Wilson Cazarré Sousa

# Desenvolvimento e implementação de um processador compatível com a Arquitetura 6502 em FPGA

São José dos Campos - Brasil Abril de 2024

#### Wilson Cazarré Sousa

## Desenvolvimento e implementação de um processador compatível com a Arquitetura 6502 em FPGA

Relatório apresentado à Universidade Federal de São Paulo como parte dos requisitos para aprovação na disciplina de Laboratório de Sistemas Computacionais: Arquitetura e Organização de Computadores.

Docente: Prof. Dr. Tiago de Oliveira

Universidade Federal de São Paulo - UNIFESP

Instituto de Ciência e Tecnologia - Campus São José dos Campos

São José dos Campos - Brasil Abril de 2024

## Resumo

Palavras-chaves: 6502. FPGA. RISC. CISC.

## Lista de ilustrações

| Figura 1 – | Endereçamento imediato                                          | 11 |
|------------|-----------------------------------------------------------------|----|
| Figura 2 – | Endereçamento absoluto. Note que o primeiro byte na memória é o |    |
|            | menos significativo                                             | 12 |
| Figura 3 – | Endereçamento absoluto - Deslocado em X $(ou\ Y)$               | 12 |
| Figura 4 – | Endereçamento Zero-Page                                         | 13 |
| Figura 5 – | Endereçamento relativo                                          | 14 |
| Figura 6 – | Endereçamento indireto                                          | 15 |
| Figura 7 – | Endereçamento indireto                                          | 17 |

## Lista de tabelas

| Tabela | a 1 | _ | Tamanh | o da | instrução | por n | nodo d | de end | lereçamento |  |  |  |  |  |  |  |  | 16 |
|--------|-----|---|--------|------|-----------|-------|--------|--------|-------------|--|--|--|--|--|--|--|--|----|
|--------|-----|---|--------|------|-----------|-------|--------|--------|-------------|--|--|--|--|--|--|--|--|----|

## Lista de Abreviações

- **BD** Barramento de Dados. 9
- ${\bf BE}\,$ Barramento de Endereços. 9

## Sumário

| 1       | INTRODUÇÃO                                     |
|---------|------------------------------------------------|
| 1.1     | Motivação                                      |
| 1.2     | Metodologia                                    |
| 1.3     | Organização do relatório                       |
| 1.4     | Objetivos                                      |
| 2       | FUNDAMENTAÇÃO TEÓRICA 9                        |
| 2.1     | Visão geral de um sistema computacional 9      |
| 2.1.1   | Arquitetura de von Neumann                     |
| 2.1.2   | Interfaces de entrada e saída                  |
| 2.1.3   | Microprocessadores                             |
| 2.2     | Microprocessador 6502                          |
| 2.2.1   | Arquitetura Original                           |
| 2.2.2   | Registrador de Status (SR)                     |
| 2.2.3   | Contador de Programa (PC)                      |
| 2.2.4   | Stack Pointer (SP)                             |
| 2.2.5   | Modos de endereçamento                         |
| 2.2.5.1 | Endereçamento imediato                         |
| 2.2.5.2 | Endereçamento absoluto                         |
| 2.2.5.3 | Endereçamento absoluto - Deslocado em X (ou Y) |
| 2.2.5.4 | Endereçamento Zero-Page                        |
| 2.2.5.5 | Endereçamento relativo                         |
| 2.2.5.6 | Endereçamento indireto                         |
| 2.2.6   | Endereçamento Zero-Page, deslocado em X (ou Y) |
| 2.3     | RTL - Register-Transfer Logic                  |
| 2.4     | FPGA - Field Programmable Array 16             |
| 2.5     | Verilog Sintetizável                           |
| 2.6     | Completude de Turing                           |
| 3       | DESENVOLVIMENTO 17                             |
| 3.1     | Unidades funcionais                            |
| 3.1.1   | Registradores                                  |
| 3.1.2   | Unidade de Controle                            |
| 4       | RESULTADOS OBTIDOS E DISCUSSÕES                |

| <i>SUMÁRIO</i> |  | 7 |
|----------------|--|---|
|                |  |   |

| 5 | CONSIDERAÇÕES FINAIS | 2 | : <b>1</b> |
|---|----------------------|---|------------|
|   |                      |   |            |
|   | <b>APÊNDICES</b>     | 2 | 3          |

9

1 Introdução

Durante a disciplina de Laboratório de Sistemas Computacionais: Arquitetura

e Organização de Computadores ofertada, é proposto que os discentes escolham um

arquitetura para realizar sua implementação em um dispositivo FPGA. Esse relatório

irá apresentar a fundamentação, bem como todo o processo de desenvolvimento de um

sistema computacional baseado no microprocessador 6502.

1.1 Motivação

mandaram eu fazer esse trabalho ou eu seria reprovado na matéria

Metodologia 1.2

ai eu peguei lá o negócio e n sei oq lá ai eu fiz as coisas com meus manos e no final

ficou tudo chave

1.3 Organização do relatório

ao leitor: basta ler

**Objetivos** 1.4

Geral

Descrever o objetivo geral do projeto

Específico

Descrever com detalhes os objetivos da etapa atual.

### 2 Fundamentação Teórica

- 2.1 Visão geral de um sistema computacional
- 2.1.1 Arquitetura de von Neumann
- 2.1.2 Interfaces de entrada e saída
- 2.1.3 Microprocessadores

#### 2.2 Microprocessador 6502

O microprocessador 6502 é o segundo membro da família MCS650X. Essa família de microprocessadores de 8 bits foi lançada em 1975 pela MOS Technology. Os processadores dessa família apresentam o mesmo conjunto de instruções e modos de endereçamento, com pequenas diferenças em recursos e sua utilização. Por conta de sua eficácia e baixo custo, o microprocessador se popularizou rapidamente ao ser usado em diversos sistemas da época como O Nintendo Entertainment System (NES), Apple II, Commodore 64 e muitos outros.

#### 2.2.1 Arquitetura Original

O microprocessador conta com um Barramento de Dados (BD) de 8 bits e um Barramento de Endereços (BE) de 16-bits. Qualquer operação que o processador precisa executar normalmente é iniciada colocando o endereço de acesso no BE e posteriormente lendo (ou escrevendo) um valor de 8-bits no BD.

Internamente, 3 registradores de propósito geral podem ser usados.

- Acumulador (A): Usado também para armazenar o resultado das operações lógicas e aritméticas;
- *Index* X e Y: Ambos os registradores podem ser usados para operações com modos de endereçamento especiais, que serão abordados mais a frente no relatório.

Além dos 3 registradores que podem ser acessados diretamente, o 6502 também possuí alguns registradores usados por funções específicas do processador.

#### 2.2.2 Registrador de Status (SR)

O **registrador de status** é responsável por armazenar *flags* usadas para o controle do fluxo de programa do processador. Elas normalmente são atualizadas durante operações

lógicas, aritméticas e de transferência de dados.

- Carry (C): Indica se a operação gerou um carry;
- Negativo (N): Indica se a operação gerou um valor com o bit mais significativo ativo;
- Overflow (V): Indica se a operação gerou um...;
- Zero (Z): Indica se a operação gerou o valor zero;
- Decimal (D): Indica se o processador está em modo aritmético decimal BCD;
- Bloqueio de interrupções (I): Indica se o processador está ignorando as requisição de interrupções;
- **Break** (B): Indica se a interrupção atual foi disparada via *software* pela instrução BRK, ao invés de uma interrupção via *hardware*.

#### 2.2.3 Contador de Programa (PC)

O único registrador de 16-bits definido pela arquitetura. Esse registrador é responsável por manter o endereço de memória atualmente acessado pelo processador.

#### 2.2.4 Stack Pointer (SP)

O stack é uma região de memória destinada para rápido acesso e escrita. A eficácia nessas operações vem do fato de que o processador utiliza o endereço no SP para saber exatamente onde a próxima leitura e escrita vai ocorrer. O registrador é incrementado ou decrementado de acordo após cada operação. O 6502 também utiliza o stack para armazenar os endereços de retorno quando subrotinas ou interrupções são executadas.

#### 2.2.5 Modos de endereçamento

O 6502 é capaz de endereçar 65536 bytes de memória. Qualquer operação ou estrutura de dados dentro do processador compartilham esse mesmo espaço de memória. O processador também providencia 13 diferentes métodos de calcular o endereço efetivo de memória na qual a operação vai ser executada. Na computação, chamamos esses métodos de **modos de endereçamento** e aqueles disponíveis no 6502 serão descritos aqui.

#### 2.2.5.1 Endereçamento imediato

Nesse tipo de instrução o operando é usado imediatamente após a instrução ter sido lida. Nenhum acesso a memória ou cálculo é realizado (Figura 1). Essa tipo de instrução utiliza 2 bytes de memória.

Endereçamento Imediato

Mnemônico Assembly LDA # 20

Instrução Hexadecimal

PC PC+1

AD 20

Reg. A 20

Memória

2049 00

204A 20

204B 52

Figura 1 – Endereçamento imediato

Fonte: Autoria própria

#### 2.2.5.2 Endereçamento absoluto

Nesse tipo de instrução dois bytes são passados além do opcode. O processador usa esses bytes como um endereço de acesso a memória (Figura 2).

#### 2.2.5.3 Endereçamento absoluto - Deslocado em X (ou Y)

Esse modo é uma variação do endereçamento absoluto: dois bytes são buscados da memória e usados como endereço de acesso. A diferença está no fato de que o valor do registrador (X ou Y) é somado ao endereço de acesso. (Figura 3).

Figura 2 – Endereçamento absoluto. Note que o primeiro byte na memória é o menos significativo



Fonte: Autoria própria

Figura 3 – Endereçamento absoluto - Deslocado em X (ou Y)



Fonte: Autoria própria

#### 2.2.5.4 Endereçamento Zero-Page

Idêntico ao endereçamento absoluto, exceto que apenas um byte é lido da memória (o byte menos significativo). O byte mais significativo é inferido como 0 Figura 4. Logo esse modo de endereçamento sempre retorna um dado localizado na primeira "página"da memória (os primeiros 256 bytes).



Figura 4 – Endereçamento Zero-Page

Fonte: Autoria própria

#### 2.2.5.5 Endereçamento relativo



Figura 5 – Endereçamento relativo

Fonte: Autoria própria

#### 2.2.5.6 Endereçamento indireto



Figura 6 – Endereçamento indireto

Fonte: Autoria própria

#### 2.2.6 Endereçamento Zero-Page, deslocado em X (ou Y)

Idêntico ao Endereçamento Absoluto deslocado em X (ou Y) com a diferença que o endereço de acesso está sempre dentro da primeira

#### 2.3 RTL - Register-Transfer Logic

Quando tratamos do design de circuitos digitais complexos, é comum abstrairmos diferentes níveis do design com a intenção de tornar esses problemas mais simples de serem resolvidos.

3 níveis diferentes de abstração são definidos por ??) na construção de circuitos digitais:

1. *Transistor Level*: Conectar transistores para construir componentes lógicos.

- 2. *Logic Level*: Utilizar-se de Portas Lógicas como bloco principal de construção para desenvolver circuitos combinacionais.
- 3. **Register-transfer Level**: Conectar uma rede de registradores e construir blocos que definem a lógica de transferência de estado entre esses registradores.

De maneira geral, no *Register-Transfer Level Design* (ou Design RTL) cada bloco do design deve desempenhar uma (e apenas uma) de duas possíveis funções:

- Lógica Combinacional: São os blocos responsáveis pela computação do próximo estado. De maneira geral, esses blocos devem ser determinísticos e sempre apresentar a mesma saída para uma determinada entrada.
- 2. **Lógica Sequencial**: São blocos responsáveis por guardar e propagar o estado computado pelos blocos combinacionais de maneira síncrona.

Tabela 1 – Tamanho da instrução por modo de endereçamento

| Modo de endereçamento              | Tamanho em bytes |
|------------------------------------|------------------|
| Acumulador (A)                     | 1                |
| Absoluto (abs)                     | 3                |
| Absoluto, deslocado em X (abs, x)  | 3                |
| Absoluto, deslocado em Y (abs, y)  | 3                |
| Imediato (#)                       | 2                |
| Implícito (impl)                   | 1                |
| Indireto (ind)                     | 3                |
| Indireto, deslocado em X (X, ind)  | 2                |
| Indireto, deslocado em Y (ind, Y)  | 2                |
| Relativo (rel)                     | 2                |
| $\overline{Zero-Page}$ (zpg)       | 2                |
| Zero-Page, deslocado em X (zpg, x) | 2                |
| Zero-Page, deslocado em Y (zpg, y) | 2                |

Fonte: Autoria Própria

- 2.4 FPGA Field Programmable Array
- 2.5 Verilog Sintetizável
- 2.6 Completude de Turing

#### 3 Desenvolvimento

DLO...7] DR/ADL -► CLK1 CLK DR/ADH -Data Generator DR/DB Register (DR) PCH/O Address Bus - ABH/E PCH/I . Register High ounter High PCL/C XPCHY (ABH) time Control Whit (te) AC/0 = Address Bus ABL/E PCL/I Register Low ecumulator inter/Loi SACY PC/E SPCLY PCH/O PCL/O PCH/I PCH/O PC/E AR/ALH TC/E
TC/R
DR/ADH
DR/DB
HLT
BI/I
AI/I
BI/I
AI/I
BI/I
AI/O
SB/I
AC/O
SB/I
X/O
Y/I
Y/O SUB EOR OR Input A BE ← ABH/E ← ABL/E ← P/I ← P/CR ← ZR NG CR control ALU Logic Result ALU (LGS) (AR) Input B Instruction Register (IR) x/I **→** x/o **→** Y/I -Index Index Register (x) Register Z I Processor K Status 4-----8 bits-----Register (P) Microarquitetura Address Bus High 6502 interna Address Bus Low 8-bit Microprocesor Registradores N, Data Bus Externos

Figura 7 – Endereçamento indireto

Fonte: Autoria própria

#### 3.1 Unidades funcionais

#### 3.1.1 Registradores

- A
- X
- Y
- SP
- PC
- $\bullet$  SR

#### 3.1.2 Unidade de Controle

A unidade de controle é responsável por enviar os sinais de controle para o processador com o objetivo de executar o comando armazenado no Registrador de Instruções.

## 4 Resultados Obtidos e Discussões

## 5 Considerações Finais

## Referências

VAHID, F. Digital Design with RTL Design, VHDL, and Verilog. 2nd edition. ed. Waltham/MA, EUA: John Wiley & Sons, Inc, 2011. Citado na página 17.



Referências 29

## Lista de Abreviações

- **BD** Barramento de Dados. 9
- ${\bf BE}\,$ Barramento de Endereços. 9