Exercice 1 Système

```
P = \{A, B, C\}
```

$$C = \{ \neg, \land, \lor \}$$

$$S = \{ \}, \{ \}$$

$$B = P \cup C \cup S$$

F: ensemble des mots (formules) f de la forme:

- 1. $f = X, X \in P$
- 2. $f = \neg G$ avec $G \in F$
- 3. $f = (G\alpha H)$ avec $\alpha \in \{ \land, \lor \}$ et $G, H \in F^2$
- 1) $f = ((A \Rightarrow B) \land C)$ invalide (car implication)
- 2) f = B ∧A invalide (manque les parenthèses)
- 3) $f = ((A \le B) \lor A)$ invalide (car équivalence)
- 4) $f = ((C \lor A) \lor B)$ valide
- 5) $f = \neg A$ valide
- 6) $f = \neg (A \lor C)$ valide
- 7) $f = (A \neg B)$ invalide (car $\alpha \in \{\land,\lor\}$)
- 8) $f = \neg (A \Rightarrow B)$ invalide (car implication)
- 9) $f = (((B \land \neg A) \lor)(\neg C \land \neg B))$ invalide (la disjonction est suivie par une parenthèse fermante)
- 10) $f = \overline{}((A \wedge B) \vee (\overline{} A \vee B))$ valide

Correction 1) $f = ((\neg A \lor B) \land C)$

Correction 2) $f = (B \land A)$

Correction 3) $f = (((A \land B) \lor (\neg A \land \neg B)) \lor A)$

Correction 8) $f = \neg (\neg A \lor B)$

Arborescence (le 7) correspond à la formule 8 et le 8) correspond à la formule 10) :

- 1) (\(\) C
 - ¬ B
 - A
- 2) (\(\)
- 3) (∨)
- A B
- 4) (\(\tau \) B C A
- 5) ¬
- Α
- 6) ¬ (\ \ \ \ \ \ \ ¬ ¬
- A C A C (^)
- ((∨) A ¬ B E A

estValide(Formule f)

Si estVariable(f[0]) et taille(f) == 1

retourner vrai ;

Si estNegation(f[0])

retourner estValide(substring(f, 1));

alpha = getAlpha(f);

Si alpha == -1

retourner faux;

Sinon

retourner estValide(substring(f, 1, alpha)

et estValide(substring(f, alpha+1, taille(f)-1);

Exercice 2: Equivalences

F ~ G si et seulement si ⊦ (F <=> G)

1. $(A \le B) \sim ((A = B) \wedge (B = A))$

A	В	(A => B)	(B => A)	F	G	F <=> G
0	0	1	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	1	1	1	1	1

2.
$$(A \lor (B \lor C)) \sim ((A \lor B) \lor C)$$
 Vrai : associativité du \lor (cf. annexe 1)

3. $(A \lor (B \land C)) \sim ((A \lor B) \land (A \lor C))$ Vrai : distributivité du \lor sur le (cf. annexe 1)

4.
$$(A \Rightarrow (B \Rightarrow C)) \sim ((A \land B) \Rightarrow C)$$

Α	В	С	(A ∧B)	(B => C)	F	G	F <=> G
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	1	1	1
0	1	1	0	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	1	0	0
1	1	1	1	1	1	1	1

D'après l'annexe 2, si on a :

$$\begin{array}{c} _{\vdash} (B \Rightarrow (A \Rightarrow B) \text{ SA1} \\ \overline{\delta}/(A) = \overline{\delta}/(B) = 1 \text{ et } \overline{\delta}/(C) = 0 \\ \text{ alors la formule } ((A \Rightarrow B) \Rightarrow (A \Rightarrow x)) \text{ est fausse} \\ \neg_{\vdash} ((B \Rightarrow (A \Rightarrow B)) <=> ((A \Rightarrow B) \Rightarrow (A \Rightarrow x))) \\ \text{Donc pas d'équivalence logique} \end{array}$$

Exercice 3 : Formes normales

1. $F = ((A \lor \neg B) \Rightarrow (\neg C \land B)) \sim (\neg A \land B) \lor (\neg C \land B) \sim B \land (\neg A \lor \neg C)$

Α	В	C	(¬A ∨¬C)	F
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

 $\overline{\mathsf{FNCD_F}} = (\neg \mathsf{A} \land \mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{A} \land \mathsf{B} \land \mathsf{C}) \lor (\mathsf{A} \land \mathsf{B} \land \neg \mathsf{C})$

$$\begin{split} &\mathsf{FNCD}_{\neg \mathsf{F}} = (\neg \mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\mathsf{A} \wedge \wedge \mathsf{C})$$

2. $F = (((A \land \neg B) \lor C) => A)$

<u>Z.</u>	<u> </u>	- (((A /\ 'D) '	√ C) -/ A)	
Α	В	С	(A ∧¬B)	((A ∧¬B) ∨C)	F
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	1	1

 $\overline{\mathsf{FNCD_F}} = (\neg \mathsf{A} \land \neg \mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{A} \land \mathsf{B} \land \neg \mathsf{C}) \lor (\mathsf{A} \land \neg \mathsf{B} \land \neg \mathsf{C}) \lor (\mathsf{A} \land \neg \mathsf{B} \land \mathsf{C}) \lor (\mathsf{A} \land \mathsf{B} \land \mathsf{C}) \lor (\mathsf{A} \land \mathsf{B} \land \mathsf{C})$

 $\mathsf{FNCD}_{\neg \mathsf{F}} = (\neg \mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\neg \mathsf{A} \wedge \mathsf{B} \wedge \mathsf{C})$

 $\mathsf{FNCC}_\mathsf{F} = \neg \mathsf{FNCD}_{\neg \mathsf{F}} = (\mathsf{A} \vee \mathsf{B} \vee \neg \mathsf{C}) \wedge (\mathsf{A} \vee \neg \mathsf{B} \vee \neg \mathsf{C})$

3. $F = (\neg (A \le \neg B) = > (C \land \neg B))$

A	В	C	(A <=> ¬B)	¬(A <=> ¬B)	(C ∧¬B)	F
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	1	0	0	1
1	0	1	1	0	1	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

$$\begin{split} &\mathsf{FNCD_F} = (\neg \mathsf{A} \wedge \neg \mathsf{B} \wedge \mathsf{C}) \vee (\neg \mathsf{A} \wedge \mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{A} \wedge \mathsf{B} \wedge \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \mathsf{B} \wedge \mathsf{C}) \\ &\mathsf{FNCD_{\neg F}} = (\neg \mathsf{A} \wedge \neg \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \mathsf{B} \wedge \neg \mathsf{C}) \vee (\mathsf{A} \wedge \mathsf{B} \wedge \mathsf{C}) \\ &\mathsf{FNCC_F} = \neg \mathsf{FNCD_{\neg F}} = (\mathsf{A} \vee \mathsf{B} \vee \mathsf{C}) \wedge (\neg \mathsf{A} \vee \neg \mathsf{B} \vee \mathsf{C}) \wedge (\neg \mathsf{A} \vee \neg \mathsf{B} \vee \neg \mathsf{C}) \end{split}$$

4. $F = (A \land (A \Rightarrow \neg B)) \sim ((A \land (\neg A \lor \neg B)) \sim ((A \land \neg A) \lor (A \land \neg B)) \sim (A \land \neg B)$ $FNCD_F = (A \land \neg B)$ $FNCD_{\neg F} = (\neg A \land \neg B) \lor (\neg A \land B) \lor (\neg A \land \neg B)$ $FNCC_F = \neg FNCD_{\neg F} = (A \lor B) \land (A \lor \neg B) \land (A \lor B)$

5. F = (A => (B => A))

C'est une tautologie.

 $\overline{\mathsf{FNCD_F}} = (\mathsf{A} \land \mathsf{B}) \lor (\mathsf{A} \land \neg \mathsf{B}) \lor (\neg \mathsf{A} \land \mathsf{B}) \lor (\neg \mathsf{A} \land \neg \mathsf{B})$

 $FNCC_F = (A \lor B) \land (A \lor \neg B) \land (\neg A \lor B) \land (\neg A \lor \neg B)$

illogique

Exercice 4 : Formules particulières

- 1. $F = (A \lor \neg A)$ satisfaisable (tautologie)
- 2. $F = (A \land \neg A)$ insatisfaisable (antilogie)
- 3. $F = \neg(A \land \neg A)$ satisfaisable (tautologie)
- 4. $F = (A \land (A \Rightarrow \neg B))$ satisfaisable (tautologie)
- 5. $F = (A \Rightarrow (B \Rightarrow A))$ satisfaisable (équivaut : A ou non B)
- 6. $F = (A \Rightarrow (A \lor B))$ satisfaisable (tautologie)
- 7. $F = (((A \land B) \lor (\neg A \land \neg B)) \text{ satisfaisable (tautologie)}$
- 8. satisfaisable (équivaut : A <=> B)
- 9. $F = ((A \Rightarrow B) \iff (A \iff B))$ satisfaisable (ex. : vraie si A et B sont vrais)

Exercice 1 : Karnaugh

2. $F = ((A \lor C) \Rightarrow \neg (C \land (B \Rightarrow D))$	$\land \land (B \Rightarrow D)))$	$\Rightarrow \neg (C \land ($	$(A \lor C)$. F = (2.
---	-----------------------------------	-------------------------------	--------------	---------	----

==	() (() () () () () () ()						
Α	В	С	D	AvC	$B\RightarrowD$	¬(C ∧(B ⇒D)	F
0	0	0	0	0	1	1	1
0	0	0	1	0	1	1	1
0	0	1	0	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	1	0	0
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	0
1	1	0	0	1	0	1	1
1	1	0	1	1	1	1	1
1	1	1	0	1	0	1	1
1	1	1	1	1	1	0	0

		AB						
		00	01	11	10			
	00	1	1	1	1			
CD	01	1	1	1	1			
	11	0	0	0	0			
	10	0	1	1	0			

En rouge : 2^3 valeurs inutiles (correspond à la valeur de ¬C)

En bleu: 2^1 valeurs inutiles (correspond à la valeur de B \(\hat{C} \(\hat{\gamma}\)D)

Donc $F = \neg C \lor (B \land C \land \neg D)$

En bleu et pourpre (rouge+bleu) : 2^2 valeurs inutiles (correspond à la valeur de B $\land \neg D$) Donc F = $\neg C \lor (B \land \neg D)$ 3. $F = ((A \Leftrightarrow C) \Rightarrow (C \lor (D \Rightarrow (B \Leftrightarrow A))))$

						1111		
Α	В	С	D	A⇔C	B⇔A	$D \Rightarrow (B \Leftrightarrow A)$	$C \lor (D \Rightarrow (B \Leftrightarrow A))$	F
0	0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	1	0	0	1	1	1	1
0	0	1	1	0	1	1	1	1
0	1	0	0	1	0	1	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	0	0	1	1	1
0	1	1	1	0	0	0	1	1
1	0	0	0	0	0	1	1	1
1	0	0	1	0	0	0	0	1
1	0	1	0	1	0	1	1	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	1	1	1	1
1	1	0	1	0	1	1	1	1
1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1

		AB						
		00	01	11	10			
	00	<u>1</u>	<u>1</u>	1	1			
CD	01	1	0	1	1			
	11	1	1	1	1			
	10	1	1	1	1			

en rouge : C en bleu : A en gras : ¬B en souligné : ¬D

Donc F = A $\vee \neg$ B \vee C $\vee \neg$ D = ((A \vee C) $\vee \neg$ (B \wedge D))

4. $F = (\neg(A \uparrow D) \downarrow ((C \lor D) \Rightarrow A))$

Α	В	С	D	¬(A ↑ D)	(C ∨D)	((C ∨D) ⇒A)	F
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	0	1
0	1	0	0	0	0	1	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	1
1	0	0	0	0	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0
1	1	1	0	0	1	1	0
1	1	1	1	1	1	1	0

	AB							
		00	01	11	10			
	00	00 0		0	0			
CD	01	1	1	0	0			
	11	<u>1</u>	1	0	0			
	10	1	1	0	0			

en gras : D $\land \neg A$ en souligné : C $\land \neg A$

Donc F = $((D \land \neg A) \lor (C \land \neg A)) = ((D \lor C) \land \neg A)$

5. $F = \neg((A \lor B) \Leftrightarrow ((C \downarrow D) \uparrow (B \Rightarrow A))$

Α	В	С	D	(A ∨ B)	(C↓D)	(B ⇒A)	$((C\downarrow D)\uparrow (B\Rightarrow A))$	$(A \vee B) \Leftrightarrow ((C \downarrow D) \uparrow (B \Rightarrow A)$	F
0	0	0	0	0	1	1	0	1	0
0	0	0	1	0	0	1	1	0	1
0	0	1	0	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
0	1	0	0	1	1	0	1	1	0
0	1	0	1	1	0	0	1	1	0
0	1	1	0	1	0	0	1	1	0
0	1	1	1	1	0	0	1	1	0
1	0	0	0	1	1	1	0	0	1
1	0	0	1	1	0	1	1	1	0
1	0	1	0	1	0	1	1	1	0
1	0	1	1	1	0	1	1	1	0
1	1	0	0	1	1	1	0	0	1
1	1	0	1	1	0	1	1	1	0
1	1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	1	1	1	1

	AB							
		00	01	11	10			
	00	0	0	1	1			
CD	01	1	0	0	0			
	11	1	0	1	0			
	10	1	0	1	0			

en rouge : $\neg A \land \neg B \land C$ en gras : $\neg A \land \neg B \land D$ en souligné : $A \land \neg C \land \neg D$ en italique : $A \land B \land C$

 $\mathsf{Donc}\;\mathsf{F}=(\neg\mathsf{A}\;\wedge\neg\mathsf{B}\;\wedge\mathsf{C})\;\vee(\neg\mathsf{A}\;\wedge\neg\mathsf{B}\;\wedge\mathsf{D})\;\vee(\mathsf{A}\;\wedge\neg\mathsf{C}\;\wedge\neg\mathsf{D})\;\vee(\mathsf{A}\;\wedge\mathsf{B}\;\wedge\mathsf{C})$

Exercice 3/4 : Principe de résolution 1/2

- si Alice et Bernard sont coupables alors Carlos est coupable
 si Alice est coupable alors au moins un des deux Bernard ou Carlos est coupable
- 3. si Carlos est coupable alors Dominique est coupable
- 4. si Alice est innocent alors Carlos est coupable.
- 1. $(A \land B) \Rightarrow C$
- 2. $A \Rightarrow (B' \lor C)$
- 3. C ⇒ D
- 4. ¬A ⇒C

Α	В	С	D	1	2	3	4	1 ∨2 ∨3 ∨4
0	0	0	0	1	1	1	0	0
0	0	0	1	1	1	1	0	0
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	0	0
0	1	0	1	1	1	1	0	0
0	1	1	0	1	1	0	1	0
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	1	1	0
1	0	1	0	1	1	0	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	0	1	1	1	0
1	1	0	1	0	1	1	1	0
1	1	1	0	1	1	0	1	0
1	1	1	1	1	1	1	1	1

1	∨2	∨3	$\vee 4$	\Leftrightarrow	C	$\wedge D$
---	----	----	----------	-------------------	---	------------

	AB							
		00	01	11	10			
	00	0	0	0	0			
CD	01	0	0	0	0			
	11	1	1	1	1			
	10	0	0	0	0			

Exercice 5 : Principe de résolution 3

```
modus ponens : \{A \Rightarrow B, A\} \models B
A \Rightarrow B
\sim \neg A \vee B
~ A ∧¬B
                            (système inverse)
~ ¬B
                            (système inverse)
~ B
modus tollens : \{A \Rightarrow B, \neg B\} \models \neg A
A \Rightarrow B
~ ¬A ∨ B
~ A ∧¬B
                            (système inverse)
~ B
                            (système inverse)
~ ¬A
syllogisme : \{A \Rightarrow B, B \Rightarrow C\} \models A \Rightarrow C
```

Exercice 2 : Théorème de la déduction - Herbrand

1.
$$\vdash ((A \lor B) \Rightarrow (A \Rightarrow ((B \land C) \Rightarrow A)))$$
 $\vdash \exists \vdash \exists$
 $sch\acute{e}mas\ d'axiomes\ SA1: A \Rightarrow (B \Rightarrow A)\ (cf.\ annexe\ 2.4)$
 $\vdash (A \Rightarrow ((B \land C) \Rightarrow A))$
 $\vdash ((A \Rightarrow ((B \land C) \Rightarrow A)) \Rightarrow ((A \lor B) \Rightarrow (A \Rightarrow ((B \land C) \Rightarrow A))))$
 $par\ modus\ ponens$
 $\vdash ((A \lor B) \Rightarrow (A \Rightarrow ((B \land C) \Rightarrow A)))$

2. $\vdash ((A \Rightarrow B) \Rightarrow (A \Rightarrow A))$
 $sch\acute{e}mas\ d'axiomes\ SA2: (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))\ (cf.\ annexe\ 2.4)$
 $\vdash ((A \Rightarrow (B \Rightarrow A)) \qquad SA1$
 $\vdash ((A \Rightarrow (B \Rightarrow A)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow A)))$
 $par\ modus\ ponens$
 $\vdash ((A \Rightarrow B) \Rightarrow (A \Rightarrow A))$

Exercice 1: Variables Termes Formules

```
1. F = Q(a)
                                                     (a constante)
2. F = P(x, y)
                                                    (x et y libres)
3. F = Q(s(x)) \land P(q(s(y)), s(x))
                                                    (x et y libres)
4. F = \forall y P(y, z)
                                                    (v libre, z liée)
5. F = \exists z (P(z, a) \land Q(z))
                                                    (z liée, a constante)
6. F = Q(y) \wedge (\forall x(P(x, z)))
                                                    (x libre, y liée, z liée)
7. F = \forall y (P(x, y) \land \forall x Q(x))
                                                    (x liée, y libre)
8. F = ((\exists x P(x, v) \Rightarrow \forall y \exists x P(x, y)) \land (\exists x \forall y P(x, y))) \Rightarrow \forall y \exists x P(x, y)
                                                                                                         (v const, x et y liées ?)
9. F = (P(y) \Rightarrow \forall z P(z)) \Rightarrow ((\exists x P(x) \Rightarrow P(y)) \Rightarrow (\exists x P(x) \Rightarrow \forall z P(z)))
                                                                                                         (v libre, x et z liées)
10. F = (P(x, y) \Rightarrow (\exists x P(x, r) \lor R(f(x)))) \Rightarrow (Q(a, z) \Rightarrow R(x, z)) (a constante, x liée, r y z libres)
```

Exercice 2 : Interprétation

```
1. F = \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \Rightarrow R(x, z)) vrai

2. F = \forall x \forall y (\neg R(x, y) \Leftrightarrow (x = y \lor R(y, x))) vrai

3. F = \forall x \neg R(x, x) vrai

4. F = \forall x \exists y R(x, y) faux si borne supérieure

5. F = \forall x \exists y R(y, x) faux si borne inférieure

6. F = \forall x \forall y ((\exists z (R(x, z) \land R(z, y))) \Leftrightarrow R(x, y)) faux si non-continu

D = N, IP = R(x, y) signifie x < y

Vraies : 1, 2, 3, 4 Fausses : 5, 6
```

D = R, IP = R(x, y) signifie x < yVraies : 1, 2, 3, 4, 5, 6

D = R +, IP = R(x, y) signifie x < yVraies : 1, 2, 3, 4, 6 Fausse : 5

D = un nombre fini de petits lapins, IP = R(x, y) signifie x est plus mignon que y Vraies : 1, 2, 3 Fausses : 4, 5, 6 en fait, certaines sont indécidables

Exercice 3: Prénexe

- 1) $\forall x((\exists y R(x, g(y, z))) \Rightarrow \forall y S(z, h(x, y, z)))$ $\forall x((\forall y \neg R(x, g(y, z))) \lor \forall y S(z, h(x, y, z)))$ $\forall x \forall y (\neg R(x, g(y, z)) \lor S(z, h(x, y, z)))$
- 2) $\forall yR(z, y) \Rightarrow \forall zS(z, y)$) $\forall y(\neg R(z, y) \Rightarrow \forall zS(z, y))$) $\forall y(\neg R(x, y) \Rightarrow \forall zS(z, y))$) $\forall y\forall z(\neg R(x, y) \lor S(z, y))$)
- 3) $\forall z(P(x, y) \Leftrightarrow \exists x(P(z, x) \land P(x, z)))$ $\forall z((\neg P(x, y) \land \forall x(\neg P(z, x) \lor \neg P(x, z))) \lor (P(x, z) \land \exists x(P(z, x) \land P(x, z)))$ $\forall z(\forall x((\neg P(u, y) \land (\neg P(z, x) \lor \neg P(x, z))) \lor \exists x(P(u, y) \land P(z, x) \land P(x, z)))$ $\forall z \forall x \exists w((\neg P(u, y) \land (\neg P(z, x) \lor \neg P(x, z))) \lor (P(u, y) \land P(z, w) \land P(w, z)))$ f(z) = w (skolémisation partielle) $\forall z \forall x((\neg P(u, y) \land (\neg P(z, x) \lor \neg P(x, z))) \lor (P(u, y) \land P(z, f(z)) \land P(f(z), z)))$
- 4) $\forall x \forall y ((R(x, y) \lor \neg S(y, x)) \Leftrightarrow \exists z T(x, y, z))$
- **5)** $\exists x (P(x, y) \Rightarrow \exists y \forall z (P(y, z) \land P(z, z)) \Rightarrow \forall y (P(x, y) \land Q(x, y) \Rightarrow (Q(x, z) \land Q(z, z))))$

Exercice 1: Skolem

```
\exists x \exists y \forall z \exists w \forall u \exists v ((R(x, y) \Rightarrow ((\neg P(z, u, v)) \lor K(w))) \land G(v))
\exists x \exists y \forall z \exists w \forall u \exists v ((\neg R(x, y) \lor ((\neg P(z, u, v)) \lor K(w))) \land G(v))
x = a, y = b
\forall z \exists w \forall u \exists v ((\neg R(a, b) \lor ((\neg P(z, u, v)) \lor K(w))) \land G(v))
w = f(z), v = g(z, u)
\forall z \forall u ((\neg R(a, b) \lor ((\neg P(z, u, g(z, u))) \lor K(f(z)))) \land G(g(z, u)))
\forall y(\exists x R(x, f(y)) \Rightarrow S(z, g(x, c)))
\forall y(\forall x \neg R(x, f(y)) \lor S(z, g(x, c)))
\forall y(\forall x \neg R(x, f(y)) \lor S(z, g(u, c)))
Exercice 2: Herbrand
1) { P(a), \neg P(x) \lor P(f(x)) }
          H_0 = \{ a \}
                                                 (les constantes du système)
          H_1 = H_0 \cup \{ f(a) \}
                                                 (union de H₀ avec ?)
          H_2 = H_1 \cup \{ f(f(a)) \}
          H_{\infty} = \{ a, f^{n}(a), \forall n \in \mathbb{N}^{*} \} (univers de Herbrand)
          Base de Herbrand : { P(a), \neg P(a), \neg P(f^n(a)), P(f^m(a)) \forall n,m \in \mathbb{N}^* }
                   Première interprétation : { P(a), \neg P(a) \lor \neg P(f(a)) }
                   Deuxième interprétation : { P(a), \neg P(f^{32}(a)) \lor \neg P(f^{33}(a)) }
2) { P(x), R(x) \lor Q(y, x), \neg Q(y, y) }
          H_0 = \{ a \} = H_{\infty}
                                       (on ajoute une constante) (univers de Herbrand)
          H_1 = H_0 \cup \{ \emptyset \}
                                       (union de H₀ avec l'ensemble vide)
          Base de Herbrand : { P(a), R(a) \lor Q(a, a), \neg Q(a, a) }
                   Seule interprétation : { P(a), R(a) \lor Q(a, a), \neg Q(a, a) }
3) { P(f(x)) \lor Q(a), Q(g(b)) \lor \neg P(y) }
          H_0 = \{ a, b \}
                                                 (les constantes du système)
          H_1 = H_0 \cup \{ f(a), f(b) \}
                                                 (union de H₀ avec ?)
          H_{\infty} = \{ a, b, f^{n}(a), f^{m}(b), \forall n,m \in \mathbb{N}^{*} \}
          Base de Herbrand:
          { Q(a), Q(g(b)), P(f^n(a)), P(f^m(b)), ¬P(a), ¬P(b), ¬P(f^m(a)), ¬P(f^n(b)), \forall n,m,k,l \in \mathbb{N}^* }
```

Exercice 3: Résolution

- 1) Un dragon est heureux si tous ses enfants peuvent voler.
- 2) Les dragons verts peuvent voler.
- 3) Un dragon est vert s'il a au moins un parent vert ou rose.
- 1. les dragons sans enfant sont heureux
- 2. les dragons verts sont heureux

D = un nombre fini de dragons

H/1 : être heureux F/1 : savoir voler V/1 : être vert R/1 : être rose E/2 : être enfant de

- 1) $\forall x \forall y ((E(y, x) \land F(y)) \Rightarrow H(x))$
- 2) $\forall x(V(x) \Rightarrow F(x))$
- 3) $\forall x \exists y (((V(y) \lor R(y)) \land E(x, y)) \Rightarrow V(x))$
- 1. $\forall x (\neg \exists y \exists (y, x) \Rightarrow H(x)) \rightarrow \forall x (\forall y \neg \exists (y, x) \Rightarrow H(x))) \rightarrow \forall x \forall y (\neg \exists (y, x) \Rightarrow H(x)))$
- $\neg 1) \forall x \forall y (\neg E(y, x) \lor \neg F(y) \lor H(x))$
- $\neg 2) \ \forall x (\neg V(x) \lor F(x))$
- $\neg 3) \forall x \exists y (((\neg V(y) \land \neg R(y)) \lor \neg E(x, y)) \lor V(x))$