

Statistics for Data Science

Statistics

- It is science of getting information from the data.
- The result of statistics is always approximate and not very accurate.
- If we are working on any particular use case and when we have entire data available, we call it as population (Universal Set)
- If are working on any particular use case and when we have partial data available, we call it as sample. (Subset)

Population and Sample

Image Source: VectorStock.com

Types of Data

Types of Data (Numerical)

Numerical Data is further classified as Continuous Numerical and Discrete Numerical

Continuous Numerical

It changes wrt to time. It has infinite values.

For Ex. Age, Height, Weight etc.

Time

Types of Data (Numerical)

Discrete Numerical

Entity that doesn't change wrt to time.

It has finite range.

For Ex. Grades, No of Students etc.

A+

No of Strawberries

Grades

Types of Data (Categorical Data)

Categorical data is further classified into Nominal and Ordinal. It represents different categories such as sports car brands.

Questions whose answer is in the form of "Yes" or "No" is another instance of categorical data.

Are you enrolling for data science program?

Sports Car brand

YES or NO

Types of Data (Categorical Data)

Nominal Data

It is a type of categorical data and it doesn't follow any specific order.

For Ex. Gender (Male/Female), City, Season (winter/spring/summer)

Types of Data (Categorical Data)

Ordinal Data

It is a type of categorical data and it strictly follows order.

For Ex. Ranking, Grades

Movie Rating

Check Your Understanding

Speed of Vehicle

No of Apples

- Frequency Distribution Tables
- Bar Charts
- Pie Charts
- Pareto Diagrams

Sports Car Brand	Frequency
Ferrari	225
Lamborghini	200
Bugatti	100
Ford GT	90
Total	615

Frequency Distribution Table

Sports Car	Frequency	Relative
Brand		Frequency
Ferrari	225	37 %
Bugatti	100	16 %
Lamborghini	200	33 %
Ford GT	90	14 %
Total	615	100 %

Frequency distribution table

Market Share

Pie Chart

Sports Car Brand	Frequency	Relative Frequency
Ferrari	225	37%
Bugatti	100	16%
Lamborghini	200	33 %
Ford GT	90	14%
Total	615	100 %

Sports Car Brand	Frequency	Relative Frequency	Cummulative Frequency
Ferrari	225	37 %	37 %
Lamborghini	200	33 %	70 %
Bugatti	100	16 %	86 %
Ford GT	90	14 %	100 %

Sales

Pareto Diagram

Tips Dataset

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Tips Dataset

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Tips Dataset

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Types of Statistics

Types of Statistics

Descriptive Statistics

Inferential Statistics

- It is used to organize and summarize the data.
- It is used to check the quality of data.
- Techniques to draw out inferences about population with sample data.
- To create the predictive models
- To check the quality of model

Measures of Central Tendency (Mean, Median, Mode)

Mean: It is calculated by performing addition of all data points and then dividing by number of data points in the dataset.

For Ex. 1, 5, 4. The mean is 3.3

Median: It is calculated by performing ordering from lowest to highest and finding the middle no. (In case of two middle numbers, we take the mean of two middle numbers.

Example 1. 1, 5, 4 The ordering of number is 1, 4, 5. The median of 1, 5, 4 is 4

Example 2. 1, 5, 5, 4 1, 4, 5, 5 The median of the 1, 5, 5, 4 is 4.5

Mode: It is calculated by finding the number which is occurring most frequently.

For Ex. { 2, 4, 2, 3, 3, 2 } The mode for { 2, 4, 2, 3, 3, 2 } is 2

Measures of Central Tendency (Mean, Median, Mode)

Measures of Central Tendency (Mean, Mode, Median) finds the mid value of the data which will help to understand the quality of the data.

USB Drive Prices

Sr. No	Florida	Washington
1	\$10	\$10
2	\$20	\$20
3	\$40	\$30
4	\$40	\$40
5	\$50	\$50
6	\$60	\$60
7	\$70	\$70
8	\$80	\$80
9	\$1000	

Mean, Median and Mode USB Drive Prices

	Florida	Washington
Mean	\$152	\$45
Median	\$50	\$45
Mode	\$40	

Measures of Dispersion

Variance

It measures the spread of data points around the mean.

$$S^2 = \sum_{1}^{n} \left(Xi - \bar{X} \right)^2 \div n - 1$$

Sample Variance

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 / N$$

Population Variance

Measures of Dispersion

Xi

10

Mean: 35

20

Population Variance: 291.66

30

40

50

60

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 / N$$

$$= (10-35)^2 + (20-35)^2 + (30-35)^2 + (40-35)^2 + (50-35)^2 + (60-35)^2/6$$

= 291.66

Measures of Dispersion

Xi

Mean: 35

Sample Variance: 350

20

10

30

40

50

60

$$S^2 = \sum_{1}^{n} \left(Xi - \bar{X} \right)^2 \div n - 1$$

$$= (10-35)^2 + (20-35)^2 + (30-35)^2 + (40-35)^2 + (50-35)^2 + (60-35)^2/5$$

= 350

Measures of Dispersion

Standard Deviation

It also measures the spread of data points around the mean

$$s = \sqrt{s^2}$$

$$\sigma = \sqrt{\sigma^2}$$

Sample standard deviation formula

Population standard deviation formula

Measures of Dispersion

Co-efficient of Variation

It is measure of relative variability. It is used to compare two different datasets.

$$CV = s/\bar{x}$$

$$CV = \sigma/\mu$$

Sample Variance

Population Variance

Standard Deviation and Co-efficient of Variation

USB Drive Prices

Dollars	Rupees
\$10	Rs. 810
\$20	Rs. 1620
\$30	Rs. 2430
\$40	Rs. 3240
\$50	Rs. 4050
\$60	Rs. 4860
\$70	Rs. 5670
\$80	Rs. 6480
\$90	Rs. 7290

Mean	\$50	Rs. 4050
	ΨΟΟ	113. 4000
Variance of	\$ ² 750	Rs. ² 4920750
Sample	Ψ 100	110. 4020100
Standard		
Deviation of	\$ 27.386128	Rs. 2218.2764
Sample		
Co-efficient of		
Variance of	0.54	0.54
Sample		

Variance gives results in squared units. So std deviation is most commonly used

Standard Deviation is the most common measure of variability for a single dataset

Range

Range is difference between maximum data point and minimum data point in the dataset.

Range

Given the numbers as : 4, 7, 8, 10, 15, 17, 20, 25, 35, 50

Range = highest value - lowest value

Range = 50-4

Range = 46

The drawback with range is it does not compute the spread of most of the data points in the dataset. Range only considers the spread between maximum and minimum data points.

When the entire dataset which is ordered, splited into four parts known as a quartile. When the dataset is splited into 100 parts then it is known as percentile.

How to perform outlier detection with IQR?

- Sort the data in ascending order.
- Compute the value for Q1 and Q3
- Calculate IQR as IQR = Q3 Q1
- Calculate lower range (LR) = Q1 1.5 * IQR
- Calculate upper range = Q3 + 1.5 * IQR

Suppose we have the following dataset as

3, 4, 6, 5, 5, 10, 11, 4, 7, 8,12. (Odd no's) Find the Interquartile range.

Sorted Order

$$IQR = Q3 - Q1$$

$$IQR = 10 - 4$$

$$IQR = 6$$

Suppose we have the following dataset as

4, 4, 6, 10, 10, 10, 11, 12, 16, 18. (Even no's) Find the Interquartile range.

Sorted Order

10

$$IQR = Q3 - Q1$$

$$IQR = 12 - 6$$

$$IQR = 6$$

Box Plot

Five Number Summary

- Minimum
- Q1
- Q2
- Q3
- Maximum

Box Plot

Given dataset as 12, 5, 2, 2, 3, 4, 16, 10, 9, 1, 6, 3, 4, 11, 18, 20, 23

Sorted Order

1, 2, 2, 3, 3, 4, 4, 5, 6, 9, 10, 11, 12, 16, 18, 20, 23
Q1 Q2 Q3

1, 2, 2, 3, 4, 4, 5, 6, 9, 10, 11, 14, 18, 20, 23
Q1
Q2
Q3

Five Number Summary

Minimum: 1

Q1:3 **Q2**:6 **Q3**:14

Maximum: 23

Co-variance

It is used to find the relationship between two variables. It is measure of variability between two variables

Co-variance

Covariance

Speed of	Car (km/h)	ETA (mins.)		(x- x)*(y- y)
	100	28		- 743
	85	37		- 243
	68	49		- 1
	50	67		- 282
	34	73		- 741
Mean	67	51	Sum	- 2,011
Std dev	26	19	Sample size	5
			Cov. Sample	- 503

Problems with Co-variance

Covariance could be any number like 4 or 40. It can be number like 0.0022454 or 10 million,

4, 40,

0.0022454

These values are of different scale and interpreting those numbers are difficult.

Correlation Coefficient

It is used to measure strength of relationship between the two variables. It is also measure of variability between two variables.

Covariance

Speed of	Car (km/h)	ETA (mins.)
	100	28
	85	37
	68	49
	50	67
	34	73
Mean	67	51
Std dev	26.42	19.16

	(x- x)*(y- y)
	- 743
	- 243
	-1
	- 282
	- 741
Sum	- 2,011
Sample size	5
Cov. Sample	- 503
Correlation	(0.99)

Correlation Co-efficient =

$$COV(x,y)/Stdev(x)*Stdev(y)$$

Exploratory Data Analysis

Univariate Analysis

Categorical Data

- Tables
- Bar Chart
- Pie Chart
- Pareto diagram

Quantitative Data

- Histograms
- Numerical Summaries
- Box Plots

Bivariate Analysis

Variables	Type of Plot
C -> Q	Box Plot
Q -> C	Box Plot
C -> C	Contigency Table
Q -> Q	Scatter Plot

C - Categorical Data

Q - Quantitative Data

Bivariate Analysis

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
<pre>plt.scatter(x = "bmi", y = "charges", data=A) plt.xlabel("bmi") plt.ylabel("charges") plt.show()</pre>							

<matplotlib.axes._subplots.AxesSubplot at 0x1fdf847cdc8>

Bivariate Analysis

satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	quit	promotion_last_5years	department	salary
0.38	0.53	2	157	3	0	1	0	sales	low
0.80	0.86	5	262	6	0	1	0	sales	medium
0.11	0.88	7	272	4	0	1	0	sales	medium
0.72	0.87	5	223	5	0	1	0	sales	low
0.37	0.52	2	159	3	0	1	0	sales	low
/									\ \

pd.crosstab(A.department, A.salary)

salary	high	low	medium	
department				
IT	83	609	535	
RandD	51	364	372	
accounting	74	358	335	
hr	45	335	359	
management	225	180	225	
marketing	80	402	376	
product_mng	68	451	383	
sales	269	2099	1772	
support	141	1146	942	
technical	201	1372	1147	

Contingency Table

Inferential Statistics

Normal Distribution

Normal Distribution is also referred as bell curve, gaussian distribution.

It is symmetrical distribution, where the left hand side is exact mirror image of right hand side.

Normal Distribution

Distribution of Food Delivery Times

Normal, Mean=35, StDev=5

Skewed Distribution

Left-skewed distribution has long tail on the left hand side. It is also referred as negative skewed distribution. The mean here is located on the left of the peak.

Right-skewed distribution has long tail on the right hand side. It is also referred as positive skewed distribution. The mean here is located on the right of the peak.

Thank You !!!!!!