

Anne Driemel, Herman Haverkort, Maarten Löffler and Rodrigo Silveira

EuroCG 2011, Morschach

A realization R is the graph with v=(x,y,z), such that $z\in [z_-,z_+]$.

In a fixed realization water flows from a node to its steepest descent neighbor.

The potential watershed:

$$\mathcal{W}_{\cup}(\mathsf{q}) := \bigcup_{R} \ \{\mathsf{p} : \mathsf{p} \ \mathsf{flows} \ \mathsf{to} \ \mathsf{q} \ \mathsf{in} \ R \}$$

The core watershed:

$$\mathcal{W}_{\cap}(\mathbf{q}) := \bigcap_{R} \ \{\mathbf{p} : \mathbf{p} \ \text{flows to } \mathbf{q} \ \text{in} \ R\}$$

Results

The potential watershed:

$$\mathcal{W}_{\cup}(Q) := \bigcup_{R} \ \{ \mathsf{p} : \mathsf{p} \ \mathsf{flows} \ \mathsf{to} \ \mathsf{q} \ \mathsf{in} \ R, \mathsf{q} \in Q \}$$

The core watershed:

$$\mathcal{W}_{\cap}(Q) := \bigcap_{R} \ \{ \mathsf{p} : \mathsf{p} \ \mathsf{flows} \ \mathsf{to} \ \mathsf{q} \ \mathsf{in} \ R, \mathsf{q} \in Q \}$$

Results

The potential watershed:

$$\mathcal{W}_{\cup}(Q) := \bigcup_{R} \ \{ \mathsf{p} : \mathsf{p} \ \mathsf{flows} \ \mathsf{to} \ \mathsf{q} \ \mathsf{in} \ R, \mathsf{q} \in Q \}$$

The core watershed:

$$\mathcal{W}_{\cap}(Q) := \bigcap_{R} \ \{ \mathsf{p} : \mathsf{p} \ \mathsf{flows} \ \mathsf{to} \ \mathsf{q} \ \mathsf{in} \ R, \mathsf{q} \in Q \}$$

We can compute both in $O(n \log n)$ time; on grid terrains: O(n)

Understanding Core Watersheds

Core watersheds do not give a good definition of persistent water flow..

$$\mathcal{W}_{\cap}(\mathsf{q}) = \bigcap_{R \in R_T} \{\mathsf{p} : \mathsf{p} \text{ flows to } \mathsf{q} \text{ in } R\}$$

Understanding Core Watersheds

Core watersheds do not give a good definition of persistent water flow..

Understanding Core Watersheds

Core watersheds do not give a good definition of persistent water flow..

Core watersheds do not give a good definition of persistent water flow..

Core watersheds do not give a good definition of persistent water flow..

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathsf{q}) = \bigcap_{R \in R_T} \{\mathsf{p} : \mathsf{p} \text{ flows to } \mathsf{q} \text{ in } R\}$$

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R \}$$

$$= \left(\bigcup_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \text{ does not flow to } \mathbf{q} \text{ in } R \} \right)^c$$

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R\}$$

$$= \left(\bigcup_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ } does \text{ } not \text{ flow to } \mathbf{q} \text{ in } R\}\right)^c$$

Contained in this set:

- (i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\cup}(q)$
- (iii) nodes with flow paths to (i) or (ii)

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R \}$$

$$= \left(\bigcup_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \text{ does not flow to } \mathbf{q} \text{ in } R \} \right)^c$$

Contained in this set:

- -(i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\cup}(q)$
- (iii) nodes with flow paths to (i) or (ii)

$$V_{\min}$$

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R\}$$

$$= \left(\bigcup_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ } does \text{ } not \text{ flow to } \mathbf{q} \text{ in } R\}\right)^c$$

Contained in this set:

(i) potential local minima (ii) nodes outside $\mathcal{W}_{\cup}(\mathbf{q})$ (iii) nodes with flow paths to (i) or (ii) $V_{\min} \cup (\mathcal{W}_{\cup}(\mathbf{q}))^c$

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R\}$$

$$= \left(\bigcup_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ } does \text{ } not \text{ flow to } \mathbf{q} \text{ in } R\}\right)^c$$

Contained in this set:

(i) potential local minima (ii) nodes outside $\mathcal{W}_{\cup}(\mathsf{q})$ (iii) nodes with flow paths to (i) or (ii) \mathcal{W}_{\cup} ($V_{\min} \cup (\mathcal{W}_{\cup}(\mathsf{q}))^c$)

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) \; = \; \bigcap_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \; \text{flows to } \mathbf{q} \; \text{in} \; R \}$$

$$= \left(\bigcup_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \; does \; not \; \text{flow to } \mathbf{q} \; \text{in} \; R \} \right)^c$$

Contained in this set:

Caution! Avoid the flow paths through q.(

- -(i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\cup}(q)$
 - (iii) nodes with flow paths to (i) or (ii)

$$\mathcal{W}_{\cup}$$
 ($V_{\min} \cup \left(\mathcal{W}_{\cup}(\mathsf{q})\right)^c$)

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) \; = \; \bigcap_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \; \text{flows to } \mathbf{q} \; \text{in} \; R \}$$

$$= \left(\bigcup_{R \in R_T} \{ \mathbf{p} : \mathbf{p} \; does \; not \; \text{flow to } \mathbf{q} \; \text{in} \; R \} \right)^c$$

Caution! Avoid the flow paths through q.

Contained in this set:

- (i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\cup}(q)$
- (iii) nodes with flow paths to (i) or (ii)

$$\mathcal{W}_{\cup}^{\setminus \mathsf{q}} \left(V_{\min} \cup \left(\mathcal{W}_{\cup}(\mathsf{q}) \right)^c \right)$$

Core Watersheds are the complement of the set of nodes that have alternative destinations

$$\mathcal{W}_{\cap}(\mathbf{q}) = \bigcap_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ flows to } \mathbf{q} \text{ in } R\}$$

$$= \left(\bigcup_{R \in R_T} \{\mathbf{p} : \mathbf{p} \text{ } does \text{ } not \text{ flow to } \mathbf{q} \text{ in } R\}\right)^c$$

Contained in this set:

- (i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\cup}(\mathsf{q})$
- (iii) nodes with flow paths to (i) or (ii)

$$= \left(\mathcal{W}_{\cup}^{\backslash \mathsf{q}} \left(V_{\min} \cup \left(\mathcal{W}_{\cup}(\mathsf{q}) \right)^{c} \right) \right)^{c}$$

Core Watersheds are the complement of the set of

Alternative Definition:

$$\mathcal{W}_{\cap}(\mathsf{q}) = \left(\mathcal{W}_{\cup}^{\setminus \mathsf{q}} \left(\left(\left. \mathcal{W}_{\cup} \left(\mathsf{q} \right) \right. \right)^{c} \right) \right)^{c}$$

- (i) potential local minima
- (ii) nodes outside W
- (iii) nodes with flow paths to (i) or (ii)

$$= \left(\mathcal{W}_{\cup}^{\setminus \mathsf{q}} \left(\mathcal{W}_{\min} \cup \left(\mathcal{W}_{\cup}(\mathsf{q}) \right)^c \right) \right)^c$$

Core Watersheds are the complement of the set of

Alternative Definition:

$$\mathcal{W}_{\cap}(\mathsf{q}) = \left(\mathcal{W}_{\cup}^{\setminus \mathsf{q}} \left(\left(\left. \mathcal{W}_{\cup} \left(\mathsf{q} \right) \right. \right)^{c} \right) \right)^{c}$$

"Persistent Watersheds"

- -(i) potential local minima
- (ii) nodes outside $\mathcal{W}_{\mathcal{L}}$
- (iii) nodes with flow paths to (i) or (ii)

$$= \left(\mathcal{W}_{\cup}^{\setminus \mathsf{q}} \left(\mathcal{W}_{\min} \cup \left(\mathcal{W}_{\cup}(\mathsf{q}) \right)^c \right) \right)^c$$

In general, persistent watersheds and potential watersheds are not nested!

In general, persistent watersheds and potential watersheds are not nested!

On regular* terrains, we can prove:

Let $p \in \mathcal{W}_{\cap}(q)$

* after removing avoidable local minima

In general, persistent watersheds and potential watersheds are not nested!

On regular* terrains, we can prove:

Let
$$p \in \mathcal{W}_{\cap}(q)$$

(i)
$$\Rightarrow \mathcal{W}_{\cup}(\mathsf{p}) \subseteq \mathcal{W}_{\cup}(\mathsf{q})$$

* after removing avoidable local minima

In general, persistent watersheds and potential watersheds are not nested!

On regular* terrains, we can prove:

Let
$$p \in \mathcal{W}_{\cap}(q)$$

$$(i) \Rightarrow \mathcal{W}_{\cup}(p) \subseteq \mathcal{W}_{\cup}(q)$$

(ii)
$$\Rightarrow \mathcal{W}_{\cap}(\mathsf{p}) \subseteq \mathcal{W}_{\cap}(\mathsf{q})$$

* after removing avoidable local minima

PersistentMinimum

