Statistik

Anbei ein Datensatz welcher die Monatsgehälter (in EUR) von 20 Mitarbeitern eines Unternehmens enthält. Es sollen damit die Berechnung grundlegender statistischer Maße wie Mittelwert, Median, Modus, Spannweite, Varianz und Standardabweichung gezeigt werden.

Gehaltsdaten

Mitarbeiter	Gehalt [€]	Mitarbeiter	Gehalt [€]
MA_1	2000	MA_11	3500
MA_2	2100	MA_12	3600
MA_3	2200	MA_13	3800
MA_4	2300	MA_14	4000
MA_5	2400	MA_15	4200
MA_6	2500	MA_16	4500
MA_7	2600	MA_17	5000
MA_8	2700	MA_18	5500
MA_9	2800	MA_19	6000
MA_10	3000	MA_20	12000

Interpretation der statistischen Maße

Mittelwert (Durchschnitt)

Er zeigt den durchschnittlichen Verdienst in diesem Unternehmen. Der Mittelwert wird stark von Ausreißern beeinflusst.

$$Mittelwert = rac{\sum x_i}{n} \ \sum x_i = Summe \ aller \ Geh\"{a}lter$$

 $n = Anzahl\ der\ Personen\ im\ Datensatz$

• 1. Summe aller Gehälter:

$$2000 + 2200 + 2200 + ... + 12000 = 77000 \; EUR$$

• 2. Anzahl der Personen:

$$n = 20$$

• 3. Mittelwert berechnen:

$$Mittelwert = rac{77000}{2} = 3850~EUR$$

Median

Er teilt den Datensatz in zwei Hälften:

Die eine Hälfte der Mitarbeiter verdient weniger, die andere mehr.

Der Median ist robuster gegenüber Ausreißern als der Mittelwert.

- 1. Datensatz sortieren
- 2. Anzahl der Werte feststellen
- 3. Mittleren Werte sind an Stelle 10 und 11

$$Median = rac{3000 + 3500}{2} = 3250~EUR$$

Modus

Der Modus zeigt den häufigsten Wert.

Eine Clusterung in Bereiche kann Sinn machen.

Der Modus ist nützlich für kategorische Daten

- z.B. häufige Antworten bei Umfragen.
- 1. Zählen der Häufigkeit jedes Wertes.
- 2. Der am häufigsten vorkommende Wert ist der Modus.
- 3. Der Wert 2500 EUR kommt 2 mal vor.

Spannweite

Sie gibt an, wie groß der Unterschied zwischen dem höchsten und niedrigsten Wert ist.

Die Spannweite ist ein sehr einfaches Maß für die Streuung.

$$Spannweite = max_{(x_i)} - min_{(x_i)} \ max_{(x_i)} = der~gr\"{o}$$
ßte $Wert~im~Datensatz$

$$min_{(x_i)} = der \ kleinste \ Wert \ im \ Datensatz$$
 $Maximalwert \ (h\"{o}chstes \ Gehalt) = 12 \ 000 \ EUR$

$$Minimal wert \ (niedrigstes \ Gehalt) = 2\ 000 \ EUR$$

$$Spannweite = 12\ 000 - 2\ 000 = 10\ 000 \ EUR$$

Varianz

Sie misst die durchschnittliche quadratische Abweichung vom Mittelwert.

$$Varianz = rac{1}{n} \sum_{i=1}^n {(x_i - ar{x})^2}$$

- 1. Mittelwert berechnen
- 2. Abweichung jedes Wertes zum Mittelwert berechnen
- 3. Abweichungen quadrieren (damit werden sie positiv)
- 4. Summe bilden
- 5. durch die Anzahl der Werte dividieren

Standardabweichung

Die Standardabweichung misst die **durchschnittliche Abweichung der Werte vom Mittelwert** in einem Datensatz.

Sie zeigt an, wie stark die einzelnen Werte um den Mittelwert streuen.

- Je größer die Standardabweichung, desto weiter liegen die Werte auseinander.
- Eine kleine Standardabweichung bedeutet, dass die Werte eng um den Mittelwert gruppiert sind.

$$Standardabweichung = \sqrt{rac{1}{n}\sum_{i=1}^{n}{(x_i - ar{x})^2}}$$

Statistische Maße

Maß	Wert	
Mittelwert	3840 EUR	
Median	3250 EUR	
Modus	2500 EUR	
Spannweite	10000 EUR	
Varianz	5042526 EUR	
Standardabweichung	2245 EUR	

Diagramm

