

FACULTAD DE CIENCIAS

Trabajo Fin de Grado

Grado en Estadística

El problema de recogidas y entregas (Pickup and Delivery Problem)

Autor:

Sergio García Prado

FACULTAD DE CIENCIAS

Trabajo Fin de Grado

Grado en Estadística

El problema de recogidas y entregas (Pickup and Delivery Problem)

Autor:

Sergio García Prado

Tutor:

Jesús Saez Aguado

Δ	bstra	ct
\boldsymbol{A}	usura	υu

[TODO]

Resumen

[TODO]

Este trabajo puede ser consultado a través del siguiente enlace: https://github.com/garciparedes/tfg-pickup-and-delivery

Agradecimientos

Prefacio

Índice general

	Res	umen	1
	Agr	radecimientos	į
	Pre	facio	Ē
1.	Intr	roducción	ç
	1.1.	Introducción	Ć
	1.2.	Objetivos	Ć
	1.3.	Metodología	Ć
	1.4.	Problema de recogidas y envíos	Ć
	1.5.	Aplicaciones	Ć
	1.6.	Conclusiones	Ć
2.	Fori	mulación del Problema	11
	2.1.	Introducción	11
	2.2.	Notación	13
	2.3.	Formulación básica	13
	2.4.	Restricciones Addicionales	13
	2.5.	Funciones Objetivo	14
	2.6.	Tiempo Real	14
	2.7.	Conclusiones	14
3.	Mét	todos de Resolución Exactos	15
	3.1.	Introducción	15
	3.2.	Conclusiones	15
4. I	Heu	urísticas	17
	4.1.	Introducción	17
	4.2.	Greedy	17
	4.3.	Metropolis Hastings	18
	4 4	Conclusiones	18

5.	Metaheurísticas	19		
	.1. Introducción	. 19		
	.2. GRASP	19		
	3. Simulated Anneling	. 19		
	.4. Tabu Search	. 19		
	.5. Ant Colony	19		
	.6. Variable Neighborhood Search	. 19		
	7.7. Large Neighborhood Search	19		
	8. Conclusiones	20		
6.	mplementación	21		
	.1. Introducción	21		
	2.2. Conclusiones	21		
7.	Resultados	23		
	.1. Introducción	23		
	7.2. Conclusiones	23		
8.	Conclusiones Generales y Próximos pasos			
	.1. Introducción	25		
	2.2. Conclusiones	25		
	Bibliografía	25		

Introducción

1.1. Introducción

[TODO]

1.2. Objetivos

[TODO]

1.3. Metodología

[TODO]

1.4. Problema de recogidas y envíos

[TODO]

1.5. Aplicaciones

[TODO]

1.6. Conclusiones

Formulación del Problema

2.1. Introducción

El problema de recogidas y entregas (*Pickup and Delivery*), o *PDP* en modo abreviado representa una de las modelizaciones más interesantes en el ámbito de los problemas de *optimización combinatoria*. Esto se debe a la gran cantidad de situaciones del mundo real que pueden ser representadas siguiendo dicho esquema. Sin embargo, antes de profundizar en los aspectos más detallados que caracterizan el problema de recogidas y entregas, es necesario describir el contexto del mismo, así como la clase a la cual pertenece. Una vez se haya completado dicha tarea, se estará en condiciones necesarias para poder describir tanto la versión básica como las extensiones más interesantes, tanto desde el punto de vista de los aspectos matemáticos, como desde la cantidad de situaciones reales que permiten resolver.

En cuanto a la organización del capítulo, en este apartado se describe de manera detallada el contexto del problema desde el punto de vista de la clase de problemas matemáticos a la que pertenecen (apartados 2.1.1 a 2.1.4), las características generales que presenta (apartado 2.1.5) y algunas de las situaciones de gran relevancia para nuestra sociedad que están siendo resueltas siguiendo la modelización *PDP* (apartado 2.1.6).

[TODO: continuar descripción del resto de apartados del capítulo]

A continuación se procede a describir la clase de problemas matemáticos a la cual pertenece el problema de recogidas y entregas. Dicha descripción se llevará a cabo de fuera hacia dentro, esto es desde la categoría de problemas más amplia hasta la más concreta, pasando por una breve contextualización así como ejemplificación de problemas similares.

2.1.1. Problemas de Optimización

La clase de *problemas de optimización* representa una de las áreas de investigación más interesante en la actualidad, ya que muchas de las innovaciones obtenidas en dicho campo permiten resolver problemas aplicables al mundo real de manera práctica que antes únicamente podían ser resueltos

teóricamente. En concreto, los problemas de optimización son aquellos que se basan en la minimización (o maximización) de una determinada función objetivo (posiblemente vectorial) de manera que se satisfaga un conjunto de restricciones previamente fijadas sobre un conjunto de variables de decisión que afectan mutuamente a la satisfacibilidad de las restricciones y el valor de la función objetivo.

Dichas variables de decisión pueden ser tanto categóricas como numéricas (discretas o continuas), lo cual genera una gran cantidad de subproblemas diferences (Nótese que las variables categóricas con k niveles diferentes pueden ser representadas de manera sencilla a partir de k-1 variables binarias). De la misma manera, tanto el valor de función objetivo como las restricciones pueden tener una naturaleza muy diferente: estas pueden estar formadas por funciones lineales de las variables de decisión, como por complicadas funciones no lineales que complican el proceso de obtención del valor óptimo del problema.

Muchos de los problemas que resolvemos a diario en nuestra vida cotidiana son en cierta medida problemas de optimización, desde qué elementos decidimos añadir a nuestra mochila cada día (basados en restricciones de capacidad, funciones objetivo de utilidad y variables de decisión binarias) hasta el la detección del rostro por nuestros teléfonos móviles para aplicar un filtro de la manera más realista posible en una videollamada (basados en restricciones de forma, funciones objetivo multidimensionales y millones de variables de decisión numéricas).

2.1.2. Problemas de Optimización Lineal

[TODO]

2.1.3. Problemas de Optimización Combinatoria

[TODO]

2.1.4. Problemas de Rutas

[TODO]

2.1.5. Problemas de Recogidas y Entregas

[TODO]

2.1.6. Applicaciones Reales

2.2. Notación

[TODO]

• V_i : [TODO]

• A_l : [TODO]

• K_k : [TODO]

[TODO]

2.3. Formulación básica

Modelización basada en [Parragh et al., 2008]. [TODO]

Minimizar
$$\sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k x_{ij}^k$$
 sujeto a
$$\sum_{k \in K} \sum_{j:(i,j) \in A} x_{0j}^k = 1, \qquad \forall i \in P \cup D$$

$$\sum_{j:(0,j) \in A} x_{i,n+\tilde{n}+1}^k = 1, \qquad \forall k \in K$$

$$\sum_{j:(i,j) \in A} x_{ij}^k - \sum_{j:(j,i) \in A} x_{ij}^k = 0, \qquad \forall j \in P \cup D, \forall k \in K$$

$$\sum_{i:(i,j) \in A} x_{ij}^k - \sum_{j:(j,i) \in A} x_{ij}^k = 0, \qquad \forall j \in P \cup D, \forall k \in K$$

$$x_{ij}^k = 1, \implies B_j^k \ge B_i^k + d_i + t_{ij}^k \qquad \forall (i,j) \in A, \forall k \in K$$

$$x_{ij}^k = 1, \implies Q_j^k = Q_i^k + q_j \qquad \forall (i,j) \in A, \forall k \in K$$

$$\max\{0, q_i\} \le Q_i^k \qquad \forall i \in V, \forall k \in K$$

$$Q_i^k \le \min\{C^k, C^k + q_i\} \qquad \forall i \in V, \forall k \in K$$

$$x_j \in \{0, 1\}, \qquad \forall j \in \{1, ..., n\}$$

Ecuación 2.1: [TODO]

[TODO]

2.4. Restricciones Addicionales

[TODO]

2.4.1. Ventanas Temporales

2.4.2. Duración de viaje

[TODO]

2.4.3. Duración de ruta

[TODO]

2.5. Funciones Objetivo

[TODO]

2.5.1. Pickup and Delivery

[TODO]

2.5.2. Dial a Ride

[TODO]

2.5.3. Taxi Sharing

[TODO]

2.6. Tiempo Real

[TODO]

2.7. Conclusiones

Métodos de Resolución Exactos

3.1. Introducción

[TODO]
[TODO: Definir Secciones.]

3.2. Conclusiones

Heurísticas

4.1. Introducción

[TODO]

4.2. Greedy

[TODO]

```
Algorithm 1: [TODO]

Result: E'

1 S \leftarrow \emptyset;

2 while A \neq \emptyset do

3 | o \leftarrow \operatorname{best}(A);

4 | S \leftarrow S \cup \{o\};

5 | A \leftarrow A \cap \{o\};

6 end
```

[TODO]

4.2.1. Criterios de Selección

[TODO]

4.2.2. Randomized Greedy

4.3. Metropolis Hastings

[TODO]

4.4. Conclusiones

Metaheurísticas

5.1. Introducción

[TODO]

5.2. GRASP

[TODO]

5.3. Simulated Anneling

[TODO]

5.4. Tabu Search

[TODO]

5.5. Ant Colony

[TODO]

5.6. Variable Neighborhood Search

[TODO]

5.7. Large Neighborhood Search

5.8. Conclusiones

Implementación

6.1. Introducción

[TODO]
[TODO: Definir Secciones.]

6.2. Conclusiones

Resultados

7.1. Introducción

[TODO]
[TODO: Definir Secciones.]

7.2. Conclusiones

Conclusiones Generales y Próximos pasos

8.1. Introducción

[TODO]
[TODO: Definir Secciones.]

8.2. Conclusiones

Bibliografía

[Parragh et al., 2008] Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008). A survey on pickup and delivery problems. *Journal für Betriebswirtschaft*, 58(1):21–51.