Whale Optimization Algorithm (WOA) para el problema de clustering con restricciones

Yábir García Benchakhtir June 25. 2020

Universidad de Granada

Descripción del problema

Etapas en la caza

Resolvemos el problema del agrupamiento con restricciones

- Partimos de un conjunto de puntos
- Una serie de restricciones entre ellos

Etapas en la caza

Resolvemos el problema del agrupamiento con restricciones

- Partimos de un conjunto de puntos
- Una serie de restricciones entre ellos

Nuestro objetivo es agruparlos en conjuntos de manera que haya relación entre los elementos de un mismo conjunto minimizando el número de restricciones incumplidas.

• Centroide de un cluster

$$\mu_i = \frac{1}{|c_i|} \sum_{x \in c_i} x \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

Centroide de un cluster

$$\mu_i = \frac{1}{|c_i|} \sum_{x \in c_i} x \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

Distancia intracluster

$$ar{c}_i = rac{1}{|c_i|} \sum_{x \in c_i} ||x - \mu_i||_2 \quad ext{con } c_i \in \mathcal{C} ext{ para todo } i \in \{1, ...k\}$$

• Centroide de un cluster

$$\mu_i = \frac{1}{|c_i|} \sum_{x \in c_i} x \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

Distancia intracluster

$$ar{c}_i = rac{1}{|c_i|} \sum_{\mathbf{x} \in c_i} ||\mathbf{x} - \mu_i||_2 \quad ext{con } c_i \in \mathcal{C} ext{ para todo } i \in \{1, ... k\}$$

• A partir de esta definimos

$$\bar{C} = \frac{1}{k} \sum_{c_i \in \mathcal{C}} \bar{c}_i$$

• Centroide de un cluster

$$\mu_i = \frac{1}{|c_i|} \sum_{x \in c_i} x \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

Distancia intracluster

$$ar{c}_i = rac{1}{|c_i|} \sum_{\mathbf{x} \in c_i} ||\mathbf{x} - \mu_i||_2 \quad ext{con } c_i \in \mathcal{C} ext{ para todo } i \in \{1, ... k\}$$

• A partir de esta definimos

$$\bar{C} = \frac{1}{k} \sum_{c_i \in C} \bar{c}_i$$

 Constante que nos va a decir como de importantes son las restricciones

$$\lambda = \frac{\lceil d \rceil}{|R|}$$

Nuestro objetivo será optimizar la función

$$f = \bar{C} + \lambda * infeasibility$$

Caza de la ballena jorobada

Etapas en la caza

- Movimiento rectilineo en busca de una presa
- Ataque sobre la presa

Movimiento rectilineo

La ballena se desplaza por el medio buscando una presa a la que atacar

$$X_{i}(t+1) = X^{*}(t) - A \cdot D_{i}^{1}$$
 (1)

$$D_i^1 = ||CX^*(t) - X_i(t)||$$
 (2)

Movimiento rectilineo

La ballena se desplaza por el medio buscando una presa a la que atacar

$$X_{i}(t+1) = X^{*}(t) - A \cdot D_{i}^{1}$$
 (1)

$$D_i^1 = ||CX^*(t) - X_i(t)||$$
 (2)

con

$$A = 2a \cdot r - a$$
$$C = 2r$$

siendo $r \in [0,1]^d$ un vector aleatorio y $a \in [0,2]^d$ constante que se hace decrecer de manera lineal a lo largo de los distintos pasos del algoritmo mediante la ecuación

$$a(t) = 2 - 2 \frac{t}{\text{max_evaluaciones}}$$

Ataque sobre la presa

Figure 1: Fases de la caza de la ballena jorobada

¹https://nmas1.org/news/2019/10/17/ballena-aletas-peces-boca

Ataque sobre la presa

Para modelas la fase de ataque sobre la presa usamos

$$\begin{cases} X_i(t+1) = e^{bl}\cos(2\pi I)D_2 + X^* \\ D_i^2 = ||X^*(t) - X_i(t)|| \end{cases}$$
 (3)

Resumen de los movimeintos

$$X_i(t+1) = egin{cases} X^*(t) - A \cdot D_i^1 & p < rac{1}{2} \ e^{bl}cos(2\pi l)D_i^2 + X^* & p \geq rac{1}{2} \end{cases}$$

Pseudo-código de la metaheurística

Algorithm 1 Whale optimization Algorithm procedure WOA(max_evaluaciones) whales: Inicializar un conjunto de ballenas con k centroides aleatorios Evaluamos las diferentes ballenas usando nuestra métrica 3: Seleccionamos X^* la meior ballena 4. Guardamos la mejor solución encontrada al problema 5: evaluaciones $\leftarrow 0$ while evaluaciones < max_evaluaciones do actualizamos el parametro a for agente en la lista de ballenas do Determinar p v calcular A v C. 10: 11: if p < 0.5 then if |A| < 1 then Movemos la ballena usando el movimiento rectilineo 13: 14: else if |A| > 1 then Movimiento rectilineo usando una ballena aleatorio (1) 15. end if 16: else 17: Movimiento en espiral utilizando (2) 18: end if 19end for 20: Comprobar si alguna solución se ha salido de los limites del problema 21: Incrementar evaluaciones en el número de evaluaciones correspondiente 22: Evaluar las soluciones encontradas y actualizar la mejor ballena 23: if la mejor ballena es la mejor solución encontrada then 24: Actualizar la meior solución encontrada hasta el momento 25: end if 26: 27: end while return Construir la solución asociada a la mejor ballena encontrada 29: end procedure