

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

557694

(43)国際公開日
2004年12月16日 (16.12.2004)

PCT

(10)国際公開番号
WO 2004/108780 A1

- (51) 国際特許分類⁷: C08F 220/28,
G03F 7/039, H01L 21/30
- (21) 国際出願番号: PCT/JP2004/008004
- (22) 国際出願日: 2004年6月2日 (02.06.2004)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2003-160478 2003年6月5日 (05.06.2003) JP
特願2003-428853
特願2004-57449 2003年12月25日 (25.12.2003) JP
特願2004-57449 2004年3月2日 (02.03.2004) JP
- (71) 出願人(米国を除く全ての指定国について): 東京応化工業株式会社 (TOKYO OHKA KOGYO CO., LTD.) [JP/JP]; 〒211-0012 神奈川県川崎市中原区中丸子150番地 Kanagawa (JP).
- (72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 羽田英夫 (HADA,Hideo) [JP/JP]; 〒211-0012 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 Kanagawa (JP). 竹下優 (TAKESHITA,Masaru) [JP/JP]; 〒211-0012 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 Kanagawa (JP). 松丸省吾 (MATSUMARU,Syogo) [JP/JP]; 〒211-0012 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 Kanagawa (JP).

会社内 Kanagawa (JP). 清水宏明 (SHIMIZU,Hiroaki) [JP/JP]; 〒211-0012 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 Kanagawa (JP).

(74) 代理人: 棚井澄雄, 外 (TANAI,Sumio et al.); 〒104-8453 東京都中央区八重洲2丁目3番1号 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

A1

(54) Title: RESIN FOR PHOTORESIST COMPOSITION, PHOTORESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN

(54) 発明の名称: ホトレジスト組成物用樹脂、ホトレジスト組成物、およびレジストパターン形成方法

(57) Abstract: A resin for photoresist compositions is disclosed which is excellent in resolution and line-edge roughness characteristics. A photoresist composition and a method for forming a resist pattern using such a resin are also disclosed. The resin has a hydroxyl group bonded to a carbon atom at the end of the polymer, and the carbon atom in the α -position to the hydroxyl group has at least one electron-withdrawing group.

WO 2004/108780

(57) 要約: 解像性、ラインエッジラフネス特性が良好なホトレジスト組成物用樹脂、およびこれを用いたホトレジスト組成物およびレジストパターン形成方法が提供される。上記樹脂は、ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有する。

明細書

ホトレジスト組成物用樹脂、ホトレジスト組成物、およびレジストパターン形成方法

5

技術分野

本発明は、ホトレジスト組成物用樹脂、ホトレジスト組成物、およびレジストパターン形成方法に関する。

本願は、2003年6月5日に出願された特願2003-160478号、2

10 003年12月25日に出願された特願2003-428853号、及び2004年3月2日に出願された特願2004-57449号に基づく優先権を主張し、それらの内容をここに援用する。

背景技術

15 これまで化学增幅型レジストの基材樹脂成分としては、KrFエキシマレーザー(248 nm)に対する透明性が高いポリヒドロキシスチレンやこれの水酸基を酸解離性の溶解抑制基で保護したものが用いられてきた。しかしながら、今日では、半導体素子の微細化はますます進みArFエキシマレーザー(193 nm)を用いた130 nm以下の微細なレジストパターンを要するプロセスの開発が精力的に進められている。

ArFエキシマレーザーを光源とするプロセスでは、ポリヒドロキシスチレンのようなベンゼン環を有する樹脂はArFエキシマレーザー(193 nm)に対する透明性が不十分である。

従って、そのような欠点を解決したベンゼン環を有さず、透明性に優れかつ耐25 ドライエッチング性に優れる樹脂として、エステル部にアダマンタン骨格のような多環式炭化水素基を有する(メタ)アクリル酸エステルから誘導される単位を主鎖に有する樹脂(特許文献1乃至8)などが提案されている。

このような、従来のホトレジスト組成物としては、例えばラジカル重合により得られる樹脂成分、酸発生剤成分、有機溶剤等を含む化学增幅型のもの等が挙げら

れる。また、特許文献9では、連鎖移動剤として末端に極性基を持たないものを用いて重合した樹脂が開示されている。

- (特許文献1) 特許2881969号公報
(特許文献2) 特開平5-346668号公報
5 (特許文献3) 特開平7-234511号公報
(特許文献4) 特開平9-73173号公報
(特許文献5) 特開平9-90637号公報
(特許文献6) 特開平10-161313号公報
(特許文献7) 特開平10-319595号公報
10 (特許文献8) 特開平11-12326号公報
(特許文献9) 特開2001-2735号公報

近年、半導体素子製造において必要とされるデザインルールはいつそう狭まり、
130nm以下や100nm付近の解像度が必要とされるなど、解像度の向上が
要望されている。さらに、現像後レジストパターンにてラインエッジラフネス(LE
15 R)が発生するという問題もある。該LERは、ホールレジストパターンでは
ホール周囲に歪みが生じるし、ラインアンドスペースパターンでは側壁の不均一
な凹凸となる。そして、LERは、高解像性の要望が高まるにつれ、よりラフネ
スを小さくすることが要望されている。また、半導体素子の微細化に伴い、ディ
フェクトの低減も求められている。

20 しかしながら、従来のホトレジスト組成物においては、LERやディフェクト
の改善が不十分である。

発明の開示

本発明は前記事情に鑑てなされたもので、解像性、LER特性が良好で、かつ
25 ディフェクトが低減されたホトレジスト組成物に用いられる樹脂、並びにこれを
用いたホトレジスト組成物およびレジストパターン形成方法を提供することを課
題とする。

本発明においては、下記の手段により上記課題を解決するに至った。

すなわち、本発明の第1の態様(aspect)は、ポリマー末端に炭素原子に結合し

た水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とするホトレジスト組成物用樹脂である。

本発明の第 2 の態様 (aspect) は、ポリマー末端に、pK_a 6～12 を呈する置換基を有することを特徴とするホトレジスト組成物用樹脂である。

- 5 本発明の第 3 の態様 (aspect) は、本発明のホトレジスト組成物用樹脂を含むことを特徴とするホトレジスト組成物である。

本発明の第 4 の態様 (aspect) は、本発明のホトレジスト組成物を用いることを特徴とするレジストパターン形成方法である。

- なお、本明細書における「構成単位」とは、ポリマー（樹脂）を構成するモノ
10 マー単位を示す。

(発明の効果)

本発明は、解像性と LER 特性が向上され、かつディフェクトの低減されたホトレジスト組成物及びレジストパターン形成方法を提供することができる。

- 15 発明を実施するための最良の形態

[レジスト組成物用樹脂]

◆第 1 の態様

第 1 の態様のレジスト組成物用樹脂は、ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とする。

電子吸引性基としては、例えばハロゲン原子、ハロゲン化アルキル基等が挙げられる。

前記ハロゲン原子としてはフッ素原子、塩素原子等が挙げられるが、フッ素原子が好ましい。

- 25 前記ハロゲン化アルキル基において、ハロゲンは前記ハロゲン原子と同様である。アルキル基は炭素数、例えば 1～3 程度の低級アルキル基が望ましく、好ましくはメチル基またはエチル基、最も好ましくはメチル基である。具体的には、例えばトリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、ペーフルオロエチル基等が挙げられるが、特にトリフルオロメチル基が好ましい。

電子吸引性基の数は、1または2であり、好ましくは2である。

前記炭素原子に結合した水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有するとは、より具体的かつ好適には、 $-CR^1R^2OH$ 基を有し、 R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基であるものとして、表すことができる。
5

ここでのハロゲン原子、又はハロゲン化アルキル基とは前記したものと同様であり、アルキル基としては、メチル基、エチル基、プロピル基などの低級アルキ
10 ル基が挙げられる。前記低級アルキル基は、好ましくは炭素原子数1～5である。そして、その電子吸引性基は、前記したようにフッ素原子又はフッ素化アルキル基が好ましく、特には R^1 及び R^2 がともにフッ素化アルキル基、中でもトリフルオロメチル基であるときが、合成上、またLERを小さくする効果に優れ好ましい。

15 このホトレジスト組成物用樹脂においては、前記ポリマー末端に結合している $-CR^1R^2OH$ 基（以下、当該基を「末端構造」という場合がある）を有する構成単位（M1）の割合が、ホトレジスト組成物用樹脂の、前記構成単位（M1）以外の構成単位の合計100モル%に対して、1モル%以上（好ましくは2モル%以上）であることが好ましい。

20 なお、構成単位（M1）以外の構成単位の合計には、例えばラジカル重合で用いられるアゾビスイソブチロニトリル（AIBN）等の公知の重合開始剤から誘導される構成単位や樹脂の主成分たるモノマーから誘導される単位を含む。

上限値は特に限定する意義はないが、製造方法等に起因して実用的には例えば5モル%以下とされる。また、組成によっては末端構造の割合が多すぎると、レジストパターンの膜減りや、パターンの裾がややテーパー状にある現象等が生じる場合がある。なお、当然であるが構成単位（M1）のモル数は、末端構造のモル数、水酸基のモル数と等しい。
25

1モル%以上とすることにより、末端構造を導入したことによるLERの改善効果に優れる。これ以下だとその効果に劣る傾向がある。

当該末端構造は、例えばポリマーをモノマーと重合開始剤にて、ラジカル重合によって重合する際に、 $-CR^1R^2OH$ 基を有する連鎖移動剤を添加することによりポリマー末端に導入される。この場合、当該末端構造を有する構成単位（M1）とは、この連鎖移動剤から誘導される構成単位（M1）である。

5 連鎖移動剤は、例えば一般式「X-R'-CR¹R²OH」で示される。

当該式中、Xは水酸基またはチオール基であり、当該連鎖移動剤は、水酸基またはチオール基の水素原子が脱離して、ポリマー末端に結合する。従って、この場合、構成単位（M1）とは、「X-R'-CR¹R²OH」におけるXの水酸基またはチオール基から水素原子を除いた単位となる。なお、反応性の点から、X
10 10 はチオール基が好ましい。

また、R'は2価の脂肪族炭化水素基（直鎖、分岐鎖、環状のいずれでもよい）または2価の芳香族炭化水素基であり、これらの内、直鎖または分岐鎖状の脂肪族炭化水素基が好ましい。

脂環式基としては、例えばシクロヘキシレン基等が挙げられる。芳香族炭化水素基としては、例えばp-フェニレン基等が挙げられる。
15

直鎖または分岐鎖状の脂肪族炭化水素基としては、例えばメチレン基、エチレン基、n-プロピレン基、イソプロピレン基等が挙げられるが、エチレン基、n-プロピレン基が好ましい。

好ましい連鎖移動剤の一般式は、 $SH-(CH_2)_m-C(CF_3)_2-OH$ （mは
20 2-4の整数）で表される。これにより、好ましい構成単位（M1）は $-S-(CH_2)_m-C(CF_3)_2-OH$ で表される。

末端構造の割合（構成単位（M1）の割合）は、例えば仕込みのモノマーの量や前記連鎖移動剤の量を調整したり、前記連鎖移動剤を添加するタイミングを調整してレジスト組成物用樹脂の質量平均分子量を調整することにより、変化させ
25 25 ることができる。

また、合成後のレジスト組成物用樹脂においては、末端構造のモル数（構成単位（M1）のモル数）は例えばプロトン-NMR、カーボンNMR等のNMR（核磁気共鳴スペクトル）によって測定することができる。

構成単位（M1）以外の構成単位としては、レジスト組成物用樹脂に用いられ

ているもので、好ましくはラジカル重合により製造されるものであれば特に限定せず用いることができる。

本発明は、非化学增幅型または化学增幅型のホトレジスト組成物用樹脂のいずれにも適用可能であるが、化学增幅型が好ましい。

- 5 また、ネガ型、ポジ型のいずれにも適用可能であるが、ポジ型が好ましい。化学增幅型であって、ポジ型のレジスト組成物用樹脂としては、例えばK_rFエキシマレーザー用として多用されているヒドロキシスチレン系樹脂に酸解離性溶解抑制基（保護基）を導入した樹脂や、A_rFエキシマレーザー用として多用されている（メタ）アクリル酸系樹脂（なお、（メタ）アクリル酸 ((meth) acrylate) 10 とはアクリル酸 (acrylate) および／またはメタクリル酸 (methacrylate) を示す。）に、酸解離性溶解抑制基を導入したもの等が挙げられる。

酸解離性溶解抑制基としては、ヒドロキシスチレン系樹脂、（メタ）アクリル酸系樹脂等にそれぞれ用いられているものを任意に使用可能である。

- 具体的には、鎖状アルコキシアルキル基、第3級アルキルオキシカルボニル基、15 第3級アルキル基、第3級アルコキシカルボニルアルキル基及び環状エーテル基、等が挙げられる。

鎖状アルコキシアルキル基としては、1-エトキシエチル基、1-メトキシメチルエチル基、1-イソプロポキシエチル基、1-メトキシプロピル基、1-n-ブトキシエチル基などが、第3級アルキルオキシカルボニル基としては、te_rt-ブチルオキシカルボニル基、tert-アミルオキシカルボニル基などが、第3級アルキル基としては、tert-ブチル基、tert-アミル基などのような鎖状第3級アルキル基、2-メチル-2-アダマンチル基、2-エチル-2-アダマンチル基などのような脂肪族多環式基を含む第3級アルキル基などが、第3級アルコキシカルボニルアルキル基としては、tert-ブチルオキシカルボニルメチル基、tert-アミルオキシカルボニルメチル基などが、環状エーテル基としては、テトラヒドロピラニル基、テトラヒドロフラニル基などが挙げられる。下記に本発明において、好ましい（メタ）アクリル酸系樹脂の具体例を示す。

構成単位 (M1) 以外の構成単位としては、例えば以下の様なものが挙げられ

る。

(a 1) : 酸解離性溶解抑制基を有する (メタ) アクリル酸エステルから誘導される構成単位。

この樹脂は、さらに、任意に下記構成単位 (a 2)、(a 3) を含んでいてもよく、好ましくは構成単位 (a 1) 及び (a 2)、さらに好ましくは (a 1)、(a 2) 及び (a 3) を含むことが好ましい。

(a 2) : ラクトン環を有する (メタ) アクリル酸エステルから誘導される構成単位。

(a 3) : 水酸基を有する (メタ) アクリル酸エステルから誘導される構成単位。

なお、通常、ポリマー末端には、前記末端構造の他に、ラジカル重合開始剤から導入される構成単位が少量導入される。

・・構成単位 (a 1)

構成単位 (a 1) において、酸解離性溶解抑制基は、特に限定されるものではない。一般的には (メタ) アクリル酸の側鎖のカルボキシル基と、環状または鎖状の第3級アルキルエステルを形成するものが広く知られているが、その中でも脂肪族単環式又は多環式基含有酸解離性溶解抑制基が好ましく用いられ、脂肪族多環式基含有酸解離性溶解抑制基が最も好ましい。

前記脂肪族単環式基としては、シクロアルカン等から 1 個の水素原子を除いた基等を例示できる。具体的には、シクロヘキサン等から 1 個の水素原子を除いた基等が挙げられる。

前記脂肪族多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等から 1 個の水素原子を除いた基等を例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のポリシクロアルカンから 1 個の水素原子を除いた基等が挙げられる。

これらの中でもアダマンチル基、ノルボルニル基、テトラシクロドカニル基が工業上好ましい。

より具体的には、下記一般式 (I)、(II) 又は (III) 等が挙げられる。

(式中、Rは水素原子又はメチル基、R¹は低級アルキル基である。)

5 (式中、Rは水素原子又はメチル基、R²及びR³はそれぞれ独立に低級アルキル基である。)

(式中、Rは水素原子又はメチル基、R⁴は第3級アルキル基である。)

式中、R¹としては、炭素数1～5の低級の直鎖又は分岐状のアルキル基が好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。その中でも、メチル基、エチル基であることが工業的に入手が容易であることから好ましい。

前記R²及びR³は、それぞれ独立に、好ましくは炭素数1～5の低級アルキル基であると好ましい。式(II)で表される構成単位は、R²、R³が共にメチル基である場合が工業的に好ましく、具体的には、2-(1-アダマンチル)-2-プロピル(メタ)アクリレートから誘導される構成単位を挙げることができる。

前記R⁴は、tert-ブチル基やtert-アミル基のような第3級アルキル基であり、tert-ブチル基である場合が工業的に好ましい。

また、基-COOR⁴は、式中に示したテトラシクロドデカニル基の3または4の位置に結合していてよいが、結合位置は特定できない。また、(メタ)アクリレート構成単位のカルボキシル基残基も同様に式中に示した8または9の位置に結合していてよいが、結合位置は特定できない。

構成単位(a1)は、全構成単位の合計に対して、20～60モル%、好ましくは30～50モル%であることが望ましい。

20 構成単位(a2)

構成単位(a2)としては、(メタ)アクリル酸エステルのエステル側鎖部にラクトン環からなる单環式基またはラクトン環を有する脂肪族多環式基が結合した構成単位が挙げられる。なお、このときラクトン環とは、-O-C(O)-構造

を含むひとつの環を示し、これをひとつの目の環として数える。したがって、ここではラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。

そして、構成単位（a 2）としては、具体的には例えば、 γ -アブチロラクトンから水素原子1つを除いた単環式基や、ラクトン環含有ビシクロアルカンから水素原子を1つ除いた多環式基等が挙げられる。
5

具体的には、例えば以下の構造式（IV）～（VII）で表される構成単位が好ましい。

10

(式中、Rは水素原子又はメチル基、mは0又は1である。)

(式中、Rは水素原子又はメチル基である。)

- 5 (式中、Rは水素原子又はメチル基である。) 式(VI)で表される構成単位は、多環式基への(メタ)アクリレート基の結合位置が5位又は6位の異性体の混合物として存在する。

(式中、Rは水素原子又はメチル基である。)

構成単位(a2)は全構成単位の合計に対して、20～60モル%、好ましくは30～50モル%含まれていると好ましい。

5 構成単位(a3)

構成単位(a3)としては、例えばAxFエキシマレーザー用のホトレジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができ、例えば水酸基含有脂肪族多環式基を含むことが好ましい。該多環式基としては、前記構成単位(a1)の説明において例示したものと同様の多数の多環式基から適宜選択して用いることができる。

具体的に、構成単位(a3)としては、水酸基含有アダマンチル基や、カルボキシリ含有テトラシクロドデカニル基を有するものが好ましく用いられる。

さらに具体的には、下記一般式(VIII)で表される構成単位を挙げることができる。

(式中、Rは水素原子又はメチル基である。)

構成単位(a3)は全構成単位の合計に対して、10～50モル%、好ましくは10～40モル%含まれていると好ましい。

5 また、構成単位(a1)～(a3)以外の他の構成単位(a4)も挙げられる。

構成単位(a4)は、上述の構成単位(a1)～(a3)に分類されない他の構成単位であれば特に限定されるものではない。

例えば脂肪族多環式基を含み、かつ(メタ)アクリル酸エステルから誘導される構成単位等が好ましい。該多環式基は、例えば、前記の構成単位(a1)の場合に例示したものと類似のものを例示することができ、特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基から選ばれる少なくとも1種以上であると、工業上入手し易い等の点で好ましい。

構成単位(a4)として、具体的には、下記(I X)～(X I)の構造のものを例示することができる。

(式中Rは水素原子又はメチル基である)

5 (式中Rは水素原子又はメチル基である)

(式中Rは水素原子又はメチル基である)

構成単位 (a 4) は全構成単位の合計に対して 1 ~ 25 モル%、好ましくは 5 ~ 20 モル% の範囲で含まれていると好ましい。

5 なお、レジスト組成物用樹脂は 1 種または 2 種以上の樹脂から構成することができる。

そして、例えば構成単位 (M 1) 以外の構成単位を誘導するモノマーを、例えばアゾビスイソブチロニトリル (AIBN) のようなラジカル重合開始剤を用いた公知のラジカル重合等によって重合させ、質量平均分子量の調整、構成単位 (M 10 1) の割合の調整等の点から、適当な時期に連鎖移動剤として前記末端構造を有する連鎖移動剤を添加し、重合を連鎖移動させることによって本発明のレジスト組成物用樹脂を得ることができる。

本発明のレジスト組成物用樹脂の質量平均分子量（グルバーミエーションクロマトグラフィによるポリスチレン換算質量平均分子量、以下同様。）は、例えば約 15 12000 以下、好ましくは 10000 以下、さらに好ましくは 8000 以下とされる。

特に 8000 以下とすることにより末端構造の導入量を多くすることができ、LER 改善効果が向上する。また、パターン断面形状をより矩形にすることができるという効果も得られる。

20 下限値は特に限定するものではないが、パターン倒れの抑制、解像性等の点で、好ましくは 4000 以上、さらに好ましくは 5000 以上とされる。

第 1 の態様においては、この様なレジスト組成物用樹脂の構造により、LER

特性が向上する。さらに、レジストパターンの倒れも低減することができる。そして、パターン倒れの低減により解像性も向上する。また、焦点深度幅特性が向上する。また、ディフェクトも低減する。

なお、LERが向上する理由は定かではないが、従来、例えばラジカル重合により得られる樹脂成分のポリマー末端は、疎水性の重合開始剤や、疎水性の連鎖移動剤（停止剤）から誘導される構造を含み、アルカリ現像液への溶解を阻害する可能性があるのに対し、本発明においては、電子吸引性基が存在することによって、水酸基の水素が解離しやすくなるため、樹脂に適度な酸性度が付与され、その結果、アルカリ現像液への溶解性が向上し、レジストパターンの露光部と未露光部の境界面のLER特性が向上するものと推測される。

◆第2の態様

第2の態様のレジスト組成物用樹脂は、ポリマー末端に、 pK_a 6～12、好ましくは7～10を呈する置換基を有することを特徴とする。

このような範囲とすることにより、適度な酸性度を生じさせることができるために、LER特性が良好となり、かつレジストパターンの膨潤を抑制することができる。

該置換基において水素イオンを発生する基としてはアルコール性水酸基が挙げられる。

カルボキシル基の水酸基は、 pK_a が小さくなりすぎアルカリ現像すると膨潤しそうないので好ましくない。

当該置換基の pK_a は、例えばこのアルコール性水酸基の α 位の炭素原子に電子吸引性基が結合していると小さな値となり、結合していないと大きな値となる。つまり、前記アルコール性水酸基と、前記 α 位の炭素原子と、これに結合する原子および／または置換基（ β 位の炭素原子を除く）とをあわせた末端構造の特性によって変化する値である。

pK_a は、 α 位の炭素原子に結合する電子吸引性基の種類や数、ポリマー末端の置換基の種類等を調整することによって変化させることができる。

すなわち、第1の態様の様に、 α 位の炭素原子に電子吸引性基が結合すること

により、 pK_a を小さくすることができる。

この pK_a の数値範囲を満足するには、第1の態様の構成が好ましく、当該置換基としては、 $-CR^1R^2OH$ 基（ R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である）で表されるものが好ましい。

なお、 pK_a は水溶液中の酸解離定数によって表されるものである。 pK_a は、前記末端構造の酸性度を測定できる様なモノマーを用意し、滴定等の定法によつて測定することができる。

10 また、 pK_a は文献等に記載の値を用いることもできる。

第2の態様においては、この様なレジスト組成物用樹脂の構造により、LER特性が向上する。

さらに、レジストパターンの倒れも低減することができる。そして、パターン倒れの低減により解像性も向上する。また、焦点深度幅特性が向上する。また、

15 ディフェクトも低減する。

なお、LERが向上する理由は第1の態様における理由と同様である。

[ホトレジスト組成物]

本発明のホトレジスト組成物は本発明のレジスト組成物用樹脂を用いるもので
20 ればその他の組成は特に限定しない。

例えば化学增幅型でポジ型のホトレジスト組成物の場合は、本発明のレジスト組成物用樹脂であって、酸解離性溶解抑制基を有する樹脂成分（A）、酸発生剤成分（B）、有機溶剤（C）、その他必要に応じて含窒素有機化合物（D）等の添加剤等を含む。以下、ArFエキシマレーザーで露光するのに適した組成例を示す。

25 （A）成分の含有量は、形成しようとするレジスト膜厚に応じて調整すればよい。一般的には、固形分濃度にして、8～25質量%、より好ましくは10～20質量%である。

・酸発生剤成分（B）

本発明において、（B）成分は、従来化学增幅型ホトレジスト組成物において使

用されている公知の酸発生剤を含有してもよい。酸発生剤は、これまでヨードニウム塩やスルホニウム塩などのオニウム塩、オキシムスルホネート類、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ニトロベンジルスルホネート類、イミノスルホネート類、ジスルホン類など多種のものが知られているので、
5 このような公知の酸発生剤から特に限定せずに用いることができる。

その中でも、特に (b-0) フッ素化アルキルスルホン酸イオンをアニオンとして含むオニウム塩が、発生する酸の強度が強いことから、好適である。

かかる (b-0) オニウム塩のカチオンとしては、例えばメチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基などの低級アルキル基；メトキシ基、エトキシ基などの低級アルコキシ基などで置換されていてもよいモノまたはジフェニルヨードニウム、モノ、ジ、またはトリフェニルスルホニウム；ジメチル (4-ヒドロキシナフチル) スルホニウムなどが好ましい。
10

また、かかる (b-0) のアニオンは、フッ素化アルキルスルホン酸イオンであることが好ましい。

15 その中でも、炭素数 1～7、より好ましくは炭素数 1～3 の直鎖状のアルキル基の水素原子の一部または全部がフッ素原子で置換されたフッ素化アルキルスルホン酸イオンが好ましい。炭素数が 7 以下であることにより、スルホン酸としての強度も高くなる。

また、該フッ素化アルキルスルホン酸イオンのフッ素化率（アルキル基中のフッ素原子の割合）は、好ましくは 10～100%、さらに好ましくは 50～100% であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
20

このようなものとしては、具体的には、トリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネート、ノナフルオロブタンスルホネートなどが挙げられる。
25

(b-0) の具体例として、ジフェニルヨードニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ビス (4-tert-ブチルフェニル) ヨードニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまた

はそのノナフルオロブタンスルホネート、(4-メトキシフェニル) フェニルヨードニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ (4-メチルフェニル) スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4-メチルフェニル) ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル (4-ヒドロキシナフチル) のトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、
モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフル
オロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4-メトキシフェニル) ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(p-tert-ブチルフェニル) ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ (p-tert-ブチルフェニル) スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4-トリフルオロメチルフェニル) ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート等
が挙げられる。

本発明において、前記 (b-0) 以外の酸発生剤である、イミノスルホネート系酸発生剤も好適に用いることができる。

イミノスルホネート系酸発生剤の具体例として、下記一般式 (b-1) 又は (b-2) で表される化合物 (以下、それぞれ、スルホニウム化合物 1 又はスルホニ

ウム化合物2ということがある)が挙げられる。

5 一般式(b-1)又は(b-2)中、Xは、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキレン基であり、該アルキレン基の炭素数は2~6であり、好ましくは3~5、最も好ましくは炭素数3である。

Y、Zは、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1~10であり、好ましくは1~7、より好ましくは1~3である。Xのアルキレン基の炭素数またはY、Zのアルキル基の炭素数が小さいほどレジスト溶媒への溶解性も良好であるため好ましい。

また、Xのアルキレン基またはY、Zのアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200 nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70~100%、さらに好ましくは90~100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。

20 R¹~R³はそれぞれ独立にアリール基またはアルキル基を表す。

R¹~R³のうち、少なくとも1つはアリール基を表す。R¹~R³のうち、2以

上がアリール基であることが好ましく、R¹～R³のすべてがアリール基であることが最も好ましい。

R¹～R³のアリール基としては、特に制限はなく、例えば、炭素数6～20のアリール基であって、アルキル基、ハロゲン原子等で置換されていてもされてい
5 なくともよいフェニル基、ナフチル基が挙げられる。安価に合成可能なことから、炭素数6～10のアリール基が好ましい。

R¹～R³のアルキル基としては、特に制限はなく、例えば炭素数1～10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1～5であることが好ましい。具体的には、メチル基、エチル基、n-ブ
10 ロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。

これらの中で、R¹～R³はすべてフェニル基であることが最も好ましい。

15 これら的一般式 (b-1) 又は (b-2) で表される化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。そのなかでも、一般式 (b-1) で表されるスルホニウム化合物1が好ましく、下記化学式 (XIII) で表される化合物が最も好ましい。

本発明においては、このようなスルホニウム化合物1および2から選ばれる少なくとも1種と上記本発明のレジスト組成物用樹脂とを組み合わせることにより、ディフェクトの低減効果が極めて優れたものとなる。ここで、ディフェクトは、例えばKLAテンコール社の表面欠陥観察装置（商品名「KLA」）等により、現像後のレジストパターンの真上から観察した際に検知されるスカムやレジストパターンの不具合全般のことである。このようなディフェクトは、プロセスにおける歩留まりの低下や製品の性能劣化などの原因となるため、非常に大きな問題である。これらのディフェクトの原因としてはいくつかが考えられ、例えばレジストの解像性能、レジスト中の難溶化物・不純物等に起因するアルカリ溶解性のむら、レジストの表面状態などが挙げられる。

ディフェクトが低減される理由としては、上述のように、ディフェクトの原因の1つとしてレジストの解像性能があり、解像性能がディフェクトに与える影響が大きいと考えられるが、スルホニウム化合物1および2は、式（b-1）または（b-2）に示すように嵩高いイミンスルホン酸の構造を有しているため、炭素数が小さくても拡散長が短く、そのため、高解像性を有すると考えられる。特にスルホニウム化合物1は環状構造を有するために、さらに拡散長が短く、解像性能が高いと予想される。その結果として、ディフェクトが低減されると考えられる。

このようなディフェクトの低減効果は、特に微細なコンタクトホール（CH）パターンを形成しようとする場合に重要である。これは、微細なCHパターンを形成しようとする場合、非常に小さいサイズのCHパターンを形成するために非常に低い光強度でパターニングを行う必要があるため、CHパターンの上部あるいは内部が塞がってしまったり、色むらが出るといったディフェクトが生じやすいためである。

（B）成分として前記（b-0）とスルホニウム化合物1および2から選ばれる少なくとも1種とを混合して用いる場合、前記（b-0）の割合は、10～75質量%が好ましく、30～70質量%がより好ましい。上記範囲内の前記（b-0）を配合することにより、LERやディフェクト（現像欠陥）等に極めて優れたものとなる。

また、(b-0)とスルホニウム化合物1および2から選ばれる少なくとも1種との混合比率(質量比)は1:9~9:1、好ましくは1:5~5:1、最も好ましいのは1:2~2:1である。上記の比率で酸発生剤を混合して用いることで、LERや現像欠陥に極めて優れたものとなる。特には、一般式(b-1)で示されるスルホニウム化合物1と(b-0)とを混合して用いることが最も好ましい。

(B) 成分は、(A) 成分100質量部に対して0.1~30質量部、好ましくは0.5~20質量部、さらに好ましくは1~10質量部の割合で用いられる。下限値未満では像形成がなされず、30質量部をこえると均一な溶液となりにくく、保存安定性が低下するおそれがある。

・有機溶剤(C)

本発明のポジ型レジスト組成物は、材料を有機溶剤(C)(以下、(C)成分という)に溶解させて製造することができる。

(C) 成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学增幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。

例えば、 γ -ブチロラクトン、アセトン、メチルエチルケトン、シクロヘキサン、メチルイソアミルケトン、2-ヘプタノンなどのケトン類や、エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、またはジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテルなどの多価アルコール類およびその誘導体や、ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類などを挙げることができる。これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。プロピレングリコールモノメチルエーテルアセテート(PGMEA)と極性溶剤との混合溶剤が好ましい。この混合溶剤における

配合比は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1：9～8：2、より好ましくは2：8～5：5の範囲内とすることが好ましい。

より具体的には、極性溶剤として乳酸エチル（EL）を配合する場合は、PGMEA：ELの質量比が好ましくは2：8～5：5、より好ましくは3：7～4：6であると好ましい。また、有機溶剤として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ-ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70：30～95：5とされる。（C）成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜圧に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度2～20質量%、好ましくは5～15質量%の範囲内とされる。

・含窒素有機化合物（D）

レジストパターン形状、引き置き経時安定性等を向上させるために、さらに任意の（D）成分として含窒素有機化合物を配合させることができる。

この含窒素有機化合物は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良いが、アミン、特に第2級低級脂肪族アミンや第3級低級脂肪族アミンが好ましい。

ここで、低級脂肪族アミンとは炭素数5以下のアルキルまたはアルキルアルコールのアミンを言い、この第2級や第3級アミンの例としては、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリペンチルアミン、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン等が挙げられるが、特にトリエタノールアミンのような第3級アルカノールアミンが好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

これらは、（A）成分100質量部に対して、通常0.01～5.0質量部の範囲で用いられる。

また、前記（D）成分との配合による感度劣化を防ぎ、またレジストパターン形状、引き置き安定性（post exposure stability of the latent image formed by

the pattern wise exposure of the resist layer) 等の向上の目的で、さらに任意の (E) 成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、(D) 成分と (E) 成分は併用することもできるし、いずれか 1 種を用いることもできる。

- 5 有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が好適である。その中でも、サリチル酸を好ましく用い
ることができる。

リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ - n - プチルエステル、リン酸ジフェニルエステル等のリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸 - ジ - n - プチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸及びそれらのエステルのような誘導体、ホスフイン酸、フェニルホスフイン酸等のホスフイン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。

- 15 (E) 成分は、(A) 成分 100 質量部当り 0.01 ~ 5.0 質量部の割合で用
いられる。

・ その他の任意成分

- 本発明のホトレジスト組成物には、さらに所望により混和性のある添加剤、例
えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための
20 界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤等を適
宜、添加含有させることができる。

[レジストパターン形成方法]

- 本発明のレジストパターン形成方法は本発明のホトレジスト組成物を用いるも
25 のであれば特に限定されない。

本発明のレジストパターン形成方法は例えば以下の様にして行うことができる。

すなわち、まずシリコンウェーハのような基板上に、例えばポジ型のホトレジ
スト組成物をスピナーラー等で塗布し、80 ~ 150 °C の温度条件下、プレベーク
を 40 ~ 120 秒間、好ましくは 60 ~ 90 秒間施し、これに例えば ArF 露光

装置等により、ArFエキシマレーザー光を所望のマスクパターンを介して選択的に露光した後、80～150℃の温度条件下、PEB（露光後加熱）を40～120秒間、好ましくは60～90秒間施す。次いでこれをアルカリ現像液、例えば0.1～10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。

なお、基板とホトレジスト組成物の塗布層との間には、有機系または無機系の反射防止膜を設けることもできる。

また、露光に用いる波長は、特に限定されず、レジスト組成物用樹脂等の特性に応じて、ArFエキシマレーザー、KrFエキシマレーザー、F₂エキシマレーザー、EUV（極紫外線）、VUV（真空紫外線）、EB（電子線）、X線、軟X線等の放射線を用いて行うことができる。

この様に、本発明においては、LER特性等が良好なレジスト用樹脂を提供できるので、半導体素子、液晶素子などの電子素子の製造に好適なホトレジスト組成物が提供できる。そして、好ましくは、例えばレジスト用樹脂の構成単位を適宜選択することにより、200nm以下の波長、中でもArFエキシマレーザー用の化学增幅型ホトレジスト組成物を提供できる。

実施例

以下、本発明を実施例を示して詳しく説明する。

（実施例1）

γ-アブチロラクトンメタクリート（一般式（VII）においてRがメチル基である単位に相当するモノマー）／2-メチル-2-アダマンチルメタクリート（一般式（I）においてRがメチル基で、R¹がメチル基ある単位に相当するモノマー）／3-ヒドロキシ-1-アダマンチルアクリレート（一般式（VIII）においてRが水素原子である単位に相当するモノマー）=50／30／20（モル%）の組成のモノマー0.1molをTHF（テトラヒドロフラン）150mlに溶解させ、AIN（前記モノマー100モル%に対して4モル%）を用いて70℃でラジカル重合を開始し、重合の連鎖移動剤として下記化学式（XIV）

· · · (XIV)

5 で表される化合物（末端構造の pK_a は約 7）を、前記仕込みのモノマーと、A
IBN の合計 100 モル% に対して、2 モル% 添加して重合反応を行った。重合
反応終了後、反応液を n-ヘプタン 2000 ml に注加し、25°C で 30 分間攪
拌して析出した固体をろ取した。この固体を再度 THF 200 ml に溶解した後
n-ヘプタン 2000 ml に注加し、25°C で 30 分間攪拌して析出した樹脂を
10 ろ取した。樹脂の質量平均分子量は 10000 であった。

得られたレジスト組成物用樹脂 ((A) 成分) 100 質量部に、それぞれ以下の
成分を混合、溶解してポジ型ホトレジスト組成物を製造した。

(B) 成分：トリフェニルスルホニウムノナフルオロブタンスルホネート 3.
0 質量部

15 (D) 成分：トリエタノールアミン 0.1 質量部

(C) 成分：プロピレングリコールモノメチルエーテルアセテート／乳酸エチ
ル = 80 / 20 (質量比) との混合溶剤 900 質量部

ついで、得られた化学增幅型ポジ型ホトレジスト組成物を、スピンナーを用い
てシリコンウェーハ上に塗布し、ホットプレート上で 120°C、90 秒間プレベ
ーク (PAB 处理) し、乾燥することにより、膜厚 250 nm のレジスト層を形
成した。

ついで、ArF 露光装置 NSR-S302 (Nikon 社製 NA (開口数) =
0.60, 2 / 3 輪帶照明) により、ArF エキシマレーザー (193 nm) を、
マスクパターンを介して選択的に露光した。

25 そして、120°C、90 秒間の条件で PEB 处理し、さらに 23°C にて 2.3

8質量%テトラメチルアンモニウムヒドロキシド水溶液で、23°Cの温度条件下で60秒間パドル現像し、その後20秒間水洗して乾燥した。

120nmのラインアンドスペースパターン（1：1）が忠実に再現される露光量で形成したレジストパターンについて、SEM（走査型電子顕微鏡）を用いて断面形状を観察した。
5

パターン形状は矩形のままで、膜減り等もなく、解像性も良好であった。

また、120nmのラインアンドスペースパターン（1：1）の焦点深度幅は500nmであった。

また、ラインアンドスペースパターンのラインエッジラフネスを示す尺度である 3σ を求めたところ、7.2nmであった。
10

なお、 3σ は、側長SEM（日立製作所社製、商品名「S-9220」）により、試料のレジストパターンの幅を32箇所測定し、その結果から算出した標準偏差（ σ ）の3倍値（ 3σ ）である。この 3σ は、その値が小さいほどラフネスが小さく、均一幅のレジストパターンが得られたことを意味する。

15 また、ディフェクトを、KLAテンコール社製の表面欠陥観察装置 KLA'2 132（製品名）を用いて測定し、ウェーハ内の欠陥数を評価した。試験に用いたウェーハは3枚であり、その平均値を求めた。結果は3個であった。

また、選択的露光における露光時間を長くしていく、それに伴いパターンが細くなつていったときにどこでパターン倒れが生じるかどうかを測定したところ、
20 パターンの幅が57nmとなった時点で倒れが生じた。

（実施例2）

前記化学式（XIV）で表される連鎖移動剤の割合を、2モル%から3モル%に変更した以外は実施例1と同様にして質量平均分子量10000のレジスト組成物用樹脂を得た。
25

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

（実施例3）

レジスト組成物用樹脂の質量平均分子量が7000になる様に調整した以外は、

実施例 2 と同様にしてレジスト組成物用樹脂を得た。

そして、実施例 1 と同様にして評価した。結果を表 1 にまとめて示した。

(実施例 4)

- 5 仕込みのモノマー組成をノルボルナンラクトンアクリレート（一般式（V）において R が水素原子である単位に相当するモノマー）／2-エチル-2-アダマンチルメタクリレート（一般式（I）において R がメチル基で、R¹がエチル基である単位に相当するモノマー）／3-ヒドロキシ-1-アダマンチルアクリレート（一般式（VIII）において R が水素原子である単位に相当するモノマー）
10 = 50／30／20（モル%）とした以外は、実施例 3 と同様にして質量平均分子量が 7000 のレジスト組成物用樹脂を得た。

そして、実施例 1 と同様にして評価した。結果を表 1 にまとめて示した。

(実施例 5)

- 15 仕込みのモノマー組成をノルボルナンラクトンメタクリレート（一般式（VI）において R がメチル基である単位に相当するモノマー）／2-エチル-2-アダマンチルメタクリレート（一般式（I）において R がメチル基で、R¹がエチル基である単位に相当するモノマー）／3-ヒドロキシ-1-アダマンチルメタクリレート（一般式（VIII）において R がメチル基である単位に相当するモノマー）= 40／40／20（モル%）とした以外は、実施例 1 と同様にして質量平均分子量が 6400 のレジスト組成物用樹脂を得た。
20

そして、実施例 1 と同様にして評価した。結果を表 1 にまとめて示した。

(実施例 6)

- 25 レジスト組成物用樹脂の質量平均分子量が 4800 になる様に調整した以外は、実施例 1 と同様にしてレジスト組成物用樹脂を得た。

そして、実施例 1 と同様にして評価した。結果を表 1 にまとめて示した。

(実施例 7)

(B) 成分として、トリフェニルスルホニウムノナフルオロブタンスルホネートを1.5質量部と、下記化学式(XV)で表される化合物を1.5質量部とを用いたこと以外は実施例5と同様にして評価した。結果を表1にまとめて示した。

5

... (XV)

(実施例8)

仕込みのモノマー組成を、 γ -ブチロラクトンアクリレート(一般式(VII))においてRが水素原子である単位に相当するモノマー) / 2-メチル-2-アダマンチルメタクリレート(一般式(I))においてRがメチル基で、 R^1 がメチル基ある単位に相当するモノマー) / 3-ヒドロキシ-1-アダマンチルアクリレート(一般式(VIII))においてRが水素原子である単位に相当するモノマー) = 40 / 40 / 20 (モル%) とし、前記化学式(XIV)で表される連鎖移動剤の割合を、3モル%に変更した以外は実施例1と同様にして質量平均分子量7000のレジスト組成物用樹脂を得た。そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

(実施例9)

仕込みのモノマー組成を、 γ -ブチロラクトンメタクリレート(一般式(VI))においてRがメチル基である単位に相当するモノマー) / 2-メチル-2-アダマンチルメタクリレート(一般式(I))においてRがメチル基で、 R^1 がメ

チル基ある単位に相当するモノマー) / 3-ヒドロキシ-1-アダマンチルメタクリレート(一般式(VIII)においてRがメチル基である単位に相当するモノマー) / トリシクロデカニルメタクリレート(一般式(IX)において、Rがメチル基である構成単位に相当するモノマー) = 40 / 40 / 15 / 5 (モル%)

- 5 とし、前記化学式14で表される連鎖移動剤の割合を、3モル%に変更した以外は実施例1と同様にして質量平均分子量7000のレジスト組成物用樹脂を得た。そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

(比較例1)

- 10 実施例1において、連鎖移動剤を用いない以外は同様にして、レジスト組成物用樹脂を製造し、次いで実施例1と同様な組成のレジスト組成物を調製し、実施例1と同様な方法でポジ型ホトレジスト組成物を調製した。

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

15 (比較例2)

- 実施例4において、連鎖移動剤を用いない以外は同様にして、レジスト組成物用樹脂を製造し、次いで実施例1と同様な組成のレジスト組成物を調製し、実施例1と同様な方法でポジ型ホトレジスト組成物を調製した。そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

20

(比較例3)

- 実施例5において、連鎖移動剤を用いない以外は同様にして、レジスト組成物用樹脂を製造し、次いで実施例1と同様な組成のレジスト組成物を調製し、実施例1と同様な方法でポジ型ホトレジスト組成物を調製した。そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

表 1

	D <small>O</small> F (nm)	形状	L <small>E</small> R (nm)	倒れ(nm)	ディフェクト
実施例 1	500	矩形	7.2	57	3
実施例 2	550	矩形(若干裾引き)	6.5	55	2個
実施例 3	500	矩形	5.1	58	1個
実施例 4	500	矩形	6	60	1個
実施例 5	500	非常に矩形	5.5	55	1個
実施例 6	500	矩形	6.1	60	1個
実施例 7	500	非常に矩形	5	55	1個
実施例 8	500	矩形	7	62	1個
実施例 9	400	非常に矩形	6.5	55	1個
比較例 1	500	矩形	9.8	72	10個
比較例 2	550	矩形	8	69	12個
比較例 3	500	矩形(若干裾引き)	8	65	15個

表 1 の結果より、本発明に係る実施例においては、パターン形状は矩形であり、

- 5 焦点深度幅特性に優れ、かつ LER 特性が良好で、パターン倒れを防ぐことができたので、解像性も良好で、さらにディフェクトも良好であった。実施例 7 については、レジストパターン形状、LER、ディフェクトにおいて、極めて良好な結果となった。

10 (実施例 10)

- 仕込みのモノマー組成を、 γ -ブチロラクトンアクリート（一般式 (VII)）において R が水素原子である単位に相当するモノマー）／2-エチル-2-アダマンチルメタクリレート（一般式 (I) において R がメチル基で、R¹ がエチル基ある単位に相当するモノマー）／3-ヒドロキシ-1-アダマンチルメタクリレート（一般式 (VIII) において R がメチル基である単位に相当するモノマー） = 40／40／20 (モル%) に変更し、前記化学式 14 で表される連鎖移動剤の割合を、2.5 モル%に変更した以外は実施例 1 と同様にして質量平均分

分子量 7000 のレジスト組成物用樹脂を得た。

得られたレジスト組成物用樹脂 100 質量部に、以下の成分を混合、溶解してポジ型レジスト組成物を製造した。

(B) 成分：上記化学式 (XV) で表される化合物 2.5 質量部および下記化
5 学式 (XVI) で表される化合物 1.0 質量部

... (XVI)

10 (D) 成分：トリエタノールアミン (0.1 質量部)

(E) 成分：サリチル酸 (0.1 質量部)

(C) 成分：プロピレングリコールモノメチルエーテルアセテート／乳酸エチ
ル = 60 / 40 (質量比) の混合溶剤 (1200 質量部)

ついで、得られたポジ型レジスト組成物を、スピナードを用いてシリコンウェ
15 一ハに塗布し、ホットプレート上で 90°C、90 秒間プレベーク (PAB 处理)
し、乾燥することにより、膜厚 220 nm のレジスト層を形成した。

ついで、ArF 露光装置 NSR-S306 (Nikon 社製 NA (開口数) =
0.78, $\sigma = 0.3$) により、ArF エキシマレーザー (193 nm) を、マ
スクパターンを介して選択的に露光した。

20 そして、90°C、90 秒間の条件で PEB 处理し、さらに 23°C にて 2.38
質量% テトラメチルアンモニウムヒドロキシド水溶液で、23°C の温度条件下で
60 秒間パドル現像し、その後 20 秒間水洗して乾燥して、口径 300 nm、ピ
ッヂ 500 nm のコンタクトホール (CH) パターンを得た。その際の感度 (E)

○ p) は 18.5 mJ/cm^2 であった。

また、ディフェクトの評価のため、KLAテクニコール社製の表面欠陥観察装置 KLA 2132 (製品名) を用いてウェーハ内の欠陥数を測定したところ、 8.9 個/cm^2 であった。なお、本実施例においては、形成したパターンがCHパ

ターンであるため、実施例1～9および比較例1～3で形成したラインアンドスペースパターン (1 : 1) に比べ、基板上に残っているレジストの面積が広い。そのため、ウェーハ1枚当たりの欠陥数が多くなっている。微細なホールパターンの現像欠陥の測定は非常に難しい為、 300 nm のホールパターンで現像欠陥を測定している。

10 次に、マスクを変更して解像性及び焦点深度幅の確認を行ったところ、それぞれ口径 130 nm の孤立ホールパターン (ピッチ 1000 nm) 及び口径 130 nm のホールパターン (ピッチ 220 nm) が得られた。その際の焦点深度幅はそれぞれ $0.25 \mu\text{m}$ 及び $0.3 \mu\text{m}$ であった。

15

産業上の利用可能性

本発明は、解像性とLER特性が向上され、かつディフェクトの低減されたホトレジスト組成物及びレジストパターン形成方法が提供されるから、産業上極めて有用である。

請求の範囲

1. ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とするホトレジスト組成物用樹脂。
5
2. ポリマー末端に $-CR^1R^2OH$ 基 (R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である) を
10 有する請求項 1 に記載のホトレジスト組成物用樹脂。
3. 前記電子吸引性基がフッ素原子又はフッ素化アルキル基である請求項 1 に記載のホトレジスト組成物用樹脂。
15 4. 請求項 2 に記載のホトレジスト組成物用樹脂において、前記 $-CR^1R^2O$ H基を有する構成単位 (M1) の割合が、当該ホトレジスト組成物用樹脂の、前記構成単位 (M1) 以外の構成単位の合計 100 モル%に対して、1 モル%以上であるホトレジスト組成物用樹脂。
20 5. ポリマー末端に、 pK_a 6 ~ 12 を呈する置換基を有するホトレジスト組成物用樹脂。
6. 前記置換基が $-CR^1R^2OH$ 基 (R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつは
25 ハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である) である請求項 5 に記載のホトレジスト組成物用樹脂。
7. さらに酸解離性溶解抑制基を有する請求項 1 又は 5 に記載のホトレジスト組成物用樹脂。

8. 前記ホトレジスト組成物用樹脂は、更に（a 1）酸解離性溶解抑制基を有する（メタ）アクリル酸エステルから誘導される構成単位及び（a 2）ラクトン環を有する（メタ）アクリル酸エステルから誘導される構成単位を有することを
5 特徴とする請求項 7 記載のホトレジスト用樹脂。
9. さらに（a 3）水酸基を有する（メタ）アクリル酸エステルから誘導される構成単位を有することを特徴とする請求項 8 記載のホトレジスト用樹脂。
- 10 10. 質量平均分子量が 1 2 0 0 0 以下であることを特徴とする請求項 1 又は
9 に記載のホトレジスト組成物用樹脂。
11. 請求項 1 又は 5 に記載のホトレジスト組成物用樹脂を含むことを特徴とするホトレジスト組成物。
15
12. さらに（B）成分として酸発生剤を含有することを特徴とする請求項 1
1 に記載のホトレジスト組成物。
13. 前記（B）成分として、（b - 0）フッ素化アルキルスルホン酸イオンを
20 アニオンとするオニウム塩を含有する請求項 12 に記載のホトレジスト組成物。
14. 前記（B）成分として、下記一般式（b - 1）又は（b - 2）

[式中、Xは、少なくとも1つの水素原子がフッ素原子で置換された炭素数2～6のアルキレン基を表し；Y、Zは、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された炭素数1～10のアルキル基を表し；R¹～R³は、5 それぞれ独立に、アリール基またはアルキル基を表し、R¹～R³のうち少なくとも1つはアリール基を表す]で表されるスルホニウム化合物を含有することを特徴とする請求項12に記載のホトレジスト組成物。

15. さらに(B)成分として、(b-0)フッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩を含有することを特徴と請求項14記載のホトレジスト組成物。

16. さらに含窒素有機化合物を含むことを特徴とする請求項11に記載のホトレジスト組成物。

15

17. 請求項11に記載のホトレジスト組成物を用いることを特徴とするレジストパターン形成方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/008004

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl⁷ C08F220/28, G03F7/039, H01L21/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl⁷ C08F220/10-220/40, G03F7/039

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CA (STN); WPI/L

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 07-234511 A (Fujitsu Ltd.), 05 September, 1995 (05.09.95), Full text & EP 0663616 B1 & US 6004720 A & US 6344304 B1 & US 2002/0076645 A1	1-17
A	JP 11-012326 A (Fujitsu Ltd.), 19 January, 1999 (19.01.99), Full text & KR 250566 B1	1-17
A	JP 2000-321771 A (Fuji Photo Film Co., Ltd.), 24 January, 2000 (24.01.00), Full text & US 6596458 B1	1-17

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
 10 August, 2004 (10.08.04)

Date of mailing of the international search report
 14 September, 2004 (14.09.04)

Name and mailing address of the ISA/
 Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/008004

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2001-002735 A (Mitsubishi Rayon Co., Ltd.), 09 January, 2001 (09.01.01), Full text (Family: none)	1-17
A	JP 2002-311587 A (Fujitsu Ltd.), 23 October, 2002 (23.10.02), Full text & US 2002/0150834 A2	1-17

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl' C08F 220/28, G03F 7/039, H01L 21/30

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl' C08F 220/10~220/40, G03F 7/039

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CA (STN)、WPI/L

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 07-234511 A (富士通株式会社) 1995. 09. 05, 全文 & EP 0663616 B1 & US 6004720 A & US 6344304 B1 & US 2002/0076645 A1	1-17
A	JP 11-012326 A (富士通株式会社) 1999. 01. 19, 全文 & KR 250566 B1	1-17
A	JP 2000-321771 A (富士写真フィルム株式会社) 2000. 1. 24, 全文 & US 6596458 B1	1-17

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

10. 08. 2004

国際調査報告の発送日

14. 9. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

佐々木 秀次

4 J

3236

電話番号 03-3581-1101 内線 3455

国際調査報告

国際出願番号 PCT/JP2004/008004

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2001-002735 A (三菱レイヨン株式会社) 2001.01.09, 全文 (ファミリーなし)	1-17
A	JP 2002-311587 A (富士通株式会社) 2002.10.23, 全文 & US 2002/0150834 A2	1-17