Polynomial chaos expansion for acoustic propagation

Séminaire des doctorants du CMLA

A. Goupy ^{1,3}, D. Lucor ², C. Millet ^{1,3}

¹ CMLA, ENS Paris-Saclay - ² LIMSI, CNRS - ³ CEA, DAM, DIF

CONTEXT

- ► The verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is designed to detect any nuclear explosion conducted on Earth underground, underwater or in the atmosphere.
- ▶ Infrasound monitoring is one of the four technologies used by the International Monitoring System (IMS) to verify compliance with the CTBT.

- ▶ Infrasound has the ability to cover long distances with little dissipation.
- ▶ Infrasound signals can be severly distorted by the propagation in the atmosphere.

PLANETARY BOUNDARY LAYER

Wave celerity:

$$c(z) = \sqrt{\gamma RT(z)} + U(z)$$

where:

- \blacksquare T(z) is the temperature profile
- \blacksquare U(z) the wind profile.
- ▶ The celerity profile characterizes the medium for the propagation.

NORMAL MODES (1/2)

 $(k_i(\omega), \Psi_i(\omega, z))$ eigenvalues and eigenfunctions of H:

$$H\Psi = \frac{\partial^2 \Psi}{\partial z^2} + \frac{\omega^2}{c(z)^2} \Psi = k\Psi$$

Green function:

$$G(\omega) = \sum_{i=1}^{N} G_i(\omega) = \sum_{i=1}^{N} \alpha \frac{\Psi_i(\omega, 0)^2}{\sqrt{k_i(\omega)R}} e^{ik_i(\omega)R}$$

with
$$\alpha = \frac{e^{-i\pi/4}}{\sqrt{8\pi}}$$

R: distance source-receiver.

Signal:

$$p(t) = \mathcal{F}^{-1}[G(\omega)s(\omega)](t)$$

NORMAL MODES (2/2)

Signal reconstructed with only one mode:

$$p_i(t) = \mathcal{F}^{-1}[G_i(\omega)s(\omega)](t)$$

RANDOM JET

00000

Impact of the uncertainties on the medium on the acoustic signal received at the ground?

▶ Metamodel of **the eigenpairs of the propagation operator** able to generate such signals.

POLYNOMIAL CHAOS DECOMPOSITION (1/2)

Build a metamodel of $X = \mathcal{M}(\boldsymbol{\xi})$ where $\boldsymbol{\xi} \sim \mathcal{N}(0, \mathbb{I}_n)$:

Polynomial chaos decomposition:

- $(H_j)_{j\in J}$ set of orthonormal polynomials for $\langle f,g\rangle=\mathbb{E}[fg]$
- $X(\xi) = \sum_{j \in J} a_j H_j(\xi)$ where $a_j = \langle X, H_j \rangle$
- taking polynomials up to degree d, $|J| = \frac{(n+d)!}{n!d!}$

POLYNOMIAL CHAOS DECOMPOSITION (2/2)

Coefficients $(a_i)_{i \in I}$ can be computed:

 \blacksquare with Monte-Carlo using a sample S:

with a quadrature Q:

GPC DECOMPOSITION OF THE ACOUSTIC MODES

gPC decomposition of each eigenvalue and eigenvector at the ground

$$\widehat{k_i}(\omega, \boldsymbol{\xi}) = \sum_{j \in J} a_j^{k_i}(\omega) H_j(\boldsymbol{\xi}) \text{ and } \widehat{\Psi_i}(\omega, \boldsymbol{\xi}) = \sum_{j \in J} a_j^{\Psi_i}(\omega) H_j(\boldsymbol{\xi})$$

Reconstruction of the Green function

$$\widehat{G}(\omega, \boldsymbol{\xi}) = \sum_{i=1}^{N} \widehat{G}_{i}(\omega, \boldsymbol{\xi}) = \sum_{i=1}^{N} \alpha \frac{\widehat{\Psi}_{i}(\omega, \boldsymbol{\xi})^{2}}{\sqrt{\widehat{k}_{i}(\omega, \boldsymbol{\xi})R}} e^{i\widehat{k}_{i}(\omega, \boldsymbol{\xi})R}$$

■ Simulation of signals using the metamodel:

$$p(t, \boldsymbol{\xi}) = \mathcal{F}^{-1}[\widehat{G}(\omega, \boldsymbol{\xi})s(\omega)](t)$$

CONVERGENCE

■ Variance can be used to control the convergence:

$$Var[k_5] = \sum_{j \in J \setminus \{0\}} (a_j^{k_5})^2$$

Statistics on the signals can be compared with those obtained by Monte-Carlo simulations:

SENSITIVITY ANALYSIS

Sobol index $S_j(k_i)$ gives a measure of the sensibility of mode k_i to the parameters ξ_i :

$$S_j(k_i) = \frac{Var(\mathbb{E}[k_i|\xi_j])}{Var(k_i)}$$

■ The gPC decomposition allows a quick computation of the Sobol indices:

$$S_j(k_i) = \sum_{i \in J'} (a_j^{k_i})^2$$
 where $J' = \{k \in J^* | \exists Q \in \mathbb{R}[X], P_k(\xi) = Q(\xi_j)\}$

Conclusion:

- gPC representation of the acoustic modes
- Metamodel able to give statistics on the signals
- Sensitivity analysis on the modes

Perspectives:

- Use model reduction to select modes with high acoustical contribution and great sensitivity to the uncertainties.
- Develop an eigenvalue tracking method to generalize to a realistic atmosphere.

