Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Quick-Sort

QuickSort: Sorting by Randomized Divide and Conquer

- Pick a random (pivot) element x and **Divide** the n-element sequence to be sorted into two sub-sequences L and G
 - L has elements less than x
 - G has elements greater than x
 - E has elements equal to x
- Sort the two subsequences *L* and *G* recursively using merge sort.
- Merge the sorted subsequences L, E and G to produce the sorted answer.

 $9,7,2,\underline{\mathbf{6}},8,1,4\rightarrow$

Quick Sort Algorithm

```
Algorithm QuickSort(S)
```

Input: Sequence S

Output: Sequence *S* sorted in increasing order

if length(S) > 1 then

- 1. Let p be the random position of pivot in S
- 2. $(S_1,S_2)= \mathrm{partition}(S,p)\ //S_1$ contains (positions of) elements with value less than S[p] and S_2 contains those with value greater than p
- 3. QuickSort(S_1)
- 4. QuickSort(S_2)
- 5. $S' = \text{Merge}(S_1,p) / / \text{Merge same as before}$
- 6. $S = \text{Merge}(S', S_2)$

end if

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

$$0 \quad \boxed{n}$$

$$1 \mid n-1$$

$$2 \mid n-2$$

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size S.length 1 and other has 0
- \blacksquare \Longrightarrow Runtime is proportional to $n+n-1+n-2\dots 2+1$
- $\blacksquare \Longrightarrow \mathsf{Runtime} = \Theta(n^2)$

Fixed Proportion splitting Analysis of Quick-Sort

- If sequence is split based on 'fixed' proportion p at each step:
 - Recursion will terminate at d such that, $p^{d-1}n=1$ (if p<0.5) or $(1-p)^d n=1$ (if 1-p<0.5)

merge cost

n

n

n

- Since p < 1 (and also 1 p < 1), $d = \Theta(\log n)$
- \blacksquare Amount of work done at each level $i = \Theta(n)$
- \blacksquare \Longrightarrow total runtime $= \Theta(n \log n)$
- Is solution to recurrence $T(n) \le T(pn) + T((1-p)n) + cn$
- Also holds if the split prop. is upper bounded by p (or 1-p)

Average Case Analysis of Quick-Sort

- Proof Sketch: show that the average number of comparisons made across all calls to the "partition" subroutine $= O(\log n)$
 - Also prove that this is the most frequently invoked of all steps
- Ref: Section 7.4.2 of the Second Edition of CLR

merge cost

n

n

n

Thank you