Tytuł: Terraria – walka z bossem

Autorzy: **Damian Szczepaniak (DS), Maksymilian Wiącek (MW)**

Ostatnia modyfikacja: 30.08.2025

Spis treści

1.	Repozytorium git	1
2.	Wstęp	1
3.	Specyfikacja	1
	3.1. Opis ogólny algorytmu	
	3.2. Tabela zdarzeń	
4.	Architektura	
	4.1. Moduł: top	
	4.1.1. Schemat blokowy	
	4.1.2. Porty	3
	a) mou – mouse_ctl, input	3
	b) vga – vga_ctl, output	
	4.1.3. Interfejsy	
	a) m2c – mouse_ctl to core	
	4.2. Rozprowadzenie sygnału zegara	
5.	Implementacja	
	5.1. Lista zignorowanych ostrzeżeń Vivado	4
	5.2. Wykorzystanie zasobów	
	5.3. Marginesy czasowe	
6	Film	/

1. Repozytorium git

Adres repozytorium GITa: https://github.com/MaksVonRosa/Projetk_Cyfr-wka_Terraria_Gra.git

2. Wstęp

Zainspirowani Terrarią - grą, w którą graliśmy wiele razy chcieliśmy wyodrębnić jeden element rozgrywki, który jest kluczowy i prawdopodobnie niepomijalny przy każdej próbie podejścia do gry – walkę z bossem, czyli bardzo silnym przeciwnikiem.

Gra rozpoczyna się w menu głównym, mając do wyboru: 1 z **2*** klas, po lewej melee, po prawej archer. Melee posiada jako broń miecz, Archer natomiast karabin. Pierwsza klasa postaci ma więcej punktów życia od drugiej, ponieważ będzie ona walczyć na bliskiej odległości, boss również będzie się skupiał w pierwszej kolejności na niej(jeśli zginie to boss jest skupiony na Archerze). Gracze zadają obrażenia swoimi brońmi: Melee - uderzeniem mieczem bezpośrednio bossa, Archer – trafieniem pociskiem z broni bossa. Rysowanie/animacja broni podąża za myszką, a dokładniej lewo/prawo względem postaci, dodatkowo projectile z karabinu skierowane są bezpośrednio w stronę kursora myszki(względem postaci oczywiście). Niestety podczas optymalizacji kodu, moduł przestał działać w zamierzony sposób.

Warunkiem kończącym grę jest pokonanie bossa lub śmierć wszystkich graczy.

*we wstępnym opisie projektu napisaliśmy, że zrobimy 3 klasy ale doszliśmy do wniosku, że 2 z trzech klas nie będą się bardzo różniły od siebie, ponieważ obie miałyby identyczne logicznie ataki – różniłyby się tylko wyglądem

3. Specyfikacja

3.1. Opis ogólny algorytmu

game_start/player2_game_start == 1 gdy gracz kliknie START lub PLAY AGAIN current_health/player_2_hp - poziom życia postaci

boss_hp – poziom życia bossa

3.2. Tabela zdarzeń

Zdarzenie	Kategoria	Reakcja systemu
LPM w obszarze 1 z 2 postaci	Ekran startowy	Wybór klasy postaci
LPM w obszarze prostokąta START	Ekran startowy	Jeśli dwóch graczy zadeklarowało klasę, to rozpoczyna się gra
LPM gdy wybrana klasa - Melee	Gra	Animacja broni, atak w kierunku kursora(lewo prawo)
LPM gdy wybrana klasa - Archer	Gra	Rysowanie broni lewo prawo względem kursora, wystrzał pocisków w kierunku kursora
Archer - Pocisk uderza bossa	Gra	Pocisk znika, boss traci życie

Archer - Pocisk uderza krawędź monitora	Gra	Pocisk znika
Melee – miecz uderza bossa	Gra	Boss traci życie
Kolizja bossa z postacią	Gra	Gracz traci punkt życia
Postać na platformie	Gra	Możliwość stania na platformie
Postać poza granicami ekranu	Gra	Brak możliwości pójścia poza obszar rysowania ekranu
Śmierć jednego gracza	Gra	Zabity gracz nie może oddziaływać już na rozgrywkę, gra toczy się dalej
Śmierć drugiego gracza/Pokonanie bossa	Gra	Koniec gry
LPM w obszarze prostokąta PLAY AGAIN	Ekran końcowy	Rozpoczęcie gry od nowa(powrót do gry, nie do ekranu startowego)

4. Architektura

4.1. Moduł: top

Osoba odpowiedzialna: DS, MW

W module top połączone są wszystkie moduły za pomocą interfejsów i sygnałów. Łączy on moduły odpowiedzialne za wyświetlanie (VGA), obsługę gracza, bossa, wykrywanie kolizji, wybór klas postaci, oraz obsługę myszy.

4.1.1. Schemat blokowy

4.1.2. Porty

a) Mouse – MouseCtl, input

nazwa portu	opis
PS2Clk	zegar myszy
PS2Data	szeregowe wejście danych myszy

b) vga – vga_ctl, output

nazwa portu	opis	
vga_vs	sygnał synchronizacji pionowej VGA	
vga_hs sygnał synchronizacji poziomej VGA		
vga_red[3:0] Sygnał koloru czerwonego VGA		
vga_green[3:0]	Sygnał koloru zielonego VGA	
vga_blue[3:0] Sygnał koloru niebieskiego VGA		

c) Basys3 – buttony, input

nazwa portu	opis	
btnU	Wejście przycisku Up	
btnR	Wejście przycisku Right	
btnL	Wejście przycisku	

d) Uart – header, input

nazwa portu opis		opis
JB1 Wejście RX – odbieranie danych z drugiej płytki		Wejście RX – odbieranie danych z drugiej płytki

e) Uart – header, output

nazwa portu opis		opis
	JC1 Wyjście TX – wysyłanie danych do drugiej płytki	

4.1.3. Interfejsy

nazwa sygnału	opis
vcount [10:0]	sygnał wertykalnego licznika VGA
hcount [10:0]] sygnał horyzontalnego licznika VGA	
rgb [11:0]	sygnał koloru VGA
vsync	sygnał synchronizacji pionowej VGA
vblnk	Sygnał wertykalny blank VGA
hsync	sygnał synchronizacji poziomej VGA
hblnk	Sygnał horyzontalny blank VGA

Powyższe sygnały znajdują się w każdym z interfejsów poniżej:

- vga_if_bg
- vga_if_char

- vga_if_boss
- vga_if_plat
- vga_if_menu
- vga_if_mouse
- vga_if_wpn
- vga_if_selector
- vga_if_player2

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna: MW, DS.

Clock rozprowadzony dla modułów w projekcie wynosi 65MHz.

5. Implementacja

5.1. Lista zignorowanych ostrzeżeń Vivado.

Identyfikator ostrzeżenia	Liczba wystąpień	Uzasadnienie
[Synth 8-7071]	9	Porty wymienione w warningach nie są używane przez moduł myszki
[Synth 8-7023]	1	Porty wymienione w warningach nie są używane przez moduł myszki
[Synth 8-7080]	1	Projekt nie zużywa dużo zasobów FPGA, więc ten warning nie jest krytyczny
[Synth 8-689] 13 Wielkości portów są różne, ponieważ nie wszystkie potrzebowały być ta		Wielkości portów są różne, ponieważ nie wszystkie potrzebowały być tak duże
[Synth 8-7129] 1 Ostatecznie myszka używa 65MHz a nie 100MHz. Zmiana Timingi		Ostatecznie myszka używa 65MHz a nie 100MHz. Zmiana nastąpiła żeby poprawić Timingi
[Synth 8-6014] 10 Program działał względnie bez problemu, więc nic nie zmieni		Program działał względnie bez problemu, więc nic nie zmienialiśmy

5.2. Wykorzystanie zasobów

Po syntezie:

Resource	Estimation	Available	Utilization %
LUT	10257	20800	49.31
LUTRAM	29	9600	0.30
FF	2369	41600	5.69
BRAM	0.50	50	1.00
DSP	8	90	8.89
IO	26	106	24.53
BUFG	3	32	9.38
MMCM	1	5	20.00

Po implementacji:

Resource	Utilization	Available	Utilization %
LUT	10173	20800	48.91
LUTRAM	29	9600	0.30
FF	2363	41600	5.68
BRAM	0.50	50	1.00
DSP	8	90	8.89
IO	26	106	24.53
BUFG	2	32	6.25
MMCM	1	5	20.00

5.3. Marginesy czasowe

Worst Negative Slack (WNS): 0.606 ns

Total Negative Slack (TNS): 0 ns

Worst Hold Slack (WHS): 0.048 ns

Total Hold Slack (THS): 0 ns

Konfiguracja sprzętu

Schemat połączenia ze sobą płytek Basys3 w trybie multiplayer.

Myszki podłączone są do USB obu Basysów. Zworki standardowo ustawione – MODE USB, POWER USB

6. Film.

Link do ściągnięcia filmu:

https://drive.google.com/file/d/1sP7c2qWhhoJBYUhV1MEcO12_ejJBF2mT/view

Film lekko różni się od aktualnej wersji gry, ponieważ był nagrywany przed optymalizacją Timingów. Niestety nie mieliśmy już czasu nagrać nowej wersji filmu.