

Государственный комитет во делям изобретений

N OTKAMTNÁ

ОПИСАНИЕ (п) 892614 изобретения

К ДВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву

(22) Занвлено 110480 (21) 2909064/24-07

с присоединением заявки 🎮

. (23) Приоритет

2882882

23,1281. Бюллетень № 47 Опубликовано

Дата опубликования описания 231281

(51) M. Ka.

H 02 M 3/28

(53) YДK 621.314. .6(088.8)

(72) Astopu изобретения

А.Г.Поликарпов и Е.Ф.Сергиенко

(71) Заявитель

Московский ордена Ленина энергетический институт.

(54) ОДНОТАКТНЫЙ РЕГУЛЯТОР ПОСТОЯННОГО **НАПРЯЖЕНИЯ**

Предложение относится к регуляторам напряження обеспечивающим регуливн кинэжкдиви отоннкотооп эмнасоц. нагрузке, гальванически отделенной трансформатором от цепи входного ис-. точника напряжения.

Нэвестны однотактные регуляторы напряжения с трансформаторным выходом и нагрузкой, подключенной на вторичной стороне. трансформатора через выпрямитель и сглаживающий LCфильтр [1].

Недостатком известных однотактных . регуляторов напряжения является ограниченный диапазон регулирования выходного напряжения и относительно большие массогабаритные показатели, обусловленные полной модуляцией напряжения, поступающего на вход фильтра.

Наиболее близок по технической сущности к предлагаемому устройству однотактный регулятор постоянного напряжения, содержащий трансформа-

тор, имеющий первичную обмотку, подключенную через управляемый ключ к входным выводам, вторичную обнотку, соединенную через выпрямительный днод и LC-фильтр с выходивми выводани и обмотку вывода реактивной энергии, образующую с блокирующим диодом последовательную цепь [2].

Непостатки регулятора состоят в том, что он имеет ограниченный диапазон регулирования выходного напряжения и относительно большие нассогабаритные показатели LC-фильтра, обусловленные полной нодуляцией наг пряжения, поступающего на вход фильтра.

Цель изобретения - увеличение днапазона регупирования выходного напряжения и улучшение нассогабаритных показателей при одной и той же мощности в нагрузке.

Поставленная цель достигается тем, что в однотактном регуляторе постоянного напряжения параллельно

одной из обмоток трансформатора включена дополнительная цень, состояшая из последовательно соединенных конценсатора и днода, шунтированного управляемым ключом, а последовательная цепь из обмотки вывода реактивной энергии с блокирующим диодом подключена параллельно входу ЕС-фильтра.

Предлагаемый однотактный регулятор, постоянного напряжения изображен на чертеже.

В нем начало первичной обмотки 1 трансформатора 2 соединено с положительным полюсом входного источника напряження, а конец первичной обмотки і через управляемый ключ 3 подключен к отрицательному полюсу входного источника напряжения. Параллельно первичной обмотке і включена дополнительная цепь из последовательно соединенных конденсатора 4 и днода 5, шунтированного управляемым ключом б. С началон вторичной обмотки 7 трансформатора совдинен анод выпрямительного диода 8, катод которого подключен к одному на выводов дросселя фильтра 9. Второй вывод дросселя фильтра 9 через сопротивление нагрузки 10, параллельно которому включен конденсатор фильтра 11, соединен с концом вторичной обмотки 7. Начало обмотки 12 вывода реактивирй энергин соединено с концом вторичной обмоткн 7, а конец обмотки 12 связан с анодом блокирующего днода 13, катод. которого подключен к катоду выпрямительного диода 8.

Принцип действия предлагаемого регулятора напряжения рассмотрин исходя из предположения идеальности ключевых элементов, установнишегося режима работы и непрерывности изменения магнитных потоков в сердечнике дросселя фильтра 9 и трансформатора 2. Обозначим через у относительную (к периоду Т) длительность включенного состояния ключа 3 и буден считать, что управляеный киюч 6 перекиючается синхронно и противофазно с ключом 3. Следовательно, на этопе / Т замкнутого состояния ключа 3 управляемый ключ 6 разомкнут, а дополинтельный дчод 5 и блокирующий диод 13 находятся под обратным смещением. На этом промежутке времени происходит .55 передача энергин в изгрузку через пряноснещенный выпрямительный диод 8 и вторичную обнотку 7. Одновремен-

892614

но с этим идет процест накопления нагнитной энергии в сердечнике трансформатора 2. После выключения ключя 3 на этале (1 - 7)Т напряжение на обмотках трансформатора 2 изменяет знак. Вследствие этого выпрямительмый диод 8 закрывается, а блокирующий диод 13 и диод 5 открываются.

При этом замыкается также ключ 6.

После указанных пераключений параллельно к первичной обмотке 1 трансформатора 2 включается конденсатор 4,
среднее значение напряжения на которон для принятых предположений опре15 деляется выражением U_C = E γ (1 - γ),
в котором Е — величина напряжения
входного источника. На рассматриваемом промежутке времени через обмотку 12 и блокирующий диод 13 происходит передача эмергии, запасенной в
сердечнике трансформатора 2.

Если обозначить через n_4 и n_2 коэффициенты трансформации по обмоткам 7 и 12 соответственно, то на
входе дросселя фильтра 9 на интервале γ Т. действует напряжение En_4 , а
на этале $(1 - \gamma_{\gamma})$ Т — напряжение той
же полярности, но равной $En_2(1 - \gamma)$.
Поэтому величина выходного напряжения регулятора определяется соотношением $U_{\rm M} = E_{\gamma}(n_2 + n_4)$.

Детальный анализ работы предлагаеного регулятора напряжения показывает, что на этапе (1 - r)T через конденсатор 4 протекает ток, предстаяляющий собой разность токов пульсаций дросселя фильтра 9, приведенного к первичной обнотке і, и тока намагничнавния трансформатора 2, определяеного нидуктивностью первичной обмотки 1. Ток конденсатора 4 в течение первой половины указанного промежутка времени протекает в одном направлении, а в течении второй половины - в противоположном. Именно поэтому необходимо шунтировать диод 5 управляеным ключом б.

Таким образом, предлагазмый однотактный регулятор напряжения позволяет по сравнению с известным устройством увеличить диапазом регулирования выходного напряжения и улучшить массогабаритные показатели сглаживающего LC-фильтра.

Форнула изобретения

Однотактный регулятор постоянного напряжения, сопержавий грансформатер.

имскиий первичную обмотку, подключенную через управилемый ключ к вкодемым выводам, вторичную обмотку, сочедниенную через непримительный диод и LC-фильтр с выходными выводами и обмотку вывода реактивной энергии, образующую с блокирующим диодом почеледовательно цель, о т л и ч в ю ч и й с л тем, что, с целью умеличечия диапазони регулирования и улучимения массоглобаритных показателей, введени дополнительная цель, состоящая из последовательно включенных конденсатора и диода, зашунтированчиого управлясмым ключом, причем до-

полинтельная цепь подключена паралпельно одной на обмоток трансформатора, а последовательная цепь из обмотки вывода реактивной мощнос и и блокирующего днода включена параллельно входу LC-фильтра.

Источники информации, принятые во внимание при экспертизе

1. Сб. Электронная техника в автоматике. Под ред. Конева Ю.Н. М., "Советское радно", 1977, № 9, с.83-97.

2. Сб. Электронная техника в автоматика. Под ред. Конева Ю.И. М., "Советское радно", 1977. # 9, с. 87, 15 рнс. 4.

Inventor's Certificate No. 892614

Translated from Russian by the Ralph McElroy Co., Custom Division P. O. Box 4828, Austin, Texas 78765 USA