Esercizi svolti di Fisica Generale II

Dalle lezioni di Giuseppe Dalba

A.V.

27 settembre 2013

Problema 1. Preso un filo sottile carico, di lunghezza 2a e distribuzione lineare di carica $\lambda = costante$, determinare:

- 1. $\mathbf{E} = \mathbf{E}(x, y, z)$ in un qualsiasi punto che si trovi sull'asse del filo.
- 2. Sempre in un generico punto sull'asse, trovare \mathbf{E} nel limite in cui $a \longrightarrow \infty$.

SOLUZIONE:

1. Da considerazioni di simmetria (vedi Figura 1), vale che $\mathbf{E} \equiv \mathbf{E}_x$, dove \mathbf{E}_x indica la componente del campo \mathbf{E} nella direzione x. Ora,

$$E_x = k_e \int_l \frac{\lambda dl(x - x')}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

Poiché $\mathbf{r} = (x, 0, 0), \mathbf{r}' = (0, y', 0)$ e $dl \equiv dy'$, si ottiene che

$$E_x = k_e \int_{-a}^{a} \frac{\lambda dy' x}{\left[x^2 + y'^2\right]^{3/2}} = k_e \lambda x \int_{-a}^{a} \frac{dy'}{\left[x^2 + y'^2\right]^{3/2}}$$

Usando la semplificazione $y'=x\tan\vartheta,\ dy'=\frac{x}{\cos^2\vartheta}d\vartheta,$ abbiamo:

$$E_x = k_e \lambda \not z \int_{\arctan(-a/x)}^{\arctan(a/x)} \frac{\not z d\vartheta}{eos^2 \vartheta} \frac{\cos^{\frac{1}{2}1} \vartheta}{x^{\frac{1}{2}1}}$$
$$= \frac{k_e \lambda}{x} \int_{\arctan(-a/x)}^{\arctan(a/x)} \cos \vartheta d\vartheta$$
$$= \boxed{\frac{2k_e \lambda}{x} \sin(\arctan(a/x))}$$

2. Per $a \longrightarrow \infty$, $\arctan(a/x) \longrightarrow \pi/2$. Quindi,

$$E \longrightarrow \frac{2k_e\lambda}{x}\sin\left(\frac{\pi}{2}\right) = \frac{2k_e\lambda}{x} = \boxed{\frac{\lambda}{2\pi\varepsilon_0 x}}$$

Notiamo che il campo ha lo stesso andamento riscontrato nel caso di cariche puntiformi! Inoltre, per ragioni di natura pratica, conviene equivalentemente studiare $x \ll a$ invece che $a \longrightarrow \infty$.

Figura 1: Filo sottile carico

Problema 2. Presa una spira sottile carica, di raggio R e distribuzione lineare di carica $\lambda =$ costante, determinare:

1. $\mathbf{E} = \mathbf{E}(x, y, z)$ in un qualsiasi punto che si trovi sull'asse della spira.

2. $\mathbf{E} = \mathbf{E}(x, y, z)$ come nel caso precedente, ma considerando i limiti $x \ll 1$ e $x \gg R$.

3. $\mathbf{E} = \mathbf{E}(x, y, z)$ in un qualsiasi punto che si trovi sull'asse di un disco avente lo stesso raggio e densità di carica superficiale $\sigma = \text{costante}$.

4. $\mathbf{E} = \mathbf{E}(x, y, z)$ come nel caso precedente, ma considerando il limite $R \longrightarrow \infty$ (piano infinito).

SOLUZIONE:

1. La soluzione è identica al problema del filo sottile carico: chiamando x l'asse della spira, $\mathbf{E} \equiv \mathbf{E}_x$. Considerando che $\mathbf{r} = (x, 0, 0)$ e $\mathbf{r}' = (0, y', z')$, il calcolo diventa:

$$E_x = k_e \lambda \int_l \frac{dl(x - x')}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$= \frac{k_e \lambda x}{|\mathbf{r} - \mathbf{r}'|^3} \int_l dl$$

$$= \frac{k_e \lambda x l}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$= \left[\frac{k_e \lambda x 2\pi R}{(x^2 + R^2)^{3/2}} \right]$$

2. Se $x \ll 1$, $E \longrightarrow 0$. Se $x \gg R$, abbiamo invece

$$E \sim \frac{k_e \cancel{t} \lambda 2\pi R}{x^{\cancel{t}^2}} = \frac{k_e \lambda 2\pi R}{x^2} = \frac{1}{2\cancel{4\pi\varepsilon_0}} \frac{k_e \lambda \cancel{2\pi} R}{x^2} = \frac{\lambda R}{2\varepsilon_0 x^2}$$

Se Q è la carica del filo, $Q = \lambda 2\pi R$, quindi

$$E \sim \left\lceil \frac{k_e Q}{x^2} \right\rceil$$

Il risultato ci dice che, da lontano, la spira è assimilabile ad una carica puntiforme!

3. Per calcolare il campo generato da un disco, conviene prima calcolare il campo dE_x generato da un anello sottile, di spessore infinitesimo dr'. La superficie infinitesima dell'anello sarà dunque $dS = dr'dl^{-1}$. Abbiamo:

$$dE_x = k_e \int_S \frac{\sigma dS(x - x')}{|\mathbf{r} - \mathbf{r}'|^3} = k_e \int_l \frac{\sigma dr' dlx}{(x^2 + r'^2)^{3/2}}$$

$$= \frac{k_e \sigma dr'x}{(x^2 + r'^2)^{3/2}} \int_l dl = \frac{k_e \sigma dr'xl}{(x^2 + r'^2)^{3/2}}$$

$$= \frac{k_e \sigma dr'x 2\pi r'}{(x^2 + r'^2)^{3/2}} = \frac{\sigma xr' dr'}{2\varepsilon_0 (x^2 + r'^2)^{3/2}}$$

Ora, basta integrare su tutta la lunghezza del raggio:

$$\begin{split} E_x &= \int_0^R dE_x = \int_0^R \frac{\sigma x r' dr'}{2\varepsilon_0 (x^2 + r'^2)^{3/2}} \\ &= \frac{\sigma x}{2\varepsilon_0} \frac{1}{2} \int_0^R \frac{2r' dr'}{(x^2 + r'^2)^{3/2}} \\ &= \frac{1}{2} \frac{\sigma x}{2\varepsilon_0} \frac{(-\cancel{2})}{\sqrt{x^2 + r'^2}} \bigg|_O^R \\ &= \boxed{\frac{\sigma}{2\varepsilon_0} \left(1 - \frac{x}{\sqrt{x^2 + R^2}}\right)} \end{split}$$

4. Per $x \ll R$, dal caso precedente segue immediatamente che:

$$E \sim \frac{\sigma}{2\varepsilon_0}$$

A distanza ravvicinata dal disco, E si comporta come un campo costante!

Problema 3. Calcolare **E** in un generico punto del piano in Figura 2, dove le distribuzioni superficiali di carica schematizzate sono da considerare di lunghezza e larghezza infinite.

Soluzione: Da considerazioni di natura geometrica, si vede chiaramente che il campo assume i valori riportati in Figura 3.

Figura 2: Distribuzioni di carica parallele

Figura 3: Distribuzioni di carica parallele

Problema 4. Calcolare il campo **E** generato da un piano infinito carico elettricamente, considerandolo come successione infinita di fili di lunghezza a loro volta infinita. Il piano ha una densità superficiale di carica $\sigma = \text{costante}$.

SOLUZIONE: Iniziamo con delle considerazioni di natura geometrica. Prendiamo il piano di cariche in modo tale che sia coincidente col piano xz e dividiamolo in tanti fili paralleli all'asse z, ognuno di spessore infinitesimo dx. Dalla condizione $\sigma = \text{costante}$, otteniamo subito che la densità lineare di carica dei fili $\lambda = \sigma dx = \text{costante}$.

Siano ora x' la distanza di un filo generico dall'asse z e y la distanza di un punto generico P dal piano di cariche. Per semplicità, possiamo prendere $\mathbf{r}' = (x', 0, 0)$ e $\mathbf{r} = (0, y, 0)$, in modo tale che P abbia coordinate (0, y, 0) e dx = dx'. Il campo nel punto P generato dal filo in posizione \mathbf{r}' non sarà, in generale, parallelo all'asse y. Avrà una componente E_x diretta lungo l'asse x e una componente E_y diretta lungo l'asse y. Ma se prendiamo il filo in posizione $-\mathbf{r}'$, quest'ultimo indurrà in P un campo che avrà componenti $-E_x$ e E_y ! Quindi il campo totale generato dai due fili sarà diretto lungo l'asse y e avrà modulo²

$$E_{2 \text{ fili}} = 2E_y = \frac{\lambda y}{\pi \varepsilon_0 (x'^2 + y^2)}$$

Ora, per avere il campo generato da tutti i fili, basta usare il principio di sovrapposizione e integrare $E_{2 \text{ fili}}$ da 0 a $+\infty$:

$$E = \int_{0}^{+\infty} E_{2 \text{ fili}} = \int_{0}^{+\infty} \frac{\lambda y}{\pi \varepsilon_{0}(x'^{2} + y^{2})}$$

$$= \int_{0}^{+\infty} \frac{\sigma dx' y}{\pi \varepsilon_{0}(x'^{2} + y^{2})} = \frac{\sigma y}{\pi \varepsilon_{0}} \int_{0}^{+\infty} \frac{dx'}{(x'^{2} + y^{2})}$$

$$= \frac{\sigma y}{\pi \varepsilon_{0}} \int_{0}^{+\infty} \frac{dx'}{y^{2} \left(\left(\frac{x'}{y}\right)^{2} + 1\right)}$$

$$= \frac{\sigma}{\pi \varepsilon_{0}} \int_{0}^{+\infty} \frac{\frac{dx'}{y}}{\left(\left(\frac{x'}{y}\right)^{2} + 1\right)}$$

$$= \frac{\sigma}{\pi \varepsilon_{0}} \arctan\left(\frac{x'}{y}\right)\Big|_{0}^{+\infty} = \frac{\sigma}{\pi \varepsilon_{0}} \frac{\pi}{2} = \boxed{\frac{\sigma}{2\varepsilon_{0}}}$$

coerentemente con quanto trovato nel caso del disco a raggio infinito.

Problema 5. Calcolare il campo **E** generato da una lamina di spessore 2a, che abbia le restanti due dimensioni infinite. La lamina ha una densità volumetrica di carica $\rho = \text{costante}$.

Soluzione: Per risolvere il problema, basta dividere la lamina metallica in tante "sfoglie" sottili, di spessore infinitesimo ds e di superficie infinita. La densità di carica superficiale delle "sfoglie"

² Per il campo generato da un filo infinitamente lungo, riguardare il relativo esercizio.

Figura 4: Lamina di spessore 2a

sarà dunque $\sigma=\rho ds=$ costante, e il campo generato dalla singola sfoglia in un punto generico sarà semplicemente:

$$E_{\rm sfoglia} = \frac{\sigma}{2\varepsilon_0} = \frac{\rho ds}{2\varepsilon_0}$$

Per comodità, possiamo posizionare il sistema di riferimento in modo tale che lo spessore della lamina sia parallelo al piano yz e il piano xz divida la lamina esattamente a metà (vedi Figura 4). Con questa configurazione ds = dy, e utilizzando il principio di sovrapposizione è possibile calcolare il campo totale all'esterno della lamina integrando il campo della singola sfoglia da -a ad a:

$$E_{\text{ext}} = \int_{-a}^{a} E_{\text{sfoglia}} = \int_{-a}^{a} \frac{\rho ds}{2\varepsilon_{0}}$$
$$= \int_{-a}^{a} \frac{\rho dy}{2\varepsilon_{0}} = \frac{\rho}{2\varepsilon_{0}} \int_{-a}^{a} dy$$
$$= \frac{\rho}{2\varepsilon_{0}} 2a = \boxed{\frac{\rho a}{\varepsilon_{0}}}$$

Il campo avrà segno positivo nel verso positivo dell'asse y, negativo nel verso negativo dell'asse y.

Per calcolare il campo all'interno della lamina si segue la stessa procedura, cambiando però gli estremi di integrazione. In un punto generico in posizione y rispetto al piano xz, si ottiene:

$$\begin{split} E_{\mathrm{int}} &= -\int_{y}^{a} E_{\mathrm{sfoglia}} + \int_{-a}^{y} E_{\mathrm{sfoglia}} \\ &= -\int_{y}^{a} \frac{\rho dy}{2\varepsilon_{0}} + \int_{-a}^{y} \frac{\rho dy}{2\varepsilon_{0}} \\ &= \frac{\rho}{2\varepsilon_{0}} \left(-\int_{y}^{a} dy + \int_{-a}^{y} \right) \\ &= \frac{\rho}{2\varepsilon_{0}} (\cancel{a} + y + y + \cancel{a}) = \boxed{\frac{\rho y}{\varepsilon_{0}}} \end{split}$$

Problema 6. Sia data una sfera cava di raggio R, carica elettricamente con densità superficiale di carica $\sigma = \text{costante}$. Determinare \mathbf{E} in un punto generico dello spazio.

SOLUZIONE: Sfruttando la simmetria del problema, possiamo ridurre le dimensioni da 3 a 1 per semplificare i calcoli. Distinguiamo due casi.

Figura 5: Sfera cava

• $\frac{r \geq R}{\text{Vogliamo}}$ sfruttare il Teorema di Gauss:

$$\oint \mathbf{E} \cdot d\mathbf{S} = \frac{E}{\varepsilon_0}$$

A tale scopo, consideriamo una superficie sferica S di raggio $r \geq R$: per la natura del campo, \mathbf{E} sarà sempre perpendicolare a tale superficie. Inoltre, poiché \mathbf{E} dipende solo dalla distanza dal centro (una volta fissata la carica generatrice), il modulo di \mathbf{E} sarà costante in ogni punto della superficie che stiamo considerando (vedi Figura 5).

Possiamo quindi scrivere:

$$\oint \mathbf{E} \cdot d\mathbf{S} = \oint E dS = E \oint dS = E 4\pi r^2$$

Indicando poi con S_f la superficie della sfera, dalla definizione si ottiene immediatamente che:

$$Q = \int \sigma dS_f = \sigma \int dS_f = \sigma 4\pi R^2$$

Applicando il Teorema di Gauss, segue che:

$$E4\pi r^2 = \frac{Q}{\varepsilon_0} \qquad \Longrightarrow \qquad E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

ossia

$$E = k_e \frac{Q}{r^2}$$

come nel caso di una carica puntiforme! In particolare per r=R, sfruttando il fatto che $Q=\sigma 4\pi R^2$,

$$E(R) = \frac{\sigma}{\varepsilon_0}$$

• $\underline{r < R}$

Dal Teorema di Gauss segue banalmente che

$$E = 0$$

Problema 7. Sia data una sfera di raggio R, carica elettricamente con densità volumetrica di carica $\rho = \text{costante}$. Determinare \mathbf{E} in un punto generico dello spazio.

SOLUZIONE: Distinguiamo due casi.

• $\underline{r \geq R}$

È come nel caso della sfera cava, basta sfruttare il principio di sovrapposizione! Quindi, se $Q = \int_{\tau} \rho(\tau) d\tau$ è la carica contenuta nella sfera, si ha semplicemente che

$$E = k_e \frac{Q}{r^2}$$

 \bullet r < R

Sfruttiamo il Teorema di Gauss:

$$\oint \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\varepsilon_0}$$

Valgono:

$$\oint \mathbf{E} \cdot d\mathbf{S} = E4\pi r^2$$

$$q = \rho \frac{4}{3}\pi r^3$$

Eguagliando le due relazioni sopra, troviamo che

$$E = \frac{\rho r}{3\varepsilon_0}$$

Problema 8. Considerare di nuovo il problema della lamina infinita di spessore 2a, carica elettricamente con densità volumetrica di carica $\rho=$ costante. Trovare ${\bf E}$ usando il Teorema di Gauss.

Soluzione: Distinguiamo due casi.

• All'esterno della lamina

Consideriamo un cilindro di altezza $h \geq 2a$ e raggio di base r, posizionato in modo che abbia le due basi parallele alle facce della lamina. Calcoliamo il flusso:

$$\oint \mathbf{E} \cdot d\mathbf{S} = \underbrace{\mathbf{E} \cdot d\mathbf{S}}_{\text{base 1}} + \underbrace{\int_{\text{base 2}} \mathbf{E} \cdot d\mathbf{S}}_{\text{base 2}} + \underbrace{\int_{\text{base 2}} \mathbf{E} \cdot d\mathbf{S}}_{\text{base 2}}$$

Il flusso attraverso la superficie laterale è nullo, perché $\mathbf{E} \perp d\mathbf{S}$. D'altra parte, attraverso le due basi, $\mathbf{E} \parallel d\mathbf{S}$ e quindi $\mathbf{E} \cdot d\mathbf{S} = EdS$. Il calcolo si semplifica notevolmente:

$$\oint \mathbf{E} \cdot d\mathbf{S} = 2 \int_{\text{base}} E dS = 2E\pi r^2$$

D'altra parte, la carica contenuta all'interno del cilindro è $Q=\rho\pi r^2 2a$, quindi applicando il Teorema di Gauss si ottiene:

$$E = \frac{\rho a}{\varepsilon_0}$$

• All'interno della lamina

Il calcolo è del tutto analogo a quello del caso precedente. Il cilindro, questa volta, avrà un'altezza h=2y<2a, e la carica contenuta all'interno sarà $Q=\rho\pi r^22y$. Applicando il Teorema di Gauss,

$$E = \frac{\rho y}{\varepsilon_0}$$

Problema 9. Due cariche q puntiformi e della stessa grandezza sono disposte a distanza a lungo l'asse in posizione simmetrica rispetto al piano y = 0 (Figura 6). Si calcoli il campo elettrico in ciascun punto del piano nei seguenti casi:

- 1. Le cariche siano dello stesso segno.
- 2. Le cariche abbiano polarità opposta.

Figura 6: Cariche puntiformi in tre dimensioni

SOLUZIONE: Iniziamo col notare che il piano y=0 corrisponde all'"asse" (bidimensionale) del segmento che congiunge le due cariche; inoltre, la forza elettrica è una forza centrale, quindi possiamo ridurre il problema da 3 a 2 dimensioni. Detto in altro modo, si tratta di studiare l'andamento del campo sull'asse del segmento che congiunge due cariche puntiformi.

Per comodità, scegliamo come asse proprio l'asse x; il generico punto (x, 0, 0) avrà dunque distanza $\sqrt{x^2 + \left(\frac{a}{2}\right)^2}$ da ognuna delle due cariche. Il modulo del campo ${\bf E}$ nel punto preso in considerazione sarà chiaramente

 $E = k_e \frac{q}{x^2 + \left(\frac{a}{2}\right)^2}$

e la direzione di ${\bf E}$ formerà con l'asse x un angolo ϑ tale che:

$$\cos \vartheta = \frac{x}{\sqrt{x^2 + \left(\frac{a}{2}\right)^2}}; \qquad \sin \vartheta = \frac{a/2}{\sqrt{x^2 + \left(\frac{a}{2}\right)^2}}.$$

Fatte queste premesse, possiamo ora distinguere i due casi.

1. Cariche dello stesso segno

Supponiamo, per semplicità, che le due cariche siano positive (se fossero entrambe negative il campo elettrico differirebbe solo per il verso). La situazione è schematizzata in Figura 7.

Figura 7: Due cariche positive

Facendo il calcolo,

$$E_{\text{tot}} = 2E \cos \vartheta = 2k_e \frac{q}{x^2 + \left(\frac{a}{2}\right)^2} \frac{x}{\sqrt{x^2 + \left(\frac{a}{2}\right)^2}}$$
$$= \frac{2k_e qx}{\left(x^2 + \left(\frac{a}{2}\right)^2\right)^{3/2}} = \boxed{\frac{qx}{2\pi\varepsilon_0 \left(x^2 + \left(\frac{a}{2}\right)^2\right)^{3/2}}}$$

2. Cariche di segno opposto

Supponiamo, per semplicità, che la carica di sinistra in Figura 8 sia positiva e quella a destra negativa (se fosse al contrario il campo elettrico differirebbe solo per il verso).

Figura 8: Due cariche di segno opposto

Facendo il calcolo,

$$E_{\text{tot}} = 2E \sin \vartheta = 2k_e \frac{q}{x^2 + \left(\frac{a}{2}\right)^2} \frac{a/2}{\sqrt{x^2 + \left(\frac{a}{2}\right)^2}}$$
$$= \frac{k_e qa}{\left(x^2 + \left(\frac{a}{2}\right)^2\right)^{3/2}} = \boxed{\frac{qa}{4\pi\varepsilon_0 \left(x^2 + \left(\frac{a}{2}\right)^2\right)^{3/2}}}$$