Descriptive Analytics

Understanding Key Statistical Measures and Patterns

What is Descriptive Analytics?

- Descriptive analytics is the process of summarizing historical data to identify patterns.
- Common techniques include central tendency, dispersion, and shape of data distribution.
- Helps businesses understand past behavior and performance.

Measures of Central Tendency

Mean (Average): Sum of all values divided by count.

Formula: Mean = $(\Sigma x) / n$

- Median: Middle value in an ordered list.
- Mode: Most frequently occurring value.

Mean Example

- Values: 5, 10, 15, 20, 25
- Mean = (5 + 10 + 15 + 20 + 25) / 5 = 75 / 5 = 15

Median Example

- Odd Count: 5, 10, 15 \rightarrow Median = 10
- Even Count: 5, 10, 15, $20 \rightarrow Median = (10 + 15)/2 = 12.5$

Mode Example

• Values: 2, 4, 4, 6, 8 \rightarrow Mode = 4 (occurs most often)

Measures of Dispersion

- Minimum (MIN): Smallest value in dataset.
- Maximum (MAX): Largest value in dataset.
- Range: MAX MIN
- Standard Deviation (σ): Measure of spread around the mean.

Formula: $\sigma = \operatorname{sqrt}[\Sigma(xi - \bar{x})^2 / n]$

Standard Deviation Example

- Values: 5, 10, 15
- Mean = 10
- Variance = $[(5-10)^2 + (10-10)^2 + (15-10)^2]/3 = (25+0+25)/3 = 16.67$
- Standard Deviation = √16.67 ≈ 4.08

Understanding Bell Curve

- Normal distribution is symmetric around the mean.
- 68% of data lies within 1 SD, 95% within 2 SDs, 99.7% within 3 SDs.
- Bell-shaped curve is common in naturally occurring datasets.

Bell Curve Characteristics

- Mean = Median = Mode
- Data is symmetrically distributed
- Used to identify probabilities and outliers

Normal Distribution Curve

Outliers in Data

- Outliers are extreme values that differ significantly from others.
- Can affect the mean significantly.
- Must be analyzed to decide if they are errors or valid extremes.

Range in Descriptive Analytics

Range: Difference between the maximum and minimum values in a dataset.

Formula: Range = MAX - MIN

- Indicates the spread of the data.
- Useful for understanding variability in small datasets.
- Example:

Values: 10, 15, 25, 30

Range = 30 - 10 = 20

Data Visualizations in Descriptive Analytics

- Visualizations help communicate patterns and trends clearly.
- Common visualization types include:
 - Bar Graphs Compare quantities across categories
 - Pie Charts Show proportions of a whole
 - Histograms Display frequency distributions
 - Line Graphs Show trends over time
- Choose the right chart to match your data and message.

Data Visualization Techniques

Bar Graphs, Line Graphs, Pie Charts, and Histograms

Bar Graphs

- Bar graphs use rectangular bars to represent data values.
- Best for comparing quantities across discrete categories.
- Bars can be horizontal or vertical.
- Example use cases:
 - Sales by region
 - Survey responses by category

Line Graphs

- Line graphs show trends over time using connected data points.
- Ideal for continuous data like temperature, revenue, or growth.
- Useful for highlighting changes and trends.
- Example use cases:
 - Monthly sales growth
 - Website traffic over weeks

Line Graph Example

Pie Charts

- Pie charts show proportions as slices of a whole.
- Each slice represents a percentage of the total.
- Best used when there are fewer categories.
- Example use cases:
 - Market share by company
 - Budget breakdown by department

Pie Chart Example

Histograms

- Histograms represent frequency distributions of continuous data.
- Data is grouped into bins or intervals.
- Helps visualize the shape of the data distribution.
- Example use cases:
 - Distribution of exam scores
 - Frequency of transaction amounts

Histogram Example

Understanding Pivot Tables

Powerful Data Summarization in Excel and Google Sheets

What is a Pivot Table?

- A pivot table is a tool that allows you to summarize, analyze, explore, and present data.
- It automatically sorts, counts, and totals the data stored in one table.
- Ideal for large datasets where quick insights are needed.

Why Use Pivot Tables?

- Quickly summarize large data sets
- Identify trends and patterns
- Create interactive reports
- Easily compare data between categories

Parts of a Pivot Table

- Rows: Categories to display vertically
- Columns: Categories to display horizontally
- Values: Data to aggregate (sum, average, count)
- Filters: Criteria to limit what data is included

Creating a Pivot Table (Google Sheets)

- 1. Select your dataset
- 2. Go to Data > Pivot table
- 3. Choose destination sheet
- 4. Use editor to set Rows, Columns, Values, and Filters

Common Aggregations

- SUM: Total values in a field
- AVERAGE: Mean of values
- COUNT: Number of entries
- MAX / MIN: Highest or lowest values

Example Use Case

- Dataset: Sales transactions by product and region
- Pivot Table Output:
 - Rows: Product
 - Columns: Region
 - Values: Sum of Sales
- Insight: Identify top-performing products by region

Best Practices

- Clean your data before creating a pivot table
- Use descriptive headers
- Avoid merging cells in your raw data
- Use slicers/filters to drill down into details

Descriptive Statistics with Google Sheets

Analyzing and Summarizing Data Easily in the Cloud

Why Use Google Sheets?

- Free and cloud-based
- Accessible from any device with a browser
- Built-in statistical functions
- Supports charts and pivot tables
- Real-time collaboration

Key Functions in Google Sheets

- =AVERAGE(range) Calculates the mean
- =MEDIAN(range) Finds the middle value
- =MODE(range) Finds the most frequent value
- =STDEV(range) Calculates standard deviation
- =MIN(range), =MAX(range) Find min and max

Example Dataset

- Columns: Product, Region, Sales, CustomerAge
- Apply functions to the Sales column to compute:
 - =AVERAGE(B2:B101)
 - =STDEV(B2:B101)
 - =MAX(B2:B101) MIN(B2:B101) for range

Creating Charts

- Select your data
- Go to Insert > Chart
- Choose appropriate chart type:
 - Bar chart for comparisons
 - Line chart for trends
 - Histogram for frequency
 - Pie chart for proportions

Using Pivot Tables

- Go to Data > Pivot table
- Drag fields into Rows, Columns, and Values
- Use SUM, AVERAGE, or COUNT for aggregation
- Example: Total Sales by Region

Best Practices

- Always clean your data first
- Label all columns clearly
- Use conditional formatting to highlight outliers
- Save copies before making major edits
- Use filters to explore subsets of data