Note

Discrete random variable	Continuous random variable	
• $P(X \le k) = \sum_{i=0}^{k} P(X = i)$	• $P(X < x) = F(x)$	
• $P(X > k) = 1 - P(X \le k) = 1 - \sum_{i=0}^{k} P(X = i)$	• $P(X \ge x) = 1 - P(X < x) = 1 - F(x)$	
• $P(k_1 < X \le k_2) = \sum_{i=k_1+1}^{k_2} P(X = i)$	• $P(x_1 \le X < x_2) = P(X < x_2) - P(X < x_1)$	

Python statements

Distribution	Parameters	Question	Python statements
Binomial distribution	 n: identical trials p: probability of a success, 	Given k , to find $P(X = k)$	from scipy.stats import binom
$P(X = k) = \frac{n!}{(n-k)! k!} p^k (1-p)^{n-k}$			binom.pmf (k, n, p)
$\frac{P(X-K)-\overline{(n-k)!k!}}{(n-k)!k!}p^{-(1-p)}$ denoted by p	denoted by p	Given k , to find $P(X \leq k)$	from scipy.stats import binom
			binom.cdf (k, n, p)
Poisson distribution	on distribution $ = k) = \frac{\lambda^k e^{-\lambda}}{k!} $ • λ : mean value of events in an interval	Given x , to find $P(X = k)$	from scipy.stats import poisson
$\lambda^k e^{-\lambda}$			poisson.pmf (k, λ)
$P(X \equiv K) \equiv \frac{1}{k!}$		Given x , to find $P(X \le k)$	from scipy.stats import poisson
			poisson.cdf(k,λ)
Normal distribution		Given x , to find $P(X < x)$	from scipy.stats import norm
		$\operatorname{norm.cdf}(x,\operatorname{loc}=\mu,\operatorname{scale}=\sigma)$	
$\bullet f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	 μ: mean value σ: standard deviation 	Given x , to find $P(X > x)$	from scipy.stats import norm
$\sigma_{\sqrt{2\pi}} e^{-2\sigma}$			$1- \text{norm.cdf}(x, \text{loc}=\mu, \text{scale}=\sigma)$
$\bullet F(x) = \int_{-\infty}^{x} f(y) dy$		Given x_1 and x_2 , to find $P(x_1 < X < x_2)$	from scipy.stats import norm
			norm.cdf(x_2 ,loc= μ ,scale= σ)
			$-\text{norm.} \operatorname{cdf}(x_1, \operatorname{loc} = \mu, \operatorname{scale} = \sigma)$
		Given $p = P(X < x)$, to find x	from scipy.stats import norm
			norm.ppf(p ,loc= μ ,scale= σ)
Exponential distribution		Given x , to find $P(X < x)$	from scipy.stats import expon
$F(x) = 1 - e^{-\lambda x}$ • λ : mean value of the interval		expon.cdf(x , 0, λ)	
	mean value of the fitter var	Given $p = P(X < x)$, to find x	from scipy.stats import expon
			expon.ppf $(p, 0, \lambda)$

• Please note: in the discrete probability distributions (Binomial and Poisson), $P(X \le k)$ includes the "equal" symbol, which differs from those in the continuous probability distributions.

©Shaomin Wu 1