Artificial Intelligence - Learning

CSCI 1030U - Intro to Computer Science @IntroCS

Randy J. Fortier @randy_fortier

Outline

- Machine learning
 - Unsupervised
 - Supervised
- Neural networks
- Genetic algorithms
- Bayesian networks

"Suddenly the machine just knew what it had to do: It had to fail the Turing test on purpose."

- Mikko Hyppönen

- Search-based methods involve encoding human (or non-human) methods of solving a problem into an algorithm
- Machine learning, in contrast, aims to let the machine learn how to solve the problem on its own
 - . The developer prepares a (large) set of training data for the machine
 - . The machine looks for patterns in the training data
 - . Using those patterns, the machine tries to solve problems it hasn't seen before

OntarioTecl

- One way to categorize ML models:
 - Classifier
 - There are two or more classes (e.g. spam, ham)
 - The classifier tries to choose which class to which a given input belongs
 - e.g. sentiment analysis (which mood is likely for a given message?)
 - Predictors
 - Given historical data, predict a new data point
 - e.g. given survivability of a disease, predict the survival of a new patient
 - Clusterers
 - Finds data with relationships/similarities
 - Arguably the same as classifiers, but the classes are not known beforehand
 - e.g. given movies watched by Netflix customers, predict movies they will also like (based on what others have also watched)

Machine Learning - Training

- Machine learning comes in two main forms:
 - Unsupervised learning
 - No clues are given. The machine just examines data and looks for patterns (e.g. similarities)
 - e.g. a list of which users liked which TV shows on Netflix
 - The result may be a bunch of clusters, or similar/related things
 - Supervised learning
 - Training data includes the correct answers to help the machine distinguish each category
 - e.g. a list of spam and non-spam messages
 - We'll focus primarily on supervised learning in this lecture

Machine Learning - Training

- Machine learning usually involves two stages of data:
 - Training data
 - A proportion (e.g. 80%) of the data available that is used during the learning phase
 - Test data
 - A proportion (e.g. 20%) of the data available that is used to evaluate the model

- Evaluation is necessary to understand the efficacy of your model
 - e.g. How accurate is this test for Alzheimer's?
- Results:
 - True positive We predicted positive, and it was positive
 - True negative We predicted negative, and it was negative
 - False positive We predicted positive, but it was negative
 - Unnecessary tests, costs, potential pain and suffering
 - False negative We predicted negative, but it was positive
 - Missed diagnosis, potential complications, no treatment

- Measures used:
 - Precision a measure of statistical variability
 - Recall a measure of sensitivity, true positive rate
 - Specificity a measure of true negative rate

Measures used:

Precision - a measure of statistical variability

$$precision = \frac{(TP+TN)}{(TP+TN+FP+FN)}$$

- Recall a measure of sensitivity, true positive rate
- Specificity a measure of true negative rate

- Measures used:
 - Precision a measure of statistical variability
 - Recall a measure of sensitivity, true positive rate

$$recall = \frac{(TP)}{(TP+FN)}$$

Specificity - a measure of true negative rate

- Measures used:
 - Precision a measure of statistical variability
 - Recall a measure of sensitivity, true positive rate
 - Specificity a measure of true negative rate

specificity =
$$\frac{(TN)}{(FP+TN)}$$

 Researchers also often summarize their results with a single, calculated, metric:

```
f1 = 2 · precision · recall precision + recall
```

Machine Learning - Training Data Bias

- Companies have plans to use ML for many purposes:
 - Approving people for loans
 - Shortlisting candidates for a job
 - Calculating insurance rates
 - Approving health claims
 - Choosing potential suspects in a crime

Machine Learning - Training Data Bias

- Companies have plans to use ML for many purposes:
 - Approving people for loans
 - Shortlisting candidates for a job
 - Calculating insurance rates
 - Approving health claims
 - Choosing potential suspects in a crime
- Given that the data used to train these models was created by humans, can you see any issues that may present themselves for these problems?

Machine Learning - Ethics and Law

- Quite a few AI models have been trained on copyrighted data without the creators' permission
 - Dall-E
 - GPT
 - Copilot
- Considering that current AI models essentially remix existing content from its training data, this could be considered derivative work
 - There are lawsuits currently being settled
- One could ask whether it is ethical to use such an Al

Machine Learning - Explainability

- An active area of research within machine learning involves determining how a model came to its conclusions
- This might involve:
 - Visualizing the values within the network
 - Evaluating outputs from a series of inputs designed to target some intermediate conclusions
 - Trace dependencies between neurons for a particular input or set of inputs

- Common machine learning techniques:
 - Artificial neural networks
 - The connection between neurons is reinforced by correct solutions
 - Genetic algorithms
 - Future solutions are based on the level of fitness of existing solutions
 - Bayesian networks
 - Probabilities are updated according to the actual frequency of events

OntarioTec

Neural Networks

Artificial Neural Networks

- Artificial neural networks use a simulation of neurons (brain cells) to solve problems
 - ANNs have been used to solve many problems:
 - Computer vision (e.g. stop sign recognition)
 - Decision-making (e.g. medical diagnosis)
 - Classifying data (e.g. is this message spam?)
 - Game-playing (e.g. blackjack)

Artificial Neural Networks - Neurons

Artificial Neural Networks

Artificial Neural Networks

ANNs - Forward Propagation

- The input layers values are combined by each neuron in the next layer, using their weights to create a weighted average
 - A bias value is also added to each input * weight term
- That weighted average is sent through some activation function in order to determine the output for that neuron

Let's assume that we're trying to recognize a digit on a
7-segment display, like this:

- Note that, in practice, these inputs would be imperfect
- So, our inputs would be A, B, C, D, E, F, and G

- Each neuron on the input layer feeds its output into each neuron on the first hidden layer
 - First, from A

- Each neuron on the input layer feeds its output into each neuron on the first hidden layer
 - Then B

- Each neuron on the input layer feeds its output into each neuron on the first hidden layer
 - Then C

- Each neuron on the input layer feeds its output into each neuron on the first hidden layer
 - And so on for all of the inputs

• For example, a 3 might look like this:

Let's zoom in on the first hidden layer neuron

• Here are the input values:

Each input will have a weight (and a bias, not shown)

• The output for each neuron will depend on the inputs and their corresponding weights (and biases)

ANNs - Activation Functions

- Most activation functions serve two purposes:
 - Smooth the output
 - Why should 0.49 be False, and 0.50 be True?
 - Normalize the output
 - All output values should be similar in range for all neurons

ANNs - Measuring Loss

- Once the forward propagation completes, we need to determine how wrong our confidence was
 - This is called the *loss* of the network
- Knowing how wrong each output neuron is will help us tune the weights of all of the neurons in the network

ANNs - Back Propagation

- How should we change the weights of the previous layer's neurons in order to improve these results as much as possible?
- A common way to do this is to use an algorithm called gradient descent
- It is done starting at the output neurons, and then you work your way backwards (thus the name)

Artificial Neural Networks - Discussion

- In a human brain, what are some of the mechanisms for learning?
- Is there anything in the human brain that we cannot replicate with an artificial neural network?

Coding Exercise 11.1

 Let's write up some simple code that does the basic forward propagation in a neural network

Bayesian Networks

Bayes Theorem

- Bayesian theorem allows us to reason about conditional probability
 - The use of Bayes theorem to infer, using Bayesian probability:

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

P(A) - The independent probability of A

P(B) - The independent probability of B

P(A|B) - The probability of A, given that B has occurred

P(B|A) - The probability of B, given that A has occurred

Bayes Theorem

- Let's go through this with an example:
 - P(A|B) The probability an autonomous car crashing, given that it has firmware version B
 - P (A) The independent probability of a car crashing
 - P(B) The independent probability of a car having firmware version B
 - P(B|A) The probability of having firmware version B, given that the car has crashed

Bayes Theorem - Example

- Let's go through this with an example:
 - P(A|B) This is what we're trying to find out
 - P (A) There have been 17 total reports of crashed cars, according to Edison's website, 35,500 cars have been sold
 - P (B) According to the Edison car company, 87% of owners have upgraded to firmware version B
 - P(B|A) There have been 17 total reports of crashed cars, 5 with firmware version B

Bayes Theorem - Example

- Let's go through this with an example:
 - P(A|B) This is what we're trying to find out

$$- P(A) = 17/35500 = 0.000479$$

$$- P(B) = 87/100 = 0.870000$$

$$- P(B|A) = 5/17 = 0.294118$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{0.294118 * 0.000479}{0.87} = 0.0001619$$

OntarioTech

Naïve Bayes Classifier

Naïve Bayes Classifier

- A naïve Bayes classifier is one type of Bayesian network
 - The network shows events as nodes, and conditional probabilities between two events (P(A|B)) as directed edges
- Evaluating a network is a matter of filling in the certainties (events you know), and then following the edges (using Bayes theorem) toward the goal node
 - Any events which are certain do not involve Bayes theorem
- The result is a probability estimate
 - It should be noted that these probabilities are not traditional probabilities, but more belief certainty

Naïve Bayes Classifier

Naïve Bayes Classifier - Discussion

- One of the most common uses for naïve Bayes classifiers is for spam detection
 - What are some of the events that might exist in such a system?

- Mimic the process of evolution, but at a much quicker speed
 - Survival of the fittest
- Determine how to represent the problem as a string or number
- Randomly generate a bunch of solutions:
 - Consider each solution a chromosome
 - Each component of the chromosome is a gene

- Using rules of genetics, continually generate more solutions:
 - Each chromosome (solution) is evaluated on its fitness (quality of the solution)
 - Choose parents probabilistically, based on fitness (selection)
 - To reproduce, combine genes from the different chromosomes (crossover)
 - Optionally, also include mutations on individual chromosomes (mutation)
- Selection and crossover are the primary mechanisms for learning

Genetic Algorithms - Example

- Using genetic algorithms to solve the pathfinding problem is possible
 - Let each chromosome be a list of actions for each intersection
 - L Left
 - R Right
 - F Forward/straight
 - B Backward/U-turn
 - Generate the initial (say, 1000) chromosomes randomly
 - e.g. RRFBFRLLBBRF

Genetic Algorithms - Example

- Fitness how far away from the destination are we?
- Selection select the top 10 (out of 1000) chromosomes
- Crossover take sub-strings of any two selected chromosomes to form new chromosomes
 - Intuition:
 - One path may make good progress at the beginning and then wander aimlessly
 - Another path may wander aimlessly, but then make good progress
- Mutation randomly change any action
 - e.g. A left turn becomes a right turn

https://rednuht.org/genetic_cars_2/

http://www.cambrianexplosion.com/

Genetic Algorithms - Practical

- Genetic algorithms can be used to play some basic games
 - However, this technique often takes too long to converge at a working solution
 - It is rarely used on its own for difficult problems
- Genetic algorithms is one of the techniques used to set the initial parameters (e.g. neuron weights) in a neural network
 - e.g. https://www.youtube.com/watch?v=qv6UVOQ0F44

Wrap-up

- Learning
 - Unsupervised
 - Supervised
- Neural networks
- Genetic algorithms
- Bayesian networks

