Forecasting high-frequency stock market returns using embedded limit order book data

Marius Sterling Niels Wesselhöfft

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

http://irtg1792.hu-berlin.de http://lvb.wiwi.hu-berlin.de

Motivation — 1-1

Motivation

Figure: Limit Order Book (LOB) Level 2

Data -

Data Description

- - ► Time span from 01/07/2015 to 31/12/2015 (first iteration)
 - ► Tick data aggregated to second (last tick)
- Source
 - LOB tick data for NASDAQ stocks including Amazon from Lobster
 - ➤ Trading from 9:30 a.m. to 04:00 p.m. representing 23,400 seconds per day, 3m for half a year

Data — 2-2

Raw Data

Limit prices and volumes (Bid | Ask) over

- \blacktriangleright time $t = 1, \ldots, T$,
- b depth d = 1, ..., D with D = 200
- \Box Volume $V_{t,d}^a, V_{t,d}^b$

Figure: Limit Order Book in t

Data — 2-3

Cumulated Volumes

Limit price vector and volume vector

$$P_t^a = \left[P_{t,1}^a, \dots, P_{t,D}^a \right]^\top$$
$$V_t^a = \left[V_{t,1}^a, \dots, V_{t,D}^a \right]^\top$$

Cumulated Limit prices and volumes (Bid | Ask)

$$\overline{V}_{t,d}^b = \sum_{i=1}^d V_{t,i}^b$$

$$\overline{V}_{t,d}^{a} = \sum_{i=1}^{d} V_{t,i}^{a}$$

Figure: Limit Order Book with cumulated volumes in *t*

LOB over time

Figure: Limit Order Book (LOB) over one day

Embedding

- - Price and volume data
 - Return and volume data
 - Factor models
 - Semiparametric Factor Model (Hautsch, Härdle, Mihoci, 2012)
 - Measure for buying/selling pressure

Measure for buying/selling pressure

Absolute difference from mid price

$$\delta_{t,d}^{b} = |P_{t,d}^{b} - P_{t}| \quad (1)$$

$$\delta_{t,d}^{a} = |P_{t,d}^{a} - P_{t}| \quad (2)$$

 \Box Mid price $P_t \in \left[P_{t,1}^b, P_{t,1}^a\right]$

$$P_t = \sqrt{P_{t,1}^b P_{t,1}^a} \tag{3}$$

$$P_{t} = \frac{1}{2} \left(P_{t,1}^{b} + P_{t,1}^{a} \right)$$

 $P_{t} = \sqrt{P_{t,1}^{b} P_{t,1}^{a}}$ Figure: Cumulated volume over $P_{t} = \frac{1}{2} \left(P_{t,1}^{b} + P_{t,1}^{a} \right)$ (4) difference from mid price P_{t} in t

Theta θ_t

 \Box Theta $\theta_t \in \mathbb{R}$

$$\theta_t = f(\overline{V}_{t,d}, \delta_{t,d})$$
 (5)

$$\overline{\theta}_{t,d} = \overline{V}_{t,d}^{a} - \overline{V}_{t,d}^{b}$$

Figure: Cumulated volume difference $\overline{\theta}_{t,d}$

Theta θ_t

$$\widetilde{\theta}_{t,d} = \begin{cases} \widetilde{\theta}_{t,d}^{+} = \overline{V}_{t,d}^{b} / \overline{V}_{t,d}^{a}, \ \overline{V}_{t,d}^{b} > \overline{V}_{t,d}^{a} \\ \widetilde{\theta}_{t,d}^{-} = -\overline{V}_{t,d}^{a} / \overline{V}_{t,d}^{b}, \ \overline{V}_{t,d}^{b} \le \overline{V}_{t,d}^{a} \end{cases}$$
(7)

- Interpretation
 - $ightharpoonup \widetilde{ heta}_{t,d}^+$ as multiple of bid over ask cum volume (buying pressure)
 - $ightharpoonup \widetilde{\theta}_{t,d}^-$ as multiple of ask over bid cum volume (selling pressure)
- Depth weights
 - Uniform
 - Exponential

Return forecasting

Return forecast up to 600 seconds

$$r_{t+i} = f(X_t, X_{t-1}, \ldots) + \varepsilon_{t+i}, \tag{8}$$

$$\varepsilon_{t+i} \sim \mathsf{F}(), \ i = 1, \dots, 600$$
 (9)

Dependent variable: Log return

$$r_t = \log P_t - \log P_{t-1} = p_t - p_{t-1}$$
 (10)

□ Independent variable(s) $X_t, X_{t-1}, ...$

$$X_{t} = \begin{cases} 1) \left[P_{t,1}^{b}, V_{t,1}^{b}, P_{t,1}^{a}, V_{t,1}^{a}, \dots, P_{t,D}^{b}, V_{t,D}^{b}, P_{t,D}^{a}, V_{t,D}^{a} \right] \\ 2) \left[r_{t,1}^{b}, V_{t,1}^{b}, r_{t,1}^{a}, V_{t,1}^{a}, \dots, r_{t,D}^{b}, V_{t,D}^{b}, r_{t,D}^{a}, V_{t,D}^{a} \right] \\ 3) \theta_{t} = f(\overline{V}_{t,d}, \delta_{t,d}) \end{cases}$$

Modeling Approaches

Embedding	1 Prices and	2 Log returns	3 Asymmetry
Model	volumes	and volumes	estimator $ heta$
1 Linear Regression	11	12	13
2 RNN (e.g. LSTM)	21	22	23
3 TCN	31	32	33

Table: Modeling matrix

13 Linear Regression $+ \theta_t$

Figure: (upper) Amazon prices series (lower) θ_t over time

13 Linear Regression $+ \theta_t$

Figure: (left) R^2 for $X_t = [\theta_t^+]$ (right) R^2 for $X_t = [\theta_t^-]$

23 Linear Regression $+\theta_t + \theta_t^2$

Figure: (left) R^2 for $X_t = [\theta_t^+, (\theta_t^+)^2]$ (right) R^2 for $X_t = [\theta_t^-, (\theta_t^-)^2]$

TCN inspired model architecture

- Layers
 - Feature generating layer
 - Inception layers
 - Dimension reduction layers
- - ▶ Depth: 10
 - ▶ Lag: 64 seconds
 - Prediction horizon: 15 seconds
 - Loss: MSE
 - Optimizer: AdamBatchsize: 128

NNs as a blackbox

LRP

Input relevance for 15 second forecast

Figure: (left) LOB input and (right) scaled forecast relevance (LRP) for input of 15 sec ahead bid price prediction, — mid price, \bullet price, \times predicted price

Input relevance for 15 second forecast

Figure: Dept and Lag relevance

Conclusion — 4-1

Research goals

- Supervised methods
 - Stock markets returns forecasts for high frequencies
- Embeddings
 - Will unstructured information still lead to superior NNs?
 - Compare parametric depth structure (uniform, exponential) to the forecast relevance of NNs (LRP)
- Out-of-sample Test
 - Performance holds under transactions costs
 - Out-of-sample and out-of-stock

