

Principal component analysis on images

Rasmus R. Paulsen

DTU Compute

Based on

M. Turk and A. Pentland. *Face recognition using eigenfaces*. Computer Vision and Pattern Recognition, 1991.

http://compute.dtu.dk/courses/02502

Principal Component Analysis on images learning objectives

- Construct a column matrix from a single gray scale image
- Construct a data matrix from a set of gray scale images
- Compute and visualize an average image from a set of images
- Compute the principal components of a set of images
- Visualize the principal components computed from a set of images
- Synthesize an image by combining the average image and a linear combination of principal components

Face data

- 38 face images
 - 168 x 192 grayscale
- Aligned
 - The anatomy is placed "in the same position in all image"
- Same illumination conditions on the images we use

The Extended Yale Face Database B http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

Principal component analysis on face images

- What is the main variation in face images?
 - The variation of appearance
 - Not the position in the image
 - Not the light conditions
 - Not the direction of the head

Image Analysis

Putting images into matrices

$$\mathbf{I} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_m \end{bmatrix}$$

- An image can be made into a column matrix
 - Stack all image columns into one column

Face images in matrix form

- One column is one face
- n=38 faces
- m=168x192 = 32256 pixel values per image

The average face

$$\mathbf{X} = \begin{bmatrix} p_{1,1} & \cdots & p_{1,n} \\ \vdots & \ddots & \vdots \\ p_{m,1} & \cdots & p_{m,n} \end{bmatrix}$$

- The average face
 - Average of each row
 - One column
 - Put it back into image shape
- Blurry around the eyes
 - Not perfectly aligned

Subtracting the mean face

$$\mathbf{X}' = \begin{bmatrix} p_{1,1} & \cdots & p_{1,n} \\ \vdots & \ddots & \vdots \\ p_{m,1} & \cdots & p_{m,n} \end{bmatrix} - \bar{X}$$

We subtract the mean face from all faces

Image Analysis

Analyzing the deviation from the mean face

We want to do the principal component analysis on the deviations from the average face

PCA Analysis on face data

$$\mathbf{X}' = \begin{bmatrix} p_{1,1} & \cdots & p_{1,n} \\ \vdots & \ddots & \vdots \\ p_{m,1} & \cdots & p_{m,n} \end{bmatrix} - \bar{X}$$

- We do the PCA analysis on the X' matrix
- X' is 32256 x 38
- Standard covariance matrix is 32256 x 32256
- Turk and Pentland found a trick:
 - Compute the PCA on the 38 x
 38 matrix instead of the
 32256x32256 matrix
 - Details in the paper
 - Beyond the scope here

PCA on faces

- First eigenvector explains 40% of variation
- Second eigenvector explains 8% of variation

Visualizing the PCA faces

Main deviations from the average face

First PC - 40% of variation

Second PC - 8% of variation

-PC Average face

+PC

A tool to see major variations – brow lifting

2023

Synthesizing faces

- A new face can be created by combining
 - Average face
 - Linear combination of principal components

2023

Decomposing faces

- A given face can be reconstructed using
 - The average face
 - Linear combination of principal components
- Found by projecting the face on the principal components
- The weights can then be used for classification/identification

2023

Face analysis plus plus?

More examples later in the course

