

TASK 1: FEED-FORWARD NEURAL NETWORKS

Fabian Roth

TUTORIAL MACHINE LEARNING IN SOLID MECHANICS

SECTIONS

- 1 Hyperparameter sweep
- 2 Input convex neural networks
- Trainable custom layer
- 4 Sobolev training

TASK 1 - 1.1

HYPERPARAMETER SWEEP

MODEL COMPLEXITY

More Layers and Nodes

TECHNISCHE UNIVERSITÄT DARMSTADT

MODEL COMPLEXITY... IT'S NOT THAT SIMPLE

It's difficult to underfit on this simple data

Underfitting might have different causes

NUMBER OF EPOCHS

NUMBER OF EPOCHS

Train until convergence

NUMBER OF EPOCHS

- Train until convergence
- "False" convergence

ACTIVATION FUNCTIONS - RELU

ACTIVATION FUNCTIONS - RELU

TECHNISCHE UNIVERSITÄT DARMSTADT

ACTIVATION FUNCTIONS - RELU

Fast convergence

ACTIVATION FUNCTIONS - SOFTPLUS

Infinitely differentiable

ACTIVATION FUNCTIONS - SOFTPLUS

- Infinitely differentiable
- Unbounded

ACTIVATION FUNCTIONS - TANH

• Infinitely differentiable

ACTIVATION FUNCTIONS - TANH

- Infinitely differentiable
- Bounded

ACTIVATION FUNCTIONS - SIGMOID

Infinitely differentiable

ACTIVATION FUNCTIONS - SIGMOID

- Infinitely differentiable
- Bounded

LEARNING RATE

- Problem specific optimal learning rate
- Larger models require smaller learning rates

CONCLUSION

- Model Complexity: Complex "enough"
- Number of epochs: "Enough" to converge
- Activation function: Depends on use case. Differentiability, boundedness, convexity, ...

All parameters affect each other. Experimentation/parameter studies necessary

TASK 1 - 1.2

INPUT CONVEX NEURAL NETWORKS

INPUT CONVEX NEURAL NETWORKS

COMPARISON

TECHNISCHE UNIVERSITÄT DARMSTADT

ICNN

- Convex
- Slower convergence
- Up to 50% zero-weights
- Physically sensible inter- and extrapolation

FFNN

- Not convex
- Faster convergence
- Usually no zero-weights
- Unpredictable inter- and extrapolation behavior

TECHNISCHE UNIVERSITÄT DARMSTADT

ALTERNATIVE ICNN ACTIVATION FUNCTIONS

All f such that $\frac{d^2f}{dx^2} > 0$, $\frac{df}{dx} > 0$. E.g.,

TASK 1 - 2.2

TRAINABLE CUSTOM LAYER

COMPARISON

NON-CONVEX DATA

CONVEX DATA

TASK 1 - 2.3

SOBOLEV TRAINING

PREDICTION

FUNCTION ONLY

FUNCTION AND GRADIENT

GRADIENT ONLY

Loss 1.437e-03

Loss 1.045e-04

SOBOLEV TRAINING

LOSS COMPARISON

TRAINING LOSS

EVALUATION LOSS

DISCUSSION