Ranking by Reordering

Tobias Joppen

Überblick

- Einleitung
- Rank-differential Methode
 - Idee
 - Problemdefinition
 - Beispiel
 - Vereinfachung des Problems
 - Zusammenfassung und Eigenschaften
- Rating-differential Methode
 - Unterschiede der Methoden

Was hatten die bisherigen Ranking Methoden gemeinsam?

1) Daten Sammeln

Data	Team 1	Team 2	 Team n
Team 1		17-8 4-2	 6-21
Team 2	3-11 1-3		 12-10 13-19 9-12
Team n	11-10 11-9	8-4 12-8	

Was hatten die bisherigen Ranking Methoden gemeinsam?

- 1) Daten Sammeln
- 2) Methode anwenden

z.B. Massey: Mr = p

Was hatten die bisherigen Ranking Methoden gemeinsam?

- 1) Daten Sammeln
- 2) Methode anwenden
- 3) Ratingvektor berechnen

-1,4
4,3
0,5
1,2
-3,1
5,3
7.9

Was hatten die bisherigen Ranking Methoden gemeinsam?

- 1) Daten Sammeln
- 2) Methode anwenden
- 3) Ratingvektor berechnen
- 4) Rankingvektor bestimmen

6	
3	
5	
4	
7	
2	
1	

Was hatten die bisherigen Ranking Methoden gemeinsam?

- 1) Daten Sammeln
- 2) Methode anwenden
- 3) Ratingvektor berechnen
- 4) Rankingvektor bestimmen

Ist das alles notwendig um ein Ranking bestimmen zu können?

Was hatten die bisherigen Ranking Methoden gemeinsam?

- 1) Daten Sammeln
- 2) Methode anwenden
- 3) Ratingvektor berechnen
- 4) Rankingvektor bestimmen

Ist das alles notwendig um ein Ranking bestimmen zu können?

-Nein

Rank-differential Methode

Wenn

Aufgabe: Jedes Team hat eine Platzierung

Dann

Berechnen des Ratingvektors kann vermieden werden!

Weil

Aus Spieldaten können direkt Platzierungen erzeugt werden

Ziel:

Rankingvektor r bestimmen z.B.:

Duke 5 Miami 1 UNC 4 UVA 3 VT 2

Ziel:

Rankingvektor r bestimmen z.B.:

Lässt sich auch umformen in eine Matrix (Paarweiser Unterschied im positiven)

$$R = \begin{array}{c} \text{Duke Miami UNC UVA} & \text{VT} \\ \text{Duke Miami UNC UVA} & \text{OUVA} \\ \text{Miami A O O O O O} \\ \text{UNC UVA} & 1 & 0 & 0 & 0 \\ \text{UVA VT} & 3 & 0 & 2 & 1 & 0 \\ \end{array}$$

Jeder Rankingvektor der Länge n erzeugt eine n x n Rangunterschiedsmatrix R, welche eine symmetrische Umsortierung der folgenden fundamentalen Rangunterschiedsmatrix \hat{R} ist.

$$\hat{r} = \begin{array}{c} 1^{\text{st}} \\ 2^{\text{nd}} \\ 3^{rd} \\ \vdots \\ n^{th} \end{array} \begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix}$$

Kurz gesagt:

- Ranking-Vektor r erzeugt Rangunterschiedsmatrix R
- Es gilt

$$R = Q^T * \hat{R} * Q$$

mit Q als Permutationsmatrix.

Einmal weiterdenken...

- R ist eine Team-gegen-Team Matrix
- Schon einige gesehen im Seminar

Einmal weiterdenken...

- R ist eine Team-gegen-Team Matrix
- Schon einige gesehen im Seminar
- R hat große (inhaltliche) Parallelität mit der Markovvoting-matrix $V_{pointdiff}$ aus der vorletzten Vorlesung

Zur Erinnerung: Hier wurden aufaddierte Punktunterschiede gespeichert. Ein Eintrag > 0 bedeutet, dass dieses Team dem Gegnerteam um diesen Wert unterlegen ist.

Einmal weiterdenken...

- R ist eine Team-gegen-Team Matrix
- Schon einige gesehen im Seminar
- R hat große (inhaltliche) Parallelität mit der Markovvoting-matrix $V_{pointdiff}$ aus der vorletzten Vorlesung

Zur Erinnerung: Hier wurden aufaddierte Punktunterschiede gespeichert. Ein Eintrag > 0 bedeutet, dass dieses Team dem Gegnerteam um diesen Wert unterlegen ist.

- Diese Werte sind "anders herum", daher: Transponieren!
- Ab sofort Datenunterschiedsmatrix: $D = (V_{pointdiff})^T$

Wie kommen wir zur Lösung?

- Gegeben: D und $\hat{R} \leftarrow D$ Erzeugt durch Spielergebnisse
- Gesucht: Eine Umsortierung von D zu \hat{R}

Wie kommen wir zur Lösung?

- Gegeben: D und $\hat{R} \leftarrow D$ Erzeugt durch Spielergebnisse
- Gesucht: Eine Umsortierung von D zu \hat{R}

Das ist natürlich nur selten möglich. Daher:

- 1) D und \hat{R} normalisieren
- 2) keine 100% Umsortierung suchen, sondern "nearest matrix problem" lösen. Also eine Umsortierung mit dem kleinsten Fehler $||(Q^T * D * Q) R||$ finden.

Problemdefinition

Mathematische Formulierung des Problems:

Finde
$$\min_{Q} \left\| Q^T D Q - \widehat{R} \right\|$$
 sodass:
$$Qe = e$$

$$e^T * Q = e^T$$

$$q_{ij} \in \{0,1\}$$

- Wegen der Norm ist dieses Problem nichtlinear.
- Wir verwenden als Norm die Frobeniusnorm (2er-Norm euklidische-Norm für Matrizen).
- Dadurch wird das Problem quadratisch nichtlinear.

Daten sammeln

$$Duke Miami UNC UVA VT$$

$$DUke Duke 0 0 0 0 0$$

$$VT = Miami 0 45 0 18 8 20$$

$$UNC 0 3 0 0 2 0$$

$$UVA 0 31 0 0 0 0$$

$$VT 0 45 0 27 38 0$$

$$\hat{R} = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Daten normalisieren

			Duke	Miami	UNC	UVA	VT
		Duke Miami UNC UVA VT	0	0	0	0	0 \
D	=	Miami	.19	0	.08	.03	.08
		UNC	.01	0	0	.01	0
		UVA	.13	0	0	0	0
		VT \	.19	0	.11	.16	0 /

$$\hat{R} = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0.05 & 0.10 & 0.15 & 0.20 \\
2 & 0 & 0 & 0.05 & 0.10 & 0.15 \\
0 & 0 & 0 & 0.05 & 0.10 \\
4 & 0 & 0 & 0 & 0 & 0.05 \\
5 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Nearest Matrix Problem lösen

$$n = 5$$

5! = 120 ← Anzahl der verschiedenen Permutationen für D

Brute Force ergibt Permutation (5 2 4 3 1),

beziehungsweise:

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad Q^T D Q = \begin{pmatrix} 0 & 0 & .16 & .11 & .19 \\ .08 & 0 & .03 & .01 & .16 \\ 0 & 0 & 0 & 0 & .13 \\ 0 & 0 & .01 & 0 & .01 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ .19 & 0 & .08 & .03 & .08 \\ .01 & 0 & 0 & .01 & 0 \\ .13 & 0 & 0 & 0 & 0 \\ .19 & 0 & .11 & .16 & 0 \end{pmatrix}$$

$$Q^{T}DQ = \begin{pmatrix} 0 & 0 & .16 & .11 & .19 \\ .08 & 0 & .03 & .01 & .16 \\ 0 & 0 & 0 & 0 & .13 \\ 0 & 0 & .01 & 0 & .01 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\hat{R} = \begin{pmatrix} 0 & .05 & .10 & .15 & .20 \\ 0 & 0 & .05 & .10 & .15 \\ 0 & 0 & 0 & .05 & .10 \\ 0 & 0 & 0 & 0 & .05 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Vereinfachung des Problems

Es gilt dank Frobeniusnorm und der Struktur von \hat{R} :

$$\|Q^T D Q - \hat{R}\|_F^2 = trace(D^T D) - 2 * trace(Q^T D Q \hat{R}) + trace(\hat{R}^T \hat{R})$$

Vereinfachung des Problems

Es gilt dank Frobeniusnorm und der Struktur von \hat{R} :

$$\|Q^T D Q - \hat{R}\|_F^2 = trace(D^T D) - 2 * trace(Q^T D Q \hat{R}) + trace(\hat{R}^T \hat{R})$$

 $trace(D^TD)$ und $trace(\hat{R}^T\hat{R})$ sind konstant!

Das Problem kann also umformuliert werden:

Finde
$$\max_{Q} trace(Q^T D Q \hat{R})$$

sodass:
$$Qe = e$$

$$e^T * Q = e^T$$

$$q_{ij} \in \{0,1\}$$

Evolutionärer Ansatz

Das Problem ist NP-schwer.

Evolutionäre Algorithmen lösen das Problem aber gut.

Evolutionärer Ansatz

Es wird keine Permutationsmatrix Q gesucht, sondern ein Permutationsvektor q (äquivalent):

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad q = (5 \quad 2 \quad 4 \quad 3 \quad 1)$$

Es gilt die Gleichheit:

$$\min_{Q} \|Q^{T} D Q - \hat{R}\| = \min_{q \in p_{n}} \|D(q, q) - \hat{R}\|$$

Evolutionärer Ansatz

- Mitglieder der Population = Permutationsvektoren
- Fitnessfunktion = Fehler der umsortierten Matrix (oder hillside violations)
- Die fitten Mitglieder werden gekreuzt, der Rest wird mutiert
- Algorithmus stoppt, wenn die Bevölkerung sich kaum mehr ändert

Zusammenfassung Rank-Differential

- D item-by-item Datenmatrix (paarweise Beziehungen)
- \hat{R} fundamentale Rangunterschiedsmatrix
- Q ist die Permutationsmatrix
- q ist der zu Q korrespondierende Permutationsvektor
- D(q,q) ist die umsortierte Datenunterschiedsmatrix $Q^T * D * Q$

Der Algorithmus

1. Löse das Optimierungsproblem

$$\min_{Q} \left\| Q^T D Q - \widehat{R} \right\|$$

 Sortiere q in absteigender Reihenfolge und speichere die sortierten Indizes als Rankingvektor

Eigenschaften Rank-Differential

- Kein Ratingvektor
- Findet die beste Umsortierung von D zu \hat{R}
- Das Optimierungsproblem ist NP-Schwer
- Nur für kleines n geeignet
- Beliebige Datenmatrizen können verwendet werden
- Wie bei anderen Methoden auch:
 - D kann aus mehreren Matrizen zusammengesetzt werden

Rating Differential Method

Von:

- Kathryn Pedings
- M.S. Thesis
- College of Charleston
- Für College Basketball

Betrachtet man \hat{R} , so erkennt man eine Struktur:

"hillside Form"

Eine Matrix R ist in hillside Form, wenn

$$\forall i \geq j$$
: $r_{ij} = 0$

(strikte obere Dreiecksmatrix)

$$\forall i \ni j \le k : r_{ij} \le r_{ik}$$

(Zeilen in aufsteigender Reihenfolge)

$$\forall j \ni i \leq k : r_{ij} \geq r_{kj}$$

(Spalten in absteigender Reihenfolge)

Wähle Q so, dass die wenigsten Hillside-Verstöße auftreten Beispiel mit 9 Verstößen (Q^TDQ):

$$\begin{pmatrix} 0 & 0 & .16 & .11 & .19 \\ .08 & 0 & .03 & .01 & .16 \\ 0 & 0 & 0 & 0 & .13 \\ 0 & 0 & .01 & 0 & .01 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\forall i \geq j : r_{ij} = 0$$

$$\forall i \ni j \le k : r_{ij} \le r_{ik}$$

$$\forall j \ni i \leq k : r_{ij} \geq r_{kj}$$

(strikte obere Dreiecksmatrix)

(Zeilen in aufsteigender Reihenfolge)

(Spalten in absteigender Reihenfolge)

Unterschiede der Methoden

Die Unterschiede wirken sich aus auf:

- Keine Normalisierung notwendig, da
- Kein Vergleich zu \hat{R} , sondern Benotung der Form
- Wahl von Q anders bestimmt (Fehlerterm vs. Anzahl der Verstöße)
- Andere Fitnessfunktion des evolutionären Algorithmus

Nachwort zum Lösen des Problems

- Evolutionäre Algorithmen lösen das Problem
- Laufzeit aber deutlich höher als z.B. Massey
- In dieser Variante fast ausschließlich für kleines n effizient
- Kann aber besser gelöst werden
 - Transformieren in BILP (binary integer linear program)
 - Vereinfachen in LP (linear program)

Diese Transformation wird im späteren Verlauf des Buches eingeführt (Kapitel 15, rank-aggregation).

Rating-Differential ist ein Spezialfall der Rank-Aggregation.

Verwendungsmöglichkeiten

- Ranking von Spielern / Mannschaften
- Online Metasuche
 - Spamfilter
 - Suchwebsite-Rankings

http://www10.org/cdrom/papers/577/

Ende

Vielen Dank für die Aufmerksamkeit!

Noch Fragen?