iiiiiiii HEAD ==	=====	==
------------------	-------	----

Project 5 - Partial Differencial Equation

Solveig Andrea Devold Fjeld and Sarah Rastad

December 13, 2016

Abstract

1 Introduction

2 Theory

LEGG TIL TEORI PÅ 3D PDE OG BRUK LABEL eq:partDIFF3D VET IKKE HVOR JEG SKAL SETTE LIGNINGEN

$$u_{xx} \approx \frac{u(x_i + \Delta x, t_j) - 2u(x_i, t_j) + u(x_i - \Delta x, t_j)}{\Delta x^2}.$$
 (1)

2.1 Equation

In this project we are solving the partial differencial equation:

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial u(x,t)}{\partial t}, t > 0, x \in [0,1]$$
 (2)

which can also be written

$$u_{xx} = u_t \tag{3}$$

This partial differencial equation can be seen as the temperature gradient in a rod of lenght L. This equation can be seen as being dimensionless since there are no constant multiplied to the equation and x goes from zero to one.

To solve this equation we are looking for a solution by seperating the variables:

$$u(x,t) = X(x)T(t) \tag{4}$$

If we take the partiall derivatives of this expression we get:

$$u_{xx} = X''(x)T(t), and u_t = X(x)T'(t)$$
(5)

So if we set put this in the equation (3) we get:

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = constant = -\lambda \tag{6}$$

We see that this must be equal to a constant and we see that this is an eigenvalue problem. We put a minus sign infront of the eigenvalue because of convention.

This gives uss the equations:

$$u(0,t) = X(0)T(t) = 0u(1,t) = X(1)T(t) = 0$$
(7)

If we let T(t) = 0 we get the trivial solution, which we are not interested int. In two dimensions the same initial conditions require

$$u(0,0,t) = X(0)Y(0)T(t) = 0 \\ u(1,0,t) = X(1)Y(0)T(t) = 0 \\ u(0,1,t) = X(0)Y(0)T(t) = 0 \\ u(1,1,t) = X(1)Y(0)T(t) = 0 \\ u(0,0,t) = X(0)Y(0)T(t) = 0 \\ u(0,$$

2.2 Algorithms

2.2.1 Forward Euler

In forward euler we are approximating the time derivative by:

$$u_t \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} = \frac{u(x_i, t_j + \Delta t) - u(x_i, t_j)}{\Delta t}$$
(9)

This is an explicit scheme because it finds the current time step by looking at the (LES MER PÅ FORSKJELLEN AV IMPLICIT OG EXPLICIT)

We are also using a centered difference in space with the approximation as you can see in equation (1). So setting these to equations equal to each other gives:

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} \Rightarrow u_{i,j+1} = \alpha u_{i-1,j} + (1 - 2\alpha)u_{i,j} + \alpha u_{i+1,j}$$
(10)

And this is the form we choose for solving this. By looking at this equation we also see that stability requires (eq. (10))

$$\alpha = \frac{\Delta t}{\Delta x^2} < 0.5 \tag{11}$$

Else the second term vanishes, and our solution for the new time step is wrong.

We can implement this as a algorithm just by looping over the timesteps, for so to loop over the x values where $x \in [0, 1]$.

2.2.2 Backward Euler

This is an implicit scheme where we approximating the time derivative by:

$$u_t \approx \frac{u(x,t) - u(x,t - \Delta t)}{\Delta t} = \frac{u(x_i,t_j) - u(x_i,t_j - \Delta t)}{\Delta t}$$
(12)

And by setting $u_t = u_x x$ we get the equation:

$$u_{i,j-1} = \alpha u_{i-1,j} + (1 - 2\alpha)u_{i,j} - \alpha u_{j+1,i}$$
(13)

We then introduce the matrix:

$$\begin{bmatrix} 1 + 2\alpha & -\alpha & 0 & 0 & \dots & 0 \\ -\alpha & 1 + 2\alpha & -\alpha & 0 & \dots & 0 \\ 0 & -\alpha & 1 + 2\alpha & -\alpha & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & 1 + 2\alpha \end{bmatrix}$$

Then we see that we can formulate this as a matrix multiplication problem:

$$\hat{A}V_j = V_{j-i} \tag{14}$$

Which means we can rewrite our differential equation problem to:

$$V_j = \hat{A}^{-1}V_{j_1} = \hat{A}^{-1}(\hat{A}^{-1}V_{j_2}) = \dots = \hat{A}^{-j}V_0$$
(15)

To solve this matrix equation we utilize the Gaussian elimination for tridiagonal matrixes which we solved in project 1.

2.2.3 Crank Nicolson

In Cranc-Nicolson we use a time centered scheme where

$$u(x_i, t_{i+1/2}) \approx \tag{16}$$

This gives us the equation:

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \frac{1}{2} \left(\frac{u_{i+1,j+1} - 2u_{i,j+1} + 2u_{i-1,j+1}}{(\Delta x)^2} + \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{(\Delta x)^2} \right)$$
(17)

This we can write as:

$$-\alpha u_{i+1,j+1} + (1+2\alpha)u_{i,j+1} - \alpha u_{i-1,j-1} = \alpha u_{i+1,j} + (1-2\alpha)u_{i,j} + \alpha u_{i-1,j}$$
(18)

This we can write as an matrix equation:

$$\hat{A}V_{j+1} = \hat{B}V_i \tag{19}$$

Dette kan vi skrive som :

$$\hat{A}V_{i+1} = b_i \tag{20}$$

Where we find V_{j+1} by using forward euler and then solve the matrix equation as in backward euler by using Gaussian elimination.

2.3 Jakobi

For an explicit solution to the 2-dimensional problem, $U_x x$ and $U_y y$ are given by eq(9). Combining this results in the Jakobi-algorithm (eq.SETT INN)

$$u_{i,j} (21)$$

3 Execution

3.1 2D- Heat Equation

Analytical solution to the 1D heat equation

To solve the equation (2) we need to look for seperable solutions on the form:

$$u(x,t) = X(x)T(t) \tag{22}$$

If we set this in in the equation (2) we get:

 $\overline{\partial t(X(x)T(t)) = \frac{\partial^2}{\partial x^2}(X(x)T(t))\big(23\big)}$ To simplify the notation we write:

$$T'(t)X(x) = T(t)X''(x) \tag{24}$$

Which we can write:

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} \tag{25}$$

We see that each side depends on a different variable R.H.S depends on xand L.H.S depends on t, so therefor this mus be equal to a constant. This is because if we change one and keep the other fixed the value must be the same. This constant we set to $-\lambda$ by convention so the equations to solve becomes:

$$X''(x) + \lambda X(x) = 0 \tag{26}$$

$$T'(t) + \lambda T(t) = 0 \tag{27}$$

With the boundary conditions:

$$u(0,t) = X(0)T(t) = 0 (28)$$

$$u(1,t) = X(1)T(t) = 0 (29)$$

From these boundary conditions we see that it must be X(0) = X(1) = 0because if T(t) = 0 we would only get the trivial solutions which we are not interested in.

So we solve the X(x) equation first.

This is a equation which we have solved nmany times before. First we have the case $\lambda < 0$ which gives the solution:

$$X(x) = Ae^{\sqrt{k}x} + Be^{-\sqrt{k}x}, \lambda = -k \tag{30}$$

if we set in the boundary conditions we get that X(0) = A + B and then $X(1) = Ae^{\sqrt{k}} - Ae^{\sqrt{k}} = A(e^{2*\sqrt{k}})$ and since k must be positive this gives that A = B = 0 which is the trivial solution which we are not interested in.

When $\lambda = 0$ this gives A = B = 0 which also is the trivial solutions.

The last possibility is the harmonic equation which is:

$$X(x) = A\cos(\sqrt{x} + B\sin(\sqrt{\lambda x}(31)))$$

And with our boundary conditions it gives X(0) = A = 0 and $X(1) = Bsin(\sqrt{\lambda}) = 0$ This means that sin = 0 This gives us the eigenvalue $\lambda = (n\pi)^2$ for any positive integer. This gives the solution:

$$X(x) = b_n \sin(n\pi x) \tag{32}$$

The solution for T(t) is then given by:

$$T'(t) = -n^2 * \pi^2 T(t) \tag{33}$$

Which is welknown

$$T(t) = c_n e^{-(n*pi)^2 t} (34)$$

So the the solution becomes:

$$u(x,t) \approx f(x) * \sin(x)e^{-(\pi^2 t)}$$
(35)

Where we have used that f(x) = constant = 1

3.1.2 Error Analysis

To calculate the error we use taylor expansion which are defined:

$$u_n = \frac{f^{(n)}(b)}{n!} \tag{36}$$

So to calculate the error in the forward difference for $\mathbf{u}'(\mathbf{t})$ we expand it in a Taylor axpansion around t_n :

$$u(t_{n+1}) = u(t_n) + u'(t_n)\Delta t + \frac{1}{2}u''(t_n)\Delta t^2 + \mathcal{O}(\Delta t^3)$$
 (37)

This gives the error:

$$R = \frac{1}{2}u''(t_n)\Delta t + \mathcal{O}\Delta t^2 \tag{38}$$

This means that the forward euler has a error in time in the first order. For backwards euler we taylor expand $u(t_{n-1})$ and get:

$$R = \frac{1}{2}u''(t_n)\Delta t + \mathcal{O}\Delta t^2 \tag{39}$$

So the same as in the Forward Euler scheme

In Crank-Nicolson we use a time centered scheme so we have that:

(40)

3.1.3 Forward Euler

For the forward Euler algorithm we start by solving U(x,0), hereby referenced as U0, and define α as given by eq(9) with dx=0.1 and dt=dx*dx*0.25, as dictated by the restrictions for the explicit scheme (eq(10). We then call the forward step method (see below) for a given number of timesteps, each run increasing the total time T by dt.

```
vec forward_step(double n, double alpha, vec u, vec unew) {
   for (int i=1; i<n; i++) {
      unew(i) = alpha*u(i-1) + (1-2*alpha) * u(i) + alpha*u(i+1);
   }
   return unew;
}</pre>
```

3.1.4 Backward Euler

In the implicit Backward Euler scheme we use Gaussian elimination to advance in space and time, implemented in code below. Here, as eq (12) shows, b-value is defined as $1+2\alpha$, and $a=c=-\alpha$, v being the solution given at a previous timestep, with the same initial condition as for the forward Euler scheme. We run the Gaussian elimination for each timestep dt until T(i) = final T.

```
Forward Substitution
   double m;
   for (int k=2; k<=n; k++) {
        m = a/b(k-1);
        b(k) = b_value - m*c;
        v(k) -= m*v(k-1);
   }

Backward Substitution
   u(n)= v(n)/b(n);
   for (int k= n-1; k>0; k--) {
        u(k) = (1.0/b(k))*(v(k) - c*u(k+1));
   }

   u(0) = 0;
   u(n) = 0;
```

3.1.5 Crank-Nicolson

Crank-Nicolson, being a combination of the explicit and implicit schemes, first runs forward step and then uses this updated solution v in the gaussian elimination for each timestep T(i).

3.2 3D- Heat equation

3.2.1 Analytical Solution

Here we have the equation (??) which we solve as the 2D equation by seperable solutions:

$$u(x, y, t) = X(x)Y(y)T(t)$$
(41)

With the boundary conditions u(0,y,t)=u(1,y,t)=0 and u(x,0,t)=u(x,1,t)=0 So when we set this in the equation we get:

$$\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = \frac{T'(t)}{T(t)}$$
(42)

So by the same logic as for 2D this becomes:

$$\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = -\lambda \tag{43}$$

If we first keep y constant and varies x we get the equation:

$$X''(x) + (\lambda + \frac{Y''(y)}{Y(y)})X(x) = 0 \Rightarrow X''(x) + (\lambda +)X(x) = 0$$
 (44)

And this we can solve as we did in 2D the same for when we keep x constant:

$$Y''(y) + (\lambda + \mu)Y(y) = 0 (45)$$

These two equations becomes:

$$X(x) = b_n \sin(n\pi x) \tag{46}$$

$$Y(y) = c_m \sin(m\pi y) \tag{47}$$

And the time equation then becomes:

$$T(t) = d_{n,m}e^{-(m^2\pi^2 + n^2\pi^2)t(48)}$$

So the equation becomes with m=n=1 and $b_nc_nd_{n,m}=1$

$$u(x,y,t) = \sin(\pi x)\sin(\pi y)e^{-2pi^2t} \tag{49}$$

3.3 Numeric Solution

- 4 Results
- 4.1 2D PDE
- 5 Discussion
- 6 Conclusion