Queens' College Cambridge

Types

Alistair O'Brien

Department of Computer Science

June 2, 2022

1 Simply-Typed λ -Calculus

Syntax

Types $\tau ::= 1 \mid 0 \mid \tau \to \tau \mid \tau \times \tau \mid \tau + \tau$ Terms $e ::= x \mid \langle \rangle \mid \langle e_1, e_2 \rangle \mid \text{fst } e \mid \text{snd } e \mid \mathsf{L} e \mid \mathsf{R} e \\ \mid \mathsf{case}(e, \mathsf{L} \ x \to e, \mathsf{R} \ x \to e) \mid \lambda x : \tau . e \mid e \mid e \mid \mathsf{abort} \ e$ Values $v ::= \langle \rangle \mid \langle v_1, v_2 \rangle \mid \lambda x : \tau . e \mid \mathsf{L} \ v \mid \mathsf{R} \ v$ Contexts $\Gamma ::= \cdot \mid \Gamma, x : \tau$ Evaluation Contexts $\mathbb{E} ::= [\cdot] \mid \langle \mathbb{E}, e \rangle \mid \langle v, \mathbb{E} \rangle \mid \mathsf{fst} \ \mathbb{E} \mid \mathsf{snd} \ \mathbb{E} \mid \mathsf{L} \ \mathbb{E} \mid \mathsf{R} \ \mathbb{E} \\ \mid \mathsf{case}(\mathbb{E}, \mathsf{L} \ x \to e, \mathsf{R} \ x \to e) \mid \mathbb{E} \ e \mid v \ \mathbb{E} \mid \mathsf{abort} \ \mathbb{E}$

Typing Rules

(I: introduction rule, E: elimination rule, Hyp: hypothesis)

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}\text{ Hyp}\qquad \frac{\Gamma\vdash e:0}{\Gamma\vdash ():1}\text{ II}\qquad \text{(No elimination for 1)}$$

$$(\text{No introduction for 0})\qquad \frac{\Gamma\vdash e:0}{\Gamma\vdash \text{abort }e:\tau}\text{ OE}\qquad \frac{\Gamma\vdash e_1:\tau_1\quad \Gamma\vdash e_2:\tau_2}{\Gamma\vdash (e_1,e_2):\tau_1\times\tau_2}\times I$$

$$\frac{\Gamma\vdash e:\tau_1\times\tau_2}{\Gamma\vdash \text{fst }e:\tau_1}\times E_1\qquad \frac{\Gamma\vdash e:\tau_1\times\tau_2}{\Gamma\vdash \text{snd }e:\tau_2}\times E_2\qquad \frac{\Gamma,x:\tau_1\vdash e:\tau_2}{\Gamma\vdash \lambda x:\tau_1.e:\tau_1\to\tau_2}\to I$$

$$\frac{\Gamma\vdash e_1:\tau_1\to\tau_2\quad \Gamma\vdash e_2:\tau_1}{\Gamma\vdash e_1:e_2:\tau_2}\to E\qquad \frac{\Gamma\vdash e:\tau_1}{\Gamma\vdash L\ e:\tau_1+\tau_2}+I_1\qquad \frac{\Gamma\vdash e:\tau_2}{\Gamma\vdash R\ e:\tau_1+\tau_2}+I_2$$

$$\frac{\Gamma\vdash e:\tau_1+\tau_2\quad \Gamma,x_1:\tau_1\vdash e_1:\tau\quad \Gamma,x_2:\tau_2\vdash e_2:\tau}{\Gamma\vdash \text{case}(e,\Gamma,x_1\to e_1,R,x_2\to e_2):\tau}+E$$

Operational Semantics

(Red: reduction rule (intro form *immediately* followed by elim form), EVAL: acts recursively on a subterm, controls *evaluation order* using *evaluation context*)

$$\frac{e \leadsto e'}{\mathbb{E}[e] \leadsto \mathbb{E}[e']} \text{ EVALCTX} \qquad \frac{1}{\text{fst } \langle v_1, v_2 \rangle \leadsto v_1} \text{ RedFst}$$

$$\frac{1}{\text{sind } \langle v_1, v_2 \rangle \leadsto v_2} \text{ RedSnd} \qquad \frac{1}{\text{case}(\mathsf{L} \ v, \mathsf{L} \ x_1 \to e_1, \mathsf{R} \ x_2 \to e_2) \leadsto \{v/x_1\}e_1} \text{ RedCase}_1$$

$$\frac{1}{\text{case}(\mathsf{R} \ v, \mathsf{L} \ x_1 \to e_1, \mathsf{R} \ x_2 \to e_2) \leadsto \{v/x_2\}e_2} \text{ RedCase}_2$$

$$\frac{1}{(\lambda x : \tau.e) \ v \leadsto \{v/x\}e} \text{ RedFn}$$

Theorems

Lemma 1.0.1. (Weakening and Exchange)

- (i) If $\Gamma_1, \Gamma_2 \vdash e : \tau$, then $\Gamma_1, x : \tau_x, \Gamma_2 \vdash e : \tau$.
- (ii) If $\Gamma_1, x_1 : \tau_1, x_2 : \tau_2, \Gamma_2 \vdash e : \tau$, then $\Gamma_1, x_2 : \tau_2, x_1 : \tau_1, \Gamma_2 \vdash e : \tau$.

Proof. Proof by rule induction on the premises.

Theorem 1.0.1. (Substitution) If $\Gamma \vdash e : \tau_1$ and $\Gamma, x : \tau_1 \vdash e_2 : \tau_2$ holds, then $\Gamma \vdash \{e_1/x\}e_2 : \tau_2$ holds.

Proof. Proof by rule induction on $\Gamma, x : \tau_1 \vdash e_2 : \tau_2$

Theorem 1.0.2. (Progress) If $\cdot \vdash e : \tau$, then e is a value or $\exists e' \in \Lambda . e \leadsto e'$.

Proof. Proof by rule induction on $\cdot \vdash e : \tau$.

Theorem 1.0.3. (Preservation) If $\cdot \vdash e : \tau$ and $e \leadsto e'$, then $\cdot \vdash e' : \tau$.

Proof. Proof by rule induction on $e \rightsquigarrow e'$.

• Safety = Progress + Preservation

Theorem 1.0.4. (Determinacy) If $e_1 \sim e_2$ and $e_1 \sim e_3$, then $e_2 = e_3$.

Proof. Proof by rule induction on $e_1 \rightsquigarrow e_2$.

Termination

Definition 1.0.1. (Halting) A term e is said to half if and only if there exists a value v s.t $e \rightsquigarrow^* v$.

Definition 1.0.2. (Type Interpretation) The interpretation of the type τ is defined by the denotation $\llbracket \tau \rrbracket \subseteq \Lambda$:

Lemma 1.0.2. (Closure) If $e \leadsto e'$, then $e' \in \llbracket \tau \rrbracket \iff e' \in \llbracket \tau \rrbracket$.

Proof. Proof by structural induction on τ .

Definition 1.0.3. (Context Interpretations) The interpretation of a term context Γ is defined by the denotation $\llbracket \Gamma \mathsf{ctx} \rrbracket \subseteq \mathsf{TermSubst}$ is

$$\begin{split} & \llbracket \cdot \mathsf{ctx} \rrbracket = \{ \cdot \} \\ & \llbracket \Gamma, x : \tau \ \mathsf{ctx} \rrbracket = \{ \{ \phi, e/x \} \in \mathsf{TermSubst} : \phi \in \llbracket \Gamma \ \mathsf{ctx} \rrbracket \wedge e \in \llbracket \tau \rrbracket \} \end{split}$$

Lemma 1.0.3. (The Fundamental Lemma) If $\Gamma \vdash e : \tau$, then for all $\phi \in \llbracket \Gamma \mathsf{ctx} \rrbracket$, $\phi e \in \llbracket \tau \rrbracket$.

Proof. Proof by rule induction on $\Gamma \vdash e : \tau$.

Theorem 1.0.5. (Consistency) For all $e \in \Lambda$. $\forall e : 0$.

Proof. Let $e \in \Lambda$ be arbitrary. We proceed by contradiction. Assume $\cdot \vdash e : 0$ holds. By the fundamental lemma, $e \in \llbracket \tau \rrbracket = \emptyset$. $e \notin \emptyset$ by the definable property of \emptyset . A contradiction!

2 Polymorphic λ -Calculus (System F)

Syntax

Types $A ::= \alpha \mid A \to A \mid \forall \alpha.A \mid \exists \alpha.A$

 $\text{Terms} \qquad \qquad e ::= x \mid \lambda x : A.e \mid e \mid e \mid \Lambda \alpha.e \mid e \mid [A] \mid \mathsf{pack}_{\alpha_{\mathsf{abs}}.A_{\mathsf{sig}}}(A_{\mathsf{conc}}, e_{\mathsf{impl}})$

 $| \text{ let pack}(\alpha, x) = e \text{ in } e$

Values $v := \lambda x : A.e \mid \Lambda \alpha.e \mid \mathsf{pack}_{\alpha.A}(A, v)$

Type Contexts $\Theta := \cdot \mid \Theta, \alpha$

Term Contexts $\Gamma := \cdot \mid \Gamma, x : A$

 $\text{Evaluation Contexts} \quad \mathbb{E} ::= [\cdot] \mid \mathbb{E} \ e \mid v \ \mathbb{E} \mid \mathbb{E} \ [A] \mid \mathsf{pack}_{\alpha.A}(A,\mathbb{E}) \mid \mathsf{let} \ \mathsf{pack}(\alpha,x) = \mathbb{E} \ \mathsf{in} \ e$

Typing Rules

 $\Theta \vdash A$ type

$$\frac{\alpha \in \Theta}{\Theta \vdash \alpha \; \mathsf{type}} \qquad \frac{\Theta \vdash A_1 \; \mathsf{type} \quad \Theta \vdash A_2 \; \mathsf{type}}{\Theta \vdash A_1 \to A_2 \; \mathsf{type}} \qquad \frac{\Theta, \alpha \vdash A \; \mathsf{type}}{\Theta \vdash \forall \alpha.A \; \mathsf{type}} \qquad \frac{\Theta, \alpha \vdash A \; \mathsf{type}}{\Theta \vdash \exists \alpha.A \; \mathsf{type}}$$

 $\Theta \vdash \Gamma$ ctx

$$\frac{\Theta \vdash \Gamma \; \mathsf{ctx} \qquad x \not \in \mathsf{dom} \; \Gamma \qquad \Theta \vdash A \; \mathsf{type}}{\Theta \vdash \Gamma, x : A \; \mathsf{ctx}}$$

$$\begin{array}{c} \underbrace{x:A\in\Gamma}_{\Theta;\,\Gamma\vdash e:A} \\ \\ \underline{\theta;\,\Gamma\vdash e:A} \end{array} \text{ Hyp} \qquad \underbrace{\frac{\Theta\vdash A \text{ type} \qquad \Theta;\,\Gamma,x:A_1\vdash e:A_2}{\Theta;\,\Gamma\vdash \lambda x:A_1.e:A_1\to A_2}}_{\Theta;\,\Gamma\vdash e_1:A_1\to A_2} \to \mathbf{I} \\ \\ \underline{\frac{\Theta;\,\Gamma\vdash e_1:A_1\to A_2 \qquad \Theta;\,\Gamma\vdash e_2:A_1}{\Theta;\,\Gamma\vdash e_1\:e_2:A_2}} \to \mathbf{E} \qquad \underbrace{\frac{\Theta,\alpha;\,\Gamma\vdash e:A}{\Theta;\,\Gamma\vdash A\alpha.e:\,\forall\alpha.A}}_{\Theta;\,\Gamma\vdash \Lambda\alpha.e:\,\forall\alpha.A} \; \forall \mathbf{I} \\ \\ \underline{\frac{\Theta;\,\Gamma\vdash e:\forall\alpha.A_1 \qquad \Theta\vdash A_2 \text{ type}}{\Theta:\,\Gamma\vdash e\:[A_2]:\,\{A_2/\alpha\}A_1}}}_{\Theta:\,\Gamma\vdash e\:[A_2]:\,\{A_2/\alpha\}A_1}$$

$$\begin{split} \frac{\Theta; \alpha_{\text{abs}} \vdash A_{\text{sig}} \text{ type} & \Theta \vdash A_{\text{conc}} \text{ type} & \Theta; \Gamma \vdash e_{\text{impl}} : \{A_{\text{conc}}/\alpha_{\text{abs}}\}A_{\text{sig}} \\ & \Theta; \Gamma \vdash \mathsf{pack}_{\alpha_{\text{abs}}.A_{\text{sig}}}(A_{\text{conc}}, e_{\text{impl}}) : \exists \alpha_{\text{abs}}.A_{\text{sig}} \\ & \frac{\Theta; \Gamma \vdash e_1 : \exists \alpha_{\text{abs}}.A_{\text{sig}} & \Theta, \alpha; \Gamma, x : \{\alpha_{\text{abs}}/\alpha\}A_{\text{sig}} \vdash e_2 : A}{\Theta; \Gamma \vdash \mathsf{let} \; \mathsf{pack}(\alpha, x) = e_1 \; \mathsf{in} \; e_2 : A} \; \exists \mathsf{E} \end{split}$$

Operational Semantics

$$\frac{e \leadsto e'}{\mathbb{E}[e] \leadsto \mathbb{E}[e']} \text{ EVALCTX} \qquad \frac{}{(\lambda x:A.e) \ v \leadsto \{v/x\}e} \text{ RedFn}$$

$$\frac{}{(\lambda \alpha.e) \ [A] \leadsto \{A/\alpha\}e} \text{ RedForall}$$

$$\frac{}{|\text{let pack}(\alpha,x) = \mathsf{pack}_{\alpha_{\mathrm{abs}}.A_{\mathrm{sig}}}(A_{\mathrm{conc}},v_{\mathrm{impl}}) \text{ in } e \leadsto \{A_{\mathrm{conc}}/\alpha,v_{\mathrm{impl}}/x\}e} \text{ RedExists}$$

Church Encodings

Pairs

$$\begin{array}{lll} A_1 \times A_2 \; \triangleq \; \forall \alpha. \; (A_1 \to A_2 \to \alpha) \to \alpha \\ \\ \langle e_1, e_2 \rangle \; & \triangleq \; \Lambda \alpha. \; \lambda k : A_1 \to A_2 \to \alpha. \; k \; e \; e' \\ \\ \text{fst } e \; & \triangleq \; e \; A_1 \; (\lambda x : A_1. \; \lambda y : A_2. \; x) \\ \\ \text{snd } e \; & \triangleq \; e \; A_2 \; (\lambda x : A_1. \; \lambda y : A_2. \; y) \end{array}$$

Sums

$$\begin{array}{lll} A_1 + A_2 & \triangleq & \forall \alpha. \ (A_1 \rightarrow \alpha) \rightarrow (A_2 \rightarrow \alpha) \rightarrow \alpha \\ \\ \mathsf{L} \ e & \triangleq & \Lambda \alpha. \ \lambda f_1 : A_1 \rightarrow \alpha. \ \lambda f_2 : A_2 \rightarrow \alpha. \ f_1 \ e \\ \\ \mathsf{R} \ e & \triangleq & \Lambda \alpha. \ \lambda f_1 : A_1 \rightarrow \alpha. \ \lambda f_2 : A_2 \rightarrow \alpha. \ f_2 \ e \\ \\ \mathsf{case}(e, \mathsf{L} \ x_1 \rightarrow e_1, \mathsf{R} \ x_2 \rightarrow e_2) : A \ \triangleq \ e \ [A] \ (\lambda x_1 : A_1. \ e_1) \ (\lambda x_2 : A_2. \ e_2) \end{array}$$

Existential types

$$\begin{split} &\exists \alpha. \ A_{\mathrm{sig}} \ \triangleq \ \forall \beta. \ (\forall \alpha. \ A_{\mathrm{sig}} \to \beta) \to \beta \\ &\mathsf{pack}_{\alpha_{\mathrm{abs}}.A_{\mathrm{sig}}}(A_{\mathrm{conc}}, e_{\mathrm{impl}}) \ \triangleq \ \Lambda \beta. \ \lambda k: \forall \alpha_{\mathrm{abs}}. \ A_{\mathrm{sig}} \to \beta. \ k \ [A_{\mathrm{conc}}] \ e_{\mathrm{impl}} \\ &\mathsf{let} \ \mathsf{pack}(\alpha, x) = e_{\mathrm{impl}} \ \mathsf{in} \ e: A \ \triangleq \ e_{\mathrm{impl}} \ [A] \ (\Lambda \alpha. \ \lambda x: A_{\mathrm{sig}}. \ e) \end{split}$$

Booleans

bool
$$\triangleq \forall \alpha. \ \alpha \rightarrow \alpha \rightarrow \alpha$$

True $\triangleq \Lambda \alpha. \ \lambda x : \alpha. \ \lambda y : \alpha. \ x$
False $\triangleq \Lambda \alpha. \ \lambda x : \alpha. \ \lambda y : \alpha. \ y$
if e then e_1 else $e_2 : A \triangleq e \ [A] \ e_1 \ e_2$

Natural numbers

$$\begin{split} \mathbb{N} & \triangleq \ \forall \alpha. \ \alpha \to (\alpha \to \alpha) \to \alpha \\ \mathsf{zero} & \triangleq \ \Lambda \alpha. \ \lambda z : \alpha. \ \lambda s : \alpha \to \alpha. \ z \\ \mathsf{succ}(e) & \triangleq \ \Lambda \alpha. \ \lambda z : \alpha. \ \lambda s : \alpha \to \alpha. \ s \ (e \ [\alpha] \ z \ s) \\ \mathsf{iter}(e, \mathsf{zero} \to e_{\mathsf{z}}, \mathsf{succ}(x) \to e_{\mathsf{s}}) : [A] & \triangleq \ e \ [A] \ e_{\mathsf{z}} \ (\lambda x : A. \ e_{\mathsf{s}}) \end{split}$$

Lists

list
$$A \triangleq \forall \alpha. \ \alpha \rightarrow (A \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$$

$$[] \qquad \triangleq \Lambda \alpha. \ \lambda n : \alpha. \ \lambda c : A \rightarrow \alpha \rightarrow \alpha. \ n$$

$$e :: e' \triangleq \Lambda \alpha. \ \lambda n : \alpha. \ \lambda c : A \rightarrow \alpha \rightarrow \alpha. \ c \ e \ (e' \ [\alpha] \ n \ c)$$

$$\mathsf{fold}(e, [] \rightarrow e_{\mathsf{n}}, x :: r \rightarrow e_{\mathsf{c}}) : B \triangleq e \ [B] \ e_{\mathsf{n}} \ (\lambda x : A. \ \lambda r : B. \ e_{\mathsf{c}})$$

Theorems

Lemma 2.0.1. (Type Weakening, Exchange and Substitution)

- (i) If $\Theta_1, \Theta_2 \vdash A$ type, then $\Theta_1, \beta, \Theta_2 \vdash A$ type.
- (ii) If $\Theta_1, \alpha_1, \alpha_2, \Theta_2 \vdash A$ type, then $\Theta_1, \alpha_2, \alpha_1, \Theta_2 \vdash A$ type.
- (iii) If $\Theta \vdash A$ type and $\Theta, \alpha \vdash B$ type, then $\Theta \vdash \{A/\alpha\}B$ type.

Proof. Proof by rule induction on $\Theta_1, \Theta_2 \vdash A$ type, $\Theta_1, \alpha_1, \alpha_2, \Theta_2 \vdash A$ type and $\Theta, \alpha \vdash B$ type.

Lemma 2.0.2. (Context Weakening, Exchange and Substitution)

- (i) If $\Theta_1, \Theta_2 \vdash \Gamma$ ctx, then $\Theta_1, \alpha, \Theta_2 \vdash \Gamma$ ctx.
- (ii) If $\Theta_1, \alpha_1, \alpha_2, \Theta_2 \vdash \Gamma$ ctx, then $\Theta_1, \alpha_2, \alpha_1, \Theta_2 \vdash \Gamma$ ctx.
- (iii) If $\Theta \vdash A$ type and $\Theta, \alpha \vdash \Gamma$ ctx, then $\Theta \vdash \{A/\alpha\}\Gamma$ ctx.

Proof. Proof by rule induction on $\Theta \vdash \Gamma ctx$. Lifts type-level structural properties to contexts.

Lemma 2.0.3. (Regularity) If $\Theta \vdash \Gamma$ ctx and Θ ; $\Gamma \vdash e : A$, then $\Theta \vdash A$ type.

Proof. Proof by rule induction on Θ ; $\Gamma \vdash e : A$.

Lemma 2.0.4. (Type Weakening, Exchange and Substitution of Terms)

- (i) If $\Theta_1, \Theta_2 \vdash \Gamma$ ctx and $\Theta_1, \Theta_2; \Gamma \vdash e : A$, then $\Theta_1, \alpha, \Theta_2; \Gamma \vdash e : A$.
- (ii) If $\Theta_1, \alpha_1, \alpha_2, \Theta_2 \vdash \Gamma$ ctx and $\Theta_1, \alpha_1, \alpha_2, \Theta_2; \Gamma \vdash e : A$, then $\Theta_1, \alpha_2, \alpha_1, \Theta_2; \Gamma \vdash e : A$.
- (iii) If Θ , $\alpha \vdash \Gamma$ ctx and $\Theta \vdash A$ type and Θ , α ; $\Gamma \vdash e : B$, then Θ ; $\{A/\alpha\}\Gamma \vdash \{A/\alpha\}e : \{A/\alpha\}B$.

Proof. Proof by rule induction on $\Theta_1, \Theta_2; \Gamma \vdash e : A, \Theta_1, \alpha_1, \alpha_2, \Theta_2; \Gamma \vdash e : A$ and $\Theta, \alpha; \Gamma \vdash e : B$.

Lemma 2.0.5. (Context Weakening, Exchange and Substitution of Terms)

- (i) If $\Theta \vdash \Gamma_1, \Gamma_2$ ctx and $\Theta \vdash A_x$ type and $\Theta; \Gamma_1, \Gamma_2 \vdash e : A$, then $\Theta; \Gamma_1, x : A_x, \Gamma_2 \vdash e : A$.
- (ii) If $\Theta \vdash \Gamma_1, x_1 : A_1, x_2 : A_2, \Gamma_2$ ctx and $\Theta; \Gamma_1, x_1 : A_1, x_2 : A_2, \Gamma_2 \vdash e : A$, then $\Theta; \Gamma_1, x_2 : A_2, x_1 : A_1, \Gamma_2 \vdash e : A$.
- (iii) If $\Theta \vdash \Gamma, x : A$ ctx and $\Theta; \Gamma \vdash e_1 : A_1$ and $\Theta; \Gamma, x : A_1 \vdash e_2 : A_2$, then $\Theta; \Gamma \vdash \{e_1/x\}e_2 : A_2$.

Proof. Proof by rule induction on Θ ; Γ_1 , $\Gamma_2 \vdash e : A$, Θ ; Γ_1 , $x_1 : A_1$, $x_2 : A_2$, $\Gamma_2 \vdash e : A$ and Θ ; Γ , $x : A_1 \vdash e_2 : A_2$.

Theorem 2.0.1. (Progress) If $\cdot; \cdot \vdash e : A$, then e is a value or $\exists e' \in \Lambda.e \leadsto e'$.

Proof. Proof by rule induction on \cdot ; $\cdot \vdash e : A$.

Theorem 2.0.2. (Preservation) If $\cdot; \cdot \vdash e : A \text{ and } e \leadsto e', \text{ then } \cdot; \cdot \vdash e' : A.$

Proof. Proof by rule induction on $e \rightsquigarrow e'$.

Termination

Definition 2.0.1. (Semantic Type) A semantic type is a set of closed terms $X \in \mathsf{SemType}\ \mathrm{s.t}$

- (i) (Halting). If $e \in X$ then e halts.
- (ii) (Closure). If $e \leadsto e'$, then $e \in X \iff e' \in X$.

Definition 2.0.2. (Type Assignment) A type assignment is a partial function θ : TypeVar \rightarrow Type. θ is said to be a Θ -assignment, written $\theta \in \mathsf{Assign}(\Theta)$, if dom $\theta = \mathrm{dom}\ \Theta$.

Definition 2.0.3. (Type Interpretation) The interpretation of types is defined by the denotation $\llbracket \Theta \vdash A \text{ type} \rrbracket$: TypeAssign \to SemType:

$$\begin{split} \llbracket\Theta \vdash \alpha \ \operatorname{type}\rrbracket \, \theta &= \theta(\alpha) \\ \llbracket\Theta \vdash A \to B \ \operatorname{type}\rrbracket \, \theta &= \{e \in \Lambda : e \ \operatorname{halts} \land \forall e' \in \llbracket\Theta \vdash A \ \operatorname{type}\rrbracket \, \theta.e \ e' \in \llbracket\Theta \vdash B \ \operatorname{type}\rrbracket \, \theta\} \\ \llbracket\Theta \vdash \forall \alpha.B\rrbracket \, \theta &= \{e \in \Lambda : e \ \operatorname{halts} \\ \land \ \forall A \in \mathsf{Type}, X \in \mathsf{SemType}.e \ [A] \in \llbracket\Theta, \alpha \vdash B \ \operatorname{type}\rrbracket \, (\theta, X/\alpha)\} \end{split}$$

Lemma 2.0.6. (Closure) If $\theta \in Assign(\Theta)$, then $[\Theta \vdash A \text{ type}] \theta \in SemType$.

Proof. Proof by rule induction on $\Theta \vdash A$ type.

Lemma 2.0.7. (Exchange and Weakening)

(i)
$$\llbracket \Theta_1, \alpha_1, \alpha_2, \Theta_2 \vdash A \text{ type} \rrbracket = \llbracket \Theta_1, \alpha_2, \alpha_1, \Theta_2 \vdash A \text{ type} \rrbracket$$

(ii) If
$$\Theta \vdash A$$
 type, then $\llbracket \Theta, \alpha \vdash A$ type $\rrbracket (\theta, X/\alpha) = \llbracket \Theta \vdash A$ type $\rrbracket \theta$

Proof. Proof by rule induction on $\Theta_1, \alpha_1, \alpha_2, \Theta \vdash A$ type and $\Theta, \alpha \vdash A$ type.

Lemma 2.0.8. (Substitution) If $\Theta \vdash A$ type and $\Theta, \alpha \vdash B$ type, then $\llbracket \Theta \vdash \{A/\alpha\}B$ type $\rrbracket \theta = \llbracket \Theta, \alpha \vdash B$ type $\rrbracket (\theta, \llbracket \Theta \vdash A$ type $\rrbracket \theta)$.

Proof. Proof by rule induction on Θ , $\alpha \vdash B$ type.

Definition 2.0.4. (Context Interpretations) The interpretation of a term context Γ is defined by the denotation $\llbracket \Theta \vdash \Gamma \mathsf{ctx} \rrbracket$: TypeAssign $\to \mathcal{P}(\mathsf{TermSubst})$ is

The interpretation of the type context Θ is defined by the denotation $\llbracket \Theta \mathsf{ctx} \rrbracket \subseteq \mathsf{TypeSubst}$:

$$\begin{split} & \llbracket \cdot \mathsf{ctx} \rrbracket = \{ \cdot \} \\ & \llbracket \Theta, \alpha \ \mathsf{ctx} \rrbracket = \{ \{ \varphi, A/\alpha \} \in \mathsf{TypeSubst} : \varphi \in \llbracket \Theta \ \mathsf{ctx} \rrbracket \wedge A \in \mathsf{Type} \} \end{split}$$

Lemma 2.0.9. (The Fundamental Lemma) If Θ ; $\Gamma \vdash e : A$ and $\Theta \vdash \Gamma$ ctx, then for all $\theta \in \mathsf{Assign}(\Theta)$, $\phi \in \llbracket \Theta \vdash \Gamma \mathsf{ctx} \rrbracket \theta$ and $\varphi \in \llbracket \Theta \mathsf{ctx} \rrbracket$, $\varphi \phi e \in \llbracket \Theta \vdash A \mathsf{type} \rrbracket \theta$ holds.

Proof. Proof by rule induction on Θ ; $\Gamma \vdash e : A$.

3 Monadic Effects

Syntax

Types	$\tau ::= 1 \mid \mathbb{N} \mid \tau \to \tau \mid ref \; \tau \mid state \; \tau$
Pure Terms	$e ::= x \mid \langle \rangle \mid n \mid \lambda x : \tau.e \mid e \mid e \mid \ell \mid \{t\}$
Impure Terms	$t ::= ref\ e \mid !e \mid e := e' \mid let\ x = e; t \mid return\ e$
Values	$v ::= \langle \rangle \mid n \mid \lambda x : \tau.e \mid \ell \mid \{t\}$
Contexts	$\Gamma ::= \cdot \mid \Gamma, x : \tau$
Store	$\sigma ::= \cdot \mid \sigma, \ell \mapsto v$
Store Context	$\Sigma ::= \cdot \mid \Sigma, \ell : \tau$
Pure Evaluation Contexts	$\mathbb{E} ::= [\cdot] \mid \mathbb{E} \ e \mid v \ \mathbb{E}$
Impure Evaluation Contexts	$\mathbb{T} ::= \operatorname{ref} \mathbb{E} \mid !\mathbb{E} \mid \mathbb{E} := e \mid v := \mathbb{E} \mid \operatorname{let} x = \mathbb{E}; t$
	\mid return $\mathbb E$

Typing Rules

$$\begin{split} & \frac{x : \tau \in \Gamma}{\Sigma; \Gamma \vdash e : \tau} \text{ Hyp} & \frac{\Sigma; \Gamma \vdash e : 1}{\Sigma; \Gamma \vdash e : 1} \text{ 1I} & \frac{\Sigma; \Gamma \vdash n : \mathbb{N}}{\Sigma; \Gamma \vdash n : \mathbb{N}} \text{ NI} & \frac{\Sigma; \Gamma, x : \tau_1 \vdash e : \tau_2}{\Sigma; \Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_2} \rightarrow & \\ & \frac{\Sigma; \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Sigma; \Gamma \vdash e_2 : \tau_1}{\Sigma; \Gamma \vdash e_1 e_2 : \tau_2} \rightarrow & \\ & \frac{\Sigma; \Gamma \vdash t \div \tau}{\Sigma; \Gamma \vdash e_1 e_2 : \tau_2} \rightarrow & \\ & \frac{\Sigma; \Gamma \vdash t \div \tau}{\Sigma; \Gamma \vdash e_1 e_2 : \tau} \text{ StateI} \end{split}$$

$$\frac{\Sigma; \Gamma \vdash e : \tau}{\Sigma; \Gamma \vdash e : \tau} \text{ RefGeT}$$

$$\frac{\Sigma; \Gamma \vdash e : \tau}{\Sigma; \Gamma \vdash e_1 : \text{ref } \tau} \text{ RefGeT}$$

$$\frac{\Sigma; \Gamma \vdash e_1 : \text{ref } \tau}{\Sigma; \Gamma \vdash e_1 : e_2 \div \tau} \text{ RefSeT}$$

$$\frac{\Sigma; \Gamma \vdash e : \tau}{\Sigma; \Gamma \vdash e : \tau} \text{ StateRet}$$

$$\frac{\Sigma; \Gamma \vdash e : \mathsf{state} \ \tau_1 \qquad \Sigma; \Gamma, x : \tau_1 \vdash t \div \tau_2}{\Sigma; \Gamma \vdash \mathsf{let} \ x = e; t \div \tau_2} \ {}_{\mathsf{STATELET}}$$

 $\Sigma \vdash \sigma : \Sigma$

$$\frac{\sum \vdash \sigma' : \Sigma' \qquad \Sigma; \cdot \vdash e : \tau}{\sum \vdash \sigma', \ell \mapsto v : \Sigma', \ell : \tau} \text{ StoreCons}$$

$$\boxed{\langle \sigma; t \rangle : \langle \Sigma; \tau \rangle}$$

$$\frac{\Sigma \vdash \sigma : \Sigma \qquad \Sigma; \cdot \vdash t \div \tau}{\langle \sigma; t \rangle : \langle \Sigma; \tau \rangle} \text{ CfgOk}$$

Operational Semantics

 $e \rightsquigarrow e$

$$\frac{e \leadsto e'}{\mathbb{E}[e] \leadsto \mathbb{E}[e']} \text{ EVALCTX} \qquad \qquad \frac{(\lambda x : \tau.e) \ v \leadsto \{v/x\}e}{(\lambda x : \tau.e) \ v \leadsto \{v/x\}e} \text{ RedFn}$$

$$\langle \sigma; e \rangle \leadsto \langle \sigma; e \rangle$$

$$\frac{e \leadsto e'}{\langle \sigma; \mathbb{T}[e] \rangle \leadsto \langle \sigma; \mathbb{T}[e'] \rangle} \text{ Evalexp } \frac{\langle \sigma; t_1 \rangle \leadsto \langle \sigma'; t_1' \rangle}{\langle \sigma; \text{let } x = \{t_1\}; t_2 \rangle \leadsto \langle \sigma'; \text{let } x = \{t_1'\}; t_2 \rangle} \text{ Evallet}$$

$$\frac{\ell \notin \text{dom } \sigma}{\langle \sigma; \text{ref } v \rangle \leadsto \langle (\sigma, \ell \mapsto v); \text{return } \ell \rangle} \text{ RedRef} \qquad \frac{\sigma(\ell) = v}{\langle \sigma; \ !\ell \rangle \leadsto \langle \sigma; \text{return } v \rangle} \text{ RedGet}$$

$$\overline{\langle \sigma[\ell \mapsto v]; \ell := v' \rangle \leadsto \langle \sigma[\ell \mapsto v']; \text{return } \langle \rangle \rangle} \text{ RedSet}$$

$$\overline{\langle \sigma; \text{let } x = \{ \text{return } v \}; t \rangle \leadsto \langle \sigma; \{ v/x \} t \rangle} \text{ RedLet}$$

Theorems

Lemma 3.0.1. (Weakening, Exchange and Substitution)

- (i) **Pure** If $\Sigma; \Gamma_1, \Gamma_2 \vdash e : \tau$, then $\Sigma; \Gamma_1, x : \tau_x, \Gamma_2 \vdash e : \tau$. **Impure** If $\Sigma; \Gamma_1, \Gamma_2 \vdash t \div \tau$, then $\Sigma; \Gamma_1, x : \tau_x, \Gamma_2 \vdash e \div \tau$.
- (ii) **Pure** If Σ ; $\Gamma_1, x_1 : \tau_1, x_2 : \tau_2, \Gamma_2 \vdash e : \tau$, then Σ ; $\Gamma_1, x_2 : \tau_2, x_1 : \tau_1, \Gamma_2 \vdash e : \tau$. **Impure** If Σ ; $\Gamma_1, x_1 : \tau_1, x_2 : \tau_2, \Gamma_2 \vdash t \div \tau$, then Σ ; $\Gamma_1, x_2 : \tau_2, x_1 : \tau_1, \Gamma_2 \vdash t \div \tau$.
- (iii) **Pure** If Σ ; $\Gamma \vdash e_1 : \tau_1$ and Σ ; Γ , $x : \tau_1 \vdash e_2 : \tau_2$, then Σ ; $\Gamma \vdash \{e_1/x\}e_2 : \tau_2$. **Impure** If Σ ; $\Gamma \vdash e : \tau_1$ and Σ ; Γ , $x : \tau_1 \vdash t \div \tau_2$, then Σ ; $\Gamma \vdash \{e_1/x\}t \div \tau_2$.

Proof. Proof by mutual rule induction for the **pure** and **impure** statements on Σ ; $\Gamma_1, \Sigma_2 \vdash t \div \tau$, Σ ; $\Gamma_1, x_1 : \tau_1, x_2 : \tau_2, \Gamma_2 \vdash t \div \tau$, and Σ ; $\Gamma, x : \tau_1 \vdash t \div \tau_2$.

Definition 3.0.1. (Store Extension) We define $\Sigma_1 \leq \Sigma_2$ to mean there exists a Σ_3 s.t $\Sigma_2 = \Sigma_1, \Sigma_3$.

Lemma 3.0.2. (Store Montonicity) If $\Sigma_1 \leq \Sigma_2$, then:

- (i) If Σ_1 ; $\Gamma \vdash e : \tau$, then Σ_2 ; $\Gamma \vdash e : \tau$.
- (ii) If Σ_1 ; $\Gamma \vdash t \div \tau$, then Σ_2 ; $\Gamma \vdash t \div \tau$.
- (iii) If $\Sigma_1 \vdash \sigma : \Sigma$, then $\Sigma_2 \vdash \sigma : \Sigma$.

Proof. (i) and (ii) proved by mutual rule induction on Σ_1 ; $\Gamma \vdash e : \tau$ and Σ_1 ; $\Gamma \vdash t \div \tau$. (iii) proved by rule induction on $\Sigma_1 \vdash \sigma : \Sigma$.

• Progress + Preservation for **pure** terms hold as usual.

Theorem 3.0.1. (Progress) If $\langle \sigma; t \rangle : \langle \Sigma; \tau \rangle$, then either $t = \text{return } v \text{ or } \exists \sigma' \in \text{Store}, t' \in \text{IA}. \langle \sigma; t \rangle \leadsto \langle \sigma'; t' \rangle$.

Proof. Proof by rule induction on Σ ; $\vdash t \div \tau$.

Theorem 3.0.2. (Preservation) If $\langle \sigma; t \rangle : \langle \Sigma; \tau \rangle$ and $\langle \sigma; t \rangle \leadsto \langle \sigma'; t' \rangle$, then there exists $\Sigma' \geq \Sigma$ s.t $\langle \sigma'; t' \rangle : \langle \Sigma'; \tau \rangle$.

Proof. Proof by rule induction on $\langle \sigma; t \rangle \rightsquigarrow \langle \sigma'; t' \rangle$.

- ullet Problem: Monadic effects don't compose. e.g. cannot compose IO + State monadic effects.
- Solutions:
 - Adding side-effects without type-level tracking \implies leads to non-termination (Landin's knot):

```
type 'a mu = ('a -> 'a) -> 'a
let fix : (int -> int) mu =
  fun f ->
  let r = ref (fun n -> 0) in
  let recur = fun n -> !r n in
  let () = r := fun n -> f recur n in
  recur
```

- Tracking side-effects using a type & effect system e.g. Koka.

4 Logic

Curry-Howard Correspondence

Definition 4.0.1. (Curry-Howard Correspondence) The Curry-Howard correspondence defines an equivalence relation $\cong \subseteq \Lambda \times \mathsf{Prop}$:

Types	Propositions
1	T
0	\perp
$\tau_1 + \tau_2$	$\psi \lor \phi$
$\tau_1 \times \tau_2$	$\psi \wedge \phi$
$\tau_1 \rightarrow \tau_2$	$\psi \to \phi$

If $\Delta \vdash_{\mathscr{P}} \psi$ in a proof system \mathscr{P} and $\tau \cong \psi$, then there exists $e \in \Lambda$ s.t $\Gamma \vdash e : \tau$ and $\Gamma \cong \Delta$. e is the corresponding proof of ψ .

- Might exist multiple typing derivations for a given proof : not an isomorphism.
- Additional correspondences:

Logic	Programming
Propositions	Types
Proofs	Terms
Normal Forms	Values
Proof Normalization	Evaluation
Normalization Strategy	Evaluation Order

• Curry-Howard is a great way to *create* type systems.

Intuitionistic Propositional Logic

Syntax

Propositions $P ::= \top \mid \bot \mid P \land P \mid P \rightarrow P \mid P \lor P$ Sequents $\Psi ::= \cdot \mid \Psi, P$

• Derived connectives:

$$\neg P \triangleq P \rightarrow \bot$$

Proof System

$$\frac{P \in \Psi}{\Psi \vdash P \text{ true}} \text{ Hyp} \qquad \frac{\Psi \vdash T \text{ true}}{\Psi \vdash T \text{ true}} \text{ \topI} \qquad \text{(No elimination for \top)}$$

$$\frac{\Psi \vdash P \text{ true}}{\Psi \vdash P \land Q \text{ true}} \stackrel{\Psi \vdash Q \text{ true}}{\Psi \vdash P_1 \text{ true}} \land I \qquad \frac{\Psi \vdash P_1 \land P_2 \text{ true}}{\Psi \vdash P_1 \text{ true}} \land E_1 \qquad \frac{\Psi \vdash P_1 \land P_2 \text{ true}}{\Psi \vdash P_2 \text{ true}} \land E_1$$

$$\frac{\Psi \vdash P \land Q \text{ true}}{\Psi \vdash P \lor Q \text{ true}} \rightarrow I \qquad \frac{\Psi \vdash P \rightarrow Q \text{ true}}{\Psi \vdash Q \text{ true}} \stackrel{\Psi \vdash P \text{ true}}{\Psi \vdash P \lor Q \text{ true}} \rightarrow E \qquad \frac{\Psi \vdash P \text{ true}}{\Psi \vdash P \lor Q \text{ true}} \lor I_1$$

$$\frac{\Psi \vdash Q \text{ true}}{\Psi \vdash P \lor Q \text{ true}} \lor I_2 \qquad \frac{\Psi \vdash P \lor Q \text{ true}}{\Psi \vdash P \text{ true}} \stackrel{\Psi \vdash P \text{ true}}{\Psi \vdash P \text{ true}} \bot E$$

$$\text{(No introduction for \bot)} \qquad \frac{\Psi \vdash \bot \text{ true}}{\Psi \vdash P \text{ true}} \bot E$$

- Proofs are *constructive*
- Corresponds to simply-typed λ -calculus and cartesian closed categories.
- **Problem**: Cannot prove certain propositions (that are tautologies):

Name	Proposition
Law of the Excluded Middle	$\neg P \lor P$
Peirce's law	$((P \to Q) \to P) \to P$
Double Negation Elimination	$\neg \neg P \to P$
Law of Contraposition	$(\neg P \to \neg Q) \to (Q \to P)$

Classical Logic

Syntax

Propositions $P ::= \top \mid \bot \mid P \land P \mid P \rightarrow P \mid P \lor P \mid \neg P$ True Sequents $\Gamma ::= \cdot \mid \Gamma, P$ False Sequents $\Delta ::= \cdot \mid \Delta, P$

Proof System

$$\frac{P \in \Gamma}{\Gamma; \Delta \vdash P \text{ true}} \text{ Hyp} \qquad \frac{P \in \Gamma}{\Gamma; \Delta \vdash P \text{ true}} \text{ TI} \qquad \text{(No introduction for } \bot\text{)}$$

$$\frac{\Gamma;\Delta \vdash P \text{ true}}{\Gamma;\Delta \vdash P \land Q \text{ true}} \qquad \Gamma;\Delta \vdash Q \text{ true}}{\Gamma;\Delta \vdash P \land Q \text{ true}} \land I \qquad \qquad \frac{\Gamma,P;\Delta \vdash Q \text{ true}}{\Gamma;\Delta \vdash P \rightarrow Q \text{ true}} \rightarrow I$$

$$\frac{\Gamma;\Delta \vdash P \text{ true}}{\Gamma;\Delta \vdash P \lor Q \text{ true}} \lor I_1 \qquad \qquad \frac{\Gamma;\Delta \vdash Q \text{ true}}{\Gamma;\Delta \vdash P \lor Q \text{ true}} \lor I_2 \qquad \qquad \frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash \neg P \text{ true}} \neg I$$

$$\frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ true} \qquad Contr$$

$$\frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ true} \qquad Contr$$

$$\frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ true} \qquad \frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ true} \qquad \frac{\Gamma;\Delta \vdash P \text{ false}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ true} \qquad \frac{\Gamma;\Delta \vdash P \text{ true}}{\Gamma;\Delta \vdash P \text{ false}} \rightarrow P$$

$$\frac{\Gamma;\Delta \vdash P \text{ true}}{\Gamma;\Delta \vdash P \text{ false}} \rightarrow P \text{ false} \qquad P \text{ true} \qquad \frac{\Gamma;\Delta \vdash P \text{ true}}{\Gamma;\Delta \vdash P \text{ false}} \land P \text{ false} \qquad P \text{$$

5 Continuations

Classical Calculus

Syntax

Types $A ::= 1 \mid 0 \mid A \times A \mid A + A \mid A \to A \mid \neg A$

Terms $e := x \mid \langle \rangle \mid \lambda x : A.e \mid \langle e, e \rangle \mid \mathsf{L} \mid \mathsf{e} \mid \mathsf{R} \mid \mathsf{e}$

 \mid not $k \mid \mu u : A.c$

Continuations $k := u \mid [] \mid e :: k \mid \mathsf{fst} \ k \mid \mathsf{snd} \ k \mid [k, k]$

 \mid not $e \mid \mu x : A.c$

Contradictions $c := \langle e \mid_A k \rangle$

True Contexts $\Gamma := \cdot \mid \Gamma, x : A$

False Contexts $\Delta := \cdot \mid \Delta, u : A$

Typing Rules

 $\Gamma; \Delta \vdash e : A \text{ true}$

$$\frac{x:A\in\Gamma}{\Gamma;\Delta\vdash x:A\;\mathsf{true}}\;\mathsf{Hyp}\qquad \frac{}{\Gamma;\Delta\vdash\langle\rangle:\top\;\mathsf{true}}\;\mathsf{\top I}\qquad (\mathsf{No}\;\mathsf{introduction}\;\mathsf{for}\;\bot)$$

$$\frac{\Gamma; \Delta \vdash e_1 : A_1 \text{ true} \qquad \Gamma; \Delta \vdash e_2 : A_2 \text{ true}}{\Gamma; \Delta \vdash \langle e_1, e_2 \rangle : A_1 \times A_2 \text{ true}} \wedge \mathbf{I} \qquad \frac{\Gamma, x : A_1; \Delta \vdash e : A_2 \text{ true}}{\Gamma; \Delta \vdash \lambda x : A_1.e : A_1 \rightarrow A_2 \text{ true}} \rightarrow \mathbf{I}$$

$$\frac{\Gamma; \Delta \vdash e : A_1 \text{ true}}{\Gamma; \Delta \vdash \mathsf{L} \ e : A_1 + A_2 \text{ true}} \ \lor \mathrm{I}_1 \\ \hline \frac{\Gamma; \Delta \vdash e : A_2 \text{ true}}{\Gamma; \Delta \vdash \mathsf{R} \ e : A_1 + A_2 \text{ true}} \ \lor \mathrm{I}_2$$

$$\frac{\Gamma; \Delta \vdash k : A \text{ false}}{\Gamma; \Delta \vdash \neg \text{not } k : A \text{ true}} \neg \mathbf{I} \qquad \qquad \frac{\Gamma; \Delta, u : A \vdash c \text{ contr}}{\Gamma; \Delta \vdash \mu u : A.c : A \text{ true}} \text{ Contr}$$

 $\Gamma; \Delta \vdash k : A \text{ false}$

$$\frac{u:A\in\Delta}{\Gamma;\Delta\vdash u:A\;\mathsf{false}}\;\mathsf{Hyp}\qquad\qquad (\mathsf{No}\;\;\mathsf{elimination}\;\;\mathsf{for}\;\;\top)\qquad\qquad \frac{}{\Gamma;\Delta\vdash[]:\perp\;\mathsf{false}}\;\bot\mathsf{E}$$

$$\frac{\Gamma; \Delta \vdash k : A_1 \text{ false}}{\Gamma; \Delta \vdash \text{ fst } k : A_1 \times A_2 \text{ false}} \land \text{E}_1 \qquad \frac{\Gamma; \Delta \vdash k : A_2 \text{ false}}{\Gamma; \Delta \vdash \text{ snd } k : A_1 \times A_2 \text{ false}} \land \text{E}_2$$

$$\frac{\Gamma; \Delta \vdash k_1 : A_1 \text{ false}}{\Gamma; \Delta \vdash [k_1, k_2] : A_1 + A_2 \text{ false}} \lor \text{E} \qquad \frac{\Gamma; \Delta \vdash e : A \text{ true}}{\Gamma; \Delta \vdash \text{ not } e : \neg A \text{ false}} \neg \text{E}$$

$$\frac{\Gamma; \Delta \vdash e : A_1 \text{ true}}{\Gamma; \Delta \vdash e : k : A_1 \rightarrow A_2 \text{ false}} \rightarrow \text{E} \qquad \frac{\Gamma; \Delta \vdash e : A \text{ true}}{\Gamma; \Delta \vdash \mu x : A.c : A \text{ false}} \xrightarrow{\text{CONTR}}$$

$$\frac{\Gamma; \Delta \vdash e : A \text{ true}}{\Gamma; \Delta \vdash e : A \text{ true}} \xrightarrow{\Gamma; \Delta \vdash k : A \text{ false}} \xrightarrow{\text{CONTR}}$$

$$\frac{\Gamma; \Delta \vdash e : A \text{ true}}{\Gamma; \Delta \vdash \langle e \mid_A k \rangle \text{ contr}} \xrightarrow{\Gamma; \Delta \vdash \langle e \mid_A k \rangle \text{ contr}} \xrightarrow{\text{CONTR}}$$

Operational Semantics

ullet Terms and Continuations are fully reduced \Longrightarrow normal forms.

$$\frac{\overline{\langle \langle e_1, e_2 \rangle} \mid_{A_1 \times A_2} \mathsf{fst} \ k \rangle \leadsto \langle e_1 \mid_{A_1} k \rangle}}{\overline{\langle \langle e_1, e_2 \rangle} \mid_{A_1 \times A_2} \mathsf{snd} \ k \rangle \leadsto \langle e_2 \mid_{A_2} k \rangle}} \, \text{RedSnd}$$

$$\frac{\overline{\langle \langle e_1, e_2 \rangle} \mid_{A_1 \times A_2} \mathsf{snd} \ k \rangle \leadsto \langle e_2 \mid_{A_2} k \rangle}}{\overline{\langle \langle \mathsf{L} \ e \mid_{A_1 + A_2} [k_1, k_2] \rangle}} \, \overline{\mathsf{RedCase}_1}$$

$$\frac{\overline{\langle \mathsf{R} \ e \mid_{A_1 + A_2} [k_1, k_2] \rangle}}{\overline{\langle \langle \mathsf{A} x : A_1 . e_1 \mid_{A_1 \to A_2} e_2 :: k \rangle} \leadsto \overline{\langle \langle \{e_2 / x\} e_1 \mid_{A_2} k \rangle}} \, \overline{\mathsf{RedFn}}}$$

$$\frac{\overline{\langle \mathsf{not} \ k \mid_{\neg A} \mathsf{not} \ e \rangle \leadsto \overline{\langle e \mid_{A} k \rangle}} \, \overline{\mathsf{RedNot}}}{\overline{\langle \mathsf{not} \ k \mid_{\neg A} \mathsf{not} \ e \rangle} \leadsto \overline{\langle e \mid_{A} k \rangle}} \, \overline{\mathsf{RedNot}}}$$

$$\frac{\overline{\langle \mathsf{not} \ k \mid_{\neg A} \mathsf{not} \ e \rangle \leadsto \overline{\langle e \mid_{A} k \rangle}} \, \overline{\mathsf{RedNot}}}{\overline{\langle e \mid_{A} \mu x : A.c \rangle} \leadsto \overline{\langle e / x \} c}} \, \overline{\mathsf{RedMu}_2}}$$

- **Problem**: Non-determinism for $\langle \mu u : A.c \mid_A \mu x : A.c' \rangle$.
- Solution: Define an evaluation order (e.g. in STLC), since \rightarrow is not confluent.

Theorems

Lemma 5.0.1. (Weakening)

Weakening of true context Γ :

- (i) If $\Gamma_1, \Gamma_2; \Delta \vdash e : B$ true, then $\Gamma_1, \Gamma_2, x : A; \Delta \vdash e : B$ true.
- (ii) If $\Gamma_1, \Gamma_2; \Delta \vdash k : A$ false, then $\Gamma_1, \Gamma_2, x : A; \Delta \vdash k : A$ false.
- (iii) If $\Gamma_1, \Gamma_2; \Delta \vdash c$ contr. then $\Gamma_1, \Gamma_2, x : A; \Delta \vdash c$ contr.

Weakening of false context Δ :

- (i) If Γ ; $\Delta_1, \Delta_2 \vdash e : B$ true, then Γ ; $\Delta_1, \Delta_2, u : A \vdash e : B$ true.
- (ii) If Γ ; $\Delta_1, \Delta_2 \vdash k : B$ false, then Γ ; $\Delta_1, \Delta_2, u : A \vdash k : B$ false.
- (iii) If Γ ; $\Delta_1, \Delta_2 \vdash c$ contr. then Γ ; $\Delta_1, \Delta_2, u : A \vdash c$ contr.

Lemma 5.0.2. (Exchange)

Exchange for true context Γ :

- (i) If $\Gamma_1, x_1 : A_1, x_2 : A_2, \Gamma_2; \Delta \vdash e : B$ true, then $\Gamma_1, x_2 : A_2, x_1 : A_1, \Gamma_2; \Delta \vdash e : B$ true.
- (ii) If $\Gamma_1, x_1 : A_1, x_2 : A_2, \Gamma_2; \Delta \vdash k : B$ true, then $\Gamma_1, x_2 : A_2, x_1 : A_1, \Gamma_2; \Delta \vdash k : B$ true.
- (iii) If $\Gamma_1, x_1 : A_1, x_2 : A_2, \Gamma_2; \Delta \vdash c$ contr. then $\Gamma_1, x_2 : A_2, x_1 : A_1, \Gamma_2; \Delta \vdash c$ contr.

Exchange for false context Δ :

- If $\Gamma; \Delta_1, x_1 : A_1, x_2 : A_2, \Delta_2 \vdash e : B$ true, then $\Gamma; \Delta_1, x_2 : A_2, x_1 : A_1; \Delta_2 \vdash e : B$ true.
- If $\Gamma; \Delta_1, x_1 : A_1, x_2 : A_2, \Delta_2 \vdash k : B$ false, then $\Gamma; \Delta_1, x_2 : A_2, x_1 : A_1; \Delta_2 \vdash k : B$ false.
- If $\Gamma; \Delta_1, x_1 : A_1, x_2 : A_2, \Delta_2 \vdash c$ contr. then $\Gamma; \Delta_1, x_2 : A_2, x_1 : A_1; \Delta_2 \vdash c$ contr.

Lemma 5.0.3. (Substitution)

If Γ ; $\Delta \vdash e : A$ true, then

- (i) If $\Gamma, x : A; \Delta \vdash e' : B$ true, then $\Gamma; \Delta \vdash \{e/x\}e' : B$ true.
- (ii) If $\Gamma, x : A; \Delta \vdash k : B$ false, then $\Gamma; \Delta \vdash \{e/x\}k : B$ false.
- (iii) If $\Gamma, x : A; \Delta \vdash c$ contr. then $\Gamma; \Delta \vdash \{e/x\}c$ contr.

If Γ ; $\Delta \vdash k : A$ false, then

- (i) If Γ ; Δ , $u : A \vdash e : B$ true, then Γ ; $\Delta \vdash \{k/u\}e : B$ true.
- (ii) If Γ ; Δ , $u: A \vdash k': B$ false, then Γ ; $\Delta \vdash \{k/u\}k': B$ false.
- (iii) If Γ ; Δ , $u : A \vdash c$ contr., then Γ ; $\Delta \vdash \{k/u\}c$ contr.

Theorem 5.0.1. (Preservation) If $\cdot; \cdot \vdash c$ contraint $c \leadsto c'$, then $\cdot; \cdot \vdash c'$ contraints.

Proof. Proof by case analysis on $c \rightsquigarrow c'$.

- Problem: $\cdot; \cdot \vdash c$ contr is a contradiction \cdot : (assuming consistency) c cannot exist.
- Solution: Add a normal form for closed contradictions.

(ans: runtime type, halt: terminating instruction, done: empty stack)

Types
$$A := \dots \mid \mathsf{ans}$$

Terms
$$e := \dots \mid \mathsf{halt}$$

Continuations $k := \dots \mid \mathsf{done}$

$$\frac{}{\Gamma;\Delta\vdash\mathsf{halt}:\mathsf{ans}\;\mathsf{true}}\;\mathsf{AnsI} \qquad \qquad \frac{}{\Gamma;\Delta\vdash\mathsf{done}:\mathsf{ans}\;\mathsf{false}}\;\mathsf{AnsE}$$

Theorem 5.0.2. (Progress) If \cdot ; $\cdot \vdash c$ contr., then $\exists c' \in \mathsf{Contr}.c \leadsto c' \text{ or } c = \langle \mathsf{halt} \mid_{\mathsf{ans}} \mathsf{done} \rangle$.

Proof. Proof by rule induction on \cdot ; $\cdot \vdash c$ contr.

Continuation Translation

- Idea: Translate classical calculus (classical logic) to STLC (intuitionistic Propositional logic)
- Let $ans \in Type$ be a STLC type (*intuitively*, it is the runtime type).

Definition 5.0.1. (Quasi-negation Translations) The *quasi-negation* of the type τ is $\sim \tau \triangleq \tau \to \text{ans}$. The quasi-negation translations for types A, true contexts Γ , and false contexts Δ :

$$(\neg A)^{\circ} = \sim A^{\circ}$$

$$(1)^{\circ} = 1$$

$$(0)^{\circ} = \operatorname{ans}$$

$$(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$$

$$(A + B)^{\circ} = \sim \sim (A^{\circ} + B^{\circ})$$

$$(A \to B)^{\circ} = \sim \sim (A^{\circ} \to B^{\circ})$$

$$(\cdot)^{\circ} = \cdot$$

$$(\Gamma, x : A)^{\circ} = \Gamma^{\circ}, x : A^{\circ}$$

$$\sim (\cdot) = \cdot$$

$$\sim (\Delta, u : A) = \sim \Delta, x : \sim A^{\circ}$$

Definition 5.0.2. (Double and Triple Negation Elimination) For all $\tau \in \mathsf{Type}$, triple-negation eliminator $\cdot \vdash \mathsf{tne}_{\tau} : \sim \sim \sim \tau \to \sim \tau$

$$\mathsf{tne}_{\tau} \triangleq \lambda k : \sim \sim \tau . \lambda x : \tau . k \ (\lambda q : \sim \sim \tau . q \ x)$$

For all $A \in \mathsf{Type}$, double-negation eliminator is defined inductively $\cdot \vdash \mathsf{dne}_A : \sim \sim A^{\circ} \to A^{\circ}$:

$$\begin{split} \mathsf{dne}_1 &= \lambda q : \sim \sim 1. \left< \right> \\ \mathsf{dne}_0 &= \lambda q : \sim \sim 0. q \; (\lambda x : \mathsf{ans}.x) \\ \mathsf{dne}_{A \times B} &= \lambda q : \sim \sim (A^\circ \times B^\circ). \left< \mathsf{dne}_A \; (\lambda k : \sim A^\circ. q \; (\lambda p : A^\circ \times B^\circ. k \; (\mathsf{fst} \; p))), \\ \mathsf{dne}_B \; (\lambda k : \sim B^\circ. q \; (\lambda p : A^\circ \times B^\circ. k \; (\mathsf{snd} \; p))) \right> \\ \mathsf{dne}_{A+B} &= \lambda q : \sim \sim \sim (A^\circ + B^\circ). \mathsf{tne}_{A^\circ + B^\circ} \; q \\ \mathsf{dne}_{A \to B} &= \lambda q : \sim \sim \sim (A^\circ \to B^\circ). \mathsf{tne}_{A^\circ \to B^\circ} \; q \\ \mathsf{dne}_{A \to B} &= \lambda q : \sim \sim \sim (A^\circ \to B^\circ). \mathsf{tne}_{A^\circ \to B^\circ} \; q \end{split}$$

Definition 5.0.3. (Classical Embedding) The classical embedding of the terms e, continuations k and contradictions c are given by:

$$\langle e \mid_A k \rangle^\circ = k^\circ e^\circ$$

$$x^\circ = x$$

$$\langle \rangle^\circ = \langle \rangle$$

$$\langle e_1, e_2 \rangle^\circ = \langle e_1^\circ, e_2^\circ \rangle$$

$$(\mathsf{L}\ e)^\circ = \lambda k : \sim (A^\circ + B^\circ).k \ (\mathsf{L}\ e^\circ)$$

$$(\mathsf{R}\ e)^\circ = \lambda k : \sim (A^\circ + B^\circ).k \ (\mathsf{R}\ e^\circ)$$

$$(\mathsf{not}\ k)^\circ = k^\circ$$

$$(\lambda x : A.e)^\circ = \lambda k : \sim (A^\circ \to B^\circ).k \ (\lambda x : A^\circ.e^\circ)$$

$$(\mu u : A.c)^\circ = \mathsf{dne}_A \ (\lambda u : \sim A^\circ.c^\circ)$$

$$u^\circ = u$$

$$[]^\circ = \lambda x : \mathsf{ans}.x$$

$$[k_1, k_2]^\circ = \lambda k : \sim \sim (A^\circ + B^\circ).k \ (\lambda i : A^\circ + B^\circ).$$

$$\mathsf{case}(i, \mathsf{L}\ x_1 \to k_1^\circ \ x_1, \mathsf{R}\ x_2 \to k_2^\circ \ x_2))$$

$$(\mathsf{fst}\ k)^\circ = \lambda q : (A^\circ \times B^\circ).k^\circ \ (\mathsf{fst}\ q)$$

$$(\mathsf{snd}\ k)^\circ = \lambda q : (A^\circ \times B^\circ).k^\circ \ (\mathsf{snd}\ q)$$

$$(\mathsf{not}\ e)^\circ = \lambda k : \sim A^\circ.k \ e^\circ$$

$$(e :: k)^\circ = \lambda q : \sim \sim (A^\circ \to B^\circ).q \ (\lambda p : A^\circ \to B^\circ.k^\circ \ (p\ e^\circ))$$

$$(\mu x : A.c)^\circ = \lambda x : A^\circ.c^\circ$$

Theorem 5.0.3. Classical terms encode the corresponding types in STLC:

- (i) If Γ ; $\Delta \vdash e : A$ true, then Γ° , $\sim \Delta \vdash e^{\circ} : A^{\circ}$.
- (ii) If Γ ; $\Delta \vdash k : A$ false, then Γ° , $\sim \Delta \vdash k^{\circ} : \sim A^{\circ}$.
- (iii) If Γ ; $\Delta \vdash c$ contr. then Γ° , $\sim \Delta \vdash c^{\circ}$: ans.

Proof. Proof by rule induction on derivations.

Continuation Calculus

Syntax

Types
$$A ::= 1 \mid 0 \mid A \times A \mid A + A \mid A \to A \mid \neg A$$
 Terms
$$e ::= x \mid \langle \rangle \mid \lambda x : A.e \mid e \mid e \mid \langle e, e \rangle \mid \mathsf{fst} \mid e \mid \mathsf{snd} \mid e$$

$$\mid \mathsf{L} \mid e \mid \mathsf{R} \mid e \mid \mathsf{case}(e, \mathsf{L} \mid x \to e, \mathsf{R} \mid x \to e)$$

$$\mid \mathsf{abort} \mid e \mid \mathsf{cont} \mid x \mid \mathsf{in} \mid e \mid \mathsf{throw}_A(e, e)$$
 Contexts
$$\Gamma ::= \cdot \mid \Gamma, x : A$$

Typing Rules

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\;\text{Hyp}\qquad\qquad \frac{}{\Gamma\vdash\langle\rangle:1}\;\text{1I}\qquad\qquad \text{(No elimination for 1)}$$

Continuation Translation

Definition 5.0.4. (CPS Translation) The CPS translation of the type A, contexts Γ and terms e:

$$(e_1\ e_2)^{\bullet} = \lambda k : \sim B^{\bullet}.e_1^{\bullet}\ (\lambda f : A^{\bullet} \to B^{\bullet}.e_2^{\bullet}\ (\lambda x : A^{\bullet}.k\ (f\ x)))$$
 (abort $e)^{\bullet} = \lambda k : \sim A.e^{\bullet}\ (\lambda x : 0.k\ (abort\ x))$ (cont x in $e)^{\bullet} = \lambda k : \sim A^{\bullet}.let\ x = \lambda q : \sim \sim A^{\bullet}.q\ k$ in $e^{\bullet}\ k$ (throw_B $(e_1, e_2))^{\bullet} = \lambda k : \sim B^{\bullet}.(tne_A\ e_1^{\bullet})\ e_2^{\bullet}$

Theorem 5.0.4. If $\Gamma \vdash e : A$, then $\Gamma^{\bullet} \vdash e^{\bullet} : A^{\bullet}$.

Proof. Proof by rule induction on $\Gamma \vdash e : A$.

6 Dependent Types

Syntax

Types, Terms
$$A,e ::= x$$

$$\mid 1 \mid \langle \rangle$$

$$\mid \Pi x : A.B \mid \lambda x : A.e \mid e \mid e$$

$$\mid (e = e : A) \mid \mathsf{refl} \mid e \mid \mathsf{subst}[x : A.B](e,e)$$
 Contexts
$$\Gamma ::= \cdot \mid \Gamma, x : A$$

Typing Rules / Operational Semantics

(F: Formation, RED: Reduction, Cong: Congruence)

 Γ ctx

$$\frac{\Gamma \operatorname{ctx} \qquad \Gamma \vdash A \operatorname{type}}{\Gamma, x : A \operatorname{ctx}}$$

 $\Gamma \vdash A \text{ type}$

$$\frac{\Gamma \vdash A \text{ type} \qquad \frac{\Gamma \vdash A \text{ type} \qquad \Gamma, x : A \vdash B \text{ type}}{\Gamma \vdash \Pi x : A.B \text{ type}} \ \frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash e_1 : A \qquad \Gamma \vdash e_2 : A}{\Gamma \vdash (e_1 = e_2 : A) \text{ type}} \ _{\text{EQF}}$$

 $\Gamma \vdash e : A$

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\text{ Hyp}\qquad\qquad \frac{}{\Gamma\vdash\langle\rangle:1}\text{ II}\qquad\qquad \text{(No elimination for 1)}$$

$$\frac{\Gamma \vdash e : A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash e : B} \text{ Cong} \qquad \qquad \frac{\Gamma \vdash e : A}{\Gamma \vdash \text{refl } e : (e = e : A)} \text{ EqI}$$

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma, x : A \vdash B \text{ type} \qquad \Gamma \vdash e_{\text{eq}} : (e_1 = e_2 : A) \qquad \Gamma \vdash e_P : \{e_1/x\}B}{\Gamma \vdash \mathsf{subst}[x : A.B](e_{\text{eq}}, e_P) : \{e_2/x\}B} \text{ }_{\mathsf{EQE}}$$

$$\Gamma \vdash A \equiv B \text{ type}$$

$$\frac{\Gamma \vdash A \equiv X \text{ type}}{\Gamma \vdash 1 \equiv 1 \text{ type}} \text{ Cong1} \qquad \frac{\Gamma \vdash A \equiv X \text{ type}}{\Gamma \vdash \Pi x : A.B \equiv \Pi x : X.Y \text{ type}} \text{ Cong}\Pi$$

$$\frac{\Gamma \vdash e_{1i} : A_1 \qquad \qquad \Gamma \vdash e_{2i} : A_2 \qquad \Gamma \vdash A_1 \equiv A_2 \text{ type} \qquad \Gamma \vdash e_{1i} \equiv e_{2i} : A}{\Gamma \vdash (e_{11} = e_{12} : A_1) \equiv (e_{21} = e_{22} : A_2) \text{ type}} \text{ CongEq}$$

$\Gamma \vdash e \equiv e : A$

$$\frac{\Gamma \vdash e : A}{\Gamma \vdash e \equiv e : A} \text{ EquivRefl} \qquad \qquad \frac{\Gamma \vdash e_2 \equiv e_1 : A}{\Gamma \vdash e_1 \equiv e_2 : A} \text{ EquivSym}$$

$$\frac{\Gamma \vdash e_1 \equiv e_2 : A \qquad \Gamma \vdash e_2 \equiv e_3 : A}{\Gamma \vdash e_1 \equiv e_3 : A} \text{ EquivTrans } \frac{x : A \in \Gamma}{\Gamma \vdash x \equiv x : A} \text{ CongHyp}$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 \text{ type} \qquad \Gamma, x: A_1 \vdash e_1 \equiv e_2: B}{\Gamma \vdash \lambda x: A_1.e_1 \equiv \lambda x: A_2.e_2: \Pi x: A_1.B} \text{ Cong}\Pi I$$

$$\frac{\Gamma \vdash e_{11} = e_{21} : \Pi x : A.B \qquad \Gamma \vdash e_{12} \equiv e_{22} : A}{\Gamma \vdash e_{11} \ e_{12} \equiv e_{21} \ e_{22} : \{e_{12}/x\}B} \text{ Cong}\Pi\text{E}$$

$$\frac{\Gamma \vdash e_1 \equiv e_2 : A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash e_1 \equiv e_2 : B} \text{ Cong}$$

$$\frac{\Gamma \vdash e_1 \equiv e_2 : A}{\Gamma \vdash \mathsf{refl}\ e_1 \equiv \mathsf{refl}\ e_2 : (e_1 = e_2 : A)} \ \mathsf{CongEqI}$$

$$\begin{split} \Gamma \vdash A_1 &\equiv A_2 \text{ type } & \Gamma, x: A_1 \vdash B_1 \equiv B_2 \text{ type } \\ \Gamma \vdash e_{\text{eq}1} \equiv e_{\text{eq}2}: (e_1 = e_2: A_1) & \Gamma \vdash e_{P1} \equiv e_{P2}: \{e_1/x\}B_1 \\ \hline \Gamma \vdash \text{subst}[x: A_1.B_1](e_{\text{eq}1}, e_{P1}) \equiv \text{subst}[x: A_2.B_2](e_{\text{eq}2}, e_{P2}): \{e_2/x\}B_1 \end{split}$$
 CongEqE

$$\frac{\Gamma \vdash \lambda x : A.e : \Pi x : A.B \qquad \Gamma \vdash e_2 : A \qquad \Gamma \vdash \{e_2/x\}e_1 : \{e_2/x\}B}{\Gamma \vdash (\lambda x : A.e_1) \ e_2 \equiv \{e_2/x\}e_1 : \{e_2/x\}B} \text{ Red}\Pi$$

$$\frac{\Gamma \vdash \mathsf{subst}[x : A.B](\mathsf{refl}\ e, e_P) : \{e/x\}B \qquad \Gamma \vdash e_P : \{e/x\}B}{\Gamma \vdash \mathsf{subst}[x : A.B](\mathsf{refl}\ e, e_P) \equiv e : \{e/x\}B} \text{ RedEq}_1$$

Theorems

Lemma 6.0.1. (Weakening) If $\Gamma_1 \vdash X$ type, then

- (i) If $\Gamma_1, \Gamma_2 \vdash A$ type, then $\Gamma_1, x : X, \Gamma_2 \vdash A$ type.
- (ii) If $\Gamma_1, \Gamma_2 \vdash e : A$, then $\Gamma_1, x : X, \Gamma_2 \vdash e : A$.

- (iii) If $\Gamma_1, \Gamma_2 \vdash A \equiv B$ type, then $\Gamma_1, x : X, \Gamma_2 \vdash A \equiv B$ type.
- (iv) If $\Gamma_1, \Gamma_2 \vdash e_1 \equiv e_2 : A$, then $\Gamma_1, x : X, \Gamma_2 \vdash e_1 \equiv e_2 : A$.
- (v) If Γ_1, Γ_2 ctx, then $\Gamma_1, x : X, \Gamma_2$ ctx.

Proof. Proof by mutual rule induction on (i)-(iv). Proof by rule induction on (v).

Lemma 6.0.2. (Substitution) If $\Gamma_1 \vdash e_x : X$, then

- (i) If $\Gamma_1, x: X, \Gamma_2 \vdash A$ type, then $\Gamma_1, \{e_x/x\}\Gamma_2 \vdash \{e_x/x\}A$ type.
- (ii) If $\Gamma_1, x: X, \Gamma_2 \vdash e: A$, then $\Gamma_1, \{e_x/x\}\Gamma_2 \vdash \{e_x/x\}e: \{e_x/x\}A$.
- (iii) If $\Gamma_1, x: X, \Gamma_2 \vdash A \equiv B$ type, then $\Gamma_1, \{e_x/x\}\Gamma_2 \vdash \{e_x/x\}A \equiv \{e_x/x\}B$ type.
- (iv) If $\Gamma_1, x : X, \Gamma_2 \vdash e_1 \equiv e_2 : A$, then $\Gamma_1, \{e_x/x\} \Gamma_2 \vdash \{e_x/x\} e_1 \equiv \{e_x/x\} e_2 : \{e_x/x\} A$.
- (v) If $\Gamma_1, x : X, \Gamma_2$ ctx, then $\Gamma_1, \{e_x/x\}\Gamma_2$ ctx.

Proof. Proof by mutual rule induction on (i)-(iv). Proof by rule induction on (v).

Lemma 6.0.3. (Context Equality) If $\Gamma_1 \vdash X \equiv Y$ type, then

- (i) If $\Gamma_1, x: X, \Gamma_2 \vdash A$ type, tehen $\Gamma_1, x: Y, \Gamma_2 \vdash A$ type.
- (ii) If $\Gamma_1, x: X, \Gamma_2 \vdash e: A$, then $\Gamma_1, x: Y, \Gamma_2 \vdash e: A$.
- (iii) If $\Gamma_1, x: X, \Gamma_2 \vdash A \equiv B$ type, then $\Gamma_1, x: Y, \Gamma_2 \vdash A \equiv B$ type.
- (iv) If $\Gamma_1, x: X, \Gamma_2 \vdash e_1 \equiv e_2: A$, then $\Gamma_1, x: Y, \Gamma_2 \vdash e_1 \equiv e_2: A$.
- (v) If $\Gamma_1, x: X, \Gamma_2$ ctx, then $\Gamma_1, x: Y, \Gamma_2$ ctx.

Proof. Proof by mutual rule induction on (i)-(iv). Proof by rule induction on (v).

Theorem 6.0.1. (Regularity) If Γ ctx, then

- (i) If $\Gamma \vdash e : A$, then $\Gamma \vdash A$ type.
- (ii) If $\Gamma \vdash A \equiv B$ type, then $\Gamma \vdash A$ type and $\Gamma \vdash B$ type.