10 класс

Первый день

- **10.1.** Параболы $y=x^2-2$ и $x=y^2-2$ пересекаются в точках A,B,C и D, причём точка D лежит в третьей четверти координатной плоскости. Найдите координаты центра окружности, описанной около треугольника ABC.
- **10.2. a)** Найдите хотя бы одно натуральное число n, которое можно представить в виде $n=a^2-b$ и в виде $n=c^2-d$, где a,b,c,d натуральные делители числа n и $a\neq c$. (К делителям числа n также относятся 1 и само число n.)
 - **б)** Докажите, что существует бесконечно много натуральных чисел n, удовлетворяющих условию пункта **а)**.
- **10.3.** На высоте BD остроугольного треугольника ABC отметили точку E такую, что описанные окружности треугольников ADE и BEC касаются в точке E. Угол AED равен 50° . Найдите градусную меру угла $\angle BCE$.
- **10.4.** Про два набора (x_1, x_2, \ldots, x_n) и (y_1, y_2, \ldots, y_n) действительных чисел известно, что $x_i \geqslant y_j$ для любых номеров i, j. Пусть $P = \max_{1\leqslant i\leqslant n} (x_i y_j)$, а $G = \max_{1\leqslant i\leqslant n} x_i \min_{1\leqslant j\leqslant n} y_i$. Докажите, что верно двойное неравенство $P \leqslant G \leqslant 2P$.

10 класс

Второй день

- **10.5.** Последовательность a_1, a_2, a_3, \ldots натуральных чисел определена по следующим правилам: число a_1 задано, а для каждого натурального $n \ge 2$ число a_n это наименьшее натуральное число, делящееся на n и не меньшее a_{n-1} . (Например, если $a_5 = 115$, то $a_6 = 120$, $a_7 = 126$, $a_8 = 128$.)
 - Докажите, что в последовательности a_{63} , a_{64} , a_{65} , . . . никакое число не встретится более одного раза при любом заданном $a_1 \leq 2019$.
- **10.6.** Найдите все функции f(x), заданные на множестве действительных чисел и принимающие действительные значения, такие, что для всех действительных x выполнено равенство

$$x = -\frac{1}{2}f(|x|) + |f(x)|.$$

- **10.7.** Окружности ω_1 и ω_2 с центрами O_1 и O_2 соответственно пересекаются в точке X. Прямая O_1X пересекает ω_2 в точках X и B, а прямая XO_2 пересекает ω_1 в точках X и A. Прямая O_1A пересекает ω_1 в точках A и D, а прямая O_2B пересекает ω_2 в точках B и C. Точка M середина отрезка CD. Докажите, что прямые MX и AB перпендикулярны.
- **10.8.** Петя и Андрей по очереди ставят знаки «+» и «-» в клетки полоски $n \times 1$. Петя ходит первым, и на каждом своём ходу он ставит плюс в любую свободную клетку. Андрей на своём ходу ставит минус в любую свободную клетку. Игра заканчивается, когда все клетки полоски заполнены. Выигрыш Пети это наибольшее число k, такое, что для всех ℓ от 1 до k включительно найдутся ℓ подряд идущих клеток, в которых плюсов больше, чем минусов. Какой наибольший выигрыш может себе гарантировать Петя?