2) N, kg, m and second are consistent units.

$$Po := 50 \qquad m := 17.5 \qquad k := 7000 \qquad td := 0.2 \qquad dt := 0.025 \qquad tmax := 2$$

$$\omega n := \sqrt{\frac{k}{m}} \qquad T := \frac{2 \cdot \pi}{\omega n} \qquad \omega n = 20 \qquad T = 0.31416$$

$$\begin{split} P(Po,td,dt,tmax) := & \begin{array}{l} t \leftarrow -dt \\ i \leftarrow -1 \\ \end{array} \\ \text{while } t \leq tmax - dt \\ & \begin{array}{l} t \leftarrow t + dt \\ i \leftarrow i + 1 \\ \end{array} \\ & \begin{array}{l} P_{i,0} \leftarrow t \\ \end{array} \\ & \begin{array}{l} P_{i,1} \leftarrow Po \cdot \frac{t}{td} & \text{if } t \leq td \\ \end{array} \\ & \begin{array}{l} P_{i,1} \leftarrow 0 & \text{otherwise} \end{array} \\ P \end{split}$$

		0	1	
	0	0	0	
	1	0.025	6.25	
	2	0.05	12.5	
	3	0.075	18.75	
	4	0.1	25	
	5	0.125	31.25	
	6	0.15	37.5	
P(Po,td,dt,tmax) =	7	0.175	43.75	Force $:= P(Po, td, dt, tmax)$
	8	0.2	50	
	9	0.225	0	
	10	0.25	0	
	11	0.275	0	
	12	0.3	0	
	13	0.325	0	
	14	0.35	0	
	15	0.375	0	

Q2) Subroutine which calculates the displacement response using Newmark Algorithm.

Newmark(k, m, dt, γ , β , ζ , force, v0, u0) := countert \leftarrow rows(force) forcev \leftarrow force $\stackrel{\langle 1 \rangle}{}$ time \leftarrow force $\stackrel{\langle 0 \rangle}{}$ on $\leftarrow \sqrt{\frac{k}{m}}$ c $\leftarrow 2 \cdot \zeta \cdot m \cdot \text{on}$ v₀ \leftarrow v0 u_{0,1} \leftarrow u0 u_{0,0} \leftarrow time₀ a₀ $\leftarrow \frac{\text{forcev}_0 - \text{c} \cdot \text{v}_0 - \text{k} \cdot \text{u}_{0,1}}{m}$ kh \leftarrow k + $\frac{\gamma}{\beta \cdot \text{dt}} \cdot \text{c} + \frac{1}{\beta \cdot \text{dt}^2} \cdot \text{m}$ ca $\leftarrow \frac{1}{\beta \cdot \text{dt}} \cdot \text{m} + \frac{\gamma}{\beta} \cdot \text{c}$ cb $\leftarrow \frac{1}{2 \cdot \beta} \cdot \text{m} + \text{dt} \cdot \left(\frac{\gamma}{2 \cdot \beta} - 1\right) \cdot \text{c}$ for $i \in 0$.. countert = 2 dp_i \leftarrow forcev_{i+1} = forcev_i + ca \cdot v_i + cb \cdot a_i du_i $\leftarrow \frac{\text{dp}_i}{\text{kh}}$ dv_i $\leftarrow \frac{\gamma}{\beta \cdot \text{dt}} \cdot \text{du}_i - \frac{\gamma}{\beta} \cdot \text{v}_i + \text{dt} \cdot \left(1 - \frac{\gamma}{2 \cdot \beta}\right) \cdot \text{a}_i$ da_i $\leftarrow \frac{1}{\beta \cdot \text{dt}^2} \cdot \text{du}_i - \frac{1}{\beta \cdot \text{dt}} \cdot \text{v}_i - \frac{1}{2 \cdot \beta} \cdot \text{a}_i$ u_{i+1,0} \leftarrow time_{i+1} u_{i+1,1} \leftarrow u_{i,1} + du_i v_{i+1} \leftarrow v_i + dv_i a_{i+1} \leftarrow a_i + da_i k: stiffness of the SDOF system.

m: mass of the SDOF system.

dt: Time step.

 γ , β : Parameters of Newmark's method.

 ζ : Damping ratio.

Force: Matrix which contains the force vector. First column is the time column and second column is the force column.

v0 : initial velocity.

u0: initial displacement.

A matrix consisting of two columns is the output, first column is the time column and second is the displacement column.

Note : $\gamma=1/2$, $\beta=1/4$ represents the average acceleration method and $\gamma=1/2$, $\beta=1/6$ represents the linear acceleration method. Linear acceleration method is stable when dt/Tn < 0.551 and average acceleration method is stable for any value of dt.

Average acceleration method

$$\gamma := \frac{1}{2} \qquad \beta := \frac{1}{4} \qquad \zeta := 0 \qquad \quad v0 := 0 \qquad \quad u0 := 0$$

	•	•
0	0	0
1	0.025	0.0000525
2	0.05	0.0003028
3	0.075	0.0009019
4	0.1	0.0019191
5	0.125	0.0033251
6	0.15	0.0049991
7	0.175	0.0067574
8	0.2	0.0083963
9	0.225	0.0092675
10	0.25	0.0083783
11	0.275	0.0055178
12	0.3	0.001359
13	0.325	-0.0031196
14	0.35	-0.0068642
15	0.375	-0.0089937

Displacements are in meters.

Newmark(k, m, dt, γ , β , ζ , Force, v0, u0) =

Linear acceleration method

$$\gamma := \frac{1}{2}$$
 $\beta := \frac{1}{6}$ $\zeta := 0$ $v0 := 0$ $u0 := 0$

		0	1
	0	0	0
	1	0.025	0.0000357
	2	0.05	0.0002771
	3	0.075	0.0008806
	4	0.1	0.0019156
	5	0.125	0.003348
	6	0.15	0.0050483
Newmark(k, m, dt, γ , β , ζ , Force, $v0$, $u0$) =	7	0.175	0.0068227
	8	0.2	0.0084597
	9	0.225	0.0094592
	10	0.25	0.0084742
	11	0.275	0.0054554
	12	0.3	0.0011273
	13	0.325	-0.0034713
	14	0.35	-0.0072369
	15	0.375	-0.0092655

Displacements are in meters.