Solucionario del Examen Parcial di Algebra Lineal II

- 1-0) Se tiene el operador eineal $L_M: V = C^{n \times 1} \rightarrow V$, $L_M(A) = MA$. Hallando $L_M^*:$ $\langle L_M(A), B \rangle = Tr(B^*(MA)) = Tr(MAB^*) = Tr(AB^*M) = Tr(A(M^*B)^*)$ $= Tr((M^*B)^*A) = \langle A, M^*B \rangle = \langle A, L_M^*B \rangle, \forall A, B en V.$ $\vdots L_M^*B = M^*B.$
 - b) Tenemos el operador lineal $T: V \rightarrow V$, $T\alpha = \langle \alpha, \beta \rangle X$. Sea $\alpha, g \in V$ $\langle T\alpha, g \rangle = \langle \langle \alpha, \beta \rangle X, g \rangle = \langle \alpha, \beta \rangle \langle x, g \rangle = \langle \alpha, \langle \beta, Y \rangle \beta \rangle$. $T^*g = \langle \beta, \alpha \rangle \beta$ as lineal en β . $T^*g = \langle \beta, \alpha \rangle \beta$, $T^*: V \rightarrow V$.
- 2. i) ⇒ii) InmediaTo; se tiene T=5² par s:V →V autocofunTo S=M enTonces T=M*M
 - Let $\Rightarrow e'(i)$ So tiene $N=M^*M \Rightarrow N=N^*$? Nautoadjunto. Ademas $\langle Nu_iu \rangle = \langle M^*Mu_iu \rangle = \langle Mu_iMu \rangle 7,0$, $\forall u \in V$... Nes nonegation
 - Nes auto adjunto, por el teorema espectral, existe una base ortonormal B= {ui, uz, ..., un} de vectores propios de N. Tenemos Nu:= ?, ui, ?, ??o.

 Definiendo el operador cineal S: V-> V, S(ui)= \(\bar{\pi_i} \) ui.

 1-1,...,n. Se tiene [S]_B = \(\bar{\pi_i} \) , por lo tanto S as auto adjunto. A demas $S^2(u_i) = ?_i u_i = N(u_i)$, $\forall i \in \{1, ..., n\}$... $N = S^2$.
- 3.- a) Como End(V) y End(V) tienen la misma dimension finito e suficiente verificar que $NU(Y) = \{0\}$. Sea $\Psi(T) = 0 = UTU' \Rightarrow T = 0$.
 - b) Sean By T bases de Vy W respectivamente y A=[v] 8
 B=[T]B entonces traza (UTU-1) = Traza (ABA-1) = Traza (B) = Traza (T).

C) Sea
$$g \in V$$
, $(UT_{A,B}U^{-1})g = UT_{A,B}(U^{-1}g) = U(\langle U^{-1}g, \beta \rangle u) = \langle U^{-1}g, \beta \rangle U\lambda = \langle Q, U^{-1}g \rangle U\lambda = \langle Q, U$

d) Primero demostrando: (UTO") *= UT*U-1. se de be notar UTU'E End (W). Sean P, TI en W en Tonces (UTU'g,π) = (UTU'g, UU'π) = (TUg, U'π) = (U'β, T*U'π) = = Lup, v'UT*v'n> = LS, UT*v'n>, +8, Ten NI ... (UTU") *= UT*U" --- € De esto < 4(T), 4(S) > = < UTU-1, USU-1 > = Tr(UTU-1(USU-1)*) De & = Traza (UTU'US*U") = Traza (UTS*U") = Traza (TS") = = LT,S>. Yes un isomerfismo en P.I.

4. a) Esclaro
$$T(x,y) = (x+iy, ix+y)$$
, $g(T) = \{1+i, 1-i\}$
Les polinomies de Legrange $f_1(x) = \frac{1}{2i}(x-(1-i)), f_2(x) = \frac{1}{2i}(x-(1+i))$
luege las projecciones ortoponales
$$P_1 = f_1(T) = \frac{T-(1-i)T}{2i}, \quad P_2 = f_2(T) = \frac{T-(1+i)T}{2i}$$

$$P_1(x,y) = \frac{1}{2}(x+y), \quad P_2(x,y) = \frac{1}{2}(y-x,x+y)$$

A es normal. T= (1+i)P, + (+i)Pe. Tes normal porque

b)
$$A^*A = \begin{bmatrix} 2 & 0 \\ 0 & z \end{bmatrix} = N^2 = N = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \Rightarrow U = N^*A = \begin{bmatrix} \sqrt{2}/2 & i\sqrt{2}/2 \\ i\sqrt{3}/2 & \sqrt{2}/2 \end{bmatrix}$$

$$P(U) = \frac{1}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \end{bmatrix}, A(x) = \frac{i\sqrt{2}}{2} (x + \frac{\sqrt{2} + \sqrt{2}}{2}i), I_{2}(x) = \frac{i\sqrt{2}}{2} (x + \frac{\sqrt{2} + \sqrt{2}}{2}i)$$

$$P_{1} = P_{1}(U) = i\frac{\sqrt{2}}{2} (U + \frac{\sqrt{2} + \sqrt{2}i}{2}i) = i\sqrt{2} \begin{bmatrix} \sqrt{2} + \sqrt{2}i & \sqrt{2}i/2 \\ \sqrt{2}i/2 & \sqrt{2}i/2 \end{bmatrix} = \begin{bmatrix} -1/2 + i & -i/2 \\ -1/2 & -i/2 \end{bmatrix}$$

$$P_{2} = P_{2}(U) = i\sqrt{2} \begin{bmatrix} U + \frac{\sqrt{2} - \sqrt{2}i}{2}i \end{bmatrix} = i\sqrt{2} \begin{bmatrix} \sqrt{2} - \sqrt{2}i/2 & \sqrt{2}i/2 \\ \sqrt{2}i/2 & \sqrt{2} - \sqrt{2}i/2 \end{bmatrix} = \begin{bmatrix} \sqrt{2} + i & -i/2 \\ -1/2 & 1/2 + i \end{bmatrix}$$

$$U = (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)P_{1} + (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i)P_{2}$$

$$= e^{\frac{\sqrt{2}}{2}}P_{1} + e^{i\sqrt{2}}P_{2} + e^{i\sqrt{2}}P_{2}$$

$$A = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} e^{iH}$$

$$A = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} e^{iH}$$

$$A = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} e^{iH}$$

(Pg2)

04-05-2018

A. H. 6