Question: 5. Problem 5: Properties of PSD matrices. Let A = AT e Rnxn and B = BT e Rnxn. Prove the followin...

- 5. Problem 5: Properties of PSD matrices. Let $A = A^T \in \mathbb{R}^{n \times n}$ and $B = B^T \in \mathbb{R}^{n \times n}$. Prove the following statements.
 - (a) If $A \succeq 0$ and $B \succeq 0$, then $Trace(AB) \geq 0$.
 - (b) If $A \succeq 0$, then $A + B \succeq B$.
 - (c) If $A \succeq B$, then $-B \succeq -A$.
 - (d) If $A \succeq I$, then $I \succeq A^{-1}$.
 - (e) If $A \succeq B \succ 0$, then $B^{-1} \succeq A^{-1} \succ 0$.

Expert Answer

unlockchegg.com/v1/api/qa/z5gAK4A6CwSEc9Y/58243/49546/online

- A = AT EIRMXN B= BTEIRnxn
 - A>0 and B710,
 - → A is positive semi définite and B is positive semidéfinite
 - ⇒) eigen values of A≥0 and eigen values of B are ≥0
 - = eigen values of (AB) are greater than or equal to zero
 - and trace = sum of eigen values
 - >> tr(AB) >0

(adding and subtracting B)

We know that, A &B if and only if A-B <0

A+B>B

(d)
$$A \neq I$$

Let $A_1, A_2, ..., A_n$ are eigen values of A

then $A_1-1, A_2-1, ..., A_{n-1}$ are eigen values of $A-I$

then $A_1-1, A_2-1, ..., A_{n-1}$ are eigen values of $A-I$

"A> $I \Rightarrow A-I \Rightarrow$

e A>B>0

" A>0 and B>0

> A is positive définite and B is also positive définite

>> A-1 and B-1 exist

Thus, A>B>0

>> A-'A > A-'B > A-'O

=) I > A-1B>0

=> B-1 > A-1 BB-1 > 0B-1

>> B-1> A-1>0

unlockchegg.com/v1/api/qa/z5gAK4A6CwSEc9Y/58243/49546/online