skdetsim for sk-1 LE mode

17/12/2007
Report to skdetsim working group
Y.Koshio

ledetsim vs skdetsim sk-1 LE mode

 lida-san found several % differences of energy scale between them, even though the input kinematics is same.

Number of photons arriving at PMTs for 10MeV electron (done by sukop)

The list of differences

- Check step by step, and the differences is as follows;
 - When the new tuned parameters are applied after SK-II LE mode, but the branch is not perfect.
 - sgbst.F (-2%), wtrsg.F (+1%), rfbssg.F (-2%)
 - Only apdetsim versions are applied into skdetsim.
 - skdonuts.F and sgpmt.F (+3%)
 - pmtqesg.F (+10%)
 - The PMT band stainless reflection is set to 5% in ledetsim, but in skdetsim is only absorption. (less than 1%)

The followings are the bug fixed or merged to atmpd after skdetsim.

- de/dx for electron was modified by atmpd.
- When the photon arrived at PMT in top/bottom, the tracking was forced to stop by 0.01% probability.
- The maximum step size becomes small.
- The declaration in sgmies.F has minor bug. (integer vs real)
- When a particle arrive at the missing PMT position, it is forced to stop.
 The results of both became exactly same.

A

В

How to do?

- The category 'A' must be returned to the original ledetsim.
- After modify the category 'A', the difference becomes about 1% level.
- In the category 'B', need to check more precisely.
 - The check items are 'num. of photons arriving at the surface of PMTs' and 'N50'.
 - Note that the energy scale systematic error in SK-1 lowe analysis is ± 0.5%.

More detailed check for categ. B

- The MC statistics were poor, so you could not see the effect less than 1%.
- 500,000 events are generated. (10MeV e)

The list of categ. B (modify to skdetsim from ledetsim)

- Just after categ. A
 de/dx for electron was modified by atmpd.
 - 3. When the photon arrived at PMT in top/bottom, the tracking was forced to stop by 0.01% probability.
 - 4. The maximum step size becomes small.
 - 5. The declaration in sgmies.F has minor bug. (integer vs real)
- 6. When a particle arrive at the missing PMT position, it is forced to stop.
 7. When a photon arrive at the Tybek, its tracking forced to stop.
 - forced to stop. (should not be, but very few photons arrive.)

 8. The original ledetsim.

How to do?

- The category 'A' must be returned to the original ledetsim.
- After modify the category 'A', the difference becomes about 1% level.
- In the category 'B', need to check more precisely.
 - The check items are 'num. of photons arriving at the surface of PMTs' and 'N50'.
 - Note that the energy scale systematic error in SK-1 lowe analysis is ± 0.5%.
- Return only original de/dx for category 'B'

Summary

- For the official version of skdetsim for sk-1 LE mode, the category 'A' and de/dx is returned to the original ledetsim code.
- The version number will be 4.72. (the current version is 3.72. The new tag name will be 'skdetsim-v4p72'.)

Supplement

- Comparison of solaris and Linux
- de/dx study by Itow-san in 2001

The differences between solaris and Linux

Results in categ. A

of photons N50

- Linux 99.26(0.02) 60.99(0.013)

- Solaris 99.24(0.02) 60.99(0.013)

Very good agreement

- Speed (10MeV electron, 500,000events)
 - Linux 0.083 sec/event
 - Solaris 0.156 sec/event

Improved density correction in GEANT dE/dx routines

H.I.Kim (S.N.U)

Y.I.(ICRR)

For SK collaboration meeting @Hawaii, 15,OCT,2001

dE/dx formula

Bethe-Broch Formula

$$\frac{1}{\rho} \left(\frac{dE}{dx} \right) = D \frac{Z Z_{ine}^2}{A \beta^2} \left[\ln \left(\frac{T_{max}}{I} \right) - \beta^2 - \frac{\delta}{2} - \frac{C_e}{Z} \right] \quad \rightarrow \quad \text{p,} \mu, \text{ etc.}$$

Berger-Seltzer Formula

$$\frac{dE}{dx} = \frac{2\pi r_0^2 mn}{\beta^2} \left[\ln \frac{2(\tau+2)}{(I/m)^2} + F^{\pm}(\tau, \Delta) - \delta \right] \rightarrow e^{+}, e^{-}$$

 τ_{max} maximum possible energy transfer in e*mass: τ for e*, $\tau/2$ for e*

 $\Delta = \min(\tau_c, \tau_{exx})$

n electron density of the medium

1 average mean ionisation energy

δ density effect correction.

$$\begin{split} F^*(\tau,\Delta) &= \ln(\tau\Delta) - \frac{\Delta^2}{\tau} \left[\tau + 2\Delta - \frac{3\Delta^2 y}{2} - \left(\Delta - \frac{\Delta^2}{3}\right) y^2 - \left(\frac{\Delta^2}{2} - \tau \frac{\Delta^2}{3} + \frac{\Delta^4}{4}\right) y^3 \right] \\ F^*(\tau,\Delta) &= -1 - \beta^2 + \ln\left[(\tau - \Delta)\Delta \right] + \frac{\tau}{\tau - \Delta} + \frac{\left[\frac{\Delta^2}{2} + (2\tau + 1)\ln\left(1 - \frac{\Delta}{\tau}\right)\right]}{\gamma^2}, \end{split}$$

where $y \equiv 1/(\gamma + 1)$

Density correction

$$\delta = \begin{cases} 0 & \text{if} \quad X < X_0 \\ 4.606X + C + a(X_1 - X)^m & \text{if} \quad X_0 \le X < X_1 \\ 4.606X + C & \text{if} \quad X \ge X_1 \end{cases}$$

$$X = \log_{10}(\gamma\beta) = \ln(\gamma^2\beta^2)/4.606 \qquad \nu_p \qquad = \sqrt{\frac{N_{s1}e^2}{\pi m}} \text{ s}^{-1} \text{ plasma frequency}$$

$$N_{s1} = \frac{\rho Z N_{Av}}{A} \text{ electrons cm}^{-3} \qquad C \qquad = -2\ln\left(\frac{I}{h\nu_p}\right) - 1$$

$$a = \frac{4.606(X_a - X_0)}{(X_1 - X_0)^m} \qquad 4.606 X_a = -C$$

Existing data is fitted by Sternheimer et al. Phys Rev 824 (6288) 1981

$$\frac{16}{18}$$
 (dE/dx) $_{O} + \frac{2}{18}$ (dE/dx) $_{H} \neq$ (dE/dx) $_{H2O}$

Parameters

	Sternheimer liquid water	GEANT	
		Н	O
Ionization potential (eV)	75.0	18.8	97.7
C	3.502	2.345	4.255
X0	0.240	0.2	0.3871
X1	2.5	2.0	2.0
a	0.2065	0.5091	0.9238
m	3.007	3.	3.

Energy scale calibration (1144days)

Summary

- Correct treatment of density effect for dE/dx in liquid water is installed in APDETSIM based on Sternheimer's work.
- dE/dx decreases by 3% for μ (>300MeV/c), 1% for e (a few- a few ten's MeV).
- New dE/dx for e-,e+ is identical to EGS code.
- Numbers of photoelectrons increase by 2% for μ, by 0.5% for e in GeV region.
- New momentum calculation tables (ASMO70) are ready (including effect from other modifications)