Машинное обучение Метод К-ближайших соседей (KNN - K Nearest Neighbors)

Д.Ю. Хартьян

Метод К-ближайших соседей

- KNN (k-nearest neighbors) один из простейших алгоритмов машинного обучения.
- Обзор раздела:
 - Теория KNN
 - Пример кода для KNN
 - Упражнения по KNN
 - Решения упражнений по KNN

Метод К-ближайших соседей

- KNN (k-nearest neighbors) один из простейших алгоритмов машинного обучения.
- Для каждой точки этот алгоритм присваивает значение, основываясь на расстоянии между старыми данными и новыми данными
- Посмотрим на примере...

Метод К-ближайших соседей. П ример

- В птицеводстве есть задача определять пол цыплят.
- Предположим, что у нас есть набор данных с ростом и весом цыплят.
- Можем ли мы написать алгоритм, определяющий пол цыплёнка на основе его роста и веса?

• Набор данных с ростом и весом цыплят.

Пол

Мужской

Женский

Bec

• По расстоянию до ближайших соседей

• Представим себе следующую ситуацию:

Пол

• K=1

Пол

Мужской

Женский

• K=2

Пол

Мужской

Женский

• K=3

Пол

Мужской

Женский

(VIOLETIES)

• K=4 – равное количество (tie)!

Пол

• Варианты:

- Всегда выбирать нечётные значения К
- В случае равенства, уменьшить К на 1
- Случайно выбрать тот или иной вариант
- Выбрать ближайшую точку

- Как с такими ситуациями работает Scikit-Learn?
 - В случае равенства (ties) будет выбран класс, идущий первым в множестве соседей.
 - Результаты отсортированы по расстоянию, так что будет выбран класс ближайшей точки.

• К=5 – мы переключаемся на другой класс.

(Piolales

- Как выбрать число К?
 - Хотим минимизировать error = 1 accuracy
- Два метода:
 - Метод локтя (elbow method)
 - Кросс-валидация перебор различных значений К по сетке (grid search), чтобы найти значение К с наименьшими ошибками

Метод локтя (elbow method)

Метод локтя (elbow method)

- Кросс-валидация ищет значение К, ориентируясь только на минимизацию ошибок
- Это может привести к более сложной модели (более высокому значению К)
- Учитывайте специфику задачи, чтобы понять, насколько приемлемо увеличение значения К

Алгоритм KNN

- Выбираем значение К
- Сортируем вектора признаков (в N-мерном пространстве) по метрике расстояния
- Выбираем класс точек на основе К ближайших векторов признаков

Метрики расстояния

Расстояние

$$a,b \in \mathbb{R}^m$$
 $L^2 = d_2(a,b) = \{\sum_{i=1}^m |a_i - b_i|^2\}^{1/2}$ Евклидово расстояние $L^1 = d_1(a,b) = \sum_{i=1}^m |a_i - b_i|$ Манхэттенское расстояние $L^\infty = d_\infty(a,b) = \max(|a_i - b_i|)$ Расстояние Чебышева $L^p = d_p(a,b) = \{\sum_{i=1}^m |a_i - b_i|^p\}^{1/p}$ Расстояние Минковского

Классификация к-Ближайших Соседей

Классификация к-Ближайших Соседей

Beca

чем дальше пример, тем меньше вклад учитывается его «голосом»

$$w_i \sim \frac{1}{d(x,i)}$$

Разный вес для разных классов

$$w_{blue} = a$$
 $w_{red} = b$

Преимущества и недостатки KNN:

• Преимущества:

- Прост в понимании и реализации.
- Нетребователен к предварительным предположениям о распределении данных.
- Модель обновляется немедленно при добавлении новых данных.

• Недостатки:

- Неэффективен для больших наборов данных.
- Чувствителен к несбалансированным данным и шуму.
- Требует масштабирования признаков.