Customizing spaCy models

NATURAL LANGUAGE PROCESSING WITH SPACY

Azadeh MobasherPrincipal data scientist

Why train spaCy models?

- Go a long way for general NLP use cases
- But may not have seen specific domains data during their training, e.g.
 - Twitter data
 - Medical data

```
PAST MEDICAL HISTORY: Significant for history of pulmonary fibrosis disease and atrial fibrillation disease. He is status post bilateral lung transplant back in 2004 because of the pulmonary fibrosis disease.

ALLERGIES: There are no known allergies.

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf, CellCept Chemical , prednisone Chemical , omeprazole Chemical , Bactrim Chemical which he is on chronically, folic acid Chemical , vitamin D Chemical , Mag-Ox, Toprol-XL, calcium Chemical , vitamin B1, Centrum Silver, verapamil Chemical , and digoxin Chemical .
```


Why train spaCy models?

- Better results on your specific domain
- Essential for domain specific text classification

Before start training, ask the following questions:

- Do spaCy models perform well enough on our data?
- Does our domain include many labels that are absent in spaCy models?

Models performance on our data

- Do spaCy models perform well enough on our data?
- Oxford Street is not correctly classified with a GPE label:

```
import spacy
nlp = spacy.load("en_core_web_sm")

text = "The car was navigating to the Oxford Street."
doc = nlp(text)
print([(ent.text, ent.label_) for ent in doc.ents])
```

```
[('the Oxford Street', 'ORG')]
```

Output labels in spaCy models

Does our domain include many labels that are absent in spaCy models?

Output labels in spaCy models

If we need custom model training, we follow these steps:

- Collect our domain specific data
- Annotate our data
- Determine to update an existing model or train a model from scratch

Let's practice!

NATURAL LANGUAGE PROCESSING WITH SPACY

Training data preparation

NATURAL LANGUAGE PROCESSING WITH SPACY

Azadeh MobasherPrincipal data scientist

Training steps

- 1. Annotate and prepare input data
- 2. Initialize the model weight
- 3. Predict a few examples with the current weights
- 4. Compare prediction with correct answers
- 5. Use optimizer to calculate weights that improve model performance
- 6. Update weights slightly
- 7. Go back to step 3.

Annotating and preparing data

- First step is to prepare training data in required format
- After collecting data, we annotate it
- Annotation means labeling the intent, entities, etc.
- This is an example of annotated data:

Annotating and preparing data

Here's another example of annotated data:

spaCy training data format

- Data annotation prepares training data for what we want the model to learn
- Training dataset has to be stored as a dictionary:

```
training_data = [
  ("I will visit you in Austin.", {"entities": [(20, 26, "GPE")]}),
  ("I'm going to Sam's house.", {"entities": [(13,18, "PERSON"), (19, 24, "GPE")]}),
  ("I will go.", {"entities": []})
]
```

Three example pairs:

- Each example pair includes a sentence as the first element
- Pair's second element is list of annotated entities and start and end characters

Example object data for training

- We cannot feed the raw text directly to spaCy
- We need to create an Example object for each training example

```
import spacy
from spacy.training import Example
nlp = spacy.load("en_core_web_sm")
doc = nlp("I will visit you in Austin.")
annotations = {"entities": [(20, 26, "GPE")]}
example_sentence = Example.from_dict(doc, annotations)
print(example_sentence.to_dict())
```

Let's practice!

NATURAL LANGUAGE PROCESSING WITH SPACY

Training with spaCy

NATURAL LANGUAGE PROCESSING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

Training steps

- 1. Annotate and prepare input data
- 2. Disable other pipeline components
- 3. Train a model for a few epochs
- 4. Evaluate model performance

Disabling other pipeline components

• Disable all pipeline components except NER:

```
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
nlp.disable_pipes(*other_pipes)
```

Model training procedure

- Go over the training set several times; one iteration is called an **epoch**.
- In each epoch, update the weights of the model with a small number.
- Optimizers update the model weights.

```
optimizer = nlp.create_optimizer()
```

```
losses = {}
for i in range(epochs):
  random.shuffle(training_data)
  for text, annotation in training_data:
    doc = nlp.make_doc(text)
    example = Example.from_dict(doc, annotation)
    nlp.update([example], sgd = optimizer, losses=losses)
```

Save and load a trained model

Save a trained NER model:

```
ner = nlp.get_pipe("ner")
ner.to_disk("<ner model name>")
```

Load the saved model:

```
ner = nlp.create_pipe("ner")
ner.from_disk("<ner model name>")
nlp.add_pipe(ner, "<ner model name>")
```

Model for inference

Use a saved model at inference.

• Apply NER model and store tuples of (entity text, entity label):

```
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
```

Let's practice!

NATURAL LANGUAGE PROCESSING WITH SPACY

Wrap-up

NATURAL LANGUAGE PROCESSING WITH SPACY

Azadeh MobasherPrincipal data scientist

Chapter 1 - Introduction to NLP and spaCy

Use spaCy 's text processing pipelines to extract linguistic features:

Chapter 2 - spaCy linguistic annotations and word vectors

• Work with spaCy 's classes such as Doc , Token and Span and predict semantic similarities using word vectors:

Chapter 3 - Data analysis with spaCy

 Write matching patterns to extract terms and phrases using spaCy 's Matcher and PhraseMatcher:

```
matcher = Matcher(nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]
matcher.add("morning_greeting", [pattern])
```

```
matcher = PhraseMatcher(nlp.vocab, attr = "LOWER")
patterns = [nlp.make_doc(term) for term in terms]
matcher.add("InvestmentTerms", patterns)
```


Chapter 4 - Customizing spaCy models

- Annotate and prepare our data for training
- Train spaCy models and use them at inference time

```
PAST MEDICAL HISTORY: Significant for history of pulmonary fibrosis disease and atrial fibrillation disease. He is status post bilateral lung transplant back in 2004 because of the pulmonary fibrosis disease.

ALLERGIES: There are no known allergies.

MEDICATIONS: Include multiple medications that are significant for his lung transplant including Prograf, CellCept CHEMICAL, prednisone CHEMICAL, omegrazole CHEMICAL, Bactrim CHEMICAL which he is on chronically, folic acid CHEMICAL, vitamin D CHEMICAL, Mag-Ox, Toprol-XL, calcium CHEMICAL 500 mg DOSAGE, vitamin B1, Centrum Silver, verapamil CHEMICAL, and digoxin CHEMICAL.
```


Recommended resources

- Introduction to Deep Learning in Python
- Introduction to Deep Learning with PyTorch
- Introduction to ChatGPT

Congratulations!

NATURAL LANGUAGE PROCESSING WITH SPACY

