

Сегодня

- посмотрим, как отличить статистически достоверное событие от случайного
- узнаем как устроен пайплайн проверки гипотез
- реализуем функции расчета для некоторых тестов

Проверка статистических гипотез

- Статистическая гипотеза предположение о свойствах генеральной совокупности.
- Всю ГС мы исследовать не можем, значит, мы должны собрать **репрезентативную выборку**, изучить ее, а после проверить гипотезу.

Задача с кофе

Задача с кофе

• в ТЦ стоит один из наших автоматов с кофе.

Ранее:

о из тех, кто подходил к нему, с кофе уходил каждый второй.

• Есть гипотеза:

 У нашего автомата сложный интерфейс, и некоторых людей это сбивает с толку и они уходят

• Изменения:

- Разработан новый тестовый интерфейс, и поставлен на наш автомат.
- В случае успеха, можно будет выкатывать на остальные наши автоматы

После:

• Из 300 людей, которые подошли к нашему автомату, купили 167

Задача

- Подтвердилась ли наша гипотеза? К какому результату интуитивно склоняетесь?
- Желательно не ошибиться с выбором, так как внедрение нового интерфейса на все наши автоматы стоит денег.

Задача

Формализуем:

- ГС все люди, которые подошли бы к нашему автомату
- у нас есть выборка $x_1, x_2, x_3, ..., x_{300}$
- ullet $x_i \sim Be(p)$ (купил/не купил)
- p неизвестный для нас параметр ГС доля тех, кто купил бы, подойдя к автомату
- Пример выборки [1,1,...,1,0,1,0,1,1] (167 купили, 133 не купили)

Статистическая гипотеза

Нулевая гипотеза H_0 – это гипотеза, которой мы придерживаемся, пока наблюдения не заставят признать обратное. Ей всегда сопутствует альтернативная гипотеза H_1 .

- ullet H_0 почти всегда формулируется, как "значимых изменения нет"
- H_1 "значимые изменения есть"

Статистическая гипотеза

В нашем случае:

- $H_0: p=0.5$ (конверсия в покупку такая же и осталась)
- $H_1: p>0.5$ (конверсия увеличилась)

По результатам исследования мы остановимся на одной из гипотез

Ошибка первого и второго рода

- Ошибка первого рода(FP) это ситуация, когда H_0 отвергается, хотя она, на самом деле, верна
 - \circ α вероятность ошибки первого рода или уровень значимости
- Ошибка второго рода(FN) это ситуация, когда H_0 принимается, хотя она неверна
 - \circ β вероятность ошибки второго рода

Некоторая сложность: при уменьшении ошибки первого рода, увеличивается ошибка второго рода и наоборот.

Ошибка первого и второго рода

• Матрица ошибок (confusion matrix)

Hypothesis testing:

Decision

		H ₀ true (Fail to reject)	H _o false (Rejecting H _o)	
Actual	H ₀ true	TRUE NEGATIVE Correct decision: Confidence level (prob $1 - \alpha$)	FALSE POSITIVE Type I Error: Significance level/Size (α) (prob α)	
	H _o false	FALSE NEGATIVE Type II Error: fail to reject (prob β)	TRUE POSITIVE Correct decision: Power (prob $1 - \beta$)	

Примеры

- Например, тест на COVID-19 показывает отрицательный результат у пациента, который на самом деле инфицирован. Ошибка какого рода?
- "Ложноположительный результат" при анализе маркетинговой кампании это ошибка какого рода?

Статистика критерия

Статистика – любая функция, получаемая по выборке. В каком-то смысле это просто посчитанная метрика

Обозначение: $\mathrm{T}(ec{x})$, где $ec{x} = (x_1, x_2, x_3, ..., x_n)$ - выборка

- Статистика агрегирует информацию о выборке.
- Самые частые статистики:
 - ∘ Среднее, доля, медиана, количество, квантиль и т.д
- Кастомные статистики
 - Показатель удовлетворенности клиентов (Customer Satisfaction Score, CSS)
 - Показатель устойчивости бизнеса(Customer Loyalty Index, CLI)
 - "Здесь бы могла быть ваша статистика ""

Наша задача

- Возьмем в нашем примере с кофе $T(X) = \sum_{i=1}^{300} x_i$, иначе говоря, сколько людей купили у нас кофе.
- Важно понимать, что T(X) тоже является **случайной величиной**, а значит имеет свое распределение, это **ключевой момент** в данной теме.
- Именно знание распределения статистики дает нам понимания, насколько экстремальное значение мы вообще получили.
- Например при проверки монетки на честность получить 90 орлов после 100 подбрасываний кажется слишком экстремальным, и скорее она не честная.

Наша задача

Проверка гипотез: алгоритм

- 1. Сформулировать основную и альтернативную гипотезы, задать уровень значимости lpha
- 2. Найти критические значения статистики для соответствующего уровня значимости
- 3. Вычислить значение статистики и определить, попало ли оно в критическую область
- 4. Сделать вывод: если значение попало в критическую область отвергнуть нулевую гипотезу, в противном случае принять

Наша задача

• α = 0.05 - уровень значимости или ошибка первого рода

Критическая область

Критической областью называется область значений статистики критерия, при которых отвергается H_0 . А критические значения - это граница критической области.

p-value

• **p-value** можно интерпретировать как вероятность ошибиться, если мы выбираем гипотзу H1.

Основные статистические тесты

Проверка гипотезы о среднем

$$H_0: \mu = \mu_0 \ H_1: \mu
eq \mu_0$$

$$H_1: \mu
eq \mu_0$$

Среднее генеральной совокупности μ равно некоторому предполагаемому среднему μ_0

Проверка гипотезы о среднем

В случае известного стандартного отклонения для всей ГС, статистика критерия

$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}\sim \mathbb{N}(0,1)$$

имеет нормальное распределение в предположении справедливости гипотезы $H_{
m 0}$.

Зная вид распределения у статистики z, мы можем оценить, насколько вероятно было получить посчитанное нами значение и на основе этого делать выводы!

- ullet Для левосторонней области необходимо найти квантиль уровня lpha
- ullet Для правосторонней уровня 1-lpha
- ullet Для двусторонней квантили уровней $rac{a}{2}$ и $1-rac{a}{2}$

Если стандартное отклонение известно, то используется z-критерий.

Проверка гипотезы о среднем: пример

Предположим, что мы хотим проверить, действительно ли средний вес яблок в саду составляет 150 грамм. Мы собрали выборку из нескольких яблок и получили следующие данные: 145, 152, 148, 151, 149, 153. Известно, что стандартное отклонение веса яблок $\sigma=2$. Проверим гипотезу, что средний вес больше 150 грамм, на уровне значимости $\alpha=0.05$.

Проверка гипотезы о среднем: пример

- 1. $H_0: \mu = 150, \ H_1: \mu > 150$
- 2. Критическая область правосторонняя: 1-lpha=0.95, критическое значение $z_{cr}=1.645$. Чтобы отвергнуть H_0 , z должно быть больше 1.645.

3.
$$ar{x}=rac{145+152+148+151+149+153}{6}=149.67,\;\sigma=2,\;n=6$$
. Тогда $z=rac{149.67-150}{2/\sqrt{6}}pprox -0.68$

4. Т.к. $z < z_{cr}$, нулевая гипотеза не отвергается.

Проверка гипотезы о среднем

Если стандартное отклонение гипотезы неизвестно или же имеем небольшую выборку, то используется t-статистика (ака тест Стьюдента, t-тест).

Процедура остается прежней, но статистика меняется:

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

Тогда $t \sim St(n-1)$ - Распределение Стьюдента

s - выборочная оценка стандартного отклонения:

$$s=\sqrt{rac{1}{n-1}\sum_{i=i}^n(x_i-ar{x})^2}$$

Проверка гипотезы о среднем: пример

Для сравнения двух выборок между собой, t-тест применим тоже.

$$H_0$$
: $\mu 1 = \mu 2$ H_1 : $\mu 1
eq \mu 2$

$$H_1: \mu 1 \neq \mu 2$$

$$t=rac{\mu_1-\mu_2}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

Тогда $t \sim St(n_1 + n_2 - 2)$ - Распределение Стьюдента

$$\mu_i, s_i^2, n_i$$
 - параметры i -ой выборки

Проверка гипотезы о среднем: пример

• Дана выборка: 1,0,3,5,4, уровень значимости lpha=0.01, гипотезы:

$$H_0: \mu = 3, \ H_1: \mu < 3$$

- Критическая область левосторонняя, число степеней свободы df = n-1 = 4, по квантилю уровня lpha определяем критическое значение $t_{cr} = -3.74$
- ullet Вычисляем значение статистики: $t_{st}=0.64$
- Вывод: $t_{st} \notin (-\infty; -3.74) => H_0$ не отвергается.

Гипотезы о виде распределения

- **U-критерий Манна Уитни**, который сравнивает два распределения. Данный тест в отличие от многих других является **непараметрическим**
- H_0 : две группы имеют одинаковое распределение
- $H_1:$ одна из групп имеет большие (или меньшие) значения, чем другая

 $U_1 = R_1 - n_1(n_1+1)/2$, где R_1 — сумма рангов точек данных в первой группе, а n_1 — количество точек в первой группе.

$$U_2 = R_2 - n_2(n_2 + 1)/2$$

$$T_{stat} = min(U_1, U_2) \sim N(rac{n_1 * n_2}{2}, rac{n_1 * n_2 * (n_1 + n_2 + 1)}{12})$$

Гипотеза о доле

- Проверяем гипотезу $H_0: p=p_0$
- Значение статистики вычисляется как

$$z = rac{\hat{p} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}} \sim N(0,1)$$

n - объем выборки, p_0 предполагаемая доля носителей признака, \hat{p} - выборочная доля носителей признака.

Проверим гипотезу, что доля признака в ГС равна 0.1 на уровне значимости lpha=0.05, против односторонних альтернатив p>0.1.

Объем выборки n=100 и пусть выборочная доля составила $\hat{p}=0.2$

Карта статистических тестов

Доверительные интервалы

- Часто точечной оценки какой-либо метрики недостаточно.
- Можно спросить у двух людей их рост, вычислить среднее и получить какую-то величину, которая будет крайне мало связана с величиной, вычисленной по генеральной совокупности.
- Для этого можно построить доверительный интервал: интервал, который с заданной вероятностью накрывает истинное значение.

Доверительные интервалы

• В самом общем случае, вместо квантиля стандратного нормального распределения нужно использовать квантиль распределения Стьюдента (t - распределения):

$$(ar{x}-rac{s}{\sqrt{n}}t_{1-rac{lpha}{2}}(n-1));(ar{x}+rac{s}{\sqrt{n}}t_{1-rac{lpha}{2}}(n-1))$$

Bootstrap

• Позволяет эмпирически получить доверительный интервал для измеряемой метрики

Bootstrap

- Алгоритм построения бутстрап доверительного интервала:
- 1. Из исходной выборки размера n берем n случайных наблюдений с возвращением
- 2. Для полученной выборки вычисляем интересующую нас статистику
- 3. Повторяем шаги 1-2 много раз (например, 1000)
- 4. Получаем эмпирическое распределение статистики
- 5. Берем квантили этого распределения в качестве границ доверительного интервала
- Преимущества:
 - Не требует предположений о распределении данных
 - Работает для любых статистик (метрик)
 - Прост в реализации

Итоги

- статистика применяется везде, где может применяться
- распределения важная часть работы с данными
- визуализация очень важна
- проверка статистических гипотез очень тонкая процедура
- Статистические тесты позволяют ответить есть ли **статистически значимый результат**
- Ошибки 1-го рода (α) и 2-го рода (β) не хороши для нас, однако в большинстве случаев их не избежать. Катастрофичность каждой из них зависит от конкретной задачи
- p-value позволяет оценить вероятность ошибки и принять решение