Curso: CC1/ CCSP1	Turma: 1ª Série
Disciplina: Matemática	Turno: Manhã
Prof. ^a Neyr Muniz Barreto	Data: 09/04/2020
Aluno (a):	Nota:

AVALIAÇÃO 3

- 1. Para quais valores de x é possível determinar, analise a condição de existência:
 - a) $\log_6(x-9)$
 - b) $\log_{(2x+8)} 0.05$
- 2. Determine o conjunto solução das equações:

a)
$$\log_{x}(14-5x)=2$$

b)
$$\log_5(x^2+3) = \log_5(x+3)$$

c)
$$log_4^x + log_4^{(x+3)} = 1$$

- 3. Dadas as funções $f(x) = log_2^x$ e $g(x) = log_3^{(\frac{1}{x})}$, calcule:
 - a) f(16
 - b) g(1)
- 4. Construa o gráfico das funções:

a)
$$y = log_4 x$$

b)
$$y = log_{\frac{1}{4}}^{x}$$

5. A massa $\mathbf{m}(t)$ de um certo material radioativo, no instante t anos, é expressa por $\mathbf{m}(t) = \mathbf{m}_0 \cdot \mathbf{a}^t$, sendo \mathbf{m}_0 a massa inicial e \mathbf{a} um número real positivo. Em um período de 14.000 anos, a massa do material sofre uma redução de 80%. Em quantos anos a massa inicial do material reduz-se à metade?

(Considere $log_{10} 2 = 0.3$)