Zihang Song

PhD Candidate in Information and Communication Systems

Email: zihang.song@surrey.ac.uk

Last update: 27/09/2022

RESEARCH INTERESTS

My research is at the intersection of learning-driven cognitive communication and signal processing. I am especially interested in solving the sparse inverse problems from compressive samples of wideband radio signal and practical sensing matrices design by optimization and learning methods.

EDUCATION

2020 – pres	University	of Surrey
2020 - DICS	O III V CI SILV	or Surrey

PhD Student, Information and Communication Systems

Postgraduate Researcher, EPSRC project GHz bandwidth sensing (GBSense)

Dissertation (about to submit): "Compressed Spectrum Sensing based on a Periodic Nonuniform sub-Nyquist

sampling framework: from theory to practice"

Committee: Yue Gao (Supervisor), Rahim Tafazolli, Pei Xiao, De Mi

2019-2020 Queen Mary University of London, PhD Student, Electronic engineering

Beihang University, M. S., Radio Physics (high honors)
Beihang University, B. S., Applied Physics (high honors)

EXPERIENCES

ACADEMIC

RESEARCH ASSISTANTSHIPS

EPSRC Fellowship Project GHz Bandwidth Sensing (GBSense), PI: Yue Gao, 2019 – pres

- Compressed spectrum sensing (CSS) framework design and hardware verification for mmWave communication
- Signal processing software and interface development on portable Linux platform (C and C++ based on Qt Environment, with python script embedded)
- FPGA development of interleaved high-speed data transmission (VHDL and Verilog on Lattice/Xilinx FPGA)
- Embedded system development for the CSS system (C on low-power MCU)
- Software development on National Instruments mmWave Transceiver System (LabVIEW)
- Managing the website www.gbsense.net for data sharing and research cooperation.
- DNN-based Sub-Nyquist automatic modulation recognition

Deep Space Environment Frequency Modulation Atomic Force Microscopy (NSFC), 2016 – 2019

- · Amplitude control algorithm based on Kalman filter for frequency-modulated AFM and FPGA development
- Fast image reconstruction algorithm based on Bayesian compressed sensing

REVIEWER FOR INTERNATIONAL JOURNALS

- IEEE Transactions on Signal Processing
- IEEE Transactions on Cognitive Communications and Networking
- IEEE Transactions on Vehicular Technology
- IEEE Internet of Things Journal
- Frontiers of Computer Science

TEACHING ASSISTANTSHIP

• EEE1028 – Laboratories, Design & Professional Studies, Spring 2020

Journal Papers

- [J1] Z. Song, J. Yang, H. Zhang and Y. Gao, "Approaching Sub-Nyquist Boundary: Optimized Compressed Spectrum Sensing Based on Multicoset Sampler for Multiband Signal", IEEE Transactions on Signal Processing 70 (2022): 4225-4238.
- [J2] Z. Song, Y. Gao and R. Tafazolli, "A survey on spectrum sensing and learning technologies for 6g." IEICE Transactions on Communications 104.10 (2021): 1207-1216.
- [J3] Y Gao, Z Song, H Zhang, S Fuller, A Lambert, Z Ying, P Mähönen, Y Eldar, S Cui, M.D Plumbley, C Parini and A Nallanathan. "Sub-Nyquist spectrum sensing and learning challenge." Frontiers of Computer Science 15, no. 4 (2021): 1-5.
- [J4] J, Yang, Z. Song, et al., "Adaptive Compressed Spectrum Sensing for Multiband Signals." IEEE Transactions on Wireless Communications 20.11 (2021): 7642-7654.
- [J5] Zhang, Y., Li, Y., Song, Z., Wang, Z., Qian, J., & Yao, J. (2019). A novel method to remove impulse noise from atomic force microscopy images based on Bayesian compressed sensing. Beilstein Journal of Nanotechnology, 10(1), 2346-2356.
- [J6] Lin, R., Li, Y., Zhang, Y., Wang, T., Wang, Z., Song, Z., ... & Qian, J. (2019). Design of A flexure-based mixed-kinematic XY high-precision positioning platform with large range. Mechanism and Machine Theory, 142, 103609.
- [J7] Y. Li, L. Zhang, G. Shan, Z. Song, et al., A Homemade Atomic Force Microscope Based on a Quartz Tuning Fork for Undergraduate Instruction, American Journal of Physics, 2016.6, 84(6):478~482
- [J8] H. Liu, Y. Li, Y. Zhang, Y. Chen, Z. Song, et al., Intelligent Tuning Method of PID Parameters Based on Iterative Learning Control for Atomic Force Microscopy, Micron, 2018.01.01, 104(1): 26~36
- [J9] Y. Zhang, Y. Li, Z. Wang, Z. Song, et al., A fast image reconstruction method based on Bayesian compressed sensing for the undersampled AFM data with noise." Measurement Science and Technology 30.2 (2019): 025402.
- [J10] Z. Wang, J. Qian, Y. Li, Y. Zhang, G. Shan, Z. Dou, Z. Song and R Lin. Time-frequency Analysis of the Tip Motion in Liquids Using the Wavelet Transform in Dynamic Atomic Force Microscopy 2018. Nanotechnology
- [J11]Y. Li, Z. Song, et al., (2019). A double-electrolyte etching method of high-quality tungsten probe for undergraduate scanning tunneling microscopy and atomic force microscopy experiments. European Journal of Physics, 40(2), 025004.

Conference Papers

- [C1] Z. Song, H. Qi and Y. Gao, "Real-time Multi-Gigahertz Sub-Nyquist Spectrum Sensing System for mmWave," the 3rd ACM Workshop on Millimeter-Wave Networks and Sensing Systems (mmNets), co-located with ACM MobiCom, 2019.
- [C2] Z. Song, Y. Li, et al., A Novel Amplitude Control Algorithm for Frequency-Modulation Atomic Force Microscope Based on Kalman Filter, 6th International Congress on Microscopy & Spectroscopy, 2019
- [C3] J, Yang, Z. Song, et al., "Cross Validation Based Adaptive Compressed Spectrum Sensing without Testing Set." GLOBECOM 2020 - 2020 IEEE Global Communications Conference IEEE, 2020.
- [C4] Y. Zhang, Y. Li, Z. Song and J. Qian, A Novel Method of Manufacturing Quartz Tuning Fork Probe for Atomic Force Microscopy, 20th International Conference on Non-contact Atomic Force Microscopy, Suzhou, 2017.9.25-2017.9.29

UNPUBLISHED WORKS

- [U1] Z. Song, H. Zhang and Y. Gao, "Hardware-based Sensing Matrix Optimization for Sub-Nyquist Spectrum Sensing", IEEE Transactions on Wireless Communications (Under Review)
- [U2] Z. Song, H Zhang, S Fuller, A Lambert, Z Ying, P Mähönen, Y Eldar, S Cui, M.D Plumbley, C Parini, A Nallanathan and Y Gao. "Sub-Nyquist spectrum sensing and learning challenge." Frontiers of Computer Science (Under Review)
- [U3] Z. Song, and Y. Gao, "mmWave compressed spectrum sensing platform", IEEE Internet of Things Journal (in preparation)
- [U4] Z. Song, and Y. Gao, "Theory to practice of sparse spectrum reconstruction with simultaneous feature auto-grouping", IEEE Transactions on Industrial Informatics (in preparation)