AE4238: Aero Engine Technology Assignment -1

The Boeing 737 family

B737-100

PW-JT 8D Boeing 737

Boeing B-737 Max

CFM LEAP-1B

P&W JT8D & Leap 1B during cruise

Parameters	JT 8D	Leap-1B
Bypass Ratio -	1.62	8.6
Core Mass Flow Rate, corrected kg/s	90.2	50
Fan Pressure Ratio	1.9	1.5
HPC Pressure Ratio	3.5	10
Turbine Inlet Temperature °K	1150	1450
Overall Pressure Ratio	17	40
Fan, LPC & HPC Isentropic Efficiency	0.85	0.92
LPT and HPT Isentropic Efficiency	0.88	0.92
Combustor Efficiency	0.985	0.995
NR. OF STAGES IN COMPRESSOR / TURBINE	2+6+7 / 1+3	1+3+10 / 2+5
DIAMETER m	1.25	1.75

Assignment-1

General characteristics

Type: two spool turbofan Engine
Nozzle= Convergent
Intake Isentropic Efficiency = 0.99
Mechanical efficiency = 0.99
combustor pressure ratio = 0.96
Nozzle efficiency = 0.99

Ambient Temp. = 220 K Altitude = 10668m Mach number = 0.78 Ambient Press. = 23842 Pa Gas constant= 287 J/kg K Fuel calorific value (LHV) = 43MJ CP air = 1000; kappa air = 1.4 CPgas = 1150; kappa gas = 1.33

Turbofan Nomenclature

Various Efficiency

Please note that these efficiencies are valid for an unchoked nozzle

$$egin{aligned} \eta_{thermal} &= \\ rac{\Sigma \left\{ \frac{1}{2} \dot{m} \left(v_{j}^{2} - v_{o}^{2}
ight) \right\}}{\dot{m}_{f} \, LHV_{f}} \end{aligned}$$

$$\frac{\eta_{total}}{\sum \left\{\dot{m}\left(v_{j}-v_{o}\right)\right\}v_{o}} \frac{\dot{m}_{f}LHV_{f}}{\dot{m}_{f}LHV_{f}}$$

Assignment-1

- 1. Calculate the various efficiency mentioned in the Sankey.
- 2. Draw a relevant Sankey diagram for the two engines, PW-JT8D and Leap 1B.
- 3. Write a paragraph or so on how the losses depicted in the Sankey diagram could be reduced.
- 4. Draw specific conclusions from the exercise above (in bullets).

Instructions

- 1. Make a report on the assignment.
- 2. The report should contain at least the following parts
 - Problem description
 - Assumptions
 - Procedure
 - Results & observations
 - Conclusions & outlook
- 3. The report should be handed in on /before 9th Dec 2024 23:00 CET
- 4. You can do this assignment in a group of two or as an individual.
- 5. Please restrict the number of pages to 8 (excluding appendix).
- 6. Attach your code as an appendix.
- 7. You can use any programing language of your choice.
- 8. Use the standard station numbering.
- 9. Please submit your assignment on Brightspace.
- 10. In case if we find elements of plagiarism in the assignments, students would be reported to the board of examiners.

