Lógica Computacional

DCC/FCUP

2020/21

Repetição

Numa dedução podemos sempre repetir uma conclusão já obtida. A essa regra chamaremos repetição:

$$\frac{\phi}{\phi}$$
R

Mostrar que $(p \land q) \lor q \vdash q$

$$\begin{array}{c|cccc}
1 & (p \land q) \lor q \\
2 & p \land q \\
3 & q & \land E, 2
\end{array}$$

$$\begin{array}{c|ccccc}
4 & q \\
\hline
q & R, 4 \\
5 & q & \lor E, 1, 2-3, 4-5
\end{array}$$

Uso de sub-deduções

1	$(p \wedge q) \vee (q \wedge r)$		
2		$p \wedge q$	
3		р	∧E, 2
4		q	∧E, 2
5		$q \wedge r$	
6		q	∧E, 5
7	q		∨E, 1, 2–4, 5–6
8	<i>q</i> ∧ <i>p</i>		∧I, 7, 3

Esta dedução está ERRADA! No passo 8 é usado uma fórmula que foi deduzida numa sub-dedução que já terminou.

Uma sub-dedução é iniciada com introdução de novas hipóteses (premissas) e as deduções

aí feitas dependem delas. Quando termina a sub-dedução, essas hipóteses deixam de ser

assumidas e portanto não se podem utilizar.

Regras de inferência DN: Negação

Eliminação Corresponde a uma das partes do princípio da dupla negação.

$$\frac{\neg\neg\phi}{\phi}\neg \mathbf{E}$$

Introdução

Esta regra corresponde a demonstrações por contradição.

Representamos por \bot uma contradição (p.e $\phi \land \neg \phi$).

$$egin{array}{c} [\phi] & dots \ egin{array}{c} dots \ -rac{dots}{\neg \phi}
eg \end{array}$$

Se supondo ϕ podemos deduzir uma contradição, então podemos deduzir $\neg \phi$ das premissas originais.

Regras de inferência DN: \bot

Se não considerarmos \bot como uma abreviatura de $\phi \land \neg \phi$, temos de ter uma regra para o introduzir:

Introdução (*)

$$\phi$$
 \vdots
 $\neg \phi$
 \bot

Se deduzimos ϕ e $\neg \phi$ então temos uma contradição.

Exemplo

Mostrar $\phi \vdash \neg \neg \phi$

$$\begin{array}{c|cccc}
1 & \phi \\
2 & \neg \phi \\
3 & \bot & \bot I, 1, 2 \\
4 & \neg \phi & \neg I, 2-3
\end{array}$$

Regras de inferência DN: \bot

Eliminação

$$\frac{\perp}{\phi}\bot$$
E

Se deduzimos uma contradição podemos deduzir qualquer fórmula.

Um conjunto de fórmulas Σ diz-se inconsistente se $\Sigma \vdash \bot$.

Notação de Fitch \neg e \bot

Introdução	I	Eliminação
7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} \vdots \\ \neg \neg \phi \\ \vdots \\ \phi & \neg E \end{vmatrix}$
	φ : φ : 	: ⊥ : φ

Regras de inferência DN: Implicação

Eliminação

Esta regra é habitualmente conhecida por modus ponens (em latim, modo que afirma) e corresponde a raciocínios condicionais:

$$\frac{\phi \quad \phi \to \psi}{\psi} \to \mathbf{E}$$

Se já deduzimos ϕ e $\phi \rightarrow \psi$ então podemos deduzir $\psi.$

Exercício

Mostrar que $p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$:

$$\begin{array}{c|cccc}
1 & p \rightarrow (q \rightarrow r) \\
2 & p \rightarrow q \\
3 & p \\
4 & q \rightarrow r & \rightarrow E, 1, 3 \\
5 & q & \rightarrow E, 2, 3 \\
6 & r & \rightarrow E, 4, 5
\end{array}$$

Regras de inferência DN: Implicação

Introdução (regra da dedução)

A regra para introduzir uma implicação necessita duma sub-dedução: supondo ϕ tentamos deduzir ψ . Se tal acontecer, terminamos a sub-dedução (retirando a suposição) e concluímos $\phi \to \psi$:

$$\begin{array}{c}
[\phi] \\
\vdots \\
\psi \\
\phi \to \psi
\end{array}$$

Exercício:

Mostrar que $(p \lor q) \to r \vdash p \to r$:

$$\begin{array}{c|cccc}
1 & (p \lor q) \to r \\
2 & p \\
3 & p \lor q & \lor I, 2 \\
4 & r & \to E, 1, 3 \\
5 & p \to r & \to I, 1, 2-4
\end{array}$$

Introdução		Eliminação
$\begin{vmatrix} \phi \\ \vdots \\ \psi \\ \phi \to \psi \end{vmatrix}$	→l	

Deduções sem premissas

Com a introdução da implicação (regra da dedução) podemos converter qualquer dedução com premissas numa dedução sem premissas:

Exercício: Mostrar $\vdash \phi \rightarrow \neg \neg \phi$

