Experimentalphysik II im Sommersemester 2014 Übungsserie 7

Wegen des Feiertages Abgabe bis 28.05.14 (Mittwoch!) bis 15:00 im IAO-Briefkasten im Foyer Haus 1

Alle Aufgaben (!) müssen gerechnet werden. Die mit * gekennzeichneten Aufgaben sind schriftlich abzugeben. Zu jeder Lösung gehören eine oder im Bedarfsfalle mehrere Skizzen, die den Sachverhalt verdeutlichen.

19.* Durch ein Koaxialkabel mit den Radien *a, b* und *c* fließen gleichgroße, entgegengesetzte konstante Ströme der Größe *l* auf dem inneren bzw. äußeren Leiter. Berechnen Sie die magnetische Feldstärke *B* am Punkt P im zweiten Leiter im Abstand *r* von der Achse!

(2)

Sc haltsymbol:

(4)

Abb.1

- **20.*** Fließt durch ein quaderförmiges Silberplättchen von (3) nach (4) ein Strom, so tritt im Magnetfeld eine Spannung *U*_H zwischen (1) und (2) auf.
- a) Wie muss \vec{B} gerichtet sein, damit (1) gegenüber (2) negativ wird? Begründung mit Zeichnung!
- b) Leiten Sie die Hallspannung U_H in Abhängigkeit von der Driftgeschwindigkeit v_d der Elektronen, der magnetischen Feldstärke B und der Plättchenbreite b her! Begründen Sie den Ansatz kurz!

Andererseits gilt für die Hallspannung : $U_{\rm H} = R_{\rm H} \cdot \frac{I \cdot B}{d}$

- c) Vergleichen sie diesen Term mit dem Ergebnis aus b). Wofür steht also *R*H? Begründen Sie damit, warum man technische Hallsonden üblicherweise aus dotierten Halbleitermaterialien fertigt.
- d) Das Silberplättchen wird durch ein p-dotiertes Halbleiterplättchen gleicher Geometrie ersetzt. Was ist zu beobachten? Kurze Begründung!
- **21.*** Gegeben sei ein Leiterquadrat mit der Kantenlänge a = 0.2 m, das von einem Strom I=15A durchflossen werde. Berechnen Sie die Größe der magnetischen Feldstärke \vec{B} im Mittelpunkt des Quadrates!

Kontakt: <u>gerhard.paulus@uni-jena.de</u> michael.duparre@uni-jena.de