## Données web et multimédia

Cours 1 : Introduction à l'apprentissage

Alexis Lechervy

## Sommaire

- Introduction
- 2 Les familles d'algorithmes d'apprentissages
- 3 Les K-moyennes



# L'informatique

#### Qu'est ce que l'informatique?

C'est le développement de techniques permettant le traitement automatique de données par des machines ( ordinateur, robots, automates, systèmes embarqués...).

#### Les enjeux de l'informatique

- Permettre l'exécution de tâches toujours plus précises, en toujours moins de temps.
- Assister les humains dans des tâches de plus plus complexe.
- Pouvoir gérer une quantité d'information toujours plus croissante. (Youtube : >400h de nouvelles vidéos par minute, Facebook : >2 000 de nouvelles photos par seconde...)
- Traiter des données toujours plus varié.



## Les données en informatique

#### Acquisition et synthèse de données

- l'acquisition de nouvelles données par l'utilisation de différentes capteurs analysant le monde réel (image, son, vidéo...)
- Création de nouveau contenu et synthèse de contenu..



#### Amélioration de données existantes

- Correction, retouches de données,
- Amélioration/manipulation dimages...





#### Analyse de données et extraction de connaissance

- Analyse d'image (camera de surveillance...),
- Analyse des évolutions boursières,
- Aide au diagnostic, détection de pathologie, proposition de traitement...



## Apprendre pour mieux comprendre et analyser

#### Apprendre? Qu'est ce que c'est?

- Apprendre c'est s'adapter à des situations nouvelles et inconnues en prenant en compte l'expérience passée.
- Apprendre est une **propriété** humaine **essentielle**.
- Apprendre signifie s'améliorer afin dêtre meilleur.

#### Mais pourquoi apprendre à un ordinateur?

- Pouvoir gérer une quantité de données très importante de manière automatique ou de manière temps réels.
- Pouvoir effectuer une action dans un contexte non prévu préalablement sans l'intervention d'un humain.
- Pouvoir prévoir des comportements ou des évolutions pour aider un humain dans sa prise de décision.



## L'Apprentissage en informatique, quand faut-il l'utiliser?

#### Quand?

- L'expertise humaine n'est pas possible (ex : navigation sur Mars)
- La quantité d'information est trop grande pour être traitée par un humain (ex : recherche d'une personne dans une base d'image)
- Besoin de traitement temps réel (ex : mise au point d'un appareil photo sur un visage)
- Automatisation d'une chaine de traitement (ex : détection d'anomalie sur une chaine de montage)
- Les êtres humains ne savent pas expliquer leurs expertises (ex : reconnaissance de la parole)
- Trouver une solution optimale à un problème (ex : trouver le meilleur modèle)...







#### Sommaire

- Introduction
- 2 Les familles d'algorithmes d'apprentissages
  - Différents types dapprentissage
  - Problèmes typiques
- Les K-moyennes

# L'apprentissage non supervisé (Clustering)

#### **Principes**

- Diviser les données en plusieurs groupes séparés,
- Extraire une connaissance organisée sans intervention humaine,
- les données les plus similaires sont associées au sein d'un groupe homogène
- les données considérées comme différentes se retrouvent dans d'autres groupes distincts
- Pas d'apriori sur les données
- Il y a une seule entrée, les données collectées

#### Exemple de clustering



## L'apprentissage supervisé

#### **Principes**

- On détermine automatiquement une règle à partir de données d'apprentissage annotées par un expert,
- Un expert a défini un ensemble de couples (donnée, label),
- Il y a un apriori sur les données,
- Les données entrées sont des couples (données collectées, observations).

#### Exemple: Catégorisation d'image









Fleurs

## L'apprentissage semi-supervisé

#### **Principes**

- On dispose de quelques exemples labellisés.
- Les autres ne le sont pas.
- Permet de travailler avec moins de labels.

#### Exemples d'apprentissage non supervisé

- L'apprentissage interactif.
- L'apprentissage sur des ensembles de données trop important.



## La régression

#### **Principes**

- Trouver la relation entre une variable et une ou plusieurs autres variables.
- Les valeurs de sorties de la fonction recherchée sont des valeurs réelles, non discrètes.



## La classification

#### **Principes**

- Attribuer une classe à chaque objet.
- Les valeurs de sorties sont des valeurs discrètes correspondant à un numéro de classe.

# Exemple

# Exemple d'application : la reconnaissance faciale



#### Estimation de densité

#### **Principes**

 Trouver les paramètres d'une loi de probabilité permettant d'estimer au mieux une distribution de points.

#### Exemple



#### Exemple d'application

Quelle est la probabilité qu'une gamme de produit soit défaillant au bout de x temps?



## Sommaire

- Introduction
- 2 Les familles d'algorithmes d'apprentissages
- 3 Les K-moyennes
  - Introduction
  - L'algorithme
  - Exemple

## Données et apprentissage

#### Les données dans les problèmes d'apprentissage

Les données d'un problème d'apprentissage sont généralement vu comme des points/vecteurs dans des espaces possiblement de grandes dimensions.

#### Apprendre : un problème de recherche de frontière

Les problèmes d'apprentissage consiste à partitionner l'espace en zone associé à une classe particulière. L'algorithme d'apprentissage à pour but la recherche de frontière entre les différentes zones de l'espace.



## Retour sur la notion de distance euclidienne

#### En 1D

La distance entre les points X et Y correspond à la valeur d:

$$d(X, Y) = a = |X_1 - Y_1| = \sqrt{(X_1 - Y_1)^2}$$



#### En 2D

La distance entre les poins X et Y correspond à la valeur d. En utilisant le théorème de Pythagore, on a :

$$d = \sqrt{a^2 + b^2} = \sqrt{(X_1 - Y_1)^2 + (X_2 - Y_2)^2}$$



## Retour sur la notion de distance euclidienne

#### En 3D

La distance entre les poins X et Y correspond à la valeur d. En utilisant le théorème de Pythagore, on a :

$$d = \sqrt{e^2 + c^2}$$

$$= \sqrt{e^2 + a^2 + b^2}$$

$$= \sqrt{(X_1 - Y_1)^2 + (X_2 - Y_2)^2 + (X_3 - Y_3)^2}$$



#### En nD

La distance euclidienne se généralise à n'importe quelle dimension. Ainsi la distance euclidienne entre X et Y des vecteurs de taille n est :

$$\sqrt{\sum_{i=1}^{n}(X_i-Y_i)^2}$$

# L'algorithme des K-Moyennes (Kmeans)

#### Objectif

- L'objectif est de partitionner l'espace en k sous-espace. k étant fixé par l'utilisateur au préalable.
- On souhaite minimiser la distance entre les points au sein de chaque partition.
- Chaque partition sera défini par son centre. Les points sont associés à leur centre le plus proche.
- Les K-moyennes font partie des problèmes non-supervisé.



# L'algorithme des K-Moyennes (Kmeans)

#### Initialisation de l'algorithme

#### Entrées de l'algorithme :

- le nombre k de cluster à rechercher,
- n exemples x d'apprentissage,
- le nombre T d'itération de l'algorithme

#### Initialisation:

• On initialise k centres de clusters au hasard.

#### Déroulement de l'algorithme

Pour chaque itération t de 0 à T faire :

- Assigner chaque point d'apprentissage au centre de cluster le plus proche.
- ② On met à jours les centres de cluster en calculant la moyenne des points à l'intérieur. Si aucun point n'a été attribué au cluster, on tire un autre centre au hasard.











