Neural networks

Doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

Neural networks

- Self-organization -

Doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics

Charles University in Prague

Self-organization

Unsupervised training:

Self-organization and clustering

Motivation:

 The network decides by itself what response fits best for the presented input pattern and adjusts its weights accordingly

Problem:

 Determine the number and location of clusters present in the feature space

Self-organization (2)

It is good to know that the truth is with us, otherwise I would feel quite afraid.

Self-organization (3)

There was in fact no girl's war, just a few minor arguments.

Self-organization (4)

Competitive learning:

- Compete for the ,,right to represent the patterns"
- Winner takes all rule (WTA)
- Inhibition of opponents
- Network plasticity
- Learning with conscience

Reinforcement learning:

Emphasizes the best reproduction of inputs

Unsupervised competitive learning

- ◆ n dimensional input patterns are processed by such a number of neurons, that corresponds to the (assumed) number of clusters
- In such a case, the neurons compute the (Euclidean) **distance** between the presented pattern and their weight vector

Unsupervised competitive learning (2)

- Competition ,,is won"
 by the neuron, situated
 the closest to the
 presented pattern
- The winning neuron becomes the most active one and will inhibit the activity of other neurons

Unsupervised competitive learning (2a)

- Inhibition by means of ,,lateral connections"
 - ==> lateral inhibition
- Global information about the state of all the neurons in the network is necessary to decide whether a neuron will be active or not
- The activity of a neuron signalls the membership of the presented input to the cluster of vectors represented by this neuron

Unsupervised competitive learning (3)

• The winning neuron adjusts its weights towards the presented pattern:

$$\Delta \vec{w} = \alpha \cdot (\vec{x} - \vec{w})$$

network plasticity (decays slowly during training)

Our objective:

- Position the neurons into the cluster centers
- Keep the already formed network structure

Unsupervised competitive learning (4)

• Strategies speeding-up the training:

 An appropriate weight initialization, e.g., according to randomly selected patterns

Problems:

- Dead (never used) neurons
 - A grid in the Kohonen layer
 - Topological neighborhood of neurons
 - Controlled competition and the mechanism of conscience

Unsupervised competitive learning (5)

- During training, the weights of the neurons should be set in such a way that correspond to the ,,centers of gravity of the respective clusters"
- The energy function of a set of n-dimensional normalized input patterns, $X = \{\vec{x}_1, ..., \vec{x}_m\}; (n \ge 2)$ is given for I neuron with the weight vector \vec{w} by means of:

$$E_X(\vec{w}) = \sum_{i=1}^m ||\vec{x}_i - \vec{w}||^2; \quad \vec{w} \in \mathbb{R}^n$$

Unsupervised competitive learning (6)

==> in the optimum case, the weight vector is located in the center of the input pattern cluster

$$E_{X}(\vec{w}) = \sum_{i=1}^{m} \|\vec{x}_{i} - \vec{w}\|^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - w_{j})^{2} =$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{2} - 2x_{ij}w_{j} + w_{j}^{2}) =$$

$$= m \left(\sum_{j=1}^{n} w_{j}^{2} - \frac{2}{m} \sum_{j=1}^{n} w_{j} \left(\sum_{i=1}^{m} x_{ij} \right) \right) + \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2} =$$

Unsupervised competitive learning (7)

$$E_{X}(\vec{w}) = m \sum_{j=1}^{n} \left(w_{j}^{2} - \frac{2}{m} w_{j} \left(\sum_{i=1}^{m} x_{ij} \right) + \frac{1}{m^{2}} \left(\sum_{i=1}^{m} x_{ij} \right) \left(\sum_{i=1}^{m} x_{ij} \right) \right) - \frac{1}{m} \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right) \left(\sum_{i=1}^{m} x_{ij} \right) + \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2} = \frac{1}{m} \left(\sum_{j=1}^{n} \left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{$$

Unsupervised competitive learning (8)

- \rightarrow the vector \vec{x}^* is the centroid of the cluster $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ and K is a constant
- \rightarrow the energy function has a global minimum at \vec{x}^*

Unsupervised competitive learning (9)

Clustering methods for empirical multidimensional data:

- Two basic approaches:
 - k nearest neighbors
 - k means algorithm
- *k* nearest neighbors (supervised training)
 - The training patterns are stored and classified into one of *l* different classes
 - A new input vector is classified into the class that contains the majority of its k nearest neighbors (from the stored set)

Unsupervised competitive learning (10)

- k-means clustering algorithm
 - Unsupervised learning
 - Input vectors are classified into k different clusters (at the beginning, each cluster contains exactly l vector)
 - A new vector \vec{x} is assigned to the cluster k, the centroid \vec{c}_k of which lies the closest to this pattern

Unsupervised competitive learning (11)

- k-means clustering algorithm (continue)
 - The centroid \vec{c}_k is then adjusted by means of:

$$\vec{c}_k(new) = \vec{c}_k(old) + \frac{1}{n_k}(\vec{x} - \vec{c}_k(old))$$

 n_k the number of vectors already assigned to cluster k

- This procedure is iteratively repeated for the entire data set (its structure is then captured by the "weight vectors" \vec{c}_i ; i = 1, ..., k)
 - → Vector quantization

Clustering problem

- Two sets of vectors:
 - \blacksquare **P** and **N**
- Difficult to ,,separate" the clusters by means of a simple perceptron such that:

$$\vec{w} \cdot \vec{p} \ge 0 \quad \forall \vec{p} \in P \quad \land \quad \vec{w} \cdot \vec{n} < 0 \quad \forall \vec{n} \in N$$

Clustering problem (2)

 Three weight vectors for three clusters

CLUSTER B

• 3 different vectors \vec{w}_1 , \vec{w}_2 and \vec{w}_3 can be used as ,,representants" of the respective clusters \vec{A} , \vec{B} a \vec{C}

CLUSTER A

Clustering problem (3)

- Each one of these vectors is ,,relatively close" to any vector from the respective cluster
- Each weight vector corresponds to a single neuron which is active only if the input vector is close enough to its own weight vector
- ==> How could we determine the number and distribution of clusters?

Competitive learning - algorithm

- Let $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_l\}$ be a set of normalized input vectors in n dimensional space which we want to classify into k different clusters
- The neural network consists of *k* neurons, each of which has *n* inputs and zero threshold

Initialization:

• The normalized weight vectors $\vec{w}_1, \dots, \vec{w}_k$ are generated randomly

Competitive learning – algorithm (2)

Test:

- Select randomly a vector $\vec{x}_i \in X$
- Compute $\vec{w}_i \cdot \vec{x}_j$ for i = 1, ..., k
- Select \vec{w}_m such that $\vec{w}_m \cdot \vec{x}_j \ge \vec{w}_i \cdot \vec{x}_j$ $(\forall i = 1, ..., k)$
- Continue with Update

Update:

- Substitute $\vec{w}_m(new)$ with $\vec{w}_m(old) + \vec{x}_j$ and normalize
- Continue with Test

Competitive learning – algorithm (3)

- The algorithm can be stopped after a predetermined number of steps
- The weight vectors of the *k* neurons are ,,attracted" towards the centers of the respective clusters in the input space
- The algorithm is based on the principle known as "winner-takes-all"

Competitive learning – algorithm (4)

- Normalized vectors prevent the weight vectors from becoming so large that they would win the competition too often
 - Other neurons would then never be updated and would remain useless → "dead neurons"
- Since both the input and weight vectors are normalized, the scalar product $\vec{w}_i \cdot \vec{x}_j$ of a weight and input vector is equal to the cosine of the angle between these two vectors

Competitive learning – algorithm (5)

- The selection rule guarantees that the weight vector \vec{w}_m of the cluster that is updated is the one that lies closest to the tested input vector
- The update rule rotates the weight vector \vec{w}_m towards \vec{x}_j

Different learning rules:

Update with a learning constant

$$\Delta \vec{w}_m = \eta \vec{x}_j$$
 ; $\eta \in (0,1)$ decays slowly in time

→ network plasticity

Competitive learning – algorithm (6)

Different learning rules (continue):

Difference update

$$\Delta \vec{w}_m = \eta (\vec{x}_j - \vec{w}_m)$$

- "correction" proportional to the difference of both vectors
- ◆ **Batch update** → a more stable learning process
 - Weight "corrections" are computed for each respective pattern and then cumulated
 - After a number of iterations the weight corrections are added to the weights at once

Competitive learning – algorithm (7)

Stability of the solutions

- Necessity of a suitable measure for a ,,good clustering"
 - → a simple approach: find the distance between clusters
- Two clusters of vectors and two ,,representative weight vectors":
 - Both ,,representative vectors" —
 lie close to the vectors from their respective cluster

Competitive learning – algorithm (8)

Stability of the solutions (continue):

• \vec{w}_1 lies inside a "cone" defined by the vectors from its cluster

• \vec{w}_2 lies outside of the ,,cone" of \vec{w}_1

• The vector \vec{w}_1 will not jump outside of its "cone" in future iterations – –

• The vector \vec{w}_2 will jump inside the cone defined by its cluster at some point and will remain there

 \rightarrow such a solution will be stable

Competitive learning – algorithm (9)

Solution in stable equilibrium:

- Intuitive idea:
 - stable equilibrium requires clearly delimited clusters
- If the clusters overlap or are very extended, it can be the case that no stable solution can be found
 - ==> unstable equilibrium

Stability of the solutions - analysis

Definition:

Let P denote the set $\{\vec{p}_1, \dots, \vec{p}_m\}$ of n – dimensional $(n \ge 2)$ vectors located in the same half-space (~ a formal restriction of the cluster size).

The cone K defined by P is the set of all vectors \vec{x} of the form $\vec{x} = \alpha_1 \vec{p}_1 + ... + \alpha_m \vec{p}_m$, where $\alpha_1, ..., \alpha_m$ are positive real numbers.

- The cone of a cluster contains all vectors "within" the cluster
- The diameter of a cone defined by normalized vectors is proportional to the maximum possible angle between two vectors in the cluster

Stability of the solutions – analysis (2)

Definition:

The (angular) diameter φ of a cone K defined by normalized vectors $\{\vec{p}_1, \dots, \vec{p}_m\}$ corresponds to:

$$\varphi = \sup \left\{ \operatorname{arccos}(\vec{a} \cdot \vec{b}) \middle| \forall \vec{a}, \vec{b} \in K; ||\vec{a}|| = ||\vec{b}|| = 1 \right\}$$

where $0 \le \operatorname{arccos}(\vec{a} \cdot \vec{b}) \le \pi$

• A sufficient condition for stable equilibrium is that the angular diameter of the cluster's cone must be smaller than the distance between clusters.

Stability of the solutions – analysis (3)

Definition:

Let $P = \{\vec{p}_1, ..., \vec{p}_m\}$ and $N = \{\vec{n}_1, ..., \vec{n}_k\}$ be two nonvoid sets of normalized vectors in an n-dimensional space ($n \ge 2$), that define the cones K_P and K_N

• If the intersection of the two cones is void, the (angular) distance between K_N and K_P is given by:

$$\psi = \inf \left\{ \arccos(\vec{p} \cdot \vec{n}); \ \vec{p} \in K_P, \ \vec{n} \in K_N \ \text{and} \ \|\vec{p}\| = \|\vec{n}\| = 1 \right\}$$

where $0 \le \arccos(\vec{p} \cdot \vec{n}) \le \pi$

• If the two cones K_P and K_N intersect, $\psi_{P,N} = 0$

Stability of the solutions – analysis (4)

- If angular distance between clusters is greater than angular diameter of the clusters, a stable solution exists
 - The weight vectors will lie inside their respective cluster cones
 - Once inside their respective cluster cones, ,the weight vectors will not leave them

Clustering quality control:

- A smaller number of ,,more compact" clusters is usually preferred
- A cost function penalizing a too big number of clusters

PCA – Principal Component Analysis

- ~ reduces the dimensionality of the input data
 - → use less features without losing essential information
 - → selection of the most important features
- ~ a set of m n dimensional vectors is given:

$$\left\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\right\}$$

~ the first principal component of this set of vectors is a vector \vec{w} , which maximizes the expression

$$\frac{1}{m} \sum_{i=1}^{m} \| \vec{w} \cdot \vec{x}_i \|^2$$

PCA – Principal Component Analysis (2)

- Distribution of the input data:
 - 1. PC: direction of maximum variance in the data
 - 2. PC: orthogonal to 1. PC and maximum variance (\sim subtract from \vec{x} its orthogonal projection on 1. PC)

PCA – Principal Component Analysis (3)

The applied model:

- Linear associator
 - outputs the weighted input as a result
- Unsupervised reinforcement learning Oja's algorithm

Computation of the principal components with artificial neural networks

Oja's learning algorithm (E. Oja, 1982) (for the computation of the first principal component)

Assumption:

• The centroid of the input data is located at the origin

Start:

- Let X be a set of n dimensional vectors
- The vector \vec{w} is initialized randomly $(\vec{w} \neq 0)$
- A learning constant γ with $0 < \gamma \le 1$ is selected

Computation of the principal components with artificial neural networks (2)

Oja's learning algorithm (continue):

Update:

- From the set X a vector \vec{X} is randomly selected
- The scalar product $\Phi = \vec{x} \cdot \vec{w}$ is computed
- The new weight vector is $\vec{w} + \gamma \Phi (\vec{x} \Phi \vec{w})$
- Make γ smaller and go to "Update"

Stopping condition for update

- e.g., a predetermined number of iterations

Computation of the principal components with artificial neural networks (3)

Learning constant γ

- The learning constant must be chosen small enough to guarantee adequate weight updates (limit big oscillations)
- "Automatic normalization" of the weight vector
 - A global information about all patterns is not necessery
 - A local information about the updated weight, input and scalar product of the associator is sufficient
- The first principal component is equivalent to the direction of the longest eigenvector of the correlation matrix of the considered input vectors

Convergence of Oja's algorithm

When a unique solution to the task exists, Oja's algorithm will converge:

Idea of the proof:

Update of \vec{w} towards $\vec{\chi}$

-) if Oja's algorithm is started a weight vector inside a cone, it will oscillate in it, but will not leave it
-) for $\|\vec{w}\| = 1$ the scalar product $\Phi = \vec{x} \cdot \vec{w}$ corresponds to the length of projection of \vec{x} on \vec{w}

Convergence of Oja's algorithm (2)

Idea of the proof (continue):

- -) the vector $\vec{x} \Phi \vec{w}$ is orthogonal to \vec{w}
-) an iteration of Oja's algorithm attracts \vec{w} to the vectors from the cluster \vec{X}
- -) if the length of \vec{w} remains equal to \vec{l} (or close to \vec{l}), \vec{w} will be brought into the middle of the cluster
- -) further, it is necessary to show that the vector \vec{w} is automatically normalized by the Oja's learning algorithm:
 - <u>Idea:</u> a) the length of the vector \vec{w} is bigger than I
 - b) the length of the vector \vec{w} is smaller than I

Convergence of Oja's algorithm (3)

- a) the length of the vector \vec{w} is bigger than 1
 - The length of the vector $(\vec{x} \cdot \vec{w})\vec{w}$ is bigger than the length of the orthogonal projection of \vec{x} on \vec{w}
 - Further, assume that $\vec{x} \cdot \vec{w} > 0$, i.e., that the vectors \vec{x} and \vec{w} are not too far away one from the other
 - Vector $\vec{x} (\vec{x} \cdot \vec{w})\vec{w}$ has a negative projection on \vec{w} , as

$$(\vec{x} - (\vec{x} \cdot \vec{w})\vec{w}) \cdot \vec{w} =$$

$$= \vec{x} \cdot \vec{w} - ||\vec{w}||^2 \vec{x} \cdot \vec{w} < 0$$

Convergence of Oja's algorithm (4)

The result of many iterations:

- (the vector $\vec{x} (\vec{x} \cdot \vec{w})\vec{w}$ has one component normal to \vec{w} and another one with the opposite direction of \vec{w})
- \vec{w} will be brought into the middle of the cluster of vectors (and the normal component cancels in average)
- \vec{w} will become smaller with the growing number of iterations of this type (!avoid making \vec{w} too small or reversing its direction in an iteration)

Convergence of Oja's algorithm (5)

- A suitable choice of the learning parameter γ and normalization of the training vectors:
 - if the vector \vec{x} has a positive scalar product Φ with \vec{w} , then this should hold also for the new weight vector:
 - It should thus hold: $\vec{x} \cdot (\vec{w} + \gamma \Phi (\vec{x} \Phi \vec{w})) > 0$ $\Phi + \gamma \Phi ||\vec{x}||^2 \gamma \Phi \Phi^2 > 0$ $\Phi \left(1 + \gamma (||\vec{x}||^2 \Phi^2)\right) > 0$ $\Rightarrow \gamma (||x^2|| \Phi^2) > -1$
 - For positive small enough γ is always satisfied

Convergence of Oja's algorithm (6)

(W.X)

文-(心)

b) the length of the vector \vec{w} is smaller than 1

(similarly to a))

- \rightarrow The vector $\vec{x} (\vec{x} \cdot \vec{w}) \vec{w}$ has a positive projection on \vec{w}
- \rightarrow growing of \vec{w}
- Combining a) and b) $\Rightarrow \vec{w}$ will be brought into the middle of the cluster and the length of \vec{w} will oscillate around 1 (for a small enough γ)
- ☐ Problems: ,,sparse" clusters

Oja's learning algorithm: problems and generalization

Problems: -) "sparse" clusters

-) big differences in the length of input vectors

Computation of more principal components:

