A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EA

Bookmark

Show all steps: ON

Problem

In each of the following, use the fundamental homomorphism theorem to prove that the two given groups are isomorphic. Then display their tables.

 \mathbb{Z}_3 and $(\mathbb{Z}_3 \times \mathbb{Z}_3)/K$, where $K = \{(0, 0), (1, 1), (2, 2)\}$.[HINT: Consider the function f(a, b) = a-b from $\mathbb{Z}_3 \times \mathbb{Z}_3$ to \mathbb{Z}_3 .

Step-by-step solution

Step 1 of 4

Consider the two groups Z_3 and $(Z_3 \times Z_3)/K$, where $K = \{(0, 0), (1, 1), (2, 2)\}$. Objective is to prove that these two groups are isomorphic by using the fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

$$H \cong G/K$$

Comment

Step 2 of 4

Consider the function $f: Z_3 \times Z_3 \to Z_3$ defined by

$$f(a,b) = a - b$$

for all $(a,b) \in Z_3 \times Z_3$. Then,

(a, b)	f(a,b)	$f(a,b)$ in Z_3
(0, 0)	0 - 0 = 0	0

(0,1)	0-1=-1	2
(0, 2)	-2	1
(1, 0)	1	1
(1, 1)	0	0
(1, 2)	-1	2
(2, 0)	2	2
(2, 1)	1	1
(2, 2)	0	0

Comment

Step 3 of 4

Since $\, 0 \, \text{is} \,$ the zero element or additive identity in $\, Z_{\scriptscriptstyle 3} \,$, therefore the elements of kernel will be:

$$K = \{(0, 0), (1, 1), (2, 2)\}$$

From the table it implies that map f is onto, also subtraction operation is homomorphism.

Therefore, the map f is homomorphism from $Z_3 \times Z_3$ onto Z_3 with kernel K.

The addition table of Z_3 will be:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Comment

$Z_3 \cong (Z_3 \times Z_3)/$	K		
_			
Comment			