MIDTERM 2 REVIEW

MATH 4242 010, AU'14

Previous Material

- Solving Linear systems
- Finding bases for ker(A) or rng(A).

Chapter 3

- Inner products
 - Know the definition
 - Know the standard examples: dot products, weighted dot products, the $L^2([a,b])$ inner product.
 - The Cauchy-Schwarz inequality and the triangle inequality
 - Know the classification of inner products on \mathbb{R}^n , Theorem 3.21
- Norms
 - Know the definition
 - Know the standard examples: L^p and L^{∞} norms on \mathbb{R}^n , the L^p and L^{∞} norms on the space of continuous functions, $C^0([a,b])$. For which p can we define the L^p norm?
- Positive definite matrices
 - Know the definition
 - Know how to check if a matrix is positive definite: Theorem 3.37

Chapter 4

- Minimizing quadratic polynomials
 - Know how to write a quadratic polynomial (e.g. $p(\mathbf{x}) = x_1^2 x_1x_2 + 2x_2^2 + 4x_1 5$) into the matrix form $\mathbf{x}^T K \mathbf{x} 2\mathbf{x}^T \mathbf{f} + c$.
 - Know how to tell if $p(\mathbf{x})$ has a global minimum and how to find it, Theorem 4.1.
- The nearest point problem
 - Be able to solve a nearest point problem in \mathbb{R}^m . In other words, given a positive definite matrix C defining an inner product, a subspace V, and a point $b \in \mathbb{R}^m$, be able to find the point $v^* \in V$ minimizing the associated norm ||v-b||.
 - Remember, that a key step in this process is to choose a basis for V. That means that if V is n dimensional, the basis you choose should have n vectors. This was by far the biggest mistake in the quiz.
 - For example: If V is a one dimensional subspace of \mathbb{R}^3 , you need one basis vector (not three). If V is a 2 dimensional subspace of \mathbb{R}^4 , you need two basis vectors (not 4).
- Least Squares
 - Be able to solve a least squares problem for a matrix A with $ker(A) = \{0\}$.
 - Know how to modify this approach when ker(A) is allowed to be arbitrary.
- Data Fitting
 - Know how to fit a linear or quadratic polynomial to data.

- In the case that the degree is one less than the number of data points, the points can be fit exactly; this is called "interpolating." Put another way, the interpolating polynomial of a set of data points is the unique polynomial with degree 1 less than the number of points which fits the points exactly.
- For general function fitting, be able to do a problem like 4.4.33 or 4.4.35.