Assignment 03

Julio Vargas

September 21, 2025

```
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.functions import col, split, explode, regexp_replace, transform, when
from pyspark.sql.functions import col, monotonically_increasing_id
from pyspark.sql.types import StructType # to/from JSON
import json
import re
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
np.random.seed(30) # set a fixed seed for reproducibility
pio.renderers.default = "vscode+notebook"
# Initialize Spark Session
spark = SparkSession.builder.appName("JobPostingsAnalysis").getOrCreate()
# Load schema from JSON file
with open("data/schema_lightcast.json") as f:
    schema = StructType.fromJson(json.load(f))
# Load Data
df = (spark.read
      .option("header", "true")
      .option("inferSchema", "false")
      .schema(schema)
                                   # saved schema
      .option("multiLine", "true")
      .option("escape", "\"")
```

```
.csv("data/lightcast_job_postings.csv")
)

df.createOrReplaceTempView("job_postings")
# Show Schema and Sample Data
#df.printSchema()
df.show(5)
df.count()
```

+	+
+	-++
+	
	·
•	+
+	++++
+	+
++	
	+
•	
+	+
+	+
+	
	+
•	
	+
+	+
+	
+	+
+	+
•	· · · · · · · · · · · · · · · · · · ·
•	
+	++++++
+	+
+	
+	
	' +
•	
+	+
+	
+	+
+	
· 1	TD LAGT IDDATED DATE LAGT IDDATED TIMEGTAMD DIDI TOATEG DOGTED DVDIDED
I	ID LAST_UPDATED_DATE LAST_UPDATED_TIMESTAMP DUPLICATES POSTED EXPIRED
+	+
+	-+

+		+	+	+		
++						
+		-+		-+	+	
+	+		+	++		
+		+	+			
+	+	· +	· +	· ++		
++	•	•	•			
+						
+		•	•		·	
+	•		•	·		
, ,	·	•		•		
+		•		•		
+						
+	•		•	•		
+						
+						
+				•	•	
+	•	•		•	•	
+						
+	+		+			
+		+		-+		
+	+			-+		
+	++			-+		
+	++				+	
+		-+	+		+	
+	+	-+		+	+	
+						
1f57d95acf4dc67ed	l 9/	6/2024	2024-09-06	20:32:	0 6/2/2024	6/8/2024
May-2024\n\nEn	6/8/2024	.	6	894731	Murphy USA 1	Murphy USA
time (> 32 h		2		21	false NULL	
2051.01 Business Intel	llig 15-2	051.01 Bu	siness Inte	ellig [\n		
0000 Computer and Matl	•			•		
2051 Data Scientists				nn		
0000 Computer and Matl	h 115-2000					•
2051 Data Scientists						
Ocb072af26757b6c4					0 6/2/2024	
time (> 32 h	07	3	2024 00 02	3	false NULL	1 0/1/2024
Watervill 23	Maine		011	Kennebec,		
	2300 Augusta				tive an 561	
	_					Auministia
2051.01 Business Intel	•			•	[] 	+al 1E
0000 Computer and Matl	1 15-2					
2051 Data Scientists	145 0000			m		Intellig
0000 Computer and Matl	a 15-2000		ical Scie			
2051 Data Scientists		NULL		NULL	56 Adminis	trative an

```
2024-09-06 20:32:...|
                                          1|6/2/2024| 7/7/2024
|85318b12b3331fa49...|
                  9/6/2024
time (> 32 h...|
                    5 I
                               NULLI
                                       false | NULL|
                                                    01
Fort Worth...
          48 l
                        48113 l
              Texasl
                                 Dallas, TX
                                              48113 l
Fort Worth...
            19100|Dallas-Fort Worth...|
                              52|Finance and Insur...|
                                               524 | Insurance
2051.01|Business Intellig...|15-2051.01|Business Intellig...|
                                               0000 | Computer and Math... | 15-2000 | Mathematical Scie... |
                                   15-2050|Data Scientists|
                                                    15-
2051|Data Scientists|
                    23|Information Techn...|
                                       231113 | Data / Data Minin...
0000 | Computer and Math... | 15-2000 | Mathematical Scie... | 15-2050 | Data Scientists | 15-
2051|Data Scientists|
                    NULL
                                 NULL
                                          52|Finance and Insur
|1b5c3941e54a1889e...|
                  9/6/20241
                         2024-09-06 20:32:...
                                          1|6/2/2024|7/20/2024
time (> 32 h...|
                    31
                               NULL
                                       false | NULL|
                                                    0|
Mesa-Chan...
          4|
             Arizonal
                        4013
                                Maricopa, AZ
                                              4013
Mesa-Chan...
           38060|Phoenix-Mesa-Chan...|
                              52|Finance and Insur...|
                                              522 | Credit Inte
2051.01|Business Intellig...|15-2051.01|Business Intellig...|
                                               0000 | Computer and Math...
                 15-2000|Mathematical Scie...|
                                    15-2050|Data Scientists|
                    23|Information Techn...|
                                       231113|Data / Data Minin...
2051|Data Scientists|
0000 | Computer and Math... | 15-2000 | Mathematical Scie... | 15-2050 | Data Scientists | 15-
                 [\n 6\n]
                       [\n "Data Privac...|
2051|Data Scientists|
                                          52|Finance and Insur
|cb5ca25f02bdf25c1...|
                 6/19/2024|
                         2024-06-19 07:00:00|
                                          0|6/2/2024|6/17/2024
time / full-...
                  NULLI
                               NULL
                                       false| 92500|
                                                    01
2051.01|Business Intellig...|15-2051.01|Business Intellig...|
                                               []
0000 | Computer and Math...
                 15-2000|Mathematical Scie...|
                                    15-2050 | Data Scientists |
                                                    15-
2051|Data Scientists|
                    23|Information Techn...|
                                       231010|Business Intellig..
0000 | Computer and Math... | 15-2000 | Mathematical Scie... | 15-2050 | Data Scientists | 15-
2051 | Data Scientists |
                    NULT.I
                                 NULT.I
                                          99|Unclassified Indu
+----+
 +----
+----
+----+
+----+
 ______
+----+-----
+-----
+-----
+----+
+----+
+-----
```

1 1.1 Casting salary and experience columns

1.0.1 1.1 Computing medians

1.0.2 1.2 Computing medians

```
# 1.2 Computing medians
def compute_median(sdf, col_name):
    q = sdf.approxQuantile(col_name, [0.5], 0.01) #50 percentile 1% error
    return q[0] if q else None
median_from = compute_median(df, "SALARY_FROM")
median_to = compute_median(df, "SALARY_TO")
median_salary = compute_median(df, "SALARY")
                                                                  (0 + 1) / 1]
[Stage 94:>
# 1.2 Output
#the median_from, median_to , median_salary respectively are:
print("- Median SALARY_FROM: $" + str(median_from))
print("- Median SALARY_TO: $" + str(median_to))
print("- Median SALARY: $" + str(median_salary))
- Median SALARY_FROM: $87295.0
- Median SALARY_TO: $130042.0
- Median SALARY: $115024.0
# 1.3 Imputing missing salaries
df = df.fillna({
   "SALARY_FROM": median_from,
    "SALARY_TO": median_to,
   "SALARY": median_salary
})
# 1.3 Add new column Average_Salary
df = df.withColumn("Average_Salary", (col("SALARY_FROM") + col("SALARY_TO")) / 2)
export_cols = ["Average_Salary", "SALARY", "EDUCATION_LEVELS_NAME", "REMOTE_TYPE_NAME",
          "MAX_YEARS_EXPERIENCE", "LOT_V6_SPECIALIZED_OCCUPATION_NAME"]
# 1.3 Output
df.select(*export_cols).show(5, truncate=False)
  -----
```

6

```
|Average_Salary|SALARY |EDUCATION_LEVELS_NAME
                                   |REMOTE_TYPE_NAME|MAX_YEARS_EXPERIENCE
+-----
+----+
         |115024.0|[\n "Bachelor's degree"\n] |[None]
108668.5
                                              12.0
108668.5
         |115024.0|[\n "No Education Listed"\n]|Remote
                                              |3.0
         |115024.0|[\n "Bachelor's degree"\n] |[None]
108668.5
                                              NULL
108668.5
         |115024.0|[\n "No Education Listed"\n]|[None]
                                              NULL
         |92500.0 | [\n "No Education Listed"\n] | [None]
192500.0
                                             NULL
+-----
only showing top 5 rows
#1.4 Cleaning Education column
#remove the \n and \r
df1 = df.withColumn("EDUCATION_LEVELS_NAME",
  trim(
     regexp_replace(regexp_replace(col("EDUCATION_LEVELS_NAME"),r"\n|\r", ""), #remove \n
              r"\setminus[\s+\"", "[\""]) #remove spaces.
  )
# 1.4 Output
df1.select(*export cols).show(5, truncate=False)
+-----
+----+
108668.5
         |115024.0|["Bachelor's degree"] |[None]
                                          12.0
                                                        Genera
       108668.5
                                          13.0
                                                        Oracle
         |115024.0|["Bachelor's degree"] |[None]
108668.5
                                          NULL
                                                        |Data .
108668.5
         |115024.0|["No Education Listed"]|[None]
                                          NULL
                                                        |Data .
         |92500.0 | ["No Education Listed"] | [None]
                                          NULL
                                                        Oracl
192500.0
+----
+----+
only showing top 5 rows
#1.5 Exporting Cleaned Data
# Export to CSV
df_selected=df1.select(*export_cols)
pdf = df_selected.toPandas()
```

pdf.to_csv("data/lightcast_cleaned.csv", index=False)

```
print("Data cleaning complete. Rows retained:", len(pdf))

[Stage 99:> (0 + 1) / 1]

Data cleaning complete. Rows retained: 72498
```

2 2.0 TEMPLATE

```
import plotly.graph_objects as go
import plotly.io as pio
pio.templates["nike"] = go.layout.Template(
    # LAYOUT
    layout = {
        # Fonts and colors
        'title': {
            'font': {'family': 'HelveticaNeue-CondensedBold, Helvetica, Sans-serif',
                     'size': 30,
                     'color': '#13007c'}
        },
        'font': {'family': 'Helvetica Neue, Helvetica, Sans-serif',
                 'size': 16,
                 'color': '#3b3b3b'},
        'colorway': ['#fffb00', '#e010fc'],
        # Adding others
        'hovermode': 'x unified',
        'plot_bgcolor': '#E5ECF6',
        'paper_bgcolor': "#FFFFFF",
    },
    # DATA
    data = {
        # Default style applied to all bar charts
        'bar': [go.Bar(
            texttemplate = '%{value:$.2s}',
            textposition = 'outside',
            textfont = {'family': 'Helvetica Neue, Helvetica, Sans-serif',
```

```
'size': 20,
'color': '#ff6874'} # FFFFFF

)]
}
```

2.1 2.1 Salary Distribution by Industry and Employment Type

```
#your code for first query
import pandas as pd
import polars as pl
from IPython.display import display, HTML
#2.2 Filter the dataset - Remove records where salary is missing or zero.
df_valid_salaries = df.filter(df["SALARY"] > 0).select("NAICS2_NAME", "EMPLOYMENT_TYPE_NAME",
#2.2 output - convert to pandas
pdf = df_valid_salaries.toPandas()
print("Data cleaning complete. Rows retained:", len(pdf))
#2.3 Aggregate data - NAICS industry codes, employment type and compute salary distribution.
# Clean employment type names for better readability
pdf["EMPLOYMENT_TYPE NAME"] = (pdf["EMPLOYMENT_TYPE_NAME"].astype(str)
                               .str.replace(r''[^x00-x7F]+'', ''', regex=True)
)
#2.3 output
median_salaries_naics = pdf.groupby("NAICS2_NAME")["SALARY"].median()
median_salaries_employee = pdf.groupby("EMPLOYMENT_TYPE_NAME")["SALARY"].median()
display(median_salaries_naics.to_frame().head())
display(median_salaries_employee.to_frame().head())
```

[Stage 100:> (0 + 1) / 1]

Data cleaning complete. Rows retained: 72498

	SALARY
NAICS2_NAME	
Accommodation and Food Services	115024.0
Administrative and Support and Waste Management and Remediation Services	115024.0
Agriculture, Forestry, Fishing and Hunting	115024.0
Arts, Entertainment, and Recreation	115024.0
Construction	115024.0

	SALARY
EMPLOYMENT_TYPE_NAME	
Full-time (> 32 hours)	115024.0
None	115024.0
Part-time (32 hours)	115024.0
Part-time / full-time	115024.0

```
#2.4 Visualize results box plot
# X-axis = NAICS2_NAME || Y-axis = SALARY_FROM || Group by EMPLOYMENT_TYPE_NAME.
pdf = df.select("NAICS2_NAME", "SALARY").toPandas()
fig = px.box(pdf, x="NAICS2_NAME", y="SALARY", title="Salary Distribution by Industry",
             color_discrete_sequence=["#EF553B"])
                 # add nike template
#fig.update_layout(template="nike")
#fig.update_xaxes(tickangle=45)
fig.update_layout(
   template="nike",
   height=700,
    xaxis=dict(
        title=dict(text="NAICS2_NAME", standoff=40),
        tickangle=45,
        tickfont=dict(size=10),
        automargin=True
    ),
    yaxis=dict(title=dict(text="Salary")),
    margin=dict(b=150)
```

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

3 3 Salary Analysis by ONET Occupation Type (Bubble Chart)

```
import plotly.express as px
#3.1 Analyze how salaries differ across LOT_OCCUPATION_NAME occupation types.
#ONET_NAME CHANGE TO LOT_OCCUPATION_NAME
#Aggregate Data
salary_analysis = spark.sql("""
    SELECT
        LOT_OCCUPATION_NAME AS Occupation_name,
        PERCENTILE(SALARY, 0.5) AS Median_Salary,
        COUNT(*) AS Job_Postings
   FROM job_postings
    WHERE LOT_OCCUPATION_NAME IS NOT NULL
    GROUP BY LOT OCCUPATION NAME
    ORDER BY Job_Postings DESC
   LIMIT 10
""") #the result only has 6 results and a null, limit to 10 is not necessary
salary_pd = salary_analysis.toPandas()
display(salary_pd.head())
#Simple plot to Analyze
figa = px.scatter(
   salary_pd,
   x="Occupation_name",
    y="Median_Salary",
    size="Job_Postings",
    title="Salary Analysis by Occupation",
```

```
color="Occupation_name"
)
figa.update_xaxes(tickangle=45, automargin=True)
figa.show()
#3.2 Visualize results bubble chart
import plotly.express as px
fig = px.scatter(
    salary_pd,
    x="Occupation_name",
    y="Median_Salary",
    size="Job_Postings",
    title="Salary Analysis by LOT Occupation Type (Bubble Chart)",
    labels={
        "Occupation_name": "LOT Occupation",
        "Median_Salary": "Median Salary",
        "Job_Postings": "Number of Job Postings"
    },
    hover_name="Occupation_name",
    size_max=60,
    width=900,
    height=600,
    color="Job_Postings",
    color_continuous_scale="Plasma"
#customize layout
fig.update_layout(
    height=700,
    font_family="Arial",
    font_size=14,
    title_font_size=25,
    title_font_color="#13007c",
    font_color="#2e2e2e",
    xaxis_title="LOT Occupation",
    yaxis_title="Median Salary",
    plot_bgcolor="#FAFDFF",
    xaxis=dict(
        tickangle=-45,
        showline=True,
        linecolor="#444"
```

```
),
   yaxis=dict(
      showline=True,
      linecolor="black"
)
)

fig.show()
fig.write_image("output/Q3.svg", width=1000, height=600, scale=1)
```

[Stage 102:> (0 + 1) / 1]

	Occupation_name	Median_Salary	Job_Postings
0	Data / Data Mining Analyst	95250.0	30057
1	Business Intelligence Analyst	125900.0	29445
2	Computer Systems Engineer / Architect	157600.0	8212
3	Business / Management Analyst	93650.0	4326
4	Clinical Analyst / Clinical Documentation and \dots	89440.0	261

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html
Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html
/tmp/ipykernel_4749/4211918895.py:80: DeprecationWarning:

Support for Kaleido versions less than 1.0.0 is deprecated and will be removed after September Please upgrade Kaleido to version 1.0.0 or greater ('pip install 'kaleido>=1.0.0'` or 'pip install 'kaleido>=1.0.0'

4 4 Salary by Education Level

```
# Defining education level groupings
lower_deg = ["Bachelor's", "Associate", "GED", "No Education Listed", "High school"]
higher_deg = ["Master's degree", "PhD or professional degree"]
```

```
# Adding new column EDU_GROUP
df = df.withColumn(
   "EDU GROUP",
    when(col("EDUCATION_LEVELS_NAME").rlike("|".join([f"(?i){deg}" for deg in lower_deg])),
    .when(col("EDUCATION_LEVELS_NAME").rlike("|".join([f"(?i){deg}" for deg in higher_deg]))
    .otherwise("Other")
)
# Modyfying/Casting necessary columns to float
df = df.withColumn("MAX_YEARS_EXPERIENCE", col("MAX_YEARS_EXPERIENCE").cast("float"))
df = df.withColumn("Average_Salary", col("Average_Salary").cast("float"))
# df.select("MAX_YEARS_EXPERIENCE", "Average_Salary", "EDU_GROUP", "EDUCATION_LEVELS_NAME").pri:
# print(df.count()) #Total 72,498 after 8074
# Filtering for non-null and positive values
df = df.filter(
    col("MAX_YEARS_EXPERIENCE").isNotNull() & col("Average_Salary").isNotNull() &
    (col("MAX_YEARS_EXPERIENCE") > 0) & (col("Average_Salary") > 0)
)
# Filtering for just the two EDU_GROUP groups
df_filtered = df.filter(col("EDU_GROUP").isin("Bachelor's or lower", "Master's or PhD"))
# Converting to Pandas for plotting
df_pd = df_filtered.toPandas()
pdf4=df.select("MAX_YEARS_EXPERIENCE", "Average_Salary", "EDU_GROUP", "EDUCATION_LEVELS_NAME").
display(pdf4.head())
```

[Stage 105:> (0 + 1) / 1]

	MAX_YEARS_EXPERIENCE	Average_Salary	EDU_GROUP	EDUCATION_LEVELS_NAM
0	2.0	108668.5	Bachelor's or lower	[\n "Bachelor's degree"\n]
1	3.0	108668.5	Bachelor's or lower	$[\n$ "No Education Listed" $\n]$
2	7.0	108668.5	Bachelor's or lower	$[\n$ "No Education Listed" $\n]$
3	2.0	92962.0	Bachelor's or lower	[\n "Bachelor's degree",\n "Mas
4	5.0	108668.5	Bachelor's or lower	$[\n "Associate degree",\n "Bach"]$

```
# Jittering and trimming
df_pd["MAX_EXPERIENCE_JITTER"] = df_pd["MAX_YEARS_EXPERIENCE"] + np.random.uniform(-0.25, 0.3)
df_pd["AVERAGE_SALARY_JITTER"] = df_pd["Average_Salary"] + np.random.uniform(-2500, 2500, sindf_pd = df_pd.round(2))

# Remove outlier higher than 399K
df_pd = df_pd[df_pd["AVERAGE_SALARY_JITTER"] <= 399000]

df_pd.head()</pre>
```

	ID	LAST_UPDATED_DATE	LAST_UPDATED_TIMES
0	1f57d95acf4dc67ed2819eb12f049f6a5c11782c	9/6/2024	2024-09-06 20:32:57.352
1	0 cb 072 af 26757 b6 c4 ea 9464472 a50 a443 af 681 ac	8/2/2024	2024-08-02 17:08:58.838
2	5a843df632e1ff756fa19d80a0871262d51becc0	6/21/2024	2024-06-21 07:00:00.000
3	229620073766234e814e8 add 21 db7 dfaef 69b3bd	10/9/2024	2024-10-09 18:07:44.758
4	138 ce 2c 9 453b 47a 9b 33 403c 364d 4fd 80996 caa 4f	8/10/2024	2024-08-10 19:36:49.244

```
#jittering and triming
# Plot four groups
fig1 = px.scatter(
   df_pd,
    x="MAX_EXPERIENCE_JITTER",
   y="AVERAGE_SALARY_JITTER",
    color="EDU_GROUP",
   hover_data=["LOT_V6_SPECIALIZED_OCCUPATION_NAME"],
    title="<b>Experience vs Salary by Education Level</b>",
    opacity=1.0, #0.7
    color_discrete_sequence=[
        "#636EFA", # Blue
        "#EF553B", # Red
        "#00CC96", # Green
        "#AB63FA" # Purple
)
fig1.update_traces(
    marker=dict(size=10, line=dict(width=1, color="black"))
)
fig1.update_layout(
```

```
plot_bgcolor="#fcfcf0", # light grey chart background
    paper_bgcolor="#f5d9b2", # soft blue frame
    font=dict(family="Segoe UI", size=14, color="#2b2b2b"),
   title_font=dict(size=22, color="#4b3832"),
   xaxis_title="Years of Experience",
   yaxis_title="Average Salary (USD)",
    legend_title="Education Group",
    hoverlabel=dict(bgcolor="white", font_size=13, font_family="Arial"),
   margin=dict(t=70, b=60, l=60, r=60),
    xaxis=dict(
        gridcolor="#e0e0e0",
        tickmode="linear",
        dtick=1 # show every integer year clearly
    ),
   yaxis=dict(gridcolor="#cccccc")
fig1.show()
fig1.write_html("output/q_1a_Experience_vs_Salary_by_Education_Level.html")
```

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

5 5 Salary by Remote Work Type

```
from pyspark.sql.functions import when, col, trim

#5.1 Split into three groups based on REMOTE_TYPE_NAME

df = df.withColumn(
    "REMOTE_GROUP",
    when(trim(col("REMOTE_TYPE_NAME")) == "Remote", "Remote")
    .when(trim(col("REMOTE_TYPE_NAME")) == "Hybrid Remote", "Hybrid")
    .when(trim(col("REMOTE_TYPE_NAME")) == "Not Remote", "Onsite")
    .when(col("REMOTE_TYPE_NAME").isNull(), "Onsite")
    .otherwise("Onsite")
)

#print(df.count())

#5.1 Filter valid values
```

```
df = df.filter(
    col("MAX_YEARS_EXPERIENCE").isNotNull() & col("Average_Salary").isNotNull() &
        (col("MAX_YEARS_EXPERIENCE") > 0) & (col("Average_Salary") > 0)
)

#5.1 Pandas
df_pd = df.select(
    "MAX_YEARS_EXPERIENCE","Average_Salary","LOT_V6_SPECIALIZED_OCCUPATION_NAME","REMOTE_GROUD).toPandas()

df_pd.head()

# Jittering and trimming
df_pd["MAX_EXPERIENCE_JITTER"] = df_pd["MAX_YEARS_EXPERIENCE"] + np.random.uniform(-0.15, 0. df_pd["AVERAGE_SALARY_JITTER"] = df_pd["Average_Salary"] + np.random.uniform(-1000, 1000, sindf_pd = df_pd.round(2)

# Remove outlier higher than 399K
df_pd = df_pd[df_pd["AVERAGE_SALARY_JITTER"] <= 399000]</pre>
```

[Stage 107:> (0 + 1) / 1]

```
# Plot four groups
fig5 = px.scatter(
    df_pd,
   x="MAX_EXPERIENCE_JITTER",
   y="AVERAGE_SALARY_JITTER",
    color="REMOTE_GROUP",
   hover_data=["LOT_V6_SPECIALIZED_OCCUPATION_NAME"],
    title="<b>Experience vs Salary by Remote Work Type </b>",
    opacity=1.0, #0.7
    color_discrete_sequence=[
        "#636EFA", # Blue
        "#EF553B", # Red
        "#00CC96", # Green
        "#AB63FA" # Purple
    ]
fig5.update_traces(
    marker=dict(size=10, line=dict(width=1, color="black"))
```

```
)
fig5.update_layout(
   plot_bgcolor="#fcfcf0", # light grey chart background
    paper_bgcolor="#f5d9b2", # soft blue frame
    font=dict(family="Segoe UI", size=14, color="#2b2b2b"),
   title_font=dict(size=22, color="#4b3832"),
    xaxis_title="Years of Experience",
   yaxis_title="Average Salary (USD)",
   legend_title="Education Group",
   hoverlabel=dict(bgcolor="white", font_size=13, font_family="Arial"),
   margin=dict(t=70, b=60, l=60, r=60),
    xaxis=dict(
        gridcolor="#e0e0e0",
        tickmode="linear",
        dtick=1 # show every integer year clearly
    ),
   yaxis=dict(gridcolor="#cccccc")
fig5.show()
```

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html