Now, Two-Sample Tests (No need to memorize formulas in detail)

Two sample t-Test Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NASDAQ
25
2.53
1.16

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

F Test: An Example

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	<u>NYSE</u>	NASDAQ
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.05 level?

Paired Difference Test: Pairwise t-test

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

Two-Sample Tests

Two-Sample Tests

Population Means, Independent Samples

Population Means, <u>Related</u> Samples

Population Proportions (Skip this) Population Variances

Examples:

Group 1 vs. Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Related Populations The Paired Difference Test

Related samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$D_{i} = X_{1i} - X_{2i}$$

- Assumptions:
 - Both Populations Are Normally Distributed
 - Or, if not Normal, need large sample size
- Called <u>Pairwise t-test</u>

Related Populations The Paired Difference Test

(continued)

Related samples

The ith paired difference is D_i, where

$$D_{i} = X_{1i} - X_{2i}$$

The point estimate for the paired difference population mean μ_D is \overline{D} :

$$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n}$$

The sample standard deviation is S_D

$$S_{D} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}}$$

n is the number of pairs in the paired sample

The Paired Difference Test: Finding t_{STAT}

Paired samples

• The test statistic for μ_D is:

$$t_{\text{STAT}} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

■ Where t_{STAT} has n - 1 d.f.

The Paired Difference Confidence Interval

Paired samples

The confidence interval for μ_D is

$$\overline{D} \pm t_{\alpha/2} \frac{S_{D}}{\sqrt{n}}$$

where
$$S_D = \sqrt{\frac{\sum_{i=1}^{11} (D_i - \overline{D})^2}{n-1}}$$

Paired Difference Test: Example

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$\overline{D} = \frac{\sum D_i}{n}$$

$$= -4.2$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

$$= 5.67$$

P-value? Let us find it.

 Has the training made a difference in the number of complaints (at the 0.01 level)?

Paired Difference Test: Solution

■ Has the training made a difference in the number of complaints (at the 0.01 level)?

$$H_0: \mu_D = 0$$

 $H_1: \mu_D \neq 0$

$$\alpha = .01$$
 $\overline{D} = -4.2$
d.f. = n - 1 = 4

Decision: Do not reject H_0

Test Statistic:

$$t_{STAT} = \frac{\overline{D} - \mu_{D}}{S_{D} / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Conclusion: There is not a significant change in the number of complaints.

JMP Demo

- The data (Therm.jmp) contains temperature measurements on 20 people. Temperature is measured using two types of thermometers: oral and tympanic (ear).
- You want to determine whether the two types of thermometers produce equal temperature readings.
- The small p-value (Prob > |t|) indicates that this difference is statistically significant, and not due to chance.

Difference Between Two Means

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Goal: Test hypothesis or form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$

The point estimate for the difference is

$$\overline{X}_1 - \overline{X}_2$$

Difference Between Two Means: Independent Samples

Population means, independent samples

Different data sources

- Unrelated
- Independent
 - Sample selected from one population has no effect on the sample selected from the other population

 σ_1 and σ_2 unknown, assumed equal

Use S_p to estimate unknown σ . Use a **Pooled-Variance t** test.

 σ_1 and σ_2 unknown, not assumed equal

Use S_1 and S_2 to estimate unknown σ_1 and σ_2 . Use a **Separate-variance t test**

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed, or both sample sizes are at least 30
- Population variances are unknown but assumed equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

(continued)

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The pooled variance is:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

The test statistic is:

$$t_{STAT} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Where t_{STAT} has d.f. = $(n_1 + n_2 - 2)$

Confidence interval for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

*

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

The confidence interval for

$$\mu_1 - \mu_2$$
 is:

$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

 σ_1 and σ_2 unknown, not assumed equal

Where $t_{\alpha/2}$ has d.f. = $n_1 + n_2 - 2$

"Tests for Variances": F Test

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	<u>NYSE</u>	<u>NASDAQ</u>
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.05 level?

BE MINDFUL...

You need to check whether the normal assumption holds before you can use the F-test.

Hypothesis Tests for Variances

Tests for Two
Population
Variances

F test statistic

Hypotheses

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

F_{STAT}

$$S_1^2 / S_2^2$$

Where:

 S_1^2 = Variance of sample 1 (the larger sample variance)

 n_1 = sample size of sample 1

 S_2^2 = Variance of sample 2 (the smaller sample variance)

 n_2 = sample size of sample 2

 $n_1 - 1 = numerator degrees of freedom$

 $n_2 - 1$ = denominator degrees of freedom

F test is useful...

- In the sense of previous example: one has genuine interest in comparing variances.
 - For instance, in financial investment, variance of return indicates market/portfolio's level of risk.
- On the other hand, recall in two sample t-test, one should check whether two variances are equal or not.
- F-test can provide info on that.
- Basis of ANOVA (Analysis of Variance)

The F Distribution (Fisher, by G. Snedecor)

There are two degrees of freedom required: numerator and denominator

When

$$F_{STAT} = \frac{S_1^2}{S_2^2}$$
 df₁ = n₁ - 1; df₂ = n₂ - 1

F-test example

- Important Step: Check the normality assumption in both samples
- Big Class.jmp: Are the variances of height (or weight) different between Male and Female?
- (Select 'Fit Y by X', and select 'Unequal Variances.')
- Since the p-value from the 2-sided F-Test is large, you cannot conclude that the variances are unequal.

One more example

- NHANES.jmp example: large data set related to patients' profile and their health status
- BMI (Body Mass Index) vs. Male/Female
- Two sample t-test
 - Equal variance?

Pooled-Variance t Test Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ
21	25
3.27	2.53
1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Pooled-Variance t Test Example: Calculating the Test Statistic

(continued)

H0: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

H1: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = \boxed{2.040}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)} = 1.5021$$

P-value? Sketch the area.

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown, not assumed equal

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown and <u>cannot be</u> assumed to be equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and not assumed equal

(continued)

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

The test statistic is:

$$t_{STAT} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

 t_{STAT} has d.f. v, which has a very complex expression.

 σ_1 and σ_2 unknown, not assumed equal