Clustering

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Examples of Clustering Applications

- <u>Marketing</u>: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use</u>: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$
 where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• *If* q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \ge 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Major Clustering Approaches (I)

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g.,
 minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches (II)

- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

The K-Means Clustering

• An algorithm for partitioning (or clustering) N data points into K disjoint subsets S_j containing data points so as to minimize the sum-of-squares criterion

$$J = \sum_{j=1}^K \sum_{n \in S_j} |x_n - \mu_j|^2,$$

where x_n is a vector representing the the n^{th} data point and u_j is the geometric centroid of the data points in S_j .

The K-Means Clustering

- Simply speaking k-means clustering is an algorithm to classify or to group the objects based on attributes/features into K number of group.
- K is positive integer number.
- The grouping is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid.

The K-Means Clustering Method

- Let $X = \{x_1, x_2, x_3, \dots, x_n\}$ be the set of data points and $V = \{v_1, v_2, \dots, v_c\}$ be the set of centers.
- 1) Randomly select 'c' cluster centers.
- 2) Calculate the distance between each data point and cluster centers.
- 3) Assign the data point to the cluster center whose distance from the cluster center is minimum of all the cluster centers..
- 4) Recalculate the new cluster center using:

$$\mathbf{v}_i = (1/c_i) \sum_{j=1}^{c_i} \mathbf{x}_i$$

where, c_i represents the number of data points in i^{th} cluster.

- 5) Recalculate the distance between each data point and new obtained cluster centers.
- 6) If no data point was reassigned then stop, otherwise repeat from step.

The K-Means Clustering Method

Advantages

- 1) Fast, robust and easier to understand.
 - 2) Relatively efficient: O(tknd), where n is # objects, k is # clusters, d is # dimension of each object, and t is # iterations. Normally, k, t, d << n.
- 3) Gives best result when data set are distinct or well separated from each other.

The K-Means Clustering Method

<u>Disadvantages</u>

- 1) The learning algorithm requires apriori specification of the number of cluster centers.
- 2) The use of Exclusive Assignment If there are two highly overlapping data then k-means will not be able to resolve that there are two clusters.
- 3) The learning algorithm is not invariant to non-linear transformations i.e. with different representation of data we get
- different results (data represented in form of cartesian co-ordinates and polar co-ordinates will give different results).
- 4) Euclidean distance measures can unequally weight underlying factors. 5) The learning algorithm provides the local optima of the squared error function.
- 6) Randomly choosing of the cluster center cannot lead us to the fruitful result.
- 7) Applicable only when mean is defined i.e. fails for categorical data.
- 8) Unable to handle noisy data and outliers.
- 9) Algorithm fails for non-linear data set.

A Simple example showing the implementation of kmeans algorithm (using K=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1:

Initialization: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Step 2:

- Thus, we obtain two clusters containing:
 - {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

$$=(4.12,5.38)$$

individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Step 3:

- Now using these centroids we compute the Euclidean distance of each object, as shown in table.
- Therefore, the new clusters are:

$$\{1,2\}$$
 and $\{3,4,5,6,7\}$

• Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2			
1	1.57	5.38			
2	0.47	4.28			
3	2.04	1.78			
4	5.64	1.84			
5	3.15	0.73			
6	3.78	0.54			
7	2.74	1.08			

Step 4:
The clusters obtained are:
{1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

PLOT

The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

A Typical K-Medoids Algorithm (PAM)

PAM (Partitioning Around Medoids) (1987)

- A medoid can be defined as a point in the cluster, whose dissimilarities with all the other points in the cluster are minimum. The dissimilarity of the medoid(Ci) and object(Pi) is calculated by using E = |Pi Ci|
- The cost in K-Medoids algorithm is given as

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

PAM (Partitioning Around Medoids) (1987)

• Algorithm:

- Initialize: select *k* random points out of the *n* data points as the medoids.
- Associate each data point to the closest medoid by using any common distance metric methods.
- While the cost decreases: For each medoid m, for each data o point which is not a medoid:
 - Swap m and o, associate each data point to the closest medoid, and recompute the cost.
 - If the total cost is more than that in the previous step, undo the swap.

PAM (Partitioning Around Medoids) (1987)

	X	Υ
0	8	7
1	3	7
2	4	9
3	9	6 5
4	8	5
5	5	8
6	7	3
7	8	4
8	7	5
9	4	5

Step 1: Let the randomly selected 2 medoids, so select k = 2, and let C1 - (4,5) and C2 -(8,5) are the two medoids.

Step 2: Calculating cost. The dissimilarity of each non-medoid point with the medoids is calculated and tabulated:

PAM (Partitioning Around Medoids) (1987)

	X	Υ	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

Here we have used Manhattan distance formula to calculate the distance matrices between medoid and non-medoid points. That formula tell that Distance = |X1-X2| + |Y1-Y2|.

Each point is assigned to the cluster of that medoid whose dissimilarity is less. Points 1, 2, and 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2. The Cost = (3+4+4)+(3+1+1+2+2)=20

Step 3: randomly select one non-medoid point and recalculate the cost. Let the randomly selected point be (8, 4). The dissimilarity of each non-medoid point with the medoids – C1 (4, 5) and C2 (8, 4) is calculated and tabulated.

PAM (Partitioning Around Medoids) (1987)

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-	-
8	7	5	3	2
9	4	5	-	-

- Each point is assigned to that cluster whose dissimilarity is less. So, points 1, 2, and 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2. The New cost = (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22 Swap Cost = New Cost Previous Cost = 22 20 and 2 > 0 As the swap cost is not less than zero, we undo the swap. Hence (4, 5) and (8, 5) are the final medoids.
- The clustering would be in the following way The time complexity is

PAM (Partitioning Around Medoids) (1987)

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - $O(k(n-k)^2)$ for each iteration

where n is # of data,k is # of clusters

→ Sampling based method,

CLARA(Clustering LARge Applications)

CLARA (Clustering Large Applications) (1990)

- *CLARA* (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- <u>Strength</u>: deals with larger data sets than *PAM*
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of *k* medoids
- If the local optimum is found, *CLARANS* starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both *PAM* and *CLARA*
- Focusing techniques and spatial access structures may further improve its performance (Ester et al.'95)

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How the Clusters are Merged

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Recent Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - ROCK (1999): clustering categorical data by neighbor and link analysis
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

Density-Based Clustering Methods

- Density based clustering algorithm has played a vital role in finding non linear shapes structure based on the density. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is most widely used density based algorithm. It uses the concept of density reachability and density connectivity.
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - <u>OPTICS</u>: Ankerst, et al (SIGMOD'99).
 - <u>DENCLUE</u>: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - *MinPts*: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(p)$: { $q \ belongs \ to \ D \mid dist(p,q) \le Eps$ }
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| >= MinPts$$

MinPts = 5

Eps = 1 cm

Density-Reachable and Density-Connected

Density-reachable:

• A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

• A point *p* is density-connected to a point *q* w.r.t. *Eps*, *MinPts* if there is a point o such that both, *p* and *q* are density-reachable from o w.r.t. *Eps* and *MinPts*

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise
- A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.
- A noise point is any point that is not a core point nor a border point.

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from *p* w.r.t. *Eps* and *MinPts*.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

CHAMELEON (Clustering Complex Objects)

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its densitybased clustering structure
 - This cluster-ordering contains info equiv to the densitybased clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: Some Extension from DBSCAN

- Index-based:
 - k = number of dimensions
 - N = 20
 - p = 75%
 - M = N(1-p) = 5
 - Complexity: $O(kN^2)$
- Core Distance
- Reachability Distance

Max (core-distance (o), d (o, p))

r(p1, o) = 2.8cm. r(p2,o) = 4cm

Cluster-order of the objects

Density-Based Clustering: OPTICS & Its Applications

DENCLUE: Using Statistical Density Functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Using statistical density functions:

$$f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

$$f_{Gaussiah}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

$$\nabla f_{G \ a \ u}^{D} (x_{i}, x_{i})_{n} = \sum_{i=1}^{N} (x_{i} - x) \cdot e^{-\frac{d(x, x_{i})^{2}}{2\sigma^{2}}}$$

- Solid mathematical foundation
- Good for data sets with large amounts of noise
- Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
- Significant faster than existing algorithm (e.g., DBSCAN)
- But needs a large number of parameters

Denclue: Technical Essence

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure
- Influence function: describes the impact of a data point within its neighborhood
- Overall density of the data space can be calculated as the sum of the influence function of all data points
- Clusters can be determined mathematically by identifying density attractors
- Density attractors are local maximal of the overall density function

Density Attractor

Center-Defined and Arbitrary

Figure 3: Example of Center-Defined Clusters for different σ

Figure 4: Example of Arbitray-Shape Clusters for different ξ

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)
 - On high-dimensional data (thus put in the section of clustering highdimensional data

STING: A Statistical Information Grid Approach

- Wang, Yang and Muntz (VLDB'97)
- The spatial area area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution

The STING Clustering Method

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - count, mean, s, min, max
 - type of distribution—normal, *uniform*, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

Comments on STING

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - *O*(*K*), where *K* is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Outlier Discovery: Statistical Approaches

- General idea
- Given a certain kind of statistical distribution (e.g., Gaussian)
- Compute the parameters assuming all data points have been generated by such a statistical distribution (e.g., mean and standard deviation)
- Outliers are points that have a low probability to be generated by the overall distribution (e.g., deviate more than 3 times the standard deviation from the mean)
- Basic assumption
 - Outliers deviate strongly from this distribution

Statistical Tests

- A huge number of different tests are available differing in
 - Type of data distribution (e.g. Gaussian)
 - Number of variables i e dimensions of the data objects(univariate/multivariate)
 - Number of distributions (mixture models)
 - Parametric versus non-parametric (e.g. histogram-
 - based)

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm

Density-Based Local Outlier Detection

- Distance-based outlier detection is based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C₁ contains 400 loosely distributed points, C₂ has 100 tightly condensed points, 2 outlier points o₁, o₂
- Distance-based method cannot identify o₂ as an outlier
- Need the concept of local outlier

- Local outlier factor (LOF)
 - Assume outlier is not crisp
 - Each point has a LOF

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- Sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data