MTH420 PROBLEM SET 4

- (1) Let F be a field and V a vector space over F. Let S be a subset of V. Prove that V has a basis \mathcal{B} such that $S \subset \mathcal{B}$. (Note: the space V is not assumed to be finite dimensional. If V is finite dimensional, we proved the existence of \mathcal{B} in class, so the job here is really to handle the infinite dimensional case. My recommendation would be to adapt the argument we used to prove that V has a basis.)
- (2) Let F be a field and let X be a set with n elements. View $F^X = \{f : X \to F\}$ as an F-vector space in the usual way: so that, for each $f, g \in F^X$ and $c \in F$, the element cf + g is, by definition, the function which sends each $x \in X$ to cf(x) + g(x). What is the dimension of F^X ? Prove that your answer is correct.
- (3) Let us view $\mathbb{C}^{2\times 2}$ as a vector space over the field \mathbb{R} . (This means, we consider scalar multiplication only by elements of \mathbb{R} , even though the entries are in \mathbb{C} .) Find a basis, and the dimension.
- (4) If A is a matrix with complex entries, \overline{A} is defined to be the matrix obtained by conjugating each entry of A, and A^t is the transpose. For example,

$$\begin{bmatrix} 1+2i & 3-i \\ 2 & 2+3i \end{bmatrix} = \begin{bmatrix} 1-2i & 3+i \\ 2 & 2-3i \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 1+2i & 3-i \\ 2 & 2+3i \end{bmatrix}^t = \begin{bmatrix} 1+2i & 2 \\ 3-i & 2+3i \end{bmatrix}.$$

Continue viewing $\mathbb{C}^{2\times 2}$ as a vector space over \mathbb{R} . Prove that $\{A\in\mathbb{C}^{2\times 2}:\overline{A}^t=A\}$ is a subspace, and find a basis for it.

- (5) Now let's switch back to viewing $\mathbb{C}^{2\times 2}$ as a 4-dimensional vector space over \mathbb{C} . Prove that $\{A \in \mathbb{C}^{2\times 2} : \overline{A}^t = A\}$ is **not** a subspace.
- (6) Find three elements of \mathbb{R}^3 which are linearly dependent, even though any two of them are linearly independent.
- (7) Prove that

$$\left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-2 \end{bmatrix} \right\}$$

is a basis of $\mathbb{R}^{4\times 1}$.

(8) This problem is trivial once the next one is completed, but might be a useful warm-up if the next one looks too hard at first. Find c_1, c_2, c_3, c_4 such that

$$c_{1} \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix} + c_{3} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + c_{4} \begin{bmatrix} 0 \\ 2 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}.$$

(9) Find c_1, c_2, c_3, c_4 such that

$$c_1 \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ 2 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

Date: February 20, 2025.