

STUDENT ID NO							
		П				T	1

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

ETM7166 – DIGITAL SIGNAL PROCESSING SYSTEMS AND DESIGN IN TELECOMMUNICATIONS

(All sections / Groups)

22 OCTOBER 2016 2.30 p.m. – 5.30 p.m. (3 Hours)

INSTRUCTION TO STUDENT

- 1. This question paper consists of 12 pages including the cover page and Appendix.
- 2. There are FOUR questions in this paper. Attempt ALL questions.
- 3. All questions carry equal marks and the distribution of the marks for each question is given in square brackets.
- 4. The Appendix section contains useful tables and formulae.
- 5. Please write all your answers in the answer booklet provided. Number your questions clearly.

Question 1

(a) Describe the phenomenon of aliasing in the time and frequency domains, and suggest how aliasing can be avoided.

[4 marks]

- (b) For the signals $x[n] = \{\underline{4}, 2, 1, 2, 4\}$ and $h[n] = \{\underline{1}, 3, 3, 1\}$, determine the following:
 - i. 3x[n] 2h[-n+3]

[2 marks]

ii. Linear convolution of x[n] and h[n]

[2 marks]

iii. 5-point circular convolution of x[n] and h[n]

[2 marks]

iv. Auto-correlation of h[n]

[2 marks]

(c) A linear time-invariant (LTI) system is characterized by the system function:

$$H(z) = \frac{3z^{-1}}{1 + 0.3z^{-1} - 0.18z^{-2}}$$

i. Determine the different possible regions of convergence (ROC) for the system.

[2 marks]

 If the system is realizable, determine the impulse response and the ROC of the system.

[4 marks]

- (d) In signal processing, several techniques can be used to transform a signal from the time domain into the frequency domain.
 - i. Describe the relation between the Fourier Series, Fourier Transform, Discrete-Time Fourier Transform and Discrete Fourier Transform.

[2 marks]

ii. How do the above 4 techniques relate to the z-Transform and Laplace Transform?

[2 marks]

iii. Discuss the Short-Term Fourier Transform and explain its advantage and disadvantage. Suggest a technique that can be used to overcome the disadvantage suffered by Short-Term Fourier Transform.

[3 marks]

Continues...

Question 2

(a) A finite impulse response (FIR) filter has the following coefficients:

$$h[n] = \begin{cases} 1, & -2, & 4, & -8, & 16, & -16, & 8, & -4, & 2, & 1 \\ \uparrow & & & & \end{cases}$$

- i. Suggest whether the FIR filter belong to Type I, II, III or IV.
- ii. Determine its frequency response $H(e^{j\omega})$.

[3 marks]

[2 marks]

iii. Derive the magnitude and phase equations of the filter.

[2 marks]

(b) Consider the following specifications for an FIR low-pass filter:

$$0.985 \le |H(e^{j\omega})| \le 1.015$$
 $0 \le |\omega| \le 0.3\pi$
 $|H(e^{j\omega})| \le 0.015$ $0.35\pi \le |\omega| \le \pi$

i. List the different types of windows that can be used to meet the above specifications.

[2 marks]

ii. Design a linear phase FIR filter using one of the window types you mentioned in (b)(i). Justify your window selection.

[5 marks]

iii. Compute the filter order required to meet the specifications if you use other types of window you mentioned in (b)(i). Comment on the result.

[3 marks]

(c) Using bilinear transformation, design a second-order low-pass Butterworth filter that has a 3-dB cutoff frequency $\omega_c = \pi/5$.

[4 marks]

(d) For the two filters designed in (b) and (c), draw the block diagram or the signal flow graph of each filter in canonic form.

[4 marks]

Continues...

Question 3

(a) An interpolator structure is shown in Fig. Q3 with H(z) having a transfer function of $H(z) = z^{-1} + 2z^{-2} + 3z^{-3} + 4z^{-4} + 5z^{-5} + 6z^{-6} + 7z^{-7} + 8z^{-8}$.

- i. Derive the 3-branch polyphase decomposition of H(z) for the above system. Show explicitly the transfer function of each subfilter $E_m(z)$
- ii. Realize the system in Fig. Q3 using the 3-branch polyphase decomposition derived in Q3(a)(i). [2 marks]
- (b) The sampling rate of a signal is to be reduced from 18kHz to 300Hz by using a decimator. The specifications for the decimation filter H(z) are as follows:
 - \triangleright Passband edge frequency, $F_p = 200 Hz$
 - \triangleright Stopband edge frequency, $F_s = 300 Hz$
 - \triangleright Passband ripple, $\delta_p = 0.02$
 - \triangleright Stopband ripple, $\delta_s = 0.01$
 - i. Determine the computational complexity, in terms of the number of multiplications per second, of the single-stage decimator.

[3 marks]

ii. Using $H(z) = F(z)G(z^{20})$, compute the computational complexity of the system using a two-stage decimator.

[6 marks]

- (c) The Wiener filter is an optimal filter design based on a-priori statistical information.
 - i. Explain the underlying concept of Wiener filter.

[3 marks]

ii. An alternative to Wiener filter in solving the filter coefficients is the method of steepest descend. Explain how this method differs from Wiener filter.

[3 marks]

Continues...

(d) The transmitted data in communication systems are distorted most seriously by inter-symbol interference. Adaptive equalization method is often being employed to combat this form of interference. Explain how an adaptive equalization filter works.

[5 marks]

Question 4

- (a) One main problem for telephone communications is the presence of echo in the network.
 - i. Explain the causes of echo in the telephone network.

[5 marks]

ii. Echo suppressor and echo canceller are the two techniques employed to overcome the detrimental effects of echo. With suitable diagrams, briefly describe the working principles behind both of these techniques

[10 marks]

- (b) Digital speech signal is used to represent human conversation over the telecommunications network.
 - State four advantages of digital speech.

[4 marks]

ii. Speech coding is a technique used to encode digitized speech signal. State and explain the three gains that can be realized by using speech coding on digitized speech.

[6 marks]

End of Questions

Appendix: Formula Sheet

The z-transform

Properties of the z-transform

Property	x[n]	X(z)	\mathcal{R}_x
Linearity	ax[n] + by[n]	aX(z) + bY(z)	$\mathcal{R}_x \cap \mathcal{R}_y$
Time shifting	x[n-m]	$z^{-m}X(z)$	\mathcal{R}_x
Time reversal	x[-n]	$X(z^{-1})$	$1/\mathcal{R}_x$
Convolution	x[n] * y[n]	X(z)Y(z)	$\mathcal{R}_x \cap \mathcal{R}_y$

Common z-transform pairs

x[n]	X(z)	\mathcal{R}_x
$\delta[n]$	1	∀2
$\delta[n-n_0]$	z^{-n_0}	Possibly $\forall z$
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$a^nu[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a

Closed-form Expression for Some useful Series

$$\sum_{n=0}^{N-1} a^n = \frac{1-a^N}{1-a}$$

$$\sum_{n=0}^{N-1} na^n = \frac{(N-1)a^{N+1} - Na^N + a}{(1-a)^2}$$

$$\sum_{n=0}^{N-1} n = \frac{1}{2}N(N-1)$$

$$\sum_{n=0}^{N-1} a^n = \frac{1}{2} N(N-1)$$

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$$

$$|a| < 1$$

FIR Filter Design

Ideal bandpass

deal bandpass
$$h[n] = \frac{w_2}{\pi} \operatorname{sinc}\left(\frac{w_2(n-M/2)}{\pi}\right) - \frac{w_1}{\pi} \operatorname{sinc}\left(\frac{w_1(n-M/2)}{\pi}\right),$$

$$n = 0, 1, \dots, M$$

Fixed windows

Window	Window function
Rectangular	w[n] = 1
Hann	$w[n] = 0.5 - 0.5\cos(2\pi n/M)$
Hamming	$w[n] = 0.54 - 0.46\cos(2\pi n/M)$
Blackman	$w[n] = 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M)$

Window	Passband ripple $20 \log_{10} \delta_p$	Stopband attenuation $20\log_{10}\delta_{s}$	Transition width $ w_p - w_s $
Rectangular	-13	-21	$1.8\pi/M$
Hann	-31	-44	$6.2\pi/M$
Hamming	-41	-53	$6.6\pi/M$
Blackman	-57	-74	$11\pi/M$

Kaiser window

$$w[n] = \frac{I_0 \left(\beta (1 - (n/\alpha - 1)^2)^{0.5}\right)}{I_0(\beta)}$$

$$\beta = \begin{cases} 0.1102(A - 8.7), & A > 50\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50\\ 0, & A < 21 \end{cases}$$

$$M = \begin{cases} (A - 7.95)/(2.285\Delta w), & A \ge 21\\ 5.655/\Delta w, & A < 21 \end{cases}$$

Optimal Filter Design (Parks-McClellan Algorithm) Estimated Filter Order

$$N = \frac{-20\log\sqrt{\delta_p\delta_s} - 13}{14.6\Delta f}$$

CLASSIFICATION OF LINEAR-PHASE FIR SYSTEMS

	h[n] symmetric: $h[n] = h[N-n]$	h[n] antisymmetric: $h[n] = -h[N-n]$
	Type I Linear Phase Filter	Type III Linear Phase Filter
N even	$H(e^{j\omega}) = e^{-jN\omega/2} \sum_{k=0}^{N/2} a[k] \cos(k\omega)$ $a[0] = h[N/2]$ $a[k] = 2h[(N/2) - k]$	$H(e^{j\omega}) = je^{-jN\omega/2} \sum_{k=1}^{N/2} c[k] \sin(k\omega)$ $c[k] = 2h[(N/2) - k]$
N odd	Type II Linear Phase Filter $H(e^{j\omega}) = e^{-jN\omega/2} \sum_{k=1}^{(N+1)/2} b[k] \cos((k-1/2)\omega)$	Type IV Linear Phase Filter $H(e^{j\omega}) = je^{-jN\omega/2} \sum_{k=1}^{(N+1)/2} d[k] \sin((k-1/2)\omega)$
	$b[k] = 2h[\frac{(N+1)}{2} - k]$	$d[k] = 2h\left[\frac{(N+1)}{2} - k\right]$

IIR Filter Design

Normalized Butterworth lowpass

N	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
1	1.000							
2	1.414	1.000						
3	2.000	2.000	1.000					
4	2.613	3.414	2.613	1.000				
5	3.236	5.236	5.236	3.236	1.000			
6	3.864	7.464	9.142	7.464	3.864	1.000		
7	4.494	10.10	14.59	14.59	10.10	4.494	1.000	
8	5.126	13.14	21.85	25.69	21.85	13.14	5.126	1.000

Filter order

$$d = \left(\frac{(1-\delta_p)^{-2}-1}{\delta_s^{-2}-1}\right)^{0.5}$$

$$k = \frac{\Omega_p}{\Omega_s}$$

Design	Filter order
Butterworth	$N \ge \frac{\log d}{\log k}$
Chebyshev I, II	$N \ge \frac{\cosh^{-1}(1/d)}{\cosh^{-1}(1/k)}$
Elliptic	$N \ge \frac{\log(16/d^2)}{\log(2/u)}$
	$u = \frac{1 - (1 - k^2)^{0.25}}{1 + (1 - k^2)^{0.25}}$
	$\cosh^{-1}(x) = \ln(x + \sqrt{x})$

Frequency transformations

Target class	Transformation	Edge frequencies of target class
Highpass	$s \to \frac{\Omega_p \Omega_p'}{s}$	Ω_p'
Bandpass	$s \to \Omega_p \frac{s^2 + \Omega_u \Omega_l}{s(\Omega_u - \Omega_l)}$	Ω_l,Ω_u
Bandstop	$s \to \Omega_p \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_u \Omega_l}$	Ω_l,Ω_u

Impulse invariance transformation

$$H_a(s) = \sum_{k=0}^{p-1} \frac{A_k}{s - s_k} \longrightarrow H(z) = \sum_{k=0}^{p-1} \frac{T_s A_k}{1 - e^{s_k T_s} z^{-1}}$$

Bilinear transformation

$$H(z) = H_a(s) \Big|_{s = \frac{2}{T_s} \frac{1-z^{-1}}{1+z^{-1}}}$$

 $\Omega = 2 \tan(w/2)/T_s$

Discrete-time Fourier Analysis

The discrete Fourier transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

Properties of the DFT

Property	x[n]	X[k]
Linearity	$A_1x_1[n] + A_2x_2[n]$	$A_1 X_1[k] + A_2 X_2[k]$
Time shifting	$x[\langle n-n_0\rangle_N]$	$X[k]W_N^{kn_0}$
Frequency shifting	$x[n]W_N^{-k_0n}$	$X[\langle k-k_0\rangle_N]$
Time reversal	$x[\langle -n angle_N]$	$X[\langle -k \rangle_N]$
Conjugation	$x^*[n]$	$X^*[\langle -k angle_N]$
Convolution	$x[n]\circledast y[n]$	X[k]Y[k]
Modulation	Nx[n]y[n]	$X[k]\circledast Y[k]$

The decimation-in-time FFT

The decimation-in-frequency FFT

