信息安全数学基础----习题集一

一、填空题

1、设 a=18、b=12, c=27, 求 a、b、c 的最小公倍数[a,b,c]=	
2、求欧拉函数φ(3000)=	
$3、设m = 9$,则模 m 的最小非负简化剩余系= {	}}.
4、设 $m = 11$,则模 m 的所有平方剩余=	·
5、设 $m=22$,则模 m 的所有原根个数=	<u>.</u>
6. 设 m,n 是互素的两个正整数,则 $oldsymbol{arphi}$ (mn)=。	
7. 设 m 是正整数,a 是满足 $m \nmid a$ 的整数,则一次同余式: ax≡l	o (mod m)
有解的充分必要条件是。	
8. 设 m 是一个正整数, a 是满足的整数,则存在图	೬数 a',1
≤a' <m (mod="" ,使得="" aa'≡1="" m)。<="" td=""><td></td></m>	
9. 设 $a \in Z$, $(a, m) = 1$, 如果同余方程 $x^2 \equiv a \pmod{m}$,	则a叫做
模加的平方剩余.	
10. 设 $a, m \in Z, m > 1, (a, m) = 1$,则使得 $a^e \equiv 1 \pmod{m}$ 成立的	最小正整
数 e 叫做 a 对模 m 的	
二、判断题(在题目后面的括号中,对的画 "√",错的画 "×")	
1、若 k 是任意正整数,则 $(ak,bk) = (a,b)$.)
2、设 a_1 , a_2 ,, a_n 是 n 个不全为零的整数,则 a_1 , a_2 ,, a_n 与 a_1 , $ a_2 $	$, a_3 ,,$
$ a_n $ 的公因数相同 ()
3、设 m 是正整数,若 $m \mid ab$,则 $m \mid a$ 或 $m \mid b$.	()
4、设 m 为正整数, a,b 为整数, $a \equiv b \pmod{m}$, $d \mid b \mid \exists d > 0$,	则 $\frac{a}{d} \equiv$
$\frac{b}{d} \pmod{\frac{m}{d}}$.	()
5、{1,-3,8,4,-10}是模 5 的一个完全剩余系.	()
6、设m是素数,模m的最小非负完全剩余系和最小非负简化剩余系	中元素个
数相等. ()
7、设 $p=17$ 为奇素数,模 p 的平方剩余和平方非剩余的数量各为 8	3. ()
8、一次同余方程 $9x \equiv 1 \pmod{24}$ 有解.	()

9、设 p 是系数, g 是惧 p 的原根,右 $g^x \equiv 1 \pmod{p}$,则 x 是 p	- 1 的整	:
	()
10、设 $m>1$, $(a,m)=1$, 则 $1=a^0$, a,a^2 , …, $a^{\operatorname{ord}_m(a)-1}$ 构反	戈模 加的简	旬化剩
余系.	()
11. $b \neq 0$, 则 $(0,b) = b $.	()
12. 设 a,b 是两个互素正整数,那么 $a\mid m,b\mid m$,则 $ab\mid m$.	()
13. 设 m 是一个正整数, a,b,d 都不为 0,若 ad≡bd(modm)。则	J a≡b(mo	od m)。
	()
14. 设 m 为正整数, a 是满足(a , m) = 1 的整数, b 为整数. \bar{a}	$\ddagger r_1, r_2,$, $r_{\varphi(m)}$
为模 m 的一个简化剩余系,则 ar_1 + b, ar_2 + b,, $ar_{\varphi(m)}$ + b 也为权	莫 m 的一/	卜 简化
剩余系.	()
15. p 为素数,n 为整数且与 p 互素,则 n² 为模 p 的平方剩余.	. ()
16. 设 p 为正整数,设 $a \in Z$, $(a,p) = 1$,则 a 是模 p 的平方剩余	₹的充要系	条
件是: $a^{\frac{p+1}{2}} \equiv 1 \pmod{p}$.	()	
17.3 是模 7 的原根。	()
18. 设 $a, m \in \mathbb{Z}, m > 1$, $(a, m) = 1$, d 为 正 整 数, 若 $a^d \equiv 1$	(mod <i>m</i>)	,则
$\operatorname{ord}_m(a) d.$	())
19. 整数集关于整数的乘法构成群。	()
20. 适当定义加法和乘法,集合{0,1}可以构成一个有限域。	()	
三、单项选择题(把答案写在题目后面的括号中)		
1. 设 a 与 b 是两个整数,则存在整数 s , t ,使得 $(a,b)=sa+t$	tb,下面	关于a
与 b 线性组合描述 错误 的是: ()		
A. 整数s,t的取值仅有一组唯一的值;		
B. 整数a,b的线性和所能表示的最小的正整数是a,b最大公	因数,艮	∏sa+
tb = (a, b);		
C. (a,b) 的倍数也可以用 a,b 的线性和表示;		

D. 整数s,t,可以使用辗转相除法(欧几里得算法)反推得到。

- 2、下面关于整除的描述错误的是:() A. ±1 是任何整数的因子; B. 设 $a, b \in Z$ (整数集合), $c \neq 0$ $c|b, c|a, 则<math>c|a \pm b$; C. 0 是任何整数的倍数; D. $\forall a, b \in \mathbb{Z}$, 若 $b|a, b \neq 0$, 则b|-a, -b|-a。 3、下面的说法正确的是: (A. 给定一个正整数m和两个整数a, b,若 $a \equiv b \pmod{m}$,则 $(a - b) \pmod{m}$ 设 a,b 为 整 数 , 若 $a \equiv b \pmod{m_i}$,(i = 1,2,...,k) , 则 $a \equiv$ $b \pmod{[m_1, m_2, ..., m_k]}$; C. 设 m_1, m_2 是两个正整数, 若 x_1, x_2 分别遍历 m_1, m_2 的完全剩余系, 则 $m_2x_1 + m_1x_2$ 遍历模 m_1m_2 的完全剩余系; D. 设p为素数, a为任意正整数, 则 $a^{p-1} \equiv 1 \pmod{p}$ 。 4. 下面哪个集合是模 12 的简化剩余系?)。 A. 1,3,5,7 B. 1,5,7,9, C. 1,5,7,11 D. 3,5,7,11。 5. 一次同余方程 $3^{1000}x \equiv 9 \pmod{27}$ 的解数是) A. 3 B. 2 C. 1 D. 0 6、下面的说法正确的是: () A. 一次同余方程 $21x \equiv 55 \pmod{77}$ 有解; B、一次同余方程 $x \equiv 6 \pmod{15}$,等价于求解一次同余方程组: $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \end{cases}$ 的解; C、一次同余方程组 $\begin{cases} x \equiv 5 \pmod{13} \\ x \equiv 20 \pmod{23} \end{cases}$ 有且仅有唯一的解; D. 设 b_i , m_i 是正整数, 对于一次同余方程组 $x \equiv b_i \pmod{m_i}$, i = 1,2,3, 若 $(b_i, m_i) = 1$,则同余方程组一定有解。 7、设p是奇素数, $(a_1, p) = 1$, $(a_2, p) = 1$,则下列说法**错误**的是: A. 如果 a_1 是模p的平方剩余, a_2 是模p的平方非剩余,则 a_1a_2 是模p的平方剩
 - B. 如果 a_1 是模p的平方剩余, a_2 是模p的平方非剩余,则 a_1a_2 是模p的平方非

余.

剩余.

- C. 如果 a_1 , a_2 都是模p的平方剩余, 则 a_1a_2 是模p的平方剩余.
- D. 如果 a_1 , a_2 都是模p的平方非剩余,则 a_1a_2 是模p的平方剩余.
 - 8、下面说法,错误的是()
- A、设 p 为奇素数,设 $a \in Z$, (a, p) = 1, 若 $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, 方程 $x^2 \equiv a \pmod{p}$ 方程肯定无解;
- B、设p,q是奇素数,整数a,b,p,q两两互素.若a既是模p的平方剩余也是模q的平方剩余,则a不是模pq的平方剩余;
- C、设p,q是奇素数,整数a,b,p,q两两互素.若a既是模p的平方剩余也是模q的平方剩余,b既不是模p的平方剩余也不是模q的平方剩余,则ab不是模p的平方剩余;
- D、设p,q是奇素数, (ab,pq)=1, 只有 $x^2\equiv ab \pmod{p}$)和 $x^2\equiv ab \pmod{q}$ 同时有解,对于二次方程 $x^2\equiv ab \pmod{pq}$ 才有解。
 - 9、已知 5 对模 17 的阶为 16, 5×5≡8(mod17), 求ord₁₇(8)的值是 ()
 - A, 2 B, 4 C, 6 D, 8
 - **10**、下面说法**错误**的是()
 - A、设n是一个正合数, $Z_n = \{0,1,2,3,...,n-1\}$, 则集合 $Z_n \setminus \{0\}$ 对于乘法:

$$a \otimes b = a \times b \pmod{n}$$

构成一个交换群;

- B、设n是一个正整数,令 $Z = \{..., -n, ..., -2, -1,0,1,2, ..., n, ...\}$,即Z是所有整数的集合. 对于通常意义的加法(+),Z是一个交换群;
- C、设p是一个素数, $F_p = Z/pZ = \{0,1,2,3,...,p-1\}$, $F^* = F_p \setminus \{0\}$, F^* 是模p的最小非负简化剩余系. 则集合 F^* 对于乘法:

$$a \otimes b = a \times b \pmod{p}$$

构成一个交换群;

D、设n是一个奇素数, $Z_n = \{0,1,2,3,...,n-1\}$, 则集合 $Z_n \setminus \{0\}$ 对于乘法:

$$a \otimes b = a \times b \pmod{n}$$

构成一个有限域。

	11. 设 a, k	b, c 是三个整数,c≠0 且 ∈	C a,c b,如果存在	:整数 s, t, 使得 sa +
tb=	1,则() 。		
	A. (a, b)= c	B. c=1		
	C. c=sa+t	tb D. c= ± 1		
	12. 设 a, b	, c 是三个不全为零的整验	数。如果 a = bq + c,	其中q是整数,则
有()。			
	A. (a, b) = (q, c) B. (a, b) = (b, c)		
	C. (a, b) = c	D. (a, b) = (a, c)		
	13. 下面哪	邓个集合不是模 5 的一个多	完全剩余系? () 。
	A. 1, 3, 5, 7	7,9 B. 2,4,6	5,8,10	
	C. 0, 1, 2,11	1,13 D. 0, 1,	2, 13, 19。	
	14. 下面哪	『个集合是模 18 的简化剩	余系? ()。	
	A1, 5, 7, 3	11, 13, 17		
	B1, 5, 9, 1	11, 13, 15,17		
	C5, 1, 5, 7	7, 11,17		
	D. 1, 3, 5, 7	′, 9.11, 13, 17 _°		
	15. 满足 5	66≡18 (modm)的正整数 n	n(m>2)的个数是()。
	A. 1	B. 2		
	C. 4	D. 5		
	16.30模2	3的逆元是()。		
	A. 23	B. 19		
	C. 10	D. 4		
	17. 下列一	一次同余式无解的是()。	
	A. 12x≡3	(mod 16)		
	B. 8x≡9 (mod 19),		
	C. 78x≡30	(mod 98)		
	D. 111x≡6	5 (mod 51)。		
	18. 下面哪	『个是模 13 的平方剩余?() 0	
	A. 5	B. 10		
	C. 11	D. 7		

- 19. 下面各组数中,均为模 14 的原根的是()。
- A. 2, 3, 4, 5
- B. 3, 6, 8, 10
- C. 9, 11, 13
- D. 3, 5
- **20**. 定义运算 \otimes : $a \otimes b = a \times b \pmod{12}$, 下面哪个集合构成一个群. (
- A. {1,2,3,4}
- B. {1,3,5,7}
- C. {1,,5,7,9}
- D. {1,5,7,11}

四、简答题/计算题

- 1. 设a = 15, b = 101,求整数s,t,使得as + tb = (a,b).(给出具体求解过程)
- 2. 计算 7¹⁰⁰⁵(mod 15)。(给出具体求解过程,提示:可用欧拉定理)
- 3. 求 7 模 26 的阶 ord_{26} (7),并给出所有模 26 的阶为 ord_{26} (7)的整数 g(1 < g < 26)。 (给出具体求解过程)
 - 4. 判断同余方程 $x^2 \equiv 3 \pmod{11}$ 的解的情况。(给出具体求解过程)
- 5. $F_2[x]$ 中多项式 $g(x) = x^2 + x + 1$, $f(x) = x^5 + x^3 + x^2 + x + 1$, 给 f(x) 除以 g(x) 的商和余式
 - 6. a=42, b=164, 求 a 和 b 的最大公因子(a, b) 及整数 x 和 y, 使 (a, b) =ax+bv.
 - 7. 结合欧拉定理和模重复平方算法(或者平方乘算法)计算 6²⁰²⁵(mod41)
 - 8. 写出模 17 的所有平方剩余。
 - 9. 计算 5 模 19 的指数 ord19(5)。

五、综合题(备注,每题必须给出具体求解过程)

1. 求解一次同余方程 84x+1≡64(mod 371).