The Electromotive Force and Internal Resistance of a Battery

Ryan Coyne

April 18, 2023

Abstract/Procedure/Conclusion

In this lab, we measured the electromotive force, \mathcal{E} , and internal resistance, r of a battery using resistors in a circuit with the battery and an ammeter. We used a circuit with resistors in series and a circuit with resistors in parallel. When measuring using the series circuit, \mathcal{E} was (1.544 ± 0.023) V and r was (8.54 ± 0.29) Ω . When measuring using the parallel circuit, \mathcal{E} was (0.9238 ± 0.0045) V and r was (1.21 ± 0.020) Ω . The values for \mathcal{E} and r in each circuit were very different, likely because the battery's internal resistance depends on the current flowing through it.

To calculate these values, we use Ohm's law, Kirchhoff's loop law, and Kirchhoff's junction law. Ohm's law is

$$V = IR$$

where V is the voltage drop over a resistor, I is the current through the resistor, and R is the resistance of the resistor. Kirchhoff's loop law says that the voltage drop around any loop in the circuit is zero in total. Kirchhoff's junction law says that the total current entering a junction is equal to the total current exiting the junction.

Figure 1: Initial circuit

Figure 2: Resistors in series

Figure 3: Resistors in parallel

Data

_ A									L
Series									
Delta V Batte	r 10	R	Rs	Is	EMF1	r1		sigmal	sigmaR
1.493	0.0828	10.1	3.6	0.0694	1.543787	8.544776		0.00005	0.05
Parallel Parallel									
Delta V Batte	r 10	R	Rp	lp	EMF2	r2			
1.412	0.0817	10.1	19.9	0.0775	0.923812	1.207372			
7									
3									
9									
0									
1	EMF1_I0	EMF1_Is	EMF1_R	Sigma EMF1					
2	1.538977	1.550686	1.565229	0.02303179					
3				Sigma r1					
8.628089888 5	8.475465	8.803731	8.494776	0.28513693					
				Sigma EMF2					
0.925694999 7	0.924408	0.927839	0.92409	0.00449369					
				Sigma r2					
8 1.223486232	1.21913	1.206661	1.210769	0.02024789					
9									

Calculations

$$(1) \mathcal{E} - I_0 r - I_0 R = 0$$

$$\mathcal{E} - I_s r - I_s R - I_s R_s = 0$$

(2)
$$\mathcal{E} - I_s r - I_s R - I_s R_s = 0$$
(2)
$$- (1) \quad -I_s r + I_0 r + I_0 R - I_s R - I_s R_s = 0$$

$$r(I_s + I_0) = I_s (R_s + R) - I_0 R$$

$$r = \frac{I_s(R_s + R) - I_0R}{I_s + I_0}$$

$$r = \frac{\mathcal{E} - I_0R}{I_0}$$

$$\mathcal{E} - I_s \frac{\mathcal{E} - I_0R}{I_0} - I_sR - I_sR_s = 0$$

$$\mathcal{E}(1 - \frac{I_s}{I_0}) = I_sR_s$$

$$\mathcal{E} = \frac{I_sR_s}{1 - \frac{I_s}{I_0}}$$

$$\mathcal{E} = \frac{I_0I_sR_s}{I_0 - I_s}$$