

Exact Methods: Value and Policy Iteration

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email : easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

September 6, 2021

Overview

Review

2 Value Iteration

Policy Iteration

Review

Optimiality in Policies

▶ A partial ordering over policies is given by

$$\pi \ge \pi'$$
, if $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in \mathcal{S}$

- ▶ Given an MDP, under mild assumptions, there exists an optimal policy π_* that is better than or equal to all other policies.
- ▶ All optimal policies achieve the optimal state value function $V_*(s) = V^{\pi_*}(s)$ and optimal action value function $Q_*(s,a) = Q^{\pi_*}(s,a)$
- ▶ Solving an MDP means finding a policy π_* such that

$$\pi_* = \operatorname*{arg\,max}_{\pi} \left[\mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right) \right]$$

▶ Solving an MDP means finding an optimal value function V_* or optimal action value function Q_* or optimal policy π_*

Bellman's Optimality Equations

▶ Optimality equation for state value function

$$V_*(s) = \max_{a} Q_*(s, a) = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

▶ Optimality equation for action value function

$$Q_*(s, a) = \left[\sum_{s' \in S} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

- \triangleright Optimality equations are non-linear system of equations with n unknowns and n non-linear constraints (i.e., the max operator).
- ▶ Iterative methods are typically used to solve for optimal state and action value functions

Dynamic Programming

A method to solve complex problem by

- ▶ Break the complex problem into sub-problems
- ► Solve sub-problems
- ► Combine solutions of sub-problems

Problems with **Optimal substructures** and **Overlapping sub-problems** can be solved using dynamic programming

▶ The recursive decomposition given by Bellman equations of (action) value functions pave way to solve an MDP using dynamic programming

Value Iteration

Value Iteration

- ▶ Value iteration is an <u>iterative</u> algorithm for finding $V_*(s)$, $\forall s \in \mathcal{S}$
- ▶ Once $V_*(s)$, $\forall s \in \mathcal{S}$ is found, then optimal policy π_* can be found using the greedy evaluation of the $V_*(s)$

Value Iteration : Algorithm

Algorithm Value Iteration

- 1: Start with an initial value function $V_1(\cdot)$;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: for $s \in \mathcal{S}$ do
- 4: Calculate

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

- 5: **end for**
- 6: end for

Value Iteration: Example

No noise and discount factor $\gamma = 1$

Value Iteration : Example

Value Iteration : Remarks

- ▶ The sequence of value functions $\{V_1, V_2, \cdots, \}$ converge
- \blacktriangleright It converges to V_*
- ▶ Convergence is independent of the choice of V_1 .
- ▶ Intermediate value functions need not correspond to a policy in the sense of satisfying the Bellman Evaluation Equation

There is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in S} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

One could similarly conceive an iterative algorithm to compute optimal Q_* using the above recursive formulation!!

The Bellman Evaluation Equation for an MDP with policy π

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

One could conceive a similar iterative update rule and arrive at a sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \dots, \}$ that converges to V^{π}

Policy Iteration

Policy Iteration : Problem

Question: Is there a way to arrive at π_* starting from an arbitrary policy π ?

Answer : Policy Iteration

To describe policy iteration, we first need to know to evaluate a policy π using value functions.

Policy Evaluation

- **Problem**: Evaluate a given policy π
- Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Solution 1 : Solve a system of linear equations using any solver
- ▶ Solution 2 : Iterative application of Bellman Evaluation Equation
- ► Iterative update rule :

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

▶ The sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \cdots, \}$ converge to V^{π}

Policy Improvement

Suppose we know V^{π}

Question:

How can we improve policy π ? Is there a way to come up with a policy that is better than or equal to policy π ?

Answer:

$$\pi' = \operatorname{greedy}(V^{\pi})$$

This is the **policy improvement step**:

Greedy Policy

For a given $Q^{\pi}(\cdot,\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(Q) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in \mathcal{A}} Q^{\pi}(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

For a given $V^{\pi}(\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(V) = \begin{cases} 1 & \text{if } a = \operatorname{arg\,max}_{a \in \mathcal{A}} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right) \right] \\ 0 & \text{Otherwise} \end{cases}$$

Greedy policy with respect to optimal (action) value function is an optimal policy

An optimal policy can be found by maximising over $Q_*(s,a)$

$$\pi_*(s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q_*(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

Policy Improvement

- ▶ Consider the policy $\pi' = \mathbf{greedy}(V^{\pi})$.
- ▶ Then, $\pi' \geq \pi$. That is, $V^{\pi'}(s) \geq V^{\pi}(s)$ for all $s \in \mathcal{S}$.
- ▶ By defintion of π' , at state s, the action chosen by policy π' is given by the greedy operator

$$\pi'(s) = \operatorname*{arg\,max}_{a} Q^{\pi}(s, a)$$

ightharpoonup This improves the value from any state s over one step

$$Q^{\pi}(s, \pi'(s)) = \max_{a} Q^{\pi}(s, a) \ge Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

▶ It therefore improves the value function, $V^{\pi'}(s) \geq V^{\pi}(s)$

$$V^{\pi}(s) \le Q^{\pi}(s, \pi'(s)) \le V^{\pi'}(s)$$

▶ Policy π' is at least as good as policy π

Policy Improvement

► If improvements stop,

$$Q^{\pi}(s, \pi'(s)) = \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

▶ Bellman optimality equation is satisfied as,

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s, a)$$

 \blacktriangleright The policy π for which the improvement stops is the optimal policy.

$$V^{\pi}(s) = V_*(s) \quad \forall s \in \mathcal{S}$$

Policy Iteration: Algorithm

Algorithm Policy Iteration

- 1: Start with an initial policy π_1
- 2: **for** $i = 1, 2, \dots, N$ **do**
- 3: Evaluate $V^{\pi_i}(s) \quad \forall s \in \mathcal{S}$. That is,
- 4: **for** $k = 1, 2, \dots, K$ **do**
- 5: For all $s \in \mathcal{S}$ calculate

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi_i}(s') \right]$$

- 6: end for
- 7: Perform policy Improvement

$$\pi_{i+1} = \operatorname{greedy}(V^{\pi_i})$$

8: end for

Policy Iteration: Example

Update Rule:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \left[\mathcal{R}_{ss'}^a + \gamma V_k^{\pi_i}(s') \right]$$

random policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 k = 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 v_k for the

0.0 - 1.0 - 1.0 - 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0

$$k = 2$$

$$\begin{array}{c}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{array}$$

k = 1

greedy policy

w.r.t. vi

random

policy

course

Policy Iteration: Example

Policy Iteration: Schematic Representation

- The sequence $\{\pi_1, \pi_2, \cdots, \}$ is guaranteed to converge.
- At convergence, both current policy and the value function associated with the policy are optimal.

Figure Source: David Silver's UCL

course

Modified Policy Iteration

Can we computationally simplify policy iteration process?

- ▶ We need not wait for policy evaluation to converge to V^{π}
- ▶ We can have a stopping criterion like ϵ -convergence of value function evaluation or K iterations of policy evaluation
- \blacktriangleright Extreme case of K=1 is value iteration. We update the policy every iteration