

Lyapunov-based Nonlinear Programming (LBNLP)

Myeongseok Ryu * Sesun You † Kyunghwan Choi *

March 31, 2025 Version 0.0

Abstract

This research aims to

Contents

1	Introduction	1
	1.1 Background	1
	1.2 Research Objectives	1
	Notations and Preliminaries	
3	Conclusion	2

1 Introduction

1.1 Background

1.2 Research Objectives

The main objectives of this research are as follows:

- Mathematical stability analysis of the controller and estimator with deep neural networks using the contraction theory.
- Development of the controller and estimator with deep neural networks using the contraction theory.

2 Notations and Preliminaries

The following notations are used throughout this document:

- \bullet := denotes defined as.
- $(\cdot)^{\top}$ denotes the transpose of a matrix or a vector.
- $\mathbf{x} := [x_i]_{i \in \{1,\dots,n\}} \in \mathbb{R}^n$ denotes the state vector.
- $\mathbf{A} := [a_{ij}]_{i,j \in \{1,\dots,n\}} \in \mathbb{R}^{n \times n}$ denotes a matrix.
- $\lambda_i(\mathbf{A}), i \in \{\max, \min\}$ denotes the maximum and minimum singular value of \mathbf{A} , respectively.
- I_n denotes the identity matrix of size n and $\mathbf{0}_{n \times m}$ denotes the zero matrix of size $n \times m$.
- sym denotes the symmetric part of a matrix, i.e., $\operatorname{sym}(\mathbf{A}) := \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\top})$ (see, [1]).

^{*}Myeongseok Ryu and Kyunghwan Choi are with the Department of Mechanical and Robotics Engineering, Gwangju Institute of Science and Technology, 61005 Gwangju, Republic of Korea dding_98@gm.gist.ac.kr, khchoi@gist.ac.kr

[†]Sesun You is with 000, Keimyung University, 000, 000, Republic of Korea example@mail.com

We introduce the following lemmas.

Lemma 2.1 (Comparison Lemma). Suppose that a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the following inequality:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) \le -af(t) + b, \quad \forall t \in \mathbb{R}_{\ge 0},$$

where a, b > 0. Then, the following inequality holds:

$$f(t) \le -af(0)e^{-at} + \frac{b}{a}(1 - e^{-at}), \quad \forall t \in \mathbb{R}_{\ge 0}$$

and remains in a compact set $f(t) \in \{\|f(t)\| \mid \|f(0)\| \le \frac{b}{a}\}.$

Proof. This is a simple special case of the comparison lemma [2, pp. 102-103]. See [2, pp. 659-660]. \Box

3 Conclusion

References

- [1] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, "Neural stochastic contraction metrics for learning-based control and estimation," *IEEE Control Systems Letters*, vol. 5, no. 5, pp. 1825–1830, 2021.
- [2] H. K. Khalil, *Nonlinear systems; 3rd ed.* Upper Saddle River, NJ: Prentice-Hall, 2002. The book can be consulted by contacting: PH-AID: Wallet, Lionel.