AdvancedLearningAlgorithms - WEEK4 - DecisionTree - QUIZ 3 (Tree ensembles)

Link: <u>AdvancedLearningAlgorithms - WEEK4 - DecisionTree - QUIZ 3 (Tree</u> ensembles)

1/1 point

- $\textbf{1.} \quad \text{For the random forest, how do you build each individual tree so that they are not all identical to each other?} \\$
 - O If you are training B trees, train each one on 1/B of the training set, so each tree is trained on a distinct set of examples.
 - O Sample the training data without replacement
 - Sample the training data with replacement and select a random subset of features to build each tree
 - Train the algorithm multiple times on the same training set. This will naturally result in different trees.

✓ Correct

Correct. You can generate a training set that is unique for each individual tree by sampling the training data with replacement. The random forest algorithm further avoids identical trees by randomly selecting a subset of features when building the tree ensemble.

		1/1 point
2.	You are choosing between a decision tree and a neural network for a classification task where the input x is a 100x100 resolution image. Which would you choose?	
	O A decision tree, because the input is unstructured and decision trees typically work better with unstructured data.	
	O A neural network, because the input is structured data and neural networks typically work better with structured data.	
	A neural network, because the input is unstructured data and neural networks typically work better with unstructured data.	
	A decision tree, because the input is structured data and decision trees typically work better with structured data.	
		1/1 point
3.	What does sampling with replacement refer to?	
-	It refers to a process of making an identical copy of the training set.	
	Drawing a sequence of examples where, when picking the next example, first remove all previously drawn examples from the set we are picking from.	
	It refers to using a new sample of data that we use to permanently overwrite (that is, to replace) the original data.	
	Drawing a sequence of examples where, when picking the next example, first replacing all previously drawn examples into the set we are picking from.	
	✓ Correct Yes!	