Unir 4

Turning Effects of Force

Sr. No.	Questions	A	В	С	D
1	A particle is simultaneously acted upon by two forces of 4 and 3 newtons. The net force on the particle is:	1 N	between 1 <i>N</i> and 7 <i>N</i> ✓	5 <i>N</i>	7 N
2	A force F is making an angle of 60° with x - $axis$. Its y - $component$ is equal to:	F	F sin 60°√	F cos 60°	F tan 60°
3	Moment of force is called:	moment arm	couple	couple arm	torque√
4	If F_1 and F_2 , are the forces acting on a body and τ is the torque produced in it, the body will be completely in equilibrium, when:	$\sum F = 0$ and $\sum au = 0$ 🗸	$\sum \!\! F = 0$ and $\sum \!\! au eq 0$	$\sum F eq 0$ and $\sum au = 0$	$\sum F eq 0$ and $\sum au eq 0$
5	A Shopkeeper sells his articles by a balance having unequal arms of the pans. If he puts the weights in the pan having shorter arm, then the customer:	loses√	gains	neither loses nor gains	not certain
6	A man walks on a tight rope. He balances himself by holding a bamboo stick horizontally. It is an application of:	law of conservation of momentum	Newton's second law of motion	principle of moments√	Newton's third law of motion
7	In stable equilibrium the centre of gravity of the body lies:	at the highest position	at the lowest position√	at any position	outside the body
8	The centre of mass of a body:	lies always inside the body	lies always outside the body	lies always on the surface of the body	may lie within, outside or on the surface√
9	A cylinder resting on its circular base is in:	stable equilibrium√	unstable equilibrium	neutral equilibrium	none of these
10	Centripetal force is given by:	rF	$rF\cos\theta$	$\frac{mv^2}{r}$	$\frac{mv}{r}$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hira-science-academy.github.io

Page **1** of **1**