wan but of Mine.

Lang, I V. M.

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED
JANUARY 1953

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY 26 Jan. 1953 WASHINGTON,D.C.

Issued

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7, 13, 25, 52
Ionospheric Storminess at Washington, D. C	7. 37
Radio Propagation Quality Figures	8, 38
Observations of the Solar Corona	9, 40
Relative Sunspot Numbers	10, 46
Observations of Solar Flares	10, 48
Indices of Geomagnetic Activity	11; 49
Sudden Ionosphere Disturbances	12, 50
Erratum	12
Tables of Ionospheric Data	13
Graphs of Ionospheric Data	52
Index of Tables and Graphs of Ionospheric Data in CRPL-F101	88

SYMBOLS, TERMINOLOGY. CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist..

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations, and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, S. or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CEPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month			Predicte	d Sunspo	t Number			
	1952	1951	1950	1949	1948	1947	1946	1945
,	00	~0	0.4		a a t			- 0
December	33	53	86	108	114	126	85	38
November	38	52	87	112	115	124	83	36
October	43	52	90	114	116	119	81	23
September	46	54	91	115	117	121	79	22
August	49	57	96	111	123	122	77	20
July	51	60	101	108	125	116	73	
June	52	63	103	108	129	112	67	
May	52	68	102	108	130	109	67	
April	52	74	101	109	133	107	62	
March	52	78	103	111	133	105	51	
February	51	82	103	113	133	90	46	
January	53	8 <i>5</i>	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria Defence Research Board, Canada; Churchill, Canada Fort Chimo, Canada Ottawa, Canada Prince Rupert, Canada Resolute Bay, Canada St. John's, Newfoundland Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:

Formosa, China

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Terre Adelie

The Royal Metherlands Meteorological Institute: De Bilt, Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:
Christchurch, New Zealand
Rarotonga, Cook Is.

Horwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:
Oslo, Norway
Tromso, Norway

South African Council for Scientific and Industrial Research: Nairobi, Kenya (East African Meteorological Department)

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden: Kiruna, Sweden

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Okinawa I.
White Sands. New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):
Baton Rouge, Louisiana (Louisiana State University)
Fairbanks, Alaska
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narsarssuak, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 to 84 follow the scaling practices given in the report IRFL-C61. "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C., during December 1952, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Tables 86a and 86b give for November 1952 the radio propagation quality figures for the North Atlantic area, CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, separately for 00-12 and 12-24 hours UT (Universal Time or GCT). The basis of calculation is summarized below.
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the two half-daily Q-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. The forecasts issued just prior to 00^h and 12^h UT are scored against the half-daily quality figures; the results for the intervening forecasts should be similar. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short term forecasts and Q-figures.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and for comparison the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. government: -- FCC, Coast Guard, Navy, Army Signal Corps, Air Force (AACS), State Department. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each Greenwich half day are averaged on the quality scale of the original reports. These half-day indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by

comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. Each half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during December 1952, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at Sacramento Peak, New Mexico, during December 1952, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Material Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in December 1952.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in December 1952.

Tables 93 and 94 give details of the Climax, Colorado, and Sacramento Peak, New Mexico, observations, respectively, from July 1952 through December 1952. The first column lists the Greenwich date of observation; the following columns give the threshold or lowest observable intensity of 5303A for each spectrum plate centered at the astronomical position angle indicated; the last two columns indicate the observer and the person responsible for the intensity estimates of the observation. These tables continue the presentation of coronal data in the manner of table 1 of CRPL-1-4 and appear in the F series regularly at intervals of six months.

RELATIVE SUNSPOT NUMBERS

Table 95 lists the daily provisional Zurich relative sunspot number, R₂₀ as communicated by the Swiss Federal Observatory. Table 96 continues the new series of American relative sunspot numbers, R_As. Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_As. Observatory coefficients for each of the 28 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 differs from that of the reports for earlier years because of these changes, and the new series is designated R_As rather than R_As. The American relative sunspot numbers appear monthly in these pages as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 97 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Maval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories,

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and beliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 98 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures. C; (2) geomagnetic planetary three-hour-range indices. Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following four criteria: (1) C; (2) the sum of the eight Ep's; (3) the greatest Ep; and (4) the sums of the squares of the eight Ep's.

Ep is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g. 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44

and 1949, in these CRFL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the <u>Journal of Geophysical Research</u> along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. At the meeting of ATME held in Brussels in August 1951, it was decided that the computation of Kw would be discontinued after the month of December 1951 since Kp is available from January 1, 1940. Kw, therefore, no longer appears in these reports.

SUDDEN IONOSPHERE DISTURBANCES

Table 99 shows that no sudden ionosphere disturbances were observed during the month of December 1952 at Washington, D. C. Table 100 lists the sudden ionosphere disturbances observed at Platanos, Argentina, November 1952.

ERRATUM

Virtual heights and factors for Narsarssuak, Greenland, for the period June 18, 1951 through November 27, 1952, as published in CRPL-F85 through F101, are in error and should be disregarded. The virtual heights are approximately 15% too high.

TABLES OF IONOSPHERIC DATA

				Ta	ble_l			
Washin	ston, D.	C. (38.	77.1	Γ ₀ ₩)			Dec	ember 1952
Time	h!F2	foF2	h'Fl_	foFl	h E	foE	fEs	(M3000)F2
00	(280)	2.4					2.5	3.0
01	(280)	2.6					2.1	3.0
02	270	2.9						3.0
03	260	2.9					1.9	3.1
04	250	3.2					2.5	3.1
05	240	2.9					2.4	3.1
06	(240)	2.7					2.5	3.2
07	250	3.0					3.2	3.2
08	220	5.0			120	1.9	2.7	3.5
09	230	5.8	220		120	2.3		3.5
10	240	6.2	200	3.6	120	2.5	2.6	3.5
11	250	6.8	210	3.8	110	2.7	2.5	3.4
12	250	7.3	210	3.8	110	2.8	2.7	3.4
13	250	7.0	220		110	2.8	1.9	3.4
14	250	6.6	220		110	2.6	1.9	3.4
15	240	6.6	220		120	2.3	2.6	3.4
16	230	6.6			(120)	1.8	2.3	3.4
17	210	5.4					3.1	3.4
18	230	4.2					2.0	3.2
19	240	3.5					1.2	3.2
20	250	2.7						3.2
21	(260)	2.4						3.0
22	(280)	2.4						3.0
23	(280)	2,4						3.0

75.0 °W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table]				
Tromso,	Norway	(69.7°N,	19.00]				Nov	ember 1952
Time	p. ES	foF2	h'F1	foF1	h1E	foE	fEe	(M3000)F2
00	(320)	(2.8)					4.0	
01	(300)	(2.6)					4.3	(2.9)
02	(325)	(2.9)					3.6	(2.9)
03	(295)	(2.8)					3.4	(2.9)
04	300	2.7					3.0	3.0
05	280	2.6					3.0	3.0
06	270	1.9					2.6	3.1
07	265	2.0					2.5	3.1
08	255	2.8					2.7	3.2
09	245	3.8					2.3	3.4
10	230	4.5				1.5	1.8	3.4
11	225	5.0				1.6	1.5	3.4
12	225	5.2			(150)	1.6	1.4	3.4
13	225	4.9			155	1.5	1.3	3.4
14	225	4.4				1.3	1.4	3.4
15	230	3.8				1.0	2.6	3.2
16	250	3.3					2.8	3.2
17	250	2.7					2.7	3.1
18	(275)	(2.5)					3.2	(3.0)
19	(300)	(2.4)					3.7	(3.1)
20	(300)	(2.4)					3.6	(3.0)
21	(320)	(2.3)					3.6	(2.9)
22							3.0	Mary Mil

22 3 -- -- 3.0 Time: 15.0°E. Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

.,			//a -0-	Table				
Narsar	ssuak, Gr	eenland						ember 1952
Time	P.LS	foF2	h'T1	foFl	P1E	foE	fEe	(M3000)15
00	(370)	(3.4)					6.4	(2.6)
01	(7770)	(3.°)					4.6	(2.5)
02	(470)	(3.2)					5.3	(2.4)
03	(430)	(3.4)					4.5	(2.5)
011	(390)	(2.8)					4.0	(2,€)
05	(370)	(2.4)					4.0	(2.6)
06	(370)	(2.2)					4.0	(2.7)
07	360	2.2					3.5	2.7
08	320	3.6					2.6	2.9
09	300	4.5	-					3.0
10	310	5.1	(280)					3.0
11	300	5.4	280					3.0
12	320	(5.4)	300					2.9
13	310	5.4	300					3.0
1),	300	5.2						2.9
15	310	(4.8)					2.2	(2.8)
16	320	(4.4)					3.4	(2.7)
17	(370)	(4.0)					4.0	(2.6)
18	(390)	(3.4)					4.0	(2.6)
19	(410)	(3.4)					4.1	(2.5)
20	(360)	(3.3)					4.8	(2.6)
21	(360)	(J.L)					4.6	(2.6)
22	(400)	(3.5)					6.8	(2.6)
23	(380)	(3.6)					5.1	, /

23 (380) (3.6) Time: 45.0°W.' Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table	2			
Point	Barrow, A	laska (7	1.3°N, 1	.56.8°W)			Nov	ember 1952
Time	p.ls	foF2	h'F1	foF1	Þ.E	foE	fEe	(M3000)F2
00	(270)	(3.0)					4.4	(3.2)
01	(260)	(2.8)					6.6	(3.1)
02		(2.6)					6.6	
C3	(280)	(2.3)					4.8	
04		(2.4)					4.2	
05							3.7	*****
66							4.0	
07							4.6	
80	(320)	(3.0)					4.5	
09	(290)	(3.2)					4.4	(3.1)
10	280	3.lı					3.0	3.1
11	260	3.8			100		2.7	3.2
12	240	4.2					1.8	3.2
13	250	4.5	-				2.2	3.2
1/1	250	4.7			100			3.2
15	250	4.5					1.9	3.2
16	250	3.6						3.1
17	260	2.9						3.0
18	280	2.2					2.8	(3.1)
19	(310)	(2.1)					3.5	(3.0)
20	(5.55)	(3.0)					3.8	(3.0)
21	(280)	(2.6)					4.2	(3.0)
22	(280)	(3.1)					5.4	(3.1)
23	·						6.4	

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Fairba	nks, Alas	ka (64.9°	ON, 147.	Table	4		Nov	ember 1952
Time	P. LS	foF2	h'F1	foF1	P.E	foE	fEe	(M3000) T2
00							5.6	
01							7.C	
02	(340)	(2.8)					7.0	
03							6.2	
04		(2.5)					8.6	
05	(370)	2.4					6.2	(2.7)
06	(320)	(2.2)					6.6	(2.9)
07	(310)	(2.3)					6.0	
08	270	(3.0)					3.0	(3.1)
09	240	4.1						3.2
10	240	4.6						3.2
11	240	5.2						3.2
12	230	5.2						3.2
13 14 15 16	230	5.6						3.2
14	230	5.6						3.2
15	230	4.8						3.2
	230	(4.2)						3.2
17	240	(3.4)						(3.1)
18	250	(2.8)						(3.1)
19	270	(21)						(3.0)
20	(300)	(1.8)					5.6	
21	(300)	(2.6)					5.5	
22	(290)	(2.3)					6.6	
0.0								

				Table 6				
Oslo,	Norway (6	0.0°N, 1	1.1°E)				Nova	mber 1952
Time	P. L.	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2
00	(310)	1.8					2.9	(2.9)
01								
02		(1.9)					2.8	(2.9)
03		(2.0)					2.1	(3.0)
OL	(290)	(1.3)					2.2	(3.0)
05	320	1.6					2.9	3.0
06	300	1.5					2.6	3.0
07	280	1.8					2.5	3.1
08	230	3-4					1.9	3.4
09	220	4.6	230			1.8	3.0	3.5
10	220	5.4	220		120	1.9	3.0	3.5
11	220	5.6	220		120	2.1	3.0	3.5
12	220	6.0	220		120	2.2	3.0	3.6
13	220	6.1	220		140	2.1	3.1	3.6
14	220	5.8	230		130	2.0	3.0	3.5
15	220	5.4				1.8	3.0	3.5
16	220	4.7					2.1	3.4
17	220	4.0					1.6	3.3
18	240	3.4						3.2
19	250	2.7						3.2
20	260	2.1						3.2
21		1.9						(3.0)
22		(1.8)						(3-0)

22 | --- (1.8) 23 | --- (1.7) Time: 15.0°E. Sweep: 1.3 Nc to 14.0 Nc in 8 minutes, automatic operation.

				Zablo 7				
Upsala,	Sweden	(59.8°N,	17.6°E)				Nove	mber 1952
Time	P.LS	foF2	h'F1	foFl	h'E	fol	fBs	(M2000)ILS
00	340	1.8						(2.7)
01	350	1.9					2.6	2.7
02	350	1.7					2.4	2.7
03 04	330	1.8					2.2	2.8
04	310	1.8					2.3	(2.7)
05	350	1.6					2.9	
06	350	1.5					2.1	
07	255	2.2						2.9
08	255	3.8	-				2.2	3•3
09	255	5.1	215				2.5	3.4
10	230	5.6	220	(3.0)	115	1.9	2.2	3.4
11	230	5.8	225	(3.2)	110	2.1	2.3	3.3
12	230	6.1	225	(3.2)	120	2.1		3.3
13	230	6.4	225	2.8	125	2.0		3.3
13 14 15	225	5.8		****		1.7	2.2	3.3
15	215	5.0					1.3	3.3
16	220	4.4					1.8	3.3
17 18	230	3.6						3.1
	240	3.1						3.0
19	250	2.5						2.9
20	285	1.9						2.9
21	290	1.9						(2.9)
22	320	1.8 1.8						(0.2)
23	350	1.0						(2.7)

Time: 15.0°E.
Sweep: 1.4 Mc to 17.0 Mc in 6 minutes.

Craz,	Austria	(47.1°N,	15.5°E)	Table 9			Novem	ber 1952
Time	h'F2	foF2	h'F1	foF1	h'E	foB	fBs	SE(000EK)
00	300							
01	290	3.1						
02	290	3.4						
03	290	3.3						
ΟĻ	260	3.2						
05	250	2.8						
06	230	2.7						
07	210	4.2						
08	200	5.3						
09	500	6.0						
10	205	6.8	200	3.5				
11	225	7.2	200	3.7				
12	220	7.1	200	3.6				
13 14	220	6.6	200	3.8				
114	220	6.3						
15	200	6.3						
16	200	5.8						
17	220	4.3						
18	250	3.7						
19	250	3.5						
20	240	3.2						
21	275	3.2						
22	290	3.1						
23	300	3.3						

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

White	Sands, No	w Mox1co	(32.3°H,	Table 106.5			Nov	November 1952		
Time	P.LS	foF2	h'F1	foF1	hIE	foB	fBa	(M3000)F2		
00	260	3.2					2.8	3.2		
01	260	3.2					2.0	3.2		
02	250	3.2						3.2		
03	250	3+3						3.1		
04	250	3.3						3.2		
05	250	3.1						3.1		
06	250	3.2					2.2	3.2		
07	220	5.2					2.4	3.5		
08	230	6.6	550		100	2.3	3.2	3.6		
09	240	7.4	210	3.9	100	2.7	3.2	3.5		
10	250	7.4	200	4.1	110	2.8	3.2	3.5		
11	240	7.9	200	4.1	110	3.0	3.8	3.4		
12	250	8.C	200	4.2	110	3.0	3.9	3.4		
13	250	7.8	210	4.1	110	3.0	3.2	3.4		
14	240	7.5	220	4.0	110	2.9	3.4	3.5		
15 16	230	7.2	220		110	2.6	3.4	3.5		
16	220	6.4	220		110	2.2	3.2	3.6		
17	210	5.6					3.0	3.6		
18	200	3.7					2.9	3.6		
19	220	2.8					3.0	3.4		
20	240	2.6					2.8	3.2		
21	250	2.8					2.8	3.2		
22	< 260	3.0					3.2	3.1		
23	260	3.1					2.2	3.1		

Time: 105.0°W.
Sweep: 1.0 Me to 25.0 Mc in 15 seconds.

Adak,	alaska (5	1.9°N, 1	76.6°W)	Table	_		Nov	ember 1952
Time	P.A.S.	foF2	h'F1	foFl	h I E	foE	fEs	(M3000)F2
00	260	3.2					2.2	3.0
01	260	3.1					2.1	3.0
02	260	3.0					1.8	3.0
03	270	3.1					2.C	3.0
04	260	3.1					2.1	3.0
05	260	3.1					1.9	3.0
06	240	3.1					2.1	3.2
07	220	3.7				E		3.5
08	220	5.0	220		140	2.1	1.9	3.6
09	230	6.2	210		110	2.4	2.3	3.5
10	230	6.6	220		110	2.5	2.0	3.5
11	230	6.9	210	(3.4)	110	2.5	1.8	3.5
12	220	7.0	210		110	2.6		3.6
13	220	6.6	210		110	2.5		3.6
14	210	6.6			110	2.3		3.6
15	210	6.0			120	2.0	1.5	3.6
16	200	5.0					2.0	3.6
17	210	3.4					1.3	3.5
18	220	2.8					1.8	3.5
19	230	2.5						3.3
20	230	2.4						3.3
20 21	240	2.7						3.1
22	250	3.0						3.1
23	260	3.0					2.3_	3.0

Time: 180.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table				
San Fr	ancisco,	Californ	ia (37.4	N, 122.	2 ⁰ W)		Nov	ember 1952
Time	F.LS	foF2	h'F1	foFl	h'E	foE	fEs	(N3000)F
00	260	(3.0)					2.9	3.1
01	(250)	(3.0)					3.5	(3.1)
02	(260)	(2.9)					2.6	(3.1)
03	(260)	(3.0)					2.7	(3.1)
04	250	(3.2)					2.3	(3.2)
05	(250)	(3.0)					2.5	(3.1)
06	(250)	(3.0)					2.4	(3.2)
07	220	(4.7)					2.9	(3.4)
80	220	(6.1)	210		120	2.3	3.7	(3.5)
09	230	6.8	200	(3.7)	120	2.6	3.8	3.5
10	240	7.0	200	(4.0)	120	2.9	2.7	3.4
11	240	7-4	200	(4.0)	120	3.0	2.6	3.4
12	2110	7.8	210	(4.1)	110	3.0	3.2	3.4
13	240	7.3	210	(4.0)	110	3.0	2.6	3.4
1h	250	7.3	220	(3.8)	110	2.8	3.0	3.4
14 15	230	6.8	2 20		120	2.5	3.0	3.4
16	220	6.4			120	2.0	2.4	3.5
17	210	5.2					3.1	3.5
18	210	3.7					3.0	3.4
19	220	3.0					3.5	3.4
20	(230)	(2.6)					3.6	3.4
21	240	2.6					3.6	3.3
22	(250)	(2.9)					3.8	3.2
22	່ າໄດ້	(3.6)					5 1.	3 5

23 210 (3.6)

Time: 120.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Baton I	Rouge, Lo	uisiana	(30.5°N,	91.2°W)			Nov	ember 1952
Time	P.LS	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	270	3.3						3.1
01	260	3.2						3.1
02	260	3.2						3.1
03	260	3.3						3.2
04	250	3.3						3.2
05	260	3.1						3.1
06	260	3.1					2.2	3.1
07	230	5.2			130	1.9	2.2	3.5
08	240	6.8	230		120	2.4	5.2	3.5
09	250	7.2	230		110	2.7	5.2	3.5
10	250	7.4	220		110	3.0	6.0	3.4
11	260	8.0	220	4.3	110	3.0	6.1	3.3
12	260	8.3	220	4.3	110	3.1	5.8	3.3
13	260	8.6	220	4.2	110	3.0	5.5	3-4
7)1	250	8.1	230	(4.0)	120	2.9	5.2	3.4
15	240	7.6	220		120	2.6	4.0	3.4
16	230	7.0			120	2.1	3.8	3.5
17	220	6.2					3.0	3.5
18	220	4.2					3.8	3.5
19	250	3.0					3.0	3.2
20	260	2.9					3.6	3+3
21	280	2.9					2.1	3.1
22	280	3.2					3:1	3:1
23	280	3 2					2.4	3.1

73 1 280 3.2 Time: 90.00W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconde.

hinaw	a I. (26.	3 ⁰ N, 127	.8°E)	Table	13		Nov	ember 1952
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
Or.	290	3.0					2.1	3.0
01	280	3.2					2.3	3.0
15	270	3.3					2.2	3.1
U3	260	0.2					2.0	3.2
94	230	2.8					2.3	3.6
03 04 05 6	260	2.3					2.3	3.2
6	270	2.9					1.9	3.1
27	230	5-8	230		130	1.9	3.3	3.0
08	250	6.3	230		120	2.4	3.5	3.5
59	260	8.0	230		120	2.8	4.2	3+4
10	270	8.5	230	(1 1)	120	3.0	4.6	3+3
12	270	9.2	220 220	(4.4) (4.6)	120 120	3.1 3.2	5.3	3.2
13	270	11.0	230	(4.4)	120	3.1	4.9 5.0	3.2 3.2
14	260	11.4	240	(4.2)	120	3.0	5.0	3.3
15	240	10.2	240	(4.2)	120	2.6	4.6	3.5
16	230	8.6	240		120		4.4	3.6
17	220	6.9			200		4.0	3.6
18	220	5.6					4.2	3.6
19	240	4.8					3.0	3.1
20	250	4.8					3.0	3.1
21	240	4.5					3.0	3.2
22	250	3.6					2.3	3.0
23	300	3.2					2.3	3.0

Time: 127.5°E.
Sweep: 1.0 No to 25.0 Mc in 15 seconds.

Fuerto	Rico, W.	Nov	ember 1952					
Time	p.ls.	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 3 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 250 240 220 220 240 270 230 250 270 260 270 260 240 220 210 220 230 270 230 270 230 270	145248791889058680604478	230 230 230 230 230 220 220 220 220 230	444444	(100) 100 110 110 110 110 110 110	2.b 2.8 3.1 3.3 3.3 3.3 3.0 2.6 2.0	2.0 2.4 2.2 2.4 4.6 3.6 4.2 3.6 2.9 2.9	3.0 3.2 3.6 3.4 3.5 3.5 3.4 3.4 3.3 3.4 3.5 3.4 3.5 3.4 3.5 3.6 3.6 3.6

23 270 3.8 Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	17			
Panama	Canal Zo	ne (9.4°	N, 79.90	W)			Nove	mber 1952
Time	P.ES	foF2	h'#1	foFl	h E	foE	fEe	(M3000)F2
00	260	3.4					2.4	3.0
01	240	3.3					2.9	3.3
02	220	2.9					3.0	3.4
13	230	2.1					3.0	3.3
04	270	2.0					4.2	2.7
05	300	2.2					3.9	2.7
06	280	3.0					3.4	2.9
07	240	5.8			120	2.1	4.2	3.2
08	270	7.1	240	-	120	2.6	4.6	3.1
09	300	8.4	240	4.5	110	3.0	4.8	3.0
10	300	8.8	230	4.6	110	3.3	5.0	3.0
11	310	9.6	230	4.7	110	3.4	5.3	2.9
12	290	10.3	220	4.7	110	3.5	5.0	3.0
13	290	0.9	230	4.6	110	3.4	5.3	3.0
14	290	9.9	< 220	4.5	110	3.3	5.2	3.0
15	280	9.6	230	4.4	110	3.C	5.3	3.0
16	270	9.2	220		110	2.6	5.6	3.1
17	240	8.3					5.0	3.3
18	230	6.4					4.8	3.2
19	240	4.6					4.5	3.2
20	240	3.5					4.0	3.2
21	260	2.9					3.0	2.9
22	280	3.0					2.3	2.9
23	270	3.2					3.2	3.0

Time: 75.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Maui, I	4awaıı (2		Nove	mber 1952				
Time	h'ES	foF2	h'F1	foFl	hIE	foE	fEe	(M3000)F2
00	260	3.2						3.1
01	250	3.0					1.5	3.2
02	230	3.0						3.4
03 14	220	2.7						3.5
ni.	230	2.0						3.2
115	300	1.8						2.8
0	310	2.1						2.0
07		4.9			120	1.7	2.1	3.3
	260	6.8	230		110	2.5	3.4	3.2
7	2 0	6.1:	230	(4.3)	110	2.9	3.8	3.0
)	250	9.8	220	(4.5)	110	3.1	4.2	3.1
11		10.8	210	4.6	110	3.2	4.C	3.1
12	300	11.6	210	4.6	110	3.2	4.1	3.0
13	280	13.0	220	4.6	110	3.2	4.4	3.1
14	260	12.7	230	4.5	110	(3.1)	4.6	3.2
15	250	12.5	230	(4.3)	110	2.8	4.5	3.3
16	230	10.5	230	(3.7)	110	2.6	4.3	3.5
1.7	2. 1	7.4		(,,,,	120	2.0	4.0	3.€
18		5.0			a	200	3.7	3.6
19		3.4					3.2	3.5
20		3.2					2.4	2.8
21.		3.6					2.0	3.1
22		3.5					1.8	3.1
23	260	3.4					T.00	3.1

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Guam I.	. (13.5°N	Nov	November 1952					
Time	pils	foF2	h'F1	foFl	h ! E	foE	fEe	(M3000)F2
0.3	240	4.2						3+3
Ol	260	4.5						3.2
02	25	4.7						3.4
03	230	3.3						3.5
04	240	3.0						3-3
05	260	2.7						3.2
06	270	2.7					1.3	3.1
07	240	6.1			120	2.0	2.7	3.5
08	260	7.9	230		110	2.6	3.5	3.5
09	270	9.6	220	(4.4)	110	2.9	4.2	3.2
10	280	9.9	210	4.4	110	3.2	4.6	3.0
11	3(0	9.7	200	4.5	110	3.3	4.8	2.5
12	310	9.5	200	4.5	110	3.3	4.6	2.6
13	300	9.7	200	4.5	110	3.3	4.7	2.8
14	300	10.2	200	4.5	110	3.2	5.0	2.8
15	280	10.6	220	947	110	3.0	5.8	3.0
16	270	11.0	230		110	(2.6)	5.4	3.2
17	240	11.0	240				5.4	3.3
18	230	10.4					4.5	3.3
19	230	9.6					2.8	3.3
20	220	8.5					3.8	3.2
21	220	7.8					3.8	3.2
22	230	6.3					2.6	3.3
23	230	5.6					2.1	3.3

Time: $150.0^{\circ}E$. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Huanca	yo, Peru	(12.0°S,	75.3°W)	Table	18		Nove	mber 1952
Time	p.ls	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	290	(6.5)					- /	(3.2)
01	277	(5.8) (4.4)					3.6	(3.2) (3.2)
03	260	4.0						3.2
04 05	260 260	3.6 3.0						3•3 3•3
06	240	5.7			120	1.8	4.6	3.4
07	(270)	7.7	220		110	2.5	6.1	3.3
09	290 310	8.7 9.3	2 1 0 200	4.4	110 110		11.1	3.1 2.8
10	330	9.4	190	4.5	100		12.4	2.6
11	330 330	9.2 9.2	190 190	4.5	100		12.4	2.6
	330	9.2	190	4.5	100		12.4	2.6 2.6
13	320	9.4	190	4-4	100	3.3	11.4	2.6
15 16	(300)	10.1 9.3	200 200	4.2	110 110		10.9 9.4	2.5
17	230	9.0	200		110		6.6	2.6 2.6
18	260	9.0						2.7
19 20	270 260	8.4						2.7 2.6
21	280	8.1						2.8
22	300	7.0						2.9
23	300	(6.7)						(3.0)

Time: 75.0°W.
Swcep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 1	2			
Point 1	Barrow, A	0ct	ober 1952					
Time	h'F2	foF2	h'Jl	foFl	h t E	foE	fEq	SI(000ER)
00	(260)	(3.0)					5.6	(3.0)
01	300	(3.1)					6.8	(2.9)
02	300	(2.5)					5.6	(3.0)
03	(300)	(2.8)					4.5	*
04:	(310)	(2.8)					3.8	Miles (1970)
05	(300)	(3.1)					4.9	ACC 100
C6 07		(3.1)					4.1	
07		(3.2)					4.8	
08	(320)	(3.6)					4.4	(3.0)
09	(300)	3.7					4.7	3.1
10	270	4.2	-	-	100		3.7	3.2
11	280	4.3	-	****	(110)	-	3.6	3.2
12	270	4.3		-	100	(2.0)	2.5	3.2
13	290	4.4	250	(3.2)	100	2.1		3.1
1h 15	290	4.5	270	***	110	2.3		3.1
15	280	4.6	-	-	110	2.0		3.1
16	260	4.4	-		-	-		3-1
17	270	L.C					2.9	3.1
18	270	3.3					2.9	3.1
19	280	(2.6)					4.0	(3.1)
20	(290)	(2.4)					4.2	(3.0)
21	(300)	(3.2)					4.6	
22	(330)						5.0	
0.0	(2000)						1. C	

23 (290) — Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table :				
Narsars	suak, Cr	eenland ((61.2°N,	45.4°W)			0c	tober 1952
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	(\(\begin{array}{c}\) (\(\beta\c)\) (\(\beta\c)\) (\(\delta\c)\) ((3.0) (3.3) (3.3) (2.8) (2.3) 3.6 (2.3) 3.6 (2.3) 5.1 (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5)	290 300 300 290 300 300 320	3.6 3.6 3.6 3.7 3.7 3.6 (3.1)	 (150) (110) (110) (110) (110) (110) (110)	(2.6) (2.3)	5.6 5.0 4.9 3.7 3.0 2.3 2.2 4.7 5.0 6.1	(2.4)

23 (160) (3.2)
Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

	zenburg,							tober 1952
Time	F.ES	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	300	3.0						3.1
Ol	300	3.2						3.1
02	300	3.2						3.1
03	300	3.2						3.1
014	300	3.1						3.1
05	260	3.0						3.4
06	275	2.6						3.4
07	230	4.0						3.6
08	225	5.2			100	2.1		3.8
09	230	5.8	200	3.5	100	2.4		3.8
10	240	6.2	200	4.0	100	2.6	4.1	3.6
11	260	6.6	200	4.0	100	2.8	4.2	3.5
12	250	7.0	200	4.0	100	2.8	4.2	3.6
13 14 15	245	6.3	200	4.0	100	2.8		3.5
1)1	250	6.8	210	4.0	100	2.7		3.5
15	250	6.8			100	2.6		3.6
16	240	6.4			100	2.4		3.6
17	230	6.2				2.1		3.6
1.8	220	6.2						3.6
19	230	5.5						3.5
20	230	4.5						3+5
21	270	3.6						3.3
22	300	3+3						3.2 3.1
23	300	3.2						3.1

Time: 15.0°E. Sweap: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table 2	0			
Kiruma,	Sweden	(67.8°N,	20.5°E)				0c	tober 1952
Time	h'F2	foF2	h'Fl	foFl	h ! E	foE	fEe	(M3000)F2
00	(335)	(2.1)					3.7	(2-9)
01	(310)	(2.5)					3.7	(2.9)
02	(310)	(3.0)					3.5	(2.8)
03	(305)	(2.6)					2.7	(2.7)
07	(305)	2.2					2.7	(2.9)
05	215	2.2					2.0	2.9
06	200	2.7						3.0
07	250	3.5						3.2
08	245	1:40			40.4740	Mary of		3.3
09	250	4.3	235	3.1	110	1.8		3.4
10	250	5.1	230	3.2	110	2.0		3.3
11	240	5.3	230	3.1	110	2.0		3.3
12	245	5.2	220	3.1	110	2.0		3.3
13	240	5.1	220	3.0	120	1.9		3.3
14	21:0	4.2	220	2.8		1.8		3.3
15	240	4.3	40.0740					3.4
16	230	4.2						3.3
17	235	4.1					2.1	3.3
18	250	3.8					2.9	3.2
19	255	(3.0)					3.8	(3.1)
20	(275)	(3.0)					3.6	(2.9)
21	(295)	(2.8)					3.9	(3.0)
22		(2.6)					3.9	(2.8)
23		(2.3)					3.8	(2.3)

Time: 15.00E.
Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

				22			
t, Hollan	d (52.1°	N, 5.2°E)			0ct	ober 1952
h'F2	foF2	h'F1	foFl	h ! E	foE	f≧e	(M3000)F2
29 0	2.8						3.0
290	2.8						2.9
285	2.6						3.0
285	2.5						3.0
260	2.2						3.1
< 270	2.0						3.1
230	3.2				Ε		3.3
		220		120			3.6
			3.5			1.7	3.6
	6.0						3.5
	6.5						3.5
							3.6
							3.5
							3.5
2/15							3.5
230						2.00	3.5
							3.5
						1.0	3.4
						/	3.3
							3.4
							3.2
							3.0
							3.0
	h'F2 290 290 265 285 260	h F c c c c c c c c c	h'F2 foF2 h'F1	t, Holland (52.1°N, 5.2°E) h*F2 foF2 h*F1 foF1 250 2.8 250 2.8 265 2.6 265 2.6 260 2.2 <270 2.0 230 3.2 215 h.7 220 220 5.1 210 3.5 240 6.0 200 h.0 250 6.6 200 h.0 250 6.6 200 h.0 250 6.3 200 h.0 250 6.6 200 h.0 250 6.1 210 3.7 210 5.7 225 220 5.5 220 5.5 221 5.1 210 3.7 230 6.1 230 3.7 230 6.1 230 3.7 230 6.1 230 3.7 230 6.1 230 3.7 220 5.5 221 5.1 225 3.7 220 5.3 222 5.1 215 h.9 225 3.7	h F2 f o F2 h F1 f o F1 h E	t, Holland (52.1°N, 5.2°E) h'F2 foF2 h'F1 foF1 h'E foE 250 2.8 260 2.8 260 2.2 270 2.0 230 3.2 215 h.7 220 220 5.1 210 3.5 105 2.2 240 6.0 200 3.8 105 2.5 250 6.5 200 h.0 105 2.6 250 6.6 200 h.0 105 2.7 250 6.8 200 h.0 105 2.7 250 5.5 225	t, Holland (52.1°N, 5.2°E) Oct h F foF h F foF h E foE fEe

22 280 2.9 23 285 3.0 Time: 0.0°. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

				Table 2	<u>+</u>			
Baton	Rouge,	Louisiana	(30.5°N,	91.2°W)			Oct	ober 1952
Time	h'F	2 foF2	h'F1	foFl	hIE	foE	fEe	SI(000EM)
00	300							2.9
01	29						2.3	3.0
02	28							3.0
03	27						2.4	3.0
04	27						2.0	3.0
05	29						2.4	3.0
06	27						2.5	3.1
07	260		250		130	2.0	3.0	3.4
08	270		570		120	2.5	5.2	3.3
09	28		230	4.1	120	2.8	6.0	3.3
10	300		220	4.3	120	3.0	6.3	3.1
11	300		210	4.4	110	3.1	6.0	3.1
12	300		220	4.4	110	3.1		3.0
13	30 (570	4.4	120	3.1	3.8	3.1
14	300		240	4.3	120	3.0	4.0	3.1
15	280		240	4.1	120	2.8	4.2	3.2
16	260		250		120	2.4	3.8	3.3
17	270				130	(2.0)	3.7	3.4
18	230						3.4	3.4
19	5/10						2.4	3.3
20	290							3.0
21	300							2.9
22	300							2.9
23	290	3.4						3.0

Time: 90.0°W.
Sweap: 1.0 Mc to 25.0 Mc in 30 seconds.

Okinew	a I. (26.	3°N. 127	.8°E)	Table 25	Ĺ		Oct	ober 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	fol	fEe	(M3000)F2
00	280	4.0					2.1	3.0
01	260	4.0					2.4	3.2
02	250	3.6					1.9	3.1
03	250	3.5					2.0	3.3
04	230	3.0					1.6	3.4
05	270	2.4					2.1	3.1
06	250	4.2			140		2.0	3.3
07	230	6.6	240		120	2.2	3.0	3.6
08	250	7.5	230		120	2.6	4.0	€.5
09	280	8.1	220		120	3.0	4.7	3.2
10	290	9.6	210	10.00	120	3.1	4.3	3.2
11	290	10.5	210	4.8	120	3.2	4.9	3.2
12	300	11.7	210		120	3.3	5.0	3.0
13	290	13.0	210		120	3.2	5.0	3.2
14	280	13.6	230		120	3.1	4.4	3-2
15	260	13.1	240		120	2.8	4.5	3.3
16	240	11.8.	240		120	2.4	3.6	3.3
17	230	10.3			130	(1.8)	3.9	3.5
18	220	8.2					3.8	3.5
19	230	6.1					3.1	3.2
20	260	>5.4					3.1	3.1
21	260	4.8					3.1	3.1
22	280	4.2					2.4	3.0
23	300	3.9					3.0	2.9.

Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	27			
Wather	00, W. Au	stralia	(30.3°S,	115.9°E)		Oct	ober 1952
Time	h'F2	foF2	h'Fl	foFl	h1E	fo≝	fEq	(M3000)F2
00	260	3.6					2.1	3.0
01	260	3.8					2.4	3.0
02	240	3.5					2.4	3.2
03	240	3-4					2.1	3.1
04	250	3.1					2.1	3.0
05	260	3.0					2.0	3.0
06	250	4.2		mp 40 47		1.7	1.9	3.4
07	260	4.9	230	3.6		2.3	2.1:	3.4
08	300	5.6	220	4.2		2.8	3.4	3.4
09	305	5.7	210	4.3		3.0	3.6	3.2
10	325	6.2	200	4.4		3.2	3.7	3.1
11	320	6.5	200	4.4		3.2	3.7	3.0
12	310	7.2	200	4.4		3.3	3.7	3.0
13	300	7.4	200	4-4		3.3	3.8	3.1
14	300	7.0	210	4.4		3.2	3.6	3.2
15	290	6.6	220	4.2		3.1	3.5	3.2
16	280	6.2	220	4.1		2.8	3.7	3.2
17	260	5.9	230	3.5		2.4	3.3	3.3
18	245	5.8				1.8	1.9	3.4
19	240	4.6						3.2
20	240	4.3						3.1
21	250	4.0					1.6	3.0
22	260	3.8					2.1	3.0

23 260 3.9

Time: 120.0°E.

Sweep: 1.0 Mc to 16.0 Mc in 2 minutes.

Point	Barrow, A	laska (7	1.3°N, 1	56.8°W)			Septem	ber 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	fo≝	fBs	SI(000EM)
00	260	(3.2)					4.8	(3.0)
01	(270)	(3.0)					6.7	
C2	(280)						4.8	
03	300	(3.2)					>5.4	(2.9)
04	320	(3.3)					3.7	(2.9)
05	300	(3.3)					3.8	(2.9)
06	(330)	(3.4)					>4.0	(3.0)
07		(3.6)					4.4	
08	(380)	3.8					4.3	(2.9)
09	(340)	(4.C)	230	3.4			4.2	(3.0)
10	380	4.C	240	3.5	100	2.3	3.7	2.9
11	(400)	4.C	240	3.6	110	2.4	2.8	3.0
12	380	4-1	230	3.6	110	2.4		2.9
13	380	4.1	230	3.6	100	2.4		2.8
11:	(350)	4.2	240	(3.5)	110	2.3		3.0
14 15 16	320	4.4	250	3.4	110	2.3		3.0
16	320	4.4	250	(3.3)	120	2.1		3.1
17	280	4.2	21:0	(3.3)	120	(2.0)		3.1
18	270	4.0						3.1
19	280	3.3			110		3.8	3.1
20	300	(3.4)					5.6	(3.1)
21	(350)	(2.4)					4.8	
22							7.0	****
23							6.0	

73 | --Time: 150.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	26			
Panama	Canal Zo	ne (9.4º1	N, 79.90	W)			Oc.	tober 1952
Time	h'E2	foF2	h'Fl	foFl	h ! E	fo≝	fBe	(M3000)I2
00 01 02 04 05 07 08 00 10 12 13 14 15 16 17 18 19 20 21 22	270 240 230 250 290 290 270 300 320 330 330 330 360 250 260 250 260 260 270 280 260 270 280 270 280 270 280 270 280 270 280 270 280 280 280 280 280 280 280 280 280 28	3.6 3.6 2.5 2.1 2.3 3.2 5.6 3.2 5.6 10.4 11.8 11.8 11.8 11.5 11.8 6.5 5.4 3.7	260 250 240 230 230 240 240 240 240 240 240	(4.4) 4.6 4.7 4.8 4.6 (4.5)	120 120 120 120 120 120 120 120 120 120	2.I 2.77 3.I 3.3 3.5 3.5 3.5 3.5 3.1 2.8 2.2	3.0 3.2 3.2 3.2 4.1 4.1 4.6 5.1 4.6 5.7 5.7 5.7 5.1 4.8 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	2.9 3.2 3.2 2.8 2.7 2.7 2.8 3.1 2.9 2.8 2.8 2.8 2.9 3.0 3.1 2.9 2.9 2.9 3.0 3.1

23 290 3.7
Time: 75.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 2	<u>B</u> _			
Resolut	e Bay, Ca	anada (71	1.7°N, 91	1.9°W)			Septe	ember 1952
Time	h'F2	foF2	h'Fl	foFl	h E	foE	f∑e	(M3000)F2
00	250	3.4						3.0
01	270	3.4						3.0
02	270	3.4						3.0
03	280	3.5						3.0
04	280	3.5					3.5	3.0
05	270	3-4						3.0
06	260	3.5				-		3.0
07	270	3.8	240	3.4	110	2.3		3.0
08	300	4.0	240	3.2	100	2.4		3.0
09	350	4.1	240	3.4	110	2.4		3.0
10	360	4.3	230	3.4	100	2.4		2.9
11	400	4.4	230	3.5	100	2.6		2.8
12	360	4.5	220	3.5	100	2.5		3.0
13	400	4.5	230	3.5	110	2.4		2.8
11.	360	4.4	230	3.4	110	2.4		2.8
11, 15	320	4.5	230	3.4	110	2.3		3.0
16	310	4.3	240	3.3	110	2.3		3.0
17	270	4.2	240	3.0	120	2.1		3.0
18	260	4.0	250					3.0
19	260	4.0						3.0
20	260	4.1						3.0
21	260	3.9						3.0
55	250	4.0						3.0
9.74	220	400						200

22 250 4.0 23 270 3.5 Time: 90.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table ?	30			
Reykja	vik. Icel	and (64.	L ^o N. 21.	8°W)			Sept	ember 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)IS
00							5.2	
01							5.0	
02		40 40 10					5.1	
03		(2.6)					5.4	(2.9)
04		(2.3)					5.8	(2.9)
05	(280)	(2.4)					4.1	(3.0)
06	(250)	(2.8)					2.6	(3.3)
07	(240)	3.6	210		100			3.3
08	(240)	4.2	210		100	2.0		3.4
09	280	4.4	200	3.6	100	(2.2)		3.3
10	300	4.5	200	3.7	100	2.4		3.3
11	310	4.8	200	3.7	100	(2.6)		3.2
12	320	4.7	200	3.8	100	2.6		3.2
13	320	4.6	210	3.8	100	2.7		3.0
14	300	4.8	210	3.7	100	2.6		3.0
15	300	4.7	200	3.6	100	2.4		3.2
16	280	4.7	220	3.4	100	2.2		3.2
17	280	4.3	230		100	1.9	2.5	3.2
18	270	4.1			110		4.C	3.2
19	270	(3.9)				-	4.0	(3.2)
20	(240)	(4.4)					4.3	(3.2)
21	(270)	10.004					5.5	***
22 23							4:7	
23							5.1	Mill House

Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

TA	h1	ο '	31

of arch	ill, Oans	da (58.8	°N, 94.2	01/1)			Septemb	er 1952
Time	hIF2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
90	29)	3.0					6.0	3.0
01	300	2.7					6.4	
2	300	2.8					6.0	(3.0)
73	300	3.0			es es un		5.5	(2.9)
14	300	3.0				(2.2)	4.9	
-05	310	2.8			10	3.0	3.7	
06	320	< 3.2			110	2.9	4.2	3.0
07	3.0	3.8			113	3.0	4.7	(3.2)
08	300	4.0	250	3.5	100	3.0	4.2	2.9
09	400	4.2	220	3.8	100	2.9	400	2,3
10	400	4.5	220	4.0	100	2.9		2 3
11	390	4.8	220	4.0	100	2.9		3.0
12	420	4.9	210	4.0	100	3.0		2,9
13	1,00	4.8	220	4.0	100	3.0		2.8
114	380	5.0	220	4.0	100	2.9		2.9
	340	5.0	230	3.9	100	2.9		2.9
15					100			
16	320	5.2	230	3.6		2.9		2.9
17	300	5.0	250	3.4	110	2.7	2 (3.0
18	300	4.6		100-01-00		2.6	3.6	2.9
19	300	4.0			110	2.8	4.2	3.0
20	300	3.7			110	2.6	5.1	(2.9)
21	300	3.0			-	-	7.0	(3.0)
22	300	3.0					7.0	(2.9)
23	290	3.0					7.0	(2.9)

Time: 90.00%. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

			0	Table 33				
rrince	Rupert,	Canada	(54.3°N,	130.3°W)			Sept	ember 1952
Time	P.E.S	foF2	hiTl	foFl	P.E	foE	fEe	(M3000)F2
00	310	2.0						2.8
01	310	1.7						2.7
02	350	1.6			-			2.7
03	31:0	1.0			-			2.7
04	320	2.0						2.7
05	360	2.0				-		2.6
06	300	2.3			-		1.8	2.8
07	260	3.2	-		110	1.9		2.9
08	340	3.7	220	3.4	110	2.2		2.8
09	420	4.1	210	3.7	100	2.5		2.8
10	420	4.4	200	3.9	100	2.8		2.7
11	400	4.7	200	4.0	100	2.9		2.7
12	400	4.8	200	4.0	100	3.0		2.7
13	400	4.9	200	4.0	100	2.9		2.7
14	400	4.9	210	4.0	100	2.9		2.8
15	360	4.7	210	4.0	100	2.3		2.8
16	320	4.6	210	3.8	100	2.6		2.9
17	300	4.8	240	3 .6	110	2.4		2.9
18	250	4.5	250	W	1 20	2.0		3.0
19	250	4.3				1.6		3.0
20	240	3.6						3.0
21	260	2.8						2.9
22	280 L 300	2.3						2.9 2.8

23 | 300 2.1 Time: 120.00W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Table 35

St. Joi	nn's, News	foundlan	d (47.6°	N, 52.7°	W)		Septe	September 1952		
Time	h'F2	foF2	h'Fl	foFl	h ! E	foE	fEe	(M3000)F2		
00	310	2.6						2.8		
01	300	2.5					2.4	2.8		
02	310	2.3						2.9		
03	300	2.2					2.5	2.8		
04	(300)	2.0				E		2.8		
05	280	2.5				E		3.1		
06	270	3.7	230		120	1.9		3.2		
07	310	4.3	230	3.5	11.0	2.4		3.2		
08	350	4.6	220	3.9	110	2.7		3.0		
09	330	4.8	200	4.0	110	2.9		3.1		
10	340	5.0	200	4.1	110	3.1		3.2		
11	360	5.2	200	4.2	110	3.2		3.0		
12	340	5.6	210	4.2	110	3.2		3.0		
13	330	5.6	200	4.2	110	3.1		3.2		
14	320	5.6	210	4.1	110	2.9		3.1		
15	320	5.7	230	4.0	110	2.6		3.1		
16	300	5.7	240	3.6	120	2.3		3.1		
17	270	5.8	240	3.0	130	E		3.1		
18	250	6.0				E		3.1		
29	240	5.7			-	E		3-1		
20	240	4-2						3.0		
21	280	3.2						2.9		
22	300	2.9						2.9		
23	300	2.7						2.8		

Time: 60.00W. Sweep: 0.6 Mc to 20.0 Mc in 15 eeconds.

Table 32

0200	himo, an		ember 1952					
Pime	h P2	foF2	h'Fl	foFl	h1E	foE	fBe	(M3000) F2
00	300	2.9			100	2.4	4.5	(2.7)
Ol	327	2.8			110	2.3	4.3	(2.8)
02	3. ^	2.€			110	2.2	4.0	
03	(3)	2.4			110	2.8	4.1	(2.7)
OL	(3)	< 3.			110	2.7	5.0	
05	30	< 3.1			110	3.0	4.0	(3.0)
00	_	20			110	3.0	3.4	2.9
07	5		260	3.€	110	3.0		2.8
Oc	3	1	270	3.8	110	2.9		2.9
00	Į.	L.1	240	3.8	110	2.9		2.4
10	1	Lac	230	3.9	100	3.0		2.8
13	Le	Loc	230	4.0	110	3.0		2.6
12	L	5 +-	230	4.0	110	3.0		2.6
13	3	5.0	240	3.9	110	3.0		2.7
11.	Ĺ	1.00	260	3.0	110	2.9		2.€
10	30	4.8	280	3.7	110	2.8		2.6
10	3 .	Les	300	3.4	110	2.7		2.8
17	3-	4.2		-	120	2.8		2.8
18	31	4.0			120	2.9	5.6	2.8
19	36	3.5			110	2.4	5.2	2.7
20	3 -	3.8			120	2.7	5.8	2.7
21	301	3.3					5.0	2.8
22	30	3.2					5.5	2.8
23	30	3.0			100	2.8	5.C	2.7

Time: 75.00 ... Sweep: 1.0 % to 25.0 Mc in 15 seconds. .

Winnipe	eg, Carad		Septe	mber 1952				
Time	h'F2	STof	h'Fl	foFl	h'E	foE	fBs	(M3000)F2
00	330	2.5					3.8	2.8
Ol	363	2.7					3.8	2.6
02	3.0	2.0					4.0	2.7
03	37	2.7					4.0	2.7
OL	3L	2.6					3.4	2.8
05	320	2.8					3.2	2.7
06	29	2.8					2.4	3.0
07	240	3.6	240		120	2.0	2.6	3.1
08	320	4.1	220	3.6	110	2.3		3.0
09	401	4.6	220	3.9	110	2.6		2.8
10	390	4.8	210	4.0	110	2.9		2.9
11	36.	5.0	200	4.1	110	3.0		2.8
12	350	5.1	200	4.2	110	3.0		2.8
13	360	5.0	210	4.2	110	3.1		3.0
14	360	5.0	210	4.1	110	3.0		2.9
15	350	5.2	210	4.0	110	2.9		3.0
16	33	5.0	220	3.8	110	2.€		3.0
17	350	5.0	230	3.5	110	2.3		3.0
18	280	5.0	240		120	2.0		3.1
19	210	4.7						3.0
20	250	4.2						3.0
21	2€~	3.3						3.0
22	3	3.0						2.9
23	300_	2.7						2.8

Z3 | 300 207
Time: 90.00W.
Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Table 36

				Idole)	<u>v</u>			
Ottawa,	Oanada	(45.4°N,	75.7°W)				Sept	ember 1952
Time	PIRS	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	2.6						2.9
01	320	2.4						2.9
02	(320)	2.2						(2.9)
03	(310)	(2.3)						(3.0)
04	(310)	(2.3)						(3.0)
05	(300)	(2.2)						(3.0)
06	260	3-2			120	1.8		3.3
07	260	4.1	240	3.5	120	2.2		3.2
08	320	4.4	230	3.8	120	2.7		3.0
09	360	4.8	220	4.0	120	2.9		3.0
10	350	5.1	220	4.1	120	3.0		3.0
11	3 0	5-3	210	4.2	120	3.2		3.1
12	3	5.5	220	4.3	120	3.2		3.0
13	350	5.8	220	4.2	120	3.2		3.1
11:	3110	5.8	2 30	4.2	120	3.1		3.1
15	330	5.6	230	4.0	120	2.8		3.1
16	321	5.7	240	3.9	120	2.6		3.1
17	2 0	5.8	240	3.L	120	2.1		3.1
18	200	6.0						3.1
19		5.7						3.1
20	5:0	4.6						3.1
21	250	3.9						3.1
22	280	3.0						3.0
23	310	2.8						2.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

				Table 3	2			
Wakkanad	, Japan	(45.4°N,	141.7°E	5)			Sept	ember 1952
Time	h'F2	foF2	h'F1	foFl	h 'E	foE	fEs	SE(000EM)
00	300	4.0					1.6	2.6
01	300	3.9					1.6	2.6
02	320	3.8					2.1	2.6
03	310	3.6					2.4	2.7
04	300	3.6					2.3	2.7
05	300	3.8					3.0	2.8
06	290	5.0	-	-	120	1.8		3.0
07	300	5.4	280	3.7	120	2.3	2.8	3.0
08	300	5.8	270	3.9	120	2.6	3.2	3.0
09	300	6.2	260	4.0	120	2.9	3.8	3.0
10	300	6.1	260	4.1	120	3.0	3.8	3.0
11	330	6.0	260	4.2	120	3.0		3.0
12	320	6.1	260	4.2	120	3.C		2.9
13	340	6.0	260	4.2	120	3.0		2.9
14	330	6.0	270	4.0	120	2.9		2.8
15	320	5.9	270	3.9	120	2.8		2.9
16	300	5.9	290	3.7	120	2.3	3.0	3.0
17	300	6.2	290	-	120	1.8	3.0	3.0
18	290	6.2					3.0	2.9
19	290	6.0					3.0	2.8
20	300	5.5					3.0	2.8
21	300	5.2					2.7	2.7
22	300	4.7					2.5	2.7
23	300	4.2					2.6	2.7

19 290 0.0
20 300 5.5
21 300 5.2
22 300 4.7
23 300 4.2
Time: 135.0°E.
Sweep: 1.0 Mc to 15.5 Mc in 2 minutes.

Table 39 Tokyo, Japan (35.7°N, 139.5°E) September 1952										
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)#2		
00	280	4.2					3.0	2.8		
01	280	4.0					2.9	2.9		
02	280	3.8					2.6	2.8		
03	260	4.0					2.5	2.9		
04	250	3.7					2.5	2.9		
05	260	3.6					2.5	2.9		
06	240	5.5			130	1.8	2.9	3.3		
07	250	6.7	270	3.8	120	2.3	3.8	3.4		
08	250	6.3	230	4.1	110	2.7	3.9	3.4		
09	260	6.7	220	4.4	110	3.0	4.2	3.3		
10	290	6.6	210	4.5	110	3.1	4.3	3.2		
11	300	7.0	210	4.6	110	3.2	4.5	3.1		
12	300	6.9	210	4.7	110	3.2	4.1	3.1		
13	300	7.2	220	4.6	110	3.2	4.2	3.1		
14	300	7.0	230	4.4	110	3.1	4.1	3.1		
15	290	7.1	240	4.3	110	2.9	4.2	3.1		
16	280	7.0	240	3.8	110	2.6	4-2	3.2		
17	260	7.5	250		120	2.0	4.2	3.2		
18	250	7.2					3.9	3.2		
19	240	6.6					3.4	3.1		
20	250	4.8					3.5	3.0		
21	300	4.4					3.7	2.8		
22	290	4.5					3.0	2.8		
23	280	1, 5					2 8	2.0		

23 280 4.5 Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Formosa, China (25.0°N, 121.5°E) Table 41 September 1952										
Formosa	, China	(25.0°N,	121.5°E)				Sept	ember 1952		
Time	P. LS	foF2	h'F1	foFl	h E	foE	fEc	ST(000EM)		
00	300	5.1					3.0	2.7		
01	290	4.8					3.0	3.0		
02	270	4.6					2.6	3.1		
03	240	4.2					2.5	3.2		
04	240	3.3					2.2	2.9		
05	< 260	3.2					2.3	3.0		
06	250	5.0			(120)	(1.6)	2.5	3.2		
07	240	7.0			120	2.2	3.8	3.5		
08	255	7.1	235	4.3	(120)	2.7	4.5	3.3		
09	280	7.6	240	4.6	(120)	(3.1)	4.7	3.2		
10	315	8.1	240	4.7	(120)		4.9	3.0		
11	330	10.4	220	4.8	(120)		4.6	2.9		
12	320	11.0	225	4.8	(120)		4.2	3.0		
13	335	12.5	235	4.7	(120)		4.04	3.0		
11/1	330	12.9	5/10	4.6	(120)	3.3	4.3	3.0		
15	320	13.5	240	4.4	(120)	3.1	4.1	3.1		
16	300	14.5	240	4.2	(120)	2.9	3.9	3.2		
17	260	13.2	570		(120)	2 -4	4.3	3.4		
18	240	10.9			(120)		3.7	3.3		
19	220	9.2					3.6	3-4		
20	240	6.9					3.6	3.0		
21	290	6.0					3.7	2.8		
22	300	5.8					3.2	2.7		
23	320	5 24					3.0	2.7		

Z5 1 320 5-4 20 Time: 120.00E.
Sweep: 1.5 Mc to 19.5 Mc in 15 minutes, manual operation.

					~			
Akita,			40.1°E)				Sept	ember 1952
Time	n'Ir2	foF2	h'Fl	foFl	h E	foE	fEe	SI(000EM)
00	290	4.2					2.6	2.9
01	280	4.1					2.5	2.9
02	290	3.8					2.4	2.9
03	280	3.8					2.2	3.0
04	270	3.8					2.4	3.0
05	260	3.8					2.4	3.0
06	250	5.4	240	3.0	120	1.9	2.8	3.3
07	250	6.6	230	3.8	110	2.5	3.4	3.4
08	260	6.9	220	4.1	110	2.8	4.1	3.3
09	280	6.8	220	4.4	110	3.0	4.3	3.3
10	290	6.8	220	4.5	110	3.2	3.8	3.2
11	290	6.6	220	4.5	110	3.2	4.2	3.2
12	300	6.6	220	4.6	110	3.2	4.4	3.1
13	300	6.3	220	4.6	110	3.0	4.0	3.2
14	300	6.6	220	4.4	110	3.0	4.0	3.2
15	290	6.6	230	4.1	110	2.9	3.8	3.2
16	270	6.7	240	4.0	110	2.6	3.6	3.2
17	260	6.9	240	3.6	110	2.1	3.6	3.2
18	240	6.7		-			3.6	3.2
19	230	6.2					3.5	3.2
20	240	5.4					3.4	3.2
21	270	4.8					3.0	3.0
22	280	4.6					3.2	2.9
23	280	باحظ					3.0	3.0

Time: 135.0°E.
Sweep: 1.0 Nc to 17.0 Nc in 15 minutes, manual operation.

Table 40

Yamagav	a, Japan	(31.2°N,	130.6°	E)			Sep	tember 1952
Time	h'F2	foF2	h'F1	foFl	h E	foE	fBs	SA(000EW)
00	290	4.1					2.7	2.9
01	260	3.9					2.4	3.0
02	260	3.8					2.4	3.0
03	250	3.7					2.3	3.2
04	250	3.4					2.1	3.2
05	250	3.2					2.0	3.1
06	250	4.0	250	-			2.5	3+3
07	230	6.0	230		110	2.0	3-4	3.6
08	230	6.4	220	4.0	100	2.6	3.8	3.7
09	250	6.7	210	4.3	100	2.9	4.5	3.4
10	270	6.4	200	4.5	100	3.1	3.8	3.3
11	290	7.1	200	4.6	100	3.2	3.8	3.1
12	300	0.8	210	4.7	100	3.3	3.8	3.1
13	300	8.4	220	4.6	100	3.3	3.7	3.2
114	290	8.4	220	4.6	100	3.2	3.8	3.2
15	280	8.2	220	4.5	100	3.0	3.6	3.2
16	270	8.C	230	4.1	100	2.7	3.8	3.3
17	250	8.6	240	3.7	100	2.3	3.8	3.3
18	220	8.8	220				3.6	3.4
19	210	7.3					3.5	(3,6)
20	220	4.8					3.0	3.4
21	250	4.0					3.0	2.9
22	290	4.0					2.7	2.9
23	290	4.2					2.5	3.0

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 2 minutes.

Table 42

Wather	oo, W. Aus	tralia	(30.3°s,	115.9°E)	September 1952				
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	S%(COCEM)		
00	250	3-4						3.1		
01	250	3.4						3.1		
02	570	3.5					1.8	3.2		
03	230	3. 3					2.1	3.2		
04	245	3.2						3.0		
05	250	3.2						3.0		
06	250	3.2				-		3.1		
07	250	4.5	240	3.0		2.0		3.4		
08	280	5.6	230	4.0		2.5		3.11		
09	280	6.2	220	4.4		2.9	2.1	3.3		
10	280	6.5	200	4.5		3 - 2	3.2	3.2		
11	290	6.8	200	4.5		3.2	3.4	3.2		
12	290	7.0	200	4.5		3.3	3.4	3.2		
13	290	7.2	200	4.5		3.3	3.6	3.2		
14	290	7.2	210	4.5		3.2	3.4	3.2		
15	280	6.7	210	4.4		3.0	3.2	3.3		
16	270	6.5	220	4.0		2.8	3.5	3.3		
17	250	6.1	230	3.4		2.3	1.3	3.4		
18	230	5-4		-				3.4		
19	230	4.7						3.3		
20	570	4.2						3.3		
21	250	3.5						3.2		
22	250	3 • 5						3.1		
23	. 260	3.4						3.1		

Time: 120.0°E. Sweep: 1.0 Mc to 16.0 Mc in 2 minutes.

				Table	L3			
Delhi,	India (2	8.6°N, 7	7.1°E)					August 1952
Time	*	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	310	5.4						(3.3)
01								
02								
03								
04	300	4.8						(3.3)
05	300	4.8						
06	280	5.2						
07	280	6.2						
30	280	6.8						3.5
09	300	7.3						
10	310	7.3						
11	300	8.2						
12	310	8.6						3.3
13 14 15 16	310	9.2						
14	310	9.5						
15	300	9.2						
	280	9.0						3.4
17	280	8.3						
18	290	7.6						
19	280	7.8						4>
20	280	6.6						(3.5)
21	300	6.0						
22	300	5.6						
23	310	5.6						

Times: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.93 foF2.
"Average values, other columns, median values.

				Table	45			
Bombay,	India	(19.0°N,	73.0°E)				A	ugus t 1952
Time	+	foF2	h'Fl	foF1	h E	foE	fEs	(M3000)F2
00								
01								
02								
03								
05								
06								
07	300	6.0						
08	330	7.2						3.0
09	360	7.6						
10	390	8.4						
11	420	9.3						
12 13	420 450	10.2						2.7
14	450	11.4						
15	480	11.7						
16	450	11.8						2.6
17	420	11.7						
18	390	10.6						
19	390	10.0						
20	360	8.9						2.9
21	330	8.2						4>
22	330 33 0	7.5						(3.2)
-2	∪رز	6.7						

Timo: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Feight at 0.83 foF2.
**Average values, other columns, median values.

Tiruch	y, India(10.8°N.	78.8°E)	<u>Table</u>	47		Au	gust 1952
Time	•	foF2	h'F1	foFl	h I E	foE	fEs	(M3000)}2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	360 420 480 540 540 540 540 540 540 540 480 480 420	5.5 6.8 7.6 7.9 7.5 6.7 8.5 8.8 9.2 8.7 7.3 6.5						(2.5) (2.3) (2.3) (2.5)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.83 foF2.

**Average values; other columns, median values.

		/ e-r 0001	2-2 (00)	Table	44			. 2070
Formos	,		121.5°E)				Au	gust 1952
Time	FILS	foF2	h'F1	foF1	h 'E	foE	fEs	(M3000)12
00	280	5.8					3.3	3.0
01	280	5.6					3.6	3.1
02	< 250	6.0					3.6	3.2
03	260	5.4					3.5	3.2
OL	(240)	4.6					3.7	3.0
05	260	4.6					3.2	3.3
06	250	5.5				Ε	3.9	3.4
07	250	6.3	220	4.1	(120)	Ε	4.3	3.5
08	280	6.2	210	4.3	(120)		5.8	3.3
09	300	6.4	210	4.5	(120)		6.0	3.2
10	320	6.7	200	4.8	(110)		4.8	3.0
11	345	8.2	200	4.7	(110)		5.0	3.0
12	320	9.6	210	4.8	(110)		4.7	3.0
13	340	11.0	220	4.6	(110)		4.6	3.0
134	310	>11.2	220	4.6	(110)		4.7	3.1
15	320	11.5	< 220	4.6	(110)		4.6	3.1
16	295	> 12.6	220	4.3	(120)		4.5	3.2
17	270	12.5	230		(120)		4.7	3.4
18	230	11.1				E	4.6	3.4
19	210	9.6					4.2	3.5
20	210	8.0					3.9	3.3
21	210	6.2					3.4	3.3
22	280	5.7					3.9	3.1
23	, 280	5.5					2.9	3.0

Time: 120.00E. Sweep: 2.3 Mc to 14.2 Mc in 15 minutes, manual operation.

Madras.	India (13.0°N.	80.2°E)	Table	46		A	ug ust 1952
Time		foF2	h'F1	foF1	h † E	foE	fEe	(M3000)F2
00 01 02 03 00, 05 06 07 09 10 11 12 13 14 15 16 17 18 19	360 390 420 420 450 450 450 450 450 450 420	6.35 7.22 8.00 8.04 8.82 9.66 9.56		1041		102		2.8 2.7 (2.6)

Z3 |
Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.93 foF2.
*Average values; other columns, median values.

				TADTO	40			
Townsvi	ille, Aus	tralia (19.3°S,	146.8°E)			A	ugust 1952_
Time	h'F2	foF2	h'F1	foF1	h1E	foE	fEs	(M3000)13
00	250	3.6						3.1
01	240	3.5					- 0	3.2
02	220	3.3					2.8	3.2
03	210	3.0					2.3	3.2
04	240	(2.7)					2-8	(3.0)
05	250	(2.6)					2-5	3.0
06	260	2.8					5.4	3.0
07	240	5.0			130	1.9	3.3	3.4
08	240	6.8	230	3.8	110	2.6	3.8	3.4
09	250	7.6	220	4.3	110	2.9	3.8	3.4
10	260	8.2	210	4.4	110	3.2	3-9	3.3
11	260	7.9	210	4.5	110	3.3	3.8	3.4
12	280	8.0	200	4.4	110	3.3	4.5	3.3
13	270	7.4	200	4.4	110	3.3	4.7	3+3
14	270	7.0	200	4.4	110	3.2	4.6	3.3
15	270	6.8	200	4.3	110	3.0	4.3	3.3
16	250	6.7	205	3.8	120	2.8	3.8	3.3 3.4
17	270	6.4			120	2.2	2.8	
18	220	5.8				1.5	2.2	3+3
19	230	4.6					606	3.2 3.2
20	230	4.0						3.0
21	250	3.5						3.0
22	260	3.5						3.0
_23	255	3						

Table 48

Time: 150.0° E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

T-	hì	40	

Brisba	ne, Austr	alia (27	.5°S, 15	3.0°E)	•		Au	gust 1952
Time	P.LS	foF2	h'F1	foF1	h ! E	fol	fBs	(M3000)12
00	250	4.0						3.1
01	250	4.1					2.0	3.1
02	240	4.2					2.0	3.2
03	220	4.2					2.0	3.2
OL,	2h0	3.7					2.0	3.1
05	250	3.6						3.1
06	250	3.7						3.1
07	5/10	5.5			1710	2.5		3.4
08	250	6.2	230	4.0	110	2.7		3.3
09	270	6.7	230	4.4	110	3.0		3.3
10	280	6.8	220	4.4	110	3.2		3.3
11	280	6.9	220	4.5	110	3.2		3.3
12	290	6.8	210	4.5	110	3.2		3.3
13	280 280	6.6	200	4.5	110	3.3		3.2
14		6.7	210 200	4.4	110	3.2		3.3
15 16	270 250	6.5 6.4	200	4.2	110	3.0 2.6		3.3
17	230	6.0	220	3.7	110	2.0		3.3
18	220	5.1				2.00		3.3 3.2
19	230	4.5						3.1
20	250	4.4						3.0
21	250	4.2						3.0
22	260	4.2						3.0
23	260	4.0						3.0

Time: 150.0°E.

Sweep: 1.6 Mc to 16.0 Mc in 1 minute 55 eeconds.

Table 51

				-00-20	2-			
Hobart,	Tasmani	a (42.9°	s, 147.3	OE)			Au	gust 1952°
Time	P115	foF2	h'F1	foF1	h'E	fol	fBa	(M3000)F2
00	270	2.6						3.0
01	275	2.4						2.9
02	290	2.3						2.9
03	285	2.4						2.8
07	285	2.4						3.0
05	270	2.3						3.0
06	270	2.4						2.9
07	250	2.5				E		3.0
08	220	4.4			100	2.1		3.1
09	210	5.0			100	2.5		3.1
10	200	5.5			100	2.8		3.1
11	260	6.0	200	4.4	100	3.0		3.1
12	280	6.2	200	4.5	100	3.1		3.1
13	265	6.3	200	4.5	100	3.2		3.2
11:	260	6.2	200	4.4	100	3.0		3.1
15	210	6.0			100	2.9		3.1
16	220	5.8			100	2.4		3.1
17	230	5.5				E		3.0
18	230	5.0						3.0
19	240	4.0						3.0
20	250	3.4						3.0
21	(250)	3.2						3.0
22	(265)	(3.0)						(3.0)
23	(270)	(2.6)						(2.8)

Time: 150.0°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconds.

No record 7th through 21th, inclusive,

Bombay,	India	(19.0°N,	73.0°E)	Table	53			រក្ ង
Time		foF2	h'F1	foF1	h'E	foE	fBe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11	300 330 360 390 420 450 480	6.5 7.4 7.8 8.4 9.3 10.2						3.1
13 14 15 16 17 18 19	480 450 420 390 390	11.4 10.9 10.0 9.4 8.4						2.6
20 21	360 330	8.0						(3.1)
22	(300)	7.1 (6.4) (5.8)						(3.3)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
"Meight at 0.83 for2.

**Average values; other columne, median values.

Table 50

				10010	20			
Canber	ra, Austr	alia (35	.30S, 14	9.0°E)			A	ugust 1952
Time	Fils	foF2	h'F1	foF1	h i E	foE	fBs	(M3000)F2
00	(260)	3.5					2.4	(3.0)
01	(255)	3.5					3.0	(3.0)
02	(250)	3.5					2.8	(3.1)
03	250	3.6					2.4	(3.2)
04	240	3.4					2.8	(3.3)
05	(570)	3.0.					3.1	0==
06		2.6						
07	230	4.0			NO 100 AP			3.5
80	230	5.3				2.3	2.6	3.6
09	570	5.6	220	(3.9)	110	2.6	3.0	3.5
10	250	5.9	210	4.2	110	3.0	3.5	3.5
11	270	6.5	210	4.3	100	3.1	3.3	3.5
12	265	6.3	200	4.4	100	3.1	3.5	3.4
13	280	6.7	200	4.3	100	3.1	3.5	3-3
	260	6.7	205	4.2	100	3.0	3.4	3.4
15	250	6.6	210	(4.0)	100	2.8	3.3	3.5
16 17	270	6.3	200	(3-4)	6000	2.5	3.4	3.5
18	220 220	5.6			40-62-40		3.0	3.5
19	240	5.0					2.8	3+3
20	(240)	4.2						3.4
21	(240)	3.8						3.2
	(260)	3-5						3.1
22 23	(260)	3.5					0.5	(3.0)
-5-2	(200)	3.4					2,5	3.0

Time: 150.00 B.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Delhi,	India (2	8.6°N, 7	7.1°E)	Table	Table 52					
Time	•	foF2	h*F1	foF1	h * E	fol	130	July_1952 (M3000)F2		
00	300	5.2						(3.2)		
01								(0)		
02										
03										
OL	300	5.0						(3.1)		
05	300	5.0						(
06	300	5.3								
07	300	6.1								
08	300	6.5						(3.2)		
09	300	6.7						()427		
10	320	7.2								
11	320	7.6								
12	310	8.0						3.2		
13	340	8.4						,,,,		
14	320	8.4								
15	320	8.9								
16	300	8.4								
17	300	8.0						3.4		
18	300	8.0						, , ,		
19	300									
20	(290)	7.3 (7.4)						(3.4)		
21	300	6.8						()*4/		
22	300	5.9								
23	300	5.8								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
*Height at 0.83 for2.
**Average valuee, other columne, median valuee.

Madras,	India (13.0°N,	80.2°E)	Table	<u>54</u>	July 1952		
Time		foF2	h'F1	foF1	h ! E	foE	fBn	(M2000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	360 390 420 450 460 480 480 450 450 450 450 390 390 390	6.0 7.2 7.4 7.5 7.4 7.5 7.4 7.8 8.3 8.3 9.1 9.2 9.3 7.1						2.8 (2.6) (2.6) (2.7)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 foF2.
"O Average values; other columns, median values.

Tiruchy,	India	(10.8°N,	78.8°E)				July 1952 (M3000)
				Table	55		

lime		foF2	h'F1	foFl	h ! E	foE	fEs	(M3000)F2
00								
01								
02								
04								
05								
06	390	5.5						
07	420	6.7						
08	480	7.4						(2.4)
09	500	7.3						
10	540	7.4						
11	540 540	7.2						(2.3)
13	570	7.4						(20)
14	570	7.8						
15	540	8.0						
16	540	8.2						(2.4)
17	540	8.5						
18	510	8.5 8.0						
19 20	480 460	7-3						(2.5)
21	420	6.8						(20)
22	750	6.6						
23	,							
Time:	Local.							
weep:	1.8 Mc		Mc in 5 m	inutes,	manual	operat	ion.	
	it at 0.8							
Avera	ige value	s, other	columns,	median	values			

- 1	ľ'n.	Ъ	1	a	5	
-	-	-	_	ž	-	

				Table	57			
Brisbar	ie, Austr	alia (27	.5°S, 15	3.0°E)				July 1952
Time	h'F2	foF2	h¹F1	foFl	h¹E	foE	fEs	(M3000)F2
00	260	3.6						3.1
01	260	3.7						3.1
02	250	3.9					2.0	3.2
03	250	3.8					1.8	3.3
04	230	3.6						3.3
05	230	3.2						3.3
06	220	3.1						3.2
07	220	4.6			150	2.1		3.6
08	230	5.5	220	3.6	110	2.5		3.4
09	260	6.1	220	4.1	110	2.8		3.4
10	250	6.5	220	4.3	110	3.0		3.4
11	260	6.2	210	4.4	110	3.1		3.4
12	260	6.5	210	4.4	110	3.2	3.0	3.4
13	270	6.4	200	4.4	110	3.1	3.8	3.3
14	260	6.6	200	4.3	100	3.0	4.2	3.3
15	250	6.3	220	3.9	110	2.8	3.5	3.3
16	240	5.8	220	3.3	120	2.4	3.2	3.4
17	220	5.6					3.5	3.4
18	220	4.4					3.3	3.3
19	230	3.7						3.2
20	240	3.6						3.1
21	250	3.6						3.1
22	250	3.6						3.2
23	250	3.7						3.1

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

	_	(10		Table	59			
Hobart,	Tasmani	a (42.90)	s, 147.3	E)				July 1952
Time	P115	foF2	h'Fl	foFl	h 1 E	fol	fEs	(M3000)F2
00	290	2.0						2.9
01	290	2.2					< 2.0	2.8
02	300	2.0						2.9
03	290	2.4						2.9
04	280	2.2						2.9
05	250	2.2						3.0
06	260	2.0					< 2.0	3.1
0.7	270	2.5				E		3.0
08	220	4.3			110	2.0		3.2
09	220	5.1			100	2.4		3.2
10	210	5.5			100	2.7		3.2
11	200	5.6			100	2.8		3.1
12	500	6.0			100	2.9	3.5	3.1
13	200	6.5			100	3.0		3.1
14	200	6.2			100	2.8		3.1
15	200	6.0			100	2.5		3.2
16	220	6.0			100	2.1		3.2
17	210	5.5				E		3.1
18	220	4.4						3.0
19	250	3.7						3.0
20	250	3.0						3.0
21	250	2.5						3.0
22	270	2.3						3.0
23	280	2,2						2.9

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 56

Townsv	ille, Aus	tralia (19. 3º S,	146.80Е)				July 1952
Time	h'T2	foF2	h¹F1	foFl	h I E	foE	fEs	(M3000)F2
00	250	3.3		-				3.0
01	250	3.3					2.0	3.0
02	240	3.2						3.1
03	230	3.0					2.1	(3.0)
04	240	2.8					2.6	3.0
05	240	2.6			-	E	2.4	3.1
06	240	2.8				E	2.3	3.0
07	220	4.6			140	1.9	3.3	3.5
08	240	5.7			110	2.3	4.0	3.4
09	260	6.0	220	4.0	110	2.8	3.8	3.3
10	260	7.2	220	4.3	110	3.1	4.5	3.4
11	260	7.1	220	4.3	110	3.2	5.0	3.3
12	280	7.0	200	4.3	110	3.2	5.0	3.3
13	260	7.1	200	4.4	110	3.2	4.8	3.3
14	260	6.9	200	4.3	120	3.1	4.8	3.2
15	260	6.9	210	4.0	120	2.9	5.0	3.3
16	250	6.5	220	3.5	120	2.5	4.7	3.3
17	240	5.7			120	2.0	4.0	3.4
18	220	5.5			-	E	3.6	3.4
19	210	3.7					3.3	3.4
20	240	3.1					3.0	3.0
21	250	3.2					2.9	3.1
22	260	3.1						3.0
23	250	3.2						3.1

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Table 58

Camber Time	h'F2	alia (35. foF2	h'F1	foFl	PIE	fo≌	fEe	July 1952 (M3000)F2
00	280	3.0					3.0	(3.0)
ol	(280)	3-4					2.9	
02	(270)	(3.0)					3.2	
03	270	(3.0)					2.7	****
04	240	(3.3)					3.0	etion as
05	(240)	(2.7)					٦.١	
06	(240)	(2.2)					2.2	Frank
07	220	3.5				W-1018	2.8	3.5
08	220	5.0			Mark to the same	2.2	3.4	3.6
09	240	5.5	210		110	2.5	3.3	3.6
10	240	6.2	220	4.0	110	2.9	3.5	3.5
11	240	.6.2	210	4.0	110	3.0	3.4	3.5
12	280	6.2	200	4.0	100	3.0	3.5	3.4
13	240	6.4	210	4.0	100	3.0	3.5	3.4
1/1	(250)	(6.1)	200	4.0	100	2.9	3.6	(3.3)
15	250	6.3	220	(3.7)	100	2.7	3.5	3.4
16	230	6.2				(2.4)	3.5	3.4
17	220	5.2					3.4	3.5
18	220	4.5					3.0	3.4
19	240	3.€					2.9	(3.3)
20	240	3.3					2.8	(3.3)
21	(240)	(3.0)					3.0	
22		(3.0)					2.8	
23	(260)	2.8					_3.0	(3.0)

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

	Table 60
	TROTE OF

Delhi,	India (2	8.6°N, 7	7.1°E)	20020			June 1952		
Time		foF2	h'Fl	foFl	hIE	foE	r'Sa	(H3000)F2	
00	(305)	5.0						(3.2)	
01	(300)	(4.9)						(3)	
02		mr. ma. co.							
03		ett ett sen							
04 05 06 07 08	300	li.li						3.4	
05	290	4.8							
06	280	5.3							
07	270	6.0							
	280	6.5						3.5	
09	285	6.9							
10	280	7.5							
11	310	7.6							
12	335	8.0						3.3	
13	320	8.3							
14	320	8.2							
15	310	8.9							
16	300	9.1						3.3	
17	290	8.2							
18	290	7.8							
19	280	7.6							
20	(300)	(6.3)						(3.5)	
21	300	6.2							
22	295	5.6							
23	300	5 alı							

Time: Local Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

*Average values; other columns, median values.

Bombay,	India (19.0°N,	73.0°E)	Table	61		June 1952		
Time		foF2	h'F1	foFl	h 1 E	foE	fEs	(M3000)F2	
00				_					
01									
02									
1									
03 04 05 06									
06	- 0-	, .							
07 08	285 330	6.0 7.2						3.1	
UG	360	7.2						٠.٠	
09 10	390	8.3							
11	420	9.4							
12	450	10.2						2.6	
12 13 14	465 480	10.7							
35	480	11.7							
15 16	480	11.8						2.6	
17	420	10.7							
18	390 360	10.0							
19 20	360	7.8						(3.0)	
21	330	7.0						()••/	
22	300	6.2						3.6	
23	300	5-5							

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

**Height at 0.83 forz.

**Avorage values; other columns, median values.

Tiruchy	, India	(10.8°N,	78.8°E)	Table	63			June 1952
Time	*	foF2	h'F1	foFl	h'E	foE	f B e	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 18 19 20 21 22 23	360 390 150 180 510 570 510 510 510 150 120 120	5.6 6.8 8.0 8.2 7.9 7.9 8.8 8.8 9.0 8.8 7.5 7.0 6.5						2.6 2.2 (2.3) 2.6

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. "Height at 0.93 for2.

Delhi,	India (2	8.6°N, 7	7.1°E)	Table 65				May 1952
Time		foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(340)	(4.7)						(3.1)
01	(360)	(5.3)						
02								
03 04	310	1 0						
05	280	4.2						3.3
06	260	5.2						
07	260	6.3						
08	280	6.6						(3.3)
09	310	7.0						()•)/
10	320	8.0						
11	320	8.2						
12	335	8.8						3.2
13	325	10.2						
14	310	11.0						
15 16	300 300	10.9						
17	300	10.8						3.3
18	280	9.2						
19	295	8.0						
20	300	7.0						3.3
21	300							ر ۰ ر
22	320	5.7 5.1	3					
23	325	4.8						

**Average values; other columns, median values.

Madras	, India (13.0°N,	80.2°E)	Table	62			June 1952
Time	•	foF2	h'F1	foFl	hFE	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	360 390 420 465 480 480 480 450 435 420 390 (390)	6.1.3 7.9 7.8 8.0 8.5 9.0 9.2 9.2 9.2 6.8						(2.9) (2.5) (2.6) (2.7)

Time: Local.

Swoep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 for2.

**Average values; other columns, median values.

				Table 64				
Rarotor	nga I. (2	1.3°S, 1	59.8°W)					June 1952_
Time	p.Ls	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)12
00	< 300	3.2						2.8
01	< 300	3.4						2.8
02	290	3 • 2						2.8
03	270	3.6						2.9
Olı	260	3.2						3.0
05	250	3.1						3.0
06	250	3.3						3.0
07	250	4.8		(1.9)		E	2.5	3.2
08	250	6.4	210	2.8	115	2.3	3.0	3.4
09	260	7.2	510	4.C	110	2.8	3.5	3.3
10	260	7.8	220	4.3	110	3.0	4.C	3.4
11	270	7.0	210	4.4	110	3.1	h.C	3.3
12	270	7.4	220	4.5	110	3.2	4.C	3.3
13	280	7.4	220	4.5	110	3.2	L.C	3.2
14	280	7.3	210	4.3	110	3.0	4.C	3.2
15	270	7.6	220	4.1	110	3.0	L.C	3.2
16	250	6.8	240	3.5	110	2.6	4.C	3+2
17	250	7.0		2.4	110	2.8	3.7	3.2
18	230	6.6					3.6	3.3
19	230	5.0					3.0	3+3
20	< 250	4.0						3.0
21	250	3.6						3.0
22	250	3.6						2 • 9
23	270	3.2						2.9

Time: 157.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Bombay,	India (19.0°N,	73.0°E)	Table	<u>66</u>			May 1052
Time	٠	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000) I 2
00 01 02 03 04 05 06 07 08 09 10 11 12 13	300 360 390 420 450 450 480	6.h 8.0 8.1 9.0 10.2 11.2						3.1
15 16 17 18 19	480 480 420 390 390 360	12.5 13.0 13.1 12.6 11.9						(2.6)
20	345	9.5						3.1
21 22 23	330 3 00 300	8.1 7.3 6.8						(3-3)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.83 for2.
*Average values; other columns, median values.

Madras,	India (13.0°N,	80.2 ° E)	Table	<u>~T</u>			May 1952
Time	٠	foF2	h'F1	foFl	h · E	foE	fBs	(M2000)15
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	360 390 390 420 450 450 450 450 450 450 420 390 (390) (360)	6.7 7.8 8.2 8.2 8.2 8.5 8.6 9.4 9.5 9.5 9.5 8.7				103	136	(2.9) (2.5) (2.6) (2.7)

Table 67

22 23	(360)	7.0						
Time: Sweep: "Heig	Local. 1.8 Mc ht at 0.8 age value	3 foF2.	Mc in 5				don.	
Dawatan	ıga I. (21	1 200 71	en qown	Table	<u>69</u>		1	May 1952
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(H3000)#2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 300 290 270 300 300 250 240 260 280 280 270 260 250 210 250 250 250 250 270 260 270 260 270 260 270 270 260 270 270 270 270 270 270 270 270 270 27	3.3 3.4 3.5 3.5 3.2 3.1 7.1 7.8 7.5 7.7 7.8 7.7 7.9 7.9 7.7 7.9 7.9 7.7 7.9 7.9 7.9	220 220 210 210 220 220 220 220 220 220	2.0 2.8 4.1 4.4 4.5 4.3 4.3 4.8	110 110 110 110 110 110 110 120	E 2.3 2.7 3.0 3.2 3.2 3.0 2.9 2.6	3.0 3.6 3.7 1.0 4.0 4.0 4.0 1.0 2.7 3.9 3.9 3.5 3.5 2.5	2.8 2.9 3.0 3.0 2.9 2.9 2.9 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

Time: 157.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Nairob1	, Kenya	(1.0°S,	37.0°E)	Table	<u> 21</u>		Aı	oril 1952
Time	FILS	foF2	h'F1	foFl	h I E	foE	fFs	(M3000)#2
00	220	8.7						3.1
ol	220	8.5						3.3
02	210	6.2						3.3
03	250	4.9						3.0
04	250	4.3					2.0	3.1
05	240	3.5					2.8	3.4
06	240	3.0					3.0	3.5
07	240	6.3			100		3.3	3.6
08	250	7.7	230		120	2.6	3.8	3.4
09	280	9.2	220	4.5	100	3.0	3.9	3.3
10	280	9.8		4.6	110			3.2
11	300	9.9		4.8	110			3.0
12	320	10.9		5.0	110			2.8
13	320	12.1		(4.9)	110			3.0
14	300	12.2		4.7	110			3.0
15	300	12.0			110			2.9
16	300	12.0			110			2.9
17	270	12.C	240		110	2.6	3.6	3.0
18	270	> 12.3	250		100		3.0	3.1
19	(250)	> 10.0					(3.6)	
20	(230)							
21	220	>11.8					(2.6)	
22	210	10.9						3.4
23	210	>9.0						3.3

Time: 45.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Tiruchy	, India	(10.8°N,	78.8°E)	Table	68			May 1952
Time		foF2	h'F1	fo#1	h1E	foE	fEs	(M3000)12
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	390 420 480 540 540 570 540 510 480 480 480	5.8 7.0 8.6 7.9 7.8 8.1 8.5 9.5 9.5 9.5 9.5 9.6 8.6						(2.5) (2.2) (2.3) (2.5)

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 foF2.
"Average values, other columns, median values.

				Table '				
Christ	church, N	ew Zeala	nd (43.6	os, 172.	7°E)			May 1952
Fime	P.LS	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)#2
00	290	2.5					2.8	3.0
01	280	2.4					3.0	2.9
02	290	2.2					3.0	3.0
03		1.9					3.5	3.1
04		1.7					3.5	3.0
05		1.5					3.7	3.2
06		1.5					3.5	3.2
07	260	2.9				1.4	3.2	3.2
08	240	4.3	250	2.9		1.8	3-4	3.5
09	250	5.0	240	3.4		2.3	4-4	3.4
10	270	5.4	230	3.7		2.6	4.3	3.4
11	270	5.6	220	3.9		2.7	4.5	3-3
12	270	5.9	220	4.0		2.7	7-7	3.4
13	280	6.0	240	3.9		2.7	4-4	3.3
14	270	6.0	240	3.8		2.5	4-4	3.3
15	250	6.0	240	3.3		2.3	3.2	3.4 3.4
16	240	5.7	570	2.6		1.8	3.5	
17	240	4.8				1.3	2.7	3.3
18	250	4.2					2.6	3.1 3.1
19	250	3.6					3.2	3.0
20	280	3.2					200	2.9
21	280	2.8					2 2	2.0
22	280	2.6					2.3	2.9

23 290 2.5 Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Terre /	delie (6	6.9°S, 1	41.4°E)				0c	tober 1951
Time	P.ls	foF2	h'F1	foF1	h'E	foE	fBs	(N3000))
00	350	5.8	250	4.1	120	2.8		
01	335	6.6	250	4.3	120	2.8		
02	350	6.3	230	4.3	120	2.8		
03	355	6.5	240	4.2	120	2.8		
04	370	6.3	235	4.2	120	2.8		
05	350	6.0	240	4.1	130	2.8		
06	350	6.1	240	4.2	130	2.7		
07	320	6.2	250	(3.8)	135	2.4		
08	300	6.0	250		150	2.3		
09	280	6.0	260		150	E E		
10	270	5.6				E		
11	250	5.3						
12	260	5.0						
13	285	4.4						
14	290	4.0						
15	290	3.8						
16	300	3.5					2.4	
17	300	3.0						
18	300	3.4						
19	280	4.0				E	2.6	
20	285	4.2	250		150	2.0		
21	300	4.5	250	(3.9)	135	2.4		
22	360	5.4		4.0	130	2.6		
22	360 Loo	5.4	250 250	4.0	130	2.6		

Time: 0.0°. Sweep: 1.5 Mo to 16.3 Mc in 1 minute.

TABLE

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

December 1952

ΕX

National Bureau of Standards

E.J.W.

Mc C.

Scaled by:

Form adopted June 1946

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Manual

Automotic

Manual

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

Mc December, 1952

foF2 (Chorocheristic) Observed at ___

Μ.	N.														_				-				_														
(Institution) E.J.W	, E. J. W	23	2.6 €	1.6 F	* ***	d (8.1)	2.2	-2.3	2.2 F	2.1 F	7.7	[2,1] 4	7.2	2.5 4	A K	6.7	7.5 F	2.6 €	[2.7] 4	4	3	7	1.5 F	K	, i	3.2 %	7 8 17	٠, او	24 6	(2.6) F	120)	124) 8	1274		2.4	26	
	Ċ.	22	2.0 F	2.7	2.4	(1.4) 6	. 67	2.2	2.1 F	2.1	2.0	2.1	2.6	3.1	87.73 5	7.7	24 5	P (2007)	2.6	7.	7	8	[2.4]	8	7	32 6	1.3	2.4	3.6	1.8	2.0 F	3.3	24 6		2.4	20	
McC	M	12	2.2 F	9.6	2.4 F	(2.1)	1.8	2.3	2.3 F	2.4	2.3	2.3	4.4	32 5	1818	4.4	2.4 F	2.5 €	7.8	1.	7	7	(2.6) 5	23	4	2	4.3	3.	(2.6)	36	(1.8) B	3.3	3.8 F		2.4	11	
by:	rted by:-	20	2,5	\rightarrow	3.5 5	2.6 F	2.3	2.9	2.3	2.6	2.5	2.3	2.5	31 F	4,2 KS	25	x. 5.	30 F	3.0	7	3	.2.5.	5.5	(2.6) +	(27) 4	3.50	2.8	3,5 5	5 (2.4)	5.3	(2.4) 5	3.3	134) 5		2.7	27	
Scaled by:	Calculated	6]	35	4.2	4.2	2.9 €	3.2	3.3	2,5	_	2 5	34 6	3.5-	3,3	(2,5) S	3.0	35	4.5 F	3.3	3,2	7	500	3.8	3.5° F	3.6	47	37 6	36	4.7	3.8	3.5'	36.	7.0 F		3.5	.30	
		81	3.6 H	5.0	4.5	4.6	3.4 3	33	(30) 5	2	3.6	4.2	5.8 3	40 3	4.4 K	3.8	38 F	5.0 £	200	(3.2) 3	+	4.2	4.0 F	2 5 24	3.9	39	4.5 6	8.4	1 4 F	4.1	(4.5) 3	, 03	5.6		1.2	30	
		- 21	5.7	5,4 3	5.6 4		5,3	(4.2) J	5.6 (3)	7 3	5.2 3	64 4	60 5		×	5,8	5,0 3	5,3 5.	4.8	5,8	5.7	4.7	54 6	6.3	5.6	4.1	53	5.4 4	* 6*	4.7 4	7.2	6.9	4.7		43	. 16	
		91	6.5	7.3	64 3	5.3	6.5 5.	62 14	6,5 5	6.8	6.6 5	6.8	6.0	6.8	48 K	6.8	6.9	6.8	7.6 3.4	78 5		6.7 4	6.4 5.	74 6	6.8	6.4 6	62 3	5,5 5,5	5.8	54 K 4	6.8	9 9.9	5.8	H	6.6	31	
_		15	9.9	29	62 6	6.4	63 6	6.8 6	6.8 6.	2.6	9 9.9	6.9	7.2 5 6.	6.6	(5,5) H 4	6.4	8.3 6	8.0 6.	7.8 7.		6.7 6.7			_		•	٧		6.5 5	56 A S	(20) 5 6	6.8 6	_		7.9	31	
[4	6.6	6.0	6.2	6.1 6	6.8	6.8	6.7 6	7.5 7	7.4			7.2 H 6	6.0 X (5.		7.3	7.8 8.7	6.4 11 7	6.8	N	03 5 (V	9 6.7	P. 0		9 5.9	4 6.4	0 3 55	N	×		7.6 6	9 /		7.7		e E
	Mean Time	13	74 0	7.2	7 8.9	_		2 0.7		72 " 7	7.6		Ť		×	29 1	-				5 6.6	(6.4)	8 6.9	2 8.0	6.0	6:6	20	6.0	(3.6)	5,5	7.2		1.5			3)	Mc to \$5.0 Mc in 0.2.5 min ual [] Autómatíc []
		12	7.2 " 1	1		6.5.9	7 6.0	7.5 7.	2 7.5	اد د		-	6 H 7.3	2 8.0	7 K 5.2	4 6.7		1.8	7 7.4	6.6	7.0	12 2	8.2	8.2	2 A 6.6	2 66	2 6.7	6.9	2 65	4 K 55	20 6.0	7.6 7.0	6 5.9		7.3 7.0	1 3/	to \$5.0 p
	75°W	_	7.6 7.	1.6	6 7.3	9.5.6	2 6.7		2 H 72	1.8	2) H (5		J C 7.6	7.2	2 K 4.7	6.4	62 1	8.0	1 87	7.7	9%	7.5	F 7.4	6.9	. 68	7.5	2.2	9.0)		×	_		99				
		01	6.9 7.	12 1	3 6.6	2 4 6.4	2.9	1) 5 74	5.9 # (7.4	(6.2)	7.0	[8.3]	7.5	X 4.2	5.8	6.9	8.0	(7.6)	8,0		2.6	9.9	8.0	3.7 K	99	202	99	6.7	7 * 5.3	6.8	66	7 66		2 60	- 5	Sweep 1.0
		-	\dashv	1.9 2	2) 11 6.3	5 62	7.7	(77) 3	(1.7) 2	9.9) r 5.8	H 6.3	(0.0)		X 4.0	0.0	6.2	6.7	7.2		5 6.6	6.2	6.0	6.0	(8%)	6.0	5.2	5.6	5.6	T T X	5.6	6.2	6.7		29	31	
		80 8	5 6.0	6.2	(8:8)	5.6	5.6	6.2		0.9	(62)	W 63	64	99	K 3.5	5.0	0.9	6.5	5 66	7.2	6.0	5.0	5.3	5.8) 4 6.4	- 1	F 5,2		5 55		47	3 52	r F 3.0		+	31	
		80	5.2	5:0	5,0	F 43	4.3	5.6	F (51)	5.6	4.4	5.2	5.8	F 5.4	F 3.2	H 4.4	5.0	5.9	6.0	5.0	5.7	7 5.6	5.3	50	(4.4)	5.4.3	4.3	14	1 2 45	3.6	4.3	4.3) F 4.5		5,0	3/	
		07	3.8	35	3.2	F 2.7	5 23	3.6	15 3.3	S 3.4	53.7	3.2	.3.1	3.0	F 2.2		5 2.7	3.6	3.3	5 3.2			3.4	4 3.0	(5:2)	24	8 2.4	2.7	F (2.7)	2.6	S 7.3	23	(35)		3,0	31	
		H	2.7	(3.0)	2.6	1 2.7	(1.9)	2.9		F (31)	5.	2.6	3.0	F 3.6	1 x 2.5	K [1.8]	[2.6]	F 3.6	F 3.0	F 3.1	3.0	[3.3]	1 (31)	- 1	(1.4)	2.3	(8.1) 3	3 2.6	2.3	27	2 1.4	117	(101)		27	3/	
	N	0.5	2.9	3/	3.0	£ (2.3)	2.7) F 3.2	1 1		2.5	32	3.5	F 27	£ [2.2]	2" ×	2.4			£ 3.1	3.2	3.2	, (3.3) F	A	F 2.6	2.9	(2.0)	5 3.1	1 26	F 2.9	2.2	2.2	6 22		2.9	31	
C.C.	77.1°W	0.4	5 32	5.3	F 2.9	p 23	33	F (32)	F 2.8	(2.8)	3.2	3,5	4.0	F 3.2	(7.1) ×	K 1.7	2.4	4.2	3.0	5 3,6	3.2		(3.5)	F 3.5	9 27	3.9	f 2.5	5 (3.2)	2.8	2.6	30	2.5	2.2		3.2	31	
٠,	-		F 3.2	F 2.9	F 27	(2.5)	37	3.0	£ 2.7	2.5	2.5	2.5	3.7	3,2	1 [2.8]	K 1.7	7.4	5 3.7	F 32	F 3.5	5 2.7	F 3.5	3.0	33	A (2.5)	177	2 C2	6 (3.0)	200	7 23	F 3.3	2.7	2.0		2.9	31	
Washington	Lot 38.7°N		F 30	F 3.2	F 2.3	2 2 2	0 x d	(2.8)	1, 2.7	£ 32	2.3	1.8	F 30	2.9	(2.4)	× N	5 2.2	F 3.0	(3.2)	3.1	2.8	3.5	f (37)	F (3.3)	F [73]	4.5	£ (35)	\$ (2.5)	A 2.9	7 21	3.6	2.5	2.2		2.9	30	
	Lat	ō	F 2.8	F 3.2	F 2.1	3.4	f (27)	В	S 2.4 F	£ 22	F 2.4	F 2.6	5 2.3	2.4		K S B	2.0	2.5	(127)	2.9	4 23	1 2.7	(3.5)	3.0	2.2	0.7	335	(20)	[82]	(2.0)	3.8	23	F 2.2		36	29	
(Chordcrenstic)	5	00	2.3	(3.3)	(20)	(3.2)	(3.0)	A	(2.4)	2.2	77	22	(2.1)	22	27	S	2.0	2.5	2.6	2.8	(171)	(2.6)	24	2.8	R	23	3.	(2.3)	2.6	2.3	3.6	2.4	(2.1)		2.4	28	
))	200	Da,	-	2	'n	4	5	9	7	ω	6	0	=	12	-13	14	15	91	1.7	81	61	20	21	22	23	24	25	56	27	28	59	8	3.		Median	Count	

22 TABLE

Central Radia Prapagation Labaratary, National Bureau of Standards, Washington 25, D.C.

orm occupied June 1946

National Bureau of Standards

nstitution)

Mc C.

Scaled by:

€. J. W.

DATA ONOSPHERIC

December, 952

. Mc

Washington, D.C.

Observed at ___

. J. W. (30) (35)F w (0.0) (001) 2.9 % (3,1) 1.95 7 (2.0) J. (30) F 2330 100) 144 (2.5) 3 6.00 026 5 0.6 7 \mathcal{B} 4.00 ์ ว 4 ġ 5 2.5 4 2.03 23 A 1 340 2130 | 2230 21,5 P[1.0) A(1.0) (32) (19) 6 [18] [2.8] 2.4 3.0 0.0 4.0 10 0.0 8.8 05 26 30 2 27 300 20 Q 2.5 Mc C. d d T T (5.2.2) 245 (3.0) (c.3) 3.05 4.83 5.83 2.8 353 2.00 es Es 30 9.9 3.3 2003 00 1.00 7.70 2.2 8.20 چ ر 1.2 ້ຳ t 245 (3.4) P. 1.5 (25) (29)5 2030 2.5 (0.4) 3.3 2,5 57 35 500 35 2.8 3.5 4.00 2.4 03.60 333 6. 30 Þ Ø 36 5 (40) \$ 1930 S. S. 3.5 2.5 6.0 0.5 0.7 lo frj 40 8.6 3 00 3 30 3.2 8.0 0 18 3.6 2 4 3.1 9.00 2.9 3 6 ₫ $\sqrt{}$ 3.7 K 3.00 3.5.5 1.3 F 3.75 7 8.E 3.9.8 4.5 38 1830 14 3.3 33 6.5 60.00 4.3 4.0 3.9 407 3.7 9.5 5.6 3.8 15 302 3.3 Q1 3.02 36 30 43 76 (44) 344 4.7 K 4.55 515 4.6 * (55) 3.95 4.2 E 3/2 4.7 1730 4.4 44 24 5.0 52 5.9 3.4 50 5.0 3.3 1% 4.6 56 5:7 42 4.2 4.6 9.5 31 16-27 (61) H (5.8)4 5.1 K 5.6 8 (6.0) 6.5 65 50 1630 6.0 62 0.0 6.4 1.0 6.2 63 % '∕si 4.9 20 6.3 64 80 5.8 5.6 0,0 4.9 56 5,2 0.0 66 Ē 28 16.77 58 (207 2 00 5 58.9 568 9 6.00 P. (27) 1330 1430 1530 6.8 8.9 89 4.0 2.0 6.6 5.6 64 9.6 8.9 20 90 &o &o 6.9 100 24 28 20 6.3 76 62 5.5 6.5 9.9 m 5.6 x 10.0 5.5 70 787 5.6 x 5.65 6.7 2.6 6.4 100 [6.6] 0 23 2.6 100 bo 26 80 66 6.7 6.6 20 28 20 20 2.6 2.8 6.0 6.9 - Mean Time 5.8 28 2.8 6.0 28 80 9 80 6.9 6.7 7.7 6.0 39 6.4 20 700 703 6.6 14 8.4 6.4 6.0 59 80 8.9 6.00 20 20 1230 7.5 23 5.6 0.0 8.8 7.2 50 80 7.02 5.9 23 25 203 202 7.4 28 28 9.9 2.6 7.8 2.8 67 9.6 6.9 75° W 8.9 5.8 26 2.6 2.2 0.6 20 4.5 K 2.6 " 205 1130 7.02 7.4 0.0 7.5 20 2.0 22 5 23 5.8 8.9 28 4.9 8.4 80 87 28 3.6 80 38 7.3 0.0 28 7.7 18 23 5.6 84 74 4(0.9) 5.8 (6.5)T (8.9) 7. 4.3 603 24 4.9. 2.4 6.2 15.5 200 6.5 63 9.9 00.00 24 22 0.0 0830 1030 26 7.3 74 6.3 5.7 5.0 6.2 24 56 66 4.4 K (28) 5 % 5.6 H 593 6.8 H (6.9) 12 O.0 £ (3,9)3 (20) 20 6.0 5.0 6.0 1.9 4 9 6.0 24 20 0.9 5.5 5.6 5.7 56 0.9 5.8 5.4 ř (46) 5.44 466 5.83 رن جر ره (5.4)" 0830 (5.5) 6.4 4.5 5.8 5.6 6.2 6.4 56 0.9 60 20 8.8 5.2 4.5 4.7 6.1 8.0 4.8 6.1 6.8 58 5,0 55 5.4 5.6 31 3.95 2.8 F (3.9) 0730 4.0 3.3 49 4.5 3.9 38 12 48 42 4.9 4.5 49 4.7 45 4.2 1.5 4.5 3.9 3.8 % % 0 407 4.4 8 17 44 3. (12) 3 4(67) (1.8)3 29 F (1.8)E K(1.7) } (3.3) [317] See (2 UF (1.9)À 0130 0230 0330 0430 0530 0630 (2.5) [34] υğ (ŋ) 3.0 25 00 (0.0) 9 2.4 3 2.5 39 2.9 3,22 50 2.0 3.5 38 80. 57 (1.6) 1.9 * | 1867 (00) 2.05 (30) (30)E (2.5) K (2.9) 3.0 F (3.5) 7 (3.3) 1.9 5 50 8 6.1 4.6 8 % 3. 30 3.3 3.0 20 3.3 3.8 30, ره 39 63.0 2.9 2.4 'n 1.2 × 405 (1.5) (3.5) Lat 38.7°N, Lang 77.1°W 30 40 30 8 35 3.1 3,5 6.5 3 ω, 3.4 90 8,00 31 3 32 2.7 (1.7)E (4.1) 5 (2.9)\$ 4(800) 3.0 (3.9) e) E) 8. 2.5 3.5 3.0 3.4 3,0 o m (0,0) , G 2.7 40 39 04.7 3.9 3.7 30 31 (2.3)5 7 33 (2.4)F (8.0) X (4.50) Ø 3.1 7 35 8 (3.5)3 4.2 (J) 3.0 30 62.3 9.50 3.6 2.9 (2.2) F (2.2) F (2.5) 3.4 5 30 6.0 3.3 2.4 30 3.7 9 90 6.5 (3.1) (3.6) 5 () () 350 12874 (18) 785 R(0.8) (1.0) 2.9 S 30 K 2,55 8.00 4.3 (24) 90 522 3 2.0 3.0 9.0 6.5 2.8 2.5 30 2.3 2,2 3,4 Q (too) (3.7) 6 2 600 9(5.6) 3.8 S (0.6) J 0030 4.6 600 33 2,3 2.5 3.3 7.4 20 2.7 0.00 9 2.4 5.0 ι. Ω 22.3 3.7 Ø 2.6 d Caunt 20 Day 4 9 8 o 0 = 2 3 4 2 9 _ 8 61 12 22 23 24 25 56 27 28 30 59 3-

Sweep 1.0 Mc to 25 0 Mc in 0 25 min

Monual [Automotic [

Parm noupted June 1946.

 $\mbox{TABLE 76} \label{eq:TABLE 76}$ Central Radia Propagatian Laboratory, Notional Bureau of Standards, Washington 25, D.C.

Scoled by Mc C. E.J.W.	Colculated by: McC. , E.J.W.	19 20 21 22 23																																		
		8																										_							-	_
		17																																	4	_
		91	230H	0	0	0	0	0			0	HO		0	(230)X	0	/		220#			0.	0		0	230	0		0	230 K	0	0	0		0	22
		4 15	200 23	-	0 230	0 230	0 230	230 220	-	220 0	230 210	O 210H	220 D	0 220	(250) \$ (23	230 230	220 0	+ A	200 22	(2/0)A A	230 Q	200 240	220 220	220 A	230 220	220 2	220# 230	220# Q	[220]A 210	220K 23	210 220	[200]A 200	210 210		2	
	Mean Time	13 14	220 20	220 230	230 220	240 240	210 230	210 23	230 21	220 23	230 2	210 200	210 22	220 310	250 K (25	-		(230)A A	210 20	[220]A (2)	A 2	180H 2	1904 2	[220]A J.	220 2	230 2	220 2	220 2	(020)A [2		(210)# 2	(210) [J.	200 2	H	\dashv	30
	- 1	12	200 2	230 2	230 2	210 2	190 2	190H 2		_	190H 23	210 21	210 21	220 2	220 K 25	220 220	230 230	216 (23	200H 21	230 [2:	A	210 18	1804 19	220 [2	210 2	2104 2	210 2.	220 2.	A (22	200K 2	220 (21	210H (2	220 3	\rightarrow	28	x9 30 30
)	75°W	=	200 20	230 2.	190 2	200H 2	210 19	220 1	-	200H 2	210 19	210 2	[220] 21	200 2	230 K 2	220 22			190H 20	-		_	-	240 2		230 # 2		2104 2		190 H 20	1804 2	220 21	210 2	-	-	
	Ì	01	200 2	310 2.	330 16	2004 20	220 02	210 2	190 2	200 20	200	210 2	200 [2.	2004 20	240K 23	210 2	210 200		0 19	2 A	230 210	Q 200	190 200		R A	240 2	200 20	200# 21	200H A	210 H 1	200H 1	200 2	230 2			27 28
		60	210 2		210 3	150 2	240 3	-	d	\vdash	210 2	Н	\vdash	-	×	-	-	0	_			3 0	-	2		240 2	220 2	HO	D 20	220 1 2	2 2	200 3	200 2	-		/3
		08		Q	210	2	2	-			7												- ''			2	7	2		220 K 2		7	٦		1	2
		07	,8		(1								_			-	_											_					-			-
		90											_							_									_				_			-
		90						_					-					_																		
n, D.C.	Wol.	0.4	_					-					-					-															-			
D.C.	4 01	03																				_														1
2	Lot 38.7°N,	0.2																																	+	
	Lot 3	ō											-																							
Control of Control		00																																		
o postary	Cossin	Day		2	М	4	S	9	~	80	ø	10	=	12	100	4	15	91	17	8	61	20	2.1	22	23	24	25	26	27	28	29	30	3.		Median	Count

TABLE 77
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C. IONOSPHERIC DATA

Form adapted June 1946

E. J. W.	E. J. W.	23																																		
Mc C.	McC.	22																																		
	by:	20 21																																-		
Scaled by:_	Colcul	61																																		
		8																																		
		17																	_																	
		91																																		_
		15	٦	_	7	7	7	7	a	a	7	7	Œ	7	X /	7	Ø	¥	7	7	Ø		7	7	7	7	_1	a	7	LK		(3.2)4	7			-
	Time	4	7	7	1	١	7	7	7	7	_1	3.4	7	7	3.4K	1	7	A	7	7	7	(3.7)P	7	7	7	7	7	7	7	Y 7	(34)4	7	7		1	*
	_ Mean Time	13	7	7	٦	7		1	ئہ	_1	7	7	L	1	<u> </u>	1	7	7	7	7		7	7	7	7	7	7	7	7	(3.6) R	[3.6]	7	7		ı	(r
	75°W	12	3.9	7	7	3.8	3.4	7	7	٦	7	4.1	7	7	3.7 K	1		٦	7	7	7	7	7	7		3.7#	3.8	7	7	(3.8)	39	1	7		30	ı
	7	=	3.7 F	7	7	3.7 H	7	7	. 7	7	7	7		7	3.7 K	7	7	7	7	7	7	3.9	7	7	7	[3.8]4	(38)	(3.9) н	7		384	7	(38)		3	19
		0	7	3.5	7	34 #	7	7	3.4	7	7.	۲.	/	# 1 #	3.5 K	7		7	α	Ø	7	Ø	7	7	a	40	7	7	(3.E)	38 H	7	7	4		36	×
		60	7	7	7	7		Œ	Œ	Œ	7	Ø	α	a	a	a	Ø	a	Ø	a	Ø	O	7	Ø	Ø	7	7		Ø	× 7.	a	_ (1	
		90	7	Ø	7	α	a																							x 7					1	
		07																															OCHRECIPIED COCHREGO			
		90.																																		
		0.5																																		
Washington, D.C.	7.1°W	0.4																																		
م, ٥	, Lang 77.1°W	03																																		
ningto	Lot 38.7°N	02																																		
Was	Lot 3	Ю																																		
ŧ	5	00																																		
Observed of	ODSGLAG	Day	_	2	33	4	2	9	7	80	6	0	=	2	5	4	5	91	17	18	61	20	21	22	23	24	25	56	27	28	59	30	31		Median	Count

Form adopted June 1946

National Bureau of Standards Mc C. (Institution) E. J. W.

 $TABLE \quad 78$ Central Radio Propagatian Labaratory, National Bureau of Standards, Washington 25, D. C.

IONOSPHERIC DATA

December, 1952

Ka (Unit)

(Choracteristic) h tE

Washington, D.C.

Scaled by: MCC.	Calculated by:	14 15 16 17 18 19 20 21 22 23	A (130) A A	(20 ° 4 A	110 120 (130) A	A A A	100 120 4	110 H 110 H (100) 4	110 H 120 S	120 (120) 4 (140) 4	110 /20 # 100 H	110 110	110 110 (120)4	120 (120) 3 4	XX	120 (120) 4 (140) 4	4 A A	(120) 1 1	100 (120) 4	A (110) 4 A	(100) A 100 H A	(11) A A A	[500] 4 (110) " (120) s	4 4 4	(120) 4	B	120 120 (140) 5	(110) 4 120 S	S " 0//	A	110 (120) 4 (120) 4	110 100 A	120 120 (120) 3	
75°W	ami Time Mean Time	10 11 12 13	4 (130) 4 (120) A (120) A	(120) 1 (110) 4 110 (120)	110 120 #	A (110) 4 120 (120) 4 4.	120 (110) 100 110	110 H (120) A A A	120 H 100 110 110 H	120 120 110 120		126 120 # (120) 1110	110 [110] (110 100	110 B B 120	XXX	H (130) 5 110 110 H 120 H	H 110 100 A A	(110) A 110 [110] A 120	4 110 H (110) A 110 100	A (110) A (110) A A A	(120) 4 A A A	1 (100) A A A A	(120) A 100 H 100 H 100	4 A (110) 4 A	A A (120) A [120] A	A [120] A (120) A DIST A 100	H 110 H 110 H 120	H 110 H [110] 4 110 110	110 H A A 110	X 120 * [120] # 120 " 110 "	A (120) A 110 110	H 120 H 110 110 110	(120) 8 (120) 8 (120] 8 (120) B	
		60 80 00 90 60	(011)	4 4	011 \$ (011)	(120) 4 [120]	110 # 120	011 4	130 110	8 110	130 H 120	(130) 3 120	(140) 5 110	120 120	X H	130 120	9// 5	011 6	(120)	(110)	A (120) A	A (120)	4 4	A A	A . A	A (130) A	120 120	. 5 120	120	A X 120	A 011	5 /20	8 8	
	Lat 38.7 'N , Long / 1.1 W	00 01 02 03 04										01																						40 100

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual

Automotic B

31

Manual 🗆 Automatic 🛭

Form adapted June 1946

 $TABLE \quad 79$ Central Radio Propagation Loboratory, National Bureau of Standards, Washington 25, D.C.

90 90	90	01 60 80	A 2.2 (2.6)A (2.8)A A 4 (2.7)H 2.8 H	23 (2.4)H	20 H 21 255 26 26	23 2.5#	(2.3) F (2.3)# 2.7	23 (2.5)P 28H	1 (2.3)# 2.6# 2.8H (2.5 2.8 2.9	2,2 2.4 °2,7 H °	A 9(25) 9(4.6)	2.2 K 2.4K 2.5 K	4 2.34 2.64 [28]A	2.0 " 2.6 2.7	25H 27 (28)P A	(24) 25H 29 3.0	24 26 (2.9)A A	A 26 A A	 A A (2.5)# 26H 29H 2.9	A A A 2.9	A A A 29 (234 [25]A (27)P B	JP 22H 26 27H 29H	(21)H 25H (25)P 2.7	15 (22)H 24H A A	K (20) 7 23K [25] 4 (27) K	3 A A 2.7 2.6	(20)P 24H 26 (2.6)P (B A (25)0 (2.8)P [28]0 2.8	C
Mo 0 4 4 0 0 2		06 07								+															+	-					
	0 4 2 7 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1																														

Form acopted June 1946

EJ.W

McC.

Scaled by:_

Institution

National Bureau of Standards

 $TABLE \quad 80$ Central Radio Prapagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

Es Mc, Km December 1952 (Unit) (Month)

Observed at Washington, D.C.

E.J.W. 2.67,10 31,100 1.97,0 3.6,100 7.0% H 7.01,10 5.87,10 58,110 7.2% H 28110 23 3 317/10 221,10 3.0110 2.6 1,20 801,00 # 3.17,0 H 40,00 * * * Ц 31 Ш McC. 7.64 44,00 33/10 2.3/30 7.07110 31 2 Ш ш 7.2,00 01199 1.74,0 Calculated by * 20 00/8.7 38 100 3.5 100 241,0 25/100H 2.4110 100 H 1.2 110 011 8.1 1.9 110 1.2,110 33,00 3.2,00 2.1,10 1,2 6 2.3% ш 3.5 4 11.0100 301,20 72,00 1.8 1,00 3.5,00 1.37,10 3.5/2, # 42y H 684100 H 1304,04 68110 5.2,00 2.0 2.0,40 3.181,0H 24110 2.0 23/00 Ш щ 19110 42,00 30% 143,00 2.0120 9.2,00 H 5.0 H 4011 1.6,00 3.0 V H 33,00 30/10H 4.77, H 2814 31400 3.1 22/20 1.7/10 4290 3.490 3, 20,20 49,00 2.3,30 22,00 3.0 Y 14.0110 1.7,10 2.3 ~ 9 45,00 344 224,00 24,34 447,20 24120 2.3 120 2.0100 29,00 26,00 317,10 387,00 29,00 331,20 26 90 4.2 90 5.2,00 3.8,00 42,00 34 y H 3.54 4 3.71/104 324,10 2.6 2 B P B J Y 537 30,30 25/20 6.6% 24,00 30110 1001 1.9 100 Sweep 1.0 Mc to 25.0 Mc in 0.25 min 4 16 B G S B G B 6:1 31 હ Y Y G 5 Mean Time 4.3,00 22160 12.51,10 4.7100 2.7100 1.9 100 3.0,30 38,00 3.0,100 3 3/10 40100 42 100 401,00 45100 39,80 3.9,20 5 હ J Y હ G Y Y (J 6.1 5 G 3.8100 2.9,00 2.590 100/85 7.6% H 38 V # 4, 10 H 54, b P لى B P 12 G 7.7 75° W S ñ 1 49,00 7.84,00 3.2110 3.5,20 45,00 23110 29,20 39/120 5.27,00 2.7,00 7.0,10H24,00 43% 5.4 484 4 7.04 4 29,00 377,00 2.6 2.5 S = Y 3 10 Y 3.8100 4 3.24,10 39 H 5.07,00 2.0 110 011 3.110 42,10 38,00 50 H STS H 6 0 B ٦ B ડ 3.1 1 331 130 3.7 100 3.6 1,00 43110 4 4 3.7 V H 4.2,10H 23,00 3.7,10 3.8 110 274,00 254,00 * * P 5 60 B B B 3 B B 6 5.0 120 123,40 38,00 4.24 110 701,10 04100 30/100 35,00 401106 1.77,00 11.5 Y. 2.3 90 B 31 b B B 24/120 5.24,110 46110 29 110 6.2 Y .. 4 3.7 100 32 110 32,00 40V 110 401/10H 354,10H 38 130 40/10 34110 3.04 110 25410 3.94 110 3.7 4 H 3.97,10 66100 72Y M 35/00 4.2,00 56,00 38,00 37 9 0.7 3.114 ш ш ш 327/10 1.37 100 3.8 110 2.7 110 50 120 2.4 110 2.7 001 2.47,110 344,04 414,14 3.94 100 3.2 110 42 110 5.5 90 -0 2.64/10 347110 4.2 160 4.27,20 32 140 2.5 110 48410 2.6 110 2.37,110 2.47,20 3.7 100 248/120 H 3.7,10 H 4.6 100 130 22 110 2.3 110 7.6 ш 10 0.5 31,20 381,30 1324,10 13.61,20 13.14.00 T 4.5100 38 110 45110# 1.8 110 Lot 38.7°N , Long 77.1°W 40 5 3.3 120 364,110 70V 100 7.2 100 1.9 140 434,30 39,20 2.4100 3.17,10H 5.0 100 32,100 27 100 23 90 100 3.8 100 3.1/104 39 100 43 100 03 4.04/00 4 3.2 100 14 TY 100 497100 1.77 100 20 100 3.37 110 25,10 22 100 +0 100 3.4 100 2.5y 110 3.97,10 74,10 0.5 * 30 8 2.77 110 12.2 100 3.04 120 3.77 110 46100 3.2110 26 100 44 110 3.3 100 7.7 5 3 2.5 120 3.7 30 100 2.5 244 (100)5 (3.7 100 2.4 100 1 100 01185 8 5.5 - 5 Median 23 Caunt Day N 4 9 6 9 2 10 4 8 6 20 22 24 27 28 00 = _ 25 30 5 91 26 59 2

OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER ** MEDIAN fES LESS THAN MEDIAN foE,

Manual

Autamatic

3.4

24

36

29

F.

B

3

3

form adopted June 1946

E.J.W.

McC.

Scaled by:

National Bureau of Standards

DATA ONOSPHERIC

. 1952

December (Month)

(M 1500) F2, (Unit)

Washington, D.C.

သ

=

6 2 12 22 24

8

92

27

8 88 59 n

52

E.J.W. 9(1.8) 7(6.1) 16.7 × 4 227 (0.8) S 23 0. 8 T (22)91 9(6.1) 1.93 1.95 (2.0) A XX 205 0.8 0 2.0 0.0 6.1 6.1 22 A ∢ A A d 2.0 F 1.9 F 3(6.1) 5/6-11 3.1.8 X 11.9) Calculated by: McC. 2 2.62 3 1.715 1.9)5 (2.4) 2.2 20 6.1 3.1 T T 2.45 (2.4)2 22 K (2.1) 5 200 2 4F 2.4 18 2.5 7.4 33 3 2.4 3.4 6 4.4 8 22 3.0 78 2.0 23 N 09. 7 7 22 2.0 22F 2.2 F 2.45 (3.4)5 23 1.9 H (23) 235 es W 7 4 0.8 2.4 3 2 22 33 19. 00 7 4 2.2 2 3 8 2.1K 25.5 S. X (2.5) L 30 7 th 2.6 4.6 8.5 2.4 7 4 3 2.4 7. H 8 s) a 3 7. t 4.8 E of of 2.3 7.4° x # 7.4 7.4 25 3 _ 33 7 # K (2.2)3 2.12 (23)3 2.4 12.535 2.4 7 8 34 3.4 7.4 2.3 7.4 3.6 w 25 33 9 7 2.4 4.8 E 2.3 7 77. \$10.0) (24)3 (2.4)5 4.8 7 + 3 3 7 4.4 13.5 7.4 e. 83 33 2 7.4 8 7 2 2 3 5.3 74 23 2.4 33 83 t x 4.8 7 12 3 n 23 X 23 £ 2.55 2 4 5 (23)5 x t x (25) 7 + 6 83 83 7 4 83 4 2 7 4 x 4 83 23 7 S le is 22 33 53 X 3 X X .K ZZK 235 (23)3 Mean 3 4 el R ek w 7 34 3 es 8 2 8 3. 8 20 33 3 3 n 23 21 (23) F 23 H 1 tox 202 2 1 H x1.2 24 s s 74 es es le W 2.4 22 74 75° W 2.4 33 7 8 25 2.4 s W 3 7.8 25 74 2 3 3 X6.7 (23)" 23K (23)H 23.3 E 23 7 4 24 E 7.4 2.5 4.6 s s 30 24 8. t. 3 7. 2.0 S 7.4 4.8 30 23 = 2.3 U 18 K (2.2)H (2.3) H (2 t) H (2.7)H 4.8 22 246 (23)4 t t 2.1 x 2 3.4 3.8 3 2.7 7 4 7.4 23 0 H(8.1) 245 (2 4) F H(+ E) X/X 2.0 X 3 T 34 3.4 35 3 2.4 25 4.8 S) 3 3 60 3 2.1 3.3 2.4 X 3.6 X 0.8 2.5F (2.5) H (2.5)3 2.5 5 (2.5)A 23 25 33 2.5 23 7 4 3 2.4° 23 2.7 4 2.4 8 2.7 25 90 7 18 23 F 2.27 2.0 H (2.5)5 1.9 E 2.15 (23)P 11.915 21 123/2 2.55 8.3 e 23 12.2) 7 4 8 20 22 23 33 82 33 B 07 3 2.0 F (20) F (2.1) F (2.0)3 2.0 F 2. tx (23) F (2.6)A (21/5) 225 (20)3 (22)F 50 S. 80 23 22 4.8 22 s W 22 90 33 0.8 A 6.1 30 5 (21)F 20F 32X (2.0)7 214 X 20% 1(9.1) (22)F 2.4F (2.1) (x 3) 5 216 4.8 22 0.5 7 7 2.1 3.1 30 226 1.9F (1.7) K XIX 22 F 227 30)F 21F (2 2) 1.9F Lat 38.7°N , Lang 77.1° W (20) F 225 23 2.2 04 R 30 3.0 20 7.6 80 20 8 7.7 31 7 1.9F 2.1 F 2.1 K (2.1) 5 1.9 F 2. F 7 (0.2) 2.0 F X (21)A 2/5 20 03 18 2.0 8 18 22 3. 30 1.9 F 1(P.1) 2/5 N C. N (22)5 7.9 F (2.0)E 2/F 7(18) 5x 7(6.11 216 2.0 30 02 6.1 20 6 7.7 39 2.1 (2.0)F 1.9F 14 18 (20) F (20)5 (21)3 2.0 F 13 K (22)F 7 6.1 5 7 33 80 2 (6.1) 0.0 2.1 38 (2.0)F (2.1)5 2.0F 20 F (2.1)A 20F 2.0F 2.1 F (2.0)F (2.0) (2.0) F 2.0 F S 8.0 F (21)2 (2.1) J (20)F Observed of 1.9 3.0 00 3 18 2.0 0 27 2 Median 4 13 Caunt ρg 9 00 6 0 2 4 15 9 _

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

3

3

National Bureau of Standards

IONOSPHERIC DATA

1952

December

(M3000) F2

Sweep 1 0 Mc 10 25 0 Mc in 0.25 min

Manual - Automatic -

 $TABLE \quad \textbf{83}$ Central Radia Prapagatian Labaratary, National Bureau of Slandards, Washington 25, D.C.

Form adapted June 1946

National Bureau of Standards McC.

IONOSPHERIC DATA

(M 3000) F1 December 1952 (Month) (Month)

	Lat 38.7°N	Lat 38.7°N		, Lang 77.1° W	_						٦	W 267	Mean Time	ar.				Ca	culated	Calculated by: McC.	ci]	E.J.W.
Day	00	01 02	03	04	0.5	H	06 07	7 08	60	0	=	12	13	4	15	16 17	7	Н	20	21	22	23	
-			L			_		7	7	7	40 F	40	7	7	7								
2								a	7	39	7	7	7	7	7								
3								7	7	7	7	7	7	7	7						_		
4			_			-		0	7	3.9 11	27 K	36	7	7	7								
5								0	7	7	7	40	7	7	7		-	-		_	_		
9									Ø	7	7	7	7	7	7								
~	_		_						0	4.1	7	7	7	1	0								
80									Ø	7	7	7	7	7	a								
6		·							7	7	7	7	7	7	7								
0									Ø	7	7	3.9	7	4.0	7	_			_				
=						_			Ø	7	7	7	7	2	Q	_							
2						_			Ø	36 ×	7	7	7	7	7		_			-			
<u></u>									Ø	* 33 K	<u>'</u>	3.7 K	° × 7	3.6 M	ر × ۲								
4						_			G	7	7	7	7	7	7					_			
15									G	7	7	7		7	G			_					
91									Ø	7	7	7	7	1	4								
-						_			O	g	. 7	7	7	7	7								
8						-			a	a	7	7	7	7	7								
61									a	7	7	7	7	\rightarrow	a		_						
50			-			_		_	a	a	3.8	7	7	g (0.75)	7								
21									7	7	7	L.	7	7	7					,			
22						\dashv			a	7	7	7	7	7	7								
23									Q	Ø	7	~	7	7	7			_	4				
24						-			7	36	7	3.9 ₭	7	7	7								
25							_	_	7	7	(34)	4.0	4	7	7			_					
56									7	7	(3.7) "	7	7	7	a								
27						_	_		g	(39)	7	γ	7	4	7								
28								7	7 4	x 3.6 ,	" (37) "	(3.8) K	3.8) 2	× 7	y 7								
59									O	7	3.7	3.7	7	1 (1 8)	7				_				
30									7	7	7	7	7	7	7 (0.6)		-						
3-			+	1	-	+	+		7	~	(3.9) 4	7	7	7	~	1	-		-	-			
+			-		_	+	+				,			1		+	+	-					
Median			1		4	+	+	1	-	3.0	37	J.	ı	!	1								
*000										1	,						L	_		_			

Sweep 1.0 Mc to 25.0 Mc In 0 25 min Manual

Autamatic

B 30 t - no 1946

 $\text{TABLE} \ 8.4$ Central Radio Propagation Labaratory, Natland Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Lot 38.7°N Lot 38.7°N OI 02

Manual

Automatic

Manual

Table 85

Ionospheric Storminess at Washington, D. C.

December 1952

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT	storms End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 22 12 23 24 25	213332222223432212111331213121	222332211111531311211122221	0600	1200	2344422212325122321222137	3534321112223122112142
26 27 28 29 30 31	2 1 3 1 2 1	2 1 4 1 3	1200	2300	4 3 3 3 4 4 3	2 3 4 4 4 4

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 86a

Radio Propagation Quality Figures (Including Comparisons with Short-Term and Advance Forecasts)

November 1952

Day	North Atlantic quality figure	issued a	erm forecasts about one advance of period, UT:	Whole day quality index	Advance for (J-reports whole day; in advance) for issued	Geomag- netic ^K Ch
Nov	Half Day UT (1) (2)	00 06 to to 12 18	12 18 to to 24 06	UT	1 to 4/5 3/4 to 7 days days		Half day UT (1) (2)
1 2 3 4 5	(4) 5 (4) 6 5 7 5 7 5 6	(3) (30 (4) (3) (4) (4) 5 5 5 5	5 5	(4) (4) 6 6 5	(3) (4) (3) (4) (4) 5 5 6	X X	3 (4) 3 3 3 2 2 1 2 1
6 7 8 9 10	5 6 5 6 6 6 6 7	6 (4) 5 (4) .5 (4) (4) (4) 6 6	6 6 6 6	5 5 5 6 6	6 6 6 5 5 5 6 6		3 2 3 3 3 3 2 2 1 1
11 12 13 14 15	5 7 7 8 6 8 6 7 7 7	6 6 7 7 6 6 7 6	7 7 7 7 7 7 7 6 6 6	6 7 7 7	7 7 7 7 6 6 6 6 7 7		1 2 1 1 1 1 2 2 3 2
16 17 18 19 20	6 7 6 8 6 7 7 7 7 7	6 6 6 6 (4) (4) 6 5 6 6	6 5 6 6 7 7 7 7	7 7 6 7	7 7 7 7 7 6 6 7 6 7		2 2 2 3 2 2 2 1 2 2
21 22 23 24 25	6 6 5 7 5 7 6 7	6 5 (4) (4) (4) (3) 5 5 6 5	(4) (4) 5 5 5 6 6 6 7 6	6 5 6 6	(4) 6 (3) (4) (4) (4) 5 5 5 5	X	(4) 3 3 2 (4) 1 2 2 2 1
26 27 28 29 30	6 (4) (4) (5) 5 6	5 5 (4) (4) (3) (3) (3) (4) (4) (4)	(4) 5 5 5	6 (4) (4) 5 5	(4) (4) (3) (3) (3) (3) (4) (4) (4) 5	X X X	2 (4) (4) (4) (4) 3 2 3 2 2
Score:	Quiet period	ls					
	P S U F	12 11 1 2	11 15 2 1		6 11 15 13 1 0 4 2		
	Disturbed pe	eriods					
	P S U F	2 2 0 0	0 1 0 0		0 2 4 2 0 0		

Scales:

Q-scale of Radio Propagation Quality

- le of Radio Propagat
 (1) useless
 (2) very poor
 (3) poor
 (4) poor to fair
 5 fair
 6 fair to good
 7 good
 8 very good
 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\text{Ch}} \gg \frac{h}{\epsilon}$ indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952)
forecast quality one grade different from observed

U - Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both≤5 F - Failure: other times when forecast quality two or more grades different from observed

Symbols:
 X - probable disturbed date

Short-Term Forecasts--November 1952

<u>Table 87a</u>

Coronal observations at Climax, Colorado (<u>5303A</u>), east <u>limb</u>

Date				Dea	ree	25	nor	th o	of t	the	sol	ar	equ	ato	r				00												Lar			r			
GCT	90	85	60	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1 00	13	10	15	20	25_	30	35	40	45	50	<u>55</u>	60	<u>65</u>	70	<u>75</u>	80	85	90
1952																																					
Dec. 1.7	_	_	_	_	-	3	3	4	5	6	6	5	4	3	2	3	3	4	4	3	4	8	13	12	6	3	2	2	2	3	4	5	3	2	_	_	_
2.ïa	X	X	X	X	X	Х	_	_	_	5	5	_	_	-	_	5	5	5	-	-	-	5	5	5	5	_	X	X	X	Х	Х	X	X	Х	Х	Х	Х
4.8a	-	-	_	_	_	-	_	-	_	5	6	5	5	5	6	11	15	18	5	5	5	_	-	-	_	-	-	-	-	_	_	_	-	_	_	_	_
5.8a	-	-	-	-	-	-	-	_	-	-	_	_	_	7	8	ŢO	12	11	10	7	6	_	-	_	_	-	_	_	-	-	-	_	_	-	_	_	_
10.7	-	-	_	1	1	1	1	1	2	1	1	2	2	4	6	12	17	20	17	15	16	12	7	4	3	3	2	l	1	1	-	_	_	_	_	_	-
11.7	-	X	X	X	Х	Х	X	_	_	_	-	-	_	2	4	1.2	19	13	15	17	14	1.3	5	3	2	_	-	-	_	_	-	-	_	-	-	_	-
14.8a	-	-	_	-	_	-	_	_	_	2	3	3	2	2	2	2	3	3	7	13	17	18	15	7	4	3	_	-	_	-	-	_	_	_	_	_	_
15.8	-	-	_	-	-	-	_	-	_	-	_	-	_	2	2	2	2	3	8	9	8	6	4	3	2	2	2	3	3	2	_	_	_	-	-	-	_
16.8	1	1	1	1	1	1	Ţ	1	1	2	2	2	2	3	4	6	8	4	5	5	7	9	8	6	5	3	3	4	5	3	1	1	_	-	_	-	_
24.7a	-	***		-	_	1	2	3	5	5	4	6	8	9	13	12	9	3	2	1	1	1	1	1	1	1	1	1	_	-	-	-	-	-	-	-	-
25.7a	*	-	_	-	_	1	2	3	3	2	1	2	3	6	11	8	6	6	1	1	1	1	1	_	-	_	_	1	3	1	-	-	_	-	-	-	-
27.7	_	-	_	81.4	_	_	1	3	2	2	1	1	1	1	1	1	2	3	5	2	1	1	2	4	2	2	1	1	_	_	-	-	_	_	-	_	_
29.8a	-	-	_	-	_	-	_	_	_	_	_	_	_	4	6	7	8	6	3	-	-	3	5	5	4	_	_	100	_	-	_	_	_	-	_	-	-
30.8	-	_	_	_	2	3	3	3	4	5	6	7	6	9	11	15	17	10	6	5	4	4	5	6	5	3	2	3	4	4	2	-	_	-	-	-	-
31.7	-	_	_	_	2	2	3	4	4	5	6	8	10	11	12	13	18.	11	6	3	2	2	2	2	2	3	3	3	3	3	_	-	-	_	-	-	_

Table 88a
Coronal observations at Climax, Colorado (6374A), east limb

Date	1			Doo				· h .		· h o	00	0.00								_			70			4	1.	0 1	٠				- 1 -				—
	00	85	80				60	55	50							2 6	30	ς.	00	-	10										ar				00	02	~~
001	70	05	00	12	10	05	00	22	50	45	40	35	<u> </u>	25	20	72	TO	_2	-	12	TO	72	20	25	<u> 30</u>	35 .	40	45	50_	55	60	<u>65</u>	70	75	80	85	90
1952																																					
Dec. 1.7	5	5	3	2	2	1	1	1	2	3	3	3	5	10	12	8	10	17	9	4	4	9	2	3	3	3	3	3	2	2	2	3	4	6	7	6	6
2.7a	X	Х	X	Х	X	X	-	_	_	_	2	2	3	6	13	14	8	6	3	3	_	_	_	_	_	-	Х	Х	Х	X	X	X	Х	Х	Х	Х	X
4.8a	-	_	_	ante	_	_	-	_	om	_	***	_	-	_	4	5	5	.6	1 4	-	_	-	_	-	_	_	_	-	_	-	_	-	_	_	_	-	-
5.8a	-	-	_	-	_	_	_	arts	_	_	-	_	-	_	5	5	5	_	-	-	_	_	_	_	_	_	_	_	_	-	_	-	***	_	_	_	_
10.7	14	3	4	2	1	1	_	-	1	2	3	5	5	4	3	2	10	1	1	2	12	5	4	2	4	3	2	1	l	1	1	1	1	1	2	3	3
11.7	6	X	X	X	X	Х	Х	-	3	3	4	4	5	4	3	3	12	2	2	3	8	3	2	2	_	_	_	_	_	_	_	-	_	_	-	_	_
14.8a	14	3	2	2	1	1	1	1	1	4	8	10	11	10	9	11	11	7	4	2	11	9	8	1	3	4	5	3	-	-	-	-	***	***	-	_	-
15.8	15	2	3	2	1	_	_	_	1	2	3	3	4	3	- 2	3	6	3	1	1	1	_	-	_	-	_	_	_	_	_	-	1	1	3	4	4	3
16.8	6	6	5	4	2	2	1	1	1	4	7	8	5	5	4	5	6	4	2	2	2	l	1	l	l	2	2	2	1	1	2	2	3	5	6	4	4
24.7a	14	3	2	1	1	_	_	-	_	_	_	_	1	1	2	4	7	6	5	4	6	8	7	6	6	5	3	2	1	1	1	1	1	2	4	5	4
25.7a	3	2	2	1	_	-	***	-	-	_	1	1	1	2	3	4	5	9	1	14	4	6	7	6	5	4	3	2	2	1	1	1	2	2	3	4	4
27.7	3	4	3	2	1	1	1	1	1	1	3	4	5	5	5	5	8	10	12	6	3	5	5	3	2	2	1	3	2	1	1	1	1	2	2	2	3
29.8a	3	3	_	_	-	_	_	_	_	_	_	_	2	3	3	3	5	8	3	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
30.8	14	3	3	3	3	2	1	2	2	2	1	2	2	2	3	4	8	6	7	5	5	4	3	3	2	2	1	1	1	1	2	2	2	2	3	3	4
31.7	3	3	2	2	1	1	1	1	1	2	2	3	3	3	3	5	9	9	3	6	4	5	4	3	4	4	5	2	l	1	1	1	2	3	3	4	4

Table 89a
Coronal observations at Climax, Colorado (6702A), east limb

Date				Deg	ree	s r	ort	h o	ft	he	sol	ar	equ	ato	r																ar						
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35 1	40	45	50	55	60	65	70	75	80	85	90
1952																									-												
Dec. 1.7	-	-	_	one	_	_	_	-	-	-	_	-	_	_	_	_	-	_	-	-	-	_	-	-	_	_	_	_	_	-	_	-	-	-	_	-	_
2.7a	X	X	X	X	Х	X	_	_	_	_	_	_	-	_	-	_	_	_	-	-	_	-	_	_	_	_	Х	X	X	X	Х	Х	Х	X	Х	Х	Х
4.8a	-	1100	-	-	-	_	-	_	-	_	_	_	_	_	-	-	_	-	-	-	_	_	-	-	-	_	-	-	_	-	-	-	_	_	_	_	_
5.8a	-	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	-	-	_	-	_	_	_	-	_	_	_	-	-	_	_	-	-	_	-
10.7	-	_	-	_	_	-	_	_	_	-	_	_	-	-	_	2	4	5	5	4	3	2	_	-	-	_	_	_	-	_	-	-	_	_	-	_	-
11.7	-	X	Х	Х	X	Х	Х	-	_	_	_	***	_	-	-	_	3	3	3	3	3	3	_	-	-	_	_	_	_	_	-		_	_	-	_	-
14.8a	-	-	-	-	-	-	-	-	-		-	_	_	_	-	-	_	2	3	3	3	2	2	2	_		-	-	-	-		-	-	_	_	_	_
15.8	-	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	_	_	-	-	_	_	_	-	_	_	_	_	-	_	_	_	-	_	-		_
16.3	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	_	-	-	-		-	_	-	-	-	-	_	_	_
24.7a	-	_		_	_	_	_	_	_	-	-	_	_	_	-	_	_	_	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-		_	-
25.7a	-	***	_	_	_	-	_	-	_	-	-	_	-	_	-	_	_	_	-	-	_	-	_	-	_	-	-	_	_	-	_	_	_	_	-	_	_
27.7	-	***		_	-	_	_	_	_	_	_	_	_	_	***	_	_	-	-	-	_	-	_	_	_	-	_	**	_	-	_	_	-	_	-	_	-
29.8a	-	-	***	_	_	-	_	_	-	-		-	_	-	-	_	-	_	-	-	_		_	_	_	_	_	_	-	-	_	-	_	-	-	_	
30.8	-	***	-	-	-	_	_	-	_	_	_	_	_	-	-	1	1	1	-	-	_	-	-	_	_		_	_	_	-	_	-	-	-	-	-	-
31.7	-			-	_	-	_	-	-	_	-	-	-	_	-	_	-	_	-	-	-		_	-	_	-	***	_	-	_	_	_	_	_	_	_	-

Table 87b

Coronal observations at Climax, Colorado (5303A), west limb

Date					Deg	ree	s s	out	h o	ft	he	sol	ar	eou	ato	r								Deg	ree	s n	ort	1 0	f t	he	sol	ar	eau	ato	-			—
GCT		90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	3	00	5	10	15	20	25	30				50						80 (35	90
1952																				l '																		
Dec.		_	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	10	10	11	11	10	9	6	5	4	_	-	-	-	_	-	_	-	_	_	-	_	_	-
	2.7:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	X	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Χ	Х
	4.8a	-	-	-	-	_	-	_	-	-	_	-	-	-	-	6	7	8	6	5	7	8	6	6	5	-	_	-	_	_	_	_	-	-	-	_	-	-
	5•8a	-	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	_ X	X	·X	X	X	X	Х	X	Х	Х	Х	Х	Х	X	Х	Χ	Х	Х	_
	10.7	-	_	-	_	-	-	_	_	-	_	-	_	_	-	_	1	2	5	10	14	12	16	14	13	T0	6	3	2	2	2	1	1			_	_	_
	11.7	-	Х	X	Х	Х	Х	1	2	3	3	2	1	2	2	1	1	1	3	5	9	12	10	6	6	5	5	3	2	3	4	3	2	2	_	_	_	_
	14.8a	-	Х	Х	Х	X	Х	Х	Χ	Х	Х	Х	Х	Х	_		_	teats	-	-	-	_	_	_		_	emp	_	Χ	X	Х	Х	Х	Х	Х	Х	Х	-
	15.8	-	-	-	-	_	-	-	-	-	1	1	1	1	1	1	ļ	_	1	2	2	_ 3	-7	3	1	_	_	_	1	Ŀ	1	_	_	_	-	_	-	_
	16.8	-	-	_	_	_	1	2	3	3	2	2	2	3	4	- 4	4	3	4	5	-8	15	21	26	10	2	2	2	2	3	3	2	2	_	_	_	-	1
	24.7a	400	-	_	-	-	-	-	1	2	2	3	3	4	5	12	21	36	37	25	21	21	21	14	5	3	2	1	_	_	_	_	-	_	_	_	-	-
	25.7a	-	_	_	-	-	-	_	-	1	1	1	2	2	4	11	19	33	35	33	27	25	18	12	5	2	1	1	Τ	_	_	-	-	_	_	_	-	-
	27.7	-	-	_	-	-	-	1	1	2	3	3	3	4	4	5	16	18	17	172	TO	6	4	3	2	2	Τ	Τ	Τ	Τ	_	-	_	_	-	_		_
	29.8a	-	-	_	-	-	-	-	_	-	_	5	5	5	-	-	5	5.	5	-	-	_	_	_	_	_	_	_	_	-	_	_	-	_	-	-	-	-
	30.8	-	-	-	-	-	-	_	3	4	5	4	3	3	3	6	8	7	5	4	4	5	5	7	5	4	4	_	_	_	_	_	-	_	-	_	_	
	31.7	-	-	-	-	-	-	-	2	3	5	4	3	3	4	6	5	4	3	-	3	4	7	9	8	5	4	3	3	3	3	-	-	-	-	_	_	-

Date				Deg	ree	s s	out	h c	ft	he	30	lar	equ	iat	or				_	Т			De	ree	s r	ort	h c	of t	he	so.	lar	eqt	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																									_												
Dec. 1.7	6	Х	Х	Х	X	Х	X	Х	Х	Х	X	X	X	Х	4	4	3	3	1 4	8	12	13	12	10	9	8	6	5	4	4	4	4	4	4	5	6	5
2.7	Х	Х	X	Х	Х	Χ	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X	X	Х	X	Х	Χ	Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х	X
4.8a	-	_	-	_	-	-	-	-	_	_	_	-	-		_	_		-	-		_	_	-	-	_	-	-	_	-	-	-	_	_	_	_	_	_
5.8a	-	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	X	Х	X	Х	_
10.7	3	3	2	2	2	2	2	2	2	4	9	10	5	3	3	6	9	12	8.	2	4	8	3	2	1	1	l	1	2	1	1	1	1	2	2	3	4
11.7	-	4	6	8	5	4	4	3	1	1	2	4	3	4	5	3	5	9	14	6	7	10	12	9	4	2	2	2	2	2	2	2	2	3	3	4	6
14.8a	-	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	-	_	-	-	-	-	-	10	11	12	10	10	_	-	Х	Х	X	Х	X	Х	X	Х	Х	4
15.8	3	2	1	-	_	_	_	_	_	-	-	-	-	_	-	°l	1	2	3	6	15	14	11	6	4	3	3	2	1	-	_	-	1	3	3	4	5
16.8	4	4	3	3	2	1.	1	1	1	1	1	1	1	1	2	2	2	4	5	5	26	25	8	6	8	8	5	3	2	2	2	2	3	5	5	6	6
24.7a	4	3	3	2	1	1	1	1	1	1	3	3	5	5	2	12	18	5	7	5	1	3	1	5	3	1	4	5	4	2	1	1	1	2	2	3	4
25.7a	4	3	3	2	1	1	1	l	2	2	3	4	5	2	4	17	5	26	3	5	1	6	2	1	3	. 2	6	4	3	3	2	1	1	2	3	4	3
27.7	· 3	2	2	2	1	1	1	1	1	1	ī	1	ĺ	1	1	3	15	1	l	14	7	6	5	5	6	5	4	3	2	1	1	1	2	5	5	4	3
29.8a	_	_	_	_	_	_		_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	-	_	_	_	_	-	_	_	_	3
30.8	4	3	2	3	3	4	3	2	2	1	1	2	4	3	3	3	3	4	6	15	5	5	5	4	4	3	2	3	1	1	1	1	2	2	3	3	4
31.7	L	Ĺ	3	3	3	3	2	2	2	ı	ī	2	2	3	3	L	L	3	3	1	2	2	2	2	2	2	3	2	1	1	2	2	2	2	3	3	3

Table 89b
Coronal observations at Climax, Colorado (6702A), west limb

Date				_																																	
Date				Dе	ree	es :	sou	th o	of 1	the	so]	Lar	eq	uato	or				00	1			Des	ree	s n	ort	h o	ft	he	sol	ar	eau	ato	r			
GCT	90	85	80	75	70	<u>65</u>	60	.55	50	45	40	35	30	25	20	15	10	5]	0-	5	10	15	20	25	30	35	LO	1,5	50	55	60	65		75	80	85	90
1952																				1					-		40	32			00	<u> </u>	10		00	0)	
Dec. 1.7		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	_	-	-	-	-	-	_	_	_	-	_	_	-	_	-	_	_	_	_	_	_	_
2.7	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	χ	Х	l x	lχ	Y	Y	Y	Υ	Υ	Υ	Y	v	v	v	v	v	v	v	v	v	v
4.8a	-	-	-	_	-	_	_	_	_	_	-	-	_	-	-	_	-	_		1	-	-	7.		-A	_		_	_	_	_	ν.	Λ	Λ	Λ	Λ	Λ
5.8a	_	Х	Х	Х	Х	Х	Х	Х	χ.	χ	χ	X	γ	Y	Y	Υ	Y	χ.	Х	l _x	v	v	v	v	v	_	- v	v	v	v	- v	37	77	77		_	-
10.7	-	_	-	_	-	_	=	_	_	_	-	-		-	-	-	A .	_	i ≏	l^	Λ.	_	Λ.	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Y	Y	Y	X	-
11.7	_	X	X	x	Υ	Y	_	_	_	_	_	_	_	_	_			_	-	-	_	_	_	-	_	-	_	_	_	_	_	_	_	_	-	_	-
14.8a	_	Y	y	Y	y	v	v	v	v	v	v	v	v	_	_	_	_	_	-	-	_	-	-	-	_	_		_	-	-	_	_	-	_	-	_	-
15.8	۱_	7.	_		_	_	Λ	Λ	Λ	Λ	Λ	Λ	Ą	_	-	_	-		-	-	_	-	_	_	-	-	_	Х	Х	Х	Х	Х	Х	Х	Х	X	_
16.8		_	_	_	_	_	_	-	_	-	_	_	_	-	_	-	_		-	-	_	_	-	_	_	_	_	_	_	_	-	-	-	-	_	-	
	_	-	_	_	_	-	_	_	-	-	_	_	_	_	-	_	-	-	-	-	1	2	4	1	-	_	-	_	_	_	-	-	-	-	_	_	-
24.7a	-	-	-	-	_	_	-	_	-	-	-	-	_	-	-	1	2	4	4	13	3	2	1	-	-	_	-	-	-	_	_	_	-	_	-	-	_
25.7a	-	_	-	-	-	-	_	-	-	-	-	-	-	_	1.	2	2	3	3	2	1	1	_	_	_	_	_	_	-	-	-	_	_	_	_	_	-
27.7	-	-	-	_	-	-	-	_	-	_	-	-	_	-	_	-	1	1	1	-	_	-	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_
29.8a	-	-	-	-	-	-	-	-	_	_	-	-	_	-	_	_	_	_	-	-	_	-	_	-	_	_	_	-	-	_	_	_	_	_	_	_	
30.8	-	-	_	-	-	-	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
31.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_

Table 90a
Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date				Doc	***		nort	h c	£ 4	ho	001	0.32	000	nto		_							no.	Troc		011 t	h o	f tl	he	901	979 (PC11	ato	-			
	000	00	90													7 5	10	7	00	1-	10	12									20 /	22	70	75	80	RE T	200
GCT 1952 Dec. 1.7 3.7 4.8 6.7 7.7 8.8 9.7 10.7 11.7 12.7 13.8 14.7 15.7 17.8 22.8 23.7 24.7 25.8 31.8	90 -33 	85 -4	80 -4 	75 - 4 3 - 32 332 - 33 - 333	70 2 4 - 2 - 43 43 33 - 23 - 33 33 2	65 43 - 3453333322224334334333	532554433222234434443	55 443455543232335644554	454465543232346855755	555456643332345870555	40 554544534 333 445776454	35 5445544333333435564364	30 554615544435455685575	25 554828555545445777477	455113786895658581858	11 16 15 16 7 5 9 7 13 13 6 11	5 18 24 12 18 15 16 30 34 18 7 8 8 8 14 14 12 4 20	6 8 23 11 13 14 32 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 16 16 16 16 16 16 16 16 16 16 16 16 16	5 6 14 5 11 15 22 20 28	555488 130	4 5 4 8 9 7 11 22 28 39	15 14 5 4 8 0 7 0 3 6 12 8 0 8 0 8 0 14 15 14 14 15 14 14 15 14 14 15 14 15 14 15 14 15 14 15 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	18 55 58 6 10 38 23	11 554 858 11 20 15	30 6 4 5 3 5 3 5 7 7 11 100 7 4 3 3 3 3 5 4 3	35 544243356878532323443	33333334753 5342223543	333222438346332232523	233-22338448832232433	55 233 12323735793333333333	534 - 2222 - 3350 32332353	433-2232-22343243234-	2 2 2 2 2 3 2 4 2 2 2 3 -	75 	80 i	3 2 X X	

Table 91a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date				Deg	ree	s n	ort	h o	ft	he	301	ar	equ	ato	or								Deg	ree	s s	out	h o	ft	he	sol	ar	eau	ato	r			
GCT	90	85		75								35		25		15	10	.5	0°	5	10	15					40	45	50	55	60 (80 8	35	90
1952																												_				_			_		_
Dec. 1.7	4	3	5	3	2	2	2	2	-	2	2	3	5	6	8	11	6	5	12	5	3	3	8	2	3	3	2	2	2	2	2	3	3	2	2	2	3
3.7	3	3	3	3	4	3	3	2	3	3	4	4	5	5	6	14	11	12	5	4	3	3	2	2	2	2	2	3	3	2	2	2	2	3	2	3	3
4.8	4	4	5	4	4	3	3	2	2	3	5	5	4	5	5	12	13	11	8	3	3	4	3	3	3	2	2	3	5	3	2	3	2	3	3	3	4
6.7	3	3	3	3	3	2	2	2	2	3	3	3	2	2	3	4	3	4	2	2	2	2	2	2	2	3	3	3	2	3	3	2	3	2	2	3	٥
7.7	4	5	5	6	3	2	2	2	2	3	4	5	4	_ 5	3	4	4	2	2	2	2	3	2	3	2	3	3	3	4	4	3	2	2	2	2	3	2
8.8	5	6	7	5	3	2	2	.3	2	2	5	7	8	'n	5	3	- 2	2	2	3	2	>	20	2	2	3	3	3	3	4	ر	2	2	2	2	2	2
9.7	3	6	8	7	5	3	3	4	3	3	4	8	- 8	6	6	. 5	3	2	3	3	25	- 4	>	5	5	4	ځ	3	2	2	٥	٥	2	2	2	2	٦
10.7	4	5	5	6	3	3	3	3	3	7	8	11	12	9	ğ	Ş	77	16	3	3	74	10	0	(0	0	5	4	3	3	۶	4	ر	2	2	2	2
11.7	3	4	5	5	3	4	3	3	2	8	갶	7.5	9	Ö	2	6	8	18	3	12	, 5	10	12	5	0	5	٥	2	2	2	ر	2	2	ر	2	2	٦
12.7	4	5	5	3	4	4	3	2	3	3	5	8	9	TÕ	3	6	11	20	5	13	17	TO	12	2	2	4	4	2	2	2	2	2	2	2	3	2	2
13.8	4	14	4	4	۲	کے	2	2	2	2	4	2	17	7.2	- 4	4	9	8		1.	7.1	0	2	2	2	1.	ر	2	2	2	2	2	2	3	3	-2	3
14.7	4	4	2	2	4	2	3	1.	2	3	2	6	17	TZ	11	٥	8	9	6	1.	2	ř),	3	2	3	3	٦,	2	2	3	3	2	2	3	3	3
15.7	4	6	5	5	4	2	2	4	2	2	2	6	1	1.	2	7	1.	7	1,	14	2	1.	1,	2	3	2	٦	2	3	3	٦	3	3	ī.	3	2	2
17.8 22.8	2	2	4	4	4	٥	2	2	2	2	2),	1.	4	2	4	4	5	1 4	12	7		4	3	2	2	3	3	2	3	3	3	2	2	2	3	3
	و ا	2	٥	2	2	2	2	2	2	2	2	4	4	2	2	2	8	7	1,	13	ź	8	7	6),),	5	Ĭ,	3	3	3	2	3	3	3	2	3
23.7 24.7	1,	2	- 44	2	١,	ر	2	3	3	2	2	2	2	2	3	1,	5	7	7	14	7	8	9	8	6	11	5	3	2	3	3	2	3	3	2	2	3
25.8	1,	2	2	2	2	2	3	3	2	2	2	7),	2	3),	1	Ĭ,	5	17	ĺ,	5	ź	ĥ	3	2	3	3	2	_	2	2	3	X	X	Х	X
27.9	4	7	2	2	3	2	2	7	2	3	1	7	6	7	7	7	8	8	9	8	Į,	3	Ĺ	3	3	Lа	Ĺа	ı́Да	2	2	2	2	2	2	2	2	3
30.8	1	4	را	1,	ر	5	3	2	2	3	1	5)i	Ę,	5	- li	6	6	5	15	L	Ĺ	Ĭ.	Ĺ	Ĭ.	3	3	2	2	2	2	2	2	2	2	2	-
31.8	3	3	3	3	3	3	3	2	3	2	2	3	Ĭ.	Ĺ	4	6	6	8	5	15	4	3	3	3	3	3	2	3	2	2	2	2	2	2	3	3	2

Table 92a
Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date				Deg	ree	SI	ort	h c	of t	the	SO.	Lar	equ	ato	r								Deg	ree	S S	out	h c	of t	the	30	ler	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																																					
Dec. 1.7	-	_	_	_	_	-	_	_	_	_	440	-	_	_	-	_	-	-	-	-	-	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-
3.7	-	-	_	_	_	-	_	-	_	_	_	_	2	3	3	3	3	3	3	2	-	-	-	_	-	_	-	-	-	_	_	_	-	-	-	-	-
4.8	-	_	_	_	enth	_	-	_	-	_	_	2	2	3	3	3	3	3	3	2	2	_	_	455	-	-	-	-	-	_	-	-	-	-	-		-
6.7	-	_	-	_	-	-	_	_	_	_	-	_	_	_	_	_	-	-	-	-	_	-	_	634	_	_	-	_	-	-	-	-	_	-	-	-	-
7.7	-	-	_	-	_	-	_	_	_	_	_	_	_	-	2	2	2	3	3	2	-	_	_	-	_		-	_	-	-	-	-	-	_	-	-	-
8.8	-	_	-	\rightarrow	_	-	_	-	_	_	_	_	-	\rightarrow	_	_	2	3	3	3	3	2	_	-	-	-	_	-	-	_	_	-	-		-	-	-
9.7	-	_	-	_	-	_	_	_	-	-		_	-	-	-	2	2	3	3	3	3	3	2	_	-	_	-	_	-	-	-	-	-	-	-	-	-
10.7	-	-	-	_	_	_	_	-		_	_	_	-	2	2	2	3	3	3	3	4	4	2	2	-	-	-	_	-	-	-	-	-	_	-	-	-
11.7	-	_	_	-	-	-	-	-		_	-	_	_	_	2	2	3	3	3	13	4	4	4	2	-	_	-	_	_	-	_	-	_	-	-	-	-
12.7	-	-	-	-	_	_	-	-	-	_	-	_	2	3	2	3	2	3	- 4	15	5	4	3	2	2	-	_	-	-	-	-	-	_	-	-	-	-
13.8	-	_	-		_	_	_	_	_	_	_	_	2	2	3	3	2	3	1 3	3	5	4	11	3	2	_	_	_	_	-	_	-	_	_	-	_	-
14.7	-	-	-	_	_	-	-	_	_	-	_	_	_	2	3	3	2	4	4	3	2	_	_	_	_	_	-	7	_	-	-	_	-	_	-	_	-
15.7	-		_	_	-	-	_	_	_	_	_	_	_	_	2	2	3	3	3	12	3	3	3	2	_	-	_	_	_	_	_	_	_	_		_	
17.8	I Y	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
22.8	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	
23.7 24.7	_	-	_	_	_	_	_		_	_	_	_	_	_	2	3	2	2			_	_	_	_	_	_	Ξ	_	_	_	_	_	_	_	_	_	
	-	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	Y	T	Y	Х
25.8 27.9	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_a		1 _3	a _	_	_	_	_	_	_	_	
30.8		_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	3	3	2	12	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	-
31.8		_	_		-	_		_	_	_	_	_	_	_	2	2	7	3	2	1-	-	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	

Table 90b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date				Deg	ree	S S												1	-0				Deg	rees	s n	orth	1 0	f th	e s	ol.	ar (equ.	ato	r			
GCT 90	8 00	5 (30	75	70	65	50	55	50	45	40	35	30	25	50	15	10	-5	0	3	10	15	20	25 .	30	35 1	10	45 5	0 5	55	60	65	70	75	80	85	90
GCT 90 1952 Dec. 1.7 3.7 4.8 6.7a 7.7 7.7 8.8 9.7	90 8	5 (43534334545554343555						8 6 6 4 4 3 3 4 5 7 8 11 8 8 8 20 32 14 20 8	11 11 3 3 3 3 4 4 6 8 10 9 7 14 4 1	12852333355486737474 1475473811	1165244557855581134639	5 1053245711016 169303932 165	8 5 5 3 4 10 13 14 11 20 14 6 7 45 10 28 38	56 14 58 71 13 11 13 11 150 128 37 20 11 5	20 4 6 11 5 7 8 12 23 11 8 7 8 20 18 12	25 3554791169957181614857	30 34546894985549516554	35 34546 782866 331 353344	34445869654330342233	34445657553482 322 34	24555545865348543233	5 23444445775341543433	60 2344545454565343443353				-2 -2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2	85 - 3 X 3 2 2	90 -3

Table 91b
Coronal observations at Sacramento Peak, New Mexico (637hA), west limb

Date				Der	ree	38 8	sout	:h c	of t	he	so	lar	ear	ato	m			7		T			Dec	TPAG	c r	ort	h c	of t	he	90	lar	001	240	20			+
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	3	10	15	20	25	30	35	40	45			60				80	85 90	•
1952																				-													<u> </u>				-
Dec. 1.7	3	2	3	3	3	2	2	3	2	3	3	4	4	4	5	4	3	3	3	5	12	13	12	9	8	6	11	8	10	4	3	3	2	3	3	3 4	
3.7	3	3	3	4	3	2	2	3	2	2	2	3	4	5	3	4	4	6	3	2	3	3	2	2	2	3	5	4	4	2	2	3	3	3	4	3 3	
4.8	4	3	3	3	3	3	2	2	2	2	2	4	4	3	3	5	3	4	4	5	4	5	4	3	2	2	3	3	2	2	2	3	3	3	4	5 4	
6.7a 7.7	3	2	3	3	3	3	3	3	3	2	5	1	4	3	3	4	4	41	5	2	4	.3	3	3	2	2	2	2	2	2	2	3	3	3	3	3 3	
8.8	3	Ĭ,	Ĭ,	J,	5	J,	3	2	2	2	7	6	7	8	4	4	6	0	10	3	7	5	5	4	2	ر	3	2	١,	1.	2	2	2	ز	1,	4 4	
9.7	3	4	4	3	Ĺ	Ī.	3	2	2	2	3	5	11	8	5	6	-	ıól	9	5	7	11	Ĭ	3	3	Ä	3	6	5	1	2	2	3	ر	7	1 3	
10.7a	3	5	5	4	5	5	4	2	3	3	4	ú	12	11	8	5	8	10	ļi	7	5	6	5	4	3	2	3	3	5	3	3	4	4	ū	ū	3 4	
11.7	3	2	5	4	5	3	3	2	2	2	3	3	6	6	5	6	5	8	4	4	8	8	14	5	3	3	3	5	4	3	4	5	3	3	2	3 3	
12.7 13.8	2	2	3	3	3	3	2	2	3	3	4	5	5	5	5	8	7	5	5	6	14	13	12	8	8	7	6	5	4	3	4	3	2	3	4	4 4	
14.7	3	3	1,	2	را	3	ر	2	2	2	2	3	3	3	4	2	4	4.1	. #	12	11.	12		10	6	0	1	11	4	4	3	3	3.	_	-	1 4	
15.7	1 3	3	L	5	Ţ	3	L	2	3	2	2	3	را	ร์	را	5	7,	7	5	15	25	23	18	11	7	6	5	12	フ 11	4	2	3	3	3	ر ار	4 4	
17.8	2	3	3	Ĺ	3	2	3	2	2	3	3	3	3	3	3	Ĺ	5	5	5	6	20	22	19	11	6	5	5),	3	2	2	2	3	X	Y	y Y	
22.8	3	3	3	3	3	3	3	3	2	3	2	2	3	3	4	5	7	5	3	3	2	2	2	3	3	3	2	3	3	2	3	2	2	2	3	3 3	
23.7	3	2	4	4	3	3	3	2	3	2	2	3	3	6	8	16	36	8	11	7	4	3	3	9	5	5	6	8	7	5	4	2	2	4	3	3 4	
24.7 25.8	3	3	4	5	4	4	3	3	2	3	3	3	5	6	7		20	11	.5	8	3	3	4	5	4	4	5	6	8	7	4	3	2	3	· 3	3 4	
27.9	A	2	4	4	ز	4	3	2	3	4	3	4	5	4	4	77	14:	12	11.	3	2	8	4	3	. 3	4	5	5	8	6	4	3	2	3	3	5 4	
30.8a	_	_	2	3	3	Į,	3	J ₁	2	2	2	3	3	2	6	2),	1	5	2	2	0	TO.	1,	0	2	5	1,	3	3	3	3	4	2	5	4 3	
31.8	2	3	3	3	2	3	2	3	2	2	2	2	3	4	5	5	5	4	5	14	5	1	3	2	3	3	3	4	5	1	3	3	3	2	2	4 4	

 $\underline{\textbf{Table 92b}}$ Coronal observations at Sacramento Peak, New Mexico (6702A), west $\underline{\textbf{limb}}$

Date					De	ree	8	sout	th c	of t	the	50 40	lar	eq	ato	or	1.			00				Deg	ree	s n	ort	h o	f t	he	so.	lar	equ	ato	r			_
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																																						
Dec.	1.7	-	-	-	_	-	-	_	-	-	-	-	_	_	-	-	-	_	-	2	3	3	3	2	-	-	-	-	-	_	_		_	-	-	-	_	-
	3.7	-	-	_	_	-	-	-	-	_	_	_	-	_	_	_	-	-	-	-	-	-	-	_	-	-	_	-	-	-	_	_	_	-	-	_	-	-
	4.8	-	-	-	-	_	_	_	-	-	_	_		-	-	-	440	2	2	3	3	2	_	_	_	-	_	-	-	-	_	_	****	-	-	-	_	-
	6.7a	-	-	-	-	_	-	-	-	-	_	-	-	_	-	-	_	-	-	-	-	-	-	_	-	-	_	-	_	-	-	_	-	_	-	-	. –	_
	7.7 8.8	-	_	_	_	_	_	_	_	_	-	_	-	_	_	-	-	_	_	-	-	-	-	_	-	_	_	-	-	_	_	_	_	-	_	_	-	-
	9.7		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	.0.7a	_	_	_	_	_	_	_	_	_	_	_	_	_	Ξ	_	_	_	_	2	2	3	3	3	3	2	2	_	_	_	_	_	_	_	Ξ	_	_	_
	1.7	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-44	2	. 3	3	3	3	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	.2.7	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	3	3	2	_	_	_	-	_	_	_	_	_	_	_	_	_	_
1	.3.8	-	-	-	_	_	-	-	-	_	_	-	_	_	-	_	_	-	-	2	2	3	3	2	_	-	-	_	-	-	-	_	-	_	_	_	_	_
	4.7	-	_	-	-	_	-	_	-	-	-	-	-	. –	_	-	_	_	-	-	-	_	_	_	_	-	_	_	-	-	-	_	-	-	_	_	-	-
1	.5•7	-	_	-	-	_	-	-	_	-	-	_	٦	-	_	-	-	_	_	-	2	3	3	2	_	~	-	-	-	-	-	-	-	-	-	-	_	-
	7.8	-	_	-	-	_	_	-	-	_	_	-	-	_	_	_	_	_	_	_	-	2	3	6	5	2	-	-	-	-	_	-	-	_	Х	X	Х	Х
	2.8	-	_	-	-	-	_	_	-		_	_	-	-	-	- 2	-	-	-	2	3	3	3	3	3	2	_	-	-	_	-	_	_	- Contract	_	_	_	-
2	24.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	7	2	17.	را	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_	_
2	5.8	x	Y	_	_	_	_	_	_	_	_	_	_	2	2	3	3	3	5	1 7	14	4	2	3	3	2	_	_	_	_	_	_	_	_	_	_	_	_
2	7.9	=	_	_	-	_	_	_	_	_	_	_	_	_	_	2	3	3	3	3	2	2	2	_	_	_	_	-	_	419	_	_	_	_	_	_	_	_
3	0.8a	-	_	_	-	_	_	-	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	-	-	_
	8.18	-	-	_	_	_	-	-	-	_	_	_,	_	_	-	-	-	_	-	-		_	_	-	-	_	_	-	-	-	_	-	-	-	-	_	_	-

Tablo 93 Particulars of Observations, Climax, Colorado

July - December 1952

Date GCT	Greenline threshold intensity at 45° 90°135°225°270°315°	Obs.	Meas.	Date GCT	Greenline threshold intensity at 45° 90°135°225°270°315°	Obs.	Meas.
1952 Jul. 9.6 12.6 13.6 14.6 15.6 17.9 18.6 120.6 22.6 221.6 22.6 24.6 22.7 21.6 22.7 21.6 22.7 21.7 21.6 22.7 21.7 21.8 22.7 25.6 26.7 27 21.7 21.8 22.7 25.6 26.7 27 21.7 21.8 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 22.7 22.6 25.7	10 10 8 7 8 8 8 11 7 7 7 7 8 9 7 6 9 9 13 11 11 10 10 10 10 7 7 7 6 6 6 6 6 6 6 11 13 13 12 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 12 12 12 12 12 12 12 12 12 12 12 11 11	At. At. At. At. AA. AA. AA. AA. AA. AA.	WW WWW WWW WWW WW WRRRRRRRRRRRRRRRRRRR	1952 Sep. 26.7 27.6 Oct. 1.7 2.7 3.8 4.7 5.7 7.0 7.7 8.6 9.7 11.7 11.7 11.7 12.7 15.9 16.6 17.7 22.7 23.7 24.7 25.7 29.7 29.6 Dec. 1.7 29.6 Dec. 1.7 29.6 Dec. 1.7 29.8 30.8 31.7	7 9 9 11 10 10 10 10 10 10 10 10 10 10 10 10	σ но σ	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

A = Allen
At = Athay
B = Billings
D = F.Dolder
H = Hansen
R = Roberts
W = I. Witte

Particulars of Observations, Sacremento Feak, New Mexico July - Docember 1952

Date GCT	Greenline threshold intensity at 00 450 90013501800225027003150	Obs.	Meas.	Date GCT	Greenline threshold intensity at 00 450 90013501800225027003150	Obs.	Meas.
1952 Jul 1.7 2.8 4.7 6.8 13.0 14.6 16.7 17.7 20.7 23.8 24.7 25.7 26.7 27.7 30.7 31.7 Aug. 2.7 31.7 22.6 21.7 22.6 21.7 22.6 23.8 24.7 25.7 26.7 27.8 29.8 30.8 31.7 25.7 26.7 27.8 29.8 30.8 31.7 25.7 26.7 27.8 29.8 30.8 31.7 25.7 26.7 27.8 29.8 30.8 31.7 25.7 26.7 27.8 29.8 30.8 31.7 25.7 11.7 12.7 13.7 15.7 16.7 17.8 18.7 27.7 28.7 0ct. 1.7 2.7	15	RWRSSWCMSRRSRWGSRCEMSRRCSRRRSSCFRRSSSFRSSSRRCSSRRCSSRRCSSCFRGSS	**************************************	1952 Oct. 3.7 b.7 5.8 6.7 7.7 8.7 9.7 12.7 13.7 14.7 15.8 16.7 17.7 22.7 23.7 24.7 25.7 26.8 27.9 29.7 13.7 14.7 12.7 13.7 14.7 12.7 13.7 14.7 12.7 13.7 14.7 12.7 13.7 14.7 12.7 13.7 14.7 12.7 13.7 12.7 13.7 14.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.7 12.7 13.8 22.8 23.7 25.8 27.9 30.8 31.8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	೧	KARMARKARKARKARKARKARKARKARKARKARKARKARKARKA

C = Crawford
F = Foster
R = Ramsey
S = Schnable
W = Warwick
Y = Tü

Table 95

Zürich Provisional Relative Sunspot Numbers

December 1952

Date	R _Z *	Date	P.7.4
ellimortishini Careelizatisti Calif. Impoliitati Xizangelenizati 	13	pacamentalismenta, responsibilità dell'appara na servizio di suoi si suoi di servizio di s	67
2	12	18	66
3	11,	19	66
4	16	20	50
5	22	21	40
6	32	22	35
7	38	23	35
8	50	24	29
9	38	25	18
10	28	26	36
11	34	27	15
12	ρo	28	0
13	47	29	7
14	63	30	9
15	71	31	16
16	67	Mean ?	34.65

^{*}Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 96

American Relative Sunspot Numbers

November 1952

Date	R _A * *	Date	R _A ,
1	19	17	25
2	10	18	33
3	0	19	38
4	0	20	777
5	11	21	35
6	16	22	33
7	34	23	28
8	40	24	35
9	33	25	24
10	26	26	20
11	26	27	15
12	20	28	24
13	24	29	5
14	26	30	12
15	20		
16	19	Mean:	22.5

^{*}Combination of reports from 28 observers; see page 10.

Table 97

. Solar Flares, December 1952

SID Obser- ved			
Import— ance	નેનનનેન	44444	44444
Rela- tive Area of Maximum (Tenths)	t 77 t	ΜΝΝΟΝ	ω ννη τ
Int. of Maxi- mum	10	11 - 8 12 - 12	F 80 NN
Time of Maximum (GCT)	1810 2030 1831	21564 1955 2008 2050 2017	2159A 1742 1835 1930 1705F
Position ti_ Long- de itude Diff eg) (Deg)	E118 E148 E31 E23	E05 W11 W10 W30	E48 E35 W76 W70 E41
Posi Lati- tude (Deg)	OTN 1.IN 1.IN 1.IN 1.IN 1.IN	NOS NOS NOS NOS NT.3	NO8 SO9 S10 S10 S11 NO1
Area (Mill) (of) (Visible) (Hemisph)	211 101 42	33 27 27 24 138 138	28 71 166 55
Duration (Mir)	135	App.10 9 12 20 20 18	App.10 40 55 App.160
re Fnd ing (GCT)	1950 2145 1846	2156A 1959 2012 2100 2028	2159A 1800 1900 2150 1715P
Time Observed Begin En ning in	1735 2000 1815 1826	2150 1950 2000 2040 2010	2155 1938 1720 1805 1915B 1655P
Date 1952	Dec. 7	21112	30 55 55 55 55 55 55 55 55 55 55 55 55 55
Observa- tory	McMath Sac.Peak " " McMath	Sac.Peak	Sac.Peak McMath Sac.Peak "

Sac. Feak = Sacramento Peak

Flare began before given time Flare ended after given time Time reported as questionable 20 P

Times only approximate

Table 98

Indices of Geomagnetic Activity for November 1952

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.	~	Values Kp		Final Selected
Day 1952	С	three-hour interval 1 2 3 4 5 6 7 8	Sum	Days
1 2 3 4 5	1.0 0.9 0.6 0.0	4+ 3+ 2+ 3+ 4+ 4- 40 50 4- 4- 30 2+ 4- 30 40 1+ 2+ 2+ 2+ 3+ 3- 2+ 1- 2+ 3- 1+ 20 1- 0+ 1- 1- 0+ 2- 2- 10 20 20 1+ 1- 2-	30+ 25- 18+ 9- 120	Five Quiet 10 11 12
6 7 8 9 10	0.9 1.0 1.0 0.5 0.0	1+ 40 40 4- 4- 30 30 2- 30 30 2+ 3- 20 30 40 4+ 30 4- 3- 2+ 2+ 3- 4- 4+ 4- 30 1+ 10 1- 30 2+ 2+ 1- 00 1- 0+ 00 10 10 0+	24+ 24+ 25- 17+ 40	13
11 12 13 14 15	0.2 0.0 0.0 0.3 0.6	1- 0+ 1- 1- 00 2- 20 20 1+ 00 1+ 00 0+ 0+ 0+ 0+ 1+ 1- 00 0+ 1- 00 0+ 0+ 1- 2+ 2- 20 10 1- 2- 3- 2- 2+ 30 2+ 10 2- 3- 1-	80 40 4- 13- 15+	Five Disburbed 1 21 26
16 17 18 19 20	0.8 0.9 0.3 0.1 0.4	00 1- 3- 2+ 4+ 3+ 1- 10 2+ 10 3- 20 2- 20 4+ 4- 20 3- 3- 20 1+ 0+ 2- 2- 1+ 1+ 10 1+ 20 10 1+ 1+ 2- 2- 0+ 2- 1+ 20 10 20	150 20- 14+ 11- 12-	27 28
21 22 23 24 25	1.2 0.9 0.3 0.5 0.5	40 40 6+ 5- 30 30 3- 2+ 5- 3- 3- 4- 30 4- 2+ 0+ 30 4- 30 2+ 2- 1- 1- 1- 2- 1- 20 3- 2+ 30 10 0+ 4- 1+ 10 3- 3- 20 1+ 1+	300 230 16- 14- 160	Ten Quiet 4 5 10
26 27 28 29 30	1.2 1.5 1.1 0.7 0.7	0+ 1- 30 4- 3- 4- 6- 5+ 4- 40 4+ 60 6- 4+ 4+ 40 40 3+ 40 4- 40 40 4- 30 20 10 2+ 30 4- 30 3+ 3- 3- 1+ 30 3- 2+ 30 2+ 3-	250 36+ 30- 210 200	11 12 13 14 18
Mean	0.61			20

Table 99

Sudden Ionosphere Disturbances Observed at Washington, D. C.

December 1952

No sudden ionosphere disturbances were observed during the month of December.

Table 100

Sudden Ionosphere Disturbances Reported by International Telephone and Telegraph Corporation, as Observed at Platanos, Argentina

1952	GCT	Location of transmitters	Other
Day	Beginning End		phenomena
November 22	1050 1110	Brazil, Denmark, Germany, Italy	

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

46.8°N, 7.3°E OCTOBER 1952

Index of Tables and Graphs of Ionospheric Data

in CRPL-F101

					Table page	Figure page
Adak, Alaska						
November 1952					14	55
Akita, Japan	•	•	•	•	• 1	2)
September 1952					19	70
Baton Rouge, Louisiana	•		•		-,	, ,
November 1952		•		•	14	57
October 1952	•	•	•	•	16	63
Bombay. India						
August 1952					20	74
July 1952					21	78
June 1952					23	82
May 1952	•	6	•	•	23	84
Brisbane, Australia						
August 1952					21	76
July 1952	•	•	•	•	22	80
Canberra, Australia					0.1	26
August 1952					21 22	76 80
July 1952	•	•	•	•	44	00
May 1952					24	86
Churchill, Canada	•	•	•	•	24	00
September 1952					18	67
De Bilt, Holland	٥	•	•	•	20	01
October 1952	_		_		16	62
Delhi, India	•	•	•		_•	
August 1952					20	73
July 1952					21	77
June 1952					22	81
May 1952					23	84
Fairbanks, Alaska	•	•	•			
November 1952	•	•	•	•	13	53
Formosa, China						
September 1952	•	•	0	•	19	72
August 1952					20	73
Fort Chimo, Canada						
September 1952	•	•	•	•	18	67
Graz, Austria						
November 1952	•	•	•	•	14	56
Guam I.						
November 1952	•	•	•	0	15	59
Hobart, Tasmania					23	00
August 1952					21	77
July 1952	•	•	•	•	22	81
Huancayo, Peru					16	60
November 1952	•	•	•	•	15	30

Index (CRPL-F101, continued)

	Table page	Figure page
Kiruna, Sweden		
October 1952	16	61
Madras, India		
August 1952	20	74
July 1952	21	78
June 1952	23	82
May 1952	24	85
Maui. Haveii		
November 1952	15	58
Nairobi, Kenya		
April 1952	24	87
Marsarssuak, Greenland		-reb
November 1952	13	54
October 1952	16	62
Okinawa I.		# D
Movember 1952	15	58 64
October 1952	17	O ₄
Oslo, Morway	13	5/4
November 1952	7.7	7"
September 1952	18	69
Panana Canal Zone	e's las	4,7
November 1952	15	60
October 1952	17	64
Point Barrow, Alaska		
November 1952	13	52
October 1952	16	61
September 1952	17	66
Prince Bupert, Canada		
September 1952	18	68
Puerto Rico, W. I.		
November 1952	15	59
Rarotonga I.		
June 1952	23	83
May 1952	24	86
Resolute Bay, Canada	0.00	P as
September 1952	17	65
Reykjavik, Iceland	90 400	11
September 1952	17	66
St. John's, Newfoundland	10	60
September 1952	18	69
San Francisco, California	14	56
November 1952	4.4	20
Schwarzenburg, Switzerland	16	63
October 1952	49	100

Index (CRPL-F101, concluded)

	Table page	Figure page
Terre Adelie		
October 1951	24	87
Tiruchy, India		
August 1952	20	75
July 1952	22	79
June 1952	23	83
May 1952	24	85
Tokyo, Japan		
September 1952	19	71
Townsville, Australia		·
August 1952	20	75
July 1952	22	79
Tromso, Norway		
Movember 1952	13	53
Upsala, Sweden		
November 1952	14	55
Wakkanai, Japan		
September 1952	19	70
Washington, D. C.		
December 1952	13	52
Watherco, W. Australia		
October 1952	17	65
September 1952	19	72
White Sands, New Mexico		
November 1952	14	57
Winnipeg, Canada		
September 1952	18	68
Yamagawa, Japan		
September 1952	19	71

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data,

Semineeklu:

- CRPL—I. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following
- CRPL-Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL—Ja. Semimontally Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthlu:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

Ionospheric Data. CRPL-F.

Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific Frequency Guide for Operating Personnel. *IRPL—A.

*IRPL-H.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

(G1, G3, available. Others out of print; see second footnote.)

IRPL-R. Nonscheduled reports

Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable R4. Frequencies.

Criteria for Ionospheric Storminess.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

An Automatic Instantaneous Indicator of Skip Distance and MUF. **R6. R7.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionosphere Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

**R26. The Ionosphere as a Measure of Solar Activity.

- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots
 Grouped by Distance From Center of Disc.

 **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

**R31. North Atlantic Radio Propagation Disturbances, October 1943 Thro

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs. **R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

Radar operation and weather. (Superseded by JANP 101.) (Superseded by JANP 102.) T2.

Radar coverage and weather. (Superseded by JANP 102.)
Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group CRPL-T3. WPG-5.)

^{*}tems bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series.
**Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

