- ©Jan Schmidt 2011
 Katedra číslicového návrhu
 Fakulta informačních technologií
 České vysoké učení technické v Praze
- · Zimní semestr 2013/14

EVROPSKÁ UNIE

EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE <u>DO VA</u>ŠÍ BUDOUCNOSTI

MI-PAA

1. Kombinatorické problémy a algoritmy

- Kombinatorický problém
- · Problém, instance, řešení instance
- · Vstupní, výstupní a konfigurační proměnné
- · Omezující podmínky a optimalizační kritérium
- · Rozhodovací, konstruktivní a optimalizační verze
- · Výpočetní složitost algoritmu ightarrow výpočetní složitost problému
- · Únosné a neúnosné problémy

KOMBINATORICKÁ MATEMATIKA JE ... EHM ... JE KDYŽ SE ZKOUŠEJÍ RŮZNÉ KOMBINACE

... a když to funguje

Kombinatorická matematika

- zajímá se o konečné a diskrétní problémy
- konečný počet proměnných
- konečný počet hodnot pro každou proměnnou
- tudíž hrubá síla vždy funguje:
 - vyzkoušet všechny kombinace hodnot všech proměnných
 - poskytne výsledek v konečném čase, tudíž
 - je to algoritmus
- · ... ale většinou není prakticky použitelná

- problém
- instance
- konfigurace
- vstupní, výstupní proměnné
- konfigurační proměnné
- omezující podmínky
- optimalizační kritérium
- řešení, optimální řešení, suboptimální řešení

TERMINOLOGIE KOMBINATORICKÝCH PROBLÉMŮ

Problém a instance

problém

Nalézt optimální (nejkratší) cestu pro NC vrtačku na dané desce, která začíná a končí v předepsané klidové pozici.

instance

Kombinatorický problém

Charakterizován:

- vstupními proměnnými
- výstupními proměnnými
- konfiguračními proměnnými
- omezením
- · optimalizačním kritériem, pokud je třeba

Konfigurační proměnné – to, co nastavuje hrubá síla Proměnných

- je konečný počet
- mají konečné domény

Příklad

vstupní proměnné výstupní proměnné konfigurační proměnné omezení optimalizační kritérium seznam děr

pořadí děr

pořadí děr

- · uzavřená cesta
- každá díra právě jednou

nejkratší

Instance a řešení problému

instance problému

ohodnocení vstupních proměnných

konfigurace

ohodnocení konfiguračních proměnných

při řešení nějaké instance

řešení instance

konfigurace, která splňuje omezení

optimální řešení řešení s nejlepší hodnotou optimalizačního kritéria čemu?

suboptimální řešení

řešení s vyhovující hodnotou optimalizačního kritéria

Problém batohu

Jsou dána přirozená čísla n, M, c_1 , c_2 , c_3 , ..., c_n , w_1 , w_2 , w_3 , ..., w_n . Nalezněte čísla x_1 , x_2 , x_3 , ..., x_n z množiny $\{0,1\}$ tak, aby

$$\sum_{i=1}^n x_i w_i \leq M \qquad \sum_{i=1}^n x_i c_i = \max.$$

Je dáno *n* věcí, *i*-tá věc má váhu *w_i* a cenu *c_i*, dále batoh s nosností *M*. Nalezněte takovou sestavu věcí v batohu, aby nebyl přetížen a cena věcí byla maximální.

Problém batohu

Vstupní proměnné:

$$n, M, W = \{w_1, w_2, ..., w_n\},\$$

 $C = \{c_1, c_2, ..., c_n\}$

Konfigurační proměnné:
$$X = \{x_1, x_2, ..., x_n\}, x_i \in \{0, 1\}$$

Výstupní proměnné: tytéž

Omezení:

$$\sum_{j=1}^{n} x_{j} W_{j} \leq M$$

Optimalizační kritérium:

$$\sum_{i=1}^{n} x_i c_i = \text{max.}$$

Instance a konfigurace

instance n = 3, M = 6, $C = \{10, 20, 30\}$, $W = \{2, 3, 5\}$ všechny konfigurace

<i>X</i> ₁	X_2	<i>X</i> ₃	$\sum x_i C_i$	$\sum x_i v$	v _i
0	0	0	0	0	triviální
0	0	1	30	5	VV
0	1	0	20	3	V
0	1	1	50	8	
1	0	0	10	2	V
1	0	1	40	7	
1	1	0	30	5	VV
_					

1 1 1 60 10

Verze kombinatorických problémů

Nechť *I* je instance, *Y* konfigurace, *R*(*I*, *Y*) omezení (tj. *R*(*I*, *Y*) říká, zda *Y* je řešením)

- rozhodovací problém
 Existuje Y takové, že R(I, Y)?
 Pro všechna Y, platí, že R(I, Y)?
- konstruktivní problém
 Sestrojit nějaké Y takové, že R(I, Y).
- enumerační problém
 Sestrojit všechna Y taková, že R(I, Y).

Všechny tyto problémy mají společné

- vstupní proměnné
- konfigurační proměnné
- omezení R
- jenom výstup je jiný

Různé verze téhož problému

Verze kombinatorických problémů

Všechny tyto problémy mají společné

- vstupní proměnné
- konfigurační proměnné
- omezení R
- jenom výstup je jiný
- Podle toho je rozpoznám: hledám frázi "Existuje" "Platí pro všechny" "Sestrojit (nalézt, zkonstruovat nějaké (všechny)" ...
- Podle toho je převádím: ponechám vstupní a konfigurační proměnné, změním výstup

inženýrské úlohy vždy něco optimalizují 17

Optimalizační problémy

Nechť *I* je instance, *Y* konfigurace, *R*(*I*, *Y*) omezení a *C*(*Y*) optimalizační kritérium (cenová funkce)

- optimalizační rozhodovací problém
 Existuje Y takové, že R(I, Y) a C(Y) je aspoň tak dobré jako daná konstanta Q?
- optimalizační konstruktivní problém
 Sestrojit nějaké Y takové, že R(I, Y) a C(Y) je nejlepší možné.
- optimalizační enumerační problém
 Sestrojit všechna Y taková, že R(I, Y) a C(Y) je nejlepší možné.
- optimalizační evaluační problém
 Zjistit nejlepší možné C(Y) takové, že R(I, Y).

Rozhodovací problémy a jazyky

- Vstupní proměnné zakóduji pomocí množiny symbolů, nejjednodušeji binárně
- Každá instance je tedy charakterizována řetězem 0 a 1 (prvkem {0,1}*)
- Problém charakterizuji všemi instancemi s výstupem ANO
- Je to tedy podmnožina {0,1}*
- Je to tedy jazyk
- · Rozhodovací verze problému batohu:

- Definice problému splnitelnosti
- Rozhodovací, konstruktivní a enumerativní verze
- Optimalizační verze
- Různé známé varianty optimalizační verze

VZTAH VERZÍ PROBLÉMU NA PŘÍKLADU PROBLÉMU SPLNITELNOSTI BOOLEOVSKÉ FORMULE

Problém splnitelnosti booleovské formule (SAT)

Dáno:

splnitelnost = satisfiability

→ SAT

n proměnných $X = (x_1, x_2, \dots x_n)$

Booleovská formule F(X) v konjunktivní normální formě (součin součtů)

Příklad: $F(X) = (x_1 + x_2' + x_3) (x_1' + x_2) (x_1' + x_3')$

Nalézt:

Je tato formule splnitelná?

Tj. existuje ohodnocení $Y = (y_1, y_2,...y_n)$ proměnných $x_1, x_2, ... x_n$ takové, že F(Y) = 1?

Výstup příkladu: ano

Konfigurace příkladu (svědek): $y_1 = 1$, $y_2 = 1$, $x_3 = 0$

Verze SAT

Rozhodovací verze

Existuje ohodnocení Y takové, že F(Y)=1?

Konstruktivní verze

Sestrojit ohodnocení Y takové, že F(Y)=1

Enumerační verze

Sestrojit všechna ohodnocení Y taková, že F(Y)=1

Optimalizační SAT

Optimalizační rozhodovací verze

 Existuje ohodnocení Y takové, že F(Y)=1 a Y má méně než Q jedniček?

Optimalizační konstruktivní verze

Sestrojit ohodnocení Y takové, že F(Y)=1
 a Y má co nejméně jedniček.

Optimalizační enumerační verze

Sestrojit všechna ohodnocení Y taková, že F(Y)=1
 a Y má co nejméně jedniček.

Verze SAT - shrnutí

	rozhod.	konstr.	enum.	opt. rozhod.	opt. konstr.	opt. enum.
vstup	<i>F, X</i>	<i>F, X</i>	F, X	F, X	F, X	<i>F, X</i>
konfigu- race	Y	Y	Y	Y	Y	Y
výstup	ano-ne	Y	{ Y }	ano-ne	Y	{ Y }
omezení	F(Y) = 1	F(Y) = 1	F(Y) = 1	F(Y) = 1	F(Y) = 1	F(Y) = 1
opt. kritérium				max. počet jedniček	max. počet jedniček	max. počet jedniček

SAT "folklór"

		MAX WEIGHTED SAT	MAX SAT	
vstup	<i>F, X</i>	F, X , W	F, X	F, X, W
konfigurace	Y	Y	Υ	Υ
výstup	Y	Y	Υ	Υ
omezení	F(Y) = 1	F(Y) = 1		
opt. kritérium	max. počet jedniček	max. vážený počet jedniček	max. počet splněných termů	max. vážený počet splněných termů

Vztah verzí problémů

- Inženýrská praxe často optimalizační problémy
- Teoretická odvození rozhodovací problémy (jednoduchý výstup)
- Mají na to matematici právo?
- Optimalizační problém neúnosně složitý rozhodovací verze neúnosně složitá
- · Proč ...
- · Co je to neúnosně ...
- · Dá se v těch složitostech udělat nějaký pořádek?

→ teorie složitosti

Inženýrská optimalizace ...

· Jednoduchý případ:

u toho většinou zůstaneme

- mám celé zadání (instance) najednou např. plánování výjezdů na příští den
- vím co chci (umím to vyjádřit optimalizačním kritériem)
- Nemám celé zadání
 - např. plánování výjezdů podle přicházejících požadavků on-line problémy
- · Nevím pořádně co chci
 - mám více optimalizačních kritérií, a chci si vybírat různé možnosti - multikriteriální optimalizace
 - chci pokud možno různá suboptimální řešení multimodální optimalizace

- Složitost algoritmu jako jeho abstrakce
- Nejhorší, nejlepší a statisticky očekávaná složitost
- Měření velikosti instance
- Měření výpočetní složitosti
- Únosné a neúnosné problémy
- · Složitost problému a třídy složitosti

SLOŽITOST ALGORITMU A PROBLÉMU

BI-ZDM 0

Složitost algoritmu

Jak dlouho bude trvat řešení této instance?

Obecně stejně těžké jako úlohu vyřešit; lépe vybrat si nějakou charakteristiku instance

složitost je funkce z velikosti do času/paměti

velikost instance

BI-ZDM 0

Co nás zajímá?

Petr Fišer & Jan Schmidt, 2007-2013

Asymptotická složitost

Nechť $f, g: \mathbb{N} \to \mathbb{R}^+$

Asymptotická horní mez

$$f(n) = O(g(n)) \Leftrightarrow \exists c > 0, \ n_0 \in \mathbb{N}: \ \forall n > n_0: \ f(n) \leq c.g(n)$$

Asymptotická dolní mez

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists c > 0, \ n_0 \in \mathbb{N}: \ \forall n > n_0: \ f(n) \geq c.g(n)$$

Asymptotický odhad

$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \& f(n) = \mathcal{O}(g(n))$$

Měření složitosti: velikost instance

- Jak měřit velikost instance?
 - hrubá míra: počet prvků instance (uzlů, čísel, prvků množiny)
 - jemná míra: počet bitů, nutných k zakódování instance

jaké zakódování?

Měření složitosti: prostředky

- Jak měřit potřebu prostředků?
 - počet "typických operací"?
 - počet paměťových míst?
- · Jak dokázat vlastnosti algoritmu?
 - potřebujeme formálně definovaný výpočetní model
 - jaké prostředky nás zajímají, takový volíme model
 - počet kroků, komunikace...

- BI-ZDM 0
- BI-GRA 12

Turingův stroj a jiné přístroje na <u>obzoru</u>

Typické operace

Příklady operací (při řešení typickým algoritmem)

- Hledání srovnání
- Řazení porovnání a výměna
- Násobení matic násobení dvou čísel
- Problém batohu a jiné kombinatorické problémy
 Výpočet omezení a optimalizačního kritéria konfigurace

Výpočetní modely

- · Turingův stroj, RAM stroj
- BI-GRA 12
- paměťové médium + řízení stavovým strojem
- algoritmizovatelnost (rozhodnutelnost) úloh
- čas a paměť sekvenčního výpočtu
- Booleův obvod
 - síť hradel (logických operátorů)
 - prostředky: počet hradel
 - čas: hloubka sítě
- Komunikující bloky
 - každý dostane polovinu dat, kolik bitů si musí vyměnit?

Únosné a neúnosné výpočty

BI-ZDM 0

 Algoritmus složitosti O(g(n)) provede následující množství výpočtů, jestliže pro n=10 trvá výpočet 1 min:

g(<i>n</i>)	1 min	1 hodina	1 den	1 rok
	pro <i>n</i> =	pro <i>n</i> =	pro <i>n</i> =	pro <i>n</i> =
n	10	600	14 400	5 256 000
n.log n	10	250	3 997	853 895
n ²	10	77	379	7 249
2 <i>n</i>	10	15	20	29
<i>n</i> !	10	11	12	15
n ⁿ	10	11	12	14

Únosné a neúnosné výpočty

 Algoritmus složitosti O(g(n)) provede následující množství výpočtů na ideálním paralelním stroji daného rozměru, jestliže pro n=10 trvá výpočet 1 min na 1 procesoru:

g(<i>n</i>)	1 CPU	60 CPU	14 400 CPU	5 256 000 CPU
	pro <i>n</i> =	pro <i>n</i> =	pro <i>n</i> =	pro <i>n</i> =
n	10	600	14 400	5 256 000
n.log n	10	250	3 997	853 895
n^2	10	77	379	7 249
2 ⁿ	10	15	20	29
<i>n</i> !	10	11	12	15
n ⁿ	10	11	12	14

Složitost v praxi

Jeden problém, dva algoritmy a dvě platformy

v praxi, jsme zde...

vždy najdeme průsečík

nebo zde...?

Jazyk	С	Java
Algoritmus	Bubble sort	Quick sort
n=4	1 µs	10 µs
n=8	64 µs	240 µs
n = 16	256 µs	690 µs
n = 32	1024 µs	1600 µs
n = 64	4096 µs	3840 µs
n = 128	16384 µs	8960 µs

Složitost v praxi

v praxi, jsme zde...

g(<i>n</i>)	1 min	1 hodina	1 den
	pro <i>n</i> =	pro <i>n</i> =	pro <i>n</i> =
n	10	600	14 400
n.log n	10	250	3 997
n^2	10	77	379
2 ⁿ	10	15	20
n!	10	11	12
n ⁿ	10	11	12

nebo zde...?

Typickou doménou kombinatorické matematiky jsou složité problémy a velké instance

Složitost problému

Umíme měřit složitost algoritmu. Jak přejít ke složitosti problému?

Problém Π má složitost O(g(n)), jestliže pro Π existuje algoritmus, který má složitost O(g(n))

Problém Π má složitost $\Omega(g(n))$, jestliže každý algoritmus řeší Π v čase (s pamětí) $\Omega(g(n))$

každý, i ten, který neznáme (důkazy...)

Třídy problémů: princip

- Dán výpočetní model
- · Zvolíme omezení:
 - počet kroků polynomiální s velikostí instance
 - paměť polynomiální s velikostí instance
 - konstantní hloubka obvodu
 - logaritmický počet komunikovaných bitů
- · Co se s tímto omezeným prostředkem dá spočítat?
 - → třída problémů
- Jaké problémy jsou v té třídě nejtěžší?
 - srovnání obtížnosti →
 - → vzájemný převod (redukce) instancí

Čemu teď rozumíme

Čím je dán problém a čím instance

Jak pro daný problém najdu konfigurační proměnné

Čím se liší rozhodovací, konstruktivní a jiné verze problému a jak je odvodím jednu z druhé

Jak je charakterizována složitost problému (na rozdíl od složitosti algoritmu)

V čem spočívá neúnosnost takto označovaných problémů

Jaké pojmy k tomu potřebujeme

Kombinatorický problém

Problém, instance, řešení instance

Vstupní, výstupní a konfigurační proměnné

Omezující podmínky a optimalizační kritérium

Rozhodovací, konstruktivní a optimalizační verze

Výpočetní složitost algoritmu → výpočetní složitost problému

Únosné a neúnosné problémy