

InterLACE Worksheet

(Interactive Learning and Collaboration Environment)

Samuel Heilbron¹; John Spiva¹; Samantha Welch¹

Sponsors: Ethan Danahy, Research Assistant Professor^{1,2}; Ean Wong, Education Technology Specialist²

¹ Tufts University Department of Computer Science, ² Center for Engineering Education and Outreach

Collaborative

Negotiate and share relevant information

Correlation between collaborative, design-based, inquiry teaching and strong student conceptual gains

Real world contexts used to scaffold science learning

Inquiry

Teacher guides students through process of exploration

Why are existing methods of enhancing classroom collaboration lacking?

Misconception: Lack of resources to integrate this type of learning

Problem:

Resources not effectively used to augment learning/teaching

Why don't iPads solve this issue?

TWO PILLARS OF THE WORKSHEET PROBLEM

Worksheets are great! They are tactile, require no training, and promote freedom of expression. However:

- O1 Worksheets do not promote collaboration between students
- Teachers do not have a definitive method for analyzing worksheet responses and classroom trends

Are others working on this?

The InterLACE Worksheet is a low cost solution which promotes collaboration, while minimally disrupting the classroom workflow (more intuitive)

InterLACE Worksheet Student Flow

Student fills out worksheet

Here is an example of an ideal student workflow using the InterLACE Worksheet.

Student's worksheet is scanned

Student's responses are processed

3

Worksheet results are displayed on website

Student updates responses and tags peer who helped

Student inspired by peer response

Students can easily see ideas and responses of peers

InterLACE Worksheet Components

Image Processing Information Processing

Data Visualization

Input: Set of raw images

Output: Data extracted from images

Input: Data from images

Output: Data analysis tools

Input: Tools for data analysis

Output: Visualization of analysis

Image Processing Problem

The challenging part about handwritten characters, especially that of children is that the data is:

- Highly variant (over time and between different users)
- Poorly spaced and oriented
- May contain connected lines
- Often misspelled

OCR (Optical Character Recognition) or "Text in the WIld"

Custom solution or API

Image Processing Solution

Text Localization

- Static and adaptive thresholding
- Gaussian blur
- Numbers: Image contours
- Words: Sliding window
- Throw out regions of interest that are perceived to be noise (too small)

Text Recognition

- Numbers: SVM of HOG
- Words: CNN trained with MatLab models from reference paper
- Microsoft Cognitive Services API

Refined Text Recognition

- For the best guess of a word w, given a dictionary D containing words d, output the most similar d in D to w
- Given a list of words and a dictionary, map each word to the best guess in the dictionary, ensuring that each word has a unique output

Data Analysis

