Gomoku Al Game - Project Report

Overview

This project is a Java-based implementation of a Gomoku (Five in a Row) Al game that pits a human player against an Al opponent. The game features a fully functional GUI built with Swing and uses classical Al search techniques to make competitive decisions.

Al Search Algorithm

The core AI uses the **Minimax algorithm** with **alpha-beta pruning** for optimization. This allows the AI to simulate possible future moves and prune away branches of the search tree that don't influence the final decision, improving performance without sacrificing accuracy.

- MiniMaxAI (not shown above) is responsible for recursive search and move selection.
- The search depth is adjustable (minimaxDepth), and the game defaults to a center-first move when the AI starts.

Evaluation Function

A custom evaluation function scores intermediate board states. It detects potential rows of 2, 3, or 4 aligned stones (horizontally, vertically, or diagonally), favoring moves that build toward five in a row or block the opponent. The evaluation encourages balanced offensive and defensive play and differentiates between immediate threats and longer-term strategies.

Early Stopping Mechanism

To ensure responsiveness, especially when deeper searches become computationally intensive, an **early stopping mechanism** is implemented. This is often handled by:

- Limiting the depth (minimaxDepth)
- Using System.currentTimeMillis() checks (or similar time budget) in the MiniMaxAI logic to terminate search early and return the best-known move using the evaluation score.

Move Generation Optimization

Instead of exploring the entire board, the AI uses **localized move generation**, considering only empty positions adjacent to existing stones (see generateMoves() in Board.java). This drastically reduces the branching factor and focuses computation on relevant areas.

Graphical User Interface (GUI)

The game includes an interactive, aesthetic GUI via BoardGUI.java:

- Visual grid board with stones
- Real-time updates as players move
- Feedback messages like "YOU WON!" or "COMPUTER WON!"

• A "Thinking..." status display when AI is calculating

Version Control

The project was tracked using **Git**, maintaining a structured history of changes, debugging iterations, and feature implementations.

Conclusion

This Gomoku AI game fulfills all specified requirements, combining a classic AI approach with efficient pruning, real-time visual feedback, and a clean interface. The modular code design ensures future improvements (like increasing depth, tuning evaluation weights, or enhancing GUI) can be easily integrated.