

AD-A102 481 TERRA TEK INC SALT LAKE CITY UT
SIMULATION OF THE LOAD-UNLOAD PATHS EXPERIENCED BY ROCK IN THE --ETC(U)
DEC 77 D R SCHMITZ, J N JOHNSON, R K DROPEK DNA001-76-C-0294
UNCLASSIFIED TR-76-74 DNA-4841F NL

1 OF 1
AD A
TO 24H

END
DATA
8-81
DTIC

ADA102481

DTIC FILE COPY

LEVEL ~~10~~ DNA 4841F
**SIMULATION OF THE LOAD-UNLOAD PATHS
EXPERIENCED BY ROCK IN THE VICINITY OF
BURIED EXPLOSIONS**

J. N. Johnson

R. K. Drokek

D. R. Schmitz

Terra Tek, Incorporated

420 Wakara Way

Salt Lake City, Utah 84108

1 December 1977

Final Report for Period 1 May 1976-1 December 1977

CONTRACT No. DNA 001-76-C-0294

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B344076464 Y99QAXSB04903 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

81 8 05 008

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: STTI, WASHINGTON, D.C. 20305, IF
YOUR ADDRESS IS INCORRECT, IF YOU WISH TO
BE DELETED FROM THE DISTRIBUTION LIST, OR
IF THE ADDRESSEE IS NO LONGER EMPLOYED BY
YOUR ORGANIZATION.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DNA 4841F	2. GOVT ACCESSION NO. AD-A102 487	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SIMULATION OF THE LOAD-UNLOAD PATHS EXPERIENCED BY ROCK IN THE VICINITY OF BURIED EXPLOSIONS	5. TYPE OF REPORT & PERIOD COVERED 9 Final Report for Period 1 May 76 - 1 Dec 77	
6. PERFORMING ORG. REPORT NUMBER TR-76-74	7. AUTHOR(s) D. R. Schmitz J. N. Johnson R. K. Droeck	
8. CONTRACT OR GRANT NUMBER(s) DNA 001-76-C-0294	9. PERFORMING ORGANIZATION NAME AND ADDRESS Terra Tek, Inc. 420 Wakara Way Salt Lake City, UT 84108	
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Subtask Y99QAXSB049-03	11. CONTROLLING OFFICE NAME AND ADDRESS Director Defense Nuclear Agency Washington, D.C. 20305	
12. REPORT DATE 1 December 1977	13. NUMBER OF PAGES 62	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A	17. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited	
18. SUPPLEMENTARY NOTES This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B344076464 Y99QAXSB04903 H2590D.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Kayenta Sandstone Strain and Stress Paths Buried Explosions Finite Difference Solutions		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Theoretical and experimental results are presented which define the strain paths and stress paths experienced by geological material elements in the vicinity of buried explosions. The theoretical strain and stress paths are obtained by finite-difference solution of spherical and cylindrical explosions in an infinite inelastic medium. These calculations are used to define loading and unloading paths in static laboratory tests on Kayenta sandstone. The data presented here thus provide the necessary information for definition of material constitutive models which apply to these specific explosive geometries.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	<u>Page</u>
List of Illustrations.	1
List of Tables	4
Introduction	5
Stress Path Determination from Finite-Difference Solutions	6
Calculational Results	7
Static Experimental Simulation of Load-Unload Paths.	20
Test Results	23
Discussion and Conclusions	35
Appendix I	37
General Relationships and Finite-Difference Calculations.	37
Analytical Determination of Elastic Stress and Strain Paths for a Spherical Explosion	42
Appendix II.	47
Specimen Preparation.	47
Stress and Strain Determination	47
Testing Procedures.	48
Data Acquisition and Analysis	48

LIST OF ILLUSTRATIONS

<u>Figure Number</u>		<u>Page</u>
1a	Strain paths and stress paths at $R = 2R_0$ cylindrical wave propagation in Mixed Company sandstone	9
1b	Same as 1a, but with $R = 3R_0$	10
1c	Same as 1a, but with $R = 5R_0$	11
2a	Strain paths and stress paths at $R = 1.5R_0$ for spherical wave propagation in Mixed Company sandstone	12

LIST OF ILLUSTRATIONS (Cont)

<u>Figure Number</u>		<u>Page</u>
2b	Same as 2a, but with $R = 2R_0$. Note changes in vertical and horizontal scales	13
2c	Same as 2a, but with $R = 3R_0$. Note changes in vertical and horizontal scales	14
2d	Same as 2a, but with $R = 4R_0$. Note changes in vertical and horizontal scales	15
2e	Same as 2a, but with $R = 5R_0$. Note changes in vertical and horizontal scales	16
3	Strain paths and stress paths at various positions for cylindrical wave propagation in Mixed Company sandstone	17
4a	Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path I ($1/\alpha = 0.1$ msec)	21
4b	Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path II ($1/\alpha = 1.0$ msec)	21
4c	Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path III ($1/\alpha = 10$ msec)	22
5a	Strain path followed during uniaxial-strain loading and constant-axial and uniaxial-strain unloading	24
5b	Stress path followed during uniaxial-strain loading and constant-axial and uniaxial-strain unloading	24
6a	Strain path followed during uniaxial-strain loading and constant-axial-strain unloading	25
6b	Stress path followed during uniaxial-strain loading and constant-axial-strain unloading	25
7a	Strain path followed during uniaxial-strain loading and constant-volume-strain unloading	26
7b	Stress path followed during uniaxial-strain-loading and constant-volume-strain unloading	26
8	Comparison of strain and stress paths determined numerically and analytically for spherical wave propagation in an elastic medium	46
9	Pressure vessel schematic showing the sample and stress and strain transducers	49

LIST OF ILLUSTRATIONS (Cont)

<u>Figure Number</u>		<u>Page</u>
9a	Stress path followed during strain path III testing . . .	50
9b	Strain path followed during path I testing	51
9c	Stress path followed during strain path II testing . . .	52
9d	Strain path followed during path II testing	53
9e	Stress path followed during strain path I testing	54
9f	Strain path followed during path III testing	55

LIST OF TABLES

<u>Table Number</u>	<u>Description</u>	<u>Page</u>
Ia	1236 Test Results	27
Ib	1239 Test Results	28
IIa	1241 Test Results	29
IIb	1257 Test Results	30
IIc	1285 Test Results	31
IIIa	1269 Test Results	32
IIIb	1270 Test Results	33
IIIc	1284 Test Results	34

INTRODUCTION

Common testing procedures for the laboratory measurement of material properties for use in ground motion calculations have generally consisted of standard hydrostatic, uniaxial-strain and triaxial tests. It has recently been recognized that these paths are not necessarily the ones that are followed in actual field applications, i.e., conventional and nuclear explosions in the earth. Since difficulty is often experienced in developing accurate constitutive models that are valid for a wide range of loading conditions, it seems important to follow, as closely as possible, the stress paths (or strain paths) that are experienced by material elements in actual field conditions. Furthermore, since measurement techniques do not yet allow the field determination of these stress paths (or strain paths), one must rely on numerical calculations and an initial best estimation of the material constitutive properties. In this report we present the results of one-dimensional numerical finite-difference calculations for cylindrical and spherical wave propagation, which define the stress and strain paths followed by material elements at varying distances from cylindrical and spherical explosive sources in the earth. The purpose of these calculations is to define laboratory tests best suited for the definition of material constitutive behavior in the analysis of CIST (Cylindrical In Situ Tests) and other subsurface explosive events. On the basis of these calculational results, static laboratory tests are conducted which represent strain paths experienced by material elements in the vicinity of cylindrical and spherical explosions in an infinite medium. The material tested in the experimental program is Kayenta sandstone.

STRESS PATH DETERMINATION FROM FINITE-DIFFERENCE SOLUTIONS

The quantities which are obtained from the finite-difference solution are σ_i and ϵ_i as functions of time at various distances from the explosive source. For purposes of definite laboratory tests, it is useful to express the output of these calculations in terms of the load $L = \sigma_a - p_c$ and p_c in the triaxial test configuration. Here σ_a is the axial stress and p_c is the confining fluid pressure. It is also more convenient to deal with axial and transverse strain components (ϵ_a and ϵ_t) in the triaxial test rather than ϵ_i , defined in the finite-difference solution. In the case of spherical flow, one would simply make the identification that $L = \sigma_1 - \sigma_3$, $p_c = \sigma_3$, $\epsilon_a = \epsilon_1$, and $\epsilon_t = \epsilon_3$. For cylindrical flow the identification is slightly more complicated.

In general, let us assume that we have values of stress and strain invariants defined by

$$\tau(t) = [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]^{1/2} / \sqrt{6} , \quad (1)$$

$$p(t) = (\sigma_1 + \sigma_2 + \sigma_3)/3 , \quad (2)$$

$$\epsilon_v(t) = \epsilon_1 + \epsilon_2 + \epsilon_3 , \quad (3)$$

$$\epsilon_d(t) = [(\epsilon_1 - \epsilon_2)^2 + (\epsilon_2 - \epsilon_3)^2 + (\epsilon_3 - \epsilon_1)^2]^{1/2} / \sqrt{6} , \quad (4)$$

as functions of time at a fixed spatial position as provided by the finite-difference calculation. If the material constitutive behavior involves only first and second invariants of the stress and strain tensors, the quantities defined by Eqs. (1) - (4) can also be written in the following terms for the purpose of defining laboratory test paths:

$$\tau(t) = (\sigma_a - p_c)/\sqrt{3} , \quad (5)$$

$$p(t) = (\sigma_a + 2p_c)/3 , \quad (6)$$

$$\epsilon_v(t) = \epsilon_a + 2\epsilon_t , \quad (7)$$

$$\epsilon_d(t) = (\epsilon_a - \epsilon_t)/\sqrt{3} , \quad (8)$$

and hence laboratory stress and strain paths become in parametric form
(t as the parameter):

$$L = \sqrt{3} \tau(t) , \quad (9)$$

$$p_c = p(t) - \tau(t)/\sqrt{3} , \quad (10)$$

$$\epsilon_a = \epsilon_v(t)/3 + 2\epsilon_d(t)/\sqrt{3} , \quad (11)$$

$$\epsilon_t = \epsilon_v(t)/3 - \epsilon_d(t)/\sqrt{3} . \quad (12)$$

Calculational Results

Stress (and strain) paths for cylindrical and spherical wave propagation have been calculated with the use of elastic-plastic constitutive descriptions presented in the Appendix. The material parameters are chosen to be representative of Mixed Company (Kayenta) sandstone. In all cases a radial stress given by

$$\sigma_r = p_0 e^{-\alpha t} \quad (13)$$

is applied at the interior cavity surface of radius $R_0 = 1$ m. The peak radial stress, p_0 , is taken to be 10 kbar and the decay constant, $1/\alpha$, takes on values of 0.1 msec, 1.0 msec and 10 msec. All results are presented in

terms of ϵ_a vs. ϵ_t (axial strain vs. transverse strain) and L/μ vs. p_c/K (load/shear-modulus vs. confining-fluid-pressure/bulk-modulus), i.e., the quantities related directly to static triaxial laboratory tests.

Figures 1a, 1b and 1c show stress and strain paths at various distances from a cylindrical explosion. At the radial position $R = 2R_0$ the stress path intersects the failure surface during loading and remains in contact during unloading. The corresponding strain path initially approximates conditions of uniaxial strain, but exhibits considerable transverse strain during the latter stages of deformation. At $R = 3R_0$ it can be seen that the strain path is approximated by loading in uniaxial strain followed by unloading at constant axial strain, while at $R = 5R_0$ the axial strain is seen to decrease during unloading. Of course, at much greater distances from the explosive source plane-wave conditions are achieved, and the load-unload path remains on the $\epsilon_t = 0$ axis.

Figures 2a - 2e show similar behavior for spherical wave propagation. Figures 1 and 2 give an indication of how strain and stress paths depend on distance from the source. Another important consideration is that of pulse shape or pulse duration. This is controlled by the parameter α in Eq. (13). A number of calculations were performed for cylindrical geometry with $1/\alpha = 0.1$ msec, 1.0 msec and 10 msec. The peak radial stress p_0 remains the same in all calculations ($p_0 = 10$ kbar). The resulting stress and strain paths are shown in Figure 3 at radial positions $1.5R_0$, $2R_0$, $3R_0$, $4R_0$ and $5R_0$. One sees immediately that not only does the position have influence on stress and strain paths, but also that pulse duration has a significant effect. It will therefore be important to represent, as accurately as possible, the time history of the cavity stress due to the explosive source.

Figure 1a. Strain paths and stress paths at $R = 2R_0$ cylindrical wave propagation in Mixed Company sandstone. A radial stress given by $\sigma_r = p_0 \exp(-\alpha t)$, with $(1/\alpha) \approx 1 \text{ msec}$ and $p_0 = 10 \text{ kbar}$, is applied at $R_0 = 1 \text{ m}$.

Figure 1b. Same as 1a, but with $R = 3R_0$. Note changes in vertical and horizontal scales.

Figure 1c. Same as 1a, but with $R = 5R_0$. Note changes in vertical and horizontal scales.

Figure 2a. Strain paths and stress paths at $R = 1.5R_0$ for spherical wave propagation in Mixed Company sandstone. A radial stress given by $\sigma_r = p_0 \exp(-\alpha t)$, with $1/\alpha = 1 \text{ msec}$ and $p_0 = 10 \text{ kbar}$, is applied at $R_0 = 1 \text{ m}$.

Figure 2b. Same as 2a, but with $R = 2R_0$. Note changes in vertical and horizontal scales.

Figure 2c. Same as 2a, but with $R = 3R_0$. Note changes in vertical and horizontal scales.

Figure 2d. Same as 2a, but with $R = 4R_0$. Note changes in vertical and horizontal scales.

Figure 2e. Same as 2a, but with $R = 5R_0$. Note changes in vertical and horizontal scales.

Figure 3. Strain paths and stress paths at various positions for cylindrical wave propagation in Mixed Company sandstone. A radial stress given by $\sigma_r = p_0 \exp(-\alpha t)$, with $p_0 = 10 \text{ kbar}$ and various values of $1/\alpha$, is applied at $R = 1 \text{ m}$. Note changes in the vertical and horizontal scales in each graph.

Figure 3. Continued.

Figure 3. Continued.

STATIC EXPERIMENTAL SIMULATION OF LOAD-UNLOAD PATHS

Stress and strain paths were determined experimentally in the (L , p_c) and (ϵ_a , ϵ_t) planes using the results suggested by various one-dimensional finite-difference solutions given previously. A detailed discussion of experimental techniques used in these tests is presented in Appendix II. The stress and strain paths considered here correspond approximately to those given in Figure 3 for $R = 3R_0$ and three separate decay constants ($1/\alpha = 0.1$ msec, 1.0 msec and 10 msec). Figures 4a, 4b and 4c show the three characteristic strain paths generated from the numerical solution and the strain paths to be followed in the static laboratory tests. The percent strains indicated here are used only to indicate orders of magnitude and are not the actual values achieved during testing. No attempt was made to follow the numerically determined strain paths exactly; they were used simply to indicate the *qualitative* nature of load-unload paths in the vicinity of buried explosions. Figure 4a shows the calculated and experimental paths corresponding to a decay time of $1/\alpha = 0.1$ msec; this consists essentially of uniaxial-strain loading and constant-axial-strain unloading followed by uniaxial-strain unloading. Figure 4b shows the theoretical path corresponding to $1/\alpha = 10$ msec in comparison to the experimentally followed path. The experimental strain path to be used consists of a uniaxial-strain loading and a constant-axial-strain unloading. Finally Figure 4c shows the theoretical path for $1/\alpha = 10$ msec in comparison to the experimentally followed path. The experimental strain path to be used consists of uniaxial-strain loading and constant-volume-strain unloading. Kayenta sandstone from the Mixed Company site was the material tested in this investigation.

Figure 4a. Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path I ($1/\alpha = 0.1$ msec). The experimental path shows a uniaxial-strain loading followed by a constant-axial and uniaxial-strain unloading. The percent strains indicated here are used only to indicate orders of magnitude and are not the actual values achieved during testing.

Figure 4b. Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path II ($1/\alpha = 1.0$ msec). The experimental path shows a uniaxial-strain loading followed by a constant-axial-strain unloading. The percent strains indicated here are used to indicate orders of magnitude and are not the actual values achieved during testing.

Figure 4c. Comparison of the theoretical (calculated) strain path to the experimental strain path to be followed during testing of path III ($1/\alpha = 10$ msec). The experimental path shows a uniaxial-strain loading with a constant-volume-strain unloading. The percent strains indicated here are used only to indicate orders of magnitude and are not the actual values achieved during testing.

TEST RESULTS

The three strain paths, I, II and III, used in testing the Kayenta sandstone are shown in Figures 5a, 6a and 7a, respectively. Since all loading was conducted under uniaxial-strain conditions, a composite loading curve is shown for each path type. Individual unloading curves are shown for each test, departing from the composite loading curve at their respective maximum strains. The stress paths generated from the three strain paths are shown in Figures 5b, 6b and 7b. Composite loading curves are shown along with individual unloading curves. Included in each stress path figure is the triaxial failure envelope generated from this material. Tables I, II and III give computer listings for each test. Table Column 1 gives the data point while columns 2 through 8 give confining pressure (p_c) in kilobars, axial load ($\sigma_a - p_c$) in kilobars, axial strain (ϵ_a) in percent, the two transverse strains (ϵ_{t_1} and ϵ_{t_2}) in percent, volume strain ($\epsilon_a + \epsilon_{t_1} + \epsilon_{t_2}$) in percent and mean stress [$1/3(\sigma_a + 2p_c)$] in kilobars. All plots were constructed from these tables.

Figure 5a. Strain path followed during uniaxial-strain loading and constant-axial and uniaxial-strain unloading.

Figure 5b. Stress path followed during uniaxial-strain loading and constant-axial and uniaxial-strain unloading. The resulting stress path is a composite of four tests.

Figure 6a. Strain path followed during uniaxial-strain loading and constant-axial-strain unloading. The resulting stress path is a composite of four tests.

Figure 6b. Stress path followed during uniaxial-strain loading and constant-axial-strain unloading. The resulting stress path is a composite of four tests.

Figure 7a. Strain path followed during uniaxial-strain loading and constant-volume-strain unloading. The resulting stress path is a composite of three tests.

Figure 7b. Stress path followed during uniaxial-strain-loading and constant-volume-strain unloading. The resulting stress path is a composite of three tests.

TABLE Ia
1236 Test Results

N	CPRESS (kN)	LORD (kN)	ER (λ)	ET1 (λ)	ET2 (λ)	VOL STRAIN(λ)	MEAN STRESS(kN)
1	- 58974.3E-3	- 198966E-2	- 227923E-2	- 386529E-2	- 483623E-3	- 196581E-3	- 488590E-1
2	83154E-2	121686	181541	282242E-1	- 249537E-1	211286	12531
3	268948E-1	313389	385941E-1	- 399487E-1	-	397986	199942
4	318743E-1	477283	48612	648219	- 582424E-1	529813	387503
5	593919E-1	728734	532129	515367E-1	- 613672E-1	594191	367277
6	914661E-1	86485	684486	572954E-1	- 6757519	62734	395513
7	101246E-1	91214	633116	619889E-1	- 658088E-1	652086	419868
8	161246E-1	94968	656895	632093E-1	-	707375	473871
9	121955	1 85325	788724	654594E-1	- 667998E-1	532367	532367
10	144821	1 61624	761939	641193E-1	- 71111E-1	768794	
11	173231	1 27378	824888	618403E-1	- 738928E-1	813543	597826
12	134619	1 3286	861657	654593E-1	- 786878	858188	638886
13	213421	1 36294	896641	684671E-1	- 890862	667733	667733
14	235594	1 44655	938102	672353E-1	- 702087E-1	715593	
15	253075	1 48258	955794	7093073E-1	- 668714E-1	961671	751601
16	28486	1 6682	1 051519	670894E-1	- 780389E-1	1 02213	817613
17	301501	1 6397	1 05002	674118E-1	- 949661E-1	1 04792	859666
18	33	1 75746	1 10718	706496E-1	- 639277E-1	1 10772	913836
19	35	1 8078	1 8078	681285E-1	- 708014E-1	1 15054	967708
20	364095	1 86159	1 9816	7022766E-1	- 713021E-1	1 19712	1 01466
21	159195	1 93396	1 23929	664379E-1	- 716842E-1	1 23398	1 06459
22	415912	1 99816	1 27285	691169E-1	- 789275E-1	1 27116	1 19892
23	432216	1 99816	1 28288	715924E-1	- 686835E-1	1 30195	1 14468
24	468417	2 0254	1 38434	719777E-1	- 694777E-1	1 32962	1 17636
25	48374	2 0771	1 47977	720712E-1	- 694777E-1	1 35562	1 21018
26	50836	2 1215	1 5756	686472E-1	- 705948E-1	1 35562	
27	40956	2 10598	2 11445	681285E-1	- 968951E-1	1 30516	1 16967
28	45525	2 11445	2 45639	620967	- 106806	324676	1 16006
29	443272	2 18519	2 4379	145334E-1	- 122558	- 350980	1 14451
30	434559	2 8681	2 39562	183141E-1	- 13253	- 254591	1 14126
31	424761	2 0254	2 30715	250156E-1	- 161672	- 41688	1 09944
32	42642	2 0254	2 36259	428124E-1	-	- 453154	1 02261
33	41	2 014	2 37139	705626E-1	- 286785	- 514194	1 05271
34	415565	2 014	2 37139	705626E-1	-	-	
35	4065	2 011	2 37429	934331E-1	- 247014	- 568692	1 03331
36	348554	1 99372	2 37951	112404	- 247014	568692	1 03331
37	339522	1 87775	2 37585	121736	- 340219	- 781584	58477
38	3391	1 8627	2 3327	4391	- 352427	- 822395	938646
39	329651	1 7505	2 48675	195652E-1	- 929332E-1	- 552252	881149
40	315491	1 6344	2 5016	1 77127E-1	- 913368E-1	- 674139	566964
41	257075	1 55554	3 17486	1 75114E-1	- 988614E-1	- 481384	776251
42	24945	1 49645	3 49849	899382E-1	- 455223	- 748259	418568
43	223815	1 3761	4 83121	1 52192E-1	- 875477E-1	- 585597	68251
44	13674	1 24882	4 62275	1 98941E-1	- 975809E-1	- 575312	611065
45	136875	1 16875	5 6193	2 16118E-1	-	- 616139	568722
46	136601	1 05114	5 61114	2 80375E-1	- 913368E-1	- 674139	
47	139571	0 98958	6 65256	2 05361E-1	- 988614E-1	- 481384	
48	124726	881336	6 55256	-	-	- 764484	
49	118175	808986	6 96613	- 217116E-1	- 890141	- 887556	379537
50	94375E-1	702826	7 52216	- 193822E-1	- 865766E-1	- 852449	328513
51	624581E-1	661827	7 85669	- 249326E-1	- 914877E-1	- 902251	3028
52	638279E-1	554337	8 8975	- 277895E-1	- 94351E-1	- 967858	256687
53	519694E-1	438888	9 16121	- 261278E-1	- 852149E-1	- 1 02492	284662
54	415755E-1	350952	9 99999	- 1 089116E-2	- 583878E-1	- 1 05489	1 98559
55	2212736E-1	221945	1 18572	- 032223	- 672508E-1	- 1 28468	961552E-1

* Axial strain rezeroed for constant-axial-strain unloading.
** Lateral strains rezeroed for uniaxial-strain unloading.

TABLE Ib
1239 Test Results
Path Type I

N	CPRESS (kPa)	LOAD (kN)	EA (<2>)	EA (<2>)	ET1 (<2>)	ET1 (<2>)	ET2 (<2>)	VOL. STRAIN(<2>)	MEAN STRESS(<2>)
0	- 56499E-3	- 266982E-2	- 2270983E-2	- 384968E-2	- 48149E-3	- 194997E-3	- 194997E-3	- 194997E-3	- 194997E-3
1	194157E-1	871552E-1	156155	259398E-1	- 259398E-1	- 155626	- 155626	- 48534E-1	- 48534E-1
2	365577E-1	293892	386155	25185E-1	- 25185E-1	- 25185E-1	- 25185E-1	- 34622	- 34622
3	546868E-1	473283	415955	630774	- 28519E-1	- 28519E-1	- 28519E-1	- 417986	- 417986
4	676159E-1	579115	472596	385855E-1	- 270849E-1	- 270849E-1	- 270849E-1	- 477195	- 477195
5	827807E-1	731595	54687	266499E-1	- 272188E-1	- 548186	- 548186	- 311236	- 311236
6	115801	827876	622928	282453E-1	- 284208E-1	- 628751	- 628751	- 408721	- 408721
7	146231	163557	712471	225235E-1	- 236420E-1	- 704567	- 704567	- 469355	- 469355
8	16734	18989	747585	261122E-1	- 265365E-1	- 748267	- 748267	- 527637	- 527637
9	1985	19884	811643	244899E-1	- 248195E-1	- 813397	- 813397	- 594197	- 594197
10	214266	23763	844662	227559E-1	- 231705E-1	- 844247	- 844247	- 626888	- 626888
11	24963	24656	893465	236873E-1	- 244658E-1	- 897282	- 897282	- 685752	- 685752
12	270061	142114	501811	242418E-1	- 225589E-1	- 953429	- 953429	- 755107	- 755107
13	362797	152818	1 01615	20592E-1	- 227708E-1	- 815189	- 815189	- 815189	- 815189
14	41	332227	1 07686	172615E-1	- 252248E-1	- 1 06792	- 1 06792	- 827961	- 827961
15	358497	1 68145	1 1132	212888E-1	- 241623E-1	- 1 11029	- 1 11029	- 916979	- 916979
16	392168	1 75475	1 15822	218289E-1	- 216898E-1	- 978885	- 978885	- 978885	- 978885
17	425512	1 85241	1 22391	203977E-1	- 251594E-1	- 1 21985	- 1 21985	- 1 046	- 1 046
18	46	20	1 25948	624394	- 233859E-1	- 1 26051	- 1 26051	- 1 09314	- 1 09314
19	49111	1 57146	1 3112	203089E-1	- 231568E-1	- 1 51125	- 1 51125	- 1 49446	- 1 49446
20	568986	1 95983	- 241472	024179	- 284398E-1	- 2476682	- 2476682	- 1 15512	- 1 15512
21	491632	491632	1863616	1863616	- 023842	- 259486	- 259486	- 1 49666	- 1 49666
22	481926	1 94234	- 248887	170467E-1	- 426934E-1	- 7679587	- 7679587	- 1 12977	- 1 12977
23	457656	457656	- 244854	18922E-2	- 512623E-2	- 1 45612	- 1 45612	- 1 084	- 1 084
24	435322	1 95232	- 247528	1 20732E-1	- 677799E-1	- 2 2117	- 2 2117	- 1 09694	- 1 09694
25	435334	1 95232	- 247528	1 20732E-1	- 677799E-1	- 2 2117	- 2 2117	- 1 09694	- 1 09694
26	446664	1 94034	- 248151	271652E-1	- 896392E-1	- 1 45866	- 1 45866	- 1 06144	- 1 06144
27	394775	1 87085	- 246776	561056E-1	- 109498E-1	- 412101	- 412101	- 1 01609	- 1 01609
28	268618	1 75262	303177	545585E-1	- 106634	- 45601	- 45601	- 95276	- 95276
29	22554	1 6171	372007	531156E-1	- 102597	- 532954	- 532954	- 62256	- 62256
30	1 515	49111	- 46175	561189E-1	- 10981	- 566783	- 566783	- 62256	- 62256
31	434946	434946	- 527298	557298E-1	- 10817	- 614229	- 614229	- 61118	- 61118
32	434946	434946	- 495117	541118E-1	- 10734	- 660871	- 660871	- 61118	- 61118
33	434946	434946	- 495117	541118E-1	- 10734	- 660871	- 660871	- 61118	- 61118
34	231988	231988	- 523568	523568E-1	- 11267	- 722583	- 722583	- 65439	- 65439
35	231988	231988	- 523568	523568E-1	- 11267	- 722583	- 722583	- 65439	- 65439
36	1 0661	1 0661	- 624699	547296E-1	- 11037	- 728924	- 728924	- 557216	- 557216
37	1 0661	1 0661	- 624699	547296E-1	- 11037	- 728924	- 728924	- 557216	- 557216
38	93921	93921	691578	544276E-1	- 1105	- 68547	- 68547	- 499971	- 499971
39	8179	8179	- 732794	535685E-1	- 1127	- 51864	- 51864	- 416864	- 416864
40	8179	8179	- 811942	520461E-1	- 11141	- 56815	- 56815	- 36117	- 36117
41	66018	66018	- 50572	527298E-1	- 102754	- 6 0112	- 6 0112	- 51659	- 51659
42	596339E-1	499782	- 1 01419	584227E-1	- 114039	- 1 17692	- 1 17692	- 19328	- 19328
43	499117E-1	486624	- 1 0971	505246E-1	- 112486	- 1 25488	- 1 25488	- 136126	- 136126
44	4510468E-1	4510468E-1	- 1 3878	5830357E-1	- 820595E-1	- 1 54786	- 1 54786	- 226332E-1	- 226332E-1

* Axial strains rezeroed for constant-axial-strain unloading.

TABLE IIIa
1241 Test Results
Path Type II

N	PRESS. (kG)	LORD (kN)	ER (x)	E11 (x)	E12 (x)	VOL STRAIN (x)	MEAN STRESS (kN)
1	0	204628E-2	-115831E-1	-44221E-2	172744E-2	-14295E-2	682267E-4
2	685171E-2	159529E-1	5.16E2	-54451E-2	-29466E-1	497523	202194E-1
3	1.7229E-1	1.7222	6.121E6	-5.94E5	-28161E-1	582801	74985E-1
4	3.2765E-1	3.1591	6.118E5	-7.8254E-3	-3.114E9E-1	1427233	1427233
5	5.9575E-1	5.4498	7.614E9	-6.651E3	-3.117E9E-1	675358	236649
6	8.3891E-1	7.11235	7.614E9	-2.0855E-2	-3.25259E-1	744696	328568
7	1.4957E-0	8.2524	8.61791E-1	-8.651E-2	-3.843E-1	77828	387889
8	1.18E-0	9.41752	8.34885	-5.911E-2	-8.861E-1	885742	442216
9	1.70225	1.17752	8.92617	-3.8692E-2	-1.79168E-1	849851	524733
10	1.957725	1.17752	9.154E4	-1.9581E-2	-4.7501E-1	86965	568365
11	2.2677	1.26715	9.66E8	-1.9419E-2	-4.9563E-1	916142	649122
12	2.612296	1.36052	1.61236	-1.7138E-2	-4.9891E-1	981819	726531
13	3.0819	1.47534	1.65129	-8.9394E-2	-0.94255	1.66816	565814
14	3.64296	1.5461	1.5944	-4.96E-2	-1.4428E-1	1.67117	465161
15	4.2644	1.6646	1.5942	-8.5958E-2	-4.2E-4	1.65748	465161
16	4.81549	1.76111	1.6135	-8.1904E-2	-5.0854E-1	1.65499	465161
17	5.382846	1.81294	1.6844	-8.44E-2	-4.8550E-1	1.1651	1.05641
18	5.95774	1.9144	1.42501	-8.51E-2	-4.9174E-1	1.12575	1.12575
19	6.542175	0.01621	1.88375	-1.2480E-2	-0.9445	1.2145	1.2145
20	7.12644	4.88194	1.11E4	-4.033E-2	-4.75	1.1116	1.1116
21	7.71084	1.15614	1.5624	-1.7075E-2	-4.5554E-1	1.0311	1.0311
22	8.30528	0.68456	1.7634	-1.7634	-7.252E-2	1.29316	1.29316
23	8.89964	1.0944	5.47405	-5.94E-2	-4.0867E-1	1.45859	1.45859
24	9.50404	2.11125	1.41163	-1.0141E-1	-5.08560E-1	1.47544	1.47544
25	1.01937	1.95075	1.36825	-1.4410E-1	-1.48380	1.4828	1.4828
26	1.08475	1.0315	1.4722	-1.8781E-1	-4.7209E-1	1.51068	1.51068
27	1.15014	1.2644	1.45205	-4.2591E-1	-3.2750E-1	1.5254	1.5254
28	1.21551	0.86501	1.4712	-7.9250E-1	-4.8785E-1	1.56162	1.56162
29	1.28089	4.11831	1.48575	-1.1145E-1	-4.1148E-1	1.60412	1.60412
30	1.34626	4.0305	1.48575	-4.2596E-1	-4.2596E-1	1.64134	1.64134
31	1.41164	4.48468	1.47754	-6.6011E-2	-6.6011E-2	1.68201	1.68201
32	1.47703	4.43173	1.48175E-1	-1.8121E-1	-7.79585E-1	1.74457	1.74457
33	1.54142	4.43173	1.54431E-2	-5.51419E-1	-5.51419E-1	1.792904	1.792904
34	1.60580	2.41119	1.6162E-1	-4.8563E-1	-4.8563E-1	1.8110	1.82613
35	1.67117	2.48776	1.58255E-2	-7.9155E-1	-1.0854E-1	1.85579	1.5990
36	1.73642	2.74802	1.60206E-2	-1.02016	-1.35724	2.28938	1.56317
37	1.79141	2.61751	1.71381E-2	-1.17774	-1.76124	2.97161	1.5292
38	1.84631	2.61751	1.71381E-2	-1.17774	-1.76124	4.24448	1.4978

* Axial strain rezeroed for constant-axial-strain unloading.

** Sample failed due to jacket leak.

TABLE IIb
1257 Test Results
Path Type II

N	CPRESS (kB)	LOAD (kB)	EA (%)	ET1 (%)	ET2 (%)	VOL STRAIN(%)	MEAN STRESS(kB)
0	-1.9868E-1	9819.5	-869849E-2	-631125E-2	-624866E-2	-219496E-1	-495981E-5
1	363063E-1	1354	-158112E-1	-1161152	-432251E-1	-419853	
2	723239E-1	29826	-612948	-738807E-2	-276431		
3	492288E-1	44911	-838544E-2	-823744E-2	-432393	232386	
4	201129	793277	-869725	-149653E-1	-775318	567752	
5	387284	984475	-572949E-2	-91224	-965814	778144	
6	1.1	1.38882	-794519E-2	-194198E-1	-1.27232	1.12131	
7	497313	1.3881	-331581E-2	-169373E-1	-1.33296	1.19825	
8	546396E	1.9489	-514466E-2	-188998E-1	-1.39322	1.26228	
9	579969	1.4176	-389635E-2	-821617	-1.53763	1.43558	
10	686933	2.66515	-1.56554	-172212E-2	-1.5884	1.5835	
11	729594	2.33251	-1.61083	-2611109E-2	-1.6365	1.56771	
12	-6.16189	2.40457	-1.66411	-247498E-1	-1.6786	1.61182	
13	728951	2.46716	-1.70425	-189321E-2	-248208E-1	-1.73735	1.66329
14	827536	2.56945	-2.05592	-1211275E-2	-33032E-1	-1.76427	
15	885195	2.62541	-1.84435	-632482E-2	-261527E-1	-1.81836	1.76427
16	908459	2.6121	-1.87655	-1.78195E-2	-269812E-1	-1.84725	1.80882
17	924249	2.71291	-1.90657	-211972E-2	-273343E-1	-1.8765	1.82229
18	946599	2.73375	-1.92109	-494977E-3	-923347	-1.90679	1.82215
19	975339	2.74789	-1.96086	-610578E-2	-274108E-1	-1.94322	1.8915
20	1.02118	2.85786	-2.042	-256034E-2	-262755E-1	-2.0178	1.9774
21	1.04857	2.90255	-2.09426	-1.08712E-2	-252145E-1	-2.06865	2.01449
22	1.09657	2.97722	-2.15461	-251423E-2	-222904E-1	-2.13441	2.07564
23	1.16818	2.99442	-2.31123	-3.58486E-2	-266868E-1	-2.2806	2.1983
24	1.20678	1.13995	-2.49715	-2.05713E-2	-248668E-1	-2.38058	2.24876
25	1.24577	1.1545	-2.56936	-3.08668E-2	-233135E-1	-2.48217	2.28752
26	1.28554	1.1795	-2.63972	-2.79194E-2	-2206135E-1	-2.59956	2.33241
27	1.32536	1.19229	-2.81988	-721278E-2	-181939E-1	-2.81274	2.37811
28	1.35469	2.1948	-3.04567	-113814E-1	-183468E-1	-3.01584	2.42431
29	1.39817	2.15049	-3.2567	-779904	-1.09832E-1	-3.17897	2.70535
30	1.47864	2.18046	-4.18966	-1.79866	-878956E-2	-4.07189	2.84366
31	1.49552	2.19562	-4.48361	-2.31071E-1	-285185E-2	-4.45118	3.11772
32	1.51447	2.19459	-4.8432	-2.98497E-1	-322872E-1	-4.81241	3.39734
33	1.52521	2.19457	-5.3015	-2.64157E-1	-257692E-2	-5.09343	3.54407
34	1.53136	2.79122	-5.11999	-2.76443E-1	-291423E-1	-5.15229	3.58073
35	2.0148	2.7917	-3.35449	-509456E-1	-977841E-1	-5.42817	3.62239
36	2.1114	2.7524	-2.28119	-116933	-1.10168E-1	-1.1275	3.68886
37	2.02616	2.11192	-1.15384	-156404	-1.41204	-1.61275	3.92827
38	2.12247	2.5647	-2.91567	-2.54155	-2.48676	-2.784345	
39	2.46612	2.28441	-2.79394	-487839	-392585	-1.97589	
40	2.98915	2.5563	-2.44695	-615422	-722266	-1.84192	1.87513
41	2.2616	2.13215	-2.14	-1.38836	-1.12775	-2.78618	1.45533
42	4.19111	1.8114	-1.1539	-11.1778	-1.194421	-4.75356	

* Axial strain rezeroed for constant-axial-strain unloading.

TABLE IIIC*

1285 Test Results

Path Type II

<i>n</i>	CFRAC. (18)	LIGHT. (16)	E11 (11)	E11 (11)	E11 (11)	E11 (11)	VUL. STRAIN (%)	MEAN STRESS (MB)
0	-34.825E-3	-34.825E-3	-34.825E-3	-60.323	-268.726E-2	-98.065E-2	-12794E-3	
1	142881E-2	232386E-1	49375E-1	611598E-2	-858556E-2	423979E-1	92196E-2	
2	192893E-1	275378	35834	-117336E-1	-482412E-2	551877	111862	
3	572216E-1	627534	506816	-118382E-1	1.7635E-2	576262	261875	
4	743595E-1	780115	681141	-157866E-1	-267322E-2	668865	233337	
5	101144E-1	891538	770669	-1213897E-1	-916211E-2	756698	296698	
6	122878	986647	847272	-162334E-1	-651835E-2	834893	45176	
7	161599	136675	94892	-789414E-2	-932925	531817		
8	185671	116039	1.01532	-120042E-2	-98942	581727		
9	185671	2750739	1.12342	-421043E-2	-683024			
10	19.15	1.5632	1.25577	-1.16319E-1	1.1156			
11	403.54	1.78876	1.50811	-1.1515E-1	1.26357	81856		
12	449.62	1.9678	1.61817	-1.15215E-1	1.48144	1.98554		
13	477.927	1.96145	1.61124	-1.68411E-1	1.58468	1.68522		
14	547.949	2.1047	1.78364	-1.24684E-1	-784199E-2	1.6336	1.13175	
15	616817	2.25016	1.96768	-1.92315E-1	-1.75595	1.24953		
16	616817	6.7011	6.607	-1.95538E-1	1.98575	1.36887		
17	616817	6.4360	6.97384	-1.660773E-1	1.59114E-2	1.46647		
18	616817	5.2382	5.2117	-1.1529E-1	-591604E-2	2.61751	1.5122	
19	616817	4.46141	4.24679	-2.27172E-1	-548758E-2	2.18759	1.62288	
20	616817	3.680148	3.62639	-1.96321E-1	-97.153E-2	2.59194	1.72044	
21	616817	2.44441	2.46722	-1.91488E-1	-2.54357	1.77139		
22	616817	2.44441	2.306479	-6296E-2	-1.44838	1.84475		
23	616817	2.44441	2.319	-1.2149E-1	-2.52117	1.58594		
24	616817	2.44441	2.306479	-2.565E-2	-2.66527	1.94405		
25	616817	2.44441	2.319	-2.535E-2	-2.66527	1.58136		
26	616817	2.44441	2.319	-2.1649E-1	-2.78794			
27	616817	2.44441	2.319	-1.47607E-1	-1.41657E-2	2.863		
28	616817	2.44441	2.319	-2.98661E-1	-1.65397E-2	3.10951		
29	616817	2.44441	2.319	-1.15151E-1	-1.51683E-4	3.68934	2.17172	
30	616817	2.44441	2.319	-1.93897E-1	-4.1142E-2	3.84476	2.27448	
31	616817	2.44441	2.319	-2.14228E-1	-5.56429E-2	4.25879	2.67.159	
32	616817	2.44441	2.319	-2.22716E-1	-8.68947E-2	4.34753	2.41567	
33	616817	2.44441	2.319	-2.09755E-1	-1.12942E-1	4.96055	2.63127	
34	616817	2.44441	2.319	-2.11394E-1	-1.22006E-1	5.28143	2.77985	
35	616817	2.44441	2.319	-1.76119E-1	-1.33484E-1	5.8145	2.92953	
36	616817	2.44441	2.319	-1.81019E-1	-1.25531E-1	6.65427	2.62658	
37	616817	2.44441	2.319	-1.91784	-1.25871E-1	6.44866	1.894	
38	616817	2.44441	2.319	-1.94942E-1	-1.25871E-2	6.62939	2.31752	
39	616817	2.44441	2.319	-1.96284E-1	-6.21444E-2	6.98874	3.43483	

* Showing only the uniaxial-strain loading.

TABLE IIIa
1269 Test Results
Path Type III

N	OPF	LW(L)	EW(E)	EW(L)	EW(E)	VUL STRAIN(X)	MEAN STRESS(KB)
0	2276.26E-2	-	1.273.28E-2	-	8.201.4E-2	-	75877.2E-4
1	125846	-	23.7922	-	12987.5E-2	-	44712.7E-1
2	2213.31E-2	174692	285465	22987.5E-1	5859.31E-2	31.5915	664446
3	2761.22E-1	11689	405245	21684.6E-2	418729E-2	4.31344	119438
4	5.0052	554722	650527	257023E-1	7595.5E-2	587887	284308
5	67.5071E-1	67.5071	660527	2564.79E-1	15195E-1	679462	269365
6	77.7189E-1	77.7189	77.725	269.58E-1	1283.31E-1	775524	321447
7	79.6428E-1	79.6428	80225	2554.63E-1	256931E-1	85.575	266414
8	96.6258E-1	96.6258	96.6258	2564.88E-1	3665.66E-1	941.092	416131
9	114.638	114.638	114.638	11.9889E-1	98.234E-2	476533	983851
10	144.5	144.5	144.5	1.48975	1.92085E-1	1.03206	601.16
11	1.7254	1.7254	1.7254	1.15075	1.471.21E-1	1.244.68E-1	1.267.74
12	1.995	1.995	1.995	1.449.4	1.471.78E-1	1.2871.9E-1	1.5114
13	2.2946	2.2946	2.2946	1.419.7	1.454.98E-1	1.145.59E-1	7120.1
14	2.6636E	2.6636E	2.6636E	1.51.45	1.644.78E-1	1.416.54E-1	1.46522
15	3.0169	3.0169	3.0169	1.58.6	1.861.26E-1	1.74.94E-1	1.82894
16	3.3174	3.3174	3.3174	1.60.54	1.916.61	1.914.4	1.72049
17	3.6193	3.6193	3.6193	1.61.5	1.961.71	1.901.88E-1	1.80188
18	3.9193	3.9193	3.9193	1.61.5	1.961.71	1.901.88E-1	1.80188
19	4.1184	4.1184	4.1184	1.61.5	1.961.71	1.901.88E-1	1.80188
20	4.2986	4.2986	4.2986	1.61.5	1.961.71	1.901.88E-1	1.80188
21	4.4151	4.4151	4.4151	1.61.5	1.961.71	1.901.88E-1	1.80188
22	4.5151	4.5151	4.5151	1.61.5	1.961.71	1.901.88E-1	1.80188
23	4.6187	4.6187	4.6187	1.61.5	1.961.71	1.901.88E-1	1.80188
24	4.7114	4.7114	4.7114	1.61.5	1.961.71	1.901.88E-1	1.80188
25	4.8041	4.8041	4.8041	1.61.5	1.961.71	1.901.88E-1	1.80188
26	4.8968	4.8968	4.8968	1.61.5	1.961.71	1.901.88E-1	1.80188
27	4.9895	4.9895	4.9895	1.61.5	1.961.71	1.901.88E-1	1.80188
28	5.0812	5.0812	5.0812	1.61.5	1.961.71	1.901.88E-1	1.80188
29	5.1739	5.1739	5.1739	1.61.5	1.961.71	1.901.88E-1	1.80188
30	5.2656	5.2656	5.2656	1.61.5	1.961.71	1.901.88E-1	1.80188
31	5.3583	5.3583	5.3583	1.61.5	1.961.71	1.901.88E-1	1.80188
32	5.451	5.451	5.451	1.61.5	1.961.71	1.901.88E-1	1.80188
33	5.5437	5.5437	5.5437	1.61.5	1.961.71	1.901.88E-1	1.80188
34	5.6364	5.6364	5.6364	1.61.5	1.961.71	1.901.88E-1	1.80188
35	5.7291	5.7291	5.7291	1.61.5	1.961.71	1.901.88E-1	1.80188
36	5.8218	5.8218	5.8218	1.61.5	1.961.71	1.901.88E-1	1.80188
37	5.9145	5.9145	5.9145	1.61.5	1.961.71	1.901.88E-1	1.80188
38	6.0072	6.0072	6.0072	1.61.5	1.961.71	1.901.88E-1	1.80188
39	6.0999	6.0999	6.0999	1.61.5	1.961.71	1.901.88E-1	1.80188
40	6.1926	6.1926	6.1926	1.61.5	1.961.71	1.901.88E-1	1.80188
41	6.2853	6.2853	6.2853	1.61.5	1.961.71	1.901.88E-1	1.80188
42	6.378	6.378	6.378	1.61.5	1.961.71	1.901.88E-1	1.80188
43	6.4717	6.4717	6.4717	1.61.5	1.961.71	1.901.88E-1	1.80188
44	6.5644	6.5644	6.5644	1.61.5	1.961.71	1.901.88E-1	1.80188
45	6.6571	6.6571	6.6571	1.61.5	1.961.71	1.901.88E-1	1.80188
46	6.75	6.75	6.75	1.61.5	1.961.71	1.901.88E-1	1.80188
47	6.8427	6.8427	6.8427	1.61.5	1.961.71	1.901.88E-1	1.80188
48	6.9354	6.9354	6.9354	1.61.5	1.961.71	1.901.88E-1	1.80188
49	7.0281	7.0281	7.0281	1.61.5	1.961.71	1.901.88E-1	1.80188
50	7.1208	7.1208	7.1208	1.61.5	1.961.71	1.901.88E-1	1.80188
51	7.2135	7.2135	7.2135	1.61.5	1.961.71	1.901.88E-1	1.80188
52	7.3062	7.3062	7.3062	1.61.5	1.961.71	1.901.88E-1	1.80188
53	7.3989	7.3989	7.3989	1.61.5	1.961.71	1.901.88E-1	1.80188
54	7.4916	7.4916	7.4916	1.61.5	1.961.71	1.901.88E-1	1.80188
55	7.5843	7.5843	7.5843	1.61.5	1.961.71	1.901.88E-1	1.80188
56	7.677	7.677	7.677	1.61.5	1.961.71	1.901.88E-1	1.80188
57	7.7704	7.7704	7.7704	1.61.5	1.961.71	1.901.88E-1	1.80188
58	7.8631	7.8631	7.8631	1.61.5	1.961.71	1.901.88E-1	1.80188
59	7.9558	7.9558	7.9558	1.61.5	1.961.71	1.901.88E-1	1.80188
60	8.0485	8.0485	8.0485	1.61.5	1.961.71	1.901.88E-1	1.80188
61	8.1412	8.1412	8.1412	1.61.5	1.961.71	1.901.88E-1	1.80188
62	8.2339	8.2339	8.2339	1.61.5	1.961.71	1.901.88E-1	1.80188
63	8.3266	8.3266	8.3266	1.61.5	1.961.71	1.901.88E-1	1.80188
64	8.4193	8.4193	8.4193	1.61.5	1.961.71	1.901.88E-1	1.80188
65	8.512	8.512	8.512	1.61.5	1.961.71	1.901.88E-1	1.80188
66	8.6047	8.6047	8.6047	1.61.5	1.961.71	1.901.88E-1	1.80188
67	8.6974	8.6974	8.6974	1.61.5	1.961.71	1.901.88E-1	1.80188
68	8.7901	8.7901	8.7901	1.61.5	1.961.71	1.901.88E-1	1.80188
69	8.8828	8.8828	8.8828	1.61.5	1.961.71	1.901.88E-1	1.80188
70	8.9755	8.9755	8.9755	1.61.5	1.961.71	1.901.88E-1	1.80188
71	9.0682	9.0682	9.0682	1.61.5	1.961.71	1.901.88E-1	1.80188
72	9.1609	9.1609	9.1609	1.61.5	1.961.71	1.901.88E-1	1.80188
73	9.2536	9.2536	9.2536	1.61.5	1.961.71	1.901.88E-1	1.80188
74	9.3463	9.3463	9.3463	1.61.5	1.961.71	1.901.88E-1	1.80188
75	9.439	9.439	9.439	1.61.5	1.961.71	1.901.88E-1	1.80188
76	9.5316	9.5316	9.5316	1.61.5	1.961.71	1.901.88E-1	1.80188
77	9.6243	9.6243	9.6243	1.61.5	1.961.71	1.901.88E-1	1.80188
78	9.717	9.717	9.717	1.61.5	1.961.71	1.901.88E-1	1.80188
79	9.8104	9.8104	9.8104	1.61.5	1.961.71	1.901.88E-1	1.80188
80	9.8931	9.8931	9.8931	1.61.5	1.961.71	1.901.88E-1	1.80188
81	9.9858	9.9858	9.9858	1.61.5	1.961.71	1.901.88E-1	1.80188
82	1.0815	1.0815	1.0815	1.61.5	1.961.71	1.901.88E-1	1.80188
83	1.1732	1.1732	1.1732	1.61.5	1.961.71	1.901.88E-1	1.80188
84	1.265	1.265	1.265	1.61.5	1.961.71	1.901.88E-1	1.80188
85	1.3577	1.3577	1.3577	1.61.5	1.961.71	1.901.88E-1	1.80188
86	1.4504	1.4504	1.4504	1.61.5	1.961.71	1.901.88E-1	1.80188
87	1.5431	1.5431	1.5431	1.61.5	1.961.71	1.901.88E-1	1.80188
88	1.6358	1.6358	1.6358	1.61.5	1.961.71	1.901.88E-1	1.80188
89	1.7285	1.7285	1.7285	1.61.5	1.961.71	1.901.88E-1	1.80188
90	1.8212	1.8212	1.8212	1.61.5	1.961.71	1.901.88E-1	1.80188
91	1.9139	1.9139	1.9139	1.61.5	1.961.71	1.901.88E-1	1.80188
92	2.0066	2.0066	2.0066	1.61.5	1.961.71	1.901.88E-1	1.80188
93	2.0993	2.0993	2.0993	1.61.5	1.961.71	1.901.88E-1	1.80188
94	2.192	2.192	2.192	1.61.5	1.961.71	1.901.88E-1	1.80188
95	2.2847	2.2847	2.2847	1.61.5	1.961.71	1.901.88E-1	1.80188
96	2.3774	2.3774	2.3774	1.61.5	1.961.71	1.901.88E-1	1.80188
97	2.4701	2.4701	2.4701	1.61.5	1.961.71	1.901.88E-1	1.80188
98	2.5628	2.5628	2.5628	1.61.5	1.961.71	1.901.88E-1	1.80188
99	2.6555	2.6555	2.6555	1.61.5	1.961.71	1.901.88E-1	1.80188
100	2.7482	2.7482	2.7482	1.61.5	1.961.71	1.901.88E-1	1.80188
101	2.8409	2.8409	2.8409	1.61.5	1.961.71	1.901.88E-1	1.80188
102	2.9336	2.9336	2.9336	1.61.5	1.961.71	1.901.88E-1	1.80188
103	3.0263	3.0263	3.0263	1.61.5	1.961.71	1.901.88E-1	1.80188
104	3.119	3.119	3.119	1.61.5	1.961.71	1.901.88E-1	1.80188
105	3.2116	3.2116	3.2116	1.61.5	1.961.71	1.901.88E-1	1.80188
106	3.3043	3.3043	3.3043	1.61.5	1.961.71	1.901.88E-1	1.80188
107	3.397	3.397	3.397	1.61.5	1.961.71	1.901.88E-1	1.80188
108	3.4904	3.4904	3.4904	1.61.5	1.961.71	1.901.88E-1	1.80188
109	3.5831	3.5831	3.5831	1.61.5	1.961.71	1.901.88E-1	1.80188
110	3.6758	3.6758	3.6758	1.61.5	1.961.71	1.901.88E-1	1.80188
111	3.7685	3.7685	3.7685	1.61.5	1.961.71	1.901.88E-1	1.80188
112	3.8612	3.8612	3.8612	1.61.5	1.		

TABLE IIIb
1270 Test Results
Path Type III

<i>n</i>	STRESS (MPA)	LONG. STRAIN	ER	ET1 (%)	ET1 (%)	ET2 (%)	VOL STRAIN(%)	MEAN STRESS(MPa)
1	-1.341E-2	-1.341E-2	-1.341E-2	-8.2014E-2	2.9561E-2	8.14684E-4	-7.5677E-4	
2	-1.1109E-2	-1.1109E-2	-1.1109E-2	2.13905	2.8115E-2	2.13905	-7.14088E-2	
3	-8.66101E-3	-8.66101E-3	-8.66101E-3	2.20532E-2	2.6551E-2	2.20532E-2	-2.94677E-1	
4	-6.1751E-3	-6.1751E-3	-6.1751E-3	4.63953E-2	2.6551E-2	3.29744E-2	-9.48642E-1	
5	-3.7468E-3	-3.7468E-3	-3.7468E-3	5.8371E-2	2.28169E-2	3.59723E-2	-1.62156E	
6	-2.5198E-3	-2.5198E-3	-2.5198E-3	8.11962E-2	2.41429E-2	4.962694	-2.6232	
7	-1.4085E-3	-1.4085E-3	-1.4085E-3	1.47754E-1	1.89125E-1	6.66175E-1	-4.094464	
8	-8.1452E-4	-8.1452E-4	-8.1452E-4	1.19274E-1	0.15156	2.61115E-2	-5.617165	
9	-4.7296E-4	-4.7296E-4	-4.7296E-4	1.6549E-1	3.45874E-1	1.614319	-6.147319	
10	-2.86314E-4	-2.86314E-4	-2.86314E-4	1.16549E-1	4.14246E-1	1.44491	-7.69554	
11	-1.71111E-4	-1.71111E-4	-1.71111E-4	1.4485E-1	6.388289E-1	1.51776	-8.182086	
12	-1.04131E-4	-1.04131E-4	-1.04131E-4	4.940177E-1	8.87239E-1	2.36295	-1.10866	
13	-6.24411E-5	-6.24411E-5	-6.24411E-5	4.1132E-1	4.0144E-1	4.44214	-1.22	
14	-3.90441E-5	-3.90441E-5	-3.90441E-5	5.3062E-1	4.40615E-1	5.14141	-1.40666	
15	-2.44111E-5	-2.44111E-5	-2.44111E-5	6.83434E-1	2.12142E-1	6.06955	-1.522664	
16	-1.51111E-5	-1.51111E-5	-1.51111E-5	1.06137E-1	6.2626E-1	1.76705	-1.706104	
17	-9.44111E-6	-9.44111E-6	-9.44111E-6	1.11114	6.26264E-1	1.56239	-1.7564	
18	-5.90000E-6	-5.90000E-6	-5.90000E-6	1.11114	6.66394	1.41534	-1.84	
19	-3.74411E-6	-3.74411E-6	-3.74411E-6	1.11114	6.16774	1.44411	-1.84	
20	-2.36295E-6	-2.36295E-6	-2.36295E-6	1.11114	5.14851	1.44411	-1.84	
21	-1.4085E-6	-1.4085E-6	-1.4085E-6	1.11114	1.11114	1.11114	-1.84	
22	-8.1452E-7	-8.1452E-7	-8.1452E-7	1.11114	5.14851	5.14851	-1.84	
23	-4.7296E-7	-4.7296E-7	-4.7296E-7	1.11114	1.11114	1.11114	-1.84	
24	-2.86314E-7	-2.86314E-7	-2.86314E-7	1.11114	1.11114	1.11114	-1.84	
25	-1.71111E-7	-1.71111E-7	-1.71111E-7	1.11114	1.11114	1.11114	-1.84	
26	-1.04131E-7	-1.04131E-7	-1.04131E-7	1.11114	1.11114	1.11114	-1.84	
27	-6.24411E-8	-6.24411E-8	-6.24411E-8	1.11114	1.11114	1.11114	-1.84	
28	-3.90441E-8	-3.90441E-8	-3.90441E-8	1.11114	1.11114	1.11114	-1.84	
29	-2.44111E-8	-2.44111E-8	-2.44111E-8	1.11114	1.11114	1.11114	-1.84	
30	-1.51111E-8	-1.51111E-8	-1.51111E-8	1.11114	1.11114	1.11114	-1.84	
31	-9.44111E-9	-9.44111E-9	-9.44111E-9	1.11114	1.11114	1.11114	-1.84	
32	-5.90000E-9	-5.90000E-9	-5.90000E-9	1.11114	1.11114	1.11114	-1.84	
33	-3.74411E-9	-3.74411E-9	-3.74411E-9	1.11114	1.11114	1.11114	-1.84	
34	-2.36295E-9	-2.36295E-9	-2.36295E-9	1.11114	1.11114	1.11114	-1.84	
35	-1.4085E-9	-1.4085E-9	-1.4085E-9	1.11114	1.11114	1.11114	-1.84	
36	-8.1452E-10	-8.1452E-10	-8.1452E-10	1.11114	1.11114	1.11114	-1.84	
37	-4.7296E-10	-4.7296E-10	-4.7296E-10	1.11114	1.11114	1.11114	-1.84	
38	-2.86314E-10	-2.86314E-10	-2.86314E-10	1.11114	1.11114	1.11114	-1.84	
39	-1.71111E-10	-1.71111E-10	-1.71111E-10	1.11114	1.11114	1.11114	-1.84	
40	-1.04131E-10	-1.04131E-10	-1.04131E-10	1.11114	1.11114	1.11114	-1.84	
41	-6.24411E-11	-6.24411E-11	-6.24411E-11	1.11114	1.11114	1.11114	-1.84	
42	-3.90441E-11	-3.90441E-11	-3.90441E-11	1.11114	1.11114	1.11114	-1.84	
43	-2.44111E-11	-2.44111E-11	-2.44111E-11	1.11114	1.11114	1.11114	-1.84	
44	-1.51111E-11	-1.51111E-11	-1.51111E-11	1.11114	1.11114	1.11114	-1.84	
45	-9.44111E-12	-9.44111E-12	-9.44111E-12	1.11114	1.11114	1.11114	-1.84	
46	-5.90000E-12	-5.90000E-12	-5.90000E-12	1.11114	1.11114	1.11114	-1.84	
47	-3.74411E-12	-3.74411E-12	-3.74411E-12	1.11114	1.11114	1.11114	-1.84	
48	-2.36295E-12	-2.36295E-12	-2.36295E-12	1.11114	1.11114	1.11114	-1.84	
49	-1.4085E-12	-1.4085E-12	-1.4085E-12	1.11114	1.11114	1.11114	-1.84	
50	-8.1452E-13	-8.1452E-13	-8.1452E-13	1.11114	1.11114	1.11114	-1.84	
51	-4.7296E-13	-4.7296E-13	-4.7296E-13	1.11114	1.11114	1.11114	-1.84	
52	-2.86314E-13	-2.86314E-13	-2.86314E-13	1.11114	1.11114	1.11114	-1.84	
53	-1.71111E-13	-1.71111E-13	-1.71111E-13	1.11114	1.11114	1.11114	-1.84	
54	-1.04131E-13	-1.04131E-13	-1.04131E-13	1.11114	1.11114	1.11114	-1.84	
55	-6.24411E-14	-6.24411E-14	-6.24411E-14	1.11114	1.11114	1.11114	-1.84	
56	-3.90441E-14	-3.90441E-14	-3.90441E-14	1.11114	1.11114	1.11114	-1.84	
57	-2.44111E-14	-2.44111E-14	-2.44111E-14	1.11114	1.11114	1.11114	-1.84	
58	-1.51111E-14	-1.51111E-14	-1.51111E-14	1.11114	1.11114	1.11114	-1.84	
59	-9.44111E-15	-9.44111E-15	-9.44111E-15	1.11114	1.11114	1.11114	-1.84	
60	-5.90000E-15	-5.90000E-15	-5.90000E-15	1.11114	1.11114	1.11114	-1.84	
61	-3.74411E-15	-3.74411E-15	-3.74411E-15	1.11114	1.11114	1.11114	-1.84	
62	-2.36295E-15	-2.36295E-15	-2.36295E-15	1.11114	1.11114	1.11114	-1.84	
63	-1.4085E-15	-1.4085E-15	-1.4085E-15	1.11114	1.11114	1.11114	-1.84	
64	-8.1452E-16	-8.1452E-16	-8.1452E-16	1.11114	1.11114	1.11114	-1.84	
65	-4.7296E-16	-4.7296E-16	-4.7296E-16	1.11114	1.11114	1.11114	-1.84	
66	-2.86314E-16	-2.86314E-16	-2.86314E-16	1.11114	1.11114	1.11114	-1.84	
67	-1.71111E-16	-1.71111E-16	-1.71111E-16	1.11114	1.11114	1.11114	-1.84	
68	-1.04131E-16	-1.04131E-16	-1.04131E-16	1.11114	1.11114	1.11114	-1.84	
69	-6.24411E-17	-6.24411E-17	-6.24411E-17	1.11114	1.11114	1.11114	-1.84	
70	-3.90441E-17	-3.90441E-17	-3.90441E-17	1.11114	1.11114	1.11114	-1.84	
71	-2.44111E-17	-2.44111E-17	-2.44111E-17	1.11114	1.11114	1.11114	-1.84	
72	-1.51111E-17	-1.51111E-17	-1.51111E-17	1.11114	1.11114	1.11114	-1.84	
73	-9.44111E-18	-9.44111E-18	-9.44111E-18	1.11114	1.11114	1.11114	-1.84	
74	-5.90000E-18	-5.90000E-18	-5.90000E-18	1.11114	1.11114	1.11114	-1.84	
75	-3.74411E-18	-3.74411E-18	-3.74411E-18	1.11114	1.11114	1.11114	-1.84	
76	-2.36295E-18	-2.36295E-18	-2.36295E-18	1.11114	1.11114	1.11114	-1.84	
77	-1.4085E-18	-1.4085E-18	-1.4085E-18	1.11114	1.11114	1.11114	-1.84	
78	-8.1452E-19	-8.1452E-19	-8.1452E-19	1.11114	1.11114	1.11114	-1.84	
79	-4.7296E-19	-4.7296E-19	-4.7296E-19	1.11114	1.11114	1.11114	-1.84	
80	-2.86314E-19	-2.86314E-19	-2.86314E-19	1.11114	1.11114	1.11114	-1.84	
81	-1.71111E-19	-1.71111E-19	-1.71111E-19	1.11114	1.11114	1.11114	-1.84	
82	-1.04131E-19	-1.04131E-19	-1.04131E-19	1.11114	1.11114	1.11114	-1.84	
83	-6.24411E-20	-6.24411E-20	-6.24411E-20	1.11114	1.11114	1.11114	-1.84	
84	-3.90441E-20	-3.90441E-20	-3.90441E-20	1.11114	1.11114	1.11114	-1.84	
85	-2.44111E-20	-2.44111E-20	-2.44111E-20	1.11114	1.11114	1.11114	-1.84	
86	-1.51111E-20	-1.51111E-20	-1.51111E-20	1.11114	1.11114	1.11114	-1.84	
87	-9.44111E-21	-9.44111E-21	-9.44111E-21	1.11114	1.11114	1.11114	-1.84	
88	-5.90000E-21	-5.90000E-21	-5.90000E-21	1.11114	1.11114	1.11114	-1.84	
89	-3.74411E-21	-3.74411E-21	-3.74411E-21	1.11114	1.11114	1.11114	-1.84	
90	-2.36295E-21	-2.36295E-21	-2.36295E-21	1.11114	1.11114	1.11114	-1.84	
91	-1.4085E-21	-1.4085E-21	-1.4085E-21	1.11114	1.11114	1.11114	-1.84	
92	-8.1452E-22	-8.1452E-22	-8.1452E-22	1.11114	1.11114	1.11114	-1.84	
93	-4.7296E-22	-4.7296E-22	-4.7296E-22	1.11114	1.11114	1.11114	-1.84	
94	-2.86314E-22	-2.86314E-22	-2.86314E-22	1.11114	1.11114	1.11114	-1.84	
95	-1.71111E-22	-1.71111E-22	-1.71111E-22	1.11114	1.11114	1.11114	-1.84	
96	-1.04131E-22	-1.04131E-22	-1.04131E-22	1.11114	1.11114	1.11114	-1.84	
97	-6.24411E-23	-6.24411E-23	-6.24411E-23	1.11114	1.11114	1.11114	-1.84	
98	-3.90441E-23	-3.90441E-23	-3.90441E-23	1.11114	1.11114	1.11114	-1.84	
99	-2.44111E-23	-2.44111E-23	-2.44111E-23	1.11114	1.11114	1.11114	-1.84	
100	-1.51111E-23	-1.51111E-23	-1.51111E-23	1.11114	1.11114	1.11114	-1.84	
101	-9.44111E-24	-9.44111E-24	-9.44111E-24	1.11114	1.11114	1.11114	-1.84	

TABLE IIIIC*
1284 Test Results
Path Type III

N	CROSS (in.)	LONG (in.)	E11 (in.)	E12 (in.)	E11 (in.)	E12 (in.)	VOL STRAIN (%)	MEAN STRESS (kB)
1	854083E-2	376655E-2	-388676E-2	-388676E-2	-32627E-2	-26627E-2	-97512E-2	-105555E-3
2	622846E-1	121169E-1	75216	104608E-1	332151E-2	733747	293104E-1	462986E-1
3	1.52561	1.52561	843139	104608E-1	136395E-2	93266	706752E-1	116729
4	425561	1.61617	544145	92252E-1	136395E-2	1 01853	208499	286499
5	1.7824	1.7824	1 03426	647815E-2	186545E-2	1 12734	24683	242222
6	618466	1.61617	618466	618466	186545E-2	1 24683	347649	347649
7	5946139	1.26195	1 26195	1 26195	186545E-2	1 39253	495228	495228
8	961743E-1	1.26195	9754424	1 58469	26627E-2	599925E-2	5 08811	559561
9	1.26195	1.187	1 58469	1 58469	186545E-2	1 68443	559561	559561
10	1.86847	1.187	1 79098	1 79098	186545E-2	1 77619	742522	742522
11	281539E-1	1.59462	1 79098	1 79098	828935E-2	1 91774	698935	698935
12	3676	1.59462	1 79098	1 79098	921435E-2	1 98551	1 07532	1 07532
13	42684	1.78685	1 78685	1 78685	921435E-2	2 08551	1 19463	1 19463
14	537151	1.97243	1 97243	1 97243	278544E-2	2 16224	2 16224	2 16224
15	537151	1.11787	1 11787	1 11787	186545E-2	2 29654	1 29654	1 29654
16	534058E	1.14675	1 14675	1 14675	259175E-2	2 52967	1 52967	1 52967
17	6340724	1.24214	1 24214	1 24214	279106E-2	2 64952	1 42231	1 42231
18	7760546	1.49611	1 49611	1 49611	186545E-2	2 68341	1 59295	1 59295
19	8165448	1.51111	1 51111	1 51111	4 216	2 6226	1 6521	1 6521
20	8165448	2 51845	2 51845	2 51845	827208E-2	2 68671	1 71647	1 71647
21	8165448	2 51845	2 51845	2 51845	656705E-2	2 68247E-2	2 68247E-2	2 68247E-2
22	8165448	5 64341	5 64341	5 64341	5 1104E-2	4 70958	1 24683	1 24683
23	4121851	4 64341	4 64341	4 64341	2 83211E-2	4 70958	1 24683	1 24683
24	4121851	4 64341	4 64341	4 64341	6611285	2 88605E-2	2 88605E-2	2 88605E-2
25	4121851	4 64341	4 64341	4 64341	90614	2 989611E-2	2 989611E-2	2 989611E-2
26	4121851	4 64341	4 64341	4 64341	946095E-2	2 98752E-2	2 98752E-2	2 98752E-2
27	4121851	4 64341	4 64341	4 64341	827208E-2	1 41268E-2	1 41268E-2	1 41268E-2
28	4121851	4 64341	4 64341	4 64341	656705E-2	1 48247E-2	1 48247E-2	1 48247E-2
29	4121851	4 64341	4 64341	4 64341	5 1104E-2	2 68247E-2	2 68247E-2	2 68247E-2
30	4121851	4 64341	4 64341	4 64341	1 22741E-1	1 49656E-2	1 49656E-2	1 49656E-2
31	4121851	4 64341	4 64341	4 64341	1 34176E-1	3 38717	1 97498	1 97498
32	4121851	4 64341	4 64341	4 64341	1 71759E-1	3 34875	1 98042	1 98042
33	4121851	4 64341	4 64341	4 64341	1 56219E-1	1 98271	1 98271	1 98271
34	4121851	4 64341	4 64341	4 64341	1 56219E-1	1 98555	1 98555	1 98555
35	4121851	4 64341	4 64341	4 64341	1 87439E-2	1 98966	1 98665	1 98665
36	4121851	4 64341	4 64341	4 64341	1 87439E-2	1 99211	1 99211	1 99211
37	4121851	4 64341	4 64341	4 64341	1 87439E-2	4 49449	4 49449	4 49449
38	4121851	4 64341	4 64341	4 64341	1 87439E-2	4 48318	1 34985	1 34985
39	4121851	4 64341	4 64341	4 64341	1 49456E-1	3 51486	2 68145	2 68145
40	4121851	4 64341	4 64341	4 64341	1 49456E-1	5 16323	2 61482	2 61482
41	4121851	4 64341	4 64341	4 64341	2 60644	5 16323	2 62278	2 62278
42	4121851	4 64341	4 64341	4 64341	6 11314	5 66596E-2	5 66596E-2	5 66596E-2
43	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
44	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
45	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
46	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
47	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
48	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
49	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
50	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
51	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
52	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
53	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
54	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
55	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
56	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
57	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
58	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
59	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
60	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
61	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
62	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
63	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
64	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
65	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
66	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
67	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
68	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
69	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
70	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
71	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
72	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
73	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
74	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
75	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
76	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
77	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
78	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
79	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
80	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
81	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
82	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
83	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
84	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
85	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
86	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
87	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
88	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
89	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
90	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
91	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
92	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
93	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
94	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
95	4121851	4 64341	4 64341	4 64341	2 60644	6 11314	5 66596E-2	5 66596E-2
96	4121851	4 64341	4 64341	4 64341	6 11314	6 11314	5 66596E-2	5 66596E-2
97	4121851	4 64341	4 64341	4 64341	2 60644			

DISCUSSION AND CONCLUSIONS

An initial observation of the experimentally observed stresses indicates that there is little difference between the load-unload paths for strain path types II and III. Figures 6b and 7b suggest that if the yield condition is reached during uniaxial-strain loading with the stress paths following along the yield surface, then the unloading stress paths are similar in direction and magnitude for either constant-axial-strain or constant-volume-strain unloading. The numerical analysis solutions agree with the above observation in that regardless of the strain path, the stress path would follow along the yield surface during unloading (provided that yield was reached during uniaxial-strain loading). All of the experimentally observed stress paths show the unloading curve to go initially above and then cross through and go below the loading curve. The experimental unloading curves did not remain on or intersect (as in the case of strain path 2) the yield surface as illustrated by the numerical analysis.

Such variations in unloading material behavior may be modeled by including additional phenomena into the constitutive equations. Phenomena to be included in the equations would be permanent volume compaction and work-hardening of the shear failure envelope. The former effect will mainly influence the strain paths and the latter will change the stress paths, particularly in the unloading portion. It was experimentally determined that the material behaved nonlinearly during initial loading as compared to the linear model used in the numerical analysis. Such nonlinearities may be also handled by the aforementioned considerations. The observation that the unloading path lies below the loading path in stress space may be related to fracture and the resulting loss of cohesion, rather than ductile plastic flow, as assumed in the calculations.

Inclusion of pore pressure effects into the model would be of interest in future work. Both the calculations and laboratory strain-path tests should be performed under various saturation conditions. Much of the previous theoretical work, including the finite-difference computer code, already contains this capability; it has just not been exercised yet. Also of future interest would be some theoretical results for two-dimensional dynamic loading situations, expressed in terms of ϵ_a , ϵ_t , L and p_c . This could be done by calculating the following invariants as functions of time at a particular material element:

$$\tau(t) = \left\{ (1/6)[(\sigma_{11}-\sigma_{22})^2 + (\sigma_{22}-\sigma_{33})^2 + (\sigma_{33}-\sigma_{11})^2] + \sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2 \right\}^{1/2}, \quad (14)$$

$$p(t) = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3, \quad (15)$$

$$\epsilon_v(t) = \epsilon_{11} + \epsilon_{22} + \epsilon_{33}, \quad (16)$$

$$\epsilon_d(t) = \left\{ (1/6)[(\epsilon_{11}-\epsilon_{22})^2 + (\epsilon_{22}-\epsilon_{33})^2 + (\epsilon_{33}-\epsilon_{11})^2] + \epsilon_{12}^2 + \epsilon_{13}^2 + \epsilon_{23}^2 \right\}^{1/2}. \quad (17)$$

The desired quantities used for comparison with laboratory tests are then obtained from Eqs. (9) - (12).

The results presented here have shown that

- (1) We can define strain paths for static testing of rock (and soil) samples that are more representative of actual field situations than those commonly used heretofore in constitutive modeling, and that
- (2) It is possible to reproduce these paths in laboratory tests.

APPENDIX I

General Relationships and Finite-Difference Calculations

The equation for momentum conservation in Eulerian coordinates is given by

$$-\dot{\rho} \cdot \dot{v} = \frac{\partial \sigma_r}{\partial r} + (g-1) \frac{\sigma_r - \sigma_\theta}{r} , \quad (18)$$

where ρ is the material density, v is the radial particle velocity, σ_r and σ_θ are the radial and tangential stress components, and g is 1 (for plane flow), 2 (for cylindrical flow) or 3 (for spherical flow). A dot over a variable indicates time differentiation at a fixed material element and r is the Eulerian spatial coordinate. It is inconvenient to deal with Eulerian coordinates, hence we choose to express Eq. (18) in terms of Lagrangian coordinates representing the initial configuration. We define R as the initial radial coordinate of a material element whose current radial location is at r . Radial and transverse stress components in the initial configuration (Lagrangian) are denoted σ_R and σ_θ . If the initial density is given by ρ_0 , then mass conservation requires that

$$\rho_0 R^{g-1} dR = \rho r^{g-1} dr . \quad (19)$$

If the forces on a material element are to be the same in the two representations, then

$$R^{g-1} \sigma_R = r^{g-1} \sigma_r , \quad (20)$$

$$\sigma_0 dR^{g-1} = \sigma_\theta dr^{g-1} . \quad (21)$$

Now write Eq. (18) as

$$-\rho r^{g-1} dr \dot{v} = d(r^{g-1} \sigma_r) - \sigma_\theta dr^{g-1}, \quad (22)$$

keeping in mind that the differentials on the right-hand side are taken at constant time. Substitution of Eqs. (19) - (21) into Eq. (22) then gives

$$-\rho_0 R^{g-1} dR \dot{v} = d(R^{g-1} \sigma_R) - \sigma_\theta dR^{g-1}, \quad (23)$$

or

$$-\rho_0 \dot{v} = \frac{\partial \sigma_R}{\partial R} + (g-1) \frac{\sigma_R - \sigma_\theta}{R}, \quad (24)$$

in Lagrangian coordinates.

In order to use Eq. (24) in a finite-difference solution, an artificial viscous stress η is included. The following equations, with the addition of a constitutive law, then form the basis of the numerical calculations:

$$\rho_0 \dot{v} = \frac{\partial \sigma_R}{\partial R} - (g-1) \frac{(\sigma_R - \sigma_\theta)}{R} - \frac{\partial \eta}{\partial R} \quad (25)$$

$$\eta = \rho_0 A^2 (\Delta R)^2 \left| \frac{\partial v}{\partial R} \right|^2, \quad \frac{\partial v}{\partial R} \leq 0 \quad (26)$$

$$= 0, \quad \frac{\partial v}{\partial R} > 0$$

$$\dot{\epsilon}_R = - \frac{\partial v}{\partial R}, \quad \dot{\epsilon}_\theta = - \frac{v}{R}, \quad (27)$$

where A is nondimensional constant on the order of unity, ΔR is the spatial increment in the finite-difference solution, and $\dot{\epsilon}_R$ and $\dot{\epsilon}_\theta$ are the radial and tangential strain rates in the initial configuration. A straight-forward centered difference scheme is used and Eqs. (25) - (27) are written in

finite-difference form as

$$\rho_0 \frac{v_j^{i+\frac{1}{2}} - v_j^{i-\frac{1}{2}}}{\Delta t} = - \frac{(\sigma_R)_{j+\frac{1}{2}}^i - (\sigma_R)_{j-\frac{1}{2}}^i}{\Delta R} -$$

$$(g-1) \frac{(\sigma_R)_{j+\frac{1}{2}}^i + (\sigma_R)_{j-\frac{1}{2}}^i - (\sigma_\theta)_{j+\frac{1}{2}}^i - (\sigma_\theta)_{j-\frac{1}{2}}^i}{2R_j} -$$

$$- \frac{q_{j+\frac{1}{2}}^{i-\frac{1}{2}} - q_{j-\frac{1}{2}}^{i-\frac{1}{2}}}{\Delta R}, \quad (28)$$

$$(\dot{\epsilon}_R)_{j+\frac{1}{2}}^{i+\frac{1}{2}} = \frac{v_j^{i+\frac{1}{2}} - v_{j+1}^{i+\frac{1}{2}}}{\Delta R}, \quad (29)$$

$$(\dot{\epsilon}_\theta)_{j+\frac{1}{2}}^{i+\frac{1}{2}} = - \frac{v_j^{i+\frac{1}{2}} + v_{j+1}^{i+\frac{1}{2}}}{2R_{j+\frac{1}{2}}} \quad (30)$$

The stress rates ($\dot{\sigma}_R$ and $\dot{\sigma}_\theta$) are obtained from $\dot{\epsilon}_R$ and $\dot{\epsilon}_\theta$, and therefore the stresses and strains are calculated from

$$X_{j+\frac{1}{2}}^{i+1} = X_{j+\frac{1}{2}}^i + \dot{X}_{j+\frac{1}{2}}^{i+\frac{1}{2}} \Delta t, \quad (31)$$

where X represents σ_R , σ_θ , ϵ_R and ϵ_θ .

The constitutive model used here is expressed in terms of the principal stress and strain components σ_i and ϵ_i ($i = 1, 2$ and 3) with the following identification:

$g = 1$ (Plane Flow):

$$\dot{\epsilon}_1 = -\partial v / \partial R, \quad \dot{\epsilon}_2 = \dot{\epsilon}_3 = 0$$

$$\sigma_1 = \sigma_R, \quad \sigma_2 = \sigma_3 = \sigma_Z$$

$g = 2$ (Cylindrical Flow)

$$\dot{\epsilon}_1 = -\partial v / \partial R, \quad \dot{\epsilon}_2 = -v/R, \quad \dot{\epsilon}_3 = 0$$

$$\sigma_1 = \sigma_R, \quad \sigma_2 = \sigma_\theta, \quad \sigma_3 = \sigma_Z$$

$g = 3$ (Spherical Flow):

$$\dot{\epsilon}_1 = -\partial v / \partial R, \quad \dot{\epsilon}_2 = \dot{\epsilon}_3 = -v/R$$

$$\sigma_1 = \sigma_R, \quad \sigma_2 = \sigma_3 = \sigma_\theta.$$

Let us define the volume strain ϵ_V , the mean stress p , the stress deviators s_i and the second invariant of the stress tensor according to

$$\epsilon_V = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad (32)$$

$$p = (\sigma_1 + \sigma_2 + \sigma_3)/3, \quad (33)$$

$$s_i = \sigma_i - p, \quad (34)$$

$$J_2 = (s_1^2 + s_2^2 + s_3^2)/2. \quad (35)$$

The elastic-plastic constitutive relation used here is then defined according to the following equations:

$$p = \hat{p}(\epsilon_v) , \quad (36)$$

$$\dot{s}_i = 2\mu(\dot{\epsilon}_i - \dot{\epsilon}_v/3) - 2\mu\xi \frac{s_i}{\sqrt{J_2}} . \quad (37)$$

The variable ξ is determined by the condition that the stress state must remain on the failure surface, defined by

$$\sqrt{J_2} = f(p) , \quad (38)$$

when a material element is undergoing plastic deformation.

From Eq. (35) we find that

$$2\sqrt{J_2} \dot{\sqrt{J_2}} = s_i \dot{s}_i \quad (\text{Summation}) \quad (39)$$

and

$$\dot{\sqrt{J_2}} = (\mu/\sqrt{J_2}) s_i \dot{\epsilon}_i - 2\mu\xi = f'(p) p . \quad (40)$$

Therefore, the variable ξ in Eq. (37) is given by

$$2\mu\xi = (\mu/\sqrt{J_2}) s_i \dot{\epsilon}_i - f'(p) p , \quad (41)$$

or, in terms of σ_i and p , as

$$2\mu\xi = (\mu/\sqrt{J_2})(\sigma_i \dot{\epsilon}_i - p \dot{\epsilon}_v) - f'(p) p . \quad (42)$$

If it is desired to include effects of fluid saturation defined by nonzero pore pressure p_p , σ_i is replaced by the effective stress components $\langle\sigma_i\rangle \equiv \sigma_i - n p_p$ ($0 < n < 1$) in the elasticity relationship and by $\sigma_i^* \equiv \sigma_i - p_p$ in the failure surface relationship:

$$\langle p \rangle = p - n p_p = \hat{p}(\epsilon_v) , \quad (43)$$

$$\langle \dot{s}_i \rangle = \dot{s}_i = 2\mu(\dot{\epsilon}_i - \dot{\epsilon}_v/3) - 2\mu\xi \frac{s_i}{\sqrt{J_2}} , \quad (44)$$

$$2\mu\xi = (\mu/\sqrt{J_2})(\sigma_i \dot{\epsilon}_i - p \dot{\epsilon}_v) - f'(p^*)(1-m)\dot{p} , \quad (45)$$

where

$$m = \frac{dp}{dp} . \quad (46)$$

The function $f(p)$ is taken to be of the form

$$f(p) = s_0 + \Delta S(1 - e^{-p/a}) . \quad (47)$$

Analytical Determination of Elastic Stress and Strain Paths for a Spherical Explosion

If $u(r,t)$ is the radial displacement, the spherical wave equation for purely elastic deformation can be written as

$$\partial^2 u / \partial t^2 = c^2 [\partial^2 u / \partial r^2 + (2/r) \partial u / \partial r - (2/r^2) u] , \quad (48)$$

where r is the radial coordinate, t is the time and c is the longitudinal elastic wave speed. This expression takes a simpler form if it is written in terms of a displacement potential ψ such that

$$u(r,t) = c^2 \partial / \partial r (\psi / r) . \quad (49)$$

In this case

$$\partial^2 \psi / \partial t^2 = c^2 \partial^2 \psi / \partial r^2 , \quad (50)$$

whose solution for outgoing waves is given by the familiar expression

$$\psi = \psi(t - \frac{r - r_0}{c}) . \quad (51)$$

The displacement, strain components and stress components can be expressed in terms of ψ and its derivatives ψ' and ψ'' according to

$$u(r,t) = -(c/r)\psi' - (c/r)^2 \psi , \quad (52)$$

$$-\varepsilon_a = \partial u / \partial r = (1/r)\psi'' + (2c/r^2)\psi' + (2c^2/r^3)\psi , \quad (53)$$

$$-\varepsilon_t = u/r = -(c/r^2)\psi' - (c^2/r^3)\psi , \quad (54)$$

$$-\sigma_a = (1/r) [(\lambda+2\mu)\psi'' + (4\mu c/r)\psi' + (4\mu c^2/r^2)\psi] , \quad (55)$$

$$-\sigma_t = (1/r) [\lambda\psi'' - (2\mu c/r)\psi' - (2\mu c^2/r^2)\psi] , \quad (56)$$

where λ and μ are the Lame constants. The sign convention used throughout this work is that stresses and strains are positive in compression. For a pressure history at $r = r_0$ given by

$$\left. \begin{array}{l} \sigma_r(r_0, t) = 0 \quad , \quad t < 0 \\ \sigma_r(r_0, t) = p_0 e^{-\alpha t} \quad , \quad t \geq 0 \end{array} \right\} \quad (57)$$

The function ψ must satisfy the following ordinary differential equation:

$$(\lambda+2\mu)\psi''(t) + (4\mu c/r_0)\psi'(t) + (4\mu c^2/r_0^2)\psi(t) = \quad (58)$$

$$-r_0 p_0 e^{-\alpha t} ,$$

subject to the conditions, from Eqs. (52) and (58), that jumps in ψ and ψ' at $t = 0$ obey the following relationships:

$$\begin{aligned} (\lambda + 2\mu) [\psi'] + (4\mu c/r_0) [\psi] &= 0 \quad , \\ [\psi'] + (c/r_0) [\psi] &= 0 \quad , \end{aligned} \quad (59)$$

where [] indicates the jump in the function, i.e., $[f] = f(0^+) - f(0^-)$.

Equations (59) thus require that ψ and ψ' each be continuous at $t = 0$ as long as $\lambda \neq 2\mu$. Hence, a solution to Eq. (58) can be written as

$$\psi(t) = e^{-\beta_2 t} (M \cos \beta_1 t + N \sin \beta_1 t) + \psi_0 e^{-\alpha t}, \quad (60)$$

where

$$M = -\psi_0 = \frac{r_0 p_0}{\alpha^2(\lambda+2\mu) - 4\mu c \alpha / r_0 + 4\mu c^2 / r_0^2}, \quad (61)$$

$$N = \frac{\alpha r_0 (\lambda+2\mu) - 2\mu c}{2c \sqrt{\mu(\lambda+\mu)}} \psi_0, \quad (62)$$

$$\beta_1 = \frac{2c \sqrt{\mu(\lambda+\mu)}}{r_0 (\lambda+2\mu)}, \quad (63)$$

$$\beta_2 = \frac{2\mu c}{r_0 (\lambda+2\mu)}. \quad (64)$$

In the case of an elastic fluid $\mu = 0$ and the displacement potential and its first two derivatives become

$$\psi = \frac{r_0 p_0}{\lambda \alpha^2} (1 - e^{-\alpha t} - \alpha t), \quad (65)$$

$$\psi' = \frac{r_0 p_0}{\lambda \alpha} (e^{-\alpha t} - 1), \quad (66)$$

$$\psi'' = -\frac{r_0 p_0}{\lambda} e^{-\alpha t}. \quad (67)$$

If $\alpha = 0$ (i.e., the cavity pressure remains constant at p_0) in the case of

a fluid, the displacement potential and its first two derivatives become

$$\psi = -\frac{r_0 p_0}{2\lambda} t^2 , \quad (68)$$

$$\psi' = -\frac{r_0 p_0}{\lambda} t , \quad (69)$$

$$\psi'' = -\frac{r_0 p_0}{\lambda} . \quad (70)$$

In the special case of spherical wave propagation we can make the identification that $L = \sigma_a - \sigma_t$ and $p_c = \sigma_t$, in which case the stress and strain paths can be written parametrically as

$$L = -(2\mu/r)[\psi'' + (3c/r)\psi' + (3c^2/r^2)\psi] , \quad (71)$$

$$p_c = -(1/r)[\lambda\psi'' - (2\mu c/r)\psi' - (2\mu c^2/r^2)\psi] , \quad (72)$$

$$\epsilon_a = -(1/r)[\psi'' + (2c/r)\psi' + (2c^2/r^2)\psi] , \quad (73)$$

$$\epsilon_t = (c/r^2)[\psi' + (c/r)\psi] . \quad (74)$$

Equations (71) to (74) in the case of spherical elastic waves are the analytical counterparts of Eqs. (9) to (12) for numerical solutions. Comparison of strain and stress paths calculated by the two methods is shown in Figure 8 for $1/\alpha = 1$ msec, $R/R_0 = 3$, $K = 95$ kbar, $c = 3$ km/sec, and $\rho_0 = 2.0$ gm/cm³. It can be seen that the numerical solution gives a good approximation of the strain and stress paths except for the peak values associated with the main compressive fronts. This is a result of the viscous stresses that are included in the finite-difference solution to

damp out numerical oscillations, and has no significance with regard to the conclusions reached in this report.

Figure 8. Comparison of strain and stress paths determined numerically and analytically for spherical wave propagation in an elastic medium.

APPENDIX II

EXPERIMENTAL TECHNIQUE

Specimen Preparation

Specimens were prepared from Kayenta sandstone, Mixed Company Site. Cylindrical samples 3.81 centimeters long by 1.91 centimeters diameter were used thus maintaining a length to diameter ratio of 2 to 1. Specimen ends were ground parallel to within $\pm .001$ centimeters. Specimens were air dried with weight, length and diameters being recorded for each sample for use in determining sample density and strains. Samples were prepared for testing by first wrapping them in urethane plastic (.025 cm thick) with hardened steel endcaps attached at each end using stainless steel lock wire.

Stress and Strain Determination

Stress and strain transducers were placed within the pressure vessel. Confining pressure was measured using a calibrated 350-ohm manganin pressure sensitive coil accurate to $\pm .003$ kbars. Jacketed samples were placed and centered on the load cell when in the pressure vessel. The load cell was accurate to $\pm .005$ kbars. Axial and lateral strain transducers were of the cantilever type using strain gauges in a wheatstone bridge configuration to obtain voltage output. The axial cantilevers measured total axial displacement and were calibrated to be accurate to $\pm .003$ percent strain. Lateral strain cantilevers were positioned at mid-sample and sampled strains at 90 degree intervals. Diametrically opposed arms were calibrated for lateral strain. The lateral strains were averages with a resulting accuracy of $\pm .006$.

percent. Figure 9 shows a schematic of the transducers when inside the pressure vessel. Further discussion on transducer design may be obtained in Terra Tek report TR 75-29.

Testing Procedures

Seven samples were first tested triaxially to failure to generate the triaxial failure envelope for the material while eight samples were tested following the three strain paths. Triaxial testing commenced by first hydrostatically loading the samples to the desired confining pressure with subsequent axial loading to failure, stresses and strains being recorded during all phases of loading. A strain rate of about 10^{-4} sec⁻¹ was used during loading.

Uniaxial-strain loading was used when following a specified strain path. Axial load and confining pressure were applied such that zero lateral strain was maintained. When following strain path I, II or III during unloading, i.e., constant-axial-strain and uniaxial-strain unloading, constant axial strain unloading and constant volume strain unloading, respectively, the confining pressure and axial load were adjusted to maintain the desired strain state.

Data Acquisition and Analysis

Both x-y recorders and a PDP Lab 11 computer were used for data acquisition. The x-y recorders were used primarily for instantaneous feedback during testing while the PDP Lab 11 computer data was used for analysis of pressure effects, endcap effects and generation of stress and strain load-unload curves. Tables I, II and III presented in the text are a result of the computer analysis.

Figure 9. Pressure vessel schematic showing the sample and stress and strain transducers.

Figure 9a. Stress path followed during strain path III testing.

Figure 9b. Strain path followed during path I testing.

Figure 9c. Stress path followed during strain path II testing.

Figure 9d. Strain path followed during path II testing.

Figure 9e. Stress path followed during strain path I testing.

Figure 9f. Strain path followed during path III testing.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant to the Secretary of Defense
 Atomic Energy
 ATTN: Executive Assistant

 Defense Advanced Rsch Proj Agency
 ATTN: G. Bulin

 Defense Intelligence Agency
 ATTN: DB-4N
 ATTN: DB-4C, E. O'Farrell

 Defense Nuclear Agency
 2 cy ATTN: SPSS
 4 cy ATTN: TITL

 Defense Technical Info Ctr
 12 cy ATTN: DD

 Field Command
 Defense Nuclear Agency
 ATTN: FCPR
 ATTN: FCTMOF

 Field Command
 Defense Nuclear Agency
 Livermore Branch
 ATTN: FCPRL

 Interservice Nuclear Weapons School
 ATTN: TTV

 Joint Strat Tot Planning Staff
 ATTN: JLA
 ATTN: NRI-STINFO Library

 NATO School (SHAPE)
 ATTN: U.S. Documents Officer

 Undersecretary of Defense for Rsch & Enrgy
 ATTN: Strategic & Space Systems (OS)

DEPARTMENT OF THE ARMY

BMD Advanced Technology Center
 Department of the Army
 ATTN: ATC-T
 ATTN: ICRDABH-X

 Chief of Engineers
 Department of the Army
 ATTN: DAEN-RDL
 ATTN: DAEN-MCE-D

 Harry Diamond Laboratories
 Department of the Army
 ATTN: DELHD-N-P
 ATTN: DELHD-I-TL

 U.S. Army Ballistic Research Labs
 ATTN: DRDAR-TSB-S
 ATTN: DRDAR-BLV
 ATTN: DADAR-BLT, J. Keefer

DEPARTMENT OF THE ARMY (Continued)

U.S. Army Concepts Analysis Agency
 ATTN: CSSA-ADL

 U.S. Army Engineer Center
 ATTN: DT-LRC

 U.S. Army Engineer Div Huntsville
 ATTN: HNDED-SR

 U.S. Army Engineer Div Ohio River
 ATTN: ORDAS-L

 U.S. Army Engr Waterways Exper Station
 ATTN: J. Drake
 ATTN: Library
 ATTN: WESSA, W. Flathau
 ATTN: WESSE, L. Ingram
 ATTN: J. Strange
 ATTN: J. Zelasko
 2 cy ATTN: VESSD, J. Jackson

 U.S. Army Materiel & Mechanics Rsch Ctr
 ATTN: Technical Library

 U.S. Army Materiel Dev & Readiness Cmd
 ATTN: DRXAM-TL

 U.S. Army Missile Command
 ATTN: RSIC

 U.S. Army Nuclear & Chemical Agency
 ATTN: Library

DEPARTMENT OF THE NAVY

Naval Civil Engineering Laboratory
 ATTN: Code L08A

 Naval Electronic Systems Command
 ATTN: PME 117-21

 Naval Facilities Engineering Cmd
 ATTN: Code 04B

 Naval Material Command
 ATTN: MAT 08T-22

 Naval Postgraduate School
 ATTN: G. Lindsay
 ATTN: Code 1424 Library

 Naval Research Laboratory
 ATTN: Code 2627

 Naval Surface Weapons Center
 ATTN: Code F31

 Naval Surface Weapons Center
 ATTN: Tech Library & Info Svcs Br

 Naval War College
 ATTN: Code E-11

DEPARTMENT OF THE NAVY (Continued)

Naval Weapons Evaluation Facility
ATTN: Code 10

Naval Underwater Systems Center
ATTN: Code EM, J. Kalinowski

Office of Naval Research
ATTN: Code 474, N. Perrone

Office of Chief of Naval Operations
ATTN: OP 981
ATTN: OP 03EG

Strategic Systems Project Office
Department of the Navy
ATTN: NSP-43

DEPARTMENT OF THE AIR FORCE

Air Force Geophysics Laboratory
ATTN: LWW, K. Thompson

Air Force Institute of Technology
ATTN: Library

Air Force Office of Scientific Rsch
ATTN: W. Best
ATTN: J. Allen

Air Force Systems Command
ATTN: DLW

Air Force Weapons Laboratory
Air Force Systems Command
ATTN: NTES-C, R. Henny
ATTN: NTES, J. Thomas
ATTN: NTE, M. Plamondon
ATTN: SUL
ATTN: NTES, R. Jolley

Air University Library
Department of the Air Force
ATTN: AUL-LSE

Assistant Chief of Staff
Intelligence
Department of the Air Force
ATTN: INT

Ballistic Missile Office
Air Force Systems Command
ATTN: MNH
ATTN: MNNXH, D. Game
ATTN: MNNXH, M. Delvecchio

Research, Development, & Acq
Department of the Air Force
ATTN: AFRD01

Logistics & Engineering
Department of the Air Force
ATTN: LEEE

Foreign Technology Division
Air Force Systems Command
ATTN: NIIS Library

DEPARTMENT OF THE AIR FORCE (Continued)

Rome Air Development Center
Air Force Systems Command
ATTN: TSLD

Strategic Air Command
Department of the Air Force
ATTN: INT J. McKinney
ATTN: NRI-STINFO Library

Vela Seismological Center
ATTN: G. Ullrich

DEPARTMENT OF ENERGY

Department of Energy
Albuquerque Operations Office
ATTN: CTID

Department of Energy
Nevada Operations Office
ATTN: Mail & Recds for Tech Lib

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: OSWR/NED

Department of the Interior
Bureau of Mines
ATTN: Tech Lib

Federal Emergency Management Agency
ATTN: Assistant Associate Dir

DEPARTMENT OF ENERGY CONTRACTORS

Lawrence Livermore National Laboratory
ATTN: Tech Info Dept Lib
ATTN: D. Glenn

Los Alamos National Scientific Laboratory
ATTN: MS 670, J. Hopkins
ATTN: R. Bridwell
ATTN: MS 364

Oak Ridge National Laboratory
Nuclear Division
ATTN: Central Rsch Lib
ATTN: Civil Def Res Proj

Sandia National Laboratories
Livermore Laboratory
ATTN: Lib & Sec Class Div

Sandia National Laboratories
ATTN: L. Hill
ATTN: A. Chabai
ATTN: 3141

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corp
ATTN: Technical Info Svcs

Ababian Associates
ATTN: M. Ababian

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Applied Research Associates, Inc.
ATTN: H. Auld
ATTN: N. Higgins
ATTN: J. Bratton

Applied Research Associates, Inc
ATTN: S. Blouin

Applied Theory, Inc
2 cy ATTN: J. Trulio

AVCO Research & Systems Group
ATTN: Library A830

BDM Corp
ATTN: Corporate Library
ATTN: T. Neighbors

Boeing Co
ATTN: Aerospace Library

California Institute of Technology
ATTN: T. Ahrens

California Research & Technology, Inc
ATTN: K. Kreyenhagen
ATTN: Library
ATTN: M. Rosenblatt
ATTN: S. Schuster

California Research & Technology, Inc
ATTN: D. Orphal

Calspan Corp
ATTN: Library

University of Denver
ATTN: J. Wisotski

EG&G Washington Analytical Svcs Ctr, Inc
ATTN: Library

Eric H. Wang
Civil Engineering Rsch Fac
University of New Mexico
ATTN: N. Baum

Gard, Inc
ATTN: G. Neidhardt

Horizons Technology, Inc
ATTN: R. Kruger

IIT Research Institute
ATTN: Documents Library
ATTN: R. Welch
ATTN: M. Johnson

Institute for Defense Analyses
ATTN: Classified Library

J.H. Wiggins Co., Inc
ATTN: J. Collins

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Kaman AviDyne
ATTN: N. Hobbs
ATTN: Library

Kaman Sciences Corp
ATTN: Library

Kaman Tempo
ATTN: DASIAC

Lockheed Missiles & Space Co., Inc
ATTN: T. Geers
ATTN: Technical Info Ctr

Lockheed Missiles & Space Co., Inc
ATTN: J. Weisner

Lovelace Biomed & Enviro Rch Inst, Inc
ATTN: R. Jones

Martin Marietta Corp
ATTN: G. Freyer

McDonnell Douglas Corp
ATTN: R. Halprin

Merritt CASES, Inc
ATTN: J. Merritt
ATTN: Library

Pacific-Sierra Research Corp
ATTN: H. Brode

Patel Enterprises, Inc
ATTN: M. Patel

Physics International Co
ATTN: L. Behrmann
ATTN: F. Sauer
ATTN: E. Moore
ATTN: Technical Library
ATTN: J. Thomsen

R & D Associates
ATTN: Technical Info Ctr
ATTN: J. Lewis
ATTN: J. Carpenter
ATTN: W. Wright
ATTN: R. Port
ATTN: P. Haas

Science Applications, Inc
ATTN: Technical Library

Science Applications, Inc
ATTN: D. Bernstein
ATTN: D. Maxwell

Science Applications, Inc
ATTN: W. Layson

Southwest Research Institute
ATTN: W. Baker
ATTN: A. Wenzel

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

SRI International

ATTN: D. Keough
ATTN: G. Abrahamson
ATTN: B. Gasten
ATTN: Y. Gupta

Systems, Science & Software, Inc

ATTN: T. Cherry
ATTN: T. Riney
ATTN: Library
ATTN: D. Grine

Systems, Science & Software, Inc

ATTN: J. Murphy

Terra Tek, Inc

ATTN: S. Green
ATTN: A. Abou-Sayed
ATTN: Library
4 cy ATTN: J. Johnson
4 cy ATTN: D. Schmitz
4 cy ATTN: R. Dronek

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Tetra Tech, Inc

ATTN: L. Hwang

TRW Defense & Space Sys Group

ATTN: Technical Info Ctr
ATTN: P. Bhutta
2 cy ATTN: N. Lipner

TRW Defense & Space Sys Group

ATTN: P. Dai
ATTN: E. Wong

Universal Analytics, Inc

ATTN: E. Field

Weidlinger Assoc., Consulting Engineers

ATTN: M. Baron

Weidlinger Assoc., Consulting Engineers

ATTN: J. Isenberg

