

Index

A

Accumulation, 53 Accuracy: numerical integration, 83-84 sensor, 383, 772-773 Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, 715 input conversion, 519 reasons for, 512-517 relay auto-tuning, 527 selection of method, 529 valve characteristic, 520-525 Alarms, 795, 890 Aliasing: antialiasing filter, 393 due to sampling, 362, 989 Amplitude: amplitude ratio, 121-123, 316, 412, 988-989 response to sine, 121 (See also Frequency response)

Analog:
computation, 257
signals, 212–215, 358–359
Anti–reset windup, 399–402, 604–605, 715
Array (see Relative gain array)
Averaging filter, 394
Averaging level control, 563–564, 569–570

B

Bandwidth, 419
Benefits, control, 28–35, 423–425
Blending:
controllability, 627, 637
gasoline, 866
interaction, 632
loop pairing, 663
model, 621
operating window, 625

Ni-di-	Chamatariatic value
Blending—Cont.	Characteristic, valve:
optimum, 866–870	examples, 520–525 inherent, 520
tuning for, 646–648	specifying for linearizing loopgain, 524
Block diagrams: algebra, 116, 118, 143, 244	
cascade, 463	Characteristic equation:
definition of, 115	definition, 309, 630
feed forward, 489	relation to stability, 309-310, 316, 643,
multiloop, 630	987
IMC, 592, 994	Characteristic polynomial: definition of, 108, 932
reduction to transfer function, 116, 244	relation to stability, 109
series, 143	roots of, 109, 932
single-loop, 243, 974	
Smith predictor, 600	Checklist, for design, 820–822
Bode:	Chemical reactor, packed bed:
cascade, 468	cascade, 471–473
closed-loop, 412–415	feedforward, 495–497
generalized plots, 323-326	inferential, 549–552
key aspects of plots, 328	variable structure, 713–714
plot, 123	Chemical reactor, stirred tank, 62, 72,
stability criterion, 313–317	84-86
limitations of, 316	isothermal, 62, 72
Boiler:	nonisothermal:
control of, 27, 474	cascade design, 475-476
efficiency of, 32–34	control design, 835
optimization of, 861–865	control performance, 438–440
(See also Steam system)	linearized, 900
Bounded input-output stability, 304,	model for, 85, 897–901
307–308	multiple input-output, 163–165
•••	operating window, 781–783
	recycle, with, 785
	selecting variables, 216–218
C	signal select, 710–712
	transfer function, 902
	series:
Cascade:	block diagram, 944
block diagram, 463	inverse response, 944–945
degrees of freedom, 460-461	model, 64–67, 943–944
design criteria for, 461	transfer function, 944
examples:	stability, without control, 902–906
chemical reactor, 471-473	steady-states:
distillation, 690-691	calculating, 902–904
fired heater, 473	multiple, 905
heat exchanger, 458-460	stabilizing via control, 905
levels of, 473	Combustion:
performance, 462-468	benefits for, 32–34
primary variable, 460	excess oxygen control, 27
secondary variable, 460	fuel control, 500–501
terminology, 460	(See also Fired heater)
transfer functions, 462	Complex numbers:
tuning, 469	magnitude, 122, 316–317, 936–937
Cause-effect relationship, 6-7, 114, 651	phase angle, 122, 316–317, 936–937
Centralized control, 617, 727	polar form, 122, 316-317, 936-937

Index

ControllerCont.	Derivative—Cont.
tuning—Cont.	Laplace transform of, 101
IMC, 598	mode:
Lopez, 287	behavior, 249-252
multiloop, 638–646	frequency response, 326
robustness, 268–269, 338–341	noise transmission, 252, 292-293
Ziegler-Nichols, 329-330, 347	time, 250
Corner frequency, 323	z-transform, 978
Critical frequency, 315	Design, control:
Crossover frequency, 315	control design form (CDF), 768-769,
CST (see Continuous-flow stirred tank)	838-839
	controllability, 780-781
	degrees of freedom, 778
_	dynamics:
D	disturbance, 444
	feedback, 444
	loop pairing, 695
Damping:	operating window, 624–626, 681, 781,
coefficient, 138-139	788–789
critically, 139	procedure, integrated, 834
overdamped, 139	process decomposition, 831
underdamped, 139	sequence of steps, 823
Dead time:	temporal hierarchy, 825
Bode plot, 324	Detuning factor, 678
compensation, 600	Deviation variables, 71, 111
computer programming, 922	Diagnostic:
definition, 103	model, 183
discrete, 977	
effect on performance, 426-427	tuning, 290
effect on stability, 334-337	Difference equations:
frequency response, 318	controllers, 367, 493, 595, 994–995
Padé approximation, 913	discrete models:
Decay ratio, 220	approximate, 923
Decentralized control, 616-617	empirical, 188
Decoupling:	exact, 923, 986
application criteria, 690	Differential equations:
designs:	discrete form, 188, 923, 986
calculated controlled variables,	linearization of, 70-72
685–686	numerical solution:
calculated manipulated variables,	error control, 84
684685	Euler, 83, 423
explicit controller calculations,	Runge-Kutta, 84
686–689	solution by:
performance, 689-690	integrating factor, 895
sensitivity to errors, 689-690	Laplace transforms, 102
(See also Interaction)	Digital control:
Degrees of freedom:	computing network, 359
in control design, 217, 460–461, 708,	dynamic matrix control, 735
711, 778	internal model control, 595
effect of control, 254, 778	lead/lag, 493
in modelling, 54–55	performance of PID, 367-369
Derivative:	ringing, 370-371, 982, 992
approximation, 366	sampling:
definition of, 56	hold, types of, 364-366
filter, 402	period selection, 369

future prediction, 735

model, step-weight, 730

move suppression, 743

horizon, 737

Dynamic matrix control (DMC)—Cont.
multivariable formulation, 744–748
predictive structure, 728
single-variable formulation, 738
tuning, 750

Dynamics:
dead time, 103, 140, 324, 328
first-order systems, 57, 137, 323, 328
integrating process, 140–141, 564–566,
325, 328
recycle systems, 155, 840
second-order systems, 138–140, 324,
328
series systems, 143, 328
staged systems, 157
(See also Modelling procedure)

E

Economic value of control, 28-35 Electrical circuit, 137, 138 Emergency control systems, 20, 230-231, 794-799 Empirical modelling: dead time, 144, 179-181, 190 diagnostics, 61, 183, 194 experimental design for, 181, 188 multivariable systems: ореп-loop, 197, 622 partial closed-loop, 629, 670 process reaction curve, 179 signal-to-noise, 182 six-step procedure, 176 statistical method, 188 use in control analysis, 280, 338-343 Energy balance: in modelling, 53-54, 898 strategy in distillation, 664 Energy reduction, control systems for, 23, 716-717, 791, 861-866 Environmental protection, 21, 768, 797 Equal-percentage characteristic, 521 Equilibrium, ideal stage, 159 Equilibrium, phase, 159, 538 Error: measures of control performance, 219 in sensor measurement, 383, 773 variable used by controller: model predictive, 585, 741 proportional-integral-derivative, 242-243

Euler:	Feedforward control—Cont.
identity, 934	perfect, 484
numerical integration, 83	performance guidelines:
Evaporator, 676	dynamic behavior, 491
Evolutionary operation, 871	model error, 490
Experimental modelling (see Empirical	stability, effect on, 488, 502
modelling)	tuning, 493
Exponential filter:	Fieldbus, 375
analog, 390, 393	Filtering:
digital, 392, 988	algorithms:
predictive control, 593	continuous, 390
principle, 389	discrete, 392, 988
External feedback, 399	aliasing in, 393
External variable, 54,	low-pass, 390
	perfect, 390
	performance, effect on, 391
TO	reasons for, 389
F	z-transform, 979
	Final control element, 5, 10, 212–213,
Factor, partial fractions, 107, 931	226, 438, 776–777
Factorization, model, 590	Final value theorem, 104, 979
Feasible region (see Operating window)	Fine tuning, 289–293
Feedback control:	Finite difference, 366-367, 493, 923
block diagram for, 243, 463, 586, 630	Fired heater:
components of loop, 212-213	cascade control, 494
compared with feedforward, 488	feedforward, 522-524
definition, 6	industrial case study, 961–972
negative, 6	loop pairing, 694–695
performance (see Control performance)	outlet temperature control, 29
pluses and minuses, 229	First-order system:
positive, 142	continuous, 137
selecting variables in, 216-218, 438,	discrete approximation, 922
536, 775, 779, 828	dynamic behavior, 59, 137-138
(See also PID; IMC; DMC)	-
Feedforward control:	Bode diagram, 323 example systems, 137
algorithms for:	- ·
digital, 492-493	frequency response, 328
general derivation, 485	time-domain responses, 136
lead/lag, 485-486	series of:
transfer function, 488	interacting, 145–148
block diagram for, 489	noninteracting, 143–145
design criteria for, 487	transfer function for, 144
goal, 484	Flash process:
digital implementation, 492	alarms for, 795-796
examples:	control design for, 802
chemical reactor, 495	control objectives for, 20-25, 768-769
distillation, 501	controllability of, 787-788
fired heater, 499–500	degrees of freedom, 787–788
heat exchanger, 497-498	dynamic response of, 803
feedback:	inferential control of, 537–541
combined with, 486, 497	operating window, 788–789
comparison with, 488	safety control, 794-799

atrol, 13 measurement, 387 ratio, 499, 684 value, 80 Forcing function, 895 Frequency distribution, 31-35 Frequency response, 121 amplitude ratio, 121-122 of basic systems, 323-326, 328 Bode plot, 123 closed-loop control performance, 412-420 computer program for, 317, 421 direct evaluation, 122 phase angle, 121, 123 of series systems, 144, 316-317 shortcut from transfer function, 122 in stability analysis: Bode stability, 314-316 transient, complete, 119-120 Furnace (see Fired heater)

Heat exchanger-Cont. cascade, 458 dynamic model, 76-80 feedback control transient, 256 feedforward, 486 linearizing characteristic, 523-524 refrigeration, 475, 884-885 steam condensing, 777 stirred tank, 76-80 Heaviside, 932 Hierarchy, 476, 826, 829 High signal select, 713 Histogram, 29-31 Hold: first order, 364 zero-order, 364 Holdup time, 562 Horizon: input, 749 output, 749

Hydrocracker control, 753

G

Gain:
controller:
feedback, 245, 587
feedforward, 485
nonlinear, 567
frequency dependent, 315
margin, 338
process, 87
disturbance, 224
feedback, 224, 254
multivariable process, 627
steady-state, 58
Gain scheduling, 518, 529

Η

Heat exchanger:
with bypass:
feedback control, 784
model, 76-80, 939-942
numerator zero, 941
recycle systems, 785
transient response, 942

I

Identification (see Empirical modelling) IMC (see Internal model control) Impulse function, 101 Inferential control: block diagram, 537 design criteria, 542 design procedure, 543 examples: chemical reactor, 549-552 combustion, 552-554 distillation, 545-549 flash process, 537-541 goal, 536 multiple correlated measurements, 554 Initialization: controller, 245, 402 filtering, 392 Input: terminology for control, 6 terminology for modelling, 53 typical time functions, 220-222 Input-output (see Cause-effect relationship) Input processing: conversion, 212-213, 387 filtering, 389

Input processing—Cont.	Internal model control (IMC)—Cont.
units, 388	structure, 592
validity, 387	tuning:
Integral:	for IMC controller, 598
Laplace transform of, 102	for PID controller, 609
numerical approximation, 366	Inventories:
z-transform, 978	control of (see Level)
Integral stabilizability, 692	models for, 564-565
Integral error measures:	reasons for and against, 562-563
IAE, integral of absolute value, 219	sizing, 562, 572–574
IE, integral of error, 219, 677	Inverse:
ISE, integral of squared, 219	approximate, 590
ITAE, integral of product of time and	exact model, 588, 729-730
absolute, 219	feedback as, 588
Integral mode:	•
advantage/disadvantage, 249	Inverse Laplace transform, 99
equation for explicit mode, 248	Inverse response:
implicit (see Model predictive control)	control performance, 430-431, 444,
tuning constant, 248	996–1000
(See also Anti-reset windup)	multivariable systems, 669-671
Integral windup (see Anti-reset windup)	open-loop, 152-155, 943-946
Integrating factor, 58, 895	ISE (see Integral error measures)
Integrating process:	ITAE (see Integral error measures)
dynamic behavior, 136	
general form, 140-141	
levels, 564	T
stability, 307-308	J
(See also Level control)	
Integrity, 637, 672, 692	
Interacting series, 145-148	Jacketed reactor, 476
Interaction:	
block diagram, 624	
controllability, effect on, 627, 651	₹
(See also Decoupling)	L
definition, 620	
integrity, effect on, 672-674, 692, 850	
measure of (see Relative gain array)	Lag (see First-order system)
modelling:	Laplace transform:
empirical, 622	applications:
fundamental, 621	solving ODE, 102
operating window, effect on, 624-626,	transfer function, 111
789	of common functions, 100
performance, feedback control:	definition of, 98
loop pairing, 671–681	of derivatives, 101
tuning, 682–683	of integrals, 102
stability, effect on, 638	partial fractions, 107, 931-935
transfer function, 629-630	properties, 98-99
tuning, 641–646	Lead:
(See also DMC)	lead/lag algorithm, 485-486, 595, 687,
Internal model control (IMC):	923
digital form, 595, 994	time constant, 152
filter for, 593	Least squares:
model inverse, approximate, 590, 994	as approximate inverse, 737
performance, 597	assumptions in, 191

243, 276 Manual operation, 228 Mass, conservation of, 53 Master controller (see Cascade) Material, conservation of, 53 Maximum deviation, 221 Maximum overshoot, 220 Measured variable: accuracy, 383 (See also Filtering) linearity, 387 range, 383-384 reproducibility, 383 sensor dynamics, 212-216, 773

for impulse response, 910

use in modelling, 912

598

Monitoring, 23, 799

use in correlations, 281, 286-287, 336,

Move suppression factor, 743, 749 Multiloop control: block diagram for, 624, 630 comparison with single-loop, 616 control performance: input forcing, 663–669	Numerical solution methods—Cont. frequency response, 317, 421 for integrals, 366, 917 Nyquist, 314
interaction, 628 interactive dynamics, 669–671 operating condition, 663	Ο
controllability, 626, 651, 780–781 decoupling: lead/lag, 687	Objective function, 271, 736, 743, 864, 866, 917
model sensitivity, 689	Objectives, control, 20, 268, 768, 838
loop pairing, 671	Offset, steady-state:
relative disturbance gain (RDG),	definition, 218, 240
677681	with feedback control, 246, 249, 251
tuning, 646–649, 682	with feedforward control, 488
(See also Control design, Interaction)	integral mode, 249, 587
Multivariable control:	level control, 571
centralized:	On-off control:
model inverse for, 729, 738	heating, 5, 230
structure, 728	model, 67-69
(See also Dynamic matrix control;	One-way decoupling, 690
Multiloop control)	One-way interaction, 631, 636-637
	Open-loop operation, 228
	Open-loop transfer function:
	$G_{OL}(s)$, 316
N	terminology, 328
•	Operability, 778
	Operating window, 26–27, 226, 440,
Negative feedback, 6, 141–142, 207, 242	625–626, 720–721, 789
Niederlinski criterion, 692, 694–695	Optimization:
Noise:	constraints, 868
effect on tuning, 275–276, 292,	control methods for:
915–920	control design, 861
frequency content, 423–425	direct search, 870
signal-to-noise ratio, 182	model-based, 866
(See also Filtering)	in controller tuning:
Noninteracting series systems, 143 Nonlinear:	control objectives, 268, 917
control, 517, 520, 570	correlations from, 281, 284, 598 plant economics:
process, effect on operating window,	effect of variance, 31, 33
625–626, 782, 789	profit contours, 31, 43
process, effect on performance,	Order of system, 112
283–285, 512	Ordinary differential equations, 47, 56,
saturation, 399–402, 604, 707, 717	102
(See also Linearization)	Output:
Normal distribution, 30	meaning for control, 6
Numerical solution methods:	meaning for modelling, 53
for algebraic equations, 902–903	Overdamped, 138–139
for differential equations, 82-84	Overshoot, 219-220

367

control)

Predictive control (see Model-predictive

Primary controller (see Cascade control)

P	Process dynamics:
twate.	effect on control performance, 415,
	426, 438, 440, 663, 694
Packed bed:	effect on stability, 334
cascade control, 471-473	effect of zeros, 152, 939
empirical model, 202	empirical modelling of, 196
feedforward control, 495-497	fundamental modelling of, 53
Padé approximation, 913	linearized models, 74
Pairing, loop, 671	recycle process structures, 155
Partial control, 779, 827	series process structures, 152, 939
Partial fraction expansion, 107, 932-935,	staged process structures, 157
980	Process examples, guide, 925-929
Performance, (see Control performance)	Process reaction curve, 179, 187
Period of oscillation, 121, 222, 315, 330,	Product quality, 23, 768
343	Profit function (see Objective function)
Periodic behavior, 5, 67, 343, 906	Proportional:
pH control, 527, 776	controller mode, 245
Phase angle, 121-123	tuning constant, 245
Phase equilibrium:	Proportional band, 398
in distillation, 159	Proportional-integral-derivative (PID)
in flash process, 538	controller:
K values for, 538	in adaptive control, 517
relative volatility, 159	in cascade control, 458, 468–469
Phase margin, 340	derivative mode, 250
Physical realizability, 496, 588	effect on offset, 251
PI, PID (see	effect on stability, 326
Proportional-integral-derivative	digital form of controller, 367–369
controller)	frequency response, of controller,
Pneumatic:	
control valve, 213	366–367
controller, 257	initialization, 245, 402
signal transmission, 212–213, 891	integral mode:
Polar form:	effect on dynamic response, 249
complex numbers, 122, 316-318, 421	effect on offset, 249
frequency response for series systems,	effect on stability, 325, 336–337
317	windup, 399
Poles:	mode selection, 436
definition of, 113	output limits, 403
effect of control on, 247, 254-256, 259,	proportional mode:
313	effect of dynamic response, 245, 272
effect on dynamic response, 109, 113,	effect on offset, 245
310	effect on stability, 246
effect of process design on, 141-142,	tuning:
151, 155, 157, 425,	Ciancone, 281, 286
440, 564, 785, 902, 906	IMC, 609
effect on stability, 109, 310	Lopez, 287
Position (full) form of digital controller	multiloop. 641–646

selection, 347

Ziegler-Nichols, 329, 347 Proportional-only control, 245, 571

Pulse, input function, 64, 101

Reset windup (see Anti-reset windur Resonant frequency, 414 Reverse-acting feedback, 396 Quadratic dynamic matrix control, 751 Ringing controller, 368, 992 Quick-opening valve, 521 Rise time, 219 Robustness: importance, 241, 512 performance, 268-269, 919 R stability, 338, 345 tuning, 268, 919 Root locus, 312 Ramp: Runge-Kutta numerical integration, 83 input function, 93 output response, 93 Random variable, normal distribution, 30 Ratio control: S effect on stability, 519 as feedforward, 499 flow ratio, 499 Safety, 20-21 reset by feedback, 519, 684 alarms, 795 Reactor (see Chemical reactor) basic process control, 794 Realizable, 496, 588 failure position of final elements, 386 Real-time operating system, 360 good practices, 797 Real-time optimization (see Optimization) safety interlock system (SIS), 796 Reconstruction of signal, 362 safety valves, 797 Recycle: Sampling (see Digital control) advantages of, 155-157, 785 Saturation of controller output, 398, 604, alternative source/sink, 832 707, 717 control of systems with, 785, 832, Second-order system, 138-139 845-846 Secondary controller (see Cascade) effect of dynamic response, 156-157 Select, signal: effect on stability, 156 degrees of freedom, 710 Refrigeration, 475, 885 design criteria, 715 Regression (see Least squares) tuning, 714 Relative disturbance gain (RDG): (See also Constraints, control) integral error measure, 677 Selection of variables: loop pairing, 678-679 controlled variables, 216, 773, 827-828 tuning factor, 678 manipulated variables, 216, 226, 438 Relative gain array (RGA): measured disturbances, 487 calculation, 634 secondary cascade, 461 control integrity, 637, 672 Self-regulation, 141 definition: Sense (see Controller sense switch) dynamic, 637 Sensor: steady-state, 633-634 accuracy, 383 interpretations, 636 cost, 772-773 loop pairing, 672-674, 695 dynamics, 215, 773 properties, 633-636 flow, 387 stability, 637 identification symbols, 889 Relative volatility, 159 level, 892

noise, 276, 389, 424, 879

range or span, 383

reliability, 387

Reproducibility, sensor, 383, 773

Reset (see Integral)

Reset time, 398

S FAChange Edito	
Ses or—Cont.	Stability—Cont.
Sproducibility, 383, 773	analysis—Cont.
signal transmission, 890	Nyquist, 314
temperature, 388, 536	pole calculation, 308–313
Separable differential equation, 58, 895	root locus, 312–313
Set point, 218, 242–243, 458, 586	simulation, 248
Settling time, 220	chemical reactor, 902–906
Shannon's sampling theorem, 362	definition, bounded input-output,
Signal:	303-304
conversion, 212	effect of controller tuning, 312
analog to digital (A/D), 359	effect of process dynamics, 334
digital to analog (D/A), 359	effect of process dynamics, 334 effect of sampling period, 367–370
electronic to pneumatic, 212	feedforward, 488
digital transmission, 373	
dynamics, 213	of linearized system, 305–308
electrical transmission, 212	margin, 338-340
pneumatic transmission, 212	multiloop, 630, 638
ranges, 213	Staged systems (see Distillation)
Signal-to-noise, 182	Standard deviation:
Signal select, 710	of averages, 394
Signal scient, 710	of data set, 30
closed-loop system, 423, 916	from set point, 221, 466
performance measures, 917	Statistical modelling, 189
process dynamics, 83–84	Statistical process control:
	capability index, 880-881
(See also Digital control)	goal of preventing disturbances, 876
Sine input:	Shewart chart, 876
amplitude ratio, 121–123	specification limit, 881
first order, 123	Steady state:
fic.w attenuation, 572	error (offset), 240
typical input forcing, 136	feedforward control, 488
(See also Frequency response)	operating window, 625-626
Single-input single-output (SISO) (see	Steam heat exchanger:
Single-loop control)	bypass, 784
Single-loop control, 5-6, 208, 218, 243	condensing, 777
SIS (see Safety)	Steam system:
Slave controller, 460	boiler, 27, 862
Smith predictor:	header, 862
system structure, 600	turbines, 885
tuning, 602	Steam trap, 777
zero offset, 601	Step:
(See also Model predictive control)	input function, 58, 136–138, 162
Snowball effect, 847	Laplace transform, 99
Split range:	test (see Process reaction curve)
degrees of freedom, 706	Stiffness, 84
design criteria, 709	- ·
tuning, 708	Stirred tank (CST):
(See also Constraints, control)	chemical reactor, 62, 72, 85, 438, 835
Spring and dashpot, 137–138	897
Stability:	heat exchanger, 76-80, 458, 486, 523
analysis:	939–943

mixer:

. one-tank, 52, 270, 415

Bode, 314-317

complex plane plots (see Root locus)

Stirred tank (CST)—Cont. mixer—Cont. three-tank, 186, 223, 282, 422-424, 512, 595-596 series reactors, 64, 430, 943 typical assumptions, 52, 899 Stochastic control performance, 293, 424, 879 Superposition, 70 Surge tank, 119, 562, 572 System definition, 52 Systems analysis, 135	Tuning, feedback controller: digital PID control, 370 dynamic matrix control, 750 effect of process on, 281, 334, 564–56 645 internal model control, 598 multiloop PID, 645, 682 objectives (see Control, objectives) Smith predictor, 602 stability margin: gain margin, 338 phase margin, 340 (See also Proportional-integral-derivative, tuning) Tuning, feedforward controller, 496
T	, ,
Target, 585–586 Taylor series approximation, 71 Temperature control: distillation, 545 fired heater, 26, 31, 473, 500, 552, 961 flash drum, 21, 538, 802 stirred tank, 252–523 Three-mode controller (see Proportional-integral-derivative controller) Time constant: empirical estimation, 179–180 relation to process, 74, 137, 271, 900, 942, 944 series of, 143–145 Time delay (see Dead time) Thermocouple, 388, 526 Thermowell, 940 Transfer function:	Ultimate controller gain, 330, 993 Ultimate period, 330 Underdamped process, 85, 138–139, 253–256, 899–903 Unstable systems: closed-loop system, 308–317 process without control, 307–308, 899–907 Unsteady-state (see Dynamics) Utility systems: fuel gas system, 501, 810–811 hot oil, 885 steam system, 862 (See also Refrigeration)
closed-loop, 244, 462, 488, 586, 629–630	V
controller, 252–253 definition, 111, 118, 983 disturbance process, 224, 415, 666 feedback process, 224, 270–271, 622, 666 instrument, 213 matrix of, 624 poles of, 113, 255, 259, 312–313 zeros of, 113, 152 Transient (see Dynamics) Transmission interaction, 629 Transportation delay, 103–104 Tray, distillation, general balances, 159	Validation, model, 60-61 Valve: automated control: capacity, 217, 226, 385, 438-441, 625-626 characteristic, 520 dynamic response, 213 failure position, 386 pneumatic power, 212-213 range, 385 manual, 228, 892 positioner, 474

stem, 81, 213, 474, 520

Valve position controller, 718

Variable:

continuous, 98 dependent, 56, 254 deviation, 71, 111 discrete, 188-189, 365, 973

external, 56, 254 manipulated, 5, 208, 213, 217

Variable structure:

constraint control, 715 multiple controllers, 716 signal select, 710 split range, 706 valve position control, 718

Variance:

definition, 30 measure of performance, 221-222 Velocity form, controller, 367

W

Weir, 159 Wild stream, 499, 684 Windup, reset (see Anti-reset windup)

\mathbf{Z}

z-transform, 973-975 table, 975 Zero, sensor signal, 388 Zero-order hold, 364, 985 Zeros of transfer function: cancellation of pole and zero, 113 effect on dynamic response, 152, 943 effect on stability, 113 Ziegler-Nichols: closed-loop tuning, 329, 342-343 open-loop tuning, 347 process reaction curve, 179-180

