

(edge: dynamic/sensor model I node : objective problem

- solve the over determinal pooblem!

· Edge Creation

· odorcery

measurement

Xi'XIHI

 $e_{ij}(\mathbf{x}_i|\mathbf{x}_j) = +2V\left(\underbrace{\#_{ij}^{-1}(\mathbf{x}_i^{-1}\mathbf{x}_j)}_{\mathbf{x}_j} \right)$

eq. $(\mathbf{x} + \mathbf{a}\mathbf{x}) \cong \mathbf{e}_{\mathbf{q}}(\mathbf{x}) + \mathbf{J}_{\mathbf{q}} \underbrace{\mathbf{a}\mathbf{x}}_{\mathbf{q}}$ Reset: $\mathbf{G}_{\mathbf{q}}(\mathbf{x}) \text{ depends only one } \mathbf{a}\mathbf{x} \in \mathcal{B}_{\mathbf{q}}(\mathbf{x})$ $\mathbf{G}_{\mathbf{q}}(\mathbf{x}) = \mathbf{G}_{\mathbf{q}}(\mathbf{x}) \in \mathcal{B}_{\mathbf{q}}(\mathbf{x})$ $\overline{J}_{\overline{0}} = \begin{bmatrix} o \cdots o & \frac{\partial u}{\partial u} & o \cdots o & \frac{\partial u}{\partial v_0} \end{bmatrix}_{D}$

. b" = \$ by" = \$ egs 20 Jij (specie) H = \$\frac{1}{2}\text{H}_2 = \frac{1}{2}\text{L}_2\text{

Z2=Im Z3=Im Shiz=1 Jez= 1/2 2 conseraints 1/0={x, x2, x3} = {0.0.0} instal guess 1 · ej = Zij - (xj-xi) B12 = (1-(0-0))=1 e23 = (1-(0-0)) = 1 $\mathcal{J}_{ij} = \left(\begin{array}{cc} \frac{\partial e_{ij}}{\partial x_i} & \frac{\partial e_{ij}}{\partial x_2} & \frac{\partial e_{ij}}{\partial x_3} \end{array} \right)$ $J_{12} = \left(\begin{array}{cc} \frac{\partial e_{12}}{\partial x_1} & \frac{\partial e_{12}}{\partial x_2} & \frac{\partial e_{12}}{\partial x_2} \end{array} \right)$ = (1 -1 0) J23 = (0 1 -1) • № = ₹ e ₹ 215 55 = 1.1.(1-1.0) (6) +1. 1. 10. 1,-1) (b1) = (1 -1/2 -1/2) • H = \$ 35 25 35 Ax= -H\b → errox
when
when
when (H)=0 change the relative constraints to global one

(:::)

Econnect WV 6=(V,E) basic graph theory V= { 0,1,2,3,4 } E= & (0, 1), (0.2), 10,3), 11.3). (2,3), 13,43 neighbar

I. neighbur (0) = {0.1,2}

2. degree (0) = 3 degree (2) = 2

parth 4→3→2→0

+:- graph is connected if 3 path between CUV

(biv) EV

Growered when all vertices

are connected when all vertices

are connected

connected towported VIEV

types of graph

1. undirected graph (Show above)

directed (cyclic) graph

1. converted and acyclic 2 sensing edge discovered 3. adding edge assess a graph representation

· Adjacency Matri

$$A_{ij} = \left\{\begin{array}{cccc} 1 & \text{first edge } (i,j) \\ 0 & \text{white table} \end{array}\right.$$

{(0,1), (0,2), (0,3), (1,3), (2,3), (3,4)

 $0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $1 \rightarrow \begin{bmatrix} 0 & 3 \end{bmatrix}$ $2 \rightarrow \begin{bmatrix} 0 & 3 \end{bmatrix}$ $3 \rightarrow \begin{bmatrix} 0 & 1 & 2 & 4 \end{bmatrix}$ $4 \rightarrow \begin{bmatrix} 3 & 3 \end{bmatrix}$ o adjacency list