NAIVE BAYES:--> Supervised ML Slgorithm (classification -> Text classification ex. Mail Spam

not spam Probability -> chances of Octome. Independent Event: Toss a coin: HIT P(H) = 0.5 P(T) = 0.5 Dependent Event:-16t event (A)

	Date
Prob of gelting a blue	
P(A) = 815	
Frent (p):- Peob of getting	red when
event A is already taken	place
P(B/A) = 1/4	
NB) Conditional Probability	
Bayes Theorem:	
P(A/B) = P(A) × P(B/A)
P(B)	
P(A) = 21	
P(A) = 2/5, P(B/A) = 1/4.	1 3 4 5 6
Prob. of both the events p	(A) & P (B/A)
to happen.	
P(BNA) > P(A) x P(BI	(A)
= 215 × 1/4 = 1/10) .

Date
$\frac{P(B A) = P(B\cap A)}{Conditional} = \frac{11/10}{(215)} = \frac{1}{11}$
Probability P(A/B) = P(A/B) P(B)
Prob. of event A when event B always happened.
$P(BnA) = P(AnB)$ $P(A) \times P(B A) = P(B) \times P(A B)$
$P(B/A) = P(B) \times P(A/B)$ Bayes $P(A)$ Theorem
$P(A/B) = P(A) \times P(B/A)$ $V = P(B) \times P(B/A)$ $V = V = V = V = V = V = V = V = V = V =$
why called Naive Baijes?
Bayes -> Bayes Theorem-
Naire -> It assume that each ilp

Temperatu	10 22	ile			
Hot mild cold	Yes 2	No 2 2	P(y) 2/9 4/9	P(N) 215 215 15	
Play y oll	9 9	(y) (y)			
m Stmt: Today is lay or P(y) 4.	not ? To(→)	day	csunny	, hot)	
P(N) J	04		Sunny Sunny P(sunny	***************************************	P(hotlyes)
			PCS		> Constant.

Date
= 2/9 x 2/9 x 9/14 = 0.031
p(NO):
P(NO) - Sunny - 3/5, P(NO) - Hot = 2/5
P(NO/today) = 3/3 x 2/5 x 5/14 P(NO) = 5/1
= 0.08571,
Ply when sunny 2 hot -> 0.031
$p(N) \rightarrow 0.08571$
Normalize it P(y) - 0.031 ~ 0.2 0.031+0.08571
P(N) = 1 - P(y) - 1 - 0.87 = 0.73
OIP => No (max value is P(N))
Player will not play when its hot
Sunny

Text classification:
Preprocessing for text data:
-> Remove punctuation
-> Remove stop words (is, was, were are.
-> Change Everything into Lower case
-> Convert text data to numerical.
Text to numerical vectors:
i) Bag of words: (Bow)
text. Hay of entracting features from
En: Sentence1: He is a good boy.
Ez: Sentence 1: He is a good boy. 82: She is a good girl 83: Boy & girl are good
Step 1: Remove stop words:

Date

Date
stop words are words which does not add much meaning to the sentence
Si: good boy six
step 2: Convert text to numerical vectors (Feature Vector Creation)
good boy girl
32 1 0
83
Disadvantage of Bow.
of a word in a sentence
-> Feature Dimension
> doest not capture the relationship between features

	Date
2) TF-IDF (Term Frequency 2000	
Det relevence of 3hing set	tance or presentation.
TF: measures how frequent word appears in a document = no. q. repetition of	words in
Total: no of words à	n sentence
stepr: Remove stop words	
Si: good boy Si: good boy girl. Si: good boy girl.	
Step2: Calculate TF S, S, S, good 1/2 1/2 1/3 bout 1/4 p 1/6	
girl 0 1/2 1/3	

			Date	***************************************
TOF	: meas	ue how	important	a word
	= log (No. of . sente	tences nces ining word	Š.
word	IDF		~;	
good		3/3) - 0		
boy	0 11	3/2) =		
8tep 3:	Final	Vector of TF X TF	Creation.	
	900	11 1		
8,	0	1/2 × log	(3/2) 0	
82	0	0	1/2×log (3	(p)
83	0	1/3 x log(3,	(2) /3 x lo	9(3/2)

Date	******************
-	

Types

O Graussian NB:
Statues for Continuous Features.

The is used in classification and it assumes that Efeatures follow a normal

distribution

@ Multinominal NB:-

-) It is used for discrete counts.

- Used when the features represents
the frequency

-> Used for text classification.

3 Bernoulli NB:-

-> the input features are binary (o's and i's)

> Used for text classifications