# Formale Grundlagen der Informatik II 4. Übungsblatt



Fachbereich Mathematik Prof. Dr. Martin Otto

SoSe 2015 24. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

# Aufgabe G1 (Pränexe Normalform)

Seien f, g Funktionssymbole und R, S Relationssymbole mit jeweils der passenden Stelligkeit. Geben Sie zu den folgenden Formeln jeweils eine äquivalente Formel in pränexer Normalform an:

- (a)  $(\forall xRx) \lor (\exists x \neg Rx)$
- (b)  $(\forall x R x g z) \rightarrow \forall y (S f y \lor y = z)$

## Aufgabe G2 (Modellierung)

Ein Meteorologe versucht die zeitliche Entwicklung des Wetters an einem bestimmten Ort mit folgender Signatur in FO zu beschreiben:

$$S = \{0, N, <, P_S, P_R\}.$$

- 0 Konstante für den Starttag
- N 1-stelliges Funktionssymbol für den nächsten Tag
- < 2-stelliges Relationssymbol für die zeitliche Ordnung der Tage
- $P_S$ ,  $P_R$  1-stellige Relationssymbole für Sonne und Regen

Formalisieren Sie die folgenden Aussagen in FO(S):

- (a) Auf Regen folgt (irgendwann) Sonnenschein.
- (b) Jeden zweiten Tag scheint die Sonne.
- (c) Wenn an einem Tag die Sonne scheint, gibt es innerhalb von drei Tagen wieder Regen.

Hinweis: Beachten Sie, dass diese Beschreibungen nicht eindeutig sind.

# Aufgabe G3 (Wörter und Sprachen)

Wir wollen Sprachen über dem Alphabet  $\Sigma = \{a, b\}$  mit Hilfe der Prädikatenlogik definieren. Wie im Skript, S. 3, definieren wir zu einem nichtleeren Wort  $w = a_1 \dots a_n \in \Sigma^+$  eine Wortstruktur

$$\mathcal{W}(w) = \left(\{1, \dots, n\}, <^{\mathcal{W}}, P_a^{\mathcal{W}}, P_b^{\mathcal{W}}\right)$$

wobei

$$P_a^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = a\} \text{ und } P_b^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = b\}.$$

(Wir schließen das leere Wort aus, da es keine leeren Strukturen gibt.) Ein Satz  $\varphi \in FO(<, P_a, P_b)$  definiert dann die Sprache  $L(\varphi) := \{ w \in \Sigma^+ \mid \mathcal{W}(w) \models \varphi \}$ .

- (a) Welche Sprachen definieren die folgenden Formeln?
  - i.  $\forall x \forall y (x < y \rightarrow ((P_a x \rightarrow P_a y) \land (P_b y \rightarrow P_b x)))$
  - ii.  $\forall x \forall y ((x < y \land P_a x \land P_a y) \rightarrow \exists z (x < z \land z < y \land P_b z))$
- (b) Geben Sie zu den folgenden Sprachen Formeln an, welche sie definieren.
  - i.  $L((a+b)^*bb(a+b)^*)$
  - ii.  $L((ab)^{+})$

## Aufgabe G4 (Mächtigkeiten)

Betrachten Sie FO-Formeln zur Signatur  $\{f\}$ , wobei f ein einstelliges Funktionssymbol ist.

- (a) Geben Sie eine FO-Formel an, die besagt, dass die Trägermenge genau n Elemente enthält.
- (b) Geben Sie jeweils eine FO-Formel an, die genau dann von einer Struktur erfüllt wird, wenn die Interpretation von *f* i. injektiv ist.
  - ii. surjektiv ist.
- (c) Geben Sie eine FO-Formel an, die erfüllbar ist, aber nur unendliche Modelle hat.

# Aufgabe G5 (Spielsemantik)

Sei ≼ ein zweistelliges Relationssymbol in Infixnotation. Betrachten Sie den FO(≼)-Satz

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \left( (x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left( (x_4 \preccurlyeq x_1 \land x_4 \preccurlyeq x_2) \rightarrow x_4 \preccurlyeq x_3 \right) \right).$$

Sei  $\mathcal{A} = (A, \preceq^{\mathcal{A}})$  mit  $A = \{0, 1, 2, 3, 4\}$  und  $\preceq^{\mathcal{A}} = \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (4, 4)\}$ . Zeigen Sie  $\mathcal{A} \not\models \varphi$ , indem Sie eine Gewinnstrategie für den Falsifizierer angeben. Hinweis:

- (a) Bringen Sie  $\varphi$  in Negationsnormalform  $\varphi'$ , und bestimmen Sie  $SF(\varphi')$ .
- (b) Skizzieren Sie die Struktur  $\mathcal{A}$ , und überlegen Sie inhaltlich, was die Subformeln von  $\varphi'$  bedeuten.
- (c) Geben Sie für alle relevanten Spielpositionen an, wie der Falsifizierer ziehen soll, um sicher zu gewinnen.