Savitribai Phule Pune University

Third Year of Artificial Intelligence and Data Science (2019 Course) 317531: Artificial Neural Network

Teaching Scheme: Credit			Examination Scheme:							
TH:	04 Hours/Week##	03	Mid_Semester(TH): 30 Marks End Semester(TH): 70 Marks							

Prerequisite Courses, if any: Basic knowledge of computer architecture, Artificial Intelligence and Statistics

Companion Course, if any: NIL

Course Objectives:

- 1. To provide students with a basic understanding of the fundamentals and applications of artificial neural networks
- 2. To identify the learning algorithms and to know the issues of various feed forward and feedback neural networks.
- 3. To Understand the basic concepts of Associative Learning and pattern classification.
- 4. To solve real world problems using the concept of Artificial Neural Networks.

Course Outcomes:

Unit I

On completion of the course, learner will be able to—

CO1: Understand the basic features of neural systems and be able to build the neural model.

Introduction to ANN

- CO2: Perform the training of neural networks using various learning rules.
- CO3: Grasping the use of Associative learning Neural Network
- CO4: Describe the concept of Competitive Neural Networks
- CO5: Implement the concept of Convolutional Neural Networks and its models
- CO6: Use a new tool /tools to solve a wide variety of real-world problems

Course Contents

Cint 1		Inti out	uction to a	AL VI V			(0	/ 1100	113)	
Introduction to ANN	History of	Neural	Network,	Structure	and	working	of	Biolog	gical	Neural
Network, Neural no	et archite	ecture,	Topology	y of	neur	al ne	etwo:	rk	archi	tecture,
Features, Characteristic	s, Types, Ac	tivation	functions,N	Models of	neuro	n-Mc C	ulloc	h &	Pitts	model,
Perceptron, Adaline me	odel,Basic le	arning la	ws, Applica	tions of ne	ural ne	tworks,C	Comp	oarison	of Bl	NN and
ANN.										

#Exemplar/Case Controlling Water Reservoirs, Rule Extractions									
Studies									
Mapping of Course	CO1								
Outcomes for Unit I									
Unit II	Learning Algorithms	07(Hours)							

Learning and Memory, Learning Algorithms, Numbers of hidden nodes, Error Correction and Gradient Decent Rules, Perceptron Learning Algorithms, Supervised Learning Backpropagation, MultilayeredNetwork Architectures, Back propagation Learning Algorithm, Feed forward and feedback neural networks, example and applications.

#Exemplar/Case	Medical diagnosis, Automated trading systems	
Studies		
Mapping of Course	CO2	
Outcomes for Unit II		
IInit III	Associative Learning	07(Hours)

Introduction, Associative Learning, Hopfield network, Error Performance in Hopfield networks,

simulated annealing, Boltzmann machine and Boltzmann learning, State transition diagram and false minima problem, stochastic update, simulated annealing.

Basic functional units of ANN for pattern recognition tasks: Pattern association, pattern classification and pattern mapping tasks.

#Exemplar/Case	Understanding catastrophic, Interference in neural nets
Studies	

(07 Hours)

Mapping of Course Outcomes for Unit III	CO3	
Unit IV	Competitive learning Neural Network	07(Hours)

Components of CL network, Pattern clustering and feature mapping network, ART networks, Features of ART models, character recognition using ART network.

Self-Organization Maps (SOM): Two Basic Feature Mapping Models, Self-Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector Quantization, Adaptive Pattern Classification

#Exemplar/Case	A Translation System for Face-to-Face Dialog and Intelligent Help Systems					
Studies						
Mapping of Course	CO4					
Outcomes for Unit						
IV						
Unit V	Convolution Neural Network	07(Hours)				

Building blocks of CNNs, Architectures, convolution / pooling layers, Padding, Strided convolutions, Convolutions over volumes, SoftMax regression, Deep Learning frameworks, Training and testing on different distributions, Bias and Variance with mismatched data distributions, Transfer learning, multitask learning, end-to-end deep learning, Introduction to CNN models: LeNet – 5, AlexNet, VGG – 16, Residual Networks

#Exemplar/Case	Large scale handwritten digit recognition problem						
Studies							
Mapping of Course	CO5						
Outcomes for Unit V							
Unit VI		06(Hours)					
	Applications of ANN						

Pattern classification – Recognition of Olympic games symbols, Recognition of printed Characters. Neocognitron – Recognition of handwritten characters. NET Talk: to convert English text to speech. Recognition of consonant vowel (CV) segments, texture classification and segmentation

#Exemplar/Case	Automating language translation
Studies	
Mapping of Course	C06
Outcomes for Unit	
VI	

Learning Resources

Text Books:

- 1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.
- 2. Laurene Fausett:Fundamentals of Neural Networks: Architectures, Algorithms & Apps, Pearson, 2004.
- 3. An introduction to neural networks, Gurney, Kevin, CRC press.

Reference Books:

- 1. Artificial Neural Networks B. Vegnanarayana Prentice Hall of India P Ltd ,2005
- 2. Neural Networks in Computer Inteligance- Li Min Fu, MC GRAW HILL EDUCATION, 2003
- 3. Neural Networks James A Freeman David M S Kapura, Pearson Education, 2004.
- 4. Introduction to Artificial Neural Systems- Jacek M. Zurada, JAICO Publishing House Ed., 2006.

e-Books:

- 1.https://www.pdfdrive.com/neural-networks-a-comprehensive-foundationpdf-e18774300.html
- 2.https://www.pdfdrive.com/elements-of-artificial-neural-networks-e17103719.html
- 3.https://www.pdfdrive.com/neural-networks-methodology-and-applications-e38107895.html

MOOC Courses:

- 1.https://nptel.ac.in/courses/117105084
- 2. https://www.coursera.org/projects/predicting-weather-artificial-neural-networks

@The C	@The CO-PO mapping table											
РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	-	-	1	1	1	2	-	2	1
CO2	3	2	3	2	1	1	1	_	3	1	2	1
CO3	2	1	2	1	3	1	-	1	2	-	1	2
CO4	1	1	1	1	-	-	-	1	-	2	-	1
CO5	2	2	3	2	2	1	1	1	2	1	3	1
CO6	3	3	3	2	3	2	1	1	3	1	2	1