

Kickoff ANR COMPO Structural Biases for Semantic Prediction

25 Janvier 2024

Datasets for compositional generalization

- COGS (Kim et al 2020) / SLOG (Li et al 2023): artificial semantic parsing datasets constucted to assess the compositional generalization abilities of NLP models
- Systematic shifts / gaps between train and test

(a) Lexical generalization: object \rightarrow subject (COGS)

(b) Structural generalization: RC object→RC subject (SLOG)

- Output: logical form
 - conjunction of predicates with thematic roles
- Emma₀ saw₁ the₂ dog₃.
 *dog(x3); see.agent(x1, Emma)
 ^ see.theme(x1, x3)
- Also exists in a variable-free version:
 - see (agent = Emma , theme = * dog)

Datasets for compositional generalization: COGS Generalization Examples

C 2.2 Novel Combinati	on Modified Phrases and Grammati	ical Pales	
5.5.2. Novel Combinati	on Modified Phrases and Gramman	icai Roies	
Object modification \rightarrow Subject modification	Noah ate the cake on the plate.	The cake on the table burned.	
S	.3.3. Deeper Recursion		
Depth generalization: Sentential complements	Emma said that Noah knew that he cat danced.	Emma said that Noah knew that Lucas saw that the cat danced. Ava saw the ball in the bottle on the table on the floor.	
Depth generalization: PP modifiers	Ava saw the ball in the bottle on the table.		
S.3.4. Verb	Argument Structure Alternation		
Active → Passive	The crocodile blessed William.	A muffin was blessed.	
Passive \rightarrow Active	The book was squeezed.	The girl squeezed the straw-	
		berry.	
Object-omitted transitive \rightarrow Transitive	Emily baked.	The giraffe baked a cake.	
Unaccusative \rightarrow Transitive	The glass shattered .	Liam shatterd the jigsaw.	
Double object dative \rightarrow PP dative	The girl teleported Liam the	Benjamin teleported the cake to	
	cookie.	Isabella.	
$PP \ dative \rightarrow Double \ Object \ Dative$	Jane shipped the cake to John.	Jane shipped John the cake.	

Datasets for compositional generalization

- COGS:
 - Lexical generalization 80 % of the corpus
 - Structural generalization : 20 %
 - seq2seq models at around 80 % accuracy (100 on lexical, ~0 on stuctural)
- SLOG: focus on structural generalization
 - larger coverage of syntactic structures
 - center embedding, wh-questions, relative clauses
 - larger coverage of generalization types :
 - generalization to shorter or deeper recursion
 - distribution of semantic roles

COGS and syntax: Yao and Keller 2022

- Structural generalization is hard for seq2seq models
 - BART / T5 fail on structural generalisation
 - even when given gold syntactic trees as input
- What happens if you simplify the task?
 - 1. replace Logical Form by gold syntactic tree
 - 2. replace Logical Form by sequence of POS
 - → BART / T5 still fail (a bit less miserably)
- In contrast, Berkeley Neural parser is 84-99 % (depending of types of syntactic generalization)

Results fom Yao & Keller 2022

	Model Class	Model	Obj to Subj PF	STRUCT CP recursion	PP recursion	LEX all 18 other types	Overall
		BART	0	0	12	91	79
		BART+syn	0	5	8	93	80
seq2seq semantics	seq2seq	T5	0	0	9	97	83
		Kim and Linzen 2020	0	0	0	73	63
		Akyürek and Andreas 2021	0	0	1	96	82
		Zheng and Lapata 2022	0	12	39	99	89
		Conklin et al. 2021	0	0	0	88	75
		Csordás et al. 2021	0	0	0	95	81
		Qiu et al. 2021 *	100	100	100	100	100
	structure-aware	Liu et al. 2021	₩93	100	99	99	99
		Weißenhorn et al. 2022	78	100	99	100	98
syntax	seq2seq	BART	0	9	22	99	87
		T5	5	7	9	99	86
	structure-aware	Neural Berkeley Parser	84	95	98	100	99
POS tags	seq2seq	BART	0	6	19	98	85
		T5	0	4	4	98	85
	structure-aware	most frequent POS	92	98	100	92	93

COGS and syntax: Lessons Learned

- Seq2seq models (in their current form) are not appropriate for structured prediction
 - Yao & Keller hypothesis: they have access to syntactic information but can't make anything out of it
 - Recall that the early seq2seq parser (Vinyals et al 2014) needed 11M sentences to compare to sota parsers trained on PTB
- On-the-shelf parsers are much better at structural generalisation
 - Weissenhorn & al 2022 : concept prediction + graph parsing
 - Liu et al 2021 : syntactic module (unlaballed structure) + semantic module (that predicts the nature of semantic links)

Proposals: baselines based on dependency parsing

Some observations:

- The semantic formalism used in COGS / SLOG is anchored
 - There is almost always a direct connection between a token and the corresponding concept / predicate
- Besides structures with control verbs, every semantic graph is in fact a tree
- The agent arc between a control verb and its semantic subject is redundant (can be inferred from xcomp relation)

Proposal: treat the task as dependency parsing

- A mouse was given a cake on the table by Liam.
- give (recipient = mouse, theme = cake (nmod.on = * table), agent = Liam)

Only requirement of the method:

Reversible algorithm to transform logical form to dep tree

Proposal: treat the task as dependency parsing

- The penguin dreamed that Emma wanted to paint .
- dream (agent = * penguin , ccomp = want (agent = Emma , xcomp = paint (agent = Emma)))

