Function

- Chapters 9, 10
- I. Nervous & Sensory systems
- II. Biological Rhythms
- III. Thermoregulation

Nervous System (Overview)

- 2 basic components of the nervous system
 - Central nervous system brain & spinal cord
 - Peripheral nervous system sensory & motor neurons

A. Central Nervous System (overview)

- Consists of brain and spinal cord
- Spinal cord mostly similar to other vertebrates
- Major evolutionary changes to CNS in brain

A. CNS Mammalian Brain

- Unique features/adaptations
- 1. Expanded **neopallium** (or **neocortex**)
 - a. Conscious thought
 - b. Reasoning
 - c. Sensory perception
- 2. Increased ratio of brain:body size
- 3. Increased surface area (some mammals)
- ➤ Is 2 or 3 best indication of intelligence?

Human Relative Size Monkey Rat Relative Complexity Human

B. Sensory Systems

Vestibular

Smell [behind]

- 1. Vision
- 2. Olfaction
- 3. Hearing
- ➤ Neopallium divided into areas that process info from each of these systems

Association

areas

Taste [behind]

「halamus

Vision

1. Vision

- a. Important to most mammals
- b. Who would it be less important to???
- c. Stereoscopic vision depth perception
 - Predators (felids)
 - Primates
- d. Tapetum lucidum
- e. Cones (color) & rods (b & w)

2. Hearing

- a. Hearing & olfaction primary in most mammals
- b. Why???
- c. Use of auditory cues
 - i. Communication
 - ii. Predator/prey detection
- d. Pinnae
 - i. Absent in some mammals... who??
 - ii. Well developed & rotating in some
- e. Infrasound (<20 mhz) ultrasound (20K mhz)

3. Olfactory

a. Functions

- Locating food
- ii. Detecting danger
- iii. Communication remember glands

b. Olfactory receptors

- c. Vomeronasal organ (or Jacobsen's Organ)
 - i. Function: detection of pheromones
 - ii. Flehmen reaction
 - iii. Incisive foramina

Occipital Condyle

4. Tactile or Touch

- a. Vibrissae
- b. Snout & lips
- c. Hands & digits
- d. Tails
- e. Functions
 - 1) Locomotion
 - 2) Processing food
 - 3) Social behavior

5. Taste

- a. Often not as important as other senses
- b. Humans can eat without taste
 - Why did it evolve?
- c. Detection of noxious food (e.g., noxious moths)

II. Biological Rythms

- 3 general time periods
- A. Circadian rhythm daily
- B. Circannual rhythm annual
- C. Ultradian rhythm within 1 day

A. Circadian Rhythm

- 1. Endogenous rhythm occurs in ~24 hr period
 - Can occur without external cues
- 2. Photoperiod (amount of daylight) is external cue
 - a. "sets the clock"
 - b. Photoperiodism
- 3. Mammals have daily patterns of activity
 - a. e.g., sleep is a circadian rhythm photoperiod helps
 - b. Activity periods
 - i. Diurnal
 - ii. Nocturnal
 - iii. Crepuscular

FIGURE 2. Coefficient of overlapping of daily activity patterns between the jaguar and its main preys species in four study areas in Brazil; Emas National Park (row 1, top), sample sizes: jaguar (N=50), g. anteater (N=110); Santa Fé Ranch (row 2), sample sizes: jaguar (N=89), peccaries (N=33); Serra da Capivara National Park (row 3), sample sizes: jaguar (N=170), l. anteater (N=27); and Refúgio Ecológico Caiman (row 4), samples sizes: jaguar (111), capybara (105). Overlap is represented by the shaded area.

FIGURE 3. Coefficient of overlapping between the puma and its main prey species in four study areas in Brazil; Emas National Park (row 1, top), samples size: puma (N=37), armadillo (49); Serra da Capivara National Park (row 2), samples size: puma (N=112), armadillo (115); and Refúgio Ecológico Caiman (row 3), samples size: puma (N=96), capybara (105) Overlap is value represented by the shaded area.

(Fig. 1) and here, also, we observed the lowest average coefficient of overlapping with other study areas ($\Delta_1 = 0.77$; SE = 0.05). The comparison of daily activity patterns between jaguars and pumas showed high and very similar Δ_1 values in all study areas (average $\Delta_1 = 0.86$; SE = 0.15). The lowest Δ_1 value was

B. Circannual Rhythms

- 1. Endogenous rhythms that occur over ~ 1 year
 - Photoperiod is external cue
- 2. Examples:
 - a. Reproduction
 - b. Migration
 - c. Hibernation/Torpor
 - d. Molt
- 3. Most circannual patterns tied to food avail.

Ultradian Rhythms

- 1. Cycles of activity that occur in periods <1 day
- 2. Less is known about them
- 3. Small mammals several short activity bouts
 - a. Photoperiod probably not a cue
 - Regulated by metabolic activity & foraging
 - c. Rodents, shrews, etc. have high metabolism

III. Thermoregulation

- Endothermy body temperature controlled primarily by metabolic activity
 - Body temps influenced by exchange w environment
- Energy requirements for TR are high & fluctuate based on surrounding environment
 - All about the temperature differential
- Surface area:volume ratio
- Endothermy is energetically expensive
 - Allows activity under a variety of temps
 - Allows activity at all times of day
 - Supports high levels of activity by mammals

A. Adaptations to Cold

- 1. Larger body size
 - a. Bergmann's Rule
 - b. Allen's Rule
- 2. Increased insulation
- 3. Behavioral thermoregulation
 - a. Nesting
 - b. Curling up
 - c. Huddling
 - d. Piloerection
 - e. Basking

Bergmann's rule

A. Adaptations to Cold (cont)

- 4. Increased rate of metabolic heat production
 - a. Higher overall metabolic rate
 - b. Shivering
 - c. Non-shivering thermogenesis (brown fat)
- 5. Drop body temperature to ambient
 - a. Regional heterothermy
 - b. Adaptive hypothermia (daily or seasonally)
 - Torpor or Dormancy (lower temp & metabolic rate)
 - i. Hibernation (most extreme)
 - ii. Winter lethargy (less extreme)

Countercurrent heat exchange

B. Adaptations to Heat

- 1. Evaporative cooling
 - a. Sweating
 - i. Eccrine glands
 - ii. Apocrine glands
 - b. Panting
- 2. Behavioral thermoregulation
 - a. Burrowing
 - b. Shade
- 3. Hyperthermia

Turbinates

- Provide more SA to recycle heat & water
- Respiratory turbinates protrude into respiratory path = air passes over with each inspiration & expiration
- Ex. canids

- Cheetah must stop when body & brain = 40.5° C
- Gazelle can keep running when > 43° C (brain = ~40°)
- Predator-prey arms race
- ➤ Survival advantage of TR adaptation

C. Water Regulation

- Adaptations to limited water
- 1. Periodic drinking
 - Example: camels:
 - a. Adaptive hyperthermia
 - b. Hyperosmotic urine
 - c. Absorb water from fecal material
 - d. Lose water from interstitial fluid not blood
 - Normal circulatory function when dehydrated
- 2. Dietary moisture
 - a. Plants
 - b. Animals
- 3. Metabolic water

Loop of Henle

The length of the loop of Henle is related to the environment that the animal lives in. A longer loop will conserve more water, so animals in drier environments have longer loops.

