

### Reasoning

- Explicit
  - State machine, serial
- Implicit
  - Compute intensive
  - Fits SIMT well
- Path planning





#### Motivation

- GPU accelerated Al
- Congestion games
- Effective team tasks
  - Virtual robots, humans
- Scalable, real time





#### Problem

#### Planner

- Efficient roadmap construction
  - From 3D virtual environment
- Searches a global, optimal path
  - From start to goal
- Locally, avoids collisions with
  - Static, dynamic objects

#### Simulator

- Visually compelling motion
- Economical memory footprint
- A subset of compute units
- Linear scale with # characters



#### Solution

- Compact, quality roadmap
- Heterogeneous agents
- Velocity Obstacles
- GPU optimizations
  - Spatial hash
  - Nested parallel



#### Outline

- Algorithm
- Implementation
- Results
- Takeaways



### Pipeline

- 3D level,  $C_{space}$  mesh input
- Inline computed roadmap
- Goals, roadmap decoupled
- Discrete time simulation





### Roadmap Construction

- An existed  $C_{\text{free}}$  path
  - Guaranteed in roadmap
- Predictable termination
- 3D grid operators
  - Highly parallelizable



[Geraerts and Overmars 2005]



# Visibility

- Two sets of edges
  - Visible roadmap node pairs
  - Goals to unblocked nodes
- Static obstacles outline
- A\* search, shortest path
  - From goal to any node





# **Velocity Obstacles**

- Well defined, widely used
- Avoidance velocity set<sup>1</sup>
- Reciprocal Velocity Obstacles<sup>2</sup>
  - Oscillation free motion
- Agents moving in 2D plane

- 1 [Fiorini and Shiller 1998]
- 2 [Van Den Berg et al. 2008]





# Multi Agent Simulation

- Simulator advances until
  - All agents reached goal
- Path realigned towards
  - Roadmap node or goal
- Agent, velocity parallel

```
do
  hash
    construct hash table
  simulate
    compute preferred velocity
    compute proximity scope
     foreach velocity sample do
      foreach neighbor do
        if OBSTACLE then VO
       elseif AGENT then RVO
    resolve new velocity
  update
    update position, velocity
    resolve at-goal
while not all-at-goal
```



### Challenges

Hiding memory latency

Divergent, irregular threads

Small agent count (≤32)

Hash construction cost



#### Workflow

- Roadmap static for
  - 100s simulation steps
- Dependent resources
  - Linear, pitched 3D
- Dozen compute kernels
- Split frame, multi GPU





#### Medial Axis Transform

- Serial running time  $O(kn^3)$
- $n^3$  GPU threads, per pass
  - -O(k) time for CDT
  - O(1) for qualifier T
  - -O(1) for resolve



Chess
Distance
Transform

Qualify

Resolve

$$\begin{aligned}
MAT(i, j, k) &= \\
\min\{\max(|i-x|, |j-y|, |k-z|)\} \\
i &\leq x \leq N, j \leq y \leq N, k \leq z \leq N
\end{aligned}$$

 $T[i, j, k] = \max\{MAT(x, y, z)\} \le MAT(i, j, k)$   $i-1 \le x \le i, j-1 \le y \le j, k-1 \le z \le k$  !(x == i & & y == j & & z == k)

[Lee and Horng 1996]



#### Distance Transform

- Squared Euclidian distance
- Serial running time  $O(n^3)$
- Parallel linear time O(n)
  - Slice, column, row passes
  - $-n^2$  GPU threads, per pass

[Felzenszwalb and Huttenlocher 1996]

| 0 | 0 | 0 | 0 | 0 | 0 | 0     |
|---|---|---|---|---|---|-------|
| 0 | 0 | 1 | 1 | 1 | 1 | 0 0   |
| 0 | 1 | 1 | 1 | 1 | 0 | 0     |
| 0 | 1 | 1 | 1 | 1 | 1 | 0     |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 0 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0     |
| 0 | 0 | 0 | 0 | 0 | 0 | 0     |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 4 | 4 | 4 | 0 | 0 |
| 0 | 4 | 9 | 1 | 9 | 1 | 0 |
| 0 | 1 | 4 | 0 | 4 | 4 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$DT_f(p) = \min((p-q)^2 + f(q))$$



#### Flood Fill

- Obstacle aware
  - 3D line drawing
- Parallel guards
- Single cell, private stack
- Scan line stack smaller
  - Runs slower!





### Data Layout

- Persistent resources
  - Reside in global memory
- Thread aligned data
  - Better coalescing
- Consistent access pattern
  - Improves bandwidth



Variable Length Vector Access



### K-Nearest Neighbor

- Naïve, exhaustive search
  - $-O(n^2)$  system running time
- Spatial hash
  - 3D point to a 1D index
- Per frame table build
  - Current agents' position



agent



sample

$$h(p) = \text{determinant}(p, p_{ref})$$



#### **Nested Parallel**

- Flat parallel limiting
- Thread grid DAG
  - Independent grids
  - Same kernel per level
- Thread amplification
  - Improved occupancy





# **Velocity Threads**

- Hundreds of threads
- Graceful grid sync
- Fine reduce-min
  - Into Shared memory
- Global atomic CAS
  - Inter thread block

```
_global__ void
candidate(CUAgent* agents,
           int index,
           CUNeighbor* neighbors)
 float3 v, float t;
 CUAgent a = agents[index];
 if(!getThreadId()) v = a.prefvelocity;
 else v = velocitySample(a);
 t = neighbor(a, agents, neighbors, v);
 float p = penalty(a, v, t);
 reduceMinAtomicCAS(a, p); sync
 if(p == a.minpenalty) a.candidate = v;
```



# Methodology

- CUDA 3.1 Beta
- GPU properties

| GPU    | SMs | Warps/SM | Clocks (MHz)  | L1/Shared (KB) |
|--------|-----|----------|---------------|----------------|
| GTX480 | 15  | 2        | 723/1446/1796 | 48/16          |
| GTX285 | 30  | 1        | 648/1476/1242 | NA             |

• Fermi scale<sup>1</sup>

| compute | 0.98 |
|---------|------|
| memory  | 1.08 |



<sup>&</sup>lt;sup>1</sup> More info in appendix

#### Views

- Three views per stage
  - vs. GTX285
  - Relative throughput
  - vs. CPU
- Running time, frame rate
- Speedup vertical bars

| Property         | GTX480 | GTX285 |
|------------------|--------|--------|
| Threads / SM     | 1024   | 512    |
| L1 Cache (KB)    | 48     | None   |
| L2 Cache (KB)    | 768    | None   |
| Parallel Kernels | 16     | 1      |



## Roadmap Construction Experiments

|   | Level    | , C <sub>free</sub> | Grid       | GPU      | Threads     | Gra   | ph    |
|---|----------|---------------------|------------|----------|-------------|-------|-------|
|   | Vertices | Faces               | Resolution | Distance | Medial Axis | Nodes | Edges |
| _ | 82800    | 34750               | 33         | 1089     | 35937       | 114   | 109   |
|   | 161463   | 64451               | 40         | 1600     | 64000       | 287   | 286   |
|   | 347223   | 170173              | 55         | 3025     | 166375      | 782   | 764   |











### Roadmap Construction - vs. GTX285





# Roadmap Construction - Throughput





# Path Searching Experiments

| Graph | Nodes | Edges | Agents     | CTAs  |
|-------|-------|-------|------------|-------|
| Large | 5706  | 39156 | 1024—65536 | 4—256 |
|       |       |       |            |       |

**Agents of random start and goal pair configurations** 



# Path Searching - vs. GTX285





# Path Searching - Throughput



# Multi Agent Simulation Experiments

| Timestep | Proximity |          | Velocity | Frames |
|----------|-----------|----------|----------|--------|
|          | Neighbors | Distance | Samples  |        |
| 0.1      | 10        | 15       | 250      | 1200   |

| Dataset    | Segments | Nodes | Agents    | CTAs  |
|------------|----------|-------|-----------|-------|
| Evacuation | 211      | 429   | 500-20000 | 4—157 |



## Multi Agent Simulation – vs. GTX285



# Multi Agent Simulation - Throughput





### Multi Agent Simulation - Distribution



#### Limitations

- Flood fill large stack
- A\* I/O limited
- One thread, hash build
- Hash under sampling
- Thread load imbalance
  - Non, at-goal agent mix



### Fermi Performance

| Metric                     | Roadmap<br>Construction | Path<br>Searching | Multi Agent<br>Simulation |
|----------------------------|-------------------------|-------------------|---------------------------|
| Speedup vs. GTX285 (up to) | 2.07X                   | 1.52X             | 1.59X                     |
| Arch Gain vs. GTX285 (%)   | 91                      | 40                | 47                        |
| Hash vs. Naïve (up to)     | NA                      | NA                | 4X                        |
| Nested vs. Flat (up to)    | NA                      | NA                | 6.2X                      |

**Nested parallel limited to agent count <32** 



#### **Future Work**

- 3D collision avoidance
- Shorter path extractions
- Complex behavior, flocking
- Parallel hash build
- Zero-Copy A\*



### Summary

- Multi agent solution
  - Compact, scalable
  - Fermi speedup
- Nested parallel potential
- Broad application set







#### Info

- SDK: foundation libraries, sample applications
  - Technology Preview
- Papers:
  - Scalable Multi Agent Simulation on the GPU, RA09
  - GPU Accelerated Pathfinding, GH08
- Video:
  - Simulation Clips



### Appendix

• Compute scale

$$(\frac{SMClk_{GTX480}}{SMClk_{GTX285}})^*(\frac{(Warps/SM)_{GTX480}^*SMs_{GTX480}}{(Warps/SM)_{GTX285}}^*SMs_{GTX285})$$

Memory scale

$$(\frac{MemClk_{GTX\,480}}{MemClk_{GTX\,285}})^*(\frac{MemBusWidth_{GTX\,480}}{memBusWidth_{GTX\,285}})$$

- GTX480 L1/Shared (KB) config
  - Up to 1.35X faster in 48/16 vs. 16/48



### Backup



#### **CPU**

Properties

| CPU          | Cores | Clocks (MHz)  | L1/L2 (KB) |
|--------------|-------|---------------|------------|
| Intel i7-940 | 8     | 2942/(3*1066) | 32/8192    |
| Intel X7350  | 4     | 2930/1066     | 32/8192    |

- C++ code
  - Not highly optimized
- Multi threading
  - OpenMP, Windows threads



## Roadmap Construction - vs. CPU



# Path Searching- vs. CPU



average query time = total running time / agent #



### Multi Agent Simulation – vs. CPU



