Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) An ink jet printhead comprising:

a plurality of nozzles; and

at least one respective heater element corresponding to each nozzle, wherein the printhead is configured to receive ejectable liquid at an ambient temperature, and wherein

each heater element is arranged for being in thermal contact with the ejectable liquid,

with a duration less than 1 microsecond to heat at least part of the ejectable liquid to a temperature above its boiling point to form a gas bubble therein thereby to cause the ejection of a drop of the ejectable liquid through the corresponding nozzle; and

each heater element is configured such that the energy required to be applied thereto to heat said part to cause the ejection of said drop is less than the energy required to heat a volume of said ejectable liquid equal to the volume of said drop, from a temperature equal to said ambient temperature to said boiling point.

- 2. (Previously Presented) The printhead of claim 1 being configured to support the ejectable liquid in thermal contact with each said heater element, and adjacent each nozzle.
- 3. (Cancelled)
- 4. The printhead of claim 1 being configured to print on a page and to be a page-width printhead.
- 5. (Previously Presented) The printhead of claim 1 wherein each heater element is in the form of a suspended beam, arranged for being suspended over at least a portion of the ejectable liquid so as to be in thermal contact therewith.

- 6. (Previously Presented) The printhead of claim 1 wherein each heater element is configured such that an actuation energy of less than 500 nanojoules (nJ) is required to be applied to that heater element to heat that heater element sufficiently to form said bubble in the ejectable liquid thereby to cause the ejection of said drop.
- 7. (Original) The printhead of claim 1 comprising a substrate on which the nozzles are disposed, the substrate having a substrate surface, wherein each nozzle has a nozzle aperture opening through the substrate surface, and wherein the areal density of the nozzles relative to the substrate surface exceeds 10,000 nozzles per square cm of substrate surface.
- 8. (Previously Presented) The printhead of claim 1 wherein each heater element has two opposite sides and is configured such that said gas bubble formed by that heater element is formed at both of said sides of that heater element.
- 9. (Original) The printhead of claim 1 wherein the bubble which each heater element is configured to form is collapsible and has a point of collapse, and wherein each heater element is configured such that the point of collapse of a bubble formed thereby is spaced from that heater element.
- 10. (Original) The printhead of claim 1 comprising a structure formed by chemical vapor deposition (CVD), said nozzles being incorporated on the structure.

11. (Cancelled)

- 12. (Original) The printhead of claim 1 comprising a plurality of nozzle chambers, each corresponding to a respective nozzle, and a plurality of said heater elements being disposed within each chamber, the heater elements within each chamber being formed on different respective layers to one another.
- 13. (Original) The printhead of claim 1 wherein each heater element is formed of solid material more than 90% of which, by atomic proportion, is constituted by at least one periodic element having an atomic number below 50.

- 14. (Previously Presented) The printhead of claim 1 wherein each heater element includes solid material and is configured for a mass of less than 10 nanograms of the solid material of that heater element to be heated to a temperature above said boiling point thereby to heat said part of the ejectable liquid to a temperature above said boiling point to cause the ejection of said drop.
- 15. (Original) The printhead of claim 1 wherein each heater element is substantially covered by a conformal protective coating, the coating of each heater element having been applied substantially to all sides of the heater element simultaneously such that the coating is seamless.
- 16. (Currently Amended) A printer system incorporating a printhead, the printhead comprising:

a plurality of nozzles; and at least one respective heater element corresponding to each nozzle, wherein the printhead is configured to receive ejectable liquid at an ambient temperature, and wherein

each heater element is arranged for being in thermal contact with the ejectable liquid,

each heater element is configured to <u>receive energy as an electrical pulse</u> with a duration less than 1 microsecond to heat at least part of the ejectable liquid to a temperature above its boiling point to form a gas bubble therein thereby to cause the ejection of a drop of the ejectable liquid through the corresponding nozzle; and

each heater element is configured such that the energy required to be applied thereto to heat said part to cause the ejection of said drop is less than the energy required to heat a volume of said ejectable liquid equal to the volume of said drop, from a temperature equal to said ambient temperature to said boiling point.

- 17. (Previously Presented) The system of claim 16 being configured to support the ejectable liquid in thermal contact with each said heater element, and adjacent each nozzle.
- 18. (Cancelled)

Appln No. 10/534811 Amdt. Dated: January 09, 2008 Response to Office Action of October 9, 2007

5

- 19. (Original) The system of claim 16 being configured to print on a page and to be a page-width printhead.
- 20. (Previously Presented) The system of claim 16 wherein each heater element is in the form of a suspended beam, arranged for being suspended over at least a portion of the ejectable liquid so as to be in thermal contact therewith.
- 21. (Previously Presented) The system of claim 16 wherein each heater element is configured such that an actuation energy of less than 500 nanojoules (nJ) is required to be applied to that heater element to heat that heater element sufficiently to form a said bubble in the ejectable liquid thereby to cause the ejection of said drop.
- 22. (Original) The system of claim 16 comprising a substrate on which the nozzles are disposed, the substrate having a substrate surface, wherein each nozzle has a nozzle aperture opening through the substrate surface, and wherein the areal density of the nozzles relative to the substrate surface exceeds 10,000 nozzles per square cm of substrate surface.
- 23. (Previously Presented) The system of claim 16 wherein each heater element has two opposite sides and is configured such that said gas bubble formed by that heater element is formed at both of said sides of that heater element.
- 24. (Original) The system of claim 16 wherein the bubble which each heater element is configured to form is collapsible and has a point of collapse, and wherein each heater element is configured such that the point of collapse of a bubble formed thereby is spaced from that heater element.
- 25. (Original) The system of claim 16 comprising a structure formed by chemical vapor deposition (CVD), said nozzles being incorporated on the structure.
- 26. (Cancelled)
- 27. (Original) The system of claim 16 comprising a plurality of nozzle chambers, each corresponding to a respective nozzle, and a plurality of said heater elements being disposed

within each chamber, the heater elements within each chamber being formed on different respective layers to one another.

- 28. (Original) The system of claim 16 wherein each heater element is formed of solid material more than 90% of which, by atomic proportion, is constituted by at least one periodic element having an atomic number below 50.
- 29. (Original) The system of claim 16 wherein each heater element includes solid material and is configured for a mass of less than 10 nanograms of the solid material of that heater element to be heated to a temperature above said boiling point thereby to heat said part of the bubble forming liquid to a temperature above said boiling point to cause the ejection of a said drop.
- 30. (Original) The system of claim 16 wherein each heater element is substantially covered by a conformal protective coating, the coating of each heater element having been applied substantially to all sides of the heater element simultaneously such that the coating is seamless.
- 31. (Currently Amended) A method of ejecting a drop of an ejectable liquid from a printhead, the printhead comprising a plurality of nozzles and at least one respective heater element corresponding to each nozzle, the method comprising the steps of:

receiving a supply of an ejectable liquid, at an ambient temperature, to the printhead;

applying heat energy toenergizing at least one heater element corresponding to a said

nozzle with an electrical pulse having a duration less than 1 microsecond;

heating that at least one heater element, by the step of applying heat energythe electrical pulse, so as to heat at least part of the ejectable liquid which is in thermal contact with the heater element to a temperature above the boiling point of the ejectable liquid;

generating a gas bubble in the ejectable liquid by said step of heating; and causing a drop of the ejectable liquid to be ejected through the nozzle corresponding to the at least one heater heater element by said step of generating a gas bubble, wherein said applied heat energy is less than the energy required to heat a volume of said ejectable liquid equal to the volume of said drop, from a temperature equal to said ambient temperature to said boiling point.

Amdt. Dated: January 09, 2008

Response to Office Action of October 9, 2007

32. (Previously Presented) The method of claim 31 comprising, before said step of heating, the step of:

disposing the ejectable liquid in thermal contact with the heater elements and adjacent the nozzles.

33. (Cancelled)

- 34. (Previously Presented) The method of claim 31 wherein each heater element is in the form of a suspended beam, the method further comprising, prior to the step of applying heat energy, the step of disposing the ejectable liquid such that the heater elements are positioned above, and in thermal contact with, at least a portion of the ejectable liquid.
- 35. (Original) The method of claim 31 wherein the step of applying heat energy to at least one heater element comprises applying an actuation energy of less than 500nJ to each such heater element.
- 36. (Original) The method of claim 31 comprising the step of providing the printhead, wherein the printhead includes a substrate on which said nozzles are disposed, the substrate having a substrate surface and the areal density of the nozzles relative to the substrate surface exceeding 10,000 nozzles per square cm of substrate surface.
- 37. (Original) The method of claim 31 wherein each heater element has two opposite sides, and wherein, in the step of generating a gas bubble, the bubble is generated at both of said sides of each heated heater element.
- 38. (Original) The method of claim 31 wherein, in the step of generating a gas bubble, the bubble is collapsible and has a point of collapse, and is generated such that the point of collapse is spaced from the at least one heated heater element.
- 39. (Original) The method of claim 31 comprising the step of providing the printhead, including forming a structure by chemical vapor deposition (CVD), the structure incorporating the nozzles thereon.

40. (Cancelled)

Appln No. 10/534811 Amdt. Dated: January 09, 2008 Response to Office Action of October 9, 2007

R

- 41. (Original) The method of claim 31 wherein the printhead has a plurality of nozzle chambers, each chamber corresponding to a respective nozzle, the method further comprising the step of providing the printhead including forming a plurality of said heater elements in each chamber, such that the heater elements in each chamber are formed on different respective layers to one another.
- 42. (Original) The method of claim 31 comprising the step of providing the printhead, wherein each heater element is formed of solid material more than 90% of which, by atomic proportion, is constituted by at least one periodic element having an atomic number below 50.
- 43. (Original) The method of claim 31 wherein each heater element includes solid material and wherein the step of heating the at least one heater element includes heating a mass of less than 10 nanograms of the solid material of each such heater element to a temperature above said boiling point.
- 44. (Original) The method of claim 31 comprising the step of providing the printhead, including applying to each heater element, substantially to all sides thereof simultaneously, a conformal protective coating such that the coating is seamless.