

REDES NEURAIS COM TENSORFLOW

DIEGO RODRIGUES DSC

INFNET

Agenda

Parte 1: CRISP

Metodologia CRISP

Aplicação aos Dados Iris

Parte 2 : Prática

Notebook: Classificador Iris

Parte 3 : Trabalhos

Escopo & Evolução

Cross
Industry
Process for
Data Mining
(CRISP-DM)

Paradigmas de Modelagem Estatística

SUPERVISIONADO

– CLASSIFICAÇÃO

SUPERVISIONADO – REGRESSÃO

NÃO SUPERVISIONADO

APRENDIZADO POR REFORÇO

Problema de Negócio

Classificação

Um bebê consegue separar e ordenar blocos com diferentes tamanhos, formas e cores. Ele também consegue identificar os tipos diferentes de objetos.

Os diferentes tipos de objetos são chamados de **classes**. As características dos objetos são chamadas de **variáveis** ou **atributos**.

t da Nova Geração

Então, um classificador é um modelo **treinado para discriminar objetos** pertencentes a duas

ou mais classes, baseado em seus atributos.

Representação

Exercício (1): qual representação o cachorro deve escolher para diferenciar ovelhas pretas, cinzas e brancas?

Exercício (2): qual seria uma boa representação para diferenciar alunos e alunas do curso de redes neurais?

Modelagem

1) Aprendizado Supervisionado

Tarefas de classificação e regressão pertencem a esta categoria. O treinamento consiste em encontrar parâmetros para o modelo que minimiza uma função de risco/erro para uma amostra de treinamento, baseado na diferença entre os valores previstos e reais, para cada observação.

Modelos Densos

Algoritmos que estimam a **função densidade de probabilidade** dos dados, ou aproximações locais, para determinar a classe de observações fora da amostra de treino.

- 1) Classificador Bayesiano & Naive
- 2) K-Vizinhos mais próximos.
- 3) Neurônio RBF
- 4) Mapa Auto Organizável / Rede Art

Algoritmos baseados em densidade dependem da **DENSIDADE** (!!). Consequentemente, se beneficiam de um **conjunto grande de observações e de baixa esparsidade do espaço de atributos**. O Classificador Bayesiano é considerado o classificador "ótimo", mas é raramente utilizado, dada a dificuldade de estimar a função densidade de probabilidade dos dados. É normalmente utilizado como benchmark para comparação teórica entre os algoritmos de classificação.

Modelos Funcionais

Algoritmos que dependem da **estimação dos parâmetros de uma função** que é utilizada

como **superfície de separação** entre as classes.

- 1) Funções Polinomiais
- 2) Regressão Logística
- 3) Máquina de Vetores Suporte
- 4) Neurônio Sigmoide / Tangente Hiperbólica
- 5) Árvores de Decisão

Algoritmos baseados em funções são mais simples, usualmente tem um número menor de parâmetros e não dependem em armazenar muitos dados para manter uma "memória", como por exemplo K-vizinhos mais próximos.

Modelos de Comitê

Algoritmos que **combinam modelos simples**, usualmente através de **votação ou ponderação**, para atingir maiores taxas de classificação.

- 1) Random Forest
- 2) Boosting
- 3) Redes Neurais Profundas

Boa capacidade de generalização gerado através de arranjos complexos de múltiplos modelos simples de machine learning.

Comparação dos Classificadores

Validação

good to be true)

Identificando os metaparâmetros

LEAVE ONE OUT

 Uma única observação é deixada de fora a cada treinamento. N treinamentos são realizados para calcular a estatística de erro.

K FOLDS

 Amostra é dividida em K conjuntos. K treinamentos são realizados, mantendo um conjunto como fora-da-amostra.

BOOTSTRAPPING

 O algoritmo itera, amostrando aleatoriamente M observações, para a quantidade Q desejada de treinamentos.

Figuras de Mérito

Acurácia

• (TP+TN)/(P+N)

Taxa de Erro

1-Acurácia

Sensibilidade (Recall)

TP/(TP+FN)

Especificidade

TN/(TN+FP)

Precisão

TP/(TP+FP)

Produto Sp

SQRT[SQRT(R1*R2)

* (R1 + R2)/2

Classificação Iris

Problema de Negócio

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

Representação

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

Espaço de atributos com 4 dimensões!

Modelagem

Rede Neural Feed Forward

- Representação: 2 atributos
- Meta-parâmetros: 1 neurônio Sigmoide
- Treinamento: base de treino completa.
 - Base de Validação Percentual
 - Critério de Parada: Número de épocas
- Algoritmo RMSProp
 - Batelada Completa
 - Taxa de Aprendizado
- Figura de Mérito: Precisão

Classificador Iris