Predicting
Recipe
Popularity for
Homepage
Optimization

Using Data

Project Context

What is the current problem?

Recipes for the homepage are currently chosen based on personal preference.

Impact

Homepage traffic directly affects user engagement and subscription rates.

Goal

Develop a data-driven approach to select recipes that maximize traffic.

Project Objectives

- 1. Predict which recipes are likely to generate high website traffic.
- 2. Achieve 80% accuracy in predicting high-traffic recipes.
- 3. Increase user engagement and drive subscription growth.

Using Data

- Data includes 947 recipes
- Recipe attributes are used to predict whether or not a recipe performs high or low website traffic.
- This is a binary classification task.

Data Cleaning and Validation

1. Drop missing values

2. Drop unnecessary column

recipe	calories	carbohydrate	sugar	protein	category	servings	high_traffic
1	NaN	NaN	NaN	NaN	Pork	6	High
2	35.48	38.56	0.66	0.92	Potato	4	High
3	914.28	42.68	3.09	2.88	Breakfast	1	NaN
4	97.03	30.56	38.63	0.02	Beverages	4	High
5	27.05	1.85	0.80	0.53	Beverages	4	NaN

3. Data type conversions

- 4. Create new features from existing data
 - energy score = (calories+carbohydrate) / servings
 - **sugar to calorie ratio** = sugar / calories
 - protein density = protein / servings
 - protein to carb. ratio = protein/ carbohydrate

Old Categories	New Categories		
Breakfast, Lunch, Snacks	Meal		
Chicken, Meat, Pork	Protein		
Beverages	Beverage		
Potato, Vegetable	Vegetable		
Dessert	Dessert		

Model Development

The business should use **Precision for High Traffic Predictions**, a measure of how often the recipes we predict to be popular *actually* are popular.

Recommendations

- 1. Gather additional data (user clicks, recipe ratings, social media engagement) to enhance predictive power.
- 2. Deploy the Support Vector Machine (SVM) model due to its superior performance.
- 3. Periodically retrain the model with new data.
- 4. Prioritize publishing recipes that are low in calories and high in protein or vegetables.

Thank you for your attention!