1. Denumiți tipurile de diode pe care le cunoașteți.

- Diodă redresoare (rectifier)
- Diodă Zener (stabilizare tensiune)
- Diodă luminiscentă (LED)
- Diodă tunel (efect de tunelare)
- Diodă Schottky (contact metal–semiconductor)
- Diodă fotovoltaică / fotodiodă
- Diodă varicap (cu capacitate variabilă)
- Diodă PIN (pentru microunde)

2. Cum arată caracteristica ideală și cea reală a diodei redresoare?

- Ideală: conduce perfect în polarizare directă (U > 0) şi blochează complet în polarizare inversă (I = 0).
- Reală: are o tensiune de prag (≈ 0,3 V pentru Ge, ≈ 0,7 V pentru Si) și un mic curent invers de saturație.

3. Cum este rezistența diferențială inversă a diodei redresoare și cea a diodei Zener?

- Diodă redresoare: foarte mare (megaohmi), curent invers ≈ zero.
- Diodă Zener: mică în zona de stabilizare (după străpungere), pentru a menţine tensiunea aproape constantă.

4. Desenați caracteristica volt-amperică a diodei redresoare și scrieți ecuația matematică.

Ecuația Shockley:

$$I=I_{s}\left(e^{rac{U}{nU_{T}}}-1
ight)$$

unde I_s = curent de saturație inversă, $U_T pprox 26 mV$ la 300K, n pprox 1–2.

Graficul: creștere exponențială în polarizare directă, aproape constant mic în polarizare inversă (până la străpungere).

5. Enumerați tipurile de străpungeri ale juncțiunii.

- Străpungere electrică (over-voltage)
- Străpungere Zener (efect cuantic, la U < 6 V)
- Străpungere prin avalanșă (U mai mari, > 6 V)

6. Care este materialul semiconductor mai frecvent folosit la fabricarea diodelor Zener?

Cel mai frecvent: siliciu (Si), datorită stabilității și fiabilității.

7. Cum se determină rezistența diferențială a diodei din caracteristica statică?

Din caracteristica statică:

$$r_d = rac{\Delta U}{\Delta I}$$

adică panta locală a curbei I(U).

8. Care sunt parametrii de bază ai diodelor studiate?

- Tensiunea de prag U_d
- Curent direct maxim I_{Fmax}
- Curent invers de saturație I_s
- Tensiunea de străpungere U_{BR}
- Puterea disipată P_{max}
- Capacitatea de joncțiune C_j

9. De ce curentul invers al diodei luminiscente este extrem de mic?

Pentru că LED-urile sunt optimizate structural pentru emisie de lumină, nu pentru conducție inversă \rightarrow zona de deplexare este foarte groasă și rezistența inversă foarte mare.

10. De ce dioda luminiscentă nu se încălzește când luminează?

O parte din energia electrică se transformă direct în energie luminoasă (fotoni), nu doar în căldură. Randamentul este mult mai bun decât la o rezistență simplă.

11. De ce este limitat curentul invers maximal de stabilizare la dioda Zener?

Pentru a evita supraîncălzirea și distrugerea prin disiparea excesivă a puterii. Curentul invers se limitează cu o rezistență serie.

12. Cum se poate programa tensiunea de stabilizare Uz a diodei Zener în procesul de producere? 13. Cu ce se determină diferența de potențial la contactele joncțiunii p-n?

Se realizează prin alegerea concentrației de impurități la dopajul semiconductorului:

- dopaj mai mare → Uz mic (străpungere Zener),
- dopaj mai mic → Uz mare (străpungere prin avalanșă).

14. Explicați apariția curentului prin joncțiunea p-n când conectați dioda la polarizare direcă.

Se datorează difuziei purtătorilor și formării zonei de sarcină spațială \rightarrow apare o barieră de potențial internă ($\approx 0.3 \text{ V Ge}, \approx 0.7 \text{ V Si}$).

15. Explicați apariția curentului prin joncțiunea p-n când conectați dioda la polarizare inversă.

Bariera de potențial se mărește, purtătorii majoritari nu pot trece → rămâne doar curent mic de saturație inversă (datorat purtătorilor minoritari). La tensiuni mari apare străpungerea (Zener sau avalanșă).