Meeting: 14 May 2019

Kristyn Pantoja

5/3/2019

Last Time
Today

Fast Algorithm

One-at-a-Time Algorithm

Random Design

Space-Filling Design

D-Optimal Design

. . .

Last Time

Evaluating Model Ideas

Tried to evaluate the model based on:

- Robustness
 - what happens when the power k = 0:1 in one-at-a-time algorithm
 - what happens when the number of designs K gets large (how it affects γ_k) in fast algorithm
- 2. Objective Improvement
 - ► Total Potential Energy

Today

The Plan

- 1. Fix optimization thing in first step
- 2. Make a table!
- Methods:
 - One-at-a-Time Algorithm
 - ► Fast Algorithm
 - Random design
 - Space-Filling design
 - ▶ D-Optimal design (is there one for model selection? e.g. one for H₀ and one for H₁? criterion doesn't seem to incorporate that.)
 - etc.
- Evaluations:
 - Expected Posterior Probabilities of H₀, H₁ & Bayes Factors of data generated from each H₀, H₁ model
 - Regression variance on coefficient (slope here)
 - Total Potential Energy criterion
 - One-at-a-Time Algorithm criterion
 - Fast Algorithm criterion

Regression Variance

In the case where $y_i = x_i \beta + \varepsilon_i$ (with a fixed β) with $\varepsilon_i \ N(0, \sigma_{\varepsilon}^2)$, we have:

$$\hat{\beta} \sim N\left(\beta, \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}\right)$$

Since
$$\hat{\beta} = \frac{\sum_{i}(y_{i}-\bar{y})(x_{i}-\bar{x})}{\sum_{i}(x_{i}-\bar{x})} = \sum_{i} w_{i}y_{i}$$
, where $w_{i} = \frac{(x_{i}-\bar{x})}{\sum_{j}(x_{j}-\bar{x})^{2}}$, and so $Var[\hat{\beta}] = Var[\sum_{i} w_{i}y_{i}] = Var[\sum_{i} w_{i}(x_{i}\beta + \varepsilon_{i})] = \sum_{i} w_{i}^{2} Var[\varepsilon_{i}] = \sigma_{\varepsilon}^{2} \sum_{i} w_{i}^{2}$.

- lt is similar when $\beta \sim N(\tilde{\beta}, \sigma_{\beta}^2)$:
- ▶ After marginalizing out β , $y_i \sim N(x_i \tilde{\beta}, \sigma_{\varepsilon}^2 + x_i^2 \sigma_{\beta}^2)$. Hence:

$$Var[\hat{\beta}] = Var[\sum_i w_i y_i] = \sum_i w_i^2 Var[y_i] = \sum_i w_i^2 (\sigma_{\varepsilon}^2 + x_i^2 \sigma_{\beta}^2)$$

Criterions

1. The total potential energy, which both algorithms aim to minimize:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

2. One-at-a-Time Algorithm criterion tries to minimize:

$$\left\{ \sum_{i \neq j} \left(\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i, \mathbf{x}_j)} \right)^k \right\}^{1/k}$$

3. Fast Algorithm tries to minimize:

$$\max_{i \neq j} \frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

Parameters

Parameters

```
mean_beta0 = 1 # slope of null model
mean_beta1 = 1 / 2 # slope of alternative model
var_mean = 0.001 # variance on beta
var_e = 0.01 # variance on error
```

► Settings for Fast and One-at-a-Time algorithms

```
N = 67
# for fast algorithm:
K = 20 \# ceiling(4* sqrt(p))
numParameters = 1 \# number of parameters (just slope!)
p = numParameters * 2
# for one-at-a-time algorithm:
numCandidates = 10^5 \# suggested 10^5
k = 4
```

Fast Algorithm

Design generated by Fast Algorithm

Histogram of X_fast_K

11/35

mean(X_fast_K)

[1] 0.6836593 sd(X_fast_K)

[1] 0.2296987

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect_post_H0_YH0fast, expect_post_H1_YH0fast, BF01_YH0:
## [1] 0.874464 0.125536 6.965844
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1fast, expect_post_H1_YH1fast, BF01_YH1:
## [1] 0.1232342 0.8767658 0.1405555
# Slope Variance
v fast
## [1] 0.002990201
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE fast, c1 fast, c2 fast)
## [1] 2820354.53 44460.74 94059.71
```

Over the K Designs

- ▶ Total Potential Energy criterion starts to increase as the design approaches K = 20. It could be that K = 20 is too large
- Variance on Slope $(\hat{\beta})$ also increases. However, this makes sense since it is mainly a function of the differences between design points and their mean.

One-at-a-Time Criterion, Different k Powers

- ▶ To see if it decreases as $k \to \infty$, since this algorithm is supposed to be the asymptotic result of the one-at-a-time algorithm, here are the results for k = 1:100.
- ► For the fast algorithm's design, the one-at-a-time algorithm's criterion approaches the fast algorithm's criterion as k gets large (until it becomes infty. Computational issue, probably.)

One-at-a-Time Algorithm

Design generated by One-at-a-Time Algorithm Histogram of X_1atatime

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect_post_H0_YH0oneattime, expect_post_H1_YH0oneattime
## [1] 0.8834295 0.1165705 7.5785023
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1oneattime, expect_post_H1_YH1oneattime
## [1] 0.1148289 0.8851711 0.1297251
# Slope Variance
v oneattime
## [1] 0.003300413
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE oneattime, c1 oneattime, c2 oneattime)
## [1] 2867630.36 43737.03 92199.06
```

Robustness Across k Power

Comparing Evaluations for Criterion

Random Design

Random Designs

10 simulated random designs $(\mathbf{x} \sim U([0,1]^p), \forall \mathbf{x} \in \mathbf{D}_{random})$. # Mean Expected Post Probs and BF01 : Y | HO Sims c(expect_post_H0_YH0rand, expect_post_H1_YH0rand, BF01_YH0rand) ## [1] 0.7301598 0.2698402 2.7301864 # Mean Expected Post Probs and BF01 : Y | H1 Sims c(expect_post_H0_YH1rand, expect_post_H1_YH1rand, BF01_YH1rand) ## [1] 0.2694990 0.7305010 0.3700613 # Mean Slope Variance v rand ## [1] 0.001841713 # Mean Total PE, Fast Alg Crit, One-at-a-Time Alg Crit c(TPE rand, crit1 rand, crit2 rand) ## [1] 955312216 767617960 770812994 # SD Slope Variance v_rand_sd ## [1] 0.0001323766 # SD Total PE, Fast Ala Crit, One-at-a-Time Ala Crit c(TPE rand sd, crit1 rand sd, crit2 rand sd)

[1] 1575304574 1496514486 1495025103

Space-Filling Design

The Design Points

Where the points are in no particular order.

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect post HO YHOspace, expect post H1 YHOspace, BF01 YH
## [1] 0.7370318 0.2629682 2.8027405
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1space, expect_post_H1_YH1space, BF01_YH
## [1] 0.2618302 0.7381698 0.3547019
# Slope Variance
v space
## [1] 0.001808684
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE_space, c1_space, c2_space)
## [1] Inf Inf Inf
```

D-Optimal Design

D-Optimal Criterion

Seeks to minimize:

$$|(X^T X)^{-1}|$$

i.e. maximize:

$$|X^TX|$$

where X is the design.

Design generated by D-Optimal Criterion

Using AlgDesign package (using Federov's exchange algorithm),

where the points are in no particular order... assumed to be random order?

[1] 0.4874279

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect post H0 YH0dopt, expect post H1 YH0dopt, BF01 YH0d
## [1] 0.6703381 0.3296619 2.0334113
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1dopt, expect_post_H1_YH1dopt, BF01_YH1dopt,
## [1] 0.3296886 0.6703114 0.4918439
# Slope Variance
v dopt
## [1] 0.0006681488
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE dopt, c1 dopt, c2 dopt)
## [1] Inf Inf Inf
```

. . .

Design generated by A-Optimal Criterion

Using AlgDesign package (using Federov's exchange algorithm),

[1] 0.4808294

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect post HO YHOaopt, expect post H1 YHOaopt, BF01 YHOa
## [1] 0.6327927 0.3672073 1.7232576
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1aopt, expect_post_H1_YH1aopt, BF01_YH1a
## [1] 0.3670183 0.6329817 0.5798245
# Slope Variance
v aopt
## [1] 0.000692498
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE_aopt, c1_aopt, c2_aopt)
## [1] Inf Inf Inf
```

Design generated by I-Optimal Criterion

Using AlgDesign package (using Federov's exchange algorithm),

Evaluations

```
# Expected Post Probs and BF01 : Y | HO Sims
c(expect post H0 YH0iopt, expect post H1 YH0iopt, BF01 YH0:
## [1] 0.6703644 0.3296356 2.0336530
# Expected Post Probs and BF01 : Y | H1 Sims
c(expect_post_H0_YH1iopt, expect_post_H1_YH1iopt, BF01_YH1:
## [1] 0.3296856 0.6703144 0.4918372
# Slope Variance
v iopt
## [1] 0.0006717665
# Total PE, Fast Alg Crit, One-at-a-Time Alg Crit
c(TPE iopt, c1 iopt, c2 iopt)
## [1] Inf Inf Inf
```

The Table

Results!

	Fast	1atTime	Random	Space	D-opt	A-opt	l-opt
H0 Y, H0	0.8745	0.8834	0.7302	0.737	0.6703	0.6328	0.6704
H1 Y, H0	0.1255	0.1166	0.2698	0.263	0.3297	0.3672	0.3296
BF01 Y, H0	6.966	7.579	2.73	2.803	2.033	1.723	2.034
H0 Y, H1	0.1232	0.1148	0.2695	0.2618	0.3297	0.367	0.3297
H1 Y, H1	0.8768	0.8852	0.7305	0.7382	0.6703	0.633	0.6703
BF01 Y, H1	0.1406	0.1297	0.3701	0.3547	0.4918	0.5798	0.4918
Var Slope	0.00299	0.0033	0.001842	0.001809	0.0006681	0.0006925	0.0006718
TPE	2820000	2868000	955300000	Inf	Inf	Inf	Inf
Fast Crit	44460	43740	767600000	Inf	Inf	Inf	Inf
1atTime Crit	94060	92200	770800000	Inf	Inf	Inf	Inf
Mean(D)	0.6837	0.6886	NA	0.5	0.507	0.4234	0.506
sd(D)	0.2297	0.2187	NA	0.2952	0.4874	0.4808	0.4861

- Fast & One-at-a-Time Algorithms have highest expected Bayes Factors (when the H₀ is true, lowest when H₄ is true), and hence are better for testing.
- They also have higher variance on $\hat{\beta}$, though, which means they are not as accurate in estimating β . As expected, the *D*-optimal design is best for estimation.
- Also noticed values of Inf for the space-filling and *D*-optimal designs in the evaluations of each of the 3 criteria. This is to be expected in the *D*-optimal designs, since they include 0 which has gives as Wasserstein distance of 0 (in the denominator). Underestimated these by using maximum evaluation for *q* over *i*, *j*, instead. *D*-optimal design though best for estimating, is worst in criteria evaluations, as a consequence.