75.12 ANÁLISIS NUMÉRICO I

FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES

TRABAJO PRÁCTICO Nº 1 1er. Cuatrimestre 2021

Resolución de sistemas de ecuaciones lineales por métodos directos

Preparado por el Prof. Miguel Ángel Cavaliere

Objetivo: Que los alumnos experimenten el efecto de los errores de redondeo en la resolución directa de sistemas lineales y analicen la propagación de errores inherentes. Para ello se propone trabajar con un sistema mal condicionado a los efectos de lograr que la solución se vea afectada por errores de redondeo significativos sin tener que trabajar con sistemas de ecuaciones muy grandes. Asu vez se eligió un problema simétrico y definido positivo con lo cual se simplifica el trabajo de programación dado que en este caso no es necesario programar el intercambio de filas en laeliminación de Gauss. Finalmente para que los alumnos puedan cuantificar el efecto del error cometido se brinda la solución exacta del problema la cual resulta expresada en términos denúmeros enteros.

Desarrollo: Se pide:

a) Codificar la factorización LU de una matriz simétrica definida positiva. A los efectos de verificar el programa, a continuación, se proporciona la descomposición exacta de la matriz de Hilbert (H) para n=4

$$h_{ij} = \frac{1}{(i+j-1)} \qquad L_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 \\ 1/3 & 1 & 1 & 0 \\ 1/4 & 9/10 & 3/2 & 1 \end{bmatrix} \qquad U_4 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 0 & 1/12 & 1/12 & 3/40 \\ 0 & 0 & 1/180 & 1/120 \\ 0 & 0 & 0 & 1/2800 \end{bmatrix}$$

b) Codificar el cálculo de la inversa de una matriz aprovechando el hecho de que la matriz en cuestión fue previamente factorizada. Para ello se propone efectuar la resolución de n sistemas de ecuaciones lineales en los cuales los términos independientes son las columnas de la matriz identidad I. A los efectos de la verificación del programa se proporciona H_4^{-1} =

16	-120	240	-140
-120	1200	-2700	1680
240	-2700	6480	-4200
-140	1680	-4200	2800

c) Calcular H^{-1} para valores mayores de n y analizar el efecto del error de redondeo calculando la norma infinito de la matriz que surge de efectuar la diferencia entre la inversa calculada y la inversa exacta (proporcionada en el anexo). Luego dividir dicha norma por la norma infinito de la inversa exacta y representar gráficamente el logaritmo decimal de dicho cociente en función de n. Incluir en el mismo gráfico el logaritmo decimal del número de condición de n calculado usando norma infinito con los valores proporcionados en el anexo. Presentar resultados para valores de n comprendidos entre 4 y 8.

- d) Repetir el cálculo de la inversa H considerando pequeñas perturbaciones sobre el vector de términos independientes: sumar a cada componente de este vector el valor $(-1)^i * 10^{-p}$ donde i es el índice de la fila y p un entero que toma los valores 1,3,5 y 7. De esta forma para cada uno de los valores de n analizados en el punto anterior tendremos 4 resultados perturbados. Analizar el efecto de dichas perturbaciones usando la misma metodología descripta en el punto anterior. En un mismo gráfico representar las curvas correspondientes a cada perturbación junto con la curva correspondiente al efecto del redondeo obtenida previamente.
- e) Expresar el número de condición (K) para cada matriz.
- f) Discutir los resultados obtenidos utilizando los conceptos teóricos vistos en el curso. Dicho análisis debería cubrir los siguientes temas:
- Relación entre los errores de redondeo propagados y el condicionamiento del sistema.
- Efecto de la magnitud de la perturbación sobre los errores totales propagados comparados con los de redondeo exclusivamente. Si bien en el enunciado se indica una distribución específica se recomienda plantear en forma adicional otras distribuciones de la perturbación del vector de términos independientes para completar este análisis.
- Opcional. Efecto de la precisión adoptada para efectuar los cálculos. Para este punto se recomienda repetir todo el análisis variando la precisión utilizada modificando, por ejemplo, la declaración de tipo de las variables o cambiando opciones de compilación. Si bien este cambio es muy dependiente del compilador que se esté utilizando, lo conveniente sería efectuarlos análisis con 7 ú 8 dígitos decimales de precisión en un caso y más de 16 en el otro.

ANEXO

TT	-1	
Н	5	=

25	-300	1050	-1400	630
-300	4800	-18900	26880	-12600
1050	-18900	79380	-117600	56700
-1400	26880	-117600	179200	-88200
630	-12600	56700	-88200	44100

$H_6^{-1} =$

36	-630	3360	-7560	7560	-2772
-630	14700	-88200	211680	-220500	83160
3360	-88200	564480	-1411200	1512000	-582120
-7560	211680	-1411200	3628800	-3969000	1552320
7560	-220500	1512000	-3969000	4410000	-1746360
-2772	83160	-582120	1552320	-1746360	698544

$H_7^{-1} =$

,						
49	-1176	8820	-29400	48510	-38808	12012
-1176	37632	-317520	1128960	-1940400	1596672	-504504
8820	-317520	2857680	-10584000	18711000	-15717240	5045040
-29400	1128960	-10584000	40320000	-72765000	62092800	-20180160
48510	-1940400	18711000	-72765000	133402500	-115259760	37837800
-38808	1596672	-15717240	62092800	-115259760	100590336	-33297264
12012	-504504	5045040	-20180160	37837800	-33297264	11099088

$H_8^{-1} =$

U								
	64	-2016	20160	-92400	221760	-288288	192192	-51480
-2	016	84672	-952560	4656960	-11642400	15567552	-10594584	2882880
20	160	-952560	11430720	-58212000	149688000	-204324120	141261120	-38918880
-92	400	4656960	-58212000	304920000	-800415000	1109908800	-776936160	216216000
221	760	-11642400	149688000	-800415000	2134440000	- 2996753760	2118916800	-594594000
-288	288	15567552	-204324120	1109908800	- 2996753760	4249941696	- 3030051024	856215360
192	192	-10594584	141261120	-776936160	2118916800	- 3030051024	2175421248	-618377760
-51	480	2882880	-38918880	216216000	-594594000	856215360	-618377760	176679360