

Tiago Freitas Data Scientist at nilg.ai tiago.freitas@nilg.ai Al shot Diving into an Al use case Al shot

Al shot Embedding Domain Knowledge

The Learning Spectrum

Semi-Supervised Learning

01

What is Semi-Supervised Learning?

Semi-Supervised Learning

What is it and when to use it?

- Semi-Supervised learning tries to make use of unlabeled data to learn its inherent structure and empower a supervised model
- Useful for when you have a big amounts of unlabeled data from the same distribution of the labeled dataset
 - Not all unlabeled data is good for your models
 - If the distribution between labeled and unlabeled dataset is not similar, performance increments are smaller
- We need to be careful with unbalanced datasets

Types of Semi-Supervised Learning

Semi-Supervised Algorithms can be classified in:

- Entropy Minimization:
 - Maximize confidence in unlabeled predictions
- Consistency Regularization
 - Guarantee that the model is consistent in unlabeled sample augmentations
- Hybrid Models
 - Combination of the previous classes with regularization
 - o Generally the most powerful models combine all of the classes

Good Evaluation of SSL algorithms

- Compare with baselines:
 - Supervised
 - Transfer Learning
- Keep the same model architecture when comparing different algorithms
- Do not use unrealistic large validation sets
- If possible try to evaluate different % of ratios of labeled and unlabeled samples

02

Semi-Supervised Learning Algorithms

Entropy Minimization

- Loss term is added to loss function that encourages the model to make "confident" (low-entropy) predictions for all unlabeled examples, regardless of their class
- Tries to discourage the decision boundary from passing near data points

Pseudo-Labelling

- Create Pseudo-Labels for unlabeled samples with a confidence above a certain threshold
- Targets above a certain threshold is used for training in the next epochs as if they were supervised labels
- Similar to Entropy Minimization as it enforces confident predictions for the unlabeled dataset, the difference is that it only uses the examples with low entropy (confident examples)

Virtual Adversarial Training (VAT)

- Train the model with adversarial examples on the unlabeled dataset
- Tiny perturbations on the image that lead to misclassification
- Enforces the model to be robust against adversarial perturbations
- Can be used in combination with Entropy Minimization to improve the results

Pi-Model/Temporal Ensembling

- Augmentations on the unlabeled dataset are used to minimize the squared difference across samples
- Regularizes network by making it invariant to those augmentations
- Temporal ensembling of predictions is more stable than the simple mean squared difference of the current predictions

Mean Teacher

- Improves on the temporal ensembling model by using an exponential moving average of the weights of the model across epochs
- This leads to more stable predictions and models and improved performance

MixMatch

- New training schedule proposed:
 - For the unlabeled generate K number of augmentations
 - Optimizes the model using the mean of the k augmentations on the unlabeled dataset.
 - Apply Mixup augmentation to labeled and unlabeled images (convex combinations of labels and inputs)
 - Temperature Calibration of probabilities
 - Cross Entropy + L₂ norm loss
 - Weight Average is used as in mean teacher paper

S4L: Self-supervised semi-supervised learning

- It uses self-supervised learning pretraining on pretext tasks
- S4L Rotation: rotation prediction
- S4L Exemplar: Triplet Loss with soft margin within augmented unlabeled examples
- Using Self-Sup in simultaneously with semi-sup the results are improved:
 - S4L Rotation
 - Virtual Adv Training
 - Entropy Minimization
 - Model Exponential moving average of the Weights
 - Re-train with Pseudo Labels
 - Fine Tune on 10 % labels

Unsupervised Data Augmentation (UDA)

- KL divergence between original and augmented examples added to the supervised loss
- Better Performance with equal weight between label and unlabeled loss part, but with bigger unlabeled batches.
- AutoAugment + Cutout used for image augmentation
- Train Signal Annealing: If labeled examples are too confident they are removed from the loss. The threshold for this is varied across epochs.
- Unlabeled training only uses confident examples
- Also uses Probability calibration

A lot of interesting papers recently

- FixMatch
- ReMixMatch
- Local Label Propagation for SSL
- Big Self-Supervised Models are Strong Semi-Supervised Learners
- Keep looking for the baselines in: https://paperswithcode.com/sota/semi-supervised-image-classification-on-2

03

NILG.Al Projects using Semi-Supervised Learning

NILG.AI Projects using SSL

Cervical Cancer

Diagnose patients, explain the reasons for this decision, suggest the right treatment (Computer Vision + Tabular Data)

- Healthcare (Colposcopy) -

Spam detection

Detect Spam in Online Questionnaires (NLP)

- Market Research -

Detect fraud in

water meters

- Utilities (Water supply) -

Thank you! Questions?

