CSc 553 Principles of Compilation

10. Dataflow Analysis Frameworks

Saumya Debray

The University of Arizona Tucson, AZ 85721

Dataflow analysis: commonalities

merge operator	U	\cap	dataflow equations
	∃	A	
forward	reaching defns.	available exprs.	out[B] = f_B (in[B]) in[B] = f_B (out[B])
backward	liveness	?	
boundar v value	. Ø	all	

Dataflow analysis: commonalities

- The analyses compute sets of "dataflow facts"
 - for each basic block B: in[B], out[B]
 - computed iteratively to convergence ("fixpoint")
- intra-block analysis: uses a "transfer function" $f_{\rm B}$ that captures the effects of B
 - forward analyses: out[B] = f_B (in[B])
 - backward analyses: in[B] = $f_{\rm B}$ (out[B])
- inter-block analysis: uses a "merge operator"
 - "for some path" (∃) analyses: ∪
 - "for all paths" (∀) analyses: ∩

Dataflow analysis: questions

Given some dataflow analysis A:

- Is it sound?
 - do the results account for all possible runtime scenarios?
 - under what assumptions?
- Is it precise?
 - how good are the results?
- Is it efficient?
 - how fast does it run?

Dataflow analysis frameworks

- Provides a unifying mathematical structure underlying these analyses
 - helps explain why the analyses are the way they are
 - helps us understand commonalities between different analyses
- Makes it easier to figure out the details of new analyses
- Helps answer questions about soundness, precision, efficiency

Mathematical preliminaries

Partial order

Definition: A binary relation \sqsubseteq over a set S is a partial order if it satisfies:

- $\forall x \in S: x \sqsubseteq x$ (reflexive)
- $\forall x, y \in S : x \sqsubseteq y \text{ and } y \sqsubseteq x \text{ implies } x = y \text{ (antisymmetric)}$
- $\forall x, y, z \in S : x \sqsubseteq y \text{ and } y \sqsubseteq z \text{ implies } x \sqsubseteq z$ (transitive)

Notation:

- (S, ⊑) denotes a set S with a relation ⊑
- if
 is a partial order on a set S, then (S,
 is called a partially ordered set (poset)

Which of these are partial orders? Why or why not?

- (\mathbb{Z}, \leq) where \mathbb{Z} is the set of integers
- (\mathbb{Z} , <)
- (set of all finite ASCII strings; lexicographic ordering)
- (S, R) where:
 - S = the set of all UA students, and
 - ∀x, y ∈ S : x R y iff x and y have the same last name
- (S, R) where:
 - S = the set of all UA students, and
 - $\forall x, y \in S : x R y \text{ iff } x \text{ and } y \text{ are friends}$

Monotonicity

Given a poset (S, \sqsubseteq), a function $f: S \rightarrow S$ is said to be *monotone* iff

$$\forall x, y \in S: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

Intuition: If f is monotone, then a bigger input yields a bigger (or same) output

Meets and joins

Given a poset (S, \sqsubseteq) and a, $b \in S$:

- $c \in S$ is a *join* of a and b (denoted a \sqcup b) iff:
 - a ⊆ c and b ⊆ c; and
 - there is no other $x \in S : a \sqsubseteq x \sqsubseteq c$ and $b \sqsubseteq x \sqsubseteq c$

c is also called the *least upper bound* (LUB) of a and b

- $d \in S$ is a *meet* of a and b (denoted $a \sqcap b$) iff:
 - d ⊆ a and d ⊆ b; and
 - there is no other $x \in S : d \sqsubseteq x \sqsubseteq a$ and $d \sqsubseteq x \sqsubseteq b$

d is also called the *greatest lower bound* (GLB) of a and b

Lattices

Definition [lattice]:

- A poset (S, \sqsubseteq) is a *lattice* iff every pair of elements x, y \in S has a unique meet and a unique join

Note: this implies that every non-empty finite subset of S has a unique meet and join

Definition [complete lattice]:

- A complete lattice is a lattice (S, \sqsubseteq) where every subset $X \subseteq S$ has a unique meet and join

Fact: A complete lattice (S, ⊑) has a least element ⊥ ("bottom") and a greatest element ⊤ ("top")

Example

The set of all subsets of {a, b, c} ordered by ⊆:

Example

a poset that is a lattice

a poset that is not a lattice (why?)

Semilattices

Definition [semilattice]:

- A *join-semilattice* is a poset (S, ⊑) where every pair of elements has a unique join
- A *meet-semilattice* is a poset (S, ⊑) where every pair of elements has a unique meet

Fact: If (S, ⊆) is a lattice then (S, ⊆) is a join-semilattice and a meet-semilattice

Consider (B^3 , \leq) where:

- B³ is the set of length-3 bit-vectors, i.e., B³ = {000, 001, 010, 011, 100, 101, 110, 111}
- \forall x, y ∈ B³: x ≤ y iff #1s(x) ≤ #1s (y)

Questions:

- is ≤ a partial order?
- is (B^3, \leq) a lattice?
 - what is the meet operation?
 - what is the join operation?
 - is it a complete lattice?

```
#1s(u) = the number of 1s
in u
e.g., #1s(011) = 2
```

Consider (B^* , \leq) where:

- B* is the set of all finite-length bit-vectors, i.e., $B^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 010, 011, 100, ...\}$
- $\forall x, y \in B^*$: x ≤ y iff #1s(x) ≤ #1s (y)

Questions:

- is ≤ a partial order?
- is (B^*, \leq) a lattice?

```
#1s(u) = the number of 1s
in u
e.g., #1s(011) = 2
```

Consider (\subseteq (\mathbb{Z}), \square):

- is this a poset?
- is it a join-semilattice?
 - what is the join operation?
- is it a meet-semilattice?
 - what is the meet operation?
- is it a lattice?
 - is it a complete lattice?

Dataflow analysis frameworks

Transfer functions for basic blocks

Dataflow equations:

Reaching definitions:

```
in[B] = \bigcup {out[p] | p \in preds[B]}
out[B] = gen[B] \bigcup (in[B] - kill[B])
```

Available expressions:

```
in[B] = \bigcap \{out[p] \mid p \in preds[B]\}

out[B] = gen[B] \cup (in[B] - kill[B])
```

transfer function for B

- captures how the code in B affects the relationship between in[B] and out[B]
- gen[B], kill[B] depend only on B
 - can be considered to be fixed for any given B

Analysis: reaching definitions

- What are the transfer functions for each of the blocks B0, B1, and B2?
- How are these transfer functions affected if we add an edge B0 → B2?

Analysis: reaching definitions

- What are the transfer functions for each of the blocks B0, B1, and B2?
- How are these transfer functions affected if we add an edge B0 → B2?

B0: out[B0] = (in[B] - #4, #5, #6, #7, #8}) U {#1, #2, #3}

Analysis: variable liveness

- What are the transfer functions for each of the blocks B0, B1, and B2?
- How are these transfer functions affected if x is also live at the end of B2?

Transfer functions: properties

$$f(x) = C_1 \cup (x - C_2)$$

Monotone:

$$- x_1 \subseteq x_2 \Rightarrow f(x_1) \subseteq f(x_2)$$

Closed under composition:

- suppose
$$f(x) = C_1 U (x - C_2)$$
, $g(x) = D_1 U (x - D_2)$
- $(f \circ g)(x) = f(g(x)) = (C_1 U D_1) U (x - (C_2 U D_2))$

Can be identity:

-
$$C_1 = \emptyset$$
, $C_2 = \emptyset \Rightarrow f(x) = x$

Axioms for transfer functions

The set of transfer functions **F** satisfies the axioms:

- $\forall f \in \mathbf{F}$: f is monotone
- id ∈ **F**
- F is closed under composition

Dataflow analysis frameworks

A dataflow analysis framework consists of:

- a control flow graph G = (V, E)
- a complete lattice **L** with meet operation ⊓
 - the *domain* of dataflow facts
- a transfer function F that associates each node b ∈ V with a monotone function

$$f_{\mathsf{b}}:\mathsf{L}\to\mathsf{L}$$

• an initial value v_{ENTRY} (or v_{EXIT}) that gives the lattice value for the entry (or exit) blocks

- Suppose that:
 - **L** is a complete lattice with ordering **⊆** and meet
 - f : L → L is monotone w.r.t \sqsubseteq
 - $x, y \in \mathbf{L}$
- What is the relationship (in terms of □) between:

$$f(x \sqcap y)$$
 and $f(x) \sqcap f(y)$?

Example 1: "gen-kill analyses"

	Available expressions	Live variables
Domain	sets of expressions	sets of variables
Direction	forward: OUT[b] = $f_b(IN[b])$ $IN[b] = \Pi \{OUT[x] \mid x \in pred(b)\}$	backward: $IN[b] = f_b(OUT[b])$ $OUT[b] = \pi \{IN[x] \mid x \in succ(b)\}$
Transfer function	$f_b(x) = (x - kill_b) \cup gen_b$	$f_b(x) = (x - def_b) U use_b$
Meet operation	Ω	U
Boundary condition	IN[entry] = ∅	IN[exit] = ∅
Initialization values (interior	IN[b] = set of all variables	$IN[b] = \emptyset$

Example 2: Constant propagation

1. Domain of analysis

 The analysis propagates sets of mappings from variables in the CFG to their values. E.g.:

```
[x \mapsto 2, y \mapsto undef, z \mapsto NAC]
```

- undef: "we don't yet know anything about its value"
- NAC: "(maybe) not a constant"

Example 2: Constant propagation

2. The lattice ordering

• We use a *product lattice* with one component for each variable in the program

- for a program with variables $x_1, x_2, ..., x_n$ the analysis lattice L is:

$$L \equiv L_1 \times L_2 \times ... \times L_n$$

where $L_i \in \mathbb{Z}_{\perp,\top}$ is the mapping for x_i

- the lattice ordering

on L is:

$$[u_1, ..., u_n] \subseteq [v_1, ..., v_n]$$
 iff $u_1 \subseteq v_1 \land ... \land u_n$

T (undef)

 \perp (NAC)

 $\mathbb{Z}_{\perp,\top} \equiv \cdots -2 -1 \ 0 \ 1 \ 2$

$$\sqsubseteq V_n$$
 (aka "pointwise ordering")

meet operation is similarly computed pointwise 29

Example 2: Constant propagation

3. Transfer functions

- Transfer functions map lattice elements (i.e., tuples) to lattice elements
- For s : x = y+z: the transfer function $f_s(p) = q$, where:
 - q(x) is defined as:
 if p(y) = ⊤ or p(z) = ⊤ then q(x) = ⊤
 else if p(y) = ⊥ or p(z) = ⊥ then q(x) = ⊥
 else if p(y) = c_y and p(z) = c_z then q(x) = c_y + c_z
 q(w) = p(w) for w ≠ x
- For a basic block: compose transfer functions for the individual statements

Iterative dataflow analysis

Iterative algorithm (forward)

Initialization:

```
OUT[ENTRY] = v_{\text{ENTRY}} for all other blocks B: OUT[B] = \top (top element of lattice)
```

• Iteration:

```
while there is a change to any OUT set:

for each block B:

IN[B] = \pi \{OUT[p] \mid p \in predecessors(B)\}

OUT[B] = f_R(IN[B])
```

Iterative algorithm (backward)

- Similar to iterative algorithm for forward analyses:
 - swap IN and OUT everywhere
 - replace ENTRY by EXIT

What does the iteration compute?

the value does not change on further iteration

⇒ a "fixpoint" of the transfer function F

computed starting from T by repeated applications of □:

⇒ "greatest (or maximal) fixpoint"

What does the iteration compute?

height of **L**

= length of longest ⊑-chain in **L**

Fact: If **L** has finite height, then:

- the iterative algorithm terminates
- and computes the maximal fixpoint (MFP) of the transfer function F

What does the iteration compute?

Intuition: Each iteration of the algorithm accounts for more and more of the program's runtime behavior

- •⊑ measures "ignorance"
 - x ⊆ y: "x accounts for more runtime behaviors than y"
 - T: does not account for₃₆

- **Required**: The result computed by *any* analysis must be *safe*
 - i.e., must capture all possible executions of the program
- **Fact**: There is no algorithm that *always* captures *exactly* the effects of all possible executions of the program (Rice's Theorem)
- ⇒ An analysis can only compute an approximation to the real behavior of the program
 - the safety requirement implies that this has to be a *conservative approximation*

Transfer function of a path

 An execution path in a program is a path in its control flow graph

 \equiv a sequence of blocks: ENTRY \rightarrow B₁ \rightarrow B₂ \rightarrow ...

Transfer function = $f_n \circ f_{n-1} \circ \dots \circ f_2 \circ f_1$

Meet over all paths: MOP

MOP: meet, over all paths π_i from ENTRY to a given point, of the transfer function along π_i applied to v_{ENTRY}

The ideal solution

- MOP assumes that all paths from ENTRY in the control flow graph can be executed
 - this is safe
 - but may not always be true
- IDEAL: meet over all executable paths from ENTRY to a point
 - this is the ideal solution
 - not computable in general

- Need to show:
 - the result computed by the iterative algorithm is a conservative approximation to the program's runtime behavior
 - equivalently: MFP

 IDEAL
- Note: any solution x such that $x \supseteq IDEAL$ is unsafe
 - x does not account for some execution paths

Relationship between MFP and MOP

- MFP vs. MOP:
 - MOP: composes transfer fns along all paths, then takes □ over all of them
 - MFP: alternates transfer fn composition and □
- **Fact**: $f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)$
 - *f* is monotone
 - $-(x\sqcap y)\sqsubseteq x$ and $(x\sqcap y)\sqsubseteq y$
- This implies: MFP

 MOP

Relationship between MFP and MOP

- MFP: applies ¬ early
 - $IN[B0] = x \sqcap y$
 - IN[B1] = $f(x \sqcap y)$
- MOP: applies □ late
 - IN[B1] = $f(x) \sqcap f(y)$
- f monotone $\Rightarrow f(x \sqcap y) \subseteq f(x) \sqcap f(y)$
 - -MFP ⊑ MOP
 - i.e., MFP is potentially less precise than MOP, as though it considers additional (nonexistent) paths

- - since IDEAL considers fewer execution paths than MOP
- Since
 is transitive, we have: MFP
 IDEAL
 - → the iterative algorithm is safe
- The soundness argument assumes thatisfied by
 - the dataflow lattice **L** has finite height
 - the transfer functions are monotone
 - easy proof for functions in Gen-Kill form studied

analyses

we've

Distributive analyses

MFP vs. MOP revisited

- - $IN[B0] = x \sqcap y$
 - IN[B1] = f(x □ y)
- MOP: applies ⊓ late
 - IN[B1] = $f(x) \sqcap f(y)$

We already know: MFP ⊑ MOP

QUESTION: When is MFP = MOP?

MFP vs. MOP revisited

The analyses are equivalent if π does not lose any information, i.e.:

$$F_{b}(x \sqcap y) = F_{b}(x) \sqcap F_{b}(y)$$

Distributive analyses

• A dataflow analysis over a lattice **L** and transfer function F is said to be *distributive* if

$$\forall x, y \in \mathbf{L}: F(x \sqcap y) = F(x) \sqcap F(y)$$

- This condition is strictly stronger than monotonicity
- Distributivity means combining paths early does not lose precision
 - MFP = MOP

MFP vs. MOP

Liveness analysis:

```
F_b(x \pi y) = use[b] \cup ((x \cup y) - def[b])
= use[b] \cup ((x - def[b])) \cup (y - def[b])))
= (use[b] \cup ((x - def[b]))) \cup (use[b] \cup ((y - def[b])))
```

⇒ livenesรี ส์สัฟโซรโร(ช)omputes the MOP solution, i.e., it is precise

Fact: All the Gen-Kill analyses are distributive ⇒ they compute precise solutions

Non-distributive analyses

Example: constant propagation

 \top : no value assigned; \bot : don't know

X	у	z = x ⊕ y
c1	c2	c1 ⊕ c2
	any	Т
any	Т	Т
Т	any	Т
any	Т	Т

Example: constant propagation

 \top : no value assigned; \bot : don't know

X	у	$z = x \oplus y$
c1	c2	c1 ⊕ c2
	any	Т
any	Т	Т
Т	any	Т
any	Т	Т

Computing meets early:

-
$$x \mapsto (\{2\} \sqcap \{3\}) = \bot$$
; $y \mapsto (\{2\} \sqcap \{3\}) = \bot$; $z \mapsto \bot + \bot = \bot$

- Computing meets late:
 - $z \mapsto 5$
- ⇒ Constant propagation is not distributive

EXERCISE

Definition: An *interprocedural control flow graph* (ICFG) for a program consists of:

- the CFGs of the individual functions in the program
- the entry and exit node of each function's CFG are connected to their call sites via call and return edges

Problem: Suppose we add function pointers to C--

- What analysis would we need to construct a program's ICFG?
- What can we say about its precision?