Partial Fractions MCQs - Exercise 5.4 (Class 11 Mathematics)

Prepared for Entry Test Preparation

Multiple Choice Questions

1. The partial fraction form of $\frac{1}{(x^2+1)^2}$ is:

(a)
$$\frac{A}{x^2+1} + \frac{B}{(x^2+1)^2}$$

(b)
$$\frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}$$

(c)
$$\frac{A}{x^2+1}$$

(d)
$$\frac{Ax+B}{(x^2+1)^2}$$

2. For $\frac{x^2}{(x-1)(x^2+2)^2}$, the correct partial fraction setup is:

(a)
$$\frac{A}{x-1} + \frac{Bx+C}{x^2+2}$$

(b)
$$\frac{A}{x-1} + \frac{Bx+C}{x^2+2} + \frac{Dx+E}{(x^2+2)^2}$$

(c)
$$\frac{Ax+B}{x-1} + \frac{Cx+D}{(x^2+2)^2}$$

(d)
$$\frac{A}{x-1} + \frac{B}{(x^2+2)^2}$$

3. The value of A in $\frac{x^3}{(x^2+x+1)^2} = \frac{Ax+B}{x^2+x+1} + \frac{Cx+D}{(x^2+x+1)^2}$ is:

(c)
$$-1$$

4. The partial fraction of $\frac{2}{(x+1)^2(x^2+1)}$ includes a term:

(a)
$$\frac{A}{(x+1)^2}$$

(b)
$$\frac{Ax+B}{(x+1)^2}$$

(c)
$$\frac{A}{x^2+1}$$

(d)
$$\frac{Ax+B}{x+1}$$

5. For $\frac{3x^2}{(x^2+1)^2(x-2)}$, the coefficient of $\frac{1}{x-2}$ is:

(a)
$$\frac{3}{25}$$

(b)
$$\frac{12}{25}$$

(c)
$$-\frac{12}{25}$$

(d)
$$\frac{6}{25}$$

- **6.** The partial fraction form of $\frac{x^2}{(x+1)^2(x^2+3)}$ is:
 - (a) $\frac{A}{x+1} + \frac{Bx+C}{x^2+3}$
 - (b) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+3}$
 - (c) $\frac{Ax+B}{(x+1)^2} + \frac{Cx+D}{x^2+3}$
 - (d) $\frac{A}{x+1} + \frac{B}{x^2+3}$
- **7.** For $\frac{4x^2}{(x^2+2)^2}$, the partial fraction decomposition is:
 - (a) $\frac{Ax+B}{x^2+2}$
 - (b) $\frac{Ax+B}{x^2+2} + \frac{Cx+D}{(x^2+2)^2}$
 - (c) $\frac{A}{x^2+2} + \frac{B}{(x^2+2)^2}$
 - (d) $\frac{Ax+B}{(x^2+2)^2}$
- **8.** The constant B in $\frac{x^2+1}{(x^2+x+1)^2} = \frac{Ax+B}{x^2+x+1} + \frac{Cx+D}{(x^2+x+1)^2}$ is:
 - **(a)** 0
 - **(b)** 1
 - (c) -1
 - (d) 2
- **9.** The partial fraction of $\frac{2x^2}{(x-1)(x^2+1)^2}$ includes a term:
 - (a) $\frac{Ax+B}{(x^2+1)^2}$
 - (b) $\frac{A}{x-1}$
 - (c) $\frac{Ax+B}{x-1}$
 - (d) $\frac{A}{(x^2+1)^2}$
- **10.** For $\frac{x^4}{(x^2+1)^2}$, the first step is:
 - (a) Resolve directly into partial fractions
 - (b) Perform polynomial division
 - (c) Factor the denominator only
 - (d) Substitute x = 1
- **11.** The coefficient of $\frac{1}{(x+1)^2}$ in $\frac{x}{(x+1)^2(x^2+2)}$ is:
 - (a) $\frac{1}{2}$
 - (b) $-\frac{1}{2}$
 - (c) $\frac{1}{4}$
 - (d) $-\frac{1}{4}$

- **12.** The partial fraction form of $\frac{x^3}{(x^2+2)^2(x-1)}$ includes:
 - (a) $\frac{A}{x-1} + \frac{Bx+C}{x^2+2}$
 - (b) $\frac{A}{x-1} + \frac{Bx+C}{x^2+2} + \frac{Dx+E}{(x^2+2)^2}$
 - (c) $\frac{Ax+B}{x-1} + \frac{Cx+D}{(x^2+2)^2}$
 - (d) $\frac{A}{x-1} + \frac{B}{(x^2+2)^2}$
- **13.** The value of C in $\frac{5x^2}{(x^2+1)^2(x+1)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x+1}$ is:
 - (a) $\frac{5}{2}$
 - **(b)** 0
 - (c) -5
 - (d) $\frac{5}{4}$
- **14.** For $\frac{3x}{(x+1)^2(x^2+3)}$, the partial fraction includes:
 - (a) $\frac{A}{(x+1)^2} + \frac{Bx+C}{x^2+3}$
 - (b) $\frac{A}{x+1} + \frac{B}{(x+1)^2}$
 - (c) $\frac{Ax+B}{(x+1)^2} + \frac{Cx+D}{x^2+3}$
 - (d) $\frac{A}{x+1} + \frac{B}{x^2+3}$
- **15.** The partial fraction of $\frac{6x^2}{(x^2+x+1)^2}$ is
 - (a) $\frac{2x+1}{x^2+x+1} + \frac{3}{(x^2+x+1)^2}$
 - (b) $\frac{3x+2}{x^2+x+1} + \frac{1}{(x^2+x+1)^2}$
 - (c) $\frac{x+1}{x^2+x+1} + \frac{2}{(x^2+x+1)^2}$
 - (d) $\frac{2}{x^2+x+1} + \frac{3}{(x^2+x+1)^2}$
- **16.** For $\frac{x^2}{(x-1)(x+1)(x^2+2)^2}$, the term for $(x^2+2)^2$ is:
 - (a) $\frac{A}{x^2+2}$
 - (b) $\frac{Ax+B}{(x^2+2)^2}$
 - (c) $\frac{Ax+B}{x^2+2}$
 - (d) $\frac{A}{(x^2+2)^2}$
- **17.** The coefficient of $\frac{1}{x-1}$ in $\frac{2x^2}{(x-1)(x^2+1)^2}$ is:
 - (a) $\frac{1}{2}$
 - (b) $\frac{1}{4}$
 - (c) $-\frac{1}{4}$

- (d) $\frac{3}{4}$
- **18.** The partial fraction of $\frac{x^3}{(x^2+1)^2}$ is:
 - (a) $\frac{x}{x^2+1} + \frac{1}{(x^2+1)^2}$
 - (b) $\frac{x-1}{x^2+1} + \frac{2}{(x^2+1)^2}$
 - (c) $\frac{x+1}{x^2+1} + \frac{1}{(x^2+1)^2}$
 - (d) $\frac{x}{x^2+1} + \frac{2}{(x^2+1)^2}$
- **19.** For $\frac{4x^2}{(x+1)^2(x^2+1)^2}$, the coefficient of $\frac{1}{(x+1)^2}$ is:
 - (a) 1
 - **(b)** 2
 - (c) 3
 - (d) 4
- **20.** The partial fraction form of $\frac{x^2+2}{(x^2+x+1)^2(x-1)}$ includes:
 - (a) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$
 - (b) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1} + \frac{Dx+E}{(x^2+x+1)^2}$
 - (c) $\frac{Ax+B}{x-1} + \frac{Cx+D}{(x^2+x+1)^2}$
 - (d) $\frac{A}{x-1} + \frac{B}{(x^2+x+1)^2}$

Answers and Explanations

- **1. Answer: b** $\frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}$ *Explanation*: Repeated quadratic $(x^2+1)^2$ requires linear numerators for each power.
- **2. Answer: b** $\frac{A}{x-1} + \frac{Bx+C}{x^2+2} + \frac{Dx+E}{(x^2+2)^2}$ *Explanation*: Linear factor x-1 has constant numerator; repeated quadratic $(x^2+2)^2$ has linear numerators.
- **3. Answer: a** 1 Explanation: For $\frac{x^3}{(x^2+x+1)^2}$, equate coefficients of x^3 : A=1.
- **4. Answer:** a $\frac{A}{(x+1)^2}$ Explanation: Repeated linear $(x+1)^2$ includes $\frac{A}{(x+1)^2}$.
- **5. Answer: b** $\frac{12}{25}$ *Explanation*: Let $\frac{3x^2}{(x^2+1)^2(x-2)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x-2}$. Put x=2: $12=E(5)^2 \implies E=\frac{12}{25}$.
- **6. Answer: b** $\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{Cx+D}{x^2+3}$ Explanation: Repeated linear $(x+1)^2$ and quadratic x^2+3 require appropriate numerators.
- **7. Answer: b** $\frac{Ax+B}{x^2+2} + \frac{Cx+D}{(x^2+2)^2}$ *Explanation*: Repeated quadratic $(x^2+2)^2$ requires linear numerators for each power.
- **8. Answer: c** -1 *Explanation*: For $\frac{x^2+1}{(x^2+x+1)^2}$, equate coefficients: A+B=0, solve to get B=-1.

- **9. Answer: b** $\frac{A}{x-1}$ *Explanation*: Linear factor x-1 requires a constant numerator.
- **10. Answer: b** Perform polynomial division *Explanation*: Degree of numerator (4) equals degree of denominator (4), so divide first.
- **11. Answer: a** $\frac{1}{2}$ *Explanation*: Let $\frac{x}{(x+1)^2(x^2+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+2}$. Put x = -1: $-1 = B(3) \implies B = -\frac{1}{3}$. Solve system: $B = \frac{1}{2}$.
- **12. Answer: b** $\frac{A}{x-1} + \frac{Bx+C}{x^2+2} + \frac{Dx+E}{(x^2+2)^2}$ *Explanation*: All factors are accounted for with appropriate numerators.
- **13.** Answer: **b** 0 Explanation: Let $\frac{5x^2}{(x^2+1)^2(x+1)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x+1}$. Solve: C = 0.
- **14. Answer: a** $\frac{A}{(x+1)^2} + \frac{Bx+C}{x^2+3}$ *Explanation*: Repeated linear $(x+1)^2$ and quadratic $x^2 + 3$ require appropriate numerators.
- **15. Answer:** a $\frac{2x+1}{x^2+x+1} + \frac{3}{(x^2+x+1)^2}$ Explanation: Solve $\frac{6x^2}{(x^2+x+1)^2}$: A=2, B=1, C=0, D=3.
- **16. Answer: b** $\frac{Ax+B}{(x^2+2)^2}$ Explanation: Repeated quadratic $(x^2+2)^2$ requires a linear numerator.
- **17. Answer: b** $\frac{1}{4}$ *Explanation*: For $\frac{2x^2}{(x-1)(x^2+1)^2}$, put x=1: $2=A(2)^2 \implies A=\frac{1}{2}$. Solve: coefficient is $\frac{1}{4}$.
- **18. Answer:** a $\frac{x}{x^2+1} + \frac{1}{(x^2+1)^2}$ *Explanation*: Solve $\frac{x^3}{(x^2+1)^2}$: A=1, B=0, C=0, D=1.
- **19. Answer: b** 2 Explanation: Let $\frac{4x^2}{(x+1)^2(x^2+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$. Put x = -1: $4 = B(3)^2 \implies B = \frac{4}{9}$. Solve: B = 2.
- **20. Answer: b** $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1} + \frac{Dx+E}{(x^2+x+1)^2}$ *Explanation*: All factors are accounted for with appropriate numerators.