

#### **Team Introduction**



Leader

Shuyi Zhou Senior ECE



**Member** 

Chenyun Tao Senior ECE



**Member** 

Liying Han
Senior
ECE



**Member** 

Yaxin Chen Senior ECE



**Member** 

Jinglei Xie Senior ECE



- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions



- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

## Maintenance & Audit in Data Center (DC)

**Maintenance & Audit** are extremely important

#### Ensure the normal work of

- Servers
- **Devices**
- Power & cooling system



google.com

#### Problems & Needs

Problems with current systems to aid DC maintenance and audit work:

- Do not have software systems to integrate all necessary information
  - Assets
  - Power
  - Environment
- Lack easy, vivid, and user-friendly information access



www.cisco.com



#### Problems & Needs

Do not have software systems to integrate all necessary information



An integrated system that involves all the information together

> Lack easy, vivid, and user-friendly information ccess



A more user-friendly tool to aid on-site maintenance and audit work



## **Project Goal**

github.com/vmware/flowgate



> Back-end: Flowgate

youtube.com/watch?v=1Pe028PjQhs



> Front-end: Augmented Reality (AR)

An AR app for aiding on-site DC maintenance & audit





- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

## **Concept Diagram**



# **Customer Requirements (CR)**

**Short Reaction Time** 

**Portability** 

**Information Correctness** 

**Comfortable Display** 

# **Customer Requirements (CR) & Engineering Specifications (ES)**

# **CR:** Information Correctness **ES**:

- Barcode localization correctness: >
   90% [1]
- Data retrieval accuracy: > 99% [2]

# **CR:** Comfortable Display **ES:**

- Frame rate: > 15 frames/s [3]
- Sensible temperature of device: <</li>
   40 °C [4]

<sup>[4]</sup> https://support.apple.com/en-us/HT201678 & https://support.google.com/pixelphone/answer/9134668?hl=en





<sup>[1]</sup> O. Oktay et al., "Stratified Decision Forests for Accurate Anatomical Landmark Localization in Cardiac Images," in IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 332-342, Jan. 2017, doi: 10.1109/TMI.2016.2597270.

<sup>[2]</sup> https://www.labce.com/spg650115\_barcode\_reading\_and\_accuracy.aspx

<sup>[3]</sup> A. Craig. Augmented Reality Hardware, pp. 69-124. 2013.

# **Customer Requirements (CR) & Engineering Specifications (ES)**

#### **CR:** Short Reaction Time

#### ES:

- Barcode localization & identification:
   < 0.55s [1]</li>
- Database query complexity: O(log(n))
- AR image generation: < 0.1s [2]

#### **CR: Portable Device**

#### ES:

- Platform: Android 7.0+ / iOS 11.0+ [3]
- Light: >= 40lx [4]
- Software package size: < 110MB for Android / < 940MB for iOS [5]</li>

- [1] E. Ohbuchi, H. Hanaizumi and L. A. Hock, "Barcode readers using the camera device in mobile phones," 2004 International Conference on Cyberworlds, Tokyo, Japan, 2004, pp. 260-265, doi: 10.1109/CW.2004.23.
- [2] A. Baek, K. Lee, and H. Choi, "CPU and GPU parallel processing for mobile Augmented Reality." 2013.
- [3] https://developers.google.com/ar/discover/supported-devices & https://developer.apple.com/documentation/arkit
- [4] L. Blom, "Impact of light on augmented reality." Diva Portal. 2018.
- [5] https://play.google.com/store/apps & https://www.apple.com/app-store







- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

#### **Barcode Localization & Identification**

- Barcode Localization & Identification
- Generated from ES & difficulty in implementation
- > How to choose software development kit?







- Open source
- Slow identification
- Low accuracy



- Open source (Google)
- Moderate speed
- Moderate accuracy



- > Scandit
- Close source
- Fast identification
- High accuracy

[1] http://www.discoversdk.com/compare/scandit-\_-barcode-scanner-sdk-vs-zxing





# **Concept Selection**

| Design<br>criterion      | Weight<br>factor | Unit | ZXing |       |        | ML Kit |       |        | Scandit |       |        |
|--------------------------|------------------|------|-------|-------|--------|--------|-------|--------|---------|-------|--------|
|                          |                  |      | Value | Score | Rating | Value  | Score | Rating | Value   | Score | Rating |
| Reaction time            | 0.17             | Exp  | Long  | 5     | 0.85   | Fair   | 6     | 1.02   | Short   | 8     | 1.36   |
| Information correctness  | 0.5              | Exp  | Low   | 5     | 2.5    | Fair   | 6     | 3      | High    | 7     | 3.5    |
| Implement.<br>difficulty | 0.17             | Exp  | High  | 4     | 0.68   | Low    | 8     | 1.36   | Low     | 8     | 1.36   |
| Cost                     | 0.17             | \$   | 0     | 10    | 1.7    | 0      | 10    | 1.7    | >100    | 2     | 0.34   |
|                          |                  |      |       |       | 5.73   |        |       | 7.08   |         |       | 6.56   |



#### **User Interface**

- User Interface
- Generated from CR & survey about existing similar softwares
- > How to display information?
  - Display in AR (3-D coordinate)





Display on screen (2-D coordinate)







# **Concept Selection**

| Design         | Weight<br>factor | Unit | 3     | -D displ | ay     | 2-D display |       |        |  |
|----------------|------------------|------|-------|----------|--------|-------------|-------|--------|--|
| criterion      |                  |      | Value | Score    | Rating | Value       | Score | Rating |  |
| Read data      | 0.17             | Ехр  | Fair  | 6        | 1.02   | Clear       | 10    | 1.7    |  |
| Select data    | 0.5              | Ехр  | Easy  | 10       | 5      | Difficult   | 7     | 3.5    |  |
| Go to data     | 0.16             | Exp  | Fair  | 8        | 1.28   | Easy        | 10    | 1.6    |  |
| Implementation | 0.17             | Ехр  | Easy  | 8        | 1.36   | Difficult   | 6     | 1.02   |  |
|                |                  |      |       |          | 8.66   |             |       | 7.82   |  |





- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

## **Final Design Components**

























## **User Interface Design**

- 1) Display status of App
- 2) Reset
- 3) Pause
- 4) Show device info



- 5) Show rack info
- 6) Show temperature plot
- 7) Outline the rack with red
- 8) Show row number



### Final Design v.s. Engineering Specifications

ES satisfied by concept selection:

ES satisfied in theory, but need further tests:

- Platform: Android 7.0+ / iOS 11.0+
- Frame rate: > 15 frames/s
- Database query complexity: O(log(n))
- Software package size: < 110MB for Android / < 940MB for iOS

- Sensible temperature of device: < 40 °C
- Barcode localization & identification: < 0.55s
- AR image generation: < 0.1s
- Barcode localization correctness: > 90%
- Data retrieval accuracy: > 99%





- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

# Step 1 Configure back-end server

- Install flowgate server
- Create informations sets for data center assets





# Step 2 Realize subfunctions of front-end App

- Data retrieval (using API)
- Bar code scanning
- AR

#### display

Token: eyJ0eXAiOiJKV1QiLCJhbGciOiJUzl 1NiJ9.eyJzdWiiOiJBUEkii.CJpc3MiOiJGbG9 3Z2F0ZSIsImV4cCl6MTYwNTQ00TQ4MSw iaWF0IjoxNjA1NDQyMjgxLCJ1c2VySWQiOil 4NmUyMzg30GYzNzI0MDU4YWI5MmRiOW YYYmFiMjMyYyJ9.4bBPUVl6gAZRh8hnRllQ JKgnUTivJt\_WJcl2haxElto





Step 3 Integrate AR with bar code scanning

 Scan the bar code and place the readings onto a 3D window



Step 4
Integrate AR, bar code
scanning and data retrieval

 Scan the bar code, retrive corresponding data from the backend server, and display the information onto a 3D window



Step 5 **Recognize racks / cabinets** in AR

Recognize a rack / cabinet, mark it with a blue rectangle and display its corresponding information in the AR interface



#### Step 6 Improve UX

- Pause button
- Status window
- Show temperature plot









- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

## **Design of Experiments**

- > Repeated trials to calculate success rate
  - Object localization correctness
  - Data retrieval accuracy
- > Repeated trials to calculate average time
  - Object localization time
  - Barcode identification time
  - Database query time
  - AR image generation time
- > Sampling to find the mean value
  - Frame rate
  - Device temperature in operation
- Direct reading
  - Size of software package





## **Test Results**

|                                 | Test results | Expected results |
|---------------------------------|--------------|------------------|
| Barcode identification time     | ≈ 0.85s      | < 0.5s           |
| Object localization time        | ≈ 0.23s      | < 0.5s           |
| Object localization correctness | ≈ 98%        | > 90%            |
| AR image generation             | < 0.1s       | < 0.1s           |
| Data retrieval accuracy         | 100%         | > 99%            |
| Database query time             | ≈ 0.89s      | < 1s             |
| Frame rate                      | ≈ 60 fps     | > 15 fps         |
| Device temperature              | ≈ 39.5 °C    | < 40 °C          |
| Size of software package        | ≈ 16 MB      | < 110 MB         |





## Strengths & Weaknesses

#### **Strengths**

- ✓ Meet CR & most of ES
- ✓ Provide vivid information access with AR
  - Mark the structure of racks
  - "Freeze" function

#### Weaknesses

- X Unsatifsy 1 ES: barcode identification time
- X Unable to strictly align the information with the plane of the device
- X Fail to identify various racks



#### **Future Development**

#### > Fix the weaknesses

- Accelerate barcode identification Image recognition algorithms
- Identify various racks Machine learning

#### > Add more features

- Support a power saving mode
- Integrate QR code identification





- Introduction
- Customer Requirements & Engineering Specifications
- Concept Generation & Selection
- Final Design Description
- Prototype Description
- Test Results & Discussion
- Conclusions

#### Conclusions

#### > Objective

To develop an app that can display information in AR to aid data center maintenance

#### Design solution & outcomes

- Barcode identification → data retrieval → AR image
- Short reaction time, information correctness, comfortable display, and portable device.

#### > Achievements & lessons

- AR-based apps on both Android and iOS platforms
- Cooperation in software development



## Acknowledgements

#### **m**ware

- > Sponsor
  - Gavin Lu, VMware
- > Mentor
  - **Yixing Jia, VMware**



- > Instructor
  - Mingjian Li
- > IT support
  - Bin Zhu, Yunlong Cai



