7. Topologie-Übung

Joachim Breitner

5. Dezember 2007

Aufgabe 1

 X_k seien für $k \in \mathbb{N}_0$ endliche Mengen. Auf $\prod_{k=0}^{\infty} X_k$ sei die Norm

$$D((x_k), (y_k)) := \begin{cases} 0, & x_k = y_k \text{ für alle } k \\ 2^{-m}, & \text{sonst} \end{cases}$$

definiert, wobei $m := \min\{k \in \mathbb{N}_0 \mid x_k \neq y_k\}$

Frage: Wie sieht $B_r((x_k))$ für r > 0 aus?

Sei $m \in \mathbb{N}$ so gewählt, dass $\frac{1}{2^{m+1}} \leq r \leq \frac{1}{2^m}$. Dann ist $B_r((x_k))$ die Menge aller Folgen in $\prod_{k=0}^{\infty} X_k$, die mindestens in den ersten m Folgengliedern mit (k_k) übereinstimmen.

Behauptung $\prod_{k=0}^{\infty} X_k$ ist kompakt.

 $\prod_{k=0}^\infty X_k$ ist ein metrischer Raum, also ist $\prod_{k=0}^\infty X_k$ genau dann kompakt, wenn $\prod_{k=0}^\infty X_k$ folgenkompakt ist.

Wir zeigen: $\prod_{k=0}^{\infty} X_k$ ist folgenkompakt. Sei also (A_k) eine Folge in $\prod_{k=0}^{\infty} X_k$:

$$A_1: a_{11}, a_{12}, a_{13}, \dots$$

 $A_2: a_{21}, a_{22}, a_{23}, \dots$
 $A_3: a_{31}, a_{32}, a_{33}, \dots$

Es ist X_0 endlich, also gibt es $a_o \in X_0$, so dass $a_{l1} = a_0$ für unendlich viele l gilt. Betrachte die Teilfolge (\tilde{A}_k) von (A_k) , für die gilt: $\tilde{a}_{k1} = a_0$ für alle $k \in \mathbb{N}$.

Es ist auch X_1 enlich, also gibt es $a_1 \in X_1$, so dass $\tilde{a}_{l2} = a_1$ für unendlich viele l. Betrachte die Teilfolge (\tilde{A}_k) von (\tilde{A}_k) , für die gilt: $\tilde{\tilde{a}}_{k1} = a_0$ für alle $k \in \mathbb{N}$.

Setzt man dieses Verfahren fort, so erhält man eine Teilfolge von (A_k) , die gegen (a_0, a_1, \ldots) konvergiert.

Aufgabe 2

Sei $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ stetig differenzierbar und es gelte

$$f(X) = 0 \implies \exists i \in \{1, \dots, n\} : \frac{\partial f(x)}{\partial x_i} \neq 0$$

Behauptung: $X := \{x \in U \mid f(x) = 0\}$ ist eine (n-1)-dimensionale topologische Mannigfaltigkeit.

Dazu konstruieren wir einen Atlas auf X, mit Hilfe des Satzes über implizit definierte Funktionen. Sei $x=(x_1,\ldots,x_n)\in X$. Nach Voraussetzung existiert ein $i\in\{1,\ldots,n\}$ mit $\frac{\partial f}{\partial u_i}(x)\neq 0$. Nach dem Satz über implizit definierte Funktionen existiert daher eine Umgebung $U_x\subseteq\mathbb{R}^{n-1}$ von $(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ und eine Umgebung $V_x\subseteq\mathbb{R}$ von x_i sowie eine stetige Abbildung $g:U_x\to V_x$ mit $g(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)=x_i$, so dass (nach geeigneter Variablenumsortierung) f(u,g(u))=0 für alle $u\in U_x$.

Setze $O := (U_x \times V_x) \cap X$. Das ist eine offene Menge in X, da U_x und V_x offen sind. Definiere $\varphi : \mathbb{R}^{n-1} \supseteq U_x \to O$ mit $\varphi(u) := (u, g(u))$. Klar: φ ist stetig und injektiv.

Der Rest fehlt mangels Akkulaufzeit.

Aufgabe 4

Es sei K eine kompakter topologischer RAum, der Gruppenstruktur hat, $\Phi: K \to GL(n,\mathbb{C})$ sei stetig und Gruppenhomomorphismus.

Behauptung: Für $k \in K$ sind haben alle Eigenwerte von $\Phi(k)$ den Betrag 1.

Es ist K kompakt und Φ stetig, also ist $\Phi(K)$ ebenfalls kompakt und als Teilmenge eines metrischen Raumes damit beschränkt. Für $k \in K$ gilt $\Phi(k^n) = \Phi(k)^n \in \Phi(K)$ und $\Phi(k^{-1}) = \Phi(k)^{-1} \in \Phi(K)$.

Sei $A := \Phi(k) \in GL(n,\mathbb{C})$. Aus der linearen Algebra wissen wir, dass es ein $U \in GL(n,\mathbb{C})$ gibt, so dass $\tilde{A} := UAU^{-1}$ in Jordan-Normalform vorliegt. Auf der Diagonalen von \tilde{A}^n stehen die n-ten Potenzen der Eigenwerte von A.

Wäre also λ ein Eigenwert von A mit $|\lambda| > 1$, so würde für $n \to \infty$ gelten: $||U\Phi(k)^nU^{-1}|| \to \infty$. Weil die Konjugation mit $U \in GL(n,\mathbb{C})$ eine stetige Abbildung ist, gilt dann auch $||\Phi(k)|| \to \infty$, also wäre $\Phi(K)$ nicht beschränkt, was ein Widerspruch wäre.

Wäre dagagen λ ein Eigenwert von A mit $|\lambda| < 1$, so ist $\frac{1}{\lambda}$ Eingenwert von $\Phi(k^{-1})$, was wie eben gezeigt ein Widerspruch ist.

Behauptung: $\Phi(k)$ ist diagonalisierbar.

Angenommen, $A \coloneqq \Phi(k)$ wäre nicht diagonalisierbar. Hat das erste Jordankästchen in \tilde{A} die Form

$$\begin{pmatrix} \lambda & & & 0 \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & 1 & \lambda \end{pmatrix}$$

und sei b_{21} der Eintrag an der Stelle (2,1) in der Matrix \tilde{A}^n , dann gilt: $b_{21} = n \cdot \lambda^{n-1}$, das heißt für $n \to \infty$ ist $\|\Phi(k)^n\| \to \infty$, also $\Phi(K)$ nicht beschränkt, was ein Widerspruch ist.

Damit ist die Jordan-Normalform von $\Phi(k)$ diagonalisierbar, also ist $\Phi(k)$ diagonalisierbar.