Supplementary Materials

Supplementary Table 1. Swarm performance metrics. The table describes the metrics used to assess the performance of the swarm passing-through process in a complex environment. The definitions of all performance metrics are described in detail in the paper. Among them, the *arrival rate* and *surpass rate* are the metric of swarm's passing-through safety, and the *arrival time* and *average speed* are the metrics of swarm's passing-through efficiency. A few typical scenes are chosen to generate the snaps of the swarm's passing-through process based on these four approaches. The correlations between the scenes and the corresponding figures are marked in the table for clarity.

TABLE I: Performance metrics for different methods in twenty scenes.

Scene	Metrics	Method					
Scene	Wietres	Method Proposed	Flocking Method	NMPO			
	Arrival time(s)	33.13	29.08	32.24	29.90		
Scene 1	Arrival rate(%)	100	90	70	50		
	Surpass rate(%)	0	40	40	\		
	Average speed(m/s)	2.2983	2.3327	2.0071	1.851		
Scene 2	Arrival time(s)	32.71	28.13	46.36	∞		
	Arrival rate(%)	100	30	65	10		
	Surpass rate(%)	0	20	65	\		
	Average speed(m/s)	2.3269	2.3734	2.0769	0.352		
	Arrival time(s)	34.87	31.22	∞	30.80		
0	Arrival rate(%)	100	100	95	60		
Scene 3	Surpass rate(%)	0	30	5	\		
	Average speed(m/s)	2.2631	2.2328	1.9873	1.864		
Scene 4	Arrival time(s)	35.33	27.36	36.54	∞		
	Arrival rate(%)	100	100	100	40		
	Surpass rate(%)	0	50	40	\		
	Average speed(m/s)	2.3324	2.5029	2.0617	1.391		
Scene 5	Arrival time(s)	32.89	31.01	31.83	28.5		
	Arrival rate(%)	100	55	25	50		
	Surpass rate(%)	0	35	30	\		
	Average speed(m/s)	2.2487	1.8992	2.0690	1.742		
	Arrival time(s)	26.02	29.51	∞	28.7		
Scene 6	Arrival rate(%)	100	20	15	60		
(Fig. 2, 3, 4, 5)	Surpass rate(%)	0	60	100	\		
	Average speed(m/s)	2.4711	1.9336	2.1102	1.836		
	Arrival time(s)	30.68	29.98	30.05	29.4		
Scene 7	Arrival rate(%)	100	70	100	25		
	Surpass rate(%)	0	0	30	\		
	Average speed(m/s)	2.2494	1.9392	1.9874	1.660		
	Arrival time(s)	34.67	36.32	34.44	32.2		
Saana 9	Arrival rate(%)	100	70	85	30		
Scene 8	Surpass rate(%)	0	40	70	\		
	Average speed(m/s)	2.3510	1.9190	2.0895	1.841		
Scene 9	Arrival time(s)	27.20	27.86	27.81	29.1		
	Arrival rate(%)	80	75	30	50		
	Surpass rate(%)	25	35	25	\		
	Average speed(m/s)	2.3096	1.9274	1.9918	1.642		
	Arrival time(s)	34.74	33.85	35.44	∞		
Scene 10	Arrival rate(%)	100	25	30	50		

	Surpass rate(%) Average speed(m/s)	0 2.0534	75 1.9455	60 2.0333	1.4430
	Arrival time(s)	26.04	30.67	35.25	
	Arrival rate(%)	60	30	45	$\frac{\infty}{25}$
Scene 11	Surpass rate(%)	40	65	50	\
	Average speed(m/s)	2.5446	1.9568	2.0235	0.8503
Scene 12	Arrival time(s)	34.09	32.48	40.28	∞
	Arrival rate(%)	90	5	5	5
	Surpass rate(%)	0	45	100	0.5072
	Average speed(m/s)	2.3083	1.9249	2.0748	0.5072
	Arrival time(s)	31.56	32.21	∞	∞
Scene 13	Arrival rate(%)	100	80	25	25
Seene 13	Surpass rate(%)	0	50	80	\
	Average speed(m/s)	2.3180	1.9213	2.1107	1.7255
	Arrival time(s)	33.18	32.47	34.62	36.40
Scene 14	Arrival rate(%)	100	90	55	35
Scelle 14	Surpass rate(%)	35	40	20	\
	Average speed(m/s)	2.2647	1.9461	2.0205	1.6509
Scene 15	Arrival time(s)	34.80	32.05	31.03	∞
	Arrival rate(%)	100	55	100	35
	Surpass rate(%)	0	0	10	\
	Average speed(m/s)	2.2638	1.9536	2.0157	1.3100
	Arrival time(s)	25.93	28.09	26.95	27.40
C 16	Arrival rate(%)	100	90	90	50
Scene 16	Surpass rate(%)	0	0	10	\
	Average speed(m/s)	2.3946	1.9368	2.0008	1.8432
	Arrival time(s)	27.40	30.18	29.58	∞
Scene 17	Arrival rate(%)	100	75	70	55
(Fig. 10, 11, 12, 13)	Surpass rate(%)	0	0	10	\
	Average speed(m/s)	2.4241	1.9570	2.0009	1.3753
	Arrival time(s)	27.09	31.59	31.69	30.70
010	Arrival rate(%)	100	55	100	30
Scene 18	Surpass rate(%)	0	25	0	\
	Average speed(m/s)	2.5089	1.9460	2.0511	1.8355
	Arrival time(s)	32.64	33.93	34.88	32.70
Scene 19	Arrival rate(%)	100	70	85	50
(Fig. 14, 15, 16, 17)	Surpass rate(%)	0	10	55	\
. 3 , , , ,	Average speed(m/s)	2.3623	1.9574	2.0239	1.8135
	Arrival time(s)	29.77	26.23	27.53	∞
				15	75
Scene 20	Arrival rate(%)	90	45	13	
Scene 20 (Fig. 18, 19, 20, 21)	Arrival rate(%) Surpass rate(%)	90 25	45 60	55	\

TABLE II: Actual time for solving the speed and density planning problem.

Scene	1	2	3	4	5	6	7	8	9	10
Time (ms)	127.29	214.70	251.38	234.10	266.06	294.31	319.33	313.09	251.14	263.31
Scene	11	12	13	14	15	16	17	18	19	20
Time (ms)	243.63	287.24	255.29	279.28	271.31	292.85	312.51	160.73	223.55	279.08

Supplementary Fig.1. Swarm passing-through time and the minimum distance between any pair of robots in four different virtual tube scenes without planning and with planning. The passing-through time and the minimum distance are evaluation indicators of safety and efficiency respectively. Case A, B, C, D are the four scenes manually set in the paper, including a normally narrowing trapezoidal virtual tube, a normally narrowing curved virtual tube, a rapidly narrowing trapezoidal virtual tube, and a rapidly narrowing curved virtual tube.

Supplementary Fig.2. The passing-through process of the swarm in scene 6 according to the method proposed. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.3. The passing-through process of the swarm in scene 6 according to the basic virtual tube control method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.4. The passing-through process of the swarm in scene 6 according to the flocking method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.5. The passing-through process of the swarm in scene 6 according to the NMPC method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.6. The passing-through process of the swarm in scene 10 according to the method proposed. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.7. The passing-through process of the swarm in scene 10 according to the basic virtual tube control method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.8. The passing-through process of the swarm in scene 10 according to the flocking method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.9. The passing-through process of the swarm in scene 10 according to the NMPC method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.10. The passing-through process of the swarm in scene 17 according to the method proposed. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.11. The passing-through process of the swarm in scene 17 according to the basic virtual tube control method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.12. The passing-through process of the swarm in scene 17 according to the flocking method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.13. The passing-through process of the swarm in scene 17 according to the NMPC method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.14. The passing-through process of the swarm in scene 19 according to the method proposed. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.15. The passing-through process of the swarm in scene 19 according to the basic virtual tube control method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.16. The passing-through process of the swarm in scene 19 according to the flocking method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.17. The passing-through process of the swarm in scene 19 according to the NMPC method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.18. The passing-through process of the swarm in scene 20 according to the method proposed. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.19. The passing-through process of the swarm in scene 20 according to the basic virtual tube control method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.20. The passing-through process of the swarm in scene 20 according to the flocking method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.21. The passing-through process of the swarm in scene 20 according to the NMPC method. The black squares are the obstacles, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue circle denotes the avoidance area of the robot.

Supplementary Fig.22. Flight experiment on quadcopters in a narrowing virtual tube. Six speed-constrained quadcopters are used to do experiments within a narrowing curved virtual tube and simulate in real time. On the left, the yellow boards denote the tube boundaries. On the right, the black solid curves are the tube boundaries, and the black dotted curve is the tube center curve. The red circle denotes the robot, and the blue dotted circle denotes the avoidance area of the robot. There is an obvious expansion of the quadcopter swarm before entering the narrowest part of the virtual tube at the 4 second due to the increase of r_a . Finally, the quadcopter swarm passes through the narrowest part of the virtual tube without conflict or surpassing the tube boundary at the 8 second.

Supplementary Fig.23. Speed and density tracking of one quadcopter in the flight experiment with real obstacles in the paper.