Workflow

- Necessary steps

Inactive user elimination (user prescreen)

"Prefined threshold" is defined as a range of normal traffic (with low and high bounds) to eliminate:

1. users with consistent low traffic (inactive user, traffic < low bound)

*

2. users with extremely high traffic for some specific period (robot user, traffic > high bound)

DIN Model

- user vs keyword correlation (user profile generation)

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄	 Keyword _m	
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄	 score _{1m}	
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	 score _{2m}	DIN
		•••		•••	 	
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	 score _{nm}	

user profile normalization

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄		Keyword _m
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄		score _{1m}
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	•••	score _{2m}
						•••
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	nu .	score _{nm}

Normalization constant

C.

 C_2

•••

C

Score normalization

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄		Keyword _m
User ₁	norm_score ₁₁	norm_score ₁₂	norm_score ₁₃	norm_score ₁₄	•••	norm_score _{1m}
User ₂	norm_score ₂₁	norm_score ₂₂	norm_score ₂₃	norm_score ₂₄	•••	norm_score _{2m}
•••			•••		•••	
User _n	normScore _{n1}	norm_score _{n2}	norm_score _{n3}	norm_score _{n4}	•••	norm_score _{nm}

$$norm_score_{ij} = \frac{score_{ij}}{C_i}$$

$$C_i = \sqrt{\sum_{j=1}^m score_{ij}^2}$$

user similarity measurement

User's normalized profile:

$$S_i = \{norm_score_{i1}, norm_score_{i2}, \dots norm_score_{im}\}$$

Cross user similarity:

$$Similarity(S_i, S_j) = S_i \cdot S_j = \sum_{k=1}^{m} norm_score_{ik} \times norm_score_{jk}$$

– seed_user vs non-seed_user similarity measure

	Seed_user ₁	Seed_user ₂		Seed_user _m
Nonseed_user ₁	Similary ₁₁	Similary ₁₂	•••••	Similary _{1m}
Nonseed_user ₂	Similary ₂₁	Similary ₂₂	•••••	Similary _{2m}
Nonseed_user ₃	Similary ₃₁	Similary ₃₂		Similary _{3m}
Nonseed_user ₄	Similary ₄₁	Similary ₄₂		Similary _{4m}
	•••••	•••••		
Nonseed_user _n	Similary _{n1}	Similary _{n2}	•••••	Similary _{nm}

Parallel computed and only maximum value for each row need to be stored

All Seed Users

 $mean(top10 similarity_{1i})$

 $mean(top_{i}10 similarity_{2i})$

 $mean(top_{i}10 similarity_{3i})$

 $mean(top10 similarity_{4i})$

.....

 $mean(top10 similarity_{ni})$

sort

Rank₁ nonseed_user

Rank₂ nonseed_user

Rank₃ nonseed_user

Rank₄ nonseed_user

...

Rank_n nonseed user

Similarity computation estimation

$$M_{seed} = \begin{bmatrix} norm_score_{1,1} & \cdots & norm_score_{1,m} \\ \cdots & \cdots & \cdots \\ norm_score_{n_{seed},1} & \cdots & norm_score_{n_{seed},m} \end{bmatrix}$$

$$M_{nonseed} = \begin{bmatrix} norm_score_{1,1} & \cdots & norm_score_{1,m} \\ \cdots & \cdots & \cdots \\ norm_score_{n_{nonseed},1} & \cdots & norm_score_{n_{nonseed},m} \end{bmatrix}$$

$$M_{similarity} = M_{seed} \times M_{nonseed}^{T}$$

Similarity computation estimation

non-targeting user elimination

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄	 Keyword _m		
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄	 score _{1m}		
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	 score _{2m}	4	D
	•••			•••	 		
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	 score _{nm}		

 $User_{i}'s\ profile:\ S_{i} = \{score_{i1},\ score_{i2},\ ...\ score_{im}\}$ Eliminate $max(S_{i}) = \max_{j} score_{ij} < prefined\ threshold$ $targeting\ users$

* The purpose is to eliminate users that have no interest of any keywords (ineffective traffic)

- user clustering

– group-wise seed_user vs non-seed_user similarity measure (active user only)

	Seed user in grp ₁	Seed user in grp ₂		Seed user in grp _m
Nonseed user in grp ₁	similarity matrix ₁₁	0		0
Nonseed user in grp ₂	0	similarity matrix ₂₂	•••••	0
•••••		•••••	*****	0
Nonseed user in grp _m	0	0	•••••	similarity matrix _{mm}

within group seed_user vs non-seed_user similarity measure

Similarity matrix_{ii}

		* 11		
	Seed_user _{grpi,1}	Seed_user _{grpi} ,2		Seed_user _{grpi} , _m
Nonseed_user _{grpi} ,1	Similary ₁₁	Similary ₁₂	******	Similary _{1m}
Nonseed_userg _{rpi'2}	Similary ₂₁	Similary ₂₂	•••••	Similary _{2m}
Nonseed_user _{grpi} , ₃	Similary ₃₁	Similary ₃₂		Similary _{3m}
Nonseed_user _{grpi} ,4	Similary ₄₁	Similary ₄₂		Similary _{4m}
Nonseed_user _{grpi} ,	Similary _{n1}	Similary _{n2}		Similary _{nm}

Parallel computed and top 10 values for each row need to be stored

All Seed Users in grpi $mean(top10 \, similarity_{1i})$ $mean(top10 \, similarity_{2i})$ $mean(top10 \, similarity_{3i})$ $mean(top10 \, similarity_{4i})$ $mean(top10 \, similarity_{4i})$ $mean(top10 \, similarity_{ni})$ sort

Rank₁ nonseed_user

Rank₂ nonseed_user

Rank₃ nonseed_user

Rank₄ nonseed_user

...

Rank_n nonseed_user