

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

ÁLGEBRA II

Autor: Jesús Muñoz Velasco

Índice general

1.	. Tema 1: Combinatoria y Teoría Elemental de Grafos			
	1.1.	Definiciones	1	
	1.2.	Grafos. Introducción	6	

Tema 1: Combinatoria y Teoría Elemental de Grafos

1.1. Definiciones

Definición 1.1. Una **permutación** de un conjunto X es una aplicación biyectiva $f: X \to X$.

El conjunto de todas las permutaciones de un conjunto X se denota Perm(X). En particular, si $X = \{1, 2, ..., n\}$ el conjunto de permutaciones se representa por S_n y su cardinal es n!. (importa el orden)

Definición 1.2. Se llaman variaciones sin repetición de n elementos, tomados de m en m a cada una de las posibles elecciones ordenadas de m elementos distintos, dentro de un conjunto de n elementos. (también importa el orden)

$$V_n^m = \frac{n!}{(n-m)!}$$

Definición 1.3. Se llaman variaciones con repetición de n elementos, tomados de m en m ...

En ambos casos, dos posibles elecciones se diferencian, bien en la naturaleza de los elementos elegidos, bien en el orden en el que se han elegido.

Definición 1.4. Una combinación sin repetición de n elementos tomados de m en m, con $1 \le m \le n$, es cada uno de los posibles subjconjuntos de m elementos distintos dentro de un conjunto de n elementos. (no importa el orden).

El número de combinaciones sin repetición de n elementos tomados de m a m,

Definición 1.5. Una combinación con repetición de n elementos tomados de m a m, $1 \le m \le n$, es cada una de las posibles agrupaciones de m elementos (no necesariamente distintos).

En ambos casos se tiene por tanto que dos combinaciones son iguales si y solo si tienen los mismos elementos sin importar el orden.

Proposición 1.1.

Definición 1.6. Dado $\{a_1, a_2, \dots, a_m\} \subset \{1, 2, \dots, n\}$, un ciclo de longitud m es una permutación $\sigma \in S_n$ tal que

$$\begin{cases} \sigma(a_i) = a_{i+1} & i = 1, \dots, a_{m-1} \\ \sigma(a_m) = a_1 \\ \sigma(a_j) = a_j & \forall a_j \notin \{a_1, a_2, \dots, a_m\} \end{cases}$$

y lo representamos $\sigma = (a_1, a_2, \dots, a_m)$, pero también por $(a_2, \dots, a_m, a_1) = (a_3, \dots, a_1, a_2) = \dots = (a_m, a_1, \dots, a_{m-1})$. Hay m formas distintas de representar un ciclo de longitud m.

Ejemplo. En S_3 , los ciclos de longitud 2 son (12), (13), (23) y los de longitud 3 son (123), (231), (312); (132), (321), (213). El número de ciclos de longitud 3, como importa el orden, hay $V_3^3 = P_3$, pero cada ciclo de longitud 3 se expresa de 3 maneras distintas, el número de ciclos es $\frac{V_3^3}{3} = 2$.

En general, el número de ciclos de longitud m en $S_n = \frac{V_n^m}{m}$

1.2. Grafos. Introducción

Definición 1.7. Un grafo G es un par (V, E), donde V y E son dos conjuntos, junto con una aplicación $\gamma_G : E \to \{\{u, v\} : u, v \in V\}$. V es el conjunto de vértices, E el conjunto de lados o aristas y γ_G aplicación de incidencia.

Ejemplo. Puentes de Konigsberg

Definición 1.8. Un grafo dirigido u orientado es un par (V, E), donde V y E son conjuntos, junto con dos aplicaciones $s, t : E \to V$.

Definición 1.9. Sea G = (V, E) un grafo con aplicación de incidencia γ_G . Un subgrafo de G es un nuevo grafo G' = (V', E') donde $V' \subseteq V$, $E' \subseteq E$ y se verifica que $\gamma_{G'}(e) = \gamma_G(e)$ para cualquier $e \in E'$.

Definición 1.10. Un subgrafo G' se dice pleno si se verifica que $e \in E$ es tal que $\gamma(e) \subseteq (V')$ entonces $e \in E'$, es decir, si tiene todas las aristas de G que unen vértices de V'.

Definición 1.11. Un camino es una sucesión finita de lados con la propiedad de que cada lado acaba donde empieza el siguiente.

Un camino de longitud n es una sucesión de lados e_1, e_2, \ldots, e_n , junto con una sucesión de vértices v_0, v_1, \ldots, v_n tales que $\gamma_G(e_i) = \{v_{i-1}, v_i\}$.

Un camino puede ser:

•) Cerrado: camino que empieza y acaba en el mismo vértice.

Sea G un grafo, si existe un camino de u a v, entonces existe un camino simple de u a v.

Sea G un frafo y sean u y v dos vértices distintos. Si existen dos caminos simples distintos de u a v, entonces hay un ciclo en G.

En el conjunto de vértices de un frafo G se puede establecer la siguiente relación binaria R (que es de equivalencia)

$$u, v \in V, uRv \iff$$
 existe un camino de u a v

Un grafo se dice conexo si todo par de vértices están relacionados por la relación anterior, es decir, están conectados por un camino. El conjunto cociente V/R es unitario.

Sea G un grafo cuyo conjunto de vértices es $V = \{v_1, v_2, \dots, v_n\}$. Se define su matriz de adyaciencia como la matriz $A \in M_n(\mathbb{N})$ cuyo coeficiente a_{ij} es el número de aristas que unen v_i con v_j .

Propiedades. Para un grafo sin lazos y no dirigido se verifica que:

- •) los elementos de la diagonal principal son todos 0
- •) es simétrica
- •) la matriz de adyaciencia no es única, depende de la ordenación de los vértices (se pasa de una a otra mediante una permutación, matriz invertuble con un 1 por fila y los demás ceros)
- $\bullet)$ toda matriz cuadrada con coeficientes en $\mathbb N$ es la matriz de adyacencia de algún grafo

•)

Teorema 1.2. Sea G un grafo y A su matriz de adyacencia. En la posición ij de la matriz A^k aparece el número de caminos de longitud k que unen v_i y v_j .

Se demuestra por inducción sobre n.