

GCSE Mathematics

Paper 1 Higher Tier

Mark scheme

8300 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments	
1	2 ⁸	B1		
2	ASA	B1		
3	2, 6, 18, 54, 162	B1		
4	$b ext{ is } \frac{3}{4} ext{ of } a$	B1		
	Any correct product of 36 using a prime factor	M1	2 and 18 2 and 2 and 9 3 and 12 3 and 3 and 4 2 and 3 and 6 May be on a factor tree or repo	eated division
	2 and 2 and 3 and 3	A1	oe May be on a factor tree or repeated division	
	$2^2 \times 3^2$ or $3^2 \times 2^2$	A1		
	Ac	ditional	Guidance	
5	Allow any number of 1s included as fac	ctors up to	o M1A1 only	
	$1 \times 2^2 \times 3^2$			M1A1A0
	2 ² . 3 ²			M1A1A1
	2+2+3+3			M1A1A0
	2^23^2 or 2^2 , 3^2 M1A1/ $2 \times 2 \times 3 \times 3$ and $2^2 \times 3^2$ on answer line M1A1/			M1A1A0
				M1A1A0
				M1A1A0
				M1A1A1
	$2^2 \times 3^2 = 6^4$			M1A1A0
	6 × 6 with no prime factorisation			M0A0A0

Question	Answer	Mark	Commen	ts	
6	False True True True True True True False	B4	B3 for 5 correct B2 for 4 correct B1 for 3 correct		
	Ad	Additional Guidance			
	Accept any clear indication as their answer				
	$162 \times \frac{5}{3}$ or $162 \div \frac{3}{5}$ or 162×5 or 810 or $162 \div 3$ or 54	M1	oe 162 ÷ 0.6		
	270	A1			
7	Additional Guidance				
For $162 \times \frac{5}{3}$ as a decimal, allow $162 \times \frac{5}{3}$		1.66 or k	petter truncation or		
	rounding or 162 × 1.67 for M1				
	97.2			M0A0	

Question	Answer	Mark	Comment	S	
	$\frac{y}{x} = \frac{5}{8} \text{ or } \frac{x}{y} = \frac{8}{5}$ or $8y = 5x$ or $\frac{5x}{8}$ or $0.625x$ or $(x =) \frac{8y}{5}$ or $(x =) 1.6y$ or $y = kx$ and $k = \frac{5}{8}$ or $8 \div 5$ incorrectly evaluated and then $y = \frac{x}{\text{their incorrect evaluation}}$	M1	oe		
8	$y = \frac{5x}{8}$	A1	oe in form $y = f(x)$ or $f(x) = eg y = 0.625x$ or $y = \frac{x}{1.6}$ or $y = x \div (8 \div 5)$ or $y = x$	or $y = 5x \div 8$	
	Additional Guidance				
	$y = \frac{5}{8} \times x$ or $y = \frac{x}{8} \times 5$ or $y = x \div 1.6$			M1A1	
	$y8 = x5$ or $(y =) \frac{x5}{8}$ or $(y =) x \frac{5}{8}$ or $y = \frac{5}{8}$ of x			M1A0	
	Condone units for M1 only				
	Do not ignore further work eg $y = x \div (8 \div 5)$ then $y = x \div 8 \div 5$			M1A0	
9(a)	2 or two B1 Allow words which imply eg double, twice			wo times	
9(b)	÷ 4	B1			

Question	Answer	Mark	Comments		
	Alternative method 1				
	2 <i>x</i> + <i>x</i> = 18 + 6	M1	oe Eliminates a variable Implied by $3x = n$, where $n > 18$		
	3x = 24 or $x = 8$	A1	oe		
	x = 8 and y = 2	A1			
	Alternative method 2				
	$y - 2y = 18 - 2 \times 6$ or $y - 2y = 18 - 12$ or $y + 2y = 18 - 2 \times 6$ or $y + 2y = 18 - 12$	M1	oe Eliminates a variable Implied by $2x - 2y = 12$ followed by $3y = m$, where $m < 18$		
10	3y = 6 or $-3y = -6ory = 2$ or $-y = -2$	A1	oe		
	x = 8 and $y = 2$	A1			
	Alternative method 3	•			
	$\frac{18 - y}{2} = y + 6$ or $18 - 2x = x - 6$	M1	oe Eliminates a variable		
	3x = 24 or $x = 8$ or $3y = 6$ or $y = 2$	A1	oe Collects terms		
	x = 8 and y = 2	A1			

Question	Answer	Mark	Commen	ts	
	Alternative method 4				
	Correctly evaluated trial of at least one pair of values in one equation for which they do not work	M1	eg 9 – 2 = 7 The pair of values must no answer	ot be given as the	
	Correctly evaluated trial of at least three pairs of values in one equation for which they do not work M1dep eg $9-2=7$ $2 \times 11 + 5 = 27$ $10 - (-2) = 12$ With none of the three pairs of as the answer		rs of values given		
	x = 8 and y = 2	A1			
10 cont	Additional Guidance				
	One correct value with one incorrect value (or no second value) and no working			M1A1A0	
	eg $x = 6$ and $y = 2$			M1A1A0	
	eg y = 2			M1A1A0	
	(8, 2) or 8, 2 on answer line (with or wit	hout wor	king)	M1A1A1	
	(2, 8) or 2, 8 on answer line with no wo	rking		M0A0A0	
	Embedded correct values in one equation only eg $2 \times 8 + 2 = 18$ Embedded correct values in both equations			M1A0A0	
	ie $2 \times 8 + 2 = 18$ and $8 - 2 = 6$			M1A1A0	
	Please check crossed out work, which may indicate correct rejection of a trial in this question, as covered in alternative method 4				

Question	Answer	Mark	Comments		
	Alternative method 1				
	4 x 15 or 60 or 2 x 10 or 20 or 80	M1	oe		
11	$\frac{10}{100}$ × their 80 or 8 or 1.1 and working for first M1 seen	M1dep	oe $\frac{10}{100}$ × their 60 or 6 or 66 or $\frac{10}{100}$ × their 20 or 2 or 22		
	their 80 + their 8 or 1.1 × their 80 or 88	M1dep	oe their 60 + their 6 + their 20 + their 2 or 1.1 × their 60 + 1.1 × their 20 or their 66 + their 22		
	0.03 × their 88 or 2.64 or their 88 × 1.03	M1dep	oe		
	90.64(p)	A1			

Question	Answer	Mark	Comments
	Alternative method 2		
	$\frac{10}{100} \times 15 \text{ or } 1.5(0)$ and $\frac{10}{100} \times 10 \text{ or } 1$	M1	oe
	or 1.1 seen		
	15 + their 1.5(0) or 15 × 1.1 or 16.5(0) and 10 + their 1 or 10 × 1.1 or 11	M1dep	oe 27.5(0) implies M2
11 cont	their $16.5(0) \times 0.03$ or 0.495 and their 11×0.03 or 0.33 or their $16.5(0) \times 1.03$ or 16.995 and their 11×1.03 or 11.33	M1dep	oe 4 × their 16.5(0) + 2 × their 11 or their 66 + their 22 or 88
	their 0.495 × 4 + their 0.33 × 2 or 1.98 + 0.66 or 2.64 or their 16.995 × 4 or 67.98 and their 11.33 × 2 or 22.66	M1dep	oe 0.03 × their 88 or 2.64 or their 88 × 1.03
	90.64(p)	A1	

Question	Answer	Mark	Comments
	Alternative method 3		
	4 x 15 or 60 or 2 x 10 or 20 or 80	M1	oe
11 cont	$\frac{10}{100}$ × their 80 or 8 or $\frac{13}{100}$ × their 80 or 10.4(0) or 1.13 and working for first M1 seen	M1dep	oe $ \frac{13}{100} \times \text{ their } 60 \text{ or } 7.8(0) $ or $\frac{13}{100} \times \text{ their } 20 \text{ or } 2.6(0)$
	their 80 + their 10.4(0) or 1.13 × 80 or 90.4(0) or 0.03 × their 8 or 0.24	M1dep	oe 60 + their 7.8(0) + 20 + their 2.6(0) or 67.8(0) + 22.6(0)
	their 80 + their 10.4(0) or 1.13 × 80 or 90.4(0) and 0.03 × their 8 or 0.24	M1dep	oe
	90.64(p)	A1	

Question	Answer	Mark	Comment	ts
	$\sqrt{64}$ or 8 or 64 = 8 × 8	M1	Implied by a diameter or si stated or shown on the dia 4 stated or used or shown	gram, or radius of
	$\pi \times (\text{their } 8 \div 2)^2$ or $\pi \times 4^2$ or $\pi 4^2$ or [50.24, 50.272]	M1dep	oe Allow [3.14, 3.142] for π	
12	16π	A1	Condone $16 \times \pi$ or $\pi \times 16$	3 or π16
	Ad	lditional	Guidance	
	64 – 16π			M1M1A0
	Beware of incorrect methods which lead to the correct answer eg $r = 8$, $2 \times \pi \times 8 = 16\pi$ $\sqrt{64} = 8$, $8^2 = 16$, 16π			M0M0A0 M1M0A0
	6.005 2(00) × 10 ⁶	B2	B1 for their 6 005 200 writt correctly converted to stan or no number written normally 6.() × 10 ⁶	dard form
	Ad	lditional	Guidance	
13	(6 500 200 and) 6.500 2(00) × 10 ⁶			B1
	65 200 and 6.52 × 10 ⁴	65 200 and 6.52 × 10 ⁴		
	$10^6 \times 6.005 \ 2(00)$			B2
	Correct value of 6 005 200 with no conversion to standard form			В0
	6 × 10 ⁶ with no number written normally			B1
14	x < -2 or -2 > x B1			
15	3	B1		

Question	Answer	Mark	Commen	ts
	$\frac{2}{5}$ Even and $\frac{3}{5}$ Odd	B1	oe fractions, decimals or p	ercentages
	Two branches from Even labelled Red $\frac{5}{6}$ Green $\frac{1}{6}$	B1	oe fractions, decimals or p Branches from Odd is B0 Allow equivalent labelling eg R and G Green and Not Green	ercentages
	Ad	lditional	Guidance	
16(a)	In decimals, allow for $\frac{5}{6}$ and $\frac{1}{6}$ 0.83 and 0.17 or 0.833 and 0.167 or or better truncation or rounding (sum of the large			
	Ignore any attempts to combine probat	ollities to t	the right of the tree diagram	
	their $\frac{2}{5}$ × their $\frac{1}{6}$	M1	their P(Even) × their P(Great ft from (a) if 0 < both probability	•
	$\frac{2}{30}$ or $\frac{1}{15}$	A1ft	oe fraction or decimal ft from (a) if 0 < both proba	abilities < 1
	Ad			
16(b)	Allow 0.06 or 6% or better truncation or rounding or 0.07 or 7% for $\frac{2}{30}$			
	If the dice branches are not labelled th			
	If (a) has no attempt or an incorrect answer full marks can still be gained here for correct working (and answer)			
	Ignore further attempts to simplify or coafter a correct fraction is seen	onvert to	a decimal or percentage	
	eg $\frac{2}{30} = \frac{1}{10}$ or $\frac{4}{60} = 0.165$			M1A1

Question	Answer	Mark	Comments
	Alternative method 1		
17(a)	Alternative method 1 $\frac{-95}{4-2}$ or $\frac{-59}{2-4}$ or $(2,-5)-(4,-9)=(-2,4)$ or $(4,-9)-(2,-5)=(2,-4)$ or $\frac{\text{change in }y}{\text{change in }x}$ or $\frac{\Delta y}{\Delta x}$ or triangle drawn with points A and B and side lengths of 4 and (-)2 identified or correct explanation of pattern of graph and $\frac{-4}{2}=-2 \text{ or } \frac{4}{-2}=-2$	B2	oe fraction eg $\frac{-9+5}{4-2}$ or $\frac{-5+9}{2-4}$ B1 for $\frac{-95}{4-2}$ or $\frac{-59}{2-4}$ or $(2,-5)-(4,-9)=(-2,4)$ or $(4,-9)-(2,-5)=(2,-4)$ or change in $\frac{y}{\Delta x}$ or triangle drawn with points A and B and side lengths of 4 and $(-1)^2$ identified or correct explanation of pattern of graph or $\frac{-4}{2}=-2$ or $\frac{4}{-2}=-2$

Question	Answer	Mark	Comment	ts
	Alternative method 2			
	Gives $y = -2x + c$ and substitutes (2, -5) or $(4, -9)$ to find $c = -1ory5 = -2(x - 2)$ or $y + 5 = -2(x - 2)ory9 = -2(x - 4)$ or $y + 9 = -2(x - 4)andgives y = -2x - 1andcorrectly substitutes and evaluateswith the other pair of coordinates to$	B2	B1 for $(2, -5)$ or $(4, -9)$ to find $c = 0$ or $y5 = -2(x - 2)$ or $y + 5$ or $y9 = -2(x - 4)$ or $y + 9$ or gives $y = -2x - 1$ and correctly substitutes and e or both pair(s) of coordinate	= -2(x - 2) $= -2(x - 4)$ valuates with one
47(0)	check Alternative method 3 $-5 = 2m + c$ and $-9 = 4m + c$		oe equations	
17(a) cont	and works out $m = -2$ using a correct algebraic method	B2	B1 for $-5 = 2m + c$ and -9	= 4 <i>m</i> + <i>c</i>
	Alternative method 4			
	-5 = -2(2) + c and $-9 = -2(4) + cand works out c = -1 for both$	B2	oe equations B1 for $-5 = -2(2) + c$ and	−9 = −2(4) + <i>c</i>
	Ad	lditional	Guidance	
	In alt 1, examples of correct explanation are: 2 left and 4 up 2 right and 4 down			
	In alt 1, points A and B can be identified on a diagram by their coordinates			
	In alt 2, accept rearrangements of $y = -2x - 1$ eg $2x + y = -1$			
	$\frac{-5-9}{2-4}$ or $\frac{-9-5}{4-2}$ (= -2 or = 2)			В0

Question	Answer	Mark	Commen	ts	
	Alternative method 1 – uses given point with one from (a) to show gradient = –2				
	$\frac{601 - 9}{-301 - 4}$ or $\frac{601 - 5}{-301 - 2}$	M1	oe eg $\frac{610}{-305}$ or $\frac{606}{-303}$		
	–2 and Yes	A1	Must see working for M1		
	Alternative method 2 – correct or no	equation	shown in (a)		
	Correct method to find $y = -2x - 1$	M1	May be seen in part (a)		
	y = -2x - 1 and shows that $601 = -2(-301) - 1$ and Yes	A1			
	Alternative method 3 – incorrect equa	ation show	vn in (a)		
	Substitutes –301 and 601 into their equation from (a)	M1	equation must involve x ar	nd y	
	Correct evaluation and No	A1ft			
17(b)	Alternative method 4 – have gained two marks in (a) by any method				
	uses $(2, -5)$ or $(4, -9)$ to work out $c = -1$	M1			
	601 = -2(-301) + c and $c = -1$ and Yes	A1			
	Alternative method 5 – have shown that $c = -1$ for both points in (a)				
	601 = -2(-301) + <i>c</i>	M1			
	601 = -2(-301) + c and $c = -1$ and Yes	A1			
	Additional Guidance				
	y = -2x - 1 given in (a) but not used in (b)			M0 for equation	
	Correct method in (a) to show that the gradient is –2, but followed by incorrect equation. Incorrect equation then used correctly in (b)			B2 in (a) M1A0 in (b)	

Question	Answer	Mark	Comments
	Alternative method 1 – price for 8 bot	tles	
18	Any two (including at least one combination) of Single shops Method to work out cost using one shop Shop A $3 \times 1 + 5 \times 0.5$ or 5.5 or $4 \times 1 + 4 \times 0.5$ or 6 or Shop B $4 \times 1 + 4 \times 0.5$ or 6 or $5 \times 1 + 3 \times 0.5$ or 6.5 or Shop C 8×0.7 or 5.6 Combinations Method to work out cost using two shops A and B $(1 + 2 \times 0.5) + (2 \times 1 + 3 \times 0.5)$ or 5.5 or B and C $(2 \times 1 + 3 \times 0.5) + (3 \times 0.7)$ or 5.6 or A and C $(2 \times 1 + 4 \times 0.5) + (2 \times 0.7)$ or 5.4 or $(1 \times 1 + 2 \times 0.5) + (5 \times 0.7)$ or 5.5	M2	oe Values may be in £ throughout M1 for any one single shop or combination
	6 bottles from A and 2 bottles from C with M2 awarded	A1	Condone 2 from A and 2 from C with M2 awarded SC2 6 bottles from A and 2 bottles from C with M1M0 awarded SC1 6 bottles from A and 2 bottles from C
			with M0M0 awarded

Question	Answer	Mark	omments	5	
	Alternative method 2 – best average	cost per b	pottle		
	A is $\frac{2}{3}$ or B is 0.7 or C is 0.7	M1	Accept 0.66 or 66(p) or berrounding or 0.67 or 67(p)	tter truncation or	
	A is $\frac{2}{3}$ and B is 0.7 and C is 0.7	M1			
18 cont	6 bottles from A and 2 bottles from C with M2 awarded	A1	Condone 2 from A and 2 from C with M2 awarded SC2 6 bottles from A and 2 bottles from C with M1M0 awarded SC1 6 bottles from A and 2 bottles from C with M0M0 awarded		
	Ad	lditional	Guidance		
	In both methods, if a price or variable is respective multiples of that price or varia		values would be the		
	For SC2, the M1 may have been awarded for the correct method or price for a different selection of 8 bottles or for the 6 from A and 2 from C				
	eg only working is 6 from A and 2 from	SC2			
	Calculations or total costs may not be la prices				
	An incorrect evaluation of the total cost of 6 from A and 2 from C leads to a maximum of M1M1A0				
	Ignore other incorrect evaluations which	do not af	fect the award of marks		

Question	Answer	Mark	Commen	ts
	(9) 25 45 53 60	B1	cumulative frequencies May be implied by points p (± 0.5 square)	olotted
	Points plotted with upper class boundaries and cf values (±0.5 square)	es and cf values B1ft Must be increasing and no		
	correct point for their points and		ft their cumulative frequence Must be increasing and no line	
19(a)	Ac			
	Graphs may start from their first plotted point or from (40, 0)			
	If they have plotted their points at mid- graph may start at (35, 0)	points, w	ith point at (45, 9), their	
	Graph starting at (0, 0), but otherwise	correct		B1B1B0
	Curve plotted at mid-points or lower class boundaries, but otherwise correct			B1B0B1
	Ignore the graph after $m = 90$			
	Bars drawn as well as correct graph			B1B1B0
	Bars drawn without the correct graph			max B1

Question	Answer	Mark	Commen	ts	
	Alternative method 1				
	60 – 0.2 × 60 or 60 × 0.8 or 48	M1	oe implied by horizontal li vertical axis	ne from 48 on	
	Correct reading from their increasing graph	A1ft	$\pm \frac{1}{2}$ square		
19(b)	Alternative method 2				
	$70 + \frac{3}{8} \times 10$	M1			
	[73, 75]	A1			
	Ac	lditional	Guidance		
	The correct answer is likely to be [73, 7	he correct answer is likely to be [73, 75] from a correct graph			
20	16	B1			
	Ticks No and gives valid reason		Examples of valid reasons		
	There is a different family reason.		translation (by $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$)		
		B1	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$ or $(6, 0)$		
			rotation (of 180°), (centre	(0, 2.5))	
			enlargement (of scale fact (about (0, 2.5))	or) –1	
21(a)	Additional Guidance				
()	Full descriptions are not needed, but if given must be correct For the enlargement, the scale factor of –1 must be given				
	Transformation (6, 0)			B1	
	Moved 6 to the right			B1	
	Moved 6 squares			В0	
	Condone 'turn' with full description of 180°, (centre) (0, 2.5)			B1	
	2 or more single transformations given, with at least 1 correct			B1	

Question	Answer	Mark	Commen	ts
	Enlargement, scale factor –2, centre (–1, 0)	В3	B2 Enlargement, scale factor enlargement centre (–1 or scale factor –2, centre (B1 (Triangle with) vertices and (3, –2) or enlargement or scale factor –2 or scale	, 0) -1, 0) s at (0, -1) (0, -3)
	'Scale factor' and 'centre' may be impli			
21(b)	'Scale factor' and 'centre' may be implied eg enlargement, -2, (-1, 0)			В3
	Allow '-1 on the <i>x</i> -axis' for (-1, 0)			
	No triangle on diagram, but vertices stated as coordinates and no other marks awarded		B1	
	A combination of transformations can striangle drawn or vertices identified	score a m	naximum of 1 mark for the	
	Correct triangle drawn and 'enlargeme	nt', with r	no other marks awarded	B1
	Enlargement, (scale factor) $-\frac{1}{2}$, centre (-1, 0)			B2
22	QS PT	B1		

Question	Answer	Mark	Comment	s	
23(a)	[6, 6.5]	B1			
	Alternative method 1				
	$\frac{1}{2}$ × (22 + 18) × (25 – 10)		oe		
	or	M1			
	$15 \times 18 + \frac{1}{2} \times 15 \times 4$				
23(b)	300	A1			
	Alternative method 2				
	20 × 15	M1			
	300	A1			
	Additional Guidance				
	Alternative method 2 uses average velocity x time				
	7		oe improper fraction		
	$\frac{7}{2}$	B1	eg $\frac{14}{4}$		
24(a)					
	Additional Guidance				
	Condone ± on numerator and/or denon	ninator			
	$(16 =) 2^4 \text{ or } (\sqrt[3]{16} =) 16^{\frac{1}{3}} \text{ or } \sqrt[4]{16} = 2$		oe		
	or $4^{\frac{2}{3}}$ or $2\sqrt[3]{2}$	M1			
	or 4 ³ or 2 ³ √2				
24(b)	$2^{\frac{4}{3}}$ or $2^{1\frac{1}{3}}$ or $2^{1.3}$	A1			
	Ad	ditional	Guidance		
	$\sqrt[3]{16} = 2^4$ not recovered			M0A0	

Question	Answer	Mark	Comments	
	Alternative method 1 – based on a fraction of the number of males			
	$\frac{1}{4} \times 2x$ (+) $\frac{3}{8} \times x$ or $\frac{7}{8}x$ where x is the number of males	M1	$\frac{1}{4} \times 2 \text{ (+) } \frac{3}{8} \text{ (x 1)}$ or $\frac{7}{8}$	
	$\frac{1}{4} \times 2x + \frac{3}{8} \times x = 84$ or $\frac{7}{8}x = 84$ or $7x = 672$	M1dep	oe $\frac{1}{4} \times 2 + \frac{3}{8} \times 1$ linked to 84 or $\frac{7}{8}$ linked to 84	
	$x = 84 \div \text{their } \frac{7}{8}$ or $x = 84 \times \text{their } \frac{8}{7}$ or $x = 96$	M1dep	oe dep on M1M1 $84 \div \text{their } \frac{7}{8} \text{ or } 84 \times \text{their } \frac{8}{7}$ or 96	
25	288	A1		
	Alternative method 2 - based on a fraction of the number of females			
	$\frac{1}{4} \times y$ (+) $\frac{3}{8} \times \frac{y}{2}$ or $\frac{7}{16} y$ where y is the number of females	M1	$\frac{1}{4}$ (x 1) (+) $\frac{3}{8}$ x $\frac{1}{2}$ or $\frac{7}{16}$	
	$\frac{1}{4} \times y + \frac{3}{8} \times \frac{y}{2} = 84$ or $\frac{7}{16}y = 84$ or $7y = 1344$	M1dep	oe $\frac{1}{4}(\times 1) + \frac{3}{8} \times \frac{1}{2} \text{ linked to 84}$ or $\frac{7}{16}$ linked to 84	
	$y = 84 \div \text{their } \frac{7}{16}$ or $y = 84 \times \text{their } \frac{16}{7}$ or $y = 192$	M1dep	oe dep on M1M1 84 ÷ their $\frac{7}{16}$ or 84 × their $\frac{16}{7}$ or 192	
	288	A1		

Question	Answer	Mark	Comments	
	Alternative method 3 – based on a fra	action of t	he total number of people	
	$\frac{1}{4} \times \frac{2}{3} \times z$ or $\frac{4z}{24}$ or $\frac{3}{8} \times \frac{1}{3} \times z$ or $\frac{3z}{24}$ where z is the number of people in the office	M1	oe $\frac{1}{4} \times \frac{2}{3} \text{ or } \frac{4}{24} \text{ or } \frac{3}{8} \times \frac{1}{3} \text{ or } \frac{3}{24}$	
	$\frac{1}{4} \times \frac{2}{3} \times z + \frac{3}{8} \times \frac{1}{3} \times z = 84$ or $\frac{7z}{24} = 84$	M1dep	oe $\frac{3}{8} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$ linked to 84 or $\frac{7}{24}$ linked to 84	
	$z = 84 \div \text{their } \frac{7}{24}$ or $z = 84 \times \text{their } \frac{24}{7}$	M1dep	oe dep on M1M1 $84 \div \text{their } \frac{7}{24} \text{ or } 84 \times \text{their } \frac{24}{7}$	
	or $7z = 2016$	0.4		
	Alternative method 4 – chooses numbers of females and males and factors up or down			
25 cont	Chooses numbers for females and males in the ratio 2:1 and works out the numbers of females and males wearing glasses (which should be in the ratio 4:3)	M1	eg 32 females and 16 males and $\frac{1}{4} \times 32$ (+) $\frac{3}{8} \times 16$ or 8 and 6 or 14	
	Works out multiplying factor by 84 ÷ their total number of people wearing glasses	M1dep	eg $84 \div (\frac{1}{4} \times 32 + \frac{3}{8} \times 16)$ or $84 \div 14 (= 6)$	
	Multiplies their total of females and males by their multiplying factor	M1dep	eg 32 × their 6 + 16 × their 6 or (32 + 16) × their 6	
	288	A1		
	Ad	lditional	Guidance	
	If more than one method is attempted: if an answer is given, mark the method leading to that answer if no answer is given, mark each method and award the best mark			

Question	Answer	Mark	Comment	s	
	Alternative method 1				
	$4x^2 + 6xy + 6xy + 9y^2$	M1	oe Allow one error Implied by $4x^2 + 12xy +$	or + $12xy + 9y^2$	
	$4x^2 + 6xy + 6xy + 9y^2$ or $4x^2 + 12xy + 9y^2$	A1	oe Fully correct		
	$4x^{3} + 6x^{2}y + 6x^{2}y + 9xy^{2}$ or $4x^{3} + 12x^{2}y + 9xy^{2}$ or $-16x^{2} - 24xy - 24xy - 36y^{2}$ or $-16x^{2} - 48xy - 36y^{2}$	M1dep	oe ft correct multiplication of the state of	on for first M1 has	
	The state of the s		ft M1A0M1 if their first expanded least 3 terms after simplification		
	Alternative method 2				
	$2x^2 + 3xy - 8x - 12y$	M1	oe Allow one error eg $2x^2 + 3xy - 8x + 12y$		
26	$2x^2 + 3xy - 8x - 12y$	A1	oe Fully correct		
	$4x^3 + 6x^2y - 16x^2 - 24xy$ or (+) $6x^2y + 9xy^2 - 24xy - 36y^2$	M1dep	oe ft correct multiplication of their expansion by $2x$ or by $3y$ if their expansion for first M1 has at least 3 terms after simplification		
	$4x^3 + 12x^2y + 9xy^2 - 16x^2 - 48xy - 36y^2$	A1ft	ft M1A0M1 if their first expanded least 3 terms after simplification		
	Ad	ditional	Guidance		
	Terms and variables may be in any ord	der for M	and A marks		
	For M1 A1 M1dep terms may be seen in a grid				
	$4x^3 - 16x^2 + 9xy^2 - 36y^2$ from $(x - 4)(4x^2 + 9x^2 + 36y^2)$	$x^2 + 9y^2$		M0A0M0A0	
	In alt 2, condone $(2x^2 + 3xy - 8x - 12y)^2$ for M1A1 only				
	One error can be one incorrect term or a missing or extra term				
	Do not ignore fw when awarding the final A mark				
	If $(x - 4)(2x + 3y)$ and $(2x + 3y)^2$ are both attempted and no answer is given, mark both and award the better mark				

Question	Answer	Mark	Comments	
	$\frac{4-0}{-1-0}$ or -4	M1	oe	
	$-1 \div \text{their} -4 \text{ or } \frac{1}{4}$	M1	oe their –4 must be their grad	ient of OP
	$y - 4 = \text{their } \frac{1}{4}(x1)$	M1dep	oe dep on second M1	
	$4 = \text{their } \frac{1}{4} (-1) + c$		oe $c = 4.25$	
27	$y = \frac{1}{4}x + \frac{17}{4}$ or $y = 0.25x + 4.25$	A1	oe eg $y = 0.25x + 4\frac{1}{4}$	
			Accept $y = \frac{x+17}{4}$	
	Ad	lditional	Guidance	
	An answer of $4y = x + 17$, with or without the correct answer seen			M1M1M1A0
	For A1, allow a mixture of fractions, decimals and mixed numbers			
	$y - y_1 = m(x - x_1)$ stated, followed by $y - 4 = \frac{1}{4}(x1)$ oe			M1M1M1

Question	Answer	Mark	Comments		
	Alternative method 1				
28	$\frac{1}{3}$ (x) π (x) 5^2 (x) 15 or 125π or $[392.5, 392.8]$	M1	ое		
	$\frac{r}{5} = \frac{15-9}{15}$ or $r = 2$	M1	oe r is radius of small cone		
	$\frac{1}{3} \times \pi \times \text{their } 2^2 \times (15 - 9) \text{ or } 8\pi$ or [25.12, 25.14]	M1dep	dep on 2nd M1		
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$		
	Alternative method 2				
	$\frac{1}{3}$ (x) π (x) 5^2 (x) 15 or 125π	M1	oe		
	or [392.5, 392.8]				
	volume sf = $\left(\frac{15 - 9}{15}\right)^3$ or $\frac{8}{125}$ or $\left(\frac{15}{15 - 9}\right)^3$ or $\frac{125}{8}$	M1	ое		
	(15-9) 8				
	their $125\pi \times \text{their } \frac{8}{125}$		dep on 2nd M1		
	or their $125\pi \div \text{their } \frac{125}{8}$	M1dep	Accept $1 - \frac{8}{125}$ or $\frac{117}{125}$		
	or 8π or [25.12, 25.14]				
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$		
	Ad				
	Allow [3.14, 3.142] for π for M marks only				
	Answer of 367.()			M1M1M1A0	

Question	Answer	Mark	Comments		
29	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ or $\tan 45 = 1 \text{ or } \frac{1}{1}$ or $\tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place in implied by multiplier of 2 or		
	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ and $\tan 45 = 1 \text{ or } \frac{1}{1}$ and $\tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place in expression or implied by multiplier of 2 or 4 $ \frac{2 \times \frac{1}{\sqrt{2}} - 1}{4 \times \frac{\sqrt{3}}{1}} $		
	$\frac{\sqrt{2}-1}{4\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$	M1	oe rationalisation of their denominator $ eg \frac{\frac{2}{\sqrt{2}} - 1}{4\sqrt{3}} \times \frac{4\sqrt{3}}{4\sqrt{3}} $		
	$\frac{\sqrt{6}-\sqrt{3}}{12}$	A1	oe in the form $\frac{\sqrt{6a^2} - \sqrt{3a^2}}{12a}$ positive integer eg $\frac{\sqrt{24} - \sqrt{12}}{24}$ (when $a = 2$		
	Additional Guidance				
	$\frac{2 \times \frac{1}{\sqrt{2}} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{\sqrt{48}}$			B1B1	
	$\frac{\sqrt{48}(\sqrt{2}-1)}{\sqrt{48}\sqrt{48}}$ or $\frac{\sqrt{48}(\sqrt{2}-1)}{48}$			B1B1M1	
	$\frac{\sqrt{96}-\sqrt{48}}{48}$			B1B1M1A1	
	B1B1 awarded, incorrect simplification, then correct method to rationalise			B1B1M1	