SI231b: Matrix Computations

Lecture 14: Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 29, 2020

Recap: QR Iteration

QR Iteration:

```
A^{(0)}=A for k=1,\ 2,\ \cdots Q^{(k)}R^{(k)}=A^{(k-1)} \quad \text{QR factorization of } A^{(k-1)} A^{(k)}=R^{(k)}Q^{(k)} end
```

Facts:

- $ightharpoonup A^{(k)}$ is similar to A
- ightharpoonup Eigenvalues of $A^{(k)}$ should be easier to compute than that of A.
- ► A^(k) should converge in finite steps (expected) to a form whose eigenvalues are easily computed.
 - upper triangular form

Outline

- ▶ QR Iteration with Hessenberg Reduction
- ► QR Iteration with Shifts
- Subspace Iteration
- ► Brief Summary

Challenges of QR Iteration

For an $n \times n$ matrix A, each iteration requires $\mathcal{O}(n^3)$ flops to compute the QR factorization.

► too computational expensive!

Improvement:

Perform a similarity transform A to obtain a form $A^{(0)} = (Q^{(0)})^H A Q^{(0)}$

- ▶ the QR decomposition of A⁽⁰⁾ should be computationally cheap
- ▶ $A^{(k)}$ ($k = 1, 2, \cdots$) should have similar structure with $A^{(0)}$ so that the QR decomposition at each iteration is computationally cheap

Motivation: perform similarity transform A to an upper Hessenberg form (zeros below the first subdiagonal), i.e., $Q^HAQ = H$ where

Advantage: QR factorization of an upper Hessenberg matrix requires $\mathcal{O}(n^2)$ flops (how?).

▶ by using Givens rotations

QR Iteration with Hessenberg Reduction:

$$\begin{aligned} \mathsf{A} &= \mathsf{Q}^H \mathsf{H} \mathsf{Q}, \ \mathsf{A}^{(0)} &= \mathsf{H} \\ \text{for } k=1,\ 2,\ \cdots \\ &\qquad \mathsf{Q}^{(k)} \mathsf{R}^{(k)} = \mathsf{A}^{(k-1)} \quad \mathsf{QR} \ \text{factorization of} \ \mathsf{A}^{(k-1)} \\ &\qquad \mathsf{A}^{(k)} = \mathsf{R}^{(k)} \mathsf{Q}^{(k)} \end{aligned}$$
 end

Key: $A^{(k)}$ is of upper Hessenberg form (how to preserve?)

by using Givens rotations to compute the QR factorization (how to prove?)

Benefit: $\mathcal{O}(n^2)$ flops for QR factorization.

MIT Lab, Yue Qiu

6 / 18

For an $n \times n$ matrix $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$.

A Naive Try

Let Q_1 be the Householder reflection matrix that reflects a_1 to $sign(a_1(1))||a_1||_2e_1$,

Mission failed!

Less Ambitious Try

Let $\tilde{\mathbf{a}}_1 = \mathsf{A}(2:n,1)$ and Q_1 be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $\mathsf{sign}(\tilde{\mathbf{a}}_1(1)) \|\tilde{\mathbf{a}}_1\|_2 \mathsf{e}_1$,

Repeat the above procedure to the 2nd column of $Q_1AQ_1^H \cdots$

Given an $n \times n$ matrix A, the following algorithm reduces A to an upper Hessenberg form.

Hessenberg Reduction:

```
for k = 1: n - 2

x = A(k+1:n, k)

v_k = sign(x(1))||x||_2e_1 + x

v_k = \frac{v_k}{||v_k||_2}

A(k+1:n, k:n) = A(k+1:n, k:n) - 2v_k(v_k^H A(k+1:n, k:n))

A(1:n, k+1:n) = A(1:n, k+1:n) - 2(A(1:n, k+1:n)v_k)v_k^H

end
```

Failure of QR Iteration

Example:

Consider the following matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{Q^{(0)}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{R^{(0)}}$$

$$A^{(1)} = R^{(0)}Q^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = A^{(0)}$$

No convergence of $A^{(k)}$ observed.

To make QR iteration converge, i.e., $A^{(k)}$ converge to a upper triangular matrix, **shift** is required.

Shifted QR Iteration

Shifted QR Iteration:

$$\mathbf{A}=\mathbf{Q}^H\mathbf{H}\mathbf{Q}$$
 , $\mathbf{A}^{(0)}=\mathbf{H}$ for $k=1,~2,~\cdots$
$$\mathbf{Q}^{(k)}\mathbf{R}^{(k)}=\mathbf{A}^{(k-1)}-\mu_k\mathbf{I} \quad \mathbf{Q}\mathbf{R} \text{ factorization of } \mathbf{A}^{(k-1)}-\mu_k\mathbf{I}$$

$$\mathbf{A}^{(k)}=\mathbf{R}^{(k)}\mathbf{Q}^{(k)}+\mu_k\mathbf{I}$$
 end

Facts:

- $ightharpoonup A^{(k)}$ has same eigenvalues with A (requires a proof)
- shift μ_k may differ from iteration to iteration

Shifted QR Iteration

Selection of Shift

- ▶ Raleigh Quotient shift: $\mu_k = A^{(k)}(n, n)$
 - no guarantee on convergence
 - if converged, order of convergence is cubic
- ▶ Wilkinson shift

Denote the lower-rightmost 2×2 matrix of $A^{(k)}$ by

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The Wilkinson shift is chosen as the eigenvalue of B that is closer to d.

 always converge for Hermitian/real symmetric matrices with cubic convergence rate (quadratic convergence for the worst case)

References

1. J. H. Wilkinson. Global convergence of tridiagonal QR algorithm with origin shifts. Linear Algebra and its Applications, 1(3): 409 – 420, 1968.

Subspace Iteration

Power Iterations for a Set of Vectors

From the Power Iteration, we know that

- ► A^kq₀ converges to the eigenvector associated with the largest eigenvalue in magnititude.
- ▶ if we start with a set of linearly independent vectors $\{q_1, q_2, \dots, q_r\}$, then $A^k\{q_1, q_2, \dots, q_r\}$ should converge (under suitable assumptions) to a subspace spanned by eigenvectors of A associated with r largest eigenvalues in magnititude.

Subspace Iteration

Suppose there is a gap between the r largest eigenvalues in magnititude and λ_{r+1} , i.e, $|\lambda_1| \ge |\lambda_2| \ge \cdots |\lambda_r| > |\lambda_{r+1}|$

Subspace Iteration:

random selection
$$Q^{(0)}$$
 with orthonormal columns for $k=1,\ 2,\ \cdots$
$$Z_k=AQ^{(k-1)}$$

$$Z_k=Q^{(k)}R^{(k)}$$
 reduced QR factorization end

- \triangleright Z_k and $Q^{(k)}$ has the same column space
- ightharpoonup equal to the column space of $A^kQ^{(0)}$

Subspace Iteration

- $ightharpoonup Q^{(k)}$ converge to the eigevctors associated with r largest eigenvalues in magnititude (dominant invariant subspace).
- $\blacktriangleright \ \left\{ \lambda_1^{(k)}, \ \lambda_2^{(k)}, \cdots, \ \lambda_r^{(k)} \right\} = \operatorname{diag}\left(\left(\mathsf{Q}^{(k)} \right)^H \mathsf{A} \mathsf{Q}^{(k)} \right) \to \left\{ \lambda_1, \ \lambda_2, \ \cdots, \lambda_r \right\}$
- $||\mathbf{q}_{i}^{(k)} \mathbf{v}_{i}|| = \mathcal{O}\left(\left|\frac{\lambda_{r+1}}{\lambda_{i}}\right|\right), i = 1, 2, \cdots, r$
- $\left| \lambda_i^{(k)} \lambda_i \right| = \mathcal{O}\left(\left| \frac{\lambda_{r+1}}{\lambda_i} \right| \right), \ i = 1, \ 2, \ \cdots, \ r$
- also called simultaneously iteration or orthogonal iteration
- ightharpoonup when r = n, it coincides with QR iteration

Brief Summary

- Power iteration
 - compute the largest eigenvalue in magnitude
 - convergence may be slow if $|\lambda_2|$ is close to $|\lambda_1|$
 - deflation technique (making a nonzero eigenvalue to zero) can be used to compute the second largest eigenvalue im magnititude
 - For real symmetric/Hermitian case, $A = A \lambda_1 v_1 v_1^H$
 - complicated for unsymmetric/non-Hermitian case, investigate by yourself if interested
- ► Inverse iteration (with shift)
 - compute the smallest eigenvalue in magnitude
 - ullet when coming with shift μ , it computes the eigenvalues closest to μ

Brief Summary

► Subspace iteration

- A block version of the power iteration, or power iteration applied to a subspace
- compute a few largest eigenpairs in magnititude
- inverse iteration can also be applied in the subspace iteration
- when starting with full space, it coincides with QR iteration.

▶ QR iteration

- compute all eigenvalues/eigenvectors
- to reduce computational complexity, Hessenberg reduction is required before the iteration
- shift is required to obtain convergence

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013. 1997.

Chapter 7.3, 7.4, 8.2, 8.3

18 / 18