Introduction to Number Theory and Algorithms

Christian J. Rudder

August 2024

Contents

Contents		1
1	Asympotic Notation	7
	1.1 Asymptotic Notation	7

Prerequisites

Theorem 0.1: Common Derivatives

Power Rule: For $n \neq 0$ $\frac{d}{dx}(x^n) = n \cdot x^{n-1} \text{ . E.g., } \frac{d}{dx}(x^2) = 2x$

Derivative of a Constant: $\frac{d}{dx}(c) = 0 \text{ E.g., } \frac{d}{dx}(5) = 0$

Derivative of ln: $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Derivative of \log_a : $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$

Derivative of \sqrt{x} : $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$

Derivative of function f(x): $\frac{d}{dx}(x) = 1 \text{ E.g., } \frac{d}{dx}(5x) = 5$

Derivative of the Exponential Function: $\frac{d}{dx}(e^x) = e^x$

Theorem 0.2: L'Hopital's Rule

Let f(x) and g(x) be two functions. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, or $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Where f'(x) and g'(x) are the derivatives of f(x) and g(x) respectively.

4 CONTENTS

Theorem 0.3: Exponents Rules

For $a, b, x \in \mathbb{R}$, we have:

$$x^a \cdot x^b = x^{a+b}$$
 and $(x^a)^b = x^{ab}$

$$x^a \cdot y^a = (xy)^a$$
 and $\frac{x^a}{y^a} = \left(\frac{x}{y}\right)^a$

Note: The := symbol is short for "is defined as." For example, x := y means x is defined as y.

Definition 0.1: Logarithm

Let $a, x \in \mathbb{R}$, a > 0, $a \neq 1$. Logarithm x base a is denoted as $\log_a(x)$, and is defined as:

$$\log_a(x) = y \iff a^y = x$$

Meaning log is inverse of the exponential function, i.e., $\log_a(x) := (a^y)^{-1}$.

Tip: To remember the order $log_a(x) = a^y$, think, "base a," as a is the base of our log and y.

Theorem 0.4: Logarithm Rules

For $a, b, x \in \mathbb{R}$, we have:

$$\log_a(x) + \log_a(y) = \log_a(xy)$$
 and $\log_a(x) - \log_a(y) = \log_a\left(\frac{x}{y}\right)$

$$\log_a(x^b) = b \log_a(x)$$
 and $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

CONTENTS 5

Definition 0.2: Permutations

Let n be a positive integer. Then the number of distinct ways to arrange n objects in order is it's permutation. Denoted:

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$$

Definition 0.3: Combinations

Let n and k be positive integers. Where order doesn't matter, the number of distinct ways to choose k objects from n objects is it's *combination*. Denoted:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Where $\binom{n}{k}$ is read as "n choose k.", and (), the binomial coefficient.

Theorem 0.5: Binomial Theorem

Let a and b be real numbers, and n a non-negative integer. The binomial expansion of $(a+b)^n$ is given by:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

which expands explicitly as:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$$

where $\binom{n}{k}$ represents the binomial coefficient, defined as:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for $0 \le k \le n$.

6 CONTENTS

Theorem 0.6: Binomial Expansion of 2^n

For any non-negative integer n, the following identity holds:

$$2^{n} = \sum_{i=0}^{n} \binom{n}{i} = (1+1)^{n}.$$

Definition 0.4: Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Definition 0.5: "Without Loss of Generality"

A phrase that indicates that the proceeding logic also applies to the other cases. i.e., For a proposition not to lose the assumption that it works other ways as well.

Theorem 0.7: Pigeon Hole Principle

Let $n, m \in \mathbb{Z}^+$ with n < m. Then if we distribute m pigeons into n pigeonholes, there must be at least one pigeonhole with more than one pigeon.

Asympttic Notation

1.1 Asymptotic Notation

Asymptotic analysis is a method for describing the limiting behavior of functions as inputs grow infinitely.

Definition 1.1: Asymptotic

Let f(n) and g(n) be two functions. As n grows, if f(n) grows closer to g(n) never reaching, we say that "f(n) is **asymptotic** to g(n)."

We call the point where f(n) starts behaving similarly to g(n) the **threshold** n_0 . After this point n_0 , f(n) follows the same general path as g(n).

Definition 1.2: Big-O: (Upper Bound)

Let f and g be functions. f(n) our function of interest, and g(n) our function of comparison.

Then we say f(n) = O(g(n)), "f(n) is big-O of g(n)," if f(n) grows no faster than g(n), up to a constant factor. Let n_0 be our asymptotic threshold. Then, for all $n \ge n_0$,

$$0 \le f(n) \le c \cdot g(n)$$

Represented as the ratio $\frac{f(n)}{g(n)} \le c$ for all $n \ge n_0$. Analytically we write,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

Meaning, as we chase infinity, our numerator grows slower than the denominator, bounded, never reaching infinity.

Examples:

(i.)
$$3n^2 + 2n + 1 = O(n^2)$$

(ii.)
$$n^{100} = O(2^n)$$

(iii.)
$$\log n = O(\sqrt{n})$$

Proof 1.1: $\log n = O(\sqrt{n})$

We setup our ratio:

$$\lim_{n \to \infty} \frac{\log n}{\sqrt{n}}$$

Since $\log n$ and \sqrt{n} grow infinitely without bound, they are of indeterminate form $\frac{\infty}{\infty}$. We apply L'Hopital's Rule, which states that taking derivatives of the numerator and denominator will yield an evaluateable limit:

$$\lim_{n \to \infty} \frac{\log n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{d}{dn} \log n}{\frac{d}{dn} \sqrt{n}}$$

Yielding derivatives, $\log n = \frac{1}{n}$ and $\sqrt{n} = \frac{1}{2\sqrt{n}}$. We substitute these back into our limit:

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{n} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$$

Our limit approaches 0, as we have a constant factor in the numerator, and a growing denominator. Thus, $\log n = O(\sqrt{n})$, as $0 < \infty$.