MIDTERM EXAMINATION April 2021

Duration: 110 minutes

SUBJECT: REAL ANALYSIS	
Head of Dept. of Mathematics:	Lecturer:
	Trad
Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 Let d_1 and d_2 be metrics on X. Suppose that there are positive constants c_1 and c_2 such that

$$c_1 d_1(x, x') \le d_2(x, x') \le c_2 d_1(x, x')$$
 for all $x, x' \in X$.

- (a) (10 marks) Show that if $x, x_n \in X$, n = 1, 2, ..., then $\lim d_1(x_n, x) = 0 \quad \text{if and only if} \quad \lim d_2(x_n, x) = 0.$
- (b) (10 marks) Show that a sequence $\{y_n\}$ is Cauchy in (X, d_1) if and only if $\{y_n\}$ is Cauchy in (X, d_2) .
- (6) (5 marks) Show that (X, d_1) is complete if and only if (X, d_2) is complete
- Question 2 (a) (10 marks) Let A be a subset of a metric space (X, d). A point $x \in A$ is an **isolated point** of A if $B(x,r) \cap (A \setminus \{x\}) = \emptyset$ for some r > 0. Show that if $x_0 \in A$ is an isolated point of A, then the set $\{x_0\}$ is both open and closed in the subspace A.
- (b) (10 marks) Suppose that D is a dense set in a metric space (X, d). Prove that D contains all isolated points of X.
- (c) (5 marks) Show that a separable metric space has at most countably many isolated points.

Question 3 Let E be a subset of a metric space (X,d). Prove each of the following formulas

- (a) (10 marks) $X = \text{int}(E) \cup \overline{E^c}$.
- (b) (10 marks) $\overline{E} = E \cup \partial E = \text{int}(E) \cup \partial E$.
- (c) (10 marks) $X = \operatorname{int}(E) \cup \partial E \cup \operatorname{int}(E^c)$.

- Question 4 (a) (10 marks) Prove that any mapping f from a discrete metric space (X, d) into a metric space (Y, ρ) is uniformly continuous.
- (b) (10 marks) Let $X \subset \mathbb{R}$ and let $f: X \to \mathbb{R}$ be a function. Assume that for each open set B in \mathbb{R} there exists an open set A in \mathbb{R} such that $f^{-1}(B) = A \cap X$. Under such assumptions, prove that f is continuous on the subspace X.