-Introduction to Transportation Planning-

Trip Production & Attraction

-Multi Parameter Linear Regression-

$$y_i = x_{0i} + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni}$$

i= Zone Index

n= Variable Index

 β_n = Coefficient of Variable n

 y_i = Trip Production & Attraction of Zone i

 x_{ni} = Variable n (Population, Labor Force etc.) of Zone i

Trip Distribution

-Gravity Model-

$$T_{ij} = A_i * B_j * O_i * D_j * f(c_{ij})$$

$$A_i = \frac{1}{\sum_j B_j * D_j * f(c_{ij})}$$

$$B_j = \frac{1}{\sum_i A_i * O_i * f(c_{ij})}$$

$$f_{Combined}(c_{ij}) = c_{ij}^{\alpha} * e^{-\beta * c_{ij}}$$

i= Origin Zone Index

j= Destination Zone Index

 T_{ij} = Total Trips Between Origin i and Destination j

 O_i = Total Trip Production by Zone i

 D_i = Total Trip Attraction to Zone j

 A_i = Balancing Factor Assuring $\sum_i T_{ij} = O_i$

 B_j = Balancing Factor Assuring $\sum_i T_{ij} = D_j$

 $f(c_{ij})$ = Deterrence Function Between Zones i and j

e= Mathematical Constant (2.71828)

 α, β = Coefficient

-Introduction to Transportation Planning-

Modal Split (Mode Choice)

-Multinomial Logit Model-

$$T_{ij}^{m} = \frac{e^{-U_{ij}^{m}}}{\sum_{m} e^{-U_{ij}^{m}}} * \sum_{m} T_{ij}^{m}$$

$$U_{ij}^m = a_1 * x_{1ij}^m + a_2 * x_{2ij}^m + \dots + a_n * x_{nij}^m$$

i= Origin Zone Index

j= Destination Zone Index

m= Trip Mode

n= Variable Index

e= Mathematical Constant (2.71828)

 a_n = Coefficient of Variable n

 T_{ij}^{m} = Total Trips of Mode m Between Zones i and j

 U_{ij}^m = Total Utility of Mode m Between Zones i and j

 x_{nij}^m = Utility Variable n of Mode m Between Zones i and j (Trip Cost, Fare, In-Vehicle Travel Time etc.)

Assignment Matrice

-Linear Algebra-

$$T_{ij}^{m} = \frac{\sum_{p} T_{ij}^{m,p} * PHF_{ij} * PCU^{m}}{Occ^{m}}$$

i= Origin Zone Index

j= Destination Zone Index

p= Trip Purpose

m= Trip Mode

 T_{ij}^{m} = Total Vehicle Trip (as Per Car Unit) of Mode m, Between Zones i and j

 $T_{ij}^{m,p}$ = Trips of Mode m and Purpose p, Between Zones i and j

 PHF_{ij} = Peak Hour Factor Between Zones i and j

PCU^m = Passenger Car Equavalent (Per Car Unit) of Mode m

 Occ^m = Occupancy of Mode m

GraphES Formulation Cheat Sheet

Volume-Delay Relationship of Links

-BPR Function-

$$t_c = t_0 * \left(1 + \alpha * \left(\frac{V}{C}\right)^{\beta}\right)$$

 t_c = Current (Updated) Travel Time

 t_0 = Free Flow Travel Time

V= Volume (veh/hr)

C= Capacity (veh/hr)

 α , β = Coefficient

User Equilibrium Traffic Assignment

-Nonlinear Mathematical Optimization-

- Source for Notation: Mathew T. V., Rao K.V.K., 2007, Traffic Assignment, Introduction to Transportation Engineering, NPTEL May 7, 2007-

$$Minimize Z = \sum_{a} \int_{0}^{x_a} t_a(x_a) dx,$$

Subject to
$$\sum_{k} f_k^{rs} = q_{rs} : \forall r, s$$

$$x_a = \sum_r \sum_s \sum_k \delta_{a,k}^{rs} f_k^{rs} : \forall a$$

$$f_k^{rs} \ge 0 : \forall k, r, s$$

$$x_a \ge 0 : a \in A$$

$$\delta_{a,k}^{r,s} = \begin{cases} 1 & \text{if link a belongs to path k,} \\ 0 & \text{otherwise} \end{cases}$$

k= Path

 x_a = Equilibrium Flows in Link a

 t_a = Travel Time on Link a

 f_k^{rs} = Flow on Path k Connecting O-D Pair r-s

 q_{rs} = Trip Rate Between r and s

 $\delta_{a,k}^{rs}$ = Definitional Constraint

3