A Search for Equilibrium States

(NASA-IM-82898) A SEARCH FOR EQUILIBRIUM

STATES (NASA) 13 p HC A02/MF A01 CSCL 20M

N83-20808

G3/77 Unclas

Frank J. Zeleznik

Lewis Research Center

Cleveland, Ohio

November 1982

A SEARCH FOR EQUILIBRIUM STATES

FRANK J. ZELEZNIK

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.

INTRODUCTION

The numerical computation of the composition and other properties of equilibrium states has been a continuing challenge for many years. As computers have become more powerful, people have attempted larger and more complex equilibrium calculations. These more complex problems naturally require greater amounts of computer time but, more importantly, they increase the probability that numerical obstacles to successful computations will arise. The potential impediments to success include inadequate initial estimates, convergence problems, difficulties with numerical significance and singular iteration equations. Difficulties such as these are often interrelated and more than one of them may arise to plague the unwary thermodynamicist in a particular problem. It is desirable, insofar as possible, to anticipate and avoid numerical problems to enhance the probability of success.

Let me briefly review the nature of equilibrium computations. An equilibrium state corresponds to an extremum in a function over some selected class of candidate states; for example, it might be regarded as a maximum in the entropy or a minimum in a free energy. Thus, in principle, the location of an equilibrium state can be regarded as a two step procedure: the calculation of the thermodynamic properties of all candidate states followed by a comparison of their entropies (or free energies). The greater the number of candidate states, the more difficult and time consuming the computational process and in short order it becomes quite impractical. The number of candidate states usually grows with the number of chemical species being considered. Hence an obvious way to limit the number of states is to restrict the number of species. But sometimes this may be undesirable because in so doing we might unwittingly eliminate the true equilibrium state from consideration.

^{*}Presented, in part, at Calphad XI held at the Argonne National Laboratory, Argonne, Illinois, May 16-20, 1982.

There is an alternative and generally more practical approach to the location of equilibrium states when there are many states to consider. One can begin at some initial state, explore for a state of higher entropy in the vicinity of this state and then step to an adjacent state of greater entropy. This permits one to ignore states of lower entropy and insures that each successful step will yield a state of higher entropy. The chief disadvantage with this method is that one cannot be certain that a particular starting point will produce a search path that will ultimately reach the true equilibrium state; it could just as easily terminate at a local entropy maximum or terminate prematurely because of numerical difficulties. Further, even if the path were to terminate at the true equilibrium state one might not recognize it as the global maximum. A partial resolution of this dilemma is provided by trying different starting points and comparing the entropies at the end points of the various paths. This is illustrated schematically in fig. 1 for two search paths. In this illustration the first path gives a better approximation to the equilibrium state than the second but neither has located the true equilibrium state.

Clearly the prospect of a successful search is enhanced by increasing the number of successful steps in the search path beginning at a given point. The number of steps can be increased by assiduously avoiding both states which are likely to create numerical problems and states which have little prospect for being the equilibrium state. I shall describe a search algorithm of this type for an important class of thermodynamic states; those obtained from a particular state by the addition of one or more pure phases in equilibrium. The algorithm has three beneficial characteristics: (1) it ignores states which have little prospect for yielding an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which might provide clues to alternative search paths.

EQUILIBRIUM EQUATIONS

Before I can describe the search algorithm it is necessary to look at the equation which must be satisfied by an equilibrium state. The governing equations are a set of nonlinear algebraic equations (Zeleznik and Gordon, 1968; Zeleznik, 1981) obtained from a constrained extremum calculation.

$$\mu_{j}^{\alpha} + \sum_{i=1}^{k} \lambda_{i} v_{ij}^{\alpha} = 0 \qquad j = 1, 2, \dots, m_{\alpha}; \alpha = 1, 2, \dots, p$$

$$\sum_{\alpha=1}^{p} \sum_{j=1}^{m_{\alpha}} v_{ij}^{\alpha} n_{j}^{\alpha} - q_{i} = 0 \qquad i = 1, 2, \dots, k$$

$$(1)$$

In (1) the Greek index α is a phase index used to label each of the p phases, the Latin index j labels the m_α species within a phase and the Latin index i labels the ℓ composition constraint relations. The quantity μ^α_j is the chemical potential of species j in phase α and is a function of the phase composition. The λ_j are Lagrangian multipliers associated with

each of the 2 constraint relations. The doubly subscripted quantity ν_{ij}^{α} is the set of stoichiometric coefficients representing the moles of component i (ith independent species) in one mole of the jth species in phase α . Finally n_{j}^{α} is the moles per unit mass of species j in phase α and q_{i} gives the moles of component i per unit mass. Suppose that the phases $p_{0} < \alpha < p$ are pure phases. Then for $p_{0} \leq \alpha \leq p$, $m_{\alpha} = 1$ and μ_{1}^{α} is just the chemical potential of the pure species μ_{α}^{\star} which is independent of composition. Thus, in this case, (1) contains a subset of $(1+p-p_{0})$ linear equations which are independent of the composition variables.

$$\sum_{i=1}^{k} \lambda_{i} v_{i1}^{\alpha} = -\mu_{\alpha}^{*} \qquad \alpha = p_{0}, p_{0} + 1, \dots, p$$
 (2)

Naturally any solution of (1) must provide a solution for (2). Conversely, if there is no solution of (2) there can be no solution for (1). Consequently, it is important to focus on those states for which we can be relatively certain that (2) will possess solutions as a means for extending the search path. Fortunately, the properties of linear systems of equations are well understood and this understanding can be applied advantageously to the particular set of equations shown in (2). The relevant ideas are most easily illustrated with a simple numerical example.

A system of linear equations such as (2) can be written most compactly in matrix notation as

$$Ax = c (3)$$

where A is a rectangular matrix, c is a known column vector and x an unknown column vector. Linear equations are classified as either possessing solutions (consistent equations) or not possessing solutions (inconsistent equations). Consistent equations may possess one or many solutions. The matrix A and the vector c together determine whether the equations are consistent or inconsistent. For example let A be a 3 X 4 rectangular matrix.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 3 & 5 & 7 & 10 \end{pmatrix}$$

Then x, if it exists, is a four component vector $x' = (x_1, x_2, x_3, x_4)$ and c is a three component vector $c' = (c_1, c_2, c_3)$ where a prime denotes the transpose of a matrix or a vector. Suppose that $c' = \hat{c}' \equiv (0, 1, 1)$. Then it may be readily verified that $x' = \hat{x}' \equiv (1, 1, -1, 0)$ is a solution of (3) and hence, for this choice of A and c, the equations are consistent. As a matter of fact there are infinitely many solutions. To demonstrate this we only need to verify that the two vectors

$$x_1^0 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} \qquad x_2^0 = \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

satisfy $Ax_1^0=0=Ax_2^0$. Such vectors are said to be in the null space of A. Thus the vector $x=\widehat{x}+\beta_1x_1^0+\beta_2x_2^0$ is a solution for arbitrary numbers β_1 and β_2 . Actually this is the general solution to the problem. On the other hand suppose $c'=\widehat{c}'\equiv(1,1,1)$. Then it turns that (3) becomes an inconsistent set of equations because if a solution existed it would lead to an inconsistency. To see that this is true we observe that if $w'\equiv(1,1,-1)$ then w'A=0. But if a solution exists then

$$1 = (1 + 1 - 1) = w'c = w'Ax = 0'x = 0$$

which is clearly inconsistent. A vector such as w is said to be in the left null space of A or, equivalently, in the null space of A'. Thus we see that (3) is solvable for x if and only if c satisfies the condition

$$w'c = c_1 + c_2 - c_3 = 0$$

In general, Ax = c is solvable if and only if w'c = 0 for each independent vector w in the left null space of A.

The ideas which were illustrated by example in the preceding paragraph can be established quite generally and are done so in texts on linear algebra. For our purposes the important feature is that each independent vector in the left null space of A imposes an independent constraint which must be satisfied by the vector c if Ax = c is to be consistent. Each additional constraint reduces the likelihood that a given vector c will permit a solution. However, if there are no vectors in the left null space of A then a solution will always exist. If the relation w'A = 0 is written out in terms of the components then it can be recognized as implying that the rows of A are linearly dependent. Thus if the rows of A are linearly independent then there will be no vector in the left null space of A and no constraints imposed on c.

Suppose we now choose A to be the coefficient matrix of (2). Then its rows are

$$(v_{11}^{\alpha}, v_{21}^{\alpha}, \dots v_{21}^{\alpha})$$
 $\alpha = p_0, p_0 + 1, \dots, p$

and each row is composed of the stoichiometric coefficients for the species which forms one of the $1 + p - p_0$ pure phases. So long as the pure phase species are independent of each other there will be no restrictions imposed on the permissible values for the right side of (2). Thus, from the previous discussion, it seems desirable to confine a search path to states whose pure phases are independent species. This does not mean that dependent pure phases cannot coexist. For example, on any typical winter day one can find liquid water and ice coexisting and these are certainly dependent species since they have identical chemical formulas. It only means that a state containing both water phases is less likely to arise as an equilibrium state than one containing only one of them. The initial phases of a search for an equilibrium state should be confined to the more likely states. Those states containing dependent pure phases can be searched after all of the independent pure phase states have been explored. As a practical matter candidate states with dependent pure phases may have to be treated as special cases rather than as part of a general search procedure.

THE SEARCH ALGORITHM

We can now incorporate the ideas from the foregoing discussion in a general search algorithm over a set of thermodynamic states which differ from one another only in the choice of independent pure phases.

- Step 1. Specify an initial state with p independent pure phases.
- Step 2. Specify a search set of pure species.
- Step 3. Calculate properties of the state.
- Step 4. If any pure phases are negative remove all of them and go to Step 3.
- Step 5. For each species in the search set calculate \int_{0}^{∞}

$$\phi = \mu_{j}^{*} + \sum_{i=1}^{\lambda} \lambda_{i} \nu_{i,j}$$
 where μ_{j}^{*} is the chemical potential of the

- j^{th} species and ν_{ij} is its set of stoichiometric coefficients. Step 6. Select as the $(p+1)^{th}$ pure phase a species from the search set for
- Step 6. Select as the $(p+1)^{th}$ pure phase a species from the search set for which $\phi < 0$, ϕ is a minimum over the search set and such that the species is independent of the p phases already present.
- species is independent of the p phases already present. Step 7. If a $(p+1)^{th}$ pure phase is located go to Step 3, otherwise terminate the search.

The criterion $\phi < 0$ for pure phase inclusion, Step 6, is used in the current NASA equilibrium program and was also used by its ancestral programs (Gordon and McBride, 1976; Gordon and Zeleznik, 1963; Zeleznik and Gordon, 1962). The simultaneous removal, in Step 4, of all pure phases with negative moles differs from the procedure used in the NASA equilibrium programs where only one such phase is removed. The reason for this change is that it introduces an asymmetry in the search path which should help to minimize the occurrence of closed loop paths. Occasionally it may also accelerate progress toward the final state. The requirement for independent species in Step 6 has a twofold purpose. First, it restricts the search to independent pure phases which have the greatest prospect for yielding a solution. Second, it avoids the class of singular iteration equations associated with dependent pure phases.

AN APPLICATION OF THE SEARCH ALGORITHM

I shall illustrate the use of the search algorithm by applying it to a large, difficult problem that arose in a study of the corrosion of turbine blade materials by deposits from high temperature combustion gases (Santoro et al., 1981, 1980). The problem involves 19 chemical elements present in widely varying amounts as is shown in Table 1. Further, because many of the species of interest are present in trace amounts it was desirable to calculate accurately mole fractions as small as 10^{-20} . The large disparity in elemental amounts and the requirement for high accuracy in the mole fractions presented a severe challenge to the numerics. Even with double precision arithmetic (approximately 14 digits) the results are just above the numerical noise. Calculations were carried out at one atmosphere pressure and a temperature of 1000 K. The initial states were always composed of the gaseous phase plus var—

ious pure phases. Nearly 500 different chemical species were considered in

the equilibrium computations.

Table 2 shows the initial and final states for six different search paths, the number of steps in each path and the Gibbs free energy of the final state. Paths 3 and 4 terminated at the same state while paths 5 and 6 also terminated at identical states. The common terminus of paths 3 and 4 represents the best estimate of the equilibrium state as judged by the value of the Gibbs free energy. The paths themselves are schematically presented in Table 3 where "+" denotes an addition of a pure phase, "-" denotes a deletion of a pure phase and "±" represents a null step. A null step means that the algorithm would have added a pure phase but could not do so because it would have been linearly dependent on the pure phases already present. Paths 3 and 5 are not shown. Path 3 has no steps and path 5 has two steps, the removal of Al₂SiO₅ followed by the addition of CaAl₄O₇.

Path 1 begins at an initial state containing only the gaseous solution and terminates in a tight three step loop without encountering any null steps. Table 4 shows the properties of states encountered by path 1. The initial state for path 2 is a modification of the final state for path 1. Neither Al₂TiO₅ nor Ca₄Ti₃O₁₀ were chosen for the initial state of path 2 because they were involved in the tight loop terminating path 1. The species Ti₄O₇ was replaced by TiO₂ and Al₆Si₂O₁₃ was replaced by Al₂O₃ and SiO₂ with which it is linearly dependent. Finally, Fe₃O₄ was replaced by Fe₂O₃ and the species CaSO₄, Na₂SO₄, PbSO₄ and ZnO were added. The ensuing search path contains two null steps; one involving Al₂SiO₅ to terminate the search and another involving Al₂TiO₅ at step 2. Although Al₂TiO₅ was involved in a null step, it was

subsequently added to the system at step 8.

The initial states for paths 3 and 4 are derivatives of the final state for path 2. Since path 2 was completed with an Al₂Si0₅ null step it suggests that new paths be tried which include it as a pure phase. Thus, for path 3, Al₆Si₂O₁₃ was omitted from consideration in the search and was replaced by Al₂Si0₅ in the initial state. This search terminated with no additional steps being taken. For path 4, Al₆Si₂O₁₃ was again omitted from consideration and was replaced in the initial state by the combination of Al₂O₂ and SiO₂.

by the combination of Al_2O_3 and SiO_2 . Like paths 3 and 4, the initial states for 5 and 6 are closely related to the final state for 2. Rather than omitting $Al_6Si_2O_{13}$, it was Al_2O_3 which was excluded from the four species dependent set of Al_2O_3 , SiO_2 , Al_2SiO_5 and $Al_6Si_2O_{13}$. For path 5 the species $Al_6Si_2O_{13}$ was supplanted by Al_2SiO_5

in the initial state. For path 6 it was replaced by SiO2.

CONCLUSIONS

An algorithm has been described which offers considerable assistance in the determination of equilibrium states containing pure phases. Its utility increases with the complexity of the system being calculated.

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance of Bonnie J. McBride in carrying out the calculations for this paper. I also wish to thank Fred Kohl for calling my attention to the difficult problem used in the example.

REFERENCES

- 1. Gordon, S.; and McBride, B. J. (1976): Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. NASA SP-273 (Rev.).
- 2. Gordon, S.; and Zeleznik, F. J. (1963): A General IBM 709 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations. Supplement I. NASA TN D-1737.
- 3. Santoro, G. J.; Calfo, F. D.; and Kohl, F. J. (1981): Material Response from Mach 0.3 Burner Rig Combustion of a Coal-Oil Mixture. DOE/NASA/2593-23, NASA TM-81686.
- 4. Santoro, G. J.; et al. (1980): Deposition and Material Reponse from Mach 0.3 Burner Rig Combustion of SRC-II Fuels. DOE/NASA/2593-20, NASA TM-81634.
- 5. Zeleznik, F. J. (1981): Thermodynamics. II. The Extended Thermodynamic System. J. Math. Phys., vol. 22 no. 1, Jan. 1981, pp. 161-178.
- 6. Zeleznik, F. J.; and Gordon, S. (1968); Calculation of Complex Equilibria. Ind. Eng. Chem. vol. 60 no. 6, June 1968, pp. 27-57; also reprinted in Applied Thermodynamics, D. E. Gushee, ed., American Chemical Society Publications, Washington, D.C. (1968).
- 7. Zeleznik, F. J.; and Gordon, S. (1962): A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouquet Detonations. NASA TN D-1454.

TABLE 1. - DISTRIBUTION OF ELEMENTS IN THE SAMPLE PROBLEM.

KG-ATOMS/KG

^	_	~~~	~~~	3 3 F	\sim
С	- 11	7/	606	1 11	-117

H 0.40735049E-02

N 0.51352555E-01

0 0.14417322E-01

S 0.35989835E-05

Ar 0.30643626E-03

V 0.37750290E-09

Ca 0.95960942E-08

Mg 0.15824376E-07

A1 0.71273032E-07

C1 0.54242432E-07

Na 0.83648392E-08

K

Fe

0.49185178E-08

0.34434377E-08

Si 0.68471511E-08

Zn 0.29413516E-08

Pb 0.92811611E-09

Ba 0.14003181E-08

Ti 0.40147322E-08

TABLE 2. - PURE PHASE SPECIES IN INITIAL AND FINAL STATES FOR SEARCH PATHS

SEARCH PATH	1		2		3		4		5		6	
PURE PHASES	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
A1 ₂ 0 ₃	ļ		х	X	X	X	х	X	0		0	
SiŌz			Х				Х				Х	
A1 ₂ Ši0 ₅				X	X		X	X				
A16Si2013		X		X	0		0		Х	X		х
CaAl ₄ O ₇		X								X		x
$MgA1_2^4O_4$	1	X	Х	X	X	Χ	X	Х	Х	Х	Х	Х
TiO2	ļ		Х				Х				Х	
Ti ₄ 0 ₇	1	X										
Al ₂ TiO ₅			ļ	X	Х	X		X	Х	X		Х
$Ca_4Ti_3O_{10}$	ĺ	X	•				1					
N a ₂ V ₂ O ₆ B a SO ₄	}	X) X	X	X	Х	Χ´	X	Х	X	Х	χ
BaSO ₄		X	X	X	X	Х	X	X	Х	X	Х	Χ
CaSO ₄			X	Х	X	Х	X	X	Х	X	Х	Х
K2S04				X	X	Х		X	Х	Х		χ
Na_2SO_4			X	X	Х	X	Х	Х	Х	Х	Х	Х
Na ₂ SÕ ₄ Pb SO ₄			X	X	X	X	Х	X	Х	, X	X	X
Zn0	ł		X	Х	X	X	Х	X	Х	X	Х	Х
Fe ₂ 0 ₃			X	X	Х	X	Х	X	X	X	Х	Х
Fe ₃ 0 ₄		X										
STEPS	1	5	1	7	0		2	0	2		8	
GIBBS ENERGY PER UNIT MASS	-2156.72	72 6236	-2156.7	275 3378	-	2156.72	75 3734		-2	156.727	4 7210	

NOTE: X PURE PHASE PRESENT OUT PURE PHASE OMITTED FROM CONSIDERATION IN THE

SEARCH

DETAILS
2
=
w
\Box
-
=
PATH
۵.
_
ರ
œ
•
SEARCH
٠.
•
က်
щ
TABLE
₹
⊢`

	9		+A1 ₆ S1 ₂ 0 ₁₃	-5i0 ₂	+CaA1407	+A1 ₂ Ti0 ₅	-CaA1 ₄ 0 ₇ -PbS0 ₄ -Ti0 ₂	+CaA1 ₄ 0 ₇	+K ₂ SO ₄	+PbS0 ₄						0	rigi F. P	INA OO		'AGI		-
TABLE 3 SEARCH PATH DETAILS	4		+K ₂ SO ₄	±A12Ti05	+Na2A12S16016	-A1 ₂ 03-Na ₂ S04-Si0 ₂	+CaA1 ₄ 0 ₇	+A1 ₂ Ti0 ₅	-CaA1 ₄ 0 ₇ -PbS0 ₄ -K ₂ S0 ₄ -Ti0 ₂	+CaA1 ₄ 0 ₇	+A1 ₂ 0 ₃	-CaA1 ₄ 0 ₇	+Na ₂ SO ₄	+K ₂ SO ₄	-Na2A12S16016-A1203	+PbSO ₄	+A1 ₂ Si0 ₅	+CaA1 ₄ 0 ₇	+A1 ₂ 0 ₃	-CaA1 ₄ 0 ₇ -PbS0 ₄ -K ₂ S0 ₄	+K ₂ 80 ₄	+PbSO ₄
TABLE 3	2		+K ₂ SO ₄	±Al2TiO5	+Na2A12Si6016	-A1 ₂ 03-Na ₂ S0 ₄ -Si0 ₂	+41 ₆ 51 ₂ 0 ₁₃	-Na ₂ A1 ₂ S1 ₆ O16	+CaA1407	+A1 ₂ Ti0 ₅	-CaA1 ₄ 0 ₇ -PbS0 ₄ -K ₂ S0 ₄ -Ti0 ₂	+CaA1407	+N2504	+A1 ₂ 0 ₃	+ 12 504	-CaA1407-Na2504	+Na2 SO4	+PbS0 ₄	±A1 ₂ Si0 ₅			
	PATH 1	STEP	1 +Mg2 A14 S15 018	2 +Ca4Ti3010	3 +CaA1 ₄ 0 ₇	4 -Ca4Ti3010	5 +A1 ₆ Si ₂ O ₁₃	6 -Mg2A14Si5018	7 +Ti ₄ 0 ₇	$8 + MgA1_2O_4$	9 +Ca4Ti ₃ O ₁₀	$^{10} + ^{\text{Na}} ^{\text{V}_2} ^{\text{O}_6}$	11 +Fe ₃ 0 ₄	12 +BaSO ₄	13 +Ca ₄ Ti ₃ O ₁₀ <	14 +A1 ₂ Ti0 ₅	15 -A1 ₂ Ti0 ₅ -Ca ₄ Ti ₃ 0 ₁₀	16	17	18	19	20

TABLE 4. - STATES ALONG SEARCH PATH 1

THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND PRESSURE

CASE NO. 69 CHEMICAL FORMULA FUEL C 1 00000 H 1 07890 FUEL S 1 00000 OXIDANT N 1.56176 O 0 41959 OXIDANT H 2.00000 O 1 00000	M 0.00890 0 0.03360 AR 0.00932 C 0.00030	WT FRACTION ENERGY STATE TEMP DENSITY (SEE NOTE) CAL/MOL DEG K G/CC 0.996840 631 000 L 298 15 0 0000 0 003000 -17 309 S 298 15 0 0000 0 990000 -28 200 G 298 15 0 0000 0 0 010000 -57795 926 G 298 15 0 0000
FUEL V 1 00000 FUEL CA 1.00000 FUEL MG 1 00000 FUEL AL 1 00000 FUEL CL 2 00000 FUEL K 1 00000 FUEL K 1 00000 FUEL FUEL K 1 00000 FUEL FUEL FUEL CO0000		0000005 0.000 S 298 15 0 0000 0000100 0 0000100 0 0000 S 298 15 0 0000 0 0000100 0 0000 S 298 15 0 0000 0 00005 0 00005 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 S 298 15 0 0000 0 0000 0 0000 0 0 0000 0 0 0
FUEL ZN 1 00000 FUEL PB 1 00000 FUEL BA 1 00000 FUEL TI 1 00000		.0000050 0 000 5 298 15 0 0000 0000050 0 000 5 298 15 0 0000 0000 5 298 15 0 0000 0000 5 298 15 0 0000 0000 5 298 15 0 0000
0/F= 25 0000 PERCENT FUEL	L= 3 8462 EQUIVALENCE RATIO= 0 5297	PHI= 0 5076 REACTANT DENSITY= 0.0000
P. ATM 1 0000 1 0000	1 0000 1.0000 1 0000 1 0000 1	1000 1 0000 1 0000 1 0000 1 0000 1 0000
T. DFG K 1000 0 1000 0 RHO. G/CC 3 5624-4 3 5624-4 1 H. CAL/G -194 77 -194 77	1000 0 1000 0 1000.0 1000 0 10 3 5624-4 3.5624-4 3.5624-4 3.5624-4 3.5624-4 3.5624-4 3.5624-4 3.5624-4 3.5624-2 3.5624-2 3.5622-2 3.562-2 3.5	10 0 1000
M. MO1 WT 29 232 29 232 (DLV/DLP)T -1 00001 -1 00001 -1 (DLV/DLT)P 1 00001 1 00001 CP. CAL/(G)(K) 0 2873 0 2873 GAMMA (5) 1 3101 1 3101	-1 00001 -1 00001 -1 00001 -1 00001 -1 00 1 0001 1 0001 1 0001 1 0001 1 0 0 2873 0 2873 0 2873 0 2873 0 2	232
MULE FRACTIONS		
K/CO3 8 863-19 8 863-19 2 2R 1 419-12 1 419-12 1 2RO 8 5980-8 8 5980-8 8 ALCL: 1 912-16 1 766-16 1 ALCL: 2 1 912-16 1 766-16 1 ALCL: 3 17 -9 2 879 -9 2 ALCL: 4 855-12 4 82-12 4 ALCL: ALCL: 4 855-12 4 82-12 4 ALCC: ALCC: 4 855-12 4 82-12 4 ALCC: ALCC: 4 945-19 4 945-19 BACL: 4 945-19 4 945-19 BACL: 2 053 -8 2 054 -8 2 BAOH 5 209-18 5 207-18 5 207-18 6 BAOH 5 209-18 5 207-18 7 207-20 6 BACL: CO2 8 1734-2 8 1734-2 8 BACL: CACL: CACL:	8 803-19 8 769-19 8 769-19 8 757-19 8 803 1 419-12 1 419-12 1 419-12 1 419-12 1 419-12 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 8 5980-8 1 894-16 8 199-17 3 694-17 3 745-17 1 93 1 099-10 4 833-11 2 178-11 2 223-11 1 118 2 981-9 1 266-9 5 703-10 5 742-10 3 042 2 554-17 9 808-13 4 418-18 4 418-18 2 402 4 482-12 1 867-12 3 410-13 8 410-13 4 573 1 920-6 8 000-7 7 603-7 3 603-7 1 959 6 026-20 1 046-20 2 122-21 2 122-21 0 006 8 9577-3 8 9578-3 9 9578-3 9 9578-3 9 9578-3 9 9578-3 9 9578-3 9 9578-	1

TABLE 4. - Concluded.

MGOH MGOPH2 NH3 NH3 NH0 NOCL NO2CL NO2CL NO3CL NO3 NC0 N204 NAC NACL NACL NACL NACL NACL NACL NACL	4.614 -7 3.398-20 2.3612-5 3.034-12 3.5748-7 16.6291-14 7.5056-1 1.590-9 8.3696-16 2.5299-8 1.930-16 1.412-10 4.140-12 4.916-11 7.6450-8 4.945-7 4.916-11 7.6450-8 4.945-7 4.916-12 1.746-7 4.916-13 7.746-7 4.916-13 7.746-7 4.916-13 7.746-7 4.916-13 7.746-7 7.749-13	3 815 -7 3 81 2 3612-5 2 36 3 398-20 3 39 2 3612-5 2 36 3 035-12 2 36 3 035-12 1 6 62 5 593-9 1 6 62 5 593-9 1 6 8 67 5 593-9 1 6 8 67 2 5309-8 2 61 1 930-16 1 92 1 412-10 1 41 4143-12 1 42 4143-12 1 42 4143-12 1 42 1 42-10 1 41 412-10	4 -7 3 814 -7 1 3 818 -7 3 818	4 612 -7 4.61 3 398-20 3 335-3 2 3612-5 2.36 8.5749-7 8 6.76 8.5749-7 8 6.77 6 291-14 6.25 1.5903-9 1.55 8.379-19 8.36 8.670-16 8.66 8.66 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.670-16 8.66 8.66 8.70-16 8.66 8.66 8.70-16 8.66 8.66 8.66 8.70-16 8.66 8.66 8.67 8.70-16 8.66 8.66 8.67 8.70-16 8.66 8.70-16 8.66 8	12 - 7 3 748-12 18-20 3 388-21 18-20 3 388-21 18-20 3 388-21 18-20 3 388-21 18-20 2 3612-12 18-20 3 3612-12 18	2 4 339-18 4; 3 339-18 4; 5 2 3 338-20 3; 5 2 3 335-12 3; 7 8 5 749-7 8; 7 8 5 75-14 6; 7 5 5 5 6 1 7; 1 5 7 5 7 6 8; 8 6 6 6 7 9 1 8; 1 7 1 1 8 1 7; 1 8 1 7 1 1 1 1 1; 1 8 1 7 1 1 1 1 1 1; 1 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	339-18 4 .339-1 938-20 3 398-2 1612-5 2 3612-5 2 3612-5 1612-5 2 3612-7 1749-7 8 5749-7 191-14 6 .291-1 1915-6 1 7 5056-7 179-19 8 .379-1 177-16 1 .377-1 177-16 1 .377-1 177-16 1 .377-1 173-10 1 .373-1 143-17 1 73-1 143-17 1 73-1 145-18 7 .6451-7 185-10 1 .884-1 129-13 2 .79-1 185-10 1 .884-1 1915-20 3 .774-3 1916-1 4 .042-1 1916-1 4 .042-1 1916-1 4 .042-1 1916-1 5 .009-2 1916-1 5 .009-2 1916-1 6 .042-1 1917-2 1916-1 6 .042-1 1917-2	8 4, 339-18 3 3 9 18 3 3 9 18 3 3 9 18 3 9 3 18 2 5 2 2 3 3 24-12 3 3 6 12-5 2 2 5 3 24-12 3 7 18 2 18 2 18 2 18 2 18 2 18 2 18 2 18	949-21 6.917-27 732-12 4.339-18 398-20 3.398-20 3612-5 2 3612-5 228-12 3.326-12 5749-7 8.5749-7 709-15 1 760-15 593-9 1.5903-9 379-19 8 379-19 452-16 8 443-16 6183-8 2 6917-8 877-16 1 874-16 374-10 1.371-10 434-12 4 686-12 744-17 1 738-17 916-11 4.916-11 6451-8 7 6451-8 9081-2 7 272-13 069-12 1.007-12 8888-10 1 832-10 708-10 1 908-10 708-10 1 908-1
8/504(5) CAAL407(5) C^41/3010(5) MC2AL4515018 HAZV206(5) AL6512013(5) FE304(5) MC1/204(5)	0 0000 0 0 0 0000 0 0 0 0000 0 0 0 0000 0 0	00000 0 0 00 00000 0 0 00 00000 0 3 91 00001 8 4 00 00000 0 0 00 00000 0 0 00 00000 0 0 00	00 0 2 8051-7 20-8 0.0000 0 31-8 4 0031-8 00 0 0.0000 0 00 0 0.0000 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51-7 1 3946-7 00 0 0 0000 0 00 0 0 0000 0 00 0 0 0000 0 08-7 1 0008-7 00 0 0.0000 0 00 0 4.6257-7	1 3946-7 1 3 5264-8 3 5 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 0 3 3553- 258-7 4.6258-	7 1 3946-7 1 8 3 5264-8 0 0 0 0000 0 0 9 5 5176-9 5 1 0008-7 1 8 3.3553-8 3 7 4 6258-7 4	0934-8 4 0934-8 3946-7 1 3946-7 0000 0 3 5264-8 0000 0 0 0000 5176-9 5 5176-9 0008-7 1 0008-7 3553-8 3 3553-8 6257-7 4.6258-7 9340-8 2 8917-9
ADDITIONAL P	RODUCTS WHICH	WERE CONSID	RED BUT WHOSE	MOLE FRACTIO	NS WERE LESS	THAN 0.10000	E-19 FOR ALL	ASSIGNED COND	ITIONS
SOLUTION 1 CZH60 AL CCH4 CZH CA2 H.H2 MG2 NA2 SOCOL2 SILL3 SILL3 SILL3	C3H70H ALC CCL CCN CHN C7H2 CLCN H25 N NAZC2N2 S2 S1H S13	CH30H ALH CCL2 CN2 C2H4 FE KCN NCO NA20 52CL 51HCL3 S14C4H12	C3H8 ALN CCL3 COCL C2H6 FECSO5 KH NH PBS S2CL2 S1H2CL2 TI	C2H402 ALO CCL4 COCL2 C2O FECL K2 NH2 PB2 S2O S1M3CL TICL	I-C4H10 ALS CH COS CS02 FES K2C2N2 N2H4 S SI SIH4	C4H804 AL2CL6 CH2 C5 C6H2 HAL0 MG M205 SCL SIC	C3H6 A120 CH20 C52 CA HCN MGH N3 SCL2 S1C2 S1C2 S1S	FEZCL6 BA CH3 C2 CAD HC0 MGN HACN SH SICL SIZ VCL6	K20 BA5 CH3CL C2CL2 CA5 HMCO MG5 NAH 5N SICL2 SICL2 VN
PURE SPECIE 512-N20(5) CAFL20(5) CAFL20(5) CAFL20(5) CAFL20(103(1) FE1103(5) K251409(1) K251409(1) K251409(1) K251409(1) K251409(1) K251409(1) FECC1 FECC1 FFCC1 F	AL253(5) CAFE204(L) CAFE204(L) CAFE204(L) CAFE103(L) FEI103(L) K251409(2) NA2503(L) NA2503(L) NA2503(L) NA2503(L) NA2503(L) SAFCOS L203(A) BA0(5) CAC03(2) FE(D) FE03H3(S) H203(L) K3504(A) M50(L) K3504(A) M50(L) M51103(L) M51203(L) NA2C03(L) NA2C0	AL253(L) CAMGO2(S) CATISIOS(S) CASAL206(S) FE25104(S) K251409(L) NA25103(L) NA25103(L) NA25103(L) BA0(L) CACL2(S) FE(L) FES(A) H2504(L) K02(S) K2504(B) MG02H2(S) MG11205(S) MG11205(S) NA20(CB)	AL253012(5) CAMM5104(5) CAMM5104(5) CASAL2513012 FE25104(L) MGFE204(5) NA25103(L) NA4V207(5) AL25105(AN) BA02H2(5) CACL2(L) FE5(505(L) FE5(50) K(5) K2503(5) K2503(5) K2503(6) MG5(5) MG5(5) MACN(L) NACN(L) N		AL2TIO5(5) CAMGS1206(L) CA2FE205(5) CA35105(5) K2AL251208(5) MA68208(5) MA68208(6) MA682	CA2FE205(L) CA3S1207(S)	CASIO3(1) CA2MGSI207(S CA3TI207(S) K2SO3(L)	FEAL204(S) K2SI03(S)	CASIO3(L) CA25104(3) FEOCL(S) K2SIO3(L)

NOTE WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

	ort No	2. Government Access	ession No 3 Recipient's Catalog No						
	SA TM-82898 and Subtitle			5 Report Date					
1	and Subtitie		ļ	November 19	82				
AS	SEARCH FOR EQUILIBRIUM	I STATES	T	6 Performing Organization Code					
				505-32-32					
7. Auth	or(s)			8. Performing Organiz	ation Report No				
Fra	ank J. Zeleznik	L	E-1281						
Q Porto	orming Organization Name and Address			10 Work Unit No					
l	tional Aeronautics and Space	Administration	Ļ		· · · · · · · · · · · · · · · · · · ·				
	vis Research Center	, Administration		11. Contract or Grant	No				
	eveland, Ohio 44135		-						
	soring Agency Name and Address			13. Type of Report ar					
]	tional Aeronautics and Space	Administration	1	Technical Me					
	shington, D.C. 20546	Administration		14. Sponsoring Agency	Code				
<u></u>	lementary Notes								
, ,	•	TT beld of the A.							
[esented, in part, at Calphad	Al neid at the A	rgonne National Lac	oratory, Argon	ne,				
шп	nois, May 16-20, 1982.								
16. Abstr	ract								
An	efficient search algorithm i	s described for t	he location of equili	ibrium states in	a search set				
ofs	states which differ from one	another only by	the choice of pure p	hases. The alg	orithm has				
thre	ee important characteristics	s: (1) it ignores	states which have li	ittle prospect for	r being an				
imp	proved approximation to the	true equilibrium	state; (2) it avoids	states which lea	ad to singular				
iter	ration equations; (3) it furni	shes a search his	story which can pro	vide clues to alt	ernative search				
patl	hs.		•						
	Words (Suggested by Author(s))		18 Distribution Statement						
	ermodynamics		Unclassified -						
	nilibria		STAR Category	7 7					
Cor	mputation								
		·							
19. Secur	rity Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*				
					l I				

Figure 1. – Two search paths for the equilibrium state σ^* beginning with states σ_0 and $\widehat{\sigma}_0.$

National Aeronautics and Space Administration

Space Administration Washington, D.C.

20546

Official Business
Penalty for Private Use, \$300

SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return