Roztoky

- homogénne zmesi dvoch alebo viacerých látok, ktorých zastúpenie môžeme v určitých medziach meniť
- súčasti roztoku sa označujú ako zložky:

Roztok = rozpúšťadlo + rozpustná látka

Základné pojmy

- **Rozpustnosť** vyjadruje najväčšie množstvo látky, ktoré sa rozpustí bez zvyšku pri určitej teplote v 100 g rozpúšťadla (hodnota je uvádzaná v tabuľkách). Je závislá od povahy rozpúšťanej látky a od druhu rozpúšťadla, od teploty a pri plynoch aj od tlaku.
- **Nerozpustná látka** je látka s malou rozpustnosťou vo vode. Ich rozpustnosť je pod hranicou 0,1 g
- **Nasýtený roztok** je roztok, v ktorom sa pri danej teplote a tlaku nemôže už viac látky nerozpustiť.
- **Nenasýtený roztok** je roztok, v ktorom je za daných podmienok rozpustené menšie množstvo látky ako v nasýtenom roztoku.
- Zásobný roztok je koncentrovaný roztok danej látky s určitou molárnou koncentráciou (M), ktorý slúži na prípravu iných tzv. pracovných roztokov, ktoré majú nižšiu koncentráciu. Najčastejšie k nim patria: 1 M HCl, 1 M NaOH, 1 M (príp. 5 M) NaCl, 1 M Tris-HCl (pH 7), 1 M Tris-HCl (pH 8), 0,5 M EDTA (pH 8), 3 M Naacetát, 100x TE pufor, 50x TAE pufor, 20x SSC.
- Molaritavyjadruje počet molov danej látky v 1 litri roztoku [1mol/l = 1mol/dm³ = 1M]
- Molalitaje vyjadrená ako látkové množstvoobsiahnuté v 1 kg rozpúšťadla [1mol/kg]

Pr.1

 a) Vypočítajte koľko gramov chloridu draselného treba rozpustiť v 100g vody, aby bol roztok nasýtený. Pri 20°C je v 100g roztoku 25,5g KCl

Zásady prípravy roztokov

 vo vodných roztokoch je vždy rozpúšťadlom voda, v ostatných považujeme za rozpúšťadlo prevládajúcu zložku sústavy.

Vyjadrenie zloženia roztokov

Zloženie roztoku možno matematicky vyjadriť. Pri výpočte množstva látky, ktoré je potrebné na prípravu roztoku sa najčastejšie vychádza z požadovanej koncentrácie roztoku, ktorá môže byť charakterizovaná:

A. látkovou/ molárnou koncentráciou

B. percentuálnou koncentráciou

Pri práci s roztokmi si treba uvedomiť v akých jednotkách sa pracuje. Najčastejšie sú objemy uvádzané v litroch, mililitroch a mikrolitroch, resp. v m³ alebo cm³. Hmotnosť je potrebné prepočítať na gramy.

Molárna koncentrácia látky c je definovaná v jednotkách mol/dm³, molárna hmotnosť rozpustenej látky Mv jednotkách g/mol. Hustotu roztoku (ρ) vyjadrujeme v jednotkách g/dm3alebov g/cm³. V chemických výpočtoch väčšinou platí, že **1ml=1g**.

.

Násobky a diely jednotiek:

Predpona	Značka	Násobok (číselne)
tera	Т	1 000 000 000 000
giga	G	1 000 000 000
mega	М	1 000 000
kilo	k	1 000
-	základná jednotka	-
- mili	základná jednotka m	0,001
- mili mikro		- 0,001 0,000 001
	m	-

A. Molárna koncentrácia (c)

- koncentrácia roztoku udáva množstvo látky rozpustenej v jednotkovom objeme roztoku
- počet molov je vyjadrených molárnou hmotnosťou (Mw), ktorá udáva hmotnosť 1mol v g/mol
- údaje o Mw udáva výrobca na etikete resp. sa vypočíta z relatívnej molekulovej hmotnosti
 (Mr) na základe Ar jednotlivých prvkov z Periodickej tabuľky prvkov

Výpočet látkového množstva:

$$\mathbf{n} = \frac{\mathbf{m}}{\mathbf{M}\mathbf{w}}$$
z čoho odvodíme mólovú hmotnosť $\mathbf{M}\mathbf{w} = \frac{\mathbf{m}}{\mathbf{n}}$

$$c = \frac{n}{V} = \frac{m}{Mw. V}$$

c...molárna koncentrácia

n...látkové množstvo látky

V...celkový objem

m...hmotnosť látky

Mw...molárna hmotnosť

Pr.2

a) Vypočítajte molárnu koncentráciu vodného roztoku NaCl, pričom 1000cm³ obsahuje 29,2g NaCl.

1 H 1.008 3 Li 6.94	4 Be 9.01					ové čí	20.200	2 He -4.00				5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	2 He 4.00 10 Ne 20.18
Na 22.99	Mg 24.31											Al 26.98	14 Si 28.09	P 30.97	16 S 32.07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.20	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.0	Rh 102.9	Pd 106.4	Ag 107.8	Cd 112.4	In 114.8	Sn 118.7	Sb 121.7	Te 127.6	I 126.9	Xe 131.2
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.1	W 183.9	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	****	-
Fr 223.0	Ra 226.0	Ac 227.0	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	Ds (281)	Rg (272)	Uuh (285)	Uut (284)	Uuq (289)	Uф (288)	Uuh (292)		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	141.0	144.2	(145)	150.4	153.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.4	231.4	238.0	(237)	(240)	(243)	(247)	(248)	(251)	(252)	(257)	(257)	(259)	(262)

Príprava roztoku zo zásobného roztoku

Osobitným prípadom je príprava roztoku zo zásobného roztoku s určitou molárnou koncentráciou (M1). Molárna koncentrácia výsledného roztoku sa potom vypočíta zo vzťahu:

$$\mathbf{M1} \times \mathbf{V1} = \mathbf{M2} \times \mathbf{V2}$$

Pr.3

a) Pripravte 100 ml 0,1M NaCl zo zásobného roztoku 5 M NaCl.

B. Percentuálna koncentrácia

Vyjadruje počet dielov určitej látky rozpustených v 100 dieloch roztoku!

Vyjadruje sa v:

1. **Hmotnostných percentách**- hmotnosť látky ku výslednej hmotnosti (počet g na 100g).

$$w=\frac{m}{mR}.100\%$$

Pre hmotnosť roztoku (mR) platí vzťah:

2. **Objemových percentách**- objem látky ku výslednému objemu (množstvo ml na 100ml).

$$\phi = \frac{V}{VR} \; . \, 100\%$$

3. **Hmotnostno – objemových percentách**- hmotnosť látky ku výslednému objemu (počet g na 100ml)

Pr.4

- a) Pripravte 20% roztok NaCl a pripravte 75% etanol
- b) Zo 45g dusičnanu strieborného pripravíme 3% roztok. Koľko g tohto roztoku získame?

Riedenie koncentrovaných roztokov a pomery

Pomer je vzťah medzi dvomi veličinami, ktorý nám vyjadruje podiel medzi veľkosťami týchto veličín. Z pomeru vieme povedať koľkokrát je jedna veličina väčšia resp. menšia ako druhá. Dve čísla (veličiny) môžeme porovnať iba v prípade, ak sú uvedené v rovnakých jednotkách. Nie každý pomer je v základnom tvare, preto ho treba do tejto podoby upraviť, následne si určíme hodnotu jedného dielu (požadovanú hodnotu vydelíme súčtom položiek pomeru).

Postup:

Pripravte 80 ml roztoku s pomerom 3:5 (80:8=10ml= 1 diel). Takže pridáme 30ml rozpustnej látky a 50ml rozpúšťadla.

Miešanie roztokov

Pri zmiešavaní 2 alebo viacerých roztokov používame **zmiešavaciu rovnicu**, ktorá je založená na **krížovom pravidle**:

!Treba pamätať na to, že w čistého rozpúšťadla (vody) je 0% w čistej látky je 100%.

Schéma krížového pravidla:

$$(W_1)_{\%}$$
 $(W_2)_{\%}$
 $(W_3)_{\%} - (W_2)_{\%}$
 $(W_1)_{\%} - (W_3)_{\%}$
 $(W_1)_{\%} - (W_2)_{\%}$

Pr.7

- a) V akom hmotnostnom pomere musíme zmiešať 50% a 10% roztok kyseliny sírovej aby sme dostali 20% roztok?
- b) Vypočítajte koľko g vody je potrebné pridať k 300 g 8% roztoku NaCl aby vznikol 5% roztok.

c) Vypočítajte koľko % bude roztok, ktorý vznikne zmiešaním 200g 8% roztoku dusičnanu sodného s 300g 12% roztoku dusičnanu sodného?

d) 24% roztok sa má odobraním vody zahustiť na 60%. Ako ho pripravíme?

Výpočet koncentrácie pri miešaní dvoch a viacerých roztokov

Pri výpočtoch vychádzame zo zmiešavacej rovnice:

$$m1.c1+m2.c2+....m_n.c_n = (m1+m2+...m_n).c$$

Pr.8

a) Koľkokrát je potrebné nariediť základný roztok s koncentráciou 0,1mM, tak aby vznikol 5μM roztok?