CS 4980/6980: Predictive Data Analysis

© Spring 2018

Lecture 20: Vector Spaces and Linear Combinations

Instructor: Daniel L. Pimentel-Alarcón Scribed by: Naman Kanwar

20.1 Introduction

A **Vector Space** *informally* is a set of objects (vectors or points) that can be added and multiplied without "falling" outside of the set.

Falling Outside of set: A point or vector does not qualify to be an element of the set. For example:

Suppose $\mathbb{R}_+ := \{ \text{Set of all positive numbers} \}$

Then: $5 \in \mathbb{R}_+$ $7 \in \mathbb{R}_+$ $5 - 7 = -2 \notin \mathbb{R}_+$

Therefore, -2 fall outside of set and \mathbb{R}_+ is not a **Vector Space**

20.2 Vector Space

A Formal Definition of a Vector Space

A set \mathcal{V} is a vector space if $\forall v, w \in V$, and for every scalar values $a, b \in \mathbb{R}$

$$aV + bV \in V$$

Figure 20.1: Looking at the nearest point only, the new point is classified as green.

A set V is also a vector space, if it is closed under linear combination (Will be discussed later).

Now the question arises: Is \mathbb{R} a vector space?

Proof.
$$\mathbb{R}$$
 is a Vector Space Let $v, w \in \mathbb{R}$ Let a, b be scalars every scalar $a, b \in \mathbb{K}$ Let $u = a\mathcal{V} + b\mathcal{V} \in \mathbb{R}$ Then $u \in \mathbb{R}$

Some Examples:

Example 1: If
$$W = \mathbb{R}$$
. Is \mathbb{W} under $\sqrt{*}$ Answer: No, here's a counter example:

$$\begin{array}{c}
-4 \in \mathbb{W} \\
\sqrt{-4} = 2\iota \notin \mathbb{W}
\end{array}$$

Example 2: If $\mathbb{W} = \mathbb{Z}$ and $\mathbb{K} = \mathbb{R}$. Is \mathcal{V} a vector space? Answer: No, here's a a counter example:

Take
$$v = 1$$
 and $w = 2 \in \mathbb{V}$
Take $a = 0.5$ and $b = 0.5 \in \mathbb{K}$
Let $u = av + bw$
 $u = 1.5 \in \mathbb{V} \notin \mathbb{R}$

20.3 More about Vector Space

A vector space satisfies the following additive properties:

- (A1) Closure: $\forall v, w \in \mathbb{V}, v + w \in \mathbb{V}$
- (A2) Commutativity: $\forall v, w \in \mathbb{V}, v + w = w + v$
- (A3) Associativity: $\forall u,v,w \in \mathbb{V}, (u+v)+w=u+(v+w)$
- (A4) Additive Identity: \exists an element in \mathbb{V} , denoted by $0 \mid v \in \mathbb{V}$, v + 0 = v
- **(A5) Additive Inverse:** $\forall v \in \mathbb{V}, \exists ! \text{ element in } \mathbb{V}, \text{ denoted by } \neg v \mid v + (\neg v) = 0$

Example 3: If $\mathbb{V} = \mathbb{N}$. Is \mathbb{V} a vector space?

Answer: No, because of (A5) Additive Inverse property

A vector space also has the following multiplicative properties:

- (M1) Closure: $\forall a \in \mathbb{R}$, and $\forall v \in \mathbb{V}$, $av \in \mathbb{V}$
- (M2) Associativity: $\forall a, b \in \mathbb{R}$, and $\forall v \in \mathbb{V}$, a(bv) = (ab)v
- (M3) 1stDistributive Law: $\forall a \in \mathbb{R}$, and $\forall v, w \in \mathbb{V}$, a(v+w) = av + aw
- (M4) 2ndDistributive Law: \forall a, b $\in \mathbb{R}$, and \forall v, w $\in \mathbb{V}$, (a+b)v = av + bv
- (M5) Multiplicative Identity: $\forall v \in \mathbb{V}, 1v = v$

Example 4: If $\mathbb{V} = \mathbb{R}^2$. Is \mathbb{V} a vector space?

Proof. \mathbb{V} is a Vector Space Let $\mathbb{V} = \mathbb{R}^2$ and $\mathbb{K} = \mathbb{R}$ (A1) Let vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ Let $\mathbf{u} = \mathbf{v} + \mathbf{w}$ Then $\mathbf{u} \in \mathbb{R}^2$

Example 5: Prove if (A2) holds?

Proof. Let
$$\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$$

Let $\mathbf{u} = \mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$

$$\begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \mathbf{w} + \mathbf{v}$$

20.4 **Linear Combination**

Let $\mathbb V$ be a vector space

Let $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_r \in \mathbb{V}$

We say that **u** is a linear combination of the $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_r$ if:

$$\mathbf{u} = \sum_{i=1}^{r} c_i v_i$$

$$\mathbf{u} = c_1 v_1 + c_2 v_2 + \dots + c_r v_r$$

For some scalars $c_1, c_2, ... c_r$. In this case $c_1, c_2, ... c_r$ are called the coefficients of the **u** w.r.t

$$\mathbf{v}_{1}, \mathbf{v}_{2}, \dots \mathbf{v}_{r}$$

$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$= 7\mathbf{v} + 5\mathbf{w} + 1\mathbf{x}$$

$$c_1 = 7$$

$$c_1 = 7$$
 $c_2 = 5$ $c_3 = 1$

$$c_3 = 1$$