Ex7 186 Fall

Assignment group 10

Ex. 7.1 1

Ex. 7.1.1 Hölder's Inequality

 $\forall a, b \geq 0, \ p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1, \ ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$ Proof: From (1), which is a special case of *Jensen's Inequality*, given in Assignment 6, we have:

$$(a^p)^{\frac{1}{p}} \cdot (b^q)^{\frac{1}{q}} = a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$$

Q.E.D.

Proof of Hölder's Inequality:

Let $a_i = \frac{|x_i|}{||x_i||_p}$ and $b_i = \frac{|y_i|}{||y_i||_p}$, in which i=1,2,3,4...n. From Young's Inequality, we have:

$$a_i b_i \le \frac{|x_i|^p}{p||x_i||_p^p} + \frac{|y_i|^q}{q||y_i||_q^q}$$

So.

$$\sum_{i=1}^{n} a_i b_i \le \frac{1}{p} \sum_{i=1}^{n} \frac{|x_i|^p}{||x_i||_p^p} + \frac{1}{q} \sum_{i=1}^{n} \frac{|y_i|^q}{||y_i||_q^q} = \frac{1}{p} + \frac{1}{q} = 1$$

Q.E.D.

Ex. 7.1.2 Minkowski's Inequiity

Using Hölder's Inequality as a lemma.

Proof of Minkowski's Inequality:

$$\begin{split} \sum_{j=1}^{n} |x_j + y_j|^p &= \sum_{j=1}^{n} |x_j + y_j| |x_j + y_j|^{p-1} \\ &\leq \sum_{j=1}^{n} (|x_j| + |y_j|) |x_j + y_j|^{p-1} \\ &= \sum_{j=1}^{n} |x_j| |x_j + y_j|^{p-1} + \sum_{j=1}^{n} |y_j| |x_j + y_j|^{p-1} \\ &\leq (\sum_{j=1}^{n} |x_j|^p)^{\frac{1}{p}} \cdot (\sum_{j=1}^{n} |x_j + y_j|^{(p-1)q})^{\frac{1}{q}} + (\sum_{j=1}^{n} |y_j|^p)^{\frac{1}{p}} \cdot (\sum_{j=1}^{n} |x_j + y_j|^{(p-1)q})^{\frac{1}{q}} \\ &= (\sum_{j=1}^{n} |x_j + y_j|^p)^{\frac{1}{q}} \cdot [(\sum_{j=1}^{n} |x_j|^p)^{\frac{1}{p}} + (\sum_{j=1}^{n} |y_j|^p)^{\frac{1}{p}}] \end{split}$$

Thus,

$$\frac{\sum_{j=1}^{n}|x_j+y_j|^p}{\sum_{j=1}^{n}|x_j+y_j|^p)^{\frac{1}{q}}} = (\sum_{j=1}^{n}|x_j+y_j|^p)^{\frac{1}{p}} \leq [(\sum_{j=1}^{n}|x_j|^p)^{\frac{1}{p}} + (\sum_{j=1}^{n}|y_j|^p)^{\frac{1}{p}}]$$

for $\forall p \geq 1, q \neq 0$

Q.E.D.

Ex. 7.1.3 1.3

First, for $\forall x \in \mathbb{R}^n$, $||x||_p \ge 0$ and $||x||_p = 0$ if and only if $x_1 = x_2 = x_3 = \cdots = x_n = 0$. Besides,

$$||x \cdot y||_p = \left(\sum_{1 \le i, j \le n} |x_j \cdot y_j|^p\right)^{\frac{1}{p}} = \left(\sum_{i=1}^n |x_i|^p \cdot \sum_{j=1}^n |y_j|^p\right)^{\frac{1}{p}}$$
$$= ||x||_p \cdot ||y||_p.$$

Finally,

$$||x+y||_p = \left(\sum_{j=1}^n |x_j + y_j|^p\right)^{\frac{1}{p}} \le \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}} + \left(\sum_{j=1}^n |y_j|^p\right)^{\frac{1}{p}}$$
$$= ||x||_p + ||y||_p.$$

So, $||\cdot||_p$ defines a norm on \mathbb{R}^n for $\forall p \in \mathbb{N} \setminus \{0\}$.

Ex. 7.1.4 1.4

Let $\xi := ||x||_p$. By the definition of $||\cdot||_p$, $\frac{|x_j|}{\xi} \le 1$ for j = 1, 2, 3...n, and $(\frac{|x_j|}{\xi})^q \le (\frac{|x_j|}{\xi})^p$ for p < q, So,

$$\sum_{j=1}^{n} \left(\frac{|x_j|}{\xi}\right)^q \le \sum_{j=1}^{n} \left(\frac{|x_j|}{\xi}\right)^p = \frac{\sum_{j=1}^{n} |x_j|^p}{\xi^p} = \frac{\sum_{j=1}^{n} |x_j|^p}{\sum_{j=1}^{n} |x_j|^p} = 1$$

So, $\sum_{j=1}^{n} |x_j|^q \le \xi^q$, $(\sum_{j=1}^{n} |x_j|^q)^{\frac{1}{q}} \le \xi$ and thus $||x||_q \le ||x||_p$.

1.5 Ex. 7.1.5

First for all $x \in \mathbb{R}^n$, $||x||_{\infty} \geq 0$. Also, $||x||_{\infty} = 0$ if and only if $\max_{1 \leq i \leq n} |x_i| = 0$, which means $x_1 = x_2 = x_3 = \dots = x_n = 0.$

Besides, $||x \cdot y||_{\infty} = \max_{1 \le i, j \le n} |x_i y_j| = \max_{1 \le i \le n} |x_i| \cdot \max_{1 \le j \le n} |y_j| = ||x||_{\infty} \cdot |||y||_{\infty}$. Finally, $||x + y||_{\infty} = \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} (|x_i| + |y_i|) \le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i| = ||x||_{\infty} + ||y||_{\infty}$, which partially finishes our proof.

Without losing generosity, we can assume that $|x_1| = \max |x_i|$ and

$$\lim_{p \to \infty} \left(\sum_{j=1}^{n} |x_j|^p \right)^{\frac{1}{p}} = |x_1| \lim_{p \to \infty} \left(\sum_{j=1}^{n} \left(\frac{|x_j|}{|x_1|} \right)^p \right)^{\frac{1}{p}}.$$

Notice that $\lim_{p \to \infty} (\frac{|x_j|}{|x_1|})^p = \begin{cases} 1 & |x_j| = |x_1| \\ 0 & |x_j| \neq |x_1| \end{cases}$ for $j = 1, 2, 3 \cdots n$.

Firstly,

$$\left(\lim_{p\to\infty} \left(\sum_{i=1}^n \left|\frac{x_j}{x_1}\right|\right)^p\right)^{\frac{1}{p}} \ge \lim_{p\to\infty} \left(\left|\frac{x_1}{x_1}\right|^p\right)^{\frac{1}{p}} = 1.$$

Secondly,

$$\lim_{p \to \infty} \left(\sum_{j=1}^{n} (|\frac{x_j}{x_1}|)^p \right)^{\frac{1}{p}} \le \lim_{p \to \infty} \left(\sum_{j=1}^{n} (|\frac{x_1}{x_1}|)^p \right)^{\frac{1}{p}} = \lim_{p \to \infty} n^{\frac{1}{p}}$$

for $\lim_{y \to \infty} \sqrt[m]{y} = 1$ for a fixed y > 0. (See Assignment 6 Exercise 6.7)

So,
$$\lim_{p \to \infty} \left(\sum_{j=1}^{n} \left(\left| \frac{x_j}{x_1} \right| \right)^p \right)^{\frac{1}{p}} \le \lim_{p \to \infty} n^{\frac{1}{p}} = 0.$$

Q.E.D.

$\mathbf{2}$ Ex. 7.2

Only the third object define a real vector space. Let's look at them in detail.

For 7.2.1:

Counterexample: Let $\{(x_1, x_2, x_3 \cdots x_n) \in \mathbb{R}^n | x_1 \leq 0\}$ be U. Take $e = (-1, 1, 1, 1, \dots, 1) \in U$. Then, $\lambda \cdot e = (1, -1, -1, -1, -1, -1, -1) \notin U$ when $\lambda = -1 \in \mathbb{R}$. Hence U is not closed to scalar multiplication, so $(U, +, \cdot)$ is not a subspace of \mathbb{R}^n , i.e. not a real vector space.

For 7.2.2:

Counterexample: Let $\{(x_1, x_2, x_3 \cdots x_n) \in \mathbb{R}^n | x_1 x_n \leq 0\}$ be U. Take $e_1 = (0, 1, 1, 1 \cdots 1)$ and $e_2 = (0, 1, 1, 1, \dots 1)$ $(1,1,1\cdots 1,0)\in U$. Then, $e_1+e_2=(1,2,2,2\cdots 2,1)\not\in U$. Hence U is not closed to pointwise addition, so $(U, +, \cdot)$ is not a subspace of \mathbb{R}^n , i.e. not a real vector space.

For 7.3.3:

Proof. Let $\{(x_1, x_2, x_3 \cdots x_n) \in \mathbb{R}^n | x_1 + 5x_2 = 0\}$ be U. First let's show that U is closed to pointwise addition:

For
$$e_1 = (a_1, a_2, a_3 \cdots a_n)$$
 and $e_2 = (b_1, b_2, b_3 \cdots b_n) \in U$. Then $e_1 + e_2 = (a_1 + b_1, a_2 + b_2, a_3 + b_3 \cdots a_n + b_n) = (c_1, c_2, c_3 \cdots c_n)$, in which $c_1 + 5c_2 = (a_1 + b_1) + 5(a_2 + b_2) = (a_1 + 5a_2) + (b_1 + 5b_2) = 0$.

Now let's show further that U is closed to scalar multiplication, which finishes the proof:

For $e_3 = e_1 + e_2 \in U$, which had been given above, let $\lambda \in \mathbb{R}$. If $\lambda = 0$, it would be apparent that $\lambda e_3 \in U$. If not, $\lambda \cdot e_3 = (\lambda c_1, \lambda c_2, \lambda c_3 \cdots \lambda c_n)$, in which $\lambda c_1 + 5\lambda c_2 = \lambda (c_1 + 5c_2) = \lambda \cdot 0 = 0$.

Q.E.D.

3 Ex. 7.3

3.1Ex. 7.3.1

We have already known that, $\lim_{n\to +\infty} \sqrt[n]{x} = 0$ when x=0 or 1 as x>0, which had been proven in Assignment 6 Exercise 6.7.

So, the pointwise limit of the sequence of functions $f_n(x)$: $\lim_{n\to+\infty} f_n(x) = \lim_{n\to+\infty} \sqrt[n]{x} \ (x\in[0,1])$ exist,

and the sequence converges to $f(x) = \begin{cases} 0 & x = 0 \\ 1 & x > 0 \end{cases}$. However, the convergence is not uniform, as we shall see: Because $||f_n - f||_{\infty} = \sup_{[0,1]} |f_n - f| = \sup_{[0,1]} |f_n - f|$

 $\sup_{[0,1]} |1-x^{\frac{1}{n}}| \ge 1-f(0.1^n) = 0.9 > 0$, the convergence is not uniform.

Ex. 7.3.2 3.2

We have $\lim_{n\to +\infty} f_n(x) = \lim_{n\to +\infty} \frac{nx}{1+n+x}$. As $x\in \mathbb{R}$, $\lim_{n\to +\infty} \frac{nx}{1+n+x} = \lim_{n\to +\infty} \frac{nx}{x} = x$. So the pointwise limit of the sequence of functions $f_n(x) = \frac{nx}{1+n+x}$ exist, and the sequence converges to f(x) = x. The convergence is uniform, as we shall see:

$$||f_n(x) - f(x)||_{\infty} = ||\frac{nx}{1 + n + x} - x||_{\infty} = ||\frac{-x - x^2}{1 + n + x}||_{\infty} = \sup_{x \in \mathbb{R}^+ \cup \{0\}} |\frac{-x - x^2}{1 + n + x}| = \sup_{x \in \mathbb{R}^+ \cup \{0\}} \frac{(x + x^2)}{(1 + x) + n} = \sup_{x \in \mathbb{R}^+ \cup \{0\}} ||x|| + \sup_{$$

As $x \in \mathbb{R}$, $(-x - x^2)$ and $(1 + x) \in \mathbb{R}$. So, as $n \to +\infty$,

$$\lim_{n \to +\infty} \frac{x+x^2}{(1+x)+n} = \lim_{n \to +\infty} \frac{1}{n} = 0$$

So, $||f_n(x) - f(x)||_{\infty} = 0$. That means that the convergence is uniform.

3.3 Ex. 7.3.3

 $f(x) = \begin{cases} 0 & x \le n \\ \frac{1}{x} & x > n \end{cases}, \text{ dom } f = \mathbb{R}. \text{ Because } \lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} \frac{1}{x} = 0, \text{ pointwise limit exists and the}$ series of functions converge pointwisely to f(x) = 0.

We'll now show that the convergence is uniform.

Because $||f_n(x) - f(x)||_{\infty} = \sup_{\mathbb{R}} |\frac{1}{x} - 0|$. As $n \to +\infty$, $\frac{1}{x} \to 0$ and $\sup_{\mathbb{R}} |\frac{1}{x} - 0| = \frac{1}{n} - 0 \to 0$. So, the convergence is uniform.

3.4 Ex. 7.3.4

It's apparent that $\lim_{n\to+\infty} f_n(x) = 0$. Pointwise limit exists and the sequence of functions f_n converges pointwisely to f(x) = 0.

The convergence is uniform, as we will now show. As

$$||f_n(x) - f(x)||_{\infty} = ||f_n(x)||_{\infty} = \sup_{\mathbb{R}^+} (\sqrt{\frac{1}{n} + x} - \sqrt{x})$$

and

$$\lim_{n \to +\infty} \sup_{\mathbb{R}^+} (\sqrt{\frac{1}{n} + x} - \sqrt{x}) = \sup_{\mathbb{R}^+} (\sqrt{x} - \sqrt{x}) = 0,$$

 $||f_n(x)||_{\infty} \to 0$ as $n \to +\infty$, so the convergence is uniform.

3.5 Ex. 7.3.5

Because

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} (\sqrt{n^2 x + n} - \sqrt{n^2 x})$$

$$= \lim_{n \to +\infty} (\sqrt{n^2 x + o(n^2)} - \sqrt{n^2 x})$$

$$= \lim_{n \to +\infty} (\sqrt{n^2 x} - \sqrt{n^2 x}) = 0,$$

the pointwise limit of the sequence of functions exists, and $f_n(x)$ converges pointwisely to f(x) = 0. However, we can show that the convergence is not uniform. Because

$$||f_n(x) - f(x)||_{\infty} = ||f_n(x)||_{\infty} = \sup_{\mathbb{R}^+} n \cdot (\sqrt{\frac{1}{n} + x} - \sqrt{x})$$

and as n goes to infinity, let's have $x = \frac{1}{n^2}$.

$$\sup_{\mathbb{R}^+} n(\sqrt{\frac{1}{n} + x} - \sqrt{x}) \ge n(\sqrt{\frac{1}{n} + \frac{1}{n^2}} - \sqrt{x})$$

$$= n \cdot \sqrt{\frac{1}{n} + \frac{1}{n^2}} - 1$$

$$> n \cdot \sqrt{\frac{1}{n}} - 1$$

$$= \sqrt{n} - 1 \to +\infty \text{ as } n \to +\infty.$$

The norm of $f_n(x) - f(x)$ does not converge, so the sequence of functions does converge uniformly to f(x) = 0.

4 Ex7.4

Figure 1: Figure 7.4

The distance can be assessed through the image above (figure Ex7.4).

The first process : h

The second process : $2r \cdot h$

...

The *n*th process : $2r^{n-1} \cdot h$

Except for the first process is one-way, other process are all double-way Thus, the total distance :

$$D = 2\left(\sum_{n=1}^{\infty} r^{n-1} \cdot h\right) - h$$

$$= \frac{2h}{1-r} - h$$
(1)

5 Ex7.5

We can know from the question that

$$\sum \frac{1}{n} = \sum_{n \in X} \frac{1}{n} + \sum_{n \in \mathbb{N}^* \setminus X} \frac{1}{n}$$

Because

$$\sum_{n \in \mathbb{N}^* \setminus X} \frac{1}{n} = \frac{1}{9} + \frac{1}{81} + \dots + \frac{1}{9^k} + \dots$$

$$= \frac{1}{9} \sum_{n=0}^{\infty} \frac{1}{n}$$
(2)

So, $\sum_{n \in \mathbb{N}^* \setminus X} \frac{1}{n}$ diverges.

Then, we can find that $\sum_{n \in X} \frac{1}{n} = \frac{8}{9} \sum \frac{1}{n}$ So, $\sum_{n \in X} \frac{1}{n}$ also diverges.

Figure 2: Figure 7.6.1

We can model the question(figure 7.6.1). When there are n + 1 bricks, assume that the mass of each brick is m, the acceleration of gravity is g, the length of the lever is L and the distance between the middlepoint and the right end is l_{n+1} . We can then simplify it into a lever (show in figure 7.6.2).

Figure 3: Figure 7.6.2

According to lever principle, we can know that

$$mg(\frac{L}{2} - l_{n+1}) = nmgl_{n+1}$$

$$\frac{1}{2}mgL - mgl_{n+1} = nmgl_{n+1}$$

$$l_{n+1} = \frac{L}{2(n+1)}$$

$$l_{n+1} = \frac{L}{2} \cdot \frac{1}{n+1}$$
(3)

So we can know $\sum_{n=1}^{\infty} l_{n+1}$ diverges. Thus, the tower can extend to infinite far.

$7 \quad \text{Ex}7.7$

7.1 7.7.1

$$\sum_{n=1}^{\infty} \frac{2^{2n} \cdot 3^{3n}}{5^{3n}} = \sum_{n=1}^{\infty} \frac{4^n 27^n}{125^n}$$

$$= (\frac{108}{125})^n$$

$$= \frac{108}{17}$$
(4)

So, we can know the $\sum_{n=1}^{\infty} \frac{2^{2n} \cdot 3^{3n}}{5^{3n}}$ converges.

$7.2 \quad 7.7.2$

Because we know when n > 3, $n^2 - 3n + 1 > 0$ Thus, we can know:

$$a_{n} := \sum_{n=1}^{\infty} \frac{n+4}{n^{2}-3n+1} = \sum_{n=1}^{3} \frac{n+4}{n^{2}-3n+1} + \sum_{n=4}^{\infty} \frac{n+4}{n^{2}-3n+1}$$

$$> \sum_{n=1}^{3} \frac{n+4}{n^{2}-3n+1} + \sum_{n=4}^{\infty} \frac{n+4}{n^{2}+16n+16}$$

$$= \sum_{n=1}^{3} \frac{n+4}{n^{2}-3n+1} + \sum_{n=4}^{\infty} \frac{1}{n+4} =: b_{n}$$
(5)

Because $\sum_{n=4}^{\infty} \frac{1}{n+4}$ diverges, so b_n diverges.

Thus $a_n = \sum_{n=1}^{\infty} \frac{n+4}{n^2 - 3n + 1}$ diverges as $0 < b_n < a_n$.

7.3 7.7.3

Let $a_n := \frac{n^4}{3^n}$. We will use deduction to prove that when $n \ge 32$, $n^4 < 2^n$.

Firstly, when n = 32, $(32)^4 = 2^{20} < 2^{32}$

Secondly, assume that when $n = k, n \in \mathbb{N}^*, k \geq 32$, we also have $2^k > k^4$.

So, when n = k + 1, because

$$\frac{(k+1)^4}{k^4} = (\frac{k+1}{k})^4 < (\frac{33}{32})^4 < 2$$

Thus,

$$2^{k+1} = 2 \cdot 2^k > 2 \cdot k^n > (k+1)^4$$

So, we have proved that when $n \ge 32$, $n^4 < 2^n$.

We get

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{32} a_n + \sum_{n=33}^{\infty} \frac{n^4}{3^n} < \sum_{n=1}^{32} a_n + \sum_{n=33}^{\infty} (\frac{2}{3})^n := b_n$$

Because we know that $\sum_{n=33}^{\infty} (\frac{2}{3})^n$ converges. So, b_n converges. Thus a_n converges as $0 < a_n < b_n$,

7.4 7.7.4

Let $a_n := \frac{2^n}{n!}$, Then,

$$\lim_{x \to \infty} \frac{a_{n+1}}{a_n} = \lim_{x \to \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \lim_{x \to \infty} \frac{2}{n+1} = 0$$

Thus, $a_n = \frac{2^n}{n!}$ converges.

7.5 7.7.5

Let $a_n := \frac{2^n}{n^n}$. Then,

$$\lim_{x \to \infty} \frac{a_{n+1}}{a_n} = \lim_{x \to \infty} \frac{2n^n}{(n+1)(n+1)} = \lim_{x \to \infty} 2 \cdot (\frac{n}{n+1})^n \cdot (\frac{1}{n+1}) = 0$$

Thus, $a_n = \frac{2^n}{n^n}$ converges.

7.6 7.7.6

We can know from $\sum_{n=1}^{\infty} \frac{n}{10n^3 - 100}$ that when n > 4, $\sum_{n=1}^{\infty} \frac{n}{10n^3 - 100} > 0$

And then, we will prove that when n > 4, $\frac{n}{10n^3 - 100} > 0$ strictly decreases.

Proof:

For $\forall n > 4$,

$$\frac{n+1}{10(n+1)^3 - 100} - \frac{n}{10n^3 - 100} = \frac{1}{10} \left(\frac{n+1}{(n+1)^3 - 10} - \frac{1}{10} \left(\frac{n}{n^3 - 10} \right) \right) \\
= \frac{1}{10} \cdot \frac{-2n^3 - 3n^2 - n - 10}{[(n+1)^3 - 10](n^3 - 10)} < 0$$
(6)

Thus, $\frac{n}{10n^3 - 100} > 0$ strictly decreases.

Then, we will prove $a_n := \sum_{n=1}^k \frac{n}{10n^3 - 100}$ is Cauchy squence.

Proof:

For all n > 4 and fixed p,

$$\sum_{n=1}^{k+p} \frac{n}{10n^3 - 100} - \sum_{n=1}^{k} \frac{n}{10n^3 - 100} = \sum_{n=k+1}^{k+p} \frac{n}{10n^3 - 100}$$
 (7)

Because

$$\left| \sum_{n=k+1}^{k+p} \frac{n}{10n^3 - 100} - \sum_{n=k+2}^{k+p+1} \frac{n}{10n^3 - 100} \right| = \frac{k+p+1}{10(k+p+1)^3 - 100} - \frac{k+1}{10(k+1)^3 - 100}$$

$$< \frac{p}{10(k+1)^3 - 100}$$
(8)

We can know that $\lim_{k\to\infty} \frac{p}{10(k+1)^3 - 100} = 0$. So $\forall \varepsilon > 0, \exists k \in \mathbb{N}^*$, there exists ε that satisfies

$$\left| \sum_{n=1}^{k+p} \frac{n}{10n^3 - 100} - \sum_{n=1}^{k} \frac{n}{10n^3 - 100} \right| < \varepsilon$$

We have prove $a_n := \sum_{n=1}^k \frac{n}{10n^3 - 100}$ is Cauchy squence. And then we can know $\sum_{n=1}^{\infty} \frac{n}{10n^3 - 100}$ converges.