利用统计学习方法预测NBA比赛结果--软件设计

bbbb实用软件工程期末

• Author: 李英民 | Henry

• E-mail: li _yingmin @ outlook dot com

• Beijing U of Posts and Telecom(BUPT)

• Home: https://liyingmin.wixsite.com/henry

• 快速了解我: About Me

转载请保留上述引用内容,谢谢配合!

项目Github地址: https://github.com/Li-Yingmin/nba_prediction

一、需求分析

1、市场分析

在百度搜索 NBA预测 关键字, 出现如下搜索结果:

今日NBA比赛结果智能预测 让分胜负预测 新浪彩通

新浪彩通NBA智能结果预测采用大数据和模型算法,对今天进行的NBA赛事的胜负进行分析,提供基于基本面、赔率面和数据面的全面参考。

ai.lottery.sina.com.cn... ▼ - 百度快照

🙆 为您推荐:今日竞彩nba预测推荐 nba预测推荐和比赛分析 竞彩篮球专家每天推荐

【<u>竞彩篮球预测</u>】篮彩<u>预测</u>_篮球彩票<u>预测</u>_美职男篮篮彩<u>预</u> 测-新浪爱彩

竞彩篮球 |全部分析预测| 焦点赛事| 中奖新闻| 分析预测平安夜快乐,小姨妈总结NBA前俩月数据西部的火箭本赛季打的异常好,而勇士近期逐步回勇高居第一,马刺倒是... zx.aicai.com/cpzx/1 50... ▼ - 百度快照

特辑:2016-17赛季预测之得分后卫排行榜 NBA中国官方网站

2016年10月21日 - 特辑:2016-17赛季<mark>预测</mark>之得分后卫排行榜首页图集NBA官网Moon2016-10-21 14:16 0 新赛季即将开始,在赛季开始之前,NBA官网依据球员数据和个人表现给出了... china.**nba**.com/a/201610... ▼ - 百度快照

竞彩篮球推荐,NBA预测,篮彩比赛分析 - 一定牛彩票网

一定彩票网提供最新竞彩篮球推荐、NBA预测、篮彩比赛分析,帮助彩民购买竞彩篮球中大奖。 https://www.ydniu.com/info/jcl... ▼ - 百度快照

NBA预测的最新相关信息

预测NBA还得看于嘉! 篮彩再中冷门 7连中赚到手软

迷尔NBA连中3串1+2串1,近6场比赛全中,近11中10。 接下来,央视名 嘴杨健、于嘉,前CBA总冠军李克还会对明日的比赛做出分析预测,感 兴趣的朋友千万不要错...

其中, 80% 以上的搜索结果都是关于预测彩票的。而且,关于NBA预测彩票的市场已经非常成熟,并且有非常多的专家参与到彩票预测中来:

NBA预测的最新相关信息

预测NBA还得看于嘉! 篮彩再中冷门 7连中赚到手软

迷尔NBA连中3串1+2串1,近6场比赛全中,近11中10。 接下来,央视名 嘴杨健、于嘉,前CBA总冠军李克还会对明日的比赛做出分析预测,感 兴趣的朋友千万不要错...

网易 12月20日

因此,NBA预测彩票市场的特点如下:

- 有专家参与
- 用户数量非常庞大
- 市场成熟并且稳定
- 彩票厂商足够多

2、需求分析

通过如上的市场分析,我们可以从以下几个需求入手:

- 针对专家,可能想知道基于统计的预测结果作为判断依据
- 针对普通用户,预测结果作为购买彩票的参考
- 针对彩票厂商,提供预测技术支持,以作为营销的新方法

3、应用场景

考虑到专家和用户之间的利益关系,我们可以设计以下应用场景:

- 针对专家,可以提供预测结果,并由专家控制局部的预测错误。
- 针对普通用户,提供预测结果作为参考
- 针对VIP用户,我们可以提供经过专家和预测模型综合分析之后的预测结果
- 针对彩票厂商,我们可以提供预测技术支持

二、软件设计

1、开发与运行环境

开发环境

- Bash on Ubuntu on Windows--内嵌于Windows10的Ubuntu系统(update 1709 开发者模式)(Ubuntu 14.04)(无图形化界面)
- Windows10 (借助Windows10的图形化界面)

运行环境

所有能安装 virtualenv 的操作系统,包括但是不限于:

- Ubuntu
- Mac
- Bash on Ubuntu Windows

以上三种平台都经过测试运行成功。

2、总体处理流程

- 1. 获取比赛统计数据
- 2. 比赛数据分析,得到代表每场比赛每支队伍状态的特征表达
- 3. 利用统计学习方法分析每场比赛与胜利队伍的关系,并对2017-2018年的比赛进行预测

4、用户接口

4.1、修改预测数据与训练数据的接口

目前只能手动修改训练集和预测集文件,没有提供一键式接口。

修改预测数据:

修改以下目录的 17-18Schedule.csv 文件即可:

目录/nba prediction/nba pre demo/proj/data/17-18Schedule.csv

如不需要修改,可以保留原文件,原文件中存储的是12月份和1月份的比赛日程。

4.2、执行预测脚本接口

使用python命令执行以下可执行文件:

\$ python 目录/nba_prediction/nba_pre_demo/proj/prediction.py

执行结束之后会在 prediction.py 所在目录生成 17-18Result.csv

三、代码实现

1、数据结构设计

采用Basketball Reference.com中的统计数据。在这个网站中,你可以看到不同球员、队伍、赛季和联盟比赛的基本统计数据,如得分,犯规次数等情况,胜负次数等情况。

• Team Per Game Stats:每支队伍平均每场比赛的表现统计

数据名	含义
Rk Rank	排名
G Games	参与的比赛场数(都为82场)
MP Minutes Played	平均每场比赛进行的时间

数据名	含义
FGField Goals	投球命中次数
FGAField Goal Attempts	投射次数
FG%Field Goal Percentage	投球命中次数
3P3-Point Field Goals	三分球命中次数
3PA3-Point Field Goal Attempts	三分球投射次数
3P%3-Point Field Goal Percentage	三分球命中率
2P2-Point Field Goals	二分球命中次数
2PA2-point Field Goal Attempts	二分球投射次数
2P%2-Point Field Goal Percentage	二分球命中率
FTFree Throws	罚球命中次数
FTAFree Throw Attempts	罚球投射次数
FT%Free Throw Percentage	罚球命中率
ORBOffensive Rebounds	进攻篮板球
DRBDefensive Rebounds	防守篮板球
TRBTotal Rebounds	篮板球总数
ASTAssists	助攻
STLSteals	抢断
BLK Blocks	封盖
TOV Turnovers	失误
PF Personal Fouls	个犯
PTS Points	得分

• Opponent Per Game Stats: 所遇到的对手平均每场比赛的统计信息,所包含的统计数据与Team Per Game Stats中的一致,只是代表的该球队对应的对手的

• Miscellaneous Stats:综合统计数据

数据项	数据含义
Rk (Rank)	排名
Age	队员的平均年龄
W (Wins)	胜利次数
L (Losses)	失败次数
PW (Pythagorean wins)	基于毕达哥拉斯理论计算的赢的概率
PL (Pythagorean losses)	基于毕达哥拉斯理论计算的输的概率
MOV (Margin of Victory)	赢球次数的平均间隔
SOS (Strength of Schedule)	用以评判对手选择与其球队或是其他球队的难易程度对比,0为平均线,可以为正负数
SRS (Simple Rating System)	3
ORtg (Offensive Rating)	每100个比赛回合中的进攻比例
DRtg (Defensive Rating)	每100个比赛回合中的防守比例
Pace (Pace Factor)	每48分钟内大概会进行多少个回合
FTr (Free Throw Attempt Rate)	罚球次数所占投射次数的比例
3PAr (3-Point Attempt Rate)	三分球投射占投射次数的比例
TS% (True Shooting Percentage)	二分球、三分球和罚球的总共命中率
eFG% (Effective Field Goal Percentage)	有效的投射百分比(含二分球、三分球)
TOV% (Turnover Percentage)	每100场比赛中失误的比例
ORB% (Offensive Rebound Percentage)	球队中平均每个人的进攻篮板的比例
FT/FGA	罚球所占投射的比例
eFG% (Opponent Effective Field Goal Percentage)	对手投射命中比例

数据项	数据含义
TOV% (Opponent Turnover Percentage)	对手的失误比例
DRB% (Defensive Rebound Percentage)	球队平均每个球员的防守篮板比例
FT/FGA (Opponent Free Throws Per Field Goal Attempt)	对手的罚球次数占投射次数的比例

Schedule

数据项	数据含义
Date	比赛日期
Start (ET)	比赛开始时间
Visitor/Neutral	客场作战队伍
PTS	客场队伍最后得分
Home/Neutral	主场队伍
PTS	主场队伍最后得分
Notes	备注,表明是否为加时赛等

2、编程语言的选择

编程语言选择 Python , 因为 python 的很多库中实现了机器学习和统计学习的算法 , 不用重复造轮子。比如本软件使用的 numpy 和 sklearn 库。

3、核心算法设计

• Elo Score等级分生成特征向量

ELO等级分制度是由匈牙利裔美国物理学家Elo创建的一个衡量各类对弈活动选手水平的评分方法,是当今对弈水平评估的公认的权威方法。被广泛应用于国际象棋、围棋、足球等运动,以及很多网游与电子竞技产业。游戏界比较著名的应用有: WOW(魔兽世界)、DOTA、

LOL.

ELO计算方法:

Ra: A玩家当前的积分

Rb: B玩家当前的积分

Sa:实际胜负值,胜=1,平=0.5,负=0

Ea: 预期A选手的胜负值, Ea=1/(1+10^[(Rb-Ra)/400])

Eb: 预期B选手的胜负值, Eb=1/(1+10^[(Ra-Rb)/400])

因为E值也为预估,则Ea+Eb=1

R' = Ra + K (Sa - Ea)

R'a: A玩家进行了一场比赛之后的积分

其中 K 值是一个常量系数,按照国际象棋里的标准, K 值对于大师选手为16,对于一般选手是32。K值的大小直接关系到一局游戏结束,根据胜负关系计算出的积分变化值。

• Logistic Regression方法建立回归模型

关于逻辑回归可以参考这个教程:

逻辑回归--简明教程

*四、总结(与软件设计本身无关)

网络上关于预测模型的建立有非常多的案例,也不乏NBA比赛的预测模型。但是,软件工程的关键不在于实现的结果,而更重要的是实现的过程,并且,注重用户对软件的使用。因此,我在设计该软件的过程中,坚持用最先进的代码管理机制与有效的可移植性:

- Git版本控制
- Virtualenv虚拟运行环境

这样,不论是开发者还是用户,对软件开发过程中的版本控制和运行平台都不用过多的担心!