- Supspace A subset W of a vector space V(IF) is called a subspace of V if W is itself a vector space with some addition, scalar multiplication and scalars as V.
 - Ex. W= {(a,b,0) | a,b \in R & is a vector space and also a supspace of R3 (R). Geometrically, W is a xyplane and R? is 3-D space.
 - Thin: Let V be a vector space and let W be a non-empty subset of V. Then W is a subspace of V iff the These & conditions can be merged as 1 following conditions hold: of u, v & W + a, B & F then aut preW.
 - (i) 9 ju, v EW then utvEW
 - (ii) of uEW, CEIF then cuEW.

Ex.1 The set of symmetric nxn matrices is a supspace of Mnxn.

- 2. The subspaces {0} and V are called the trivial subspaces of V.
- Spanning Sets:) S= {v1, v2, ..., v x is a set of voctors in a vector space V, then the set of all linear combinations of v, v2, --, vk is called the span of v, v2, ..., vk and is denoted by span(v, v,,.., vk) or span(s).

If V= span(S), then S is called a spanning set for V and

V is said to be spanned by S. EXI. The polynomials I, x and x2 span Pz.

[10], [01], [00] and [00] span M2x2. 2. The matrices

Linear combinations of vectors v_1, v_2, \ldots, v_k is defined as $c_1v_1 + c_2v_2 + \ldots + c_kv_k$ where $c_i \in \mathbb{F}$.

DEx: $9nP_2$, determine wheather $\gamma(x) = 1-4x+6x^2$ is in span (p(x), q(x))where $p(x) = 1 - x + x^2$ and $q(x) = 2 + x - 3x^2$

We are looking for scalars cand of such that cp(n) +dq(n) = x(x). This means $c(1-x+x^2)+d(2+x-3x^2)=1-4x+6x^2$

 \Rightarrow $(c+2d)+x(-c+d)+(c-3d)x^2=1-4x+6x^2$

Equating the coefficients of like powers of x gives

c+2d=1 -c+d=-4

c-3d=6

which is easily solved to e=3 and =-1.

 $\cdot \cdot \cdot \gamma(\alpha) = 3 \beta(\alpha) - q(\alpha).$

Hence, 2(x) is in span (p(x), 2(x)).

(2) Ex. Determine whether Sin2x es in span (Sinx, Cosx)

We set cSinx+dCosx = Sinax and try to determine and d so that this equation is true. Since these are functions, the equation must be true for all values of x. Setting x = 0, we have

CSin0+dsig0 = Sin0 => C(0)+d(1) = 0

toom which we see that d=0.

Setting $x = \sqrt{72}$, we get $c Sin(\sqrt{12}) + d Cos(\sqrt{12}) = Sina(\sqrt{12})$ \Rightarrow c(1) + d(0) = 0 giving c = 0.

But this implies that Sinax = O(Sinx)+O(cox) = o for allx, which is absurd, since ax is not the zero function. So, Sinda is mot in span(sina, com).

Thm: Let 4, 42, ..., ux be vectors in a vector space V.

- @ span (V,, Vz,..., VK) is a subspace of V.
- 6) span(v, v, v, vk) is the smallest subspace of V that contains v, v, v, v, vk

Linear Indépendence

A set of vectors {u₁, u₂, ..., u_k} in a vector space V is dinearly dependent if there are scalars C₁, C₂, ..., C_k, at deast one of which is not zero, such that C₁v₁+C₂v₂+..+C_kv_k=0

A set of rectors that is not linearly dependent is said to be linearly independent.

 $\{v_1, v_2, ..., v_K\}$ is linearly independent in a vector space V iff $c_1v_1 + c_2v_2 + ... + c_Kv_K = 0$ implies $c_1 = 0$, $c_2 = 0$,..., $c_K = 0$.

Ex. The set $\{1+\chi+\chi^2, 1-\chi+3\chi^2, 1+3\chi-\chi^2\}$ is linearly dependent, since $2(1+\chi+\chi^2)-(1-\chi+3\chi^2)=1+3\chi-\chi^2$

Ex. 9n M2x2, let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ Then A + B - C = 0, so the set $\{A, B, C^2\}$ is linearly Dependent.

Ex. In P2, determine whether the set {1+x, x+x², 1+x²} is LI.

Let C1, C2, C3 be scalars s.t.

 $C_1(1+x)+C_2(x+x^2)+C_3(1+x^2)=0$ => $(C_1+C_3)+(c_2+c_3)x^2=0$

On comparing coefficients, $C_1 + C_2 = 0$, $C_2 + G_3 = 0$, $C_4 + C_5 = 0$

The soln is $c_1 = c_2 = c_3 = 0$. The set $\{1+x, x+x^2, 1+x^2\}$ is LI.