1. Solution.
$$X_1 - X_2 \sim \mathcal{N}(0, 26^2)$$

 $X_1 + 2X_4 \sim \mathcal{N}(0, 36^2)$

Also,
$$\chi_1 - \chi_2$$
 and $\chi_3 + 2\chi_4$ independent.
Hence, $\alpha = \frac{1}{26^2}$, $b = \frac{1}{36^2}$, $\Upsilon \sim \chi^2(2)$.

2. Solution,
$$D(X_i) = \frac{1}{12}$$

$$D(\bar{x}) = \frac{1}{n}D(x_i) = \frac{1}{120}.$$

3. Solution. (1)
$$EX = \frac{0}{D+1}$$

MoM: $\overline{X}_n = \frac{0}{0+1}$, i.e. $0 = \frac{\overline{X}_n}{1-\overline{X}_n}$

(2)
$$\angle (0) = O^{n} \left(\frac{n}{1-x_{1}} x_{1} \right)^{0-1} 1_{\{0 < x_{(1)} < x_{(2)} < 1\}}$$

$$f(0) = Nln0 + (0-1) \sum_{i=1}^{n} l_{i}x_{i}$$

MLE:
$$\ell'(\hat{0}) = 0$$
 i.e. $\hat{0} = \frac{\eta}{-\frac{\eta}{2} \ell_n x_i}$

Since
$$\ell''(0) = -\frac{\eta}{\theta^2} \leq 0$$
,

4. Solution.
$$I-Q=0.9$$

$$\frac{|X-\mu|}{|X-\mu|} \sim N(0.1)$$

$$\mu \, \partial_{1} 0.90$$

$$\frac{|X-\mu|}{|X-\frac{\mu}{5}|} \sim N(0.1)$$

$$(x-\frac{1}{5}u_{1-\frac{\mu}{5}}, x+\frac{1}{5}u_{1-\frac{\mu}{5}})$$
i.e.
$$(16-\frac{1}{5}u_{295}, 16+\frac{1}{5}u_{295})$$
5. Solution. $I-Q=0.95$

$$\frac{(X-Y)-(\mu_{1}-\mu_{1})}{|S|} \sim N(0.1)$$

$$\frac{(X-Y)-(\mu_{1}-\mu_{1})}{|S|} \sim N(0.1)$$

(2- 1/2 UD. STT, 2+ / 1/5 UD 975)

1. Solution.
$$\chi_2 - 2\chi_5 \sim \mathcal{N}(-2, 5\chi 4)$$

 $\chi_1 - \alpha, \chi_2 - 2\chi_5 - C$ mutually independent.
 $\alpha = 2, b = \frac{1}{5\chi_4}, c = -2, \chi \sim \chi^2(2)$

2. Solution
$$D(X_i) = \frac{1}{4}$$
.

$$IE(K) = \frac{9}{10} IES^2 = \frac{9}{40}$$

3. Solution. (1)
$$\mathbb{E}X = \frac{1}{2}$$

$$MoM: \overline{X}_n = \frac{1}{3}$$
, i.e. $\overline{J} = \frac{1}{\overline{X}_n}$

(i)
$$\angle(\lambda) = \lambda^n e^{-\lambda \frac{\lambda}{12i} x_i} \mathbf{1}_{\{x_{(i)} > 0\}}$$

$$f(\lambda) = n \ln \lambda - n \lambda \, \overline{X}_n$$

$$MLE: \ell'(\Omega) = 0$$
 , $\lambda = \frac{1}{x_n}$

Since
$$\ell''(\lambda) \leq 0$$
, then $ML\bar{b} \hat{\lambda} = \overline{\chi}_n$

4. Solution. 1-2=0.95, 7=20.

此的以外置注户调为:

5. Solution.
$$1-2=0.95$$
, $\overline{x}-\overline{y}=5$

MI-M的OS置信的内: