Introduction to Parallel Computing: Models, Concepts, and Algorithms (Part II)

SC3260/5260 High-Performance Computing

Hongyang Sun

(hongyang.sun@vanderbilt.edu)

Vanderbilt University Spring 2020

Improving Software Performance

Serial Optimization

Programmer should optimize serial code before attempting parallelization.

Implicit Parallelism

- Hardware and compiler technology implicitly convert part of serial programs into parallel and execute them on multiple processing units of a processor (e.g., pipeline, superscalar, instruction-level parallelism)
- No effort from programmer, but limited parallelism & performance gains

Explore Memory System

- Architectural features (e.g., cache, threads) to improve data-movement cost
- Exploitation of locality (spatial and temporal) by hardware and programmer

Explicit Parallelism

- Programmer's responsibility to identify explicit parallelism and write parallel code with help of parallel programming language and libraries to be run on multicore or distributed processors.
- No simple "recipes", but some design guidelines could help.

Memory Hierarchy

Increasing

Capacity

Memory System Performance

Widening Gap Between Processor and Memory Performance

Source: Trends in the relative performance of floating point operations and data access for HPC over the past 25 years, from John McCalpin's SC16 Invited Talk.

How Cache Works?

- CPU references (i.e., reads or writes) data from the main memory.
 - If referenced data is in cache (cache hit), data is served directly by cache (~1 cycle, fast).
 - If referenced data is not in cache (cache miss), fetch data from memory and also store it in the cache (~200 cycles, slow).

Why Cache Helps to Reduce Latency?

- Data tend to exhibit locality of reference.
 - Temporal Locality: recently referenced data tend to be referenced again in near future.

 Spatial Locality: consecutive data items in memory tend to be referenced together.

How Cache Explores Locality?

- Explore temporal locality: Store more recently used data (e.g., "least recently used (LRU)" cache replacement policy).
- **Explore spatial locality:** Bring a block of consecutive data from memory to cache for each reference.

- Design algorithms and write codes that are cache-friendly.
- Reuse data as much as possible with regular data access patterns.
- Be aware of data layout in memory!
 - □ In C/C++, matrices are laid out in row-major order.

row 1 row 2 row 3 row 4

Memory space

- Explore spatial locality
 - column-by-column access
 has poor spatial locality ⁽³⁾

Example: Incrementing each
element of a large matrix A

```
for (j=0; j<N; j++)
for (i=0; i<N; i++)
A[i][j] += 1;</pre>
```


Memory space

- Explore spatial locality
 - row-by-row access has good spatial locality ©

Example: Incrementing each element of a large matrix A

```
for (i=0; i<N; j++)
for (j=0; j<N; j++)
A[i][j] += 1;</pre>
```


Memory space

Explores temporal locality

Poor temporal locality 🙁

Each new access of A[i][j] is too far apart in time from the previous access, element will be replaced in cache → cache miss.

Example: Accessing each element of
a large matrix A multiple times


```
for (loop=0; loop<10; loop++)
  for (i=0; i<N; j++)
    for (j=0; j<N; j++)
    access (A[i][j]);</pre>
```

Good temporal locality ©

All accesses of A[i][j] are performed together before accessing next element.


```
for (i=0; i<N; j++)
  for (j=0; j<N; j++)
    for (loop=0; loop<10; loop++)
       access (A[i][j]);</pre>
```

Other Approach to Hide Mem. Latency

- Overlapping computation with memory access
 - Multithreading: creating more threads than number of available processors/cores. While one thread is waiting for memory, another thread could keep core busy. (explored by GPU, but need high mem. bandwidth)

 Prefetching: advance load needed data from memory, relying on compiler to resolve dependency.

Design of Parallel Programs

Parallel Program Design

Four-step guideline to the design of parallel programs:

- Partitioning: decompose the problem into many small tasks. Focus on identifying parallelization opportunities and ignore number of processors.
- 2) <u>Communication</u>: Identify communication patterns required to coordinate task executions.
- Agglomeration: Combine small tasks to improve parallel processing efficiency and reduce communication cost.
- Mapping: Assign tasks to processors to balance load among processors, maximize resource utilization, and optimize performance.

Image source: "Designing and Building Parallel Programs (by Foster)"

(1) Partitioning

Domain Decomposition (Data-Parallel Model)

Tasks (shaded) for a problem involving 3D grid

Functional Decomposition (Task-Parallel Model)

Tasks in a climate model involving different sub-models

(2) Communication

No Communication
 (Embarrassingly parallel)

Independent processing of each array element a(i, j) by a function fcn(i, j)

Local Communication (Point-to-Point)
(Require data from neighboring tasks)

<u>Finite difference method (FDM)</u> <u>in 2D heat equation</u>

$$U_{x,y}^{(t+1)} = U_{x,y}^{(t)} + c \cdot (U_{x-1,y}^{(t)} + U_{x+1,y}^{(t)} + U_{x,y-1}^{(t)} + U_{x,y+1}^{(t)} - 4U_{x,y}^{(t)})$$

(2) Communication

Global Communication (Collective)
 (Performed together by many tasks)

Example: compute **reduction** $S = \sum_{i=0}^{N-1} x_i \text{, where each processor holds one } x_i$ $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

Sequential implementation: O(N)

for
$$i = 0$$
 to $N - 1$
 $S \leftarrow S + x_i$

Divide-and-conquer implementation: $O(\log N)$

- ➤ Partition problem into two subproblems *L* and *R*
- ➤ Solve subproblem *L* recursively
- ➤ Solve subproblem *R* recursively
- \triangleright Combine solutions of *L* and *R*

(2) Communication

Global Communication (Collective)

Reducing Communication Overhead

- Latency: time delay in sending one message.
- Bandwidth: amount of data that can be send per unit of time.
 - → Preferable to send fewer large messages than lots of small messages.
- Synchronous (blocking): other work must wait until the communications have completed.
- Asynchronous (non-blocking): other work can be done while communications take place.
 - → Preferable to interleave computation with communication using asynchronous approach.

(3) Agglomeration

- This step revisits partitioning and communication decisions by forming tasks of appropriate size.
 - Smaller tasks run less efficiently and require more communication, but they enable better load balancing.
 - Larger tasks execute more efficiently on some architectures with less communication, but they are harder to schedule.

After this step, # tasks should remain > # processors for flexibility of scheduling

(3) Agglomeration

 Adjusting Granularity: decreasing communication-to-computation ratio (CCR).

<u>Surface-to-volume effect:</u> Preferable to use higher-dimensional decompositions (i.e., agglomerating tasks in all dimensions) than reducing the dimension of the decomposition.

(3) Agglomeration

 Replicating Computation: explore tradeoff between computation and communication. $S = \sum_{i=0}^{N-1} x_i$, and **broadcast** the result to all processors

Example: compute reduction

Reduction + Broadcast:

Computation: N

Communication: $2 \log N$

Simultaneous Reduction (Butterfly):

Computation: $N \log N$ Communication: $\log N$

(4) Mapping

- This step assigns tasks to processors
 - > Balance the workload of different processors.
 - Increase utilization of the system (or reduce the idle time).
 - Minimize execution time of applications.
- Generally a difficult problem (NP-complete), even for tasks without dependencies (communications), but many heuristics exist.

(4) Mapping

- Load Balancing (Domain Decomposition) Static
 - Blocked or cyclic partition for regular data (e.g., dense matrix, mesh, grid)

Recursive coordinate/graph bisection for irregular data (e.g., sparse graph/matrix)

(4) Mapping

Task Scheduling (Functional Decomposition) – Dynamic

- Centralized approach (work sharing)
 - Central task queue & pool of tasks.
 - A processor requests a new task from central queue if it finishes its current task.
 - Generally better performance but high overhead.
- Distributed approach (work stealing)
 - Each processor has own task queue.
 - A processor randomly "steals" a task from another task queue if no work.
 - Usually more scalable with less overhead.

Summary

1) Partitioning:

- Domain decomposition (data-parallel)
- Functional decomposition (task-parallel)

2) **Communication**:

- No communication (embarrassingly parallel)
- Local communication (point-to-point)
- Global communication (collective)

3) **Agglomeration**:

- Adjusting task granularity (reducing CCR)
- Replicating computation (tradeoff between computation and communication)

4) Mapping:

- Static load balancing: block/cyclic partition (for regular data), recursive bisection (for irregular data)
- Dynamic task scheduling: centralized work sharing, distributed work stealing

Image source: "Designing and Building Parallel Programs (by Foster)"

Case Study (1): Approximating π

- 1) **Partitioning**: create one task per point (generation and testing), array of *N* tasks.
- Communication: no communication among tasks, one global reduction to compute M.
- 3) **Agglomeration**: combine multiple tasks and pre-compute local *M*.
- Mapping: statically map tasks to processors (if homogeneous), or dynamically schedule tasks to processors (if heterogeneous).

Monte-Carlo method:

Randomly generate N points in within square, and if M of them fall inside circle:

$$\pi \approx 4 \times \frac{M}{N}$$

- Simulates atmospheric processes (e.g., wind, clouds, precipitation) to study evolution of tornadoes, to forecast weather, etc.
- Solves a set of partial differential equations (PDEs) in a continuous space, approximated by finite elements in a 3D grid.

<u>Finite difference method</u>: at each step, the state of a grid point is updated using a 9-point stencil in horizontal dimension and a 3-point stencil vertically.

- Computations involved:
 - State computation: for each grid point, simulate state using 9-point stencil horizontally, and 3-point stencil vertically.
 - Global operation: periodically compute the total mass of atmosphere to verify the correctness of simulation:

Total mass =
$$\sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} \sum_{k=0}^{N_z-1} M_{i,j,k}$$

Physics computation: many additional physics simulations (e.g., radiation, clear sky) using numerical methods with dependencies across vertical columns only, e.g., total clear sky (TCS) at grid point (i, j, k) defined as:

$$TCS_{i,j,k} = \Pi_{\ell=1\cdots k} (1 - \operatorname{cld}_{\ell}) \times TCS_{i,j,1} = (1 - \operatorname{cld}_{k}) TCS_{i,j,k-1}$$

cloud fraction at level ℓ

Partitioning:

> Domain decomposition with $N_x \times N_y \times N_z$ tasks, one per each grid point.

2) Communication:

- Local communication: at each time step, a grid point exchanges 16 messages with 8 horizontal neighbors (for state computation) and many more vertically (for both state and physics computations).
- Global communication: less frequently, a global reduction is done to check total mass.

3) Agglomeration:

Combine all tasks vertically in each column to drastically reduce number of communications.

Combine neighboring tasks (e.g., 2x2) horizontally to further reduce communication; number of tasks after agglomeration is $(N_x \times N_y)/4$.

16 messages per one computation

→ CCR = 16

48 messages per 4 computations

→ CCR = 12 (messages can be combined to further reduce latency)

4) Mapping:

- Static with domain decomposition; loads vary significantly for different grid columns (e.g., day/night radiation, clouds based on humidity).
- Tradeoff between load balance and communication overhead.

Cyclic mapping improves load balance

Image source: "Designing and Building Parallel Programs (by Foster)"

- Optimizes area/power in layout of VLSI.
 - > **Input 1**: M cells, and cell c_i has $I(c_i)$ implementations.
 - Input 2: Polar graphs G and H specify vertical and horizontal adjacency relationship of cells.
 - Output: a layout of cells that minimizes total area of bounding rectangle.

- Exploring all possible configurations using a search tree
 - Exhaustive search: visit all nodes of a search tree, has total cost $\Pi_{i=1...M}I(c_i)$ e.g., 20 cells, each with 6 implementations search space = $6^{20} \approx 4 \times 10^{15}$.
 - **Branch-and-bound**: keep track of best solution so far (with area A_{\min}), and prune a branch if its area is already greater than A_{\min} significantly reduce the search space.

1) Partitioning:

functional decomposition; each task explores one possibility in search space. Number of tasks:

$$N = \prod_{i=1...M} I(c_i)$$

2) Communication: each task

- \rightarrow checks A_{\min} while going down the path.
- updates A_{min} (if necessary) when complete.

All tasks access centralized A_{\min} , leading to very high communication overhead;

 \rightarrow Trade-off with pruning opportunities: only check A_{min} in a subset of tasks.

3) Agglomeration:

Combine all tasks in a subtree rooted at depth D. Number of tasks reduced to:

$$N' = \prod_{i=1...D} I(c_i)$$

- ightharpoonup Maintain A_{\min} independently in each subtrees, which synchronize periodically.
- Use depth-first search for each agglomerated task (improve the effectiveness of pruning).

- Mapping: functional decomposition (scheduling tasks to procs), since tasks do not have same size (due to pruning).
 - Centralized scheduling: a processor, when idle, requests a new task from the pool.
 - <u>Distributed work-stealing</u>: initially allocate root node to a single processor, which explores search tree in depth-first manner. A processor, when idle, steals work from others in top-most node in search path.

Case Study (4): Computational Chemistry

A fundamental method in quantum chemistry is to compute *Fock matrix F* (size N × N representing electronic structure of atoms/molecules):

$$F_{ij} = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} D_{kl} \left(I_{ijkl} - \frac{1}{2} I_{ikjl} \right)$$

- \rightarrow D: $N \times N$ matrix (read-only)
- I: Integrals computed using 4 indices and an array A with O(N) elements, representing approximation of repulsive forces between electrons.
- In theory, 2N⁴ integrals needed;
 In practice, N⁴/8 is sufficient (by exploring redundancy and symmetry)

```
procedure fock build
begin
  for i = 1 to N
       for i = 1 to i
                                                       Compute
           for k = 1 to j
                                                       N<sup>4</sup>/8 Integrals
               for l = 1 to k
                    integral(i,j,k,l)
               endfor
           endfor
       endfor
   endfor
end
                                                      O(1) time using
procedure integral(i,j,k,!)
                                                      4 elements in
begin
                                                      array A
  I = compute_integral(i, j, k, l)
  \mathbf{F}_{ij} = \mathbf{F}_{ij} + \mathbf{D}_{kl} \mathbf{I}
  \mathbf{F}_{kl} = \mathbf{F}_{kl} + \mathbf{D}_{ij} \mathbf{I}
                                                        Update 6
  \mathbf{F}_{ik} = \mathbf{F}_{ik} + \mathbf{D}_{jl} \mathbf{I}
                                                        elements
  F_{il} = F_{il} - (1/2) D_{ik} I
                                                        in F matrix
  F_{il} = F_{il} - (1/2) D_{ik} I
  F_{ik} = F_{ik} - (1/2) D_{il} I
end
```

Case Study (4): Computational Chemistry

Partitioning:

- **Domain decomposition**: each task computes one element F_{ij} of Fock matrix (fewer tasks $O(N^2)$; cannot explore redundancy in computation).
- Functional decomposition: each task computes one integral I_{ijkl} (more tasks $O(N^4)$; less total computation by exploring redundancy).

2) Communication:

- No obvious communication pattern (each matrix element accessed by many tasks).
- Asynchronous communication: $O(N^2)$ dedicated tasks for responding to request to read and write data (each responsible for one element in D, F, A matrices).
- Each compute task requests O(1) elements \rightarrow totally $O(N^4)$ messages.

Case Study (4): Computational Chemistry

3) Agglomeration:

- ▶ Compute tasks: combine integrals in inner loop $\rightarrow O(N^3)$ tasks.
- ▶ **Data tasks**: combine & replicate elements in $D, F, A \rightarrow O(N)$ tasks.
- \rightarrow Each compute task requests data from four data tasks \rightarrow $O(N^3)$ messages.

Mapping:

- > <u>Static</u>: compute & data tasks with same i index mapped to same processor. → better locality (sharing of the i^{th} row of matrix), but unbalanced load.
- Dynamic: standard approaches to schedule tasks to idle processors.

Analysis of Algorithms

• T(n): serial execution time of an algorithm for a problem of size n.

Asymptotic Analysis

- □ **Big-O notation (Upper bound)**: T(n) = O(f(n)) if there exist positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$.
- □ **Big-Ω notation (Lower bound):** T(n) = Ω(f(n)) if there exist positive constants c and n_0 such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$.
- □ **Big-O notation:** $T(n) = \Theta(f(n))$ if there exist positive constants c_1, c_2 and n_0 such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

Time complexity

Parallel Algorithms

- T(n, p): execution time of an algorithm using p processors for a problem of size n.
- Exponential-time serial algorithms will still take exponential time in parallel with polynomial number of processors (in terms of problem size). Otherwise, a serial algorithm could simulate the parallel algorithm and solve the problem in polynomial time.
- In this class, we are mainly interested in parallelizing polynomialtime algorithms for large problems (e.g., matrix multiplication, system of equations, sorting, FFT), but we will not analyze these algorithms.
- In practice, parallel computing is also used to speedup exponentialtime algorithms or to get approximate solutions faster.

References

- I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison-Wesley Longman Publishing Co., Inc..
- A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing (2nd Edition). Addison-Wesley Professional.
- B. Barney. Introduction to Parallel Computing Tutorial, Lawrence Livermore National Laboratory.
 - https://computing.llnl.gov/tutorials/parallel_comp/