

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Analiza i modelowanie oprogramowania

Dokumentacja projektowa - automatyczny parking

Autor: Mateusz Grzeliński, Agata Sidło, Katarzyna Lambrecht, Katarzyna Wilczak

Kierunek studiów: Informatyka

Semestr: V

Spis treści

1.	Ogólı	ny opis systemu	3	
	1.1.	Cel (przeznaczenie) systemu	3	
	1.2.	Udziałowcy i użytkownicy	3	
	1.3.	Podstawowe cele udziałowców i użytkowników	3	
	1.4.	Granice systemu	4	
	1.5.	Lista funkcji systemu	4	
2.	Anali	za Dziedziny	7	
	2.1.	Klasy i opis atrybutów	7	
	2.2.	Diagramy klas - relacje	7	
	2.3.	Diagramy stanów dla wybranych klas	7	
	2.4.	Słownik pojęć	7	
3.	SRS	- specyfikacja wymagań	9	
	3.1.	Ogólny diagram przypadków użycia	9	
	3.2.	Definicje przypadków użycia	9	
4.	Architektura systemu			
	4.1.	Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi		
		programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpo-		
		wiednim zestawem metod.	11	
	4.2.	Specyfikacja interfejsu pomiędzy komponentami	11	
5.	Projekt oprogramowania			
	5.1.	Sekcja	13	
6.	Proje	kt interfejsu użytkownika IRS	15	
	6.1.	Sekcja	15	
7.	Proje	kt bazy danych DBDD	17	
	7.1.	Diagram ERD	17	
	7.2.	Specyfikacja kwerend	17	

1. Ogólny opis systemu

1.1. Cel (przeznaczenie) systemu

Celem systemu automatyczny parking jest umożliwienie komputerowej obsługi pobierania opłat za pozostawienie pojazdu na parkingu na określony czas.

1.2. Udziałowcy i użytkownicy

- Właściciel
- Klient
- Operator

1.3. Podstawowe cele udziałowców i użytkowników

Udziałowcy	Cel	Priorytet
Klient	Wjechanie na parking	Wysoki
Klient	Opuszczenie parkingu	Wysoki
Operator	Przeglądanie zdjęć	Wysoki
Właściciel	Wyświetlenie statystyk	Średni

4 1.4. Granice systemu

1.4. Granice systemu

Rys. 1.1. Granice systemu automatyczny parking

1.5. Lista funkcji systemu

Rys. 1.2. Diagram czynności: Klient wjeżdża na parking

Rys. 1.3. Diagram czynności: Klient opuszcza parking

2. Analiza Dziedziny

Analiza obiektów biznesowych

- 2.1. Klasy i opis atrybutów
- 2.2. Diagramy klas relacje
- 2.3. Diagramy stanów dla wybranych klas
- 2.4. Słownik pojęć

8 2.4. Słownik pojęć

3. SRS - specyfikacja wymagań

- 3.1. Ogólny diagram przypadków użycia
- 3.2. Definicje przypadków użycia

4. Architektura systemu

- 4.1. Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpowiednim zestawem metod.
- 4.2. Specyfikacja interfejsu pomiędzy komponentami

5. Projekt oprogramowania

5.1. Sekcja..

14 5.1. Sekcja..

6. Projekt interfejsu użytkownika IRS

6.1. Sekcja...

16 6.1. Sekcja...

7. Projekt bazy danych DBDD

- 7.1. Diagram ERD
- 7.2. Specyfikacja kwerend