

Classe : TS 1

Date: Octobre 2019

DST Mathématiques

Durée: 1 h 30

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1: 6 points

Un radar de la gendarmerie nationale, installé sur une route où la vitesse est limitée à 90km/h, a relevé, dans un laps de temps précis, les vitesses de 200 véhicules dont la répartition est donnée dans le tableau ci-dessous.

1. Recopier et compléter le tableau ci-dessous

Vitesses x _i en km/h	[50 ;60[[60 ;70[[70 ;80[[80 ;90[[90 ;10 0[[100 ;1 10[
Nombre de véhicules n	8	27	88	60	13	4
Fréquences f						
Effectifs Cumulés Croissants						
Effectifs Cumulés Décroissants						

Arrondir les fréquences relatives au millième

- 2. Donner le pourcentage de véhicules roulant au-dessus de la vitesse autorisée.
- 3. Déterminer graphiquement une valeur approchée de la médiane après avoir représenté les polygones des effectifs cumulés. (*Unités : 1 cm pour 5 km/h en abscisses et 1 cm pour 20 véhicules en ordonnées*)
- 4. Déterminer, par le calcul, une valeur approchée, arrondie à 10⁻² près, de la médiane. *Le détail du raisonnement est demandé.*
- 5. Déterminer la moyenne \bar{x} de cette série statistique ainsi que son écart type σ au centième.

Classe: TS 1

Date: Octobre 2019

EXERCICE 2: 4.5 points

Soit le polynôme $P(x) = -9x^3 - 9x^2 + 22x + 8$

Factoriser P(x) puis résoudre l'inéquation $P(x) \leq 0$

EXERCICE 3: 9.5 points

Résoudre les équations ou inéquations suivantes :

1.
$$4x+18+x^2 \le 0$$

$$2x - x^2 - \frac{3}{4} \ge 0$$

3.
$$(2-x)(-2x^2+3x-1) \le 0$$

4.
$$2x^4 - 12x^2 + 16 = 0$$

$$5. \frac{x^2 - 4x - 5}{(1 - x)(-2x + 3)^2} > 0$$

Correction DST Math Oct 2019 Exercice 1: TS1

Vitesses Xi en Km/h	[50; 60[[60; 70[[70; 80[[80; 90[[90;100[[100; 110]
Nombre de Véhicules ni	8	27	88	60	13	4
Fréquences ti	0,04	0,135	0,44	0,3	0,065	0,02
Effectifs Cumulés Croissants	8	35	123	183	196	200
Effectifs Comulés Décroissants	200	132	165	77	17	4

2.
$$\frac{17}{200} \times 100 = 8,5\%$$

3.

Me = 77 Km/h

4. On repère dans le tableau la partie qui nous intéresse

Vitesse xi en Km/h	[60;70[[70;80[
Effectifs Cumulés Craissants	35	123

On fait l'hypothèse que les vitesses sont iniformément reparties dan la classe.

On part procéder à une interpolation linéaire:

On obtient
$$\frac{Me-70}{10} = \frac{65}{88} \Rightarrow Ne = \frac{65}{88} \times 10 + 70 = 77,39 \text{ Km/h}$$

$$\bar{x} = \frac{8 \times 55 + 27 \times 65 + 88 \times 75 + 60 \times 85 + 13 \times 95 + 60 \times 85}{200} = 77,75 \text{ Km/h}$$

$$\sigma = \sqrt{\frac{\sum n_i x_i^2}{N}} = x^2 = \sqrt{6141 - 6045}, 0625 = 9,79$$

Exercice 2:

$$P(x) = -9x^3 - 9x^2 + 22x + 8$$

$$P(4) = -9 - 9 + 22 + 8 = 12$$

$$P(2) = -9 \times 8 - 9 \times 4 + 22 \times 2 + 8 = -56$$

$$P(-2) = -9 \times (-8) - 9 \times 4 + 22 \times (-2) + 8 = 0$$

$$P(x) = (x+2)(-9x^2+9x+4)$$

$$P(x) \leq 0 \Rightarrow (x+2)(-9x^2+9x+4) \leq 0$$

$$x+2>0 \quad |-9x^{2}+9x+4>0$$

$$x>-2 \quad |\Delta = 9^{2}-4\times(-9)\times4 = 225$$

$$x_{4} = \frac{-9+\sqrt{225}}{-18} = \frac{-9+15}{-18} = -\frac{6}{18} = -\frac{1}{3}$$

$$x_{2} = \frac{-9-\sqrt{225}}{-18} = \frac{-9-15}{-18} = \frac{24}{18} = \frac{4}{3}$$

$$-\frac{1}{3} \quad |\Delta \times |\Delta | \frac{4}{3}$$

X	- 10	- 2	_	3	9	3	+00
x+2	-	0	+		+		+
-9x2+9x+4			_	0	+	0	-
Pr	+	0		0	+	0	

$$S = \begin{bmatrix} -2; -\frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{4}{3}; +\infty \end{bmatrix}$$

Exercice 3:

1.
$$4x+18+x^2 \leq 0$$

$$\chi^2 + 4\chi + 18 \leq 0$$

$$\Delta = 4^2 - 4 \times 18 = -56$$

2.
$$2x - x^2 - \frac{3}{4} > 0$$

 $-x^2 + 2x - \frac{3}{4} > 0$

$$\Delta = 2^2 - 4 \times (-1) \times \left(-\frac{3}{4}\right) = 1$$

$$\chi_1 = \frac{-2+4}{-2} = \frac{1}{2}$$

$$\chi_2 = \frac{-2-1}{-2} = \frac{3}{2}$$

$$S = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

3.
$$(2-x)(-2x^2+3x-1) \le 0$$

x	-00	1/2	1	2	+001
2-x	+	+		+ 0	
$-2x^2+3x+1$	_	o +	0	_	
Pr	_	0 +	•	- 0	+

4.
$$2x^4 - 12x^2 + 16 = 0$$

$$P(x) = (x-2)(2x^3+4x^2-4x-8) \rightarrow E(x) = 2x^3+4x^2-4x-8$$

Factorisation de E(x):

$$E(-2) = 2 \times (-8) + 4 \times 4 - 4 \times (-2) - 8 = 0$$

$$P(x) = (x-2)(x+2)(2x^2-4)$$

=>
$$(x-2)(x+2)(2x^2-h)=0$$

$$x-2=0$$
 $x+2=0$ $2x^2-4=0$
 $x=2$ $x=-2$ $x=-\sqrt{2}$ on $x=\sqrt{2}$

Méthode 2: Changement de variable

$$t = \alpha^2 \implies t^2 = \alpha^4$$

$$=>$$
 $2t^2 - 12t + 16 = 0$

$$\Delta = (-12)^2 - 4 \times 2 \times 16 = 16$$

$$t_1 = \frac{12-4}{4} = 2$$
 $t_2 = \frac{12+4}{4} = 4$

$$t_2 = \frac{12+4}{4} = 4$$

$$\Rightarrow$$
 $\chi^2 = 2$

$$x^2 = 4$$

$$x = \pm \sqrt{2}$$

$$x = \pm 2$$

5.
$$\frac{x^2 - hx - 5}{(1-x)(-2x+3)^2} > 0$$

$$x_1 = \frac{4-6}{2} = -1$$

$$x_2 = \frac{4+6}{2} = 5$$

$$\begin{array}{lll}
1-x>0 & (-2x+3)^2>0 \\
-x>-1 & Toujours, sauf \\
x \le 1 & pour & -2x+3=0 \\
& -2x=-3 \\
& x=\frac{3}{2}
\end{array}$$

×	-00	- 1		1	3/	2 5	+0	1
x2-Lx-5	+	•	-		-	_ <) +	
1- x	+		+		_0	(- x)	-	
1-2-43)2	+		+		+	+	+	
Pr	+	0	_		+	+	-	_

$$S =]-\infty; -1[U]1; \frac{3}{2}[U]\frac{3}{2}; 5[$$