4.2 Reduction of Order

Recall

$$a_2(x) y'' + a_1(x) y' + a_0(x) y = 0$$
 (*)

has general solution : $y = c_1 y_1 + c_2 y_2$

where y_1, y_2 is a fundamental set, that is, y_1 and y_2 are l.i.solutions of the homogeneous equation (*).

Sometimes we might have one solution but need to find a second one. Say we know y_1 , we'd like to find y_2 . Note, since we need y_1 and y_2 to be l.i. then

$$\frac{y_2(x)}{y_1(x)} \neq C$$
, that is, $\frac{y_2(x)}{y_1(x)} = u(x)$

So $y_2 = u(x) y_1(x)$, which we can plug into our original equation (*) and try to find a function u(x) which makes equation (*) true.

MATH 267

Section 4.2

February 9, 2018 1 / 6

Before deducing a formula to find y_2 , let's work out the following example.

Example: (#1 pg. 132) Note that $y_1 = e^x$ is a solution to the equation y'' - y = 0.

Find another solution y_2 linearly independent to y_1 .

Assume
$$y_2 = u(x)y_1(x) = ue^x$$
; $y_e^1 = ue^x + u^2e^x + u^2e^x$

$$u' = ce^{-2x} = 7$$
 $u = \int ce^{-2x} dx = -\frac{c}{2}e^{-2x} + K$

Since we only need one such function u(x) that noks, we can The constants C = -2 and K = 0 so that $u(x) = e^{-2x}$

Then
$$y_2(x) = u(x) y_1(x)$$
 is $y_2(x) = e^{-2x} e^x = e^{-x}$.
Indeed we can verify $w(e^x, e^{-x}) = det \begin{bmatrix} e^x & e^{-x} \\ e^x - e^{-x} \end{bmatrix} = -e^x e^{-x} = -2 \neq 0$.

And Thus the general solution is
$$y = c_i e^{x} + G e^{-x}$$

MATH 267

February 9, 2018

Now we'll deduce a formula for $y_2(x)$, we will work with the standard form of (*):

$$y'' + P y' + Q y = 0$$

If we know y_1 is a solution, find an expression for the other l.i. solution $y_2 = y_1 u$.

Need y' & y" : y' = y'u+y'u' ; y" = y"u+y'u'+y'u'+y'u", plugin:

(y''u+2y',u'+y,u'')+P(y',u+y,u')+Q(y,u)=0

asslution to *

Let w= u' (so w'= u") and Sbstitute into ** to dotain a 1st order DE.

(Solve for win:)
$$w'y_1 + w(2y_1' + Py_1) = 0 \iff \frac{dw}{dx} = -\left(\frac{2y_1'}{y_1} + P\right)w$$

Separate $\int \frac{1}{w} dw = \int -\left(\frac{2y_1'}{y_1} + P\right) dx$
 $\left| \text{Integrate} \right| \int \frac{1}{w} dw = \int -2 \ln |y_1| - \int Pdx + C_1 \implies w = C \in \mathbb{R}$

$$W = \frac{C e^{-SPdx}}{y_1^2}$$

$$W' = \frac{Ce^{-SPdx}}{y_1^2}$$

$$W(x) = \int \frac{e^{-SPdx}}{y_1^2} dx + K$$

$$W(x) = \int \frac{e^{-SPdx}}{y_1^2} dx$$

$$W(x) = \int \frac{e^{-SPdx}}{y_1^2} dx$$

$$\Rightarrow u(x) = \int \frac{e^{-SPdx}}{y_1^2} dx$$

$$\therefore y_2 = y_1 \int \frac{e^{-SPdx}}{y_1^2} dx$$

MATH 267

February 9, 2018

Example

Find a second linearly independent solution to

$$(1-x^2)y'' + 2xy' = 0,$$

if we know $y_1 = 1$ is a solution.

In Standard ferm the equation is:
$$y'' + \frac{2x}{1-x^2}y' = 0$$
.

$$-\int Pdx = -\int \frac{2z}{1-x^2} dx = \int \frac{1}{u} du = \ln |u| = \ln |1-x^2|$$

$$= 7 e^{-\int Pdx} = e^{\ln |-x^2|} = |-x^2| = |-x^2| = \sqrt{\frac{1-x^2}{3}} dx = x - \frac{x^3}{3}$$

:
$$y_2 = x - \frac{x^3}{3}$$
 (The general Solis: $y = C_1 + C_2(x - \frac{x^3}{3})$)

February 9, 2018

Ex.2 Find a second l.i. solution to
$$X^2y''-3xy'+4y=0$$
, if we know that $y_1=X^2$ is a sol. in $(0, 1)$.

In Standard ferm:
$$y'' - \frac{3}{x}y' + \frac{4}{x^2}y = 0$$

$$e^{-SPdx} = e^{+\int 3/x dx} = e^{3\ln(x)} = (x)^3 = x^3$$

=>
$$y_2 = y_1 \int \frac{e^{-SPdx}}{y_1^2} dx = \chi^2 \int \frac{\chi^3}{\chi^4} dx = \chi^2 \int \frac{1}{\lambda} dx = \chi^2 \ln |\chi|$$

We can venfy:

$$W(y_1,y_2) = \det \begin{bmatrix} \chi^2 & \chi^2 \ln |x| \\ 2x & 2x \ln x + x \end{bmatrix} = 2x^3 \ln x + x^3 - 2x^3 \ln x = x^3 \neq 0$$

 $2x + 2x \ln x + x = 2x^3 \ln x + x^3 - 2x^3 \ln x = x^3 \neq 0$

And the general Sol. 15

$$y = c_1 X^2 + c_2 X^2 \ln X$$