UNIVERSIDAD POLITÉCNICA SALESIANA EI VECINO - CUENCA

Estudiante: Gustavo Guallpa

Profesor: Ing. Diego Quisi

Asignatura: Simulación

Fecha: 20/12/2020.

Tema: Examen de Simulación.

TENER EN CUENTA

LA API DE TWITER TIENE ALGUNAS LIMITACIONES.

Se puede procesar:

- 180 requerimientos cada 15 minutos.
- TWITER SEARCH: 450 tweets por requerimiento.
- USUARIO: 900 usuarios por requerimiento
- TIMELINES: 1500 tweets por requerimiento, Solo se puede sacar los últimos 3200 Tweets (incluye los retweets).

```
In [244]: #Importamos la librerías necesarias.
          import tweepy
          import json
          import csv
          import codecs
          from os import remove
          import numpy as np
          import pandas as pd
          import seaborn as sb
          import matplotlib.pyplot as plt
          from datetime import datetime,timedelta
          from mpl toolkits.mplot3d import Axes3D
          from matplotlib import cm
          plt.rcParams['figure.figsize'] = (16, 9)
          plt.style.use('ggplot')
          from sklearn import linear model
          from sklearn.metrics import mean_squared_error, r2_score
          from scipy.optimize import curve fit
          from lmfit.models import StepModel, LinearModel
          %matplotlib inline
```

AUTENTIFICACION

```
In [245]: # Ahora procedemos a autenticarnos usando el API Key, el API secret Key, el Acces
          consumer key = "DYQjpGFpIUQaeNnE9cZGn1F2K"
          consumer_secret = "9afZW00KEtXTanRq0Hfqg0a3oWrlIHTewFcR1ZhuR8w2VDhkcI"
          access token = "773341738194862081-HD91YWEZ6wuYog8qaMncZvHjnGH3wSc"
          access token secret = "dBmWe0Fyj0FssRb0jc87m8PgDckhponYrkJUy101kAU3p"
          auth = tweepy.OAuthHandler(consumer key, consumer secret)
          auth.set access token(access token, access token secret)
In [246]: #Instancio el objeto.
          api = tweepy.API(auth, wait on rate limit=True, wait on rate limit notify=True)
In [247]: #Obtener mi informacion
          me = api.me()
          print (json.dumps(me. json,indent=2))
            "id": 773341738194862081,
            "id str": "773341738194862081",
            "name": "Gustavo Guallpa",
            "screen name": "gguallpa97",
            "location": "Cuenca, Ecuador",
            "profile location": {
              "id": "013cb38e7fe501ae",
              "url": "https://api.twitter.com/1.1/geo/id/013cb38e7fe501ae.json",
              "place type": "unknown",
              "name": "Cuenca, Ecuador",
              "full_name": "Cuenca, Ecuador",
              "country_code": "",
              "country": "",
              "contained_within": [],
              "bounding_box": null,
              "attributes": {}
            "description": "LAM \ud83d\ude00A Jes\u00fas por Mar\u00eda \ud83d\ude0dPRO
```

CANDIDATOS A BUSCAR

FILTRAMOS LOS DATOS.

```
In [59]: #remove("candidatos.csv")# Descomentar si se va a elimna para cargar con nuevos d
         #Seccion de campos a extraer
         name, user, follower, text, menciones, likes, hashtags, share = '','', '','','','
         #Nombres dentro de csv
         rows = [['Nombre', 'usuario','followers','contenido','menciones','hashtags','li⊬
         contador filas =0
         for candidato in candidatos:
             #Obtenemos la informacion del candidato.
             data = api.get user(candidato)
             print('Datos del candidato: '+ data._json['name'])
             diccionario =data. json['entities']
             lista=[]
             for link in diccionario : #recorremos
                 valor = diccionario[link]
                 for vrd_valor in valor:
                      lista = [lista,valor[vrd valor]]
             new lista = lista[0]
             listaA=new_lista[1]
             i=0;
             link candidato=''
             for dia in listaA:
                 link = dia
                 for links in link:
                     i=i+1
                     if i == 2:
                          link_candidato =link[links]
             print(link candidato)
             print('Tweets del Candidato.')
             name, user, followers = data. json['name'],data. json['screen name'],data. js
             print(followers)
             for tweet in tweepy.Cursor(api.user timeline, screen name=candidato, tweet me
                 diccionario =tweet._json['entities']
                 hashtags = diccionario['hashtags']
                 menciones = diccionario['user mentions']
                 i=0;
                 j=0;
                 #print('HASHTAGS:')
                 users mnc=''
                 hastags=''
                 for dia in hashtags:
                     hst = dia
                     for links in hst:
                          i=i+1
                          if i == 1:
                             hastags =hst[links]
                              #print(hastags)
                 #print('USERS MECIONADOS:')
                 for m in menciones:
                     mnc = m
                    #print(mnc)
                     for m user in mnc:
```

```
j=j+1
                if j == 1:
                    users_mnc=mnc[m_user]
                    #print(mnc[m user])
        text, menciones, likes, share=tweet. json['text'].encode("utf-8"), users m
        single_row=[name, user, followers, text, menciones, hastags, likes, share]
        rows.append(single row)
with open('candidatos.csv', 'w', newline='') as file:
   writer = csv.writer(file)
   writer.writerows(rows)
Datos del candidato: Esteban Albornoz
http://www.estebanalbornoz.com (http://www.estebanalbornoz.com)
Tweets del Candidato.
35833
Datos del candidato: Lourdes Cuesta Orellana
https://www.facebook.com/LourdesCuestaO/ (https://www.facebook.com/LourdesCuest
a0/)
Tweets del Candidato.
6638
Datos del candidato: Doris Soliz Carrion
```

RECUPERAMOS LOS DATOS GUARDADOS DE LOS CANDIDATOS.

```
In [249]: #cargamos Los datos de entrada
df= pd.read_csv("candidatos.csv", engine='python')
In [250]: #veamos cuantas dimensiones y registros contiene
df.shape
Out[250]: (300, 8)
```

http://www.dorissoliz.com (http://www.dorissoliz.com)

Tweets del Candidato.

128780

In [251]: #son 300 registros con 8 columnas. Veamos los primeros registros
df.head()

Out[251]:

	Nombre	usuario	followers	contenido	menciones	hashtags	likes	comp
0	Esteban Albornoz	ealbornozv	35833	b'Culmina una exitosa semana de actividades en	DesarrolloEcAN	NaN	2	
1	Esteban Albornoz	ealbornozv	35833	b'RT @AsambleaEcuador: La Asamblea Nacional se	AsambleaEcuador	NaN	0	
2	Esteban Albornoz	ealbornozv	35833	b'RT @ONU_es: La respuesta mundial a la #COVID	ONU_es	COVID19	0	
3	Esteban Albornoz	ealbornozv	35833	b'RT @AsambleaEcuador: #SiTeLoPerdiste \n\nEl	AsambleaEcuador	SiTeLoPerdiste	0	
4	Esteban Albornoz	ealbornozv	35833	b'Fruct\xc3\xadfero di\xc3\xa1logo con el medi	PrensaEc1	NaN	10	

In [252]: df.describe()

Out[252]:

	followers	likes	veces compartido
count	300.000000	300.000000	300.000000
mean	57083.666667	16.793333	92.826667
std	52166.187785	65.099697	537.768898
min	6638.000000	0.000000	0.000000
25%	6638.000000	0.000000	3.000000
50%	35833.000000	0.000000	7.000000
75%	128780.000000	10.000000	26.000000
max	128780.000000	678.000000	8768.000000

```
In [253]: # Visualizamos rápidamente las caraterísticas de entrada
df.drop(['contenido'],1).hist()
plt.show()
```


Out[254]: <AxesSubplot:xlabel='likes'>

UNA VEZ OBTENIDOS LO DATOS SE PROCECE A HACER LA REGRESION PARA ELLO

TOMANDO EN CUANTA LA CANTIDAD DE LIKES HACIENDO SIMIL A LA INTENCION DE VOTOS.

PRIMER CANDIDATO

In [255]: dfA = df[df['Nombre'].isin(['Esteban Albornoz'])] #Filtro la Informacion solo par
dfA

Out[255]:

	Nombre	usuario	followers	contenido	menciones	hashta
0	Esteban Albornoz	ealbornozv	35833	b'Culmina una exitosa semana de actividades en	DesarrolloEcAN	N
1	Esteban Albornoz	ealbornozv	35833	b'RT @AsambleaEcuador: La Asamblea Nacional se	AsambleaEcuador	N
2	Esteban Albornoz	ealbornozv	35833	b'RT @ONU_es: La respuesta mundial a la #COVID	ONU_es	COVIE
3	Esteban Albornoz	ealbornozv	35833	b'RT @AsambleaEcuador: #SiTeLoPerdiste \n\nEl	AsambleaEcuador	SiTeLoPerdi
4	Esteban Albornoz	ealbornozv	35833	b'Fruct\xc3\xadfero di\xc3\xa1logo con el medi	PrensaEc1	N
95	Esteban Albornoz	ealbornozv	35833	b'RT @TvlEcuador: Siga la sesi\xc3\xb3n No. 68	TvlEcuador	PlenoVirt
96	Esteban Albornoz	ealbornozv	35833	b'Se debe poner en el pleno de la @AsambleaEcu	AsambleaEcuador	N
97	Esteban Albornoz	ealbornozv	35833	b'De manera un\xc3\xa1nime la @DesarrolloEcAN	DesarrolloEcAN	N
98	Esteban Albornoz	ealbornozv	35833	b'Gratificante escuchar que la #LeyEmprendimie	NaN	LeyEmprendimientoeInnovac
99	Esteban Albornoz	ealbornozv	35833	b'RT @TvlEcuador: Las reformas a la #LeyEmpres	TvlEcuador	LeyEmpresasPúbli
100	100 rows × 8 columns					

100 rows × 8 columns

```
In [256]: dfA= dfA.loc[:,['likes']] #Selecciono las columnas de analasis
dfA
```

Out[256]:

	likes
0	2
1	0
2	0
3	0
4	10
95	0
96	12
97	10
98	22
99	0

100 rows × 1 columns

```
In [257]: #Creamos una funcion para cargar el numero de dias.
dias=[]
def numeroDias(tamano=100):
    for i in range(tamano):
        dias.append(i)
        #print(i)
    return dias
dias = numeroDias()
np.array(dias)
# = numeroDias()
```

```
Out[257]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
```

```
In [258]: x = np.array(dias)#Cada uno de los días.
          #print(x)
          y = dfA.loc[:,['likes']]
          #print(y)
          # Creo un modelo de regresión lineal
          modelo = linear_model.LinearRegression()
          # Entreno el modelo con los datos (X,Y)
          modelo.fit(np.array(x).reshape(-1,1), y)
          #Ahora vamoa a calcular b 0
          print (u'Ordenada al origen: ', modelo.intercept_)
          # Ahora puedo obtener el coeficiente b_1
          print (u'Pendiente: ', modelo.coef_[0])
          beta = modelo.coef_[0]#Modificar el valor de la pendiente.
          # Podemos predecir usando el modelo
          y_pred = modelo.predict(np.array(x).reshape(-1,1))
          # Por último, calculamos el error cuadrático medio y el estadístico R^2(Precisión
          print (u'Error cuadrático medio: %.2f' % mean_squared_error(y, y_pred))
          print (u'Estadístico R_2: %.2f' % r2_score(y, y_pred))
```

Ordenada al origen: [7.78732673]

Pendiente: [-0.00418842] Error cuadrático medio: 97.51

Estadístico R 2: 0.00

```
In [260]: #Graficar
          #Tamaño
          plt.rcParams['figure.figsize'] = [10, 10]
          # Representamos el ajuste (rojo) y la recta Y = beta*x (verde)
          plt.scatter(x, y)#Dibujo mis puntos originales
          plt.plot(x, y_pred, color='blue',linewidth=3.0) #Dibujo con os valores ya predeci
          #Bibujamos puntos reales.
          x_{real} = np.array([0, 100])
          y_real = x_real
          plt.plot(x_real, y_real, color='green',linewidth=3.0)
          #Propiedades
          plt.title('Análisis Twiter.')
          plt.xlabel('Días')
          plt.ylabel('Intención de Voto')
          plt.grid(color='r', linestyle='dotted', linewidth=0.5)
          plt.show()
```



```
In [261]: #Vamos ver el impacto de proximo tuit, haciendo referecnia a personas que votario
impacto = y_pred[100-1]
print('Intención de voto',impacto )
```

Intención de voto [7.37267327]

SEGUNDO CANDIDATO

In [262]: dfC = df[df['Nombre'].isin(['Lourdes Cuesta Orellana'])] #Filtro la Informacion s
dfC

Out[262]:

	Nombre	usuario	followers	contenido	menciones	hashtags	lik
100	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @ParticipacionPC: #DebateAsamblea21 #Cuen	ParticipacionPC	DebateAsamblea21	
101	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @ParticipacionPC: #DebateAsamblea21 #Cuen	ParticipacionPC	DebateAsamblea21	
102	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @ParticipacionPC: #DebateAsamblea21 #Cuen	ParticipacionPC	DebateAsamblea21	
103	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @ParticipacionPC: Tuvimos nuestro #Debate	ParticipacionPC	DebateAsamblea21	
104	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'Estamos por iniciar el debate organizado por	ParticipacionPC	NaN	
195	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @MarcoToro_03: Ma\xc3\xb1ana en el #Di\xc	MarcoToro_03	Diálogo	
196	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'Inici\xc3\xb3 el juicio pol\xc3\xadtico cont	NaN	NaN	
197	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'Hoy es el d\xc3\xada mundial de lucha contra	NaN	CáncerDeMama	
198	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'Buenos d\xc3\xadas. A partir de las 7:40 est	radiosonorama	NaN	
199	Lourdes Cuesta Orellana	LourdesCuestaO	6638	b'RT @FiscalizacionAN: El Presidente de la Com	FiscalizacionAN	NaN	

100 rows × 8 columns

```
In [263]: dfC= dfC.loc[:,['likes']] #Selecciono las columnas de analasis
dfC
```

Out[263]:

	likes
100	0
101	0
102	0
103	0
104	4
195	0
196	14
197	7
198	16
199	0

100 rows × 1 columns

```
In [264]: #Creamos una funcion para cargar el numero de dias.
dias=[]
def numeroDias(tamano=100):
    for i in range(tamano):
        dias.append(i)
        #print(i)
    return dias
dias = numeroDias()
np.array(dias)
# = numeroDias()
```

```
Out[264]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
```

```
In [265]: x = np.array(dias)#Cada uno de los días.
          #print(x)
          y = dfC.loc[:,['likes']]
          #print(y)
          # Creo un modelo de regresión lineal
          modelo = linear_model.LinearRegression()
          # Entreno el modelo con los datos (X,Y)
          modelo.fit(np.array(x).reshape(-1,1), y)
          #Ahora vamoa a calcular b 0
          print (u'Ordenada al origen: ', modelo.intercept_)
          # Ahora puedo obtener el coeficiente b_1
          print (u'Pendiente: ', modelo.coef_[0])
          beta = modelo.coef_[0]#Modificar el valor de la pendiente.
          # Podemos predecir usando el modelo
          y_pred = modelo.predict(np.array(x).reshape(-1,1))
          # Por último, calculamos el error cuadrático medio y el estadístico R^2(Precisión
          print (u'Error cuadrático medio: %.2f' % mean_squared_error(y, y_pred))
          print (u'Estadístico R_2: %.2f' % r2_score(y, y_pred))
```

Ordenada al origen: [23.86138614]

Pendiente: [0.05411341]

Error cuadrático medio: 10168.89

Estadístico R_2: 0.00

```
In [266]: #Graficar
    # Representamos el ajuste (rojo) y la recta Y = beta*x (verde)
    plt.scatter(x, y)#Dibujo mis puntos originales
    plt.plot(x, y_pred, color='blue',linewidth=3.0) #Dibujo con os valores ya predeci

#Bibujamos puntos reales.
    x_real = np.array([0, 100])
    y_real = x_real
    plt.plot(x_real, y_real, color='green',linewidth=3.0)

#Propiedades
    plt.title('Análisis Twiter.')
    plt.xlabel('Días')
    plt.ylabel('Intención de Voto')
    plt.grid(color='r', linestyle='dotted', linewidth=0.5)
    plt.show()
```



```
In [267]: #Vamos ver el impacto de proximo tuit, haciendo referecnia a personas que votario
impacto = y_pred[100-1]
print('Intención de voto',impacto )
```

Intención de voto [29.21861386]

TERCER CANDIDATO

In [268]: dfS = df[df['Nombre'].isin(['Doris Soliz Carrion'])] #Filtro La Informacion solo
dfS

Out[268]:

	Nombre	usuario	followers	contenido	menciones	hashtags
200	Doris Soliz Carrion	dorissoliz	128780	b'Que pronto tengamos la buena noticia de su r	agustinintriago	NaN
201	Doris Soliz Carrion	dorissoliz	128780	b'Pronta recuperaci\xc3\xb3n compa\xc3\xb1ero	ecuarauz	NaN
202	Doris Soliz Carrion	dorissoliz	128780	b'RT @EnClavePolitika: "#Ecuador tiene una sit	EnClavePolitika	Ecuador
203	Doris Soliz Carrion	dorissoliz	128780	b'RT @SaquipayRolando: Con nuestro futuro vice	SaquipayRolando	CarlosRabascal
204	Doris Soliz Carrion	dorissoliz	128780	b'RT @KinttoLucas: Un saludo fraterno para los	KinttoLucas	NaN
295	Doris Soliz Carrion	dorissoliz	128780	b'RT @MashiRafael: Arauz anuncia un plan efect	MashiRafael	NaN
296	Doris Soliz Carrion	dorissoliz	128780	b'RT @IvanAbrilRC: Ratificamos nuestro comprom	IvanAbrilRC	NaN
297	Doris Soliz Carrion	dorissoliz	128780	b'RT @esthercuestasan: En el marco de la conme	esthercuestasan	DiaDeLosDerechosHumanos
298	Doris Soliz Carrion	dorissoliz	128780	b'RT @sur_gente: \xc2\xa1Nunca m\xc3\xa1s atro	sur_gente	NaN
299	Doris Soliz Carrion	dorissoliz	128780	b'Muy buena iniciativa!!! https://t.co/Gjyrd7W	NaN	NaN

100 rows × 8 columns

```
In [269]: dfS= dfS.loc[:,['likes']] #Selecciono las columnas de analasis
dfS
```

Out[269]:

	likes
200	44
201	169
202	0
203	0
204	0
295	0
296	0
297	0
298	0
299	8

100 rows × 1 columns

```
In [270]: #Creamos una funcion para cargar el numero de dias.
dias=[]
def numeroDias(tamano=100):
    for i in range(tamano):
        dias.append(i)
        #print(i)
    return dias
dias = numeroDias()
np.array(dias)
# = numeroDias()
```

```
Out[270]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,  99])
```

```
In [271]: | x = np.array(dias)#Cada uno de los días.
          #print(x)
          y = dfS.loc[:,['likes']]
          #print(y)
          # Creo un modelo de regresión lineal
          modelo = linear_model.LinearRegression()
          # Entreno el modelo con los datos (X,Y)
          modelo.fit(np.array(x).reshape(-1,1), y)
          #Ahora vamoa a calcular b 0
          print (u'Ordenada al origen: ', modelo.intercept_)
          # Ahora puedo obtener el coeficiente b_1
          print (u'Pendiente: ', modelo.coef_[0])
          beta = modelo.coef_[0]#Modificar el valor de la pendiente.
          # Podemos predecir usando el modelo
          y_pred = modelo.predict(np.array(x).reshape(-1,1))
          # Por último, calculamos el error cuadrático medio y el estadístico R^2(Precisión
          print (u'Error cuadrático medio: %.2f' % mean_squared_error(y, y_pred))
          print (u'Estadístico R_2: %.2f' % r2_score(y, y_pred))
```

Ordenada al origen: [19.88316832]

Pendiente: [-0.07319532]

Error cuadrático medio: 2218.05

Estadístico R_2: 0.00


```
In [273]: #Vamos ver el impacto de proximo tuit, haciendo referecnia a personas que votario
impacto = y_pred[100-1]
print('Intención de voto',impacto )
```

Intención de voto [12.63683168]

SIMULACION DE EVENTOS DISCRETOS.

El candidato ha utilizar es Lourdes Cuesta Orellana, debido a que tiene un mayor impacto en la sociedad, con una mayor intención de voto del:

• 29.21861386

Las Listas son las siguientes>

- 1 -> Esteban Albornoz
- 2 -> Lourdes Cuesta Orellana
- 3 -> Doris Soliz Carrion

```
In [287]: import simpy
          import random
          import matplotlib.pyplot as pp
          #Genera numero aleatorio del 1 al 3 de las listas.
          import random
          % matplotlib inline
          # Maximo de votantes que puede recibir el recinto electora.
          MAX VOTANTES = 1
          # Total de mesas electorales.
          NUM MESA ELECTORAL = 1
          # Tiempo que tarda una personas en realizar su sufragio(minutos)
          TIEMPO VOTACION = 5
          # Intervalo de tiempo en que llegan los votantes (minutos)
          INTERVALO LLEGADA = 3
          # Tiempo de simulación
          TIEMPO SIMULACION = 35
          # Creamos un diccionario para almacenar las horas en que se sufragan los votantes
          votos = {}
          class Recinto Electoral(object):
              def init (self, environment, num mesa electoral, tiempo votacion):
                  # Guardamos como variable el entorno de ejecucion
                  self.env = environment
                  # Creamos el recurso que representa las mesa electoral
                  self.mesa = simpy.Resource(environment, num mesa electoral)
                  # Variable para el tiempo de atencion.
                  self.tiempo votacion = tiempo votacion
              def atender votante(self, votante):
                  # Este metodo representa el proceso de sufragio de un votante.
                  # Ingresa la persona y sufraga.
                  yield self.env.timeout(random.randint(TIEMPO VOTACION - 5, TIEMPO VOTACIO)
                  print('Porcentaje {%d%%} voto electoral => %s ' % (random.randint(30, 9¢
          def llegada votante(env, nombre, Recinto Electoral):
              # Usamos el reloj de la simulacion (env.now()) para indicar a la
              # hora que llega el votante con el nombre pasado como parametro
              print('Llega votante: [%s]' % (nombre))
              # Especificamos que vamos a usar un recurso (Resource) que representa
              with Recinto Electoral.mesa.request() as maquina:
                  # Ocupamos la mesa electoral.
                  yield maquina
                  # Indicamos que votante entra a la Recinto Electoral
                  print('Entra [%s] a sufragar:' % (nombre))
                  # Procesamos la operacion de sufragio
```

```
yield env.process(Recinto Electoral.atender votante(nombre))
        # Una vez que termina la llamada con 'yield', se indica que se ha atendio
        print('<-**-->La persona [%s] terminó de sufragar'%(nombre))
        print('<-**-->La persona [%s] recibe su certificado de votacion'%(nombre)
        print('<-**-->La persona [%s] sale del Recinto Electoral.'%(nombre))
        votos[nombre] = random.randint(1, 3)#Me generar un muero randomico corres
def ejecutar_simulacion(env, num_mesa_electoral, tiempo_votacion, intervalo):
    recinto Electoral = Recinto Electoral(env, num mesa electoral, tiempo votacio
    # Creamos 5 llegadas de votantes iniciales
   for i in range(5):
        env.process(llegada votante(env, 'votante-%d' % (i + 1), recinto Electora
   # Ejecutamos la simulacion
   while True:
        yield env.timeout(random.randint(intervalo - 3, intervalo + 3))
        i += 1
        # Mientras se atiende a los votantes generamos mas votantes
        env.process(llegada votante(env, 'votante-%d' % (i + 1), recinto Electora
print('Recinto Electoral UPS')
# Creamos el entorno de simulacion
env = simpy.Environment()
env.process(ejecutar simulacion(env, NUM MESA ELECTORAL, TIEMPO VOTACION, INTERVA
# Ejecutamos el proceso durante el tiempo de simulacion
env.run(until=TIEMPO SIMULACION)
print("Diccionario de votos:")
print(votos)
Recinto Electoral UPS
Llega votante: [votante-1]
Llega votante: [votante-2]
Llega votante: [votante-3]
Llega votante: [votante-4]
Llega votante: [votante-5]
Entra [votante-1] a sufragar:
Llega votante: [votante-6]
Llega votante: [votante-7]
Llega votante: [votante-8]
Porcentaje {80%} voto electoral => votante-1
<-**-->La persona [votante-1] terminó de sufragar
<-**-->La persona [votante-1] recibe su certificado de votacion
<-**-->La persona [votante-1] sale del Recinto Electoral.
Entra [votante-2] a sufragar:
Llega votante: [votante-9]
Porcentaje {42%} voto electoral => votante-2
<-**-->La persona [votante-2] terminó de sufragar
<-**-->La persona [votante-2] recibe su certificado de votacion
<-**-->La persona [votante-2] sale del Recinto Electoral.
Entra [votante-3] a sufragar:
Llega votante: [votante-10]
Porcentaje {62%} voto electoral => votante-3
```

```
<-**-->La persona [votante-3] terminó de sufragar
<-**-->La persona [votante-3] recibe su certificado de votacion
<-**-->La persona [votante-3] sale del Recinto Electoral.
Entra [votante-4] a sufragar:
Llega votante: [votante-11]
Porcentaje {54%} voto electoral => votante-4
Llega votante: [votante-12]
<-**-->La persona [votante-4] terminó de sufragar
<-**-->La persona [votante-4] recibe su certificado de votacion
<-**-->La persona [votante-4] sale del Recinto Electoral.
Entra [votante-5] a sufragar:
Llega votante: [votante-13]
Diccionario de votos:
{'votante-1': 3, 'votante-2': 2, 'votante-3': 2, 'votante-4': 3}
```

```
In [286]: # Generamos La grafica
    datos=sorted(votos.items()) # Ordenamos Los datos
    x, y =zip(*datos) #
    pp.plot(x,y,linewidth=2,color='red') #Dibujamos Las Lineas
    pp.scatter(x,y,color='blue') # Dibujamos Los puntos (x,y)
    pp.title("# de Votos")
    pp.grid(True) #Generamos una cuadricula
    pp.show() #Mostramos el grafico
```


En la simulacion podemos visualizar que la ganadora sería la candidata número dos correspondiente a **Lourdes Cuesta Orellana**, la que salío en nuestra regresión anteriormente realizada.

CONCLUSIONES

El desarollo del presente trabajo me permitió poder expandir mis conocimientos sobre el funcionamiento de las regresiones y la utilidad de la mismas para poder predecir datos en el futuro, de las misma manera sobre la utilidad de la simulacion de eventos discretos para poder simular situaciones de la vida real.

In []: