Lecture 4

Now we have one of two main subspace theorems. It says we can extend a basis for a subspace to a basis for the full space.

Theorem 0.1 (One subspace theorem). Let W be a subspace of a finite-dimensional vector space V. If B_W is a basis for W, there exists a basis B of V containing B_W .

Proof. Consider all linearly independent subsets of V that contain B_W (there is at least one, B_W !) and choose one, S, of maximal size. We know that $\#S \leq \dim V$ and if $\#S = \dim V$ it must be a basis and we are done, so assume that $\#S = k < \dim V$. We must then have $\operatorname{Span}(S) \neq V$ so choose a vector $v \in V \setminus \operatorname{Span}(S)$. We claim that $S \cup \{v\}$ is linearly independent, contradicting maximality of S. To see this write $S = \{v_1, \ldots, v_k\}$ and

$$a_1v_1 + \dots + a_kv_k + bv = \vec{0} .$$

If $b \neq 0$ then we can solve for v, getting $v \in \text{Span}(S)$, a contradiction, so we must have b = 0. But then $a_1v_1 + \cdots + a_kv_k = \vec{0}$ and linear independence of S gives $a_i = 0$ for all i, a contradiction.

The second subspace theorem will follow from a dimension theorem.

Theorem 0.2. Let W_1, W_2 be subspaces of V, a finite-dimensional vector space. Then

$$dim(W_1 + W_2) + dim(W_1 \cap W_2) = dim(W_1) + dim(W_2)$$
.

Proof. Let \hat{B} be a basis for the intersection $W_1 \cap W_2$. By the one subspace theorem we can find bases B_1 and B_2 of W_1 and W_2 respectively that both contain \hat{B} . Write

$$\hat{B} = \{v_1, \dots, v_k\}$$

$$B_1 = \{v_1, \dots, v_k, v_{k+1}, \dots, v_l\}$$

$$B_2 = \{v_1, \dots, v_k, w_{k+1}, \dots, w_m\}$$

We will now show that $B = B_1 \cup B_2$ is a basis for $W_1 + W_2$. This will prove the theorem, since then $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = k + (l + m - k) = l + m$.

To show that B is a basis for $W_1 + W_2$ we first must prove $\operatorname{Span}(B) = W_1 + W_2$. Since $B \subset W_1 + W_2$, we have $\operatorname{Span}(B) \subset \operatorname{Span}(W_1 + W_2) = W_1 + W_2$. On the other hand, each vector in $W_1 + W_2$ can be written as $w_1 + w_2$ for $w_1 \in W_1$ and $w_2 \in W_2$. Because B contains a basis for each of W_1 and W_2 , these vectors w_1 and w_2 can be written in terms of vectors in B, so $w_1 + w_2 \in \operatorname{Span}(B)$.

Next we show that B is linearly independent. We set a linear combination equal to zero:

$$a_1v_1 + \dots + a_kv_k + a_{k+1}v_{k+1} + \dots + a_lv_l + b_{k+1}w_{k+1} + \dots + b_mw_m = \vec{0}$$
. (1)

By subtracting the w terms to one side we find that $b_{k+1}w_{k+1} + \cdots + b_mw_m \in W_1$. But this sum is already in W_2 , so it must be in the intersection. As \hat{B} is a basis for the intersection we can write

$$b_{k+1}w_{k+1} + \cdots + b_mw_m = c_1v_1 + \cdots + c_kv_k$$

for some c_i 's in \mathbb{F} . Subtracting the w's to one side and using linear independence of B_2 gives $b_{k+1} = \cdots = b_m = 0$. Therefore (1) reads

$$a_1v_1 + \dots + a_lv_l = \vec{0} .$$

Using linear independence of B_1 gives $a_i = 0$ for all i and thus B is linearly independent. \square

The proof of this theorem gives:

Theorem 0.3 (Two subspace theorem). If W_1, W_2 are subspaces of a finite-dimensional vector space V, there exists a basis of V that contains bases of W_1 and W_2 .

Proof. Use the proof of the last theorem to get a basis for $W_1 + W_2$ containing bases of W_1 and W_2 . Then use the one-subspace theorem to extend it to V.

Note the difference from the one subspace theorem. We are not claiming that you can extend any given bases of W_1 and W_2 to a basis of V. We are just claiming there exists at least one basis of V such that part of this basis is a basis for W_1 and part is a basis for W_2 .

In fact, given bases of W_1 and W_2 we cannot generally find a basis of V containing these bases. Take

$$V = \mathbb{R}^3, \ W_1 = \{(x, y, 0) : x, y \in \mathbb{R}\}, \ W_2 = \{(x, 0, z) : x, z \in \mathbb{R}\}\ .$$

If we take bases $B_1 = \{(1,0,0), (1,1,0)\}$ and $B_2 = \{(1,0,1), (0,0,1)\}$, there is no basis of $V = \mathbb{R}^3$ containing both B_1 and B_2 since V is 3-dimensional.

We now move on to the main subject of the course, linear transformations.

LINEAR TRANSFORMATIONS

Definition 0.4. Let V and W be vector spaces over the same field \mathbb{F} . A function $T:V\to W$ is called a linear transformation if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 and $T(cv_1) = cT(v_1)$ for all $v_1, v_2 \in V$ and $c \in \mathbb{F}$.

As usual, we only need to check the condition

$$T(cv_1 + v_2) = cT(v_1) + T(v_2)$$
 for $v_1, v_2 \in V$ and $c \in \mathbb{F}$.

Examples

1. Consider \mathbb{C} as a vector space over itself. Then if $T:\mathbb{C}\to\mathbb{C}$ is linear, we can write

$$T(z) = zT(1)$$

so T is completely determined by its value at 1.

2. Let V be finite dimensional and $B = \{v_1, \dots, v_n\}$ a basis for V. Each $v \in V$ can be written uniquely as

$$v = a_1 v_1 + \dots + a_n v_n \text{ for } a_i \in \mathbb{F}$$
.

So define $T: V \to \mathbb{F}^n$ by $T(v) = (a_1, \dots, a_n)$. This is called the *coordinate map relative* to B. It is linear because if $v = a_1v_1 + \dots + a_nv_n$, $w = b_1v_1 + \dots + b_nv_n$ and $c \in \mathbb{F}$,

$$cv + w = (ca_1 + b_1)v_1 + \dots + (ca_n + b_n)v_n$$

is one representation of cv + w in terms of the basis. But this representation is unique, so we get

$$T(cv + w) = (ca_1 + b_1, \dots, ca_n + b_n)$$

= $c(a_1, \dots, a_n) + (b_1, \dots, b_n)$
= $cT(v) + T(w)$.

3. Given any $m \times n$ matrix A with entries from \mathbb{F} (the notation from the homework is $A \in M_{m,n}(\mathbb{F})$, we can define a linear transformations $L_A : \mathbb{F}^n \to \mathbb{F}^m$ and $R_A : \mathbb{F}^m \to \mathbb{F}^n$ by

$$L_A(v) = A \cdot v$$
 and $R_A(v) = v \cdot A$.

Here we are using matrix multiplication and in the first case, representing v as a column vector. In the second, v is a row vector.

4. In fact, the set of linear transformations from V to W, written L(V,W), forms a vector space! Since the space of functions from V to W is a vector space, it suffices to check that it is a subspace. So given $T, U \in L(V, W)$ and $c \in \mathbb{F}$, we must show that cT + U is a linear transformation. So let $v_1, v_2 \in V$ and $c' \in \mathbb{F}$:

$$(cT + U)(c'v + w) = (cT)(c'v + w) + U(c'v + w)$$

$$= c(T(c'v + w)) + U(c'v + w)$$

$$= c(c'T(v) + T(w)) + c'U(v) + U(w)$$

$$= c'(cT(v) + U(v)) + cT(w) + U(w)$$

$$= c'(cT + U)v + (cT + U)(w) .$$