# Yield and Fiber-Quality Potential for Second-Generation Cotton Hybrids

William R. Meredith, Jr.\*

#### ABSTRACT

Due primarily to the difficulty of producing  $F_1$  seed, use of heterosis in cotton (Gossypium hirsutum L.) has been limited. The objective of this study was to evaluate the potential of using  $F_2$  hybrids by comparing them with parents and  $F_1$ 's for yield, fiber quality, and interaction with environments. The genetic design was a half-diallel consisting of seven mid-South parents, 21  $F_1$ 's, and 21  $F_2$ 's. The 49 genotypes were grown in 1987 and 1988 at three sites near Stoneville, MS. At each site, April and May planting was made, resulting in a total of 12 environments. Yield, yield components, and fiber length, strength, and micronaire reading were determined from four replications. Yarn tenacity was determined from two 1987 tests, and short-fiber content from three 1987 tests. Average first-harvest yield was 594, 688, and 643 kg ha<sup>-1</sup> for the parents,  $F_1$ 's and  $F_2$ 's, respectively; total yield was 953, 1065, and 1025 kg ha<sup>-1</sup>, respec-

USDA-ARS, Stoneville, MS 38776. Received 4 Dec. 1989. \*Corresponding author.

Published in Crop Sci. 30:1045-1048 (1990).

tively. Average yarn tenacity was 130, 134, and 132 kN m kg<sup>-1</sup> for the parents,  $F_1$ , and  $F_2$  hybrids, respectively. Both  $F_1$  and  $F_2$  hybrids had significantly fewer short fibers than the parents. The highest-yielding parent was 'DES 119', which averaged 1031 kg ha<sup>-1</sup>, while 'Deltapine 50', the most commonly grown cultivar in the USA, averaged 959 kg ha<sup>-1</sup>. The highest-yielding  $F_1$  hybrids DES 119  $\times$  'Delcot 344' and DES 119  $\times$  'Coker 81–613' averaged 1145 and 1143 kg ha<sup>-1</sup>, respectively, ~15% higher than the average of DES 119 and Deltapine 50; their  $F_2$  hybrids averaged 8% higher. No differences in adaptive ability between parents,  $F_1$ 's, and  $F_2$ 's were detected. The results indicate that  $F_2$  hybrids have the genetic potential for increasing cotton yields and fiber quality.

The USE OF HETEROSIS in the form of  $F_1$  hybrids has long been an objective of cotton breeders. That sufficient magnitudes of heterosis are present in cotton to result in significant increased yields has been established (3,4,6,7). In a review of 14 studies (3), the

average increase in yield of  $F_1$  hybrids over the midparent was 18% and was due primarily to increases in number of harvestable bolls, 13.5%, and boll weight, 8.3%. Heterosis for fiber properties was small, averaging from 0 to 2% for most characteristics. The discovery of a male-sterile cytoplasm (5) and restorer factor (8) gave encouragement to breeders that hybrid cottons are obtainable. However, the complexities of developing good combiners with dependable fertility restoration present major problems for hybrid production. One method of circumventing this problem is to use male gametocides (6); however, due to the lack of a dependable and economic method of controlling the insect pollen carriers, it still has not been practical to produce  $F_1$  hybrids.

Similar problems in obtaining sufficient quantities of F<sub>1</sub> seed occurred in the early history of developing hybrid corn (Zea mays L.). This problem in corn was solved initially by using double-cross hybrids. The yield performance of some F<sub>2</sub> cotton hybrids suggested to some (4,6) that there exists a potential for the successful use of these hybrids. The F<sub>2</sub> hybrids are expected to express only 50% of the heterosis (F<sub>1</sub>-midparent) expressed in the  $F_1$  hybrid, and even less when heterosis is defined in terms of the highest-yielding parent. Meredith and Bridge (4) reported that one of six F<sub>2</sub> hybrids yielded 10% more lint than the best yielding parent, 'Deltapine 16', and equaled the F<sub>1</sub> hybrid. Olvey (6), after a 3-yr study in Arizona, concluded that some F<sub>2</sub> hybrids showed significant increases in seedling vigor and fiber properties, with yields 10 to 24% greater than the best-yielding parents.

The  $F_2$  hybrids, besides having only 50% of the  $F_1$  heterozygosity, consist of a very heterogeneous population. This heterogeneity might result in a greater range of adaptation for  $F_2$ 's, relative to their parents or  $F_1$  hybrids. Conversely, this heterogeneity might result in reduced fiber quality, such as increased short-fiber (<12.7 mm) content and reduced yarn tenacity.

The objectives of this study were to compare the yield and fiber properties of  $F_1$  and  $F_2$  hybrids and their interactions with environments. Of particular interest was the potential of  $F_2$  hybrids to be competitive with high-yielding cultivars across a range of environments.

# MATERIALS AND METHODS

In a half-diallel genetic design, seven cultivars and strains, with 21 F<sub>1</sub> and 21 F<sub>2</sub> hybrids, were grown on three sites near Stoneville in 1987 and 1988. The F<sub>1</sub> seed were produced by hand crosses at Stoneville; F2 seed were produced by selfing the  $F_1$  hybrids in Mexico during the 1986–1987 winter. The parents were 'Deltapine 8018', Deltapine 50 (DPL 50), Coker 81-613, DES 119, MD 65-11 Subne, MD 82ne, and Delcot 344. At each site-year, an early and late planting was made to give 12 test environments. The three soil types were a Beulah fine sandy loam (coarse-loamy, mixed thermic Typic Dystrochrepts); Dundee silty clay (fine-silty, mixed, thermic Aeric Ochraqualf); and a Dubbs silt loam (fine-silty, mixed thermic Typic Hapludalf). Planting dates were 20, 21, and 27 April and 3, 16, and 16 May in 1987 and 21, 21, 29, 29 April, and 19 and 19 May in 1988. The experimental design was a randomized complete block with four replications. The parents and environments were treated as random effects. Standard cultural methods for the Mississippi Delta were used.

The 49 genotypes were grown in one-row plots; rows were  $1.02 \times 5.55$  m. Seeding rate was 18 seed m<sup>-1</sup> of row. Fiftyboll samples were hand-harvested from each replication. The samples from the first two replications and last two replications were combined to form two 100-boll bulk samples from which yield components were determined and lint was obtained for fiber quality determinations. The yield components were lint percentage, boll weight (sample seedcotton weight, g/50 boll), and seed weight. Lint yields were determined as seed-cotton weight × lint percentage. Span length (50 and 2.5%), fiber strength  $(T_1)$ , elongation  $(E_1)$ , and micronaire were determined from all tests. However, shortfiber content was determined from only three 1987 tests, and yarn tenacity was determined from two 1987 tests. Shortfiber content was determined by the Peyer Al101-Almeter<sup>1</sup> at the USDA-ARS Ginning Laboratory, Stoneville.

## RESULTS AND DISCUSSION

The yield superiority of  $F_1$  hybrids over the  $F_2$  and their parents' yield is evident (Table 1, Fig. 1). For  $F_1$ and F<sub>2</sub> hybrids, first-harvest yield averaged 15.8 and 7.6% higher, and total yield 11.8 and 7.6% higher, respectively, than the parental averages. It is evident, as in a previous study (9), that significant heterosis in cotton is initiated early in fruiting development. Selection of seven parents from mid-South breeding programs exhibiting good productivity was the cause of the lower heterosis expression of 11.8%, compared with the average of 18.0% from 14 studies reported by Meredith (3). Of major interest in the present study was the yield comparison of F<sub>2</sub> hybrids with established cultivars. The highest-yielding cultivar, DES 119, averaged 1031 kg ha<sup>-1</sup>; DPL 50, the cultivar most planted in the USA, averaged 959 kg ha<sup>-1</sup>(1). It is evident from Fig. 1 that several F<sub>2</sub> hybrids were superior in yield to well-established cultivars. The highestyielding  $F_1$  hybrids, DES 119  $\times$  Delcot 344 and DES  $119 \times \text{Coker } 81-613$ , averaged 1145 and 1143 kg ha<sup>-1</sup> respectively, or  $\sim 15\%$  higher than the average of DES 119 and DPL 50; their F<sub>2</sub> hybrids averaged 8% higher.

4350635, 1990, 5. Downloaded from https://acsess.onlinelibrary.wiley.com/doi/10.2135/coppsci199.0011 183X003000050018x by North Carolina State Universit, Wiley Online Library on [27.07.2023]. See the Terms and Conditions (https://inelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Cereater Commons

Assuming that a dominance gene action causes heterosis, the  $F_2$  yield was expected to lose 50% of the heterosis expressed by the  $F_1$ . However, for total yield, the  $F_2$  produced significantly more than expected. Also, a significant  $F_1$  vs.  $F_2 \times$  cross interaction (F = 2.0) was detected (Fig. 1). The  $F_2$  hybrids involving the lowest-yielding parent, MD 65-11 Subne, tended to have the largest deviation from the 50% expected reduction in heterosis. The inbreeding depression of the highest-yielding  $F_1$  hybrids was about what was expected based on a 50% decrease in dominance from

Table 1. Average parental,  $F_1$ , and  $F_2$  yield and yield components in cotton, from a seven-parent half-diallel across 12 environments.

| Generation                                  | Lint yield              |                      |                         | Weight               |                      |  |
|---------------------------------------------|-------------------------|----------------------|-------------------------|----------------------|----------------------|--|
|                                             | Total                   | First<br>harvest     | Lint                    | Boll                 | Seed                 |  |
|                                             |                         |                      | %                       | mg                   |                      |  |
| Parents<br>F <sub>1</sub><br>F <sub>2</sub> | 953c†<br>1065a<br>1025b | 594c<br>688a<br>643b | 35.7a<br>35.9b<br>35.7a | 500a<br>541c<br>522b | 104a<br>106c<br>105b |  |

<sup>†</sup> Within columns means followed by the same letter are not significantly different at the 0.01 probability level, as indicated by a t-test.

<sup>&</sup>lt;sup>1</sup> Mention of a proprietary product does not constitute endorsement by the USDA, nor does it imply approval to the exclusion of other suitable products not mentioned.

14350633, 1990, 5, Downloaded from https://acsess.onlinelibrary.wiley.com/doi/10.2135/cropsei1990.0011183X003000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X003000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X003000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X0030000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X0030000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X003000050018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X003000050018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.0011183X00300050018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.001183X00300050018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.001183X003000050018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.0018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.0018x by North Carolina State University (https://onlinelibrary.com/doi/10.2135/cropsei1990.0018x by North Carolina State Uni



Fig. 1. Average yield of cotton parents and F<sub>1</sub> and F<sub>2</sub> hybrids across 12 environments.

the  $F_1$  to  $F_2$ . Several crosses, however, showed little inbreeding depression (Fig. 1). Other authors (4,6) have reported high-yielding  $F_2$  hybrids that produced greater yields than expected on the basis of their  $F_1$  and parental performance. Significant deviations of the  $F_2$  from expected could be due to nonadditive gene action other than dominance, or plant competition within the  $F_2$  population. These results do show that for earliness and total yield,  $F_2$  hybrids can be competitive with established cultivars.

Heterosis for yield components was 0.6, 8.2, and 1.9% for lint percentage, boll weight, and seed weight, respectively. This is similar to the average of several studies summarized previously (3).

A second objective was to compare the consistency of performance of the parents,  $F_1$ 's and  $F_2$ 's across environments. To aid in summarizing the data, the two years, three soil types, and two planting dates were combined into 12 environments for analysis. Large mean squares for environments for yield and its components are evident (Table 2). Total yield ranged from an average of 691 to 1384 kg ha<sup>-1</sup>. Since  $F_2$  populations have 50% of the heterozygosity of the  $F_1$  and are very heterogeneous, it might be assumed that they would be more adaptable or stable to variable environments than the homogenous parents and  $F_1$ 's. The results in Table 2 show significant interactions for first-harvest and total yield for parents vs. hybrids and

Table 2. Yield and yield component mean squares for seven-parent F<sub>1</sub> and F<sub>2</sub> half-diallels, in cotton.

| Source                           |      | Mean squares† |                        |        |          |          |  |
|----------------------------------|------|---------------|------------------------|--------|----------|----------|--|
|                                  | df   | Total yield   | First-harvest<br>yield | Lint % | Boll wt. | Seed wt. |  |
| Environments (E)                 | 11   | 12 333**      | 15 021**               | 8657** | 668**    | 5685**   |  |
| P vs. Hybrids (Hyb.)             | 1    | 3 749**       | 1 717**                | 35     | 1408**   | 333**    |  |
| Hyb.                             | 1    | 1 229**       | 1 194**                | 379    | 787**    | 173**    |  |
| Parents (P)                      | 6    | 428**         | 643**                  | 4368** | 1012**   | 578**    |  |
|                                  | 20   | 300**         | 590**                  | 1491** | 743**    | 283**    |  |
| F <sub>1</sub><br>F <sub>2</sub> | 20   | 191**         | 425**                  | 1234** | 788**    | 326**    |  |
| P vs. Hyb. × E                   | 11   | 67**          | 62**                   | 51     | 345**    | 38*      |  |
| Hyb. × E                         | 11   | 178**         | 96**                   | 149    | 16       | 17       |  |
| $\mathbf{P} \times \mathbf{E}$   | 66   | 22            | 34**                   | 66     | 12       | 28*      |  |
| $F_1 \times E$                   | 220  | 38**          | 37**                   | 53     | 20       | 29*      |  |
| $F_2 \times E$                   | 220  | 30**          | 27**                   | 217**  | 18       | 28*      |  |
| Error                            | 1728 | 19            | 18                     | 127    | 18       | 21       |  |
| Combining ability‡               |      |               |                        |        |          |          |  |
| F <sub>1</sub> GCA               | 6    | 918**         | 1 855**                | 4351** | 168**    | 845**    |  |
| F <sub>2</sub> GCA               | 6    | 548**         | 1 363**                | 2927** | 101**    | 885**    |  |
| F <sub>1</sub> SCA               | 14   | 357**         | 49**                   | 265**  | 34**     | 43**     |  |
| F <sub>2</sub> SCA               | 14   | 37**          | 23                     | 508**  | 34**     | 87**     |  |
| $F_1$ GCA $\times$ E             | 66   | 64**          | 57**                   | 90     | 32**     | 44**     |  |
| $F_2$ GCA $\times$ E             | 66   | 39**          | 47**                   | 213**  | 29**     | 40**     |  |
| $F_1 SCA \times E$               | 154  | 12            | 29**                   | 33     | 16       | 22       |  |
| $F_2$ SCA $\times$ E             | 154  | 26**          | 19                     | 219**  | 13       | 22       |  |

<sup>\*,\*\*</sup> Significant at the 0.05 and 0.01 probability levels, respectively, by an F-test.

<sup>†</sup> For lint %, boll and seed weight, df = 588 for error. Environments for first-harvest yield were nine (8 df), and the df involving E interactions should be adjusted accordingly.

<sup>#</sup> GCA = general combining ability; SCA = specific combining ability.

Table 3. Average parental, F1, and F2 cotton fiber properties† from a seven-parent half-diallel across 12 environments.

|                           | Span length |       |           |                |       | Yarn      | Short fiber |      |  |
|---------------------------|-------------|-------|-----------|----------------|-------|-----------|-------------|------|--|
| Genotype                  | 50%         | 2.5%  | $T_i$     | $\mathbf{E_1}$ | Mic.  | tenacity  | no.         | wt.  |  |
|                           | mm          |       | kN m kg-1 | %              |       | kN m kg-1 | q           | %    |  |
| Parents                   | 14.4b‡      | 29.4c | 21.1c     | 7.8a           | 4.02a | 130c      | 7.3a        | 3.5a |  |
| $\mathbf{F}_{\mathbf{t}}$ | 14.5b       | 29.9a | 21.5a     | 7.6b           | 3.97c | 134a      | 6.2b        | 2.9Ъ |  |
| $\mathbf{F_2}$            | 14.5b       | 29.7ъ | 21.3b     | 7.6b           | 4.00b | 132b      | 5.8Ъ        | 2.8b |  |

 $<sup>\</sup>dagger$  T<sub>1</sub> = fiber strength; E<sub>1</sub> = elongation; mic. = micronaire reading. Within columns, means followed by the same letter are not significantly different at the 0.01 probability level, as indicated by a *t*-test.



Fig. 2. Average yield in each of 12 environments for the cotton parents and 21 F<sub>1</sub> and 21 F<sub>2</sub> hybrids in a seven-parent half-diallel crossing design.

between F<sub>1</sub> and F<sub>2</sub> performances. Significant interactions within the 21 F<sub>1</sub> and 21 F<sub>2</sub> hybrids were also detected for first-harvest and total yield. The parent × environment interaction was significant for first harvest only. No consistent differences in performance comparing the parents,  $F_1$ , and  $F_2$  hybrids are evident for yield (Fig. 2). The question concerning the stability across environments of parents, F<sub>1</sub>, and F<sub>2</sub> remains open, as it probably will require a greater range of climates, soils, pests, and management environments to determine whether F<sub>2</sub> hybrids are more adaptable than their parents or F<sub>1</sub> hybrids. In general, the interactions of yield components with environments were of lesser magnitude than for total yield.

The genetic design of the present study also allows for the partitioning of the  $F_1$  and  $F_2$  sources of variability to general (GCA) and specific combining ability (SCA) (Table 2). The genetic expectations for the  $F_1$ and F<sub>2</sub> are the same, except that the dominance component in the  $F_2$  SCA is 25% of that in the  $F_1$  (2). Large effects due to SCA are evident for yield in the F<sub>1</sub>, but are generally smaller, although still significant, for yield components. The environmental interactions of  $F_1$  and  $F_2$  yield components are similar in magnitude except for lint percentage, which has large GCA and SCA × environment interactions. The combining ability analyses reinforce the analysis of means, as they indicate significant nonadditive gene action for yield.

The last objective of this study was to investigate the influence of F<sub>2</sub> hybrids on fiber quality. Previous gene action and heterosis studies (3) have indicated that there is little nonadditive gene action for fiber length, strength, and fineness involved within upland cotton crosses. The measurements of fiber quality characteristics in this study reinforce the previous studies (Table 3). While the  $F_2$  hybrids had significantly longer, stronger, and finer lint than the parents, the improvements were too small to be of much practical value. The concerns of using  $F_2$  hybrids are that, since there is great genetic variability within an F<sub>2</sub> population, the resulting lack of uniformity may result in reduced spinning efficiency and greater short-fiber content. The F<sub>1</sub> produced the highest yarn tenacity, followed by the  $F_2$  and the parents. Both the  $F_1$  and F<sub>2</sub> had significantly lower short-fiber content than the

4350653, 1990, 5, Downloaded from https://access.onlinelibrary.wiley.com/doi/10.2135/cropsci1990.0011183X003000050018x by North Carolina State Universit, Wiley Online Library on [27/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

This study shows that  $F_2$  hybrids have the potential of competing with successful pure-line cotton cultivars for yield and fiber quality, and that their stability of yield performance is at least equal to that of established cultivars. The commercial use of F<sub>2</sub> hybrids is most likely to depend upon the logistics of seed production and the willingness of the cotton industry to accept change.

## REFERENCES

1. Mather, K., and J.L. Jinks. 1971. Biometrical genetics. 2nd ed.

Mantel, K., and J.L. Jinks. 1971. Dionetrical genetics. 2nd cd. Cornell Univ. Press, Ithaca, NY.
Meredith, W.R., Jr. 1984. Quantitative genetics. p. 131-150. In R.J. Kohel and C.F. Lewis (ed.) Cotton. Agron. Monogr. 24. ASA, CSSA, and SSSA, Madison, WI.
Meredith, W.R., Jr., and R.R. Bridge. 1972. Heterosis and gene action in cotton, Gossypium hirsutum L. Crop Sci. 12:304-310.
Meyer, V.G. 1975. Male sterility from Gossypium harknessii. I. Hered. 66:23-27.

. Hered. 66:23-2

Olvey, J.M. 1986. Performance and potential of F<sub>2</sub> hybrids. p. 101-102. In T.C. Nelson (ed.) Beltwide Cotton Prod. Res. Conf., Las Vegas, NV. 4-9 Jan. 1986. Natl. Cotton Council of Am., Memphis, TN.

6. Sheetz, R.H., and J.E. Quisenberry. 1986. Heterosis and combining ability effects in upland cotton hybrids. p. 94-98. In T.C. Nelson (ed.) Beltwide Cotton Prod. Res. Conf., Las Vegas, NV. 4-9 Jan. 1986. Natl. Cotton Council of Am., Memphis, TN.

U.S. Department of Agriculture. Cotton varieties planted 1988. USDA Agric. Marketing Serv., Cotton Div. Memphis, TN.
Weaver, D.M., and J.B. Weaver, Jr. 1977. Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland cotton.

Crop Šci. 17:497–499

Wells, R., and W.R. Meredith, Jr. 1986. Heterosis in upland cotton: I. Growth and leaf area partitioning. Crop. Sci. 26:1119-1123.