Calculus II Basic and alternating series tests

Todor Milev

2019

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

Here are two examples:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

The *n*th term of an alternating series has the form

$$a_n = (-1)^{n-1}b_n$$
 or $a_n = (-1)^nb_n$

where b_n is positive.

Theorem (The Alternating Series Test)

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - \cdots, \qquad b_n > 0$$

satisfies

- lacktriangledown $b_{n+1} \leq b_n$ for all n and

then the series is convergent.

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

satisfies

- **1** $b_{n+1} < b_n$ because $\frac{1}{n+1} < \frac{1}{n}$.

Therefore the series is convergent by the Alternating Series Test.

Example

The series $\sum_{n=1}^{\infty} (-1)^n \frac{3n}{4n-1}$ is alternating, but

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n - 1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{3}{4 - \frac{1}{n}} = \frac{3}{4}$$

Therefore the series is divergent by the basic Divergence Test.