# Week 2: Limits and Functions

## James Arthur

## October 2, 2020

## Contents

| 1 | Limits      |                                       |  |
|---|-------------|---------------------------------------|--|
|   | 1.1         | Defining Limits                       |  |
|   |             | Definition: Limit                     |  |
|   |             | Theorem: Limit Uniqueness             |  |
|   |             | Theorem: Algebra of Limits            |  |
|   | 1.2         | One Sided Limit                       |  |
|   |             | Definition: Left-hand limits          |  |
|   |             | Definition: Right-hand limit          |  |
|   | 1.3         | Limits at $\pm \infty$                |  |
|   |             | Definition: Limit at infinity         |  |
|   |             | Definition: Left infinite limit       |  |
|   | 1.4         | Monotonics                            |  |
|   |             | Definition: Monotonicity              |  |
| 2 | Continuity  |                                       |  |
|   |             | Definition: Continuity at $x_0$       |  |
|   |             | Definition: Left continuity at $x_0$  |  |
|   |             | Definition: Right Continuity at $x_0$ |  |
|   | 2.1         | Discontinuities                       |  |
|   |             | Definition: Piecewise Continuity      |  |
|   |             | Definition: Removable discontinuity   |  |
|   | 2.2         | Continuity Arithmetic                 |  |
| 3 | Boundedness |                                       |  |
|   |             | Definition: Bounded Below             |  |
|   |             | Definition: Bounded Above             |  |
|   |             | Definition: Bounded                   |  |
|   |             | Theorem: Boundedness Theorem          |  |
|   |             | Theorem: Extreme value Theorem        |  |
|   |             | Theorem: Intermediate Value Theorem   |  |
|   | 3.1         | Monotonics 2: God what a mess         |  |

### 1 Limits

### 1.1 Defining Limits

We consider limits of real functions, that is  $f: X \to \mathbb{R}$ , with  $X \subset \mathbb{R}$ .

**Definition 1.1.1: Limit.** We say that f(x) approaches the limit L as x approaches  $x_0$ , and write

$$\lim_{x \to x_0} f(x) = L$$

if f is defined on some deleted neighbourhood of  $x_0$  and, for every  $\varepsilon > 0$ , there is a  $\delta > 0$  such that:

$$|f(x) - L| < \varepsilon$$

if

$$0 < |x - x_0| < \delta$$

Theorem 1.1.1: Limit Uniqueness.  $\lim_{x\to x_0} f(x)$  exists, then it is unique, that is, if:

$$\lim_{x \to x_0} f(x) = L_1 \qquad and \lim_{x \to x_0} f(x) = L_2$$

then  $L_1 = L_2$ 

*Proof.* Let  $\exists \varepsilon > 0$ , such that

$$|f(x) - L_i| < \varepsilon \text{ if } 0 < |x - x_0| < \delta_i$$

for i = 1, 2

Now, let us look at a  $|L-1-L_2|$  and let  $\delta = \min(\delta_1, \delta_2)$ .

$$|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2|$$
  

$$\leq |L_1 - f(x)| + |L_2 - f(x)| < 2\varepsilon$$

Given we know that  $\varepsilon$  is arbitarily small, then  $|L_1-L_2|$  is abitrarily small and hence,  $L_1=L_2$ .  $\square$ 

Theorem 1.1.2: Algebra of Limits. If  $\lim_{x\to x_0} f(x) = L_1$  and  $\lim_{x\to x_0} g(x) = L_2$ , then:

$$\lim_{x \to x_0} (f+g) = L_1 + L_2$$

$$\lim_{x \to x_0} (f-g) = L_1 - L_2$$

$$\lim_{x \to x_0} (fg) = L_1 L_2$$

$$\lim_{x \to x_0} \left(\frac{f}{g}\right) = \frac{L_1}{L_2} \qquad if L_2 \neq 0$$

*Proof.* long and tedious

#### 1.2 One Sided Limit

**Definition 1.2.1: Left-hand limits.** We say that f(x) approaches the left-hand limit L as x approaches  $x_0$  from the left and write:

$$\lim_{x \to x_0^-} f(x) = L$$

if f is defined on some open interval  $(a, x_0)$  and, for each  $\varepsilon > 0, \exists \delta > 0$ ,

$$|f(x) - L| < \varepsilon \text{ if } x_0 - \delta < x < x_0$$

**Definition 1.2.2: Right-hand limit.** We say that f(x) approaches the right-hand limit L as x approaches  $x_0$  from the right and write:

$$\lim_{x \to x_0^+} f(x) = L$$

if f is defined on some open interval  $(x_0, b)$  and, for each  $\varepsilon > 0, \exists \delta > 0$ ,

$$|f(x) - L| < \varepsilon \text{ if } x_0 < x < x_0 + \delta$$

**Theorem 1.2.1.** A function f has a limit at  $x_0 \iff$  it has right and left handed limits and they are equal.

$$\lim_{x \to x_0} f(x) = L$$

if and only if

If

$$f(x_0-) = f(x_0+) = f(x_0)$$

*Proof.* coming soon

#### 1.3 Limits at $\pm \infty$

**Definition 1.3.1: Limit at infinity.** We say that f(x) approaches the limit L as x approaches  $\infty$ , and write:

$$\lim_{x \to x_0} f(x) = L$$

if f is defined on an interval  $(a, \infty)$  and, for each  $\varepsilon > 0$ , there is a number  $\beta$  st,

$$|f(x) - L| < \varepsilon$$
 if  $x > \beta$ 

**Definition 1.3.2: Left infinite limit.** We say f(x) approaches  $\infty$  as x approaches  $x_0$  from the left, and write:

$$f(x_0-) = \infty$$

if f is defined on an interval  $(a, x_0)$  and, for each real number M, there is a  $\delta > 0$  such that:

$$f(x) > M$$
 if  $x_0 - \delta < x < x_0$ 

NB! When we say a limit exists, we mean that it is finite, i.e. not  $\pm \infty$ . If it is, we can say it exists in the extended reals.

Also with infinite limits, we know that the 'Uniqueness of Limits' and the 'Algebra of Limits' are also valid when  $x_0$  are replaced by  $\pm \infty$ .

The 'Alegbra of Limits' rules are also valid if  $L_1, L_2 = \infty$  provided the RHS are not indeterminant forms.

#### 1.4 Monotonics

**Definition 1.4.1: Monotonicity.** A function f is nondecreasing on an interval I if:

$$f(x_1) < f(x_2)$$
 if  $x_1, x_2 \in I$  and  $x_1 < x_2$ 

or nondecreasing if,

$$f(x_1) \ge f(x_2)$$
 if  $x_1, x_2 \in I$  and  $x_1 < x_2$ 

We further define that if the ' $\leq$ ' can be replaced with a '<', then f is strictly monotonic on I

**Theorem 1.4.1.** Suppose that f is monotonic on (a, b) and define

$$\alpha = \inf_{a < x < b} f(x)$$
 and  $\sup_{a < x < b} f(x)$ 

- 1. If f is nondecreasing, then  $f(a+) = \alpha$  and  $f(b-) = \beta$
- 2. If f is nonincreasing, then  $f(a+) = \beta$  and  $f(b-) = \alpha$ .
- 3. If  $a < x_0 < b$ , then  $f(x_0+)$  and  $f(x_0-)$  exist and are finite; moreover;

$$f(x_0-) \le f(x_0) \le f(x_0+)$$

if f is nondecreasing, and

$$f(x_0-) \ge f(x_0) \ge f(x_0+)$$

if f is nonincreasing

*Proof.* Too long and tedious to typeset

### 2 Continuity

Now we have defined limits, we can now define continuity.

**Definition 2.0.1: Continuity at**  $x_0$ . We say that f is continuous at  $x_0$  if f is defined on an open interval (a,b) containing  $x_0$  and that  $\lim_{x\to x_0} f(x) = f(x_0)$ .

**Definition 2.0.2: Left continuity at**  $x_0$ . We say f is continuous from the left at  $x_0$  if f is defined on an open interval  $(a, x_0)$  and  $f(x_0-) = f(x_0)$ .

**Definition 2.0.3: Right Continuity at**  $x_0$ . we say f is continuous from the right at  $x_0$  if f is defined on an open interval  $(x_0, b)$  and  $f(x_0+) = f(x_0)$ .

**Theorem 2.0.1.** A function f is continuous at  $x_0$  if and only if f is defined on an open interval (a,b) containing  $x_0$  and for each  $\varepsilon > 0$  there is a  $\delta > 0$  st,

$$|f(x) - f(x_0)| < \varepsilon \tag{1}$$

whenever  $|x - x_0| < \delta$ 

**Theorem 2.0.2.** A function f is continuous from the right at  $x_0$  if and only if f is defined on an interval  $[x_0, b)$  and for each  $\varepsilon > 0 \exists \delta > 0$  st (1) holds whenever:  $x_0 \le x < x_0 + \delta$ 

**Theorem 2.0.3.** A function f is continuous from the left at  $x_0$  if and only if f is defined on an interval  $(a, x_0]$  and for each  $\varepsilon > 0 \exists \delta > 0$  st (1) holds whenever:  $x_0 - \delta < x \le x_0$ 

Note that f is continuous if and only if  $f(x_0-) = f(x_0+) = f(x_0)$ .

**Definition 2.0.4.** A function f is continuous on an open interval (a, b) if it is continuous at every point in (a, b). If, in addition,

$$f(b-) = f(b) \tag{2}$$

or

$$f(a+) = f(a) \tag{3}$$

then f is continuous on (a, b] or [a, b) respectively. If both are true then f is continuous on [a, b].

More generally, if S is a subset of  $D_f$  consisting of finitely or infinitely many disjoint intervals, then f is continuous on S if f is continuous on every interval in S. (From here on, if we say "f is continuous on S" we mean S is a set of this kind.).

#### 2.1 Discontinuities

**Definition 2.1.1: Piecewise Continuity.** f is piecewise continuous on [a, b] if

- 1.  $\exists f(x_0+) \forall x_0 \in [a, b)$
- 2.  $\exists f(x_0-) \forall x_0 \in (a, b]$
- 3.  $f(x_0+) = f(x_0-) = f(x_0)$  for all but finitely many points  $x_0 \in (a, b)$

If (3) fails to hold at some  $x_0$  in (a, b), f has a jump discontinuity.

**Definition 2.1.2: Removable discontinuity.** Let f be defined on a deleted neighborhood of  $x_0$  and be discontinuous (perhaps even undefined) at  $x_0$ . We say that f has a removable discontinuity at  $x_0$  if  $\lim_{x\to x_0} f(x)$  exists. In this case, the function

$$g(x) = \begin{cases} f(x) & \text{if } x \in D_f \text{ and } x \neq x_0 \\ \lim_{x \to x_0} f(x) & \text{if } x = x_0 \end{cases}$$

is continuous at  $x_0$ .

#### 2.2 Continuity Arithmetic

**Theorem 2.2.1.** If f and g are continuous on a set S, then so are f+g, f-g and fg. So is  $\frac{f}{g}$  given

 $q \neq 0$  at  $x_0$ .

**Theorem 2.2.2.** Suppose that g is continous at  $x_0$ ,  $g(x_0)$  is an interior point of  $D_f$  and f is continuous at  $g(x_0)$ . Then  $f \circ g$  is continuous at  $x_0$ .



So the above theorem is saying that we must have some  $(g(x_0) - \varepsilon, g(x_0) + \varepsilon) \subset D_f$  or even that;  $\lim_{x \to x_0} f(g(x)) = f(g(x_0))$ .

*Proof.* Suppose  $\varepsilon > 0$ , since  $g(x_0) \in D_f^o$  and f is continous at  $g(x_0), \exists \delta_1 > 0$  st, f(t) is defined and

$$|f(t) - f(g(x_0))| < \varepsilon \text{ if } |t - g(x_0)| < \delta_1 \qquad (4)$$

Since g is continuous at  $x_0$ ,  $\exists \delta_2 > 0$  st, g(x) is defined (why?) and

$$|g(x) - g(x_0)| < \delta_1 \text{ if } |x - x_0| < \delta_2$$
 (5)

Then (4) and (5) imply that,

$$|f(g(x)) - f(g(x_0))| < \varepsilon \text{ if } |x - x_0| < \delta_2$$

3 Boundedness

**Definition 3.0.1: Bounded Below.** A funtion f is bounded below on a set S if theres an  $m \in \mathbb{R}$ 

$$f(x) \ge m \quad \forall x \in S$$

In this case,

$$V = \{ f(x) : x \in S \}$$

has an infimum,  $\alpha$ , and we write,

$$\alpha = \inf_{x \in S} f(x)$$

If  $\exists x_1 \in S$ , such that  $f(x_1) = \alpha$ , then we say that  $\alpha$  is the minimum of f on S and write:

$$\alpha = \min_{x \in S} f(x)$$

4

**Definition 3.0.2: Bounded Above.** f is bounded above on S, if  $\exists M \in \mathbb{R}$ , such that,  $f(x) \leq M$   $\forall x \in S$ . Then we can write;

$$\beta = \sup_{x \in S} f(x)$$

If  $\exists x_2 \in S$ , such that  $f(x_2) = \beta$ , then we say that  $\beta$  is the minimum of f on S and write:

$$\beta = \max_{x \in S} f(x)$$

**Definition 3.0.3: Bounded.** If f is both bounded below and bounded above on a set S, then f is bounded on S.

Theorem 3.0.1: Boundedness Theorem. If f is continuous on a finite closed interval [a, b], then f is bounded on [a, b]



Assume f is bounded, it curves again, I promise...

*Proof.* Suppose we take a  $t \in [a, b]$ . Since f is continuous at  $t \ni$  an open interval,  $t \in I_t$ , st,

$$|f(x) - f(t)| < 1 \qquad \text{if } x \in I_t \cap [a, b] \qquad (*)$$

The collection  $\mathcal{H} = \{I - t : a \leq t \leq b\}$  is an open cover of [a, b]. Since, [a, b] is compact, then by the Heine-Borel theorem, there exists a finite sub-cover made up of intervals  $I_{t_1}, \ldots, I_{t_n}$ . By (\*), taking  $t = t_i$ , then,

$$|f(x)-f(t_i)|<1$$
 if  $x\in I_{t_i}\cap[a,b]$ 

Therefore,

$$|f(x)| = |f(x) - f(t_i) + f(t_i)|$$

$$\leq |f(x) - f(t_i)| + |f(t_i)|$$

$$\leq 1 + |f(t_i)| \quad \text{if } x \in I_{t_i} \cap [a, b] \quad (**)$$

Let  $M = 1 + \max_{1 \le i \le n} |f(t_i)|$  and since,

 $[a, b] \subset \bigcup_{i=1}^n I_{t_i} \cup [a, b]$ , then apply (\*\*) and then

$$|f(x)| \le M \qquad \forall x \in [a, b]$$

Theorem 3.0.2: Extreme value Theorem. Suppose that f is continuous on a finite closed interval, [a,b]. Let,

$$\alpha = \inf_{a \le x \le b} f(x)$$
 and  $\beta = \sup_{a \le x \le b} f(x)$ 

Then  $\alpha$  and  $\beta$  are respectively the minimum and maximum of f on [a, b]; that is there are points  $x_1$  and  $x_2$  in [a, b] such that;

$$f(x_1) = \alpha$$
  $f(x_2) = \beta$ 

*Proof.* We'll show that  $x_1$  exists first. Suppose for a contradiction, that there is no point  $x_1 \in [a, b], f(x_1) = \alpha$ . Then for  $f(t) > \alpha \quad \forall t \in [a, b]$ 

$$f(t) > \frac{f(t) + \alpha}{2} > \alpha$$

Since, f is continuous at t, there is an open interval  $I_t$  about the point t, st,

$$f(x) > \frac{f(t) + \alpha}{2}$$
  $x \in I_t \cap [a, b]$ 

Then, the collection of  $\mathcal{H} = \{I_t : a \leq x \leq b\}$  is an open covering of [a, b]. Since [a, b] is compact, the Heine-Borel theorem implies that there is a finite sub-covering using some open intervals  $I_{t_1}, \ldots, I_{t_n}$  around  $t_1, \ldots, t_n$ . Now we define:

$$\alpha_1 = \min_{1 \le i \le n} \frac{f(t_i) + \alpha}{2}$$

Then  $f(t) > \alpha \, \forall \, t \in \bigcup_{i=1}^n I_{t_i} \cap [a, b] = [a, b]$ , so we now have  $a_1 > \alpha$  and hence a contradiction. So  $f(x_1) = \alpha$  for some  $x_1 \in [a, b]$ .

To complete the proof, show that  $x_2$  exists. Suppose for a contradiction, that there is no point  $x_2 \in [a, b], f(x_2) = \beta$ . Then for  $f(t) < \beta \quad \forall t \in [a, b]$ 

$$f(t) < \frac{f(t) + \beta}{2} < \beta$$

Since, f is continuous at t, there is an open interval  $I_t$  about the point t, st,

$$f(x) < \frac{f(t) + \beta}{2}$$
  $x \in I_t \cap [a, b]$ 

Then, the collection of  $\mathcal{H} = \{I_t : a \leq x \leq b\}$  is an open covering of [a, b]. Since [a, b] is compact, the Heine-Borel theorem implies that there is a finite sub-covering using some open intervals  $I_{t_1}, \ldots, I_{t_n}$  around  $t_1, \ldots, t_n$ . Now we define:

$$\beta_1 = \max_{1 \le i \le n} \frac{f(t_i) + \beta}{2}$$

Then  $f(t) < \beta \, \forall \, t \in \bigcup_{i=1}^n I_{t_i} \cap [a, b] = [a, b]$ , so we now have  $\beta < \beta_1$  and hence a contradiction. So  $f(x_2) = \beta$  for some  $x_2 \in [a, b]$ .

Theorem 3.0.3: Intermediate Value Theorem. Suppose that f is continuous on [a, b],  $f(a) \neq f(b)$ , and  $\mu$  is between f(a) and f(b). Then  $f(c) = \mu$ , for some  $c \in [a, b]$ 



*Proof.* Suppose that  $f(a) < \mu < f(b)$ . The set,

$$S = \{x : a \le x \le b \text{ and } f(x) \le \mu\}$$

is bounded and is non-empty. Let  $c = \sup S$ . We will show that  $f(c) = \mu$ . If  $f(c) > \mu$ , then c > a and since f is continuous at c,  $\exists \varepsilon > 0$ ,st,

$$f(x) > \mu$$
 if  $c - \varepsilon < x \le c$ 

Therefore,  $c - \varepsilon$  is an upper bound for S, contradicting the definition of c.

If  $f(c) < \mu$ , then c < b and  $\exists \varepsilon > 0$ , st,

$$f(x) < \mu \text{ for } c \le x < c + \varepsilon$$

so c is not an upper bound for S, which again contradicts the definition of c.

Therefore  $f(c) = \mu$ . The proof for  $f(b) < \mu < f(a)$  is simply obtained by applying the above to the function -f.

#### 3.1 Monotonics 2: God what a mess