EE669: VLSI Technology

Apurba Laha
Department of Electrical Engineering
IIT Bombay 400076

Email: <u>laha@ee.iitb.ac.in</u>, Tel: **022 25769408**

Office hour: Friday 10:00 – 11.00 AM, EE Annex, Room: 104

MOS-Interface instability

a *C-V* characteristics of single crystalline Gd2O3 on Si(100(substrate with Pt as top electrode. b Normalized *C-V* characteristics of single crystalline Gd2O3 on Si100 substrate with W top electrode

APPLIED PHYSICS LETTERS 92, 152908 (2008)

Effective passivation of slow interface states at the interface of single crystalline Gd_2O_3 and Si(100)

Qing-Qing Sun,¹ Apurba Laha,² Shi-Jin Ding,^{1,a)} David Wei Zhang,^{1,a)} H. Jörg Osten,² and A. Fissel³

¹State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China

²Institute of Electronic Materials and Devices, Leibniz University, Appelstr. 11A. D-30167 Hannover, Germany

³Information Technology Laboratory, Leibniz University, Schneiderberg, 32, D-30167 Hannover, Germany

Influence of interface layer composition on the electrical properties of epitaxial Gd₂O₃ thin films for high-K application

Apurba Laha^{a)} and H. J. Osten^{b)} *Institute of Electronic Materials and Devices, Leibniz University of Hannover, Appelstr. 11A, D-30167 Hannover, Germany*

Short channel effect

Control of threshold voltage

$$I_D = \frac{\mu C_{ox}}{L_{ch}} (V_G - V_{th}^*)^2$$

Short Channel Effect: V_{th} Roll-off

$$V_{th} = 2\phi_F - \frac{Q_B}{C_{ox}} = 2\phi_F + \frac{qN_AW_T}{C_{ox}}$$

