CS 260 Fundamentals of the Design and Analysis of Algorithms

Fall 2016

HomeWork 4

Name: Liangjian Chen

ID: #52006933 October 27, 2016

Problem 5.1 Solution:

Assume that A(i) means the i^{th} smallest number in Database A, and B(i) means the i^{th} smallest number in Database B.

```
function Find_Median(n,L_A,L_B)
if N == 1 then
    return \min(A(L_A+1),B(L_B+1))
end if
mid = \lceil \frac{n}{2} \rceil
if A(L_A+mid) \leq B(L_B+mid) then
    Find_Median(mid,L_A+\lfloor \frac{n}{2} \rfloor,L_B)
else
    Find_Median(mid,L_A,L_B+\lfloor \frac{n}{2} \rfloor)
end if
end function
```

Initially, call function FIND_MEDIAN(n, 0, 0)

Every time, we call two median values in both database($mid = \lceil \frac{n}{2} \rceil$), we can see if $A(mid) \le B(mid)$, then $A(1)..A(\lfloor \frac{n}{2} \rfloor)$ would not be the answer, $B(\lceil \frac{n}{2} \rceil)..B(N)$ would not be the answer. So, every time we eliminate half of the possible answer which leads the recurrence T(n) = T(n/2) + O(1), solve this recurrence, we get $T(n) = O(\log(n))$

Problem 5.3 Solution:

Problem 5.5 Solution: