- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
- Circuit Architecture Allows Easy Synchronization
- Undervoltage Lockout for Low V_{CC} Conditions

description

The TL594 incorporates on a single monolithic chip all the functions required in the construction

of a pulse-width-modulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to a specific application.

The TL594 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage lockout control circuit, and output control circuity.

The error amplifiers exhibit a common-mode voltage range from $-0.3\,\mathrm{V}$ to $\mathrm{V_{CC}}-2\,\mathrm{V}$. The DTC comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator may be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it may be used to drive the common circuitry in synchronous multiple-rail power supplies.

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation with selection by means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The undervoltage lockout control circuit locks the outputs off until the internal circuitry is operational.

The TL594C is characterized for operation from 0° C to 70° C. The TL594I is characterized for operation from -40° C to 85° C.

(TOP VIEW) 16 1 2IN+ 15 2IN-1IN-FEEDBACK **REF** DTC **OUTPUT CTRL** CT П∨сс RT 11 C2 GND 10 **∏** E2 C1 E1

D OR N PACKAGE

FUNCTION TABLE

INPUT OUTPUT CTRL	OUTPUT FUNCTION
$V_I = 0$	Single-ended or parallel output
$V_I = V_{ref}$	Normal push-pull operation

AVAILABLE OPTIONS

	PACKAGED I	CHIP FORM	
TA	SMALL OUTLINE† (D)	PLASTIC DIP (N)	(Y)
0°C to 70°C	TL594CD	TL594CN	TL594Y
-40°C to 85°C	TL594ID	TL594IN	11.5941

[†] The D package is available taped and reeled. Add "R" suffix to device type (e.g., TL594CDR).

functional block diagram

TL594Y chip information

This chip, when properly assembled, displays characteristics similar to the TL594C (see electrical tables). Thermal compression or ultrasonic bonding can be used on the doped aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

	TL59	4C	TL594I	UNIT
Supply voltage, V _{CC} (see Note 1)	41		41	V
Amplifier input voltage	V _{CC} +	-0.3	V _{CC} +0.3	V
Collector output voltage	41		41	V
Collector output current	25	0	250	mA
Continuous total dissipation	Se	See Dissipation Rating Table		
Operating free-air temperature range, TA	0 to	70	-40 to 85	°C
Storage temperature range, T _{Stg}	-65 to	150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	26	0	260	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	25°C	608 mW	494 mW
N	1000 mW	9.2 mW/°C	41°C	733 mW	595 mW

recommended operating conditions

	TL59	4C	TL594I		
	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{CC}	7	40	7	40	V
Amplifier input voltage, V _I	-0.3	V _{CC} -2	-0.3	V _{CC} -2	V
Collector output voltage, VO		40		40	V
Collector output current (each transistor)		200		200	mA
Current into feedback terminal		0.3		0.3	mA
Timing capacitor, C _T	0.47	10 000	0.47	10 000	nF
Timing resistor, R _T	1.8	500	1.8	500	kΩ
Oscillator frequency, f _{OSC}	1	300	1	300	kHz
Operating free-air temperature, TA	0	70	-40	85	°C

electrical characteristics over recommended operating conditions, V_{CC} = 15 V, (unless otherwise noted)

reference section

PARAMETER	TEST CONDIT	TL5	LIMIT			
PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	UNIT
Output voltage (REF)	$I_O = 1 \text{ mA},$	$T_A = 25^{\circ}C$	4.95	5	5.05	V
Input regulation	$V_{CC} = 7 \text{ V to } 40 \text{ V},$	T _A = 25°C		2	25	mV
Output regulation	$I_0 = 1$ to 10 mA,	T _A = 25°C		14	35	mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			2	10	mV/V
Short-circuit output current§	V _{ref} = 0		10	35	50	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

amplifier section (see Figure 1)

DADAMETED	PARAMETER TEST CONDITIONS			TL59	4C, TL59	94I	
PARAMETER				MIN	TYP [†]	MAX	UNIT
Input offset voltage, error amplifier	FEEDBACK = 2.5 V				2	10	mV
Input offset current	FEEDBACK = 2.5 V				25	250	nA
Input bias current	FEEDBACK = 2.5 V				0.2	1	μΑ
Common-mode input voltage range, error amplifier	V _{CC} = 7 V to 40 V			0.3 to V _{CC} -	2		V
Open-loop voltage amplification, error amplifier	$\Delta V_{O} = 3 V$,	$R_L = 2 k\Omega$,	$V_0 = 0.5 \text{ V to } 3.5 \text{ V}$	70	95		dB
Unity-gain bandwidth	$V_0 = 0.5 \text{ V to } 3.5 \text{ V},$	$R_L = 2 k\Omega$			800		kHz
Common-mode rejection ratio, error amplifier	V _{CC} = 40 V,	T _A = 25°C		65	80		dB
Output sink current, FEEDBACK	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$	FEEDBACK =	0.5 V	0.3	0.7		mA
Output source current, FEEDBACK	$V_{ID} = 15 \text{ mV to 5 V},$	FEEDBACK =	3.5 V	-2			mA

[†] All typical values except for parameter changes with temperature are at T_A = 25°C.

oscillator section, C_T = 0.01 μ F, R_T = 12 $k\Omega$ (see Figure 2)

PARAMETER	TEST CONDITIONS†	TL59	UNIT		
FARAIVIETER	TEST CONDITIONS!	MIN	TYP‡	MAX	UNIT
Frequency			10		kHz
Standard deviation of frequency§	All values of V _{CC} , C _T , R _T , and T _A constant		100		Hz/kHz
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V}, T_A = 25^{\circ}\text{C}$		1		Hz/kHz
Frequency change with temperature¶	$\Delta T_A = MIN \text{ to MAX}$			50	Hz/kHz

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{X})^2}{N-1}}$$

[‡] All typical values except for parameter changes with temperature are at T_A = 25°C.

[§] Duration of the short circuit should not exceed one second.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[§] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

 $[\]P$ Temperature coefficient of timing capacitor and timing resistor not taken into account.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, (unless otherwise noted)

dead-time control section (see Figure 2)

PARAMETER	TEST CONDITIONS	TL59	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNII
Input bias current	V _I = 0 to 5.25 V		-2	-10	μΑ
Maximum duty cycle, each output	DTC = 0 V	0.45			
Input threshold voltage	Zero duty cycle		3	3.3	V
Imput uneshold voltage	Maximum duty cycle	0			V

[†] All typical values except for parameter changes with temperature are at $T_A = 25^{\circ}C$.

output section

DADAMETED		TEST SOL	TEST CONDITIONS		TL594C, TL594I			
PARAMETER		IEST CON	IDITIONS	MIN	TYP [†]	MAX	UNIT	
		$V_C = 40 \text{ V}, V_E = 0 \text{ V},$	$V_{CC} = 40 \text{ V}$		2	100		
Collector off-state current		DTC and OUTPUT CTF $V_C = 15 \text{ V},$ $V_{CC} = 1 \text{ to } 3 \text{ V}$	RL = 0 V, $V_E = 0 V,$		4	200	μΑ	
Emitter off-state current		$V_{CC} = V_{C} = 40 \text{ V},$	V _E = 0			-100	μΑ	
Collector emitter acturation valtage	Common emitter	VE = 0,	$I_C = 200 \text{ mA}$		1.1	1.3	V	
Collector-emitter saturation voltage	Emitter follower	$V_C = 15 V$,	$I_E = -200 \text{ mA}$		1.5	2.5	V	
Output control input current		$V_I = V_{ref}$				3.5	mA	

 $[\]dagger$ All typical values except for parameter changes with temperature are at T_A = 25°C.

pwm comparator section (see Figure 2)

PARAMETER	TEST CONDITIONS	TL5	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNII
Input threshold voltage, FEEDBACK	Zero duty cycle		4	4.5	V
Input sink current, FEEDBACK	FEEDBACK = 0.5 V	0.3	0.7		mA

 $[\]overline{\dagger}$ All typical values except for parameter changes with temperature are at $T_A = 25^{\circ}$ C.

undervoltage lockout section (see Figure 2)

DADAMETED	TEST CONDITIONST	TL594C,	UNIT	
PARAMETER	TEST CONDITIONS:	MIN	6 .5 6.9	UNII
Threshold voltage	T _A = 25°C		6	M
	$\Delta T_A = MIN \text{ to MAX}$	3.5	6.9	V
Hysteresis [‡]		100		mV

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

total device (see Figure 2)

PARAMETER	TEST CONDITIONS		TL59	UNIT		
PARAMETER			MIN	TYP [†]	MAX	UNII
Standby supply current	RT at V _{ref} ,	V _{CC} = 15 V		9	15	A
	All other inputs and outputs open	V _{CC} = 40 V		11	18	mA
Average supply current	DTC = 2 V,	See Figure 2		12.4		mA

[†] All typical values except for parameter changes with temperature are at T_A = 25°C.

[‡] Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, (unless otherwise noted) (continued)

switching characteristics, T_A = 25°C

DADAMETED	TEST CONDITIONS		TL594C, TL594I			
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
Output voltage rise time	Common emitter configuration. See Figure 3		100	200	ns	
Output voltage fall time	Common-emitter configuration, See Figure 3		30	100	ns	
Output voltage rise time	Emitter-follower configuration, See Figure 4		200	400	ns	
Output voltage fall time	Emilier-follower configuration, See Figure 4		45	100	ns	

 $[\]overline{\dagger}$ All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

electrical characteristics over recommended operating conditions, V_{CC} = 15 V, T_A = 25°C (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS	7	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage (REF)	I _O = 1 mA,		5		V
Input regulation	$V_{CC} = 7 \text{ V to } 40 \text{ V},$		2		mV
Output regulation	I _O = 1 to 10 mA,		14		mV
Short-circuit output current [†]	V _{ref} = 0		35		mA

[†] Duration of the short circuit should not exceed one second.

oscillator section, C_T = 0.01 μ F, R_T = 12 $k\Omega$ (see Figure 2)

PARAMETER	TEST CONDITIONS	1	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	וואט
Frequency			10		kHz
Standard deviation of frequency	All values of V _{CC} , C _T , R _T , and T _A constant		100		Hz/kHz
Frequency change with voltage	V _{CC} = 7 V to 40 V,		1		Hz/kHz

[†] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{X})^2}{N-1}}$$

amplifier section (see Figure 1)

PARAMETER	TEST CONDITIONS			TL594Y			UNIT
FARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNII		
Input offset voltage, error amplifier	FEEDBACK = 2.5 V				2		mV
Input offset current	FEEDBACK = 2.5 V				25		nA
Input bias current	FEEDBACK = 2.5 V				0.2		μΑ
Open-loop voltage amplification, error amplifier	$\Delta V_{O} = 3 \text{ V},$	$R_L = 2 k\Omega$,	$V_0 = 0.5 \text{ V to } 3.5 \text{ V}$		95		dB
Unity-gain bandwidth	$V_0 = 0.5 \text{ V to } 3.5 \text{ V},$	$R_L = 2 k\Omega$			800		kHz
Common-mode rejection ratio, error amplifier	V _{CC} = 40 V,	T _A = 25°C			80		dB
Output sink current, FEEDBACK	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$	FEEDBACK =	0.5 V		0.7		mA

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, T_A = 25°C (unless otherwise noted)

dead-time control section (see Figure 2)

PARAMETER	TEST CONDITIONS	7	UNIT		
PARAMETER	1EST CONDITIONS	MIN	TYP	MAX	UNII
Input bias current	V _I = 0 to 5.25 V		-2		μΑ
Input threshold voltage	Zero duty cycle		3		V

output section

PARAMETER		TEST CONDITIONS				LINUT	
				MIN	TYP†	MAX	UNIT
		$V_C = 40 \text{ V}, V_E = 0 \text{ V},$	$V_{CC} = 40 \text{ V}$		2		
		DTC and OUTPUT CTI V _C = 15 V, V _{CC} = 1 to 3 V	RL = 0 V, V _E = 0 V,		4		μΑ
Emitter off-state current		$V_{CC} = V_C = 40 \text{ V},$	VE = 0				μΑ
Collector-emitter saturation voltage	Common emitter	VE = 0,	I _C = 200 mA		1.1		V
	Emitter follower	$V_C = 15 V$,	$I_E = -200 \text{ mA}$		1.5	·	٧

pwm comparator section (see Figure 2)

PARAMETER	TEST CONDITIONS	1	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input threshold voltage, FEEDBACK	Zero duty cycle		4		V
Input sink current, FEEDBACK	FEEDBACK = 0.5 V		0.7		mA

total device (see Figure 2)

PARAMETER	TEST CONDITIONS			TL594Y			
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Standby supply current	All other inputs and outputs open	R _T at V _{ref} ,		9		mA	
Average supply current	DTC = 2 V,	See Figure 2		12.4		mA	

switching characteristics, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS		TL594Y			
PARAMETER	1E31 CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage rise time	Common emitter configuration — See Figure 2		100		ns	
Output voltage fall time	Common-emitter configuration, See Figure 3		30		ns	
Output voltage rise time	Emitter-follower configuration, See Figure 4		200		ns	
Output voltage fall time	Emitter-follower configuration, See Figure 4		45		ns	

PARAMETER MEASUREMENT INFORMATION

Figure 1. Amplifier Characteristics Test Circuit

PARAMETER MEASUREMENT INFORMATION

Figure 2. Operational Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 3. Common-Emitter Configuration

Figure 4. Emitter-Follower Configuration

TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY AND FREQUENCY VARIATION[†]

TIMING RESISTANCE

Figure 5

AMPLIFIER VOLTAGE AMPLIFICATION

VS **FREQUENCY** 100 V_{CC} = 15 V 90 $\Delta V_O = 3 V$ $T_A = 25^{\circ}C$ 80 Voltage Amplification – dB 70 60 50 40 30 20 10 0 10 k 10 100 100 k 1 M 1 k f - Frequency - Hz

Figure 6

[†] Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated