TEOREMA DE THÉVENIN

Figura 5.1. Circuito para comprobar el Teorema de Thévenin.

$$MALLA 1$$

$$12 = 0.56I_1 + 4.7(I_1 - I_2)$$

$$Ec1: 5. 26I_1 - 4. 7I_2 = 12$$

$$MALLA 2$$

$$2 = 4.7(I_2 - I_1) + 0.33(I_2 - I_3)$$

$$Ec2: -4. 7I_1 + 5. 03I_2 - 0. 33I_3 = 2$$

$$MALLA 3$$
 $0.33(I_3 - I_2) + 0.1I_3 + 1I_3 = 0$
 $Ec3: -0.33I_2 + 1043I_3 = 0$
Corrientes
 $I_1 = 17.4mA$
 $I_2 = 16.9mA$
 $I_3 = 3.89mA$
El voltaje en R5
 $V = IR$
 $V_5 = (3.89)(1) = 3.89v$
La corriente en R5
 $I_{R5} = 3.89mA$

Resolución de sistema de ecuaciones

```
La solución por el método de Gauss-Jordan Transformar la matriz aumentada del sistema em uma matriz en forma escalonada (P):  \frac{\left(\frac{52.50}{2.50} - 4.7 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,190) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,190) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,190) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33\right)} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03 - 0.33} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{2} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4.7} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} \cdot 5.03} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(\frac{3}{4} - 0.397 \quad 0\right)} = \frac{12}{12} \times (0,130) 
 \frac{\left(\frac{1}{4} - 0.894 \quad 0\right)}{\left(
```

Simulación circuito original

TEOREMA DE THEVENIN

Voltaje de Thévenin

Se retira la resistencia de carga, se abre el circuito y posteriormente se realiza el análisis de circuito

MALLA~1

$$12 = 0.56I_1 + 4.7(I_1 - I_2)$$

$$Ec1:5.26I_1-4.7I_2=12$$

MALLA 2

$$2 = 4.7(I_2 - I_1) + 0.33I_2$$

$$Ec2:-4.7I_1+5.03I_2=2$$

$$I_1 = 16mA$$

$I_2 = 15.3 mA$

Sistema de ecuaciones

VOLTAJE DE THEVENIN

$$V_{TH} = I_2 * R_3$$

$$V_{TH} = 15.3(0.33)$$

$$V_{TH} = 5.05V$$

RESISTENCIA DE THEVENIN

Corto circuito las fuentes de voltaje , se retira el resistor de carga y posteriormente se estudia el circuito

$$R1||R2 = \frac{(0.56)(4.7)}{0.56 + 4.7} = 0.50k\Omega$$

$$R_{TH} = \frac{0.50(0.33)}{0.50 + 0.33} + 0.1 = 0.298k\Omega$$

 $R_{TH}=298\Omega$

Al circuito de Thévenin se agrega el resistor de carga R5 para obtener el valor del voltaje y la corriente por medio del resistor obteniendo los siguientes resultados

$$V_{R5} = \left(\frac{1}{0.298 + 1}\right)(5.05) = 3.89V$$

$$I_{R5} = \frac{V}{R} = \frac{5.05}{0.298 + 1} = 3.89 mA$$

Mida el voltaje y la corriente en el resistor R5.

Implemente el circuito equivalente de Thévenin agregue el resistor R5 y mida lacorriente y el voltaje en el mismo, anote los resultados en la tabla 5.2.

Tabla 5.2. Comprobación del Teorema de Thévenin.

Parámetro Eléctrico	Circuito Original		Circuito Equivalente de Thévenin	
	Calculado	Medido	Calculado	Medido
Voltaje (V)	3.89 V	3.89 V	3.89 V	3.89V
Corriente (mA)	3.89 mA	3.89mA	3.89 mA	3.89mA

Desconecte el resistor R5 y mida el voltaje en el circuito abierto. Anule el efecto de las fuentes de alimentación. Desconecte R5 y desde el circuitoabierto resultante mida la resistencia equivalente. Anote el valor medido en la tabla

Tabla 5.1. Valores del Circuito Equivalente de Thévenin

VTH (V)		RTH (Ω)		
Calculado	5.05 V	Calculado	298Ω	
Medido	5.06 V	Medido	298.86Ω	

ERROR RELATIVO

$$e\% = \frac{|valor\; teorico - valor calculado|}{valor\; teorico} * 100$$

El circuito de Thévenin

Voltaje de Thévenin

$$eV_{TH}\% = \frac{|5.05 - 5.06|}{5.05} * 100 = 0.2\%$$

Resistencia de Thévenin

$$eR_{TH}\% = \frac{|298 - 298.86|}{298} * 100 = 0.3\%$$

Voltaje en R5

$$eVR5\% = \frac{|3.89 - 3.89|}{3.89} * 100 = 0\%$$

Corriente en R5

$$eIR5\% = \frac{|3.89 - 3.89|}{3.89} * 100 = 0\%$$

El circuito original

Voltaje en R5
$$eVR5\% = \frac{|3.89 - 3.89|}{3.89} * 100 = 0\%$$

Corriente en R5

$$eIR5\% = \frac{|3.89 - 3.89|}{3.89} * 100 = 0\%$$