

Lecture-12

Space Time Complexity Analysis

Utkarsh Nath

Order Complexity Analysis

Amount of time/space taken by the algorithm to run as a function of the input size

Experimental Analysis

Bubble Sort vs Merge Sort

Theoretical Analysis

- Bubble Sort
- Binary Search
- Factorial
- Polynomial Evaluation

Your turn

- Insertion sort
- Selection Sort
- Fibonacci

Complexity Analysis Examples

```
Given k<N
for (i=0; i<=n-1; i++){
  for (j=i+1; j<=k; j++){
     constant number of operations.
  }
}</pre>
```


Complexity Analysis Examples

```
for (i=0; i<=n-1; i++){
    for (j=i+1; j<=n; j++){
        constant number of operations.
    }
}</pre>
```


Complexity Analysis Examples

```
Given k<N
for (i=0; i<=n-1; ){
  for (j = 0; j<k; j++){
     constant number of operations.
  }
  i = i + j;
}</pre>
```


Merge Sort?

What is space complexity?

What in case of recursion?

HW - Go through the assignments

Thank You!

Utkarsh Nath