Artificial Intelligence (AI) for Dynamical and Safety-critical Systems

Presenter: Hao-Lun Howard Hsu, Duke University Nov. 05. 2022

Artificial Intelligence

- 1. Supervised Learning
 - a. Learn by using labelled data
 - b. Regression, Classification
- 2. Reinforcement Learning
 - a. Work on interacting with the environment
 - b. Decision-making
- 3. Unsupervised Learning
 - a. Train by using unlabelled data w/o any guidance
 - b. Clustering

Standard Reinforcement Learning (RL)

I. Dynamical & Safety-critical Systems

Deep brain stimulation (DBS) is an effective procedure to treat motor symptoms caused by nervous system disorders such as Parkinson's disease (PD)

- Commercial DBS: fixed parameters (e.g., pulse frequency and amplitude)
 - Do not consider the dynamics of the neural populations
 - Constant large parameters shorten battery life and result in side effects to patients
 - Tuning is time-consuming and requires expertise

- Closed-loop aDBS:
 - Reduce energy consumption and side effects
 - Still requires substantial efforts to configure the parameters

Computational Model in Open Gym Environment

Pure RL-based DBS:

- Goal: synchrony suppression under electrical stimulation
- Non-fixed parameters can achieve better stimulation efficacy and energy efficiency
- Data-driven approach for configuring parameters

Bonhoeffer-van der Pol model : $\left\{ \begin{array}{l} \dot{x} = x_k - \frac{x_k^3}{3} - y_k + I_k + \epsilon X + A \\ \dot{y} = 0.1(x_k - 0.8y_k + 0.7), \end{array} \right\}$

Reward in RL: $R(t) = exp^{(-(X(t)-\langle X_{state}\rangle)^2-\beta|A_t|)}$.

Category of RL from Sample Efficiency Perspective

Model bias: assume that learned dynamics model sufficiently resembles real environment

- no informative prior knowledge about the task
- only a few samples

Sample Inefficient

Probabilistic Inference for Learning Control (PILCO)

- 1. Model-based
- 2. Employ Gaussian Process to incorporate model uncertainty
 - a. reduce model bias
 - b. facilitate learning from scratch in a few trials with good performance in evaluation

Results in Synchrony Suppression Task

2. Dynamical & Safety-critical Systems

Six robotic control tasks, including navigation and manipulation

(a) Goal Navigation (b) Push Navigation (c) Survival Navigation (d) Fetch Push (e) Pen Manipulation (f) Egg Manipulation

Augment RL with Unsupervised Learning Model

Results in Robotic Control Tasks

Thanks for Listening