LISTA DE EXERCÍCIOS TRANFORMAÇÃO AFND-AFD E MINIMIZAÇÃO DE AUTÔMATOS

OBS1: Para os exercícios abaixo, onde são mostradas as descrições formais de autômato, considere que estão na seguinte ordem $\{E, \Sigma, \delta, i, F\}$

OBS2: Onde são mostrados δ (estado1,simbolo_do_alfabeto) = {estado2}, quer dizer que existe uma transição no autômato que sai do estado1 com simbolo_do_alfabeto, indo para o estado2, por exemplo, δ (q0,0) = {q1}, quer dizer que tem-se uma transição do estado q0 com o símbolo 0, que vai para o estado q1.

- 1) Quando dois autômatos são equivalentes?
- 2) Todo autômato finito determinístico (AFD) tem um autômato finito nãodeterminístico (AFND) equivalente? Explique.
- 3) Qual o poder computacional de um autômato finito não determinístico (AFND)? É o mesmo poder de um autômato finito determinístico (AFD)? Explique
- 4) Seja o AFND $M = \{\{q0,q1,q2\}, \{0,1\}, \delta, q0, \{q2\}\}\}, \text{ com } \delta \text{ dada por: }$

$$\delta(q0,0) = \{q1,q2\}$$
 $\delta(q0,1) = \{q0\}$
 $\delta(q1,0) = \{q0,q1\}$ $\delta(q1,1) = \{\}$
 $\delta(q2,0) = \{q0,q2\}$ $\delta(q2,1) = \{q1\}$

- a) Encontre um AFD equivalente ao AFND dado
- b) Encontre um AFD com um número mínimo de estados que seja equivalente ao AFND dado
- 5) Seja o AFND M = $\langle E, \Sigma, \delta, q0, F \rangle$, onde:

$$E = \{q0,q1,q2,q3\}$$

 $\Sigma = \{0,1\}$
 $F = \{q3\}$

e a função de transição δ dada por:

$$\begin{array}{ll} \delta(q0,0) = \{q0\} & \delta(q0,1) = \{q1\} \\ \delta(q1,0) = \{q2\} & \delta(q1,1) = \{q1,q3\} \\ \delta(q2,0) = \{ \} & \delta(q2,1) = \{q2,q3\} \\ \delta(q3,0) = \{q3\} & \delta(q3,1) = \{ \} \end{array}$$

- a) Construa um AFD M', a partir de M, tal que L(M) = L(M')
- 6) Construa um AFD a partir do AFND $M = \langle \{a,b,c,d\}, \{0,1\}, \delta, a, \{a\} \rangle$, onde δ é dada por:

	0	1
a	{a,b}	{a}
b	{c}	{c}
c	{d}	-

```
d
                                            {d}
                                                            {d}
       Seja M um AFND com M = (\{q0,q1,q2\}, \{0,1\}, \delta, q0, \{q1\}) e
7)
\delta(q0,0) = \{q0,q1\}
                                  \delta(q0,1) = \{q1\}
                                  \delta(q1,1) = \{q2\}
\delta(q1,0) = \{q2\}
\delta(q_{2,0}) = \{ \}
                                           \delta(q2,1) = \{q2\}
       Encontre o AFD equivalente
8)
       Seja um AFN com M = (\{q0,q1,q2\}, \{0,1\}, \delta, q0, \{q1\}) e
                                  \delta(q0,1) = \{q1\}
\delta(q0,0) = \{q0\}
                                  \delta(q1,1) = \{q1,q2\}
\delta(q1,0) = \{q2\}
\delta(q2,0) = \{q2\}
                                  \delta(q2,1) = \{q1\}
       Encontre o AFD equivalente
9)
       Seja M um AFND com M = (\{q0,q1,q2,qf\}, \{a,b\}, \delta, q0, \{qf\}) e
\delta(q0,a) = \{q1\}
                                  \delta(q0,b) = \{q2\}
                                  \delta(q1,b) = \{q1\}
\delta(q1,a) = \{q1,qf\}
\delta(q2,a) = \{q2,qf\}
                                  \delta(q2,b) = \{q2\}
\delta(qf,a) = \{qf\}
                                           \delta(qf,b) = \{qf\}
       Encontre o AFD equivalente
a)
10) Seja M um AFND com M = (\{q0,q1,q2,qf\}, \{a,b\}, \delta, q0, \{qf\}) e
\delta(q0,a) = \{q1\}
                                  \delta(q0,b) = \{q2\}
\delta(q1,a) = \{q1,qf\}
                                  \delta(q1,b) = \{q1\}
\delta(q2,a) = \{q2\}
                                  \delta(q2,b) = \{q2,qf\}
       Encontre o AFD equivalente
a)
11) Seja M um AFND com M = (\{q0,q1,q2,qf\}, \{a,b\}, \delta, q0, \{qf\}) e
\delta(q0,a) = \{q0,q1\}
                                  \delta(q0,b) = \{q0,q2\}
\delta(q1,a) = \{qf\}
                                           \delta(q1,b) = \{ \}
\delta(q2,a) = \{ \}
                                           \delta(q2,b) = \{qf\}
\delta(qf,a) = \{qf\}
                                           \delta(qf,b) = \{ \}
a)
       Encontre o AFD equivalente
12) Seja L = \{ab*c*\} reconhecida pelo AFND com M = (\{q0,q1,q2\}, \{a,b,c\}, \delta, q0,
\{q1,q2\}) e
\delta(q0,a) = \{q1,q2\}
\delta(q1,b) = \{q1,q2\}
\delta(q2,c) = \{q2\}
a)
       Encontre o AFD equivalente
13) Seja L = {w \in \{a,b,c,d\}^* \mid w \text{ possui a subcadeia abcd} \} reconhecida pelo AFND
com M = (\{q0,q1,q2,q3,q4\}, \{a,b,c,d\}, \delta, q0, \{q4\}) e
\delta(q0,a) = \{q0,q1\}
                                  \delta(q0,b) = \{q0\}
                                                             \delta(q0,c) = \{q0\}
                                                                                         \delta(q0,d) = \{q0\}
```

$\delta(q1,a) = \{ \}$	$\delta(q1,b) = \{q2\}$	$\delta(q1,c) = \{ \}$	$\delta(q1,d) = \{ \}$
$\delta(q2,a) = \{ \}$	$\delta(q2,b) = \{ \}$	$\delta(q2,c) = \{q3\}$	$\delta(q2,d) = \{ \}$
$\delta(q3,a) = \{ \}$	$\delta(q3,b) = \{ \}$	$\delta(q3,c) = \{ \}$	$\delta(q3,d) = \{q4\}$
$\delta(q4,a) = \{q4\}$	$\delta(q4,b) = \{q4\}$	$\delta(q4,c) = \{q4\}$	$\delta(q4,d) = \{q4\}$

- a) Encontre o AFD equivalente
- 14) Seja L = $\{w \in \{0,1\}^* \mid w \text{ possui o símbolo 1 na terceira posição a partir do final}\}$ reconhecida pelo AFND com M = $(\{q1,q2,q3,q4\},\{0,1\},\delta,q1,\{q4\})$ e

$$\begin{array}{ll} \delta(q1,0) = \{q1\} & \delta(q1,1) = \{q1,q2\} \\ \delta(q2,0) = \{q3\} & \delta(q2,1) = \{q3\} \\ \delta(q3,0) = \{q4\} & \delta(q3,1) = \{q4\} \end{array}$$

- a) Encontre o AFD equivalente
- 15) Considere um Autômato Finito Determinístico $M = (\{q0,q1,q2,q3,q4,q5\}, \{a,b\}, \delta, q0, \{q2,q3,q4\})$ e δ dado por:

δ	a	b
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

- a) Encontre o AFD M' mínimo
- 16) Considere um Autômato Finito Determinístico $M = (\{q0,q1,q2,q3,q4\}, \{a,b,c\}, \delta, q0, \{q2,q4\})$ e δ dado por:

δ	a	b	c
q0	q0	q1	q3
q1	1	q1	q2
q2	-	q3	q2
q3	q4	-	q3
q4	q4	q1	-

- a) Encontre o AFD M' mínimo
- 17) Considere um Autômato Finito Determinístico $M=(\{q0,q1,q2,q3,q4,q5\}, \{a,b\}, \delta, q0, \{q2,q3\})$ e δ dado por:

δ	a	b
q0	q1	q2
q1	q0 q4 q4	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5

- a) Encontre o AFD M' mínimo
- 18) Considere o Autômato Finito $M = (\{q1,q2,q3,q4\}, \{a,b\}, \delta, \{q1\}, \{q4\}) e \delta$ dado por:

δ	a	b
Q1	{q1,q2}	{q1}
Q2	{q3}	1
Q3	1	{q4}
Q4	-	-

- a) Encontre o AFD M' mínimo
- 19) Minimize os autômatos dos exercícios a seguir:
- a) Exercício 5
- b) Exercício 6
- c) Exercício 7
- d) Exercício 8
- e) Exercício 9
- f) Exercício 10
- g) Exercício 11
- h) Exercício 12
- i) Exercício 13
- j) Exercício 14