WebAssign CH 1.3 (Homework) Yinglai Wang MA 265 Spring 2013, section 132, Spring 2013 Instructor: Alexandre Eremenko

1. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.012.

Consider the following matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix},$$

$$C = \begin{bmatrix} 3 & -1 & 3 \\ 4 & 1 & 5 \\ 2 & 1 & 3 \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & -2 \\ 2 & 5 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & -4 & 5 \\ 0 & 5 & 4 \\ 3 & 2 & 2 \end{bmatrix}, \text{ and } F = \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 5 \end{bmatrix}.$$

If possible, compute the following. (If not possible, enter DNE into any cell of the matrix.)

| (a) <i>DA</i> + <i>B</i> |     |    |               |
|--------------------------|-----|----|---------------|
|                          | DNE |    |               |
|                          |     |    | <del>-</del>  |
|                          |     |    | $\Rightarrow$ |
|                          |     |    |               |
| 11                       |     |    |               |
| <b>*</b>                 |     |    |               |
| (b) EC                   |     | ,  |               |
| -3                       | 0   | -2 | <b>—</b>      |
| 28                       | 9   | 37 | $\Rightarrow$ |
| 21                       | 1   | 25 |               |
| <b>1</b> 1               | 1   | 1  |               |
| <b>✓</b>                 |     |    |               |
| (c) <i>CE</i>            |     |    |               |
| 12                       | -11 | 17 | _             |
| 19                       | -1  | 34 | -             |
| 11                       | 3   | 20 | •             |
| <b>1</b> 1               | D   | 5  |               |
| <b>✓</b>                 |     |    |               |
| (d) <i>EB</i> + <i>F</i> |     |    |               |
| 7                        | 8   |    | <b>—</b>      |
| 22                       | 17  |    | ·<br>⇒        |
| 16                       | 11  |    |               |
|                          |     |    |               |
| 11                       |     |    |               |
| ✓                        |     |    |               |
| (e) $FC + D$             |     |    |               |
| DNE                      |     |    | _             |
|                          |     |    |               |
|                          |     |    | $\Rightarrow$ |
| 1 1                      |     |    |               |
| 11                       |     |    |               |

2. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.014.

Consider the following matrices.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix},$$

$$C = \begin{bmatrix} 3 & -1 & 3 \\ 4 & 1 & 5 \\ 2 & 1 & 3 \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & -2 \\ 2 & 5 \end{bmatrix},$$

$$E = \begin{bmatrix} 2 & -4 & 5 \\ 0 & 1 & 4 \\ 3 & 2 & 1 \end{bmatrix}, \text{ and } F = \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 5 \end{bmatrix}.$$



CH 1.3 1/8/13 9:44 PM

1

3. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.016.

| (a) <i>AB</i> <sup>T</sup>              |      |             |
|-----------------------------------------|------|-------------|
| 1                                       |      |             |
|                                         |      | <b>→</b>    |
| 5                                       |      | 4           |
|                                         |      |             |
| 11                                      |      |             |
|                                         |      |             |
| <b>√</b><br>(b) <i>CA<sup>T</sup></i>   |      |             |
| -6                                      |      |             |
| -6                                      |      | <b>←</b>    |
|                                         |      | ⇒           |
|                                         |      |             |
| 11                                      |      |             |
| <b>√</b>                                |      |             |
| (c) ( <i>BA</i> <sup>T</sup> ) <i>C</i> |      |             |
| -2                                      | 0    | 1           |
|                                         |      | <u>-</u>    |
|                                         |      | →           |
|                                         |      |             |
| 11                                      |      |             |
| <b>√</b> .                              |      |             |
| (d) $A^TB$                              |      |             |
| -1                                      | 5    | 2           |
| -2                                      | 10   | 4           |
|                                         |      |             |
| 4                                       | -20  | -8          |
| 11                                      |      |             |
| ✓.                                      |      |             |
| (e) $CC^T$                              |      |             |
| 5                                       |      |             |
|                                         |      | <del></del> |
|                                         |      | <b>→</b>    |
| <b>1</b> 1                              |      |             |
| + 1                                     |      |             |
| <b>√</b>                                |      |             |
| (f) <i>C<sup>T</sup>C</i>               |      |             |
| 4                                       | 0    | -2          |
| 0                                       | 0    | 0 🔿         |
| -2                                      | 0    | 1           |
| 11                                      | d 5d | b————d      |
|                                         |      |             |
| $(g)$ $B^TCAA^T$                        |      |             |
|                                         |      |             |
| DNE                                     |      |             |
|                                         |      | <b>←</b>    |
|                                         |      | <i>→</i>    |
|                                         |      |             |
| 11                                      |      |             |

4. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.018.

If 
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and  $D = \begin{bmatrix} 3 & 2 \\ -2 & -3 \end{bmatrix}$ , compute  $DI_2$  and  $I_2D$ .

$$DI_2 = \begin{bmatrix} -2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

**5.** 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.019.

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

Show that  $AB \neq BA$ .



Does AB = BA?



**6.** 2.85/2.85 points | Previous Answers

KolmanLinAlg9 1.3.026.

- (a) Find a value of r so that  $AB^T = 0$ , where  $A = [r \ 1 \ -2]$  and  $B = [1 \ 4 \ -1]$ .
- (b) Give an alternative way to write this product.
- $\bigcirc B^T A$  $\bigcirc$  BA  $\bigcirc A^TB$  $\bigcirc A^TB^T$  $\odot$   $BA^T$

1/8/13 9:44 PM

**7.** 2.9/2.9 points | Previous Answers

KolmanLinAlg9 1.3.030.

Consider the following linear system:

$$2x_1 + 2x_2 - 3x_3 + x_4 + x_5 = 7$$
  
 $3x_1 + 3x_3 + 3x_5 = -2$   
 $2x_1 + 3x_2 - 3x_4 = 3$   
 $x_3 + x_4 + x_5 = 5$ .

(a) Find the coefficient matrix.

| 2 | 2 | -3 | 1  | 1 |
|---|---|----|----|---|
| 3 | 0 | 3  | 0  | 3 |
| 2 | 3 | 0  | -3 | 0 |
| 0 | 0 | 1  | 1  | 1 |

(b) Write the linear system in matrix form.

| 2  | 2 | -3 | 1  | 1 | [ x <sub>1</sub> ]                           | 7          |
|----|---|----|----|---|----------------------------------------------|------------|
| 3  | 0 | 3  | 0  | 3 | $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$   | -2         |
| 2  | 3 | 0  | -3 | 0 | $\begin{vmatrix} x_3 \\ x_4 \end{vmatrix} =$ | 3          |
| 0  | 0 | 1  | 1  | 1 | X4   X5                                      | 5          |
| ✓. |   |    |    |   | ١٠١                                          | <b>/</b> · |

(c) Find the augmented matrix.

