Matrix Order

Normally projection has to apply to all objects (i.e. the entire scene) thus it must Assignment Project Exam Help pre-multiply the modelview matrix

- $M = M_{proj}M_{modelview}$ or $\frac{https://powcoder.com}{or}$
- $M = M_{proj}M_{view}M_{model}WeChat powcoder$

However, with shaders you have absolute control of the matrices and the way they are multiplied

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).
Assignment Project Exam Help

So if camera is at z = 50, is aligned with the world CS, and you give hear = 10 where is the near plane with respect to the world?

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).
Assignment Project Exam Help

So if the camera is at z = 50, is aligned with the world CS, and you give [near] = 10 where is the near plane with respect to the world?

- Transformed by inverse(Mvcs)
- i.e. (0,0,40)

Nonlinearity of perspective transformation

Tracks:

Left: x = -1, y = -1

Right: x = 1, y Assignment Project Exam Help

Z = -inf, inf

View volume:

Left = -1, right = 1

Bot = -1, top = 1

Near = 1, far = 4

top view

Z in NDCS vs -Z in VCS

On systems with limited numerical precision for the z-buffer (e.g. 8 bits) a large difference in near and far can result in multiple Z_{VCS} values to map on the same value in Z_{NDCS} . As a result the graphics system cannot resolve visibility correctly!

Rule of thumb: Limit the z-range as much as you can

Viewport transformation

Viewport

Example: Full window coverage

- Transforms the canonical coordinates to a viewport of size Wx H from (0,0) at lower left; thus, viewport is figure of Exam Help
- Scales and trahslate/spotocbden (6 ml)

$$\mathbf{M}_{VP}^{Full} = \begin{bmatrix} 1 & 0 & 0 & W/2 \\ 0 & 1 & 0 & H/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{H}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

How does a partial coverage matrix look like?

So..Pixel Centers?

- Pixel size: 1x1
 Therefore pixel centers at fractional Accident Project Exam Help in screen space https://powcoder.com
 p_{ij} = (i.5, j.5) Add WeChat powcoder (1.5,0)
- In OpenGL the bottom left corner of the window is at (0,0)
- In some windowing systems the top left is at (0,0)
- When do you care about this?...When needing the location of the mouse from the windowing system

Viewport in WebGL

- gl.viewport(x, y, width, height);
 - -(x,y): lower left corner of viewport rectangle in pixels.
 - width, height: width and height of viewport in pixels.
 - Generally pulting contevined respine callback.
- Example: the whole window powcoder
- gl.viewport(0,0,canvas.width, canvas.height);

Why viewports?

Undo the distortion of the projection transformation Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

aspect ratio 1.5

aspect ratio 1.0

Stereo views

Render the scene twice from different points of view

Assignment Project, Exam Help https://powcoder.com WeChat powcoder left picture in left viewport right picture in right viewport right left. camera camera your left eye your right eye looks here left eye right eye

Example: Two viewports

```
void render()
     gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
     // Set the first viewport gl.viewport(Assignment) Projecth Exam) Help // Set an orthrographic projection matrix
      projectionMatrix = ortho(-3,3,-3,3,1,100);
     modelViewMatrix = mat4():/powcoder.com
     var eye = vec3(0,0A0d; WeChat powcoder
modelViewMatrix = mult(modelViewMatrix,lookAt(eye, at , up));
     drawObjects();
     // Set the second viewport
     gl.viewport(canvas.width/2,canvas.height/2,canvas.width/2,canvas.height/2);
     // Set an orthographicprojection matrix
      projectionMatrix = ortho(-3,3,-3,3,1,100);
     modelViewMatrix = mat4();
     eye = vec3(10,10,0);
     modelViewMatrix = mult(modelViewMatrix,lookAt(eye, at , up));
     drawObj();
```

Example: Two viewports

Viewport one: lower left quadrant Viewport one: top right quadrant Width: 500 pixels Assignment Project Exam Help https://powcoder.com Add Wecan powcoder

Transformations in the pipeline

Vertex Shader

Matrices in the Pipeline

Vertex Shader

Vertex Shader

```
attribute vec4 vPosition;
attribute vec3 vNormal;
varying vec4 fColor;
              Assignment Project Exam Help
void
                    https://powcoder.com
main()
   gl_Position = projectionMatrix * modelViewMatrix * vPosition;
fColor = vec4(1.0f, 0.0f, 0.0f, 1.0f);
// Notice that perspective division happens later.
// gl_Position is in homogeneous coordinates
```

Line Rendering Algorithm

```
Compute M<sub>mod</sub>
Compute M<sup>-1</sup>cam
Compute MmodeAissign Transmin Broject Exam Help
Compute Mo
Compute M<sub>P</sub> // disregard M<sub>P</sub> here and below for orthographic-only case
Compute M<sub>proj</sub> = M<sub>O</sub>M<sub>Pdd</sub> WeChat powcoder
Compute M<sub>VP</sub> // Viewport transformation
Compute M = M_{VP} M_{proj} M_{modelview}
for each line segment i between vertices P<sub>i</sub> and Q<sub>i</sub> do
    P = MP_i; Q = MQ_i
    drawline(P_x/h_P, P_y/h_P, Q_x/h_Q, Q_y/h_Q) // h_P,h_Q are the 4<sup>th</sup> coordinates of P,Q
```

end for