Fall 2017

IPv4 Addressing and Subnetting

1. Objectives

- To introduce IPv4 addressing and subnetting.
- To design an enterprise network IP addressing scheme.

2. Instructions

- a) Use [Handout_1_Basic_Subnetting_Algorithm] for introduction to IP addressing and subnetting.
- b) Understand the following **IPv4 table**:

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)

Now, use the above IPv4 address table, determine the class, network address and broadcast address for the following IP addresses:

i. IP address: 207.21.54.240	Address Class:	
Subnet mask: 255.255.255.0		
Broadcast Address:		
Possible # of Hosts:		
ii. IP address: 60.41.211.5		
Subnet mask: 255.0.0.0		
Broadcast Address:		_
Possible # of Hosts:		_
iii. IP address: 190.101.2.199	Address Class:	
Subnet mask: 255.255.0.0		
Broadcast Address:		_
Possible # of Hosts:		_

c) sks to determine the number of subnets created for the address, and the number of hosts permitted on each subnet:

i. IP address: 207.21.54.140	Address Class:	
Subnet mask: 255.255.255.224	Network Address: _	
Possible # of Subnets:		
Possible # of Hosts:		
ii. IP address: 60.41.211.5	Address Class:	
Subnet mask: 255.255.255.0	Network Address: _	
Possible # of Subnets:		
Possible # of Hosts:		
iii. IP address: 182.191.25.11	Address Class:	
Subnet mask: 255.255.254.0	Network Address: _	
Possible # of Subnets:		
Possible # of Hosts:		

Lab Experiment #3 – Part 2

3. Exercise

Step 1: Subnet the 192.168.100.0/24 network into the appropriate number of subnets.

- a. Based on the topology, **how many subnets** are needed?.....
- b. How many bits must be borrowed to support the number of subnets in the topology table?.....
- c. How many subnets does this create?.....
- d. How many usable hosts does this create per subnet?.....
- e. Calculate the binary value for the <u>first five subnets</u>. The first subnet is already shown.

Net 3: 192 . 168 . 100 . ___ __ __ __ ___

Net 4: 192 . 168 . 100 . ___ __ __ __ __ __

f. Calculate the binary and decimal value of the new subnet mask.

g. Fill in the **Subnet Table**, listing the decimal value of all available subnets, the first and last usable host address, and the broadcast address. Repeat until all addresses are listed.

Subnet Table

Subnet Number	Subnet Address	First Usable Host Address	Last Usable Host Address	Broadcast Address
0				
1				
2				
3				
4				
5				
6				
7				

Step 2: Assign the subnets to the network shown in the topology.

- a. Assign Subnet 0 to the LAN connected to the GigabitEthernet 0/0 interface of R1:.....
- b. Assign Subnet 1 to the LAN connected to the GigabitEthernet 0/1 interface of R1:.....
- c. Assign Subnet 2 to the LAN connected to the GigabitEthernet 0/0 interface of R2:.....

Computer Networks Laboratory

CSE 324

Lab Experiment #3 – Part 2

Fall 2017

- d. Assign Subnet 3 to the LAN connected to the GigabitEthernet 0/1 interface of R2:.....
- e. Assign Subnet 4 to the WAN link between R1 to R2:....

Step 3: Document the addressing scheme.

- a. Assign the <u>first usable IP addresses</u> to R1 for the two LAN links and the WAN link.
- b. Assign the <u>first usable IP addresses</u> to R2 for the LANs links. Assign the <u>last usable IP address</u> for the WAN link.
- c. Assign the second usable IP addresses to the switches.
- d. Assign the <u>last usable IP addresses</u> to the hosts.

Step 4: Assign IP Addresses to Network Devices and Verify Connectivity

Most of the IP addressing is already configured on this network. Implement the following steps to complete the addressing configuration.

- Step 1: Configure IP addressing on R1 LAN interfaces.
- Step 2: Configure IP addressing on S3, including the default gateway.
- Step 3: Configure IP addressing on PC4, including the default gateway.
- Step 4: Verify connectivity.

[IP Addressing and Subnetting – More practice]

- Q.1 You have the IP address 186.111.0.0, this network is subnetted by 10-bits. Find the following:
 - i. Find the Subnet Mask.
 - ii. Determine the number of usable hosts per subnet.
 - iii. To which subnet the following IP's belong to: 186.111.169.213
 - iv. Determine the **network address** and **broadcast address** of the subnet to which this ip belongs to: **186.111.169.213**
 - v. Find Network Address, Broadcast Address and Host Range for the subnet # 121.

O.2 Given a host with IP address 160.50.145.189/21:

- i. Is a host with IP address 160.50.146.210/21 part of the same network? Show calculations.
- ii. Is the IP address 160.50.145.255 valid according to the given IP? Why or why not?
- iii. What is the first valid host on the subnetwork that the node 172.18.142.179 255.255.254.0 belongs to?
- iv. Which subnet does host 192.168.11.198 255.255.255.240 belong to?
- v. What is the **last valid host** on the subnetwork **192.168.98.176 255.255.255.250.240**?
- vi. What is the last valid host on the subnetwork 172.25.13.112 255.255.255.240?
- vii. How many subnets and hosts per subnet can you get from the network 10.0.0.0 255.255.240.0?
- viii. What is the first valid host on the subnetwork that the node 192.168.207.190/28 belongs to?

Demonstrate your work to the instructors and submit lab report.