Dynamical systems

 ${\bf Martin~Azpillaga}$

February 26, 2014

unit name

I Definitions 3

Block I

Definitions

1. One-dimensional discrete dynamical systems

Dynamical system

Let:

- $\cdot M$ manifold
- $\cdot T$ monoid

$$\cdot \phi : M \times T \to M$$

Then, (M, T, ϕ) is a dynamical system if:

 $\cdot \quad \forall \ x \in X$:

$$\phi(x,0) = 0$$

 $\forall t_1, t_2 \in T$:

$$\phi(\phi(x,t_1),t_2) = \phi(x,t_1+t_2)$$

Dimension

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

We name dimension of (M, T, ϕ) to:

$$\cdot \dim(M)$$

We denote:

 $\cdot \dim(M) = n \,:\, (M,T,\phi)$ n-D dynamical system

I Definitions 5

Discrete & Continuous

Let:

 $\cdot (M, T, \phi)$ dynamical system

Then, (M, T, ϕ) is discrete if:

$$T \stackrel{\subset}{\sim} \mathbb{N}$$

Then, (M, T, ϕ) is continuous if:

$$T \subset \mathbb{R} \setminus T$$
 open

Defined by a function

Let:

 $\cdot (M, T, \phi)$ dynamical system

$$f: M \to M$$

Then, (M, T, ϕ) is a dynamical system defined by f if:

$$\cdot T = \mathbb{N}$$

$$\begin{array}{cccc} \phi : M \times \mathbb{N} & \longrightarrow & M \\ (x,n) & \longmapsto & f^n(x) \end{array}$$

We denote:

 (M, T, ϕ) dynamical system defined by $f : (M, \mathbb{N}, f)$

Orbit

Let:

 (M, \mathbb{N}, f) functional dynamical system

$$\cdot x \in M$$

We name orbit of x to:

$$\cdot \{f^n(x)\}_{n \in \mathbb{N}}$$

We denote:

 $\cdot o(x)$

I Definitions 7

n-periodic point

Let:

 (M, \mathbb{N}, f) functional dynamical system

$$\cdot x \in M$$

$$\cdot n \in \mathbb{N}$$

Then, x is a n-periodic point if:

$$f^n(x) = x$$

$$\cdot \quad \forall \ n' \in \mathbb{N} \quad \mathbf{n}' < n$$
:

$$f^{n'}(x) \neq x$$

We denote:

 $\cdot n = 1 : x \text{ fixed point}$

Attractive & Repulsive

Let:

 \cdot (M, \mathbb{N}, f) metrical dynamical system

 $\cdot x \in M$ m-periodic point

Then, x is attractive if:

 $\cdot \exists \mathcal{U} \subset M \text{ open } :$

 $\forall y \in \mathcal{U}$:

 $\exists N \in \mathbb{N}$:

 $\forall n \in \mathbb{N} \mid_{\mathbf{n}} n \geq N$:

$$f^{nm}(y) \in \mathcal{U}$$

Then, x is repulsive if:

 $\cdot \quad \forall \ \mathcal{U} \subset M \quad \mathbf{u} \ x \in \mathcal{U}$:

 $\forall y \in \mathcal{U}$:

 $\exists N \in \mathbb{N}$:

 $\forall n \in \mathbb{N} \quad n \geq N$:

 $f^{nm}(x) \notin \mathcal{U}$

I Definitions 9

Attraction set

Let:

- (M, \mathbb{N}, f) dynamical system
- $\cdot x \in M$ attractive m-periodic point
- $\cdot o(x)$ orbit of x

We name attraction set of x to:

$$\{y \in M \mid \exists x' \in o(x) : f^{nm}(y) \xrightarrow{n} x'\}$$

We denote:

 $\cdot A(x)$

Neutral point

Let:

- $\cdot \left(M,\mathbb{N},f\right)$ differentiable dynamical system
- $\cdot x \in M$

Then, x is a neutral point if:

$$f'(x) \in \{-1, 1\}$$

10 0 unit name

Feeble attractive & repulsive points

Let:

 $(M, \mathbb{N}, f) \mathcal{C}^3$ dynamical system

 $\cdot x \in M$

Then, x is feeble attractive point if:

$$f'(x) = 1$$

$$f''(x) = 0$$

$$f'''(x) > 0$$

Then, x is feeble repulsive point if:

$$f'(x) = 1$$

$$f''(x) = 0$$

$$f'''(x) < 0$$

${\bf Multiplier}$

Let:

 $(M, \mathbb{N}, f)C^1$ dynamical system

 $\cdot x \in M$

We name multiplier of x to:

 $\cdot f'(x)$

Block II

Propositions

1. One-dimensional discrete dynamical systems

introduction

Fixed points theorem

Let:

$$\cdot I \subset \mathbb{R}$$
 open

$$\cdot f : I \rightarrow I$$
 differentiable

$$\cdot x \in I$$

Then, holds:

$$|f'(x)| < 1 \rightarrow x \text{ attractive}$$

$$|f'(x)| > 1 \to x$$
 repulsive

Demonstration:

demonstration

Attractiveness of periodic points does not involve the chosen point

Let:

- (M, \mathbb{N}, f) functional dynamical system
- $\cdot \, x \in M$ n-periodic point
- $\{x_i\}_{i=1}^r$ orbit of x

Then, holds:

$$\cdot x \text{ attractive} \leftrightarrow \forall x' \in o(x)$$
:

$$x'$$
 attractive

Demonstration:

$$\forall x' \in o(x)$$
:

$$f^{n'}(x') = \prod_{i=1}^{r} f'(x_i) = f^{n'}(x)$$

Partition of attraction set

Let:

- $\cdot \left(M,\mathbb{N},f\right)$ functional dynamical system
- $\cdot\,x$ n-periodic point
- $\cdot o(x)$ orbit of x

Then, holds:

$$\cdot \quad \forall \ x' \in o(x)$$
:

 $\exists \mathcal{U} \subset M \text{ open} :$

 $\forall y \in \mathcal{U}$:

$$f^n(y) \stackrel{n}{\longrightarrow} x'$$

Demonstration:

demonstration

16 0 unit name

III Examples 17

Block III

Examples

1. One-dimensional discrete dynamical systems

 $\label{lem:examples} Examples of what are and what are not one-dimensional dynamical systems$

IV Problems 19

go

20 0 unit name

IV Problems 21

Block IV

Problems

MODELS I SISTEMES DINÀMICS

Llista 1: Aplicacions unidimensionals

- B.1. Trobeu els punts fixos i les òrbites de període 2 de les següents funcions. En el cas que apareixin paràmetres, feu-ho en funció d'aquests.
 - (a) * f(x) = 2x(1-x), on $x \in \mathbb{R}$.
- (c) $f(x) = x^2 + 1$, on $x \in \mathbb{R}$.
- (b) * $f_c(x) = x^2 + c$, on $x, c \in \mathbb{R}$ (només (d) $f_{a,b}(x) = ax + b$, on $a, b, x \in \mathbb{R}$. punts fixos).
 - (e) $f(x) = 2x^2 5x$, on $x \in \mathbb{R}$.
- B.2. Fent servir anàlisi gràfic, dibuixeu el retrat de fases de
 - (a) $f(x) = x^2$, $x \in \mathbb{R}$.

- (c) $f_a(x) = ax$, $x \in \mathbb{R}$, pels differents valors de $a \in \mathbb{R}$.
- (b) $f(x) = x(1-x), x \in \mathbb{R}$.
- B.3. * Trobeu els punts fixos atractors i les seves conques d'atracció per a la funció $f(x) = \frac{3x - x^3}{2}$, per $|x| \le \sqrt{3}$.
- **B.4.** Per a la funció logística $f_a(x) = ax(1-x)$, calculeu els punts fixos i els cicles de període 2 en funció del paràmetre, i determineu-ne l'estabilitat.
- 1. Estudieu el comportament asimptòtic de la successió $\{x_n\}_{n\in\mathbb{N}}$, pels diferents valors de x_0 indicats.
 - (a) * $x_{n+1} = \frac{\sqrt{x_n}}{2}$, $x_0 \ge 0$.
- (b) $x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}, x_0 \ge 2$.
- **2.** Donada la successió $x_{n+1} = \frac{x_n+2}{x_n+1}$,
 - (a) Trobeu el límit $L = \lim_{n \to \infty} x_n$ per a $x_0 \ge 0$.
 - (b) Descriviu el conjunt dels $x_0 < 0$ pels quals el límit $\lim_{n \to \infty} x_n$ existeix i no és igual a L, o bé no existeix. (Per exemple $x_0 = -1$).
- 3. (Examen 2011) Considereu el sistema dinàmic real definit per $x_{n+1} = \frac{x_n}{4} + x_n^3$. Trobeu el comportament asimptòtic de les òrbites per a tota condició inicial $x_0 \in \mathbb{R}$. Justifiqueu rigorosament les vostres afirmacions.
- 4. Demostreu rigurosament que $f(x) = \sin(x)$ té x = 0 com atractor global.
- **5.** Demostreu que si $f: \mathbb{R} \to \mathbb{R}$ és derivable, x_0 és un punt fix i $|f'(x_0)| > 1$ llavors x_0 és un punt fix repulsor.
- **6.** Sigui $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} i sigui x_0 un punt fix tal que $f'(x_0) = 1$. Doneu criteris sobre les derivades d'ordre superior, per determinar el retrat de fase local al voltant de x_0 . Apliqueu-ho a determinar l'estabilitat dels punts fixos de $x^3 - x$.

IV Problems 23

1. One-dimensional discrete dynamical system

introduction

V Tasks 25

go

26 0 unit name

V Tasks 27

Block V

Tasks

1. 1st laboratory

Orbit analysis

Let:

$$\begin{array}{ccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^3 + \frac{1}{4}x \end{array}$$

Study:

 \cdot Orbit behavior of the real dynamical system defined by f

Demonstration:

Formalization:

Consider (M, T, ϕ) where:

$$M = \mathbb{R}$$

$$T = \mathbb{N}$$

$$\phi : \mathbb{R} \times \mathbb{N} \longrightarrow \mathbb{R}$$

$$(x,n) \longmapsto f^n(x)$$

Study the orbits of $(\mathbb{R}, \mathbb{N}, \phi)$

We will denote $f^n(x)$ as x_n

Fixed points:

$$\forall x \in \mathbb{R}$$
:

$$f(x) = x \leftrightarrow x^3 + \frac{1}{4}x - x = 0 \leftrightarrow x^3 - \frac{3}{4}x = 0$$

$$\leftrightarrow x = 0 \lor x^2 - \frac{3}{4} = 0$$

$$x \text{ fixed point } \leftrightarrow x \in \{0, \pm \frac{\sqrt{3}}{2}\}$$

V Tasks 29

Graphic analysis:

Parity:

 $\forall x \in \mathbb{R}$:

$$f(-x) = (-x)^3 + \frac{(-x)}{4} = -(x^3 + \frac{x}{4}) = -f(x)$$

f is odd

Monotonicity:

 $\forall x \in \mathbb{R}$:

$$f'(x) = 3x^2 + \frac{1}{4} > 0$$

f is increasing over $\mathbb R$

Convexity:

 $\forall x \in \mathbb{R}^-$:

$$f''(x) = 6x \le 0$$

 $\forall x \in \mathbb{R}^+$:

$$f''(x) = 6x \ge 0$$

f is concave over \mathbb{R}^- and convex over \mathbb{R}^+

 $Graphic\ representation:$

image1.pdf

$$\underline{\mathbf{I}} \quad \forall \ x \in (-\infty, -\frac{\sqrt{3}}{2})$$
:

Induction over n:

$$f \text{ incresing } \rightarrow f(x_n) < f(-\frac{\sqrt{3}}{2})$$

 $x_{n+1} \in (-\infty, -\frac{\sqrt{3}}{2})$

 \therefore) o(x) is enclosed in $(-\infty, -\frac{\sqrt{3}}{2})$

Induction over n:

$$x_n^2 > \frac{3}{4} \to (x_n^2 - \frac{3}{4}) > 0$$

 $x_{n+1} - x_n = x_n^3 - \frac{3}{4}x_n = x_n(x_n^2 - \frac{3}{4}) < 0$

 \therefore) o(x) decreasing

$$\nexists x < -\frac{\sqrt{3}}{2}$$
 " $x \text{ fixed point } \to o(x) \xrightarrow{n} -\infty$

$$\underline{\text{II}} \quad \forall \ x \in \left(-\frac{\sqrt{3}}{2}, 0\right)$$
:

Induction over n:

$$f$$
 increasing $\rightarrow f(-\frac{\sqrt{3}}{2}) < f(x_n) < f(0)$
 $x_{n+1} \in (-\frac{\sqrt{3}}{2}, 0)$

V Tasks 31

$$\therefore$$
) $o(x)$ is enclosed in $(-\frac{\sqrt{3}}{2},0)$

Induction over n:

$$x_n^2 < \frac{3}{4} \to (x_n^2 - \frac{3}{4}) < 0$$

 $x_{n+1} - x_n = x_n^3 - \frac{3}{4}x_n = x_n(x_n^2 - \frac{3}{4}) > 0$

 \therefore) o(x) increasing

$$o(x)$$
 convergent $\wedge 0$ fixed point $\rightarrow o(x) \xrightarrow{n} 0$

III
$$\forall x \in (0, \frac{\sqrt{3}}{2})$$
:

Induction over n:

$$-x_n \in \left(-\frac{\sqrt{3}}{2}, 0\right)$$

$$\coprod f(-x_n) \in \left(-\frac{\sqrt{3}}{2}, 0\right) \land f(-x_n) > -x_n$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) \in \left(0, \frac{\sqrt{3}}{2}\right)$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) < x_n$$

...) o(x) is enclosed in $(0, \frac{\sqrt{3}}{2}) \wedge o(x)$ decreasing o(x) convergent $\wedge 0$ fixed point $\rightarrow o(x) \xrightarrow{n} 0$

$$I\underline{\mathbf{V}} \quad \forall \ x \in \mathbb{R} \quad _{!!} \ x > \frac{\sqrt{3}}{2}:$$

Induction over n:

$$-x_n \in \left(\frac{\sqrt{3}}{2}, \infty\right)$$

$$\underline{I} \to f(-x_n) \in \left(\frac{\sqrt{3}}{2}, \infty\right) \land f(-x_n) < -x_n$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) \in \left(\frac{\sqrt{3}}{2}, \infty\right)$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) > x_n$$

- \therefore) o(x) is inf bounded by in $\frac{\sqrt{3}}{2} \wedge o(x)$ increasing
- o(x) convergent

$$\nexists x > \frac{\sqrt{3}}{2}$$
 , $x \text{ fixed point } \to o(x) \xrightarrow{n} +\infty$