Konvergenca ortogonalne iteracije

Trditev 1. Naj bodo lastne vrednost matrikei $A \in \mathbb{R}^{n \times n}$ enake

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_p| > |\lambda_{p+1}| \ge \ldots \ge |\lambda_n|$$

in v_1, \ldots, v_n pripadajoči lastni vektorji. Naj bo Z_i i–ta matrika iz QR iteracije. Potem velja

$$\lim_{i \to \infty} \mathcal{C}(Z_i) = \operatorname{Lin}\{v_1, \dots, v_p\}. \tag{1}$$

Dokaz. Naj bo $A = SDS^{-1}$ diagonalizacija matrike A, kjer je $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ diagonalna matrika, S pa obrnljiva matrika s stolpci, katere stolpci so lastni vektorj v_1, \dots, v_n . Velja

$$C(Z_{i+1}) = C(AZ_i) = C(A^2Z_{i-1}) = \dots = C(A^iZ_0) = C(SD^iS^{-1}Z_0)$$
$$= C\left(\lambda_p^iS \cdot \operatorname{diag}\left(\left(\frac{\lambda_1}{\lambda_i}\right)^p, \dots, \left(\frac{\lambda_{p-1}}{\lambda_p}\right)^i, 1, \left(\frac{\lambda_{p+1}}{\lambda_p}\right)^i, \dots, \left(\frac{\lambda_n}{\lambda_p}\right)^i\right)S^{-1}Z_0\right)$$

Pišimo $S^{-1}Z_0=[V^T,W^T]^T$, kjer je $V\in\mathbb{R}^{p\times n},W\in\mathbb{R}^{(n-p)\times p}$, in $S=[S_1,S_2]$, kjer je $S_1\in\mathbb{R}^{n\times p}$, $S_2\in\mathbb{R}^{n\times (n-p)}$. Velja

$$\mathcal{C}(Z_{i+1}) = \mathcal{C}(\lambda_p^i(S_1V + \widetilde{S}_2W)) \to \mathcal{C}(\lambda_p^iS_1V) = \mathcal{C}(S_1),$$

kjer smo za \rightarrow upoštevali, da gredo število $\left(\frac{\lambda_{p+k}}{\lambda_p}\right)^i \rightarrow 0$. To dokaže (1).

Trditev 2. Naj ima A same realne lastne vrednosti in naj velja

$$|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|.$$

- 1. Če za Z_0 vzamemo I_n , potem zaporedje $Z_i^T A Z_i$ konvergira proti Schurovi formi matrike A, kjer so na diagonali lastne vrednosti v padajočem vrstnem redu.
- 2. Hitrost konvergence j-tega diagonalnega vhoda matrike A je odvisna od

$$\min\left(\frac{|\lambda_j|}{|\lambda_{j-1}}, \frac{|\lambda_{j+1}|}{|\lambda_j|}\right).$$

Dokaz. Za $j=1,\ldots,n-1$ pišimo $Z_i:=[Z_{i1}^{(j)},Z_{i2}^{(j)}]$, kjer ima $Z_{i1}^{(j)}$ j, $Z_{i2}^{(j)}$ pa n-j stolpcev. Velja

$$Z_i^T A Z_i = \begin{pmatrix} (Z_{i1}^{(j)})^T A Z_{i1}^{(j)} & (Z_{i1}^{(j)})^T A Z_{i2}^{(j)} \\ (Z_{i2}^{(j)})^T A Z_{i1}^{(j)} & (Z_{i2}^{(j)})^T A Z_{i2}^{(j)} \end{pmatrix}.$$

Ker po prejšnji trditvi velja, da $C(Z_{i1}^{(j)})$ konvergira proti invariantnemu prostoru matrike A, sledi $\left(Z_{i2}^{(j)}\right)^T A Z_{i1}^{(j)} \to 0$. Ker to velja za vsak j, $Z_i^T A Z_i$ res konvergira proti zgornje trikotni matriki.

Trditev o hitrosti konvergence se da razbrati iz dokaza prejšnje trditve.