Convex Optimization M2

Lecture 8

Applications

Outline

- Geometrical problems
- Approximation problems
- Combinatorial optimization

Geometrical problems

Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid \mathcal{E} s.t. $C \subseteq \mathcal{E}$

- parametrize \mathcal{E} as $\mathcal{E} = \{v \mid ||Av + b||_2 \leq 1\}$; w.l.o.g. assume $A \in \mathbf{S}_{++}^n$
- $\mathbf{vol}\,\mathcal{E}$ is proportional to $\det A^{-1}$; to compute minimum volume ellipsoid,

minimize (over
$$A$$
, b) $\log \det A^{-1}$ subject to $\sup_{v \in C} \|Av + b\|_2 \le 1$

convex, but evaluating the constraint can be hard (for general C)

finite set
$$C = \{x_1, \ldots, x_m\}$$
:

minimize (over
$$A$$
, b) $\log \det A^{-1}$ subject to $||Ax_i + b||_2 \le 1, \quad i = 1, \dots, m$

also gives Löwner-John ellipsoid for polyhedron $\mathbf{Co}\{x_1,\ldots,x_m\}$

Maximum volume inscribed ellipsoid

maximum volume ellipsoid \mathcal{E} inside a convex set $C \subseteq \mathbb{R}^n$

- parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$; w.l.o.g. assume $B \in \mathbf{S}_{++}^n$
- $\mathbf{vol}\,\mathcal{E}$ is proportional to $\det B$; can compute \mathcal{E} by solving

maximize
$$\log \det B$$
 subject to $\sup_{\|u\|_2 \le 1} I_C(Bu+d) \le 0$

(where
$$I_C(x) = 0$$
 for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$)

convex, but evaluating the constraint can be hard (for general C)

polyhedron
$$\{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$$
:

maximize
$$\log \det B$$

subject to $||Ba_i||_2 + a_i^T d \leq b_i, \quad i = 1, \dots, m$

(constraint follows from
$$\sup_{\|u\|_2 \le 1} a_i^T (Bu + d) = \|Ba_i\|_2 + a_i^T d$$
)

Efficiency of ellipsoidal approximations

 $C \subseteq \mathbb{R}^n$ convex, bounded, with nonempty interior

- $lue{}$ Löwner-John ellipsoid, shrunk by a factor n, lies inside C
- ullet maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in \mathbb{R}^2)

factor n can be improved to \sqrt{n} if C is symmetric

Centering

some possible definitions of 'center' of a convex set C:

- center of largest inscribed ball ('Chebyshev center')for polyhedron, can be computed via linear programming (page ??)
- center of maximum volume inscribed ellipsoid (page 6)

MVE center is invariant under affine coordinate transformations

Analytic center of a set inequalities

the analytic center of set of convex inequalities and linear equations

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Fx = g$$

is defined as the optimal point of

minimize
$$-\sum_{i=1}^{m} \log(-f_i(x))$$
 subject to $Fx = g$

- more easily computed than MVE or Chebyshev center (see later)
- not just a property of the feasible set: two sets of inequalities can describe the same set, but have different analytic centers

analytic center of linear inequalities $a_i^T x \leq b_i$, $i = 1, \ldots, m$

 $x_{\rm ac}$ is minimizer of

$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

inner and outer ellipsoids from analytic center:

$$\mathcal{E}_{\text{inner}} \subseteq \{x \mid a_i^T x \leq b_i, i = 1, \dots, m\} \subseteq \mathcal{E}_{\text{outer}}$$

where

$$\mathcal{E}_{\text{inner}} = \{x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}} \le 1\}$$

$$\mathcal{E}_{\text{outer}} = \{x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}}) \le m(m - 1)\}$$

Linear discrimination

separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane:

$$a^{T}x_{i} + b_{i} > 0, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b_{i} < 0, \quad i = 1, \dots, M$$

homogeneous in a, b, hence equivalent to

$$a^T x_i + b_i \ge 1, \quad i = 1, \dots, N, \qquad a^T y_i + b_i \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in a, b

Robust linear discrimination

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

 $\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$

is
$$\mathbf{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$$

to separate two sets of points by maximum margin,

minimize
$$(1/2)||a||_2$$

subject to $a^T x_i + b \ge 1, \quad i = 1, ..., N$
 $a^T y_i + b \le -1, \quad i = 1, ..., M$ (1)

(after squaring objective) a QP in a, b

Lagrange dual of maximum margin separation problem

maximize
$$\mathbf{1}^T \lambda + \mathbf{1}^T \mu$$

subject to $2 \left\| \sum_{i=1}^N \lambda_i x_i - \sum_{i=1}^M \mu_i y_i \right\|_2 \le 1$
 $\mathbf{1}^T \lambda = \mathbf{1}^T \mu, \quad \lambda \succeq 0, \quad \mu \succeq 0$ (2)

from duality, optimal value is inverse of maximum margin of separation

interpretation

- change variables to $\theta_i = \lambda_i/\mathbf{1}^T\lambda$, $\gamma_i = \mu_i/\mathbf{1}^T\mu$, $t = 1/(\mathbf{1}^T\lambda + \mathbf{1}^T\mu)$
- invert objective to minimize $1/(\mathbf{1}^T \lambda + \mathbf{1}^T \mu) = t$

minimize
$$t$$
 subject to
$$\left\| \sum_{i=1}^N \theta_i x_i - \sum_{i=1}^M \gamma_i y_i \right\|_2 \leq t$$

$$\theta \succeq 0, \quad \mathbf{1}^T \theta = 1, \quad \gamma \succeq 0, \quad \mathbf{1}^T \gamma = 1$$

optimal value is distance between convex hulls

Approximate linear separation of non-separable sets

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u + \mathbf{1}^T v \\ \text{subject to} & a^T x_i + b \geq 1 - u_i, \quad i = 1, \dots, N \\ & a^T y_i + b \leq -1 + v_i, \quad i = 1, \dots, M \\ & u \succeq 0, \quad v \succeq 0 \end{array}$$

- \blacksquare an LP in a, b, u, v
- **at optimum**, $u_i = \max\{0, 1 a^T x_i b\}$, $v_i = \max\{0, 1 + a^T y_i + b\}$
- can be interpreted as a heuristic for minimizing #misclassified points

Support vector classifier

minimize
$$\begin{aligned} \|a\|_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v) \\ \text{subject to} \quad a^T x_i + b &\geq 1 - u_i, \quad i = 1, \dots, N \\ a^T y_i + b &\leq -1 + v_i, \quad i = 1, \dots, M \\ u &\succeq 0, \quad v \succeq 0 \end{aligned}$$

produces point on trade-off curve between inverse of margin $2/\|a\|_2$ and classification error, measured by total slack $\mathbf{1}^T u + \mathbf{1}^T v$

same example as previous page, with $\gamma=0.1$:

Support Vector Machines: Duality

Given m data points $x_i \in \mathbb{R}^n$ with labels $y_i \in \{-1, 1\}$.

The maximum margin classification problem can be written

minimize
$$\frac{1}{2} ||w||_2 + C\mathbf{1}^T z$$

subject to $y_i(w^T x_i) \ge 1 - z_i, \quad i = 1, \dots, m$
 $z > 0$

in the variables $w, z \in \mathbb{R}^n$, with parameter C > 0.

- We can set $w=(w,\mathbf{1})$ and increase the problem dimension by 1. So we can assume w.l.o.g. b=0 in the classifier w^Tx_i+b .
- The Lagrangian is written

$$L(w, z, \alpha) = \frac{1}{2} ||w||_2 + C\mathbf{1}^T z + \sum_{i=1}^m \alpha_i (1 - z_i - y_i w^T x_i)$$

with dual variable $\alpha \in \mathbb{R}_+^m$.

Support Vector Machines: Duality

The Lagrangian can be rewritten

$$L(w, z, \alpha) = \frac{1}{2} \left(\left\| w - \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 - \left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 \right) + (C\mathbf{1} - \alpha)^T z + \mathbf{1}^T \alpha$$

with dual variable $\alpha \in \mathbb{R}^n_+$.

lacktriangle Minimizing in (w,z) we form the dual problem

maximize
$$-\frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|_2^2 + \mathbf{1}^T \alpha$$
 subject to
$$0 \le \alpha \le C$$

At the optimum, we must have

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 and $\alpha_i = C$ if $z_i > 0$

(this is the representer theorem).

Support Vector Machines: the kernel trick

If we write X the data matrix with columns x_i , the dual can be rewritten

$$\begin{array}{ll} \text{maximize} & -\frac{1}{2}\alpha^T\operatorname{\mathbf{diag}}(y)X^TX\operatorname{\mathbf{diag}}(y)\alpha+\mathbf{1}^T\alpha\\ \text{subject to} & 0\leq\alpha\leq C \end{array}$$

■ This means that the data only appears in the dual through the gram matrix

$$K = X^T X$$

which is called the kernel matrix.

- In particular, the original dimension n does not appear in the dual. SVM complexity only grows with the number of samples.
- In particular, the x_i are allowed to be infinite dimensional.
- The only requirement on K is that $K \succeq 0$.

Approximation problems

Norm approximation

minimize
$$||Ax - b||$$

 $(A \in \mathbb{R}^{m \times n} \text{ with } m \geq n, \|\cdot\| \text{ is a norm on } \mathbb{R}^m)$

interpretations of solution $x^* = \operatorname{argmin}_x ||Ax - b||$:

- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error given y=b, best guess of x is x^{\star}

• **optimal design**: x are design variables (input), Ax is result (output) x^* is design that best approximates desired result b

examples

■ least-squares approximation $(\|\cdot\|_2)$: solution satisfies normal equations

$$A^T A x = A^T b$$

$$(x^* = (A^T A)^{-1} A^T b \text{ if } \mathbf{Rank} A = n)$$

■ Chebyshev approximation $(\|\cdot\|_{\infty})$: can be solved as an LP

minimize
$$t$$
 subject to $-t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1}$

sum of absolute residuals approximation $(\|\cdot\|_1)$: can be solved as an LP

Penalty function approximation

minimize
$$\phi(r_1) + \cdots + \phi(r_m)$$

subject to $r = Ax - b$

 $(A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \to \mathbb{R} \text{ is a convex penalty function})$

examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width a:

$$\phi(u) = \max\{0, |u| - a\}$$

■ log-barrier with limit a:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

example (m = 100, n = 30): histogram of residuals for penalties

$$\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)$$

shape of penalty function has large effect on distribution of residuals

Huber penalty function (with parameter M)

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M \\ M(2|u| - M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for M=1
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i , y_i (circles) using quadratic (dashed) and Huber (solid) penalty

Regularized approximation

minimize (w.r.t.
$$\mathbb{R}^2_+$$
) $(\|Ax - b\|, \|x\|)$

 $A \in \mathbb{R}^{m \times n}$, norms on \mathbb{R}^m and \mathbb{R}^n can be different

interpretation: find good approximation $Ax \approx b$ with small x

- **estimation:** linear measurement model y = Ax + v, with prior knowledge that $\|x\|$ is small
- **optimal design**: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x

Scalarized problem

minimize
$$||Ax - b|| + \gamma ||x||$$

- $lue{}$ solution for $\gamma>0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$

Tikhonov regularization

minimize
$$||Ax - b||_2^2 + \delta ||x||_2^2$$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

solution
$$x^* = (A^T A + \delta I)^{-1} A^T b$$

Signal reconstruction

minimize (w.r.t.
$$\mathbb{R}^2_+$$
) $(\|\hat{x} - x_{\text{cor}}\|_2, \phi(\hat{x}))$

- $x \in \mathbb{R}^n$ is unknown signal
- $x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi:\mathbb{R}^n \to \mathbb{R}$ is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \qquad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$

total variation reconstruction example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\rm cor}\|_2$ versus $\phi_{\rm quad}(\hat{x})$

quadratic smoothing smooths out noise and sharp transitions in signal

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{tv}}(\hat{x})$

total variation smoothing preserves sharp transitions in signal

Robust approximation

minimize $\|Ax - b\|$ with uncertain A two approaches:

- **stochastic**: assume A is random, minimize $\mathbf{E} \|Ax b\|$
- worst-case: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax b\|$

tractable only in special cases (certain norms $\|\cdot\|$, distributions, sets \mathcal{A})

example: $A(u) = A_0 + uA_1$

- \mathbf{z} x_{nom} minimizes $||A_0x b||_2^2$
- $\mathbf{z}_{\mathrm{stoch}}$ minimizes $\mathbf{E} \|A(u)x b\|_2^2$ with u uniform on [-1,1]
- x_{wc} minimizes $\sup_{-1 \le u \le 1} ||A(u)x b||_2^2$

figure shows $r(u) = ||A(u)x - b||_2$

Robust approximation

stochastic robust LS with $A=\bar{A}+U$, U random, $\mathbf{E}\,U=0$, $\mathbf{E}\,U^TU=P$ minimize $\|\mathbf{E}\,\|(\bar{A}+U)x-b\|_2^2$

explicit expression for objective:

$$\mathbf{E} \|Ax - b\|_{2}^{2} = \mathbf{E} \|\bar{A}x - b + Ux\|_{2}^{2}$$

$$= \|\bar{A}x - b\|_{2}^{2} + \mathbf{E} x^{T} U^{T} Ux$$

$$= \|\bar{A}x - b\|_{2}^{2} + x^{T} Px$$

hence, robust LS problem is equivalent to LS problem

minimize
$$\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$$

• for $P = \delta I$, get Tikhonov regularized problem

minimize
$$\|\bar{A}x - b\|_2^2 + \delta \|x\|_2^2$$

Robust approximation

worst-case robust LS with $\mathcal{A}=\{\bar{A}+u_1A_1+\cdots+u_pA_p\mid \|u\|_2\leq 1\}$ minimize $\sup_{A\in\mathcal{A}}\|Ax-b\|_2^2=\sup_{\|u\|_2\leq 1}\|P(x)u+q(x)\|_2^2$ where $P(x)=\lceil A_1x\quad A_2x\quad \cdots\quad A_px \rceil$, $q(x)=\bar{A}x-b$

from page ??, strong duality holds between the following problems

$$\begin{array}{lll} \text{maximize} & \|Pu+q\|_2^2 & \text{minimize} & t+\lambda \\ \text{subject to} & \|u\|_2^2 \leq 1 & & \left[\begin{array}{ccc} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{array} \right] \succeq 0 \end{array}$$

hence, robust LS problem is equivalent to SDP

$$\begin{array}{lll} \text{minimize} & t+\lambda \\ \text{subject to} & \begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \succeq 0 \end{array}$$

example: histogram of residuals

$$r(u) = \|(A_0 + u_1 A_1 + u_2 A_2)x - b\|_2$$

with u uniformly distributed on unit disk, for three values of x

- \mathbf{z}_{ls} minimizes $||A_0x b||_2$
- x_{tik} minimizes $||A_0x b||_2^2 + ||x||_2^2$ (Tikhonov solution)
- x_{wc} minimizes $\sup_{\|u\|_2 \le 1} \|(A_0 + u_1 A_1 + u_2 A_2)x b\|_2$

Robust LP

We now only require the constraints to be satisfied with a given probability:

minimize
$$c^T x$$

subject to $\mathbf{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

coefficient vectors a_i IID normal, $\mathcal{N}(\overline{a}_i, \Sigma_i)$ and η is required reliability

- For a fixed variable x, the $a_i^T x$ are $\mathcal{N}(\overline{a}_i^T x, x^T \Sigma_i x)$
- So for $\eta = 50\%$, stochastic LP reduces to LP:

minimize
$$c^T x$$
 subject to $\overline{a}_i^T x \leq b_i, \quad i = 1, \dots, m$

■ What about other values of η : $\eta = 10\%$? $\eta = 90\%$?

Robust LP

Because the parameters $a_i^T x$ are $\mathcal{N}(\overline{a}_i^T x, x^T \Sigma_i x)$, we have:

$$\mathbf{Prob}(a_i^T x \le b_i) \ge \eta \quad \Longleftrightarrow \quad \bar{a}_i^T x + \phi^{-1}(\eta) \|\Sigma^{1/2} x\| \le b_i$$

where ϕ^{-1} is the inverse CDF of the normal distribution

■ When $\eta \geq 50\%$, meaning , the robust problem is a **SOCP**:

minimize
$$c^T x$$
 subject to $\bar{a}_i^T x + \phi(\eta) \|\Sigma^{1/2} x\| \leq b_i, \quad i = 1, \dots, m$

- This time, the robust program is more complex than the original LP
- But the trade-off between robustness and optimality is in general very favorable

Hint

$$\{x \mid \mathbf{Prob}(a_i^T x \leq b_i) \geq \eta, \ i = 1, \dots, m\}$$

An example from finance.

- Variance and covariance estimators are notoriously noisy
- Mean variance setting: Together with returns, they are the fundamental parameters
- Here too, robustness is the key to a realistic implementation
- Simple one period model here, assets worth 1 today and p at the end of the period, with:

$$ar{p} = \mathbf{E}[p]$$
 and $\Sigma = \mathbf{E}[(p - ar{p})^T(p - ar{p})]$

■ The terminal value of a portfolio with coefficients x is a random variable with mean \bar{p}^Tx and variance $x^T\Sigma x$

■ We set a target return for the portfolio:

$$X = \{x_1 + \ldots + x_n = B \quad \text{and} \quad \bar{p}^T x \ge r\}$$

- For individual investors, short-selling is also prohibited $x_i \geq 0$
- The classical mean variance analysis then tries to find the portfolio with minimum variance (efficient frontier):

minimize
$$x^T \Sigma x$$
 subject to $x \in X$

For a given covariance matrix Σ , this is a convex QP

Here, we suppose that we only have a partial knowledge of the covariance matrix:

$$\Sigma$$
 such that
$$\begin{cases} \Sigma_{ij} \geq 0 & \text{if } (i,j) \in I_+ \\ \Sigma_{ij} \leq 0 & \text{if } (i,j) \in I_- \\ \Sigma_{ij} = \Sigma_{ij}^0 & \text{if } (i,j) \in I_0 \end{cases}$$

This would mean for example:

$$\Sigma = \begin{bmatrix} 0.2 & + & + & \pm \\ + & 0.1 & - & - \\ + & - & 0.3 & + \\ \pm & - & + & 0.1 \end{bmatrix}$$

■ For a given portfolio, we can compute the worst-case risk

$$\begin{array}{ll} \text{minimize} & -\mathbf{Tr}(\Sigma x x^T) \\ \text{subject to} & \Sigma_{ij} \geq 0 & \text{if } (i,j) \in I_+ \\ & \Sigma_{ij} \leq 0 & \text{if } (i,j) \in I_- \\ & \Sigma_{ij} = \Sigma_{ij}^0 & \text{if } (i,j) \in I_0 \\ & \Sigma \succeq 0 \end{array}$$

- This is a **semidefinite program** and can be solved efficiently.
- We want a bit more than this. . .

■ We want to find the portfolio with minimum worst-case risk

$$\min_{x \in X} \max_{\Sigma \in S} \mathbf{Tr}(\Sigma x x^T)$$

- Robust version of the portfolio optimization problem, accounting for the uncertainty in the covariance specification
- This is a min max problem. Not entirely clear how to solve it. . .

Let's start from the worst-case risk problem:

$$\begin{array}{lll} \text{minimize} & -\mathbf{Tr}(\Sigma x x^T) \\ \text{subject to} & \Sigma_{ij} \geq 0 & \text{if } (i,j) \in I_+ \\ & \Sigma_{ij} \leq 0 & \text{if } (i,j) \in I_- \\ & \Sigma_{ij} = \Sigma_{ij}^0 & \text{if } (i,j) \in I_0 \\ & \Sigma \succeq 0 \\ \end{array}$$

Its Lagrangian (setting $\Sigma_{ij}^0 = 0$ outside of I_0) is given by:

$$L(X, X, \Sigma) = -x^{T} \Sigma x - \mathbf{Tr}(\Sigma X) + \sum_{ij} P_{ij} (\Sigma_{ij} - \Sigma_{ij}^{0})$$

with $P \in \mathcal{P}$ which is:

$$P_{ij} \leq 0$$
 if $(i, j) \in I_+$
 $P_{ij} \geq 0$ if $(i, j) \in I_-$
 P_{ij} free if $(i, j) \in I_0$

Minimizing the Lagrangian in Σ yields

$$L(X, X, \Sigma) = -x^{T} \Sigma x - \mathbf{Tr}(\Sigma X) + \sum_{ij} P_{ij} (\Sigma_{ij} - \Sigma_{ij}^{0})$$

this is $-\infty$ except when

$$xx^T + X = P$$

where its value is

$$L(\Sigma, X, P) = -\operatorname{Tr}(P\Sigma^{0})$$

The dual function is then

$$g(X,P) = \{ -\mathbf{Tr}(P\Sigma^0) \text{ if } xx^T + X = P, X \succeq 0, P \in \mathcal{P} \}$$

• We can eliminate X to form the dual of the worst-case risk problem:

$$\begin{array}{ll} \text{maximize} & -\operatorname{Tr}(P\Sigma^0) \\ \text{subjectn to} & P\succeq xx^T \\ & P_{ij} \leq 0 & \text{if } (i,j) \in I_+ \\ & P_{ij} \geq 0 & \text{if } (i,j) \in I_- \\ & P_{ij} \text{ free} & \text{if } (i,j) \in I_0 \end{array}$$

■ This means that the original minimum worst-case risk problem is:

minimize
$$\mathbf{Tr}(P\Sigma^0)$$
 subject to $P\succeq xx^T$
$$P_{ij} \leq 0 \quad \text{if } (i,j) \in I_+$$

$$P_{ij} \geq 0 \quad \text{if } (i,j) \in I_-$$

$$P_{ij} \text{ free} \quad \text{if } (i,j) \in I_0$$

in the variables x and P

We have (Schur complement)

$$P \succeq xx^T \quad \Longleftrightarrow \quad \left[\begin{array}{cc} P & x \\ x^T & 1 \end{array} \right] \succeq 0$$

So the minimum worst-case risk problem is an SDP

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr}(P\Sigma^0) \\ \text{subjectn to} & P_{ij} \leq 0 & \text{if } (i,j) \in I_+ \\ & P_{ij} \geq 0 & \text{if } (i,j) \in I_- \\ & P_{ij} \text{ free} & \text{if } (i,j) \in I_0 \\ & \bar{p}^T x \geq r, \ \mathbf{1}^T x = B \\ & \begin{bmatrix} P & x \\ x^T & 1 \end{bmatrix} \succeq 0 \end{array}$$

in the variables x and P

Combinatorial problems

Nonconvex Problems

Nonconvexity makes problems **essentially untractable**...

- sometimes the result of bad problem formulation
- however, often arises because of some natural limitation: fixed transaction costs, binary communications, ...

What can be done?... we will use convex optimization results to:

- find bounds on the optimal value, by relaxation
- get "good" feasible points via randomization

Nonconvex Problems

Focus here on a specific class of problems, general QCQPs, written

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

- if all P_i are p.s.d., this is a convex problem...
- $lue{}$ so here, we suppose at least one P_i is not p.s.d.

Example: Boolean Least Squares

Boolean least-squares problem:

minimize
$$\|Ax - b\|^2$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- basic problem in digital communications
- lacktriangle could check all 2^n possible values of x . . .
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

Example: Partitioning Problem

Two-way partitioning problem described in §5.1.4 of the textbook

minimize
$$x^T W x$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

where $W \in \mathbf{S}^n$, with $W_{ii} = 0$.

lacktriangle a feasible x corresponds to the partition

$$\{1,\ldots,n\} = \{i \mid x_i = -1\} \cup \{i \mid x_i = 1\}$$

- the matrix coefficient W_{ij} can be interpreted as the cost of having the elements i and j in the same partition.
- the objective is to find the partition with least total cost
- classic particular instance: MAXCUT $(W_{ij} \ge 0)$

Convex Relaxation

the original QCQP

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

can be rewritten

minimize
$$\begin{aligned} \mathbf{Tr}(XP_0) + q_0^T x + r_0 \\ \text{subject to} \quad \mathbf{Tr}(XP_i) + q_i^T x + r_i &\leq 0, \quad i = 1, \dots, m \\ X \succeq xx^T \\ \mathbf{Rank}(X) &= 1 \end{aligned}$$

the only nonconvex constraint is now $\mathbf{Rank}(X) = 1...$

Convex Relaxation: Semidefinite Relaxation

- we can directly relax this last constraint, i.e. drop the nonconvex $\mathbf{Rank}(X) = 1$ to keep only $X \succeq xx^T$
- the resulting program gives a lower bound on the optimal value

minimize
$$\begin{aligned} \mathbf{Tr}(XP_0) + q_0^T x + r_0 \\ \text{subject to} \quad \mathbf{Tr}(XP_i) + q_i^T x + r_i &\leq 0, \quad i = 1, \dots, m \\ X \succeq xx^T \end{aligned}$$

Tricky. . . Can be improved?

Lagrangian Relaxation

Start from the original problem

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

form the Lagrangian

$$L(x,\lambda) = x^{T} \left(P_{0} + \sum_{i=1}^{m} \lambda_{i} P_{i} \right) x + \left(q_{0} + \sum_{i=1}^{m} \lambda_{i} q_{i} \right)^{T} x + r_{0} + \sum_{i=1}^{m} \lambda_{i} r_{i}$$

in the variables $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m_+$...

Lagrangian Relaxation: Lagrangian

the dual can be computed explicitly as an (unconstrained) quadratic minimization problem

$$\inf_{x \in \mathbb{R}} x^T P x + q^T x + r = \left\{ \begin{array}{l} r - \frac{1}{4} q^T P^\dagger q, & \text{if } P \succeq 0 \text{ and } q \in \mathcal{R}(P) \\ -\infty, & \text{otherwise} \end{array} \right.$$

SO

$$\inf_{x} L(x,\lambda) = -\frac{1}{4} \left(q_0 + \sum_{i=1}^{m} \lambda_i q_i \right)^T \left(P_0 + \sum_{i=1}^{m} \lambda_i P_i \right)^{\dagger} \left(q_0 + \sum_{i=1}^{m} \lambda_i q_i \right)$$
$$+ \sum_{i=1}^{m} \lambda_i r_i + r_0$$

where we recognize a Schur complement...

Lagrangian Relaxation: Dual

the dual of the QCQP is then given by

$$\begin{array}{ll} \text{maximize} & \gamma + \sum_{i=1}^{m} \lambda_i r_i + r_0 \\ \text{subject to} & \begin{bmatrix} (P_0 + \sum_{i=1}^{m} \lambda_i P_i) & (q_0 + \sum_{i=1}^{m} \lambda_i q_i)/2 \\ (q_0 + \sum_{i=1}^{m} \lambda_i q_i)^T/2 & -\gamma \end{bmatrix} \succeq 0 \\ & \lambda_i \geq 0, \quad i = 1, \dots, m \end{array}$$

which is a semidefinite program in the variable $\lambda \in \mathbb{R}^m$ and can be solved efficiently

Let us look at what happens when we use semidefinite duality to compute the dual of this last program (bidual of the original problem)...

Lagrangian Relaxation: Bidual

Taking the dual again, we get an SDP is given by

minimize
$$\begin{aligned} \mathbf{Tr}(XP_0) + q_0^T x + r_0 \\ \text{subject to} \quad \mathbf{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m \\ \begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0 \end{aligned}$$

in the variables $X \in \mathbf{S}^n$ and $x \in \mathbb{R}^n$

- this is a convexification of the original program
- we have recovered the semidefinite relaxation in an "automatic" way

Lagrangian Relaxation: Boolean LS

An example: boolean lest squares

Using this technique, we can relax the original Boolean LS problem

minimize
$$\|Ax - b\|^2$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

and relax it as an SDP

minimize
$$\mathbf{Tr}(AX) + 2b^T Ax + b^T b$$

subject to $\begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0$
 $X_{ii} = 1, \quad i = 1, \dots, n,$

this program then produces a lower bound on the optimal value of the original Boolean LS program

Lagrangian Relaxation: Partitioning

the partitioning problem defined above is

minimize
$$x^T W x$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

the variable x disappears from the relaxation, which becomes:

minimize
$$\mathbf{Tr}(WX)$$
 subject to $X \succeq 0$ $X_{ii} = 1, \quad i = 1, \dots, n$

Feasible points?

- Lagrangian relaxations only provide lower bounds on the optimal value
- how can we compute good feasible points?
- can we measure how suboptimal this lower bound is?

Randomization

The original QCQP

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

was relaxed into

minimize
$$\begin{aligned} & \mathbf{Tr}(XP_0) + q_0^Tx + r_0 \\ & \text{subject to} & \mathbf{Tr}(XP_i) + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m \\ & \begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0 \end{aligned}$$

- the last (Schur complement) constraint is equivalent to $X xx^T \succeq 0$
- hence, if x and X are the solution to the relaxed program, then $X xx^T$ is a covariance matrix...

Randomization

For the problem

minimize
$$\begin{aligned} \mathbf{Tr}(XP_0) + q_0^T x + r_0 \\ \text{subject to} \quad \mathbf{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m \\ \begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0 \end{aligned}$$

- pick x as a Gaussian variable with $x \sim \mathcal{N}(x, X xx^T)$
- $lue{x}$ will solve the QCQP "on average" over this distribution

in other words

minimize
$$\mathbf{E}[x^T P_0 x + q_0^T x + r_0]$$

subject to $\mathbf{E}[x^T P_i x + q_i^T x + r_i] \leq 0, \quad i = 1, \dots, m$

a good feasible point can then be obtained by sampling enough x. . .

Bounds on suboptimality

- In certain particular cases, it is possible to get a hard bound on the gap between the optimal value and the relaxation result
- A classic example is that of the MAXCUT bound

The MAXCUT problem is a particular case of the partitioning problem

maximize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

with $W \succeq 0$, its Lagrangian relaxation is computed as

maximize
$$\mathbf{Tr}(WX)$$
 subject to $X \succeq 0$ $X_{ii} = 1, \quad i = 1, \dots, n$

Bounds on suboptimality: MAXCUT

Let X be a solution to this program

- We look for a feasible point by sampling a normal distribution $\mathcal{N}(0,X)$
- We convert each sample point x to a feasible point by rounding it to the nearest value in $\{-1,1\}$, i.e. taking

$$\hat{x} = \mathbf{sgn}(x)$$

Crucially, when \hat{x} is sampled using that procedure, the expected value of the objective $\mathbf{E}[\hat{x}^T W x]$ can be computed explicitly:

$$\mathbf{E}[\hat{x}^T W x] = \frac{2}{\pi} \sum_{i,j=1}^n W_{ij} \arcsin(X_{ij}) = \frac{2}{\pi} \mathbf{Tr}(W \arcsin(X))$$

Bounds on suboptimality: MAXCUT

- We are guaranteed to reach this expected value $\frac{2}{\pi} \operatorname{Tr}(W \arcsin(X))$ after sampling a few (feasible) points \hat{x}
- $lue{}$ Hence we know that the optimal value OPT of the MAXCUT problem satisfies

$$\frac{2}{\pi} \operatorname{Tr}(W \operatorname{arcsin}(X)) \le OPT \le \operatorname{Tr}(WX)$$

Furthermore, with

$$X \leq \arcsin(X)$$
,

we can simplify (and relax) the above expression to get

$$\frac{2}{\pi} \operatorname{Tr}(WX) \le OPT \le \operatorname{Tr}(WX)$$

the procedure detailed above guarantees that we can find a feasible point at most $2/\pi$ suboptimal

Numerical Example: Boolean LS

Boolean least-squares problem

minimize
$$\|Ax - b\|^2$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

with

$$||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

= $\mathbf{Tr} A^T A X - 2b^T A^T x + b^T b$

where $X = xx^T$, hence can express BLS as

minimize
$$\operatorname{Tr} A^T A X - 2b^T A x + b^T b$$

subject to $X_{ii} = 1, \quad X \succeq x x^T, \quad \operatorname{rank}(X) = 1$

. . . still a very hard problem

SDP relaxation for BLS

using Lagrangian relaxation, remember:

$$X \succeq xx^T \iff \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$$

we obtained the **SDP relaxation** (with variables X, x)

minimize
$$\operatorname{Tr} A^T A X - 2b^T A^T x + b^T b$$
 subject to $X_{ii} = 1, \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

- optimal value of SDP gives lower bound for BLS
- if optimal matrix is rank one, we're done

Interpretation via randomization

- can think of variables X, x in SDP relaxation as defining a normal distribution $z \sim \mathcal{N}(x, X xx^T)$, with $\mathbf{E} z_i^2 = 1$
- SDP objective is $\mathbf{E} \|Az b\|^2$

suggests randomized method for BLS:

- find X^{opt} , x^{opt} , optimal for SDP relaxation
- lacksquare generate z from $\mathcal{N}(x^{\mathrm{opt}}, X^{\mathrm{opt}} x^{\mathrm{opt}}x^{\mathrm{opt}T})$
- take $x = \mathbf{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Example

- randomly chosen) parameters $A \in \mathbb{R}^{150 \times 100}$, $b \in \mathbb{R}^{150}$
- $x \in \mathbb{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize ||Ax - b|| s.t. $||x||^2 = n$, then round yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

- best of 20 samples: 3.1% over SDP bound
- ullet best of 1000 samples: 2.6% over SDP bound

Example: Partitioning Problem

Example: Partitioning Problem

we go back now to the two-way partitioning problem considered in exercise 5.39 of the textbook:

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

the Lagrange dual of this problem is given by the SDP:

Example: Partitioning

the dual of this SDP is the new SDP

minimize
$$\operatorname{Tr} WX$$
 subject to $X \succeq 0$ $X_{ii} = 1, \quad i = 1, \dots, n$

the solution X^{opt} gives a lower bound on the optimal value p^{opt} of the partitioning problem

- $lue{}$ solve this SDP to find X^{opt} (and the bound p^{opt})
- ullet let v denote an eigenvector of X^{opt} associated with its largest eigenvalue
- now let

$$\hat{x} = \mathbf{sgn}(v)$$

the vector \hat{x} is our guess for a good partition

Partitioning: Randomization

- we generate independent samples $x^{(1)}, \ldots, x^{(K)}$ from a normal distribution with zero mean and covariance X^{opt}
- for each sample we consider the heuristic approximate solution

$$\hat{x}^{(k)} = \mathbf{sgn}(x^{(k)})$$

we then take the one with lowest cost

We compare the performance of these methods on a randomly chosen problem

- $lue{}$ the optimal SDP lower bound p^{opt} is equal to -1641
- $lue{}$ the simple sign(x) heuristic gives a partition with total cost -1280

exactly what the optimal value is, we can't say; all we can say at this point is that it is between -1641 and -1280

Partitioning: Numerical Example

histogram of the objective obtained by the randomized heuristic, over 1000 samples: the minimum value reached here is -1328

Partitioning: Numerical Example

we're not sure what the optimal cost is, but now we know it's between $-1641\ \mathrm{and}\ -1328$