

An All-Weights-on-Chip DNN Accelerator in 22nm ULL Featuring 24×1 Mb eRRAM

*Zhehong Wang¹, *Ziyun Li^{1,2}, Li Xu¹, Qing Dong³, Chin-I Su⁴, Wen-Ting Chu⁴, George Tsou⁴, Yu-Der Chih⁴, Tsung-Yung Jonathan Chang⁴, Dennis Sylvester¹, Hun Seok Kim¹, David Blaauw¹

¹University of Michigan, Ann Arbor, MI ²Facebook, Seattle, WA ³TSMC, San Jose, CA ⁴TSMC, Hsinchu, Taiwan

Machine Learning/Deep Neural Network applications exploded

Various approaches to improve power efficiency

Various approaches to improve power efficiency

LBPE

- Off-chip memory latency and power become bottleneck
- Large on-chip weight buffer

Weights

280.6KB 140.3K@16b [J. Zhang, VLSI19] 256KB 256K@8b [J. Lee, ISSCC18] 170KB 170K@8b [Z. Yuan, VLSI18]

Off-chip memory latency and power become bottleneck

- Large on-chip weight buffer
- Culminate in QUEST ISSCC18
 - 7.68MB on-chip SRAM
 - 96MB 3D stacked SRAM
 - 3.3W system power

[K. Ueyoshi, ISSCC18]

- Off-chip memory latency and power become bottleneck
- Large on-chip weight buffer
- Culminate in QUEST ISSCC18
 - 7.68MB on-chip SRAM
 - 96MB 3D stacked SRAM
 - 3.3W system power
- Non-Volatile memory becomes an option

Our Contribution

 The first digital DNN accelerator featuring 24 Mb eRRAM as dedicated weight storage to eliminate off-chip weight access

Weight compression achieving 16 M 8-bit weights on-chip

 Dynamic clamping offset-canceling sense amplifier (DCOCSA) achieving sub-µA input offset

Outline

Motivation

All-Weights-on-Chip DNN Accelerator

Test Results

Chip and PE Architecture

- 4 mesh-connected PEs
- Each with
 - 128 MACs
 - Local 4KB weight
 - 32KB icache
 - 32KB input buffer
 - 6Mb RRAM
- 8Mb global buffer
- Overall 123 GOPS

Chip and PE Architecture

- 4 clusters of 32 MACs
 - 8 IA parallel
 - 4 IC parallel
 - 4 OC parallel
- 256b VLIW ISA
- Compressed weights are read from RRAM and decompressed into weight buffer

Neural Network Operations

- Similar to [Z.Li, ISSCC'19]
- Convolutional reuse & output reuse
- Combined Conv & BN & Nonlinear ops

Weight Compression/Decompression

- Combining pruning, non-uniform quantization, run-length and Huffman encoding
- With 8b precision:
 - 2.7 bits per weight for CNN layers
 - 5.2 bits for non-zeros
 - 0.25 bit per weight for FC layers

Weight Compression/Decompression

- Variable length weight packet with multiple 96b words
- Containing layer specification followed by Huffman-encoded weights and run-length coded indices

Parallel Decompression of Weights

 Non-uniform quantization with Huffman encoding poses significant performance bottleneck

Huffman codes are decoded with 4 bits in parallel → 2.7× faster than sequential decoding

- PEs decode in parallel, each maintaining ~10kb LUT
 - Updated via broadcast to all PEs

RRAM Bank Architecture

- 4 256x1024 RRAM arrays
- Common SL architecture
- 32-bit word length

- High Variation of RRAM resistance
 - 2x~10x for low resistance state(LRS)
- 5x~100x for high resistance state(LRS) (G) 2000 Leaving small sensing margin on Sense Amplifier Leaving small sensing margin on Sense Amplifier

[A. Chen, IRPS11]

- Cross couple gain doubling
- Dynamic clamping
- Single cap auto-zeroing

- Cross couple gain doubling
- Dynamic clamping
- Single cap auto-zeroing

- Cross couple gain doubling
- Dynamic clamping
- Single cap auto-zeroing

- Cross couple gain doubling
- Dynamic clamping
- Single cap auto-zeroing

DCOCSA Timing OS Phase I WL OS – Pre-charge Diff_CSB Diff_CS Diff CS Sample offset Diff_CSB OS SA_BL_ Sample bias SA_EN SW SA_EN voltage SA BL SW Dummy clk os Voutb **VOUT** SA_EN Ci **VOUTB VBL VRBL VBL** BL os Matching Rcell **VRBL** capcap OS OS

• Phase II

Sample current

Phase IV

Amplify

DCOCSA Monte Carlo Simulation

Sub-µA input offset
@21µA common mode

RRAM Write-Verify

- Fine-grained iterative Write-Verify
- Alleviates locality-dependent variation
 - Decouple fast and slow cells
 - Automatically adapts to the corresponding SA offset

[M. Chang, JSSC]

Outline

Motivation

All-Weights-on-Chip DNN Accelerator

Test Results

Testing Setup and Die Photo

Measured RRAM Resistance Distribution

Measured with ~10k
random samples across
24 banks

Measured VDD Scaling for Core Digital Logic

- 92.1mW, 140MHz @1.1V
- 42.4mW, 120MHz @0.8V
- 13.5mW, 60MHz @0.6V

Measured Power Breakdown of RRAM

- @60MHz RRAM clock
 - 1V SA and control: 15mW
 - 1.25V column mux: 17.5mW
 - 1.4V WL: 18.2mW
 - 1.1V inv amplifier: 34.8mW

Comparison table

	This Work	QUEST[11]	SNAP[12]	STICKER[13]	UNPU[2]
Technology	ULL 22nm	40nm	16nm	65nm	65nm
On-chip RAM(B)	3M RRAM/1.3M SRAM	7.68M/96M 3D SRAM	280.6K	170K	256K
Max On-chip Weight	16M@8b Non-Volatile	15.36M@ 4b Volatile	140.3K@16b Volatile	170K@8b Volatile	256K@8b Volatile
Off-chip Memory	No	Yes	Yes	Yes	Yes
MACs	4x128 (8x8b)	24x512 (1x1b log)	252 (16x16b)	256 (8x8b)	4x576 (1x16b)
Voltage (V)	1.0-1.2 RRAM 0.6-1.1 Core	1.1	0.55-0.8	0.67-1.0	0.63-1.1
Freq. (MHz)	60 RRAM/120 Core	300	33-480	20-200	200
TOPS/W	*0.96@8b	**0.59@4b	***3.61@16b	***1.038@8b	***5.57@8b
GOPS	123@8b	1960@4b	65.52@16b	102@8b	690@8b
Power (mW)	127.9@120MHz	3300@300MHz	364@480MHz	284.4@200MHz	297@200MHz
Chip Area (mm ²)	10.8	122	2.4	12	16

- *Including power of loading weights from RRAM to SRAM and MAC arrays
- **Including power of loading weights from 3D SRAM to on-chip SRAM and MAC arrays
- ***Excluding power of loading weights from off-chip memory

Conclusion

 First digital DNN accelerator featuring 24 Mb eRRAM as dedicated weight storage to eliminate off-chip weight access

Weight compression achieving 16 M 8-bit weights on-chip

 Dynamic clamping offset-canceling sense amplifier (DCOCSA) achieving sub-µA input offset

Acknowledgment

 TSMC University Joint Development Program and University Shuttle Program for chip fabrication and valuable advice

 ADA Joint University Microelectronics Program (JUMP) center for support

References

- [1] Y. Chen, et al., ISSCC, pp. 262-264, [8] C-C. Chou, et al., ISSCC, pp. 478-2016
 - 480, 2018.
- [2] J. Lee, et al., ISSCC, pp. 218-220, [9] P. Jain, et al., ISSCC, pp. 212-214, 2018.
 - 2019.
- [3] P. Whatmough, et al, ISSCC pp. 242- [10] Q. Dong, et al., ISSCC, pp. 480-4, 2017
 - 482, 2018.
- [4] C. Xue, et al., ISSCC, pp. 388-390, 2019.
- [11] K. Ueyoshi, et al., ISSCC, pp.216-218,2018
- [5] T. Wu, et al., ISSCC, pp.226-228, 2019.
- [12] J. Zhang, et al., VLSI, pp. 306-307, 2019.
- [6] Z. Li, et al., ISSCC, pp. 134-136, 2019.
- [13] Z. Yuan, et al., VLSI, pp. 33-34, 2018.

• [7] S. Han, et al., ICLR, 2016.

Thank you