

KI Labor - Wintersemester 2022

Reinforcement Learning

Schedule

Datum	Thema	Inhalt	Präsenz Ja	
30. Sept	Allg.	Organisation, Teamfindung, Vorstellung CV		
7. Okt.	Ausfall (DI	MA Techday)		
14. Okt.	CV	Q&A Sessions	Nein	
21. Okt.	CV	Sprintwechsel, Vorstellung Assignment	Ja	
28. Okt.	CV	Q&A Sessions	Nein	
4. Nov.	CV / NLP	Abgabe CV, Vorstellung NLP	Ja	
11. Nov.	NLP	Q&A Sessions	Nein	
18. Nov.	NLP	Sprintwechsel, Vorstellung Assignment	Ja	
25. Nov.	NLP	Q&A Sessions	Nein	
2. Dez.	Ausfall (W	inter Plenum)		
9. Dez.	NLP / RL	Abgabe NLP, Vorstellung RL	Ja	
16. Dez.	RL	Q&A Sessions	Nein	
23. Dez.	RL	Sprintwechsel, Vorstellung Assignment	Ja / Neir	
13. Jan.	RL	Q&A Sessions	Nein	
20. Jan.	n. RL Abgabe RL, Abschluss KI Labor		Ja	

Adrian Westermeier
Machine Learning Engineer
seit 2022

Tim Bossenmaier
Softwareentwickler Datenplattformen
seit 2021

Agenda

> Theorie

- Problemstellung & Lösungsansatz
- Value Functions
- Monte-Carlo und Temporal-Difference Methoden
- Q-Learning

Übungsaufgaben

- Menace Gym (Aufgabe 1)
- CartPole Gym mit Q-Learning (Aufgabe 2)

Reinforcement Learning

(mathematische) Psychologie

Kontroll-Theorie

Künstliche Intelligenz Reinforcement Learning

> Operations Research

Neurowissenschaften

Meilensteine im Reinforcement Learning

"Robots that learn a little like humans do: By trial and error."

Law of effect (nach Thorndike, 1898):

responses that produce a satisfying effect in a particular situation become more likely to occur again in that situation, and responses that produce a discomforting effect become less likely to occur again in that situation.

Menschen lernen Verhalten durch Belohnung und Strafe

Reinforcement Learning

Vergleich mit (un) überwachtem Lernen

(Un)Supervised Learning

Reinforcement Learning

Lernen mit Datensätzen

Lernen durch Ausprobieren

Ziel: Loss minimieren

Ziel: Reward maximieren

Interaktion mit Umwelt nicht Teil des Systems

Interaktion mit Umwelt ist zentraler Teil des Systems

Getrennte Trainings- & Durchführungsphase

Kontinuierliches Lernen / Exploration vs. Exploitation

Beispiel: Tic-Tac-Toe

- 9 Felder
- je 3 mögliche Belegungen

⇒ # Zustände
$$\leq$$
 3^9 = 19.683
Spiele \leq 9! = 362.880

Lösbar, aber aufwendige Programmierung

Matchbox Educable Naughts And Crosses Engine

Fotos: James Bridle, http://jamesbridle.com/works/menace

- Eine Schachtel pro Spielzustand
- Perlen in Schachteln für mögliche Spielzüge
- Spielzug bestimmen = Perle aus Schachtel ziehen

Nach dem Spiel: Lernen

Gewonnen

je 2 Perlen gleicher Farbe in Schachtel zurücklegen

Unentschieden

Perlen zurücklegen

Verloren

Perlen entfernen

MENACE ist Reinforcement Learning

MENACE

Reinforcement Learning

Regeln, Gegner, Spielfeld

Umwelt

implizit (z.T. Zustand)

Schachtel

Zustand

 $s_t \in \mathcal{S}$

Perlen/Spielzüge

Aktionen $a_t \in \mathcal{A}$

Perlen zurück/weg legen

Reward $r: \mathcal{S} imes \mathcal{A} \mapsto \mathbb{R}$

0.1.9

Zug/Spielrunde

Zeit/Episode $t=0,1,2,\ldots$

Gridworld

Buchhaltung

Ziel: maximiere gesammelte Rewards

Zukünftiger Reward

$$\underline{G_t} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$
Return ab $= \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ $0 \le \underline{\gamma} \le 1$
Zeitpunkt t Discount Factor

Wie die nächste Aktion auswählen?

$$a=\pi(s)$$

Modell für Zustandsübergänge

Modell für Statusübergang: $P(s_{t+1}|a_t, s_t, \dots, a_0, s_0)$

... und Reward: $P(s_{t+1}, R_t | a_t, s_t, \dots, R_0, a_0, s_0)$

Aktionen ändern die Umwelt Transition probabilities $P(s_{t+1}|a_t,s_t)$

Beispiel: Geradeaus gehen

 $P(s_{t+1}|a_t,s_t)$ eher groß

 $P(s_{t+1}|a_t,s_t)$ eher klein

Transition probabilities $P(s_{t+1}|a_t,s_t)$

tatsächlicher Zustandsübergang

Markov-Annahme

Ein stochastischer Prozess hat die *Markov* Eigenschaft, wenn der aktuelle Zustand nur vom vorherigen Zustand abhängt:

$$P(x_t|x_{t-1},...,x_0) = P(x_t|x_{t-1})$$

Zustandsübergangs-und-Reward-Modell:

$$P(s_{t+1}, R_t | a_t, s_t, \dots, R_0, a_0, s_0) = P(s_{t+1}, R_t | a_t, s_t)$$

Markov Decision Process (MDP)

Formale Beschreibung der Interaktion im RL

States $s \in \mathcal{S}$ Markov-Annahme: Actions $a \in \mathcal{A}$ Zustandsübergang und Reward hängen nur von vorherigen Time t Zustand und Aktion ab Model $P(s_{t+1}, R_t | a_t, s_t)$ Reward r(s, a)

Policy π

Eine Policy definiert das Agenten-Verhalten für alle Zustände s

Deterministisch: $a = \pi(s)$

Stochastisch: $a \sim P_{\pi}(a|s)$

Wie findet ein Agent eine gute Policy?

Reminder: Agent will Return G_t maximieren

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Kurzsichtiger Agent:

$$\gamma := 0 \leadsto G_t = R_{t+1} = r(s_{t+1}, a_{t+1})$$
$$\Rightarrow \pi(s_t) = \arg\max_{a} r(s_{t+1}, a)$$

Kurzsichtiger Agent

... wählt eine Aktion, die den nächsten Reward maximiert

State s

Rewards

-1	-1	-1	-1	-1
-1	5 6	-1	-1	+1
-1	-1	-1	-1	-1

Bessere Strategie

Wähle Policy π, die den **erwarteten Return** maximiert:

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi}[G_t]$$

$$G_t = \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, \pi(s_{t+k})) \qquad \boxed{\mathbb{E}[x] = \sum_{x \in \mathcal{X}} P(x) \cdot x}$$

$$\mathbb{E}[x] = \sum_{x \in \mathcal{X}} P(x) \cdot x$$

Value Functions

Welcher Zustand ist besser?

State 1

State 2

State-value function

Welcher State verspricht größten Return?

State s und Policy π

State-value function $v_{\pi}(s)$

-7	-6	-5	-4	-1
-6	-5	-4	-3	+1
-5	-4	-3	-2	-1

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1})|S_t = s]$$

State-Action-value function $q_{\pi}(s,a)$

Welches State-Action Paar verspricht größten Return?

State s und Policy π

Action-value function $q_{\pi}(s,a)$

$$q_{\pi}(\underline{s},\underline{a}) = \mathbb{E}_{\pi}[G_t|S_t = \underline{s}, \underline{A_t} = \underline{a}]$$

= $\mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1}, A_{t+1})|S_t = \underline{s}, A_t = \underline{a}]$

Action-value function $q_{\pi}(s,a)$

Action-value function $q_{\pi}(s,a)$

	-7 -7 -5		
-8 -7 -4	-7 -5 -6	-4 -5 -4	Х
	-5 -7 -6		

Q-Table

	•	4	1	•
S ₁₂	-6	-7	-7	-5
S ₂₁	-4	-8	-7	-7
S ₂₂	-3	-5	-7	-6
S ₂₃	-2	-5	-4	-4
S ₃₂	-5	-7	-5	-6

Bellman Equations

Wie hängen Zustände, Rewards und Folgezustände zusammen?

$$\underline{v_{\pi}(s)} = \sum_{a} \pi(a \mid s) \sum_{s',r} p\left(s',r \mid s,a\right) \left[r + \gamma \underline{v_{\pi}\left(s'\right)}\right]$$
 Aktueller Zustand
$$\underline{q_{\pi}(s,a)} = \sum_{s',r} p(s',r | s,a) \left(r(s,a) + \gamma \cdot \sum_{\alpha'} \pi\left(a' \mid s'\right) \cdot \underline{q_{\pi}\left(s',a'\right)}\right)$$

Optimal Policies π*

-5	-4	-3	-2	-1
-4	-3	-2	-1	Х
-5	-4	-3	-2	-1

Optimale Policy ist besser alle andere Policies:

$$\pi^* \geq \pi, \forall \pi$$

Was bedeutet besser?

$$\pi \geq \pi'$$
, if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Bellman Equations für optimale Policies

Iterative Policy Improvement

Policy Evaluation

Updaten von state(-action) values über Bellman Equations

Policy Improvement

 $\pi' \leftarrow$ greedy w.r.t. state-action values $\pi \leftarrow \pi'$

Exploitation

Maximierung des Rewards gg. bekannter Information ("epsilon-greedy")

Exploration

Erschließung neuer, unbekannter Bereiche

Iterative Policy Improvement

```
1. Initialization
   V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in \mathbb{S}
2. Policy Evaluation
   Repeat
         \Delta \leftarrow 0
         For each s \in S:
              v \leftarrow V(s)
              V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]
              \Delta \leftarrow \max(\Delta, |v - V(s)|)
   until \Delta < \theta (a small positive number)
3. Policy Improvement
   policy-stable \leftarrow true
   For each s \in S:
        a \leftarrow \pi(s)
        \pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        If a \neq \pi(s), then policy-stable \leftarrow false
   If policy-stable, then stop and return V and \pi; else go to 2
```

Bellman Equations

Monte Carlo Methods

Policy π

Betrachte Return von kompletten Episoden

Episode 1

Episode 2

Monte Carlo Control

Control Problem: Approximiere die beste Policy (ohne Wissen über Dynamik der Umgebung!)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$
alternative
Schätzung
Schätzung

Temporal-Difference Methods

Monte Carlo Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (G_t - Q(S_t, A_t))$$
alternative
Schätzung
aktuelle
Schätzung

Temporal-Difference Control (SARSA)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$
alternative
Schätzung
aktuelle
Schätzung

Q-Learning

Off-Policy TD-Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

alternative Schätzung

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{\underline{t+1}} + \gamma \max_a Q(S_{\underline{t+1}}, a) - Q(S_t, A_t))$$

alternative Schätzung

Q-Learning

Off-Policy TD-Control

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
      S \leftarrow S':
   until S is terminal
```


Aufgaben

OpenAl Gym

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

OpenAl Gym

```
import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range (100):
        env.render()
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()
```


Aufgabe 1: Einstieg in RL mit MENACE

Jupyter Lab Notebook

Zustands- und Aktionsräume

Wie unterscheiden sich diese Environments?

Zustände & Aktionen diskret

Zustände kontinuierlich & Aktionen diskret

Zustände & Aktionen kontinuierlich

Aufgabe 2: CartPole Gym mit Q-Learning

Jupyter Lab Notebook

Literatur

- Kostenlose "Standard"-Lektüre für den Einstieg in RL: Reinforcement Learning: An Introduction (Sutton and Barto), siehe http://incompleteideas.net/book/RLbook2018.pdf
- Ausführlich und gut erklärter Einstieg in RL (Video-Lektionen): UCL Course on RL (David Silver, Google DeepMind), siehe https://www.davidsilver.uk/teaching/
- Algorithms in Reinforcement Learning von Csaba Szepesvári, siehe https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Blog mit Videos zum Einstieg in RL und Q-Learning, DQN und vieles mehr: Reinforcement Learning – Introducing Goal Oriented Intelligence, siehe https://deeplizard.com/learn/video/nyjbcRQ-uQ8

