Graded Ouiz • 50 min

Congratulations! You passed!

Grade received 90% **Latest Submission Grade** 90% **To pass** 80% or higher

Go to next item

1. In logistic regression given $\mathbf x$ and parameters $w \in \mathbb R^{n_x}$, $b \in \mathbb R$. Which of the following best expresses what we want $\hat y$ to tell us?

- $\int \sigma(W \mathbf{x} + b)$
- (a) $P(y=1|\mathbf{x})$
- $\bigcap P(y=\hat{y}|\mathbf{x})$
- $\bigcirc \quad \sigma(W \mathbf{x})$

Yes. We want the output $\hat{\mathbf{y}}$ to tell us the probability that y=1 given x.

2. Which of these is the "Logistic Loss"?

$$\bigcirc$$
 $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})$

$$igcap \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} - \hat{y}^{(i)})$$

$$igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)}
vert^2$$

$$igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid$$

Correct, this is the logistic loss you've seen in lecture!

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector *x*?

1/1 point

1/1 point

- x = img.reshape((32*32,3))
- x = img.reshape((1,32*32,3))
- x = img.reshape((3,32*32))
- x = img.reshape((32*32*3,1))

⊘ Correct

4. Consider the following random arrays a and b, and c:

$$a = np.random.randn(2,3) \, \# \, a.shape = (2,3)$$

$$b = np.random.randn(2,1) \, \# \, b.shape = (2,1)$$

$$c = a + b$$

What will be the shape of *c*?

- c.shape = (2, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- a shape (2 a)

\ /	U.SHape	=	(υ,	41

c.shape =	(2.	1
C.SHape -	(~,	

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5. Consider the two following random arrays *a* and *b*:

$$a = np.random.randn(1,3) \, \# \, a.shape = (1,3)$$

$$b = np.random.randn(3,3) \# b.shape = (3,3)$$

$$c = a * b$$

What will be the shape of c?

- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (3, 3)
- The computation cannot happen because the sizes don't match.
- c.shape = (1, 3)

∠⁷ Expand

⊘ Correct

Yes. Broadcasting allows row a to be multiplied element-wise with each row of b to from c.

6. Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}...x^{(m)}]$. What is the dimension of X?

1/1 point

1/1 point

$$(m,n_x)$$

$$\bigcap$$
 $(1.m)$

\cup	(-,)
\bigcirc	(m,1)
	(n_x,m)

⊘ Correct

7. Recall that np.dot(a, b) performs a matrix multiplication on a and b, whereas a*b performs an element-wise multiplication.

1/1 point

Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

$$a = np.random.randn(12288, 150)$$

$$\#a.shape = (12288, 150)$$

$$b = np.random.randn(150, 45)$$

$$\#b.shape = (150, 45)$$

$$c = np.dot(a,b)$$

What is the shape of c?

- c.shape = (150,150)
- c.shape = (12288, 150)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (12288, 45)

⊘ Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 =

8. Consider the following code snippet:

1/1 point

0 / 1 point

$$a.shape = (3,4)$$

$$b.shape = (4,1)$$

for i in range(3):

for j in range(4):

$$c[i][j] = a[i][j] + b[j]$$

How do you vectorize this?

- c = a.T + b.T
- c = a + b
- \bigcirc c = a + b.T
- \bigcirc c = a.T + b

⊘ Correct

9. Consider the code snippet:

$$a.shape = (3,3)$$

$$b.shape=(3,3)$$

$$c = a * *2 + b.T * *2$$

Which of the following gives an equivalent output for c?

\bigcirc	The computation cannot happen because the sizes don't match. It's going to be an "Error"!
\bigcirc	for i in range(3):
	for j in range(3):
	c[i][j] = a[i][j]**2 + b[i][j]**2

- for i in range(3): c[i] = a[i]**2 + b[i]**2
- for i in range(3):
 for j in range(3):
 c[i][j] = a[i][j]**2 + b[j][i]**2

igotimes Incorrect

No. We are adding the rows of a**2 with the rows of b**2, not with the columns.

10. Consider the following computation graph.

1/1 point

wnat is the output J?

$$\bigcirc \quad J = a*b+b*c+a*c$$

$$\bigcirc \quad J = (c-1)*(b+a)$$

$$\bigcirc \quad J = (b-1)*(c+a)$$

Yes. J = u + v - w = a * b + a * c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).