ЛАБОРАТОРНАЯ РАБОТА №1 ОТЧЕТ

ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН И ПАРАМЕТРОВ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Цель работы Ознакомиться с измерительными приборами, источниками питания и основными элементами программной среды Multisim. Изучить методы и приобрести навыки измерения основных параметров электрических цепей, ознакомиться со свойствами индуктивных катушек и конденсаторов в цепях постоянного тока, рассчитать параметры и построить делители напряжения и тока

Задание 1

	R12	R34	R1234	U1	U2	U3	U4
	10.667	27.429	38.095	1.6	3.2	4.8	6.4
Измерено				l1	12	13	14
				0.1	0.1	0.1	0.1
Вычислено	R12	R34	R1234	R1	R2	R3	R4
	10.667	27.429	38.095	16	32	48	64

Мой номер по списку 16

Сопротивление параллельно соединенных резисторов вычисляется по формуле

$$R_{12} = R_1 R_2 / (R_1 + R_2)$$
 и $R_{34} = R_3 R_4 / (R_3 + R_4)$.

При последовательном суммируется. Вычисленные значения совпали с большой точностью, как видно из таблицы.

По формуле Ома для участка цепи видим что сила тока на всей цепи 0.1 А что соответствует вычисленному.

Задание 2

$$R = 200$$
, Ом, $L = 10$, мГн, $C = 10$, мк Φ .

Измерения зафиксированы спустя время.

На первом амперметре видим что весь ток пошел через него. Значения медленно увеличивализь до фиксированного значения.

На втором амперметре мы видим 0 т к катушка спустя длительное время свое индуктивное сопротивление до 0, превратившись в проводник без сопротивления, по которому и пошел весь ток.

Сопротивление конденсатора со временем растет что мы и видим на мультиметре в мегаомах, непрерывно растущих. Напряжение не меняется что значит что сила тока уменьшается до 0 по формуле Ома.

Задание 3

$$I = \frac{E}{R_1 + R_2}; U_1 = I \cdot R_1; U_2 = I \cdot R_2$$
.

Задал случайно 200 Ом на первом резистре вместо 195 но разница не велика. По формуле вычислим что

I = 16/(200+160) = 0.044444 A

U1 = 8.(8) U2 = 7.(1) Что соответствует измерениям

Из чего можно сделать вывод что ток делится в том же отношении что и U1/U2

Задание 4

$$R_1=195,$$
 Ом, $R_2=10N,$ Ом. $I_1=I\frac{R_2}{R_1+R_2};I_2=I\frac{R_1}{R_1+R_2}$. ЭДС источника тока $J_1=N/10$

11 = 1.6*160/(195+160) = 0.721 A

I2 = 1.6*195/(195+160) = 0.879 A

Выводы по работе: Ознакомился с приборами, источниками питаний и мультитулом. Подтвердили что при прошествии времени сопротивление катушки уменьшается до 0, а конденсатора — увеличивается до бесконечности. Так же в очередной раз подтвердили что формула Ома для участка цепи работает без нареканий. Все замеренные данные совпали с посчитанными вручную, что есть прекрасно. По точным подсчетам я — молодец, даже с учетом опоздания.