

Labor Matlab für die industrielle und medizinische Bildverarbeitung

Prof. Dr.-Ing. Bodo Rosenhahn

Institut für Informationsverarbeitung

Einleitung

- 19.10. Introduction (1h VL, 3 L), Accountvergabe (Präsenz)
- 26.10. Local operators (Harris, etc.) (1h VL, 3L)
- 02.11. Global Operators (Hough Transform) (1h VL, 3L)
- 09.11. Region Growing / Watershed Segmentation (1h VL, 3L)
- 16.11. Bayes Classifier (1h VL, 3L)
- 23.11. K-Means / Mean shift (1h VL, 3L)
- 30.11. Shape Context (1h VL, 3L)
- 07.12. Morphological Operators (1h VL, 3L)
- 14.12. Disparity estimation (DTW) (1h VL, 3L)
- 21.12. Restarbeiten vor Weihnachten (4L)
- 11.01. Calibration and Triangulation (1h VL, 3L)
- 18.01. PCA (1h VL, 3L)
- 25.01. Tracking (1h VL, 3L)

Thema: Lokale Operatoren

- Filtern (1D, 2D)
- Ableitungsfilter
- Harris Corner Detector

Was sind Kanten?

Operatoren

Punktoperator

z.B. Histogrammspreizung

Lokaler Operator

z.B. Faltung

Globaler Operator

z.B. Fouriertransformation

VL: Bildverarbeitung

Beispiel (1D-Faltung)

Filtermaske + Ursprung

Anmerkung:

Für die Randpunkte ist eine geeignete Randbehandlung zu wählen

1D-Faltung

Randbehandlung durch zyklisches Spiegeln

1D-Faltung

2D-Faltung

$$g(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} s(i,j) f(x-i,y-x)$$

Ableitungsfilter

$$\frac{s(x_0 + \Delta x) - s(x_0)}{\Delta x}$$
 Maske: [1,-1]

Ableitungsfilter

$$\frac{s(x_0 + \Delta x) - s(x_0 - \Delta x)}{2 \cdot \Delta x}$$

Maske: [0.5, 0, -0.5]

Ableitungsfilter

X-Ableitung

Y-Ableitung

2. Ableitung

Idee: Ableitung von der Ableitung

$$[1,-1] \otimes [1,-1] = [1,-2,1]$$

(Laplace-operator)

Beispiel (Kantendetektion)

Laplace

Sobel:

-1	0	+1
-2	0	+2
-1	0	+1

Gx

+1	+2	+1
0	0	0
-1	-2	-1

Gy

 $|G| = \sqrt{Gx^2 + Gy^2}$

Laplace

-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
-1	-1	24	-1	-1
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1

Beispiel (Glättung)

$$0.5[1,1] \otimes 0.5\begin{bmatrix} 1\\1 \end{bmatrix} = 0.25\begin{bmatrix} 1 & 1\\1 & 1 \end{bmatrix}$$

Box-filter

$$0.5[1,1] \otimes 0.5[1,1] = 0.25[1,2,1]$$

1D-Binomial Filter

$$0.25[1,2,1] \otimes 0.25 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 0.0625 \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

2D-Binomial Filter

Bezug: Pascalsche Dreieck

Glättung

Gute Features

Ein Punkt lässt sich gut verfolgen, wenn es an seiner Position starke Kontraste in alle Richtungen gibt.

Homogene Region: keine Änderung in allen Richtungen

Kante: keine Änderung entlang der Kante

Eckpunkt: signifikante Änderung in allen Richtungen

Eckendetektion (Harris Corner detector)

Änderung der Intensität bei einer Verschiebung (u,v):

Eckendetektion (Harris Corner detector)

Approximation:

$$I(x+u, y+v) \approx I(x, y) + I_v(x, y)v$$

liefert:

$$E(u,v) \approx \sum_{x,y} w(x,y) [I(x,y) + I_u(x,y)u + I_v(x,y)v - I(x,y)]^2$$

$$= \sum_{x,y} \left[I_u(x,y)u + I_v(x,y)v \right]^2$$

Harris Corner detector

Für die Intensitätsänderung E für kleine Verschiebungen (u,v) gilt:

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

M ist eine symmetrische 2x2 Matrix, welche die Intensitätsänderung einer Bildregion beschreibt. (Strukturtensor)

$$M = \begin{pmatrix} I_u^2 & I_u I_v \\ I_v I_u & I_v^2 \end{pmatrix}$$

Weil *M* sehr empfindlich gegen Rauschen ist, nimmt man zweckmäßigerweise eine Glättung vor (z.B. Gausskern)

M charakterisiert die Struktur in der Umgebung des Punktes (*u*,*v*). Denn:

- wenn (u,v) in einer homogenen (strukturlosen) Region des Bildes liegt (Intensitäts-"Gebirge" ist flach, Plateau),dann sind sämtliche Ableitungen lx=ly=0, also ist M die Nullmatrix.
- wenn durch (*u*,*v*) eine Kante mit Kantenvektor parallel zur

x-Richtung verläuft, hat M die Form

$$M = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$$

Wenn durch (u,v) eine Ecke verläuft ergeben sich die Strukturen

$$M = \begin{pmatrix} A & C \\ C & B \end{pmatrix}$$

keine Struktur	Kante (blauer Pfeil = Kantenvektor)	Ecke (Doppelecke "Schachbrett")	rechtwinklige Ecke
	I _x >0	I _x >0	_x >0
$\mathbf{M} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\mathbf{M} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$	$\mathbf{M} = \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}$	$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C} & \mathbf{B} \end{pmatrix}$

Ziel: Rotationsinvariante Interpretation des Strukturtensors

Eigenwertanalyse von M

Eigenwertgleichung $Mv = \lambda v$

Einfacher Fall: M sei Diagonalmatrix:

$$M = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Eigenwerte: λ_1, λ_2

Eigenvektoren: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

 $x^{T}Mx = 1$ beschreibt die Gleichung einer Ellipse, deren Breite und Höhe durch die Eigenwerte gegeben ist.

Wenn die Eigenvektoren Einheitsvektoren sind, gilt:

$$v_i^T M v_i = \lambda_i$$

Bei einer rotierten Ellipse erhält man für $R = \begin{pmatrix} C & S \\ -S & C \end{pmatrix}$

$$M = R^{T} \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} R = \begin{pmatrix} \lambda_{1}c^{2} + \lambda_{2}s^{2} & (\lambda_{1} - \lambda_{2})sc \\ (\lambda_{1} - \lambda_{2})sc & \lambda_{1}c^{2} + \lambda_{2}s^{2} \end{pmatrix} = \begin{pmatrix} A & C \\ C & B \end{pmatrix}$$

(Wir ignorieren die 3. Komponente von *M*)

Vorteil der Beschreibung durch Eigenwerte:

Die Eigenwerte erzeugen eine einheitliche *Sprache*, um alle Kanten beliebiger Richtung zu beschreiben:

- "Kante" gdw Eigenwert 1 > 0, aber 2=0 (bzw. nahe Null).
- "Ecke" gdw beide Eigenwerte in etwa gleich groß sind (Ellipse wird zum Kreis)

Eigenschaften des Harris Corner detectors

(Eigenwerte) rotationsinvariant :

NICHT skalierungsinvariant

Praxis: $M_c = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2 = \det(A) - k \operatorname{trace}^2(A)$

Beispiel

Beispiel

Zusammenfassung

- Filtern (1D, 2D)
- Ableitungsfilter
- Harris Corner Detector