1

DC Amplifier

Buereddy Varuni*

A DC amplifier has an open loop gain of 1000 and two poles, a dominant one at 1kHz and a high frequency one whose location can be controlled. It is required to connect this amplifier in a negative feedback loop that provides a DC closed loop gain of 10 and a maximally flat response.

1. Find the required value of *H*.

Solution: Table 1 summarises the given information. The open loop gain can be expressed as

$$G(s) = \frac{G_0}{\left(1 + \frac{s}{p_1}\right)\left(1 + \frac{s}{p_2}\right)} \tag{1.1}$$

$$\implies G(0) = G_0 \tag{1.2}$$

The closed loop gain

$$T(s) = \frac{G(s)}{1 + G(s)H}$$
 (1.3)

$$\implies T(0) = \frac{G_0}{1 + G_0 H} \tag{1.4}$$

Substituting from Table 1,

$$\frac{1000}{1 + 1000H} = 10\tag{1.5}$$

$$\implies H = 0.099 \tag{1.6}$$

Parameter	Value
dc open loop gain	1000
dominant pole	-1000Hz
insignificant pole	-p ₂
dc closed loop gain	10

TABLE 1: 1

$$G_0 = 1000 (1.7)$$

Therefore.,
$$G(s) = \frac{1000}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})}$$
 (1.8)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

2. Find p_2 .

Solution: From (1.3) and (1.1),

$$T(s) = \frac{p_1 p_2 G_0}{s^2 + (p_1 + p_2)s + (HG_0 + 1)p_1 p_2}$$
(2.1)

$$=\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{2.2}$$

using the standard formulation for a second order system. Also, for maximally flat response, the quality factor

$$Q = \frac{1}{2\zeta} = \frac{1}{\sqrt{2}} \tag{2.4}$$

$$\implies \zeta = \frac{1}{\sqrt{2}} \tag{2.5}$$

$$\implies \frac{p_1 + p_2}{2\sqrt{(HG_0 + 1)p_1p_2}} = \frac{1}{\sqrt{2}}$$
 (2.6)

$$\implies \sqrt{\frac{p_1}{p_2}} + \sqrt{\frac{p_2}{p_1}} = \sqrt{2(HG_0 + 1)}$$
(2.7)

The above equation is of the form

$$x + \frac{1}{x} = a \tag{2.8}$$

$$\implies x = \frac{a \pm \sqrt{a^2 - 4}}{2} \tag{2.9}$$

where

$$x = \sqrt{\frac{p_2}{p_1}} (2.10)$$

$$a = \sqrt{2(HG_0 + 1)},\tag{2.11}$$

Thus, from (2.10), (2.11) and (2.9),

$$p_2 = p_1 \left[\frac{\sqrt{2(HG_0 + 1)} \pm \sqrt{2(HG_0 + 1) - 4}}{2} \right]^2$$
(2.12)

From the following code,

codes/ee18btech11005/ee18btech11005 1.py

$$p_2 = 1244038.9567529503$$

and 31.734068607786863 (2.13)

3. Draw the equivalent circuit system diagram. **Solution:** The equivalent circuit system is shown in the figure.3

Fig. 3: 1

4. Obtain G(s) and T(s)

Solution: Substituting the value of p_2 in (1.1) and (2.1),

$$G(s) = \frac{1000}{(1 + \frac{s}{2\pi 10^3})(1 + \frac{s}{1.244 \times 10^6})}$$

$$T(s) = \frac{10}{0.128 \times 10^{-11} s^2 + 1.599 \times 10^{-6} s + 1}$$
(4.1)

5. Verify from the Bode plot of above closed loop transfer function that it has maximally flat response.

Solution: The following code generates the bode plot of the transfer function in Fig. 5.

$$codes/ee18btech11005/ee18btech11005_2.py$$

6. Find the step response of T(s)Solution: The following code generates the

desired response of in Fig. 6.

codes/ee18btech11005/ee18btech11005 3.py

Fig. 5

Fig. 6

7. Design a circuit that represents the above transfer function.

Solution: The circuit can be designed using operational amplifiers having negative feedback. Consider the circuit shown in figure. 7:1. Assume the gain of all the amplifiers are large. And assume no zero state response. Take the parameters in s-domain.

For the first amplifier,

Fig. 7: 1

$$\frac{V_{in} - V_1^1}{R_1} = \frac{V_1^1 - V_1}{\frac{1}{sC_1}} \tag{7.1}$$

$$\frac{V_{in}}{R_1} = \frac{V_1^1}{R_1} + sC_1V_1^1 - sC_1V_1 \tag{7.2}$$

$$\frac{V_{in}}{R_1} = V_1^1 \left[sC_1 + \frac{1}{R_1} \right] - sC_1 V_1 \tag{7.3}$$

$$V_{in} = V_1^1 (sC_1R_1 + 1) - sC_1R_1V_1 \quad (7.4)$$

For the second amplifier.,

$$\frac{V_1 - V_b}{R_2} = (V_b - V_{out})sC_2 \tag{7.5}$$

Since.,
$$V_b = 0$$
 (7.6)

$$\implies V_1 = -sC_2R_2Vout$$
 (7.7)

Voltage division at node C.,

$$\frac{V_1^1}{V_{out}} = \frac{1 + \frac{1}{sC}}{\frac{1}{sC}} \tag{7.8}$$

$$\implies V_1^1 = (sCR + 1)V_{out} \tag{7.9}$$

From eq:(7.4), eq:(7.7), eq:(7.9)

$$V_{in} = ((sCR + 1)(sC_1R_1 + 1) + s^2C_1R_1C_2R_2)V_{out}$$
(7.10)
(7.11)

$$C_1R_1(CR + C_2R_2) = 0.128 \times 10^{-11}$$

$$(7.13)$$

$$CR + C_1R_1 = 1.599 \times 10^{-6}$$

$$(7.14)$$

$$Let.,CR = 10^{-6}$$

$$(7.15)$$

$$\implies C_1 R_1 = 0.599 \times 10^{-6}$$
(7.16)

$$0.599 \times 10^{-6} (10^{-6} + C_2 R_2) = 0.128 \times 10^{-11}$$
(7.17)

$$C_2 R_2 = 0.681 \times 10^{-6} \tag{7.18}$$

The parameters can be chosen as shown in the TABLE:7

The final circuit is shown in the figure.7

Parameter	Value
R_1	1000 Ω
R_2	1000 Ω
R	1000 Ω
C_1	0.1 nF
C_2	0.681 nF
C	0.599 nF

TABLE 7

Fig. 7
$$\frac{V_{in}}{V_{out}} = s^2(CRC_1R_1 + C_1R_1C_2R_2) + s(CR + C_1R_1) + 1$$

$$\frac{V_{out}}{V_{in}} = \frac{1}{s^2(CRC_1R_1 + C_1R_1C_2R_2) + s(CR + C_1R_1) + 1}$$
Solution: The block diagram is shown in figure.8

Comparing the equation.(4.2) and 9. Find H_2 .

Solution: H_2 can be calculated as follows

equation.(7.12)

Solution: H_2 can be calculated as follows...,

Fig. 8

$$H_2 = \frac{V_{a2}}{V} {(9.1)}$$

(9.2)

But from the figure.7.,

$$\frac{V_{a2}}{V_o} = \frac{V_1^1}{V_o} \tag{9.3}$$

$$\frac{V_{a2}}{V_o} = \frac{R + \frac{1}{sC}}{\frac{1}{sC}} \tag{9.4}$$

$$\frac{V_{a2}}{V_o} = 1 + sCR (9.5)$$

$$H_2 = 1 + sCR \tag{9.6}$$

10. Find equivalent open loop gain of the system without positive feedback.

Solution: The figure 10 shows the equivalent block diagram.

The resultant open loop gain after removing

Fig. 10

positive feedback is GG_1 . Where G can be calculated as follows.,

$$G = \frac{G_o}{1 + G_o H_1} \tag{10.1}$$

$$G = \frac{1}{\frac{1}{G_0} + H_1} \tag{10.2}$$

Since, Go is very large.,

$$G \approx \frac{1}{H_1} \tag{10.3}$$

For finding H_2 , ground V_{in} ,

$$H_1 = \frac{V_{a1}}{V_1} \tag{10.4}$$

$$H_1 = \frac{R_1}{R_1 + \frac{1}{sC_1}} \tag{10.5}$$

$$H_1 = \frac{sC_1R_1}{sC_1R_1 + 1} \tag{10.6}$$

Finding G_1 .,

$$G_1 = \frac{V_o}{V_1}$$
 (10.7)

$$G_1 = -\frac{1}{sC_2R_2} \tag{10.8}$$

Therefore., The open loop gain without positive feedback is given by.,

$$OLG = GG_1 \tag{10.9}$$

$$OLG = \frac{G_1}{H_1} \tag{10.10}$$

$$OLG = -\frac{\frac{1}{sC_2R_2}}{\frac{sC_1R_1}{sC_1R_1+1}}$$

$$OLG = -\frac{sC_1R_1+1}{s^2C_1R_1C_2R_2}$$
(10.11)

$$OLG = -\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}$$
 (10.12)

11. Find the approximate closed loop transfer function.

Solution: The overall system is in positive feedback. The closed loop transfer function is given by.,

$$T(s) = \frac{OLG}{1 - OLG \times H_2} \tag{11.1}$$

$$T(s) = \frac{OLG}{1 - OLG \times H_2}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{\frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2}}{1 - \left[\frac{-sC_1R_1 + 1}{s^2C_1R_1C_2R_2}\right](1 + sCR)}$$

$$T(s) = \frac{sC_1R_1 + 1}{s^2C_1R_1C_2R_2 + (sC_1R_1 + 1)(sCR + 1)}$$
(11.3)

Since C_1R_1 is very small compared to 1. We can assume the zero lies far away from origin.

$$T(s) \approx \frac{1}{s^2 C_1 R_1 C_2 R_2 + (s C_1 R_1 + 1)(s C R + 1)}$$
(11.4)

The above equation is similar to equation.7.12 Hence verified.

12. Find the block diagram and circuit diagram for H_2 .

Solution: The block diagram is shown in figure.12 The circuit diagram is shown in the

Fig. 12: Block diagram

fig.12

Fig. 12: Circuit diagram

13. Verify the closed loop DC gain using NGSPICE simulator.

Solution: The following README file gives the procedure to be followed.

codes/ee18btech11005/spice/README

From equation.4.2. The DC closed loop gain is 10.

The following netlist file, gives the DC gain of the closed loop function.

codes/ee18btech11005/spice/gvv_ngspice.net

We can observe from simulation that the value of DC closed loop gain is 9.997.

Error analysis:-

ERROR in DC GAIN = 10-9.993 = 0.007 Thus, the predicted value in ngspice is almost accurate. Therefore, the value is verified using ngspice.

14. Verify the step response of the output from ngspice simulation.

Solution: The following netlist file does the transient analysis and store the Vout values with respect to time in a dat file.

codes/ee18btech11005/spice/gvv ngspice.net

Following python code is to plot the step response.

codes/ee18btech11005/spice/ ee18btech11005_spice.py

The step response obtained is shown in the figure.14. The graph has steady state value equal to 10.

Fig. 14