1. 1.15, p.85

Using $\Sigma_{\varepsilon}=\{0,1\}$ and N $_1$ recognizing $A_1=1(01)^*$ produces the following NFAs:

The NFA N₁ will accept A₁ however N has the same alphabet and is supposed to recognize $A_1^* = (1(01)^*)^*$, but N will also recognize the string 10, which is not in A_1^* , thus this construction fails to prove closure under the star operation.

2.

Since D_2 is the complement of D_1 , D_2 will accept any strings in Σ which D_1 rejects. So we simply have to switch accept states in D_1 to non-accept states and likewise switch non-accept states to accept states and the resulting DFA will be D_2 . Let $\{a,b\} \in \Sigma$ and be arbitrary elements of the alphabet.

3.

 $(((00)^*(11)) \cup 01)$

4. 1.20, p.86

b.

- Members:
 - o ababab
 - \circ ab
- Not Members:
 - o aaaaaa
 - $\circ \quad bbbbb$

h.

- Members:
 - o aa
 - o bab
- Not Members:
 - \circ b
 - o Ø

5. 1.21, p.86

a.

6.

