必然一个是u,另一个是v(若不然,就有 $v_r = v_{s+1}$,则 $\Gamma_1\Gamma_2$ 就是G中一个从x到y的通路,矛盾)。这就是说,在G中存在x到u(或v)的通路 Γ_1 和从y到v(或u)的通路 Γ_2 。从而必有 $x \in V(G_i) \land y \in V(G_i)$ 或者 $x \in V(G_i) \land y \in V(G_i)$ 。这就证明了命题的另一个方向。

由上面的讨论可知:

- (1) 当 i = j 时,x, y 在 G' 中连通当且仅当它们在 G 中连通。从而连通分支数量不变(只是 G_i 中增加了一条新边 e)。
- (2) 当 $i \neq j$ 时,x,y 在 G' 中连通当且仅当它们在 G 连通,或者它们在 G 中分别属于 G_i 和 G_j 这两个连通分支。从而边 e 将把 G_i 与 G_j 连接成一个新的连通分支,而其它的连通分支保持不变。

推论 设 E' 为图 G 的一个割集,则 p(G - E') = p(G) + 1.

证明: 设 E' 为 G 的任意割集,反设 $p(G-E') \geq p(G)+2$,则任取 $e \in E'$,令 $E'' = E'-\{e\} \subset E'$,则有 $p(G-E'') = p((G-E') \cup e)$,而由引理 9.1 可知, $p((G-E') \cup e) \geq p(G-E')-1 \geq p(G)+1$ 。 这与割集的定义矛盾。

引理 9.2 设 C 为无向图 G 中的一个圈, $S\subseteq E(G)$ 为 G 中任意边割集,若 $S\cap E(C)\neq\varnothing$,则 $|S\cap E(C)|\geq 2$ 。

证明: 若不然,就有 $|S \cap E(C)| = 1$,即,存在唯一的 $e = (u,v) \in S \cap E(C)$ 。记 G' = G - S, $S' = S - \{e\}$,由割集的定义可知, $p(G') > p(G' \cup e) = p(G - S') = p(G)$ 。这就是说,向 G' 中 加入边 e 会使连通分支数减少,从而由引理 9.1可知, u 和 v 在 G' 中属于两个不同的连通分支。 然而,由于 u,v 在圈 C 上,而 C - e 是一条从 u 到 v 的通路。而由前提, e 是 $S \cap E(C)$ 中唯一的元素,这就是说, C 中其它的边都在 G' 中,也即 $C - e \subseteq G'$ 。这就是说, u 与 v 在 G' 中是连通的。矛盾。

再证原题。

证明:设 C 所在的连通分支为 G_1 。令 $C' = C - e_1$ 。显然,C' 中无圈。由教材例 9.1 可知,存在 G_1 的一棵生成树 T,使得 $C' \subseteq T$ 。考虑由 T 的树枝 e_2 产生的基本割集 S_{e_2} 。因为 $e_2 \in S_{e_2} \cap E(C)$,从而由引理 9.2 可知, S_{e_2} 与 C 至少还应有一条公共边 e。注意到, S_{e_2} 是基本割集,因此,除了 e_2 之外,其余的边都只能是 T 的弦,也即, $e \notin E(T)$,而由于 $C' \subseteq T$,因此,满足 $e \in E(C)$, $e \notin E(T)$ 的只有 e_1 。从而必有 $e_1 = e \in S_{e_2}$ 。这就是说, S_{e_2} 即为题中要求的割集。

9.13 首先证明下述结论。

引理 9.3 设 G_1 、 G_2 是 G 的两个子图,满足 $V(G_1) = V(G_2) = V'$ 和 $E(G_1) \subseteq E(G_2)$,则 (1) 设 $\sim_1, \sim_2 \subseteq V' \times V'$ 分别是 G_1 与 G_2 中的"连通关系",则 V'/\sim_1 是 V'/\sim_2 的加细。 (2) $p(G_2) \leq p(G_1)$ 。

证明:由于 G_2 可以通过向 G_1 中反复新边得到,而由引理 9.1,加入新边要么不改变各连通分支 所对应的顶点集,要么使两个连通分支合并为一个,从而使连通分支数减少。对 $|E(G_2) - E(G_1)|$ 作归纳即得原题。

引理 9.4 对 G 的任意割集 $E'\subseteq E(G)$,任取 $e=(u,v)\in E'$,设 $G_1\subseteq G-E'$ 是 G-E' 中 u 所在的连通分支,则 $E'=(V(G_1),\overline{V(G_1)})$ 是一个断集。

证明: 记 G' = G - E', $S = (V(G_1), \overline{V(G_1)})$ 。设 G_2 为 G - E' 中 v 所在的连通分支。显然有 $G_1 \neq G_2$ (否则由引理 9.1 可知,在 G' 中加入 (u,v) 不会影响其连通分支数,从而与 E' 是割集矛盾)。下面证明,E' = S。

首先,显然有 $S \subseteq E'$ 。若不然,设 $(x,y) \in S$,但 $(x,y) \notin E'$,则,依照定义,有 $x \in G_1$, $y \notin G_1$,且 $(x,y) \in E(G')$ 。由于 $x \in G_1$ 且 $x \in y$ 在 G' 中连通,所以 y 也应在连通分支 G_1 中,