Abstract

In an electronic voting process, a voter (v_i) encrypts his vote (v_i) according to the encryption scheme $(\mathbf{E}_{\mathbf{TM}})$ of a tallier mix-net (50) used to tally up the votes cast. The voter (v_i) obtains on his encrypted vote, (x_i) , from an admin server module (20), a digital signature according to a fair blind signature scheme (FBSS). The encrypted vote (x_i) is encrypted a second time, together with the unblinded digital signature (v_i) thereof by the admin server, using the encryption scheme $(\mathbf{E}_{\mathbf{M}})$ of a randomizing mix-net (40), to yield an output (c_i) , and the voter uses his own signature scheme (S_i) to sign this, giving (σ_i) . The voter sends an ID code and data including (c_i, σ_i) to a bulletin board server (30). Discrepancies in this vote data can be detected and their origin traced by prompting the randomizing mix-net servers (40) to provide proofs of correctness, and using the signature-tracing mechanism of FBSS.

15

5

10

(Fig.1)