Package 'ashr'

February 22, 2022

Encoding UTF-8

Type Package

Version 2.2-54 **Date** 2022-02-22

Title Methods for Adaptive Shrinkage, using Empirical Bayes

Description The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, ``False discovery rates: a new deal", <DOI:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).

Depends R (>= 3.1.0)

Imports Matrix, stats, graphics, Rcpp (>= 0.10.5), truncnorm, mixsqp, SQUAREM, etrunct, invgamma

Suggests testthat, knitr, rmarkdown, ggplot2, REBayes

LinkingTo Rcpp

License GPL (>= 3)

NeedsCompilation yes

URL https://github.com/stephens999/ashr

BugReports https://github.com/stephens999/ashr/issues

VignetteBuilder knitr **RoxygenNote** 7.1.2

Author Matthew Stephens [aut],
Peter Carbonetto [aut, cre],
Chaoxing Dai [ctb],
David Gerard [aut],
Mengyin Lu [aut],
Lei Sun [aut],
Jason Willwerscheid [aut],
Nan Xiao [aut],
Mazon Zeng [ctb]

Repository CRAN

Date/Publication 2022-02-22 16:10:07 UTC

R topics documented:

ash
ashci
ashr
ash_pois
calc_loglik
calc_logLR
calc_mixmean
calc_mixsd
calc_null_loglik
calc_null_vloglik
calc_vloglik
calc_vlogLR
cdf.ash
cdf_conv
cdf_post
compute_lfsr
comp_cdf
comp_cdf_conv
comp_cdf_conv.normalmix
comp_cdf_conv.unimix
comp_cdf_post
comp_dens
comp_dens_conv
comp_dens_conv.normalmix
comp_dens_conv.unimix
comp_mean
comp_mean.normalmix
comp_mean.tnormalmix
comp_mean2
comp_postmean
comp_postmean2
comp_postprob
comp_postsd

comp_sd	
comp_sd.normalmix	. 26
comp_sd.tnormalmix	. 27
cxxMixSquarem	. 27
dens	. 28
dens_conv	
estimate_mixprop	
gen_etruncFUN	
get_density	
get_lfsr	
c –	
get_post_sample	
igmix	
lik_binom	
lik_logF	
lik_normal	. 35
lik_normalmix	. 36
lik_pois	. 36
lik_t	. 37
loglik_conv	
loglik_conv.default	
log_comp_dens_conv	
log_comp_dens_conv.normalmix	
log_comp_dens_conv.normammx	
log_comp_dcns_conv.ummx)7
mixcdf	. 40
mixcdf	. 40 . 40
mixcdf	. 40 . 40 . 41
mixcdf mixcdf.default mixEM mixIP	. 40 . 40 . 41 . 42
mixcdf mixcdf.default mixEM mixIP mixmean2	. 40 . 40 . 41 . 42 . 43
mixcdf	. 40 . 40 . 41 . 42 . 43
mixcdf mixcdf.default mixEM mixIP mixmean2	. 40 . 40 . 41 . 42 . 43 . 43
mixcdf	. 40 . 40 . 41 . 42 . 43 . 43
mixcdf . mixcdf.default	. 40 . 40 . 41 . 42 . 43 . 43 . 44
mixcdf . mixcdf.default . mixEM . mixIP . mixmean2 . mixprop . mixSQP . mixVBEM .	. 40 . 40 . 41 . 42 . 43 . 43 . 44 . 44
mixcdf . mixcdf.default . mixEM . mixIP . mixmean2 . mixprop . mixSQP . mixVBEM . my_e2truncbeta .	. 40 . 40 . 41 . 42 . 43 . 43 . 44 . 44 . 45
mixcdf	. 40 . 40 . 41 . 42 . 43 . 44 . 44 . 45 . 46
mixcdf . mixcdf.default . mixEM . mixIP . mixmean2 . mixprop . mixSQP . mixVBEM . my_e2truncbeta . my_e2truncgamma . my_e2truncnorm . my_e2trunct .	. 40 . 40 . 41 . 42 . 43 . 44 . 44 . 45 . 46 . 47
mixcdf . mixcdf.default . mixEM . mixIP . mixmean2 . mixprop . mixSQP . mixVBEM . my_e2truncbeta . my_e2truncnorm . my_e2trunct . my_etruncbeta .	. 40 . 40 . 41 . 42 . 43 . 43 . 44 . 45 . 46 . 46 . 47
mixcdf	. 40 . 41 . 42 . 43 . 43 . 44 . 45 . 46 . 46 . 47 . 48
mixcdf	. 40 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48
mixcdf mixcdf.default mixEM mixIP mixmean2 mixprop mixSQP mixVBEM my_e2truncbeta my_e2truncorm my_e2trunct my_etruncbeta my_etruncbeta my_etruncdeta my_et	. 40 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 48 . 48
mixcdf mixcdf.default mixEM mixIP mixmean2 mixprop mixVBEM my_e2truncbeta my_e2truncpamma my_e2trunct my_etruncbeta my_etruncbeta my_etruncpamma my_etr	. 40 . 41 . 42 . 43 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48 . 48 . 49
mixcdf mixcdf.default mixEM mixIP mixmean2 mixprop mixSQP mixVBEM my_e2truncbeta my_e2truncgamma my_e2trunct my_etruncbeta my_etruncbeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etrunclogf my_etruncnorm my_etrunclogf my_etrunct my_vtruncnorm	. 40 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48 . 48 . 49 . 50
mixcdf . mixEM . mixIP . mixmean2 . mixprop . mixVBEM . my_e2truncbeta . my_e2truncorm . my_e2trunct . my_etruncbeta . my_etruncdf . my_etruncdf . my_etruncdf . my_etrunclogf . my_etrunct . my_etrunct . my_etrunct . my_etrunct . my_etrunct . my_etrunclogf . my_etrunct . my_vtruncnorm . mocomp .	. 40 . 41 . 42 . 43 . 44 . 44 . 45 . 46 . 47 . 47 . 48 . 48 . 49 . 50 . 51
mixcdf mixEM mixIP mixmean2 mixprop mixVBEM my_e2truncbeta my_e2truncorm my_etruncbeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etruncdeta my_etrunclogf my_etrunclogf my_etruncorm my_etrunct my_etrunct my_vtruncorm my_vtruncorm mocomp mcomp mcomp	. 40 . 41 . 42 . 43 . 44 . 44 . 45 . 46 . 47 . 47 . 48 . 48 . 49 . 50 . 51
mixcdf mixEM mixIP mixmean2 mixprop mixSQP mixVBEM my_e2truncbeta my_e2truncorm my_e2trunct my_etruncgamma my_etruncgamma my_etruncdef my_etrunclogf my_etrunct my_etrunct my_etrunct my_etrunct my_etruncorm my_etrunct my_etruncorm my_etrunct my_etrunct my_etrunct my_vtruncnorm mocomp ncomp	. 40 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51
mixedf mixedf.default mixEM mixIP mixIP mixmean2 mixprop mixSQP mixVBEM my_e2truncbeta my_e2truncgamma my_e2trunct my_e2trunct my_etruncbeta my_etruncbeta my_etruncgamma my_etruncdeta my_etruncgamma my_etruncdeta my_etruncdeta my_etruncdeta my_etruncorm my_etrunclogf my_etrunct my_vtruncnorm my_etrunct my_vtruncnorm ncomp ncomp ncomp.default normalmix pcdf_post	. 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 51
mixcdf mixEM mixIP mixmean2 mixprop mixSQP mixVBEM my_e2truncbeta my_e2truncorm my_e2trunct my_etruncgamma my_etruncgamma my_etruncdef my_etrunclogf my_etrunct my_etrunct my_etrunct my_etrunct my_etruncorm my_etrunct my_etruncorm my_etrunct my_etrunct my_etrunct my_vtruncnorm mocomp ncomp	. 40 . 41 . 42 . 43 . 44 . 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 51

plot_diagnostic	54
pm_on_zero	55
posterior_dist	55
postmean	56
postmean2	56
postsd	
post_sample	57
post_sample.normalmix	57
post_sample.unimix	58
print.ash	58
prune	59
$qval. from. lfdr \ \dots $	59
set_data	60
summary.ash	60
tnormalmix	61
unimix	61
vcdf_post	62
w_mixEM	63

64

ash

Index

Adaptive Shrinkage

Description

Implements Empirical Bayes shrinkage and false discovery rate methods based on unimodal prior distributions.

Usage

```
nullweight = 10,
  pointmass = TRUE,
 prior = c("nullbiased", "uniform", "unit"),
 mixsd = NULL,
 gridmult = sqrt(2),
 outputlevel = 2,
 g = NULL,
  fixg = FALSE,
 mode = 0,
  alpha = 0,
 grange = c(-Inf, Inf),
  control = list(),
 lik = NULL,
 weights = NULL,
 pi_thresh = 1e-10
)
```

Arguments

betahat

a p vector of estimates

sebetahat

a p vector of corresponding standard errors

mixcompdist

distribution of components in mixture used to represent the family G. Depending on the choice of mixture component, the family G becomes more or less flexible. Options are:

uniform G is (approximately) any symmetric unimodal distribution

normal G is (approximately) any scale mixture of normals

halfuniform G is (approximately) any unimodal distribution

+uniform G is (approximately) any unimodal distribution with support constrained to be greater than the mode.

-uniform G is (approximately) any unimodal distribution with support constrained to be less than the mode.

halfnormal G is (approximately) any scale mixture of truncated normals where the normals are truncated at the mode

If you are happy to assume a symmetric distribution for effects, you can use "uniform" or "normal". If you believe your effects may be asymmetric, use "halfuniform" or "halfnormal". If you want to allow only positive/negative effects use "+uniform"/"-uniform". The use of "normal" and "halfnormal" is permitted only if df=NULL.

df

appropriate degrees of freedom for (t) distribution of (betahat-beta)/sebetahat; default is NULL which is actually treated as infinity (Gaussian)

Further arguments of function ash to be passed to ash.workhorse.

method

specifies how ash is to be run. Can be "shrinkage" (if main aim is shrinkage) or "fdr" (if main aim is to assess false discovery rate or false sign rate (fsr)). This is simply a convenient way to specify certain combinations of parameters: "shrinkage" sets pointmass=FALSE and prior="uniform"; "fdr" sets pointmass=TRUE and prior="nullbiased".

optmethod specifies the function implementing an optimization method.

nullweight scalar, the weight put on the prior under "nullbiased" specification, see prior

pointmass Logical, indicating whether to use a point mass at zero as one of components for

a mixture distribution.

prior string, or numeric vector indicating Dirichlet prior on mixture proportions (de-

faults to "uniform", or (1,1...,1); also can be "nullbiased" (nullweight,1,...,1) to

put more weight on first component), or "unit" (1/K,...,1/K) [for optmethod=mixVBEM

version only].

mixsd Vector of standard deviations for underlying mixture components.

gridmult the multiplier by which the default grid values for mixed differ by one another.

(Smaller values produce finer grids.)

outputlevel Determines amount of output. There are several numeric options: 0 = just fit-

ted g; 1 = also PosteriorMean and PosteriorSD; 2 = everything usually needed; 3 = also include results of mixture fitting procedure (including matrix of log-likelihoods used to fit mixture). 4 and 5 are reserved for outputting additional data required by the (in-development) flashr package. The user can also specify

the output they require in detail (see Examples).

g The prior distribution for beta. Usually this is unspecified (NULL) and estimated

from the data. However, it can be used in conjuction with fixg=TRUE to specify the g to use (e.g. useful in simulations to do computations with the "true" g). Or, if g is specified but fixg=FALSE, the g specifies the initial value of g used

before optimization, (which also implicitly specifies mixcompdist).

fixg If TRUE, don't estimate g but use the specified g - useful for computations under

the "true" g in simulations.

mode either numeric (indicating mode of g) or string "estimate", to indicate mode

should be estimated, or a two dimension numeric vector to indicate the interval

to be searched for the mode.

alpha Numeric value of alpha parameter in the model.

grange Two dimension numeric vector indicating the left and right limit of g. Default is

c(-Inf, Inf).

control A list of control parameters passed to optmethod.

lik Contains details of the likelihood used; for general ash. Currently, the follow-

ing choices are allowed: normal (see function lik_normal(); binomial likelihood (see function lik_binom); likelihood based on logF error distribution (see function lik_logF); mixture of normals likelihood (see function lik_normalmix); and

Poisson likelihood (see function lik_pois).

weights a vector of weights for observations; use with optmethod = "w_mixEM"; this is

currently beta-functionality.

pi_thresh a threshold below which to prune out mixture components before computing

summaries (speeds up computation since empirically many components are usually assigned negligible weight). The current implementation still returns the full

fitted distribution; this only affects the posterior summaries.

Details

The ash function provides a number of ways to perform Empirical Bayes shrinkage estimation and false discovery rate estimation. The main assumption is that the underlying distribution of effects is unimodal. Novice users are recommended to start with the examples provided below.

In the simplest case the inputs to ash are a vector of estimates (betahat) and their corresponding standard errors (sebetahat), and degrees of freedom (df). The method assumes that for some (unknown) "true" vector of effects beta, the statistic (betahat[j]-beta[j])/sebetahat[j] has a \$t\$ distribution on \$df\$ degrees of freedom. (The default of df=NULL assumes a normal distribution instead of a t.)

By default the method estimates the vector beta under the assumption that beta ~ g for a distribution g in G, where G is some unimodal family of distributions to be specified (see parameter mixcompdist). By default is to assume the mode is 0, and this is suitable for settings where you are interested in testing which beta[j] are non-zero. To estimate the mode see parameter mode.

As is standard in empirical Bayes methods, the fitting proceeds in two stages: i) estimate g by maximizing a (possibly penalized) likelihood; ii) compute the posterior distribution for each beta[j] | betahat[j],sebetahat[j] using the estimated g as the prior distribution.

A more general case allows that beta[j]/sebetahat[j]^alpha | sebetahat[j] ~ g.

Value

ash returns an object of class "ash", a list with some or all of the following elements (determined by outputlevel)

fitted_g fitted mixture loglik log P(Dlfitted_g)

logLR log[P(Dlfitted_g)/P(Dlbeta==0)]
result A dataframe whose columns are:

NegativeProb A vector of posterior probability that beta is negative.

PositiveProb A vector of posterior probability that beta is positive.

lfsr A vector of estimated local false sign rate.

lfdr A vector of estimated local false discovery rate.

qvalue A vector of q values.

svalue A vector of s values.

PosteriorMean A vector consisting the posterior mean of beta from the mixture.

PosteriorSD A vector consisting the corresponding posterior standard deviation.

a call in which all of the specified arguments are specified by their full names

a list containing details of the data and models used (mostly for internal use)

fit_details a list containing results of mixture optimization, and matrix of component log-

likelihoods used in this optimization

Functions

• ash.workhorse: Adaptive Shrinkage with full set of options.

See Also

ashci for computation of credible intervals after getting the ash object return by ash()

Examples

```
beta = c(rep(0,100), rnorm(100))
sebetahat = abs(rnorm(200,0,1))
betahat = rnorm(200,beta,sebetahat)
beta.ash = ash(betahat, sebetahat)
names(beta.ash)
head(beta.ash$result) # the main dataframe of results
head(get_pm(beta.ash)) # get_pm returns posterior mean
head(get_lfsr(beta.ash)) # get_lfsr returns the local false sign rate
graphics::plot(betahat,get_pm(beta.ash),xlim=c(-4,4),ylim=c(-4,4))
## Not run:
# Why is this example included here? -Peter
CIMatrix=ashci(beta.ash,level=0.95)
print(CIMatrix)
## End(Not run)
# Illustrating the non-zero mode feature.
betahat=betahat+5
beta.ash = ash(betahat, sebetahat)
graphics::plot(betahat,get_pm(beta.ash))
betan.ash=ash(betahat, sebetahat, mode=5)
graphics::plot(betahat,get_pm(betan.ash))
summary(betan.ash)
# Running ash with different error models
beta.ash1 = ash(betahat, sebetahat, lik = lik_normal())
beta.ash2 = ash(betahat, sebetahat, lik = lik_t(df=4))
e = rnorm(100) + log(rf(100, df1=10, df2=10)) # simulated data with log(F) error
e.ash = ash(e,1,lik=lik_logF(df1=10,df2=10))
# Specifying the output
beta.ash = ash(betahat, sebetahat, output = c("fitted_g","logLR","lfsr"))
#Running ash with a pre-specified g, rather than estimating it
beta = c(rep(0,100), rnorm(100))
sebetahat = abs(rnorm(200,0,1))
betahat = rnorm(200,beta,sebetahat)
true_g = normalmix(c(0.5,0.5),c(0,0),c(0,1)) # define true g
## Passing this g into ash causes it to i) take the sd and the means
## for each component from this g, and ii) initialize pi to the value
## from this g.
beta.ash = ash(betahat, sebetahat,g=true_g,fixg=TRUE)
# running with weights
```

ashci 9

ashci

Credible Interval Computation for the ash object

Description

Given the ash object returned by the main function ash, this function computes a posterior credible interval (CI) for each observation. The ash object must include a data component to use this function (which it does by default).

Usage

```
ashci(
   a,
   level = 0.95,
   betaindex,
   lfsr_threshold = 1,
   tol = 0.001,
   trace = FALSE
)
```

Arguments

a the fitted ash object

level the level for the credible interval, (default=0.95)

betaindex a vector consisting of locations of betahat where you would like to compute the

credible interval

1fsr_threshold a scalar, if specified then computes CIs only for observations more significant

than that threshold.

tol passed to uniroot; indicates desired accuracy.

trace a logical variable denoting whether some of the intermediate results of iterations

should be displayed to the user. Default is FALSE.

10 ash_pois

Details

Uses uniroot to find credible interval, one at a time for each observation. The computation cost is linear in number of observations.

Value

A matrix, with 2 columns, ith row giving CI for ith observation

Examples

```
beta = c(rep(0,20),rnorm(20))
sebetahat = abs(rnorm(40,0,1))
betahat = rnorm(40,beta,sebetahat)
beta.ash = ash(betahat, sebetahat)

CImatrix=ashci(beta.ash,level=0.95)

CImatrix1=ashci(beta.ash,level=0.95,betaindex=c(1,2,5))
CImatrix2=ashci(beta.ash,level=0.95,lfsr_threshold=0.1)
```

ashr

ashr

Description

The main function in the ashr package is ash, which should be examined for more details. For simplicity only the most commonly-used options are documented under ash. For expert or interested users the documentation for function ash.workhorse provides documentation on all implemented options.

ash_pois

Performs adaptive shrinkage on Poisson data

Description

Uses Empirical Bayes to fit the model

 $y_j|\lambda_j Poi(c_j\lambda_j)$

with

 $h(lambda_j) g()$

where h is a specified link function (either "identity" or "log" are permitted).

Usage

```
ash_pois(y, scale = 1, link = c("identity", "log"), ...)
```

calc_loglik 11

Arguments

У	vector of Poisson observations.
scale	vector of scale factors for Poisson observations: the model is $y[j]$ $Pois(scale[j]*lambda[j])$.
link	string, either "identity" or "log", indicating the link function.
	other parameters to be passed to ash

Details

The model is fit in two stages: i) estimate g by maximum likelihood (over the set of symmetric unimodal distributions) to give estimate \hat{g} ; ii) Compute posterior distributions for λ_j given y_j, \hat{g} . Note that the link function h affects the prior assumptions (because, e.g., assuming a unimodal prior on λ is different from assuming unimodal on $\log \lambda$), but posterior quantities are always computed for the for λ and *not* $h(\lambda)$.

Examples

```
beta = c(rep(0,50),rexp(50))
y = rpois(100,beta) # simulate Poisson observations
y.ash = ash_pois(y,scale=1)
```

calc_loglik

Compute loglikelihood for data from ash fit

Description

Return the log-likelihood of the data for a given g() prior

Usage

```
calc_loglik(g, data)
```

Arguments

containing g

data a data object, see set_data

12 calc_mixmean

 $calc_logLR$

Compute loglikelihood ratio for data from ash fit

Description

Return the log-likelihood ratio of the data for a given g() prior

Usage

```
calc_logLR(g, data)
```

Arguments

g the fitted g, or an ash object containing g

data a data object, see set_data

calc_mixmean

Generic function of calculating the overall mean of the mixture

Description

Generic function of calculating the overall mean of the mixture

Usage

```
calc_mixmean(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns scalar, the mean of the mixture distribution.

calc_mixsd 13

calc_mixsd

Generic function of calculating the overall standard deviation of the mixture

Description

Generic function of calculating the overall standard deviation of the mixture

Usage

```
calc_mixsd(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns scalar

calc_null_loglik

Compute loglikelihood for data under null that all beta are 0

Description

Return the log-likelihood of the data betahat, with standard errors betahatsd, under the null that beta==0

Usage

```
calc_null_loglik(data)
```

Arguments

data

a data object; see set_data

14 calc_vloglik

calc_null_vloglik

Compute vector of loglikelihood for data under null that all beta are θ

Description

Return the vector of log-likelihoods of the data points under the null

Usage

```
calc_null_vloglik(data)
```

Arguments

data

a data object; see set_data

calc_vloglik

Compute vector of loglikelihood for data from ash fit

Description

Return the vector of log-likelihoods of the data betahat, with standard errors betahatsd, for a given g() prior on beta, or an ash object containing that

Usage

```
calc_vloglik(g, data)
```

Arguments

g the fitted g, or an ash object containing g

data a data object, see set_data

calc_vlogLR 15

calc_vlogLR	Compute vector of loglikelihood ratio for data from ash fit	

Description

Return the vector of log-likelihood ratios of the data betahat, with standard errors betahatsd, for a given g() prior on beta, or an ash object containing that, vs the null that g() is point mass on 0

Usage

```
calc_vlogLR(g, data)
```

Arguments

g the fitted g, or an ash object containing g

data a data object, see set_data

cdf.ash cdf method for ash object

Description

Computed the cdf of the underlying fitted distribution

Usage

```
cdf.ash(a, x, lower.tail = TRUE)
```

Arguments

a the fitted ash object

x the vector of locations at which cdf is to be computed

lower.tail (default=TRUE) whether to compute the lower or upper tail

Details

None

16 cdf_post

Description

compute cdf of mixture m convoluted with error distribution either normal of sd(s) or student t with df v at locations x

Usage

```
cdf_conv(m, data)
```

Arguments

m mixture distribution with k components data details depend on the model

cdf_post cdf_post

Description

evaluate cdf of posterior distribution of beta at c. m is the prior on beta, a mixture; c is location of evaluation assumption is betahat | beta $\sim t_v(beta, sebetahat)$

Usage

```
cdf_post(m, c, data)
```

Arguments

m mixture distribution with k components

c a scalar

data details depend on model

Value

an n vector containing the cdf for beta_i at c

Examples

```
beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
sebetahat=rep(1,100)
ash.beta = ash(betahat,1,mixcompdist="normal")
cdf0 = cdf_post(ash.beta$fitted_g,0,set_data(betahat,sebetahat))
graphics::plot(cdf0,1-get_pp(ash.beta))
```

compute_lfsr 17

compute_lfsr	com	pute	lfsr
--------------	-----	------	------

Function to compute the local false sign rate

Description

Function to compute the local false sign rate

Usage

```
compute_lfsr(NegativeProb, ZeroProb)
```

Arguments

NegativeProb A vector of posterior probability that beta is negative.

ZeroProb A vector of posterior probability that beta is zero.

Value

The local false sign rate.

comp_cdf

Generic function of computing the cdf for each component

Description

Generic function of computing the cdf for each component

Usage

```
comp_cdf(m, y, lower.tail = TRUE)
```

Arguments

m a mixture (eg of type normalmix or unimix)
y locations at which cdf to be computed

lower.tail boolean indicating whether to report lower tail

Value

it returns a vector of probabilities, with length equals to number of components in m

comp_cdf_conv

comp_cdf_conv

Description

compute the cdf of data for each component of mixture when convolved with error distribution

Usage

```
comp_cdf_conv(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

Value

a k by n matrix of cdfs

```
comp_cdf_conv.normalmix
```

comp_cdf_conv.normalmix

Description

returns cdf of convolution of each component of a normal mixture with $N(0,s^2)$ at x. Note that convolution of two normals is normal, so it works that way

Usage

```
## S3 method for class 'normalmix'
comp_cdf_conv(m, data)
```

Arguments

m mixture distribution with k components

data a list with components x and s to be interpreted as a normally-distributed obser-

vation and its standard error

Value

a k by n matrix

comp_cdf_conv.unimix

cdf of convolution of each component of a unif mixture

19

Description

comp_cdf_conv.unimix

cdf of convolution of each component of a unif mixture

Usage

```
## S3 method for class 'unimix'
comp_cdf_conv(m, data)
```

Arguments

m a mixture of class unimix

data, see set_data()

Value

a k by n matrix

comp_cdf_post

 $comp_cdf_post$

Description

evaluate cdf of posterior distribution of beta at c. m is the prior on beta, a mixture; c is location of evaluation assumption is betahat | beta $\sim t_v(beta, sebetahat)$

Usage

```
comp_cdf_post(m, c, data)
```

Arguments

m mixture distribution with k components

c a scalar

data details depend on model

Value

a k by n matrix

20 comp_dens_conv

Examples

```
beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
sebetahat=rep(1,100)
ash.beta = ash(betahat,1,mixcompdist="normal")
comp_cdf_post(get_fitted_g(ash.beta),0,data=set_data(beta,sebetahat))
```

comp_dens

Generic function of calculating the component densities of the mixture

Description

Generic function of calculating the component densities of the mixture

Usage

```
comp_dens(m, y, log = FALSE)
```

Arguments

m mixture of k components generated by normalmix() or unimix() or igmix()

y is an n-vector of location

log whether to use log-scale on densities

Value

A k by n matrix of densities

comp_dens_conv comp_dens_conv

Description

compute the density of data for each component of mixture when convolved with error distribution

Usage

```
comp_dens_conv(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

Value

a k by n matrix of densities

```
{\it comp\_dens\_conv.normalmix} \\ {\it comp\_dens\_conv.normalmix}
```

Description

returns density of convolution of each component of a normal mixture with $N(0,s^2)$ at x. Note that convolution of two normals is normal, so it works that way

Usage

```
## S3 method for class 'normalmix'
comp_dens_conv(m, data)
```

Arguments

m mixture distribution with k components

data a list with components x and s to be interpreted as a normally-distributed obser-

vation and its standard error

Value

a k by n matrix

 ${\tt comp_dens_conv.unimix} \quad \textit{density of convolution of each component of a unif mixture}$

Description

density of convolution of each component of a unif mixture

Usage

```
## S3 method for class 'unimix'
comp_dens_conv(m, data)
```

Arguments

m a mixture of class unimix

data, see set_data()

Value

a k by n matrix

comp_mean

Generic function of calculating the first moment of components of the mixture

Description

Generic function of calculating the first moment of components of the mixture

Usage

```
comp_mean(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns a vector of means.

```
comp_mean.normalmix
```

comp_mean.normalmix

Description

returns mean of the normal mixture

Usage

```
## S3 method for class 'normalmix'
comp_mean(m)
```

Arguments

m

a normal mixture distribution with k components

Value

```
a vector of length k
```

comp_mean.tnormalmix 23

```
comp_mean.tnormalmix comp_mean.tnormalmix
```

Description

Returns mean of the truncated-normal mixture.

Usage

```
## S3 method for class 'tnormalmix'
comp_mean(m)
```

Arguments

m

A truncated normal mixture distribution with k components.

Value

A vector of length k.

comp_mean2

Generic function of calculating the second moment of components of the mixture

Description

Generic function of calculating the second moment of components of the mixture

Usage

```
comp_mean2(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns a vector of second moments.

24 comp_postmean2

comp_postmean

comp_postmean

Description

output posterior mean for beta for each component of prior mixture m, given data

Usage

```
comp_postmean(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

comp_postmean2

comp_postmean2

Description

output posterior mean-squared value given prior mixture m and data

Usage

```
comp_postmean2(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

25 comp_postprob

Description

compute the posterior prob that each observation came from each component of the mixture m,output a k by n vector of probabilities computed by weighting the component densities by pi and then normalizing

Usage

```
comp_postprob(m, data)
```

Arguments

mixture distribution with k components m data details depend on the model

comp_postsd comp_postsd

Description

output posterior sd for beta for each component of prior mixture m, given data

Usage

```
comp_postsd(m, data)
```

Arguments

mixture distribution with k components m

data details depend on the model

Examples

```
beta = rnorm(100, 0, 1)
betahat= beta+rnorm(100,0,1)
ash.beta = ash(betahat,1,mixcompdist="normal")
data= set_data(betahat,rep(1,100))
{\tt comp\_postmean(get\_fitted\_g(ash.beta),data)}
comp_postsd(get_fitted_g(ash.beta),data)
comp_postprob(get_fitted_g(ash.beta),data)
```

26 comp_sd.normalmix

comp_sd

Generic function to extract the standard deviations of components of the mixture

Description

Generic function to extract the standard deviations of components of the mixture

Usage

```
comp_sd(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns a vector of standard deviations

comp_sd.normalmix

comp_sd.normalmix

Description

returns sds of the normal mixture

Usage

```
## S3 method for class 'normalmix'
comp_sd(m)
```

Arguments

m

a normal mixture distribution with k components

Value

```
a vector of length k
```

comp_sd.tnormalmix 27

comp_sd.tnormalmix comp_sd.normalmix

Description

Returns standard deviations of the truncated normal mixture.

Usage

```
## S3 method for class 'tnormalmix'
comp_sd(m)
```

Arguments

m

A truncated normal mixture distribution with k components.

Value

A vector of length k.

cxxMixSquarem

Brief description of function.

Description

Explain here what this function does.

Usage

```
cxxMixSquarem(matrix_lik, prior, pi_init, control)
```

Arguments

matrix_lik	Description of argument goes here.
prior	Description of argument goes here.
pi_init	Description of argument goes shere.
control	Description of argument goes here.

28 dens_conv

dens

Find density at y, a generic function

Description

Find density at y, a generic function

Usage

```
dens(x, y)
```

Arguments

x A mixture of k components generated by normalmix or unimix.

y An n-vector of the location.

dens_conv

dens_conv

Description

compute density of mixture m convoluted with normal of sd (s) or student t with df v at locations x

Usage

```
dens_conv(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

dlogf 29

dlogf The log-F distribution	
------------------------------	--

Description

Density function for the log-F distribution with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

```
dlogf(x, df1, df2, ncp, log = FALSE)
```

Arguments

X	vector of quantiles
df1	degrees of freedom
df2	degrees of freedom
ncp	non-centrality parameter. If omitted the central F is assumed.
log	logical; if TRUE, probabilities p are given as log(p).

Value

The density function.

,	estimate_mixprop	Estimate mixture proportions of a mixture g given noisy (error-prone) data from that mixture.

Description

Estimate mixture proportions of a mixture g given noisy (error-prone) data from that mixture.

Usage

```
estimate_mixprop(
  data,
  g,
  prior,
  optmethod = c("mixSQP", "mixEM", "mixVBEM", "cxxMixSquarem", "mixIP", "w_mixEM"),
  control,
  weights = NULL
)
```

30 gen_etruncFUN

Arguments

data	list to be passed to log_comp_dens_conv; details depend on model
g	an object representing a mixture distribution (eg normalmix for mixture of normals; unimix for mixture of uniforms). The component parameters of g (eg the means and variances) specify the components whose mixture proportions are to be estimated. The mixture proportions of g are the parameters to be estimated; the values passed in may be used to initialize the optimization (depending on the optmethod used)
prior	numeric vector indicating parameters of "Dirichlet prior" on mixture proportions
optmethod	name of function to use to do optimization
control	list of control parameters to be passed to optmethod, typically affecting things like convergence tolerance
weights	vector of weights (for use with w_mixEM; in beta)

Details

This is used by the ash function. Most users won't need to call this directly, but is exported for use by some other related packages.

Value

list, including the final loglikelihood, the null loglikelihood, an n by k likelihood matrix with (j,k)th element equal to $f_k(x_j)$, the fit and results of optmethod

gen_etruncFUN gen_etruncFUN	cFUN gen_etruncFUN
-----------------------------	--------------------

Description

Produce function to compute expectation of truncated error distribution from log cdf and log pdf (using numerical integration)

Usage

```
gen_etruncFUN(lcdfFUN, lpdfFUN)
```

Arguments

lcdfFUN	the log cdfFUN of the error distribution
lpdfFUN	the log pdfFUN of the error distribution

get_density 31

get		

Density method for ash object

Description

Return the density of the underlying fitted distribution

Usage

```
get_density(a, x)
```

Arguments

a the fitted ash object

x the vector of locations at which density is to be computed

Details

None

get_lfsr

Return lfsr from an ash object

Description

These functions simply return elements of an ash object, generally without doing any calculations. (So if the value was not computed during the original call to ash, eg because of how outputlevel was set in the call, then NULL will be returned.) Accessing elements in this way rather than directly from the ash object will help ensure compatability moving forward (e.g. if the internal structure of the ash object changes during software development.)

Usage

```
get_lfsr(x)
get_lfdr(a)
get_svalue(a)
get_qvalue(a)
get_pm(a)
get_psd(a)
```

get_lfsr

```
get_pp(a)
get_np(a)
get_loglik(a)
get_logLR(a)
get_fitted_g(a)
get_pi0(a)
```

Arguments

```
x an ash fit (e.g. from running ash)
a an ash fit (e.g. from running ash)
```

Value

a vector (ash) of local false sign rates

Functions

• get_lfsr: local false sign rate

• get_lfdr: local false discovery rate

• get_svalue: svalue

• get_qvalue: qvalue

• get_pm: posterior mean

• get_psd: posterior standard deviation

• get_pp: positive probability

• get_np: negative probability

• get_loglik: log-likelihood

• get_logLR: log-likelihood ratio

• get_fitted_g: fitted g mixture

• get_pi0: pi0, the proportion of nulls

get_post_sample 33

get_post_sample

Sample from posterior

Description

Returns random samples from the posterior distribution for each observation in an ash object. A matrix is returned, with columns corresponding to observations and rows corresponding to samples.

Usage

```
get_post_sample(a, nsamp)
```

Arguments

a the fitted ash object

nsamp number of samples to return (for each observation)

Examples

```
beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
ash.beta = ash(betahat,1,mixcompdist="normal")
post.beta = get_post_sample(ash.beta,1000)
```

igmix

Constructor for igmix class

Description

Creates an object of class igmix (finite mixture of univariate inverse-gammas)

Usage

```
igmix(pi, alpha, beta)
```

Arguments

pi vector of mixture proportions
alpha vector of shape parameters
beta vector of rate parameters

Details

None

34 lik_binom

Value

an object of class igmix

Examples

```
igmix(c(0.5,0.5),c(1,1),c(1,2))
```

lik_binom

Likelihood object for Binomial error distribution

Description

Creates a likelihood object for ash for use with Binomial error distribution

Usage

```
lik_binom(y, n, link = c("identity", "logit"))
```

Arguments

У	Binomial observations
n	Binomial number of trials
link	Link function. The "identity" link directly puts unimodal prior on Binomial success probabilities p, and "logit" link puts unimodal prior on logit(p).

Details

Suppose we have Binomial observations y where $y_i \sim Bin(n_i, p_i)$. We either put an unimodal prior g on the success probabilities $p_i \sim g$ (by specifying link="identity") or on the logit success probabilities $logit(p_i) \sim g$ (by specifying link="logit"). Either way, ASH with this Binomial likelihood function will compute the posterior mean of the success probabilities p_i .

Examples

```
p = rbeta(100,2,2) # prior mode: 0.5
n = rpois(100,10)
y = rbinom(100,n,p) # simulate Binomial observations
ash(rep(0,length(y)),1,lik=lik_binom(y,n))
```

lik_logF

lik_logF

Likelihood object for logF error distribution

Description

Creates a likelihood object for ash for use with logF error distribution

Usage

```
lik_logF(df1, df2)
```

Arguments

df1 first degree of freedom parameter of F distribution
df2 second degree of freedom parameter of F distribution

Examples

```
e = rnorm(100) + \log(rf(100,df1=10,df2=10)) # simulate some data with \log(F) error ash(e,1,lik=lik_logF(df1=10,df2=10))
```

lik_normal

Likelihood object for normal error distribution

Description

Creates a likelihood object for ash for use with normal error distribution

Usage

```
lik_normal()
```

Examples

```
z = rnorm(100) + rnorm(100) # simulate some data with normal error <math>ash(z,1,lik=lik\_normal())
```

36 lik_pois

lik_normalmix	Likelihood object for normal mixture error distribution	

Description

Creates a likelihood object for ash for use with normal mixture error distribution

Usage

```
lik_normalmix(pilik, sdlik)
```

Arguments

pilik a k vector of mixture proportions (k is the number of mixture components), or an n*k matrix that the j'th row the is mixture proportions for betahat_j

sdlik a k vector of component-wise standard deviations, or an n*k matrix that the j'th row the is component-wise standard deviations for betahat_j

Examples

```
 e = rnorm(100,0,0.8) \\ e[seq(1,100,by=2)] = rnorm(50,0,1.5) \# generate e^0.5*N(0,0.8^2)+0.5*N(0,1.5^2) \\ betahat = rnorm(100)+e \\ ash(betahat, 1, lik=lik_normalmix(c(0.5,0.5),c(0.8,1.5))) \\ \\
```

lik_pois

Likelihood object for Poisson error distribution

Description

Creates a likelihood object for ash for use with Poisson error distribution

Usage

```
lik_pois(y, scale = 1, link = c("identity", "log"))
```

Arguments

у	Poisson observations.
scale	Scale factor for Poisson observations: y~Pois(scale*lambda).
link	Link function. The "identity" link directly puts unimodal prior on Poisson intensities lambda, and "log" link puts unimodal prior on log(lambda).

lik_t 37

Details

Suppose we have Poisson observations y where $y_i \sim Poisson(c_i\lambda_i)$. We either put an unimodal prior g on the (scaled) intensities $\lambda_i \sim g$ (by specifying link="identity") or on the log intensities $logit(\lambda_i) \sim g$ (by specifying link="log"). Either way, ASH with this Poisson likelihood function will compute the posterior mean of the intensities λ_i .

Examples

```
beta = c(rnorm(100,50,5)) # prior mode: 50
y = rpois(100,beta) # simulate Poisson observations
ash(rep(0,length(y)),1,lik=lik_pois(y))
```

lik_t

Likelihood object for t error distribution

Description

Creates a likelihood object for ash for use with t error distribution

Usage

```
lik_t(df)
```

Arguments

df

degree of freedom parameter of t distribution

Examples

```
z = rnorm(100) + rt(100,df=4) # simulate some data with t error ash(z,1,lik=lik_t(df=4))
```

loglik_conv

loglik_conv

Description

find log likelihood of data using convolution of mixture with error distribution

Usage

```
loglik_conv(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

log_comp_dens_conv

loglik_conv.default loglik_conv.default

Description

The default version of loglik_conv.

Usage

```
## Default S3 method:
loglik_conv(m, data)
```

Arguments

m mixture distribution with k components
data data whose details depend on model

Description

compute the log density of the components of the mixture m when convoluted with a normal with standard deviation s or a scaled (se) student.t with df v, the density is evaluated at x

Usage

```
log_comp_dens_conv(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

Value

a k by n matrix of log densities

```
log_comp_dens_conv.normalmix
```

log_comp_dens_conv.normalmix

Description

returns log-density of convolution of each component of a normal mixture with $N(0,s^2)$ or $s^*t(v)$ at x. Note that convolution of two normals is normal, so it works that way

Usage

```
## S3 method for class 'normalmix'
log_comp_dens_conv(m, data)
```

Arguments

m mixture distribution with k components

data a list with components x and s to be interpreted as a normally-distributed obser-

vation and its standard error

Value

a k by n matrix

```
log_comp_dens_conv.unimix
```

log density of convolution of each component of a unif mixture

Description

log density of convolution of each component of a unif mixture

Usage

```
## S3 method for class 'unimix'
log_comp_dens_conv(m, data)
```

Arguments

m a mixture of class unimix

data see set_data()

Value

a k by n matrix of densities

40 mixcdf,default

mixcdf

mixcdf

Description

Returns cdf for a mixture (generic function)

Usage

```
mixcdf(x, y, lower.tail = TRUE)
```

Arguments

x a mixture (eg of type normalmix or unimix)
 y locations at which cdf to be computed
 lower.tail boolean indicating whether to report lower tail

Details

None

Value

an object of class normalmix

Examples

```
mixcdf(normalmix(c(0.5,0.5),c(0,0),c(1,2)),seq(-4,4,length=100))
```

mixcdf.default

mixcdf.default

Description

The default version of mixcdf.

Usage

```
## Default S3 method:
mixcdf(x, y, lower.tail = TRUE)
```

Arguments

x a mixture (eg of type normalmix or unimix) y locations at which cdf to be computed

lower.tail boolean indicating whether to report lower tail

mixEM 41

mixEM Estimate mixture proportions of a mixture model by EM algorithm

Description

Given the individual component likelihoods for a mixture model, estimates the mixture proportions by an EM algorithm.

Usage

```
mixEM(matrix_lik, prior, pi_init = NULL, control = list())
```

Arguments

matrix_lik, a n by k matrix with (j,k)th element equal to $f_k(x_j)$.

prior, a k vector of the parameters of the Dirichlet prior on π . Recommended to be

rep(1,k)

pi_init, the initial value of π to use. If not specified defaults to (1/k,...,1/k).

control A list of control parameters for the SQUAREM algorithm, default value is

set to be control.default=list(K = 1, method=3, square=TRUE, step.min0=1,

step.max0=1, mstep=4, kr=1, objfn.inc=1,tol=1.e-07, maxiter=5000, trace=FALSE).

Details

Fits a k component mixture model

$$f(x|\pi) = \sum_{k} \pi_k f_k(x)$$

to independent and identically distributed data x_1, \ldots, x_n . Estimates mixture proportions π by maximum likelihood, or by maximum a posteriori (MAP) estimation for a Dirichlet prior on π (if a prior is specified). Uses the SQUAREM package to accelerate convergence of EM. Used by the ash main function; there is no need for a user to call this function separately, but it is exported for convenience.

Value

A list, including the estimates (pihat), the log likelihood for each interation (B) and a flag to indicate convergence

42 mixIP

mixIP	Estimate mixture proportions of a mixture model by Interior Point method

Description

Given the individual component likelihoods for a mixture model, estimates the mixture proportions.

Usage

```
mixIP(matrix_lik, prior, pi_init = NULL, control = list(), weights = NULL)
```

Arguments

matrix_lik,	a n by k matrix with (j,k)th element equal to $f_k(x_j)$.
prior,	a k vector of the parameters of the Dirichlet prior on $\pi.$ Recommended to be $\mbox{\rm rep}(1,\!k)$
pi_init,	the initial value of π to use. If not specified defaults to $(1/k,,1/k)$.
control	A list of control parameters to be passed to REBayes::KWDual
weights	weights to be assigned to the observations (an n vector)

Details

Optimizes

$$L(pi) = sum_j w_j log(sum_k pi_k f_{jk}) + h(pi)$$

subject to pi_k non-negative and $sum_k pi_k = 1$. Here

is a penalty function $h(pi) = sum_k (prior_k-1) \log pi_k$. Calls REBayes::KWDual in the REBayes package, which is in turn a wrapper to the mosek convex optimization software. So REBayes must be installed to use this. Used by the ash main function; there is no need for a user to call this function separately, but it is exported for convenience.

Value

A list, including the estimates (pihat), the log likelihood for each interation (B) and a flag to indicate convergence

mixmean2 43

mixmean2 Generic function of calculating the overall second moment of the mixture

Description

Generic function of calculating the overall second moment of the mixture

Usage

```
mixmean2(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns scalar

mixprop

Generic function of extracting the mixture proportions

Description

Generic function of extracting the mixture proportions

Usage

```
mixprop(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

it returns a vector of component probabilities, summing up to 1.

44 mixVBEM

rithm.	mixSQP	Estimate mixture proportions of a mixture model using mix-SQP algorithm.
--------	--------	--

Description

Estimate mixture proportions of a mixture model using mix-SQP algorithm.

Usage

```
mixSQP(matrix_lik, prior, pi_init = NULL, control = list(), weights = NULL)
```

Arguments

matrix_lik	A matrix containing the conditional likelihood values, possibly normalized.
prior	A vector of the parameters of the Dirichlet prior on the mixture weights.
pi_init	The initial estimate of the mixture weights.
control	A list of settings for the mix-SQP optimization algorithm; see mixsqp for details.
weights	The weights to be assigned to the observations. Must be a vector of length equal the number of rows of matrix_lik. If weights = NULL, all observations are assigned the same weight.

Value

A list object including the estimates (pihat) and a flag (control) indicating convergence success or failure.

mixVBEM	Estimate posterior distribution on mixture proportions of a mixture model by a Variational Bayes EM algorithm
	model by a variational Bayes Em algorithm

Description

Given the individual component likelihoods for a mixture model, estimates the posterior on the mixture proportions by an VBEM algorithm. Used by the ash main function; there is no need for a user to call this function separately, but it is exported for convenience.

Usage

```
mixVBEM(matrix_lik, prior, pi_init = NULL, control = list())
```

my_e2truncbeta 45

Arguments

matrix_lik	a n by k matrix with (j,k) th element equal to $f_k(x_j)$.
prior	a k vector of the parameters of the Dirichlet prior on π . Recommended to be $\operatorname{rep}(1,k)$
pi_init	the initial value of the posterior parameters. If not specified defaults to the prior parameters.
control	A list of control parameters for the SQUAREM algorithm, default value is set to be control.default=list(K = 1, method=3, square=TRUE, step.min0=1, step.max0=1, mstep=4, kr=1, objfn.inc=1,tol=1.e-07, maxiter=5000, trace=FALSE).

Details

Fits a k component mixture model

$$f(x|\pi) = \sum_{k} \pi_k f_k(x)$$

to independent and identically distributed data x_1, \ldots, x_n . Estimates posterior on mixture proportions π by Variational Bayes, with a Dirichlet prior on π . Algorithm adapted from Bishop (2009), Pattern Recognition and Machine Learning, Chapter 10.

Value

A list, whose components include point estimates (pihat), the parameters of the fitted posterior on π (pipost), the bound on the log likelihood for each iteration (B) and a flag to indicate convergence (converged).

my_e2truncbeta second moment of	of truncated Beta distribution
---------------------------------	--------------------------------

Description

Compute second moment of the truncated Beta.

Usage

```
my_e2truncbeta(a, b, alpha, beta)
```

Arguments

a	left limit of distribution
b	right limit of distribution
alpha.beta	shape parameters of Beta distribution

46 my_e2truncnorm

my_e2truncgamma	second moment of truncated gamma distribution	
-----------------	---	--

Description

Compute second moment of the truncated gamma.

Usage

```
my_e2truncgamma(a, b, shape, rate)
```

Arguments

а	left limit of distribution
b	right limit of distribution
shape	shape of gamma distribution
rate	rate of gamma distribution

$my_e2truncnorm$ E	Expected Squared Value	of Truncated Normal
----------------------	------------------------	---------------------

Description

Computes the expected squared values of truncated normal distributions with parameters a, b, mean, and sd. Arguments can be scalars, vectors, or matrices. Arguments of shorter length will be recycled according to the usual recycling rules, but a and b must have the same length. Missing values are accepted for all arguments.

Usage

```
my_e2truncnorm(a, b, mean = 0, sd = 1)
```

Arguments

а	The lower limit for the support of the truncated normal. Can be -Inf.
b	The upper limit for the support. Can be Inf. a and b must have the same length, and each element of a should be less than or equal to the corresponding element of b.
mean	The mean of the untruncated normal.
sd	The standard deviation of the untruncated normal. Standard deviations of zero are interpreted as numerically (rather than exactly) zero, so that the square of the untruncated mean is returned if it lies within [a,b] and the square of the nearer of a and b is returned otherwise.

my_e2trunct 47

Value

The expected squared values of truncated normal distributions with parameters a, b, mean, and sd. If any of the arguments is a matrix, then a matrix will be returned.

See Also

```
my_etruncnorm, my_vtruncnorm
```

my_e2trunct

my_e2trunct

Description

Compute second moment of the truncated t. Uses results from O'Hagan, Biometrika, 1973

Usage

```
my_e2trunct(a, b, df)
```

Arguments

a left limit of distributionb right limit of distribution

df degree of freedom of error distribution

my_etruncbeta

mean of truncated Beta distribution

Description

Compute mean of the truncated Beta.

Usage

```
my_etruncbeta(a, b, alpha, beta)
```

Arguments

a left limit of distributionb right limit of distribution

alpha, beta shape parameters of Beta distribution

48 my_etrunclogf

mν	etruncgamma

mean of truncated gamma distribution

Description

Compute mean of the truncated gamma.

Usage

```
my_etruncgamma(a, b, shape, rate)
```

Arguments

a	left limit of distribution
b	right limit of distribution
shape	shape of gamma distribution
rate	rate of gamma distribution

my_etrunclogf

 $my_etrunclogf$

Description

Compute expectation of truncated log-F distribution.

Usage

```
my_etrunclogf(a, b, df1, df2)
```

Arguments

a Left limit of distribution.

b Right limit of distribution.

df1, df2 degrees of freedom

my_etruncnorm 49

Description

Computes the means of truncated normal distributions with parameters a, b, mean, and sd. Arguments can be scalars, vectors, or matrices. Arguments of shorter length will be recycled according to the usual recycling rules, but a and b must have the same length. Missing values are accepted for all arguments.

Usage

```
my_{etruncnorm(a, b, mean = 0, sd = 1)}
```

Arguments

а	The lower limit for the support of the truncated normal. Can be -Inf.
b	The upper limit for the support. Can be Inf. a and b must have the same lengt

and each element of a should be less than or equal to the corresponding element

of b.

mean The mean of the untruncated normal.

sd The standard deviation of the untruncated normal. Standard deviations of zero

are interpreted as numerically (rather than exactly) zero, so that the untruncated mean is returned if it lies within [a,b] and the nearer of a and b is returned

otherwise.

Value

The expected values of truncated normal distributions with parameters a, b, mean, and sd. If any of the arguments is a matrix, then a matrix will be returned.

See Also

```
my_e2truncnorm, my_vtruncnorm
```

my_etrunct	my_etrunct	

Description

Compute second moment of the truncated t. Uses results from O'Hagan, Biometrika, 1973

Usage

```
my_etrunct(a, b, df)
```

50 my_vtruncnorm

Arguments

a	left limit of distribution
b	right limit of distribution
df	degree of freedom of error distribution

Description

Computes the variance of truncated normal distributions with parameters a, b, mean, and sd. Arguments can be scalars, vectors, or matrices. Arguments of shorter length will be recycled according to the usual recycling rules, but a and b must have the same length. Missing values are accepted for all arguments.

Usage

```
my_vtruncnorm(a, b, mean = 0, sd = 1)
```

Arguments

a	The lower limit for the support of the truncated normal. Can be -Inf.
b	The upper limit for the support. Can be Inf. a and b must have the same length, and each element of a should be less than or equal to the corresponding element of b.
mean	The mean of the untruncated normal.
sd	The standard deviation of the untruncated normal.

Value

The variance of truncated normal distributions with parameters a, b, mean, and sd. If any of the arguments is a matrix, then a matrix will be returned.

See Also

```
my_etruncnorm, my_e2truncnorm
```

ncomp 51

ncomp

ncomp

Description

ncomp

Usage

ncomp(m)

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

ncomp.default

ncomp.default

Description

The default version of ncomp.

Usage

```
## Default S3 method:
ncomp(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

normalmix

Constructor for normalmix class

Description

Creates an object of class normalmix (finite mixture of univariate normals)

Usage

```
normalmix(pi, mean, sd)
```

52 pcdf_post

Arguments

pi vector of mixture proportions

mean vector of means

sd vector of standard deviations

Details

None

Value

an object of class normalmix

Examples

```
normalmix(c(0.5,0.5),c(0,0),c(1,2))
```

pcdf_post

pcdf_post

Description

"parallel" vector version of cdf_post where c is a vector, of same length as betahat and sebetahat

Usage

```
pcdf_post(m, c, data)
```

Arguments

m mixture distribution with k components
c a numeric vector with n elements

data depends on context

Value

an n vector, whose ith element is the cdf for beta_i at c_i

Examples

```
beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
sebetahat=rep(1,100)
ash.beta = ash(betahat,1,mixcompdist="normal")
c = pcdf_post(get_fitted_g(ash.beta),beta,set_data(betahat,sebetahat))
```

plogf 53

plogf	The log-F distribution

Description

Distribution function for the log-F distribution with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

```
plogf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
```

Arguments

q vector of quantilesdf1, df2 degrees of freedom

ncp non-centrality parameter. If omitted the central F is assumed.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

Value

The distribution function.

plot.ash Plot method for ash object

Description

Plot the cdf of the underlying fitted distribution

Usage

```
## S3 method for class 'ash'
plot(x, ..., xmin, xmax)
```

Arguments

X	the fitted ash object
	Arguments to be passed to methods, such as graphical parameters (see plot)
xmin	xlim lower range, default is the lowest value of betahat
xmax	xlim upper range, default is the highest value of betahat

Details

None

54 plot_diagnostic

plot_diagnostic

Diagnostic plots for ash object

Description

Generate several plots to diagnose the fitness of ASH on the data

Usage

```
plot_diagnostic(
    x,
    plot.it = TRUE,
    sebetahat.tol = 0.001,
    plot.hist,
    xmin,
    xmax,
    breaks = "Sturges",
    alpha = 0.01,
    pch = 19,
    cex = 0.25
)
```

Arguments

X	the fitted ash object
plot.it	logical. whether to plot the diagnostic result
sebetahat.tol	tolerance to test the equality of betahat
plot.hist	logical. whether to plot the histogram of betahat when sebetahat is not constant
xmin, xmax	range of the histogram of betahat to be plotted
breaks	histograms parameter (see hist)
alpha	error level for the de-trended diagnostic plot
pch, cex	plot parameters for dots

Details

None.

pm_on_zero 55

pm_on_zero	Generic function to extract which components of mixture are point mass on 0

Description

Generic function to extract which components of mixture are point mass on 0

Usage

```
pm_on_zero(m)
```

Arguments

m

a mixture of k components generated by normalmix() or unimix() or igmix()

Value

a boolean vector indicating which components are point mass on 0

Description

Return the posterior on beta given a prior (g) that is a mixture of normals (class normalmix) and observation $betahat\ N(beta, sebetahat)$

Usage

```
posterior_dist(g, betahat, sebetahat)
```

Arguments

g a normalmix with components indicating the prior; works only if g has means 0

betahat (n vector of observations)

sebetahat (n vector of standard errors/deviations of observations)

Details

This can be used to obt

Value

A list, (pi1,mu1,sigma1) whose components are each k by n matrices where k is number of mixture components in g, n is number of observations in betahat

56 postsd

postmean postmean

Description

postmean

Usage

```
postmean(m, data)
```

Arguments

m mixture distribution with k components data details depend on the model

postmean2 postmean2

Description

output posterior mean-squared value given prior mixture m and data

Usage

```
postmean2(m, data)
```

Arguments

m mixture distribution with k components data details depend on the model

postsd postsd

Description

output posterior sd given prior mixture m and data

Usage

```
postsd(m, data)
```

Arguments

m mixture distribution with k components

data details depend on the model

post_sample 57

post_sample	post_sample	

Description

returns random samples from the posterior, given a prior distribution m and n observed datapoints.

Usage

```
post_sample(m, data, nsamp)
```

Arguments

m prior distribution (eg of type normalmix)

data a list with components x and s, each vectors of length n, to be interpreted as a

normally-distributed observations and corresponding standard errors

nsamp number of random samples to return for each observation

Details

exported, but mostly users will want to use 'get_post_sample'

Value

an nsamp by n matrix

```
post_sample.normalmix post_sample.normalmix
```

Description

returns random samples from the posterior, given a prior distribution m and n observed datapoints.

Usage

```
## S3 method for class 'normalmix'
post_sample(m, data, nsamp)
```

Arguments

m mixture distribution with k components

data a list with components x and s to be interpreted as a normally-distributed obser-

vation and its standard error

nsamp number of samples to return for each observation

58 print.ash

Value

```
a nsamp by n matrix
```

post_sample.unimix

post_sample.unimix

Description

returns random samples from the posterior, given a prior distribution m and n observed datapoints.

Usage

```
## S3 method for class 'unimix'
post_sample(m, data, nsamp)
```

Arguments

m mixture distribution with k components

data a list with components x and s to be interpreted as a normally-distributed obser-

vation and its standard error

nsamp number of samples to return for each observation

Value

a nsamp by n matrix

print.ash

Print method for ash object

Description

Print the fitted distribution of beta values in the EB hierarchical model

Usage

```
## S3 method for class 'ash'
print(x, ...)
```

Arguments

x the fitted ash object

... not used, included for consistency as an S3 generic/method.

Details

None

prune 59

prune prune

Description

prunes out mixture components with low weight

Usage

```
prune(m, thresh = 1e-10)
```

Arguments

m What is this argument?

thresh the threshold below which components are removed

qval.from.lfdr

Function to compute q values from local false discovery rates

Description

Computes q values from a vector of local fdr estimates

Usage

```
qval.from.lfdr(lfdr)
```

Arguments

lfdr,

a vector of local fdr estimates

Details

The q value for a given lfdr is an estimate of the (tail) False Discovery Rate for all findings with a smaller lfdr, and is found by the average of the lfdr for all more significant findings. See Storey (2003), Annals of Statistics, for definition of q value.

Value

vector of q values

60 summary.ash

set_data

Takes raw data and sets up data object for use by ash

Description

Takes raw data and sets up data object for use by ash

Usage

```
set_data(betahat, sebetahat, lik = NULL, alpha = 0)
```

Arguments

betahat vector of betahats

sebetahat vector of standard errors

lik a likelihood (see e.g., lik_normal())

alpha specifies value of alpha to use (model is for betahat/sebetahat^alpha | sebetahat)

Details

The data object stores both the data, and details of the model to be used for the data. For example, in the generalized version of ash the cdf and pdf of the likelihood are stored here.

Value

data object (list)

summary.ash

Summary method for ash object

Description

Print summary of fitted ash object

Usage

```
## S3 method for class 'ash'
summary(object, ...)
```

Arguments

object the fitted ash object

. . . not used, included for consistency as an S3 generic/method.

tnormalmix 61

Details

summary prints the fitted mixture, the fitted log likelihood with 10 digits and a flag to indicate convergence

tnormalmix

Constructor for tnormalmix class

Description

Creates an object of class tnormalmix (finite mixture of truncated univariate normals).

Usage

```
tnormalmix(pi, mean, sd, a, b)
```

Arguments

ı	pi	Cector of mixture proportions (length k	sav).
	~ _	cooter or minitude propertions (rength in	54,

mean Vector of means (length k).

sd Vector of standard deviations (length k).

a Vector of left truncation points of each component (length k).

b Cector of right truncation points of each component (length k).

Value

An object of class "tnormalmix".

Examples

```
tnormalmix(c(0.5,0.5),c(0,0),c(1,2),c(-10,0),c(0,10))\\
```

unimix

Constructor for unimix class

Description

Creates an object of class unimix (finite mixture of univariate uniforms)

Usage

```
unimix(pi, a, b)
```

62 vcdf_post

Arguments

pi	vector of mixture proportions
a	vector of left hand ends of uniforms
b	vector of right hand ends of uniforms

Details

None

Value

an object of class unimix

Examples

```
unimix(c(0.5,0.5),c(0,0),c(1,2))
```

vcdf_post

vcdf_post

Description

vectorized version of cdf_post

Usage

```
vcdf_post(m, c, data)
```

Arguments

m mixture distribution with k components

c a numeric vector data depends on context

Value

an n vector containing the cdf for beta_i at c

Examples

```
beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
sebetahat=rep(1,100)
ash.beta = ash(betahat,1,mixcompdist="normal")
c = vcdf_post(get_fitted_g(ash.beta),seq(-5,5,length=1000),data = set_data(betahat,sebetahat))
```

 $w_{\text{mix}EM}$ 63

w_mixEM	Estimate mixture proportions of a mixture model by EM algorithm (weighted version)

Description

Given the individual component likelihoods for a mixture model, and a set of weights, estimates the mixture proportions by an EM algorithm.

Usage

```
w_mixEM(matrix_lik, prior, pi_init = NULL, weights = NULL, control = list())
```

Arguments

matrix_lik,	a n by k matrix with (j,k) th element equal to $f_k(x_j)$.
prior,	a k vector of the parameters of the Dirichlet prior on π . Recommended to be $\operatorname{rep}(1,k)$
pi_init,	the initial value of π to use. If not specified defaults to $(1/k,,1/k)$.
weights,	an n vector of weights
control	A list of control parameters for the SQUAREM algorithm, default value is set to be control.default=list(K = 1, method=3, square=TRUE, step.min0=1, step.max0=1, mstep=4, kr=1, objfn.inc=1,tol=1.e-07, maxiter=5000, trace=FALSE).

Details

Fits a k component mixture model

$$f(x|\pi) = \sum_{k} \pi_k f_k(x)$$

to independent and identically distributed data x_1,\ldots,x_n with weights w_1,\ldots,w_n . Estimates mixture proportions π by maximum likelihood, or by maximum a posteriori (MAP) estimation for a Dirichlet prior on π (if a prior is specified). Here the log-likelihood for the weighted data is defined as $l(\pi) = \sum_j w_j log f(x_j|\pi)$. Uses the SQUAREM package to accelerate convergence of EM. Used by the ash main function; there is no need for a user to call this function separately, but it is exported for convenience.

Value

A list, including the estimates (pihat), the log likelihood for each interation (B) and a flag to indicate convergence

Index

ash, 4, <i>10</i>	dens, 28
ash.workhorse, 5, 10	dens_conv, 28
ash_pois, 10	dlogf, 29
ashci, 8, 9	
ashr, 10	estimate_mixprop, 29
calc_loglik, 11	gen_etruncFUN, 30
calc_logLR, 12	<pre>get_density, 31</pre>
calc_mixmean, 12	<pre>get_fitted_g (get_lfsr), 31</pre>
calc_mixsd, 13	<pre>get_lfdr (get_lfsr), 31</pre>
calc_null_loglik, 13	get_lfsr,31
calc_null_vloglik, 14	<pre>get_loglik(get_lfsr), 31</pre>
calc_vloglik, 14	<pre>get_logLR (get_lfsr), 31</pre>
calc_vlogLR, 15	<pre>get_np (get_lfsr), 31</pre>
cdf.ash, 15	<pre>get_pi0(get_lfsr), 31</pre>
cdf_conv, 16	<pre>get_pm (get_lfsr), 31</pre>
cdf_post, 16, 52, 62	<pre>get_post_sample, 33</pre>
class, 7	<pre>get_pp (get_lfsr), 31</pre>
comp_cdf, 17	<pre>get_psd (get_lfsr), 31</pre>
comp_cdf_conv, 18	<pre>get_qvalue(get_lfsr), 31</pre>
comp_cdf_conv.normalmix, 18	<pre>get_svalue(get_lfsr), 31</pre>
comp_cdf_conv.unimix, 19	11
comp_cdf_post, 19	hist, <i>54</i>
comp_dens, 20	igmix, 33
comp_dens_conv, 20	IgiiIX, 33
<pre>comp_dens_conv.normalmix, 21</pre>	lik_binom, 34
<pre>comp_dens_conv.unimix, 21</pre>	lik_logF, 35
comp_mean, 22	lik_normal, 35
comp_mean.normalmix, 22	lik_normalmix, 36
comp_mean.tnormalmix, 23	lik_pois, 36
comp_mean2, 23	lik_t, 37
comp_postmean, 24	log_comp_dens_conv, 38
comp_postmean2, 24	<pre>log_comp_dens_conv.normalmix, 39</pre>
comp_postprob, 25	log_comp_dens_conv.unimix, 39
comp_postsd, 25	loglik_conv, 37, 38
comp_sd, 26	loglik_conv.default,38
comp_sd.normalmix, 26	
comp_sd.tnormalmix, 27	mixcdf, 40, 40
compute_lfsr, 17	mixcdf.default,40
cxxMixSquarem, 27	mixEM, 41

INDEX 65

```
mixIP, 42
mixmean2, 43
mixprop, 43
mixSQP, 44
mixsqp, 44
{\tt mixVBEM}, {\tt 44}
my_e2truncbeta, 45
my_e2truncgamma, 46
my_e2truncnorm, 46, 49, 50
my_e2trunct, 47
my_etruncbeta, 47
my_etruncgamma, 48
my_etrunclogf, 48
\verb|my_etruncnorm|, 47, 49, 50|
my_etrunct, 49
my_vtruncnorm, 47, 49, 50
ncomp, 51, 51
ncomp.default, 51
normalmix, 28, 51
pcdf_post, 52
plogf, 53
plot, 53
plot.ash, 53
plot_diagnostic, 54
pm\_on\_zero, 55
post_sample, 57
post_sample.normalmix, 57
post_sample.unimix, 58
posterior_dist, 55
postmean, 56
postmean2, 56
postsd, 56
print.ash, 58
prune, 59
qval.from.lfdr, 59
set_data, 60
summary, 61
summary.ash, 60
tnormalmix, 61
unimix, 28, 61
vcdf_post, 62
w_mixEM, 63
```