Lógica Digital (1001351)

Mapas de Karnaugh

Prof. Ricardo Menotti menotti@ufscar.br

Atualizado em: 21 de marco de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos Prof. Luciano de Oliveira Neris

Ineris@ufscar.br

Estratégias de minimização

Estratégias de minimização

- Obter a expressão mínima depende do critério usado;
- Exemplo: número de termos na expressão e o número de literais nos termos;
 - Ligeiramente diferente do nosso critério anterior;
- Estratégia intuitiva: encontrar o menor número possível de grupos de 1s que cobrem todos os casos em que a função tem um valor igual a 1;
 - Funciona bem para mapas pequenos, mas precisamos de um método organizado;

• Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		<i>X</i> ₂ <i>X</i> ₃					
		00	01	11	10		
x_1	0	1	1	0	0		
~1	1	1	1	0	0		

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;
- Implicante primo essencial: contém pelo menos um mintermo que não está contido em nenhum outro implicante primo;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- Implicante: agrupamento de 2ⁿ mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;
- Implicante primo essencial: contém pelo menos um mintermo que não está contido em nenhum outro implicante primo;
- Cobertura: um conjunto de implicantes que abranja todas as saídas 1 da função;
 - O conjunto de todos os mintermos;
 - O conjunto de todos os implicantes primos;

Estratégias de minimização: algoritmo

- 1. Gerar todos os implicantes primos para a função;
- 2. Encontrar o conjunto dos implicantes primos essenciais;
- 3. Se esse oferece cobertura à função, então é a solução desejada; senão, adicionar os implicantes primos *não* essenciais com custo mínimo;

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_3 x_4 + \overline{x}_1 x_2 x_3 + x_1 x_2 \overline{x}_3 + x_1 x_3 x_4$$

		X ₃ X ₄					
		00	01	11	10		
× ₁ × ₂	00	1	1	0	0		
	01	0	1	1	0		
	11	0	0	1	1		
	10	0	0	0	1		

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1,x_2,x_3,x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

Bibliografia

Bibliografia

 Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Mapas de Karnaugh

Prof. Ricardo Menotti menotti@ufscar.br

Atualizado em: 21 de marco de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos Prof. Luciano de Oliveira Neris Ineris@ufscar.br