Normal Distribution

Andrey Chinnov, Sebastian Honermann, Carlos Zydorek

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - ★ Q-Q-Plots
 - ★ Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - ★ Shapiro-Wilk Test
 - ★ Pearson's Chi-Squared Test
 - ★ Kolmogorov-Smirnov Test
- Transformation to Normality
 - ▶ Box-Cox Transformation
 - Transformation Results Testing
- Summary

Normality as a requirement for statistical methods

Introduction

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - ★ Q-Q-Plots
 - ★ Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - ★ Shapiro-Wilk Test
 - ★ Pearson's Chi-Squared Test
 - ★ Kolmogorov-Smirnov Test
- Transformation to Normality
 - ► Box-Cox Transformation
 - Transformation Results Testing
- Summary

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$

- empirical c. d. f., where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

Glass Type 1, Natrium (Na)

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$

- empirical c. d. f., where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

F(x) - theoretical normal c. d. f. with

$$\bar{x} = \frac{1}{n} \sum_{i} x_i, \quad \sigma_x^2 = \frac{1}{n} (x_i - \bar{x})^2$$

Glass Type 1, Natrium (Na)

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$

- empirical c. d. f., where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

F(x) - theoretical normal c. d. f. with

$$\bar{x} = \frac{1}{n} \sum_{i} x_i, \quad \sigma_x^2 = \frac{1}{n} (x_i - \bar{x})^2$$

$$d = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|$$

- distance between them.

Glass Type 1, Natrium (Na)

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

• Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

• Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F

⇒ tabulated

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

- Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F
 - ⇒ tabulated

 \bullet $\forall t>0$:

$$P(D_n \le t) \xrightarrow[n \to \infty]{} H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

11 / 22

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0)$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0)$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0)$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0) \approx 1 - H(c).$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0) \approx 1 - H(c).$$

$$\implies c \approx H_{1-\alpha}$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}$$

Example:

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

n = 214

Glass Type 1, Natrium (Na)

Case Studies "Data Analytics"

14.5

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

- n = 214
- $D_n = \sqrt{n} \sup |F_n F| = 8.6815$

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

Example:

- n = 214
- $D_n = \sqrt{n} \sup |F_n F| = 8.6815$
- $\alpha = 0.01$

$$\implies c = H_{1-\alpha} = 1.6276$$

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

Example:

- n = 214
- $D_n = \sqrt{n} \sup |F_n F| = 8.6815$
- $\alpha = 0.01$

$$\implies c = H_{1-\alpha} = 1.6276$$

• $D_n > c \implies H_0$ rejected

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

Example:

- n = 214
- $D_n = \sqrt{n} \sup |F_n F| = 8.6815$
- $\alpha = 0.01$

$$\implies c = H_{1-\alpha} = 1.6276$$

- $D_n > c \implies H_0$ rejected
- $\bullet \implies \mathbb{P} \neq \mathbb{P}_0$

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

- n = 214
- $D_n = \sqrt{n} \sup |F_n F| = 8.6815$
- $\alpha = 0.01$

$$\implies c = H_{1-\alpha} = 1.6276$$

- $D_n > c \implies H_0$ rejected
- $\Longrightarrow \mathbb{P} \neq \mathbb{P}_0$
- data not normally distributed!!!

Glass Type 1, Natrium (Na)

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

R code used:

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

R code used:

c(mean(dat), var(dat))

[1] 1.518365e+00 9.222541e-06

#optim is a predifined R function in stats package #defalut method of optimization is Nelder and Mead result = optim(c(mean(dat), var(dat)), KS) result\$par

[1] 1.517963843 -0.002297519

result\$value

[1] 0.09135569

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423$, $\sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{u} = 13.1770$. $\hat{\sigma}^2 = 0.4682$

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 1.1514

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 1.1514
- c = 1.6276

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 1.1514
- c = 1.6276
- $D_n < c \implies H_0$ accepted

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 1.1514
- c = 1.6276
- $D_n < c \implies H_0$ accepted
- $\bullet \implies \mathbb{P} = \mathbb{P}_0$

Glass Type 1, Natrium (Na)

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 1.1514
- c = 1.6276
- $D_n < c \implies H_0$ accepted
- $\bullet \implies \mathbb{P} = \mathbb{P}_0$
- ⇒ data normally distributed!

Glass Type 1, Natrium (Na)

Case Studies "Data Analytics"

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

Results of Improved KS test on the whole data set:

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

5 variables are normaly distributed (RI,Na,AI,Si,Ca)

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)
- The best statistics test value for Al

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)
- The best statistics test value for Al
- The worst statistic test value for Fe

Quantitative Methods for Normality Testing

Test Results:

variable	rejected
RI	no
Na	no
Mg	yes
ΑI	no
Si	no
K	yes
Ca	no
Ba	yes
Fe	yes

Quantitative Methods for Normality Testing

Test Results:

variable	rejected
RI	no
Na	no
Mg	yes
ΑI	no
Si	no
K	yes
Ca	no
Ba	yes
Fe	yes

Theoretical Quantiles

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - ★ Q-Q-Plots
 - ★ Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - ★ Shapiro-Wilk Test
 - ★ Pearson's Chi-Squared Test
 - ★ Kolmogorov-Smirnov Test
- Transformation to Normality
 - Box-Cox Transformation
 - Transformation Results Testing
- Summary

Transformation to Normality

Box-Cox Transformation

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - ★ Q-Q-Plots
 - ★ Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - ★ Shapiro-Wilk Test
 - ★ Pearson's Chi-Squared Test
 - ★ Kolmogorov-Smirnov Test
- Transformation to Normality
 - ▶ Box-Cox Transformation
 - ▶ Transformation Results Testing
- Summary

Summary