전기회로 (가, 나)

Chapter 2: Basic Laws

2017. 1학기

윤영식 교수 글로벌브레인홀 204호 ysyoun@ssu.ac.kr

Learning Goals

- Ohm's law
- o 회로 구성 요소
- Kirchhoff's law
- o 직렬연결 & 병렬연결
- o 와이-델타 변환
- ० ० ० ८

2.2 저항 (Resistance)

전류의 흐름을 방해하는 회로 요소를 저항 (Resistor)이라 하고, 기호 R로 표시한다.

$$R = \rho \frac{l}{A}$$

2.2 Resistivity (고유저항)

	Material	Resistivity (Ω·m)	Usage
	Silver	1.64×10 ⁻⁸	Conductor
	Copper	1.72×10 ⁻⁸	Conductor
	Aluminum	2.80×10 ⁻⁸	Conductor
	Gold	2.45×10 ⁻⁸	Conductor
	Carbon	4.00×10 ⁻⁵	Semiconductor
	Germanium	47.00×10 ⁻²	Semiconductor
	Silicon	6.40×10 ²	Semiconductor
	Paper	1.00×10 ¹⁰	Insulator
	Mica	5.00×10 ¹¹	Insulator
	Glass	1.00×10^{12}	Insulator
	Teflon	3.00×10^{12}	Insulator

반도체

2.2 Ohm's Law

Ohm's law (옴의 법칙)

$$v = iR$$

- 저항(resistor, R) : 전류의 흐름을 방해하는 소자
 - 단위 : Ω(옴) = V/A

2.2 Extreme Cases

• short circuit (단락(短絡)) : R = 0

i (= v/R = 0/0)의 값은?

→ 다른 곳에서 결정

만약 $v \neq 0$ 이고 R = 0 이면???

→ 합선

o open circuit (개방(開放)): $R = \infty$

2.2 Ohm's Law (revisited)

[선형저항 (linear resistor)]

[비선형저항 (nonlinear resistor)]

2.2 Conductance

$$G = \frac{1}{R} = \frac{i}{v}$$
 단위 : σ (mho 모) 또는 σ (siemens 지멘스)

$$i = Gv$$

2.2 Power (revisited)

o 저항에 의하여 사용된 전력 (power)

$$p = vi = i^2 R = \frac{v^2}{R}$$

$$p = vi = v^2G = \frac{i^2}{G}$$

Quiz] power는 전류나 전압에 대하여 선형적인가?

2.2 Example 2.2

o 다음 회로에서 전류 i, 컨덕턴스 G, 전력 p를 구하라

2.3 Topology

o 회로를 구성하는 요소

- branch : 회로에 연결된 각각의 소자
- node: branch의 연결점
- loop : 회로내의 폐 경로

2.3 Branch

o 전압원/전류원, 저항 등의 회로를 구성하는 요소 (element)

2.3 Node

o 2개 이상의 branch의 연결점

2.3 Loop

- o 회로내의 폐 경로 (closed loop)
- o 독립 loop
 - 다른 독립 loop의 일부가 아닌 branch를 가지고 있는 loop

b = l + n - 1

2.3 Series & Parallel

- o Series (직렬연결)
 - 2개의 요소가 하나의 node를 공유
 - 각 요소에 흐르는 전류는 동일
- o Parallel (병렬연결)
 - 2개 이상의 요소가 같은 2개의 node사이에 연결
 - 2개의 node사이의 전압은 동일

Practice (실전문제) 2.4

- 다음 회로에선 몇 개의 branch와 node가 있는가?
- o 직렬 및 병렬인 회로 요소를 구별하여 나타내라.

2.4 Kirchhoff's Law (키르히호프의 법칙)

- o 회로해석
 - 각 node의 전압 결정
 - 각 branch의 전류 결정

- o 회로 해석 방법
 - Ohm's law (v = iR)
 - Kirchhoff's law
 - **KCL** (Kirchhoff's current law)
 - **KVL** (Kirchhoff's voltage law)

2.4 KCL

- Kirchhoff's current law (KCL)
 - 하나의 node를 통과하는 전류의 대수적 합은 "o" ←"전하 보존의 법칙"

$$\sum_{n=1}^{N} i_n = 0$$

• 하나의 node 기준 : 들어가는 전류의 합 = 나가는 전류의 합

2.4 KVL

- Kirchhoff's voltage law (KVL)
 - 폐 경로에서 전압의 대수적 합은 "o"

$$\sum_{m=1}^{M} v_m = 0$$
 ← "에너지 보존의 법칙"

• 다음 회로에서 전압 v_1 과 v_2 를 구하라.

• 다음 회로에서 v_0 와 i를 구하라.

• 다음 회로에서 전류 i_0 와 전압 v_0 를 구하라.

o 다음 회로에서 전류와 전압을 구하라.

2.4 Kirchhoff's Law

o 다음 중 키르히호프 법칙에 위배되는 것은?

2.5 직렬 저항

o Series (직렬)

- 2개 이상의 element가 순차적으로 연결
- 2개의 element는 하나의 node를 공유
- 동일한 전류가 흐름.

2.5 직렬에서의 등가 저항

o 직렬 연결된 저항의 등가저항은 각 저항의 합

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

Original Circuit

Equivalent Circuit

2.5 직렬에서의 전압분배

- o 전압분배기 (Voltage divider)
 - 직렬 연결된 저항에서의 voltage drop를 이용하여 원하는 전압을 생성

$$v_1 = \frac{R_1}{R_1 + R_2} v$$
, $v_2 = \frac{R_2}{R_1 + R_2} v$ = 근저항에 전압이 더 많이 걸린다.!

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

2.6 병렬 저항

o Parallel (병렬)

- 2개 이상의 element가 같은 2개의 node 사이에 연결
- node사이에는 동일한 전압이 걸림.

2.5 병렬에서의 등가 저항

o 병렬 연결된 컨덕턴스의 등가는 각 컨덕턴스의 합

$$G_{eq} = G_1 + G_2 + \dots + G_N = \sum_{n=1}^{N} G_n$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{n=1}^{N} \frac{1}{R_n}$$

2.5 병렬에서의 전류분배

전류는 저항이 적은 곳으로 더 많이 흐른다.

2.5 직렬저항과 병렬저항

o 직렬저항

$$R_{eq}=R_1+R_2+\cdots+R_N=\sum_{n=1}^NR_n$$
 $lacktriangle$ 가장 큰 저항보다 항상 크다. if $R_1=R_2=\cdots R_N=R$, $R_{eq}=NR$

o 병렬저항

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{n=1}^N \frac{1}{R_n} \quad \longleftarrow \text{ 가장 작은 저항보다 항상 작다.}$$

if
$$R_1 = R_2 = \cdots R_N = R$$
, $R_{eq} = R / N$

Resistance vs. Conductance

Principle of Duality : $v \leftarrow > i$, $R \leftarrow > G$

• 다음 회로에서 R_{eq} 를 구하라.

 \bullet 다음 회로에서 등가 저항 R_{ab} 를 구하라.

ο 다음 회로에서 i_0 , v_0 와 3Ω 저항에서 소모된 전력을 구하라.

Practice 2.12

Example 2.13

• 전압 v_0 를 구하라

- o Due: 다음 수업시간에 제출
- #1. Practice(본문 실전문제) 2.5

다음 회로에서 전압 v_1 과 v_2 를 구하라.

#2. Practice (본문 실전문제) 2.6

다음 회로에서 전압 v_x 과 v_o 를 구하라.

#3. Practice(본문 실전문제) 2.7

다음 회로에서 전압 v_o 와 전류 i_o 를 구하라.

#4. Practice(본문 실전문제) 2.8

다음 회로에서 전류와 전압을 구하라.

#5. Problem(문제) 2.32

다음 회로에서 전류 $i_1 \sim i_4$ 를 구하라.

#6. Problem(문제) 2.35

다음 회로에서 V_o와 I_o를 구하라.

2.7 와이-델타 변환

2.7 델타-와이 변환

$$R_{12}(\Delta) = R_b \parallel (R_a + R_c) \qquad R_{12}(\Delta) = R_{12}(Y) \qquad R_{12}(Y) = R_1 + R_3$$

$$R_{13}(\Delta) = R_c \parallel (R_a + R_b) \mid R_{13}(\Delta) = R_{13}(Y) \mid R_{13}(Y) = R_1 + R_2$$

$$R_{34}(\Delta) = R_a \parallel (R_b + R_c) \mid R_{34}(\Delta) = R_{34}(Y) \mid R_{34}(Y) = R_2 + R_3$$

$$R_{12}(\Delta) = R_{12}(Y)$$

$$R_{13}(\Delta) = R_{13}(Y)$$

$$R_{34}(\Delta) = R_{34}(Y)$$

$$R_{12}(Y) = R_1 + R_2$$

$$R_{13}(Y) = R_1 + R_2$$

$$R_{34}(Y) = R_2 + R_2$$

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}, \quad R_2 = \frac{R_c R_a}{R_a + R_b + R_c}, \quad R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

2.7 델타-와이 변환

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}, \quad R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}}, \quad R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

2.7 와이-델타 변환

2.7 와이-델타 변환 (Summary)

 $Y (Star) \rightarrow Delta$

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

Delta \rightarrow Y (Star)

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

Example 2.15

o 와이-델타 변환 이용

Problem 2.16

o 다음 회로에서 전압 V₀를 구하라.

Problem 2.20

• 다음 회로에서 전류 i_0 를 구하라.

2.8 응용: 조명 시스템

• Quiz

• 직렬연결이 좋은가? 아니면 병렬연결이 좋은가?

2.8 응용: 전압계와 전류계

• Quiz : 전압계와 전류계의 내부저항의 이상적인 값은?

전압계 : ∞ 전류계 : 0

- Problem(문제) 2.15, 2.17, 2.21, 2,22
- o Due: 다음 수업시간까지

- Quiz #1
 - Homework #2, #3 중에서 출제
 - 다음 수업시간 (10분)

o Problem(문제) 2.15, 2.17, 2.21, 2,22

o Due: 다음 수업시간까지

o Quiz #1

- Homework #2, #3 중에서 출제
- 다음 수업시간 (10분)

#1. Problem(문제) 2.15

다음 회로에서 전압 v와 전류 i_x 를 구하라.

#1. Problem(문제) 2.17

다음 회로에서 전압 v_1, v_2, v_3 를 구하라.

#3. Problem(문제) 2.21

다음 회로에서 전압 🗸 를 구하라.

#4. Problem(문제) 2.22

다음 회로에서 전압 V_0 와 종속 전원에 의해 소모되는 전력을 구하라.

