Package 'XINA'

August 20, 2018

8
Type Package
Title Multiplexes isobaric mass tagged-based kinetics data for network analysis
Version 0.99.0
Date 2018-08-13
Author Lee, Lang Ho and Singh, Sasha A.
Maintainer Lang Ho Lee <langholee@gmail.com> and Sasha A. Singh <sasingh@bwh.harvard.edu></sasingh@bwh.harvard.edu></langholee@gmail.com>
Description An intuitive R package simplifies network analyses output from multiplexed high-dimensional proteomics/trascriptomics kinetics data.
Copyright This software script is protected by the Copyright Act of 1976, 17 U.S.C. §§ 101-810, as amended. Rights reserved. Please contact The Brigham and Women's Hospital, Inc. for further information.
Encoding UTF-8
LazyData true
License GPL-3
Depends R (>= 3.5), Biobase
Imports mclust, plyr, alluvial, ggplot2, igraph, gridExtra, tools, grDevices, graphics, utils, STRINGd
biocViews SystemsBiology, Proteomics, RNASeq, Network
RoxygenNote 6.0.1
VignetteBuilder knitr
Suggests knitr, rmarkdown
R topics documented:
add_legend
alluvial_enriched
alluvial_enrichment_tests
calculate_centrality_scores
default_size
example_clusters
extract_data_column
find_similar_clusters
generate_count_table

2 add_legend

	generate_superset	9
	get_colors	9
	get_color_for_nodes	10
	get_comigrations_by_name	10
	get_condition_biased_comigrations	11
	get_layout	12
	get_mTOR_proteins	13
	get_random_data	13
	get_stats	14
	get_theme_blank	14
	get_unknown_ppi_nodes	15
	gn	15
	gn_desc	16
	hprd_ppi	16
	length2	17
	load_previous_results	17
	make_random_xina_data	18
	mutate_colors	19
	organize_clusters	20
	plot_clusters	20
	plot_clusters_all	21
	plot_condition_compositions	
	plot_enrichment_results	
	plot_NA	
	rank_centrality	24
	xina_analysis	25
	xina_clustering	26
	xina_enrichment	27
	xina_plot_all	
	xina_plot_bycluster	
	xina_plot_single	33
Index		36
add_l	egend add_legend	

Description

Add plot legend and locate it outside of a network plot

Usage

```
add_legend(legend_location = "bottomright", ...)
```

Arguments

```
{\tt legend\_location}
```

Network centrality score matrix

... Numeric, complex, or logical vectors.

alluvial_enriched 3

Value

a legend to a plot

alluvial_enriched alluvial_enriched

Description

'alluvial_enriched' draws an alluvial plot and finds comigrated proteins. The comigration is a group of proteins that show the same expression pattern, classified and evaluated by XINA clustering, in at least two conditions. XINA can reduce the dataset complexity by filtering based on the number of comigrated proteins (size, 'comigration_size' parameter) and perform an enrichment test (P-value of Fisher's exact test, 'pval_threshold') to determine significance of enriched comigrations. The Fisher's exact test can only be done for two conditions at a time. The following 2x2 table was used to calculate the P-value from the Fisher's exact test. To evaluate significance of co-migrated proteins from cluster #1 in control to cluster #2 in test group,

```
- cluster #1 in control other clusters in control cluster #2 in test 65 (TP) 175 (FP) other clusters in test 35 (FN) 979 (TN)
```

Usage

```
alluvial_enriched(clustering_result, selected_conditions,
  comigration_size = 0, pval_threshold = 1, pval_method = "fdr",
  cex = 0.7, alpha = 0.3)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

comigration_size

The number of proteins comigrated together in the selected conditions of XINA

clustering results. Default is 0

pval_threshold This option is avaiable only when you selected two conditions for comigration

search.

pval_method Method for p-value adjustment. See p.adjust

cex Scaling of fonts of category labels. Default if 0.7. See alluvial

alpha Transparency of the stripes. Default if 0.3. See alluvial

Value

A data frame containing comigrations and an alluvial plot showing comigrations

Examples

```
# load XINA example data
data(xina_example)
# Get the experimental conditions in the example data
classes <- as.vector(example_clusters$condition)</pre>
# Get comigrations without any thresholds
all_comigrations <- alluvial_enriched(example_clusters, classes)</pre>
# Get comigrations that have >= 5 size (the number of comigrated proteins)
all_cor_enriched <- alluvial_enriched(example_clusters, classes, comigration_size=5)</pre>
# Get all the comigrations between Control and Stimulus1
comigrations_Control_Stimulus1 <- alluvial_enriched(example_clusters,</pre>
c(classes[1],classes[2]))
# Get comigrations between Control and Stimulus1, that have >=5 size
comigrations_Control_Stimulus1_over5 <- alluvial_enriched(example_clusters,</pre>
c(classes[1],classes[2]), comigration_size=5)
# Get comigrations between Control and Stimulus1,
# that have >= 5 size and enrichment FDR <= 0.01
comigrations_Control_Stimulus1_pval0.01_size5 <- alluvial_enriched(example_clusters,</pre>
c(classes[1],classes[2]), comigration_size=5, pval_threshold=0.01)
# Get comigrations between Control and Stimulus1,
# that have >= 5 size and enrichment Benjamini & Yekutieli <= 0.01</pre>
comigrations_Control_Stimulus1_BY0.01_size5 <- alluvial_enriched(example_clusters,</pre>
\verb|c(classes[1], classes[2])|, comigration_size=5, pval_threshold=0.01, pval_method="BY"|)
```

Description

Fisher's exact test to calculate the significance over all comigrations. The following 2x2 table was used to calculate p-value from Fisher's exact test. To evaluate significance of comigrated proteins from cluster #1 in control to cluster #2 in test condition,

	cluster #1 in control	other clusters in control
cluster #2 in test	65 (TP)	175 (FP)
other clusters in test	35 (FN)	979 (TN)

^{&#}x27;alluvial_enrichment_tests' also provides another statistical methods including Hypergeometric test and Chi-square test.

Usage

```
alluvial_enrichment_tests(count_table, c1, c2, non_cluster = 0,
  test_type = "fisher")
```

Arguments

count_table A data frame generated by using count.

c1 A selected cluster in the first condition.

c2 A selected cluster in the second condition.

non_cluster The cluster number for proteins that were not detected in a specific sample.

Default is 0.

test_type Enrichment test type. 'fisher' = Fisher's exact test, 'hyper' = Hypergeometric

test, 'chisq' = Chi-square test

Value

P-value of comigration enrichment test and 2x2 table information

```
calculate\_centrality\_scores \\ calculate\_centrality\_scores
```

Description

'calculate_centrality_scores' computes network centrality scores

Usage

```
calculate_centrality_scores(net, centrality_type = "Degree")
```

Arguments

```
net protein-protein interaction network of igraph centrality_type the maximum number of clusters
```

Value

A vector of network centrality scores

6 draw_alluvial_plot

default_size

default_size

Description

Calculate image size based on the number of clusters

Usage

```
default_size(max_cluster)
```

Arguments

max_cluster

the maximum number of clusters

Value

A vector of plot width and height

draw_alluvial_plot

draw_alluvial_plot

Description

'draw_alluvial_plot' draw a alluvial plot

Usage

```
draw_alluvial_plot(clustering_result, selected_conditions, count_table,
  alluvia_colors = NULL, cex = 0.7, alpha = 0.3)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering.

 $selected_conditions$

A vector of condition names used in XINA clustering results. The number of

selected conditions should be at least two.

count_table A data frame generated by using count.

alluvia_colors A vector containing the user-defined colors for each alluvium.

cex Size of cluster number on block axis. Default if 0.7. See alluvial.

alpha Transparency of alluvia colors. Default is 0.3. See alluvial.

Value

An alluvial plot displaying comigrations and the data frame containing the input count_table with colors.

example_clusters 7

Examples

```
# load XINA example data
data(xina_example)
```

get a vector of experimental conditions analyzed in the clustering results
classes <- as.vector(example_clusters\$condition)</pre>

comigrations_size_over5 <- alluvial_enriched(example_clusters, classes, comigration_size=5)
draw_alluvial_plot(example_clusters, classes, comigrations_size_over5)</pre>

example_clusters

Randomly generated example datasets for XINA users. A dataset containing the XINA clustering results. example_clusters

Description

- aligned. XINA clustering results aligned by conditions
- · data column. Column names for data matrix
- out_dir. Not available in this example dataset
- nClusters. The number of user-desired clusters. It's 30 in the example.
- max_cluster. The number of clusters found in the dataset. It's 21 in the example.
- chosen_model. The chosen covariance model for the example dataset. It's VEI in the example
- optimal_BIC. BIC at the optimized clustering. It's 29473.57 in the example
- condition. The experimental conditions in the dataset.
- color_for_condition. The default color for the conditions that will be used in XINA plot drawing.
- color_for_clusters. The default color for the clusters that will be used in XINA clustering plot.
- norm_method. The used normalization method to standardize the input data. It's "sum_normalization" in the example.

Format

A list with the example XINA clustering result

extract_data_column extract_data_column

Description

Extract data column names from XINA clustering result

Usage

```
extract_data_column(col_head_of_clustering)
```

8 generate_count_table

Arguments

```
col_head_of_clustering

Column names of XINA clustering result
```

Value

A vector containing column names of data matrix

```
find_similar_clusters find_similar_clusters
```

Description

Compare clusters and find similar ones

Usage

```
find_similar_clusters(clustering_result, threshold = 0.95)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

threshold Pearson's r threshold to find similar ones

Value

Write a csv file containing similar clustering information based on the given Pearson's R threshold

```
generate_count_table generate_count_table
```

Description

Count the number of comigrated proteins using count

Usage

```
generate_count_table(clustering_result, selected_conditions, comigration_size)
```

Arguments

```
clustering_result
```

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results.

comigration_size

The number of proteins comigrated together in the selected conditions of XINA clustering results. Default is 0.

generate_superset 9

Value

A data frame containing comigrations.

generate_superset generate_superset

Description

Merge input kinetics files

Usage

```
generate_superset(f_names, data_column, delim = ",",
   norm = "sum_normalization")
```

Arguments

f_names A vector of .csv file paths containing kinetics data data_column
A vector of column names containing data matrix

delim The delimiter of input file (default is ',')

norm The normalization method. It should be one of c('sum_normalization', 'zs-

core'). Default is 'sum_normalization'.

Value

A data frame containing kinetics data obtained from files in the f_names vector

get_colors get_colors

Description

Generate color series for XINA graphics

Usage

```
get_colors(nClusters, set = "", colorset = NULL)
```

Arguments

nClusters The number of clusters
set Pre-defined color series set
colorset manually defined color codes

Value

A vector for color code of XINA graphics

get_color_for_nodes

Description

Pre-defined 30 colors

Usage

```
get_color_for_nodes()
```

Value

A vector for color code of XINA graphics

Description

'get_comigrations_by_name' finds proteins comigrated with the given proteins

Usage

```
get_comigrations_by_name(clustering_result, selected_conditions, protein_list,
  cex = 0.7, alpha = 0.3)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results. The number of

selected conditions should be at least two.

protein_list A vector containing gene names.

cex Size of cluster number on block axis. Default if 0.7. See alluvial

alpha Transparency of alluvia colors. Default is 0.3. See alluvial

Value

An alluvial plot displaying comigrations and the data frame containing comigrations of the input proteins

Examples

```
# load XINA example data
data(xina_example)

# the clustering result table
all_proteins <- as.character(example_clusters$aligned$`Gene name`)
# get a vector of experimental conditions analyzed in the clustering results
classes <- as.vector(example_clusters$condition)

comigrated_prots_all <- get_comigrations_by_name(example_clusters, classes, all_proteins[1:3])

get_condition_biased_comigrations</pre>
```

Description

get comigrations that at least one biased cluster is involved in. Biased clusters are defined by

get_condition_biased_comigrations

Usage

```
get_condition_biased_comigrations(clustering_result, count_table = NULL,
   selected_conditions, condition_composition, threshold_percent = 50,
   color_for_null = "gray", color_for_highly_matched = "red4", cex = 0.7,
   alpha = 0.3)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina clustering

count_table A data frame generated by using count. If count_table is NULL (by default), XINA will consider all the comigrations.

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

 $condition_composition$

The resulting data frame of 'plot_condition_compositions'. See plot_condition_compositions.

threshold_percent

Default is 50. The percentage threshold for finding condition-biased clusters

 ${\tt color_for_null} \ \ A \ color \ for \ non-condition-biased \ comigrations. \ Default \ is \ 'gray' \\ {\tt color_for_highly_matched}$

A color for comigrations that are involved with more than two condition-biased clusters. Default is 'red4'

cex Size of cluster number on block axis. Default if 0.7. See alluvial.

alpha Transparency of alluvia colors. Default is 0.3. See alluvial.

12 get_layout

Value

An alluvial plot displaying comigrations and the data frame containing condition-biased comigra-

Examples

```
# load XINA example data
data(xina_example)
# get a vector of experimental conditions analyzed in the clustering results
conditions <- as.vector(example_clusters$condition)</pre>
# get condition composition information
condition_composition <- plot_condition_compositions(example_clusters)</pre>
comigrations_size10 <- alluvial_enriched(example_clusters, conditions, comigration_size=10)</pre>
# Finding condition-biased comigrations by 50% threshold
condition_biased_comigrations <-</pre>
{\tt get\_condition\_biased\_comigrations(clustering\_result=example\_clusters,}
count_table=comigrations_size10, selected_conditions=conditions,
condition_composition=condition_composition)
# Finding condition-biased comigrations by 70% threshold
condition_biased_comigrations <-</pre>
get_condition_biased_comigrations(clustering_result=example_clusters,
count_table=comigrations_size10, selected_conditions=conditions,
condition_composition=condition_composition,
threshold_percent=70)
```

get_layout

get_layout

Description

Get igraph layout by the number of nodes

Usage

```
get_layout(subnet_condition)
```

Arguments

```
subnet_condition
```

A igraph sub-network

Value

igraph network layout

get_mTOR_proteins 13

<pre>get_mTOR_proteins</pre>	get_mTOR_proteins
8	0

Description

Get mTOR pathway genes

Usage

```
get_mTOR_proteins(time_points, conditions)
```

Arguments

time_points A vector containing time points of the data matrix

conditions A vector containing condition information, for example normal, disease and

drug treated disase.

Value

A vector containing mTOR pathway gene names

get_random_data	get_random_data

Description

Get randomized time-series data

Usage

```
get_random_data(time_points, conditions, num_total, percent.sign = 0.1,
    equal = TRUE)
```

Arguments

time_points A vector containing time points of the data matrix

conditions A vector containing condition information, for example normal, disease and

drug treated disase.

num_total The number of total proteins to be generated

percent.sign Percentage of differentially expressed proteins. Ignored when equal=FALSE.

equal If equal is TRUE, all the conditions will have numbers between 0 and 1. If it is

FALSE, the first three conditions will have different ranges. First condition will have numbers from 0.3 to 0.4. Second condition will have numbers from 0.6 to 0.8. Third condition will have numbers from 0.3 to 0.5. Other conditions will

have numbers from 0 to 1.

Value

A list containing ramdomly generated data matrix

14 get_theme_blank

get_stats

get_stats

Description

Calculate statistics of the given data for XINA network analysis

Usage

```
get_stats(centrality_results, na.rm = FALSE)
```

Arguments

centrality_results

Network centrality score data frame calculated by XINA network module

na.rm

If it is FALSE, no exclusion of NA values.

Value

A data frame containing statistics of XINA network centrality scores

 ${\tt get_theme_blank}$

get_theme_blank

Description

Predefined ggplot theme for removing ticks, titles and labels of X and Y axis

Usage

```
get_theme_blank()
```

Value

A ggplot theme

```
get_unknown_ppi_nodes
```

Description

Get proteins with no known interactions within the cluster based on the used protein-protein interaction database source

Usage

```
get_unknown_ppi_nodes(xina_result, cl)
```

Arguments

xina_result A list containing XINA network analysis results. See xina_analysis
cl the clustering number of XINA clustering results. See xina_clustering

Value

A data frame containing proteins with no known interactions within the cluster based on the used protein-protein interaction database source

Examples

```
library(STRINGdb)

# load XINA example data
data(xina_example)

# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version='10', species=9606, score_threshold=0, input_directory='')
string_db

# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db, flag_simplify=FALSE)

# Extract unknown PPI nodes in the cluster #1
get_unknown_ppi_nodes(xina_result, 1)</pre>
```

gn

A character vector containing 19,396 human genes This is for the randome data generation of XINA gn

Description

· Characters of human genes

Format

A character vector containing 19,396 human genes

16 hprd_ppi

Source

https://www.ncbi.nlm.nih.gov/gene

gn_desc

A character vector containing 19,396 human gene descriptions This is for the randome data generation of XINA gn_desc

Description

• Human gene description corresponding to 'gn' vector

Format

A character vector containing 19,396 human gene descriptions

Source

```
https://www.ncbi.nlm.nih.gov/gene
```

						٠
hı	nı	rd		n	n	Ť.
	\sim	u	_	ν	ν	_

Protein-protein interaction resource downloaded from HPRD DB A data frame containing HRPD protein-protein interaction data hprd_ppi

Description

- gene_symbol_1. Gene name interacting with gene name in 'gene_symbol_2'
- gene_symbol_2. Gene name interacting with gene name in 'gene_symbol_1'
- Experiment_type. Experimental or computational methods supporting the interaction

Format

A data frame containing HRPD protein-protein interaction data

Source

http://www.hprd.org/

length2

length2 length2

Description

Customized function for vector length calculation

Usage

```
length2(x, na.rm = FALSE)
```

Arguments

x A vector

na.rm If it is FALSE, no exclusion of NA values.

Value

A vector length

 $load_previous_results \quad load_previous_results$

Description

Get previous XINA clustering results to R space

Usage

```
load_previous_results(clustering_dir = getwd(), data_column = NULL,
    fp_clusters = "xina_clusters.csv")
```

Arguments

 ${\tt clustering_dir} \ \ {\tt The \ directory \ path \ of \ XINA \ clustering \ results}$

data_column A vector containing column names of data matrix

fp_clusters File path of XINA clustering results

Value

Comma-separated file containing aligned XINA clustering results.

Examples

```
# Generate random multiplexed time-series data
random_data_info <- make_random_xina_data()

# Data files
data_files <- paste(random_data_info$conditions, ".csv", sep='')

# time points of the data matrix
data_column <- random_data_info$time_points

# mclust requires the fixed random seed to get reproduce the clustering results
set.seed(0)

# Run the model-based clustering
example_clusters <- xina_clustering(data_files, data_column=data_column, nClusters=30)

# Reload the clustering result
example_clusters_reloaded <- load_previous_results(".")</pre>
```

```
make_random_xina_data make_random_xina_data
```

Description

Generate random proteomics dataset for testing XINA 'make_random_xina_data' will make random proteomics data for XINA test. The generated data will have three conditions and seven time points, c("0hr", "2hr", "6hr", "12hr", "24hr", "48hr", "72hr").

Usage

```
make_random_xina_data(n = 500, mtor = TRUE, time_points = c("0hr", "2hr",
   "6hr", "12hr", "24hr", "48hr", "72hr"), conditions = c("Control",
   "Stimulus1", "Stimulus2"))
```

Arguments

n The number of proteins for one condition. Default is 500.

mtor If it is TRUE (default), mTOR pathway genes will be significant. If it is FALSE,

randomly selected genes will be significant in first three conditions.

time_points A vector containing time points of the data matrix

conditions A vector containing condition information, for example normal, disease and

drug treated disase.

Value

Three comma-separated files containing time-series data for XINA

mutate_colors 19

Examples

```
make_random_xina_data()
g1 <- read.csv("Control.csv", check.names=FALSE, stringsAsFactors = FALSE)
g2 <- read.csv("Stimulus1.csv", check.names=FALSE, stringsAsFactors = FALSE)
g3 <- read.csv("Stimulus2.csv", check.names=FALSE, stringsAsFactors = FALSE)

# Model-based clustering
example_clusters <- xina_clustering(c("Control.csv", "Stimulus1.csv", "Stimulus2.csv"),
data_column=c("0hr", "6hr", "12hr", "24hr", "48hr", "72hr"), nClusters=30)

# Plot clustered plots
plot_clusters(example_clusters)

# Plot pie-charts of condition composition
condition_composition <- plot_condition_compositions(example_clusters)</pre>
```

mutate_colors

mutate_colors

Description

'mutate_colors' generates new color scheme for XINA clustering plot based on condition composition results (plot_condition_compositions). If any clusters have higher percentage than the 'threshold_percent', XINA will assign new colors in accordance to 'color_for_condition'. If not, XINA will give 'gray' color or user-defined color via 'null_color' parameter.

Usage

```
mutate_colors(condition_composition, color_for_condition, null_color = "gray",
    threshold_percent = 50)
```

Arguments

```
condition_composition

A data frame generated by plot_condition_compositions

color_for_condition

A vector like 'color_for_condition' of xina_clustering

null_color

Default is 'gray'. This color is for clusters that are not biased to any of experimental conditions

threshold_percent

Default is 50. The percentage threshold for giving new colors
```

Value

A data frame containing statistics of XINA network centrality scores

20 plot_clusters

Examples

```
# load XINA example data
data(xina_example)

# Plot condition composition pie-chart with default option
condition_composition <- plot_condition_compositions(example_clusters)
example_clusters$color_for_clusters <- mutate_colors(condition_composition,
example_clusters$color_for_condition)
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72), xylab=FALSE)</pre>
```

organize_clusters

organize_clusters

Description

Organize XINA clustering information by gene name

Usage

```
organize_clusters(clustering_dir = getwd(), super_ds, file_out = TRUE)
```

Arguments

clustering_dir The directory path of XINA clustering results

super_ds XINA clusters

file_out If it is TRUE, it writes the aligned clustering informaion to "xina_clusters_aligned.csv"

file

Value

Comma-separated file containing aligned XINA clustering results.

plot_clusters

plot_clusters

Description

Draw all the clustering results. 'plot_clusters' draws two plots, scaled and unscaled line graphs. Scaled graphs have same y limits that are 0 to 1 by default, but can be changed via 'y_lim' parameter.

Usage

```
plot_clusters(clustering_result, y_lim = NULL, xval = NULL, xylab = TRUE,
    ggplot_theme = NULL)
```

plot_clusters_all 21

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

y_lim Y axis limit. If you set y_lim=c(0,1), 'plot_clusters' will plot line graphs scaled

from 0 to 1 in y-axis Default is NULL, which means unscaled line graphs.

xval Change X axis values and labels. Default is data_column of the clustering result

list

xylab If it is FALSE, x and y labels will be blank. If it is TRUE (defualt), x and y

labels will be shown.

ggplot_theme This is ggplot theme to modify XINA clustering plot.

Value

Line graphs of all the clusters

Examples

```
library(ggplot2)

# load XINA example data
data(xina_example)

# Draw clustering plots
plot_clusters(example_clusters)

# Apply theme to the clustering plot
theme1 <- theme(title=element_text(size=8, face='bold'),
axis.text.x = element_text(size=7),
axis.text.y = element_blank(),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
axis.title.x = element_blank(),
axis.title.x = element_blank())
plot_clusters(example_clusters, ggplot_theme=theme1)</pre>
```

Description

Draw line graphs of all the proteins in the given dataset

Usage

```
plot_clusters_all(clustering_result, selected_condition = NULL)
```

Arguments

```
clustering\_result
```

 $\label{eq:Alist containing XINA clustering results. See $$xina_clustering$ selected_condition$

A condition name to draw the kinetics plot

Value

a list containing clustering results and pdf file containing a BIC plot in current working directory.

Examples

```
# load XINA example data
data(xina_example)

# Plot kinetics of all the proteins in Control
plot_clusters_all(example_clusters, selected_condition="Control")

# Plot kinetics of all the proteins in Stimulus1
plot_clusters_all(example_clusters, selected_condition="Stimulus1")

# Plot kinetics of all the proteins in Stimulus2
plot_clusters_all(example_clusters, selected_condition="Stimulus2")

# Plot kinetics of all the proteins in three data
plot_clusters_all(example_clusters)
```

Description

computes condition composition of the XINA clustering results and draws pie-charts.

Usage

```
plot_condition_compositions(clustering_result, bullseye = FALSE,
    ggplot_theme = NULL)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

bullseye If it is TRUE, draw bullseye plot instead of the pie-chart. Default is FALSE

ggplot_theme This is ggplot theme to modify condition composition pie-chart and bulles eye

plots.

Value

A condition composition plot and a data frame containing condition compositions of the clusters

plot_enrichment_results

23

Examples

```
# load XINA example data
data(xina_example)

# Plot condition composition pie-chart with default option
plot_condition_compositions(example_clusters)

# Make a new color code for conditions
condition_colors <- c("tomato", "steelblue1", "gold")
names(condition_colors) <- example_clusters$condition
example_clusters$color_for_condition <- condition_colors

# Draw condition composition pie-chart with the new color code
plot_condition_compositions(example_clusters)

# Draw condition composition bullseye plot
plot_condition_compositions(example_clusters, bullseye = TRUE)</pre>
```

Description

Plot GO and KEGG enrichment results

Usage

```
plot_enrichment_results(enriched_results,
  term_description = "term_description", sig_score = "pvalue",
  num_terms = 0, get_log = TRUE)
```

Arguments

enriched_results

GO or KEGG enrichment results. See xina_enrichment and xina_enrichment

term_description

Description of terms to be drawn on Y axis. Default is "term_description" of

XINA enrichment results.

sig_score significant score to plot on X axis. Default is "pvalue".

num_terms The number of terms to be plotted. Default is 0, which menas no limit. get_log If this is TRUE, 'plot_enrichment_results' will take -log10 of p-values.

Value

ggplot bar graph

24 rank_centrality

Examples

```
library(STRINGdb)
# load XINA example data
data(xina_example)
# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606,</pre>
score_threshold=0, input_directory="" )
string_db
\# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)</pre>
# Select proteins that showed cluster #1 in the Stimulus2 condition
subgroup <- subset(example_clusters$aligned, Stimulus2==1)</pre>
protein_list <- as.vector(subgroup$`Gene name`)</pre>
# Enrichment test and get significantly enriched functional terms
\# that have adjuseted p-value less than 0.1
kegg_enriched <- xina_enrichment(string_db, protein_list,</pre>
enrichment_type = "KEGG", pval_threshold=0.1)
plot_enrichment_results(kegg_enriched$KEGG, num_terms=10)
```

plot_NA

plot_NA

Description

Draw NULL plot

Usage

plot_NA()

Value

a empty plot

rank_centrality

rank_centrality

Description

Give ranks based on network centrality scores

Usage

```
rank_centrality(centrality_score, type, num_breaks = 5)
```

xina_analysis 25

Arguments

centrality_score

Network centrality score matrix

type Network centrality score type, such as 'Eigenvector'

num_breaks The number of ranks

Value

A vector containing ranks

xina_analysis xina_analysis

Description

xina_analysis is to analyze protein-protein interaction(PPI) networks using STRINGdb and igraph R package. This module computes PPI networks within each XINA clusters.

Usage

```
xina_analysis(clustering_result, ppi_db, is_stringdb = TRUE,
  flag_simplify = TRUE, node_shape = "sphere", num_clusters_in_row = 5,
  img_size = NULL, img_qual = 300)
```

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

ppi_db STRINGdb object

is_stringdb If it is TRUE (default), XINA will process 'ppi_db' as STRINGdb, but it is

FALSE, XINA will accepts your 'ppi_db' as it is. You can make your own

igraph network using customized PPI information instead of STRINGdb.

flag_simplify If it is TRUE (default), XINA will exclude unconnected proteins

node_shape You can choose node shape. Default is "sphere". See shapes

num_clusters_in_row

The number of clusters in a row on the XINA network plot. Default is 5.

img_size Set the image size. For width=1000 and height=1500, it is img_size=c(1000,1500).

img_qual Set the image resolution. Default is 300.

Value

A PNG file (XINA_Cluster_Networks.png) displaying PPI network plots of all the clusters and a list containing XINA network analysis results.

Item	Description
All_network	PPI network of all the input proteins
Sub_network	A list containing PPI networks of each clusters
Data	XINA clustering results. See xina_clustering
Nodes	A list of proteins in each cluster

26 xina_clustering

Conditions A list of experimental condition of proteins in each cluster
Titles A list of plot titles for XINA plotting
out_dir A directory path storing XINA network analysis results
is_stringdb False = different PPI DB and TRUE = STRING DB

Examples

```
## Not run:
library(STRINGdb)
library(igraph)
# load XINA example data
data(xina_example)
# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606, score_threshold=0,</pre>
input_directory="" )
string_db
# Run XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)</pre>
# Run XINA with a protein-protein interaction edgelist
data(HPRD)
net_all <- simplify(graph_from_data_frame(d=hprd_ppi, directed=F),</pre>
remove.multiple = F, remove.loops = T)
xina_result <- xina_analysis(example_clusters, net_all, is_stringdb=FALSE)</pre>
## End(Not run)
```

xina_clustering

 $xina_clustering$

Description

Clustering multiplexed time-series omics data to find co-abundance profiles

Usage

```
xina_clustering(f_names, data_column, out_dir = getwd(), nClusters = 20,
norm = "sum_normalization", chosen_model = "")
```

Arguments

f_names	A vector containing input file (.csv) paths
data_column	A vector containing column names (1st row of the input file) of data matrix
out_dir	A directory path for saving clustering results. (default: out_dir=getwd())
nClusters	The number of desired maximum clusters

xina_enrichment 27

Default is "sum_normalization". Sum-normalization is to divide the data manorm trix by row sum. If you want to know more about sum-normalization, see https://www.ncbi.nlm.nih.gov/pubmed/19861354. "zscore" is to calculate Z score for each protein. See scale. chosen_model You can choose a specific model rather than testing all the models that are avail-

able in mclust. mclustModelNames If you want k-means clustering instead of

the model-based clustering, use "kmeans" here.

Value

a plot containing a BIC plot in current working directory and a list containing below information:

Item	Description
clusters	XINA clustering results
aligned	XINA clustering results aligned by ID
data_column	Data matrix column names
out_dir	The directory path containing XINA results
nClusters	The number of clusters desired by user
max_cluster	The number of clusters optimized by BIC
chosen_model	The used covariance model for model-based clustering
optimal_BIC	BIC of the optimized covariance model
condition	Experimental conditions of the user input data
color_for_condition	Colors assigned to each experimental conditions which is used for condition composition plot
color_for_clusters	Colors assigned to each clusters which is used for XINA clustering plot
norm_method	Used normalization method

Examples

```
# Generate random multiplexed time-series data
 random_data_info <- make_random_xina_data()</pre>
# Data files
data_files <- paste(random_data_info$conditions, ".csv", sep='')</pre>
# time points of the data matrix
data_column <- random_data_info$time_points</pre>
# mclust requires the fixed random seed to get reproduce the clustering results
set.seed(0)
# Run the model-based clustering to find co-abundance profiles
example\_clusters <- \ xina\_clustering(data\_files, \ data\_column=data\_column, \ nClusters=30)
# Run k-means clustering to find co-abundance profiles
example\_clusters <- \ xina\_clustering(data\_files, \ data\_column=data\_column, \ nClusters=30, \ nClusters=30,
chosen_model="kmeans")
```

28 xina_enrichment

Description

xina_enrichment conducts functional enrichment tests using gene ontology or KEGG pathway terms for a given protein list

Usage

```
xina_enrichment(string_db, protein_list, enrichment_type = "GO",
   pval_threshold = 0.05, methodMT = "fdr")
```

Arguments

```
string_db STRINGdb object

protein_list A vector of gene names to draw protein-protein interaction network.

enrichment_type

A functional annotation for the enrichment test. 'enrichment_type' should be one of 'GO' and 'KEGG',

pval_threshold P-value threshold to get significantly enriched terms from the given proteins

methodMT Method for p-value adjustment. See get_enrichment. Default is 'fdr'.
```

Value

A list of data frames containing enrichment results

Examples

```
library(STRINGdb)
library(Biobase)
# load XINA example data
data(xina_example)
# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606, score_threshold=0, input_directory="" )</pre>
string_db
# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)</pre>
# Select proteins that showed cluster #1 in the Stimulus2 condition
subgroup <- subset(example_clusters$aligned, Stimulus2==1)</pre>
protein_list <- as.vector(subgroup$`Gene name`)</pre>
# Enrichment test using KEGG pathway terms that have adjuseted p-value less than 0.1
kegg_enriched <- xina_enrichment(string_db, protein_list,</pre>
enrichment_type = "KEGG", pval_threshold=0.1)
plot_enrichment_results(kegg_enriched$KEGG, num_terms=10)
# Enrichment test using GO terms that have adjuseted p-value less than 0.1
go_enriched <- xina_enrichment(string_db, protein_list,</pre>
enrichment_type = "GO", pval_threshold=0.1)
plot_enrichment_results(go_enriched$Component, num_terms=10)
```

xina_plot_all 29

xina_plot_all xina_plot_all

Description

xina_plot_all is to draw protein-protein interaction network plots of all the clusters

Usage

```
xina_plot_all(xina_result, clustering_result, condition = "all",
  centrality_type = NULL, flag_simplify = TRUE, num_breaks = 5,
  layout_specified = "", vertex_label_flag = FALSE,
  vertex.label.color = "black", vertex.color = "", edge.color = NULL,
  vertex.label.dist = 0.6, vertex.label.cex = 0.8, edge.arrow.size = 0.4,
  vertex.size = 10, vertex.shape = "sphere", legend_location = "bottom",
  num_clusters_in_row = 5, flag_unknown_only = FALSE, img_size = NULL,
  img_qual = 300)
```

Arguments

xina_result A list containing XINA network analysis results. See xina_analysis clustering_result

A list containing XINA clustering results. See xina_clustering

condition

Default is 'all', which means use all the proteins to draw graphs. If you specify the experimental condition name used for XINA clustering, xina_plot_all will draw graphs using specific condition's proteins.

centrality_type

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function

Degree degree
Eigenvector eigen_centrality
Hub hub_score
Authority authority_score
Closeness closeness
Betweenness betweenness

flag_simplify If it is TRUE (default), XINA will exclude unconnected proteins

num_breaks 'num_breaks' is the number of ranks based on network centrality. Default is 5. layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout_

Layout igraph layout name
sphere layout_on_sphere
star layout_as_star
gem layout_with_gem

30 xina_plot_all

> layout as tree tree circle layout_in_circle random layout_randomly nicely layout_nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn without labels

vertex.label.color

Color of labels. Default is black Color of nodes. Default is pink.

edge.color Color of edges. Default is pink.

vertex.label.dist

vertex.color

Distance between node and label. Default is 0.6

vertex.label.cex

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size Size of nodes Default is 0.4

vertex.shape You can choose node shape. Default is 'sphere'. See shapes

legend_location

If centrality_type is chosen, xina_plot_single add the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'.

num_clusters_in_row

The number of clusters in a row on the XINA network plot. Default is 5.

flag_unknown_only

If this is TRUE, 'xina_plot_all' will plot proteins that do not have any proteinprotein interaction in the given database

img_size

Set the image size. For width=1000 and height=1500, it is img_size=c(1000,1500).

Default is c(3000,3000)

Set the image resolution. Default is 300. img_qual

Value

PNG images of PPI network plots of all the clusters

Examples

```
library(STRINGdb)
# load XINA example data
data(xina_example)
# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version='10', species=9606, score_threshold=0, input_directory='' )</pre>
```

xina_plot_bycluster 31

```
# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)

# XINA network plots
xina_plot_all(xina_result, example_clusters)

# XINA network plots for Control condition
xina_plot_all(xina_result, example_clusters, condition='Control')</pre>
```

Description

xina_plot_bycluster is to draw protein-protein interaction network plots of each cluster

Usage

```
xina_plot_bycluster(xina_result, clustering_result, cl = NULL,
  condition = "all", flag_legend = TRUE, centrality_type = NULL,
  flag_simplify = TRUE, layout_specified = "", vertex_label_flag = TRUE,
  vertex.label.dist = 0.6, vertex.label.cex = 0.8, edge.arrow.size = 0.4,
  vertex.size = 10, vertex.shape = "sphere", vertex.color = "",
  edge.color = "darkgray", legend_location = "bottom",
  flag_unknown_only = FALSE)
```

Arguments

xina_result A list containing XINA network analysis results. See xina_analysis clustering_result

A list containing XINA clustering results. See xina_clustering

cl Cluster number in the XINA clustering results

condition Default is 'all', which means use all the proteins to draw graphs. If you specify

the experimental condition name used for XINA clustering,

flag_legend If it is TRUE, a legend will be printed out together.

centrality_type

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function

Degree degree
Eigenvector eigen_centrality
Hub hub_score
Authority authority_score
Closeness closeness

Betweenness betweenness

32 xina_plot_bycluster

flag_simplify If it is TRUE (default), XINA will exclude unconnected proteins layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout_

Layout igraph layout name sphere layout_on_sphere layout_as_star star gem layout_with_gem layout_as_tree tree circle layout_in_circle random layout_randomly layout_nicely nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn without labels

vertex.label.dist

Distance between node and label. Default is 0.6

vertex.label.cex

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size Size of nodes Default is 0.4

vertex.shape You can choose node shape. Default is 'sphere'. See shapes

vertex.color Color of nodes. Default is pink. edge.color Color of edges. Default is pink.

legend_location

If centrality_type is chosen, xina_plot_single add the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'.

flag_unknown_only

If this is TRUE, 'xina_plot_bycluster' will plot proteins that do not have any protein-protein interaction in the given database

Value

A PNG file (XINA_Cluster_Networks.png) displaying protein-protein interaction network plots of all the clusters and a list containing XINA network analysis results

PNG images of PPI network plots of all the clusters

Examples

library(STRINGdb)

xina_plot_single 33

```
# load XINA example data
data(xina_example)

# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version='10', species=9606, score_threshold=0, input_directory='')
string_db

# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)

# plot cluster #1
xina_plot_bycluster(xina_result, example_clusters, cl=1)

# plot PPI network of Control condition in cluster #1
xina_plot_bycluster(xina_result, example_clusters, cl=1, condition='Control')</pre>
```

xina_plot_single

xina_plot_single

Description

xina_plot_single draws protein-protein interaction network plot for given 'protein_list'.

Usage

```
xina_plot_single(xina_result, protein_list, centrality_type = NULL,
    layout_specified = "", vertex_label_flag = TRUE, main = NULL,
    vertex.label.color = "black", vertex.color = NA,
    edge.color = "darkgray", vertex.label.dist = 0.6,
    vertex.label.cex = 0.8, edge.arrow.size = 0.4, vertex.size = 10,
    vertex.shape = "sphere", legend_location = "bottom", num_breaks = 5,
    digits_round_up = 5, flag_simplify = TRUE, flag_legend = TRUE)
```

Arguments

```
xina_result A list containing XINA network analysis results. See xina_analysis

protein_list A vector of gene names to draw a protein-protein interaction network graph.

centrality_type
```

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function Degree degree Eigenvector eigen_centrality Hub hub_score

Authority authority_score Closeness closeness Betweenness betweenness 34 xina_plot_single

layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout. See <a href="layout

Layout igraph layout name sphere layout_on_sphere star layout_as_star gem layout_with_gem layout_as_tree tree circle layout_in_circle layout_randomly random nicely layout_nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn

without labels

main Title of network figure. IF it is NULL (default), it will be the number of plotted

proteins

vertex.label.color

Color of labels. Default is black Color of nodes. Default is pink. Color of edges. Default is pink.

edge.color Color of edges. D vertex.label.dist

Distance between node and label. Default is 0.6

vertex.label.cex

vertex.color

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size Size of nodes Default is 0.4

vertex.shape You can choose node shape. Default is 'sphere'. See shapes

 $legend_location$

If centrality_type is chosen, 'xina_plot_single' adds the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'topleft', 'bottom', 'bottomleft', 'right', and 'contact', 'bottom', 'bottomleft', 'left', 'bottom', 'bottomleft', 'bottom', 'bottomleft', 'bottom', 'bottom

'top', 'topright', 'right' and 'center'.

num_breaks 'num_breaks' is the number of ranks based on network centrality. Default is 5.

digits_round_up

See Round

flag_simplify If it is TRUE (default), XINA will exclude unconnected proteins

flag_legend If it is TRUE, a legend will be printed out together.

Value

A PNG file (XINA_Cluster_Networks.png) displaying protein-protein interaction network plots of all the clusters and a list containing XINA network analysis results

xina_plot_single 35

Examples

```
library(STRINGdb)
library(Biobase)

# load XINA example data
data(xina_example)

# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version='10', species=9606, score_threshold=0, input_directory='')
string_db

# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)

subgroup <- subset(example_clusters$aligned, Stimulus2==21)
protein_list <- subgroup$`Gene name`

# Calculate protein-protein interaction network
xina_plot_single(xina_result, protein_list)

# Calculate protein-protein interaction network and Eigenvector centrality
eigen_info <- xina_plot_single(xina_result, protein_list, centrality_type='Eigenvector')</pre>
```

Index

add larand 2	levent picely 20 22 24
add_legend, 2	layout_nicely, 30, 32, 34
alluvial, 3, 6, 10, 11	layout_on_sphere, 29, 32, 34
alluvial_enriched, 3	layout_randomly, 30, 32, 34
alluvial_enrichment_tests, 4	layout_with_gem, 29, 32, 34
authority_score, 29, 31, 33	length2, 17
betweenness, 29, 31, 33	load_previous_results, 17
	make_random_xina_data, 18
<pre>calculate_centrality_scores, 5</pre>	mclustModelNames, 27
closeness, 29, 31, 33	mutate_colors, 19
count, 5, 6, 8, 11	
	organize_clusters, 20
default_size, 6	
degree, 29, 31, 33	p.adjust, 3
draw_alluvial_plot, 6	plot_clusters, 20
	plot_clusters_all, 21
eigen_centrality, 29, 31, 33	plot_condition_compositions, 11, 19, 22
example_clusters, 7	plot_enrichment_results, 23
extract_data_column, 7	plot_NA, 24
<pre>find_similar_clusters, 8</pre>	rank_centrality, 24
	Round, <i>34</i>
generate_count_table, 8	1 07
generate_superset, 9	scale, 27
<pre>get_color_for_nodes, 10</pre>	shapes, 25, 30, 32, 34
get_colors, 9	
<pre>get_comigrations_by_name, 10</pre>	xina_analysis, 15, 25, 29, 31, 33
<pre>get_condition_biased_comigrations, 11 get_enrichment, 28</pre>	xina_clustering, 3, 6, 8, 10, 11, 15, 19, 21, 22, 25, 26, 29, 31
get_layout, 12	xina_enrichment, 23, 27
get_mTOR_proteins, 13	xina_plot_all, 29
get_random_data, 13	xina_plot_bycluster, 31
get_stats, 14	xina_plot_single, 33
get_stats, 14 get_theme_blank, 14	p===============================
_	
<pre>get_unknown_ppi_nodes, 15</pre>	
gn, 15	
gn_desc, 16	
hprd_ppi, 16	
hub_score, 29, 31, 33	
11ub_3coi e, 29, 31, 33	
layout_, 29, 32, 34	
layout_as_star, 29, 32, 34	
layout_as_tree, 30, 32, 34	
layout_in_circle, 30, 32, 34	
· · · · · · · · · · · · · · · · · · ·	