

VLSI Architecture Design

Assignment - 3

26.03.2025

Submitted by:

Niranjan Gopal IMT2022543 Bijeet Basak IMT2022510 Abhinav Deshpande IMT2022580 Yash Sengupta IMT2022532 Dikshant Mahawar IMT2022549 Teerth Bhagat IMT2022586 Source code and reports: Click here

Schematic from Virtuoso:

8 bit adder (Full circuit)

8 bit adder (Zoomed) (Part 1)

8 bit adder (Zoomed) (Part 2)

Register:

Register Symbol:

Results (A0 - A7 ; B0 - B3)

Results (B2 - B7; 00 - 05)

Results (B5 - B7; O1 - O7; Cout)

Ripple Adder

Ripple Adder symbol:

Semi Dynamic Flip Flop

Semi Dynamic Flip Flop Symbol:

Signal A (A0 - A7) (8 bit):

Signal B (B0 - B7) (8 bit):

Output O (00 - 07) (8 bit):

Cout (1 bit):

STA

 $T_{pd} = (4.61364 - 4.10588) \text{ ns} = some_value ps}$

 $T_{pcq} = (1.1340 - 1.0000) = some_value ps$

From Assignment 1, for the semi-dynamic flip flop we found that:

t_{setup} = -20.2247 ps

For minimum delay constraint: $TC \ge t_{setup} + t_{pd} + t_{pcq}$

Hence Tc =

Layout:

Pin Mapping:

Behavioural Simulation of the adder:

Code (Verilog)

Top Module: `timescale 1ns / 1ps // Company: // Engineer: // Create Date: 03/26/2025 11:00:44 AM // Design Name: // Module Name: Top // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: //

```
module Top(
input [7:0] A,
input [7:0] B,
```

```
input Cin,
 input clk,
 input reset,
 output [7:0] Sout,
 output Cout
 );
 wire [7:0] A_reg, B_reg;
  Register R1(A, clk, reset, A_reg);
  Register R2(B, clk, reset, B_reg);
 wire [7:0] Out;
 wire carryout;
  RippleCarryAdder RCA(A_reg, B_reg, Cin, Out, carryout);
  Register Rout(Out, clk, reset, Sout);
 FlipFlop Fout(carryout, clk, reset, Cout);
endmodule
Adder Module:
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 03/25/2025 08:59:05 PM
```

// Design Name:

```
// Module Name: Adder
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module Adder(
 input A,
 input B,
 input Cin,
 output S,
 output Cout
);
 assign S = A \wedge B \wedge Cin; // XOR for sum
 assign Cout = (A & B) | (B & Cin) | (A & Cin); // Corrected Carry-out
endmodule
Ripple Carry Adder:
`timescale 1ns / 1ps
```

```
// Company:
// Engineer:
//
// Create Date: 03/25/2025 09:16:49 PM
// Design Name:
// Module Name: RippleCarryAdder
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module RippleCarryAdder(
 input [7:0] A,
 input [7:0] B,
 input Cin,
 output [7:0] Out,
 output Cout
 );
```

```
wire C1;
 Adder A1(A[0], B[0], Cin, Out[0], C1);
 wire C2;
 Adder A2(A[1], B[1], C1, Out[1], C2);
 wire C3;
 Adder A3(A[2], B[2], C2, Out[2], C3);
 wire C4;
 Adder A4(A[3], B[3], C3, Out[3], C4);
 wire C5;
 Adder A5(A[4], B[4], C4, Out[4], C5);
 wire C6;
 Adder A6(A[5], B[5], C5, Out[5], C6);
 wire C7;
 Adder A7(A[6], B[6], C6, Out[6], C7);
 Adder A8(A[7], B[7], C7, Out[7], Cout);
endmodule
Flip_Flop Module:
`timescale 1ns / 1ps
// Company:
// Engineer:
```

```
//
// Create Date: 03/25/2025 08:50:45 PM
// Design Name:
// Module Name: FlipFlop
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module FlipFlop(
  input D,
  input clk,
  input reset,
  output reg Q
  );
  always @(posedge clk)
  begin
   if (reset == 1'b1)
   begin
```

```
Q <= 1'b0;
end
else
begin
Q <= D;
end
end
end
```

Register Module:

```
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 03/25/2025 08:54:37 PM
// Design Name:
// Module Name: Register
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
```

```
module Register(
input [7:0] Din,
input clk,
input reset,
output [7:0] Dout
);

FlipFlop F1(Din[7], clk, reset, Dout[7]);
FlipFlop F2(Din[6], clk, reset, Dout[6]);
FlipFlop F3(Din[5], clk, reset, Dout[5]);
FlipFlop F4(Din[4], clk, reset, Dout[4]);
FlipFlop F5(Din[3], clk, reset, Dout[3]);
FlipFlop F6(Din[2], clk, reset, Dout[2]);
FlipFlop F7(Din[1], clk, reset, Dout[1]);
FlipFlop F8(Din[0], clk, reset, Dout[0]);
endmodule
```

TestBench:

Top Module: `timescale 1ns / 1ps // Company: // Engineer: // Create Date: 03/26/2025 04:57:16 PM // Design Name: // Module Name: Top_test // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // `timescale 1ns / 1ps module Top_test;

```
// Inputs
reg [7:0] A;
reg [7:0] B;
reg Cin;
reg clk;
reg reset;
// Outputs
wire [7:0] Sout;
wire Cout;
// Instantiate the Top module
Top uut (
  .A(A),
  .B(B),
  .Cin(Cin),
  .clk(clk),
  .reset(reset),
  .Sout(Sout),
  .Cout(Cout)
);
// Clock generation: 10ns period (50MHz)
always #5 clk = \simclk;
// Test sequence
initial begin
  // Initialize inputs
  clk = 0;
```

```
reset = 1;
A = 8'b00000000;
B = 8'b00000000;
Cin = 0;
// Apply reset
#10 \text{ reset} = 0;
// Test case 1: A = 5, B = 10, Cin = 0
#10 A = 8'b00000101; // 5
  B = 8'b00001010; // 10
  Cin = 0;
// Test case 2: A = 100, B = 200, Cin = 1
#20 A = 8'b00000000; // 100
  B = 8'b00000111; // 200
  Cin = 1;
// Test case 3: A = 255, B = 1, Cin = 0 (Checking Carry)
#20 A = 8'b00000001; // 255
  B = 8'b00000001; // 1
  Cin = 0;
// Test case 4: Random values
#20 A = 8'b10101010;
  B = 8'b01010101;
  Cin = 1;
// End simulation
```

```
#50 $finish;
end

// Monitor outputs
initial begin
$monitor("Time=%0t | A=%b | B=%b | Cin=%b | Sout=%b | Cout=%b",
$time, A, B, Cin, Sout, Cout);
end

endmodule
```

Genus Reports

Timing:

Generated by: Genus(TM) Synthesis Solution 21.10-p002_1

Generated on: Mar 26 2025 12:07:37 pm

Module: bottom

Technology library: slow_vdd1v0 1.0

Operating conditions: PVT_0P9V_125C (balanced_tree)

Wireload mode: enclosed

Area mode: timing library

Pin Type Fanout Load Slew Delay Arrival

(fF) (ps) (ps) (ps)

(clock clk) lau	ınch	0 R
R1_F8_Q_reg/CK		100 +0 0 R
R1_F8_Q_reg/Q	DFFHQX1	1 0.8 27 +228 228 R
g531_5115/B		+0 228
g531_5115/CO	ADDFX1	1 0.8 43 +196 424 R
g528_6131/A		+0 424
g5286131/CO	ADDFX1	1 0.8 43 +206 630 R
g525_8246/A		+0 630
g525_8246/CO	ADDFX1	1 0.6 39 +204 834 R
g5221705/CI		+0 834
g5221705/CO	ADDFX1	1 0.6 39 +186 1020 R
g519_1617/CI		+0 1020

g519_1617/CO	ADDFX1	1 0.6 39 +186 1206 R
g5166783/CI		+0 1206
g516_6783/CO	ADDFX1	1 0.6 39 +186 1392 R
g513_8428/CI		+0 1392
g513_8428/CO	ADDFX1	1 0.6 39 +186 1578 R
g5106260/CI		+0 1578
g510_6260/S	ADDFX1	1 0.2 33 +255 1833 R
g508_2398/AN		+0 1833
g508_2398/Y	NOR2BX1	1 0.2 34 +89 1922 R
Rout_F1_Q_reg/D	<<< DFFQXL	+0 1922
Rout_F1_Q_reg/D Rout_F1_Q_reg/Ch		+0 1922 100 +96 2018 R
	< setup	

Cost Group : 'clk' (path_group 'clk')

Timing slack: 7972ps

Start-point : R1_F8_Q_reg/CK End-point : Rout_F1_Q_reg/D

Power

Instance: /bottom

Power Unit: W

PDB Frames: /stim#0/frame#0

Category Leakage Internal Switching Total Row%

memory 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00%

register 2.57161e-09 4.92196e-06 9.88200e-08 5.02335e-06 77.88%

latch 0.00000e+00 0.00000e+00 0.00000e+00 0.00%

logic 1.71465e-09 8.05168e-07 2.15014e-07 1.02190e-06 15.84%

bbox 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00%

clock 0.00000e+00 0.00000e+00 4.05000e-07 4.05000e-07 6.28%

pad 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00%

pm 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00%

Subtotal 4.28627e-09 5.72713e-06 7.18834e-07 6.45025e-06 100.00%

Percentage 0.07% 88.79% 11.14% 100.00% 100.00%

Area

Generated by: Genus(TM) Synthesis Solution 21.10-p002_1

Generated on: Mar 26 2025 12:07:37 pm

Module: bottom

Technology library: slow_vdd1v0 1.0

Operating conditions: PVT_0P9V_125C (balanced_tree)

Wireload mode: enclosed

Area mode: timing library

Instance Module Cell Count Cell Area Net Area Total Area Wireload

bottom 58 212.040 0.000 212.040 <none> (D)

(D) = wireload is default in technology library

Power Report:

Power Net Detected:

Voltage Name

0V VSS

0.9V VDD

Using Power View: setup.

Load RC corner of view setup

Begin Power Analysis

0V VSS

0.9V VDD

Begin Processing Timing Library for Power Calculation

Ended Processing Timing Library for Power Calculation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Processing Power Net/Grid for Power Calculation

Ended Processing Power Net/Grid for Power Calculation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Processing Timing Window Data for Power Calculation

clk(100MHz) CK: assigning clock clk to net clk

Ended Processing Timing Window Data for Power Calculation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Processing User Attributes

Ended Processing User Attributes: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Processing Signal Activity

Starting Levelizing

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 10%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 20%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 30%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 40%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 50%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 60%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 70%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 80%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 90%

Finished Levelizing

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

Starting Activity Propagation

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

** INFO: (VOLTUS_POWR-1356): No default input activity has been set. Defaulting to 0.2.

Use 'set_default_switching_activity -input_activity' command to change the default activity value.

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 10%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 20%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 30%

Finished Activity Propagation

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

Ended Processing Signal Activity: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Power Computation

of cell(s) missing both power/leakage table: 0

of cell(s) missing power table: 0

of cell(s) missing leakage table: 0

Starting Calculating power

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

... Calculating switching power

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 10%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 20%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 30%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 40%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 50%

... Calculating internal and leakage power

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 60%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 70%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 80%

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT): 90%

Finished Calculating power

2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

of MSMV cell(s) missing power_level: 0

Ended Power Computation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Processing User Attributes

Begin Processing set_power

Ended Processing set_power: (cpu=0:00:00, real=0:00:00,

mem(process/total/peak)=3086.73MB/unknown/unknown)

Ended Processing User Attributes: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Ended Power Analysis: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3086.73MB/unknown/unknown)

Begin Boundary Leakage Calculation

Ended Boundary Leakage Calculation: (cpu=0:00:00, real=0:00:00,

mem(process/total/peak)=3088.07MB/unknown/unknown)

Begin Static Power Report Generation

*_____

* Innovus 23.13-s082_1 (64bit) 11/13/2024 13:42 (Linux 3.10.0-693.el7.x86_64)

*

* Date & Time: 2025-Mar-26 12:05:09 (2025-Mar-26 16:05:09 GMT)

*

*_____

```
Design: bottom
       Liberty Libraries used:
           setup: ../lib/slow_vdd1v0_basicCells.lib
       Parasitic Files used:
*
     Power View: setup
     User-Defined Activity: N.A.
*
    Activity File: N.A.
     Hierarchical Global Activity: N.A.
     Global Activity: N.A.
*
     Sequential Element Activity: 0.200000
     Primary Input Activity: 0.200000
*
*
     Default icg ratio: N.A.
     Global Comb ClockGate Ratio: N.A.
       Power Units = 1mW
       Time Units = 1e-09 secs
```

*

* report_power

*

*

Total Power

Total Internal Power: 0.00616537 90.6891%

Total Switching Power: 0.00062870 9.2478%

Total Leakage Power: 0.00000429 0.0631%

Total Power: 0.00679836

Group	Intern	al Swit	ching	Leakag	ge To	otal Percen	tage
P	ower	Power	Pov	ver	Power	(%)	
Sequential	0.00	5044 0.	.000267	77 2.57	'1e-06	0.005314	78.17
Macro	0	0	0	0	0		
IO	0	0	0	0	0		
Combinational	0.	001121	0.000	361 1.7	718e-06	0.001484	21.83
Clock (Combination	nal)	0	0	0	0	0	
Clock (Sequential)		0	0	0	0	0	
Total	0.0061	65 0.00	06287	4.288e	-06 0.	006798	100

	Power Power Power (%)	
VDD	0.9 0.006165 0.0006287 4.288e-06 0.006798	100
*	Power Distribution Summary:	
*	Highest Average Power: R1_F6_Q_reg (DFFHQX1):	0.0002376
*	Highest Leakage Power: R1_F7_Q_reg (DFFHQX1):	1.205e-07
*	Total Cap: 6.22814e-14 F	
*	Total instances in design: 58	
*	Total instances in design with no power: 0	
*	Total instances in design with no activty: 0	
*	Total Fillers and Decap: 0	

Voltage Internal Switching Leakage Total Percentage

** INFO: (VOLTUS_POWR-3465): There are 0 decaps and 0 fillers in the design

Ended Static Power Report Generation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=3088.07MB/unknown/unknown)

Bottom Report:

Rail

" deficiated by: educated initiovals 25.15 5002_

OS: Linux x86_64(Host ID cadencea16)

```
# Generated on: Wed Mar 26 12:04:45 2025
# Design:
           bottom
# Command:
              report timing > bottom report.txt
Path 1: MET Setup Check with Pin Rout F1 Q reg/CK
Endpoint: Rout_F1_Q_reg/D (^) checked with leading edge of 'clk'
Beginpoint: R1 F8 Q reg/Q (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Analysis View: setup
Other End Arrival Time
                    0.001
- Setup
               0.136
+ Phase Shift
               10.000
- Uncertainty
              0.010
= Required Time
                  9.855
- Arrival Time
          1.958
= Slack Time
          7.897
  Clock Rise Edge
                    0.000
  + Clock Network Latency (Prop) -0.000
  = Beginpoint Arrival Time -0.000
  | Instance | Arc | Cell | Delay | Arrival | Required |
       | | | Time | Time |
  | R1_F8_Q_reg | CK ^ | | -0.000 | 7.897 |
  | R1_F8_Q_reg | CK ^ -> Q ^ | DFFHQX1 | 0.185 | 0.185 | 8.082 |
  | g531 5115 | B ^ -> CO ^ | ADDFX1 | 0.201 | 0.386 | 8.283 |
  | g528 6131 | A ^ -> CO ^ | ADDFX1 | 0.213 | 0.599 | 8.496 |
  | g522_1705 | CI ^ -> CO ^ | ADDFX1 | 0.206 | 1.031 | 8.928 |
```

```
| g519_1617 | CI^-> CO^ | ADDFX1 | 0.190 | 1.221 | 9.118 | | g516_6783 | CI^-> CO^ | ADDFX1 | 0.185 | 1.406 | 9.303 | | g513_8428 | CI^-> CO^ | ADDFX1 | 0.185 | 1.591 | 9.488 | | g510_6260 | CI^-> S^ | ADDFX1 | 0.259 | 1.850 | 9.747 | | g508_2398 | AN^-> Y^ | NOR2BX1 | 0.108 | 1.958 | 9.855 | | Rout_F1_Q_reg | D^ | DFFQXL | 0.000 | 1.958 | 9.855 | |
```

Bottom Area:

Hinst Name	Module Name	Inst Count	Total Area
bottom	58	171.103	