Comprehensive Analysis of Discrete Mathematics (Chapter 1)

This document provides a deep, step-by-step explanation of the 15 fundamental concepts from Propositional Logic, Quantifiers, and Proofs, designed for absolute mastery before tackling supplementary exercises.

Part 1: Propositional Logic (The Language of Reasoning)

This section establishes the basic building blocks and grammar rules for logical statements.

1. The Proposition (Section 1.1)

A **Proposition** is the simplest unit of logic: a declarative sentence that is definitively **True (T)** or **False (F)**, but cannot be both.

Example	Sentence	Is it a Proposition?	Reason
Proposition	"The Earth is the third planet from the Sun."	Yes	Its truth value is fixed (T).
Not a Proposition	"What time is it?"	No	It is a question, not a declarative statement.
Not a Proposition		No	Its truth value depends on the value of .

2. Logical Operators (Section 1.1)

These operators connect simple propositions (,) to form complex compound propositions.

Operator Name	Symbol	Simplified Rule	Truth Table Result
Negation	(NOT)	Reverses the truth value of . (is T	If is F, is T.

		when is F).	
Conjunction	(AND)	True ONLY if AND are both True.	Requires and .
Disjunction	(OR, Inclusive)	True if is True, is True, OR both are True.	True in all cases EXCEPT and .
Exclusive OR	(XOR)	True if EXACTLY one of or is True (not both).	True ONLY if the truth values of and are different.
Conditional	(IF-THEN)	False ONLY if is True (the hypothesis) and is False (the conclusion)—the "broken promise."	True in all cases EXCEPT and .
Biconditional	(IFF)	True ONLY if and have the same truth value (both T or both F).	True when and are logically equivalent.

Book Example (Conjunction): Let be "." (T) Let be "2 is an odd number." (F): " and 2 is an odd number." This is False (F) because is false.

3. Related Conditional Statements (Section 1.1)

These forms are derived from the original conditional statement . The relationship between the Original and Contrapositive is vital for indirect proofs.

Statement	Symbolic Form	Rule	Key Relationship
Original		If , then .	Contrapositive
Converse		If , then .	Inverse
Inverse		If not , then not .	Converse
Contrapositive		If not , then not .	Original

Crucial Point: . This logical equivalence is the foundation of the **Proof by Contraposition** method.

Part 2: Propositional Equivalences (Manipulating Logic)

These concepts allow us to rearrange or simplify logical expressions without altering their core meaning.

4. Tautology, Contradiction, and Contingency (Section 1.3)

These terms describe the nature of a compound proposition based on its resulting truth column.

Term	Simplified Definition	Truth Table Outcome
Tautology	A statement that is always True, regardless of the input truth values.	Final column of all T's .
Contradiction	A statement that is always False, regardless of the input truth values.	Final column of all F's .
Contingency	A statement that is sometimes True and sometimes False.	Final column contains both T's and F's.

Examples:

• Contradiction: (AND not). This is impossible (F).

• Tautology: (OR not). This must always be true (T).

5. Logical Equivalence () (Section 1.3)

Two propositions and are logically equivalent () if they have the same truth value for **all** possible combinations of truth values of their component propositions.

Simplified Explanation: If you build a truth table for and, their final columns will be identical. They are two different ways of stating the same logical concept.

Book Example (De Morgan's Laws):

English Translation: The negation of ("It is raining OR it is cold") is logically the same as ("It is

6. Important Laws of Logic (Section 1.3)

These laws are the "algebra" of logic, used to simplify complex compound propositions.

Law Name	Conjunction (∧) Version	Disjunction (∨) Version
Identity		
Domination		
Idempotent		
Commutative		
Associative		
Distributive		
De Morgan's		
Absorption		

Part 3: Predicates and Quantifiers (Statements with Variables)

This part introduces variables, allowing us to make general statements about groups of objects (domains).

7. Predicates and Propositional Functions (Section 1.4)

A **Predicate**, , is a statement containing one or more variables. It is **NOT** a proposition until you do one of two things:

- 1. **Assign a value** to the variable(s).
- 2. Quantify the variable(s) (using or).

Book Example: Let be the statement " is greater than 3."

- Case 1 (Assignment): is the proposition: "4 is greater than 3." (Truth Value: T)
- Case 2 (Assignment): is the proposition: "2 is greater than 3." (Truth Value: F)

8. Quantifiers (Section 1.4)

Quantifiers turn a propositional function into a full proposition with a fixed truth value.

A. Universal Quantifier ()

The statement means "For all, is true."

- Simplified Rule: True only if is true for every single value in the domain.
- **Simplified Rule:** False if you can find **at least one** value (a **counterexample**) that makes false.

Book Example: , Domain: All real numbers.

• Result: False.

• Counterexample: . , and is False.

B. Existential Quantifier ()

The statement means "There exists an such that is true."

- Simplified Rule: True if you can find at least one value in the domain that makes true.
- Simplified Rule: False only if is false for every single value in the domain.

Book Example: Let be "," Domain: All real numbers.

- Statement: (There exists a real number such that).
- **Result:** False. There is no real number that equals itself plus one.

9. Negating Quantifiers (Section 1.4)

To negate a quantified statement, you flip the quantifier and negate the predicate. This rule is crucial for indirect proofs and logical analysis.

Original Statement	Negation (Equivalence)	Simplified English
		It is not true that all are true is the same as some are false.
		It is not true that some are true is the same as all are false.

Part 4: Nested Quantifiers (Advanced Statements)

Nested quantifiers involve two or more quantifiers working together, often seen in mathematical definitions (like limits or continuity).

10. The Order of Quantifiers (Section 1.5)

The order of quantifiers MATTERS when they are different (and).

Symbolic Form	Simplified Meaning	Truth Value (Example: L(x,y) is "x <y")< th=""></y")<>
	"For every , you can find a corresponding ." (The depends on the).	True. "For every number , there is always a larger number ."
	"There is a single, specific that works for all ." (The is independent of).	False. "There is no single largest number that is greater than every number ."

Key Distinction: When the quantifiers are the same (e.g., or), the order does **not** matter.

Part 5: Rules of Inference (The Logic of Arguments)

This section teaches the formal, valid structures used to move from given premises to a logically sound conclusion.

11. Valid Arguments (Section 1.6)

An **Argument** is a sequence of premises (statements assumed to be true) leading to a conclusion.

- An argument is **valid** if, whenever all the premises are true, the conclusion **must also be true**.
- **Simplified Explanation:** Validity means the structure is perfect. If you start with truth, you are guaranteed to end with truth.

12. Key Rules of Inference

These are the building blocks for constructing a proof:

Rule Name	Symbolic Form (Premises → Conclusion)	Simplified Rule
Modus Ponens		If implies, and is true, then must be true.
Modus Tollens		If implies, and is false, then must be false.

Hypothetical Syllogism	If implies, and implies, then implies. (Chaining implications).
Conjunction	If is true and is true, then is true.
Simplification	If is true, then must be true.

Book Example (Modus Ponens):

- 1. Premise 1 (): "If it snows today, I will not go to class."
- 2. Premise 2 (): "It is snowing today."
- 3. Conclusion (): "Therefore, I will not go to class."

Part 6: Introduction to Proofs (The Goal)

The ultimate goal of this chapter is to apply the logic and rules above to construct mathematical proofs.

13. Direct Proof (Section 1.7)

The most straightforward method to prove a conditional statement .

Structure:

- 1. **Assume is true** (Assume the hypothesis).
- 2. Use definitions, axioms, and logical steps (Rules of Inference) to demonstrate that **must** also be true (Show the conclusion).

Book Example (Proving the sum of two odd integers is even):

Statement to Prove $(p \rightarrow q)$: If x and y are odd integers (p), then x+y is an even integer (q).

- 1. **Hypothesis ():** Assume and are odd integers.
- 2. **Use Definition:** By the definition of an odd integer, we can write and for some integers and.
- 3. Perform Algebra: Consider the sum x+y:
- 4. Show Conclusion (q): Factor out 2:
- 5. **Final Step:** Since and are integers, is also an integer. By the definition of an even integer, any number that can be written as is even. Therefore, is even. **Q.E.D.**

14. Proof by Contraposition (Indirect Proof) (Section 1.7)

Since, you can prove the original statement by proving its logically equivalent contrapositive

instead.

Structure for proving:

- 1. **Assume is true** (Assume the conclusion is false).
- 2. Use a Direct Proof to show that must be true (Show the hypothesis is false).

15. Proof by Contradiction (Indirect Proof) (Section 1.7)

This is the most powerful indirect proof technique, used when a direct approach is too difficult.

Structure for proving a statement :

- 1. **Assume is true** (Assume the statement you want to prove is false).
- 2. Use valid steps and logical laws to derive a **Contradiction** (a statement of the form, which is impossible).
- 3. Since the assumption led to a falsehood (a contradiction), the assumption must be wrong.
- 4. Therefore, the original statement must be true.

By mastering this sequence of 15 concepts—from the fundamental definition of a proposition to the sophisticated technique of proof by contradiction—you have the complete analytical toolkit required for Chapter 1 and the supplementary exercises.