Lecture 6: Collisional excitation and nebular diagnostics

Paul van der Werf

Course Contents

- 1. Introduction and ecology of the interstellar medium
- 2. Physical conditions and radiative processes
- 3. The atomic interstellar medium
- 4. Ionization and recombination
- 5. HII regions
- Collisional excitation and nebular diagnostics
- 7. Molecules, molecular excitation and molecular clouds
- 8. Interstellar dust
- 9. Thermal balance
- 10. Molecular clouds
- 11. Shocks, supernova remnants and the 3-phase ISM
- 12. Extragalactic ISM and outlook

Today's lecture

- Excitation by collisions
- 2. Critical density
- 3. Nebular diagnostics of temperature and density

Corresponding textbook material: Draine Ch 17 & 18

Excitation in a 2-level system

Excitation without induced radiative transitions

(when is this valid?)

Collisional (de)excitation rates must be proportional to density n_c of the collision partner (typically H_2 , H or e^- , depending on the environment).

So we write: $C_{01} = k_{01} n_c$ and $C_{10} = k_{10} n_c$

Collisional (de)excitation coefficients

Collisional (de)excitation coefficients $k_{01} \& k_{10}$ [cm³ s⁻¹] depend on:

- nature of the collision partner (and, in principle, its quantum state): H_2 , H_3 or e^-
- kinetic temperature T_{kin} (coefficient involves collision cross section integrated over a Maxwell distribution); we will usually not write this explicitly, to keep the equations simple.

There is a relation between excitation and deexcitation coefficients:

$$k_{01} = \frac{g_1}{g_0} k_{10} e^{-\frac{E_{10}}{kT_{\rm kin}}}$$

Collision strengths

For collisional (de)excitation of ions by electrons, we often use the dimensionless collision strength Ω_{10} (Draine uses this extensively):

$$k_{10} = \frac{h^2}{(2\pi m_e)^{3/2}} \frac{1}{\sqrt{kT_{\rm kin}}} \frac{\Omega_{10}(T)}{g_1}$$

Inserting numbers:
$$k_{10} = \frac{8.629 \cdot 10^{-8} \Omega_{10}}{\sqrt{T_4}}$$
 [cm³ s⁻¹] with $T_4 = T/10^4$ K

Advantages:

- for T up to 10^4 K, Ω_{10} approximately independent of T
- Ω_{10} typically between 1 and 10

Today's lecture

- 1. Excitation by collisions
- Critical density
- 3. Nebular diagnostics of temperature and density

Excitation without induced radiative transitions

Considering level 1, we can write:
$$\frac{dn_1}{dt} = -A_{10}n_1 + k_{01}n_cn_0 - k_{10}n_cn_1$$

In statistical equilibrium, $dn_1/dt = 0$, so $\frac{n_1}{n_0} = \frac{k_{01}n_c}{k_{10}n_c + A_{10}}$

$$\frac{n_1}{n_0} = \frac{k_{01}n_c}{k_{10}n_c + A_{10}}$$

Using the relation between k_{01} and k_{10} , this becomes

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{A_{10}}{k_{10}n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$$

Critical density

Now define the critical density:

$$n_{\rm crit} = \frac{A_{10}}{k_{10}}$$

(recall: A_{10} [s⁻¹] and k_{10} [cm³ s⁻¹])

So we can finally write:

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$$

How large is n_{crit} ?

- small for forbidden transitions
- large for permitted transitions

High density limit

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$$

If
$$n_c >> n_{crit}$$

If
$$n_c >> n_{\text{crit}}$$
: $\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$

so $T_{\text{ex}} = T_{\text{kin}}$: thermalized levels

Population ratio has its LTE value (independent of density)

Time between collisions much shorter than radiative lifetime (note Einstein A coefficient has disappeared).

Low density limit

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$$

If
$$n_c \ll n_{crit}$$
:

If
$$n_c << n_{crit}$$
: $\frac{n_1}{n_0} = \frac{n_c}{n_{crit}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{kin}}}$

so $T_{\rm ex} < T_{\rm kin}$: subthermal excitation

Population ratio has its LTE value $\times n_c / n_{crit}$ (density-dependent)

Time between collisions comparable to or longer than radiative lifetime.

Excitation of a 2-level system

Recall: excitation with only radiative transitions

$$n_{\gamma} = \frac{c^2}{8h\nu^3} I_{\nu}$$

Recall
$$n_{\gamma} = \frac{c^2}{8h\nu^3} I_{\nu}$$
 so $\bar{n}_{\gamma} = \frac{c^2}{2h\nu^3} \bar{I}_{\nu} = \frac{c^3}{8\pi h\nu^3} u_{\nu}$.

In the blackbody case:
$$\bar{n}_{\gamma} = \frac{1}{e^{h\nu/kT_{\rm rad}} - 1}$$

but we can also write this generally, as a definition of $T_{\rm rad}$.

This gave:
$$\frac{dn_1}{dt} = \left[n_0 \bar{n}_\gamma \frac{g_1}{g_0} - n_1 (1 + \bar{n}_\gamma) \right] A_{10}$$

Full treatment of 2-level excitation

Now we get:
$$\frac{dn_1}{dt} = n_0 \left(k_{01} n_c + \bar{n}_\gamma \frac{g_1}{g_0} A_{10} \right) - n_1 \left[k_{10} n_c + (1 + \bar{n}_\gamma) A_{10} \right]$$
collisional absorption excitation absorption spontaneous

Statistical equilibrium: $dn_1 / dt = 0$, so:

$$\frac{n_1}{n_0} = \frac{k_{01}n_c + \bar{n}_{\gamma}\frac{g_1}{g_0}A_{10}}{k_{10}n_c + (1 + \bar{n}_{\gamma})A_{10}}$$

Full treatment of 2-level excitation
$$\frac{n_1}{n_0} = \frac{k_{01}n_c + \bar{n}_{\gamma}\frac{g_1}{g_0}A_{10}}{k_{10}n_c + (1 + \bar{n}_{\gamma})A_{10}}$$

Now define a more general critical density: (why does this make sense?)

$$n_{\rm crit} = \frac{\left(1 + \bar{n}_{\gamma}\right) A_{10}}{k_{10}^2}$$

This gives
$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}} + \frac{1}{1 + \frac{n_c}{n_{\text{crit}}}} \frac{g_1}{g_0} \frac{\bar{n}_{\gamma}}{1 + \bar{n}_{\gamma}}$$

Now using
$$\bar{n}_{\gamma} = \frac{1}{\rho^{h\nu/kT_{\rm rad}} - 1}$$
 we finally get

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}} + \frac{1}{1 + \frac{n_c}{n_{\text{crit}}}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{rad}}}}$$

Limiting cases

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}} + \frac{1}{1 + \frac{n_c}{n_{\text{crit}}}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{rad}}}}$$

Behaviour in limiting cases now depends on both n_c and n_v .

- $n_v \ll 1$: back to what we discussed before
- $n_{v} >> 1$:
 - if $n_c << n_{crit}$: $T_{ex} = T_{rad}$
 - if $n_c >> n_{crit}$: both collisions and radiation important: more complicated

Application 1: the HI 21cm line

$$E_{10} / k = 0.0682 \text{ K}$$

 $A_{10} = 2.88 \cdot 10^{-15} \text{ s}^{-1}$

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}} + \frac{1}{1 + \frac{n_c}{n_{\text{crit}}}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{rad}}}}$$

 $k_{10} \approx 1.2 \cdot 10^{-10} \text{ cm}^3 \text{ s}^{-1} \text{ (at 100K, for collisions with H)}$

Now calculate

$$n_{\text{crit}} = \frac{\left(1 + \bar{n}_{\gamma}\right) A_{10}}{k_{10}}$$

What is
$$n_{\gamma}$$
?

 $T_{\text{rad}} = 2.73 \text{ K} + 1 \text{ K} = 3.73 \text{ K}$

diffuse Galactic 21cm emission $\rightarrow n_{\gamma} \approx 55$

Insert numbers: $n_{\rm crit} \approx 1.7 \cdot 10^{-3} \, \rm cm^{-3}$.

HI 21cm line spin temperature

 $T_s = T_{kin}$ for Milky Way Conditions (both CNM & WNM).

Draine, Fig. 17.2

So the differences in T_s between the WNM and CNM are actually differences in T_{kin} .

Application 2: the [CII] 158 μm line

Draine, Figs. 17.3 & 4

$$\frac{n_1}{n_0} = \frac{1}{1 + \frac{n_{\text{crit}}}{n_c}} \frac{g_1}{g_0} e^{-\frac{E_{10}}{kT_{\text{kin}}}}$$

Exercise: explain the behaviour of the curves on the right-hand side.

Generalization to N-level system

Requires a modified expression for the critical density of the upper level u: $n_{\text{crit,u}} = \frac{\sum_{l < u} (1 + \bar{n}_{\gamma,ul}) A_{ul}}{\sum_{l < u} k_{ul}}$

Statistical equilibrium then gives *N* linear equations with *N* unknowns: the *N* level populations – can be solved by standard linear algebra methods.

Today's lecture

- 1. Excitation by collisions
- 2. Critical density
- 3. Nebular diagnostics of temperature and density

Line ratios as nebular diagnostics

- 1. Temperature probes
- 2. Density probes
- 3. Abundance probes

Relevant parameters:

- Upper level temperatures (with respect to expected temperatures)
- Critical densities (with respect to expected densities)

Here we focus on HII regions as a case study, but it works in exactly the same way for neutral and molecular clouds.

HII Region spectra

Line ratios as temperature probes

Use 2 lines that:

- have different upper level temperatures (in the relevant range)
- come from the same atom/ion

Note that both lines have a (different) critical density:

- $n_e >> n_{\text{crit}}$ for both lines (rare): ratio independent of n_e
- $n_e << n_{\rm crit}$ for both lines (more often): ratio independent of $n_{\rm e}$

So: need to avoid the region where the n_e is between the two critical densities of the two lines.

Temperature probes

Critical densities for electron collisions at 10⁴ K

Table 18.1 Critical Electron Density $n_{\text{crit}}(e^{-})$ (cm⁻³) for Selected np^{2} and np^{4} Ions

	$n_{ m crit}(e)$ at $T=10^4~{ m K}$					
Configuration	Ion	$^{3}P_{0}$	$^{3}P_{1}$	$^{3}P_{2}$	$^{1}\mathrm{D}_{2}$	$^{1}S_{0}$
$1s^22s^22p^2$	CI		7.37×10^{0}	1.21×10^{1}		
	NII		1.67×10^{2}	2.96×10^{2}	7.68×10^4	1.23×10
	OIII	-	1.74×10^{3}	3.79×10^{3}	6.40×10^5	2.78×10
	Ne V		3.19×10^5	3.48×10^{5}	1.44×10^{8}	9.58×10
$1s^2 2s^2 2p^4$	OI	3.11×10^{3}	2.87×10^{4}		1.62×10^{6}	4.04×10
ray off all the br	Ne III	3.02×10^{4}	2.76×10^{6}		9.47×10^{6}	1.37×10
	MgV	$4.36\!\times\!10^6$	4.75×10^7		1.07×10^{9}	8.07×10
$1s^2 2s^2 2p^6 3s^2 3p^2$	SiI		7.72×10^{2}	1.92×10^{3}		
	SIII	_	4.22×10^{3}	1.31×10^4	7.33×10^{5}	1.52×10
	Ar V	_	1.09×10^{7}	1.16×10^7	3.65×10^{8}	2.49×10
$1s^22s^22p^23s^23p^4$	SI	1.04×10^{5}	1.55×10^{5}		4.12×10^{7}	1.38×10
and the first stoke	Ar III	$2.49\!\times\!10^5$	$2.67\!\times\!10^6$	ELECTION OF	$1.26\!\times\!10^7$	4.54×10
					The second of th	

Line ratios as temperature probes

Draine, Fig. 18.2

Temperatures of HII regions

	[N II]			[O III]	
Nebula	$\frac{I(\lambda6548) + I(\lambda6583)}{I(\lambda5755)}$	T(° K)	$N_e/T^{1/2}$	$\frac{I(\lambda 4959) + I(\lambda 5007)}{I(\lambda 4363)}$	T(° K)
NGC 1976 2b	81	10,000	51	338	8,700
NGC 1976 1a NGC 1976 5b	102 111	9,100 8,900	68 21	371 310	8,500 8,900
NGC 1976 5a	189	7,500	12	263	9,300
M 8 I	162	7,900	(10)	445	8,100
M 17 I	257	6,900	(10)	330	8,700

Temperatures of Planetary Nebulae

Nebula	T[N II] (° K)	T[O III] (° K)
NGC 650	9,500	10,700
NGC 4342	10,100	11,300
NGC 6210	10,700	9,700
NGC 6543	9,000	8,100
NGC 6572		10,300
NGC 6720	10,600	11,100
NGC 6853	10,000	11,000
NGC 7027		12,400
NGC 7293	9,300	11,000
NGC 7662	10,600	12,800
IC 418		9,700
IC 5217	# ************************************	11,600
BB 1	10,500	12,900
Haro 4-1		12,000
K 648		13,100

Line ratios as density probes

Use 2 lines that:

- have different critical densities (in the relevant range)
- come from the same atom/ion
- have upper level temperatures close together OR much lower than the expected $T_{\rm kin}$ (e.g., IR lines from an HII region)

Density Probes

Draine Fig. 18.3

Critical densities for density probes

Table 18.2 Critical Electron Density $n_{\rm crit}(e^-)$ (cm⁻³) for Selected np^3 Ions, for $T=10^4\,{\rm K}$

			$n_{\rm crit}(e)$ at $T=10^4~{ m K}$			
Configuration	Ion	$^{2}D_{3/2}^{o}$	$^{2}D_{5/2}^{o}$	$^{2}P_{1/2}^{o}$	${}^{2}P_{3/2}^{o}$	
$1s^2 2s^2 2p^3$	NI	2.18×10^{4}	1.19×10^{4}	7.11×10^{7}	3.15×10^{7}	
58.044.98.003.04.003	OII	4.49×10^{3}	3.31×10^{3}	5.30×10^{6}	1.03×10^{7}	
	NeIV	1.40×10^{6}	4.66×10^{5}	4.17×10^{8}	2.79×10^{8}	
$1s^2 2s^2 2p^6 3s^2 3p^3$	SII	1.49×10^{4}	1.57×10^{3}	1.49×10^{6}	1.91×10^{6}	
1 PO 10 1 PO 10 10 10 10 10 10 10 10 10 10 10 10 10	Ar IV	1.35×10^{6}	1.55×10^{4}	1.06×10^{7}	1.81×10^{7}	

Line ratios as function of n_e

Draine Fig. 18.4

Exercise: explain the behaviour of these curves

Densities from [OII] and [SII] line ratios

	[[S II]	
Nebula	$\frac{\lambda 3729}{\lambda 3726}$	$N_e^{a} (\text{cm}^{-3})$	$\frac{\lambda 6716}{\lambda 6731} N_e^{-a} \text{ (cm}^{-3})$
NGC 40	0.78	1.1×10^{3}	$0.69 2.1 \times 10^3$
NGC 650/1	1.23	2.1×10^2	$1.08 4.0 \times 10^2$
NGC 2392	0.78	1.1×10^3	$0.88 9.1 \times 10^2$
NGC 2440	0.64	1.9×10^3	$0.62 3.2 \times 10^3$
NGC 3242	0.62	2.2×10^3	$0.64 2.8 \times 10^3$
NGC 3587	1.30	1.4×10^2	$1.25 1.8 \times 10^2$
NGC 6210	0.47	5.8×10^3	$0.66 2.5 \times 10^3$
NGC 6543	0.44	7.9×10^3	$0.54 5.9 \times 10^3$
NGC 6572	0.38	2.1×10^4	$0.51 8.9 \times 10^3$
NGC 6720	1.04	4.7×10^2	$1.14 3.2 \times 10^2$
NGC 6803	0.57	2.8×10^3	
NGC 6853	1.16	2.9×10^2	
NGC 7009	0.50	4.6×10^3	$0.61 3.3 \times 10^3$
NGC 7027	0.48	5.2×10^3	$0.59 4.0 \times 10^3$
NGC 7293	1.32	1.3×10^2	$1.28 1.6 \times 10^2$
NGC 7662	0.56	3.0×10^3	$0.64 2.8 \times 10^3$
IC 418	0.37	3.2×10^5	$0.49 9.5 \times 10^3$
IC 2149	0.56	3.0×10^3	$0.57 4.6 \times 10^3$
IC 4593	0.63	2.0×10^3	
IC 4997	0.34	$1.0~\times~10^6$	$0.45 1.0 \times 10^5$

 $[^]aN_e$ given for assumed $T=10^4$ ° K; for any other T divide listed value by $(T/10^4)^{1/2}$.

Far-infrared lines

- Far-IR fine structure lines can be detected from space (e.g., Herschel) or (with large redshifts) in the submm regime with ALMA
- Example: $[O III] {}^{3}P_{0} {}^{3}P_{1} 88 \mu m, {}^{3}P_{1} {}^{3}P_{2} 52 \mu m$

Far-IR line ratios as function of n_e

ISM at z = 9.11: redshifted [OIII] 88 μ m

Hashimoto et al., 2018

Next lecture

Molecules, molecular excitation and molecular clouds

- 1. Molecular structure and molecular spectra
- 2. Critical densities
- 3. Molecular hydrogen and molecular clouds