JOHANNES KEPLER UNIVERSITY LINZ

INITIAL IDEAS AND FIRST TESTS

Team B0:

Philipp Eberstaller Dominik Heindl Carson Wittwer

CONTENTS

- Implementation of Given Solution
- Idea Testing

Most of our recent time has surrounded implementing the given solution.

Opportunity to:

- Implement basic functionality e.g. data loading, ...
- Understand the structure and flow of the algorithm
- Understand more specifics to what individual functions are doing
- Identify opportunities for improvement
- Identify where our ideas can fit in

CONTENTS

- Implementation of Given Solution
- Idea Testing

IDEA TESTING

Given Algorithm

Pseudocode for Pixel Labeling Via Energy Minimization

IDEA TESTING

Given Algorithm

Pseudocode for Part of Detecting Anomalies in Noise Signal

Algorithm 1 Computation of the unstructured residual

Require: Multichannel Image u, n the number of nearest neighbors **Ensure:** Model \hat{u} of u based on \mathcal{D} , residual $r(u) = \hat{u} - u$.

1: for all Multichannel patch P of u do

2: Compute n near neigh. $\{P_i\}$ of P (outside square region).

3: Reconstruct the patch (using (1))

4: for all pixels j in u do

5:
$$\hat{u}(j) = \frac{\sum_{i \in \{s | j \in W_s, s \in [1, N]\}} \hat{P}_i(j)}{\#\{s | j \in W_s, s \in [1, N]\}}$$

Notation convention. W_s : set of pixels in the patch centered at s. $\hat{P}_i(j)$: value at pixel j of the reconstructed patch centered at i.

IDEA TESTING

Given Algorithm

Distinguish between anomalies → detect people

- use temporal data
- Check if anomalies are "moving"
 - Compare the location on different frames
- Stationary anomalies more likely to be nonhuman

QUESTIONS?

