Лабораторная работа №5

РАСПОЗНАВАНИЕ ОБЪЕКТОВ МЕТОДОМ ПОТЕНЦИАЛОВ

Цель работы: изучить особенности классификации объектов методом потенциалов, а также научиться применять этот метод на практике.

Порядок выполнения работы

- 1. Ознакомление с теоретической частью лабораторной работы.
- 2. Реализация метода потенциалов.
- 3. Оформление отчета по лабораторной работе.

Исходные данные: обучающая выборка из 4 – 6 объектов, представленных векторами с наборами признаков.

Выходные данные: разделяющая функция и решающее правило для классификации тестовых объектов.

Примечание: Результат работы представляется графически.

После того как получено решающее правило и построена разделяющая функция, предъявляются объекты тестовой выборки, которые необходимо классифицировать, отнеся к одному из двух классов. Тестовая выборка также задается векторами с наборами признаков. Результаты работы программы должны представляться в графическом виде.

Метод потенциалов относится к группе алгоритмов контролируемого обучения, где все объекты делятся на обучающую и тестовую выборки. Алгоритм состоит из двух этапов.

На *первом этапе* задача состоит в поиске разделяющей функции, позволяющей, исходя из обучающей выборки, определить границу между двумя классами. Эту процедуру называют обучением системы. На *втором этапе* разделяющая функция используется для классификации заданных объектов.

Разделяющая функция находится с помощью суммарного потенциала $K(\vec{x})$, вычисляемого как сумма частных потенциалов $K(\vec{x}, \vec{x}_i)$, связанных с каждым отдельным предъявляемым источником i. Суммарный потенциал вычисляется по следующему алгоритму $K_{i+1}(\vec{x}) = K_i(\vec{x}) + \rho_{i+1}K(\vec{x}, \vec{x}_{i+1})$, в котором через i обозначен номер этапа, соответствующий номеру предъявляемого для распознавания объекта. Корректирующий член ρ_{i+1} удовлетворяет следующим условиям:

$$\rho_{i+1} = \begin{cases} 1, \ e c \pi u \ x_{i+1} \in C_1 u \ K_i(\vec{x}_{i+1}) \leq 0, \\ -1, \ e c \pi u \ x_{i+1} \in C_2 u \ K_i(\vec{x}_{i+1}) > 0, \\ 0, \ \text{при правильной классификации.} \end{cases} \tag{1}$$

Правильная классификация соответствует случаям, когда K(x)>0 при $\vec{x} \in C_1$ и K(x)<0 при $\vec{x} \in C_2$. Поэтому можно использовать $K_i(\vec{x})$ как разделяющую функцию и определить ее итеративным путем: $d_{i+1}(\vec{x}) = d_i(\vec{x}) + \rho_{i+1}K(\vec{x}, \vec{x}_{i+1})$.

Поскольку интервал изменения аргументов x_1 и x_2 может простираться от $-\infty$ до ∞ , воспользуемся полиномами Эрмита, ограничиваясь первыми четырьмя слагаемыми и двумя переменными x_1 и x_2 . Полиномы связаны следующим рекуррентным соотношением:

$$H_{n+1} = 2xH_n - 2nH_{n-1}$$
, где $H_0 = 1, H_1 = 2x$.

Тогда определим значения первых четырех $\varphi_i(\vec{x})$:

$$\varphi_{1}(\vec{x}) = H_{0}(x_{1})H_{0}(x_{2}) = 1 \cdot 1 = 1;$$

$$\varphi_{2}(\vec{x}) = H_{1}(x_{1})H_{0}(x_{2}) = 2x_{1} \cdot 1 = 2x_{1};$$

$$\varphi_{3}(\vec{x}) = H_{0}(x_{1})H_{1}(x_{2}) = 1 \cdot 2x_{2} = 2x_{2};$$

$$\varphi_{4}(\vec{x}) = H_{1}(x_{1})H_{1}(x_{2}) = 2x_{1} \cdot 2x_{2} = 4x_{1}x_{2},$$

при этом потенциальная функция $K(\vec{x}, \vec{x}_i) = \sum_{n=1}^4 \varphi_n(\vec{x}) \varphi_n(\vec{x}_i)$ для элемента x_i

будет иметь вид

$$K(\vec{x}, \vec{x}_i) = 1 + 4x_1 x_1^{(i)} + 4x_2 x_2^{(i)} + 16x_1 x_2 x_1^{(i)} x_2^{(i)},$$
(2)

где $x_1^{(i)}$ — составляющая x_1 от i-го элемента, $x_2^{(i)}$ — составляющая x_2 от i-го элемента.

Рассмотрим пример, в котором требуется построить разделяющую функцию между двумя классами C_1 и C_2 , для которых имеются представители: объекты $X_1(-1,0), X_2(1,1) \in C_1$ и объекты $X_3(2,0), X_4(1,-2) \in C_2$. В качестве начального значения разделяющей функции примем $K_0(\vec{x}) = 0$.

Метод потенциалов

- 1. Суммарный потенциал на первом шаге вычисляется через суммарный потенциал на нулевом шаге и частный потенциал в первом объекте-образце следующим образом $K_1(\vec{x}) = K_0(\vec{x}) + K(\vec{x}, \vec{x}_1)$. Частный потенциал $K(\vec{x}, \vec{x}_1)$ определяется с помощью выражения (2) путем подстановки в него координат первого объекта. В результате $K_1(\vec{x}) = 1 4x_1$. Определим значение разделяющей функции в точке X_2 , подставив ее координаты в полученное выражение: $K_1(\vec{x}_2) = 1 4 = -3 < 0$. При такой классификации разделяющая функция требует корректировки в соответствии с равенством (1).
- 2. $K_2(\vec{x}) = K_1(\vec{x}) + K(\vec{x}, \vec{x}_2)$, где в результате подстановки координат объекта X_2 в выражение (2) получаем $K(\vec{x}, \vec{x}_2) = 1 + 4x_1 + 4x_2 + 16x_1x_2$. Тогда

 $K_2(\vec{x}) = 2 + 4x_2 + 16x_1x_2$. Определим значение разделяющей функции в точке X_3 , подставив ее координаты в полученное выражение: $K_2(\vec{x}_3) = 2 > 0$. При такой классификации разделяющая функция требует корректировки в соответствии с равенством (1).

- 3. $K_3(\vec{x}) = K_2(\vec{x}) K(\vec{x}, \vec{x}_3)$, где в результате подстановки координат объекта X_3 в выражение (2) получаем $K(\vec{x}, \vec{x}_3) = 1 + 8x_1$. Тогда $K_3(\vec{x}) = 1 8x_1 + 4x_2 + 16x_1x_2$. Определим значение разделяющей функции в точке X_4 , подставив ее координаты в полученное выражение: $K_3(\vec{x}_4) = -47 < 0$. Классификация верна, и разделяющая функция не требует корректировки. Поэтому $K_3(\vec{x}) = K_4(\vec{x})$.
- 4. Поскольку в начале алгоритма было сделано предположение для первого объекта, проверяем, как классифицируется точка X_1 : $K_4(\vec{x}_1) = 9 > 0$. Классификация верна, и разделяющая функция не требует корректировки.

Таким образом, все четыре объекта-образца классифицированы правильно, и разделяющая функция описывается уравнением $d(\vec{x}) = 1 - 8x_1 + 4x_2 + 16x_1x_2$, откуда $x_2 = \frac{8x_1 - 1}{16x_1 + 4}$. График этой функции приведен на рис. 1 На нем видно, что объекты X_1 , X_2 , принадлежащие первому классу, помечены значком \times , объекты X_3 , X_4 , принадлежащие второму классу, помечены значком 0, и разделяющая функция является границей между областями двух классов.

На рисунке 1 показана разделяющая функция, построенная по указанной обучающей выборке.

Рис. 1. Разделяющая функция и обучающие точки для двух классов

На рис. 2 показано распределение 250 точек на два класса с помощью ранее построенной разделяющей функции.

Рис. 2. Разделяющая функция и классификация 250 точек

Если в полученное уравнение разделяющей функции подставить координаты объектов-образцов, то для X_1 и X_2 ее значения будут положительными, а для X_3 и X_4 — отрицательными. Для классификации других объектов необходимо выполнить те же действия. Если значение разделяющей функции больше нуля, объект принадлежит первому классу, если ее значение меньше нуля, объект принадлежит второму классу. В случае нулевого значения разделяющей функции предъявляемый объект находится на границе классов.