科目名	情報システム入門	Y0071	基盤	/ 自然科学領域	単位数	2	
担当教員	田川 憲男、西川 清史、渋谷 正弘	後期		月曜日		1限	
科目ナンバリング 2018年度以降入学生対象	GCC-108-1:全学共通科目						
授業方針・テーマ	学校内、企業、企業間および世界中で人々の生活、安全、安心、健康の支援に情報システムが用いられている。本講義では、情報システムにおける主要技術について、情報の流れに沿い、情報の収集・保存・分析・伝達などにポイントを絞り学ぶ。						
習得できる知識・能力や 授業の目的・到達目標	情報システムの基本概念や基礎知識について学び,広くは日常生活を支える様々な情報システムの機能・ 役割を理解し、説明できるようになる(総合的問題思考力,論理的思考力). 情報システムに関する技術情報を収集し,分析・活用することができる(情報通信技術活用能力). データベース構築,機械学習の実現に必要な基礎理論を獲得できる.						
授業計画・内容授業方法	 【授業計画・内容】 第1回 シラバス確認、ガイダンス 第2回 情報システムとその役割 第3回 情報システムを設計しよう! 第4回 DX (Digital Transformation) と基盤技術 第5回 データベースの基礎 第6回 データベースを設計する 第7回 データベースを操作する 第8回 前半のまとめ 第9回 機械学習の基礎 第10回 教師あり機械学習(回帰問題) 第11回 教師あり機械学習(分類問題)と教師なし学習 第12回 ニューラルネットワークの基礎 第13回 畳み込みニューラルネットワークの構成 第14回 畳み込みニューラルネットワークの応用 第15回 後半のまとめ 【授業方法】3名の教員によるオムニバス形式で講義を行う。 						
授業外学習	講義中あるいはkibacoで指示される自習用課題などを参考に,講義内容の復習を行うこと.						
テキスト・参考書等	参考書: ミック,木村明治著,「おうちで学べるデータベースのきほん」(翔泳社、2015年) 杉山将著,「イラストで学ぶ機械学習」(講談社,2016年) Francois Chollet著, 株式会社クイープ訳,「Pythonによるディープラーニング」(マイナビ出版、202 2年)						
成績評価方法	レポート・講義時間中に行うテスト 80%,平常点(授業態度・提出物の有無等)20%						
質問受付方法 (オフィスアワー等)	質問については講義の際か,メールで受け付けます. 【連絡先】 tagawa@tmu.ac.jp						
特記事項 (他の授業科目との関連性)	特別な予備知識は前提としませんが,確率統計や線形代数の基礎知識を説明に用いることはあるので,必要に応じて自習してください. 状況によっては,テストはレポートに変更する場合があります. 障害のある学生に対しては個別に対応しますが、データベースシステムの操作などにおいては、パソコン画面の操作と確認が多く、作業上難しい場合もあるので留意すること。具体的な対応は、障害の種類・程度によって学生と相談の上で決めます。						