SEEDING THE SIMRVSEQUENCES R PACKAGE

Christina Nieuwoudt, Wen Tian Wang

Supervisor: Jinko Graham

August 14, 2019

Simon Fraser University Department of Statistics

WHAT IS A PEDIGREE?

FOUNDERS VS NON-FOUNDERS

founders do not have parents

FOUNDERS VS NON-FOUNDERS

non-founders have both a mother and a father

SINGLE-NUCLEOTIDE VARIANT DATA

ID	SNV_1	SNV_2	SNV_3	 SNV_p
1.1	1	0	0	 0
1.1	0	1	0	 1
1.2	1	0	1	 0
1.2	0	0	1	 0
1.3	1	0	0	 0
1.3	0	0	1	 1

By convention, reference alleles are 0 and alternate alleles are 1.

REQUIREMENTS

To simulate sequence data for a pedigree we require:

- 1. the pedigree structure, and
- 2. single-nucleotide variant (SNV) data from a sample of unrelated individuals, representing the population of pedigree founders.

SEQUENCE DATA FOR FOUNDERS

graphic by Daycd, at the English Wikipedia Project, distributed under a CC-BY 2.0 license

- ► We assume founders are unrelated and represent a random sample from a global population of individuals.
- Exon-only sequence data may be obtained from:
 - ► a coalescent simulator (msprime or fastsimcoal),
 - ▶ a forward-in-time evolutionary simulator (SLiM), or
 - publicly available sequence data (1000 Genomes Project)

OUTLINE

Datasets

2. Exon Positions Data

Software Command for Creating

Exon Data

- I. Relabel Chromosome ID for Exon Map
- 2. Remove Duplicated Exon Intervals
- 3. Extract SNVs in Exons from Chromosome 22

Retrieved from http://ftp.1000genom es.ebi.ac.uk/vol1/ftp/ data collections/100 0 genomes project/r elease/20190312 bial lelic SNV and INDE

Data file contains both biallelic SNVs and INDEL variants for the 2548 samples

File format:VCF file

Two required files for chromosome 22:

Index file:

ALL.chr22.shapeit2_integrated snvindels_v2a_27022019.GR Ch38.phased.vcf.gz.tbi

ALL.chr22.shapeit2_integrated _snvindels_v2a_27022019.GR Ch38.phased.vcf.gz

###fileformat=VCEv4 3

```
##FILTER=<ID=PASS,Description="All filters passed">
##fileDate=27022019 15h52m43s
##source=IGSRpipeline
##reference=ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome/GRCh38 full analysis set plus decoy hla.fa
##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">
##contig=<ID=22>
##INFO=<ID=AF,Number=A,Type=Float,Description="Estimated allele frequency in the range (0,1)">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles in called genotypes">
##INFO=<ID=NS,Number=I,Type=Integer,Description="Number of samples with data">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=EAS AF, Number=A, Type=Float, Description="Allele frequency in the EAS populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=EUR AF, Number=A, Type=Float, Description="Allele frequency in the EUR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AFR AF, Number=A, Type=Float, Description="Allele frequency in the AFR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AMR AF.Number=A.Type=Float.Description="Allele frequency in the AMR populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=SAS_AF.Number=A,Type=Float,Description="Allele frequency in the SAS_populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=VT.Number=, Type=String.Description="indicates what type of variant the line represents">
##INFO=<ID=EX_TARGET.Number=0.Type=Flag.Description="indicates whether a variant is within the exon pull down target boundaries">
##INFO=<ID=DP.Number=1.Type=Integer.Description="Approximate read depth; some reads may have been filtered">
##bcftools_viewVersion=1.9-162-g33ecfe8+htslib-1.9-150-gc76b3b2
##bcftools_viewCommand=view_ALL.chr22.shapeit2_interrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz; Date=Tue_Aug_6_12:01:54.2019
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG00096
      10516173
                             G.
                                       PASS AC=121:AN=5096:DP=8203:AF=0.02:EAS AF=0:EUR AF=0.02:AFR AF=0.06:AMR AF=0.02:SAS AF=0:VT=SNP:NS=2548 GT 010
                                       PASS AC=89;AN=5096;DP=9085;AF=0.02;EAS AF=0;EUR AF=0;AFR AF=0.07;AMR AF=0;SAS AF=0;VT=SNP;NS=2548 GT 0]0
22
      10522217
```

##bcftools viewVersion=1.9-162-g33ecfe8+htslib-1.9-150-gc76b3b2

```
##fileformat=VCFv4.3
##FILTER=<ID=PASS.Description="All filters passed">
##fileDate=27022019 15h52m43s
##source=IGSRpipeline
##reference=ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome/GRCh38 full analysis set plus decoy hla.fa
##FORMAT=<ID=GT.Number=1.Type=String.Description="Phased Genotype">
##contig=<ID=22>
##INFO=<ID=AF, Number=A, Type=Float, Description="Estimated allele frequency in the range (0,1)">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles in called genotypes">
##INFO=<ID=NS,Number=I,Type=Integer,Description="Number of samples with data">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=EAS AF, Number=A, Type=Float, Description="Allele frequency in the EAS populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=EUR AF, Number=A, Type=Float, Description="Allele frequency in the EUR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AFR AF, Number=A, Type=Float, Description="Allele frequency in the AFR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AMR AF, Number=A, Type=Float, Description="Allele frequency in the AMR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=SAS AF, Number=A, Type=Float, Description="Allele frequency in the SAS populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=VT.Number=..Type=String.Description="indicates what type of variant the line represents">
##INFO=<ID=EX_TARGET.Number=0.Type=Flag.Description="indicates whether a variant is within the exon pull down target boundaries">
```

##bcftools_viewCommand=view_ALL.chr22.shapeit2_integrated_snyindels_v2a_27022019.GRCh38.phased.vcf.gz; Date=Tue_Aug_6_12:01:54_2019

##INFO=<ID=DP.Number=1.Type=Integer.Description="Approximate read depth; some reads may have been filtered">

Meta information

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG00096
22 10516173 - A G . PASS AC=121.AN=5096,DP=8032.AF=0.02:EAS AF=0.EUR AF=0.02.AFR AF=0.06;AMR AF=0.02;SAS AF=0,VT=SNP;NS=2548 GT 0
22 10512217 . G A . PASS AC=89;AN=5096;DP=9085;AF=0.02:EAS AF=0.EUR AF=0.4FR AF=0.07;AMR AF=0.SAS AF=0,VT=SNP;NS=2548 GT 0]0

10522217

```
##fileformat=VCFv4.3
##FILTER=<ID=PASS,Description="All filters passed">
##fileDate=27022019 15h52m43s
##source=IGSRpipeline
##reference=ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome/GRCh38 full analysis set plus decoy hla.fa
##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">
##contig=<ID=22>
##INFO=<ID=AF.Number=A.Type=Float.Description="Estimated allele frequency in the range (0.1)">
                                                                                                                               Header line
##INFO=<ID=AC.Number=A.Type=Integer.Description="Total number of alternate alleles in called genotypes">
##INFO=<ID=NS.Number=1.Type=Integer.Description="Number of samples with data">
##INFO=<ID=AN.Number=1.Type=Integer.Description="Total number of alleles in called genotypes">
##INFO=<ID=EAS_AF.Number=A.Type=Float.Description="Allele frequency in the EAS populations calculated from AC and AM, in the range (0.1)">
##INFO=<ID=EUR AF, Number=A, Type=Float, Description="Allele frequency in the EUR populations calculated from ACand AN. in the range (0.1)">
##INFO=<ID=AFR AF, Number=A, Type=Float, Description="Allele frequency in the AFR populations calculated from AC and AN. in the range (0.1)">
##INFO=<ID=AMR AF, Number=A, Type=Float, Description="Allele frequency in the AMR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=SAS AF, Number=A, Type=Float, Description="Allele frequency in the SAS populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=VT,Number=.,Type=String,Description="indicates what type of variant the line represents">
##INFO=<ID=EX TARGET,Number=0,Type=Flag,Description="indicates whether a variant is in the exon pull down target boundaries">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">
##bcftools viewVersion=1.9-162-g33ecfe8+htslib-1.9-150-gc76b3b2
##bcftools_viewCommand=view All_chr22 shapeit2_integrated_spyindels_v2a_27022019.GRCh38.phased.vcf.gz; Date=Tue Aug_6 12:01:54 2019
#CHROM POS ID REF ALT OUAL FILTER INFO FORMAT HG00096
     10516173
                                       PASS AC=121:AN=5096;DP=8203;AF=0.02;EAS AF=0;EUR AF=0.02;AFR AF=0.06;AMR AF=0.02;SAS AF=0;VT=SNP;NS=2548
```

PASS AC=89:AN=5096:DP=9085:AF=0.02:EAS AF=0:EUR AF=0:AFR AF=0.07:AMR AF=0:SAS AF=0:VT=SNP:NS=2548 GT

##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">

###NFO=<ID=AF,Number=A,Type=Float,Description="Estimated allele frequency in the range (0,1)"> ###INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles in called genotypes">

###fileformat=VCFv4 3

##contig=<ID=22>

10522217

##FILTER=<ID=PASS,Description="All filters passed"> ##fileDate=27022019_15h52m43s ##source=IGSRpipeline

```
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of samples with data">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=EAS AF, Number=A, Type=Float, Description="Allele frequency in the EAS populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=EUR AF.Number=A,Type=Float,Description="Allele frequency in the EUR populations calculated from AC and AN, in the range (0,1)">
                                                                                                                                             Data lines
##INFO=<ID=AFR AF.Number=A,Type=Float,Description="Allele frequency in the AFR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AMR AF.Number=A.Type=Float.Description="Allele frequency in the AMR populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=SAS AF.Number=A.Type=Float.Description="Allele frequency in the SAS populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=VT.Number=..Type=String.Description="indicates what type of variant the line represents">
##INFO=<ID=EX_TARGET.Number=0.Type=Flag.Description="indicates whether a variant is within the exon pull down target boundaries">
##INFO=<ID=DP.Number=I.Type=Integer.Description="Approximate read depth; some reads may have been filtered">
##bcftools viewVersion=1.9-162-g33ecfe8+htslib-1.9-150-gc76b3b2
##bcftools viewCommand=view ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz; Date=Tue Aug_6_12:01:54_2019
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG00096
     10516173
                                       PASS AC=121:AN=5096:DP=8203:AF=0.02:FAS AF=0:FUR AF=0.02:AFR AF=0.06:AMR AF=0.02:SAS AF=0:VT=SNP:NS=2548
```

PASS AC=89;AN=5096;DP=9085;AF=0.02;EAS AF=0;EUR AF=0;AFR AF=0.07;AMR AF=0;SAS AF=0;VT=SNP;NS=2548 GT

##reference=ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome/GRCh38 full analysis set plus decoy hla fa

RETRIEVED FROM

HTTP://FTP.1000GENOME
S.EBI.AC.UK/VOL1/FTP/D
ATA COLLECTIONS/1000
GENOMES PROJECT/W
ORKING/20190125 COOR
DS EXON TARGET/OUT
PUT 1000G EXOME.VI.B
ED

FILE FORMAT: BED FILE

Chromosme ID: Number from chr1..22, X,Y

```
chr1
        14642
                 14882
chr1
         14943
                 15063
chr1
        15751
                 15990
chr1
        16599
                 16719
chr1
        16834
                 17074
chr1
         17211
                 17331
chr1
         30275
                 30431
chr1
                 70029
        69069
chr1
         129133
                 129253
chr1
         258482
                 258603
```

target.0

target.1

target.2

target.3

target.4

target.5

target.6

target.7

target.8

target.9

	curi	14642	14882	+	target.
	chr1	14943	15063	+	target.1
	chr1	15751	15990	+	target.2
	chr1	16599	16719	+	target.3
	chr1	16834	17074	+	target.4
	Chr1	17211	17331	+	target.5
· · · /	chr1	30275	30431	+	target.6
Start and end	chr1	69069	70029	+	target.7
positions of exo	ns ^{chr1}	129133	129253	+	target.8
posicions of exo	chr1	258482	258603	+	target.9

					1
	chr1	14642	14882	+	target.0
	chr1	14943	15063	+	target.1
	chr1	15751	15990	+	target.2
	chr1	16599	16719	+	target.3
	chr1	16834	17074	+	target.4
	chr1	17211	17331	+	target.5
	chr1	30275	30431	+	target.6
Strand	chr1	69069	70029	+	target.7
orientation	chr1	129133	129253	+	target.8
orientation	chr1	258482	258603	+	target.9

	chr1	14642	14882	+	target.0
	chr1	14943	15063	+	target.1
	chr1	15751	15990	+	target.2
	chr1	16599	16719	+	target.3
	chr1	16834	17074	_ 	target.4
	chr1	17211	17331	+	target.5
_	chr1	30275	30431	+	target.6
Names of	chr1	69069	70029	+	target.7
ovon	chr1	129133	129253	+	target.8
exon	chr1	258482	258603	+	target.9
regions					
0					

Chromosme ID: Number from chr1..22, X,Y

chr1 chr1 chr1	14642 14943 15751	14882 15063 15990	+++++	target.0 target.1 target.2
chr1	16599	16719	+	target.3
chr1	16834	17074	+	target.4
chr1	17211	17331	+	target.5
chr1	30275	30431	+	target.6
chr1	69069	70029	+	target.7
chr1	129133	129253	+	target.8
chr1	258482	258603	+	target.9

CHROMOSOME 22

##FILTER=<ID=PASS,Description="All filters passed"> ##fileDate=27022019_15h52m43s ##source=IGSRpipeline

##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">

##INFO=<ID=AF.Number=A.Type=Float.Description="Estimated allele frequency in the range (0.1)">

##fileformat=VCFv4.3

##contig=<ID=22>

```
##INFO=<ID=AC, Number=A, Type=Integer, Description="Total number of alternate alleles in called genotypes">
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of samples with data">
##INFO=<ID=AN.Number=I.Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=EAS_AF.Number=A.Type=Float.Description="Allele frequency in the EAS_populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=EUR AF, Number=A, Type=Float, Description="Allele frequency in the EUR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AFR AF, Number=A, Type=Float, Description="Allele frequency in the AFR populations calculated from AC and AN, in the range (0,1)">
##INFO=<ID=AMR_AF.Number=A.Type=Float.Description="Allele frequency in the AMR populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=SAS_AF, Number=A, Type=Float, Description="Allele frequency in the SAS_populations calculated from AC and AN, in the range (0.1)">
##INFO=<ID=VT,Number=.,Type=String,Description="indicates what type of variant the line represents">
##INFO=<ID=EX_TARGET, Number=0, Type=Flag, Description="indicates whether a variant is within the exon pull down target boundaries">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">
##bcftools viewVersion=1.9-162-g33ecfe8+htslib-1.9-150-gc76b3b2
##bcftools viewCommand=view ALL.chr22.shapeit2 integrated snvindels v2a 27022019.GRCh38.phased.vcf.gz; Date=Tue Aug 6 12:01:54 2019
#CHROM POS ID
                   REF ALT OUAL FILTER INFO FORMAT HG00096
22
      0516173
                                       PASS AC=121:AN=5096:DP=8203:AF=0.02:EAS AF=0:EUR AF=0.02:AFR AF=0.06:AMR AF=0.02:SAS AF=0:VT=SNP:NS=2548
                                                                                                                                                                GT 010
22
      10522217
                                       PASS AC=89:AN=5096:DP=9085:AF=0.02:EAS AF=0:EUR AF=0:AFR AF=0.07:AMR AF=0:SAS AF=0:VT=SNP:NS=2548 GT
```

##reference=ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome/GRCh38 full analysis set plus decoy hla.fa

SOFTWARE COMMANDS FOR CREATING EXON DATA

OVERVIEW OF SOFTWARE COMMANDS

```
cut -c4- output_1000G_Exome.v1.bed > IKG.exons.bed

sort -V -k1,1 -k2,2 IKG.exons.bed | bedtools merge > IKG.exons.bash_merged.bed

bcftools view
--regions-file IKG.exons.bash_merged.bed
--types snps --min-alleles 2 --max-alleles 2
--include 'FILTER="PASS"'
--output-type z
--output-file exons_chr22.vcf.gz

ALL.chr22.shapeit2 integrated snvindels v2a 27022019.GRCh38.phased.vcf.gz;
```

cut -c4- output_1000G_Exome.v1.bed > IKG.exons.bed

removes the regions we specified from each row

cut(-c4-)output_1000G_Exome.v1.bed > IKG.exons.bed

selects characters from the fourth index to the last index in each row; in another word, remove the first three characters, "chr".

cut -c4- output_I000G_Exome.v1.bed (>)IKG.exons.bed

creates a new output file and redirects the result to this output file

OUTPUT OF 1KG.EXONS.BED

1	14642	14882	+	target.0
1	14943	15063	+	target.1
1	15751	15990	+	target.2
1	16599	16719	+	target.3
1	16834	17074	+	target.4
1	17211	17331	+	target.5
1	30275	30431	+	target.6
1	69069	70029	+	target.7
1	129133	129253	+	target.8
1	258482	258603	+	target.9

sort -V -k1,1 -k2,2 1KG.exons.bed | bedtools merge > 1KG.exons.bash_merged.bed

sort -V -k1,1 -k2,2 IKG.exons.bed | bedtools merge > IKG.exons.bash_merged.bed

sorts lines of input

sort -V-k1,1 -k2,2 1KG.exons.bed | bedtools merge > 1KG/exons.bash_merged.bed

sorts numbers in natural version

sort -V(-k1,1)-k2,2 | KG.exons.bed | bedtools merge > | KG.exons.bash_merged.bed

sort by the first field (chromosome ID)

sort -V -k1,1 (k2,2) IKG.exons.bed | bedtools merge > IKG.exons.bash_merged.bed

sort by the second field (start position)

sort -V -k1,1 -k2,2 (KG.exons.bed) bedtools merge > IKG.exons.bash_merged.bed

Input

sort -V -k1,1 -k2,2 IKG.exons.bed() bedtools merge > IKG.exons.bash_merged.bed /

Pipe operation, which passes the output from the "sort" command to the "bedtools merge" command. This action is similar as "%>%" in r-studio

REMOVE DUPLICATED EXON INTERVALS

sort -V -k1, 1 -k2,2 1KG.exons.bed bedtools merge>

merge overlapped exons intervals

REMOVE DUPLICATED EXON INTERVALS

sort -V -k1, 1 -k2.2 | KG.exons.bed | bedtools merge > TKG.exons.bash_merged.bed

Output

OUTPUT OF 1KG.EXONS.BASH_MERGED.BED

1	14642	14882
1	14943	15063
1	15751	15990
1	16599	16719
1	16834	17074
1	17211	17331
1	30275	30431
1	69069	70029
1	129133	129253
1	258482	258603

bcftools view

- --regions-file IKG.exons.bash merged.bed
- --types snps --min-alleles 2 --max-alleles 2
- --include 'FILTER="PASS"
- --output-type z
- --output-file exons_chr22.vcf.gz

ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz;

bcftools view

- --regions-file IKG.exons.bash merged.bed
- --types snps --min-alleles 2 --max-alleles 2
- --include 'FILTER="PASS"
 - --output-type z
- --output-file exons_chr22.vcf.gz

ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz;

includes variants that passed all quality filters

```
bcftools view
--regions-file IKG.exons.bash_merged.bed
--types snps --min-alleles 2 --max-alleles 2
--include 'FILTER="PASS"' compresses the
--output-type z output to gzip
--output-file exons_chr22.vcf.gz
ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz;
```

```
bcftools view
--regions-file IKG.exons.bash_merged.bed
--types snps --min-alleles 2 --max-alleles 2
--include 'FILTER="PASS"'
--output-type z
--output-file exons_chr22.vcf.gz

ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.
vcf.gz;
```

```
bcftools view
--regions-file IKG.exons.bash_merged.bed
--types snps --min-alleles 2 --max-alleles 2 Input file
--include 'FILTER="PASS"'
--output-type z
--output-file exons_chr22.vcf.gz
ALL.chr22.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz;
```

EXAMPLE OUTPUT DATA

22	16390584	C	T	PASS	AC=23;AN=5096;DP=82786;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0.01;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548	GT	0 0		
22	16390592	A	G	PASS	AC=1386;AN=5096;DP=86545;AF=0.27;EAS_AF=0.37;EUR_AF=0.34;AFR_AF=0.08;AMR_AF=0.33;SAS_AF=0.32;EX_TARGE	;VT=SNP	NS=2548	GT	0
22	16390594	C	G	PASS	AC=1;AN=5096;DP=87990;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548	GT	0 0		
22	16390595	A	G	PASS	AC=1;AN=5096;DP=88574;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548	GT	0 0		
22	16390599	G	T	PASS	AC=1;AN=5096;DP=90114;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548	GT	0 0		

EXAMPLE OUTPUT DATA

22	16390584	C	T	PASS	AC=23;AN=5096;DP=82786;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0.01;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548 GT 0 0
22	16390592	A	G	PASS	AC=1386;AN=5096;DP=86545;AF=0.27;EAS_AF=0.37;EUR_AF=0.34;AFR_AF=0.08;AVR_AF=0.33;SAS_AF=0.32;EX_ARGET;VT=SNP;NS=2548 GT 0 1
22	16390594	C	G	PASS	AC=1;AN=5096;DP=87990;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF_0;EX_TARGET;VT=SNP;NS=2548 GT 0 0
22	16390595	A	G	PASS	AC=1;AN=5096;DP=88574;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF=0;EX_TARGET;VT=SNP;NS=2548 GT 0 0
22	16390599	G	T	PASS	AC=1;AN=5096;DP=90114;AF=0;EAS_AF=0;EUR_AF=0;AFR_AF=0;AMR_AF=0;SAS_AF=0,SX_TARGET;VT=SNP;NS=2548 GT 0 0

SIMULATED PEDIGREE

PATHWAY IMPLEMENTATION

Different families may segregate different cRVs residing in a set of interacting genes or a pathway.

▶ We specify a pool of cRVs from which to sample familial cRVs, so that different families can segregate different cRVs.

SEQUENCE DATA FOR FOUNDERS

Founder haplotypes are sampled from the population distribution of haplotypes conditioned on the founder's cRV status at the familial disease locus.

SEQUENCE DATA FOR OFFSPRING

SEQUENCE DATA FOR OFFSPRING

SEQUENCE DATA FOR OFFSPRING

Given the cRV status of each pedigree member we perform a conditional gene drop to simulate inheritance.

- ► Simulate genetic recombination among parental haplotypes.
- ► Sample the inherited gamete conditionally on *c*RV status.

CROSSOVER EVENTS

Each parent's haplotypes participate in recombination, or crossover, events whereby genetic material is exchanged between them.

We model the locations of crossover events as stochastic point process with a gamma renewal density [12].

FORMATION OF GAMETES

- ► To simulate the formation of gametes we assume that homologous chromatids are assigned to one of four gamete cells with equal probability.
- ➤ This assignment occurs independently for non-homologous chromosomes.

Case 1: If both the parent and offspring carry the cRV we sample the inherited gamete from those that carry the cRV.

Case 2: If the parent carries the cRV but the offspring does **not**, we sample the inherited gamete from those that do not carry the cRV.

CONDITIONAL GENE DROP

Case 3: If a **parent is not a carrier of the cRV**, we sample the inherited gamete from the four parental gametes.

DATA STORAGE IN R

Size Comparison of Genetic Data Objects

Chromosome	R package	Object Name	Size
1	vcfR	vcfR	2.6 Gb
1	sim1000G	vcf	NA (too large)
1	SimRVSequences	SNVdata	157.8 Mb
21	vcfR	vcfR	306.5 Mb
21	sim1000G	vcf	25.8 Mb
21	SimRVSequences	SNVdata	19.3 Mb

Featured genetic data includes SNVs from the exonic regions of chromosomes 1 and 21.

R Packages:

- ► Nieuwoudt, C., Graham, J., (2017) SimRVPedigree: Simulate Pedigrees Ascertained for a Rare Disease. R package version 0.4.0. https://CRAN.R-project.org/package=SimRVPedigree.
- Nieuwoudt, C., Graham, J., (2019) SimRVSequences: Simulate Genetic Sequence Data for Pedigrees. R package version 0.1.3. https://CRAN.R-project.org/package=SimRVSequences.

Manuscripts:

- ▶ Nieuwoudt, C., Jones, S.J., Brooks-Wilson, A., Graham, J. (2018). Simulating Pedigrees Ascertained for Multiple Disease-Affected Relatives. Source Code for Biology and Medicine 13:2.
- In Submission: Nieuwoudt, C., Brooks-Wilson, A., Graham, J. (2019). SimRVSequences: An R Package to Simulate Genetic Sequence Data for Pedigrees. Bioinformatics.

FIND US ON GITHUB

Source code and data are available on GitHub: https://github.com/simrvprojects

ACKNOWLEDGEMENTS

Supervisor: Jinko Graham Lymphoid Cancer Families Study (PI Angela Brooks-Wilson)