Function compositions

We have proven that a multivariate function is continuous iff all of its component functions are continuous. However, some cases can be more complicated. For example, consider $f(x,y) = \sin(x+y)$. We know that x+y and \sin are both continuous functions.

Theorem

Define two continuous functions $F:D\subseteq\mathbb{R}^n\mapsto\mathbb{R}^m,G:E\subseteq\mathbb{R}^m\mapsto\mathbb{R}^k,F\subseteq E.$ Then, $G\circ F:D\subseteq\mathbb{R}^n\mapsto\mathbb{R}^k$ is continuous.

Proof. Write $G(\vec{x}) = (g_1(\vec{x}), g_2(\vec{x}) \cdot g_k(\vec{x}))$. Is suffices to show that $g_i(F(\vec{x}))$ is continuous for all i.

Fix $\epsilon > 0$, $\vec{x} \in D$. Let $\vec{y} = F(\vec{x})$. We know that $\exists \delta > 0$ such that if $\|\vec{h}\| < \delta$ then $|g_i(\vec{y} + \vec{h}) - g_i(\vec{y})| < \epsilon$, since we know that g_i is continuous for all i. We also know that F is continuous, so $\exists \eta > 0$ such that if $\|h\| < \eta$ then $\|F(\vec{x} + \vec{h}) - F(\vec{x})\| < \delta$.

This η is what we want: we want to show that if $||h||' < \eta$ then $|g_i(F(\vec{x} + \vec{h}')) - g_i(F(\vec{x}))| < \epsilon$. Let $\vec{j} = F(\vec{x} + \vec{h}') - F(\vec{x})$. We know that $||\vec{j}|| < \delta$.

$$\left\|g_i(F(\overrightarrow{x}+\overrightarrow{h}')) - g_i(F(\overrightarrow{x}))\right\| = \left\|g_i(F(\overrightarrow{x})+\overrightarrow{j}) - g_i(F(\overrightarrow{x}))\right\| < \epsilon, \text{ since } \|J\| < \delta.$$

Point-set topology

An open ball around $\vec{x} \in \mathbb{R}^n$ is defined as $B_{\epsilon}(\vec{x}) = \{\vec{y} \in \mathbb{R}^n | \|\vec{x} - \vec{y}\| < \epsilon\}.$

A subset $D \subseteq \mathbb{R}^n$ is open iff $\forall \vec{x} \in D \exists \epsilon > 0$ such that $B_{\epsilon}(\vec{x}) \leq D$.

For example: in \mathbb{R}^1 , (a, b) is open.

Proof. If
$$x \in (a,b)$$
 then let $\epsilon = min(x-a,b-x)$. Then, $B_{\epsilon}(\overrightarrow{x}) = (x-\epsilon,x+\epsilon) \subseteq (a,b)$.

Another example: in $mathbb{R}^2$, $D_1 = \{(x,0)|a < x < b\}$ is not open.

Proof.
$$\forall \epsilon > 0$$
, the point (x, ϵ) is not in D_1 , so $B_{\epsilon}(\vec{x}) \not\subseteq D \ \forall \epsilon > 0$.

We also set the following definition: a point $\vec{x} \in \mathbb{R}^n$ is on the boundary of D iff $\forall \epsilon > 0, B_{\epsilon}(\vec{x}) \cap D \neq \emptyset$ and $B_{\epsilon}(\vec{x}) \cup D \neq \emptyset$.

For example, b is the boundary of (a, b): $B_{\epsilon}(\vec{x}) = (b - \epsilon, b + \epsilon)$.

Definition: a set is *closed* iff it contains all of its boundary points. For instance, we can take the *closure* of the ball around \vec{x} $B_{\epsilon}(\vec{x}) = \{\vec{y} \in \mathbb{R}^n | \|\vec{x} - \vec{y}\| \le \epsilon\}.$