Holistic Mathematics: An Exploration into Category Theory

Stijn S. C. Hanson and Michael S. Walker

15th February, 2013

Discrete category for the set $\{a, b, c\}$.

$$\begin{cases}
1,2,3 \\
\xrightarrow{(+1)\circ(\times 2)}
\end{cases}
\begin{cases}
2,4,6 \\
\downarrow^{(+1)}
\end{cases}$$

$$\begin{cases}
3,5,7 \\
\end{cases}$$

Composition of arrows in Set

Composition of arrows in Set_{op}

Covariant and Contravariant Functors

Functor between a category and its opposite category

$$\begin{array}{cccc}
A_1 & A_3 & \xrightarrow{i \circ h} & A_5 \\
f & & \downarrow & \downarrow & \downarrow \\
A_2 & & A_4
\end{array}$$

Functor between the category of one object and any category

$$Sa \xrightarrow{\tau a} Ta$$

$$\downarrow S(f) \qquad \qquad \downarrow T(f)$$

$$Sb \xrightarrow{\tau b} Tb$$

Commutative diagram for natural transformations

$$I_{C}$$
 $a \stackrel{\tau a}{\longleftrightarrow} OP' \circ OP \ a$ $I_{C_{op}}$ $a \stackrel{\theta a}{\longleftrightarrow} OP \circ OP' \ a$ $\downarrow I_{C(f)}$ $\downarrow I_{C(f)}$ $\downarrow I_{C_{op}}(f)$ $\downarrow I_{C_{op}}(f)$

Every category is equivalent to its opposite category

Holistic Mathematics: An Exploration into Category Theory

Stijn S. C. Hanson and Michael S. Walker

15th February, 2013