Διοίκηση Παραγωγής Συστημάτων και Υπηρεσιών

1η Εργασία - Ιωάννης Τσαντήλας, 03120883

Μεταβλητές Απόφασης, t ε [0,12]

- Pt (production): η παραγωγή του μήνα t.
- St (stock): το απόθεμα του μήνα t.
- It (increase): η αύξηση της παραγωγής του μήνα t σε σχέση με την παραγωγή του μήνα t-1.
- Dt (decrease): η μείωση της παραγωγής του μήνα t σε σχέση με την παραγωγή του μήνα t-1.
- **O**_t (overtime): πλήθος τεμαχίων που παράχθηκαν στις υπερωρίες τον μήνα t.
- Ut (underemployment): πλήθος τεμαχίων που παράχθηκαν σε υποαπασχόληση τον μήνα t.

Παράμετροι - Δεδομένα

• **d**_t (**demand**): ζήτηση τον μήνα t, η οποία σύμφωνα με τα δεδομένα του προβλήματος είναι:

t	0	1	2	3	4	5	6	7	8	9	10	11	12
d_t	0	2100	1900	1600	1500	1550	1400	1250	1700	2200	2300	2100	1950

- C_P (Production Cost): κόστος παραγωγής ενός τεμαχίου, $C_P = 50 \in$.
- Cs (Stock Cost): κόστος αποθήκευσης ενός τεμαχίου, $C_S = 0.80$ €.
- C_I (Increase Cost): κόστος αύξησης της παραγωγής, $C_I = 1,30$ €/μονάδα αύξησης.
- C_D (Decrease Cost): κόστος μείωσης της παραγωγής, C_D = 2 €/μονάδα αύξησης.
- **C**₀ (**Overtime Cost**): κόστος υπερωριών, C₀ = 2,50 €/μονάδα.
- C_U (Underemployment Cost): κόστος υποαπασχόλησης, $C_U = 4$ €/μονάδα.
- **NP (Normal Production):** η δυνατότητα της επιχείρησης για κανονική παραγωγή, NP = 1800 τεμάχια.
- P₀: η αρχική παραγωγή, P₀ = 1600 τεμάχια.
- S₀: το αρχικό απόθεμα, S₀ = 700 τεμάχια.

Επομένως, οι περιορισμοί μας είναι:

1. Η παραγωγή του παρόντος μήνα μείον τη ζήτηση του, συν το απόθεμα του προηγούμενου ισούται με το απόθεμα του παρόντος:

$$P_t + S_{t-1} = S_t + d_t$$

2. Περιορισμός για την αύξηση/ μείωση της παραγωγής, έτσι ώστε μόνο μία από τις δύο μεταβλητές να παίρνει τιμή εάν ο ρυθμός παραγωγής αλλάξει από τον έναν μήνα στον επόμενο:

$$P_t - P_{t-1} = I_t - D_t$$

3. Περιορισμός για την υπερωρία/ υποαπασχόληση, έτσι ώστε μόνο μία από τις δύο μεταβλητές να παίρνει τιμή εάν ο ρυθμός παραγωγής αποκλίνει από το 1800:

$$P_t - 1800 = O_t - U_t$$

4. Όλες οι μεταβλητές θα πρέπει να είναι φυσικές:

$$P_t$$
, S_t , I_t , D_t , O_t , $U_t \in N$

Αντικειμενική Συνάρτηση και Στόχος

Η αντικειμενική συνάρτηση είναι το άθροισμα όλων των κοστών στην διάρκεια των 12 μηνών. Στόχος μας είναι η ελαχιστοποίηση της:

$$\begin{aligned} & minimize(TC) = minimize\left(\sum_{t=1}^{12} (C_P \cdot P_t + C_S \cdot S_t + C_I \cdot I_t + C_D \cdot D_t + C_O \cdot O_t + C_U \cdot U_t)\right) = \\ & = minimize\left(\sum_{t=1}^{12} (50 \cdot P_t + 0.8 \cdot S_t + 1.3 \cdot I_t + 2 \cdot D_t + 2.5 \cdot O_t + 4 \cdot U_t)\right) \end{aligned}$$

Λύση με χρήση online LP Solver

Για την επίλυση του προβλήματος χρησιμοποίησα online solver, που βρίσκεται σε αυτό το link: https://online-optimizer.appspot.com/. Μπορείτε να τρέξετε τον κώδικα που έχω στο exercise_1.txt ακολουθώντας τα βήματα:

- Πατήστε στην αριστερή στήλη την επιλογή «**Model**».
- Αντιγράψτε τον κώδικα του exercise_1.txt στο IDE.
- Πατήστε κάτω αριστερά το πράσινο κουμπί «Solve Model»
- Στις υποκατηγορίες του «**Solution**» (αριστερή στήλη, κάτω από το «Model»):
 - ο Model Overview: η λύση της αντικειμενικής συνάρτησης
 - Variables: οι τιμές των μεταβλητών απόφασης στην βέλτιστη λύση.

Παρέχω screenshot του κώδικα:

Η βέλτιστη λύση είναι 1.050.280 €.Τα αποτελέσματα, μαζεμένα στον κάτωθι πίνακα:

Month	1	2	3	4	5	6	7	8	9	10	11	12	Cost (€)
Production	1650	1650	1650	1650	1650	1800	1800	1800	1800	1800	1800	1800	1.042.500
Stock	250	0	50	200	300	700	1250	1350	950	450	150	0	4.520
Increase	50	0	0	0	0	150	0	0	0	0	0	0	260
Decrease	0	0	0	0	0	0	0	0	0	0	0	0	0
Overtime	0	0	0	0	0	0	0	0	0	0	0	0	0
Underemployment	150	150	150	150	150	0	0	0	0	0	0	0	3.000

Και ενδεικτικά screenshots από το «Solution»:

Model overview

Label	Value
Problem type	Integer Optimization
Objective	Minimize z
Optimal objective value	1050280
Solver status	Optimal

Variables

Variable	Туре	Value	Value bounds
production[1]	Integer	1650	[0, Inf]
production[2]	Integer	1650	[0, Inf]
production[3]	Integer	1650	[0, Inf]
production[4]	Integer	1650	[0, Inf]
production[5]	Integer	1650	[0, Inf]
production[6]	Integer	1800	[0, Inf]
production[7]	Integer	1800	[0, Inf]
production[8]	Integer	1800	[0, Inf]

Variables

Variable	Type	Value	Value bounds V
production[9]	Integer	1800	[0, Inf]
production[10]	Integer	1800	[0, Inf]
production[11]	Integer	1800	[0, Inf]
production[12]	Integer	1800	[0, Inf]
stock[1]	Integer	250	[0, Inf]
stock[2]	Integer	0	[0, Inf]
stock[3]	Integer	50	[0, Inf]
stock[4]	Integer	200	[0, Inf]

Variable	Value ×
production[9]	1800
production[10]	1800
production[11]	1800
production[12]	1800
stock[1]	250
stock[2]	0
stock[3]	50
stock[4]	200
Variable	Value ×

Variable	Value
stock[5]	300
stock[6]	700
stock[7]	1250
stock[8]	1350
stock[9]	950
stock[10]	450
stock[11]	150
stock[12]	0
increase[1]	50

Variables

	Value ~
ıncıease[1]	00
increase[2]	0
increase[3]	0
increase[4]	0
increase[5]	0
increase[6]	150
increase[7]	0
increase[8]	0
increase[9]	0