Chapter 1

Fibre bundles and Classifying Spaces

Definition 1. Let B be a pointed topological space. A (locally trivial) fibre bundle over B consists of a map $p: E \to B$ such that for all $b \in B$ there exists an open neighbourhood U of b for which there is a homeomorphism $\phi: p^{-1}(U) \to p^{-1}(*) \times U$ satisfying

$$\pi'' \circ \phi = p\big|_U$$

where π'' denotes projection onto the second factor.

In this case we say that B is the base space of the fibre bundle, X the total space, p^{-1} the fibre, and p the projection. A bundle map of fibre bundles consists of maps between the total spaces and base spaces which form a commutative square with the bundle projections.

Definition 2. Let G be a topological group and B a topological space. A principal G-bundle over B consists of a fibre bundle $p: X \to B$ together with an action $G \times X \to X$ such that:

- 1. the map $G \times X \to X \times X$ given by $(g, x) \mapsto (x, g \cdot x)$ maps $G \times X$ homeomorphically to its image;
- 2. B = X/G and $p: X \to X/G$ is the quotient map;
- 3. for all $b \in B$ there exists a open neighbourhood U of b such that $p: p^{-1}(U) \to U$ is G-bundle isomorphic to the trivial bundle π ": $G \times U \to U$. That is, there exists a homeomorphism $\phi: p^{-1}(U) \to G \times U$ satisfying $p = \pi$ " $\circ \phi$ and $\phi(gx) = g\phi(x)$, where g(g', u) = (gg', u).

Let ξ be a principal G-bundle $p: X \to G$. Given a map $f: B' \to B$, the pullback yields a principal G-bundle over B', written $f^*(\xi)$, and the pullback square becomes a bundle map from $f^*(\xi)$ to ξ .

Definition 3. A (numerable) principal G-bundle γ over a pointed space \tilde{B} is called a universal G-bundle if

- 1. for any (numerable) principal G-bundle ξ there exists a map $f: B \to \tilde{B}$ from the base space B of ξ to the base space of γ such that $\xi = f^*(\gamma)$;
- 2. whenever f,h are two pointed maps from some space B into the base space \tilde{B} of γ such that $f^*(\gamma) \cong h^*(\gamma)$ then $f \simeq h$.

In other words, a numerable principal G-bundle γ with base space \tilde{B} is a universal G-bundle if, for any pointed space B, pullback induces a bijection from $[B, \tilde{B}]$ to isomorphism classes of numerable principal bundles over B.

Let G be a topological group. Let EG be the infinite join $EG = \lim_{\overrightarrow{n}} G^{*n}$. Explicity, as a set

$$EG = \{(g_0, t_0, g_1, t_1, \dots, g_n, t_n, \dots) \in (G \times I)^{\infty}\}/\sim$$

such that at most finitely many t_i are nonzero, $\sum t_i = 1$, and

$$(g_0, t_0, g_1, t_1, \dots, g_n, 0, \dots) \sim (g_0, t_0, g_1, t_1, \dots, g'_n, 0, \dots).$$

A G-action on EG is given by

$$g \cdot (g_0, t_0, g_1, t_1, \cdots, g_n, t_n, \cdots) = (gg_0, t_0, gg_1, t_1, \cdots, gg_n, t_n, \cdots).$$

Let BG = EG/G. We also write $E_nG = G^{*(n+1)}$ and $B_n(G) = E_nG/G$, referring to the inclusions $B_0G \hookrightarrow B_1G \hookrightarrow B_2G \hookrightarrow \ldots B_nG \hookrightarrow \ldots$ as the Milnor filtration on BG. Since homotopy classes of maps into BG classify principal G-bundles, BG is called the classifying space of the group G.

Theorem 1. For every topological group G, the quotient map $EG \to BG$ is a (numerable) G-bundle and this bundle is a universal G-bundle.

Definition 4. Let $p: P \to B$ be a principal G-bundle. The gauge group Aut(P) of P is the subspace of all G-equivariant maps $u \in Map(P, P)$ such that the following diagram

$$P \xrightarrow{u} P$$

$$\downarrow^{p} \qquad \downarrow^{p}$$

$$B \longrightarrow B$$

commutes.

Definition 5. Let ξ be a principal SO(n)-bundle over an oriented manifold B. A spin structure on ξ is a pair (η, F) consisting of

- 1. A principal Spin(n)-bundle η over B
- 2. A map $f: E(\eta) \to E(\xi)$ such that the following diagram is commutative.

$$E(\eta) \times Spin(n) \longrightarrow E(\eta) \longrightarrow B$$

$$\downarrow^{f \times \lambda} \qquad \qquad \downarrow^{f} \qquad \parallel$$

$$E(\eta) \times SO(n) \longrightarrow E(\xi) \longrightarrow B$$

Here λ denotes the standard homomorphism from Spin (n) to SO(n).

Chapter 2

The topology of the gauge group

Proposition 1. Let BG be the classifying space for G. Then in homotopy theory

$$B\mathscr{G}(P) = \operatorname{Map}_f(M, BG).$$

The subscript f denotes the component of Map(M, BG) which contains the map f that induces P.

Proof. Let

$$G \to EG \to BG$$

be a universal bundle for G, and consider the space $\operatorname{Map}(P, EG)$ of G-equivariant maps of P to EG. The group $\mathscr{G}(P)$ now acts naturally on this space by composition, to yield the principal fibring

$$\mathscr{G}(P) \longrightarrow \operatorname{Map}(P, EG) \longrightarrow \operatorname{Map}_f(M, BG).$$

If BG is paracompact and locally contractible, π will be a locally trivial principal fibring. The total space $\operatorname{Map}_f(P, EG)$ is contractible so that this is a universal bundle for $\mathscr{G}(P)$, and

$$B\mathscr{G}(P) = \operatorname{Map}_f(M, BG)$$

as was asserted.

$$\vee_{i=1}^{t} (S^3 \wedge S^4) \vee (\vee_{j=1}^{d-t} P^4(p^r))$$
 (2.1)

Chapter 3

Counting homotopy types of gauge groups

3.1 Samelson and Whitehead products

Let G be a homotopy associative H-space with multiplication $\mu: G \times G \to G$ and homotopy inverse $\iota: G \to G$. We write

$$\mu(x,y) = xy$$
 and $\iota(x) = x^{-1}$

Then we write the commutator map $[,]: G \times G \to G$ as

$$[x,y] = \mu(\mu(\mu(X,y),\iota(x)),\iota(y)) = ((xy)x^{-1})y^{-1}$$

or if we ignore the homotopy associativity, as

$$[x, y] = xyx^{-1}y^{-1}$$

Since it is nullhomotopi con $G \vee G$ the commutator map factors as follows:

$$G\times G\to G\wedge G\stackrel{\overline{[\ ,\]}}{\longrightarrow}G.$$

IF $f: X \to G$ and $g; Y \to G$ are maps, then the commutator

$$C(f,g) = [\;,\;] \circ (f \times g) = fgf^{-1}g^{-1}: X \times Y \to G \times G \to G.$$

factors up to homotopy through the map

$$[f,g] = \overline{[\ ,\]} \circ (f \wedge g) : X \wedge Y \to G \wedge G \to G$$

Definition 6. The map $[f,g]:X\wedge Y\to G$ is called the Samelson product of $f:X\to G$ and $g:Y\to G$.

This map is well defined up to homotopy since the sequence of cofibrations

$$X \lor Y \to X \times Y \to X \land Y \to \Sigma X \lor \Sigma Y \to \Sigma (X \times Y)$$

Proposition 2. The Samelson product vanishes in the range G is homotopy commutative.

Samelson products are natural with respect to maps $f_1: X_1 \to X$, $g_1: Y_1 \to Y$, and H-maps of H-spaces $\psi: G \to H$, that is

$$[\psi \circ f \circ f_1, \psi \circ g \circ g_1] \simeq \psi \circ [f, g] \circ (f_1 \wedge g_1).$$

Given maps $\bar{f}: \Sigma X \to Z$, $\bar{g}: \Sigma Y \to Z$ with respective adjoints

$$f: X \xrightarrow{\Sigma} \Omega \Sigma X \xrightarrow{\Omega \bar{f}} \Omega Z, \qquad g: X \xrightarrow{\Sigma} \Omega \Sigma X \xrightarrow{\Omega \bar{g}} \Omega Z$$

we define the Whitehead product $[\bar{f}, \bar{g}]_w$ to be the adjoint of the Samelson product [f, g], namely,

Definition 7. The Whitehead product $[\bar{f}, \bar{g}]_w$ is the compositon

$$\Sigma(X \wedge Y) \stackrel{\Sigma[f,g]}{\to} \Sigma\Omega Z \stackrel{e}{\to} Z$$

As with Samelson products, Whitehead products are natural with respect to maps.

Theorem 2 (Crabb and Sutherland Ref). Let K be a connected finite complex and let G be a compact connected Lie group. As P ranges over all principal G-bundles with base K, the number of homotopy types of $\mathcal{G}(P)$ is finite.

Proposition 3 (Spreafico Ref). The homotopy type of the gauge group of all the principal SU(2)-bundles over S^n , with n = 7, 8, is the same and is the one of the trivial bundle, namely $B\mathscr{G}(S^n) \sim \Omega_0^n SU(2) \times SU(2)$.

3.2 Poincare Duality

In this section I will present the background to understand the construction of the topological spaces I will work with in the next sections. To doing so I will have to give a brief introduction to the concepts required to state the Poincare Duality Theorem.

Definition 8. A manifold of dimension n or an n-manifold is a Hausdorff space M in which each point has an open neighbourhood homeomorphic to \mathbb{R}^n .

The dimension of M is characterized by the fact that for $x \in M$, the homology group $H_i(M, M - \{x\})$ is nonzero only for i = n. A compact manifold is called closed to distinguish it from the more general notion of a compact manifold with boundary.

Definition 9. A local orientation of M at a point x is a choice of generator μ_x of the infinite cyclic group $H_n(M, M - \{x\})$.

To simplify notation I will write $H_n(X \mid A)$ for $H_n(X, X - A)$.

Definition 10. An orientation of an n-dimensional manifold M is a function $x \mapsto \mu_x$ assigning to each $x \in M$ a local orientation $\mu_x \in H_n(M \mid x)$, satisfying the local consistency condition that each $x \in M$ has a neighbourhood $\mathbb{R}^n \subset M$ containing an open ball B of finite radius about x such that all the local orientations μ_y at points $y \in B$ are the images of one generator μ_B of $H_n(M \mid B) \cong H_n(\mathbb{R}^n \mid B)$ under the natural maps $H_n(M \mid B) \to H_n(M \mid y)$.

If an orientation exists for M, then M is called orientable. One can generalise the definition of orientation by replacing the coefficient group $\mathbb Z$ by any commutative ring R with identity. The orientability of a closed manifold is reflected in the structure of its homology, according to the following results.

Theorem 3. Let M ne a closed connected *n*-manifold. Then:

- a) If M is orientable, the map $H_n(M;R) \to H_n(M \mid x;R) \cong R$ is an isomorphism for all $x \in M$.
- b) If M is not orientable, the map $H_n(M;R) \to H_n(M \mid x;R) \cong R$ is injective with image $\{r \in R \mid 2r = 0\}$ for all $x \in M$.
- c) $H_i(M; R) = 0 \text{ for } i > n.$

Definition 11. A fundamental class for a closed orientable manifold M with coefficients in R is an element of $H_n(M;R)$ whose image in $H_n(M \mid x;R)$ is a generator for all x.

Definition 12. For an arbitrary space X and coefficient ring R, define an R-bilinear cap product \frown : $C_k(X;R) \times C^l(X;R) \to C_{k-l}(X;R)$ for $k \geq l$ by setting

$$\sigma \frown \varphi = \varphi(\sigma \mid [v_0, \dots, v_l]) \sigma \mid [v_l, \dots, v_k]$$

for $\sigma: \Delta^k \to X$ and $\varphi \in C^l(X; R)$.

Theorem 4 (Poincare duality theorem). Let M be a closed and oriented n-manifold with fundamental class $[M] \in H_n(M; R)$. The map $D: H^k(M; R) \to H_{n-k}$ defined by

$$D(\alpha) = [M] \frown \alpha$$

is an isomorphism for all k.

3.3 Classification of 2-connected 7-manifolds

Definition 13. A homologically graded spectral sequence $E = \{E^r\}$ consists of a sequence of \mathbb{Z} -bigraded R modules $E^r = \{E^r_{p,q}\}_{r\geq 1}$ together with differentials

$$d^r: E^r_{p,q} \to E^r_{p-r,q+r-1}$$

such that $E^{r+1} \cong H_*(E^r)$.

Definition 14. A cohomologically graded spectral sequence $E = \{E_r\}$ consists of a sequence of \mathbb{Z} -bigraded R modules $E_r = \{E_r^{p,q}\}_{r\geq 1}$ together with differentials

$$d^r: E_r^{p,q} \to E_r^{p+r,q-r+1}$$

such that $E_{r+1} \cong H_*(E_r)$.

Definition 15. Let D and G be modules. An exact couple is an exact triangle

A spectral sequence $\{E_r\}$ is obtained from an exact couple by defining $E_1 = G$, $d_1 = jk$ and defining the derived couple

where $E_2 = H_*(E_1)$ with respect to d_1 , i' is induced by i, k' is induced by k, and $j'(i(a)) = \{j(a)\}$. One can show these maps are well defined and the derived couple will again be exact couple. This process leads to an inductive definition of a spectral sequence.

Let C be a torsion-free chain complex over \mathbb{Z} . From the short exact sequence of groups

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z}$$

we obtain a short exact sequence of chain complexes

$$0 \longrightarrow C \longrightarrow C \longrightarrow C \otimes \mathbb{Z}/p\mathbb{Z}.$$

By the usual argument the homology of

$$H_*(C) \xrightarrow{i_*} H_*(C)$$

$$H_*(C \otimes \mathbb{Z}_n)$$

$$(3.1)$$

Definition 16. The spectral sequence associated with the exact couple (3.1) is called the Bockstein spectral sequence of $C \mod p$.

Let M be a closed 2-connected manifold. The non-zero homology groups of M are $H_0(M) \cong \mathbb{Z}$, $H_3(M)$, $H_4(M)$, $H_7(M) \cong \mathbb{Z}$ where by duality $H_3(M)$ is free abelian of the same torsion-free rank as $H_3(M)$. The cohomology groups are given by Poincare duality, thus $G = H_3(M) \cong H^4(M)$. Let T denote the torsion group subgroup of G. Thus we have a nonsingular bilinear map

$$b: T \times T \to S$$

where $S = \mathbb{Q}/\mathbb{Z}$ defined as follows

3.4 Principal SU(n)-bundles over n-manifolds, n=7,8

We start with analysing the case of a 8-manifold since the CW-complex structure is easier to handle. Analysing the 8-manifold case will be a first attempt to look into high dimensional manifolds.