DM2: Optique et Électricité - corrigé

Exercice 1: POTENTIOMÈTRE

- 1. On a un pont diviseur de tension et $U_{CB} = e \frac{R'}{R}$.
- 2. Lorsqu'on déplace le curseur du potentiomètre, R' varie entre 0 et R. Donc u_{CB} varie entre 0 et e.
- 3. Lorsque l'on ferme K. On note R_{eq} la résistance équivalente à r et R' en parallèle et on a à nouveau un pont diviseur de tension avec

$$U_{CB} = e \frac{R_{eq}}{R - R' + R_{eq}} = e \frac{rR'}{rR + R'R - R'^2}$$
 (1)

4. La puissance absorbée par la résistance r est :

$$P_u = \frac{U_{CB}^2}{r} = e^2 \frac{rR'^2}{(rR + R'R - R'^2)^2}$$
 (2)

5. La puissance totale fournie par le générateur est $P_t = \frac{e^2}{R_{eq2}}$, où R_{eq2} est la résistance équivalente à toutes les résistances et vaut $R_{eq2} = R - R' + \frac{rR'}{r+R'}$. On trouve alors :

$$P_t = e^2 \frac{r + R'}{rR + R'R - R'^2} \tag{3}$$

6. α et x sont des nombres sans unité. En substituant $R' = \alpha R$ et r = xR dans l'expression de γ , on obtient :

$$\gamma(x) = \frac{\alpha^2 x}{x^2 + (2\alpha - \alpha^2)x + \alpha^2 - \alpha^3} \tag{4}$$

7. On calcule la dérivée de la fonction $\gamma(x)$ par rapport à x. On trouve :

$$\gamma'(x) = \alpha^2 \frac{-x^2 + \alpha^2 - \alpha^3}{(x^2 + (2\alpha - \alpha^2)x + \alpha^2 - \alpha^3)^2}$$
 (5)

 $\gamma'(x)$ s'annule pour une seule valeur de x positive : $x = \alpha \sqrt{1 - \alpha}$. Comme $\gamma(0) = 0$ et $\gamma(x) > 0$ pour tout x, on en conclut que $\gamma(x)$ passe par un maximum.

- 8. Le maximum est atteint pour $x = \alpha \sqrt{1-\alpha}$. En remplaçant α par $\frac{R'}{R}$ et x par $\frac{r}{R}$. On montre bien que le maximum est atteint pour $r = R' \sqrt{1 \frac{R'}{R}}$.
- 9. Avec les valeurs numériques données, on trouve $r_0 = 354\,\Omega$. Et le rendement vaut alors $\gamma = 0.17$

2022-2023 page 1/3

Exercice 2 : LE TÉLÉOBJECTIF

1.

2. Schéma:

3. Pour trouver d il faut déterminer la position de A_2B_2 . A_2B_2 est l'image de F_1' par L_2 , on peut donc utiliser la relation de conjugaison de Newton :

$$\overline{F_2'A_2}\,\overline{F_2F_1'} = -f_2'^2 \Leftrightarrow \overline{F_2'A_2} = -\frac{{f_2'}^2}{\overline{F_2F_1'}}$$

avec $f_2' = -8$ cm et $\overline{F_2F_1'} = -4$ cm, on trouve $\overline{F_2'A_2} = 16$ cm et le point A_2 est superposé avec F_2 . Il faudra donc prendre d = 10 cm.

- 4. Sur la figure, on voit directement que $A_1B_1 = f_1'\tan(\alpha)$.
- 5. En utilisant la formule de conjugaison on trouve

$$\frac{1}{\overline{O_2 A_2}} - \frac{1}{\overline{O_2 A_1}} = -\frac{1}{f_2} \tag{1}$$

En multipliant tout par $\overline{O_2A_1}$ On obtient $\frac{\overline{O_2A_1}}{\overline{O_2A_2}} = 1 - \frac{\overline{O_2A_1}}{f_2} = 1 - \frac{f_1' - e}{f_2}$. Or le théorème de Thalès nous donne $\overline{A_2B_2} = \overline{O_2A_2}$

 $\frac{\overline{A_2B_2}}{\overline{A_1B_1}} = \frac{\overline{O_2A_2}}{\overline{O_2A_1}}$ et donc finalement :

$$\overline{A_2 B_2} = \frac{f_2 f_1' \tan(\alpha)}{f_2 - f_1' + e}$$

Pour $\alpha = 3 \times 10^{-4} \, \text{rad}$ on trouve $\overline{A_2 B_2} = 36 \, \mu \text{m}$

- 6. Pour qu'une lentille convergente simple donne une taille d'image identique il faudrait que $f'\tan(\alpha) = 36 \,\mu\text{m}$ soit $f' = 12 \,\text{cm}$ la distance d entre la lentille et le capteur serait $d = f' = 12 \,\text{cm}$
- 7. Le montage de type téléobjectif permet donc d'avoir un plus faible encombrement car dans le cas du téléobjectif, la distance d n'est que de $10\,\mathrm{cm}$

2022 - 2023

Exercice 3: Construction de rayons

Construire les rayons émergents correspondant aux rayons incidents suivants (en faisant apparaître les traits de construction)

2022-2023 page 3/3