 | Train Score: 0.8344 | Random State: 18 Test Score: 0.8500 | Train Score: 0.8438 | Random State: 19 Test Score: 0.8750 | Train Score: 0.8438 | Random State: 20 Test Score: 0.8625 | Train Score: 0.8344 | Random State: 21 Test Score: 0.8750 | Train Score: 0.8406 | Random State: 22 Test Score: 0.8750 | Train Score: 0.8406 | Random State: 24 Test Score: 0.8500 | Train Score: 0.8344 | Random State: 26 Test Score: 0.8500 | Train Score: 0.8406 | Random State: 27 Test Score: 0.8625 | Train Score: 0.8344 | Random State: 30 Test Score: 0.8625 | Train Score: 0.8562 | Random State: 31 Test Score: 0.8750 | Train Score: 0.8531 | Random State: 32 Test Score: 0.8625 | Train Score: 0.8438 | Random State: 33 Test Score: 0.8750 | Train Score: 0.8313 | Random State: 35 Test Score: 0.8625 | Train Score: 0.8531 | Random State: 36 Test Score: 0.8875 | Train Score: 0.8406 | Random State: 38 Test Score: 0.8750 | Train Score: 0.8375 | Random State: 39 Test Score: 0.8875 | Train Score: 0.8375 | Random State: 42 Test Score: 0.8750 | Train Score: 0.8469 | Random State: 46 Test Score: 0.9125 | Train Score: 0.8313 | Random State: 47 Test Score: 0.8750 | Train Score: 0.8313 | Random State: 51 Test Score: 0.9000 | Train Score: 0.8438 | Random State: 54 Test Score: 0.8500 | Train Score: 0.8438 | Random State: 57 Test Score: 0.8750 | Train Score: 0.8438 | Random State: 58 Test Score: 0.9250 | Train Score: 0.8375 | Random State: 61

Test Score: 0.8875 | Train Score: 0.8344 | Random State: 65 Test Score: 0.8875 | Train Score: 0.8406 | Random State: 68 Test Score: 0.9000 | Train Score: 0.8313 | Random State: 72 Test Score: 0.8875 | Train Score: 0.8375 | Random State: 75 Test Score: 0.9250 | Train Score: 0.8250 | Random State: 76 Test Score: 0.8625 | Train Score: 0.8406 | Random State: 77 Test Score: 0.8625 | Train Score: 0.8594 | Random State: 81 Test Score: 0.8750 | Train Score: 0.8375 | Random State: 82 Test Score: 0.8875 | Train Score: 0.8375 | Random State: 83 Test Score: 0.8625 | Train Score: 0.8531 | Random State: 84 Test Score: 0.8625 | Train Score: 0.8406 | Random State: 85 Test Score: 0.8625 | Train Score: 0.8406 | Random State: 87 Test Score: 0.8750 | Train Score: 0.8469 | Random State: 88 Test Score: 0.9125 | Train Score: 0.8375 | Random State: 90 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 95 Test Score: 0.8750 | Train Score: 0.8500 | Random State: 99 Test Score: 0.8500 | Train Score: 0.8406 | Random State: 101 Test Score: 0.8500 | Train Score: 0.8406 | Random State: 102 Test Score: 0.9000 | Train Score: 0.8250 | Random State: 106 Test Score: 0.8625 | Train Score: 0.8406 | Random State: 107 Test Score: 0.8500 | Train Score: 0.8344 | Random State: 109 Test Score: 0.8500 | Train Score: 0.8406 | Random State: 111 Test Score: 0.9125 | Train Score: 0.8406 | Random State: 112 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 115 Test Score: 0.8625 | Train Score: 0.8406 | Random State: 116 Test Score: 0.8750 | Train Score: 0.8344 | Random State: 119 Test Score: 0.9125 | Train Score: 0.8281 | Random State: 120 Test Score: 0.8625 | Train Score: 0.8594 | Random State: 125 Test Score: 0.8500 | Train Score: 0.8469 | Random State: 128 Test Score: 0.8750 | Train Score: 0.8500 | Random State: 130 Test Score: 0.9000 | Train Score: 0.8438 | Random State: 133 Test Score: 0.9250 | Train Score: 0.8344 | Random State: 134 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 135 Test Score: 0.8750 | Train Score: 0.8313 | Random State: 138 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 141 Test Score: 0.8500 | Train Score: 0.8469 | Random State: 143 Test Score: 0.8500 | Train Score: 0.8469 | Random State: 146 Test Score: 0.8500 | Train Score: 0.8438 | Random State: 147 Test Score: 0.8625 | Train Score: 0.8500 | Random State: 148 Test Score: 0.8750 | Train Score: 0.8375 | Random State: 150 Test Score: 0.8875 | Train Score: 0.8313 | Random State: 151 Test Score: 0.9250 | Train Score: 0.8438 | Random State: 152 Test Score: 0.8500 | Train Score: 0.8406 | Random State: 153 Test Score: 0.9000 | Train Score: 0.8438 | Random State: 154 Test Score: 0.9000 | Train Score: 0.8406 | Random State: 155 Test Score: 0.8875 | Train Score: 0.8469 | Random State: 156 Test Score: 0.8875 | Train Score: 0.8344 | Random State: 158 Test Score: 0.8750 | Train Score: 0.8281 | Random State: 159 Test Score: 0.9000 | Train Score: 0.8313 | Random State: 161

```
Test Score: 0.8500 | Train Score: 0.8375 | Random State: 163
Test Score: 0.8750 | Train Score: 0.8313 | Random State: 164
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 169
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 171
Test Score: 0.8500 | Train Score: 0.8406 | Random State: 172
Test Score: 0.9000 | Train Score: 0.8250 | Random State: 180
Test Score: 0.8500 | Train Score: 0.8344 | Random State: 184
Test Score: 0.9250 | Train Score: 0.8219 | Random State: 186
Test Score: 0.9000 | Train Score: 0.8313 | Random State: 193
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 195
Test Score: 0.8625 | Train Score: 0.8406 | Random State: 196
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 197
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 198
Test Score: 0.8875
                    Train Score: 0.8375 | Random State: 199
Test Score: 0.8875 | Train Score: 0.8438 | Random State: 200
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 202
Test Score: 0.8625 | Train Score: 0.8406 | Random State: 203
Test Score: 0.8875 |
                    Train Score: 0.8313 | Random State: 206
Test Score: 0.8625 |
                    Train Score: 0.8344 | Random State: 211
Test Score: 0.8500 | Train Score: 0.8438 | Random State: 212
Test Score: 0.8625
                    Train Score: 0.8344 | Random State: 214
Test Score: 0.8750 | Train Score: 0.8313 | Random State: 217
Test Score: 0.9625 |
                    Train Score: 0.8187 | Random State: 220
Test Score: 0.8750 |
                    Train Score: 0.8438 | Random State: 221
Test Score: 0.8500 | Train Score: 0.8406 | Random State: 222
Test Score: 0.9000 | Train Score: 0.8438 | Random State: 223
Test Score: 0.8625 | Train Score: 0.8531 | Random State: 227
Test Score: 0.8625 | Train Score: 0.8344 | Random State: 228
Test Score: 0.9000 | Train Score: 0.8406 | Random State: 229
Test Score: 0.8500 | Train Score: 0.8438 | Random State: 232
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 233
Test Score: 0.9125 | Train Score: 0.8406 | Random State: 234
Test Score: 0.8625 |
                    Train Score: 0.8406 | Random State: 235
Test Score: 0.8500 | Train Score: 0.8469 | Random State: 236
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 239
Test Score: 0.8500 | Train Score: 0.8438 | Random State: 241
Test Score: 0.8875 | Train Score: 0.8500 | Random State: 242
Test Score: 0.8875 | Train Score: 0.8250 | Random State: 243
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 244
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 245
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 246
Test Score: 0.8625 | Train Score: 0.8594 | Random State: 247
Test Score: 0.8875 | Train Score: 0.8438 | Random State: 248
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 250
Test Score: 0.8750 | Train Score: 0.8313 | Random State: 251
Test Score: 0.8875 | Train Score: 0.8438 | Random State: 252
Test Score: 0.8625 | Train Score: 0.8469 | Random State: 255
Test Score: 0.9000 | Train Score: 0.8406 | Random State: 257
Test Score: 0.8625 | Train Score: 0.8562 | Random State: 260
```

```
Test Score: 0.8625 | Train Score: 0.8406 | Random State: 266
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 268
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 275
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 276
Test Score: 0.9250 | Train Score: 0.8375 | Random State: 277
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 282
Test Score: 0.8500 | Train Score: 0.8469 | Random State: 283
Test Score: 0.8500 | Train Score: 0.8438 | Random State: 285
Test Score: 0.9125 | Train Score: 0.8344 | Random State: 286
Test Score: 0.8500 | Train Score: 0.8406 | Random State: 290
Test Score: 0.8500 | Train Score: 0.8406 | Random State: 291
Test Score: 0.8500 | Train Score: 0.8469 | Random State: 292
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 294
Test Score: 0.8875 | Train Score: 0.8281 | Random State: 297
Test Score: 0.8625 | Train Score: 0.8344 | Random State: 300
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 301
Test Score: 0.8875 | Train Score: 0.8500 | Random State: 302
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 303
Test Score: 0.8625 | Train Score: 0.8344 | Random State: 305
Test Score: 0.9125 | Train Score: 0.8375 | Random State: 306
Test Score: 0.8750 | Train Score: 0.8469 | Random State: 308
Test Score: 0.9000 | Train Score: 0.8438 | Random State: 311
Test Score: 0.8625 | Train Score: 0.8344 | Random State: 313
Test Score: 0.9125 | Train Score: 0.8344 | Random State: 314
Test Score: 0.8750 | Train Score: 0.8375 | Random State: 315
Test Score: 0.9000 | Train Score: 0.8469 | Random State: 317
Test Score: 0.9125 | Train Score: 0.8219 | Random State: 319
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 321
Test Score: 0.9125 | Train Score: 0.8281 | Random State: 322
Test Score: 0.8500 | Train Score: 0.8469 | Random State: 328
Test Score: 0.8500 | Train Score: 0.8375 | Random State: 332
Test Score: 0.8875 | Train Score: 0.8531 | Random State: 336
Test Score: 0.8500 | Train Score: 0.8375 | Random State: 337
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 343
Test Score: 0.8625 | Train Score: 0.8438 | Random State: 346
Test Score: 0.8875 | Train Score: 0.8313 | Random State: 351
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 352
Test Score: 0.9500 | Train Score: 0.8187 | Random State: 354
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 356
Test Score: 0.9125 | Train Score: 0.8406 | Random State: 357
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 358
Test Score: 0.8500 | Train Score: 0.8406 | Random State: 362
Test Score: 0.9000 | Train Score: 0.8438 | Random State: 363
Test Score: 0.8625 | Train Score: 0.8531 | Random State: 364
Test Score: 0.9375 | Train Score: 0.8219 | Random State: 366
Test Score: 0.9125 | Train Score: 0.8406 | Random State: 369
Test Score: 0.8625 | Train Score: 0.8531 | Random State: 371
Test Score: 0.9250 | Train Score: 0.8344 | Random State: 376
Test Score: 0.9125 | Train Score: 0.8281 | Random State: 377
```

```
Test Score: 0.8875 | Train Score: 0.8500 | Random State: 378
Test Score: 0.8875 | Train Score: 0.8500 | Random State: 379
Test Score: 0.8625 | Train Score: 0.8406 | Random State: 382
Test Score: 0.8625 | Train Score: 0.8594 | Random State: 386
Test Score: 0.8500 | Train Score: 0.8375 | Random State: 387
Test Score: 0.8750 | Train Score: 0.8281 | Random State: 388
Test Score: 0.8500 | Train Score: 0.8438 | Random State: 394
Test Score: 0.8625 | Train Score: 0.8438 | Random State: 395
Test Score: 0.9000 | Train Score: 0.8438 | Random State: 397
Test Score: 0.8625 | Train Score: 0.8438 | Random State: 400
```

'\n\n\n'

```
x_train,x_test,y_train,y_test=train_test_split(features,label,test_siz e=0.2,random_state=209) finalModel=LogisticRegression() finalModel.fit(x_train,y_train)
```

LogisticRegression()

```
print(finalModel.score(x_train,y_train))
print(finalModel.score(x_train,y_train))
```

0.85 0.85

from sklearn.metrics import classification_report
print(classification_report(label,finalModel.predict(features)))

	precision	recall f1	recall f1-score		
0 1	0.86 0.83	0.91 0.73	0.89 0.77	257 143	
accuracy macro avg weighted avg	0.84 0.85	0.82 0.85	0.85 0.83 0.85	400 400 400	