Math 635 Lecture 38

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

Recall: The Laplace-Beltrami operator on forms: Δ on Ω^k , where $\Delta = d\delta + \delta d$.

Ex: On \mathbb{R}^n , Δ on functions (i.e. $\Omega^0 = C^{\infty}(\mathbb{R}^n, \mathbb{R})$). Then $\Delta = -\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$. (This is using our sign convention.) For $\omega \in \mathbb{R}^n$, $\Delta(e^{i\omega \cdot x}) = ||\omega||^2 e^{i\omega \cdot x}$.

For forms $f_I dx^I$, where $I = \{i_1 < \dots < i_k\}$ is a multi-index, the Laplacian is $\Delta(f_I dx^I) = (\Delta f_I) dx^I$.

Throughout our discussion today, we'll assume M is compact and oriented.

Ex: $\mathbb{T} = \mathbb{R}^n/\Lambda$, where $\Lambda = \{\sum k_i e_i, k_i \in \mathbb{Z}, e_1, \dots, e_n \text{ linearly independent}\}$. $\Delta_{\mathbb{R}^n}$ makes sense on $C^{\infty}(\mathbb{T})$. If $\omega \in \mathbb{R}^n$ is such that $\forall k \in \Lambda$, $\omega \cdot k \in 2\pi\mathbb{Z}$, then $x \mapsto e^{i\omega \cdot x}$ is periodic w.r.t. Λ , so it's $C^{\infty}(\mathbb{T})$.

Thm: The eigenvalues of $\Lambda_{\mathbb{T}}$ on functions are $||\omega||^2$ for ω satisfying the above condition. Such ω constitute the *dual lattice* Λ^* .

Thm: For S^2 , distinct eigenvalues are k(k+1) for $k \in \{0, 1, 2, ...\}$, with corresponding muliplicities 2k+1. That is, listed, with multiplicities, we have eigenvalues

$$\underbrace{0}_{k=0}, \underbrace{2, 2, 2}_{k=1}, \underbrace{6, 6, 6, 6, 6}_{k=2}, \dots$$

In the general case, we have

Thm: (Spectral Theorem for the Laplacian on Forms) Let M be a compact, oriented manifold. There exists an orthonormal basis (in the ℓ^2 sense) of Ω^k , $\{\alpha_j: j=0,1,2,\ldots\}$ an real eigenvalues $\lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \to +\infty$ such that $\Delta \alpha_j = \lambda_j \alpha_j$. Moreover, $\lim_{j\to\infty} \lambda_j = +\infty$, i.e., the multiplicities are all finite.

This yields the spectral decomposition of $\alpha \in \Omega^k$:

$$\alpha = \alpha_H + \sum_{\lambda > 0} \alpha_{\lambda}$$
 $\Delta \alpha_{\lambda} = \lambda \alpha_{\lambda}, \Delta \alpha_H = 0$

 α_H is the "harmonic part", and the λ 's are all distinct eigenvalues. This decomposition is unique and orthogonal.

Note: Because this is an infinite-dimensional space, there's a lot of analysis happening behind the scenes.

Observe: α is smooth iff $||\alpha_{\lambda}||_{\ell^2} = 0$ (really $\lambda^{-\infty}$). In other words, it decays rapidly as λ grows.

Defn: $G: \Omega^k \to \Omega^k$ is defined by $G(\alpha) = \sum_{\lambda > 0} \frac{1}{\lambda} \alpha_{\lambda}$.

Observe: G is smooth.

By definition,

$$\Delta G(\alpha) = \sum_{\lambda > 0} \frac{1}{\lambda} \Delta \alpha_{\lambda} = \sum_{\lambda > 0} \frac{1}{\lambda} \lambda \alpha_{\lambda} = \sum_{\lambda > 0} \alpha_{\lambda} = \alpha - \alpha_{H}$$

Lemma: [G, d] = 0 and $[G, \delta] = 0$.

Why should this be true? We've seen that $[\Delta, d] = 0$ and $[\Delta, \delta] = 0$. So $\forall \alpha_{\lambda}, \Delta \alpha_{\lambda} = \lambda \alpha_{\lambda}$. $d\alpha_{\lambda}$ is either 0 or an

eigenform of Δ . So we get the commutative diagram

$$\begin{array}{ccc} \Omega^k & \stackrel{d}{\longrightarrow} \Omega^{k+1} \\ G \!\!\! \downarrow & & \!\!\! \downarrow G \\ \Omega^k & \stackrel{d}{\longrightarrow} \Omega^{k+1} \end{array}$$

Cor: (Hodge Decomposition Theorem) $\Omega^k = \mathcal{H}^k \oplus d(\Omega^{k-1}) \oplus \delta(\Omega^{k+1})$, where $\mathcal{H}^k = \ker(\Delta : \Omega^k \to \Omega^k)$ is the set of harmonic forms.

This decomposition is an orthogonal direct sum with respect to the ℓ^2 inner prouct. In fact, if $\alpha \in \Omega^k$,

$$\alpha = \alpha_H + \Delta G(\alpha) = \alpha_H + \underbrace{d(\delta G(\alpha))}_{\in d(\Omega^{k-1})} + \underbrace{\delta(\underbrace{d(G(\alpha)))}_{\in \delta(\Omega^{k+1})}}_{\in \delta(\Omega^{k+1})}$$

Cor: If $\alpha \in \Omega^k$ is such that $d\alpha = 0$, then $[\alpha] = [\alpha_H]$ (where $[\cdot]$ is the equivalence class in deRham cohomology).

Proof:

$$\alpha = \alpha_H + d(\delta G(\alpha)) + \delta(\underbrace{dG(\alpha)}_{G(d\alpha)=0}) = \alpha_H + d(\delta G(\alpha))$$

Recall: $\Delta \alpha = 0$ iff $d\alpha = 0$ and $\delta \alpha = 0$. In fact, $\forall c \in H_{dR}^k(M), \exists ! \alpha_H \in [c]$ such that $\Delta \alpha_H = 0$.

Cor: The Betti numbers of a manifold are finite.

Proof: $b_k = \dim H^k$. This is the multiplicity of k, which we know to be finite. \square

Cor: (Poincaré Duality) The \star operator induces $H^k(M) \cong H^{n-k}(M)$, where $n = \dim M$.

Proof: Follows from the fact that $[\Delta, \star] = 0$. \square

Applications of Hodge Theory

Recall that $\forall p \in M, \forall u, v \in T_pM, \operatorname{Ric}_p^B(u, v) = \operatorname{tr}(T_pM \ni x \mapsto R_p(x, u)v \in T_pM)$. We saw that Ric^B is symmetric, and $\operatorname{Ric}(u) = \operatorname{Ric}^B(u, u)$.

Thm: (Bochner's Theorem) Assume M is connected, compact, and oriented.

- (a) If $Ric \geq 0$, $b_1 \leq \dim M$.
- (b) If $\operatorname{Ric} \geq 0$ and $\exists p_0 \in M$ such that $\operatorname{Ric}_{p_0}^B$ is positive definite, then $b_1 = 0$.

Proof: Introduce a "rough Laplacian" associated to ∇ . (Recall that $T^*M \cong TM$, and think of the connection as $\nabla: \gamma(T^*M) \to \Gamma(T^*M \otimes T^*M)$.) The rough Laplacian is $\nabla^*\nabla: \Omega^1 \to \Omega^1$. This works because we have $\nabla^*: \Gamma(T^*M \otimes T^*M) \to \Gamma(T^*M)$, using ℓ^2 inner products associated with the Euclidean structures on the bundles.

It turns out this rough Laplacian has the same ymbol as the ordinary Laplacian. In fact, hey only differ by a term of order 0! A calculation show that $\forall \alpha \in \Omega^1$, $\Delta \alpha = \nabla^* \nabla \alpha + \text{Ric}^B(\alpha^{\sharp}, \cdot)$, where α^{\sharp} is the metric dual to α . Well,

$$\Delta \alpha = 0 \Rightarrow 0 = \int_{M} \langle \Delta \alpha, \alpha \rangle d \operatorname{Vol}$$

$$\Rightarrow 0 = \underbrace{||\Delta \alpha||^{2}}_{=\langle \nabla^{*} \nabla \alpha, \alpha \rangle_{\ell^{2}} M} \operatorname{Ric}^{B}(\alpha^{\sharp}, \alpha^{\sharp}) d \operatorname{Vol}$$

$$= \langle \nabla^{*} \nabla \alpha, \alpha \rangle_{\ell^{2}} M$$

$$\Rightarrow \nabla \alpha = 0 \text{ and } \operatorname{Ric}(\alpha^{\sharp}) = 0$$

$$\Rightarrow \alpha \text{ is parallel-determined by any value } \alpha_{p} \in T_{p}^{*} M$$