學號:R06921058系級:電機碩一姓名:方浩宇

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? 答:

Jayer (type)	Output Shape	Parai						1	
mbedding_2 (Embedding)	(None, None, 200)	2805'	0.54		model	train vs v	/alidation		
idirectional_1 (Bidirection	(None, None, 512)	9359:	0.52 -						ain alidatio
idirectional_2 (Bidirection	(None, 512)	1574!							
atch_normalization_1 (Batch	(None, 512)	2048	0.50 -						
ropout_1 (Dropout)	(None, 512)	0	0.48 -	\					
ense_1 (Dense)	(None, 256)	1313:	SS 0.46 -						
eaky_re_lu_1 (LeakyReLU)	(None, 256)	0	0.44 -						
atch_normalization_2 (Batch	(None, 256)	1024							
ropout_2 (Dropout)	(None, 256)	0	0.42 -						_
ense_2 (Dense)	(None, 512)	1315	0.40 -						
eaky_re_lu_2 (LeakyReLU)	(None, 512)	0	0.38 -	1		-		,	
atch_normalization_3 (Batch	(None, 512)	2048		0	1	2 epo	3 ch	4	
ropout_3 (Dropout)	(None, 512)	0							
ense_3 (Dense)	(None, 1024)	5253							
eaky_re_lu_3 (LeakyReLU)	(None, 1024)	0							
atch_normalization_4 (Batch	(None, 1024)	4096							
ropout_4 (Dropout)	(None, 1024)	0							
ense_4 (Dense)	(None, 2)	2050							
Total params: 31,367,338 Trainable params: 3,305,730 Mon-trainable params: 28,061,	.608								

預處理:

- (1) 把簡寫取代:例如 can't 取代為 can not
- (2) 連續出現的字母和符號都改為單一個:例如 hhhheeeeyyyyyy!!!!!改為 hey!
- (3) 把一些縮寫改為原本的字:例如 2b 改為 to be
- (4) 使用 gensim 的 stemmer 作 stemming,減少 token 數量

模型架構:

圖左為這次的 RNN 模型架構,一開始先用兩層 Bidirectional LSTM, 然後 256、512、1024, 三層 Dense, 最後一層 Dense(2)使用 sigmoid 作輸出,其中每

一層 Dense 之間都有 BatchNormalization 和 Dropout。Activate Function 是使用 alpha 為 0.04 的 LeakyRelu

訓練過程:右圖為訓練時的 Loss 變化,不過這個 Loss 變化非最佳 Model 的, 也沒有使用 Semi-supervised,這次的 Model 大部分都在第三個 Epoch 左右時達 到最佳,超過之後幾乎都是 Overfitting。

output_004_Anotherreplace_ensemble_6Model.csv 19 days ago by r06921058_>.O 0.82948 0.83162	output_10_Anotherreplace_semi_log9961_testReproduce.csv a day ago by r06921058_>.0 add submission details	0.82395	0.82597	
		0.82948	0.83162	

準確率:單一 Model 的 public 準確率(有使用 Semi-supervised)可以到達 0.82597,而使用 10 個 Model 作 Ensemble 的話可以到達 0.83162 的準確率,另外,因為是 Semi-supervise,所以在訓練時 validation 的準確率幾乎都是 0.99 以上。

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? 答:

預處理:基本上同 RNN,不過是改成使用 keras 的 tokenizer.text_to_matrix,而 我設定的維度是 2000 維,因此是使用出現頻率前 2000 高的字,設定 2000 是因為太大的話會 memory error。

模型架構:這次是簡單的一層 Dense 然後接 Relu 後 Dropout0.5,就直接接輸出層(dense(2),sigmoid)了。

準確率:

output_r2_10_replace_semi_log9749.csv a few seconds ago by r06921058_>.O

add submission details

0.77021 0.77145

 \Box

這個準確率是有使用 Semi-supervised 的,Replace 的方法都和 RNN 的一樣,準確率比起上面的 RNN 低非常多,不過可能是因為我模型作非常淺,但是因為 BOW 比起上面的 RNN 會流失一些可以判斷的資訊,因此即使把模型加深也會比 RNN 低很多。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

答:

BOW	RNN
[[0.65105045 0.34887126]	[[0.90214014 0.09811708]
[0.5133269 0.48659867]] Answer	[0.1989746 0.8012115]] Answer

兩張圖分別為 BOW 與 RNN 對這兩句的分數,上方為 today is a good day, but it is hot,下方為 today is hot, but it is a good day,左方為負面的情緒分數,右方為正面的情緒分數。

可以發現 BOW 的預測兩具都是偏負面,然而差別並不大,有可能是因為我 BOW 只有 2000 維,偏負面可能是因為 but 這個字出現時大部分為負面。而 RNN 預測 第一個為負面,第二個為正面,可能是由於 Good 為一個正面的詞,而 But 為轉折,因此第一個先 Good 再 but 所以會預測為負面,第二個先 but 再 good 因此預測為正面。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

答:無標點符號的方法是在 Replace 中去掉標點符號(例如把","取代為""),而去掉標點符號之後(其餘皆跟沒去掉的一樣),準確率為 0.82071,而沒有去掉標點符號的有 0.82597。可以發現標點符號的確能夠幫助預測的結果,我猜測是類似有使用驚嘆號之類的句子通常比較容易是正面,而逗號也有助於分隔前後文,因此使用標點符號會讓結果比較好。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

答:我使用的方法是先建立一個 RNN Model(準確率為 0.821),然後用這個

Model 去 Predict 那些未標記的資料,然後經過我設定的門檻(正面和負面情緒差別要大於 0.4,而任一種的預測值要大於 0.8)保留比較有信心的資料,在把這些資料做標記之後儲存成跟 TrainData 一樣的格式,然後在訓練時讀取兩個 TrainData 和 UnlabeledData 的檔案後合併直接 Train。使用 Semi-supervised 之後可以讓模型的準確率從 0.821 上升到 0.825,Ensemble 後甚至可以到 0.831,有非常顯著的影響。

6. Reference:

https://github.com/thtang/ML2017FALL/tree/master/hw4 https://github.com/idea7766/ML2017FALL/tree/master/hw4 https://github.com/keras-team/keras/blob/master/examples/reuters_mlp.py