基础物理实验原始数据记录

实验名称 温度的测量,用动态法测定良导体的热导率 地点 数学楼 427 学生姓名 <u>了多数</u> 学号2021K8009908031 分班分组座号2 - 05 - 6 号 (例: 实验日期 <u>2024</u>年 12月 10日 成绩评定____

1. 热波波速的测量 (存储数据,在实验报告上精确计算)

相邻热电偶间距 l_0 为 2cm,则波速 $V=l_0/(t_{n+1}-t_n)$,n 为测量点的位置坐标。

动态法测铜的热导率

测量点 n	1	2	3	4	5	6
对应峰值时间t	2618	7621	2626	2634	z640	2648
波速(m/s)						
波速平均值: 0.001877 m/s			热导率:			

0.003195 m/s 动态法测铝的热导率

测量点 n	1	2	3	4	5	6
对应峰值时间 t (s)	2271	2283	2300	2306	23 2	2325
波速 (m/s)						
波速平均值: 0.001877 m 5			热导率:			

2. 电位差计测热电偶温差电动势 (绘制 E_x-t 温度曲线,求出热电偶的温差电系数 α)

室温: t = <u>27.</u> ℃ 电动势: E_x = <u>0.8</u> % mv

4.40x0.2

		1				
37.9	温度 t (℃)	30.3	35.5	40.0	44.9	49.9
0.920	电动势 Ex(mv)	0.936	0.916	1.068	1.172	1.202

数 a。)

室温: t=27· ℃

电阻: R_x=<u>57.</u> Ω

温度 t (℃)	30.3	35.0	40.0	45.1	50.0
电阻 R _x (Ω)	57.8	58.8	59.9	61.1	62.2

4. 平衡电桥测热敏电阻温度特性曲线

绘制 Rr-t 曲线,观察热敏电阻的温度特性;绘制 InRr~1/T 曲线,线性拟合求出热敏电 阻的特性常数 A 和 B (注意: T 为热力学温度)。 27.4 室温: t=27.3℃ 电阻: F

电阻: R=2554.00

温度 ι (℃)	30.2	35.2	40.0	44.9	50.1
电阻 R_T (Ω)	2253.7	1814.4	1482.7	1212.4	984.0

5. 非平衡电桥热敏电阻温度计的设计

设定温度 t (℃)	40.0	42.6	45.0	47.5	50.1
测试电压 Uo(mv)	1-400	-427	-452	-47.7	-501
测试温度な℃)	40.0			·	

(热敏电阻温度计:
$$U_0 = \lambda + m(t-t_1)$$
, 式中 $t_1 = 40^{\circ}C$ (所測温度区间的中心值)
 $\Rightarrow t = t_1 + \frac{U_0 - \lambda}{m}$

参数计算:

A 和 B: 根据热敏电阻电阻值与温度关系 $R = Ae^{\frac{B}{T}}$,可得 $\ln R = \ln A + \frac{B}{T}$,做线性拟合。

$$E = \left(\frac{4BT_1^2}{4T_1^2 - B^2}\right) m$$
 , 注意 $T_1 = 273 + 40 = 313K$

$$R_2 = \frac{B - 2T_1}{B + 2T_1} R_{xT1} \left(R_{xT1}$$
为在温度 T_1 时热敏电阻的电阻)

$$\frac{R_1}{R_3} = \frac{2BE}{(B+2T_1)E-2B\lambda} - 1$$

2