Vaibhav Kumar

RollNo:19

Support Vector Machine

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
         df=pd.read csv('D:\\vk\\TRIM 3\\ML\\DATASET\\bill authentication.csv')
In [3]:
Out[3]:
               Variance Skewness Curtosis Entropy Class
                3.62160
                          8.66610
                                   -2.8073 -0.44699
                                                       0
                4.54590
                          8.16740
                                   -2.4586 -1.46210
                3.86600
                         -2.63830
                                   1.9242 0.10645
                3.45660
                          9.52280
                                   -4.0112 -3.59440
                                                       0
                0.32924
                                   4.5718 -0.98880
                                                       0
                         -4.45520
         1367
                0.40614
                          1.34920
                                   -1.4501 -0.55949
                                                       1
         1368
              -1.38870
                         -4.87730
                                   6.4774
                                            0.34179
                                                       1
         1369
              -3.75030
                        -13.45860
                                   17.5932 -2.77710
                                                       1
         1370 -3.56370
                         -8.38270
                                   12.3930 -1.28230
                                                       1
         1371 -2.54190 -0.65804
                                   2.6842 1.19520
                                                       1
        1372 rows × 5 columns
```

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1372 entries, 0 to 1371
Data columns (total 5 columns):

Column Non-Null Count Dtype ----------Variance 1372 non-null float64 0 1 Skewness 1372 non-null float64 2 Curtosis 1372 non-null float64 3 Entropy 1372 non-null float64

1372 non-null

dtypes: float64(4), int64(1)

memory usage: 53.7 KB

Class

In [5]: df.head()

Out[5]: Variance Skewness Curtosis **Entropy Class** 0 3.62160 8.6661 -2.8073 -0.44699 0 4.54590 8.1674 -2.4586 -1.46210 0 2 3.86600 -2.6383 1.9242 0.10645 0 3 3.45660 9.5228 -4.0112 -3.59440 0 0.32924 -4.4552 4.5718 -0.98880 0

In [6]: df.describe()

() i	175 1	6	
$\cup \cup$	1 4 1	U	

	Variance	Skewness	Curtosis	Entropy	Class
count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000
mean	0.433735	1.922353	1.397627	-1.191657	0.444606
std	2.842763	5.869047	4.310030	2.101013	0.497103
min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000
25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000
50%	0.496180	2.319650	0.616630	-0.586650	0.000000
75%	2.821475	6.814625	3.179250	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

int64

In [7]: df.tail()

Out[7]:

	Variance	Skewness	Curtosis	Entropy	Class
1367	0.40614	1.34920	-1.4501	-0.55949	1
1368	-1.38870	-4.87730	6.4774	0.34179	1
1369	-3.75030	-13.45860	17.5932	-2.77710	1
1370	-3.56370	-8.38270	12.3930	-1.28230	1
1371	-2.54190	-0.65804	2.6842	1.19520	1

```
In [8]: | sns.heatmap(df.isnull())
```

Out[8]: <AxesSubplot:>

NO NULL VALUES

```
In [9]: plt.scatter(df.Variance,df.Class)
```

Out[9]: <matplotlib.collections.PathCollection at 0x1fd9f345fd0>


```
In [10]: X=df.drop('Class',axis=1)
```

```
In [11]: Y=df['Class']
```

In [12]: X

Out[12]:		Variance	Skewness	Curtosis	Entropy
	0	3.62160	8.66610	-2.8073	-0.44699
	1	4.54590	8.16740	-2.4586	-1.46210
	2	3.86600	-2.63830	1.9242	0.10645
	3	3.45660	9.52280	-4.0112	-3.59440
	4	0.32924	-4.45520	4.5718	-0.98880
	•••		•••		•••
	1367	0.40614	1.34920	-1.4501	-0.55949
	1368	-1.38870	-4.87730	6.4774	0.34179
	1369	-3.75030	-13.45860	17.5932	-2.77710
	1370	-3.56370	-8.38270	12.3930	-1.28230
	1371	-2.54190	-0.65804	2.6842	1.19520

1372 rows × 4 columns

```
In [13]:
         Υ
                 0
Out[13]:
                 0
         2
                 0
         3
                 0
         4
                 0
         1367
                 1
         1368
                 1
         1369
                 1
         1370
                 1
         1371
         Name: Class, Length: 1372, dtype: int64
In [14]: X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.20)
         svclassifier = SVC(kernel='linear')
In [15]:
         svclassifier.fit(X_train,y_train)
         SVC(kernel='linear')
Out[15]:
In [16]:
         y_pred=svclassifier.predict(X_test)
In [17]:
         y_pred
```

```
array([0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1,
Out[17]:
                1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0,
                0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
                1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
                                                     0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
                0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
                0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
                0, 0, 1, 1, 1, 1, 1, 1, 0, 1], dtype=int64)
In [18]: print(classification_report(y_test,y_pred))
                       precision
                                     recall f1-score
                                                        support
                    0
                            0.99
                                       0.99
                                                 0.99
                                                            156
                    1
                            0.98
                                       0.98
                                                 0.98
                                                            119
                                                 0.99
                                                            275
             accuracy
                            0.99
                                       0.99
                                                 0.99
                                                            275
            macro avg
         weighted avg
                            0.99
                                       0.99
                                                 0.99
                                                            275
In [21]:
         cf=confusion_matrix(y_test,y_pred)
         cf
         array([[154,
                        2],
Out[21]:
                [ 2, 117]], dtype=int64)
         sns.heatmap(cf,annot=True)
In [22]:
          plt.axis('equal')
          plt.show()
                                                      - 140
                                                      - 120
                    1.5e+02
                                      2
         0 -
                                                      - 100
                                                      - 80
                                                       60
                                      i
In [ ]:
```