NAVNEEL MONDAL

DATE: 21-09-2023

AI ML ASSIGNMENT-4

Reg No: 21BCE2654

1. Download the dataset: winequality_red.csv is downloaded.

2. Load The dataset:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

matplotlib inline
import time
import random

random.seed(100)

# Importing the dataset
wine = pd.read_csv('winequality-red.csv')

wine.head()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

3. Data preprocessing including visualization:

```
# #Making binary classificaion for the response variable.
from sklearn.preprocessing import LabelEncoder
bins = (2, 6.5, 8)
group_names = ['bad', 'good']
wine['quality'] = pd.cut(wine['quality'], bins = bins, labels = group_names)
label_quality = LabelEncoder()
wine['quality'] = label_quality.fit_transform(wine['quality'])
wine['quality'].value_counts()

#plotting the response variable
sns.countplot(wine['quality'])
```



```
34
35 wine[wine.columns[:11]].describe()
36
37
```

		volatile		residual		free sulfur	total sulfur				
	fixed acidity	acidity	citric acid	sugar	chlorides	dioxide	dioxide	density	pН	sulphates	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000

```
## Histograms

fig = plt.figure(figsize=(15, 12))

plt.suptitle('Histograms of Numerical Columns', fontsize=20)

for i in range(wine.shape[1]):

plt.subplot(6, 3, i + 1)

f = plt.gca()

f.set_title(wine.columns.values[i])

vals = np.size(wine.iloc[:, i].unique())

if vals >= 100:

vals = 100

plt.hist(wine.iloc[:, i], bins=vals, color='#3F5D7D')

plt.tight_layout(rect=[0, 0.03, 1, 0.95])
```

Histograms of Numerical Columns


```
52
53
54 wine.isna().any()
55
```

```
fixed acidity
                        False
volatile acidity
                        False
citric acid
                        False
residual sugar
                        False
chlorides
                        False
free sulfur dioxide
                        False
total sulfur dioxide
                        False
density
                        False
рΗ
                        False
sulphates
                        False
alcohol
                        False
quality
                        False
dtype: bool
```

```
#Correlation with Quality with respect to attributes
wine.corrwith(wine.quality).plot.bar(
figsize = (20, 10), title = "Correlation with quality", fontsize = 15,
rot = 45, grid = True)
```


	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668	0.120061
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288	-0.270712
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903	0.214716
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075	0.047779
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141	-0.097308

```
# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(18, 15))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5})
```


4. Machine Learning Model building:

```
#Assigning and dividing the dataset

X = wine.drop('quality',axis=1)

y=wine['quality']

X.head()

y.head()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

```
0    5
1    5
2    5
3    6
4    5
Name: quality, dtype: int64
```

```
91
92 wine.columns[:11]
93
94
```

```
95 Fitting Random Forest Classification to the Training set
96 from sklearn.ensemble import RandomForestClassifier
97 classifier = RandomForestClassifier(n_estimators = 200, criterion = 'entropy', random_state = 0)
98 classifier.fit(X, y)
99 importances = classifier.feature_importances_
100 indices = np. argsort(importances)[::-1]
101 for i in range(X.shape[1]):
102    print ("%2d) %-*s %f" % (i + 1, 30, features_label[i],importances[indices[i]]))
103
104
```

```
1) fixed acidity
                                    0.154052
 2) volatile acidity
                                    0.116418
 3) citric acid
                                    0.107016
 4) residual sugar
                                    0.099913
 5) chlorides
                                    0.089030
 6) free sulfur dioxide
                                    0.080517
 7) total sulfur dioxide
                                    0.077752
8) density
                                    0.072258

 pH

                                    0.071140
10) sulphates
                                    0.067320
11) alcohol
                                    0.064583
```

```
title('Feature Importances')

plt.bar(range(X.shape[1]),importances[indices], color="green", align="center")

plt.xticks(range(X.shape[1]),features_label, rotation=90)

plt.xlim([-1, X.shape[1]])

plt.show()

110

111
```



```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 5)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

X_train2 = pd.DataFrame(sc.fit_transform(X_train))
X_test2 = pd.DataFrame(sc.transform(X_test))
X_train2.columns = X_train.columns.values
X_train2.columns = X_test.columns.values
X_test2.columns = X_test.index.values
X_train2.index = X_train.index.values
X_train = X_train2
X_train = X_train2

X_train = X_train2

#Using Principal Dimensional Reduction
from sklearn.decomposition import PCA
pca = PCA(n_components = 4)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)

#Using Principal Dimensional variance_ratio_
print(pd.DataFrame(explained_variance_ratio_
print(pd.DataFrame(explained_variance))
```

0 0.281687 1 0.171462 2 0.143245 3 0.114765

```
### Model Building ###

### Comparing Models

## Logistic Regression

## Logistic Regression  

## Logistic Regression  

## Logistic Regression  

## Logistic Regression  

## Logistic Regression  

## Logistic Regression  

## Logistic Regression  

### Comparing Models

### Comparing Models

### Logistic Regression  

### Logistic Regression  

### Registic Regression  

### Probleman  

### Predicting Test Set

### Predicting Test Set

### Predicting Test Set

### ### Model Building ####

### Comparing Models

### Logistic Regression  

### Comparing Models

#### Comparing Models

### Comparing Models

### Comparing Models

### Comparing Models

### Comparing Models

#### Comparing Models

### Comparing Models

######## Comparing Models
```

Model Accuracy Precision Recall F1 Score 0 Logistic Regression 0.86875 0.6 0.26087 0.363636

```
        Model
        Accuracy
        Precision
        Recall
        F1 Score

        0
        Logistic Regression
        0.86875
        0.6
        0.26087
        0.363636

        1
        SVM (Linear)
        0.85625
        0.0
        0.00000
        0.000000
```

```
## SVM (rbf)
from sklearn.svm import SVC
classifier = SVC(random_state = 0, kernel = 'rbf')
classifier.fit(X_train, y_train)

# Predicting Test Set
# predicting Test Set
g. pred = classifier.predict(X_test)
end
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
fl = fl_score(y_test, y_pred)
fl = fl_score(y_test, y_pred)

# predicting Test Set

# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# predicting Test Set
# p
```

```
Model Accuracy Precision Recall F1 Score
0 Logistic Regression 0.86875 0.600000 0.260870 0.363636
1 SVM (Linear) 0.85625 0.000000 0.000000
2 SVM (RBF) 0.87500 0.714286 0.217391 0.333333
```

```
## Randomforest

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(random_state = 0, n_estimators = 100,

criterion = 'entropy')

classifier.fit(X_train, y_train)

# Predicting Test Set

y_pred = classifier.predict(X_test)

acc = accuracy_score(y_test, y_pred)

prec = precision_score(y_test, y_pred)

rec = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

model_results = pd.DataFrame([['Random Forest (n=100)', acc, prec, rec, f1]],

columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score'])

results = results.append(model_results, ignore_index = True)

print(results)
```

0 Logistic Regression 0.868750 0.600000 0.260870 0.363636 1 SVM (Linear) 0.856250 0.000000 0.000000 0.000000 2 SVM (RBF) 0.875000 0.714286 0.217391 0.333333 3 Random Forest (n=100) 0.903125 0.741935 0.500000 0.597403				Precision		
2 SVM (RBF) 0.875000 0.714286 0.217391 0.333333	0	Logistic Regression	0.868750	0.600000	0.260870	0.363636
	1	SVM (Linear)	0.856250	0.000000	0.000000	0.000000
3 Random Forest (n=100) 0.903125 0.741935 0.500000 0.597403	2	SVM (RBF)	0.875000	0.714286	0.217391	0.333333
	3	Random Forest (n=100)	0.903125	0.741935	0.500000	0.597403

5. Evaluate the model:

```
## K-fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X= X_train, y = y_train,
cv = 10)
print("Random Forest Classifier Accuracy: %0.2f (+/- %0.2f)" % (accuracies.mean(), accuracies.std() * 2))

print("Random Forest Classifier Accuracy: %0.2f (+/- %0.2f)" % (accuracies.mean(), accuracies.std() * 2))
```

Random Forest Classifier Accuracy: 0.90 (+/- 0.05)

```
# Applying Grid Search

# Round 1: Entropy
parameters = {"max_depth": [3, None],

"min_samples_split': [2, 5, 10],
"min_samples_leaf': [1, 5, 10],
"bootstrap": [Irue, False],
"criterion": ["entropy"]}

from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator = classifier, # Make sure classifier points to the RF model

param_grid = parameters,
scoring = "accuracy",
cv = 10,
n_jobs = -1)

t0 = time.time()
print("Took %0.2f seconds" % (t1 - t0))

rf_best_accuracy = grid_search.best_params_
rf_best_accuracy, rf_best_parameters

rf_best_accuracy, rf_best_parameters
```

```
Took 80.70 seconds

(0.8999218139171228,
{'bootstrap': False,
'criterion': 'entropy',
'max_depth': None,
'min_samples_leaf': 1,
'min_samples_split': 2})
```

```
# Round 1: Gini
parameters = {"max_depth": [3, None],
              'min_samples_split': [2, 5, 10],
              'min_samples_leaf': [1, 5, 10],
              "bootstrap": [True, False],
              "criterion": ["gini"]}
# Make sure classifier points to the RF model
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator = classifier,
                           param_grid = parameters,
                           scoring = "accuracy",
                           cv = 10,
                           n_{jobs} = -1
t0 = time.time()
grid_search = grid_search.fit(X_train, y_train)
t1 = time.time()
print("Took %0.2f seconds" % (t1 - t0))
rf best accuracy = grid search.best score
rf best parameters = grid search.best params
rf_best_accuracy, rf_best_parameters
```

Took 62.63 seconds (0.9046129788897577, {'bootstrap': True, 'criterion': 'gini', 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2})

```
# Round 2: Gini
parameters = {"max_depth": [None],

"min_samples_split': [2, 3, 4],
"min_samples_leaf': [8, 10, 12],
"bootstrap": [True],
"criterion": ["gini"]}

## from sklearn.model_selection import GridSearchCV

## grid_search = GridSearchCV(estimator = classifier, # Make sure classifier points to the RF model

## param_grid = parameters,
## scoring = "accuracy",
## cv = 10,
## n_jobs = -1)

## accuracy = grid_search.fit(X_train, y_train)
## t1 = time.time()
## grid_search = grid_search.best_score_
## rf_best_accuracy = grid_search.best_params_
## rf_best_accuracy, rf_best_parameters
## accuracy = grid_search.best_parameters
```

```
Took 29.75 seconds

(0.8772478498827209,
{'bootstrap': True,
   'criterion': 'gini',
   'max_depth': None,
   'min_samples_leaf': 8,
   'min_samples_split': 2})
```

```
319
320 rf_best_accuracy, rf_best_parameters
321
```

```
(0.9046129788897577,
  {'bootstrap': True,
  'criterion': 'gini',
  'max_depth': None,
  'min_samples_leaf': 1,
  'min_samples_split': 2})
```


6.Prediction results:

```
# Predicting Test Set

y_pred = grid_search.predict(X_test)

acc = accuracy_score(y_test, y_pred)

prec = precision_score(y_test, y_pred)

rec = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

model_results = pd.DataFrame([['Random Forest (n=100, GSx2 + Gini)', acc, prec, columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'FI Score'])

results = results.append(model_results, ignore_index = True)

results
```

	Model	Accuracy	Precision	Recall	F1 Score
0	Logistic Regression	0.868750	0.600000	0.260870	0.363636
1	SVM (Linear)	0.856250	0.000000	0.000000	0.000000
2	SVM (RBF)	0.875000	0.714286	0.217391	0.333333
3	Random Forest (n=100)	0.903125	0.741935	0.500000	0.597403
4	Random Forest (n=100, GSx2 + Gini)	0.909375	0.757576	0.543478	0.632911
5	Random Forest (n=100, GSx2 + Gini)	0.909375	0.757576	0.543478	0.632911