TIPE 2020/201 ENVIRONNEMENT, SÉCURITÉ, ÉNERGIE

Comment produire de l'énergie électrique grâce au poids d'un individu ?

4648 Benguenna Joumana

SOMMAIRE

Présentation du produit étudié

- Solution électromagnétique I
 - Premières estimations
- Solution utilisant la piézo-électricité
 - Dimensionnement du capteur
 - Expérience

- Solution électromagnétique 2
 - Phénomène d'induction
 - Expérience

Présentation du produit

PAVEGEN:

Dalle qui subit une translation verticale.

- 2 phénomènes:

L'électromagnétisme et la piézo-électricité

CAS D'ÉTUDE CHOISI:

Aéroport à Abu Dhabi

- Poids maximal: 125kg
- 4 à 7 watts/pas

SOLUTION ÉLECTROMAGNÉTIQUE I : GÉNÉRATEUR ÉLECTROMAGNÉTIQUE

Données de départ:
Personne de masse m=70kg
Déplacement de h=5mm en 0,5 seconde
4 à 7 watts par pas

Vitesse de 0,01 m/s

Rendement de la génératrice:

Au pire:

30%

Au mieux:

60%

Puissance d'entrée:

Données de départ: -personne de masse m=70kg - la dalle s'enfonce de 5mm en 0,5 seconde

$$P_e = F.v$$

$$P_e = F.v$$
 Où $F = m.g$

$$P_{e} = 6,87W$$

Puissance d'entrée:

$$P_{e} = 6,87W$$

Rendement de la génératrice:

Au pire: $P_u=2W$ Au mieux: $P_u=4, IW$

L'EFFET PIÉZO-ÉLECTRIQUE

- Matériau « piézo-électrique »
- Délivre une tension lors de sa déformation
- Propriété due au déplacement des atomes

COMMENT L'INTÉGRER À LA DALLE?

$$F = 1250N$$

Titano-zirconate de plomb: E = 82 GPa

MODÉLISATION DES CONTRAINTES

- Logiciel: Solidworks
- Choix du matériau (titano-zirconate de plomb (E=82 GPa)):
 - Titane E= 110 GPa
 - Zirconium E= 99 GPa
 - Plomb pur E= 14 GPa

Quelle épaisseur pour ce système ? von Mises 'N/m^2) 6877e+09 6.305e+09 $5.700e \pm 0.9$ 5.161e+09 4.509e+09 4.016e+09 3.444c+09 2.872c+09 2.300c+09 1.728 c (09 1.156e+09 5.835e+08 1.132e + 07Limite d'élasticité: 5,900e-07 Réelles dimensions : Diamètre : 35mm

Épaisseur: 0,39mm

lères simulations

Dimensions:

Diamètre: 35mm

Epaisseur: 12 mm

Dimensions:

Diamètre: 35mm

Epaisseur: 3mm

Conclusion sur le dimensionnement:

Dimensions:

Diamètre: 35mm

Épaisseur: 7mm

Expérience piézo-électrique

Coefficient directeur: 4,5.10⁻⁵ V/g

Optimisation de l'expérience

Nouveau coefficient directeur: 5,37.10⁻⁴ V/g

Influence de l'épaisseur du capteur

Conséquences:

- Influence de l'épaisseur
- Utilisation pour cas réel

Bilan de puissance

Tension dans le cas réel :

Puissance

Où R =
$$I k\Omega$$

$$Pu = \frac{U^2}{R}$$

$$P_{u} = 9 W$$

- Remarques: Cohérence Sources d'erreurs

SOLUTION ÉLECTROMAGNÉTIQUE 2: AIMANT EN TRANSLATION DANS UNE BOBINE

Loi de Faraday:

Et $\Phi = \vec{B} \cdot \vec{S}$

Expérience

Tension induite:

Courant induit:

$$I=32\pm3mA$$

Puissance utile en un aller:

Bilan général et montage:

Conclusion:

- cohérence des résultats
- ajout de la troisième solution