



# Modelagem Geométrica

#### André Tavares da Silva

andre.silva@udesc.br

Capítulo 7 do "Foley" Capítulo 4 de Azevedo e Conci Mortenson (Geometric Modeling)





# O que é um modelo?





## O que é um modelo?

Um modelo é uma abstração do real





## Modelo

• O propósito de um modelo é de permitir **visualizá-lo**, compreender sua estrutura, seu comportamento e prover um meio conveniente para experimentações e mudanças no mesmo.





## Modelagem Geométrica

É a sub-área do Processamento Gráfico que estuda a simulação de formas que definem objetos do mundo real (3D)





## Classificações

- Tipo de Objetos
  - Superficie Definida
    - Rígidos
    - Flexíveis/Deformáveis
  - Superficie Indefinida
    - Líquidos: Água, córregos, rios, piscina, oceano....
    - Gases: Fogo, fumaça, vapor, neblina....
- Forma
  - Sólidos
  - Superficies
- Origem dos Objetos
  - Naturais
  - Manufaturados





|               | Flexíveis                                                      | Rígidos                                                      |
|---------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Naturais      | Cabelos Pele/Músculos Plantas/Arbustos/Vegetação Folhas/Flores | Pedras Relevo Árvores-tronco/Frutos                          |
| Manufaturados | Fios Tecidos/Roupas                                            | Torneados, Fresados, Extrudados, Soprados, Injetados CAD/CAE |





## Superfícies

- Foco na aparência externa do objeto (suave)
- Não atendem às restrições dos sólidos
- Representa só a "casca" (sem conteúdo)
- São de forma mais "livre"





## Sólidos

- É uma especialização da Modelagem Geométrica.
- Um sólido é mais que a representação da geometria de um objeto.
- Deve atender a regras de integridade tanto geométricas quanto topológicas objetivando eliminar ambiguidades
- Apresenta propriedades de Finitude, Fechamento, Determinismo dos Limites, Validade, ...
- Define um objeto com superfície definida, limitada e explícita.
- Pode ser maleável, deformável e de elementos da natureza.





# Objeto Gráfico

- O que é um objeto gráfico?
  - Representação computacional de uma entidade real ou imaginária.
- Características?
  - Descrição geométrica (forma, posição)
  - Atributos visuais (cor, linha, padrão)
  - Outros atributos (dependentes da aplicação)
  - Dimensão (2D, 3D, etc)
  - Sistema de coordenadas





# Objeto Gráfico

• Como representar?





Matricial





# Formas de Representação

## Formas genéricas de representação:

Objetos Primitivos

Contorno

Agrupamento

• Enumeração Espacial (Decomposição)





## Objetos Primitivos

- Instanciamento de primitivas gráficas:
  - Círculo, elipse, retângulo, triângulo ...

- Estrutura de dados
  - Lista de parâmetros: posição, cor, preenchimento







## Contorno

- Segmentos de reta entre vértices
  - Geometria (posição dos vértices)
  - **Topologia** (arestas que ligam os vértices)









## Contorno

- Estrutura de dados ?
  - lista de vértices com as arestas implícitas pela contiguidade
  - lista de arestas entre vértices dados por suas coordenadas (arestas explícitas)
  - lista de vértices + lista de arestas entre vértices





## Agrupamento

- Conjunto de objetos
  - Objetos primitivos
  - Contorno

- Estrutura de dados?
  - Composição







# Modelagem Hierárquica

- Um caso especial de modelagem por agrupamento
- Objetos construídos pela combinação de objetos primitivos:
  - Objetos definidos em seu próprio sistema de referência (primitivos)
  - Objetos primitivos instanciados no universo pela aplicação de transformações geométricas
  - Sistemas de referência dependentes.





# Modelagem Hierárquica

- Objetos são organizados em uma estrutura do tipo árvore
- Exemplos:
  - Sistema Planetário
    - Luas giram em torno de planetas
    - Planetas giram em torno de um sol
    - Sois se movimentam em uma galáxia







# Modelagem Hierárquica

- Objetos são organizados em uma estrutura do tipo árvore
- Exemplos:
  - Sistema Planetário
  - Corpos Articulados











## Enumeração Espacial (Decomposição)

• Objetos são representados por uma coleção de objetos primitivos, geralmente paralelepípedos.







## Modelagem Geométrica

## Técnicas de modelagem

- Wireframe
- Malhas de Polígonos
- B-Rep
- Sweep
- CSG
- Quadtrees e Octrees





## Wireframe

- Representa objetos por meio de arestas
  - Estrutura de arame = *wireframe*
- Elementos
  - Coordenadas dos vértices
  - Ligações entre vértices (arestas)







## Wireframe

- Limitações
  - Objetos vazados
  - Ambigüidade
  - Não armazena informação de
    - superfície
    - interior











- "Polygon meshes"
- Representam uma superfície discretizada em faces planas
- Elementos
  - Coordenadas dos vértices
  - Ligação entre os vértices (arestas)
  - Definição do plano (faces)













- Malhas de polígonos são coleções de polígonos (ou faces) que, juntos, formam a "pele" de um objeto
- Forma rápida e prática para representar objetos
- Problema: representar objetos curvos
- Solução: ?





#### Aproximação



8 retângulos



32 retângulos



128 retângulos





- Limitações
  - Superfície não é suave
  - Não armazena informação sobre o interior
    - Objeto não é necessariamente um sólido
    - Por quê a preferência por triângulos?





## Sólidos





## Representação de Sólidos

• Representação do interior dos objetos.

- Aspectos fundamentais:
  - Determinação de pontos dentro/fora do objeto
  - Determinação de pontos na superfície
  - Superfície "válida" (consistente)





## Representação Implícita

- Objetos são descritos por equações
  - f(x,y,z) = 0
- Conveniente para representação de famílias de objetos
  - Ex: esferas, elipsoides, cilindros
  - compacta
  - precisa
- Só é necessário o conjunto de parâmetros





## Representação Implícita

• Exemplo: esfera (centrada na origem)

$$x^2 + y^2 + z^2 = r$$

- Fácil calcular:
  - vetor normal
  - ponto está/não está na superfície
  - ponto está dentro/fora do objeto
- Difícil desenhar e manipular interativamente





## Representação Paramétrica



• Exemplo 2D: círculo

$$x(t) = r \cdot cos(t)$$
$$y(t) = r \cdot sin(t)$$
$$0 \le t \le 2\pi$$

Exemplo 3D: esfera

$$x(\alpha,\beta) = r \cdot cos(\beta).sen(\alpha)$$
  
 $y(\alpha,\beta) = ...$   
 $z(\alpha,\beta) = ...$   
 $0 \le \alpha,\beta \le 2\pi$ 





# Sweep

### Sólidos de varredura (sweep representation)

- Trajetórias:
  - Translacional
  - Rotacional
  - Helicoidal







# Sweep Translacional

Sweep Translacional: quando a trajetória é uma linha (reta ou curva).









# Sweep Rotacional

Sweep Rotacional: quando a trajetória é um círculo (pode ser ao redor de um dos eixos ou não).









# Sweep

- ATSWorlds
  - Gera objetos VRML a partir da técnica de Sweep.





# CSG (Constructive Solid Geometry)

#### Geometria Sólido Construtiva

# Primitivas Geométricas • Cilindro • Cone • Cubo • Esfera

#### **Operações Booleanas**

- União
- Intersecção
- Diferença

#### Transformações Geométricas

- Escala
- Rotação
- Translação





## **CSG**













## Enumeração

Quadtree (2D)

Octree (3D)





## Quadtrees

- Subdivisão do <u>plano</u> de forma adaptativa;
- Subdivisão contínua até que um determinado nível de detalhe seja atingido.









## Enumeração Espacial

- Os objetos são descritos por meio de cubos dispostos matricialmente;
- Cada cubo é chamado de "voxel" (volume element);
- A representação por enumeração é muito usada em aplicações biomédicas, pois permitem a descrição fiel de espaço interior altamente irregular.





## Octrees

- Extensão para 3D
  - Voxels correspondem a pixels em 3D
  - Enumeração força-bruta classificando as células do espaço como cheias ou vazias.







## Octrees











## **Procedurais**







L-Systems (Przemyslaw Prusinkiewicz)