Aprendizado de Máquina

Validação / Split

Prof. Regis Pires Magalhães regismagalhaes@ufc.br - http://bit.ly/ufcregis

Flower Classification

Iris-Setosa

Data Representation

IRIS

https://archive.ics.uci.edu/ml/datasets/Iris

petal

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...</td

Features (attributes, dimensions)

Classes (targets)

sepal

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ x_{31} & x_{32} & \cdots & x_{3D} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

$$\mathbf{y} = [y_1, y_2, y_3, \cdots y_N]$$

Training & Test Data

Typically:

> 75%: 25%

> 2/3 : 1/3

Stratification

Non-stratified split:

- ➤ training set → 38 x Setosa, 28 x Versicolor, 34 x Virginica
- test set → 12 x Setosa, 22 x Versicolor, 16 x Virginica

Supervised Workflow

Fit model on all data after evaluation

Supervised Workflow

accuracy_score(y_test, y_pred)

Linear Regression

y =coef_[0]*X[0] + intercept_

Unsupervised Transformers

- ① transformer.fit(X_train)
- ② X_train_transf = transformer.transform(X_train)
- ③ X_test_transf = transformer.transform(X_test)

Continuous & Categorical Features

Continuous

e.g., sepal width in cm [3.4, 4.7...]

Holdout Evaluation I

Holdout Evaluation II

Holdout Validation I

Holdout Validation II

Training Data

Validation Values

Training Labels

Validation Values

Learning Algorithm

Model

Holdout Validation III

Test Data

Prediction

Performance

Test Labels

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

K-fold Cross-Validation

K-fold Cross-Validation Pipeline I

1

•

2

K-fold Cross-Validation Pipeline II

Stratification Scikit Learn

```
from sklearn.model selection import StratifiedShuffleSplit, StratifiedKFold
from sklearn import datasets
splits = 3
tx = range(12)
ty = [0] * 6 + [1] * 6
print("KFold")
kfold = StratifiedKFold(n_splits=splits, shuffle=True, random_state=42)
for train_index, test_index in kfold.split(tx, ty):
    print("TRAIN:", train index, "TEST:", test index)
print("\nShuffle Split")
shufflesplit = StratifiedShuffleSplit(n splits=splits, test size=1/3,
random state=42)
for train_index, test_index in shufflesplit.split(tx, ty):
    print("TRAIN:", train index, "TEST:", test index)
```

Stratification Scikit Learn

```
KFold
TRAIN: [ 2 3 4 5 7 8 10 11] TEST: [0 1 6 9]
TRAIN: [ 0 1 3 4 6 9 10 11] TEST: [2 5 7 8]
TRAIN: [ 0 1 2 5 6 7 8 9] TEST: [3 4 10 11]

Shuffle Split
TRAIN: [ 0 1 6 2 9 8 5 7] TEST: [10 11 3 4]
TRAIN: [ 6 5 2 8 11 0 10 4] TEST: [1 3 7 9]
TRAIN: [11 4 9 10 3 1 0 7] TEST: [8 6 2 5]
```

Learning Curves

Image source: https://github.com/rasbt/python-machinelearning-book/blob/master/code/ch06/images/06 04.png

Pipelines

pipe = make_pipeline(T1(), T2(), Classifier())

T1 T2 Classifier pipe.fit(X, y) Classifier pipe.predict(X') $X^{1} \xrightarrow{\text{T1.transform}(X')} X^{1} \xrightarrow{\text{T2.transform}(X'1)} X^{1} \xrightarrow{\text{Classifier.predict}(X'2)} V^{1}$

Pipelines & Cross Validation

Linear models for regression

Decision Trees

Classification w. Continuous Features

