Time Series Smoothing

In this assignment, we will explore the reaction of a simple exponential smoothing model to standard input series.

Theoretic part

Let the time series y_t , t = 1,2,...,T can be represented as an additive combination of two components: systematic f_t and disturbing u_t :

$$y_t = f_t + u_t$$
, $t = 1, 2, ..., T$.

Variable u_t is random and it has zero expected value and the same dispersion for any t value, its sequential values are uncorrelated. Variable f_t is a row level at the moment t, and the law of level change is a trend.

Components f_t and u_t are not observable. The process of model constructing that approximates trend is called time series smoothing.

A number of methods are used to highlight a trend. The simplest of the exponentially smoothing methods is naturally called simple exponential smoothing (SES). We will consider this method, which belongs to the class of adaptive, when the parameters of the model change during the transition from one observed value to another. This method is suitable for forecasting data with no clear trend or seasonal patter.

SES assume that the series has an infinite backstory and using the weighted least squares method find the coefficients of the polynomial P_t from time t selected degree d, that is, minimize

$$S_R = \sum_{i=0}^{\infty} (y_{t-1} - P_{t-1})^2 \beta^i,$$

$$0 < \beta < 1.$$

Polynomial coefficients can be presented as a linear combinations exponential mean corresponding orders. A simple exponential smoothing model defined for a polynomial of degree zero $(P_t = a_t)$, has the form:

$$a_t = S_t^{(l)} = (1 - \beta) \sum_{i=0}^{\infty} y_{t-1} \beta^i.$$

As examples of the polynomial coefficients, formulas are given for the coefficients of the linear model $y_t = a_t + b_t t + u_t$ (double exponential smoothing):

$$a_t = a_{t-1} + b_{t-1} + (1 - \beta^2)e_t$$

$$b_t = b_{t-1} + (1 - \beta^2)e_t$$
.

 e_t – error of one step forward forecasting, $e_t = y_{t-}(a_{t-1} + b_{t-1}1)$.

The constant of smoothing $\alpha = 1 - \beta$ is selected empirically, based on the minimum forecast errors for the estimated model.

Task 1

Explore reaction of simple exponential smoothing models for standard input series.

Case 1. Single impulse

Case 2. Step effect

Case 3. Linear function

Case 4. Parabolic function

Task 2

For the problem of predicting two steps ahead, choose the appropriate model of exponential smoothing for the real series. Conduct selection by minimum sum of squared deviations.

Case 1. Single impulse

	Exponential smoothing: S0=1,046 (Spreadsheet47) No trend,no season; Alpha= ,100 VAR1					
Summary of error	Error					
Mean error	0,05649173444					
Mean absolute error	1,75330071450					
Sums of squares	66,01421648117					
Mean square	6,60142164812					
Mean percentage error	163,28966423475					
Mean abs. perc. error	-116,26483182793					

	Exponential smoothing: SD=,0565 (Spreadsheet47) No trend,no season; Alpha= ,900 VAR1 : Exp.smooth.resids.;			
Summary of error	Error			
Mean error	-0,253446910520			
Mean absolute error	2,272692226322			
Sums of squares	114,958984165401			
Mean square	11,495898416540			
Mean percentage error	40,635353926776			
Mean abs. perc. error	-96,760990689814			

Case 2. Step effect

	Exponential smoothing: S0=5,046 (Spreadsheet52) No trend,no season; Alpha= ,100 VAR1				
Summary of error	Error				
Mean error	0,817305494837				
Mean absolute error	4,667155494934				
Sums of squares	253,308239809695				
Mean square	25,330823980969				
Mean percentage error	63,785708373032				
Mean abs. perc. error	-9,479683455832				

					_
	Exponential smoothing: S0=,8173 (Spreadsheet52) No trend,no season; Alpha= ,900 VAR1 : Exp.smooth.resids.;				
Summary of error	Error				
Mean error	0,315779007222				
Mean absolute error	3,042351843711				
Sums of squares	185,242445959299				
Mean square	18,524244595930				
Mean percentage error	-1,948544957375				
Mean abs. perc. error	6,631845950160				

Case 3. Linear function

	Exponential smoothing: S0=5,546 (Spreadsheet57) No trend,no season; Alpha= ,100 VAR1				
Summary of error	Error				
Mean error	0,53465067579				
Mean absolute error	2,69161368691				
Sums of squares	97,19993340470				
Mean square	9,71999334047				
Mean percentage error	-114,20355560106				
Mean abs. perc. error	153,89729180326				

					_
	Exponential smoothing: S0=,5347 (Spreadsheet57)				
Ш	No trend,no season; Alpha= ,900				
11	VAR1 : Exp.smooth.resids.;				
Summary of error	Error				
Mean error	0,30614056172				
Mean absolute error	2,28849981544				
Sums of squares	71,08381654010				
Mean square	7,10838165401				
Mean percentage error	185,46853277631				
Mean abs. perc. error	-113,26791097330				

Case 4. Parabolic function

11 .= 1		Exponential smoothing: S0=8,546 (Spreadsheet62) No trend,no season; Alpha= ,100 VAR1				
Ī	Summary of error	Error				
	Mean error	-0,391128596313				
l	Mean absolute error	6,633550522227				
	Sums of squares	598,135218467054				
	Mean square	59,813521846705				
	Mean percentage error	-0,567180676211				
	Mean abs. perc. error	35,834935089672				

	Exponential smoothing: S0=-,391 (Spreadsheet62) No trend,no season; Alpha= ,900 VAR1 : Exp.smooth.resids.;					
Summary of error	Error					
Mean error	0,819480420281					
Mean absolute error	6,133517938721					
Sums of squares	567,517270450136					
Mean square	56,751727045014					
Mean percentage error	69,656762197584					
Mean abs. perc. error	-17,282414971859					

Conclusion: Model of exponential smoothing with input as a single pulse (66,01) and *alpha* =0,1 has the minimum sum of squares

Task 4

In the smoothing mode, we examined a series with dollar values in various Russia's banks (2015y)

