301AA - Advanced Programming

Lecturer: Andrea Corradini

andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

Course pages:

http://pages.di.unipi.it/corradini/Didattica/AP-18/

AP-03: Languages and Abstract machines,

Compilation and interpretation schemes

Outline

- Programming languages and abstract machines
- Implementation of programming languages
- Compilation and interpretation
- Intermediate virtual machines

Definition of Programming Languages

- A PL is defined via syntax, semantics and pragmatics
- The syntax is concerned with the form of programs: how expressions, commands, declarations, and other constructs must be arranged to make a well-formed program.
- The semantics is concerned with the meaning of (well-formed) programs: how a program may be expected to behave when executed on a computer.
- The pragmatics is concerned with the way in which the PL is intended to be used in practice.

Syntax

- Formally defined, but not always easy to find
 - Java: Chapter 19 of Java Language Specification v8
 https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
- Lexical Grammar for tokens
 - A regular grammar
- Syntactic Grammar for language constructs
 - A context free grammar
- Used by the compiler for scanning and parsing

Semantics

- Usually described precisely, but informally, in natural language.
 - May leave (subtle) ambiguities
- Formal approaches exist, often they are applied to toy languages or to fractions of real languages
 - Denotational [Scott and Strachey 1971]
 - Operational [Plotkin 1981]
 - Axiomatic [Hoare 1969]
- They rarely scale to fully-fledged programming language

(Almost) Complete Semantics of PLs

- Notable exceptions exist:
 - Pascal (part), Hoare Logic [C.A.R. Hoare and N. Wirth, ~1970]
 - Standard ML, Natural semantics [R. Milner, M. Tofte and R. Harper, ~1990]
 - C, Evolving algebras [Y. Gurevich and J. Huggins, 1993]
 - Java and JVM, Abstract State Machines [R. Stärk, J. Schmid, E. Börger, 2001]
 - Executable formal sematics using the K framework of several languages (C, Java, JavaScript, PHP, Python, Rust,...)

https://runtimeverification.com/blog/k-framework-an-overview/

Pragmatics

- Includes coding conventions, guidelines for elegant structuring of code, etc.
- Examples:
 - Java Code Conventions

www.oracle.com/technetwork/java/codeconventions-150003.pdf

- Google Java Style Guide
- https://google.github.io/styleguide/javaguide.html
- Also includes the description of the supported programming paradigms

Programming Paradigms

A **paradigm** is a style of programming, characterized by a particular selection of key concepts and abstractions

- Imperative programming: variables, commands, procedures, ...
- Object-oriented (OO) programming: objects, methods, classes, ...
- Concurrent programming: processes, communication..
- Functional programming: values, expressions, functions, ...
- Logic programming: assertions, relations, ...

Classification of languages according to paradigms can be misleading

Implementation of a Programming Language *L*

- Programs written in L must be executable
- Every language L implicitly defines an Abstract
 Machine M₁ having L as machine language
- Implementing M_L on an existing host machine M_O (via *compilation*, *interpretation* or both) makes programs written in L executable

Programming Languages and Abstract Machines

- Given a programming language L, an Abstract Machine
 M_L for L is a collection of data structures and algorithms
 which can perform the storage and execution of programs
 written in L
- An abstraction of the concept of hardware machine
- Structure of an abstract machine:

General structure of start the Interpreter **Sequence control** Fetch next instruction Decode Data transfer control Fetch operands Choose **Primitive data processing Execute HALT** Execute op₁ Execute op₂ Execute op_n & Memory management **Data transfer control** Store the result stop

The Machine Language of an AM

- Viceversa, each Abstract machine M defines a language L_M including all programs which can be executed by the interpreter of M
- Programs are particular data on which the interpreter can act
- The components of M correspond to components of L_M, eg:
 - Primitive data types
 - Control structures
 - Parameter passing and value return
 - Memory management

An example: the Hardware Machine

- Language: obvious
- Memory: Registers + RAM (+ cache)
- Interpreter: fetch, decode, execute loop
- Operations and Data Structures for:
 - Primitive data processing
 - Sequence control
 - Data transfer control
 - Memory management

The Java Virtual Machine

- Language: bytecode
- Memory Heap+Stack+Permanent
- Interpreter
- Operations and Data Structures for:
 - Primitive data processing
 - Sequence control
 - Data transfer control
 - Memory management

The Java Virtual Machine

```
The core of a JVM interpreter is basically this:
do
   byte opcode = fetch an opcode;
   switch (opcode) {
     case opCode1:
          fetch operands for opCode1;
          execute action for opCode1;
         break;
     case opCode2:
          fetch operands for opCode2;
          execute action for opCode2;
         break;
     case ...
  while (more to do)
```

- Language: bytecode
- Memory Heap+Stack+Permanent
- Interpreter
- Operations and Data Structures for:
 - Primitive data processing
 - Sequence control
 - Data transfer control
 - Memory management

Implementing an Abstract Machine

- Each abstract machine can be implemented in hardware or in firmware, but if high-level this is not convenient in general
 - Exception: Java Processors, ...
- Abstract machine M can be implemented over a host machine M_o, which we assume to be already implemented
- The components of M are realized using data structures and algorithms implemented in the machine language of M_o
- Two main cases:
 - The interpreter of M coincides with the interpreter of M_o
 - M is an extension of M_o
 - other components of the machines can differ
 - The interpreter of M is different from the interpreter of M_o
 - M is interpreted over M_o
 - other components of the machines may coincide

Hierarchies of Abstract Machines

 Implementation of an AM with another can be iterated, leading to a hierarchy (onion skin model)

Example:

Implementing a Programming Language

- L high level programming language
- M_I abstract machine for L
- M_o host machine

Pure Interpretation

- M_L is interpreted over M_O
- Not very efficient, mainly because of the interpreter (fetch-decode phases)

Implementing a Programming Language

Pure Compilation

- Programs written in L are translated into equivalent programs written in L_o, the machine language of M_o
- The translated programs can be executed directly on M_o
 - M_L is not realized at all
- Execution more efficient, but the produced code is larger

Two limit cases that almost never exist in reality

Compilation versus Interpretation

- Compilers efficiently fix decisions that can be taken at compile time to avoid to generate code that makes this decision at run time
 - Type checking at compile time vs. runtime
 - Static allocation
 - Static linking
 - Code optimization
- Compilation leads to better performance in general
 - Allocation of variables without variable lookup at run time
 - Aggressive code optimization to exploit hardware features
- Interpretation facilitates interactive debugging and testing
 - Interpretation leads to better diagnostics of a programming problem
 - Procedures can be invoked from command line by a user
 - Variable values can be inspected and modified by a user

Compilation + Interpretation

- All implementations of programming languages use both. At least:
 - Compilation (= translation) from external to internal representation
 - Interpretation for I/O operations (runtime support)
- Can be modeled by identifying an Intermediate
 Abstract Machine M₁ with language L₁
 - A program in L is compiled to a program in L_I
 - The program in L_i is executed by an interpreter for M_i

Compilation + Interpretation with Intermediate Abstract Machine

The "pure" schemes as limit cases

Virtual Machines as Intermediate Abstract Machines

- Several language implementations adopt a compilation + interpretation schema, where the Intermediate Abstract Machine is called Virtual Machine
- Adopted by Pascal, Java, Smalltalk-80, C#, functional and logic languages, and some scripting languages
 - Pascal compilers generate P-code that can be interpreted or compiled into object code
 - Java compilers generate bytecode that is interpreted by the Java virtual machine (JVM). The JVM may translate bytecode into machine code by just-in-time (JIT) compilation

Compilation and Execution on Virtual Machines

- Compiler generates intermediate program
- Virtual machine interprets the intermediate program

Other Intermediate Machines

LLVM is a **compiler infrastructure** designed as a set of reusable libraries with well-defined interfaces:

- Implemented in C++
- Several front-ends
- Several back-ends
- First release: 2003

- The LLVM IR (Intermediate representation) can also be interpreted
- LLVM IR much lower-level than Java bytecodes or CIL

Advantages of intermediate abstract machine (examples for JVM)

- Portability: Compile the Java source, distribute the bytecode and execute on any platform equipped with JVM
- Interoperability: for a new language L, just provide a compiler to JVM bytecode; then it could exploit Java libraries
 - By design in Microsoft CLI
 - De facto for several languages on JVM

Other Compilation Schemes

- Pure Compilation and Static Linking
- Adopted by the typical Fortran systems
- Library routines are separately linked (merged) with the object code of the program

Compilation, Assembly, and Static Linking

Facilitates debugging of the compiler

Compilation, Assembly, and Dynamic Linking

 Dynamic libraries (DLL, .so, .dylib) are linked at run-time by the OS (via stubs in the executable)

Preprocessing

 Most C and C++ compilers use a preprocessor to import header files and expand macros

The CPP Preprocessor

 Early C++ compilers used the CPP preprocessor to generated C code for compilation

Summary: Languages and Abstract Machines Compilation and interpretation schemes

- **Reading:** Ch. 1 of *Programming Languages: Principles and Paradigms* by M. Gabbrielli and S. Martini
- Syntax, Semantics and Pragmatics of PLs
- Programming languages and Abstract Machines
- Interpretation vs. Compilation vs. Mixed
- Examples of Virtual Machines
- Examples of Compilation Schemes
- Next: Runtime Support and the JVM