คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานถ่านหินผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

- 1. เตาเผาเชื้อเพลิงถ่านหิน
- 2. หม้อต้มแรงดัน
- 3. ชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า
- 4. ตู้ควบคุม
- 5. หน้าจอแสดงผล
- 6. Emergency Switch
- 7. สวิตช์เปิด-ปิด เครื่อง

<u>หน้าจอแสดงผลและควบคุม</u>

- 1. ปรับระดับความร้อน
- 2. แสดงผลอัตราการใช้ถ่านหิน (กิโลกรัม/วินาที)
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- 4. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 5. แสดงผลการจับเวลา
- 6. แสดงผลอุณหภูมิและความชื้น

Web application

- 1. ปุ่มปรับระดับความร้อน
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอัตราการใช้ถ่านหิน (กิโลกรัม/วินาที) และความร้อน (จูล)
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าถ่านหิน

หลักการและทฤษฎี

ถ่านหินเป็น แหล่งพลังงานที่สำคัญในอดีตจนถึงปัจจุบัน อุตสาหกรรมถ่านหินซึ่งรวมทั้งการสำรวจ การผลิตและการใช้นั้นได้มีการพัฒนากันมาอย่างต่อเนื่อง โดยเฉพาะในประเทศที่เป็นผู้นำทางด้านเศรษฐกิจ อุตสาหกรรม เช่น สหรัฐอเมริกา ญี่ปุ่นและกลุ่มประเทศในยุโรป

ถ่านหิน คือ หินตะกอนชนิดหนึ่งและเป็นแร่เชื้อเพลิงสามารถติดไฟได้ มีสีนำตาลอ่อนจนถึงสีดำ มีทั้ง ชนิดผิวมันและผิวด้าน น้ำหนักเบา ถ่านหินประกอบด้วยธาตุที่สำคัญ 4 อย่าง ได้แก่ คาร์บอน ไฮโดรเจน และ ออกซิเจน นอกจากนั้นมีธาตุหรือสารอื่น เช่น กำมะถัน เจือปนเล็กน้อย ถ่านหินที่มีจำนวนคาร์บอนสูงและมี ธาตุอื่น ๆ ต่ำ เมื่อนำมาเผาจะให้ความร้อนมา ถือว่าเป็นถ่านหินคุณภาพดี

ถ่านหินสามารถแยกประเภทตามลำดับชั้นได้เป็น 5 ประเภท คือ

พีต (Peat) เป็นขั้นแรกในกระบวนการเกิดถ่านหิน ประกอบด้วยซากพืชซึ่งบางส่วนได้สลายตัวไปแล้ว สามารถใช้เป็นเชื้อเพลิงได้

ลิกในต์ (Lignite) มีชากพืชหลงเหลืออยู่เล็กน้อย มีความชื้นมาก เป็นถ่านหินที่ใช้เป็นเชื้อเพลิง ซับบิทูมินัส (Subbituminous) มีสีดำ เป็นเชื้อเพลิงที่มีคุณภาพเหมาะสมในการผลิตกระแสไฟฟ้า บิทูมินัส (Bituminous) เป็นถ่านหินเนื้อแน่น แข็ง ประกอบด้วยชั้นถ่านหินสีดำมันวาว ใช้เป็น เชื้อเพลิงเพื่อการถลุงโลหะ

แอนทราไซต์ (Anthracite) เป็นถ่านหินที่มีลักษณะดำเป็นเงา มันวาวมาก มีรอยแตกเว้าแบบก้นหอย ติดไฟยาก

ตารางที่ 1 แสดงค่าความร้อน ความชื้น ปริมาณเถ้า และปริมาณกำมะถันของถ่านหิน

ประเภทของ	ค่าความร้อน	ความชื้น	ปริมาณเถ้า	ปริมาณกำมะถัน	
ถ่านหิน	(กิโลแคลอรี่/กิโลกรัม)	(เปอร์เซ็นต์)	(เปอร์เซนต์)	(เปอร์เซนต์)	
แอนทราไซต์	6,500-8,000	5-8	5-12	0.1-10	
บิทูมินัส	5,500-6,500	8-15	1-12	0.1-1.5	
ซับบิทูมินัส	4,500-5,500	24-30	1-10	0.1-1.5	
ลิกในต์	3,000-4,000	30-38	15-20	2.0-5.0	

สำหรับภายในประเทศไทยนั้นถึงแม้จะมีปริมาณสำรองถ่านหินอยู่มากกว่า 2,000 ล้านตัน แต่ส่วน ใหญ่เป็นถ่านหินที่มีชั้นคุณภาพต่ำ ตั้งแต่ลิกในต์ (Lignite) จนถึง ซับบิทูมินัส (Sub-bituminous) อีกทั้ง ภาพลักษณ์ที่ไม่ดีด้านผลกระทบต่อสิ่งแวดล้อมในอดีตทำให้การใช้ถ่าน หินเป็นเชื้อเพลิงมีปริมาณไม่มากหาก เปรียบเทียบกับประเทศอื่น ๆ

ในการประเมินประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานถ่านหิน จะประเมินจากสัดส่วน ระหว่างพลังงานที่ได้จากถ่านหิน กับ พลังงานไฟฟ้าที่ผลิตได้

ประสิทธิภาพของการผลิตไฟฟ้า = พลังงานที่ได้จากถ่านหิน/พลังงานไฟฟ้าที่ผลิตได้

โดยที่

พลังงานที่ได้จากถ่านหิน = (ปริมาณถ่านหิน ×ค่าความร้อนของถ่านหิน)/1000

- พลังงานที่ได้จากถ่านหิน คือ พลังงานที่ได้จากการเผาถ่านหิน ในหน่วย เมกะจูล (MJ)
- ปริมาณถ่านหิน คือ ปริมาณถ่านหิน ในหน่วย kg
- ค่าความร้อนของถ่านหิน คือ ค่าพลังงานความร้อนที่ได้จากตารางที่ 1

และ

พลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (กิโลวัตต์) x เวลา (ชั่วโมง)

- พลังงานไฟฟ้าที่ผลิตได้ คือ พลังงานไฟฟ้าที่ผลิตได้จากเครื่องยนต์ ในหน่วย
 กิโลวัตต์-ชั่วโมง
- กำลังไฟฟ้า คือ กำลังไฟฟ้าที่ได้จากเครื่องยนต์ ในหน่วย วัตต์
- เวลา คือ จำนวนชั่วโมงที่ใช้ในการทดลอง (ชั่วโมง)

ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานถ่านหิน

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานถ่านหิน สามารถสรุปได้ดังตารางดังนี้

ข้อดี	ข้อจำกัด
1. ต้นทุนในการผลิตไฟฟ้าจากเชื้อเพลิงถ่านหินต่ำ กว่าเชื้อเพลิงอื่นๆ เช่น ก๊าซธรรมชาติ น้ำมัน และพลังงานหมุนเวียน	1. ต้องใช้ระบบควบคุมมลภาวะทางอากาศที่มี ราคาแพง เนื่องจากการเผาไหม้ถ่านหินเป็น สาเหตุสำคัญของฝนกรดและภาวะโลกร้อน
 มีปริมาณสำรองมาก สามารถใช้ได้ไม่ต่ำกว่า 200 ปี 	2. ประเทศไทยต้องนำเข้าถ่านหินคุณภาพดีจาก ต่างประเทศ
3. ปัจจุบันสามารถใช้เทคโนโลยีถ่านหินสะอาด ทำ ให้กำจัดมลพิษจากการใช้ถ่านหินหมดไป	 ต้องมีระบบการจัดการขนส่งที่ดี ยังมีภาพลักษณ์ที่น่ากลัวในสายตาประชาชน

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/coal/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานถ่านหิน
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างพลังงานที่ได้จากถ่านหิน กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. เริ่มจากเติมน้ำสะอาดในหม้อต้มแรงดัน (Boiler) โดยเติมน้ำประมาณ 3 ลิตร ปิดฝาให้แน่น
- 2. เตรียมเชื้อเพลิงชีวมวลให้มีขนาดที่เหมาะสม ขนาดความยาวประมาณ 1.5 ซม. และมีปริมาณ ความชื้นไม่เกินร้อยละ 20 ไมควรมีสิ่งเจือปนในเชื้อเพลิง เช่น เศษหิน ดิน ทราย และวัสดุอื่น ๆ
- 3. นำเชื้อเพลิงใส่เตาและจุดเตาเผาเพื่อผลิตความร้อนจากชีวมวล โดยความร้อนที่ได้จะนำไปต้มน้ำใน หม้อแรงดัน ทำการปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา ทำให้ได้ความร้อน ในปริมาณที่แตกต่างกัน
- 4. ไอน้ำที่ได้จากหม้อแรงดันจะนำไปขับชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า ได้เป็น กระแสไฟฟ้าจ่ายให้กับโหลด รอให้ค่าต่างๆ คงที่ แล้วจึงเริ่มจับเวลาและบันทึกผลการทดลอง จับ เวลา 5 นาทีแล้วจึงบันทึกผลอีกครั้ง
- 5. บันทึกผลค่าน้ำหนักเชื้อเพลิงเริ่มต้นและน้ำหนักเชื้อเพลิงเมื่อผ่านไป 5 นาที ความดันไอน้ำ ค่า แรงดันไฟฟ้า ค่ากระแสไฟฟ้า และค่ากำลังไฟฟ้า
- 6. ปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา เพื่อให้ได้ค่าความร้อนที่แตกต่างกัน 3 ค่าและบันทึกผลการทดลอง

ตารางบันทึกผลการทดลอง

ครั้งที่	น้ำหนักเชื้อเ	พลิง (กิโลกรัม)	แรงดันไฟฟ้า (V)	กระแสไฟฟ้า (A)	กำลังไฟฟ้า ที่อ่านค่าได้ (W)	ผลต่าง น้ำหนัก เชื้อเพลิง	จับ เวลา (Sec.)	อัตราการ สิ้นเปลือง เชื้อเพลิง	ค่าความร้อน เชื้อเพลิง (MJ/kg)	กำลังของ เชื้อเพลิง (W)	ประสิทธิภาพ ระบบผลิต ไฟฟ้า
	เริ่มจับเวลา	ผ่านไป 5 นาที				(kg)	(= 23.)	(kg/s)			(%)

หมายเหตุ : อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) = ผลต่างน้ำหนักเชื้อเพลิง (กิโลกรัม) / ผลต่างเวลา (วินาที) กำลังของเชื้อเพลิง (วัตต์) = อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) x ค่าความร้อนเชื้อเพลิง (เมกะจูล/กิโลกรัม) ประสิทธิภาพระบบผลิตไฟฟ้า (%) = [กำลังไฟฟ้าที่จ่ายโหลด (วัตต์) / กำลังของเชื้อเพลิง (วัตต์)] x 100

การวิเคราะห์ผลการทดลอง
สรุปผลการทดลอง