(A) Domande.

Stabilire se le seguenti affermazioni sono vere o false e giustificare la propria risposta:¹

- 1. Ogni sottoinsieme non vuoto A di \mathbb{R} ammette estremo inferiore appartenente a \mathbb{R}
- 2. Se x e y appartengono a $\mathbb{R} \setminus \mathbb{Q}$, allora x + y non appartiene a \mathbb{Q} .
- 3. Se A = [a, b] è un intervallo chiuso, ogni punto di accumulazione di A appartiene ad A
- 4. Dati x, y in \mathbb{R} vale sempre la disuguaglianza $x \leq |x y| + |y|$
- 5. La funzione $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^3 + 2|x|$ è invertibile
- (B) Esercizi.
- 1. Dimostrare per induzione che per ogni $n \in \mathbb{N}$ si ha

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n}$$

2. Sia a > 1. Siano

$$f(x) = \sqrt{\log_a x}, \qquad g(x) = \frac{x^2 - 1}{x}.$$

Determinare il dominio di definizione D di $f \circ g$ e scriverne l'espressione analitica. Quante soluzioni ha l'equazione f(g(x)) = 1 per $x \in D$?

- 3. Sia $f(x) = \arcsin\left(\frac{x-1}{x+1}\right)$. Determinare il più grande dominio D tale che $f|_D$ sia invertibile sulla sua immagine e scrivere l'inversa di questa restrizione.
- 4. Determinare per quali $\alpha \geq 0$ le serie seguente sono convergenti

$$\sum_{n=0}^{\infty} \sin\left(\frac{1}{n^{\alpha}}\right), \qquad \sum_{n=0}^{\infty} \cos\left(\frac{1}{n^{\alpha}}\right), \qquad \sum_{n=0}^{\infty} \left(1 - \cos\frac{1}{n}\right)^{\alpha}$$

5. Mostrare che l'equazione in $x \in \mathbb{R}$

$$\frac{e^{-x}}{\sqrt{1-x}} = 1$$

ammette almeno due soluzioni reali

¹giustificare tramite un argomento o dimostrazione o negare tramite un controesempio