

《EnWG解决方案》第14a条适用对象与控制权限:适用于容量超过4.2千瓦的可控消费设备,如电动汽车充电桩、热泵、电 加热器等。配电系统运营商在电网高负荷或潜在过载情况下,可临时限制这些设备的功率输出,将其降低到至少4.2千瓦.

如何实现《EnWG解决方案》第14a条规定

VDE的论坛网络技术/网络运营组织(VDE FNN)已定义了控制功能的实现方式。电网运营商与可控设备之间的信号连接通 过智能测量系统(iMSys)和控制箱完成。控制箱将控制信号传输至可控设备,以降低能耗。

控制箱为可控装置提供两种不同的通信信号。一个是继电器接口,另一个是带有EEBUS协议的数字接口。作为储能系统的 制造商,BLUETTI已实现了通过继电器接口,满足EnWG第14a条合规性的要求。

1. **EP2000**

1.1. EP2000 逆变器端口

-(17)-(15)(18) 1 -(19) 4 -(21) 7 9 -(22) (10)(11) (12) (13) (14)左侧 右侧

表1-1

序号	端口名称	Decisive	序号	端口名称	Decisive Voltage
		Voltage			Classification
		Classification			
1	接地(PV边	Not applicable	12	BAT-(电池负极)	DVC-C
	框)				
2	PV1+输入	DVC-C	13	BAT+(电池正极)	DVC-C
3	PV1-输入	DVC-C	14	AC Output	DVC-C
4	PV2+输入	DVC-C	15	PV 直流开关	Not applicable
5	PV2-输入	DVC-C	16	防水透气孔	Not applicable
6	PV3+输入	DVC-C	17	COM2 通讯端口	DVC-A
7	PV3-输入	DVC-C	18	DRMs 端口	DVC-A
8	PV4+输入	DVC-C	19	COM3 通讯端口	DVC-A
9	PV4-输入	DVC-C	20	U盘端口	DVC-A
10	接地(HV800)	Not applicable	21	电网 (GRID)	DVC-C
11	COM1 通讯端口	DVC-A	22	负载(BACKUP)	DVC-C
			23	系统接地	Not applicable

1.2. DRMs 逻辑接口和干节点接口

表1-2

PIN	信号分类	接口定义	接口参数
1	GEN COM	单刀双掷继电器公共端	外接直流不能超过 30Vdc/3A
2	GEN NC	单刀双掷继电器常闭输出端	(柴油发电机点火预留)
3	GEN NO	单刀双掷继电器常开输出端	
4	EXT OUT	外部输出 I/O	信号输出
5	INS _GND	参考地	输出 12Vdc、DRM0 输入/
			I/0 参考地
6	INS_12V	输出 12Vdc	对外输出 12V
7	EXT_IN	DRM0 输入	信号输入,低有效(接信号
			地)
8	INS_GND	参考地	输出 12Vdc、DRM0 输入/
			I/0 参考地

1.3. 连接 DRMs 线缆

- Step 1: 选取"M12公头插头"制作DRMs连接线, 先将插头的尾壳旋转拆下来, 如图7-10-1。
- Step 2: 将自备线缆穿过尾壳,用剥线钳将线缆的绝缘层剥除合适的长度,按照引脚定义,采用小型十字螺丝 刀将线缆接线完成,如图7-10-2/7-10-3。
- Step 3: 将尾壳的定位标识与座子上的定位槽对齐,然后组装旋紧,最后利用尾部的螺母将线缆旋紧,如图7-10-4。

Step 4:选取"M12母头插头"制作COM3连接线,步骤可以参照DRMs连接线的制作方法,但需注意两者引脚定义的区别,如图7-10-5/7-10-6/7-10-7/7-10-8。

Step 5:将"DRMs连接线"连接到EP2000的对应接口,插接M12插头时,为了与插座定位槽匹配,需将定位标识朝向操作人员。另外用户可自备网线,然后利用配件中的RJ45接头压接所需的网线。如图7-10-9。

1.4. 安装工具

准备安装和电气连接所需的工具。

表1-4

序号	图片	描述	功能
1		(0.079in/2mm) 十字螺丝刀	拆卸、安装 DRMs/COM3 端口的锁 线螺丝

1.5. EMS 端口

1.6 EMS控制器介绍

- 可实现最多3台逆变器的本地并机和远程管理。
- 实现最多3台逆变器自动协同调度管理:负载均衡、电池均衡、最大化利用光伏电能。

PCS1 PCS2 PCS3 多功能端口

图5-1

序 号	名称	说明
1 - 3	PCS1-3端口	接EP2000逆变器COM2端口或其他设备,最多可连接并控制3台逆变器
4	多功能接线端口	用于第三方电表RS485通讯、充电桩 RS485通讯、外部ATS转换开关的控制 等;外接第三方电表具体型号需要与逆 变器侧的要求一致
5	挂架	用于EMS控制器现场安装、壁挂使用; 出厂时,挂架已与EMS控制器组装,安 装EMS控制器前需要先拆除挂架
6	报警指示灯/HOME键	绿色常亮:正常工作 黄色常亮:告警(轻微) 红色常亮:告警(严重) 熄灭:断电关闭状态 正常工作状态下,轻触进入显示屏主页
7	显示触摸屏	用于显示EMS控制器工作状态、能量管理设置等,用户可通过触摸切换菜单栏进行操作
8	天线	用于内部WiFi和蓝牙的信号收发

PCS1-3端口定义

PCS端子	功能	功能说明	
1	GND	EMS控制器供电输入参考地	
2	9-15VDC	EMS控制器供电输入9-15VDC	
3	CANH	用于EMS控制器与PCS、BMS通讯	
4	CANL	/ii 1 = = 12.4 iii 3. 0 = 1 = = 2.11	
5	PCS_CANH	用于PCS并机连线	
6	PCS_CANL	一 用了下00开机足线	
7	PCS_485A+	用于PCS并机连线	
8	PCS_485B-	7,1, 1 : 2 : 2 7 7 1 2 2	

注意:

PCS1-3端口为RJ45网口,端口不能接入以太网等设备,否则可能导致设备损坏。

1.7EMS多功能接线端口定义

多功能接线端口	功能	功能说明	备注
1	RS485-B2	充电桩RS485通讯	连接充电桩RS485-B-
2	RS485-A2		连接充电桩RS485-A+
3	RS485-B1	电表RS485通讯	连接电网电表和 AC PV 电表RS485-B-
4	RS485-A1	- EACHO IOOM M	连接电网电表和 AC PV 电表RS485-A+
5	GND	I/O参考地	用于输出9-15VDC参考地、DRMs输入参 考地
6	EXT_IN	DRMs输入	信号输入(悬空/接I/O参考地),低有效 (接I/O参考地为低)
7	9-15VDC	输出9-15VDC/0.2A	用于ATS转换开关控制供电
8	GEN_NO	单刀双掷继电器常开输 出端	用于ATS转换开关的I/O控制

注意:

多功能接线端口为用户可接触,允许接入此端口的充电桩RS485通讯、电表RS485通讯、ATS转换开关控制等信号,需满足加强绝缘要求。

1.4 EMS控制器连接和使用

8芯端子线接法:

步骤1:选好合适的8芯线缆(推荐UL2238,24AWG,8芯),根据实际现场接线长度选好线长。步骤2:拧开尾盖,如下图:

步骤3: 尾盖中插入8芯线, 拧开压线螺丝, 依据下表中8芯端子线序, 插入芯线, 拧紧螺丝, 如下图:

8芯端子	功能	功能说明	备注	8 芯端子 线序对照示意图
1	RS485-B2	充电桩RS485通讯	连接充电桩RS485-B-	
2	RS485-A2	为它位(NO+00000)	连接充电桩RS485-A+	
3	RS485-B1		连接电网电表和ACPV电表	
	110 100 B1	电表RS485通讯	RS485-B-	
4	RS485-A1		连接电网电表和ACPV电表	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
,	110 100 711		RS485-A+	gg g g g g g g g g g g g g g g g g g g
5	GND	I/O参考地	用于输出9-15VDC参考	\$ 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	5,,,5	209 318	地、DRMs输入参考地	6 5 4
			信号输入(悬空/接I/O参考	A DO
6	EXT_IN	DRMs输入	地),低有效(接I/O参考	govação
			地为低)	
7	9-15VDC	th 0.45 /D0/0.04	用于ATS转换开关控制供	
'	3-10 VDC	输 9-15VDC/0.2A	电	
8	GEN NO	单刀双掷继电器常开	用于ATS转换开关的I/O控	
0	GEN_NO	输出端	制	

2. EP600

2.1. EP600 端口

表2-1

表2-2

序号	图片	描述	数 量
1		DRMs 端口连接线	1
2		DRMs/CT 转接线(长度 1.5m)	2

2.2. DRMs 逻辑接口和干节点接口

逻辑接口适用于以下安规标准: 澳洲 (AS/NZS 4777), 欧洲通用 (EN50549), 德国 (VDE-AR-N 4105)。

表2-3

PIN	信号分类	接口定义	接口参数
1	GEN COM	单刀双掷继电器公共端	外接直流不能超过 30Vdc/3A (柴油发电机点火预留)
2	GEN NC	单刀双掷继电器常闭输出 端	
3	GEN NO	单刀双掷继电器常开输出 端	
4	INS GND	I/O 输出地	信号输入/输出地
5	EXT IN	DRMs 输入	信号输入,低有效(接信号地)
6	EXT OUT	I/O 输出	信号输出,低有效

2.3. 连接 DRMs 线缆

技术要求

- 1. 符合RoHS环保要求;
- 2. 线身字体清晰, 无破皮等不良;
- 3. 上锡表面应光顺, 线芯不发散;
- 4. 电源线吊重3kg, 摇摆2500次插头及连接处无松脱现象 性能良好
- 5. 端子可承受拉力_4. 5kg_不松脱

P1	接线示意图	P2
1 - 2 - 3 - 4 -	红色线 黑色线 绿色线 白色线	1 2 3
5 - 6 -	黄色线 橙色线	5

序号	规格描述	用量	单位
P1	M19,53-100615-01,自锁6芯插孔公头黄色锁环	1	PC
P2	M20×2-6PIN, 901-3009-106防水连接器IP68 需满足UL/TUV认证	1	PC
3	2464 22AWG*6C 80℃ 300V VW-1 (电芯外被抗UV)	1	PC
4	白色线标管,线标内容: DRMs	2	PC
5	国赛, 护套管型端子 EVN0510	6	PC

操作步骤:

Step1: 取DRMs配件连接线,将连接器转接头未接线的一端逆时针方向取出;

Step2: 将延长线穿入接头外壳,对应的信号线装入连接器脚位;

Step3: 使用十螺丝刀将连接器的螺丝紧固;

Step4: 连接线螺丝紧固后6个脚位的连接线往后轻轻拉扯判断连接线是否已紧固;

Step5: 将接头外壳及螺帽顺时针方向拧紧。

3. EP760

3.1. EP760 端口

表3-1

3.2. DRMs 端口

逻辑接口适用于以下安规标准:澳洲(AS/NZS 4777),欧洲通用(EN50549),德国(VDE-AR-N 4105)。

表3-2

PIN	信号分类	接口定义	接口参数
1	GEN COM	单刀双掷继电器公共端	外接直流不能超过 30Vdc/3A (柴油发电机点火预留)
2	GEN NC	单刀双掷继电器常闭输出 端	
3	GEN NO	单刀双掷继电器常开输出 端	
4	INS GND	I/O 输出地	信号输入/输出地
5	EXT IN	DRMs 输入	信号输入,低有效(接信号地)
6	EXT OUT	I/O 输出	信号输出,低有效