

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

PCT

(10) International Publication Number
WO 01/00844 A2

(51) International Patent Classification ⁷ :	C12N 15/31, 15/55, 1/21, 9/18, C07K 14/34, C12P 13/08, C12Q 1/68	199 42 088.2 199 42 095.5 199 42 123.4 199 42 125.0	3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999)	DE DE DE DE
(21) International Application Number:	PCT/IB00/00943			
(22) International Filing Date:	23 June 2000 (23.06.2000)			
(25) Filing Language:	English			
(26) Publication Language:	English			
(30) Priority Data:				
60/141,031	25 June 1999 (25.06.1999)	US		
199 31 562.0	8 July 1999 (08.07.1999)	DE		
199 31 634.1	8 July 1999 (08.07.1999)	DE		
199 31 412.8	8 July 1999 (08.07.1999)	DE		
199 31 413.6	8 July 1999 (08.07.1999)	DE		
199 31 419.5	8 July 1999 (08.07.1999)	DE		
199 31 420.9	8 July 1999 (08.07.1999)	DE		
199 31 424.1	8 July 1999 (08.07.1999)	DE		
199 31 428.4	8 July 1999 (08.07.1999)	DE		
199 31 431.4	8 July 1999 (08.07.1999)	DE		
199 31 433.0	8 July 1999 (08.07.1999)	DE		
199 31 434.9	8 July 1999 (08.07.1999)	DE		
199 31 510.8	8 July 1999 (08.07.1999)	DE		
60/143,208	9 July 1999 (09.07.1999)	US		
199 32 180.9	9 July 1999 (09.07.1999)	DE		
199 32 227.9	9 July 1999 (09.07.1999)	DE		
199 32 230.9	9 July 1999 (09.07.1999)	DE		
199 33 005.0	14 July 1999 (14.07.1999)	DE		
199 32 924.9	14 July 1999 (14.07.1999)	DE		
199 32 973.7	14 July 1999 (14.07.1999)	DE		
199 40 765.7	27 August 1999 (27.08.1999)	DE		
60/151,572	31 August 1999 (31.08.1999)	US		
199 42 076.9	3 September 1999 (03.09.1999)	DE		
199 42 079.3	3 September 1999 (03.09.1999)	DE		
199 42 086.6	3 September 1999 (03.09.1999)	DE		
199 42 087.4	3 September 1999 (03.09.1999)	DE		

(71) Applicant: BASF AKTIENGESELLSCHAFT
[DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors: POMPEJUS, Markus; Wenjenstrasse 21,
D-67251 Freinsheim (DE). KRÖGER, Burkhard; Im
Waldhof 1, D-67117 Limburgerhof (DE). SCHRÖDER,
Hartwig; Goethestrasse 5, D-69226 Nußloch (DE).
ZELDER, Oskar; Rossmarktstrasse 27, D-67346 Speyer
(DE). HABERHAUER, Gregor; Moselstrasse 42,
D-67117 Limburgerhof (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/00844 A2

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PROTEINS INVOLVED IN CARBON METABOLISM
AND ENERGY PRODUCTION

(57) Abstract: Isolated nucleic acid molecules, designated SMP nucleic acid molecules, which encode novel SMP proteins from *Corynebacterium glutamicum* are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing SMP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated SMP proteins, mutated SMP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from *C. glutamicum* based on genetic engineering of SMP genes in this organism.

**CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PROTEINS
INVOLVED IN CARBON METABOLISM AND ENERGY PRODUCTION**

Related Applications

- 5 This application claims priority to prior U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/143208, filed July 9, 1999, and U.S. Provisional Patent Application Serial No. 60/151572, filed August 31, 1999. This application also claims priority to prior German Patent Application No. 19931412.8, filed July 8, 1999, German Patent Application No. 19931413.6, filed July 8, 1999, German Patent Application No. 19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July 8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent Application No. 19931428.4, filed July 8, 1999, German Patent Application No. 19931431.4, filed July 8, 1999, German Patent Application No. 19931433.0, filed July 8, 1999, German Patent Application No. 19931434.9, filed July 8, 1999, German Patent Application No. 19931510.8, filed July 8, 1999, German Patent Application No. 19931562.0, filed July 8, 1999, German Patent Application No. 19931634.1, filed July 8, 1999, German Patent Application No. 19932180.9, filed July 9, 1999, German Patent Application No. 19932227.9, filed July 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent Application No. 19932924.9, filed July 14, 1999, German Patent Application No. 19932973.7, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942123.4, filed September 3, 1999, and German Patent Application No. 19942125.0, filed September 3, 1999. The entire contents of all of the aforementioned application are hereby expressly incorporated herein by this reference.

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', 5 include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through the large-scale culture of bacteria developed to produce and secrete large quantities of one or more desired molecules. One particularly useful 10 organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

15

Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in *C. 20 glutamicum* or related bacteria, the typing or identification of *C. glutamicum* or related bacteria, as reference points for mapping the *C. glutamicum* genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as sugar metabolism and oxidative phosphorylation (SMP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in 25 industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The SMP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the SMP nucleic acids of the 30 invention, or modification of the sequence of the SMP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a

microorganism (e.g., to improve the yield or production of one or more fine chemicals from a *Corynebacterium* or *Brevibacterium* species).

The SMP nucleic acids of the invention may also be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof, or to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to species pathogenic in humans, such as *Corynebacterium diphtheriae* (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The SMP nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. glutamicum* genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered *Corynebacterium* or *Brevibacterium* species.

The SMP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. Given the availability of cloning vectors for use in *Corynebacterium glutamicum*, such as those disclosed in Sinskey *et al.*, U.S. Patent No. 4,649,119, and techniques for genetic manipulation of *C. glutamicum* and the related *Brevibacterium* species (e.g., *lactofermentum*) (Yoshihama *et al.*, *J. Bacteriol.* 162: 591-597 (1985); Katsumata *et al.*, *J. Bacteriol.* 159: 306-311 (1984); and Santamaria *et al.*, *J. Gen. Microbiol.* 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals. This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation.

There are a number of mechanisms by which the alteration of an SMP protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a *C. glutamicum* strain incorporating such an altered protein.

The degradation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NADH and FADH₂ to compounds containing high energy phosphate bonds via oxidative phosphorylation results in a number of compounds which themselves may be desirable fine chemicals, such as pyruvate, ATP, NADH, and a number of intermediate sugar compounds. Further, the energy molecules (such as ATP) and the reducing equivalents (such as NADH or NADPH) produced by these metabolic pathways are utilized in the cell to drive reactions which would otherwise be energetically unfavorable. Such unfavorable reactions include many biosynthetic pathways for fine chemicals. By improving the ability of the cell to utilize a particular sugar (e.g., by manipulating the genes encoding enzymes involved in the degradation and conversion of that sugar into energy for the cell), one may increase the amount of energy available to permit unfavorable, yet desired metabolic reactions (e.g., the biosynthesis of a desired fine chemical) to occur.

The mutagenesis of one or more SMP genes of the invention may also result in SMP proteins having altered activities which indirectly impact the production of one or more desired fine chemicals from *C. glutamicum*. For example, by increasing the efficiency of utilization of one or more sugars (such that the conversion of the sugar to useful energy molecules is improved), or by increasing the efficiency of conversion of reducing equivalents to useful energy molecules (e.g., by improving the efficiency of oxidative phosphorylation, or the activity of the ATP synthase), one can increase the amount of these high-energy compounds available to the cell to drive normally unfavorable metabolic processes. These processes include the construction of cell walls, transcription, translation, and the biosynthesis of compounds necessary for growth and division of the cells (e.g., nucleotides, amino acids, vitamins, lipids, etc.) (Lengeler *et al.* (1999) *Biology of Prokaryotes*, Thieme Verlag: Stuttgart, p. 88-109; 913-918; 875-899). By improving the growth and multiplication of these engineered cells, it is possible to increase both the viability of the cells in large-scale culture, and also to improve their rate of division, such that a relatively larger number of cells can survive in fermentor culture. The yield, production, or efficiency of production may be increased, at least

due to the presence of a greater number of viable cells, each producing the desired fine chemical. Also, many of the degradation products produced during sugar metabolism are utilized by the cell as precursors or intermediates in the production of other desirable products, such as fine chemicals. So, by increasing the ability of the cell to metabolize sugars, the number of these degradation products available to the cell for other processes should also be increased.

The invention provides novel nucleic acid molecules which encode proteins, referred to herein as SMP proteins, which are capable of, for example, performing a function involved in the metabolism of carbon compounds such as sugars and the generation of energy molecules by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. Nucleic acid molecules encoding an SMP protein are referred to herein as SMP nucleic acid molecules. In a preferred embodiment, the SMP protein participates in the conversion of carbon molecules and degradation products thereof to energy which is utilized by the cell for metabolic processes. Examples of such proteins include those encoded by the genes set forth in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an SMP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of SMP-encoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an even-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ

ID NO:6, SEQ ID NO:8....). The preferred SMP proteins of the present invention also preferably possess at least one of the SMP activities described herein.

- In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an SMP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....).

- In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (e.g., an SMP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to perform a function involved in the metabolism of carbon compounds such as sugars or the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing) A. Preferably, the isolated nucleic acid 5 molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring *C. glutamicum* SMP protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which 10 such vectors have been introduced. In one embodiment, such a host cell is used to produce an SMP protein by culturing the host cell in a suitable medium. The SMP protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an SMP gene has been introduced or altered. In one 15 embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated SMP sequence as a transgene. In another embodiment, an endogenous SMP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered SMP gene. In another embodiment, an endogenous or 20 introduced SMP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SMP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SMP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SMP gene is 25 modulated. In a preferred embodiment, the microorganism belongs to the genus *Corynebacterium* or *Brevibacterium*, with *Corynebacterium glutamicum* being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

30 In another aspect, the invention provides a method of identifying the presence or activity of *Corynebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the

sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 782) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

- Still another aspect of the invention pertains to an isolated SMP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the 5 isolated SMP protein or portion thereof is capable of performing a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. In another preferred embodiment, the isolated SMP protein or portion thereof is sufficiently homologous to an amino acid sequence of the 10 invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to perform a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*.
- 15 The invention also provides an isolated preparation of an SMP protein. In preferred embodiments, the SMP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention 20 (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous 25 to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated SMP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to perform a function involved in the 30 metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1.

- 9 -

Alternatively, the isolated SMP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 5 95%, 96%, 97%, 98%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of SMP proteins also have one or more of the SMP bioactivities described herein.

The SMP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-SMP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the SMP protein alone. In other preferred embodiments, this fusion protein performs a function involved in the metabolism of carbon compounds such as sugars or in the generation of energy molecules (e.g., ATP) by processes such as oxidative phosphorylation in 15 *Corynebacterium glutamicum*. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an SMP protein, either by interacting with the protein itself or a 20 substrate or binding partner of the SMP protein, or by modulating the transcription or translation of an SMP nucleic acid molecule of the invention.

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an SMP nucleic acid molecule of the invention, such that a fine chemical 25 is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an SMP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or 30 *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an

- 10 -

agent which modulates SMP protein activity or SMP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* carbon metabolism pathways or for the production of energy through processes such as oxidative phosphorylation, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates SMP protein activity can be an agent which stimulates SMP protein activity or SMP nucleic acid expression. Examples of agents which stimulate SMP protein activity or SMP nucleic acid expression include small molecules, active SMP proteins, and nucleic acids encoding SMP proteins that have been introduced into the cell. Examples of agents which inhibit SMP activity or expression include small molecules and antisense SMP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant SMP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

The present invention provides SMP nucleic acid and protein molecules which are involved in the metabolism of carbon compounds such as sugars and the generation of energy molecules by processes such as oxidative phosphorylation in *Corynebacterium glutamicum*. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (e.g., where overexpression or optimization of a glycolytic pathway protein has a direct impact on the yield, production, and/or efficiency of production of, e.g., pyruvate from modified *C. glutamicum*), or may have an indirect

impact which nonetheless results in an increase of yield, production, and/or efficiency of production of the desired compound (e.g., where modulation of proteins involved in oxidative phosphorylation results in alterations in the amount of energy available to perform necessary metabolic processes and other cellular functions, such as nucleic acid and protein biosynthesis and transcription/translation). Aspects of the invention are further explicated below.

I. Fine Chemicals

- The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm *et al.*, eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research - Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane *et al.* (1998) *Science* 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.
- 30 A. *Amino Acid Metabolism and Uses*
Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is art-

recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though L-amino acids are generally the only type found in naturally-occurring proteins.

Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosynthesis, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino acids - technical production and use, p. 466-502 in Rehm *et al.* (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others.

described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH:
Weinheim, 1985.

- The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial 5 amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α -ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and 10 resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate 15 pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11-step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all 20 biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.
- 25 Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. 30 Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own

production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

5

B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is art-recognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological

methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.* (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave SMP mRNA transcripts to thereby inhibit translation of SMP mRNA. A ribozyme having specificity for an SMP-encoding nucleic acid can be designed based upon the nucleotide sequence of an SMP cDNA disclosed herein (i.e., SEQ ID NO. 3 (RXA01626)). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an SMP-encoding mRNA. See, e.g., Cech *et al.* U.S. Patent No. 4,987,071 and Cech *et al.* U.S. Patent No. 5,116,742. Alternatively, SMP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

Alternatively, SMP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an SMP nucleotide sequence (e.g., an SMP promoter and/or enhancers) to form triple helical structures that prevent transcription of an SMP gene in target cells. See generally, Helene, C. (1991) *Anticancer Drug Des.* 6(6):569-84; Helene, C. *et al.* (1992) *Ann. N.Y. Acad. Sci.* 660:27-36; and Maher, L.J. (1992) *Bioassays* 14(12):807-15.

25 *B. Recombinant Expression Vectors and Host Cells*

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an SMP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of

- autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector.
- 10 However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_R- or λ P_L, which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4,

usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by those of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., SMP proteins, mutant forms of SMP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of SMP proteins in prokaryotic or eukaryotic cells. For example, SMP genes can be expressed in bacterial cells such as *C. glutamicum*, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", *Yeast* 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency *Agrobacterium tumefaciens* -mediated transformation of *Arabidopsis thaliana* leaf and cotyledon explants" *Plant Cell Rep.* 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion

expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

5 Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the SMP protein is cloned into a 10 pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant SMP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

15 Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, (1988) *Gene* 69:301-315), pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHs1, pHs2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11, pBdCl, and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 60-89; and 20 Pouwels *et al.*, cds. (1985) *Cloning Vectors*. Elsevier: New York ISBN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by 25 host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation 30 of *Bacillus* species. Several plasmids of use in the transfer of genetic information into *Corynebacterium* include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels *et al.*, eds. (1985) *Cloning Vectors*. Elsevier: New York ISBN 0 444 904018).

- One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another 5 strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as *C. glutamicum* (Wada *et al.* (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
- 10 In another embodiment, the SMP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEPSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and 15 methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).
- 20 Alternatively, the SMP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith *et al.* (1983) *Mol. Cell Biol.* 3:2156-2165) and the pVL series (Lucklow and Summers (1989) *Virology* 170:31-39).
- 25 In another embodiment, the SMP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New 30 plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac⁺,

pBIN19, pAK2004, and pDH51 (Pouwels *et al.*, eds. (1985) *Cloning Vectors*. Elsevier: New York ISBN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both 10 prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert *et al.* (1987) *Genes Dev.* 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) *Adv. Immunol.* 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) *EMBO J.* 8:729-733) and immunoglobulins (Banerji *et al.* (1983) *Cell* 33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) *PNAS* 86:5473-5477), pancreas-specific promoters (Edlund *et al.* (1985) *Science* 230:912-916), and mammary 25 gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev.* 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in

a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to SMP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for 5 instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell 10 type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., *Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics*, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and 15 "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used 20 herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an SMP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to one of ordinary skill in the art. Microorganisms related 25 to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to 30 refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid,

transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (*Molecular Cloning: A Laboratory Manual*, 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

flanking SMP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced SMP gene has homologously recombined with the endogenous SMP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an SMP gene on a vector placing it under control of the lac operon permits expression of the SMP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous SMP gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced SMP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SMP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SMP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SMP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described SMP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an SMP protein. Accordingly, the invention further provides methods for producing SMP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an SMP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered SMP protein) in a suitable medium until SMP protein is produced. In another

embodiment, the method further comprises isolating SMP proteins from the medium or the host cell.

C. Isolated SMP Proteins

5 Another aspect of the invention pertains to isolated SMP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes
10 preparations of SMP protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of SMP protein having less than about 30% (by dry weight) of non-SMP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-SMP protein,
15 still more preferably less than about 10% of non-SMP protein, and most preferably less than about 5% non-SMP protein. When the SMP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein
20 preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of SMP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of SMP protein having less than about 30% (by dry weight) of chemical precursors or non-SMP chemicals, more preferably less than about 20% chemical precursors or non-SMP chemicals, still more preferably less than about 10% chemical precursors or non-SMP chemicals, and most preferably less than about 5% chemical precursors or non-SMP chemicals. In preferred embodiments,
25 isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the SMP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a *C. glutamicum* SMP protein in a
30 microorganism such as *C. glutamicum*.

frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify SMP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave et al. (1993) *Protein Engineering* 6(3):327-331).

- In another embodiment, cell based assays can be exploited to analyze a 5 variegated SMP library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the 10 following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C. glutamicum* sequences of interest; evolutionary studies; determination of SMP protein regions required for function; modulation of an SMP protein activity; modulation of the metabolism of one or more sugars; modulation of high-energy molecule production in a 15 cell (i.e., ATP, NADPH); and modulation of cellular production of a desired compound, such as a fine chemical.

- The SMP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof. Also, they may be used to identify the presence of *C. glutamicum* 20 or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. 25 Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to pathogenic species, such as *Corynebacterium diphtheriae*. *Corynebacterium diphtheriae* is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli 30 secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and

spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

- 5 In one embodiment, the invention provides a method of identifying the presence or activity of *Corynebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of
- 10 *Corynebacterium diphtheriae* in the subject. *C. glutamicum* and *C. diphtheriae* are related bacteria, and many of the nucleic acid and protein molecules in *C. glutamicum* are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

- 20
- 25
- 30
- The SMP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and energy-releasing processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the

evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the SMP nucleic acid molecules of the invention may result in the production of SMP proteins having functional differences from the wild-type SMP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

The invention provides methods for screening molecules which modulate the activity of an SMP protein, either by interacting with the protein itself or a substrate or binding partner of the SMP protein, or by modulating the transcription or translation of an SMP nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more SMP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the SMP protein is assessed.

There are a number of mechanisms by which the alteration of an SMP protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a *C. glutamicum* strain incorporating such an altered protein. The degradation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NADH and FADH₂ to more useful forms via oxidative phosphorylation results in a number of compounds which themselves may be desirable fine chemicals, such as pyruvate, ATP, NADH, and a number of intermediate sugar compounds. Further, the energy molecules (such as ATP) and the reducing equivalents (such as NADH or NADPH) produced by these metabolic pathways are utilized in the cell to drive reactions which would otherwise be energetically unfavorable. Such unfavorable reactions include many biosynthetic pathways for fine chemicals. By improving the ability of the cell to utilize a particular sugar (e.g., by manipulating the genes encoding enzymes involved in the degradation and conversion of that sugar into energy for the cell), one may increase the amount of energy available to permit

unfavorable, yet desired metabolic reactions (e.g., the biosynthesis of a desired fine chemical) to occur.

Further, modulation of one or more pathways involved in sugar utilization permits optimization of the conversion of the energy contained within the sugar molecule to the production of one or more desired fine chemicals. For example, by reducing the activity of enzymes involved in, for example, gluconeogenesis, more ATP is available to drive desired biochemical reactions (such as fine chemical biosyntheses) in the cell. Also, the overall production of energy molecules from sugars may be modulated to ensure that the cell maximizes its energy production from each sugar molecule. Inefficient sugar utilization can lead to excess CO₂ production and excess energy, which may result in futile metabolic cycles. By improving the metabolism of sugar molecules, the cell should be able to function more efficiently, with a need for fewer carbon molecules. This should result in an improved fine chemical product: sugar molecule ratio (improved carbon yield), and permits a decrease in the amount of sugars that must be added to the medium in large-scale fermentor culture of such engineered *C. glutamicum*.

The mutagenesis of one or more SMP genes of the invention may also result in SMP proteins having altered activities which indirectly impact the production of one or more desired fine chemicals from *C. glutamicum*. For example, by increasing the efficiency of utilization of one or more sugars (such that the conversion of the sugar to useful energy molecules is improved), or by increasing the efficiency of conversion of reducing equivalents to useful energy molecules (e.g., by improving the efficiency of oxidative phosphorylation, or the activity of the ATP synthase), one can increase the amount of these high-energy compounds available to the cell to drive normally unfavorable metabolic processes. These processes include the construction of cell walls, transcription, translation, and the biosynthesis of compounds necessary for growth and division of the cells (e.g., nucleotides, amino acids, vitamins, lipids, etc.) (Lengeler *et al.* (1999) Biology of Prokaryotes, Thieme Verlag: Stuttgart, p. 88-109; 913-918; 875-899). By improving the growth and multiplication of these engineered cells, it is possible to increase both the viability of the cells in large-scale culture, and also to improve their rate of division, such that a relatively larger number of cells can survive in fermentor culture. The yield, production, or efficiency of production may be increased, at least

due to the presence of a greater number of viable cells, each producing the desired fine chemical.

Further, many of the degradation products produced during sugar metabolism are themselves utilized by the cell as precursors or intermediates for the production of a number of other useful compounds, some of which are fine chemicals. For example, 5 pyruvate is converted into the amino acid alanine, and ribose-5-phosphate is an integral part of, for example, nucleotide molecules. The amount and efficiency of sugar metabolism, then, has a profound effect on the availability of these degradation products in the cell. By increasing the ability of the cell to process sugars, either in terms of 10 efficiency of existing pathways (e.g., by engineering enzymes involved in these pathways such that they are optimized in activity), or by increasing the availability of the enzymes involved in such pathways (e.g., by increasing the number of these enzymes present in the cell), it is possible to also increase the availability of these 15 degradation products in the cell, which should in turn increase the production of many different other desirable compounds in the cell (e.g., fine chemicals).

The aforementioned mutagenesis strategies for SMP proteins to result in increased yields of a fine chemical from *C. glutamicum* are not meant to be limiting; variations on these strategies will be readily apparent to one of ordinary skill in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic 20 acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated SMP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any product produced by *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of 25 naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, 30 published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: GENES IN THE APPLICATION

HMP:

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
1	2	RXS02735	W0074	14576	15280	6-Phosphoglucoisomerase
3	4	RXA01626	GRO0452	4270	3926	L-ribulose-5-phosphate 4-epimerase
5	6	RXA07245	GRO054	13639	14296	RIBULOSE-PHOSPHATE 3-EPIMERASE (EC 5.1.3.1)
7	8	RXA01016	GRO090	346	5	RIBOSE-5-PHOSPHATE ISOMERASE (EC 5.3.1.6)

TCA:

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
9	10	RXN01312	W0082	20803	18785	SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT (EC 1.3.98.1)
11	12	F RXA01312	GRO0380	2680	1814	SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT (EC 1.3.98.1)
13	14	RXN00231	W0083	15484	14015	SUCCINATE-SEMIALDEHYDE DEHYDROGENASE (NADP ⁺) (EC 1.2.1.16)
15	16	RXA01311	GRO0380	1611	855	SUCCINATE DEHYDROGENASE IRON-SULFUR PROTEIN (EC 1.3.99.1)
17	18	RXA01535	GRO0427	1354	2760	FUMARATE HYDRATASE PRECURSOR (EC 4.2.1.2)
19	20	RXA00817	GRO0131	1407	2447	MALATE DEHYDROGENASE (EC 1.1.1.37) (EC 1.1.1.82)
21	22	RXA01360	GRO0382	1844	2827	MALATE DEHYDROGENASE (EC 1.1.1.37)

EMB-Pathway

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
23	24	RXA02149	GR00839	17785	18754	GLUCOKINASE (EC 2.7.1.2)
25	26	RXA01614	GR00815	2571	910	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
27	28	RXN02803	W0086	1	657	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
29	30	F RXA02803	GR00784	2	400	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
31	32	RXN03076	W0043	1824	35	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
33	34	F RXA02854	GR10002	1588	5	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
35	36	RXA00511	GR00128	1	513	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Conn.	NT Start	NT Stop	Function
38	39	F RXA01385	WV0091	1476	103	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
	40		GR00397	897	4	PHOSPHOGLUCOMUTASE (EC 5.4.2.2) / PHOSPHOMANNOMUTASE (EC 5.4.2.8)
	41	42	RXA00098	GR00014	8525	GLUCOSE-4-PHOSPHATE ISOMERASE (GPI A) (EC 5.3.1.9)
	43	44	RXA01988	GR00578	1	GLUCOSE-4-PHOSPHATE ISOMERASE A (GPI A) (EC 5.3.1.9)
	45	46	RXA00340	GR00559	1549	GLUCOSE-4-PHOSPHATE ISOMERASE (EC 5.4.2.1)
	47	48	RXA02492	GR00720	2201	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)
	49	50	RXA00381	GR00882	1451	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)
	51	52	RXA02122	GR00836	6511	PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)
	53	54	RXA00206	GR00332	6171	PHOSPHOFRUCTOKINASE (EC 2.7.1.58)
	55	56	RXA01243	GR00359	2302	1-PHOSPHOFRUCTOKINASE (EC 2.7.1.56)
	57	58	RXA01982	GR00538	1165	1-PHOSPHOFRUCTOKINASE (EC 4.1.2.13)
	59	60	RXA01702	GR00479	1387	FRUCTOSE-BISPHOSPHATE ISOMERASE (EC 5.3.1.1)
	61	62	RXA02238	GR00634	28451	TRIOSEPHOSPHATE ISOMERASE (EC 2.7.1.12)
	63	64	RXN01225	WV0064	6382	TRIOSEPHOSPHATE DEHYDROGENASE HOMOLOG (EC 1.2.1.12)
	65	66	RXA01226	GR00354	5302	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (EC 1.2.1.12)
	67	68	RXA02256	GR00654	23934	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (EC 2.7.2.3)
	69	70	RXA02257	GR00854	25155	PHOSPHOGLYCERATE KINASE (EC 4.2.1.11)
	71	72	RXA00235	GR00036	2365	ENOLASE (EC 4.2.1.11)
	73	74	RXA01083	GR00306	1852	PYRUVATE KINASE (EC 2.7.1.40)
	75	76	RXN02675	WV0098	72801	PYRUVATE KINASE (EC 2.7.1.40)
	77	78	F RXA02875	GR00754	2	PYRUVATE KINASE (EC 2.7.1.40)
	79	80	F RXA02695	GR00755	2949	PHOSPHOENOLPYRUVATE SYNTHASE (EC 2.7.9.2)
	81	82	RXA00682	GR00179	5299	PHOSPHOENOLPYRUVATE SYNTHASE (EC 2.7.9.2)
	83	84	RXA01083	GR00179	6440	PYRUVATE DEHYDROGENASE (CYTOCHROME) (EC 1.2.2.2)
	85	86	RXN00635	WV0135	22708	PYRUVATE DEHYDROGENASE (CYTOCHROME) (EC 1.2.2.2)
	87	88	F RXA02807	GR00788	88	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	89	90	F RXA00835	GR00167	3	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	91	92	RXN03044	WV0119	1391	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	93	94	F RXA02852	GR00852	3	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	95	96	F RXA00258	GR00041	126	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	97	98	RXN03086	WV0049	2243	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	99	100	F RXA02887	GR11022	4	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	101	102	RXN03043	WV0019	1	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	103	104	F RXA02897	GR11039	1291	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
	105	106	RXN03083	WV0047	88	DIHYDRODIPPOAMIDE DEHYDROGENASE (EC 1.8.1.4)
	107	108	F RXA02883	GR10001	89	DIHYDRODIPPOAMIDE DEHYDROGENASE (EC 1.8.1.4)
	109	110	RXN02259	GR00654	27401	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	111	112	RXN02326	WV0047	4500	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	113	114	F RXA02326	GR00688	5338	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	115	116	RXN02327	WV0047	3533	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	117	118	F RXA02328	GR00688	4492	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	119	120	F RXA02328	GR00688	6346	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	121	122	RXN01048	WV0079	3437	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
	123				11316	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)
					11316	PHOSPHOENOLPYRUVATE CARBOXYLASE (EC 4.1.1.1)

Table 1 (continued)

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
125	F RXA01046	GR00296	3	290		MALIC ENZYME (EC 1.1.1.39)
126	F RXA00290	GR00046	4893	5655		MALIC ENZYME (EC 1.1.1.39)
127	RXN02894	GR00765	1879	2820		L-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4)
128	RXN00296	VV0176	35783	38608		D-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4)
130	F RXA01901	GR00046	3	2837		D-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4)
131	132	GR00544	4156	5417		L-LACTATE DEHYDROGENASE (EC 1.1.1.28)
133	134	VV0105	9834	11686		D-LACTATE DEHYDROGENASE (EC 1.1.1.28)
135	136	GR00582	1	216		D-LACTATE DEHYDROGENASE (EC 1.1.1.28)
137	138	GR00582	4811	6209		D-LACTIC PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
139	140	F RXA01966	GR00047	2645	1734	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
141	142	RXN00293	VV0157	6138	5538	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
143	144	RXN01130	GR00315	2	304	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
145	146	F RXA01130	VV0085	598	6	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
147	148	RXN03112	GR00316	588	1118	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
149	150	F RXA01133	VV0127	3127	2240	IOLB PROTEIN: D-FRUCTOSE 1,6-BISPHOSPHATE = GLYCERONE-CC
151	152	RXN00371	GR00298	2344	3207	IOLB PROTEIN: D-GLYCERALDEHYDE 3-PHOSPHATE.
153	154	F RXA00871				PHOSPHATE + D-GLYCERALDEHYDE 3-PHOSPHATE.
155	156					IOLS PROTEIN
157	158	RXN02828	VV0354	287	559	IOLS PROTEIN
159	160	F RXA02829	GR002816	287	582	NAGD PROTEIN
161	162	RXN01468	VV0019	7474	8298	PUTATIVE NGYERALDEHYDE-2-PHOSPHOTRANSFERASE
163	164	F RXA01488	GR00422	1250	2074	GLPX PROTEIN
165	166	RXA00794	GR00211	3983	2989	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
167	168	RXN02820	VV0213	6135	5224	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
169	170	F RXA02379	GR00890	1390	686	D-3-PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1)
171	172	RXN02888	VV0098	59053	58395	PHOSPHOGLYCERATE CARBOXYLASE (EC 8.4.1.1)
173	174	RXN03087	VV0052	3216	3428	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
175	176	RXN03186	VV0377	310	519	PYRUVATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.1)
177	178	RXN03187	VV0382	3	281	PYRUVATE DEHYDROGENASE CARBOXYKINASE (GTP) (EC 4.1.1.32)
179	180	RXN02581	VV0098	14370	12541	PHOSPHOENOLPYRUVATE CARBOXYKINASE (GTP) (EC 4.1.1.32)
181	182	RXN01280	VV0009	3477	2298	LIPOAMIDE DEHYDROGENASE COMPLEX (E1) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)
183	184	RXS01261	VV0008	3703	3533	LIPOAMIDE DEHYDROGENASE COMPLEX (E1) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)

Glycerol metabolism

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
185	186	RXA02840	GR00749	1400	2826	GLYCEROL KINASE (EC 2.7.1.30)
187	188	RXN01025	VV0143	5483	4488	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NADP) ⁺ (EC 1.1.1.94)
189	190	F RXA01026	GR00293	939	1853	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NADP) ⁺ (EC 1.1.1.94)
191	192	F RXA01851	GR00525	3515	1830	AEROBIC GLYCEROL-3-PHOSPHATE DEHYDROGENASE REPRESSOR
193	194	F RXA01242	GR00358	1528	2302	GLYCEROL-3-PHOSPHATE REGULON REPRESSOR
195	196	RXA02288	GR00681	982	147	GLYCEROL-3-PHOSPHATE REGULON REPRESSOR

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
197	198	RXN01891	W0122	24949	24986	GLYCEROL-3-PHOSPHATE-BINDING PERPLASMIC PROTEIN PRECURSOR
199	200	F RXA01891	GR00341	1738	918	GLYCEROL-3-PHOSPHATE-BINDING PERPLASMIC PROTEIN PRECURSOR
201	202	RXA02414	GR00703	3808	3062	Uncharacterized protein involved in glycerol metabolism (homolog of Drosophila rhomboid)
203	204	RXN01580	W0122	22991	22807	Glycophosphoinositol diester phosphodiesterase

Acetate metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
205	206	RXA01436	GR0418	2547	1357	ACETATE KINASE (EC 2.7.2.1)
207	208	RXA00588	GR0179	8744	7941	ACETATE OPERON REPRESSOR
209	210	RXA0248	GR0037	4425	3391	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)
211	212	RXA01571	GR00438	1350	1859	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)
213	214	RXA01758	GR00435	1928	2419	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)
215	216	RXA02539	GR00498	3861	2845	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)
217	218	RXN03061	GR00726	11676	10158	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)
219	220	RXN03150	V0034	108	437	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)
221	222	RXN01340	W0155	10878	10056	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)
223	224	RXN01498	VW033	3	860	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)
225	226	RXN02574	VW008	1598	3160	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3)
227	228	RXN00888	W0315	15814	14163	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)
229	230	RXN01143	WV0127	320	320	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)
231	232	RXN01148	W0284	9572	8254	ACETOLACTATE SYNTHASE LARGE SUBUNIT (EC 4.1.3.18)
233	234	RXN01144	WV0077	243	835	ACETOLACTATE SYNTHASE SMALL SUBUNIT (EC 4.1.3.18)
235	236			8237	7722	

Butanedioyl, diacetyl and acetoin formation

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
237	238	RXA02474	GR00715	6082	7309	(S,S)-butane-2,3-diol dehydrogenase (EC 1.1.1.76)
239	240	RXA02453	GR00710	6103	5351	ACETOIN(DIACETYL) REDUCTASE (EC 1.1.1.5)
241	242	RXN01758	VW0112	27393	26398	ALCOHOL DEHYDROGENASE (EC 1.1.1.1)

Table 1 (continued)

HMP-Cycle						
<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
243	244	RXA02737	GRO0763	3312	1771	GLUCOSE-4-PHOSPHATE 1,DEHYDROGENASE (EC 1.1.1.49)
245	246	RXA02738	GRO0763	4498	3420	TRANSALDOASE (EC 2.2.1.2)
247	248	RXA02739	GRO0763	6769	4870	TRANSKETOLASE (EC 2.2.1.1)
249	250	RXA00865	GRO0270	1232	510	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 1.1.1.44)
251	252	RXN00866	W00196	2817	1386	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 1.1.1.44)
253	254	F RXA00866	GRO0263	3012	4446	6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING (EC 1.1.1.44)

Nucleotide sugar conversion						
<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
255	256	RXN02598	VV0098	48764	47582	UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9)
257	268	F RXA02598	GRO0742	1	489	UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9)
259	260	F RXA02642	GRO0749	5383	5880	UDP-GALACTOPYRANOSE MUTASE (EC 5.4.99.9)
261	262	RXA02572	GRO0737	2	846	UDP-GLUCOSE 6-DEHYDROGENASE (EC 1.1.1.22)
263	264	RVA02485	GRO0718	2345	3445	UDP-N-ACETYLENOLPYUVYLGLUCOSAMINE REDUCTASE (EC 1.1.1.69)
265	266	RXA01216	GRO0352	2302	1202	UDP-N-ACETYLGLUCOSAMINE PYROPHORYLASE (EC 2.7.7.23)
267	268	RXA01259	GRO0367	987	130	UTP-GLUCOSE-1-PHOSPHATE URIDYL TRANSFERASE (EC 2.7.7.9)
269	270	RXA02038	GRO0616	973	998	UTP-GLUCOSE-1-PHOSPHATE URIDYL TRANSFERASE (EC 2.7.7.9)
271	272	RCA01282	GRO387	8591	7191	GDP-MANNOSE 6-DEHYDROGENASE (EC 1.1.1.132)
273	274	RCA01377	GRO0400	3895	5020	MANNOSE-1-PHOSPHATE GUANYL TRANSFERASE (EC 2.7.7.27)
275	276	RCA02063	GRO0626	3301	4527	GLUCOSE-1-PHOSPHATE ADENYLYL TRANSFERASE (EC 2.7.7.24)
277	278	RXN00014	VV0048	8848	9827	GLUCOSE-1-PHOSPHATE THYMIDYL TRANSFERASE (EC 2.7.7.24)
279	280	F RXA00014	GRO0002	4448	5227	GLUCOSE-1-PHOSPHATE THYMIDYL TRANSFERASE (EC 2.7.7.24)
281	282	RXA01570	GRO0438	427	1281	D-RIBITOL-5-PHOSPHATE CYTIDYL TRANSFERASE (EC 2.7.7.40)
283	284	RXA02868	GRO0763	7280	8493	DTDP-GLUCOSE 4,6-DEHYDRATASE (EC 4.2.1.46)
285	286	RXA02822	GRO0222	22	1154	

Inositol and ribitol metabolism						
<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
287	288	RXA0187	GR00359	4219	3209	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.16)

Table 1 (continued)

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
289	290	RXN00013	VV0048	7966	8838	MYO-INOSITOL-1(OR 4)-MONOPHOSPHATASE 1 (EC 3.1.3.25)
291	292	F RXA00013	GR00032	3568	4438	MYO-INOSITOL-1(OR 4)-MONOPHOSPHATASE 1 (EC 3.1.3.25)
293	294	RXA01088	GR00336	8328	5604	INOSITOL MONOPHOSPHATE PHOSPHATASE
295	296	RXN01332	VV0273	579	4	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
297	298	F RXA01332	GR00348	652	4	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
299	300	RXA01632	GR00454	2338	3342	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
301	302	RXA01633	GR00454	3380	4462	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
303	304	RXN01408	VV0273	2989	1977	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
305	306	RXN01630	VV0050	47037	47037	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
307	308	RXN00528	VV0079	23408	22318	MYO-INOSITOL-1-PHOSPHATE SYNTHASE (EC 5.5.1.4)
309	310	RXN03057	VV0028	7017	7688	MYO-INOSITOL 2-DEHYDROGENASE (EC 1.1.1.18)
311	312	F RXA02802	GR10040	10277	10846	GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC 1.1.99.28)
313	314	RXA00251	GR00038	931	224	RIBITOL 2-DEHYDROGENASE (EC 1.1.1.56)

Utilization of sugars

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
315	316	RXN02654	VV0090	12206	13090	GLUCOSE 1-DEHYDROGENASE (EC 1.1.1.47)
317	318	F RXA02654	GR00752	7405	6269	GLUCOSE 1-DEHYDROGENASE II (EC 1.1.1.47)
319	320	RXN01049	VV0079	6933	1114	GLUCONOKINASE (EC 2.7.1.12)
321	322	F RXA01049	GR00296	1502	492	GLUCONOKINASE (EC 2.7.1.12)
323	324	F RXA01050	GR00296	1972	1499	GLUCONOKINASE (EC 2.7.1.12)
325	326	RXA00202	GR00332	1216	275	D-RIBOSE-BINDING PERPLASMIC PROTEIN PRECURSOR
327	328	RXN00872	VV0127	6557	5604	FRUCTOKINASE (EC 2.7.1.4)
329	330	F RXA00872	GR00240	585	1086	PERPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR
331	332	RXN00799	VV0093	58477	56934	(EC 3.2.1.21) (EC 3.2.1.37)
333	334	F RXA00799	GR00214	1	1584	PERPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR
335	336	RXA00032	GR00033	12028	10420	(EC 3.2.1.21) (EC 3.2.1.37)
337	338	RXA02528	GR00725	6880	7854	MANNITOL 2-DEHYDROGENASE (EC 1.1.1.67)
339	340	RXN00316	VV0006	7036	8180	FRUCTOSE REDUCTASE (EC 1.1.1.1)
341	342	F RXA00309	GR00053	318	5	Hypothetical Oxidoreductase (EC 1.1.1.1)
343	344	RXN00310	VV0006	8616	7050	GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC 1.1.99.28)
345	346	F RXA00310	GR00053	735	301	GLUCOSE-FRUCTOSE OXIDOREDUCTASE PRECURSOR (EC 1.1.99.28)
347	348	RXA00041	GR00007	1246	5	SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)
349	350	RXA02028	GR00819	725	6	SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)
351	352	RXA02061	GR00626	1842	349	SUCROSE-6-PHOSPHATE HYDROLASE (EC 3.2.1.26)

Table 1 (continued)

Nucleic Acid	SEQ ID NO	Amino Acid	SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
353	354	RXN01369	W0124			595	1776	MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8)
355	356	F RXA01369	GRO0098			3	503	MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8)
357	358	F RXA01373	GRO0099			695	1302	MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8)
361	360	RXA02611	GR00743			1	1752	1,4-ALPHA-GLUCAN BRANCHING ENZYME (EC 2.4.1.18)
363	364	RXN01884	W0134			1	3985	1,4-ALPHA-GLUCAN BRANCHING ENZYME (EC 2.4.1.25) (EC 3.2.1.33)
365	368	F RXA01884	GRO0539			1	1890	GLYCOGEN DEBRANCHING ENZYME (EC 2.4.1.25) (EC 3.2.1.33)
367	368	RXA01111	GRO0306			3	1475	GLYCOGEN OPERON PROTEIN GLGX (EC 3.2.1.-)
		RXN01650	W0143			16881	17427	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)
		F RXA01550	GRO0431			14749	16260	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)
		RXN02100	W0318			3	1346	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)
		F RXA02100	GRO0631			2	2328	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)
		F RXA02113	GRO0633			2	920	GLYCOGEN PHOSPHORYLASE (EC 2.4.1.1)
		RXA02147	GRO0639			3	1207	ALPHA-AMYLASE (EC 3.2.1.1)
		RXA01478	GRO0422			15518	16532	GLUCOAMYLASE G1 AND G2 PRECURSOR (EC 3.2.1.3)
		RXA01888	GRO0539			4388	4923	GLUCOSE-RESISTANCE AMYLASE REGULATOR
		RXN01927	W0217			50623	49244	XYLULOSE KINASE (EC 2.7.1.17)
		F RXA01927	GRO0555			3	1118	XYLULOSE KINASE (EC 2.7.1.17)
		RXA02729	GRO0162			747	4	RIBOKINASE (EC 2.7.1.15)
		RXA02797	GRO0778			1739	2641	RIBOSE OPERON REPRESSOR
		RXA02730	GRO0762			1768	731	6-PHOSPHO-BETA-GLUCOSIDASE (EC 3.2.1.8)
		RJA02851	GRO0728			2193	2552	DEOXYRIBOSE-PHOSPHATE ALDOLASE (EC 4.1.2.4)
		RJA01325	GRO0385			5676	6006	1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1.-)
		RXA00195	GRO0030			543	1103	1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1.-)
		RXA0198	GRO0030			1094	1708	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE
		RXN01562	W0191			1230	3137	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE
		F RXA01562	GRO0436			2	1039	1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE
		F RXA01705	GRO0480			971	1573	4-ALPHA-GLUCANOTRANSFERASE (EC 2.4.1.25)
		RXN00879	W0089			8763	6646	4-ALPHA-GLUCANOTRANSFERASE (EC 2.4.1.25), amylose
		F RXA00879	GRO0242			5827	3828	4-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE (EC 3.5.1.25)
		RXN0043	W0119			3244	2081	N-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE (EC 3.5.1.25)
		F RXA0043	GRO0007			3244	2081	N-ACETYLGLUCOSAMINYLYTRANSFERASE (EC 2.4.1.-)
		RXN01752	W0127			35285	33805	N-ACETYLGLUCOSAMINYLYTRANSFERASE (EC 2.4.1.-)
		F RXA01899	GRO0520			1167	610	N-ACETYLGLUCOSAMYLTRANSFERASE (EC 2.4.1.-)
		RXA01859	GRO0529			1473	547	GLUCOSAMINE-6-PHOSPHATE ISOMERASE (EC 5.3.1.10)
		RXA00042	GRO0007			2037	1278	GLUCOSAMINE-FRUCTOSE-6-PHOSPHATE AMINOTRANSFERASE
		RXA01482	GRO0422			17271	15397	(ISOMERIZING) (EC 2.6.1.16)
		RXN03179	W0036			2	667	URONATE ISOMERASE (EC 5.3.1.12)
		F RXA02872	GR10013			675	4	URONATE ISOMERASE, Glucuronate isomerase (EC 5.3.1.12)
		RXN03180	W0337			672	163	URONATE ISOMERASE, Glucuronate isomerase (EC 5.3.1.12)
		F RXA02873	GR10014			672	163	GALACTOSIDE O-ACETYLTRANSFERASE (EC 2.3.1.18)
		F RXA02292	GR00662			1611	2285	D-RIBITOL-5-PHOSPHATE CYTIDYLTRANSFERASE (EC 2.7.7.40)
		RXA02666	GR00763			7260	6493	D-RIBOSE-BINDING PERIPLASMIC PROTEIN PRECURSOR
		RXA00202	GR00032			1216	275	D-RIBOSE-BINDING PERIPLASMIC PROTEIN PRECURSOR
		F RXA02440	GR00768			4258	5097	
		441	442					

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
443 444	RXN01569 F RXA01569	VV0098 GRO0438		41086 2	42444 427	DTDP-4-DEHYDORHAMNOSE REDUCTASE (EC 1.1.1.33) DTDP-4-DEHYDORHAMNOSE REDUCTASE (EC 1.1.1.33)
445 446	F RXA02056 F RXA02056	GRO0624 GRO0222		7122 222	8042 1154	DTDP-4-DEHYDORHAMNOSE REDUCTASE (EC 1.1.1.33) DTDP-GLUCOSE 4,6-DEHYDRATASE (EC 4.2.1.46)
447 448	RXA00826 RXA02054	GRO0624 GRO0098		6103 7004	7119 6219	DTDP-GLUCOSE 4,6-DEHYDRATASE (EC 4.2.1.46) DTDP-RHAMNOYL TRANSFERASE RFBF (EC 2-...-)
449 450	RXA00427 F RXA00427	GRO0098 GRO0057		1591 10263	20222 9880	DTDP-RHAMNOYL TRANSFERASE RFBF (EC 2-...-) PROTEIN ARAJ
451 452	RXA00328	GRO0057		11147	108586	PROTEIN ARAJ
453 454	RXN01554 RXN03015	VV0135 VV0083		12390 289	11167 8	GLUCAN ENDO-1,3-BETA-GLUCOSIDASE A1 PRECURSOR (EC 3.2.1.39) UDP-GLUCOSE 6-DEHYDROGENASE (EC 1.1.1.22)
455 456	RXN03056 RXN03030	VV0028 VV0049		6258 57006	8935 58443	PUTATIVE HEXULOSE-6-PHOSPHATE ISOMERASE (EC 5-...-)
457 458	RXA00327					PERIPLASMIC BETA-GLUCOSIDASE/BETA-XYLOSIDASE PRECURSOR (EC 3.2.1.21) (EC 3.2.1.37)
459 460	RXA00328 RXA01329	GRO0057 VV0057		12390 11167	108586 26545	5-DEHYDRO-4-DEOXYGLUCARATE DEHYDRATASE (EC 4.2.1.41) ALDOSE REDUCTASE (EC 1.1.1.21)
461 462	RXN01554	VV0135		28868		5-DEHYDRO-4-DEOXYGLUCARATE DEHYDRATASE (EC 4.2.1.41) ALDOSE REDUCTASE (EC 1.1.1.21)
463 464	RXN03015	VV0083		289	8	5-DEHYDRO-4-DEOXYGLUCARATE DEHYDRATASE (EC 4.2.1.41) ALDOSE REDUCTASE (EC 1.1.1.21)
465	RXN03056	VV0028		6258	8935	glucanase
467 468	RXN03030	VV0049		57006	58443	glucanase
469	RXN00401	VV0025		12427	11489	glucanase
471	472	RXN02125	VV0102	23242	22442	glucanase
473	474	RXN00200	VV0181	1679	5116	glucanase
475	476	RXN01175	VV0017	39898	38503	glucanase
477	478	RXN01376	VV0091	5610	4750	glucanase
479	480	RXN01631	VV0050	47021	48143	glucanase
481	482	RXN01593	VV0220	13274	12408	glucanase
483	484	RXN00337	VV0167	20369	21418	glucanase
485	486	RXN00984	VV0323	5516	8840	glucanase
487	488	RXN02374	VV0323	5516	8840	glucanase
489	490	RXN03215				glucanase
491	492					glucanase
493	494	F RXA01016	GRO0649	1	1008	glucanase
495	496	RXN03224				1.1.38.26)
497	498	F RXA00038				CYCLOMALTOEXTRINASE (EC 3.2.1.54)
499	500	RXC00233				CYCLOMALTOEXTRINASE (EC 3.2.1.54)
501	502	RXC00238				protein involved in sugar metabolism
503	504	RXC00271				Membrane Lipoprotein involved in sugar metabolism
505	506	RXC00338				Exported Protein involved in sugar metabolism
507	508	RXC00362				Membrane Spanning Protein involved in metabolism of disaccharides
509	510	RXC00412				Amino Acid ABC Transporter ATP-Binding Protein involved in sugar metabolism
511	512	RXC00526				ABC Transporter ATP-Binding Protein involved in sugar metabolism
513	514	RXC01004				Membrane Spanning Protein involved in sugar metabolism
515	516	RXC01017				Cytosolic Protein involved in sugar metabolism
517	518	RXC01021				Cytosolic Kinase involved in metabolism of sugars and thiamin
619	620	RXC01212				ABC Transporter ATP-Binding Protein involved in sugar metabolism
521	522	RXC01306				Membrane Spanning Protein involved in sugar metabolism
523	524	RXC01386				Cytosolic Protein involved in sugar metabolism
525	526	RXC01372				Cytosolic Protein involved in sugar metabolism

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
527	528	RXC01659				protein involved in sugar metabolism
530	531	RXC01663				protein involved in sugar metabolism
532	533	RXC01693				protein involved in sugar metabolism
534	535	RXC01703				Cytosolic Protein involved in sugar metabolism
536	537	RXC02254				Membrane Associated Protein involved in sugar metabolism
538	539	RXC02255				Cytosolic Protein involved in sugar metabolism
540	541	RXC02435				protein involved in sugar metabolism
		F RXA02435				Uncharacterized protein involved in glycanol metabolism (homolog of Drosophila thrombin)
543	544	RXC03216		GR00709	825	268
TCA-cycle						
Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
545	546	RXA02175	GRO0641	10710	9418	CITRATE SYNTHASE (EC 4.1.3.7)
547	548	RXA02821	GRO0746	2647	1829	CITRATE LYASE BETA CHAIN (EC 4.1.3.6)
549	550	RJN00519	WV0144	5595	3372	ISOCITRATE DEHYDROGENASE (NADP) (EC 1.1.1.42)
551	552	F RXA00521	GRO0133	2	1080	ISOCITRATE DEHYDROGENASE (NADP) (EC 1.1.1.42)
553	554	RJN02209	WV0304	1	1871	ACONITATE HYDRATASE (EC 4.2.1.3)
555	556	F RXA02209	GRO0848	3	1681	ACONITATE HYDRATASE (EC 4.2.1.3)
557	558	RXN02213	WV0305	1378	2151	ACONITATE HYDRATASE (EC 4.2.1.3)
559	560	F RXA02213	GRO0649	1330	2046	2-OXOGLUTARATE DEHYDROGENASE E1 COMPONENT (EC 1.2.4.2)
561	562	RJA02086	GRO0825	3	2870	DIHYDROPOAMIDE SUCONYLTRANSFERASE COMPONENT (E2) OF
563	564	RJA01745	GRO0495	2	1495	2-OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)
565	566	RXA00782	GRO0298	3984	3103	SUCONYL-COA SYNTHETASE ALPHA CHAIN (EC 6.2.1.5)
567	568	RXA00783	GRO0296	5280	4009	SUCONYL-COA SYNTHETASE BETA CHAIN (EC 6.2.1.5)
569	570	RXN01695	WV0139	11307	12806	L-MALATE DEHYDROGENASE (ACCEPTOR) (EC 1.1.99.16)
571	572	F RXA01615	GRO0449	8608	9546	L-MALATE DEHYDROGENASE (ACCEPTOR) (EC 1.1.99.16)
573	574	F RXA01605	GRO0474	4398	4179	L-MALATE DEHYDROGENASE (ACCEPTOR) (EC 1.1.99.16)
575	576	RXA00290	GRO046	4893	5955	MALIC ENZYME (EC 1.1.1.39)
577	578	RXN01048	WV0079	12539	11316	MALIC ENZYME (EC 1.1.1.39)
579	580	F RXA01048	GRO0286	3	280	MALIC ENZYME (EC 1.1.1.39)
581	582	F RXA00290	GRO046	4893	5955	DIHYDROPOAMIDE SUCCONYLTRANSFERASE COMPONENT (E2) OF
583	584	RXN03101	WV0068	2	583	2-OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)
585	586	RXN02048	WV0025	15038	14840	DIHYDROPOAMIDE SUCCONYLTRANSFERASE COMPONENT (E2) OF 2-
587	588	RXN00389	WV0025	11481	9822	OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)
						oxoglutarate semialdehyde dehydrogenase (EC 1.2.1.-)

Table 1 (continued)

Glyoxylate bypass		<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>Nucleic Acid</u>	<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
589	590	RXN02399	W0176	1978	18385		ISOCITRATE LYASE (EC 4.1.3.1)
591	592	F RXA02399	GRO0598	478	1773		ISOCITRATE LYASE (EC 4.1.3.1)
593	594	RXN02404	W0176	20259	22475		MALATE SYNTHASE (EC 4.1.3.2)
595	596	F RXA02404	GRO0700	3788	1863		MALATE SYNTHASE (EC 4.1.3.2)
597	598	RXN01899	GRO0344	3209	3958		GLYOXYLATE-INDUCED PROTEIN
599	600	F RXA01899	GRO0599	3203	2430		GLYOXYLATE-INDUCED PROTEIN

Methylcitrate-pathway

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
600	602	RXN03117	W0082	3087	1676	2-methylisocitrate synthase (EC 5.3.3.-)
601	604	F RXA00406	GRO060	978	4	2-methylisocitrate synthase (EC 5.3.3.-)
603	606	F RXA00514	GRO0130	1983	1576	2-methylisocitrate synthase (EC 5.3.3.-)
605	608	RXN00512	GRO0130	821	4	2-methylisocitrate synthase (EC 4.1.3.31)
607	610	RXN00518	GRO0131	3069	2773	2-methylisocitrate synthase (EC 4.1.3.31)
609	612	RXN01077	GRO0300	4847	8017	2-methylisocitrate synthase (EC 5.3.3.-)
611	614	RXN03144	W0141	2	901	2-methylisocitrate synthase (EC 5.3.3.-)
613	616	F RXA02322	GRO0888	416	5	2-methylisocitrate synthase (EC 5.3.3.-)
615	618	RXN02328	GRO0689	607	5	2-methylisocitrate synthase (EC 4.1.3.31)
617	620	RXN02332	GRO0871	1906	784	2-methylisocitrate synthase (EC 4.1.3.31)
619	622	RXN02333	W0141	901	1815	methylisocitrate lyase (EC 4.1.3.30)
621	624	F RXA02333	GRO0871	2120	1802	LACTOYLGLUTATHIONE LYASE (EC 4.4.1.5)
623	626	RXN00030	GRO0003	9580	9878	

Methyl-Malonyl-CoA-Mutases

<u>Nucleic Acid</u>	<u>Amino Acid</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
<u>SEQ ID NO</u>	<u>SEQ ID NO</u>					
625	626	RXN00148	W0167	9849	12059	METHYLMALONYL-COA MUTASE ALPHA-SUBUNIT (EC 5.4.99.2)
627	630	F RXA00148	GRO0023	2002	5	METHYLMALONYL-COA MUTASE ALPHA-SUBUNIT (EC 5.4.99.2)
628	632	RXN00149	GRO0023	3858	2009	METHYLMALONYL-COA MUTASE BETA-SUBUNIT (EC 5.4.99.2)

Table 1 (continued)

Others										
Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contd.	NT Start	NT Stop	Function				
631	634	RXN00317	V0197	26879	27532	PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18)				
635	638	F RXA00317	GR00056	344	6	PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18)				
637	638	RXA02196	GR00445	3956	3284	PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18)				
639	640	RXN02461	W0124	14236	14843	PHOSPHOGLYCOLATE PHOSPHATASE (EC 3.1.3.18)				
Redox Chain						Function				
Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contd.	NT Start	NT Stop	Function				
641	642	RXN01744	V0174	2350	812	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT I (EC 1.10.3.-)				
643	644	F RXA00056	GR00008	11753	11890	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT I (EC 1.10.3.-)				
645	646	F RXA01744	GR00494	2113	812	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT I (EC 1.10.3.-)				
647	648	RXA00379	GR00082	212	6	CYTOCHROME C-TYPE BIOGENESIS PROTEIN CCDA				
649	650	RXA00385	GR00083	773	435	CYTOCHROME C-TYPE BIOGENESIS PROTEIN CCDA				
651	652	RXA01743	GR00494	808	6	CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT II (EC 1.10.3.-)				
653	654	RXN02480	V0084	31222	29587	CYTOCHROME C OXIDASE POLYPEPTIDE I (EC 1.9.3.1)				
655	656	F RXA01919	GR00550	288	4	CYTOCHROME C OXIDASE SUBUNIT I (EC 1.9.3.1)				
657	658	F RXA02480	GR00717	1448	601	CYTOCHROME C OXIDASE POLYPEPTIDE (EC 1.9.3.1)				
659	660	F RXA02481	GR00717	1945	1334	CYTOCHROME C OXIDASE POLYPEPTIDE I (EC 1.9.3.1)				
661	662	RXA02140	GR00839	7339	8415	CYTOCHROME C OXIDASE POLYPEPTIDE II (EC 1.9.3.1)				
663	664	RXA02142	GR00839	9413	10083	CYTOCHROME C OXIDASE POLYPEPTIDE I (EC 1.9.3.1)				
665	666	RXA02144	GR00839	11026	12248	RIESKE IRON-SULFUR PROTEIN				
667	668	RXA02740	GR00763	7613	8542	PROBABLE CYTOCHROME C OXIDASE ASSEMBLY FACTOR				
669	670	RXA02743	GR00763	13534	12487	CYTOCHROME C OXIDASE ASSEMBLY FACTOR				
671	672	RJA01227	GR00555	1198	1519	FERRODOXIN				
673	674	RXA01895	GR00332	436	122	FERRODOXIN VI				
675	676	RXA00880	GR00179	2632	2315	FERRODOXIN-NAD ⁺ REDUCTASE (EC 1.16.1.3)				
677	678	RJA00579	GR00179	2302	1037	ELECTRON TRANSFER FLAVOPROTEIN ALPHA-SUBUNIT				
679	680	RXA00224	GR0032	24985	24015	ELECTRON TRANSFER FLAVOPROTEIN BETA-SUBUNIT				
681	682	RXA00225	GR0032	25763	24986	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)				
683	684	RXN00606	W0182	11299	9026	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)				
685	686	F RXA00866	GR00160	121	1889	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)				
687	688	RXN00585	WV0192	8842	7113	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)				
689	690	F RXA00868	GR00160	2253	3017	NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)				
691	692	RXA00913	GR00249	3	2120	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)				
693	694	RXA00909	GR00247	2552	3408	NADH DEHYDROGENASE I CHAIN L (EC 1.6.5.3)				
695	696	RXA00700	GR00182	848	43	NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2				
697		RXN00463	VW0088	44287	44287	NADH-UBIQUINONE OXIDOREDUCTASE 39 KD SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.6.3)				

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
699 700	F RXA00483	GR00119		19108	20569	NADH-UBIQUINONE OXIDOREDUCTASE 39 KD SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3)
701 702	RXA01534	GR00427	1036	547		NADH-DEPENDENT FMN OXIDOREDUCTASE
703 704	RXA02288	GR0046	2846	1638		QUINONE OXIDOREDUCTASE (EC 1.6.5.5)
705 706	RXA02741	GR00763	9585	6620		QUINONE OXIDOREDUCTASE (EC 1.6.5.5)
	RXN02560	W0101	9822	10786		NADPH-FLAVIN OXIDOREDUCTASE (EC 1.6.99.-)
707 708	F RXA02560	GR00731	63339	7160		NADPH-FLAVIN OXIDOREDUCTASE (EC 1.6.99.-)
709	710	RXA01311	GR00380	1611	885	SUCCINATE DEHYDROGENASE IRON-SULFUR PROTEIN (EC 1.3.99.1)
711 712	RXN03014	W0056	1273	368		NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)
713 714	F RXA00910	GR00246	3	1259		Hydrogenase subunit
715 716	RXN01895	W0117	955	5		NADH DEHYDROGENASE (EC 1.6.99.3)
717 718	F RXA01895	GR00543	2	817		DEHYDROGENASE
718 720	RXA00703	GR0183	2558	271		FORMATE DEHYDROGENASE ALPHA CHAIN (EC 1.2.1.2)
721 722	RXN00705	W0005	8111	5197		FDHD PROTEIN
723 724	F RXA00705	GR00184	1291	407		FDHD PROTEIN
725 726	RXN001388	W0025	2081	3091		CYTOCHROME C BIOGENESIS PROTEIN CCSA
727 728	F RXA00388	GR00085	989	887		essential protein similar to cytochrome c
729 730	F RXA00388	GR00084	514	6		RESC PROTEIN, essential protein similar to cytochrome c biogenesis protein
731	RXA00845	GR00259	1878	2847		putative cytochrome oxidase ⁶⁴
	RXN02558	W001	5602	6739		FLAVOHEMOPROTEIN / DIHYDROPTEROIDINE REDUCTASE (EC 1.6.99.7)
733 734	F RXA02658	GR00731	2019	3176		FLAVOHEMOPROTEIN
735 736	F RXA01392	GR00408	2297	3373		GLUTATHIONE S-TRANSFERASE (EC 2.6.1.18)
	RXA00800	GR00214	2031	3134		GLUTATHIONE-DEPENDENT FORMALDEHYDE DEHYDROGENASE (EC 1.2.1.1)
737 738	RXA02143	GR00539	10138	11025		QCRC PROTEIN, menaquinol:cytochrome c oxidoreductase
739 740	RXN03098	W0058	405	4		NADH DEHYDROGENASE I CHAIN M (EC 1.6.5.3)
741 742	RXN02036	W0176	32683	33083		NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 4 (EC 1.6.5.3)
743 744	RXA02765	W0317	3562	2794		Hypothetical Oxidoreductase
745 746	RXN02206	W0302	1784	849		Hypothetical Oxidoreductase
747 748	RXN02554	W0101	4633	4010		Hypothetical Oxidoreductase (EC 1.1.1.-)
749 750						
751 752						
753	754					

ATP-Synthase

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
755 756	RXN01204	W0121	1270	461		ATP SYNTHASE A CHAIN (EC 3.6.1.34)
757 758	F RXA01204	GR00345	394	1166		ATP SYNTHASE A CHAIN (EC 3.6.1.34)
759 760	RXA01201	GR00344	675	2316		ATP SYNTHASE ALPHA CHAIN (EC 3.6.1.34)
761 762	RXN01193	W0175	5280	3832		ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)
763 764	F RXA01193	GR00343	15	795		ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)
765 766	F RXA01203	GR00344	3355	3993		ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
767	768	RXN02821	W00121	324	85	ATP SYNTHASE C CHAIN (EC 3.6.1.34)
769	770	F RXA02821	GR00902	139	318	ATP SYNTHASE C CHAIN (EC 3.6.1.34)
771	772	RXA01200	GR00344	2	610	ATP SYNTHASE DELTA CHAIN (EC 3.6.1.34)
773	774	RXA01194	GR00343	770	1141	ATP SYNTHASE EPSILON CHAIN (EC 3.6.1.34)
775	776	RXA01202	GR00344	2376	3348	ATP SYNTHASE GAMMA CHAIN (EC 3.6.1.34)
777	778	RXN02834	W0090	4823	3274	ATP-BINDING PROTEIN

Cytochrome metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contd.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
779	780	RXN00684	W0006	28864	28581	CYTOCHROME P450 116 (EC 1.14.-.)
781	782	RXN00397	W0025	1150	2004	Hypothetical Cytochrome c Biogenesis Protein

TABLE 2 - Excluded Genes

GenBank™ Accession No.	Gene Name	Gene Function	Reference
AB0073	ppg	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat carboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-amino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585 A45587		Threonine dehydratase	Moekkel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9119442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," <i>Biochem. Biophys. Res. Commun.</i> , 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," <i>Appl. Microbiol. Biotechnol.</i> , 51(2):223-228 (1999)
AB018530	disR		Kimura, E. et al. "Molecular cloning of a novel gene, disR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium laevofermentum</i> ," <i>Biosci. Biotechnol. Biotechnol.</i> , 60(10):1565-1570 (1996)
AB018531	disR1; disR2	D-glutamate racemase	
AB020634	murI	transketolase	
AB023377	ktt		
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; add	Replication protein, aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamoyltransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038548	pvc	Pyruvate carboxylase	

Table 2 (continued)

	dcfAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wehmeier, L. et al. "The role of the <i>Corynebacterium glutamicum</i> rel gene in (p)ppGpp metabolism," <i>Microbiology</i>, 144:1853-1862 (1998)
AF038651			
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB; argD; argF; argR; argG; argH	N-acetylglutamylphosphate reductase; ornithine acetyltransferase; N-acetylglutamate kinase; acetylornithine transaminase; ornithine carbamoyltransferase; arginine repressor; argininosuccinate synthase; argininosuccinate lyase	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in <i>Corynebacterium glutamicum</i> ," <i>Mol. Cells</i> , 8(3):286-294 (1998)
AF053071	aroB	Dihydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP-pyrophosphohydrolase	
AF114233	aroA	S-enolpyruvylshikimate 3'-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the <i>Corynebacterium glutamicum</i> panD gene encoding L-aspartate-alpha-decarboxylase leads to panthenate overproduction in <i>Escherichia coli</i> ," <i>Appl. Environ. Microbiol.</i> , 65(4):1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinate; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; purative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

Table 2 (continued)

AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, Ecp," <i>J. Bacteriol.</i> , 180(22):6005-6012 (1998)
AJ004934	dapD	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; 2; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	fisY; glnB; glnD; sfp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridyl)-removing enzyme; signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum: Isolation of genes involved in biochemical characterization of corresponding proteins," <i>FEBS Microbiol.</i> , 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol acetyl transferase	
AJ224946	mgo	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," <i>Eur. J. Biochem.</i> , 254(2):395-403 (1998)
AJ238250	ndh	NADH dehydrogenase	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
AJ238703	porA	Porin	
D17429		Transposable element IS31831	Vertes et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum A) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01338	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01339		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E01376	tpL; tpE	Leader peptide; amidinilate synthase	

Table 2 (continued)

E01377	Promoter and operator regions of tryptophan operon	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244182-A 1 10/24/87
E03937	Biotin-synthase	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthase and its utilization," Patent: JP 1992278888-A 1 10/02/92
E04040	Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and deshiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041	Deshiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and deshiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04307	Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04376	Isocitric acid lyase	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377	Isocitric acid lyase N-terminal fragment	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04484	Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/20/91
E05108	Aspartokinase	Fujono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05112	Dihydro-dipicolinic acid synthetase	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06146	Acetoxyhydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetoxyhydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94

Table 2 (continued)

E06827		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E07701	secY		Honno, N. et al. "Gene DNA participating in integration of membranous protein to membrane," Patent: JP 1994169780-A 1 06/21/94
E08177		Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08178, E08179, E08180, E08181, E08182		Feedback inhibition-released Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08232		Acetohydroxy-acid isomerase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomerase," Patent: JP 1994277067-A 1 10/04/94
E08234	secE		Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94
E08643		FT aminotransferase and deshiobiotin synthetase promoter region	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1993031476-A 1 02/03/95
E08646		Biotin synthetase	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1993031476-A 1 02/03/95
E08649		Aspartase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1993031478-A 1 02/03/95
E08900		Dihydriopicolinate reductase	Madori, M. et al. "DNA fragment containing gene coding Dihydriopicolinate acid reductase and utilization thereof," Patent: JP 19950755578-A 1 03/20/95
E08901		Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 19950755579-A 1 03/20/95
E12394		Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-tryptophan," Patent: JP 1997028391-A 1 02/04/97
E12760, E12759, E12758		transposase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12764		Arginyl tRNA synthetase; diaminopimelic acid decarboxylase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12767		Dihydriopicolic acid synthetase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12770		aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12773		Dihydriopicolic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97

Table 2 (continued)

E13655		Glucose-6-phosphate dehydrogenase	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 09/02/97
I01508	IlvA	Threonine dehydratase	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of <i>Corynebacterium glutamicum</i> ," <i>J. Bacteriol.</i> , 174:8065-8072 (1992)
I07603	EC 4.2.1.15	3-deoxy-D-arabinohexulosonate-7-phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of <i>Corynebacterium glutamicum</i> 3-deoxy-D-arabinohexulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)
I09232	IlvB; IlvN; IlvC	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomerase	Keilhauer, C. et al. "Isoleucine synthesis in <i>Corynebacterium glutamicum</i> : molecular analysis of the ilvB-ilvN-ilvC operon," <i>J. Bacteriol.</i> , 175(17):5595-
L18874	PtsM	Phosphoenolpyruvate sugar phosphotransferase	Fouet, A. et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in <i>Escherichia coli</i> and homology to enzymes II from enteric bacteria," <i>PNAS USA</i> , 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the <i>Corynebacterium glutamicum</i> mannose enzyme II and analyses of the deduced protein sequence," <i>FEMS Microbiol. Lett.</i> , 119(1-2):137-145 (1994)
I27123	aceB	Malate synthase	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in <i>Corynebacterium glutamicum</i> ," <i>J. Microbiol. Biotechnol.</i> , 4(4):256-263 (1994)
I27126		Pyruvate kinase	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from <i>Corynebacterium glutamicum</i> ," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)
I28760	aceA dtxR	Isocitrate lyase Diphtheria toxin repressor	Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the <i>Corynebacterium diphtheriae</i> dtxR from <i>Brevibacterium lactofermentum</i> ," <i>J. Bacteriol.</i> , 177(2):465-467 (1995)
M13774		Prephenate dehydratase	Follette, M.T. et al. "Molecular cloning and nucleotide sequence of the <i>Corynebacterium phenA</i> gene," <i>J. Bacteriol.</i> , 167:695-702 (1986)
M16173	SS rRNA		Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences," <i>J. Bacteriol.</i> , 169:1801-1806 (1987)
M16663	trpE	Anthranilate synthase, 5' end	Sano, K. et al. "Structure and function of the trp operon control regions of <i>Brevibacterium lactofermentum</i> , a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)
M16664	trpA	Tryptophan synthase, 3' end	Sano, K. et al. "Structure and function of the trp operon control regions of <i>Brevibacterium lactofermentum</i> , a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)

Table 2 (continued)

M22819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of <i>Corynebacterium glutamicum</i> ATCC13032," <i>Gene</i> , 77(2):237-251 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," <i>J. Gen. Microbiol.</i> , 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," <i>J. Gen. Microbiol.</i> , 138:1167-1175 (1992)
M88931	ascD; tmQ; yfbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yfbw	Rosso, I. et al. "The <i>Corynebacterium glutamicum</i> secD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in <i>Corynebacterium glutamicum</i> ATCC 13032 is directed by the brmQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)
S59299	trp	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of <i>Corynebacterium glutamicum</i> : identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11343	trpD	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Duncan, L.K. (1994) Complete nucleotide sequence of the <i>Corynebacterium glutamicum</i> ATCC 21850 trpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cglIM; cglIR; cglJIR	Putative type II S-cysteine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from <i>Corynebacterium glutamicum</i> ATCC 13032 and analysis of its role in intergeneric conjugation with <i>Escherichia coli</i> ," <i>J. Bacteriol.</i> , 176(23):7309-7319 (1994); Schafer, A. et al. "The <i>Corynebacterium glutamicum</i> cglIM gene encoding a S-cysteine in an McrBC-deficient <i>Escherichia coli</i> strain," <i>Gene</i> , 203(2):95-101 (1997)
U14965	recA		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31224	ppx		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31225	ppC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31230	obj; proB; unkdh	7-gamma glutamyl kinase; similar to D-isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)

Table 2 (continued)

U31281	bioB	Biotin synthase	Serebrovskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of <i>Methylobacillus flagellatum</i> and <i>Corynebacterium glutamicum</i> ," <i>Gene</i> , 175:15-22 (1996)
U35023	<i>thiR; acxBC</i>	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A <i>Corynebacterium glutamicum</i> gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch. Microbiol.</i> , 166(2):76-82 (1996)
U43535	<i>cmr</i>	Multidrug resistance protein	Jager, W. et al. "A <i>Corynebacterium glutamicum</i> gene conferring multidrug resistance in the heterologous host <i>Escherichia coli</i> ," <i>J. Bacteriol.</i> , 179(7):2449-2451 (1997)
U43536	<i>cipB</i>	Heat shock ATP-binding protein	
U53587	<i>aplA-3</i>	3'5'-aminoglycoside phosphotransferase	
U89648		<i>Corynebacterium glutamicum</i> unidentified sequence involved in histidine biosynthesis, partial sequence	
X04960	<i>trpA; trpB; trpC; trpD; trpE; trpG; trpL</i>	Tryptophan operon	Masui, K. et al. "Complete nucleotide and deduced amino acid sequences of the <i>Brevibacterium lactofermentum</i> tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)
X07563	<i>lys A</i>	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the <i>lysA</i> gene of <i>Corynebacterium glutamicum</i> and possible mechanisms for modulation of its expression," <i>Mol. Gen. Genet.</i> , 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of <i>Corynebacterium glutamicum</i> : Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepniet, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)
X17313	<i>fda</i>	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine-structural analysis of the <i>Corynebacterium glutamicum fda</i> gene: structural comparison of <i>C. glutamicum fructose-1,6-biphosphate aldolase</i> to class I and class II aldolases," <i>Mol. Microbiol.</i>
X33993	<i>dapA</i>	L-2,3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Bonnacie, S. et al. "Nucleic sequence of the <i>dapA</i> gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 18(21):6421 (1990)
X34223		AttB-related site	Clancotto, N. et al. "DNA sequence homology between att B-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of lambda corynephage," <i>FEMS Microbiol. Lett.</i> , 66:299-302 (1990)
X54740	<i>argS; lysA</i>	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the <i>Corynebacterium glutamicum lysA</i> gene," <i>Mol. Microbiol.</i> , 4(11):1830 (1990)

Table 2 (continued)

X55994	trpL; trpE	Putative leader peptide; anthranilate synthase component 1	Heery, D.M. et al. "Nucleotide sequence of the <i>Corynebacterium glutamicum</i> trpE gene," <i>Nucleic Acids Res.</i> , 18(23):7138 (1990).
X56037	thrC	Threonine synthase	Han, K.S. et al. "The molecular structure of the <i>Corynebacterium glutamicum</i> threonine synthase gene," <i>Mol. Microbiol.</i> , 4(10): 1693-1702 (1990).
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of <i>lambda</i> decorenephage," <i>FEMS Microbiol. Lett.</i> , 66:299-302 (1990).
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspartate beta-semialdehyde dehydrogenase gene and in <i>Corynebacterium glutamicum</i> ," <i>Mol. Gen. Genet.</i> , 224(3):317-324 (1990).
X59403	gap; pgk; tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a <i>Corynebacterium glutamicum</i> gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerases," <i>J. Bacteriol.</i> , 174(19):6076-6086 (1992).
X59404	gdh	Glutamate dehydrogenase	Bormann, E.R. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317-326 (1992).
X60312	lysI	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> lysI gene involved in lysine uptake," <i>Mol. Microbiol.</i> , 5(12):2905-3005 (1991).
X66078	csp1	Psi protein	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of <i>Corynebacterium glutamicum</i> : The deduced N-terminal region of PS1 is similar to the <i>Mycobacterium antigen 85</i> complex," <i>Mol. Microbiol.</i> , 6(16):2349-2362 (1992).
X66112	git	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the <i>Corynebacterium glutamicum gitA</i> gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994).
X67737	dapB	Dihydridopicolinate reductase	Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 9(1):97-109 (1993).
X69103	csp2	Surface layer protein PS2	Bonamy, C. et al. "Identification of IS1206, a <i>Corynebacterium glutamicum</i> IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994).
X69104		IS3 related insertion element	

Table 2 (continued)

X70959	<i>leuA</i>	Isopropylmalate synthase	Patek, M. et al. "Leucine synthesis in <i>Corynebacterium glutamicum</i> : enzyme activities, structure of <i>leuA</i> , and effect of <i>leuA</i> inactivation on lysine synthesis," <i>Appl. Environ. Microbiol.</i> 60(1):133-140 (1994)
X71489	<i>icd</i>	Isocitrate dehydrogenase (NADP+)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the <i>Corynebacterium glutamicum icd</i> gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," <i>J. Bacteriol.</i> 177(3):774-782 (1995)
X72855	<i>GDHA</i>	Glutamate dehydrogenase (NADP+)	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of <i>Corynebacterium glutamicum</i> encoding resistance to S-methyltryptophan," <i>Biochem. Biophys. Res. Commun.</i> 201(3):1255-1262 (1994)
X75083, X70584	<i>mtmA</i>	S-methyltryptophan resistance	Fitzpatrick, R. et al. "Construction and characterization of <i>recA</i> mutant strains of <i>Corynebacterium glutamicum</i> and <i>Brevibacterium lactofermentum</i> ," <i>Appl. Microbiol. Biotechnol.</i> 42(4):575-580 (1994)
X75085	<i>recA</i>		Reinschelid, D.J. et al. "Characterization of the isocitrate lyase gene from <i>Corynebacterium glutamicum</i> and biochemical analysis of the enzyme," <i>J. Bacteriol.</i> 176(12):3474-3483 (1994)
X75504	<i>aceA; ihfX</i>	Partial isocitrate lyase; ?	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Annu. Van Leeuwenhoek</i> 64:285-305 (1993)
X76875		ATPase beta-subunit	
X77034	<i>tuf</i>	Elongation factor Tu	
X77384	<i>recA</i>		Billman-Jacobe, H. "Nucleotide sequence of a <i>recA</i> gene from <i>Corynebacterium glutamicum</i> ," <i>DNA Seq.</i> 4(6):403-404 (1994)
X78491	<i>acoB</i>	Malate synthase	Reinschelid, D.J. et al. "Malate synthase from <i>Corynebacterium glutamicum</i> pha-ack operon encoding phosphotransacylase: sequence analysis," <i>Microbiology</i> 140:3099-3108 (1994)
X80629	16S rDNA	16S ribosomal RNA	Ratney, F.A. et al. "Phylogenetic analysis of the genus <i>Nocardia</i> Nocardia and evidence for the evolutionary origin of the genus <i>Nocardia</i> from within the radiation of <i>Rhodococcus</i> species," <i>Microbiol.</i> 141:523-528 (1995)
X81191	<i>gluA; gluB; gluC; gluD</i>	Glutamate uptake system	Kronemeyer, W. et al. "Structure of the <i>gluABCD</i> cluster encoding the glutamate uptake system of <i>Corynebacterium glutamicum</i> ," <i>J. Bacteriol.</i> 177(5):1152-1158 (1995)
X81379	<i>dapE</i>	Succinyl diaminopimelate desuccinylase	Wehmann, A. et al. "Analysis of different DNA fragments of <i>Corynebacterium glutamicum</i> complementing <i>dapE</i> of <i>Escherichia coli</i> ," <i>Microbiology</i> 140:3349-3356 (1994)

Table 2 (continued)

X82061	16S rDNA	16S ribosomal RNA	Ruimy, R. et al. "Phylogeny of the genus <i>Corynebacterium</i> deduced from analyses of small-subunit ribosomal DNA sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):740-746 (1995).
X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase; ?	Serebrijski, I. et al. "Multicopy suppression by <i>asd</i> gene and osmotic stress-dependent complementation by heterologous <i>proA</i> in <i>proA</i> mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995).
X82929	<i>proA</i>	Gamma-glutamyl phosphate reductase	Serebrijski, I. et al. "Multicopy suppression by <i>asd</i> gene and osmotic stress-dependent complementation by heterologous <i>proA</i> in <i>proA</i> mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995).
X84257	16S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus <i>Corynebacterium</i> based on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724-728 (1995).
X85965	aroP; dapE	Aromatic amino acid permease; ?	Wehrmann et al. "Functional analysis of sequences adjacent to <i>dapE</i> of <i>C. glutamicum</i> proline reveals the presence of <i>aroP</i> , which encodes the aromatic amino acid transporter," <i>J. Bacteriol.</i> , 177(20):5991-5993 (1995).
X86137	argB; argC; argD; argF; argJ	Acetylglutamate kinase; N-acetyl-gamma-glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyltransferase; glutamate N-acetyltransferase	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in <i>Corynebacterium glutamicum</i> : enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996).
X89084	pta; aceA	Phosphate acetyltransferase; acetate kinase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the <i>Corynebacterium glutamicum pta-ack</i> operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999).
X89550	attB	Attachment site	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting 'Arthrobacter aureus C70,'" <i>J. Bacteriol.</i> , 178(7):1996-2004 (1996).
X90356		Promoter fragment F1	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996).
X90357		Promoter fragment F2	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996).
X90358		Promoter fragment F10	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996).
X90359		Promoter fragment F13	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996).

Table 2 (continued)

X90360	Promoter fragment F22	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90361	Promoter fragment F34	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90362	Promoter fragment F37	Patek, M. et al. "Promoters from <i>C. glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90363	Promoter fragment F45	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90364	Promoter fragment F64	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90365	Promoter fragment F75	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90366	Promoter fragment PF101	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90367	Promoter fragment PF104	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90368	Promoter fragment PF109	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X93513	amt	Ammonium transport system Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of <i>Corynebacterium glutamicum</i> ," <i>J. Biol. Chem.</i> , 271(10):5398-5403 (1996)
X93514	betP	Glycine betaine transport system Peter, H. et al. "Isolation, characterization, and expression of the <i>Corynebacterium glutamicum betP</i> gene, encoding the transport system for the compatible solute glycine betaine," <i>J. Bacteriol.</i> , 178(17):5229-5234 (1996)
X95649	orf4	Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of <i>Corynebacterium glutamicum</i> , encoding two enzymes involved in L-lysine synthesis," <i>Biootechnol. Lett.</i> , 19:1113-1117 (1997)
X96471	lysE; lysG	Vrijic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 22(5):815-826 (1996)

Table 2 (continued)

X965580	panB; panC; xylB	3-methyl-2-oxobutanate hydroxymethyltransferase; pantoate-beta-alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in <i>Corynebacterium glutamicum</i> and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl. Environ. Microbiol.</i> , 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer <i>Brevibacterium lactofermentum</i> (<i>Corynebacterium glutamicum</i> ATCC 13869)," <i>Genz.</i> 198:217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the <i>Corynebacterium glutamicum</i> hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UDP-N-acetylglucosamine ligase; division initiation protein or cell division protein; cell division protein	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from <i>Brevibacterium lactofermentum</i> ," <i>Mol. Gen. Genet.</i> , 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of <i>Corynebacterium glutamicum</i> and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09348	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from <i>Corynebacterium glutamicum</i> : characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from <i>Corynebacterium glutamicum</i> ," <i>Appl. Microbiol. Biotechnol.</i> , 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Y12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," <i>J. Bacteriol.</i> , 180(22):6005-6012 (1998)

Table 2 (continued)

Y13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," <i>FEBS Microbiol. Lett.</i> , 154(1):81-88 (1997)
Y16642	lpd	Dihydrolipoamide dehydrogenase	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," <i>Virology</i> , 255(1):150-159 (1999)
Y18059		Attachment site Corynophage 304L	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," <i>J. Bacteriol.</i> , 175(22):7356-7362 (1993)
Z21501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydridopicolinate reductase, and a third polypeptide of unknown function," <i>J. Bacteriol.</i> , 175(9):2743-2749 (1993)
Z21502	dapA; dapB	Dihydridopicolinate synthase; dihydridopicolinate reductase	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl. Environ. Microbiol.</i> , 60(7):2209-2219 (1994)
Z29563	thrC	Threonine synthase	Oguiza, J.A. et al. "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
Z46753	16S rDNA	Gene for 16S ribosomal RNA	Oguiza, J.A. et al. "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," <i>Gene</i> , 177:103-107 (1996)
Z49822	sigA	SigA sigma factor	Oguiza, J.A. et al. "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
Z49823	galE; dmdR	Catalytic activity UDP-galactose 4-epimerase; diphtheria toxin regulatory protein	Corteia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1):91-94 (1996)
Z49824	orfI; sigB	?; SigB sigma factor	A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.
Z66334		Transposase	

Exemplification**Example 1: Preparation of total genomic DNA of *Corynebacterium glutamicum* ATCC 13032**

- 5 A culture of *Corynebacterium glutamicum* (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose,
- 10 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃, 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent 15 (EDTA or citric acid)), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-pantothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting
- 20 protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 µg/ml, the suspension is incubated for ca. 18 h at 37°C. The DNA was purified by 25 extraction with phenol, phenol-chloroform-isoamylalcohol and chloroform-isoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 30 µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

- 119 -

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. 10 (1989) "Molecular Cloning : A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & 15 Cohen (1978) *J. Bacteriol.* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome 25 Random Sequencing and Assembly of Haemophilus Influenzae Rd.", *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: *In vivo* Mutagenesis

30 *In vivo* mutagenesis of *Corynebacterium glutamicum* can be performed by passage of plasmid (or other vector) DNA through *E. coli* or other microorganisms (e.g. *Bacillus* spp. or yeasts such as *Saccharomyces cerevisiae*) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia coli and Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such 5 strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium glutamicum*

Several *Corynebacterium* and *Brevibacterium* species contain endogenous 10 plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) *Biotechnology*, 5:137-146). Shuttle vectors for *Escherichia coli* and *Corynebacterium glutamicum* can be readily constructed by using standard vectors for *E. coli* (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in 15 Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from *Corynebacterium glutamicum* is added. Such origins of replication are preferably taken from endogenous plasmids isolated from *Corynebacterium* and *Brevibacterium* species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 20 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both *E. coli* and *C. glutamicum*, and which can be used for several purposes, including gene over-expression (for reference, see e.g., Yoshihama, M. et al. (1985) *J. Bacteriol.* 162:591-597, 25 Martin J.F. et al. (1987) *Biotechnology*, 5:137-146 and Eikmanns, B.J. et al. (1991) *Gene*, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by 30 protoplast transformation (Kastsumata, R. et al. (1984) *J. Bacteriol.* 159:306-311), electroporation (Liebl, E. et al. (1989) *FEMS Microbiol. Letters*, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

(1990) *J. Bacteriol.* 172:1663-1666). It is also possible to transfer the shuttle vectors for *C. glutamicum* to *E. coli* by preparing plasmid DNA from *C. glutamicum* (using standard methods well-known in the art) and transforming it into *E. coli*. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient 5 *E. coli* strain, such as NM522 (Gough & Murray (1983) *J. Mol. Biol.* 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be 10 overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other *Corynebacterium* or *Brevibacterium* species may be accomplished by well-known 15 methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as 20 homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) *From Genes to Clones – Introduction to Gene Technology*. VCH: 25 Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity 30 to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

- (1988) *Current Protocols in Molecular Biology*, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the 5 binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) *Mol. Microbiol.* 6: 317-326.
- 10 To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) *Current Protocols in Molecular Biology*, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which 15 specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.
- 20 **Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions**
- Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for *Corynebacteria* are both well-known and readily available (Lieb et al. (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der 25 Osten et al. (1998) *Biotechnology Letters*, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: *The Prokaryotes*, Volume II, Balows, A. et al., eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, 30 ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

- 123 -

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or 5 ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, 10 molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic 15 acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A 20 Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if 25 necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 30 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the micro-
5 organisms, the pH can also be controlled using gaseous ammonia.

- The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes.
10 For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance
15 of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

- If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of 0.5 – 1.5 using cells grown on agar plates, such as CM plates
20 (10 g/l glucose, 2.5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

Example 8 – *In vitro* Analysis of the Function of Mutant Proteins

- The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well
30 within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

- 125 -

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 10 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assayss (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. *et al.* (1995) *EMBO J.* 14: 15 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, 20 Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

25 The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of 30 ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

- 126 -

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 5 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ullmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, 10 F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to 15 determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these 20 measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from *C. glutamicum* Culture

25 Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and 30 the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. *Biochemical Engineering Fundamentals*, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek *et al.* (1994) *Appl. Environ. Microbiol.* 60: 133-140; Malakhova *et al.* (1996) *Biotehnologiya* 11: 27-32; and Schmidt *et al.* (1998) *Bioprocess Engineer.* 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) *Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology*, John Wiley and Sons; Fallon, A. *et al.* (1987) *Applications of HPLC in Biochemistry* in: *Laboratory Techniques in Biochemistry and Molecular Biology*, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA*

- 128 -

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to SMP nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to SMP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, (1997) *Nucleic Acids Res.* 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (*e.g.*, XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) *Comput. Appl. Biosci.* 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM, described in Torelli and Robotti (1994) *Comput. Appl. Biosci.* 10:3-5; and FASTA, described in Pearson and Lipman (1988) *P.N.A.S.* 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (*see, e.g.*, Bexevanis and Ouellette, eds. (1998) *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*. John Wiley and Sons: New York). The gene sequences of the invention

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. *et al.* (1995) *Science* 270: 467-470; Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367; DeSaizieu, A. *et al.* (1998) *Nature Biotechnology* 16: 45-48; and DeRisi, J.L. *et al.* (1997) *Science* 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

- 130 -

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the 5 expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) *BioEssays* 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice 10 and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. et al. (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide 15 synthesis as described by Wodicka, L. et al. (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the 20 synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be 25 labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) *supra*; Wodicka, L. et al. (1997), *supra*; and DeSaizieu A. et al. (1998), 30 *supra*). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

described in Schena, M. *et al.* (1995) *supra*) and fluorescent labels may be detected, for example, by the method of Shalon *et al.* (1996) *Genome Research* 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

**Example 13: Analysis of the Dynamics of Cellular Protein Populations
(Proteomics)**

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (e.g., during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann *et al.* (1998) *Electrophoresis* 19: 3217-3221; Fountoulakis *et al.* (1998) *Electrophoresis* 19: 1193-1202; Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192; Antelmann *et al.* (1997) *Electrophoresis* 18:

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and 5 include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, 10 fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount 15 of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other 20 standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192)). The protein sequences provided herein can be used for the identification of *C. glutamicum* proteins by these techniques.

25 The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, 30 such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

- 133 -

Equivalents

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of
5 the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed:

1. An isolated nucleic acid molecule from *Corynebacterium glutamicum* encoding an SMP protein, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
2. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes an SMP protein involved in the production of a fine chemical.
- 10 3. An isolated *Corynebacterium glutamicum* nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 15 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 20 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth in as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 25 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

- 135 -

7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 5
8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
- 10 9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
- 15 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
11. The vector of claim 10, which is an expression vector.
12. A host cell transfected with the expression vector of claim 11.
- 20 13. The host cell of claim 12, wherein said cell is a microorganism.
14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
- 25 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
- 30

17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.
- 5 18. An isolated SMP polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
- 10 19. The polypeptide of claim 18, wherein said polypeptide is involved in the production of a fine chemical.
- 15 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 20 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
- 30 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOS of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.
24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those

sequences as even-numbered SEQ ID NOS of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.

5 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.

26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.

10 27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.

15 28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.

20 29. The method of claim 25, wherein said cell is selected from the group consisting of: *Corynebacterium glutamicum*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium acetophilum*, *Corynebacterium ammoniagenes*, *Corynebacterium fujikense*, *Corynebacterium nitrilophilus*, *Brevibacterium ammoniagenes*, *Brevibacterium butanicum*, *Brevibacterium divaricatum*, *Brevibacterium flavum*, *Brevibacterium healii*, *Brevibacterium ketoglutamicum*, *Brevibacterium ketosoreductum*, *Brevibacterium lactofermentum*, *Brevibacterium linens*, *Brevibacterium paraffinolyticum*, and those strains set forth in Table 3.

25 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.

30 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine

and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 5 32. The method of claim 25, wherein said fine chemical is an amino acid.
- 10 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 15 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
- 20 35. A method for diagnosing the presence or activity of *Corynebacterium diphtheriae* in a subject, comprising detecting the presence of one or more of SEQ ID NOS 1 through 782 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of *Corynebacterium diphtheriae* in the subject.
- 25 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOS of the Sequence Listing, wherein the nucleic acid molecule is disrupted.
- 30 35. 37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOS in the Sequence Listing, wherein the nucleic acid molecule comprises one or more nucleic acid modifications from the sequence set forth as odd-numbered SEQ ID NOS of the Sequence Listing s.

- 139 -

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOS of the Sequence Listing, wherein the regulatory region of the nucleic acid molecule is modified 5 relative to the wild-type regulatory region of the molecule.

Thr Asp Ser Ser Val Ala Pro Pro Gly Gly Glu Ser Leu Gln Thr Val
 290 295 300
 Asn Arg Arg Val Lys Lys Ala Arg Glu Ser Leu Gln Arg Glu Tyr Gly
 305 310 315 320
 Ala Ala Asn Val Leu Val Val Ser His Val Thr Pro Ile Lys Ala Ile
 325 330 335
 Met Arg Gln Ala Leu Asp Ala Gly Pro Ser Phe Phe Gln Lys Ala His
 340 345 350
 Leu Asp Leu Ala Ser Leu Ser Ile Ala Glu Phe Tyr Glu Asp Gly Pro
 355 360 365
 Thr Cys Val Arg Leu Phe Asn Asp Thr Ser His Leu Glu Ala
 370 375 380

<210> 47

<211> 840

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(817)

<223> RXA02492

<400> 47
 gctgtacaac gacgctattt ccaacgaaaa tgcgcacgggt gaaacgcatac acggctaagt 60

aaacgcgcgt cgtggAACAT aaagtggcaa actagttaccc atg act aac gga aaa 115
 Met Thr Asn Gly Lys
 1 5

ttg att ctt ctt cgt cac ggt cag agc gaa tgg aac gca tcc aac cag 163
 Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp Asn Ala Ser Asn Gln
 10 15 20

ttc act gga tgg gtc gac gtc aat ctg acc gaa cag ggt gag gct gag 211
 Phe Thr Gly Trp Val Asp Val Asn Leu Thr Glu Gln Gly Glu Ala Glu
 25 30 35

gcc aaa ggc gtc ctc cca ggc gtt gta tac acc tcc ttg ctg cgt cgc 259
 Ala Lys Gly Val Leu Pro Gly Val Val Tyr Thr Ser Leu Leu Arg Arg
 40 45 50

gcg atc cgc act gca aac atc gca ctg aac gct gca gac cgc cac tgg 307
 Ala Ile Arg Thr Ala Asn Ile Ala Leu Asn Ala Ala Asp Arg His Trp
 55 60 65

atc cca gtg atc cgc gac tgg cgc ctc aac gag cgt cac tac ggc gca 355
 Ile Pro Val Ile Arg Asp Trp Arg Leu Asn Glu Arg His Tyr Gly Ala
 70 75 80 85

ctg cag ggc ctt gac aag gct gca acc aag gaa aaa tac ggc gac gac 403
 Leu Gln Gly Leu Asp Lys Ala Ala Thr Lys Glu Lys Tyr Gly Asp Asp
 90 95 100

cag ttc atg gaa tgg cgc cgc tcc tac gac acc cca cca cca gag ctc 451
 Gln Phe Met Glu Trp Arg Arg Ser Tyr Asp Thr Pro Pro Pro Glu Leu
 105 110 115

gcg gat gac gca gag tac tcc cag gca aat gac cct cgt tac gcg gac 499
 Ala Asp Asp Ala Glu Tyr Ser Gln Ala Asn Asp Pro Arg Tyr Ala Asp
 120 125 130

ctc gac gta gtt cca cgc acc gaa tgc ctc aag gac gtt gtg gtt cgt 547
 Leu Asp Val Val Pro Arg Thr Glu Cys Leu Lys Asp Val Val Val Arg
 135 140 145

ttt gtt cct tac ttc gag gaa gaa atc ctg cca cgc gca aag aag ggc 595
 Phe Val Pro Tyr Phe Glu Glu Glu Ile Leu Pro Arg Ala Lys Lys Gly
 150 155 160 165

gaa acc gtc ctc atc gca gca cac ggc aac tcc ctg cgt gcg ctg gtt 643
 Glu Thr Val Leu Ile Ala Ala His Gly Asn Ser Leu Arg Ala Leu Val
 170 175 180

aag cac ctt gac ggc atc tcc gat gct gat atc gca gag ctc aac atc 691
 Lys His Leu Asp Gly Ile Ser Asp Ala Asp Ile Ala Glu Leu Asn Ile
 185 190 195

cca acc ggc atc cca ctg gtc tac gaa atc gcc gaa gac ggt tcc gta 739
 Pro Thr Gly Ile Pro Leu Val Tyr Glu Ile Ala Glu Asp Gly Ser Val
 200 205 210

gta aac cca ggc acc tac ctc gat cct gag gca gca gca gcc ggc 787
 Val Asn Pro Gly Gly Thr Tyr Leu Asp Pro Glu Ala Ala Ala Ala Gly
 215 220 225

gca gca gca gta gca aac cag ggt aat aag tagctattt tagtgagca 837
 Ala Ala Ala Val Ala Asn Gln Gly Asn Lys
 230 235

ctc 840

<210> 48
<211> 239
<212> PRT
<213> Corynebacterium glutamicum

<400> 48
Met Thr Asn Gly Lys Leu Ile Leu Leu Arg His Gly Gln Ser Glu Trp
 1 5 10 15

Asn Ala Ser Asn Gln Phe Thr Gly Trp Val Asp Val Asn Leu Thr Glu
 20 25 30

Gln Gly Glu Ala Glu Ala Lys Gly Val Leu Pro Gly Val Val Tyr Thr
 35 40 45

Ser Leu Leu Arg Arg Ala Ile Arg Thr Ala Asn Ile Ala Leu Asn Ala
 50 55 60

Ala Asp Arg His Trp Ile Pro Val Ile Arg Asp Trp Arg Leu Asn Glu
 65 70 75 80

Arg His Tyr Gly Ala Leu Gln Gly Leu Asp Lys Ala Ala Thr Lys Glu

85

90

95

Lys Tyr Gly Asp Asp Gln Phe Met Glu Trp Arg Arg Ser Tyr Asp Thr
 100 105 110

Pro Pro Pro Glu Leu Ala Asp Asp Ala Glu Tyr Ser Gln Ala Asn Asp
 115 120 125

Pro Arg Tyr Ala Asp Leu Asp Val Val Pro Arg Thr Glu Cys Leu Lys
 130 135 140

Asp Val Val Val Arg Phe Val Pro Tyr Phe Glu Glu Glu Ile Leu Pro
 145 150 155 160

Arg Ala Lys Lys Gly Glu Thr Val Leu Ile Ala Ala His Gly Asn Ser
 165 170 175

Leu Arg Ala Leu Val Lys His Leu Asp Gly Ile Ser Asp Ala Asp Ile
 180 185 190

Ala Glu Leu Asn Ile Pro Thr Gly Ile Pro Leu Val Tyr Glu Ile Ala
 195 200 205

Glu Asp Gly Ser Val Val Asn Pro Gly Gly Thr Tyr Leu Asp Pro Glu
 210 215 220

Ala Ala Ala Ala Gly Ala Ala Ala Val Ala Asn Gln Gly Asn Lys
 225 230 235

<210> 49

<211> 729

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(706)

<223> RXA00381

<400> 49

aaacctggtt tgcgttcc gcttcacgg acgatgattt ctccaagatc gagcaggcac 60

tcaagccccgc cgcacgtgca gcagcagaag cgaaggcatc atg acg caa acc att 115
 Met Thr Gln Thr Ile
 1 5

gtc cat cta gtt cgc cac ggc gaa gtc cac aac cca gag aaa atc ctg 163
 Val His Leu Val Arg His Gly Glu Val His Asn Pro Glu Lys Ile Leu
 10 15 20

tac gga cgc atg ccc gga tac agg ttg tct tcc cgt gga cgc agc caa 211
 Tyr Gly Arg Met Pro Gly Tyr Arg Leu Ser Ser Arg Gly Arg Ser Gln
 25 30 35

gcc gcc cgc act gca gct tct ttt gaa ggc cac gat gtc acc tac att 259
 Ala Ala Arg Thr Ala Ala Ser Phe Glu Gly His Asp Val Thr Tyr Ile
 40 45 50

gcg gcc tcc cca ttg cag cgt gtg cag gaa acc tcc gaa ccg ttc atc 307
 Ala Ala Ser Pro Leu Gln Arg Val Gln Glu Thr Ser Glu Pro Phe Ile