Advanced Statistics: Homework 2

Travelling Salesman with Simulated Annealing

Problem

The task is to find the optimal traveling salesman route through 30 most populated cities in Russia using simulated annealing.

Dataset

Dataset contains information about Russian cities with their geo-coordinates (latitude, longitude) and population.

Solution

- 1. Select top 30 cities by population
- 2. Calculate pairwise distance between cities. I've used python library geopy to calculate distances (in km) by Vincenty's formulae.
- 3. Start with random path through all 30 cities, calculate initial total distance, assign initial temperature *T*.
- 4. Run simulated annealing algorithm, trying to minimize total distance. At each iteration:
 - a. Pick two cities in the path
 - b. Exchange their positions in the path
 - c. Calculate new total distance
 - d. New path is accepted if $u \leq \frac{P^*(new_distance,T)}{P^*(old_distance,T)}$
 - $u \sim U(0,1)$
 - $P^*(dist, T) = e^{-dist/T}$
 - e. Decrease current temperature (exponential decay): $T \leftarrow T * annealing \ rate$

Experiments and results

For all 3 experiments initial temperature was 10000.0. The system is considered to be cooled down when the temperature falls below 1.0 (distance stops changing at $T \approx 10$)

Andrey Kulagin

Experiment	annealing_rate	# of iterations to cool down	Resulting distance (km)
1	0.99	917	≈26331
2	0.995	1838	≈19408
3	0.999	9206	≈13391

Please check out the github repository:

https://github.com/and-kul/salesman_simulated_annealing