(Telangana State Private Universities Act No. 13 of 2020 & G.O.Ms.No. 14, Higher Education (UE) Department)

Maisammaguda, Kompally, Hyderabad - 500100, Telangana State.

1. Reduce the matrix to Echelon form and find its rank. $\begin{bmatrix} 2 & 1 & 3 & 3 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \end{bmatrix}$

$$\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$$

- 2. Find the rank of $\begin{vmatrix} 2 & -4 & 3 & -1 & 0 \\ 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{vmatrix}$ using Echelon form.
- 3. If the matrix rank of $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ K & 2 & 2 & 2 \\ 2 & 0 & 0 & K & 2 \end{bmatrix}$ is 3 then find the value of K.
- 4. Find the rank of $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{bmatrix}$ by reducing into the normal form
- 5. Find the rank of $\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \end{bmatrix}$ by reducing it to normal form
- 6. Discuss for what values of λ and μ the simultaneous system of equations $x+y+z=6, x+2y+3z=10, x+2y+\lambda z=\mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions.
- 7. Find whether the following system of equations is consistent. If so solve them. x + 2y - z = 3,3x - y + 2z = -1,2x - 2y + 3z = 2,x - y + z = -1.
- 8. Find the values a & b for which the equations x+y+z=3, x+2y+2z=6x + ay + 3z = b have (i) No Solution (ii) a unique solution and (iii) infinite no. of solutions.

- 9. Show that the only real number λ for which the system $x+2y+3z=\lambda x, 3x+y+2z=\lambda y, 2x+3y+z=\lambda z$ has non-zero solution is 6 and solve them when $\lambda=6$.
- 10. Determine whether the following equations will have a non-trivial solution if so solve them. 4x+2y+z+3w=0, 6x+3y+4z+7w=0, 2x+y+w=0.
- 11. a) Solve the system of equations x + y + z = 1, 4x + 3y z = 6, 3x + 5y + 3z = 4 by LU decomposition method
 - b) Solve the system of equations x + 2y + 3z = 9, 4x + 5y + 6z = 24, 3x + y 2z = 4 by LU decomposition method
- 12. Reduce the following Quadratic forms to canonical form by orthogonal transformation and hence discuss the nature of it

(a)
$$2x^2 + y^2 + z^2 - 2xz - 4yz + 2xy$$

(b)
$$x^2 + 2y^2 + 3z^2 - 2xy$$

(c)
$$3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$$

- 13. Find the characteristic roots of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
- 14. Find the Eigen values and the corresponding Eigen vectors of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- 15. Find the Eigen values and the corresponding Eigen vectors of the matrix

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- 16. Verify Cayley-Hamilton Theorem and find A^{-1} for $A = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$
- 17. If $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify Cayley-Hamilton theorem. Find A^{-1} and A^4 .

18. Find the characteristic equation of the matrix,
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 and hence

computeA⁻¹. Also find the matrix represented by

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$

19. Diagonalize the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$$
 find a) A^8 b) A^4

20. Find a matrix P which transforms the matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
 to diagonal form. Also

find a)
$$A^{-1}$$
 b) A^4

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

22. Diagonalize the matrix by an orthogonal transformation
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$$

23. Determine the modal matrix P for
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 and hence diagonalize A.

24. Determine the model matrix P of
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 verify that P⁻¹AP is a diagonal

matrix.

$$(a) \quad 2xydx + x^2dy = 0$$

(b)
$$(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0$$

(c)
$$(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$$

(d)
$$(y(1+\frac{1}{x})+\cos y)dx + (x+\log x - x\sin y)dy = 0$$

(e) Solve
$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

(f) Solve
$$(\cos x - x \cos y) dy - (\sin y + y \sin x) dx = 0$$

(g) Solve
$$\left(\sec x \tan x \tan y - e^x\right) dx + \sec x \sec^2 y dy = 0$$

(h) Solve
$$\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$$

26. Solve by finding Integrating Factors

(a)
$$xdy - ydx = xy^2 dx$$

(b)
$$(1+xy)xdy + (1-yx)ydx = 0$$

(c)
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

(d)
$$ydx - xdy + 3x^2y^2e^{x^3}dx = 0$$

(e)
$$x^2ydx - (x^3 + y^3)dy = 0$$

(f)
$$(y^2 + x^2)\frac{dy}{dx} = xy$$

(g)
$$y^2 dx + (x^2 - xy - y^2) dy = 0$$

(h)
$$(x^4 + y^4) dx - xy^3 dy = 0$$

(i)
$$\frac{dy}{dx} = \frac{y}{x} + \frac{x^2 + y^2}{x^2}$$

(j)
$$(xy^2 + 2x^2y^3)dx + (x^2y - x^3y^2)dy = 0$$

(k)
$$(1+xy)xdy + (1-xy)ydx = 0$$

(1)
$$(2xy^2 + y)dx + (x + 2x^2y - x^4y^3)dy = 0$$

(m)
$$(xy^2 \sin xy + y \cos xy)dx + (x^2 y \sin xy - x \cos xy)dy = 0$$

(n)
$$(y + \frac{y^3}{3} + \frac{x^2}{2})dx + \frac{1}{4}(x + xy^2)dy = 0$$

(o)
$$(xy^2 - e^{\frac{1}{x^3}})dx - x^2ydy = 0$$

(p)
$$(3xy - 2ay^2)dx + (x - 2axy)dy = 0$$

(q)
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$

(r)
$$(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$$

(s)
$$(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$$

27. Solve the Linear differential Equations

(a)
$$\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$$

(b)
$$\frac{dy}{dx} + \frac{3x^2}{1+x^3}y = \frac{\sin^2 x}{1+x^3}$$

$$x\frac{dy}{dx} + y = x^2 + 3x + 2$$

(d)
$$\frac{dy}{dx} + y \tan x = x^m \cos x$$

(e)
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

$$(f)(1+x+xy^2)\frac{dy}{dx} + (y+y^3) = 0$$

$$(g)(1+y^2)dx = (\tan^{-1} y - x)dy$$

28. Solve the Bernoulli's Equations

$$(a)\frac{dy}{dx} + \frac{y}{x} = y^2 x \sin x, x > 0$$

(b)
$$x \frac{dy}{dx} + y = y^2 \log x$$

$$xy - \frac{dy}{dx} = y^3 e^{-x^2}$$

$$(d)\frac{dy}{dx}(x^2y^3+xy)=1$$

$$(e)\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy}$$

$$(f)\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$$

- 29. (a) Find the Orthogonal Trajectories of the family of semi cubical parabolas $ay^2 = x^3$
 - (b) Find the Orthogonal Trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is a parameter.
 - (c) Find the Orthogonal trajectories of the family of curves $r^n \sin n\theta = a^n$
 - (d) Find the Orthogonal trajectories of the family of curves $r = 4a \sec \theta \tan \theta$
 - (e) Find the Orthogonal trajectories of the family of curves $(a+x)y^2 = x^2(3a-x)$
 - (f) Find the Orthogonal trajectories of the family of curves $r = a(1 + \sin^2 \theta)$
 - (g) Show that the family of con-focal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self-orthogonal
- 30.(a)Suppose that an object is heated to 300F and allowed to cool is a room whose air temperature 20F, it after 10 min, the temperature of the object is 250F, what will be its temperature after 20 min?
 - (b) body cools from 60° C to 50° C in 10 minutes when kept in air at 30° C in the next 10 minutes what is the temperature of the body

- 31. (a)The number of bacteria cultures grows at the rate proportional to N, the value of N was initially 100 and it increases to 332 in one hr. What would be the value of N after $1\frac{1}{2}hr$
 - (b)If radioactive carbon-14 has a half-life of 5750 years, what will remain of 1 gram after 3000 years?
 - (c) If 30% of radioactive substance disappear in 10 days. How long will it take for 90% of it to disappear.
- 32. a) Solve $(D^2 2D + 1)y = xe^x \sin x$
 - b) Solve $(D^2 2D)y = e^x \sin x$ by the method of variation of parameters.
 - c) Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cosh x$ Also find when $y = 0, \frac{dy}{dx} = 1$ at x = 0
 - d) Solve $\frac{d^2y}{dx^2} \frac{1}{x}\frac{dy}{dx} + \frac{y}{x^2} = \frac{2\log x}{x^2}$.
 - e) Solve $(D^2 4D + 4)y = 8x^2e^{2x} \sin 2x$
 - f) Solve $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$ by the method of variation of parameter.
 - g) Solve $\frac{d^2x}{dt^2} + n^2x = k\cos(nt + \alpha)$
 - h) Solve $\frac{d^4x}{dt^4} + 2\frac{d^2x}{dt^2} + x = t^2 \cos t$
 - i) Solve $(D^2 + 1)y = x^2e^{3x}$
 - j) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} y = \frac{2}{\left(1 + e^x\right)}$.
 - k) Solve $(D^2 2D + 2)y = e^x \tan x$.
 - 1) Solve $(D^2 3D + 2)y = \sin(e^{-x})$
 - m) Solve $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$
 - n) Solve $\frac{d^2y}{dx^2} \frac{1}{x}\frac{dy}{dx} + \frac{y}{x^2} = \frac{2\log x}{x^2}$
 - o) Solve $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} 20y = (x+1)^2$
 - p) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$

- 33. Find the Laplace transform of $(i)e^{2t} + 4t^3 2\sin 3t + 3\cos 3t$ $(ii)\sin(\omega t + \alpha)$
 - $(iii) \sin^3 2t$ $(iv) \sin 2t \cdot \cos 3t$
- 34. Find the Laplace transform of

(i)
$$e^{-3t} (2\cos 5t - 3\sin 5t)$$
 (ii) $\cosh at \cos at$ (iii) $e^{3t} \sin^2 t$ (iv $L\left\{e^t \left(\cos 2t + \frac{1}{2}\sinh 2t\right)\right\}$

- 35. Find the Laplace transforms of $(i)t^2\cos at$ $(ii)te^{-t}\sin 3t$ $(iii)L\left\{t^2\sin 2t\right\}$
- 36. Find (i) $L \left\{ \int_{0}^{t} \frac{e^{-t} \sin t}{t} dt \right\}$ (ii) $L \left\{ \int_{0}^{t} \frac{1 e^{-t}}{t} dt \right\}$ (iii) $L \left\{ \frac{1 \cos t}{t} \right\}$ (iv) $\frac{\sin t \sin 5t}{t}$
- 37. Evaluate (i) $\int_{0}^{\infty} te^{-2t} \cos 3t dt \quad (ii)$ $\int_{0}^{\infty} t^{2} e^{-4t} \sin 2t dt$
- 38. Find inverse Laplace transform of (i) $\frac{s+1}{s^2+6s+25}$ (ii) $\frac{s+2}{s^2(s+3)}$ (iii) $\tan^{-1}\left(\frac{a}{s}\right)$ (iv) $\frac{1}{s\left(s^2+a^2\right)}$
- 39. Apply convolution theorem to evaluate

$$(i)L^{-1}\left\{\frac{s}{(s^2-a)^2}\right\}(ii)L^{-1}\left\{\frac{s^2}{(s^2+a)^2(s^2+b)^2}\right\}(iii)L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}(iv)L^{-1}\left\{\frac{1}{(s+2)^2(s-2)}\right\}(v)L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$

40. Use Laplace transform to solve

(i)
$$y'' - 3y' + 2y = 4t + e^{3t}$$
, $y(0) = 1$, $y'(0) = 1$

(ii)
$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$$
, $y = \frac{dy}{dt} = 0$ when $t = 0$

(iii)
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$$
 given $x = 4$ and $\frac{dx}{dt} = 0$ at $t = 0$

(iv)
$$(D^2 + 5D - 6)y = x^2e^{-x}, y(0) = a, y'(0) = b$$

(v)
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}\sin t$$
, $y(0) = 0$, $y'(0) = 1$