Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

- 1. Para a função dada, seja $x_0 = 0$, $x_1 = 0$, 6 e $x_2 = 0$, 9. Construa polinômios de grau $n \le 2$, para aproximar f(0, 45), e encontre o valor do erro verdadeiro.
 - (a) $f(x) = \cos x$
 - (b) $f(x) = \sqrt{1+x}$
 - (c) $f(x) = \ln(x+1)$
- 2. Use o Teorema do Erro, e determine uma cota superior do erro, para as aproximações calculadas no exercício 1
- 3. Sabendo-se que f(0,81) = 16,94410 f(0,83) = 17,56492 f(0,86) = 18,50515 e f(0,87) = 18,82091, calcule um valor aproximado de f(0,84), usando:
 - (a) Polinômio interpolador de Lagrange de grau $n \leq 1, 2, 3$
 - (b) Forma de Newton para polinômio interpolador de grau $n \leq 1, 2, 3$
 - (c) Calcule uma cota superior do erro em cada caso, se possível.
- 4. Seja uma função f tabelada nos pontos x_i igualmente espaçados. Seja h o passo e suponhamos que $|f''(x)| \leq M$ em todo intervalo da tabela. Mostre que, ao se fazer uma interpolação linear da função f no ponto x tomando os pontos consecutivos x_i x_{i+1} , com $x_i < x < x_{i+1}$, o valor absoluto do erro cometido é no máximo $\varepsilon = \frac{1}{8}M.h^2$
- 5. Deseja-se construir uma tabela da função $f(x) = e^x$ no intervalo [0, 1] com pontos x_i igualmente espaçados. Seja h o passo. Qual o valor máximo de h para que o erro da interpolação linear em qualquer ponto do intervalo seja menor ou igual a $\epsilon \leq 1.10^{-2}$.
- 6. Considere a tabela abaixo:

Altura (cm)	183	173	188	163	178	
Peso(kg)	79	69	82	63	73	

- (a) Usando um Polinômio Interpolador de grau dois, calcule a altura aproximada de uma pessoa com peso de 70 kg.
- (b) Dê uma estimativa de erro para o caso anterior.
- (c) Determine a melhor função da forma $\psi(x) = \alpha \operatorname{sen}(x) + \beta \cos(x)$ que ajusta estes pontos e calcule a altura aproximada de uma pessoa com peso de 70 Kg.
- 7. Sabe-se que ao longo da linha vermelha a velocidade máxima permitida é de 90km/h e foram colocados radares para medir a velocidade instantânea dos

carros. Suponha que numa distância d = 1.0km, um motorista conferiu através do velocímetro (suponha que o velocímetro seja exato) as seguintes velocidade:

distância	0	0.2	0.3	0.5	0.8	1.0
velocidade	80	85	88	92	85	80

Pergunta-se:

- (a) Considere um radar colocado na posição d=0,4. Usando um polinômio interpolador de grau dois ou menor, calcule:
 - i) Velocidade aproximada neste ponto.
 - ii) Erro da interpolação neste ponto.
 - iii) Podemos concluir que o carro não será multado?
- (b) Usando o Método dos Mínimos Quadrados faça uma regressão linear e calcule a velocidade esperada em d=1,1
- (c) Usando o Método dos Mínimos Quadrados determine o polinômio de segundo grau ótimo, e calcule a velocidade esperada em d=1,1
- (d) O jornal "O Globo" publicou a seguinte notícia: Em virtude da estimativa de erro do radar ser de 10% então os carros poderiam andar a uma velocidade máxima de 99km/h sem serem multados. O que você pensa sobre isto?
- 8. A tabela abaixo representa a inflação **bimestral** medida pelo INPC no ano de 2000.

bimestre	janeiro	fevereiro	marco	maio	junho
inflação(%)	0,75	0,64	0, 24	2,94	0,37

- (a) Estime qual foi a inflação em abril , utilizando um polinômio interpolador de grau $n \leq 2$.
- (b) Calcule o erro da estimativa anterior.
- (c) Podemos garantir, usando o resultado do item anterior, que a inflação semestral foi menor que 6%?.
- (d) Determine a inflação do mês de julho, usando um polinômio de grau $n \leq 2$.
- 9. A tabela abaixo representa o número oficial aproximado de pessoas com DENGUE, ou seja, infectados pelo virus (Aëdes aegypti) no Rio de Janeiro:

data					
números	4.300	2.200	36.500	41.600	42700

Os dados relativos $2002_{1,2}$ correspondem ao número de casos registrados nos meses de janeiro e fevereiro.

(a) Usando uma reta, estime o número de infectados no mês de março de 2002, pelo método dos mínimos quadrados.

- (b) Estime qual foi o número de infectados pelo virus em fevereiro de 2001, utilizando um polinômio interpolador de grau $n \leq 2$.
- (c) Estime o erro na aproximação calculada no item c.
- 10. Qual é a diferença entre interpolação polinomial e o ajuste de curvas pelo método dos mínimos quadrados? É possível obter um mesmo polinômio que interpola e faz o ajuste de curvas pelo método dos mínimos quadrados?
- 11. O número de bactérias, por unidade de volume, existente em uma cultura após x horas é dado na tabela abaixo:

número de horas	0	1	2	3	4	5	6
número de bactérias	32	47	65	92	132	190	275

- (a) Ajuste os dados acima a curva $y = ae^{bx}$ pelo método dos mínimos quadrados
- (b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 2000?
- 12. Dada a tabela abaixo, faça o gráfico de dispersão dos dados e ajuste uma curva da melhor maneira possível.

13. Interpolação em duas variáveis

Seja Ω um retângulo $R = \{(x,y); a \leq x \leq b; c \leq y \leq d\}$ e as seguintes partições: $R_x: a = x_0 < x_1 < \cdots < x_n = b$ e $R_y: c = y_0 < y_1 < \cdots < y_m = d$. Considere os polinômios de Lagrange $\{L_i(x): 0 \leq i \leq n\}$ e $\{L_j(y): 0 \leq j \leq m\}$ de grau n e m respectivamente. Definindo

$$P(x,y) = \sum_{i=j=0}^{n,m} f(x_i, y_j).L_{ij}(x, y)$$

obtemos um polinômio interpolador de grau n em x e m em y, onde

$$L_{ij}(x,y) = L_i(x)L_j(y)$$

Considere a tabela abaixo:

Altura (cm)	183	173	188	163	178
Peso(kg)	79	69	82	63	73
Velocidade(km/h)	15	16	14	14	15

Determine, a velocidade aproximada de uma pessoa, que mede 175 cm e pesa 75 kg, usando um polinômio interpolador de grau 2 em cada variável.

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados

Exercício 1:

 $(a) f(x) = \cos(x)$

Primeira forma: Interpolação de Lagrange

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

onde:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L_0(0, 45) = \frac{(0, 45 - 0, 6)(0, 45 - 0, 9)}{(0 - 0, 6)(0 - 0, 9)} = 0,125 \; ; \; f(0) = \cos(0) = 1$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \Rightarrow L_1(0,45) = \frac{(0,45 - 0)(0,45 - 0,9)}{(0,6 - 0)(0,6 - 0,9)} = 1,125 \; ; \; f(0,6) = \cos(0,6) \approx 0,825$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \Rightarrow L_2(0,45) = \frac{(0,45 - 0)(0,45 - 0,6)}{(0,9 - 0)(0,9 - 0,6)} = -0,25 \; ; \; f(0,9) = \cos(0,9) \approx 0,622$$

Portanto,

$$f(0,45) \approx P_2(0,45) = 0.125 \cdot 1 + 1.125 \cdot 0.825 - 0.25 \cdot 0.622 = 0.897625$$

Erro:

$$|f(x) - P_2(x)| = |\cos(0.45) - P_2(0.45)| \approx 2.822 \cdot 10^{-3}$$

Segunda forma: Diferenças Divididas de Newton

$$P_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$$

onde:

$$d_{0} = f[x_{0}]$$

$$d_{1} = f[x_{0}, x_{1}] = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}}$$

$$d_{2} = f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{x_{2} - x_{0}}$$

Vamos montar a seguinte tabela:

X	dd0	dd1	dd2
$x_0 = 0$	$f[x_0] = 1 = d_0$		
		$f[x_0, x_1] = -0.292 = d_1$	
$x_1 = 0.6$	$f[x_1] = 0.825$		$f[x_0, x_1, x_2] = -0.428 = d_2$
		$f[x_1, x_2] = -0.677$	
$x_2 = 0.9$	$f[x_2] = 0.622$		

$$P_2(0,45) = 1 + (-0,292)(0,45-0) + (-0,428)(0,45-0)(0,45-0,6) = 0,89749$$

Exercício 2:

Cota Superior do Erro:

$$|E_n(x)| = |f(x) - P_n(x)| \le \frac{M_{n+1}}{(n+1)!} |(x - x_0)(x - x_1) \cdots (x - x_n)|$$

onde:

$$M_{n+1} = m \acute{a} x \left| f^{(n+1)}(x) \right| para x \in [x_0, x_n]$$

Então,

$$|E_2(x)| = |f(x) - P_2(x)| \le \frac{|f'''(x)|_{max}}{3!} |(x - x_0)(x - x_1)(x - x_2)|$$

$$f(x) = \cos(x) \implies f''(x) = \sin(x)$$

$$f'''(0) = 0$$
; $f'''(0,6) \approx 0.565$; $\underbrace{f'''(0,9) \approx 0.7833}_{\text{Máximo}}$

$$\left|E_{2}(0,45)\right| \leq \frac{0.7833}{3!} \left|(0,45-0)(0,45-0,6)(0,45-0,9)\right| \approx 3.965 \cdot 10^{-3}$$

Exercício 3:

(a) Devemos neste item construir por Lagrange $P_1(x)$, $P_2(x)$, $P_3(x)$ tais que:

$$P_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

onde:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
; $L_1(x) = \frac{x - x_0}{x_1 - x_0}$; com $x_0 = 0.83 \ e \ x_1 = 0.86$

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$
 onde:

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \; ; \; L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_2)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_1)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_1-x_1)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1$$

 $com x_0 = 0.83$, $x_1 = 0.86$ e $x_2 = 0.87$ (lembrando que escolhemos para x_0 o valor mais próximo de x)

$$P_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3)$$

onde:

$$L_0(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} \; ; \; L_1(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)}{(x_2-x_0)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_2-x_0)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_2-x_0)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_3)}{(x_2-x_0)(x_2-x_3)} \; ; \; L_2(x) = \frac{(x-x_0)(x-x_3)}{(x_2-x_3)} \; ; \; L_2(x$$

com
$$x_0 = 0.81$$
, $x_1 = 0.83$, $x_2 = 0.86$ e $x_3 = 0.87$

(b) Usando Diferenças Divididas de Newton:

Devemos neste item construir $P_1(x)$, $P_2(x)$, $P_3(x)$ tais que:

$$P_1(x) = d_0 + d_1(x - x_0)$$

$$P_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$$

$$P_3(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2)$$

e usar tabelas como usamos no exercício 1.

(c) Se a função f(x) é dada na forma de tabela, o valor absoluto do erro $|E_n(x)|$ só pode ser estimado. Isto porque, neste caso, não é possível calcular M_{n+1} ; mas, se construirmos a tabela de diferenças divididas até ordem n+1, podemos usar o maior valor (em módulo) destas diferenças como uma aproximação para $\frac{M_{n+1}}{(n+1)!}$ no intervalo $[x_0, x_n]$.

Neste caso, dizemos que:

$$|E_n(x)| \approx |(x-x_0)(x-x_1)\cdots(x-x_n)| \cdot (\max|diferences|divididas|de|ordem|n+1|)$$

Então, neste exercício:

$$|E_1(x)| \approx |(x-x_0)(x-x_1)| \cdot (max|dd 2|)$$

$$|\mathbf{E}_{2}(\mathbf{x})| \approx |(\mathbf{x} - \mathbf{x}_{0})(\mathbf{x} - \mathbf{x}_{1})(\mathbf{x} - \mathbf{x}_{2})| \cdot (\mathbf{m} \dot{\mathbf{x}} |\mathbf{d} \mathbf{d} \mathbf{3}|)$$

$$|E_3(x)| \approx |(x-x_0)(x-x_1)(x-x_2)(x-x_3)| \cdot (max|dd 4|)$$

Pela tabela:

X	dd0	dd1	dd2	dd3
0,81	16,94410			
		31,041		
0,83	17,56492		6 = máx dd2	21
		31,341		-2,0873
0,86	18,50515		5,875	
		31,576		
0,87	18,82091			

Assim,

$$|E_1(0.84)| \approx |(0.84 - 0.83)(0.84 - 0.86)| \cdot (6) = 1.2 \cdot 10^{-3}$$

$$|E_2(0.84)| \approx |(0.84 - 0.83)(0.84 - 0.86)(0.84 - 0.87)| \cdot (-2.0833)| = 1.24998 \cdot 10^{-5}$$

Não é possível determinar $|E_3(x)|$ porque não temos as diferenças divididas de ordem 4.

Exercício 4:

Neste exercício, temos pontos x_i igualmente espaçados. Sendo h o passo, temos:

$$x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1} = h$$

Cota superior para o erro na interpolação linear:

$$|E_1(x)| = |f(x) - P_1(x)| \le \frac{|f''(x)|_{max}}{2!} |(x - x_0)(x - x_1)|$$

Também são dados do exercício : $|f''(x)| \le M$; $x_0 = x_i$; $x_1 = x_{i+1}$

Para achar $|(x-x_i)(x-x_{i+1})|_{m\acute{a}x}$, basta verificarmos que como se trata de uma parábola, a coordenada que contém o valor máximo para $w(x) = (x-x_i)(x-x_{i+1})$ é $(x_{v\acute{e}rtice},y_{v\acute{e}rtice}) = \left(\frac{x_i+x_{i+1}}{2},y_{v\acute{e}rtice}\right)$

Então,

$$\left|E_{1}(x)\right| \leq \frac{M}{2!} \left(\frac{x_{i} + x_{i+1}}{2} - x_{i} \right) \left(\frac{x_{i} + x_{i+1}}{2} - x_{i+1} \right) = \frac{M}{2} \left(\frac{x_{i+1} - x_{i}}{2} \right) \left(\frac{x_{i} - x_{i+1}}{2} \right) = \frac{M}{2} \frac{\sum_{i=1}^{h} \frac{h}{2}}{2} \frac{\sum_{i=1}^{h} \frac{h}{2}}{2} = \frac{Mh^{2}}{8}$$

Exercício 5:

Aplicar o resultado do exercício anterior.

Também é válido aqui o seguinte corolário para o Teorema do Erro:

Para pontos igualmente espaçados, ou seja: $\mathbf{x_1} - \mathbf{x_0} = \mathbf{x_2} - \mathbf{x_1} = \cdots = \mathbf{x_n} - \mathbf{x_{n-1}} = \mathbf{h}$ onde \mathbf{h} é o passo, temos:

$$|E_n(x)| = |f(x) - P_n(x)| < \frac{h^{n+1}M_{n+1}}{4(n+1)}$$

Exercício 6:

(a) Vamos ordenar a tabela por peso:

Altura(cm)	163	173	178	183	188
Peso (Kg)	63	69	73	79	82

Usando $P_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$, temos:

X	dd0	dd1	dd2	dd3	dd4
63	163				
		5/3			
$69 = x_0$	$173 = d_0$		-1/24		
		$5/4 = d_1$		0	
$73 = x_1$	178		$-1/24 = \mathbf{d_2}$		29/53352
		5/6		29/2808 = máx dd3	
$79 = x_2$	183		5/54		
		5/3			
82	188				

$$P_2(70) = 173 + \frac{5}{4}(70 - 69) - \frac{1}{24}(70 - 69)(70 - 73) = 174,375 \text{ cm}$$

(b) Estimativa do erro:

$$\left|\mathbf{E_{2}(70)}\right|\approx\left|(70-69)(70-73)(70-79)\right|\cdot\left(\mathbf{29}\; /\; \mathbf{2808}\right)\approx\mathbf{0.27885}$$

(c) A curva que aproximaremos para os pontos da tabela é da forma:

$$\psi(x) = a \operatorname{sen}(x) + \beta \cos(x)$$

Vamos ajustá-la aos dados da tabela através do Método dos Mínimos Quadrados, fazendo:

$$S(a, \beta) = \sum_{i=0}^{4} [f(x_i) - a \operatorname{sen}(x_i) - \beta \cos(x_i)]^2$$

onde:

$$\frac{\partial S}{\partial a} = 0 \Rightarrow 2\sum_{i=0}^{4} [f(x_i) - a \operatorname{sen}(x_i) - \beta \cos(x_i)] \cdot [-\operatorname{sen}(x_i)] = 0 \quad (1)$$

$$\frac{\partial S}{\partial \beta} = 0 \Rightarrow 2\sum_{i=0}^{4} [f(x_i) - a \operatorname{sen}(x_i) - \beta \cos(x_i)] \cdot [-\cos(x_i)] = 0 \quad (2)$$

Rearrumando (1) e (2), temos:

$$2\alpha \sum_{i=0}^{4} \operatorname{sen}^{2}(x_{i}) + \beta \sum_{i=0}^{4} \operatorname{sen}(2x_{i}) = 2\sum_{i=0}^{4} f(x_{i}) \operatorname{sen}(x_{i})$$
 (3)

4	4	4	
$\alpha \sum sen(2x_i)$	$_{5}$) + $2eta\sum cos^{2}$ (2	x_i) = $2\sum f(x_i)\cos(x_i)$) (4)
i=0	i=0	i=0	

Formamos a seguinte tabela:

X	y = f(x)	sen²(x)	cos2(x)	sen(2x)	ysen(x)	ycos(x)
79	183	0,964	0,036	0,375	179,638	34,918
69	173	0,872	0,128	0,669	161,509	61,998
82	188	0,981	0,019	0,276	186,170	26,165
63	163	0,794	0,206	0,809	145,234	74,000
73	178	0,915	0,085	0,559	170,222	52,042
	SOMAS	4,526	0,474	2,688	842,773	249,123

Assim, temos o sistema:

$$9,052\alpha + 2,688\beta = 1685,546$$

$$2,688\alpha + 0,948\beta = 498,246$$

Resolvendo esse sistema, achamos:

$$\alpha \approx 190,717$$

$$\beta \approx -15,187$$

Portanto, a melhor função que ajusta estes pontos \acute{e} :

$$\psi(x) = 190,717 \text{ sen}(x) - 15,187 \cos(x)$$

Agora, vamos usar essa equação para achar a altura aproximada de uma pessoa de 70 Kg:

$$\psi(70) = 190,717 \text{ sen}(70^{\circ}) - 15,187 \cos(70^{\circ}) \approx 174,021 \text{ cm}$$

Exercício 10:

Dados:

$$(x_i, f(x_i)), i = 0, 1, ..., m$$
 (Tabela de f)
 $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ (Funções quaisquer contínuas)

Determinar uma função do tipo :

$$g(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + ... + c_n \varphi_n(x)$$

onde
$$c_i \in R$$
, $i = 0,1,...,n$

que se ajuste à tabela dada por $(x_i, f(x_i))$, i = 0, 1, ..., m

A idéia mais ingênua e natural que nos ocorre para ajustar g à f é impormos a condição de que g coincida com f nos pontos dados; ou seja, $g(x_i) = f(x_i)$, i = 0,1,...,m.

Teríamos então:

$$\begin{cases} c_0 \varphi_0(x_0) + c_1 \varphi_1(x_0) + \dots + c_n \varphi_n(x_0) = & f(x_0) \\ c_0 \varphi_0(x_1) + c_1 \varphi_1(x_1) + \dots + c_n \varphi_n(x_1) = & f(x_1) \\ & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot \\ c_0 \varphi_0(x_m) + c_1 \varphi_1(x_m) + \dots + c_n \varphi_n(x_m) = f(x_m) \end{cases}$$

que é um sistema de m+1 equações e n+1 incógnitas c_0 , c_1 ,..., c_n .

- (a) Quando m = n, $\varphi_i(x) = x^i$ e os pontos x_i 's são distintos teremos um problema de INTERPOLAÇÃO POLINOMIAL
- (b) Quando m > n teremos um sistema com mais equações do que incógnitas e um dos métodos mais usados neste caso é o MÉTODO DOS MÍNIMOS QUADRADOS (MMQ).

É possível obter um mesmo polinômio que interpola e faz o ajuste de curvas pelo MMQ se o modelo ajustar exatamente os dados. Dessa forma, o mínimo de $S(c_0, c_1, ..., c_n) = \sum_{k=1}^m [f(x_k) - g(x_k)]^2$ será zero e, portanto, a interpolação é um caso especial dentro do MMQ.

Exercício 13:

Por ordem de peso, a tabela fica:

Peso(Kg)	63	69	73	79	82
Altura(cm)	163	173	178	183	188
Velocidade(km/h)	14	16	15	15	14

O exercício pede para usar um polinômio bidimensional de grau 2. Então:

$$\begin{split} P_2(x,y) &= f(x_0\,,y_0\,)L_0(x)L_0(y) + f(x_0\,,y_1)L_0(x)L_1(y) + f(x_0\,,y_2\,)L_0(x)L_2(y) + \\ &\quad f(x_1\,,y_0\,)L_1(x)L_0(y) + f(x_1\,,y_1)L_1(x)L_1(y) + f(x_1\,,y_2\,)L_1(x)L_2(y) + \\ &\quad f(x_2\,,y_0\,)L_2(x)L_0(y) + f(x_2\,,y_1)L_2(x)L_1(y) + f(x_2\,,y_2\,)L_2(x)L_2(y) \end{split}$$

Para a variável $x: x_0 = 73, x_1 = 79, x_2 = 82$

$$L_0(75) = 14/27$$
; $L_1(75) = 7/9$; $L_2(75) = -8/27$

Para a variável $y: y_0 = 73, y_1 = 79, y_2 = 82$

$$L_0(175) = 12/25$$
; $L_1(175) = 16/25$; $L_2(175) = -3/25$

Então, fazendo agora $L_{ij}(x,y) = L_{ij}(x)L_{ij}(y)$, temos :

$$\begin{split} L_{00}(75,175) &= 56/225, \ f(x_0,y_0) = 16 \\ L_{01}(75,175) &= 224/675, \ f(x_0,y_1) = 15 \\ L_{02}(75,175) &= -14/225, \ f(x_0,y_2) = 15 \\ L_{10}(75,175) &= 28/75, \ f(x_1,y_0) = 16 \\ L_{11}(75,175) &= 112/225, \ f(x_1,y_1) = 15 \\ L_{12}(75,175) &= -21/225, \ f(x_1,y_2) = 15 \\ L_{20}(75,175) &= -32/225, \ f(x_2,y_0) = 16 \\ L_{21}(75,175) &= -128/675, \ f(x_2,y_1) = 15 \\ L_{22}(75,175) &= 8/225, \ f(x_2,y_2) = 15 \end{split}$$

Observação: na hora de calcular $f(x_i, y_j)$, colocamos x_i como ponto fixo (que não varia). Depois, verificamos o valor de $f(x_i, y_j)$, a velocidade representada neste exercício, no ponto y_j .

Portanto,

$$\begin{split} P_2(75,175) &= 16 \cdot \frac{56}{225} + 15 \cdot \frac{224}{675} + 15 \cdot -\frac{14}{225} + 16 \cdot \frac{28}{75} + 15 \cdot \frac{112}{225} + 15 \cdot -\frac{21}{225} + 16 \cdot -\frac{32}{225} + 15 \cdot -\frac{128}{675} + \\ &+ 15 \cdot \frac{8}{225} = 15,48 \text{ km/h}. \end{split}$$