

0.1 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Exercice 1 - Mouvement T - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$. On note m_1 la masse du solide et $I_B(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{pmatrix}$.

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir ??.

Exercice 2 - Mouvement R *

C2-08

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm. On note m_1 la masse du solide 1, B son centre d'inertie et $I_G(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}$.

Méthode 1 – Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en *B*.

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 5 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir ??.

Exercice 3 - Mouvement TT - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer les torseurs cinétiques $\{\mathscr{C}(1/0)\}\$ et $\{\mathscr{C}(2/0)\}\$.

Question 2 Exprimer les torseurs dynamiques $\{\mathcal{D}(1/0)\}\$ et $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 En déduire $\{\mathcal{D}(1+2/0)\}\$ en B.

Corrigé voir ??.

Exercice 4 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \,\text{mm}$. De plus :

• G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2} \overrightarrow{Ri_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C \end{pmatrix}$;

• G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}\overrightarrow{Li_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 *Exprimer le torseur dynamique* $\{\mathcal{D}(1/0)\}$ *en A.*

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$ en B.

Question 3 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Exercice 5 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Exercice 6 - Mouvement RT *

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Indications:
1.
$$\{\mathscr{D}(2/0)\} = \left\{ \begin{array}{l} \ddot{\lambda}(t)\overrightarrow{i_0} + R\left(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}\right) \\ C_1\ddot{\theta}\overrightarrow{k_1} + R\left(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0} + R\ddot{\theta}\overrightarrow{k_2}\right) \end{array} \right\}_B$$

2. $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0} = m_1\ddot{\lambda}(t) + m_2\left(\ddot{\lambda}(t) - R\left(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta\right)\right)$.

Corrigé voir ??.

Exercice 7 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

B- Modéliser

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Exercice 8 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overline{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$; • $G_2 = C$ désigne le centre d'inertie de 2, on note m_2
- $G_2=C$ désigne le centre d'inertie de **2**, on no la masse de **2** et $I_{G_2}(2)=\begin{pmatrix}A_2&0&0\\0&B_2&0\\0&0&C_2\end{pmatrix}_{G_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)}$.

Corrigé voir ??.

Exercice 9 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overline{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Déterminer $R_d(2/0)$.

Question 2 Déterminer $\overrightarrow{\delta}(I, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Exercice 10 - Banc Balafre *

C2-08 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \,\text{mm}$;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;
- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{ \text{Joint(rotor)} + \text{Butée double} \}$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390\,\text{mm}$. On notera $I_{G_{JR}}(JR) = 100\,\text{kg}$

$$\begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}$$
 la matrice d'inertie de
'ensemble JR au point G_{JR} exprimée dans une base

l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = \left(\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0}\right)$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \text{mm}$ et $R_{CB} = 150 \, \text{mm}$.

Pour simplifier l'étude, on s'intéresse au mouvement généré uniquement dans le plan $(y_0, \overline{z_0})$, lorsque les actionneurs 4 et 8 sont commandés en phase, et en opposition de phase avec les actionneurs 2 et 6. Pendant ce mouvement, les actionneurs 1, 3, 5 et 7 sont laissés libres. On

considérera donc qu'ils n'ont aucune action sur le coeur de butée.

Question 1 Décrire la nature du mouvement obtenu pour le coeur de butée CB par rapport au bâti 0 dans ces conditions.

Les actionneurs sont utilisés uniquement pendant les phases de mesure. L'ensemble JR a donc un mouvement de rotation uniforme par rapport au coeur de butée. On donne les torseurs cinématiques (exprimés dans le repère lié au bâti $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$) : $\{\mathscr{V}(JR/CB)\}$ =

$$\left\{ \begin{array}{l} \overline{\Omega(JR/CB)} = \Omega \overline{z_0} \\ \overrightarrow{0} \end{array} \right\}_{G_{JR}} \text{ avec } \Omega \text{ constante. } \{ \mathcal{V}(CB/0) \} = \\ \left\{ \begin{array}{l} \overrightarrow{0} \\ \nu(t) \overrightarrow{y_0} \end{array} \right\}_{G_{CB}}.$$

La fonction v(t) représente la vitesse de translation du coeur de butée par rapport au bâti. On peut donc relier

v(t) aux déplacements $y(t)=y_4(t)=y_8(t)$ provoqués en A_4 et A_8 par les actionneurs 4 et 8. On isole l'ensemble $S=\{JR+CB\}$ afin de quantifier les efforts dans les actionneurs.

Question 2 Exprimer v(t) en fonction de y(t).

Question 3 Déterminer l'expression en G_{CB} du torseur dynamique de CB par rapport au bâti 0 (fixé au sol et donc considéré comme un référentiel galiléen).

Question 4 Déterminer l'expression en G_{JR} du torseur dynamique de JR par rapport au bâti 0 (fixé au sol et donc considéré comme un référentiel galiléen).

Question 5 Exprimer alors en G le torseur dynamique de l'ensemble S par rapport à 0 en fonction de $\dot{v}(t)$, M_{CB} et M_{IR} .

Corrigé voir ??.