1 Aufgabe: Allgemeines zur Korrelation

(a) Plots und Korrelation

Die obigen Plots beschreiben Realisierungen von Zufallsvariablen X und Y. Geben Sie für jeden der Plots an, ob die Zufallsvariablen positiv, negativ korreliert oder unkorreliert sind. Welcher Plot deutet auf eine besonders starke Korrelation zwischen X und Y hin?

- (b) Korrelation zwischen X und X^2 Gegeben sei eine beliebige Zufallsgröße mit E(X)=0. Berechnen Sie die Korrelation zwischen X und X^2 .
- (c) Von den Zufallsvariablen X und Y ist bekannt, dass Var(X) = a, Var(Y) = b und Var(dX + eY) = c, wobei a, b, c, d, e > 0. Wie groß ist dann der Korrelationskoeffizient zwischen X und Y?

2 Aufgabe: Kleinste Quadrate Schätzer

Der gängigste Schätzer für die Koeffizienten β_0 und β_1 einer linearen Regression ist gegeben durch den sogenannten "Kleinste Quadrate (KQ) Schätzer". Hat man Daten $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ gegeben, ergibt sich der KQ-Schätzer durch Minimierung von

$$KQ := \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Berechnen Sie den KQ-Schätzer von β_0 und β_1 .

3 Aufgabe: Regressionskoeffizient und Korrelation

- 1. Leiten Sie die Beziehung zwischen dem Regressionskoeffizient und Korrelation für die Variablen X und Y her.
- 2. Zeigen Sie, dass der Regressionskoeffizient von X auf Y unterschiedlich sein kann zu dem Regressionskoeffizient von Y auf X.

4 Aufgabe: Regressionsmodell-Output

In diesem Datensatz wird die Wegstrecke untersucht, die ein Spielzeugauto zurückgelegt hat, nachdem man es in unter- schiedlichen Winkeln eine Rampe herunterfahren ließ.

Der Datensatz enthält folgende Variablen

- distance: Gibt an, wie weit ein Auto von einer Rampe herab gefahren ist.
- angle: Bezeichnet den Winkel der Rampe.

$_{ m Angle}$	Distance
1.3	0.37
4.0	0.92
2.7	0.64
2.2	0.70
3.6	0.89
4.9	1.30
0.9	0.38
1.1	0.43
3.1	0.69

Das Statistikprogramm R liefert folgende Ergebnisse: Coefficients:

	Wert	Standardfehler	t-Wert	Pr(> t)	
β_0	0.14811	0.06503			
β_1	0.20954	0.02203			

- (a) Testen Sie, ob die Regressionskoeffizienten signifikant von 0 verschieden sind. Interpretieren Sie diese Ergebnisse.
- (b) Berechnen Sie auch das R^2 und interpretieren Sie es.

Zusatzaufgaben zum Vorrechnen

5 Aufgabe: Multivariate Verteilung

Gegeben ist die Funktion

$$f(x,y) = \begin{cases} cx^2 + y^2 & \text{für } 0 \le x \le 1 \text{ und } 0 \le y \le 1; \\ 0 & \text{sonst.} \end{cases}$$

- 1. Bestimmen Sie die Konstante c so, dass f(x,y) eine Dichtefunktion ist.
- 2. Berechnen Sie die Randdichten und Randverteilungsfunktionen von den Zufallsvariablen X und Y.
- 3. Sind X und Y voneinander unabhängig?
- 4. Bestimmen Sie die Verteilungsfunktion F(x, y).

6 Aufgabe: Maximum Likelihood Schätzung

Eine gleichverteilte Zufallsvariable $X \sim Unif(0,\theta)$ mit $0 < \theta$ besitzt die folgende Dichte:

$$f(x) = \begin{cases} \frac{1}{\theta} & \text{falls } 0 < x < \theta \\ 0 & \text{sonst} \end{cases}$$

Nun werden insgesamt n unabhängige und identisch verteilte (i.i.d.) Stichprobenelemente $x_i, i \in \{1, ...n\}$, beobachtet.

- 1. Man bestimme die Likelihood-Funktion $f(x;\theta)$ des unbekannten Parameter θ für die Beobachtungen $x_1, ..., x_n$.
- 2. Man bestimme mittels der ersten Teilaufgabe den Maximum Likelihood Schätzer für den unbekannten Parameter θ (Tip: Auch graphische Argumentation bzw. Darstellung möglich).

Übungsleiter: