8a. Diskrete Optimierung Netzwerkflussprobleme

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Netzwerkflussprobleme: Theorie
- Netzwerkflussprobleme: Beispiele
- Total unimodulare Matrizen

Gerichteter Graph

Ein gerichteter Graph ist ein Tupel G = (V, E) wobei:

- 1. $V \neq \emptyset$, $|V| < \infty$ ist eine Knotenmenge
- 2. $E \subseteq V \times V$ ist eine gerichtete Kantenmenge

Knoten-Kanten-Inzidenzmatrix

$$A = (a_{ie}) \in \mathbb{R}^{|V| \times |E|}$$

$$a_{ie} = \begin{cases} 1, & i = e[0] \ (i \text{ ist der Startknoten von } e) \\ -1, & i = e[1] \ (i \text{ ist der Endknoten von } e) \\ 0, & \text{sonst} \end{cases}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

Netzwerkflussproblem

Seien gegeben:

- Gerichteter Graph G = (V, E)
- Vorrat $b_i \in \mathbb{Z}$ im Knoten $i \in V$

$$b_i < 0 \sim \text{Bedarf}$$

$$\sum_{i\in V} b_i = 0$$

- Untere und obere Transportkapazitäten $l_e \leq u_e \ \forall e \in E$
- Transportkosten $c_e \ \forall e \in E$

Netzwerkflussproblem

Jeder Kante e ordnen wir einen Fluss $x_e \in \mathbb{Z}$ entlang E. Vektor $x = (x_e)_{e \in E}$ heißt zulässiger Netzwerkfluss, falls:

Die Kapazitätsbeschränkung ist erfüllt:

$$l_e \le x_e \le u_e \quad \forall e \in E$$

• Die Bedarfe und die Vorräte werden verglichen:

$$b_{i} = \sum_{e[0]=i} x_{e} - \sum_{e[1]=i} x_{e} \quad \forall i \in V$$

$$Flusser haltungsbedingung$$

$$Ax = b, \quad b = (b_{i})_{i \in V}$$

Netzwerkflussproblem

Minimiere Transportkosten =
$$\sum_{e \in E} c_e x_e$$
 über $x = (x_e)_{e \in E} \in \mathbb{Z}^{|E|}$ u.d.N. $Ax = b$ Flusserhaltungsbedingung $\ell_e \le x_e \le u_e \ \ \forall e \in E$ Kapazitätsbeschränkung

Plan

- Netzwerkflussprobleme: Theorie
- Netzwerkflussprobleme: Beispiele
- Total unimodulare Matrizen

Wege

• Die Kantenfolge $(e_1, ..., e_N)$ heißt Weg von $e_1[0]$ nach $e_N[1]$ falls:

$$e_i[1] = e_{i+1}[0]$$
 $i = 1, ..., N-1$

- Sei $c_e \ge 0$ die Länge der Kante $e \in E$
- Die Länge des Weges $P = (e_1, ..., e_N)$:

$$\ell(P) \coloneqq c_{e_1} + \dots + c_{e_N}$$

Weg von 1 nach 4

Problem des kürzesten Pfades

Seien gegeben:

- Gerichteter Graph G = (V, E)
- Startknoten $s \in V$ und Endknoten $t \in V$
- Die Länge $c_e \ge 0$ jeder Kante $e \in E$

Finde den möglichst kurzen Weg von s nach t

Entscheidungsvariablen

Minimiere
$$Pfadlänge = \sum_{e \in E} c_e x_e$$
 über $x = (x_e)_{e \in E} \in \mathbb{Z}^{|E|}$ u.d.N. $Ax = b$ Flusserhaltungsbedingung Knoten-Kanten-Inzidenzmatrix $0 \le x_e \le 1 \ \forall e \in E$

• Entscheidungsvektor $x = (x_e)_{e \in E}$ beschreibt einen Pfad:

$$x_e = \begin{cases} 1, & \text{Die Kante } e \text{ gehört dem Pfad} \\ 0, & \text{sonst} \end{cases}$$

• Vektor $b = (b_i)_{i \in V}$ der Bedarfe und Vorräte:

$$b_i = \begin{cases} 1, & i = s \\ -1, & i = t \end{cases}$$
 (*i* ist der Startknoten des Graphen)
$$0, & \text{sonst}$$

Beispiel: Zuordnungsproblem

Beim Lagenschwimmen werden konsekutiv vier Schwimmarten von vier Schwimmern verwendet

Die besten Schwimmer zeigen die folgenden Durchschnittszeiten:

Schwimmart \ Schwimmer	1	2	3	4	5
Rücken (6)	33.0	35.6	34.6	36.3	33.5
Brust (7)	40.5	35.7	38.5	35.9	38.2
Schmetterling (8)	32.1	29.5	28.8	33.2	30.2
Freistil (9)	29.7	28.9	28.6	30.5	31.0

Ordne die Schwimmer den Schwimmarten so zu, das die durchschnittliche gesamte Schwimmzeit minimal ist

Modellierung

- Knoten i = 1, ..., 5 sind Schwimmer und i = 6,7,8,9 Schwimmarten
- Wir fügen eine Kante (i, j) für alle $i \in \{1, ..., 5\}$ und $j \in \{6, ..., 9\}$
- Die Länge c_{ij} ist die durchsch. Schwimmzeit für i beim Stil j

Modellierung

• $x_{ij} = \begin{cases} 1, & i \text{ ist ein Schwimmer, dem die Schwimmart } j \text{ zugeordnet wird} \\ 0, & \text{sonst} \end{cases}$

Vorräte $b_i = 1$ für i = 1, ..., 5

Jeder Schwimmer schwimmt nur einmal

Bedarfe $b_i = -1$ für i = 6, ..., 9

Höchstens ein Schwimmer per Stil

Gesamtvorrat ≠ Gesamtbed

Modellierung

- Wir fügen einen Dummy-Knoten mit Bedarf von 1 hinzu
- Der entsprechende Schwimmer nimmt nicht teil
- Die zugehörigen Schwimmzeiten

$$c_{i,10} = \infty$$

Dummy-Knoten

Als Netzwerkflussproblem

```
Minimiere Gesamtschwimmzeit = \sum_{i,j} c_{ij} x_{ij}
     u.d.N. Ax = b Flusserhaltungsbedingung
               0 \le x_{ij} \le 1 \ \forall i, j
               x_{ij} \in \mathbb{Z}, i \in \{1, ..., 5\}, j \in \{6, ..., 10\}
```

```
1. import numpy as np
                                                       24.
                                                       25.# Lösung
2. import cvxpy as cp
                                                       26.P = cp.Problem(f,NB).solve()
3.
4. N = 5 \# Knotenzahl
                                                       27.
5. M = 1000 \# große Zahl
                                                       28.print(x.value)
6.
7. b = np.hstack([np.ones(N), -np.ones(N)])
8. A = np.vstack([np.repeat(np.eye(N), N, axis=1),
                                                                 Schwimmer 1 [1 0 0 0 0
                   np.tile(-np.eye(N),N)])
9.
                                                                 Schwimmer 2 0 0 0 1 0
10.
                                                                 Schwimmer 3 0 0 1 0 0
11.c = np.array([33.0, 40.5, 32.1, 29.7, M, # Schwimmer 1])
                                                                 Schwimmer 4
                  35.6,35.7,29.5,28.9,M, # Schwimmer 2
12.
                                                                 Schwimmer 5 0 0
                  34.6,38.5,28.8,28.6,M, # Schwimmer 3
                                                                                 Freistil
Schmetterling
13.
                  36.3,35.9,33.2,30.5,M, # Schwimmer 4
14.
                  33.5,38.2,30.2,31.9,M]) # Schwimmer 5
15.
16.
17.x = cp.Variable(N*N)
18.
19.# Nebenbedingungen
20.NB = [A@x == b, x <= 1, x >= 0]
21.
22.# Zielfunktion
23.f = cp.Minimize(cp.sum(cp.multiply(c,x)))
```

Plan

- Netzwerkflussprobleme: Theorie
- Netzwerkflussprobleme: Beispiele
- Total unimodulare Matrizen

Ganzzahliges lineares Programm

Minimiere $c^T x$ über $x \in \mathbb{R}^n$ u.d.N. $Ax \leq b$

Minimiere $c^T x$ über $x \in \mathbb{Z}^n$ u.d.N. $Ax \leq b$

Ganzzahlige Lösungen

Minimiere $c^T x$ über $x \in \mathbb{R}^n$ u.d.N. $Ax \leq b$

Minimiere $c^T x$ über $x \in \mathbb{Z}^n$ u.d.N. $Ax \leq b$

- Seien alle Eckpunkte von $\mathcal{F} = \{x \in \mathbb{R}^n : Ax \leq b\}$ ganzzahlig (i.e. $\in \mathbb{Z}^n$)
- Sei \bar{x} eine optimale Lösung des linearen Programms, die wir mit dem Simplex-Verfahren fanden
- Dann ist $ar{x}$ eine optimale Lösung des ganzzahligen linearen Programms

Wie kann man garantieren, dass alle Eckpunkte von $\mathcal F$ ganzzahlig sind?

Total unimodulare Matrizen

• $A \in \mathbb{Z}^{m \times n}$ heißt total unimodular (kurz TU), falls für jede quadratische Teilmatrix $B \subseteq A$ gilt:

$$\det B \in \{0,1,-1\}$$

• Also kann A nur Elemente 0,1,-1 enthalten

Satz 8.1. Ganzzahlige Eckpunkte

$$\mathcal{F} = \{x \in \mathbb{R}^n : Ax \le b\}$$
 A hat vollen Spaltenrang

Angenommen:

- $A \in \mathbb{Z}^{m \times n}$ ist total unimodular
- $b \in \mathbb{Z}^m$

Ist \bar{x} ein Eckpunkt von \mathcal{F} , so $\bar{x} \in \mathbb{Z}^n$

Beweis

Sei
$$\bar{x} \in \mathcal{F}$$
 ein Eckpunkt
$$\exists \mathcal{B} \subseteq \{1, ..., m\} \text{ so, dass:}$$
• $A[\mathcal{B}, :] \in \mathbb{R}^{n \times n}$ ist regulär
• $A[\mathcal{B}, :] \bar{x} = b[\mathcal{B}]$

$$\bar{x} = A[\mathcal{B}, :]^{-1}b[\mathcal{B}] \in \mathbb{Z}^n$$

$$\in \mathbb{Z}^{n \times n} \in \mathbb{Z}^n$$

TU-erhaltende Operationen

- $A \text{ ist TU} \Leftrightarrow A^T \text{ ist TU}$ $B \text{ ist eine Teilmatrix von } A \Leftrightarrow B^T \text{ ist eine Teilmatrix von } A^T$
- $A \text{ ist TU} \Leftrightarrow [A \ I] \text{ ist TU, wobei } I \text{ ist die Einheitsmatrix}$

TU-erhaltende Operationen

- $A \text{ ist TU} \Leftrightarrow A^T \text{ ist TU}$ $B \text{ ist eine Teilmatrix von } A \Leftrightarrow B^T \text{ ist eine Teilmatrix von } A^T$
- $A ext{ ist TU} \Leftrightarrow [A ext{ } I] ext{ ist TU, wobei } I ext{ ist die Einheitsmatrix}$ Beispiel:

$$[A, I] = \begin{bmatrix} a_{11} & a_{12} & 1 & 0 \\ a_{21} & a_{22} & 0 & 1 \end{bmatrix}$$

Teilmatrizen 1×1 sind gleich $0,1,a_{ij}$

Teilmatrizen 2×2 sind A, I,
$$\begin{bmatrix} a_{1j} & 1 \\ a_{2j} & 0 \end{bmatrix}$$
, $\begin{bmatrix} a_{1j} & 0 \\ a_{2j} & 1 \end{bmatrix}$

Ihre Determinanten sind gleich $0,1,\pm a_{ij}$, $\det A$

Satz 8.2. Hinreichende Bedingung der TU

Sei $A = (a_{ij}) \in \mathbb{Z}^{m \times n}$ mit $a_{ij} \in \{0,1,-1\} \ \forall i,j$. Angenommen:

- Jede Spalte von A enthält höchstens 2 verschiedene von Null Elemente
- $\{1, ..., m\} = M_1 \sqcup M_2$, sodass für jede Spalte j mit zwei verschiedenen von Null Elementen gilt:

$$\sum_{i \in M_1} a_{ij} = \sum_{i \in M_2} a_{ij}$$

Dann ist A total unimodular

Beweis

Angenommen, A ist nicht TU

Sei
$$B = A[I, K]$$
 die kleinste Teilmatrix mit $\det B \notin \{0, 1, -1\}$

Jede Spalte von B enthält zwei verschiedene von Null Elemente

$$\sum_{i \in I \cap M_1} B[i,:] - \sum_{i \in I \cap M_2} B[i,:] = 0$$
 Annahme

Zeilen von B sind linear abhängig

Widerspruch zu det $B \neq 0$

Beispiel 8.3: Knoten-Kanten-Inzidenzmatrix

- Jede Spalte der Inzidenzmatrix enthält genau zwei $\neq 0$ Elemente: 1 und -1Jede Kante hat nur einen Startknoten und nur einen Endknoten
- Die Knoten-Kanten-Inzidenzmatrix ist total unimodular nach Satz 8.2 $M_1 = \{1,2,3,4\}, \ M_2 = \emptyset$
- Mehrere Netzwerkflussprobleme lassen sich mit dem Simplex-Verfahren lösen

Zusammenfassung

- Netzwerkflussprobleme: Theorie
- Netzwerkflussprobleme: Beispiele
- Total unimodulare Matrizen

Nächstes Video

8b. Diskrete Optimierung: Branch-and-Bound