Neinformované a informované hľadanie

- slepé (neinformované) stratégie nevyužívajú opisy stavov na to, aby usporiadali okraj. využívajú iba polohu uzlov v strome hľadania.
- heuristické (informované) stratégie využívajú opisy stavov na to, aby usporiadali okraj. najsľubnejšie uzly sa umiestnia na začiatok okraja.

príklad

8 2 3 4 7 5 1 6 pre slepú stratégiu, N_1 a N_2 sú len dva uzly (s nejakou polohou v strome hľadania)

príklad

pre heuristickú stratégiu, počítajúcu počet kameňov, ktoré nie sú na svojom mieste, N_2 je sľubnejší uzol než N_1

poznámka

- problémy, ktoré uvažujeme, ako napr. (n²-1)hlavolam, sú NP-ťažké
- neočakávajme, že budeme vedieť vyriešiť ľubovoľnú (t.j. každú) inštanciu takého problému v čase lepšom než exponenciálnom
- môžeme sa usilovať vyriešiť každú inštanciu čo najefektívnejšie
 - → to je účelom stratégie hľadania

slepé stratégie

- do šírky
 - obojsmerne
- do hĺbky
 - obmedzené
 - · iteratívne sa prehlbujúce
 - · do hĺbky s návratom

 rovnomerná cena (varianta do šírky) cena hrany = $c(operátor) \ge \epsilon > 0$

cena hrany = 1

Hľadanie do šírky

• úplné, prípustné, exponenciálna zložitosť

function HL'ADANIE-DO-ŠÍRKY(problém) returns riešenie alebo neúspech return VŠEOBECNÉ-HL'ADANIE(problém, ZARAĎ-NA-KONIEC)

Hľadanie do šírky

Nové uzly sa pridávajú na koniec OKRAJa

Hľadanie do šírky

Nové uzly sa pridávajú na koniec OKRAJa

Hľadanie do šírky

Nové uzly sa pridávajú na koniec OKRAJa

Hľadanie do šírky

Nové uzly sa pridávajú na koniec OKRAJa

10

Dôležité parametre

- Maximálny počet nasledovníkov ktoréhokoľvek stavu
 - → faktor vetvenia b prehľadávaného stromu
- Minimálna dĺžka (≠ cena) cesty medzi počiatočným a cieľovým stavom
 - → hĺbka d najplytšieho cieľového uzla v strome

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
 - optimálne, ak je krok 1
- Počet vygenerovaných uzlov ???

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
- · optimálne ak je krok 1
- Počet vygenerovaných uzlov $1 + b + b^2 + ... + b^d = ???$

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
 - optimálne ak je krok 1
- Počet vygenerovaných uzlov $1 + b + b^2 + ... + b^d = (b^{d+1}-1)/(b-1) = O(b^d)$
- → Časová a priestorová zložitosť je O(b^d)

Časové a pamäťové nároky hľadania do šírky

Hĺbka	Počet uzlov	Čas		Pamäť	
0	1	0.01	milisekundy	100	slabík
1	35	0.3	milisekundy	3.4	kiloslabík
2	1225	0.01	sekundy	119	kiloslabík
3	42 875	0.4	sekundy	4	megaslabiky
4	1.5×10^{6}	15	sekúnd	143	megaslabík
5	52×10^6	8.7	minúty	4.8	gigaslabík
6	1.8×10^{9}	5	hodín	171	gigaslabík
7	64 × 10 ⁹	7	dní	5.8	teraslabík
8	2.2×10^{12}	261	dní	204	teraslabík
9	78×10^{12}	25	rokov	7 168	teraslabík
10	2.7×10^{15}	874	rokov	250 888	teraslabík
12	3.3×10^{18}	10 ⁶	rokov	8.7 × 10 ⁶	teraslabík
20	7.6×10^{30}	2.4 × 10 ¹⁸	rokov	6.9 × 10 ²⁰	teraslabík

Predpoklady: faktor vetvenia 35, 100000 uzlov / sekunda, 100 slabík / uzol

Poznámka

Ak problém nemá riešenie, hľadanie do šírky sa môže vykonávať donekonečna (ak stavový priestor je nekonečný alebo stavy môžu byť znovu navštívené ľubovoľný počet ráz)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

	1	2	3	4
	5	6	7	8
•	9	10	11	12
	13	15	14	

Obojsmerné hľadanie

Obojsmerná stratégia

fronty dvoch okrajov: OKRAJ1 a OKRAJ2

Časová a priestorová zložitosť je O(bd/2) << O(bd) ak oba stromy majú rovnaký vetviaci faktor b

Otázka: Čo sa stane ak vetviaci faktor je rôzny od každého smeru?

Hľadanie do hĺbky

function HĽADANIE-DO-HĹBKY(problém) returns riešenie alebo neúspech return VŠEOBECNÉ-HĽADANIE(problém, ZARAĎ-NA-ZAČIATOK)

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

19

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

2

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Hľadanie do hĺbky

Nové uzly sa vkladajú na začiatok OKRAJa

Vyhodnotenie

- b: vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- m: maximálna hĺbka listového uzla
- Hľadanie do hĺbky je:
 - úplné?
 - optimálne?

Vyhodnotenie

- b: vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- m: maximálna hĺbka listového uzla
- Hľadanie do hĺbky je:
 - · úplné iba pre konečný strom hľadania
 - nie je optimálne
- Počet vygenerovaných uzlov (najhorší prípad) :
 1 + b + b² + ... + b^m = O(b^m)
- Časová zložitosť: O(b^m)
- Priestorová zložitosť: O(bm) [alebo O(m)]

[pripomienka: Vyhľadávanie do šírky vyžaduje O(bd) čas a pamäť]

31

Cyklicky sa prehlbujúce hľadanie

function CYKLICKY-SA-PREHLBUJÚCE-HĽADANIE(problém) returns riešenie alebo neúspech

 $\textbf{for } \textit{hlbka} \leftarrow 0 \textbf{ to } \infty \textbf{ do}$

if OBMEDZENÉ-HĽADANIE(problém, hĺbka) je úspešné then return jeho riešenie

end return neúspech Obmedzené prehľadávanie do hĺbky

- hľadanie do hĺbky s odseknutím v hĺbke k
 - hĺbka, za ktorou sa uzly nerozvíjajú
- Tri možné prípady
 - Riešenie
 - Zlyhanie žiadne riešenie
 - Odseknutie hĺbky nebolo by riešenia bez odseknutia

33

34

Cyklicky sa prehlbujúce hľadanie

Poskytuje to najlepšie z hľadania do šírky a do hĺbky

Hlavná idea:

Úplne desivé!

IDS

Pre k = 0, 1, 2, ... do:

Vykonaj hľadanie do hĺbky s odseknutím v hĺbke k

(napr., generuj iba uzly s hĺbkou $\leq k$)

Toto sme nevedeli

Cyklicky sa prehlbujúce hľadanie

Cyklicky sa prehlbujúce hľadanie

Cyklicky sa prehlbujúce hľadanie

Vyhodnotenie

- Cyklicky sa prehlbujúce hľadanie je:
 - úplné
 - optimálne ak cena kroku =1
- Časová zložitosť: (d+1)(1) + db + (d-1)b² + ... + (1) b² = O(b²)
- Priestorová zložitosť: O(bd) alebo O(d)

Výpočet

$$\begin{split} db + (d-1)b^2 + ... + (1) \ b^d \\ &= b^d + 2b^{d-1} + 3b^{d-2} + ... + db \\ &= (1 + 2b^{-1} + 3b^{-2} + ... + db^{-d}) \times b^d \\ &\leq \left(\sum_{i=1,...,\infty} ib^{(1-i)}\right) \times b^d = b^d \left(b/(b-1)\right)^2 \end{split}$$

Počet generovaných uzlov (hľadanie do šírky a cyklické prehlbovanie)

$$d = 5 a b = 2$$

do šírky	cykl. prehlb.
1	1 x 6 = 6
2	2 x 5 = 10
4	4 x 4 = 16
8	8 x 3 = 24
16	16 x 2 = 32
32	32 x 1 = 32
63	120

120/63 ~ 2

Počet generovaných uzlov (hľadanie do šírky a cyklické prehlbovanie)

$$d = 5 a b = 10$$

do šírky	cykl. prehlb.
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

123,456/111,111 ~ 1.111

hľadanie do hĺbky s návratom

Hľadanie do hĺbky s návratom

function HĽADANIE-DO-HLBKY-S-NAVRATOM(problém)
returns riešenie alebo neúspech
static: front, front obsahujúci vygenerované a úplne nerozvité uzly,
na začiatku prázdny
uzol, uzol stromu hľadania

front ← VYTVOR-FRONT(VYTVOR-UZOL(ZAČIATOČNÝ-STAV[problém]]))
loop do
if front je prázdny then return neúspech
uzol ← SPRÍSTUPNI-PRVÝ (fronf)
if CIEŁOVÝ-TEST[problém] aplikovaný na STAV(uzol, fronf) je úspešný
then return VYBER-RIEŠENIE(uzol)
if uzol má ešte nepreskúmané nasledovníky then
front ← ZARAĎ-NA-ZAČIATOK(
DALŠÍ-NASLEDOVNÍK(uzol, OPERÁTORY[problém]), fronf))
else VYBER(uzol, fronf)
end

Porovnanie stratégií

- Hľadanie do šírky je úplné a optimálne, ale má vysokú pamäťovú zložitosť
- Hľadanie do hĺbky je pamäťovo efektívne, ale nie je úplné ani optimálne
- Cyklické prehlbovanie je úplné, optimálne, s rovnakou pamäťovou zložitosťou ako prehľadávanie do hĺbky a má skoro rovnakú časovú zložitosť ako prehľadávanie do šírky

45

Znovunavštívené stavy

Vyhýbanie sa znovunavštíveným stavom

- Vyžaduje porovnávanie opisov stavov
- Hľadanie do šírky:
 - Ulož všetky stavy združené s generovanými uzlami do NAVSTIVENE
 - Ak stav nového uzla je v NAVSTIVENE, tak zruš uzol

Vyhýbanie sa znovunavštíveným stavom

- Vyžaduje porovnávanie opisov stavov
- Hľadanie do šírky:
 - Ulož všetky stavy združené s generovanými uzlami do NAVSTIVENE
 - Ak stav nového uzla je v NAVSTIVENE, tak zruš uzol

Implementovať ako rozptylová tabuľka

48

Vyhýbanie sa znovunavštíveným stavom

hľadanie do hĺbky:

Riešenie 1

- Ukladaj všetky stavy asociované s uzlami v aktuálnej ceste do NAVSTIVENE
- Ak stav nového uzlu je v NAVSTIVENE, tak zruš uzol
- tým sa iba vyhneme slučkám

Riešenie 2:

- Ukladaj všetky generované stavy do NAVSTIVENE
- Ak stav nového uzlu je v NAVSTIVENE, tak zruš uzol
- Rovnaká pamäťová zložitosť ako pri hľadaní do šírky!

Stratégia rovnomernej ceny

- Každá hrana ma nejakú kladnú cenu c ≥ ε > 0
- Cena cesty do ľubovoľného uzla N $g(N) = \Sigma$ cien hrán pozdĺž cesty
- · Cieľ je generovať cestu riešenia s minimálnou cenou
- Uzly N vo fronte OKRAJ sú usporiadané podľa stúpajúceho g(N)

· Nutnosť zmeniť algoritmus

Stratégia rovnomernej ceny

hľadanie#2

1. VLOZ(začiatočný-uzol,OKRAJ)

Cieľový test sa aplikuje na uzol vtedy, keď sa tento uzol rozvinie, nie už vtedy, keď sa

- 2. Opakuj:
 - a. Ak prázdny(OKRAJ) tak vráť neúspech
 - b. N ← VYBER(OKRAJ)
 - c. s ← STAV(N)
- d. Ak CIEĽ?(s) tak vráť cestu alebo cieľový stav.
 - e. Pre každý stav s' v NASLEDOVNíKY(s)
 - i. Vytvor uzol N' ako nasledovník N
 - ii. VLOZ(N',OKRAJ)

Vyhýbanie sa znovunavštíveným stavom pri stratégii rovnomernej ceny

- pre ľubovoľný stav S, keď prvý uzol N taký, že STAV(N)=S, sa rozvinie, cesta do N je tiež najlepšou cestoù z počiatočného stavu do S
- Takže:
 - Keď uzol je rozvinutý, ulož jeho stav do ZATVORENÉ
 - · Keď sa vygeneruje nový uzol N:
 - Ak STAV(N) je v ZATVORENÉ, zruš N
 - Ak existuje uzol N' v OKRAJi taký, že STAV(N') = STAV(N), zruš uzol N alebo N' s najvyššou cenou

52

Porovnanie neinformovaných stratégií hľadania

Kritérium	Do šírky	Rovno- mernej ceny	Do hĺbky	Obmedze- né do hĺbky	Cyklicky sa prehlbujúce	Obojsmerné
Čas	b ^d	b ^d	b ^m	Ы	b ^d	b ^{d/2}
Pamäť	b ^d	b ^d	b ^m	Ы	b^d	b ^{d/2}
Prípustná?	áno	áno	nie	nie	áno	áno
Úplná?	áno	áno	nie	áno,	áno	áno
				ak <i>l</i> ≥ <i>d</i>		

- b je faktor vetvenia,
- d je hĺbka riešenia,m je maximálna hĺbka stromu hľadania,
- / je hraničná hĺbka (pri obmedzenom hľadaní do hĺbky)