Forms and simplifications of Boolean Expressions

Canonical forms of a boolean expression

Standard ways of uniquely representing boolean expressions

- 1. Sum of *minterms*
- 2. Product of *maxterms*

Terminology

Truth table for a 3-variable logic function F(X,Y,Z)

Row	X	Y	Z	F
0	0	0	0	F(0,0,0)
1	0	0	1	F(0,0,1)
2	0	1	0	F(0,1,0)
3	0	1	1	F(0,1,1)
4	1	0	0	F(1,0,0)
5	1	0	1	F(1,0,1)
6	1	1	0	F(1,1,0)
7	1	1	1	F(1,1,1)

Table 1.

Terminology (1)

Literal	A variable (X) or a complement of a variable (X')
Product term	A single literal (X) or a logical product of two or more literals (X.Y.Z)
Sum-of-products expression	A logical sum of product terms: X + Y.Z + X'.Z
Sum term	A single literal or a logical sum of two or more literals: X + Y' + Z
Product-of-sums expression	A logical product of sum terms: Z'.(X+Y).(Y'+Z)
Normal term	A product or sum term where no variable appears more than once: X.Y.Z', X + Y' + Z' etc
Minterm	An n-variable minterm is a normal product term with n literals
Maxterm	An n-variable maxterm is a normal sum term with n literals

Minterms and maxterms

Row	X	Υ	Z	F	Minterm		Maxterm	
0	0	0	0	F(0,0,0)	m _o	X'.Y'.Z'	M _o	X+Y+Z
1	0	0	1	F(0,0,1)	m ₁	X'.Y'.Z	M ₁	X+Y+Z'
2	0	1	0	F(0,1,0)	m ₂	X'.Y.Z'	M ₂	X+Y'+Z
3	0	1	1	F(0,1,1)	m ₃	X'.Y.Z	M ₃	X+Y'+Z'
4	1	0	0	F(1,0,0)	m ₄	X.Y'.Z'	M ₄	X'+Y+Z
5	1	0	1	F(1,0,1)	m ₅	X.Y'.Z	M_5	X'+Y+Z'
6	1	1	0	F(1,1,0)	m ₆	X.Y.Z'	M ₆	X'+Y'+Z
7	1	1	1	F(1,1,1)	m ₇	X.Y.Z	M ₇	X'+Y'+Z'

Table 2.

Terminology (2)

Minterm number	An n-variable minterm can be represented by an n-bit integer			
Minterm i	Minterm corresponding to the row i of the truth table			
Maxterm i	Maxterm corresponding to the row i of the truth table			
Canonical sum	Sum of the minterms corresponding to the truth table rows for which the output is 1. $\Sigma_{X,Y,Z}$ m(0,3,4,6,7) = X'.Y'.Z' + X'.Y.Z + X.Y'.Z' + X.Y.Z' + X.Y.Z			
Minterm list	$\Sigma_{X,Y,Z}$ m(0,3,4,6,7)			
on-set	Same as the minterm list			
Canonical product	Product of maxterms corresponding to the truth table rows for which the output is 0. $\Pi_{X,Y,Z}M(1,2,5) = (X+Y+Z').(X+Y'+Z).(X'+Y+Z')$			
Maxterm list	$\Pi_{X,Y,Z}M(1,2,5)$			
off-set	Same as the maxterm list			

Equivalent ways of representing a combinational logic function

- Truth table
- Canonical sum of product terms
 - Algebraic sum of minterms
- Minterm list
- Canonical product of sum terms
 - Algebraic product of maxterms
- Maxterm list

Standard Form

- This is a simplified canonical form
- Canonical form is a special case of the standard form

There are two types:

- Sum of Products (SoP)
 - a. Products do not necessarily have to be minterms
- 2. Product of Sums (PoS)
 - a. Sums do not necessarily have to be maxterms

Standardization makes the evaluation, simplification, and implementation of Boolean expressions more systematic and easier.

Sum of Products

$$X + X.Y' + X'.Y.Z$$

- Each term can contain a single literal or a logical product of multiple literals
- Can only contain complements of single variables

Canonical sum of products (sum of minterms)

Each term in SoP should contain all the variables

ABC + A'BC' + ABC'

Converting a SoP into a canonical sum of minterms

SoP (non-canonical): AB + ABC + CB

Canonical sum of minterms:

$$AB.(C+C') + ABC + (A+A')CB$$

Since
$$X + X = X$$

Converting a SoP into a canonical sum of minterms

SoP (non-canonical): AB + B'

Canonical sum of minterms:

$$=AB+(A+A')B'$$

$$= AB + AB' + A'B'$$

$$= m_3 + m_2 + m_0$$

$$= \sum (m_3, m_2, m_0)$$

$$= \sum m(0,2,3)$$

А	В	Minterm		Maxterm	
0	0	m _o	A'B'	M _o	A+B
0	1	m ₁	A'B	M ₁	A+B'
1	0	m ₂	AB'	M ₂	A'+B
1	1	m ₃	AB	M ₃	A'+B'

Product of Sums

PoS: (A+B).(A'+B+C').B

- Product of sum terms
- Each sum term can contain a single literal or any sum of those

Canonical product of sums (sum of maxterms)

- Each sum term should contain each of the variables or their complement
 - (A+B+C')(A'+B'+C')

Converting a PoS into a canonical product of maxterms

PoS: (A+B).A

Canonical PoS:

Use
$$A = A+0$$
 and $B.B'=0$

$$= (A+B).(A+B.B')$$

$$= (A+B).(A+B).(A+B')$$

$$=(A+B).(A+B')$$

$$= \mathbf{M}_0 \cdot \mathbf{M}_1$$

$$= \pi \left(M_0, M_1 \right)$$

$$= \pi M(0,1)$$

А	В	Minterm		Maxterm	
0	0	m ₀ A'B'		M _o	A+B
0	1	m ₁	A'B	M ₁	A+B'
1	0	m ₂	AB'	M ₂	A'+B
1	1	m ₃	AB	M_3	A'+B'

Duality of canonical forms

The following are equivalent:

$$\circ \quad \Sigma_{X \times 7} m(0,3,4,6,7) = X'.Y'.Z' + X'.Y.Z + X.Y'.Z' + X.Y.Z' + X.Y.Z$$

- $\circ \qquad \Pi_{X Y 7} M(1,2,5) = (X+Y+Z').(X+Y'+Z).(X'+Y+Z')$
- A function expressed as an SoP can also be expressed as a PoS
- $\Sigma_{X,Y,Z} m(0,3,4,6,7) = \Pi_{X,Y,Z} M(1,2,5)$
- In general, $\Sigma m(\{a\}) = \Pi M(\{b\})$ where,
 - \circ {a} \cup {b} = {0,1,2,...,2ⁿ-1}
 - {a} \cap {b} = { ϕ }

Canonical forms and De Morgan's law

A sum of minterms equals the inverse of the product of the corresponding

maxterms

$$\sum m(\{a\}) = \prod M(\{a\})$$

$$\overline{\prod} M(\{a\}) = \overline{\left(M_{a_1} \cdot M_{a_2} \cdot \dots \cdot M_{a_k}\right)}$$

$$= \overline{M_{a_1}} + \overline{M_{a_2}} + \dots + \overline{M_{a_k}}$$

$$= m_{a_1} + m_{a_2} + \dots + m_{a_k} = \sum m(\{a\})$$

E.g.
$$M_0' = (A+B+C)' = A'B'C' = m_0$$

Why canonical SoP and PoS?

Canonical SOP and POS are unique for each boolean function

Provides a concise and unique way of representing a truth table

We can use a specific set of rules that guarantee the simplest function for any logic expression

Elements of Combinational Logic Design

Outline

- 1. Implementing boolean logic circuits
 - a. Standard form
 - b. Canonical form
- 2. Simplifying logic circuits
- 3. Universal gates
 - a. NAND/NOR implementations

Implementing boolean logic circuits

Typical architecture to implement a standard form

Level 1 - to complement some of the variables (this might be skipped in some diagrams)

Level 2 -

- AND gates for SoP
- OR gates for PoS

Level 3 -

- One n-input OR gate for SoP for getting the sum of everything
- One n-input AND gate for PoS for getting the product of everything

SoP: AND-OR implementation

PoS: OR-AND implementation

Example of AND-OR Standard Form

$$F = A'BC + ABC' + AC$$

Standard form but not canonical

$$F = B(A'C + AC') + AC$$

(Non-standard form)

- Fewer inputs but more gate levels
- Comparison & implementation is more difficult than with the standard form

Same example in canonical form

Sum of minterms

$$F = A'BC + ABC' + AC$$

$$= A'BC + ABC' + AC(B+B')$$

Simplifying standard forms

- Two-level minimum cost design
 - PoS or SoP with the minimum number of terms
 - Each term has the minimum number of literals
- How to get the simplest design systematically?
 - Karnaugh maps!

Universal Gates

Universal gate

- A gate is a universal gate if a collection of that gates can be arranged to implement AND, OR & NOT gates
- All circuits can be represented in standard form
 - I.e. all circuits can be built with AND, OR, NOT
 - Therefore, a universal gate can be used to implement any circuit
- A universal gate is "functionally complete"

Is NAND universal?

Is NOR universal?

NAND and NOR implementation of circuits

- Function-based approach
 - Use De Morgan's law to move from AND-OR to NAND-NOR
 - E.g. AB+CD = (AB+CD)" = ((AB)'(CD)')
- Circuit-based approach
 - Replace all gates with NAND gates
 - Undo any complements caused by the replacement

NAND & NOR gates are generally faster than AND & OR gates in most technologies

NAND equivalent circuits (De Morgan's theorem)

(a)
$$X = (X \cdot Y)'$$

(b)
$$X \longrightarrow Z = X' + Y'$$

$$(d) \qquad \begin{array}{c} X \\ Y \end{array} \longrightarrow \begin{array}{c} Z = X' + Y' \end{array}$$

Implementation of NOR

- Note the equivalence (De Morgan's law)
 - (A+B)' = A'.B'
- If you take the complement of both sides, we get another equivalence
 - A+B = (A'.B')' (i.e. NAND of inverted inputs)

NOR equivalent circuits (De Morgan's theorem)

Try it out (somewhat parallel to slide 30)

Example

$$F = PQS + P'R'S + PQ'R' + P'QRS$$

Step 1: Simplify this using a Karnaugh Map

$$QS + R'S + PQ'R'$$

Example

$$F = QS + R'S + PQ'R'$$

To implement this using NAND gates:

Step 2 - invert and invert again, to use De Morgan's law

$$F = F'' = (QS + R'S + PQ'R')''$$

$$= ((QS)'.(R'S)'.(PQ'R')')'$$

Homework: Draw the circuit

Example: Circuit based approach to convert to NAND

QS + R'S + PQ'R'

- Replace AND with NAND
 - Add NOT to fix unwanted inversions
- Convert OR into NAND by inverting the inputs (De Morgan, Slide 28)
 - Add NOTs to fix unwanted inversions

Example: Circuit based approach to convert to NAND

QS + R'S + PQ'R'

Simplify the NOT gates that cancel each other out

Deriving / simplifying boolean functions: beyond K-maps

- K-maps are typically used for cases where there are 4 variables or less
- For more complex cases, particularly when multiple outputs are involved, there are other algorithms which are more suitable
 - Quine-McCluskey algorithms
 - This is a programmed minimization method
 - Typically, a high-level programming language implementation is used for running the algorithms