LTE PHY Spec.

Samsung Electronics June 24, 2008

Contents

- Downlink Spec.
 - Downlink Structure: FDD, TDD
 - Initial Access
 - Cell Search (PSC, SSC, RS)
 - System Information Receive (PBCH, PCFICH, PDCCH)
 - Random Access
 - Downlink data transmission: PHICH, PDSCH
- Uplink Spec.
 - Uplink Structure
 - Uplink slot structure
 - Uplink physical channels and signals
 - Physical uplink shared channel (PUSCH)
 - Physical uplink control channel (PUCCH)
 - Reference signal (RS)
 - Physical random access channel (PRACH)

LTE L1 Specification

Downlink structure

Frame Structure

Frame structure

- Frame structure type 1
 - Applicable to FDD and half duplex FDD
 - Each radio frame is $T_{\rm f}=307200\times T_{\rm s}=10\,{\rm ms}$ long and consists of 20 slots of length $T_{\rm slot}=15360\times T_{\rm s}=0.5\,{\rm ms}$, numbered from 0 to 19($T_{\rm s}=1/(15000\times 2048)$ seconds)

- Frame structure type 2
 - Applicable to only TDD
 - Each radio frame consists of two half frame length $T_{\rm f} = 153600 \times T_{\rm s} = 5 \, {\rm ms}$ each and each half frame consists of 8 slots of length $T_{\rm slot} = 15360T_{\rm s} = 0.5 \, {\rm ms}$ and

Frame Structure

- Frame structure type 2(Cont.)
 - Three special fields, DwPTS, GP, and UpPTS in subframe #1 and #6
 - Subframes 0 and 5 and DwPTS are always reserved for downlink transmission
 - The lengths of DwPTS and UpPTS is given below subject to the total length of DwPTS, GP and UpPTS being equal to $30720T_s = 1 \,\mathrm{ms}$
 - Supported configurations of uplink-downlink subframe allocation are specified

Configuration	Configuration Normal cyclic prefix				Extended cyclic prefix				
	DWPTS	GP	UpPTS	DWPTS	GP	UpPTS			
0	6592 · T _s	21936 · T _s		7680 · T _s	20480 · T _s				
1	19760 · T _s	8768 · T _s	2192 ·T _s	20480 · T _s	7680 · T _s	2560 · T _s			
2	21952 · T _s	6576 · T _s		23040 · T _s	5120 · T _s				
3	24144 · T _s	4384 · T _s		25600 · T _s	2560 · T _s				
4	26336 · T _s	2192 · T _s		7680 · T _s	17920 · T _s				
5	6592 · T _s	19744 · T _s	4384 · T _s	20480 · T _s	5120 · T _s	5120 · T _s			
6	19760 - T _s	6576 · T _s		23040 · T _s	2560 · T _s				
7	21952 · T _s	4384 · T ₅				O t			
8	24144 · T _s	2192 · T _s	1		- 25	-			

Uplink-downlink allocations

Configuration	Switch-point periodicity	Subframe number									
A CONTRACTOR OF THE PARTY OF TH		0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	C	J	D	S	U	U	U
1	5 ms	D	S	U	C	D	D	S	0	U	D
2	5 ms	D	S	U	D	۵	D	S	0	۵	D
3	10 ms	D	S	U	C	5	D	D	٥	۵	D
4	10 ms	D	S	U	C	۵	D	D	D	D	D
5	10 ms	D	S	C	О	D	D	D	D	D	D
6	10 ms	D	S	U	U	U	D	S	U	U	D

Downlink

- Physical channels
 - A set of Resource Elements carrying information originating from higher layers
 - Physical Downlink Shared Channel, PDSCH
 - Physical Broadcast Channel, PBCH
 - Physical Multicast Channel, PMCH
 - Physical Control Format Indicator Channel, PCFICH
 - Physical Downlink Control Channel, PDCCH
 - Physical Hybrid ARQ Indicator Channel, PHICH
- Physical signals
 - A set of Resource Elements NOT carrying information originating from higher layers
 - Reference signal
 - Synchronization signal

Resource Grid

• The transmitted signal in each slot is described by a resource grid of $N_{\rm RB}^{\rm DL}N_{\rm sc}^{\rm RB}$ subcarriers and $N_{\rm symb}^{\rm DL}$ OFDM symbols.

Resource Grid

- Physical resource block parameters
 - Number of symbols per slot

Configuration		RB size (number of sub- carriers)	Number of symbols per slot		
Normal CP (15kHz)		12	7		
Extended	15kHz	12	6		
CP	7.5kHz	24	3		

Number of RBs per Channel bandwidth [Ref. TS 36.104]

Channel bandwidth BWChannel [MHz]	1.4	3	5	10	15	20
FDD mode	6	15	25	50	75	100

Resource Grid

- In case of multi-antenna transmission,
 - There is one resource grid defined per antenna port.
 - An antenna port is defined by its associated reference signal.
 - The set of antenna ports supported depends on the reference signal configuration in the cell:
 - Cell-specific reference signals, associated with non-MBSFN transmission, support a configuration of one, two, or four antenna ports, i.e. the index , p, shall fulfil and p=0, $p=\{0,1\}$, $p=\{0,1,2,3\}$, respectively.
 - MBSFN reference signals, associated with MBSFN transmission, are transmitted on antenna port p=4
 - UE-specific reference signals, supported in frame structure type 2 only, are transmitted on antenna port p=5
 - Make sure that antenna port is not physical "Antenna"

Resource Element Groups

- REGs (Resource element groups)
 - Basic RE mapping unit for downlink control information
 - Index pair of the resource element with the lowest index k in the group with all resource elements in the group having the same value of l
 - 1st symbol of 1 slot
 - Two REGs in PRB (k, l=0) with $k = k_0 + 0, k_0 + 1, ..., k_0 + 5$ and $k = k_0 + 6, k_0 + 7, ..., k_0 + 11$
 - 2nd symbol of 1 slot
 - 1 or 2 antenna port case: 3 REGs in PRB (k, l=1) with $k = k_0 + 0, k_0 + 1,..., k_0 + 3, k = k_0 + 4, k_0 + 5,..., k_0 + 7, k = k_0 + 8, k_0 + 9,..., k_0 + 11$
 - 3 or 4 antenna port case: Same as 1st symbol of 1slot with l=1
 - 3rd symbol of 1 slot
 - Same as 1 or 2 antenna port case of 2nd symbol of 1st slot with l=2
- Mapping of symbol quadruplet $\langle z(i), z(i+1), z(i+2), z(i+3) \rangle$ onto a REG

LTE L1 Specification

Initial Access

Initial Access

- Initial access procedure for LTE has three steps.
 - Cell Search
 - System Information Receive
 - Random Access

Cell search

Cell search

- Find a cell to connect and estimate frame timing
- Provide the primary and secondary synchronization signals on the downlink to assist
- Cell-specific sequences are inserted in synchronization signals
- Support 504 unique physical-layer identities; N_{ID}^{cell} (168 unique physical-layer cell-identity groups; $N_{ID}^{(1)}$, each group containing three unique identities; $N_{ID}^{(2)}$)
- Physical-layer identity N_{ID}^{cell}

$$N_{\rm ID}^{\rm cell} = 3N_{\rm ID}^{(1)} + N_{\rm ID}^{(2)}$$

where
$$N_{\text{ID}}^{(1)} = 0,..., 167$$
, and $N_{\text{ID}}^{(2)} = 0,1,2$

Synchronization signals -FDD

- PSS
 - Using non-coherent detection, estimate 5msec timing and physical-layer identity
 - Channel estimation information for SSS

SSS

- Physical-layer identity (Cell ID) is obtained
- Mapped to one of 168 cell ID groups (168 ID groups for 504 Cell IDs)
- Radio-frame timing (10msec) identification
- Max # of hypotheses;336 hypotheses (2x168: 2 for half frame, 168 for ID groups)
- Can be detect RS structure information from SSS and PSS

Synchronization signals -TDD

- DwPTS and Location of PSS and SSS
 - P-SCH is always transmitted in the 3rd OFDM symbol of DwPTS (subframes 1 and 6)
 - PDCCH in DwPTS (subframes 1 and 6) may span 1 or 2 OFDM symbols
 - Data is transmitted after the control region as in other DL subframes
 - Same cell specific RS patterns as in other DL subframes,
 - RS in GP are muted
- UpPTS
 - SRS transmission on UpPTS
 - Agreement on 1 SRS symbol in UpPTS.
 - Discuss further whether 2 SRS symbols in UpPTS.

Primary synchronization signal (PSS)

- Primary synchronization signal
 - Mapping of sequence is occupied 72REs in the last symbol in slot 0 and
 10
 - The sequence is selected from a set of three different sequences
 - ZC sequence length =63 and PSC sequence length =62 (excluding DC)
 - The root indices u are M=n₁, M=N-n₁, M=n₂ (N=63, n₁=29, n₂=25, N-n₁=34)
 - The 32nd sample is punctured
 - Leave the remaining 10 subcarriers reserved

$$d_{u}(n) = \begin{cases} e^{-j\frac{\pi u n(n+1)}{63}} & n = 0,1,...,30\\ e^{-j\frac{\pi u(n+1)(n+2)}{63}} & n = 31,32,...,61 \end{cases}$$

- Partial information of reference signal configuration
- Same synchronization structure regardless of system bandwidth
- Identical cell search is possible without knowing the system BW

Secondary synchronization signal (SSS)

- Same frequency and slot allocation but 1 symbol prior to PSS
- Sequence generation: Combination of M-sequence based code
 - Generate a set of 31 sequences obtained as cyclic shifts of a single length 31 M-sequence generated from the primitive polynomial x^5+x^2+1 over GF(2)
 - Two short SSS codes($S_0^{(m_0)}$, $S_1^{(m_1)}$) selected from above set with m_0 , m_1 cyclic shifted using cell-identity group
 - First and second sequences shall be scrambled with a binary scrambling code $(C_0(n), C_1(n))$ depending on the PSS
 - Scrambling of the second sequence with a binary scrambling code $(Z_1^{(m_0)}, Z_1^{(m_1)})$ corresponding to the cyclic shift values of the first sequence
 - Mapping sequences to REs

Even RE:
$$d(2n) = \begin{cases} s_0^{(m_0)}(n)c_0(n) & \text{in slot } 0 \\ s_1^{(m_1)}(n)c_0(n) & \text{in slot } 10 \end{cases}$$
 Odd RE:
$$d(2n+1) = \begin{cases} s_1^{(m_1)}(n)c_1(n)z_1^{(m_0)}(n) & \text{in slot } 0 \\ s_0^{(m_0)}(n)c_1(n)z_1^{(m_1)}(n) & \text{in slot } 10 \end{cases}$$

Downlink Reference Signal (RS)

- Three types of downlink reference signals are defined:
 - Cell-specific reference signals, associated with non-MBSFN transmission (unicast RS)
 - MBSFN reference signals, associated with MBSFN transmission
 - UE-specific reference signals (Dedicated RS)
- There is one reference signal transmitted per downlink antenna port.
- REs used for RS transmission on any of the antenna ports in a slot shall not be used

Mapping of Cell-specific Reference Signal

Antenna port 2

Antenna port 1

Antenna port 0

Antenna port 3

Cell-specific RS

- Sequence generation
 - A one-to-one mapping between the three identities within the physical- layer identity.

Reference sequences

$$r_{l,n_s}(i) = (1 - 2 \cdot c(2i)) + j(1 - 2 \cdot c(2i + 1)), \quad i = 0,1,...,2N_{RB}^{\text{max,DL}} - 1$$

- n_s is the slot number within a radio frame and l is the OFDM symbol number within the slot
- Mapping to RE
 - Cell-specific cyclic shifting with physical-layer cell-identity groups

$$v_{\text{shift}} = N_{\text{ID}}^{(1)} \mod 6$$

Dedicated RS

Dedicated RS

- DRS (antenna port 5) pattern for normal CP
 - DRS pattern with 12 DRS per RB pair
 - Support of DRS operation is a UE capability of FDD/TDD
 - DRS pattern for extended CP for 12 RS per RB: FFS
- CQI estimation
 - CQI estimation (DL) is always based on Common RS (CRS)

Time [Dedicated RS with common RS]

System Information Receive

PBCH

 Master information block of system information is transmitted on Primary broadcast channel

Dynamic BCH

 After successful reception of PBCH, UE can read D-BCH in PDSCH (including PCFICH and PDCCH) which carries system information not including in PBCH

PBCH

- PBCH
 - Master information block of system information is transmitted on Primary broadcast channel
- Cell-specific scrambled prior to modulation
- Modulation: QPSK
- Mapping to resource elements
 - Set of values for the RE index k is

$$k = \frac{N_{\text{RB}}^{\text{DL}} N_{\text{sc}}^{\text{RB}}}{2} - 36 + k', \quad k' = 0, 1, ..., 71$$

- Values for the symbol index is 0, 1, 2, 3 in slot 1 of subframe 0
- Including system information (RAN2 conclusions)
 - L1 parameters (e.g. DL system bandwidth, etc.)
 - System Frame Number (SFN)
 - PHICH duration (1 bit)
 - PHICH resource (2 bits)
 - FFS... 22

PBCH

- The coded BCH transport block is mapped to four subframes (subframe #0) within a 40 ms interval
- 40 ms timing is blindly detected, i.e. there is no explicit signaling indicating 40 ms timing.
- Coded BCH mapped to 4 OFDM symbols within a subframe

 Each subframe is assumed to be self-decodable, i.e the BCH can be decoded from a single reception, assuming sufficiently good channel conditions.

PBCH

- No explicit bits in the PBCH to signal the number of TX antennas at the eNB
- PBCH encoding chain includes CRC masking dependent on the number of configured TX antennas at the eNodeB

 PBCH is mapped into RE assuming RS from 4 antennas are used at the eNB transmitter, irrespective of the actual number of TX

antenna

# of TX antennas	PBCH CRC Mask				
1	<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0				
2	<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1				
4	<0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1>				

- TX diversity scheme
 - 336 hypotheses on SSC, and SFBC based TX diversity scheme
 - For 2 TX antennas SFBC
 - For 4 TX antennas based on SFBC + FSTD
 - No antenna information carried on SSC for SFBC

PCFICH

- CCFI (Control format indication)
 - Information about the number of OFDM symbols (1, 2 or 3) used for transmission of PDCCHs in a subframe.
- PCFICH carries CCFI.
 - The number of bits: 32 bits
 - Cell-specific scrambling prior to modulation.
 - Modulation: QPSK
 - Mapping to resource elements: four groups of four contiguous REs not used for RS in the first OFDM symbol
 - Spread over the whole system bandwidth
 - Same mapping for 1, 2 and 4 antennas

 $\bar{k} = (N_{\text{sc}}^{\text{RB}}/2) \cdot (N_{\text{ID}}^{\text{cell}} \mod 2N_{\text{RB}}^{\text{DL}})$ $k = \bar{k}$

- The physical downlink control channel carries scheduling assignments
- A physical control channel is transmitted on an aggregation of one or several control channel elements, where a control channel element (CCE) corresponds to a set of resource elements
 - 1PDCCH = 1, 2, 4, 8 CCEs
 - 1 CCE = 9 REGs
- Multiple PDCCHs can be transmitted in a sub-frame
- The PDCCH supports multiple formats
- Maximum number of blind decoding for LTE_ACTIVE users is 44 in total

- Modulation: QPSK
- Mapping to resource elements

The block of quadruplets $z^{(p)}(0),...,z^{(p)}(M_{quad}-1)$ shall be permuted, resulting in

- DCI format [Detailed in TS36.212]
 - DCI format 0 is used for the transmission of UL-SCH assignments
 - DCI format 1 is used for the transmission of DL-SCH assignments for SIMO operation
 - DCI format 1A is used for a compact transmission of DL-SCH assignments for SIMO operation
 - DCI format 1B is used to support closed-loop single-rank transmission with possibly contiguous resource allocation
 - DCI format 1C is for downlink transmission of paging, RACH response and dynamic BCCH scheduling
 - DCI format 2 is used for the transmission of DL-SCH assignments for MIMO operation
 - DCI format 3 is used for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustments
 - DCI format 3A is used for the transmission of TPC commands for PUCCH and PUSCH with single bit power adjustments

- Aggregation of CCE
 - Tree-based aggregation with 1, 2, 4, 8 CCE
 - 1-CCE start on any CCE position (i=0,1,2,3,4,...)
 - 2-CCE every second location (i=0,2,4,6,...)
 - 4-CCE on every fourth (i=0, 4, 8, ...)
 - 8-CCE on every eight position (i=0, 8, ...)
 - The number of available CCEs in a cell depends on
 - Semi-static: bandwidth, #antenna ports, PHICH conf, ...
 - Dynamic: PCFICH value

- Common search space
 - Common search space corresponds to CCEs 0-15 (four decoding candidates on level-4, CCEs 0-3, 4-7, 8-11, 12-15 and two decoding candidates on level-8, CCEs 0-7, 8-15
 - Monitored by all UEs in the cell
 - Can be used for any PDCCH signalling (not restricted to 'common' PDCCH, can be used to resolve 'blocking')
 - Format 1C
 - Format 0/1A/3A
 - May overlap with UE-specific search space
 - Aggregation levels
 - 4-CCE and 8-CCE
 - Number of blind decodes spent on common search space = 12

- UE-specific search space
 - 32 blind decoding attempts
 - Aggregation levels 1, 2, 4, 8
 - Decoding attempts per payload size (assuming 2 payload sizes per aggregation level)
 - 6 decoding attempts of 1-CCE aggregation
 - 6 decoding attempts of 2-CCE aggregation
 - 2 decoding attempts of 4-CCE aggregation
 - 2 decoding attempts of 8-CCE aggregation
 - FFS if the above can be changed with RRC signalling (max 2 configurations in total)
 - DCI formats, semi-static configuration of one of the alternatives
 - 0/1A, 1 ("non-spatial-multiplexing")
 - 0/1A, 2 ("spatial multiplexing")
 - 0/1A, 1B("rank-1 precoding")

- Starting point of UE-specific search space to monitor given by "hashing function"
 - $-Z_k=Y_k \mod floor(N_{CCE}/L_{PDCCH})$ Input to hashing function
 - Z_k : PDCCH search space starting position in subframe #K for CCE aggregation level L_{PDCCH}
 - N_{CCE}: Number of CCEs in subframe #K
 - L_{PDCCH}: CCE aggregation Level
 - $Y_K = A*Y_{K-1} \mod D$, for K={1, 1, 2, ..., 9}
 - Y-1 = {UE=ID}x=UE_ID*16 + subframe_number
 - All '0' UE-ID forbidden
 - A=39827, D=65537

LTE L1 Specification

Downlink data transmission

PHICH

- PHICH carries the downlink hybrid-ARQ ACK/NACK
- PHICH group
 - 1 PHICH group = 8 PHICHs (Normal CP)
 - 1 PHICH group = 4 PHICHs (Extended CP)

Repetition factor is 3

PHICH

- The amount of PHICH resources signaled by 2 bits on PBCH
 - The four combinations on PBCHG correspond to the number N of PHICH groups as

$$N = \begin{cases} ceil \left[N_h (N_{RB}^{DL} / 8) \right] & \text{for normal CP} \\ 2*ceil \left[N_h (N_{RB}^{DL} / 8) \right] & \text{for extended CP} \end{cases}$$

• N_h is signalled on the PBCH as 1/6, $\frac{1}{2}$, 1, or 2

PHICH

- PHICH mapping
 - Time and frequency location of PHICH

- Cell specific mapping
 - Assigned resource-element group number $\overline{\mathcal{H}}_i$ is given by below
 - / is PHICH index of PHICH group

$$\overline{n}_{i} = \begin{cases}
\left(\left\lfloor N_{ID}^{cell} \cdot n_{l'_{i}} / n_{k} \right\rfloor + m' \right) \operatorname{mod} n_{l'_{i}} & i = 0 \\
\left(\left\lfloor N_{ID}^{cell} \cdot n_{l'_{i}} / n_{k} \right\rfloor + m' + \left\lfloor n'_{i} / 3 \right\rfloor \right) \operatorname{mod} n_{l'_{i}} & i = 1 \\
\left(\left\lfloor N_{ID}^{cell} \cdot n_{l'_{i}} / n_{k} \right\rfloor + m' + \left\lfloor 2n'_{i} / 3 \right\rfloor \right) \operatorname{mod} n_{l'_{i}} & i = 2
\end{cases}$$

PHICH

Orthogonal sequence of SF = 4 for normal CP and SF = 2 for extended CP

case

Sequence index	Orthogonal sequence						
nseq PHICH	Normal cyclic prefix $N_{\rm SF}^{\rm PHICH} = 4$	Extended cyclic prefix $N_{\rm SF}^{\rm PHICH}=2$					
0	[+1 +1 +1 +1]	[+1 +1]					
1	[+1 -1 +1 -1]	[+1 -1]					
2	[+1 +1 -1 -1]	[+j + j]					
3	[+1 -1 -1 +1]	$\begin{bmatrix} +j & -j \end{bmatrix}$					
4	[+j + j + j + j]	-					
5	[+j -j +j -j]						
6	[+j + j - j - j]	-					
7	[+j -j -j +j]	-					

Example of extended CP case (SF = 2) and TX=4 case

d₀ and d₁ represent the SF=2 spread ACK/NAK symbol, red and green are two

different PHICH groups

Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3

frequency [SF = 2]

[SF = 4]

DL Physical Channel Processing

- The baseband signal representing a downlink physical channel is defined in terms of the following steps:
 - Scrambling of coded bits
 - Modulation of scrambled bits to generate complex-valued modulation symbols
 - Mapping of the complex-valued modulation symbols onto one or several transmission layers
 - Pre-coding of the complex-valued modulation symbols on each layer for transmission on the antenna ports
 - Mapping of complex-valued modulation symbols for each antenna port to resource elements
 - Generation of complex-valued time-domain OFDM signal for each antenna port

Scrambling

Sequence generation

– The scrambling sequence generator shall be initialised at the start of each subframe, where the initialisation value of $c_{\rm init}$

Generation register

- Fill the top register with the following fixed pattern x(0)=1(MSB), and x(1)=...=x(30)=0.
- Fill the lower register with the initialisation sequence based on below

• PDSCH & PMCH:
$$c_{\text{init}} = \begin{cases} n_{\text{RNTI}} \cdot 2^{14} + q \cdot 2^{13} + (n_{\text{s}}/2) \cdot 2^{9} + N_{\text{ID}}^{\text{cell}} & \text{for PDSCH} \\ (n_{\text{s}}/2) \cdot 2^{9} + N_{\text{ID}}^{\text{MBSFN}} & \text{for PMCH} \end{cases}$$

- PBCH: $c_{\text{init}} = N_{\text{ID}}^{\text{cell}}$ (Re-initialization is performed every 4 subframes)
- PCFICH, PDCCH, PHICH: $c_{\text{init}} = (n_{\text{s}}/2) \cdot 2^9 + N_{\text{ID}}^{\text{cell}}$

PDSCH

- Resource allocation of PDSCH [Detailed in TS36.213]
 - Non-compact assignment (DL only)
 - Bitmap approach 1 (Group-wise bitmap)
 - Bitmap approach 2 (bitmap within subset)

 Resource indication value (RIV) corresponding to a starting resource block and a length in terms of contiguously allocated resource blocks

LTE L1 Specification

MBSFN

MBSFN Sub-frame Structure

		→ Frequency domain in sub-carrier units															
4	1	R1	С	С	R2	С	С	R1	С	С	R2	С	С	R1	С	С	R2
		R3	O	C	R4	O	С	R3	O	C	R4	O	O	R3	O	С	R4
	Slot	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D
	S	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
<u>e</u>		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Sub-frame		D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR
-qns		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	Slot	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
		MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D	MR	D
•	,	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

R0 : Unicast RS for antenna port 0

R1 : Unicast RS for antenna port 1

C : Unicast control

R2: Unicast RS for antenna port 2

R3 : Unicast RS for antenna port 3

D: MBSFN data

MR: MBSFN RS for antenna port 4

MBSFN RS and PMCH

RS structure for MBSFN(MBMS Single Frequency

Sub-frame for MBSFN transmission

→ Adopt the unicast CP structure and RS sequence type for the first and second (in case it is a unicast one) symbol of MBSFN subframes

MBSFN data from different MBSFN areas are NOT multiplexed within the same sub-frame within a cell to avoid multiple MBSFN RSs

Sequence generation

$$r_{l,n_s}(i) = (1 - 2 \cdot c(2i)) + j(1 - 2 \cdot c(2i + 1)), \quad i = 0,1,...,6N_{RB}^{\text{max,DL}} - 1$$

Antenna port 4

The pseudo-random sequence generator shall be initialised with

$$c_{\text{init}} = 2^{13} \cdot l' + 2^9 \cdot \lfloor n_s/2 \rfloor + N_{\text{ID}}^{\text{MBSFN}} + 1$$

at the start of each OFDM symbol where $l' = (n_s \mod 2) \cdot N_{\text{symb}}^{\text{DL}} + l$ is the OFDM symbol number with a subframe

- PHICH duration in MBSFN subframes, semi-statically configured
 - Supported PHICH durations in MBSFN subframes: 1 and 2 OS
- No need to specify power boosting and frequency shifting

PCFICH and PMCH in MBSFN

PCFICH

- Transmit PCFICH in every subframe, including MBSFN subframes on mixed carrier
- The PCFICH correctly reflects the control region, also in MBSFN subframes.
- The PCFICH value in MBSFN subframes shall be the same as the value provided by higher layers for MBSFN UEs

PMCH

- Only transmitted in sub-frames allocated for MBSFN transmissions
 - Only TDM on sub-frame basis of data transmission
- Multiplexing of MBSFN and Non-MBSFN data
- No transmit diversity for MBSFN and the transmission shall use antenna port 4
- Not to transmitted in subframe 0 and 5 on a carrier supporting a mix of PDSCH and PMCH

LTE L1 Specification

Uplink structure

Uplink Overview - Uplink Structure

Slot structure and resource grid

- The transmitted signal in each slot is described by
 - $N_{\rm RB}^{\rm UL}N_{\rm sc}^{\rm RB}$ subcarriers
 - $N_{\mathrm{symb}}^{\mathrm{UL}}$ SC-FDMA symbols
- Resource block (RB)
 - $N_{\rm symb}^{\rm UL} \times N_{\rm sc}^{\rm RB}$ resource elements (REs)
 - Corresponds to a slot and 180kHz
- CP length is signaled by higher layers

Configuration	Cyclic prefix length $N_{{ m CP},l}$
Normal avalia profiv	160 for $l = 0$
Normal cyclic prefix	144 for $l = 1, 2,, 6$
Extended cyclic prefix	512 for $l = 0,1,,5$

Uplink Overview - Uplink Physical Channels

- Physical channels
 - Physical Uplink Shared Channel (PUSCH)
 - Uplink data with localized transmission
 - Localized transmission w/o frequency hopping
 - Localized transmission with frequency hopping
 - Frequency hopping is available on both slot basis and subframe basis
 - Physical Uplink Control Channel (PUCCH)
 - ACK/NACK, CQI/PMI, SR transmission
 - PUCCH transmission
 - Via frequency bands towards both edges
 - Frequency hopping at the slot boundary
 - UCI transmission with PUSCH
 - CQI/PMI is multiplexed with PUSCH and mapped into PUSCH bands
 - ACK/NAK is multiplexed with PUSCH by puncturing the data
 - SR would be transmitted through RRC signalling (RAN2)
 - Physical Random Access Channel (PRACH)

Uplink Overview - Uplink Signals

- Physical Signals
 - Reference signal (RS)
 - Demodulation RS (DM RS)
 - Sounding RS (SRS)

SC-FDMA in uplink transmission

DM RS may be generated directly in frequency domain

PUSCH Processing

Transform precoding

- The block of complex-valued symbols $d(0),...,d(M_{symb}-1)$
- $M_{\rm sc}^{\rm PUSCH}$ represents the number of scheduled subcarriers used for PUSCH transmission in an SC-FDMA symbol

$$\begin{split} M_{\text{sc}}^{\text{PUSCH}} &= N_{\text{sc}}^{\text{RB}} \cdot 2^{\alpha_{2}} \cdot 3^{\alpha_{3}} \cdot 5^{\alpha_{5}} \leq N_{\text{sc}}^{\text{RB}} \cdot N_{\text{RB}}^{\text{UL}} \\ z(l \cdot M_{\text{sc}}^{\text{PUSCH}} + k) &= \frac{1}{\sqrt{M_{\text{sc}}^{\text{PUSCH}}}} \sum_{i=0}^{M_{\text{sc}}^{\text{PUSCH}} - 1} d(l \cdot M_{\text{sc}}^{\text{PUSCH}} + i)e^{-j\frac{2\pi i k}{M_{\text{sc}}^{\text{PUSCH}}}} \\ k &= 0, ..., M_{\text{sc}}^{\text{PUSCH}} - 1 \\ l &= 0, ..., M_{\text{symb}} / M_{\text{sc}}^{\text{PUSCH}} - 1 \end{split}$$

PUSCH transmission

- 1 bit indication in UL grant whether frequency hopping or not
- Localized transmission w/o frequency hopping
- Localized transmission with frequency hopping
 - Hopping based on the hopping information in UL grant
 - Hopping according to a predefined hopping pattern

Inter/Intra Subframe PUSCH Hopping

- Set of PRBs to be used for transmission are given by UL scheduling grant
 - If hopping with predefined hopping pattern is enabled, a predefined pattern is used
- When grant is absent, e.g., in cases of persistent scheduling and HARQ retransmission, UE follows the indication for hopping mode in the initial grant
- A single bit signaled by higher layers indicates whether PUSCH frequency hopping is inter-subframe only or both intra and inter-subframe

Example for predefined hopping for PUSCH with 20 RBs and M=4

Grant format

- Grant size is the same as for a localized allocation
 - Includes 1 bit to indicate whether hopping mode or non-hopping mode
 - Hopping resource allocation (1st slot) is 0-2 bits smaller than non-hopping resource allocation
- Hopping resource allocation for the 2nd slot uses those 0-2 bits
 - 0 bit: mirroring over non-PUCCH RBs
 - 1 bit: 0 = floor(N_RB/2), 1 = follow hopping pattern
 - 2 bits: 00= floor(N_RB/4), 01 = -floor(N_RB/4), 10 = N_RB/2, 11 = follow the predefined hopping pattern
 - N_RB is the actual number of PRB for PUSCH

PUSCH Hopping

PUSCH hopping based on predefined pattern

- Number of sub-bands for hopping pattern is equal to M
- The predefined cell-specific hopping pattern is used
- M=1: Only mirroring over whole PUSCH band
- M>1: Hopping patterns defined based on inter-sub band hopping and mirroring on/off
- All sub-band sizes should be equal

Inter subframe PUSCH hopping

- For Inter subframe hopping via grant, the hopping allocation in the 1st slot corresponds to even retransmission number and one in the 2nd slot corresponds to odd retransmission number
- When hopping pattern is used, the hopping pattern is indexed by subframe number (instead of slot number)

PUCCH Format

- Format 1 (SR only with On-off Keying (OOK))
- Format 1a and 1b (ACK/NACK only)
 - Format 1a: BPSK ACK/NACK for 1 Codeword
 - Format 1b: QPSK ACK/NACK for 2 Codewords
- Format 2 (CQI only with QPSK)
- Format 2a and 2b (CQI + ACK/NACK)

PUCCH	Modulation	Number of bits per
format	scheme	subframe, $M_{ m bit}$
1	N/A	N/A
1a	BPSK	1
1b	QPSK	2
2	QPSK	20
2a	QPSK+BPSK	21
2b	QPSK+QPSK	22

Number of PUCCH demodulation reference symbols per slot

PUCCH format	Normal cyclic prefix	Extended cyclic prefix
1, 1a, 1b	3	2
2	2	1
2a, 2b	2	N/A

Demodulation reference signal location for different PUCCH formats

PUCCH format	Set of values for l			
PUCCH format	Normal cyclic prefix	Extended cyclic prefix		
1, 1a, 1b	2, 3, 4	2, 3		
2, 2a, 2b	1, 5	3		

Normal CP

PUCCH Format 1a and 1b (For ACK/NACK Only Case)

- UE ACK/NACK signals are distinguished by both Computer Generated (CG) CAZAC (Constant Amplitude Zero Auto-Correlation) sequences with different cyclic shift values and Walsh/DFT orthogonal sequences
- For non-persistent scheduling, the ACK/NACK resource is linked to the lowest CCE of the control channel used for scheduling
- UL ACK/NACK resource due to persistent scheduling is explicitly signalled once when the persistent scheduling information for data is sent to the UE

Orthogonal Sequence for PUCCH

Length-4 orthogonal sequences for PUCCH formats 1/1a/1b

Sequence index $n_{\rm oc}(n_{\rm s})$	Orthogonal sequences $\left[w(0) \cdots w(N_{\rm SF}^{\rm PUCCH}-1)\right]$
0	[+1 +1 +1 +1]
1	[+1 -1 +1 -1]
2	[+1 -1 -1 +1]

Length-3 orthogonal sequences for PUCCH formats 1/1a/1b

Sequence index $n_{\rm oc}(n_{\rm s})$	Orthogonal sequences $\left[w(0) \cdots w(N_{\rm SF}^{\rm PUCCH}-1)\right]$
0	[1 1 1]
1	$\begin{bmatrix} 1 & e^{j2\pi/3} & e^{j4\pi/3} \end{bmatrix}$
2	$\begin{bmatrix} 1 & e^{j4\pi/3} & e^{j2\pi/3} \end{bmatrix}$

ACK/NACK Channelization

Resource allocation: 18 ACK/NACK channels with normal CP $\Delta_{shift}^{PUCCH}=2$

	pecific lift offset	RS orthogonal cover			
$\delta_{\mathrm{offset}}^{\mathrm{PUCCH}}$ =1	$\delta_{\mathrm{offset}}^{\mathrm{PUCCH}}$ =0	\overline{n}_{OC} =0	\overline{n}_{OC} =1	\overline{n}_{OC} =2	
$n_{CS} = 1$	$n_{CS} = 0$	n =0		12	
2	1		6		
3	2	1		13	
4	3		7		
5	4	2		14	
6	5		8		
7	6	3		15	
8	7		9		
9	8	4		16	
10	9		10		
11	10	5		17	
0	11		11		

ACK/NACK orthogonal cover						
n_{OC} =0	$n_{OC} = 0$ $n_{OC} = 1$ $n_{OC} = 2$					
n =0		12				
	6					
1		13				
	7					
2		14				
	8					
3		15				
	9					
4		16				
	10					
5		17				
	11					

$$\Delta_{\text{shift}}^{\text{PUCCH}} \in \begin{cases} \{1,2,3\} & \text{for normal cyclic prefix} \\ \{1,2,3\} & \text{for extended cyclic prefix} \end{cases}$$

Cell-specific Cyclic shift value of CAZAC sequence

$$\delta_{\text{offset}}^{\text{PUCCH}} \in \left\{0,1,...,\Delta_{\text{shift}}^{\text{PUCCH}} - 1\right\}$$

Cell specific cyclic shift offset

 n_{OC}

Orthogonal sequence index for ACK/NACK

 \overline{n}_{OC}

Orthogonal sequence index for RS

 n_{CS}

Cyclic shift value of a CAZAC sequence

n'

ACK/NACK resource index used for the channelization in a RB

ACK/NACK Channelization

- Channelization for PUCCH format 1/1a/1b in a RB with a mix of formats 1/1a/1b and 2/2a/2b
 - ACK/NACKs and CQIs from different UEs are mixed within a RB
 - ACK/NACK and CQI boundary can be known via semi-static signaling through broadcast channel

		Orthogonal cove	r				
Cyclic shift	OC _{index} =0	OC _{index} =1	OC _{index} =2				
0							
1					CK/NACK		
2					OIVINAOI		
3							
4				—			
5							
6						G	ard shifts
7				C	OI.		aru siiits
8					Ţ		
9							
10							
11							

CS Hopping and CS/OC Re-mapping

- Cell specific CS hopping on symbol basis
 - Inter-cell interference randomization
- Slot-level CS/OC re-mapping
 - Intra-cell interference randomization
 - The mapping between ACK/NACK channels and resources (k) is varied on slot basis

- Cases
 - CQI only
 - CQI+ACK/NACK with expended CP
- Bit scrambled by UE specific scrambling sequence
 - Initialization of scrambling sequence generator is same with that of PUSCH
- QPSK, (20, A) simplex code
- Cyclic Shift (CS) based orthogonality of CG CAZAC sequence
- CS hopping on symbol basis

PUCCH Format 2a and 2b (ACK/NACK and CQI from a UE)

- Formats 2a and 2b are supported for the normal CP only
 - CQI
 - Bit scrambled by UE specific scrambling sequence
 - Initialization of scrambling sequence generator is same with that of PUSCH
 - QPSK, (20,A) simplex code
 - ACK/NACK
 - BPSK (2a) or QPSK (2b) modulation for the 2nd RS symbol in each slot
 - Format 2a: QPSK CQI + BPSK ACK/NACK
 - Format 2b: OPSK COI + OPSK ACK/NACK

PUCCH Format 1 (Scheduling Request Only)

- On-off keying (OOK)
 - On (transmission of SR): request to be scheduled
- The length 7 sequence is split into two orthogonal sequences
 - Sequence 1: Length 3 $\overline{w}_{\overline{n}_{oc}}(i)$
 - Sequence 2: Length 4 $w_{n_{oc}}(i)$
- No reference signals are transmitted
- Channelization structure is same with that of PUCCH format 1a/1b
- Multiplexing of SR with CQI and/or ACK/NAK on PUCCH
 - CQI: Drop CQI when SR is transmitted
 - ACK/NAK: Support multiplexing of SR and ACK/NAK Positive SR (d(0)=1) → the ACK/NACK is transmitted using the SR resource Negative SR → the ACK/NACK is transmitted using the ACK/NACK resource

Mapping PUCCH to Physical Resources

PRBs to be used for transmission of PUCCH in slot n_s

$$n_{\text{PRB}} = \begin{cases} \left\lfloor \frac{m}{2} \right\rfloor & \text{if } (m + n_{\text{s}} \mod 2) \mod 2 = 0 \\ N_{\text{RB}}^{\text{UL}} - 1 - \left\lfloor \frac{m}{2} \right\rfloor & \text{if } (m + n_{\text{s}} \mod 2) \mod 2 = 1 \end{cases}$$

- Mapping order: From RBs in outer edge to RBs in inner edge
- PUCCH format 2/2a/2b first
- Secondly mixed ACK/NACK and CQI format
- PUCCH format 1/1a/1b

m=1	m = 0
m = 3	m = 2
m = 2	m=3
m = 0	m=1

n_{PRB}	=	0
--------------------	---	---

PUCCH Format 1/1a/1b

$$m = \begin{cases} N_{\text{RB}}^{(2)} & \text{if } n_{\text{PUCCH}}^{(1)} < c \cdot N_{\text{cs}}^{(1)} / \Delta_{\text{shift}}^{\text{PUCCH}} \\ \frac{n_{\text{PUCCH}}^{(1)} - c \cdot N_{\text{cs}}^{(1)} / \Delta_{\text{shift}}^{\text{PUCCH}}}{c \cdot N_{\text{sc}}^{\text{RB}} / \Delta_{\text{shift}}^{\text{PUCCH}}} \end{bmatrix} + N_{\text{RB}}^{(2)} + \begin{bmatrix} N_{\text{cs}}^{(1)} \\ 8 \end{bmatrix} \quad \text{otherwise}$$

$$c = \begin{cases} 3 & \text{normal cyclic prefix} \\ 2 & \text{extended cyclic prefix} \end{cases}$$

PUCCH Format 2/2a/2b

$$m = \left\lfloor n_{\text{PUCCH}}^{(2)} / N_{\text{sc}}^{\text{RB}} \right\rfloor$$

Multiplexing of Control and Data on PUSCH

- ACK/NACK mapping consecutive to RS, CQI time-first mapping in TS36.212
 - A/N resources punctured into data starting from the bottom of the figure below
 - Max number of resources for A/N: 4 SC-FDMA symbols
 - In case of 2 bits A/N,. (3,2) simplex coding is done
 - CQI resources placed at the beginning of the data resources
 - CQI payload less than or equal to 11 bits: (32,A) simplex code
 - CQI payload larger than bits: Tail biting convolutional code
 - RI bits placed next to the A/N bits in PUSCH, irrespective whether A/N is present or not
 - In case of 2 bits RI, (3,2) simplex coding is done

SC-FDMA symbol

PUCCH Interaction with SRS for a UE

- ACK/NACK interaction with SRS
 - Option1: One ACK/NAK symbol is punctured
 - Option2: SRS transmission is dropped
 - Both Option 1 and 2 are supported
 - The use of option 1 or 2 is configurable on cell basis
- CQI interaction with SRS
 - SRS transmission is dropped
- SRS interaction with SR
 - SRS transmission is dropped

DM RS for PUSCH

- For each UE, DM RS for PUSCH is transmitted over bandwidths where its PUSCH is scheduled
- PUSCH DM RS in MIMO
 - SIMO: FDM between UEs
 - MU-MIMO: RSs of different UEs are orthogonalized by allocating different cyclic shift for each UE
- Different cyclic shifts can be used in different slots of a subframe
- For extended CP, PUSCH DM RS is located at the 3rd symbol

$$n_{\rm cs} = \underbrace{\left(n_{\rm DMRS}^{(1)} + n_{\rm DMRS}^{(2)} + n_{\rm PRS}\right)}_{\text{Broadcasted Included in value}} + \underbrace{n_{\rm DMRS}^{(2)} + n_{\rm PRS}}_{\text{UL grant}} + \underbrace{n_{\rm PRS}}_{\text{Oiven by the pseudo-random sequence } c(\textit{i})}_{\text{Application of } c(\textit{i})} \text{ is cell specific}$$

Cyclic shift field in UL grant	$n_{ m DMRS}^{(2)}$
000	0
001	2
010	3
011	4
100	6
101	8
110	9
111	10

Sounding Reference Signal (SRS) Subframe Configuration

- Cell-specific configuration in 4 bits
- Every 1, 2, 5, 10, inf. subframes have one SRS subframe

Configuration	Binary	Configuration Period (subframes)	Transmission offset (subframes)
0	0000	1	{0}
1	0001	2	{0}
2	0010	2	{1}
3	0011	5	{0}
4	0100	5	{1}
5	0101	5	{2}
6	0110	5	{3}
7	0111	5	{0,1}
8	1000	5	{2,3}
9	1001	10	{0}
10	1010	10	{1}
11	1011	10	{2}
12	1100	10	{3}
13	1101	10	{0,1,2,3,4,6,8}
14	1110	10	{0,1,2,3,4,5,6,8}
15	1111	Inf	N/A

SRS Bandwidth Configuration (1)

UE#3

- SRS transmission bandwidths (CR030 R1-082264)
 - Multiple SRS BW trees are predefined for each uplink system operating bandwidth

10 MHz bandwidth

RB index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

BW options

UE#1

20 RBs

UE#2

Tree layer I	Bı	N _I	n _I , UE#1	n _I , UE#2	n _I , UE#3
0	12x40	1	0	0	0

- Cell specific 3 bits are broadcasted to indicate one of 8 SRS BW configurations
 - One SRS BW configuration has Max. SRS BW and predefined SRS BW trees
- UE specific 2 bits are given from higher layers to indicate one of 4 SRS BWs.
 - For each SRS BW configurations, there exist 1~4 SRS BWs

SRS Bandwidth Configuration (2)

SRS bandwidth configuration and SRS bandwidth for 6~40 RB uplink system BW

SRS bandwidth		ndwidth = 0		SRS-Bandwidth b = 1		SRS-Bandwidth b = 2		ndwidth = 3
configuration	$m_{{ m SRS},b}$	N_b	$m_{\mathrm{SRS},b}$	N_b	$m_{{ m SRS},b}$	N_b	$m_{{ m SRS},b}$	N_b
0	36	1	12	3	N/A	1	4	3
1	32	1	16	2	8	2	4	4
2	24	1	N/A	1	N/A	1	4	6
3	20	1	N/A	1	N/A	1	4	5
4	16	1	N/A	1	N/A	1	4	4
5	12	1	N/A	1	N/A	1	4	3
6	8	1	N/A	1	N/A	1	4	2
7	4	1	N/A	N/A	N/A	N/A	N/A	N/A

SRS bandwidth configuration and SRS bandwidth for 80~110 RB uplink system BW

SRS bandwidth configuration		ndwidth = 0	SRS-Bandwidth b = 1		SRS-Bandwidth b = 2		SRS-Bandwidth b = 3	
Comiguration	$m_{{ m SRS},b}$	N_b	$m_{{ m SRS},b}$	N_b	$m_{{ m SRS},b}$	N_b	$m_{\mathrm{SRS},b}$	N_b
0	96	1	48	2	24	2	4	6
1	96	1	32	3	16	2	4	4
2	80	1	40	2	20	2	4	5
3	72	1	24	3	12	2	4	3
4	64	1	32	2	16	2	4	4
5	60	1	20	3	N/A	1	4	5
6	48	1	24	2	12	2	4	3
7	48	1	16	3	8	2	4	2

SRS sequence index is derived from PUCCH DM RS base sequence index

$$r^{\rm SRS}(n) = r_{u,v}^{(\alpha)}(n)$$

$$\alpha = 2\pi \frac{\text{cyclic_shift_value_SRS}}{8} \text{Configured for each UE by high layers (3bits)}$$

- Repetition factor: RPF=2 only
- Transmission power is obtained from the offset relative to PUSCH DM RS transmission power
- Position of the SRS in time domain: Last SC-FDMA symbol of a subframe
- Mapping to physical resources is done as following equations

$$a_{2k+k_0,l} = \begin{cases} \beta_{SRS} r^{SRS}(k) & k = 0,1,...,M_{sc,b}^{RS} - 1\\ 0 & \text{otherwise} \end{cases}$$

$$k_0 = k_0' + \sum_{b=0}^{B_{SRS}} 2M_{sc,b}^{RS} n_b$$

 k_0 : Frequency domain starting position of SRS

 $M_{\text{sc},b}^{\text{RS}} = m_{\text{SRS},b} N_{\text{sc}}^{\text{RB}} / 2$: Length of SRS sequence at level b

 $m_{SRS,b}$: SRS bandwidth in RB unit

 k_0 ': Offset value depending on transmission comb

 n_b : Frequency position index for SRS bandwidth

SRS Hopping Pattern

Predefined frequency hopping pattern for SRS transmission

$$n_b = \begin{cases} 0 & b = 0\\ F_b(n_{SRS}) + n_{b,RRC} \mod N_b & \text{otherwise} \end{cases}$$

$$F_{b}(n_{SRS}) = \begin{cases} N_{b} / 2 \left\lfloor \frac{n_{SRS} \mod \Pi_{b'=0}^{b} N_{b'}}{\Pi_{b'=0}^{b-1} N_{b'}} \right\rfloor + \left\lfloor \frac{n_{SRS} \mod \Pi_{b'=0}^{b} N_{b'}}{2 \Pi_{b'=0}^{b-1} N_{b'}} \right\rfloor & \text{if } N_{b} \text{ even} \\ \left\lfloor N_{b} / 2 \right\rfloor \left\lfloor n_{SRS} / \Pi_{b'=0}^{b-1} N_{b'} \right\rfloor & \text{if } N_{b} \text{ odd} \end{cases}$$

 $n_{\rm SRS}$: Number of prior SRS transmissions

10 MHz bandwidth

 N_b : Number of branches on assigned tree level b

		2	5 -	Ö	2							
RB index	<u> </u>	•		•	•							
Time 1 2 3 4 5	6 7 8	9 10 11 12	13 14 15 16	17 18 19 20	21 22 23 24 25	26 27 28 29	30 31 32 33	34 35 36 37	38 39 40 41	42 43 44 45	46_47	' 48 49 50
											.)	
											l l	
Ţ												
•				·								SRS frequency hopping
												period for UE#2 and #3
											•	

PRACH Structure

- BW of random access burst corresponds to 6RBs
- Subcarrier spacing
 - 1.25KHz for FDD
 - 7.5KHz for TDD
- RA preambles are generated from ZC sequence (ZC sequence length = 839)
- Guard bands on both sides of preamble
- For a cell which includes many power limited UEs not in good channel conditions, one repetition of preamble is supported (0.8ms + 0.8ms, preamble formats 2 and 3)

PRACH Configuration

- For preamble format 0~3, at most one RA resource per subframe for FDD
- Start of RA preamble shall be aligned with the start of the corresponding uplink subframe at the UE

PRACH configuration	System frame number	Subframe number
0	Even	1
1	Even	4
2	Even	7
3	Any	1
4	Any	4
5	Any	7
6	Any	1, 6
7	Any	2 ,7
8	Any	3, 8
9	Any	1, 4, 7
10	Any	2, 5, 8
11	Any	3, 6, 9
12	Any	0, 2, 4, 6, 8
13	Any	1, 3, 5, 7, 9
14	Any	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
15	Even	9

PRACH Sequence (1)

- PRACH sequence generation
 - Network configures the set of preamble sequences the UE is allowed to use
 - The u th root ZC sequence: $x_u(n) = e^{-j\frac{\pi u n(n+1)}{N_{ZC}}}$, $0 \le n \le N_{ZC} 1$
- 64 preamble sequences per cell
 - Signaling of 64 preamble sequences
 - To reduce resources of BCH consumed by signaling 64 preambles, one logical index instead of 64 sequences indices is transmitted (logical root sequence index = {0, 1, ..., 837})
 - The relation between logical root sequence index and physical root sequence index (u) is specified in two tables (One for preamble formats 0~3 and the other for preamble format 4)
 - Finding 64 preamble sequences
 - Firstly found by all available CS (in the order of increasing CS value) of a root ZC sequence with a logical index
 - If 64 preamble sequences are not found, remaining sequences are found in the root sequences with the consecutive logical indexes until all the 64 preamble sequences are found

Preamble format	N_{ZC}
0 – 3	839
4	139

PRACH Sequence (2)

- Cyclic shifts for preamble generation
 - Cyclic shifts N_{CS} is defined for both FDD (formats 0~3) and TDD (format 4), respectively

Cyclic shifts for preamble generation (preamble formats 0~3)

	- "				
$N_{\rm CS}$ configuration	$N_{ m CS}$ value				
1,CS comigaration	Unrestricted set	Restricted set			
0	0	15			
1	13	18			
2	15	22			
3	18	26			
4	22	32			
5	26	38			
6	32	46			
7	38	55			
8	46	68			
9	59	82			
10	76	100			
11	93	128			
12	119	158			
13	167	202			
14	279	237			
15	419	-			

Cyclic shifts for preamble generation (preamble format 4)

N_{CS} configuration	N_{CS} value
0	2
1	4
2	6
3	8
4	10
5	12
6	15