(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 17 February 2005 (17.02.2005)

PCT

(10) International Publication Number WO 2005/014854 A1

C12Q 1/68 (51) International Patent Classification⁷:

(21) International Application Number:

PCT/EP2004/008819

(22) International Filing Date: 6 August 2004 (06.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/494,221

8 August 2003 (08.08.2003) US

(71) Applicant (for all designated States except US): LICEN-TIA, LTD. [FI/FI]; Erottajankatu 19 B, 6th Floor, FIN-00130 Helsinki (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALITALO, Kari [FI/FI]; Molecular Cancer Biology Laboratory Biomedicum, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, FIN-00014Helsinki (FI). PETROVA, Tatiana [RU/FI]; Molecular/Cancer Biology Laboratory Biomedicum Biomedicum, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, FIN-00014 (FI). NYKANEN, Antti [FI/FI]; Molecular/Cancer Biology Laboratory Biomedicum, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, FIN-00014 Helsinki (FI).

(74) Agent: FYLES, Julie, M.; Wynne-Jones Laine & James, 22, Rodney Road, Cheltenham, Gloucestershire GL50 1JJ (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Continued on next page]

(54) Title: MATERIALS AND METHODS FOR COLORECTAL CANCER SCREENING, DIAGNOSIS, AND THERAPY

cancer screening, diagnosis, and therapy.

(57) Abstract: The invention provides materials and methods for colorectal

WO 2005/014854 A1

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PII, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

25

30

WO 2005/014854 PCT/EP2004/008819

MATERIALS AND METHODS FOR COLORECTAL CANCER SCREENING, DIAGNOSIS, AND THERAPY

FIELD OF THE INVENTION

The present invention relates generally to methods and materials for altering colorectal cancer progression. The present invention also relates to techniques for screening for colon cancer and/or premalignancies.

BACKGROUND

10 The transcription factor Prox-1 is expressed in a number of tissues during embryonic development, including lens fiber cells, subpopulation of neurons in brains and neural tube, skeletal muscle, heart, liver, pancreas and lymphatic endothelial cells. Targeted inactivation of Prox-1 results in the defects of eye development because of the failure of lens fiber cells to elongate (Wigle et al., Nat. Genet. 21: 318-22, 1999). Prox-1 is also necessary for the migration of hepatocytes during liver development (Sosa-Pineda et al., Nat. Genet. 25: 254-5, 2000). In addition, Prox-1 deficient embryos lack lymphatic vasculature, while the blood vessel development is not affected (Wigle et al., Cell 98: 769-778, 1999).

Recently, others and we have demonstrated the essential role of Prox-1 in the regulation of the lymphatic endothelial phenotype. Overexpression of Prox-1 in blood vascular endothelial cells, where it is otherwise absent, leads to the increased expression of lymphatic endothelial markers and to the suppression of the genes characteristic for the blood vascular endothelial lineage (Petrova et al., Embo J. 21: 4593-9, 2002; Hong et al., Dev. Dyn. 225: 351-7, 2002).

Notch is a transmembrane protein that acts as a receptor in a cell-cell signaling mechanism, and in combination with other cellular factors, influences differentiation, proliferation and apoptotic events at all stages of development (Artavanis-Tsakonas, Science 284: 770-776, 1999). In animal models, mutations in the Notch receptor have resulted in developmental abnormalities (Joutel et al., Nature 383: 707, 1996; Li. et al., Nature Genet. 16:243, 1997).

5

10

20

25

30

Cancer treatments generally promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Colon cancers are a very common malignancy and colon cancers are typically adenocarcinomas, or sometimes carcinoid tumors. Treatment is primarily surgical resection of the colon, although chemotherapy has been found to be beneficial in some cases. These treatment options for colon cancer are of unpredictable and sometimes limited value, especially if the cancer has not been identified and removed at early stages. There continues to exist a need for novel therapies and diagnostic methods for cancer conditions.

SUMMARY OF THE INVENTION

The present invention addresses one or more ongoing needs by providing materials and methods for screening for and treating cancerous and precancerous conditions, especially colorectal in nature.

As one aspect, the invention provides materials and methods to screen a mammalian subject for a cancerous or precancerous condition based on analysis of Prox-1 expression in cells from the mammalian subject. In particular, materials and methods are provided for screening colon tissue for signs of cancerous or precancerous pathology.

For example, the method includes a method of screening colon tissue for a pathological condition, said method comprising:

measuring Prox-1 expression in a biological sample that comprises colon tissue from a mammalian subject, wherein elevated Prox-1 expression in the colon tissue correlates with a pathological phenotype. The determination of elevated Prox-1 expression is generally made by way of a comparison, e.g., to a measurement of Prox-1 expression in healthy colon tissue (from the same subject or others of the same species, preferably matched for sex, age, race, or other characteristics); or to a measurement of Prox-1 expression in diseased (especially neoplastic) colon tissue. When comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, an increased (e.g., elevated) Prox-1 expression in the colon tissue

5

10

15

20

25

30

from the mammalian subject correlates with a pathological phenotype. When comparing to diseased tissue, comparable levels of expression in the tissue from the subject correlates with a pathological phenotype.

In another, related example, the invention includes a method of screening colon tissue for a pathological condition, the method comprising steps of:

(a) obtaining a biological sample comprising colon tissue from a mammalian subject;

(b) measuring Prox-1 expression in the colon tissue; and (c) screening for the presence or absence of a pathological condition from the measurement of Prox-1 in the sample.

Similarly, the invention includes a method of screening colon tissue for a pathological condition, the method comprising steps of: (a) obtaining a biological sample comprising colon tissue from a mammalian subject; (b) measuring Prox-1 expression in the colon tissue; and (c) comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, wherein increased Prox-1 expression in the colon tissue correlates with a pathological phenotype.

For this type of method, the term "pathological condition" is intended to include any abnormality or evidence of disease that warrants medical treatment or monitoring due to concern of developing disease. Cancers and precancerous changes in tissue are particularly contemplated. Thus, in preferred embodiments, the method can be characterized as a screen for colon cancer or colorectal cancers, and increased Prox-1 expression in the colon tissue is scored as being indicative of a cancerous or precancerous condition.

The method can be combined with any other molecular, cellular, pathological, or patient symptom criteria to assist a medical practitioner in early diagnosis and therapeutic or prophylactic therapy. For example, in one variation, the method further comprises measuring expression of at least one gene or protein selected from the group consisting of CD44, Enc1, and ID2 in the colon tissue, wherein elevated Prox-1 expression and elevated expression of the at least one gene/protein in the colon tissue correlate with a pathological phenotype. In another variation, the method further comprising measuring activation of -catenin/TCF pathway in the colon tissue, wherein activation of the -catenin/TCF pathway and

20

WO 2005/014854 PCT/EP2004/008819

elevated Prox-1 expression in the colon tissue correlate with a pathological phenotype. Activation of the -catenin/TCF pathway can be measured by a variety of indicators, including mutations in an APC gene; mutations in a -catenin gene; and nuclear localization of -catenin.

-4-

The biological sample is any tissue or fluid sample obtained in any way from a mammalian subject that includes cells from the large intestine. Biopsies or other surgically removed specimens are preferred. Stool or feces may contain sufficient colon tissue for some embodiments of the assay.

The assay may be performed on any mammalian subject, including

laboratory animals used in cancer research, livestock, and domestic pets. Humans are most preferred.

Any available technique can be used for measuring Prox-1 expression, including direct and indirect techniques. For example, in one variation, the measuring comprises measuring Prox-1 protein in the biological sample. Preferred techniques for measuring amounts or concentrations of Prox-1 protein in a sample are immunological techniques that involve use of a polyclonal or monoclonal antibody that specifically binds Prox-1, or use of a Prox-1-binding fragment of such an antibody. For example, the measuring comprises contacting the colon tissue with a Prox-1 antibody or antigen-binding fragment thereof. Quantification of the amount of bound antibody (e.g., using a label or second, labeled antibody) provides a measurement of Prox-1 protein expressed in the sample. Immunoassays such as radioimmunoassay, immunoradiometric assay (labeled antibody), or an enzymelinked immunosorbent assay (ELISA) are contemplated.

In another variation, the measuring comprises measuring Prox-1

25 mRNA in the colon tissue. Elevated levels of Prox-1 mRNA in the sample are scored as elevated Prox-1 expression. Any available assay for measuring specific oligonucleotides is suitable. Preferred materials for such measurements are oligonucleotide probes complementary to all or a portion of the Prox-1 mRNA sequence. Probes of at least 14 and more preferably 18 nucleotides are preferred to assure specificity. One technique for measuring Prox-1 mRNA comprises in situ hybridization to measure Prox-1 mRNA in the colon sample. Other techniques

5

10

15

20

25

30

- 5 -

involve steps of isolating mRNA from the colon tissue and measuring Prox-1 mRNA in the isolated mRNA, for example, by Northern hybridization procedures. In still another variation, quantitative reverse transcriptase polymerase chain reaction (PCR), real-time PCR, or other PCR techniques are employed to quantitatively amplify Prox-1 mRNA (relative to control samples) to provide a quantitative measurement of Prox-1 mRNA in the colon tissue.

In yet another embodiment, Prox-1 expression is measured indirectly by measuring a functional property of Prox-1, such as measuring Prox-1 binding to DNA or downstream Prox-1 transcription factor effects.

Prox-1 expression in the colon tissue is compared to Prox-1 expression in healthy colon tissue, wherein increased Prox-1 expression in the colon tissue correlates with a pathological phenotype. As described herein, Prox-1 expression is elevated in a statistically significant manner in pathological specimens studied, compared to healthy colon tissue samples. In one variation, the comparison is performed by taking simultaneous or sequential measurements of a test sample and a sample of colon tissue that is known to be taken from healthy tissue. In another variation, data is accumulated on the quantity of Prox-1 mRNA or protein in healthy tissues, and the amount that is measured in the colon tissue from the biological sample is compared to this predetermined amount. It will be appreciated that comparing Prox-1 measurements from a test sample to measurements from a cancerous or precancerous condition can provide an equivalent indication of the presence or absence of the pathological condition, wherein a test sample with Prox-1 expression comparable to the elevated level observed in a cancer correlates with a pathological phenotype.

For measurement comparisons, a database of Prox-1 measurements from colon tissues can be developed, preferably containing information about healthiness or disease of the tissue; age, sex, race/ethnicity of the donor, and location from which the sample was taken. With a database of samples, comparisons can be analyzed using statistical analysis to determine the statistical significance of a measurement's deviation from a mean, optionally selecting entries from the database by selecting for the patient's age, sex, ethnicity, and other factors to best match the patient (mammalian subject) being tested. Such statistical analysis permits

5

10

15

20

25

30

PCT/EP2004/008819

establishment of one or more "cutoff" values for the Prox-1 measurement that are correlated with a likelihood of having, or developing, a cancerous condition.

- 6 -

If elevated Prox-1 is detected, then in a preferred embodiment, the method further comprises a step of administering to a human subject identified as having a pathological condition characterized by increased Prox-1 expression in colon tissue a composition comprising a Prox-1 inhibitor.

In a related embodiment, the invention provides a method of inhibiting the growth of colon cancer cells, such as colon carcinoma cells, colon adenoma cells, or colon adenocarcinoma cells in a mammalian subject comprising a step of:

administering to the subject a composition comprising a molecule that suppresses expression of Prox-1, thereby inhibiting the growth of colon carcinoma cells.

For reasons of cost, safety, and efficacy, it is becoming increasingly preferred to attempt to identify patients most likely to benefit from a therapeutic regimen before administering it. This is especially true with cancers where it is known that not all patients respond the same to all therapies. Thus, in a preferred variation of the method, steps are taken to identify patients most likely to benefit from this regimen. For example, the method further comprises a step of identifying a mammalian subject with a colon cancer characterized by increased Prox-1 expression. The composition is administered to such a patient after the identifying step, because cancers characterized by the elevated expression are expected to be the cancers most likely to respond to the inhibitors. Exemplary cancers (neoplasms) in which Prox-1 elevation has been observed include colorectal adenomas and colorectal carcinomas, as described below in greater detail.

The composition to be administered preferably includes, in addition to the Prox-1 inhibitor, a pharmaceutically acceptable diluent, adjuvant, or carrier medium. The composition optionally includes additional antineoplastic agents.

Administration of any Prox-1 inhibitors, alone or in combination, is contemplated for this invention, either alone or in combination with other Prox-1 inhibitors or other antineoplastic agents. Exemplary inhibitor molecules include antisense oligonucleotides that inhibit Prox-1 expression; micro-RNA that inhibits

15

20

25

30

Prox-1 expression; small (short) interfering RNA (siRNA) that inhibit Prox-1 expression (e.g., siRNA that comprise at least one nucleotide sequence set forth in SEQ ID NOS: 4, 5, 6, and 7); zinc finger proteins that inhibit Prox-1 expression; polypeptides that act as dominant negative form of Prox-1 protein, such as Prox-1 forms that have a disrupted DNA binding domain or transactivation domain(s); polynucleotides that encode dominant-negative Prox-1 proteins; Prox-1 antibodies and fragments thereof; polynucleotides that encode Prox-1 antibodies or encode polypeptides that comprise Prox-1 binding domains; small molecules discovered and designed through screening based on the teachings herein, and so on. U.S. Patent Application Publication No. 2003/0224516 discloses exemplary molecules for inhibiting Prox-1 expression and is incorporated herein by reference.

The inhibitor is preferably administered in an amount and in a regimen that halts or inhibits neoplastic growth of the affected colorectal tissue. As another benchmark, the tissue itself preferably reverts to a non-transformed, more healthy looking phenotype. As described herein, one apparent benchmark of beneficial administration is an increase in Notch-1 signaling. Thus, in one variation, the composition is administered in an amount effective to suppress Prox-1 expression and increase Notch 1 signaling.

Other indications of efficacy relate to modulation of prostaglandin synthesis. Thus, in another variation, the composition is administered in an amount effective to increase 15-PDGH activity or decrease prostaglandin D2 synthase activity.

As described herein and in literature, colorectal cancers also are often characterized by increases in the -catenin/TCF signaling pathway, relative to what is observable in healthy colorectal tissue. Thus, in a preferred variation, in addition to administering a Prox-1 inhibitor composition, the regimen further comprises administering to the subject an inhibitor of the -catenin/TCF signaling pathway. (Optionally, the patient's diseased tissue is first pre-screened for elevated expression/signaling of this pathway.) The categories of inhibitors described above for Prox-1 are specifically contemplated for the -catenin/TCF pathway as well. In one variation, the inhibitor of the -catenin/TCF signaling pathway is dominant

5

20

25

30

PCT/EP2004/008819

- 8 -

negative form of TCF-4. The inhibitor optionally targets (inhibits) TCF-4, β-catenin, or c-myc expression or activity.

In yet another variation, administration of the Prox-1 inhibitor is combined with administration of a COX-2 inhibitor, such as any of the increasing class of non-steroidal anti-inflammatory agents.

In still another variation, administration of the Prox-1 inhibitor is combined with administration of a Notch signaling pathway agonist, such as a Notch ligand or expression vector to cause expression of a Notch ligand. Exemplary Notch ligands include Jagged1, Jagged2, Delta1, Delta3, Delta4, or Serrate.

Also contemplated is administration of a molecule that comprises an inhibitor of DNA methyltransferases. Such inhibitors are themselves contemplated as efficacious for inhibiting Prox-1 expression, and can be combined with any other Prox-1 inhibitor described herein for combination therapy. An exemplary methyltransferase inhibitor is 5-aza-2'-deoxycytidine.

In still another variation, the Prox-1 inhibitor composition is administered in combination with any known antineoplastic agent that is used in cancer therapy.

In still another variation, the Prox-1 inhibitor and/or Cox-2 inhibitor are combined (in a medicament or as a combination therapy) with an agent that induces differentiation in colorectal cancer cell lines. Exemplary agents include 1,25-dihydroxyvitamin D3 and analogs thereof; butyrate; and retinoids.

With respect to any combination treatment or therapy regimens described herein, the Prox-1 inhibitor composition can be administered simultaneously with the other active agents, which may be in admixture with the Prox-1 inhibitor, or may be in a separate composition. Each composition preferably includes a pharmaceutically acceptable diluent, adjuvant, or carrier. When the agents are separately administered, they may be administered in any order.

In still another embodiment, the invention includes a method of inhibiting Prox-1 function in a mammalian subject having a disease characterized by of Prox-1 over-expression in cells, comprising the step of administering to said

15

20

25

30

- 9 -

mammalian subject a composition, said composition comprising a compound effective to inhibit Prox-1 function in cells.

In still another variation, the invention includes the use of a Prox-1 inhibitor in the manufacture of a medicament for the treatment of a disease 5 characterized by Prox-1 over-expression in cells, especially cancerous or precancerous cells of colorectal origin. The medicament optionally includes the additional agents described above, either in admixture with the Prox-1 inhibitor or separated, yet packaged together (preferably with instructions for treating the disease).

In yet another embodiment, the invention provides a method of 10 screening for Prox-1 modulators comprising the steps of: (a) contacting a test molecule with Prox-1 protein, or a nucleic acid comprising a nucleotide sequence that encodes Prox-1 protein, under conditions which permit the interaction of the test molecule with the Prox-1 protein or nucleic acid; and (b) measuring the interaction between the test molecule and Prox-1 protein or the nucleic acid, wherein a test molecule that binds the Prox-1 protein or nucleic acid is identified as a Prox-1 modulator.

"Test molecule" refers to the molecule that is under evaluation for the ability to modulate (i.e., increase or decrease) the activity of Prox-1 protein. Most commonly, a test molecule that is a Prox-1 modulator will interact directly with Prox-1. However, the screens described herein can identify test molecules that modulate Prox-1 protein activity indirectly, such as by affecting Prox-1 gene expression. The screens work with essentially any test molecule, and the invention is not limited in this manner. In preferred embodiments, the test molecule is a protein, a carbohydrate, a lipid, or a nucleic acid. Molecules which regulate Prox-1 expression include nucleic acids which are complementary to nucleic acids encoding a Prox-1 protein, or are complementary to nucleic acid sequences which direct or control the expression of Prox-1 protein, and which act as anti-sense regulators of expression. The test molecule may be a member of a chemical library, such as libraries commonly maintained in large pharmaceutical companies or libraries generated combinatorially. In alternate embodiments, the test molecule interacts with Prox-1 by binding to the Prox-1 DNA binding domain, thereby effecting Prox-1 activity.

5

10

15

20

25

30

- 10 -

With respect to the screening methods described herein, it may be desirable to evaluate two or more test compounds together for their ability to increase or decrease the Prox-1 protein activity or expression. The assays set forth herein can be readily modified by adding such additional test compounds either simultaneous with, or subsequent to, or prior to, the first test compound. In additional embodiments, the measurement of the interaction of test molecules with Prox-1 may is carried out using solution-phase assays or immunoassays. In other embodiments, measurement of the interaction of test molecules with Prox-1 is carried out by evaluating biological activity of Prox-1.

In a related embodiment, the invention provides a method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of: (a) contacting a DNA with a Prox-1 protein in the presence and in the absence of a putative modulator compound; (b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and (c) identifying a modulator compound based on a decrease or increase in binding between the DNA and the Prox-1 protein in the presence of the putative modulator compound, as compared to binding in the absence of the putative modulator compound.

In a related variation, molecules that modulate binding between DNA and Prox-1 are formulated into a composition or a growth media for contacting a cell from a colorectal cancer or colorectal cancer cell line, and a modulator that inhibits growth of the cell is selected as a preferred modulator for development as a therapeutic.

In yet another related embodiment, the invention provides a method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of: (a) contacting a DNA with a Prox-1 protein in the presence and in the absence of a putative modulator compound; (b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and (c) identifying a modulator compound based on a decrease or increase in differentiation in the presence of the putative modulator compound, as compared to differentiation in the absence of the putative modulator compound.

In vivo screening also is contemplated, either in addition to or in place of in vitro screening. The test compound preferably is formulated into a pharmaceutically

5

10

15

20

25

30

acceptable diluent, adjuvant, or carrier. In a preferred variation, this formulation is administered to a mammal with pathological (e.g., cancerous) Prox-1 expressing colon tissue, and the efficacy of the formulation at inhibiting disease progression is monitored. For example, a method described above optionally further comprises steps of formulating a composition comprising the selected Prox-1 modulator and a pharmaceutically acceptable carrier; administering the composition to a mammalian subject having a colorectal cancer; and monitoring the mammalian subject for growth, metastasis, shrinkage, or disappearance of the colorectal cancer.

"Putative modulator compounds" are analogous to the "test molecules" described above in that they are alleged to have an effect on Prox-1 protein activity and are being identified as such using the methods described herein. In certain embodiments detecting DNA binding to Prox-1 protein and identifying an increase or decrease of DNA binding to Prox-1 protein employs immuno-based assays or various other assays that measure biological activity. Likewise, embodied by the invention are methods wherein identifying a modulator compound the use of proliferation and/or differentiation assays.

In still another variation of the invention, provided are short interfering RNA (siRNA) molecules that down regulate expression of Prox-1 by RNA interference. The siRNA molecule can be adapted for use to treat colorectal cancer and any other indications that respond to the level of Prox-1. The siRNA molecule comprises a sense region and an antisense region. The antisense region comprises sequence complementary to an RNA sequence encoding Prox-1, or a fragment thereof, and the sense region comprise sequence complementary to the antisense region. In additional embodiments, the siRNA molecule can comprise two nucleic acid fragments, wherein one fragment comprises the sense region and the second fragment comprises the antisense region of said siRNA molecule.

In one embodiment, a siRNA molecule of the invention can comprise any contiguous Prox-1 sequence. Preferably, the siRNA constructs are between 18 and 100 nucleotides in length. More preferably, the siRNA constructs are 21 nucleotides in length. In still another embodiment, the sense region of a siRNA molecule of the invention comprises a 3'-terminal overhang and the antisense region comprises a 3'-terminal overhang. The 3'-terminal overhangs each are preferably from 1 to 5

5

10

15

20

25

30

PCT/EP2004/008819

nucleotides. More preferably, the 3'-terminal overhangs are 2 nucleotides. In a preferred embodiment, the antisense region of the 3'-terminal nucleotide overhang is complementary to RNA encoding Prox-1.

With respect to the antisense region of the siRNA constructs, the antisense region of Prox-1 siRNA constructs can comprise a sequence complementary to sequence having any of SEQ ID NOs. 4 and 6. Further, the antisense region of Prox-1 siRNA constructs can comprise a having any of SEQ ID NOs. 5 and 7.

In yet an additional embodiment of the invention, compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding Prox-1, and which modulate the expression of Prox-1 are provided. The antisense oligonucleotides of the invention are preferably complementary to (at least a segment of) the genomic Prox-1 sequence set forth as SEQ ID NO:1. mRNA splice sites, i.e., intron-exon junctions, may be preferred target regions. Accordingly, in another embodiment, the antisense oligonucleotides of the invention comprise a region complementary to a promoter or other control region, an exon, an intron, or an exonintron boundary. Also embodied by the present invention are antisense oligonucleotides that are complementary to a region within 20-200 bases of an exonintron splice junction. As detailed herein, pharmaceutical compositions comprising antisense oligonucleotides are also provided.

The foregoing paragraphs are not intended to define every aspect of the invention, and additional aspects are described in other sections, such as the Detailed Description. The entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein are contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document. Where protein therapy is described, embodiments involving polynucleotide therapy (using polynucleotides that encode the protein) are specifically contemplated, and the reverse also is true.

In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations defined by specific paragraphs above. For example, certain aspects of the invention that are described as a genus, and it should be understood that every

10

15

member of a genus is, individually, an aspect of the invention. Although the applicant(s) invented the full scope of the invention described herein, the applicants do not intend to claim subject matter described in the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A, 1B, and 1C depict the elevated Prox-1 mRNA levels in colorectal tumors. A cancer RNA profiling array was hybridized to probes for Prox-1 (Fig. 1A) and the lymphatic endothelial marker LYVE-1 (Fig. 1B). Fig. 1C illustrates the quantification of dot blot in Fig. 1A, the asterisk indicating tumor samples in which Prox-1 expression is significantly different from that of the normal tissue (P<0.005).

Figures 2A-2I depict Prox-1 expression patterns in colon cancer and normal colonic epithelium. Frozen sections of colon adenomas (Fig. 2A-C) or adenocarcinomas (Fig. 2D-F) and the corresponding normal tissues (Fig. 2H-I) were stained for Prox-1. Fig. 2C and Fig. 2I show high power magnification of adenoma and normal colon sections.

Figure 3 depicts the efficacy of Prox-1 suppression for inhibiting

SW480R cell growth in soft agar. SW480R cells were transfected with GFP siPRNA,

Prox-1siRNA A16 or Prox-1 siRNA A25 or left untreated, and seeded in soft agar in
triplicate. The number of colonies was scored after two weeks of growth.

- 14 -

DETAILED DESCRIPTION

Demonstrated herein for the first time is the importance of Prox-1 in cancer. The Prox-1 gene and protein is overexpressed in colorectal cancers, as compared to healthy colon tissue and other cancer tissues. Prox-1 was overexpressed in 68% of colorectal carcinomas and in 80% of premalignant lesions that were examined, indicating that Prox-1 is important for tumorigenesis, and therefore a useful marker for screening and a useful target for intervention. In normal colonic epithelium, Prox-1 expression was restricted to two cell types, neuroendocrine cells and non-proliferating cells at the very base of the colonic crypts, a location that corresponds to the stem cell compartment. Contemplated and provided for in the present invention are polynucleotides and polypeptides for screening and diagnosis of colorectal cancer and/or premalignancies.

Intervention to suppress Prox-1 expression in colorectal cells resulted in increased activation of Notch signal transduction. Specifically, ablation of Prox-1 15 resulted in cell growth arrest and increased expression of epithelial markers. This was accompanied by an upregulation of the cell cycle inhibitor p21cip1, which has been shown to be important for the differentiation of intestinal epithelia (Quaroni et al., Am. J. Physiol. Cell Physiol. 279: C1045-57, 2000; Yang et al., Cancer Res. 61, 565-9, 2001), and by an increased expression of components of the Notch signaling pathway. Unexpectedly, this phenotype persisted for up to two weeks after transient 20 transfection with Prox-1 siRNAs, demonstrating profound changes in the transcriptional program induced in the absence of Prox-1. Without intending to be limited to a particular theory or mechanism, Prox-1 may be involved in the maintenance of an undifferentiated state of colonic intestinal stem cells, and 25 overexpression of Prox-1 in cancer cells and resulting inhibition of the Notch signaling pathway may lead to the de-differentiation frequently observed upon malignant transformation. The suppression of Prox-1 expression also negatively regulates prostaglandin activity in the tumor cell lines studied. It is, therefore, contemplated that suppression of Prox-1 or activation of Notch signaling in tumor 30 cells can provide a differentiation therapy for colon carcinoma. The present invention, more specifically, provides compositions and methods for suppressing Prox-1 expression.

5

10

15

20

25

30

A. Inhibitory Nucleic Acid Constructs for the Suppression of Prox-1 Expression

As discussed herein, Prox-1 is overexpressed in colorectal cancer cells and suppression of Prox-1 expression results in increased Notch signal transduction and modified expression of enzymes of the prostaglandin biosynthetic pathway. This data provides an indication to disrupt the expression or activity of Prox-1 as a method of alleviating the symptoms of and/or inhibiting the growth or metastasis of colon cancer. Such disruption is achieved using any materials or methods available to inhibit Prox-1 mRNA or protein expression, or inhibit Prox-1 binding, and any Prox-1 activity. The present section discusses nucleic acid-based methods of disrupting the expression of Prox-1. Polynucleotide products which are useful in this endeavor include antisense polynucleotides, ribozymes, small interfering RNAs, natural or designed microRNAs, triple helix polynucleotides, and novel transcription factors that modulate the expression of Prox-1 protein.

Techniques for making and delivering antisense polynucleotides and ribozymes are well known to those in the art and have been extensively described in scientific, patent, and trade literature. (PCT Publication No. WO 00/32765; (*J Biol Chem*; 272:626-38. 1997); Kurreck *et al.*, (*Nucleic Acids Res.*; 30:1911-8. 2002); Crooke and B. Lebleu, eds. Antisense Research and Applications (1993) CRC Press; and Antisense RNA and DNA (1988) D. A. Melton, Ed. Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y.) Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation. An example of an antisense polynucleotide is an oligodeoxyribonucleotide derived from the translation initiation site, *e.g.*, between -10 and +10 regions of the relevant nucleotide sequence. Antisense oligonucleotides of 8-200 nucleotides in length that include at least a portion of this region of the Prox-1 cDNA or genomic sequences set forth as SEQ ID NOs: 1 and 2 (or are complementary to) are preferred Prox-1 inhibitors of the invention.

Antisense polynucleotides are typically generated within the cell by expression from antisense constructs that contain the antisense nucleic acid strand as the transcribed strand. Antisense methodology takes advantage of the fact that nucleic acids tend to pair with "complementary" sequences. By complementary, it is

15

20

25

30

- 16 -

WO 2005/014854 PCT/EP2004/008819

meant that polynucleotides are those which are capable of base-pairing according to the standard Watson-Crick complementarity rules. That is, the larger purines will base pair with the smaller pyrimidines to form combinations of guanine paired with cytosine (G:C) and adenine paired with either thymine (A:T) in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA. Inclusion of less common bases such as inosine, 5-methylcytosine, 6-methyladenine, hypoxanthine and others in hybridizing sequences does not interfere with pairing.

Targeting double-stranded (ds) DNA with polynucleotides leads to triple-helix formation; targeting RNA will lead to double-helix formation. Antisense polynucleotides, when introduced into a target cell, specifically bind to their target polynucleotide and interfere with transcription, RNA processing, transport, translation and/or stability. Antisense RNA constructs, or DNA encoding such antisense RNA's, may be employed to inhibit gene transcription or translation or both within a host cell, either *in vitro* or *in vivo*, such as within a host animal, including a human subject.

Antisense constructs may be designed to bind to the promoter and other control regions, exons, introns or even exon-intron boundaries of a gene. Highly effective antisense constructs include regions complementary to intron/exon splice junctions. Thus, a preferred embodiment includes an antisense construct with complementarity to regions within 50-200 bases of an intron-exon splice junction. It has been observed that some exon sequences can be included in the construct without seriously affecting the target selectivity thereof. The amount of exonic material included will vary depending on the particular exon and intron sequences used. One can readily test whether too much exon DNA is included simply by testing the constructs *in vitro* to determine whether normal cellular function is affected or whether the expression of related genes having complementary sequences is affected.

For purposes of making antisense oligonucleotides, polynucleotide sequences that are substantially complementary over their entire length and have zero or very few base mismatches are preferred. For example, sequences of fifteen bases in length preferably have complementary nucleotides at thirteen or fourteen or fifteen positions. Naturally, sequences which are completely complementary will be sequences which are entirely complementary throughout their entire length and have no base mismatches. Other sequences with lower degrees of homology also are

15

20

25

30

PCT/EP2004/008819

contemplated. For example, an antisense construct which has limited regions of high homology, but also contains a non-homologous region (e.g., ribozymes) could be designed. These molecules, though having less than 50% homology, would bind to target sequences under appropriate conditions.

- 17 -

Methods for designing and optimizing antisense nucleotides are described in Lima et al., (J Biol Chem; 272:626-38. 1997) and Kurreck et al., (Nucleic Acids Res.; 30:1911-8. 2002). Additionally, commercial software and online resources are available to optimize antisense sequence selection and also to compare selected sequences to known genomic sequences to help ensure uniqueness/specificity for a chosen gene. (See, e.g., world wide web at sfold.wadsworth.org/index.pl.) Such uniqueness can be further confirmed by hybridization analyses. Antisense nucleic acids are introduced into cells (e.g., by a viral vector or colloidal dispersion system such as a liposome).

The genomic contig of chromosome 1 (where Prox-1 is located), cDNA for Prox-1, and protein sequences for Prox-1 (SEQ ID NOs: 1, 2, and 3, respectively) are published and disclosed as Genbank Accession Numbers NT_021877, NM_002763, and NM_002763, respectively. The Genbank Database is accessible on the world wide web at ncbi.nlm.nih.gov. Related Prox-1 protein and/or nucleic acid sequences from other sources may be identified using probes directed at these sequences. Such additional sequences may be useful in certain aspects of the present invention. Although antisense sequences may be full length genomic or cDNA copies, they also may be shorter fragments or oligonucleotides *e.g.*, polynucleotides of 100 or less bases. Although shorter oligomers (8-20) are easier to make and more easily permeable *in vivo*, other factors also are involved in determining the specificity of base pairing. For example, the binding affinity and sequence specificity of an oligonucleotide to its complementary target increases with increasing length. It is contemplated that oligonucleotides of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more base pairs will be used.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The cleavage event renders the mRNA unstable and prevents protein expression. The mechanism of ribozyme action involves sequence specific interaction of the ribozyme molecule to complementary target RNA, followed

5

10

15

20

25

30

by an endonucleolytic cleavage. Within the scope of the invention are engineered hammerhead, for which the substrate sequence requirements are minimal, or other motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences encoding protein complex components. Design of the hammerhead ribozyme and the therapeutic uses of ribozymes are disclosed in Usman et al., Current Opin. Struct. Biol. (1996) 6:527-533. Ribozymes can also be prepared and used as described in Long et al., FASEB J. (1993) 7:25; Symons, Ann. Rev. Biochem. (1992) 61:641; Perrotta et al., Biochem. (1992) 31:16-17; Ojwang et al., Proc. Natl. Acad. Sci. (USA) (1992) 89:10802-10806; and U.S. Pat. No. 5,254,678. Methods of cleaving RNA using ribozymes is described in U.S. Pat. No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Pat. No. 5,225,337 and Koizumi et al., Nucleic Acid Res. (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, Nucleic Acids Res. (1992) 20:2835. Ribozymes can also be made by rolling transcription (Daubendiek and Kool, Nat. Biotechnol. (1997) 15(3):273-277).

The full-length gene need not be known in order to design and use specific inhibitory ribozymes. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays (Draper PCT WO 93/23569; and U.S. Pat. No. 5,093,246, incorporated herein by reference). Using the nucleic acid sequences disclosed herein and methods known in the art, ribozymes can be designed to specifically bind and cut the corresponding mRNA species. Ribozymes, therefore, provide a means to inhibit the expression Prox-1.

Alternatively, endogenous gene expression can be reduced by inactivating or "knocking out" the gene or its promoter using targeted homologous recombination. (E.g., see Smithies et al., 1985, Nature 317:230-234; Thomas &

10

15

20

25

30

Capecchi, 1987, Cell 51:503-512; Thompson et al., 1989 Cell 5:313-321). For example, a mutant, non-functional gene (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene (either the coding regions or regulatory regions of the gene) can be used to transfect cells that express that gene *in vivo*. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene.

Gene expression can also be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, Anticancer Drug Des., 6(6):569-84; Helene, C., et al., 1992, Ann, N.Y. Acad. Sci., 660:27-36; and Maher, L. J., 1992, Bioassays 14(12):807-15). Nucleic acid molecules used in triple helix formation for the inhibition of transcription are generally single stranded deoxyribonucleotides. The base composition must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC+ triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

Another technique for inhibiting the expression of a gene involves the use of RNA for induction of RNA interference (RNAi), using double stranded

5

10

15

20

25

30

PCT/EP2004/008819

- 20 -

(dsRNA) (Fire et al., Nature 391: 806-811. 1998) or small interfering RNA (siRNA) sequences (Elbashir et al, Nature 411, 494 - 498 (2001)); Yu et al., Proc Natl Acad Sci USA. 99:6047-52 (2002). "RNAi" is the process by which dsRNA induces homology-dependent degradation of complimentary mRNA. The presence of dsRNA in cells triggers the RNAi response though a mechanism that has yet to be fully characterized. In one embodiment, a synthetic antisense nucleic acid molecule is hybridized by complementary base pairing with a "sense" ribonucleic acid to form a double stranded RNA. The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme. The dsRNA antisense and sense nucleic acid molecules are provided that correspond to at least about 20, 25, 50, 100, 250 or 500 nucleotides or an entire Prox-1 coding strand, or to only a portion thereof. In an alternative embodiment, the siRNAs are 30 nucleotides or less in length, and more preferably 21to 23-nucleotides, with characteristic 2- to 3- nucleotide 3'-overhanging ends, which are generated by ribonuclease III cleavage from longer dsRNAs. (See e.g. Tuschl T. Nat Biotechnol. 20:446-48. 2002). At notably higher concentrations single stranded 21 nucleotide RNA molecules have been also shown to function as siRNAs (i.e., enter the RNAi pathway and specifically target mRNA for degradation in mammalian cells (Martinez et al., Cell 110, 563-574, 2002). Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex (Elbashir et al., 2001, Genes Dev., 15, 188).

Intracellular transcription of small RNA molecules can be achieved by cloning the siRNA templates into RNA polymerase III (Pol III) transcription units, which normally encode the small nuclear RNA (snRNA) U6 or the human RNAse P RNA H1. Two approaches can be used to express siRNAs: in one embodiment, sense and antisense strands constituting the siRNA duplex are transcribed using constructs with individual promoters (Lee, et al. Nat. Biotechnol. 20, 500-505. 2002); in an alternative embodiment, siRNAs are expressed as stem-loop hairpin RNA structures that give rise to siRNAs after intracellular processing (Brummelkamp et al. Science 296:550-553. 2002, herein incorporated by reference). Alternatively, a stem loop hairpin can be expressed within an unrelated Pol II transcribed mRNA transcript. A stem-loop hairpin designed to contain the siRNA sequence also contains conserved microRNA sequences within the loop and stem regions, thus resembling a natural

5

10

15

20

25

30

precursor mRNA structure. Subsequently, the precursor can be processed by the cellular RNAi components to yield mature, functional siRNA/miRNA. (See, generally, Zeng et al., Mol Cell 9, 1327-1333 (2002); Hutvagner et al., Science 297, 2056-2060 (2002); Kawasake et al., Nature 423, 838-842 (2003)).

RNAi has been studied in a variety of systems. Work in Drosophila embryonic lysates (Elbashir et al., 2001, EMBO J, 20, 6877) has revealed certain requirements for siRNA length, structure, chemical composition, and sequence that are essential to mediate efficient RNAi activity. Twenty-one nucleotide siRNA duplexes are most active when containing two nucleotide 3'-overhangs. Replacing the 3'-overhanging segments of a 21-mer siRNA duplex having 2 nucleotide 3' overhangs with deoxyribonucleotides has no adverse effect on RNAi activity, while, replacing up to 4 nucleotides on each end of the siRNA with deoxyribonucleotides may be well tolerated. Complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir et al., 2001, EMBO J., 20, 6877).

Furthermore, complete substitution of one or both siRNA strands with 2'-deoxy (2'-H) or 2'-O-methyl nucleotides results in no RNAi activity, whereas substitution of the 3'-terminal siRNA overhang nucleotides with deoxy nucleotides (2'-H) is tolerated. Single mismatch sequences in the center of the siRNA duplex may abolish RNAi activity. In addition, studies indicate that the position of the cleavage site in the target RNA is defined by the 5'-end of the siRNA guide sequence rather than the 3'-end (Elbashir et al., 2001, EMBO J, 20, 6877). Other studies indicate that a 5'-phosphate on the target-complementary strand of a siRNA duplex is required for siRNA activity and that ATP is utilized to maintain the 5'-phosphate moiety on the siRNA (Nykanen et al., 2001, Cell, 107, 309).

The dsRNA/siRNA is most commonly administered by annealing sense and antisense RNA strands *in vitro* before delivery to the organism. In an alternate embodiment, RNAi may be carried out by administering sense and antisense nucleic acids of the invention in the same solution without annealing prior to administration, and may even be performed by administering the nucleic acids in separate vehicles within a very close timeframe.

Genetic control can also be achieved through the design of novel transcription factors for modulating expression of the gene of interest in native cells and animals. For example, the Cys2-His2 zinc finger proteins, which bind DNA via their zinc finger domains, have been shown to be amenable to structural changes that 5 lead to the recognition of different target sequences. These artificial zinc finger proteins recognize specific target sites with high affinity and low dissociation constants, and are able to act as gene switches to modulate gene expression. Knowledge of the particular target sequence of the present invention facilitates the engineering of zinc finger proteins specific for the target sequence using known methods such as a combination of structure-based modeling and screening of phage 10 display libraries (Segal et al., (1999) Proc Natl Acad Sci USA 96:2758-2763; Liu et al., (1997) Proc Natl Acad Sci USA 94:5525-30; Greisman and Pabo (1997) Science 275:657-61; Choo et al., (1997) J Mol Biol 273:525-32). Each zinc finger domain usually recognizes three or more base pairs. Since a recognition sequence of 18 base pairs is generally sufficient in length to render it unique in any known genome, a zinc 15 finger protein consisting of 6 tandem repeats of zinc fingers would be expected to ensure specificity for a particular sequence (Segal et al., (1999) Proc Natl Acad Sci USA 96:2758-2763). The artificial zinc finger repeats, designed based on target sequences, are fused to activation or repression domains to promote or suppress gene 20 expression (Liu et al., (1997) Proc Natl Acad Sci USA 94:5525-30). Alternatively, the zinc finger domains can be fused to the TATA box-binding factor (TBP) with varying lengths of linker region between the zinc finger peptide and the TBP to create either transcriptional activators or repressors (Kim et al., (1997) Proc Natl Acad Sci USA 94:3616-3620). Such proteins, and polynucleotides that encode them, have utility for modulating expression in vivo in both native cells, animals and humans. 25 The novel transcription factor can be delivered to the target cells by transfecting constructs that express the transcription factor (gene therapy), or by introducing the protein. Engineered zinc finger proteins can also be designed to bind RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods (McColl et al.. (1999) Proc Natl Acad Sci USA 96:9521-6; Wu et al., (1995) Proc Natl Acad 30 Sci USA 92:344-348).

5

10

15

PCT/EP2004/008819

Inactivation of Prox-1 function can also be accomplished using an overexpressed dominant negative form of Prox-1. As used herein a "dominant negative protein" is a mutant form of a protein which has the property of inhibiting the function of the endogenous, wild type form of the protein which corresponds to the mutant protein. Typically, dominant negative proteins have amino acid substitutions or are truncated forms of the wild type protein. The mutation may be in a substrate-binding domain (or DNA binding domain), a catalytic domain, or a cellular localization domain. For instance, a dominant negative form of Prox-1 may include a mutant truncated with respect to the DNA binding domain or transactivation domain. Disruption of the DNA binding domain entails truncation of the protein to exclude amino acids 572-634 of SEQ ID NO. 3, based on homology to Prospero (Drosophila). Disruption of the transactivation domain entails the deletion of amino acids 635-737. Other dominant negatives may include truncated forms of Prox-1 lacking the last 60 amino acids or the first 575 amino acids. Preferably, the mutant polypeptide will be overproduced. Point mutations can be made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies for making dominant negative mutants are described in Herskowitz, Nature (1987) 329:219-222.

Anti-sense RNA and DNA molecules, ribozymes, RNAi, triple helix
polynucleotides, and novel transcription factors can be prepared by any method
known in the art for the synthesis of DNA and RNA molecules. These include
techniques for chemically synthesizing oligodeoxyribonucleotides well known in the
art including, but not limited to, solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription
of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may
be incorporated into a wide variety of vectors which incorporate suitable RNA
polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively,
antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly,
depending on the promoter used, can be introduced stably or transiently into cells.

30 B. Gene Therapy

As described n detail in the preceding section, a variety of genetic manipulations to achieve modulation of Prox-1 protein expression or activity are

5

contemplated. Additionally, where administration of proteins is contemplated, such as zinc finger proteins targeted to Prox-1, administration of a gene therapy vector to cause the protein of interest to be produced *in vivo* also is contemplated. Where inhibition of proteins is contemplated (e.g., through use of antibodies or small molecule inhibitors), inhibition of protein expression *in vivo* by genetic techniques, such as knock-out techniques or anti-sense therapy, is contemplated.

It is now widely recognized that DNA may be introduced into a cell using a variety of viral vectors. Exemplary vectors that have been described in the literature include replication-deficient retroviral vectors, including but not limited to lentivirus vectors (Kim et al., J. Virol., 72(1): 811-816 (1998); Kingsman & Johnson, 10 Scrip Magazine, October, 1998, pp. 43-46.); adenoviral (see, for example, U.S. Patent No. 5,824,544; U.S. Patent No. 5,707,618; U.S. Patent No. 5,792,453; U.S. Patent No. 5,693,509; U.S. Patent No. 5,670,488; U.S. Patent No. 5,585,362; Quantin et al., Proc. Natl. Acad. Sci. USA, 89: 2581-2584 (1992); Stratford-Perricadet et al., J. Clin. 15 Invest., 90: 626-630 (1992); and Rosenfeld et al., Cell, 68: 143-155 (1992)), retroviral (see, for example, U.S. Patent No. 5,888,502; U.S. Patent No. 5,830,725; U.S. Patent No. 5,770,414; U.S. Patent No. 5,686,278; U.S. Patent No. 4,861,719), adenoassociated viral (see, for example, U.S. Patent No. 5,474,935; U.S. Patent No. 5,139,941; U.S. Patent No. 5,622,856; U.S. Patent No. 5,658,776; U.S. Patent No. 20 5,773,289; U.S. Patent No. 5,789,390; U.S. Patent No. 5,834,441; U.S. Patent No. 5,863,541; U.S. Patent No. 5,851,521; U.S. Patent No. 5,252,479; Gnatenko et al., J. Investig. Med., 45: 87-98 (1997), an adenoviral-adenoassociated viral hybrid (see, for example, U.S. Patent No. 5,856,152) or a vaccinia viral or a herpesviral (see, for example, U.S. Patent No. 5,879,934; U.S. Patent No. 5,849,571; U.S. Patent No. 5,830,727; U.S. Patent No. 5,661,033; U.S. Patent No. 5,328,688); Lipofectin-25 mediated gene transfer (BRL); liposomal vectors (See, e.g., U.S. Patent No. 5,631,237 (Liposomes comprising Sendai virus proteins)); and combinations thereof. All of the foregoing documents are incorporated herein by reference in the entirety. Replication-deficient adenoviral vectors and adeno-associated viral vectors constitute preferred embodiments. 30

In embodiments employing a viral vector, preferred polynucleotides include a suitable promoter and polyadenylation sequence to promote expression in

5

the target tissue of interest. For many applications of the present invention, suitable promoters/enhancers for mammalian cell expression include, e.g., cytomegalovirus promoter/enhancer (Lehner et al., J. Clin. Microbiol., 29:2494-2502 (1991); Boshart et al., Cell, 41:521-530 (1985)); Rous sarcoma virus promoter (Davis et al., Hum. Gene Ther., 4:151 (1993)); simian virus 40 promoter, long terminal repeat (LTR) of retroviruses, keratin 14 promoter, and myosin heavy chain promoter.

In other embodiments, non-viral delivery is contemplated. These include calcium phosphate precipitation (Graham and Van Der Eb, Virology, 52:456-467 (1973); Chen and Okayama, Mol. Cell Biol., 7:2745-2752, (1987); Rippe, et al., 10 Mol. Cell Biol., 10:689-695 (1990)), DEAE-dextran (Gopal, Mol. Cell Biol., 5:1188-1190 (1985)), electroporation (Tur-Kaspa, et al., Mol. Cell Biol., 6:716-718, (1986); Potter, et al., Proc. Nat. Acad. Sci. USA, 81:7161-7165, (1984)), direct microinjection (Harland and Weintraub, J. Cell Biol., 101:1094-1099 (1985)), DNA-loaded liposomes (Nicolau and Sene, Biochim. Biophys. Acta, 721:185-190 (1982); Fraley, et 15 al., Proc. Natl. Acad. Sci. USA, 76:3348-3352 (1979); Felgner, Sci. Am., 276(6):102-6 (1997); Felgner, Hum. Gene Ther., 7(15):1791-3, (1996)), cell sonication (Fechheimer, et al., Proc. Natl. Acad. Sci. USA, 84:8463-8467 (1987)), gene bombardment using high velocity microprojectiles (Yang, et al., Proc. Natl. Acad. Sci. USA, 87:9568-9572 (1990)), and receptor-mediated transfection (Wu and Wu, J. 20 Biol. Chem., 262:4429-4432 (1987); Wu and Wu, Biochemistry, 27:887-892 (1988); Wu and Wu, Adv. Drug Delivery Rev., 12:159-167 (1993)).

In a particular embodiment of the invention, the expression construct (or indeed the peptides discussed above) may be entrapped in a liposome. Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, "In Liver Diseases, Targeted Diagnosis And Therapy Using Specific Receptors And Ligands," Wu, G., Wu, C., ed., New York: Marcel Dekker, pp. 87-104 (1991)). The addition of DNA to cationic liposomes causes a topological transition from liposomes to optically birefringent

25

30

WO 2005/014854 PCT/EP2004/008819

liquid-crystalline condensed globules (Radler, et al., Science, 275(5301):810-4, (1997)). These DNA-lipid complexes are potential non-viral vectors for use in gene therapy and delivery.

- 26 -

Liposome-mediated nucleic acid delivery and expression of foreign 5 DNA in vitro has been very successful. Also contemplated in the present invention are various commercial approaches involving "lipofection" technology. In certain embodiments of the invention, the liposome may be complexed with a hemagglutinating virus (HVJ). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda, et al., 10 Science, 243:375-378 (1989)). In other embodiments, the liposome may be complexed or employed in conjunction with nuclear nonhistone chromosomal proteins (HMG-1) (Kato, et al., J. Biol. Chem., 266:3361-3364 (1991)). In yet further embodiments, the liposome may be complexed or employed in conjunction with both HVJ and HMG-1. In that such expression constructs have been successfully 15 employed in transfer and expression of nucleic acid in vitro and in vivo, then they are applicable for the present invention.

Other vector delivery systems that can be employed to deliver a nucleic acid encoding a therapeutic gene into cells include receptor-mediated delivery vehicles. These take advantage of the selective uptake of macromolecules by receptor-mediated endocytosis in almost all eukaryotic cells. Because of the cell type-specific distribution of various receptors, the delivery can be highly specific (Wu and Wu (1993), *supra*).

Receptor-mediated gene targeting vehicles generally consist of two components: a cell receptor-specific ligand and a DNA-binding agent. Several ligands have been used for receptor-mediated gene transfer. The most extensively characterized ligands are asialoorosomucoid (ASOR) (Wu and Wu (1987), *supra*) and transferrin (Wagner, *et al.*, *Proc. Nat'l. Acad Sci. USA*, 87(9):3410-3414 (1990)). Recently, a synthetic neoglycoprotein, which recognizes the same receptor as ASOR, has been used as a gene delivery vehicle (Ferkol, *et al.*, *FASEB J.*, 7:1081-1091 (1993); Perales, *et al.*, *Proc. Natl. Acad. Sci., USA* 91:4086-4090 (1994)) and epidermal growth factor (EGF) has also been used to deliver genes to squamous carcinoma cells (Myers, EPO 0273085).

10

15

20

25

30

WO 2005/014854 PCT/EP2004/008819

In other embodiments, the delivery vehicle may comprise a ligand and a liposome. For example, Nicolau, et al., Methods Enzymol., 149:157-176 (1987) employed lactosyl-ceramide, a galactose-terminal asialganglioside, incorporated into liposomes and observed an increase in the uptake of the insulin gene by hepatocytes. Thus, it is feasible that a nucleic acid encoding a therapeutic gene also may be specifically delivered into a particular cell type by any number of receptor-ligand systems with or without liposomes.

In another embodiment of the invention, the expression construct may simply consist of naked recombinant DNA or plasmids. Transfer of the construct may be performed by any of the methods mentioned above that physically or chemically permeabilize the cell membrane. This is applicable particularly for transfer *in vitro*, however, it may be applied for *in vivo* use as well. Dubensky, *et al.*, *Proc. Nat. Acad. Sci. USA*, 81:7529-7533 (1984) successfully injected polyomavirus DNA in the form of CaPO₄ precipitates into liver and spleen of adult and newborn mice demonstrating active viral replication and acute infection. Benvenisty and Neshif, *Proc. Nat. Acad. Sci. USA*, 83:9551-9555 (1986) also demonstrated that direct intraperitoneal injection of CaPO₄ precipitated plasmids results in expression of the transfected genes.

Another embodiment of the invention for transferring a naked DNA expression construct into cells may involve particle bombardment. This method depends on the ability to accelerate DNA coated microprojectiles to a high velocity allowing them to pierce cell membranes and enter cells without killing them (Klein, et al., Nature, 327:70-73 (1987)). Several devices for accelerating small particles have been developed. One such device relies on a high voltage discharge to generate an electrical current, which in turn provides the motive force (Yang, et al., Proc. Natl. Acad. Sci USA, 87:9568-9572 (1990)). The microprojectiles used have consisted of biologically inert substances such as tungsten or gold beads.

Well-known techniques exist for gene delivery to *in vivo* and *ex vivo* situations. For viral vectors, one generally will prepare a viral vector stock. Depending on the type of virus and the titer attainable, one will deliver 1×10^4 , 1×10^5 , 1×10^6 , 1×10^7 , 1×10^8 , 1×10^9 , 1×10^{10} , 1×10^{11} or 1×10^{12} infectious particles to the patient. Similar figures may be extrapolated for liposomal or other non-viral

5

10

15

20

25

30

PCT/EP2004/008819

- 28 -

formulations by comparing relative uptake efficiencies. Formulation as a pharmaceutically acceptable composition is discussed below.

Various routes are contemplated for various tumor types. For practically any tumor, systemic delivery is contemplated. This will prove especially important for attacking microscopic or metastatic cancer. Where discrete tumor mass may be identified, a variety of direct, local and regional approaches may be taken. For example, the tumor may be directly injected with the expression vector or protein. A tumor bed may be treated prior to, during or after resection. Following resection, one generally will deliver the vector by a catheter left in place following surgery. One may utilize the tumor vasculature to introduce the vector into the tumor by injecting a supporting vein or artery. A more distal blood supply route also may be utilized.

In an *ex vivo* embodiment, cells from the patient are removed and maintained outside the body for at least some period of time. During this period, a therapy is delivered, after which the cells are reintroduced into the patient; preferably, any tumor cells in the sample have been killed.

C. Antibodies Immunoreactive with Prox-1 Protein

In another aspect, the present invention contemplates an antibody that is immunoreactive with a Prox-1 protein molecule of the present invention, or any portion thereof. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library, bifunctional/bispecific antibodies, humanized antibodies, CDR grafted antibodies, human antibodies and antibodies which include portions of CDR sequences specific for Prox-1 protein. The antibodies are useful as diagnostic reagents for measuring Prox-1 expression in a biological sample (e.g., a biopsy of colon tissue), and are useful for binding to Prox-1 protein to inhibit Prox-1 activity where the antibodies are delivered into cells.

Neutralizing antibodies, i.e., those which may suppress Prox-1 expression, are especially preferred for therapeutic embodiments. In a preferred embodiment, an antibody is a monoclonal antibody. The invention provides for a pharmaceutical composition comprising a therapeutically effective amount of an antibody directed against Prox-1 protein. The antibody may bind to and neutralize the

5

10

15

20

25

30

- 29 -

apoptotic effects of the Prox-1 protein. The antibody may be formulated with a pharmaceutically acceptable adjuvant. Means for preparing and characterizing antibodies are well known in the art (see, e.g., Harlow and Lane, ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988).

Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogen comprising a polypeptide of the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically an animal used for production of anti-antisera is a non-human animal including rabbits, mice, rats, hamsters, goat, sheep, pigs or horses. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include but are not limited to Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are potentially useful human adjuvants.

Antibodies, both polyclonal and monoclonal, specific for isoforms of antigen may be prepared using conventional immunization techniques, as will be generally known to those of skill in the art. As used herein, the term "specific for" is intended to mean that the variable regions of the antibodies recognize and bind Prox-1 protein and are capable of distinguishing Prox-1 protein from other antigens, for example other secreted proapoptotic factors. A composition containing antigenic epitopes of the compounds of the present invention can be used to immunize one or more experimental animals, such as a rabbit or mouse, which will then proceed to produce specific antibodies against the compounds of the present invention.

Polyclonal antisera may be obtained, after allowing time for antibody generation, simply by bleeding the animal and preparing serum samples from the whole blood.

Monoclonal antibodies to Prox-1 protein may be prepared using any technique which provides for the production of antibody molecules by continuous cell

5

25

30

lines in culture. These include but are not limited to the hybridoma technique originally described by Koehler and Milstein (Nature 256: 495-497, 1975), the human B-cell hybridoma technique (Kosbor *et al.*, Immunol Today 4:72, 1983; Cote *et al.*, Proc Natl Acad Sci 80: 2026-2030, 1983) and the EBV-hybridoma technique (Cole *et al.*, Monoclonal Antibodies and Cancer Therapy, Alan R Liss Inc, New York N.Y., pp 77-96, (1985).

When the hybridoma technique is employed, myeloma cell lines may be used. Such cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme 10 deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; 15 and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with cell fusions. It should be noted that the hybridomas and cell lines produced by such techniques for producing the monoclonal antibodies are contemplated to be novel compositions of the present invention. An exemplary method for producing monoclonal antibodies against Prox-1 is provided in Example 20 1. Those of skill in the art will appreciate that such a method may be modified using techniques well known to those of skill in the art and still produce antibodies within the scope of the present invention.

In addition to the production of monoclonal antibodies, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison *et al.*, Proc Natl Acad Sci 81: 6851-6855, 1984; Neuberger *et al.*, Nature 312: 604-608, 1984; Takeda *et al.*, Nature 314: 452-454; 1985). Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce Prox-1 protein-specific single chain antibodies.

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening recombinant immunoglobulin libraries or

25

30

- 31 -

panels of highly specific binding reagents as disclosed in Orlandi et al (Proc Natl Acad Sci 86: 3833-3837; 1989), and Winter G and Milstein C (Nature 349: 293-299, 1991).

Fully human antibodies relate to antibody molecules in which 5 essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies," or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., Immunol Today 4: 72 (1983)) and the EBV hybridoma technique to produce human 10 monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., Proc Natl Acad Sci USA 80: 2026-2030 (1983)) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 15 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, *J. Mol. Biol.* 227:381 (1991); Marks *et al.*, *J. Mol. Biol.* 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg *et al.* (*Nature* 368 856-859 (1994)); Morrison (*Nature* 368:812-13 (1994)); Fishwild et al.(Nature Biotechnology 14, 845-51 (1996)); Neuberger (*Nature Biotechnology* 14:826 (1996)); and Lonberg and Huszar (*Intern. Rev. Immunol.* 13:65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See

10

15

20

25

30

PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

Antibodies as described herein are useful in standard immunochemical procedures, such as ELISA, radioimmuno assays, and Western blot methods and in immunohistochemical procedures such as tissue staining, as well as in other procedures which may utilize antibodies specific to Prox-1 protein -related antigen epitopes. Additionally, it is proposed that monoclonal antibodies specific to the

5

10

15

20

25

- 33 -

particular Prox-1 protein of different species may be utilized in other useful applications.

In general, both polyclonal and monoclonal antibodies against Prox-1 protein may be used in a variety of embodiments. In certain aspects, the antibodies may be employed for therapeutic purposes in which the inhibition of Prox-1 protein activity is desired (e.g., to reduce apoptosis in neuronal cells). Antibodies may be used to block Prox-1 protein action.

Antibodies of the present invention also may prove useful in diagnostic purposes in order, for example, to detect increases or decreases in Prox-1 protein in tissue samples including samples for sites of inflammation, or fluid samples including blood serum, plasma and exudate samples. Additional aspects will employ the antibodies of the present invention in antibody cloning protocols to obtain cDNAs or genes encoding other Prox-1 protein. They may also be used in inhibition studies to analyze the effects of Prox-1 related peptides in cells or animals. Anti- Prox-1 protein antibodies will also be useful in immunolocalization studies to analyze the distribution of Prox-1 protein during various cellular events, for example, to determine the cellular or tissue-specific distribution of Prox-1 protein polypeptides under different points in the cell cycle. A particularly useful application of such antibodies is in purifying native or recombinant Prox-1 protein, for example, using an antibody affinity column. The operation of all such immunological techniques will be known to those of skill in the art in light of the present disclosure.

D. Assaying for Other Modulators of Prox-1 Activity and/or Expression

In some situations, it may be desirable to identify molecules that are modulators, *i.e.*, agonists or antagonists, of the activity of Prox-1 protein. Natural or synthetic molecules that modulate Prox-1 protein may be identified using one or more screening assays, such as those described herein. Such molecules may be administered either in an *ex vivo* manner, or in an *in vivo* manner by injection, or by oral delivery, implantation device or the like.

"Test molecule(s)" refers to the molecule(s) that is/are under evaluation

for the ability to modulate (i.e., increase or decrease) the activity of Prox-1 protein.

Most commonly, a molecule that modulates Prox-1 activity will interact directly with

5

10

15

20

25

30

PCT/EP2004/008819

- 34 -

Prox-1. However, it is also contemplated that a molecule may also modulate Prox-1 protein activity indirectly, such as by affecting Prox-1 gene expression, or by binding to a Prox-1 binding partner. In one embodiment, a test molecule will bind to a Prox-1 protein with an affinity constant of at least about 10⁻⁶ M, preferably about 10⁻⁸ M, more preferably about 10⁻⁹ M, and even more preferably about 10⁻¹⁰ M.

Methods for identifying compounds which interact with Prox-1 protein are encompassed by the present invention. In certain embodiments, a Prox-1 protein is incubated with a test molecule under conditions which permit the interaction of the test molecule with a Prox-1 protein, and the extent of the interaction can be measured. The test molecule(s) can be screened in a substantially purified form or in a crude mixture.

In certain embodiments, a Prox-1 protein agonist or antagonist may be a protein, peptide, carbohydrate, lipid or small molecular weight molecule which interacts with Prox-1 to regulate its activity. Molecules which regulate Prox-1 expression include nucleic acids which are complementary to nucleic acids encoding a Prox-1 protein, or are complementary to nucleic acid sequences which direct or control the expression of Prox-1 protein, and which act as anti-sense regulators of expression.

Once a set of test molecules has been identified as interacting with Prox-1 protein, the molecules may be further evaluated for their ability to increase or decrease Prox-1 activity. The measurement of the interaction of test molecules with Prox-1 may be carried out in several formats, including solution-phase assays and immunoassays. In general, test molecules are incubated with Prox-1 for a specified period of time, and Prox-1 protein activity is determined by one or more assays for measuring biological activity.

In the event that Prox-1 displays biological activity through an interaction with a binding partner, a variety of *in vitro* assays may be used to measure the binding of Prox-1 to the corresponding binding partner. These assays may be used to screen test molecules for their ability to increase or decrease the rate and/or the extent of binding of Prox-1 to its binding partner. In one assay, a Prox-1 polypeptide is immobilized in the wells of a microtiter plate. Radiolabeled Prox-1

5

10

15

20

25

30

binding partner and the test molecule(s) can then be added either one at a time (in either order) or simultaneously to the wells. After incubation, the wells can be washed and counted (using a scintillation counter) for radioactivity to determine the extent to which the binding partner bound to Prox-1 polypeptide. Typically, the molecules will be tested over a range of concentrations, and a series of control wells lacking one or more elements of the test assays can be used for accuracy in the evaluation of the results. An alternative to this method involves reversing the "positions" of the proteins, *i.e.*, immobilizing Prox-1 binding partner to the microtiter plate wells, incubating with the test molecule and radiolabeled Prox-1 polypeptide, and determining the extent of Prox-1 polypeptide binding. See, for example, chapter 18, *Current Protocols in Molecular Biology*, Ausubel *et al.*, eds., John Wiley & Sons, New York, NY (1995).

As an alternative to radiolabeling, Prox-1 protein or its binding partner may be conjugated to biotin and the presence of biotinylated protein can then be detected using streptavidin linked to an enzyme, such as horseradish peroxidase (HRP) or alkaline phosphatase (AP), that can be detected colorometrically or by fluorescent tagging of streptavidin. An antibody directed to Prox-1 or to a Prox-1 binding partner and conjugated to biotin may also be used and can be detected after incubation with enzyme-linked streptavidin linked to AP or HRP.

A Prox-1 protein or Prox-1 binding partner can also be immobilized by attachment to agarose beads, acrylic beads or other types of such inert solid phase substrates. The substrate-protein complex can be placed in a solution containing the complementary protein and the test compound. After incubation the beads can be precipitated by centrifugation, and the amount of binding between Prox-1 protein and its binding partner can be assessed using the methods described herein. Alternatively, the substrate-protein complex can be immobilized in a column, and the test molecule and complementary protein are passed through the column. The formation of a complex between an Prox-1 protein and its binding partner can then be assessed using any of the techniques set forth herein, *i.e.*, radiolabeling, antibody binding or the like.

Another *in vitro* assay that is useful for identifying a test molecule which increases or decreases the formation of a complex between Prox-1 and a Prox-1 binding partner is a surface plasmon resonance detector system such as the BIAcore

10

15

20

25

30

assay system (Pharmacia, Piscataway, NJ). The BIAcore system may be carried out using the manufacturer's protocol. This assay essentially involves the covalent binding of either Prox-1 or a Prox-1 binding partner to a dextran-coated sensor chip which is located in a detector. The test compound and the other complementary protein can then be injected, either simultaneously or sequentially, into the chamber containing the sensor chip. The amount of complementary protein that binds can be assessed based on the change in molecular mass which is physically associated with the dextran-coated side of the sensor chip; the change in molecular mass can be measured by the detector system.

In some cases, it may be desirable to evaluate two or more test compounds together for their ability to increase or decrease the formation of a complex between Prox-1 polypeptide and a Prox-1 binding partner. In these cases, the assays set forth herein can be readily modified by adding such additional test compound(s) either simultaneous with, or subsequent to, the first test compound. The remainder of the steps in the assay are as set forth herein.

In vitro assays such as those described herein may be used advantageously to screen large numbers of compounds for effects on complex formation by Prox-1 polypeptide and a Prox-1 binding partner. The assays may be automated to screen compounds generated in phage display, synthetic peptide, and chemical synthesis libraries.

Compounds which increase or decrease the formation of a complex between a Prox-1 polypeptide and a Prox-1 binding partner may also be screened in cell culture using cells and cell lines expressing either Prox-1 polypeptide or a Prox-1 binding partner. Cells and cell lines may be obtained from any mammal. The binding of a Prox-1 protein to cells expressing a Prox-1 binding partner at the surface is evaluated in the presence or absence of test molecules, and the extent of binding may be determined by, for example, flow cytometry using a biotinylated antibody to a Prox-1 binding partner. Cell culture assays can be used advantageously to further evaluate compounds that score positive in protein binding assays described herein.

Cell cultures can also be used to screen the impact of a drug candidate.

For example, drug candidates may decrease or increase the expression of the Prox-1

5

10

15

20

25

30

like gene. In certain embodiments, the amount of Prox-1 protein that is produced may be measured after exposure of the cell culture to the drug candidate. In certain embodiments, one may detect the actual impact of the drug candidate on the cell culture. For example, the overexpression of a particular gene may have a particular impact on the cell culture. In such cases, one may test a drug candidate's ability to increase or decrease the expression of the gene or its ability to prevent or inhibit a particular impact on the cell culture. In other examples, the production of a particular metabolic product such as a fragment of a polypeptide may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product in a cell culture.

E. Internalizing Proteins

The *tat* protein sequence (from HIV) can be used to internalize proteins into a cell. See *e.g.*, Falwell *et al.*, *Proc. Natl. Acad. Sci. USA*, 91:664-668 (1994). For example, an 11 amino acid sequence (YGRKKRRQRRR; SEQ ID NO: 46) of the HIV tat protein (termed the "protein transduction domain", or TAT PDT) has been described as mediating delivery across the cytoplasmic membrane and the nuclear membrane of a cell. See Schwarze *et al.*, *Science*, 285:1569-1572 (1999); and Nagahara *et al.*, *Nature Medicine*, 4:1449-1452 (1998). In these procedures, FITC-constructs are prepared which bind to cells as observed by fluorescence-activated cell sorting (FACS) analysis, and these constructs penetrate tissues after i.p. adminstration.- Next, tat-bgal fusion proteins are constructed. Cells treated with this construct demonstrate b-gal activity. Following injection, a number of tissues, including liver, kidney, lung, heart and brain tissue, have been found to demonstrate expression using these procedures. It is believed that these constructions underwent some degree of unfolding in order to enter the cell; as such, refolding may be required after entering the cell.

It will thus be appreciated that the tat protein sequence may be used to internalize a desired protein or polypeptide into a cell. For example, using the *tat* protein sequence, Prox-1 antagonist (such as an anti-Prox-1 binding agent, small molecule, or antisense oligonucleotide) can be administered intracellularly to inhibit

15

20

the activity of a Prox-1 molecule. See also, Strauss, E., Science, 285:1466-1467 (1999).

F. Rational Drug Design

The goal of rational drug design is to produce structural analogs of

biologically active polypeptides or compounds with which they interact (agonists,
antagonists, inhibitors, peptidomimetics, binding partners, etc.). By creating such
analogs, it is possible to fashion drugs which are more active or stable than the natural
molecules, which have different susceptibility to alteration or which may affect the
function of various other molecules. In one approach, one generates a three
dimensional structure for Prox-1 protein or a fragment thereof. This is accomplished
by x-ray crystallography, computer modeling or by a combination of both approaches.
An alternative approach, "alanine scan," involves the random replacement of residues
throughout molecule with alanine, and the resulting affect on function determined.

It also is possible to isolate a specific antibody, selected by a functional assay, and then solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of anti-idiotype would be expected to be an analog of the original antigen. The anti-idiotype could then be used to identify and isolate peptides from banks of chemically- or biologically-produced peptides. Selected peptides would then serve as the pharmacore. Anti-idiotypes may be generated using the methods described herein for producing antibodies, using an antibody as the antigen.

Thus, one may design drugs which have activity as stimulators,

inhibitors, agonists, antagonists of Prox-1 protein or molecules affected by Prox-1

protein function. Such rational drug design may start with lead compounds identified
by the present invention. By virtue of the availability of cloned Prox-1 protein
sequences, sufficient amounts of the related proteins can be produced to perform
crystallographic studies. In addition, knowledge of the polypeptide sequences permits
computer employed predictions of structure-function relationships.

G. Therapeutic Methods

As discussed herein, polynucleotides or modulators of Prox-1 (including inhibitors of Prox-1) are administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

10 The composition can also be administered in the rapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. Any anti-cancer drugs can be used as a treatment in combination with the polypeptide or modulator of the 15 invention, including: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea 20 (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, 25 Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of compositions of the invention to reduce the risk of developing cancers.

15

20

25

30

PCT/EP2004/008819

- 40 -

In vitro and in vivo models can be used to determine the effective doses of the compositions of the invention for cancer treatment. These in vitro models include proliferation and differentiation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999) respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs, and/or are described below.

H. Pharmaceutical Compositions

Purified nucleic acids, antisense molecules, purified protein, antibodies, antagonists, or inhibitors may all be used as pharmaceutical compositions. Delivery of specific molecules for therapeutic purposes in this invention is further described below.

The active compositions of the present invention include classic pharmaceutical preparations. Administration of these compositions according to the present invention will be via any common route so long as the target tissue is available via that route. The pharmaceutical compositions may be introduced into the subject by any conventional method, *e.g.*, by intravenous, intradermal, intramusclar, intramammary, intraperitoneal, intrathecal, intraocular, retrobulbar, intrapulmonary (*e.g.*, term release); by oral, sublingual, nasal, anal, vaginal, or transdermal delivery, or by surgical implantation at a particular site, *e.g.*, embedded under the splenic capsule, brain, or in the cornea. The treatment may consist of a single dose or a plurality of doses over a period of time.

The active compounds may be prepared for administration as solutions of free base or pharmacologically acceptable salts in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions also can be prepared in

5

10

15

20

25

30

glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.

Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic

5

20

and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions.

For oral administration the active compositions may be incorporated with excipients and used in the form of non-ingestible mouthwashes and dentifrices. A mouthwash may be prepared incorporating the active ingredient in the required amount in an appropriate solvent, such as a sodium borate solution (Dobell's Solution). Alternatively, the active ingredient may be incorporated into an antiseptic wash containing sodium borate, glycerin and potassium bicarbonate. The active ingredient may also be dispersed in dentifrices, including: gels, pastes, powders and slurries. The active ingredient may be added in a therapeutically effective amount to a paste dentifrice that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants.

The compositions of the present invention may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups also can be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

The compositions of the present invention may be formulated in a

neutral or salt form. Pharmaceutically-acceptable salts include the acid addition salts
(formed with the free amino groups of the protein) and which are formed with
inorganic acids such as, for example, hydrochloric or phosphoric acids, or such
organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the
free carboxyl groups also can be derived from inorganic bases such as, for example,
sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases
as isopropylamine, trimethylamine, histidine, procaine and the like.

5

30

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like. For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.

In the clinical setting an "effective amount" is an amount sufficient to 10 effect beneficial or desired clinical results. An effective amount can be administered in one or more doses. In terms of treatment, an "effective amount" of polynucleotide, and/or polypeptide is an amount that results in amelioration of symptoms or a prolongation of survival in a patient. The effective amount is generally determined by the physician on a case-by-case basis and is within the skill of one in the art. Several 15 factors are typically taken into account when determining, an appropriate dosage. These factors include age, sex and weight of the patient, the condition being treated, the severity of the condition and the form of the antibody being administered. For instance, in embodiments in which the antibody compositions of the present invention are being therapeutically administered, it is likely the concentration of a single chain 20 antibody need not be as high as that of native antibodies in order to be therapeutically effective. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be 25 formulated in animal models to achieve a circulating concentration range that includes the IC50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the C-proteinase activity). Such information can be used to more accurately determine useful doses in humans.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio

5

10

15

20

25

between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD50 and ED50. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics," Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the C-proteinase inhibiting effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data; for example, the concentration necessary to achieve 50-90% inhibition of the C-proteinase using the assays described herein. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value.

Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration. Refinement of the calculations necessary to determine the appropriate treatment dose is routinely made by those of ordinary skill in the art without undue experimentation, especially in light of the dosage information and assays disclosed herein as well as the pharmacokinetic data observed in animals or human clinical trials. As studies are conducted, further information will emerge regarding appropriate dosage levels and duration of treatment for specific diseases and conditions.

In a preferred embodiment, the present invention is directed at treatment of colon cancer, including colon cancer indicated by the presence of overexpression of Prox-1. A variety of different routes of administration are

5

10

15

20

contemplated. For example, in the case of a tumor, the discrete tumor mass may be injected. The injections may be single or multiple; where multiple, injections are made at about 1 cm spacings across the accessible surface of the tumor.

Alternatively, targeting the tumor vasculature by direct, local or regional intra-arterial injection are contemplated. The lymphatic systems, including regional lymph nodes, present another likely target for delivery. Further, systemic injection may be preferred.

It will be appreciated that the pharmaceutical compositions and treatment methods of the invention may be useful in fields of human medicine and veterinary medicine. Thus the subject to be treated may be a mammal, preferably human or other animal. For veterinary purposes, subjects include for example, farm animals including cows, sheep, pigs, horses and goats, companion animals such as dogs and cats, exotic and/or zoo animals, laboratory animals including mice rats, rabbits, guinea pigs and hamsters; and poultry such as chickens, turkey ducks and geese.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

H. Transgenic Animals

A transgenic animal can be prepared in a number of ways. A

transgenic organism is one that has an extra or exogenous fragment of DNA
incorporated into its genome, sometimes replacing an endogenous piece of DNA. In
order to achieve stable inheritance of the extra or exogenous DNA, the integration
event must occur in a cell type that can give rise to functional germ cells. The two
animal cell types that are used for generating transgenic animals are fertilized egg

cells and embryonic stem cells. Embryonic stem (ES) cells can be returned from in
vitro culture to a "host" embryo where they become incorporated into the developing

animal and can give rise to transgenic cells in all tissues, including germ cells. The ES cells are transfected in culture and then the mutation is transmitted into the germline by injecting the cells into an embryo. The animals carrying mutated germ cells are then bred to produce transgenic offspring. The use of ES cells to make genetic changed in the mouse germline is well recognized. For a reviews of this technology, those of skill in the art are referred to Bronson & Smithies, *J. Biol. Chem.*, 269(44), 27155-27158, 1994; Torres, *Curr. Top. Dev. Biol.*, 36, 99-114; 1998 and the references contained therein.

Generally, blastocysts are isolated from pregnant mice at a given stage in development, for example, the blastocyst from mice may be isolated at day 4 of 10 development (where day 1 is defined as the day of plug), into an appropriate buffer that will sustain the ES cells in an undifferentiated, pluripotent state. ES cell lines may be isolated by a number of methods well known to those of skill in the art. For example, the blastocysts may be allowed to attach to the culture dish and 15 approximately 7 days later, the outgrowing inner cell mass picked, trypsinized and transferred to another culture dish in the same culture media. ES cell colonies appear 2-3 weeks later with between 5-7 individual colonies arising from each explanted inner cell mass. The ES cell lines can then be expanded for further analysis. Alternatively, ES cell lines can be isolated using the immunosurgery technique 20 (described in Martin, Proc. Natl. Acad. Sci. USA 78:7634-7638, 1981) where the trophectoderm cells are destroyed using anti-mouse antibodies prior to explanting the inner cell mass.

In generating transgenic animals, the ES cell lines that have been manipulated by homologous recombination are reintroduced into the embryonic environment by blastocyst injection (as described in Williams *et al.*, *Cell* 52:121-131, 1988). Briefly, blastocysts are isolated from a pregnant mouse and expanded. The expanded blastocysts are maintained in oil-drop cultures at 4°C for 10 minutes prior to culture. The ES cells are prepared by picking individual colonies, which are then incubated in phosphate-buffered saline, 0.5 mM EGTA for 5 minutes; a single cell suspension is prepared by incubation in a trypsin-EDTA solution containing 1% (v/v) chick serum for a further 5 minutes at 4°C. Five to twenty ES cells (in Dulbecco's modified Eagle's Medium with 10% (v/v) fetal calf serum and 3,000 units/ml DNAase

5

10

15

20

25

30

- 47 -

1 buffered in 20 mM HEPES [pH 8]) are injected into each blastocyst. The blastocysts are then transferred into pseudo-pregnant recipients and allowed to develop normally. The transgenic mice are identified by coat markers (Hogan *et al.*, Manipulating the Mouse Embryo, Cold Spring Harbor, N.Y. (1986)). Additional methods of isolating and propagating ES cells may be found in, for example, U.S. Patent No. 5,166,065; U.S. Patent No. 5,449,620; U.S. Patent No. 5,453,357; U.S. Patent No. 5,670,372; U.S. Patent No. 5,753,506; U.S. Patent No. 5,985,659, each incorporated herein by reference.

An alternative method involving zygote injection method for making transgenic animals is described in, for example, U.S. Patent No. 4,736,866, incorporated herein by reference. Additional methods for producing transgenic animals are generally described by Wagner and Hoppe (U.S. Patent No. 4,873,191; which is incorporated herein by reference), Brinster *et al. Proc. Nat'l Acad. Sci. USA*, 82(13) 4438-4442, 1985; which is incorporated herein by reference in its entirety) and in *Manipulating the Mouse Embryo; A Laboratory Manual*, 2nd edition (eds., Hogan, Beddington, Costantimi and Long, Cold Spring Harbor Laboratory Press, 1994; which is incorporated herein by reference in its entirety).

Briefly, this method involves injecting DNA into a fertilized egg, or zygote, and then allowing the egg to develop in a pseudo-pregnant mother. The zygote can be obtained using male and female animals of the same strain or from male and female animals of different strains. The transgenic animal that is born, the founder, is bred to produce more animals with the same DNA insertion. In this method of making transgenic animals, the new DNA typically randomly integrates into the genome by a non-homologous recombination event. One to many thousands of copies of the DNA may integrate at a site in the genome

Generally, the DNA is injected into one of the pronuclei, usually the larger male pronucleus. The zygotes are then either transferred the same day, or cultured overnight to form 2-cell embryos and then transferred into the oviducts of pseudo-pregnant females. The animals born are screened for the presence of the desired integrated DNA.

15

25

30

DNA clones for microinjection can be prepared by any means known in the art. For example, DNA clones for microinjection can be cleaved with enzymes appropriate for removing the bacterial plasmid sequences, and the DNA fragments electrophoresed on 1% agarose gels in TBE buffer, using standard techniques. The DNA bands are visualized by staining with ethidium bromide, and the band containing the expression sequences is excised. The excised band is then placed in dialysis bags containing 0.3 M sodium acetate, pH 7.0. DNA is electroeluted into the dialysis bags, extracted with a 1:1 phenol:chloroform solution and precipitated by two volumes of ethanol. The DNA is redissolved in 1 ml of low salt buffer (0.2 M NaCl, 20 mM Tris, pH 7.4, and 1 mM EDTA) and purified on an Elutip-D™ column. The column is first primed with 3 ml of high salt buffer (1 M NaCl, 20 mM Tris, pH 7.4, and 1 mM EDTA) followed by washing with 5 ml of low salt buffer. The DNA solutions are passed through the column three times to bind DNA to the column matrix. After one wash with 3 ml of low salt buffer, the DNA is eluted with 0.4 ml high salt buffer and precipitated by two volumes of ethanol. DNA concentrations are measured by absorption at 260 nm in a UV spectrophotometer. For microinjection, DNA concentrations are adjusted to 3 mg/ml in 5 mM Tris, pH 7.4 and 0.1 mM EDTA.

Additional methods for purification of DNA for microinjection are
described in Hogan *et al.* Manipulating the Mouse Embryo (Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, 1986), in Palmiter *et al. Nature* 300:611 (1982);
in The Qiagenologist, Application Protocols, 3rd edition, published by Qiagen, Inc.,
Chatsworth, CA.; and in Sambrook *et al. Molecular Cloning: A Laboratory Manual*(Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

In an exemplary microinjection procedure, female mice six weeks of age are induced to superovulate. The superovulating females are placed with males and allowed to mate. After approximately 21 hours, the mated females are sacrificed and embryos are recovered from excised oviducts and placed in an appropriate buffer, e.g., Dulbecco's phosphate buffered saline with 0.5% bovine serum albumin (BSA; Sigma). Surrounding cumulus cells are removed with hyaluronidase (1 mg/ml). Pronuclear embryos are then washed and placed in Earle's balanced salt solution containing 0.5% BSA in a 37.5°C incubator with a humidified atmosphere at 5%

10

20

25

CO₂, 95% air until the time of injection. Embryos can be implanted at the two-cell stage.

Randomly cycling adult female mice are paired with vasectomized males. C57BL/6 or Swiss mice or other comparable strains can be used for this purpose. Recipient females are mated at the same time as donor females. At the time of embryo transfer, the recipient females are anesthetized with an intraperitoneal injection of 0.015 ml of 2.5 % avertin per gram of body weight. The oviducts are exposed by a single midline dorsal incision. An incision is then made through the body wall directly over the oviduct. The ovarian bursa is then torn with watchmakers forceps. Embryos to be transferred are placed in DPBS (Dulbecco's phosphate buffered saline) and in the tip of a transfer pipette (about 10 to 12 embryos). The pipette tip is inserted into the infundibulum and the embryos transferred. After the transfer, the incision is closed by two sutures. The pregnant animals then give birth to the founder animals which are used to establish the transgenic line.

15 I. Use of Prox-1-based Compositions for Diagnostic Purposes

The demonstration that Prox-1 is overexpressed in precancerous and colon cancer cells also indicates that detection of Prox-1 polynucleotides and polypeptides (including variants thereof) are useful for diagnostic purposes.

Therefore, preferred aspects of the present invention are directed to methods of screening and diagnosing colon cancer in an individual.

In one preferred embodiment, diagnostic methods of the invention are practiced through the detection of the Prox-1 protein. In general, methods for detecting a polypeptide of the invention can comprise contacting a biological sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected. Prox-1 protein detection can be accomplished using antibodies specific for the protein in any of a number of formats commonly used by those of skill in the art for such detection.

For example, elsewhere in the present application, the production and characterization of monoclonal antibodies specific for Prox-1 is described. Such antibodies may be employed in ELISA-based techniques and Western blotting

10

15

20

25

30

techniques to detect the presence of Prox-1 in a biological sample from a subject being tested. Methods for setting up ELISA assays and preparing Western blots of a sample are well known to those of skill in the art. The biological sample can be any tissue or fluid in which colon cells or tissue might be present.

An anti-Prox-1 antibody or fragment thereof also is useful to monitor expression of this protein in individuals suffering from colon cancer. Typically, diagnostic assays entail detecting the formation of a complex resulting from the binding of an antibody or fragment thereof to Prox-1. For diagnostic purposes, the antibodies or antigen-binding fragments can be labeled or unlabeled. The antibodies or fragments can be directly labeled. A variety of labels can be employed, including, but not limited to, radionuclides, fluorescers, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors and ligands (e.g., biotin, haptens). Numerous appropriate immunoassays are known to the skilled artisan (see, for example, U.S. Pat. Nos. 3,817,827; 3,850,752; 3,901,654 and 4,098,876). When unlabeled, the antibodies or fragments can be detected using suitable means, as in agglutination assays, for example. Unlabeled antibodies or fragments can also be used in combination with another (i.e., one or more) suitable reagent which can be used to detect antibody, such as a labeled antibody (e.g., a second antibody) reactive with the first antibody (e.g., anti-idiotype antibodies or other antibodies that are specific for the unlabeled immunoglobulin) or other suitable reagent (e.g., labeled protein A).

In one embodiment, the antibodies or fragments of the present invention can be utilized in enzyme immunoassays, wherein the subject antibody or fragment, or second antibodies, are conjugated to an enzyme. When a biological sample comprising a Prox-1 protein is combined with the subject antibodies, binding occurs between the antibodies and the Prox-1 protein. In one embodiment, a biological sample containing cells expressing a mammalian Prox-1 protein, or biological fluid containing secreted Prox-1 is combined with the subject antibodies, and binding occurs between the antibodies and the Prox-1 protein present in the biological sample comprising an epitope recognized by the antibody. These bound protein can be separated from unbound reagents and the presence of the antibody-enzyme conjugate specifically bound to the Prox-1 protein can be determined, for example, by contacting the sample with a substrate of the enzyme which produces a

10

15

20

25

30

color or other detectable change when acted on by the enzyme. In another embodiment, the subject antibodies can be unlabeled, and a second, labeled antibody can be added which recognizes the subject antibody.

Similarly, the present invention also relates to a method of detecting and/or quantitating expression of a mammalian Prox-1 protein or a portion of the Prox-1 protein by a cell, in which a composition comprising a cell or fraction thereof (e.g., a soluble fraction) is contacted with an antibody or functional fragment thereof which binds to a mammalian Prox-1 protein or a portion of the Prox-1 protein under conditions appropriate for binding of the antibody or fragment thereto, and binding is monitored. Detection of the antibody, indicative of the formation of a complex between antibody and or a portion of the protein, indicates the presence of the protein.

The method can be used to detect expression of Prox-1 from the cells of an individual (e.g., in a sample, such as a body fluid, such as blood, saliva or other suitable sample). The level of expression of in a biological sample of that individual can also be determined, for instance, by flow cytometry, and the level of expression (e.g., staining intensity) can be correlated with disease susceptibility, progression or risk.

In certain other diagnostic embodiments, the polynucleotide sequences encoding Prox-1 protein may be used for the diagnosis of conditions or diseases with which the expression of Prox-1 protein is associated. In general, methods for detecting Prox-1 mRNA can comprise contacting a biological sample with a compound that binds to and forms a complex with Prox-1 mRNA for a period sufficient to form the complex, and detecting the complex in a quantitative or semi-quantitative way. Such methods can also comprise amplification techniques involving contacting a biological sample with nucleic acid primers that anneal to Prox-1 mRNA or its complement, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected. The biological sample can be any tissue or fluid in which Prox-1-expressing colon cells might be present.

In the amplification procedures, polynucleotide sequences encoding

Prox-1 protein may be used in hybridization or PCR assays of fluids or tissues from

5

25

30

biopsies to detect Prox-1 protein expression. Such methods may be qualitative or quantitative in nature and may include Southern or northern analysis, dot blot or other membrane-based technologies; PCR technologies; dip stick, pin, chip and ELISA technologies. All of these techniques are well known in the art and are the basis of many commercially available diagnostic kits.

One such procedure known in the art is quantitative real-time PCR. Real-time quantitative can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's 10 instructions. PCR reagents can be obtained from PE-Applied Biosystems, Foster City, CA. Gene target quantities obtained by real time RT-PCR may be normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreenTM (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously 15 with the target, multiplexing, or separately. Total RNA is quantified using RiboGreenTM RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreenTM are taught in Jones, L.J., et al, *Analytical* Biochemistry, 1998, 265, 368-374. Controls are analyzed in parallel to verify the absence of DNA in the RNA preparation (-RT control) as well as the absence of 20 primer dimers in control samples lacking template RNA. In addition, RT-PCR products may be analyzed by gel electrophoresis.

A reverse transcriptase PCR™ amplification procedure may be performed in order to quantify the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989. Alternative methods for reverse transcription utilize thermostable DNA polymerases. These methods are described in WO 90/07641, filed December 21, 1990.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present

20

25

30

- 53 -

invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The tests of the present invention include cells, protein extracts of cells, or biological fluids such as, blood, serum, and plasma. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In addition, such assays may be useful in evaluating the efficacy of a particular therapeutic treatment regime in animal studies, in clinical trials, or in monitoring the treatment of an individual patient. In order to provide a basis for the diagnosis of disease, a normal or standard measurement of Prox-1 mRNA or protein expression is established. This generally involves Prox-1 measurements from healthy colon tissue taken from one or more subjects, measured using the same or similar reagents used for the test subjects. The healthy subject preferably is matched for sex and age, and optionally, ethnicity. Deviation between standard and subject values correlates with the presence of precancerous or cancerous tissue.

Once disease is established, a therapeutic agent is administered; and a treatment profile is generated. Such assays may be repeated on a regular basis to evaluate whether the values in the profile progress toward or return to the normal or standard pattern. Successive treatment profiles may be used to show the efficacy of treatment over a period of several days or several months.

Methods to quantify the expression of a particular molecule include radiolabeling (Melby *et al.*, J Immunol Methods 159: 235-44, 1993) or biotinylating (Duplaa *et al.*, Anal Biochem 229-36, 1993) nucleotides, coamplification of a control nucleic acid, and standard curves onto which the experimental results are interpolated.

5

10

15

20

25

In addition to being used as diagnostic methods, screening methods also may be used in a prognostic manner to monitor the efficacy of treatment. The methods may be performed immediately before, during and after treatment to monitor treatment success. The methods also should be performed at intervals, preferably every three to six months, on disease free patients to insure treatment success.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, or strips of plastic or paper. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the biological sample and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains, for example, the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

In further detail, kits for use in detecting the presence of a mammalian

Prox-1 protein can include an antibody or functional fragment thereof which binds to
a mammalian Prox-1 protein or portion of this protein, as well as one or more
ancillary reagents suitable for detecting the presence of a complex between the

5

10

15

antibody or fragment and Prox-1 or portion thereof. The antibody compositions of the present invention can be provided in lyophilized form, either alone or in combination with additional antibodies specific for other epitopes. The antibodies, which can be labeled or unlabeled, can be included in the kits with adjunct ingredients. For example, the antibodies can be provided as a lyophilized mixture with the adjunct ingredients, or the adjunct ingredients can be separately provided for combination by the user. Generally these adjunct materials will be present in less than about 5% weight based on the amount of active antibody, and usually will be present in a total amount of at least about 0.001% weight based on antibody concentration. Where a second antibody capable of binding to the monoclonal antibody is employed, such antibody can be provided in the kit, for instance in a separate vial or container. The second antibody, if present, is typically labeled, and can be formulated in an analogous manner with the antibody formulations described above.

J. Examples

The present invention is illustrated in the following examples, which are intended to be illustrative and not limiting. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention.

Example 1 provides methods and materials for the subsequent 20 Examples.

Example 2 provides experimental results of studies designed to assess Prox-1 expression in colorectal cancer cells.

Example 3 details expression of Prox-1 in round but not in adherent subclones of the SW480 colon adenocarcinoma cell line.

Example 4 provides experimental results of Prox-1 silencing in SW480R cells.

Example 5 describes effects of Prox-1 ablation on Notch signaling in SW480R cells.

Example 6 describes the effects of suppression of Prox-1 on the growth of SW480R cells in soft agar.

- 56 -

Example 7 describes the effect Prox-1 suppression on prostaglandin biosynthesis.

Example 8 describes experiments aimed as assessing the effects of altered Notch signaling.

5 Example 9 describes experiments aimed at assessing the effects of Prox-1 suppression on the growth of SW480R tumors in nude mice.

Example 10 describes analysis of Prox-1 in natural colorectal tumors.

Example 11 describes one method for diagnosing or screening for colorectal cancer.

Example 12 describes experiments designed to compare Prox-1 expression in normal cololnic epithelium.

 $\label{eq:Example 13 describes experiments aimed at assessing Prox-1}$ expression in $\mbox{Apc}^{\mbox{min}/\mbox{+}}$ mice.

Example 14 describes studies conducted using SW480R cell line as an in vitro model to investigate the role of Prox-1 in colorectal carcinoma.

Example 15 describes experiments to characterize the effects of Prox-1 suppression and overexpression in colorectal cancer.

Example 16 describes experiments employing dominant negative mutants of Prox-1.

20

EXAMPLE 1

METHODS AND MATERIALS

Methods and material used or referred to in subsequent examples are set forth directly below.

25 Antibodies

Monoclonal mouse anti-vimentin, ß-catenin (Transduction Laboratories), Ki-67 (Pharmingen) and chromogranin A (Ab-3, NeoMarkers), monoclonal rat anti-BrdU (Harlan Seralab) and polyclonal rabbit anti-Prox-1 were

obtained from the indicated commercial sources. The fluorochrome-conjugated secondary antibodies were obtained from Jackson Immunoresearch.

For production of Prox-1 antibodies cDNA encoding Prox-1 homeobox domain and prospero domain (amino acids 578-750 of human Prox-1, SEQ ID NO: 3) was subcloned into pGEX2t vector to produce GST-Prox-1 fusion construct. This construct was expressed in *E. coli* and the GST-Prox-1 fusion protein from *E. coli* was purified using glutathione Sepharose according to the manufacturer's instructions (Amersham, Piscataway, NJ). Fusion protein was used to immunize rabbits according to a standard protocol. Prox-1-specific antibodies were isolated from rabbit serum using sequential columns with GST- and GST-Prox-1-coupled to vinylsulfone agarose resin (Sigma). Purified antibody recognized an 85 kD protein in lysates from 293T cells transfected with Prox-1 but not from cells transfected with the empty vector.

Synthetic siRNAs

25

30

siRNA duplexes were prepared from synthetic 21 nucleotide RNAs (Dharmacon Research). siRNA sequences were: 5'CUGCAAGCUGGAUAGUGAAGU-3' (Prox-1 siRNA A16 sense) (SEQ ID NO: 4);
5'-UUCACUAUCCAGCUUGCAGAU-3' (Prox-1 siRNA A16 antisense) (SEQ ID NO: 5); 5'-CUAUGAGCCAGUUUGAUAUUU-3' (Prox-1 siRNA A25 sense) (SEQ ID NO: 6); 5'- AUAUCAAACUGGCUCAUAGUU-3' (Prox-1 siRNA A25 antisense) (SEQ ID NO: 7).

EGFP-targeting control siRNA A18 was essentially as described (Lewis et al., 2002) except that instead of thymidine 3' overhangs uracil overhangs were used; GACGUAAACGGCCACAAGUUU (EGFP siRNA A18 sense) (SEQ ID NO: 8); ACUUGUGGCCGUUUACGUCUU (EGFP siRNA A18 antisense) (SEQ ID NO: 9).

siRNAs were 2'-ACE deprotected according to the manufacturer's instructions, dried in vacuum, resuspended in 400µl water, dried again, resuspended in water, and annealed to form duplex siRNAs. For annealing equimolar amounts of siRNA strands (approximately 50-100µM) were incubated in annealing buffer (100mM potassium acetate 30mM Hepes–KOH pH 7.4, 2mM magnesium acetate) for

10

15

20

25

30

5 min at +95°C followed by 30 min at +37°C and 30 min at +25°C. After annealing the siRNA concentration was measured by spectrometry and siRNA aliquoted and stored at -20°C.

Cell culture, transfection, and soft agar assay

SW480 cells were obtained from ATCC (CCL-228) and cultured in RPMI-1640 supplemented with 10% fetal bovine serum, 1 mM glutamine and antibiotics. HepG2 cells were cultured in DMEM, containing 10% fetal bovine serum 1 mM glutamine and antibiotics.

Transfection of siRNAs was carried out using Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions using 0.5% (v/v) lipofectamine 2000 reagent for SW480R and 0.4% (v/v) lipofectamine 2000 for adherent SW480 cells and either 20nM or 100nM (f.c.) of siRNA. Transfections were carried out in antibiotic-free media for 4-6 hours before changing cells back to normal culture media. For long-term experiments siRNA transfections were repeated after 48-72h from previous transfection (at protein level the silencing effect was seen to remain efficient for at least 96h). Normally approximately 90-95% transfection efficiency was achieved. Opti-MEM (Invitrogen) medium was used in preparation of transfection mixtures.

For luciferase assays, cells were transfected with Green Fluorescent Protein small interfering RNA (GFPsi RNA) or Prox-1 siRNAs 72 h prior to the transfection with the firefly lucefarese reporter constructs CBF1-luc, control pGL2-luc (Promega), TOPFlash and FOPFlash (Upstate). To normalize the transfection efficiency, cells were co-transfected with the Renilly firefly reporter pRL-TK (Promega). 36 h after the last transfection cells were lysed and lysates were analyzed for the luciferase activity using Dual-Luciferase TM kit according to the manufacturer's instructions (Promega).

For soft agar assay, $2x10^3$ and $2x10^4$ cells were seeded in triplicate in 1 ml of 0.33% (w/v) agar (Difco) containing D-MEM, 10% fetal bovine serum, 1 mM glutamine and antibiotics in 6-well plates containing 1ml of 0.5% bottom agar layer. Cells were fed twice a week, and number of colonies per plate was scored after two weeks in culture.

5

25

30

RNA isolation, Northern, and Western blotting

Total RNA was isolated and DNAseI treated in RNeasy columns (Qiagen). For Cancer Array analysis, filters were hybridized in ExpressHyb with 32P-labeled probes for LYVE-1 and Prox-1 according to the manufacturer's instructions (Clontech). For Northern analysis, the blots were hybridized in Ultrahyb solution (Ambion) with 32P-labeled probes produced by RT-PCR using RNA from SW480R or SW480A cells. The primers were designed to amplify 300-700 bp of the coding sequence, and all PCR-fragments were sequenced to confirm their identity.

For the Affymetrix gene expression analysis, sample preparations and hybridizations were carried out as described (Petrova et al. *Embo J* 21: 4593-9, 2002), using RNA extracted from two clones of SW480R or SW480A cells, or from two independent transfections of two different clones of SW480R cells with GFP siRNA or Prox-1 siRNA A16. To confirm the latter results, another transfection was carried out using Prox siRNA A25. To exclude the non-specific effects due to the transfection itself, non-transfected SW480R cells grown in parallel were also analyzed.

For Western blotting 2x10⁵ cells were lysed in 500 μ1 of sample buffer, lysates were separated using 10% PAGE and transferred to the nitrocellulose membranes (Schleisher&Schull) using semi-dry transfer method for 1 h at 300 mA.

Membranes were blocked in 5% non-fat dry milk, 0.1% Tween-20 in 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, and incubated overnight with primary antibodies. Bound primary antibodies were detected using HRP-conjugated corresponding secondary antibodies and the ECL detection method (KPL).

Immunofluorescence and immunohistochemistry

The cells were cultured on coverslips, fixed with MetOH and stained with the primary antibodies and fluorochrome-conjugated secondary antibody. Factin was stained using TexasRed-conjugated phalloidin (Molecular Probes). Cells were counterstained with Hoechst 33258 fluorochrome (Sigma) and viewed in Zeiss Axioplan 2 fluorescent microscope.

For tissue staining staining, colon tumors and normal colon samples were embedded in Tissue-Tek® (Sakura), frozen and sectioned. The $4\mu m$ sections

10

15

20

25

30

- 60 -

were fixed in cold methanol for 10 min and stained with the primary antibodies followed by peroxidase staining using Vectastain Elite ABC kit (Vector Laboratories) and 3-amino-9-ethyl carbazole (Sigma), or by detection using fluorchrome conjugated secondary antibodies.

EXAMPLE 2

Prox-1 mRNA is Elevated in Colorectal Tumors

Experiments were conducted to assess the expression of Prox-1 mRNA in human cancers using a cancer gene profiling array filter, which contains cDNAs from about 250 human cancers and corresponding normal control tissues. Prox-1 mRNA was significantly increased in 35 out of 53 samples of colorectal cancers. In contrast, only rarely or not at all was any increase seen in samples from breast, uterine, lung, kidney, ovarian, or thyroid tumors (Fig. 1A, B, and C). Probes for Prox-1 (Fig. 1A) and the lymphatic endothelial marker LYVE-1 (Fig. 1B) were used. Fig. 1C demonstrates quantification of dot blot in Fig. 1A, the asterisk indicating tumor samples in which Prox-1 expression is significantly different from that of the normal tissue (P<0.005). Expression of Prox-1 was low or absent in all kidney cancer samples studied. Prox-1 is a marker for lymphatic vessels, which are abundant both in normal colonic submucosa and around colon carcinomas (White et al., Cancer Res. 62: 1669-75 (2002)). Therefore, the filter to the probe for the lymphatic endothelial hyaluronan receptor LYVE-1 was hybridized. Unlike Prox-1, LYVE-1 levels were higher in the normal samples, suggesting that the increased expression cannot be attributed to the lymphatic vessels (Fig. 1B).

Experiments were further conducted to assess the expression of Prox-1 in colon cancers and premalignant colonic lesions using affinity purified antibodies raised against Prox-1 homeobox and prospero domains, which are conserved between the mouse and human proteins. Staining of a panel of mouse tissues and E12.5 and E17.5 embryos revealed specific nuclear staining for Prox-1 in the previously reported sites of expression such as in lymphatic vessels, lens fiber cells and in a subset of neurons in the neural tube. Staining of eleven human colorectal adenomas and nine carcinomas and adjacent normal mucosa revealed increased expression of Prox-1 in nine adenomas and in six carcinomas (Fig. 2A-I). Increased Prox-1 staining was observed in all cells in seven adenomas and in two carcinomas, whereas in the other

10

15

20

25

30

- 61 -

lesions a heterogeneous expression of Prox-1 occurred. In one tumor sample, no specific staining for Prox-1 was seen, while strong expression was observed in intratumoral lymphatic vessels.

Double immunofluorescent staining for Prox-1 and the neuroendocrine marker chromogranin A or proliferation marker Ki-67 was conducted in normal colonic epithelial cells. Nuclei were visualized with Hoechst 333421. In the normal colonic mucosa, Prox-1 was strongly expressed in some epithelial cells, a subset of which was positive for the pan-neuroendocrine marker chromogranin A. In addition, a weaker but significant Prox-1 expression was observed in the bottom of the crypts below the cell proliferation zone identified by staining for the Ki-67 antigen. The location of Prox-1 positive cells at the base of the crypts corresponds to the position of the intestinal stem cells (Bach et al., *Carcinogenesis* 21: 469-76 (2000)).

EXAMPLE 3

PROX-1 IS EXPRESSED IN ROUND BUT NOT IN ADHERENT SUBCLONES OF THE SW480 COLON ADENOCARCINOMA CELL LINE.

Additional studies were conducted to compare Prox-1 expression in various cells. No Prox-1 expression was seen in the majority of tumor cell lines studied. However, Prox-1 was mRNA was present in hepatocellular carcinoma cell line HepG2 and the colon carcinoma cell line SW480. BEC, blood endothelial cells, CAEC, coronary artery endothelial cells, and LEC, lymphatic endothelial cells, served as negative and positive controls. Immunofluorescent staining of Prox-1 revealed strong expression in all HepG2 cells, whereas only a subset of SW480 cells were Prox-1 positiveDouble immunofluorescent staining for Prox-1 and for \(\mathbb{B} - \text{catenin} \) or for the F-actin marker phalloidin demonstrated that Prox-1 expression is restricted to weakly adherent round SW480 cells which did not display focal adhesions or actin stress fibers, and that Prox-1 was very weakly expressed the adherent cells. The existence of two subtypes of cells in the SW480 cultures has been reported previously (Palmer, H. G. et al., J Cell Biol. 154: 369-87, 2001; Tomita, N. et al., Cancer Res. 52; 6840-7, 1992). The SW480R (round) cells displayed anchorage independent growth in vitro and highly malignant phenotype in vivo, whereas the SW480A (adherent) cells did not grow well in soft agar and formed small and well differentiated tumors when implanted into nude mice.

- 62 -

Several SW480R and SW480A clones were isolated, which could be continuously grown for at least 20 passages without conversion of phenotypes. SW480R and SW480A cells differed by the levels of Prox-1, as determined by Northern and Western blotting, with much higher expression in the round cells, and 5 weak, if any, expression in the Adherent ones. The gene expression profiles of SW480R and SW480A cells were compared using oligonucleotide microarrays containing 22,000 annotated human genes, and identified about 1,000 genes whose expression differed by more than fourfold between these two cell types (Table I). SW480 cells were stained for intermediate filament protein vimentin and Prox-1. 10 Northern blotting and hybridization were used for transcripts. Hybridization for GAPDH was used as a control. A striking difference was observed in the expression of cytoskeletal and cell adhesion proteins. In agreement with their decreased adhesion and round cell shape, the SW480R cells lacked many components of the actin, intermediate filament and microtubule networks, such as gelsolin, filamins A and B, ezrin, moesin, vimentin, various integrins, and tubulins (Table I). These cells 15 expressed higher levels of the protoncogene c-met, as well as the receptor tyrosine kinase FGFR-4, which has been associated with malignant transformation in colorectal and other cancer (Bange, J. et al., Cancer Res. 62: 840-7, 2002; Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G., Nat. Cell Biol. 3: 650-7, 2001; Yamada, S. M. et al., Neurol Res. 24: 244-8, 2002), and low levels of the tumor 20 suppressor p21Cip1. FGFR-4 is a target for therapeutic intervention according to the invention, alone or in combination with Prox-1. Intervention using the same classes of inhibitors as described for Prox-1, as well as antibodies and antibody fragment substances, is specifically contemplated. In addition, all three tissue inhibitors of matrix metalloproteinases were absent from the SW480R cells, which may further 25 account for their increased tumor growth in vivo. In contrast, the SW480A cells expressed higher levels of the chemokine receptor CXCR4, which is expressed in the normal colonic epithelium (Jordan et al., J Clin Invest 104, 1061-9, 1999). In summary, the gene expression profile of the SW480R cells correlates well with a 30 highly aggressive transformed phenotype, whereas the SW480A cells display more differentiated features typical of cells in the colonic crypts.

- 63 -

Table I. Examples of groups of genes differentially expressed in round versus adherent SW480 clones. Two round and two adherent clones were analyzed.

Gene function and name	UniGene	Gene	Log ₂ ratio,	St.
1. Cytoskeleton and adhesion	cluster	symbol	average	dev
collagen, type XIII, alpha 1	Hs.211933	COL13A1	-5.6	0.9
fibronectin 1	Hs.287820	FN1	-5.2	0.5
integrin, alpha 7	Hs.74369	ITGA7	-4.3	0.3
vimentin	Hs.297753	VIM	-4.1	0.6
filamin B, beta (actin binding protein 278)	Hs.81008	FLNB	-3.8	0.7
integrin, beta 5	Hs.149846	ITGB5	-3.6	0.7
tubulin, beta polypeptide	Hs.274398	TUBB	-3.3	0.7
PTPL1-associated RhoGAP 1	Hs.70983	PARG1	-3.0	0.7
collagen, type IX, alpha 3	Hs.53563	COL9A3	-2.8	0.8
paralemmin	Hs.78482	PALM	-2.7	0.0
PDZ and LIM domain 1 (elfin)	Hs.75807	PDLIM1	-2.7	0.2
cadherin 11, type 2, OB-cadherin (osteoblast)		CDH11	-2.6	0.7
myosin IC	Hs.286226	MYO1C	-2.6	0.6
integrin, alpha 3	Hs.265829	ITGA3	-2.6	0.4
discs, large (Drosophila) homolog 1	Hs.154294	DLG1	-2.5	0.1
integrin, alphaV	Hs.295726	ITGAV	-2.5	0.1
CDC42 effector protein (Rho GTPase	Hs.260024	11 021 4	-2.5	0.5
binding) 3	113.20002-1	CDC42EP3	-2.4	0.4
ephrin-B1	Hs.144700	EFNB1	-2.3	0.4
FERM, RhoGEF (ARHGEF) and pleckstrin	Hs.183738	Litter	2.3	0.1
domain protein 1	110/100/00	FARP1	-2.3	0.4
myosin ID	Hs.39871	MYO1D	-2.1	0.2
PDZ and LIM domain 2 (mystique)	Hs.379109	PDLIM2	-2.1	0.4
tubulin beta-5	Hs.274398	TUBB-5	-1.9	0.3
erythrocyte membrane protein band 4.1-like 1		EPB41L1	-1.9	0.1
gelsolin (amyloidosis, Finnish type)	Hs.290070	GSN	-1.9	0.3
laminin, gamma 1 (formerly LAMB2)	Hs.432855	LAMC1	-1.8	0.1
ras homolog gene family, member E	Hs.6838	ARHE	-1.7	0.2
IQ motif containing GTPase activating	Hs.1742			
protein 1		IQGAP1	-1.7	0.3
tight junction protein 1 (zona occludens 1)	Hs.74614	TJP1	-1.7	0.4
catenin (cadherin-associated protein), alpha-	Hs.58488			
like 1		CTNNAL1	-1.7	0.6
collagen, type XVIII, alpha 1	Hs.78409	COL18A1	-1.6	0.1
filamin A, alpha (actin binding protein 280)	Hs.195464	FLNA	-1.6	0.2
actin related protein 2/3 complex, subunit 1A	, Hs.90370			
41kDa		ARPC1A	-1.5	0.3
alpha integrin binding protein 63	-	AIBP63	-1.4	0.3
spectrin, alpha, non-erythrocytic 1 (alpha-	Hs.77196			
fodrin)		SPTAN1	-1.4	0.2
villin 2 (ezrin)	Hs.155191	VIL2	-1.4	0.3
actin related protein 2/3 complex, subunit 1B.	Hs.433506			
41kDa		ARPC1B	-1.3	0.1
plakophilin 4	Hs.152151	PKP4	-1.3	0.3
ras homolog gene family, member C	Hs.179735	ARHC	-1.1	0.1
moesin	Hs.170328	MSN	-1.1	0.1

10

WO 2005/014854 PCT/EP2004/008819

- 64 -

myristoylated alanine-rich protein kinase C	Hs.75607			
substrate		MARCKS	-1.1	0.2
2. Tumor growth and invasion				
tissue inhibitor of metalloproteinase 2	Hs.6441	TIMP2	-2.3	0.21
tissue inhibitor of metalloproteinase 3	Hs.245188	TIMP3	-1.5	0.14
Cyclin-dependent kinase inhibitor 1A (p21,	Hs.179665	~~~~		•
Cip1)		CDKN1A	-2.5	0
tissue inhibitor of metalloproteinase 1	Hs.5831	TIMP1	-1.5	0.4
met proto-oncogene (hepatocyte growth facto	orHs.316752			
receptor)		MET	2.6	0.46
Fibroblast growth receptor 4	Hs.165950	FGFR4	3.9	0.76
3. Expressed in normal intestinal epitheli				
CXCR4	Hs.89414	CXCR4	-1.3	0.1
solute carrier family 7 (cationic amino acid	Hs.22891			
transporter, y+ system), member 8		SLC7A8	-1.8	
4. Notch pathway				
Notch homolog 2 (Drosophila)	Hs.8121	NOTCH2	-1.4	0.15
hairy homolog (Drosophila), HES1	Hs.250666	HRY	-2.1	0.2
jagged 2	Hs.166154	JAG2	1.6	0.61
5. Wnt pathway				
wingless-type MMTV integration site family	, Hs.152213			0.12
member 5A		WNT5A	-5.8	
dickkopf homolog 3	Hs.4909	DKK3	-5.6	1.21
wingless-type MMTV integration site family	, Hs.29764			0.23
member 6		WNT6	-4.2	
frizzled homolog 7 (Drosophila)	Hs.173859	FZD7	-4.1	0.65
frizzled homolog 2 (Drosophila)	Hs.81217	FZD2	-3.7	0.56
frizzled homolog 10 (Drosophila)	Hs.31664	FZD10	2.97	0.86
<u> </u>	Hs.159311	DKK4	7.37	0.71
dickkopf homolog 4	119.122211	DIXIX	1.51	0.71

EXAMPLE 4

PROX-1 SILENCING IN SW480R CELLS LEADS TO A DIFFERENTIATED AND QUIESCENT PHENOTYPE.

Experiments were conducted to investigate whether Prox-1 plays role in the generation and maintenance of the highly transformed phenotype. Prox-1 mRNA and protein in the SW480R cells was suppressed using Prox-1 targeting siRNA. Absence of Prox-1 in Prox-1 siRNA but not the control GFP siRNA transfected cells was confirmed by immunofluorescent staining, and nuclei were visualized with Hoechst 33342. Prox-1 siRNA-transfected cells but not the untransfected or GFP siRNA transfected cells underwent a morphological change, which became visible by 72 hours and persisted at least for 10 days after the transient transfection. The Prox-1 siRNA transfected cells become first more elongated and

displayed extensive membrane ruffling. Eventually the Prox-1 siRNA cells started to spread on the plate and a number of increased actin stress fibers could be visualized by phalloidine staining. BrdU incorporation experiments demonstrated that the Prox-1 siRNA transfected cells proliferated at the lower rate than GFPsi or nontransfected cells (22±0.5% of BrdU positive cells in Prox-1 siRNA A16, 18±1% Prox-1 siRNA A25 vs 34±4% GFP siRNA).

Changes in the gene expression profiles of the SW480R and SW480A cells 120 and 240 h posttransfection, when the morphological changes were apparent, were also analyzed. Only 29 down-regulated and 120 upregulated genes in Prox-1 10 siRNA versus GFP siRNA transfected cells (Table II) were identified. 41% of these genes were differentially expressed between the SW480R and SW480A cells, suggesting that Prox-1 at least partially determines the phenotype of SW480R cells. The ablation of Prox-1 led to upregulation of a number of known epithelial markers, such as annexin A1, CRPB2, S100A3, and EMP1, along with the increase in cell adhesion molecules OB-cadherin and integrins beta7, beta5 and alpha 1. In line with 15 the observed growth arrest, also observed was the decrease in c-myc and a strong increase of CDK inhibitor p21Cip1. Highly similar changes in gene expression profile were observed when another unrelated Prox-1si RNA was used, suggesting that the cellular effects are due to the specific targeting of Prox-1, and they did not result from off-target silencing. In addition, titration experiments demonstrated that 20 the induction of p21 and other target genes occurred even at the low (20 nM) concentration of Prox-1 siRNAs but not of the control GFP siRNA. Also, the mentioned gene changes were not observed in Prox-1 negative SW480A cells transfected with siRNAs at 100 nm concentration. The transfection efficiency was controlled using another siRNA, which successfully suppressed the expression of the 25 target gene in SW480A cells.

WO 2005/014854 PCT/EP2004/008819

- 66 -

Table II. Genes regulated by Prox-1 in SW480R cells. Asterisk indicates genes that were flagged as absent in either Prox-1 siRNA or GFP siRNA treated cells. Genes differentially expressed between SW480R and SW480ADH cells are shown in bold.

Genes down-regulated in the absence of Prox-1	UniGene cluster	Gene symbol	Log ₂ ratio, average	stdev
Nebulette	Hs.5025	NEBL	-2.0	0.4
transforming growth factor, beta-induced,	Hs.118787	TGFBI	-1.9	0.1
68kDa				
trinucleotide repeat containing 9	Hs.110826	TNRC9	-1.9	0.2
insulin-like growth factor binding protein 3	Hs.77326	IGFBP3	-1.6	0.0
calpain 1, (mu/I) large subunit	Hs.2575	CAPN1	-1.5	0.3
inhibitor of DNA binding 1	Hs.75424	ID1	-1.5	0.3
midkine (neurite growth-promoting factor 2)	Hs.82045	MDK	-1.5	0.1
FK506 binding protein 11, 19 kDa	Hs.24048	FKBP11	-1.4	0.1
caspase recruitment domain family, member 10	Hs.57973	CARD10	-1.3	0.1
inhibin, beta B (activin AB beta polypeptide)	Hs.1735	INHBB	-1.3	0.2
L1 cell adhesion molecule	Hs.1757	L1CAM	-1.2	0.1
glutathione peroxidase 2 (gastrointestinal)	Hs.2704	GPX2	-1.2	0.0
eukaryotic translation elongation factor 1 alpha	Hs.2642	EEF1A2	-1.2	0.2
2				
hypothetical protein FLJ11149	Hs.37558	FLJ11149	-1.2	0.2
potassium voltage-gated channel, subfamily H	Hs.188021	KCNH2	-1.1	0.1
(eag-related), member 2				
KIAA0182 protein	Hs.75909	KIAA0182	-1.1	0.0
lectin, galactoside-binding, soluble, 1 (galectin 1)	Hs.382367	LGALS1	-1.1	0.1
Homo sapiens cDNA FLJ41000 fis,	-	-	-1.1	0.3
ephrin-B2	Hs.30942	EFNB2	-1.1	0.1
v-myc myelocytomatosis viral oncogene	Hs.79070	MYC	-1.1	0.1
homolog (avian)				
S100 calcium binding protein A14	Hs.288998	S100A14	-1.1	0.2
Alpha one globin [Homo sapiens], mRNA			-1.1	0.1
sequence*				
hypothetical protein FLJ10986*	Hs.273333	FLJ10986	-1.0	0.0
hypothetical protein FLJ11149	Hs.37558	FLJ11149	-1	0.0
myelin transcription factor 1*		MYT1	-1.0	0.0
nucleolar autoantigen (55kD) similar to rat	Hs.446459	SC65	-1.0	0.1
synaptonemal complex protein*				
tumor necrosis factor receptor superfamily,	Hs.455817	TNFRSF6B	-1.0	0.1
member 6b, decoy				
jagged 2	Hs.166154	JAG2	-1.0	0.1
mitochondrial ribosomal protein S2	Hs.20776	MRPS2	-1.0	0.1
Total: 29 genes				

Genes up-regulated in the absence of Prox1	UniGene	Gene	Log2 ratio.	Stdev
* 7* 7*7 /X 0 / X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	cluster	symbol	average	0.4
insulin-like growth factor binding protein 7*	Hs.119206	IGFBP7	5.8	0.4
chitinase 3-like 1 (cartilage glycoprotein-39)*	Hs.75184	CHI3L1	5.3	0.8
chemokine (C-X-C motif) receptor 4*	Hs.89414	CXCR4	4.5	1.1
semaphorin 3C*	Hs.171921	SEMA3C	4.5	4.5
cadherin 11, type 2, OB-cadherin (osteoblast)*	Hs.75929	CDH11	3.8	0.3
annexin A1	Hs.78225	ANXA1	3.7	1.1
hypothetical protein MGC10796*	-	MGC1079	3.3	0.4
•		6		
CD44 antigen	Hs.169610	CD44	2.6	1.1
Homo sapiens clone 23785 mRNA sequence	-	-	2.9	0.4
epithelial membrane protein 1*	Hs.79368	EMP1	2.9	0.1
inhibitor of DNA binding 2, dominant negative	Hs.180919	ID2	2.8	0.1
helix-loop-helix protein*				
Human HepG2 3' region cDNA, clone hmd1f06,	-	-	2.8	0.3
mRNA sequence				
tumor necrosis factor receptor superfamily,	Hs.81791	TNFRSF1	2.6	0.7
member *11b (osteoprotegerin)		1B		
likely homolog of mouse glucuronyl C5-epimerase*	Hs.183006	GLCE	2.6	1.1
ribonuclease, RNase A family, 1 (pancreatic)*	Hs.78224	RNASE1	2.6	0.1
apolipoprotein B mRNA editing enzyme, catalyti	cHs.226307	APOBEC	2.5	0.1
polypeptide-like 3B*		3B		
hydroxyprostaglandin dehydrogenase 15-(NAD)	* Hs.77348	HPGD	2.5	1.1
NPD009 protein	Hs.283675	NPD009	2.5	0.6
integrin, beta 7*	Hs.1741	ITGB7	2.4	0.1
fibroblast growth factor 20*	Hs.154302	FGF20	2.3	1.0
KIAA0455 gene product	Hs.13245	KIAA0455	2.3	1.3
CAMP-specific phosphodiesterase 8B1 [Homo	Hs.78106	PDE8B	2.3	0.4
sapiens], mRNA sequence*				
ectodermal-neural cortex (with BTB-like	Hs.104925	ENC1	2.3	0.2
domain)*				
frizzled homolog 1 (Drosophila)*	Hs.94234	FZD1	2.3	0.8
S100 calcium binding protein A3*	Hs.433168	S100A3	2.2	0.6
zeta-chain (TCR) associated protein kinase 70kDa*		ZAP70	2.2	1.1
platelet derived growth factor C*	Hs.43080	PDGFC	2.1	0.1
cystatin D *	Hs.121489	CST5	2.1	0.3
CCAAT/enhancer binding protein (C/EBP), delt	a Hs.76722	CEBPD	2.1	0.1
sorbin and SH3 domain containing 1	Hs.108924	SORBS1	2.1	0.5
metallothionein 2A	Hs.118786	MT2A	2.0	0.6
RAS guanyl releasing protein 1 (calcium and DAG-	Hs.182591	RASGRP1	2.0	0.4
regulated)				
checkpoint suppressor 1	Hs.211773	CHES1	2.0	0.4
chondroitin beta1,4 N-	Hs.11260	ChGn	2.0	0.4
acetylgalactosaminyltransferase*				
filamin B, beta (actin binding protein 278)*	Hs.81008	FLNB	2.0	0.4
aldehyde dehydrogenase 1 family, member A2*	Hs.95197	ALDH1A2		0.6
jagged 1 (Alagille syndrome)	Hs.91143	JAG1	2.0	0.1
A kinase (PRKA) anchor protein (gravin) 12*	Hs.788	AKAP12	1.9	0.1
metallothionein 1X*	Hs.380778	MT1X	1.9	0.8
	Hs.80691	CKMT2	1.8	0.6
creatine kinase, mitochondrial 2 (sarcomeric)	113.00071	CINIVITA	7.0	0.0

- 68 -

serum-inducible kinase	Hs.3838	SNK	1.8	0.1
CGI-130 protein	Hs.32826	CGI-130	1.8	0.1
guanine nucleotide binding protein (G protein),	Hs.203862	GNAI1	1.8	0.4
alpha inhibiting activity polypeptide 1				
related to the N terminus of tre*	Hs.278526	RNTRE	1.7	0.4
solute carrier family 12 (sodium/potassium/chloride	Hs.110736	SLC12A2	1.7	0.3
transporters), member 2				
Human clone 23612 mRNA sequence	-	-	1.7	1.0
ankyrin repeat and SOCS box-containing 4	Hs.248062	ASB4	1.7	0.8
apolipoprotein B mRNA editing enzyme, catalytic	Hs.8583	APOBEC3	1.7	0.1
polypeptide-like 3C		C		
cellular retinoic acid binding protein 2*	Hs.183650	CRABP2	1.7	0.1
KIAA0657 protein*	Hs.6654	KIAA065	1.7	1.1
		7	1.7	0.1
phosphodiesterase 4D, cAMP-specific	Hs.172081	PDE4D	1.7	0.1
(phosphodiesterase E3 dunce homolog, Drosophila)	TT 00160	A T ITSOO	1.6	0.4
autism susceptibility candidate 2	Hs.32168	AUTS2	1.6	0.4
hairy/enhancer-of-split related with YRPW motif 2*	Hs.14428/	HEY2	1.6	0.0
immediate early response 5	Hs.15725	IER5	1.6	
E3 ubiquitin ligase SMURF2	Hs.194477	SMURF2	1.6	0.4 1.0
ADP-ribosylation factor-like 7*	Hs.111554	ARL7	1.6	
Ras and Rab interactor 2*	Hs.62349	RIN2	1.6	0.4
GS3955 protein, Tribbles homolog 2	Hs.155418	TRB2	1.6	0.5
	Hs.448357	MT1L	1.5	0.6
metallothionein 1L	Hs.86204	GRM8	1.5	0.2
glutamate receptor, metabotropic 8	Hs.94592	KL	1.5	0.1
klotho	Hs.239600	CALML3	1.4	0.6
calmodulin-like 3	Hs.116774	ITGA1	1.4	0.1
integrin, alpha 1	Hs.44865	LEF1	1.4	0.4
lymphoid enhancer-binding factor 1	Hs.116651	EVA1	1.4	0.1
epithelial V-like antigen 1	Hs.57209	LBH	1.4	0.1
likely ortholog of mouse limb-bud and heart	113.57207			002
gene* insulin induced protein 2	Hs.7089	ISG2	1.4	0.2
patched homolog (Drosophila)	Hs.159526	PTCH	1.4	0.1
chemokine-like factor super family 6	Hs.380627	CKLFSF6	1.3	0.3
lipoma HMGIC fusion partner	Hs.93765	LHFP	1.3	0.4
transforming growth factor, alpha	Hs.170009	TGFA	1.3	0.4
Homo sapiens mRNA; cDNA DKFZp762M127	-	-	1.3	0.6
(from clone DKFZp762M127), mRNA sequence				
cyclin I	Hs.79933	CCNI	1.3	0.1
hyaluronan synthase 2	Hs.159226	HAS2	1.3	0.5
IQ motif containing GTPase activating protein 1		IQGAP1	1.3	0.5
zinc finger protein 216	Hs.406096	ZNF216	1.3	0.2
cDNA DKFZp564O0122	.	_	1.3	0.2
aryl hydrocarbon receptor	Hs.170087	AHR	1.2	0.6
neuroepithelial cell transforming gene 1	Hs.25155	NET1	1.2	0.1
sterol-C4-methyl oxidase-like	Hs.239926	SC4MOL	1.2	0.1
tubulin, alpha 3	Hs.433394	TUBA3	1.2	0.1
BCG-induced gene in monocytes, clone 103	Hs.284205	BIGM103	1.2	0.0
cathepsin B	Hs.297939	CTSB	1.2	0.0
keratin 6A	Hs,367762		1.2	0.4
Wordmit Of 7				

WO 2005/014854 PCT/EP2004/008819

- 69 -

paraoxonase 2	Hs.169857	PON2	1.2	0.4
suppressor of cytokine signaling 5	Hs.169836	SOCS5	1.2	0.4
KIAA0877 protein	Hs.11217	KIAA0877	1.2	0.2
propionyl Coenzyme A carboxylase alpha	Hs.80741	PCCA	1.2	0.2
solute carrier family 2	Hs.7594	SLC2A3	1.2	0.1
solute carrier family 7	Hs.22891	SLC7A8	1.2	0.1
II	7		1.2	0.1
Homo sapiens mRNA; cDNA DKFZp762M12		ARNTL	1.2	0.1
aryl hydrocarbon receptor nuclear translocator		DNAJB6	1.1	0.3
DnaJ (Hsp40) homolog, subfamily B, member	о пз.101193	FLJ21276	$\frac{1.1}{1.1}$	0.3
hypothetical protein FLJ21276	Hs.149846	ITGB5	1.1 1.1	0.1
integrin, beta 5	Hs.90572	PTK7	1.1	0.3
PTK7 protein tyrosine kinase 7	Hs.82028	TGFBR2	1.1	0.3
transforming growth factor, beta receptor II	Hs.301306	I GFBRZ	1.1	0.0
Homo sapiens cDNA FLJ25134 fis	Hs.5297	DKFZP56	1.1 1.1	0.0
DKFZP564A2416 protein	HS.5297	4A2416	T•T	V.1
dual specificity phosphatase 6	Hs.180383	DUSP6	1.1	0.4
midline 1 (Opitz/BBB syndrome)	Hs.27695	MID1	1.1	0.1
membrane protein, palmitoylated 1, 55kDa	Hs.1861	MPP1	1.1	0.1
	Hs.424312	RIL	1.1	0.1
LIM domain protein SH3-domain binding protein 5 (BTK-associ		SH3BP5	1.1	0.1
	Hs.64322	SIPL	1.1	0.1
SIPL protein	Hs.16611	TPD52L1	1.1	0.1
tumor protein D52-like 1	-	HMGCR	1.0	0.4
3-hydroxy-3-methylglutaryl-Coenzyme A redu	Hs.819	HOXB7	1.0	0.1
homeo box B7	Hs.90753	HTATIP2	1.0	0.1
HIV-1 Tat interactive protein 2, 30kDa	Hs.143648	IRS2	1.0	0.1
insulin receptor substrate 2	Hs.274398	TUBB-5	1.0	0.0
tubulin beta-5				
apoptosis antagonizing transcription factor	Hs.16178	AATF	1.0	0.1
E2F transcription factor 3	Hs.1189	E2F3	1.0	0.1
hypothetical protein FLJ12542	Hs.236940	FLJ12542	1.0	0.1
phafin 2, Pleckstrin homology domain contain	ing, Hs.29724	PLEKHF2	1.0	0.1
family F member 2	TT 2/22	DATTAG	1.0	Λ1
proline 4-hydroxylase	Hs.3622	P4HA2	1.0 1.0	0.1 0.1
Homo sapiens G21VN02 mRNA, mRNA	Hs.324787		1.0	υ.1
sequence, solute carrier family 5 (inositol		SLC5A3		
transporters), member 3				

EXAMPLE 5

<u>ABLATION OF PROX-1 LEADS TO DIFFERENTIATION THROUGH UP-</u> <u>REGULATION OF NOTCH SIGNALING IN THE SW480R CELLS.</u>

Activation of β-catenin/TCF pathway plays a central role in colon tumorigenesis (Giles, R. H., van Es, J. H. & Clevers, H., *Biochim Biophys Acta* 1653: 1-24, 2003). Of interest for this study, suppression of β-catenin/TCF signaling in

10

15

30

colon cancer cells decreases the levels of c-myc, increases p21Cip1 levels and induces cell cycle arrest (van de Wetering et al., *Cell* 111:, 241-50, 2002). However, suppression of Prox-1 did not affect the activity of β -catenin/TCF-responsive reporter or nuclear localization of β -catenin. Moreover, an increased expression of several β -catenin/TCF-4 target genes, such as CD44, ENC1 and Id2 was observed in the absence of Prox-1 (Table II and not shown). These data suggest that Prox-1 may act via an alternative pathway to promote growth of colon cancer cells, and that both β -catenin/TCF activation and overexpression of Prox-1 are necessary for cell transformation. Accordingly, contemplated herein are methods of alleviating colorectal cancer whereby a Prox-1 suppressor is administered in combination with a β -catenin/TCF signaling inhibitor. β -catenin/TCF signaling inhibitors may include dominant negative forms of TCF-4, siRNAs and microRNAs targeting TCF-4, β -catenin, and c-myc, as well as small molecules that would interfere with binding of β -catenin to TCF-4 or TCF-4 to target DNA sequences. Protocols for making these types of inhibitors are detailed above with respect to Prox-1 inhibition.

The DNA and protein sequences for β-catenin (SEQ ID NOs: 10 and 11, respectively) are published and disclosed as Genbank Accession Number NM_001904. The DNA and protein sequences for TCF-4 (SEQ ID NOs: 12 and 13, respectively) are published and disclosed as Genbank Accession Number NM_003199. Related to the β-catenin/TCF signaling pathway is the APC gene, the sequence of which is publicly available as Genbank Accession Number NM_000038. The DNA and amino acid sequences for APC are also provided herein as SEQ ID NOs: 42 and 43, respectively. The DNA and protein sequences for C-myc (SEQ ID NOs: 44 and 45, respectively) are published and disclosed as Genbank Accession Number NM_002467.

Notch signaling has been shown to be essential for the generation of cell lineages in the crypts of the mouse small intestine. High levels of Notch are thought to suppress the expression of the basic helix-loop-helix transcription factor Math1 via the induction of the transcriptional repressor Hes1, which will lead to the differentiation of progenitor cells into enterocytes. Conversely, high levels of Math1 result in the differentiation towards the neuroendocrine, Goblet and Paneth cell types in the small intestine (Jensen, J. et al., *Nat Genet* 24: 36-44, 2000; Yang, Q.,

30

- 71 -

Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y., Science 294: 2155-8, 2001). Among Notch signaling components, Notch2 and its target transcription factor Hes1 levels are higher in SW480A cells in comparison with the SW480R cells, suggesting that this pathway is functionally active in these cells. Interestingly, SW480R cells express higher levels of Notch ligand Jagged2. Suppression of Prox-1 resulted in up-5 regulation of the Notch ligand Jagged1 and the direct target of the Notch pathway, the transcription factor Hey2, whereas the expression of Jagged2 and prostaglandin D2 synthase, previously shown to be negatively regulated by Notch signaling was suppressed (Fujimori, K. et al., J Biol Chem 278: 6018-26, 2003). SW480R cells 10 were transfected with GFP siRNA or Prox-1 siRNA and GFB1-luc, TOPFlash or control FOP flash reporters. Firefly luciferase activity was normalized to Renilla luciferase activity. Up-regulation of Notch-responsive reporter GBF1-luc was observed in SW480R cells transfected with Prox-1 siRNAs. Accordingly, contemplated herein is a method of alleviating the symptoms of colorectal cancer comprising the administration of a Prox-1 suppressor in combination with a Notch agonist or target transcription factor. Notch agonists include Jagged1, Jagged2, Delta1, Delta3, Delta4, and Serrate. Target Notch transcription factors include Hey1, Hey2, and Hes1.

The DNA and protein sequences for Notch-1 (SEQ ID NOs: 14 and 15, 20 respectively) are published and disclosed as Genbank Accession Numbers NM_017617. Likewise, the DNA and protein sequences for various forms of Notch (including 2-4) are publicly available and included herein as SEQ ID NOs: 16-21. In addition, the DNA and protein sequences for various ligands of Notch (including Jagged1, Jagged2, Jagged2 (transcript variant 2), Delta1, Delta3, Delta4, and Jagged2 (transcript variant 1)) are publicly available and included herein as SEQ ID NOs: 22-25 35, respectively. DNA and protein sequences for target Notch transcription factors Hey1, Hey2, and Hes1 are also publicly available and are included herein as SEQ ID NOs: 36-41, respectively.

EXAMPLE 6

SUPPRESSION OF PROX-1 INHIBITS GROWTH IN SOFT AGAR.

Since anchorage-independent growth is one of the hallmarks of malignant transformation, experiments were conducted to assess the effects of Prox-1

25

30

- 72 -

suppression on the growth of SW480R cells in soft agar. SW480R cells were transfected with GFP siPRNA, Prox-1siRNA A16 or Prox-1 siRNA A25 repeatedly over an 8-day period, or left untreated, and seeded in soft agar in triplicate. The number of colonies was scored after two weeks of growth. Transfection with both Prox-1 siRNAs but not the control GFP siRNA significantly decreased the number of colonies formed after two weeks of growth in soft agar (Fig. 3A).

EXAMPLE 7

REGULATION OF PROSTAGLANDIN BIOSYNTHESIS BY PROX-1

COX-2 is a key enzyme involved in the conversion of arachidonic acid 10 into the prostaglandin precursors PGG2 and PGH2, which are further transformed into biologically active prostaglandins by the action of corresponding synthases. Prostaglandins acts through binding to the G-protein coupled prostanoid receptors and they are rapidly inactivated by the action of 15-prostaglandin dehydrogenase (15-PGDH). COX-2 is overexpressed in the majority of colorectal cancers and in about 15 half of colonic adenomas, suggesting that the increased PG production is important for tumor growth. In support of this view, treatment with non-steroid antiinflammatory drugs, which acts as inhibitors of COX-2, significantly reduces the risk of developing colon cancer (Gupta, R. A. & Dubois, R. N., Nat Rev Cancer 1: 11-21, 2001). Accordingly, contemplated herein is a method of alleviating colorectal cancer 20 via the administration of a Prox-1 suppressor in combination with a COX-2 inhibitor. Cox-2 inhibitors may include the following non-steroid anti-inflammatory drugs: asprin, rofecoxib, celecoxib, amidophen, analgin, anapyrin, feloran, indomethacin, paracetoamol, piroxicam, sedalgin, diclofenac sodium, ketoprofan, Acular[®], Ocufen[®], and Voltarol®.

Experiments were conducted which found that suppression of Prox-1 in SW480R cells resulted in the up-regulation of the expression of 15-PGDH and downregulation of prostaglandin D2 synthase, whereas overexpression of Prox-1 in SW480F cells down-regulated 15-PGDH and up-regulated PGD2 synthase (Affymetrix results). These data suggest that Prox-1 may be important for the control of the balance of the total PG production in tumor cells, i.e., in the presence of Prox-1 decreased expression of 15-PGDH will result in higher net amounts of biologically active prostaglandins and enhanced tumor growth.

30

WO 2005/014854 PCT/EP2004/008819

- 73 -

Because SW480 cells do not express COX-2, contemplated herein are experiments to assess the effects of Prox-1 on prostanoid biosynthesis in the SW480F cells stably transfected with COX-2 or in the cell line which is known to express this enzyme, such as HCA-7. To generate COX-2 expressing cells, SW480F cells are 5 transfected with a mixture of a COX-2 expressing vector and the plasmid bearing hygromycin resistance gene, such as pCDNA3.1hygro (Invitrogen) using Lipofectamine 2000, as described in Materials and Methods, and the stable clones are selected using 200 µg/ml hygromycin B (Calbiochem) over a period of 2-3 weeks. Individual clones are isolated and the expression of COX-2 protein is tested using Western blotting. Functionality of COX-2 may be further verified in COX-2 10 expressing clones in comparison to the control cells, using ELISA to monitor PGE2 production according to the manufacturer's instructions (Cayman Chemical). To test the effects of Prox-1 on prostaglandin biosynthesis, COX-2 expressing cells can be infected with AdProx-1 or the control AdGFP virus, as described previously (Petrova 15 et al., Embo J. 21: 4593-9), and the amount of biologically active PGE2, and total amount of metabolized PGE2 in cell conditioned medium, determined by ELISA (Cayman Chemicals). If overexpression of Prox-1 increases levels of the biologically active PGE2 in vitro, contemplated herein are studies to assess the link between Prox-1 overexpression and prostanoid biosynthesis in vivo. SW480R or HCA-7 stably 20 overexpressing 15-PGDH will be produced using the protocol described above, and the tumorigenic potential of these cells in nude mice will be determined. In addition, contemplated are studies regarding the effects of the treatment with 15-PGDH inhibitor on growth of Prox-1 expressing or control xenografts in nude mice.

EXAMPLE 8

EFFECTS OF NOTCH SIGNAL TRANSDUCTION

To investigate the effects of altered Notch signaling in SW480R cells described herein are experiments that overexpress constitutively active Notch1, Notch2, Notch3, and Notch4 intracellular domains, as well as Jagged1, soluble Jagged1, and Jagged2 using recombinant adenoviruses. Replication-deficient adenoviruses for the expression of constitutively active Notch 1-4 intracellular domains, and Notch ligands Jagged1, Jagged2, Delta1, Delta3, Delta4, and Serrate are produced. SW480R cells are infected with adenoviruses. 48-72 h postinfection cells

WO 2005/014854

5

20

25

PCT/EP2004/008819

are seeded in soft agar as described previously, and the number of colonies are scored after two weeks in culture. In parallel, total RNA is isolated and analysis of gene expression changes is conducted using Affymetrix[®] microarray according to the previously described procedures. If overexpression of Notch or its ligand results in the inhibition of cell growth in soft agar, further studies are conducted to investigate the effects of activation of Notch signaling on growth of tumors in nude mice.

EXAMPLE 9

EFFECTS OF PROX-1 SUPPRESSION ON SW480R IN NUDE MICE

Also contemplated herein are studies to assess the effects of Prox-1
suppression on the growth of SW480R tumors in nude mice. *Nu/nu* mice can be
inoculated subcutaneously or intraperitoneally with 1-5 x 10⁶ cells/mice using
SW480R cells transfected with GFPsi RNA or Prox-1 siRNA, or transduced with the
adenoviruses described in Example 8. Tumors are allowed to grow for 3-5 weeks,
and tumor size measured twice a week. Animals are sacrificed by cervical
dislocation, tumors excised, and processed for immunohistoshemical staining. The
tumor histology, expression of differentiation markers, proliferation index and
vascularization monitored using the antibodies against KI67 (proliferation), mucin,
galectin-2, p21cip1 (differentiation), PECAM-1 and vWF (blood vessel markers), and
the standard immunostaining protocols.

To assess of the effects of Prox-1-dependent genes, such as 15-PGDH, on prostaglandin metabolism and tumor growth *in vivo*, SW480R or HCA-7 cells recombinantly overexpressing 15-PGDH and control cells, are implanted subcutaneously into the *nu/nu* mice, and tumor growth and differentiation studied. In order to confirm the specificity of 15-PGDH effects, a subset of the control and 15-PGDH overexpressing tumor-bearing animals are treated with the 15-PGDH inhibitor CAY10397, administered intravenously, or in drinking water.

EXAMPLE 10

ANALYSIS OF PROX-1 IN NATURAL COLORECTAL TUMORS

Experiments to asses the expression of Prox-1 in a mouse model of

human familial adenomatous polyposis, Apc min/+ are also contemplated herein. The

Apc min/+ mice bear a truncating mutation in one allele of Apc gene, and develop

10

15

25

- 75 -

multiple intestinal polyps, which further progress to adenocarcinoma. Mice are commercially available from JAX. As another cancer model, SMAD3 deficient mice, which develop invasive colorectal cancer, is available. The DNA and protein sequences for APC (SEQ ID NOs: 42 and 43, respectively) are published and disclosed as Genbank Accession Number NM_000038.

Administration of a Prox-1 inhibitor and a placebo to mice of the above-described models is also contemplated. Prox-1 inhibitors and administration thereof are described herein. Prox-1 inhibitors available for administration include, but are not limited to, antisense oligonucleotides, siRNA constructs, or dominant negative proteins. Monitoring of the mice post-administration is contemplated to evaluate the effects of adenocarcinoma and colorectal cancer development and growth. Among the results are measurements of the speed of tumor growth in mice that received the Prox-1 inhibitor versus mice that received the placebo, thus, providing a beneficial efficacy model for the particular Prox-1 inhibitor. Also contemplated are methods for screening Prox-1 levels in family members with familial adenomatous polyposis. Methods for screening Prox-1 levels are described herein. Administration of a prophylactic to protect from progression, or the onset of cancer, is contemplated where elevated levels of Prox-1 are observed.

EXAMPLE 11

20 <u>DETECTION OF PROX-1 PROTEIN EXPRESSION IN COLORECTAL</u> <u>CANCER</u>

As described above, measuring Prox-1 protein expression in colon tissues may be a useful tool for diagnosing colon cancer and/or premalignancies. Prox-1 mRNA can be detected in colorectal cancer tissues as described in Example 2. The following prospective example may be conducted to determine whether Prox-1 protein correlates with Prox-1 transcript expression in colorectal cancer tissue. The immunohistochemical analysis can be carried out as follows using an anti-human Prox-1 antibody directed against the human Prox-1 peptide, as described in Example 1.

The tissues for screening are snap frozen in liquid nitrogen after dissection, embedded in OCT compound, and sectioned. Sections are fixed on -20°C methanol for 10 min, and processed for staining.

10

15

20

25

To enhance epitope recovery, the tissues may undergo steam induced epitope recovery with a retrieval solution, including several different SHIER solutions with and without enzyme digestion at two different concentrations. The tissues can then be heated in the capillary gap in the upper chamber of a Black and Decker Steamer as described in Ladner *et al.* (*Cancer Research*, 60: 3493-3503, 2000).

Automated immunohistochemistry is carried out with the TECHMATE 1000 or TECHMATE 500 (BioTek Solutions, Ventura Medical System).

Specifically, the tissues are blocked with 3% and 10 % normal goat serum for 15 and 30 minutes respectively. Subsequently, the tissues are incubated with the primary antibody (anti-Prox-1 antibody) for 60 minutes at 3.0 *g/ml. The tissues are stained with the biotinylated goat-anti-rabbit IgG secondary antibody for 25 minutes.

Optimal results are obtained with overnight incubation. To ensure the staining procedure is working appropriately, anti-vimentin is used as a positive control and rabbit IgG is used as a negative control.

The antibody binding is detected by an avidin-biotin based tissue staining system where horse-radish peroixidase is used as a reporter enzyme and DAB (3,3'-Diaminobenzididine Tetrahydrochloride) is used as a chromogen. Specifically, the endogenous peroxides are blocked for 30 minutes, the avidin-biotin complex reagent is added and then the tissues are incubated in DAB for a total of 15 minutes. Finally, the tissues are counterstained with hemotoxylin to assess cell and tissue morphology.

The slides are mounted in Aquamount, and the tissues are examined visually under a light microscope. Tissue that is positive for increased Prox-1 protein expression as compared to healthy colon tissue, or other cancer tissues, indicate colorectal cancer and/or premalignant lesions.

While this prospective example provide one means of detecting colon cancer, other means will be obvious to those with skill in the art. Various options for detecting Prox-1 expression, and, therefore screen for colon cancer, include, among others, ELISA-based techniques and Western blotting techniques.

10

WO 2005/014854 PCT/EP2004/008819

- 77 -

EXAMPLE 12

EXPRESSION PATTERN OF PROX-1 IN NORMAL COLONIC EPITHELIUM

Studies were conducted to compare Prox-1 expression in normal colonic epithelium. In normal colonic mucosa, all Prox-1 expressing cells were positive for the intestinal epithelial transcription factor CDX2. There was no overlap with the expression of MUC2, expressed by the goblet cells; however, a subset of Prox-1 positive cells also expressed the pan-neuroendocrine marker chromogranin A. Also observed was weaker but significant Prox-1 expression in the bottom of the crypts below the cell proliferation zone identified by staining for the Ki67 antigen.

Colonic epithelium is composed of the slowly dividing stem cells

located in the bottom of the crypt, the cell proliferation zone with transient amplifying cells, which give rise to the three main colonic epithelial cell types, and terminally differentiated cells, located in the upper part of the crypts. The location of Prox-1 15 positive cells at the base of the crypts, therefore, corresponded to the position of the intestinal stem cells. (Bach, S. P., Renehan, A. G. & Potten, C. S., Carcinogenesis 21, 469-76 (2000); Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A. & Wilson, G. D., Gut 33, 71-8 (1992)) A similar staining pattern was observed in the murine descending colon, whereas the duodenal epithelium was negative for Prox-1. Expression of p21^{CIP1/WAF1} marks the differentiated compartment of colonic crypts 20 independently of the cell type (Doglioni, C. et al., J Pathol 179, 248-53 (1996)). Accordingly, studies were conducted regarding the expression of Prox-1 in relation to p21^{CIP1/WAF1}. All Prox-1 positive cells located at the bottom of the crypts were negative for p21^{CIP1/WAF1}; however, most of the rare Prox-1 positive cells present in the upper parts of the crypts were also negative for p21^{CIP1/WAF1}, demonstrating a 25 mutually exclusive relation between Prox-1 expression and terminal differentiation. p21(CIP1)/(WAF1) (CDKN1) sequences are published and disclosed as Genbank Accession Numbers NM_078467 and NM_000389. These variants (1) and (2) encode the same protein.

30 Based on the data implicating Prospero/Prox-1 in cell fate determination in other cell types, and on its expression pattern in colonic epithelial cells it is contemplated that Prox-1 may be involved in the regulation of the

10

25

30

- 78 -

neuroendocrine cell fate as well as the stem cell phenotype. This hypothesis is supported by the fact that PROX-1 is overexpressed in intestinal neoplasms from Apc^{min/+} mice and that its expression is regulated by TCF/β-catenin pathway in vitro (see Examples 13 and 14). This hypothesis is also in agreement with previous results showing that targeted inactivation of Tcf7l2 gene encoding TCF-4 leads to the depletion of intestinal stem cell compartment and loss of neurodendocrine lineage (Korinek, V. et al., *Nat Genet* 19, 379-83 (1998)).

EXAMPLE 13

$\frac{PROX-1~IS~OVEREXPRESSED~IN~INTESTINAL~NEOPLASMS~FROM}{APC^{min/+}~MICE~,~BUT~NOT~FROM~Ltbp4^{-/-}~DEFICIENT~MICE}$

Studies were also conducted to assess Prox-1 expression in Apc^{min/+} mice. A truncating germline mutation in the Apc gene together with somatic inactivation of the remaining wild type allele, lead to abnormal β-catenin/TCF signaling in intestinal epithelial cells of Apc^{min/+} mice and development of multiple intestinal polyps (Luongo, C., Moser, A. R., Gledhill, S. & Dove, W. F., *Cancer Res* 54, 5947-52 (1994); Su, L. K. et al., *Science* 256, 668-70 (1992)). High levels of Prox-1 in intestinal neoplasms of Apc^{min/+} mice were observed. Prox-1 mRNA and protein were present in tumor cells with high cytoplasmic and nuclear β-catenin levels, but not in the differentiating cells of the neighboring normal glands with membrane localization of β-catenin.

Mutation in genes regulating TGFß signaling pathway, such as TGFRII and SMAD4 occur in human colorectal cancer, and targeted inactivation of TGF-ß1 binding protein LTBP-4 leads to colon cancer in mice (White, R. L., Cell 92, 591-2 (1998); Sterner-Kock, A. et al., Genes Dev. 16, 2264-73 (2002)). Studies were conducted to assess Prox-1 expression in Ltpb4-/- mice. In contrast to the results from Apc min/+, accumulation of Prox-1 in the colonic adenocarinomas from Ltpb4-/- mice, which generally preserve normal distribution of \$\beta\$-catenin, was not observed. These results strongly suggest that Prox-1 is a target of APC/ \$\beta\$-catenin/TCF pathway in vivo. Tumors from Ltpb4-/- mice had strongly increased number of lymphatic vessels, positive both for Prox-1 and LYVE-1.

25

30

WO 2005/014854 PCT/EP2004/008819

- 79 -

EXAMPLE 14

PROX-1 EXPRESSION IS REGULATED BY B-CATENIN/TCF PATHWAY AND DNA METHYLATION

Further studies were conducted using SW480R cell line as an in vitro model to investigate the role of Prox-1 in colorectal carcinoma. Suppression of Prox-1 5 expression using two different siRNAs (SEQ ID NOS: 4, 5, 6, and 7) did not affect the activity of a β -catenin/TCF-responsive reporter, the nuclear localization of β catenin, or the cellular content of active, non-phosphorylated B-catenin, confirming that Prox-1 is not acting upstream of this pathway. In contrast, suppression of \(\beta \)-10 catenin using two independent siRNAs resulted in almost complete disappearance of Prox-1 mRNA and protein. In line with this finding, suppression of Prox-1 was also observed in SW480R cells transfected with dominant negative mutant of TCF4, which disrupts \(\beta\)-catenin/TCF mediated transcription (Morin PJ, et al., Science 1997 Mar 21;275(5307):1787-90). However, overexpression of p21^{CIP1/WAF1}, shown to induce 15 cell differentiation in colorectal carcinoma cells (van de Wetering, M. et al., Cell 111, 241-50 (2002)), did not modify Prox-1 levels. Taken together, these data show that Prox-1 lies downstream of β-catenin/TCF4 and upstream of p21^{CIP1/WAF1}.

Also observed was increased expression of several known β-catenin/TCF-4 target genes, such as CD44, ENC1 and ID2 in the absence of Prox-1 (Table II, (Fujita *et al.*, 2001; Rockman *et al.*, 2001; Wielenga *et al.*, 1999)), while others such as p21^{CIP1/WAF1}, annexin A1, and OB-cadherin were induced upon suppression of either β-catenin or Prox-1. These results underline the complexity of the regulatory cascade initiated by β-catenin/TCF in CRC cells and suggest that concerted regulation by Prox-1 and other β-catenin/TCF targets is necessary for neoplastic growth.

Studies were also conducted to compare the activation of \$\beta\$-catenin/TCF signaling pathway in SW480R and SW480A cells. The SW480R cells had slightly more active \$\beta\$-catenin and displayed a two-fold increase in the activation of the TCF-responsive promoter TopFLASH; however, both cell lines clearly displayed nuclear localization of \$\beta\$-catenin as previously reported (Palmer, H. G. et al., \$J\$ Cell Biol 154, 369-87 (2001)). These observations, together with the fact that abnormal \$\beta\$-catenin/TCF pathway signaling is a feature of the majority of colorectal

10

15

20

cancer cell lines, suggest that \(\beta\)-catenin/TCF activation is necessary but not sufficient for the induction of Prox-1 expression in colorectal cancer.

DNA methylation is frequently abnormal in colorectal cancer, and it was reported recently that Prox-1 expression is suppressed in human hematological cell lines due to hypermethylation of CpG islands in intron 1 of Prox-1 (Nagai, H. et al., *Genes Chromosomes Cancer* 38, 13-21 (2003)). Treatment of SW480A cells with the inhibitor of DNA methyltransferases 5-aza-2'-deoxycytidine did not result in the increase of Prox-1 mRNA, while there was increase in the expression of TIMP3. In contrast, 5-aza-2'-deoxycytidine almost completely suppressed Prox-1 expression in SW480R cells, suggesting that, at least in this cell type, the regulation of Prox-1 by DNA methylation is opposite to the one observed in leukemic cells.

Our finding that DNA demethylation decreases Prox-1 mRNA levels suggests the existence of a putative suppressor of Prox-1 transcription, whose expression becomes relieved upon treatment with 5-aza-2'-deoxycytidine. Since 5-aza-2'-deoxycytidine is used for the treatment of human cancers, our data also suggest that Prox-1 could be used as marker to identify the colorectal tumors which would respond favorably to this drug. Such screening of patients/tumors is intended as an aspect of the invention. The role of DNA methylation in the growth of intestinal neoplasms was previously demonstrated in mice heterozygous or hypomorphic for DNA methyltransferase 1, a major enzyme involved in the methylation of DNA. These mice do not develop intestinal adenomas when crossed with Apc^{min/+} mice. In contrast, they develop lymphomas, demonstrating cell type specific effects of decreased DNA methylation for cancerous growth (Gaudet, F. et al., *Science* 300, 489-92 (2003), Eads, C. A. et al., *Cancer Res* 62, 1296-9 (2002)).

25

30

EXAMPLE 15

PROX-1 SUPPRESSION AND OVEREXPRESSION IN COLORECTAL CANCER

To characterize the effects of Prox-1 suppression and overexpression in colorectal cancer, stable colorectal cancer cell line clones inducibly expressing Prox-1 or Prox-1 targeting siRNAs are employed. Cells are implanted into laboratory animals, such as nu/nu mice, and tumor growth is studied in control mice and mice treated with doxycycline. As an alternative approach, Prox-1 or Prox-1 siRNA

expressing lentiviruses are employed to provide long-term expression in colorectal cancer cell lines in vitro and in vivo.

To inducibly suppress and overexpress Prox-1 or Prox-1 siRNAs,
Prox-1 cDNA was subcloned in pTetOS vector (Sarao and Dumont, Transgenics

Res., 1998), where it is placed under the control of doxycycline regulated promoter.
Prox-1 siRNAs were subcloned in pTer vector (van der Wetering et al., Embo
Reports, 2003). Colorectal carcinoma cells stably expressing tTA activator may be
transfected with Prox-1/TetOS or Prox-1 siRNS/pTer vectors. Clones may be
selected in the presence of blasticidine and G480 and further tested for the expression
of Prox-1 by immunostaining or Prox-1 siRNA by suppression of co-transfected Prox1 in the presence of doxycycline. For production of Prox-1 lentiviruses, Prox-1
cDNA was subcloned into FUiresGFPW (Lois et al., Science, 2002). For production
of Prox-1 siRNA lentiviruses, Prox-1 siRNAs 1 and 2 were subcloned into lentiviral
vector pLL3.7 (Rubinson et al., Nat Genet., 2003).

Sequences of the DNA oligos used in the cloning of pLL3.7-Prox-1: sense:

TGGTCATCTGCAAGCTGGATTTCAAGAGAATCCAGCTTGCAG ATGACCTTTTTC (SEQ ID NO 47).

antisense:

20 TCGAGAAAAAGGTCATCTGCAAGCTGGATTCTCTTGAAATCCAGCTTGC AGTGACCA (SEQ ID NO 48).

pLL3.7 PROX1-2: sense:

TGAGCCAGTTTGATATGGATTTCAAGAGAATCCATATCAAACTGGCTCTTT TTTC (SEQ ID NO 49).

25 antisense:

TCGAGAAAAAGAGCCAGTTTGATATGGATTCTCTTGAAAT CCATATCAAACTGCTCA (SEQ ID NO 50).

Inducible Prox-1 targeting short hairpin RNA ("shRNA") expression may also be achieved via CRE recombinase activated induction system whereby an

WO 2005/014854

5

20

25

30

inactivating stuffer DNA sequence surrounded by modified loxP sites is removed from an shRNA expression cassette by the CRE recombinase activity, thus activating the shRNA expression. Alternatively a similar system may be used to inactivate shRNA expression upon introduciton of CRE recombinase. Tiscornia et al PNAS 2004, and Coumoul et al NAR 2004) described these systems.

shRNA or "short hairpin RNA" is a short sequence of RNA which makes a tight hairpin turn and can be used to silence gene expression. This small hairpin RNA was first used in a lentiviral vector. (Abbas-Terki T. et al., Hum. Gene Ther. 13(18):2197-201 (2002)). shRNA generates siRNA in cells (An DS et al., Hum. 10 Gene Ther. 14(12):1207-12 (2003)).

To study the effects of Prox-1 overexpression in vivo, transgenic mice overexpressing Prox-1 under the control of intestinal-specific promoter, such as villin, Cyp1A or FABPi are created using standard techniques. The proliferation and differentiation status of intestinal epithelial cells is studied by staining of intestinal tissues for PCNA, Ki67, CDKN1A, mucins, lysozyme, chromogranin A and carboxipeptidases II and IV. The crossing of Prox-1 transgenic animals with Apc^{min/+} mice permits determination of whether Prox-1 overexpression influences the number and size of intestinal polyps in this mouse model of colorectal cancer.

Specifically, for *in vivo* studies of Prox-1 in intestinal differentiation, Prox-1 cDNA was subcloned in p12.4Vill plasmid, which places it under the control of 12.4 kb mous villin promoter (Madison et al., J.Biol.Chem.2002, genomic contig NT_039170). The construct may be used for the production of villin-Prox-1 transgenic mice, which will overexpress Prox-1 at the sites of villin expression, *i.e.* intestinal epithelial cells. Also contemplated is subcloning Prox-1 cDNA into the vector z/AP (Lobe et al., Dev. Biol, 1999), to be able conditionally express Prox-1 in any given tissue. In this approach Prox-1 cDNA is placed between the *loxP* sites, and it is not expressed until Cre recombinase is present in the same cell. Excision of loxP sites places the transgene under the control of chicken β-actin promoter. To achieve intestinal specific overexpression of Prox-1 the transgenic animals containing z/AP-Prox-1 expression cassettes in their genomes may be crossed with villin-Cre mice (Madison et al., J.Biol.Chem.2002). The latter approach may be preferable to the villin-PROX1 overexpression because of potentially higher expression levels of the

- 83 -

transgene. Also contemplated in cloning Prox-1 cDNA under the control of rat Fabpi promoter (Rottman and Gordon, J. Biol. Chem., 1993, genomic contig NW_047627) or Cyp1A promoter (Sansom et al., Genes Dev., 2004, genomic contig NT_039474). The latter promoter has an advantage of being inducible upon administration of \(\mathcal{B} \)-naphtoflavone. All of these transgenic mice are contemplated as aspects of the invention.

EXAMPLE 16

DOMINANT NEGATIVE MUTANTS OF PROX-1

Further contemplated herein are dominant negative mutants of Prox-1.

Specifically, a Prox-1 mutant protein lacking the transactivation domains or DNA binding domains may act in a dominant negative manner. Experiments to investigate this hypothesis may be conducted by producing a truncated form of Prox-1 lacking the last 60 amino acids or the first 575 amino acids. Disruption of the DNA binding domain entails truncation of the protein to exclude amino acids 572-634 of SEQ ID NO. 3, based on homology to Prospero (*Drosophila*). Disruption of the transactivation domain entails the deletion of amino acids 635-737. These proteins may then be tested for their ability to repress the induction of Prox-1 target genes upon co-transfection with the wt Prox-1. If such an effect is observed, the construct can be used for the generation of transgenic animals with the purpose of suppression of Prox-1 effects in vivo, or for the anti- Prox-1 therapies in colorectal cancer.

The foregoing examples are intended to be illustrative of the invention and not intended to limit the claims which define the invention. All patent, journal, and other literature cited herein is incorporated herein by reference in the entirety.

While the invention is described specifically with respect to Prox-1,
there are other genes described in tables herein that are differentially expressed. All
materials and methods described herein are applicable to the genes described in the
tables.

Claims:

1. A method of screening colon tissue for a pathological condition, said method comprising:

measuring Prox-1 expression in a biological sample that comprises colon tissue from a mammalian subject, wherein elevated Prox-1 expression in the colon tissue correlates with a pathological phenotype.

- A method according to claim 1, comprising comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, wherein increased Prox-1 expression in the colon tissue from the mammalian subject correlates with a pathological phenotype.
- 3.. A method according to claim 1 or 2, further comprising a step,
 prior to said measuring step, of obtaining the biological sample comprising colon
 tissue from a mammalian subject.
 - 4. The method according to any one of claims 1-3, wherein the pathological condition is colon cancer, and wherein increased Prox-1 expression in the colon tissue is indicative of a cancerous or precancerous condition.

20

- 5. The method according to any one of claims 1-4, wherein the measuring comprises measuring Prox-1 protein in the biological sample.
- 6. The method of claim 5, wherein the measuring comprises contacting the colon tissue with a Prox-1 antibody or antigen-binding fragment thereof.
 - 7. The method of any one of claims 1-6, wherein the measuring comprises measuring Prox-1 mRNA in the colon tissue.

WO 2005/014854

- 8. The method of claim 7, wherein the measuring comprises *in situ* hybridization to measure Prox-1 mRNA in the colon sample.
- 5 9. The method of claim 7, wherein the measuring comprises steps of isolating mRNA from the colon tissue and measuring Prox-1 mRNA in the isolated mRNA.
- 10. The method according to any one of claims 1-9, wherein the
 measuring comprises quantitative polymerase chain reaction (PCR) to quantify Prox-1
 mRNA in the colon tissue relative to Prox-1 mRNA in healthy colon tissue.
- 11. A method according to any one of claims 1-10, further comprising measuring expression of at least one gene selected from the group consisting of CD44, Enc1, and ID2 in the colon tissue, wherein elevated Prox-1 expression and elevated expression of the at least one gene in the colon tissue correlate with a pathological phenotype.
- 12. A method according to any one of claims 1-11, further

 20 comprising measuring activation of -catenin/TCF pathway in the colon tissue,

 wherein activation of the -catenin/TCF pathway and elevated Prox-1 expression in
 the colon tissue correlate with a pathological phenotype.
- 13. A method according to claim 12, wherein activation of the catenin/TCF pathway is measured by at least one indicator in the colon tissue selected from the group consisting of: mutations in an APC gene; mutations in a -catenin gene; and nuclear localization of -catenin.

WO 2005/014854

20

25

- 14. The method according to any one of claims 1-13, wherein the mammalian subject is a human.
- 15. A method according to claim 14, further comprising a step of administering to a human subject identified as having a pathological condition characterized by increased Prox-1 expression in colon tissue a composition comprising a Prox-1 inhibitor.
- Use of a molecule that suppresses expression or activity ofProx-1 in the manufacture of a medicament for the treatment of colorectal cancer.
 - 17. A method of inhibiting the growth of colorectal cancer cells in a mammalian subject comprising the step of:
- administering to the subject a composition comprising a molecule that

 suppresses expression or activity of Prox-1, thereby inhibiting the growth of colon
 carcinoma cells.
 - 18. A method or use according to claim 16 or 17, wherein the molecule suppresses Prox-1 expression.
 - 19. A method or use according to any one of claims 16-18, comprising a step of identifying a mammalian subject with a colon cancer characterized by increased Prox-1 expression, wherein the composition is administered after the identifying step.
 - 20. A method or use according to any one of claims 16-19, wherein the cancer is selected from a colorectal adenoma and a colorectal carcinoma.

25

- 21. The method or use according to any one of claims 16-20, wherein the composition further comprises a pharmaceutically acceptable diluent, adjuvant, or carrier medium.
- 5 22. The method or use according to any one of claims 16-21, wherein the molecule comprises an antisense oligonucleotide that inhibits Prox-1 expression.
- 23. The method or use according to any one of claims 16-21, wherein the molecule comprises micro-RNA that inhibits Prox-1 expression.
 - 24. The method or use according to any one of claims 16-21, wherein the molecule comprises short interfering RNA (siRNA) that inhibits Prox-1 expression.

25. The method or use of claim 24, wherein the siRNA comprises at least one nucleotide sequence set forth in SEQ ID NOS: 4, 5, 6, and 7.

- 26. The method or use according to any one of claims 16-21, 20 wherein the molecule comprises a zinc finger protein that inhibits Prox-1 expression.
 - 27. The method or use according to any one of claims 16-21, wherein the molecule comprises a dominant negative form of Prox-1 protein, or an expression vector containing a nucleotide sequence encoding the dominant negative Prox-1 protein.
 - 28. The method or use of claim 27, wherein the dominant negative form of Prox-1 protein has a disrupted DNA binding domain.

- 29. The method or use of claim 27, wherein the dominant negative form of Prox-1 protein has a disrupted transactivation domain.
- 5 30. The method or use according to any one of claims 16-21, wherein the molecule comprises short hairpin RNA (shRNA) that inhibits Prox-1 expression.
- 31. The method according to any one of claims 17-30, wherein the composition is administered in an amount effective to suppress Prox-1 expression and increase Notch 1 signaling.
 - 32. The use according to any one of claims 16-30, wherein the molecule is present in the composition in an amount effective to suppress Prox-1 expression and increase Notch-1 signaling.
 - 33. The method according to any one of claims 17-31, wherein the composition is administered in and amount effective to increase 15-PDGH activity or decrease prostaglandin D2 synthase activity.

15

- 34. The method according to any one of claims 17-31, further comprising administering to the subject an inhibitor of the -catenin/TCF signaling pathway.
- 25 35. The use according to any one of claims 16-30, wherein the medicament further includes an inhibitor of the -catenin/TCF signaling pathway.

- 89 -

- 36. The method or use of claim 34 or 35, wherein the inhibitor of the -catenin/TCF signaling pathway is dominant negative form of TCF-4.
- The method or use of claim 34 or 35, wherein the inhibitor of the -catenin/TCF signaling pathway targets TCF-4, \(\beta\)-catenin, or c-myc.
 - 38. The method according to any one of claims 17-31, further comprising administering to the subject a COX-2 inhibitor.
- 10 39. The use according to any one of claims 16-30, wherein the medicament further includes a COX-2 inhibitor.
 - 40. The method or use of claim 38 or 39, wherein the COX-2 inhibitor is a non-steroid anti-inflammatory drug.
 - 41. The method according to any one of claims 17-31, further comprising administering to the subject a Notch signaling pathway agonist.
- 42. The use according to any one of claims 16-30, wherein the medicament further includes a Notch signaling pathway antagonist.
 - 43. The method or use according to claim 41 or 42, wherein the Notch signaling pathway agonist is a Notch ligand.
- 25 44. The method or use of claim 43, wherein the Notch ligand is Jagged1, Jagged2, Delta1, Delta3, Delta4, or Serrate.

- 90 -

- 45. The method or use of claim 41 or 42, wherein the Notch signaling pathway agonists are Notch targets Hey1, Hey2, or Hes1.
- 46. A method of inhibiting Prox-1 function in a mammalian subject having a disease characterized by Prox-1 overexpression in cells, comprising the step of administering to said mammalian subject a composition, said composition comprising a compound effective to inhibit Prox-1 function in cells.
- 47. Use of an inhibitor of Prox-1 function in mammalian cells for the manufacture of a medicament for inhibiting Prox-1 function.
 - 48. A method of screening for a Prox-1 modulator, comprising steps of:

contacting a test molecule with Prox-1 protein, or a nucleic acid

comprising a nucleotide sequence that encodes Prox-1 protein, under conditions which permit the interaction of the test molecule with the Prox-1 protein or nucleic acid;

and measuring interaction between the test molecule and Prox-1 protein or nucleic acid, wherein a test molecule that binds the Prox-1 protein or nucleic acid is identified as a Prox-1 modulator.

- 49. The method of claim 48, wherein the test molecule comprises a protein, a carbohydrate, a lipid, or a nucleic acid.
- 25 50. The method of claim 48, wherein the test molecule comprises a member of a chemical library.
 - 51. The method of any one of claims 48-50, comprising measuring the binding between the test molecule and the DNA binding domain of Prox-1.

WO 2005/014854

- 52. A method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of:
- a) contacting a DNA with a Prox-1 protein in the presence and in the
 absence of a putative modulator compound;
 - b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and
- c) identifying a modulator compound based on a decrease or increase in binding between the DNA and the Prox-1 protein in the presence of the putative modulator compound, as compared to binding in the absence of the putative modulator compound.
 - 53. A method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of:
- a) contacting a DNA with a Prox-1 protein in the presence and in the absence of a putative modulator compound;
 - b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and
- c) identifying a modulator compound based on a decrease or increase
 in differentiation in the presence of the putative modulator compound, as compared to differentiation in the absence of the putative modulator compound.
 - 54. A method according to any one of claims 48-53, further comprising steps of:
- 25 contacting a cell from a colorectal cancer or colorectal cancer cell line with the Prox-1 modulator; and

selecting a Prox-1 modulator that inhibits growth of the cell.

55. A method according to claim 54, further comprising:

formulating a composition comprising the selected Prox-1 modulator and a pharmaceutically acceptable carrier;

administering the composition to a mammalian subject having a colorectal cancer; and

monitoring the mammalian subject for growth, metastasis, shrinkage, or disappearance of the colorectal cancer.

- 56. A small interfering RNA (siRNA) molecule that comprises a sense region and an antisense region, wherein said antisense region comprises sequence complementary to a nucleotide sequence encoding Prox-1 set forth as SEQ ID NO: 2, or a fragment thereof, and wherein the sense region comprises sequence complementary to the antisense region, or a fragment thereof.
- The siRNA molecule of claim 56, wherein said siRNA molecule comprises two nucleic acid fragments, wherein one fragment comprises the sense region and the second fragment comprises the antisense region.
- 58. The siRNA molecule of claim 57, wherein said sense region comprises a 3'-terminal overhang relative to the antisense region.
 - 59. The siRNA molecule of claim 57 or 58, wherein the antisense region comprises a 3'-terminal overhang relative to the sense region.
- 25 60. The siRNA molecule of claim 59, wherein said 3'-terminal overhangs each comprise 1-5 nucleotides.
 - 61. The siRNA molecule of claim 59, wherein said antisense region 3'-terminal nucleotide overhang is complementary to RNA encoding Prox-1.

WO 2005/014854

. 10

25

- 93 -

- 62. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 18-100 nucleotides in length.
- 5 63. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 18-30 nucleotides in length.
 - 64. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 21-23 nucleotides in length.
 - 65. The siRNA molecule according to any one of claims 56-61, wherein said antisense region comprises sequence complementary to sequence having any of SEQ ID NOs. 4 and 6.
- 15 66. The siRNA molecule according to any one of claims 56-61, wherein said antisense region comprises sequence having any of SEQ ID NOs. 5 and 7.
- The use of an siRNA molecule according to any one of claims

 56-66 in the manufacture of a medicament for the treatment of colorectal cancer.
 - 68. The use according to claim 16, wherein the molecule comprises a compound comprising a nucleic acid 8 to 50 nucleotides in length, wherein said compound specifically hybridizes with a polynucleotide encoding Prox-1, or hybridizes to the complement of the polynucleotide, and inhibits the expression of Prox-1 when introduced into a cell that expresses Prox-1.

- 94 -

- 69. The use of claim 68, wherein the compound is an antisense oligonucleotide.
- 70. The use of claim 69, wherein the antisense oligonucleotide has a sequence complementary to a fragment of SEQ ID NO: 1.
 - 71. The use of claim 70, wherein the fragment of SEQ ID NO: 1 comprises a promoter or other control region, an exon, an intron, or an exon-intron boundary.

10

- 72. The use of claim 70, wherein the fragment of SEQ ID NO: 1 comprises an exon-intron splice junction.
- 73. The use of claim 70, wherein the fragment of SEQ ID NO: 1 comprises a region within 50-200 bases of an exon-intron splice junction.
 - 74. The method or use according to any one of claims 16-21, wherein the molecule comprises an inhibitor of DNA methyltransferases, thereby inhibiting Prox-1 expression.

20

- 75. The method or use according to claim 74, wherein the inhibitor of DNA methyltransferases is 5-aza-2'-deoxycytidine.
- 76. The method according to any one of claims 22-31, further comprising administering to the subject an inhibitor of DNA methyltransferases.
 - 77. The use according to any one of claims 22-30, wherein the medicament further includes an inhibitor of DNA methyltransferases.

- 95 -

78. The method or use of claim 76 or 77, wherein the inhibitor of DNA methyltransferases is 5-aza-2'-deoxycytidine.

5

Fig. 1

Fig.3

39467A.txt.txt SEQUENCE LISTING

<110>	Alita	lo, et al								
<120> THERAP		IALS AND	METHODS FOR	COLORECTAL	CANCER SCR	EENING, DI	AGNOSIS AND			
<130>	28113/39467A									
<150> <151>		US 60/494,221 2004-08-08								
<160>	50									
<170>	Paten	tIn versi	on 3.2							
<210> <211> <212> <213>	DNA	49275								
<220> <221> <223>		feature 1 Genomic								
<400>	1	22022220	aaaaaaaaa	aaaaaaaacct	acatectara.	agagetagt	a 60			
			ccgtctcccg				<i>y</i>			
			agtcgtcccg							
			gagggggagc				J			
			ttatattttt							
_			gcctcgcgat							
			gtttccttca							
		_	agcgctctga	•						
			cgccgggtcc							
			tctcctcctc							
			ctcctcttcc							
		·.	cctgctcctc							
		_	actcgccccg							
			attcatcacc							
_	_		ggaaaaaaaa							
			gtcccactgc							
			tttccagaat							
			ttactcagac							
			cataataaaa							
			gctcctccca							
			ctggtggctg							

atattactaa	acttatcact	gatettotea	39467A.txt		agatataaga	1320
_			gctctctctt			1380
			gatccccgct			1440
			ggtccccttg			1500
_			caatttgctt			1560
			ggaactggga			1620
			ctgtcgaagc			1680
			cgcgcgcggc			1740
			aaggcggcac			1800
						1860
			gaggaccgga			1920
			ggcgatgaat			1980
			tcgtctgggt			2040
			gaggtgagag			2100
			gctgctatct			2160
			caaagtccag			2220
			tgaagctgaa			
			ttccacagac			2280
			aggcagacag			2340
			ggcaggttgg			2400
			aaggctggaa			2460
			agcttataaa			2520
			cccttctcct			2580
			aaagaaaaga			2640
			tagcagagtg			2700
•			atttcctctg			2760
gctctagacc	acaatgcttg	ctcgagggtt	ggagaggttt	atgaatttat	ggttgtcctg	2820
gttaatagga	ttgtctgggc	taatgggaat	tgggctgttg	ttcttttgag	ccctgccatg	2880
tgagttcttg	gggtggggg	tgggggcaag	ttggtatgtg	tttgtttatt	tttcttaagg	2940
atattggcag	tctactgctg	aggctgtgtc	ccaggcttct	gtctgccagt	cagcccaaag	3000
cacccccact	ttaggcagca	ggtggaggga	gactgacttt	tcctttgctt	cctaccagtt	3060
tatgcctatc	tcccaggtct	gtgcttggca	gagagagaga	gagagagaga	gaactgtcgt	3120
gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	ttgtgtgtgt	gtggtgtatg	3180
ctttggatag	caatgagtgg	tgtgtaactg	ccaagaattc	caaagtcagt	ttgaaagtgt	3240
tactgttgtt	aaagcttatc	tttttaagca	tgctttctcc	ttgcccagaa	agaataggta	3300

tgtacataaa	ctctttcaag	tcatatgtta	39467A.txt aataatctca		tgagcctgtc	3360
attgtcccag	acatgtgcca	aatgtcctag	atatgaattt	gatggagaaa	gaaaatctca	3420
agtacatgag	aaggtaactg	tgcttttcta	ttctgatgca	agatgtgaga	agtcagttct	3480
acagggaatt	tcttgcaaga	acttctgagt	atttccaaaa	tgaaattttt	tgtgtgtgtt	3540
gagggaggaa	aacgagagta	ttcacattaa	cttgtccatg	ggttaaaaca	tggacatgta	3600
tatgtaatag	taaaataggt	gaagctaagg	actgtggctt	gatgtgtgag	gaaagttgtt	3660
gggaattcaa	tgtaagcact	atatctggct	tcttaaaact	tgacctttta	aaattatctt	3720
taaacagact	acttctgtag	actgagttgc	acaggaatag	gttggttggc	aaatggtttt	3780
tgctcattgg	ctttgtgttt	gggtagttat	tgtttccatg	aaaatgagat	cgtatgtgtc	3840
atttattctg	tagacttcaa	cattaacgtc	ccccacctc	ccaaacacac	acacacac	3900
ccaatacttt	ccttggatgc	ttttgaagtt	ctttggtaat	taaaatgtca	tctatgccta	3960
tgttcatttg	ctttattttt	aataggggtt	atctgtgctt	ggcacttatt	gatattttat	4020
gtgtccatta	tgcagaattc	tatttagttt	aatcaccacc	ttgtgggaaa	aaaaagtcat	4080
gcatacataa	catgcatctt	tgttctcact	ttattcattt	cctagcatca	ttcctctata	4140
agcagcacat	gctatcttaa	aacctaagct	ggcttattct	gtaagttgcc	agacttcctc	4200
tttatttgtt	taaaactcaa	acaggcctct	tttcatgaat	gtcttatatc	attttaggga	4260
ttgtcttgaa	tttgcagtgt	taatataaga	agttttaggt	ttcagattaa	caaaagaaat	4320
tataaaatgt	gactgatgtt	ataatatgaa	aatagattgt	gcatgatgta	tcattatagg	4380
attttaatta	agtacctgtg	taacttggaa	aggaaccata	tacataagga	atttctcaga	4440
cttattgcct	gtgcattctc	aaaggacatt	tagagagttc	aattttctgc	aaaaagaaaa	4500
aagtgtattt	tcttaagatt	atttcacact	ctgtcttatt	tacctatctg	ataagttgtt	4560
actttttaaa	caagtagaaa	ttaatatttt	aggcatgtct	cagaaaatgt	tctgtgttca	462 0
ttttgcaggt	gaaaagtgtg	tggaattttt	gatgggatgg	gagaatctta	aatgaaatct	4680
taaatgattt	gagaagtata	ttatgacagg	aaatttaaaa	acctgataac	gcaatcttag	4740
ttaatttagg	tattaactta	tgtcaagtga	gttcttcaaa	ataaatatca	aaggttttct	4800
taacctgata	gggagcagaa	atatctccaa	tatctctgaa	gaaaaagttg	ctaattagca	4860
gaaacaaatt	cttgaatgta	gtgaagggga	caatttaatg	attcaggggc	tacttaaatc	492 0
agaccatctg	atttttcccc	tttgaatcac	taatttccag	attgatttga	aatattcttt	4980
gttaatgata	tcctatttga	aatttcataa	ccaggttgac	ccaagtagat	tagaggccca	50 40
tacaaagatg	attttctaaa	agaagtcaag	tgtaggcttg	cacaatttct	tcaaataatt	5100
ttatcaacaa	agacagatca	tctaaataat	ccaagcagga	aaccatgcca	accttacact	5160
ctccctgcct	cataaaagat	ttgtctgaac	tatctggata	attaccgtaa	tgaaacactt	5220
ctttgtccag	aatctggact	ccagatagat	gcagtaaaag	ttgaatcctc	ctccccgaaa	5280
taacttcttt	attaaagtag	agcacttaac	cactttatac	ttcacgctgc	agtgttcctt	53 40

			39467A.txt	.txt	*	
tgaaattctt	tactgaaaat	tctttcctcc			ccttagaatt	5400
ttgcatgtta	aagagaatgt	cagataattc	agatattaaa	ggagactctt	ttggagtagt	5460
taaaacctgt	tttgattata	cctggatgtt	tattcttcta	atatctttt	ctgggaggaa	5520
tctgctatgt	taagatatgc	attgtataag	aattactaaa	gcatttgtgt	aggttatata	5580
cgaagtgatg	caacaaaata	tttaatgatg	aaaaactcta	tatagacttt	cacattaatt	5640
aaagaggggt	ttacaggaat	agagtaagtg	tatccgatca	ataatacatt	tgggttcaaa	5700
ttctcatcag	tatttttctg	catccttgct	gatttggaca	tccaccagtg	ttgatcaaaa	5760
gcttcatatt	gcctagtgaa	actgaaaatt	aatgttaaaa	tgcaaatatg	atatgcatca	5820
ataataattg	caggtgaaac	atgatagctt	aatacatatc	ttgagaaata	aaggagttta	5880
aaaaatatca	atgataaagt	cattccatgg	cttcctttaa	attctgaact	ggaatatcat	5940
ggaagcactt	gggaaatgtt	tttaagagat	ttaatttata	ttatggtaac	gtaacagtac	6000
attttcttat	gtggtaaata	tattcatata	gatatcttgt	ttatgaaatg	tgatgctaat	6060
aaagtgctgt	gtcaaccggt	tattattatt	taatcatgcc	tatagcttcc	atgggttatg	6120
gttccagtgt	gtgctaccac	tatactttta	tttctaaatt	aaatctaagc	tatatggaga	6180
gatatattta	tttgtgccta	ttaatataat	gccttgtcct	ggattatata	atttatctta	6240
tttttcccat	ttgttttgtc	ttatttgtta	tgttccagct	ggacatttta	caacaagacc	6300
taaaagtatt	taaattcttt	tagcccaaga	cagatacaaa	tcgttattta	atctaaaaat	6360
gttgactgaa	atagaattac	aaaattagtt	tagtttggtg	aatatcaagg	gagttatatc	6420
ttgttcttaa	cagactccac	aagcatttct	ttccacctta	ggaagagcac	agccctcctc	6480
ttggctccag	catggggcag	ggatgcagct	gttgatacct	aggctagatg	agaggaagtg	6540
cagttgacgc	agaggtaaat	ggcagttgga	aaaggaagga	tgcctgggga	tgaccttgtg	6600
ctcatcagcg	acaccagtct	gtcctttcca	agcctctgtg	gcagagctgc	tcttcccaca	6660
gcaaggatgg	caggaggaaa	gtccagtttg	ggtgttaggg	tgaacaggga	gagaaaaaat	6720
actgcaaaaa	gtttgtttga	cattttgatt	ggagatccat	gtgctttgca	ggtgatagtc	6780
aagagaaaag	gatttgcata	caaatagaaa	agatgtaaaa	tttaaaaata	agggcaataa	6840
gctctatttt	ggggaaggtg	atatacacac	agaaaaaagt	cttccttgta	accgcccccc	6900
atgcaagtgt	ttctttgatt	aacagagctt	tgaaatgatt	catccttttt	cttgtctcag	6960
cctctccttg	ttctttctgt	catctgacag	ctaacctgat	ttatcagatc	taatgtgttt	7020
gtgtagtatt	tgtcactgca	tttttgtatt	cctgaaacca	attttattat	tagtgtttga	7080
aagggtctca	atcattctga	attcaatttt	gaacccaatg	ttgtagttct	tgagaactcc	7140
atctccattc	taagttcagg	aaattttatc	ctgaagcatg	caaaaagtat	ttcattctca	7200
agcatgcaaa	tatatatata	tatatatata	tatatatata	tatatatata	tatatatata	7260
taaagaggta	tcattttgct	ttcatgatac	cctaaagcag	gctcttttaa	aatgttttat	7320
ctttctatag	aaaccaggag	caaagatttc	atgaggaaat	cactgtcact	taaaaaaata	7380

PCT/EP2004/008819 WO 2005/014854

tacatattgt	tgccatctaa	gcattgagca	39467A.txt ttttcttgat	.txt ttttacaggt	tatttcatgc	7440
tgaaattatg	cctatttgca	tggatagtca	ttctttaaag	ctagccacag	atgcagtcct	7500
agggagcacg	tagatgtttt	tacaggtgaa	ccgaaagaga	tgggagccgt	tccagacact	7560
ctgcatgctg	cctttggcaa	tggaccctgt	tattgtgaag	atgtgctctg	ttaagcaaac	7620
gtgaagttta	atattagata	aacccaacgt	gaaaaaaatt	ttcattttct	tcataaaatg	7680
ttaattataa	acaaaaagat	gtgacatctt	atatgtctac	aaaatttggg	attagcatca	7740
ctagttaata	agttacacaa	tgtcaagtgc	cttttatgaa	attcaaagaa	ggatgttctc	7800
tttttatact	gtgtttccaa	gaaacaatgg	aagttcatat	acaaagaaat	atttcccttt	7860
ctcacacatt	tgatggacat	tattttcttt	cttctttata	tatcttcttt	cagttttttc	7920
tgttttttt	tttcctttaa	tttggcacag	gaaataaggt	tcacaaatcc	tgtatgttaa	7980
agagtttctt	tgggcattgg	acatattatt	ttggcagatt	taaacagaag	gaaactagtc	8040
ctgaagatat	atttatcttt	atctcggtca	ataacttatt	attcctcata	ttgatttcta	8100
aaatgt gg ta	acatccttgt	tttgcagtga	atccaacttt	gtaataattt	gtcattaaaa	8160
ggacattatg	aaaatgtata	aatattctta	tagttacatt	aagatatatc	aacagatatc	8220
atcttcacct	atgattttac	aagtaaaaaa	tgcatagcta	agctaaataa	gcagacttat	8280
aaaatgacta	ttgtgcattt	atttcaatgc	taaactgacc	atttatgttt	gaaagatgct	8340
gctgctaagg	gtgttctcct	tcccatttta	catatgacaa	aaatattgta	aaattcaaga	8400
ataaaagctc	tctattatat	atttgcattt	attttagagt	ccttttcctt	taatagcgtt	8460
aaaaccacac	taattgtaat	gcagaaatgc	aatttttcat	gtgaatttct	catagtctca	8520
aaatttaacc	ttatttctta	agtatagagc	agtttcatct	tccttataat	atgaatctca	8580
atgcccaaaa	tttaatcaat	tggttgtcag	aggctgtgtt	cttataatct	actgtttctt	8640
ctgaagataa	acagtatcat	tttaggcatt	tgtgagagag	aatcatatta	ctggtgctta	8700
agcagttttt	gcttaatttt	tttttaatct	taatccatct	taaaccagtg	gagcagaaat	8760
atttaaaaat	gtttcatttc	aagcagagtg	cataataaat	tgcaataatt	gtaatgtgcc	8820
ataaatccca	gagcctatgc	attttgcatt	tgattcagga	ttgaggtcag	gaaatttgga	8880
gaaatttaaa	gaaaatgatt	catcagtcct	tttgttctgt	tggccagggt	cccgggattc	8940
ttgagctgtg	cccagctgac	gagcttttga	agatggcaca	ataaccgtcc	agtgatgcct	9000
gaccatgaca	gcacagccct	cttaagccgg	caaaccaaga	ggagaagagt	tgacattgga	906 0
gtgaaaagga	cggtagggac	agcatctgca	ttttttgcta	aggcaagagc	aacgtttttt	9120
agtgccatga	atccccaagg	ttctgagcag	gatgttgagt	attcagtggt	gcagcatgca	9180
gatggggaaa	agtcaaatgt	actccgcaag	ctgctgaaga	gggcgaactc	gtatgaagat	9240
gccatgatgc	cttttccagg	agcaaccata	atttcccagc	tgttgaaaaa	taacatgaac	9300
aaaaatggtg	gcacggagcc	cagtttccaa	gccagcggtc	tctctagtac	aggctccgaa	9360
gtacatcagg	aggatatatg	cagcaactct	tcaagagaca	gcccccaga	gtgtctttcc	9420

ccttttggca	ggcctactat	gagccagttt	39467A.txt gatatggatc		tgagcacctg	9480
agagcaaagc	gcgcccgggt	tgagaatata	attcggggta	tgagccattc	ccccagtgtg	9540
gcattaaggg	gcaatgaaaa	tgaaagagag	atggccccgc	agtctgtgag	tccccgagaa	9600
agttacagag	aaaacaaacg	caagcaaaag	cttccccagc	agcagcaaca	gagtttccag	9660
cagctggttt	cagcccgaaa	agaacagaag	cgagaggagc	gccgacagct	gaaacagcag	9720
ctggaggaca	tgcagaaaca	gctgcgccag	ctgcaggaaa	agttctacca	aatctatgac	9780
agcactgatt	cggaaaatga	tgaagatggt	aacctgtctg	aagacagcat	gcgctcggag	9840
atcctggatg	ccagggccca	ggactctgtc	ggaaggtcag	ataatgagat	gtgcgagcta	9900
gacccaggac	agtttattga	ccgagctcga	gccctgatca	gagagcagga	aatggctgaa	9960
aacaagccga	agcgagaagg	caacaacaaa	gaaagagacc	atgggccaaa	ctccttacaa	10020
ccggaaggca	aacatttggc	tgagaccttg	aaacaggaac	tgaacactgc	catgtcgcaa	10080
gttgtggaca	ctgtggtcaa	agtcttttcg	gccaagccct	cccgccaggt	tcctcaggtc	10140
ttcccacctc	tccagatccc	ccaggccaga	tttgcagtca	atggggaaaa	ccacaatttc	10200
cacaccgcca	accagcgcct	gcagtgcttt	ggcgacgtca	tcattccgaa	ccccctggac	10260
acctttggca	atgtgcagat	ggccagttcc	actgaccaga	cagaagcact	gcccctggtt	10320
gtccgcaaaa	actcctctga	ccagtctgcc	tccggccctg	ccgctggcgg	ccaccaccag	10380
cccctgcacc	agtcgcctct	ctctgccacc	acgggcttca	ccacgtccac	cttccgccac	10440
cccttccccc	ttcccttgat	ggcctatcca	tttcagagcc	cattaggtgc	tccctccggc	10500
tccttctctg	gaaaagacag	agcctctcct	gaatccttag	acttaactag	ggataccacg	10560
agtctgagga	ccaagatgtc	atctcaccac	ctgagccacc	acccttgttc	accagcacac	10620
ccgcccagca	ccgccgaagg	gctctccttg	tcgctcataa	agtccgagtg	cggcgatctt	10680
caagatatgt	ctgaaatatc	accttattcg	ggaagtgcaa	tatcctttta	ttttcccctc	10740
gaggaaaaaa	caaaccaaaa	aaggtttccc	aaaaggttgg	gtttacacaa	tatctagagt	10800
aatgtagatt	agtatcttct	taagaaggca	acctttccca	ttattcaaag	gaataggctt	10860
ttatcagcat	gcgtgtgcca	ttcctgattg	cagaaaagct	taaaactaag	ccaacatctt	10920
tgcagcttcc	acaagttgtt	cactgccttg	aggagctcct	atttaatatg	tgctttctca	10980
gcagtgtttt	ttttctgctg	ttcttcctgc	attatcttct	tatccctatc	tcttaaaaaa	11040
aataaagaag	tagatttaga	gatgagaaaa	cagtctcatt	gtaaatactg	attgaattct	11100
ctcagatatt	ttttaaagat	ggtaagttta	atagaataag	gagaaaagtc	agttttcaga	11160
tccctaagat	cccataagaa	gaattctcag	tgtaaaccat	ctgcaaggct	tctggtccgt	11220
ttaaagacag	cccgatgaaa	tcttaggaag	agcgctttac	aagtgggagg	ttgaggagga	11280
agaaaaatgg	atgtgggtgg	ggagttagtc	tctctttcat	ctttaagtga	gactttttt	11340
tttaaggaaa	tatacaggta	ctgatttatt	cagacagcat	cggtctctct	cccgttcacc	11400
caaggtctgt	tctttgggtc	tggtgcagct	gcctctatgc	atgattaacc	tctgttcagc	11460

			39467A.txt	+++		
catacacaga	aatcttttgt	cccaacatac			aagcgagaga	11520
gcacaattaa	atataaaact	cagctgtatt	cgacttaaaa	atggctcttt	ttatgattct	11580
tttaaattct	gaaactgacg	tttatgtaga	gataacagtt	atatttttt	attaggccta	11640
tcccgaactc	cagctatttt	taactgaaga	tttttttc	tctctgtata	tcggttcttt	11700
ctgtaaattt	tttaaaaatc	ttgtggtcgt	tggtcttttg	ggagtagtaa	aatagtagca	11760
tttgggggca	ggtggaggca	tgtttcttat	ataataaaca	gatggatata	aaatttagca	11820
attaagttgg	ctgtgactaa	atttaggatt	ttgagcaatt	gtcttgatga	ctagagattg	11880
acattttcat	atctaagccc	actccagagg	ctgccacgta	agtgcaaagt	cccagctatt	11940
ggtggaaata	tgttttcctg	gttagtggag	gtcgtacttc	aagccacctc	tcaggataat	12000
agtgtagatt	tctgataggg	tgaactacta	gggccctaat	catgagtcct	gcttgggcag	12060
ttaaacatgg	agtctctctt	atactgagca	agagaagaac	attgtaacag	aaagggaaga	12120
gaaagatgtg	ggagatttct	acatatacgt	agaaatggag	ttttagcttg	gttgttgatt	12180
tcacttggac	cttttgaaga	tctaaaattc	aatccaccag	ccatgaatca	aagctgcacc	12240
aagcaccatg	ccttacatat	tataagcagg	cagtaaatat	tgatcaaatg	attggaatat	12300
cgctgttggt	gatgagaaag	gcaaagtaag	aagacacaat	ggcttgaatg	gtttttgtgc	12360
cctttgcaaa	aagagcatct	tcagaggttc	atgtaaggct	aatgtctagg	gctaagaccc	12420
cattgcaccc	cagagatctc	ttaacttcat	tttgaaccag	gtagttgtga	tagtgggttc	12480
tttctgtctc	tctctctc	ttacacacac	acacacacac	acacagacac	acacacacag	12540
agtaaagtga	catgcgtgcc	aattttggtg	aatatttaaa	gatttaatgc	caggtttcaa	12600
aactcctgta	agtccacact	aagctcttta	gttcaagatg	ccagtttatg	gtttttcttt	12660
aaattagact	tttcattata	accagatcat	tataattatg	gctgtgcttt	ttgtttttag	12720
tcttctagga	aaaaaatctt	ttagattgct	ttaagtgttg	gctatgttca	ttgtctcaac	12780
ctctccaaat	ccccggagga	attttgagga	tttgaattga	aataagttcc	ttttattttg	12840
atacatatca	aaggctttaa	agaaaatata	gttgcttctt	cttcagaggc	atgacttctc	12900
ctttcttcta	tcaacataac	tttctgtcga	gcggtgattc	tgttgggaaa	cacccgtgtt	12960
catgtgaaat	gttagttgct	cacactcaga	attgtttctt	tcatatagct	aaataatgtc	13020
ggcctctcgt	ggcaattagt	gattacattt	tccacctttt	ggccttctat	gctcctattc	13080
ttttcccccc	tctactatta	atacattgca	cttttaacca	tttatctcat	tggtatatta	13140
tttctcagga	agagtaagat	aggcaaacaa	ccttttctat	agttcccaca	attctgaaac	13200
cagtgaggat	ctgttggttt	gtagagagat	tgggcccact	tttctcctgt	ctctacctct	13260
gtatggcagt	gtgttcttcc	cttgatttaa	ctgttagtgt	gtaggcaaaa	ttctcaagct	13320
tttactttga	agaaatatct	gggaatcaca	gtgagtgatg	tcttacttca	attttaggga	13380
tacggggcca	tatatgatcc	ggttgtacag	ttattcctcg	aaaagatcaa	tagaaatggg	13440
cagaaatgta	atgaaatggt	acaactgtga	ttgctattat	tatgttttaa	tttttcgttc	13500

			39467A.txt	+v+		
atggctttcc	aaactgttat	atataattta			tcccactcca	13560
aaaggtacca	tctgttttt	gaacaaagta	gctaagataa	gaactattaa	gaacaccagc	13620
ttatcaggtc	aacccattct	acattcacca	cattaaacat	atatgttctg	taggatagaa	13680
cacactacct	cattatccca	tctagtagaa	gggaaatagt	gaatgtgtat	gcaagttaaa	13740
ctgaatttca	gtgcacctgc	tccaagggct	catgtcttgg	attttaaaaa	tatgttcagt	13800
atctttgcaa	atgaatctgt	ttaatcaaat	attaagtttt	attcaaattc	caaaagaaac	13860
agtcagccaa	ttgcttttct	tcatgatgtt	ccttgtcatt	catcctcttt	gcatctcaag	13920
aaaaatagcc	tagtttaggc	cccaaacatt	tgcatgcacc	cagttaaagc	acaagaggag	13980
tagtataagc	cgttaagacg	tgcaggtgaa	gaaattgagc	ctgttctctg	aaacagccgg	14040
ctttttctac	tcaactttta	gggagaatgt	tagaaagact	tgaagtttag	aaaggaaaat	14100
ggtttagtaa	tttgaaatta	aaatccaacc	aggaaccata	gattagaaat	gaatttctga	14160
aatttgaaac	catccacaga	aattgatctt	atacattttt	agaagtcttg	tggaggctat	14220
agtacttata	ttagctagag	caaaacatgt	agattaaaga	ctaaaagact	ttgggctcct	14280
acactacccc	cctcccctga	aaaaaattat	aaagtaagta	aattaaaaaa	aaaaaatccc	14340
tacactacac	agccctccga	ttatggtgaa	cttcctagtg	ggagttacga	cttgctctat	14400
cactgtcatt	atgtgagaga	gtttagatct	tttctcccca	ttttagtttc	tagggggaaa	14460
acctcttaga	aacttagcaa	attagggaat	aaggcagaac	taaaattctt	taggtttcaa	14520
atgttttgga	aaatgtaagt	agtctcaacc	catttgctgg	gaactgcagc	acgtacaatc	14580
tctagctaca	atccagagtt	tagctggaaa	aaaagaattt	tcttcctccg	ctttcacagc	14640
ttattattct	cccatttgcc	tttttgctgc	ctccgctgct	cctcccgtgg	ctgctgttta	14700
ggtaaggtta	tattgtactt	ggtaaacaga	caacacttag	gttctcaggt	tgtttgaaca	14760
ctgctttacg	ttcagctgca	gtaccctgct	tctctgatct	tttatattcc	cgagcagatg	14820
tctttcatta	atttatggat	ttatcatctt	ttctttttt	tttctttttt	ctttttttt	14880
ttttttaca	cctggcagct	gtctcaagtt	tcaacagtta	ttgtctattt	tgcattacac	14940
atagaattga	atgtcatctg	tcttcacaaa	gctatggcta	agagaattga	ggcacagcca	15000
catgagctgc	tgggacagat	cttgtttgcg	ttccatcccc	cctcacccca	ctccccttta	15060
cctccttaat	atttatttgt	gctcattttc	tttcctggcc	ttgaatggag	cttagctcgt	15120
gttcagtaca	gctgtatgtt	tactgaatct	attccatcat	gagtcattgt	gcgtgtgtaa	15180
gtatcctgga	aacagctagt	gctttcttgg	aagaacagtt	gcttttcagc	acaagcactt	15240
aaaagggaaa	ttaaccaatt	ggtcagttca	gatttatttt	gaggagaaaa	aaaggattat	15300
ctaactgttg	ccttttaaat	gtttcattag	ttatttttaa	tagtttatta	gaaacatata	15360
ttttatggga	attttatctt	aattacacaa	taagcaagag	ataaagatta	attctgtgtt	15420
ccatttcaac	tgatcagttc	caagtattac	caacaggaaa	cattttaaag	caaaaatgaa	15480
cttgagaaat	ccaaatcaga	ataattttt	gttagataaa	aagcctctaa	atactgatca	15540

aaataaaatg	gatattttac	tttttttaga	39467A.txt taaaaagaac	.txt aaaaacatct	tagcataaat	15600
tagatgtatt	aaaagcttca	ggaagttttg	gtagctcagt	gcccatctaa	gaaacacaga	15660
aaaacacttt	gtattttgta	tgacaccaaa	ttttaaaaga	tttgtgactt	ccaattaaat	15720
gcatgacgtt	gtcttaatgt	agccatctga	aagaaaagat	tagaacccag	atctgagagt	15780
gtctgtcaaa	gtttggactt	gcctaaaact	cttatcacaa	ggcagtcgca	gacagcttgc	15840
aactattatt	tcacttatcc	atttggacag	atggtcctga	agtgtgctgg	gctcctttag	15900
tcttctgtat	cagtctaatg	gaggttactg	gagggccttt	cagccctctc	cttggcacaa	15960
gaagtatgtc	agtcataaat	tatcgtcttt	gtaatcatta	aggatctcaa	acaaaaacac	16020
aagttcagtt	aagctgcttt	ggcttacaga	tataaaatca	aaatttcttt	ctttagtgtt	16080
tattttcagt	ttaacaaaaa	ataaaaaaat	aaaaaacctg	cactacttaa	cttttctatt	16140
tacagaccaa	ggtgatcttt	ttaaaattgc	atgggatatt	aaagggaatg	ttaattgaac	16200
aaattctcag	cagaatattt	ggttaaacac	cctgttataa	gtagtcaaga	gcttatccat	16260
attaatttga	ttatgcttct	ctagtaactt	tctggtttcc	ctccattctt	aagattagtc	16320
acgctagact	tgatgaaggt	catttggaaa	attttacctt	tcctaaatat	ctgtgtttat	16380
ttgacatttc	tgcctaaggg	gtgaaatttt	tgttgggtag	ttgtgtgagt	gtgtttgtgt	16440
gtgtgtttgc	acacacaagc	acactttctt	ttctttttt	tcttattttt	cttagacact	16500
cttctaaaag	aaaatcctta	gagaagcttc	taggaagggc	ccttaattga	ccttgtgggg	16560
gaccacattg	attttctcca	cgtgcatctt	catttctgat	aaattataaa	gccattaatt	16620
tgctgaggaa	atggcagggc	caggctgcgg	cacagatgtg	accagagcca	tcccagctct	16680
gagtctgctg	aggagtgcca	agaatctggg	ggagaatcag	gaagcctgga	ttgttatggt	16740
tagcctcaca	ttctcttggg	aactgtttta	gttgctgctg	tttacagatc	taaaaggtaa	16800
tgatgtttcc	agataaatag	gccttcttat	tttgggtaag	tggccattta	ttgatctgct	16860
aacccacatg	tattgatttg	ttagccccaa	ctactgcgtc	actctcaaag	gagttaacta	16920
taaatccaag	acaggcaaat	tgtatttggt	tttggaccat	tgctttcaca	aaagcaacag	16980
cccctccct	gtcctctcca	tgccaaaact	actcttccca	agttttagct	attatttaaa	17040
aggaaaaaca	attaaaagga	tataataaga	taaaaagcaa	gtgagtcaag	atgctccatt	17100
agattaacac	taaaaggtaa	aatgtgaaac	ttgcatagca	gtgttcaaaa	taatgcattt	17160
tatattttca	tgtacattag	tagaataatt	tgctttaaac	tgcagagtgt	ggagagaaga	17220
acaaacagaa	ctgtaattgc	aaggaagaaa	aaaaaacctc	ttatgacaag	agttgtgtag	17280
tacatgttgg	gtgcatttgt	ctccttagca	acaagtgaat	gtatagatag	cctaccgacc	17340
taaagcaagg	aaaatatttt	gccatcctca	ccctaaagta	gccaagattc	tgcaactcaa	17400
ttgtgcatcc	tcaccattgc	atgtggcaac	ctctgacagg	cgacggtcac	tgagcaaatg	17460
gcagcaagtt	agcaatggat	gccatagcca	gtgtcatata	ccttccagca	ctcccaccgc	17520
agcttgatgg	acccccagac	tctatggagg	tggggactgg	agggagggag	gtgggagtcc	17580

			39467A.txt	.txt		
ttgtgcttac	agaattgctt	ttccttaacc	aattgcatcc		aaggattgtc	17640
acccaatcac	ttgaaaaaag	caaagctcat	gttttttat	acccgttatc	ccagctccaa	17700
tatgctgaag	acctacttct	ccgacgtaaa	ggtagggact	ttttttattc	ttaattttt	17760
cattttctat	gcatgtggca	gtaatttgaa	ctcccggaag	ttaatggaga	tgaatgtgga	17820
attggtttat	tcctacacct	gtgttataat	tgatttaatg	cacttgtctt	tttgtctaaa	17880
ggtgtgttaa	gcaaagatgc	cacttgtgta	ttaagattgg	aagactggtg	ttaataagtt	17940
gcatgggttt	ccaatgtagt	ctgaaaaact	tagcctctgt	ctttatatgt	ttgagtagct	18000
tctttgaaga	aatttcagct	ggtaatggat	gggtgtgctt	tagagaatgt	tttttccctc	18060
ccctcagcaa	cagtaaactg	tttctgtttt	tgtttctgtt	ggtttcccca	tatttgtgct	18120
tatgaaagca	aactctagca	cctcttttc	ccctgtcga	aaaggagcgt	acattgaaat	18180
tctctatgca	gtagctgctt	aaaaacaaaa	gtgatgattg	tctcttattt	acaacttaat	18240
ttgttgttga	tgtagagtac	actgagcata	aggagaatga	ataaagtgac	agattcagga	18300
cacattattc	aaatgaggat	atgaaagctg	tcggcctaca	gctgcagcct	ccctcattct	18360
acagaatatt	gggacctcct	ggttctctct	gtgtgtgtat	gcgtgtgtgt	gtgtgtgtgt	18420
gtatgtgtct	gtgtctgtgt	gtgggtttta	agtaattgtt	tgc atcaact	tgatgttgtg	18480
ttaatcatct	gtaacttttt	aaaacataga	ttgggttttg	atgatgataa	tgacacacat	18540
ggtatcatta	tcccaggaac	ttgataaaca	ctacattagc	tgagattagt	ttattagggg	18600
tgggtgtttt	ttccccactc	ctcccctgcc	cacccccata	tgtacaagtt	cttctttctg	18660
ccatggagaa	ctcacaagct	gccaaaacac	actcgctctt	ccactgctcc	ccgcacgcag	18720
cttgttttgt	gcttgatgcc	caagtggctt	cattggcccc	attttgcagg	ccaactcatt	18780
tcagtttcct	tcactggtgt	tttatttggc	cttataagaa	aagttctgtt	ttccctcctg	18840
tttgcttttg	aattgtgtat	caacttcagc	cttttatctt	tctccttccc	tggctgtgct	18900
ccttaagtgg	aaggcttgtt	ttctccttgt	tcagcaccag	caaactgggc	aagatgggga	18960
ggcagggaaa	gtccatcacg	taaatgtctg	gataagacta	agtgagcaca	aacaaggctg	19020
agtgacacag	aggccaggaa	aagggtttgg	gctttgtaga	ggacaatcta	gaatacacaa	19080
attgaaggca	atttgtcacc	tggttgagga	ctgaccagct	tctagagtct	agtagaacct	19140
ggtaaagttt	gtcttccagg	gaatcctccc	aacattttag	ttctaggagg	ggacatggag	19200
gacagggaga	aaagggttat	tgtgtgcaca	tatgtgtgtg	tgtgtgtctg	tgtgtgcaga	19260
tgtccatgtt	actcattcct	tttagggcaa	tgatcttcag	tgttgtgaaa	taataatgac	19320
aataacttat	attctttgca	tagcaatttt	cacccagaag	taggccaaag	agctttacca	19380
actgcacaca	taggtgtcac	tcacccacca	cggaaacaca	gccacctgga	gggtgggaaa	19440
			cagtagacgt			19500
			gtgtggtgtg			19560
_			aatacaaacc			19620
-5 - 5		-		_		

cctctagaat	gcccctagca	attcagcttt	39467A.txt gcaaataacc		tgtagataac	19680
	ctgggtgaat			_		19740
	ttacccatac					19800
	ccactgtaat					19860
cactgaaggt	cacttctctt	ttatttttgg	aaggaattat	acatttttaa	ctttcctaat	19920
tatgttttt	ctttggttag	taataaatga	atttgtattt	cttgagctta	cactgatgag	19980
agtagaaagc	catgcaaaga	aagggaaagg	tagtccaggc	aatgtggtcc	agagactttc	20040
cagaaaacaa	tggcagagca	ttctgggatt	tcttcaatat	taaggataat	cacagatgtg	20100
aatattgaca	atgtatacac	acacatatgt	gcatgtgcat	gggttcacaa	tacacatata	20160
catatataca	catatctata	gcttgacatt	gacatacaga	tagacaagtg	tgtctattta	20220
tttgcaaggc	tgaaagaaat	agatatttct	ttatatatga	atatacaatc	caaactttta	20280
ttttggccag	gattcaagaa	atcactagag	aaattgggga	agagaactta	gggtcttctc	20340
agaaatgaaa	cctgcatcat	ttatctggaa	caagatatat	gcatgtatct	atggaccatg	20400
taatgcttgt	tataatgaca	tgaggctcta	cttggtcatg	gccacattca	tctaggagaa	20460
aattcctaac	tttagtaaaa	tgtactcttt	caaataataa	agttatttta	ttcaattttt	20520
tttttttgag	acggaatttc	actcttgtca	cccaggctgg	agtgcaatgg	tgcaatctca	20580
gctcactgca	acctccacct	cctgggttca	agagattctc	ctgcctcagc	ctcccaagaa	20640
gctgggatta	caggaatgtg	ccaccacgcc	tggctaattt	ttgtattttt	tttagtagag	20700
acggggtttc	accatgttgg	cgaagcttgt	cttgaactcc	tgacctcaaa	tgatctgcct	20760
gccttggcgt	cccaaagtgc	tgggattaca	ggcatgagcc	accgcgctca	gccctcatat	20820
tttatttagt	gatcataagt	tcattttgca	agcaaaaaca	aaaaacaaac	aacaacaaca	20880
acaacaaaaa	aaaccaggag	aaaaaaatgt	gagcagaaaa	tatcttgttt	cctgaatatg	20940
gtataacgta	atggtccatc	aaagccacac	ttggaggata	gagctagatg	gggtaaatcc	21000
tctgacttgc	tctagaaggt	gagtcatgcc	aaagtggtgc	ccactccttt	gtatttctcc	21060
ttaggaatgg	acacagtgct	taactctcca	caaatgactt	ccacctgggt	aagaggtaaa	21120
tgcttttcaa	ttaccttgga	acgaaagagg	tagagggaaa	tcatacaatt	cagagatgtt	21180
ggcatggcga	gagttcttct	tctacagggg	tgatgtatat	gaaggatgaa	accagggccg	21240
acctagttta	actcctagag	caagaatcta	aacaaagttc	tatgttctca	cagagagcca	21300
acttaattcc	ctcataatga	catttagcca	aacaaaaagc	tcagctcatc	ggggctacaa	21360
atcctttgag	aaggacaagt	ggacaaatgt	gagagagctg	ccagggatcg	atgggccgca	21420
ccagctccct	gttcactact	gggtgctgat	tttaatgtac	aaactaataa	ctcttagacc	21480
	gcagattcag					21540
	tgttaaatga					21600
agccagatta	aggtgtcaga	ttgatttgtt	ttatacatct	tttgaccatg	ctcattgaat	21660

			204674			
atttaggaag	tttcttcagc	ccatattgag	39467A.txt gctgagatgt		gcattaatca	21720
aagtcacaga	gactcgtaca	ctgtggaaac	acagcctctt	tattgtagcg	attagttttt	21780
gcagtaacac	attaacacac	tacagagctt	tcctttatag	aacaattgat	ccttttcttg	21840
taagccacta	cagaatgagg	gaaattaact	ctttaaagtt	taatactttt	tctcccccag	21900
tgtgaatatc	tagaaaagcg	ggggcttgct ⁻	tttgctttta	gccggcgact	aaaactgaac	21960
aaattttagt	tcacttctcc	tggagggaaa	ccctgttcct	taggctgttg	ggctggtcat	22020
ttcgcttgcc	tcatgtttgg	ggagtctgtt	gtttttgtcc	attctttctc	tctggtattt	22080
ccattctcca	acaataagct	ttaaatctcc	ctttatgtcc	cattcgtaaa	taatggcaag	22140
tgcacttact	tttttgtcct	ccccattagg	tcattcgtga	ccattctaga	aaaaaaatac	22200
ccttctattt	ttttcctcta	cagtactctt	gtccatatga	gacaatgtct	tgtaacaatg	22260
cagaagccta	atctccatgt	caaagcaatt	ttcattcccc	agtgcacagc	ctgctatcat	22320
tttgtaatgt	tttgtttctt	attctaaaag	aattaaaaag	gaacagtaag	ccgtcacggg	22380
ggcctgtagt	ccttatctca	gtgtctggaa	atttggacag	tgtattttac	tgctgagata	22440
aaatggaaag	aactccaagt	tcagcaaatc	gtaatgggtt	taagttctat	tgaaatcggc	22500
aaccagaaga	tcagataatg	ggggtccttc	agttgtcttt	ttaatcgggt	tccccgcgag	22560
gctgaataga	gacagagcag	acacacagag	tgaaaatata	attcttggat	aggttaagta	22620
catgtttgaa	ctcttgcaag	cagaagcgat	ttgctgatga	cttaatcatt	ttctggtcaa	22680
ttatctgtaa	gggcccttgc	aactccatgg	caattatgat	gcaagttggc	cttttgggag	22740
aaacaccagt	ctctctgctt	ctgtttcctt	gtgacttcca	ttctctgcca	taaattttca	22800
ttcatttatt	atctttgcta	gtatagaaac	aactttctgt	gtagtaatta	gagccccaat	22860
acacacttta	gctgtcatct	tgttggagtc	tggatgttct	catggcctgt	gtttgataag	22920
tgctctttgt	tgatttttga	tgaatgtaca	tctttttctg	ggggcccagg	gaaggggatg	22980
cctgtgátga	caaaaggcag	ggggttgtct	gtcagcccgc	ctgatataga	gctatggatt	23040
tattggtttt	gacttggcaa	gttgagactc	atctgtcctt	tacgtgagca	gaggactgtc	23100
aataaggatg	gtatcatttg	cagtgcatcc	agaaagacat	cttcatttca	aaggtcatca	23160
ggaaaccttg	gtaaacaaag	ttttaaggcc	taaccatgtt	atagtaactt	ggcatttaaa	23220
aaaatgtaat	aaagctcctg	tctatgccat	ctgtgtactg	tgtcctaacc	atgcctccca	23280
aatggcagag	ataccaaggg	agggggacat	gggtcttatc	caatgctggc	ttcaggaagc	23340
aggtgaacag	gcaccaggag	ctgaccagac	ctcaccagac	atgaatgccg	tgggcaaaca	23400
ttaagtggaa	tcacagttgg	atggacatgg	gaatcactca	ttgccaaaaa	aataagcaaa	23460
tgccaactcc	tcccattttg	tgggaaggcc	atttgtctgc	attgaagggg	gctgtaatgc	23520
ggtgatacaa	atcctcactt	aaaaaaaaaa	agtatatcaa	actagtggta	gagtcatgtg	23580
gcacatcacc	tctggtacat	gggagtaaca	acacttccag	gattctatgg	cttcaatgaa	23640
tgtccataag	aagtatataa	atgcaagttg	ttctactgaa	agatgaagaa	caatggttaa	23700

aaataaagat	gttcggctta	aggaaagtct	39467A.txt gatttagaat		cacttgaaag	23760
gtagagggtt	gtgatatgat	ttccattact	gacaggtttt	tataatttct	tgtaagtata	23820
ttcttcctct	tgcctctctt	gccaccattt	tggtggagtt	aaatacgtat	ctttccaagt	23880
aaagaaggga	cgggaacatt	aaaaatgctt	cagacactta	aaaaaataaa	tgaagaaaat	23940
ggcaatgttc	ttatcctttt	caacatttaa	atttaacagt	tcaacagatg	cattacctct	24000
cagctcatca	agtggtttag	caatttccgt	gagttttact	acattcagat	ggagaagtac	24060
gcacgtcaag	ccatcaacga	tggggtcacc	agtactgaag	agctgtctat	aaccagagac	24120
tgtgagctgt	acagggctct	gaacatgcac	tacaataaag	caaatgactt	tgaggtagga	24180
actaatcttt	attttttggt	catctccctt	ttcctttttt	aaaaaattta	ttttctttag	24240
aaatgtaccc	aaatctgttt	ttgtgttggt	ttcgcataca	agcatccccc	aatagagtaa	24300
caggtagagc	tgtgatgagg	agcttccata	gtccccattg	gaatcatgag	gctctgaccc	24360
actgccattt	tttccccatt	ccctggcttt	tcagcttgtg	tggaagactc	atttggccac	24420
agaaaaggga	actgtagaat	ccaaagaaaa	atggcagcaa	gcagcaaaga	cagagtgatt	24480
cattttccaa	ggaagaggtc	cctactccaa	tagacctttt	tcatatttag	gttctgagag	24540
gtcaatgagc	tgatacatgc	tatgtgcaat	ggtagctacc	aatgttattt	tcttaaaaag	24600
tctagaaacg	ttgatggggg	agtgatcatg	gtttctgact	ttgacattta	gtccctttgt	24660
ggaggaaatg	gtatgataat	ttactaagta	catagcataa	gagatccatt	gacatctttt	24720
tttgggattt	tgtttctgtt	tttgttcttt	ttggaggaga	gactcgtgtg	ttttgcctaa	24780
gtgtaccttc	acaagcatgc	tgctctttgt	acaaacactc	tcatacacac	ttatatatat	24840
ctgtgacgtg	tatattctag	atccacacaa	agcagcatag	agaattccca	gaaagcaata	24900
tccatgcaac	aatgaaagat	gtgtggctat	gagtaaggca	tttctttatg	ggctaatgtg	24960
gtgcctcagc	aaacagtttt	catcacaacg	tgatgactct	ctgtgagaca	acactagcaa	25020
atctcccagt	actcacaaag	gcattttgct	gagccctgct	ggctgaggca	acagtagttg	25080
gaggtgggaa	catggcaaga	attctgcagg	ctgaactccc	tgatgatgag	atcagacagg	25140
ctgtggcttg	acaaagttgg	tccatttctt	gtattatctt	ggctagatgc	tgtgccatct	25200
tgagggtagg	aattttttct	ccaacgtctg	tgtgcacttg	gaccttatgt	taatattctt	25260
gctttcttct	tgtagatagg	tatccaggaa	tacccaggaa	gttccaaatt	tcaaaggaaa	25320
gaggacacct	tggcctcgct	ctgtcaatta	aggggtctga	cccctagtac	tcttcctgct	25380
tgccccctc	ctttttttcg	gctcttgtcc	ctacagttct	tggcaatgca	gaccagttat	25440
agtggcttat	aaagaattga	atatggaagc	tcagcaatgg	ggaagtcata	gtttttcttt	25500
gaaagtttga	gtagttatag	tgtaagctac	ctatttgtct	ttgctctcta	agactaatat	25560
attttttgcc	aaatgtgtga	taaatgaagt	ttgggtggtg	tgtgtgtgtg	tgtgtgtgtg	25620
tgtgtgtttg	ctaaatacat	taaaagtgag	aattcttcgt	gtactgctcc	actattttaa	25680
aatctgtttt	taaagtctca	gttgtaatag	agcactggct	cactataatg	acagagcact	25740

PCT/EP2004/008819 WO 2005/014854

			39467A.txt			25000
agcaggcttc	ttctaaagct	gaagaatatg	attatggcta	accattttaa	agaaatctca	25800
ttaagagcat	cttttctccc	ctgcctttct	gctaagcctg	ttgccctaaa	ccttaagcta	25860
agagacttct	gtgtgctagt	gaattattta	cattacatga	tgacataagt	atctgtttgg	25920
cagcatacat	caagcttcat	gaaagaattg	cccaagattc	atgagatgac	ttctgcattt	25980
ttgctatata	aaatacccaa	gaggacaagt	ccttaaagtg	cgcacgaggg	ttttcgggtt	26040
gcttaaacct	tacctggttg	gaatttaatc	cgctacccac	aggccagggg	ccaaaatgac	26100
acaaacaggg	gatggctggc	atcaggaggt	acccgacaag	ctgctccatt	tagcatcatc	26160
taaatcctct	ttaatatgat	taacatctaa	tatttctctc	tttgtgaatc	atatccactt	26220
ccagccaggc	cacctctcct	ttatctgcag	tgtctatttt	aagactgctt	cactgcaagg	26280
agtatggggc	ccgggcagga	attttgtcac	ttctcatgtg	acttcggaca	gttattggac	26340
tattctggat	ctgattcctc	cttcagtgaa	aagaagggaa	gaaagcagga	ccatgcagtg	26400
tgtcctgccc	cctctactca	cacacttaca	catccatatg	cacacacgcg	taccgaccac	26460
cacacataat	cctaatatca	cgaaatcgtt	tttcttttag	cctctcggtc	tggctcattt	26520
actgacaaaa	gtttcagata	aggtgagccc	ttcttttccg	tgcctttgtg	catggaggtc	26580
actgcttaag	tgagatgctt	aaaaagccac	cgttcttatc	gtggtagctt	tgctagtgtg	26640
ggccgtggct	gagagccaaa	agtagatccg	gcaccttcag	ctgaatacct	ccactgatac	26700
tgtgtgcacg	gctttacttt	tgtatttaag	tttctcctct	taaggtcaag	taaaatgaac	26760
ctatagttta	agtattagca	agtgaagagg	atggcaaaat	ggagaactgt	gctacaaaca	26820
gagctaaacc	atggtagagg	gactttgaag	ctacgtctac	acggtgcccc	aagatccagt	26880
cgattccaag	gaatcgtgtc	acccagctta	gtaggagctg	gtcaaacaat	aaaatgtctt	26940
attgattgta	ttcccagact	tctcaatcaa	ttgttgggaa	caataataaa	atagctaaca	27000
tttattgact	gtttactaat	gacctaggca	ctcttctaag	tgttttacca	aaatagggct	27060
tatttaatgt	gggtaataat	aatgacagtg	ataccaatat	aataacaaga	aaaacttcag	27120
tttgcccaaa	gctttactat	tcttcaagtt	attctaactg	ggcagaggca	gatcgagcca	27180
gggagagaga	aggaggtttg	acgtctcttc	actactactt	tattccttct	ttctctcctc	27240
taccccttgt	cttctctcag	ccttctactc	ccatctctgc	ctctgtcaga	agcttgctag	27300
tggcaccttt	gtcactgctt	agcaccacct	ccgtccagcc	cctgctgctg	atggctctca	27360
aggctggaga	ggctgctgac	ccctggccta	caggaaaata	aagcagatgg	ggaaagttta	27420
tcagcagcga	agagggagtg	gcttgcctgc	tctcctctcc	tagaccctgc	atttcctggc	27480
ctttatgagt	acaggacctt	ctaagtggca	gtagagcttg	ttctgccttt	tgtatcagtt	27540
tacacaattg	ccagaattct	tggcacggtg	tgcagactta	gggtggtgag	cgtttgagaa	27600
gacccaaggg	atgtggaaga	agacacccaa	ggggaaaaat	acgaaataca	cttttagttt	27660
gtgctaaagg	gcagaagctt	ggccatatca	caccgggtgg	ggtgtctt g c	ttctgtgcgt	27720
			gtaattatgt			27780

PCT/EP2004/008819 WO 2005/014854

tcctcacatt	taatgagatt	ggcaacaata	39467A.txt aatttgtctt		atggtatata	27840
	tcattctcac					27900
	ttgggattcc					27960
ggcgtatgag	ttggatttta	tcgcttttgt	tgttttcctc	acaactgtgg	caggaaaaga	28020
agatgacgat	ctctgtcagt	ttctgaggct	ggtttacctg	ttttgcaaag	agctccaccg	28080
agacaactaa	cttgtgtaac	tcacaaaggt	taattgcaca	acgtaaggag	ccaaaagaca	28140
tagcagctat	atgtgcagct	gcgaaaggca	gaatcatcca	aaggttggag	ggtttgttac	28200
cgcctgagtg	taggttgaga	aaagaatgtg	ccagattcct	tcatccagtc	acattgagct	28260
ctctttctca	ttccagggta	ccgggaggta	gtgtttccca	cgccatggta	agccacacat	28320
ccctcctggg	cccctcagtg	gctagtcatt	cacctgtagg	cagggtctaa	gtttccagta	28380
agaatgacag	atctccccta	tcctcgctaa	aggcccaggt	ttggggatgg	aaggcttcaa	28440
aataaattga	atagggaact	tgattcactc	attagtggcc	ttatgaatgc	cattttctaa	28500
ggtactaata	cctcactggg	cagatgctcc	atcttagaga	ctgtgggttt	gacatttttc	28560
tgggtgacac	atgacaggga	agaagggtac	ttccgcacac	ctttgaatgt	gttttcttac	28620
tttcctcttg	gaaatagaaa	ataaaaaaca	acaccccacc	ccacccccaa	cacacacaca	28680
cactaataca	tacacacttg	ctgaatatgt	tctctacccc	atacctaccc	ttttcttaac	28740
ctactcccac	tttcaataga	acccacattt	cagaagattt	aatatatttg	gaagactttt	28800
attcgcattg	tcatctcttt	aaagaaaaat	gaggacaggt	ggatttagga	agcgcttccc	28860
tctgctccaa	atagatcctt	aaatatgagt	gatcgtttag	aaaactggca	catgagtgag	28920
agcctttcac	tgctgttgca	gtcttttggc	ctcaaagctg	ctgagccgtt	taaataatcg	28980
cataacacac	tcttggtggg	tggcgaggag	gaaaagaaac	ccttaccatt	tcttcccttg	29040
ccagtcccac	cgttgacaag	ccaaattgat	cttttaagag	atcaaatgaa	tgttctctaa	29100
atatatgtac	acacatggct	gcctggaaac	gtattccttc	cacagaatga	ttgcctgaaa	29160
tttgaaggag	agcgcagtaa	agacaccagg	ttggaagtgg	ggttgaaggg	ctagggggtg	29220
gagtggaggt	agaattctat	gcgtgcatga	ggcttcactt	ttgtacactg	tccttttggg	29280
attcaaggtg	ttcatcagta	taatgaagcg	ggcccattga	tttatcatct	atttggtaat	29340
gtcattgcat	ttttagctcc	ctgtgtcttt	tttgtcattg	ggttacattc	aagcacagta	29400
agatcaactt	taaaacctcc	ttactcaaca	gctttattag	ttatagcatt	ccatgacctt	29460
tctcaacatt	cttaaagaaa	aagatacagt	gtaatgtcgc	tttactttgc	ttattgtcct	29520
ttgttggggt	gaacaaagca	ttttctacag	tggctatatc	acataattat	acagctttca	29580
atagcagtgt	cttggcacat	atcaaagttc	agaggagcct	ttagaaaaaa	aaaaagatgt	29640
tttgtggcag	cctagggagg	gtctcatctt	tccttcagaa	aatagttcaa	ggctcttctg	29700
tcaagcttcc	ctacttagag	ctttttctcc	tcctgcttca	taaagtttaa	aggggattca	29760
gtggagttct	atgatctatt	tcctttgaaa	gattgttcct	cggcacagag	aggccctttg	29820

			39467A.txt	.txt		
acttcaagag	ttcacagatt	catgtcttta			atcagttact	29880
ccatttaatg	taggagaaaa	agtctcaact	ctttgtgttt	gtctgttttg	cctctgtgaa	29940
atgatttggt	gaaaagacca	tcctttttaa	cacaccactg	agaggccgtt	tctgactgta	30000
acctaccctg	tggcttttct	ctctttaaaa	aaaaaaaaa	tcgtccttgt	gttttgtgta	30060
tggatgagtt	cacagtgaga	atagaattat	acaagggcag	gcgcacacac	aaaaaaatct	30120
ttgctttcct	ccctcacctc	ccgcaccccc	ccacaaatga	tctattggct	ctctcggcgg	30180
ctgtacccca	acaggcgaag	ccatttagca	aacacagagg	tagcggctgt	ggtgctggga	30240
cagtggtggg	ttttcccttg	cttcgaccta	cccctaaggc	cttcataatt	aattgtcctt	30300
cagcgatgag	gaaagttcag	aaacagtgtg	tggagtgatg	cctattgtct	gatattcagt	30360
tctccttgcc	ttggttcttt	ttcttcatcc	cacaaagggt	tatcaatggg	agaaagagag	30420
caagttctct	tctgagagct	gctggtggtg	gctgtagctt	tcagtgggat	gttatcattg	30480
tgttcagccc	atcctggatt	aaatgtctga	agaagttcta	acaacctttt	gaaagacagc	30540
ctgtttattt	cgcctagatg	aaacaaattc	atttagcaaa	ccaaagcttg	ttcgaagttg	30600
gccacccctt	ttcacatggc	agataacatt	atagatcaaa	tttcttcatt	tttccccccg	30660
caggatgtta	tttaacttga	actgtttggt	tctttgtcag	tcacagggca	gaaattttaa	30720
tgactattca	ctcactgctc	ttaaatacat	caatattaat	ttacaataat	acagtttttg	30780
ctaacatcct	ttttgatgaa	gcgtagacgt	ttaatacttg	aaagcagata	attagtttaa	30840
aaatattgtt	tctccttcaa	tgactgcctt	cagccaatct	tcaattctat	cttgtaagat	30900
gatgtgaaac	aaacgcattt	tgtcttcctg	cacccccaa	tttttggctg	agatacaaaa	30960
taaagatgca	gtgtggagag	agctatttga	gaagggtagg	aaaaagagaa	ccgtctatta	31020
atgatcatta	tactactgtt	cctgttaaat	agggtgaagc	caagaaaaac	aaatataatc	31080
gttcttccga	ggagagcagt	tgaactagta	aatcacagag	gtttaaaata	actacattgt	31140
agtgttcatg	acaacttcaa	ggctgaaggg	aaccatattt	aaaggcaatc	tctgtgtctc	31200
ttatagcagt	ttcttttgga	ggaagagacc	gacaggatgg	ccagaatcaa	ttctgccccc	31260
tttgctcttt	gaaaacaatt	tcacaacaga	ccttttggta	tttaaagaga	acctgtatat	31320
ggaagttgac	acaactaata	tagtcatacc	aaaaaggggg	tcataaaaaa	ttaaagttct	31380
tcttatgaat	ctttcatgag	aagcaatgaa	aagggacact	agtgtagcca	agttctttgt	31440
gctacaagct	cttcttccgg	gctctgagct	attgttcttt	cagctcctca	aacagacttt	31500
cactttcaaa	ctgacaaaag	tcacttaaaa	gccagacagc	tgtactaaca	cacccacctt	31560
actgagcaag	agccactggc	aggtgacaag	gcctgctgag	agaccttgtt	gaaaatgagc	31620
aggggtgact	ttctcgtgcc	ttaacgttgc	ttttgcactc	actttgagat	ggcccattga	31680
ctgctctttt	tgcccccca	ccccaaaaca	ggctccccaa	aatatgttgt	gcattttctt	31740
tgcagtgtgc	aacattgaca	tccgtgatca	tatttctgcc	ttacacctgt	gtggctaggc	31800
acgggttctg	ggaaatttgt	gcccttctag	cagaagacag	ggagtttgac	tcacaaaact	31860

WO 2005/014854 PCT/EP2004/008819
39467A.txt.txt

cctgctgcct	cttttccttt	tgcccctcca	ttcagttcaa		aggttttcag	31920
atttctgttg	cctcactagg	gttggataga	aaacacccac	caaagatggg	tgcaaacctc	31980
accttcggat	ttaagatcta	ggcagagatc	gttaggtggg	tagtcctgcc	tgcatcccga	32040
ccctcagggc	agcagccgtc	gtgggccatg	ggaggcctcc	ctgtgtgcgc	attacaggcc	32100
tcccctcccc	tgtcaccttg	tgtacagtct	ggtctgtgac	actgatggtg	attatgtcat	32160
tattttgctc	tgggggccct	ggcacatctg	cagagcccaa	gcacatcttc	tttgttgcgt	32220
tggcaaatgt	cccacgccgc	aaatgcttca	ttagccctgc	tgccggcctc	cttgccagac	32280
gcctgtgccc	aaatcccggc	ttctttttgc	tccgttcttt	tgtgtagctg	atgatcatgt	32340
attcatcttc	ctggttcttc	cccattttcc	tcgacttctg	aactccagat	gtcccagttt	32400
tcttgcccaa	atcactccga	agtctacaat	gcgaaatgaa	gtgactcttt	acccttgaat	32460
ccttccccac	tcctgaccac	ctttcctact	tttttcccc	caaatgaata	gtgactttga	32520
atagctcgcc	accatgaaga	ctaacgtttt	caaacttgca	atctgaaaag	acaccaagtg	32580
attgcttcca	gtttatgatg	agagacaggg	ttagaatgag	tttggcatta	ttagatattg	32640
cttattatct	gtgtgccttc	ctcctccgtc	cccactctgc	ccccctcact	atttccttgg	32700
atcctttatt	tgcacctgtg	cattgccaca	ttttaccaat	tttctgaaag	cactttgaaa	32760
tgtgagtaca	gaaaatactc	ttcatgcctc	gctgtgcacg	ttacagtctt	ctgaaggttc	32820
ctttctctaa	gtgaatcttc	atctccactc	taccctctcc	caaaaccact	gccccctcct	32880
tctgccccag	ccctcaacaa	tgacctacta	ttagatactt	acagtgatta	acacttggct	32940
gttttggaaa	cagctaaaac	atttctctct	ctaaagtttt	attctatata	tctaacagag	33000
ccacagcttt	tgtgaaggtg	tactggtttc	tacattagct	gcagtaaatt	ttagagctta	33060
atatcttggg	ctgtgatgga	tactacataa	ttggtatgtt	taattttccc	ttaaatttga	33120
attaattgat	ctgtgttagc	atattatgag	cagcttttcc	aatagagttt	aactagtttt	33180
taaattctct	aactactgca	acataaaatg	atttaaatgt	ctccatcttt	gagcaaacca	33240
taagatttta	gttttcaggt	gtagttaaag	gagttaagtg	tatattttat	ggaaatcatg	33300
gttagatcac	tgccatgaat	tgtaatttga	aattcaagac	aaagactctg	ttaagggtta	33360
aagaaaactt	cctcagagga	atgagttgcc	acattgtacc	gggttgctga	gattttcaaa	33420
tacctatcaa	agaggggcac	aagaatatgc	atgttgcaaa	tattaggacc	aatgtagcca	33480
acaaggtgag	aagagaggtg	gtcagatcag	gcgggtgggc	tccccaaccc	attgtcagcc	33540
ctgtgcaggg	agcatattgg	gagaggctgg	tacctgtcat	tgaatcattt	ttcaaaaggc	33600
tcgagatata	tccaaaatat	tcctaacctc	ccagttgccc	accattatgg	ttttatcacc	33660
catgagtttt	acttaaacct	tttttaaact	taatctcatt	gtcagaatat	accactcctt	33720
aagataataa	ttctctaagt	gtattacctg	ctgggaaaat	actatcttct	ttttacggct	33780
ctaaacgtga	ttcccctaga	actccacagg	gatagccctt	gttataatat	cctgggattg	33840
tgaagagggt	tgtgtccata	ttctccattt	cctttctgat	tttacagact	ttgatcatta	33900

17/166

			39467A.txt	+>/+		
ctccctctta	atcttcatct	ctccagatta	aggagctcta	atccttttta	aaagcctaat	33960
ctcatacagt	aagtgggctg	ccctggatca	ttttagctgc	cctgctgtaa	tgcgcttcca	34020
gcctgactgt	gtttttctga	gggacagtta	cagttactaa	ctcacacagc	agaactccag	34080
gtgtgggcag	tcatgccacg	gtttggtgat	ggtgccttgt	gcacacccaa	tgggactttt	34140
ttgattaccc	caaaagttta	tcctcagaag	ctggaattct	tgagttggat	ctcagtagtg	34200
cttattggtt	aaaatgatcc	tatgagacca	gctgatcaga	ctcttggcaa	atactctggc	34260
aaatatgatt	gtgtctatag	gacataccca	gccaaataga	aaataggcag	atccaccctg	34320
ccctccagat	gttttcagtg	ttcttgtaga	tcaagcactg	gggtatttga	catcatgagg	34380
agatagcctt	agtcttgaac	ttgagtctat	aataatgaca	gctctggggg	aaagctccag	34440
tttctgcttt	atttgatgtt	attctcaggc	aggcaatgaa	atgttcacct	gcaagtagtc	34500
aatattttat	ataaaacatc	cccttgaaat	cttacaaaga	aaatgctttg	gggagtcttt	34560
ccactgtcag	tggtcctgga	tcaataccgt	tgtaggactt	acagcatgga	ctctccagcc	34620
aggccctggg	atcaaatccc	agctctgctg	ctttctagca	gtgaaaccct	ggcaagtgtc	34680
ttaccctgcc	tgtacttcag	tttccttatc	tgtaaaatag	gggatgtaat	agtgactact	34740
tcacagagtg	ttgtgagaat	taaatgaatc	tacacaattg	tattagcaca	aagtaagtgc	34800
tgtataagca	ttcacattta	ttcatttgca	gagccaagta	aatgttacct	tgttgctgtg	34860
acatctgtgg	tccaattatt	gcaccatttc	ctgctgaccc	taaataggaa	agtaaacaaa	34920
cgggcaatga	gggagctctc	atcagaattg	gaacatatat	tcaacgtaaa	actggttttc	34980
acaagagcaa	gtgttcctgc	tctgaatgtg	gctgaaaagg	cgacactagc	ctggaacagc	35040
tccaggactc	tggggtcatc	cgttccagat	gagaaggaca	cgatgagatg	ctgggggtgg	35100
tggaaggagc	actggcctgg	agggtctggc	tctggccata	cctgcctcat	tgtggtctac	35160
tgtgctcacc	ttttggaaag	tgataagatt	aaattcaaga	gtttcattct	agctctgaaa	35220
ttttgtgact	ctagagtaga	ggggcagttt	cattctagct	ctgaaatttt	gtgactctag	35280
aatagagggg	tattctgcat	tctctaaata	aagtctcttt	tgagtcttgg	tcatgttgca	35340
aagctttaag	cagtgagtat	agaggccctg	ggaatccaga	tggcttccat	gtgaggcccc	35400
ttctaccctg	gtgactctgc	tgcagcttaa	ttatctcagt	caaaatctcc	agggtgccca	35460
ttttcgtttt	ctcccaaggc	cctatttgca	gatctgaatc	tcaacagtgc	ccttggagac	35520
atggcaattc	ccttactggg	attatagaga	ctaatttttc	aaattcatac	acaatttatt	35580
gactgaattg	gcactatcat	tagacttgct	gctcacttta	tttgttgcct	tggccagggt	35640
ggccaaacaa	tgaggaaatt	tgtcagtgaa	gccctcatgc	cattgggttt	tctcacacat	35700
tccatgcagg	cctcaacaca	gactatcagc	atttataata	tgcattaact	tctatataat	35760
gtacgtctcc	tctctttcag	agcagaattg	gctatgtttt	tttttttatt	cttttatttt	35820
tttattttt	tgagacacag	agtgttgcac	tgttgcctaa	gctggagtac	agtggcatga	35880
tttcagctca	ccacaacctc	cacctctcgg	gctccagcga	ttctcctgcc	tcagcctccc	35940

			39467A.txt	+v+		
aagtagctgg	gattacaggt	gtgcatcact			gttttagatg	36000
atataactac	cttccctact	aagcctactt	ggtagtgttt	gcaaaagcaa	caccaccctt	. 36060
ttctttaaat	attccccaaa	tgatagtaat	atagatcatg	aaagtctttt	cccttgagat	36120
tgttttgtat	gtgtgagagt	ttgtggttgg	gaggtattga	gtcctcatac	aagccatttg	36180
gatatgtatt	cttcatattt	cttatggcta	ttgcacctaa	gttctgtttt	cttaaggcta	36240
cattaacatt	ttaaattaga	atatggtgct	aaaagtgact	ttcagtaaaa	ggtaatgtat	36300
tccctgagaa	caagtaaata	cttgggcagg	gagggatggt	ttgagtagag	gtgaaaacag	36360
agaaatgatg	ggaagctgac	catatgtaga	agaagctgaa	aggtcatggt	ttcaaggcca	36420
ctgtgtttcc	tttcatttag	agcatccact	tttaaagatt	tatcattttc	agtgacctga	36480
aggcgtacaa	gataatctgt	gtagatacct	gaaactgcct	ttcaacaagg	ccagtcctag	36540
gtattgacag	catcctaggt	tgtcccaccc	taaacattac	ctcaagtccc	attgggtagg	36600
agtctagtgg	acttccaaaa	gcccccgagt	tcattctgca	atctgcctgt	ctttgcaatc	36660
tatttacctg	tcttgaaaaa	gggattccaa	agcccttcac	aagctcttaa	gtagcatttg	36720
aaatacagcc	catccttagt	tttgcaaagg	gtgattgcag	agaaagacaa	atagaattcc	36780
ctggaaatac	agaatagaat	ttctctgaca	gaacaaagat	cttgcagtca	aaaccaaggg	36840
atgggattga	ggccaataat	ccccatcctt	tcctaaagca	actcggatat	tatttggggt	36900
gtcataagct	attgccagca	gagtgccagc	atcccccatg	aacttgtgtt	ctctgaagct	36960
ctgtctgatt	tcctaccatc	tgtatcacaa	gcgctttctt	tggtgtttac	tatgagcaat	37020
ccctttctca	tcacaacctg	cctgaacccc	acttcctaac	agcttctccc	taggctcctt	37080
actcacattg	ctccatcaat	agcaatacag	ggcacacaga	ctagttttaa	tattagccta	37140
ggcaaagctt	aattatgaag	gtaaagctgt	g gcagaaaac	aatcacgtaa	tacattctcg	37200
aacgaaacag	gagtaactgt	ggattatctg	tgccccagct	tcccttcatg	caatattgga	37260
gtgtttgtgc	tatgttgttt	ttggataatg	tcccatccaa	gaatggcacc	aagcttggcc	37320
ctgcttcttt	taccacctca	cccagtaatt	gtagcaaaag	ttaaacttca	agggctgtca	37380
gcttgtcttg	aactcagaca	ccaatggcac	caaatttacg	gggctgactt	aaaggggaat	37440
ttgttaacac	tacaaagtga	ctggtatatg	attgcagggc	ttatttttcc	acctaagtat	37500
tgagctgatt	tgtcagatgt	gtcatgaagc	agggatacat	tcctctgttt	agcacattta	37560
aatatgtact	ggcaggaaag	ctcccaatta	aacgttccta	atcagagcag	ggtaagactg	37620
aagtcttcct	ggtccttgac	caccacgtgt	gtggtttatt	aactctgttc	ccgtagacat	37680
aggcagcctt	aactccatcg	ggggaatggt	ctggccttac	aggtcgaatt	caagtgaatc	37740
aatcgaacta	tcctccaaga	tagagcagaa	tgaaagaccc	aggatcagtg	cagaatgaaa	37800
gaccattagg	cctctagaaa	agctgttagc	cctcaagttt	ggctaaaagc	aggggctggc	37860
aaagtatggc	ctatgggcag	agctgcccct	caatctgttt	ttatggcttc	aagctaagaa	37920
tgacttaaat	ttttaaacag	ttgtaaaaaa	taaggagaat	atccaaccta	gaccaaatat	37980

			39467A.txt	+v+		
ggcccacaga	gcctatgtat	ttattacctg			gctgaccacc	38040
ggctgaaggt	tttttctctt	ctgtgggaca	tgaactctct	gagattcctt	ctagttctga	38100
agtt ccaa aa	ttctgtgatt	cctttttttt	ttttttttg	agatggagtc	tcactctgtc	38160
acccaggctg	gagtgcagtg	gcatgatctc	agctcactgc	aacctccgcc	tcttgggttc	38220
aagcaattct	ctgcctcagc	ctcctgaata	gctgggattg	cgggcgccag	ccaccacgcc	38280
cggctaattt	ttttgtattt	ctagtagaga	cggggtttca	ccatcttggc	caggttggta	38340
ttgaactcct	gacctcatga	ttcacccgcc	tcagcctccc	aaagtgctgg	gattacaggc	38400
gtgagccacc	gcacccggcc	aattccatga	gtctttgatg	gaatagtctt	ggtccagctc	38460
ttacctgaac	agcctaccag	atgagcaatt	tctgcacagt	gcttccagtt	gtttttaaga	38520
tcttaacagt	atctgtgtag	tatctcaggg	ggagagaatg	aggtattagg	ttttagtttt	38580
tgatgctttt	tccttgattt	tgcttgcata	tttgtttgtt	tgtttaaact	tggaatcact	38640
ttttaagacc	tatgcagagt	ttgggagaga	aggaaaattt	gcttcatcgc	gaccaataat	38700
gtgacaatta	tgtttcctaa	cacgtataat	accaagacct	ccatgtgtga	gcaaataaac	38760
tagccactta	aagcacgttc	actgaccaaa	tttcagcccc	acgaaataat	tttgacagtc	38820
tctcatagac	atttgtcatt	ctgctcctag	caagctagta	ctatcttcta	ctggggctat	38880
ggaàgagatg	gttttactta	ccttgatctc	tacatgcaga	attgccaatg	gaatacttac	38940
ataatttaaa	atgtatgcac	aatttattaa	acgtagaata	gaagatgtta	agacatcctt	39000
ttctattacc	tgaaagtcac	aattattcga	aatgctcaaa	tctagaacat	tgttgataat	39060
tatataatat	tttaacaaca	catatgttat	caacatcata	atgctgtaga	aattttattg	39120
tgaattttgt	attttctaaa	tactcttaaa	agacaaagac	tcaaattcag	gtagaaaaac	39180
aaagaagata	ctcagggtgt	atctctgccc	ttcattcatt	gctgtggtca	gagaagtctg	39240
tgtgaggggt	ttggccggta	gcagcccccc	agatccgtac	actgcagacc	aaaattcagc	39300
tcctgtgatg	cttttccatg	gagtttccct	gtcaattcaa	ggtagatcct	caacctccct	39360
ccttggcagt	ttgcatgtga	ctgttcattc	tttttattac	atttcctcca	gggggccatt	39420
ttcaccatgt	catatctgtt	tgctatcagc	atttataagg	gctggtgtgg	cattggagga	39480
tgtcaagtgg	tctgacttgg	aagtgtactg	ccacaaactc	catgtaggtg	acaggaggag	39540
agacctgctt	tcccgttgcc	actttttgga	ttatccctgc	aactctttcc	gtctggctga	39600
caaaaacctt	ggggctattg	ggtggctcat	cacttctgct	ccttctctag	cctttccctg	39660
ggtttgcttc	ccccaacccc	cacaccccct	cgcacattaa	catgacattg	cctggtgagc	39720
acagaagaga	gcagcttcca	ccagctgaaa	cctctgatct	caaactcact	agagagtttg	39780
gcttcgggat	tttggcaaga	aggccgattg	cccatcaggt	cagcatgaat	aaagatttct	39840
ttcttccctt	cttttttaaa	gtcaagcatc	aaccgaaact	gctcccaaag	ctctgtctct	39900
caagacaatt	taaccccttt	cacctaagta	cattttctat	tttgaatgca	tggtactttg	39960
ttttattctt	ttcctgtgag	atgaccaaga	aatctactat	atgtaaaatt	tgaaagccaa	40020

			304674			
gtcaattcta	aaccaggctt	atcattttta	39467A.txt aagtatgttt	atccagcttt	gtagtaggaa	40080
caagcagact	gtttgaaggc	cacatacttt	tcaaaccctg	gttgcaacac	gtctgccccg	40140
ttttgaaact	gtctttatct	agccgagaaa	acgaaaatct	atttgacaaa	gtggcactct	40200
ggccagttta	tcttgcaata	tggctttagc	tcactgagtc	tattgatttc	cttaaattaa	40260
tgtttacaga	atgctactga	attttgctca	acagaacatt	gttctttcga	agctttatat	40320
atatatatat	ataaaagaga	tacagactgt	tattgccatg	tgttcctttg	tttagaccaa	40380
ggaaacatag	tttttaggtt	ttttttttc	ttaagacagc	cttgaactat	agccacttcc	40440
tacaagcatt	tacttttcac	atatttaaac	agcaaaacat	gtaactagaa	agtgggccca	40500
aactgcatgg	gtattagacg	aatctaatcc	tcagtgttcc	tgaaagctga	atgccacctg	40560
gagcatcaga	gggagaaagc	ctttagtcct	aagcccagat	gttgctggag	aaccttcctc	40620
tgcctcattt	ggggtaactc	ggcaggcacc	cgaaagcaac	ttcacagcca	gtgctcctgg	40680
atcctgctag	tttttccaaa	cacaagcatc	ctaataaaat	tcaaacacca	tttagctgtt	40740
tgggaactct	aaatataaca	tcttgccctt	tgaccacggt	gctcagtgtt	caatacacaa	40800
aacctaatct	ctaaagatga	ttttaaaact	gaccttccca	gagaagtaca	cgtatccatt	40860
cagctacgaa	cagtgcagaa	aacaggattt	tgactcataa	ttatgaaatg	gccaaaataa	40920
aacttaggga	acacaaagca	acttttctca	accggttgac	tcagccaaca	aactcaccca	40980
agcgaacctc	ctcagagcac	ctctcaaaac	gatgctttgc	agacatttat	taatcacagt	41040
gaatgcttcc	caggaattag	ggctcctctt	taaaatctca	aacttgtaaa	ccaccttata	41100
tttggatgat	attttatgct	tcccaaagtg	cattcatgtt	ttcttttcca	tttgatcctc	41160
ccctggaatg	agagggcact	ggaatagaat	ctcaggattc	actgtgtata	gcatcctgca	41220
ccattccttc	tcttctggag	ggcctgttag	tccccggctg	tacacacagg	ataaatgcat	41280
gcatgactgc	aaagggagac	ccttagtaac	cacatcttgt	gaccatattt	tacagctcca	41340
tgattcctct	tttcagcctc	tggcaggaga	gtttagtgtg	agtgagacag	tgaagaggag	41400
cagcaataac	gtatctgttc	ttggcttttc	atctgataat	ctctatgagg	agttactaaa	41460
gcatctgagt	ttatccattt	aagtccactc	tgtctgcagt	gtaagt c ccc	agcttgtgcc	41520
actgctgtca	ggagatgagt	ctctccttga	tcgatattta	cttaacaaac	agcagggatg	41580
ggagagtttg	tttagaggaa	tcatgtgcac	tctagggtga	atgaatgctc	gggaaagtac	41640
ttcaactatt	tgtctccttc	cctaagattt	ttgtgtacgt	gtgtgtgcac	acacgtgtgc	41700
agatgcccat	tctcttttta	acttctccaa	agacacttcg	aagtcatcta	gaaaaatacc	41760
tcgctatgta	tgattggtac	atcattatac	cgttaaggag	ctaatgatgc	agatgcagtt	41820
tttctaaccc	agcaaagttt	ggttcttctt	ttgtgctctt	atatagagca	caaaagagac	41880
tcttaggata	aactaaatgc	acaagcatct	acctttgacc	cctttċagat	gagtggaagg	41940
gaagaaaata	cggatggaaa	caataaaagc	agtttgacaa	ggcagctctt	cactatgtat	42000
ttttgatggc	attacctata	tatttttaaa	ggcccacagg	gacaaaaagt	aactttctcc	42060

	200+00+00	aca++2a2+2	39467A.txt.		tatoaattoo	42120
	agctgcttca	,				42180
	aattgagaga					42240
	cctcttgaat					
	gtgtggggag					42300
_	gagttgtaaa					42360
	tatttaccgc					42420
taacaaaagc	ccaacagctg	atgcatgtga	tgttaggagg	tgacaaaaca	gttaaagtat	42480
gctgctggct	acaggcaagc	agtcagcaga	tgcagacaaa	agggtttgtg	acaagaataa	42540
ctctctctcc	aaggcgagca	gtgaagagta	tccaaaatac	cagtaccctt	ttctccttga	42600
cattgtcttc	ttacagtcag	cattttattg	cccttttata	gtataaaaaa	aaatggagga	42660
ggaagaagaa	ggaaaaccca	cacacaaact	aattcaccaa	aatactaggc	aggattgtac	42720
tttcccattc	gctagccatg	cctgccagta	cacgtgtcct	tttccatttc	tccatcgaag	42780
caagtttgaa	aaaaaaaatt	agcttaaaag	atcagctata	aagatgattt	cccttgaaaa	42840
gtttgtaatc	tattgatagg	cttgataggc	cattggagcc	tttggttacg	ggttgggggg	42900
tgggtggcca	gggaaagaag	tcgatgcctg	gtttgttttc	tgtccatttc	agtgaagatc	42960
atttcagtga	tgaaatgagg	ccagagggcc	aatttttaaa	ggggattgag	gagggaggag	43020
tgtccatgga	gaactgagca	aggggcaagg	tttaggtccc	ccgcaagagg	ctgatgaatg	43080
agcttacgga	cggttcagag	gtgtgaaaaa	tgagcttctc	tgtctccaga	aaataggaga	43140
ggctgtcttc	tttttaacct	ttgtaattcc	ccttctattc	tctgtgacat	tcattcagct	43200
gccaagagcg	tttggcaagg	tttgggccag	cgagcacact	tccagtgacc	gctaaccttg	43260
	acacttatga			and the second s		43320
	attatgtact					43380
	aagcaactgg					43440
	gaaaaaaaaa					43500
	tgtgtgtgtg					43560
	gtggactggg					43620
	gctcttgttt					43680
	acccccttca					43740
	atcaaggcaa					43800
	agtttccact					43860
	gttccagcca					43920
	gccttctccc					43980
	cttgattgac					44040
					tcactaaggg	44100
ctgcagattg	rigggricta	LLAAAAYAAA	cccayacaay	334 - Cacc cg		

attttctgca	gatgtttatt	ggtgatggga	39467A.txt. aagccattag		gtgcagaaaa	44160
atatggacaa	catcattctg	ataagactgg	tttctaagat	gctcccacaa	aacatcagaa	44220
agtaccccct	attattctgt	taaatggagc	tgggtgtttt	caagcagagg	taaaggtctc	44280
tttttccatg	ggtgatgttt	ctatgtgtgg	atgaaattca	ctggaaccct	ctcagaagat	44340
cagttgctac	ccaaaagtgt	acctctggga	gccaccaaac	acatgagttg	ctccagtagt	44400
tcagtatctc	attacaactt	tcttttgtcc	agtccagtcc	attgcatgag	tatcacctca	44460
aagtaagcac	tatattaact	aatcatttta	tttgttcaca	aagaattcat	ttcttcccaa	44520
atataaacca	ataaccaaag	tctcctccag	ggcatctttt	ataccatttc	catttatttt	44580
gaagttacta	gattctctgt	ggtttttcaa	gattacagag	gcacagcttt	tcaaggtttt	44640
ggtgcctcat	ataaatagta	gaaattgctg	aaaaagcatt	aaaagggagc	cagcatcgtt	44700
taatgcaaag	acaccttacc	tcacagtaat	ctcttcatct	catcatttct	tcatctcata	44760
caatctcatg	ctttcttcat	ctataaagtg	atgatttctg	agatctattc	gaactctttg	44820
aattctacct	tactttacca	ttattttaaa	cttcttttt	tttttttatt	tttgagatgg	44880
ggtctcactg	tcacccaggc	tgtagtgcaa	tggtgcaacc	tcagctcact	gcaacctccg	44940
ccacctgggc	tcaagccatc	ctctcacctc	cacctcccag	tagctgggac	cacaggcatg	45000
tgccaccaca	cccagctaat	ttttttgcat	ttttggtaga	gacggggttt	catcatgttg	45060
ctcaggctga	agcttccctt	tattaagtat	tgttaaagta	ttaagtaact	gccactctag	45120
agcaatatgg	agtaaagcag	aaggcaagat	ctcactatga	gctatttacc	aaataacttt	45180
gcaaaagata	ctctgctgag	gctccttatc	tagagacacc	ttatgatgag	gtaattgaaa	45240
gtacataaaa	gtagataaaa	agttaaacag	catcaagaca	caaatgcaaa	aggtgataaa	45300
ggataaccta	tgattgccac	cacaagaaag	gaatatttaa	aacagattaa	aacccactaa	45360
aaaccattaa	caagcatgac	gaactataaa	aatgatgaag	aggagactgc	atacaacccc	45420
caaagaagtt	gccttgttct	catgcaaatc	ctacaactac	acttccctcc	ctcccctgct	45480
gctgatgttc	tagatgtacc	tcttctctct	cctctgacag	tcttgaacaa	tgcctgccct	45540
tcccctgtcc	ctggttcccc	agacctcctg	tgcagttctt	ggtgtgggca	gggcttccgg	45600
ccttctctgg	cttctctggg	gcagctgccc	acaccttcac	ccctcaaagc	tctctgccat	45660
gtcatgctgc	atccctgagt	gctcaaggaa	catagaattt	cactgaggct	gtattgccgt	45720
tggctgatga	aaccaccctt	cttgaaacgt	ttattttaat	aaatgcctat	aattggccag	45780
gtgcagtggc	tcacacctgt	aatctcagca	ctttgggagg	ccaagacggg	cagatcacct	45840
gaggttggga	gttggagacc	agcctggcca	acatggtgaa	accccatctc	tactgaaaat	45900
acaaaagtta	gccaggcgtg	atggcacttg	cctgtaatct	cagctactca	ggaggctaag	45960
gcaggagagt	ctcatgaacc	caggaggcag	aggttgcagt	gagccaggat	catgccactg	46020
cactccagcc	tgggtgacag	agcaaaactc	catctcaaat	aaataaatta	ataaatgcct	46080
atgattatgt	ttctgtagca	tttggctaac	agctcccaat	ccaaggagtg	agagtgggca	46140

			39467A.txt	.txt		
gttgctccgc	ttcactgttc	tccagccaca			catttgatag	46200
aatgtggagg	attatctttg	ggggtggagg	tgactgtgct	agaaaagatt	gcttcacgaa	46260
tttttatttg	tataatgtga	gtgggagggc	taagctctcc	tccaacaaat	actcatgtat	46320
acaagacatt	tgggaggaaa	tcacccaaag	gcctgtagaa	aatccacatg	aattctcagc	46380
agagaatggc	ccttgaggtg	tatgggtttg	cacattcatg	gcggacaagg	cggcactttg	46440
aaggattttc	caggcaacac	tgggaattat	gtcctaagaa	atgggccagt	gtgaaagtct	46500
ttaggagggt	ctgataaaaa	tgtaagctta	agactgattg	gccccaaaag	gagtcccttt	46560
cattttttc	tgcagagtta	ttacatttct	ttataaacaa	caattaactt	gccataggga	46620
acaatgaact	tctttgtcca	attttaaacg	tgaaaaacag	tgatgtcggg	tgatgattct	46680
ggttttcttt	accagttact	actattgtta	aaaagtacat	tgcacccaag	gtgggaagaa	46740
agagatgaaa	catgttcaac	attacactac	ttccttttta	ctttggtacg	tggcatgtct	46800
gaacttagat	gaaatgtctt	tcatctcttg	tatatgcgta	gataaatatg	gctacatgta	46860
cacctatgat	acgtttatgt	cctcatacgt	ctgcacttaa	tgtaaaaatg	aaactttact	46920
ggtgtataag	taccccacta	aaagaaatct	actaagtgtc	aatgtgtact	tggaaaatca	46980
tgagttcatg	gattattctg	tgattccatt	atgttggtgt	ggggatagat	agaccatgct	47040
gtactataag	taacttccaa	agaacactaa	ataagtacat	cagtagctac	tgctttcctt	47100
agtcaagaga	tcagattaat	aagtaattaa	gagaacacac	acacacacac	aacacacata	47160
catattaatt	gctgtggaag	aaaagcctta	agaaattggg	gttctaaaat	gaatatttgg	47220
ggaatgttta	ttttggatga	taaggacctt	gaggaatttc	cttaccctct	ctgagcctca	47280
gttttctatt	gtgtaactgg	gataataaca	ccccttagag	agattgggag	aactgaatga	47340
cataattcac	attcagtaca	taaaacatag	cctggcaagt	agtaaatact	cgaaaaaa gt	47400
tagtttgtat	tattattatt	atcagctgaa	taaatcactc	tcttatggag	caattctaat	47460
ctcaaggtta	agtagtttct	gatgtaatat	tttaggatca	gttttgtgac	ttcatgttaa	47520
tattattatt	ttactccttt	atgtatatag	aatactttat	attgcagatt	aatatacaac	47580
ttagcatctg	agtcaacaat	cctctgagac	aaacagataa	ctgagatttt	agaagatttt	47640
cttcatttaa	agcttgggtt	taatttataa	agaagcccaa	ctatttgtta	ttctattttg	47700
agaacgtatt	ttgttttcat	catggcaatc	aaaaagaaat	aggattcaaa	ttctgaaaaa	47760
ataattggag	actttcttct	ggatagcact	tatttaataa	agtgaggaat	cccaaaagtc	47820
acatcccata	ttcctatcct	aatatccaca	atgaaatccc	agtttttcaa	taggtctgcg	47880
ttggatcttt	catacactct	tcttaaaaca	aagctgtcaa	ccccacatca	caatgcttct	47940
atatataatg	actttacatt	aaaagaatag	aagccagcta	tttttagaaa	atgcaggtgc	48000
catgtaagcc	cctttctgca	agaatgatct	tagctcagtt	tccttggaat	aactgtagac	48060
ttgaaactga	aaactttatt	aatgccattg	tctccttgta	tcagcaggtt	ccagagagat	48120
tcctggaagt	tgctcagatc	acattacggg	agtttttcaa	tgccattatc	gcaggcaaag	48180

atgttgatcc ttcctggaag	aaggccatat	39467A.txt acaaggtcat		gatagtgaag	48240
tccctgagat tttcaaatcc	ccgaactgcc	tacaagagct	gcttcatgag	tagaaatttc	48300
aacaactctt tttgaatgta	tgaagagtag	cagtcccctt	tggatgtcca	agttatatgt	48360
gtctagattt tgatttcata	tatatgtgta	tgggaggcat	ggatatgtta	tgaaatcagc	48420
tggtaattcc tcctcatcac	gtttctctca	ttttcttttg	ttttccattg	caaggggatg	48480
gttgttttct ttctgccttt	agtttgcttt	tgcccaaggc	ccttaacatt	tggacactta	48540
aaatagggtt aattttcagg	gaaaaagaat	gttggcgtgt	gtaaagtctc	tattagcaat	48600
gaagggaatt tgttaacgat	gcatccactt	gattgatgac	ttattgcaaa	tggcggttgg	48660
ctgaggaaaa cccatgacac	agcacaactc	tacagacagt	gatgtgtctc	ttgtttctac	48720
tgctaagaag gtctgaaaat	ttaatgaaac	cacttcatac	atttaagtat	tttgtttggt	48780
ttgaactcaa tcagtagctt	ttccttacat	gtttaaaaat	aattccaatg	acagatgagc	48840
agctcacttt tccaaagtac	cccaaaaggc	caaattaaaa	aagaaaaata	atcactctca	48900
agccttgtct aagaaaagag	gcaaactctg	aaagtcgtac	cagtttcttc	tggaggcaaa	48960
gcaattttgc acaaaaccag	ctctctcaag	atgagactag	aaattcatac	ctggtcttgt	49020
agccacctct ctaaacttga	aaataggttc	ttcttcataa	gtgagcttac	atcattcttc	49080
ataaagaaaa atcctataac	ttgttatcat	ttttgcttca	gatactaaaa	ggcactaagt	49140
ttccaattta cgctgctcaa	ctttgtttat	atgcttaaaa	ggattctgtt	tacttaacaa	49200
ttttttcccc taaaatacta	ttttctgaat	acttccttcc	agtaaggaat	aaaggaaagc	49260
ccaacttggc cataa				•	49275
<210> 2 <211> 3097 <212> DNA <213> Homo sapiens					
<220> <221> misc_feature <223> Prox-1 DNA					
<400> 2 ggcacgaggc cccttttcca	gaatcacttg	cactgtcttg	ttcttgaatg	agaaaggaag	60
aaaagagcct cccattactc	agacccgtgt	aaacattatt	cccccagga	gaaaatggtg	120
ttattcaaat gaatcataat	aaaatagcct	ctaaacagtt	tctaagcggg	agcctccgtg	180
gaactcagcg ctccgctcct	cccagttcct	aagaggtccc	gggattcttg	agctgtgccc	240
agctgacgag cttttgaaga	tggcacaata	accgtccagt	gatgcctgac	catgacagca	300
cagccctctt aagccggcaa	accaagagga	gaagagttga	cattggagtg	aaaaggacgg	360
tagggacagc atctgcattt	tttgctaagg	caagagcaac	gttttttagt	gccatgaatc	420
cccaaggttc tgagcaggat	gttgagtatt	cagtggtgca	gcatgcagat	ggggaaaagt	480
caaatgtact ccgcaagctg	ctgaagaggg	cgaactcgta	tgaagatgcc	atgatgcctt	540

ttccaggagc	aaccataatt	tcccagctgt	39467A.txt tgaaaaataa		aatggtggca	600
cggagcccag	tttccaagcc	agcggtctct	ctagtacagg	ctccgaagta	catcaggagg	660
atatatgcag	caactcttca	agagacagcc	ccccagagtg	tctttcccct	tttggcaggc	720
ctactatgag	ccagtttgat	atggatcgct	tatgtgatga	gcacctgaga	gcaaagcgcg	780
cccgggttga	gaatataatt	cggggtatga	gccattcccc	cagtgtggca	ttaaggggca	840
atgaaaatga	aagagagatg	gccccgcagt	ctgtgagtcc	ccgagaaagt	tacagagaaa	900
acaaacgcaa	gcaaaagctt	ccccagcagc	agcaacagag	tttccagcag	ctggtttcag	960
cccgaaaaga	acagaagcga	gaggagcgcc	gacagctgaa	acagcagctg	gaggacatgc	1020
agaaacagct	gcgccagctg	caggaaaagt	tctaccaaat	ctatgacagc	actgattcgg	1080
aaaatgatga	agatggtaac	ctgtctgaag	acagcatgcg	ctcggagatc	ctggatgcca	1140
gggcccagga	ctctgtcgga	aggtcagata	atgagatgtg	cgagctagac	ccaggacagt	1200
ttattgaccg	agctcgagcc	ctgatcagag	agcaggaaat	ggctgaaaac	aagccgaagc	1260
gagaaggcaa	caacaaagaa	agagaccatg	ggccaaactc	cttacaaccg	gaaggcaaac	1320
atttggctga	gaccttgaaa	caggaactga	acactgccat	gtcgcaagtt	gtggacactg	1380
tggtcaaagt	cttttcggcc	aagccctccc	gccaggttcc	tcaggtcttc	ccacctctcc	1440
agatccccca	ggccagattt	gcagtcaatg	gggaaaacca	caatttccac	accgccaacc	1500
agcgcctgca	gtgctttggc	gacgtcatca	ttccgaaccc	cctggacacc	tttggcaatg	1560
tgcagatggc	cagttccact	gaccagacag	aagcactgcc	cctggttgtc	cgcaaaaact	1620
cctctgacca	gtctgcctcc	ggccctgccg	ctggcggcca	ccaccagccc	ctgcaccagt	1680
cgcctctctc	tgccaccacg	ggcttcacca	cgtccacctt	ccgccacccc	ttccccttc	1740
ccttgatggc	ctatccattt	cagagcccat	taggtgctcc	ctccggctcc	ttctctggaa	1800
aagacagagc	ctctcctgaa	tccttagact	taactaggga	taccacgagt	ctgaggacca	1860
agatgtcatc	tcaccacctg	agccaccacc	cttgttcacc	agcacacccg	cccagcaccg	1920
ccgaagggct	ctccttgtcg	ctcataaagt	ccgagtgcgg	cgatcttcaa	gatatgtctg	1980
aaatatcacc	ttattcggga	agtgcaatgc	aggaaggatt	gtcacccaat	cacttgaaaa	2 0 40
aagcaaagct	catgtttttt	tatacccgtt	atcccagctc	caatatgctg	aagacctact	2100
tctccgacgt	aaagttcaac	agatgcatta	cctctcagct	catcaagtgg	tttagcaatt	2160
tccgtgagtt	ttactacatt	cagatggaga	agtacgcacg	tcaagccatc	aacgatgggg	2220
tcaccagtac	tgaagagctg	tctataacca	gagactgtga	gctgtacagg	gctctgaaca	2280
tgcactacaa	taaagcaaat	gactttgagg	ttccagagag	attcctggaa	gttgctcaga	2340
tcacattacg	ggagtttttc	aatgccatta	tcgcaggcaa	agatgttgat	ccttcctgga	2400
agaaggccat	atacaaggtc	atctgcaagc	tggatagtga	agtccctgag	attttcaaat	2460
ccccgaactg	cctacaagag	ctgcttcatg	a gtagaaatt	tcaacaactc	tttttgaatg	2520
tatgaagagt	agcagtcccc	tttggatgtc	caagttatat	gtgtctagat	tttgatttca	2580

				39467A.txt	txt		
	tatatatgtg	tatgggaggc	atggatatgt			cctcctcatc	2640
	acgtttctct	cattttcttt	tgttttccat	tgcaagggga	tggttgtttt	ctttctgcct	2700
	ttagtttgct	tttgcccaag	gcccttaaca	tttggacact	taaaataggg	ttaattttca	2760
•	gggaaaaaga	atgttggcgt	gtgtaaagtc	tctattagca	atgaagggaa	tttgttaacg	2820
i	atgcatccac	ttgattgatg	acttattgca	aatggcggtt	ggctgaggaa	aacccatgac	2880
	acagcacaac	tctacagaca	gtgatgtgtc	tcttgtttct	actgctaaga	aggtctgaaa	2940
i	atttaatgaa	accacttcat	acatttaagt	attttgtttg	gtttgaactc	aatcagtagc	3000
٠	ttttccttac	atgtttaaaa	ataattccaa	tgacagatga	gcagctcact	tttccaaagt	3060
i	accccaaaag	gccaaattaa	aaaaaaaaa	aaaaaaa	als.	i.	3097

<210> 3 737

<212> **PRT**

Homo sapiens

<220> <221> misc_feature

Prox-1 Protein

<400>

Met Pro Asp His Asp Ser Thr Ala Leu Leu Ser Arg Gln Thr Lys Arg 1 5 10 15

Arg Arg Val Asp Ile Gly Val Lys Arg Thr Val Gly Thr Ala Ser Ala 20 25 30

Phe Phe Ala Lys Ala Arg Ala Thr Phe Phe Ser Ala Met Asn Pro Gln 35 40

Gly Ser Glu Gln Asp Val Glu Tyr Ser Val Val Gln His Ala Asp Gly 50 60

Glu Lys Ser Asn Val Leu Arg Lys Leu Leu Lys Arg Ala Asn Ser Tyr 65 70 75 80

Glu Asp Ala Met Met Pro Phe Pro Gly Ala Thr Ile Ile Ser Gln Leu 85 90 95

Leu Lys Asn Asn Met Asn Lys Asn Gly Gly Thr Glu Pro Ser Phe Gln 100 105

Ala Ser Gly Leu Ser Ser Thr Gly Ser Glu Val His Gln Glu Asp Ile 115 120 125

Cys Ser Asn Ser Ser Arg Asp Ser Pro Pro Glu Cys Leu Ser Pro Phe 130 135 140

Gly Arg Pro Thr Met Ser Gln Phe Asp Met Asp Arg Leu Cys Asp Glu

WO 2005/014854

150

PCT/EP2004/008819

39467A.txt.txt 155

145

160

His Leu Arg Ala Lys Arg Ala Arg Val Glu Asn Ile Ile Arg Gly Met 165 170 175

Ser His Ser Pro Ser Val Ala Leu Arg Gly Asn Glu Asn Glu Arg Glu 180 185 190

Met Ala Pro Gln Ser Val Ser Pro Arg Glu Ser Tyr Arg Glu Asn Lys 195 200 205

Arg Lys Gln Lys Leu Pro Gln Gln Gln Gln Gln Ser Phe Gln Gln Leu 210 220

Val Ser Ala Arg Lys Glu Gln Lys Arg Glu Glu Arg Arg Gln Leu Lys 225 230 235 240

Gln Gln Leu Glu Asp Met Gln Lys Gln Leu Arg Gln Leu Gln Glu Lys 245 250 255

Phe Tyr Gln Ile Tyr Asp Ser Thr Asp Ser Glu Asn Asp Glu Asp Gly 260 265 270

Asn Leu Ser Glu Asp Ser Met Arg Ser Glu Ile Leu Asp Ala Arg Ala 275 280 285

Gln Asp Ser Val Gly Arg Ser Asp Asn Glu Met Cys Glu Leu Asp Pro 290 295

Gly Gln Phe Ile Asp Arg Ala Arg Ala Leu Ile Arg Glu Gln Glu Met 305 310 315 320

Ala Glu Asn Lys Pro Lys Arg Glu Gly Asn Asn Lys Glu Arg Asp His 325 330 335

Gly Pro Asn Ser Leu Gln Pro Glu Gly Lys His Leu Ala Glu Thr Leu 340 345 350

Lys Gln Glu Leu Asn Thr Ala Met Ser Gln Val Val Asp Thr Val Val 355 360 365

Lys Val Phe Ser Ala Lys Pro Ser Arg Gln Val Pro Gln Val Phe Pro 370 375 380

Pro Leu Gln Ile Pro Gln Ala Arg Phe Ala Val Asn Gly Glu Asn His 385 390 395 400

Asn Phe His Thr Ala Asn Gln Arg Leu Gln Cys Phe Gly Asp Val Ile 405 410 415

Ile Pro Asn Pro Leu Asp Thr Phe Gly Asn Val Gln Met Ala Ser Ser

420

39467A.txt.txt 425

430

Thr Asp Gln Thr Glu Ala Leu Pro Leu Val Val Arg Lys Asn Ser Ser 435 440 445 Asp Gln Ser Ala Ser Gly Pro Ala Ala Gly Gly His His Gln Pro Leu 450 455 460 His Gln Ser Pro Leu Ser Ala Thr Thr Gly Phe Thr Thr Ser Thr Phe 465 470 475 Arg His Pro Phe Pro Leu Pro Leu Met Ala Tyr Pro Phe Gln Ser Pro 485 490 495 Leu Gly Ala Pro Ser Gly Ser Phe Ser Gly Lys Asp Arg Ala Ser Pro 500 510 Glu Ser Leu Asp Leu Thr Arg Asp Thr Thr Ser Leu Arg Thr Lys Met 515 525 Ser Ser His His Leu Ser His His Pro Cys Ser Pro Ala His Pro Pro 530 540 Ser Thr Ala Glu Gly Leu Ser Leu Ser Leu Ile Lys Ser Glu Cys Gly 545 550 555 Asp Leu Gln Asp Met Ser Glu Ile Ser Pro Tyr Ser Gly Ser Ala Met 565 570 575 Gln Glu Gly Leu Ser Pro Asn His Leu Lys Lys Ala Lys Leu Met Phe 580 585 Phe Tyr Thr Arg Tyr Pro Ser Ser Asn Met Leu Lys Thr Tyr Phe Ser 595 600 605 Asp Val Lys Phe Asn Arg Cys Ile Thr Ser Gln Leu Ile Lys Trp Phe 610 620 Ser Asn Phe Arg Glu Phe Tyr Tyr Ile Gln Met Glu Lys Tyr Ala Arg 625 635 640 Gln Ala Ile Asn Asp Gly Val Thr Ser Thr Glu Glu Leu Ser Ile Thr 645 650 655 Arg Asp Cys Glu Leu Tyr Arg Ala Leu Asn Met His Tyr Asn Lys Ala 660 665 670 Asn Asp Phe Glu Val Pro Glu Arg Phe Leu Glu Val Ala Gln Ile Thr Leu Arg Glu Phe Phe Asn Ala Ile Ile Ala Gly Lys Asp Val Asp Pro

690 695 39467A.txt.txt

Ser Trp Lys Lys Ala Ile Tyr Lys Val Ile Cys Lys Leu Asp Ser Glu 705 710 715 720

Val Pro Glu Ile Phe Lys Ser Pro Asn Cys Leu Gln Glu Leu Leu His 725 730 735

Glu

<210> 4 <211> 21 <212> RNA

<213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A16 sense

<400> 4
cugcaagcug gauagugaag u 21

<210> 5 <211> 21 <212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A16 antisense

<400> 5
uucacuaucc agcuugcaga u 21

<210> 6 <211> 21 <212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A25 sense

<400> 6
cuaugagcca guuugauauu u
21

<210> 7 <211> 21 <212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A25 antisense

WO 2005/014854				PCT/I	EP2004/008819
auaucaaacu ggcucauagu	ı u ·	39 467 A.txt	.txt		21
<210> 8 <211> 21 <212> RNA <213> Homo sapiens					
<220> <221> misc_feature <223> EGFP A18 sense					
<400> 8 gacguaaacg gccacaaguu	u .				21
<210> 9 <211> 21 <212> RNA <213> Homo sapiens	<u></u> .				
<220> <221> misc_feature <223> EGFP A18 antis	ense				
<400> 9 acuuguggcc guuuacgucu	u				21
<210> 10 <211> 3362 <212> DNA <213> Homo sapiens			·		
<220> <221> misc_feature <223> Beta-catenin					
<400> 10 aagcctctcg gtctgtggca	gcagcgttgg	cccggccc c g	ggagcggaga	gcgaggggag	60
gcggagacgg aggaaggtct	gaggagcagc	ttcagtcccc	gccgagccgc	caccgcaggt	120
cgaggacggt cggactcccg	cggcgggagg	agcctgttcc	cctgagggta	tttgaagtat	180
accatacaac tgttttgaaa	atccagcgtg	gacaatgġct	actcaagctg	atttgatgga	240
gttggacatg gccatggaac	cagacagaaa	agcggctgtt	agtcactggc	agcaacagtc	300
ttacctggac tctggaatcc	att ctgg tgc	cactaccaca	gctccttctc	tgagtggtaa	360
aggcaatcct gaggaagagg	atgtggatac	ctcccaagtc	ctgtatgagt	gggaacaggg	420
attttctcag tccttcactc	aagaacaagt	agctgatatt	gatggacagt	atgcaatgac	480
tcgagctcag agggtacgag	ctgctatgtt	ccctgagaca	ttagatgagg	gcatgcagat	540
cccatctaca cagtttgatg	ctgctcatcc	cactaatgtc	cagcgtttgg	ctgaaccatc	600
acagatgctg aaacatgcag	ttgtaaactt	gattaactat	caagatgatg	cagaacttgc	66 0
cacacgtgca atccctgaac	tgacaaaact	gctaaatgac	gaggaccagg	tggtggttaa	720
taaggctgca gttatggtcc	atcagctttc	taaaaaggaa	gcttccagac	acgctatcat	780

gcgttctcct	cagatggtgt	ctgctattgt	39467A.txt acgtaccatg		atgatgtaga	840
aacagctcgt	tgtaccgctg	ggaccttgca	taacctttcc	catcatcgtg	agggcttact	900
ggccatcttt	aagtctggag	gcattcctgc	cctggtgaaa	atgcttggtt	caccagtgga	960
ttctgtgttg	ttttatgcca	ttacaactct	ccacaacctt	ttattacatc	aagaaggagc	1020
taaaatggca	gtgcgtttag	ctggtgggct	gcagaaaatg	gttgccttgc	tcaacaaaac	1080
aaatgttaaa	ttcttggcta	ttacgacaga	ctgccttcaa	attttagctt	atggcaacca	1140
agaaagcaag	ctcatcatac	tggctagtgg	tggaccccaa	gctttagtaa	atataatgag	1200
gacctatact	tacgaaaaac	tactgtggac	cacaagcaga	gtgctgaagg	tgctatctgt	1260
ctgctctagt	aataagccgg	ctattgtaga	agctggtgga	atgcaagctt	taggacttca	1320
cctgacagat	ccaagtcaac	gtcttgttca	gaactgtctt	tggactctca	ggaatctttc	1380
agatgctgca	actaaacagg	aagggatgga	aggtctcctt	gggactcttg	ttcagcttct	1440
gggttcagat	gatataaatg	tggtcacctg	tgcagctgga	attctttcta	acctcacttg	1500
caataattat	aagaacaaga	tgatggtctg	ccaagtgggt	ggtatagagg	ctcttgtgcg	1560
tactgtcctt	cgggctggtg	acagggaaga	catcactgag	cctgccatct	gtgctcttcg	1620
tcatctgacc	agccgacacc	aagaagcaga	gatggcccag	aatgcagttc	gccttcacta	1680
tggactacca	gttgtggtta	agctcttaca	cccaccatcc	cactggcctc	tgataaaggc	1740
tactgttgga	ttgattcgaa	atcttgccct	ttgtcccgca	aatcatgcac	ctttgcgtga	1800
gcagggtgcc	attccacgac	tagttcagtt	gcttgttcgt	gcacatcagg	atacccagcg	1860
ccgtacgtcc	atgggtggga	cacagcagca	atttgt g gag	ggggtccgca	tggaagaaat	1920
agttgaaggt	tgtaccggag	cccttcacat	cctagctcgg	gatgttcaca	accgaattgt	1980
tatcagagga	ctaaatacca	ttccattgtt	tgtgcagctg	ctttattctc	ccattgaaaa	2040
catccaaaga	gtagctgcag	gggtcctctg	tgaacttgct	caggacaagg	aagctgcaga	2100
agctattgaa	gctgagggag	ccacagctcc	tctgacagag	ttacttcact	ctag g aatga	2160
aggtgtggcg	acatatgcag	ctgctgtttt	gttccgaatg	tctgaggaca	agccacaaga	2220
ttacaagaaa	cggctttcag	ttgagctgac	cagctctctc	ttcagaacag	agccaatggc	2280
ttggaatgag	actgctgatc	ttggacttga	tattggtgcc	cagggagaac	cccttggata	2340
tcgccaggat	gatcctagct	atcgttcttt	tcactctggt	ggatatggcc	aggatgcctt	2400
gggtatggac	cccatgatgg	aacatgagat	gggtggccac	caccctggtg	ctgactatcc	2460
agttgatggg	ctgccagatc	t gg ggcatgc	ccaggacctc	atggatgggc	tgcctccagg	2520
tgacagcaat	cagctggcct	ggtttgatac	tgacctgtaa	atcatccttt	agctgtattg	2580
tctgaacttg	cattgtgatt	ggcctgtaga	gttgctgaga	gggctcgagg	ggtgggctgg	2640
tatctcagaa	agtgcctgac	a c actaacca	agctgagttt	cctatgggaa	caattgaagt	2700
aaactttttg	ttctggtc c t	ttttggtcga	ggagtaacaa	tacaaatgga	ttttgggagt	2760
gactcaagaa	gtgaagaatg	ca c aagaatg	gatcacaaga	tggaatttag	caaaccctag	2820

			39467A.txt	.txt		
ccttgcttgt	taaaattttt	tttttttt			gtactgactt	2880
tgcttgcttt	gaagtagctc	tttttttt	ttttttttt	tttttttgca	gtaactgttt	2940
tttaagtctc	tcgtagtgtt	aag tt a tagt	gaatactgct	acagcaattt	ctaattttta	3000
agaattgagt	aatggtgtag	aacactaatt	aattcataat	cactctaatt	aattgtaatc	3060
tgaataaagt	gtaacaattg	tgtagccttt	ttgtataaaa	tagacaaata	gaaaatggtc	3120
caattagttt	cctttttaat	atgcttaaaa	taagcaggtg	gatctatttc	atgtttttga	3180
tcaaaaacta	tttgggatat	gtatgggtag	ggtaaatcag	taagaggtgt	tatttggaac	3240
cttgttttgg a	acagtttacc	agttgccttt	tatcccaaag	ttgttgtaac	ctgctgtgat	3300
acgatgcttc	aagagaaaat	gcggttataa	aaaatggttc	agaattaaac	ttttaattca	3360
tt						3362

<210> 11 <211> 781

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Beta-catenin

<400> 11

Met Ala Thr Gln Ala Asp Leu Met Glu Leu Asp Met Ala Met Glu Pro $1 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Arg Lys Ala Ala Val Ser His Trp Gln Gln Gln Ser Tyr Leu Asp 20 25 30

Ser Gly Ile His Ser Gly Ala Thr Thr Thr Ala Pro Ser Leu Ser Gly 35 40 45

Lys Gly Asn Pro Glu Glu Glu Asp Val Asp Thr Ser Gln Val Leu Tyr 50 55 60

Glu Trp Glu Gln Gly Phe Ser Gln Ser Phe Thr Gln Glu Gln Val Ala 65 70 75 80

Asp Ile Asp Gly Gln Tyr Ala Met Thr Arg Ala Gln Arg Val Arg Ala 90 95

Ala Met Phe Pro Glu Thr Leu Asp Glu Gly Met Gln Ile Pro Ser Thr 100 105 110

Gln Phe Asp Ala Ala His Pro Thr Asn Val Gln Arg Leu Ala Glu Pro 115 120 125

Ser Gln Met Leu Lys His Ala Val Val Asn Leu Ile Asn Tyr Gln Asp 130 135 140 WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Asp Ala Glu Leu Ala Thr Arg Ala Ile Pro Glu Leu Thr Lys Leu Leu 145 150 155 Asn Asp Glu Asp Gln Val Val Val Asn Lys Ala Ala Val Met Val His 165 170 175 Gln Leu Ser Lys Lys Glu Ala Ser Arg His Ala Ile Met Arg Ser Pro 180 185 190 Gln Met Val Ser Ala Ile Val Arg Thr Met Gln Asn Thr Asn Asp Val 195 200 205 Glu Thr Ala Arg Cys Thr Ala Gly Thr Leu His Asn Leu Ser His His 210 220 Arg Glu Gly Leu Leu Ala Ile Phe Lys Ser Gly Gly Ile Pro Ala Leu 225 230 235 Val Lys Met Leu Gly Ser Pro Val Asp Ser Val Leu Phe Tyr Ala Ile 245 250 255 Thr Thr Leu His Asn Leu Leu Leu His Gln Glu Gly Ala Lys Met Ala 260 265 270 Val Arg Leu Ala Gly Gly Leu Gln Lys Met Val Ala Leu Leu Asn Lys 275 280 285 Thr Asn Val Lys Phe Leu Ala Ile Thr Thr Asp Cys Leu Gln Ile Leu 290 295 300 Ala Tyr Gly Asn Gln Glu Ser Lys Leu Ile Ile Leu Ala Ser Gly Gly 305 310 315 320 Pro Gln Ala Leu Val Asn Ile Met Arg Thr Tyr Thr Tyr Glu Lys Leu 325 330 335 Leu Trp Thr Thr Ser Arg Val Leu Lys Val Leu Ser Val Cys Ser Ser 340 345 350 Asn Lys Pro Ala Ile Val Glu Ala Gly Gly Met Gln Ala Leu Gly Leu 355 360 365 His Leu Thr Asp Pro Ser Gln Arg Leu Val Gln Asn Cys Leu Trp Thr 370 375 380 Leu Arg Asn Leu Ser Asp Ala Ala Thr Lys Gln Glu Gly Met Glu Gly 385 390 395 Leu Leu Gly Thr Leu Val Gln Leu Leu Gly Ser Asp Asp Ile Asn Val 405 410 415

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Val Thr Cys Ala Ala Gly Ile Leu Ser Asn Leu Thr Cys Asn Asn Tyr 420 425 430 Lys Asn Lys Met Met Val Cys Gln Val Gly Gly Ile Glu Ala Leu Val 435 Arg Thr Val Leu Arg Ala Gly Asp Arg Glu Asp Ile Thr Glu Pro Ala 450 460 Ile Cys Ala Leu Arg His Leu Thr Ser Arg His Gln Glu Ala Glu Met 465 470 475 480 Ala Gln Asn Ala Val Arg Leu His Tyr Gly Leu Pro Val Val Lys 485 490 495 Leu Leu His Pro Pro Ser His Trp Pro Leu Ile Lys Ala Thr Val Gly 500 505 Leu Ile Arg Asn Leu Ala Leu Cys Pro Ala Asn His Ala Pro Leu Arg 515 520 525 Glu Gln Gly Ala Ile Pro Arg Leu Val Gln Leu Leu Val Arg Ala His 530 540 Gln Asp Thr Gln Arg Arg Thr Ser Met Gly Gly Thr Gln Gln Gln Phe 545 550 555 Val Glu Gly Val Arg Met Glu Glu Ile Val Glu Gly Cys Thr Gly Ala 565 570 575 Leu His Ile Leu Ala Arg Asp Val His Asn Arg Ile Val Ile Arg Gly 580 585 Leu Asn Thr Ile Pro Leu Phe Val Gln Leu Leu Tyr Ser Pro Ile Glu 595 600 605 Asn Ile Gln Arg Val Ala Ala Gly Val Leu Cys Glu Leu Ala Gln Asp 610 620 Lys Glu Ala Ala Glu Ala Ile Glu Ala Glu Gly Ala Thr Ala Pro Leu 625 630 635 640 Thr Glu Leu Leu His Ser Arg Asn Glu Gly Val Ala Thr Tyr Ala Ala 645 650 655 Ala Val Leu Phe Arg Met Ser Glu Asp Lys Pro Gln Asp Tyr Lys Lys 660 665 670 Arg Leu Ser Val Glu Leu Thr Ser Ser Leu Phe Arg Thr Glu Pro Met 675 680 685

39467A.txt.txt

Ala Trp Asn Glu Thr Ala Asp Leu Gly Leu Asp Ile Gly Ala Gln Gly 690 700

Glu Pro Leu Gly Tyr Arg Gln Asp Asp Pro Ser Tyr Arg Ser Phe His 705 715 720

Ser Gly Gly Tyr Gly Gln Asp Ala Leu Gly Met Asp Pro Met Met Glu 725 730 735

His Glu Met Gly Gly His His Pro Gly Ala Asp Tyr Pro Val Asp Gly 740 745 750

Leu Pro Asp Leu Gly His Ala Gln Asp Leu Met Asp Gly Leu Pro Pro 755 760 765

Gly Asp Ser Asn Gln Leu Ala Trp Phe Asp Thr Asp Leu 770 775 780

<210> 12 2500

DNA

Homo sapiens

<220> <221> misc_feature

TCF-4

<400> 60 cggggggatc ttggctgtgt gtctgcggat ctgtagtggc ggcggcggcg gcggcggcgg ggaggcagca ggcgcgggag cgggcgcagg agcaggcggc ggcggtggcg gcggcggtta 120 180 gacatgaacg ccgcctcggc gccggcggtg cacggagagc cccttctcgc gcgcgggcgg tttgtgtgat tttgctaaaa tgcatcacca acagcgaatg gctgccttag ggacggacaa 240 300 agagctgagt gatttactgg atttcagtgc gatgttttca cctcctgtga gcagtgggaa aaatggacca acttctttgg caagtggaca ttttactggc tcaaatgtag aagacagaag 360 tagctcaggg tcctggggga atggaggaca tccaagcccg tccaggaact atggagatgg 420 gactccctat gaccacatga ccagcaggga ccttgggtca catgacaatc tctctccacc 480 ttttgtcaat tccagaatac aaagtaaaac agaaaggggc tcatactcat cttatgggag 540 600 agaatcaaac ttacagggtt gccaccagca gagtctcctt ggaggtgaca tggatatggg caacccagga accctttcgc ccaccaaacc tggttcccag tactatcagt attctagcaa 660 taatccccga aggaggcctc ttcacagtag tgccatggag gtacagacaa agaaagttcg 720 780 aaaagttcct ccaggtttgc catcttcagt ctatgctcca tcagcaagca ctgccgacta caatagggac tcgccaggct atccttcctc caaaccagca accagcactt tccctagctc 840 900 cttcttcatg caagatggcc atcacagcag tgacccttgg agctcctcca gtgggatgaa tcagcctggc tatgcaggaa tgttgggcaa ctcttctcat attccacagt ccagcagcta 960

```
39467A.txt.txt
                                                                     1020
ctgtagcctg catccacatg aacgtttgag ctatccatca cactcctcag cagacatcaa
ttccagtctt cctccgatgt ccactttcca tcgtagtggt acaaaccatt acagcacctc
                                                                     1080
                                                                     1140
ttcctqtacq cctcctgcca acqqqacaqa cagtataatg gcaaatagag gaagcggggc
agccggcagc tcccagactg gagatgctct ggggaaagca cttgcttcga tctattctcc
                                                                     1200
agatcacact aacaacagct tttcatcaaa cccttcaact cctgttggct ctcctccatc
                                                                     1260
                                                                     1320
tototoagca ggcacagotg tittggtotag aaatggagga caggcotcat cgtotoctaa
                                                                     1380
ttatqaaqqa cccttacact ctttqcaaaq ccqaattgaa gatcgtttag aaagactgga
                                                                     1440
tgatgctatt catgttctcc ggaaccatgc agtgggccca tccacagcta tgcctggtgg
                                                                     1500
tcatggggac atgcatggaa tcattggacc ttctcataat ggagccatgg gtggtctggg
                                                                     1560
ctcagggtat ggaaccggcc ttctttcagc caacagacat tcactcatgg tggggaccca
                                                                     1620
tcgtgaagat ggcgtggccc tgagaggcag ccattctctt ctgccaaacc aggttccggt
tccacagctt cctgtccagt ctgcgacttc ccctgacctg aacccacccc aggaccctta
                                                                     1680
cagaggcatg ccaccaggac tacaggggca gagtgtctcc tctggcagct ctgagatcaa
                                                                     1740
                                                                     1800
atccgatgac gagggtgatg agaacctgca agacacgaaa tcttcggagg acaagaaatt
                                                                     1860
agatgacgac aagaaggata tcaaatcaat tactagcaat aatgacgatg aggacctgac
                                                                     1920
accagagcag aaggcagagc gtgagaagga gcggaggatg gccaacaatg cccgagagcg
                                                                     1980
tctgcgggtc cgtgacatca acgaggcttt caaagagctc ggccgcatgg tgcagctcca
                                                                     2040
cctcaagagt gacaagcccc agaccaagct cctgatcctc caccaggcgg tggccgtcat
                                                                     2100
cctcagtctg gagcagcaag tccgagaaag gaatctgaat ccgaaagctg cgtgtctgaa
                                                                     2160
aagaagggag gaagagaagg tgtcctcgga gcctccccct ctctccttgg ccggcccaca
                                                                     2220
ccctggaatg ggagacgcat cgaatcacat gggacagatg taaaaagggtc caagttgcca
                                                                     2280
cattocttca ttaaaacaag agaccacttc cttaacagct gtattatctt aaacccacat
                                                                     2340
aaacacttct ccttaacccc catttttgta atataagaca agtctgagta gttatgaatc
gcagacgcaa gaggtttcag cattcccaat tatcaaaaaa cagaaaaaca aaaaaaagaa
                                                                     2400
agaaaaaagt gcaacttgag ggacgacttt ctttaacata tcattcagaa tgtgcaaagc
                                                                     2460
                                                                     2500
agtatgtaca ggctgagaca cagcccagag actgaacggc
```

```
<210> 13
<211> 667
<212> PRT
```

<400> 13

Met His His Gln Gln Arg Met Ala Ala Leu Gly Thr Asp Lys Glu Leu 1 5 10 15

37/166

<213> Homo sapiens

<220> <221> misc_feature <223> TCF-4

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Ser Asp Leu Leu Asp Phe Ser Ala Met Phe Ser Pro Pro Val Ser Ser 20 25 30 Gly Lys Asn Gly Pro Thr Ser Leu Ala Ser Gly His Phe Thr Gly Ser 35 40 45 Asn Val Glu Asp Arg Ser Ser Gly Ser Trp Gly Asn Gly Gly His 50 60 Pro Ser Pro Ser Arg Asn Tyr Gly Asp Gly Thr Pro Tyr Asp His Met 65 70 75 80 Thr Ser Arg Asp Leu Gly Ser His Asp Asn Leu Ser Pro Pro Phe Val 85 90 95 Asn Ser Arg Ile Gln Ser Lys Thr Glu Arg Gly Ser Tyr Ser Ser Tyr 100 105 110Gly Arg Glu Ser Asn Leu Gln Gly Cys His Gln Gln Ser Leu Leu Gly
115 120 125 Gly Asp Met Asp Met Gly Asn Pro Gly Thr Leu Ser Pro Thr Lys Pro 130 135 140 Gly Ser Gln Tyr Tyr Gln Tyr Ser Ser Asn Asn Pro Arg Arg Pro 145 150 160 Leu His Ser Ser Ala Met Glu Val Gln Thr Lys Lys Val Arg Lys Val 165 170 175 Pro Pro Gly Leu Pro Ser Ser Val Tyr Ala Pro Ser Ala Ser Thr Ala 180 185 190 Asp Tyr Asn Arg Asp Ser Pro Gly Tyr Pro Ser Ser Lys Pro Ala Thr 195 200 205 Ser Thr Phe Pro Ser Ser Phe Phe Met Gln Asp Gly His His Ser Ser 210 220 Asp Pro Trp Ser Ser Ser Gly Met Asn Gln Pro Gly Tyr Ala Gly 225 230 235 240 Met Leu Gly Asn Ser Ser His Ile Pro Gln Ser Ser Ser Tyr Cys Ser 245 250 255 Leu His Pro His Glu Arg Leu Ser Tyr Pro Ser His Ser Ser Ala Asp 260 265 270 Ile Asn Ser Ser Leu Pro Pro Met Ser Thr Phe His Arg Ser Gly Thr 275 280 285

39467A.txt.txt

Asn His Tyr Ser Thr Ser Ser Cys Thr Pro Pro Ala Asn Gly Thr Asp 290 295 300 Ser Ile Met Ala Asn Arg Gly Ser Gly Ala Ala Gly Ser Ser Gln Thr 305 310 315 320Gly Asp Ala Leu Gly Lys Ala Leu Ala Ser Ile Tyr Ser Pro Asp His 325 330 335 Thr Asn Asn Ser Phe Ser Ser Asn Pro Ser Thr Pro Val Gly Ser Pro 340 345 350 Pro Ser Leu Ser Ala Gly Thr Ala Val Trp Ser Arg Asn Gly Gln 355 360 365 Ala Ser Ser Pro Asn Tyr Glu Gly Pro Leu His Ser Leu Gln Ser 370 380 Arg Ile Glu Asp Arg Leu Glu Arg Leu Asp Asp Ala Ile His Val Leu 385 395 400 Arg Asn His Ala Val Gly Pro Ser Thr Ala Met Pro Gly Gly His Gly 405 410 415 Asp Met His Gly Ile Ile Gly Pro Ser His Asn Gly Ala Met Gly Gly 420 425 430 Leu Gly Ser Gly Tyr Gly Thr Gly Leu Leu Ser Ala Asn Arg His Ser 435 440 445 Leu Met Val Gly Thr His Arg Glu Asp Gly Val Ala Leu Arg Gly Ser 450 455 460 His Ser Leu Leu Pro Asn Gln Val Pro Val Pro Gln Leu Pro Val Gln 465 475 480 Ser Ala Thr Ser Pro Asp Leu Asn Pro Pro Gln Asp Pro Tyr Arg Gly 485 490 495 Met Pro Pro Gly Leu Gln Gly Gln Ser Val Ser Ser Gly Ser Ser Glu 500 505 510Ile Lys Ser Asp Asp Glu Gly Asp Glu Asn Leu Gln Asp Thr Lys Ser 515 520 525 Ser Glu Asp Lys Lys Leu Asp Asp Asp Lys Lys Asp Ile Lys Ser Ile 530 540 Thr Ser Asn Asn Asp Glu Asp Leu Thr Pro Glu Gln Lys Ala Glu 545 550 555 560

39467A.txt.txt

Arg Glu Lys Glu Arg Arg Met Ala Asn Asn Ala Arg Glu Arg Leu Arg 565 570 575

Val Arg Asp Ile Asn Glu Ala Phe Lys Glu Leu Gly Arg Met Val Gln 580 590

Leu His Leu Lys Ser Asp Lys Pro Gln Thr Lys Leu Leu Ile Leu His 595 600 605

Gln Ala Val Ala Val Ile Leu Ser Leu Glu Gln Gln Val Arg Glu Arg 610 615 620

Asn Leu Asn Pro Lys Ala Ala Cys Leu Lys Arg Arg Glu Glu Glu Lys 625 630 635 640

Val Ser Ser Glu Pro Pro Pro Leu Ser Leu Ala Gly Pro His Pro Gly 645 650 655

Met Gly Asp Ala Ser Asn His Met Gly Gln Met 660 665

<210> 14

<211> 9312

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Notch-1

<400> 14 60 atgccgccgc tcctggcgcc cctgctctgc ctggcgctgc tgcccgcgct cgccgcacga 120 qqcccqcqat qctcccaqcc cggtgagacc tgcctgaatg gcgggaagtg tgaagcggcc aatggcacgg aggcctgcgt ctgtggcggg gccttcgtgg gcccgcgatg ccaggacccc 180 aacccgtgcc tcagcacccc ctgcaagaac gccgggacat gccacgtggt ggaccgcaga 240 ggcgtggcag actatgcctg cagctgtgcc ctgggcttct ctgggcccct ctgcctgaca 300 360 cccctggaca atgcctgcct caccaacccc tgccgcaacg ggggcacctg cgacctgctc 420 acgctgacgg agtacaagtg ccgctgcccg cccggctggt cagggaaatc gtgccagcag gctgacccgt gcgcctccaa cccctgcgcc aacggtggcc agtgcctgcc cttcgaggcc 480 540 tcctacatct gccactgccc acccagcttc catggcccca cctgccggca ggatgtcaac 600 gagtgtggcc agaagcccgg gctttgccgc cacggaggca cctgccacaa cgaggtcggc 660 tcctaccgct gcgtctgccg cgccacccac actggcccca actgcgagcg gccctacgtg 720 ccctqcaqcc cctcgccctg ccagaacggg ggcacctgcc gccccacggg cgacgtcacc 780 cacgagtgtg cctgcctgcc aggcttcacc ggccagaact gtgaggaaaa tatcgacgat 840 tgtccaggaa acaactgcaa gaacgggggt gcctgtgtgg acggcgtgaa cacctacaac

tgccgctgcc	cgccagagtg	gacaggtcag	39467A.txt tactgtaccg		cgagtgccag	900
ctgatgccaa	atgcctgcca	gaacggcggg	acctgccaca	acacccacgg	tggctacaac	960
tgcgtgtgtg	tcaacggctg	gactggtgag	gactgcagcg	agaacattga	tgactgtgcc	1020
agcgccgcct	gcttccacgg	cgccacctgc	catgaccgtg	tggcctcctt	ctactgcgag	1080
tgtccccatg	gccgcacagg	tctgctgtgc	cacctcaacg	acgcatgcat	cagcaacccc	1140
tgtaacgagg	gctccaactg	cgacaccaac	cctgtcaatg	gcaaggccat	ctgcacctgc	1200
ccctcggggt	acacgggccc	ggcctgcagc	caggacgtgg	atgagtgctc	gctgggtgcc	1260
aacccctgcg	agcatgcggg	caagtgcatc	aacacgctgg	gctccttcga	gtgccagtgt	1320
ctgcagggct	acacgggccc	ccgatgcgag	atcgacgtca	acgagtgcgt	ctcgaacccg	1380
tgccagaacg	acgccacctg	cctggaccag	attggggagt	tccagtgcat	ctgcatgccc	1440
ggctacgagg	gtgtgcactg	cgaggtcaac	acagacgagt	gtgccagcag	cccctgcctg	1500
cacaatggcc	gctgcctgga	caagatcaat	gagttccagt	gcgagtgccc	cacgggcttc	1560
actgggcatc	tgtgccagta	cgatgtggac	gagtgtgcca	gcaccccctg	caagaatggt	1620
gccaagtgcc	tggacggacc	caacacttac	acctgtgtgt	gcacggaagg	gtacacgggg	1680
acgcactgcg	aggtggacat	cgatgagtgc	gaccccgacc	cctgccacta	cggctcctgc	1740
aaggacggcg	tcgccacctt	cacctgcctc	tgccgcccag	gctacacggg	ccaccactgc	1800
gagaccaaca	tcaacgagtg	ctccagccag	ccctgccgcc	acgggggcac	ctgccaggac	1860
cgcgacaacg	cctacctctg	cttctgcctg	aaggggacca	caggacccaa	ctgcgagatc	1920
aacctggatg	actgtgccag	cagcccctgc	gactcgggca	cctgtctgga	caagatcgat	1980
ggctacgagt	gtgcctgtga	gccgggctac	acagggagca	tgtgtaacat	caacatcgat	2040
gagtgtgcgg	gcaacccctg	ccacaacggg	ggcacctgcg	aggacggcat	caatggcttc	2100
acctgccgct	gccccgaggg	ctaccacgac	cccacctgcc	tgtctgaggt	caatgagtgc	2160
aacagcaacc	cctgcgtcca	cggggcctgc	cgggacagcc	tcaacgggta	caagtgcgac	2220
tgtgaccctg	ggtggagtgg	gaccaactgt	gacatcaaca	acaatgagtg	tgaatccaac	2280
ccttgtgtca	acggcggcac	ctgcaaagac	atgaccagtg	gctacgtgtg	cacctgccgg	2340
gagggcttca	gcggtcccaa	ctgccagacc	aacatcaacg	agtgtgcgtc	caacccatgt	2400
ctgaaccagg	gcacgtgtat	tgacgacgtt	gccgggtaca	agtgcaactg	cctgctgccc	2460
tacacaggtg	ccacgtgtga	ggtggtgctg	gccccgtgtg	ccccagccc	ctgcagaaac	2520
ggcggggagt	gcaggcaatc	cgaggactat	gagagcttct	cctgtgtctg	ccccacgggc	2580
tggcaagcag	ggcagacctg	tgaggtcgac	atcaacgagt	gcgttctgag	cccgtgccgg	2640
cacggcgcat	cctgccagaa	cacccacggc	ggctaccgct	gccactgcca	ggccggctac	2700
agtgggcgca	actgcgagac	cgacatcgac	gactgccggc	ccaacccgtg	tcacaacggg	2760
ggctcctgca	cagacggcat	caacacggcc	ttctgcgact	gcctgcccgg	cttccggggc	2820
actttctgtg	aggaggacat	caacgagtgt	gccagtgacc	cctgccgcaa	cggggccaac	2880

tgcacggact	gcgtggacag	ctacacgtgc	39467A.txt acctgccccg		cgggatccac	2940
tgtgagaaca	acacgcctga	ctgcacagag	agctcctgct	tcaacggtgg	cacctgcgtg	3000
gacggcatca	actcgttcac	ctgcctgtgt	ccacccggct	tcacgggcag	ctactgccag	3060
cacgatgtca	atgagtgcga	ctcacagccc	tgcctgcatg	gcggcacctg	tcaggacggc	3120
tgcggctcct	acaggtgcac	ctgcccccag	ggctacactg	gccccaactg	ccagaacctt	3180
gtgcactggt	gtgactcctc	gccctgcaag	aacggcggca	aatgctggca	gacccacacc	3240
cagtaccgct	gcgagtgccc	cagcggctgg	accggccttt	actgcgacgt	gcccagcgtg	3300
tcctgtgagg	tggctgcgca	gcgacaaggt	gttgacgttg	cccgcctgtg	ccagcatgga	3360
gggctctgtg	tggacgcggg	caacacgcac	cactgccgct	gccaggcggg	ctacacaggc	3420
agctactgtg	aggacctggt	ggacgagtgc	tcacccagcc	cctgccagaa	cggggccacc	3480
tgcacggact	acctgggcgg	ctactcctgc	aagtgcgtgg	ccggctacca	cggggtgaac	3540
tgctctgagg	agatcgacga	gtgcctctcc	cacccctgcc	agaacggggg	cacctgcctc	3600
gacctcccca	acacctacaa	gtgctcctgc	ccacggggca	ctcagggtgt	gcactgtgag	3660
atcaacgtgg	acgactgcaa	tcccccgtt	gaccccgtgt	cccggagccc	caagtgcttt	3720
aacaacggca	cctgcgtgga	ccaggtgggc	ggctacagct	gcacctgccc	gccgggcttc	3780
gtgggtgagc	gctgtgaggg	ggatgtcaac	gagtgcctgt	ccaatccctg	cgacgcccgt	3840
ggcacccaga	actgcgtgca	gcgcgtcaat	gacttccact	gcgagtgccg	tgctggtcac	3900
accgggcgcc	gctgcgagtc	cgtcatcaat	ggctgcaaag	gcaagccctg	caagaatggg	3960
ggcacctgcg	ccgtggcctc	caacaccgcc	cgcgggttca	tctgcaagtg	ccctgcgggc	4020
ttcgagggcg	ccacgtgtga	gaatgacgct	cgtacctgcg	gcagcctgcg	ctgcctcaac	4080
ggcggcacat	gcatctccgg	cccgcgcagc	cccacctgcc	tgtgcctggg	ccccttcacg	4140
ggccccgaat	gccagttccc	ggccagcagc	ccctgcctgg	gcggcaaccc	ctgctacaac	4200
caggggacct	gtgagcccac	atccgagagc	cccttctacc	gttgcctgtg	ccccgccaaa	4260
ttcaacgggc	tcttgtgcca	catcctggac	tacagcttcg	ggggtggggc	cgggcgcgac	4320
atcccccgc	cgctgatcga	ggaggcgtgc	gagctgcccg	agtgccagga	ggacgcgggc	4380
aacaaggtct	gcagcctgca	gtgcaacaac	cacgcgtgcg	gctgggacgg	cggtgactgc	4440
tccctcaact	tcaatgaccc	ctggaagaac	tgcacgcagt	ctctgcagtg	ctggaagtac	4500
ttcagtgacg	gccactgtga	cagccagtgc	aactcagccg	gctgcctctt	cgacggcttt	4560
gactgccagc	gtgcggaagg	ccagtgcaac	cccctgtacg	accagtactg	caaggaccac	4620
ttcagcgacg	ggcactgcga	ccagggctgc	aacagcgcgg	agtgcgagtg	ggacgggctg	4680
gactgtgcgg	agcatgtacc	cgagaggctg	gcggccggca	cgctggtggt	ggtggtgctg	4740
atgccgccgg	agcagctgcg	caacagctcc	ttccacttcc	tgcgggagct	cagccgcgtg	4800
ctgcacacca	acgtggtctt	caagcgtgac	gcacacggcc	agcagatgat	cttcccctac	4860
tacggccgcg	aggaggagct	gcgcaagcac	cccatcaagc	gtgccgccga	gggctgggcc	4920

gcacctgacg	ccctgctggg	ccaggtgaag	39467A.txt.gcctcgctgc		cagcgagggt	4980
gggcggcggc	ggagggagct	ggaccccatg	gacgtccgcg	gctccatcgt	ctacctggag	5040
attgacaacc	ggcagtgtgt	gcaggcctcc	tcgcagtgct	tccagagtgc	caccgacgtg	5100
gccgcattcc	tgggagcgct	cgcctcgctg	ggcagcctca	acatccccta	caagatcgag	5160
gccgtgcaga	gtgagaccgt	ggagccgccc	ccgccggcgc	agctgcactt	catgtacgtg	5220
gcggcggccg	cctttgtgct	tctgttcttc	gtgggctgcg	gggtgctgct	gtcccgcaag	5280
cgccggcggc	agcatggcca	gctctggttc	cctgagggct	tcaaagtgtc	tgaggccagc	5340
aagaagaagc	ggcgggagcc	cctcggcgag	gactccgtgg	gcctcaagcc	cctgaagaac	5400
gcttcagacg	gtgccctcat	ggacgacaac	cagaatgagt	ggggggacga	ggacctggag	5460
accaagaagt	tccggttcga	ggagcccgtg	gttctgcctg	acctggacga	ccagacagac	552 0
caccggcagt	ggactcagca	gcacctggat	gccgctgacc	tgcgcatgtc	tgccatggcc	55 80
cccacaccgc	cccagggtga	ggttgacgcc	gactgcatgg	acgtcaatgt	ccgcgggcct	56 40
gatggcttca	ccccgctcat	gatcgcctcc	tgcagcgggg	gcggcctgga	gacgggcaac	5700
agcgaggaag	aggaggacgc	gccggccgtc	atctccgact	tcatctacca	gggcgccagc	5760
ctgcacaacc	agacagaccg	cacgggcgag	accgccttgc	acctggccgc	ccgctactca	5820
cgctctgatg	ccgccaagcg	cctgctggag	gccagcgcag	atgccaacat	ccaggacaac	5880
atgggccgca	ccccgctgca	tgcggctgtg	tctgccgacg	cacaaggtgt	cttccagatc	5940
ctgatccgga	accgagccac	agacctggat	gcccgcatgc	atgatggcac	gacgccactg	6000
atcctggctg	cccgcctggc	cgtggagggc	atgctggagg	acctcatcaa	ctcacacgcc	6060
gacgtcaacg	ccgtagatga	cctgggcaag	tccgccctgc	actgggccgc	cgccgtgaac	6120
aatgtggatg	ccgcagttgt	gctcctgaag	aacggggcta	acaaagatat	gcagaacaac	6180
agggaggaga	cacccctgtt	tctggccgcc	cgggagggca	gctacgagac	cgccaaggtg	6240
ctgctggacc	actttgccaa	ccgggacatc	acggatcata	tggaccgcct	gccgcgcgac	6300
atcgcacagg	agcgcatgca	tcacgacatc	gtgaggctgc	tggacgagta	caacctggtg	6360
cgcagcccgc	agctgcacgg	agccccgctg	gggggcacgc	ccaccctgtc	gccc c cgctc	6420
tgctcgccca	acggctacct	gggcagcctc	aagcccggcg	tgcagggcaa	gaaggtccgc	6480
aagcccagca	gcaaaggcct	ggcctgtgga	ag ca aggagg	ccaaggacct	caaggcacgg	6540
aggaagaagt	cccaggacgg	caagggctgc	ctgctggaca	gctccggcat	gctctcgccc	6600
gtggactccc	tggagtcacc	ccatggctac	ctgtcagac g	tggcctcgcc	gccactgctg	6660
ccctccccgt	tccagcagtc	tccgtccgtg	ccctcaacc	acctgcctgg	gatgcccgac	6720
acccacctgg	gcatcgggca	cctgaacgtg	gcggccaagc	ccgagatggc	ggcgctgggt	6780
			ccacctcgtc			6840
					cactgtgggc .	6900
			tggctgtccc			6960

ccgaaccaat	acaaccctct	gcgggggagt	39467A.txt gtggcaccag		cacacaggcc	7020
ccctccctgc	agcatggcat	ggtaggcccg	ctgcacagta	gccttgctgc	cagcgccctg	7080
tcccagatga	tgagctacca	gggcctgccc	agcacccggc	tggccaccca	gcctcacctg	7140
gtgcagaccc	agcaggtgca	gccacaaaac	ttacagatgc	agcagcagaa	cctgcagcca	7200
gcaaacatcc	agcagcagca	aagcctgcag	ccgccaccac	caccaccaca	gccgcacctt	7260
ggcgtgagct	cagcagccag	cggccacctg	ggccggagct	tcctgagtgg	agagccgagc	7320
caggcagacg	tgcagccact	gggccccagc	agcctggcgg	tgcacactat	tctgccccag	7380
gagagccccg	ccctgcccac	gtcgctgcca	tcctcgctgg	tcccacccgt	gaccgcagcc	7440
cagttcctga	cgccccctc	gcagcacagc	tactcctcgc	ctgtggacaa	cacccccagc	7500
caccagctac	aggtgcctga	gcaccccttc	ctcaccccgt	cccctgagtc	ccctgaccag	75.60
tggtccagct	cgtccccgca	ttccaacgtc	tccgactggt	ccgagggcgt	ctccagccct	7620
cccaccagca	tgcagtccca	gatcgcccgc	attccggagg	ccttcaagta	aacggcgcgc	7680
cccacgagac	cccggcttcc	tttcccaagc	cttcgggcgt	ctgtgtgcgc	tctgtggatg	7740
ccagggccga	ccagaggagc	ctttttaaaa	cacatgtttt	tatacaaaat	aagaacgagg	7800
attttaattt	tttttagtat	ttatttatgt	acttttattt	tacacagaaa	cactgccttt	7860
ttatttatat	gtactgtttt	atctggcccc	aggtagaaac	ttttatctat	tctgagaaaa	7920
caagcaagtt	ctgagagcca	gggttttcct	acgtaggatg	aaaagattct	tctgtgttta	7980
taaaatataa	acaaagattc	atgatttata	aatgccattt	atttattgat	tccttttttc	8040
aaaatccaaa	aagaaatgat	gttggagaag	ggaagttgaa	cgagcatagt	ccaaaaagct	8100
cctggggcgt	ccaggccgcg	ccctttcccc	gacgcccacc	caaccccaag	ccagcccggc	8160
cgctccacca	gcatcacctg	cctgttagga	gaagctgcat	ccagaggcaa	acggaggcaa	8220
agctggctca	ccttccgcac	gcggattaat	ttgcatctga	aataggaaac	aagtgaaagc	8280
atatgggtta	gatgttgcca	tgtgttttag	atggtttctt	gcaagcatgc	ttgtgaaaat	8340
gtgttctcgg	agtgtgtatg	ccaagagtgc	acccatggta	ccaatcatga	atctttgttt	8400
caggttcagt	attatgtagt	tgttcgttgg	ttatacaagt	tcttggtccc	tccagaacca	8460
ccccggcccc	ctgcccgttc	ttgaaatgta	ggcatcatgc	atgtcaaaca	tgagatgtgt	8520
ggactgtggc	acttgcctgg	gtcacacacg	gaggcatcct	acccttttct	ggggaaagac	8580
actgcctggg	ctgaccccgg	tggcggcccc	agcacctcag	cctgcacagt	gtcccccagg	8640
ttccgaagaa	gatgctccag	caacacagcc	tgggccccag	ctcgcgggac	ccgacccccc	8700
gtgggctccc	gtgttttgta	ggagacttgc	cagagccggg	cacattgagc	tgtgcaacgċ	8760
cgtgggctgc	gtcctttggt	cctgtccccg	cagccctggc	agggggcatg	cggtcgggca	8820
ggggctggag	ggaggcgggg	gctgcccttg	ggccacccct	cctagtttgg	gaggagcaga	8880
tttttgcaat	accaagtata	gcctatggca	gaaaaaatgt	ctgtaaatat	gtttttaaag	8940
gtggattttg	tttaaaaaat	cttaatgaat	gagtctgttg	tgtgtcatgc	cagtgaggga	9000

WO 2005/014854 PCT	T/EP2004/008819
--------------------	-----------------

cgtcagactt	ggctcagctc	ggggagcctt	39467A.txt agccgcccat	.txt gcactgggga	cgctccgctg	9060
ccgtgccgcc	tgcactcctc	agggcagcct	ccccggctc	tacgggggcc	gcgtggtgcc	9120
atccccaggg	ggcatgacca	gatgcgtccc	aagatgttga	tttttactgt	gttttataaa	9180
atagagtgta	gtttacagaa	aaagacttta	aaagtgatct	acatgaggaa	ctgtagatga	9240
tgtattttt	tcatcttttt	tgttaactga	tttgcaataa	aaatgatact	gatggtgaaa	9300
aaaaaaaaa	aa					9312

<210> 15 <211> 2556 <212> PRT <213> Homo saniens

<213> Homo sapiens

<220> <221> misc_feature <223> Notch-1

<400> 15

Met Pro Pro Leu Leu Ala Pro Leu Leu Cys Leu Ala Leu Leu Pro Ala 1 5 10 15

Leu Ala Ala Arg Gly Pro Arg Cys Ser Gln Pro Gly Glu Thr Cys Leu 20 25 30

Asn Gly Gly Lys Cys Glu Ala Ala Asn Gly Thr Glu Ala Cys Val Cys 35 40 45

Gly Gly Ala Phe Val Gly Pro Arg Cys Gln Asp Pro Asn Pro Cys Leu
50 60

Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp Arg Arg 65 70 75 80

Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser Gly Pro 85 90 95

Leu Cys Leu Thr Pro Leu Asp Asn Ala Cys Leu Thr Asn Pro Cys Arg 100 105 110

Asn Gly Gly Thr Cys Asp Leu Leu Thr Leu Thr Glu Tyr Lys Cys Arg 115 120 125

Cys Pro Pro Gly Trp Ser Gly Lys Ser Cys Gln Gln Ala Asp Pro Cys 130 140

Ala Ser Asn Pro Cys Ala Asn Gly Gly Gln Cys Leu Pro Phe Glu Ala 145 150 155 160

Ser Tyr Ile Cys His Cys Pro Pro Ser Phe His Gly Pro Thr Cys Arg 165 170 175

39467A.txt.txt

Gln Asp Val Asn Glu Cys Gly Gln Lys Pro Gly Leu Cys Arg His Gly 180 185 190 Gly Thr Cys His Asn Glu Val Gly Ser Tyr Arg Cys Val Cys Arg Ala 195 200 205 Thr His Thr Gly Pro Asn Cys Glu Arg Pro Tyr Val Pro Cys Ser Pro 210 215 220 Ser Pro Cys Gln Asn Gly Gly Thr Cys Arg Pro Thr Gly Asp Val Thr 225 230 240 His Glu Cys Ala Cys Leu Pro Gly Phe Thr Gly Gln Asn Cys Glu Glu 245 250 255 Asn Ile Asp Asp Cys Pro Gly Asn Asn Cys Lys Asn Gly Gly Ala Cys 260 265 270 Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro Glu Trp Thr 275 280 285 Gly Gln Tyr Cys Thr Glu Asp Val Asp Glu Cys Gln Leu Met Pro Asn 290 295 300 Ala Cys Gln Asn Gly Gly Thr Cys His Asn Thr His Gly Gly Tyr Asn 305 315 320 Cys Val Cys Val Asn Gly Trp Thr Gly Glu Asp Cys Ser Glu Asn Ile 325 330 335 Asp Asp Cys Ala Ser Ala Ala Cys Phe His Gly Ala Thr Cys His Asp 340 345 350 Arg Val Ala Ser Phe Tyr Cys Glu Cys Pro His Gly Arg Thr Gly Leu 355 360 365 Leu Cys His Leu Asn Asp Ala Cys Ile Ser Asn Pro Cys Asn Glu Gly 370 380 Ser Asn Cys Asp Thr Asn Pro Val Asn Gly Lys Ala Ile Cys Thr Cys 385 395 400 Pro Ser Gly Tyr Thr Gly Pro Ala Cys Ser Gln Asp Val Asp Glu Cys 405 410 415 Ser Leu Gly Ala Asn Pro Cys Glu His Ala Gly Lys Cys Ile Asn Thr 420 425 430Leu Gly Ser Phe Glu Cys Gln Cys Leu Gln Gly Tyr Thr Gly Pro Arg 435 440 445

PCT/EP2004/008819

39467A.txt.txt

Cys Glu Ile Asp Val Asn Glu Cys Val Ser Asn Pro Cys Gln Asn Asp 450 460 Ala Thr Cys Leu Asp Gln Ile Gly Glu Phe Gln Cys Ile Cys Met Pro 465 475 480 Gly Tyr Glu Gly Val His Cys Glu Val Asn Thr Asp Glu Cys Ala Ser 485 490 495 Ser Pro Cys Leu His Asn Gly Arg Cys Leu Asp Lys Ile Asn Glu Phe 500 505 510 Gln Cys Glu Cys Pro Thr Gly Phe Thr Gly His Leu Cys Gln Tyr Asp 515 525 Val Asp Glu Cys Ala Ser Thr Pro Cys Lys Asn Gly Ala Lys Cys Leu 530 540 Asp Gly Pro Asn Thr Tyr Thr Cys Val Cys Thr Glu Gly Tyr Thr Gly 545 550 560 Thr His Cys Glu Val Asp Ile Asp Glu Cys Asp Pro Asp Pro Cys His 565 570 575 Tyr Gly Ser Cys Lys Asp Gly Val Ala Thr Phe Thr Cys Leu Cys Arg 580 585 Pro Gly Tyr Thr Gly His His Cys Glu Thr Asn Ile Asn Glu Cys Ser 595 600 605 Ser Gln Pro Cys Arg His Gly Gly Thr Cys Gln Asp Arg Asp Asn Ala 610 620 Tyr Leu Cys Phe Cys Leu Lys Gly Thr Thr Gly Pro Asn Cys Glu Ile 625 . 630 635 640 Asn Leu Asp Asp Cys Ala Ser Ser Pro Cys Asp Ser Gly Thr Cys Leu 645 650 655 Asp Lys Ile Asp Gly Tyr Glu Cys Ala Cys Glu Pro Gly Tyr Thr Gly 660 665 670 Ser Met Cys Asn Ile Asn Ile Asp Glu Cys Ala Gly Asn Pro Cys His 675 680 685 Asn Gly Gly Thr Cys Glu Asp Gly Ile Asn Gly Phe Thr Cys Arg Cys 690 695 700 Pro Glu Gly Tyr His Asp Pro Thr Cys Leu Ser Glu Val Asn Glu Cys 705 710 715 720

39467A.txt.txt

Asn Ser Asn Pro Cys Val His Gly Ala Cys Arg Asp Ser Leu Asn Gly 725 730 735 Tyr Lys Cys Asp Cys Asp Pro Gly Trp Ser Gly Thr Asn Cys Asp Ile 740 745 750 Asn Asn Glu Cys Glu Ser Asn Pro Cys Val Asn Gly Gly Thr Cys 765 765 Lys Asp Met Thr Ser Gly Tyr Val Cys Thr Cys Arg Glu Gly Phe Ser 770 775 780 Gly Pro-Asn Cys-Gln Thr Asn Ile Asn Glu-Cys-Ala-Ser Asn Pro Cys 785 790 795 800 Leu Asn Gln Gly Thr Cys Ile Asp Asp Val Ala Gly Tyr Lys Cys Asn 805 810 815 Cys Leu Leu Pro Tyr Thr Gly Ala Thr Cys Glu Val Val Leu Ala Pro 820 825 830 Cys Ala Pro Ser Pro Cys Arg Asn Gly Gly Glu Cys Arg Gln Ser Glu 835 840 845 Asp Tyr Glu Ser Phe Ser Cys Val Cys Pro Thr Gly Trp Gln Ala Gly 850 855 860 Gln Thr Cys Glu Val Asp Ile Asn Glu Cys Val Leu Ser Pro Cys Arg 865 870 875 880 His Gly Ala Ser Cys Gln Asn Thr His Gly Gly Tyr Arg Cys His Cys 885 890 895 Gln Ala Gly Tyr Ser Gly Arg Asn Cys Glu Thr Asp Ile Asp Asp Cys 900 905 910 Arg Pro Asn Pro Cys His Asn Gly Gly Ser Cys Thr Asp Gly Ile Asn 915 920 925 Thr Ala Phe Cys Asp Cys Leu Pro Gly Phe Arg Gly Thr Phe Cys Glu 930 940 Glu Asp Ile Asn Glu Cys Ala Ser Asp Pro Cys Arg Asn Gly Ala Asn 945 950 955 960 Cys Thr Asp Cys Val Asp Ser Tyr Thr Cys Thr Cys Pro Ala Gly Phe 965 970 975 Ser Gly Ile His Cys Glu Asn Asn Thr Pro Asp Cys Thr Glu Ser Ser 980 985 990

PCT/EP2004/008819

. 39467A.txt.txt

Cys Phe Asn Gly Gly Thr Cys Val $\mbox{Asp Gly Ile Asn Ser}$ Phe Thr Cys $\mbox{995}$ $\mbox{1000}$

Leu Cys Pro Pro Gly Phe Thr Gly Ser Tyr Cys Gln His Asp Val

Asn Glu Cys Asp Ser Gln Pro Cys Leu His Gly Gly Thr Cys Gln 1025 1030 1035

Asp Gly Cys Gly Ser Tyr Arg Cys Thr Cys Pro Gln Gly Tyr Thr 1040 1045 1050

Gly Pro Asn Cys Gln Asn Leu Val His Trp Cys Asp Ser Ser Pro 1055 1060 1065

Cys Lys Asn Gly Gly Lys Cys Trp Gln Thr His Thr Gln Tyr Arg 1070 1080

Cys Glu Cys Pro Ser Gly Trp Thr Gly Leu Tyr Cys Asp Val Pro 1085 1090 1095

Ser Val Ser Cys Glu Val Ala Ala Gln Arg Gln Gly Val Asp Val 1100 1110

Ala Arg Leu Cys Gln His Gly Gly Leu Cys Val Asp Ala Gly Asn 1115 1120 1125

Thr His His Cys Arg Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys 1130 1140

Glu Asp Leu Val Asp Glu Cys Ser Pro Ser Pro Cys Gln Asn Gly 1145 1150 1155

Ala Thr Cys Thr Asp Tyr Leu Gly Gly Tyr Ser Cys Lys Cys Val 1160 1165 1170

Ala Gly Tyr His Gly Val Asn Cys Ser Glu Glu Ile Asp Glu Cys 1175 1180 1185

Leu Ser His Pro Cys Gln Asn Gly Gly Thr Cys Leu Asp Leu Pro 1190 1195 1200

Asn Thr Tyr Lys Cys Ser Cys Pro Arg Gly Thr Gln Gly Val His 1205 1210 1215

Cys Glu Ile Asn Val Asp Asp Cys Asn Pro Pro Val Asp Pro Val 1220 1230

Ser Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Val Asp Gln 1235 1240 1245

39467A.txt.txt

Val Gly Gly Tyr Ser Cys Thr Cys Pro Pro Gly Phe Val Gly Glu 1250 1260

Arg Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp 1265 1270 1275

Ala Arg Gly Thr Gln Asn Cys Val Gln Arg Val Asn Asp Phe His 1280 1285 1290

Cys Glu Cys Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val 1295 1300 1305

Ile Asn Gly Cys Lys Gly Lys Pro Cys Lys Asn Gly Gly Thr Cys 1310 1315 1320

Ala Val Ala Ser Asn Thr Ala Arg Gly Phe Ile Cys Lys Cys Pro 1325 1330 1335

Ala Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys 1340 1345 1350

Gly Ser Leu Arg Cys Leu Asn Gly Gly Thr Cys Ile Ser Gly Pro 1355 1360 1365

Arg Ser Pro Thr Cys Leu Cys Leu Gly Pro Phe Thr Gly Pro Glu 1370 1375 1380

Cys Gln Phe Pro Ala Ser Ser Pro Cys Leu Gly Gly Asn Pro Cys 1385 1390 1395

Tyr Asn Gln Gly Thr Cys Glu Pro Thr Ser Glu Ser Pro Phe Tyr 1400 1405 1410

Arg Cys Leu Cys Pro Ala Lys Phe Asn Gly Leu Leu Cys His Ile 1415 1420 1425

Leu Asp Tyr Ser Phe Gly Gly Gly Ala Gly Arg Asp Ile Pro Pro 1430 1440

Pro Leu Ile Glu Glu Ala Cys Glu Leu Pro Glu Cys Gln Glu Asp 1445 1450 1455

Ala Gly Asn Lys Val Cys Ser Leu Gln Cys Asn Asn His Ala Cys 1460 1465 1470

Gly Trp Asp Gly Gly Asp Cys Ser Leu Asn Phe Asn Asp Pro Trp 1475 1480 1485

Lys Asn Cys Thr Gln Ser Leu Gln Cys Trp Lys Tyr Phe Ser Asp 1490 1495 1500

		39467A.txt.tx	xt
Gly His Cys As	p Ser Gln Cys	Asn Ser Ala Gly	Cys Leu Phe Asp
1505	1510		1515
Gly Phe Asp Cy	s Gln Arg Ala	Glu Gly Gln Cys	Asn Pro Leu Tyr
1520	1525		1530
Asp Gln Tyr Cy	s Lys Asp His	Phe Ser Asp Gly	His Cys Asp Gln
1535	1540		1545
Gly Cys Asn Se	r Ala Glu Cys	Glu Trp Asp Gly	Leu Asp Cys Ala
1550	1555		1560
Glu His Val Pr	o Glu Arg Leu	Ala Ala Gly Thr	Leu Val Val Val
1565	1570		1575
Val Leu Met Pr	o Pro Glu Gln	Leu Arg Asn Ser	Ser Phe His Phe
1580	1585		1590

Leu Arg Glu Leu Ser Arg Val Leu His Thr Asn Val Val Phe Lys 1595 1600 1605

Arg Asp Ala His Gly Gln Gln Met Ile Phe Pro Tyr Tyr Gly Arg 1610 1620

Glu Glu Glu Leu Arg Lys His Pro Ile Lys Arg Ala Ala Glu Gly 1625 1630 1635

Trp Ala Ala Pro Asp Ala Leu Leu Gly Gln Val Lys Ala Ser Leu 1640 1645 1650

Leu Pro Gly Gly Ser Glu Gly Gly Arg Arg Arg Glu Leu Asp 1655 1660 1665

Pro Met Asp Val Arg Gly Ser Ile Val Tyr Leu Glu Ile Asp Asn 1670 1680

Arg Gln Cys Val Gln Ala Ser Ser Gln Cys Phe Gln Ser Ala Thr 1685 1690 1695

Asp Val Ala Ala Phe Leu Gly Ala Leu Ala Ser Leu Gly Ser Leu 1700 1710

Asn Ile Pro Tyr Lys Ile Glu Ala Val Gln Ser Glu Thr Val Glu 1715 1720 1725

Pro Pro Pro Ala Gln Leu His Phe Met Tyr Val Ala Ala Ala 1730 1740

Ala Phe Val Leu Leu Phe Phe Val Gly Cys Gly Val Leu Leu Ser 1745 1750 1755

39467A.txt.txt

							33-10						
Lys 1760	Arg	Arg	Arg	Gln	ніs 1765	Gly	Gln	Leu	Trp	Phe 1770	Pro	Glu	Gly
Lys 1775	٧a٦	Ser	Glu	Ala	ser 1780	Lys	Lys	Lys	Arg	Arg 1785	Glu	Pro	Leu
Glu 1790	Asp	Ser	۷al	Gly	Leu 1795	Lys	Pro	Leu	Lys	Asn 1800	Ala	ser	Asp
Ala 1805	Leu	Met	Asp	Asp	Asn 1810	G∏n	Asn	Glu	Trp	Gly 1815	Asp	Glu	Asp
Glu 1820	Thr	Lys	Lys	Phe	Arg 1825	Phe-	G∏u	.G]u₋	-Pro	val 1830	٧a٦	Leu	Pro
Leu 1835	Asp	Asp	Gln	Thr	Asp 1840	His	Arg	G∏n	Trp	Thr 1845	G∏n	Gln	His
Asp 1850	Ala	Ala	Asp	Leu	Arg 1855	Met	Ser	Ala	Met	Ala 1860	Pro	Thr	Pro
Gln 1865	Gly	Glu	٧a٦	Asp	Ala 1870	Asp	Cys	Met	Asp	val 1875	Asn	٧a٦	Arg
Pro 1880	Asp	Glу	Phe	Thr	Pro 1885	Leu	Met	Ile	Ala	Ser 1890	Cys	Ser	Gly
Gly 1895	Leu	Glu	Thr	Gly	Asn 1900	Ser	Glu	Glu	Glu	Glu 1905	Asp	Ala	Pro
∨al 1910	Ile	Ser	Asp	Phe	Ile 1915	Tyr	Gln	Gly	Ala	Ser 1920	Leu	His	Asn
Thr 1925	Asp	Arg	Thr	G∃y	Glu 1930	⊤hr	Ala	Leu	His	Leu 1935	Ala	Ala	Arg
Ser 1940	Arg	Ser	Asp	Ala	А]а 1945	Lys	Arg	Leu	Leu	Glu 1950	Ala	Ser	Ala
Ala 1955	Asn	Ile	Gln	Asp	Asn 1960	Met	GТу	Arg	Thr	Pro 1965	Leu	His	Ala
Val 1970	Ser	Ala	Asp	Ala	G]n 1975	Glу	val	Phe	Gln	Ile 1980	Leu	Ile	Arg
Arg 1985	Ala	Thr	Asp	Leu	Asp 1990	Ala	Arg	Met	ніѕ	Asp 1995	GТу	Thr	Thr
Leu 2000	Ile	Leu	Ala	Ala	Arg 2005	Leu	ΑΊa	٧a٦	Glu	Gly 2010	Met	Leu	Glu
	1760 Lys 1775 Glu 1790 Ala 1805 Glu 1820 Leu 1835 Asp 1850 Gln 1865 Pro 1880 Gly 1895 Val 1910 Thr 1925 Ser 1940 Ala 1955 Val 1970 Arg 1985 Leu	1760 Lys Val 1775 Val Glu Asp Ala Leu Glu Thr 1820 Asp 1835 Asp Ala Gln Gly 1865 Gly Pro Asp 1880 Asp 1895 Leu Val Ile Thr Asp 1910 Asp 1925 Asp Arg 1940 Arg Ala Ser 1940 Ser 1940 Ser 1940 Ile Leu Ile Leu Ile	1760 Lys Val Ser Glu Asp Ser Ala Leu Met Glu Thr Lys Leu Asp Asp Asp Asp Asp Asp Glu Glu Fro Asp Gly Gly Leu Glu H880 Asp Gly Gly Leu Glu Thr Asp Arg Leu Arg Arg Ala Asn Ile Val Ser Ala Arg Ala Thr Leu Ala Thr Leu Ile Leu Leu Ile Leu Leu Ile Leu Leu Ile Leu	1760 Lys Val Ser Glu Glu Asp Ser Val Ala Leu Met Asp Glu Thr Lys Lys Leu Asp Gln Asp Gln Ala Ala Asp Gln Gly Glu Val Reso Asp Gly Phe Asp Leu Glu Thr Val Asp Asp Thr Ser Asp Asp Thr Asp Arg Thr Asp Ala Asp Asp Asp Ala Asp Asp Asp Ala Asp Asp Asp Ala Asp Asp Asp Arg Ala Asp Asp Arg Ala Asp Asp Leu Ala Asp Asp Leu Ala Asp Leu Ala Asp	1760 Lys Val Ser Glu Ala Glu Asp Ser Val Gly Ala Leu Met Asp Asp Glu Thr Lys Lys Phe Leu Asp Asp Gln Thr Asp Ala Ala Asp Leu Gly Glu Val Asp Leu Gly Phe Thr Asp Leu Glu Thr Gly Val Asp Arg Thr Gly Asp Arg Arg Thr Gly Leu Arg Arg Thr Gly Asp Ala Arg Thr Gly Arg Arg Arg Arg Ala Ala Asp Ala Asp Ala Arg Ala Arg Ala Ala Ala Arg Ala Ala Ala Ala Ala Ala Ala	1760 1765 Lys Val Ser Glu Ala Ser Glu Asp Ser Val Gly Leu 1805 Leu Met Asp Asp Asn 1820 Thr Lys Lys Phe Asn 1820 Thr Lys Lys Phe Asn 1820 Thr Lys Lys Asp Asn 1820 Thr Lys Lys Asp Asp 1820 Thr Lys Lys Phe Arg Arg Asp Asp	1760 1765 Lys Val Ser Glu Ala Ser Lys Glu Asp Ser Val Gly Leu Lys Ala Leu Met Asp Asp Asn Gln Blu Thr Lys Lys Phe Arg Phe Leu Asp Asp Gln Thr Asp Phe Leu Asp Asp Gln Thr Asp His Asp Ala Ala Asp Leu Arg Phe His Bla Gly Glu Val Asp Ala Asp Leu Bla Leu Gly Phe Thr Pro Leu Bla Leu Glu Thr Gly Asp Leu Bla Leu Asp Phe Ile Tyr Bla Arg Arg Arg Arg Asp Ala Ala Ala Ala Ala Ala Ala Ala <td< td=""><td>Lys 1775 Val Ser Glu Ala Ser Lys Lys Lys Lys Lys Lys Lys Lys Lys Pro Ala Asp Ser Val Gly Leu Lys Pro Asp Asp</td><td>1760 1765 Lys Val Ser Glu Ala Ser Lys Lys Lys Lys Glu Asp Ser Val Gly Leu Lys Pro Leu Ala Leu Met Asp <td< td=""><td>Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Arg Arg Glu 1805 Asp Ser Val Gly Leu 1795 Lys Pro Leu Lys Ala 1805 Leu Met Asp Arg His Arg Glu Trp Asp 1835 Asp Asp Asp Glu Thr Asp Arg Glu Trp Asp 1885 Ala Ala Asp Leu Arg Met Ser Ala Met Asp 1886 Gly Glu Val Asp Ala Asp Leu Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Arg Arg Arg Arg Ala Ala Ala Arg<!--</td--><td>1760 1765 1770 Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Lys Arg Arg 1785 Glu Asp Ser Val Gly Leu 1790 Lys Pro Leu Lys Asn 1800 Ala Leu Met Asp Asp Asp 1810 Gln Asn Glu Trp Gly 1815 Glu Thr Lys Lys Phe Arg 1825 Phe Glu Glu Pro Val 1830 Leu Asp Asp Asp Gln Thr Asp 1840 His Arg Gln Trp Thr 1845 Asp Asp Asp Gln Thr Asp 1855 Met Ser Ala Met Asp Val 1875 Pro Asp Gly Phe Thr Pro 1885 Leu Met Ile Ala Ser 1890 Gly Glu Val Asp Ala Asp Asp Ser Glu Glu Glu Glu Glu 1905 Val 1895 Leu Glu Thr Gly Asp Ser Glu Glu Glu Glu Glu 1905 Val 1910 The Ser Asp Phe Ing Tyr Gln Gly Ala Ser 1920 Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu 1935 Ser Arg Ser Asp Ala Ala Ala 194 Lys Arg Leu Leu Glu 1950 Ala Asp Asp Asp Asp Asp Asp Asp Asp Asp Arg Leu Leu Glu 1950 Ala Asp Asp Asp Ala Gln Sp Asp Asp Asp Asp Asp Leu Leu Glu 1950 Val 2805 Asp Ala Asp Ala Asp Ala Glu Val Phe Gln 1960 Arg Asp Ala Asp Ala Asp Ala Asp Asp Asp Asp Asp Met Gly Arg Thr Pro 1965 Val 2805 Ala Thr Asp Leu Asp Asp Asp Asp Asp Met Arg Met His Asp Asp Asp Asp Asp Asp Asp Asp Asp As</td><td> 1760</td><td>Lys Val Ser Glu Ala Ser Leu Lys Asn Arg Arg Glu Pro 1785 Val Ser Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Glu Pro 1880 Leu Met Asp Asp Asn Asn Glu Trp Gly Asp Glu Rala Ser 1820 Thr Lys Lys Phe Arg Phe Glu Glu Pro 1830 Val Leu 1835 Asp Asp Asp Gln Thr Asp His Arg Gln Trp Thr 1845 Gln Gln Glu Bash Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp</td></td></td<></td></td<>	Lys 1775 Val Ser Glu Ala Ser Lys Lys Lys Lys Lys Lys Lys Lys Lys Pro Ala Asp Ser Val Gly Leu Lys Pro Asp Asp	1760 1765 Lys Val Ser Glu Ala Ser Lys Lys Lys Lys Glu Asp Ser Val Gly Leu Lys Pro Leu Ala Leu Met Asp Asp <td< td=""><td>Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Arg Arg Glu 1805 Asp Ser Val Gly Leu 1795 Lys Pro Leu Lys Ala 1805 Leu Met Asp Arg His Arg Glu Trp Asp 1835 Asp Asp Asp Glu Thr Asp Arg Glu Trp Asp 1885 Ala Ala Asp Leu Arg Met Ser Ala Met Asp 1886 Gly Glu Val Asp Ala Asp Leu Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Arg Arg Arg Arg Ala Ala Ala Arg<!--</td--><td>1760 1765 1770 Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Lys Arg Arg 1785 Glu Asp Ser Val Gly Leu 1790 Lys Pro Leu Lys Asn 1800 Ala Leu Met Asp Asp Asp 1810 Gln Asn Glu Trp Gly 1815 Glu Thr Lys Lys Phe Arg 1825 Phe Glu Glu Pro Val 1830 Leu Asp Asp Asp Gln Thr Asp 1840 His Arg Gln Trp Thr 1845 Asp Asp Asp Gln Thr Asp 1855 Met Ser Ala Met Asp Val 1875 Pro Asp Gly Phe Thr Pro 1885 Leu Met Ile Ala Ser 1890 Gly Glu Val Asp Ala Asp Asp Ser Glu Glu Glu Glu Glu 1905 Val 1895 Leu Glu Thr Gly Asp Ser Glu Glu Glu Glu Glu 1905 Val 1910 The Ser Asp Phe Ing Tyr Gln Gly Ala Ser 1920 Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu 1935 Ser Arg Ser Asp Ala Ala Ala 194 Lys Arg Leu Leu Glu 1950 Ala Asp Asp Asp Asp Asp Asp Asp Asp Asp Arg Leu Leu Glu 1950 Ala Asp Asp Asp Ala Gln Sp Asp Asp Asp Asp Asp Leu Leu Glu 1950 Val 2805 Asp Ala Asp Ala Asp Ala Glu Val Phe Gln 1960 Arg Asp Ala Asp Ala Asp Ala Asp Asp Asp Asp Asp Met Gly Arg Thr Pro 1965 Val 2805 Ala Thr Asp Leu Asp Asp Asp Asp Asp Met Arg Met His Asp Asp Asp Asp Asp Asp Asp Asp Asp As</td><td> 1760</td><td>Lys Val Ser Glu Ala Ser Leu Lys Asn Arg Arg Glu Pro 1785 Val Ser Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Glu Pro 1880 Leu Met Asp Asp Asn Asn Glu Trp Gly Asp Glu Rala Ser 1820 Thr Lys Lys Phe Arg Phe Glu Glu Pro 1830 Val Leu 1835 Asp Asp Asp Gln Thr Asp His Arg Gln Trp Thr 1845 Gln Gln Glu Bash Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp</td></td></td<>	Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Arg Arg Glu 1805 Asp Ser Val Gly Leu 1795 Lys Pro Leu Lys Ala 1805 Leu Met Asp Arg His Arg Glu Trp Asp 1835 Asp Asp Asp Glu Thr Asp Arg Glu Trp Asp 1885 Ala Ala Asp Leu Arg Met Ser Ala Met Asp 1886 Gly Glu Val Asp Ala Asp Leu Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Asp Ala Arg Arg Arg Arg Ala Ala Ala Arg </td <td>1760 1765 1770 Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Lys Arg Arg 1785 Glu Asp Ser Val Gly Leu 1790 Lys Pro Leu Lys Asn 1800 Ala Leu Met Asp Asp Asp 1810 Gln Asn Glu Trp Gly 1815 Glu Thr Lys Lys Phe Arg 1825 Phe Glu Glu Pro Val 1830 Leu Asp Asp Asp Gln Thr Asp 1840 His Arg Gln Trp Thr 1845 Asp Asp Asp Gln Thr Asp 1855 Met Ser Ala Met Asp Val 1875 Pro Asp Gly Phe Thr Pro 1885 Leu Met Ile Ala Ser 1890 Gly Glu Val Asp Ala Asp Asp Ser Glu Glu Glu Glu Glu 1905 Val 1895 Leu Glu Thr Gly Asp Ser Glu Glu Glu Glu Glu 1905 Val 1910 The Ser Asp Phe Ing Tyr Gln Gly Ala Ser 1920 Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu 1935 Ser Arg Ser Asp Ala Ala Ala 194 Lys Arg Leu Leu Glu 1950 Ala Asp Asp Asp Asp Asp Asp Asp Asp Asp Arg Leu Leu Glu 1950 Ala Asp Asp Asp Ala Gln Sp Asp Asp Asp Asp Asp Leu Leu Glu 1950 Val 2805 Asp Ala Asp Ala Asp Ala Glu Val Phe Gln 1960 Arg Asp Ala Asp Ala Asp Ala Asp Asp Asp Asp Asp Met Gly Arg Thr Pro 1965 Val 2805 Ala Thr Asp Leu Asp Asp Asp Asp Asp Met Arg Met His Asp Asp Asp Asp Asp Asp Asp Asp Asp As</td> <td> 1760</td> <td>Lys Val Ser Glu Ala Ser Leu Lys Asn Arg Arg Glu Pro 1785 Val Ser Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Glu Pro 1880 Leu Met Asp Asp Asn Asn Glu Trp Gly Asp Glu Rala Ser 1820 Thr Lys Lys Phe Arg Phe Glu Glu Pro 1830 Val Leu 1835 Asp Asp Asp Gln Thr Asp His Arg Gln Trp Thr 1845 Gln Gln Glu Bash Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp</td>	1760 1765 1770 Lys 1775 Val Ser Glu Ala Ser 1780 Lys Lys Lys Lys Arg Arg 1785 Glu Asp Ser Val Gly Leu 1790 Lys Pro Leu Lys Asn 1800 Ala Leu Met Asp Asp Asp 1810 Gln Asn Glu Trp Gly 1815 Glu Thr Lys Lys Phe Arg 1825 Phe Glu Glu Pro Val 1830 Leu Asp Asp Asp Gln Thr Asp 1840 His Arg Gln Trp Thr 1845 Asp Asp Asp Gln Thr Asp 1855 Met Ser Ala Met Asp Val 1875 Pro Asp Gly Phe Thr Pro 1885 Leu Met Ile Ala Ser 1890 Gly Glu Val Asp Ala Asp Asp Ser Glu Glu Glu Glu Glu 1905 Val 1895 Leu Glu Thr Gly Asp Ser Glu Glu Glu Glu Glu 1905 Val 1910 The Ser Asp Phe Ing Tyr Gln Gly Ala Ser 1920 Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu 1935 Ser Arg Ser Asp Ala Ala Ala 194 Lys Arg Leu Leu Glu 1950 Ala Asp Asp Asp Asp Asp Asp Asp Asp Asp Arg Leu Leu Glu 1950 Ala Asp Asp Asp Ala Gln Sp Asp Asp Asp Asp Asp Leu Leu Glu 1950 Val 2805 Asp Ala Asp Ala Asp Ala Glu Val Phe Gln 1960 Arg Asp Ala Asp Ala Asp Ala Asp Asp Asp Asp Asp Met Gly Arg Thr Pro 1965 Val 2805 Ala Thr Asp Leu Asp Asp Asp Asp Asp Met Arg Met His Asp Asp Asp Asp Asp Asp Asp Asp Asp As	1760	Lys Val Ser Glu Ala Ser Leu Lys Asn Arg Arg Glu Pro 1785 Val Ser Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Glu Pro 1880 Leu Met Asp Asp Asn Asn Glu Trp Gly Asp Glu Rala Ser 1820 Thr Lys Lys Phe Arg Phe Glu Glu Pro 1830 Val Leu 1835 Asp Asp Asp Gln Thr Asp His Arg Gln Trp Thr 1845 Gln Gln Glu Bash Asp

39467A.txt.txt

							=	2240	A.C					•
Asp	Leu 2015	Ile	Asn	Ser	His	Ala 2020	Asp	∨al	Asn	Ala	va1 2025	Asp	Asp	Leu
Gly	Lys 2030	Ser	Ala	Leu	His	⊤rp 2035	Αla	Αla	Ala	Val	Asn 2040	Asn -	Val	Asp
Αla	Ala 2045	∨al	∨al	Leu	Leu	Lys 2050	Asn	Gly	Ala	Asn	Lys 2055	Asp	Met	Gln
Asn	Asn 2060	Arg	Glu	Glu	⊤hr	Pro 2065	Leu	Phe	Leu	Ala	Ala 2070	Arg	Glu	Gly
Ser	Tyr 2075	Glu	Thr	Ala	Lys	Val 2080	Leu	Leu	Asp	ніѕ	Phe 2085	Ala	Asn	Arg
Asp	Ile 2090		Asp	His	Met	Asp 2095	Arg	Leu	Pro	Arg	Asp 2100	ıle	Αla	Gln
Glu	Arg 2105	Met	ніѕ	His	Asp	Ile 2110	val	Arg	Leu	Leu	Asp 2115	Glu	Tyr	Asn
Leu	Val 2120	Arg	Ser	Pro	.Gln	Leu 2125	His	Gly	Ala	Pro	Leu 2130	GТу	Gly	Thr
Pro	Thr 2135	Leu	Ser	Pro	Pro	Leu 2140	Cys	ser	Pro	Asn	Gly 2145	Tyr	Leu	Gly
Ser	Leu 2150	Lys	Pro	Gly	۷al	Gln 2155	Gly	Lys	Lys	va1	Arg 2160	Lys	Pro	Ser
Ser	Lys 2165	G]у	Leu	Ala	Cys	Gly 2170	Ser	Lys	Glu	Ala	Lys 2175	Asp	Leu	Lys
Ala	Arg 2180	Arg	Lys	Lys	Ser	Gln 2185	Asp	Gly	Lys	Gly	Cys 2190	Leu	Leu	Asp
Ser	Ser 2195		Met	Leu	Ser	Pro 2200	Val	Asp	Ser	Leu	Glu 2205	Ser	Pro	нis
Gly	Tyr 2210		Ser	Asp	val	Ala 2215	Ser	Pro	Pro	Leu	Leu 2220	Pro	Ser	Pro
Phe	Gln 2225		Ser	Pro	Ser	Va1 2230	Pro	Leu	Asn	His	Leu 2235	Pro	Gly	Met
Pro	Asp 2240	Thr	His	Leu	GТу	Ile 2245	Gly	His	Leu	Asn	Val 2250	Ala	Ala	Lys
Pro	G]u 2255	Met	Ala	Ala	Leu	G]y 2260	Gly	Gly	Gly	Arg	Leu 2265	Ala	Phe	Glu

PCT/EP2004/008819

39467A.txt.txt

Thr Gly Pro Pro Arg Leu Ser His Leu Pro Val Ala Ser Gly Thr Ser Thr Val Leu Gly Ser Ser Ser Gly Gly Ala Leu Asn Phe Thr Val Gly Gly Ser Thr Ser Leu Asn Gly Gln Cys Glu Trp Leu Ser 2300 2310 Arg Leu Gln Ser Gly Met Val Pro Asn Gln Tyr Asn Pro Leu Arg 2315 2320 2325 Gly Ser Val Ala Pro Gly-Pro-Leu Ser Thr Gln Ala Pro Ser Leu 2330 2335 2340 Gln His Gly Met Val Gly Pro Leu His Ser Ser Leu Ala Ala Ser 2345 2350 2355 Ala Leu Ser Gln Met Met Ser Tyr Gln Gly Leu Pro Ser Thr Arg 2360 2365 2370 Leu Ala Thr Gln Pro His Leu Val Gln Thr Gln Gln Val Gln Pro Gln Asn Leu Gln Met Gln Gln Gln Asn Leu Gln Pro Ala Asn Ile Gln Gln Gln Ser Leu Gln Pro Pro Pro Pro Pro Pro Gln Pro His Leu Gly Val Ser Ser Ala Ala Ser Gly His Leu Gly Arg Ser 2420 2425 2430

Phe Leu Ser Gly Glu Pro Ser Gln Ala Asp Val Gln Pro Leu Gly 2435 2440 2445

Pro Ser Ser Leu Ala Val His Thr Ile Leu Pro Gln Glu Ser Pro 2450 2460

Ala Leu Pro Thr Ser Leu Pro Ser Ser Leu Val Pro Pro Val Thr 2465 2470 2475

Ala Ala Gln Phe Leu Thr Pro Pro Ser Gln His Ser Tyr Ser Ser 2480 2485 2490

Pro Val Asp Asn Thr Pro Ser His Gln Leu Gln Val Pro Glu His 2495 2500 2505

Pro Phe Leu Thr Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser 2510 2515 2520

39467A.txt.txt

Ser Ser Pro His Ser Asn Val Ser Asp Trp Ser Glu Gly Val Ser 2525 2530 2535

Ser Pro Pro Thr Ser Met Gln Ser Gln Ile Ala Arg Ile Pro Glu 2540 2545 2550

Ala Phe Lys 2555

<210> 16 <211> 11433

<212> DNA <213> Homo sapiens

<220>

<221> misc_feature

<223> Notch-2

<400> 16 60 aggctgcttc gttgcacacc cgagaaagtt tcagccaaac ttcgggcggc ggctgaggcg 120 gcggccgagg agcggcggac tcggggcgcg gggagtcgag gcatttgcgc ctgggcttcg 180 gagcgtagcg ccagggcctg agcctttgaa gcaggaggag gggaggagag agtggggctc 240 ctctatcggg acccctccc catgtggatc tgcccaggcg gcggcggcgg cggcggagga ggaggcgacc gagaagatgc ccgccctgcg ccccgctctg ctgtgggcgc tgctggcgct 300 360 ctggctgtgc tgcgcggccc ccgcgcatgc attgcagtgt cgagatggct atgaaccctg 420 tgtaaatgaa ggaatgtgtg ttacctacca caatggcaca ggatactgca aatgtccaga 480 aggettettg ggggaatatt gteaacateg agaceeetgt gagaagaace getgeeagaa 540 tggtgggact tgtgtggccc aggccatgct ggggaaagcc acgtgccgat gtgcctcagg 600 gtttacagga gaggactgcc agtactcaac atctcatcca tgctttgtgt ctcgaccctg cctgaatggc ggcacatgcc atatgctcag ccgggatacc tatgagtgca cctgtcaagt 660 cgggtttaca ggtaaggagt gccaatggac ggatgcctgc ctgtctcatc cctgtgcaaa 720 780 tggaagtacc tgtaccactg tggccaacca gttctcctgc aaatgcctca caggcttcac 840 agggcagaaa tgtgagactg atgtcaatga gtgtgacatt ccaggacact gccagcatgg 900 tggcacctgc ctcaacctgc ctggttccta ccagtgccag tgccctcagg gcttcacagg ccagtactgt gacagcctgt atgtgccctg tgcaccctca ccttgtgtca atggaggcac 960 1020 ctgtcggcag actggtgact tcacttttga gtgcaactgc cttccaggtt ttgaagggag cacctgtgag aggaatattg atgactgccc taaccacagg tgtcagaatg gaggggtttg 1080 tgtggatggg gtcaacactt acaactgccg ctgtccccca caatggacag gacagttctg 1140 1200 cacaqaqqat qtggatgaat gcctgctgca gcccaatgcc tgtcaaaatg ggggcacctg 1260 tgccaaccgc aatggaggct atggctgtgt atgtgtcaac ggctggagtg gagatgactg 1320 cagtgagaac attgatgatt gtgccttcgc ctcctgtact ccaggctcca cctgcatcga

ccgtgtggcc	tccttctctt	gcatgtgccc	39467A.txt agaggggaag		tgtgtcatct	1380
ggatgatgca	tgcatcagca	atccttgcca	caagggggca	ctgtgtgaca	ccaaccccct	1440
aaatgggcaa	tatatttgca	cctgcccaca	aggctacaaa	ggggctgact	gcacagaaga	1500
tgtggatgaa	tgtˌgccatgg	ccaatagcaa	tccttgtgag	catgcaggaa	aatgtgtgaa	1560
cacggatggc	gccttccact	gtgagtgtct	gaagggttat	gcaggacctc	gttgtgagat	1620
ggacatcaat	gagtgccatt	cagacccctg	ccagaatgat	gctacctgtc	tggataagat	1680
tggaggcttc	acatgtctgt	gcatgccagg	tttcaaaggt	gtgcattgtg	aattagaaat	1740
aaatgaatgt	cagagcaacc	cttgtgtgaa	caatgggcag	tgtgtggata	aagtcaatcg	1800
tttccagtgc	ctgtgtcctc	ctggtttcac	tgggccagtt	tgccagattg	atattgatga	1860
ctgttccagt	actccgtgtc	tgaatggggc	aaagtgtatc	gatcacccga	atggctatga	1920
atgccagtgt	gccacaggtt	tcactggtgt	gttgtgtgag	gagaacattg	acaactgtga	1980
ccccgatcct	tgccaccatg	gtcagtgtca	ggatggtatt	gattcctaca	cctgcatctg	2040
caatcccggg	tacatgggcg	ccatctgcag	tgaccagatt	gatgaatgtt	acagcagccc	2100
ttgcctgaac	gatggtcgct	gcattgacct	ggtcaatggc	taccagtgca	actgccagcc	2160
aggcacgtca	ggggttaatt	gtgaaattaa	ttttgatgac	tgtgcaagta	acccttgtat	2220
ccatggaatc	tgtatggatg	gcattaatcg	ctacagttgt	gtctgctcac	caggattcac	2280
agggcagaga	tgtaacattg	acattgatga	gtgtgcctcc	aatccctgtc	gcaagggtgc	2340
aacatgtatc	aacggtgtga	atggtttccg	ctgtatatgc	cccgagggac	cccatcaccc	2400
cagctgctac	tcacaggtga	acgaatgcct	gagcaatccc	tgcatccatg	gaaactgtac	2460
tggaggtctc	agtggatata	agtgtctctg	tgatgcaggc	tgggttggca	tcaactgtga	2520
agtggacaaa	aatgaatgcc	tttcgaatcc	atgccagaat	ggaggaactt	gtgacaatct	2580
ggtgaatgga	tacaggtgta	cttgcaagaa	gggctttaaa	ggctataact	gccaggtgaa	2640
tattgatgaa	tgtgcctcaa	atccatgcct	gaaccaagga	acctgctttg	atgacataag	2700
tggctacact	tgccactgtg	tgctgccata	cacaggcaag	aattgtcaga	cagtattggc	2760
tccctgttcc	ccaaaccctt	gtgagaatgc	tgctgtttgc	aaagagtcac	caaattttga	2820
gagttatact	tgcttgtgtg	ctcctggctg	gcaaggtcag	cggtgtacca	ttgacattga	2880
cgagtgtatc	tccaagccct	gcatgaacca	tggtctctgc	cataacaccc	agggcagcta	2940
catgtgtgaa	tgtccaccag	gcttcagtgg	tatggactgt	gaggaggaca	ttgatgactg	3000
ccttgccaat	ccttgccaga	atggaggttc	ctgtatggat	ggagtgaata	ctttctcctg	3060
cctctgcctt	ccgggtttca	ctggggataa	gtgccagaca	gacatgaatg	agtgtctgag	3120
tgaaccctgt	aagaatggag	ggacctgctc	tgactacgtc	aacagttaca	cttgcaagtg	3180
ccaggcagga	tttgatggag	tccattgtga	gaacaacatc	aatgagtgca	ctgagagctc	3240
ctgtttcaat	ggtggcacat	gtgttgatgg	gattaactcc	ttctcttgct	tgtgccctgt	3300
gggtttcact	ggatccttct	gcctccatga	gatcaatgaa	tgcagctctc	atccatgcct	3360

gaatgaggga	acgtgtgttg	atggcctggg	39467A.txt tacctaccgc		ccctgggcta	3420
	aactgtcaga					3480
aggtacttgc	gttcagaaaa	aagcagagtc	ccagtgccta	tgtccatctg	gatgggctgg	3540
tgcctattgt	gacgtgccca	atgtctcttg	tgacatagca	gcctccagga	gaggtgtgct	3600
tgttgaacac	ttgtgccagc	actcaggtgt	ctgcatcaat	gctggcaaca	cgcattactg	3660
tcagtgcccc	ctgggctata	ctgggagcta	ctgtgaggag	caactcgatg	agtgtgcgtc	3720
caacccctgc	cagcacgggg	caacatgcag	tgacttcatt	ggtggataca	gatgcgagtg	3780
tgtcccaggc	tatcagggtg	tcaactgtga	gtatgaagtg	gatgagtgcc	agaatcagcc	3840
ctgccagaat	ggaggcacct	gtattgacct	tgtgaaccat	ttcaagtgct	cttgcccacc	3900
aggcactcgg	ggcctactct	gtgaagagaa	cattgatgac	tgtgcccggg	gtccccattg	3960
ccttaatggt	ggtcagtgca	tggataggat	tggaggctac	agttgtcgct	gcttgcctgg	4020
ctttgctggg	gagcgttgtg	agggagacat	caacgagtgc	ctctccaacc	cctgcagctc	4080
tgagggcagc	ctggactgta	tacagctcac	caatgactac	ctgtgtgttt	gccgtagtgc	4140
ctttactggc	cggcactgtg	aaaccttcgt	cgatgtgtgt	ccccagatgc	cctgcctgaa	4200
tggagggact	tgtgctgtgg	ccagtaacat	gcctgatggt	ttcatttgcc	gttgtccccc	4260
gggattttcc	ggggcaaggt	gccagagcag	ctgtggacaa	gtgaaatgta	ggaaggggga	4320
gcagtgtgtg	cacaccgcct	ctggaccccg	ctgcttctgc	cccagtcccc	gggactgcga	4380
gtcaggctgt	gccagtagcc	cctgccagca	cgggggcagc	tgccaccctc	agcgccagcc	4440
tccttattac	tcctgccagt	gtgccccacc	attctcgggt	agccgctgtg	aactctacac	4500
ggcacccccc	agcacccctc	ctgccacctg	tctgagccag	tattgtgccg	acaaagctcg	4560
ggatggcgtc	tgtgatgagg	cctgcaacag	ccatgcctgc	cagtgggatg	ggggtgactg	4620
ttctctcacc	atggagaacc	cctgggccaa	ctgctcctcc	ccacttccct	gctgggatta	4680
tatcaacaac	cagtgtgatg	agctgtgcaa	cacggtcgag	tgcctgtttg	acaactttga	4740
atgccagggg	aacagcaaga	catgcaagta	tgacaaatac	tgtgcagacc	acttcaaaga	4800
caaccactgt	gaccaggggt	gcaacagtga	ggagtgtggt	tgggatgggc	tggactgtgc	4860
tgctgaccaa	cctgagaacc	tggcagaagg	taccctggtt	attgtggtat	tgatgccacc	4920
tgaacaactg	ctccaggatg	ctcgcagctt	cttgcgggca	ctgggtaccc	tgctccacac	4980
caacctgcgc	attaagcggg	actcccaggg	ggaactcatg	gtgtacccct	attatggtga	5040
gaagtcagct	gctatgaaga	aacagaggat	gacacgcaga	tcccttcctg	gtgaacaaga	5100
acaggaggtg	gctggctcta	aagtctttct	ggaaattgac	aaccgccagt	gtgttcaaga	5160
ctcagaccac	tgcttcaaga	acacggatgc	agcagcagct	ctcctggcct	ctcacgccat	5220
acaggggacc	ctgtcatacc	ctcttgtgtc	tgtcgtcagt	gaatccctga	ctccagaacg	5280
cactcagctc	ctctatctcc	ttgctgttgc	tgttgtcatc	attctgttta	ttattctgct	5340
gggggtaatc	atggcaaaac	gaaagcgtaa	gcatggctct	ctctggctgc	ctgaaggttt	5400

cactcttcgc	cgagatgcaa	gcaatcacaa	39467A.txt.gcgtcgtgag		aggatgctgt	5460
ggggctgaaa	aatctctcag	tgcaagtctc	agaagctaac	ctaattggta	ctggaacaag	5520
tgaacactgg	gtcgatgatg	aagggcccca	gccaaagaaa	gtaaaggctg	aagatgaggc	5580
cttactctca	gaagaagatg	accccattga	tcgacggcca	tggacacagc	agcaccttga	5640
agctgcagac	atccgtagga	caccatcgct	ggctctcacc	cctcctcagg	cagagcagga	5700
ggtggatgtg	ttagatgtga	atgtccgtgg	cccagatggc	tgcaccccat	tgatgttggc	5760
ttctctccga	ggaggcagct	cagatttgag	tgatgaagat	gaagatgcag	aggactcttc	5820
tgctaacatc	atcacagact	tggtctacca	gggtgccagc	ctccaggccc	agacagaccg	5880
gactggtgag	atggccctgc	accttgcagc	ccgctactca	cgggctgatg	ctgccaagcg	5940
tctcctggat	gcaggtgcag	atgccaatgc	ccaggacaac	atgggccgct	gtccactcca	6000
tgctgcagtg	gcagctgatg	cccaaggtgt	cttccagatt	ctgattcgca	accgagtaac	6060
tgatctagat	gccaggatga	atgatggtac	tacacccctg	atcctggctg	cccgcctggc	6120
tgtggaggga	atggtggcag	aactgatcaa	ctgccaagcg	gatgtgaatg	cagtggatga	6180
ccatggaaaa	tctgctcttc	actgggcagc	tgctgtcaat	aatgtggagg	caactctttt	6240
gttgttgaaa	aatggggcca	accgagacat	gcaggacaac	aaggaagaga	cacctctgtt	6300
tcttgctgcc	cgggagggga	gctatgaagc	agccaagatc	ctgttagacc	attttgccaa	6360
tcgagacatc	acagaccata	tggatcgtct	tccccgggat	gtggctcggg	atcgcatgca	6420
ccatgacatt	gtgcgccttc	tggatgaata	caatgtgacc	ccaagccctc	caggcaccgt	6480
gttgacttct	gctctctcac	ctgtcatctg	tgggcccaac	agatctttcc	tcagcctgaa	6540
gcacacccca	atgggcaaga	agtctagacg	gcccagtgcc	aagagtacca	tgcctactag	6600
cctccctaac	cttgccaagg	aggcaaagga	tgccaagggt	agtaggagga	agaagtctct	6660
gagtgagaag	gtccaactgt	ctgagagttc	agtaacttta	tcccctgttg	attccctaga	6720
atctcctcac	acgtatgttt	ccgacaccac	atcctctcca	atgattacat	cccctgggat	6780
cttacaggcc	tcacccaacc	ctatgttggc	cactgccgcc	cctcctgccc	cagtccatgc	6840
ccagcatgca	ctatctttt	ctaaccttca	tgaaatgcag	cctttggcac	atggggccag	6900
cactgtgctt	ccctcagtga	gccagttgct	atcccaccac	cacattgtgt	ctccaggcag	6960
tggcagtgct	ggaagcttga	gtaggctcca	tccagtccca	gtcccagcag	attggatgaa	7020
ccgcatggag	gtgaatgaga	cccagtacaa	tgagatgttt	ggtatggtcc	tggctccagc	7080
tgagggcacc	catcctggca	tagctcccca	gagcaggcca	cctgaaggga	agcacataac	7140
cacccctcgg	gagcccttgc	ccccattgt	gactttccag	ctcatcccta	aaggcagtat	7200
tgcccaacca	gcgggggctc	cccagcctca	gtccacctgc	cctccagctg	ttgcgggccc	7260
cctgcccacc	atgtaccaga	ttccagaaat	ggcccgtttg	cccagtgtgg	ctttccccac	7320
tgccatgatg	ccccagcagg	acgggcaggt	agctcagacc	attctcccag	cctatcatcc	7380
tttcccagcc	tctgtgggca	agtaccccac	acccccttca	cagcacagtt	atgcttcctc	7440

aaatgctgct	gagcgaacac	ccagtcacag	39467A.txt tggtcacctc		atccctacct	7500
gacaccatcc	ccagagtctc	ctgaccagtg	gtcaagttca	tcaccccact	ctgcttctga	7560
ctggtcagat	gtgaccacca	gccctacccc	tgggggtgct	ggaggaggtc	agcggggacc	7620
tgggacacac	atgtctgagc	caccacacaa	caacatgcag	gtttatgcgt	gagagagtcc	7680
acctccagtg	tagagacata	actgactttt	gtaaatgctg	ctgaggaaca	aatgaaggtc	7740
atccgggaga	gaaatgaaga	aatctctgga	gccagcttct	agaggtagga	aagagaagat	7800
gttcttattc	agataatgca	agagaagcaa	ttcgtcagtt	tcactgggta	tctgcaaggc	7860
ttattgatta	ttctaatcta	ataagacaag	tttgtggaaa	tgcaagatga	atacaagcct	7920
tgggtccatg	tttactctct	tctatttgga	gaataagatg	gatgcttatt	gaagcccaga	7980
cattcttgca	gcttggactg	cattttaagc	cctgcaggct	tctgccatat	ccatgagaag	8040
attctacact	agcgtcctgt	tgggaattat	gccctggaat	tctgcctgaa	ttgacctacg	8100
catctcctcc	tccttggaca	ttcttttgtc	ttcatttggt	gcttttggtt	ttgcacctct	8160
ccgtgattgt	agccctacca	gcatgttata	gggcaagacc	tttgtgcttt	tgatcattct	8220
ggcccatgaa	agcaactttg	gtctcctttc	ccctcctgtc	ttcccggtat	cccttggagt	8280
ctcacaaggt	ttactttggt	atggttctca	gcacaaacct	ttcaagtatg	ttgtttcttt	8340
ggaaaatgga	catactgtat	tgtgttctcc	tgcatatatc	attcctggag	agagaagggg	8400
agaagaatac	ttttcttcaa	caaattttgg	gggcaggaga	tcccttcaag	aggctgcacc	8460
ttaatttttc	ttgtctgtgt	gcaggtcttc	atataaactt	taccaggaag	aagggtgtga	8520
gtttgttgtt	tttctgtgta	tgggcctggt	cagtgtaaag	ttttatcctt	gatagtctag	8580
ttactatgac	cctccccact	tttttaaaac	cagaaaaagg	tttggaatgt	tggaatgacc	8640
aagagacaag	ttaactcgtg	caagagccag	ttacccaccc	acaggtcccc	ctacttcctg	8700
ccaagcattc	cattgactgc	ctgtatggaa	cacatttgtc	ccagatctga	gcattctagg	8760
cctgtttcac	tcactcaccc	agcatatgaa	actagtctta	actgttgagc	ctttcctttc	8820
atatccacag	aagacactgt	ctcaaatgtt	gtacccttgc	catttaggac	tgaactttcc	8880
ttagcccaag	ggacccagtg	acagttgtct	tccgtttgtc	agatgatcag	tctctactga	8940
ttatcttgct	gcttaaaggc	ctgctcacca	atctttcttt	cacaccgtgt	ggtccgtgtt	9000
actggtatac	ccagtatgtt	ctcactgaag	acatggactt	tatatgttca	agtgcaggaa	9060
ttggaaagtt	ggacttgttt	tctatgatcc	aaaacagccc	tataagaagg	ttggaaaagg	9120
aggaactata	tagcagcctt	tgctattttc	tgctaccatt	tcttttcctc	tgaagcggcc	9180
atgacattcc	ctttggcaac	taacgtagaa	actcaacaga	acattttcct	ttcctagagt	9240
caccttttag	atgataatgg	acaactatag	acttgctcat	tgttcagact	gattgcccct	9300
cacctgaatc	cactctctgt	attcatgctc	ttggcaattt	ctttgacttt	cttttaaggg	9360
cagaagcatt	ttagttaatt	gtagataaag	aatagttttc	ttcctcttct	ccttgggcca	94 20
gttaataatt	ggtccatggc	tacactgcaa	cttccgtcca	gtgctgtgat	gcccatgaca	9480

cctacaaaat	aagttctgcc	tgggcatttt	39467A.txt		tcccgactct	9540
		tcattccttc				9600
						9660
		ggtggcccca				9720
		cagtcctatc				
		attaagtttg				9780
		tcatagtgtg				9840
_		ttattcacag				9900
		cctttctgcc				9960
cagctactga	tccagccact	ggatattta	tatcctccct	tttccttaag	cacaatgtca	10020
gaccaaattg	cttgtttctt	tttcttggac	tactttaatt	tggatccttt	gggtttggag	10080
aaagggaatg	tgaaagctgt	cattacagac	aacaggtttc	agtgatgagg	aggacaacac	10140
tgcctttcaa	actttttact	gatctcttag	attttaagaa	ctcttgaatt	gtgtggtatc	10200
taataaaagg	gaaggtaaga	tggataatca	ctttctcatt	tgggttctga	attggagact	10260
cagtttttat	gagacacatc	ttttatgcca	tgtatagatc	ctcccctgct	atttttggtt	10320
tattttatt	gttataaatg	ctttcttct	ttgactcctc	ttctgcctgc	ctttggggat	10380
aggtttttt	gtttgtttat	ttgcttcctc	tgttttgttt	taagcatcat	tttcttatgt	10440
gaggtgggga	agggaaaggt	atgagggaaa	gagagtctga	gaattaaaat	attttagtat	10500
aagcaattgg	ctgtgatgct	caaatccatt	gcatcctctt	attgaatttg	ccaatttgta	10560
atttttgcat	aataaagaac	caaaggtgta	atgttttgtt	gagaggtggt	ttagggattt	10620
tggccctaac	caatacattg	aatgtatgat	gactatttgg	gaggacacat	ttatgtaccc	10680
agaggccccc	actaataagt	ggtactatgg	ttacttcctt	gtgtacattt	ctcttaaaag	10740
tgatattata	tctgtttgta	tgagaaaccc	agtaaccaat	aaaatgaccg	catattcctg	10800
actaaacgta	gtaaggaaaa	tgcacacttt	gtttttactt	ttccgtttca	ttctaaaggt	10860
agttaagatg	aaatttatat	gaaagcattt	ttatcacaaa	ataaaaaagg	tttgccaagc	10920
		attttccaat				10980
		gagagcaaat				11040
		cttcctttaa				11100
_		acatcacaaa				11160
		gctcagggac				11220
		aactgggata				11280
		tccttaagtg				11340
_		taaatttgtt				11400
						11433
ayıcayıyay	acacciyade	atgaaaaaaa	uau			

39467A.txt.txt

<211> 2471

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Notch-2

<400> 17

Met Pro Ala Leu Arg Pro Ala Leu Leu Trp Ala Leu Leu Ala Leu Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Cys Cys Ala Ala Pro Ala His Ala Leu Gln Cys Arg Asp Gly Tyr 20 25 30

Glu Pro Cys Val Asn Glu Gly Met Cys Val Thr Tyr His Asn Gly Thr 35 40 45

Gly Tyr Cys Lys Cys Pro Glu Gly Phe Leu Gly Glu Tyr Cys Gln His 50 55 60

Arg Asp Pro Cys Glu Lys Asn Arg Cys Gln Asn Gly Gly Thr Cys Val 75 80

Ala Gln Ala Met Leu Gly Lys Ala Thr Cys Arg Cys Ala Ser Gly Phe 85 90 95

Thr Gly Glu Asp Cys Gln Tyr Ser Thr Ser His Pro Cys Phe Val Ser 100 105 110

Arg Pro Cys Leu Asn Gly Gly Thr Cys His Met Leu Ser Arg Asp Thr 115 120 125

Tyr Glu Cys Thr Cys Gln Val Gly Phe Thr Gly Lys Glu Cys Gln Trp 130 135 140

Thr Asp Ala Cys Leu Ser His Pro Cys Ala Asn Gly Ser Thr Cys Thr 145 150 150 160

Thr Val Ala Asn Gln Phe Ser Cys Lys Cys Leu Thr Gly Phe Thr Gly 165 170 175

Gln Lys Cys Glu Thr Asp Val Asn Glu Cys Asp Ile Pro Gly His Cys 180 185 190

Gln His Gly Gly Thr Cys Leu Asn Leu Pro Gly Ser Tyr Gln Cys Gln 195 200 205

Cys Pro Gln Gly Phe Thr Gly Gln Tyr Cys Asp Ser Leu Tyr Val Pro 210 220

Cys Ala Pro Ser Pro Cys Val Asn Gly Gly Thr Cys Arg Gln Thr Gly

PCT/EP2004/008819

225 230 39467A.txt.txt 240

Asp Phe Thr Phe Glu Cys Asn Cys Leu Pro Gly Phe Glu Gly Ser Thr 245 250 255

Cys Glu Arg Asn Ile Asp Asp Cys Pro Asn His Arg Cys Gln Asn Gly 260 265 270

Gly Val Cys Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro 275 280 285

Gln Trp Thr Gly Gln Phe Cys Thr Glu Asp Val Asp Glu Cys Leu Leu 290 295 300

Gln Pro Asn Ala Cys Gln Asn Gly Gly Thr Cys Ala Asn Arg Asn Gly 305 310 315 320

Gly Tyr Gly Cys Val Cys Val Asn Gly Trp Ser Gly Asp Asp Cys Ser 325 330 335

Glu Asn Ile Asp Asp Cys Ala Phe Ala Ser Cys Thr Pro Gly Ser Thr 340 345 350

Cys Ile Asp Arg Val Ala Ser Phe Ser Cys Met Cys Pro Glu Gly Lys 355 360 365

Ala Gly Leu Leu Cys His Leu Asp Asp Ala Cys Ile Ser Asn Pro Cys 370 380

His Lys Gly Ala Leu Cys Asp Thr Asn Pro Leu Asn Gly Gln Tyr Ile 385 390 395 400

Cys Thr Cys Pro Gln Gly Tyr Lys Gly Ala Asp Cys Thr Glu Asp Val 405 410 415

Asp Glu Cys Ala Met Ala Asn Ser Asn Pro Cys Glu His Ala Gly Lys 420 425 430

Cys Val Asn Thr Asp Gly Ala Phe His Cys Glu Cys Leu Lys Gly Tyr 435 440 445

Ala Gly Pro Arg Cys Glu Met Asp Ile Asn Glu Cys His Ser Asp Pro 450 460

Cys Gln Asn Asp Ala Thr Cys Leu Asp Lys Ile Gly Gly Phe Thr Cys 465 470 475 480

Leu Cys Met Pro Gly Phe Lys Gly Val His Cys Glu Leu Glu Ile Asn 485 490 495

Glu Cys Gln Ser Asn Pro Cys Val Asn Asn Gly Gln Cys Val Asp Lys

500

39467A.txt.txt 505

510

Val Asn Arg Phe Gln Cys Leu Cys Pro Pro Gly Phe Thr Gly Pro Val 515 520 525 Cys Gln Ile Asp Ile Asp Asp Cys Ser Ser Thr Pro Cys Leu Asn Gly 530 540 Ala Lys Cys Ile Asp His Pro Asn Gly Tyr Glu Cys Gln Cys Ala Thr 545 550 555 560 Gly Phe Thr Gly Val Leu Cys Glu Glu Asn Ile Asp Asn Cys Asp Pro 565 570 575 Asp Pro Cys His His Gly Gln Cys Gln Asp Gly Ile Asp Ser Tyr Thr 580 585 590 Cys Ile Cys Asn Pro Gly Tyr Met Gly Ala Ile Cys Ser Asp Gln Ile 595 600 605 Asp Glu Cys Tyr Ser Ser Pro Cys Leu Asn Asp Gly Arg Cys Ile Asp 610 615 Leu Val Asn Gly Tyr Gln Cys Asn Cys Gln Pro Gly Thr Ser Gly Val 625 635 640 Asn Cys Glu Ile Asn Phe Asp Asp Cys Ala Ser Asn Pro Cys Ile His 645 650 655 Gly Ile Cys Met Asp Gly Ile Asn Arg Tyr Ser Cys Val Cys Ser Pro 660 665 670 Gly Phe Thr Gly Gln Arg Cys Asn Ile Asp Ile Asp Glu Cys Ala Ser 675 680 685 Asn Pro Cys Arg Lys Gly Ala Thr Cys Ile Asn Gly Val Asn Gly Phe 690 695 700 Arg Cys Ile Cys Pro Glu Gly Pro His His Pro Ser Cys Tyr Ser Gln 705 710 715 720 Val Asn Glu Cys Leu Ser Asn Pro Cys Ile His Gly Asn Cys Thr Gly 725 730 735 Gly Leu Ser Gly Tyr Lys Cys Leu Cys Asp Ala Gly Trp Val Gly Ile 740 745 750

Asn Cys Glu Val Asp Lys Asn Glu Cys Leu Ser Asn Pro Cys Gln Asn 755 760 765

Gly Gly Thr Cys Asp Asn Leu Val Asn Gly Tyr Arg Cys Thr Cys Lys

63/166

PCT/EP2004/008819

770

39467A.txt.txt 780

Lys Gly Phe Lys Gly Tyr Asn Cys Gln Val Asn Ile Asp Glu Cys Ala 785 790 795 800

Ser Asn Pro Cys Leu Asn Gln Gly Thr Cys Phe Asp Asp Ile Ser Gly 805 810 815

Tyr Thr Cys His Cys Val Leu Pro Tyr Thr Gly Lys Asn Cys Gln Thr 820 825 830

Val Leu Ala Pro Cys Ser Pro Asn Pro Cys Glu Asn Ala Ala Val Cys 835 840 845

Lys Glu Ser Pro Asn Phe Glu Ser Tyr Thr Cys Leu Cys Ala Pro Gly 850 855 860

Trp Gln Gly Gln Arg Cys Thr Ile Asp Ile Asp Glu Cys Ile Ser Lys 865 870 880

Pro Cys Met Asn His Gly Leu Cys His Asn Thr Gln Gly Ser Tyr Met 885 890 895

Cys Glu Cys Pro Pro Gly Phe Ser Gly Met Asp Cys Glu Glu Asp Ile 900 905 910

Asp Asp Cys Leu Ala Asn Pro Cys Gln Asn Gly Gly Ser Cys Met Asp 915 920 925

Gly Val Asn Thr Phe Ser Cys Leu Cys Leu Pro Gly Phe Thr Gly Asp 930 935

Lys Cys Gln Thr Asp Met Asn Glu Cys Leu Ser Glu Pro Cys Lys Asn 945 950 955 960

Gly Gly Thr Cys Ser Asp Tyr Val Asn Ser Tyr Thr Cys Lys Cys Gln 965 970 975

Ala Gly Phe Asp Gly Val His Cys Glu Asn Asn Ile Asn Glu Cys Thr 980 985 990

Glu Ser Ser Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser 995 1000 1005

Phe Ser Cys Leu Cys Pro Val Gly Phe Thr Gly Ser Phe Cys Leu 1010 1015 1020

His Glu Ile Asn Glu Cys Ser Ser His Pro Cys Leu Asn Glu Gly 1025 1030 1035

Thr Cys Val Asp Gly Leu Gly Thr Tyr Arg Cys Ser Cys Pro Leu

39467A.txt.txt 1040 1045 1050

Gly Tyr Thr Gly Lys Asn Cys Gln Thr Leu Val Asn Leu Cys Ser 1055 1060 1065

Arg Ser Pro Cys Lys Asn Lys Gly Thr Cys Val Gln Lys Lys Ala 1070 1080

Glu Ser Gln Cys Leu Cys Pro Ser Gly Trp Ala Gly Ala Tyr Cys 1085 1090 1095

Asp Val Pro Asn Val Ser Cys Asp Ile Ala Ala Ser Arg Arg Gly 1100 1110

Val Leu Val Glu His Leu Cys Gln His Ser Gly Val Cys Ile Asn 1115 1120 1125

Ala Gly Asn Thr His Tyr Cys Gln Cys Pro Leu Gly Tyr Thr Gly 1130 1140

Ser Tyr Cys Glu Glu Gln Leu Asp Glu Cys Ala Ser Asn Pro Cys 1145 1150 1155

Gln His Gly Ala Thr Cys Ser Asp Phe Ile Gly Gly Tyr Arg Cys 1160 1165 1170

Glu Cys Val Pro Gly Tyr Gln Gly Val Asn Cys Glu Tyr Glu Val 1175 1180 1185

Asp Glu Cys Gln Asn Gln Pro Cys Gln Asn Gly Gly Thr Cys Ile 1190 1200

Asp Leu Val Asn His Phe Lys Cys Ser Cys Pro Pro Gly Thr Arg 1205 1210 1215

Gly Leu Leu Cys Glu Glu Asn Ile Asp Asp Cys Ala Arg Gly Pro 1220 1230

His Cys Leu Asn Gly Gly Gln Cys Met Asp Arg Ile Gly Gly Tyr 1235 1240 1245

Ser Cys Arg Cys Leu Pro Gly Phe Ala Gly Glu Arg Cys Glu Gly 1250 1260

Asp Ile Asn Glu Cys Leu Ser Asn Pro Cys Ser Ser Glu Gly Ser 1265 1270 1275

Leu Asp Cys Ile Gln Leu Thr Asn Asp Tyr Leu Cys Val Cys Arg 1280 1285 1290

Ser Ala Phe Thr Gly Arg His Cys Glu Thr Phe Val Asp Val Cys

39467A.txt.txt 1295 1300 130!

Pro Gln Met Pro Cys Leu Asn Gly Gly Thr Cys Ala Val Ala Ser 1310 1315 1320

Asn Met Pro Asp Gly Phe Ile Cys Arg Cys Pro Pro Gly Phe Ser 1325 1330 1335

Gly Ala Arg Cys Gln Ser Ser Cys Gly Gln Val Lys Cys Arg Lys 1340 1350

Gly Glu Gln Cys Val His Thr Ala Ser Gly Pro Arg Cys Phe Cys 1355 1360 1365

Pro Ser Pro Arg Asp Cys Glu Ser Gly Cys Ala Ser Ser Pro Cys 1370 1380

Gln His Gly Gly Ser Cys His Pro Gln Arg Gln Pro Pro Tyr Tyr 1385 1390 1395

Ser Cys Gln Cys Ala Pro Pro Phe Ser Gly Ser Arg Cys Glu Leu 1400 1405 1410

Tyr Thr Ala Pro Pro Ser Thr Pro Pro Ala Thr Cys Leu Ser Gln 1415 1420 1425

Tyr Cys Ala Asp Lys Ala Arg Asp Gly Val Cys Asp Glu Ala Cys 1430 1440

Asn Ser His Ala Cys Gln Trp Asp Gly Gly Asp Cys Ser Leu Thr 1445 1450 1455

Met Glu Asn Pro Trp Ala Asn Cys Ser Ser Pro Leu Pro Cys Trp 1460 1465 1470

Asp Tyr Ile Asn Asn Gln Cys Asp Glu Leu Cys Asn Thr Val Glu 1475 1480 1485

Cys Leu Phe Asp Asn Phe Glu Cys Gln Gly Asn Ser Lys Thr Cys 1490 1495 1500

Lys Tyr Asp Lys Tyr Cys Ala Asp His Phe Lys Asp Asn His Cys 1505 1510 1515

Asp Gln Gly Cys Asn Ser Glu Glu Cys Gly Trp Asp Gly Leu Asp 1520 1530

Cys Ala Ala Asp Gln Pro Glu Asn Leu Ala Glu Gly Thr Leu Val 1535 1540 1545

Ile Val Val Leu Met Pro Pro Glu Gln Leu Leu Gln Asp Ala Arg

39467A.txt.txt 1555 1550 Ser Phe Leu Arg Ala Leu Gly Thr Leu Leu His Thr Asn Leu Arg Ile Lys Arg Asp Ser Gln Gly Glu Leu Met Val Tyr Pro Tyr Tyr 1580 1585 Gly Glu Lys Ser Ala Ala Met Lys Lys Gln Arg Met Thr Arg Arg 1595 1600 1605 Ser Leu Pro Gly Glu Gln Glu Gln Glu Val Ala Gly Ser Lys Val 1610 1615 1620 Phe Leu Glu Ile Asp Asn Arg Gln Cys Val Gln Asp Ser Asp His 1625 1630 1635 Cys Phe Lys Asn Thr Asp Ala Ala Ala Leu Leu Ala Ser His 1640 1650 Ala Ile Gln Gly Thr Leu Ser Tyr Pro Leu Val Ser Val Val Ser 1655 1660 1665 Glu Ser Leu Thr Pro Glu Arg Thr Gln Leu Leu Tyr Leu Leu Ala 1670 1680 Val Ala Val Val Ile Ile Leu Phe Ile Ile Leu Leu Gly Val Ile 1685 1690 1695 Met Ala Lys Arg Lys Arg Lys His Gly Ser Leu Trp Leu Pro Glu 1700 1705 1710 Gly Phe Thr Leu Arg Arg Asp Ala Ser Asn His Lys Arg Arg Glu 1715 1720 1725

Pro Val Gly Gln Asp Ala Val Gly Leu Lys Asn Leu Ser Val Gln 1730 1740

Val Ser Glu Ala Asn Leu Ile Gly Thr Gly Thr Ser Glu His Trp 1745 1750 1755

Val Asp Asp Glu Gly Pro Gln Pro Lys Lys Val Lys Ala Glu Asp 1760 1765 1770

Glu Ala Leu Leu Ser Glu Glu Asp Asp Pro Ile Asp Arg Pro 1775 1780 1785 1780

Trp Thr Gln Gln His Leu Glu Ala Ala Asp Ile Arg Arg Thr Pro 1790 1795 1800

Ser Leu Ala Leu Thr Pro Pro Gln Ala Glu Gln Glu Val Asp Val

39467A.txt.txt 1805 1810 1815

Leu Asp Val Asn Val Arg Gly Pro Asp Gly Cys Thr Pro Leu Met 1820 1825 1830

Leu Ala Ser Leu Arg Gly Gly Ser Ser Asp Leu Ser Asp Glu Asp 1835 1840 1845

Glu Asp Ala Glu Asp Ser Ser Ala Asn Ile Ile Thr Asp Leu Val 1850 1855 1860

Tyr Gln Gly Ala Ser Leu Gln Ala Gln Thr Asp Arg Thr Gly Glu 1865 1870 1875

Met Ala Leu His Leu Ala Ala Arg Tyr Ser Arg Ala Asp Ala Ala 1880 1890

Lys Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn Ala Gln Asp Asn 1895 1900 1905

Met Gly Arg Cys Pro Leu His Ala Ala Val Ala Ala Asp Ala Gln 1910 1915 1920

Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Val Thr Asp Leu Asp 1925 1930 1935

Ala Arg Met Asn Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg 1940 1945 1950

Leu Ala Val Glu Gly Met Val Ala Glu Leu Ile Asn Cys Gln Ala 1955 1960 1965

Asp Val Asn Ala Val Asp Asp His Gly Lys Ser Ala Leu His Trp 1970 1975 1980

Ala Ala Val Asn Asn Val Glu Ala Thr Leu Leu Leu Leu Lys 1985 1990 1995

Asn Gly Ala Asn Arg Asp Met Gln Asp Asn Lys Glu Glu Thr Pro

Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Ala Ala Lys Ile 2015 2020 2025

Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp 2030 2035 2040

Arg Leu Pro Arg Asp Val Ala Arg Asp Arg Met His His Asp Ile 2045 2050 2055

Val Arg Leu Leu Asp Glu Tyr Asn Val Thr Pro Ser Pro Pro Gly

PCT/EP2004/008819

٠,	2060					2065	;	3946	7A.t	xt.t	xt 2 0 70			
Thr	∨a1 2075	Leu	Thr	Ser	Ala	Leu 2080	Ser	Pro	٧al	Ile	Cys 2085	Glу	Pro	Asn
Arg	Ser 2090	Phe	Leu	Ser	Leu	Lys 2095	His	Thr	Pro	Met	Gly 2100		Lys	Ser
Arg	Arg 2105	Pro	Ser	Ala	Lys	Ser 2110	⊤hr	Met	Pro	Thr	Ser 2115	Leu	Pro	Asn
Leu	Ala 2120	Lys	G lu	Ala 	Lys	Asp 2125	Ala	Lys	G∃y	Ser	Arg 2130	Arg	Lys	Lys
Ser	Leu 2135	Ser	Glu	Lys	val	G]n 2140	Leu	Ser	Glu	Ser	Ser 2145	۷al	⊤hr	Leu
Ser	Pro 2150	٧a٦	Asp	Ser	Leu	Glu 2155	Ser	Pro	Bir	Thr	Туг 2160	Val	Ser	Asp
Thr	Thr 2165	Ser	Ser	Pro	Met	Ile 2170	Thr	Ser	Pro	Gly	Ile 2175	Leu	Gln	Ala
Ser	Pro 2180	Asn	Pro	Met	Leu	Ala 2185	Thr	Ala	Ala	Pro	Pro 2190	Ala	Pro	val
His	Ala 2195	Gln	His	Ala	Leu	ser 2200	Phe	Ser	Asn	Leu	His 2205	Glu	Met	Gln
Pro	Leu 2210	Ala	His	Gly	Ala	ser 2215	Thr	٧a٦	Leu	Pro	ser 2220	٧a٦	Ser	Gln
Leu	Leu 2225	Ser	His	нis	His	Ile 2230	٧a٦	Ser	Pro	Gly	Ser 2235	G⅂y	Ser	Ala
Gly	Ser 2240	Leu	Ser	Arg	Leu	His 2245	Pro	٧a٦	Pro	val	Pro 2250	Ala	Asp	Тгр
мet	Asn 2255	Arg	мet	Glu	۷a٦	Asn 2260	Glu	Thr	Gln	Tyr	Asn 2265	Glu	Met	Phe
Gly	Met 2270	۷a٦	Leu	Ala	Pro	Ala 2275	Glu	Gly	Thr	ніѕ	Pro 2280	Gly	Ile	Ala
Pro	Gln 2285	Ser	Arg	Pro	Pro	Glu 2290	Gly	Lys	His	Ile	Thr 2295	Thr	Pro	Arg
Glu	Pro 2300	Leu	Pro	Pro	Ile	va1 2305	Thr	Phe	Gln	Leu	Ile 2310	Pro	Lys	Gly
ser	Ile	Αlа	Gln	Pro	Аla	Gly	Αla	Pro	Gln	Pro	Gln	Ser	Thr	Cys

2315	3946 2320	7A.txt.txt 2325	
Pro Pro Ala Val Ala Gly 2330	Pro Leu Pro 2335	Thr Met Tyr Gln 2340	Ile Pro
Glu Met Ala Arg Leu Pro 2345	Ser Val Ala 2350	Phe Pro Thr Ala 2355	Met Met
Pro Gln Gln Asp Gly Gln y 2360	Val Ala Gln 2365	Thr Ile Leu Pro 2370	Ala Tyr
His Pro Phe Pro Ala Ser V	Val Gly Lys 2380	Tyr Pro Thr Pro 2385	Pro Ser
Gln His Ser Tyr Ala Ser s 2390	Ser Asn Ala 2395	Ala Glu Arg Thr 2400	Pro Ser
His Ser Gly His Leu Gln G 2405	Gly Glu His 2410	Pro Tyr Leu Thr 2415	Pro Ser
Pro Glu Ser Pro Asp Gln 7 2420	Trp Ser Ser 2425	Ser Ser Pro His 2430	Ser Ala
Ser Asp Trp Ser Asp Val 7 2435	Thr T hr Ser 2440	Pro Thr Pro Gly 2445	Gly Ala
Gly Gly Gln Arg Gly F 2450	Pro Gly Thr 2455	His Met Ser Glu 2460	Pro Pro
His Asn Asn Met Gln Val 1 2465	Tyr Ala 2470		
<210> 18 <211> 8091 <212> DNA <213> Homo sapiens			
<220> <221> misc_feature <223> Notch-3			
<400> 18 acgcggcgcg gaggctggcc cggg	gacgcgc ccgga	igccca gggaaggagg	gaggaggga 60
gggtcgcggc cggccgccat gggg	gccgggg gcccg	tggcc gccgccgccg	ccgtcgcccg 120
atgtcgccgc caccgccacc gcca	acccgtg cgggd	gctgc ccctgctgct	gctgctagcg 180
gggccggggg ctgcagcccc ccct	ttgcctg gacgg	aagcc cgtgtgcaaa	tggaggtcgt 240
tgcacccagc tgccctcccg ggag	ggctgcc tgcct	gtgcc cgcctggctg	ggtgggtgag 300
cggtgtcagc tggaggaccc ctgt	tcactca ggcco	cctgtg ctggccgtgg	tgtctgccag 360

420

agttcagtgg tggctggcac cgcccgattc tcatgccggt gcccccgtgg cttccgaggc

cctgactgct	ccctgccaga	tccctgcctc	39467A.txt agcagccctt		tgcccgctgc	480
tcagtggggc	ccgatggacg	cttcctctgc	tcctgcccac	ctggctacca	gggccgcagc	540
tgccgaagcg	acgtggatga	gtgccgggtg	ggtgagccct	gccgccatgg	tggcacctgc	600
ctcaacacac	ctggctcctt	ccgctgccag	tgtccagctg	gctacacagg	gccactatgt	660
gagaaccccg	cggtgccctg	tgcgccctca	ccatgccgta	acgggggcac	ctgcaggcag	720
agtggcgacc	tcacttacga	ctgtgcctgt	cttcctgggt	ttgagggtca	gaattgtgaa	780
gtgaacgtgg	acgactgtcc	aggacaccga	tgtctcaatg	gggggacatg	cgtggatggc	840
gtcaacacct	ataactgcca	gtgccctcct	gagtggacag	gccagttctg	cacggaggac	900
gtggatgagt	gtcagctgca	gcccaacgcc	tgccacaatg	ggggtacctg	cttcaacacg	960
ctgggtggcc	acagctgcgt	gtgtgtcaat	ggctggacag	gtgagagctg	cagtcagaat	1020
atcgatgact	gtgccacagc	cgtgtgcttc	catggggcca	cctgccatga	ccgcgtggct	1080
tctttctact	gtgcctgccc	catgggcaag	actggcctcc	tgtgtcacct	ggatgacgcc	1140
tgtgtcagca	acccctgcca	cgaggatgct	atctgtgaca	caaatccggt	gaacggccgg	1200
gccatttgca	cctgtcctcc	cggcttcacg	ggtggggcat	gtgaccagga	tgtggacgag	1260
tgctctatcg	gcgccaaccc	ctgcgagcac	ttgggcaggt	gcgtgaacac	gcagggctcc	1320
ttcctgtgcc	agtgcggtcg	tggctacact	ggacctcgct	gtgagaccga	tgtcaacgag	1380
tgtctgtcgg	ggccctgccg	aaaccaggcc	acgtgcctcg	accgcatagg	ccagttcacc	1440
tgtatctgta	tggcaggctt	cacaggaacc	tattgcgagg	tggacattga	cgagtgtcag	. 1500
agtagcccct	gtgtcaacgg	tggggtctgc	aaggaccgag	tcaatggctt	cagctgcacc	1560
tgcccctcgg	gcttcagcgg	ctccacgtgt	cagctggacg	tggacgaatg	cgccagcacg	1620
ccctgcagga	atggcgccaa	atgcgtggac	cagcccgatg	gctacgagtg	ccgctgtgcc	1680
gagggctttg	agggcacgct	gtgtgatcgc	aacgtggacg	actgctcccc	tgacccatgc	1740
caccatggtc	gctgcgtgga	tggcatcgcc	agcttctcat	gtgcctgtgc	tcctggctac	1800
acgggcacac	gctgcgagag	ccaggtggac	gaatgccgca	gccagccctg	ccgccatggc	1860
ggcaaatgcc	tagacctggt	ggacaagtac	ctctgccgct	gcccttctgg	gaccacaggt	1920
gtgaactgcg	aagtgaacat	tgacgactgt	gccagcaacc	cctgcacctt	tggagtctgc	1980
cgtgatggca	tcaaccgcta	cgactgtgtc	tgccaacctg	gcttcacagg	gcccctttgt	2040
aacgtggaga	tcaatgagtg	tgcttccagc	ccatgcggcg	agggaggttc	ctgtgtggat	2100
ggggaaaatg	gcttccgctg	cctctgcccg	cctggctcct	tgcccccact	ctgcctcccc	2160
ccgagccatc	cctgtgccca	tgagccctgc	agtcacggca	tctgctatga	tgcacctggc	2220
gggttccgct	gtgtgtgtga	gcctggctgg	agtggccccc	gctgcagcca	gagcctggcc	2280
cgagacgcct	gtgagtccca	gccgtgcagg	gccggtggga	catgcagcag	cgatggaatg	2340
ggtttccact	gcacctgccc	gcctggtgtc	cagggacgtc	agtgtgaact	cctctccccc	2400
tgcaccccga	acccctgtga	gcatgggggc	cgctgcgagt	ctgcccctgg	ccagctgcct	2460

			39467A.txt	.txt		
gtctgctcct	gcccccaggg	ctggcaaggc			ggacgagtgt	2520
gctggccccg	caccctgtgg	ccctcatggt	atct gc acca	acctggcagg	gagtttcagc	2580
tgcacctgcc	atggagggta	cactggccct	tcctgtgatc	aggacatcaa	tgactgtgac	2640
cccaacccat	gcctgaacgg	tggctcgtgc	caagacggcg	tgggctcctt	ttcctgctcc	2700
tgcctccctg	gtttcgccgg	cccacgatgc	gcccgcgatg	tggatgagtg	cctgagcaac	2760
ccctgcggcc	cgggcacctg	taccgaccac	gtggcctcct	tcacctgcac	ctgcccgccg	2820
ggctacggag	gcttccactg	cgaacaggac	ctgcccgact	gcagccccag	ctcctgcttc	2880
aatggcggga	cctgtgtgga	cggcgtgaac	tcgttcagct	gcctgtgccg	tcccggctac	2940
acaggagccc	actgccaaca	tgaggcagac	ccctgcctct	cgcggccctg	cctacacggg	3000
ggcgtctgca	gcgccgccca	ccctggcttc	cgctgcacct	gcctcgagag	cttcacgggc	3060
ccgcagtgcc	agacgctggt	ggattggtgc	agccgccagc	cttgtcaaaa	cgggggtcgc	3120
tgcgtccaga	ctggggccta	ttgcctttgt	cccctggat	ggagcggacg	cctctgtgac	3180
atccgaagct	tgccctgcag	ggaggccgca	gcccagatcg	gggtgcggct	ggagcagctg	3240
tgtcaggcgg	gtgggcagtg	tgtggatgaa	gacagctccc	actactgcgt	gtgcccagag	3300
ggccgtactg	gtagccactg	tgagcaggag	gtgg ac cc ct	gcttggccca	gccctgccag	3360
catgggggga	cctgccgtgg	ctatatgggg	ggctacatgt	gtgagtgtct	t cc tggctac	3420
aatggtgata	actgtgagga	cgacgtggac	gagtgtgcct	cccagccctg	ccagcacggg	3480
ggttcatgca	ttgacctcgt	ggcccgctat	ctctgctcct	gtcccccagg	aacgctgggg	3540
gtgctctgcg	agattaatga	ggatgactgc	ggcccaggcc	caccgctgga	ctcagggccc	3600
cggtgcctac	acaatggcac	ctgcgtggac	ctggtgggtg	gtttccgctg	cacctgtccc	3660
ccaggataca	ctggtttgcg	ctgcgaggca	gacatcaatg	agtgtcgctc	aggtgcctgc	3720
cacgcggcac	acacccggga	ctgcctgcag	gacccaggcg	gaggtttccg	ttgcctttgt	3780
catgctggct	tctcaggtcc	tcgctgtcag	actgtcctgt	ctccctgcga	gtcccagcca	3840
tgccagcatg	gaggccagtg	ccgtcctagc	ccgggtcctg	ggggtgggct	gaccttcacc	3900
tgtcactgtg	cccagccgtt	ctggggtccg	cgttgcgagc	gggtggcgcg	ctcctgccgg	3960
gagctgcagt	gcccggtggg	cgtcccatgc	cagcagacgc	cccgcgggcc	gcgctgcgcc	4020
tgccccccag	ggttgtcggg	accctcctgc	cgcagcttcc	cggggtcgcc	gccgggggcc	4080
agcaacgcca	gctgcgcggc	cgcccctgt	ctccacgggg	gctcctgccg	ccccgcgccg	4140
ctcgcgccct	tcttccgctg	cgcttgcgcg	cagggctgga	ccgggccgcg	ctgcgaggcg	4200
cccgccgcgg	cacccgaggt	ctcggaggag	ccgcggtgcc	cgcgcgccgc	ctgccaggcc	4260
aagcgcgggg	accagcgctg	cgaccgcgag	tgcaacagcc	caggctgcgg	ctgggacggc	4320
ggcgactgct	cgctgagcgt	gggcgacccc	tggcggcaat	gcgaggcgct	gcagtgctgg	4380
cgcctcttca	acaacagccg	ctgcgacccc	gcctgcagct	cgcccgcctg	cctctacgac	4440
aacttcgact	gccacgccgg	tggccgcgag	cgcacttgca	acccggtgta	cgagaagtac	4500

tgcgccgacc	actttgccga	cggccgctgc	39467A.txt gaccagggct	.txt gcaacacgga	ggagtgcggc	4560
tgggatgggc	tggattgtgc	cagcgaggtg	ccggccctgc	tggcccgcgg	cgtgctggtg	4620
ctcacagtgc	tgctgccgcc	ggaggagcta	ctgcgttcca	gcgccgactt	tctgcagcgg	4680
ctcagcgcca	tcctgcgcac	ctcgctgcgc	ttccgcctgg	acgcgcacgg	ccaggccatg	4740
gtcttccctt	accaccggcc	tagtcctggc	tccgaacccc	gggcccgtcg	ggagctggcc	4800
cccgaggtga	tcggctcggt	agtaatgctg	gagattgaca	accggctctg	cctgcagtcg	4860
cctgagaatg	atcactgctt	ccccgatgcc	cagagcgccg	ctgactacct	gggagcgttg	4920
tcagcggtgg	agcgcctgga	cttcccgtac	ccactgcggg	acgtgcgggg	ggagccgctg	4980
gagcctccag	aacccagcgt	cccgctgctg	ccactgctag	tggcgggcgc	tgtcttgctg	5040
ctggtcattc	tcgtcctggg	tgtcatggtg	gcccggcgca	agcgcgagca	cagcaccctc	5100
tggttccctg	agggcttctc	actgcacaag	gacgtggcct	ctggtcacaa	gggccggcgg	5160
gaacccgtgg	gccaggacgc	gctgggcatg	aagaacatgg	ccaagggtga	gagcctgatg	5220
ggggaggtgg	ccacagactg	gatggacaca	gagtgcccag	aggccaagcg	gctaaaggta	5280
gaggagccag	gcatgggggc	tgaggaggct	gtggattgcc	gtcagtggac	tcaacaccat	5340
ctggttgctg	ctgacatccg	cgtggcacca	gccatggcac	tgacaccacc	acagggcgac	5400
gcagatgctg	atggcatgga	tgtcaatgtg	cgtggcccag	atggcttcac	cccgctaatg	5460
ctggcttcct	tctgtggggg	ggctctggag	ccaatgccaa	ctgaagagga	tgaggcagat	5520
gacacatcag	ctagcatcat	ctccgacctg	atctgccagg	gggctcagct	tggggcacgg	5580
actgaccgta	ctggcgagac	tgctttgcac	ctggctgccc	gttatgcccg	tgctgatgca	5640
gccaagcggc	tgctggatgc	tggggcagac	accaatgccc	aggaccactc	aggccgcact	5700
cccctgcaca	cagctgtcac	agccgatgcc	cagggtgtct	tccagattct	catccgaaac	5760
cgctctacag	acttggatgc	ccgcatggca	gatggctcaa	cggcactgat	cctggcggcc	5820
cgcctggcag	tagagggcat	ggtggaagag	ctcatcgcca	gccatgctga	tgtcaatgct	5880
gtggatgagc	ttgggaaatc	agccttacac	tgggctgcgg	ctgtgaacaa	cgtggaagcc	5940
actttggccc	tgctcaaaaa	tggagccaat	aaggacatgc	aggatagcaa	ggaggagacc	6000
cccctattcc	tggccgcccg	cgagggcagc	tatgaggctg	ccaagctgct	gttggaccac	6060
tttgccaacc	gtgagatcac	cgaccacctg	gacaggctgc	cgcgggacgt	agcccaggag	6120
agactgcacc	aggacatcgt	gcgcttgctg	gatcaaccca	gtgggccccg	cagcccccc	6180
ggtccccacg	gcctggggcc	tctgctctgt	cctccagggg	ccttcctccc	tggcctcaaa	6240
gcggcacagt	cggggtccaa	gaagagcagg	aggccccccg	ggaaggcggg	gctggggccg	6300
caggggcccc	gggggcgggg	caagaagctg	acgctggcct	gcccgggccc	cctggctgac	6360
agctcggtca	cgctgtcgcc	cgtggactcg	ctggactccc	cgcggccttt	cggtgggccc	6420
cctgcttccc	ctggtggctt	ccccttgag	gggccctatg	cagctgccac	tgccactgca	6480
gtgtctctgg	cacagcttgg	tggcccaggc	cgggcaggtc	tagggcgcca	gccccctgga	6540

```
39467A.txt.txt
                                                                  6600
ggatgtgtac tcagcctggg cctgctgaac cctgtggctg tgcccctcga ttgggcccgg
ctgccccac ctgcccctcc aggcccctcg ttcctgctgc cactggcgcc gggaccccag
                                                                  6660
                                                                  6720
ctgctcaacc cagggacccc cgtctccccg caggagcggc ccccgcctta cctggcagtc
                                                                  6780
ccaggacatq qcgaggagta cccggtggct ggggcacaca gcagcccccc aaaggcccgc
                                                                  6840
ttcctgcggg ttcccagiga gcacccttac ctgaccccat cccccgaatc ccctgagcac
                                                                  6900
tgggccagcc cctcacctcc ctccctctca gactggtccg aatccacgcc tagcccagcc
                                                                  6960
actgccactg gggccatggc caccaccact ggggcactgc ctgcccagcc acttcccttg
                                                                  7020
tctgttccca gctcccttgc tcaggcccag acccagctgg ggccccagcc ggaagttacc
                                                                  7080
cccaagaggc aagtgttggc ctgagacgct cgtcagttct tagatcttgg gggcctaaag
                                                                  7140
agacccccgt cctgcctcct ttctttctct gtctcttcct tccttttagt ctttttcatc
                                                                  7200
7260
tcagcccagg gcttcagtct tcctttattt ataatgggtg ggggctacca cccaccctct
                                                                  7320
cagtcttgtg aagagtctgg gacctccttc ttccccactt ctctcttccc tcattccttt
ctctctcctt ctggcctctc atttccttac actctgacat gaatgaatta ttattatttt
                                                                  7380
tctttttctt tttttttta cattttgtat agaaacaaat tcatttaaac aaacttatta
                                                                  7440
ttattatttt ttacaaaata tatatatgga gatgctccct ccccctgtga accccccagt
                                                                  7500
                                                                  7560
gcccccgtgg ggctgagtct gtgggcccat tcggccaagc tggattctgt gtacctagta
                                                                  7620
cacaggcatg actgggatcc cgtgtaccga gtacacgacc caggtatgta ccaagtaggc
accettgggc gcacccactg gggccagggg tcgggggagt gttgggagcc tcctcccac
                                                                  7680
cccacctccc tcacttcact gcattccaga ttggacatgt tccatagcct tgctggggaa
                                                                  7740
                                                                  7800
gggcccactg ccaactccct ctgccccagc cccacccttg gccatctccc tttgggaact
agggggctgc tggtgggaaa tgggagccag ggcagatgta tgcattcctt tatgtccctg
                                                                  7860
taaatgtggg actacaagaa gaggagctgc ctgagtggta ctttctcttc ctggtaatcc
                                                                  7920
tctggcccag ccttatggca gaatagaggt atttttaggc tatttttgta atatggcttc
                                                                  7980
tggtcaaaat ccctgtgtag ctgaattccc aagccctgca ttgtacagcc ccccactccc
                                                                  8040
                                                                  8091
ctcaccacct aataaaggaa tagttaacac tcaaaaaaaaa aaaaaaaaa a
```

```
<210> 19
<211> 2321
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Notch-3
```

<400>

Met Gly Pro Gly Ala Arg Gly Arg Arg Arg Arg Arg Pro Met Ser 1 10 15

PCT/EP2004/008819

39467A.txt.txt

Pro Pro Pro Pro Pro Pro Val Arg Ala Leu Pro Leu Leu Leu Leu 20 25 30 Leu Ala Gly Pro Gly Ala Ala Ala Pro Pro Cys Leu Asp Gly Ser Pro
40
45 Cys Ala Asn Gly Gly Arg Cys Thr Gln Leu Pro Ser Arg Glu Ala Ala 50 55 Cys Leu Cys Pro Pro Gly Trp Val Gly Glu Arg Cys Gln Leu Glu Asp 65 70 75 80 Pro Cys His Ser Gly Pro Cys Ala Gly Arg Gly Val Cys Gln Ser Ser 90 95 Val Val Ala Gly Thr Ala Arg Phe Ser Cys Arg Cys Pro Arg Gly Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$ Arg Gly Pro Asp Cys Ser Leu Pro Asp Pro Cys Leu Ser Ser Pro Cys 115 120 125 Ala His Gly Ala Arg Cys Ser Val Gly Pro Asp Gly Arg Phe Leu Cys 130 140Ser Cys Pro Pro Gly Tyr Gln Gly Arg Ser Cys Arg Ser Asp Val Asp 145 150 155 160 Glu Cys Arg Val Gly Glu Pro Cys Arg His Gly Gly Thr Cys Leu Asn 165 170 175 Thr Pro Gly Ser Phe Arg Cys Gln Cys Pro Ala Gly Tyr Thr Gly Pro 180 185 Leu Cys Glu Asn Pro Ala Val Pro Cys Ala Pro Ser Pro Cys Arg Asn 195 200 205 Gly Gly Thr Cys Arg Gln Ser Gly Asp Leu Thr Tyr Asp Cys Ala Cys 210 220 Leu Pro Gly Phe Glu Gly Gln Asn Cys Glu Val Asn Val Asp Asp Cys 225 230 235 240 Pro Gly His Arg Cys Leu Asn Gly Gly Thr Cys Val Asp Gly Val Asn 250 255 Thr Tyr Asn Cys Gln Cys Pro Pro Glu Trp Thr Gly Gln Phe Cys Thr 260 265 270 Glu Asp Val Asp Glu Cys Gln Leu Gln Pro Asn Ala Cys His Asn Gly 275 280 285

39467A.txt.txt

Gly Thr Cys Phe Asn Thr Leu Gly Gly His Ser Cys Val Cys Val Asn 290 295 300 Gly Trp Thr Gly Glu Ser Cys Ser Gln Asn Ile Asp Asp Cys Ala Thr 305 310 315Ala val Cys Phe His Gly Ala Thr Cys His Asp Arg Val Ala Ser Phe 325 330 335 Tyr Cys Ala Cys Pro Met Gly Lys Thr Gly Leu Leu Cys His Leu Asp 340 345 Asp Ala Cys Val Ser Asn Pro Cys His Glu Asp Ala Ile Cys Asp Thr 355 360 365 Asn Pro Val Asn Gly Arg Ala Ile Cys Thr Cys Pro Pro Gly Phe Thr 370 380 Gly Gly Ala Cys Asp Gln Asp Val Asp Glu Cys Ser Ile Gly Ala Asn 385 390 395 400 Pro Cys Glu His Leu Gly Arg Cys Val Asn Thr Gln Gly Ser Phe Leu 405 410 415 Cys Gln Cys Gly Arg Gly Tyr Thr Gly Pro Arg Cys Glu Thr Asp Val 420 425 430 Asn Glu Cys Leu Ser Gly Pro Cys Arg Asn Gln Ala Thr Cys Leu Asp 435 440 445 Arg Ile Gly Gln Phe Thr Cys Ile Cys Met Ala Gly Phe Thr Gly Thr 450 455 460 Tyr Cys Glu Val Asp Ile Asp Glu Cys Gln Ser Ser Pro Cys Val Asn 465 470 475 Gly Gly Val Cys Lys Asp Arg Val Asn Gly Phe Ser Cys Thr Cys Pro Ser Gly Phe Ser Gly Ser Thr Cys Gln Leu Asp Val Asp Glu Cys Ala 500 505 510 Ser Thr Pro Cys Arg Asn Gly Ala Lys Cys Val Asp Gln Pro Asp Gly 515 525 Tyr Glu Cys Arg Cys Ala Glu Gly Phe Glu Gly Thr Leu Cys Asp Arg 530 540 Asn Val Asp Asp Cys Ser Pro Asp Pro Cys His His Gly Arg Cys Val 545 550 555 560

PCT/EP2004/008819

39467A.txt.txt

Asp Gly Ile Ala Ser Phe Ser Cys Ala Cys Ala Pro Gly Tyr Thr Gly 565 570 Thr Arg Cys Glu Ser Gln Val Asp Glu Cys Arg Ser Gln Pro Cys Arg 580 585 His Gly Gly Lys Cys Leu Asp Leu Val Asp Lys Tyr Leu Cys Arg Cys 595 600 605 Pro Ser Gly Thr Thr Gly Val Asn Cys Glu Val Asn Ile Asp Asp Cys 610 615 620Ala Ser Asn Pro Cys Thr Phe Gly Val Cys Arg Asp Gly Ile Asn Arg 625 630 635 640 Tyr Asp Cys Val Cys Gln Pro Gly Phe Thr Gly Pro Leu Cys Asn Val 645 655 Glu Ile Asn Glu Cys Ala Ser Ser Pro Cys Gly Glu Gly Gly Ser Cys 660 665 670 Val Asp Gly Glu Asn Gly Phe Arg Cys Leu Cys Pro Pro Gly Ser Leu 675 680 685 Pro Pro Leu Cys Leu Pro Pro Ser His Pro Cys Ala His Glu Pro Cys 690 695 700 Ser His Gly Ile Cys Tyr Asp Ala Pro Gly Gly Phe Arg Cys Val Cys 705 710 715 720 Glu Pro Gly Trp Ser Gly Pro Arg Cys Ser Gln Ser Leu Ala Arg Asp 725 730 735 Ala Cys Glu Ser Gln Pro Cys Arg Ala Gly Gly Thr Cys Ser Ser Asp 740 745 750 Gly Met Gly Phe His Cys Thr Cys Pro Pro Gly Val Gln Gly Arg Gln 755 760 765 Cys Glu Leu Leu Ser Pro Cys Thr Pro Asn Pro Cys Glu His Gly Gly 770 780 Arg Cys Glu Ser Ala Pro Gly Gln Leu Pro Val Cys Ser Cys Pro Gln 785 790 795 800 Gly Trp Gln Gly Pro Arg Cys Gln Gln Asp Val Asp Glu Cys Ala Gly 805 810 815 Pro Ala Pro Cys Gly Pro His Gly Ile Cys Thr Asn Leu Ala Gly Ser 820 825 830

PCT/EP2004/008819

39467A.txt.txt

Phe Ser Cys Thr Cys His Gly Gly Tyr Thr Gly Pro Ser Cys Asp Gln 835 840 845

Asp Ile Asn Asp Cys Asp Pro Asn Pro Cys Leu Asn Gly Gly Ser Cys 850 860

Gln Asp Gly Val Gly Ser Phe Ser Cys Ser Cys Leu Pro Gly Phe Ala 865 870 875 880

Gly Pro Arg Cys Ala Arg Asp Val Asp Glu Cys Leu Ser Asn Pro Cys 885 890 895

Gly Pro Gly Thr Cys Thr Asp His Val Ala Ser Phe Thr Cys 900 910

Pro Pro Gly Tyr Gly Gly Phe His Cys Glu Gln Asp Leu Pro Asp Cys 915 925

Ser Pro Ser Ser Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Val Asn 930 935 940

Ser Phe Ser Cys Leu Cys Arg Pro Gly Tyr Thr Gly Ala His Cys Gln 945 950 955 960

His Glu Ala Asp Pro Cys Leu Ser Arg Pro Cys Leu His Gly Gly Val 965 970 975

Cys Ser Ala Ala His Pro Gly Phe Arg Cys Thr Cys Leu Glu Ser Phe 980 990

Thr Gly Pro Gln Cys Gln Thr Leu Val Asp Trp Cys Ser Arg Gln Pro 995 1000

Cys Gln Asn Gly Gly Arg Cys Val Gln Thr Gly Ala Tyr Cys Leu 1010 1020

Cys Pro Pro Gly Trp Ser Gly Arg Leu Cys Asp Ile Arg Ser Leu 1025 1030 1035

Pro Cys Arg Glu Ala Ala Ala Gln Ile Gly Val Arg Leu Glu Gln 1040 1045 1050

Leu Cys Gln Ala Gly Gly Gln Cys Val Asp Glu Asp Ser Ser His 1055 1060 1065

Tyr Cys Val Cys Pro Glu Gly Arg Thr Gly Ser His Cys Glu Gln 1070 1080

Glu Val Asp Pro Cys Leu Ala Gln Pro Cys Gln His Gly Gly Thr 1085 1090 1095

39467A.txt.txt

Cys Arg Gly Tyr Met Gly Gly	Tyr Met Cy	ys Glu Cys	Leu Pro Gly
1100 110	5	1110	

39467A.txt.txt

		39467A.txt.txt												
Pro	Leu 1355	Ala	Pro	Phe	Phe	Arg 1360	Cys	Ala	Cys	Ala	G]n 1365	GТу	Trp	Thr
GÌY	Pro 1370	Arg	Cys	Glu	Ala	Pro 1375	Ala	Ala	Ala	Pro	Glu 1380	val	Ser	Glu
Glu	Pro 1385	Arg	Cys	Pro	Arg	А]а 1390	Ala	Cys	Gln	Ala	Lys 1395	Arg	G∃y	Asp
G∏n	Arg 1400	Cys	Asp	Arg	Glu	Cys 1405	Asn	Ser	pro	G∃y	Cys 1410	Gly	Trp	Asp
Gly	Gly 1415	Asp	Cys	Ser	Leu	Ser 1420	Val	GΊý	Asp	Pro	Trp 1425	Arg	Gl'n	Cys
Glu	Ala 1430	Leu	Gln	Cys	Trp	Arg 1435	Leu	Phe	Asn	Asn	ser 1440	Arg	Cys	Asp
Pro	Ala 1445	Cys	Ser	Ser	Pro	Ala 1450	Cys	Leu	Tyr	Asp	Asn 1455	Phe	Asp	Cys
His	дlа 1460	Gly	Gly	Arg	G∏u	Arg 1465	Thr	Cys	Asn	Pro	Val 1470	Tyr	Glu	Lys
Tyr	Cys 1475	Ala	Asp	His	Phe	Ala 1480	Asp	Gly	Arg	Cys	Asp 1485	Gln	G∃y	Cys
Asn	⊤hr 1490	Glu	Glu	Cys	Gly	Trp 1495	Asp	Gly	Leu	Asp	Cys 1500	Ala	Ser	Glu
٧a٦	Pro 150 5	Ala	Leu	Leu	Ala	Arg 1510	Gly	۷a٦	Leu	val	Leu 1515	⊤hr	٧a٦	Leu
Leu	Pro 1520		Glu	Glu	Leu	Leu 1525	Arg	Ser	Ser	Ala	Asp 1530	Phe	Leu	Gln
Arg	Leu 1535	Ser	Ala	Ile	Leu	Arg 1540	Thr	Ser	Leu	Arg	Phe 1545	Arg	Leu	Asp
Αla	His 1550		Gln	Ala	Met	Val 1555	Phe	Pro	Tyr	His	Arg 1560	Pro	Ser	Pro
Gly	ser 1565	Glu	Pro	Arg	Αla	Arg 1570	Arg	Glu	Leu	Ala	Pro 1575	Glu	٧a٦	Ile

Gly Ser Val Val Met Leu Glu Ile Asp Asn Arg Leu Cys Leu Gln 1580 1585 1590

Ser Pro Glu Asn Asp His Cys Phe Pro Asp Ala Gln Ser Ala Ala 1595 1600 1605

39467A.txt.txt

Asp	туг 1610	Leu	Gly	Ala	Leu	ser 1615	Ala	Val	Glu	Arg	Leu 1620	Asp	Phe	Pro
⊤yr	Pro 1625	Leu	Arg	Asp	٧a٦	Arg 1630	Gly	Glu	Pro	Leu	G]u 1635	Pro	Pro	Glu
Pro	Ser 1640	Val	Pro	Leu	Leu	Pro 1645	Leu	Leu	٧a٦	Аlа	Gly 1650	Ala	Val	Leu
Leu	Leu 1655	val	ıle	Leu	val	Leu 1660	Gly	val	Met	val	Ala 1665	Arg	Arg	Lys
Arg	Gไน 1670	His	Ser	Thr	Ĺeu 🖰	Trp 1675	Phe	Pro	G lu	Gly	Phe 1680	Ser	Leu [*]	His
Lys	Asp 1685	٧a٦	Δla	Ser	Gly	ніs 1690	Lys	Gly	Arg	Arg	Glu 1695	Pro	Val	G⅂y
Gln	Asp 1700	Ala	Leu	Gly	Met	Lys 1705	Asn	Met	Ala	Lys	Gly 1710	Glu	Ser	Leu
Met	Gly 1715	Glu	Val	Ala	Thr	Asp 1720	Trp	Met	Asp	Thr	Glu 1725	Cys	Pro	G∏u
Ala	Lys 1730	Arg	Leu	Lys	۷al	Glu 1735	Glu	Pro	Gly	Met	Gly 1740	Ala	Glu	Glu
Аlа	Val 1745	Asp	Cys	Arg	Gl n	Trp 17 50	Thr	Gln	His	His	Leu 1755	٧a٦	Ala	Ala
Asp	Ile 1760	Arg	Val	Ala	Pro	Ala 1765	Met	Ala	Leu	Thr	Pro 1770	Pro	Gln	GТу
Asp	Ala 1775	Asp	Аlа	Asp	Gly	меt 1780	Asp	٧a٦	Asn	٧a٦	Arg 1785	Gly	Pro	Asp
Gly	Phe 1790	Thr	Pro	Leu	Met	Leu 1795	Αla	Ser	Phe	Cys	G∃y 1800	Gly	ΑΊa	Leu
G lu	Pro 1805	Met	Pro	Thr	Glu	Glu 1810	Asp	Glu	Ala	Asp	Asp 1815	⊤hr	ser	Ala
Ser	Ile 1820	Ile	Ser	Asp	Leu	Ile 1825	Cys	Gln	Glу	Ala	G]n 1830	Leu	G⅂y	Ala
Arg	⊤hr 1835	Asp	Arg	Thr	G ly	Glu 1840	⊤hr	Ala	Leu	ніs	Leu 1845	Ala	Ala	Arg
Tyr	Ala 1850	Arg	Αla	Asp	Ala	А]а 1855	Lys	Arg	Leu	Leu	Asp 1860	Ala	GТу	Ala

39467A.txt.txt

Asp	⊤hr 1865	Asn	Ala	Gln	Asp	ніs 1870	Ser	Gly	Arg	Thr	Pro 1875	Leu	His	Thr
Ala	Val 1880	Thr	Ala	Asp	Ala	Gln 1885	Gly	val	Phe	Gln	Ile 1890	Leu	Ile	Arg
Asn	Arg 1895	Ser	Thr	Asp	Leu	Asp 1900	Ala	Arg	Met	Ala	Asp 19 0 5	G∃y	Ser	Thr
Ala	Leu 1910	Ile	Leu	Ala	Ala	Arg 1915	Leu	Ala	۷al	Glu	Gly 1920	Met	val	Glu
Glu	Leu 1925	īle	Ala	Sér	ніѕ	Ala 1930	Asp	val	Asn	Ala	val 1935	Asp	Glu	Leu
Gly	Lys 1940	Ser	Ala	Leu	His	Trp 1945	Ala	Ala	Ala	۷al	Asn 1950	Asn	Val	Glu
Ala	Thr 1955	Leu	Ala	Leu	Leu	Lys 1960	Asn	Gly	Ala	Asn	Lys 1965	Asp	Met	Gln
Asp	Ser 1970	Lys	Glu	Glu	⊤hr	Pro 1975	Leu	Phe	Leu	Αla	Ala 1980	Arg	Glu	Glу
Ser	Tyr 1985	Glu	Ala	Ala	Lys	Leu 1990	Leu	Leu	Asp	His	Phe 1995	Ala	Asn	Arg
Glu	11e 2000	Thr	Asp	нis	Leu	Asp 2005	Arg	Leu	Pro	Arg	Asp 2010	٧a٦	Ala	Gln
Glu	Arg 2015	Leu	ніѕ	Gln	Asp	11e 2020	۷al	Arg	Leu	Leu	Asp 2025	Gln	Pro	Ser
Gly	Pro 2030	Arg	Ser	Pro	Pro	Gly 2035	Pro	нis	Gly	Leu	Gly 2040	Pro	Leu	Leu
Cys	Pro 2045	Pro	Gly	Ala	Phe	Leu 2050	Pro	Gly	Leu	Lys	Ala 2055	Ala	Gln	Ser
Gly	ser 2060	Lys	Lys	Ser	Arg	Arg 2 0 65	Pro	Pro	G∃y	Lys	Ala 2070	Gly	Leu	Gly
Pro	Gln 2075	Gly	Pro	Arg	Gly	Arg 2 0 80	Glу	Lys	Lys	Leu	Thr 2085	Leu •	Ala	Cys
Pro	Gly 2 0 90		Leu	Ala	Asp	ser 2095	Ser	۷al	Thr	Leu	Ser 2100	Pro	Val	Asp
Ser	Leu 2105		Ser	Pro	Arg	Pro 2110	Phe	G∃y	Gly	Pro	Pro 2115	Ala	Ser	Pro

39467A.txt.txt

Gly Gly	Phe	Pro	Leu	Glu	Gly	Pro	Tyr	Ala	Ala	Ala	Thr Ala	Thr
2120					2125		_			2130		

Gly Arg Gln Pro Pro Gly Gly Cys Val Leu Ser Leu Gly Leu Leu
$$2150$$
 2160

<220>

<221> misc_feature

<223> Notch-4

<400> 20

<210> 20

<211> 6836

<212> DNA

<213> Homo sapiens

agacgtgagg	cttgcagcag	gccgaggagg	39467A.txt aagaagaggg		cagaggaggt	60
ggctcctgcc	ccagtgagag	ctctgagggt	ccctgcctga	agagggacag	ggactggggc	120
ttggagaagg	ggctgtggaa	tgcagccccc	ttcactgctg	ctgctgctgc	tgctgctgct	180
gctatgtgtc	tcagtggtca	gacccagagg	gctgctgtgt	gggagtttcc	cagaaccctg	240
tgccaatgga	ggcacctgcc	tgagcctgtc	tctgggacaa	gggacctgcc	agtgtgcccc	300
tggcttcctg	ggtgagacgt	gccagtttcc	tgacccctgc	cagaacgccc	agctctgcca	360
aaatggaggc	agctgccaag	ccctgcttcc	cgctccccta	gggctcccca	gctctccctc	420
tccattgaca	cccagcttct	tgtgcacttg	cctccctggc	ttcactggtg	agagatgcca	480
ggccaagctt	gaagaccctt	gtcctccctc	cttctgttcc	aaaaggggcc	gctgccacat	540
ccaggcctcg	ggccgcccac	agtgctcctg	catgcctgga	tggacaggtg	agcagtgcca	600
gcttcgggac	ttctgttcag	ccaacccatg	tgttaatgga	ggggtgtgtc	tggccacgta	660
ccccagatc	cagtgccact	gcccaccggg	cttcgagggc	catgcctgtg	aacgtgatgt	720
caacgagtgc	ttccaggacc	caggaccctg	ccccaaaggc	acctcctgcc	ataacaccct	780,
gggctccttc	cagtgcctct	gccctgtggg	gcaggagggt	ccacgttgtg	agctgcgggc	840
aggaccctgc	cctcctaggg	gctgttcgaa	tgggggcacc	tgccagctga	tgccagagaa	900
agactccacc	tttcacctct	gcctctgtcc	cccaggtttc	ataggcccgg	gctgtgaggt	960
gaatccagac	aactgtgtca	gccaccaatg	tcagaatggg	ggcacttgcc	aggatgggct	1020
ggacacctac	acctgcctct	gcccagaaac	ctggacaggc	tgggactgct	ccgaagatgt	1080
ggatgagtgt	gaggcccagg	gtcccctca	ctgcagaaac	gggggcacct	gccagaactc	1140
tgctggtagc	tttcactgcg	tgtgtgtgag	tggctggggg	ggcacaagct	gtgaggagaa	1200
cctggatgac	tgtattgctg	ccacctgtgc	cccgggatcc	acctgcattg	accgggtggg	1260
ctctttctcc	tgcctctgcc	cacctggacg	cacaggactc	ctgtgccact	tggaagacat	1320
gtgtctgagc	cagccgtgcc	atggggatgc	ccaatgcagc	accaaccccc	tcacaggctc	1380
cacactctgc	ctgtgtcagc	ctggctattc	ggggcccacc	tgccaccagg	acctggacga	1440
gtgtctgatg	gcccagcaag	gcccaagtcc	ctgtgaacat	ggcggttcct	gcctcaacac	1500
tcctggctcc	ttcaactgcc	tctgtccacc	tggctacaca	ggctcccgtt	gtgaggctga	1560
tcacaatgag	tgcctctccc	agccctgcca	cccaggaagc	acctgtctgg	acctacttgc	1620
caccttccac	tgcctctgcc	cgccaggctt	agaagggcag	ctctgtgagg	tggagaccaa	1680
cgagtgtgcc	tcagctccct	gcctgaacca	cgcggattgc	catgacctgc	tcaacggctt	1740
ccagtgcatc	tgcctgcctg	gattctccgg	cacccgatgt	gaggaggata	tcgatgagtg	1800
cagaagctct	ccctgtgcca	atggtgggca	gtgccaggac	cagcctggag	ccttccactg	1860
caagtgtctc	ccaggctttg	aagggccacg	ctgtcaaaca	gaggtggatg	agtgcctgag	1920
tgacccatgt	cccgttggag	ccagctgcct	tgatcttcca	ggagccttct	tttgcctctg	1980
cccctctggt	ttcacaggcc	agctctgtga	ggttcccctg	tgtgctccca	acctgtgcca	2040

gcccaagcag	atatgtaagg	accagaaaga	39467A.txt.caaggccaac		ctgatggaag	2100
ccctggctgt	gccccacctg	aggacaactg	cacctgccac	cacgggcact	gccagagatc	2160
ctcatgtgtg	tgtgacgtgg	gttggacggg	gccagagtgt	gaggcagagc	tagggggctg	2220
catctctgca	ccctgtgccc	atggggggac	ctgctacccc	cagccctctg	gctacaactg	2280
cacctgccct	acaggctaca	caggacccac	ctgtagtgag	gagatgacag	cttgtcactc	2340
agggccatgt	ctcaatggcg	gctcctgcaa	ccctagccct	ggaggctact	actgcacctg	2400
ccctccaagc	cacacagggc	cccagtgcca	aaccagcact	gactactgtg	tgtctgcccc	2460
gtgcttcaat	gggggtacct	gtgtgaacag	gcctggcacc	ttctcctgcc	tctgtgccat	2520
 gggcttccag	ggcccgcgct	gtgagggaaa	gctccgcccc	agctgtgcag	acagcccctg	2580
taggaatagg	gcaacctgcc	aggacagccc	tcagggtccc	cgctgcctct	gccccactgg	2640
ctacaccgga	ggcagctgcc	agactctgat	ggacttatgt	gcccagaagc	cctgcccacg	2700
caattcccac	tgcctccaga	ctgggccctc	cttccactgc	ttgtgcctcc	agggatggac	2760
cgggcctctc	tgcaaccttc	cactgtcctc	ctgccagaag	gctgcactga	gccaaggcat	2820
agacgtctct	tccctttgcc	acaatggagg	cctctgtgtc	gacagcggcc	cctcctattt	2880
ctgccactgc	cccctggat	tccaaggcag	cctgtgccag	gatcacgtga	acccatgtga	2940
gtccaggcct	tgccagaacg	gggccacctg	catggcccag	cccagtgggt	atctctgcca	3000
gtgtgcccca	ggctacgatg	gacagaactg	ctcaaaggaa	ctcgatgctt	gtcagtccca	3060
accctgtcac	aaccatggaa	cctgtactcc	caaacctgga	ggcttccact	gtgcctgccc	3120
tccaggcttt	gtggggctac	gctgtgaggg	agacgtggac	gagtgtctgg	accagccctg	3180
ccaccccaca	ggcactgcag	cctgccactc	tctggccaat	gccttctact	gccagtgtct	3240
gcctggacac	acaggccagt	ggtgtgaggt	ggagatagac	ccctgccaca	gccaaccctg	3300
ctttcatgga	gggacctgtg	aggccacagc	aggatcaccc	ctgggtttca	tctgccactg	3360
ccccaagggt	tttgaaggcc	ccacctgcag	ccacagggcc	ccttcctgcg	gcttccatca	3420
ctgccaccac	ggaggcctgt	gtctgccctc	ccctaagcca	ggcttcccac	cacgctgtgc	3480
ctgcctcagt	ggctatgggg	gtcctgactg	cctgacccca	ccagctccta	aaggctgtgg	3540
ccctccctcc	ccatgcctat	acaatggcag	ctgctcagag	accacgggct	tggggggccc	3600
aggctttcga	tgctcctgcc	ctcacagctc	tccagggccc	cggtgtcaga	aacccggagc	3660
caaggggtgt	gagggcagaa	gtggagatgg	ggcctgcgat	gctggctgca	gtggcccggg	37 20
aggaaactgg	gatggagggg	actgctctct	gggagtccca	gacccctgga	agggctgccc	3780
ctcccactct	cggtgctggc	ttctcttccg	ggacgggcag	tgccacccac	agtgtgactc	3840
tgaagagtgt	ctgtttgatg	gctacgactg	tgagacccct	ccagcctgca	ctccagccta	3900
tgaccagtac	tgccatgatc	acttccacaa	cgggcactgt	gagaaaggct	gcaacactgc	3960
agagtgtggc	tgggatggag	gtgactgcag	gcctgaagat	ggggacccag	agtgggggcc	4020
ctccctggcc	ctgctggtgg	tactgagccc	cccagcccta	gaccagcagc	tgtttgccct	4080

			20467.			
ggcccgggtg	ctgtccctga	ctctgagggt	39467A.txt aggactctgg		atcgtgatgg	4140
cagggacatg	gtgtacccct	atcctggggc	ccgggctgaa	gaaaagctag	gaggaactcg	4200
ggaccccacc	tatcaggaga	gagcagcccc	tcaaacacag	cccctgggca	aggagaccga	4260
ctccctcagt	gctgggtttg	tggtggtcat	gggtgtggat	ttgtcccgct	gtggccctga	4320
ccacccggca	tcccgctgtc	cctgggaccc	tgggcttcta	ctccgcttcc	ttgctgcgat	4380
ggctgcagtg	ggagccctgg	agcccctgct	gcctggacca	ctgctggctg	tccaccctca	4440
tgcagggacc	gcaccccctg	ccaaccagct	tccctggcct	gtgctgtgct	ccccagtggc	4500
cggggtgatt	ctcctggccc	taggggctct	tctcgtcctc	cagctcatcc	ggcgtcgacg	4560
ccgagagcat	ggagctctct	ggctgccccc	tggtttcact	cgacggcctc	ggactcagtc	4620
agctccccac	cgacgccggc	ccccactagg	cgaggacagc	attggtctca	aggcactgaa	4680 ⁻
gccaaaggca	gaagttgatg	aggatggagt	tgtgatgtgc	tcaggccctg	aggagggaga	4740
ggaggtgggc	caggctgaag	aaacaggccc	accctccacg	tgccagctct	ggtctctgag	4800
tggtggctgt	ggggcgctcc	ctcaggcagc	catgctaact	cctccccagg	aatctgagat	486 0
ggaagcccct	gacctggaca	cccgtggacc	tgatggggtg	acacccctga	tgtcagcagt	4920
ttgctgtggg	gaagtacagt	ccgggacctt	ccaaggggca	tggttgggat	gtcctgagcc	4980
ctgggaacct	ctgctggatg	gaggggcctg	tccccaggct	cacaccgtgg	gcactgggga	5040
gacccccctg	cacctggctg	cccgattctc	ccggccaacc	gctgcccgcc	gcctccttga	5100
ggctggagcc	aaccccaacc	agccagaccg	ggcagggcgc	acaccccttc	atgctgctgt	5160
ggctgctgat	gctcgggagg	tctgccagct	tctgctccgt	agcagacaaa	ctgcagtgga	5220
cgctcgcaca	gaggacggga	ccacaccctt	gatgctggct	gccaggctgg	cggtggaaga	5280
cctggttgaa	gaactgattg	cagcccaagc	agacgtgggg	gccagagata	aatgggggaa	5340
aactgcgctg	cactgggctg	ctgccgtgaa	caacgcccga	gccgcccgct	cgcttctcca	5400
ggccggagcc	gataaagatg	cccaggacaa	cagggagcag	acgccgctat	tcctggcggc	5460
gcgggaagga	gcggtggaag	tagcccagct	actgctgggg	ctgggggcag	cccgagagct	5520
gcgggaccag	gctgggctag	cgccggcgga	cgtcgctcac	caacgtaacc	actgggatct	5580
gctgacgctg	ctggaagggg	ctgggccacc	agaggcccgt	cacaaagcca	cgccgggccg	5640
cgaggctggg	cccttcccgc	gcgcacggac	ggtgtcagta	agcgtgcccc	cgcatggggg	5700
cggggctctg	ccgcgctgcc	ggacgctgtc	agccggagca	ggccctcgtg	ggggcggagc	5760
ttgtctgcag	gctcggactt	ggtccgtaga	cttggctgcg	cgggggggcg	gggcctattc	5820
tcattgccgg	agcctctcgg	gagtaggagc	aggaggaggc	ccgacccctc	gcggccgtag	5880
gttttctgca	ggcatgcgcg	ggcctcggcc	caaccctgcg	ataatgcgag	gaagatacgg	5940
agtggctgcc	gggcgcggag	gcagggtctc	aacggatgac	tggccctgtg	attgggtggc	6000
cctgggagct	tgcggttctg	cctccaacat	tccgatcccg	cctccttgcc	ttactccgtc	6060
cccggagcgg	ggatcacctc	aacttgactg	tggtccccca	gccctccaag	aaatgcccat	6120

			39467A.txt	tyt		
aaaccaagga	ggagagggta	aaaaatagaa			ttccaaaaat	6180
gattacccat	taaaaggcag	gctggaaggc	cttcctggtt	ttaagatgga	tcccccaaaa	6240
tgaagggttg	tgagtttagt	ttctctccta	aaatgaatgt	atgcccacca	gagcagacat	6300
cttccacgtg	gagaagctgc	agctctggaa	agagggttta	agatgctagg	atgaggcagg	6360
cccagtcctc	ctccagaaaa	taagacaggc	cacaggaggg	cagagtggag	tggaaatacc	6420
cctaagttgg	aaccaagaat	tgcaggcata	tgggatgtaa	gatgttcttt	cctatatatg	6480
gtttccaaag	ggtgccccta	tgatccattg	tccccactgc	ccacaaatgg	ctgacaaata	6540
tttattgggc	acctactatg	tgccaggcac	tgtgtaggtg	ctgaaaagtg	gccaagggcc	6600
acccccgctg	atgactcctt	gcattccctc	ccctcacaac	aaagaactcc	actgtgggga	6660
tgaagcgctt	cttctagcca	ctgctatcgc	tatttaagaa	ccctaaatct	gtcacccata	6720
ataaagctga	tttgaagtgt	taaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	6780
aaaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaa	6836
231As 21						

<210> 21 <211> 2002

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Notch-4

<400> 21

Val Ser Val Val Arg Pro Arg Gly Leu Leu Cys Gly Ser Phe Pro Glu 20 25 30

Pro Cys Ala Asn Gly Gly Thr Cys Leu Ser Leu Gly Gln Gly 35 40 45

Thr Cys Gln Cys Ala Pro Gly Phe Leu Gly Glu Thr Cys Gln Phe Pro 50 60

Asp Pro Cys Gln Asn Ala Gln Leu Cys Gln Asn Gly Gly Ser Cys Gln 65 70 75

Ala Leu Leu Pro Ala Pro Leu Gly Leu Pro Ser Ser Pro Ser Pro Leu 85 90 95

Thr Pro Ser Phe Leu Cys Thr Cys Leu Pro Gly Phe Thr Gly Glu Arg

Cys Gln Ala Lys Leu Glu Asp Pro Cys Pro Pro Ser Phe Cys Ser Lys 115 120 125 WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Arg Gly Arg Cys His Ile Gln Ala Ser Gly Arg Pro Gln Cys Ser Cys 130 140 Met Pro Gly Trp Thr Gly Glu Gln Cys Gln Leu Arg Asp Phe Cys Ser 145 150 155 160 Ala Asn Pro Cys Val Asn Gly Gly Val Cys Leu Ala Thr Tyr Pro Gln
165 170 175 Ile Gln Cys His Cys Pro Pro Gly Phe Glu Gly His Ala Cys Glu Arg 180 185 190 Asp Val Asm Gluncys Phe Gln Asp Pro Gly Promcys PromLys Gly Thr 195 200 205 Ser Cys His Asn Thr Leu Gly Ser Phe Gln Cys Leu Cys Pro Val Gly 210 215 220 Gln Glu Gly Pro Arg Cys Glu Leu Arg Ala Gly Pro Cys Pro Pro Arg 225 230 235 Gly Cys Ser Asn Gly Gly Thr Cys Gln Leu Met Pro Glu Lys Asp Ser 245 250 255 Thr Phe His Leu Cys Leu Cys Pro Pro Gly Phe Ile Gly Pro Gly Cys 260 265 270 Glu Val Asn Pro Asp Asn Cys Val Ser His Gln Cys Gln Asn Gly Gly 275 280 285 Thr Cys Gln Asp Gly Leu Asp Thr Tyr Thr Cys Leu Cys Pro Glu Thr 290 295 300 Trp Thr Gly Trp Asp Cys Ser Glu Asp Val Asp Glu Cys Glu Ala Gln 305 310 320 Gly Pro Pro His Cys Arg Asn Gly Gly Thr Cys Gln Asn Ser Ala Gly 325 330 335 Ser Phe His Cys Val Cys Val Ser Gly Trp Gly Gly Thr Ser Cys Glu 340 345 350 Glu Asn Leu Asp Asp Cys Ile Ala Ala Thr Cys Ala Pro Gly Ser Thr 355 360 365 Cys Ile Asp Arg Val Gly Ser Phe Ser Cys Leu Cys Pro Pro Gly Arg 370 380 Thr Gly Leu Leu Cys His Leu Glu Asp Met Cys Leu Ser Gln Pro Cys 385 390 395

39467A.txt.txt

His Gly Asp Ala Gln Cys Ser Thr Asn Pro Leu Thr Gly Ser Thr Leu 405 410 415Cys Leu Cys Gln Pro Gly Tyr Ser Gly Pro Thr Cys His Gln Asp Leu 420 425 430 Asp Glu Cys Leu Met Ala Gln Gln Gly Pro Ser Pro Cys Glu His Gly 435 440 Gly Ser Cys Leu Asn Thr Pro Gly Ser Phe Asn Cys Leu Cys Pro Pro 450 455 460 Gly Tyr Thr Gly Ser Arg Cys Glu Ala Asp His Asn Glu Cys Leu Ser 465 470 480 Gln Pro Cys His Pro Gly Ser Thr Cys Leu Asp Leu Leu Ala Thr Phe 485 490 495 His Cys Leu Cys Pro Pro Gly Leu Glu Gly Gln Leu Cys Glu Val Glu 500 505 510 Thr Asn Glu Cys Ala Ser Ala Pro Cys Leu Asn His Ala Asp Cys His 515 520 525 Asp Leu Leu Asn Gly Phe Gln Cys Ile Cys Leu Pro Gly Phe Ser Gly 530 540 Thr Arg Cys Glu Glu Asp Ile Asp Glu Cys Arg Ser Ser Pro Cys Ala 545 550 560 Asn Gly Gly Gln Cys Gln Asp Gln Pro Gly Ala Phe His Cys Lys Cys 575 Leu Pro Gly Phe Glu Gly Pro Arg Cys Gln Thr Glu Val Asp Glu Cys 580 585 590 Leu Ser Asp Pro Cys Pro Val Gly Ala Ser Cys Leu Asp Leu Pro Gly 595 600 605 Ala Phe Phe Cys Leu Cys Pro Ser Gly Phe Thr Gly Gln Leu Cys Glu 610 615 620 Val Pro Leu Cys Ala Pro Asn Leu Cys Gln Pro Lys Gln Ile Cys Lys 625 635 640 Asp Gln Lys Asp Lys Ala Asn Cys Leu Cys Pro Asp Gly Ser Pro Gly 655 Cys Ala Pro Pro Glu Asp Asn Cys Thr Cys His His Gly His Cys Gln 660 665 670

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Arg Ser Ser Cys Val Cys Asp Val Gly Trp Thr Gly Pro Glu Cys Glu 675 680 685 Ala Glu Leu Gly Gly Cys Ile Ser Ala Pro Cys Ala His Gly Gly Thr 690 695 700 Cys Tyr Pro Gln Pro Ser Gly Tyr Asn Cys Thr Cys Pro Thr Gly Tyr 705 715 720 Thr Gly Pro Thr Cys Ser Glu Glu Met Thr Ala Cys His Ser Gly Pro
725 730 735 Cys Leu Asn Gly Gly Ser Cys Asn Pro Ser Pro Gly Gly Tyr Tyr Cys 740 745 750 Thr Cys Pro Pro Ser His Thr Gly Pro Gln Cys Gln Thr Ser Thr Asp 755 760 765 Tyr Cys Val Ser Ala Pro Cys Phe Asn Gly Gly Thr Cys Val Asn Arg 770 780 Pro Gly Thr Phe Ser Cys Leu Cys Ala Met Gly Phe Gln Gly Pro Arg 785 790 795 Cys Glu Gly Lys Leu Arg Pro Ser Cys Ala Asp Ser Pro Cys Arg Asn 810 815 Arg Ala Thr Cys Gln Asp Ser Pro Gln Gly Pro Arg Cys Leu Cys Pro 820 825 830 Thr Gly Tyr Thr Gly Gly Ser Cys Gln Thr Leu Met Asp Leu Cys Ala 835 840 845 Gln Lys Pro Cys Pro Arg Asn Ser His Cys Leu Gln Thr Gly Pro Ser 850 855 Phe His Cys Leu Cys Leu Gln Gly Trp Thr Gly Pro Leu Cys Asn Leu 865 870 875 880 Pro Leu Ser Ser Cys Gln Lys Ala Ala Leu Ser Gln Gly Ile Asp Val 885 890 895 Ser Ser Leu Cys His Asn Gly Gly Leu Cys Val Asp Ser Gly Pro Ser 900 905 910 Tyr Phe Cys His Cys Pro Pro Gly Phe Gln Gly Ser Leu Cys Gln Asp 915 920 925 His Val Asn Pro Cys Glu Ser Arg Pro Cys Gln Asn Gly Ala Thr Cys 930 935 940

39467A.txt.txt

Met Ala Gln Pro Ser Gly Tyr Leu Cys Gln Cys Ala Pro Gly Tyr Asp 945 950 955 960

Gly Gln Asn Cys Ser Lys Glu Leu Asp Ala Cys Gln Ser Gln Pro Cys 965 970 975

His Asn His Gly Thr Cys Thr Pro Lys Pro Gly Gly Phe His Cys Ala 980 985 990

Cys Pro Pro Gly Phe Val Gly Leu Arg Cys Glu Gly Asp Val Asp Glu 995 1000 1005

Cys Leu Asp Glm Pro Cys His Pro Thr Gly Thr Ala Ala Cys His 1010 1015 1020

Ser Leu Ala Asn Ala Phe Tyr Cys Gln Cys Leu Pro Gly His Thr 1025 1030 1035

Gly Gln Trp Cys Glu Val Glu Ile Asp Pro Cys His Ser Gln Pro 1040 1045 1050

Cys Phe His Gly Gly Thr Cys Glu Ala Thr Ala Gly Ser Pro Leu 1055 1060 1065

Gly Phe Ile Cys His Cys Pro Lys Gly Phe Glu Gly Pro Thr Cys 1070 1080

Ser His Arg Ala Pro Ser Cys Gly Phe His His Cys His His Gly 1085 1090 1095

Gly Leu Cys Leu Pro Ser Pro Lys Pro Gly Phe Pro Pro Arg Cys 1100 1105 1110

Ala Cys Leu Ser Gly Tyr Gly Gly Pro Asp Cys Leu Thr Pro Pro 1115 1120 1125

Ala Pro Lys Gly Cys Gly Pro Pro Ser Pro Cys Leu Tyr Asn Gly 1130 1140

Ser Cys Ser Glu Thr Thr Gly Leu Gly Gly Pro Gly Phe Arg Cys 1145 1150 1155

Ser Cys Pro His Ser Ser Pro Gly Pro Arg Cys Gln Lys Pro Gly 1160 1165 1170

Ala Lys Gly Cys Glu Gly Arg Ser Gly Asp Gly Ala Cys Asp Ala 1175 1180 1185

Gly Cys Ser Gly Pro Gly Gly Asn Trp Asp Gly Gly Asp Cys Ser 1190 1195 1200

39467A.txt.txt

Leu	Gly 1205	۷a٦	Pro	Asp	Pro	Trp 1210		Gly	Cys	Pro	Ser 1215	His	Ser	Arg
Cys	Trp 1220	Leu	Leu	Phe	Arg	Asp 1225	Gly	Gln	cys	His	Pro 1230	Gln	Cys	Asp
Ser	Glu 1235	Glu	Cys	Leu	Phe	Asp 1240	Gly	Tyr	Asp	Cys	Glu 1245	Thr	Pro	Pro
Ala	Cys 1250	Thr	Pro	Ala	Tyr	Asp 1255	Gln	Tyr	Cys	His	Asp 1260	His	Phe	ніѕ
Asn	Glý 1265	His	Cys	Glu	Ľys	Gly 1270	Cys	Asn	Thr	Ala	Glu 1275	Cys	Ğly	Trp
Asp	Gly 1280	Gly	Asp	Cys	Arg	Pro 1285	Glu	Asp	Gly	Asp	Pro 1290	Glu	Trp	Gly
Pro	ser 1295	Leu	Ala	Leu	Leu	∨a1 1300	٧al	Leu	Ser	Pro	Pro 1305	Ala	Leu	Asp
Gln	Gln 1310	Leu	Phe	Ala	Leu	Ala 1315	Arg	۷al	Leu	Ser	Leu 1320	Thr	Leu	Arg
Val	Gly 1325	Leu	Тгр	val	Arg	Lys 1330	Asp	Arg	Asp	Gly	Arg 1335	Asp	Met	Val
Tyr	Pro 1340	Tyr	Pro	Gly	Ala	Arg 1345	Ala	Glu	Glu	Lys	Leu 1350	Gly	Gly	Thr
Arg	Asp 1355	Pro	Thr	Tyr	Gln	Glu 1360	Arg	Ala	Ala	Pro	Gln 1365	Thr	Gln	Pro
Leu	Gly 1370	Lys	Glu	Thr	Asp	Ser 1375	Leu	Ser	Ala	Gly	Phe 1380	۷al	۷al	∨al
Met	Gly 1385	٧a٦	Asp	Leu	Ser	Arg 1390	Cys	Gly	Pro	Asp	ніs 1395	Pro	Ala	Ser
Arg	Cys 1400	Pro	Trp	Asp	Pro	Gly 1405	Leu	Leu	Leu	Arg	Phe 1410	Leu	Ala	Ala
Met	Ala 1415	Ala	val	Gly	Ala	Leu 1420	Glu	Pro	Leu	Leu	Pro 1425	Gly	Pro	Leu
Leu	Ala 1430	٧a٦	His	Pro	His	Ala 1435	Gly	Thr	Ala	Pro	Pro 1440	Ala	Asn	Gln
Leu	Pro 1445	Trp	Pro	∨al	Leu	Cys 1450	Ser	Pro	٧a٦	Ala	Gly 1455	۷al	Ile	Leu

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Leu Ala Leu 1460	Gly Ala	Leu	Leu 1465	Val	Leu	Gln	Leu	Ile 1470	Arg	Arg	Arg
Arg Arg Glu 1475	His Gly	Ala	Leu 1480	Trp	Leu	Pro	Pro	Gly 1485		Thr	Arg
Arg Pro Arg 1490	Thr Gln	Ser	Ala 1495	Pro	His	Arg	Arg	Arg 1500	Pro	Pro	Leu
Gly Glu Asp 1505	Ser Ile	Gly	Leu 1510	Lys	Ala	Leu	Lys	Pro 1515	Lys	Ala	Glu
Val Asp Glu 1520	Asp Gly	٧al	val 1525	Met	Cys	ser	Glу	Pro 1530	Glu	Glu	Gly
Glu Glu Val 1535	Gly Gln	Ala	Glu 1540	Glu	Thr	Glу	Pro	Pro 1545	Ser	Thr	Cys
Gln Leu Trp 1550	Ser Leu	Ser	Gly 1555	Gly	Cys	Gly	Ala	Leu 1560	Pro	Gln	Ala
Ala Met Leu 1565	Thr Pro	Pro	Gln 1570	Glu	Ser	Glu	Met	Glu 1575	Ala	Pro	Asp
Leu Asp Thr 1580	Arg Gly	Pro	Asp 1585	Glу	٧a٦	Thr	Pro	Leu 1590	Met	Ser	Αla
Val Cys Cys 1595	Gly Glu	۷a٦	Gln 1600	Ser	Gly	Thr	Phe	Gln 1605	Gly	Ala	Trp
Leu Gly Cys 1610	Pro Glu	Pro	Trp 1615	Glu	Pro	Leu	Leu	Asp 1620	Glу	GТу	Αla
Cys Pro Gln 1625	Ala His	Thr	Val 1630	Gly	Thr	Gly	Glu	Thr 1635	Pro	Leu	нis
Leu Ala Ala 1640	Arg Phe	Ser	Arg 1645	Pro	Thr	Ala	Ala	Arg 1650	Arg	Leu	Leu
Glu Ala Gly 1655	Ala Asn	Pro	Asn 1660	Gln	Pro	Asp	Arg	Ala 1665	Gly	Arg	Thr
Pro Leu His 1670	Ala Ala	Val	Ala 1675	Ala	Asp	Ala	Arg	Glu 1680	٧a٦	Cys	Gln
Leu Leu Leu 1685	Arg Ser	Arg	Gln 1690	Thr	Ala	٧a٦	Asp	Аlа 1695	Arg	Thr	Glu
Asp Gly Thr 1700	Thr Pro	Leu	Met 1705	Leu	Ala	Ala	Arg	Leu 1 710	Ala	۷al	Glu

39467A.txt.txt

Asp Leu Val Glu Glu Leu Ile Ala Ala Gln Ala Asp Val Gly Ala 1715 1720 1725

Arg Asp Lys Trp Gly Lys Thr Ala Leu His Trp Ala Ala Ala Val 1730 1740

Asn Asn Ala Arg Ala Ala Arg Ser Leu Leu Gln Ala Gly Ala Asp 1745 1750 1755

Lys Asp Ala Gln Asp Asn Arg Glu Gln Thr Pro Leu Phe Leu Ala 1760 1765 1770

Ala Arg Glu Gly Ala Val Glu Val Ala Gln Leu Leu Leu Gly Leu 1775 1780 1785

Gly Ala Ala Arg Glu Leu Arg Asp Gln Ala Gly Leu Ala Pro Ala 1790 1795 1800

Asp Val Ala His Gln Arg Asn His Trp Asp Leu Leu Thr Leu Leu 1805 1810 1815

Glu Gly Ala Gly Pro Pro Glu Ala Arg His Lys Ala Thr Pro Gly 1820 1825 1830

Arg Glu Ala Gly Pro Phe Pro Arg Ala Arg Thr Val Ser Val Ser 1835 1840 1845

Val Pro Pro His Gly Gly Gly Ala Leu Pro Arg Cys Arg Thr Leu 1850 1855 1860

Ser Ala Gly Ala Gly Pro Arg Gly Gly Gly Ala Cys Leu Gln Ala 1865 1870 1875

Arg Thr Trp Ser Val Asp Leu Ala Ala Arg Gly Gly Gly Ala Tyr 1880 1885 1890

Ser His Cys Arg Ser Leu Ser Gly Val Gly Ala Gly Gly Pro 1895 1900 1905

Thr Pro Arg Gly Arg Arg Phe Ser Ala Gly Met Arg Gly Pro Arg 1910 1915 1920

Pro Asn Pro Ala Ile Met Arg Gly Arg Tyr Gly Val Ala Ala Gly 1925 1930 · 1935

Arg Gly Gly Arg Val Ser Thr Asp Asp Trp Pro Cys Asp Trp Val 1940 1945 1950

Ala Leu Gly Ala Cys Gly Ser Ala Ser Asn Ile Pro Ile Pro Pro 1955 1960 1965

39467A.txt.txt

Pro Cys Leu Thr Pro Ser Pro Glu Arg Gly Ser Pro Gln Leu Asp 1970 1975 1980

Cys Gly Pro Pro Ala Leu Gln Glu Met Pro Ile Asn Gln Gly Gly 1985 1990 1995

Glu Gly Lys Lys 2000

<210> 22 <211> 5896 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Jagged-1

<400> 22

ctgcggccgg cccgcgagct aggctgggtt ttttttttt tcccctccct ccccctttt 60 120 tccatgcagc tgatctaaaa gggaataaaa ggctgcgcat aatcataata ataaaagaag 180 qqqaqcgcga gagaaggaaa gaaagccggg aggtggaaga ggagggggag cgtctcaaag 240 aagcgatcag aataataaaa ggaggccggg ctctttgcct tctggaacgg gccgctcttg aaagggcttt tgaaaagtgg tgttgttttc cagtcgtgca tgctccaatc ggcggagtat 300 attagagccg ggacgcggcg gccgcagggg cagcggcgac ggcagcaccg gcggcagcac 360 420 cagcgcgaac agcagcggcg gcgtcccgag tgcccgcggc gcgcggcgca gcgatgcgtt ccccacggac gcgcggccgg tccgggcgcc ccctaagcct cctgctcgcc ctgctctgtg 480 ccctgcgagc caaggtgtgt ggggcctcgg gtcagttcga gttggagatc ctgtccatgc 540 agaacgtgaa cggggagctg cagaacggga actgctgcgg cggcgcccgg aacccgggag 600 660 accgcaagtg cacccgcgac gagtgtgaca catacttcaa agtgtgcctc aaggagtatc agtcccgcgt cacggccggg gggccctgca gcttcggctc agggtccacg cctgtcatcg 720 780 ggggcaacac cttcaacctc aaggccagcc gcggcaacga ccgcaaccgc atcgtgctgc ctttcagttt cgcctggccg aggtcctata cgttgcttgt ggaggcgtgg gattccagta 840 atgacaccgt tcaacctgac agtattattg aaaaggcttc tcactcgggc atgatcaacc 900 ccagccggca gtggcagacg ctgaagcaga acacgggcgt tgcccacttt gagtatcaga 960 tccgcgtgac ctgtgatgac tactactatg gctttggctg caataagttc tgccgcccca 1020 gagatgactt ctttggacac tatgcctgtg accagaatgg caacaaaact tgcatggaag 1080 1140 gctggatggg ccccgaatgt aacagagcta tttgccgaca aggctgcagt cctaagcatg 1200 ggtcttgcaa actcccaggt gactgcaggt gccagtatgg ctggcaaggc ctgtactgtg 1260 ataagtgcat cccacacccg ggatgcgtcc acggcatctg taatgagccc tggcagtgcc 1320 tctqtqaqac caactqqqqc ggccagctct gtgacaaaga tctcaattac tgtgggactc

atcagccgtg	tctcaacggg	nnaacttnta	39467A.txt		tatcagtgtt	1380
	ggggtattca					1440
	caacagaggc			_		1500
	gaccggcccc					1560
	gggcacctgc				_	1620
	gaaaacgtgc					1680
	ctgtaagaat					1740
	ttgtgacata					1800
*	tttggttaat		,			1860
actgtgagag	agacatcgat	gaatgtgcca	gcaacccctg	tttgaatggg	ggtcactgtc	1920
agaatgaaat	caacagattc	cagtgtctgt	gtcccactgg	tttctctgga	aacctctgtc	1980
agctggacat	cgattattgt	gagcctaatc	cctgccagaa	cggtgcccag	tgctacaacc	2040
gtgccagtga	ctatttctgc	aagtgccccg	aggactatga	gggcaagaac	tgctcacacc	2100
tgaaagacca	ctgccgcacg	accccctgtg	aagtgattga	cagctgcaca	gtggccatgg	2160
cttccaacga	cacacctgaa	ggggtgcggt	atatttcctc	caacgtctgt	ggtcctcacg	2220
ggaagtgcaa	gagtcagtcg	ggaggcaaat	tcacctgtga	ctgtaacaaa	ggcttcacgg	2280
gaacatactg	ccatgaaaat	attaatgact	gtgagagcaa	cccttgtaga	aacggtggca	2340
cttgcatcga	tggtgtcaac	tcctacaagt	gcatctgtag	tgacggctgg	gagggggcct	2400
actgtgaaac	caatattaat	gactgcagcc	agaacccctg	ccacaatggg	ggcacgtgtc	2460
gcgacctggt	caatgacttc	tactgtgact	gtaaaaatgg	gtggaaagga	aagacctgcc	2520
actcacgtga	cagtcagtgt	gatgaggcca	cgtgcaacaa	cggtggcacc	tgctatgatg	2580
agggggatgc	ttttaagtgc	atgtgtcctg	gcggctggga	aggaacaacc	tgtaacatag	2640
cccgaaacag	tagctgcctg	cccaacccct	gccataatgg	gggcacatgt	gtggtcaacg	2700
gcgagtcctt	tacgtgcgtc	tgcaaggaag	gctgggaggg	gcccatctgt	gctcagaata	2760
ccaatgactg	cagccctcat	ccctgttaca	acagcggcac	ctgtgtggat	ggagacaact	2820
ggtaccggtg	cgaatgtgcc	ccgggttttg	ctgggcccga	ctgcagaata	aacatcaatg	2880
aatgccagtc	ttcaccttgt	gcctttggag	cgacctgtgt	ggatgagatc	aatggctacc	2940
ggtgtgtctg	ccctccaggg	cacagtggtg	ccaagtgcca	ggaagtttca	gggagacctt	3000
gcatcaccat	ggggagtgtg	ataccagatg	gggccaaatg	ggatgatgac	tgtaatacct	3060
gccagtgcct	gaatggacgg	atcgcctgct	caaaggtctg	gtgtggccct	cgaccttgcc	3120
tgctccacaa	agggcacagc	gagtgcccca	gcgggcagag	ctgcatcccc	atcctggacg	3180
_	cgtccacccc					3240
	aaagtgcacc					3300
	caaggagatg					3360
	22 2 3		-			

			2010			
tgaggaattt	gaatattttg	aagaatgttt	39467A.txt ccgctgaata		atcgcttgcg	3420
agccttcccc	ttcagcgaac	aatgaaatac	atgtggccat	ttctgctgaa	gatatacggg	3480
atgatgggaa	cccgatcaag	gaaatcactg	acaaaataat	cgatcttgtt	agtaaacgtg	3540
atggaaacag	ctcgctgatt	gctgccgttg	cagaagtaag	agttcagagg	cggcctctga	3600
agaacagaac	agatttcctt	gttcccttgc	tgagctctgt	cttaactgtg	gcttggatct	3660
gttgcttggt	gacggccttc	tactggtgcc	tgcggaagcg	gcggaagccg	ggcagccaca	3720
cacactcagc	ctctgaggac	aacaccacca	acaacgtgcg	ggagcagctg	aaccagatca	3780
aaaaccccat	tgagaaacat	ggggccaaca	cggtccccat	caaggattac	gagaacaaga	3840
actccaaaat	gtctaaaata	aggacacaca	attctgaagt	agaagaggac	gacatggaca	3900
aacaccagca	gaaagcccgg	tttgccaagc	agccggcgta	tacgctggta	gacagagaag	396 0
agaagccccc	caacggcacg	ccgacaaaac	acccaaactg	gacaaacaaa	caggacaaca	4020
gagacttgga	aagtgcccag	agcttaaacc	gaatggagta	catcgtatag	cagaccgcgg	4080
gcactgccgc	cgctaggtag	agtctgaggg	cttgtagttc	tttaaactgt	cgtgtcatac	4140
tcgagtctga	ggccgttgct	gacttagaat	ccctgtgtta	atttaagttt	tgacaagctg	4200
gcttacactg	gcaatggtag	tttctgtggt	tggctgggaa	atcgagtgcc	gcatctcaca	4260
gctatgcaaa	aagctagtca	acagtaccct	ggttgtgtgt	ccccttgcag	ccgacacggt	4320
ctcggatcag	gctcccagga	gcctgcccag	cccctggtc	tttgagctcc	cacttctgcc	4380
agatgtccta	atggtgatgc	agtcttagat	catagtttta	tttatattta	ttgactcttg	4440
agttgttttt	gtatattggt	tttatgatga	cgtacaagta	gttctgtatt	tgaaagtgcc	4500
tttgcagctc	agaaccacag	caacgatcac	aaatgacttt	attatttatt	ttttaattg	456 0
tatttttgtt	gttgggggag	gggagacttt	gatgtcagca	gttgctggta	aaatgaagaa	4620
tttaaagaaa	aaaatgtcaa	aagtagaact	ttgtatagtt	atgtaaataa	ttctttttta	4680
ttaatcactg	tgtatatttg	atttattaac	ttaataatca	agagccttaa	aacatcattc	4740
ctttttattt	atatgtatgt	gtttagaatt	gaaggttttt	gatagcattg	taagcgtatg	4800
gctttatttt	tttgaactct	tctcattact	tgttgcctat	aagccaaaat	taaggtgttt	4860
gaaaatagtt	tattttaaaa	caataggatg	ggcttctgtg	cccagaatac	tgatggaatt	4920
ttttttgtac	gacgtcagat	gtttaaaaca	ccttctatag	catcacttaa	aacacgtttt	4980
aaggactgac	tgaggcagtt	tgaggattag	tttagaacag	gtttttttgt	ttgtttgttt	5040
tttgttttc	tgctttagac	ttgaaaagag	acaggcaggt	gatctgctgc	agagcagtaa	5100
gggaacaagt	tgagctatga	cttaacatag	ccaaaatgtg	agtggttgaa	tatgattaaa	5160
aatatcaaat	taattgtgtg	aacttggaag	cacaccaatc	tgactttgta	aattctgatt	5220
tcttttcacc	attcgtacat	aatactgaac	cacttgtaga	tttgattttt	ttttaatct	5280
actgcattta	gggagtattc	taataagcta	gttgaatact	tgaaccataa	aatgtccagt	5340
aagatcactg	tttagatttg	ccatagagta	cactgcctgc	cttaagtgag	gaaatcaaag	5400

WO 2005/014854 PCT/EP2004/008819

204574 to the
39467A.txt.txt tgctattacg aagttcaaga tcaaaaaggc ttataaaaaca gagtaatctt gttggttcac
cattgagacc gtgaagatac tttgtattgt cctattagtg ttatatgaac atacaaatgc
atctttgatg tgttgttctt ggcaataaat tttgaaaagt aatatttatt aaatttttt
gtatgaaaac atggaacagt gtggctcttc tgagcttacg tagttctacc ggctttgccg
tgtgcttctg ccaccctgct gagtctgttc tggtaatcgg ggtataatag gctctgcctg
acagagggat ggaggaagaa ctgaaaggct tttcaaccac aaaactcatc tggagttctc
aaagacctgg ggctgctgtg aagctggaac tgcgggagcc ccatctaggg gagccttgat
tcccttgtta ttcaacagca agtgtgaata ctgcttgaat aaacaccact ggattaatgg
aaaaaaaaaa aaaaaa
<210> 23 <211> 1218 <212> PRT <213> Homo sapiens
<220> <221> misc_feature <223> Jagged-1
<400> 23
Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu 1 15
Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser 20 25 30
Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu 35 40 45
Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg 50 60
Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys 65 70 75 80
Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser 85 90 95
Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser 100 105 110
Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp 115 120 125

Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp 130 135 140 145

WO 2005/014854

PCT/EP2004/008819

160

39467A.txt.txt 150 155

Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val

Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr 180 185 190

Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly 195 200

His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp 210 215 220

Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro 225 235 235

Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly 245 250 255

Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val 260 265 270

His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp 275 280 285

Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln 290 295 300

Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr 305 310 315 320

Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala 325 330 335

Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys 340 345 350

Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly 355 360 365

Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser 370 380

His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys 385 390 395

Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys 405 410 415

Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala

WO 2005/014854

PCT/EP2004/008819

420

39467A.txt.txt 425

430

Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp 435 440 445 Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys 450 460 Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala 465 470 475 480 Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys 485 490 495 Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu 500 510Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr 515 525 Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala 530 540 Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys 545 550 555 Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp 565 570 575 Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg 580 585 590 Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln 595 600 605 Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr $610 \hspace{1.5cm} 620$ Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn 625 630 635 Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser 645 650 655 Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser 660 665 670 Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp 675 680 685 Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt 690 695 700

Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys 705 715 720 Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu 725 730 735 Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro
740 745 750 Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys 755 760 765 Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn 770 780 Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly 785 790 795 800 Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp 805 810 815 Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly 820 825 830 Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro 835 840 845 Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile 850 855 860 Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys 865 870 875 Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp 885 890 895 Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro 900 905 910 Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His 915 920 925 Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val 930 935 940 Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn 945 950 955 Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr

975

39467A.txt.txt 55 970

Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val 980 985 990

Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala 995 1000 1005

Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp 1010 1015 1020

Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu 1025 1030 1035

Val Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala 1040 1045 1050

Glu Val Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp Phe 1055 1060 1065

Leu Val Pro Leu Leu Ser Ser Val Leu Thr Val Ala Trp Ile Cys 1070 1080

Cys Leu Val Thr Ala Phe Tyr Trp Cys Leu Arg Lys Arg Arg Lys 1085 1090 1095

Pro Gly Ser His Thr His Ser Ala Ser Glu Asp Asn Thr Thr Asn 1100 11105 1110

Asn Val Arg Glu Gln Leu Asn Gln Ile Lys Asn Pro Ile Glu Lys 1115 1120 1125

His Gly Ala Asn Thr Val Pro Ile Lys Asp Tyr Glu Asn Lys Asn 1130 1140

Ser Lys Met Ser Lys Ile Arg Thr His Asn Ser Glu Val Glu Glu 1145 1150

Asp Asp Met Asp Lys His Gln Gln Lys Ala Arg Phe Ala Lys Gln 1160 1170

Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn Gly 1175 1180 1185

Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg 1190 1195 1200

Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val 1205 1210 1215

<210> 24

39467A.txt.txt

<211> 5077 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Jagged-2

<400> 60 ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg 120 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc 180 gccagcgagc cggagctgcc gccgccctg cacgcccgcc gcccaggccc gcgcgccgcg 240 300 gcgctgcgct cgaccccgcc cgcgccgccg ccgccgccgc ctctgccgct gccgctgcct 360 ctgcgggcgc tcggagggcg ggcgggcgct gggaggccgg cgcggcggct gggagccggg 420 cqcqqqcqqc qqcggcqqqq ccgggcgggc gggtcgcggg ggcaatgcgg gcgcagggcc 480 540 ccatgggcta tttcgagctg cagctgagcg cgctgcggaa cgtgaacggg gagctgctga gcggcgcctg ctgtgacggc gacggccgga caacgcgcgc ggggggctgc ggccacgacg 600 660 agtgcgacac gtacgtgcgc gtgtgcctta aggagtacca ggccaaggtg acgcccacgg ggccctgcag ctacggccac ggcgccacgc ccgtgctggg cggcaactcc ttctacctgc 720 780 cqccqgcqgg cgctgcgggg gaccgagcgc gggcgcgggc ccgggccggc ggcgaccagg accogggcct cgtcgtcatc cccttccagt tcgcctggcc gcgctccttt accctcatcg 840 900 tggaggcctg ggactgggac aacgatacca ccccgaatga ggagctgctg atcgagcgag 960 tgtcgcatgc cggcatgatc aacccggagg accgctggaa gagcctgcac ttcagcggcc 1020 acqtqqcqca cctqqaqctq caqatccqcq tgcgctgcga cgagaactac tacagcgcca 1080 cttqcaacaa qttctgccgg ccccgcaacg actttttcgg ccactacacc tgcgaccagt acggcaacaa ggcctgcatg gacggctgga tgggcaagga gtgcaaggaa gctgtgtgta 1140 1200 aacaaqqqtq taatttqctc cacgggggat gcaccgtgcc tggggagtgc aggtgcagct 1260 acqqctqqca agggaggttc tgcgatgagt gtgtccccta ccccggctgc gtgcatggca 1320 gttgtgtgga gccctggcag tgcaactgtg agaccaactg gggcggcctg ctctgtgaca 1380 aagacctgaa ctactgtggc agccaccacc cctgcaccaa cggaggcacg tgcatcaacg ccgagcctga ccagtaccgc tgcacctgcc ctgacggcta ctcgggcagg aactgtgaga 1440 aggctgagca cgcctgcacc tccaacccgt gtgccaacgg gggctcttgc catgaggtgc 1500 cgtccggctt cgaatgccac tgcccatcgg gctggagcgg gcccacctgt gcccttgaca 1560 tcgatgagtg tgcttcgaac ccgtgtgcgg ccggtggcac ctgtgtggac caggtggacg 1620 gctttgagtg catctgcccc gagcagtggg tgggggccac ctgccagctg gacgccaatg 1680

agtgtgaagg gaagccatgc cttaacgctt tttcttgcaa aaacctgatt ggcggctatt

1740

	-					
actgtgattg	catcccgggc	tggaagggca	39467A.txt tcaactgcca		aacgactgtc	1800
gcgggcagtg	tcagcatggg	ggcacctgca	aggacctggt	gaacgggtac	cagtgtgtgt	1860
gcccacgggg	cttcggaggc	cggcattgcg	agctggaacg	agacgagtgt	gccagcagcc	1920
cctgccacag	cggcggcctc	tgcgaggacc	tggccgacgg	cttccactgc	cactgccccc	1980
agggcttctc	cgggcctctc	tgtgaggtgg	atgtcgacct	ttgtgagcca	agcccctgcc	2040
ggaacggcgc	tcgctgctat	aacctggagg	gtgactatta	ctgcgcctgc	cctgatgact	2100
ttggtggcaa	gaactgctcc	gtgccccgcg	agccgtgccc	tggcggggcc	tgcagagtga	2160
tcgatggctg	cgggtcagac	gcggggcctg	ggatgcctgg	cacagcagcc	tccggcgtgt	2220
gtggccccca	tggacgctgc	gtcagccagc	cagggggcaa	cttttcctgc	atctgtgaca	2280
gtggctttac	tggcacctac	tgccatgaga	acattgacga	ctgcctgggc	cagccctgcc	2340
gcaatggggg	cacatgcatc	gatgaggtgg	acgccttccg	ctgcttctgc	cccagcggct	2400
gggagggcga	gctctgcgac	accaatccca	acgactgcct	tcccgatccc	tgccacagcc	2460
gcggccgctg	ctacgacctg	gtcaatgact	tctactgtgc	gtgcgacgac	ggctggaagg	2520
gcaagacctg	ccactcacgc	gagttccagt	gcgatgccta	cacctgcagc	aacggtggca	2580
cctgctacga	cagcggcgac	accttccgct	gcgcctgccc	ccccggctgg	aagggcagca	2640
cctgcgccgt	cgccaagaac	agcagctgcc	tgcccaaccc	ctgtgtgaat	ggtggcacct	2700
gcgtgggcag	cggggcctcc	ttctcctgca	tctgccggga	cggctgggag	ggtcgtactt	2760
gcactcacaa	taccaacgac	tgcaaccctc	tgccttgcta	caatggtggc	atctgtgttg	2820
acggcgtcaa	ctggttccgc	tgcgagtgtg	cacctggctt	cgcggggcct	gactgccgca	2880
tcaacatcga	cgagtgccag	tcctcgccct	gtgcctacgg	ggccacgtgt	gtggatgaga	2940
tcaacgggta	tcgctgtagc	tgcccacccg	gccgagccgg	ccccggtgc	caggaagtga	3000
tcgggttcgg	gagatcctgc	tggtcccggg	gcactccgtt	cccacacgga	agctcctggg	3060
tggaagactg	caacagctgc	cgctgcctgg	atggccgccg	tgactgcagc	aaggtgtggt	3120
gcggatggaa	gccttgtctg	ctggccggcc	agcccgaggc	cctgagcgcc	cagtgcccac	3180
tggggcaaag	gtgcctggag	aaggccccag	gccagtgtct	gcgaccaccc	tgtgaggcct	3240
ggggggagtg	cggcgcagaa	gagccaccga	gcaccccctg	cctgccacgc	tccggccacc	3300
tggacaataa	ctgtgcccgc	ctcaccttgc	atttcaaccg	tgaccacgtg	ccccagggca	3360
ccacggtggg	cgccatttgc	tccgggatcc	gctccctgcc	agccacaagg	gctgtggcac	3420
gggaccgcct	gctggtgttg	ctttgcgacc	gggcgtcctc	gggggccagt	gccgtggagg	3480
tggccgtgtc	cttcagccct	gccagggacc	tgcctgacag	cagcctgatc	cagggcgcgg	3540
cccacgccat	cgtggccgcc	atcacccagc	gggggaacag	ctcactgctc	ctggctgtca	3600
ccgaggtcaa	ggtggagacg	gttgttacgg	gcggctcttc	cacaggtctg	ctggtgcctg	3660
tgctgtgtgg	tgccttcagc	gtgctgtggc	tggcgtgcgt	ggtcctgtgc	gtgtggtgga	3720
cacgcaagcg	caggaaagag	cgggagagga	gccggctgcc	gcgggaggag	agcgccaaca	3780

```
39467A.txt.txt
                                                                     3840
accagtgggc cccgctcaac cccatccgca accccatcga gcggccgggg ggccacaagg
acgtgctcta ccagtgcaag aacttcacgc cgccgccgcg cagggcggac gaggcgctgc
                                                                     3900
                                                                     3960
ccgggccggc cggccacgcg gccgtcaggg aggatgagga ggacgaggat ctgggccgcg
                                                                     4020
qtqaqqaqqa ctccctggag gcggagaagt tcctctcaca caaattcacc aaagatcctg
                                                                     4080
gccgctcgcc ggggaggccg gcccactggg cctcaggccc caaagtggac aaccgcgcgg
tcaqqaqcat caatgaggcc cgctacgccg gcaaggagta ggggcggctg ccagctgggc
                                                                     4140
cgggacccag ggccctcggt gggagccatg ccgtctgccg gacccggagg ccgaggccat
                                                                     4200
                                                                     4260
gtgcatagtt tctttatttt gtgtaaaaaa accaccaaaa acaaaaacca aatgtttatt
                                                                     4320
ttctacgttt ctttaacctt gtataaatta ttcagtaact gtcaggctga aaacaatgga
gtattctcgg atagttgcta tttttgtaaa gtttccgtgc gtggcactcg ctgtatgaaa
                                                                     4380
                                                                     4440
qqaqaqaqa aaqqqtqtct gcgtcgtcac caaatcgtag cgtttgttac cagaggttgt
                                                                     4500
qcactqttta caqaatcttc cttttattcc tcactcgggt ttctctgtgg ctccaggcca
                                                                     4560
aagtgccggt gagacccatg gctgttgtgg tgtggcccat ggctgttggt gggacccgtg
gctgatggtg tggcctgtgg ctgtcggtgg gactcgtggc tgtcaatggg acctgtggct
                                                                     4620
gtcggtggga cctacggtgg tcggtgggac cctggttatt gatgtggccc tggctgccgg
                                                                     4680
                                                                     4740
cacqqcccgt ggctgttgac gcacctgtgg ttgttagtgg ggcctgaggt catcggcgtg
                                                                     4800
gcccaaggcc ggcaggtcaa cctcgcgctt gctggccagt ccaccctgcc tgccgtctgt
                                                                     4860
gcttcctcct gcccagaacg cccgctccag cgatctctcc actgtgcttt cagaagtgcc
                                                                     4920
cttcctgctg cgcagttctc ccatcctggg acggcggcag tattgaagct cgtgacaagt
                                                                     4980
gccttcacac agacccctcg caactgtcca cgcgtgccgt ggcaccaggc gctgcccacc
tgccggcccc ggccgcccct cctcgtgaaa gtgcattttt gtaaatgtgt acatattaaa
                                                                     5040
                                                                     5077
ggaagcactc tgtatatttg attgaataat gccacca
```

```
<210> 25
<211> 1238
<212> PRT
```

<220>
<221> misc_feature
<223> Jagged-2
<400> 25

Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 5 10 15

Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu 20 25 30

Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45

<213> Homo sapiens

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His 50 60Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala 65 70 75 80 Lys Val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro 85 90 95 Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly 100 105 Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu 130 135 140 Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 155 160 Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp 165 170 175 Arg Trp Lys Ser Leu His Phe Ser Gly His Val Ala His Leu Glu Leu 180 185 190 Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn 195 200 205 Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp 210 215 220 Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 235 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys 245 250 255 Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe 260 265 270 Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val 275 280 285 Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys 290 295 Asp Lys Asp Leu Asn Tyr Cys Gly Ser His His Pro Cys Thr Asn Gly 305 310 315

39467A.txt.txt

Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro 325 330 335 Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr 340 345 Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly 355 360 365 Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu 370 380 Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys 385 390 400 Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val 405 410 415 Gly Ala Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Gly Lys Pro Cys 420 425 430 Leu Asn Ala Phe Ser Cys Lys Asn Leu Ile Gly Gly Tyr Tyr Cys Asp 445 Cys Ile Pro Gly Trp Lys Gly Ile Asn Cys His Ile Asn Val Asn Asp 450 455 460 Cys Arg Gly Gln Cys Gln His Gly Gly Thr Cys Lys Asp Leu Val Asn 465 470 475 480 Gly Tyr Gln Cys Val Cys Pro Arg Gly Phe Gly Gly Arg His Cys Glu 485 490 495 Leu Glu Arg Asp Glu Cys Ala Ser Ser Pro Cys His Ser Gly Gly Leu 500 505 510 Cys Glu Asp Leu Ala Asp Gly Phe His Cys His Cys Pro Gln Gly Phe 515 520 525 Ser Gly Pro Leu Cys Glu Val Asp Val Asp Leu Cys Glu Pro Ser Pro 530 540 Cys Arg Asn Gly Ala Arg Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys 545 555 560 Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn Cys Ser Val Pro Arg Glu 575 Pro Cys Pro Gly Gly Ala Cys Arg Val Ile Asp Gly Cys Gly Ser Asp $580 \hspace{1.5cm} 585 \hspace{1.5cm} 590$

39467A.txt.txt

Ala Gly Pro Gly Met Pro Gly Thr Ala Ala Ser Gly Val Cys Gly Pro 595 600 605 His Gly Arg Cys Val Ser Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys 610 620 Asp Ser Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asp Asp Cys 625 635 640 Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Glu Val Asp 645 655 Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp 660 670 Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro Cys His Ser Arg Gly Arg 675 680 685 Cys Tyr Asp Leu Val Asn Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp 690 700 Lys Gly Lys Thr Cys His Ser Arg Glu Phe Gln Cys Asp Ala Tyr Thr 705 715 720Cys Ser Asn Gly Gly Thr Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys 725 730 735 Ala Cys Pro Pro Gly Trp Lys Gly Ser Thr Cys Ala Val Ala Lys Asn 740 745 750 Ser Ser Cys Leu Pro Asn Pro Cys Val Asn Gly Gly Thr Cys Val Gly 765 Ser Gly Ala Ser Phe Ser Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg 770 780 Thr Cys Thr His Asn Thr Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn 785 795 800 Gly Gly Ile Cys Val Asp Gly Val Asn Trp Phe Arg Cys Glu Cys Ala 805 810 815 Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln 820 825 830 Ser Ser Pro Cys Ala Tyr Gly Ala Thr Cys Val Asp Glu Ile Asn Gly 835 840 Tyr Arg Cys Ser Cys Pro Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu 850 855 860

39467A.txt.txt

Val Ile Gly Phe Gly Arg Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro 865 870 875

His Gly Ser Ser Trp Val Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp 885 890 895

Gly Arg Arg Asp Cys Ser Lys Val Trp Cys Gly Trp Lys Pro Cys Leu 900 910

Leu Ala Gly Gln Pro Glu Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln 915 920 925

Arg Cys-Leu-Glu-Lys Ala Pro Gly-Gln Cys Leu Arg-Pro Pro Cys Glu 930 935 940

Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu 945 950 955 960

Pro Arg Ser Gly His Leu Asp Asn Asn Cys Ala Arg Leu Thr Leu His 965 970 975

Phe Asn Arg Asp His Val Pro Gln Gly Thr Thr Val Gly Ala Ile Cys 980 985 990

Ser Gly Ile Arg Ser Leu Pro Ala Thr Arg Ala Val Ala Arg Asp Arg 995 1000 1005

Leu Leu Val Leu Leu Cys Asp Arg Ala Ser Ser Gly Ala Ser Ala 1010 1015 1020

Val Glu Val Ala Val Ser Phe Ser Pro Ala Arg Asp Leu Pro Asp 1025 1030 1035

Ser Ser Leu Ile Gln Gly Ala Ala His Ala Ile Val Ala Ala Ile 1040 1045 1050

Thr Gln Arg Gly Asn Ser Ser Leu Leu Leu Ala Val Thr Glu Val 1055 1060 1065

Lys Val Glu Thr Val Val Thr Gly Gly Ser Ser Thr Gly Leu Leu 1070 1080

Val Pro Val Leu Cys Gly Ala Phe Ser Val Leu Trp Leu Ala Cys 1085 1090 1095

Val Val Leu Cys Val Trp Trp Thr Arg Lys Arg Arg Lys Glu Arg 1100 1105 1110

Glu Arg Ser Arg Leu Pro Arg Glu Glu Ser Ala Asn Asn Gln Trp 1115 1120 1125

39467A.txt.txt

Ala Pro Leu Asn Pro Ile Arg Asn Pro Ile Glu Arg Pro Gly Gly 1130 1140

His Lys Asp Val Leu Tyr Gln Cys Lys Asn Phe Thr Pro Pro Pro 1145

Arg Arg Ala Asp Glu Ala Leu Pro Gly Pro Ala Gly His Ala Ala 1160 1170

Val Arg Glu Asp Glu Asp Glu Asp Leu Gly Arg Gly Glu Glu 1175 1180 1185

Asp Ser Leu Glu Ala Glu Lys Phe Leu Ser His Lys Phe Thr Lys 1190 1200

Asp Pro Gly Arg Ser Pro Gly Arg Pro Ala His Trp Ala Ser Gly 1205 1210

Pro Lys Val Asp Asn Arg Ala Val Arg Ser Ile Asn Glu Ala Arg 1220 1225 1230

Tyr Ala Gly Lys Glu 1235

<210> 26

<211> 4963

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Jagged2, transcript variant 2

<400> ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg 60 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc 120 180 cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc 240 gccagcgagc cggagctgcc gccgccctg cacgcccgcc gcccaggccc gcgcgccgcg 300 gcgctgcgct cgaccccgcc cgcgccgccg ccgccgccgc ctctgccgct gccgctgcct 360 ctgcqqqcqc tcqqaqqqcg ggcqqgcgct gggaggccgg cgcggcggct gggagccggg cgcgggcggc ggcggcgggg ccgggcgggc gggtcgcggg ggcaatgcgg gcgcagggcc 420 480 ccatgggcta tttcgagctg cagctgagcg cgctgcggaa cgtgaacggg gagctgctga 540 gcggcgcctg ctgtgacggc gacggccgga caacgcgcgc ggggggctgc ggccacgacg 600 660 agtgcgacac gtacgtgcgc gtgtgcctta aggagtacca ggccaaggtg acgcccacgg ggccctgcag ctacggccac ggcgccacgc ccgtgctggg cggcaactcc ttctacctgc 720

			2010=			
cgccggcggg	cgctgcgggg	gaccgagcgc	39467A.txt gggcgcgggc		ggcgaccagg	780
acccgggcct	cgtcgtcatc	cccttccagt	tcgcctggcc	gcgctccttt	accctcatcg	840
tggaggcctg	ggactgggac	aacgatacca	ccccgaatga	ggagctgctg	atcgagcgag	900
tgtcgcatgc	cggcatgatc	aacccggagg	accgctggaa	gagcctgcac	ttcagcggcc	960
acgtggcgca	cctggagctg	cagatccgcg	tgcgctgcga	cgagaactac	tacagcgcca	1020
cttgcaacaa	gttctgccgg	ccccgcaacg	actttttcgg	ccactacacc	tgcgaccagt	1080
acggcaacaa	ggcctgcatg	gacggctgga	tgggcaagga	gtgcaaggaa	gctgtgtgta	1140
aacaagggtg	taatttgctc	cacgggggat	gcaccgtgcc	tggggagtgc	aggtgcagct	1200
acggctggca	agggaggttc	tgcgatgagt	gtgtccccta	ccccggctgc	gtgcatggca	1260
gttgtgtgga	gccctggcag	tgcaactgtg	agaccaactg	gggcggcctg	ctctgtgaca	1320
aagacctgaa	ctactgtggc	agccaccacc	cctgcaccaa	cggaggcacg	tgcatcaacg	1380
ccgagcctga	ccagtaccgc	tgcacctgcc	ctgacggcta	ctcgggcagg	aactgtgaga	1440
aggctgagca	cgcctgcacc	tccaacccgt	gtgccaacgg	gggctcttgc	catgaggtgc	1500
cgtccggctt	cgaatgccac	tgcccatcgg	gctggagcgg	gcccacctgt	gcccttgaca	1560
tcgatgagtg	tgcttcgaac	ccgtgtgcgg	ccggtggcac	ctgtgtggac	caggtggacg	1620
gctttgagtg	catctgcccc	gagcagtggg	tgggggccac	ctgccagctg	gacgtcaacg	1680
actgtcgcgg	gcagtgtcag	catgggggca	cctgcaagga	cctggtgaac	gggtaccagt	1740
gtgtgtgccc	acggggcttc	ggaggccggc	attgcgagct	ggaacgagac	gagtgtgcca	1800
gcagcccctg	ccacagcggc	ggcctctgcg	aggacctggc	cgacggcttc	cactgccact	1860
gcccccaggg	cttctccggg	cctctctgtg	aggtggatgt	cgacctttgt	gagccaagcc	1920
cctgccggaa	cggcgctcgc	tgctataacc	tggagggtga	ctattactgc	gcctgccctg	1980
atgactttgg	tggcaagaac	tgctccgtgc	cccgcgagcc	gtgccctggc	ggggcctgca	2040
gagtgatcga	tggctgcggg	tcagacgcgg	ggcctgggat	gcctggcaca	gcagcctccg	2100
gcgtgtgtgg	cccccatgga	cgctgcgtca	gccagccagg	gggcaacttt	tcctgcatct	2160
gtgacagtgg	ctttactggc	acctactgcc	atgagaacat	tgacgactgc	ctgggccagc	2220
cctgccgcaa	tgggggcaca	tgcatcgatg	aggtggacgc	cttccgctgc	ttctgcccca	2280
gcggctggga	gggcgagctc	tgcgacacca	atcccaacga	ctgccttccc	gatccctgcc	2340
acagccgcgg	ccgctgctac	gacctggtca	atgacttcta	ctgtgcgtgc	gacgacggct	2400
ggaagggcaa	gacctgccac	tcacgcgagt	tccagtgcga	tgcctacacc	tgcagcaacg	246 0
gtggcacctg	ctacgacagc	ggcgacacct	tccgctgcgc	ctgcccccc	ggctggaagg	2520
gcagcacctg	cgccgtcgcc	aagaacagca	gctgcctgcc	caacccctgt	gtgaatggtg	2580
gcacctgcgt	gggcagcggg	gcctccttct	cctgcatctg	ccgggacggc	tgggagggtc	2640
gtacttgcac	tcacaatacc	aacgactgca	accctctgcc	ttgctacaat	ggtggcatct	2700
gtgttgacgg	cgtcaactgg	ttccgctgcg	agtgtgcacc	tggcttcgcg	gggcctgact	2760
				•		

			39467A.txt	. † x †		
gccgcatcaa	catcgacgag	tgccagtcct			acgtgtgtgg	2820
atgagatcaa	cgggtatcgc	tgtagctgcc	cacccggccg	agccggcccc	cggtgccagg	2880
aagtgatcg g	gttcgggaga	tcctgctggt	cccggggcac	tccgttccca	cacggaagct	2940
cctgggtgga	agactgcaac	agctgccgct	gcctggatgg	ccgccgtgac	tgcagcaagg	3000
tgtggtgcgg	atggaagcct	tgtctgctgg	ccggccagcc	cgaggccctg	agcgcccagt	3060
gcccactggg	gcaaaggtgc	ctggagaagg	ccccaggcca	gtgtctgcga	ccaccctgtg	3120
aggcctgggg	ggagtgcggc	gcagaagagc	caccgagcac	cccctgcctg	ccacgctccg	3180
gccacctgga	caataactgt	gcccgcctca	ccttgcattt	caaccgtgac	cacgtgcccc	3240
agggcaccac	ggtgggcgcc	atttgctccg	ggatccgctc	cctgccagcc	acaagggctg	3300
tggcacggga	ccgcctgctg	gtgttgcttt	gcgaccgggc	gtcctcgggg	gccagtgccg	3360
tggaggtggc	cgtgtccttc	agccctgcca	gggacctgcc	tgacagcagc	ctgatccagg	3420
gcgcggccca	cgccatcgtg	gccgccatca	cccagcgggg	gaacagctca	ctgctcctgg	3480
ctgtcaccga	ggtcaaggtg	gagacggttg	ttacgggcgg	ctcttccaca	ggtctgctgg	3540
tgcctgtgct	gtgtggtgcc	ttcagcgtgc	tgtggctggc	gtgcgtggtc	ctgtgcgtgt	3600
ggtggacacg	caagcgcagg	aaagagcggg	agaggagccg	gctgccgcgg	gaggagagcg	3660
ccaacaacca	gtgggccccg	ctcaacccca	tccgcaaccc	catcgagcgg	ccggggggcc	3720
acaaggacgt	gctctaccag	tgcaagaact	tcacgccgcc	gccgcgcagg	gcggacgagg	3780
cgctgcccgg	gccggccggc	cacgcggccg	tcagggagga	tgaggaggac	gaggatctgg	3840
gccgcggtga	ggaggactcc	ctggaggcgg	agaagttcct	ctcacacaaa	ttcaccaaag	3900
atcctggccg	ctcgccgggg	aggccggccc	actgggcctc	aggccccaaa	gtggacaacc	3960
gcgcggtcag	gagcatcaat	gaggcccgct	acgccggcaa	ggagtagggg	cggctgccag	4020
ctgggccggg	acccagggcc	ctcggtggga	gccatgccgt	ctgccggacc	cggaggccga	4080
ggccatgtgc	atagtttctt	tattttgtgt	aaaaaaacca	ccaaaaacaa	aaaccaaatg	4140
tttattttct	acgtttcttt	aaccttgtat	aaattattca	gtaactgtca	ggctgaaaac	4200
aatggagtat	tctcggatag	ttgctatttt	tgtaaagttt	ccgtgcgtgg	cactcgctgt	4260
atgaaaggag	agagcaaagg	gtgtctgcgt	cgtcaccaaa	tcgtagcgtt	tgttaccaga	4320
ggttgtgcac	tgtttacaga	atcttccttt	tattcctcac	tcgggtttct	ctgtggctcc	4380
aggccaaagt	gccggtgaga	cccatggctg	tgttggtgtg	gcccatggct	gttggtggga	4440
cccgtggctg	atggtgtggc	ctgtggctgt	cggtgggact	cgtggctgtc	aatgggacct	4500
gtggctgtcg	gtgggaccta	cggtggtcgg	tgggaccctg	gttattgatg	tggccctggc	4560
tgccggcacg	gcccgtggct	gttgacgcac	ctgtggttgt	tagtggggcc	tgaggtcatc	4620
ggcgtggccc	aaggccggca	ggtcaacctc	gcgcttgctg	gccagtccac	cctgcctgcc	4680
gtctgtgctt	cctcctgccc	agaacgcccg	ctccagcgat	ctctccactg	tgctttcaga	4740
agtgcccttc	ctgctgcgca	gttctcccat	cctgggacgg	cggcagtatt	gaagctcgtg	4800

acaagtgcct tcacacagac ccctcgcaac tgtccacgcg tgccgtggca ccaggcgctg 4860 cccacctgcc ggccccggcc gccctcctc gtgaaagtgc atttttgtaa atgtgtacat 4920 attaaaggaa gcactctgta tatttgattg aataatgcca cca 4963

<210> 27 <211> 1200 <212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Jagged2, transcript variant 2

<400> 27

Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 10 15

Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu 20 25 30

Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45

Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His 50 60

Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala 65 70 75 80

Lys Val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro 85 90 95

Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly 100 105 110

Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 120 125

Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu 130 135 140

Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 155 160

Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp 165 170 175

Arg Trp Lys Ser Leu His Phe Ser Gly His Val Ala His Leu Glu Leu 180 185 190

Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn

39467A.txt.txt 195 200 205

Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp 210 220 Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 240 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys 245 250 255 Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe 260 265 270 Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val 275 280 285 Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys 290 295 300 Asp Lys Asp Leu Asn Tyr Cys Gly Ser His His Pro Cys Thr Asn Gly 305 310 315 320 Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro 325 330 335 Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr 340 345 Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly 355 360 365 Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu 370 380 Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys 385 390 395 400 Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val 405 410 415 Gly Ala Thr Cys Gln Leu Asp Val Asn Asp Cys Arg Gly Gln Cys Gln 420 425 430 His Gly Gly Thr Cys Lys Asp Leu Val Asn Gly Tyr Gln Cys Val Cys 435 440 445 Pro Arg Gly Phe Gly Gly Arg His Cys Glu Leu Glu Arg Asp Glu Cys 450 460 Ala Ser Ser Pro Cys His Ser Gly Gly Leu Cys Glu Asp Leu Ala Asp

39467A.txt.txt 465 470 475

Gly Phe His Cys His Cys Pro Gln Gly Phe Ser Gly Pro Leu Cys Glu 485 490 495

Val Asp Val Asp Leu Cys Glu Pro Ser Pro Cys Arg Asn Gly Ala Arg 500 505

Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys Ala Cys Pro Asp Asp Phe 515 520 525

Gly Gly Lys Asn Cys Ser Val Pro Arg Glu Pro Cys Pro Gly Gly Ala 530 540

Cys Arg Val Ile Asp Gly Cys Gly Ser Asp Ala Gly Pro Gly Met Pro 545 550 560

Gly Thr Ala Ala Ser Gly Val Cys Gly Pro His Gly Arg Cys Val Ser 565 570 575

Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys Asp Ser Gly Phe Thr Gly 580 585 590

Thr Tyr Cys His Glu Asn Ile Asp Asp Cys Leu Gly Gln Pro Cys Arg 595 600 605

Asn Gly Gly Thr Cys Ile Asp Glu Val Asp Ala Phe Arg Cys Phe Cys 610 620

Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp Thr Asn Pro Asn Asp Cys 625 630 635 640

Leu Pro Asp Pro Cys His Ser Arg Gly Arg Cys Tyr Asp Leu Val Asn 645 650 655

Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp Lys Gly Lys Thr Cys His 660 665 670

Ser Arg Glu Phe Gln Cys Asp Ala Tyr Thr Cys Ser Asn Gly Gly Thr 675 680 685

Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys Ala Cys Pro Pro Gly Trp 690 695 700

Lys Gly Ser Thr Cys Ala Val Ala Lys Asn Ser Ser Cys Leu Pro Asn 705 710 715 720

Pro Cys Val Asn Gly Gly Thr Cys Val Gly Ser Gly Ala Ser Phe Ser 725 730 735

Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg Thr Cys Thr His Asn Thr

WO 2005/014854

PCT/EP2004/008819

740

39467A.txt.txt 745

750

Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn Gly Gly Ile Cys Val Asp 765 Gly Val Asn Trp Phe Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro 770 780 Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln Ser Ser Pro Cys Ala Tyr 785 795 800 Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Ser Cys Pro 805 810 815 Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu Val Ile Gly Phe Gly Arg 820 825 830 Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro His Gly Ser Ser Trp Val 835 840 845 Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp Gly Arg Arg Asp Cys Ser 850 860 Lys Val Trp Cys Gly Trp Lys Pro Cys Leu Leu Ala Gly Gln Pro Glu 865 870 875 Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln Arg Cys Leu Glu Lys Ala 885 890 895 Pro Gly Gln Cys Leu Arg Pro Pro Cys Glu Ala Trp Gly Glu Cys Gly 900 905 910 Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu Pro Arg Ser Gly His Leu 915 920 925 Asp Asn Asn Cys Ala Arg Leu Thr Leu His Phe Asn Arg Asp His Val 930 940 Pro Gln Gly Thr Thr Val Gly Ala Ile Cys Ser Gly Ile Arg Ser Leu 945 950 955 960 Pro Ala Thr Arg Ala Val Ala Arg Asp Arg Leu Leu Val Leu Cys 965 970 975 Asp Arg Ala Ser Ser Gly Ala Ser Ala Val Glu Val Ala Val Ser Phe 980 985 990 Ser Pro Ala Arg Asp Leu Pro Asp Ser Ser Leu Ile Gln Gly Ala Ala 995 1000 1005

His Ala Ile Val Ala Ala Ile Thr Gln Arg Gly Asn Ser Ser Leu

	WU	2005	/0148	54										PCT/EP2	2004
	1010					1015		3946	7A.t	xt.t	xt 1020				
Leu	Leu 1025	Ala	۷al	Thr	Glu	Val 1030	Lys	٧a٦	Glu	Thr	Val 1035	۷a٦	Thr	Gly	
Gly	Ser 1040	ser	Thr	Gly	Leu	Leu 1045	va1	Pro	۷a٦	Leu	Cys 1050	Gly	Ala	Phe	
Ser	val 1055	Leu	Trp	Leu	Ala	Cys 1060	٧a٦	٧a٦	Leu	Cys	val 1065	Trp	Trp	Thr	
Arg	Lys 1070		Arg	Lys	Glu	Arg 1075	Glu	Arg	Ser	Arg	Leu 1080	Pro	Arg	Glu	
Glu	ser 1085	Ala	Asn	Asn	Gln	Trp 1090	Ala	Pro	Leu	Asn	Pro 1095	Ile	Arg	Asn	
Pro	Ile 1100	Glu	Arg	Pro	Gly	Gly 1105	His	Lys	Asp	٧a٦	Leu 1110	туг	Gln	Cys	
Lys	Asn 1115		Thr	Pro	Pro	Pro 1120	Arg	Arg	Ala	Asp	Glu 1125	Ala	Leu	Pro	
Gly	Pro 1130	Ala	Gly	нis	Ala	Ala 1135	٧al	Arg	Glu	Asp	Glu 1140	Glu	Asp	Glu	
Asp	Leu 1145	Gly	Arg	Gly	Glu	Glu 1150	Asp	Ser	Leu	Glu	Ala 1155	Glu	Lys	Phe	
Leu	ser 1160	His	Lys	Phe	Thr	Lys 1165	Asp	Pro	Gly	Arg	ser 1170	Pro	Gly	Arg	
Pro	Ala 1175		Trp	Ala	Ser	Gly 1180	Pro	Lys	Val	Asp	Asn 1185	Arg	Ala	Val	
Arg	Ser 1190		Asn	Glu	Ala	Arg 1195	Tyr	Ala	Gly	Lys	Glu 1200				
<21 <21 <21 <21	1> 3: 2> Di	158 NA	sapi	ens											
<22 <22 <22	1> m	isc_ elta	feat lik	ure e 1	(Not	ch li	gand)							
<40 aaa	0> 2 ccgga	8 ac q	gggc	ccaa	c tt	ctggg	gcc	tgga	gaag	gg a	aacga	agtc	ccc	cccggtt	
														cggatat	1
															-

aaagaacggc gcctttggga agaggcggag accggcttta aagaaagaag tcttggtcct

60

120

180

gcggct	tggg	cgaggcaagg	gcgaggcaag	39467A.txt.ggcgctttct		cccgtggccc	240
tacgat	cccc	cgcgcgtccg	ccgctgttct	aaggagagaa	gtgggggccc	cccaggctcg	300
cgcgtg	gagc	gaagcagcat	gggcagtcgg	tgcgcgctgg	ccctggcggt	gctctcggcc	360
ttgctg	tgtc	aggtctggag	ctctggggtg	ttcgaactga	agctgcagga	gttcgtcaac	420
aagaag	gggc	tgctggggaa	ccgcaactgc	tgccgcgggg	gcgcggggcc	accgccgtgc	480
gcctgc	cgga	ccttcttccg	cgtgtgcctc	aagcactacc	aggccagcgt	gtcccccgag	540
ccgccc	tgca	cctacggcag	cgccgtcacc	cccgtgctgg	gcgtcgactc	cttcagtctg	600
cccgac	ggcg	ggggcgccga	ctccgcgttc	agcaacccca	tccgcttccc	cttcggcttc	660
acctgg	ccgg	gcaccttctc	tctgattatt	gaagctctcc	acacagattc	tcctgatgac	720
ctcgca	acag	aaaacccaga	aagactcatc	agccgcctgg	ccacccagag	gcacctgacg	780
gtgggc	gagg	agtggtccca	ggacctgcac	agcagcggcc	gcacggacct	caagtactcc	840
taccgc	ttcg	tgtgtgacga	acactactac	ggagagggct	gctccgtttt	ctgccgtccc	900
cgggac	gatg	ccttcggcca	cttcacctgt	ggggagcgtg	gggagaaagt	gtgcaaccct	960
ggctgg	aaag	ggccctactg	cacagagccg	atctgcctgc	ctggatgtga	tgagcagcat	1020
ggattt	tgtg	acaaaccagg	ggaatgcaag	tgcagagtgg	gctggcaggg	ccggtactgt	1080
gacgag	tgta	tccgctatcc	aggctgtctc	catggcacct	gccagcagcc	ctggcagtgc	1140
aactgc	cagg	aaggctgggg	gggccttttc	tgcaaccagg	acctgaacta	ctgcacacac	1200
cataag	ccct	gcaagaatgg	agccacctgc	accaacacgg	gccaggggag	ctacacttgc	1260
tcttgc	cggc	ctgggtacac	aggtgccacc	tgcgagctgg	ggattgacga	gtgtgacccc	1320
agccct	tgta	agaacggagg	gagctgcacg	gatctcgaga	acagctactc	ctgtacctgc	1380
ccacco	ggct	tctacggcaa	aatctgtgaa	ttgagtgcca	tgacctgtgc	ggacggccct	1440
tgcttt	aacg	ggggtcggtg	ctcagacagc	cccgatggag	ggtacagctg	ccgctgcccc	1500
gtgggc	tact	ccggcttcaa	ctgtgagaag	aaaattgact	actgcagctc	ttcaccctgt	1560
tctaat	ggtg	ccaagtgtgt	ggacctcggt	gatgcctacc	tgtgccgctg	ccaggccggc	1620
ttctcg	ggga	ggcactgtga	cgacaacgtg	gacgactgcg	cctcctcccc	gtgcgccaac	1680
gggggc	acct	gccgggatgg	cgtgaacgac	ttctcctgca	cctgcccgcc	tggctacacg	1740
ggcagg	aact	gcagtgcccc	cgtcagcagg	tgcgagcacg	caccctgcca	caatggggcc	1800
acctgo	cacc	agaggggcca	cggctatgtg	tgcgaatgtg	cccgaagcta	cgggggtccc	1860
aactgo	cagt	tcctgctccc	cgagctgccc	ccgggcccag	cggtggtgga	cctcactgag	1920
aagcta	ıgagg	gccagggcgg	gccattcccc	tgggtggccg	tgtgcgccgg	ggtcatcctt	1980
gtcctc	atgc	tgctgctggg	ctgtgccgct	gtggtggtct	gcgtccggct	gaggctgcag	2040
aagcac	cggc	ccccagccga	cccctgccgg	ggggagacgg	agaccatgaa	caacctggcc	2100
aactgo	cagc	gtgagaagga	catctcagtc	agcatcatcg	gggccacgca	gatcaagaac	2160
. accaac	aaga	aggcggactt	ccacggggac	cacagcgccg	acaagaatgg	cttcaaggcc	2220

39467A.txt.txt 2280 cgctacccag cggtggacta taacctcgtg caggacctca agggtgacga caccgccgtc 2340 agggacgcgc acagcaagcg tgacaccaag tgccagcccc agggctcctc aggggaggag 2400 aaggggaccc cgaccacact caggggtgga gaagcatctg aaagaaaaag gccggactcg 2460 ggctgttcaa cttcaaaaga caccaagtac cagtcggtgt acgtcatatc cgaggagaag gatgagtgcg tcatagcaac tgaggtgtaa aatggaagtg agatggcaag actcccgttt 2520 2580 ctcttaaaat aagtaaaatt ccaaggatat atgccccaac gaatgctgct gaagaggagg 2640 gaggcctcgt ggactgctgc tgagaaaccg agttcagacc gagcaggttc tcctcctgag 2700 gtcctcgacg cctgccgaca gcctgtcgcg gcccggccgc ctgcggcact gccttccgtg 2760 acgtcgccgt tgcactatgg acagttgctc ttaagagaat atatatttaa atgggtgaac tgaattacgc ctaagaagca tgcactgcct gagtgtatat tttggattct tatgagccag 2820 2880 tcttttcttg aattagaaac acaaacactg cctttattgt cctttttgat acgaagatgt gctttttcta gatggaaaag atgtgtgtta ttttttggat ttgtaaaaat atttttcatg 2940 3000 atatctgtaa agcttgagta ttttgtgatg ttcgtttttt ataatttaaa ttttggtaaa 3060 tatgtacaaa ggcacttcgg gtctatgtga ctatattttt ttgtatataa atgtatttat 3120 qqaatattqt gccaatgtta tttgagtttt ttactgtttt gttaatgaag aaattccttt 3158 ttaaaatatt tttccaaaat aaattttatg aggaattc

```
<210> 29
<211> 723
<212> PRT
```

<213> Homo sapiens

<220> <221> misc_feature <223> Delta like 1 (Notch ligand) <400> 29

Met Gly Ser Arg Cys Ala Leu Ala Leu Ala Val Leu Ser Ala Leu Leu 1 5 10 15

Cys Gln Val Trp Ser Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe 20 25 30

Val Asn Lys Lys Gly Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly 35 40

Ala Gly Pro Pro Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu 50 60

Lys His Tyr Gln Ala Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly 65 70 75 80

Ser Ala Val Thr Pro Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp 90 95

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Gly Gly Gla Asp Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe 100 105 110 Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His 115 120 125 Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile 130 140 Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser 145 150 155 160 Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg 165 170 175 Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys 180 185 190 Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly 195 200 205 Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro 210 215 220 Ile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro 225 230 235 240 Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu 245 250 250 Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp 260 265 270 Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp 275 280 285 Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys 290 295 300 Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr 305 310 315Thr Gly Ala Thr Cys Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro 325 330 335 Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys 340 345 350Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met 355 360 365

39467A.txt.txt

Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser 370 375 380 Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe 385 390 395 400 Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn 405 410 415Gly Ala Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln 420 425 Ala Gly Phe Ser Gly Arg His Cys Asp Asp Asp Val Asp Asp Cys Ala 435 440 445 Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp 450 455 460Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala 465 470 475 480 Pro Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys 485 490 495 His Gln Arg Gly His Gly Tyr Val Cys Glu Cys Ala Arg Ser Tyr Gly 500 505 Gly Pro Asn Cys Gln Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala 515 520 525 Val Val Asp Leu Thr Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro 530 540 Trp Val Ala Val Cys Ala Gly Val Ile Leu Val Leu Met Leu Leu 545 550 555 560 Gly Cys Ala Ala Val Val Cys Val Arg Leu Arg Leu Gln Lys His
565 570 575 Arg Pro Pro Ala Asp Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn 580 585 Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly 595 600 Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp 610 615 620 His Ser Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp 625 630 635 640

39467A.txt.txt

Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp 645 655

Ala His Ser Lys Arg Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly 660 665

Glu Glu Lys Gly Thr Pro Thr Thr Leu Arg Gly Gly Glu Ala Ser Glu 675 680 685

Arg Lys Arg Pro Asp Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr 690 700

Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala 705 715 720

Thr Glu Val

<210> 30 1971

DNA Homo sapiens

<220>

<221>

misc_feature
Delta like 3 (Notch ligand)

<400> 60 gaaggccatg gtctccccac ggatgtccgg gctcctctcc cagactgtga tcctagcgct 120 cattttcctc ccccagacac ggcccgctgg cgtcttcgag ctgcagatcc actctttcgg 180 gccgggtcca ggccctgggg ccccgcggtc cccctgcagc gcccggctcc cctgccgcct 240 cttcttcaga gtctgcctga agcctgggct ctcagaggag gccgccgagt ccccgtgcgc 300 cctgggcgcg gcgctgagtg cgcgcggacc ggtctacacc gagcagcccg gagcgcccgc 360 420 caccttctct ttcatcatcg aaacctggag agaggagtta ggagaccaga ttggagggcc 480 cgcctggagc ctgctggcgc gcgtggctgg caggcggcgc ttggcagccg gaggcccgtg 540 ggcccgggac attcagcgcg caggcgcctg ggagctgcgc ttctcgtacc gcgcgcgctg 600 cqaqccqcct qccqtcggga ccgcgtgcac gcgcctctgc cgtccgcgca gcgccccctc 660 gcggtqcggt ccgggactgc gcccctgcgc accgctcgag gacgaatgtg aggcgccgct 720 ggtgtgccga gcaggctgca gccctgagca tggcttctgt gaacagcccg gtgaatgccg 780 atgcctagag ggctggactg gacccctctg cacggtccct gtctccacca gcagctgcct cagccccagg ggcccgtcct ctgctaccac cggatgcctt gtccctgggc ctgggccctg 840 900 tgacgggaac ccgtgtgcca atggaggcag ctgtagtgag acacccaggt cctttgaatg 960 cacctgcccg cgtgggttct acgggctgcg gtgtgaggtg agcggggtga CatgtgCaga

```
39467A.txt.txt
tggaccctgc ttcaacggcg gcttgtgtgt cgggggtgca gaccctgact ctgcctacat
                                                                     1020
ctgccactgc ccacctggtt tccaaggctc caactgtgag aagagggtgg accggtgcag
                                                                     1080
cctgcagcca tgccgcaatg gcggactctg cctggacctg ggccacgccc tgcgctgccg
                                                                     1140
ctgccgcgcc ggcttcgcgg gtcctcgctg cgagcacgac ctggacgact gcgcgggccg
                                                                     1200
cgcctgcgct aacggcggca cgtgtgtgga gggcggcggc gcgcaccgct gctcctgcgc
                                                                     1260
gctgggcttc ggcggccgcg actgccgcga gcgcgcggac ccgtgcgccg cgcgccctg
                                                                     1320
tgctcacggc ggccgctgct acgcccactt ctccggcctc gtctgcgctt gcgctcccgg
                                                                     1380
ctacatggga gcgcggtgtg agttcccagt gcaccccgac ggcgcaagcg ccttgcccgc
                                                                     1440
ggccccgccg ggcctcaggc ccggggaccc tcagcgctac cttttgcctc cggctctggg
                                                                     1500
actgctcgtg gccgcggcg tggccggcgc tgcgctcttg ctggtccacg tgcgccgccg
                                                                     1560
tggccactcc caggatgctg ggtctcgctt gctggctggg accccggagc cgtcagtcca
                                                                     1620
cgcactcccg gatgcactca acaacctaag gacgcaggag ggttccgggg atggtccgag
                                                                     1680
ctcgtccgta gattggaatc gccctgaaga tgtagaccct caagggattt atgtcatatc
                                                                     1740
tgctccttcc atctacgctc gggaggtagc gacgcccctt ttccccccgc tacacactqq
                                                                     1800
gcgcgctggg cagaggcagc acctgctttt tccctaccct tcctcgattc tgtccgtgaa
                                                                     1860
atgaattggg tagagtetet ggaaggtttt aageceattt teagttetaa ettaetttea
                                                                     1920
tcctattttg catccctctt atcgttttga gctacctgcc atcttctctt t
                                                                     1971
      618
```

Met Val Ser Pro Arg Met Ser Gly Leu Leu Ser Gln Thr Val Ile Leu 1 5 10

Ala Leu Ile Phe Leu Pro Gln Thr Arg Pro Ala Gly Val Phe Glu Leu 20 25 30

Gln Ile His Ser Phe Gly Pro Gly Pro Gly Pro Gly Ala Pro Arg Ser 40 45

Pro Cys Ser Ala Arg Leu Pro Cys Arg Leu Phe Phe Arg Val Cys Leu 50 60

Lys Pro Gly Leu Ser Glu Glu Ala Ala Glu Ser Pro Cys Ala Leu Gly 65 70 75 80

Ala Ala Leu Ser Ala Arg Gly Pro Val Tyr Thr Glu Gln Pro Gly Ala

Homo sapiens

<220>

<221> misc_feature

Delta like 3 (Notch ligand)

<400>

39467A.txt.txt 90

95

Pro Ala Pro Asp Leu Pro Leu Pro Asp Gly Leu Leu Gln Val Pro Phe 100 105 110 Arg Asp Ala Trp Pro Gly Thr Phe Ser Phe Ile Ile Glu Thr Trp Arg
115 120 125 Glu Glu Leu Gly Asp Gln Ile Gly Gly Pro Ala Trp Ser Leu Leu Ala 130 140 Arg Val Ala Gly Arg Arg Arg Leu Ala Ala Gly Gly Pro Trp Ala Arg 145 150 155 160 Asp Ile Gln Arg Ala Gly Ala Trp Glu Leu Arg Phe Ser Tyr Arg Ala 165 170 175 Arg Cys Glu Pro Pro Ala Val Gly Thr Ala Cys Thr Arg Leu Cys Arg 180 185 190 Pro Arg Ser Ala Pro Ser Arg Cys Gly Pro Gly Leu Arg Pro Cys Ala 195 200 205 Pro Leu Glu Asp Glu Cys Glu Ala Pro Leu Val Cys Arg Ala Gly Cys 210 215 220 Ser Pro Glu His Gly Phe Cys Glu Gln Pro Gly Glu Cys Arg Cys Leu 225 230 235 240 Glu Gly Trp Thr Gly Pro Leu Cys Thr Val Pro Val Ser Thr Ser Ser 245 250 255 Cys Leu Ser Pro Arg Gly Pro Ser Ser Ala Thr Thr Gly Cys Leu Val 260 265 270 Pro Gly Pro Gly Pro Cys Asp Gly Asn Pro Cys Ala Asn Gly Gly Ser 275 280 285 Cys Ser Glu Thr Pro Arg Ser Phe Glu Cys Thr Cys Pro Arg Gly Phe 290 295 300 Tyr Gly Leu Arg Cys Glu Val Ser Gly Val Thr Cys Ala Asp Gly Pro 305 310 315Cys Phe Asn Gly Gly Leu Cys Val Gly Gly Ala Asp Pro Asp Ser Ala 325 330 335 Tyr Ile Cys His Cys Pro Pro Gly Phe Gln Gly Ser Asn Cys Glu Lys 340 345 350 Arg Val Asp Arg Cys Ser Leu Gln Pro Cys Arg Asn Gly Gly Leu Cys

WO 2005/014854

PCT/EP2004/008819

355

39467A.txt.txt 0 365

Leu Asp Leu Gly His Ala Leu Arg Cys Arg Cys Arg Ala Gly Phe Ala 370 380

Gly Pro Arg Cys Glu His Asp Leu Asp Asp Cys Ala Gly Arg Ala Cys 385 390 395 400

Ala Asn Gly Gly Thr Cys Val Glu Gly Gly Gly Ala His Arg Cys Ser 405 410 415

Cys Ala Leu Gly Phe Gly Gly Arg Asp Cys Arg Glu Arg Ala Asp Pro 420 425 430

Cys Ala Ala Arg Pro Cys Ala His Gly Gly Arg Cys Tyr Ala His Phe 435 440 445

Ser Gly Leu Val Cys Ala Cys Ala Pro Gly Tyr Met Gly Ala Arg Cys 450 460

Glu Phe Pro Val His Pro Asp Gly Ala Ser Ala Leu Pro Ala Ala Pro 465 470 475 480

Pro Gly Leu Arg Pro Gly Asp Pro Gln Arg Tyr Leu Leu Pro Pro Ala 485 490 495

Leu Gly Leu Leu Val Ala Ala Gly Val Ala Gly Ala Ala Leu Leu Leu 500 505 510

Val His Val Arg Arg Gly His Ser Gln Asp Ala Gly Ser Arg Leu 515 520 525

Leu Ala Gly Thr Pro Glu Pro Ser Val His Ala Leu Pro Asp Ala Leu 530 540

Asn Asn Leu Arg Thr Gln Glu Gly Ser Gly Asp Gly Pro Ser Ser 545 550 555

Val Asp Trp Asn Arg Pro Glu Asp Val Asp Pro Gln Gly Ile Tyr Val 565 570 575

Ile Ser Ala Pro Ser Ile Tyr Ala Arg Glu Val Ala Thr Pro Leu Phe 580 590

Pro Pro Leu His Thr Gly Arg Ala Gly Gln Arg Gln His Leu Leu Phe 595 600 605

Pro Tyr Pro Ser Ser Ile Leu Ser Val Lys 610 615

<210> 32

39467A.txt.txt

<211> 3383 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Delta like 4 (Notch ligand)

<400> 32

gctgcgcgca ggccgggaac acgaggccaa gagccgcagc cccagccgcc ttqqtqcaqc 60 gtacaccggc actagcccgc ttgcagcccc aggattagac agaagacgcg tcctcggcgc 120 ggtcgccgcc cagccgtagt cacctggatt acctacagcg gcagctgcag cggagccagc 180 gagaaggcca aaggggagca gcgtcccgag aggagcgcct cttttcaggg accccgccgg 240 ctggcggacg cgcgggaaag cggcgtcgcg aacagagcca gattgagggc ccqcqqqtqq 300 agagagcgac gcccgagggg atggcggcag cgtcccggag cgcctctggc tgggcgctac 360 tgctgctggt ggcactttgg cagcagcgcg cggccggctc cggcgtcttc caqctqcagc 420 tgcaggagtt catcaacgag cgcggcgtac tggccagtgg gcggccttgc gagcccggct 480 gccggacttt cttccgcgtc tgccttaagc acttccaggc ggtcgtctcg cccqgaccct 540 gcaccttcgg gaccgtctcc acgccqqtat tqqqcaccaa ctccttcqct qtccqqqacq 600 acagtagcgg cggggggcgc aaccctctcc aactgccctt caatttcacc tgqccqggta 660 ccttctcgct catcatcgaa gcttggcacg cgccaggaga cgacctgcgg ccagaggcct 720 tgccaccaga tgcactcatc agcaagatcg ccatccaggg ctccctagct gtgggtcaga 780 actggttatt ggatgagcaa accagcaccc tcacaaggct gcgctactct taccgggtca 840 tctgcagtga caactactat ggagacaact gctcccgcct gtgcaagaag cgcaatgacc 900 acttcggcca ctatgtgtgc cagccagatg gcaacttgtc ctgcctgccc ggttggactg 960 gggaatattg ccaacagcct atctgtcttt cgggctgtca tgaacagaat ggctactgca 1020 gcaagccagc agagtgcctc tgccgcccag gctggcaggg ccggctgtgt aacgaatgca 1080 tcccccacaa tggctgtcgc cacggcacct gcagcactcc ctggcaatgt acttgtgatg 1140 1200 agggctgggg aggcctgttt tgtgaccaag atctcaacta ctgcacccac cactccccat gcaagaatgg ggcaacgtgc tccaacagtg ggcagcgaag ctacacctgc acctgtcgcc 1260 caggctacac tggtgtggac tgtgagctgg agctcagcga gtgtgacagc aacccctgtc 1320 1380 gcaatggagg cagctgtaag gaccaggagg atggctacca ctgcctgtgt cctccgggct 1440 actatggcct gcattgtgaa cacagcacct tgagctgcgc cgactccccc tgcttcaatg ggggctcctg ccgggagcgc aaccaggggg ccaactatgc ttgtgaatgt ccccccaact 1500 1560 tcaccggctc caactgcgag aagaaagtgg acaggtgcac cagcaacccc tgtgccaacg 1620 ggggacagtg cctgaaccga ggtccaagcc gcatgtgccg ctgccgtcct ggattcacgg gcacctactg tgaactccac gtcagcgact gtgcccgtaa cccttgcgcc cacggtggca 1680 cttqccatqa cctggagaat gggctcatgt gcacctgccc tgccggCttc tctggccgac 1740

```
39467A.txt.txt
gctgtgaggt gcggacatcc atcgatgcct gtgcctcgag tccctgcttc aacagggcca
                                                                   1800
cctgctacac cgacctctcc acagacacct ttgtgtgcaa ctgcccttat ggctttgtgg
                                                                   1860
gcagccgctg cgagttcccc gtgggcttgc cqcccaqctt cccctqqqtq qccqtctcqc
                                                                   1920
tgggtgtggg gctggcagtg ctgctggtac tgctgggcat ggtqqcagtq gctqtqcgqc
                                                                   1980
agctgcggct tcgacggccg gacgacggca gcagggaagc catgaacaac ttgtcggact
                                                                   2040
tccagaagga caacctgatt cctgccgccc agcttaaaaa cacaaaccag aagaaggagc
                                                                   2100
tggaagtgga ctgtggcctg gacaagtcca actgtggcaa acagcaaaac cacacattgg
                                                                   2160
actataatct ggccccaggg cccctggggc gggggaccat gccaggaaag tttccccaca
                                                                   2220
gtgacaagag cttaggagag aaggcgccac tgcggttaca cagtgaaaag ccagagtgtc
                                                                   2280
ggatatcagc gatatgctcc cccagggact ccatgtacca gtctgtgtgt ttgatatcag
                                                                   2340
                                                                   2400
aggagaggaa tgaatgtgtc attgccacgg aggtataagg caggagccta cctggacatc
cctgctcagc cccgcggctg gaccttcctt ctgcattgtt tacattgcat cctggatggg
                                                                   2460
acgtttttca tatgcaacgt gctgctctca ggaggaggag ggaatggcag gaaccggaca
                                                                   2520
gactgtgaac ttgccaagag atgcaatacc cttccacacc tttgggtgtc tgtctggcat
                                                                  2580
2640
ccctqccaqt aqtqqccttc aqqqqqctcc ttccqqqqct ccqqcctgtt ttccagagag
                                                                   2700
agtggcagta gccccatggg gcccggagct gctgtggcct ccactggcat ccgtgtttcc
                                                                   2760
aaaagtgcct ttggcccagg ctccacggcg acagttgggc ccaaatcaga aaggagagag
                                                                   2820
ggggccaatg agggcagggc ctcctgtggg ctggaaaacc actgggtgcg tctcttgctg
                                                                   2880
gggtttqccc tggaggtgag gtgagtgctc gagggagggg agtgctttct gccccatgcc
                                                                   2940
tccaactact gtatgcaggc ctggctctct ggtctaggcc ctttgggcaa gaatgtccgt
                                                                   3000
                                                                   3060
ctaccogget tecaccaece tetggeeetg ggettetgta ageagaeagg cagagggeet
gcccctccca ccagccaagg gtgccaggcc taactggggc actcagggca gtgtgttgga
                                                                   3120
aattccactg agggggaaat caggtgctgc ggccgcctgg gccctttcct ccctcaagcc
                                                                   3180
                                                                   3240
catctccaca acctcgagcc tgggctctgg tccactactg ccccagacca ccctcaaagc
tggtcttcag aaatcaataa tatgagtttt tattttgttt ttttttttt ttttgtagtt
                                                                   3300
tattttggag tctagtattt caataattta agaatcagaa gcactgacct ttctacattt
                                                                   3360
                                                                   3383
tataacatta ttttgtatat aat
```

```
<210> 33
<211> 685
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Delta like 4 (Notch ligand)
<400> 33
```

39467A.txt.txt

Met Ala Ala Ala Ser Arg Ser Ala Ser Gly Trp Ala Leu Leu Leu 10 15 Val Ala Leu Trp Gln Gln Arg Ala Ala Gly Ser Gly Val Phe Gln Leu 20 25 30 Gln Leu Gln Glu Phe Ile Asn Glu Arg Gly Val Leu Ala Ser Gly Arg 35 40 45 Pro Cys Glu Pro Gly Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His 50 60 Phe Gln Ala Val Val Ser Pro Gly Pro Cys Thr Phe Gly Thr Val Ser 65 70 75 80 Thr Pro Val Leu Gly Thr Asn Ser Phe Ala Val Arg Asp Asp Ser Ser 90 95 Gly Gly Arg Asn Pro Leu Gln Leu Pro Phe Asn Phe Thr Trp Pro $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ Gly Thr Phe Ser Leu Ile Ile Glu Ala Trp His Ala Pro Gly Asp Asp 115 120 125 Leu Arg Pro Glu Ala Leu Pro Pro Asp Ala Leu Ile Ser Lys Ile Ala 130 140 Ile Gln Gly Ser Leu Ala Val Gly Gln Asn Trp Leu Leu Asp Glu Gln 145 150 155 160 Thr Ser Thr Leu Thr Arg Leu Arg Tyr Ser Tyr Arg Val Ile Cys Ser 165 170 175 Asp Asn Tyr Tyr Gly Asp Asn Cys Ser Arg Leu Cys Lys Lys Arg Asn 180 185 190 Asp His Phe Gly His Tyr Val Cys Gln Pro Asp Gly Asn Leu Ser Cys 195 200 205 Leu Pro Gly Trp Thr Gly Glu Tyr Cys Gln Gln Pro Ile Cys Leu Ser 210 215 220 Gly Cys His Glu Gln Asn Gly Tyr Cys Ser Lys Pro Ala Glu Cys Leu 225 230 235 240 Cys Arg Pro Gly Trp Gln Gly Arg Leu Cys Asn Glu Cys Ile Pro His 245 250 255 Asn Gly Cys Arg His Gly Thr Cys Ser Thr Pro Trp Gln Cys Thr Cys 260 265 270

39467A.txt.txt

Asp Glu Gly Trp Gly Gly Leu Phe Cys Asp Gln Asp Leu Asn Tyr Cys 275 280 285 Thr His His Ser Pro Cys Lys Asn Gly Ala Thr Cys Ser Asn Ser Gly 290 295 300 Gln Arg Ser Tyr Thr Cys Thr Cys Arg Pro Gly Tyr Thr Gly Val Asp 305 310 315 Cys Glu Leu Glu Leu Ser Glu Cys Asp Ser Asn Pro Cys Arg Asn Gly 325 330 335 Gly Ser Cys Lys Asp Gln Glu Asp Gly Tyr His Cys Leu Cys Pro Pro 340 345 Gly Tyr Tyr Gly Leu His Cys Glu His Ser Thr Leu Ser Cys Ala Asp 355 360 365 Ser Pro Cys Phe Asn Gly Gly Ser Cys Arg Glu Arg Asn Gln Gly Ala 370 380 Asn Tyr Ala Cys Glu Cys Pro Pro Asn Phe Thr Gly Ser Asn Cys Glu 385 390 400 Lys Lys Val Asp Arg Cys Thr Ser Asn Pro Cys Ala Asn Gly Gly Gln 405 410 415 Cys Leu Asn Arg Gly Pro Ser Arg Met Cys Arg Cys Arg Pro Gly Phe 420 425 430Thr Gly Thr Tyr Cys Glu Leu His Val Ser Asp Cys Ala Arg Asn Pro 435 440 445 Cys Ala His Gly Gly Thr Cys His Asp Leu Glu Asn Gly Leu Met Cys 450 455 460 Thr Cys Pro Ala Gly Phe Ser Gly Arg Arg Cys Glu Val Arg Thr Ser 465 470 475 Ile Asp Ala Cys Ala Ser Ser Pro Cys Phe Asn Arg Ala Thr Cys Tyr 485 490 495 Thr Asp Leu Ser Thr Asp Thr Phe Val Cys Asn Cys Pro Tyr Gly Phe 500 505 510 Val Gly Ser Arg Cys Glu Phe Pro Val Gly Leu Pro Pro Ser Phe Pro 515 520 525 Trp Val Ala Val Ser Leu Gly Val Gly Leu Ala Val Leu Leu Val Leu 530 540

39467A.txt.txt

Leu Gly Met Val Ala Val Ala Val Arg Gln Leu Arg Leu Arg Arg Pro 545 550 560 Asp Asp Gly Ser Arg Glu Ala Met Asn Asn Leu Ser Asp Phe Gln Lys 565 570 575 Asp Asn Leu Ile Pro Ala Ala Gln Leu Lys Asn Thr Asn Gln Lys Lys 580 585 590 Glu Leu Glu Val Asp Cys Gly Leu Asp Lys Ser Asn Cys Gly Lys Gln 595 600 605 Gln Asn His Thr Leu Asp Tyr Asn Leu Ala Pro Gly Pro Leu Gly Arg 610 620 Gly Thr Met Pro Gly Lys Phe Pro His Ser Asp Lys Ser Leu Gly Glu 625 630 635 Lys Ala Pro Leu Arg Leu His Ser Glu Lys Pro Glu Cys Arg Ile Ser 645 650 655 Ala Ile Cys Ser Pro Arg Asp Ser Met Tyr Gln Ser Val Cys Leu Ile 660 665 670 Ser Glu Glu Arg Asn Glu Cys Val Ile Ala Thr Glu Val 675 680 685 <210> 34 5077 <211> <212> DNA Homo sapiens <220> misc_feature <221> Jagged2, transcript variant 1 <400> 60

ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg 120 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc 180 240 gccagcgagc cggagctgcc gccgcccctg cacgcccgcc gcccaggccc gcgcgccgcg gcgctgcgct cgaccccgcc cgcgccgccg ccgccgccgc ctctgccgct gccgctgcct 300 ctgcgggcgc tcggagggcg ggcgggcgct gggaggccgg cgcggcggct gggagccggg 360 cgcgggcggc ggcggcgggg ccggggcgggc gggtcgcggg ggcaatgcgg gcgcagggcc 420 480 ccatgggcta tttcgagctg cagctgagcg cgctgcggaa cgtgaacggg gagctgctga 540 gcggcgcctg ctgtgacggc gacggccgga caacgcgcgc ggggggctgc ggccacgacg 600

agtgcgacac	gtacgtgcgc	gtgtgcctta	39467A.txt aggagtacca		acgcccacgg	660
ggccctgcag	ctacggccac	ggcgccacgc	ccgtgctggg	cggcaactcc	ttctacctgc	720
cgccggcggg	cgctgcgggg	gaccgagcgc	gggcgcgggc	ccgggccggc	ggcgaccagg	780
acccgggcct	cgtcgtcatc	cccttccagt	tcgcctggcc	gcgctccttt	accctcatcg	840
tggaggcctg	ggactgggac	aacgatacca	ccccgaatga	ggagctgctg	atcgagcgag	900
tgtcgcatgc	cggcatgatc	aacccggagg	accgctggaa	gagcctgcac	ttcagcggcc	960
acgtggcgca	cctggagctg	cagatccgcg	tgcgctgcga	cgagaactac	tacagcgcca	1020
cttgcaacaa	gttctgccgg	ccccgcaacg	actttttcgg	ccactacacc	tgcgaccagt	1080
acggcaacaa	ggcctgcatg	gacggctgga	tgggcaagga	gtgcaaggaa	gctgtgtgta	1140
aacaagggtg	taatttgctc	cacgggggat	gcaccgtgcc	tggggagtgc	aggtgcagct	1200
acggctggca	agggaggttc	tgcgatgagt	gtgtccccta	ccccggctgc	gtgcatggca	1260
gttgtgtgga	gccctggcag	tgcaactgtg	agaccaactg	gggcggcctg	ctctgtgaca	1320
aagacctgaa	ctactgtggc	agccaccacc	cctgcaccaa	cggaggcacg	tgcatcaacg	1380
ccgagcctga	ccagtaccgc	tgcacctgcc	ctgacggcta	ctcgggcagg	aactgtgaga	1440
aggctgagca	cgcctgcacc	tccaacccgt	gtgccaacgg	gggctcttgc	catgaggtgc	1500
cgtccggctt	cgaatgccac	tgcccatcgg	gctggagcgg	gcccacctgt	gcccttgaca	1560
tcgatgagtg	tgcttcgaac	ccgtgtgcgg	ccggtggcac	ctgtgtggac	caggtggacg	1620
gctttgagtg	catctgcccc	gagcagtggg	tgggggccac	ctgccagctg	gacgccaatg	1680
agtgtgaagg	gaagccatgc	cttaacgctt	tttcttgcaa	aaacctgatt	ggcggctatt	1740
actgtgattg	catcccgggc	tggaagggca	tcaactgcca	tatcaacgtc	aacgactgtc	1800
gcgggcagtg	tcagcatggg	ggcacctgca	aggacctggt	gaacgggtac	cagtgtgtgt	1860
gcccacgggg	cttcggaggc	cggcattgcg	agctggaacg	agacgagtgt	gccagcagcc	1920
cctgccacag	cggcggcctc	tgcgaggacc	tggccgacgg	cttccactgc	cactgccccc	1980
agggcttctc	cgggcctctc	tgtgaggtgg	atgtcgacct	ttgtgagcca	agcccctgcc	2040
ggaacggcgc	tcgctgctat	aacctggagg	gtgactatta	ctgcgcctgc	cctgatgact	2100
ttggtggcaa	gaactgctcc	gtgccccgcg	agccgtgccc	tggcggggcc	tgcagagtga	2160
tcgatggctg	cgggtcagac	gcggggcctg	ggatgcctgg	cacagcagcc	tccggcgtgt	2220
gtggccccca	tggacgctgc	gtcagccagc	cagggggcaa	cttttcctgc	atctgtgaca	2280
gtggctttac	tggcacctac	tgccatgaga	acattgacga	ctgcctgggc	cagccctgcc	2340
gcaatggggg	cacatgcatc	gatgaggtgg	acgccttccg	ctgcttctgc	cccagcggct	2400
gggagggcga	gctctgcgac	accaatccca	acgactgcct	tcccgatccc	tgccacagcc	2460
gcggccgctg	ctacgacctg	gtcaatgact	tctactgtgc	gtgcgacgac	ggctggaagg	2520
gcaagacctg	ccactcacgc	gagttccagt	gcgatgccta	cacctgcagc	aacggtggca	2580
cctgctacga	cagcggcgac	accttccgct	gcgcctgccc	ccccggctgg	aagggcagca	2640

			204674 +			
cctgcgccgt	cgccaagaac	agcagctgcc	39467A.txt tgcccaaccc		ggtggcacct	2700
gcgtgggcag	cggggcctcc	ttctcctgca	tctgccggga	cggctgggag	ggtcgtactt	2760
gcactcacaa	taccaacgac	tgcaaccctc	tgccttgcta	caatggtggc	atctgtgttg	2820
acggcgtcaa	ctggttccgc	tgcgagtgtg	cacctggctt	cgcggggcct	gactgccgca	2880
tcaacatcga	cgagtgccag	tcctcgccct	gtgcctacgg	ggccacgtgt	gtggatgaga	2940
tcaacgggta	tcgctgtagc	tgcccacccg	gccgagccgg	ccccggtgc	caggaagtga	3000
tcgggttcgg	gagatcctgc	tggtcccggg	gcactccgtt	cccacacgga	agctcctggg	3060
tggaagactg	caacagctgc	cgctgcctgg	atggccgccg	tgactgcagc	aaggtgtggt	3120
gcggatggaa	gccttgtctg	ctggccggcc	agcccgaggc	cctgagcgcc	cagtgcccac	3180
tggggcaaag	gtgcctggag	aaggccccag	gccagtgtct	gcgaccaccc	tgtgaggcct	3240
ggggggagtg	cggcgcagaa	gagccaccga	gcaccccctg	cctgccacgc	tccggccacc	3300
tggacaataa	ctgtgcccgc	ctcaccttgc	atttcaaccg	tgaccacgtg	ccccagggca	3360
ccacggtggg	cgccatttgc	tccgggatcc	gctccctgcc	agccacaagg	gctgtggcac	3420
gggaccgcct	gctggtgttg	ctttgcgacc	gggcgtcctc	gggggccagt	gccgtggagg	3480
tggccgtgtc	cttcagccct	gccagggacc	tgcctgacag	cagcctgatc	cagggcgcgg	3540
cccacgccat	cgtggccgcc	atcacccagc	gggggaacag	ctcactgctc	ctggctgtca	3600
ccgaggtcaa	ggtggagacg	gttgttacgg	gcggctcttc	cacaggtctg	ctggtgcctg	3660
tgctgtgtgg	tgccttcagc	gtgctgtggc	tggcgtgcgt	ggtcctgtgc	gtgtggtgga	3720
çacgcaagcg	caggaaagag	cgggagagga	gccggctgcc	gcgggaggag	agcgccaaca	3780
accagtgggc	cccgctcaac	cccatccgca	accccatcga	gcggccgggg	ggccacaagg	3840
acgtgctcta	ccagtgcaag	aacttcacgc	cgccgccgcg	cagggcggac	gaggcgctgc	3900
ccgggccggc	cggccacgcg	gccgtcaggg	aggatgagga	ggacgaggat	ctgggccgcg	3960
gtgaggagga	ctccctggag	gcggagaagt	tcctctcaca	caaattcacc	aaagatcctg	4020
gccgctcgcc	ggggaggccg	gcccactggg	cctcaggccc	caaagtggac	aaccgcgcgg	4080
tcaggagcat	caatgaggcc	cgctacgccg	gcaaggagta	ggggcggctg	ccagctgggc	4140
cgggacccag	ggccctcggt	gggagccatg	ccgtctgccg	gacccggagg	ccgaggccat	4200
gtgcatagtt	tctttatttt	gtgtaaaaaa	accaccaaaa	acaaaaacca	aatgtttatt	4260
ttctacgttt	ctttaacctt	gtataaatta	ttcagtaact	gtcaggctga	aaacaatgga	4320
gtattctcgg	atagttgcta	tttttgtaaa	gtttccgtgc	gtggcactcg	ctgtatgaaa	4380
ggagagagca	aagggtgtct	gcgtcgtcac	caaatcgtag	cgtttgttac	cagaggttgt	4440
gcactgttta	cagaatcttc	cttttattcc	tcactcgggt	ttctctgtgg	ctccaggcca	4500
aagtgccggt	ga g acccatg	gctgtgttgg	tgtggcccat	ggctgttggt	gggacccgtg	4560
gctgatggtg	tggcctgtgg	ctgtcggtgg	gactcgtggc	tgtcaatggg	acctgtggct	4620
gtcggtggga	cctacggtgg	tcggtgggac	cctggttatt	gatgtggccc	tggctgccgg	4680

cacggcccgt	ggctgttgac	gcacctgtgg	39467A.txt ttgttagtgg		catcggcgtg	4740
gcccaaggcc	ggcaggtcaa	cctcgcgctt	gctggccagt	ccaccctgcc	tgccgtctgt	4800
gcttcctcct	gcccagaacg	cccgctccag	cgatctctcc	actgtgcttt	cagaagtgcc	4860
cttcctgctg	cgcagttctc	ccatcctggg	acggcggcag	tattgaagct	cgtgacaagt	4920
gccttcacac	agacccctcg	caactgtcca	cgcgtgccgt	ggcaccaggc	gctgcccacc	4980
tgccggcccc	ggccgcccct	cctcgtgaaa	gtgcattttt	gtaaatgtgt	acatattaaa	5040
ggaagcactc	tgtatatttg	attgaataat	gccacca			5077

<210> 35 <211> 1238

<212> PRT

<213> Homo sapiens

<220> <221> misc_feature <223> Jagged2, tra

<223> Jagged2, transcript variant 1

<400> 35

Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 5 10 15

Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu 20 25 30

Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45

Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His 50 60

Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala 65 70 75 80

Lys Val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro 85 90 95

Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly 100 105 110

Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 120 125

Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu 130 140

Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 155 160

Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp

WO 2005/014854

PCT/EP2004/008819

165

39467A.txt.txt 170

175

Arg Trp Lys Ser Leu His Phe Ser Gly His Val Ala His Leu Glu Leu 180 185 190 Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn 195 200 205 Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp 210 215 220Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 235 240 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys 255 Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe $260 \hspace{1cm} 265 \hspace{1cm} 270$ Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val 275 280 285 Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys 290 295 300 Asp Lys Asp Leu Asn Tyr Cys Gly Ser His His Pro Cys Thr Asn Gly $305 \cdot 310$ 315 320Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro 325 330 335 Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr 340 345 350 Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly 355 360 365 Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu 370 380 Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys 385 390 395 400 Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val 405 410 415 Gly Ala Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Gly Lys Pro Cys 420 425 430 Leu Asn Ala Phe Ser Cys Lys Asn Leu Ile Gly Gly Tyr Tyr Cys Asp

135

39467A.txt.txt 440 445

Cys Ile Pro Gly Trp Lys Gly Ile Asn Cys His Ile Asn Val Asn Asp 450 450 460 Cys Arg Gly Gln Cys Gln His Gly Gly Thr Cys Lys Asp Leu Val Asn 475 470 475 Gly Tyr Gln Cys Val Cys Pro Arg Gly Phe Gly Gly Arg His Cys Glu 485 490 495 Leu Glu Arg Asp Glu Cys Ala Ser Ser Pro Cys His Ser Gly Gly Leu 500 505 510 Cys Glu Asp Leu Ala Asp Gly Phe His Cys His Cys Pro Gln Gly Phe 515 525 Ser Gly Pro Leu Cys Glu Val Asp Val Asp Leu Cys Glu Pro Ser Pro 530 540 Cys Arg Asn Gly Ala Arg Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys 545 550 560 Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn Cys Ser Val Pro Arg Glu 565 570 575 Pro Cys Pro Gly Gly Ala Cys Arg Val Ile Asp Gly Cys Gly Ser Asp 580 585 590 Ala Gly Pro Gly Met Pro Gly Thr Ala Ala Ser Gly Val Cys Gly Pro 595 600 605 His Gly Arg Cys Val Ser Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys 610 620 Asp Ser Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asp Asp Cys 625 635 640 Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Glu Val Asp 645 650 655 Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp 660 670 Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro Cys His Ser Arg Gly Arg 675 680 685 Cys Tyr Asp Leu Val Asn Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp 690 700 Lys Gly Lys Thr Cys His Ser Arg Glu Phe Gln Cys Asp Ala Tyr Thr WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt 715

705 710

720

Cys Ser Asn Gly Gly Thr Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys 735 730 735

Ala Cys Pro Pro Gly Trp Lys Gly Ser Thr Cys Ala Val Ala Lys Asn 740 745

Ser Ser Cys Leu Pro Asn Pro Cys Val Asn Gly Gly Thr Cys Val Gly 765

Ser Gly Ala Ser Phe Ser Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg 770 780

Thr Cys Thr His Asn Thr Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn 785 790 795 800

Gly Gly Ile Cys Val Asp Gly Val Asn Trp Phe Arg Cys Glu Cys Ala 805 810 815

Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln 820 825 830

Ser Ser Pro Cys Ala Tyr Gly Ala Thr Cys Val Asp Glu Ile Asn Gly 835 840 845

Tyr Arg Cys Ser Cys Pro Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu 850 855 860

Val Ile Gly Phe Gly Arg Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro 865 870 875 880

His Gly Ser Ser Trp Val Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp 895

Gly Arg Arg Asp Cys Ser Lys Val Trp Cys Gly Trp Lys Pro Cys Leu 900 910

Leu Ala Gly Gln Pro Glu Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln 915 925

Arg Cys Leu Glu Lys Ala Pro Gly Gln Cys Leu Arg Pro Pro Cys Glu 930 940

Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu 945 950 955 960

Pro Arg Ser Gly His Leu Asp Asn Asn Cys Ala Arg Leu Thr Leu His 965 970 975

Phe Asn Arg Asp His Val Pro Gln Gly Thr Thr Val Gly Ala Ile Cys

980

39467A.txt.txt 985

990

Ser Gly Ile Arg Ser Leu Pro Ala Thr Arg Ala Val Ala Arg Asp Arg 995 1000 1005

Leu Leu Val Leu Leu Cys Asp Arg Ala Ser Ser Gly Ala Ser Ala 1010 1015 1020

Val Glu Val Ala Val Ser Phe Ser Pro Ala Arg Asp Leu Pro Asp 1025 1030 1035

Ser Ser Leu Ile Gln Gly Ala Ala His Ala Ile Val Ala Ala Ile 1040 1045 1050

Thr Gln Arg Gly Asn Ser Ser Leu Leu Leu Ala Val Thr Glu Val 1055 1060 1065

Lys Val Glu Thr Val Val Thr Gly Gly Ser Ser Thr Gly Leu Leu 1070 1075 1080

Val Pro Val Leu Cys Gly Ala Phe Ser Val Leu Trp Leu Ala Cys 1085 1090 1095

Val Val Leu Cys Val Trp Trp Thr Arg Lys Arg Arg Lys Glu Arg 1100 1110

Glu Arg Ser Arg Leu Pro Arg Glu Glu Ser Ala Asn Asn Gln Trp 1115 1120 1125

Ala Pro Leu Asn Pro Ile Arg Asn Pro Ile Glu Arg Pro Gly Gly 1130 1140

His Lys Asp Val Leu Tyr Gln Cys Lys Asn Phe Thr Pro Pro Pro 1145 1150 1155

Arg Arg Ala Asp Glu Ala Leu Pro Gly Pro Ala Gly His Ala Ala 1160 1165 1170

Val Arg Glu Asp Glu Asp Glu Asp Leu Gly Arg Gly Glu Glu 1175 1180 1185

Asp Ser Leu Glu Ala Glu Lys Phe Leu Ser His Lys Phe Thr Lys 1190 1200

Asp Pro Gly Arg Ser Pro Gly Arg Pro Ala His Trp Ala Ser Gly 1205 1215

Pro Lys Val Asp Asn Arg Ala Val Arg Ser Ile Asn Glu Ala Arg 1220 1225 1230

Tyr Ala Gly Lys Glu

39467A.txt.txt

1235

36

<210>

2223 <211> <212> DNA Homo sapiens <213> <221> misc_feature Hey-1 <400> 36 60 tcagtgtgtg cggaacgcaa gcagccgaga gcggagaggc gccgctgtag ttaactcctc 120 cctqcccgcc qcgccgaccc tccccaggaa cccccaggga gccagcatga agcgagctca ccccgagtac agctcctcgg acagcgagct ggacgagacc atcgaggtgg agaaggagag 180 240 tgcggacgag aatggaaact tgagttcggc tctaggttcc atgtccccaa ctacatcttc ccagattttg gccagaaaaa gacggagagg aataattgag aagcgccgac gagaccggat 300 caataacagt ttgtctgagc tgagaaggct ggtacccagt gcttttgaga agcagggatc 360 420 tgctaagcta gaaaaagccg agatcctgca gatgaccgtg gatcacctga aaatgctgca 480 tacggcagga gggaaaggtt actttgacgc gcacgccctt gctatggact atcggagttt gggatttcgg gaatgcctgg cagaagttgc gcgttatctg agcatcattg aaggactaga 540 600 tgcctctgac ccgcttcgag ttcgactggt ttcgcatctc aacaactacg cttcccagcg ggaagccgcg agcggcgccc acgcgggcct cggacacatt ccctggggga ccgtcttcgg 660 acatcacccg cacatcgcgc acccgctgtt gctgccccag aacggccacg ggaacgcggg 720 780 caccacggcc tcacccacgg aaccgcacca ccagggcagg ctgggctcgg cacatccgga 840 ggcgcctgct ttgcgagcgc cccctagcgg cagcttcgga ccggtgctcc ctgtggtcac 900 ctccqcctcc aaactqtcqc tgcctctgct ctcctcagtg gcctccctgt cggccttccc 960 cttctctttc ggctccttcc acttactgtc tcccaatgca ctgagccctt cagcacccac 1020 gcaggctgca aaccttggca agccctatag accttggggg acggagatcg gagcttttta aagaactgat gtagaatgag ggaggggaaa gtttaaaatc ccagctgggc tggactgttg 1080 ccaacatcac cttaaagtcg tcagtaaaag taaaaaggaa aaaggtacac tttcagataa 1140 1200 ttttttttt aaagactaaa ggtttgttgg tttactttta tctttttaa tgttttttc atcatgtcat gtattagcag tttttaaaaaa ctagttgtta aattttgttc aagacattaa 1260 1320 attqaaataq tqaqtataaq ccaacacttt gtgataggtt tgtactgtgc ctaatttact ttgtaaacca gaatgattcc gtttttgcct caaaatttgg ggaatcttaa catttaggta 1380 tttttggtct gtttttctcc ttgtatagtt atggtctgtt tttagaatta attttccaaa 1440 1500 ccactatgct taatgttaac atgattctgt ttgttaatat tttgacagat taaggtgttg tataaataat attcttttgg ggggagggga actatattga attttatatt tctgagcaaa 1560 gcgttgacaa atcagatgat cagctttatc caagaaagaa gactagtaaa ttgtctgcct 1620 WO 2005/014854 PCT/EP2004/008819

,					
cctatagcag aaaggtg	aat gtacaaactg	39467A.txt ttggtggcct	.txt gaatccatct	gaccagctgc	1680
tggtatctgc caggact	ggc agttctgatt	tagttaggag	gaccgctgat	aggttaggtc	1740
tcatttggag tgttggt	gga aaggaaactg	aaggtaattg	aatagaatac	gcctgcattt .	1800
accagcccca gcaacac	aaa gaattttaa	tcacacggat	ctcaaattca	caaatgttaa	1860
catggataag tgatcat	ggt gtgcgagtgg	tcaattgagt	agtacagtgg	aaactgttaa	1920
atgcataacc taatttt	cct gggactgcca	tattttcttt	taactggaaa	tttttatgtg	1980
agttttcctt ttggtgc	atg gaactgtggt	tgccaaggta	tttaaaaggg	ctttcctgcc	2040
tccttctctt tgattta	ttt aatttgattt	gggctataaa	atatcatttt	tcaggtttat	2100
tcttttagca ggtgtag	tta aacgacctcc	actgaactgg	gtttgacctc	tgttgtactg	2160
atgtgttgtg actaaat	aaa aaagaaagaa	caaagtaaaa	aaaaaaaaa	aaaaaaaaa	2220
aaa					2223
<210> 37 <211> 304 <212> PRT <213> Homo sapiens	s				
<220> <221> misc_feature <223> Hey-1	e				
<400> 37					
Met Lys Arg Ala His 1 5	s Pro Glu Tyr S	Ser Ser Ser 10	Asp Ser Glu	Leu Asp 15	
Glu Thr Ile Glu Va 20		Ser Ala Asp 25	Glu Asn Gly 30	Asn Leu	
Ser Ser Ala Leu Gly 35	y Ser Met Ser F 40	Pro Thr Thr	Ser Ser Gln 45	Ile Leu	
Ala Arg Lys Arg Arg	g Arg Gly Ile 1 55	Ile Glu Lys	Arg Arg Arg 60	Asp Arg	
Ile Asn Asn Ser Leu 65	u Ser Glu Leu <i>A</i> 70	Arg Arg Leu 75	Val Pro Ser	Ala Phe 80	
Glu Lys Gln Gly Sei 85	r Ala Lys Leu (Glu Lys Ala 90	Glu Ile Leu	Gln Met 95	
Thr Val Asp His Let 100		His Thr Ala 105	Gly Gly Lys 110	Gly Tyr	
Phe Asp Ala His Ala 115	a Leu Ala Met A 120	Asp Tyr Arg	Ser Leu Gly 125	Phe Arg	
Glu Cys Leu Ala Glu	u Val Ala Arg 1	Tyr Leu Ser	Ile Ile Glu	Gly Leu	

39467A.txt.txt 130

Asp Ala Ser Asp Pro Leu Arg Val Arg Leu Val Ser His Leu Asn Asn 145 150 160

Tyr Ala Ser Gln Arg Glu Ala Ala Ser Gly Ala His Ala Gly Leu Gly 165 170 175

His Ile Pro Trp Gly Thr Val Phe Gly His His Pro His Ile Ala His 180 185 190

Pro Leu Leu Pro Gln Asn Gly His Gly Asn Ala Gly Thr Thr Ala 195 200 205

Ser Pro Thr Glu Pro His His Gln Gly Arg Leu Gly Ser Ala His Pro 210 220

Glu Ala Pro Ala Leu Arg Ala Pro Pro Ser Gly Ser Phe Gly Pro Val 225 230 235 240

Leu Pro Val Val Thr Ser Ala Ser Lys Leu Ser Leu Pro Leu Leu Ser 245 250 255

Ser Val Ala Ser Leu Ser Ala Phe Pro Phe Ser Phe Gly Ser Phe His 260 265 270

Leu Leu Ser Pro Asn Ala Leu Ser Pro Ser Ala Pro Thr Gln Ala Ala 275 280 285

Asn Leu Gly Lys Pro Tyr Arg Pro Trp Gly Thr Glu Ile Gly Ala Phe 290 295 300

<210> 2533

<212> DNA

Homo sapiens

<220> <221> <223> misc_feature Hey-2

<400> 38 60 tcggcgtccg agcttccggc cgggctgtgc cccgcgcggt cttcgccggg atgaagcgcc . cctgcgagga gacgacctcc gagagcgaca tggacgagac catcgacgtg gggagcgaga 120 acaattactc ggggcaaagt actagctctg tgattagatt gaattctcca acaacaacat 180 ctcagattat ggcaagaaag aaaaggagag ggattataga gaaaaggcgt cgggatcgga 240 taaataacag tttatctgag ttgagaagac ttgtgccaac tgcttttgaa aaacaaggat 300 ctgcaaagtt agaaaaagct gaaatattgc aaatgacagt ggatcatttg aagatgcttc 360 aggcaacagg gggtaaaggc tactttgacg cacacgctct tgccatggac ttcatgagca 420

			20167	L. and		
taggattccg	agagtgccta	acagaagttg	39467A.txt cgcggtacct		gaaggcctgg	480
actcctcgga	tccgctgcgg	gtgcggcttg	tgtctcatct	cagcacttgc	gccacccagc	540
gggaggcggc	ggccatgaca	tcctccatgg	cccaccacca	tcatccgctc	cacccgcatc	600
actgggccgc	cgccttccac	cacctgcccg	cagccctgct	ccagcccaac	ggcctccatg	660
cctcagagtc	aaccccttgt	cgcctctcca	caacttcaga	agtgcctcct	gcccacggct	720
ctgctctcct	cacggccacg	tttgcccatg	cggattcagc	cctccgaatg	ccatccacgg	780
gcagcgtcgc	cccctgcgtg	ccacctctct	ccacctctct	cttgtccctc	tctgccaccg	840
tccacgccgc	agccgcagca	gccaccgcgg	ctgcacacag	cttccctctg	tccttcgcgg	900
gggcattccc	catgcttccc	ccaaacgcag	cagcagcagt	ggccgcggcc	acagccatca	960
gcccgccctt	gtcagtatca	gccacgtcca	gtcctcagca	gaccagcagt	ggaacaaaca	1020
ataaacctta	ccgaccctgg	gggacagaag	ttggagcttt	ttaaattttt	cttgaacttc	1080
ttgcaatagt	aactgaatgt	cctccatttc	agagtcagct	taaaacctct	gcaccctgaa	1140
ggtagccata	cagatgccga	cagatccaca	aaggaacaat	aaagctattt	gagacacaaa	1200
cctcacgagt	ggaaatgtgg	tattctcttt	tttttctctc	ccttttttgt	ttggttcaag	1260
gcagctcggt	aactgacatc	agcaactttt	gaaaacttca	cacttgttac	catttagaag	1320
tttcctggaa	aatatatgga	ccgtaccatc	cagcagtgca	tcagtatgtc	tgaattgggg	1380
aagtaaaatg	ccctgactga	attctcttga	gactagatgg	gacatacata	tatagagaga	1440
gagtgagaga	gtcgtgtttc	gtaagtgcct	gagcttagga	agttttcttc	tggatatata	1500
acattgcaca	agggaagacg	agtgtggagg	ataggttaag	aaaggaaagg	gacagaagtc	1560
ttgcaatagg	ctgcagacat	tttaatacca	tgccagagaa	gagtattctg	ctgaaaccaa	1620
caggttttac	tggtcaaaat	gactgctgaa	aataattttc	aagttgaaag	atctagtttt	1680
atcttagttt	gccttctttg	tacagacatg	ccaagaggtg	acatttagca	gtgcattggt	1740
ataagcaatt	atttcatcag	ttctcagatt	aacaagcatt	tctgctctgc	ctgcaggccc	1800
ccaggcactt	tttttttgg	atggctcaaa	atatggtgct	gctttatata	aaccttacat	1860
ttatatagtg	cacctatgag	cagttgccta	ccatgtgtcc	accagaggct	atttaattca	1920
tgccaacttg	aaaactctcc	agtttgtagg	agtttggttt	aatttattca	gtttcattag	1980
gactatttt	atatatttat	cctcttcatt	ttctcctaat	gatgcaacat	ctattcttgt	2040
caccctttgg	gagaagttac	attt ctgg ag	gtgatgaagc	aaggagggag	cactaggaag	2100
agaaaagcta	caatttttaa	agctctttgt	caagttagtg	attgcatttg	atcccaaaac	2160
aagatgaatg	tatgcaatgg	gatgtacata	agttattttt	gcccatgcct	aaactagtgc	2220
tatgtaatgg	ggttgtggtt	ttgtttttt	cgatttcgtt	taatgacaaa	ataatctctt	2280
aatatgctga	aatcaagcac	gtgagagttt	ttgtttaaaa	gataagagac	acagcatgta	2340
ttatgcactt	catttctcta	ctgtgtggag	aaagcaataa	acattatgag	aatgttaaac	2400
gttatgcaaa	attatacttt	taaatatttg	ttttgaaatt	actgtaccta	gtcttttttg	2460

39467A.txt.txt cattactttg taaccttttt ctatgcaaga gtctttacat accactaatt aaatgaagtc 2520 2533 ctttttgact att

39 337 <210> <211>

PRT

Homo sapiens

<220>

misc_feature Hey-2 <221>

<400> 39

Met Lys Arg Pro Cys Glu Glu Thr Thr Ser Glu Ser Asp Met Asp Glu 10 15

Thr Ile Asp Val Gly Ser Glu Asn Asn Tyr Ser Gly Gln Ser Thr Ser 20 25 30

Ser Val Ile Arg Leu Asn Ser Pro Thr Thr Thr Ser Gln Ile Met Ala 35 40 45

Arg Lys Lys Arg Arg Gly Ile Ile Glu Lys Arg Arg Arg Asp Arg Ile 50 55

Asn Asn Ser Leu Ser Glu Leu Arg Arg Leu Val Pro Thr Ala Phe Glu 65 70 75 80

Lys Gln Gly Ser Ala Lys Leu Glu Lys Ala Glu Ile Leu Gln Met Thr 85 90 95

Val Asp His Leu Lys Met Leu Gln Ala Thr Gly Gly Lys Gly Tyr Phe 100 105 110

Asp Ala His Ala Leu Ala Met Asp Phe Met Ser Ile Gly Phe Arg Glu 115 120 125

Cys Leu Thr Glu Val Ala Arg Tyr Leu Ser Ser Val Glu Gly Leu Asp 130 140

Ser Ser Asp Pro Leu Arg Val Arg Leu Val Ser His Leu Ser Thr Cys 145 150 155 160

Ala Thr Gln Arg Glu Ala Ala Ala Met Thr Ser Ser Met Ala His His 165 170 175

. His His Pro Leu His Pro His His Trp Ala Ala Ala Phe His His Leu 180 185 190

Pro Ala Ala Leu Leu Gln Pro Asn Gly Leu His Ala Ser Glu Ser Thr 195 200 205

39467A.txt.txt

Pro Cys Arg Leu Ser Thr Thr Ser Glu Val Pro Pro Ala His Gly Ser 210 220

Ala Leu Leu Thr Ala Thr Phe Ala His Ala Asp Ser Ala Leu Arg Met 225 230 235 240

Pro Ser Thr Gly Ser Val Ala Pro Cys Val Pro Pro Leu Ser Thr Ser 245 250 255

Leu Leu Ser Leu Ser Ala Thr Val His Ala Ala Ala Ala Ala Thr 260 265 270

Ala Ala His Ser Phe Pro Leu Ser Phe Ala Gly Ala Phe Pro Met 275 280 285

Leu Pro Pro Asn Ala Ala Ala Ala Val Ala Ala Ala Thr Ala Ile Ser 290 295 300

Pro Pro Leu Ser Val Ser Ala Thr Ser Ser Pro Gln Gln Thr Ser Ser 305 310 315

Gly Thr Asn Asn Lys Pro Tyr Arg Pro Trp Gly Thr Glu Val Gly Ala 325 330 335

Phe

<210> 40

1471

DNA

Homo sapiens

<400>

<220> <221> <223> misc_feature

40

Hes-1

atcacacagg atccggagct ggtgctgata acagcggaat cccccgtcta cctctctcct 60 tggtcctgga acagcgctac tgatcaccaa gtagccacaa aatataataa accctcagca 120 180 cttgctcagt agttttgtga aagtctcaag taaaagagac acaaacaaaa aattcttttt 240 cagctgatat aatggagaaa aattcctcgt ccccggtggc tgctacccca gccagtgtca 300 360 acacqacacc ggataaacca aagacagcat ctgagcacag aaagtcatca aagcctatta tggagaaaag acgaagagca agaataaatg aaagtctgag ccagctgaaa acactgattt 420 480 tggatgctct gaagaaagat agctcgcggc attccaagct ggagaaggcg gacattctgg

aaatgacagt gaagcacctc cggaacctgc agcgggcgca gatgacggct gcgctgagca

540

600

cccgcttcct	gtccacgtgc	gagggcgtta	39467A.txt ataccgaggt	.txt gcgcactcgg	ctgctcggcc	660
				ccccgggcag		720
ccttgcaggc	gccgccaccg	ccccaccgg	gacccggcgg	ccccagcac	gcgccgttcg	780
cgccgccgcc	gccactcgtg	cccatccccg	ggggcgcggc	gccccctccc	ggcggcgccc	840
cctgcaagct	gggcagccag	gctggagagg	cggctaaggt	gtttggaggc	ttccaggtgg	900
taccggctcc	cgatggccag	tttgctttcc	tcattcccaa	cggggccttc	gcgcacagcg	960
gccctgtcat	ccccgtctac	accagcaaca	gcggcacctc	cgtgggcccc	aacgcagtgt	1020
caccttccag	cggcccctcg	cttacggcgg	actccatgtg	gaggccgtgg	cggaactgag	1080
ggggctcagg	ccacccctcc	tcctaaactc	cccaacccac	ctctcttccc	tccggactct	1140
aaacaggaac	ttgaatactg	ggagagaaga	ggactttttt	gattaagtgg	ttactttgtg	1200
tttttttaat	ttctaagaag	ttactttttg	tagagagagc	tgtattaagt	gactgaccat	1260
gcactatatt	tgtatatatt	ttatatgttc	atattggatt	gcgcctttgt	attataaaag	1320
ctcagatgac	atttcgtttt	ttacacgaga	tttcttttt	atgtgatgcc	aaagatgttt	1380
gaaaatgctc	ttaaaatatc	ttcctttggg	gaagtttatt	tgagaaaata	taataaaaga	1440
aaaaagtaaa	ggcaaaaaaa	aaaaaaaaa	a			1471

<210> 41

280 <211> PRT

Homo sapiens

<220> <221> misc_feature <223> Hes-1

Met Pro Ala Asp Ile Met Glu Lys Asn Ser Ser Ser Pro Val Ala Ala 1 5 10 15

Thr Pro Ala Ser Val Asn Thr Thr Pro Asp Lys Pro Lys Thr Ala Ser 20 25 30

Glu His Arg Lys Ser Ser Lys Pro Ile Met Glu Lys Arg Arg Arg Ala 40 45

Arg Ile Asn Glu Ser Leu Ser Gln Leu Lys Thr Leu Ile Leu Asp Ala 50 60

Leu Lys Lys Asp Ser Ser Arg His Ser Lys Leu Glu Lys Ala Asp Ile 65 70 75 80

Leu Glu Met Thr Val Lys His Leu Arg Asn Leu Gln Arg Ala Gln Met 85 90 95

Thr Ala Ala Leu Ser Thr Asp Pro Ser Val Leu Gly Lys Tyr Arg Ala

39467A.txt.txt 100 110

Gly Phe Ser Glu Cys Met Asn Glu Val Thr Arg Phe Leu Ser Thr Cys 115 120 125

Glu Gly Val Asn Thr Glu Val Arg Thr Arg Leu Leu Gly His Leu Ala 130 140

Asn Cys Met Thr Gln Ile Asn Ala Met Thr Tyr Pro Gly Gln Pro His 145 150 155 160

Pro Ala Leu Gln Ala Pro Pro Pro Pro Pro Gly Pro Gly Gly Pro 165 170 175

Gln His Ala Pro Phe Ala Pro Pro Pro Leu Val Pro Ile Pro Gly 180 185 190

Gly Ala Ala Pro Pro Pro Gly Gly Ala Pro Cys Lys Leu Gly Ser Gln 195 200 205

Ala Gly Glu Ala Ala Lys Val Phe Gly Gly Phe Gln Val Val Pro Ala 210 215 220

Pro Asp Gly Gln Phe Ala Phe Leu Ile Pro Asn Gly Ala Phe Ala His 225 230 235 240

Ser Gly Pro Val Ile Pro Val Tyr Thr Ser Asn Ser Gly Thr Ser Val 245 250 255

Gly Pro Asn Ala Val Ser Pro Ser Ser Gly Pro Ser Leu Thr Ala Asp 260 265 270

Ser Met Trp Arg Pro Trp Arg Asn 275 280

<210> 42

10386 <211> DNA

Homo sapiens

<220>

<221> <223> misc_feature

<220>

<222>

misc_feature (9521)..(9521) n is a, c, g, or t <223>

<400> 42

attgaggact cggaaatgag gtccaagggt agccaaggat ggctgcagct tcatatgatc 60 120

agttgttaaa gcaagttgag gcactgaaga tggagaactc aaatcttcga caagagctag

aagataatto caatcatott acaaaactgg aaactgaggo atotaatatg aaggaagtao 180

ttaaacaact	acaaggaagt	attgaagatg	aagctatggc	ttcttctgga	cagattgatt	240
tattagagcg	tcttaaagag	cttaacttag	atagcagtaa	tttccctgga	gtaaaactgc	300
ggtcaaaaat	gtccctccgt	tcttatggaa	gccgggaagg	atctgtatca	agccgttctg	360
gagagtgcag	tcctgttcct	atgggttcat	ttccaagaag	agggtttgta	aatggaagca	420
gagaaagtac	tggatattta	gaagaacttg	agaaagagag	gtcattgctt	cttgctgatc	480
ttgacaaaga	agaaaaggaa	aaagactggt	attacgctca	acttcagaat	ctcactaaaa	540
gaatagatag	tcttccttta	actgaaaatt	tttccttaca	aacagatatg	accagaaggc	600
aattggaata	tgaagcaagg	caaatcagag	ttgcgatgga	agaacaacta	ggtacctgcc	660
aggatatgga	aaaacgagca	cagcgaagaa	tagccagaat	tcagcaaatc	gaaaaggaca	720
tacttcgtat	acgacagctt	ttacagtccc	aagcaacaga	agcagagagg	tcatctcaga	780
acaagcatga	aaccggctca	catgatgctg	agcggcagaa	tgaaggtcaa	ggagtgggag	840
aaatcaacat	ggcaacttct	ggtaatggtc	agggttcaac	tacacgaatg	gaccatgaaa	900
cagccagtgt	tttgagttct	agtagcacac	actctgcacc	tcgaaggctg	acaagtcatc	960
tgggaaccaa	ggtggaaatg	gtgtattcat	tgttgtcaat	gcttggtact	catgataagg	1020
atgatatgtc	gcgaactttg	ctagctatgt	ctagctccca	agacagct g t	atatccatgc	1080
gacagtctgg	atgtcttcct	ctcctcatcc	agcttttaca	tggcaatgac	aaagactctg	1140
tattgttggg	aaattcccgg	ggcagtaaag	aggctcgggc	cagggccagt	gcagcactcc	1200
acaacatcat	tcactcacag	cctgatgaca	agagaggcag	gcgtgaaatc	cgagtccttc	1260
atcttttgga	acagatacgc	gcttactgtg	aaacctgttg	ggagtggcag	gaagctcatg	1320
aaccaggcat	ggaccaggac	aaaaatccaa	tgccagctcc	tgttgaacat	cagatctgtc	1380
ctgctgtgtg	tgttctaatg	aaactttcat	ttgatgaaga	gcatagacat	gcaatgaatg	1440
aactaggggg	actacaggcc	attgcagaat	tattgcaagt	ggactgtgaa	atgtacgggc	1500
ttactaatga	ccactacagt	attacactaa	gacgatatgc	tggaatggct	ttgacaaact	1560
tgacttttgg	agatgtagcc	aacaaggcta	cgctatgctc	tatgaaaggc	tgcatgagag	1620
cacttgtggc	ccaactaaaa	tctgaaagtg	aagacttaca	gcaggttatt	gcaagt g ttt	1680
tgaggaattt	gtcttggcga	gcagatgtaa	atagtaaaaa	gacgttgc g a	gaagttggaa	1740
gtgtgaaagc	attgatggaa	tgtgctttag	aagttaaaaa	ggaatcaacc	ctcaaaagcg	1800
tattgagtgc	cttatggaat	ttgtcagcac	attgcactga	gaataaagct	gatatatgtg	1860
ctgtagatgg	tgcacttgca	tttttggttg	gcactcttac	ttaccggagc	cagacaaaca	1920
ctttagccat	tattgaaagt	ggaggtggga	tattacggaa	tgtgtccagc	ttgatagcta	1980
caaatgagga	ccacaggcaa	atcctaagag	agaacaactg	tctacaaact	ttattacaac	2040
acttaaaatc	tcatagtttg	acaatagtca	gtaatgcatg	tggaactttg	tggaatctct	2100
cagcaagaaa	tcctaaagac	caggaagcat	tatgggacat	gggggcagtt	agcatgctca	2160
agaacctcat	tcattcaaag	cacaaaatga	ttgctatggg	aagtgctgca	gctttaa gg a	2220

atctcatggc	aaataggcct	gcgaagtaca	aggatgccaa	tattatgtct	cctggctcaa	2280
gcttgccatc	tcttcatgtt	aggaaacaaa	aagccctaga	agcagaatta	gatgctcagc	2340
acttatcaga	aacttttgac	aatatagaca	atttaagtcc	caaggcatct	catcgtagta	2400
agcagagaca	caagcaaagt	ctctatggtg	attatgtttt	tgacaccaat	cgacatgatg	2460
ataataggtc	agacaatttt	aatactggca	acatgactgt	cctttcacca	tatttgaata	2520
ctacagtgtt	acccagctcc	tcttcatcaa	gaggaagctt	agatagttct	cgttctgaaa	2580
aagatagaag	tttggagaga	gaacgcggaa	ttggtctagg	caactaccat	ccagcaacag	2640
aaaatccagg	aacttcttca	aagcgag g tt	tgcagatctc	caccactgca	gcccagattg	2700
ccaaagtcat [.]	ggaagaagtg	tcagccattc	atacctctca	ggaagacaga	agttctgggt	2760
ctaccactga	attacattgt	gtgacagatg	agagaaatgc	acttagaaga	agctctgctg	2820
cccatacaca	ttcaaacact	tacaatttca	ctaagtcgga	aaattcaaat	aggacatgtt	2880
ctatgcctta	tgccaaatta	gaatacaaga	gatcttcaaa	tgatagttta	aatagtgtca	2940
gtagtagtga	tggttatggt	aaaagaggtc	aaatgaaacc	ctcgattgaa	tcctattctg	3000
aagatgatga	aagtaagttt	tgcagttatg	gtc aataccc	agccgaccta	gcccataaaa	3060
tacatagtgc	aaatcatatg	gatgataatg	atggagaact	agatacacca	ataaattata	3120
gtcttaaata	ttcagatgag	cagttgaact	ctggaaggca	aagtccttca	cagaatgaaa	3180
gatgggcaag	acccaaacac	ataatagaag	atgaaataaa	acaaagtgag	caaagacaat	3240
caaggaatca	aagtacaact	tatcctgttt	atactgagag	cactgatgat	aaacacctca	3300
agttccaacc	acattttgga	cagcaggaat	gtgtttctcc	atacaggtca	cg gg g agcca	3360
atggttcaga	aacaaatcga	gtgggttcta	atcatggaat	taatcaaaat	gtaagccagt	3420
ctttgtgtca	agaagatgac	tatgaagatg	ataagcctac	caattatagt	gaacgttact	3480
ctgaagaaga	acagcatgaa	gaagaagaga	gaccaacaaa	ttatagcata	aaatataatg	3540
aagagaaacg	tcatgtggat	cagcctattg	attatagttt	aaaatatgcc	acagatattc	3600
cttcatcaca	gaaacagtca	ttttcattct	caaagagttc	atctggacaa	agcagtaaaa	3660
ccgaacatat	gtcttcaagc	agtgagaata	cgtccacacc	ttcatctaat	gccaagaggc	3720
agaatcagct	ccatccaagt	tctgcacaga	gtagaagtgg	tcagcctcaa	aaggctgcca	3780
cttgcaaagt	ttcttctatt	aaccaagaaa	caatacagac	ttattgtgta	gaagatactc	3840
caatatgttt	ttcaagatgt	agttcattat	catctttgtc	atcagctgaa	gatgaaatag	3900
gatgtaatca	gacgacacag	gaagcagatt	ctgctaatac	cctgcaaata	gcagaaataa	3960
aagaaaagat	tggaactagg	tcagctgaag	atcctgtgag	cgaagttcca	gcagtgtcac	4020
agcaccctag	aaccaaatcc	agcagactgc	agggttctag	tttatcttca	gaatcagcca	4080
ggcacaaagc	tgttgaattt	tcttcaggag	cgaaatctcc	ctccaaaagt	ggtgctcaga	4140
cacccaaaag	tccacctgaa	cactatgttc	aggagacccc	actcatgttt	agca g atgta	4200
cttctgtcag	ttcacttgat	agttttgaga	gtcgttcgat	tgccagctcc	gttcagagtg	4260

aaccatgcag	tggaatggta	agtggcatta	taagccccag	tgatcttcca	gatagccctg	4320
gacaaaccat	gccaccaagc	agaagtaaaa	cacctccacc	acctcctcaa	acagctcaaa	4380
ccaagcgaga	agtacctaaa	aataaagcac	ctactgctga	aaagagagag	agtggaccta	4440
agcaagctgc	agtaaatgct	gcagttcaga	gggtccaggt	tcttccagat	gctgatactt	4500
tattacattt	tgccacggaa	agtactccag	atggattttc	ttgttcatcc	agcctgagtg	4560
ctctgagcct	cgatgagcca	tttatacaga	aagatgtgga	attaagaata	atgcctccag	4620
ttcaggaaaa	tgacaatggg	aatgaaacag	aatcagagca	gcctaaagaa	tcaaatgaaa	4680
accaagagaa	agaggcagaa	aaaactattg	attctgaaaa	ggacctatta	gatgattcag	4740
atgatgatga	tattgaaata	ctagaagaat	gtattatttc	tgccatgcca	acaaagtcat	4800
cacgtaaagc	aaaaaagcca	gcccagactg	cttcaaaatt	acctccacct	gtggcaagga	4860
aaccaagtca	gctgcctgtg	tacaaacttc	taccatcaca	aaacaggttg	caaccccaaa	4920
agcatgttag	ttttacaccg	ggggatgata	tgccacgggt	gtattgtgtt	gaagggacac	4980
ctataaactt	ttccacagct	acatctctaa	gtgatctaac	aatcgaatcc	cctccaaatg	5040
agttagctgc	tggagaagga	gttagaggag	gagcacagtc	aggtgaattt	gaaaaacgag	5100
ataccattcc	tacagaaggc	agaagtacag	atga gg ctca	aggaggaaaa	acctcatctg	5160
taaccatacc	tgaattggat	gacaataaag	cagaggaagg	tgatattctt	gcagaatgca	5220
ttaattctgc	tatgcccaaa	gggaaaagtc	acaagccttt	ccgtgtgaaa	aagataatgg	5280
accaggtcca	gcaagcatct	gcgtcgtctt	ctgcacccaa	caaaaatcag	ttagatggta	5340
agaaaaagaa	accaacttca	ccagtaaaac	ctataccaca	aaatactgaa	tataggacac	5400
gtgtaagaaa	aaatgcagac	tcaaaaaata	atttaaatgc	tgagagagtt	ttctcagaca	5460
acaaagattc	aaagaaacag	aatttgaaaa	ataattccaa	ggacttcaat	gataagctcc	5520
caaataatga	agatagagtc	agaggaagtt	ttgcttttga	ttcacctcat	cattacacgc	5580
ctattgaagg	aactccttac	tgtttttcac	gaaatgattc	tttgagttct	ctagattttg	5640
atgatgatga	tgttgacctt	tccagggaaa	aggctgaatt	aagaaaggca	aaagaaaata	5700
aggaatcaga	ggctaaagtt	accagccaca	cagaactaac	ctccaaccaa	caatcagcta	5760
ataagacaca	agctattgca	aagcagccaa	taaatcgagg	tcagcctaaa	cccatacttc	5820
agaaacaatc	cacttttccc	cagtcatcca	aagacatacc	agacagaggg	gcagcaactg	5880
atgaaaagtt	acagaatttt	gctattgaaa	atactccagt	ttgcttttct	cataattcct	5940
ctctgagttc	tctcagtgac	attgaccaag	aaaacaacaa	taaagaaaat	gaacctatca	6000
aagagactga	gccccctgac	tcacagggag	aaccaagtaa	acctcaagca	tcaggctatg	6060
ctcctaaatc	atttcatgtt	gaagataccc	cagtttgttt	ctcaagaaac	agttctctca	6120
gttctcttag	tattgactct	gaagatgacc	tgttgcagga	atgtataagc	tccgcaatgc	6180
caaaaaagaa	aaagccttca	agactcaagg	gtgataatga	aaaacatagt	cccagaaata	6240
tgggtggcat	attaggtgaa	gatctgacac	ttgatttgaa	agatatacag	agaccagatt	6300

cagaacatgg	tctatcccct	gattcagaaa	attttgattg	gaaagctatt	caggaaggtg	6360
caaattccat	agtaagtagt	ttacatcaag	ctgctgctgc	tgcatgttta	tctagacaag	6420
cttcgtctga	ttcagattcc	atcctttccc	tgaaatcagg	aatctctctg	ggatcaccat	6480
ttcatcttac	acctgatcaa	gaagaaaaac	cctttacaag	taataaaggc	ccacgaattc	6540
taaaaccagg	ggagaaaagt	acattggaaa	ctaaaaagat	agaatctgaa	agtaaaggaa	6600
tcaaaggagg	aaaaaaagtt	tataaaagtt	tgattactgg	aaaagttcga	tctaattcag	6660
aaatttcagg	ccaaatgaaa	cagccccttc	aagcaaacat	gccttcaatc	tctcgaggca	6720
ggacaatgat	tcatattcca	ggagttcgaa	atagctcctc	aagtacaagt	cctgtttcta	6780
aaaaaggccc-	accccttaag	actccagcct	ccaaaagccc	tagtgaaggt	caaacagcca	6840
ccacttctcc	tagaggagcc	aagccatctg	tgaaatcaga	attaagccct	gttgccaggc	6900
agacatccca	aataggtggg	tcaagtaaag	caccttctag	atcaggatct	agagattcga	6960
ccccttcaag	acctgcccag	caaccattaa	gtagacctat	acagtctcct	ggccgaaact	7020
caatttcccc	tggtagaaat	ggaataagtc	ctcctaacaa	attatctcaa	cttccaagga	7080
catcatcccc	tagtactgct	tcaactaagt	cctcaggttc	tggaaaaatg	tcatatacat	7140
ctccaggtag	acagatgagc	caacagaacc	ttaccaaaca	aacaggttta	tccaagaatg	7200
ccagtagtat	tccaagaagt	gagtctgcct	ccaaaggact	aaatcagatg	aataatggta	7260
atggagccaa	taaaaaggta	gaactttcta	gaatgtcttc	aactaaatca	agtggaagtg	7320
aatctgatag	atcagaaaga	cctgtattag	tacgccagtc	aactttcatc	aaagaagctc	7380
caagcccaac	cttaagaaga	aaattggagg	aatctgcttc	atttgaatct	ctttctccat	7440
catctagacc	agcttctccc	actaggtccc	aggcacaaac	tccagtttta	agtccttccc	750 0
ttcctgatat	gtctctatcc	acacattcgt	ctgttcaggc	tggtggatgg	cgaaaactcc	756 0
cacctaatct	cagtcccact	atagagtata	atgatggaag	accagcaaag	cgccatgata	7620
ttgcacggtc	tcattctgaa	agtccttcta	gacttccaat	caataggtca	ggaacctgga	7680
aacgtgagca	cagcaaacat	tcatcatccc	ttcctcgagt	aagcacttgg	agaagaactg	7740
gaagttcatc	ttcaattctt	tctgcttcat	cagaatccag	tgaaaaagca	aaaagtgagg	7800
atgaaaaaca	tgtgaactct	atttcaggaa	ccaaacaaag [,]	taaagaaaac	caagtatccg	786 0
caaaaggaac	atggagaaaa	ataaaagaaa	atgaattttc	tcccacaaat	agtacttctc	792 0
agaccgtttc	ctcaggtgct	acaaatggtg	ctgaatcaaa	gactctaatt	tatcaaatgg	7980
cacctgctgt	ttctaaaaca	gaggatgttt	gggtgagaat	tgaggactgt	cccattaaca	8040
atcctagatc	tggaagatct	cccacaggta	atactccccc	ggtgattgac	agtgtttcag	8100
aaaaggcaaa	tccaaacatt	aaagattcaa	aagataatca	ggcaaaacaa	aatgtgggta	8160
atggcagtgt	tcccatgcgt	accgtgggtt	tggaaaatcg	cctgaactcc	tttattcagg	8220
tggatgcccc	tgaccaaaaa	ggaactgaga	taaaaccagg	acaaaataat	cctgtccctg	8280
tatcagagac	taatgaaagt	tctatagtgg	aacgtacccc	attcagttct	agcagctcaa	8340

gcaaacacag	ttcacctagt	gggactgttg	ctgccagagt	gactcctttt	aattacaacc	8400
caagccctag	gaaaagcagc	gcagatagca	cttcagctcg	gccatctcag	atcccaactc	8460
cagtgaataa	caacacaaag	aagcgagatt	ccaaaactga	cagcacagaa	tccagtggaa	8520
cccaaagtcc	taagcgccat	tctgggtctt	accttgtgac	atctgtttaa	aagagaggaa	8580
gaatgaaact	aagaaaattc	tatgttaatt	acaactgcta	tatagacatt	ttgtttcaaa	8640
tgaaacttta	aaagactgaa	aaattttgta	aataggtttg	attcttgtta	gagggtttt	8700
gttctggaag	ccatatttga	tagtatactt	tgtcttcact	ggtcttattt	tgggaggcac	876 0
tcttgatggt	taggaaaaaa	atagtaaagc	caagtatgtt	tgtacagtat	gttttacatg	8820
tatttaaagt	agcatcccat	cccaacttcc	tttäättatt	gcttgtctta	aaataatgaa	8880
cactacagat	agaaaatatg	atatattgct	gttatcaatc	atttctagat	tataaactga	8940
ctaaacttac	atcagggaaa	aattggtatt	tatgcaaaaa	aaaatgtttt	tgtccttgtg	9000
agtccatcta	acatcataat	taatcatgtg	gctgtgaaat	tcacagtaat	atggttcccg	9060
atgaacaagc	tttacccagc	ctgtttgctt	tactgcatga	atgaaactga	tggttcaatt	912 0
tcagaagtaa	tgattaacag	ttatgtggtc	acatgatgtg	catagagata	gctacagtgt	9180
aataatttac	actattttgt	gctccaaaca	aaacaaaaat	ctgtgtaact	gtaaaacatt	9240
gaatgaaact	attttacctg	aactagattt	tatctgaaag	taggtagaat	ttttgctatg	9300
ctgtaatttg	ttgtatattc	tggtatttga	ggtgagatgg	ctgctctttt	attaatgaga	9360
catgaattgt	gtctcaacag	aaactaaatg	aacatttcag	aataaattat	tgctgtatgt	9420
aaactgttac	tgaaattggt	atttgtttga	agggtcttgt	ttcacatttg	tattaataat	9480
tgtttaaaat	gcctctttta	aaagcttata	taaattttt	ncttcagctt	ctatgcatta	9540
agagtaaaat	tcctcttact	gtaataaaaa	caattgaaga	agactgttgc	cacttaacca	9600
ttccatgcgt	tggcacttat	ctattcctga	aattctttta	tgtgattagc	tcatcttgat	9660
ttttaacatt	tttccactta	aactttttt	tcttactcca	ctggagctca	gtaaaagtaa	9720
attcatgtaa	tagcaatgca	agcagcctag	cacagactaa	gcattgagca	taataggccc	9780
acataatttc	ctctttctta	atattataga	aattctgtac	ttgaaattga	ttcttagaca	9840
ttgcagtctc	ttcgaggctt	tacagtgtaa	actgtcttgc	cccttcatct	tcttgttgca	9900
actgggtctg	acatgaacac	tttttatcac	cctgtatgtt	agggcaagat	ctcagcagtg	9960
aagtataatc	agcactttgc	catgctcaga	aaattcaaat	cacatggaac	tttagaggta	10020
gatttaatac	gattaagata	ttcagaagta	tattttagaa	tccctgcctg	ttaaggaaac	10080
tttatttgtg	gtaggtacag	ttctggggta	catgttaagt	gtccccttat	acagtggagg	10140
gaagtcttcc	ttcctgaagg	aaaataaact	gacacttatt	aactaagata	atttacttaa	10200
tatatcttcc	ctgatttgtt	ttaaaagatc	agagggtgac	tgatgataca	tgcatacata	10260
tttgttgaat	aaatgaaaat	ttatttttag	tgataagatt	catacactct	gtatttgggg	10320
agagaaaacc	tttttaagca	tggtggggca	ctcagatagg	agtgaataca	cctacctggt	10380

39467A.txt.txt

ggtcat 10386

43 2843

<211> PRT

<213> Homo sapiens

<220> <221> misc_feature <223> APC

<400> 43

Met Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu $1 \ \cdots \ 10 \ \cdots \ 15$

Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn 20 25 30

His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu 35 40 45

Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly 50 60

Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser 65 70 75

Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr 85 90 95

Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro 100 105 110

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg 115 120 125

Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu 130 140

Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala 145 150 155 160

Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu 165 170 175

Asn Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu 180 185 190

Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln 195 200 205

39467A.txt.txt
Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
210 215 220 Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr 225 230 235 Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp 245 250 255 Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala 260 265 270 Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr Ala Ser Val Leu Ser Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu 290 295 300 Thr Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser 305 310 315 Met Leu Gly Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala 325 330 335 Met Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys 340 345 Leu Pro Leu Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val 355 360 365 Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser 370 380 Ala Ala Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly 385 390 395 400 Arg Arg Glu Ile Arg Val Leu His Leu Leu Glu Gln Ile Arg Ala Tyr 405 410 415 Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp 420 425 430 Gln Asp Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro 435 440 445 Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His 450 460 Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln 465 470 475 480

39467A.txt.txt Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile Thr 485 490 495 Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe Gly Asp 500 510 Val Ala Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala 515 520 525 Leu Val Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile 530 540 Ala Ser Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys 545 550 560 Lys Thr Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala 565 570 575 Leu Glu Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu 580 585 590 Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala 595 600 605 val Asp Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser 610 615 620 Gln Thr Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Ile Leu Arg 625 630 635 Asn Val Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu 645 650 655 Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His 660 665 670 Ser Leu Thr Ile Val Ser Asn Ala Cys Gly Thr Leu Trp Asn Leu Ser 675 680 685 Ala Arg Asn Pro Lys Asp Gln Glu Ala Leu Trp Asp Met Gly Ala Val 690 695 700 Ser Met Leu Lys Asn Leu Ile His Ser Lys His Lys Met Ile Ala Met 705 710 715 720 Gly Ser Ala Ala Leu Arg Asn Leu Met Ala Asn Arg Pro Ala Lys 725 730 735 Tyr Lys Asp Ala Asn Ile Met Ser Pro Gly Ser Ser Leu Pro Ser Leu 740 745 750

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt
His Val Arg Lys Gln Lys Ala Leu Glu Ala Glu Leu Asp Ala Gln His
755 760 765

Leu Ser Glu Thr Phe Asp Asn Ile Asp Asn Leu Ser Pro Lys Ala Ser 770 780

His Arg Ser Lys Gln Arg His Lys Gln Ser Leu Tyr Gly Asp Tyr Val 785 790 795 800

Phe Asp Thr Asn Arg His Asp Asp Asn Arg Ser Asp Asn Phe Asn Thr 805 810 815

Gly Asn Met Thr Val Leu Ser Pro Tyr Leu Asn Thr Thr Val Leu Pro 820 825 830

Ser Ser Ser Ser Ser Arg Gly Ser Leu Asp Ser Ser Arg Ser Glu Lys 835 840 845

Asp Arg Ser Leu Glu Arg Glu Arg Gly Ile Gly Leu Gly Asn Tyr His 850 860

Pro Ala Thr Glu Asn Pro Gly Thr Ser Ser Lys Arg Gly Leu Gln Ile 865 870 875 880

Ser Thr Thr Ala Ala Gln Ile Ala Lys Val Met Glu Glu Val Ser Ala 885 890 895

Ile His Thr Ser Gln Glu Asp Arg Ser Ser Gly Ser Thr Thr Glu Leu 900 910

His Cys Val Thr Asp Glu Arg Asn Ala Leu Arg Arg Ser Ser Ala Ala 915 920

His Thr His Ser Asn Thr Tyr Asn Phe Thr Lys Ser Glu Asn Ser Asn 930 935 940

Arg Thr Cys Ser Met Pro Tyr Ala Lys Leu Glu Tyr Lys Arg Ser Ser 945 950 955 960

Asn Asp Ser Leu Asn Ser Val Ser Ser Ser Asp Gly Tyr Gly Lys Arg 965 970 975

Gly Gln Met Lys Pro Ser Ile Glu Ser Tyr Ser Glu Asp Asp Glu Ser 980 985 990

Lys Phe Cys Ser Tyr Gly Gln Tyr Pro Ala Asp Leu Ala His Lys Ile 995 1000 1005

His Ser Ala Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr 1010 1015 1020

								2046	7	v+ +				
Pro	Ile 1025	Asn	Tyr	Ser	Leu	Lys 1030	Tyr	Ser	7A.t Asp	Glu	Gln 1035	Leu	Asn	Ser
Gly	Arg 1040	Gln	Ser	Pro	Ser	Gln 1045	Asn	Glu	Arg	Trp	Ala 1050	Arg	Pro	Lys
His	Ile 1055	Ile	Glu	Asp	Glu	Ile 1060	Lys	Gln	Ser	Glu	Gln 1065	Arg	Gln	ser
Arg	Asn 1070	G∏n	Ser	Thr	Thr	Tyr 1075	Pro	۷a٦	Tyr	Thr	Glu 1080	Ser	Thr	Asp
Asp	Lys 1085	His	Leu	Lys	Phe	Gln 1090	P ro	His			Gln 1095	Gln	Glu	Cys
۷al	ser 1100	Pro	Tyr	Arg	Ser	Arg 1105	Gly	Ala	Asn	Gly	Ser 1110	Glu	Thr	Asn
Arg	val 1115	Gly	Ser	Asn	ніѕ	Gly 1120	Ile	Asn	Gln	Asn	∨a1 1125	Ser	Gln	Ser
Leu	Cys 1130	Gln	Glu	Asp	Asp	Tyr 1135	Glu	Asp	Asp	Lys	Pro 1140	Thr	Asn	Tyr
Ser	Glu 1145	Arg	Tyr	Ser	Glu	Glu 1150	G∏u	G∏n	His	Glu	Glu 1155	Glu	G∏u	Arg
Pro	⊤hr 1160	Asn	Tyr	Ser	Ile	Lys 1165	Tyr	Asn	Glu	Glu	Lys 1170	Arg	His	٧a٦
Asp	Gln 1175	Pro	пle	Asp	Tyr	Ser 1180	Leu	Lys	Tyr	Ala	Thr 1185	Asp	Ile	Pro
Ser	Ser 1190	Gln	Lys	G∃n	Ser	Phe 1195	Ser	Phe	Ser	Lys	Ser 1200	Ser	Ser	Gly
Gln	ser 1205	Ser	Lys	Thr	Glu	ніs 1210	Met	Ser	Ser	Ser	ser 1215	Glu	Asn	Thr
Ser	Thr 1220	Pro	Ser	Ser	Asn	Ala 1225	Lys	Arg	Gln	Asn	Gln 1230	Leu	His	Pro
Ser	Ser 1235	Αla	Gln	Ser	Arg	Ser 1240	G∃y	Gln	Pro	G∏n	Lys 1245	Ala	Ala	⊤hr
Cys	Lys 1250	Val	ser	Ser	Ile	Asn 1255	G∏n	Glu	⊤hr	Ile	G]n 1260	⊤hr	Tyr	Cys
۷al	Glu 1265	Asp	Thr	Pro	Ile	Cys 1270	Phe	Ser	Arg	Cys	Ser 1275	Ser	Leu	Ser

Ser	Leu 1280	Ser	Ser	Ala	Glu	Asp 1285	Glu	3946 Ile	7A.t Gly	xt.t Cys	xt Asn 1290	Gln	⊤hr	Thr
G∏n	Glu 1295	Ala	Asp	Ser	Ala	Asn 1300	Thr	Leu	Gln	Ile	Ala 1305	Glu	Ile	Lys
Glu	Lys 1310	Ile	Gly	Thr	Arg	ser 1315	Ala	Glu	Asp	Pro	Val 1320	Ser	Glu	val
Pro	Ala 1325	Val	Ser	Gln	His	Pro 1330	Arg	Thr	Lys	Ser	Ser 1335	Arg	Leu	Gl n
Gly	ser 1340	ser	Leu	Ser	Ser	Glu 1345	Ser	Ala	Arg	His	Lys 1350	Ala	Val	<u>G</u> lu _
Phe	ser 1355	Ser	Glу	Ala	Lys	Ser 1360	Pro	Ser	Lys	Ser	Gly 1365	Ala	Gln	Thr
Pro	Lys 1370	Ser	Pro	Pro	Glu	ніs 1375	Tyr	۷a٦	Gln	Glu	Thr 1380	Pro	Leu	Met
Phe	Ser 1385	Arg	Cys	Thr	Ser	val 1390	Ser	Ser	Leu	Asp	ser 1395	Phe	Glu	Ser
Arg	ser 1400	Ile	Ala	Ser	Ser	∨a1 14 0 5	Gln	Ser	Glu	Pro	Cys 1410	Ser	Glу	Met
Val	Ser 1415	Gly	Ile	Ile	Ser	Pro 1420	Ser	Asp	Leu	Pro	Asp 1425	Ser	Pro	Gly
G∃n	Thr 1430	Met	Pr o	Pr o	Ser	Arg 1435	ser	Lys	Thr	Pro	Pro 1440	Pro	Pr o	Pro
G]n	Thr 1445	Ala	Gln	Thr	Lys	Arg 1450	G∃u	Val	Pro	Lys	Asn 1455	Lys	Ala	Pro
Thr	Ala 1460	Glu	Lys	Arg	Glu	Ser 1465	G∃y	Pro	Lys	Gln	А]а 1470	Аlа	۷al	Asn
Ala	Ala 1475	val	Gln	Arg	Val	Gln 1480	val	Leu	Pro	Asp	А]а 1485	Asp	Thr	Leu
Leu	ніs 1490	Phe	Ala	Thr	Glu	Ser 1495	Thr	Pro	Asp	Gly	Phe 1500	Ser	Cys	Ser
Ser	Ser 1505	Leu	Ser	Ala	Leu	Ser 1510	Leu	Asp	G∃u	Pro	Phe 1515	IJе	Gln	Lys
Asp	Val 1520	Glu	Leu	Arg	IJе	Met 1525	Pro	Pro	۷a٦	Gln	Glu 1530	Asn	Asp	Asn

Gly	Asn 1535	Glu	Thr	Glu	Ser	Glu 1540	Gln	3946 Pro	7A.t Lys	xt.t Glu	xt Ser 1545		Glu	Asn
Gln	Glu 1550	Lys	Glu	Αla	Glu	Lys 1555	Thr	Ile	Asp	Ser	G]u 1560	Lys	Asp	Leu
Leu	Asp 1565	Asp	Ser	Asp	Asp	Asp 1570	Asp	Ile	Glu	Ile	Leu 1575	Glu	Glu	Cys
Ile	Ile 1580	Ser	Ala	Met	P ro	Thr 1585	Lys	Ser	Ser	Arg	Lys 1590	Ala	Lys	Lys
Pro	Ala 1595	Gln	Thr	Ala	Ser	Lys 1600	Leu	Pro 	Pro	Pro	va1 1605	Ala	Arg	Lys
Pro	ser 1610	Gln	Leu	Pŗo	۷al	Tyr 1615	Lys	Leu	Leu	Pro	Ser 1620	Gln	Asn	Arg
Leu	Gln 1625	Pro	Gln	Lys	His	val 1630	Ser	Phe	Thr	Pro	Gly 1635	Asp	Asp	Met
Pro	Arg 1640	Val	Tyr	Cys	٧a٦	G]u 1645	G]y	Thr	Pro	Ile	Asn 1650	Phe	Ser	Thr
Ala	Thr 1655	Ser	Leu	Ser	Asp	Leu 1660	Thr	Ile	G∏u	Ser	Pro 1665	Pro	Asn	G]u
Leu	Ala 1670	Ala	Gly	Glu	Gly	val 1675	Arg	Gly	G∃y	Аlа	Gln 1680	Ser	Gly	Glu
Phe	Glu 1685	Lys	Arg	Asp	Thr	Ile 1690	Pro	Thr	G lu	G∃y	Arg 1695	Ser	Thr	Asp
Glu	Ala 1700	Gln	Gly	Gly	Lys	Thr 1705	Ser	Ser	val	⊤hr	Ile 1710	Pro	Glu	Leu
Asp	Asp 1715	Asn	Lys	Ala	Glu	Glu 1720	Gly	Asp	Ile	Leu	Ala 1725	Glu	Cys	Ile
Asn	Ser 1730	Ala	Met	Pro	Lys	Gly 1735	Lys	Ser	His	Lys	Pro 1740	Phe	Arg	Val
Lys	Lys 1745	Ile	мet	Asp	Gln	val 1750	Gln	Gln	Ala	Ser	Ala 1755	Ser	Ser	Ser
Ala	Pro 1760	Asn	Lys	Asn	Gln	Leu 1765	Asp	Gly	Lys	Lys	Lys 1770	Lys	Pro	Thr
Ser	Pro 1775	Val	Lys	Pro	Ile	Pro 1780	G∏n	Asn	Thr	Glu	Tyr 1785	Arg	Thr	Arg

۷al	Arg 1790	Lys	Asn	Ala	Asp	Ser 1795	Lys	3946 Asn	7A.t Asn	xt.t Leu	xt Asn 1800	Ala	Glu	Arg
۷a٦	Phe 1805	Ser	Asp	Asn	Lys	Asp 1810	Ser	Lys	Lys	Gln	Asn 1815		Lys	Asn
Asn	ser 1820	Lys	Asp	Phe	Asn	Asp 1825	Lys	Leu	Pro	Asn	Asn 1830	G∏u	Asp	Arg
Val	Arg 1835	G∃y	Ser	Phe	Ala	Phe 1840	Asp	Ser	Pro	His	His 1845	Tyr	Thr	Pro
Ile	Glu 1850	Gly	⊤hr	Pro	⊤yr 	Cys 1855	Phe	Ser	Arg		Asp 1860	Ser	Leu	Ser
Ser	Leu 1865	Asp	Phe	Asp	Asp	Asp 1870	Asp	٧a٦	Asp	Leu	ser 1875	Arg	Glu	Lys
Ala	Glu 1880	Leu	Arg	Lys	Ala	Lys 1885	Glu	Asn	Lys	Glu	Ser 1890	Glu	Ala	Lys
val	Thr 1895	Ser	нis	Thr	Glu	Leu 1900	Thr	Ser	Asn	Gln	Gln 1905	Ser	Ala	Asn
Lys	Thr 1910	Gln	Ala	Ile	Ala	Lys 1915	Gln	Pro	Ile	Asn	Arg 192 0	Gly	Gln	Pro
Lys	Pro 1925	Ile	Leu	Gln	Lys	Gln 1930	Ser	Thr	Phe	Pro	Gln 1935	Ser	Ser	Lys
Asp	Ile 1940	Pr o	Asp	Arg	Gly	Ala 1945	Ala	Thr	Asp	Glu	Lys 1950	Leu	Gln	Asn
Phe	Ala 1955	Ile	Glu	Asn	Thr	Pro 1960	Val	Cys	Phe	Ser	ніs 1965	Asn	Ser	Ser
Leu	ser 1970	Ser	Leu	Ser	Asp	Ile 1975	Asp	Gln	Glu	Asn	Asn 1980	Asn	Lys	Glu
Asn	Glu 1985	Pro	Ile	Lys	Glu	Thr 1990	Glu	Pro	Pro	Asp	ser 1995	G∏n	Gly	Glu
Pro	Ser 2000	Lys	Pro	Gln	Ala	ser 2005	Gly	Tyr	Ala	Pro	Lys 2010	Ser	Phe	His
Val	Glu 2015	Asp	Thr	Pro	۷a٦	Cys 2020	Phe	Ser	Arg	Asn	ser 2 0 25	Ser	Leu	Ser
Ser	Leu 2030	Ser	Ile	Asp	Ser	Glu 2035	Asp	Asp	Leu	Leu	G1n 2040	Glu	Cys	Ile

Ser	Ser 2045	Ala	Met	: Pro	Lys	Lys 2050	Lys	3946 Lys	57A.t Pro	xt.t Ser	xt ' Arg 2055	Leu	Lys	Gly
Asp	Asn 2 0 60	Glu	Lys	His	Ser	Pro 2065	Arg	Asn	Met	Gly	Gly 2070	IJe	Leu	Gly
Glu	Asp 2075	Leu	Thr	Leu	Asp	Leu 2080	Lys	Asp	Ile	G∃n	Arg 2085	Pro	Asp	Ser
Glu	His 20 90	Gly	Leu	Ser	Pro	Asp 2095	Ser	Glu	Asn	Phe	Asp 2100	Trp	Lys	Ala
Ile	Gln 2105	Glu	Gly	Ala	Asn	Ser 2110	Ile	Val	Ser	Ser	Leu 2115	His	G∏n	Ala
Ala	Ala 2120	Ala	Ala	Cys	Leu	Ser 2125	Arg	Gln	Аlа	Ser	Ser 2130	Asp	Ser	Asp
Ser	Ile 2135	Leu	Ser	Leu	Lys	Ser 2140	Gly	Ile	Ser	Leu	Gly 2145	Ser	Pro	Phe
His	Leu 2150	Thr	Pr o	Asp	Gln	Glu 2155	Glu	Lys	Pro	Phe	Thr 2160		Asn	Lys
Gly	Pro 2165	Arg	Ile	Leu	Lys	Pro 2170	Gly	Glu	Lys	Ser	Thr 2175	Leu	Glu	Thr
Lys	Lys 2180	IÌe	Glu	Ser	Glu	Ser 2185	Lys	Gly	Ile	Lys	Gly 2190	Gly	Lys	Lys
Val	Tyr 2195	Lys	Ser	Leu	Ile	Thr 2200	Gly	Lys	٧a٦	Arg	ser 2205	Asn	Ser	Glu
Ile	Ser 2210	Gly	G∏n	Met	Lys	Gln 2215	Pro	Leu	Gln	Ala	Asn 2220	Met	Pro	Ser
Ile	Ser 2225	Arg	Gly	Arg	Thr	Met 2230	Ile	His	Ile	Pro	G]y 2235	٧a٦	Arg	Asn
Ser	Ser 2240	Ser	Ser	Thr	Ser	Pro 2245	Val	Ser	Lys	Lys	G]y 2250	Pro	Pro	Leu
Lys	Thr 2255	Pro	Ala	Ser	Lys	Ser 2260	Pro	Ser	G]u	G⊺y	G]n 2265	Thr	Ala	Thr
⊤hr	Ser 2270	Pro	Arg	Glу	Ala	Lys 2275	Pro	Ser	Val	Lys	Ser 2280	Glu	Leu	Ser
Pro	Val 2285	Αla	Arg	Gln	Thr	Ser 229 0	Gln	Ile	Gly	GТу	Ser 2295	Ser	Lys	Ala

WO 2005/014854

PCT/EP2004/008819

Pro	Ser 2300	Arg	Ser	Glу	Ser	Arg 2305	Asp	3946 Ser	7A.t Thr	xt.t Pro	xt Ser 2310		Pro	Ala
Gln	G []] n 2315	Pro	Leu	Ser	Arg	Pro 2320	Ile	Gln	Ser	Pro	Gly 2325	Arg	Asn	Ser
Ile	Ser 2330	Pro	Gly	Arg	Asn	G]y 2335	Ile	Ser	Pro	Pro	Asn 2340		Leu	Ser
Gln	L e u 2345	Pro	Arg	Thr	Ser	Ser 235 0	Pro	Ser	Thr	Ala	Ser 2355	Thr	Lys	Ser
Ser	Gly 2360	Ser	Gly	Lys	Met	Ser 2365	Tyr	Thr	Ser	Pro	Gly 2370	Arg	Gln	Met
Ser	Gln 2375	Gln	Asn	Leu	Thr	Lys 2380	Gln	Thr	Gly	Leu	Ser 2385	Lys	Asn	Ala
Ser	Ser 2390	Ile	Pro	Arg	Ser	G]u 2395	Ser	Ala	Ser	Lys	Gly 2400	Leu	Asn	Gln
Met	Asn 24 0 5	Asn	Gly	Asn	Gly	Ala 2410	Asn	Lys	Lys	۷al	Glu 2415	Leu	Ser	Arg
Met	Ser 2420	Ser	Thr	Lys	Ser	ser 2425	Gly	ser	Glu	ser	Asp 2430	Arg	Ser	Glu
Arg	Pro 2435	٧a٦	Leu	Val	Arg	G1n 2440	Ser	Thr	Phe	Ile	Lys 2445	Glu	Ala	Pro
ser	Pro 2450	Thr	Leu	Arg	Arg	Lys 2455	Leu	Glu	Glu	Ser	Ala 2460	Ser	Phe	Glu
Ser	Leu 2465	Ser	Pro	Ser	Ser	Arg 2470	Pro	Ala	Ser	Pro	Thr 2475	Arg	Ser	Gln
Ala	G1n 2480	Thr	Pro	Val	Leu	Ser 2485	Pro	Ser	Leu	Pro	Asp 2490	Met	Ser	Leu
Ser	Thr 2495	ніѕ	Ser	Ser	val	G1n 2500	Ala	GТу	Gly	Trp	Arg 2505	Lys	Leu	Pro
Pro	Asn 2510	Leu	Ser	Pro	Thr	Ile 2515	G∏u	Tyr	Asn	Asp	G]y 2520	Arg	Pro	Ala
Lys	Arg 2525	RiH	Asp	Ile	Ala	Arg 2530	Ser	His	Ser	Glu	Ser 2535	Pro	Ser	Arg
Leu	Pro 2540	Ile	Asn	Arg	Ser	G]y 2545	Thr	Trp	Lys	Arg	G]u 2550	ніѕ	Ser	Lys

His	ser 2555	Ser	Ser	Leu	Pro	Arg 2560	٧a٦	3946 Ser	7A.t Thr	xt.t Trp	xt Arg 2565	Arg	Thr	Gly
Ser	Ser 2570		Ser	Ile	Leu	Ser 2575	Ala	Ser	Ser	Glu	ser 2580		Glu	Lys
Ala	Lys 2585	Ser	Glu	Asp	Glu	Lys 2590	His	Val	Asn	Ser	Ile 2595	Ser	Gly	Thr
Lys	G1n 2600	Ser	Lys	Glu	Asn	Gln 2605	۷a٦	Ser	Ala	Lys	Gly 2610	Thr	Trp	Arg
Lys	Ile 2615	Ļys	Glu	Asn	Glu	Phe 2620	Ser	Pro	Thr	Asn	Ser 2625	Thr	Ser	Gln
Thr	va1 2630	Ser	Ser	Gly	Ala	Thr 2635	Asn	Gly	Ala	Glu	ser 2640	Lys	Thr	Leu
Ile	туг 2645	Gln	Met	Аlа	Pro	Ala 2650	۷al	Ser	Lys	Thr	G]u 2655	Asp	٧a٦	Trp
Val	Arg 2660		Glu	Asp	Cys	Pro 2665	Ile	Asn	Asn	Pro	Arg 2670	Ser	Gly	Arg
Ser	Pro 2675	Thr	Gly	Asn	⊤hr	Pro 2680	Pro	٧a٦	Ile	Asp	ser 2685	val	Ser	Glu
Lys	Ala 2690	Asn	Pro	Asn	Ile	Lys 2695	Asp	Ser	Lys	Asp	Asn 2700	Gln	Αla	Lys
Gln	Asn 2705	Val	Gly	Asn	Gly	Ser 2710	val	Pro	Met	Arg	Thr 2715	val	Gly	Leu
Glu	Asn 2720	Arg	Leu	Asn	Ser	Phe 2725	Ile	G∏n	۷al	Asp	Ala 2730	Pro	Asp	Gln
Lys	G]y 2735	Thr	Glu	Ile	Lys	Pro 2740	G∃y	G∏n	Asn	Asn	Pro 2745	Val	Pro	۷a٦
Ser	G]u 2750	Thr	Asn	Glu	Ser	ser 2755	Ile	val	Glu	Arg	Thr 2760	Pro	Phe	Ser
Ser	ser 2765	Ser	Ser	Ser	Lys	нis 2770	Ser	Ser	Pro	Ser	G]y 2775	Thr	Val	Ala
Ala	Arg 2780	Val	Thr	Pro	Phe	Asn 2785	Tyr	Asn	Pro	Ser	Pro 2790	Arg	Lys	Ser
Ser	Ala 2795	Asp	Ser	Thr	Ser	Ala 2800	Arg	Pro	Ser	Gln	Ile 2805	Pro	⊤hr	Pro

Val Asn Asn Asn Thr Lys Lys Arg Asp Ser Lys Thr 2820 Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser 2830 Pro Lys Arg His Ser Gly Ser Tyr

Leu Val Thr Ser Val

<210> 44 <211> 2121 <212> DNA

<213> Homo sapiens

<220> <221> misc_feature <223> C-myc <400> 44 ctgctcgcgg ccgccacc

ctgctcgcgg ccgccaccgc cgggccccgg ccgtccctgg ctcccctcct gcctcgagaa 60 gggcagggct tctcagaggc ttggcgggaa aaaagaacgg agggagggat cgcgctgagt 120 ataaaagccg gttttcgggg ctttatctaa ctcgctgtag taattccagc gagaggcaga 180 gggagcgagc gggcggccgg ctagggtgga agagccgggc gagcagagct gcgctgcggg 240 cgtcctggga agggagatcc ggagcgaata gggggcttcg cctctggccc agccctcccg 300 cttgatcccc caggccagcg gtccgcaacc cttgccgcat ccacgaaact ttgcccatag 360 cagcgggcgg gcactttgca ctggaactta caacacccga gcaaggacgc gactctcccg 420 acgcggggag gctattctgc ccatttgggg acacttcccc gccgctgcca ggacccgctt 480 ctctgaaagg ctctccttgc agctgcttag acgctggatt tttttcgggt agtggaaaac 540 cagcagcctc ccgcgacgat gcccctcaac gttagcttca ccaacaggaa ctatgacctc 600 gactacgact cggtgcagcc gtatttctac tgcgacgagg aggagaactt ctaccagcag 660 cagcagcaga gcgagctgca gcccccggcg cccagcgagg atatctggaa gaaattcgag 720 ctgctgccca ccccgcccct gtcccctagc cgccgctccg ggctctgctc gccctcctac 780 gttgcggtca caccettete cettegggga gacaacgaeg geggtggegg gagettetee 840 acggccgacc agctggagat ggtgaccgag ctgctgggag gagacatggt gaaccagagt 900 ttcatctgcg acccggacga cgagaccttc atcaaaaaca tcatcatcca ggactgtatg 960 tggagcggct tctcggccgc cgccaagctc gtctcagaga agctggcctc ctaccaggct 1020 gcgcgcaaag acagcggcag cccgaacccc gcccgcggcc acagcgtctg ctccacctcc 1080 agcttgtacc tgcaggatct gagcgccgcc gcctcagagt gcatcgaccc ctcggtggtc 1140 ttcccctacc ctctcaacga cagcagctcg cccaagtcct gcgcctcgca agactccagc 1200 gccttctctc cgtcctcgga ttctctgctc tcctcgacgg agtcctcccc gcagggcagc 1260 cccgagcccc tggtgctcca tgaggagaca ccgcccacca ccagcagcga ctctgaggag 1320 gaacaagaag atgaggaaga aatcgatgtt gtttctqtqq aaaagaggca ggctcctggc 1380

39467A.txt.txt

	aaaaggtcag	agtctggatc	accttctgct	ggaggccaca	gcaaacctcc	tcacagccca	1440
	ctggtcctca	agaggtgcca	cgtctccaca	catcagcaca	actacgcagc	gcctccctcc	1500
	actcggaagg	actatcctgc	tgccaagagg	gtcaagttgg	acagtgtcag	agtcctgaga	1560
	cagatcagca	acaaccgaaa	atgcaccagc	cccaggtcct	cggacaccga	ggagaatgtc	1620
	aagaggcgaa	cacacaacgt	cttggagcgc	cagaggagga	acgagctaaa	acggagcttt	1680
	tttgccctgc	gtgaccagat	cccggagttg	gaaaacaatg	aaaaggcccc	caaggtagtt	1740
	atccttaaaa	aagccacagc	atacatcctg	tccgtccaag	cagaggagca	aaagctcatt	1800
	tctgaagagg	acttgttgcg	gaaacgacga	gaacagttga	aacacaaact	tgaacagcta	1860
	cggaactctt	gtgcgtaagg	aaaagtaagg	aaaacgattc	cttctaacag	aaatgtcctg	1920
•	agcaatcacc	tatgaacttg	tttcaaatgc	atgatcaaat	gcaacctcac	aaccttggct	1980
•	gagtcttgag	actgaaagat	ttagccataa	tgtaaactgc	ctcaaattgg	actttgggca	2040
	taaaagaact	tttttatgct	taccatcttt	tttttttctt	taacagattt	gtatttaaga	2100
į	attgttttta	aaaaatttta	a				2121

<210> 45

<400> 45

Met Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr 10 15

Asp Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Glu Asn Phe Tyr 20 25 30

Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp 35 40 45

Ile Trp Lys Lys Phe Glu Leu Leu Pro Thr Pro Pro Leu Ser Pro Ser 50 60

Arg Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe 65 70 75 80

Ser Leu Arg Gly Asp Asn Asp Gly Gly Gly Gly Ser Phe Ser Thr Ala 85 90 95

Asp Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn 100 105 110

<211> 439

PRT

Homo sapiens

<220>

misc_feature C-myc

Gln Ser Phe Ile Cys Asp Pro Asp Asp Glu Thr Phe Ile Lys Asn Ile 115 120 125Ile Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu 130 140 Val Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly 145 150 155 160 Ser Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu 165 170 175 Tyr Leu Gln Asp Leu Ser Ala Ala Ala Ser Glu Cys Ile Asp Pro Ser 180 185 190 Val Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Ser Pro Lys Ser Cys 195 200 205 Ala Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu 210 220 Ser Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu 225 230 235 240 His Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Gln 245 250 255 Glu Asp Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala 260 265 270 Pro Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser 275 280 285 Lys Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr 290 295 His Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro 305 310 315 320 Ala Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile 325 330 335 Ser Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu 340 345 Asn Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Arg Asn 355 360 365 Glu Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu 370 380

```
39467A.txt.txt
 Glu Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr
 Ala Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu
Glu Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu 420 425 430
Gln Leu Arg Asn Ser Cys Ala
435
<210>
       46
<211>
        11
<212>
       PRT
<213>
<220>
<221>
       misc_feature
<223>
       TAT protein
<400> 46
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg 1 5 10
<210>
<211>
        47
       54
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<220>
       misc_feature
Prox-1 sense
<221>
<223>
tggtcatctg caagctggat ttcaagagaa tccagcttgc agatgacctt tttc
                                                                            54
<210>
       48
<211>
       58
<212>
       DNA
<213> Artificial sequence
<220>
<223>
       Synthetic primer
<220>
<221>
       misc_feature
<223>
       Prox-1 anti-sense
<400> 48
tcgagaaaaa aggtcatctg caagctggat tctcttgaaa tccagcttgc agtgacca
                                                                            58
<210>
<210> 45
<211> 55
<212> DNA
<213> Artificial sequence
```

39467A.txt.txt

<220> <223>	Synthetic primer	
<220> <221> <223>	misc_feature Prox-2 sense	
<400> tgagcc	49 cagtt tgatatggat ttcaagagaa tccatatcaa actggctctt ttttc 55	
<210> <211> <212> <213>		
<220> <223>	Synthetic primer	
	misc_feature Prox-2 anti-sense	
<400> tcgaga	50 aaaa agagccagtt tgatatggat tctcttgaaa tccatatcaa actgctca 58	

Internation No PCT/EP2004/008819

A. CLASSIF	ICATION OF	SUBJECT	MATTER
IPC 7	C12Q1/	′68	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ C12Q$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data, PAJ

C-4	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Helevani to ciami No.
X	WO 03/027285 A (BIONOMICS LTD. (AU)) 3 April 2003 (2003-04-03) page 3, lines 22-37; table 2 page 14, line 1 - page 15, line 11; claims 2,34-36,41,44,55,77; sequence 102	46-51, 54-56
X	US 2003/087807 A1 (GREENSPAN R.J.) 8 May 2003 (2003-05-08) claims 15,17,51 -/	49-51, 54,55
V Fuel	er documents are listed in the continuation of box C.	are listed in annex.

 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 17 December 2004	Date of mailing of the international search report 29/12/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Barz, W
	

Form PCT/ISA/210 (second sheet) (January 2004)

Internal Application No PCT/EP2004/008819

Category °	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT ttegory * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
goly	One and the second of the seco	. ISSPAIN TO GRAPH 1901				
Α	PETROVA T.V. ET AL.: "Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor" EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 21, no. 17, September 2002 (2002-09), pages 4593-4599, XP002309905 ISSN: 0261-4189 abstract	1-78				
A	HONG YK. ET AL.: "Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate." DEVELOPMENTAL DYNAMICS, vol. 225, no. 3, November 2002 (2002-11), pages 351-357, XP009040935 ISSN: 1058-8388 abstract	1-78				
A	WIGLE J.T. ET AL.: "An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype" EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 21, no. 7, 2 April 2002 (2002-04-02), pages 1505-1513, XP002309907 ISSN: 0261-4189 abstract; figure 8	1-78				
Α	WIGLE J.T. ET AL.: "Prox1 function is required for the development of the murine lymphatic system" CELL, vol. 98, no. 6, 17 September 1999 (1999-09-17), pages 769-778, XP002309908 ISSN: 0092-8674 the whole document	1-78				
A	PETROVA T.V. ET AL.: "Effects of lymphatic transcription factor Prox-1 on cell cycle progression" JOURNAL OF SUBMICROSCOPIC CYTOLOGY AND PATHOLOGY, vol. 32, no. 3, July 2000 (2000-07), page 406, XP009040762 & XITH INTERNATIONAL VASCULAR BIOLOGY MEETING; GENEVA, SWITZERLAND; SEPTEMBER 05-09, 2000 ISSN: 1122-9497 abstract	1-78				

Interna	al Application No
PCT/EF	2004/008819

	·	PCT/EP2004/008819				
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
A	XIA H. ET AL.: "siRNA-mediated gene silencing in vitro and in vivo" NATURE BIOTECHNOLOGY, NATURE PUBLISHING, vol. 20, no. 10, October 2002 (2002-10), pages 1006-1010, XP002251054 ISSN: 1087-0156 abstract	56-67				
A	BRUMMELKAMP T.R. ET AL.: "A system for stable expression of short interfering RNAs in mammalian cells" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 296, no. 5567, 2002, pages 550-553, XP002225638 ISSN: 0036-8075 abstract; figures 1,2	56-67				
P,A	LOHELA M. ET AL.: "Lymphangiogenic growth factors, receptors and therapies." THROMBOSIS AND HAEMOSTASIS, vol. 90, no. 2, August 2003 (2003-08), pages 167-184, XP009040757 ISSN: 0340-6245 abstract page 168, paragraph bridging both columns; page 169, last paragraph of left column.	1-78				

information on patent family members

Internation Application No PCT/EP2004/008819

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03027285	A	03-04-2003	WO CA EP	03027285 A1 2461372 A1 1430126 A1	03-04-2003 03-04-2003 23-06-2004
US 2003087807	A1	08-05-2003	US AU CA EP WO	6551575 B1 2054301 A 2392963 A1 1255993 A2 0140519 A2	22-04-2003 12-06-2001 07-06-2001 13-11-2002 07-06-2001