Lecture 3 Clustering Techniques

May 11, 2022

1 Clustering Workbook

Welcome to the Clustering Workbook. Let's start with importing the required libraries.

```
[1]: import numpy as np
  import pandas as pd

from matplotlib import pyplot as plt
  %matplotlib inline

import seaborn as sns
  sns.set_style('darkgrid')

%matplotlib inline
```

First, let's read the sample data set.

```
[2]: sample_df = pd.read_csv('clustering_dataset.csv')
```

```
[3]: sample_df.describe()
```

```
[3]:
                        300.000000
     count
            300.000000
              3.646046
                           2.938750
     mean
     std
              2.268252
                           1.840548
     min
             -1.714843
                          -0.680250
     25%
              1.355996
                           1.383061
     50%
              4.316122
                           2.691587
     75%
              5.425505
                           4.610866
              7.392365
                           7.598304
     max
```

```
[4]: sample_df.head()
```

```
[4]: x y
0 3.914369 5.642055
1 5.997345 3.022112
2 5.282978 5.712265
3 3.493705 7.598304
```

4 4.421400 4.975374

Let's also plot the data set to try and understand how it looks like.

[5]: sns.pairplot(data=sample_df)

[5]: <seaborn.axisgrid.PairGrid at 0x135a67250>

1.1 KMeans Clustering

First, we will explore KMeans clustering.

[6]: from sklearn.cluster import KMeans

[7]: X = sample_df

I will start with a case of 3 clusters.

```
[8]: kmeans = KMeans(n_clusters=3, random_state=123)
kmeans.fit(X)
```

[8]: KMeans(n_clusters=3, random_state=123)

```
[9]: clustered_data = sample_df.copy()
clustered_data['cluster'] = kmeans.predict(X)
```

[10]: sns.pairplot(data=clustered_data, hue='cluster')

[10]: <seaborn.axisgrid.PairGrid at 0x136c523a0>

[11]: clustered_data.head()

[11]: x y cluster
0 3.914369 5.642055 0
1 5.997345 3.022112 1
2 5.282978 5.712265 0

```
3 3.493705 7.598304 0
4 4.421400 4.975374 0
```

```
[12]: # Scatterplot, colored by cluster
plt.figure()
plt.scatter(clustered_data.x, clustered_data.y, c=clustered_data.cluster)
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1],c='b')
#sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False)
plt.show()
```


Is this a good clustering? What are some problematic points?

1.1.1 Iteration Number

plt.show()

Can we go back to basics? How does the KMeans work so well? Let's make it so that there will only be one guess.

```
[15]: # Fit K-Means (but only allow 1 iteration)
    kmeans_m1 = KMeans(n_clusters=3, random_state=123, max_iter=1)

[16]: kmeans_m1.fit(X)

[16]: KMeans(max_iter=1, n_clusters=3, random_state=123)

[17]: clustered_data = sample_df.copy()#X.copy()
    clustered_data['cluster'] = kmeans_m1.predict(X)

[18]: # Scatterplot, colored by cluster
    sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False)
```


This is still bull's eye at the first try. What are we missing?

```
[19]: kmeans_m1.n_init
```

[19]: 10

Of course, initialization iterations.

```
[21]: kmeans_m2.fit(X)
```

[21]: KMeans(init='random', max_iter=1, n_clusters=3, n_init=2, random_state=5)

```
[22]: clustered_data = sample_df.copy()#X.copy()
clustered_data['cluster'] = kmeans_m2.predict(X)
```

```
[23]: # Scatterplot, colored by cluster
sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False)
plt.show()
```


Not so good now. So we know, that the initialization also starts with iterations of guesses.

1.1.2 Number of Clusters

Now let's explore how different number of clusters change the result.

```
[25]: kmeans_m3.fit(X)
```

[25]: KMeans(init='random', max_iter=1, n_clusters=2, n_init=1, random_state=5)

```
[26]: clustered_data = sample_df.copy()#X.copy()
clustered_data['cluster'] = kmeans_m3.predict(X)
```

[27]: # Scatterplot, colored by cluster
sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False)
plt.show()


```
[29]: kmeans_m4.fit(X)
```

[29]: KMeans(init='random', max_iter=1, n_clusters=12, n_init=1, random_state=5)

```
[30]: clustered_data = sample_df.copy()#X.copy()
clustered_data['cluster'] = kmeans_m4.predict(X)
```

[31]: # Scatterplot, colored by cluster sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False) plt.show()

May be a bit too much.

1.1.3 MiniBatch KMeans

[32]: from sklearn.cluster import MiniBatchKMeans

1.2 Evaluation Criteria

It is hard to understand this by looking. Let's explore some popular evaluation metrics for clustering.

1.2.1 Inertia

```
[37]: mini kmeans.inertia
[37]: 534.4834618971341
[38]: kmeans_m2.inertia_
[38]: 539.6191222803174
[39]: def fit_kmeans_model(n_clusters, X):
          model = KMeans(n_clusters=n_clusters,
                            random_state=5,
                            max_iter=1, # Only allow 1 max iteration
                            init='random') # choose random initial centroids.
          model.fit(X)
          clustered_data = sample_df.copy()
          clustered_data['cluster'] = model.predict(X)
          return (clustered_data, model)
[40]: fig = plt.figure(figsize=[6,4])
      ax = plt.subplot(111)
      for n in range (2,50):
          clustered_data, model = fit_kmeans_model(n, X)
          ax.scatter(n, model.inertia_, color='b')
      ax.set_ylabel('Inertia')
      ax.set_xlabel('No. of clusters')
[40]: Text(0.5, 0, 'No. of clusters')
```


There are three performance intervals here.

```
[41]: clustered_data, model = fit_kmeans_model(6, X)

[42]: # Scatterplot, colored by cluster
    sns.lmplot(x='x', y='y', hue='cluster', data=clustered_data, fit_reg=False)
    plt.show()
```


1.2.2 Silhouette Score

Now let's see what the silhouette score would tell for the model performance.

```
[43]: from sklearn.metrics import silhouette_score

[44]: silhouette_score(X, model.labels_)

[44]: 0.3416026475169336

[45]: %matplotlib notebook
    fig = plt.figure(figsize=[6,4])
    ax = plt.subplot(111)

    for n in range(2,50):
        clustered_data, model = fit_kmeans_model(n, X)
        ax.scatter(n, silhouette_score(X, model.labels_),color='b')
```

```
ax.set_ylabel('Silhouette Score')
      ax.set_xlabel('No. of clusters')
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[45]: Text(0.5, 0, 'No. of clusters')
     The second highest value is 6.
     1.2.3 KMeans Failure
     We have seen that KMeans is doing okay with the data set we have looked at so far.
[46]: from sklearn.datasets import make_moons
[47]: X, y = make_moons(n_samples=300, noise=0.08, random_state=0)
      moon_df = pd.DataFrame({'X1':X[:,0], 'X2':X[:,1], 'y':y})
[48]: sns.lmplot(x='X1', y='X2', data=moon_df)
      plt.show()
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[49]: moon df
[49]:
                 X1
      0
           0.749212 -0.526487
           0.212365 -0.253225
      1
      2
           0.928320 0.404686 0
      3
           1.002225 -0.490274 1
      4
           1.202950 -0.386080
      295 1.530946 -0.290321
      296 0.221195 -0.249975
      297 -0.719076 0.491739 0
      298 0.583732 0.972254 0
      299 0.104479 0.118310 1
      [300 rows x 3 columns]
[50]: kmeans = KMeans(n_clusters=2)
[51]: kmeans.fit(X)
```

```
[51]: KMeans(n_clusters=2)
[52]: y_pred=kmeans.predict(X)
      moon_df['predicted_clusters'] = y_pred
[53]: sns.lmplot(x='X1', y='X2', hue='predicted_clusters', data=moon_df,__

→fit reg=False)
      plt.show()
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[54]: kmeans = KMeans(n_clusters=3)
      kmeans.fit(X)
      y_pred=kmeans.predict(X)
      moon_df['predicted_clusters2'] = y_pred
[55]: sns.lmplot(x='X1', y='X2', hue='predicted_clusters2', data=moon_df,__

→fit_reg=False)
      plt.show()
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[56]: kmeans = KMeans(n_clusters=3, max_iter=100)
      kmeans.fit(X)
      y_pred=kmeans.predict(X)
      moon_df['predicted_clusters3'] = y_pred
[57]: sns.lmplot(x='X1', y='X2', hue='predicted_clusters3', data=moon_df,__

→fit_reg=False)
      plt.show()
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[58]: kmeans = KMeans(n_clusters=12)
      kmeans.fit(X)
      y_pred=kmeans.predict(X)
      moon_df['predicted_clusters4'] = y_pred
[59]: sns.lmplot(x='X1', y='X2', hue='predicted_clusters4', data=moon_df,_

¬fit_reg=False)
      plt.show()
     <IPython.core.display.Javascript object>
```

```
<IPython.core.display.HTML object>
```

<IPython.core.display.HTML object>

Not getting any better.

1.3 DBSCAN

```
[60]: from sklearn.cluster import DBSCAN
      from sklearn.preprocessing import StandardScaler
[61]: dbscan = DBSCAN(eps=0.35)
     DBSCAN requires scaling. When we are training a model from scratch, we will always scale+train.
[62]: scaler = StandardScaler()
      scaler.fit(X)
      X_scaled = scaler.transform(X)
[63]: clusters = dbscan.fit predict(X scaled)
      moon_df['dbscan_clusters'] = clusters
[64]: clusters
[64]: array([0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
             1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1,
             1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,
             0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
             0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
             0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0,
             1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,
             0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
             1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,
             1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
             0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0,
             1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,
             0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
             0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0])
[65]: fig = plt.figure(figsize=[6,4])
      ax = plt.subplot(111)
      ax.scatter(moon_df.X1, moon_df.X2, c=clusters, cmap='PiYG')
      ax.set_ylabel('Silhouette Score')
      ax.set_xlabel('Epsilon Value')
     <IPython.core.display.Javascript object>
```

```
[65]: Text(0.5, 0, 'Epsilon Value')
     Pretty good!
[66]: silhouette_score(X_scaled, clusters)
[66]: 0.38135450723457787
[67]: def fit_dbscan(eps):
          dbscan = DBSCAN(eps=eps)
          clusters = dbscan.fit_predict(X_scaled)
          return clusters
[68]:
     eps_list = list(np.arange(0.1,0.35,0.01))
[69]: fig = plt.figure(figsize=[6,4])
      ax = plt.subplot(111)
      for eps in (eps_list):
          clusters = fit_dbscan(eps)
          ax.scatter(eps, silhouette_score(X_scaled, clusters), color='b')
      ax.set_ylabel('Silhouette Score')
      ax.set_xlabel('Epsilon Value')
     <IPython.core.display.Javascript object>
     <IPython.core.display.HTML object>
[69]: Text(0.5, 0, 'Epsilon Value')
     DBSCAN does not have inertia, that's why we are only using silhouette score here. Congratula-
     tions, you have completed the Clustering Workbook!
 []:
```