

Online Retail

Donated on 11/5/2015

This is a transactional data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.

Dataset Characteristics

Multivariate, Sequential, Time-Series

Associated Tasks

Classification, Clustering

Instances

541909

Subject Area

Business

Feature Type

Integer, Real

Features

6

Dataset Information

This is a transactional data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.

Has Missing Values?

No

Introductory Paper

<u>Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining</u>

By Daqing Chen, Sai Laing Sain, Kun Guo. 2012

Published in Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3

Variables Table

Variable Name	Role	Туре	Description	Units	Missing Values
InvoiceNo	ID	Categorical	a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation		no
StockCode	ID	Categorical	a 5-digit integral number uniquely assigned to each distinct product		no
Description	Feature	Categorical	product name		no
Quantity	Feature	Integer	the quantities of each product (item) per transaction		no
InvoiceDate	Feature	Date	the day and time when each transaction was generated		no
UnitPrice	Feature	Continuous	product price per unit	sterling	no
CustomerID	Feature	Categorical	a 5-digit integral number uniquely assigned to each customer		no
Country	Feature	Categorical	the name of the country where each customer resides		no
			Rows per page 10 ▼) 0 to 8 of	*8

Additional Variable Information

InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation.

StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each ...

SHOW MORE V

Papers Citing this Dataset

SORT BY YEAR, DESC

Finding Robust Itemsets Under Subsampling

By Nikolaj Tatti, Fabian Moerchen, Toon Calders. 2019 Published in ArXiv.

Moment-Based Quantile Sketches for Efficient High Cardinality Aggregation Queries

By Edward Gan, Jialin Ding, Kai Tai, Vatsal Sharan, Peter Bailis. 2018 Published in ArXiv.

Efficient and Scalable Multi-task Regression on Massive Number of Tasks

By Xiao He, Francesco Alesiani, Ammar Shaker. 2018 Published in ArXiv.

Efficient Mining Top-k Regular-Frequent Itemset Using Compressed Tidsets

By Komate Amphawan, Philippe Lenca, Athasit Surarerks. 2011 Published in PAKDD Workshops.

Layered critical values: a powerful direct-adjustment approach to discovering significant patt...

By Geoffrey Webb. 2008

Published in Machine Learning.

Rows per page $(5 \rightarrow)$ 0 to 5 of 8

Reviews

LOGIN TO WRITE A REVIEW

CITE

- 99 8 citations
- **284073** views

Keywords

Creators

Daging Chen

chend@lsbu.ac.uk School of Engineering, London South Bank University

DOI

10.24432/C5BW33

License

This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.

THE PROJECT

About Us

CML
National Science Foundation
NAVIGATION
Home
View Datasets
Donate a Dataset
LOGISTICS
Contact
Privacy Notice
Feature Request or Bug Report