SC223 - Linear Algebra

Aditya Tatu

Lecture 8

August 9, 2023

Why bother with LU decomposition?

- Solve Ax = b.
- Given the LU decomposition of A, solve: LUx = b.
- Letting y := Ux reduces the original problem to two simpler linear systems:
- ▶ Solve for y in Ly = b.
- ▶ Solve for x in Ux = y.

$$A \cdot A' = In$$

$$A = In$$

Why bother with LU decomposition?

- Solve Ax = b.
- Given the LU decomposition of A, solve: LUx = b.
- Letting y := Ux reduces the original problem to two simpler linear systems: GAUSS-JORDAN
- ▶ Solve for y in Ly = b.

► Solve for
$$x$$
 in $Ux = y$.

$$E_{N-1} \cdot E_{N-2} \cdot \cdots \cdot E_1 \cdot I_N = L'$$

$$E_{N-1} \cdot E_{N-2} \cdot \cdots \cdot E_1 \cdot (A \mid I) = [U \mid L']$$

$$Q_{N-1} \cdot Q_{N-2} \cdot \cdots \cdot Q_1 \cdot [U \mid L'] = [I \mid A']$$

$$U' \cdot U = I \cdot U' \cdot L' = (LU) = A'$$

• Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ **Column Space:** The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ **Column Space:** The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ **Column Space:** The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

Let
$$\mathbf{0}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1}$$
.

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ **Column Space:** The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

▶ Let
$$\mathbf{0}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 . Does $\mathbf{0}_m \in C(A)$?

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m.$
- ▶ A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ **Column Space:** The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

Let
$$\mathbf{0}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1}$$
. $\mathbf{0}_m \in C(A)$ for any matrix A

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- \bullet $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m$.
- ightharpoonup A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ Column Space: The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Properties:
• Let
$$\mathbf{0}_{m} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 . $\mathbf{0}_{m} \in C(A)$ for any matrix A
• If $b_{1}, b_{2} \in C(A)$, $\forall p, q \in \mathbb{R}, p \cdot b_{1} + q \cdot b_{2}$
+ PAGER $p \cdot b_{1} + q \cdot b_{2} = p(Ax_{1}) + q(Ax_{2})$ $Ax_{2} = b_{2}$
 $Ax_{3} = b_{4}$
 $Ax_{4} = b_{1}$
 $Ax_{5} = b_{1}$
 $Ax_{6} = b_{1}$
 $Ax_{7} = b_{2}$

- Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Solve Ax = b.
- When does a solution to Ax = b exist?
- \bullet $Ax = x_1 \cdot a_{*1} + x_2 \cdot a_{*2} + \ldots + x_n \cdot a_{*n} = b \in \mathbb{R}^m$.
- \blacktriangleright A solution to Ax = b exists if and only if b belongs to the set of all possible linear combinations of columns of A.
- ▶ Column Space: The set of all possible linear combinations of columns of A is called the Column space of matrix A, and is denoted by C(A).

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Let
$$\mathbf{0}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1}$$
. $\mathbf{0}_m \in C(A)$ for any matrix A .
► If $b_1, b_2 \in C(A)$, $\forall p, q \in \mathbb{R}, p \cdot b_1 + q \cdot b_2 \in C(A)$.

▶ Let Ax = b and Ay = b, with $x \neq y$.

$$A(x-y) = 0_{m}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x+y \\ x+y \end{bmatrix}$$

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, A(x y) =

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ► Then, $A(x y) = \mathbf{0}_m$.

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ► Then, $A(x-y) = \mathbf{0}_m$. $\mathbf{7} \neq \mathbf{0}$
- ightharpoonup Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) =$

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ► Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ► Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:
- \triangleright $\mathbf{0}_n$

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ▶ $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:
- ▶ $\mathbf{0}_n \in N(A)$.

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- ► Properties:
- ▶ $\mathbf{0}_n \in N(A)$.
- ▶ If $x, y \in N(A)$, $\forall p, q \in \mathbb{R}$, $p \cdot x + q \cdot y$

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ► Then, $A(x-y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:
- ▶ $\mathbf{0}_n \in N(A)$.
- ▶ If $x, y \in N(A)$, $\forall p, q \in \mathbb{R}$, $p \cdot x + q \cdot y \in N(A)$.

$$A(p.x+8.y) = p.Ax+8.Ay$$

= $p.O_{m}+8.O_{m} = O_{m}$.

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:
- ▶ $\mathbf{0}_n \in N(A)$.
- ▶ If $x, y \in N(A)$, $\forall p, q \in \mathbb{R}$, $p \cdot x + q \cdot y \in N(A)$.
- Summary: If $\exists z \in N(A), z \neq \mathbf{0}_n$, then Ax = b will have

- ▶ Let Ax = b and Ay = b, with $x \neq y$.
- ▶ Then, $A(x y) = \mathbf{0}_m$.
- ▶ Similarly, let $z \in \mathbb{R}^n$ be such that $Az = \mathbf{0}_m$. Then, if Ax = b, $\forall k \in \mathbb{R}, A(x + k \cdot z) = b \Rightarrow$ Multiple Solutions!
- ▶ **Nullspace:** For a matrix $A \in \mathbb{R}^{m \times n}$, the *Nullspace* is the set of vectors that get mapped to $\mathbf{0}_m$, and is denoted by N(A).

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

- ► $Ax = \mathbf{0}_m$ are also called **Homogeneous equations**.
- **▶** Properties:
- ▶ $\mathbf{0}_n \in N(A)$.
- ▶ If $x, y \in N(A)$, $\forall p, q \in \mathbb{R}$, $p \cdot x + q \cdot y \in N(A)$.
- **Summary:** If $\exists z \in N(A), z \neq \mathbf{0}_n$, then Ax = b will have infinitely many solutions, if one exists!

• If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- $lackbox{ Re-writing, we get } \sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- $lackbox{ }$ Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .
- \bullet $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns.

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- $lackbox{ }$ Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .
- $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- $lackbox{ }$ Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .
- $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.
- Linear Independent set of vectors: A set of vectors $\{a_{*i}, i = 1, ..., n\}$ is said to be linearly independent if none of the vectors can be written as a linear combination of the remaining vectors.

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- ullet Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .
- $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.
- **Linear Independent set of vectors:** A set of vectors $\{a_{*i}, i = 1, ..., n\}$ is said to be linearly independent if none of the vectors can be written as a linear combination of the remaining vectors.
- ullet A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if

$$\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m \quad \Rightarrow$$

- If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.
- ullet Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .
- $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.
- Linear Independent set of vectors: A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if none of the vectors can be written as a linear combination of the remaining vectors.
- ullet A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if

$$\sum_{i=1}^{n} z_{i} a_{*i} = \mathbf{0}_{m} \quad \Rightarrow z_{1} = z_{2} = \ldots = z_{n} = 0$$

• If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.

ullet Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .

• $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.

• Linear Independent set of vectors: A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if none of the vectors can be written as a linear combination of the remaining vectors.

ullet A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if

$$\sum_{i=1}^{n} z_i a_{*i} = \mathbf{0}_m \quad \Rightarrow z_1 = z_2 = \ldots = z_n = 0$$

• Column Rank of a Matrix: The number of linearly independent columns of a matrix is called the Column Rank.

• If there are multiple solutions to $Ax = b \Rightarrow \exists z \neq \mathbf{0}_n$ such that $Az = \mathbf{0}_m$.

ullet Re-writing, we get $\sum_{i=1}^n z_i a_{*i} = \mathbf{0}_m$, with at least one non-zero entry in z, say z_k .

• $a_{*k} = \sum_{i=1, i \neq k}^{n} \frac{-z_i}{z_k} a_{*i}$. Thus we can write column k as a *linear combination* of other columns. We say that the vectors $\{a_{*i}, i=1,\ldots,n\}$ is a **linearly dependent** set of vectors.

• Linear Independent set of vectors: A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if none of the vectors can be written as a linear combination of the remaining vectors.

ullet A set of vectors $\{a_{*i}, i=1,\ldots,n\}$ is said to be linearly independent if

$$\sum_{i=1}^{n} z_i a_{*i} = \mathbf{0}_m \quad \Rightarrow z_1 = z_2 = \ldots = z_n = 0$$

• Column Rank of a Matrix: The number of linearly independent columns of a matrix is called the Column Rank.

• Matrix Transpose: For $A \in \mathbb{R}^{m \times n}$ given by

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

the matrix

$$\begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ \underbrace{a_{1n}}_{a_{1*}} & \underbrace{a_{2n}}_{a_{2*}} & \dots & \underbrace{a_{mn}}_{a_{m*}} \end{bmatrix} \in \mathbb{R}^{n \times m},$$

is called the *transpose of A*, and is denoted by A^T .

• Matrix Transpose: For $A \in \mathbb{R}^{m \times n}$ given by

$$\left[\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right],$$

the matrix

$$\begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ \underbrace{a_{1n}}_{a_{1*}} & \underbrace{a_{2n}}_{a_{2*}} & \dots & \underbrace{a_{mn}}_{a_{m*}} \end{bmatrix} \in \mathbb{R}^{n \times m},$$

is called the *transpose of A*, and is denoted by A^T .

Beware of the notation: a_{i*} denotes the i^{th} row of A written as a column matrix.

• All linear combination of columns gives the column space, how about linear combination of rows?

- All linear combination of columns gives the column space, how about linear combination of rows?
- **Rowspace:** The set of all linear combinations of rows of the matrix is called the Rowspace.

- All linear combination of columns gives the column space, how about linear combination of rows?
- Rowspace: The set of all linear combinations of rows of the matrix is called the Rowspace.
- ullet Since rows of A are columns of A^T , notation for rowspace is $C(A^T)$, and can be written as

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

- All linear combination of columns gives the column space, how about linear combination of rows?
- Rowspace: The set of all linear combinations of rows of the matrix is called the Rowspace.
- ullet Since rows of A are columns of A^T , notation for rowspace is $C(A^T)$, and can be written as

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

Properties:

- All linear combination of columns gives the column space, how about linear combination of rows?
- Rowspace: The set of all linear combinations of rows of the matrix is called the Rowspace.
- ullet Since rows of A are columns of A^T , notation for rowspace is $C(A^T)$, and can be written as

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

- Properties:
 - $ightharpoonup \mathbf{0}_n \in C(A^T)$
 - ▶ If $x_1, x_2 \in C(A^T)$, then $\forall p, q \in \mathbb{R}, p \cdot x_1 + q \cdot x_2 \in C(A^T)$.

- All linear combination of columns gives the column space, how about linear combination of rows?
- Rowspace: The set of all linear combinations of rows of the matrix is called the Rowspace.
- ullet Since rows of A are columns of A^T , notation for rowspace is $C(A^T)$, and can be written as

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

- Properties:
 - $ightharpoonup \mathbf{0}_n \in C(A^T)$
 - ▶ If $x_1, x_2 \in C(A^T)$, then $\forall p, q \in \mathbb{R}, p \cdot x_1 + q \cdot x_2 \in C(A^T)$.
- Row Rank of a Matrix: The number of linearly independent rows of a matrix is called the Column Rank.

Left Nullspace: The set of solutions in \mathbb{R}^m to $A^T y = \mathbf{0}_n$ is called the *Left Nullspace* of matrix A.

- **Left Nullspace:** The set of solutions in \mathbb{R}^m to $A^T y = \mathbf{0}_n$ is called the *Left Nullspace* of matrix A.
- ullet Since this is the same as Nullspace of the matrix A^T , left nullspace is denoted by $N(A^T)$.

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

- Properties:
 - $ightharpoonup \mathbf{0}_m \in \mathcal{N}(A^T)$
 - ▶ If $y_1, y_2 \in N(A^T)$, then $\forall p, q \in \mathbb{R}, p \cdot y_1 + q \cdot y_2 \in N(A^T)$.

- **Left Nullspace:** The set of solutions in \mathbb{R}^m to $A^T y = \mathbf{0}_n$ is called the *Left Nullspace* of matrix A.
- Since this is the same as Nullspace of the matrix A^T , left nullspace is denoted by $N(A^T)$.

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

- Properties:
 - $ightharpoonup \mathbf{0}_m \in \mathcal{N}(A^T)$
 - ▶ If $y_1, y_2 \in N(A^T)$, then $\forall p, q \in \mathbb{R}, p \cdot y_1 + q \cdot y_2 \in N(A^T)$.
- The Column Space, Row Space, Null Space and Left Nullspace are called the Four Fundamental Subspaces associated with a matrix.