Digitaltechnik Wintersemester 2017/2018 4. Vorlesung

Inhalt

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Einleitung

00100101111100110111111101010110001000	0 1
001101001000010000101011110001001111111	0 0
111000101001011001000100011001011111111	10
000100010110000101010111111110011010	10
101111010110111111011010110001011110101	10
000010101011000001101011011010101001111	10
100011101110001111011011011111011010	0 0
110111010100001011100011100110000111001	11
10000111011110000000111110111110001001	10
10001101101100011110001110110100000011	11
10101001100111101111110100011010101101	10
0110011110111001001010111000100011111	0 1
01110101101101111100101111100101111	00
1111011011011011011010100100001000101001	0 1
1111110111111101100110111100000111110101	10
10101110000110011000010011101011101	11

Organisatorisches

- Testate als Klausurzulassung
 - notwendig, wenn DT mit schriftlicher Fachprüfung abgeschlossen wird
 - nicht notwendig, wenn DT mit schriftlicher Studienleistung abgeschlossen wird
 - nicht notwendig, wenn DT Klausurzulassung bereits vorher erworben
- Themen für Testate:
 - $Tx = \ddot{U}x = Vx$
 - x entsprechend aktueller Kalenderwoche (siehe Moodle)
 - keine Themen, die nur als Zusatzübung behandelt wurden
- Überarbeitung von Vorlesungsfolien

Rückblick auf die letzten Vorlesungen

- Komplexität und (digitale) Abstraktion
- Zahlensysteme
 - \triangleright vorzeichenlos ($u_{b,k}$) und vorzeichenbehaftet ($bv_{b,k}$ und s_k)
 - Addition, Negieren durch Komplement und Inkrement
 - Bitbreitenerweiterung
- ▶ Logikgatter $\mathbb{B}^n \to \mathbb{B}^k$
 - Symbole und Wahrheitswertetabellen
 - XOR als Paritätsfunktion
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

Harris 2013 Kapitel 1

Wiederholung: Zahlendarstellungen

Woran erkennt man, ob Zahlendarstellung vorzeichenbehaftet ist? Wie sieht die hexadezimale Darstellung von Zweierkomplement-Zahlen aus? Muss diese mit einem "-" markiert werden?

$$u_{2,5}(11010_2) = 26_{10} = 1A_{16}$$

$$bv_{2,5}(11010_2) = -10_{10} = 8A_{16}$$

Wiederholung: Zahlendarstellungen

Wie kann Überlauf bei Addition/Subtraktion vermieden werden kann bzw. wie geht man damit um?

Welche technischen Schwierigkeiten ergeben sich daraus?

1	1	1			unsigned	signed
	0	1	1	1	7 ₁₀	7 ₁₀
+	1	0	1	0	10 ₁₀	-6 ₁₀
	0	0	0	1	1 ₁₀	1 ₁₀
					OV=1	OV=0

Wiederholung: Logikgatter

Aufbau eines Multiplexers?

I_0	I_1	S	F
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

▶ MUX :
$$\mathbb{B}^3 \to \mathbb{B}$$

$$\blacktriangleright$$
 MUX(I_0 , I_1 , S) = I_S = S ? I_1 : I_0

Wiederholung: CMOS $Y = \overline{(A + B) C}$

Schichtenmodell eines Computers

Anwendungs- software	Programme
Betriebs- systeme	Gerätetreiber
Architektur	Befehle Register
Mikro- architektur	Datenpfade Steuerung
Logik	Addierer Speicher
Digital- schaltungen	UND Gatter Inverter
Analog- schaltungen	Verstärker Filter
Bauteile	Transistoren Dioden
Physik	Elektronen

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - ► Boole'sche Gleichungen
 - Boole'sche Algebra

Kap. 2.1 - 2.3 Seite 51 - 62

Kombinatorische Logik

111100010100111100010010111101001101001	11
11001111111011100001000010110010001100	1 (
11101100111111000100111011010101111000011	11
10011110110010000010011111011010101011	0
00011110001101011110111100100000110110	0 (
0000100001101011100011110111110010111111	1 1
001111000110100010010110001110001011010	1 (
000001000110101101001001001001001000010010	1 (
101010101000111100011111101100111000010	0 (
0111100000110101001001111111000011101000	0 (
010010011100010000010111100000000111111	1 (
01101110100000101111000000011010000001	1 1
00110101111011111101010100001101010001	1 1
100101000011011011001110010111000000111	0
0010000011010010110000010100011010101010	0 (
1100100010010101110001101010001001011111	11

Abstrakte Eigenschaften logischer Schaltungen

- Eingängen
- Ausgängen
- Spezifikation der realisierten (boolschen) Funktion
- Spezifikation des Zeitverhaltens

Komponenten einer logischen Schaltung

- Verbindungsknoten
 - ► Eingangs-Terminals: A, B, C
 - ► Ausgangs-Terminals: Y, Z
 - ▶ interne Knoten: n₁
- Schaltungselemente
 - ► E₁, E₂, E₃
 - lacktriangle jedes selbst eine Schaltung ightarrow Hierarchie

Arten von logischen Schaltungen

- kombinatorische Logik ("Schaltnetz")
 - Ausgänge hängen nur von aktuellen Eingangswerten ab
- sequentielle Logik ("Schaltwerk")
 - Ausgänge hängen von aktuellen Eingangswerten und internem Zustand ab
 - ⇒ Ausgänge indirekt abhängig von *vorherigen* Eingangswerten

Eigenschaften kombinatorischer Logik

- jedes Schaltungselement ist selbst kombinatorisch
- jeder Verbindungsknoten ist
 - ► Eingang in die Schaltung, oder
 - an genau ein Ausgangsterminal ("Treiber") eines Schaltungselements angeschlossen
- jeder Pfad durch die Schaltung besucht jeden Verbindungsknoten maximal einmal (zyklenfrei)

Boole'sche Gleichungen

	$\overline{}$
10110111000001000101111000111100100010	000
1101111011101010010101100100000101101	010
0011010010000011110001110000110011110	011
11101010000100111100110001100010000010	111
0001010101001100010001000011111011100	000
1111101011100001000100011110111011111	110
00010111000010111111110000000111100111	111
011110101011010011001100110011001001000	011
011110010010111101111010111010010010101	001
010101010111010101110011111000000001111	101
001010000110010000110110110110100011010	100
1101011000011011110100101100010001111	001
1100010010011000111110100001111111011	010
1011011101001000010100001010001000010	110
01101011011100110100110111110110011011	010
0111000101100110000100000010001111	100

Boole'sche Gleichungen

- beschreiben Ausgänge einer kombinatorischen Schaltung als (boolsche)
 Funktion der Eingänge
- ⇒ Spezifikation des funktionalen Verhaltens (ohne zeitliche Information)
- unter Verwendung elementarer boole'scher Operatoren (sortiert nach Operatorpräzedenz):
 - ► NOT: Ā
 - ► AND: $AB = A \cdot B$
 - ► XOR: A ⊕ B
 - ► OR: A+B
- Beispiel

$$S = F_1 : (A, B, C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$$

$$C_{out} = F_2 : (A, B, C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$$

$$A \succ \\ B \succ \\ C_{in} \succ \\ \\ B^3 \rightarrow \mathbb{B}^2$$
 Volladdierer
$$\Rightarrow S = A \oplus B \oplus C_{in}$$

$$\Rightarrow C_{out} = A B + A C_{in} + B C_{in}$$

Grundlegende Definitionen

Komplement: Boole'sche Variable mit einem Balken (invertiert)

 \overline{A} , \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implikant: Produkt von Literalen

 $ABC, A\overline{C}, BC$

Minterm: Produkt (UND, Konjunktion) über alle Eingangsvariablen

 $ABC, AB\overline{C}, \overline{A}BC$

Maxterm: Summe (ODER, Disjunktion) über alle Eingangsvariablen

 $(A + \overline{B} + \overline{C}), (A + B + \overline{C}), (\overline{A} + \overline{B} + \overline{C})$

Minterm

- Produkt (Implikant), das jede Eingangsvariable genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Minterm wird für genau eine Eingangskombination wahr (unabhängig von Ergebnisspalte)

Α	В	Υ	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Disjunktive Normalform (DNF) Sum-of-products (SOP)

- ▶ Summe aller Minterme, für welche die Funktion wahr ist
- ⇒ jede boolsche Funktion hat genau eine DNF (abgesehen von Kommutation)
- im Beispiel: $Y = m_1 + m_2 = \overline{A} B + A \overline{B}$
- \Rightarrow $A \oplus B$ nur kompakte Schreibweise für $\overline{A} B + A \overline{B}$

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Maxterm

- Summe, welche jede Eingangsvariable genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Maxterm wird für genau eine Eingangskombination falsch (unabhängig von Ergebnisspalte)

A	В	Y	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Konjunktive Normalform (KNF) Product-of-sums (POS)

- ▶ Produkt aller Maxterme, für welche die Funktion falsch ist
- ⇒ jede boolsche Funktion hat genau eine KNF (abgesehen von Kommutation)
- im Beispiel: $Y = M_0 M_3 = (A + B) (\overline{A} + \overline{B})$
- \Rightarrow $A \oplus B$ nur kompakte Schreibweise für $(A + B) (\overline{A} + \overline{B})$

A	В	Y	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Boole'sche Algebra

Boole'sche Algebra

- ► Rechenregeln zur Vereinfachung boole'scher Gleichungen
 - Axiome: grundlegende Annahmen der Algebra (nicht beweisbar)
 - ► Theoreme: komplexere Regeln, die sich aus Axiomen ergeben (beweisbar)
- analog zur Algebra auf natürlichen Zahlen
- ergänzt um Optimierungen durch Begrenzung auf B
- \blacktriangleright Axiome und Theoreme haben jeweils duale Entsprechung: AND \leftrightarrow OR, 0 \leftrightarrow 1

Axiome der boole'schen Algebra

	Axiom		Duales Axiom	Bedeutung
A1	$B \neq 1 \Rightarrow B = 0$	A1'	$B \neq 0 \Rightarrow B = 1$	Dualität
A2	0 = 1		1 = 0	Negieren
А3	$0 \cdot 0 = 0$		1 + 1 = 1	Und / Oder
A4	1 · 1 = 1	A4'	0 + 0 = 0	Und / Oder
A 5	$0\cdot 1=1\cdot 0=0$		1 + 0 = 0 + 1 = 1	Und / Oder

T1: Neutralität von 1 und 0

$$A \succ A \cdot 1 = A$$

$$A > \longrightarrow A + 0 = A$$

T2: Extremum von 0 und 1

$$\begin{array}{c}
A > \\
0 > \\
\end{array}$$

$$A \cdot 0 = 0$$

$$A \rightarrow A + 1 = 1$$

T3: Idempotenz

$$A \rightarrow A \rightarrow A + A = A$$

T4: Involution

T5: Komplement

$$A + \overline{A} = 1$$

T6: Kommutativität

$$\begin{array}{c} A > \\ B > \\ \end{array} \longrightarrow A \cdot B = B \cdot A \leftarrow \begin{array}{c} B \\ A \end{array}$$

$$A \rightarrow B \rightarrow A + B = B + A \leftarrow A \leftarrow A$$

T7: Assoziativität

T8: Distributivität

T9: Absorption

T10: Zusammenfassen

T11: Konsensus

T12: De Morgan

$$\overrightarrow{A} \rightleftharpoons \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} \Rightarrow \overrightarrow{B} \Rightarrow$$

Augustus De Morgan, 1806 - 1871

- erster Präsident der London Mathematical Society
- Lehrer von Ada Lovelace
- De Morgan'sche Regeln:
 - Das Komplement des Produkts ist die Summe der Komplemente.
 - Das Komplement der Summe ist das Produkt der Komplemente.

Theoreme der boole'schen Algebra

	Theorem		Duales Theorem	Bedeutung
T1	$A \cdot 1 = A$	T1'	A + 0 = A	Neutralität
T2	$A \cdot 0 = 0$	T2'	A+1=1	Extremum
T3	$A \cdot A = A$	T3'	A + A = A	Idempotenz
T4	$\overline{\overline{A}} = A$			Involution
T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
T6	$A \cdot B = B \cdot A$	T6'	A+B=B+A	Kommutativität
T7	$A\cdot (B\cdot C)=(A\cdot B)\cdot C$	T7'	A+(B+C)=(A+B)+C	Assoziativität
T8	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	T8'	$A+(B\cdot C)=(A+B)\cdot (A+C)$	Distributivität
Т9	$A\cdot (A+B)=A$	T9'	$A + (A \cdot B) = A$	Absorption
T10	$(A\cdot B)+(A\cdot \overline{B})=A$	T10'	$(A+B)\cdot(A+\overline{B})=A$	Zusammenfassen
T11	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	T11'	$(A+B)\cdot (\overline{A}+C)\cdot (B+C)=$ $(A+B)\cdot (\overline{A}+C)$	Konsensus
T12	$\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$	T12'	$\overline{A+B+C\dots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\dots$	De Morgan

Beweis für Theoreme

- ► Methode 1: Überprüfen aller Möglichkeiten
- ▶ Methode 2: Gleichung durch Axiome und andere Theoreme vereinfachen

Beweis für Distributivität (T8) durch Überprüfen aller Möglichkeiten

Α	В	С	B + C	A(B+C)	A B	A C	A B + A C
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Beweis für Absorption (T9) durch Anwendung von Axiomen und Theoremen

$A \cdot (A + B)$
$= A \cdot A + A \cdot B$
$= A + A \cdot B$
$= A \cdot 1 + A \cdot B$
$=A\cdot(1+B)$
= <i>A</i> ⋅ 1
= A

Distributivität Idempotenz Neutralität Distributivität Extremum Neutralität q.e.d.

Beweis für Zusammenfassen (T10) durch Anwendung von Axiomen und Theoremen

$$A \cdot B + A \overline{B}$$

$$= A \cdot (B + \overline{B})$$

$$= A \cdot 1$$

$$= A$$

Distributivität Komplement Neutralität q.e.d.

Beweis für Konsensus (T11) durch Anwendung von Axiomen und Theoremen

Logikminimierung

Logikminimierung

$$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$$

$$= \overline{A} (\overline{B} \overline{C} + \overline{B} C) + A (\overline{B} \overline{C} + \overline{B} C) + A B C$$

$$= \overline{A} (\overline{B} (\overline{C} + C)) + A (\overline{B} (\overline{C} + C)) + A B C$$

$$= \overline{A} \overline{B} + A \overline{B} + A B C$$

$$= (\overline{A} + A) \overline{B} + A B C$$

$$= \overline{B} + A B C$$

- weitere Vereinfachungen möglich?
- $Y = \overline{B} + AC$
- Systematik notwendig, um minimale Ausdücke zu erkennen/finden

Zusammenfassung

100000111100101110001010111010000100011
1110110101111001000110011010101010111100011
1111000101001110010010110011111111100000
0001100001011110000001011100110101110100
0111010011100110100001010001111011111000
110010110001101010111011010101110101010
0101001011011000101001011110100001111001
110111110000000010010100100111111001001
0000101000110011101100010001110011001101
10001111100010110000101011010111010111
1101001010101111101011000111101110010000
0011010001101111110110100010000111101111
0111010000110101100000001011011000010111
100101000100011111010101111000000111111
0010001111001100110101011010111100111010
000001101110011001010111100010111111111

Zusammenfassung und Ausblick

- Kombinatorische Logik
- Boole'sche Gleichungen
- Boole'sche Algebra
- Nächste Vorlesung behandelt
 - Logikminimierung und -realisierung