

PROGRAMMING FOR SIGNAL AND INFORMATION PROCESSING APPLICATIONS

University of Washington EE 241

WELCOME FROM EE241 INSTRUCTION TEAM

Instructor:
Dinuka Sahabandu
ECE Professor

Research Interests

Machine Learning
Reinforcement Learning
sdinuka@ece.uw.edu

TA:
Jimin Kim
ECE PhD Graduate

Research Interests
Neuroscience and AI
UW NeuroAI Lab
jk55@uw.edu

TA:
Jinlin Xiang
ECE PhD Grduate

Research Interests
Few shots learning
UW NeuroAl Lab
jinlinx@uw.edu

TA:
Jingyuan Li
ECE PhD Graduate

Research Interests

Deep learning on timeseries UW NeuroAl Lab jingyli@uw.edu

WHAT IS THIS COURSE ABOUT?

Fundamental and practical programming skills to perform signal and information processing

Learn how to write codes that are functional, efficient and well documented

Application to processing audio, image, tables and graph datasets.

Lab-based undergraduate course

Uses Python 3 as main programming language

SYLLABUS

- W1. Lab 1: Set up Python environment, Getting Started with Python
- W2-3. Lab 2: Finishing up Python basics, Numpy, Working with sound data
- **W4-5.** Lab 3: Working with image data
- **W6-8.** Lab 4: Working with real-world structured data & debugging
- W9-10. Lab 5: Working with graph data & debugging tools

COURSE INSTRUCTION

Pre-lab Activities:

Lecture video (Watch before lab session)

Lecture Canvas quiz (Submitted before lab session, starts from W2)

In-Lab Activities:

Individual Knowledge Demonstration of Code (In-Lab check up - Individual)

Group programming (Lab reports - Group)

More detailed info on Canvas Page

LAB MATERIAL

Each Lab Report consists of (Canvas)

- 1) Lecture video (Canvas Panopto)
- 2) lecture slides (.pdf), (Canvas Assignment page)
- 3) In-lecture examples (.ipynb), (Canvas Assignment page)
- 4) Group lab report templates (.ipynb), (Canvas Assignment page)

Additional Resources

Python programming and Numerical Methods: Guide for Engineers and beginners (Berkeley, Free Online)

LAB FORMAT

Each lab is designed with following learning loop:

1. Recorded Lecture ——— Concept Introduction

2. Canvas Quiz —— Concept Feedback

2. Lecture Examples ———— Hands-on Review

3. Group Programming ———— Real World Problem solving In-Lab

Before Lab

CANVAS PAGE

E E 241 Wi 25: Programming For Signal And Information Processing Applications

5

A

Welcome to EE241!

This course aims to provide fundamental programming skills in the context of signal and information processing applications. The course will use **Python 3** as its main programming language and will particularly focus on learning how to write Python codes for real-world applications that are **Functional**, **Efficient**, and **Documented**.

Home & Syllabus tabs for Detailed Course Info

Announcements tab for important course announcements

Discussions tab for team – team team – instructor discussions

Panopto tab for Lecture recordings

CANVAS ASSIGNMENT PAGE

Lab 1 Report At

Start Assignment

Due Jan 19 by 12:30pm **Points** 20 **Submitting** a file upload **File Types** ipynb

<u>Lab report guidelines</u> ↓ <-- IMPORTANT! READ THIS BEFORE STARTING!

Lecture slides in PDF ↓

<u>Lab 1 Lecture Examples</u> ↓

ipynb file containing all the examples discussed in the lecture video. Use this to play with the examples yourself.

Lab 1 Report Template ↓

Zip file containing lab report template ipynb + exercise image files (You need image files to load problems in ipynb). Unzip the file using windows or 7-zip.

Welcome slides

Only one submission per group, in the .ipynb format.

Related sections in <u>Berkeley online textbook</u> : :

Chapter 1: 1.1 - 1.6

Chapter 2: 2.1 - 2.3

GRADING

(i): Lab Reports (50%) – Group Evaluated on code completeness, output and quality of documentation See Lab_report_guidelines.pdf (Canvas assignments) for detailed requirements Goal: Real-world problem solving + team programming skill

(ii): In-Lab Check ups (40%) — Individual Evaluated on completeness + clarity of demonstrations
You are expected to attend each lab session unless you have completed the lab report Goal: Individual code contribution + code organization skill + team communication

(iii): Quizzes (10%) – Individual Evaluated with Canvas quiz. Each question reviews core concept from lecture Goal: Knowledge feedback and aid toward the lab report

SCHEDULE

Section A:

T 10:30 – 12:20 PM (SIG 232)

Section B:

T 2:30 – 4:20 PM (SIG 232)

Section C:

W 8:30 – 10:20 AM (SIG 232)

Section D:

Th 10:30 – 12:20 PM (SIG 232)

Section E:

F 12:30 – 2:20 PM (SIG 232)

Office Hours

TBD

ECE 241 vs ECE 242

	ECE 241	ECE 242
Credits	2cr	5cr
Aim	Signal processing applications using Python	Continuous and discrete time signals and systems
Scope	Basic Python and packages for signal processing Sound, image, table and graph data	Sound, image, Fourier series and transform, linear filters
Assignments	Theoretical Practical	Theoretical Practical

Additional Remarks

- External resources such as Googling, GPT4, Copilot are allowed:
 With one caveat: You can fully explain the code during check-up.
- Use in-person interactions with instructors during lab hours to get most out of this course
- Make sure to write your group members on top of the lab report Notebook
- Deadlines & course timeline can be found on the syllabus page
- Don't forget to get your laptop to class!

Remaining Lab

- Form Lab Groups
 - Each group consists of **2 people**
 - Sign up your group in canvas **People/241 lab groups**
 - Each group will be named "Section#_Firstname1_Firstname2"

- Work on Lab 1: Introduction
 - Set up Python environment (Anaconda, Miniconda, etc)
 - Work with your partner to complete on Lab 1 assignment