Task-Guided Inverse Reinforcement Learning under Partial Information

Franck Djeumou, Murat Cubuktepe, Craig Lennon, and Ufuk Topcu

Inverse reinforcement learning (IRL) with a learner acting under partial information

Challenges in IRL under partial information

1. IRL is an ill-defined problem, many reward functions can induce the same behavior

Solution: Use (causal) entropy to randomize while acting similar to demonstrations

(causal entropy only depends on past observations and not the future)

2. Information asymmetry between the expert and the learning agent

 The agent may not obtain behavior similar to the expert's, even with known reward function

gradient of ψ

Expert's view Learner's view

Learner

3. Each step of IRL requires to solve a policy synthesis problem on the POMDP

- Computationally intractable: Nonconvex optimization problem
- Optimal policy may require infinite memories

Key idea: Task knowledge as temporal logic specification alleviates information asymmetry

SCPForward: Scalable policy synthesis for POMDPs

Inverse reinforcement learning as a two-player game

$$L(\theta,\sigma) \triangleq \min_{\theta} \max_{\sigma} H_{\sigma} + (\mathbb{E}_{\sigma}[\psi(\theta)] - \mathbb{E}_{\mathcal{D}}[\psi(\theta)])$$
 causal-entropy-regularized POMDP synthesis problem for fixed θ

If σ' improves over σ and $\mathcal{M}_{\sigma'} \models \varphi$: update σ' , enlarge trust region Else: keep σ , shrink trust region

Theorem: Our algorithm provides sound and locally optimal solutions for the policy synthesis problem

Gradient descent for learning the reward parameter

The learning problem can be formulated as finding a saddle point to

$$L(\theta, \sigma) \triangleq \min_{\theta} \max_{\sigma} \quad H_{\sigma} + (\mathbb{E}_{\sigma}[\psi(\theta)] - \mathbb{E}_{\mathcal{D}}[\psi(\theta)])$$

learning problem for fixed σ

 $\begin{array}{ll} \text{gradient with} & \text{probability of } (z,\alpha) \\ \text{respect to } \theta & \text{under policy } \sigma \end{array}$

licy σ with respect to θ

$$\nabla_{\theta} L(\theta, \sigma) = \sum_{(z, \alpha) \in Z \times A} \mathbb{P}(z, \alpha | \sigma) \ \nabla_{\theta} \psi_{\theta}(z, \alpha) - \frac{1}{|\mathcal{D}|} \sum_{(z, \alpha) \in \mathcal{D}} \nabla_{\theta} \psi_{\theta}(z, \alpha)$$

Approach: iterate between σ and θ until $|\mathbb{E}_{\sigma}[\psi(\theta)] - \mathbb{E}_{\mathcal{D}}[\psi(\theta)]| \leq \epsilon$

An example: Robot navigation in a maze

A robot navigates in a maze to reach the exit

POMDP: Partial observability over the location in the maze

Specification φ (side information):

behavior to the expert's

Avoid trap states

Feature functions:

Positive reward for reach the exit, Negative reward for each action and being on trap states

Side information alleviates the information asymmetry

asymmetry

(observation-action pairs)

 $\mathcal{D} = (\mathbf{z_1}, \alpha_1, \mathbf{z_2}, \alpha_2, \dots)$

Time steps

Side information improves data efficiency

SCPForward is at least two orders of magnitude faster than existing POMDP solvers

				SCPForward		SARSOP	
Problem	$ \mathcal{S} $	$ \mathcal{S} imes \mathcal{O} $	$ \mathcal{O} $	$R^{ heta}_{\sigma}$	Time (s)	$R^{ heta}_{\sigma}$	Time (s)
Maze	17	162	11	39.24	0.1	47.83	0.24
Maze (3-FSC)	49	777	31	44.98	0.6	NA	NA
Maze (10-FSC)	161	2891	101	46.32	2.04	NA	NA
Obstacle[10]	102	1126	5	19.71	8.79	19.8	0.02
Obstacle[10](5-FSC)	679	7545	31	19.77	38	NA	NA
Obstacle[25]	627	7306	5	19.59	14.22	19.8	0.1
Rock	550	4643	67	19.68	12.2	19.83	0.05
Rock (3-FSC)	1648	23203	199	19.8	15.25	NA	NA
Rock (5-FSC)	2746	41759	331	19.82	97.84	NA	NA
Intercept[5, 2, 0]	1321	5021	1025	19.83	10.28	19.83	13.71
Intercept[5, 2, 0.1]	1321	7041	1025	19.81	13.18	19.81	81.19
Evade[5, 2, 0]	2081	13561	1089	97.3	26.25	97.3	3600
Evade $[5, 2, 0.1]$	2081	16761	1089	96.79	26.25	95.28	3600
Evade[10, 2, 0]	36361	341121	18383	94.97	3600	_	_
Avoid[4, 2, 0]	2241	5697	1956	9.86	34.74	9.86	9.19
Avoid[4, 2, 0.1]	2241	8833	1956	9.86	14.63	9.86	210.47
Avoid $[7, 2, 0]$	19797	62133	3164	9.72	3503	_	-