

Energy Efficient Resource Management and Task Scheduling for IoT Services in Edge Computing Paradigm

School of Computer Science
Beijing University of Posts and Telecommunications
Beijing, China
sylee1416@gmail.com

Outline

- Background
- System Model
- Scheduling Scheme
- Real Data Based Evaluation
- Conclusion and Future Work

- Internet of Things (IoT)
 - Connect interrelated devices over the network
 - Cooperate with each other to reach common goals
 - Wide application in several aspects
 - ✓Internet of Vehicles
 - ✓ Smart home
 - ✓ Transportation
 - **√**...

- Edge Computing
 - Novel computing paradigm for IoT service implementation
 - Computation overload distributedly balanced

Communication delay reduced

- Energy Efficiency Issues in Edge Computing
 - Resource management according to dynamic workload
 - Task assignment between layers

Our contribution

- Dynamic Formulation for IoT Services Under the Edge Computing Paradigm
- Quantitative Analyses for Performance and Energy Costs of IoT Services
- Joint Decision Process of Resource Management and Task Scheduling with High Efficiency
- Empirical Experiments Based on Real-World Data

Outline

- Background
- System Model
- Scheduling Scheme
- Real Data Based Evaluation
- Conclusion and Future Work

Overall Architecture

- \bullet Sensor Hub $H_i^{\varepsilon_j}$
 - M/M/1 Queue Model with Batch Service
 - Average Queue Length $E[q_i] = \frac{\rho_i}{1-\rho_i}$
 - Average Response Time $T_i^{RS} = \frac{b_i \cdot E[q_i]}{\lambda_i}$
 - Power Consumption $P_i^{\varepsilon_j} = \sigma_i \cdot \left(p_i^{(static)} + \rho_i \cdot p_i^{(dyn)} \right)$

\bullet Sensor Hub $H_i^{\varepsilon_j}$

Batch Arrival Rate

- M/M/1 Queue Model with Batch Service
- Average Queue Length $E[q_i] = \frac{\rho_i}{1-\rho_i}$
- Average Response Time $T_i^{RS} = \frac{b_i \cdot E[q_i]}{\lambda_i}$ $\hat{\lambda}_i^{(\varepsilon_j)} = \frac{\lambda_i^{(\varepsilon_j)}}{b_i^{(\varepsilon_j)}}$
- Power Consumption $P_i^{\varepsilon_j} = \sigma_i \cdot \left(p_i^{(static)} + \rho_i \cdot p_i^{(dyn)} \right)$

- \star Edge (ε_j) and Cloud (c)Server Cluster
 - M/M/n Queue Model
 - Average Queue Length

$$E[q_{j}] = n_{j}\rho_{j} + \frac{\rho_{j}(n_{j}\rho_{j})^{n_{j}}}{n_{j}!(1-\rho_{j})^{2}} \left[\sum_{k=0}^{n_{j}-1} \frac{(n_{j}\rho_{j})^{k}}{k!} + \frac{(n_{j}\rho_{j})^{n_{j}}}{n_{j}!(1-\rho_{j})} \right]^{-1}$$

• Average Response Time $T_j^{RS} = \frac{E[q_j]}{\lambda_j}$

- \bullet Edge and Cloud Server Cluster ε_j
 - M/M/n Queue Model
 - Average Queue Length $E[q_j] = n_j \rho_j + \frac{\rho_j (n_j \rho_j)^{n_j}}{n_j! (1-\rho_j)^2} \left[\sum_{k=0}^{n_j-1} \frac{(n_j \rho_j)^k}{k!} + \frac{(n_j \rho_j)^{n_j}}{n_j! (1-\rho_j)} \right]^{-1}$
 - Average Response Time $T_j^{RS} = \frac{E[q_j]}{\lambda_j}$
 - Power Consumption $P_j = \sum_{k=1}^{N_j} \left(\sigma_k \cdot \left(p_k^{(static)} + \rho_k \cdot p_k^{(dyn)} \right) \right)$

- Cross-Layer Transmission
 - Bypass Transmission Probability $\beta_j (1 \le j \le M)$
 - Power Consumption $T_j^{TR} = D_j \cdot t$
 - Communication Delay $P_j^{TR} = p^{(dyn)} \cdot \lambda_j \cdot \beta_j + p^{(static)}$

Overall Architecture

Arrival Rate λ_c

Central Cloud Cluster c

Arrival Rate λ_i

- Edge Clusters $\varepsilon_i (1 \le j \le M)$
- Sensor Hubs Subordinating to ε_i $H_i^{\varepsilon_j} (1 \le i \le I_i)$

$$H_i^{\varepsilon_j} \left(1 \le i \le I_j \right)$$

Batch Arrival Rate

❖Overall Architecture

- Central Cloud Cluster c
- Edge Clusters $\varepsilon_j (1 \le j \le M)$
- Sensor Hubs Subordinating to ε_j $H_i^{\varepsilon_j} (1 \le i \le I_j)$

$$\lambda_{j} = (1 - \beta_{j}) \cdot \sum_{i=1}^{I_{j}} \hat{\lambda}_{i}^{(\varepsilon_{j})}$$

$$\lambda_{c} = \beta_{j} \cdot \sum_{i=1}^{I_{j}} \hat{\lambda}_{i}^{(\varepsilon_{j})}$$

Total System Power Consumption

$$P^{sys} = \sum_{j=1}^{M} \left(P_j + P_j^{TR} \right) + P_c$$

Total System Response Time

$$T^{\text{sys}} = \sum_{j=1}^{M} \lambda_j \cdot \left(\frac{q_j \cdot \left(1 - \beta_j\right)}{n_j \cdot \mu_j} + \beta_j \cdot \left(T_j^{TR} + T_c\right) \right) / \sum_{j=1}^{M} \lambda_j$$

$$\lambda_{j} = \left(1 - \beta_{j}\right) \cdot \sum_{i=1}^{I_{j}} \hat{\lambda}_{i}^{(\varepsilon_{j})}$$

$$\lambda_{c} = \beta_{j} \cdot \sum_{i=1}^{I_{j}} \hat{\lambda}_{i}^{(\varepsilon_{j})}$$

Total System Power Consumption

$$P^{sys} = \sum_{j=1}^{M} \left(P_j + P_j^{TR} \right) + P_c$$

Total System Response Time

Stationary Response
Time at the Cloud Site

$$T^{ ext{ iny S}} = \sum_{j=1}^{M} \lambda_j \cdot \left(rac{q_j \cdot \left(1 - eta_j
ight)}{n_j \cdot \mu_j} + eta_j \cdot \left(T_j^{TR} + T_c
ight)
ight) / \sum_{j=1}^{M} \lambda_j \cdot \left(T_j^{TR} + T_c
ight)$$

$$\lambda_j = \left(1 - \beta_j\right) \cdot \sum_{i=1}^{I_j} \hat{\lambda}_i^{(\varepsilon_j)}$$

$$\lambda_c = \beta_j \cdot \sum_{i=1}^{I_j} \hat{\lambda}_i^{(\varepsilon_j)}$$

Outline

- Background
- System Model
- Scheduling Scheme
- Real Data Based Evaluation
- Conclusion and Future Work

Reward Model

Total System Power Consumption

$$P^{ extit{ iny SYS}} = \sum_{j=1}^M \Bigl(P_j + P_j^{ extit{TR}}\Bigr) + P_{ ext{c}}$$

Total System Response Time

Stationary Response Time at the Cloud Site

$$T^{\text{sys}} = \sum_{j=1}^{M} \lambda_{j} \cdot \left(\frac{q_{j} \cdot \left(1 - \beta_{j}\right)}{n_{j} \cdot \mu_{j}} + \beta_{j} \cdot \left(T_{j}^{TR} + T_{c}\right) \right) \left/ \sum_{j=1}^{M} \lambda_{j} \right.$$

Service Level Agreement (SLA)

$$T_{SLA}$$

Upper Bound of the Response Time

Reward Model

Total System Power Consumption

$$P^{\mathit{sys}} = \sum_{j=1}^{M} \left(P_j + P_j^{\mathit{TR}} \right) + P_{\mathrm{c}}$$
Total System Response Time

Stationary Response Time at the Cloud Site

$$T^{\text{sys}} = \sum_{j=1}^{M} \lambda_{j} \cdot \left(\frac{q_{j} \cdot \left(1 - \beta_{j}\right)}{n_{j} \cdot \mu_{j}} + \beta_{j} \cdot \left(T_{j}^{TR} + T_{c}\right) \right) \left/ \sum_{j=1}^{M} \lambda_{j} \right.$$

Reward Function

$$R = \frac{T_{SLA} - T^{Sys}}{T_{SLA}} / \frac{P^{Sys}}{P_{max}}$$

MDP Formulation

- Decision Epoch $t = \tau, 2\tau, 3\tau, 4\tau, \dots$
- State Space

$$(q_1, ..., q_j, ..., q_M)$$

- Action Space
- Reward Function
- State Probability

MDP Formulation

- Decision Epoch $t = \tau, 2\tau, 3\tau, 4\tau, \dots$
- State Space $(q_1, ..., q_j, ..., q_M)$
- Action Space

Cartesian Product for bypass transmission probability n_j and #of power-on machines β_j

$$(\beta_1,\ldots,\beta_M)\times(n_1,\ldots,n_M,n_c)$$

- Reward Function
- State Probability

MDP Formulation

- Decision Epoch $t = \tau, 2\tau, 3\tau, 4\tau, \dots$
- State Space $(q_1, ..., q_j, ..., q_M)$
- Action Space $(\beta_1, ..., \beta_M) \times (n_1, ..., n_M, n_c)$
- Reward Function

$$R = \frac{T_{SLA} - T^{sys}}{T_{SLA}} / \frac{P^{sys}}{P_{\text{max}}}$$

State Transition Probability

MDP Formulation

- State Transition Probability
 - Discrete Time Markov Chain

$$p_{q_j \to q_j + 1} = \lambda_j \left(1 - \beta_j \right) \left(1 - e^{-\sum\limits_{k=1}^{M} (\lambda_k + q_k \mu_k) \cdot \tau} \right) / \sum\limits_{k=1}^{M} \left(\lambda_k + q_k \mu_k \right)$$

$$p_{q_j \rightarrow q_j + 1} = q_j \mu_j \left(1 - e^{-\sum\limits_{k=1}^{M} (\lambda_k + q_k \mu_k) \cdot \tau} \right) / \sum\limits_{k=1}^{M} \left(\lambda_k + q_k \mu_k \right)$$

$$p_{loop} = e^{-\sum\limits_{k=1}^{M}(\lambda_k + q_k\mu_k) \cdot \tau} + \lambda_j \beta_j \left(1 - e^{-\sum\limits_{k=1}^{M}(\lambda_k + q_k\mu_k) \cdot \tau}\right) \sum_{k=1}^{M}(\lambda_k + q_k\mu_k)$$

- **❖**OO-Based Solution
 - Ordinal Optimization (Edward et al.1997)
 - Coarse Model
 - Selection Rule

❖OO-Based Solution

Ordinal Optimization

$$R = \frac{T_{SLA} - T^{sys}}{T_{SLA}} / \frac{P^{sys}}{P_{max}}$$

- Coarse Model Ignore the future earnings and simply focus on the current reward
- Selection Rule

❖OO-Based Solution

Ordinal Optimization

$$R = \frac{T_{SLA} - T^{sys}}{T_{SLA}} / \frac{P^{sys}}{P_{\text{max}}}$$

- Coarse Model Ignore the future earnings and simply focus on the current reward
- Selection Rule
 - Ordered Performance Curve (OPC)
 - Error Level

Selection Rule

Ordered Performance Curve (OPC)

$$r(x_i) = \frac{r_e^{[i]} - r_e^{[1]}}{r_e^{[N]} - r_e^{[1]}}$$
 $x_i = \frac{i-1}{N-1}$

Non-decreasing sequence for estimated actions

$$\vec{R}_e = (r_e^{[1]}, r_e^{[2]}, \dots, r_e^{[N]})$$

Selection Rule

Error Level

$$error = \max_{1 \le k \le N} \left\{ 1 - \frac{\vec{R}_e^{(k)^T} \cdot \vec{R}^{(k)}}{\left\| \vec{R}_e^{(k)} \right\|_2 \times \left\| \vec{R}^{(k)} \right\|_2} \right\}$$

- $0 \le error < 0.5$ (Small Level)
- $0.5 \le error < 1$ (Medium Level)
- error ≥ 1 (Large Level)

Non-decreasing sequence for estimated actions

$$\vec{R}_{e}^{(k)} = (r_{e}^{[1]}, r_{e}^{[2]}, \dots, r_{e}^{[N]})$$

Non-decreasing sequence for evaluated actions

$$\vec{R}^{(k)} = (r^{[1]}, r^{[2]}, \dots, r^{[N]})$$

TSECS Algorithm

Algorithm 1 Task Scheduling of Edge-Cloud System (TSECS)

Input: Decision-making space of scheduling scenarios \overline{S} , the number of good enough solutions g, alignment level k Output: Determined action a_n .

1: Calculate the reward values of all the scheduling scenarios using coarse model

2: Estimate the OPC type based

3: Estimate the normalized error level

4: Calculate the number s of selected scenarios and the theory of OO ensures that s scheduling scenarios contains at least k good enough scheduling scenarios with probability no less than 0.95

5: Use the iterative algorithm for MDP optimization to obtain the determined action a_n within the selected s scheduling scenarios

6: Return the determined action a_n .

Outline

- Background
- System Model
- Scheduling Algorithm
- Real Data Based Evaluation
- Conclusion and Future Work

T-Drive Dataset

- Released by Microsoft Research
- GPS trajectories of 10,357 taxis within Beijing during a period of one week in 2008
- 4 fields for each piece of data, including taxi id, timestamp, longitude and latitude

T-Drive Dataset

- Released by Microsoft Research
- GPS trajectories of 10,357 taxis within Beijing during a period of one week in 2008
- 4 fields for each piece of data, including taxi id, timestamp, longitude and latitude

- ❖Normalized Error= 0.5789 (Medium Level)
- Ordered Performance Curves (Steep)

TSECS(OO-Assisted) V.S. MDP(Classic)

- State-of-the-Art
 - Load-Balanced Algorithm
 - Requests are dispatched to edge or cloud servers based on the serving capacity
 - Best Effort Algorithm
 - All of servers are switched on and keep constantly running

State-of-the-Art

TABLE. AVERAGE RESPONSE TIME OF DIFFERENT ALGORITHMS

T_{SLA} (sec)	Algorithms Response Time (sec)		
	TSECS	Load-balanced	Best Effort
8.00	7.67	7.16	7.59

Outline

- Background
- System Model
- Scheduling Algorithm
- Evaluation
- Conclusion and Future Work

Conclusion

- Modeling approach of energy-aware performance evaluation for an IoT system with edge computing paradigm
- Joint scheme for task scheduling and resource allocations with high efficiency
- Scheduling efficiency improvement with OO techniques applied
- Simulation experiments based on realworld data from IoT and cloud systems

Future Work

- Detailed specifications on models
 - More variety of real-life IoT systems
 - More adaptive to various task arrivals
- Elaborate algorithm design
 - Further theoretical validation of efficiency

Thank you! Q&A

Songyuan Li
Beijing University of Posts and Telecommunications
Beijing, China
sylee1416@gmail.com

