PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 95/18853
C12N 9/02, 15/53	A1	(43) International Publication Date:	13 July 1995 (13.07.95)
(21) International Application Number: PCT/US: (22) International Filing Date: 3 January 1995 (6)		CH, DE, DK, ES, FR, GB, GR,	
(30) Priority Data: 08/177,081 3 January 1994 (03.01.94)	τ	Published With international search report.	
(71) Applicant: PROMEGA CORPORATION [US/US Words Hollow Road, Madison, WI 53711 (US).	S]; 280	00	
(72) Inventors: WOOD, Keith, V.; 902 Kottke Drive #5, 1 WI 53719 (US). GRUBER, Monika, G.; 1312 Drah Madison, WI 53715 (US).	Madiso ce Stree	n, tt,	
(74) Agents: SCANLON, William, J. et al.; Foley & Lard Pinckney Street, P.O. Box 1497, Madison, WI 537 (US).	Iner, 1. 701-149	S	
(54) Title: MUTANT LUCIFERASES			

(57) Abstract

The invention provides active, non-naturally occurring mutants of beetle luciferases and DNAs which encode such mutants. A mutant luciferase of the invention differs from the corresponding wild-type luciferase by producing bioluminescence with a wavelength of peak intensity that differs by at least 1 nm from the wavelength of peak intensity of the bioluminescence produced by the wild-type enzyme. The mutant luciferases and DNAs of the invention are employed in various biosensing applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
ВJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	
CN	China	LK	Sri Lanka	TD	Senegal Chad
CS	Czechoslovakia	LU	Luxembourg	TG	
CZ	Czech Republic	LV	Latvia	TJ	Togo
DE	Germany	MC	Моласо	TT	Tajikistan
DK	Denmark	MD	Republic of Moldova	ŪĀ	Trinidad and Tobago
ES	Spain	MG	Madagascar		Ukraine
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	.,,	WOUEOUG	VN	Viet Nam

MUTANT LUCIFERASES

TECHNICAL FIELD

This invention generally relates to luciferase enzymes that produce luminescence, like that from fireflies. More particularly, the invention concerns mutant luciferases of beetles. The mutant luciferases of the invention are made by genetic engineering, do not occur in nature, and, in each case, include modifications which cause a change in color in the luminescence that is produced. The luciferases of the invention can be used, like their naturally occurring counterparts, to provide luminescent signals in tests or assays for various substances or phenomena.

15

20

25

30

10

BACKGROUND OF THE INVENTION

The use of reporter molecules or labels to qualitatively or quantitatively monitor molecular events is well established. They are found in assays for medical diagnosis, for the detection of toxins and other substances in industrial environments, and for basic and applied research in biology, biomedicine, and biochemistry. Such assays include immunoassays, nucleic acid probe hybridization assays, and assays in which a reporter enzyme or other protein is produced by expression under control of a particular promoter. Reporter molecules, or labels in such assay systems, have included radioactive isotopes, fluorescent agents, enzymes and chemiluminescent agents.

Included in the assay system employing chemiluminescence to monitor or measure events of interest are assays which measure the activity of a bioluminescent enzyme, luciferase.

Light-emitting systems have been known and isolated from many luminescent organisms including bacteria, protozoa, coelenterates, molluscs, fish, millipedes, flies, fungi, worms, crustaceans, and beetles, particularly click beetles of genus Pyrophorus and the fireflies of the genera Photinus, Photuris, and

- 2 -

Luciola. In many of these organisms, enzymes catalyze monooxygenations and utilize the resulting free energy to excite a molecule to a high energy state. Visible light is emitted when the excited molecule spontaneously returns to the ground state. This emitted light is called "bioluminescence." Hereinafter it may also be referred to simply as "luminescence."

The limited occurrence of natural bioluminescence is an advantage of using luciferase enzymes as reporter groups to monitor molecular events. Because natural bioluminescence is so rare, it is unlikely that light production from other biological processes will obscure the activity of a luciferase introduced into a biological system. Therefore, even in a complex environment, light detection will provide a clear indication of luciferase activity.

10

15

Luciferases possess additional features which render them particularly useful as reporter molecules for biosensing (using a reporter system to reveal properties 20 of a biological system). Signal transduction in biosensors (sensors which comprise a bilogical component) generally involves a two step process: signal generation through a biological component, and signal transduction and amplification through an electrical component. Signal generation is typically achieved through binding 25 or catalysis. Conversion of these biochemical events into an electrical signal is typically based on electrochemical or caloric detection methods, which are limited by the free energy change of the biochemical reactions. For most reactions this is less than the 30 energy of hydrolysis for two molecules of ATP, or about 70 kJ/mole. However, the luminescence elicited by luciferases carries a much higher energy content. Photons emitted from the reaction catalyzed by firefly 35 luciferase (560 nm) have 214 Kj/einstein. Furthermore, the reaction catalyzed by luciferase is one of the most efficient bioluminescent reactions known, having a

15

20

25

30

35

quantum yield of nearly 0.9. This enzyme is therefore an extremely efficient transducer of chemical energy.

Since the earliest studies, beetle luciferases, particularly that from the common North American firefly species Photinus pyralis, have served as paradigms for understanding of bioluminescence . The fundamental knowledge and applications of luciferase have been based on a single enzyme, called "firefly luciferase," derived from Photinus pyralis. However, there are roughly 1800 species of luminous beetles worldwide. Thus, the luciferase of Photinus pyralis is a single example of a large and diverse group of beetle luciferases. known that all beetle luciferases catalyze a reaction of the same substrate, a polyheterocyclic organic acid, $D-(-)-2-(6'-hydroxy-2'-benzothiazolyl)-\Delta^2-thiazoline-4$ carboxylic acid (hereinafter referred to as "luciferin", unless otherwise indicated), which is converted to a high energy molecule. It is likely that the catalyzed reaction entails the same mechanism in each case.

The general scheme involved in the mechanism of beetle bioluminescence appears to be one by which the production of light takes place after the oxidative decarboxylation of the luciferin, through interaction of the oxidized luciferin with the enzyme. The color of the light apparently is determined by the spatial organization of the enzyme's amino acids which interact with the oxidized luciferin.

The luciferase-catalyzed reaction which yields bioluminescence (hereinafter referred to simply as "the luciferase-luciferin reaction") has been described as a two-step process involving luciferin, adenosine triphosphate (ATP), and molecular oxygen. In the initial reaction, the luciferin and ATP react to form luciferyl adenylate with the elimination of inorganic pyrophosphate, as indicated in the following reaction:

 $E + LH_2 + ATP \Rightarrow E \cdot LH - AMP + PP_i$

- 4 -

where E is the luciferase, LH₂ is luciferin, and PPi is pyrophosphate. The luciferyl adenylate, LH₂-AMP, remains tightly bound to the catalytic site of luciferase. When this form of the enzyme is exposed to molecular oxygen, the enzyme-bound luciferyl adenylate is oxidized to yield oxyluciferin (L=0) in an electronically excited state. The excited oxidized luciferin emits light on returning to the ground state as indicated in the following reaction:

10

20

25

30

35

 $E-LH_2-AMP + O_2 \Rightarrow (E \cdot L=O \cdot AMP) * + 2H^+ + CO_2$

1

15 $\mathbf{E} \cdot \mathbf{L} = \mathbf{0} \cdot \mathbf{AMP} + \mathbf{light}$

One quantum of light is emitted for each molecule of luciferin oxidized. The electronically excited state of the oxidized luciferin is a characteristic state of the luciferase-luciferin reaction of a beetle luciferase; the color (and, therefore, the energy) of the light emitted upon return of the oxidized luciferin to the ground state is determined by the enzyme, as evidenced by the fact that various species of beetles having the same luciferin emit differently colored light.

Luciferases have been isolated directly from various sources. The cDNAs encoding luciferases of various beetle species have been reported. (See de Wet et al., Molec. Cell. Biol 7, 725 - 737 (1987); Masuda et al., Gene 77, 265 - 270 (1989); Wood et al., Science 244, 700 - 702 (1989)). With the cDNA encoding a beetle luciferase in hand, it is entirely straightforward for the skilled to prepare large amounts of the luciferase by isolation from bacteria (e.g., E. coli), yeast, mammalian cells in culture, or the like, which have been transformed to express the cDNA. Alternatively, the cDNA, under control of an appropriate promoter and other

15

20

25

30

35

signals for controlling expression, can be used in such a cell to provide luciferase, and ultimately bioluminescence catalyzed thereby, as a signal to indicate activity of the promoter. The activity of the promoter may, in turn, reflect another factor that is sought to be monitored, such as the concentration of a substance that induces or represses the activity of the promoter. Various cell-free systems, that have recently become available to make proteins from nucleic acids encoding them, can also be used to make beetle luciferases.

Further, the availability of cDNAS encoding beetle luciferases and the ability to rapidly screen for cDNAS that encode enzymes which catalyze the luciferase—luciferin reaction (see de Wet et al., supra and Wood et al., supra) also allow the skilled to prepare, and obtain in large amounts, other luciferases that retain activity in catalyzing production of bioluminescence through the luciferase—luciferin reaction. These other luciferases can also be prepared, and the cDNAs that encode them can also be used, as indicated in the previous paragraph. In the present disclosure, the term "beetle luciferase" or "luciferase" means an enzyme that is capable of catalyzing the oxidation of luciferin to yield bioluminescence, as outlined above.

The ready availability of cDNAS encoding beetle luciferases makes possible the use of the luciferases as reporters in assays employed to signal, monitor or measure genetic events associated with transcription and translation, by coupling expression of such a cDNA, and consequently production of the enzyme, to such genetic events.

Firefly luciferase has been widely used to detect promoter activity in eucaryotes. Though this enzyme has also been used in procaryotes, the utility of firefly luciferase as genetic reporter in bacteria is not commonly recognized. As genetic reporters, beetle

- 6 -

luciferases are particularly useful since they are monomeric products of a single gene. In addition, no post-translational modifications are required for enzymatic activity, and the enzyme contains no prosthetic groups, bound cofactors, or disulfide bonds. 5 Luminescence from E.coli containing the gene for firefly luciferase can be triggered by adding the substrate luciferin to the growth medium. Luciferin readily penetrates biological membranes and cannot be used as a carbon or nitrogen source by E.coli. The other 10 substrates required for the bioluminescent reaction, oxygen and ATP, are available within living cells. However, measurable variations in luminescence color from luciferases would be needed for systems which utilize two or more different luciferases as reporters (signal 15 geneators).

Clones of different beetle luciferases,
particularly of a single genus or species, can be
utilized together in bioluminescent reporter systems.

Expression in exogenous hosts should differ little
between these luciferases because of their close sequence
similarity. Thus, in particular, the click beetle
luciferases may provide a multiple reporter system that
can allow the activity of two or more different promoters
to be monitored within a single host, or for different
populations of cells to be observed simultaneously. The
ability to distinguish each of the luciferases in a
mixture, however, is limited by the width of their
emissions spectra.

One of the most spectacular examples of luminescence color variation occurs in *Pyrophorus* plagiophthalamus, a large click beetle indigenous to the Caribbean. This beetle has two sets of light organs, a pair on the dorsal surface of the prothorax, and a single organ in a ventral cleft of the abdomen. Four different luciferase clones have been isolated from the ventral organ. The luciferin-luciferase reactions catalyzed by

PCT/US95/00108

WO 95/18853

these enzymes produces light that ranges from green to orange.

5

10

15

20

25

35

Spectral data from the luciferase-luciferin reaction catalyzed by these four luciferases show four overlapping peaks of nearly even spacing, emitting green (peak intensity: 546 nanometers), yellow-green (peak intensity: 560 nanometers), yellow (peak intensity: 578 nanometers) and orange (peak intensity: 593 nanometers) light. The respective proteins are named LucPplGR, LucPplYG, LucPplYE and LucPplOR. Though the wavelengths of peak intensity of the light emitted by these luciferases range over nearly 50 nm, there is still considerable overlap among the spectra, even those with peaks at 546 and 593 nm. Increasing the difference in wavelength of peak intensity would thus be useful to obtain greater measurement precision in systems using two or more luciferases.

The amino acid sequences of the four luciferases from the ventral organ are highly similar. Comparisons of the sequences show them to be 95 to 99% identical.

It would be desirable to enhance the utility of beetle luciferases for use in systems using multiple reporters to effect mutations in luciferase-encoding cDNAs to produce mutant luciferases which, in the luciferase-luciferin reaction, produce light with differences between wavelengths of peak intensity that are greater than those available using currently available luciferases.

Beetle luciferases are particularly suited for producing these mutant luciferases since color variation is a direct result of changes in the amino acid sequence.

Mutant luciferases of fireflies of genus Luciola are known in the art. Kajiyama et al., U.S. Patent Nos. 5,219,737 and 5,229,285.

In using luciferase expression in eukaryotic cells for biosensing, it would be desirable to reduce transport of the luciferase to peroxisomes. Sommer et

PCT/US95/00108 WO 95/18853

- 8 -

al., Mol. Biol. Cell 3, 749 - 759 (1992), have described mutations in the three carboxy-terminal amino acids of P. pyralis luciferase that significantly reduce peroxisometargeting of the enzyme.

The sequences of cDNAs enoding various beetle luciferases, and the amino acid sequences deduced from the cDNA sequences, are known, as indicated in Table I.

Table I

10	References for of Various Wi	cDNA and Amino Acid Sequences ild-Type Beetle Luciferases
	Luciferase	Reference
15	Luc <i>PplG</i> R	K. Wood, Ph.D. Dissertation, University of California, San Diego (1989), see also SEQ ID NO:1; Wood et al., Science 244, 700-702 (1989)
20	Luc <i>Ppl</i> YG	K. Wood, Ph.D. Dissertation, University of California, San Diego (1989); Wood et al., Science 244, 700-702 (1989)
25	LucPplYE	K. Wood, Ph.D. Dissertation, University of California, San Diego (1989); Wood et al., Science 244, 700-702 (1989)
30	LucPplOR	K. Wood, Ph.D. Dissertation, University of California, San Diego (1989); Wood et al., Science 244, 700-702 (1989)
35 40	Photinus pyralis	de Wet et al., Mol. Cell. Biol. 7, 725 - 737 (1987); K. Wood, Ph.D. Dissertation, University of California, San Diego (1989); Wood et al., Science 244, 700 - 702 (1989)
45	Luciola cruciata	Kajiyama et al., United States Patent No. 5,229,285; Masuda et al., United States Patent No.
40	Luciola lateralis	4,968,613 Kajiyama et al., United States Patent No. 5,229,285
50	Luciola mingrelica	Devine et al., Biochim. et Biophys. Acta 1173, 121-132(1993)

PCT/US95/00108

The cDNA and amino acid sequences of LucPplGR, the green-emitting luciferase of the elaterid beetle Pyrophorus plagiophthalamus, are shown in SEQ ID NO:1.

SUMMARY OF THE INVENTION 5

10

15

20

. 25

30

35

The present invention provides mutant luciferases of beetles and DNAs which encode the mutant luciferases. Preferably, the mutant luciferases produce a light of different color from that of the corresponding wild-type luciferase and preferably this difference in color is such that the wavelength of peak intensity of the luminescence of the mutant differs by at least 1 nm from that of the wild-type enzyme.

The mutant luciferases of the invention differ from the corresponding wild-type enzymes by one or more, but typically fewer than three, amino acid substitutions. The luciferases of the invention may also entail changes in one or more of the three carboxy-terminal amino acids to reduce peroxisome targeting.

In one surprising aspect of the invention, it has been discovered that combining in a single mutant two amino acid substitions, each of which, by itself, occasions a change in color (shift in wavelength of peak intensity) of bioluminescence, causes the mutant to have a shift in wavelength of peak intensity that is greater than either shift caused by the single amino acid substitutions.

cDNAs encoding the mutant luciferases of the invention may be obtained straightforwardly by any standard, site-directed mutagenesis procedure carried out with a cDNA encoding the corresponding wild-type enzyme or another mutant. The mutant luciferases of the invention can be made by standard procedures for expressing the cDNAs which encode them in prokaryotic or eukaryotic cells.

A fuller appreciation of the invention will be gained upon examination of the following detailed description of the invention.

5 DETAILED DESCRIPTION OF THE INVENTION

In the following description and examples, process steps are carried out and concentrations are measured at room temperature (about 20 °C to 25 °C) and atmospheric pressure unless otherwise specified.

All amino acids referred to in the specification, except the non-enantiomorphic glycine, are L-amino acids unless specified otherwise. An amino acid may be referred to using the one-letter or three-letter designation, as indicated in the following Table II.

Table II

Designations for Amino Acids

	Amino Acid	Three-Letter Designation	One-Letter Designation
20	L-alanine	Ala	A
	L-arginine	Arg	R
	L-asparagine ·	Asn	N
	L-aspartic acid	Asp	D
	L-cysteine	Cys	С
25	L-glutamic acid	Glu	E
	L-glutamine	Gln	Q
	glycine	Gly	G
	L-histidine	His	H
	L-isoleucine	Ile	I.
30	L-leucine	Leu	L
	L-lysine	Lys	K
	L-methionine	Met	M
	L-phenylalanine	Phe	F
	L-proline	Pro	P
35	L-serine	Ser	S
	L-threonine	Thr	${f T}$
	L-tryptophan	Trp	W
	L-tyrosine	Tyr	Y
	L-valine	Val	V .

"X" means any one of the twenty amino acids listed in Table II.

Peptide or polypeptide sequences are written and numbered from the initiating methionine, which is numbered "1," to the carboxy-terminal amino acid.

20

25

30

35

A substitution at a position in a polypeptide is indicated with [designation for original amino acid] [position number [designation for replacing amino acid]. For example, substitution of an alanine at position 100 in a polypeptide with a glutamic acid would be indicated by 5 Typically, the substitution will be Ala₁₀₀Glu or A₁₀₀E. preceded by a designation for the polypeptide in which the substitution occurs. For example, if the substitution A₁₀₀E occurs in an hypothetical protein designated "Luck," the substitution would be indicated as 10 Luck-AlamGlu or Luck-AmE. If there is more than one substitution in a polypeptide, the indications of the substitutions are separated by slashes. For example, if the hypothetical protein "Luck" has a substitution of glutamic acid for alanine at position 100 and a substitution of asparagine for lysine at position 150, the polypeptide with the substitutions would be indicated as Luck-Ala₁₀₀Glu/Lys₁₅₀Asn or Luck-A₁₀₀E/K₁₅₀N. To indicate different substitutions at a position in a polypeptide, the designations for the substituting amino acids are separated by commas. For example, if the hypothetical "Luck" has substitutions of glutamic acid, glycine or lysine for alanine at position 100, the designation would be Luck-Ala, Glu, Gly, Lys or Luck-A, K.

The standard, one-letter codes "A," "C," "G," and "T" are used herein for the nucleotides adenylate, cytidylate, guanylate, and thymidylate, respectively. The skilled will understand that, in DNAs, the nucleotides are 2'-deoxyribonucleotide-5'-phosphates (or, at the 5'-end, triphosphates) while, in RNAs, the nucleotides are ribonucleotide-5'-phosphates (or, at the 5'-end, triphosphates) and uridylate (U) occurs in place "N" means any one of the four nucleotides.

Oligonucleotide or polynucleotide sequences are written from the 5'-end to the 3'-end.

The term "mutant luciferase" is used herein to refer to a luciferase which is not naturally occurring

PCT/US95/00108 WO 95/18853

and has an amino acid sequence that differs from those of naturally occurring luciferases.

In one of its aspects, the present invention is a mutant beetle luciferase which produces bioluminescence (i.e., catalyzes the oxidation of luciferin to produce bioluminescence) which has a shift in wavelength of peak intensity of at least 1 nm from the wavelength of peak intensity of the bioluminescence produced by the corresponding wild-type luciferase and has an amino acid sequence that differs from that of the corresponding wild-type luciferase by a substitution at one position or substitutions at two positions; provided that, if there is a substitution at one position, the position corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 15 . 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348; provided further that, if there are substitutions at two positions, at least one of the positions corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348; and provided that the mutant optionally has a peroxisome-targeting-avoiding sequence at its carboxy-terminus.

10

20

Exemplary mutant luciferases of the invention are 25 those of the group consisting of LucPplGR- $R_{215}H$, $-R_{215}G$, - $R_{215}T, -R_{215}M, -R_{215}P, -R_{215}A, -R_{215}L, -R_{223}L, -R_{223}Q, -R_{223}M, -R_{223}H,$ $-V_{224}I, -V_{224}S, -V_{224}F, -V_{224}Y, -V_{224}L, -V_{214}H, -V_{224}G, -V_{232}E, -V_{236}H,$ $-V_{236}W$, $-Y_{237}S$, $-Y_{237}C$, $-L_{238}R$, $-L_{238}M$, $-L_{238}Q$, $-L_{238}S$, $-L_{238}D$, $-H_{242}A$, $-F_{244}L, -G_{245}S, -G_{245}E, -S_{247}H, -S_{247}T, -S_{247}Y, -S_{247}F, -I_{248}R, -I_{248}V,$ 30 $-I_{248}F$, $-I_{248}T$, $-I_{248}S$, $-I_{248}N$, $-H_{348}N$, $-H_{348}Q$, $-H_{348}E$, $-H_{348}C$, $-S_{247}F/F_{246}L, -S_{247}F/I_{248}C, -S_{247}F/I_{248}T, -V_{224}F/R_{215}G, -V_{224}F/R_{215}T,$ $-V_{224}F/R_{215}V, -V_{224}F/R_{215}P, -V_{224}F/P_{222}S, -V_{224}F/Q_{227}E, -V_{224}F/L_{238}V, -V_{224}F/R_{215}P, -V_{224}P, -V_{224}$ $- {\rm V}_{224} {\rm F}/{\rm L}_{238} {\rm T}\,, \ - {\rm V}_{224} {\rm F}/{\rm S}_{247} {\rm G}\,, \ - {\rm V}_{224} {\rm F}/{\rm S}_{247} {\rm H}\,, \quad - {\rm V}_{224} {\rm F}/{\rm S}_{247} {\rm T}\,, \ {\rm and}$ 35 $-V_{224}F/S_{247}F$.

The following Table III shows spectral properties of these and other exemplary mutant luciferases.

TABLE III

Protein	Spectral	Properties

Protein	Spectral	Spectral Propertie	
LucPplGR-	peak	shift	width
w.t.	545	0	72
V ₂₁₄ S	*		
Q	*		
Y	*		
K	*		
L	*		
G	*		
С	*		
E	*		
F	*		
P	*		
Н	*		
R	*	:	
R ₂₁₅ H	562	17	82
Q	567	22	81
G	576	31	82
Т	576	31	84
М	582	37	83
Р	588	43	91
S	*		
Y	*		
K	*		
L	*		
С	*		
E	*		
F	*		
R ₂₂₃ L	549	4	75
Q	549	4	73

Q 549 4 73*Spectral shift (≥ 2 nm) observed by eye.

5

10

15

20

25

PCT/US95/00108

TABLE III, cont.

Protein	Spectral	Shift

Protein	Spectral	Shift	
LucPplGR-	peak	shift	width
R ₂₂₃ M	549	4	75
Н	551	6	75
S	*		
Y	*		
K	*		
G	*		
С	*		
E	*		
F	*		
P	*		
V ₂₂₄ I	546	1	75
S	556	11	70
F	561	16	84
Υ	565	20	87
L	578	33	94
Н	584	39	69
G	584	39	70
V ₂₃₂ E	554	9	83
V ₂₃₆ H	554	9	74
W	554	9	74
Y ₂₃₇ S	553	8	73
С	554	9	7.4
L ₂₃₈ R	544	-1	72
·M	555	10	75
Q	557	12	76
S	559	14	73
D	568	23	76
H ₂₄₂ A	559	14	75

*Spectral shift (≥ 2 nm) observed by eye.

5

10

15

20

25

TABLE III, cont.

		_	
Protein	•	Spectral	Properties
		4	

Protein	Spectra	1 Proper	ties
LucPplGR-	peak	shift	width
H ₂₄₂ S	561	16	74
F ₂₄₄ L	555	10	73
G ₂₄₅ S	558	13	75
Е	574	29	79
S ₂₄₇ H	564	19	72
У	566	21	79
F	569	24	84
I ₂₄₈ R	544	-1	72
v	546	1	72
F	548	3	74
Т	554	9	75
S	558	13	80
. И	577	32	90
H ₃₄₈ A	592	47	67
С	593	48	66
И	597	52	67
Q	605	60	72
V ₂₁₄ C/V ₂₂₄ A	559	14	72
S ₂₄₇ F/F ₂₄₆ L	567	22	79
S ₂₄₇ F/I ₂₄₈ C	586	41	84
S ₂₄₇ F/I ₂₄₈ T	596	51	80
T ₂₃₃ A/L ₂₃₈ M	555	10	75
V ₂₈₂ I/I ₂₈₃ V	563	3	73
V ₂₂₄ F/R ₂₁₅ G	584	39	80
V ₂₂₄ F/R ₂₁₅ T	587	42	80
V ₂₂₄ F/R ₂₁₅ V	589	44	80
	597	52	81
V ₂₂₄ F/R ₂₁₅ P V ₂₂₄ F/P ₂₂₂ S	564	. 3	86

5

10

15

20

25

TABLE III, cont.

Protein	Spectral	Properties

Protein	Spectra	1 Proper	ties
LucPp1GR-	peak	shift	width
V ₂₂₄ F/Q ₂₂₇ E	583	38	85
V ₂₂₄ F/L ₂₃₈ V	575	30	85
V ₂₂₄ F/L ₂₃₈ M	576	31	87
V ₂₂₄ F/S ₂₄₇ G	581	36	84
V ₂₂₄ F/S ₂₄₇ H	581	36	79
V ₂₂₄ F/S ₂₄₇ Y	595	50	88
V ₂₂₄ F/S ₂₄₇ F	597	52	85

10

15

20

25

30

35

"Corresponding positions" in luciferases other than LucPplGR can be determined either from alignments at the amino acid level that are already known in the art (see, e.g., Wood et al., Science 244, 700 - 702 (1989); Devine et al., Biochim. et Biophys. Acta 1173, 121-132(1993)) or by simply aligning at the amino acid level to maximize alignment of identical or conservatively substituted residues, and keeping in mind in particular that amino acids 195 - 205 in the LucPplGR sequence are very highly conserved in all beetle luciferases and that there are no gaps for more than 300 positions after that highly conserved 11-mer in any beetle luciferase aminio acid sequence.

A "peroxisome-targeting-avoiding sequence at its carboxy-terminus" means (1) the three carboxy-terminal amino acids of the corresponding wild-type luciferase are entirely missing from the mutant; or (2) the three carboxy-terminal amino acids of the corresponding wildtype luciferase are replaced with a sequence, of one, two or three amino acids that, in accordance with Sommer et al., supra, will reduce peroxisome-targeting by at least 50 %. If the three carboxy-terminal amino acids of the wild-type luciferase are replaced by a three-amino-acid peroxisome-targeting-avoiding sequence in the mutant, and if the sequence in the mutant is $X_1X_2X_3$, where X_3 is carboxy-terminal, than X1 is any of the twenty amino acids except A, C, G, H, N, P, Q, T and S, X2 is any of the twenty amino acids except H, M, N, Q, R, S and K, and X3 is any of the twenty amino acids except I, M, Y and L. Further, any one or two, or all three, of X_1 , X_2 , and X_3 could be absent from the mutant (i.e., no amino acid corresponding to the position). The most preferred peroxisome-targeting-avoiding sequence is IAV, where V is at the carboxy-terminus.

In another of its aspects, the invention entails a combination of luciferases, in a cell (eukaryotic or prokaryotic), a solution (free or linked as a reporter to

- 18 -

an antibody, antibody-fragment, nucleic acid probe, or the like), or adhererd to a solid surface, optionally through an antibody, antibody fragment or nucleic acid, and exposed to a solution, provided that at least one of the luciferases is a mutant, both of the luciferases remain active in producing bioluminescence, and the wavelengths of peak intensities of the bioluminescence of the luciferases differ because the amino acid sequences of the luciferases differ at at least one of the positions corresponding to positions 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348 in the amino acid sequence of LucPpIGR, provided that one or both of the luciferases optionally have peroxisome-targeting-avoiding sequences.

10

15

25

In another of its aspects, the invention entails a DNA molecule, which may be an eukaryotic or prokaryotic expression vector, which comprises a segment which has a sequence which encodes a mutant beetle luciferase of the invention.

Most preferred among the DNAs of the invention are those with segments which encode a preferred mutant luciferase of the invention.

From the description of the invention provided herein, the skilled will recognize many modifications and variations of what has been described that are within the spirit of the invention. It is intended that such modifications and variations also be understood as part of the invetion.

SEQUENCE LISTING

	(1)	(i) (ii) (iii	APPL TIT) NU COR	ICAN LE O MBER RESP (A) (B) (C) (C)	F IN OF ONDE ADDR STRE CITY STAT COUN	rome VENT SEQU NCE ESSE ET: Ma E: W TRY:	ENCE ADDR E: F P. O diso US	Mut ES: 1 ESS: Coley Coley On Bo	. & I ж 14	Luci ardr		1969			
		•	i) A	ior (A) (B) (B) (TTOR (A) (B) (B)	FILI NEY/ NAME REGI	ICAT ICAT NG D AGEN : SC STRA	ION ION ATE: T IN anlo TION	DATA NUMB 3-Ja FORM n, W	ER: n-19 ATIC illi BER: NUM	94 N: am J 301	36				
,		(ix)	TEL	ECOM (A)	MUNI TELE	CATI PHON	ON I E: (NFOR 608)	MATI 258 58-4	ON: -428					
	(2)	(i) (ii) (iii (iv)	MOL) HY: ANT:	ENCE (A) (B) (C) (D) (D) (ECULI POTHI	TYPE STRAI TOPO: E TY: ETIC: SE: 1	RACT TH: nu NDED LOGY PE: AL:	ERIS 1632 clei NESS : li cDNA	TICS bas c ac : do near to	e pa id uble		:1:				
														CAC His	48
														CGA Arg	96
														GAA Glu	144
														CAA Gln	192
					_	_					_	_	TCG Ser	_	240
													GCT Ala		288
													CCA Pro 110		336
													TTT Phe		384

AA(Ly:	S AA' S ASI 13	n Il	T CT e Le	A AA u As	T AAC n Ly	G GT B Va 13	l Le	G GA u Gl	G GT u Va	A CA 1 Gl	G AG n Se	r Ar	A AC	OT GA	AT TI	CC 43 ie	2
AT/ 116 145	e Ly:	A AG	G AT	T AT	C ATA e Ila 150	e Le	A GA u As	T GC p Al	T GT a Va	A GA 1 G1 15	u As	C AT n Il	'A CA e Hi	C GC .B Gl	ST TO .y Cy 16	s	0
GA! Glu	A AG:	r CT'	T CC	C AA' > As: 16!	T TTT n Phe 5	T AT	T TC	T CG	T TA' g Ty: 17	r Se	G GA r As	T GG p Gl	A AA y As	T A1 n Il 17	e Al	C 52	8
AA0 Asr	TTC Phe	C AA	A CC B Pro 180	o Le	A CAT u His	TAC Tyl	C GA	T CC P Pro 18	o Va	r GAI	A CA u Gl	A GT n Va	G GC 1 Al 19	a Al	T AT a Il	C 57	6
TTA Leu	TGT Cys	TCC Ser 195	r Sei	A GGC	C ACA Y Thr	ACT Thr	GG1 G13 200	y Let	A CCC	G AAI D Lyi	A GG B Gl	T GT. y Va 20	l Me	G CA t Gl	A AC n Th	T 624	4
CAT	AGA Arg 210	, Asr	r GTT n Val	TG1	r GTC s Val	CGA Arg 215	j Lei	T ATA	A CAT	r GCT	r TT a Let 220	a Asj	C CC p Pro	C AG o Ar	G GT. g Va	A 672 1	2 .
GGA Gly 225	Thr	Glr	A CTT	TATI	CCT Pro 230	Gly	GTC Val	ACA L Thr	GTC Val	235	ı Vai	A TAT	r CTO	G CC u Pr	T TT: 0 Pho 240	9)
TTC	CAT His	GCT Ala	TTI Phe	GGG Gly 245	TTC Phe	TCI Ser	ATA Ile	AAC Asn	TTO Leu 250	Gly	TAC Tyl	TTC Phe	C ATO	G GTC = Val 25!	l Gly	r 768 7	3
CTT	CGT Arg	GTI Val	ATC Ile 260	Met	TTA Leu	AGA	CGA Arg	TTT Phe 265	Asp	CAA Glm	GAZ Glu	GCA Ala	A TT1 1 Phe 270	Let	A AAI 1 Lys	A 816	
GCT Ala	ATT Ile	CAG Gln 275	Asp	TAT Tyr	GAA Glu	GTT Val	CGA Arg 280	Ser	GTA Val	ATT	AAC Asn	GT1 Val 285	. Pro	GCF Ala	A ATA	864	
ATA Ile	TTG Leu 290	TTC Phe	TTA Leu	TCG Ser	AAA Lys	AGT Ser 295	CCT Pro	TTG Leu	GTT Val	Asp GAC	AAA Lys 300	Tyr	GAT Asp	TTA Leu	TCA Ser	912	
AGT Ser 305	TTA Leu	AGG Arg	GAA Glu	TTG Leu	TGT Cys 310	TGC Cys	GGT Gly	GCG Ala	GCA Ala	CCA Pro 315	TTA Leu	GCA Ala	AAG Lys	GAA Glu	GTT Val 320	960	
GCT Ala	GAG Glu	ATT	GCA Ala	GTA Val 325	AAA Lys	CGA Arg	TTA Leu	AAC	TTG Leu 330	CCA Pro	GGA Gly	ATT Ile	CGC Arg	TGT Cys 335	Gly	1008	
TTT Phe	GGT Gly	TTG Leu	ACA Thr 340	GAA Glu	TCT Ser	ACT Thr	TCA Ser	GCT Ala 345	AAT Asn	ATA Ile	CAC	AGT Ser	CTT Leu 350	AGG Arg	GAT Asp	1056	
GAA Glu	TTT Phe	AAA Lys 355	TCA Ser	GGA Gly	TCA Ser	CTT Leu	GGA Gly 360	AGA Arg	GTT Val	ACT Thr	CCT Pro	TTA Leu 365	ATG Met	GCA Ala	GCT Ala	1104	
AAA Lys	ATA Ile 370	GCA Ala	GAT Asp	AGG Arg	GAA Glu	ACT Thr 375	GGT Gly	Lys	GCA Ala	TTG Leu	GGA Gly 380	CCA Pro	AAT Asn	CAA Gln	GTT Val	1152	
GGT Gly 385	GAA Glu	TTA Leu	TGC Cys	ATT Ile	AAA Lys 390	GGT Gly	CCC Pro	ATG Met	Val	TCG Ser 395	AAA Lys	GGT Gly	TAC Tyr	GTG Val	AAC Asn 400	1200	

AAT Asn	GTA Val	GAA Glu	GCT Ala	ACC Thr 405	AAA Lys	GAA Glu	GCT Ala	ATT Ile	GAT Asp 410	GAT Asp	GAT Asp	GGT Gly	TGG Trp	CTT Leu 415	CAC His	1248
TCT	GGA Gly	GAC Asp	TTT Phe 420	GGA Gly	TAC Tyr	TAT Tyr	GAT Asp	GAG Glu 425	GAT	GAG Glu	CAT His	TTC Phe	TAT Tyr 430	GTG Val	GTG Val	1296
GAC Asp	CGT Arg	TAC Tyr 435	AAG Lys	GAA Glu	TTG Leu	ATT Ile	AAA Lys 440	TAT Tyr	AAG Lys	GGC Gly	TCT Ser	CAG Gln 445	GTA Val	GCA Ala	CCT Pro	1344
GCA Ala	GAA Glu 450	CTA Leu	GAA Glu	GAG Glu	ATT Ile	TTA Leu 455	TTG Leu	AAA Lys	TAA Asn	CCA Pro	TGT Cys 460	ATC Ile	AGA Arg	GAT Asp	GTT Val	1392
GCT Ala 465	GTG Val	GTT Val	GGT Gly	ATT Ile	CCT Pro 470	GAT Asp	CTA Leu	GAA Glu	GCT Ala	GGA Gly 475	GAA Glu	CTG Leu	CCA Pro	TCT Ser	GCG Ala 480	1440
TTT Phe	GTG Val	GTT Val	ATA Ile	CAG Gln 485	CCC Pro	GGA Gly	AAG Lys	GAG Glu	ATT Ile 490	ACA Thr	GCT Ala	AAA Lys	GAA Glu	GTT Val 495	TAC Tyr	1488
Asb GYI	TAT Tyr	CTT Leu	GCC Ala 500	GAG Glu	AGG Arg	GTC Val	TCC Ser	CAT His 505	ACA Thr	AAG Lys	TAT Tyr	TTG Leu	CGT Arg 510	GGA Gly	Gly	1536
GTT Val	CGA Arg	TTC Phe 515	GTT Val	Asp	AGC Ser	ATA Ile	CCA Pro 520	AGG Arg	AAT Asn	GTT Val	ACA Thr	GGT Gly 525	AAA Lys	ATT Ile	ACA Thr	1584
AGA Arg	AAG Lys 530	GAA Glu	CTT Leu	CTG Leu	AAG Lys	CAG Gln 535	TTG Leu	CTG Leu	GAG Glu	AAG Lys	AGT Ser 540	TCT Ser	AAA Lys	CTT Leu	TAA	1632

22

CLAIMS

10

15

30

- 1. A mutant beetle luciferase which has an amino acid sequence that differs from that of the corresponding wild-type luciferase by a substitution at one position or substitutions at two positions; provided that, if there is a substitution at one position, the position corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348; and provided further that, if there are substitutions at two positions, at least one of the positions corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348.
 - 2. A mutant luciferase according to Claim 1 wherein there is one amino acid substitution.
 - 3. A mutant luciferase according to Claim 1 wherein there are two amino acid substitutions.
- 4. A mutant luciferase according to Claim 3 wherein each of the amino acid substitutions is at a position corresponding to a position in the amino acid sequence of LucPpIGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348.
 - 5. A mutant luciferase according to Claim 1 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.

PCT/US95/00108

- 6. A mutant luciferase according to Claim 2 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.
- 7. A mutant luciferase according to Claim 3 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.
- 8. A mutant luciferase according to Claim 4
 wherein the corresponding wild-type luciferase is
 selected from the group consisting of LucPplGR, LucPplYG,
 LucPplYE, LucPplOR, the luciferase of Photinus pyralis,
 the luciferase of Luciola cruciata, the luciferase of
 Luciola lateralis, and the luciferase of Luciola
 mingrelica.
 - 9. A mutant luciferase according to Claim 5 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
 - 10. A mutant luciferase according to Claim 6 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 11. A mutant luciferase according to Claim 7 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 12 A mutant luciferase according to Claim 8
 35 wherein the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.

- 13. A mutant luciferase of Claim 9 wherein the corresponding wild-type luciferase is LucPplGR.
- 14. A mutant luciferase of Claim 10 wherein the corresponding wild-type luciferase is LucPplGR.
- 15. A mutant luciferase of Claim 11 wherein the corresponding wild-type luciferase is LucPplGR.
 - 16. A mutant luciferase of Claim 12 wherein the corresponding wild-type luciferase is LucPplGR.
- 17. A mutant luciferase of Claim 13 wherin the mutant is selected from the group consisting of 10 $\label{eq:LucPpigR} \text{LucPpigR-R}_{215}\text{H}, \ -\text{R}_{215}\text{G}, \ -\text{R}_{215}\text{T}, \ -\text{R}_{215}\text{M}, \ -\text{R}_{215}\text{P}, \ -\text{R}_{215}\text{A}, \ -\text{R}_{215}\text{L},$ $-R_{223}L, -R_{223}Q, -R_{223}M, -R_{223}H, -V_{224}I, -V_{224}S, -V_{224}F, -V_{224}Y, -V_{224}L,$ $-V_{224}H, -V_{224}G, -V_{232}E, -V_{236}H, -V_{236}W, -Y_{237}S, -Y_{237}C, -L_{238}R, -L_{238}M,$ $-L_{238}Q, -L_{238}S, -L_{238}D, -H_{242}A, -F_{244}L, -G_{245}S, -G_{245}E, -S_{247}H, -S_{247}T,$ $-S_{247}Y, -S_{247}F, -I_{248}R, -I_{248}V, -I_{248}F, -I_{248}T, -I_{248}S, -I_{248}N, -H_{348}N, -H_{348}N$ 15 $-H_{348Q}Q, \quad -H_{248}E, \quad -H_{348}C, \quad -S_{247}F/F_{246}L, \quad -S_{247}F/I_{248}C, \quad -S_{247}F/I_{248}T,$ $-V_{224}F/R_{215}G, -V_{224}F/R_{215}T, -V_{224}F/R_{215}V, -V_{224}F/R_{215}P, -V_{224}F/P_{222}S, \\$ $-V_{224}F/Q_{227}E, \quad -V_{224}F/L_{238}V, \quad -V_{224}F/L_{238}T, \quad -V_{224}F/S_{247}G, \quad -V_{224}F/S_{247}H, \quad -V_{224}F/S_{247}H,$ $-V_{224}F/S_{247}T$, and $-V_{224}F/S_{247}F$.
- 18. A DNA molecule which comprises a segment which 20 has a sequence which encodes a mutant beetle luciferase which has an amino acid sequence that differs from that of the corresponding wild-type luciferase by a substitution at one position or substitutions at two positions; provided that, if there is a substitution at 25 one position, the position corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348; and provided further that, if there are substitutions at 30 two positions, at least one of the positions corresponds to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248,
- 282, 283 and 348. 35

PCT/US95/00108

WO 95/18853

10

- 19. A DNA molecule according to Claim 18 wherein the encoded mutant luciferase has one amino acid substitution.
- 20. A DNA molecule according to Claim 18 wherein the encoded mutant luciferase has two amino acid substitutions.
- 21. A DNA molecule according to Claim 20 wherein, in the encoded mutant luciferase, each of the amino acid substitutions is at a position corresponding to a position in the amino acid sequence of LucPplGR selected from the group consisting of position 214, 215, 223, 224, 232, 236, 237, 238, 242, 244, 245, 247, 248, 282, 283 and 348.
- 22. A DNA molecule according to Claim 18 wherein,

 for the encoded amino acid sequence, the corresponding
 wild-type luciferase is selected from the group
 consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the
 luciferase of Photinus pyralis, the luciferase of Luciola
 cruciata, the luciferase of Luciola lateralis, and the
 luciferase of Luciola mingrelica.
 - 23. A DNA molecule according to Claim 19 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.
 - 24. A DNA molecule according to Claim 20 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.

25

10

15

20

25

- 25. A DNA molecule according to Claim 21 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, LucPplOR, the luciferase of Photinus pyralis, the luciferase of Luciola cruciata, the luciferase of Luciola lateralis, and the luciferase of Luciola mingrelica.
- 26. A DNA molecule according to Claim 22 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 27. A mutant luciferase according to Claim 23 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 28. A DNA molecule according to Claim 24 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 29. A DNA molecule according to Claim 25 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is selected from the group consisting of LucPplGR, LucPplYG, LucPplYE, and LucPplOR.
- 30. A DNA molecule according to Claim 26 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is Luc*PplGR*.
- 31. A DNA molecule according to Claim 27 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is LucPplGR.
- 32. A DNA molecule according to Claim 28 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is LucPplGR.
- 33. A DNA molecule according to Claim 29 wherein, for the encoded amino acid sequence, the corresponding wild-type luciferase is LucPp1GR.

34. A DNA molecule according to Claim 30 wherin the encoded mutant luciferase is selected from the group consisting of LucPplGR- $R_{215}H$, $-R_{215}G$, $-R_{215}T$, $-R_{215}M$, $-R_{215}P$, $-R_{215}A$, $-R_{215}L$, $-R_{223}L$, $-R_{223}Q$, $-R_{223}M$, $-R_{223}H$, $-V_{224}I$, $-V_{224}S$, $-V_{224}F$, $-V_{224}Y$, $-V_{224}L$, $-V_{224}H$, $-V_{224}G$, $-V_{232}E$, $-V_{236}H$, $-V_{236}W$, $-Y_{237}S$, $-Y_{237}C$, $-L_{238}R$, $-L_{238}M$, $-L_{238}Q$, $-L_{238}S$, $-L_{238}D$, $-H_{242}A$, $-F_{244}L$, $-G_{245}S$, $-G_{245}E$, $-S_{247}H$, $-S_{247}T$, $-S_{247}Y$, $-S_{247}F$, $-I_{248}R$, $-I_{248}V$, $-I_{248}F$, $-I_{248}T$, $-I_{248}S$, $-I_{248}N$, $-H_{348}N$, $-H_{348}Q$, $-H_{348}E$, $-H_{348}C$, $-S_{247}F/F_{246}L$, $-S_{247}F/I_{248}C$, $-S_{247}F/I_{248}T$, $-V_{224}F/R_{215}G$, $-V_{224}F/R_{215}T$, $-V_{224}F/R_{215}V$, $-V_{224}F/R_{215}P$, $-V_{224}F/R_{215}P$, $-V_{224}F/R_{215}P$, $-V_{224}F/R_{215}P$, $-V_{224}F/R_{215}P$, $-V_{224}F/R_{215}P$, and $-V_{224}F/S_{247}F$.

INTERNATIONAL SEARCH REPORT

Inter. ..onal application No. PCT/US95/00108

	ASSIFICATION OF SUBJECT MATTER					
IPC(6)	:C12N 9/02, 15/53 · :435/189; 536/23.2					
	to International Patent Classification (IPC) or to bo	oth national classification and IPC				
B. FIE	LDS SEARCHED		-			
Minimum o	documentation searched (classification system follow	wed by classification symbols)				
U.S. :	435/189, 172.3, 320.1, 252.3, 252.33; 536/23.2					
Documenta	tion searched other than minimum documentation to	the extent that such documents are included	in the fields searched			
Electronic o	data base consulted during the international search (name of data base and, where practicable	search terms used)			
1	ee Extra Sheet.	•				
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
×	FEBS Letters, Volume 307, No. 2, issued July 1992, G. Sala- Newby et al., "Engineering Firefly Luciferase as an Indicator of Cyclic AMP-Dependent Protein Kinase in Living Cells", pages 241-244, see entire document.					
×	BIOCHEMICAL JOURNAL, Volume 279, issued November 1, 2, 5, 6 1991, G. Sala-Newby et al., "Engineering a Bioluminescent 19, 22, 23 Indicator for Cyclic AMP-Dependent Protein Kinase", pages 727-732, see entire document.					
Α	PROTEIN ENGINEERING, Volume 1991, N. Kajiyama et al., "Isolati Mutants of Firefly Luciferase Whice of Light", pages 691-693.	ion and Characterization of	1-34			
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.				
·	ecial categories of cited documents:	"T" later document published after the inter date and not in conflict with the applicat	national filing date or priority			
	ument defining the general state of the art which is not considered to of particular relevance	principle or theory underlying the inves	ntion			
	ier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be ed to involve an inventive step			
cite	ument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevances the	alaband Samuel			
•	cial reason (as specified) ument referring to an oral disclosure, use, exhibition or other uss	"Y" document of particular relevance; the considered to involve an inventive a combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination			
"P" doc	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent for				
Date of the a	ectual completion of the international search	Date of mailing of the international sear 17APR1995	ch report			
Commission Box PCT	ailing address of the ISA/US or of Patents and Trademarks D.C. 20231	Authorized officer Dulyah REBECCA PROUTY	Freede 10			
	(703) 305-3230	Telephone No. (703) 308 0196	į			

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

Inter. .onal application No. PCT/US95/00108

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, Volume 5, issued April 1990, K.V. Wood, "Luc Genes: Introduction of Colour Into Bioluminescence Assays", pages 107-114.	1-34
A	JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, Volume 4, issued July 1989, K.V. Wood et al., "Introduction to Beetle Luciferases and Their Applications", pages 289-301.	1-34
A	JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, Volume 4, issued July 1989, K.V. Wood et al., "Bioluminescent Click Beetles Revisited", pages 31-39.	1-34
A	SCIENCE, Volume 244, issued 12 May 1989, K.V. Wood et al., "Complementary DNA Coding Click Betle Luciferases Can Elict Bioluminescence of Different Colors", pages 700-702.	1-34
	·	

INTERNATIONAL SEARCH REPORT

Inter nonal application No. PCT/US95/00108

APS, MEDLINE, BIOSIS, LIFESCI, EMBASE, WPI, BIOTECHDS, CA earch terms: luciferase#, muta? or modif?, gene# or sequence#, beetle# or firefl?, pyrophorus or plagiophthalamus, hotinus or luciola									
					-				
				ı					

Form PCT/ISA/210 (extra sheet)(July 1992)*