1

Control Systems

G V V Sharma*

CONTENTS

1	Mason ⁷	's Gain Formula	1
2	Bode Plot		1
	2.1	Introduction	1
	2.2	Example	1
3	Second order System		1
	3.1	Damping	1
	3.2	Example	1
4	Routh Hurwitz Criterion		1
	4.1	Routh Array	1
	4.2	Marginal Stability	1
	4.3	Stability	1
5	State-Space Model		1
	5.1	Controllability and Observability	1
	5.2	Second Order System	2
6	Nyquis	t Plot	2
7	Phase Margin		2
8	Gain Margin		2
9	Compe 9.1	nsators Phase Lead	2 2
10	Oscillat	tor	2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 Mason's Gain Formula

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 3 SECOND ORDER SYSTEM
- 3.1 Damping
- 3.2 Example
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.1. The state equation and the output equation of a control system are given below:

$$\dot{\mathbf{X}} = \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} \mathbf{U}$$
 (5.1.1)

$$\mathbf{Y} = (1.5 \quad 0.625) \mathbf{X} \tag{5.1.2}$$

Then transfer function representation of the system is

5.2. **Solution:** when

$$\dot{\mathbf{X}} = \mathbf{AX} + \mathbf{BU} \tag{5.2.1}$$

$$Y = CX + DU (5.2.2)$$

where A,B,C,D are matrices. Then the transfer function can be find using

$$T(s) = \mathbf{C} \left[(sI - \mathbf{A})^{-1} \right] .\mathbf{B} + \mathbf{D}$$
 (5.2.3)

From the given state space representation of the system, we can find matrices as

$$\mathbf{A} = \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix} \tag{5.2.4}$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\mathbf{B} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{5.2.5}$$

 $\mathbf{C} = \begin{pmatrix} 1.5 & 0.625 \end{pmatrix} \tag{5.2.6}$

We can find the transfer function using

$$T(s) = \mathbf{C} \left[(sI - \mathbf{A})^{-1} \right] .\mathbf{B} + \mathbf{D}$$
 (5.2.7)

$$(sI - \mathbf{A}) = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix}$$
 (5.2.8)

$$(sI - \mathbf{A}) = \begin{pmatrix} s - 4 & -1.5 \\ 4 & s \end{pmatrix} \tag{5.2.9}$$

$$|sI - \mathbf{A}| = s(s+4) - (-4) \times (-1.5)$$
 (5.2.10)

$$|sI - \mathbf{A}| = s^2 + 4s + 6$$
 (5.2.11)

and from (1.2.9)

$$Adj[sI - \mathbf{A}] = \begin{pmatrix} s & -1.5 \\ 4 & s+4 \end{pmatrix}$$
 (5.2.12)

$$[sI - \mathbf{A}]^{-1} = \frac{Adj[sI - \mathbf{A}]}{|sI - \mathbf{A}|}$$

$$= \begin{pmatrix} \frac{s}{(s^2 + 4s + 6)} & \frac{-1.5}{(s^2 + 4s + 6)} \\ \frac{4}{(s^2 + 4s + 6)} & \frac{s + 4}{(s^2 + 4s + 6)} \end{pmatrix}$$
(5.2.13)

$$[sI - \mathbf{A}]^{-1} \cdot \mathbf{B} = \begin{pmatrix} \frac{s}{(s^2 + 4s + 6)} & \frac{-1.5}{(s^2 + 4s + 6)} \\ \frac{4}{(s^2 + 4s + 6)} & \frac{s + 4}{(s^2 + 4s + 6)} \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
(5.2.14)

$$. \cdot . \qquad [sI - \mathbf{A}]^{-1} .\mathbf{B} = \begin{pmatrix} \frac{4s}{(s^2 + 4s + 6)} \\ \frac{16}{(s^2 + 4s + 6)} \end{pmatrix} (5.2.15)$$

Substituting the values of $[sI - A]^{-1}$. **B** and **C** in equation (1.2.7)

$$T(s) = \begin{pmatrix} 1.5 & 0.625 \end{pmatrix} \begin{pmatrix} \frac{4s}{(s^2 + 4s + 6)} \\ \frac{16}{(s^2 + 4s + 6)} \end{pmatrix}$$
 (5.2.16)

$$T(s) = \left(\frac{6s}{(s^2 + 4s + 6)} + \frac{10}{(s^2 + 4s + 6)}\right)$$
 (5.2.17)

the transfer function representation of the system is

. .
$$T(\mathbf{s}) = \left(\frac{6s+10}{(s^2+4s+6)}\right)$$
 (5.2.18)

- 5.3. verify the answer with python code https://github.com/srikanth2001/EE2227control-systems/tree/master/codes
- 5.2 Second Order System
 - 6 Nyquist Plot
 - 7 Phase Margin
 - 8 Gain Margin
 - 9 Compensators
- 9.1 Phase Lead

10 Oscillator