DEFINIZIONE LIMITE INFINITO DI UNA SUCCESSIONE

La successione di numeri reali a_n tende a $+\infty$ se, qualunque sia il numero m, esiste un intero r tale che per ogni $n \ge r$ si abbia

$$a_n \ge m$$
.

In questo caso si usa la notazione

$$\lim_{n\to\infty} a_n = +\infty.$$

Esempio. Se b > 1, allora $\lim_{n \to \infty} b^n = +\infty$.

Dimostrazione. Poniamo b = 1 + x ed applichiamo la disuguaglianza di Bernoulli:

$$b^n = (1+x)^n \ge 1 + nx \ge m$$
 non appena $n \ge \frac{m-1}{x}$. Più precisamente, non appena $n \ge \left[\frac{m-1}{x}\right] + 1$.

Una definizione che possiamo aspettarci è la seguente.

La successione di numeri reali a_n tende a $-\infty$ se, qualunque sia il numero m, esiste un intero r tale che per ogni $n \ge r$ si abbia

$$a_n \le m$$
.

In questo caso si usa la notazione

$$\lim_{n\to\infty}a_n=-\infty.$$