

Chapter 12

Local Search

Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of minimal cardinality such that for each u-v in E, either u or v (or both) are in S.

Neighbor relation. $S \sim S'$ if S' can be obtained from S by adding or deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update decreases the size of the cover by one.

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only local optimum = all other nodes

optimum = all nodes on left side local optimum = all nodes on right side

optimum = even nodes local optimum = omit every third node

Local Search

Local search. Algorithm that explores the space of possible solutions in sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let $S \sim S'$ be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S' of S with strictly lower cost, replace S with the neighbor whose cost is as small as possible. Otherwise, terminate the algorithm.

12.2 Metropolis Algorithm

Metropolis Algorithm

Metropolis algorithm. [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]

- Simulate behavior of a physical system according to principles of statistical mechanics.
- Globally biased toward "downhill" steps, but occasionally makes "uphill" steps to break out of local minima.

Gibbs-Boltzmann function. The probability of finding a physical system in a state with energy E is proportional to $e^{-E/(kT)}$, where T > 0 is temperature and k is a constant.

- For any temperature T > 0, function is monotone decreasing function of energy E.
- System more likely to be in a lower energy state than higher one.
 - T large: high and low energy states have roughly same probability
 - T small: low energy states are much more probable

Metropolis Algorithm

Metropolis algorithm.

- Given a fixed temperature T, maintain current state S.
- Randomly perturb current state S to new state $S' \in N(S)$.
- If $E(S') \le E(S)$, update current state to S'Otherwise, update current state to S' with probability $e^{-\Delta E/(kT)}$, where $\Delta E = E(S') - E(S) > 0$.

Theorem. Let $f_S(t)$ be fraction of first t steps in which simulation is in state S. Then, assuming some technical conditions, with probability 1:

$$\lim_{t \to \infty} f_S(t) = \frac{1}{Z} e^{-E(S)/(kT)},$$
where $Z = \sum_{S \in N(S)} e^{-E(S)/(kT)}.$

Intuition. Simulation spends roughly the right amount of time in each state, according to Gibbs-Boltzmann equation.

Hopfield networks. Simple model of an associative memory, in which a large collection of units are connected by an underlying network, and neighboring units try to correlate their states.

Input: Graph G = (V, E) with integer edge weights w.

`positive or negative

Configuration. Node assignment $s_u = \pm 1$.

Intuition. If $w_{uv} < 0$, then u and v want to have the same state; if $w_{uv} > 0$ then u and v want different states.

Note. In general, no configuration respects all constraints.

Def. With respect to a configuration S, edge e = (u, v) is good if $w_e s_u s_v < 0$. That is, if $w_e < 0$ then $s_u = s_v$; if $w_e > 0$, $s_u \neq s_v$.

Def. With respect to a configuration S, a node u is satisfied if the weight of incident good edges \geq weight of incident bad edges.

$$\sum_{v: e=(u,v) \in E} w_e \, s_u \, s_v \leq 0$$

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeated flip state of an unsatisfied node.

```
Hopfield-Flip(G, w) {
   S ← arbitrary configuration

while (current configuration is not stable) {
   u ← unsatisfied node
   s<sub>u</sub> = -s<sub>u</sub>
}

return S
}
```

State Flipping Algorithm

Claim. State-flipping algorithm terminates with a stable configuration after at most $W = \Sigma_e |w_e|$ iterations.

Pf attempt. Consider measure of progress $\Phi(S) = \#$ satisfied nodes.

Claim. State-flipping algorithm terminates with a stable configuration after at most $W = \Sigma_e |w_e|$ iterations.

Pf. Consider measure of progress $\Phi(S) = \Sigma_{e \text{ good }} |w_e|$.

- Clearly $0 \le \Phi(S) \le W$.
- We show $\Phi(S)$ increases by at least 1 after each flip. When u flips state:
 - all good edges incident to u become bad
 - all bad edges incident to u become good
 - all other edges remain the same

$$\Phi(S') = \Phi(S) - \sum_{\substack{e: \ e = (u,v) \in E \\ e \text{ is bad}}} |w_e| + \sum_{\substack{e: \ e = (u,v) \in E \\ e \text{ is good}}} |w_e| \geq \Phi(S) + 1$$

Complexity of Hopfield Neural Network

Hopfield network search problem. Given a weighted graph, find a stable configuration if one exists.

Hopfield network decision problem. Given a weighted graph, does there exist a stable configuration?

Remark. The decision problem is trivially solvable (always yes), but there is no known poly-time algorithm for the search problem.

polynomial in n and log W

12.7 Nash Equilibria

Multicast Routing

Multicast routing. Given a directed graph G = (V, E) with edge costs $c_e \ge 0$, a source node s, and k agents located at terminal nodes t_1 , ..., t_k . Agent j must construct a path P_j from node s to its terminal t_j .

Fair share. If x agents use edge e, they each pay c_e / x .

1	2	1 pays	2 pays
outer	outer	4	8
outer	middle	4	5 + 1
middle	outer	5 + 1	8
middle	middle	5/2 + 1	5/2 + 1

Nash Equilibrium

Best response dynamics. Each agent is continually prepared to improve its solution in response to changes made by other agents.

Nash equilibrium. Solution where no agent has an incentive to switch.

Fundamental question. When do Nash equilibria exist?

Ex:

- Two agents start with outer paths.
- Agent 1 has no incentive to switch paths
 (since 4 < 5 + 1), but agent 2 does (since 8 > 5 + 1).
- Once this happens, agent 1 prefers middle path (since 4 > 5/2 + 1).
- Both agents using middle path is a Nash equilibrium.

Nash Equilibrium and Local Search

Local search algorithm. Each agent is continually prepared to improve its solution in response to changes made by other agents.

Analogies.

- Nash equilibrium : local search.
- Best response dynamics: local search algorithm.
- Unilateral move by single agent: local neighborhood.

Contrast. Best-response dynamics need not terminate since no single objective function is being optimized.

Socially Optimum

Social optimum. Minimizes total cost to all agent.

Observation. In general, there can be many Nash equilibria. Even when its unique, it does not necessarily equal the social optimum.

Social optimum = $1 + \epsilon$ Nash equilibrium $A = 1 + \epsilon$ Nash equilibrium B = k

Social optimum = 7 Unique Nash equilibrium = 8

Price of Stability

Price of stability. Ratio of best Nash equilibrium to social optimum.

Fundamental question. What is price of stability?

Ex: Price of stability = $\Theta(\log k)$.

Social optimum. Everyone takes bottom paths.

Unique Nash equilibrium. Everyone takes top paths.

Price of stability. $H(k) / (1 + \varepsilon)$.

Finding a Nash Equilibrium

Theorem. The following algorithm terminates with a Nash equilibrium.

```
Best-Response-Dynamics(G, c) {
   Pick a path for each agent

while (not a Nash equilibrium) {
    Pick an agent i who can improve by switching paths
    Switch path of agent i
   }
}
```

- Pf. Consider a set of paths P_1 , ..., P_k .
- Let x_e denote the number of paths that use edge e.

H(0) = 0,
$$H(k) = \sum_{i=1}^{k} \frac{1}{i}$$

- Let $\Phi(P_1, ..., P_k) = \Sigma_{e \in E} c_e \cdot H(x_e)$ be a potential function.
- Since there are only finitely many sets of paths, it suffices to show that Φ strictly decreases in each step.

Finding a Nash Equilibrium

Pf. (continued)

- Consider agent j switching from path P_j to path P_j .
- Agent j switches because

$$\sum_{\substack{f \in P_j' - P_j \\ \text{newly incurred cost}}} \frac{c_f}{x_f + 1} < \sum_{\substack{e \in P_j - P_j' \\ \text{cost saved}}} \frac{c_e}{x_e}$$

- \blacksquare Thus, net change in Φ is negative. \blacksquare