

Lecture «Robot Dynamics»: Kinematics 1

151-0851-00 V

lecture: CAB G11 Tuesday 10:15 – 12:00, every week

exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

Marco Hutter, Roland Siegwart, and Thomas Stastny

Recapitulation: Vectors, Position, and Vector Calculus

Builds upon notation of other dynamics classes at ETH and IEEE standards

Parameterization of Vectors

- Cartesian coordinates
 - Position vector
- Cylindrical coordinates
 - Position vector
- Spherical coordinates
 - Position vector

Parameterization of Vectors

Example

$$\mathcal{A}\mathbf{r}_{AP} = \mathcal{A}\mathbf{r}_{AB} + \mathcal{A}\mathbf{r}_{BP}$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Differentiation of Representation ⇔ Linear Velocity

• The velocity of point P relative to point B, expressed in frame A is:

• Question: What is the relationship between the velocity $\dot{\chi}$ and the time derivative of the representation

Differentiation of Representation ⇔ Linear Velocity

Cartesian coordinates:

Cylindrical coordinates:

Rotations

• Position of P with respect to A expressed in A:

• Position of P with respect to A expressed in \mathcal{B} :

Rotation Matrix

• The rotation matrix transforms vectors expressed in \mathcal{B} to \mathcal{A} :

Passive and Active Rotation

• Passive rotation = mapping of the same vector from frame \mathcal{B} to \mathcal{A}

Active rotation = rotating a vector in the same frame

Elementary Rotation

• Find the elementary rotation matrix s.t $_{\mathcal{A}}\mathbf{u}=\mathbf{C}_{\mathcal{A}\mathcal{B}}\cdot_{\mathcal{B}}\mathbf{u}$

Homogeneous Transformation

Combined Translation and Rotation

Homogeneous Transformations

Consecutive Transformation

 This allows to transform an arbitrary vector between different reference frames (classical example: mapping of features in camera frame to world frame)

Homogeneous Transformation Simple Example

- Find the position vector $\mathcal{A}^{\mathbf{r}_{AP}}$
 - Find the transformation matrix

Find the vector

Angular Velocity

- Angular velocity $A^{\omega}A^{\beta}$ describes the relative rotational velocity of β wrt. A expressed in frame A
- The relative velocity of A wrt. B is:
- Given the rotation matrix $C_{\mathcal{AB}}(t)$ between two frames, the angular velocity is

- Transformation of angular velocity:
- Addition of relative velocities:

Angular Velocity Simple Example

• Given the rotation matrix $\mathbf{C}_{\mathcal{A}\mathcal{B}}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos{(\alpha(t))} & \sin{(\alpha(t))} \\ 0 & -\sin{(\alpha(t))} & \cos{(\alpha(t))} \end{bmatrix}$ determine $_{\mathcal{A}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}}$

Robot Dynamics - Kinematics 1

Outlook (next week) Rotation Parameterization

- Rotation matrix:
- Euler Angles
- Angle Axis
- Quaternions

