Processamento Digital de Imagens

Realce de Imagens

Eduardo A. B. da Silva
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
eduardo@smt.ufrj.br

Sergio L. Netto
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
sergioln@smt.ufrj.br

Abril de 2017

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Sumário

- Realce de Imagens
 - Operações Pontuais
 - Operações Pontuais
 - Modelagem de Histogramas
 - Operações Espaciais
 - Mapeamento Inverso de Contraste e Escalamento Estatístico
 - Interpolação e Zoom
 - Operações no Domínio das Transformadas
 - Filtragem Homomórfica
 - Realce de Imagens Multi-Espectrais
 - Falsa Cor e Pseudo-Cor

Operações Pontuais

Não usam memória;

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

Operações Pontuais

Contrast Stretching

$$0 \le x(m, n) \le L$$

(SMT – COPPE/UFRJ) UFRJ Abril de 2017 5

Clipping:
$$\alpha = \gamma = 0$$

Thresholding: $\alpha = \gamma = 0$; a = b = t

Negativo Digital:

Intensity Slicing:

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Gray Level Slicing Effects - Examples

255 -150 200 255

Original image

Image after slicing

Histogram Before

Cache Level: 1

Pixels: 21543

Histogram after slicing

Extração de Bits:

$$u = k_1 2^{B-1} + k_2 2^{B-2} + \dots + k_n 2^{B-n} + \dots + k_{B-1} 2 + k_B$$

$$k_n = \left[\frac{u}{2^{B-n}}\right] - \left[\frac{u}{2^{B-n+1}}\right] \times 2, \qquad v = \begin{cases} L, & k_n = 1\\ 0, & n.d.p. \end{cases}$$

Ajuda a determinar o número de bits visualmente significativos.

Compressão de Faixa Dinâmica:

$$v = c \log_{10}(1+\mid u\mid)$$

Modelagem de Histogramas

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

Imagem Subexposta:

Imagem Superexposta:

Equalização de histogramas:

Caso Contínuo: u com pdf $p_u(u)$

$$v = F_u(u) = \int_0^u p_u(u) du$$
 possui densidade uniforme em $[0,1]$

$$P[v \le V] = P[u \le F_u^{-1}(V)] = \int_0^{F_u^{-1}(V)} p_u(u) du$$

$$= F_u(F_u^{-1}(V)) = V$$

$$= V$$

Caso Discreto: $u \text{ com } L \text{ níveis } x_i, i = 0, 1, \dots, L - 1, \text{ prob. } p_u(x_i)$

$$p_u(x_i) = \frac{n_i}{n} = \frac{h(x_i)}{\sum h(x_i)}$$
 $v(u) = \sum_{i=0}^k p_u(x_i), \quad x_k \leq u < x_{k+1}$

 \Rightarrow Se não requantizo V, faço só "histogram stretching", e mantenho mais ou menos a forma:

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Se, ao contrário, re-quantizo v, tenho:

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

$$\dot{v} = \left\lfloor \frac{v - v_{mn}}{1 - v_{mn}} (L - 1) + 0.5 \right\rfloor$$

Especificação de Histogramas:

$$p_u(u) \rightarrow p_v(v)$$

Se w uniforme:
$$u \to w$$
 $w(u) = \int_0^u p_u(u) du = F_u(u)$

$$v \to w$$
 $w(v) = \int_0^v p_v(v) dv = F_v(v)$
 $\Rightarrow v = F_v^{-1}(w) = F_v^{-1}(F_u(u))$

$$u \in v$$
 discretas: $u: x_i, i = 0, \dots, L-1, \quad p_u(x_i)$
 $v: y_i, i = 0, \dots, L-1, \quad p_v(y_i)$

$$w = \sum_{i=0}^{n} p_u(x_i), \quad x_k \le n < x_{k+1}$$

$$\tilde{w}_k = \sum_{i=0}^k p_{\nu}(y_i), \quad k = 0, \cdots, L-1$$

Seja
$$w' = \tilde{w}_n$$
 tal que
$$\begin{cases} \tilde{w}_n - w \ge 0, \\ \tilde{w}_{n-1} - w < 0 \end{cases}$$

Ex:
$$x_i = y_i = 0, 1, 2, 3$$
;

$$p_u(x_i) = 0.25, i = 0, 1, 2, 3$$

$$p_v(y_0) = p_v(y_3) = 0, p_v(y_1) = p_v(y_2) = 0.5$$

и	$p_u(x_i)$	W	$p_{v}(y_{i})$	\tilde{w}_k	w.	n	v.
0	0.25	0.25	0.0	0.00	0.50	1	$1(y_1)$
1	0.25	0.50	0.5	0.50	0.50	1	$1(y_1)$
2	0.25	0.75	0.5	1.00	1.00	2	$2(y_2)$
3	0.25	1.00	0.0	1.00	1.00	2	$2(y_2)$

(SMT – COPPE/UFRJ) UFRJ Abril de 2017 25

Operações Espaciais

Região é mapeada em um pixel

Médias Espaciais e Filtragem Passa-Baixas

$$v(m,n) = \sum \sum_{(k,l)\in W} a(k,l)y(m-k,n-l)$$

Ex: a(k, l)

$$\begin{array}{c|cccc}
0 & 1 & & & -1 \\
0 & 1/4 & 1/4 & & & 0 \\
1 & 1/4 & 1/4 & & & 1
\end{array}$$

-1 1/9 1/9 1/9 0 1/9 1/9 1/9 1 1/9 1/9 1/9		-1	0	1
-	-1	1/9	1/9	1/9
1 1/9 1/9 1/9	0	1/9	1/9	1/9
	1	1/9	1/9	1/9

Se
$$y(m, n) = u(m, n) + \eta(m, n)$$
, $\eta(m, n) = \text{ruido}$
 $\Rightarrow v(m, n) = \sum \sum u(m - k, n - l) + \underbrace{\tilde{\eta}(m, n)}_{\text{tende a ser pequeno}}$

Ou, na frequência:

 \Rightarrow aumenta a SNR

Directional Smoothing: (Quando tenho arestas predominando numa direção)

$$v(m, n, \theta) = \frac{1}{N\theta} \sum_{(k,l) \in W_{\theta}} y(m - k, n - l)$$

uso θ^* tal que $|y(m, n) - v(m, n, \theta)|$ é mínimo

$$\Rightarrow v(m,n) = v(m,n,\theta^*)$$

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

Filtragem por Medianas:

$$v(m,n) = \text{mediana}\{y(m-k,n-l),9k,l\} \in W\}$$

- É não linear;
- Bom para ruído impulsivo;
- 8 Ruim quando há muito ruído na janela;

Se a janela tem N_W elementos, e a mediana é o $\frac{N_W + 1}{2}$ maior valor, sua busca requer

$$(N_W-1)+(N_W-2)+\cdots+\frac{N_W-1}{2}=\frac{3(N_W-1)^2}{8}.$$

 \Rightarrow posso reduzir para $\frac{1}{2}N_W \log_2 N_W$.

Se uma janela de tamanho k se move, a cada pixel k novos valores entram e k saem \Rightarrow a nova mediana pode ser achada em $k(N_W + 1)$ comparações.

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

MEDIAN FILTER

noisy lena

Gaussian filter

median filter

Outras Formas de Suavização

 \Rightarrow Só substituir o valor pela média quando o ruído é grande, isto é, $|v(m,n)-y(m,n)| \ge$ threshold.

⇒ Mais algoritmos no Capítulo 8 (Image Restoration).

Unsharp Masking e Crispening

B (fora de foco) C (B filtrado LP)

D (B-C)

B + D (unsharped)

Passa Baixas, Passa Altas e Passa Bandas

Passa Baixas: médias: $h_{LP}(m, n) \Rightarrow$ suavização de ruído e interpolação.

Passa Altas: $h_{HP}(m, n) = \delta(m, n) - h_{LP}(m, n) \Rightarrow$ realce de arestas.

Passa Bandas: $h_{BP}(m, n) = \underbrace{h_{L_1}(m, n)} - \underbrace{h_{L_2}(m, n)}$

média com janela pequena média com janela grande

 \Rightarrow realce de arestas na presença de ruído.

Mapeamento Inverso de Contraste e Escalamento Estatístico

A habilidade para detectar um objeto em um background uniforme depende do tamanho do objeto e da razão de contraste:

$$\gamma=rac{\sigma}{\mu}$$
 variancia do objeto e seu entorno luminancia media do objeto

Seja:
$$v(m,n) = \frac{\mu(m,n)}{\sigma(m,n)} \Rightarrow \mu \in \sigma$$
 calculadas dentro de uma janela W .

$$\mu(m,n) = \frac{1}{N_W} \sum_{(k,l) \in W} u(m-k,n-l)$$

$$\sigma(m,n) = \frac{1}{N_W} \sum_{(k,l) \in W} \left\{ \left[u(m-k,n-l) - \mu(m,n) \right]^2 \right\}^{\frac{1}{2}}$$

 \Rightarrow gera uma imagem onde as arestas de baixo contraste são realçadas.

Caso especial:
$$v(m,n) = \frac{u(m,n)}{\sigma(m,n)} \Rightarrow \frac{\text{escala cada pixel pelo desvio padrão da janela (escalamento estatístico)}}{\text{tístico}}$$

Interpolação e Zoom

Replicação:

$$H = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Esquema geral:

- Coloco zeros;
- Filtro com H "n" vezes $\Rightarrow (n-1)$ order hold.

Interpolação:

$$v(2m, n) = v_1(m, n)$$

$$v(2m+1, n) = \frac{1}{2} [v_1(m, n) + v_1(m+1, n)],$$

$$0 \le m \le M - 1, 0 \le N \le 2N - 1$$

Equivale a filtar a imgem com zeros entrelaçados com o filtro:

$$\mathbf{H} = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \boxed{1} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

Spline Interpolation: Encho com "p" zeros e filtro com H p vezes.

Operações no Domínio das Transformadas

Filtragem Linear Generalizada (Zonal Masking):

∅

SIVIT

IDFT

(SMT - COPPE/UFRJ)

UFRJ

Figure 9.19. Periodic noise removal.

Filtro Gaussiano Inverso: máscara zonal $g(k, l) = e^{\frac{k^2 + l^2}{2\sigma^2}}$.

 \Rightarrow Observar que isto é válido para DCT, DST, Hadamard, etc. Para a DFT, modificar de acordo.

⇒ Ênfase de altas frequências de imagens borradas por fenômenos que podem ser modelados por PSF's Gaussianas (por exemplo, turbulência atmosférica).

Filtragem por Raiz

Seja **V** a DFT de **U**, $v(k, l) = |v(k, l)| e^{i\theta(k, l)}$.

$$\Rightarrow \dot{v}(k,l) = |v(k,l)|^{\alpha} e^{i\theta(k,l)}, \quad 0 \le \alpha \le 1$$

Imagens normais: como |v(k, l)| tende a cair em altas frequências, $\alpha \le 1$ leva a enfatizar altas frequências.

Filtragem Homomórfica

Seja o modelo de imagem dado por $y(m, n) = \underbrace{x(m, n)}_{\text{reflectância iluminação}} \underbrace{i(m, n)}_{\text{reflectância iluminação}}$

- ⇒ Problemas ocorrem em casos que a iluminação é ruim, ou está muito escuro em algumas áreas da cena e muito claro em outras.
- $\Rightarrow i(m, n)$ depende da fonte de iluminação (e varia dependendo de sua intensidade);
- $\Rightarrow x(m, n)$ depende da das propriedades do objeto (e normalmente não varia);
- \Rightarrow Queremos reduzir a influência da iluminação (que tipicamente varia pouco dentro da imagem) enquanto realçamos o contraste do objeto.

 $\log(y(m,n)) = \log(x(m,n)) + \log(i(m,n)) \Rightarrow$ Passo um filtro passa bandas em y, de modo que as variações de baixa frequência de i(m,n) sejam anuladas, faço $e^{y(m,n)}$:

Realce de Imagens Multi-Espectrais

Sequências de \mathcal{I} imagens da mesma cena, uma em cada espectro de frequências (Ex: visível, infravermelho, etc.)

- \Rightarrow Tipicamente $1 \le \mathcal{I} \le 12$
- \Rightarrow Gero $\mathcal I$ imagens a partir do conjunto que tenha as características principais bem representadas.
- 3 métodos principais:
 - 1 Razões de Intensidade: $R_{ij}(m,n) = \frac{u_i(m,n)}{u_j(m,n)}, \quad i \neq j \Rightarrow \begin{array}{l} \text{escolho os } R_{ij} \\ \text{mais significativos.} \end{array}$
 - 2 Razões de Logaritmos: uso $\log R_{ij}$ quando sua faixa dinâmica é muito grande.

3 Componentes Principais:

$$u(m,n) = egin{bmatrix} u_1(m,n) \\ u_2(m,n) \\ \vdots \\ u_{\mathcal{I}}(m,n) \end{bmatrix} \Rightarrow \mathsf{Acho} \; \mathbf{\Phi}, \; \mathsf{a} \; \mathsf{KLT} \; \mathsf{de} \; u(m,n)$$

 $\Rightarrow v(m,n) = \Phi u(m,n) \Rightarrow \text{uso } \mathcal{I}_0 < \mathcal{I} \text{ imagens } v(m,n) \text{mais significativas.}$

Ex: $RGB \Rightarrow YIQ$.

Falsa Cor e Pseudo-Cor

Posso distinguir mais cores que níveis de cinza.

⇒ Atribuo cores distintas a características distintas com base em um critério específico;

EX:

Níveis de cinza;

Médias espaciais;

⇒ Os mapeamentos bons de um modo geral são determinados experimentalmente.

Método mais simples: "intensity slicing"

