FBX4025 – Sistemas Digitais I

Objetivos

- Apresentar o conceito de circuitos aritméticos: meio somador, somador-completo, meio subtrator, subtrator completo.

Circuitos Aritméticos

Os circuitos aritméticos são utilizados, principalmente, para construir a ULA (Unidade Lógica Aritmética) dos microprocessadores e, ainda, são encontrados em circuitos integrados.

8bit ALU.simu

Operação de soma (Revisão)

Exemplo 01: Realize as seguintes operações binárias:

c)
$$11,011 + 10,110$$

$$011 (3)$$
 $+ 110 (6)$
 $1001 (9)$

$$\begin{array}{r}
1001 & (9) \\
+ 1111 & (15) \\
\hline
11000 & (24)
\end{array}$$

$$11,011$$
 (3,375)
+ 10,110 (2,750)
 $110,001$ (6,125)

Meio somador

A	В	S	Ts
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ts → transporte de saída

$$(0 + 0 = 0 \rightarrow Ts = 0)$$

$$(0 + 1 = 1 \rightarrow Ts = 0)$$

$$(1 + 0 = 1 \rightarrow Ts = 0)$$

$$(1 + 1 = 0 \rightarrow Ts = 1)$$

$$S = A \oplus B$$
$$T_S = AB$$

Meio somador

O circuito meio somador é também conhecido como *half adder*, sendo a saída de transporte denominada *carry out*.

Somador completo

O meio somador possibilita efetuar a soma de números binários com um algarismo. Para fazer a soma de números binários de mais algarismos, esse circuito torna-se insuficiente, pois não possibilita a introdução do transporte de entrada proveniente da coluna anterior.

Exemplo:

Somador completo

A	В	T _E	S	Ts	$T_E \rightarrow transporte de entrada$
0	0	0	0	0	$(0 + 0 + 0 = 0 \rightarrow Ts = 0)$
0	0	1	1	0	$(0 + 0 + 1 = 1 \rightarrow Ts = 0)$
0	1	0	1	0	$(0 + 1 + 0 = 1 \rightarrow Ts = 0)$
0	1	1	0	1	$(0 + 1 + 1 = 0 \rightarrow Ts = 1)$
1	0	0	1	0	$(1 + 0 + 0 = 1 \rightarrow Ts = 0)$
1	0	1	0	1	$(1 + 0 + 1 = 0 \rightarrow Ts = 1)$
1	1	0	0	1	$(1 + 1 + 0 = 0 \rightarrow Ts = 1)$
1	1	1	1	1	$(1 + 1 + 1 = 1 \rightarrow Ts = 1)$

$$S = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + A\overline{B}\overline{T}_{E} + ABT_{E}$$

$$Ts = \overline{A}BT_{E} + A\overline{B}T_{E} + AB\overline{T}_{E} + ABT_{E}$$

IDOETA, Ivan V.; CAPUANO, Francisco G. ELEMENTOS DE ELETRÔNICA DIGITAL 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530390/. Acesso em: 09 out. 2022. P. 198

Somador completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

$$S = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + A\overline{B}\overline{T}_{E} + ABT_{E}$$

$$Ts = \overline{A}BT_{E} + A\overline{B}T_{E} + AB\overline{T}_{E} + ABT_{E}$$

$$S = A \oplus B \oplus T_E$$

Α	В	С	(A ⊕ B) ⊕ C	A ⊕ (B ⊕ C)	(A ⊕ C) ⊕ B
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

Somador completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

$$S = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + A\overline{B}\overline{T}_{E} + ABT_{E}$$

$$Ts = \overline{A}BT_{E} + A\overline{B}T_{E} + ABT_{E} + ABT_{E}$$

$$T_{S} = AB + BT_{E} + AT_{E}$$

Somador completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

O circuito somador completo é também conhecido como *full adder*, sendo a entrada de transporte denominada *carry in*.

Somador completo

Exemplo 02: Construa um somador completo de 4 bits que execute a operação de soma conforme mostrado a seguir:

Somador completo

Exemplo 02: Construa um somador completo de 4 bits que execute a operação de soma conforme mostrado a seguir:

Somador completo

Generalizando para um sistema que efetua a soma de dois números de m bits (m=n+1), tem-se:

IDOETA, Ivan V.; CAPUANO, Francisco G. ELEMENTOS DE ELETRÔNICA DIGITAL 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530390/. Acesso em: 09 out. 2022. P. 199-200

Somador completo a partir de meio somadores

Pode-se construir um somador completo a partir de dois meio somadores.

Meio somador:

$$S = X \oplus Y$$

$$T_s = XY$$

Somador completo:

$$S = A \oplus B \oplus T_E$$

$$Ts = \overline{A}BT_E + A\overline{B}T_E + AB\overline{T}_E + ABT_E$$

Somador completo a partir de meio somadores

Pode-se construir um somador completo a partir de dois meio somadores.

Somador completo:

Fatorando a expressão de T_s, tem-se:

$$Ts = T_E (\overline{A}B + A\overline{B}) + AB (\overline{T}_E + T_E)$$
 : $Ts = T_E (A \oplus B) + AB$

Somador completo a partir de meio somadores

Pode-se construir um somador completo a partir de dois meio somadores.

Somador completo a partir de meio somadores

Pode-se construir um somador completo a partir de dois meio somadores.

Operação de subtração (Revisão)

Exemplo 03: Realize as seguintes operações binárias:

- a) 110 010
- b) 11011 01101
- c) 1000,10 0011,01

$$\begin{array}{ccc}
 & 110 & (6) \\
 & -010 & (2) \\
\hline
 & 100 & (4)
\end{array}$$

Meio subtrator

$$0 - 0 = 0$$
 $0 - 1 = 1$ e transporta 1 ("empresta" 1)
 $1 - 0 = 1$
 $1 - 1 = 0$

A	В	S	Ts	
0	0	0	0	$(0 - 0 = 0 \rightarrow Ts = 0)$
0	1	1	1	$(0-1=1 \to Ts=1)$
1	0	1	0	$(1 - 0 = 1 \rightarrow Ts = 0)$
1	1	0	0	$(1-1=0 \to Ts=0)$

$$S = A \oplus B$$
$$T_S = \bar{A}B$$

Meio subtrator

O circuito meio subtrator é também conhecido como half subtractor.

Subtrator completo

O meio subtrator possibilita efetuar a subtração de números binários de um algarismo. Para fazer uma subtração com números de mais algarismos, esse circuito torna-se insuficiente, pois não possibilita a entrada do transporte (T_E) , proveniente da coluna anterior.

Exemplo:

Subtrator completo

A	В	T _E	S	Ts
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$S = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + A\overline{B}\overline{T}_{E} + ABT_{E}$$

$$Ts = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + \overline{A}BT_{E} + ABT_{E}$$

Subtrator completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

$$S = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + A\overline{B}\overline{T}_{E} + ABT_{E}$$

$$Ts = \overline{A}\overline{B}T_{E} + \overline{A}B\overline{T}_{E} + \overline{A}BT_{E} + ABT_{E}$$

	$\frac{1B}{00}$	01	11	10
T_E	0	1	0	1)
1	1	0	1	0

S	=	A	\oplus	В	\oplus	T_E

Α	В	C	(A ⊕ B) ⊕ C	$A \oplus (B \oplus C)$	(A ⊕ C) ⊕ B
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

Subtrator completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

$$S = \bar{A}\bar{B}T_E + \bar{A}B\bar{T}_E + A\bar{B}\bar{T}_E + ABT_E$$

$$Ts = \bar{A}\bar{B}T_E + \bar{A}B\bar{T}_E + \bar{A}B\bar{T}_E + \bar{A}B\bar{T}_E + \bar{A}B\bar{T}_E$$

$$T_{S} = \bar{A}B + \bar{A}T_{E} + BT_{E}$$

Subtrator completo

Simplifique as expressões fazendo uso do mapa de Karnaugh.

O circuito subtrator completo é também conhecido como full subtractor.

Subtrator completo

Um subtrator para 2 números de *m* bits (m=n+1) pode ser representado genericamente por:

Referências

IDOETA, Ivan V.; CAPUANO, Francisco G. **ELEMENTOS DE ELETRÔNICA DIGITAL** 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390.

Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530390/.

Acesso em: 09 out. 2022. Capítulo 5: Circuitos Combinacionais 2ª Parte.

TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 6 – Aritmética Digital: Operações e Circuitos