

Intra-Procedural Analysis

CMPUT 416/500

Foundations of Program Analysis

Karim Ali @karimhamdanali

Previously

- Static analysis is undecidable
- Sample analyses
- Intermediate representations
- Case study: Java and Android

Intra-Procedural Analysis

Does the property hold at statement S?

Property	Analysis
Is this variable still used later on?	Live-Variables Analysis
Can this code ever execute?	Dead-Code Analysis
Can this pointer ever be null?	Nullness Analysis
Is this file handle ever closed?	Typestate Analysis

Let's consider this code

```
z = 3;
x = 1;
while(x > 0) {
  if(x == 1)
   y = 7;
  else
   y = z + 4;
  x = 3;
  print(y);
```

Let's consider this code

- Which variables carry constant values?
- Which values do they exactly carry?

```
z = 3;
x = 1;
while(x > 0) {
  if(x == 1)
    y = 7;
  else
    y = z + 4;
  x = 3;
  print(y);
```

Control-Flow Graph


```
z = 3;
x = 1;
while(x > 0) {
  if(x == 1)
    y = 7;
  else
   y = z + 4;
  x = 3;
  print(y);
```


... how can we find a general solution?

Naive "Solution" is Meet Over All Paths

... how do we compute Meet Over All Paths Solution?

MOP Solution

Post Correspondence Problem Generally Uncomputable [Kam, Ullman 1977]

Let's consider this code

```
read(n);
if(n < 0) {
  a = 1;
  b = 4;
} else {
  a = 2;
  b = 3;
c = a + b;
write(c);
```

Control-Flow Graph

Basic-Block Graph


```
read(n);
if(n < 0) {
  a = 1;
  b = 4;
} else {
  a = 2;
  b = 3;
c = a + b;
write(c);
```


init

f_{read(n)}(init)

 $f_{n < 0}(f_{read(n)}(init))$

 $f_{a = 1}(f_{n < 0}(f_{read(n)}(init)))$

$$f_{b} = 4(f_{a} = 1(f_{n} < 0(f_{read(n)}(init))))$$

$$f_{c = a+b}(f_{b = 4}(f_{a = 1}(f_{n < 0}(f_{read(n)}(init)))))$$

 $f_{write(c)}(f_{c = a+b}(f_{b = 4}(f_{a = 1}(f_{n < 0}(f_{read(n)}(init))))))$

Another path

 $f_{write(c)}(f_{c = a+b}(f_{b = 3}(f_{a = 2}(f_{n < 0}(f_{read(n)}(init))))))$

Paths Summary

 $f_{write(c)}(f_{c = a+b}(f_{b = 4}(f_{a = 1}(f_{n < 0}(f_{read(n)}(init))))))$

 $f_{write(c)}(f_{c = a+b}(f_{b = 3}(f_{a = 2}(f_{n < 0}(f_{read(n)}(init))))))$

Computable Solution: Monotone Framework

Monotone Framework

Flow Functions

Initial Values

Monotone Framework

Monotone Framework

Parameter	Type	
Forward or Backward	Boolean	
Analysis Abstraction	Lattice	
Effect of Each Statement on Info	Set of	
	Flow Functions	
Initialization	Lattice Values	
Merge Operator	Binary Operator	
	on Lattice Values	

Analysis	Name	Direction
Which values does a variable carry?	Constant Propagation	Forward
Which variables will still be used?	Live Variables	Backward
Will this file handle be properly close?	Typestate	Backward
Has a variable been defined?	Possibly Defined Variables	Forward

Forward: Did p2 ever hold the value in password?

Backward: Can the password be printed in the future?

1. Forward or Backward

1. Forward or Backward

Lattice depends heavily on analysis problem!

Example: Constant Propagation

What is the constant value of **x** at location **s**?

Example: Nullness Analysis

Which variable is null at location s?

Example: Type Analysis

Which runtime type could reference variable **x** at location **s**?

Lattice are "often" sets of "something"

... but why do we need a lattice?

2. Analysis Abstraction Partially-Ordered Set (poset)

- If U is a set and \sqsubseteq is a binary relation on U, then the system (U, \sqsubseteq) is a poset if:
 - \rightarrow \forall $x \in U : x \sqsubseteq x (\sqsubseteq \text{ is reflexive})$
 - ▶ $\forall x, y, z \in U : (x \sqsubseteq y \land y \sqsubseteq z) \Longrightarrow x \sqsubseteq z (\sqsubseteq \text{ is transitive})$
 - ▶ $\forall x, y, z \in U : (x \sqsubseteq y \land y \sqsubseteq x) \Longrightarrow x == y (\sqsubseteq \text{ is anti-symmetric})$

x ⊑ y means:
y is a safe
approximation of
x, or at least as
sound as x

2. Analysis Abstraction Partially-Ordered Set (poset)

Examples

▶ ⊆ over finite sets

Key Takeaway About Posets

 A poset is a set with a notion of "less than or equal"

2. Analysis Abstraction Aside: Hasse Diagrams

- Represent finite posets with a diagram
- Vertices represent elements of *U*
- •Line from x to y if $x \sqsubseteq y$ and no z such that $x \sqsubseteq z \sqsubseteq y$
- Assume reflexivity
- Assume transitivity

Find all x, y such that $x \sqsubseteq y$

• If (U, \sqsubseteq) is a poset and $A \subseteq U$ and $z \in U$, then z is an upper bound of A if $\forall x \in A : x \sqsubseteq z$

z is an approximation of every element of A

• If (U, \sqsubseteq) is a poset and $x, y, z \in U$, then z is an upper bound of x and y if $x \sqsubseteq z \land y \sqsubseteq z$

Definition specialized for $A = \{x, y\}$

• If (U, \sqsubseteq) is a poset and $x, y, z \in U$, then z is an upper bound of x and y if $x \sqsubseteq z \land y \sqsubseteq z$

• If (U, \sqsubseteq) is a poset and $x, y, z \in U$, then z is an upper bound of x and y if $x \sqsubseteq z \land y \sqsubseteq z$

• If (U, \sqsubseteq) is a poset and $x, y, z \in U$, then z is an upper bound of x and y if $x \sqsubseteq z \land y \sqsubseteq z$

d2 is an approximation of every element of A

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a least upper bound of A if:

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a least upper bound of A if:

 $\rightarrow \forall X \in A : X \sqsubseteq Z$

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a least upper bound of A if:

 $\forall X \in A : X \sqsubseteq Z$

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a least upper bound of A if:

 $\rightarrow \forall x \in A : x \sqsubseteq z$

 $\forall y \in U : (\forall x \in A : x \sqsubseteq y) \Longrightarrow z \sqsubseteq y$

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a least upper bound of A if:

 $\rightarrow \forall x \in A : x \sqsubseteq z$

 $\forall y \in U : (\forall x \in A : x \sqsubseteq y) \Longrightarrow z \sqsubseteq y$

 $Z = \sqcup A$

is an

approximation of

z, i.e., z is the

most precise

approximation of A

Question

 Can you have two least upper bounds?

2. Analysis Abstraction Greatest Lower Bound

• If (U, \sqsubseteq) is a poset and $A \subseteq U$, then z is a greatest lower bound of A if:

$$\rightarrow \forall X \in A : Z \sqsubseteq X$$

$$\lor \forall y \in U : (\forall x \in A : y \sqsubseteq x) \Longrightarrow y \sqsubseteq z$$

$$Z = \prod A$$

2. Analysis Abstraction Lattice

• If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a lattice if $\forall x, y \in U$:

join

67

- ▶ $\exists z \in U : z = x \sqcup y$ (Least Upper Bound)
- ▶ $\exists z \in U : z = x \sqcap y$ (Greatest Lower Bound)

2. Analysis Abstraction Join Semi-Lattice

• If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a lattice if $\forall x, y \in U$:

join

▶ $\exists z \in U : z = x \sqcup y$ (Least Upper Bound)

2. Analysis Abstraction Meet Semi-Lattice

• If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a lattice if $\forall x, y \in U$:

▶ $\exists z \in U : z = x \sqcap y$ (Greatest Lower Bound)

2. Analysis Abstraction Is that a lattice?

yes

2. Analysis Abstraction Is that a lattice?

2. Analysis Abstraction Is that a lattice?

Sign Lattice

no

no

no

Key Takeaway About Lattices

A lattice is a partial order (U, □)
 that comes equipped with

- A binary operator join, □, which computes the least upper bound
- A binary operator meet, □, which computes the greatest lower bound

- If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a complete lattice if $\forall A \subseteq U$:
 - ▶ $\exists z \in U : z = \sqcup A$ (Least Upper Bound)

- If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a complete lattice if $\forall A \subseteq U$:
 - ▶ $\exists z \in U : z = \sqcup A$ (Least Upper Bound)

- If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a complete lattice if $\forall A \subseteq U$:
 - ▶ $\exists z \in U : z = \sqcup A$ (Least Upper Bound)
 - ▶ $\exists z \in U : z = \sqcap A$ (Greatest Lower Bound)

- If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a complete lattice if $\forall A \subseteq U$:
 - ▶ $\exists z \in U : z = \sqcup A$ (Least Upper Bound)
 - ▶ $\exists z \in U : z = \sqcap A$ (Greatest Lower Bound)

- If (U, \sqsubseteq) is a poset where $U \neq \emptyset$, then (U, \sqsubseteq) is a complete lattice if $\forall A \subseteq U$:
 - ▶ $\exists z \in U : z = \sqcup A$ (Least Upper Bound)
 - ▶ $\exists z \in U : z = \sqcap A$ (Greatest Lower Bound)

(U, ⊑) is acompletelattice

Key Takeaway About Complete Lattices

• A complete lattice is a lattice where the meet and join operators extend to arbitrary subsets of the lattice.

2. Analysis Abstraction Bounded Lattice

• If (U, \sqsubseteq) is a lattice, then (U, \sqsubseteq) is bounded if:

2. Analysis Abstraction Bounded Lattice

• If (U, \sqsubseteq) is a lattice, then (U, \sqsubseteq) is bounded if:

ightharpoonup $\exists z \in U : (\forall x \in U : x \sqsubseteq z) = \sqcup U \text{ (Top or T)}$

2. Analysis Abstraction Bounded Lattice

- If (U, \sqsubseteq) is a lattice, then (U, \sqsubseteq) is bounded if:
 - \rightarrow $\exists z \in U : (\forall x \in U : x \sqsubseteq z) = \sqcup U (Top or T)$
 - ▶ $\exists z \in U : z = \sqcap U$ (Bottom or \bot)

2. Analysis Abstraction Bounded Join Semi-Lattice

• If (U, \sqsubseteq) is a join semi-lattice, then (U, \sqsubseteq) is a bounded join semi-lattice if:

 \rightarrow $\exists z \in U : z = \sqcup U \text{ (Top or T)}$

2. Analysis Abstraction Bounded Meet Semi-Lattice

- If (U, \sqsubseteq) is a meet semi-lattice, then (U, \sqsubseteq) is a bounded meet semi-lattice if:
 - \rightarrow $\exists z \in U : z = \sqcap U \text{ (Bottom or } \bot)$

2. Analysis Abstraction Lattice Questions

• Q: Is a complete lattice bounded?

• Q: Is a finite lattice complete?

2. Analysis Abstraction Lattice Questions

- Let $U = \{ F \mid F \subseteq \mathbb{N}, F \text{ finite } \} \cup \{ \mathbb{N} \setminus F \mid F \subseteq \mathbb{N}, F \text{ finite } \}$
- **Q:** Is (U,⊆) a lattice?
- Q: Is it bounded?
- Q: Is it complete?

Key Takeaway About Bounded Lattices

 A bounded lattice comes with a top element and a bottom element

2. Analysis Abstraction Lattice Chain

• If (U, \sqsubseteq) is a lattice, then $A \subseteq U$ is a chain if:

2. Analysis Abstraction Lattice Chain

• If (U, \sqsubseteq) is a lattice, then $A \subseteq U$ is a chain if:

 $\blacktriangleright \forall x, y \in A : x \sqsubseteq y \lor y \sqsubseteq x$

2. Analysis Abstraction Lattice Height

• If (U, \sqsubseteq) is a lattice, then the lattice height is the cardinality of the **longest** chain in the lattice

2. Analysis Abstraction Ascending Chain Condition

• A lattice satisfies the ascending chain condition if, for any sequence $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq ...$,

▶ $\exists m \in \mathbb{N} : \forall n \geq m, d_n = d_m$

2. Analysis Abstraction Ascending Chain Condition

2. Analysis Abstraction Ascending Chain Condition

 Lattice may be infinite as long as every ascending chain eventually stabilizes

• $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$, in other words

 \rightarrow $\exists n \in \mathbb{N} : d_n = d_{n+1}$

2. Analysis Abstraction Ascending Chains Questions

• Q: Can a finite lattice have an ascending chain that does not stabilize?

Key Takeaways About Lattice Chains

 A chain is a totally ordered subset of the lattice

• The height of the lattice is the size of the largest chain

2. Analysis Abstraction Types of Lattices

- Powerset Lattice: if F is a set, then the powerset P(F) with \sqsubseteq defined as \subseteq (or as \supseteq) is a lattice.
- **Product Lattice**: if L_A and L_B are lattices, then their product $L_A \times L_B$ with \sqsubseteq defined as $(a_1, b_1) \sqsubseteq (a_2, b_2)$ if $a_1 \sqsubseteq a_2$ and $b_1 \sqsubseteq b_2$ is also a lattice.
- Map Lattice: if F is a set and L is a lattice, then the set of maps $F \to L$ with \sqsubseteq defined as $m_1 \sqsubseteq m_2$ if $\forall_{f \in F} m_1(f) \sqsubseteq m_2(f)$ is also a lattice.

2. Analysis Abstraction

... so let's finally use a lattice!

2. Analysis Abstraction Lattice Hacks

- ▶ $x \sqsubseteq y$ if and only if $x \sqcup y = y$
- If $a \sqsubseteq b$ and $c \sqsubseteq d$ then $a \sqcup c \sqsubseteq b \sqcup d$

 $X \sqcup X = X$

3. Flow Functions

• If (U, \sqsubseteq) is a lattice, then the function f is monotone (i.e., order preserving) if:

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

• If (U, \sqsubseteq) is a lattice, then the function f is monotone (i.e., order preserving) if:

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

• If (U, \sqsubseteq) is a lattice, then the function f is monotone (i.e., order preserving) if:

$$\rightarrow$$
 \forall $x, y \in U : x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

putting it all together!

Lattice Fixed Point Theorem

Alfred Tarski 1955

Monotone Framework

• For each statement S in the control-flow graph, define a

 $f_S: L \to L$

- For a path $P = S_0S_1S_2...S_n$ through the CFG, define $f_p(x) = f_n(...f_2(f_1(f_0(x))))$.
- Goal: find the join-over-all-paths (MOP)

$$MOP(n, x) =$$

Generally Uncomputable [Kam, Ullman 1977]

Monotone Framework

- For each statement S in the control-flow graph, define a $f_S: L \to L$.
- Goal: for each statement S in the CFG, find $V_{Sin} \in L$ and $V_{Sout} \in L$ satisfying

$$V_{Sout} = f_{S}(V_{Sin})$$

Least-Fixed-Point (LFP)

$$V_{Sin} = \square V_{Pout}$$

 $MOP(n, x) \subseteq LFP(n, x)$

 $P \in \text{Predecessors}(S)$

Generic Dataflow Algorithm

```
initialize out[s] = in[s] = \perp for all s
add all statements to worklist
while worklist not empty
  remove s from worklist
  in[s] = per (s) . out[p]
  out[s] = f_s(in[s])
 if out[s] has changed
    add successors of s to worklist
  end if
end while
```

Kleene Fixed Point Theorem

Stephen Cole Kleene 1938

MOP □ LFP

- Every solution S

 actual is
 "safe" (i.e., sound).

- A flow function f is distributive if $f(x) \sqcup f(y) = f(x \sqcup y)$
- If all flow functions are distributive, then LFP = MOP
- Initializing using T instead of \(\perp \) causes earlier termination, but yields more imprecise fixed-point

Next

Call Graph Construction