基于神经网络的标定算法

目录

- 当前标定现状
 - EOL标定
 - 售后标定
 - 标定指标要求
- why:
 - 为什么需要售后(在线)标定
 - 为什么需要探索深度学习的方法
- 综述文章解读
- 深度学习方法分类
- 相机内参标定
- 相机外参标定
- 相机内外参联合标定
- 文章整理和初步解读
- · CFT: Multi-camera Calibration Free Transformer
- CAMERA CALIBRATION THROUGH CAMERA PROJECTION LOSS
- 总结概述:
- 论文贡献:
- 亮点工作 Separating sources of loss errors:
- 训练细节
- 其他资料:
 - 内部标定总结及技术路线:
- 理论知识复习:
- 标定工具库:
- 灭点外参标定:

当前标定现状

EOL标定

■ EOL标定

棋盘格: 标定4鱼眼相机。

二维码+apriTag: 标定bev周视相机

圆形标定板:标定长焦相机

售后标定

■售后动态标定

标定方法: 长直车道线

特斯拉售后标定方案: calibration completes quicker when driving on a straight road with multiple lanes (such as a controlled-access highway), with highly-visible lane markings

https://service.tesla.com/docs/Public/diy/modely/en_us/GUID-D6F7D1BC-193D-4A2E-99B0-E3BA3D41BDE2.html

标定指标要求

使 用 方	成功 率	精度	速度	泛化性
集度	99%	以百度智驾标准为准	3min,且 支持多路并 行标定	希望适配大部分场景,包括阴影, 路沿,车道宽度,部分不规则车道 线等等。
ANP		bev模型要求车道线完全对齐,几乎 不允许误差。其他模块要求误差小 于0.2度		
AVP		12.8m*12.8m范围内误差不超过一 个线宽。侧向不超过0.1度		

why:

为什么需要售后(在线)标定

由于相机组件磨损、温度波动或外部干扰(如碰撞),相机的校准参数容易随时间变化。

为什么需要探索深度学习的方法

- 传统标定方法的问题:
 - 。 基于诸如棋盘格等标定靶标(不适用于售后标定)
 - 。 基于真实世界中的特定几何机构,例如车道线、灭点等(依赖特定环境鲁棒性差,且用户难以理解)
 - 。 基于序列图片采用多视几何理论(SFM)进行标定(在车辆载体下,前视相机帧间运动不充足)
- 上下游与泛化性角度:
 - 。 BEV模型的输入仅是纠正后的图像,并没有对标定参数的显示需求
 - 。 深度学习方法可以实现不绑定车型,不依赖特定相机模型,不依赖标定靶,泛化性更高

深度学习方法的目标: achieve camera model-free and label-free calibration

综述文章解读

https://github.com/KangLiao929/Awesome-Deep-Camera-Calibration

https://arxiv.org/pdf/2303.10559.pdf

深度学习方法分类

学习范式角度:

- · regression-based calibration
 - 。 使用卷积提取语义特征
 - 。 使用全链接层回归参数 (例如:畸变、扭曲等)
- · reconstruction-based calibration
 - 。 直接学习像素到像素的映射
 - 。 不需要相机模型的假设

学习策略角度:

- 监督学习
- 半监督
- 弱监督
- 无监督
- 强化学习

相机内参标定

Deepfocal是一个开创性的工作,旨在估计任意一张图像的焦距。MisCaliDet 给出了相机是否需要重新标定的判别。

相机外参标定

PoseNet 首先提出了6-Dof的标定工作

神经网络逐渐被引导去感知与几何相关的特征,这对于外方位估计至关重要。

相机内外参联合标定

DeepVP 单帧图片基于灭点进行标定

文章整理和初步解读

黄色高亮是初步判断更贴切的解决方案

Year	Publication	Title	Abbreviation	Objective	Platform	Network	初读备注
2022	PAMI	Content- Aware Unsupervise d Deep Homography Estimation and Beyond	Liu et al.	Projection matrixs	PyTorch	ResNet	
2022	ECCV	Rethinking generic camera models for deep single image camera calibration to recover rotation and fisheye distortion	GenCaliNet	Intrinsics + Extrinsics + Distortion coefficients		DenseNet	recovering camera rotation fisheye distortion proposed generic camera model that has an adaptive ability for off-the-shelf fish cameras Pully recovered image Fully re
2022	TIM	Keypoint- Based LiDAR- Camera Online Calibration With Robust Geometric Network	RGKCNet	Camera + LiDAR	PyTorch	CNNs+Point Net	设计激光标定 skip
							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2022	CVPR	Focal Length and Object Pose Estimation via Render and Compare	FocalPose	Intrinsics + Extrinsics	PyTorch	CNNs	 通过可微分的方式推导和整 了焦距更新规则,提出一种 于6D姿态估计的方法 主要研究3D目标向图像投 不太试用
			0.71				고이무막산산전시소수전
2022	ICASSP	Camera calibration through camera projection loss	CPL	Intrinsics + Extrinsics	TensorFlow	Inception-V3	• 可以同时估计相机内参和:参,包括相机基线、视差、仰角、平移、焦距和主点的移。

9	2022	ICRA	Self- supervised camera self- calibration from video	Fang et al.	Intrinsics + Extrinsics	PyTorch	CNNs	 使用自我监督的深度和姿势 习作为代理目标,从原始补中自校准各种通用相机模型 从而首次提供对纯粹从自身 督中学习的相机模型参数的 准评估。 在具有挑战性和完全不同的据集上展示了我们的框架的用性,无需改变架构即可能透视、鱼眼和反折射图像的度和姿态。
10								
11	2021	ICCV	CTRL-C: Camera calibration TRansformer with Line- Classification	CTRL-C	Intrinsics + Extrinsics	PyTorch	Transformer	 输出相机的pitch、roll等(看到内参相关) 通过line_segment检测实理图像几何的理解 同时考虑语义信息和几何特(line_segment)
12								

CFT: Multi-camera Calibration Free Transformer

Learning BEV representation for 3D object detection without any geometric guidance.

主要贡献:

- We propose CFT to learn robust BEV representation for multi-camera 3D object detection without camera parameters.
- We design PA in obtaining richer 3D information of BEV, which could **fully mine height features from content embedding**, promoting the establishment of relationships between image views and BEV.

BEV 3D检测的各技术路线

- Depth-based method : infer depth in image views and project them to the BEV plane with the extrinsics and intrinsics
- BEVformer: emphasizes directly learning the transformation relationship between image view and BEV based on the attention mechanism.

CAMERA CALIBRATION THROUGH CAMERA PROJECTION LOSS

总结概述:

给出了一种双目相机标定的方法,神经网络主要用于特征提取工作,双目相机有可用深度,Loss设计遵循3D-2D投影来监督

介绍双目相机标定,其标定方法能否应用到bev相机?

论文贡献:

- 第一个同时完成内参、外参、基线、视差标定的端到端方法
- 使用CARLA制作了模拟数据集
- proposed a new representation that represents camera model equations as a neural network in a multi-task learning (MTL) framework.
- We proposed a novel camera projection loss (CPL) that combines analytical equations in learning framework.

亮点工作 Separating sources of loss errors:

问题点: 然而,使用多个相机参数来预测3D点在学习过程中引入了一个新的问题: 从一个点到其理想投影的偏差可归因于一个以上的参数。换句话说,一个参数的错误可以通过相机投影损失反向传播到其他参数。

为了解决这个问题,设计了各参数分离的loss计算方式

$$L_{f_x} = L((f_x, f_y^{GT}, u_0^{GT}, v_0^{GT}, b^{GT}, d^{GT}, \theta_p^{GT}, t_x^{GT}, t_y^{GT}, t_z^{GT}, X^{GT}, Y^{GT}, Z^{GT}), \omega)$$

$$L_{f_y} = L((f_x^{GT}, f_y, u_0^{GT}, v_0^{GT}, b^{GT}, d^{GT}, \theta_p^{GT}, t_x^{GT}, t_y^{GT}, t_z^{GT}, X^{GT}, Y^{GT}, Z^{GT}), \omega)$$
...
$$L_Z = L((f_x^{GT}, f_y^{GT}, u_0^{GT}, v_0^{GT}, b^{GT}, d^{GT}, \theta_p^{GT}, t_x^{GT}, t_y^{GT}, t_z^{GT}, X^{GT}, Y^{GT}, Z), \omega)$$

$$L^* = \frac{L_{f_x} + L_{f_y} + L_{u_0} + \dots + L_Z}{13}$$

训练细节

- · GeForce GTX 1050 Ti GPU for 200 epochs
- ADAM optimizer with Mean Absolute Error (MAE) loss function
- a base learning rate η of 10–3 with a batch size of 16

其他资料:

内部标定总结及技术路线:

camera_online_calib_td.pdf (11MB)

500

理论知识复习:

https://webthesis.biblio.polito.it/16698/1/tesi.pdf

标定工具库:

https://github.com/PJLab-ADG/SensorsCalibration

https://github.com/OpenCalib (鱼眼相机: https://arxiv.org/pdf/2305.16840.pdf)

灭点外参标定:

https://thomasfermi.github.io/Algorithms-for-Automated-Driving/CameraCalibration/VanishingPointCameraCalibration.html

- 给出了标定参数对感知结果的影响分析方法
- 给出了从灭点计算俯仰角的公式

