# Data-Driven Models for Discrete Hedging Problem

Ke Nian Supervisors: Prof. Yuying Li and Prof. Thomas. F. Coleman

David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, Canada

January 22, 2019

# Agenda



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Approach

Motivation

Recurrent Neural Network

## David R. Cheriton School of Computer Science University of Waterloo

## Introduction

## Delta Hedging Variants

Stochastic Volatility Model Minimum Variance Approach Local Volatility Model

## Data Driven Approach

Indirect Data-Driven Approach Direct Data-Driven Approach Real Data Experiments

## Sequential Learning Framework

Motivation Recurrent Neural Network Encoder-Decoder Model

## Summary

# Practitioner Black-Scholes (BS) Delta Hedging



▶ BS model:

$$\frac{dS}{S} = \mu dt + \sigma dZ$$

 $\sigma$ : Constant

► Implied Volatility

$$\sigma_{imp} = V_{BS}^{-1}(V_{mkt},.)$$

 $V_{mkt}$ : market option price  $V_{BS}^{-1}$  : inverse of BS pricing function

▶ BS Delta:

$$\delta_{BS} = \frac{\partial V_{BS}}{\partial S}$$

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

## Introduction

## Delta Hedging

Stochastic Volatility Mode

Approach Local Volatility Model

## Local volucity Model

## Indirect Data-Driven

Approach
Direct Data-Driven
Approach

Real Data Experiments

### Sequential Lear Framework

otivation

Recurrent Neural Network Encoder-Decoder Model

Summary

## Problem with Black-Scholes Delta



Data-Driven Models for Discrete Hedging Problem

### (4)Intr

## Delta Hedgin

Variants

Minimum Variance Approach

Local Volatility Mode

### Data Driven Appr

## Approach

Direct Data-Driven Approach

Real Data Experime

## equential Learn

### .....

tivation

Recurrent Neural Network

una na a ra c

Ke Nian

## Problem with the traditional Black-Scholes delta:

- ► Market violates BS assumption
- ▶ Dependence of volatility on underlying asset price

## Variants of Hedging Strategy:

- ► Stochastic Volatility Model
- ► Local Volatility Model
- ► Minimum Variance Approach
- ► Indirect Data-Driven Approach
- Direct Data-Driven Approach

# Stochastic Volatility Model



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Stochastic Volatility Model

Minimum Variance

Approach

Recurrent Neural Network

### David R. Cheriton School of Computer Science University of Waterloo

# Stochastic volatility models:

Heston Model

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t$$
$$dv_t = \kappa (\overline{v} - v_t) dt + \eta \sqrt{v_t} dZ_t$$
$$dZ_t dW_t = \rho dt$$

Many stochastic volatility models do not have analytical formula for pricing and hedging function.

# Minimum Variance Approach



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introductio

Delta Hedging

Stochastic Volatility Model

Minimum Variance Approach

Local Volatility Model

## Data Driven Approac

Indirect Data-Driven Approach

Direct Data-Driven Approach

## Sequential Learning

## .....

Recurrent Neural Network

Encoder-Decoder Model

Summary

Considering the the dependence of imply volatility on asset price:

► The Minimum Variance (MV) delta:

$$\delta_{MV} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma_{imp}} \frac{\partial \sigma_{imp}}{\partial S}$$

► The authors <sup>1</sup>propose:

$$\frac{\partial \sigma_{imp}}{\partial S} = \frac{a + b\delta_{BS} + c\delta_{BS}^2}{S\sqrt{T}} \tag{1}$$

 $a,\,b$  and c are the parameter to be fitted using market data.

<sup>&</sup>lt;sup>1</sup>Hull, J. and White, A., "Optimal delta hedging for options." Journal of Banking and Finance 82 (2017): 180-190.

# Local Volatility Model

function of S and t.



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Local Volatility Model

Approach

Approach

Recurrent Neural Network

David R. Cheriton School of Computer Science

University of Waterloo

<sup>2</sup>Coleman, T.F., Kim, Y., Li, Y. and Verma, A., 'Dynamic hedging with a deterministic local volatility function model,'

The local volatility function (LVF) 2: volatility is a deterministic

 $\delta_{MV} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma_{imp}} \frac{\partial \sigma_{imp}}{\partial S}$ 

Local volatility model can also be used to calculate the  $\frac{\partial \sigma_{imp}}{\partial S}$ .

Journal of risk, 4,1 (2001):63-89

# Problem with Parametric Approach



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

### Introduction

## Delta Hedging

Variants

Minimum Variance

Approach

Local Volatility Mode

### Data Driven Approa

## Indirect Data-Driven

Approach
Direct Data-Driven

Approach Real Data Experiments

## Real Data Experiment

ntivation

Recurrent Neural Network

=ncoder-Decode

Summary

## Parametric approaches:

- ► Model mis-specification.
- ► Sub-optimal for discrete hedging problems.

## Data-driven approaches:.

- ightharpoonup Minimum assumptions on S.
- Model is determined by market data.

# Indirect Data-driven Approach



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mo

Minimum Variance Approach

Local volatility Model

## Indirect Data-Driven

Indirect Data-Driven Approach

Approach

Real Data Experiments

### Sequential Learn Framework

otivation

Recurrent Neural Network
Encoder-Decoder Model

ummarv

The indirect data-driven approach <sup>3</sup>can be summarized as following:

- ▶ Let X be the features from market.
  - ► Asset price S
  - ► Strike Price *K*
  - ▶ Time to expiration T-t
- $\blacktriangleright$  Determine the data driven pricing function V(X) using regression model.
- Compute

$$\delta_{ID} = \frac{\partial V(X)}{\partial S}$$

<sup>&</sup>lt;sup>3</sup>Hutchinson, J.M., Lo, A.W. and Poggio, T., "A nonparametric approach to pricing and hedging derivative securities via learning networks." The Journal of Finance 49.3 (1994): 851-889.

# Problem with Indirect Data-Driven Approach



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging Variants

Stochastic Volatility Mode

Minimum Variance Approach

\_\_\_\_

Approach

Direct Data-Driven

Real Data Experiment

Real Data Experiments

equential Learning

otivation

Recurrent Neural Network

ummarv

Problem with the Indirect Data-Driven Approach:

- ► Unnecessary intermediate procedure.
- Sub-optimal for discrete hedging.
- ▶ Model parameters depend on the asset price.

Direct data-driven approach can be more useful in practice.

- ► Customized hedging position function.
- Directly compute the hedging position.

# Direct Data-driven Approach



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mo

Minimum Variance Approach

Approach

Direct Data-Driven

Real Data Experiments

Sequential Learning

otivation

Recurrent Neural Network

ummarv

The direct data-driven approach is

$$\min_{f} \left[ \frac{1}{N} \sum_{i=1}^{N} (\Delta V_i - \Delta S_i f(X_i))^2 \right]$$

 $\Delta\,V_i$  : the change of option value in data instance i  $\Delta S_i$  : the change of asset price in data instance i

# Real Data Hedging Experiments



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Model

Approach

\_\_\_\_

Indirect Data-Driven

Approach
Direct Data-Driven

Approach

12) Real Data Experiments

Sequential Learning

Motivation

Recurrent Neural Network

uma ma a mir

▶ Data: S&P 500 index option from Jan 2007 and Aug 2015

Model Calibration:

► SABR: daily calibration

▶ LVF:  $\frac{\partial \sigma_{imp}}{\partial S}$  from implied volatility surface

MV: Use a 36 months time window to train

 DKL<sub>SPL</sub>: Use a 36 months time window to train. Models are separately calibrated for different Black-Sholes delta range.

# Evaluation Criteria: Local Risk



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mod

Minimum Variance Approach

D-t- D-:--- A-----

Data Driven Approach

Approach
Direct Data-Driven
Approach

Real Data Experiments

Sequential Learning

Motivation

Recurrent Neural Network

ummarv

The percentage increase in the effectiveness over the BS hedging:

 $Gain = 1 - \frac{SSE[\Delta V_i - \Delta S_i \delta^i]}{SSE[\Delta V_i - \Delta S_i \delta^i_{RS}]}$ 

SSE: sum of squared errors  $\delta$ : hedging position computed from different models  $\delta_{BS}$ : BS delta

# S&P 500 Call Options

|         |          |         |        | $\mathrm{DKL}_{SP}$ | L (%)            |
|---------|----------|---------|--------|---------------------|------------------|
| Delta   | SABR (%) | LVF (%) | MV (%) | Leave-O             | $ne	ext{-}Out^1$ |
|         |          |         |        | Traded              | All              |
| 0.1     | 42.1     | 39.4    | 42.6   | 44.1                | 44.4             |
| 0.2     | 35.8     | 33.4    | 36.2   | 37.8                | 38.1             |
| 0.3     | 31.1     | 29.4    | 30.3   | 33.1                | 33.6             |
| 0.4     | 28.5     | 26.3    | 26.7   | 30.9                | 31.3             |
| 0.5     | 27.1     | 24.9    | 25.5   | 30.0                | 30.4             |
| 0.6     | 25.7     | 25.2    | 25.2   | 29.3                | 29.8             |
| 0.7     | 25.4     | 24.7    | 25.8   | 28.4                | 30.2             |
| 8.0     | 24.1     | 23.5    | 25.4   | 22.5                | 28.0             |
| 0.9     | 16.6     | 17.0    | 16.9   | 8.1                 | 12.7             |
| Overall | 25.7     | 24.6    | 25.5   | 31.3                | 26.8             |

Table: S&P 500 Call Option Daily Hedging: bold entry indicating best Gain



### Data-Driven Models for Discrete Hedging Problem Ke Nian

Minimum Variance

Annroach Approach

## Real Data Experiments

Recurrent Neural Network

For each month, the penalties for models are determined by leaveone-out cross validation.

# Data-Driven Kernel Learning Framework



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

15 Sequential Learning

Framework

Recurrent Neural Network

Data-Driven Kernel Learning Framework <sup>4</sup>suffers from several drawbacks:

- Computationally expensive
- ▶ I imited number of variables
- No feature selection
- Not suitable for time series

<sup>&</sup>lt;sup>4</sup>Nian, Ke, Thomas F. Coleman, and Yuying Li. "Learning minimum variance discrete hedging directly from the market." Quantitative Finance (2018): 1-14.

# Volatility Clustering and Financial Time Series



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode
Minimum Variance

Local Volatility Model

Data Driven Appro

Indirect Data-Driven Approach

Approach

Real Data Experimen

Seguential Learnir

amework

Motivation

Recurrent Neural Network

ımməri/

David R. Cheriton School of Computer Science, University of Waterloo

Sequential learning framework may further improve the performance:

- ▶ Volatility clustering observed in the financial market.
- Autocorrelation between data instances near in time.
- ▶ Dependence of option pricing function on the past history of the underlying has been shown in GARCH models <sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>Heston, Steven L., and Saikat Nandi "A closed-form GARCH option valuation model." The review of financial studies 13.3 (2000): 585-625.

# Recurrent Neural Network (1)





Ke Nian

### Introduction

Delta Hedging

Stochastic Volatility Mo

Approach

## Data Dilata Assessat

Indirect Data-Driven Approach Direct Data-Driven Approach

Real Data Experiments

## Framework

17 Recurrent Neural Network

17 Recurrent Neural Network

Summan

David R. Cheriton School of Computer Science, University of Waterloo



Figure: Neural Network

Figure: Recurrent Neural Network

# Recurrent Neural Network (2)





In each RNN cell:

$$\mathbf{h}_{t} = f_{act}(\boldsymbol{W}_{hx}\mathbf{x}_{t} + \boldsymbol{W}_{hh}\mathbf{h}_{t-1} + b_{h})$$
$$\hat{y}_{t} = f_{out}(\boldsymbol{W}_{yh}\mathbf{h}_{t} + b_{y})$$

- ► The original RNN model suffers from the problem of vanishing gradients.
- ► Gated Recurrent Unit (GRU) <sup>6</sup> model is introduced to combat vanishing gradients through a gating mechanism.

Ke Nian

### Introduction

Delta Hedging

Variants

Minimum Variance Approach

Local Volatility Model

### B . B . . . .

Indirect Data-Driven Approach

Approach Real Data Experiments

## equential Learning

otivation

## Recurrent Neural Network

.....

Data-Driven Models for Discrete Hedging Problem

<sup>&</sup>lt;sup>6</sup>Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

# Gated Recurrent Unit (GRU) Model





Ke Nian

### Introduction

## Delta Hedging

Stochastic Volatility M Minimum Variance

Local Volatility Model

## Data Driven Approa

Indirect Data-Driven Approach

Approach Real Data Experiments

## Sequential Learnin

## Motivation

## 9 Recurrent Neural Network

Summary



## **Features**



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

## Delta Hedging

Variants

Minimum Variance Approach

Local Volatility Model

## Data Driven Appro

Indirect Data-Driven Approach

Direct Data-Driven Approach

Real Data Experiments

# Sequential Learnin

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Encoder-Decoder IVI

## Summary

When outputting the hedging position for a single data instance on a specific date, we have gathered some local features  $\mathbf{x}_L \in \mathbb{R}^d$  and some sequential features  $\mathbf{X} \in \mathbb{R}^{D \times N}$ :

$$\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_N}] = \begin{bmatrix} (\mathbf{x^1})^\top \\ (\mathbf{x^2})^\top \\ \vdots \\ (\mathbf{x^D})^\top \end{bmatrix} = \begin{bmatrix} x_1^1 & \dots & x_N^1 \\ \vdots & \dots & \vdots \\ x_1^D & \dots & x_N^D \end{bmatrix}$$

## Local Features



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

### Introduction

## Delta Hedging

Stochastic Volatility M

Minimum Variance Approach

Local Volatility Mod

### Data Driven Appro

Approach

Approach

Real Data Experim

# Sequential Learning

Motivation

Recurrent Neural Network

### Foreder Donadas Model

Encoder-Decoder Model

### ummary

- Local features  $x_L$  for the current day contains:
  - 1. Moneyness S/K.
  - 2. BS delta  $\delta_{BS}$ .
  - 3. Time to expiry  $\tau$ .
  - 4. Index close price S .
  - 5. Option bid price  $V_{bid}$ .
  - 6. Option offer price  $V_{offer}$ .
  - 7. Implied volatility  $\sigma_{imp}$ .
  - 8. BS gamma  $\gamma_{BS}$ .
  - 9. BS vega  $vega_{BS}$ .
- 10. Minimum variance Delta  $\delta_{MV}$

# Sequential Features



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Sequential features  $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]$  recording the past history contains:

- 1. Option middle price  $V_{mid}$ .
- 2. Implied  $\sigma_{imp}$ .
- 3. BS delta  $\delta_{BS}$ .
- **4**. BS gamma  $\gamma$ .
- 5. BS vega  $vega_{BS}$ .
- **6**. Moneyness S/K.

Minimum Variance

Approach

Recurrent Neural Network

Encoder-Decoder Model

# Feature Weighting (1)



- ▶ Unnormalized feature weighting vector  $LW \in \mathbb{R}^d$  for the raw local features  $\mathbf{x}_L \in \mathbb{R}^d$ .
- ► Normalized feature weight:

$$\omega_i = \frac{exp(LW_i)}{\sum_{j=1}^d exp(LW_j)}$$

Thus:

$$\sum_{i=1}^{d} \omega_i = 1$$

Weighted local feature vector:

$$\hat{\mathbf{x}}_L = [\omega_1 \mathbf{x}_L^1, \dots, \omega_d \mathbf{x}_L^d]$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode

Approach

\_\_\_\_\_

Indirect Data-Driven

Approach
Direct Data-Driven

Approach
Real Data Experiments

equential Learning

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Encoder Decoder inc

Summary

# Feature Weighting (2)



▶ Unnormalized the feature weighting vector  $SW \in \mathbb{R}^D$  for the sequential features  $\mathbf{X} \in \mathbb{R}^{D \times N}$ .

$$SW = [SW_1, \dots, SW_D]$$

► Normalized feature weight:

$$\alpha_i = \frac{exp(SW_i)}{\sum_{j=1}^{D} exp(SW_j)}$$

Thus:

$$\sum_{i=1}^{D} \alpha_i = 1$$

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance

Approach

Local Volatility Model

Data Drivon Approac

Indirect Data-Driven

Approach

Approach

Real Data Experiments

ramework Activation

Recurrent Neural Network

Encoder-Decoder Model

Summary

# Feature Weighting (2)



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Approach

Recurrent Neural Network

Encoder-Decoder Model

Recall that  $\mathbf{x_t} \in \mathbb{R}^D$  is a vector recording the D features at a specific time step t in the input sequential feature X and  $\mathbf{x}^{\mathbf{k}} \in \mathbb{R}^N$  is a vector recording the k-th sequential feature. The weighted input sequences X is:

$$\hat{\mathbf{X}} = [\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2, \dots, \hat{\mathbf{x}}_N] = \begin{bmatrix} (\hat{\mathbf{x}}^1)^\top = \alpha_1(\mathbf{x}^1)^\top \\ (\hat{\mathbf{x}}^2)^\top = \alpha_2(\mathbf{x}^2)^\top \\ & \vdots \\ (\hat{\mathbf{x}}^D)^\top = \alpha_D(\mathbf{x}^D)^\top \end{bmatrix}$$

# Encoder-Decoder Model





Ke Nian

Approach

Approach

Direct Data-Driven Approach

Real Data Experiments

Recurrent Neural Network

Encoder-Decoder Model



# Robust Losses and Output Gate (1)



▶ Hedging Loss for BS delta of a data instance *i* 

$$BSloss_i = \Delta V_i - \Delta S_i \delta_{BS}^i$$

► Hedging Loss for delta from the proposed model of a data instance *i* 

$$loss_i = \Delta V_i - \Delta S_i \delta_M^i$$

- ▶ Mean Squared Loss: $L_S = \frac{1}{m} \sum_{i=1}^{m} loss_i^2$
- Modified Huber loss:

$$\hat{L}(loss_i) = \begin{cases} \frac{1}{2}loss_i^2, & \text{if } |loss_i| \leq |BSloss_i| \\ |BSloss_i|(|loss_i| - \frac{1}{2}|BSloss_i|), & \text{otherwise} \end{cases}$$

$$L_H = \frac{1}{m} \sum_{i=1}^{m} L(loss_i)$$

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

### Introductio

## Delta Hedging

Stochastic Volatility Model

Approach

## \_\_\_\_

## Data Driven Approa

Approach
Direct Data-Driven

Approach

Real Data Experiment

## Sequential Learnin

Motivation

Recurrent Neural Network

## Encoder-Decoder Model

Summary

# Robust Losses and Output Gate (2)



The candidate output is computed by a single layer feedforward network:

$$\widehat{\delta_M} = \sigma(\mathbf{v}_{out}^T \tanh(\mathbf{U}^{out} \widehat{\mathbf{h}_E} + \mathbf{W}^{out} \hat{\mathbf{x}_L} + \mathbf{b}^{out}))$$
(2)

The output gate value is computed by another single layer feedforward network:

$$o = \sigma(\mathbf{v}_{Gate}^T \ tanh(\mathbf{\textit{U}}^{Gate} \widehat{\mathbf{h}_{\mathbf{E}}} + \mathbf{\textit{W}}^{Gate} \hat{\mathbf{x}_{L}} + \mathbf{b}^{Gate}))$$

The final output from the model is :

$$\delta_M = \widehat{\delta_M} \times o + \delta_{BS} \times (1 - o)$$



Output Gate

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroductio

Delta Hedging

Stochastic Volatility Mode Minimum Variance

Approach Local Volatility Model

Data Driven Approach

Indirect Data-Driven Approach

Direct Data-Driven

Real Data Experiments

### equential Learni ramework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Summary

# Robust Losses and Output Gate (3)



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Recurrent Neural Network

Encoder-Decoder Model

The intuitions for the robust losses and output gate are:

- We focus more on the data instances where  $|loss_i| \leq |BSloss_i|$  can be easily achieved.
- ightharpoonup When  $|loss_i| > |BSloss_i|$ , we penalize the difference between  $|loss_i|$  and  $|BSloss_i|$  and force the outputs of these data instances to be closer to the associated  $\delta_{BS}$  .
- ▶ The output gate enables the model to directly output  $\delta_{BS}$

# Training and Regularization



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Approach

Recurrent Neural Network

Encoder-Decoder Model

- ▶ Trust region method is used as the optimization technique.
- Early stopping is used as the regularization technique.
- A small portion of the training set is used as the validation set to determine when to stop the training procedure.
- ▶ The model is updated on daily basis.

# Call Option Daily Hedging



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance Approach

Annroach

Approach

Recurrent Neural Network

Encoder-Decoder Model



# Put Option Daily Hedging



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introductio

Delta Hedging

Variants
Stochastic Volatility Model

Minimum Variance Approach

Local Volatility Model

Data Driven Appro

Indirect Data-Driven Approach

Direct Data-Driven Approach

Real Data Experiments

Sequential Learning

Motivation

Recurrent Neural Networ

Encoder-Decoder Model

Summary



|         |        |         |        | Data-Driven Model |       |        |      |
|---------|--------|---------|--------|-------------------|-------|--------|------|
| Delta   | MV (%) | SABR(%) | LVF(%) | $DKL_{SP}$        | L (%) | DRNN   | (%)  |
|         |        |         |        | Traded            | All   | Traded | All  |
| -0.9    | 15.1   | 11.2    | -7.4   | 8.6               | 13.6  | 15.1   | 17.2 |
| -0.8    | 18.7   | 19.6    | 6.8    | 6.5               | 16.7  | 23.2   | 28.5 |
| -0.7    | 20.3   | 17.7    | 9.1    | 10.6              | 19.8  | 28.5   | 32.8 |
| -0.6    | 20.4   | 16.7    | 9.2    | 14.9              | 21.0  | 28.3   | 33.9 |
| -0.5    | 22.1   | 16.7    | 10.8   | 22.5              | 23.1  | 29.2   | 34.5 |
| -0.4    | 23.8   | 17.7    | 12.0   | 24.2              | 25.2  | 29.9   | 34.7 |
| -0.4    | 27.1   | 21.7    | 16.8   | 27.7              | 28.3  | 30.6   | 33.6 |
| -0.2    | 29.6   | 25.8    | 20.6   | 30.1              | 30.8  | 25.4   | 29.9 |
| -0.1    | 27.5   | 26.9    | 17.7   | 29.1              | 31.2  | 18.7   | 21.4 |
| Overall | 22.5   | 19.0    | 10.2   | 23.4              | 23.2  | 26.2   | 29.7 |

# Call Option Weekly Hedging and Monthly Hedging



|         | Data-Driven Model |      |         |      |  |  |
|---------|-------------------|------|---------|------|--|--|
| Delta   | DKLSF             | L(%) | DRNN(%) |      |  |  |
| Deita   | Traded            | All  | Traded  | All  |  |  |
| 0.1     | 38.9              | 38.3 | 47.8    | 45.6 |  |  |
| 0.2     | 29.0              | 26.9 | 48.5    | 46.0 |  |  |
| 0.3     | 23.5              | 25.3 | 48.5    | 46.6 |  |  |
| 0.4     | 20.8              | 24.3 | 45.9    | 45.4 |  |  |
| 0.5     | 19.9              | 22.8 | 46.6    | 45.0 |  |  |
| 0.6     | 17.3              | 19.5 | 44.8    | 43.1 |  |  |
| 0.7     | 16.8              | 17.7 | 43.9    | 42.4 |  |  |
| 8.0     | 12.5              | 12.3 | 37.7    | 39.0 |  |  |
| 0.9     | 6.2               | 5.1  | 16.4    | 29.1 |  |  |
| Overall | 20.2              | 17.1 | 43.7    | 40.5 |  |  |

|         | Da                | Data-Driven Model |        |      |  |  |  |
|---------|-------------------|-------------------|--------|------|--|--|--|
| Delta   | DKL <sub>SP</sub> | L (%)             | DRNN   | (%)  |  |  |  |
| Deita   | Traded            | All               | Traded | All  |  |  |  |
| 0.1     | 22.7              | 24.8              | 53.9   | 39.4 |  |  |  |
| 0.2     | 23.5              | 25.5              | 51.7   | 48.3 |  |  |  |
| 0.3     | 24.0              | 24.6              | 50.2   | 49.1 |  |  |  |
| 0.4     | 21.0              | 20.7              | 47.8   | 48.3 |  |  |  |
| 0.5     | 13.5              | 12.7              | 44.5   | 47.6 |  |  |  |
| 0.6     | 14.3              | 13.5              | 44.6   | 47.4 |  |  |  |
| 0.7     | 6.1               | 7.0               | 35.3   | 42.9 |  |  |  |
| 0.8     | 5.3               | 4.1               | 24.8   | 34.1 |  |  |  |
| 0.9     | 4.1               | 2.3               | 10.5   | 19.9 |  |  |  |
| Overall | 16.3              | 12.5              | 44.5   | 42.3 |  |  |  |

Table: Weekly(Left) and Monthly(Right)

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility M

Approach

Data Drivon Appro-

Indirect Data-Driven Approach Direct Data-Driven

Approach

Sequential Learn

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Summary

# Put Option Weekly Hedging and Monthly Hedging



| Data-Driven Models   |
|----------------------|
| for Discrete Hedging |
| Problem              |

Ke Nian

Minimum Variance

Approach

Encoder-Decoder Model

|         | Da                     | ata-Driv | ven Mode | I    |
|---------|------------------------|----------|----------|------|
| Delta   | DKL <sub>SPL</sub> (%) |          | DRNN     | J(%) |
| Delta   | Traded                 | All      | Traded   | All  |
| -0.9    | 10.1                   | 7.3      | 34.7     | 35.7 |
| -0.8    | 18.3                   | 11.5     | 44.2     | 45.1 |
| -0.7    | 20.2                   | 16.3     | 49.6     | 47.3 |
| -0.6    | 20.8                   | 18.4     | 51.3     | 49.6 |
| -0.5    | 22.4                   | 21.2     | 53.5     | 51.0 |
| -0.4    | 21.0                   | 23.9     | 53.2     | 51.2 |
| -0.3    | 22.2                   | 26.1     | 51.1     | 51.7 |
| -0.2    | 20.8                   | 29.7     | 46.3     | 51.8 |
| -0.1    | 19.2                   | 29.1     | 37.2     | 47.6 |
| Overall | 20.4                   | 20.3     | 49.1     | 49.4 |

|         | Da                | ata-Driv | ven Mode | l    |
|---------|-------------------|----------|----------|------|
| Delta   | DKL <sub>SP</sub> | L (%)    | DRNN     | (%)  |
| Deita   | Traded            | All      | Traded   | All  |
| -0.9    | 6.5               | 5.8      | 32.6     | 33.1 |
| -0.8    | 6.1               | 7.8      | 49.5     | 45.3 |
| -0.7    | 7.3               | 11.9     | 52.4     | 46.3 |
| -0.6    | 10.3              | 9.5      | 51.6     | 47.0 |
| -0.5    | 13.9              | 12.8     | 51.4     | 46.7 |
| -0.4    | 15.6              | 16.7     | 53.4     | 45.1 |
| -0.3    | 19.5              | 13.4     | 48.4     | 40.7 |
| -0.2    | 20.6              | 18.4     | 44.7     | 35.1 |
| -0.1    | 13.0              | 19.9     | 26.8     | 25.3 |
| Overall | 13.5              | 127      | 49.5     | 41.2 |

Table: Weekly(Left) and Monthly(Right)

# Where does the improvement come from? (1)



► Remove the sequential learning part



Figure: DNN

▶ Remove the output gate



Figure:  $DRNN_C$ 

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

### Introduction

## Delta Hedging

Stochastic Volatility Mod

Approach

## Date Direct Account

Indirect Data-Driven Approach

Approach

# Sequential Learnin

Motivation

Recurrent Neural Network

## Encoder-Decoder Model

Summary

# Where does the improvement come from? (2)



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility N

Approach

\_\_\_\_

Indirect Data Driven

Approach
Direct Data-Driven

Approach Real Data Experiments

Sequential Learning

Motivation

Recurrent Neural Network

Encoder-Decoder Model

ummany

| Delta   |      | Weekly               |      |      | Mon  | thly                 |      |      |
|---------|------|----------------------|------|------|------|----------------------|------|------|
| Delta   | MV   | $\mathrm{DKL}_{SPL}$ | DNN  | DRNN | MV   | $\mathrm{DKL}_{SPL}$ | DNN  | DRNN |
| 0.1     | 26.3 | 38.9                 | 35.6 | 47.8 | 13.5 | 22.7                 | 29.7 | 53.9 |
| 0.2     | 21.6 | 29.0                 | 36.4 | 48.5 | 16.4 | 23.5                 | 38.4 | 51.7 |
| 0.3     | 20.1 | 23.5                 | 38.6 | 48.5 | 17.9 | 24.0                 | 40.2 | 50.2 |
| 0.4     | 18.1 | 20.8                 | 38.7 | 45.9 | 16.9 | 21.0                 | 38.6 | 47.8 |
| 0.5     | 16.0 | 19.9                 | 42.3 | 46.6 | 15.2 | 13.5                 | 36.3 | 44.5 |
| 0.6     | 12.1 | 17.3                 | 43.4 | 44.8 | 12.7 | 14.3                 | 36.0 | 44.6 |
| 0.7     | 8.1  | 16.8                 | 45.6 | 43.9 | 5.9  | 6.1                  | 30.2 | 35.3 |
| 0.8     | 3.7  | 12.5                 | 39.6 | 37.7 | -1.2 | 5.3                  | 22.3 | 24.8 |
| 0.9     | 2.4  | 6.2                  | 26.3 | 16.4 | -1.8 | 4.1                  | 21.1 | 10.5 |
| Overall | 15.1 | 20.2                 | 39.9 | 43.7 | 13.4 | 16.3                 | 35.4 | 44.5 |

Data-Driven Model(%)

# Where does improvement come from? (3)

| N |  |
|---|--|
|   |  |

### Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance Approach

Annroach Direct Data-Driven

Approach Real Data Experiments



| ) = | ncoder-Decoder | Mod |
|-----|----------------|-----|
|-----|----------------|-----|



| Delta   | DR     | $NN_C$  | DRNN   |         |  |
|---------|--------|---------|--------|---------|--|
| Della   | Weekly | Monthly | Weekly | Monthly |  |
| 0.1     | 36.6   | 34.8    | 47.8   | 53.9    |  |
| 0.2     | 39.6   | 38.9    | 48.5   | 51.7    |  |
| 0.3     | 39.7   | 41.7    | 48.5   | 50.2    |  |
| 0.4     | 38.9   | 42.6    | 45.9   | 47.8    |  |
| 0.5     | 37.5   | 42.3    | 46.6   | 44.5    |  |
| 0.6     | 33.5   | 40.7    | 44.8   | 44.6    |  |
| 0.7     | 31.1   | 33.0    | 43.9   | 35.3    |  |
| 8.0     | 31.7   | 26.3    | 37.7   | 24.8    |  |
| 0.9     | 28.7   | 17.3    | 16.4   | 10.5    |  |
| Overall | 33.5   | 38.0    | 43.7   | 44.5    |  |

Data-Driven Model

# Feature Score (1)





Ke Nian

Approach

Encoder-Decoder Model







(a) Local Features

Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Feature Score (2)





Ke Nian

Approach

## Encoder-Decoder Model



Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Feature Score (3)





Ke Nian

Approach

## Encoder-Decoder Model





Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Feature Score (4)





Ke Nian

Approach

Encoder-Decoder Model









(a) Sequential Features

Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Feature Score (5)





Ke Nian

Approach

Encoder-Decoder Model



(a) Local Features

Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Feature Score (6)





Ke Nian

Approach

## Encoder-Decoder Model



Figure: Feature Score of S&P500 Call Option (Daily Hedging)

# Summary



Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance Approach

Approach

Recurrent Neural Network

44 ) Summary

- ▶ Loosing assumption on the market dynamic is a good practise
- Data-driven approach can lead to better performance.
- Incorporating the information about the past history can further improve the hedging performance.
- Robust losses and robust model design are also beneficiary.



### Data-Driven Models for Discrete Hedging Problem

Ke Nian

### Introduction

## Delta Hedging

Variants

Minimum Variance

Local Volatility Mode

### Data Driven Approa

### Indirect Data-Driver Approach

Direct Data-Driven Approach

Real Data Experimen

## Sequential Learning

### otivation

Recurrent Neural Network

Encoder-Decoder Mode

## 45 Summary

David R. Cheriton School of Computer Science,

University of Waterloo

Thank you very much!

Any Questions?