Fernando Lozano

Universidad de los Andes

14 de febrero de 2023

• Bellman (1957): Control, economía, algorítmica....

- Bellman (1957): Control, economía, algorítmica....
- MDPs finitos: $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$.

- Bellman (1957): Control, economía, algorítmica....
- MDPs finitos: $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$.
- R_t, S_t variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

- Bellman (1957): Control, economía, algorítmica....
- MDPs finitos: $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$.
- R_t, S_t variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$

$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

- Bellman (1957): Control, economía, algorítmica....
- MDPs finitos: $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$.
- R_t, S_t variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$

$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

• $p(s',r\mid s,a)$ es conocida $\forall s',s\in\mathcal{S},r\in\mathcal{R},a\in\mathcal{A}(s)$

- Bellman (1957): Control, economía, algorítmica....
- MDPs finitos: $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$.
- R_t, S_t variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$

$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

- $p(s', r \mid s, a)$ es conocida $\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$
- (no hay aprendizaje!)

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s)$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \{ G_t \mid S_t = s \} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \{ G_t \mid S_t = s, A_t = a \}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \{ G_t \mid S_t = s, A_t = a \}$$

$$G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

• Política:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

• Función de valor de estado de la política π :

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\}$$

$$= \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right\}$$

Ecuaciones de Bellman

• Para v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v_{\pi}(s') \right]$$

Ecuaciones de Bellman

• Para v_{π} :

$$\frac{\mathbf{v_{\pi}(s)}}{\mathbf{v_{\pi}(s)}} = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma \mathbf{v_{\pi}(s')} \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma \mathbf{v_{\pi}(s')} \right]$$

Ecuaciones de Bellman

• Para v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v_{\pi}(s') \right]$$
$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

• Para $q_{\pi}(s,a)$:

$$q_{\pi}(s, a) = \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma \sum_{a'} q_{\pi}(s', a') \right]$$

Diagramas de Backup

• $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$ para todo s.

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$ para todo s.
- Política óptima: π_* tal que $\pi_* \geq \pi$ para cualquier π .

- $\pi \geq \pi' \Leftrightarrow v_{\pi}(s) \geq v_{\pi'}(s)$ para todo s.
- Política óptima: π_* tal que $\pi_* \geq \pi$ para cualquier π .
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$ para todo s.
- Política óptima: π_* tal que $\pi_* \geq \pi$ para cualquier π .
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

 Políticas óptimas tienen valor óptimo de la función de valor de pares estado-acción:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$ para todo s.
- Política óptima: π_* tal que $\pi_* \geq \pi$ para cualquier π .
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

 Políticas óptimas tienen valor óptimo de la función de valor de pares estado-acción:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

• Tenemos:

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a\right]$$

• Para $v_*(s)$:

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

• Para $v_*(s)$:

$$\begin{aligned} v_*(s) &= \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a) \\ &= \max_a \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_*(s') \right] \end{aligned}$$

• Para $v_*(s)$:

$$\begin{aligned} v_*(s) &= \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a) \\ &= \max_{a} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_*(s') \right] \end{aligned}$$

• Para q_* :

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]$$

Olítica inicial.

- Política inicial.
- 2 Evaluación de política.

- Política inicial.
- Evaluación de política.
- Mejorar política.

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

• Sistema de ecuaciones lineales:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

• Solución iterativa: evaluación iterativa de política

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

- Solución iterativa: evaluación iterativa de política
- Incializar $v_0(s)$, iterar:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

- Solución iterativa: evaluación iterativa de política
- Incializar $v_0(s)$, iterar:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

• Sistema de ecuaciones lineales:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

- Solución iterativa: evaluación iterativa de política
- Incializar $v_0(s)$, iterar:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

▶ Usualmente actualización in-place.

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

- Solución iterativa: evaluación iterativa de política
- Incializar $v_0(s)$, iterar:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

- ▶ Usualmente actualización in-place.
- $\triangleright v_{\pi}$ es un punto fijo de este mapeo.

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

- Solución iterativa: evaluación iterativa de política
- Incializar $v_0(s)$, iterar:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

- ▶ Usualmente actualización in-place.
- $\triangleright v_{\pi}$ es un punto fijo de este mapeo.
- ▶ Convergencia asimptótica: $v_k(s) \to v_\pi(s)$ cuando $k \to \infty$ si $\gamma < 1$ o episodios terminan eventualmente desde cualquier estado.

Incialize $V(s), \pi(s)$

Incialice $V(s), \pi(s)$ repeat

```
Incialize V(s), \pi(s)

repeat

\delta \leftarrow 0

for each s \in \mathcal{S} do
```

```
Incialize V(s), \pi(s)

repeat

\delta \leftarrow 0

for each s \in \mathcal{S} do

v \leftarrow V(s)
```

```
Incialize V(s), \pi(s)

repeat
\delta \leftarrow 0
for each s \in \mathcal{S} do
v \leftarrow V(s)
V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma V(s')]
```

```
Incialice V(s), \pi(s)

repeat
\delta \leftarrow 0
for each s \in \mathcal{S} do
v \leftarrow V(s)
V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma V(s')]
\delta \leftarrow \max(\delta, |v - V(s)|)
```

```
Incialice V(s), \pi(s)

repeat
\delta \leftarrow 0
for each s \in \mathcal{S} do
v \leftarrow V(s)
V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s')\right]
\delta \leftarrow \max\left(\delta, |v - V(s)|\right)
end for
```

```
\begin{split} & \text{Incialice } V(s), \pi(s) \\ & \textbf{repeat} \\ & \delta \leftarrow 0 \\ & \textbf{for } \text{ each } s \in \mathcal{S} \textbf{ do} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \sum_a \pi(s,a) \sum_{s'} \sum_r p(s',r \mid s,a) \left[r + \gamma V(s')\right] \\ & \delta \leftarrow \max \left(\delta, |v - V(s)|\right) \\ & \textbf{end for} \\ & \textbf{until } \delta < \epsilon \end{split}
```


• Estados no terminales $S = \{1, 3, \dots 14\}$, estado terminal sombreado.

- Estados no terminales $S = \{1, 3, \dots 14\}$, estado terminal sombreado.
- Política aleatoria.

- Estados no terminales $S = \{1, 3, \dots 14\}$, estado terminal sombreado.
- Política aleatoria.

0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00

0.00		
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00

0.00	-1.00	
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00

0.00	-1.00	-1.00	
			0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00		
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.75	
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.75	-2.00	
			0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.75	-2.00	-2.00
			0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.75	-2.00	-2.00
-1.75			
			0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.75	-2.00	-2.00
-1.75	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-1.75
-2.00	-2.00	-1.75	0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

Supongamos viento empuja hacia la derecha con probabilidad 0.2

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	***	
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

Supongamos viento empuja hacia la derecha con probabilidad 0.2

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.80	
		0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

Supongamos viento empuja hacia la derecha con probabilidad 0.2

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00		
	* * *	0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

Supongamos viento empuja hacia la derecha con probabilidad 0.2

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00		
	-1.95	0.00

$$V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma V(s') \right]$$

Backup diagram for v_{π}

• Suponga que conocemos $v_{\pi}(s)$, para $\pi(s)$ determinística y $\forall s \in \mathcal{S}$

- Suponga que conocemos $v_{\pi}(s)$, para $\pi(s)$ determinística y $\forall s \in \mathcal{S}$
- Dado $v_{\pi}(s)$ para un s dado, es mejor usar acción $a \neq \pi(s)$?

- Suponga que conocemos $v_{\pi}(s)$, para $\pi(s)$ determinística y $\forall s \in \mathcal{S}$
- Dado $v_{\pi}(s)$ para un s dado, es mejor usar acción $a \neq \pi(s)$?
- Si se selecciona a en s, y en adelante se usa π :

- Suponga que conocemos $v_{\pi}(s)$, para $\pi(s)$ determinística y $\forall s \in \mathcal{S}$
- Dado $v_{\pi}(s)$ para un s dado, es mejor usar acción $a \neq \pi(s)$?
- Si se selecciona a en s, y en adelante se usa π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s, A_t = a \right\}$$
$$= \sum_{s'} \sum_{r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$$

- Suponga que conocemos $v_{\pi}(s)$, para $\pi(s)$ determinística y $\forall s \in \mathcal{S}$
- Dado $v_{\pi}(s)$ para un s dado, es mejor usar acción $a \neq \pi(s)$?
- Si se selecciona a en s, y en adelante se usa π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s, A_t = a \right\}$$
$$= \sum_{s'} \sum_{r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$$

• Si $q_{\pi}(s, a) > v_{\pi}(s)$ política igual a π , excepto en s, donde se recemplaza $\pi(s)$ por a, debe ser mejor.

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \le q_{\pi}(s, \pi'(s))$$

= $\mathbb{E}_{\pi'} \{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s \}$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) | S_t = s \right\}$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) | S_t = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma \mathbb{E}_{\pi'} \left\{ R_{t+2} + \gamma v_{\pi}(s_{t+2}) \right\} | S_t = s \right\}$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) | S_t = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma \mathbb{E}_{\pi'} \left\{ R_{t+2} + \gamma v_{\pi}(s_{t+2}) \right\} | S_t = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(s_{t+2}) | S_t = s \right\}$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) | S_t = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) | S_t = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma \mathbb{E}_{\pi'} \left\{ R_{t+2} + \gamma v_{\pi}(s_{t+2}) \right\} | S_t = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(s_{t+2}) | S_t = s \right\}$$

$$\vdots$$

(Teorema de mejoramiento de política) Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) \middle| S_{t} = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) \middle| S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma \mathbb{E}_{\pi'} \left\{ R_{t+2} + \gamma v_{\pi}(s_{t+2}) \right\} \middle| S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(s_{t+2}) \middle| S_{t} = s \right\}$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \dots \middle| S_{t} = s \right\}$$

(Teorema de mejoramiento de política)

Sean π , π' dos políticas determinísticas,

$$Si \ \forall s \in \mathcal{S}, q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \Rightarrow v_{\pi'}(s) \ge v_{\pi}(s), \forall s \in \mathcal{S}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma v_{\pi}(s_{t+1}) \middle| S_{t} = s \right\}$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma q_{\pi}(s_{t+1}, \pi'(s_{t+1})) \middle| S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma \mathbb{E}_{\pi'} \left\{ R_{t+2} + \gamma v_{\pi}(s_{t+2}) \right\} \middle| S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(s_{t+2}) \middle| S_{t} = s \right\}$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'} \left\{ R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \dots \middle| S_{t} = s \right\} = v_{\pi'}(s)$$

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg\max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg \max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

• π' satisface teorema de mejoramiento,

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg\max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

• π' satisface teorema de mejoramiento, luego $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg\max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

- π' satisface teorema de mejoramiento, luego $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$
- si $v_{\pi'}(s) = v_{\pi}(s) \ \forall s \in \mathcal{S}$:

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg\max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

- π' satisface teorema de mejoramiento, luego $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$
- si $v_{\pi'}(s) = v_{\pi}(s) \ \forall s \in \mathcal{S}$:

$$v_{\pi'}(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

•

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}_{\pi} \{ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a \}$$

$$= \arg\max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

- π' satisface teorema de mejoramiento, luego $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$
- si $v_{\pi'}(s) = v_{\pi}(s) \ \forall s \in \mathcal{S}$:

$$v_{\pi'}(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

 π' satisface ecuación de optimalidad de Bellman.

 π_0

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0}$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1}$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi_*$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi_* \xrightarrow{\mathbf{E}} v_{\pi^*}$$

$$\pi_0 \stackrel{\mathbf{E}}{\longrightarrow} v_{\pi_0} \stackrel{\mathbf{I}}{\longrightarrow} \pi_1 \stackrel{\mathbf{E}}{\longrightarrow} v_{\pi_1} \stackrel{\mathbf{I}}{\longrightarrow} \pi_2 \stackrel{\mathbf{E}}{\longrightarrow} \dots \stackrel{\mathbf{I}}{\longrightarrow} \pi_* \stackrel{\mathbf{E}}{\longrightarrow} v_{\pi^*}$$

•
$$\pi_{i+1} \ge \pi_i$$

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi_* \xrightarrow{\mathbf{E}} v_{\pi^*}$$

- $\pi_{i+1} \ge \pi_i$
- MDP finito tiene número finito de políticas \Rightarrow converge a π_* en un número finito de iteraciones.

$$\pi_0 \xrightarrow{\mathbf{E}} v_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} v_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi_* \xrightarrow{\mathbf{E}} v_{\pi^*}$$

- $\pi_{i+1} \ge \pi_i$
- MDP finito tiene número finito de políticas \Rightarrow converge a π_* en un número finito de iteraciones.
- Usualmente converge en pocas iteraciones.

• Evaluación de v_{π} , es costosa computacionalmente.

• Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.

- Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.
- Se puede obtener una política óptima, aun con valores de v_{π} que no son exactos.

- Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.
- Se puede obtener una política óptima, aun con valores de v_{π} que no son exactos.
- Idea: truncar evaluación después de cierto número de iteraciones.

- Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.
- Se puede obtener una política óptima, aun con valores de v_{π} que no son exactos.
- Idea: truncar evaluación después de cierto número de iteraciones.
- Una sóla iteración: algoritmo de iteración de valor:

- Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.
- Se puede obtener una política óptima, aun con valores de v_{π} que no son exactos.
- Idea: truncar evaluación después de cierto número de iteraciones.
- Una sóla iteración: algoritmo de iteración de valor:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a\right]$$

- Evaluación de v_{π} , es costosa computacionalmente. Convergencia exacta sólo en el límite.
- Se puede obtener una política óptima, aun con valores de v_{π} que no son exactos.
- Idea: truncar evaluación después de cierto número de iteraciones.
- Una sóla iteración: algoritmo de iteración de valor:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a \right]$$
$$= \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_k(s') \right]$$

Incialice V(s)

Incialize V(s) repeat

```
Incialize V(s)

repeat

\delta \leftarrow 0
```

```
Incialize V(s)

repeat

\delta \leftarrow 0

for each s \in \mathcal{S} do
```

```
Incialize V(s)

repeat

\delta \leftarrow 0

for each s \in \mathcal{S} do

v \leftarrow V(s)
```

```
Incialice V(s)

repeat
\delta \leftarrow 0
for each s \in \mathcal{S} do
v \leftarrow V(s)
V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma V_k(s') \right]
```

```
Incialice V(s)

repeat
\delta \leftarrow 0
for each s \in \mathcal{S} do
v \leftarrow V(s)
V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma V_k(s') \right]
\delta \leftarrow \max(\delta, |v - V(s)|)
```

```
\begin{split} & \text{Incialice } V(s) \\ & \textbf{repeat} \\ & \delta \leftarrow 0 \\ & \textbf{for } \text{ each } s \in \mathcal{S} \textbf{ do} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma V_k(s') \right] \\ & \delta \leftarrow \max \left( \delta, |v - V(s)| \right) \\ & \textbf{end for} \end{split}
```

```
\begin{split} & \text{Incialice } V(s) \\ & \textbf{repeat} \\ & \delta \leftarrow 0 \\ & \textbf{for } \text{ each } s \in \mathcal{S} \textbf{ do} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma V_k(s') \right] \\ & \delta \leftarrow \max \left( \delta, |v - V(s)| \right) \\ & \textbf{end for} \\ & \textbf{until } \delta < \epsilon \end{split}
```

```
Incialize V(s)
repeat
     \delta \leftarrow 0
     for each s \in \mathcal{S} do
           v \leftarrow V(s)
           V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma V_k(s') \right]
           \delta \leftarrow \max(\delta, |v - V(s)|)
     end for
until \delta < \epsilon
Output \pi tal que \pi(s) = \max_a \sum_{s'} \sum_r p(s', r \mid s, a) [r + \gamma V(s')]
```

s high high low low high	search search search search wait	s' high low high low high	$ \begin{vmatrix} p(s' s,a) \\ \alpha \\ 1-\alpha \\ 1-\beta \\ \beta \\ 1 \end{vmatrix} $	r(s,a,s') r search r search -3 r search r wait	$1, r_{\text{wait}}$ $1-\beta, -3$ β, r_{search} wait $1, 0$ recharge $1, 0$ recharge
high low	wait wait	low high	0 0	-	
low	wait	low	1	$r_{\mathtt{wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{ exttt{search}}$

$$\alpha = \frac{3}{4}, \, \beta = \frac{1}{4}, \, r_{\text{search}} = 2, \, r_{\text{wait}} = 1, \, \gamma = 0.9$$

• Iteración de Valor a partir de V(high) = 15 y V(low) = 12.

					$1, r_{\mathtt{wait}}$ $1-\beta, -3$ $\beta, r_{\mathtt{search}}$
s	a	s'	p(s' s,a)	r(s, a, s')	1-0,-0
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	\
low	search	high	$1-\beta$	-3	\ \ \
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	(high) (low)
high	wait	low	0	-	
low	wait	high	0	-	/ \
low	wait	low	1	$r_{\mathtt{Wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
			,		$\alpha, r_{\text{search}}$ $1-\alpha, r_{\text{search}}$ $1, r_{\text{wait}}$

$$\alpha = \frac{3}{4}, \, \beta = \frac{1}{4}, \, r_{\mathtt{search}} = 2, \, r_{\mathtt{wait}} = 1, \, \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

					$1, r_{\mathtt{wait}}$ $1-\beta, -3$ $\beta, r_{\mathtt{search}}$
s	a	s'	p(s' s,a)	r(s, a, s')	$1-\beta$, -3
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	
low	search	high	$1-\beta$	-3	\ \
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	(high) (low)
high	wait	low	0	-	
low	wait	high	0	-	/
low	wait	low	1	$r_{\mathtt{wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{\mathtt{search}}$ $1-\alpha, r_{\mathtt{search}}$ $1, r_{\mathtt{wait}}$

$$\alpha = \frac{3}{4}, \ \beta = \frac{1}{4}, \ r_{\text{search}} = 2, \ r_{\text{wait}} = 1, \ \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

$$1 + 0.9 \times 15 = 14.5$$

					$1, r_{\mathtt{wait}}$ $1-\beta, -3$ $\beta, r_{\mathtt{search}}$
s	a	s'	p(s' s,a)	$\mid r(s, a, s')$	1-0,-0
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	\
low	search	high	$1-\beta$	-3	\ •
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	high (low)
high	wait	low	0	-	
low	wait	high	0	-	
low	wait	low	1	$r_{\mathtt{wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{ exttt{search}}$ $1-\alpha, r_{ exttt{search}}$ $1, r_{ exttt{wait}}$

$$\alpha = \frac{3}{4}, \, \beta = \frac{1}{4}, \, r_{\mathtt{search}} = 2, \, r_{\mathtt{wait}} = 1, \, \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

wait:
$$1+0.9\times 15=14.5$$
 search:
$$0.75(2+0.9\times 15)+0.25(2+0.9\times 12)=14.825$$

					$1, r_{\mathtt{wait}}$ $1-\beta, -3$ $\beta, r_{\mathtt{search}}$
s	a	s'	p(s' s,a)	r(s, a, s')	$1-\beta$, -3
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	
low	search	high	$1-\beta$	-3	\ \
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	(high) (low)
high	wait	low	0	-	
low	wait	high	0	-	/
low	wait	low	1	$r_{\mathtt{wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{\mathtt{search}}$ $1-\alpha, r_{\mathtt{search}}$ $1, r_{\mathtt{wait}}$

$$\alpha = \frac{3}{4}, \ \beta = \frac{1}{4}, \ r_{\text{search}} = 2, \ r_{\text{wait}} = 1, \ \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

wait:
$$1 + 0.9 \times 15 = 14.5$$

search:
$$0.75(2+0.9\times15)+0.25(2+0.9\times12)=14.825$$

					1
s	a	s'	p(s' s,a)	r(s, a, s')	1, r _{wait} 1-
high	search	high	α	rsearch	wait
high	search	low	$1-\alpha$	rsearch	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
low	search	high	$1-\beta$	-3	\ \
low	search	low	β	rsearch	
high	wait	high	1	rwait	high -
high	wait	low	0	-	112 311)
low	wait	high	0	_	
low	wait	low	1	r _{wait}	/
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{\mathtt{search}}$

$$\alpha = \frac{3}{4}, \, \beta = \frac{1}{4}, \, r_{\mathtt{search}} = 2, \, r_{\mathtt{wait}} = 1, \, \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

$$1 + 0.9 \times 15 = 14.5$$

$$0.75(2+0.9\times15)+0.25(2+0.9\times12)=14.825$$

$$1 + 0.9 \times 12 = 11.8$$

					$1, r_{\mathtt{wait}}$ 1-
s	a	s'	p(s' s,a)	r(s,a,s')	
high	search	high	α	rsearch	wait
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	\ """
low	search	high	$1-\beta$	-3	\ \
low	search	low	β	rsearch	
high	wait	high	1	$r_{\mathtt{wait}}$	high
high	wait	low	0	-	
low	wait	high	0	-	/ \
low	wait	low	1	r _{wait}	/
low	recharge	high	1	0	search
low	recharge	low	0	-	
					$\alpha, r_{\mathtt{search}}$

$$\alpha = \frac{3}{4}, \, \beta = \frac{1}{4}, \, r_{\mathtt{search}} = 2, \, r_{\mathtt{wait}} = 1, \, \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ▶ Para V_1 :

$$1 + 0.9 \times 15 = 14.5$$

$$0.75(2+0.9\times15) + 0.25(2+0.9\times12) = 14.825$$

ightharpoonup Para V_2 :

$$1 + 0.9 \times 12 = 11.8$$

$$0.75(-3 + 0.9 \times 15) + 0.25(2 + 0.9 \times 12) = 11.075$$

					$1, r_{\mathtt{wait}}$ $1-\beta, -3$ $\beta, r_{\mathtt{search}}$
s	a	s'	p(s' s,a)	r(s, a, s')	1 %,
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	
low	search	high	$1-\beta$	-3	\ \
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	high • low
high	wait	low	0	-	
low	wait	high	0	-	
low	wait	low	1	$r_{\mathtt{Wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
			,	'	$\alpha, r_{\mathtt{search}}$ $1-\alpha, r_{\mathtt{search}}$ $1, r_{\mathtt{wait}}$

$$\alpha = \frac{3}{4}, \ \beta = \frac{1}{4}, \ r_{\text{search}} = 2, \ r_{\text{wait}} = 1, \ \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - ightharpoonup Para V_1 :

wait:
$$1 + 0.9 \times 15 = 14.5$$

search:
$$0.75(2+0.9\times15)+0.25(2+0.9\times12)=14.825$$

wait:
$$1 + 0.9 \times 12 = 11.8$$

search:
$$0.75(-3+0.9\times15)+0.25(2+0.9\times12)=11.075$$
 recharge: $0.9\times15=13.5$

					$1, r_{ t wait}$ $1-eta, -3$ $eta, r_{ t search}$
s	a	s'	p(s' s,a)	r(s, a, s')	1 %,
high	search	high	α	rsearch	wait search
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$	
low	search	high	$1-\beta$	-3	\ •
low	search	low	β	$r_{\mathtt{search}}$	1, 0 recharge
high	wait	high	1	$r_{\mathtt{wait}}$	high I ow
high	wait	low	0	-	
low	wait	high	0	-	
low	wait	low	1	$r_{\mathtt{wait}}$	
low	recharge	high	1	0	search
low	recharge	low	0	-	
			,		$\alpha, r_{ extstyle search}$ $1-\alpha, r_{ extstyle search}$ $1, r_{ extstyle wait}$

$$\alpha = \frac{3}{4}, \ \beta = \frac{1}{4}, \ r_{\text{search}} = 2, \ r_{\text{wait}} = 1, \ \gamma = 0.9$$

- Iteración de Valor a partir de V(high) = 15 y V(low) = 12.
 - \triangleright Para V_1 :

wait:
$$1 + 0.9 \times 15 = 14.5$$

search: $0.75(2 + 0.9 \times 15) + 0.25(2 + 0.9 \times 15)$

$$0.75(2+0.9\times15)+0.25(2+0.9\times12)=14.825$$

 \triangleright Para V_2 :

wait:
$$1 + 0.9 \times 12 = 11.8$$

search:
$$0.75(-3+0.9\times15)+0.25(2+0.9\times12)=11.075$$
 recharge: $0.9\times15=\frac{13.5}{10.9\times10}$

• Política greedy?

- Política greedy?
 - ▶ Para V_1 :

- Política greedy?
 - ▶ Para V_1 :
 wait:

$$1 + 0.9 \times 14.825 = 14.34$$

- Política greedy?
 - ▶ Para V_1 :

wait:
$$1+0.9\times 14.825=14.34$$
 search: $0.75(2+0.9\times 14.825)+0.25(2+0.9\times 13.5)=15.04$

- Política greedy?
 - ▶ Para V_1 :

wait:
$$1+0.9\times14.825=14.34$$
 search:
$$0.75(2+0.9\times14.825)+0.25(2+0.9\times13.5)=15.04$$

- Política greedy?
 - ▶ Para V_1 :

wait:
$$1+0.9\times14.825=14.34$$

search: $0.75(2+0.9\times14.825)+0.25(2+0.9\times13.5)=15.04$

$$1 + 0.9 \times 13.5 = 13.15$$

- Política greedy?
 - ▶ Para V_1 :

wait:
$$1+0.9\times14.825=14.34$$

search: $0.75(2+0.9\times14.825)+0.25(2+0.9\times13.5)=15.04$

wait:
$$1 + 0.9 \times 13.5 = 13.15$$

search:
$$0.75(-3+0.9\times14.825)+0.25(2+0.9\times13.5)=11.29$$

- Política greedy?
 - ightharpoonup Para V_1 :

wait:
$$1 + 0.9 \times 14.825 = 14.34$$

search: $0.75(2 + 0.9 \times 14.825) + 0.25(2 + 0.9 \times 13.5) = 15.04$

 \triangleright Para V_2 :

wait:
$$1 + 0.9 \times 13.5 = 13.15$$

search:
$$0.75(-3+0.9\times14.825)+0.25(2+0.9\times13.5)=11.29$$

recharge:
$$0.9 \times 14.825 = 13.34$$

- Política greedy?
 - ightharpoonup Para V_1 :

wait:
$$1 + 0.9 \times 14.825 = 14.34$$

search: $0.75(2 + 0.9 \times 14.825) + 0.25(2 + 0.9 \times 13.5) = 15.04$

 \triangleright Para V_2 :

wait:
$$1 + 0.9 \times 13.5 = 13.15$$

search:
$$0.75(-3+0.9\times14.825)+0.25(2+0.9\times13.5)=11.29$$

recharge:
$$0.9 \times 14.825 = 13.34$$

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00		
		0.00

0.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	0.00

0.00	-1.00	-2.00	-2.00
-1.00	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-1.00
-2.00	-2.00	-1.00	0.00

0.00	-1.00	-2.00	-2.00
-1.00	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-1.00
-2.00	-2.00	-1.00	0.00

0.00		
		0.00

0.00	-1.00	-2.00	-2.00
-1.00	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-1.00
-2.00	-2.00	-1.00	0.00

0.00	-1.00	-2.00	-3.00
-1.00	-2.00	-3.00	-2.00
-2.00	-2.00	-2.00	-1.00
-3.00	-2.00	-1.00	0.00

0.00	-1.00	-2.00	-2.00
-1.00	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-1.00
-2.00	-2.00	-1.00	0.00

0.00	-1.00	-2.00	-3.00
-1.00	-2.00	-3.00	-2.00
-2.00	-3.00	-2.00	-1.00
-3.00	-2.00	-1.00	0.00

 \bullet Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.

- \bullet Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - ▶ Si cae cara, gana \$M\$, si cae sello pierde \$M\$.

- \bullet Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - \triangleright Si cae cara, gana \$M, si cae sello pierde \$M.
 - ► Gana el juego si completa \$100, pierde si se queda sin dinero.

- \bullet Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - \triangleright Si cae cara, gana \$M, si cae sello pierde \$M.
 - ▶ Gana el juego si completa \$100, pierde si se queda sin dinero.
 - ► MDP:

- \bullet Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - \triangleright Si cae cara, gana \$M, si cae sello pierde \$M.
 - ▶ Gana el juego si completa \$100, pierde si se queda sin dinero.
 - ► MDP:
 - **★** Estados $s \in \{1, 2, ..., 99\}$.

- Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - \triangleright Si cae cara, gana \$M, si cae sello pierde \$M.
 - ▶ Gana el juego si completa \$100, pierde si se queda sin dinero.
 - ► MDP:
 - ★ Estados $s \in \{1, 2, ..., 99\}$.
 - ★ Acciones $a \in \{1, 2, ..., \min(s, 100 s)\}$

- Apostador apuesta \$M dinero a que al lanzar una moneda caerá en cara.
 - \triangleright Si cae cara, gana \$M, si cae sello pierde \$M.
 - ▶ Gana el juego si completa \$100, pierde si se queda sin dinero.
 - ► MDP:
 - **★** Estados $s \in \{1, 2, ..., 99\}$.
 - ★ Acciones $a \in \{1, 2, ..., \min(s, 100 s)\}$
 - * Recompensa +1 cuando alcanza \$100, 0 en otro caso.

Solución para $p_h = 0.4$

Iteración de política generalizada

Iteración de política generalizada

