# **Loss Function**

### Kietikul Jearanaitanakij

Department of Computer Engineering, KMITL

(Slides are adapted from cs231n @Stanford University)

# **Linear Classification (Revisited)**

Suppose we want to use the linear classifier to classify images in CIFAR10.

### CIFAR10

airplane automobile bird cat deer dog frog horse ship truck

The CIFAR-10 is the labeled subsets of the 80 million tiny images dataset. (collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton)

**50,000** training images each image is **32x32x3** 

10,000 test images.

10 classes.

# Parametric Approach: Linear Classifier



or weights

# Parametric Approach: Linear Classifier



or weights

# Parametric Approach: Linear Classifier



f(x,W) is called a score function.

### Simplified scenario: 4 input features, 3 output classes.



### Interpreting a Linear Classifier



$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:



### Interpreting a Linear Classifier



$$f(x,W) = Wx + b$$



Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Cat image by Nikita is licensed under CC-BY 2.0

### Score function : f(x,W) = Wx + b







| airplane   | -3.45 | -0.51 | 3.42  |
|------------|-------|-------|-------|
| automobile | -8.87 | 6.04  | 4.64  |
| bird       | 0.09  | 5.31  | 2.65  |
| cat        | 2.9   | -4.22 | 5.1   |
| deer       | 4.48  | -4.19 | 2.64  |
| dog        | 8.02  | 3.58  | 5.55  |
| frog       | 3.78  | 4.49  | -4.34 |
| horse      | 1.06  | -4.37 | -1.5  |
| ship       | -0.36 | -2.09 | -4.79 |
| truck      | -0.72 | -2.93 | 6 14  |

Score function does not tell how good our classifier is. We need a **loss function**.

# **Loss function**

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Target class (0-9)

Where  $x_i$  is image and  $y_i$  is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

# **SVM Loss**

Review: SVM (Support Vector Machine)



# **SVM Loss**

Review: SVM (Support Vector Machine)

Penalty = 0

Penalty > 0



Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







cat

car

frog

#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the image and where  $y_i$  is the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

Score of other class

the SVM loss has the form:

Score of the target class 
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
 
$$= \sum_{i \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







2.2

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.1

#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the image and where  $y_i$  is the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ 

 $+\max(0, -1.7 - 3.2 + 1)$ 

 $= \max(0, 2.9) + \max(0, -3.9)$ 

= 2.9 + 0

= 2.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







cat **3.2** 

car

5.1

frog -1.7

Losses: 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the image and where  $y_i$  is the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$ 

 $+\max(0, 2.0 - 4.9 + 1)$ 

 $= \max(0, -2.6) + \max(0, -1.9)$ 

= 0 + 0

= 0

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







3.2 cat

frog

Losses:

5.1 car

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

12.9

#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$ where  $x_i$  is the image and where  $y_i$  is the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$  $+\max(0, 2.5 - (-3.1) + 1)$ 

 $= \max(0, 6.3) + \max(0, 6.6)$ 

= 6.3 + 6.6

= 12.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







cat **3.2** 

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the image and where  $y_i$  is the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$
  
= **5.27**

# Multiclass SVM Loss: Example code

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x,W) = Wx$$
  $L = rac{1}{N} \sum_{i=1}^N \sum_{j 
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$ 

# E.g. Suppose that we found a W such that L = 0. Is this W unique?

# Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:







| Cal | 3.2 |   |  |
|-----|-----|---|--|
|     | _   | ٠ |  |

1.3

2.2

5.1

4.9

2.5

frog -1.7

2.0

-3.1

Losses:

car

2.9

0

# $L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$

#### Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

#### With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1) = \max(0, -6.2) + \max(0, -4.8) = 0 + 0 = 0$$

Smaller values of W are preferred.

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

**Data loss**: Model predictions should match training data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

**Data loss**: Model predictions should match training data



**Regularization**: Model should be "simple", so it works on test data

#### Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Model from complex weights (tends to overfitting)

# Regularization

$$\lambda_{.}$$
= regularization strength (hyperparameter)

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

### In common use:

**L2 regularization** 
$$R(W) = \sum_k \sum_l W_{k,l}^2$$
 L1 regularization  $R(W) = \sum_k \sum_l |W_{k,l}|$ 

Elastic net (L1 + L2) 
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

- Score function assigns the real values onto all possible classes.
- The class which has the highest score represents the class of the given image.
- However, score of each class cannot directly compare to other classes since there is no proportion of the scores among all classes.
- We can handle this problem with Softmax function.



Score function

$$s=f(x_i;W)$$

cat **3.2** 

car 5.1

frog -1.7



$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s=f(x_i;W)$$

cat

(3.2)  $s_k$ 

Softmax function

car

5.1

frog

-1.7



$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $egin{aligned} oldsymbol{s}=oldsymbol{f}ig(x_i;Wig) \end{aligned}$ 

$$s=f(x_i;W)$$

cat

5.1

3.2

-1.7

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$|L_i| = -\log P(Y=y_i|X=x_i)$$

in summary: 
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Target class

Log likelihood



car

frog



 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$ 

cat

car

frog

3.2

5.1

-1.7

Score (S)



$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$





$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$





$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



31

### **Example:** Hinge loss (SVM) VS Cross-entropy loss



# Recap

### How do we find the best W?

- We have some dataset of (x,y)
- We have a score function:  $s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$  Full loss



# **Optimization**



# **Optimization strategies**

What do we need to optimize?

$$=> f(x; \mathbf{W}) = \mathbf{W}x$$



In order to minimize f, we need to optimize weights.

# **Strategies**

- 1. Random search => Simple but low accuracy
- 2. Follow the slope

Partial 
$$\frac{\partial f(w)}{\partial w} = \lim_{h \to 0} \frac{f(w+h) - f(w)}{h}$$
 Gradient

We need to find the partial derivatives of all w<sub>i</sub>.

# current W: [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

```
[?,
?,
?,
?,
?,
?,...]
```

# current W: [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,

0.33,...]

loss 1.25347

```
W + h (first dim): [0.34 + 0.0001, -1.11,
```

# -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

```
[?,
?,
?,
?,
?,
?,...]
```

#### current W:

```
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
```

# W + h (first dim):

```
[0.34 + 0.0001]
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322
```

```
[-2.5,
?,
?,
(1.25322 - 1.25347)/0.0001
= -2.5
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}?,
?,...]
```

### current W:

```
[0.34]
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...
loss 1.25347
```

### W + h (second dim):

```
[0.34]
-1.11 + 0.0001
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...
loss 1.25353
```

[-2.5,  
0.6,  
?,  
?,  
(1.25353 - 1.25347)/0.0001  
= 0.6  

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,...]

# current W:

```
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...
loss 1.25347
```

### W + h (third dim):

```
[0.34]
-1.11,
0.78 + 0.0001
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
```

[-2.5,  
0.6,  
0,  
?,  
(1.25347 - 1.25347)/0.0001  
= 0  

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,...]

# This is silly. The loss is just a function of W:

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+\sum_k W_k^2$$

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want  $\nabla_W L$ 

We can use calculus to compute the gradient (analytic approach).





This image is in the public domain

This image is in the public domain

Who? <u>Isaac Newton</u> Gottfried Leibniz.

$$\frac{\partial f(w)}{\partial w_i} = \lim_{h \to 0} \frac{f(w_i + h) - f(wi)}{h}$$

Gradient is actually the slope of the function corresponding to the small change (+h) of w<sub>i</sub>.







Positive slope, e.g. +1.2, +0.5



### Negative slope means:

When we increase  $w_i$  by +h, we get smaller value of f(w). This is good, so we follow the gradient.

$$w_i = w_i + stepsize. \left| \frac{\partial f(w)}{w_i} \right|$$



### Positive slope means:

When we increase  $w_i$  by +h, we get larger value of f(w). This is bad, so we follow the negative gradient.

$$w_i = w_i + stepsize.\left(-\left|\frac{\partial f(w)}{w_i}\right|\right)$$

### Next class

 Backpropagation algorithm (Revisited) on the loss function.