Unbiasing Review Ratings with Tendency based Collaborative Filtering Appendix

Pranshi Yadav*

IIIT, Hyderabad

pranshiyadav@gmail.com

Pegah Nokhiz

University of Utah

pnokhiz@cs.utah.edu

A Notation and Definition

A.1 Known Parameters

- 1. User Mean: $\overline{r_u} = \frac{1}{n_i} \sum_{i=i}^{n_i} r_{ui}$
- 2. Product Mean: $\overline{r_i} = \frac{1}{n_u} \sum_{u=1}^{n_u} r_{ui}$
- 3. User Tendency: $\tau_u = \frac{1}{n_i} \sum_{i=1}^{n_i} (r_{ui} \overline{r_i})$
- 4. Item Tendency: $\tau_i = \frac{1}{n_u} \sum_{u=1}^{n_u} (r_{ui} \overline{r_u})$

Where.

 n_i - number of items rated by the user (u). n_u - number of user who have rated item (i). r_{ui} - rating by user (u) to the item (i).

Enough Rating Assumption: To calculate adequate invariant estimates of user/item means and tendencies from the rated data, we need to make the following assumption: The prediction example is based in an online setting. Thus, the distribution means and tendencies (both users/items) will not change significantly, when we predict ratings for new user-item pairs. This helps us in deciding the case on the estimated mean and tendency from the given labeled ratings. Similarly, the case for reverse estimation function will be decided on the prior data's means and tendencies.

A.2 Derived Parameters

- 1. $\sum_{i=1}^{n_i} r_{ui} = \overline{r_u} * n_i$: Sum of all the ratings rated by the user (u) for all items.
- 2. $\sum_{u=1}^{n_u} r_{ui} = \overline{r_i} * n_u$: Sum of all the ratings rated by user for an item (i) for all users.
- 3. $\sum_{i=1}^{n_i} \overline{r_i} = n_i(\overline{r_u} \tau_u)$: Sum of all item means (rated by user (u)).
- 4. $\sum_{u=1}^{n_u} \overline{r_u} = n_u(\overline{r_i} \tau_i)$: Sum of all user means (rated for item (i)).

A.3 Derivation of Derived Parameters

1.
$$\overline{r_u} = \frac{1}{n_i} \sum_{items} r_{ui}$$

$$\sum_{items} r_{ui} = \overline{r_u} * n_i$$

2.
$$\overline{r_i} = \frac{1}{n_u} \sum_{users}^{users} r_{ui} \\ \sum_{users}^{users} r_{ui} = \overline{r_i} * n_u$$

Priya Yadav*

JSSATE, Noida

priya.yadav252@gmail.com

Vivek Gupta

University of Utah

vgupta@cs.utah.edu

$$\begin{array}{l} 3. \ \ \tau_{u} = \frac{\sum^{items} r_{ui} - \sum^{items} \overline{r_{i}}}{n_{i}} \\ \ \ \tau_{u} * n_{i} = \sum^{items} r_{ui} - \sum^{items} \overline{r_{i}} \\ \sum^{items} \overline{r_{i}} = \sum^{items} r_{ui} - (\tau_{u} * n_{i}) \\ \sum^{items} \overline{r_{i}} = (\overline{r_{u}} * n_{i}) - (\tau_{u} * n_{i}) - \text{From eq. 1} \\ \sum^{items} \overline{r_{i}} = n_{i}(\overline{r_{u}} - \tau_{u}) \end{array}$$

$$\begin{array}{l} 4. \ \, \tau_{i} = \frac{\sum^{users} r_{ui} - \sum^{users} \overline{r_{u}}}{n_{u}} \\ \, \tau_{i} * n_{u} = \sum^{users} r_{ui} - \sum^{users} \overline{r_{u}} \\ \, \sum^{users} \frac{1}{r_{u}} = \sum^{users} r_{ui} - (\tau_{i} * n_{u}) \\ \, \sum^{users} \overline{r_{u}} = (\overline{r_{i}} * n_{u}) - (\tau_{i} * n_{u}) - \operatorname{From eq. 2} \\ \, \sum^{users} \overline{r_{u}} = n_{u}(\overline{r_{i}} - \tau_{i}) \end{array}$$

B Unbiased Review Scores

Case	UnBias Function $(\widehat{r_{ui}})$
1. $\tau_u > 0, \tau_i > 0$	$\max(\overline{r_u} + \tau_i, \overline{r_i} + \tau_u)$
2. $\tau_u < 0, \tau_i < 0$	$\min(\overline{r_u} + \tau_i, \overline{r_i} + \tau_u)$
3. $\tau_u < 0, \tau_i > 0, \overline{r_u} < \overline{r_i}$	$\min(\max(\overline{r_u}, (\overline{r_i} + \tau_u)\beta)$
	$+(\overline{r_u}+\tau_i)(1-\beta)),\overline{r_i}$
4. $\tau_u < 0, \tau_i > 0, \overline{r_u} > \overline{r_i}$	$\overline{r_i}\beta + \overline{r_u}(1-\beta)$
5. $\tau_u > 0$, $\tau_i < 0$, $\overline{r_u} > \overline{r_i}$	$\min(\max(\overline{r_i}, (\overline{r_u} + \tau_i)\beta))$
	$+(\overline{r_i}+\tau_u)(1-\beta),\overline{r_u}$
6. $\tau_u > 0, \tau_i < 0, \overline{r_u} < \overline{r_i}$	$\overline{r_u}\beta + \overline{r_i}(1-\beta)$

Table 1: Unbias functions

C Derivation of Reverse functions

This sections contains the details about the derivations of the reverse functions. The reverse tendency estimated functions are listed in Table 2. Here, (train) in subscript mean using examples from training set, (new) in subscript mean a new examples from test/valid test, and (final) in subscript representing the final prediction.

Case	Sub-case	Reverse tendency estimation function
$1.\tau_u$ >0,	$I. \widehat{r_{ui}} = \overline{r_u} + \tau_i(new)$	$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r}_{ui}(n_u + 1)(n_i + 1) - (n_i + 1)(n_u \times \tau_i) -$
$\tau_i > 0$		$(n_i \times n_u \times \overline{r_u})$
	II. $\widehat{r_{ui}} = \overline{r_i} + \tau_u(new)$	$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r}_{ui}(n_u + 1)(n_i + 1) - (n_u + 1)(n_i \times \tau_u) - (n_u + 1)(n_i \times \tau_u)$
		$(n_i \times n_u \times \overline{r_i})$
$2.\tau_u$ <0,	$I. \widehat{r_{ui}} = \overline{r_u} + \tau_i(new)$	$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_u + 1)(n_i + 1) - (n_i + 1)(n_u \times \tau_i) - (n_i + 1)(n_u \times \tau_i)]$
$\tau_i < 0$		$(n_i \times n_u \times \overline{r_u})]$
	$II.\widehat{r_{ui}} = \overline{r_i} + \tau_u(new)$	$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r}_{ui}(n_u + 1)(n_i + 1) - (n_u + 1)(n_i \times \tau_u) - (n_u + 1)(n_i \times \tau_u)$
		$(n_i \times n_u \times \overline{r_i})]$
$3.\tau_u < 0$,	I. $\widehat{r_{ui}} = \overline{r_{u(final)}}$	$r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - (\overline{r_u} \times n_i)$
τ_i >0,	(- //	$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[(n_u + 1)(n_i + 1)\widehat{r_{ui}} - (n_u)(\overline{r_u} \times n_i)(1 - \beta) - \frac{1}{n_i + n_u + 1}(n_u + 1)\widehat{r_{ui}} - \frac{1}{n_u + 1}(n_u + 1)\widehat{r_{ui}} - \frac{1}{$
$\overline{r_u} < \overline{r_i}$	$(\overline{r_u} + \tau_i)(1 - \beta)$	$(n_i+1)(1-\beta)(n_u\times\tau_i)-\beta(n_i)(\overline{r_i}\times n_u)-\beta(n_u+1)(n_i\times\tau_u)$
	III. $\widehat{r_{ui}} = \overline{r_{i(final)}}$	$r_{ui(new)} = (n_u + 1)\widehat{r_{ui}} - (\overline{r_i} \times n_u)$
$4.\tau_u$ <0,	$\widehat{r_{ui}} = \overline{r_i}\beta + \overline{r_u}(1-\beta)$	$r_{ui(new)} = \left[\frac{1}{n_u(1-\beta)+1+\beta n_i}\right] \times \left[(n_u+1)(n_i+1)\widehat{r_{ui}}\right] -$
τ_i >0 ,		$\beta(n_i+1)(\overline{r_i}\times n_u)-(1-\beta)(n_u+1)(\overline{r_u}\times n_i)$
$\overline{r_u} > \overline{r_i}$		
$5.\tau_u > 0$,	I. $\widehat{r_{ui}} = \overline{r_i(final)}$	$r_{ui(new)} = (n_u + 1)\widehat{r_{ui}} - (\overline{r_i} \times n_u)$
τ_i <0,		$r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[(n_u + 1)(n_i + 1)\widehat{r_{ui}} - (n_i)(\overline{r_i} \times n_u)(1 - \beta) - (n_i)(\overline{r_i} \times n_u)(1 - \beta)$
$\overline{r_u} > \overline{r_i}$	$(\overline{r_i} + \tau_u)(1 - \beta)$	$(n_u+1)(1-\beta)(n_i\times\tau_u)-\beta(n_u)(\overline{r_u}\times n_i)-\beta(n_i+1)(n_u\times\tau_i)$
	III. $\widehat{r_{ui}} = \overline{r_u(final)}$	$r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - (\overline{r_u} \times n_i)$
$6.\tau_u$ >0,	$\widehat{r_{ui}} = \overline{r_u}\beta + \overline{r_i}(1-\beta)$	$r_{ui(new)} = [\frac{1}{n_i(1-\beta)+1+\beta n_u}] \times [(n_u+1)(n_i+1)\widehat{r_{ui}} -$
$\tau_i < 0, \ \overline{r_u} < \overline{r_i}$		$\beta(n_u+1)(\overline{r_u}\times n_i)-(1-\beta)(n_i+1)(\overline{r_i}\times n_u)]$
		<u> </u>

Table 2: Reverse Estimation Functions to predict review rating (with bias) for a new user-item pair

C.1 Case 1: User Tendency is positive and Product Tendency is positive $(\tau_u > 0, \tau_i > 0)$

Unbias Rating : $\widehat{r_{ui}} = \max(\overline{r_u} + \tau_i, \overline{r_i} + \tau_u)$

Reverse Function

1. If
$$\widehat{r_{ui}} = \overline{r_{u}} + \tau_{i}$$
 (new) $\tau_{i} = \widehat{r_{ui}} - \tau_{u}$ -1 And $\tau_{i} = \sum_{u \in U_{i}}^{i} (r_{ui} - \overline{r_{u}})$ -2 Now, equating 1 and 2 $\widehat{r_{ui}} - \overline{r_{u}} = \sum_{u \in U_{i}}^{i} (r_{ui} - \overline{r_{u}})$ $\widehat{r_{ui+1}}$ -2 Now, equating 1 and 2 $\widehat{r_{ui}} - \sum_{i = m}^{i} \frac{1}{r_{ui}(f_{inal})} = \sum_{u \in r_{i}}^{u \in r_{ii}} \frac{1}{r_{ui}(f_{inal})} = \sum_{u \in r_{i}}^{u \in r_{ii}} \frac{1}{r_{ui}(f_{inal})}$ Where, n_{u+1} - number of users who have rated the item (including the final user) n_{i+1} numbers of items rated by the user (including the final item) $\sum_{u \in r_{i}}^{i \in m_{i}} r_{ui}(f_{inal})$ - sum of all the scores rated by the user u (final) $\sum_{u \in r_{i}}^{i \in m_{i}} r_{ui}(f_{inal})$ - sum of the scores rated by the users for the item i (final) $\widehat{r_{ui}} = \sum_{u \in r_{i}}^{i \in m_{i}} r_{ui}(f_{inal}) + r_{ui}(n_{i}) - \sum_{u \in r_{i}}^{i \in m_{i}} r_{ui}(f_{inal})$ $\widehat{r_{ui}} = \sum_{u \in r_{i}}^{i \in m_{i}} r_{ui}(f_{inal}) + r_{ui}(n_{i}) - \sum_{u \in r_{i}}^{i \in m_{i}} r_{u}(f_{inal}) + r_{u}(f_{inal})$ $\widehat{r_{ui}} = \sum_{u \in r_{i}}^{i \in m_{i}} r_{u}(f_{inal}) + r_{u}(f_{inal}) - \sum_{u \in r_{i}}^{i \in m_{i}} r_{u}(f_{inal}) + r_{u}(f_{inal}) - \sum_{u \in r_{i}}^{i \in m_{i}} r_{u}(f_{ina$

Reshuffling,

Reshuffling,
$$\Rightarrow \frac{(n_i)r_{ui(new)}}{n_i+1} + \frac{(n_u+1)r_{ui(new)}}{n_i+1} = \frac{\sum_{items} r_{ui(train)}}{n_i+1} - \sum_{items} r_{ui(train)} - \overline{r_{ui(train)}}) + \widehat{r_{ui}}(n_u+1) - \frac{(n_u+1)\sum_{items} r_{ui(train)}}{n_i+1}$$

$$= \frac{(n_i+n_u+1)r_{ui(new)}}{n_i+1} - \frac{(n_u+1)r_{ui(new)}}{n_i+1} - \frac{(n_u+1)r_{ui(new)}}$$

$$\Rightarrow \frac{(n_i + n_u + 1)r_{ui(new)}}{n_i + 1} = \widehat{r_{ui}}\big(n_u + 1\big) - \sum^{users} \big(r_{ui(train)} - \overline{r_{u(train)}}\big) - \frac{(n_u)\sum^{items} r_{ui(train)}}{n_i + 1}$$

$$\Rightarrow r_{ui(new)} = (\frac{n_i+1}{n_i+n_u+1})[\widehat{r_{ui}}(n_u+1) - \sum^{users}(r_{ui(train)} - \overline{r_{u(train)}}) - \frac{(n_u)\sum^{items}r_{ui(train)}}{n_i+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{n_i+1}{n_i+n_u+1})[\widehat{r_{ui}}(n_u+1) - (\overline{r_i}*n_u) + (\overline{r_i}*n_u) - (n_u*\tau_i) - \frac{(n_u)(\overline{r_u}*n_i)}{n_i+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{n_i + 1}{n_i + n_u + 1}) [\widehat{r_{ui}}(n_u + 1) - (n_u * \tau_i) - \frac{(n_u)(\overline{r_u} * n_i)}{n_i + 1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_u + 1)(n_i + 1) - (n_i + 1)(n_u * \tau_i) - (n_i * n_u * \overline{r_u})]$$

2. If
$$\widehat{r_{ui}} = \overline{r_i} + \tau_u$$
 (new)
$$\tau_u = \widehat{r_{ui}} - \overline{r_i}$$

$$\tau_u = \widehat{r_{ui}} - \overline{r_i} - -1$$

And
$$\tau_u = \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{i+1}} - -2$$
 Now, equating 1 and 2

$$\widehat{r_{ui}} - \overline{r_i} = \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{i+1}}$$

$$\widehat{r_{ui}} - \frac{\sum_{users}^{users} r_{ui(final)}}{n_{u+1}} = \frac{\sum_{items}^{items} r_{ui(final)} - \sum_{items}^{items} \overline{r_{i}(final)}}{n_{i+1}}$$

 n_{u+1} - number of users who have rated the item (including the final user)

 n_{i+1} numbers of items rated by the user (including the final item) $\sum_{items}^{items} r_{ui(final)}$ - sum of all the scores rated by the user u (final) $\sum_{users}^{users} r_{ui(final)}$ - sum of the scores rated by the users for the item i (final)

$$\Rightarrow \widehat{r_{ui}} - \frac{\sum_{users}^{users} r_{ui(train)} + r_{ui(new)}}{n_u + 1} = \frac{\sum_{items}^{items} r_{ui(train)} + r_{ui(new)} - \sum_{items}^{items} \overline{r_{i(final)}}}{n_i + 1}$$

$$\Rightarrow \widehat{r_{ui}} - \frac{\sum^{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1} = \frac{\sum^{items} r_{ui(train)} + r_{ui(new)} - [\sum^{items} \overline{r_{i(train)}} + \overline{r_{i(new)}}]}{n_i + 1}$$

$$\Rightarrow \widehat{r_{ui}} - \frac{\sum^{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1} = \frac{\sum^{items} r_{ui(train)} + r_{ui(new)} - \sum^{items} \overline{r_{i(train)}} - \frac{\sum^{users} r_{ui(final)}}{n_u + 1}}{n_u + 1}$$

$$\Rightarrow \widehat{r_{ui}} - \frac{\sum_{users}^{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1} = \frac{\sum_{items}^{items} r_{ui(train)} + r_{ui(new)} - \sum_{items}^{items} \frac{r_{ui(train)}}{r_{i(train)}} - \frac{\sum_{users}^{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1}}{n_i + 1}$$

$$\Rightarrow \widehat{r_{ui}} - \frac{\sum_{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1} = \frac{\sum_{items} r_{ui(train)} + r_{ui(new)} - \sum_{items} \frac{r_{ui(train)}}{r_{i(train)}} - \frac{\sum_{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1}}{n_u + 1} = \frac{\sum_{items} r_{ui(train)} + r_{ui(new)} - \sum_{items} \frac{r_{ui(train)}}{r_{i(train)}} - \frac{r_{ui(new)}}{n_u + 1}}{n_u + 1} - \frac{\sum_{users} r_{ui(train)}}{n_u + 1} - \frac{\sum_{users} r_{ui(train)}}{n_u + 1} - \frac{r_{ui(new)}}{n_u + 1} = \sum_{users} r_{ui(train)} + r_{ui(new)} - \sum_{users} \frac{r_{ui(train)}}{r_{i(train)}} - \frac{r_{ui(new)}}{n_u + 1}$$

$$\Rightarrow \widehat{r_{ui}}(n_i + 1) - \frac{(n_i + 1)\sum_{users}^{users} r_{ui(train)}}{n_u + 1} - \frac{(n_i + 1)r_{ui(new)}}{n_u + 1} = \sum^{items} r_{ui(train)} - \sum^{items} \overline{r_{i(train)}} - \sum$$

$$\frac{\sum_{n_{u}+1}^{users} r_{ui(train)}}{n_{u}+1} + \left[\frac{(n_{u}+1)r_{ui(new)} - r_{ui(new)}}{n_{u}+1}\right]$$

$$\Rightarrow \widehat{r_{ui}}(n_{i}+1) - \frac{(n_{i}+1)\sum_{users}^{users} r_{ui(train)}}{n_{u}+1} - \frac{(n_{i}+1)r_{ui(new)}}{n_{u}+1} = \sum_{items} (r_{ui(train)} - \overline{r_{i(train)}}) - \frac{\sum_{users}^{users} r_{ui(train)}}{n_{u}+1} + \frac{(n_{u})r_{ui(new)}}{n_{u}+1} + \frac{(n_{u})r_{ui(new)$$

Reshuffling,

$$\Rightarrow \frac{(n_u)r_{ui(new)}}{n_u+1} + \frac{(n_i+1)r_{ui(new)}}{n_u+1} \ = \ \frac{\sum_{users} r_{ui(train)}}{n_u+1} \ - \ \sum_{ui(train)} (r_{ui(train)} - \overline{r_{i(train)}}) + \widehat{r_{ui}}(n_i+1) - \frac{(n_i+1)\sum_{users} r_{ui(train)}}{n_u+1}$$

$$\Rightarrow \frac{(n_i + n_u + 1)r_{ui(new)}}{n_u + 1} = \widehat{r_{ui}}(n_i + 1) - \sum^{items} (r_{ui(train)} - \overline{r_{i(train)}}) - \frac{(n_i)\sum^{users} r_{ui(train)}}{n_u + 1}$$

$$\begin{split} &\Rightarrow r_{ui(new)} = (\frac{n_u + 1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_i + 1) - \sum^{items}(r_{ui(train)} - \overline{r_{i(train)}}) - \frac{(n_i) \sum^{users} r_{ui(train)}}{n_u + 1}] \\ &\Rightarrow r_{ui(new)} = (\frac{n_u + 1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_i + 1) - (\overline{r_u} * n_i) + (\overline{r_u} * n_i) - (n_i * \tau_u) - \frac{(n_i)(\overline{r_i} * n_u)}{n_u + 1}] \\ &\Rightarrow r_{ui(new)} = (\frac{n_u + 1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_i + 1) - (n_i * \tau_u) - \frac{(n_i)(\overline{r_i} * n_u)}{n_u + 1}] \\ &\Rightarrow r_{ui(new)} = (\frac{1}{n_i + n_u + 1})[\widehat{r_{ui}}(n_u + 1)(n_i + 1) - (n_u + 1)(n_i * \tau_u) - (n_i * n_u * \overline{r_i})] \end{split}$$

C.2 Case 2: User Tendency is negative and Product Tendency is negative ($\tau_u < 0, \tau_i < 0$)

Unbias Rating : $\widehat{r_{ui}} = \min(\overline{r_u} + \tau_i, \overline{r_i} + \tau_u)$

Reverse Function

1. If
$$\widehat{r_{ui}} = \overline{r_u} + \tau_i$$
 (new)

 $\tau_i = \widehat{r_{ui}} - \overline{r_u}$

And

 $\tau_i = \sum_{u \in U_i} (r_{ui} - \overline{r_u})$

Now, equating I and 2

 $\widehat{r_{ui}} - \overline{r_u} = \sum_{u \in U_i} (r_{ui} - \overline{r_u})$
 $\tau_{ui} - \tau_u = \sum_{u \in U_i} (r_{ui} - \overline{r_u})$

Now, equating I and 2

 $\widehat{r_{ui}} - \sum_{u_{i+1}} \sum_{u_{i+$

 $\Rightarrow r_{ui(new)} = (\frac{n_i + 1}{n_i + n_u + 1}) [\widehat{r_{ui}}(n_u + 1) - (n_u * \tau_i) - \frac{(n_u)(\overline{r_u} * n_i)}{n_i + 1}]$

 $\Rightarrow r_{ui(new)} = (\frac{1}{n_i + n_{u+1}})[\widehat{r_{ui}}(n_u + 1)(n_i + 1) - (n_i + 1)(n_u * \tau_i) - (n_i * n_u * \overline{r_u})]$

2. If
$$\widehat{r_{ui}} = \overline{r_i} + \tau_u$$
 (new)
$$\tau_u = \widehat{r_{ui}} - \overline{r_i} - \overline{r_i} - 1$$
 And
$$\tau_u = \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{i+1}} - 2$$
 Now, equating 1 and 2
$$\widehat{r_{ui}} - \overline{r_i} = \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{i+1}}$$

$$\widehat{r_{ui}} - \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{u+1}} = \frac{\sum_{u \in I} (r_{ui} - \overline{r_i})}{n_{i+1}}$$
 Where,
$$n_{u+1}$$
- number of users who have rated item (including the final user)
$$n_{i+1}$$
- numbers of items rated by the user (including the final item)
$$\sum_{u \in I} r_{ui}(f_{inal}) - \text{sum of all the scores rated by the user } u \text{ (final)}$$

$$\sum_{u \in I} r_{ui}(f_{inal}) - \text{sum of the scores rated by the users for the item } i \text{ (final)}$$

Reshuffling,

$$\Rightarrow \frac{(n_u)r_{ui(new)}}{n_u+1} + \frac{(n_i+1)r_{ui(new)}}{n_u+1} = \frac{\sum_{users} r_{ui(train)}}{n_u+1} - \sum_{items} (r_{ui(train)} - \overline{r_{i(train)}}) + \widehat{r_{ui}}(n_i+1) - \frac{(n_i+1)\sum_{users} r_{ui(train)}}{n_u+1}$$

$$\Rightarrow \frac{(n_i+n_u+1)r_{ui(new)}}{n_u+1} = \widehat{r_{ui}}(n_i+1) - \sum_{items} (r_{ui(train)} - \overline{r_{i(train)}}) - \frac{(n_i)\sum_{users} r_{ui(train)}}{n_u+1}$$

$$\Rightarrow r_{ui(new)} = (\frac{n_u+1}{n_i+n_u+1})[\widehat{r_{ui}}(n_i+1) - \sum_{items} (r_{ui(train)} - \overline{r_{i(train)}}) - \frac{(n_i)\sum_{users} r_{ui(train)}}{n_u+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{n_u+1}{n_i+n_u+1})[\widehat{r_{ui}}(n_i+1) - (\overline{r_u}*n_i) + (\overline{r_u}*n_i) - (n_i*\tau_u) - \frac{(n_i)(\overline{r_i}*n_u)}{n_u+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{n_u+1}{n_i+n_u+1})[\widehat{r_{ui}}(n_i+1) - (n_i*\tau_u) - \frac{(n_i)(\overline{r_i}*n_u)}{n_u+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{1}{n_i+n_u+1})[\widehat{r_{ui}}(n_i+1) - (n_i*\tau_u) - \frac{(n_i)(\overline{r_i}*n_u)}{n_u+1}]$$

$$\Rightarrow r_{ui(new)} = (\frac{1}{n_i+n_u+1})[\widehat{r_{ui}}(n_u+1)(n_i+1) - (n_u+1)(n_i*\tau_u) - (n_i*\tau_u) - (n_i*\tau_u) - (n_i*\tau_u)]$$

C.3 Case 3: User Tendency is negative and Product Tendency is Positive; User mean < Item mean $(\tau_u < 0, \tau_i > 0, \overline{r_u} < \overline{r_i} \ \widehat{r_{ui}})$

Unbias Rating : $\widehat{r_{ui}} = \min(\max(\overline{r_u}, (\overline{r_i} + \tau_u)\beta + (\overline{r_u} + \tau_i)(1 - \beta)), \overline{r_i})$

Reverse Function

1. If
$$\widehat{r_{ui}} = \overline{r_{u(final)}}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{items} r_{ui(final)}}{n_i + 1}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{items} r_{ui(train)} + r_{ui(new)}}{n_i + 1}$$

$$\Rightarrow (n_i + 1)\widehat{r_{ui}} = \sum_{items} r_{ui(train)} + r_{ui(new)}$$

$$\Rightarrow r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - \sum^{items} r_{ui(train)}$$
$$\Rightarrow r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - (\overline{r_u} * n_i)$$

2. If
$$\widehat{r_{ui}} = (\overline{r_i} + \tau_u)\beta + (\overline{r_u} + \tau_i)(1 - \beta)$$

$$\widehat{r_{ui}} = (\underbrace{\sum_{users}^{users} r_{ui(final)} - \sum_{n_i+1}^{users} r_{ui(final)}}_{n_u+1} + \underbrace{\sum_{items}^{items} r_{ui(final)} - \sum_{n_i+1}^{items} r_{i(final)}}_{n_i+1})\beta + (\underbrace{\sum_{items}^{items} r_{ui(final)}}_{n_i+1}) + \underbrace{\sum_{items}^{items} r_{ui(final)} - \sum_{items}^{items} r_{i(final)}}_{n_i+1})\beta + (\underbrace{\sum_{items}^{items} r_{ui(final)}}_{n_i+1})\beta$$

Break it into 2 parts

$$\begin{split} & \text{L}\left(\sum_{n_{n}+1}^{\text{cores}} r_{n((ran))} + \sum_{n_{n}+1}^{\text{cores}} r_{n((ran))} + \sum_{n_{1}+1}^{\text{cores}} r_{n((ran))} + \sum_{n_{1}+1}^{\text{cores}} r_{n((ran))} + \sum_{n_{1}+1}^{\text{cores}} r_{n_{1}+1} + \sum_{n_{1}+1}^{\text{cores}} r_{n_{1}+$$

Reshuffling

 $(n_u+1)(n_i+1)$

$$\begin{array}{l} \Rightarrow \frac{(n_i+n_u+1)r_{ui(new)}}{(n_u+1)(n_i+1)} = \widehat{r_{ui}} - \frac{(n_u)\sum_{i=1}^{items}r_{ui(train)}}{(n_u+1)(n_i+1)}(1-\beta) - \frac{\sum_{u=1}^{users}(r_{ui(train)}-\overline{r_{u(train)}})}{n_u+1}(1-\beta) - \frac{\sum_{u=1}^{users}(r_{ui(train)}-\overline{r_{u(train)}})}{n_u+1}(1-\beta) - \frac{\sum_{u=1}^{users}(r_{ui(train)}-\overline{r_{u(train)}})}{n_u+1}(1-\beta) - \frac{\sum_{u=1}^{users}(r_{ui(train)}-\overline{r_{u(train)}})}{n_u+1}\beta - \frac{\sum_{u=1}^{users}(r_{ui(train)}-\overline{r_{u(train)}})}{n_u+1}(1-\beta) - \frac{\sum_{$$

3. If
$$\widehat{r_{ui}} = \overline{r_{i(final)}}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{users} r_{ui(final)}}{n_u + 1}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{users} r_{ui(train)} + r_{ui(new)}}{n_u + 1}$$

$$\Rightarrow (n_u + 1)\widehat{r_{ui}} = \sum_{users} r_{ui(train)} + r_{ui(new)}$$

$$\Rightarrow r_{ui(new)} = (n_u + 1)\widehat{r_{ui}} - \sum_{users} r_{ui(train)}$$

$$\Rightarrow r_{ui(new)} = (n_u + 1)\widehat{r_{ui}} - (\overline{r_i} * n_u)$$

C.4 Case 4: User Tendency is negative and Product Tendency is Positive; User mean > Item mean $(\tau_u < 0, \tau_i > 0, \overline{r_u} > \overline{r_i} \ \widehat{r_{ui}})$

Unbias Rating : $\widehat{r_{ui}} = \overline{r_i}\beta + \overline{r_u}(1-\beta)$

Reverse functions

$$\begin{split} \widehat{r_{ui}} &= \overline{r_i}\beta + \overline{r_u}(1-\beta) \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum^{users} r_{ui(final)}}{n_u + 1} + \frac{(1-\beta) \sum^{items} r_{ui(final)}}{n_i + 1} \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum^{users} r_{ui(train)}}{n_u + 1} + \frac{(\beta) r_{ui(new)}}{n_u + 1} + \frac{(1-\beta) \sum^{items} r_{ui(train)}}{n_i + 1} + \frac{(1-\beta) r_{ui(new)}}{n_i + 1} \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum^{users} r_{ui(train)}}{n_u + 1} + \frac{(1-\beta) \sum^{items} r_{ui(train)}}{n_i + 1} + r_{ui(new)} \left[\frac{\beta}{n_u + 1} + \frac{1-\beta}{n_i + 1} \right] \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum^{users} r_{ui(train)}}{n_u + 1} + \frac{(1-\beta) \sum^{items} r_{ui(train)}}{n_i + 1} + r_{ui(new)} \left[\frac{\beta n_i + \beta + n_u + 1 - \beta n_u - \beta}{(n_u + 1)(n_i + 1)} \right] \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum^{users} r_{ui(train)}}{n_u + 1} + \frac{(1-\beta) \sum^{items} r_{ui(train)}}{n_i + 1} + r_{ui(new)} \left[\frac{n_u(1-\beta) + (1+\beta n_i)}{(n_u + 1)(n_i + 1)} \right] \end{split}$$

Reshuffling,

$$\Rightarrow r_{ui(new)} \left[\frac{n_u(1-\beta)+1+\beta n_i}{(n_u+1)(n_i+1)} \right] = \widehat{r_{ui}} - \frac{\beta \sum_{users} r_{ui(train)}}{n_u+1} - \frac{(1-\beta) \sum_{items} r_{ui(train)}}{n_i+1} \right]$$

$$\Rightarrow r_{ui(new)} = \left[\frac{(n_u+1)(n_i+1)}{n_u(1-\beta)+(1+\beta n_i)} \right] (\widehat{r_{ui}} - \frac{\beta \sum_{users} r_{ui(train)}}{n_u+1} - \frac{(1-\beta) \sum_{items} r_{ui(train)}}{n_i+1} \right]$$

$$\Rightarrow r_{ui(new)} = \left[\frac{1}{n_u(1-\beta)+(1+\beta n_i)} \right] ((n_u+1)(n_i+1)\widehat{r_{ui}} - \beta(n_i+1) \sum_{users} r_{ui(train)} - (1-\beta)(n_u+1) \sum_{users} r_{ui(train)} \right]$$

$$\Rightarrow r_{ui(new)} = \left[\frac{1}{n_u(1-\beta)+(1+\beta n_i)} \right] ((n_u+1)(n_i+1)\widehat{r_{ui}} - \beta(n_i+1)(\overline{r_i}*n_u) - (1-\beta)(n_u+1)(\overline{r_u}*n_i) \right]$$

C.5 Case 5: User Tendency is Positive and Product Tendency is Negative; User mean > 1tem mean $(\tau_u > 0, \tau_i < 0, \overline{r_u} > \overline{r_i} \ \widehat{r_{ui}})$

Unbias Rating : $\widehat{r_{ui}} = \min(\max(\overline{r_i}, (\overline{r_u} + \tau_i)\beta + (\overline{r_i} + \tau_u)(1 - \beta)), \overline{r_u})$

Reverse Functions

1. If
$$\widehat{r_{ui}} = \overline{r_{i(final)}}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{\substack{users \\ n_u+1}}^{users} r_{ui(final)}}{n_u+1}$$

$$\begin{split} &\Rightarrow \widehat{r_{ui}} = \frac{\sum_{users} r_{ui(train)} + r_{ui(new)}}{n_u + 1} \\ &\Rightarrow (n_u + 1)\widehat{r_{ui}} = \sum_{users} r_{ui(train)} + r_{ui(new)} \\ &\Rightarrow r_{ui(new)} = (n_u + 1)\widehat{r_{ui}} - \sum_{users} r_{ui(train)} \\ &\Rightarrow r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - (\overline{r_i} * n_u) \end{split}$$

2. If
$$\widehat{r_{ui}} = (\overline{r_u} + \tau_i)\beta + (\overline{r_i} + \tau_u)(1 - \beta)$$

$$\widehat{r_{ui}} = (\underbrace{\sum_{items}^{items} r_{ui(final)}}_{n_i+1} + \underbrace{\sum_{users}^{users} r_{ui(final)} - \sum_{users}^{users} \overline{r_{u(final)}}}_{n_u+1})\beta + (\underbrace{\sum_{users}^{users} r_{ui(final)}}_{n_u+1}) + \underbrace{\sum_{users}^{users} \overline{r_{ui(final)}}}_{n_u+1})(1-\beta)$$

Break it into 2 parts

$$\begin{split} & \text{L} \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} - \sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} - \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) - \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) - \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1(train)}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} \right) \beta \\ & = \left(\sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} + \sum_{n_1 + 1}^{\text{Litems}} v_{n_1 + 1}^{\text{Litems}} v_{n_$$

 $\Rightarrow \widehat{r_{ui}} = \big(\frac{(n_u)\sum_{items} r_{ui(train)}}{(n_u+1)(n_i+1)} + \frac{\sum_{users} (r_{ui(train)} - \overline{r_{u(train)}})}{n_u+1} + \frac{(n_i+n_u+1)r_{ui(new)}}{(n_u+1)(n_i+1)}\big)\beta + \big(\frac{(n_i)\sum_{users} r_{ui(train)}}{(n_u+1)(n_i+1)} + \sum_{items} \frac{(r_{ui(train)} - \overline{r_{i(train)}})}{(n_u+1)(n_i+1)} + \frac{(n_i+n_u+1)r_{ui(new)}}{(n_u+1)(n_i+1)} + \sum_{items} \frac{(r_{ui(train)} - \overline{r_{i(train)}})}{(n_u+1)(n_i+1)} + \sum_{items} \frac{(r_{ui(train$

$$\frac{\scriptscriptstyle (n_i+n_u+1)r_{ui(new)}}{\scriptscriptstyle (n_u+1)(n_i+1)})\beta$$

Reshuffling

$$\Rightarrow \frac{(n_{i}+n_{u}+1)r_{ui}(new)}{(n_{u}+1)(n_{i}+1)} = \widehat{r_{ui}} - \frac{(n_{i})\sum_{users}^{users}r_{ui}(train)}{(n_{u}+1)(n_{i}+1)}(1-\beta) - \frac{\sum_{items}^{items}(r_{ui}(train)-\overline{r_{i}}(train))}{n_{i}+1}(1-\beta) - \frac{(n_{u})\sum_{items}^{items}r_{ui}(train)}{n_{i}+1}\beta - \sum_{users}^{users}(r_{ui}(train)-\overline{r_{u}}(train))}{n_{u}+1}\beta$$

$$\Rightarrow r_{ui}(new) = (\frac{(n_{i}+1)(n_{u}+1)}{n_{i}+n_{u}+1})[\widehat{r_{ui}} - \frac{(n_{i})\sum_{users}^{users}r_{ui}(train)}{(n_{u}+1)(n_{i}+1)}(1-\beta) - \frac{\sum_{items}^{items}(r_{ui}(train)-\overline{r_{i}}(train))}{n_{i}+1}(1-\beta) - \frac{(n_{u})\sum_{items}^{items}r_{ui}(train)}{(n_{u}+1)(n_{i}+1)}\beta - \sum_{users}^{users}(r_{ui}(train)-\overline{r_{u}}(train))}\beta]$$

$$\Rightarrow r_{ui}(new) = (\frac{1}{n_{i}+n_{u}+1})[(n_{u}+1)(n_{i}+1)\widehat{r_{ui}} - ((n_{i})(1-\beta)\sum_{users}^{users}r_{ui}(train)) - ((n_{u}+1)(1-\beta)\sum_{users}^{users}(r_{ui}(train)-\overline{r_{u}}(train)))]$$

$$\Rightarrow r_{ui}(new) = (\frac{1}{n_{i}+n_{u}+1})[(n_{u}+1)(n_{i}+1)\widehat{r_{ui}} - ((n_{i})(\overline{r_{i}}*n_{u})(1-\beta)) - ((n_{u}+1)(1-\beta)(n_{i}*\tau_{u})) - \beta(n_{u})(\overline{r_{u}}*n_{u})$$

$$\Rightarrow r_{ui}(new) = (\frac{1}{n_{i}+n_{u}+1})[(n_{u}+1)(n_{i}+1)\widehat{r_{ui}} - ((n_{i})(\overline{r_{i}}*n_{u})(1-\beta)) - ((n_{u}+1)(1-\beta)(n_{i}*\tau_{u})) - \beta(n_{u})(\overline{r_{u}}*n_{u})$$

$$\Rightarrow r_{ui}(new) = (\frac{1}{n_{i}+n_{u}+1})[(n_{u}+1)(n_{i}+1)\widehat{r_{ui}} - ((n_{i})(\overline{r_{i}}*n_{u})(1-\beta)) - ((n_{u}+1)(1-\beta)(n_{i}*\tau_{u})) - \beta(n_{u})(\overline{r_{u}}*n_{u})$$

3. If
$$\widehat{r_{ui}} = \overline{r_{u(final)}}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{items} r_{ui(final)}}{n_i + 1}$$

$$\Rightarrow \widehat{r_{ui}} = \frac{\sum_{items} r_{ui(train)} + r_{ui(new)}}{n_i + 1}$$

$$\Rightarrow (n_i + 1)\widehat{r_{ui}} = \sum_{items} r_{ui(train)} + r_{ui(new)}$$

$$\Rightarrow r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - \sum_{items} r_{ui(train)}$$

$$\Rightarrow r_{ui(new)} = (n_i + 1)\widehat{r_{ui}} - (\overline{r_u} * n_i)$$

C.6 Case 6: User Tendency is Positive and Product Tendency is Negative; User mean < Item mean $(\tau_u > 0, \tau_i < 0, \overline{r_u} < \overline{r_i} \ \widehat{r_{ui}})$

Unbias Rating : $\widehat{r_{ui}} = \overline{r_u}\beta + \overline{r_i}(1-\beta)$

Reverse functions

$$\begin{split} \widehat{r_{ui}} &= \overline{r_u}\beta + \overline{r_i}(1-\beta) \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum_{items} r_{ui(final)}}{n_i + 1} + \frac{(1-\beta) \sum_{users} r_{ui(final)}}{n_u + 1} \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} + \frac{(\beta) r_{ui(new)}}{n_i + 1} + \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} + \frac{(1-\beta) r_{ui(new)}}{n_u + 1} \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} + \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} + r_{ui(new)} \left[\frac{\beta}{n_i + 1} + \frac{1-\beta}{n_u + 1} \right] \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} + \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} + r_{ui(new)} \left[\frac{\beta n_u + \beta + n_i + 1 - \beta n_i - \beta}{(n_u + 1)(n_i + 1)} \right] \\ &\Rightarrow \widehat{r_{ui}} = \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} + \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} + r_{ui(new)} \left[\frac{n_i (1-\beta) + (1+\beta n_u)}{(n_u + 1)(n_i + 1)} \right] \\ &\text{Reshuffling,} \\ &\Rightarrow r_{ui(new)} \left[\frac{n_i (1-\beta) + 1 + \beta n_u}{(n_u + 1)(n_i + 1)} \right] = \widehat{r_{ui}} - \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} - \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} \right] \\ &\Rightarrow r_{ui(new)} = \left[\frac{(n_u + 1)(n_i + 1)}{n_i (1-\beta) + (1+\beta n_u)} \right] (\widehat{r_{ui}} - \frac{\beta \sum_{items} r_{ui(train)}}{n_i + 1} - \frac{(1-\beta) \sum_{users} r_{ui(train)}}{n_u + 1} \right) \\ &\Rightarrow r_{ui(new)} = \left[\frac{1}{n_i (1-\beta) + (1+\beta n_u)} \right] ((n_u + 1)(n_i + 1)\widehat{r_{ui}} - \beta(n_u + 1) \sum_{items} r_{ui(train)} - (1-\beta)(n_i + 1) \sum_{users} r_{ui(train)} \right] \\ &\Rightarrow r_{ui(new)} = \left[\frac{1}{n_i (1-\beta) + (1+\beta n_u)} \right] ((n_u + 1)(n_i + 1)\widehat{r_{ui}} - \beta(n_u + 1)(\overline{r_u} * n_i) - (1-\beta)(n_i + 1)(\overline{r_i} * n_u) \right) \end{aligned}$$