

Affine Springer Fibers and Level-Rank Duality

Minh-Tâm Quang Trinh

Yale University

- 1 Springer Theory
- 2 Deligne–Lusztig Theory
- 3 Level-Rank Duality

Mainly about joint work with Ting Xue:

arXiv:2311.17106

See also the extended abstract on my website, which we have submitted to FPSAC '25.

- 1 Springer Theor
- 2 Deligne–Lusztig Theory
- 3 Level–Rank Duality

Mainly about joint work with Ting Xue:

See also the extended abstract on my website, which we have submitted to FPSAC '25.

1 Springer Theory Work over C.

G connected reductive group

B Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

- Springer Theory Work over C.
- ${f G}$ connected reductive group
- ${f B}$ Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If $\gamma = {1 \choose z}$, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

Springer Theory Work over C.

 ${f G}$ connected reductive group

 ${f B}$ Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If
$$\gamma = {1 \choose z}$$
, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If $\gamma = {1 \choose z}$, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction d/m > 0 in lowest terms.

Let $\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in X_*(\mathbf{A})$, and let

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z^{1/2}) = \operatorname{Ad}(c^{d\rho^{\vee}})g(c^m z^{1/2}).$$

(Oblomkov–Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \}.$$

Elements of $\mathbf{g}^{\mathrm{rs}}_{d/m}$ are called homogeneous of slope $\frac{d}{m}.$

 $\mbox{\bf Example} \quad {\rm Take} \ {\bf B} \subseteq {\bf SL}_2 \ {\rm upper-triangular}.$

The preceding examples: slopes $\frac{1}{2}$, 2.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction d/m > 0 in lowest terms.

Let $\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in X_*(\mathbf{A})$, and let

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z^{1/2}) = \mathrm{Ad}(c^{d\rho^{\vee}})g(c^m z^{1/2}).$$

(Oblomkov–Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \}.$$

Elements of $\mathbf{g}_{d/m}^{rs}$ are called homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{B} \subseteq \mathbf{SL}_2$ upper-triangular.

The preceding examples: slopes $\frac{1}{2}$, 2.

Note that $\mathbf{g}_{d/m}^{\mathrm{rs}}$ is stable under $\mathbf{G}_0 := (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ}$.

(Oblomkov–Yun) Take ${\bf G}$ simply-connected, simple.

For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ with $\mathcal{F}l_{\gamma}$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^{i} \mathsf{y}^{j} \operatorname{gr}_{i}^{\mathsf{P}} \operatorname{H}_{\mathbf{C}^{\times}}^{j} (\mathcal{F} l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbf{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $\mathbf{C}W \ltimes \mathcal{D}(\mathbf{a})$, to be denoted $\frac{D_{d/m}^{\mathrm{rat}}}{d/m}$.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction d/m > 0 in lowest terms.

Let $\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in X_*(\mathbf{A})$, and let

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z^{1/2}) = \mathrm{Ad}(c^{d\rho^{\vee}})g(c^m z^{1/2}).$$

(Oblomkov–Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \}.$$

Elements of $\mathbf{g}_{d/m}^{\text{rs}}$ are called homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{B} \subseteq \mathbf{SL}_2$ upper-triangular.

The preceding examples: slopes $\frac{1}{2}$, 2.

3

Note that $\mathbf{g}_{d/m}^{\mathrm{rs}}$ is stable under $\mathbf{G}_0 := (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ}$.

(Oblomkov–Yun) Take ${f G}$ simply-connected, simple.

For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ with $\mathcal{F}l_{\gamma}$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^i \mathsf{y}^j \ \mathrm{gr}_i^\mathsf{P} \ \mathrm{H}^j_{\mathbf{C}^\times} (\mathcal{F} l_{\gamma})^{\pi_0(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbf{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $\mathbf{C}W\ltimes\mathcal{D}(\mathbf{a})$, to be denoted $\frac{D_{d/m}^{\mathrm{rat}}}{d/m}$.

Note that $\mathbf{g}_{d/m}^{\mathrm{rs}}$ is stable under $\mathbf{G}_0 := (\mathbf{G}(\!(z)\!)^{\mathbf{C}^{\times}})^{\circ}$.

(Oblomkov–Yun) Take G simply-connected, simple. For $\gamma \in g^{rs}_{d/m}$ with $\mathcal{F}l_{\gamma}$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^{i} \mathsf{y}^{j} \operatorname{gr}_{i}^{\mathsf{P}} \operatorname{H}_{\mathbf{C}^{\times}}^{j} (\mathcal{F} l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbb{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $CW \ltimes \mathcal{D}(\mathbf{a})$, to be denoted $\frac{D_{d/m}^{\mathrm{rat}}}{d/m}$.

$$\begin{array}{ll} D_{d/m}^{\mathrm{rat}} & \mathrm{U}\mathbf{g} \\ \\ \mathrm{PBW} & \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & \mathrm{U}\mathbf{n}_{-} \otimes \mathbf{C}[\mathbf{a}] \otimes \mathrm{U}\mathbf{n}_{+} \\ \\ \mathrm{Verma} & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ \\ \mathrm{simple} & L_{d/m}(\chi) & L(\lambda) \end{array}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea The monodromy of E_{γ} over a certain subset $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from $Deligne-Lusztig\ theory.$

$$\begin{array}{ccc} & D_{d/m}^{\mathrm{rat}} & \mathrm{U}\mathbf{g} \\ \\ \mathrm{PBW} & \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & \mathrm{U}\mathbf{n}_{-} \otimes \mathbf{C}[\mathbf{a}] \otimes \mathrm{U}\mathbf{n}_{+} \\ \\ \mathrm{Verma} & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ \\ \mathrm{simple} & L_{d/m}(\chi) & L(\lambda) \end{array}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea The monodromy of E_{γ} over a certain subset $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from $Deligne-Lusztig\ theory.$

Deligne–Lusztig studied geometry over finite fields. But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q and over $\mathbf{C}(\!(z)\!)$.

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}((z))}.$

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)), \gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_{q}}, \mathbf{T}_{\mathbf{F}_{q}}$.

$$\begin{array}{ccc} D_{d/m}^{\mathrm{rat}} & \mathrm{Ug} \\ \\ \mathrm{PBW} & \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & \mathrm{Un}_{-} \otimes \mathbf{C}[\mathbf{a}] \otimes \mathrm{Un}_{+} \\ \\ \mathrm{Verma} & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ \\ \mathrm{simple} & L_{d/m}(\chi) & L(\lambda) \end{array}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea The monodromy of E_{γ} over a certain subset $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from *Deligne–Lusztig theory*.

 ${\it Deligne-Lusztig\ studied\ geometry\ over\ finite\ fields.}$

But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of ${\bf G}$ are classified by Dynkin automorphisms in the same way over ${\bf F}_q$ and over ${\bf C}(\!(z)\!).$

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}(\!(z)\!)}.$

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)),\gamma}$.

These have corresponding forms $\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q}$.

Deligne–Lusztig studied geometry over finite fields
But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}((z))}|\mathbf{C}((z))).$$

Forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q and over $\mathbf{C}(\!(z)\!)$.

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}(\!(z)\!)}.$

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!),\gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q}$. 2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = G^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq G$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties $Y_{\mathbf{P}}^{\mathbf{G}}$ such that

Induction map $R_L^G: K_0(L) \to K_0(G)$ defined by

$$R_L^G(\lambda) = \sum_i (-1)^i \mathcal{H}_c^i(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda].$$

4

2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = \mathbf{G}^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subset \mathbf{G}$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties $Y_{\mathbf{P}}^{\mathbf{G}}$ such that

$$G o H_c^*(Y_{\mathbf{P}}^{\mathbf{G}}) o L.$$

Induction map $R_L^G: K_0(L) \to K_0(G)$ defined by

$$R_L^G(\lambda) = \sum_i (-1)^i \mathcal{H}_c^i(Y_{\mathbf{P}}^G)[\lambda].$$

(Broué-Malle) For m-regular maximal tori \mathbf{T} , a specific algebra $H_T^G(\mathbf{q})$ such that

$$H_T^G(\boldsymbol{\zeta_m}) = \bar{\mathbf{Q}}W_T^G, \quad \text{where } \boldsymbol{W_T^G} = N_G(T)/T.$$

They conjecture:

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{B}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T,\rho}(\rho \otimes \chi_{T,\rho,q}) .$$

Above, $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) 2 Deligne-Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = \mathbf{G}^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq \mathbf{G}$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties $Y_{\mathbf{P}}^{\mathbf{G}}$ such that

$$G o H_c^*(Y_{\mathbf{P}}^{\mathbf{G}}) o L.$$

Induction map $R_L^G: K_0(L) \to K_0(G)$ defined by

$$R_L^G(\lambda) = \sum_i (-1)^i \mathcal{H}_c^i(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda].$$

5

(Broué–Malle) For m-regular maximal tori \mathbf{T} , a specific algebra $H_T^G(\mathsf{q})$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G, \text{ where } W_T^G = N_G(T)/T.$$

They conjecture:

- $1 \quad H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{B}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T,\rho}(\rho \otimes \chi_{T,\rho,q}) .$$

Above,
$$\varepsilon_{T,\rho} \in \{\pm 1\}$$
 and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$.
(And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.)

(Broué–Malle) For m-regular maximal tori T, a specific algebra $H_T^G(q)$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{B}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in Irr(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T,\rho}(\rho \otimes \chi_{T,\rho,q}) .$$

Above, $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) Back to $\mathbf{C}((z))$. Recall that

$$\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \quad \leftrightarrow \quad \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!), \gamma}.$$

The F-stable tori **A** and **T** are 1- and m-regular. The braid group of W_T^G is $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}})$.

Conjecture (T-Xue)

- 1 The monodromy of E_{γ} factors through $H_T^G(1)$.
- 2 Defining $D_{d/m}^{\text{rat}}$ in terms of W_A^G ,

$$\begin{split} E_{\gamma} &= \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}) \end{split}$$

as a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule.

Back to $\mathbf{C}((z))$. Recall that

$$\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \quad \leftrightarrow \quad \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!), \gamma}.$$

The F-stable tori **A** and **T** are 1- and m-regular. The braid group of W_T^G is $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}})$.

Conjecture (T-Xue)

- 1 The monodromy of E_{γ} factors through $H_T^G(1)$.
- 2 Defining $D_{d/m}^{\text{rat}}$ in terms of W_A^G ,

$$\begin{split} E_{\gamma} &= \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}) \end{split}$$

as a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule.

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}((z))}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = ({}^{2}A_{2}, 2), (C_{2}, 2), (G_{2}, 3), (G_{2}, 2).$

True in even more cases, assuming a conjecture of OY.

Example Take $G_{\mathbf{C}((z))}$ split, m its Coxeter number.

 $\chi_{A,\rho}$ runs over "wedge" characters of W.

 $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$.

The virtual $D_{d/m}^{\text{rat}}$ -module is

$$\sum_{0 \le k \le m-1} (-1)^k [\Delta_{d/m}(\chi_{\wedge^k(\mathbf{a})})] = [L_{d/m}(1_W)],$$

using the BGG resolution of Berest–Etingof–Ginzburg.

Back to $\mathbb{C}((z))$. Recall that

$$\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \quad \leftrightarrow \quad \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!), \gamma}.$$

The F-stable tori ${\bf A}$ and ${\bf T}$ are 1- and m-regular.

The braid group of W_T^G is $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}})$.

Conjecture (T-Xue)

- 1 The monodromy of E_{γ} factors through $H_T^G(1)$.
- 2 Defining $D_{d/m}^{\text{rat}}$ in terms of W_A^G ,

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

as a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule.

Theorem (T–Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}((z))}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = ({}^{2}A_{2}, 2), (C_{2}, 2), (G_{2}, 3), (G_{2}, 2).$

True in even more cases, assuming a conjecture of OY.

Example Take $G_{\mathbf{C}((z))}$ split, m its Coxeter number.

 $\chi_{A,\rho}$ runs over "wedge" characters of W.

 $\chi_{T,\rho}$ runs over all characters of $W_T^G={f Z}/m{f Z}.$

The virtual $D_{d/m}^{\text{rat}}$ -module is

$$\sum_{0 \le k \le m-1} (-1)^k [\Delta_{d/m}(\chi_{\wedge^k(\mathbf{a})})] = [L_{d/m}(1_W)],$$

using the BGG resolution of Berest–Etingof–Ginzburg.

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}((z))}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = ({}^{2}A_{2}, 2), (C_{2}, 2), (G_{2}, 3), (G_{2}, 2).$

True in even more cases, assuming a conjecture of OY

Example Take $G_{C((z))}$ split, m its Coxeter number.

 $\chi_{A,\rho}$ runs over "wedge" characters of W.

 $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$.

The virtual $D_{d/m}^{\rm rat}$ -module is

$$\sum_{0 \le k \le m-1} (-1)^k [\Delta_{d/m}(\chi_{\wedge^k(\mathbf{a})})] = [L_{d/m}(1_W)],$$

using the BGG resolution of Berest–Etingof–Ginzburg

3 Level-Rank Duality Compare E_{γ} given by

(1)
$$\sum_{\rho} \varepsilon_{T,\rho} (\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes R_T^G(1_T)$ given by

(2)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

Under the Knizhnik-Zamolodchik functor

$$\mathsf{KZ} : \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m)),$$

which sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$ for all χ .

$$\mathbf{F}_q : (q,q) :: \mathbf{C}((z)) : (\zeta_m, \zeta_1).$$

The "reciprocity" in (2) led us to a new phenomenon in the Harish–Chandra theory of G.

B Level–Rank Duality Compare E_{γ} given by

(3)
$$\sum_{\rho} \varepsilon_{T,\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes R_T^G(1_T)$ given by

(4)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

Under the Knizhnik–Zamolodchik functor

$$\mathsf{KZ} : \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m)),$$

which sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$ for all χ .

$$\mathbf{F}_q : (q,q) :: \mathbf{C}((z)) : (\zeta_m, \zeta_1).$$

The "reciprocity" in (2) led us to a new phenomenon in the Harish–Chandra theory of **G**.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus \mathbf{T} .

(Broué–Malle–Michel) Fix a positive integer l.

- A Levi $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where
 - **S** is a torus with |S| a power of $\Phi_l(q)$.
- $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$ and μ .

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{\mathbf{L},\lambda},$$

where $Uch(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

3 Level-Rank Duality Compare E_{γ} given by

(3)
$$\sum_{\rho} \varepsilon_{T,\rho} (\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes R_T^G(1_T)$ given by

(4)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

Under the $\mathit{Knizhnik-Zamolodchik}$ functor

$$\mathsf{KZ}: \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m)),$$

which sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$ for all χ .

$$\mathbf{F}_q : (q,q) :: \mathbf{C}((z)) : (\zeta_m, \zeta_1).$$

The "reciprocity" in (2) led us to a new phenomenon in the Harish–Chandra theory of G.

7

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus \mathbf{T} .

(Broué–Malle–Michel) Fix a positive integer l.

- A Levi $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where
 - **S** is a torus with |S| a power of $\Phi_l(q)$.
- $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$ and μ .

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{\mathbf{L},\lambda},$$

where $Uch(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus T.

(Broué-Malle-Michel) Fix a positive integer l.

• A Levi $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where

S is a torus with |S| a power of $\Phi_l(q)$.

• $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$ and μ .

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{L,\lambda},$$

where $Uch(G)_{L,\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l = 1, these are classical *Harish-Chandra series*.

Generalizing our discussion for maximal tori: Broué–Malle define a Hecke algebra $H_{L_{\lambda}}^{G}(\mathbf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{L,\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

•

Generalizing our discussion for maximal tori:

Broué–Malle define a Hecke algebra $H_{L,\lambda}^G(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{L,\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

If $m \neq l$, then $H_{L,\lambda}^G(\zeta_m)$ need not be semisimple. Via the $decomposition\ map$

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \operatorname{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into $(H_{L,\lambda}^G,\zeta_m)$ -blocks.

Conjecture (T–Xue) $\operatorname{Fix} l, m$.

Fix an *l*-cuspidal (\mathbf{L}, λ) and *m*-cuspidal (\mathbf{M}, μ) .

1 The set

$$\begin{split} \{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ resp. \quad \{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \end{split}$$

is a union of $(H_{L,\lambda}^G, \zeta_m)$ -, resp. $(H_{M,\mu}^G, \zeta_l)$ -blocks.

2 The ρ -indexing induces a matching on blocks.

Generalizing our discussion for maximal tori:

Broué–Malle define a Hecke algebra $H_{L,\lambda}^G(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{L,\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

8

If $m \neq l$, then $H_{L,\lambda}^G(\zeta_m)$ need not be semisimple. Via the decomposition map

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \mathrm{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $Irr(W_{L,\lambda}^G)$ into $(H_{L,\lambda}^G, \zeta_m)$ -blocks.

Conjecture (T–Xue) Fix l, m.

Fix an *l*-cuspidal (\mathbf{L}, λ) and *m*-cuspidal (\mathbf{M}, μ) .

1 The set

$$\begin{split} \{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ resp. \quad \{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \end{split}$$

is a union of $(H_{L,\lambda}^G,\zeta_m)\text{--},\ resp.\ (H_{M,\mu}^G,\zeta_l)\text{-blocks}.$

2 The ρ -indexing induces a matching on blocks.

If $m \neq l$, then $H_{L,\lambda}^G(\zeta_m)$ need not be semisimple. Via the $decomposition\ map$

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \mathrm{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into $(H_{L,\lambda}^G,\zeta_m)$ -blocks.

Conjecture (T–Xue) Fix l, m.

Fix an l-cuspidal (\mathbb{L}, λ) and m-cuspidal (\mathbb{M}, μ) .

1 The se

$$\begin{split} \{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ resp. \quad \{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \end{split}$$

is a union of $(H_{L,\lambda}^G,\zeta_m)$ -, resp. $(H_{M,\mu}^G,\zeta_l)$ -blocks.

2 The ρ -indexing induces a matching on blocks.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

We have $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\operatorname{\mathsf{Rep}}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$$
 and $\operatorname{\mathsf{Rep}}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level $Fock\ spaces$

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \overset{\sim}{\longleftarrow} \Lambda_{\mathsf{q}}^{s} \overset{\sim}{\longrightarrow} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above,
$$\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$$

Use the *level-rank duality* studied by Frenkel, Uglov, Chuang–Miyachi, Rouquier–Shan–Varagnolo–Vasserot, Loseu, Webster.

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T-Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

9

We have $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\mathsf{Rep}(H_{L,\lambda}^{\mathrm{GL}_n}(\zeta_m))$$
 and $\mathsf{Rep}(H_{M\mu}^{\mathrm{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathbf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathbf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathbf{q}}^{\vec{r}}.$$

Above,
$$\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$$

Use the *level-rank duality* studied by Frenkel, Uglov, Chuang–Miyachi, Rouquier–Shan–Varagnolo–Vasserot, Loseu, Webster.

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

We have $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\mathsf{Rep}(H_{L,\lambda}^{\mathrm{GL}_n}(\zeta_m))$$
 and $\mathsf{Rep}(H_{M\mu}^{\mathrm{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathbf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathbf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathbf{q}}^{\vec{r}}.$$

Above,
$$\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$$

Use the *level-rank duality* studied by Frenkel, Uglov, Chuang–Miyachi, Rouquier–Shan–Varagnolo–Vasserot, Loseu, Webster.

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Thank you for listening.