3/29/19

HW8 – Bayesian Networks and Independence

1. Independences from Probability Tables

$$P(A, B, C) = P(A) * P(B | A) * P(C | AB)$$

 $f_1 = P(A), f_2 = P(B | A), f_3 = P(C | AB).$
 f_1 and f_2 can be combined into $f_4 = P(A, B)$, giving $P(A, B, C) = f_3 * f_4$.

A	В	P(A, B)
0	0	0.13541666666
0	1	0.35416666666
1	0	0.11458333333
1	1	0.39583333333

A	В	С	P(C AB)
0	0	0	0.307692307692309
0	0	1	0.692307692307691
0	1	0	0.470588235294118
0	1	1	0.529411764705882
1	0	0	0.7272727272727
1	0	1	0.2727272727273
1	1	0	0.842105263157895
1	1	1	0.157894736842105

- 2. Please answer the following conditional independence questions from the model.
 - 1. A is not always independent of H. As there are arrows from A to H then it is possible to construct conditional probabilities such that A and H are dependent.
 - 2. A and C both affect F, which in turn affects H. Even if C is fixed, A and H can still be dependent.
 - 3. With a fixed C and F the model does not have any way for A to affect H. Therefore A is independent of H given C and F.
 - 4. This is a common cause with a fixed cause, therefore E and B are always independent given A
 - 5. By observing F we fix the common effect of B and E, meaning that B and E are not always independent.
 - 6. Because A is given B and E will be independent, even though C and F are fixed.

3. Using inference by enumeration, compute the following probabilities.

Given that the alarm is going off and there is/was an earthquake, it is very unlikely that there was also a burglary. As opposed to the previous answer, which told us if earthquake is unknown then the alarm going off means a 37.1% chance of a burglary.

4.
$$p(+a \mid +j, -m) = \alpha p(+j \mid +a) p(-m \mid +a) \Sigma_e p(e) \Sigma_b p(b) p(+a \mid b, e)$$

= α (.9) (.3) ((.998) ((.999) (.001)) ((.001) (.94))) ((.002) ((.999) (.29)) ((.001) (.95)))
= α 1.34e-13
$$\alpha = 1 / (p(+a \mid +j, -m) + p(-a \mid +j, -m)) = 1 / (1.34e-13 + 2.10e-13) = 2.86e12$$
$$p(+a \mid +j, -m) = 1.34e-13 * 2.86e12 = 0.398$$

Using variable elimination:

5. $p(+b \mid +a) = p(+b) p(e) p(+a \mid +b, e) p(m \mid +a) p(j \mid +a)$ Eliminating e: $p(e) p(+a \mid +b, e) => p(+a, e \mid +b) => p(+a \mid +b) = 0.94002$

e	p(+a, e +b)
0	0.0019
1	0.93812

$$p(+b \mid +a) = p(+b) p(+a \mid +b) p(m \mid +a) p(j \mid +a)$$

Eliminating m:

$$p(m \mid +a) => 1$$

$$p(+b \mid +a) = p(+b) p(+a \mid +b) p(j \mid +a)$$

Eliminating j:

$$p(j \mid +a) => 1$$

$$p(+b \mid +a) = p(+b) p(+a \mid +b)$$

$$p(+b \mid +a) = p(+b) \ p(+a \mid +b) = 0.001 * 0.94002 = 0.00094 \ 0.00094 * \alpha = 0.370$$

6.
$$p(+a \mid +j, -m) = \alpha p(+j \mid +a) p(-m \mid +a) p(e) p(b) p(+a \mid b, e)$$

Eliminating b:

$$p(b) p(+a | b, e) => p(+a, b | e) => p(+a | e)$$

b	e	p(+a, b e)
0	0	0.000999
0	1	0.28971
1	0	0.00094
1	1	0.00095

e	p(+a e)
0	0.001939
1	0.29066

Eliminating e:

$$p(e) p(+a \mid e) => p(+a, e) => p(+a) = 0.290082558$$

e	p(+a, e)
0	0.000003878
1	0.29007868

$$p(+a \mid +j, -m) = \alpha p(+j \mid +a) p(-m \mid +a) p(+a) = \alpha * 0.9 * 0.3 * 0.290082558 = \alpha * 0.078.$$

$$\alpha = 1 / (p(+a \mid +j, -m) + p(-a \mid +j, -m)) = 1 / (0.078 + 0.191) = 3.703$$

$$p(+a \mid +j, -m) = 3.703 * 0.078 = 0.290$$