디지털 하드웨어의 구현 p.280

이제까지 조합회로와 순차회로의 기초지식을 공부했다.

이장에서는 CMOS 기술의 논리 게이트 동작을 이해하자.

1

1

IC (Integrated Circuit) p.281

- Terminology 집적도에 따른 분류
 - SSI (small-scale integrated) fewer than 10 gates
 - MSI (medium-scale integrated) 10 to 100 gates
 - LSI (large-scale integrated) 100 to thousands of gates
 - VLSI (very large-scale integrated) thousands to 100s of millions of gates
 - · ex) Microprocessor, DSP(digital signal processor)

CMOS 회로기술 p.282

■ 반도체

- 첨가물질에 따라 전도체/부도체가 될 수 있다.
- 이를 이용한 Transistor의 개발 : 증폭, 스위칭 기능
- CMOS : Complementary metal-oxide-semiconductor
 - 고집적, 고성능, 저소비전력을 구현하는 기술
 - MOS(metal-oxide-semiconductor)
 - 반도체의 특징을 이용한 회로를 구성하는 기술
 - metal : 전도성 영역
 - oxide : 절연체
 - Semiconductor : 반도체 조작에 따라 전도체가 될 수 있다.

7

7

Q

p.285 NAND gate of CMOS Circuit +V 논리1 = disconnect G q ---0 $\overline{\mathbf{X}\cdot\mathbf{Y}}$ G 0 1 X -1 0 1 Y-느 논리 0 (c) NAND

정리 CMOS 회로 동작 Transistor