Mathematical Analysis Homework 2: Solutions

Cory Nezin

September 13, 2017

1. Let $\emptyset \neq A \subseteq \mathbb{R}$. Suppose $\alpha = \sup A$ exists in \mathbb{R} . Prove that if $\alpha \in A$, then $\alpha = max\{A\}$. Moveover prove that α is unique.

Proof:

By the supremum principle, $a \leq \alpha \ \forall a \in A$.

By the hypothesis, $\alpha \in A$.

Thus $a = max\{A\}$.

Moreover, suppose $b = max\{a\}$. Then $b \ge a \ \forall a \in A$.

Since $\alpha \in A$, $b \ge \alpha$. Since $\alpha = \sup A$, $\alpha \ge b$.

By trichotemy, if $b > \alpha$ then $\alpha \not> b$ thus $\alpha = b$. Therefore $b = \alpha$ and α is unique.

2. Prove that $a = \sup\{r \in Q : r < a\}$ for $a \in \mathbb{R}$. Proof:

First we prove a useful lemma:

For $a, b \in \mathbb{R}, \exists r \in \mathbb{Q}$ such that b < r < a.

Proof:

By corollary 1 to the Archimedian Principle: $\exists n \in \mathbb{N}$ such that x > 1 $\frac{1}{n} \forall x > 0 \in \mathbb{R} \to (a-b) > \frac{1}{n} \to n(a-b) > 1.$ By corollary 2 to the Archimedian Principle: $\exists m \in \mathbb{N}$ such that nb < nb

 $m < na \rightarrow b < \frac{m}{n} < a \rightarrow \exists \frac{m}{n} \in \mathbb{Q}$ such that $b < r < a \blacksquare$

Now since by definition of the set, a is an upper bound, we must only prove that is the smallest possible upper bound. Suppose b < a. By the Lemma, $\exists r \in \mathbb{Q}$ such that b < r < a. So b is not an upper bound and a is the least upper bound.