Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 9: RA II
Relational Algebra

(Chapter 8.2-8.3 Elmasri-Navathe 7ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Εισαγωγή στη Σχεσιακή Άλγεβρα

- Η Σχεσιακή Άλγεβρα παρέχει τους τελεστές (operators):
 - Μοναδιαίοι Σχεσιακοί Τελεστές (Unary Relational Ops)
 - Επιλογή (Select, σ (sigma))
 - Προβολή (Project, π (pi))
 - Μετονομασία (Rename, ρ (rho))
 - Σχεσιακοί Τελεστές από την Θεωρία Συνόλων
 - Ένωση (UNION, \cup), Τομή (INTERSECTION, \cap), Διαφορά Συνόλων (DIFFERENCE ή MINUS,)
 - Καρτεσιανό Γινόμενο (CARTESIAN PRODUCT, x)
 - Δυαδικοί Σχεσιακοί Τελεστές (Binary Relational Ops)
 - Συνένωση (JOIN, ⋈) (υπάρχουν πολλαπλές εκδοχές)
 - − Εφόσον το Σ δεν υποστηρίζεται σαν σύμβολο θα χρησιμοποιείται το ⊗
 - Διαίρεση (DIVISION, /)
 - Επιπλέον Σχεσιακοί Τελεστές
 - Συναρτήσεις Συνάθροισης AGGREGATE FUNCTIONS (π.χ., SUM, COUNT, AVG, MIN, MAX)
 - Εξωτερική Συνένωση τρί κεφινα (OUTER JOINS) yprus) ©

Περιεχόμενο Διάλεξης

Κεφάλαιο 6: Σχεσιακή Άλγεβρα

- Ολοκλήρωση Διάλεξης 8 (π και ρ)
- 8.2) Πράξεις της Σχεσιακής Άλγεβρας από τη Θεωρία Συνόλων.
 - Ένωση, Τομή, Διαφορά Συνόλων, Συμμετρική Διαφορά
- 8.3) Δυαδικές Σχεσιακές Πράξεις: Συνένωση

Τελεστές Θεωρίας Συνόλων Ένωση (UNION)

- Τελεστής Ένωσης (UNION)
 - Είναι δυαδικός τελεστές και συμβολίζεται με ∪
 - Το αποτέλεσμα του R ∪ S, είναι μια σχέση η οποία περιλαμβάνει όλες τις πλειάδες οι οποίες ανήκουν i) στο R, ii) το S ή iii) στο R και S.
 - $-R \cup S = \{x \mid x \in R \lor x \in S\}$
- Θυμηθείτε ότι οι τελεστές της σχεσιακής άλγεβρας είναι κλειστοί (δηλαδή το αποτέλεσμα ενός τελεστή είναι μια νέα σχέση).
- Τα διπλότυπα (duplicate tuples) απαλείφονται

S

R

Τελεστές Θεωρίας Συνόλων Ένωση (UNION)

- Οι δυο τελεσταίοι (operands), R and S, πρέπει να είναι Συμβατοί-προς-τον-τύπο ("type compatible" ή UNION-compatible)
 - R and S πρέπει να' χουν τον ίδιο αριθμό γνωρισμάτων (π.χ., **Department ∪ Employee**)
 - Κάθε ζεύγος αντίστοιχων γνωρισμάτων πρέπει να είναι συμβατό-προς-τον-τύπο (πεδίο ορισμού) $(\pi.\chi., Emp(ssn:int) \cup Mgr(ssn:int))$
- Για την Ένωση ισχύουν οι ακόλουθες **ιδιότητες**:
 - $-R \cup S = S \cup R$ Αντιμεταθετική (Commutative)
 - $-R \cup (S \cup T) = (R \cup S) \cup T$ Προσεταιριστική (Associative)

Τελεστές Θεωρίας Συνόλων Ένωση (UNION)

- Παράδειγμα:
 - Βρες το SSN όλων των υπαλλήλων που δουλεύουν στο τμήμα (dno) 5 ή επιβλέπουν κάποιο υπάλληλο, ο οποίος δουλεύει στο τμήμα 5.
 - Με ποια σειρά σχεσιακών τελεστών θα απαντήσουμε το πιο πάνω ερώτημα;

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	833445555/	15
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Τελεστές Θεωρίας Συνόλων Ένωση (UNION)

 Διατύπωση σε Σχεσιακή Άλγεβρα TEMP $\leftarrow \sigma_{DNO=5}$ (EMPLOYEE)

Σημειώστε την μετονομασία

Επερώτηση:

RESULT1 $\leftarrow \pi_{SSN}(TEMP)$

RESULT2(SSN) $\leftarrow \pi_{\text{SUPERSSN}}(\text{TEMP})$ **RESULT** ← **RESULT1** ∪ **RESULT2**

EMPLOYEE

Fname	Minit	Lname	<u>Ss</u> n	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	₹965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	9876 <u>5</u> 4321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	/ 5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

RESULT1

Αποτέλεσμα:

RESULT2

Ssn
333445555
888665555

RESULT

Ssn	
123456789	
333445555	
666884444	
453453453	
888665555	of Cyprus) ©

Τελεστές Θεωρίας Συνόλων Τομή (INTERSECTION)

- Τελεστής Τομής (Intersection)
 - Είναι δυαδικός τελεστές και συμβολίζεται με ∩
 - Το αποτέλεσμα του R ∩ S, είναι μια σχέση η οποία περιλαμβάνει ΟΛΕΣ τις πλειάδες οι οποίες ανήκουν τόσο στο R όσο ΚΑΙ στο S.
 - $R \cap S = \{x \mid x \in R \land x \in S\}$
- Τα διπλότυπα (duplicate tuples) απαλείφονται και ισχύει και πάλι ο περιορισμός συμβατότητας-προς-τον-τύπου ("type compatibility")
- Για την **Τομή** ισχύουν οι ακόλουθες **ιδιότητες**:
 - R ∩ S = S ∩ R Αντιμεταθετική (Commutative)
 - $R \cap (S \cap T) = (R \cap S) \cap T)$ Προσεταιριστική (Associative)
 - (R \cap S) = (\overline{R} \cup \overline{S}) Κανόνας De Morgan μετατροπής.

Τελεστές Θεωρίας Συνόλων Τομή (INTERSECTION)

- Παράδειγμα:
 - Βρες το SSN όλων των υπαλλήλων που δουλεύουν στο τμήμα (dno) 5 ΚΑΙ έχουν εξαρτώμενο (dependent)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno	
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5	
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5	
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4	
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4	
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5	
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5	
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4	
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1	

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Απάντηση:

SSN 333445555 123456789

Τελεστές Θεωρίας Συνόλων Τομή (INTERSECTION)

• Διατύπωση σε Σχεσιακή Άλγεβρα

 $R1 \leftarrow \pi_{SSN}(\sigma_{DNO=5} (EMPLOYEE))$

 $R2(SSN) \leftarrow \pi_{ESSN}(DEPENDENT)$

RESULT ← R1 ∩ R2

_	ВЛ	\mathbf{n}	O١	/_	_
_	IVI	\mathbf{r}		_	_

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1
			-						

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Το ίδιο ερώτημα μπορεί να διατυπωθεί και με συνένωση (που θα δούμε αργότερα) ₉₋₁₀

Cyprus) ©

EPL342:

Τελεστές Θεωρίας Συνόλων Διαφορά Συνόλων (Minus)

- Τελεστής Διαφοράς (Minus ή Set Difference)
 - Είναι δυαδικός τελεστές και συμβολίζεται με -
 - Το αποτέλεσμα του R S, είναι μια σχέση η οποία περιλαμβάνει όλες τις πλειάδες της R η οποίες δεν ανήκουν στο S.
 - $R S = \{ x \mid x \in R \land x \notin S \} = R \cap \overline{S}$
- Οι δυο τελεσταίοι (operands), R and S, πρέπει και πάλι να είναι Συμβατοί-προς-τον-τύπο ("type compatible")
- ΔΕΝ ισχύει η αντιμεταθετική ιδιότητα:
 - $R S \neq S R$
- Ισχύει όμως η προσεταιριστική R–(S–T)= (R–S)–Τ

Τελεστές Θεωρίας Συνόλων Διαφορά Συνόλων (Minus)

Συμβατές-προς-Τύπο

(Τυπικά ομιλημένοι, θα έπρεπε να γίνει μετονομασία «ρ»)

(a) STUDENT

Fn	Ln		
Susan *	Yao		
Ramesh*	Shah		
Johnny	Kohler		
Barbara	Jones		
Amy	Ford		
Jimmy	Wang		
Ernest	Gilbert		

INSTRUCTOR

Fname	Lname		
John	Smith		
Ricardo	Browne		
Susan *	Yao		
Francis	Johnson		
Ramesh*	Shah		

|Instructor|=5

|Student|=7

|Student-Instructor| = 5

(d)

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

Αφαίρεση
Susan και
Ramesh
from
Student

(e)

Fname	Lname
John	Smith
Ricardo	Browne
Francis	Johnson

|Instructor – Student| = 3

Αφαίρεση **Susan** και **Ramesh**from
Instructor

ases - Demetris Zeinalipour (University of Cyprus) ©

Τελεστές Θεωρίας Συνόλων Συμμετρική Διαφορά Συνόλων

INPUT OUTPUT

- Όπως θα θυμάστε, υπάρχει και η Συμμετρική Διαφορά (Symmetric Difference), η οποία συμβολίζεται με το σύμβολο: ⊕
 - Αναπαριστάται ουσιαστικά από τον λογικό τελεστή ⊻ XOR (Exlusive-OR)
 - $\Delta \eta \lambda$., $R \oplus S = \{ x \mid x \in R \ \forall \ x \in S \}$
- Ισχύουν τα ακόλουθα:

$$R \oplus S = S \oplus R$$
 αντιμεταθετική ιδιότητα $R \oplus S = (R - S) \cup (S - R)$

Γενικά, υπάρχουν πολλές άλλες ταυτότητες οι οποίες μπορούν να αποδειχθούν με λογικές ισοδυναμίες, πίνακες συμμετοχής ή με χρήση γνωστών ισοδυναμιών ases - Demetris Zeinalipour (University of Cyprus) ©

Τελεστές Θεωρίας Συνόλων

|Student|=7

(a) STUDENT

Fn	Ln
Susan *	Yao
Ramesh*	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

|Instructor|=5

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao *
Francis	Johnson
Ramesh	Shah *

$$|(S - I) \cup (I - S)| = 5 + 3$$

= 8

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

Τελεστές Θεωρίας Συνόλων Καρτεσιανό Γινόμενο (Cartesian Product)

- Καρτεσιανό Γινόμενο (×)
 - CARTESIAN (or CROSS) PRODUCT
 - To $\mathbf{R} \times \mathbf{S}$ είναι το σύνολο όλων των διατεταγμένων ζευγών (r,s), όπου $\mathbf{r} \in \mathbf{R}$ και $\mathbf{s} \in \mathbf{S}$, δηλ.,
 - $-R \times S = \{ (r,s) \mid r \in R \land s \in S \}$
 - Πρακτικά, το × χρησιμοποιείται για να συνδυαστούν οι πλειάδες δυο σχέσεων (και θα χρησιμοποιηθεί για να εξηγηθεί ο σημαντικός τελεστής της συνένωσης join)
 - Το × μεταξύ δυο σχέσεων βαθμού μεγαλυτέρου του 2, π.χ., $\mathbf{R}(\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_n)$ x $\mathbf{S}(\mathbf{B}_1, \mathbf{B}_2, \ldots, \mathbf{B}_m)$, μας επιστρέφει μια σχέση \mathbf{Q} βαθμού $\mathbf{n+m}$
 - Q(A1, A2, . . ., An, B1, B2, . . ., Bm) (H Q έχει r(R)*r(S) πλειάδες)
 - Οι τελεσταίοι R₃S δεν χρειάζεται να συμφωνούν στον τύπο.

Τελεστές Θεωρίας Συνόλων Καρτεσιανό Γινόμενο (Cartesian Product)

- Στην πραγματικότητα, το Καρτεσιανό Γινόμενο δεν είναι τόσο πρακτικός τελεστής.
- Χρησιμοποιείται μόνο όταν θέλουμε να δημιουργήσουμε όλες τις δυνατές διατάξεις μεταξύ δυο σχέσεων.
 - − Π.χ., STUDENT(ssn) x COURSES(course_id)
 - Δημιούργησε όλους τους συνδυασμούς (ssn, course_id) ... το οποίο δεν είναι και τόσο χρήσιμο.
- Γίνεται ωστόσο πρακτικό εάν χρησιμοποιείται ως **μέρος** ακολουθίας άλλων τελεστών,
 - π.χ., Φτιάχνουμε το καρτεσιανό γινόμενο και επιλεγούμε ένα υποσύνολο αυτού του συνόλου ως απάντηση (το οποίο μας οδηγεί στην έννοια της Συνένωσης (JOIN))
- Το επόμενο παράδειγμα δείχνει ότι το καρτεσιανό γινόμενο ΔΕΝ είναι και τόσο πρακτικό από μόνο του.

Τελεστές Θεωρίας Συνόλων Καρτεσιανό Γινόμενο (Cartesian Product)

Θεωρήστε τη σχέση Reserves η οποία μας δείχνει ποια βάρκα (bid) νοίκιασε ο κάθε Ναυτικός, Sailor (sid).

| Sailors | Sailors | Sailors | Sailor | Sailors |

|Reserves|=6

<u>sid</u>	<u>bid</u>	<u>day</u>
28	103	12/4/21
28	103	11/3/21
31	101	10/10/21
31	102	10/12/21
31	101	10/11/21
58	103	11/12/21

1						
<u>sid</u>	sname	rating	age			
22	dustin	7	45.0			
28	yuppy	9	35.0			
31	lubber	8	55.5			
44	guppy	5	35.0			
58	rusty	10	35.0			

Εάν εκτελέσουμε το Καρτεσιανό Γινόμενο μεταξύ των δυο αυτών σχέσεων τότε μας επιστρέφεται ένα αποτέλεσμα το οποίο δεν έχει και ιδιαίτερο νόημα.

Συγκεκριμένα, επιστρέφονται τριάντα (30) 7-άδες:

28, 103, 12/4/21, 22, dustin, 7, 45.0

28, **103**, **12/4/21**, 28, yuppy, 9, 35.0

28, 103, 12/4/21, 31, lubber, 8, 55.5

28, **103**, **12/4/21**, 44, guppy, 5, 35.0

28, 103, 12/4/21, 58, rusty, 10, 35.0

. . .

28, **103**, **11/3/21**, 22, dustin, 7, 45.0

Δυαδικοί Σχεσιακοί Τελεστές Συνένωση (JOIN)

- Αυτό που θα θέλαμε στη πραγματικότητα, είναι να συνδυάσουμε τα Reserves με τους Sailors κατά τέτοιο τρόπο που να δημιουργείται κάποια χρήσιμη πληροφορία
- Χρήσιμο Ερώτημα: Βρες σε ποιο όνομα ανήκει κάθε κράτηση Reserve

|Reserves|=6

- L	la i d	darr
<u>sid</u>	<u>bid</u>	<u>day</u>
28	103	12/4/21
28	103	11/3/21
31	101	10/10/21
31	102	10/12/21
31	101	10/11/21
58	103	11/12/21

|Sailors|=5

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

• Εάν εκτελεστεί το Reserves x Sailors ακολουθούμενο από σ_{Reserves.sid} = Sailors.sid τότε βρίσκουμε το επιθυμητό αποτέλεσμα

Το αποτέλεσμα θα αυτή την φορά μόνο έξι πλειάδες:

(28, 103, 12/4/06, yuppy, 9, 35.0) (31, 101, 10/10/06, lubber, 8, 55.5) (31, 101, 10/11/06, lubber, 8, 55.5)

(28, 103, 11/3/06, yuppy, 9, 35.0)

(31, 102, 10/12/06, lubber, 8, 55.5)

(58, 103, 11/12/06, rusty, 10, 35.0)

Δυαδικοί Σχεσιακοί Τελεστές **Συνένωση (JOIN)**

- Τελεστής Συνένωσης (JOIN ⋈, ⊗*)
 - * Θα χρησιμοποιούμε το ⊗ εάν και δεν είναι επίσημο σύμβολο
 - Είναι ένας δυαδικός τελεστής ο όποιος συνδυάζει
 σχετιζόμενες πλειάδες σχέσεων σε μια ενιαία πλειάδα.
 - Τυπικά, ορίζεται ως το καρτεσιανό γινόμενο μεταξύ δυο σχέσεων ακολουθούμενο από επιλογή.

$$R \otimes_{\langle K\rho | \tau \dot{\eta} \rho | \alpha \rangle} S = \sigma_{\langle K\rho | \tau \dot{\eta} \rho | \alpha \rangle} (R \times S)$$

- Τα κριτήρια είναι μια Λογική Έκφραση (Boolean Expression):
 - Κριτήρια:= <Κριτήριο> \$ <Κριτήριο> \$... \$ <Κριτήριο> \$ είναι Λογικός Τελεστής AND ή OR
 - Κριτήριο := <γνώρισμα> # <σταθερή τιμή | γνώρισμα> # είναι δυαδικός Τελεστής Σύγκρισης {<,>,=,!=, >=, <=}
- π.χ., (age=30) AND (sex="M") AND (ssn!=mgr_ssn)
- Για να αναφερθούμε σε γνωρίσματα χρησιμοποιείται και η σημειογραφία με την τελεία, π.χ., DEPARTMENT.MGRSS, EMPLOYEE.SSN

 9-20

EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

Δυαδικοί Σχεσιακοί Τελεστές Τελεστής Συνένωσης (JOIN)

• Επερώτηση: Βρείτε το όνομα του manager κάθε department.

DEPARTMENT

Dname	Dname <u>Dnumber</u> Mg		Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

EMPLOYE	E								
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPT_MGR Αποτέλεσμα

a) Πρέπει να συνδυάσουμε κάθε πλειάδα του πινάκα Department με τις πλειάδες του πίνακα Employee.

R = (DEPARTMENT × EMPLOYEE)

b) Μέτα πρέπει να επιλέξουμε τις πλειάδες για τις οποίες ισχύει το Mgr_ssn=SSN, δηλ.,

$$\sigma_{Mgr_sn = SSN}(R)$$

Το a-b ισοδυναμεί με την έκφραση:

DEPARTMENT ⊗ Mgr_ssn = SSN EMPLOYEE

1970							
Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

Δυαδικοί Σχεσιακοί Τελεστές Τελεστής Συνένωσης (JOIN)

- Πρακτικά, το ⊗ χρησιμοποιείται για να συνδυαστούν σχετιζόμενες πλειάδες δυο σχέσεων,
- Η Συνένωση \otimes μεταξύ δυο σχέσεων βαθμού μεγαλυτέρου του 2, π.χ., $\mathbf{R}(\mathbf{A_1}, \mathbf{A_2}, \ldots, \mathbf{A_n}) \otimes \mathbf{S}(\mathbf{B_1}, \mathbf{B_2}, \ldots, \mathbf{B_m})$, μας επιστρέφει μια σχέση \mathbf{Q} βαθμού $\mathbf{n+m}$
 - δηλ., Q(A1, A2, . . ., An, B1, B2, . . ., Bm)
- Ο μεγαλύτερη δυνατή τιμή του |Q| είναι r(R)*r(S) (εάν και στη πράξη αναμένεται να είναι μικρότερο, λόγω της επιλογής)
- Στην συνένωση, όπως και στο Καρτεσιανό Γινόμενο, οι τελεσταίοι (R, S) ΔΕΝ χρειάζεται να συμφωνούν στον τύπο ΑΛΛΑ πρέπει να έχουν ένα κοινό πεδίο (το οποίο θα συμφωνεί στον τύπο δεδομένων, δηλ., R.Ai=S.Bj ή r[Ai]=s[Bj])
- Στη συνέχεια θα δούμε διάφορες παραλλαγές του βασικού τελεστή (Συνένωση Ισότητας (Equi-join), Φυσική Συνένωση (Natural Join), κτλ)

EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

Δυαδικοί Σχεσιακοί Τελεστές Θ-Συνένωση (Θ-JOIN)

Ο τελεστής συνένωσης που είδαμε μέχρι τώρα ονομάζεται
 Θ-join και αποτελεί την γενικευμένη περίπτωση:

R ⊗_oS

- Όπως είχαμε αναφέρει, η συνθήκη συνένωσης Θ μπορεί να είναι οποιαδήποτε Λογική (Boolean) έκφραση
- Σημειώστε ότι οποιαδήποτε λογική έκφραση μπορεί να μεταφραστεί σε Συζευκτική Κανονική Μορφή (Conjunctive Normal Form CNF) με χρήση λογικών ισοδυναμιών
 - CNF: Μια σύζευξη όρων, όπου κάθε όρος μπορεί να είναι μια διάζευξη κριτηρίων (λεκτικών στοιχείων)
 - Π.χ., (day<8/9/94 OR bid=5 OR sid=3) AND (rname='Paul' OR bid=5 OR sid=3)

 $\begin{array}{c} \underline{\mathsf{CNF}} \\ A \wedge B. \\ \neg A \wedge (B \vee C) \\ (A \vee B) \wedge (\neg B \vee C \vee \neg D) \wedge (D \vee \neg E) \mathsf{Zeinalipour} \; (\mathsf{Univ} \neg (B \vee C) \mathsf{Cyprus}) \; \circledcirc \end{array}$

Δυαδικοί Σχεσιακοί Τελεστές Συνένωση Ισότητας (EQUIJOIN)

- Συνένωση Ισότητας (EQUIJOIN)
 - **Εξειδίκευση** του τελεστή **θ-join:** ο τελεστής σύγκρισης περιορίζεται μόνο σε ισοδυναμία "="
 - $\Pi.\chi.$, DEPARTMENT $\otimes_{Mgr_ssn = SSN}$ EMPLOYEE
- Υπάρχει σαν ορισμός εφόσον οι περισσότερες συνενώσεις χρησιμοποιούν μόνο συγκρίσεις ισότητας
 - Στην πράξη ωστόσο δεν διαφέρει (σε άποψη σημειογραφίας ή υλοποίησης)
- Σημειώστε ότι στο αποτέλεσμα του Equijoin θα έχουμε δυο στήλες με την ίδια πληροφορία
 - Π.χ., Mgr_ssn και SSN

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

- Φυσική Συνένωση (Natural Join, Σύμβολο *)
 - Εξειδίκευση του τελεστή **equi-join** (δηλ., μόνο =) με τους εξής περιορισμούς:
 - 1. Οι **τελεσταίοι** έχουν το ίδιο **όνομα** στο **γνώρισμα** συνένωσης, π.χ.,
 - Department * Dept_Locations (Dnumber = Dnumber) OK
 - Department * Employee (SSN=Mgr_SSN) Μη-επιτρεπτό
 - Σε αυτή την περίπτωση πρέπει να γίνει πρώτα μετονομασία του εν λόγω πεδίου π.χ., ρ_{D'(Mgr_SSN->SSN)}(D) μετά
 Dept_Mgr=D' * E
 - 2. Το κοινό γνώρισμα εμφανίζεται στο αποτέλεσμα 1 φορά.

DEPT_MGR

Dname	Dnumber		Fname	Minit	Lname	Ssn	
Research	5		Franklin	Т	Wong	333445555	
Administration	4		Jennifer	S	Wallace	987654321	
Headquarters	1		James	E	Borg	888665555	
		-					

Παράδειγμα Ι:

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

DEPT_LOCS(...) ← DEPARTMENT * DEPT_LOCATIONS

DEPT_LOCS

Dname	Dname Dnumber		Mgr_start_date	Location	
Headquarters	1	888665555	1981-06-19	Houston	
Administration	4	987654321	1995-01-01	Stafford	
Research	5	333445555	1988-05-22	Bellaire	
Research	5	333445555	1988-05-22	Sugarland	
Research	5	333445555	1988-05-22	Houston	

Παράδειγμα II:

Για κάθε Project τύπωσε τις πληροφορίες του Department που ανήκει

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

PROJ_DEPT←

PROJECT * ρ_{Dnumber→Dnum}(DEPARTMENT)

PROJ DEPT

Pname	<u>Pnumber</u>	Plocation	Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

• Παράδειγμα III:

 $Q \leftarrow R(A,B,C,D) * S(C,D,E)$

- Η υπονοούμενη συνθήκη συνένωσης περιλαμβάνει όλα τα ζεύγη γνωρισμάτων με το ίδιο όνομα, για τα οποία δημιουργούμε μια σύζευξη (AND):
 - Δηλ., R.C=S.C AND R.D=S.D
- Το αποτέλεσμα διατηρεί μόνο μια φορά κάθε γνώρισμα, δηλ.:
 - Q(A,B,C,D,E)

Κλειστότητα Σχεσιακών Τελεστών Complete Set of Relational Operations

- Το σύνολο σχεσιακών τελεστών {σ, π, ∪, −, ρ, X} ονομάζεται κλειστό σύνολο (complete set) διότι κάθε έκφραση σχεσιακής άλγεβρας μπορεί να διατυπωθεί από τον συνδυασμό των πιο πάνω τελεστών:
- Π.χ., :

$$-R \cap S = (R \cup S) - ((R - S) \cup (S - R))$$

 $- R ⊗_{\text{sjoin condition}} S = σ_{\text{sjoin condition}} (R X S)$

