15강 총정리

정보통계학과 김성수교수

단순회귀모형

(예제) 표본상점의 광고료와 총판매액 자료에 대하여 회귀직선을 구하고, 산점도 위에 회귀직선을 그려보아라.

```
> market.lm = lm(Y ~ X, data=market)
> summary(market.lm)
Call:
lm(formula = Y \sim X, data = market)
Residuals:
          10 Median 30
    Min
                                   Max
-2.02908 -1.35349 -0.05685 0.98903 2.51517
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3282 1.4302 0.229 0.822
     2.1497 0.1548 13.889 3.55e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
Residual standard error: 1.587 on 13 degrees of freedom
Multiple R-squared: 0.9369, Adjusted R-squared: 0.932
```

F-statistic: 192.9 on 1 and 13 DF, p-value: 3.554e-09

추정된 회귀식

$$\hat{Y} = 0.3282 + 2.1497 X$$

단순회귀모형

(예제) 표본상점의 광고료와 총판매액 자료에 대하여 회귀직선을 구하고, 산점도 위에 회귀직선을 그려보아라.

- > plot(market\$X, market\$Y, xlab="광고료", ylab="총판매액", pch=19)
- > title("광고료와 판매액의 산점도")
- > abline(market.lm)
- > identify(market\$X, market\$Y)

[1] 9 14 15

단순회귀모형: 분산분석표

분산분석 결과 해석 : \mathbf{p} -값= 3.554×10^{-9} 로 매우 작은 값이므로 $H_0: \beta_1 = 0$ 을 기각.

단순회귀모형: 결정계수, 추정값 표준오차

- > market.lm = lm(Y ~ X, data=market)
 > anova(market.lm)
- Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 485.57 485.57 192.9 3.554e-09 ***

Residuals 13 32.72 2.52

$$\Rightarrow R^2 = 485.57/(485.57 + 32.72) = 0.9369$$

이는 <u>총변동</u> 중에서 회귀직선에 의하여 설명되는 부분이 94%라는 의미로서, 추정된 회귀선의 정도가 높다는 것을 알 수 있음.

추정값 표준오차
$$\Rightarrow S_{Y \cdot X} = \sqrt{MSE} = \sqrt{2.52} = 1.587$$

단순회귀모형: β_1 , β_0 신뢰구간 구하기

```
> market.lm = lm(Y ~ X, data=market)
> summary(market.lm)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3282 1.4302 0.229 0.822
        2.1497 0.1548 13.889 3.55e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
Residual standard error: 1.587 on 13 degrees of freedom
Multiple R-squared: 0.9369, Adjusted R-squared: 0.932
F-statistic: 192.9 on 1 and 13 DF, p-value: 3.554e-09
```

$oldsymbol{eta_{\!\scriptscriptstyle 1}}$ 의 95% 신뢰구간

```
> q.val = qt(0.975,13)
> 2.1497 - q.val*0.1548
[1] 1.815275
> 2.1497 + q.val*0.1548
[1] 2.484125
```

β_0 의 95% 신뢰구간

```
> q.val = qt(0.975,13)
> 0.3282 - q.val*1.4302
[1] -2.761559
> 0.3282 + q.val*1.4302
[1] 3.417959
```

단순회귀모형 : β_1 검정

기각역 및 p-값 구하기

유의수준 0.05 기각역
qt(0.975, 13)
[1] 2.160369
유의확률 p-값
2*(1-pt(13.889, 13))

[1] 3.553531e-09

 \Rightarrow 이 결과에서 기울기 β_1 의 추정값 $b_1=2.1497$ 이고, t-값

$$t_0 = \frac{2.1497}{0.1548} = 13.889$$

단순회귀모형: 신뢰대 그리기

```
> pred.frame = data.frame(X=seq(3.5, 14.5, 0.2))
> pc = predict(market.lm, int="c", newdata=pred.frame) #기댓값 신뢰구간
> pp = predict(market.lm, int="p", newdata=pred.frame) #새로운 값 신뢰구간
> head(pc, 3)
       fit lwr
                        upr
1 7.852079 5.855247 9.848911
2 8.282014 6.344903 10.219125
3 8.711949 6.834076 10.589821
> head(pp, 3)
       fit
               1wr
                        upr
1 7.852079 3.885278 11.81888
2 8.282014 4.344937 12.21909
3 8.711949 4.803678 12.62022
```

단순회귀모형: 신뢰대 그리기

```
> pred.X = pred.frame$X
> pred.X
[1] 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1
[15] 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3 8.5 8.7 8.9
[29] 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5 1
[43] 11.9 12.1 12.3 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3
```

- > plot(market\$X, market\$Y, ylim=range(market\$Y, pp))
- > matlines(pred.X, pc, lty=c(1,2,2), col="BLUE")
- > matlines(pred.X, pp, lty=c(1,3,3), col="RED")

중회귀모형: 모형적합

```
> market2 = read.table("c:/data/reg/market-2.txt", header=T)
> head(market2, 2)
  ID X1 X2
 1 4.2 4.5 9.3
2 2 8.5 12.0 18.5
> market2.lm = lm(Y ~ X1+X2, data=market2)
> summary(market2.lm)
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.85041 0.84624 1.005 0.334770
         1.55811 0.14793 10.532 2.04e-07 ***
X1
X2
         Residual standard error: 0.9318 on 12 degrees of freedom
Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765
F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11
```

적합된 회귀식 : Ŷ=0.85041+1.55811X1+0.4273X2

결정계수 : 0.9799

F-값=292.5 이고, 유의확률 p-값= 6.597×10^{-11} 로서 적합된 중회귀모형이 이 데이터를 설명하는데 유의함. (이는 귀무가설 $H_0: \beta_1 = \beta_2 = 0$ 이 기각되므로

 β_1 과 β_2 가 동시에 영이 되지는 않을 것이라는 의미임)

중회귀모형: 분산분석표

> anova(market2.lm)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 485.57 485.57 559.283 1.955e-11 ***

X2 1 22.30 22.30 25.691 0.0002758 ***

Residuals 12 10.42 0.87

중회귀모형의 분산분석 결과 해석

$$SS(X_1) = 485.57$$

$$SS(X2|X1) = 22.30$$

, 여기서 SS(X2|X1)는 변수 X1이 적합된 후,

변수 X^2 가 추가되었을 때의 <u>추가제곱합을</u> 의미.

회귀제곱합 SS(X1, X2) = SS(X1) + SS(X2|X1)

〈분산분석표〉

요인	자유도	제곱합	평균제곱	F_0	Pr(>F)
회귀	2	507.87	253.94	292	6.597e-11
간차	12	10.42	0.87		
계	14	518,29			

표준화 회귀모형

- > install.packages("lm.beta")
- > library(lm.beta)
- > market2.lm = lm(Y ~ X1+X2, data=market2)
- > market2.beta = lm.beta(market2.lm)
- > print(market2.beta)

```
Standardized Coefficients::
```

(Intercept) X1 X2 0.0000000 0.7015566 0.3376137

> summary(market2.beta)

Coefficients:

Estimate Standardized Std. Error t value Pr(>|t|)
(Intercept) 0.85041 0.00000 0.84624 1.005 0.334770
X1 1.55811 0.70156 0.14793 10.532 2.04e-07 ***
X2 0.42736 0.33761 0.08431 5.069 0.000276 ***

Residual standard error: 0.9318 on 12 degrees of freedom Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765 F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11

적합된 표준화 회귀모형

$$\hat{Y}^* = 0.7016Z_1 + 0.3376Z_2$$

※ 여기서 X1의 표준화계수가 X2의 표준화계수보다 크므로 상대적으로 X1의 영향이 더 큼을 알 수 있음.

신뢰구간

마켓데이터에 대하여 $y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$ 을 적합시켰을 때

- (1) $x_1 = 10, x_2 = 10$ 에서 E(y)를 95% 신뢰구간으로 추정하고,
- (2) $H_0: \beta_1 = 0$, $H_0: \beta_2 = 0$ 에 대하여 유의수준 $\alpha = 0.05$ 로 가설검정 하여보자.

다항회귀 적합

```
> maraton.lm = lm(m1990 ~ sect+I(sect^2)+I(sect^3), data=maraton)
> summary(maraton.lm)
...
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 917.592857 8.083355 113.516 3.61e-08 ***
sect 13.785281 1.462847 9.424 0.000707 ***
I(sect^2) -0.683225 0.073387 -9.310 0.000741 ***
I(sect^3) 0.012248 0.001077 11.375 0.000341 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
Residual standard error: 3.281 on 4 degrees of freedom
Multiple R-squared: 0.9983, Adjusted R-squared: 0.9969
F-statistic: 761.4 on 3 and 4 DF, p-value: 5.726e-06
```

적합된 3차 다항회귀모형식:

```
\widehat{m1990} = 917.593 + 13.785 \times \text{sect} - 0.683 \times \text{sect}^2 + 0.012 \times \text{sect}^3
```

가변수를 이용한 회귀모형

✓ 독립변수에 이산형 변수가 포함되어 있는 경우에 사용

(자료 예)

<비누생산공정에서 비누부스러기 부산물의 양과 공정속도>

1 141 211 21	771 /D	1.	2H H	1771/1) ()
	-공정 (D=			***********)= ()
부산물의 역	걍 곰정속	노	부산물의	양 곰정	속도
Y	X	D	Y	X	D
218	100	1	140	105	0
248	125	1	277	215	0
360	220	1	384	270	0
351	205	1	341	255	0
470	300	1	215	175	0
394	255	1	180	135	0
332	225	1	260	200	0
321	175	1	361	275	0
410	270	1	252	155	0
260	170	1	422	320	0
241	155	1	273	190	0
331	190	1	410	295	0
275	140	1			
425	290	1			
367	265	1			

교호작용을 고려한 모형 :

$$Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 X D + \epsilon$$

교호작용이 없는 모형 :

$$Y = \beta_0 + \beta_1 X + \beta_2 D + \epsilon$$

두 그룹별 산점도 그리기

```
> soup = read.table("c:/data/reg/soup.txt", header=T)
> soup[c(1,15,16,27),]
     Y X D
   218 100 1
15 367 265 1
16 140 105 0
27 410 295 0
> soup$D = factor(soup$D, levels=c(0,1), label=c("Line0", "Line1"))
> plot(soup$X, soup$Y, type="n")
> points(soup$X[soup$D=="Line1"], soup$Y[soup$D=="Line1"].
         pch=17, col="BLUE")
> points(soup$X[soup$D=="Line0"], soup$Y[soup$D=="Line0"],
         pch=19, col="RED")
> legend("bottomright", legend=levels(soup$D),
         pch=c(19,17), col=c("RED", "BLUE"))
```


가변수를 이용한 회귀모형: 교호작용을 고려한 경우

- ⇒ 교호작용항의 경우, 회귀계수의 추정값은 -0.1767 이고, t_0 값에 대한 유의확률은 0.18355 로서 유의수준 0.05 보다 크므로 유의하지 않음을 알 수 있음.
- ⇒ 따라서 이 자료의 경우에는 교호작용을 고려하지 않은 모형으로 적합 하는 것이 좋음.

가변수를 이용한 회귀모형 : 교호작용을 고려하지 않는 경우

```
> soup.lm = lm(Y \sim X+D, data=soup)
> summary(soup.lm)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 27,28179 15,40701 1,771 0.0893.
                      0.06555 18.775 7.48e-16 ***
      1.23074
DLine1 53.12920 8.21003 6.471 1.08e-06 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
Residual standard error: 21.13 on 24 degrees of freedom
Multiple R-squared: 0.9402, Adjusted R-squared: 0.9352
F-statistic: 188.6 on 2 and 24 DF, p-value: 2.104e-15
> abline(27.28179, 1.23074, lty=2, col="RED")
> abline(27.28179+53.1292, 1.23074, lty=2, col="BLUE")
```


적합된 회귀모형 : $\hat{Y}=27.282+1.231X+54.129D$

⇒ 따라서 기울기가 동일하다고 가정하는 경우의 회귀모형 적합에서 두 생산라인의 차이는 54.129 가 됨을 알 수 있음.

특이값 검정

```
> forbes.res = ls.diag(forbes.lm)
> names(forbes.res)
 [1] "std.dev" "hat" "std.res" "stud.res"
 [5] "cooks" "dfits" "correlation" "std.err"
 [9] "cov.scaled" "cov.unscaled"
> resid.result = cbind(forbes.res$std.res, forbes.res$stud.res, forbes.res$hat)
> colnames(resid.result) = c("standardized resid", "studentized resid", "Hat")
> resid.result = round(resid.result,3)
                                                 > rstudent(forbes.lm) #스튜던트화 잔차
> print(resid.result)
     standardized resid studentized resid
                                       Hat
                                                 -0.716454916 -0.196531386 -0.145084092 0.050361279 0.088080643
 [1,]
                -0.728
                                -0.716 0.193
                -0.203
 [2,]
                                -0.1970.200
                                                > Bonferroni 유의수준 0.01에서 기각치
 [3,]
                -0.150
                                -0.145 0.107
 [4,]
                0.052
                                                > at(0.01/(2*17), 14)
                               0.050 0.098
 [5,]
               0.091
                        0.088 0.083
                                                 [1] -4.414447
[10,]
                -0.230
                                -0.223 0.064
[11,]
                -0.400
                                -0.3880.060
                                                > Bonferroni p-value for obs.12
[12,]
                3.707
                                12.374 0.064
                                                > 2*17*(1-pt(12.374,14))
[13,]
                0.004
                               0.004 \ 0.140
[16,]
                -0.235
                                -0.227 0.210
                                                [1] 1.071262e-07
[17,]
                                -0.252 \ 0.220
                -0.260
```

특이값 검정

```
> library(car)
> outlierTest(forbes.lm)
  rstudent unadjusted p-value Bonferonni p
12 12.37386 6.3025e-09 1.0714e-07
```

잔차분석 및 cook 통계량

```
> soil.diag = ls.diag(soil.lm)
> names(soil.diag)
 [1] "std.dev" "hat" "std.res" "stud.res"
 [5] "cooks" "dfits" "correlation" "std.err"
 [9] "cov.scaled" "cov.unscaled"
> diag.st = cbind(soil.diag$hat, soil.diag$std.res, soil.diag$stud.res, soil.diag$cooks)
> colnames(diag.st) = c("Hii", "ri", "ti", "Di")
                                                                            7번: 영향력있는 관측값
> round(diag.st, 3)
       Hii ri
                                   > Di = cooks.distance(soil.lm)
                  t.i Di
 [1,] 0.464 0.736 0.709 0.117
                                   > round(Di. 3)
 [2,] 0.248 0.599 0.569 0.029
                                      1 2 3 4
 [3,] 0.363 -0.014 -0.013 0.000
                                   0.117 0.029 0.000 0.000 0.002 0.000 1.227 0.041 0.171 0.289 0.022
 [4.] 0.299 -0.008 -0.008 0.000
                                   > library(car)
 [5,] 0.332 -0.131 -0.121 0.002
                                   > outlierTest(soil.lm)
 [6,] 0.118 -0.091 -0.084 0.000
                                   No Studentized residuals with Bonferonni p < 0.05
 [7,] 0.533 2.075 3.098 1.227
                                   Largest |rstudent|:
 [8,] 0.530 -0.382 -0.358 0.041
                                       rstudent unadjusted p-value Bonferonni p
 [9,] 0.629 0.636 0.607 0.171
                                   10 -3.850967 0.0084505
                                                                     0.092955
[10,] 0.188 -2.232 -3.851 0.289
[11,] 0.298 -0.454 -0.427 0.022
```

오차의 등분산 - 스코어 검정

스코어 검정의 χ^2 =81.41 이고, 유의확률 p-값이 매우 작으므로 등분산 가정을 기각

선형성 진단

〈나무자료〉

순서	지름	높이	부피	순서	지름	높이	부피	순서	지름	높이	부피
1	8.3	70	10.3	12	11.4	76	21.0	23	14.5	74	36.3
2	8.6	65	10.3	13	11.4	76	21.4	24	16.0	72	38.3
3	8.8	63	10.2	14	11.7	69	21.3	25	16.3	77	42,6
4	10.5	72	16.4	15	12.0	75	19.1	26	17.3	81	55.4
5	10.7	81	18.8	16	12.9	74	22,2	27	17.5	82	55.7
6	10.8	83	19.7	17	12.9	85	33,8	28	17.9	80	58.3
7	11.0	66	15.6	18	13.3	86	27.4	29	18.0	80	51.5
8	11.0	75	18.2	19	13.7	71	25.7	30	18.0	80	51.0
9	11.1	80	22,6	20	13.8	64	24.9	31	20.6	87	77.0
10	11.2	75	19,9	21	14.0	78	34.5				
11	11.3	79	24.2	22	14.2	80	31.7				

- > tree = read.table("c:/data/reg/tree.txt", header=T)
- > head(tree, 3)

num D H V

- 1 1 8.3 70 10.3
- 2 2 8.6 65 10.3
- 3 8.8 63 10.2
- > tree.lm = lm(V ~ D+H, data=tree)
- > plot(tree\$D, tree.lm\$resid, pch=19)
- > plot(tree\$H, tree.lm\$resid, pch=19)

변수 D의 잔차산점도의 경우 2차 함수 형태의 비선형성이 나타남.

오차의 정규성

```
> goose.lm = lm(photo ~ obsA, data=goose)
> qqPlot(goose.lm)
> # 정규정 검정
> library(mvnormtest)
> goose.rstudent = rstudent(goose.lm)
> shapiro.test(goose.rstudent)

Shapiro-Wilk normality test

data: goose.rstudent
W = 0.7192, p-value = 5.971e-08
```

W 통계량의 값은 0.,7192 이고, 유의확률 p-값이 매우 작으므로 정규성 가정을 기각함.

잔차가 직선의 형태를 벗어나 곡선의 형태로 직선에서 벗어나고 있음을 보이므로 정규성 가정에 위배되는 것으로 판단.

Box-Cox 변환

〈53명의 주거지역 고객에 대한 수요(Y)와 에너지사용량(X)〉

Γ	1								
	고객	X(KMH)	Y(KW)	고객	X(KMH)	Y(KW)	고객	X(KMH)	Y(KW)
	1	679	0.79	19	745	0.77	37	770	1.74
	2	292	0.44	20	435	1.39	38	724	4.10
	3	1012	0.56	21	540	0.56	39	808	3.94
	4	493	0.79	22	874	1.56	40	790	0.96
	5	582	2.70	23	1543	5.28	41	783	3,29
	6	1156	3.64	24	1029	0.64	42	406	0.44
	7	997	4.73	25	710	4.00	43	1242	3.24
	8	2189	9.50	26	1434	0.31	44	658	2.14
	9	1097	5.34	27	837	4.20	45	1746	5.71
	10	2078	6.85	28	1748	4.88	46	468	0.64
	11	1818	5.84	29	1381	3,48	47	1114	1.90
	12	1700	5.21	30	1428	7.58	48	413	0.51
	13	747	3,25	31	1255	2,63	49	1787	8,33
	14	2030	4.43	32	1777	4,99	50	3560	4.94
	15	1643	3.16	33	370	0.59	51	1495	5.11
	16	414	0.50	34	2316	8,19	52	2221	3,85
	17	354	0.17	35	1130	4,79	53	1526	3,93
	18	1276	1.88	36	463	0.51			

잔차산점도는 X가 증가함에 따라 잔차의 흩어짐이 많아짐 => 이분산성이 의심됨

Box-Cox 변환

- > library(MASS)
- > boxcox(Y~X, data=energy, lambda=seq(-2,2, 1/2), plotit=TRUE)

Box-Cox 변환그림에서는 log-likelihood 값이 최대가 되는 λ 값을 찾으면 됨. 그림에서 λ 는 0.5 가 됨. 이는 $\sqrt{}$ 변환 에 해당.

로지스틱 회귀모형: 이항자료

〈날다람쥐 Sugar Glider의 출현자료〉

p_no	occurr	con_metric	p_size_km
1	1	0.650	130.9
2	0	0.610	104.1
3	0	0.744	132.3
4	1	0.213	225.6
5	1	0.723	83.0
6	0	0.678	48.8
7	0	0.733	61.0
8	1	0.522	39.6
9	1	0.552	193.1
10	0	0.245	155.6

반응변수 y=occur, 1=yes, 0=no 이므로 이항분포를 가정

로지스틱 회귀모형:
$$\eta = \log it(\pi) = \log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1$$

$$\pi = E(Y \mid x) = \Pr(y = 1 \mid x)$$

로지스틱 회귀모형: 이항자료

```
> summary(logit_m2)
Deviance Residuals:
   Min
            1Q Median 3Q
                                  Max
                                                 \rightarrow \log(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)}) = -2.528 + 0.022 \times x
-1.5541 -0.8980 -0.5157 0.8075 2.0394
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.528298  0.820251 -3.082  0.00205 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
                                                 Deviance(이탈도)
(Dispersion parameter for binomial family taken to be 1)
                                                  : 선형회귀모형의 잔차제곱합을 일반화한 개념.
```

AIC: 59.716

Null deviance: 68.994 on 49 degrees of freedom

Residual deviance: 55.716 on 48 degrees of freedom

Number of Fisher Scoring iterations: 3

정규분포를 따르는 가정이 맞는 경우, χ^2 -분포를 따름.

"Residual deviance/df < 2"이면, 모형의 적합도에 큰 문제가 없다고 판단함.

정리된 자료의 로지스틱 회귀모형 적합

<구획 크기의 계급구간에서 구획 수, Sugar Glider 출현 구획 수, 표본비율>

p_size_km	구간의 중앙값	출현 구획 수	구획수	표본비율
≤ 50.0	35.3	3	10	0.30
50.0 ~ 100.0	79.55	3	14	0.21
100.0 ~ 150.0	123.6	6	14	0.43
150.0 ~ 200.0	177.65	9	10	0.90
200.0 <	214.55	2	2	1.00

프로빗 모형

```
> probit_m <- glm(occurr~p_size_km, family=binomial(link=probit))
> summary(probit_m)
Deviance Residuals:
             10 Median
                        3Q
   Min
                                     Max
                                          \Phi^{-1}(\hat{\pi}(x)) = \hat{\beta_0} + \hat{\beta_1}x = -1.493 + 0.013x
-1.5586 -0.9211 -0.5186 0.8041 2.0341
                                                \hat{\pi}(x) = \Phi(\hat{\beta}_0 + \hat{\beta}_1 x) = \Phi(-1.493 + 0.013x)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.492825 0.460250 -3.244 0.001181 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 68.994 on 49 degrees of freedom
Residual deviance: 55.797 on 48 degrees of freedom
                                                                   모형이 적합
AIC: 59.797
Number of Fisher Scoring iterations: 5
```

로그선형모형: 개수형자료분석

< 고속도로 속도제한여부와 교통사고 건수 >

year	day	limit	у	year	day	limit	у
1961	1	no	9	1962	1	no	9
1961	2	no	11	1962	2	no	20
1961	3	no	9	1962	3	no	15
1961	4	no	20	1962	4	no	14
1961	5	no	31	1962	5	no	30
1961	6	no	26	1962	6	no	23
	:	:	ŧ	:	:	E	:

- > library(MASS)
- > data(Traffic)
- > head(Traffic, 3)
 year day limit y
 1 1961 1 no 9
- 2 1961 2 no 11
- 3 1961 3 no 9

주요관심 내용 : 고속도로의 속도제한이 평균 사고건수에 어떤

영향을 주는가

분석모형 : $\log(\mu) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{92} x_{92} + \beta_{93} x_{93}$

$$x_1 = \begin{cases} 0 & no \\ 1 & yes \end{cases} \ x_i = \begin{cases} 1 & day = i \\ 0 & \text{ then} \end{cases}, \ i = 2, 3, \cdots, 92, \ x_{93} = \begin{cases} 0 & year = 1961 \\ 1 & year = 1962 \end{cases}$$

로그선형모형: 개수형자료분석

```
> Traffic$day <- as.factor(Traffic$day)</pre>
> Traffic$year <- as.factor(Traffic$year)</pre>
> log m <- glm(y~limit+day+year, family=poisson(link=log), data=Traffic)
> summary(log_m)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.20984
                     0.23632 9.351 < 2e-16 ***
                                                          유의하지 않음
limityes -0.28424 0.04300 -6.610 3.86e-11 ***
day2
      0.54362 0.29633 1.834 0.066584 .
      day3
day91
     0.37539
                     0.31528 1.191 0.233800
                     0.29876 2.146 0.031888 *
dav92
     0.64109
year 1962 -0.02539
                     0.03458 - 0.734 \ 0.462927
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 625.25 on 183 degrees of freedom
                                                           107.11/90=1.19 로 모형 적합
Residual deviance: 107.11 on 90 degrees of freedom
AIC: 1185.1
Number of Fisher Scoring iterations: 4
```

로그선형모형: 개수형자료분석

```
> log_m1 <- glm(y~limit+day, family=poisson(link=log), data=Traffic)
> summary(log m1)
                               \log(\hat{\mu}) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_{92}}x_{92} = 2.20 - 0.30x_1 + 0.54x_2 + \dots + 0.65x_{92}
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                                                                   최종모형
             2.19722
                          0.23570 9.322 < 2e-16 ***
(Intercept)
             ←0.29627 \
                          0.03978 -7.448 9.46e-14 ***
limitves
              0.54362
                          0.29633 1.834 0.066584 .
day2
              0.38232
                          0.31515 1.213 0.225077
day91
day92
              0. 64803
                          0.29862 2.170 0.030004 *
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 625.25 on 183 degrees of freedom
                                                                        107.64/91 = 1.18 로 더 작아짐
Residual deviance: 107.64 on 91 degrees of freedom
AIC: 1183.6
                                                                        AIC 값도 더 작아짐
Number of Fisher Scoring iterations: 4
```

로그선형모형의 해석: 개수형자료분석

속도제한여부(limit)의 회귀계수 추정치 \hat{eta}_1 에 대한 해석

특정일
$$(x_i, j=2,...,92)$$
에

속도제한을 하지 않은 경우($x_1 = 0$)

평균사고건수(= μ_0)의 로그추정치 :

$$\log(\hat{\mu_0}) = \hat{\beta_0} + 0 + \hat{\beta_j} x_j = 2.20 + 0 + \hat{\beta_j} x_j$$

속도제한을 한 경우($x_1 = 1$) 평균사고건수($= \mu_1$)의 로그추정치 :

$$\log(\hat{\mu_{1}}) = \hat{\beta_{0}} + \hat{\beta_{1}} + \hat{\beta_{j}} x_{j} = 2 \cdot 20 - 0 \cdot 30 + \hat{\beta_{j}} x_{j}$$

$$\Rightarrow \log \left(\frac{\widehat{\mu_1}}{\widehat{\mu_0}} \right) = \widehat{\beta_1} = -0.30$$

$$\Rightarrow \frac{\mu_1}{\widehat{\mu}_0} = e^{-0.30} = 0.74$$

⇒ 즉, 고속도로에서 속도제한을 했을 때의 평균사고건수는 속도제한을 하지 않았을 때의 평균사고건수의 74% 수준으로 감소

$$\frac{\mu_1}{\mu_0} = e^{\beta_1}$$
 의 추정치와 95% 신뢰구간

> exp(coef(log_m1, parm="limit"))
(Intercept) limityes day2
9.0000000 0.7435897 1.7222222
...
> exp(confint(log_m1, parm="limityes", level=0.95))

Waiting for profiling to be done... 2.5 % 97.5 % 0.6877111 0.8037687

고속도로에서 속도제한을 실시하면 평균사고 건수가 26% 정도 감소하며 95% 신뢰수준에서 많게는 31% 적게는 20% 정도 감소하는 것으로 추정됨

한 학기 동안 수고했습니다.