

中华人民共和国国家标准

GB/T 27860-2011

化学品 高效液相色谱法估算土壤和 污泥的吸附系数

Chemicals—Estimation of the adsorption coefficient (K_{oc}) on soil and on sewage sludge using high performance liquid chromatography (HPLC)

2011-12-30 发布

2012-08-01 实施

前 言

本标准按照 GB/T 1.1-2009 的规则起草。

本标准与经济合作与发展组织(OECD)化学品测试导则 NO. 121(2001 年)《高效液相色谱法 估算土壤和污泥中吸附系数》(英文版)技术内容相同。

本标准做了下列结构和编辑性修改:

- ---将适用的化学物质示例由正文移入附录 B中;
- ----计量单位改为我国法定计量单位;
- ——为与现有标准系列一致,将标准名称改为《化学品 高效液相色谱法估算土壤和污泥的吸附 系数》。

本标准由全国危险化学品管理标准化技术委员会(SAC/TC 251)提出并归口。

本标准起草单位:环境保护部化学品登记中心、沈阳化工研究院安全评价中心、上海市检测中心。

本标准主要起草人:周红、刘纯新、张鑫、侯松嵋、李莹、刘敏、邓芸芸、周林军。

化学品 高效液相色谱法估算土壤和 污泥的吸附系数

1 范围

本标准规定了高效液相色谱法(HPLC)估算化学品在土壤和污泥中吸附系数的术语和定义、受试物信息、方法概述、试验准备、试验、质量控制、数据与报告。

本标准适用于试验期间化学性质稳定的物质,尤其适用于难以用其他方法测试的物质,如:挥发性物质、由于水溶性差而无法分析检测其浓度的物质、对吸附试验器皿具有强亲和性的化学物质,也适用于含有不能完全分离洗脱带的混合物体系(测试混合物的 lgK_{sc}应给出其上下限)。

本标准适用的吸附系数(lgK_{oc})范围为 1.5~5.0。

本标准不适用于可与高效液相色谱固定相或流动相发生反应的物质、可与某些无机物以特殊方式 发生作用的物质(如,与粘土矿物质基础形成络合物)和表面活性剂、无机物、中强酸和碱。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 21851 化学品 批平衡法检测 吸附/解吸附试验

GB/T 21852 化学品 分配系数(正辛醇-水)高效液相色谱法试验

3 术语和定义

下列术语和定义适用于本文件。

3. 1

分配系数 K_d partition coefficient

平衡状态下,化学物质在吸附剂(土壤或污泥)与水相之间的浓度之比。两相浓度均以质量浓度表示时, K_a 无量纲,若水相浓度以质量/体积方式表示,则 K_a 的单位为毫升每克(mL/g)。 K_a 值随吸附剂的性质不同而不同,并与吸附剂的浓度有关。见式(1):

$$K_{\rm d} = \frac{C_{\pm \frac{1}{4}}}{C_{\star}} \underbrace{\vec{Q} \frac{C_{\rm fill}}{C_{\star}}} \tag{1}$$

式中:

K_d ——分配系数,无量纲或单位为毫升每克(mL/g);

 $C_{\pm *}$ ——平衡时土壤中受试物浓度,单位为微克每克($\mu g/g$);

 C_{5R} ——平衡时污泥中受试物浓度,单位为微克每克($\mu g/g$);

 C_{\star} ——平衡时水相中受试物浓度,单位为微克每克($\mu g/g$)或微克每毫升($\mu g/mL$)。

3. 2

弗罗因德利希吸附系数 K, Freundlich adsorption coefficient

化学物质在水相中的平衡浓度为 $1 \mu g/mL$ 时,化学物质在吸附剂(土壤或污泥)(x/m)中的浓度。 K_i 值随吸附剂的性质不同而不同。

GB/T 27860-2011

对于大多数分子型化学物质,在土壤或污泥与水的两相系统中的吸附规律,遵循弗罗因德利希方程。见式(2):

$$\lg \frac{x}{m} = \lg K_{\rm f} + \frac{1}{n} \cdot \lg C_{\star} \qquad \cdots \qquad (2)$$

式中:

 $K_{\rm f}$ ——弗罗因德利希吸附系数;

x/m ——平衡时吸附剂 m 吸附受试物 x 的量,单位为微克每克($\mu g/g$);

1/n ——吸附等温线斜率;

 C_* ——平衡时受试物在水相中的浓度,单位为微克每毫升($\mu g/mL$)。

当水相中的平衡浓度 C_{\star} 为 $1\mu g/mL$ 时,见式(3):

3.3

吸附系数 K_{∞} adsorption coefficient

通过吸附剂(土壤或污泥)中有机碳含量对化学物质的分配系数(K_a)或弗罗因德利希吸附系数 (K_f)进行归一化而得到,使不同的化学物质之间具有可比性,尤其适用于非离子化物质。由于 K_a 与 K_f 的单位不同, K_∞ 可以是无量纲常数,也可以具有计量单位毫升每克(mL/g)或微克每克($\mu g/g$)。 K_∞ 与 K_a 并不总呈线性关系。 K_∞ 值随土壤的不同而有差异,但相对 K_a 和 K_f 而言,其差异明显减小。见式(4):

式中:

 K_{∞} ——吸附系数,无量纲,或单位为毫升每克(mL/g)或微克每克(μ g/g);

 K_d ——分配系数,无量纲,或单位为毫升每克(mL/g);

 K_i ——弗罗因德利希吸附系数;

f。——有机碳含量。

3, 4

容量因子 k' capacity factor

分配平衡时,组分在固定相中的质量与在流动相中的质量比值。实际测试时,常根据化学物质的保留时间计算而得。见式(5):

$$k' = \frac{t_{\rm R} - t_0}{t_0}$$
(5)

式中:

k'----容量因子;

t_R——保留时间,单位为分(min);

to ——死时间,单位为分(min)。

3.5

正辛醇-水分配系数 Pow partition coefficient of n-octanol — water

平衡状态下,化学物质在正辛醇与水相之间的浓度之比,无量纲。见式(6):

$$P_{\text{ow}} = \frac{C_{\text{E} \neq \text{B}}}{C_{\text{A}}} (= K_{\text{ow}}) \qquad \cdots \qquad (6)$$

式中:

 P_{ow} , K_{ow} ——正辛醇-水分配系数;

 $C_{\text{E} \neq \text{B}}$ ——平衡时受试物在正辛醇中的浓度,单位为微克每克(μ g/g)或微克每毫升(μ g/mL);

 C_{x} ——平衡时受试物在水相中的浓度,单位为微克每克($\mu g/g$)或微克每毫升($\mu g/mL$)。

4 受试物信息

受试物信息包括:

- a) 分子式和结构式;
- b) 纯度;
- c) 电离常数:
- d) 水、有机溶剂中溶解度;
- e) 正辛醇-水分配系数;
- f) 水解性。

5 方法概述

5.1 方法说明

 K_{∞} 可通过它与化学物质的水溶性和正辛醇-水分配系数的相关性估算 $[^{2\sim 5,8\sim 9,13}]$ 。本方法用高效液相色谱(HPLC)法估算化学物质在土壤和污泥中的吸附系数 $K_{\infty}^{[10]}$ 。与定量构效关系方法(QSAR)相比,本方法具有更高的可靠性 $[^{6]}$ 。但作为一种估算方法,本方法不能完全代替批平衡试验方法(GB/T 21851)。

5.2 方法原理

HPLC采用含亲脂和极性基团的商业化氰基硅胶分析柱,该固定相具有中等极性,其硅胶表面键合相如下:

当化学物质随流动相进入色谱柱,在流动相和固定相之间进行分配而被保留。由于氰基硅胶分析柱的固定相同时含有极性和非极性两种基团,可相应地与化学物质的极性和非极性基团发生作用。这与化学物质在土壤和污泥上的吸附具有相似之处。由此,建立化学物质液相色谱保留时间与吸附系数之间的关系。

pH 值对物质,尤其是极性物质的吸附行为有非常重要的影响。农业土壤和污水处理池的 pH 值一般在 $5.5\sim7.5$ 之间。对于 pH 值为 $5.5\sim7.5$ 时电离度不小于 10% 的离子化合物,要求通过适当的缓冲溶液体系,分别测试受试物处于离子状态与非离子状态下的 K_{∞} 。

本标准仅利用化学物质在 HPLC 柱上的保留时间与吸附系数之间的关系来测定受试物的吸附系数,不涉及定量分析方法,只需测定受试物的保留时间。采用一系列合适的参比物,在标准试验条件下进行测定,因此,可以提供一种快速、有效的估算受试物吸附系数 K_{α} 的方法。

5.3 参比物

通过 HPLC 保留时间数据来测定受试物的吸附系数 K_{∞} ,首先应建立 $\lg K_{\infty}$ 与 $\lg k'$ 之间的拟合校准曲线。选择参比物时应注意校准曲线至少由 6 个点拟合而成,其中大于和小于受试物 K_{∞} 值的各至少一个。

同时,应注意试验结果的准确性与参比物的选择有重要关系,因此,尽量选择与受试物结构相似的

GB/T 27860-2011

参比物。

若此类信息不足,可选择适当的校准物质。通常选择同系物进行校准。附录 A 中表 A. 1 和表 A. 3 分别给出了一些物质在土壤和污泥中的 K_{cc} ,可以用来作为校准物质。如有正当理由,也可选择其他校准物质。

5.4 方法的准确性和有效性说明

一般情况下,用本方法估算的吸附系数与用批平衡法测得的吸附系数差异在 $\pm 0.5 \lg K_{\infty}$ (参见附录 A 中的表 A.1)。如果选择结构与受试物结构非常相似的参比物,可以获得更高的准确性。

对 48 种物质(大部分是农药)的研究验证,用本方法估算的吸附系数与用批平衡法测得的吸附系数的相关系数 $R=0.95^{[1,11]}$ 。

11个实验室之间的比对,进一步验证了本方法的有效性(参见附录 A 中的表 A. 2)[12]。

已证实本方法对列入附录 A 的表 A.1 中的物质是有效的,本方法也适用于列入附录 B 的物质。

6 试验准备

6.1 仪器设备

高效液相色谱仪,应配有无脉冲泵、适当的检测器、带有定量环的进样阀、硅胶键合氰基色谱柱。相同固定相的保护柱置于进样系统与分析柱之间。色谱柱的一般选择原则为采用甲醇:水为55:45 的流动相。对 $\lg K_{oc}=3.0$ 的物质,其在色谱柱上的容量因子 $\lg k'>0.0$;对 $\lg K_{oc}=2.0$ 的物质,其在色谱柱上的容量因子 $\lg k'>0.0$.

6.2 流动相

推荐使用以下两种流动相:

- -----甲醇/水(55:45,体积比)
- ——甲醇/0.01 M 柠檬酸盐缓冲溶液 pH6.0(55:45,体积比)

用 HPLC 级甲醇、二次蒸馏水(或超纯水)或柠檬酸盐缓冲溶液配制洗脱液,使用之前需脱气处理。 采用等度洗脱方法。如果甲醇/水混合体系流动相不合适,可尝试其他有机溶剂/水混合体系,如:乙醇/水,乙腈/水混合体系。

对于离子型物质,建议使用缓冲盐溶液获得稳定的 pH。但使用有机溶剂/缓冲盐溶液混合体系时,应避免盐析和色谱柱柱效的降低。

离子对试剂会影响固定相的吸附性质,使固定相发生不可逆的改变,因此,禁止使用含该类添加剂的流动相。若确使用添加剂,建议使用单独的色谱柱进行试验。

7 试验

7.1 溶质

受试物和参比物都应用流动相配制。

7.2 温度条件

测试过程中记录实验室温度,建议使用恒温箱以确保校准、估算和测试过程中温度恒定。

7.3 确定死时间 to

有两种方法可以确定 HPLC 死时间 to。

一种是通过同系物测定。见化学品分配系数(正辛醇-水)高效液相色谱法试验(GB/T 21852)[7]。

另一种是通过不被色谱柱保留的惰性物质(如甲酰胺、硫脲或硝酸钠)测定。测定时至少重复进样两次。

7.4 确定保留时间 t_R

只要确认每种参比物的保留时间不受其他参比物的影响,可直接混合物进样,测定各参比物的保留时间。各参比物的保留时间每天至少应在一定的时间间隔内校准两次,确保色谱柱性能稳定,未发生改变。如,在受试物进样前后分别进参比物,确保前后的保留时间没有发生飘移。受试物应单独进样,记录保留时间;进样尽可能少,避免色谱柱过载。

8 质量控制

至少平行测定 2 次,两次平行测定之间的差异不大于 0.25 lg K 。。

9 数据与报告

9.1 数据处理

根据式(5),由死时间 t_0 和保留时间 t_R ,分别计算各参比物和受试物的容量因子k'。

根据参比物的 $\lg K_{\infty}$ (用批平衡法测得)与 $\lg k'$ (参见附录 A 中的表 A.1),建立校准曲线。

校准曲线至少由6个点拟合而成,其中大于和小于受试物 K。值的各至少一个。

通过该校准曲线,由受试物的 $\lg k'$ 值计算受试物的 $\lg K_{\infty}$ 值。

方法的准确性与参比物的选择有重要的关系,因此,尽量选择与受试物结构相似的参比物。如果此 类数据信息不足,也可选择结构不同的物质进行校准。

9.2 试验报告

报告应包括以下内容:

- ——受试物和参比物的名称、纯度,如果相关,应给出 pK。值;
- ——描述实验仪器和操作条件,如:分析柱和保护柱类型和规格、检测方式、流动相(包括组成比例 和 pH 值)、测试过程的温度范围;
- ---死时间及其测定方法;
- ---受试物和参比物的进样量;
- ——用于校准的参比物的保留时间;
- —— $\lg k'$ 与 $\lg K_{\infty}$ 的拟合回归线和曲线图;
- ——受试物的平均保留时间和 lgK_{∞} 的估算;
- ——色谱图。

附录 A(资料性附录) 不同方法获得的相关化学物质的 K_{∞} 值

A. 1 不同方法获得的土壤和污泥 K_{∞} 值的比较见表 A. 1。

表 A. 1 不同方法获得的土壤和污泥 K_∞值的比较^{1),2)}

	CAS	污 泥		土 壤			
物质		lgK∞ (批平衡法)	lgK∝ (HPLC 法)	Δ	lgK。 (批平衡法)	lgK∝ HPLC 法	Δ
阿特拉津	1912-24-9	1.66	2.14	0.48	1.81	2, 20	0.39
利谷隆	330-55-2	2.43	2.96	0.53	2, 59	2. 89	0.30
倍硫磷	55-38-9	3, 75	3.58	0.17	3. 31	3. 40	0.09
灭草隆	150-68-5	1.46	2, 21	0.75	1.99	2. 26	0. 27
菲	85-01-8	4.35	3.72	0.63	4.09	3. 52	0.57
苯甲酸苯酯	93-99-2	3.26	3.03	0.23	2. 87	2. 94	0.07
苯甲酰胺	55-21-0	1.60	1.00	0.60	1. 26	1. 25	0.01
4-硝基苯甲酰胺	619-80-7	1.52	1.49	0.03	1.93	1.66	0. 27
乙酰苯胺	103-84-4	1.52	1, 53	0.01	1. 26	1.69	0.08
苯胺	62-53-3	1.74	1.47	0. 27	2.07	1.64	0.43
2,5-二氯苯胺	95-82-9	2.45	2.59	0.14	2. 55	2.58	0.03

A.2 HPLC 方法 11 家实验室间的比对结果见表 A.2。

表 A. 2 11 家实验室采用 HPLC 方法的比对结果3)

物质	CAS	lgK _∞	K _{oc}	$\lg K_{ m oc}$	
初 灰	CAS	(批平衡法)	(HPLC 法)		
阿特拉津	1912-24-9	1.81	78 ± 16	1.89	
灭草隆	150-68-5	1.99	100 ± 8	2.00	
抑芽唑	77608-88-3	2. 37	· 292 ± 58	2. 47	
利谷隆	330-55-2	2. 59	465 ± 62	2. 67	
倍硫磷	55-38-9	3. 31	2 062 ± 648	3, 31	

¹⁾ W. Kördel, D. Hennecke, M. Herrmann (1997). Application of the HPLC—screening method for the determination of the adsorption coefficient on sewage sludges. Chemosphere, 35 (1/2), 121-128.

²⁾ W. Kördel, D. Hennecke, C. Franke (1997). Determination of the adsorption-coefficients of organic substances on sewage sludges. Chemosphere, 35 (1/2), 107-119.

³⁾ W. Kördel, G. Kotthoff, J. Müller (1995). HPLC-screening method for the determination of the adsorption coefficient on soil—Results of a ring test. Chemosphere, 30 (7), 1373-1384.

A. 3 基于土壤吸附数据推荐 HPLC 方法使用的参比物见表 A. 3。

表 A. 3 基于土壤吸附数据推荐 HPLC 方法使用的参比物

参 比 物	CAS	lgK∞平均值 (批平衡法)	<i>K</i> 。 的个数	lgS. D.	来源
乙酰苯胺	103-84-4	1.25	4	0.48	a ⁴⁾
苯酚	108-95-2	1.32	4	0.70	a
2-硝基苯甲酰胺	610-15-1	1.45	3	0, 90	b ⁵⁾
N,N-二甲基苯甲酰胺	611-74-5	1.52	2	0.45	a
4-甲基苯甲酰胺	619-55-6	1.78	3	1.76	a
苯甲酸甲酯	93-58-3	1.80	4	1.08	a
莠去津	1912-24-9	1.81	3	1.08	c ⁶⁾
异丙隆	34123-59-6	1.86	5	1.53	С
3-硝基苯甲酰胺	645-09-0	1.95	3	1.31	ь
苯胺	62-53-3	2.07	4	1.73	a
3,5-二硝基苯甲酰胺	121-81-3	2.31	3	1. 27	ь
多菌灵	10605-21-7	2.35	3	1.37	С
三唑醇	55219-65-3	2.40	3	1.85	С
咪唑嗪	72459-58-6	2.44	3	1. 66	С
三唑磷	24017-47-8	2.55	3	1.78	С
利谷隆	330-55-2	2.59	3	1.97	С
萘 .	91-20-3	2.75	4	2. 20	a
硫丹醇	2157-19-9	3.02	5	2. 29	С
灭虫威	2032-65-7	3.10	4	2.39	С
酸性黄 219	63405-85-6	3.16	4	2.83	a
1,2,3-三氯苯	87-61-6	3.16	4	1.40	a
γ -六六六	58-89-9	3. 23	5	2.94	a
倍硫磷	55-38-9	3. 31	3	2.49	С
直接红 81	2610-11-9	3.43	4	2.68	a
吡嘧磷	13457-18-6	3.65	3	2.70	С
α-硫丹	959-98-8	4.09	5	3.74	С
禾草灵	51338-27-3	4.20	3	3.77	С
菲	85-01-8	4.09	4	3, 83	a
碱性蓝 41 (混合物)	26850-47-5 12270-13-2	4.89	4	4.46	a
DDT	50-29-3	5.63	1		ь

⁴⁾ a 数据来自 W. Kördel, J. Müller (1994). Bestimmung des Adsorptionskoeffizienten organischer Chemikalien mit der HPLC. UBA R & D Report No. 106 01 044 (1994)。

⁵⁾ b数据来自 B. V. Oepen, W. Kördel, W. Klein. (1991). Chemosphere, 22:285-304。

⁶⁾ c数据来自工业界。

附录B

(资料性附录)

本标准适用的化学物质

B.1 下列物质适用于本文件:

- a) 芳胺(如:氟乐灵、4-氯苯胺、3,5-二硝基苯胺、4-甲基苯胺、N-甲基苯胺、1-萘胺);
- b) 芳香羧酸酯(如:苯甲酸甲酯、3,5-二硝基苯甲酸乙酯);
- c) 芳烃(如:甲苯、二甲苯、乙苯、硝基苯、1,2,3-三氯苯);
- d) 苯氧基丙酸酯(如:二氯苯氧基苯氧基丙酸甲酯、恶唑禾草灵、精恶唑禾草灵);
- e) 苯并咪唑和咪唑杀真菌剂(如:多菌灵、呋喃基苯并咪唑、咪唑嗪);
- f) 碳酸酰胺(如:2-氯苯甲酰胺、N,N-二甲基苯甲酰胺、3,5-二硝基苯甲酰胺、N-甲基苯甲酰胺、2-硝基苯甲酰胺、3-硝基苯甲酰胺);
- g) 氯代烃(如:硫丹、DDT、六氯苯、五氯硝基苯);
- h) 有机磷杀虫剂(如:谷硫磷、乙拌磷、苯线磷、异柳磷、定菌磷、硫丙磷、三唑磷);
- i) 酚(如:苯酚、2-硝基苯酚、4-硝基苯酚、5-氯苯酚、2,4,6-三硝基苯酚、1-萘酚);
- j) 苯脲衍生物(如:异丙隆、绿谷隆、戊菌隆);
- k) 色素染料(如:酸性黄 219、碱性蓝 41、直接红 81);
- 1) 多环芳烃(如: 苊、萘);
- m) 1,3,5-三嗪除草剂(如:扑草净、扑灭津、西玛津、去草净);
- n) 三唑衍生物(如:戊唑醇、三唑哃、抑芽唑)。

参考 文献

- [1] B. von Oepen, W. Kördel, W. Klein (1991). Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD Guideline 106, Chemosphere, 22;285-304
- [2] C. T. Chiou, L. J. Peters, V. H. Freed (1979). A physical concept of soil water equilibria for nonionic organic compounds, Science, 106:831-832
- [3] C. T. Chiou, P. E. Porter, D. W. Schmedding (1983). Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol., 17:227-231
- [4] G. G. Briggs (1981). Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J. Agric. Food Chem., 29:1050-1059
- [5] J. Hodson, N. A. Williams (1988). The estimation of the adsorption coefficient (Koc) for soils by HPLC. Chemosphere, 17:167
- [6] M. Mueller, W. Kördel (1996). Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere, 32(12):2493-2504
- [7] OECD Guidelines for Testing of Chemicals. Partition coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) Method TG 117: (adopted 1989)
- [8] S. W. Karickhoff (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10:833-846
- [9] W. J. Lyman, W. F. Reehl, D. H. Rosenblatt (ed). (1990). Handbook of chemical property estimation methods, chapt. 4, McGraw-Hill, New York
- [10] W. Kördel, D. Hennecke, M. Herrmann (1997). Application of the HPLC-screening method for the determination of the adsorption coefficient on sewage sludges. Chemosphere, 35(1/2): 121-128
- [11] W. Kördel, J. Stutte, G. Kotthoff (1993). HPLC-screening method for the determination of theadsorption coefficient in soil-comparison of different stationary phases, Chemosphere, 27 (12): 2341-2352
- [12] W. Kördel, G. Kotthoff, J. Müller (1995). HPLC-screening method for the determination of the adsorption coefficient on soil-results of a ring test. Chemosphere, 30(7):1373-1384
- [13] Z. Gerstl, U. Mingelgrin (1984). Sorption of organic substances by soils and sediment. J. Environm. Sci. Health, B19:297-312

		·		
	·			
		·	·	
·				

中 华 人 民 共 和 国 国 家 标 准 化学品 高效液相色谱法估算土壤和 污泥的吸附系数

GB/T 27860-2011

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100013) 北京市西城区三里河北街16号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1 字数 19 千字 2012年5月第一版 2012年5月第一次印刷

书号: 155066・1-44602 定价 18.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

GB/T 27860-2011