TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6963C

DOT MATRIX LCD CONTROL LSI

The T6963C is an LCD controller designed to be used with LCD control driver LSIs and data display memories. The device has an 8-bit parallel data bus and control lines for reading or writing through an MPU interface. It can be directly connected to a TMPZ-80.

It has a 128-word character generator ROM which can control an external display RAM of up to 64 Kbytes. Allocation of text, graphics and external character generator RAM can be made easily and the display window can be moved freely within the allocated memory range.

The device supports a very broad range of LCD formats by allowing selection of different combinations via a set of programmable inputs. It can be used in text, graphic and combination text-and-graphic modes, and includes various attribute functions.

Weight: 1.2g (typ.)

FEATURES

Display format (pin-selectable)

Columns: 32, 40, 64, 80

: 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32

The combination of number of columns and number of lines must not cause the frequency to exceed 5.5 MHz. (See Fig. 2)

Character font (pin-selectable)

Horizontal dots: 5, 6, 7, 8 Vertical dots: 8 (fixed)

It is necessary to set a character font in Graphic mode just as in Text mode. The oscillation frequency does not change with the font selection.

- Display duty: 1/16 to 1/128
- A 128-word character generator ROM (code 0101) T6963C-0101 is built in as standard.

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

External display memory: 64 KB max
 The addresses in display memory of the text area, graphic area and external character generator area are determined by software.

- Read or Write operations from the CPU do not disturb the display.
- A crystal oscillator circuit is built in. The oscillation frequency is adjusted according to the display size. If using an external clock, use the XI pin as the clock input. (XO open.)

External capacitors Crystal oscillation : 20 to 30 pF

- Toshiba LCD driver LSIs (other than these with a built-in RAM) can be connected to the device.
- External display RAM must be static RAM. The T6963C cannot refresh D-RAM.
- The attribute functions can only be used in Text mode. They cannot be used in Graphic or Combination Character mode.

BLOCK DIAGRAM

PIN ASSIGNMENT

PIN FUNCTIONS

PIN NAME	1/0		FUNCTIONS															
		Pins for	ins for selection of LCD size															
		DUAL	Н	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L
		MDS	L	L	L	L	Η	Н	Н	Н	L	L	L	L	Н	Н	Н	Н
MDS	1	MD1	Н	Н	L	L	Ι	Н	L	L	Н	Η	L	L	Η	Η	L	L
MD0 MD1	Input	MD0	Н	L	Н	L	Ι	L	Η	L	Ι	L	Н	L	Ι	L	Н	L
IVIDT		LINES	2	4	6	8	10	12	14	16	4	8	12	16	20	24	28	32
		V-DOTS	16	32	48	64	80	96	112	128	32	64	96	128	160	192	224	256
		1 SCREEN						2 SCREENS										
MD2 MD3	Input	Pins for	selec	tion	of n	umbe	er of	colu	mns		MD2 MD3 Colu		H H 32	L H 40	H L 64	L L 80		
FS0 FS1	Input	Pins for	FSO H L H L FS1 H H L L Font 5×8 6×8 7×8 8×8						L L 8×8									
D0 to D7	1/0	Data I/C) pin	s bet	twee	n CP	U an	d T6	963C	(D7	is M	SB)						
WR	Input	Data Wri	ata Write. Write data into T6963C when $\overline{WR} = L$.															
RD	Input	Data Rea	id. R	ead	data	from	า T69	63C	whe	n RD	= L.							
CE	Input	Chip Ena	ble :	for T	6963	C. CI	mu	st be	Lw	hen	CPU	comi	muni	cates	with	1 T69	963C.	-

PIN NAME	1/0	FUNCTIONS					
C/D	Input	$\overline{WR} = L \cdots C/D = H : Command Write $					
HALT	Input	H ······ Normal, L ····· Stops the oscillation of the clock					
RESET	Input	H ······ Normal (T6963C has internal pull-up resistor) L ······ Initialize T6963C. Text and graphic have addresses and text and graphic area settings are retained.					
DSPON	Output	Control pin for external DC/DC. DSPON is L when HALT is L or RESET is L. (When DSPON goes H, the column drivers are cleared.)					
DUAL	Input	H ······ Single-Scan L ····· Dual-Scan SDSEL H L H L SDSEL H L					
SDSEL	Input	H ······ Sending data by odd / even separation L ····· Sending data by simple serial method Upper screen HOD, ED ED HOD, ED ED Lower screen — LOD, ED ED					
ce0 (LOD)	Output	CeO at $\overline{DUAL} = H$ Chip enable pin for display memory in the address range 0000H to 07FFH LOD at $\overline{DUAL} = L$ Serial data output for odd columns in lower area of LCD					
ce1 (LSCP)	Output	ce1 at DUAL = H Chip enable pin for display memory in the address range 0800H to 0FFFH LSCP at DUAL = L Shift clock pulse output for column drivers in lower area of LCD					
ce	Output	Chip enable pin for display memory of any address					
d0 to d7	1/0	Data I/O pins for display memory					
ad0 to ad15	Output	Address outputs for display memory (ad15 = L : for upper area of LCD, ad15 = H : for lower area of LCD)					
R/W	Output	Read / Write signal for display memory					
ED	Output	$\overline{\text{SDSEL}}$ = H : Data output for even columns in both upper and lower areas of LCD $\overline{\text{SDSEL}}$ = L : Data output for columns in both upper and lower areas of LCD					
HOD		Data output for odd columns in upper area of LCD					
CDATA		Synchronous signal for row driver					
HSCP		Shift clock pulse for column driver of upper area of LCD					
LP	Output	Latch pulse for column driver. Shift clock pulse for row driver					
FR	Output	Frame signal					
ΧI	Input	Crystal oscillator input					
ХО	Output	Crystal oscillator output					
CH1, CH2	Output	Check signal					
T1, T2	Input	Test input. Usually open					
V_{DD}	_	Power supply (5.0V)					
VSS	_	Power supply (0V)					

TOSHIBA

FUNCTIONAL DEFINITION

- After power on, it is necessary to reset. RESET is kept L between 5 clocks up (oscillation clock).
- When HALT = L, the oscillation stops. The power supply for the LCD must now be turned off, to protect the LCD from DC bias.
- The HALT function includes the RESET function.
- The column/line counter and display register are cleared by RESET. (Other registers are not cleared.) Disable the display using the clear-display register.
- The status must be checked before data or commands are sent. The MSB = 0 status check must be done in particular. There is a possibility of erroneous operation due to a hard interrupt.
- STA0 and STA1 must be checked at the same time. When a command is executed, data transmission errors may occur.
- The T6963C can only handle one byte per machine cycle (16 clocks). It is impossible to send more than two data in a machine cycle.
- When using a command with operand data, it important to send the data first, and then execute the command.
- The character codes used by the T6963C are different from ASCII codes.

• State after RESET/HALT (Fig. 1)

TERMINAL	HALT		RESET	
D0 to D7	F		F	
d0 to d7	F		F	
r/w	Н		Н	
се	Н	(Note 1)	Н	(Note 1)
ad0 to ad15	Н	(Note 2)	Н	(Note 2)
ce0, ce1	Н	(Note 1)	Н	(Note 1)
ED, HOD	Final data		Final data	
HSCP	L		L	
LP	L		L	
CDATA	Н		Н	
FR	Н		Н	
CH1	L		K0	
CH2	L		VEND)
DSPON	L		L	
XO	Н		OSC cl	ock

H : Level H L : Level L

F : Floating (high impedance)

KO : Test signal VEND : Test signal

VEND : Test signal (Note 1) : In Attribute mode, H or L according to state of graphic pointer

(Note 2): In Attribute mode, data of graphic pointer

• The relationship between number of row/column and oscillation clock (Fig. 2)

The frequency of the crystal oscillator is adjusted by the following formula.

fOSC: Frequency of oscillation

 f_{SCP} : Frequency of shift clock ($f_{SCP} = f_{OSC}/2$)

f_R: Frequency of Frame

M : Number of characters on one line (number of dots on one line = 8M)

For all font sizes (e.g. 7×8 , 6×8 , 5×8) the oscillation frequency remains constant.

N : Number of rows (duty = 1/8N)

$$\frac{8M}{f_{SCP}} \times 8N = \frac{1}{f_{R}}$$

$$f_{OSC} = f_R \times 64 \times 2 \times M \times N$$

($f_R = 60 \text{ Hz}$)

UNIT: [MHz]

M N	32	40	64	80	duty	
2	0.492	0.614	0.983	1.229	1 / 16	
	0.983	1.229	1.966	2.458	1 / 16	
4	0.983	1.229	1.966	2.458	1 / 22	
4	1.966	2.458	3.932	4.915	1/32	
6	1.475	1.843	2.949	3.686	1 / 40	
0	2.949	3.686	5.898	7.372	1 / 48	
8	1.966	2.458	3.932	4.915	1 /64	
ľ	3.932	4.915	7.864	9.830	1 / 64	
10	2.458	3.072	4.915	6.144	1 / 00	
'0	4.915	6.144	9.830	12.288	1/80	
12	2.949	3.686	5.898	7.373	1/96	
12	5.898	7.373	11.776	14.746	1/90	
14	3.440	4.300	6.881	8.602	1/112	
14	6.881	8.601	13.763	17.203	1/112	
16	3.932	4.915	7.864	9.830	1 / 120	
10	7.864	9.830	15.729	19.660	1 / 128	

(Note 1) Upper \cdots Single-Scan, lower \cdots Dual-Scan at f_R = 60 Hz

Upper Lower

RAM Interface

The external RAM is used to store display data (text, graphic and external CG data). With single-scan, text data, graphic data and external CG data can be freely allocated to the memory area (64 KB max).

With dual-scan, LCD $\rm I$ is allocated to 0000H to 7FFFH (32 KB max), LCD $\rm II$ is allocated to 8000H to FFFFH (32 KB max). Text data, graphic data and external CG data can be freely allocated in LCD $\rm I$. In LCD $\rm II$, the same addresses must be allocated as in LCD $\rm I$, except ad15. ad15 determines selection of LCD $\rm I$ or LCD $\rm II$.

It can be use the address decoded signals $\overline{\text{ce0}}$ (0000 to 07FFH), $\overline{\text{ce1}}$ (0800 to 0FFFH) within 4 KB. $\overline{\text{ce0}}$ and $\overline{\text{ce1}}$ allow decoding of addresses in the ranges (0000 to 07FFH) and (0800 to 0FFFH) respectively within a 4-KB memory space.

(Example)

(2) Dual-Scan

CG : Character Generator

- Flowchart of communications with MPU
 - (1) Status Read

A status check must be performed before data is read or written.

Status check

The Status of T6963C can be read from the data lines.

 RD
 L

 WR
 H

 CE
 L

 C/D
 H

D0 to D7 Status word

The T6963C status word format is as follows:

MSB LSB

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

STA0	Check command execution capability	0 : Disable 1 : Enable
STA1	Check data read/write capability	0 : Disable 1 : Enable
STA2	Check Auto mode data read capability	0 : Disable 1 : Enable
STA3	Check Auto mode data write capability	0 : Disable 1 : Enable
STA4	Not used	
STA5	Check controller operation capability	0 : Disable 1 : Enable
STA6	Error flag. Used for Screen Peek and Screen copy commands.	0 : No error 1 : Error
STA7	Check the blink condition	0 : Display off 1 : Normal display

- (Note 1) It is necessary to check STA0 and STA1 at the same time.

 There is a possibility of erroneous operation due to a hardware interrupt.
- (Note 2) For most modes STA0/STA1 are used as a status check.
- (Note 3) STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.

Status checking flow

a)

b)

(Note 4) When using the MSB = 0 command, a Status Read must be performed.

If a status check is not carried out, the T6963C cannot operate normally, even after a delay time.

The hardware interrupt occurs during the address calculation period (at the end of each line).

If a MSB = 0 command is sent to the T6963C during this period, the T6963C enters Wait status.

If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data will not be received.

(2) Setting data

When using the T6963C, first set the data, then set the command.

Procedure for sending a command

a) The case of 1 data

b) The case of 2 data

(Note) When sending more than two data, the last datum (or last two data) is valid.

COMMAND DEFINITIONS

COMMAND DEFINITIONS				
COMMAND	CODE	D1	D2	FUNCTION
	00100001	X address	Y address	Set Cursor Pointer
REGISTERS SETTING	00100010	Data	00H	Set Offset Register
	00100100	Low address	High address	Set Address Pointer
	01000000	Low address	High address	Set Text Home Address
SET CONTROL WORD	01000001	Columns	00Н	Set Text Area
SET CONTROL WORD	01000010	Low address	High address	Set Graphic Home Address
	01000011	Columns	00H	Set Graphic Area
	1000X000	_	_	OR mode
	1000X001	_	_	EXOR mode
MODE CET	1000X011	_	_	AND mode
MODE SET	1000X100	_	_	Text Attribute mode
	10000XXX	_	_	Internal CG ROM mode
	10001XXX	_	_	External CG RAM mode
	10010000	_	_	Display off
	1001XX10	_	_	Cursor on, blink off
DICDLAY MACDE	1001XX11	_	_	Cursor on, blink on
DISPLAY MODE	100101XX	_	_	Text on, graphic off
	100110XX	_	_	Text off, graphic on
	100111XX	_	_	Text on, graphic on
	10100000	_	_	1-line cursor
	10100001	_	_	2-line cursor
	10100010	_	_	3-line cursor
CURSOR PATTERN	10100011	_	_	4-line cursor
SELECT	10100100	_	_	5-line cursor
	10100101	_	_	6-line cursor
	10100110	_	_	7-line cursor
	10100111	_	_	8-line cursor
DATA AUTO READ/	10110000	_	_	Set Data Auto Write
WRITE	10110001	_	_	Set Data Auto Read
VVKIIE	10110010	_	_	Auto Reset
	11000000	Data	_	Data Write and Increment ADP
	11000001	_	_	Data Read and Increment ADP
DATA BEAD (MOITE	11000010	Data	_	Data Write and Decrement ADP
DATA READ/WRITE	11000011	_	_	Data Read and Decrement ADP
	11000100	Data	_	Data Write and Nonvariable ADP
	11000101	_	_	Data Read and Nonvariable ADP
SCREEN PEEK	11100000	_	_	Screen Peek
SCREEN COPY	11101000			Screen Copy
				V . invalid

X : invalid

COMMAND	CODE	D1	D2	FUNCTION
	11110XXX	_	_	Bit Reset
	11111XXX	_	_	Bit Set
	1111X000	_	_	Bit 0 (LSB)
	1111X001	_	_	Bit 1
BIT SET/RESET	1111X010	_	_	Bit 2
BII SEI/RESEI	1111X011	_	_	Bit 3
	1111X100	_	_	Bit 4
	1111X101	_	_	Bit 5
	1111X110	_	_	Bit 6
	1111X111	_		Bit 7 (MSB)

X: invalid

Setting registers

CODE	HEX.	FUNCTION	D1	D2
00100001	21H	SET CURSOR POINTER	X ADRS	Y ADRS
00100010	22H	SET OFFSET REGISTER	DATA	00H
00100100	24H	SET ADDRESS POINTER	LOW ADRS	HIGH ADRS

(1) Set Cursor Pointer

The position of the cursor is specified by X ADRS and Y ADRS. The cursor position can only be moved by this command. Data read/write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid)
Y ADRS 00H to 1FH (lower 5 bits are valid)

a) Single-Scan X ADRS 00 to 4FH

Y ADRS 00H to 0FH

b) Dual-Scan X ADRS 00H to 4FH

> Y ADRS 00H to 0FH Upper screen

> Y ADRS 10H to 1FH Lower screen

(2) Set Offset Register

The offset register is used to determine the external character generator RAM area. The T6963C has a 16-bit address bus as follows:

T6963C assign External character generator, when character code set 80H to FFH in using internal character generator. Character code 00H to 80H assign External character generator, when External generator mode.

The senior five bits define the start address in external memory of the CG RAM area. The next eight bits represent the character code of the character. In internal CG ROM mode, character codes 00H to 7FH represent the predefined "internal" CG ROM characters, and codes 80H to FFH represent the user's own "external" characters. In external CG RAM mode, all 256 codes from 00H to FFH can be used to represent the user's own characters. The three least significant bits indicate one of the eight rows of eight dots that define the character's shape.

The relationship between display RAM address and offset register

(Example 2) The relationship between display RAM data and display characters

 γ and ζ are displayed by character generator RAM.

(3) Set Address Pointer

The Set Address Pointer command is used to indicate the start address for writing to (or reading from) external RAM.

The Flowchart for Set Address Pointer command

• Set Control Word

CODE	HEX.	FUNCTION	D1	D2
01000000	40H	Set Text Home Address	Low address	High address
01000001	41H	Set Text Area	Columns	00H
01000010	42H	Set Graphic Home Address	Low address	High address
01000011	43H	Set Graphic Area	Columns	00H

The home address and column size are defined by this command.

(1) Set Text Home Address

The starting address in the external display RAM for text display is defined by this command. The text home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

TH	TH + CL
TH+TA	TH + TA + CL
(TH + TA) + TA	TH + 2TA + CL
(TH + 2TA) + TA	TH + 3TA + CL
TH + (n-1) TA	TH + (n-1) TA + CL

TH: Text home address

TA: Text area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

 Text home address
 : 0000H

 Text area
 : 0020H

 MD2 = H, MD3 = H
 : 32 columns

 DUAL = H, MDS = L, MD0 = L, MD1 = H
 : 4 lines

0000H	0001H	001EH	001FH
0020H	0021H	003EH	002FH
0040H	0041H	005EH	005FH
0060H	0061H	007EH	007FH

(2) Set Graphic Home Address

The starting address of the external display RAM used for graphic display is defined by this command. The graphic home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

GH	GH + CL
GH + GA	GH + GA + CL
(GH + GA) + GA	GH + 2GA + CL
(GH + 2GA) + GA	GH + 3GA + CL
GH + (n-1) GA	GH + (n-1) GA + CL

GH: Graphic home address

GA: Graphic area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Graphic home address : 0000H
Graphic area : 0020H
MD2 = H, MD3 = H : 32 columns

DUAL = H, MDS = L, MD0 = H, MD1 = H : 2 lines

0000H	0001H	001EH	001FH
0020H	0021H	003EH	003FH
0040H	0041H	005EH	005FH
0060H	0061H	007EH	007FH
0080H	0081H	009EH	009FH
00A0H	00A1H	00BEH	00BFH
00C0H	00C1H	00DEH	00DFH
00E0H	00E1H	00FEH	00FFH
0100H	0101H	011EH	011FH
0120H	0121H	013EH	013FH
0140H	0141H	015EH	015FH
0160H	0161H	017EH	017FH
0180H	0181H	019EH	019FH
01A0H	01A1H	01BEH	01BFH
01C0H	01C1H	01DEH	01DFH
01E0H	01E1H	01FEH	01FFH

(3) Set Text Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the display.

(Example)

LCD size : 20 columns, 4 lines

 Text home address
 : 0000H

 Text area
 : 0014H

 MD2 = H, MD3 = H
 : 32 columns

 DUAL = H, MDS = L, MD0 = L, MD1 = H
 : 4 lines

0000	0001	•••••	0013	0014	 001F
0014	0015		0027	0028	 0033
0028	0029		003B	003C	 0047
003C	003D		004F	0050	 005B
→ LCD ←				-	

1997-04-07 16/46

(4) Set Graphic Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

(Example)

LCD size : 20 columns, 2 lines

Graphic home address : 0000H
Graphic area : 0014H
MD2 = H, MD3 = H : 32 columns

DUAL = H, MDS = L, MD0 = H, MD1 = H : 2 lines

				_	
0000	0001	••••••	0013	0014	 001F
0014	0015		0027	0028	 0033
0028	0029		003B	003C	 0047
003C	003D		004F	0050	 005B
0050	0051		0063	0064	 006F
0064	0065		0077	0078	 0083
0078	0079		008B	008C	 0097
008C	008D		009F	00A0	 00AB
00A0	00A1		00B3	00B4	 00BF
00B4	00B5		00C7	00C8	 00D3
00C8	00C9		00DB	00DC	 00E7
00DC	00DD		00EF	00F0	 00FD
00F0	00F1		0103	0104	 011F
0104	0105		0127	0128	 0123
0128	0129		013B	013C	 0147
013C	013D		014F	0150	 015B
	-	LCD ←			
I				l	

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line +1.

Mode set

CODE	FUNCTION	OPERAND
1000X000	OR Mode	_
1000X001	EXOR Mode	_
1000X011	AND Mode	_
1000X100	TEXT ATTRIBUTE Mode	_
10000XXX	Internal Character Generator Mode	_
10001XXX	External Character Generator Mode	_

X: invalid

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed. In Internal Character Generator mode, character codes 00H to 7FH are assigned to the built-in character generator ROM. The character codes 80H to FFH are automatically assigned to the external character generator RAM.

(Example)

(Note) Attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

Attribute function

The attribute operations are Reverse display, Character blink and Inhibit. The attribute data is written into the graphic area which was defined by the Set Control Word command. Only text display is possible in Attribute Function mode; graphic display is automatically disabled. However, the Display Mode command must be used to turn both Text and Graphic on in order for the Attribute function to be available.

The attribute data for each character in the text area is written to the same address in the graphic area. The Attribute function is defined as follows.

				_							
	Attrik	oute R	AM 1	byte	XX	Х	Х	d3	d2	d1	d0
ı				1	-						-
	d3	d2	d1	d0	FL	JNCTI	NC				
	_	_			Niconal disale	_			-		
	0	0	0	0	Normal displa	ay					
	0	1	0	1	Reverse displa	ay					
	0	0	1	1	Inhibit displa	у					
	1	0	0	0	Blink of norn	nal dis	splay				
	1	1	0	1	Blink of reve	rse dis	play				
	1	0	1	1	Blink of inhib	oit dis	plav			X : ir	nvalid

Display mode

	CODE	FUNCTION	OPERAND	
	10010000	Display off	_	
	1001XX10	Cursor on, blink off	_	
I	1001XX11	Cursor on, blink on	_	
ſ	100101XX	Text on, graphic off	_	
	100110XX	Text off, graphic on	_	
	100111XX	Text on, graphic on		X : invalid

(Note) It is necessary to turn on "Text display" and "Graphic display" in the following cases.

- a) Combination of text/graphic display
- b) Attribute function

• Cursor pattern select

CODE	FUNCTION	OPERAND
10100000	1-line cursor	_
10100001	2-line cursor	_
10100010	3-line cursor	_
10100011	4-line cursor	
10100100	5-line cursor	_
10100101	6-line cursor	_
10100110	7-line cursor	_
10100111	8-line cursor	_

When cursor display is ON, this command selects the cursor pattern in the range 1 line to 8 lines. The cursor address is defined by the Cursor Pointer Set command.

• Data Auto Read/Write

CODE	HEX.	FUNCTION	OPERAND
10110000	вон	Set Data Auto Write	_
10110001	B1H	Set Data Auto Read	_
10110010	B2H	Auto Reset	

This command is convenient for sending a full screen of data from the external display RAM. After setting Auto mode, a Data Write (or Read) command is need not be sent between each datum. A Data Auto Write (or Read) command must be sent after a Set Address Pointer command. After this command, the address pointer is automatically incremented by 1 after each datum. In Auto mode, the T6963C cannot accept any other commands.

The Auto Reset command must be sent to the T6963C after all data has been sent, to clear Auto mode.

(Note) A Status check for Auto mode

(STA2, STA3 should be checked between sending of each datum. Auto Reset should be performed after checking STA3 = 1 (STA2 = 1). Refer to the following flowchart.

Data Read / Write

CODE	HEX.	FUNCTION	OPERAND
11000000	C0H	Data Write and Increment ADP	Data
11000001	C1H	Data Read and Increment ADP	_
11000010	C2H	Data Write and Decrement ADP	Data
11000011	СЗН	Data Read and Decrement ADP	_
11000100	C4H	Data Write and Nonvariable ADP	Data
11000101	C5H	Data Read and Nonvariable ADP	_

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM to the MPU. Data Write/Data Read should be executed after setting address using Set Address Pointer command. The address pointer can be automatically incremented or decremented using this command.

(Note) This command is necessary for each 1-byte datum. Refer to the following flowchart.

• Screen Peek

CODE	HEX.	FUNCTION	OPERAND
11100000	E0H	Screen Peek	1

This command is used to transfer 1 byte of displayed data to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command.

The status (STA6) should be checked just after the Screen Peek command. If the address determined by the Set Address Pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

Refer to the following flowchart.

(Note) This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to Set Text Area and Set Graphic Area command.

• Screen Copy

CODE	HEX.	FUNCTION	OPERAND
11101000	E8H	Screen Copy	_

This command copies a single raster line of data to the graphic area.

The start point must be set using the Set Address Pointer command.

(Note 1) If the attribute function is being used, this command is not available. (With Attribute data is graphic area data.)

(Note 2) With Dual-Scan, this command cannot be used (because the T6963C cannot separate the upper screen data and lower screen data).

Refer to the following flowchart.

(Note) This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to Set Text Area and Set Graphic Area command.

• Bit Set/Reset

CODE	FUNCTION	OPERAND
11110XXX	Bit Reset	_
11111XXX	Bit Set	_
1111X000	Bit 0 (LSB)	_
1111X001	Bit 1	_
1111X010	Bit 2	_
1111X011	Bit 3	_
1111X100	Bit 4	_
1111X101	Bit 5	_
1111X110	Bit 6	_
1111X111	Bit 7 (MSB)	_

X: invalid

This command use to set or reset a bit of the byte specified by the address pointer. Only one bit can be set/reset at a time.

Refer to the following flowchart.

TOSHIBA

CHARACTER CODE MAP

ROM code 0101

LSB MSB	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0		•	11		:	:			•	?	**		:	••••		
1		i					6	·			# #	# ;	•		>	•
2												K			H	
3							Ņ	₩	X	Ÿ	<u></u>				.*.	
4	•	-==		:		:::		•==			i	K	•••••		ľì	
5	::: -	-==	! -"	:::.	-		ij	W	×	•==		₹		<u>:</u>	••••	
6					-:::		-:::	::::					•	•		
7		:		Ö	:::		<u></u>	·.								``

TOSHIBA

CG ROM TYPE 0201

LSB MSB	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0		•	!!			:		:	Ĭ,)	:#:		:			•
1		•	•	:				:			##	:		••••	>	•
2										i		K	i			
3							Ņ	W	X	¥		i.			•••	
4	#	;					;	77	4	•		#	##	.::.		•::
5	••••	•	•	ŗ	·		!	#	::;	•		#	: ;	.		٠,١
6	:;;	#	•••		ŀ	••••		;;;		ļ	: `i			٠,		~;
7		:	.×:					•••	Ņ	ii.	Ŀ		: ;	÷	•••	

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

ITEM	SYMBOL	RATING	UNIT
Supply Voltage	V _{DD} (Note)	-0.3 to 7.0	V
Input Voltage	V _{IN} (Note)	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	- 20 to 70	°C
Storage Temperature	T _{stg}	– 55 to 125	°C

(Note) Referenced to $V_{SS} = 0V$.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

TEST CONDITIONS (Unless otherwise noted, $V_{SS} = 0V$, $V_{DD} = 5.0V \pm 10\%$, $T_{a} = -20$ to 75° C)

ITEM		SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT	PIN NAME
Operating	Voltage	V_{DD}	_	_	4.5	5.0	5.5	V	V_{DD}
1	H Level	V _{IH}	_	_	V _{DD} – 2.2	_	V_{DD}	٧	Input pins
Input	L Level	V _{IL}	_	_	0	_	0.8	V	Input pins
Output	out H Level VOH — — —		V _{DD} – 0.3		V_{DD}	٧	Output pins		
Voltage	L Level	VOL	_	_	0	_	0.3	٧	Output pins
Output	H Level	ROH	_	$V_{OUT} = V_{DD} - 0.5V$	_	_	400	Ω	Output pins
Resistance	L Level	ROL	_	V _{OUT} = 0.5V	_	_	400	Ω	Output pins
Input Pull- Resistance	up	RPU	_	_	50	100	200	kΩ	(Note 1)
Operating Frequency		fosc	_	_	0.4		5.5	MHz	
Current Consumption (Operating		^I DD (1)	ı	V _{DD} = 5.0V (Note 2) f _{OSC} = 3.0MHz	_	3.3	6	mA	V _{DD}
Current Consumpti	on (Halt)	I _{DD} (2)		V _{DD} = 5.0V	_		3	μΑ	v_{DD}

(Note 1) Applied $\overline{11}$, $\overline{12}$, \overline{RESET}

(Note 2) MDS = L, MD0 = L, MD1 = L, MD2 = H, MD3 = H, FS0 = L, FS1 = L, $\overline{DUAL} = H$, D7 to D0 = LHLHLHLH

AC CHARACTERISTICS

• Switching Characteristics (1)

TEST CONDITIONS (Unless otherwise noted, $V_{DD} = 5.0V \pm 10\%$, $V_{SS} = 0V$, Ta = -20 to $70^{\circ}C$)

ITEM	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Operating Frequency	f _{scp}	Ta = − 10~70°C	_	2.75	MHz
SCP Pulse Width	tCWH, tCWL	_	150	_	ns
SCP Rise / Fall Time	t _r , t _f	_	_	30	ns
LP Set-up Time	tLSU	_	150	290	ns
LP Hold Time	tLHD	_	5	40	ns
Data Set-up Time	t _{DSU}	_	170	_	ns
Data Hold Time	t _{DHD}	_	80	_	ns
FR Delay Time	^t d	_	0	90	ns
CDATA Set-up Time	tcsu	_	450	850	ns
CDATA Hold Time	^t CHD	_	450	950	ns

• Switching Characteristics (2)

Bus Timing

TEST CONDITIONS (Unless otherwise noted, $V_{DD} = 5.0V \pm 10\%$, $V_{SS} = 0V$, $T_{a} = -20$ to 75° C)

ITEM	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
C/D Set-up Time	^t CDS	_	100	_	ns
C/D Hold Time	^t CDH		10	_	ns
CE, RD, WR Pulse Width	t _{CE} , t _{RD} , t _{WR}		80		ns
Data Set-up Time	t _{DS}		80	_	ns
Data Hold Time	^t DH	_	40	_	ns
Access Time	^t ACC		_	150	ns
Output Hold Time	^t OH	1	10	50	ns

• Switching Characteristics (3)

(1) External RAM Read mode

(2) External RAM Write mode

TEST CONDITIONS (Unless otherwise noted, $V_{DD} = 5.0V \pm 10\%$, $V_{SS} = 0V$, $T_{a} = -20$ to 70° C)

ITEM	SYMBOL	IBOL TEST CONDITIONS			UNIT
Address Delay Time	^t d1	_	_	250	ns
ce Fall Delay Time (Read)	^t d2	_	_	180	ns
ce Rise Delay Time (Read)	^t d3	_	_	180	ns
Data Set-up Time	t _{DS}	_	0	_	ns
Data Hold Time	t _{DH}	_	30	_	ns
ce Fall Delay Time (Write)	^t d4	_	_	200	ns
ce Rise Delay Time (Write)	^t d5	_	_	200	ns
r/w Fall Delay Time	^t d6	_	_	180	ns
r/w Rise Delay Time	^t d7	_	_	180	ns
Data Stable Time	^t d8	_	_	450	ns
Data Hold Time	t _d 9	_	_	200	ns

T6963C EXAMPLE OF APPLICATION CIRCUIT

The T6963C can be directly connected to a TMPZ84C00A (Z80 (Note 1) CMOS). The T6963C can be used with a TMPZ84C00A as shown in the following application circuit.

• MPU memory address mapping

Data is transferred to the T6963C using a memory request signal.

	ADDRESS
DATA (I/O)	XXXXH
Command / Status	XXXX + 1H

(Note 1) Z80 is a trademark of Zilog Inc.

• MPU I/O addressing

Data is transferred to the T6963C using an I/O request signal.

	I/O ADDRESS
DATA	XXH
Command / Status	XX + 1H

• When using PPI LSI (TMP82C55)

The T6963C can be connected to a PPI LSI.

The port A connects to the data bus.

The port C connects to the control bus. (C/D, \overline{CE} , \overline{WR} , \overline{RD})

APPLICATION CIRCUIT (1)

APPLICATION CIRCUIT (2)

SAMPLE PROGRAM

```
1:
              T6963C SAMPLE PROGRAM V0.01
2
3 :
                      SOURCE PROGRAM for TMPZ84C00P
 4
                                           1991- 2-15
   :
5
         ;
               Display Size : 20 Column \times 8 Lines
6
7
         ;
               Character Font: 8 Dots Mode
9
        TXHOME
                          EQU
                                    40H
                                           ;SET TXT HM ADD
10 :
        TXAREA
                          EQU
                                    41H
                                           ;SET TXT AREA
11 :
                          EQU
        GRHOME
                                    42H
                                           ;SET GR HM ADD
                          EQU
                                    43H
12 :
        GRAREA
                                           ;SET GR AREA
        OFFSET
                          EQU
                                    22H
                                           ;SET OFFSET ADD
13 :
14 :
        ADPSET
                          EQU
                                    24H
                                           ;SET ADD PTR
15
   :
        AWRON
                          EQU
                                   0B0H
                                           ;SET AUTO WRITE MODE
16
        AWROFF
                          EQU
                                   0B2H
                                           ; RESET AUTO WRITE MODE
17
        CMDP
                          EQU
                                    01H
                                           ;CMD PORT
                                    00H
18
   :
        DP
                          EQU
                                           ;DATA PORT
19
        STACK
                          EQU
                                  9FFFH
                                           ;STACK POINTER BASE ADDRESS
20
21
                  ORG
                          0000H
22
         START:
23
                  LD
                          SP, STACK
24
   :
         ; SET TEXT HOME ADDRESS
25
26
                  LD
                          HL,0000H
                                                   ; TEXT HOME ADDRESS 0000H
27
                  CALL
28
                          DT2
29
                  LD
                          A, TXHOME
                  CALL
                          CMD
30
31
         ; SET GRAPHIC HOME ADDRESS
32
33
   :
                          HL,0200H
34
                  LD
                                                   ; GRAPHIC HOME ADDRESS 0200H
                  CALL
                          DT2
35
                  LD
36
                          A,GRHOME
                  CALL
                          CMD
37
38 :
```

```
; SET TEXT AREA
39 :
40 :
41
                  LD
                          HL,0014H
                                                    ; TEXT AREA 20 Columns
                  CALL
                          DT2
42
                  LD
                          A, TXAREA
43
                  CALL
                          CMD
44
45
         ; SET GRAPHIC AREA
46
47
                  LD
48
                          HL,0014H
                                                    ; GRAPHIC AREA 20 Columns
                  CALL
                          DT2
49
                  LD
                          A, GRAREA
50
                          CMD
51
                  CALL
         ; MODE SET (OR MODE, Internal Character Generater MODE)
53
54
55
                  LD
                          A,80H
                  CALL
                          CMD
56
57
58
         ; SET OFFSET REGISTER (00010 10000000 000=1400H CG RAM START ADDRESS)
                                                CHARACTER CODE 80H
                  LD
                          HL,0002H
60
61
                  CALL
                          DT2
62
                  LD
                          A,OFFSET
                          CMD
63 :
                  CALL
64
         ; DISPLAY MODE
65
            (TEXT ON, GRAPHICS OFF, CURSOR OFF)
66
67
68
                  LD
                          A,94H
69
                  CALL
                          CMD
70
           WRITE TEXT BLANK CODE
71
72
                  LD
                          HL,0000H
                                                   ; SET Address Pointer 0000H
73
74
                  CALL
                          DT2
                                                    ; (TEXT HOME ADDRESS)
                  LD
                          A, ADPSET
76 :
                  CALL
                          CMD
77
                  LD
                                                    ; SET DATA AUTO WRITE
78 :
                          A, AWRON
```

79	:		CALL	CMD	;	
80	:					
81	:		LD	BC,00A0H	;	20 Columns \times 8Lines (160=A0H)
82	:	TXCR:				
83	:		LD	A,00H	;	WRITE DATA 00H
84	:		CALL	ADT	;	(WRITE BLANK CODE)
85	:					
86	:		DEC	BC		
87	:		LD	A,B		
88	:		OR	С		
89	:		JR	NZ,TXCR		
90	:					
91	:		LD	A,AWROFF	;	AUTO RESET
92	:		CALL	CMD		
93	:					
94	:	:				
95	:	; WRITE	EXTERNA	L CHARACTER GENERATOR DATA	Α	
96	:	:				
97	:		LD	DE, EXTCG	;	CG data address in Program
98	:		LD	HL,1400H	;	CG RAM Start Address (1400H)
99	:		CALL	DT2		
100	:		LD	A,ADPSET		
101	:		CALL	CMD		
102	:	:				
103	:		LD	A, AWRON	;	SET DATA AUTO WRITE
104	:		CALL	CMD		
105	:					
106	:		LD	B,40H	;	8 Character \times 8 byte (64=40H)
107	:	EXCG:				
108	:		LD	A,(DE)	;	WRITE DATA TO EXTERNAL RAM
109	:		CALL	ADT	;	
110	:		INC	HL		
111	:		INC	DE		
112	:		DJNZ	EXCG		
113	:					
114	:		LD	A,AWROFF	;	AUTO RESET
115	:		CALL	CMD		
116	:	:				
117	:	; WRITE	TEXT DI	SPLAY DATA (INTERNAL CG)		
118	:	:				

1997-04-07 40/46

119	:		LD	HL,0040H		Address Pointer 3Line,4Column
120	:		CALL	DT2	;	Address Forniter Stille, 4Cordilli
121	:		LD	A,ADPSET		
122	:		CALL	CMD		
123	•		CALL	Chib		
124	:		LD	A, AWRON		SET DATA AUTO WRITE
125	:		CALL	CMD	;	SET DATA ACTO WRITE
126	•		CALL	Chib		
127	:		LD	B, ODH	;	13 Character
128	:		LD	DE,TXPRT	,	15 Character
129	:	TXLP1:	LD	DE, IXI KI		
130	:	IALI I.	LD	A,(DE)	;	WRITE DATA
131	:		CALL	ADT	,	WILL DATA
132	:		INC	DE		
133	:		DJNZ	TXLP1		
134	:		DUNZ	IALFI		
135	:		LD	A,AWROFF	;	AUTO RESET
136			CALL	CMD	,	AUTO RESET
137	:		CALL	ChiD		
138	:	: . WDITE	TEVT DI	COLAV DATA (EVTEDNAL CC	ınna	n nont)
139	:		. IEVI DI	SPLAY DATA (EXTERNAL CG u	iphe	n part)
140	:	:	LD	HL,006CH		Address Pointon 51 inc 9Column
141	:		CALL	DT2	;	Address Pointer 5Line,8Column
142	:		LD			
	:			A,ADPSET		
143	:		CALL	CMD		
144	:		LD	A AMDON		SET DATA AUTO WRITE
145	:		LD	A, AWRON	;	SET DATA AUTO WRITE
146	:		CALL	CMD		
147	:		LD	D OCH		C Chancatan
148	:		LD	B,06H	;	6 Character
149	:	TVLDO	LD	DE,EXPRT1		
150	:	TXLP2:	LD	A (DE)		UDITE DATA
151	:		LD	A,(DE)	;	WRITE DATA
152	:		CALL	ADT		
153	:		INC	DE		
154	:		DJNZ	TXLP2		
155	:					AUTO DECET
156	:		LD	A,AWROFF	;	AUTO RESET
157	:		CALL	CMD		
158	:	:				

1997-04-07 41/46

```
159 :
         ; WRITE TEXT DISPLAY DATA (EXTERNAL CG lower part)
160 :
                          HL,0080H
161
                  LD
                                                   ; Address Pointer 6Line,8Column
                  CALL
162 :
                          DT2
                          A, ADPSET
163
                  LD
                          CMD
                  CALL
164
165
166
                  LD
                          A, AWRON
                                                   ; SET DATA AUTO WRITE
167
                  CALL
                          CMD
168
                  LD
                          B,06H
169 :
                                                     6 Character
                          DE, EXPRT2
170 :
                  LD
171 :
         TXLP3:
172 :
                  LD
                          A,(DE)
                                                   ; WRITE DATA
173 :
                  CALL
                          ADT
174 :
                  INC
                          DE
175 :
                  DJNZ
                          TXLP3
176:
177 :
                  LD
                          A, AWROFF
                                                   ; AUTO RESET
                  CALL
                          CMD
178 :
179 :
         PEND:
180 :
                  JΡ
                          PEND
                                                     PROGRAM END
181 :
182 :
         ;Subroutine start
183 :
         ; COMMAND WRITE ROUTINE
184 :
185 :
186 :
         CMD:
                  PUSH
                          AF
187
188 :
         CMD1:
                  IN
                          A, (CMDP)
189 :
                  AND
                          03H
                  CP
                          03H
                                                   ; STATUS CHECK
190 :
191 :
                  JR
                          NZ,CMD1
                  POP
192 :
                          ΑF
                                                   ; WRITE COMMAND
193 :
                  OUT
                          (CMDP),A
194 :
                  RET
195 :
196 :
         ; DATA WRITE (1 byte) ROUTINE
197 :
198 :
         DT1:
```

199	:		PUSH	AF			
200	:	DT11:	IN	A,(CMDP)			
201	:		AND	03H			
202	:		CP	03H	•	•	STATUS CHECK
203	:		JR	NZ,DT11			
204	:		POP	AF			
205	:		0UT	(DP),A	•	;	WRITE DATA
206	:		RET				
207	:	:					
208	:	; DATA	WRITE (2 byte) ROUTINE			
209	:	:					
210	:	DT2:					
211	:		IN	A,(CMDP)			
212	:		AND	03H			
213	:		CP	03H	;	;	STATUS CHECK
214	:		JR	NZ,DT2			
215	:		LD	A,L			
216	:		OUT	(DP),A	;	•	WRITE DATA (D1)
217	:	DT21:					
218	:		IN	A,(CMDP)			
219	:		AND	03H			
220	:		CP	03H	;	•	STATUS CHECK
221	:		JR	NZ,DT21			
222	:						
223	:		LD	A,H			
224	:		OUT	(DP),A	;	;	WRITE DATA (D2)
225	:		RET				
226	:	:					
227	:	; AUTO	WRITE M	ODE ROUTINE			
228	:	:					
229	:	ADT:					
230	:		PUSH	AF			
231	:	ADT1:	IN	A,(CMDP)			
232	:		AND	08H			
233	:		CP	08H	;	;	STATUS CHECK
234	:		JR	NZ,ADT1			
235	:		POP	AF			
236	:		OUT	(DP),A	;	;	WRITE DATA
237	:		RET				
238	:	:					

239 : ;Subroutine end 240 : ; TEXT DISPLAY CHARACTER CODE 241 : 242 : 243 : TXPRT: 244 : **DEFB** 34H, 00H, 2FH, 00H, 33H, 00H • INTERNAL CG CODE 245 : **DEFB** 28H, 00H, 29H, 00H, 22H, 00H, 21H 246 : EXPRT1: 247 : 80H, 81H, 00H, 00H, 84H, 85H EXTERNAL CG CODE DEFB 248 : **EXPRT2:** 249 : 82H, 83H, 00H, 00H, 86H, 87H **DEFB** 250 : ; EXTERNAL CG FONT DATA 251 : 252 : 253 **EXTCG:** 254 : 255 : ;「東」upper/left CHARACTER CODE 80H 256 : **DEFB** 01H, 01H, 0FFH, 01H, 3FH, 21H, 3FH, 21H 257 : 258 : ;「東」upper/right CHARACTER CODE 81H 00H, 00H,0FFH, 00H,0FCH, 04H,0FCH, 04H **DEFB** 259 : 260 261 : ;「東」lower/left CHARACTER CODE 82H 262 : **DEFB** 21H, 3FH, 05H, 0DH, 19H, 31H, 0E1H, 01H 263 264 : ;「東」lower/right CHARACTER CODE 83H 265 **DEFB** 04H, 0FCH, 40H, 60H, 30H, 1CH, 07H, 00H 266 : 267 : ;「芝」upper/left CHARACTER CODE 84H 268 : **DEFB** 08H, 08H, 0FFH, 08H, 09H, 01H, 01H, 7FH 269 270 : ;「芝」upper/right CHARACTER CODE 85H 271 : **DEFB** 10H, 10H, 0FFH, 10H, 10H, 00H, 00H, 0FCH 272 273 : ;「芝」lower/left CHARACTER CODE 86H 274 : **DEFB** 00H, 00H, 00H, 01H, 07H, 3CH,0E7H, 00H 275 : 276 : ;「芝」lower/right CHARACTER CODE 87H 277 : **DEFB** 18H, 30H, 60H, 0COH, 0OH, 0OH, 0EOH, 3FH 278 : 279 : **END**

DISPLAY SAMPLE

Weight: 1.2g (Typ.)