

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

bund Snow Load, $P_g = 30$	0.00 psf	
Roof Snow Load, P _s = 14	4.43 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s = 0$	0.64	
$C_e = 0$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 (Pressure) 2.000	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy non are canado.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>48.23</u>	6095.32	k
Compressive Load =	3147.24	<u>4868.49</u>	k
Lateral Load =	<u>433.19</u>	4301.55	k
Moment (Weak Axis) =	0.83	0.27	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 149644.2 in-lbs Resisting Force Required = 2267.34 lbs A minimum 132in long x 30in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3778.89 lbs to resist overturning. Minimum Width = Weight Provided = 5981.25 lbs Sliding Force = 991.91 lbs Use a 132in long x 30in wide x 18in tall Friction = 0.4 Weight Required = 2479.79 lbs ballast foundation to resist sliding. Resisting Weight = 5981.25 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 991.91 lbs Cohesion = 130 psf Use a 132in long x 30in wide x 18in tall 27.50 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2990.63 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

	Ballast Width				
	<u>30 in</u>	<u>31 in</u>	32 in	<u>33 in</u>	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.5 \text{ ft}) =$	5981 lbs	6181 lbs	6380 lbs	6579 lbs	

ASD LC	1.0D + 1.0S			1.0D+	1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	30 in	31 in	32 in	33 in	30 in	31 in	32 in	33 in	30 in	31 in	32 in	33 in	30 in	31 in	32 in	33 in
FA	1205 lbs	1205 lbs	1205 lbs	1205 lbs	1030 lbs	1030 lbs	1030 lbs	1030 lbs	1529 lbs	1529 lbs	1529 lbs	1529 lbs	71 lbs	71 lbs	71 lbs	71 lbs
F _B	1088 lbs	1088 lbs	1088 lbs	1088 lbs	2074 lbs	2074 lbs	2074 lbs	2074 lbs	2239 lbs	2239 lbs	2239 lbs	2239 lbs	-2804 lbs	-2804 lbs	-2804 lbs	-2804 lbs
F _V	200 lbs	200 lbs	200 lbs	200 lbs	1824 lbs	1824 lbs	1824 lbs	1824 lbs	1495 lbs	1495 lbs	1495 lbs	1495 lbs	-1984 lbs	-1984 lbs	-1984 lbs	-1984 lbs
P _{total}	8274 lbs	8474 lbs	8673 lbs	8872 lbs	9085 lbs	9285 lbs	9484 lbs	9683 lbs	9749 lbs	9948 lbs	10148 lbs	10347 lbs	856 lbs	976 lbs	1095 lbs	1215 lbs
M	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	2850 lbs-ft	2850 lbs-ft	2850 lbs-ft	2850 lbs-ft	4383 lbs-ft	4383 lbs-ft	4383 lbs-ft	4383 lbs-ft	3959 lbs-ft	3959 lbs-ft	3959 lbs-ft	3959 lbs-ft
е	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.31 ft	0.31 ft	0.30 ft	0.29 ft	0.45 ft	0.44 ft	0.43 ft	0.42 ft	4.63 ft	4.06 ft	3.61 ft	3.26 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	230.0 psf	229.6 psf	229.2 psf	228.8 psf	273.8 psf	272.0 psf	270.3 psf	268.7 psf	267.6 psf	266.0 psf	264.4 psf	263.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	371.8 psf	366.8 psf	362.2 psf	357.8 psf	386.9 psf	381.4 psf	376.3 psf	371.5 psf	441.4 psf	434.2 psf	427.4 psf	421.1 psf	260.9 psf	174.6 psf	145.2 psf	131.4 psf

Maximum Bearing Pressure = 441 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 30in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Seismic Design

Overturning Check

 $M_0 = 1775.5 \text{ ft-lbs}$

Resisting Force Required = 1420.42 lbs S.F. = 1.67

Weight Required = 2367.37 lbs Minimum Width = 30 in in Weight Provided = 5981.25 lbs A minimum 132in long x 30in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		30 in			30 in			30 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	335 lbs	693 lbs	224 lbs	772 lbs	1960 lbs	687 lbs	137 lbs	203 lbs	27 lbs	
F _V	236 lbs	231 lbs	242 lbs	172 lbs	170 lbs	189 lbs	237 lbs	232 lbs	239 lbs	
P _{total}	7740 lbs	8098 lbs	7629 lbs	7821 lbs	9009 lbs	7736 lbs	2302 lbs	2368 lbs	2192 lbs	
М	904 lbs-ft	892 lbs-ft	924 lbs-ft	669 lbs-ft	675 lbs-ft	723 lbs-ft	904 lbs-ft	890 lbs-ft	911 lbs-ft	
е	0.12 ft	0.11 ft	0.12 ft	0.09 ft	0.07 ft	0.09 ft	0.39 ft	0.38 ft	0.42 ft	
L/6	0.42 ft	0.42 ft	0.42 ft	0.42 ft	0.42 ft	0.42 ft	0.42 ft	0.42 ft	0.42 ft	
f _{min}	202.5 psf	216.6 psf	196.8 psf	226.0 psf	268.7 psf	218.2 psf	4.8 psf	8.4 psf	0.2 psf	
f _{max}	360.4 psf	372.4 psf	358.0 psf	342.8 psf	386.5 psf	344.4 psf	162.6 psf	163.8 psf	159.2 psf	

Maximum Bearing Pressure = 386 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 30in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 30in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.421 k	Maximum Axial Load = 4.014 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>33%</u>	Utilization = <u>54%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.710 k 12.808 k 7.421 k <u>37%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 53.78 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.076 in Max Drift, Δ_{MAX} = 0.827 in <u>0.827 ≤ 1.076, OK.</u>

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 135 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 373.473 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_b &= 135 \\ \mathsf{J} &= 0.432 \\ &= 237.507 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F}_L &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F}_L &= 28.3 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.0 \text{ ksi}$

3.4.16

5.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE)})/(1.6b/t) \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 =$$

$$\phi F_1 = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

29.2

 $\phi F_1 =$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

31.6 ksi

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L =$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$

$$S2 = C_t$$

 $S2 = 141.0$

$$φF_L = φb[Bt-Dt*√(Rb/t)]$$

 $φF_L = 31.1 \text{ ksi}$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$S2 = 73.8$$

 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \text{y} = & 43.717 \text{ mm} \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$

33.3 ksi

3.4.10

 $\phi F_L =$

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 31.09 \text{ ksi} \\ A = & 1215.13 \text{ mm}^2 \\ & & 1.88 \text{ in}^2 \\ P_{max} = & 58.55 \text{ kips} \end{array}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_{y}}{2}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S1 = \left(\frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.5146^{\circ}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

24.5

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Rb/t =
$$0.0$$
 Not Used θ

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

3.4.16

b/t =

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6 Dp}$ S2 = 46.7

 $\phi F_1 =$

N/A for Weak Direction

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_{0} = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

24.5

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk =$

27.5 mm

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$\left(Bc - \frac{\theta_y}{Q}Fcy\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$

S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(Rt 1.17
$$\theta_y$$
 Fm)²

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{Fcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32.97	-32.97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-69.488	-69.488	0	0
2	M14	V	-69.488	-69.488	0	0
3	M15	V	-115.813	-115.813	0	0
4	M16	V	-115.813	-115.813	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	156.347	156.347	0	0
	2	M14	٧	121.603	121.603	0	0
	3	M15	V	69.488	69.488	0	0
	4	M16	У	69.488	69.488	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Y		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	. Yes	Y		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Y		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Y		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Y		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	844.281	2	1135.081	2	.772	1	.003	1	0	1	0	1
2		min	-1036.02	3	-1427.349	3	-29.434	5	204	4	0	1	0	1
3	N7	max	.041	9	995.443	1	959	12	002	12	0	1	0	1
4		min	174	2	-37.103	5	-333.22	4	638	4	0	1	0	1
5	N15	max	.231	3	2420.957	1	0	1	0	3	0	1	0	1
6		min	-1.851	2	106.198	15	-315.769	4	614	4	0	1	0	1
7	N16	max	3096.43	2	3744.992	2	0	3	0	3	0	1	0	1
8		min	-3308.885	3	-4688.707	3	-29.238	5	206	4	0	1	0	1
9	N23	max	.047	14	995.443	1	15.113	1	.029	1	0	1	0	1
10		min	174	2	70.915	12	-321.773	5	618	4	0	1	0	1
11	N24	max	844.281	2	1135.081	2	055	12	0	12	0	1	0	1
12		min	-1036.02	3	-1427.349	3	-30.192	5	206	4	0	1	0	1
13	Totals:	max	4782.793	2	9528.586	2	0	1						
14		min	-5380.626	3	-7090.727	3	-1052.503	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	140.267	1	387.463	2	-11.692	12	.002	3	.336	1	0	4
2			min	9.029	12	-641.012	3	-201.006	1	012	2	.022	12	0	3
3		2	max	140.267	1	271.595	2	-9.13	12	.002	3	.156	4	.683	3
4			min	9.029	12	-451.066	3	-154.692	1	012	2	.009	12	412	2
5		3	max	140.267	1	155.728	2	-6.569	12	.002	3	.079	5	1.128	3
6			min	9.029	12	-261.119	3	-108.379	1	012	2	051	1	679	2
7		4	max	140.267	1	39.861	2	-4.008	12	.002	3	.039	5	1.335	3
8			min	9.029	12	-71.172	3	-62.065	1	012	2	157	1	801	2
9		5	max	140.267	1	118.774	3	-1.446	12	.002	3	.003	5	1.306	3
10			min	9.029	12	-76.007	2	-31.099	4	012	2	206	1	779	2
11		6	max	140.267	1	308.721	3	30.562	1	.002	3	011	12	1.038	3
12			min	3.948	15	-191.874	2	-22.64	5	012	2	197	1	611	2
13		7	max	140.267	1	498.668	3	76.876	1	.002	3	008	12	.534	3
14			min	-6.495	5	-307.741	2	-18.678	5	012	2	13	1	299	2
15		8	max	140.267	1	688.615	3	123.189	1	.002	3	0	10	.158	2
16			min	-19.327	5	-423.609	2	-14.715	5	012	2	077	4	208	3
17		9	max	140.267	1	878.561	3	169.503	1	.002	3	.178	1	.76	2
18			min	-32.158	5	-539.476	2	-10.752	5	012	2	091	5	-1.188	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	140.267	1	638.963	12	215.816	1	.012	2	.419	1	1.507	2
20			min	9.029	12	-1068.508	3	-134.43	14	002	3	.02	12	-2.405	3
21		11	max	140.267	1	539.476	2	-8.799	12	.012	2	.178	1	.76	2
22			min	9.029	12	-878.561	3	-169.503	1	002	3	.007	12	-1.188	3
23		12	max	140.267	1	423.609	2	-6.238	12	.012	2	.074	5	.158	2
24			min	9.029	12	-688.615	3	-123.189	1	002	3	004	1	208	3
25		13	max	140.267	1	307.741	2	-3.676	12	.012	2	.031	5	.534	3
26			min	9.029	12	-498.668	3	-76.876	1	002	3	13	1	299	2
27		14	max	140.267	1	191.874	2	-1.115	12	.012	2	003	15	1.038	3
28			min	9.029	12	-308.721	3	-35.853	4	002	3	197	1	611	2
29		15	max	140.267	1	76.007	2	15.751	1	.012	2	011	12	1.306	3
30			min	2.91	15	-118.774	3	-23.847	5	002	3	206	1	779	2
31		16	max	140.267	1	71.172	3	62.065	1	.012	2	008	12	1.335	3
32			min	-8.104	5	-39.861	2	-19.884	5	002	3	157	1	801	2
33		17	max	140.267	1	261.119	3	108.379	1	.012	2	001	12	1.128	3
34			min	-20.936	5	-155.728	2	-15.921	5	002	3	102	4	679	2
35		18	max	140.267	1	451.066	3	154.692	1	.012	2	.114	1	.683	3
36			min	-33.767	5	-271.595	2	-11.958	5	002	3	105	5	412	2
37		19	max	140.267	1	641.012	3	201.006	1	.012	2	.336	1	0	2
38		1.0	min	-46.599	5	-387.463	2	-7.995	5	002	3	118	5	0	3
39	M14	1	max	67.808	4	406.481	2	-11.99	12	.007	3	.378	1	0	4
40			min	3.686	12	-505.979	3	-206.66	1	009	2	.024	12	0	3
41		2	max	60.567	1	290.614	2	-9.428	12	.007	3	.217	4	.541	3
42			min	3.686	12	-359.462	3	-160.347	1	009	2	.011	12	436	2
43		3	max	60.567	1	174.746	2	-6.867	12	.007	3	.115	5	.899	3
44		-	min	3.686	12	-212.945	3	-114.033	1	009	2	023	1	727	2
45		4	max	60.567	1	58.879	2	-4.305	12	.007	3	.059	5	1.073	3
46		7	min	3.686	12	-66.429	3	-67.72	1	009	2	136	1	873	2
47		5	max	60.567	1	80.088	3	-1.744	12	.007	3	.008	5	1.065	3
48		-	min	.756	15	-56.988	2	-45.05	4	009	2	192	1	874	2
49		6	max	60.567	1	226.605	3	24.907	1	.007	3	011	12	.873	3
50		-	min	-11.619	5	-172.856	2	-34.943	5	009	2	19	1	73	2
51		7	max	60.567	1	373.122	3	71.221	1	.007	3	008	12	.498	3
52			min	-24.45	5	-288.723	2	-30.98	5	009	2	13	1	442	2
53		0		60.567	1	519.638		117.534	1	.009	3				_
54		8	max		5	-404.59	2	-27.017				121	10	.006	9
		0	min	-37.282					5	009	3		_	06	
55		9	max	60.567	1	666.155	3	163.848	1	.007	2	.164 147	1	.57 801	3
<u>56</u> 57		10	min	-50.113 88.154	5	-520.458	2	-23.054	5	009			5		
		10	max		4	812.672	3	210.161	1	.009	2	.398	1	1.293	2
58		4.4	min	3.686	12	-636.325	2	-137.42	14	007	3	.019	12	-1.725	3
59		11	max	75.322	4	520.458	2	-8.501	12	.009	2	.218	4	.57	2
60		10	min	3.686	12	<u>-666.155</u>	3	-163.848		007	3	.007	12	801	3
61		12	max	62.491	4	404.59	2	-5.94	12	.009	2	.113	5	.006	9
62		40	min	3.686	12	-519.638	3	-117.534		007	3	012	1	06	3
63		13		60.567	1	288.723	2	-3.379	12	.009	2	.057	5	.498	3
64		4.4	min	3.686	12	-373.122	3	-71.221	1	007	3	13	1	442	2
65		14	max		1	172.856	2	817	12	.009	2	.005	5	.873	3
66		4-	min	3.686	12	-226.605	3	-45.99	4	007	3	19	1	73	2
67		15	max	60.567	1	56.988	2	21.406	1	.009	2	01	12	1.065	3
68		4.0	min	3.686	12	-80.088	3	-35.181	5	007	3	192	1	874	2
69		16	max		1	66.429	3	67.72	1	.009	2	006	12	1.073	3
70			min	-4.246	5	-58.879	2	-31.219	5	007	3	136	1	873	2
71		17	max		1	212.945	3	114.033	1	.009	2	.001	3	.899	3
72			min	-17.078	5	-174.746	2	-27.256	5	007	3	127	4	727	2
73		18	max	60.567	1	359.462	3	160.347	1	.009	2	.149	1	.541	3
74			min	-29.909	5	-290.614	2	-23.293	5	007	3	151	5	436	2
75		19	max	60.567	1	505.979	3	206.66	1	.009	2	.378	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76			min	-42.741	5	-406.481	2	-19.33	5	007	3	177	5	0	3
77	M15	1	max	94.239	5	601.927	2	-11.944	12	.009	2	.393	4	00	2
78			min	-63.898	<u> 1</u>	-286.207	3	-206.628	1	007	3	.024	12	0	3
79		2	max	81.407	5	428.154	2	-9.382	12	.009	2	.257	4	.307	3
80			min	-63.898	1	-204.834	3	-160.314	1	007	3	.01	12	644	2
81		3	max	68.576	5	254.38	2	-6.821	12	.009	2	.144	5	.512	3
82			min	-63.898	1_	-123.461	3	-114.001	1	007	3	023	1	-1.07	2
83		4	max	55.744	5	80.606	2	-4.26	12	.009	2	.077	5	.616	3
84			min	-63.898	1	-42.088	3	-69.574	4	007	3	136	1	-1.28	2
85		5	max	42.913	5	39.285	3	-1.698	12	.009	2	.014	5	.617	3
86			min	-63.898	1	-93.167	2	-53.948	4	007	3	192	1	-1.272	2
87		6	max	30.081	5	120.658	3	24.94	1	.009	2	011	12	.517	3
88			min	-63.898	1	-266.941	2	-43.791	5	007	3	19	1	-1.047	2
89		7	max	17.25	5	202.031	3	71.253	1	.009	2	008	12	.316	3
90			min	-63.898	1	-440.715	2	-39.828	5	007	3	13	1	605	2
91		8	max	4.418	5	283.404	3	117.567	1	.009	2	0	10	.055	2
92			min	-63.898	1	-614.488	2	-35.865	5	007	3	148	4	0	15
93		9	max	-4.198	12	364.777	3	163.88	1	.009	2	.164	1	.932	2
94			min	-63.898	1	-788.262	2	-31.902	5	007	3	185	5	393	3
95		10	max	-4.198	12	962.035	2	32.472	10	.007	3	.398	1	2.026	2
96		10	min	-63.898	1	-536.836	10	-210.194	1	009	2	.019	12	9	3
97		11	max	-1.885	15	788.262	2	-8.547	12	.007	3	.257	4	.932	2
98			min	-63.898	1	-364.777	3	-163.88	1	009	2	.007	12	393	3
99		12	max	-4.198	12	614.488	2	-5.986	12	.007	3	.14	5	.055	2
100		12	min	-63.898	1	-283.404	3	-117.567	1	009	2	012	1	.000	15
101		13	max	-4.198	12	440.715	2	-3.425	12	.007	3	.073	5	.316	3
102		13	min	-63.898	1	-202.031	3	-71.253	1	009	2	13	1	605	2
		14		-4.198	12	266.941	2	863	12	.007	3	.01	5	.517	3
103		14	max		1		3	-54.921			2	19	1		2
104		15	min	-63.898	12	-120.658			4	009		19	12	-1.047	
105		15	max	-4.198 -71.42		93.167	2	21.374	<u>1</u> 5	.007	3		1	.617	3
106		16	min	-71.42	4	-39.285	3	-44.036		009	2	192		-1.272	2
107		16	max	-4.198	12	42.088	3	67.687	1	.007	3	007	12	.616	3
108		47	min	-84.252	4_	-80.606	2	-40.073	5	009	2	136	1	-1.28	2
109		17	max	-4.198	12	123.461	3	114.001	1	.007	3	0	3	.512	3
110		40	min	-97.083	4_	-254.38	2	-36.11	5	009	2	155	4	-1.07	2
111		18	max	-4.198	12	204.834	3_	160.314	1	.007	3	.149	1	.307	3
112		40	min	-109.915	4_	-428.154	2	-32.147	5	009	2	19	5	644	2
113		19	max	-4.198	12	286.207	3	206.628	1	.007	3	.378	1_	0	2
114				-122.746	4_	-601.927	2	-28.184	5	009	2	228	5	0	5
115	M16	1	max	91.815	_5_	583.582	2	-11.544	12	.009	2	.338	1	0	2
116				-151.279	_1_	-271.481	3	-201.247	1	01	3	.021	12	0	3
117		2	max		_5_	409.808	2	-8.983	12	.009	2	.201	4	.288	3
118				-151.279	_1_	-190.108	3	-154.933	1_	01	3	.008	12	621	2
119		3		66.152	5	236.035	2	-6.421	12	.009	2	.111	5	.475	3
120			min	-151.279	_1_	-108.735	3	-108.62	1_	01	3	05	1	-1.025	2
121		4	max	53.32	5_	62.261	2	-3.86	12	.009	2	.058	5	.56	3
122			min	-151.279	1_	-27.362	3	-62.306	1	01	3	157	1	-1.211	2
123		5	max		5	54.01	3	-1.298	12	.009	2	.011	5	.544	3
124				-151.279	1_	-111.512	2	-40.959	4	01	3	206	1	-1.18	2
125		6	max		5_	135.383	3	30.321	1	.009	2	011	12	.425	3
126			min	-151.279	1_	-285.286	2	-32.342	5	01	3	197	1	932	2
127		7	max		5	216.756	3	76.635	1	.009	2	008	12	.205	3
128			min	-151.279	1_	-459.06	2	-28.379	5	01	3	13	1	467	2
129		8	max	1.994	5	298.129	3	122.948	1	.009	2	0	10	.215	2
130			min	-151.279	1	-632.833	2	-24.416	5	01	3	106	4	117	3
131		9	max	-7.018	15	379.502	3	169.262	1	.009	2	.178	1	1.115	2
132			min	-151.279	1	-806.607	2	-20.453	5	01	3	131	5	54	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
133			max	-9.421	12	782.049	1	142.779	9	.01	3	.418	1	2.232	2
134			min	-151.279	1	-980.381	2	-215.575	1	009	2	.021	12	-1.065	3
135		11	max	-9.421	12	806.607	2	-8.947	12	.01	3	.208	4	1.115	2
136			min	-151.279	1	-379.502	3	-169.262	1	009	2	.008	12	54	3
137		12	max	-9.421	12	632.833	2	-6.386	12	.01	3	.102	4	.215	2
138			min	-151.279	1	-298.129	3	-122.948	1	009	2	005	1	117	3
139		13	max	-9.421	12	459.06	2	-3.824	12	.01	3	.048	5	.205	3
140			min	-151.279	1	-216.756	3	-76.635	1	009	2	13	1	467	2
141		14	max	-9.421	12	285.286	2	-1.263	12	.01	3	0	15	.425	3
142			min	-151.279	1	-135.383	3	-45.606	4	009	2	197	1	932	2
143		15	max	-9.421	12	111.512	2	15.992	1	.01	3	011	12	.544	3
144			min	-151.279	1_	-54.01	3	-33.525	5	009	2	206	1_	-1.18	2
145		16	max	-9.421	12	27.362	3	62.306	1	.01	3	008	12	.56	3
146			min	-151.279	1	-62.261	2	-29.562	5	009	2	<u>157</u>	1	-1.211	2
147		17	max	-9.421	12	108.735	3	108.62	1	.01	3	002	12	.475	3
148		40	min	-151.279	1	-236.035	2	-25.599	5	009	2	134	4	-1.025	2
149		18	max	-9.421	12	190.108	3	154.933	1	.01	3	.115	1	.288	3
150		40	min	-151.279	1	-409.808	2	-21.636	5	009	2	149	5	621	2
151		19	max	-9.421	12	271.481	3	201.247	1	.01	3	.338	1	0	2
152	M2	1	min	-157.173	4	-583.582	2	-17.674	5	009	2	<u>174</u>	5	0	3
153 154	IVIZ		max	939.165	3	2.039 .489	4 15	.475 -29.851	4	0	12	<u>0</u> 	2	0	1
155		2	min			1.92	4	.475	1	0	12	0	1	0	15
156			max min	-1220.929	3	.461	15	-30.309	4	0	4	011	4	0	4
157		3	max	940.207	2	1.801	4	.475	1	0	12	<u>011</u> 0	1	0	15
158		3	min	-1220.539	3	.433	15	-30.768	4	0	4	022	4	001	4
159		4	max	940.728	2	1.682	4	.475	1	0	12	0	1	0	15
160			min	-1220.148	3	.405	15	-31.226	4	0	4	033	4	002	4
161		5	max	941.248	2	1.563	4	.475	1	0	12	<u>.000</u>	1	0	15
162			min	-1219.758	3	.377	15	-31.684	4	0	4	044	4	003	4
163		6	max	941.769	2	1.444	4	.475	1	0	12	0	1	0	15
164			min	-1219.367	3	.349	15	-32.143	4	0	4	055	4	003	4
165		7	max	942.29	2	1.326	4	.475	1	0	12	0	1	0	15
166			min	-1218.977	3	.321	15	-32.601	4	0	4	067	4	004	4
167		8	max	942.81	2	1.207	4	.475	1	0	12	.001	1	0	15
168			min	-1218.586	3	.294	15	-33.06	4	0	4	078	4	004	4
169		9	max	943.331	2	1.088	4	.475	1	0	12	.001	1	001	15
170			min	-1218.196	3	.266	15	-33.518	4	0	4	09	4	004	4
171		10	max	943.852	2	.969	4	.475	1	0	12	.002	1	001	15
172			min	-1217.805	3	.221	12	-33.976	4	0	4	102	4	005	4
173		11	max	944.372	2	.85	4	.475	1	0	12	.002	1_	001	15
174			min	-1217.415	3	.175	12	-34.435	4	0	4	115	4	005	4
175		12		944.893	2	.732	2	.475	1	0	12	.002	1_	001	15
176			min	-1217.024	3	.128	12	-34.893	4	0	4	127	4	005	4
177		13	max		2	.639	2	.475	1	0	12	.002	1	001	15
178			min	-1216.634	3	.082	12	-35.351	4	0	4	139	4	006	4
179		14		945.934	2	.547	2	.475	1	0	12	.002	1_	001	15
180			min	-1216.243	3	.028	3	-35.81	4	0	4	<u>152</u>	4	006	4
181		15		946.455	2	.454	2	.475	1	0	12	.002	1	001	15
182		4.0	min	-1215.853	3	041	3	-36.268	4	0	4	<u>165</u>	4	006	4
183		16	max		2	.361	2	.475	1	0	12	.003	1	001	15
184		47	min	-1215.462	3	11	3	-36.726	4	0	4	<u>178</u>	4	006	4
185		17		947.497	2	.269	2	.475	1	0	12	.003	1	002	15
186		40	min	-1215.072	3	18	3	-37.185	4	0	4	<u>191</u>	4	006	4
187		18	max		2	.176	2	.475	1	0	12	.003	1	001	12
188		40	min	-1214.681	3	249	3	-37.643	4	0	4	205	4	006	4
189		_ 19	max	948.538	2	.084	2	.475	1	0	12	.003	1	001	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
190			min	-1214.291	3	319	3	-38.101	4	0	4	218	4	006	4
191	M3	1_	max	707.376	2	7.679	4	7.766	4	0	12	0	1_	.006	4
192			min	-854.879	3	1.814	15	.025	12	0	4	04	4	.001	12
193		2	max	707.206	2	6.918	4	8.3	4	0	12	0	1	.003	2
194			min	-855.006	3	1.635	15	.025	12	0	4	036	4	0	3
195		3	max	707.036	2	6.157	4	8.835	4	0	12	0	1	.001	2
196			min	-855.134	3	1.456	15	.025	12	0	4	033	4	001	3
197		4	max	706.865	2	5.397	4	9.37	4	0	12	.001	1	0	15
198			min	-855.262	3	1.277	15	.025	12	0	4	029	4	003	3
199		5	max	706.695	2	4.636	4	9.904	4	0	12	.001	1_	0	15
200			min	-855.39	3	1.098	15	.025	12	0	4	025	4	004	6
201		6	max	706.524	2	3.875	4	10.439	4	0	12	.001	1	001	15
202			min	-855.517	3	.919	15	.025	12	0	4	021	5	006	6
203		7	max	706.354	2	3.114	4	10.974	4	0	12	.002	1	002	15
204			min	-855.645	3	.74	15	.025	12	0	4	017	5	007	6
205		8	max	706.184	2	2.353	4	11.508	4	0	12	.002	1	002	15
206			min	-855.773	3	.561	15	.025	12	0	4	012	5	008	6
207		9	max	706.013	2	1.592	4	12.043	4	0	12	.002	1	002	15
208			min	-855.901	3	.383	15	.025	12	0	4	007	5	009	6
209		10	max	705.843	2	.831	4	12.578	4	0	12	.002	1	002	15
210			min	-856.028	3	.189	12	.025	12	0	4	002	5	01	6
211		11	max	705.673	2	.193	2	13.112	4	0	12	.004	4	002	15
212			min	-856.156	3	182	3	.025	12	0	4	0	12	01	6
213		12	max	705.502	2	154	15	13.647	4	0	12	.009	4	002	15
214			min	-856.284	3	692	6	.025	12	0	4	0	12	01	6
215		13	max	705.332	2	333	15	14.182	4	0	12	.015	4	002	15
216		10	min	-856.412	3	-1.453	6	.025	12	0	4	0	12	009	6
217		14	max	705.162	2	512	15	14.717	4	0	12	.021	4	002	15
218		17	min	-856.539	3	-2.214	6	.025	12	0	4	0	12	009	6
219		15	max	704.991	2	691	15	15.251	4	0	12	.027	4	003	15
220		13	min	-856.667	3	-2.975	6	.025	12	0	4	0	12	002	6
221		16	max	704.821	2	87	15	15.786	4	0	12	.034	4	001	15
222		10	min	-856.795	3	-3.736	6	.025	12	0	4	0	12	006	6
223		17	max	704.651	2	-1.048	15	16.321	4	0	12	.04	4	001	15
224		17		-856.923	3	-4.497	6	.025	12	0	4	0	12	004	6
225		18	min		2	-4.497 -1.227	15	16.855	4		12	.047	4	004 0	15
		10	max	704.48		-5.258				0		0	12		
226		40	min	-857.051	3		6	.025	12	0	4			002	6
227		19	max	704.31	2	-1.406	15	17.39	4	0	12	.054	4	0	1
228	N.4.4		min	-857.178	3	-6.019	6	.025	12	0	4	0	12	0	1
229	M4	1	max		1_	0	1	961	12	0	1	.052	4	0	1
230				-38.534	5_	0	1	-332.213		0	1	0	12	0	1
231		2	max		_1_	0	1	961	12	0	1	.014	4	0	1
232			min	-38.455	5_	0	1	-332.361		0	1	0	12	0	1
233		3		992.717	_1_	0	1	961	12	0	1	0	12	0	1
234			min	-38.375	5_	0	1	-332.508		0	1	025	4	0	1
235		4		992.888	_1_	0	1	961	12	0	1	0	12	0	1
236			min	-38.296	<u>5</u>	0	1	-332.656		0	1	063	4	0	1
237		5		993.058	_1_	0	1	961	12	0	1	0	12	0	1
238				-38.216	5	0	1	-332.803		0	1	101	4	0	1
239		6		993.228	_1_	0	1	961	12	0	1	0	12	0	1
240					5	0	1	-332.951	4	0	1	139	4	0	1
241		7	max	993.399	_1_	0	1	961	12	0	1	0	12	0	1
242			min	-38.057	5	0	1	-333.099		0	1	178	4	0	1
243		8	max	993.569	1	0	1	961	12	0	1	0	12	0	1
244			min	-37.978	5	0	1	-333.246	4	0	1	216	4	0	1
245		9	max	993.739	1	0	1	961	12	0	1	0	12	0	1
246			min	-37.898	5	0	1	-333.394	4	0	1	254	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max		1	0	1	961	12	0	1	0	12	0	1
248			min	-37.819	5	0	1	-333.542	4	0	1	292	4	0	1
249		11	max	994.08	1	0	1	961	12	0	1	0	12	0	1
250			min	-37.739	5	0	1	-333.689	4	0	1	331	4	0	1
251		12	max	994.251	1	0	1	961	12	0	1	0	12	0	1
252			min	-37.66	5	0	1	-333.837	4	0	1	369	4	0	1
253		13	max	994.421	1	0	1	961	12	0	1	001	12	0	1
254			min	-37.58	5	0	1	-333.984	4	0	1	407	4	0	1
255		14	max	994.591	1	0	1	961	12	0	1	001	12	0	1
256			min	-37.501	5	0	1	-334.132	4	0	1	446	4	0	1
257		15	max	994.762	1	0	1	961	12	0	1	001	12	0	1
258			min	-37.421	5	0	1	-334.28	4	0	1	484	4	0	1
259		16	max	994.932	1	0	1	961	12	0	1	001	12	0	1
260			min	-37.342	5	0	1	-334.427	4	0	1	522	4	0	1
261		17	max	995.102	1	0	1	961	12	0	1	002	12	0	1
262			min	-37.262	5	0	1	-334.575	4	0	1	561	4	0	1
263		18	max	995.273	1	0	1	961	12	0	1	002	12	0	1
264			min	-37.183	5	0	1	-334.723	4	0	1	599	4	0	1
265		19	max	995.443	1	0	1	961	12	0	1	002	12	0	1
266			min	-37.103	5	0	1	-334.87	4	0	1	638	4	0	1
267	M6	1		3039.415	2	2.213	2	0	1	0	1	0	4	0	1
268			min	-4014.361	3	.307	12	-30.186	4	0	4	0	1	0	1
269		2	max	3039.936	2	2.12	2	0	1	0	1	0	1	0	12
270				-4013.97	3	.26	12	-30.644	4	0	4	011	4	0	2
271		3		3040.457	2	2.027	2	0	1	0	1	0	1	0	12
272			min	-4013.579	3	.214	12	-31.103	4	0	4	022	4	002	2
273		4	max	3040.978	2	1.935	2	0	1	0	1	0	1	0	12
274			min	-4013.189	3	.168	12	-31.561	4	0	4	033	4	002	2
275		5	max	3041.498	2	1.842	2	0	1	0	1	0	1	0	12
276			min	-4012.798	3	.101	3	-32.019	4	0	4	044	4	003	2
277		6		3042.019	2	1.75	2	0	1	0	1	0	1	0	12
278			min	-4012.408	3	.032	3	-32.478	4	0	4	056	4	004	2
279		7	max	3042.54	2	1.657	2	0	1	0	1	0	1	0	12
280			min	-4012.017	3	038	3	-32.936	4	0	4	067	4	004	2
281		8	max	3043.06	2	1.564	2	0	1	0	1	0	1	0	3
282			min	-4011.627	3	107	3	-33.395	4	0	4	079	4	005	2
283		9	max	3043.581	2	1.472	2	0	1	0	1	0	1	0	3
284			min	-4011.236	3	177	3	-33.853	4	0	4	091	4	005	2
285		10	max	3044.102	2	1.379	2	0	1	0	1	0	1	0	3
286			min	-4010.846	3	246	3	-34.311	4	0	4	103	4	006	2
287		11	max	3044.622	2	1.287	2	0	1	0	1	0	1	0	3
288			min		3	315	3	-34.77	4	0	4	116	4	006	2
289		12	max	3045.143	2	1.194	2	0	1	0	1	0	1	0	3
290			min		3	385	3	-35.228	4	0	4	128	4	007	2
291		13	max	3045.664	2	1.101	2	0	1	0	1	0	1	0	3
292			min		3	454	3	-35.686	4	0	4	141	4	007	2
293		14	max	3046.184	2	1.009	2	0	1	0	1	0	1	0	3
294			min		3	524	3	-36.145	4	0	4	154	4	007	2
295		15		3046.705	2	.916	2	0	1	0	1	0	1	0	3
296		ľ	min		3	593	3	-36.603	4	0	4	167	4	008	2
297		16		3047.226	2	.823	2	0	1	0	1	0	1	0	3
298			min		3	663	3	-37.061	4	0	4	18	4	008	2
299		17		3047.747	2	.731	2	0	1	0	1	0	1	.001	3
300			min		3	732	3	-37.52	4	0	4	193	4	008	2
301		18		3048.267	2	.638	2	0	1	0	1	0	1	.001	3
302		0	min		3	802	3	-37.978	4	0	4	207	4	009	2
303		19		3048.788	2	.546	2	0	1	0	1	0	1	.002	3
		10	παλ	0070.700				<u> </u>						.002	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4007.331	3	871	3	-38.436	4	0	4	22	4	009	2
305	M7	1		2668.792	2	7.694	6	7.311	4	0	1	0	1_	.009	2
306		_	min	-2708.077	3	1.806	15	0	1	0	4	04	4	002	3
307		2		2668.622	2	6.933	6	7.846	4	0	1	0	1	.006	2
308			min	-2708.205	3	1.628	15	0	1	0	4	037	4	003	3
309		3		2668.452	2	6.172	6	8.38	4	0	1	0	1_	.004	2
310			min	-2708.333	3	1.449	15	0	1	0	4	034	4	004	3
311		4		2668.281	2	5.411	6	8.915	4	0	1	0	1	.002	2
312			min	-2708.461	3	1.27	15	0	1	0	4	03	4	005	3
313		5		2668.111	2	4.65	6	9.45	4	0	1	0	1	0	2
314			min	-2708.588	3	1.091	15	0	1	0	4	026	4	006	3
315		6		2667.941	2	3.889	6	9.984	4	0	1	0	1_	001	15
316			min	-2708.716	3	.912	15	0	1	0	4	022	4	007	3
317		7	max		2	3.128	6	10.519	4	0	1	0	1	002	15
318			min	-2708.844	3	.733	15	0	1	0	4	018	4	008	3
319		8	max	2667.6	2	2.368	2	11.054	4	0	1	0	1	002	15
320			min	-2708.972	3	.499	12	0	1	0	4	013	4	008	4
321		9	max	2667.43	2	1.775	2	11.589	4	0	1	0	1	002	15
322			min	-2709.1	3	.202	12	0	1	0	4	009	4	009	4
323		10	max	2667.259	2	1.182	2	12.123	4	0	1	0	1	002	15
324			min	-2709.227	3	211	3	0	1	0	4	004	4	01	4
325		11	max	2667.089	2	.589	2	12.658	4	0	1	.001	4	002	15
326			min	-2709.355	3	656	3	0	1	0	4	0	1	01	4
327		12	max	2666.919	2	004	2	13.193	4	0	1	.007	4	002	15
328			min	-2709.483	3	-1.1	3	0	1	0	4	0	1	01	4
329		13	max	2666.748	2	34	15	13.727	4	0	1	.012	4	002	15
330			min	-2709.611	3	-1.545	3	0	1	0	4	0	1	009	4
331		14	max	2666.578	2	519	15	14.262	4	0	1	.018	4	002	15
332			min	-2709.738	3	-2.199	4	0	1	0	4	0	1	009	4
333		15	max	2666.407	2	698	15	14.797	4	0	1	.024	4	002	15
334			min	-2709.866	3	-2.96	4	0	1	0	4	0	1	007	4
335		16	max	2666.237	2	877	15	15.331	4	0	1	.031	4	001	15
336			min	-2709.994	3	-3.721	4	0	1	0	4	0	1	006	4
337		17	max	2666.067	2	-1.056	15	15.866	4	0	1	.037	4	001	15
338			min	-2710.122	3	-4.482	4	0	1	0	4	0	1	004	4
339		18	max	2665.896	2	-1.234	15	16.401	4	0	1	.044	4	0	15
340			min	-2710.249	3	-5.243	4	0	1	0	4	0	1	002	4
341		19	max	2665.726	2	-1.413	15	16.935	4	0	1	.051	4	0	1
342			min	-2710.377	3	-6.004	4	0	1	0	4	0	1	0	1
343	M8	1	max	2417.89	1	0	1	0	1	0	1	.048	4	0	1
344			min	105.273	15	0	1	-318.792	4	0	1	0	1	0	1
345		2		2418.061	1	0	1	0	1	0	1	.011	4	0	1
346			min		15	0	1	-318.939	4	0	1	0	1	0	1
347		3		2418.231	1	0	1	0	1	0	1	0	1	0	1
348				105.376	_	0	1	-319.087	4	0	1	025	4	0	1
349		4		2418.401	1	0	1	0	1	0	1	0	1	0	1
350				105.427		0	1	-319.235	4	0	1	062	4	0	1
351		5		2418.572		0	1	0	1	0	1	0	1	0	1
352				105.479		0	1	-319.382	4	0	1	098	4	0	1
353		6		2418.742	1	0	1	0	1	0	1	0	1	0	1
354		Ť	min		15	0	1	-319.53	4	0	1	135	4	0	1
355		7		2418.912	1	0	1	0	1	0	1	0	1	0	1
356			min		15	0	1	-319.677	4	0	1	172	4	0	1
357		8		2419.083	_	0	1	0	1	0	1	0	1	0	1
358			min			0	1	-319.825		0	1	209	4	0	1
359		9		2419.253		0	1	0	1	0	1	0	1	0	1
360				105.684		0	1	-319.973		0	1	245	4	0	1
000			111111	100.004	10			010.010	т			.270	т.		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC		
361		10		2419.423	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	105.735	<u>15</u>	0	1	-320.12	4	0	1_	282	4	0	1
363		11		2419.594	1_	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		12		105.787	<u>15</u>	0	1	-320.268 0	<u>4</u> 1	0	1	319 0	1	0	1
365 366		12		2419.764 105.838	<u>1</u> 15	0	1	-320.416	4	0	1	356	4	0	1
		12					1			_	1		1	0	1
367 368		13		2419.934	<u>1</u> 15	0	1	-320.563	<u>1</u> 4	0	1	392	4	0	1
		14	min	105.89	<u>15</u> 1	0	1	0	_ 4 _	0	1	i	1	0	1
369		14		2420.105	15		1	-320.711	4		1	420	4	0	1
370 371		15	min	105.941 2420.275	<u>15</u> 1	0	1	0	<u>4</u> 1	0	1	429 0	1	0	1
372		10	min	105.992	15	0	1	-320.859	4	0	1	466	4	0	1
373		16		2420.445	1 <u>5</u>	0	1	0	1	0	+	0	1	0	1
374		10		106.044	15	0	1	-321.006	4	0	1	503	4	0	1
375		17		2420.616	1	0	1	0	1	0	1	0	1	0	1
376		17		106.095	15	0	1	-321.154	4	0	1	54	4	0	1
377		18		2420.786	1	0	1	0	1	0	1	0	1	0	1
378		10	min	106.147	15	0	1	-321.301	4	0	1	577	4	0	1
379		19		2420.957	1	0	1	0	1	0	1	0	1	0	1
380		13	min	106.198	15	0	1	-321.449	4	0	1	614	4	0	1
381	M10	1	max	939.165	2	1.995	6	027	12	0	1	0	2	0	1
382	IVITO		min	-1221.32	3	.46	15	-30.172	4	0	5	0	3	0	1
383		2	max	939.686	2	1.876	6	027	12	0	1	0	10	0	15
384			min	-1220.929	3	.432	15	-30.631	4	0	5	011	4	0	6
385		3	max	940.207	2	1.757	6	027	12	0	1	0	12	0	15
386			min	-1220.539	3	.404	15	-31.089	4	0	5	022	4	001	6
387		4	max	940.728	2	1.638	6	027	12	0	1	0	12	0	15
388			min	-1220.148	3	.376	15	-31.547	4	0	5	033	4	002	6
389		5	max	941.248	2	1.52	6	027	12	0	1	0	12	0	15
390			min	-1219.758	3	.348	15	-32.006	4	0	5	044	4	003	6
391		6	max	941.769	2	1.401	6	027	12	0	1	0	12	0	15
392			min	-1219.367	3	.32	15	-32.464	4	0	5	056	4	003	6
393		7	max	942.29	2	1.282	6	027	12	0	1	0	12	0	15
394			min	-1218.977	3	.292	15	-32.923	4	0	5	067	4	004	6
395		8	max	942.81	2	1.163	6	027	12	0	1	0	12	0	15
396			min	-1218.586	3	.264	15	-33.381	4	0	5	079	4	004	6
397		9	max	943.331	2	1.044	6	027	12	0	1	0	12	0	15
398			min	-1218.196	3	.236	15	-33.839	4	0	5	091	4	004	6
399		10	max	943.852	2	.925	6	027	12	0	1	0	12	001	15
400			min	-1217.805	3	.208	15	-34.298	4	0	5	103	4	005	6
401		11		944.372	2	.825	2	027	12	0	1	0	12	001	15
402			min	-1217.415	3	.175	12	-34.756	4	0	5	116	4	005	6
403		12	max		2	.732	2	027	12	0	1	0	12	001	15
404				-1217.024	3	.128	12	-35.214	4	0	5	128	4	005	6
405		13	max		2	.639	2	027	12	0	1	0	12	001	15
406			min	-1216.634	3	.082	12	-35.673	4	0	5	141	4	005	6
407		14	max	945.934	2	.547	2	027	12	0	1	0	12	001	15
408				-1216.243	3	.028	3	-36.131	4	0	5	154	4	006	6
409		15		946.455	2	.454	2	027	12	0	1	0	12	001	15
410			min	-1215.853	3	041	3	-36.589	4	0	5	167	4	006	6
411		16	max	946.976	2	.361	2	027	12	0	1	0	12	001	15
412			min	-1215.462	3	11	3	-37.048	4	0	5	18	4	006	6
413		17		947.497	2	.269	2	027	12	0	1	0	12	001	15
414				-1215.072	3	18	3	-37.506	4	0	5	193	4	006	6
415		18	max		2	.176	2	027	12	0	1	0	12	001	15
416			min	-1214.681	3	249	3	-37.964	4	0	5	206	4	006	6
417		19	max	948.538	2	.084	2	027	12	0	1	0	12	001	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]						Torque[k-ft]	LC			z-z Mome	
418			min	-1214.291	3	319	3	-38.423	4	0	5	22	4	006	6
419	M11	1	max		2	7.642	6	7.494	4	0	1	0	12	.006	6
420			min	-854.879	3	1.788	15	401	1	0	4	04	4	.001	15
421		2	max	707.206	2	6.881	6	8.029	4	0	1	0	12	.003	2
422			min	-855.006	3	1.61	15	401	1	0	4	037	4	0	3
423		3	max	707.036	2	6.12	6	8.564	4	0	1	0	12	.001	2
424			min	-855.134	3	1.431	15	401	1	0	4	033	4	001	3
425		4	max	706.865	2	5.359	6	9.098	4	0	1	0	12	0	15
426			min	-855.262	3	1.252	15	401	1	0	4	03	4	003	3
427		5	max	706.695	2	4.598	6	9.633	4	0	1	0	12	001	15
428			min	-855.39	3	1.073	15	401	1	0	4	026	4	004	4
429		6	max	706.524	2	3.837	6	10.168	4	0	1	0	12	001	15
430			min	-855.517	3	.894	15	401	1	0	4	022	4	006	4
431		7	max	706.354	2	3.076	6	10.702	4	0	1	0	12	002	15
432			min	-855.645	3	.715	15	401	1	0	4	017	4	007	4
433		8	max	706.184	2	2.315	6	11.237	4	0	1	0	12	002	15
434			min	-855.773	3	.536	15	401	1	0	4	013	4	009	4
435		9	max	706.013	2	1.554	6	11.772	4	0	1	0	12	002	15
436			min	-855.901	3	.357	15	401	1	0	4	008	4	009	4
437		10	max	705.843	2	.793	6	12.306	4	0	1	0	12	002	15
438			min	-856.028	3	.178	15	401	1	0	4	003	4	01	4
439		11	max	705.673	2	.193	2	12.841	4	0	1	.003	5	002	15
440			min	-856.156	3	182	3	401	1	0	4	002	1	01	4
441		12	max	705.502	2	179	15	13.376	4	0	1	.008	5	002	15
442			min	-856.284	3	73	4	401	1	0	4	002	1	01	4
443		13	max		2	358	15	13.91	4	0	1	.014	5	002	15
444			min	-856.412	3	-1.49	4	401	1	0	4	003	1	009	4
445		14	max		2	537	15	14.445	4	0	1	.02	5	002	15
446			min	-856.539	3	-2.251	4	401	1	0	4	003	1	009	4
447		15	max	704.991	2	716	15	14.98	4	0	1	.026	5	002	15
448			min	-856.667	3	-3.012	4	401	1	0	4	003	1	008	4
449		16	max		2	895	15	15.514	4	0	1	.032	5	001	15
450			min	-856.795	3	-3.773	4	401	1	0	4	003	1	006	4
451		17	max	704.651	2	-1.074	15	16.049	4	0	1	.039	5	001	15
452			min	-856.923	3	-4.534	4	401	1	0	4	003	1	004	4
453		18	max	704.48	2	-1.253	15	16.584	4	0	1	.045	5	0	15
454			min	-857.051	3	-5.295	4	401	1	0	4	003	1	002	4
455		19	max	704.31	2	-1.431	15	17.119	4	0	1	.052	5	0	1
456		1	min	-857.178	3	-6.056	4	401	1	0	4	004	1	0	1
457	M12	1	max		1	0	1	15.525	1	0	1	.05	5	0	1
458				69.382	12	0	1	-321.67	4	0	1	003	1	0	1
459		2		992.547	1	0	1	15.525	1	0	1	.013	5	0	1
460		_	min	69.467	12	0	1	-321.818		0	1	002	1	0	1
461		3	max		1	0	1	15.525	1	0	1	0	1	0	1
462			min	69.553	12	0	1	-321.965	4	0	1	025	4	0	1
463		4	max		1	0	1	15.525	1	0	1	.002	1	0	1
464			min	69.638	12	0	1	-322.113		0	1	061	4	0	1
465		5	max		1	0	1	15.525	1	0	1	.004	1	0	1
466			min	69.723	12	0	1	-322.261	4	0	1	098	4	0	1
467		6	max		1	0	1	15.525	1	0	1	.006	1	0	1
468			min	69.808	12	0	1	-322.408	4	0	1	136	4	0	1
469		7		993.399	1	0	1	15.525	1	0	1	.007	1	0	1
470			min	69.893	12	0	1	-322.556		0	1	173	4	0	1
471		8	max		1	0	1	15.525	1	0	1	.009	1	0	1
471		0		69.978	12	0	1	-322.704	4	0	1	21	4	0	1
472		9	min		1	0	1	15.525	1	0	1	.011	1	0	1
		1 9	max												
474			min	70.064	12	0	1	-322.851	4	0	1	247	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_ LC_
475		10	max	993.91	1	0	1	15.525	1	0	1	.013	1	0	1
476			min	70.149	12	0	1	-322.999	4	0	1	284	4	0	1
477		11	max	994.08	1	0	1	15.525	1	0	1	.014	1	0	1
478			min	70.234	12	0	1	-323.147	4	0	1	321	4	0	1
479		12	max	994.251	1	0	1	15.525	1	0	1	.016	1	0	1
480		12	min	70.319	12	0	1	-323.294	4	0	1	358	4	0	1
481		13	max		1	0	1	15.525	1	0	1	.018	1	0	1
482		13					1				1				1
		4.4	min	70.404	12	0	-	-323.442	4	0		395	4	0	
483		14	max	994.591	1	0	1	15.525	1	0	1	.02	1	0	1
484			min	70.489	12	0	1	-323.589	4	0	1	432	4	0	1
485		15	max		1	0	1	15.525	1	0	1	.022	1	0	1
486			min	70.575	12	0	1	-323.737	4	0	1_	469	4	0	1
487		16	max	994.932	1	0	1	15.525	1	0	<u>1</u>	.023	1	0	1
488			min	70.66	12	0	1	-323.885	4	0	1	507	4	0	1
489		17	max	995.102	1	0	1	15.525	1	0	1	.025	1	0	1
490			min	70.745	12	0	1	-324.032	4	0	1	544	4	0	1
491		18	max	995.273	1	0	1	15.525	1	0	1	.027	1	0	1
492			min	70.83	12	0	1	-324.18	4	0	1	581	4	0	1
493		19	max	995.443	1	0	1	15.525	1	0	1	.029	1	0	1
494		1.0	min	70.915	12	0	1	-324.328	4	0	1	618	4	0	1
495	M1	1	max	201.014	1	640.972	3	46.565	5	0	2	.336	1	.002	3
496	IVII	<u> </u>		-7.995	5	-386.784	2	-140.069		0	3	118	5	012	2
		2	min												
497		2	max	201.835	1	640.092	3	47.807	5	0	2	.262	1	.192	2
498			min	-7.612	5	-387.958	2	-140.069	1	0	3	093	5	336	3
499		3	max	533.99	3	459.891	2	20.024	5	0	3	.188	1_	.387	2
500			min	-304.891	2	-471.152	3	-139.862	1	0	2	068	5	66	3
501		4	max		3	458.718	2	21.265	5	0	3	.114	1	.149	1
502			min	-304.069	2	-472.032	3	-139.862	1	0	2	057	5	412	3
503		5	max	535.223	3	457.545	2	22.507	5	0	3	.041	1	003	15
504			min	-303.248	2	-472.912	3	-139.862	1	0	2	045	5	162	3
505		6	max	535.839	3	456.371	2	23.748	5	0	3	002	12	.088	3
506			min	-302.426	2	-473.792	3	-139.862	1	0	2	041	4	338	2
507		7	max	536.455	3	455.198	2	24.99	5	0	3	007	12	.338	3
508			min	-301.605	2	-474.672	3	-139.862	1	0	2	107	1	579	2
509		8	max	537.071	3	454.024	2	26.231	5	0	3	004	15	.589	3
510			min	-300.783	2	-475.552	3	-139.862	1	Ö	2	181	1	819	2
511		9	max		3	49.19	2	70.08	5	0	9	.104	1	.686	3
512		—	min	-209.887	2	.355	15			0	3	156	5	939	2
513		10	max	556.377	3	48.017	2	71.321	5	0	9	0	12	.669	3
514		10		-209.066	2	.001	15	-200.479	1	0	3	12	4	964	2
		11	min	556.993	3		2		5	0					3
515		11				46.844		72.563		_	9	007	12	.652	
516		10		-208.244		-1.439	4			0	3	108	4	989	2
517		12		575.608	3	319.648	3	179.381	5	0	2	.178	1_	.569	3
518				-117.336	2	-555.34	2	-136.668		0	3	248	5	878	2
519		13		576.224	3	318.768	3	180.622	5	0	2	.106	1	.4	3
520					2	-556.514	2	-136.668		0	3	153	5	585	2
521		14	max	576.84	3	317.888	3	181.863	5	0	2	.034	1	.232	3
522			min	-115.693	2	-557.687	2	-136.668	1	0	3	057	5	291	2
523		15		577.456	3	317.008	3	183.105	5	0	2	.039	5	.065	3
524					2	-558.861	2	-136.668		0	3	038	1	019	9
525		16		578.073	3	316.128	3	184.346	5	0	2	.136	5	.299	2
526			min	-114.05	2	-560.034	2	-136.668		0	3	11	1	102	3
527		17	1	578.689	3	315.248	3	185.588	5	0	2	.234	5	.595	2
528		'	min	-113.228	2	-561.207	2	-136.668		0	3	182	1	269	3
		10				585.325									
529		18	max	17.29	51		2	-9.421	12	0	3	.236	5	.3	2
530		40	min	-202.062	1	-270.69	3	-158.635		0	2	258	1	133	3
531		19	max	17.673	5	584.151	2	-9.421	12	0	3	.174	5	.01	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
532			min	-201.24	1	-271.571	3	-157.394	4	0	2	338	1	009	2
533	M5	1	max	431.617	1	2136.825	3	114.023	5	0	1	0	1	.024	2
534			min	22.723	12	-1306.471	2	0	1	0	4	279	4	004	3
535		2	max	432.438	1_	2135.945	3	115.265	5	0	1_	0	1	.714	2
536			min	23.134	12	-1307.645	2	0	1	0	4	219	4	-1.131	3
537		3	max	1724.414	3	1416.89	2	91.097	4	0	4	0	1	1.372	2
538			min	-1087.494	2	-1536.078	3	0	1	0	1	158	4	-2.214	3
539		4	max	1725.03	3	1415.717	2	92.338	4	0	4	0	1	.624	2
540			min	-1086.672	2	-1536.958	3	0	1	0	1	109	4	-1.403	3
541		5	max	1725.646	3	1414.543	2	93.579	4	0	4	0	1	0	9
542			min	-1085.85	2	-1537.838	3	0	1	0	1	06	4	592	3
543		6	max	1726.262	3_	1413.37	2	94.821	4	0	4_	0	1	.22	3
544			min	-1085.029	2	-1538.718	3	0	1	0	1_	011	4	869	2
545		7	max	1726.878	3	1412.196	2	96.062	4	0	4	.04	4	1.032	3
546			min	-1084.207	2	-1539.598	3	0	1	0	1	0	1	-1.614	2
547		8	max	1727.495	3_	1411.023	2	97.304	4	0	4_	.091	4	1.845	3
548			min	-1083.386	2	-1540.478	3	0	1	0	1_	0	1	-2.359	2
549		9	max	1761.122	3	164.244	2	235.209	4	0	_1_	0	1	2.118	3
550			min	-897.111	2	.357	15	0	1	0	1_	236	4	-2.69	2
551		10	max	1761.738	3	163.07	2	236.451	4	0	_1_	0	1	2.059	3
552			min	-896.289	2	.003	15	0	1	0	1	111	4	-2.776	2
553		11	max	1762.354	3_	161.897	2	237.692	4	0	_1_	.014	4	2	3
554			min	-895.468	2	-1.232	6	0	1	0	1_	0	1	-2.862	2
555		12	max	1796.13	3	1036.44	3	269.746	4	0	1_	0	1	1.76	3
556			min	-709.217	2	-1745.211	2	0	1	0	4	374	4	-2.565	2
557		13	max	1796.746	3	1035.56	3	270.987	4	0	1	0	1	1.213	3
558			min	-708.396	2	-1746.385	2	0	1	0	4	231	4	-1.644	2
559		14	max	1797.363	3	1034.68	3	272.229	4	0	1_	0	1	.667	3
560			min	-707.574	2	-1747.558	2	0	1	0	4	088	4	722	2
561		15	max	1797.979	3	1033.8	3	273.47	4	0	1_	.056	4	.2	2
562			min	-706.752	2	-1748.731	2	0	1	0	4	0	1	004	13
563		16	max	1798.595	3_	1032.92	3	274.712	4	0	_1_	.201	4	1.123	2
564			min	-705.931	2	-1749.905	2	0	1	0	4	0	1	424	3
565		17	max	1799.211	3	1032.04	3	275.953	4	0	1_	.346	4	2.047	2
566			min	-705.109	2	-1751.078	2	0	1	0	4	0	1	969	3
567		18	max	-23.426	12	1965.327	2	0	1	0	4_	.397	4	1.054	2
568			min	-431.985	1_	-921.46	3	-22.686	5	0	1_	0	1	506	3
569		19	max	-23.016	12	1964.154	2	0	1	0	4_	.386	4	.018	2
570			min	-431.164	1_	-922.34	3	-21.445	5	0	1_	0	1	02	3
571	M9	1_	max	201.014	_1_	640.972	3	140.069	1	0	3	022	12	.002	3
572			min	11.691	12	-386.784		9.028	12	0	4	336	1	012	2
573		2	max		_1_	640.092	3	140.069	1	0	3	017	12	.192	2
574			min	12.102	12	-387.958		9.028	12	0	4	262	1	336	3
575		3	max		3	459.891	2	139.862	1	0	2	012	12	.387	2
576				-304.891	2	-471.152	3	9.003	12	0	3	188	1_	66	3
577		4		534.607	3	458.718	2	139.862	1	0	2	007	12	.149	1
578			min	-304.069	2	-472.032		9.003	12	0	3	114	1	412	3
579		5		535.223	3	457.545	2	139.862	1	0	2	003	12	003	15
580			min	-303.248	2	-472.912	3	9.003	12	0	3	063	4	162	3
581		6		535.839	3	456.371	2	139.862	1	0	2	.033	1_	.088	3
582			min	-302.426	2	-473.792	3	9.003	12	0	3	027	5	338	2
583		7		536.455	3	455.198	2	139.862	1	0	2	.107	1	.338	3
584				-301.605	2	-474.672	3	9.003	12	0	3	002	5	579	2
585		8		537.071	3	454.024	2	139.862	1	0	2	.181	1_	.589	3
586				-300.783	2	-475.552	3	9.003	12	0	3	.012	12	819	2
587		9		555.761	3	49.19	2	200.479	1	0	3	007	12	.686	3
588			min	-209.887	2	.363	15	12.68	12	0	9	202	4	939	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	556.377	3	48.017	2	200.479	1	0	3	.001	1	.669	3
590			min	-209.066	2	.009	15	12.68	12	0	9	119	4	964	2
591		11	max	556.993	3	46.844	2	200.479	1	0	3	.107	1	.652	3
592			min	-208.244	2	-1.389	6	12.68	12	0	9	063	5	989	2
593		12	max	575.608	3	319.648	3	240.307	4	0	3	011	12	.569	3
594			min	-117.336	2	-555.34	2	8.49	12	0	2	327	4	878	2
595		13	max	576.224	3	318.768	3	241.548	4	0	3	007	12	.4	3
596			min	-116.515	2	-556.514	2	8.49	12	0	2	2	4	585	2
597		14	max	576.84	3	317.888	3	242.79	4	0	3	002	12	.232	3
598			min	-115.693	2	-557.687	2	8.49	12	0	2	072	4	291	2
599		15	max	577.456	3	317.008	3	244.031	4	0	3	.056	4	.065	3
600			min	-114.871	2	-558.861	2	8.49	12	0	2	.002	12	019	9
601		16	max	578.073	3	316.128	3	245.273	4	0	3	.185	4	.299	2
602			min	-114.05	2	-560.034	2	8.49	12	0	2	.007	12	102	3
603		17	max	578.689	3	315.248	3	246.514	4	0	3	.315	4	.595	2
604			min	-113.228	2	-561.207	2	8.49	12	0	2	.011	12	269	3
605		18	max	-11.955	12	585.325	2	151.47	1	0	2	.35	4	.3	2
606			min	-202.062	1	-270.69	3	-93.376	5	0	3	.016	12	133	3
607		19	max	-11.544	12	584.151	2	151.47	1	0	2	.338	1	.01	3
608			min	-201.24	1	-271.571	3	-92.135	5	0	3	.021	12	009	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.095	2	.009	3	8.048e-3	2	NC	1	NC	1
2			min	859	4	014	3	005	2	-1.689e-3	3	NC	1	NC	1
3		2	max	.001	1	.416	3	.063	1	9.388e-3	2	NC	5	NC	2
4			min	859	4	148	1	034	5	-1.887e-3	3	626.845	3	4390.743	1
5		3	max	.001	1	.765	3	.154	1	1.073e-2	2	NC	5	NC	3
6			min	859	4	337	2	039	5	-2.086e-3	3	346.473	3	1770.464	1
7		4	max	0	1	.976	3	.233	1	1.207e-2	2	NC	15	NC	3
8			min	859	4	445	2	024	5	-2.284e-3	3	272.598	3	1163.468	1
9		5	max	0	1	1.024	3	.275	1	1.341e-2	2	NC	15	NC	5
10			min	859	4	455	2	0	15	-2.482e-3	3	259.98	3	986.696	1
11		6	max	0	1	.913	3	.266	1	1.475e-2	2	NC	5	NC	5
12			min	859	4	371	2	.017	15	-2.681e-3	3	291.205	3	1018.438	1
13		7	max	0	1	.675	3	.21	1	1.609e-2	2	NC	5	NC	10
14			min	859	4	22	1	.023	10	-2.879e-3	3	391.573	3	1293.194	1
15		8	max	0	1	.374	3	.123	1	1.743e-2	2	NC	5	NC	10
16			min	859	4	037	1	.008	10	-3.077e-3	3	695.626	3	2224.226	1
17		9	max	0	1	.156	2	.048	4	1.877e-2	2	NC	4	NC	2
18			min	859	4	.004	15	006	10	-3.276e-3	3	2347.185	3	5615.026	4
19		10	max	0	1	.234	2	.029	3	2.011e-2	2	NC	3	NC	1
20			min	859	4	023	3	02	2	-3.474e-3	3	1941.621	2	NC	1
21		11	max	0	12	.156	2	.035	1	1.877e-2	2	NC	4	NC	2
22			min	859	4	.004	15	028	5	-3.276e-3	3	2347.185	3	7922.599	1
23		12	max	0	12	.374	3	.123	1	1.743e-2	2	NC	5	NC	4
24			min	859	4	037	1	027	5	-3.077e-3	3	695.626	3	2224.226	1
25		13	max	0	12	.675	3	.21	1	1.609e-2	2	NC	5	NC	5
26			min	86	4	22	1	007	5	-2.879e-3	3	391.573	3	1293.194	1
27		14	max	0	12	.913	3	.266	1	1.475e-2	2	NC	5	NC	5
28			min	86	4	371	2	.014	15	-2.681e-3	3	291.205	3	1018.438	1
29		15	max	0	12	1.024	3	.275	1	1.341e-2	2	NC	15	NC	12
30			min	86	4	455	2	.026	12	-2.482e-3	3	259.98	3	986.696	1
31		16	max	0	12	.976	3	.233	1	1.207e-2	2	NC	15	NC	3
32			min	86	4	445	2	.022	12	-2.284e-3	3	272.598	3	1163.468	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.765	3	.154	1	1.073e-2	2	NC	_5_	NC	3
34			min	86	4	337	2	.016	12	-2.086e-3	3	346.473	3	1770.464	1
35		18	max	0	12	.416	3	.063	4	9.388e-3	2	NC	5	NC	2
36			min	86	4	148	1	.006	10		3	626.845	3	4275.736	4
37		19	max	0	12	.095	2	.009	3	8.048e-3	2	NC	1	NC	1
38			min	86	4	014	3	005	2	-1.689e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.209	3	.008	3	4.747e-3	2	NC	1	NC	1
40			min	623	4	316	2	004	2	-3.587e-3	3	NC	1	NC	1
41		2	max	0	1	.613	3	.044	1	5.736e-3	2	NC	5	NC	2
42			min	623	4	676	2	05	5	-4.411e-3	3	667.723	3	5229.243	5
43		3	max	0	1	.952	3	.125	1	6.725e-3	2	NC	15	NC	3
44		+	min	624	4	982	2	058	5	-5.235e-3	3	363.125	3	2176.227	1
45		4	max	0	1	1.182	3	.202	1	7.714e-3	2	NC	15	NC	3
46		+ -		624	4	-1.201	2	037	5	-6.059e-3	3	277.436	3	1344.404	
		-	min		1				1	8.703e-3	2	9173.874	<u> </u>	NC	
47		5	max	0		1.281	3	.246							5
48			min	624	4	-1.312	2	0	15	-6.883e-3	3	251.943	3	1102.604	
49		6	max	0	1	1.249	3	.244	1	9.692e-3	2	9253.894	<u>15</u>	NC	12
50		<u> </u>	min	624	4	-1.317	2	.025	12	-7.707e-3	3	259.611	3_	1114.244	1
51		7	max	0	1	1.111	3	.195	1_	1.068e-2	2	NC	15	NC	10
52			min	624	4	-1.233	2	.021	10	-8.531e-3	3	294.414	2	1393.882	1
53		8	max	0	1	.913	3	.115	1	1.167e-2	2	NC	15	NC	3
54			min	624	4	-1.096	2	.008	10	-9.355e-3	3	346.323	2	2368.343	1
55		9	max	0	1	.724	3	.068	4	1.266e-2	2	NC	5	NC	2
56			min	624	4	959	2	005	10	-1.018e-2	3	420.146	2	4056.101	4
57		10	max	0	1	.637	3	.026	3	1.365e-2	2	NC	5	NC	1
58			min	624	4	894	2	018	2	-1.1e-2	3	467.285	2	NC	1
59		11	max	0	12	.724	3	.034	1	1.266e-2	2	NC	5	NC	2
60			min	624	4	959	2	049	5	-1.018e-2	3	420.146	2	5512.223	
61		12	max	0	12	.913	3	.115	1	1.167e-2	2	NC	15	NC	3
62		1-	min	624	4	-1.096	2	054	5	-9.355e-3	3	346.323	2	2368.343	1
63		13	max	0	12	1.111	3	.195	1	1.068e-2	2	NC	15	NC	4
64		13	min	624	4	-1.233	2	032	5	-8.531e-3	3	294.414	2	1393.882	1
65		14		024 0	12	1.249	3	.244	1	9.692e-3		9253.528	15	NC	5
		14	max								2				
66		4.5	min	624	4	-1.317	2	.003		-7.707e-3	3	259.611	3	1114.244	1
67		15	max	0	12	1.281	3	.246	1	8.703e-3	2	9173.424	<u>15</u>	NC 4400 004	12
68		10	min	<u>624</u>	4	-1.312	2	.023	12	-6.883e-3	3	251.943	3	1102.604	
69		16	max	0	12	1.182	3	.202	1	7.714e-3	2	NC	<u>15</u>	NC	3
70			min	624	4	-1.201	2	.019	12	-6.059e-3	3	277.436	3	1344.404	
71		17	max	0	12	.952	3	.125	1_	6.725e-3	2	NC	15	NC	3
72			min	624	4	982	2	.013	12	-5.235e-3	3	363.125	3	2176.227	1
73		18	max	0	12	.613	3	.071	4	5.736e-3	2	NC	5_	NC	2
74			min	624	4	676	2	.003	10	-4.411e-3	3	667.723	3	3810.557	4
75		19	max	0	12	.209	3	.008	3	4.747e-3	2	NC	1	NC	1
76			min	624	4	316	2	004	2	-3.587e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.212	3	.008	3	3.171e-3	3	NC	1	NC	1
78			min	498	4	315	2	004	2	-4.991e-3	2	NC	1	NC	1
79		2	max	0	12	.469	3	.044	1	3.907e-3	3	NC	5	NC	2
80			min	498	4	806	2	064	5	-6.036e-3	2	549.936	2	4148.584	
81		3	max	<u>.0</u>	12	.689	3	.126	1	4.643e-3	3	NC	15	NC	3
82			min	498	4	-1.219	2	075	5	-7.081e-3	2	298.557	2	2170.596	
83		4	max	496 0	12	.847	3	.202	1	5.379e-3	3	NC	15	NC	3
		4													
84		-	min	498	4	<u>-1.502</u>	2	05	5	-8.125e-3	2	227.414	<u>2</u>	1341.716	
85		5	max	0	12	.929	3	.247	1	6.115e-3	3	9189.649	15	NC 4400 C45	5
86		_	min	498	4	-1.629	2	007	5	-9.17e-3	2	205.52		1100.615	
87		6	max	0	12	.936	3	.244	1	6.851e-3	3	9273.194	<u>15</u>	NC 4440.400	12
88			min	498	4	<u>-1.6</u>	2	.024	12		2	210.156		1112.166	
89		7	max	0	12	.88	3	.195	1_	7.587e-3	3_	NC	15	NC	10

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
90			min	498	4	-1.443	2	.022	10	-1.126e-2	2	239.313	2	1390.7	1
91		8	max	0	12	.786	3	.123	4	8.323e-3	3	NC	15	NC	3
92			min	498	4	-1.214	2	.009	10	-1.23e-2	2	300.34	2	2222.068	4
93		9	max	0	12	.691	3	.081	4	9.06e-3	3	NC	5	NC	2
94			min	498	4	994	2	004		-1.335e-2	2	397.763	2	3421.871	4
95		10	max	0	1	.646	3	.024	3	9.796e-3	3	NC	5_	NC	1
96			min	498	4	891	2	017	2	-1.439e-2	2	468.446	2	NC	1
97		11	max	0	1	.691	3	.034	1	9.06e-3	3	NC	5	NC	2
98			min	498	4	994	2	061	5	-1.335e-2	2	397.763	2	4408.539	5
99		12	max	0	1	.786	3	.116	1	8.323e-3	3	NC	15	NC	3
100			min	498	4	-1.214	2	069	5	-1.23e-2	2	300.34	2	2359.576	1
101		13	max	0	1	.88	3	.195	1	7.587e-3	3	NC	15	NC	4
102			min	498	4	-1.443	2	043	5	-1.126e-2	2	239.313	2	1390.7	1
103		14	max	0	1	.936	3	.244	1	6.851e-3	3	9272.909	15	NC	5
104			min	498	4	-1.6	2	0	15	-1.021e-2	2	210.156	2	1112.166	1
105		15	max	0	1	.929	3	.247	1	6.115e-3	3	9189.302	15	NC	12
106			min	498	4	-1.629	2	.022	12	-9.17e-3	2	205.52	2	1100.615	1
107		16	max	0	1	.847	3	.202	1	5.379e-3	3	NC	15	NC	3
108		1.0	min	498	4	-1.502	2	.018	12	-8.125e-3	2	227.414	2	1341.716	1
109		17	max	0	1	.689	3	.131	4	4.643e-3	3	NC	15	NC	3
110		111	min	498	4	-1.219	2	.013	12	-7.081e-3	2	298.557	2	2066.002	4
111		18	max	0	1	.469	3	.085	4	3.907e-3	3	NC	5	NC	2
112		10	min	498	4	806	2	.003	10	-6.036e-3	2	549.936	2	3195.079	4
113		19	max	430	1	.212	3	.008	3	3.171e-3	3	NC	1	NC	1
114		19	min	497	4	315	2	004	2	-4.991e-3	2	NC NC	1	NC	1
115	M16	1		491 0	12	.084	2	.007	3	5.439e-3	3	NC NC	1	NC	1
	IVITO		max						2	-6.53e-3					
116		-	min	<u>15</u>	4	067	3	004			2	NC NC	1_	NC NC	1
117		2	max	0	12	.098	3	.062	1	6.522e-3	3	NC 747.004	5	NC	2
118			min	<u>15</u>	4	293	2	05	5	-7.505e-3	2	717.661	2	4422.173	1
119		3	max	0	12	.229	3	.153	1	7.604e-3	3	NC 200,404	5	NC	3
120		_	min	<u>15</u>	4	<u>594</u>	2	06	5	-8.48e-3	2	398.401	2	1776.773	1
121		4	max	0	12	.301	3	.233	1	8.687e-3	3	NC	5	NC	3
122		_	min	15	4	<u>771</u>	2	042	5	-9.455e-3	2	316.008	2	1165.418	1
123		5	max	0	12	.305	3	.274	1	9.769e-3	3	NC	15	NC	5
124			min	15	4	8	2	009	5	-1.043e-2	2	305.704	2	986.887	1
125		6	max	0	12	.242	3	.266	1	1.085e-2	3	NC	5	NC	5
126			min	15	4	684	2	.017	15	-1.141e-2	2	351.6	2	1016.942	1
127		7	max	0	12	.128	3	.211	1	1.193e-2	3	NC	5	NC	12
128			min	15	4	456	2	.022	12	-1.238e-2	2	500.655	2	1287.856	1
129		8	max	0	12	0	15	.124	1	1.302e-2	3	NC	4	NC	3
130			min	15	4	171	2	.011	10	-1.336e-2	2	1058.753	2	2200.694	1
131		9	max	0	12	.098	1	.061	4	1.41e-2	3	NC	1	NC	2
132			min	15	4	133	3	003	10	-1.433e-2	2	4060.733	3	4563.328	4
133		10	max	0	1	.199	2	.02	3	1.518e-2	3	NC	4	NC	1
134			min	15	4	188	3	016	2	-1.531e-2	2	2222.997	3	NC	1
135		11	max	0	1	.098	1	.037	1	1.41e-2	3	NC	1	NC	2
136			min	15	4	133	3	041	5	-1.433e-2	2	4060.733	3	6605.128	5
137		12	max	0	1	001	15	.124	1	1.302e-2	3	NC	4	NC	3
138		T -	min	15	4	171	2	041	5	-1.336e-2	2	1058.753	2	2200.694	
139		13	max	0	1	.128	3	.211	1	1.193e-2	3	NC	5	NC	5
140		10	min	15	4	456	2	016	5	-1.238e-2	2	500.655	2	1287.856	
141		14	max	0	1	.242	3	.266	1	1.085e-2	3	NC	5	NC	5
142		14	min	15	4	684	2	.013	15	-1.141e-2	2	351.6	2	1016.942	1
		15												NC	12
143		15	max	0	1	.305	3	.274	1	9.769e-3	3	NC	15		12
144		40	min	<u>149</u>	4	8	2	.023	12	-1.043e-2	2	305.704	2	986.887	1
145		16	max	.001	1	.301	3	.233	1	8.687e-3	3	NC 24C 000	5	NC	3
146			min	149	4	771	2	.019	12	-9.455e-3	2	316.008	2	1165.418	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
147		17	max	.001	1	.229	3	.153	1	7.604e-3	3	NC 200 404	5	NC	3
148		40	min	<u>149</u>	4	<u>594</u>	2	.014	12	-8.48e-3	2	398.401	2	1776.773	1
149		18	max	.001	1	.098	3	.079	4	6.522e-3	3	NC 747.004	5_	NC	2
150		40	min	149	4	293	2	.006	10	-7.505e-3		717.661	2	3433.544	4
151		19	max	.002	1	.084	2	.007	3	5.439e-3	3	NC NC	1	NC NC	1
152	MO	4	min	149	4	067	3	004	2	-6.53e-3	2	NC NC	1_	NC NC	1
153	M2	1	max	.007	2	.008	2	.011	1	1.725e-3	5	NC 0070 000	1	NC OC 204	2
154			min	009	3	014	3	8	4	-3.221e-4		9072.236	2	96.204	4
155		2	max	.007	2	.007	2	.01	1	1.836e-3	5	NC	1_	NC 404 C44	2
156		1	min	009	3	<u>014</u>	3	736	4	-3.047e-4	1	NC NC	1	104.614	4
157		3	max	.006	2	.006	2	.009	1	1.946e-3	5	NC NC	1_	NC	2
158		1	min	008	3	013	3	672	4	-2.873e-4	1	NC NC	1_	114.576	4
159		4	max	.006	2	.005	2	.008	1	2.057e-3	5	NC NC	1_1	NC	2
160		-	min	008	3	013	3	609	4	-2.699e-4	1	NC NC	1_	126.489	4
161		5	max	.005	2	.003	2	.007	1	2.168e-3	5	NC NC	1_	NC 4.40,000	1
162			min	007	3	013	3	547	4	-2.525e-4	1	NC NC	1_	140.893	4
163		6	max	.005	2	.002	2	.006	1	2.279e-3	5	NC NC	1_	NC 450,500	1
164		-	min	007	3	012	3	486	4	-2.352e-4	1	NC NC	1_	158.533	4
165		7	max	.005	2	.001	2	.006	1	2.39e-3	5	NC	1_	NC 400.40	1
166		0	min	006	3	<u>011</u>	3	427	4	-2.178e-4	1	NC NC	1	180.46	4
167		8	max	.004	2	0	2	.005	1	2.501e-3	5	NC NC	1_	NC 000 400	1
168			min	006	3	011	3	37	4	-2.004e-4	1	NC NC	1_	208.198	4
169		9	max	.004	2	0	2	.004	1	2.611e-3	5	NC NC	1_	NC 044.007	1
170		40	min	005	3	01	3	316	4	-1.83e-4	1	NC NC	1_	244.027	4
171		10	max	.003	2	001	15	.003	1	2.722e-3	5	NC NC	1	NC	1
172		44	min	005	3	01	3	264	4	-1.656e-4	1	NC NC	1_	291.479	4
173		11	max	.003	2	001	15	.003	1	2.833e-3	5	NC NC	1_	NC OFFI OZO	1
174		40	min	004	3	009	3	216	4	-1.482e-4	1_	NC NC	1_	356.276	4
175		12	max	.003	2	001	15	.002	1	2.95e-3	4	NC NC	1_1	NC	1
176		13	min	004	2	008	3 15	172 .002	1	-1.308e-4	1	NC NC	<u>1</u> 1	448.199 NC	1
177		13	max	.002	3	001	3	132	4	3.067e-3 -1.134e-4	4	NC NC	1	585.141	_
178		1.1	min	003	2	007					1		_	NC	4
179		14	max	.002	3	001	15	.001	1 4	3.185e-3	4	NC NC	1		1_1
180		4.5	min	003		006	3	096		-9.6e-5	1	NC NC	1	802.818	4
181 182		15	max	.002	3	0 005	15	0 065	1	3.302e-3 -7.861e-5	4	NC NC	1	NC 1181.524	4
		16	min	002	2		15		4		1	NC NC	1	NC	1
183		16	max	.001	3	0		0	4	3.419e-3 -6.122e-5	4	NC NC	1	1935.504	
184		17	min	002		004	3	04	1	3.537e-3	1		1		4
185 186		17	max	0	3	0	15	0		-4.382e-5	4	NC NC	1	NC 2016 00F	1
187		10	min max	001 0	2	003 0	6 15	02 0	1	3.654e-3	<u>1</u> 4	NC NC	1	3816.995 NC	1
188		10	min	0	3	001	6	007	4	-2.643e-5		NC	1	NC NC	1
189		19		0	1	<u>001</u> 0	1	<u>007</u> 0	1	3.771e-3	4	NC	1	NC	1
190		19	max min	0	1	0	1	0	1	-9.034e-6		NC	1	NC	1
191	M3	1		0	1	0	1	0	1	1.378e-6	1	NC	1	NC	1
192	IVIO		max min	0	1	0	1	0	1	-9.745e-4	_	NC	1	NC	1
193		2		0	3	0	15	.018	4	2.924e-5	1	NC	1	NC	1
194			max min	0	2	002	6	0	1	-2.274e-4	_	NC NC	1	9948.379	_
195		3		0	3	<u>002</u> 0	15	.034	4	5.288e-4	4	NC	1	NC	1
196		- 3	max min	0	2	004	6	0	1	3.507e-6		NC	1	5207.275	14
197		4	max	.001	3	004 001	15	.048	4	1.28e-3	4	NC	1	NC	1
198		-	min	001	2	006	6	<u>.046</u>	3	5.204e-6	12	NC	1		_
199		5	max	.002	3	000 002	15	.062	4	2.032e-3	4	NC	1	NC	1
200		J	min	001	2	002	6	0	12	6.901e-6		NC	1	2842.017	_
201		6	max	.002	3	002	15	.074	4	2.784e-3	4	NC	1	NC	1
202		U	min	002	2	002 01	6	0	12	8.598e-6	_	9351.164	6		
203		7	max	.002	3	002	15	.085	4	3.535e-3	4	NC	1	NC	1
200			παλ	.002	J	002	IJ	.000	4	J.JJJE-3	_	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	011	6	0	12	1.03e-5		8080.224	6	2050.936	14
205		8	max	.003	3	003	15	.096	4	4.287e-3	_4_	NC	2	NC	1
206			min	002	2	012	6	0	12	1.199e-5	12	7297.823	6	1820.901	14
207		9	max	.003	3	003	15	.106	4	5.039e-3	4	NC	5	NC	1
208			min	003	2	013	6	0	12	1.369e-5	12	6840.67	6	1644.221	14
209		10	max	.004	3	003	15	.116	4	5.79e-3	4_	NC	5_	NC	1
210			min	003	2	014	6	0	12	1.539e-5	12	6630.074	6	1501.771	14
211		11	max	.004	3	003	15	.126	4	6.542e-3	4	NC	5	NC	1
212			min	003	2	014	6	0	12	1.708e-5	12	6635.269	6	1382.045	14
213		12	max	.005	3	003	15	.136	4	7.294e-3	4	NC	3	NC	1
214			min	004	2	013	6	0	12	1.878e-5	12	6861.612	6	1277.763	14
215		13	max	.005	3	003	15	.146	4	8.045e-3	4	NC	2	NC	1
216			min	004	2	012	6	0	12	2.048e-5	12	7354.173	6	1184.182	14
217		14	max	.005	3	002	15	.157	4	8.797e-3	4	NC	1	NC	1
218			min	004	2	011	6	0	12	2.217e-5	12	8220.592	6	1098.189	14
219		15	max	.006	3	002	15	.169	4	9.549e-3	4	NC	1	NC	1
220			min	005	2	01	6	0	12	2.387e-5	12	9697.555	6	1017.78	14
221		16	max	.006	3	001	15	.182	4	1.03e-2	4	NC	1	NC	1
222			min	005	2	008	6	0	12	2.557e-5	12	NC	1	941.725	14
223		17	max	.007	3	0	15	.197	4	1.105e-2	4	NC	1	NC	1
224			min	005	2	006	1	0	12	2.727e-5	12	NC	1	869.347	14
225		18	max	.007	3	0	15	.213	4	1.18e-2	4	NC	1	NC	1
226			min	006	2	004	3	0	12	2.896e-5	12	NC	1	800.348	14
227		19	max	.007	3	0	5	.231	4	1.256e-2	4	NC	1	NC	2
228			min	006	2	002	3	0	12	3.066e-5	12	NC	1	734.676	14
229	M4	1	max	.002	1	.006	2	0	12	3.177e-4	4	NC	1	NC	3
230			min	0	5	008	3	231	4	1.043e-5	12	NC	1	107.154	4
231		2	max	.002	1	.006	2	0	12	3.177e-4	4	NC	1	NC	3
232			min	0	5	007	3	213	4	1.043e-5	12	NC	1	116.358	4
233		3	max	.002	1	.005	2	0	12	3.177e-4	4	NC	1	NC	3
234		1	min	0	5	007	3	195	4	1.043e-5	12	NC	1	127.321	4
235		4	max	.002	1	.005	2	0	12	3.177e-4	4	NC	1	NC	3
236			min	0	5	006	3	177	4	1.043e-5	12	NC	1	140.499	4
237		5	max	.002	1	.005	2	0	12	3.177e-4	4	NC	1	NC	3
238		T .	min	0	5	006	3	158	4	1.043e-5	12	NC	1	156.511	4
239		6	max	.002	1	.004	2	0	12	3.177e-4	4	NC	1	NC	3
240		1	min	0	5	006	3	141	4	1.043e-5	12	NC	1	176.214	4
241		7	max	.002	1	.004	2	0	12	3.177e-4	4	NC	1	NC	2
242		+ ′	min	.002	5	005	3	124	4	1.043e-5	12	NC	1	200.828	4
243		8	max	.001	1	.003	2	0	12	3.177e-4	4	NC	1	NC	2
244		10	min	0	5	005	3	107		1.043e-5		NC	1	232.127	4
245		9	max	.001	1	.003	2	0	12		4	NC	1	NC	2
246		9	min	0	5	004	3	091	4	1.043e-5	12	NC	1	272.787	4
247		10			1	.003	2	<u>091</u> 0	12	3.177e-4	4	NC	1	NC	2
248		10	max	.001 0	5	004	3	076	4	1.043e-5	12	NC NC	1	326.987	4
249		11		.001	1	.003	2	<u>076</u> 0	12	3.177e-4	4	NC NC	1	NC	2
		+ ' '	max												
250		40	min	0	5	<u>003</u>	3	062	4	1.043e-5	12	NC NC	1_	401.561	4
251		12	max	0	1	.002	2	0	12	3.177e-4	4	NC NC	1_	NC 500.00	1
252		40	min	0	5	003	3	049	4	1.043e-5	12	NC NC	1_	508.33	4
253		13	max	0	1	.002	2	0	12	3.177e-4	4	NC NC	1	NC cco 227	1
254		4.4	min	0	5	003	3	037	4	1.043e-5	12	NC NC	1_	669.227	4
255		14	max	0	1	.002	2	0	12	3.177e-4	4	NC	1	NC 000.00	1
256		1 -	min	0	5	002	3	027	4	1.043e-5	12	NC	1_	928.86	4
257		15	max	0	1	.001	2	0	12	3.177e-4	4	NC		NC 1000 000	1
258			min	0	5	002	3	018	4	1.043e-5	12	NC	1_	1390.009	
259		16	max	0	1	0	2	0	12	3.177e-4	4	NC	1	NC	1
260			min	0	5	001	3	011	4	1.043e-5	12	NC	1_	2336.647	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	3.177e-4	4	NC	1	NC 4000 000	1
262		10	min	0	5	0	3	005	4	1.043e-5	12	NC	1_	4820.869	4
263		18	max	0	1	0	2	0	12	3.177e-4	4	NC	1_	NC	1
264			min	0	5	0	3	002	4	1.043e-5	12	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	3.177e-4	_4_	NC	_1_	NC	1_
266		_	min	0	1	0	1	0	1	1.043e-5	12	NC	1_	NC	1
267	<u>M6</u>	1	max	.023	2	.032	2	0	1_	1.853e-3	_4_	NC	3_	NC	1
268			min	03	3	045	3	808	4	0	_1_	2373.989	2	95.256	4
269		2	max	.021	2	.03	2	0	1_	1.961e-3	4	NC	3	NC	1
270			min	028	3	043	3	743	4	0	1_	2608.832	2	103.585	4
271		3	max	.02	2	.027	2	0	1	2.069e-3	4	NC	3	NC	1_
272			min	026	3	04	3	679	4	0	_1_	2892.521	2	113.45	4
273		4	max	.019	2	.024	2	0	1	2.177e-3	4	NC	3	NC	1
274			min	025	3	038	3	615	4	0	1_	3238.752	2	125.248	4
275		5	max	.018	2	.021	2	0	1	2.285e-3	4	NC	3	NC	1_
276			min	023	3	035	3	552	4	0	1	3666.545	2	139.514	4
277		6	max	.016	2	.018	2	0	1	2.393e-3	4	NC	3	NC	1
278			min	021	3	033	3	491	4	0	1	4202.933	2	156.984	4
279		7	max	.015	2	.016	2	0	1	2.502e-3	4	NC	1	NC	1
280			min	02	3	03	3	431	4	0	1	4887.368	2	178.701	4
281		8	max	.014	2	.013	2	0	1	2.61e-3	4	NC	1	NC	1
282			min	018	3	028	3	373	4	0	1	5779.269	2	206.175	4
283		9	max	.013	2	.011	2	0	1	2.718e-3	4	NC	1	NC	1
284			min	017	3	025	3	319	4	0	1	6971.529	2	241.663	4
285		10	max	.011	2	.009	2	0	1	2.826e-3	4	NC	1	NC	1
286			min	015	3	023	3	267	4	0	1	8616.075	2	288.665	4
287		11	max	.01	2	.007	2	0	1	2.934e-3	4	NC	1	NC	1
288			min	013	3	02	3	218	4	0	1	NC	1	352.85	4
289		12	max	.009	2	.005	2	0	1	3.042e-3	4	NC	1	NC	1
290			min	012	3	018	3	173	4	0	1	NC	1	443.91	4
291		13	max	.008	2	.004	2	0	1	3.15e-3	4	NC	1	NC	1
292			min	01	3	015	3	133	4	0	1	NC	1	579.573	4
293		14	max	.006	2	.003	2	0	1	3.258e-3	4	NC	1	NC	1
294			min	008	3	012	3	097	4	0	1	NC	1	795.232	4
295		15	max	.005	2	.001	2	0	1	3.366e-3	4	NC	1	NC	1
296			min	007	3	01	3	066	4	0	1	NC	1	1170.463	4
297		16	max	.004	2	0	2	0	1	3.474e-3	4	NC	1	NC	1
298			min	005	3	007	3	04	4	0	1	NC	1	1917.622	4
299		17	max	.003	2	0	2	0	1	3.582e-3	4	NC	1	NC	1
300			min	003	3	005	3	02	4	0	1	NC	1	3782.472	4
301		18		.001	2	0	2	0	1	3.69e-3	4	NC	1	NC	1
302		1.0	min	002	3	002	3	007	4	0.000 0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.799e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0.73303	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717		min	0	1	0	1	0	1	-9.813e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.018	4	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	-2.511e-4	4	NC	1	NC	1
309		3	max	.003	3	<u>003</u> 0	15	.034	4	4.791e-4	4	NC	1	NC	1
310		3	min	003	2	005	3	<u>.034</u>	1	0	1	NC NC	1	9703.545	
311		4		003 .004	3	005 001	15	.049	4	1.209e-3	4	NC NC	1	NC	4
		4	max		2	001 008	3				-	NC NC	1		1
312		E	min	004				<u> </u>	4	1 0200 2	1_1	NC NC		7752.255	
313		5	max	.005	3	002	15			1.939e-3	4		1	NC 7122 927	1
314		_	min	005	2	01	3	074	1	0	1_1	NC NC		7132.827	4
315		6	max	.007	3	002	15	.074	4	2.67e-3	4	NC 0067 551	1	NC	1
316		7	min	006	2	012	3	0	1	0	1_1	9067.551	3	7218.178	
317		7	max	.008	3	003	15	.086	4	3.4e-3	4	NC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	008	2	014	3	0	1	0	1_	8093.744	3	7935.984	
319		8	max	.009	3	003	15	.096	4	4.13e-3	4	NC	_1_	NC	1
320			min	009	2	015	3	0	1	0	1_	7359.591	4_	9551.034	
321		9	max	.01	3	003	15	.106	4	4.86e-3	4	NC	1_	NC NC	1
322		40	min	01	2	016	3	0	1	0	1_1	6895.085	4	NC NC	1
323		10	max	.012	3	003	15	.116	1	5.59e-3 0	4	NC 6670.050	1_4	NC NC	1
324 325		11	min	012	3	016	3	<u>0</u> .125	4	_	<u>1</u> 4	6679.959 NC	<u>4</u> 1		1
326			max	.013 013	2	003 016	15	<u>. 125</u> 0	1	6.32e-3	<u>4</u> 1	6682.77	4	NC NC	1
327		12		<u>013</u> .014	3	003	15	.134	4	7.051e-3	4	NC	1	NC NC	1
328		12	max min	014	2	003 016	3	0	1	0	1	6908.61	4	NC NC	1
329		13	max	.016	3	003	15	.144	4	7.781e-3	4	NC	1	NC	1
330		13	min	015	2	016	3	0	1	0	1	7402.623	4	NC	1
331		14	max	.017	3	003	15	.154	4	8.511e-3	4	NC	1	NC	1
332		17	min	017	2	015	3	0	1	0.5110 5	1	8272.957	4	NC	1
333		15	max	.018	3	002	15	.165	4	9.241e-3	4	NC	1	NC	1
334			min	018	2	014	3	0	1	0	1	9757.596	4	NC	1
335		16	max	.02	3	002	15	.177	4	9.971e-3	4	NC	1	NC	1
336			min	019	2	012	3	0	1	0	1	NC	1	NC	1
337		17	max	.021	3	001	10	.191	4	1.07e-2	4	NC	1	NC	1
338			min	02	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.022	3	0	2	.206	4	1.143e-2	4	NC	1	NC	1
340			min	022	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.023	3	.002	2	.223	4	1.216e-2	4	NC	1	NC	1
342			min	023	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.023	2	0	1	1.322e-4	5	NC	1_	NC	1
344			min	0	15	025	3	223	4	0	1_	NC	1_	111.229	4
345		2	max	.005	1	.021	2	0	1	1.322e-4	5	NC	_1_	NC	1
346			min	0	15	023	3	205	4	0	1	NC	1_	120.796	4
347		3	max	.005	1	.02	2	0	1	1.322e-4	_5_	NC	_1_	NC	1
348			min	0	15	022	3	188	4	0	1_	NC	1_	132.192	4
349		4	max	.005	1	.019	2	0	1	1.322e-4	5	NC	1	NC	1
350		-	min	0	15	02	3	<u>17</u>	4	0	1_	NC	1_	145.888	4
351		5	max	.004	1	.018	2	0	1	1.322e-4	5_	NC	1_	NC 400.50	1
352			min	0	15	019	3	1 <u>53</u>	4	0	1_	NC NC	1_	162.53	4
353		6	max	.004	1	.016	2	0	1	1.322e-4	5	NC NC	1	NC	1
354		7	min	004	15	018	2	136	4	0	1	NC NC	1	183.007	4
355			max	.004	1 15	.015 016	3	0 119	4	1.322e-4 0	5	NC NC	1	NC	4
356 357		8	min	.004	1	.016 .014	2	<u>119</u> 0	1	1.322e-4		NC NC	1	208.587 NC	1
358		0	max min	0	15	015	3	103	4	0	<u>5</u>	NC NC	1	241.115	
359		9	max	.003	1	.013	2	0	1	1.322e-4	5	NC	1	NC	1
360		-	min	0	15	014	3	088	4	0	1	NC	1	283.372	4
361		10	max	.003	1	.011	2	0	1	1.322e-4	5	NC	1	NC	1
362		· · ·	min	0	15	012	3	073	4	0	1	NC	1	339.699	4
363		11	max	.003	1	.01	2	0	1	1.322e-4	5	NC	<u> </u>	NC	1
364			min	0	15	011	3	059	4	0	1	NC	1	417.202	4
365		12	max	.002	1	.009	2	0	1	1.322e-4	5	NC	1	NC	1
366		<u> </u>	min	0	15	01	3	047	4	0	1	NC	1	528.166	4
367		13	max	.002	1	.008	2	0	1	1.322e-4	5	NC	1	NC	1
368			min	0	15	008	3	036	4	0	1	NC	1	695.388	4
369		14	max	.002	1	.006	2	0	1	1.322e-4	5	NC	1	NC	1
370			min	0	15	007	3	026	4	0	1	NC	1	965.233	4
371		15	max	.001	1	.005	2	0	1	1.322e-4	5	NC	1	NC	1
372			min	0	15	005	3	017	4	0	1	NC	1	1444.536	4
373		16	max	0	1	.004	2	0	1	1.322e-4	5	NC	1	NC	1
374			min	0	15	004	3	01	4	0	1	NC	1	2428.478	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
375		17	max	0	1	.003	2	0	1	1.322e-4	5	NC	1_	NC	1
376			min	0	15	003	3	005	4	0	_1_	NC	1_	5010.734	
377		18	max	0	1	.001	2	0	1	1.322e-4	_5_	NC	_1_	NC	1
378		40	min	0	15	001	3	002	4	0	1_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	1.322e-4	_5_	NC	1_	NC NC	1
380	N440	4	min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.007	2	.008	2	0	12	1.878e-3	4	NC	1_	NC 05.000	2
382		2	min	009 .007	3	014	3	808	4	2.151e-5 1.984e-3		9072.236 NC	<u>2</u> 1	95.329	2
383		2	max		3	.007	3	0 743	12	2.035e-5	<u>4</u> 12	NC NC	1	NC 102 CCE	
384		3	min	009 .006	2	014 .006	2	743 0	12	2.035e-5 2.089e-3	4	NC NC	1	103.665 NC	2
386		3	max min	008	3	013	3	678	4	1.919e-5	12	NC NC	1	113.539	4
387		4	max	.006	2	.005	2	<u>078</u> 0	12	2.195e-3	4	NC	1	NC	2
388		-	min	008	3	013	3	614	4	1.803e-5	12	NC	1	125.348	4
389		5	max	.005	2	.003	2	0	12	2.3e-3	4	NC	1	NC	1
390			min	007	3	013	3	552	4	1.688e-5	12	NC	1	139.627	4
391		6	max	.005	2	.002	2	0	12	2.406e-3	4	NC	1	NC	1
392			min	007	3	012	3	49	4	1.572e-5	12	NC	1	157.114	4
393		7	max	.005	2	.001	2	0	12	2.511e-3	4	NC	1	NC	1
394		,	min	006	3	011	3	431	4	1.456e-5	12	NC	1	178.852	4
395		8	max	.004	2	0	2	0	12	2.617e-3	4	NC	1	NC	1
396			min	006	3	011	3	373	4	1.34e-5	12	NC	1	206.354	4
397		9	max	.004	2	0	2	0	12	2.722e-3	4	NC	1	NC	1
398			min	005	3	01	3	318	4	1.224e-5	12	NC	1	241.88	4
399		10	max	.003	2	001	2	0	12	2.828e-3	4	NC	1	NC	1
400			min	005	3	01	3	267	4	1.108e-5	12	NC	1	288.934	4
401		11	max	.003	2	002	2	0	12	2.933e-3	4	NC	1	NC	1
402			min	004	3	009	3	218	4	9.927e-6	12	NC	1	353.194	4
403		12	max	.003	2	002	15	00	12	3.039e-3	4	NC	_1_	NC	1
404			min	004	3	008	3	173	4	8.768e-6	12	NC	1	444.367	4
405		13	max	.002	2	002	15	0	12	3.144e-3	_4_	NC	_1_	NC	1
406			min	003	3	007	3	133	4	7.61e-6	12	NC	_1_	580.21	4
407		14	max	.002	2	001	15	0	12	3.25e-3	4_	NC	_1_	NC	1
408			min	003	3	006	3	097	4	6.452e-6	12	NC	1_	796.183	4
409		15	max	.002	2	001	15	0	12	3.355e-3	4	NC	1_	NC	1
410		40	min	002	3	005	4	066	4	5.293e-6	12	NC NC	1_	1172.022	4
411		16	max	.001	2	001	15	0	12	3.461e-3	4	NC	1	NC	1
412		47	min	002	3	004	4	04	4	4.135e-6	12	NC NC	1_	1920.576	
413		17	max	0	3	0	15	0	12	3.566e-3	4	NC NC	1_1	NC	1
414 415		10	min max	001 0	2	003 0	4 15	02 0	4	2.977e-6 3.672e-3	12	NC NC	<u>1</u> 1	3789.637 NC	1
416		10	min	0	3	002	4	007	4	1.818e-6	12	NC NC	1	NC NC	1
417		19	max	0	1	0	1	<u>007</u> 0	1	3.777e-3	4	NC	1	NC	1
418		19	min	0	1	0	1	0	1	6.602e-7	12	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-1.133e-7	12	NC	1	NC	1
420	IVIII	-	min	0	1	0	1	0	1	-9.753e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.018	4	-1.81e-6	12	NC	1	NC	1
422			min	0	2	002	4	0	12	-2.426e-4	4	NC	1	NC	1
423		3	max	0	3	001	15	.034	4	4.963e-4	5	NC	1	NC	1
424			min	0	2	004	4	0	12	-5.711e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.048	4	1.225e-3	5	NC	1	NC	1
426			min	001	2	006	4	0	1	-8.497e-5	1	NC	1	8135.76	4
427		5	max	.002	3	002	15	.062	4	1.956e-3	4	NC	1	NC	1
428			min	001	2	008	4	0	1	-1.128e-4	1	NC	1	7559.696	_
429		6	max	.002	3	003	15	.074	4	2.688e-3	4	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.407e-4	1	9131.331	4	7755.258	4
431		7	max	.002	3	003	15	.085	4	3.421e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
432			min	002	2	012	4	0	1	-1.686e-4	_1_	7903.969	4	8700.84	4
433		8	max	.003	3	003	15	.096	4	4.154e-3	4_	NC	2	NC	1_
434			min	002	2	013	4	0	1	-1.964e-4	1_	7148.975	4	NC	1
435		9	max	.003	3	003	15	.105	4	4.886e-3	4	NC	5	NC	1
436			min	003	2	014	4	001	1	-2.243e-4	1_	6709.316	4	NC	1
437		10	max	.004	3	004	15	.115	4	5.619e-3	4_	NC	5	NC	1_
438			min	003	2	015	4	001	1	-2.522e-4	1_	6509.478	4	NC	1
439		11	max	.004	3	004	15	.124	4	6.352e-3	4_	NC	5	NC	1_
440			min	003	2	015	4	002	1	-2.8e-4	1_	6520.293	4	NC	1
441		12	max	.005	3	004	15	.134	4	7.084e-3	4_	NC	3	NC	1_
442			min	004	2	014	4	003	1	-3.079e-4	1_	6747.736	4	NC	1
443		13	max	.005	3	003	15	.144	4	7.817e-3	4_	NC	2	NC	1_
444			min	004	2	013	4	003	1	-3.358e-4	1_	7236.674	4	NC	1
445		14	max	.005	3	003	15	.154	4	8.55e-3	4	NC	_1_	NC	1
446			min	004	2	012	4	004	1	-3.636e-4	1_	8093.506	4	NC	1
447		15	max	.006	3	003	15	.165	4	9.283e-3	4	NC	<u>1</u>	NC	1_
448			min	005	2	011	4	005	1	-3.915e-4	1	9551.75	4	9185.048	5
449		16	max	.006	3	002	15	.178	4	1.002e-2	4	NC	1_	NC	1
450			min	005	2	009	4	006	1	-4.194e-4	1	NC	1	9215.828	5
451		17	max	.007	3	002	15	.192	4	1.075e-2	4	NC	1	NC	1
452			min	005	2	006	4	007	1	-4.472e-4	1	NC	1	NC	1
453		18	max	.007	3	001	15	.207	4	1.148e-2	4	NC	1	NC	1
454			min	006	2	004	4	009	1	-4.751e-4	1_	NC	1_	NC	1
455		19	max	.007	3	0	10	.225	4	1.221e-2	4	NC	1	NC	2
456			min	006	2	002	3	01	1	-5.03e-4	1	NC	1	8756.742	1
457	M12	1	max	.002	1	.006	2	.01	1	2.447e-4	5	NC	1	NC	3
458			min	0	12	008	3	225	4	-1.665e-4	1	NC	1	110.479	4
459		2	max	.002	1	.006	2	.009	1	2.447e-4	5	NC	1	NC	3
460			min	0	12	007	3	207	4	-1.665e-4	1	NC	1	119.974	4
461		3	max	.002	1	.005	2	.009	1	2.447e-4	5	NC	1	NC	3
462			min	0	12	007	3	189	4	-1.665e-4	1	NC	1	131.284	4
463		4	max	.002	1	.005	2	.008	1	2.447e-4	5	NC	1	NC	3
464			min	0	12	006	3	171	4	-1.665e-4	1	NC	1	144.878	4
465		5	max	.002	1	.005	2	.007	1	2.447e-4	5	NC	1	NC	3
466			min	0	12	006	3	154	4	-1.665e-4	1	NC	1	161.395	4
467		6	max	.002	1	.004	2	.006	1	2.447e-4	5	NC	1	NC	3
468			min	0	12	006	3	136	4	-1.665e-4	1	NC	1	181.72	4
469		7	max	.002	1	.004	2	.006	1	2.447e-4	5	NC	1	NC	2
470			min	0	12	005	3	12	4	-1.665e-4	1	NC	1	207.109	4
471		8	max	.001	1	.004	2	.005	1	2.447e-4	5	NC	1	NC	2
472			min	0	12	005	3	104	4	-1.665e-4	1	NC	1	239.396	4
473		9	max	.001	1	.003	2	.004	1	2.447e-4	5	NC	1	NC	2
474			min	0	12	004	3	088	4	-1.665e-4	1	NC	1	281.338	4
475		10	max	.001	1	.003	2	.003	1	2.447e-4	5	NC	1	NC	2
476			min	0	12	004	3	074	4	-1.665e-4	1	NC	1	337.247	4
477		11	max	.001	1	.003	2	.003	1	2.447e-4	5	NC	1	NC	2
478			min	0	12	003	3	06	4	-1.665e-4	1	NC	1	414.173	4
479		12	max	0	1	.002	2	.002	1	2.447e-4	5	NC	1	NC	1
480		12	min	0	12	003	3	047	4	-1.665e-4	1	NC	1	524.31	4
481		13	max	0	1	.002	2	.002	1	2.447e-4	5	NC	1	NC	1
482		10	min	0	12	003	3	036	4	-1.665e-4	1	NC	1	690.284	4
483		14	max	0	1	.002	2	.001	1	2.447e-4	5	NC	1	NC	1
484		17	min	0	12	002	3	026	4	-1.665e-4	1	NC NC	1	958.111	4
485		15	max	0	1	.002	2	<u>026</u> 0	1	2.447e-4	5	NC NC	1	NC	1
486		10	min	0	12	002	3	017	4	-1.665e-4	<u> </u>	NC NC	1	1433.82	4
487		16		0	1	<u>002</u> 0	2		1	2.447e-4	<u> </u>	NC NC	1	NC	1
		16	max					0							
488			min	0	12	001	3	01	4	-1.665e-4	1_	NC	1_	2410.364	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
489		17	max	0	1	0	2	0	1	2.447e-4	5_	NC NC	1	NC 4070 404	1
490		40	min	0	12	0	3	005	4	-1.665e-4	<u>1</u>		1_	4973.121	4
491		18	max	0	1	0	2	0	1	2.447e-4	5_		1_	NC NC	1
492		40	min	0	12	0	3	002	4	-1.665e-4	1_		1_	NC NC	1
493		19	max	0	1	0	1	0	1	2.447e-4	5_	.,,	1_	NC NC	1
494	5.4.4	-	min	0	1	0	1	0	1	-1.665e-4	1	NC	1_	NC NC	1
495	M1	1_	max	.009	3	.095	2	.86	4	1.668e-2	2		1_	NC	1
496			min	005	2	<u>014</u>	3	0	12	-2.978e-2	3		1_	NC	1
497		2	max	.009	3	.044	2	.83	4	8.876e-3	4		4	NC	1
498			min	005	2	003	3	007	1	-1.474e-2	3		2	9651.949	5
499		3	max	.009	3	.015	3	.8	4	1.43e-2	4		5_	NC	2
500			min	005	2	011	2	011	1	-2.276e-4	1_		2	5270.066	
501		4	max	.009	3	.045	3	.769	4	1.249e-2	4		5	NC	1
502			min	005	2	073	2	01	1	-5.271e-3	3		2	3803.319	
503		5	max	.009	3	.084	3	.737	4	1.068e-2	_4_		5_	NC	1
504			min	005	2	138	2	007	1	-1.039e-2	3	493.898	2	3072.809	
505		6	max	.009	3	.125	3	.705	4	1.368e-2	2		15	NC	1
506			min	004	2	201	2	003	1	-1.551e-2	3		2	2635.32	5
507		7	max	.008	3	.165	3	.672	4	1.825e-2	2		15	NC	1
508			min	004	2	258	2	0	12	-2.063e-2	3		2	2322.261	4
509		8	max	.008	3	.199	3	.638	4	2.282e-2	2		15	NC	1
510			min	004	2	302	2	0	12	-2.575e-2	3		2	2094.059	4
511		9	max	.008	3	.22	3	.602	4	2.635e-2	2		15	NC	1
512			min	004	2	331	2	0	1	-2.589e-2	3		2	1953.563	4
513		10	max	.008	3	.228	3	.564	4	2.918e-2	2		<u> 15</u>	NC	1
514			min	004	2	34	2	0	12	-2.271e-2	3		2	1913.322	4
515		11	max	.008	3	.222	3	.523	4	3.202e-2	2	8819.121	15	NC	1
516			min	004	2	33	2	0	12	-1.952e-2	3		2	1957.858	4
517		12	max	.007	3	.203	3	.48	4	3.127e-2	2		15	NC	1
518			min	004	2	301	2	001	1	-1.631e-2	3		2	2100.189	4
519		13	max	.007	3	.173	3	.432	4	2.509e-2	2	NC ·	15	NC	1
520			min	004	2	253	2	0	1	-1.305e-2	3		2	2455.611	4
521		14	max	.007	3	.134	3	.382	4	1.891e-2	2	NC ·	15	NC	1
522			min	004	2	194	2	0	12	-9.796e-3	3	405.52	2	3182.394	4
523		15	max	.007	3	.092	3	.331	4	1.274e-2	2	NC	5	NC	1
524			min	004	2	13	2	0	12	-6.538e-3	3	528.651	2	4717.175	4
525		16	max	.007	3	.047	3	.281	4	9.743e-3	4	NC	5	NC	1
526			min	004	2	065	2	0	12	-3.28e-3	3	758.755	2	8659.552	4
527		17	max	.007	3	.005	3	.233	4	1.093e-2	4	NC	5	NC	2
528			min	004	2	006	2	0	12	-2.187e-5	3	1255.057	2	9868.238	1
529		18	max	.007	3	.042	2	.189	4	1.3e-2	2	NC	4	NC	1
530			min	004	2	032	3	0	12	-5.632e-3	3	2688.138	2	NC	1
531		19	max	.007	3	.084	2	.149	4	2.605e-2	2		1	NC	1
532			min	004	2	067	3	002	1	-1.145e-2	3	NC	1	NC	1
533	M5	1	max	.029	3	.234	2	.859	4	0	1		1	NC	1
534			min	02	2	023	3	0	1	-5.563e-6	4		1	NC	1
535		2	max	.029	3	.105	2	.836	4	7.363e-3	4		5	NC	1
536			min	02	2	.001	3	0	1	0	1		2	7154.88	4
537		3	max	.029	3	.048	3	.808	4	1.45e-2	4		5	NC	1
538			min	02	2	038	2	0	1	0	1		2	4195.454	4
539		4	max	.028	3	.136	3	.776	4	1.182e-2	4		15	NC	1
540			min	02	2	206	2	0	1	0	1		2	3257.279	4
541		5	max	.027	3	.252	3	.742	4	9.129e-3	4		<u>-</u> 15	NC	1
542		Ť	min	019	2	387	2	0	1	0	1		2	2816.662	_
543		6	max	.027	3	.379	3	.707	4	6.442e-3	4		15	NC	1
544		—	min	019	2	565	2	0	1	0.4420 0	1			2553.018	_
545		7	max	.026	3	.503	3	.672	4	3.755e-3	4		<u>-</u> 15	NC	1
O TO			IIIUA	.020		.000		.012		0.7 000 0	т_	.000.220		.,,	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	018	2	726	2	0	1	0	1_	120.196	2	2345.512	
547		8	max	.026	3	.605	3	.637	4	1.068e-3	4	3813.179	<u>15</u>	NC	1
548			min	018	2	<u>855</u>	2	0	1	0	1_	106.023	2	2134.571	4
549		9	max	.025	3	.671	3	.603	4	0	1_	3543.79	15	NC	1
550		40	min	018	2	936	2	0	1	-4.046e-6	5	98.718	2	1948.64	4
551		10	max	.025	3	.694	3	.564	4	0 -3.933e-6	1_	3462.622	<u>15</u>	NC 1924.719	1
552		11	min	017 .024	3	964 .676	3	0 .523	4	0	<u>5</u> 1	96.588 3543.901	<u>2</u> 15	NC	1
553 554			max	017	2	936	2	<u>.525</u>	1	-3.82e-6	5	99.107	2	1980.125	
555		12	max	.023	3	<u>930</u> .618	3	.481	4	7.675e-4	4	3813.446	15	NC	1
556		12	min	017	2	85	2	0	1	0	1	107.286	2	2060.914	4
557		13	max	.023	3	.524	3	.434	4	2.7e-3	4	4338.794	15	NC	1
558		10	min	017	2	713	2	0	1	0	1	123.449	2	2423.16	4
559		14	max	.022	3	.406	3	.381	4	4.632e-3	4	5241.777	15	NC	1
560			min	016	2	543	2	0	1	0	1	151.7	2	3371.724	4
561		15	max	.022	3	.275	3	.326	4	6.564e-3	4	6804.194	15	NC	1
562			min	016	2	358	2	0	1	0	1	201.74	2	6100.415	4
563		16	max	.021	3	.141	3	.273	4	8.496e-3	4	9714.46	15	NC	1
564			min	016	2	178	2	0	1	0	1	297.898	2	NC	1
565		17	max	.02	3	.016	3	.224	4	1.043e-2	4	NC	5	NC	1
566			min	016	2	02	2	0	1	0	1	511.806	2	NC	1
567		18	max	.02	3	1	2	.183	4	5.295e-3	4	NC	5	NC	1
568			min	016	2	091	3	0	1	0	1_	1131.042	2	NC	1
569		19	max	.02	3	.199	2	.15	4	0	_1_	NC	1_	NC	1
570			min	016	2	188	3	0	1	-3.433e-6	4_	NC	1_	NC	1
571	<u>M9</u>	1	max	.009	3	.095	2	.859	4	2.978e-2	3	NC	1_	NC	1
572			min	005	2	<u>014</u>	3	001	1	-1.668e-2	2	NC NC	1_	NC	1
573		2	max	.009	3	.044	2	.835	4	1.474e-2	3_	NC	4	NC 7050 004	1
574			min	005	2	003	3	0	12	-8.174e-3	2	2255.144	2	7250.024	4
575 576		3	max	.009	3	.015	3	.807	12	1.449e-2 -9.135e-6	4	NC 1086.094	5	NC 4220.079	2
576 577		4	min	005 .009	3	011 .045	3	<u> </u>	4	1.135e-6	<u>10</u> 5	NC	5	NC	1
578		4	max	005	2	0 4 5	2	0	12	-4.535e-3	2	684.917	2	3251.12	4
579		5	max	.009	3	.084	3	.742	4	1.039e-2	3	NC	5	NC	1
580			min	005	2	138	2	0	12	-9.106e-3	2	493.898	2	2792.448	4
581		6	max	.009	3	.125	3	.707	4	1.551e-2	3	NC	15	NC	1
582			min	004	2	201	2	0	12	-1.368e-2	2	388.744	2	2520.405	
583		7	max	.008	3	.165	3	.672	4	2.063e-2	3	NC	15	NC	1
584			min	004	2	258	2	0	1	-1.825e-2	2	326.711	2	2315.538	
585		8	max	.008	3	.199	3	.637	4	2.575e-2	3	9419.047	15	NC	1
586			min		2	302	2	001		-2.282e-2				2119.196	4
587		9	max	.008	3	.22	3	.602	4	2.589e-2	3	8797.688	15	NC	1
588			min	004	2	331	2	0	12	-2.635e-2	2	270.959	2	1946.928	4
589		10	max	.008	3	.228	3	.564	4	2.271e-2	3	8608.591	15	NC	1
590			min	004	2	34	2	0	1	-2.918e-2	2	265.387	2	1914.832	4
591		11	max	.008	3	.222	3	.523	4	1.952e-2	3	8797.367	15	NC	1
592			min	004	2	33	2	0	1	-3.202e-2	2	271.994	2	1967.115	4
593		12	max	.007	3	.203	3	.481	4	1.631e-2	3_	9418.445	<u>15</u>	NC	1
594			min	004	2	301	2	0	12	-3.127e-2	2	293.219	2	2076.161	4
595		13	max	.007	3	.173	3	.433	4	1.305e-2	3_	NC .	<u>15</u>	NC	1
596		4.1	min	004	2	253	2	0	12	-2.509e-2	2	334.514	2	2459.295	
597		14	max	.007	3	.134	3	.38	4	9.796e-3	3	NC 105.50	<u>15</u>	NC 0044 004	1
598		4.5	min	004	2	<u>194</u>	2	003	1	-1.891e-2	2	405.52	2	3341.284	5
599		15	max	.007	3	.092	3	.327	4	6.538e-3	3	NC FOR CE4	5	NC F4F0 20F	1
600		10	min	004	2	13	2	007	1	-1.274e-2	2	528.651	2	5459.205	
601		16	max	.007	3	.047	3	.274	4	8.35e-3	5	NC 750 755	5	NC NC	1
602			min	004	2	065	2	01	1	-6.561e-3	2	758.755	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.226	4	1.051e-2	4	NC	5	NC	2
604			min	004	2	006	2	01	1	-6.76e-4	1	1255.057	2	9868.238	1
605		18	max	.007	3	.042	2	.184	4	5.632e-3	3	NC	4	NC	1
606			min	004	2	032	3	007	1	-1.3e-2	2	2688.138	2	NC	1
607		19	max	.007	3	.084	2	.15	4	1.145e-2	3	NC	1	NC	1
608			min	004	2	067	3	0	12	-2.605e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.