

Planning, Learning and Decision Making

Lecture 18. Reinforcement learning: $TD(\lambda)$

Computing an average

• If we observe a new sample x_{N+1}

Previous estimate

Computing a zero of a function

Compute the sequence

Computing a FP of a function

A fixed point of a function F is a point is the solution to

$$x = F(x)$$

or, equivalently,

$$H(x) = F(x) - x = 0$$

 We can use the approach for computing the zero of a function!

Computing a FP of a function

Compute the sequence

Model based RL

- Given a sample (x_t, c_t, x_{t+1}) , where the action was selected from π ,
- Compute

$$\bar{P}_{t+1}(y \mid x_t) = \bar{P}_t(y \mid x_t) + \alpha(\mathbb{I}(x_{t+1} = y) - \bar{P}_t(y \mid x_t))$$
$$\bar{c}_{t+1}(x_t) = \bar{c}_t(x_t) + \alpha_t(c_t - \bar{c}_t(x_t))$$

Compute

$$J_{t+1}(x_t) = \bar{c}_{t+1}(x_t) + \gamma \sum_{y \in \mathcal{X}} \bar{\mathbf{P}}_{t+1}(y \mid x_t) J_t(y)$$

Compute Q*

- Given a sample (x_t, a_t, c_t, x_{t+1})
- Compute

$$\bar{P}_{t+1}(y \mid x_t, a_t) = \bar{P}_t(y \mid x_t, a_t) + \alpha(\mathbb{I}(x_{t+1} = y) - \bar{P}_t(y \mid x_t, a_t))$$
$$\bar{c}_{t+1}(x_t, a_t) = \bar{c}_t(x_t, a_t) + \alpha_t(c_t - \bar{c}_t(x_t, a_t))$$

Compute

$$Q_{t+1}(x_t, a_t) = \bar{c}_{t+1}(x_t, a_t) + \gamma \sum_{y \in \mathcal{X}} \bar{\mathbf{P}}_{t+1}(y \mid x_t, a_t) \min_{a' \in \mathcal{A}} Q_t(y, a')$$

Does this work?

Theorem: Both approaches converge w.p.1 to J^{π} and Q^* , respectively, as long as every state (for J^{π}) or every state-action pair (for Q^*) is visited infinitely often.

Value based RL

Value based RL

Value-based methods:

Slide

We have that

$$J^{\pi}(x) = c_{\pi}(x) + \gamma \sum_{y \in \mathcal{X}} \mathsf{P}_{\pi}(y \mid x) J^{\pi}(y)$$

which, back in lecture 7, we wrote as

$$oldsymbol{J}^{\pi} = \mathbf{T}_{\pi} oldsymbol{J}^{\pi}$$
 \\ \J^{\pi} is a fixed point

Alternatively, for each state x, we can write

Alternatively, for each state x, we can write

$$\mathbb{E}_{\pi} \left[\mathbf{c} + \gamma J^{\pi}(\mathbf{y}) - J^{\pi}(\mathbf{x}) \right] = 0$$

 J^{π} is the zero of this function of J

Using the stochastic approximation/computation of the mean recipe

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t[c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t [\mathbf{T}_{\pi} J_t(x_t) - J_t(x_t) + \varepsilon]$$

- This algorithm is called TD-learning (temporal-difference learning) or TD(0)
- The quantity

- This algorithm is called TD-learning (temporal-difference learning) or TD(0)
- The quantity

$$c_t + \gamma J_t(x_{t+1}) - J_t(x_t)$$

Estimate with information from **next** time step

- This algorithm is called TD-learning (temporal-difference learning) or TD(0)
- The quantity

$$c_t + \gamma J_t(x_{t+1}) - J_t(x_t)$$

Difference between current estimate and next time-step estimate

- This algorithm is called TD-learning (temporal-difference) learning) or TD(0)
- The quantity

$$c_t + \gamma J_t(x_{t+1}) - J_t(x_t)$$

is known as temporal difference

It corresponds to the current "estimation error"

Why TD(0)? Why the 0?

... let's play.

In vector form,

In vector form,

$$oldsymbol{J}^{\pi} = oldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} [oldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} oldsymbol{J}^{\pi}]$$

In vector form,

this one

In vector form,

$$\boldsymbol{J}^{\pi} = \boldsymbol{c}_{\pi} + \gamma P_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} P_{\pi}^{2} [\boldsymbol{c}_{\pi} + \gamma P_{\pi} \boldsymbol{J}^{\pi}]$$

In vector form,

$$\boldsymbol{J}^{\pi} = \boldsymbol{c}_{\pi} + \gamma P_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} P_{\pi}^{2} \boldsymbol{c}_{\pi} + \gamma^{3} P_{\pi}^{3} \boldsymbol{J}^{\pi}$$

... many steps later...

Fixed points

In vector form,

$$oldsymbol{J}^{\pi} = \sum_{n=0}^{N} \gamma^n \mathsf{P}_{\pi}^n oldsymbol{c}_{\pi} + \gamma^{N+1} \mathsf{P}_{\pi}^{N+1} oldsymbol{J}^{\pi}$$

Fixed points

So we have all these versions:

$$J^{\pi} = \boldsymbol{c}_{\pi} + \gamma P_{\pi} J^{\pi}$$

$$J^{\pi} = \boldsymbol{c}_{\pi} + \gamma P_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} P_{\pi}^{2} J^{\pi}$$

$$J^{\pi} = \boldsymbol{c}_{\pi} + \gamma P_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} P_{\pi}^{2} \boldsymbol{c}_{\pi} + \gamma^{3} P_{\pi}^{3} J^{\pi}$$

$$\vdots$$

$$J^{\pi} = \sum_{n=0}^{N} \gamma^{n} P_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} P_{\pi}^{N+1} J^{\pi}$$

Planning, Learning and Decision Making

Variations...

We can build an algorithm out of each...

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t [c_t + \gamma c_{t+1} + \gamma^2 J_t(x_{t+2}) - J_t(x_t)]$$

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t [c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} + \gamma^3 J_t(x_{t+3}) - J_t(x_t)]$$

$$\vdots$$

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \left[\sum_{n=0}^{N} \gamma^n c_{t+n} + \gamma^{N+1} J_t(x_{t+N+1}) - J_t(x_t) \right]$$

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \left[\sum_{n=0}^{N} \gamma^n c_{t+n} + \gamma^{N+1} J_t(x_{t+N+1}) - J_t(x_t) \right]$$

- Good points:
 - Each update uses informations from multiple steps

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \left[\sum_{n=0}^{N} \gamma^n c_{t+n} + \gamma^{N+1} J_t(x_{t+N+1}) - J_t(x_t) \right]$$

- Good points:
 - Each update uses informations from multiple steps
 - Updates are more informative
 - Converges (potentially) faster

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \left[\sum_{n=0}^{N} \gamma^n c_{t+n} + \gamma^{N+1} J_t(x_{t+N+1}) - J_t(x_t) \right]$$

- Bad points:
 - Updates now require "looking into the distant future"

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \left[\sum_{n=0}^{N} \gamma^n c_{t+n} + \gamma^{N+1} J_t(x_{t+N+1}) - J_t(x_t) \right]$$

- Bad points:
 - Updates now require "looking into the distant future"
 - Updates requiring tracking "long transitions":

$$(x_t, c_t, x_{t+1}, c_{t+1}, \dots, c_{t+N}, x_{t+N+1})$$

- Updates discard information about intermediate states
- Which N should we choose?

Revisited fixed point

So we have all these versions:

$$(1 - \lambda) \qquad \xrightarrow{\text{Multiply}} \quad \boldsymbol{J}^{\pi} = \boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{J}^{\pi}$$

$$(1 - \lambda)\lambda \qquad \xrightarrow{\text{Multiply}} \quad \boldsymbol{J}^{\pi} = \boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} \mathsf{P}_{\pi}^{2} \boldsymbol{J}^{\pi}$$

$$(1 - \lambda)\lambda^{2} \qquad \xrightarrow{\text{Multiply}} \quad \boldsymbol{J}^{\pi} = \boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} \mathsf{P}_{\pi}^{2} \boldsymbol{c}_{\pi} + \gamma^{3} \mathsf{P}_{\pi}^{3} \boldsymbol{J}^{\pi}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(1 - \lambda)\lambda^{N} \qquad \xrightarrow{\text{Multiply}} \quad \boldsymbol{J}^{\pi} = \sum_{n=0}^{N} \gamma^{n} \mathsf{P}_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} \mathsf{P}_{\pi}^{N+1} \boldsymbol{J}^{\pi}$$

$$\vdots \qquad \vdots \qquad \vdots$$

Planning, Learning and Decision Making

Revisited fixed point

We get:

$$(1 - \lambda) \boldsymbol{J}^{\pi} = (1 - \lambda) [\boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{J}^{\pi}]$$

$$(1 - \lambda) \lambda \boldsymbol{J}^{\pi} = (1 - \lambda) \lambda [\boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} \mathsf{P}_{\pi}^{2} \boldsymbol{J}^{\pi}]$$
Add them all
$$(1 - \lambda) \lambda^{2} \boldsymbol{J}^{\pi} = (1 - \lambda) \lambda^{2} [\boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{c}_{\pi} + \gamma^{2} \mathsf{P}_{\pi}^{2} \boldsymbol{c}_{\pi} + \gamma^{3} \mathsf{P}_{\pi}^{3} \boldsymbol{J}^{\pi}]$$

$$\vdots$$

$$(1 - \lambda)\lambda^{N} \boldsymbol{J}^{\pi} = (1 - \lambda)\lambda^{N} \left[\sum_{n=0}^{N} \gamma^{n} P_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} P_{\pi}^{N+1} \boldsymbol{J}^{\pi} \right]$$

Revisited fixed point

• We get:

$$(1 - \lambda) \sum_{N=1}^{\infty} \lambda^{N} \boldsymbol{J}^{\pi} = (1 - \lambda) \sum_{N=1}^{\infty} \lambda^{N} \left[\sum_{n=0}^{N} \gamma^{n} P_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} P_{\pi}^{N+1} \boldsymbol{J}^{\pi} \right]$$

$$= 1$$

Revisited fixed point

We get:

$$\boldsymbol{J}^{\pi} = (1 - \lambda) \sum_{N=1}^{\infty} \lambda^{N} \left[\sum_{n=0}^{N} \gamma^{n} P_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} P_{\pi}^{N+1} \boldsymbol{J}^{\pi} \right]$$

Chewing on this for a bit

$$oldsymbol{J}^{\pi} = \sum_{n=0}^{\infty} \lambda^n \gamma^n \mathsf{P}_{\pi}^n \left[oldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} oldsymbol{J}_{\pi} - oldsymbol{J}_{\pi}
ight] + oldsymbol{J}_{\pi}$$

Revisited fixed point

We get:

$$\boldsymbol{J}^{\pi} = (1 - \lambda) \sum_{N=1}^{\infty} \lambda^{N} \left[\sum_{n=0}^{N} \gamma^{n} P_{\pi}^{n} \boldsymbol{c}_{\pi} + \gamma^{N+1} P_{\pi}^{N+1} \boldsymbol{J}^{\pi} \right]$$

Chewing on this for a bit

$$\sum_{n=0}^{\infty} \lambda^n \gamma^n \mathsf{P}_{\pi}^n \left[\boldsymbol{c}_{\pi} + \gamma \mathsf{P}_{\pi} \boldsymbol{J}_{\pi} - \boldsymbol{J}_{\pi} \right] = 0$$

Finally...

We have a new algorithm:

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \sum_{n=0}^{\infty} \lambda^n \gamma^n [c_{t+n} + \gamma J_t(x_{t+n+1}) - J_t(x_{t+n})]$$

- We no longer ignore intermediate states
- We no longer need to select an N

However...

We now need an infinite trajectory!

Let's look at this carefully:

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t \sum_{n=0}^{\infty} \lambda^n \gamma^n [c_{t+n} + \gamma J_t(x_{t+n+1}) - J_t(x_{t+n})]$$

- All states visited in the future contribute to current value
- States further away contribute less (they are weighted down by $\gamma < 1$ and $\lambda \le 1$)

Forward view

... and weights all future information

... but we can look at this the other way around...

Backward view

- We track how much current state contributes to previous states:
 - We store how long ago previous states were visited
 - Weight current temporal difference accordingly

Algorithmically,

$$J_{t+1}(x) = J_t(x) + \alpha_t z_{t+1}(x) [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

This factor traces how much x should "receive" from x_t

Algorithmically,

$$J_{t+1}(x) = J_t(x) + \alpha_t z_{t+1}(x) [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

Eligibility trace

Temporal difference revisited

Algorithmically,

$$J_{t+1}(x) = J_t(x) + \alpha_t z_{t+1}(x) [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$
$$z_{t+1}(x) = \lambda \gamma z_t(x) + \mathbb{I}(x = x_t)$$

- In this algorithm:
 - Each update uses informations from multiple steps
 - No looking in the future
 - No "long transitions" required

$TD(\lambda)$

- Given a sample (x_t, c_t, x_{t+1}) , where the action was selected from π ,
- Compute

$$z_{t+1}(x) = \lambda \gamma z_t(x) + \mathbb{I}(x = x_t)$$

$$J_{t+1}(x) = J_t(x) + \alpha_t z_{t+1}(x) [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

• For $\lambda = 0$, we get TD(0) (the previous algorithm)

... hence the 0 in TD(0)

Does this work?

Theorem: For any $0 \le \lambda \le 1$, as long as every state is visited infinitely often, $TD(\lambda)$ converges to J^{π} w.p.1.