

Complex Network Systems

Structural metrics

Ilche Georgievski

2019/2020 Winter

Types

Graph-level metrics

- Density
- Paths and distances
- Neighbourhoods
- Egocentric network
- Clustering coefficient
- Transitivity
- Cores
- Cliques
- Communities

Node-level metrics

- Closeness centrality
- Betweenness centrality
- Degree centrality
- Eigenvector centrality
- Katz centrality
- PageRank

Density

Hoppe, B. and Reinelt, C. (2010) Social network analysis and the evaluation of leadership networks, *The Leadership Quarterly*, 21(4), pp. 600-619.

Density

- Ratio of existing edges to all possible edges
- Gives a sense of how closely knit the network is
- nx.density(G)

Paths

- Path
- Cycle
- Eulerian path
- Hamiltonian path

Path

$$P_{BK} = ?$$

$$P_{BK} = \{(B, F), (F, G), (G, K)\}$$

Cycle

$$P_{BB} = ?$$

$$P_{BB} = \{(B, A), (A, G), (G, E), (E, D), (D, C), (C, B)\}$$

Eulerian path

 $P_{Eulerian} = ?$

Eulerian path

 $P_{Eulerian} = ?$

Hamiltonian path

 $P_{Hamiltonian} = ?$

Distance measures

- Path length
- Shortest path
- Average path length
- Eccentricity
- Diameter
- Radius
- Center
- Periphery

Path length

$$n_{BK} = ?$$

$$n_{BK}=7$$

$$d_{BK} = ?$$

$$d_{BK}=3$$

$$d_{BK} = ?$$

$$d_{BK}=3$$

Distance

Geodesic

$$d_{BK} = ?$$

$$d_{BK}=3$$

How to determine the distance between two vertices?

Floyd-Warshall algorithm

$$D^{(0)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & \infty & 0 \end{bmatrix} \qquad D^{(1)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix} \qquad D^{(2)} = \begin{bmatrix} 0 & 4 & 6 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 0 & 4 & 6 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$

Take vertex A

$$D_{CB} = D_{CA} + D_{AB}$$

 $D_{CB} = 6 + 4 = 10$

Take vertex B

$$D_{AC} = D_{AB} + D_{BC}$$

 $D_{AC} = 4 + 2 = 6$

Take vertex C

Protein-protein interaction network of yeast

- Social network
 - finding friends-of-friends
 - six degree of separation

- nx.shortest_path
 - computes shortest paths given the whole graph, source node and target node

Eccentricity

- Maximum distance from a vertex to all other vertices
- Measure of how far from the center a vertex is
- nx.eccentricity(G,node)

Eccentricity of node H?

H to I	I	
H to J	I	
H to K	I	
H to L	I	
H to G	I	
H to A	2	
H to B	3	
H to C	4	
H to D	3	
H to E	2	

H to F

Diameter

$$d_{max} = ?$$

$$d_{max} = 5$$

Diameter

- Distance from one end of the network to another
 - maximum shortest path
- Gives a sense of the network's overall size
- nx.diameter(G)
 - works only if the graph G is connected

Average path length

$$\bar{d} = \frac{d_{AB} + d_{AC} + d_{AD} + d_{AE} + d_{BC} + d_{BD} + d_{BE} + d_{CD} + d_{CE} + d_{DE}}{10}$$

$$\bar{d} = \frac{1+2+1+2+1+2+3+1+2+1}{10} = 1.6$$

$$\bar{d} = ?$$

Other distance measures

- Radius of a network
 - it is not a half of the diameter!
 - nx.radius(G)
- Center of a network
 - all nodes whose eccentricity equals the radius
 - nx.center(G)
- Periphery of a network
 - all nodes whose eccentricity equals the diameter
 - nx.periphery(G)

Connected components

- Component is a set of vertices reachable from one vertex (in undirected graph)
- If every pair of nodes is connected by some path, then the network is *connected*

Neighbourhood

 Neighbourhood of a node is a set of all nodes adjacent to that node

Localised properties of network graphs

Usually convey little information

Neighbourhood

- Social network analysis pays special attention to neighbourhoods
 - relatives
 - close friends
 - colleagues
 - most significant alters of the ego

Egocentric network

- Ego is the central node
- Alters are all other nodes
- Should be much denser than a neighbourhood
 - some nodes may be connected only to the hub
 - others may form triangles that involve more neighbourhood members
- nx.ego_graph(G, node)

Triadic closure

If X is connected to Y and Y to Z, then X is connected to Z

Triadic closure

Social network

- if two people know the same person, they are likely to know each other
- triads or triangles essential units of social network analysis
- number of triads can be used to find clusters and communities of individuals that all know each other

Clustering coefficient

Protein-protein interaction network of yeast

Clustering coefficient

- Fraction of all possible triangles that contain a given node and exist
- Measure of the prevalence of triangles in a network
- Measure of "stardom"
- nx.clustering(G, node)

C = ?

Transitivity

$$\bar{C} = \frac{13}{42} \approx 0.310$$

$$C = \frac{3}{8} = 0.375$$

Transitivity

- · Ratio of all triangles to all, closed and "open", triangles
- Expresses how interconnected a graph is in terms of a ratio of actual over possible connections
- nx.transitivity(G)

Core-peripheral analysis

- Network consists of two sets of nodes
 - Core
 - nodes that are more or less tightly interconnected
 - Periphery
 - nodes that are tightly connected to the core, but weakly or not connected at all to the other peripheral nodes

• "Hairy" appearance

Hidalgo, C. A. and Klinger, B. and Barabási, A.-L. and Hausmann, R. (2007) The Product Space Conditions the Development of Nations, Science, 317(5837), pp. 482-487.

Figure 1 – Core-periphery networks in OTC markets

k-core

- k-core (k>0) is a subgraph of the original network graph such that each node in the subgraph has at least k-neighbours
- Main core is the one with the largest possible k
- Used to study the clustering structure of social networks, the evolution of random graphs, applied in bioinformatics, network visualisation, Internet structure, spreading of economic crises, etc.
- nx.k_core(G)

FIG. 1. An illustration of the layered structure of the global economic network of 206 countries of the world using the large corporation subsidiary relations.

k-core

- k-core construction process
 - remove all nodes from the original graph that have a degree smaller than k and all the incident nodes*
 - remove nodes that have fewer than k neighbors
 - iterate until no remaining node has fewer than k neighbors
 - the remaining nodes form the k-core

^{*}A node is incident to an edge if it is start or end of the edge. Two nodes are adjacent if they are incident to the same edge.

Cliques

- Zoom in in a search for smaller network building blocks
- k-clique is a subset of a k nodes such that each node is directly connected to each other node in the clique
 - complete subgraphs
 - the degree of a node in a k-clique is at least k-l

- nx.find_cliques(G)
- nx.enumerate_all_cliques(G)

Wikipedia, Clique (Graph Theory), November 28, 2018.

Sources

- Zinoviev, D.. Complex Network Analysis in Python: Recognize, Construct, Visualize, Analyze, Interpret, The Pragmatic Bookshelf, 2018.
- Clauset, A. Network Analysis and Modeling, CSCI5352, Santa Fe Institute (2017), http://tuvalu.santafe.edu/~aaronc/courses/5352/
- Ladd, J., Otis, J., Warren, C. N., and Weingart, S. Exploring and Analyzing Network
 Data with Python, The Programming Historian 6 (2017),
 https://programminghistorian.org/en/lessons/exploring-and-analyzing-network-data-with-python.
- Barabási, A. Network Science, http://networksciencebook.com