Работа по поляризации

Садыков Даниил, Тамбовцев Илья

Теория для первой части

Поляризация — зависимость направления колебаний электрического поля в электромагнитной волне от времени. В работе мы имеем дело с линейной и круговой поляризацией. Будем рассматривать плоские волны:

$$E = E_0 e^{-i(\omega t - kz)}$$

Линейная поляризация — вектор $ec{E}$ колеблется в одной плоскости.

Круговая – вектор \vec{E} описывает окружность, разность фаз между колебаниями компонент E_{v} и E_{x} равна $\pi/2$.

Линейная поляризация

Круговая поляризация

Закон Малюса

Поляризатор — вещество, которое пропускает волны, колеблющиеся в одном выбранном направлении. Остальные же волны поглащаются. Соответсвенно, можно разложить исходное поле как на рисунке. Тогда после поляризатора получим волну с той же фазой, но амплитудой $E_1=E_0\cos\theta$.

Отсюда для интенсивности получаем закон Малюса:

$$I = \langle E^2(t) \rangle \sim \cos^2 \theta$$

В первом эксперименте (7.1.2) мы измеряли зависимость напряжения U на фотодетекторе от угла поляризатора θ . Поскольку $U\sim I$, по закону Малюса ожидается, что $U\sim\cos^2\theta$.

Установка 7.1.2

Результат эксперимента про закон Малюса

Характер поляризации лазера

Расположим перед лазером поляризатор и измерим зависимость $U(\theta)$. Получим результат, соответствующий закону Малюса. \Rightarrow лазер светит линейно

поляризованным светом.

Установка 7.1.3

Изучение пластинки $\lambda/4$

Пластинка $\lambda/4$ имеет разные показатели преломления в зависимости от направления падения волны. Т.к v=c/n, за время прохождения через пластинку между компонентами E_x и E_y возникает разность фаз. В случае круговой поляризации эта разность фаз равна должна быть равна $\pi/2$. Если далее свет попадет на поляризатор, то его интенсивность не будет зависеть от угла, под которым расположен этот поляризатор.

Установим приборы, как показано на рисунке, и будем крутить пластинку $\lambda/4$, пока не получим максимум интенсивности.

Установка 7.1.5

Получили расхождение с теорией. Это может быть связано с тем, пластинки $\lambda/4$ хорошо работают только для определенной длины волны. Для других же поляризация эллиптическая.

