2022년 IoT기반 스마트 솔루션 개발자 양성과정

Embedded Application

9-AD Converter

담당 교수 : 윤 종 이 010-9577-1696 ojo1696@naver.com https://cafe.naver.com/yoons2022

충북대학교 공동훈련센터

계량원리

1g의 분동을 추가하여 균형을 이룰때 분동의 수량을 세어봄

- 전자식 계량기는 아날로그 값을 전압값으로 변환
 - 예) 심박->전압신호, 무게->전압신호, 소리->전압신호
- 미지의 값이 큰 값일수록 변환시간이 큼

😺 충북대학교 공동훈련센터

아날로그-디지털 변환기

```
Cnt = 0;
While (Sig=<Cnt) {
Cnt ++;
}
AD Value = Cnt;
```


A/D 변환기 용어

- A/D Converter
 - 아날로그 신호를 디지털 신호로 변환하는 장치
- 변화시간
 - A/D변환을 수행하는데 필요한 시간
 - 초당 샘플링속도(Sampling Rate)로 표시
- 분해능(Resolution)
 - 아날로그값을 디지털로 변환하는 최소 변환눈금
 - N비트: 아날로그 전체 범위값을 2^N으로 등분
- 양자화(quantization)
 - 연속적으로 보이는 양을 자연수로 셀 수 있는 양으로 재해석하는 것
- 샘플링 정리(sampling theorem)
 - 표본화정리, 나이퀴스트-섀넌 표본화 정리
 - 표본화 주파수가 신호의 대역의 두 배 이상이라면 표본으로부터 연속 시간 기저 대역 신호를 완전히 재구성할 수 있다.

♥ 충북대학교 공동훈련센터

A/D 변환기의 개요

- 아날로그-디지털 변환기(Analog-Digital Converter, ADC)는 아날로그 신호를 디지털 신호로 변환하는 소자.
- 전압, 전류, 온도, 습도, 유량 등의 각종 센서들로부터 입력되는 연속적인 아날로그 신호를 디지털 신호로 변환 하여 처리.
- 변환된 디지털 신호는 계단 모양으로 근사화되고, 2진 코드로 양자화(quantization)됨.

☞ 충북대학교 공동훈련센터

A/D 변환기의 동작

Analog Input : 입력 신호원

Reference Voltage : 기준전압

• A/D 변환기의 동작범위

Comparator : 비교기

• D/A 변환기의 값과 입력 신호의 값을 비교

Logic / Latch : 비교기 신호값에 따라 D/A 값을 1씩 증가

입력신호의 값과 D/A 값이 같으면 Latch 값이 입력 신호의 A/D 변환값

A/D 컨버터의 특징

- 10-bit 분해능
- 0.5 LBS 적분 비선형성(Integral Non-linearity)
- -2~+2 LSB 정확도
- 13us 260us 변환시간
- 15 kSPS의 최대 분해능
- 8개 멀티플랙스된 단일 입력 채널
- 7개 차동 입력 채널
- 10배, 200배의 증폭률을 가진 2개 차동 입력 채널
- ADC 결과 정보를 읽기 위한 선택적 좌 정렬
- 0 ~ VCC ADC 입력 전압 범위
- 선택적인 2.56V ADC 참조 전압
- Free Running 또는 Single Conversion 모드
- ADC 변환 완료 인터럽트
- Sleep Mode Noise Canceler

A/D Port 및 구조

A/D 변환값 구하기

- 비례식을 이용하여 구함
 - 기준전압 : Vref = 5V
 - 분해능 : Res 10bit => 1024 (최대값=1023)
 - 전압 입력값: Vin (센서로 부터 입력 전압)

Vref : Res = Vin : ADvalue ADvalue = (Vin * Res) / Vref

• 예) 센서로 부터 2.5V의 전압이 입력될때 AD변환값은?

ADMUX

Bit 7:6 - REFS1:0: Reference Selection Bits

	_	
REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

- Bit 5 ADLAR: ADC Left Adjust Result
- ADLAR에 "1"로 설정했을 때, 좌 정렬 됨. 반대로 기준 정렬은 우정렬.
- Bit 4:0 A/D Port Selection

A/D MUX Selection

MUX4:0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000(1)		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010(1)		ADC0	ADC0	200x
01011		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101		ADC3	ADC2	10x
01110		ADC2	ADC2	200x
01111		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x
10010	N/A	ADC2	ADC1	1x
10011		ADC3	ADC1	1x
10100		ADC4	ADC1	1x
10101		ADC5	ADC1	1x
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	1x
11000		ADC0	ADC2	1x
11001		ADC1	ADC2	1x
11010		ADC2	ADC2	1x
11011		ADC3	ADC2	1x
11100		ADC4	ADC2	1x
11101		ADC5	ADC2	1x
11110	1.23V (V _{BG})	N/A		
11111	0V (GND)			

ADCSRA

Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- ADC 제어/상태 레지스터 A(ADC Control and Status Register A)
 - Bit 7 ADEN: ADC Enable
 - Bit 6 ADSC: ADC Start Conversion
 - Bit 5 ADFR: ADC Free Running Select
 - Bit 4 ADIF: ADC Interrupt Flag
 - Bit 3 ADIE: ADC Interrupt Enable
 - Bits 2:0 ADPS2:0: ADC Prescaler Select Bits

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

ADCL:H

ADCL and ADCH - ADC 데이터 레지스터(The ADC Data Register)

ADLAR = 0:

Bit	15	14	13	12	11	10	9	8	
	-	-	-	-	-	-	ADC9	ADC8	ADCH
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	-13
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADLAR = 1:

Bit	15	14	13	12	11	10	9	8	
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
	ADC1	ADC0	-	-	-	-	-	-	ADCL
	7	6	5	4	3	2	1	0	-
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADC9:0: ADC Conversion Result

A/D 변환 오차 1

< 오프셋 오차 >

- n비트 분해능을 갖는 A/D 변환기가 GND~V_{REF} 범위의 단극성 아날로그 입력 신호를 변환한다면 디지털 값은 0~2ⁿ⁻¹ 범위로 나타난다.
- 오프셋 오차는 A/D 변환 결과가 이상적인 디지털 값에서 일정한 양만큼 벗어나 있는 양을 의미하며, 이는 디지털 값이 최소값인 0일 때의 아날로그 값으로 표현.
- 변환된 디지털 값에서 일정값을 빼거나 더함으로써 소프트웨어에 의해 쉽게 보정.

< 이득 오차 >

- 이득 오차는 A/D 변환 결과가 이상적인 값에서 일정 한 비율만큼 벗어나 있는 양을 의미하며, 이는 디지털 값이 최대인 경우의 아날로그 입력과 최대 아날로그 입력인 V_{REF} 값의 차이로 표현.
- 변환된 디지털 값에서 일정값을 곱하거나 나눔으로
 써 소프트웨어에 의해 쉽게 보정.

충북대학교 공동훈련센터

A/D 변환 오차 2

< 비선형 오차 >

- 비선형 오차는 오프셋 오차나 이득 오차를 보상 한 후에 디지털 값이 이상적인 값에서 가장 크게 벗어나는 양으로 정의.
- 이러한 오차는 A/D 변환기의 사용자는 보정하기 어렵다.

< 차동 비선형 오차 >

- 차동 비선형 오차는 1비트의 변화를 발생하는 아 날로그 값이 이상적인 경우에서 가장 크게 벗어 나는 양으로 정의.
- 이러한 오차는 A/D 변환기의 사용자는 보정하기 어렵다.

A/D 변환 회로 설계

- A/D 변환기는 디지털 회로의 영향을 받지 않고 잡음에 대하여 보다 안정적인 동작을 수행할 수 있도록 디지털 전원과 별도로 아날로그 회로 전원 입력 단자(AVCC)와 기준 전원 입력 단자(AREF)를 가지고 있음.
- A/D 변환기의 아날로그 입력 신호선은 가능한 짧게 연결하고,
 가능하면 GND 패턴을 신호선의 양쪽에 배선.
- AVCC 단자에는 디지털 전원 VCC를 C 전원필터로 안정화시 켜 인가.
- 잡음에 대해 극도의 안정적인 A/D 변환이 필요한 경우에는 휴면 모드 또는 ADC 잡음 감소 모드에서 A/D 변환기를 동작.
- A/D 포트가 I/O 포트로 사용되고 있다면, A/D 변환이 수행되고 있는 동안에는 논리 상태를 스위칭하지 않는 편이 좋음.

< A/D변환기의 아날로그 전원 처리 >

충북대학교 공동훈련센터

CdS 센서

- CdS : 황화(S) 카드늄(Cd) 셀
 - 빛의 세기에 따라 도전율(저항값) 변화 : 광도전효과

🐯 충북대학교 공동훈련센터

Photo TR

- 공핍층 부근에 빛을 비추면 조도에 비례하여 광전류가 흐르는 수광소자
- 바이폴라 트랜지스터 구조로써 에미터(Emitter)와 컬렉터(Collector) 사이의 전류를 많이 흐르게 하거나 적게 흐르게 하는 역할을 베이스(Base) 단자가 수행
- 광선의 양이 많으면 베이스에서 생성되는 전하가 많아져서 베이스 전류가 많이 공급되는 효과가 발생하고, 컬렉터에서 에미터로 흐르는 전류의 양을 크게 만드는 효과를 가져옴.

Sensor Module

Sensor Module Circuit

Ex-1 : 조도 센서

• CdS 센서와 Photo TR을 이용하여 빛 밝기를 측정하자

Ex-1: Wiring

Ex-1: Define

```
#define F CPU 14745600UL
#include <avr/io.h>
#include <util/delay.h>
unsigned char ASCII[17]={0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x20};
unsigned char DISP[17]={'C','d','S','=','0','0','0','0','','P','t','=','0','0','0','0'};
unsigned int CdS=0;
unsigned int PTR=0;
                                         void Hex2ASC(int tCdS, int tPt){
                                           int tmpNo=tCdS;
                                           DISP[4]=ASCII[tmpNo/1000];
                                           tmpNo %=1000;
                                           DISP[5]=ASCII[tmpNo/100];
                                           tmpNo %=100;
                                           DISP[6]=ASCII[tmpNo/10];
                                           DISP[7]=ASCII[tmpNo % 10];
                                           tmpNo=tPt;
                                           DISP[12]=ASCII[tmpNo/1000];
                                           tmpNo %=1000;
                                           DISP[13]=ASCII[tmpNo/100];
                                           tmpNo %=100;
                                           DISP[14]=ASCII[tmpNo/10];
                                           DISP[15]=ASCII[tmpNo % 10];
```

Ex-1: sub

```
unsigned int ADConv( unsigned char Channel ) {
 ADMUX = (Channel & 0x03);
 ADCSRA = (1<<ADEN) | (1<<ADSC) | (1<<ADPS1) | (1<<ADPS0);
 _delay_us(100);
 while( !ADCSRA & 0x10 );
 return ADC;
void SetupCPU( ){
 DDRF=0xf0; PORTF=0xdf; //FND Digit & ADC
}
```

Ex-1: main

```
int main(void)
    SetupCPU();
    LCD_Init();
   write_Command(0x01);_delay_ms(9); /* Clear Display */
   write_Command(0x80);_delay_us(220); /* 1 Line Address */
    printString ( " IoT Smart SW " );
    write_Command(0xC0);_delay_us(220); /* 2 line Address */
    printString ( DISP );
   _delay_ms(500);
   while (1)
        Hex2ASC(CdS,PTR);
        write_Command(0xC0);_delay_us(220);
        printString ( DISP );_delay_ms(500);
        PTR=ADConv(0);
       CdS=ADConv(1);
    }
}
```

Ex-2: 조도 센서

- CdS 센서와 Photo TR을 이용하여 빛 밝기를 측정하자
- 설정값 이하가 되면 LED를 켜자

		ı	0	Т		S	m	а	r	t		S	W		
С	d	S	=	1	0	2	4		P	t	=	1	0	2	4

Ex-2: Wiring

Ex-2: Program

