HW₃

1 Prove that the roots systems for $\mathfrak{so}(5)$ and $\mathfrak{sp}(4)$ are isomorphic.

Proof. We already proved in class that the root system for $\mathfrak{so}(5)$ is isomorphic to

$$(\{(\pm 1,0),(0,\pm 1),(\pm 1,\pm 1)\},\mathbb{R}^2).$$

Using the representation of $\mathfrak{sp}(4)$ on pages 72-73 of Goodman and Wallach, the Lie algebra $\mathfrak{sp}(4)$ consists of all matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{11} \\ c_{11} & c_{12} & -a_{22} & -a_{12} \\ c_{21} & c_{11} & -a_{21} & -a_{11} \end{pmatrix}$$

with basis

$$\{e_{11}-e_{44},e_{22}-e_{33},e_{12}-e_{34},e_{21}-e_{43},e_{13}+e_{24},e_{14},e_{23},e_{31}+e_{42},e_{32},e_{41}\}$$

The choice of Cartan subalgebra \mathfrak{h} is the span of the first two basis elements, $x_1 := e_{11} - e_{44}$ and $x_2 := e_{22} - e_{33}$. The adjoint action of the Cartan subalgebra \mathfrak{h} on $\mathfrak{sp}(4)$ is

$$ad(x_1) = diag(0,0,1,-1,1,2,0,-1,0,-2)$$

 $ad(x_2) = diag(0,0,-1,1,1,0,2,-1,-2,0)$

Up to rearragement of basis vectors, this is the same as the adjoint action of the Cartan subalgebra of $\mathfrak{so}(5)$ on $\mathfrak{so}(5)$ that we calculated in class. Since the adjoint action of a choice of Cartan subalgebra on the full Lie algebra determines the root system, it follows that the corresponding root systems are isomorphic.

2 Let (R, E) be a roots system, with Weyl group W. Show that W is a normal subgroup of the group of automorphisms of (R, E) (that is, the group of linear automorphisms of E, preserving R as a set, and preserving the Cartan integers).

Proof. This follows from the Lemma on page 43 of Humphreys.

3 Fill in the details of the proofs of the results in 10.2 and 10.3 of Humphreys book.

Lemma 0.1. If α is positive but not simple, then $\alpha - \beta$ is a root (necessarily positive) for some $\beta \in \Delta$

Proof. If $(\alpha, \beta) \leq 0$ for all $\beta \in \Delta$, suppose $0 = \sum_{\beta \in \Delta \cup \{\alpha\}} r_{\beta} \beta$. Let $\delta \in \mathfrak{C}(\Delta)$. Separating into sets for which $r_{\beta} \geq 0$ and $r_{\beta} \leq 0$, we can rewrite this as $\sum s_{\beta} \beta = \sum t_{\gamma} \gamma$ where s_{β} and t_{γ} are nonnegative with disjoint support. Let ε denote the value of these two sums. Then

$$(oldsymbol{arepsilon}, oldsymbol{arepsilon}) = \sum_{oldsymbol{eta}, oldsymbol{\gamma} \in oldsymbol{eta} \in \Delta \cup \{lpha\}} s_{oldsymbol{eta}} t_{oldsymbol{\gamma}}(oldsymbol{eta}, oldsymbol{\gamma}).$$

If $\beta \neq \gamma \in \Delta$, then $(\beta, \gamma) \leq 0$ since Δ is a root base. By assumption, $(\alpha, \beta) \leq 0$ for all $\beta \in \Delta$. Hence, $(\varepsilon, \varepsilon) \leq 0$, so $\varepsilon = 0$ since the inner product is positive-definite. Since α is a positive root, $(\delta, \alpha) > 0$. Hence,

$$0 = (\delta, \varepsilon) = \sum_{\beta \in \Delta \cup \{\alpha\}} s_{\beta}(\delta, \beta) = \sum_{\gamma \in \Delta \cup \{\alpha\}} t_{\gamma}(\delta, \gamma).$$

Thus, $s_{\beta} = t_{\gamma} = 0$ for all $\beta, \gamma \Delta \cup \{\alpha\}$. Hence, $\Delta \cup \{\alpha\}$ is linearly independent, a contradiction. Thus, there exists $\beta \in \Delta$ such that $(\alpha, \beta) > 0$. Hence, Lemma 9.4 implies that $\alpha - \beta$ is a root.

Corollary 0.2. Each $\beta \in \Phi^+$ can be written in the form $\alpha_1 + \ldots + \alpha_k$ ($\alpha_i \in \Delta$, not necessarily distinct) in such a way that each partial sum is a root.

Proof. Use the lemma and induction on $ht(\beta)$. Given $\beta \in \Phi^+$ not simple, write it as a sum of simple roots with $ht(\beta)$ terms. Applying the lemma, we get another positive root with lower height.

Lemma 0.3. Let α be simple. Then σ_{α} permutes the positive roots other than α .

Proof. The proof in the book shows that σ_{α} maps $\Phi^+ - \{\alpha\}$ to itself. Since σ_{α} is invertible, its restriction to $\Phi^+ - \{\alpha\}$ must be a permutation.

Corollary 0.4. *Set* $\delta = \frac{1}{2} \sum_{\beta \succ 0} \beta$. *Then* $\sigma_{\alpha}(\delta) = \delta - \alpha$ *for all* $\alpha \in \Delta$.

Proof. The map σ_{α} permutes the roots other than α , but maps α to $-\alpha$. Thus $\sigma_{\alpha}(\delta) - \delta = \frac{1}{2}(-\alpha - \alpha) = -\alpha$.

Lemma 0.5. Let $\alpha_1, \ldots, \alpha_t \in \Delta$ (not necessarily distinct. Write $\sigma_i = \sigma_{\alpha_i}$. If $\sigma_1 \ldots \sigma_{t-1}(\alpha_t)$ is negative, then for some index $1 \leq s < t$, $\sigma_1 \ldots \sigma_t = \sigma_1 \ldots \sigma_{s-1} \sigma_{s+1} \ldots \sigma_{t-1}$.

Proof. A slight clarification of the last sentence of the proof:

$$\begin{split} \sigma_s &= \sigma_{\alpha_s} \\ &= \sigma_{\beta_s} \\ &= \sigma_{\sigma_{s+1}...\sigma_{t-1}(\alpha_t)} \\ &= \sigma_{s+1}...\sigma_{t-1}\sigma_{\alpha_t}(\sigma_{s+1}...\sigma_{t-1})^{-1} \\ &= \sigma_{s+1}...\sigma_{t-1}\sigma_t(\sigma_{s+1}...\sigma_{t-1})^{-1} \\ &= \sigma_{s+1}...\sigma_{t-1}(\sigma_{s+1}...\sigma_{t-1}\sigma_t)^{-1} \end{split}$$

Substituting this value for σ_s into the product $\sigma_1 \dots \sigma_t$ gives the desired identity.

Corollary 0.6. If $\sigma = \sigma_1 \dots \sigma_2$ is an experession for $\sigma \in \mathcal{W}$ in terms of reflections corresponding to simple roots, with t as small as possible, then $\sigma(\alpha_t) \prec 0$.

Proof. Suppose not. Then

$$0 \prec \sigma(\alpha_t)$$

$$= \sigma_1 \dots \sigma_t(\alpha_t)$$

$$= -\sigma_1 \dots \sigma_{t-1}(\alpha_t)$$

This implies that $\sigma_1 \dots \sigma_{t-1}(\alpha_t)$ is negative, which contradicts the lemma.

Theorem 0.7. Let Δ be a base of Φ .

- (a) If $\gamma \in E$, γ regular, there exists $\sigma \in \mathcal{W}$ such that $(\sigma(\gamma), \alpha) > 0$ for all $\alpha \in \Delta$ (so \mathcal{W} acts transitively on Weyl chambers).
- (b) If Δ' is another base of Φ , then $\sigma(\Delta') = \Delta$ for some $\sigma \in \mathcal{W}$ (so \mathcal{W} acts transitively on bases).
- (c) If α is any root, there exists $\sigma \in \mathcal{W}$ such that $\sigma(\alpha) \in \Delta$.
- (d) W is generated by the σ_{α} ($\alpha \in \Delta$).
- (e) If $\sigma(\Delta = \Delta, \sigma \in \mathcal{W})$, then $\sigma = 1$ (so \mathcal{W} acts simply transitively on bases.

Proof. (a) The only thing to add here is that the fact that σ_{α} is orthogonal follows from considering its action on $\mathbb{R}\alpha \oplus \alpha^{\perp}$.

(b) Weyl chambers are in 1-1 correspondence with bases. Since \mathcal{W}' consists of orthogonal linear maps, positive roots for a Weyl chamber get mapped to positive roots for the image of that Weyl chamber, and simple roots get mapped to simple roots.

- (c) Suppose α were decomposable with respect to the base $\Delta(\gamma')$. Then α is a \mathbb{Z}_+ -linear combination of elements α of $\Delta(\gamma')$, each of which satisfies $(\alpha, \gamma') > \varepsilon$, a contradiction.
- (d) The proof in Humphreys is clear.
- (e) Suppose not. The we can write $\sigma = \sigma_1 \dots \sigma_t$, with α_t the simple root corresponding to σ_t , as in Lemma 10.2C and its corollary. Since $\sigma(\Delta) = \Delta$ and α_t is a positive root, $\sigma(\alpha_t)$ is a positive root by the orthogonality of σ . This contradicts the corrollary to Lemma 10.2C.

Lemma 0.8. For all $\sigma \in \mathcal{W}$, $l(\sigma) = n(\sigma)$, where l is the length and $n(\sigma)$ is the number of positive roots for which $\sigma(\alpha) \prec 0$.

Proof. To see that $n(\sigma\sigma_{\alpha}) = n(\sigma) - 1$, Lemma 10.2B says that σ_{α} permutes the positive roots other than α . Hence the only possible change between $n(\sigma)$ and $n(\sigma\sigma_{\alpha})$ is due to α . As mentioned earlier in the proof, $\sigma(\alpha) \prec 0$. Thus $\sigma\sigma_{\alpha}(\alpha) = -\sigma(\alpha) \succ 0$. Hence $n(\sigma\sigma_{\alpha}) = n(\sigma) - 1$.

Lemma 0.9. Let $\lambda, \mu \in \overline{\mathfrak{C}(\Delta)}$. If $\sigma \lambda = \mu$ for some $\sigma \in \mathcal{W}$, then σ is a product of simple reflections which fix λ ; in particular, $\lambda = \mu$.

Proof. The proof in the book is clear. \Box