B. SUBIECTUL II – (15 puncte)

Rezolvaţi următoarea problemă:

Un vas cilindric orizontal, închis la ambele capete, cu lungimea $L=1\,\mathrm{m}$ şi secțiune transversală $S=100\,\mathrm{cm^2}$, este împărțit, printr-un piston etanş termoizolant, de grosime neglijabilă, inițial blocat, în două incinte ale căror volume se află în raportul 1:4. În incinta de volum mai mic se găseşte H_2 ($\mu_{H2}=2\cdot10^{-3}\,\mathrm{kg/mol}$), aflat inițial la presiunea $p_1=2\cdot10^5\,\mathrm{N/m^2}$ şi temperatura $T_1=400\,\mathrm{K}$, iar în cealaltă O_2 ($\mu_{O2}=32\cdot10^{-3}\,\mathrm{kg/mol}$), la $p_2=10^5\,\mathrm{N/m^2}$ şi $T_2=300\,\mathrm{K}$. Hidrogenul şi oxigenul din cele două incinte sunt considerate gaze ideale.

- a. Determinați masa unui atom de hidrogen.
- **b.** Aflați raportul maselor de gaz din cele două incinte.
- c. Calculați densitatea oxigenului.
- **d.** Se deblochează pistonul, după care hidrogenul este încălzit până când, în final, temperatura acestuia devine $T_3 = 500\,\mathrm{K}$. Considerând că temperatura finală a oxigenului rămâne T_2 , calculați distanța pe care s-a deplasat pistonul.