LØSNINGS-SKISSER 2. ØVING

2.1 #1 a) De = 12 \ \ \ \(\((0,0) \) }

b) f definert nar x²-y²+0, dvs. i hele IR² bortsett fra nar y = ± x.

ln (x+y) definert når x+y>0 \$y>-x

 $\frac{2.2}{#3}$ \$\(\xi\) 0 gitt. Skal finne $\delta = \delta(8) > 0$ s.a.

11x-x011<0=> 1/2:(x)-12:(x0)1 < 8

Da $k_i(x) = x_i$, $k_i(x_0) = x_{0i}$ org $||x - x_0|| = \sqrt{(x_i - x_{0i})^2 + \dots + (x_i - x_{0i})^2 + \dots + (x_n - x_{0n})^2}$

= \(\langle (\text{k₁(x₀)} - \text{k₁(x₀)}^2 + \cdots + \left(\text{k₁(x)} - \text{k₁(x₀)}^2 + \cdots + \left(\text{k₁(x)} - \text{k₁(x₀)}^2 ser vi at 6 = 2 fungerer (og for alle k; - ene sambidig)!

#1a) f(x,y)= k, (x,y) + kz(x,y); sum au to kont. fu. ky, kz erkont, ved Setn. 2.2.2.

b) f(x,y) = k1(x,y)2k2(x,y)+k2(x,y); kont ved Setn 2.2.2 cla k1, ke kont. # 2 a)

F1(x,y,z) = x2z + y = k(x,y,z) k2(x,y,z) + k2(x,y,z) kont. som over ved Setn. 2,2,2.

Fer da bont. ved Setn. 2,2,4

6) Tilsu.

2.2 forts

#4a) Har $\|F(x)-F(y)\| \le M \|x-y\|$; $x,y\in D_F$ $M \ge 0$ Fer kont. da E > C gitt kan pareres med $S = E_M$ nor M > C. (For M = C fungerer alle S.)

5

a) 11(x-y)+ y 11 & 11x-y 11+11y11

 $|| \times || - || y || \le || \times - y ||$ $|| \times || - || y || \le || \times - y ||$ $|| y || - || \times || \le || y - x || = || x - y ||$

b) f(x) = ||x - a|| er kontinuerlig: La x_0 vilk i ||x||. Har

 $|f(x) - f(x_0)| = ||x - a|| - ||x_0 - a|||$ $\leq ||x - x_0||$

Altsa er f kont. i x : E>0 gitt, kan velge SEE.

C) Kan henvise til Setn 2.2.2: F(x) = 1 opplagt kont. (E>cgitt, alle 8>0 passer)

Oppg 7 Noen STIKKORD/TEGNINGER

Observer B_E (x) er en arpen mengde!

· Ause: F:1R" → 1R" kont (=) F'(U) er en apen mengde når Vajen

slik at $B_{\varepsilon}(x) \subset U$, passende ε . Kontinuitet $g(x) \in S_{\varepsilon}(x) \subset B_{\varepsilon}(x) \subset B_{\varepsilon}(x)$

(Gitt & > O. (Vil finne o)

 $F^{-1}(B_{\varepsilon}(F(x)))$ apen

Da $F^{-1}(B_{\xi}(F(x)))$ apun, fins det en δ -ball om x i mengden. Denne autildes innenfor $B_{\xi}(F(x))$.