PROJECT DEVELOPMENT PHASE

PROJECT DEVELOPMENT DELIVERY OF SPRINT-II

TEAM ID	PNT2022TMID46908
PROJECT NAME	AIRLINES DATA ANALYTICS FOR AVIATION INDUSTRIES
DATE	05 NOVEMBER 2022

Coding:

In [18]:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot import seaborn as sns</pre>					
In [19]:	<pre>data= pd.read_csv("/airp data.head()</pre>					
Out[19]:		id	ident	type		
	0	6523	00A	heliport		
	1	323361	00AA	small_airport		
	2	6524	00AK	small_airport		
	3	6525	00AL	small_airport		
	4	6526	00AR	closed		

In [20]:
 data = pd.read_csv("/air
 data.drop(["id"], axis=1
 data.head()

Out[20]:		ident	type	name
	0	00A	heliport	Total Rf Heliport
	1	00AA	small_airport	Aero B Ranch Airport
	2	00AK	small_airport	Lowell Field
	3	00AL	small_airport	Epps Airpark
	4	00AR	closed	Newport Hospital & Clinic Heliport

In [21]: data.describe()

longitude_ Out[21]: latitude_deg count 67312.000000 67312.000 mean 25.945866 -31.136 26.380436 84.227 std -90.000000 -179.876 min 25% 11.195161 -93.801 50% 35.437555 -70.799 75% 43.035376 18.963 82.750000 179.975 max

In [22]: data.info() RangeIndex: 67312 entrie s, 0 to 67311 Data columns (total 17 c olumns): # Column Non-Null Count Dtype 0 ident
67311 non-null object
1 type
67312 non-null object
2 name
67312 non-null object
3 latitude_deg
67312 non-null float64
4 longitude_deg 4 longitude_deg 67312 non-null float64 67312 non-null f.
5 elevation_ft
54335 non-null f
6 continent
34320 non-null of
7 iso_country
67055 non-null of float64 object object 8 iso_region
67312 non-null object
9 municipality
61781 non-null object 10 scheduled_service 67312 non-null object 11 gps_code 42618 non-null object 12 iata_code 9244 non-null object 13 local_code 32055 non-null object 14 home_link 3300 non-null obj 15 wikipedia_link object 10370 non-null 16 keywords 12367 non-null object object dtypes: float64(3), obje ct(14)

In [23]: data.isnull().sum() Out[23]: ident type 0 name latitude_deg longitude_deg 129 elevation_ft 77 329 continent 92 iso_country 2 57 iso_region 55 municipality scheduled_service 0 246 gps_code 94 iata_code 580 68 local_code 352 57 home_link 640 12 wikipedia_link 569 42 keywords 549 45 dtype: int64

plt.scatter(data['latituplt.title('longitude_degplt.xlabel('latitude_degplt.ylabel('longitude_degplt.show()

In [25]:

plt.scatter(data['latitu
plt.title('elevation_ft
plt.xlabel('latitude_deg
plt.ylabel('elevation_ft
plt.show()

In [26]:

data[data.elevation_ft >
plt.xlabel("longitude_de
plt.ylabel("elevation_ft
plt.title("elevation_ft>
plt.grid(True)
plt.show()

In [27]:

data["longitude_deg"].pl
plt.title("longitude_deg
plt.xlabel("longitude_deg
plt.ylabel("scheduled_seg
plt.show()


```
In [28]:
    p = np.array([data["elev
    r = ["Worst", "Average",'
        plt.bar(p,r)
        plt.title("elevation_ft'
        plt.xlabel("Level")
        plt.ylabel("elevation_ft
        plt.show()
```



```
In [29]:
```

```
g = np.array([data["long
h = ["Worst", "Average",'
plt.bar(g,h)
plt.title("longitude_deg
plt.xlabel("Level")
plt.ylabel("longitude_de
plt.show()
```


In [30]:

plt.figure(figsize=(10,
sns.heatmap(data.corr(),
plt.show()

In [31]:

print(data.shape)
n = len(pd.unique(data['
d=len(pd.unique(data['ty
print("name",n,"type",d)
data['scheduled_service'

(67312, 17) name 63826 type 7

Out[31]: no 63228

yes 4084

Name: scheduled_service,

dtype: int64