Introdução à Arquitetura de Computadores Exercícios Complementares às Aulas Teórico-Práticas

Bloco 1 - Representação da Informação e Operações Básicas

- Explique resumidamente em que consistem os princípios da hierarquia, modularidade e regularidade. Use como exemplo a construção de uma casa e indique como permitem estes princípios poupar tempo e dinheiro.
- 2. Uma tensão analógica varia entre 0 e 5V e pode ser medida com uma precisão de 50mV. Quantos bits de informação são necessários para representar todos os valores da tensão?
- 3. Considere palavras de 16 bits:
 - a. Quantos números diferentes podem ser escritos?
 - b. Qual é o maior número representável (sem sinal)?
 - c. Qual é o maior e o menor número representável em sinal e módulo?
 - d. Considerando complemento para 2, qual o maior e o menor número representável?
- 4. Considere os seguintes números representados sem sinal e converta-os para a base 10:
 - a. 1010₂
 - b. 110110₂
 - c. 11110000₂
 - d. 000100010100111₂
- 5. Converta os números da questão anterior para base 8 e base 16.
- 6. Considere que os números da questão 4 estão representados em complemento para 2. Represente-os com 8 bits (sinalize o *overflow*) e determine o seu valor na base 10.
- 7. Converta os números seguintes para a base 10:

a.	A5 ₁₆	e.	4E ₁₆
b.	3B ₁₆	f.	7C ₁₆
c.	FFFF ₁₆	g.	ED3A ₁₆
d.	D000000 ₁₆	h.	403FB001 ₁₆

- 8. Converta os números da questão anterior para binário sem sinal.
- 9. Converta os números seguintes para complemento para 2 com 8 bits, ou indique a ocorrência de *overflow*.

a.	42 ₁₀	f. 24 ₁₀
b.	-63 ₁₀	g59 ₁₀
c.	124 ₁₀	h. 128 ₁₀
d.	-128 ₁₀	i150 ₁₀
e.	133 ₁₀	j. 127 ₁₀

10. Considere os números seguintes representados em complemento para 2 com 4 bits. Represente-os em complemento para 2 com 8 bits.

a.	01012	C.	01112
b.	10102	d.	10012

11. Repita a alínea anterior considerando os números representados em sinal e módulo.

- 12. Considerando uma representação com 5 bits em complemento para 2:
 - a. Quantos números maiores que zero podem ser representados?
 - b. E negativos?
- 13. Uma palavra de 32 bits quantos bytes tem? E quantos nibbles?
- 14. Uma rede de dados tem uma taxa de transmissão de 768kbits/s. Quantos bytes podem ser transmitidos num minuto?
- 15. Sem usar uma calculadora estime o valor de 2³¹.
- 16. Efetue as operações seguintes, considerando os números representados como inteiros sem sinal. Indique os casos em que o resultado não pode ser representado com o número de bits dos operandos.
 - a. $1001_2 + 0110_2$
 - b. 1101₂+1011₂
 - c. 10011001₂+01000100₂
 - d. 11010010₂+10110110₂
- 17. Repita a alínea anterior considerando os números representados em complemento para 2.
- 18. Converta os números seguintes para complemento para 2 com 6 bits e de seguida efetue as operações. Indique os casos em que ocorreu *overflow*.
 - a. $16_{10} + 9_{10}$

d. 3₁₀+-32₁₀

b. 27₁₀+31₁₀

e. -16₁₀+-9₁₀

c. -4₁₀+19₁₀

- f. -27₁₀+-31₁₀
- 19. Uma nave espacial despenhou-se nos campos do Alentejo. Os técnicos dos Ficheiros Secretos foram chamados ao local e encontraram nos destroços a seguinte equação: 325+42 = 411. Assumindo que a equação está correta, foi possível determinar quantos dedos têm os tripulantes da nave. Explique como e já agora quantos dedos são?
- 20. Represente em binário usando virgula fixa com 4 bits inteiros os números seguintes, use os bits fracionários necessários para que a precisão em binário seja semelhante á original.
 - a. 9.37
 - b. 12.127
 - c. 4.3
- 21. Represente os números seguintes no formato IEEE 754 precisão simples:
 - a. -5.0_{10}
 - b. 3.5_{10}
 - c. 123₁₀
- 22. Que números estão representados no formato IEEE 754 precisão simples:
 - a. 0x41200000
 - b. 0xBF800000
 - c. 0x3F900000

Soluções:

$$2. nbits = \log_2 \frac{5}{50mV} \approx 7$$

b.
$$2^{16} - 1$$

b.
$$2^{16} - 1$$
 c. $2^{15} - 1$ e $-2^{15} + 1$ d. $2^{15} - 1$ e -2^{15}

d.
$$2^{15} - 1 e^{-2^{15}}$$

e

7. e 8. Use a calculadora para verificar.

12. a.
$$2^4 - 1$$

15.
$$2^{10} = 1024$$

$$2^{31} = 2 * 2^{10} * 2^{10} * 2^{10} = 2 * 1024 * 1024 * 1024 \approx 2 * 10^9$$

17.

b.

1000.

21. a. 0xC0A00000 b. 0x40600000 c. 0x42F60000

22. a. 10.0 b. -1.0 c. 1.125