CxC 2025 TouchBistro Challenge

By Shami-uz Zaman, Tony Ngo, Roah Cho, Angad Ahluwalia

February 24, 2025

Introduction

Introduction

TouchBistro is a restaurant management platform used across North America to help restaurant owners:

- 1. Process Orders & Payments
 - Seamlessly manage dine-in, takeout, and delivery transactions.
- 2. Optimize Staffing
 - Improve workforce scheduling based on demand.
- 3. Enhance Customer Experience
 - Manage loyalty programs and customer engagement.
- 4. Analyze Business Performance
 - o Gain insights from real-time data analytics.

Why does this matter?

- Restaurants generate huge amounts of data every day.
- Many businesses **fail** to **leverage** this data effectively.
- Our project aims to help restaurants use data for smarter decision-making.

Key Business Questions

1. Peak Period Analysis

- When are restaurants busiest?
- How can staffing be optimized to improve efficiency?

3. Sale Forecasting

- Can we **predict** future sales **revenue**?
- How can restaurants use this information for inventory and staffing decisions?

2. Customer Spending Behavior

- Do people **tip more** for dine-in vs. takeout?
- What factors influence spending and tipping behavior?

4. Impact of External Factors

- Does weather impact sales?
- How do holidays and inflation affect consumer behavior?

Dataset Overview

Transaction Data

(Bill-Level Details)

- Order details
- Order timestamps
- Order type (dine-in, takeout, delivery)
- Revenue details
- Total bill amount
- Tax amount
- Tip amount
- Operational details
- Order duration
- Time the bill was paid

Venue Data

(Restaurant-Level Details)

- Location details
- City
- Country
- Venue ID
- Operating hours
- Start-of-day offsets
- Business hours

Additional Data

- Weather Data API
- To analyze impact of temperature
 & precipitation on sales
- Inflation Data
- To examine economic influences on customer spending

Data Preprocessing

Step 1: Handling Missing Values

- Some transaction records had missing timestamps or payment details.
- We removed incomplete rows to ensure accuracy.

Step 2: Time Formatting & Parsing

• Converted time-related fields (e.g., order_seated_at_local, bill_paid_at_local) into standard datetime format for easier analysis.

Step 3: Feature Engineering

- Created new variables:
- Peak vs. Off-Peak hours
- Tip percentage (tip ÷ total bill)
- o Weekday vs. Weekend sales trends

Peak Period Analysis

When Are Restaurants the Busiest?

Objective: Analyze hourly sales patterns to determine when restaurants experience the highest order volumes.

Methodology:

- 1. Extracted order timestamps and grouped them by hour.
- Counted total orders and total revenue per hour.
- Created a heatmap visualization to highlight peak traffic periods.

Peak Period Insights

When Should Restaurants Adjust Staffing?

Key Insights & Business Implications

- The busiest time across most restaurants was 6pm to 9pm.
- Some restaurants had unexpected late-night spikes (10pm to 12am).
- Mid-week traffic was lower than weekends, but some venues had high weekday lunch rushes.

Recommendations:

- Increase staffing during peak hours to reduce wait times.
- Adjust shifts dynamically based on real-time sales trends.
- Offer discounts/promotions during off-peak hours to increase traffic.

Customer Spending Insights

Do People Tip More for Dine-In?

Objective: Compare average bill size and tip percentage across dine-in, takeout, and delivery orders.

Methodology:

- 1. Grouped data by order_take_out_type_label (Dine-in, Takeout, Delivery).
- 2. Calculated average bill total and average tip percentage.
- 3. Visualized differences with bar charts and box plots.

Customer Spending Insights

What Drives Higher Tips?

Key Insights & Business Recommendations

- Dine-in orders had the highest average bill and higher tip percentages (~18-22%).
- Takeout orders had lower average spend and tipping (~10-12%).
- Delivery orders had inconsistent tipping, likely influenced by external apps (UberEats, DoorDash).

Recommendations:

- Restaurants should incentivize dine-in experiences to maximize customer spend.
- Suggest tip amounts at checkout to encourage higher tips.
- Bundle promotions for takeout to increase revenue per order.

Sales Forecasting

Predicting Future Revenue

Objective: Develop a forecasting model to predict restaurant sales for the next 30 days.

Methods Used:

- Prophet Model
 - Handles seasonal trends and holidays.
- Exponential Smoothing
 - o Identifies long-term revenue patterns.

External Factors

How Do Weather & Holidays Impact Sales?

Key Insights:

- Rainy days led to fewer dine-in orders but increased delivery sales.
- Weekends consistently had higher average sales than weekdays.
- Holidays like Christmas & New Year's Eve showed a 20% spike in revenue.

Recommendations:

- Increase online promotions during bad weather.
- Offer holiday special menus to maximize seasonal revenue.

Key Takeaways

1. Peak Periods

Restaurants should adjust staffing dynamically based on historical sales trends.

2. Customer Spend Insights

Dine-in orders lead to higher revenue and tips, requiring tailored marketing.

3. Sales Forecasting

Implementing predictive analytics can improve business planning.

Future Work Recommendations

1. Integrate real-time data sources (weather, holidays, inflation).

2. Develop an interactive dashboard for restaurant owners.

Thank you!