Progetto Computational and Statistical Learning

(Dataset CIFAR-10)

OBIETTIVI

- Descrizione e analisi del dataset CIFAR-10
- Descrizione della progettazione (incrementale) dei modelli: partire da metodologie semplici come K-Nearest per avere una performance di base per poi implementare modelli sempre più complessi come Random Forest e CNN
- Studiare l'effetto della PCA sui modelli
- Confronto delle performance e dei tempi

1. Descrizione dataset CIFAR-10

- 2. Progettazione modelli previsionali
- 3. Valutazione e confronto modelli

DATASET CIFAR-10

- **60000 immagini** 32x32 pixel a 3 canali (RGB da 0 a 255)
- 10 classi (mutuamente esclusive) con 6000 immagini per classe
- 50000 immagini di train (5000 immagini per classe) e 10000 immagini di test (1000 immagini per classi)
- Train e test bilanciati
- Immagini salvate **row-major** (60000x3072)
- Label codificate con interi da 0 a 9
- Dimensione: 163MB

OBIETTIVO: creazione e confronto di modelli previsionali in grado di effettuare classificazione multipla di immagini.

1. Descrizione dataset CIFAR-10

2. Progettazione modelli previsionali

3. Valutazione e confronto modelli

GRID-SEARCH e CROSS-VALIDATION

Grid-Search con CV come metodo di ricerca dei parametri migliori:

Metrica = accuratezza

Strategia di **splitting CV** (utilizzo KFold con **K=5**):

Ad ogni iterazione CV:

- Train size = 40000 immagini
- Test size = 10000 immagini

K-NEIGHBORS-CLASSIFIER

K-NEIGHBORS-CLASSIFIER

K-NEIGHBORS-CLASSIFIER

Parametri migliori

RANDOM FOREST

RANDOM FOREST

RANDOM FOREST

Parametri migliori

PCA

n_components = 200

n_estimators = 1000

Tempo train: 1029s (200 PCA)
2382s (NO PCA)

CONVOLUTIONAL NEURAL NETWORK

(CNN)

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 32, 32, 32)	896
conv2d_1 (Conv2D)	(None, 32, 32, 32)	9248
max_pooling2d (MaxPooling2D)	(None, 16, 16, 32)	0
dropout (Dropout)	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496
conv2d_3 (Conv2D)	(None, 16, 16, 64)	36928
max_pooling2d_1 (MaxPooling 2D)	(None, 8, 8, 64)	0
dropout_1 (Dropout)	(None, 8, 8, 64)	0
flatten (Flatten)	(None, 4096)	0
dense (Dense)	(None, 128)	524416
dropout_2 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 10)	1290

Total params: 591,274 Trainable params: 591,274 Non-trainable params: 0 One-Hot-Enconding label

Parametri Rete:

 4 Layer Convolutivi: Kernel 3x3 Funzione attivazione: ReLu Padding "same" Num. filtri: 32 e 64 	Fully Connected: • 128 nodi (ReLu) • 10 nodi (SoftMax)
$\mathbf{MaxPooling} = 2x2$	Dropout = 0.3

CNN TRAIN

Parametri train:

• Ottimizzatore: **SGD**

• Loss: categorical_crossentropy

• Metrica: accuratezza

• Epoche: 35

• Batch size: 64

1. Descrizione dataset CIFAR-10

2. Progettazione modelli previsionali

3. Valutazione e confronto modelli

CONFUSION MATRIX

CNN

ACCURATEZZA

CNN ha un'accuratezza considerevolmente maggiore rispetto a KNN e RF

CNN ha precisione maggiore per tutte le classi mentre RF non sempre è migliore di KNN

TEMPI DI PREVISIONE

MacBook Air

CPU: Intel Core 1,8 GHz i5 dual-core

RAM: 8 GB

- CNN ha accuratezza migliore ma impiega più tempo per la previsione
- RF è il modello con tempi di previsione migliori

Grazie per l'attenzione