Limited independence and Hashing

Lecture 04 January 24, 2019

Pseudorandomness

Randomized algorithms rely on independent random bits

Psuedorandomness: when can we *avoid* or *limit* number of random bits?

- Motivated by fundamental theoretical questions and applications
- Applications: hashing, cryptography, streaming, simulations, derandomization, ...
- A large topic in TCS with many connections to mathematics.

This course: need t-wise independent variables and hashing

Part 1

t-wise independent random variables

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\Pr[X_1 = b_1, X_2 = b_2, \dots, X_n = b_n] = \prod_{i=1}^n \Pr[X_i = b_i].$$

Uniformly distributed if $Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\Pr[X_1 = b_1, X_2 = b_2, \dots, X_n = b_n] = \prod_{i=1}^n \Pr[X_i = b_i].$$

Uniformly distributed if $Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are **pairwise** independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$Pr[X_i = b, X_i = b'] = Pr[X_i = b] \cdot Pr[X_i = b'].$$

Chandra (UIUC) CS498ABD 4 Spring 2019

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are pairwise independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b'].$$

If X_1, X_2, \dots, X_n are independent than they are pairwise independent but converse is not necessarily true

Definition

Random variables X_1, X_2, \dots, X_n from a range B are pairwise independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b'].$$

If X_1, X_2, \ldots, X_n are independent than they are pairwise independent but converse is not necessarily true

Example: X_1, X_2 are independent bits (variables from $\{0, 1\}$) and $X_3 = X_1 \oplus X_2$. X_1, X_2, X_3 are pairwise independent but not independent.

Motivation for pairwise independence from streaming

Want n uniformly distr random variables X_1, X_2, \ldots, X_n , say bits But cannot store n bits because n is too large.

Achievable:

- storage of $O(\log n)$ random bits
- given i where $1 \le i \le n$ can generate X_i in $O(\log n)$ time
- X_1, X_2, \ldots, X_n are pairwise independent and uniform
- Hence, with small storage, can generate n random variables "on the fly". In several applications, pairwise independence (or generalizations) suffice

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- For any $S \subset \{1, 2, \dots, k\}$, $S \neq \emptyset$, define $X_S = \bigoplus_{i \in S} Y_i$
- $2^k 1$ random variables X_S

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- ullet For any $S\subset\{1,2,\ldots,k\}$, $S
 eq\emptyset$, define $X_S=\oplus_{i\in S}Y_i$
- $2^k 1$ random variables X_S

Claim: If $S \neq T$ then X_S and X_T are independent

Pairwise independent variables with larger range

Suppose we want n pairwise independent random variables in range $\{0,1,2,\ldots,m-1\}$

Pairwise independent variables with larger range

Suppose we want n pairwise independent random variables in range $\{0,1,2,\ldots,m-1\}$

- Now each X_i needs to be a $\log m$ bit string
- Use preceding construction for each bit independently
- Requires $O(\log m \log n)$ bits total
- Can in fact do $O(\log n + \log m)$ bits

Assume n = p and m - 1 = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0,1,2,\ldots,p-1\}$

Assume n = p and m - 1 = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0,1,2,\ldots,p-1\}$

- Choose $a,b \in \{0,1,2,\ldots,p-1\}$ uniformly and independently at random. Requires $2\lceil \log p \rceil$ random bits
- For $0 \le i \le p-1$ set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly

Chandra (UIUC) CS498ABD 9 Spring 2019 9 / 39

Assume n = p and m - 1 = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0,1,2,\ldots,p-1\}$

- Choose $a,b \in \{0,1,2,\ldots,p-1\}$ uniformly and independently at random. Requires $2\lceil \log p \rceil$ random bits
- For $0 \le i \le p-1$ set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly

Exercise: Prove that each X_i is uniformly distributed in \mathbb{Z}_p . Claim: For $i \neq j$, X_i and X_i are independent.

Claim: For $i \neq j$, X_i and X_j are independent.

Some math required:

• \mathbb{Z}_p is a field for any prime p. That is $\{0, 1, 2, \ldots, p-1\}$ forms a commutative group under addition mod p (easy). And more importantly $\{1, 2, \ldots, p-1\}$ forms a commutative group under multiplication.

Some math required...

Lemma (LemmaUnique)

Let **p** be a prime number,

x: an integer number in $\{1, \ldots, p-1\}$.

 \implies There exists a unique y s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse.

 $\implies \mathbb{Z}_p = \{0, 1, \dots, p-1\}$ when working modulo p is a field.

Proof of LemmaUnique

Claim

Let p be a prime number. For any $x, y, z \in \{1, ..., p-1\}$ s.t. $y \neq z$, we have that $xy \mod p \neq xz \mod p$.

Proof.

Assume for the sake of contradiction $xy \mod p = xz \mod p$. Then

$$x(y-z) = 0 \mod p$$

 $\implies p \text{ divides } x(y-z)$
 $\implies p \text{ divides } y-z$
 $\implies y-z=0$
 $\implies y=z.$

Proof of LemmaUnique

Lemma (LemmaUnique)

```
Let p be a prime number,

x: an integer number in \{1, \ldots, p-1\}.

\implies There exists a unique y s.t. xy = 1 \mod p.
```

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Proof of LemmaUnique

Lemma (LemmaUnique)

```
Let p be a prime number,

x: an integer number in \{1, \ldots, p-1\}.

\implies There exists a unique y s.t. xy = 1 \mod p.
```

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

```
Existence. For any x \in \{1, \ldots, p-1\} we have that \{x*1 \mod p, x*2 \mod p, \ldots, x*(p-1) \mod p\} = \{1, 2, \ldots, p-1\}. \implies There exists a number y \in \{1, \ldots, p-1\} such that xy = 1 \mod p.
```

Proof of pairwise independence

Lemma

If $x \neq y$ then for each

$$(r,s) \in \mathbb{Z}_p \times \mathbb{Z}_p$$
 there is exactly **one** pair $(a,b) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $ax + b \mod p = r$ and $ay + b \mod p = s$

Proof.

Solve the two equations:

$$ax + b = r \mod p$$
 and $ay + b = s \mod p$

We get
$$a = \frac{r-s}{x-y} \mod p$$
 and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s)

Proof of pairwise independence

Lemma

If $x \neq y$ then for each

$$(r,s) \in \mathbb{Z}_p \times \mathbb{Z}_p$$
 there is exactly **one** pair $(a,b) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $ax + b \mod p = r$ and $ay + b \mod p = s$

Proof.

Solve the two equations:

$$ax + b = r \mod p$$
 and $ay + b = s \mod p$

We get
$$a = \frac{r-s}{x-y} \mod p$$
 and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s) \Rightarrow if (a, b) is uniformly at random from \mathbb{Z}_p then (r, s) is uniformly at random from \mathbb{Z}_p

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose $X = X_1 + X_2 + \ldots + X_n$. If X_1, X_2, \ldots, X_n are independent then $Var(X) = \sum_i Var(X_i)$. Recall application to random walk on line

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - \mathbf{E}[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - \mathbf{E}[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose $X = X_1 + X_2 + ... + X_n$. If $X_1, X_2, ..., X_n$ are independent then $Var(X) = \sum_i Var(X_i)$. Recall application to random walk on line

Lemma

Suppose $X = \sum_{i} X_{i}$ and $X_{1}, X_{2}, \dots, X_{n}$ are pairwise independent, then $Var(X) = \sum_{i} Var(X_{i})$.

Chandra (UIUC) CS498ABD 15 Spring 2019 15 / 39

Pairwise independence for arbitrary n and m

A rough sketch.

If n < m we can use a prime $p \in [m, 2m]$ (one always exists) and use the previous construction based on \mathbb{Z}_p .

n > m is the more difficult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem

Every finite field \mathbb{F} has order p^k for some prime p and some integer $k \geq 1$. For every prime p and integer $k \geq 1$ there is a finite field \mathbb{F} of order p^k and is unique up to isomorphism.

We will assume n and m are powers of n. From above can assume we have a field n of size n = n.

Pairwise independence for arbitrary n and m

We will assume n and m are powers of n. We have a field n of size $n = 2^k$.

Generate n pairwise independent random variables from [n] to [n] by picking random $a,b\in\mathbb{F}$ and setting $X_i=ai+b$ (operations in \mathbb{F}). From previous proof (we only used that \mathbb{Z}_p is a field) X_i are pairwise independent.

Now $X_i \in [n]$. Truncate X_i to [m] by dropping the most significant $\log n - \log m$ bits. Resulting variables are still pairwise independent (both n, m being powers of 2 useful here).

Skipping details on computational aspects of ${\mathbb F}$ which are closely tied to the proof of the theorem on fields.

t-wise indepdendence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

t-wise indepdendence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

Fact: For any n, m one can create n random t-wise independent random variables from the range [m] using $O(t(\log n + \log m))$ true random bits. Can store only bits and generate the variables on the fly in $O(t\operatorname{polylog}(m+n))$ time.

t-wise indepdendence

Construction using polynomials

- Let F be a field
- Pick t random (with replacement) numbers from \mathbb{F} : a_0, a_1, \dots, a_{t-1}
- ullet For each $i \in [|\mathbb{F}|]$ set $X_i = a_0 + a_1 i + a_2 i^2 + \ldots + a_{t-1} i^{t-1}$

Part II

Hashing

Balls and Bins and Load Balancing

Suppose we want to distribute jobs to machines in a simple way to achieve load balancing.

Throwing each new job into a random machine is a simple, distributed, oblivious strategy with many benefits

Balls and bins is simple mathematical model to analyze the core principles

Balls and Bins \rightarrow Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct $x_1, x_2, \ldots, x_n \in \mathcal{U}$ we have $h(x_1), h(x_2), \ldots, h(x_n)$ to be uniformly distributed over B and independent.
- But want h to be efficiently computable and stored in small memory

Balls and Bins \rightarrow Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct $x_1, x_2, \ldots, x_n \in \mathcal{U}$ we have $h(x_1), h(x_2), \ldots, h(x_n)$ to be uniformly distributed over B and independent.
- But want h to be efficiently computable and stored in small memory

Many applications: hash tables as dictionary data structure, cryptography/security, pseudorandomness, ...

Dictionary Data Structure

- $oldsymbol{0}$ $oldsymbol{\mathcal{U}}$: universe of keys with total order: numbers, strings, etc.
- ② Data structure to store a subset $S \subseteq \mathcal{U}$
- Operations:
 - **o** Search/look up: given $x \in \mathcal{U}$ is $x \in S$?
 - **2** Insert: given $x \notin S$ add x to S.
 - **3 Delete**: given $x \in S$ delete x from S
- Static structure: S given in advance or changes very infrequently, main operations are lookups.
- Dynamic structure: S changes rapidly so inserts and deletes as important as lookups.

Can we do everything in O(1) time?

Hashing and Hash Tables

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- $oldsymbol{0}$ A hash function $h: \mathcal{U} \rightarrow \{0, \dots, m-1\}$.
- 1 Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Hashing and Hash Tables

Hash Table data structure:

- **1** A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- 1 Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Hashing and Hash Tables

Hash Table data structure:

- **1** A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- 1 Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- **9** Each element $x \in S$ hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

Hashing and Hash Tables

Hash Table data structure:

- **1** A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- 1 Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

Collisions unavoidable if $|T| < |\mathcal{U}|$. Several techniques to handle them.

Handling Collisions: Chaining

Collision: h(x) = h(y) for some $x \neq y$.

Chaining/Open hashing to handle collisions:

- For each slot i store all items hashed to slot i in a linked list.
 T[i] points to the linked list
- **2** Lookup: to find if $y \in \mathcal{U}$ is in T, check the linked list at T[h(y)]. Time proportion to size of linked list.

Chain length determines time for operations. Ideally want O(1).

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i.

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h!

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h! Such a bad set may lead to O(m) lookup time!

Chandra (UIUC) CS498ABD 26 Spring 2019 26 / 39

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h! Such a bad set may lead to O(m) lookup time!

In practice:

- Dictionary applications: choose a simple hash function and hope that worst-case bad sets do not arise
- Crypto applications: create "hard" and "complex" function very carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 26 Spring 2019 26 / 39

Hashing from a theoretical point of view

- ullet Consider a family ${\cal H}$ of hash functions with good properties and choose ${\it h}$ randomly from ${\cal H}$
- Guarantees: small # collisions in expectation for any given S.
- \mathcal{H} should allow efficient sampling.
- Each $h \in \mathcal{H}$ should be efficient to evaluate and require small memory to store.

In other worse a hash function is a "pseudorandom" function

Strongly Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

Strongly Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

Quantiform: Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.

Strongly Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

- **1 Uniform:** Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- **2** (2)-Strongly Universal: Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then h(x) and h(y) should be independent random variables. smaller).

Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

- **1 Uniform:** Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- **2 (2)-Universal:** Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).

(Strongly) Universal Hashing

Definition

A family of hash function \mathcal{H} is (2-)strongly universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] = 1/m$ where m is the table size.

Definition

A family of hash function \mathcal{H} is (2-)universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] = 1/m$ where m is the table size.

(Strongly) Universal Hashing

Definition

A family of hash function \mathcal{H} is (2-)strongly universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] = 1/m$ where m is the table size.

Definition

A family of hash function \mathcal{H} is (2-)universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] = 1/m$ where m is the table size.

Generalizes to t-strongly universal and t-universal families. Need property for any tuple of t items.

Question: Fixing set S, what is the *expected* time to look up $x \in S$ when h is picked uniformly at random from \mathcal{H} ?

- **1** $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- ② For $y \in S$ let D_y be one if h(y) = h(x), else zero. $\ell(x) = \sum_{y \in S} D_y$

Question: Fixing set S, what is the *expected* time to look up $x \in S$ when h is picked uniformly at random from \mathcal{H} ?

- **1** $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- ② For $y \in S$ let D_y be one if h(y) = h(x), else zero. $\ell(x) = \sum_{y \in S} D_y$

$$E[\ell(x)] = \sum_{y \in S} E[D_y] = \sum_{y \in S} Pr[h(x) = h(y)]$$

$$= \sum_{y \in S} \frac{1}{m} \quad \text{(since } \mathcal{H} \text{ is a universal hash family)}$$

$$= |S|/m \le 1 \quad \text{if } |S| \le m$$

Question: What is the *expected* time to look up **x** in **T** using **h** assuming chaining used to resolve collisions?

Answer: O(n/m).

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

- ② Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- **Worst-case**: look up time can be large! How large? In principle $\Omega(n)$ time but if \mathcal{H} has good properties then $O(\sqrt{n})$ or $O(\log n/\log\log n)$ with high probability.

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

 $\mathcal{H}:$ Set of all possible functions $h:\mathcal{U} o \{0,\ldots,m-1\}.$

• Universal.

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

 $\mathcal{H}:$ Set of all possible functions $h:\mathcal{U} \to \{0,\ldots,m-1\}$.

- Universal.
- $\bullet |\mathcal{H}| = m^{|\mathcal{U}|}$
- representing h requires $|\mathcal{U}| \log m$ Not O(1)!

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

 $\mathcal{H}:$ Set of all possible functions $h:\mathcal{U} \to \{0,\ldots,m-1\}$.

- Universal.
- $\bullet |\mathcal{H}| = m^{|\mathcal{U}|}$
- representing h requires $|\mathcal{U}| \log m$ Not O(1)!

We need compactly representable universal family.

Compact Stongly Universal Hash Family

Similar to construction of N pairwise independent random variables with range [m].

The function is given by the algorithm to construct X_i given i.

Can do with $O(\log N)$ bits of storage since $N \ge m$ in hashing application.

Compact Universal Hash Family

Parameters: $N = |\mathcal{U}|, m = |T|, n = |S|$

- ① Choose a prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- **3** Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Compact Universal Hash Family

Parameters: $N = |\mathcal{U}|, m = |T|, n = |S|$

- Choose a **prime** number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- **3** Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

H is a universal hash family.

Compact Universal Hash Family

Parameters: $N = |\mathcal{U}|, m = |T|, n = |S|$

- ① Choose a **prime** number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- **3** Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

H is a universal hash family.

Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and evaluate it.

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- ② To lookup y in dictionary check contents of location h(y)

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- **②** To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with non-uniform sizes.
- ② To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- **1** To lookup y if bit in location h(y) is 1 say yes, else no.

Bloom Filter: tradeoff space for false positives

- ① To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- ② To lookup y if bit in location h(y) is 1 say yes, else no
- No false negatives but false positives possible due to collisions

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- ② To insert x for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1
- **3** To lookup y compute $h_i(y)$ for $1 \le i \le k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is α^k .

Take away points

- Hashing is a powerful and important technique for dictionaries.
 Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.

Practical Issues

Hashing used typically for integers, vectors, strings etc.

- Universal hashing is defined for integers. To implement for other objects need to map objects in some fashion to integers (via representation)
- Practical methods for various important cases such as vectors, strings are studied extensively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.
- Details on Cuckoo hashing and its advantage over chaining http://en.wikipedia.org/wiki/Cuckoo_hashing.
- Recent important paper bridging theory and practice of hashing.
 "The power of simple tabulation hashing" by Mikkel Thorup and Mihai Patrascu, 2011. See
 http://en.wikipedia.org/wiki/Tabulation_hashing

Chandra (UIUC) CS498ABD 39 Spring 2019 39 / 39