Testes de Permutação para Comparação de Distribuições Multivariadas

André F. B. Menezes

Universidade Estadual de Maringá

Departamento de Estatística

3 de Outubro de 2017

Organização

1 Teste de Permutação

2 Testes Multivariados para Igualdade de Distribuições

Aplicações

Teste de Permutação

Testes de Hipóteses Clássicos

- ▶ Desenvolvido por Jerzy Neyman e Egon Pearson.
- Encontrar uma estatística de teste cuja distribuição não dependa do parâmetro de interesse.
- Muitas vezes tem-se uma distribuição assintótica.
- Várias suposições são impostas sobre os dados.

Teste de Permutação

Os dados devem ser provenientes de ao menos duas populações.

Conceito

- A estatística de teste é calculada para os dados observados;
- As observações são permutadas sobre todas as possíveis disposições dos dados;
- 3. A estatística de teste selecionada é calculada;
- 4. A proporção de permutações com valores da estatística de teste iguais ou mais extremos do que a estatística de teste observada fornece a probabilidade exata de observar o valor da estatística de teste calculada.

Vantagens sobre os Teste de Hipóteses Clássicos

- Podem ser utilizados em amostras não aleatórias.
- São completamente dependente dos dados.
 - Implicitamente, esta entendido que a inferência estatística esta limitada ao experimento ou pesquisa realizada.
- ▶ Não fazem suposições a respeito de distribuições.
- ► Fornecem valores exatos de probabilidade.

Teste de Permutação

Testes de Permutação Exatos

- Enumera todas as combinações igualmente prováveis dos dados observados.
- Suponha que:

$$X_1, \dots, X_n \sim F_X$$
 e $Y_1, \dots, Y_m \sim F_Y;$
 $\mathcal{H}_0: F_X = F_Y$ vs. $\mathcal{H}_1: F_X \neq F_Y$

- Seja Z o conjunto ordenado $\{X_1, \ldots, X_n, Y_1, \ldots, Y_m\}$ indexado pelos índices $\nu = \{1, \ldots, n, n+1, \ldots, n+m\} = \{1, \ldots, n+m\}.$
- ► Então existem $\binom{n+m}{n}$ diferentes formas de particionar o conjunto Z em dois subconjuntos de tamanhos n e m.

Teste de Permutação

Testes de Permutação Aproximados por Reamostragem

Conforme Rizzo (2008) para o obter um teste de permutação aproximado por reamostragem procedemos:

- 1. Calcule a estatística observada $\widehat{\theta}$;
- 2. Para cada replica, indexada j = 1, ..., M:
 - (1) Gere uma permutação aleatória;
 - (2) Calcule a estatística para a permutação obtida;
- 3. Se valores grandes de $\widehat{\theta}$ são favoráveis a hipótese alternativa, calcule o valor-p empírico por:

$$\widehat{p} = \frac{1 + \sum_{j=1}^{M} I\left(\widehat{\theta}^{(j)} \ge \widehat{\theta}\right)}{M + 1}.$$

4. Rejeita-se \mathcal{H}_0 em nível de significância α se $\widehat{p} \leq \alpha$.

Teste T^2 de Hotelling

- ▶ Utilizado para avaliar se existe diferença entre dois grupos quando $p \ge 2$ variáveis são mensuradas.
- Exige que as duas amostras sejam independentes e provenientes de uma distribuição Normal multivariada com matriz de covariância iguais (RENCHER, 2002).
- ► A estatística de teste é definida por:

$$T^{2} = n \left(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} \right)^{\top} \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pl} \right]^{-1} \left(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} \right)$$

em que

$$\mathbf{S}_{pl} = \frac{1}{n_1 + n_2 - 2} [(n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2],$$

Teste baseado no k-NN

- Proposto por Schilling (1986) e Henze (1988) é um teste não paramétrico para comparar se duas ou mais distribuições multivariadas são iguais.
- Para formalizar sua teoria vamos supor que

$$\mathbf{X} = \{X_1, \dots, X_{n_1}\} \in \mathbb{R}^p, \quad \mathbf{Y} = \{Y_1, \dots, Y_{n_2}\} \in \mathbb{R}^p$$

são amostras independentes e aleatórias, $p \geq 2$.

Teste baseado no k-NN

▶ A matriz de dados agrupados \mathbf{Z} , uma matriz $n \times p$ com observações nas linhas

$$\mathbf{Z}_{n \times p} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n_1,1} & x_{n_1,2} & \cdots & x_{n_1,p} \\ y_{1,1} & y_{1,2} & \cdots & y_{1,p} \\ y_{1,1} & y_{1,2} & \cdots & y_{1,p} \\ \vdots & \vdots & \vdots & \vdots \\ y_{n_2,1} & y_{n_1,2} & \cdots & y_{n_1,p} \end{bmatrix}$$

em que $n = n_1 + n_2$.

Teste baseado no k-NN

► Seja $NN_k(Z_i)$ o k-ésimo vizinho mais próximo de Z_i .

$$I_i(k) = \begin{cases} 1, \text{ se } NN_k(Z_i) \text{ pertence a mesma amostra de } Z_i. \\ 0, \text{ caso contrário.} \end{cases}$$

A estatística de teste é definida como

$$T_{k,n} = \frac{1}{n k} \sum_{i=1}^{n} \sum_{r=1}^{k} I_i(r),$$

ou seja, a proporção de todas as k comparações do vizinhos mais próximo em que uma observação e seu vizinho são membros da mesma amostra.

Aplicação I

- ▶ Dados retirados de Manly (2004).
- Consistem de cinco variáveis relacionadas a medidas do corpo dos 49 pardais moribundos e mais uma variável indicando se o pardal morreu ou não.
- Objetivo é verificar se existe diferença nas medidas corporais entre os pardais vivos e mortos.

Aplicação I

ct	ct ea cbc		cdu	cqe	sobrev	
156	56 245 31.60		18.50	20.50	S	
154	240 30.40		17.90 19.60		S	
153	240	31.00	18.40	20.60	S	
153	236	30.90	17.70	20.20	S	
155	243	31.50	18.60	20.30	S	
÷	÷	:	:	:	:	
155	235	30.70	17.70	19.60	Ν	
162	247	31.90	19.10	20.40	Ν	
153	237	30.60	18.60	20.40	Ν	
162	245	32.50	18.50	21.10	Ν	
164	248	32.30	18.80	20.90	Ν	

Aplicação II

- ▶ Dados retirados de Hand (1987).
- Referem-se ao comportamento de um agente bioquímico denominado salsolinol em 14 pacientes com dependência química.
- O salsolinol foi medido nos 14 paciente a partir de uma análise bioquímica da urina durante quatro dias.
- Dos 14 indivíduos observados nos quatro dias, 8 foram considerados "severamente" dependentes e 6 foram categorizados como sendo "moderadamente" dependentes.
- Objetivo é verificar se existe diferença estatisticamente significativa entre os o grupo de paciente com dependência severa e moderada.

Aplicação II

- Dados são medidas repetidas do mesmo sujeito ao longo de 4 dias.
- ► Abordagem I: tratar os dados em formato multivariado.
- Abordagem II: considerar formato univariado.

Abordagem I

2 0.64 0.70 1.00 1.40 1 0.33 0.70 2.33 3.20 2 0.73 1.85 3.60 2.60 2 0.70 4.20 7.30 5.40 2 0.40 1.60 1.40 7.10 2 2.60 1.30 0.70 0.70 2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86 2 0.50 0.40 1.10 8.10	grupo	D1	D2	D3	D4
2 0.73 1.85 3.60 2.60 2 0.70 4.20 7.30 5.40 2 0.40 1.60 1.40 7.10 2 2.60 1.30 0.70 0.70 2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	0.64	0.70	1.00	1.40
2 0.70 4.20 7.30 5.40 2 0.40 1.60 1.40 7.10 2 2.60 1.30 0.70 0.70 2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	1	0.33	0.70	2.33	3.20
2 0.40 1.60 1.40 7.10 2 2.60 1.30 0.70 0.70 2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	0.73	1.85	3.60	2.60
2 2.60 1.30 0.70 0.70 2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	0.70	4.20	7.30	5.40
2 7.80 1.20 2.60 1.80 1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	0.40	1.60	1.40	7.10
1 5.30 0.90 1.80 0.70 1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	2.60	1.30	0.70	0.70
1 2.50 2.10 1.12 1.01 2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	7.80	1.20	2.60	1.80
2 1.90 1.30 4.40 2.80 1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	1	5.30	0.90	1.80	0.70
1 0.98 0.32 3.91 0.66 1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	1	2.50	2.10	1.12	1.01
1 0.39 0.69 0.73 2.45 1 0.31 6.34 0.63 3.86	2	1.90	1.30	4.40	2.80
1 0.31 6.34 0.63 3.86	1	0.98	0.32	3.91	0.66
	1	0.39	0.69	0.73	2.45
2 0.50 0.40 1.10 8.10	1	0.31	6.34	0.63	3.86
	2	0.50	0.40	1.10	8.10

Abordagem II

ind	grupo	dia	salsolinol
1	2	1	0.64
2	1	1	0.33
3	2	1	0.73
4	2	1	0.70
5	2 2 2 2	1	0.40
6	2	1	2.60
7	2	1	7.80
:	:	:	:
8	1	4	0.70
9	1	4	1.01
10	2	4	2.80
11	1	4	0.66
12	1	4	2.45
13	1	4	3.86
14	2	4	8.10

Abordagem II

Seja Y_{ijk} o valor de salsolinol do k-ésimo paciente do i-ésimo grupo no j-ésimo dia, então o modelo proposto é escrito na forma

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$$

com i = 1, 2, j = 1, 2, 3, 4 e k = 1, 2, ..., 14. Sendo:

- μ: média global;
- $ightharpoonup \alpha_i$: efeito do *i*-ésimo grupo;
- \triangleright β_i : efeito do *j*-ésimo dia;
- $ightharpoonup \epsilon_{ijk}$: o erro aleatório.

Abordagem II – Análise de Variância

Fontes de variação	GL	SQ	QM	F_0	$Pr(F_0 > F)$	Pr(Exata)
dia	3	14.8877	4.9626	1.1562	0.3362	0.3397
grupo	1	6.5649	6.5649	1.5295	0.2222	0.2256
dia*grupo	3	8.0293	2.6764	0.6236	0.6032	0.6117
Resíduos	48	206.0214	4.2921			

Abordagem II – Normalidade dos Resíduos

Aplicação II

Referências

- [1] Berry, K. J., Mielke Jr, P. W., Johnston, J. E., 2016. **Permutation Statistical Methods An Integrated Approach.** Springer.
- [2] Hand, D., Taylor, C. C., 1987. Multivariate Analysis of Variance and Repeated Measures A practical approach for behavioural scientists. Chapman & Hall/CRC.
- [3] Henze, N., 1988. A multivariate two-sample test based on the number of nearest neighbor type coincidences. Ann. Statist. 16 (2), 772–783.

Referências

- [4] Manly, B. F. J., 2004. **Multivariate Statistical Methods**, Third Edition. Chapman & Hall/CRC.
- [5] Rizzo, M. L., 2008. **Statistical Computing with R.** Chapman & Hall/CRC.
- [6] Schilling, M. F., 1986. **Multivariate two-sample tests based on nearest neighbors.** Journal of the American Statistical Association 81 (395), 799–806.
- [6] Rencher, A. C., 2002. **Methods of Multivariate Analysis**, 2nd Edition. John Wiley & Sons, Inc.