Electronic Materials and Devices

5 Semiconductor

陈晓龙 Chen, Xiaolong 电子与电气工程系

5.9 Field-effect transistors (FETs)

FET uses the electric field effect to control the output current

场效应晶体管,简称称场效应管,是利用电场效应来控制输出回路电流的一种半导体器件

Compare FET with BJT:

BJT (Bipolar junction transistor)双极型晶体管:
□ Current-controlled device 电流控制型器件
□ Input resistance is small
□ Both electrons and holes are involved in conduction

FET 场效应晶体管:

- □ High input resistance: $10^7 \sim 10^{15}\Omega$
- ☐ Only one type of carriers (electrons or holes) is involved in conduction
- ☐ Small size, light, low-power consumption, long life span
- □ Low noise, high stability, simple fabrication process
- ☐ Widely used in large-scale integration circuits

FET 场效应晶体管:

1. JFET (Junction Field Effect Transistor) 结型场效应管

2. IGFET (Insulated Gate Field Effect Transistor) 绝缘栅型场效应管

MOSFET (Metal-oxide-semiconductor FET)

Junction Field Effect Transistor (JFET)

N-type JFET

P-type JFET

Electrical connection of N-type JFET

When $u_{GS}=u_{DS}=0$:

Depletion region is narrow, conduction channel is wide

1)
$$u_{DS} = 0$$

When $U_{GS(off)} < u_{GS} < 0$:

Depletion region becomes wider, conduction channel becomes narrower

The resistance R_{DS} ↑

Current between g and s is very small: equal to the reverse saturation current!

1)
$$u_{DS} = 0$$

When $u_{GS} < U_{GS(off)}$:

Depletion regions are connected, conduction channel disappears

The resistance R_{DS} is extremely large

 $U_{\mathrm{GS(off)}}$ is called gate pinch-off voltage 夹断电压

2)
$$u_{GS} = 0$$

When $0 < u_{DS} < |U_{GS(off)}|$:

The drain current $i_D \neq 0$

$$u_{\mathrm{DS}} \uparrow, i_{\mathrm{D}} \uparrow$$

The reverse voltage on PN is position-dependent

Conduction channel becomes wedge-shaped

2)
$$u_{GS} = 0$$

When $u_{DS} = |U_{GS(off)}|$:

*i*_D reaches the maximum value

Pinch-off region is a point 点夹断(预夹断)

2)
$$u_{GS} = 0$$

When $u_{DS} > |U_{GS(off)}|$:

 $i_{\rm D}$ reaches the maximum value and does not increase with $u_{\rm DS}$

Pinch-off region becomes wider and longer 夹断区延长

Q: Why there is still current when DS channel is pinched off?

3)
$$u_{GS} < 0$$
, $u_{DS} > 0$

 u_{DS} and u_{GS} will modify the channel shape together

When
$$u_{DS} = |U_{GS(off)}| + u_{GS}$$

or $u_{DG} = |U_{GS(off)}|$

or
$$u_{\rm GD} = U_{\rm GS(th)}$$

The channel begins to pinch off

Important notes:

 $u_{\rm GS}$ >0 and $u_{\rm DS}$ <0 are not allowed in N-type JFET

Because depletion region will come thin, and leakage current between gate and drain is very large.

JFET: I-V characteristics

Input circuit: $i_{\rm G} \approx 0$

Extremely high input resistance

Output I-V curve

$$i_{\rm D} = f(u_{\rm DS})|_{u_{\rm GS}={\rm constant}}$$

Variable resistor region

可变电阻区

Constant current region

Cut-off region 夹断/截止区

Variable resistor region 可变电阻区

 \square u_{DS} is small, the channel does not pinch off

$$u_{\rm DS} < |U_{\rm GS(off)}| + u_{\rm GS}$$

$$|u_{\rm GS}| < |U_{\rm GS(off)}|$$

☐ FET behaves like a resistance-tunable resistor

Tunable by u_{GS}

Constant current region 恒流区 ----

□ u_{DS} is large, channel pinches off 沟道预夹断

$$u_{\rm DS} \ge |U_{\rm GS(off)}| + u_{\rm GS}$$

$$|u_{\rm GS}| < |U_{\rm GS(off)}|$$

- \Box i_D is almost constant, only depends on u_{GS}
- □ Also can be called as amplification region

也称作放大区

 $|u_{\rm GS}| > |U_{\rm GS(off)}|$

 $\Box i_{\rm D} \approx 0$

 $u_{GS}=0V$

 $u_{GS} = -0.5 V$

Transfer curve 转移特性曲线 $i_D = f(u_{GS})|_{u_{DS} = constant}$

- \Box In constant-current region, the transfer curves are independent of u_{DS}
- \Box In variable resistor region, the transfer curves depend on u_{DS}

At constant-current region:

$$i_{\rm D} = I_{\rm DSS} (1 - \frac{u_{\rm GS}}{U_{\rm GS(off)}})^2 \qquad (U_{\rm GS(off)} < u_{\rm GS} < 0)$$

 I_{DSS} is the drain current at $u_{GS}=0$, $u_{DS}>|U_{GS(off)}|$

For P-type JFET

For P-type JFET

Transfer curve 转移特性曲线 $i_D = f(u_{GS})|_{u_{DS}=constant}$

JFET: Key parameters

- □ DC parameters 直流参数
- □ 1) Pinch-off voltage U_{GS(off)} 夹断电压
- □ 2) Drain saturation current I_{DSS} 漏极饱和电流

 $I_{\rm DSS}$: The drain current at $u_{\rm GS}$ =0, $u_{\rm DS}$ > $|U_{\rm GS(off)}|$

□ 3) DC Input resistance R_{GS} 直流输入电阻 d

$$R_{\rm GS} = \frac{U_{\rm GS}}{I_{\rm G}}|_{U_{\rm DS}=0,U_{\rm GS}={\rm constant}}$$

□ AC parameters 交流参数

□ 1) Transconuctance g_m 互导/跨导

$$\boldsymbol{g}_{\mathrm{m}} = \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{D}}}{\mathrm{d}\boldsymbol{u}_{\mathrm{GS}}}|_{\boldsymbol{U}_{\mathrm{DSQ}},\,\boldsymbol{U}_{\mathrm{GSQ}},\,\boldsymbol{I}_{\mathrm{DQ}}}$$

□ AC parameters 交流参数

□ 1) Transconuctance g_m 互导/跨导

$$\boldsymbol{g}_{\mathrm{m}} = \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{D}}}{\mathrm{d}\boldsymbol{u}_{\mathrm{GS}}}|_{\boldsymbol{U}_{\mathrm{DSQ}},\,\boldsymbol{U}_{\mathrm{GSQ}},\,\boldsymbol{I}_{\mathrm{DQ}}}$$

At constant-current region:

$$i_{\rm D} = I_{\rm DSS}(1 - \frac{u_{\rm GS}}{U_{\rm GS(off)}})^2$$

$$g_{\rm m} = -\frac{2}{U_{\rm GS(off)}} \sqrt{I_{\rm DSS}I_{\rm DQ}}$$

Larger I_{DQ} , larger g_{m}

2) There exists capacitance between drain, source and gate: C_{gs} , C_{gd} , C_{ds}

In high frequency circuits, we need to consider $C_{\rm gs}$, $C_{\rm gd}$, $C_{\rm ds}$

Q1: As shown in the figure, FET has $U_{GS(off)}$ =-5V; Ask: In the three situations listed below, FET works in which region?

- 1) u_{GS} =-8V, u_{DS} =4V
- 2) u_{GS} =-3V, u_{DS} =4V
- 3) u_{GS} =-3V, u_{DS} =1V

Answer:

- 1) $u_{GS} < U_{GS(off)}$, in cut-off region
- 2) $u_{DS} > |U_{GS(off)}| + u_{GS}$, in constant-current region
- 3) $u_{DS} < |U_{GS(off)}| + u_{GS}$, in variable resistor region

IGFET

IGFET (Insulated Gate Field Effect Transistor) 绝缘栅型场效应管

Enhanced N-type IGFET

Enhanced P-type IGFET

Working principle:

1) $u_{GS} = 0$, $u_{DS} \neq 0$:

One PN junction is reversed

2)
$$u_{GS} > 0$$
, $u_{DS} = 0$:

Gate-SiO₂-Semiconductor can be treated as a parallel-plate capacitor 平行板电容器

- \square When $u_{\rm GS} > 0$, electric field is induced in SiO₂ layer
- ☐ Electrons are attracted and holes are repulsed to SiO₂ surface

When $u_{GS} = U_{GS(th)} > 0$

- □ A thin conducting layer of electron gas, is formed near SiO₂ surface
- □ We call this layer the inversion layer (反型层),

 $U_{
m GS(th)}$ is called the threshold voltage 开启电压

Enhanced N-type IGFET is also called NMOSFET

When $u_{\mathrm{GS}} > U_{\mathrm{GS(th)}}$, $u_{\mathrm{DS}} = \mathbf{0}$

- ☐ The electric field in SiO₂ is larger
- $\square u_{\rm GS}$ 1, the electron density near SiO₂ is higher
- ☐ The current between g and s is even much smaller than that in JFET.

- 3) $u_{\rm GS} > U_{\rm GS(th)}$, $u_{\rm DS} > 0$
- $\square i_{\mathrm{D}} > 0$
- $\square u_{\mathrm{DS}} \uparrow$, $i_{\mathrm{D}} \uparrow$
- ☐ The potential of channel near drain is smaller
- ☐ The electric field in SiO₂ near drain is smaller
- □ The conducting channel is wedge-shaped 楔形

When $u_{DS} = u_{GS} - U_{GS(th)}$ or $[u_{GD} = U_{GS(th)}]$

□ Channel begins to pinch off 沟道预夹断

 \Box i_{D} reaches the maximum value

☐ NMOS begins to enter the constant current region

When $u_{\rm DS} > u_{\rm GS} - U_{\rm GS(th)}$

- □ The pinch-off region extends 夹断区延长
- \square $i_{\rm D}$ is almost a constant

□ NMOS is in constant current region

Electron can pass through the pinch off region.

For enhanced PMOS

☐ To induce hole inversion layer in N-type Si:

$$U_{\rm GS(th)} < 0$$

☐ To let channel pinch off

$$u_{\rm DS} < 0$$

$$oldsymbol{u}_{\mathrm{DS}} = oldsymbol{u}_{\mathrm{GS}} - oldsymbol{U}_{\mathrm{GS(th)}}$$
 or $[oldsymbol{u}_{\mathrm{GD}} = oldsymbol{U}_{\mathrm{GS(th)}}]$

Band diagram of MOSFETs

1) $u_{GS} = 0$, $u_{DS} = 0$:

 u_{DS} $u_{\rm GS}=0$ S N+ N⁺ Band diagram along red line

Band diagram along blue line

2) When $U_{\rm GS(th)}>u_{\rm GS}>0$, $u_{\rm DS}=0$ Band diagram along red line

☐ Before electron inversion layer is formed at surface

Band diagram along blue line

3) When $u_{\rm GS}>U_{\rm GS(th)}$, $u_{\rm DS}=0$

Band diagram along red line

☐ Electron inversion layer at surface

Band diagram along blue line

The gate voltage $V_{\rm gs}$ can tune the Fermi energy of silicon near surface.

Homework 1-6: Draw the band diagram of the N-type MOSFET channels along the red dashed lines in page 44-46 (44-46页示意图中红色虚线方向的能带结构示意图,包括源漏电极和半导体沟道) for below three situations:

- (1) $u_{GS} = 0$, $u_{DS} > 0$ (refer to the device schematic in ppt page 38)
- (2) $U_{\rm GS(th)}>u_{\rm GS}>0$, $u_{\rm DS}>0$ (refer to the device schematic in ppt page 39)
- $(3)u_{\rm GS}>U_{\rm GS(th)},u_{\rm DS}>0$ (refer to the device schematic in ppt page 40)

Output I-V curve

$$i_{\rm D} = f(u_{\rm DS})|_{u_{\rm GS}={\rm constant}}$$

Variable resistor region可变电阻区

Constant current region恒流区

Variable resistor region可变电阻区

 $\square u_{DS}$ is small, the channel are conducting

$$u_{\rm DS} < u_{\rm GS} - U_{\rm GS(th)}$$

☐ FET behaves like a resistance-tunable resistor

Tunable by u_{GS}

Constant current region恒流区

□ u_{DS} is large, channel pinches off 沟道预夹断

$$\begin{bmatrix} u_{DS} \ge u_{GS} - U_{GS(th)} \\ u_{GS} \ge U_{GS(th)} \end{bmatrix}$$

- \Box i_D is almost constant, only depends on u_{GS}
- □ Also can be called as amplification region

Cut-off region

夹断/截止区

☐ Channel fully pinches off

 $u_{\rm GS} < U_{\rm GS(th)}$

 $\Box i_{\rm D} \approx 0$

Transfer curve 转移特性曲线 $i_D = f(u_{GS})|_{u_{DS} = constant}$

 \Box In constant-current region, the transfer curves are independent of $u_{\rm DS}$

At constant-current region:

$$i_{\rm D} = I_{\rm DO}(\frac{u_{\rm GS}}{U_{\rm GS(th)}} - 1)^2$$
 $(u_{\rm GS} > U_{\rm GS(th)})$

 I_{DO} is the drain current at $u_{GS}=2U_{GS(th)}$

Depleted N-type IGFET/MOSFET

SiO₂ are doped with positive ions

There is an inversion layer even when $u_{\rm DS}$ =0 and $u_{\rm GS}$ =0

Hence, when $u_{DS}>0$ and $u_{GS}=0$, $i_{D}>0$

1)
$$u_{\rm GS} > 0$$

- ☐ The inversion layer becomes wider
- **2)** $u_{\rm GS} < 0$
- ☐ The inversion layer becomes narrower
- \Box The pinch-off voltage $U_{\rm GS(off)} < 0$

Output I-V curve
$$i_D = f(u_{DS})|_{u_{GS} = constant}$$

Enhanced NMOS

$u_{\text{DS}} = u_{\text{GS}} - U_{\text{GS(th)}}$ $u_{\text{GS}} = 2U_{\text{GS(th)}}$ U_{GS3} U_{GS2} U_{GS1} $u_{\rm GS} = U_{\rm GS(th)} > 0$ u_{DS}

Depleted NMOS

Transfer curve 转移特性曲线 $i_D = f(u_{GS})|_{u_{DS}=constant}$

Summary

JFET

Enhanced MOSFET

Depleted MOSFET

FET 场效应晶体管 (Compared with BJT)

- □ Gate(栅极), source(源极), and drain(漏极) in FET corresponds to the base(基极), emitter(发射极), and collector(集电极) in BJT
- 1) FET: Use voltage u_{GS} to control current i_{D} BJT: Use current i_{B} to control current i_{C}
- 2) FET: High input resistance $R_{\rm GS}$: $10^7 \sim 10^{15} \Omega$, $i_{\rm G} \approx 0$

BJT: Low input resistance R_{EB}

3) FET: Only one type of carriers (electrons or holes) is involved in conduction

BJT: Both electrons and holes are involved in conduction

- 4) FET: Small size, light, low-power consumption, long life span
- 5) FET: The device structure is symmetric, hence source and drain can be exchanged
- 6) FET: The size of FET is only about 5% of that of BJT. Hence it is widely used in large-scale integration circuits

- 7) FET: The transconductance is smaller than that of BJT. With similar load resistance, the voltage gain is usually smaller than that of BJT.
- 8) FET: FET is more vulnerable to environment electrostatic charges. The high input resistance and ultra-thin insulating layer make charges accumulate in FET, and breakdown the insulating layer. 由于MOS管的输入电阻高,由外界感应产生的电荷不易泄露,而栅极上的绝缘层又很薄,这将在栅极上产生很高的电场强度,以致引起绝缘层的击穿而损坏管子。

What's the most challenging issues faced by MOSFET?

◆ Scaling of Silicon transistors is predicted to fail below 5 nm- gate lengths because of the short channel length effect

When the channel length >> width of depletion region

◆ When the channel length ~ the width of depletion region

Barrier height is lowered!

◆ Short channel length

◆ For short channel device, the barrier height is low and current is high, and hence the device cannot fully turn off.

Q: how to further decrease the channel length?

Decrease width of depletion region — Decrease thickness of silicon

Thin-film transistor

Thickness > depletion region

Gate

S N-type Semiconductor D

SiO₂

Thin-film transistor

Thickness < depletion region

The limit of channel length of 2D FETs

◆ 2D material: atomically thin thickness. Depletion region < 1 nm.

Science, 354, 99, 2016

- ◆ Use 2D semiconductor: monolayer and bilayer MoS₂
- ◆ Use carbon nanotube (~ 1 nm) as gate material

The limit of channel length of 2D FETs

Dynamic analysis of FET amplifier circuit

Find the equivalent circuit of FET: to replace FET with a linear network

Transistor

Equivalent circuit

$$1 \quad i_{\mathrm{D}} = f(u_{\mathrm{GS}}, u_{\mathrm{DS}}) \quad u_{\mathrm{GS}} = u_{\mathrm{GS}}$$

2
$$di_{\rm D} = \frac{\partial i_{\rm D}}{\partial u_{\rm GS}}|_{U_{\rm DSQ}} du_{\rm GS} + \frac{\partial i_{\rm D}}{\partial u_{\rm DS}}|_{U_{\rm GSQ}} du_{\rm DS}$$

Transconuctance g_m 互导/跨导

$$g_{\rm m} = \frac{di_{\rm D}}{du_{\rm GS}}|_{\rm U_{\rm DSQ}}$$

$$g_{\rm ds} = \frac{1}{r_{\rm ds}} = \frac{di_{\rm D}}{du_{\rm DS}}|_{\rm U_{\rm GSQ}}$$

$$di_{\rm D} = g_{\rm m} du_{\rm GS} + \frac{1}{r_{\rm ds}} du_{\rm DS}$$

$$di_{\rm D} = g_{\rm m} du_{\rm GS} + \frac{1}{r_{\rm ds}} du_{\rm DS}$$

Input signal i_D is small 小信号条件

 di_{D} can be replaced by a small quantity: i_{d} or \dot{I}_{d}

$$\dot{U}_{\rm gs} = \dot{U}_{\rm gs}$$
 $\dot{I}_{\rm d} = g_{\rm m}\dot{U}_{\rm gs} + \frac{1}{r_{\rm ds}}\dot{U}_{\rm ds}$

$$\dot{I}_{\rm d} = g_{\rm m}\dot{U}_{\rm gs} + \frac{1}{r_{\rm ds}}\dot{U}_{\rm ds}$$

$$\dot{I}_{\rm d} = g_{\rm m} \dot{U}_{\rm gs} + \frac{1}{r_{\rm ds}} \dot{U}_{\rm ds}$$
 $g_{\rm ds} = \frac{1}{r_{\rm ds}} = \frac{di_{\rm D}}{du_{\rm DS}} |_{\rm U_{GSQ}}$

In constant current region, $\frac{di_{\rm D}}{du_{\rm DS}}|_{\rm U_{\rm GSQ}}\approx 0$, $r_{ds}\to\infty$.

Simplified model

Common-s amplifier circuit

N-type JFET
Self-biased circuit

AC circuit

Flash memory

Flash card 闪存卡

- ◆ Portable 便携
- ◆ Low energy consumption 能耗小

Positive V_G - channel turns on 沟道开启 Negative V_G - channel is pinched 沟道夹断

Source, drain, gate: conducting materials

Storage layer: floating thin material (semiconductor, metal...)

Thin insulator (tunneling barrier隧穿层): several nm thick

Writing 数据写入

Apply a large positive voltage to gate

Channel turns on

Pull electrons from channel into storage layer

Electrons don't leakage out without the help of voltage

Electrons in storage layer will repel electrons in the channel

Channel is in high resistance state "0"

Erasing 数据擦除

Apply a large negative voltage to control gate

Push electrons away

Block the channel

Apply a large positive voltage to Source

Suck out the electrons, only to Source

No electrons left in storage layer

Reset bit "0" to "1"

Channel is in low resistance state "1"

Reading 数据读出

- Apply a medium voltage to control gate
- Apply a small voltage to Drain

If there is no electrons in storage layer: low resistance, "1"

If there is no electrons in storage layer: high resistance, "0"

Holding information

Erasing information

Writing information

Retention: the ability to hold on to the charge

Tunnel oxide thickness	Time for 20% charge loss		
4.5 nm	4.4 minutes		
5 nm	1 day		
6 nm	1/2 - 6 years		

7-8nm thick oxide can retain charge in floating gate for 20 years

NOR Flash Architecture NAND Flash Architecture

Cell (1 bytes) as the Page (2 kB) write/erase unit

the as write/erase unit

NAND Flash Architecture

Watch a video

Cell (1 bytes) as the write/read unit

Page (2 kB) as the write/read unit

NOR Flash Architecture

- ➤ High reliability 可靠性高
- ➤ Fast for randomly write and read 随机读写速度快
- ➤ Relatively low capacity 容量较小

NAND Flash Architecture

- ➤ High capacity 容量大
- ➤ Faster for write 写入速 度非常快
- ➤ Slower for read 读取速 度慢
- ➤ Low cost 造价低

Feature	NOR Flash		NAND Flash	
	General	S70GL02GT	General	S34ML04G2
Capacity	8MB - 256MB	256MB	256MB - 2GB	256MB
Cost per bit	Higher	6.57x10 ⁻⁹	Lower	2.533x10 ⁻⁹
		USD/bit for 1ku		USD/bit for 1ku
Random Read speed	Faster	120ns	Slower	30μS
Write speed	Slower		Faster	
Erase speed	Slower	520ms	Faster	3.5ms
Power on current	Higher	160mA (max)	Lower	50mA (max)
Standby current	Lower	200μA (max)	Higher	1mA (max)
Bit-flipping	Less common		More common	
Bad blocks while	0%		Up to 2%	
shipping				
Bad block	Less frequent		More frequent	
development		100		
Bad block handling	Not mandatory		Mandatory	
Data Retention	Very high	20 years for 1K program-erase cycles	Lower	10 years (typ)
Program-erase cycles	Lower	100,000	Higher	100,000
Preferred Application	Code storage & execution		Data storage	