Introduction

CS5700 Fall 2019

Agenda

- What is the Internet?
 - Network edge
 - Network core
- Protocol layers
- Key metrics
 - Latency, throughput, loss

What is the Internet?

Components

- Hosts
 - Running network applications
- Communication links
 - Fiber, copper, radio
- Packet switches
 - Routers and switches

Structure

- Network edge
 - Hosts: clients and servers
 - Access network
- Network core
 - Interconnected routers
 - Network of networks

- Connect end systems to edge router
 - Residential access
 - Institutional access (school, company)
 - Mobile access

- DSL: digital subscriber line [~10Mbps]
- Frequency division multiplexing

- Cable network [~30Mbps]
- Frequency division multiplexing

Network core

- Interconnected routers
- Packet switching
 - Hosts break application-layer messages into packets
 - Fwd packets from one router to the next
 - Each packet transmitted at full link capacity

- Each router store-and-forward
- What's the end-to-end delay?

- Queuing and packet loss
- Arrival rate (in bits) exceeds outgoing rate

Two key functions in each router

- Routing: determines source to destination route taken by packets
 - Routing algorithms to learn global topology
- Forwarding: move packets from router's input port to appropriate output port

Resource utilization

- 1 Mbps link
- Each user
 - 100 Kbps when active
 - Active 10% of the time
- With 35 users, probability > 10 active users at the same time is < 0.0004

- End systems connect to the Internet via access ISPs
- Access ISPs in turn must be connected! But how?

Option: connect each access ISP to every other access ISP?

Option: connect each access ISP to a global transit ISP?

Internet structure - network of networks!

Protocol layers

What is a protocol?

For machines to understand each other.

Protocol

- Each protocol specifies how to handle one aspect of communication
- Protocol can specify
 - Low level details such as voltage and frequency
 - High level details such as format visible to a user
- Many protocols exist, they are designed to work together

Protocol layers

5-layer reference model

application

transport

network

link

physical

Protocol layers - physical layer

- Underlying transmission media
- Representation of information (0s and 1s) in signals
- Electrical properties such as radio frequency and voltage
- Associated hardware

Protocol layers - link layer

- Also called MAC layer or network interface layer
- Communication between a computer and network hardware
- Hardware address (MAC address)
- Media access
- Packet formats (frame)
- Error detection

application

transport

network

link

physical

Protocol layers - network layer

- Communication between a pair of computers across the Internet
- Packet format (datagram)
- Internet address
- Error detection and reporting
- E.g. IP protocol

Protocol layers - transport layer

- Communication between a pair of application (processes)
- Reliable delivery and retransmission
- Control data rate and avoid congestion
- E.g. TCP, UDP

Protocol layers - application layer

- Format and meaning of messages
- E.g. HTTP, SMTP

Protocol layers

Key metrics

Delay (aka latency)

- Processing delay
- Transmission delay
- Propagation delay
- Queuing delay

Delay

Compare transmission delay and propagation delay

- Transmission delay
 - L/R (L: packet length, R: link data rate)
- Propagation delay
 - d/s (d: length of physical link, s: propagation speed)
- Which one is more significant to overall latency?

Delay - queuing delay

- R: link data rate (bps)
- L: packet length (bits)
- a: average packet arrival rate

- La/R ~ 0: average queuing delay very small
- La/R \rightarrow 1: average queuing delay large

Delay

So, which of the four source of packet delay is more significant?

Throughput

- Rate (bits / time unit) at which bits transferred between sender and receivers
 - Instantaneous: rate at a given point in time
 - Average: rate over longer period of time

Loss

- Packet arriving to full queue (aka buffer) is dropped
- Lost packet may be retransmitted by previous node, by source end system, or not at all

Summary

- What is the Internet
 - Network edge and core
 - Structure of the Internet
- Protocol and layering
 - What are the layers, and what they do
- Key metrics
 - Delay, throughput, and loss