Admitere * Universitatea Politehnica din București 2001 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se calculeze $\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 4x} \right)$.
 - a) ∞ ; b) -2; c) 2; d) $-\infty$; e) nu există; f) 0.
- 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \left\{ egin{array}{ll} x^2+1, & x>0 \\ m, & x=0 \\ 1-x^2, & x<0. \end{array} \right.$

Să se determine m real astfel încât să existe f'(0).

- a) -1; b) 2; c) -2; d) 1; e) 0; f) $m \in (-1, 1)$.
- 3. Să se determine numărul întreg cel mai apropiat de $\sqrt[4]{44}$.
 - a) 3; b) 6; c) 2; d) 4; e) 5; f) 7.
- 4. Câte cifre în baza 10 are numărul

$$N = 1 + 2 \cdot 10 + 3 \cdot 10^2 + \dots + 9 \cdot 10^8 + 10 \cdot 10^9$$
 ?

- a) 11; b) 14; c) 9; d) 10; e) 12; f) 8.
- 5. Să se calculeze f''(0) pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x e^x + \ln(x^2 + 1)$.
 - a) 4; b) -1; c) 6; d) 0; e) 2; f) 8.
- 6. Să se calculeze aria mulțimii cuprinse între curba de ecuație $y = x e^x$ și dreptele x = -1, x = 0, y = 0.
 - a) $1 \frac{2}{e}$; b) 2; c) 3; d) -1; e) -2; f) e.
- 7. Să se calculeze integrala $\int_3^{19} \sqrt{x+6-6\sqrt{x-3}} \ dx$.
 - a) $\frac{38}{3}$; b) $\frac{19}{2}$; c) $\frac{39}{2}$; d) $\frac{18}{5}$; e) $\frac{36}{5}$; f) $\frac{38}{5}$.
- 8. Fie a și b numere reale astfel încât -5 < a < 2 și -7 < b < 1. Atunci valorile posibile ale produsului ab sunt cuprinse în intervalul:
 - a) (2,35); b) (-14,7); c) (-12,3); d) (-14,35); e) (-35,2); f) (-14,2).
- 9. Se consideră permutările

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}.$$

Să se rezolve ecuația $\sigma^{11} \cdot x = \tau$.

a)
$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
; b) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$; c) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$; d) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$; e) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$; f) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$.

10. Dacă 2x - y + z = 0, x + y - z = 0 și $y \neq 0$, să se calculeze valoarea raportului

$$\frac{x^2 - 2y^2 + z^2}{x^2 + y^2 + z^2}.$$

- a) 2; b) 4; c) $\frac{1}{2}$; d) $-\frac{1}{2}$; e) 3; f) 0.
- 11. Valoarea raportului $\frac{\ln 15}{\lg 15}$ este
 - a) $\frac{e}{15}$; b) 15; c) 5; d) $\lg e$; e) $\ln 10$; f) 1.
- 12. Să se determine suma soluțiilor ecuației $x^3 + x + \hat{2} = \hat{0}$ în \mathbb{Z}_6 .
 - a) $\hat{0}$; b) $\hat{4}$; c) $\hat{5}$; d) $\hat{1}$; e) $\hat{3}$; f) $\hat{2}$.

- 13. Robinetul A umple un rezervor gol în două ore, iar robinetul B umple același rezervor în patru ore. În câte minute vor umple același rezervor gol robinetele A și B curgând împreună ?
 - a) 40 min; b) 80 min; c) 100 min; d) 360 min; e) 180 min; f) 60 min.
- 14. Câți termeni raționali sunt în dezvoltarea $\left(\sqrt{2}+\frac{1}{\sqrt[3]{2}}\right)^{25}$?
 - a) 6; b) 4; c) 5; d) 24; e) nici unul; f) 25.
- 15. Să se determine m real dacă există o singură pereche (x,y) de numere reale astfel încât $y \ge x^2 + m$ și $x \ge y^2 + m$.
 - a) nu există m;b) $\;m=\frac{1}{4};$ c) $\;m=0;$ d) $m\geq\frac{1}{8};$ e) $\;m<\frac{1}{8};$ f) $\;m=1.$