EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING Prediction

Date	02 November 2022
Team ID	PNT2022TMID26945
Project Name	Emerging Methods for Early Detection of Forest Fires.

##Importing The ImageDataGenerator Library

import keras

 $from\ keras.preprocessing.image\ import\ ImageDataGenerator$

###Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoo m_range=0.2,horizontal_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

###Applying ImageDataGenerator Functionality to trainset

 $x_train=train_datagen.flow_from_directory(r'C:\archive\Dataset\Dataset\train_set', target_size=(128,128), batch_size=32, class_mode='binary')$

###Applying ImageDataGenerator Functionality to testset

x_test=test_datagen.flow_from_directory(r'C:\archive\Dataset\Dataset\test_set',tar get_size=(128,128),batch_size=32,class_mode='binary')

##Import model building libraries

#To Define linear initialization import Sequential

from keras.models import Sequential

#To add layers import Dense

from keras.layers import Dense

#To create Convolution kernel import Convolution 2D

from keras.layers import Convolution2D

#import maxpooling layers

from keras.layers import MaxPooling2D

#import flatten Layer

from keras.layers import Flatten

import warnings

warnings.filterwarnings('ignore')

#Initializing the Model

model=Sequential()

##adding CNN layers

model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))

##adding maxpooling layer

model.add(MaxPooling2D(pool_size=(2,2)))

##adding flatten Layer

model.add(Flatten())

##add hidden layer

model.add(Dense(150,activation='relu'))

##add output layer

model.add(Dense(1,activation='sigmoid'))

#Configure the Learning Process

model.compile(loss="binary_crossentropy",optimizer="adam",metrics=['accuracy'])

Training the model

model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_data=x_test,validation_steps=4)

```
Epoch 1/10
   Epoch 3/10
       14/14 [====
   14/14 [==============] - 39s 3s/step - loss: 0.1679 - accuracy: 0.9381 - val_loss: 0.0966 - val_accuracy: 0.975
   Epoch 6/10
       14/14 [====
       14/14 [====
   14/14 [==============] - 28s 2s/step - loss: 0.1717 - accuracy: 0.9197 - val loss: 0.0901 - val accuracy: 0.975
   Epoch 9/10
        14/14 [=======] - 33s 2s/step - loss: 0.1456 - accuracy: 0.9450 - val_loss: 0.0718 - val_accuracy: 0.975
Out[14]: <keras.callbacks.History at 0x1ab5f462548>
```

#save the model

model.save("forest1.h5")

#prediction

from keras.model import load_model from tensorflow.keras.preprocessing import image import numpy as np import cv2

##loading the model

PREDICTION

pred=model.predict(x)
pred

```
In [2]: from keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import cv2

In [5]: model=load_model("forest1.h5")
img=image.load_img(r'C:\archive\Dataset\Dataset\test_set\with fire\b2683a16be44f230a90f50bb944315e994b43042e43df798bb4feaf27e0f8t
x=image.img_to_array(img)

In [7]: res=cv2.resize(x,dsize=(128,128),interpolation=cv2.INTER_CUBIC)
x=np.expand_dims(res,axis=0)

In [8]: pred=model.predict(x)

In [9]: pred
Out[9]: array([[1.]], dtype=float32)

In []:
```