EC-350 AI and Decision Support Systems

Week 9 K-Nearest Neighbour Classifier

Dr. Arslan Shaukat

Acknowledgements: Lecture slides material from Duda, Hart and Stork, Dr. Gavin Brown

Problem Statement

Why recognising rugby players is (almost)
 the same problem as recognising handwrillen
 diqils

7210414959 0690159734 9665407401 3134727121

06/12/2017

EC-350 AI and DSS

EME (NUST)

_

Problem Statement Can we LEARN to recognise a rugby player and ballet dancer? What are the "features" of a rugby player? D6/12/2017 EC-350 Al and DSS EME (NUST) 3

The K-Nearest Neighbour Algorithm

EME (NUST)

11

for each testing point

measure distance to every training point find the k closest points identify the most common class among those k assign that class

EC-350 Al and DSS

end

06/12/2017

- Advantage: Surprisingly good classifier!
- Disadvantage: Have to store the entire training set in memory

06/12/2017 EC-350 AI and DSS EME (NUST) 12

Distance Measure

Euclidean distance still works in 3-d, 4-d, 5-d, etc....

$$d = \sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}$$

x = Height

y = Weight

z = Shoe size

06/12/2017

EC-350 AI and DSS

EME (NUST)

13

Over-fitting

An Important Concept in Machine Learning

06/12/2017

EC-350 AI and DSS

EME (NUST)

Over-fitting

 While an overly complex boundary may allow perfect classification of the training samples, it is unlikely to give good classification of novel patterns

06/12/2017 EC-350 AI and DSS

EME (NUST)

Training and Testing Data			
	3 90 1 8 70 0 0 45 0 0 18 0 5 65 1 5 70 1 1 61 1 0 63 1 8 80 0 3 81 0		
06/12/2017	EC-350 Al and DSS	EME (NUST)	37

EME (NUST)

39

06/12/2017

EC-350 Al and DSS

32 instances 968 instances

A statistical framework.

Receiver Operator Characteristics Developed in WW-2 to assess radar operators.

"How good is the radar operator at spotting incoming bombers?"

False positives

- i.e. falsely predicting a bombing raid

False negatives

i.e. missing an incoming bomber (VERY BAD!)

06/12/2017 EC-350 Al and DSS

EME (NUST)

R.O.C. Analysis

The "'3" digits are like the bombers. Rare events but costly if we misclassify!

False positives – i.e. falsely predicting an event False negatives – i.e. missing an incoming event

Similarly, we have "true positives" and "true negatives"

Truth 0 1 TN **FP** 1 **FN** TP

06/12/2017

EC-350 AI and DSS

EME (NUST)

47

Building a "Confusion Matrix"

Prediction

Truth $\begin{array}{c|c} & 0 & 1 \\ & TN & \textbf{FP} \\ & 1 & \textbf{FN} & TP \end{array}$

$$Sensitivity = \frac{TP}{TP+FN}$$

... chances of spotting a "3" when presented with one (i.e. accuracy on class "3")

$$Specificity = \frac{TN}{TN+FP}$$

... chances of spotting an 8 when presented with one (i.e. accuracy on class "8")

06/12/2017

EC-350 AI and DSS

EME (NUST)

R.O.C. Analysis

$$Sensitivity = \frac{TP}{TP+FN} = \frac{TP}{TP+FN}$$

$$Specificity = \frac{TN}{TN+FP} = ?$$

Prediction

Truth

	0	1
0	60	30
1	80	20

TN	FP
FN	TP

06/12/2017 EC-350 Al and DSS

60+30 = 90 examples in the dataset were class 0

80+20 = 100 examples in the dataset were class 1

90+100 = 190 examples in the data overall

> EME (NUST) 49

Assignment # 3

- Use K-NN to recognise handwritten USPS digits.
- You will give the printed report including
 - Code
 - Results (Figures, Graphs, Tables etc.)
 - Your description (Max. 1 page)
- Deadline for submission
 - After 2 weeks

06/12/2017

EC-350 AI and DSS

EME (NUST)