Machine Learning Lab Assignment 2

Name-Sudeshna Saha Roll-001811001094 Semester - 7 Year - 4 Department - Information Technology

1. WINE DATASET

1.1 SVM Classifier(With Tuning)

```
# WINE DATASET
# SVM(With Tuning)[70-30 split]
import pandas as pd
import numpy as np
# Dataset Preparation df =
pd.read_csv("wine.data",header=None)
col_name = ['Class','Alcohol','Malic acid','Ash','Alcalinity of ash','Magnesium','Total
phenols','Flavanoids',
            'Nonflavanoid phenols', 'Proanthocyanins', 'Color
intensity','Hue','OD280/OD315 of diluted wines','Proline']
df.columns = col name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=10)
```

```
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X train =
sc.fit transform(X train)
X test = sc.transform(X test)
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel': ['rbf',
'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of
parameters, using 3 fold cross validation, # search across 100
different combinations, and use all available cores
```

```
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix, accuracy score
print("Confusion Matrix:") print(confusion matrix(y test,
y_pred))
print("-----") print("------
----")
print("Performance Evaluation") print(classification_report(y_test,
y pred))
print("-----") print("-------
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
```


Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.4 MLP Classifier(Without Tuning)

COMPARISON:

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

2. IRIS PLANT DATASET

2.1 SVM Classifier(With Tuning)

```
# IRIS PLANT DATASET
# SVM(With Tuning)[70-30 split]
import pandas as pd
import numpy as np
# Dataset Preparation df =
pd.read csv("iris.data",header=None)
col name = ['Sepal Length','Sepal Width','Petal Length','Petal Width','Class']
df.columns = col name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test =
train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X train =
sc.fit_transform(X_train)
X test = sc.transform(X test)
```

```
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X train, y train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy score
print("Confusion Matrix:") print(confusion matrix(y test,
y pred))
```

```
print("-----") print("------
-----") print("Performance Evaluation")
print(classification_report(y_test, y_pred))
print("----") print("------
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot confusion matrix
plot confusion matrix(rf random, X test, y test)
plt.show()
 Confusion Matrix:

[[14 0 0]

[ 0 16 1]

[ 0 0 14]]
 Performance Evaluation
                 precision
                             recall f1-score
                                               support
                      1.00
1.00
0.93
 Iris-setosa
Iris-versicolor
Iris-virginica
                               1.00
                                         1.00
                               0.94
                                         0.97
        accuracy
                                         0.98
                                                    45
   macro avg
weighted avg
                      0.98
                               0.98
                                         0.98
 14
                                     12
                                     10
  를 Iris-versicolor
                     16
                                     8
                                     6
    Iris-virginica
                  Iris-versicolor Iris-virginica
Predicted label
```


2.2 SVM Classifier(Without Tuning)

2.3 MLP Classifier(With Tuning)

2.4 MLP Classifier(Without Tuning)

2.5 Random Forest Classifier(With Tuning)

2.6 Random Forest Classifier(Without Tuning)

3. IONOSPHERE DATASET

3.1 SVM Classifier(With Tuning)

```
# IONOSPHERE DATASET
# SVM(With Tuning)[70-30 split]

import pandas as pd
import numpy as np

# Dataset Preparation df =
pd.read_csv("ionosphere.data",header=None)

col_name =
['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19'
,'20','21','22','23','24','25','26','27','28','29','30','31','32','33','34','Class']

df.columns = col_name
```

```
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X train =
sc.fit transform(X train)
X test = sc.transform(X test)
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
```

```
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:") print(confusion_matrix(y_test,
y pred))
print("-----") print("------
----")
print("Performance Evaluation") print(classification report(y test,
y pred))
print("-----") print("------
----")
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
```


Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

3.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4. BREAST CANCER DATASET

4.1 SVM Classifier(With Tuning)

```
# BREAST CANCER DATASET
# SVM(With Tuning)[60-40 split]
import pandas as pd
import numpy as np
# Dataset Preparation df =
pd.read csv("wdbc.data", header=None)
col name =
['1','Class','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17'
,'18','19'
           ,'20','21','22','23','24','25','26','27','28','29','30','31','32']
df.columns = col name
X = df.drop(['1', 'Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test =
train test split(X,y,train size=0.6,test size=0.4,random state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X_train =
sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
# Classification from
sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:") print(confusion matrix(y_test,
y pred)) print("-----
```

```
-----") print("-----
----")
print("Performance Evaluation") print(classification report(y test,
y_pred))
print("----") print("-----")
----")
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
 Confusion Matrix:
 [[147 2]
 [ 2 77]]
 Performance Evaluation
             precision recall f1-score support
          В
                 0.99
                          0.99
                                    0.99
                                              149
          M
                  0.97
                           0.97
                                    0.97
                                               79
    accuracy
                                    0.98
                                              228
   macro avg
                  0.98
                          0.98
                                    0.98
                                              228
 weighted avg
                  0.98
                          0.98
                                    0.98
                                              228
 Accuracy:
 0.9824561403508771
 [Parallel(n_jobs=1)]: Done 240 out of 240 | elapsed: 1.4s finished
                             140
                             120
       1.5e+02
   В
                             100
 True label
                             80
                             60
                             40
           Predicted label
COMPARISON:
```


4.2 SVM Classifier(Without Tuning)

4.3 MLP Classifier(With Tuning)

4.4 MLP Classifier(Without Tuning)

4.5 Random Forest Classifier(With Tuning)

4.6 Random Forest Classifier(Without Tuning)

OVERALL RESULT:

In most of the cases, the highest accuracy is gained when the Train-Test split ratio is in the ratio of 70:30.

5.Using Principal Component Analysis:

5.1 Iris Plant Dataset

- # IRIS PLANT DATASET
- # SVM(With Tuning)[70-30 split]

```
import pandas as pd
import numpy as np
# Dataset Preparation df =
pd.read csv("iris.data",header=None)
col name = ['Sepal Length','Sepal Width','Petal Length','Petal
Width','Class']
df.columns = col name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test =
train_test_split(X,y,train_size=0.7,test_size=0.3,random_state=10)
# Feature Scaling from sklearn.preprocessing
import StandardScaler
sc = StandardScaler() X train =
sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Finding the important parameters that contribute to most of the variance
in the data.
import matplotlib.pyplot as plt
import seaborn as sns from
sklearn.decomposition import PCA
pca_test = PCA(n_components=4) pca_test.fit(X_train)
sns.set(style='whitegrid')
```

```
plt.plot(np.cumsum(pca test.explained variance ratio ))
plt.xlabel('number of components') plt.ylabel('cumulative
explained variance') plt.axvline(linewidth=4, color='r', linestyle
= '--', x=10, ymin=0, ymax=1) display(plt.show()) # So we can see
that we have 10 important parameters
pca = PCA(n components=2)
pca.fit(X train) X train =
pca.transform(X train)
X test = pca.transform(X test)
# Classification from
sklearn.svm import SVC
classifier = SVC()
## # Showing all the
parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get_params())
## # Creating a set of important sample
features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
##
from sklearn.model selection import GridSearchCV
```

```
# Use the random grid to search for best hyperparameters # First create
the base model to tune classifier = SVC() # Random search of parameters,
using 3 fold cross validation, # search across 100 different
combinations, and use all available cores
rf random = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:") print(confusion_matrix(y_test,
y_pred))
print("----") print("-----
-----")
print("Performance Evaluation") print(classification report(y test,
y pred))
print("----") print("-----
print("Accuracy:") print(accuracy_score(y_test,
y_pred))
import matplotlib.pyplot as plt from
sklearn.metrics import plot confusion matrix
plot_confusion_matrix(rf_random, X_test, y_test)
plt.show()
```

5.1.1 SVM Classifier(With Tuning)

5.1.2 SVM Classifier(Without Tuning)

5.1.3 MLP Classifier(With Tuning)

5.1.4 MLP Classifier(Without Tuning)

5.1.5 Random Forest Classifier(With Tuning)

5.1.6 Random Forest Classifier(Without Tuning)

Confusion Matrix:				
[0 14 3]				
[0 0 14]]				
[0 0 14]]				
Performance Evalua	tion			
р	recision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
[ris-versicolor	1.00	0.82	0.90	17
Iris-virginica	0.82	1.00	0.90	14
accuracy			0.93	45
macro avg	0.94	0.94	0.94	45
weighted avg	0.95	0.93	0.93	45
Accuracy: 0.933333333333333333				
			14	
Iris-setosa 14		•	- 14 - 12	
Iris-setosa 14		•		
		•	- 12	
	14	3	-12 -10 -8	
apel	14	3	- 12 - 10	
lage pris-versicolor	14	3	-12 -10 -8	
	14	14	-12 -10 -8	
ris-versicolor	14		-12 -10 -8	

5.2 Wine Dataset

5.2.1 SVM Classifier(With Tuning)

5.2.2 SVM Classifier(Without Tuning)

5.2.3 MLP Classifier(With Tuning)

5.2.4 MLP Classifier(Without Tuning)

5.2.5 Random Forest Classifier(With Tuning)

5.2.6 Random Forest Classifier(Without Tuning)

5.3 Ionosphere Dataset

5.3.1 SVM Classifier(With Tuning)

5.3.2 SVM Classifier(Without Tuning)

Performance	Evaluation			70.70.70.70.70.70.70.
rei Torillance i		recall	f1-score	support
b	0.96	0.68	0.79	40
g	0.83	0.98	0.90	66
accuracy			0.87	106
macro avg	0.90	0.83	0.85	106
veighted avg	0.88	0.87	0.86	106
0.86792452830 /usr/local/l:	ib/python3.7/			 rn/neural_ne
0.86792452830 /usr/local/l:				rn/neural_ne
0.86792452830 /usr/local/l:	ib/python3.7/	genceWarn		rn/neural_ne
0.86792452836/usr/local/l % self.max	ib/python3.7/	genceWarn -60		rn/neural_ne
0.86792452836/usr/local/l % self.max	ib/python3.7/	genceWarn - 60 - 50		rn/neural_ne
% self.max	ib/python3.7/	- 60 - 50 - 40		rn/neural_ne

5.3.4 MLP Classifier(Without Tuning)

5.3.5 Random Forest Classifier(With Tuning)

5.3.6 Random Forest Classifier(Without Tuning)

Performance Ev				
	precision	recall	f1-score	support
b	0.92	0.82	0.87	40
g	0.90	0.95	0.93	66
accuracy			0.91	106
macro avg	0.91	0.89	0.90	106
weighted avg			0 00	100000000000000000000000000000000000000
 Accuracy:	0.91 4906	0.91	0.90	106
 Accuracy:		0.91	0.90	106
Accuracy: 0.905660377358			0.90	106
Accuracy: 0.905660377358		- 60	0.90	106
Accuracy: 0.905660377358		- 60 - 50	0.90	106
Accuracy: 0.905660377358		- 60 - 50 - 40	0.90	106

5.4 Iris Plant Dataset

5.4.1 SVM Classifier(With Tuning)

5.4.2 SVM Classifier(Without Tuning)

Performance	Eval	uation			
	pr	ecision	recall	f1-score	support
	В	0.99	0.98	0.99	112
	M	0.97	0.98	0.97	59
accurac	y			0.98	171
macro av	g	0.98	0.98	0.98	171
The second second second	2	0 00	0.98	0.98	171
eighted av	g 	0.98	0.98	0.98	171
accuracy:			0.98	0.98	1/1
Accuracy:			- 100		1/1
Accuracy: 0.982456140	 35087				171
Accuracy: 0.982456140	 35087		- 100		1/1
Accuracy: 0,982456140	 35087		- 100 - 80		1/1
	 35087		- 100 - 80 - 60		1/1

B M Predicted label

5.4.4 MLP Classifier(Without Tuning) 5.4.5 Random Forest Classifier(With Tuning) Confusion Matrix: [[109 3] [4 55]] Performance Evaluation precision recall f1-score support 0.96 0.97 0.97 0.95 0.93 0.94 0.97 В 112 accuracy 0.96 171 0.96 0.96 0.95 0.96 macro avg 0.95 171 171 weighted avg 0.96 Accuracy: 0.9590643274853801 - 100 1.1e+02 label Predicted label

5.4.6	Random I	Forest Cla	assifier(W	ithout Tur	ning

 CONCLUSION:
We can see that the overall accuracy in all the cases increases when we use Principal Component Analysis (PCA) in our dataset before applying the algorithms.