# Introductory Astronomy

Week 2: Newton's Universe

Clip 4: Gravity



### **Attractive Logic**

- If an object of mass m moves in a circle of radius R with uniform speed v there must be a force acting, directed to center, of magnitude  $F=mv^2/R$
- Moon orbits Earth so forcé directed towards Earth
- We notice Earth applies such a force to apples. Could this be the same force?
- Planets orbit Sun in (almost) circular orbits at (almost) uniform speed. Does Sun apply the force this implies on all planets?
- If so, Earth must apply a force to Sun directed towards Earth
- It all hangs together!!



# Kepler and Newton

- Planet of mass $m_P$  orbits Sun at radius R with speed v
- Force Sun applies to planet is thus  $F = m_P v^2 / R$
- Kepler says  $v^2 = \frac{4\pi^2}{KR}$  Find



#### It's Universal

- Sun applies a force given by  $F = \frac{4\pi^2}{K} \frac{m_P}{R^2}$  to each planet, with same K
- So each planet applies force of same magnitude to Sun
- Law does not single out planet from Sun, so must have  $F=\frac{GM_{\odot}m_P}{R^2}$  so  $K=\frac{4\pi^2}{GM_{\odot}}$



# Really Universal

- Earth also attracts the Moon, and all objects near it.
- So Moon and all other objects attract Earth.
- Everything attracts everything else!  $F = \frac{Gm_1m_2}{R^2}$  Measured Newton's constant:

$$F = \frac{Gm_1m_2}{R^2}$$

$$G = 6.67 \times 10^{-11} \frac{\text{N m}^2}{\text{kgf}}$$

## Thinking about Orbits

- Why doesn't the Moon fall on Earth?
- It does! Moon is constantly accelerating towards Earth. Orbiting is falling without ever hitting the ground



More Generally

- Circular orbits at uniform speed are solutions to Newton's equations.
- So are elliptical orbits
  with Sun at focus
  satisfying Kepler II, as well
  as open hyperbolic
  trajectories





# **Even More Generally**

 Newton's law is Universal. Apply to any two objects orbiting under mutual gravity. Find elliptical orbit about center of mass with  $P^2 = Ka^3$ 





## Example: Low-Earth Orbit

• ISS orbits at an altitude  $h = 370 \, \mathrm{km}$  so has orbital radius  $R = 6371 + 370 = 6741 \,\mathrm{km}$ 

• Period given by 
$$P = 2\pi \left(\frac{R^3}{GM_{\oplus}}\right)^{1/2}$$
 
$$= 2\pi \left(\frac{\left(6.741 \times 10^6\right)^3}{6.67 \times 10^{-11} \times 5.972 \times 10^{24}}\right)^{1/2}$$
 
$$= 5510 \, \mathrm{s} = 91.8 \, \mathrm{m}$$



#### Wow

- Now we have the underlying, fundamental, universal laws
- It works: Halley predicts reappearance of comet to within days





#### **Credits**

- Hyperbolic Orbit: By Brandir [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC-BY-SA-2.5-es (http://creativecommons.org/licenses/by-sa/2.5/es/deed.en)], via Wikimedia Commons
- Demonstration videos: Duke Media Services
- Comet Halley: David Malin, Australian Astronomical Observatory

