TRIGONOMETRIA

Arco de circunferência: É um segmento qualquer da circunferência, limitado por dois de seus pontos distintos.

Comprimento de circunferência: Dado por $C = 2\pi r$, onde r é o raio da circunferência e $\pi = 3.14$

Unidades de arcos:

1) Grau (°): Dividindo a circunferência em 360 partes iguais, obtemos um arco que corresponde a $\frac{1}{360}$ desta circunferência. A este arco unitário chamamos de grau, ou seja,

$$1^{\circ} = \frac{1}{360} \text{ da circunferência}$$

Obs:

- 1 minuto = $\frac{1}{60}$ de 1 grau, isto é: $1' = \frac{1}{60}$ do grau.
- 1 segundo = $\frac{1}{60}$ de 1 minuto, isto é: $1'' = \frac{1}{60}$ do minuto.

Então
$$1^{\circ} = 60'$$
 e $1' = 60''$

2) Radiano (rad): É definido como a medida do ângulo central determinado por um arco igual ao raio da circunferência que contém o arco.

Relação entre as unidades:
$$360^{\circ} \rightarrow 2\pi \] ou \ [180^{\circ} \rightarrow \pi]$$

Exemplos:

a) Expressar 300° em radianos.

Regra de três:

$$\frac{180^{\circ}}{300^{\circ}} = \frac{\pi rad}{x} \qquad x = \frac{300\pi}{180} = \frac{5\pi}{3} rad$$

b) Passar $\frac{\pi}{4}$ rad para graus.

$$\frac{\pi}{4} = \frac{180^{\circ}}{4} = 45^{\circ}$$

c) Expressar 22°30' em radianos. Passando 22°30' para minutos: $22^{\circ} \cdot 60' + 30' = 1320' + 30' = 1350'$ Passando 180° para minutos:

 $180^{\circ} \cdot 60' = 10800'$

Regra de três:

10800' ___ πrad

$$x = \frac{1350'\pi}{10800} = \frac{\pi}{8} rad$$

Exercícios:

1) Expresse em radianos:

a)
$$60^{\circ}$$
 $R: \frac{\pi}{3} rad$

b) 210°
$$R: \frac{7\pi}{6} rad$$

c)
$$450^{\circ}$$
 $R: \frac{5\pi}{2} rad$

d)
$$150^{\circ}$$
 $R:\frac{5\pi}{6}$ rad

e)
$$12^{\circ}$$
 $R:\frac{\pi}{15}$ rad

f)
$$2^{\circ}$$
 $R: \frac{\pi}{90} rad$

g)
$$67^{\circ}30'$$
 $R:\frac{3\pi}{8}$ rad

h) 37°30'
$$R: \frac{5\pi}{24} rad$$

2) Expresse em graus:

a)
$$\frac{5\pi}{4}$$
 rad

R: 225°

b) 2πrad

R: 360°

c)
$$\frac{3\pi}{5}$$
 rad

R: 108°

d)
$$\frac{2\pi}{3}$$
 rad

R: 120°

Ciclo trigonométrico ou circunferência trigonométrica

A circunferência orientada de centro na origem do sistema de coordenadas cartesianas, de raio unitário (r=1) e cujo sentido positivo é o anti-horário, é denominado ciclo trigonométrico ou circunferência trigonométrica.

O ponto A(1,0) é chamado origem dos arcos. As retas x e y dividem a circunferência em quatro quadrantes.

Arcos côngruos

Dois arcos são côngruos (ou congruentes) quando tem a mesma extremidade e se diferem apenas pelo número de voltas inteiras.

Se um arco mede x graus, a expressão dos arcos côngruos a ele é dada por:

$$x + k \cdot 360^{\circ}$$
 onde $k \in \mathbb{Z}$

Exemplo:

$$x = 60^{\circ}$$

$$60^{\circ} + 1 \cdot 360^{\circ} = 420^{\circ}$$

$$60^{\circ} + 2.360^{\circ} = 780^{\circ}$$
, ou seja, 60° , 420° , 780° ,..., são côngruos.

Primeira determinação positiva de um arco

Se um arco mede α graus, dizemos que um arco de β graus é a sua primeira determinação positiva, se $0 \le \beta \le 360^{\circ}$ e côngruo a α .

Exemplos:

Dê a primeira determinação positiva dos arcos e a expressão geral dos arcos côngruos:

a)
$$1940^{\circ}$$
 $1940 \quad 360 \\ 140 \quad 5voltas$

 $1^{\rm a}$ det.positiva de 1940° é 140° Expressão geral dos arcos côngruos a 1940° : 140° + k · 360°

b)
$$-2710^{\circ}$$
 $\begin{array}{rrr} -2710 & \underline{360} \\ -190 & 7voltas \end{array}$

$$360 - 190 = 170$$

 1^{a} det.positiva de -2710° é 170°

Expressão geral dos arcos côngruos a $-2710^{\circ}:170^{\circ}+k\cdot360^{\circ}$

c)
$$\frac{15\pi}{4}$$
 rad

Transformando em graus:

$$\frac{15 \cdot 180^{\circ}}{4} = \frac{2700}{4} = 675^{\circ}$$

675 <u>360</u>

315 lvolta

 $1^{\rm a}$ det.positiva de $\frac{15\pi}{4}$ rad é 315°

Expressão geral dos arcos côngruos a $\frac{15\pi}{4}$ rad : $315^{\circ} + k \cdot 360^{\circ}$

Exercícios:

1) Calcule a primeira determinação positiva dos arcos:

a) 1550°	R:110°
b) 930°	R:210°

c)
$$\frac{23\pi}{4}$$
 rad R:315°

d)
$$\frac{15\pi}{2}$$
 rad R:270°

g)
$$\frac{17\pi}{3}$$
 rad R: 300°

2) Verifique as são côngruos os seguintes pares de arcos:

b)
$$\frac{19\pi}{9}$$
 rad e $-\frac{27\pi}{9}$ rad R:não, 20° e 180°

c)
$$\frac{14\pi}{3}$$
 rad e $\frac{19\pi}{3}$ rad R:não, 120° e 60°

- 3) Determine os arcos positivos:
- a) menores que 900° e côngruos a 2140°
- R: 340° e 700°
- b) menores que $4\pi rad$ e côngruos a 55π , 7π , 19π ,

$$\frac{55\pi}{6}$$
 rad R: $\frac{7\pi}{6}$ rad e $\frac{19\pi}{6}$ rad

4) Diga em qual quadrante está a extremidade de cada arco:

b)
$$\frac{19\pi}{3}$$
 rad R: 1°Q

c)
$$-3010^{\circ}$$
 R:3°Q

Funções circulares

1. Função Seno

Dado um arco AM de medida x radianos, definimos como seno de x a ordenada do ponto M e representamos por $senx = \overline{OP}$.

Definimos função seno como a função que associa a cada número real x, o número real \overline{OP} e indicamos por f(x) = senx

Gráfico da função seno

Montamos a tabela:

X	senx
0_{\circ}	0
90°	1
180°	0
270°	-1
360°	0

Observações:

- O gráfico da função seno é chamado de *senóide*.
- O gráfico continua a esquerda de zero e a direita de 2π .
- A função é positiva no 1° e 2° quadrantes e negativa para 3° e 4° quadrantes.
- O domínio da função seno é o conjunto dos números reais.
- A imagem da função seno é o intervalo [-1,1], isto é $-1 \le senx \le 1$

Exemplos:

90

a) Calcule sen450°

$$\frac{500}{1volta} \qquad sen450^{\circ} = sen90^{\circ} = 1$$

b) Calcule
$$sen\left(\frac{19\pi}{3}\right)$$

$$\frac{19 \cdot 180^{\circ}}{3} = 1140^{\circ} \qquad \frac{1140}{60} \qquad \frac{360}{3voltas}$$

$$sen\left(\frac{19\pi}{3}\right) = sen60^{\circ} = \frac{\sqrt{3}}{2}$$

c) Determine o valor de k, para que exista sen x = 2k - 5.

$$-1 \le 2k - 5 \le 1$$

$$-1 \le 2k - 5$$

$$-2k \le -5 + 1$$

$$-2k \le -4$$

$$2k \ge 4$$

$$k \ge 2$$

$$S = \{k \in \Re/2 \le k \le 3\}$$

Exercícios:

- 1) Determine o valor de:
- a) sen900° R:0 b) sen1620° R:0 c) sen(-2130°) R: -
- d) $sen6\pi$ R:0 e) $sen11\pi$ R:0 f) $sen\frac{25\pi}{6}$ R: $\frac{1}{2}$
- 2) Determine os valores reais de m, para que existam as funções:
- a) senx = 7m 20 $R: \frac{19}{7} \le m \le 3$ b) senx = 3m + 4 $R: -\frac{5}{3} \le m \le -1$ c) senx + 2m = 9 $R: 4 \le m \le 5$ d) $senx = \frac{2m - 1}{3}$ $R: -1 \le k \le 2$

Período da Função Seno

Notamos que, a partir de 2π , a função seno se repete em seus valores, portanto dizemos que esta função é periódica.

$$p = 2\pi rad$$

Observações:

Considerando a função $f(x) = a \cdot sen(kx)$, definimos como período da função seno $p = \frac{2\pi}{k}$ (observe que k é o coeficiente de x)

Exemplos:

Qual o período das funções:

a)
$$y = 3senx$$
 $R: p = 2\pi rad$
b) $y = sen(4x)$ $R: p = \frac{\pi}{2} rad$

c)
$$y = 4sen\left(\frac{x}{2} - \frac{\pi}{3}\right)$$
 $R: p = 4\pi rad$

Exercícios:

Determine o período das funções:

a)
$$y = sen(8x)$$
 $R: \frac{\pi}{4} rad$
b) $y = sen(10x)$ $R: \frac{\pi}{5} rad$

c)
$$y = sen\left(\frac{x}{5}\right)$$
 $R:10\pi rad$

d)
$$y = sen5\left(4x + \frac{\pi}{6}\right)$$
 $R: \frac{\pi}{10} rad$

e)
$$y = 1 + sen\left(\frac{3\pi}{2} + 2x\right)$$
 $R: \pi rad$

2.Função Cosseno

Dado um arco AM, de medida x radianos, definimos como cosseno de x a abscissa do ponto M e representamos:

$$\cos x = \overline{OQ}$$

Definimos função cosseno como a função que associa a cada número real x o número real \overline{OQ} .

Gráfico da função Cosseno

Montamos a tabela:

X	cos x
0°	1
90°	0
180°	-1
270°	0
360°	1

Observações:

- O gráfico da função cosseno é chamado de cossenóide.
- O gráfico continua a esquerda de zero e a direita de 2π .
- A função é positiva no 1° e 4° quadrantes e negativa para 2° e 3° quadrantes.
- O domínio da função cosseno é o conjunto dos números reais.
- A imagem da função cosseno é o intervalo [-1,1], isto é $-1 \le \cos x \le 1$

Exemplos:

1) Calcule cos 1830°

$$\frac{1830}{30} \quad \frac{360}{5voltas} \quad \cos 1830^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

2) Determine k de modo que se tenha $\cos x = 3k + 4$

$$-1 \le 3k + 4 \le 1$$

$$-1 \le 3k + 4$$

$$-3k \le 5$$

$$3k \le 1 - 4$$

$$3k \le 5$$

$$k \le -1$$

$$k \ge -\frac{5}{3}$$

$$S = \left\{k \in \Re / -\frac{5}{3} \le k \le -1\right\}$$

Exercícios:

- 1) Determine o valor de:
- a) $\cos 450^{\circ}$

R:0

b) $\cos(-900^{\circ})$

R:-1

c) cos1620°

R:-1

d) $\cos 6\pi$

R:1

e) $\cos \frac{7\pi}{2}$

R:0

f) $\cos \frac{25\pi}{6}$

2) Determine m para que exista:

a) $\cos x = 1 - 6m$

 $R: 0 \le m \le \frac{1}{3}$

b) $\cos x = 2m + 5$

 $R:-3 \le m \le -2$

c) $\cos x + 2m = 5$

 $R: 2 \le m \le 3$

d) $\cos x = \frac{4m+1}{2}$

 $R:-\frac{3}{4}\leq m\leq \frac{1}{4}$

Período da função Cosseno

Considere função $y = a \cdot \cos(kx),$ definimos como período da função cosseno

$$p = \frac{2\pi}{k}$$

Exemplo:

Determine período função

$$y = \cos\left(\frac{3x}{5}\right)$$

$$p = \frac{2\pi}{\frac{3}{5}} = \frac{10\pi}{3}$$

Exercícios:

Determine o período de cada função:

a)
$$y = \cos(6x)$$

$$R:\frac{\pi}{2}$$

b)
$$y = \cos\left(\frac{4x}{7}\right)$$
 $R: \frac{7\pi}{2}$

$$R:\frac{7\pi}{2}$$

c)
$$y = 1 + \cos(3x)$$
 $R : \frac{2\pi}{3}$

$$R:\frac{2\pi}{2}$$

d)
$$y = 5\cos(\frac{x}{4} + \frac{\pi}{7})$$
 $R: 8\pi$

3. Função Tangente

Dado um arco AM, de medida x radianos, com $x \neq \frac{\pi}{2} + k\pi$, definimos como tangente de x a medida algébrica do segmento AT e representamos por

$$tg \ x = \overline{AT}$$

Observe também:

$$\frac{\overline{AT}}{\overline{MO}} = \frac{\overline{OA}}{OQ} \Rightarrow \frac{\overline{AT}}{senx} = \frac{1}{\cos x}$$

Então:

$$\overline{AT} = \frac{senx}{\cos x}$$
, ou seja $tg \ x = \frac{senx}{\cos x}$

onde
$$x \neq \frac{\pi}{2} + k\pi$$
.

Exercício:

Determine o valor de:

a) tg900°

R:0

b) $tg(-540^{\circ})$

R:0

c) tg1500°

 $R:\sqrt{3}$

d) $tg(11\pi)$

R:0

e) $tg(6\pi)$

R:0

f) $tg\left(\frac{13\pi}{3}\right)$

 $R:\sqrt{3}$

Gráfico da função Tangente

Montamos a tabela:

X	tgx
0°	0
90°	$\frac{1}{0} \Rightarrow \mathbb{Z}$
180°	0
270°	∄
360°	0

Observações:

- O gráfico da função tangente é chamado de *tangentóide*.
- O gráfico continua a esquerda de zero e a direita de 2π .
- A função é positiva no 1° e 3° quadrantes e negativa para 2° e 4° quadrantes.
- domínio da função O tangente $\left\{ x \in \Re / x \neq \frac{\pi}{2} + k\pi \right\}$, com $k \in \mathbb{Z}$.
- A imagem da função tangente é o conjunto dos números reais.

Período da função tangente

Observe que de π e π a função tangente repete seus valores, portanto $p = \pi$. Para a

função
$$y = a \cdot tg(kx)$$
, o período $p = \frac{\pi}{k}$.

Exemplo:

Qual o período de $y = tg\left(2x - \frac{\pi}{2}\right)$?

$$p = \frac{\pi}{2}$$

Exercícios:

1) Determine o período das funções:

a)
$$y = tg\left(3x - \frac{\pi}{2}\right)$$
 $R: \frac{\pi}{3}$

b)
$$y = tg \ 4x$$

c)
$$y = tg\left(5x + \frac{\pi}{3}\right)$$

d)
$$y = tg \frac{x}{3}$$

 $R:3\pi$

- 2) Determine os valores de:
- a) $sen1260^{\circ}$; $cos1260^{\circ}$ e $tg1260^{\circ}$

$$R:0:-1e0$$

b)
$$sen \frac{17\pi}{4}$$
; $cos \frac{17\pi}{4}$ e $tg \frac{17\pi}{4}$

$$R: \frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2} = 1$$

c)
$$sen(-1380^{\circ}); cos(-1380^{\circ})$$

tg (-1380°)

$$R: \frac{\sqrt{3}}{2}; \frac{1}{2} e \sqrt{3}$$

3) Calcule o valor de:

$$\frac{\cos 8\pi - \cos \frac{\pi}{4} + \cos \frac{\pi}{3}}{(\cos \pi) \left(\cos \frac{\pi}{3}\right)} \qquad R: \sqrt{2} - 3$$

4) Sendo
$$x = \frac{5\pi}{2}$$
, calcule:

$$\cos 2x + \cos \frac{x}{5} + \cos \frac{x}{15} \qquad R: \frac{\sqrt{3} - 2}{2}$$

5) Determine o valor de:

$$sen\frac{\pi}{4} + \cos\frac{\pi}{4} + sen\left(\frac{\pi}{2} - \frac{\pi}{4}\right) - \cos 2\pi$$

$$R : \frac{3\sqrt{2} - 2}{2}$$

6) Calcule A, sendo:

$$A = sen 3x + \cos 4x - tg 2x, para x = \frac{\pi}{2} rad$$

R: 0

7) Determine o valor de

$$y = \cos\left(-\frac{9\pi}{2}\right) - 3tg3\pi + sen\left(-\frac{5\pi}{2}\right)$$

$$R: -1$$

Outras funções trigonométricas

4. Função Cotangente

Denomina-se função cotangente a função $f(x) = \frac{\cos x}{senx}$, definida para todo x real diferente de $k\pi$ com $k \in Z$. Representamos por:

$$f(x) = \cot gx = \frac{\cos x}{senx}$$
, com $x \neq k\pi$, $k \in Z$

5. Função Secante

Denomina-se função secante a função $f(x) = \frac{1}{\cos x}$, definida para todo x real onde $x \neq \frac{\pi}{2} + k\pi$ com $k \in \mathbb{Z}$. Representamos por:

$$f(x) = \sec x = \frac{1}{\cos x}$$

6. Função Cossecante

Denomina-se função cossecante a função $f(x) = \frac{1}{senx}$, definida para todo x real diferente de $k\pi$ com $k \in Z$. Representamos por:

$$f(x) = \csc x = \frac{1}{senx}$$
, com $x \neq k\pi$, $k \in \mathbb{Z}$

Exemplos:

Calcule cotg 30°, sec 30° e cosec 30°

$$\cot 30^{\circ} = \frac{\cos 30^{\circ}}{sen30^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

$$\sec 30^{\circ} = \frac{1}{\cos 30^{\circ}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$\csc 30^{\circ} = \frac{1}{sen30^{\circ}} = \frac{1}{\frac{1}{2}} = 2$$

Exercícios:

- 1) Calcule o valor de cotg 45° , sec 45° e cosec 45° $R:1; \sqrt{2}$ e $\sqrt{2}$
- 2) Determine o valor de cotg 990°, sec990° e cosec 990°. $R: 0, \mathbb{Z}$ e -1
- 3) Se $x = 180^{\circ}$, calcule o valor de $y = \frac{5\csc \frac{x}{2} 2senx}{5sen \frac{5x}{2}}$ R: y = 1
- 4) Os quadrantes onde estão os ângulos α , β e γ , tais que $sen\alpha < 0$ e $\cos \alpha < 0$; $tg\beta < 0$ e $\cos \beta < 0$; $sen\gamma < 0$ e $\cot g\gamma < 0$, são respectivamente:
- a) 3°, 2° e 1°
- b) 2°, 1° e 3°
- c) 3°, 1° e 2°
- d) 1°, 2° e 3°
- e) 3° , 2° e 4° R:e)
- 5) Se $\frac{5\pi}{2}$ < x < 3π , podemos afirmar que:

a) $\cos x > 0$ e sen x > 0

b) $\cos x > 0$ e sen x < 0

c) $\cos x < 0$ e sen x > 0

d) $\cos x < 0$ e senx < 0

e) N.D.A.

R: c)

6) O período da função $y = sen\left(2x + \frac{\pi}{8}\right)$ é:

a)
$$p = \frac{\pi}{16}$$

b)
$$p = \frac{\pi}{8}$$

c)
$$p = \frac{\pi}{2}$$

d) $p = \pi$

e) $p = 2\pi$

R: d)

7) O período da função $f(x) = \cos \frac{2x}{3}$ é:

a)
$$p = 6\pi$$

b)
$$p = 4\pi$$

c)
$$p = 3\pi$$

d)
$$p = \frac{3\pi}{2}$$

e) $p = 2\pi$

R: c)

Relações Trigonométricas

Já sabemos que:

$$tg \ x = \frac{sen \ x}{\cos x}$$
 $\cot g \ x = \frac{\cos x}{\sin x}$
 $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{senx}$

Relação trigonométrica fundamental:

$$\overline{OM} = 1$$
; $\overline{OQ} = \cos x \text{ e } \overline{MQ} = \overline{OP} = senx$

No triângulo retângulo OQM, pelo teorema de Pitágoras, temos:

$$(\overline{OM})^2 = (\overline{MQ})^2 + (\overline{OQ})^2$$

$$1^2 = (senx)^2 + (cos x)^2, logo$$

$$sen^2 x + cos^2 x = 1$$

Outras relações trigonométricas:

$$\sec^2 x = 1 + tg^2 x$$

$$\cos ec^2 x = 1 + \cot g^2 x$$

Exemplos:

1) Sendo $senx = \frac{3}{4}$, com $x \in 2^{\circ}Q$, calcule

as outras funções trigonométricas:

Como
$$sen^2 x + cos^2 x = 1$$

$$\left(\frac{3}{4}\right)^2 + \cos^2 x = 1 \Rightarrow \cos^2 x = 1 - \frac{9}{16}$$

$$\cos^2 x = \frac{7}{16} \Rightarrow \cos x = \sqrt{\frac{7}{16}}$$

$$\cos x = -\frac{\sqrt{7}}{4} (\cos no \ 2^{\circ} \ Q \ \text{\'e negativo})$$

$$tgx = \frac{senx}{\cos x} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{7}}{7}$$

$$tgx = -\frac{3\sqrt{7}}{7} \text{(tg no 2° Q \'e negativo)}$$

$$\cot gx = \frac{\cos x}{senx} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3}$$

$$\cot gx = -\frac{\sqrt{7}}{3} (\cot g \text{ no } 2^{\circ} \text{ Q \'e negativo})$$

$$\sec x = \frac{1}{\cos x} = \frac{1}{\frac{\sqrt{7}}{4}} = \frac{4}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{4\sqrt{7}}{7}$$

$$\sec x = -\frac{4\sqrt{7}}{7} (\sec no \ 2^{\circ} \ Q \ \'e \ negativo)$$

$$\cos ecx = \frac{1}{senx} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \Rightarrow \cos ecx = \frac{4}{3}$$

(cosec no 2°Q é positivo)

2) Para que valores de a temos, simultaneamente
$$senx = a + 1$$
 e $cos x = a$? $sen^2 x + cos^2 x = 1$ $(a+1)^2 + (a)^2 = 1$ $a^2 + 2a + 1 + a^2 = 1$ $2a^2 + 2a = 0$ $2a(a+1) = 0$ $a = 0$ ou $a = -1$

Exercícios:

- 1) Dado $\cos x = -\frac{1}{2}$, $\cos \frac{\pi}{2} < x < \pi$, calcule o valor de sen x. $R: \frac{\sqrt{3}}{2}$
- 2) Dado $\cos x = -\frac{1}{5}$, com $\frac{\pi}{2} < x < \pi$, calcule sen x, $tg x e \cot g x$.

$$R: \frac{2\sqrt{6}}{5}, -2\sqrt{6} \text{ e } -\frac{\sqrt{6}}{12}$$

- 3) Sendo $sen x = \frac{1}{3}$, com $0 < x < \frac{\pi}{2}$, determine cot g x. $R: 2\sqrt{2}$
- 4) Se $\cot g = 1$, $\cot \theta < x < \frac{\pi}{2}$, calcule $\sec x = \csc x$. $R : \frac{\sqrt{2}}{2} = \sqrt{2}$
- 5) Sendo $sen x = \sqrt{a-2}$ e $\cos x = a-1$, determine a. R:2
- 6) Quais os valores de a, para que se tenha, simultaneamente, sen x = a e $cos x = a\sqrt{3}$. $R: a = \frac{1}{2}$ ou $-\frac{1}{2}$
- 7) Sabendo que $\cos x = \frac{1}{2}$, calcule o valor de $y = \frac{\cot g \ x 1}{\cos ec \ x \sec x}$. $R: \frac{1}{2}$

8) Se
$$sen x = \frac{1}{3}$$
, calcule o valor da
expressão $y = \frac{\sec x - \cos x}{tgx + \cot gx}$. $R: \frac{1}{27}$

9) Sendo
$$sen x = \frac{1}{3}$$
, com $0 < x < \frac{\pi}{2}$, calcule $y = \frac{(sen x)(\cos x) - tgx}{1 - \cos ecx}$. $R : \frac{\sqrt{2}}{72}$

10) Calcule o valor de
$$y = \frac{\sec^2 x - (\sec x)(\cos ecx)}{1 - \cot gx}, \quad \text{dado}$$
$$\cos x = \frac{1}{4}. \quad R:16$$

Identidades Trigonométricas

Consideremos uma igualdade da forma f(x) = g(x), onde f(x) e g(x) são funções trigonométricas. Se essa igualdade é válida para qualquer valor real de x, para os quais os valores das funções existem, dizemos que f(x) = g(x) é uma identidade trigonométrica.

Exemplos:

- a) $\cos^2 x = 1 sen^2 x$ é válido para qualquer x real.
- b) $\cot g \ x = \frac{1}{tgx}$ é válido para todo

$$x \neq \frac{\pi}{2} + k\pi$$

c) $\cos x \cdot \cos \sec x = \cot gx$

$$\cos x \cdot \frac{1}{senx} = \cot gx$$

$$\frac{\cos x}{senx} = \cot gx$$

 $\cot gx = \cot gx$

d) Demonstre a identidade $tgx + \cot gx = tgx \cdot \cos ec^2 x$ $\frac{senx}{\cos x} + \frac{\cos x}{senx} = \frac{senx}{\cos x} \cdot \frac{1}{sen^2 x}$ $\frac{sen^2 x + \cos^2 x}{senx \cdot \cos x} = \frac{1}{senx \cdot \cos x}$

$$\frac{1}{senx \cdot \cos x} = \frac{1}{senx \cdot \cos x} \Rightarrow 1 = 1$$

e)
$$\sec x - tgx = \frac{1}{\sec x + tgx}$$
 multiplicando

pelo conjugado, temos

$$\sec x - tgx = \frac{1}{\sec x + tgx} \cdot \frac{\left(\sec x - tgx\right)}{\left(\sec x - tgx\right)}$$

$$\sec x - tgx = \frac{\sec x - tgx}{\left(\sec x\right)^2 - \left(tgx\right)^2}$$

$$\sec x - tgx = \frac{\sec x - tgx}{1}$$

$$\sec x - tgx = \cdot \sec x - tgx$$

Exercícios:

- 1) Demonstre as identidades:
- a) $senx \cdot cos ecx = 1$
- b) $\cos x \cdot tgx = senx$
- c) $tgx + \cot gx = tgx \cdot \cos ec^2x$

d)
$$(1 + tg^2x)(1 - sen^2x) = 1$$

e)
$$1 + tg^2 x = tg^2 x \cdot \cos ec^2 x$$

f)
$$\frac{\cos x}{\sec x} + \frac{senx}{\cos ecx} = 1$$

g)
$$tg^2x + \cos^2 x = \sec^2 x - sen^2 x$$

h)
$$\cot g^2 x + 1 = \cos ec^2 x$$

2) A expressão
$$\frac{senx}{1+\cos x} + \frac{1+\cos x}{senx}$$
 é igual

- a) sen x
- b) $\sec x$
- c) 2sen x
- d) $2\cos ecx$ e) $2\sec x$
- R:d

3) Para todo $x \in 1^{\circ}Q$, a expressão $(\sec x - tg x)(\sec x + tgx) - sen^2 x \text{ \'e igual a:}$

- a) $\cos^2 x$
- b) $1 + sen^2 x$
- c) $\cos x senx$
- d) $\sec x + \cos x$
- e) N.D.A.
- R:a

4) A expressão $\frac{\sec x - \cos x}{\cos ecx - senx}$ é

equivalente a:

- a) $\sec^3 x$
- b) sen^2x
- c) tg^3x d) $\frac{1}{tgx}$

e)
$$\frac{1}{1-tg^2x} \qquad R:c)$$

5) O valor de
$$y = \frac{2tgx}{1 - tg^2x}$$
, quando

$$\cos x = -\frac{3}{7} e \ tgx < 0$$
, é:

- a) $\frac{4\sqrt{10}}{31}$ b) $\frac{2\sqrt{10}}{3}$ c) $\frac{2\sqrt{10}}{15}$

- d) $\frac{3\sqrt{10}}{7}$ e) $\frac{12\sqrt{10}}{31}$ R:e)

Operações com arcos

Sejam a e b dois arcos positivos, do 1° quadrante, cuja soma ainda pertence ao 1°quandrante, então:

$$sen(a+b) = sen \ a \cdot cosb + sen \ b \cdot cos \ a$$

 $sen(a-b) = sen \ a \cdot cosb - sen \ b \cdot cos \ a$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

 $cos(a-b) = cos a \cdot cos b + sen a \cdot sen b$

$$tg(a+b) = \frac{tg\ a + tg\ b}{1 - tg\ a \cdot tg\ b}$$

$$tg(a-b) = \frac{tg\ a - tg\ b}{1 + tg\ a \cdot tg\ b}$$

$$sen 2a = 2sen a \cdot \cos a$$

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$tg \ 2a = \frac{2tg \ a}{1 - tg^2 a}$$

Exemplos:

1) Calcule sen 75°

$$sen 75^{\circ} = sen(45^{\circ} + 30^{\circ}) =$$

$$= sen 45^{\circ} \cdot \cos 30^{\circ} + sen 30^{\circ} \cdot \cos 45^{\circ}$$

$$sen 75^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

2) Calcule cos15°

$$\cos 15^\circ = \cos \left(45^\circ - 30^\circ\right)$$

$$= \cos 45^{\circ} \cos 30^{\circ} + sen 45^{\circ} sen 30^{\circ}$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

3) Calcule tg 105°

$$tg\ 105^{\circ} = tg\ (60^{\circ} + 45^{\circ}) = \frac{tg\ 60^{\circ} + tg\ 45^{\circ}}{1 - tg\ 60^{\circ} \cdot tg\ 45^{\circ}}$$

$$= \frac{\sqrt{3}+1}{1-\sqrt{3}\cdot 1} = \frac{\sqrt{3}+1}{1-\sqrt{3}} \cdot \frac{\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)} =$$
$$= \frac{3+2\sqrt{3}+1}{1-3} = \frac{4+2\sqrt{3}}{-2} = -2-\sqrt{3}$$

Exercícios:

1) Calcule:

a)
$$\cos 105^{\circ}$$
 $R: \frac{\sqrt{2} - \sqrt{6}}{4}$

b)
$$tg \, 15^{\circ}$$
 $R : 2 - \sqrt{3}$

b)
$$tg \, 15^{\circ}$$
 $R : 2 - 6$ $R : \frac{1}{2}$

2) Usando as fórmulas da adição, mostre

a)
$$\cos\left(\frac{\pi}{2} - x\right) = \operatorname{sen} x$$

b)
$$sen\left(\frac{\pi}{2} - x\right) = \cos x$$

c)
$$sen(\pi + x) = -senx$$

3) Sendo
$$tgA = 2$$
 e $tgB = 1$, ache $tg(A - B)$. $R: \frac{1}{3}$

4) Simplifique a expressão
$$Y = \frac{sen(\pi + x) \cdot \cos\left(\frac{\pi}{2} - x\right)}{\cos(5\pi + x) \cdot sen\left(\frac{\pi}{2} - x\right)} \qquad R : tg^2 x$$

5) Dado
$$tgx = \frac{1}{2}$$
, calcule $tg \ 2x \ e \cot g \ 2x$.
 $R : \frac{4}{3} \ e \ \frac{3}{4}$

6) Calcule
$$sen 2x$$
, se $sen x = \frac{3}{4}$ e $x \in 2^{\circ}Q$. $R: -\frac{3\sqrt{7}}{8}$

7) Sabendo que
$$tg \ a = \frac{1}{4}$$
, calcule $tg \ 2a$ e cot $g \ 2a$.
$$R : \frac{8}{15} \text{ e } \frac{15}{8}$$