Package 'PopPsiSeqR'

August 20, 2025

Type Package

Title Process and Visualize Evolve & Resequence Experiments

Version 1.0.0 **Date** 2025-07-29

Description Handle data from evolve and resequence experiments.

Measured allele frequencies (e.g., from variants called from high-throughput sequencing data) are compared using an update of the PsiSeq algorithm (Earley, Eric and Corbin Jones (2011) <doi:10.1534/genetics.111.129445>). Functions for saving and loading important files are also included, as well as functions for basic data visualization.

URL https://github.com/csoeder/PopPsiSeq,
 https://github.com/csoeder/PopPsiSeqR

License MIT + file LICENSE

Encoding UTF-8 **RoxygenNote** 7.3.2

Imports rtracklayer, GenomicRanges, ggplot2, dplyr, S4Vectors, magrittr, ggbio, withr, utils, patchwork, tidyr, rlang, devtools

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr **Config/testthat/edition** 3

BugReports https://github.com/csoeder/PopPsiSeqR/issues

NeedsCompilation no

Author Charles Soeder [aut, cre, cph]

Maintainer Charles Soeder <csoeder@email.unc.edu>

Repository CRAN

Date/Publication 2025-08-20 17:40:06 UTC

2 export.freqshft

Contents

Index		8
	windowedFrequencyShift.plotter	6
	subTractor	
	import.smvshift	5
	import.freqtbl	4
	freqShifter	3
	export.freqshft	2

export.freqshft

Save the shifted frequencies

Description

Save the shifted frequencies

Usage

```
export.freqshft(frequency_shifts, output_file)
```

Arguments

Value

nothing

```
merged_frequencies.filename <- system.file("extdata",
  "merged_frequencies.example_data.tbl", package = "PopPsiSeqR")
frequencies.bg <- import.freqtbl(merged_frequencies.filename)
frequency_shifts.bg <- freqShifter(frequencies.bg)
export.freqshft(frequency_shifts.bg , tempfile())</pre>
```

freqShifter 3

freqShifter

Frequency Shift Calculator

Description

This function accepts a GRanges object containing allele frequencies from two parental populations and an offspring population. It then polarizes each variant site and calculates how the offspring has shifted from equilibrium.

Usage

```
freqShifter(freqbed_in)
```

Arguments

freqbed_in

in goes the file containing the grouped frequency measurements (extended bed

format)

Value

per-site PopPsiSeq frequency shifts

polarization of alleles

At each variant site, either the selected parent or the backcrossed parent might have the alternate allele at a higher frequency than the other (sites in which they have the same allele frequency are not informative and are assumed to have been filtered out). To regularize the data, each site was independently polarized, which is to say, the alternate and reference alleles were reassigned ad hoc to make the selected parent population have the higher frequency.

putting the offspring in context

At each site, the offspring's allele frequency is compared to the hypothetical equilibrium frequency expected by simply averaging the parents' frequencies. This is reported as the mean_oriented_shift; also reported is the distance to fixation in each direction (max_oriented_shift, min_oriented_shift), and the difference between parental allele frequencies (AF_difference)

```
merged_frequencies.filename <- system.file("extdata",
  "merged_frequencies.example_data.tbl", package = "PopPsiSeqR")
frequencies.bg <- import.freqtbl(merged_frequencies.filename)
frequency_shifts.bg <- freqShifter(frequencies.bg)</pre>
```

4 import.freqtbl

import.freqtbl

Load Merged Allele Frequency Table

Description

This function accepts as input a path to a BED file containing allele frequency and returns a GRanges object ready for the freqShifter function.

Usage

```
import.freqtbl(freqtbl_filename)
```

Arguments

freqtbl_filename

file containing the allele frequencies as an extended BED6+ file

Value

frequency table as bedgraph

input format

This function accepts as input a path to a file in an extended BED6+ format; specifically,

'chrom start end name score strand reference_allele alternate_allele selected_parent_count selected_parent_allele_frequency backcrossed_parent_count backcrossed_parent_allele_frequency offspring_count offspring_allele_frequency'

eg,

'chr2L 8517 8518 0 0 + G A 8 0 16 0.25 8 0.25'

Some of these fields (name, score, strand, reference_allele, alternate_allele, selected_parent_count, backcrossed_parent_count, offspring_count) are required as placeholders but not used in the current PopPsiSeq algorithm This format is the output of joining and filtering the output of vcftools' –freq output; see vignette for details

```
merged_frequencies.filename <- system.file("extdata",
  "merged_frequencies.example_data.tbl", package = "PopPsiSeqR")
frequencies.bg <- import.freqtbl(merged_frequencies.filename)</pre>
```

import.smvshift 5

import.smvshift

Load Smoothed Frequency Shift

Description

Load Smoothed Frequency Shift

Usage

```
import.smvshift(filename, selected_parent = "sim", backcrossed_parent = "sec")
```

Arguments

filename

file containing the allele frequencies as an extended BED6+ file; see vignette for

formatting

selected_parent

name of the First Parent (that which is Selected for)

backcrossed_parent

name of the Second Parent (that which is Backcrossed to)

Value

loaded data as a bedgraph

Examples

```
windowed_shifts.filename <- system.file("extdata",
   "windowed_shifts.example_data.bed", package = "PopPsiSeqR")
windowed_shifts.bg <- import.smvshift(windowed_shifts.filename)</pre>
```

subTractor

Subtractor

Description

Subtractor

Usage

```
subTractor(
  data_one,
  data_two,
  treament_name = "pseudoparent",
  field = "avg_simward_AFshift",
  hoarder = FALSE
)
```

Arguments

data_one first bedfile data_two second bedfile

field what column is the independent variable what column is the variable being compared hoarder whether or not to retain the other data

Value

GRanges of the difference

Examples

```
lab_sechellia.filename <- system.file("extdata",
   "wild_sechellia.example_data.bed", package = "PopPsiSeqR")
lab.bg <- import.smvshift(lab_sechellia.filename)
lab.bg$sechellia <- "lab"
wild_sechellia.filename <- system.file("extdata",
   "lab_sechellia.example_data.bed", package = "PopPsiSeqR")
wild.bg <- import.smvshift(wild_sechellia.filename)
wild.bg$sechellia <- "wild"
sub.traction <- subTractor(lab.bg, wild.bg ,treament_name = "sechellia")</pre>
```

windowedFrequencyShift.plotter

Data displayer

Description

Data displayer

Usage

```
windowedFrequencyShift.plotter(
  windowed_shift,
  selected_parent = "sim",
  backcrossed_parent = "sec",
  contigs = c("chr2L", "chr2R", "chr3L", "chr3R"),
  main_title = "popPsiSeq results",
  ref_gen = "droSim1",
  primary_aesthetic = ggplot2::aes(),
  envelope_aesthetic = ggplot2::aes(),
  ancestral_aesthetic = ggplot2::aes()
```

Arguments

```
\label{lem:windowed_shift} \ GRanges\ containing\ windowed\ data\ (as\ loaded\ by\ import.smvshft) \ selected\_parent
```

Name of the selected-for population

backcrossed_parent

Name of the backcrossed-too population

contigs What contigs to display main_title What to call the plot

ref_gen Name of the reference genome

primary_aesthetic

Primary aesthetic

envelope_aesthetic

envelope aesthetic

ancestral_aesthetic

ancestral aesthetic

Value

a ggbio plot object

```
windowed_shifts.filename <- system.file("extdata",
  "windowed_shifts.example_data.bed", package = "PopPsiSeqR")
windowed_shifts.bg <- import.smvshift(windowed_shifts.filename)
windowedFrequencyShift.plotter(windowed_shifts.bg)</pre>
```

Index

```
export.freqshft, 2
freqShifter, 3
import.freqtbl, 4
import.smvshift, 5
subTractor, 5
windowedFrequencyShift.plotter, 6
```