Semi-Supervised Classification with Graph Convolutional Networks

2020.02.27.

Seohui Bae

shbae73@kaist.ac.kr

Table of Contents

- Introduction
- Graph
- Convolution, Fourier Transform on Graph
- Graph Convolutional Network
- TODO

Introduction: Data

Image (Euclidean)

Graph (Non-Euclidean)

Image: Data on Grid

Graph: Data, Relation

Introduction: Problems defined on Graph

Introduction: Deep Neural Network on Graph

GNN are recurrent networks with <u>vector valued nodes h_i </u> whose states are iteratively <u>updated</u> by trainable nonlinear functions that depend on <u>the states of neighbor</u> nodes $h_i : j \in N_i$ on a specified graph

Introduction: Graph Convolutional Network

- GCN is one of GNNs!
- Convolution on Graph?

Spectral Networks and Deep Locally Connected Networks on Graphs

Joan Bruna

New York University bruna@cims.nyu.edu

Arthur Szlam

The City College of New aszlam@ccny.cuny

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Michaël Defferrard

> Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl

Max Welling
University of Amsterdam
Canadian Institute for Advanced Research (CIFAR)

M.Welling@uva.nl

aa 6

Graph

Graph $G = \{V, E\}$

e.g. adjacency, degree matrix

A										1)				
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	0	0	2	0	0	0	0	0	0
0	1	0	1	0	1	1	0	0	0	4	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	2	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	2	0	0	0
0	1	1	0	1	0	1	0	0	0	0	0	0	4	0	0
0	0	1	0	0	1	0	1	0	0	0	0	0	0	3	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1

Graph Laplacian

Graph $G = \{V, E\}$

 $A \qquad \qquad L$

A: Adjacency matrix

 $D = diag(degree(v_1)...degree(v_n))$

: Degree matrix

L := D - A : Laplacian matrix

Signal on Graph

Graph $G = \{V, E\}$

Graph signal $f: V \to \mathbb{R}^N$

: a function that assigns real values to each vertex of graph

Properties of Graph Laplacian

Graph
$$G = \{V, E\}$$

Laplacian is a difference operator

$$(Lf)(i) = \sum_{j=N_i}^{N} A_{ij}(f(i) - f(j))$$

- A real, symmetric matrix
- Off-diagonal entries nonpostiive
- Rows sum up to zero

- $L = U \wedge U^T$
 - Has a complete set of <u>orthonormal eigenvectors</u> $\{u_l\}_{l=0,1,\dots,N-1}$ and associated real, nonnegative eigenvalues $\{\lambda_l\}_{l=0,1,\dots,N-1}$
- Quadratic form on Laplacian L: Graph Signal Smoothness → notion of frequency

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} (f(i) - f(j))^{2}$$

Convolution on Grid(Euclidean) vs Graph(non-Euclidean)

$$f * g(x) = \sum_{y} f(y)g(x - y)$$

f g

Graph has no spatial axis!

Convolution on Grid(Euclidean) vs Graph(non-Euclidean)

Convolution theorem

thus,

$$f * g (x) = \mathcal{F}^{-1} \{ \mathcal{F}(f) \mathcal{F}(g) \}$$

$$\mathsf{F}(g) \qquad i\mathsf{FT}$$

$$\mathsf{F}(f) \qquad \mathsf{F}(f) \mathcal{F}(g) \qquad \mathsf{F}^{-1} \{ \mathcal{F}(f) \mathcal{F}(g) \}$$

$$\mathbb{R}^{d} \qquad f \qquad \int_{\mathbb{R}}^{g} e^{-i\omega t} dt \qquad iFT$$

$$f \qquad f \qquad f \qquad \mathcal{F}(f)\mathcal{F}(g) \qquad f \qquad \int_{\mathbb{R}}^{g} \mathcal{F}(f)\mathcal{F}(g) e^{i\omega t} dt \qquad iGFT$$

$$graph \qquad f \qquad \psi \qquad u^{T}f \qquad \psi \qquad g(\Lambda) u^{T}f \qquad \psi \qquad u \qquad g(\Lambda) u^{T}f$$

what is u, Λ ?

(Spectral graph processing)

Graph Fourier Transform

Graph Laplacian is analogous to Fourier Transform!

$$L = U \Lambda U^T$$
 eigenvalue

• $L = U \Lambda U^T$

 The eigenvectors of the graph Laplacian are used for defining the Graph Fourier <u>Transform</u>

GFT:
$$\hat{f}(\lambda_l) \coloneqq \langle \mathbf{f}, \mathbf{u}_l \rangle = \sum_{i=1}^N f(i) \frac{\mathbf{u}_l^T(i)}{\mathbf{v}_l^T(i)}$$

iGFT:
$$f(i) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) u_l(i)$$

 ,which is analogous to the classical Fourier Transform built on eigenfunctions on the 1-D Laplace operator

FT:
$$\hat{f}(\omega) \coloneqq <\mathbf{f}, e^{-i\omega t}> = \int\limits_{\mathbb{R}} f(t) \frac{e^{-i\omega t}}{e^{-i\omega t}} dt$$
iFT:
$$f(t) = \int\limits_{\mathbb{R}} \hat{f}(\omega) \frac{e^{i\omega t}}{e^{i\omega t}} dt$$

Eigenvectors of Laplacian has FT like characteristics!

$$\mathcal{F}(\mathbf{x}) = u^T \mathbf{x}$$
$$\mathcal{F}^{-1}(\mathbf{x}) = u \mathbf{x}$$

one layer

$$\mathbf{x}$$

$$\downarrow$$

$$g_{\theta} \star \mathbf{x} = Ug_{\theta}(\Lambda)U^{T} \mathbf{x}$$

$$\downarrow$$

$$\mathbf{x}' = \sigma(g_{\theta} \star \mathbf{x})$$

Spectral Graph Convolution (ICLR 2014, NIPS 2016)

Spectral CNN (ICLR 2014)

$$\mathbf{x}^{k+1} = \sigma(\sum_{i} U\theta_{i}^{k} U^{T} \mathbf{x}_{i}^{k}) \qquad \theta_{i}^{k} = g_{\theta'}(\Lambda)$$

• Chebyshev Spectral CNN (NIPS 2016) Chebyshev polynomials $T_k(x)$ up to K-th order

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

$$\mathbf{x}^{k+1} = \sigma(\sum_{i} U\theta_{i}^{k} U^{T} \mathbf{x}_{i}^{k}) \qquad \theta_{i}^{k} = g_{\theta'}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k}' T_{k}(\widetilde{\Lambda})$$

thus, convolution of signal x^k with filter g_{θ}

$$U\Lambda^k U^T = (U\Lambda U^T)^k$$

$$\mathbf{x}^{k+1} = \sigma(g_{\theta} \star \mathbf{x}^{k}) = \sigma\left(\sum_{k=0}^{K} \theta_{k}' T_{k}(\tilde{L}) \, \mathbf{x}_{i}^{k}\right) \qquad \text{``K-localized''}$$

$$\widetilde{\Lambda} = \frac{2}{\lambda_{max}} \Lambda - I_N \quad \widetilde{L} = \frac{2}{\lambda_{max}} L - I_N$$

GCN (ICLR 2017) fast apprx.

$$g_{\theta} \star \mathbb{X} = \sum_{k=0}^{K} \theta_{k}' T_{k}(\tilde{L}) \mathbb{X}_{i}^{k})$$

$$\approx \theta_0' x + \theta_1' (L - I_N)$$

$$= \theta_0' x - \theta_1' D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

$$\approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

renormalization trick

$$\rightarrow \theta \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} \right) x$$

(Chebyshev Spectral CNN)

$$K=1$$
 $\lambda_{max}\approx 2$

1st-order only

(
$$L$$
 : normalized by D, $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$)

$$\theta = \theta_0' = -\theta_1'$$

single parameter

$$(\tilde{A} = A + I_N, \ \tilde{D}_{ii} = \sum_j \tilde{A}_{ij})$$

GCN (ICLR 2017)

Given signal $X \in \mathbb{R}^{N \times C}$

(N nodes each with C – dimensional feature vector)

a convolved signal matrix $Z \in \mathbb{R}^{N \times F}$ would be,

$$Z = f(X, A) = \hat{A} X W$$
 where $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$

W: filter params matrix $W \in \mathbb{R}^{C \times F}$

F : number of filters / feature maps

C: number of input channels

N : number of nodes

GCN layer for semi-supervised node classification (ICLR 2017)

(a) Graph Convolutional Network

(b) Hidden layer activations

$$Z = f(X, A) = softmax(\hat{A} \ ReLU(\hat{A}XW^{(0)}) \ W^{(1)}$$

$$X \in \mathbb{R}^{N \times C}$$
 $W^{(0)} \in \mathbb{R}^{C \times H}$
 $Z \in \mathbb{R}^{C \times F}$ $W^{(1)} \in \mathbb{R}^{H \times F}$

A: symmetric adjacency matrix

 \hat{A} : normalized A

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

(cross-entropy)

Result

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. $\frac{5}{5}$) $K = 3$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
Chebysnev filter (Eq. 5) $K = 2$	$\sum_{k=0} I_k(L) \Lambda \Theta_k$	69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Related Works

TABLE 2
Different variants of graph neural networks.

Name	Variant	Aggregator	Updater
	ChebNet	$\mathbf{N}_k = \mathbf{T}_k(\tilde{\mathbf{L}})\mathbf{X}$	$\mathbf{H} = \sum_{k=0}^{K} \mathbf{N}_k \mathbf{\Theta}_k$
Spectral Methods	1 st -order model	$\begin{aligned} N_0 &= X \\ N_1 &= D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X \end{aligned}$	$\mathbf{H} = \mathbf{N}_0 \mathbf{\Theta}_0 + \mathbf{N}_1 \mathbf{\Theta}_1$
	Single parameter	$\mathbf{N} = (\mathbf{I}_N + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}) \mathbf{X}$	$H = N\Theta$
	GCN	$\mathbf{N} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}$	$\mathbf{H} = \mathbf{N}\mathbf{\Theta}$
	Neural FPs	$\mathbf{h}_{\mathcal{N}_v}^t = \mathbf{h}_v^{t-1} + \sum_{k=1}^{\mathcal{N}_v} \mathbf{h}_k^{t-1}$	$\mathbf{h}_v^t = \sigma(\mathbf{h}_{\mathcal{N}_v}^t \mathbf{W}_L^{\mathcal{N}_v})$
Non-spectral Methods	DCNN	Node classification: $N = P^*X$ Graph classification: $N = 1_N^T P^*X/N$	$\mathbf{H} = f\left(\mathbf{W}^c \odot \mathbf{N} ight)$
	GraphSAGE	$\mathbf{h}_{\mathcal{N}_{v}}^{t} = \text{AGGREGATE}_{t} \left(\left\{ \mathbf{h}_{u}^{t-1}, \forall u \in \mathcal{N}_{v} \right\} \right)$	$\mathbf{h}_{v}^{t} = \sigma \left(\mathbf{W}^{t} \cdot [\mathbf{h}_{v}^{t-1} \ \mathbf{h}_{\mathcal{N}_{v}}^{t}] \right)$
Graph Attention Networks	GAT	$\begin{split} \alpha_{vk} &= \frac{\exp(\operatorname{LeakyReLU}(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{v}\ \mathbf{W}\mathbf{h}_{k}]))}{\sum_{j \in \mathcal{N}_{v}} \exp(\operatorname{LeakyReLU}(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{v}\ \mathbf{W}\mathbf{h}_{k}]))} \\ \mathbf{h}_{\mathcal{N}_{v}}^{t} &= \sigma\left(\sum_{k \in \mathcal{N}_{v}} \alpha_{vk}\mathbf{W}\mathbf{h}_{k}\right) \\ \text{Multi-head concatenation:} \\ \mathbf{h}_{\mathcal{N}_{v}}^{t} &= \Big\ _{m=1}^{M} \sigma\left(\sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m}\mathbf{W}^{m}\mathbf{h}_{k}\right) \\ \text{Multi-head average:} \\ \mathbf{h}_{\mathcal{N}_{v}}^{t} &= \sigma\left(\frac{1}{M}\sum_{m=1}^{M} \sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m}\mathbf{W}^{m}\mathbf{h}_{k}\right) \end{split}$	$\mathbf{h}_v^t = \mathbf{h}_{\mathcal{N}_v}^t$
Gated Graph Neural Net- works	GGNN	$\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1} + \mathbf{b}$	$ \begin{aligned} \mathbf{z}_v^t &= \sigma(\mathbf{W}^z \mathbf{h}_{\mathcal{N}_v}^t + \mathbf{U}^z \mathbf{h}_v^{t-1}) \\ \mathbf{r}_v^t &= \sigma(\mathbf{W}^v \mathbf{h}_{\mathcal{N}_v}^t + \mathbf{U}^r \mathbf{h}_v^{t-1}) \\ \widehat{\mathbf{h}_v^t} &= \tanh(\mathbf{W} \mathbf{h}_{\mathcal{N}_v}^t + \mathbf{U} (\mathbf{r}_v^t \odot \mathbf{h}_v^{t-1})) \\ \mathbf{h}_v^t &= (1 - \mathbf{z}_v^t) \odot \mathbf{h}_v^{t-1} + \mathbf{z}_v^t \odot \widehat{\mathbf{h}_v^t} \end{aligned} $
	Tree LSTM (Child sum)	$\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1}$	$ \begin{aligned} &\mathbf{i}_v^t = \sigma(\mathbf{W}^i\mathbf{x}_v^t + \mathbf{U}^i\mathbf{h}_{N_v}^t + \mathbf{b}^i) \\ &\mathbf{f}_{vk}^t = \sigma\left(\mathbf{W}^f\mathbf{x}_v^t + \mathbf{U}^f\mathbf{h}_k^{t-1} + \mathbf{b}^f\right) \\ &\mathbf{o}_v^t = \sigma(\mathbf{W}^o\mathbf{x}_v^t + \mathbf{U}^o\mathbf{h}_{N_v}^t + \mathbf{b}^o) \\ &\mathbf{u}_v^t = \operatorname{tanh}(\mathbf{W}^u\mathbf{x}_v^t + \mathbf{U}^u\mathbf{h}_{N_v}^t + \mathbf{b}^u) \\ &\mathbf{c}_v^t = \mathbf{i}_v^t \odot \mathbf{u}_v^t + \sum_{k \in N_v} \mathbf{f}_{vk}^t \odot \mathbf{c}_k^{t-1} \\ &\mathbf{h}_v^t = \mathbf{o}_v^t \odot \operatorname{tanh}(\mathbf{c}_v^t) \end{aligned} $
Graph LSTM	Tree LSTM (N-ary)	$\begin{array}{l} \mathbf{h}_{\mathcal{N}_v}^{ti} = \sum_{l=1}^{K} \mathbf{U}_l^t \mathbf{h}_v^{t-1} \\ \mathbf{h}_{\mathcal{N}_vk}^{ti} = \sum_{l=1}^{K} \mathbf{U}_{ll}^t \mathbf{h}_v^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} = \sum_{l=1}^{K} \mathbf{U}_{ll}^o \mathbf{h}_v^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} = \sum_{l=1}^{K} \mathbf{U}_l^o \mathbf{h}_v^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{tu} = \sum_{l=1}^{K} \mathbf{U}_l^u \mathbf{h}_v^{t-1} \end{array}$	$ \begin{aligned} &\mathbf{i}_v^t = \sigma(\mathbf{W}^t\mathbf{x}_v^t + \mathbf{h}_{N_v}^{tf} + \mathbf{b}^t) \\ &\mathbf{f}_{vk}^t = \sigma(\mathbf{W}^f\mathbf{x}_v^t + \mathbf{h}_{N_v k}^{tf} + \mathbf{b}^f) \\ &\mathbf{o}_v^t = \sigma(\mathbf{W}^f\mathbf{x}_v^t + \mathbf{h}_{N_v k}^{tf} + \mathbf{b}^o) \\ &\mathbf{u}_v^t = \tanh(\mathbf{W}^u\mathbf{x}_v^t + \mathbf{h}_{N_v}^{tt} + \mathbf{b}^u) \\ &\mathbf{c}_v^t = \mathbf{i}_v^t \odot \mathbf{u}_v^t + \sum_{l=1}^t \mathbf{f}_{ll}^t \odot \mathbf{c}_v^{t-1} \\ &\mathbf{h}_v^t = \mathbf{o}_v^t \odot \tanh(\mathbf{c}_v^t) \end{aligned} $
	Graph LSTM in [44]	$\begin{array}{l} \mathbf{h}_{\mathcal{N}_{v}}^{ti} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{i} \mathbf{h}_{k}^{t-1} \\ \mathbf{h}_{\mathcal{N}_{v}}^{to} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{o} \mathbf{h}_{k}^{t-1} \\ \mathbf{h}_{\mathcal{N}_{v}}^{tu} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{u} \mathbf{h}_{k}^{t-1} \end{array}$	$ \begin{aligned} &\mathbf{i}_v^t = \sigma(\mathbf{W}^i \mathbf{x}_v^t + \mathbf{h}_{N_v}^{t_t} + \mathbf{b}^i) \\ &\mathbf{f}_{vk}^t = \sigma(\mathbf{W}^f \mathbf{x}_v^t + \mathbf{U}^f_{m(v,k)} \mathbf{h}_k^{t-1} + \mathbf{b}^f \\ &\mathbf{o}_v^t = \sigma(\mathbf{W}^o \mathbf{x}_v^t + \mathbf{h}_{N_v}^{t_t} + \mathbf{b}^o) \\ &\mathbf{u}_v^t = \tan(\mathbf{M}^o \mathbf{x}_v^t + \mathbf{h}_{N_v}^{t_t} + \mathbf{b}^o) \\ &\mathbf{c}_v^t = \mathbf{i}_v^t \odot \mathbf{u}_v^t + \sum_{k \in \mathcal{N}_v} f_{vk}^t \odot \mathbf{c}_k^{t-1} \\ &\mathbf{h}_v^t = \sigma_v^t \odot \tanh(\mathbf{c}_v^t) \end{aligned} $

Reference

- 1) Kipf, Welling et al., SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONA L NETWORKS, ICLR 2017
- Bruna et al., Spectral Networks and Deep Locally Connected Networks on Graphs, ICL R 2014
- 3) Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spect ral Filtering, NIPS 2016
- 4) Zhou et al., Graph Neural Networks: A Review of Methods and Applications, ArXiv 20 18
- 5) Wu et al. A Comprehensive Survey on Graph Neural Networks. ArXiv. 2018
- 6) How powerful are Graph Neural Network, ICLR 2019

TODO

Dataset: CORA

Cora.contents	index features label	(2708,) (2708, 1433) (2708,)	[23452 1345 14563] [[0 1 0 0 0] [1 0 0 1 1]] ['Neural_Networks' 'Rule_Learning']
Cora.cites	edges	(5429, 2)	[[35 20304] [2456 12333]]

Data preprocessing

$$Z = softmax(\hat{A} \ ReLU(\hat{A}XW^{(0)}) \ W^{(1)}$$

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

index \mathbb{R}^N

edges
$$\rightarrow$$
 adjacency matrix $\mathbb{R}^{N \times N}$ \rightarrow A (symmetric adj)

$$\rightarrow$$
 $\tilde{A} = A + I_N$ \rightarrow $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$ (normalized \tilde{A})

features
$$\mathbb{R}^{N \times C} \rightarrow X$$
 (normalized features)

labels
$$\mathbb{R}^N \rightarrow Y$$
 (one-hot encoded label) $\mathbb{R}^{N \times 7}$

Model/Training

$$Z = f(X, A) = softmax(\hat{A} \ ReLU(\hat{A}XW^{(0)}) W^{(1)}$$

$$X \in \mathbb{R}^{N \times C}$$
 $W^{(0)} \in \mathbb{R}^{C \times H}$
 $Z \in \mathbb{R}^{C \times F}$ $W^{(1)} \in \mathbb{R}^{H \times F}$

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

TODO

utils.py

```
def load_data(path, dataset):
    # TODO build adjacency matrix using edge_unordered
    # TODO build symmetric adjacency matrix

# TODO normalize features, adj

def normalize(mx):
    # TODO normalization of given matrix mx
    return mx

def accuracy(output, labels):
    # TODO preds
```

main.py

```
# TODO
output = model(features, adj)
loss_train = None
acc_train = None
loss_train.backward()
optimizer.step()

loss_val = None
acc_val = None
# TODO
output = model(features, adj)
loss_test = None
acc_test = None
```

model.py

```
class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout):
        super(GCN, self).__init__()
        # TODO
        pass

def forward(self, x, adj):
    # TODO
    pass
```

layer.py

```
class GraphConvolution(Module):

def forward(self, input, adj):
    # TODO one layer of GCN
    output = None
```

https://github.com/seohuibae/GCN-week08

Thank you!

Any Questions?

2020.02.27.

Seohui Bae

shbae73@kaist.ac.kr

