CAAM 336 · DIFFERENTIAL EQUATIONS

Problem Set 3

Posted Friday 5 September 2008. Due Friday 12 September 2008, 5pm.

1. [18 points]

Recall that a function $f: \mathcal{V} \to \mathcal{W}$ that maps a vector space \mathcal{V} to a vector space \mathcal{W} is a *linear operator* provided (1) f(u+v) = f(u) + f(v) for all u, v in \mathcal{V} , and (2) $f(\alpha v) = \alpha f(v)$ for all $\alpha \in \mathbf{R}$ and $v \in \mathcal{V}$.

Demonstrate whether each of the following functions is a linear operator.

(Show that both properties hold, or give an example showing that one of the properties must fail.)

- (a) $f: \mathbf{R}^n \to \mathbf{R}^m$, $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for a fixed matrix $\mathbf{A} \in \mathbf{R}^{\mathbf{m} \times \mathbf{n}}$.
- (b) $f: \mathbf{R}^n \to \mathbf{R}^m$, $f(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{b}$ for a fixed matrix $\mathbf{A} \in \mathbf{R}^{\mathbf{m} \times \mathbf{n}}$ and fixed vector $\mathbf{b} \in \mathbf{R}^{\mathbf{m}}$.
- (c) $f: \mathbf{R}^2 \to \mathbf{R}, f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}.$
- (d) $f: \mathbf{R}^{n \times n} \to \mathbf{R}^{n \times n}$, $f(\mathbf{X}) = \mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}$ for fixed matrices $\mathbf{A}, \mathbf{B} \in \mathbf{R}^{n \times n}$.
- (e) $L: C^1[0,1] \to C[0,1], Lu = u \frac{\mathrm{d}u}{\mathrm{d}x}$.
- (f) $L: C^2[0,1] \to C[0,1], Lu = \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} \sin(x) \frac{\mathrm{d}u}{\mathrm{d}x} + \cos(x)u.$

2. [20 points]

(a) Suppose that $f: \mathbf{R}^2 \to \mathbf{R}^2$ is linear. Prove there exists a matrix $\mathbf{A} \in \mathbf{R}^{2 \times 2}$ such that f is given by $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$. Hint: Each $\mathbf{u} = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \in \mathbf{R}^2$ can be written as $\mathbf{u} = \mathbf{u} \cdot \mathbf{u}$, where

by
$$f(\mathbf{u}) = \mathbf{A}\mathbf{u}$$
. Hint: Each $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbf{R}^2$ can be written as $\mathbf{u} = \mathbf{u_1}\mathbf{e_1} + \mathbf{u_2}\mathbf{e_2}$, where

$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Since f is linear, we have $f(\mathbf{u}) = \mathbf{u_1} \mathbf{f}(\mathbf{e_1}) + \mathbf{u_2} \mathbf{f}(\mathbf{e_2})$. Your formula for the matrix \mathbf{A} may include the vectors $f(\mathbf{e_1})$ and $f(\mathbf{e_2})$.

(b) Now we want to generalize the result in part (a): Show that if $f: \mathbf{R}^n \to \mathbf{R}^m$ is linear, then there exists a matrix $\mathbf{A} \in \mathbf{R}^{\mathbf{m} \times \mathbf{n}}$ such that $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for all $\mathbf{u} \in \mathbf{R}^{\mathbf{n}}$.

(Thus any linear function that maps \mathbf{R}^n to \mathbf{R}^m can be written as a matrix-vector product.)

3. [20 points]

Determine whether each of the following functions (\cdot, \cdot) determines an inner product on the vector space \mathcal{V} . If not, demonstrate which property (or properties) of the inner product are violated.

(a)
$$\mathcal{V} = C^1[0, 1], (u, v) = \int_0^1 u'(x)v'(x) dx$$
 (b) $\mathcal{V} = C[0, 1]$: $(u, v) = \int_0^1 |u(x)||v(x)| dx$

(c)
$$\mathcal{V} = C[0,1]$$
: $(u,v) = \int_0^1 u(x)v(x)e^{-x} dx$ (d) $\mathcal{V} = C^1[0,1]$: $(u,v) = \int_0^1 u(x)v'(x) dx$

4. [10 points]

Suppose V is a vector space with an associated inner product. The angle θ between u and $v \in V$ is defined via the equation

$$(u,v) = ||u|| ||v|| \cos \theta.$$

Let $\mathcal{V} = C[0,1]$ and $(u,v) = \int_0^1 u(x)v(x) dx$. Compute the angle θ between $u(x) = x^n$ and $v(x) = x^m$ for nonnegative integers m and n.

please turn over

5. [32 points + 8 bonus]

Suppose $N \ge 1$ is an integer and define h = 1/(N+1) and $x_j = jh$ for j = 0, ..., N+1.

We can approximate the differential equation

$$\frac{d^2}{dx^2}u = f(x), \quad x \in (0,1),$$
$$u(0) = u(1) = 0$$

by the matrix equation

$$\frac{1}{h^2} \begin{bmatrix}
-2 & 1 & & & \\
1 & -2 & 1 & & \\ & 1 & -2 & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & -2
\end{bmatrix}
\begin{bmatrix}
u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N
\end{bmatrix} = \begin{bmatrix}
f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{N-1}) \\ f(x_N)
\end{bmatrix},$$

where $u_i \approx u(x_i)$. (Entries of the matrix that are not specified are zero.)

(a) Suppose that $f(x) = 25\pi^2 \cos(5\pi x)$.

Compute and plot the approximate solutions obtained when N = 8, 16, 32, 64, 128.

You may superimpose these on one plot. To solve the linear systems, you may use MATLAB's 'backslash' command: $u = A \setminus f$.

For each value of N compute the maximum error $|u_j - u(x_j)|$, given that the true solution is

$$u(x) = 1 - 2x - \cos(5\pi x).$$

Plot this error using a loglog plot with error on the vertical axis and N on the horizontal axis.

(b) Explain what adjustments to the right hand side of the matrix equation are necessary to accommodate the inhomogeneous Dirichlet boundary conditions

$$u(0) = 1, \quad u(1) = 2.$$

Compute and plot solutions for N = 8, 32, 128.

(c) This part of the problem is an optional bonus worth 8 extra points: Now suppose that we have mixed boundary conditions

$$u(0) = 1, \quad \frac{du}{dx}(1) = -5.$$

The matrix equation will now have the form

$$\frac{1}{h^2} \begin{bmatrix}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\ & 1 & -2 & \ddots & & \\ & & \ddots & \ddots & 1 & 0 \\ & & & 1 & -2 & * \\ & & & * & * & *
\end{bmatrix} \begin{bmatrix}
u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \\ u_{N+1}
\end{bmatrix} = \begin{bmatrix}
f(x_1) - * \\ f(x_2) \\ \vdots \\ f(x_{N-1}) \\ f(x_N) \\ *
\end{bmatrix}.$$

Specify what the entries marked by * should be, keeping in mind the approximation

$$\frac{du}{dx}(1) \approx \frac{u_{N+1} - u_N}{h}.$$

Compute and plot solutions for N = 8, 32, 128.