$$V(k_0) = \sum_{t=0}^{\infty} \left[\beta^t \ln(1 - \alpha \beta) + \beta^t \alpha \ln k_t \right]$$

$$= \ln(1 - \alpha \beta) \sum_{\beta} \text{Report}_{\alpha} \left[\frac{1 - (\alpha \beta)^t}{1 - \alpha \beta} \ln \alpha \beta + \alpha^t \ln k_0 \right]$$

$$\stackrel{\overset{\bullet}{=}}{=} \frac{\cancel{\xi}_{\alpha} \cancel{\xi}_{\alpha}}{1 - \alpha \beta} \frac{\cancel{\xi}_{\alpha} \cancel{\xi}_{\alpha}}{1 - \beta} + \frac{\cancel{\xi}_{\alpha} \cancel{\xi}_{\alpha}}{1 - \alpha \beta} \frac{\cancel{\xi}_{\alpha} \cancel{\xi}_{\alpha}}{1 - \alpha} - \frac{(\alpha \beta)^t}{1 - \alpha} \right]$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k_0 + \frac{\ln(1 - \alpha \beta)}{1 - \beta} + \frac{\alpha \beta}{(1 - \beta)(1 - \alpha \beta)} \frac{\ln(\alpha \beta)}{1 - \alpha}$$

利用 FOC 和包络条件水牌停型 $y = \alpha p K^{\alpha}$,

Institute for Advanced Study

有边 =
$$\max \left\{ u(f(k) - y) + \beta V(y) \right\}$$

$$= u(f(k) - g(k)) + \beta \left[\frac{\alpha}{\alpha} \ln g(k) + A \right]$$
Victory won't come to us unless we go to it.
$$= \ln(k^{\alpha} - \alpha \beta k^{\alpha}) + \beta \left[\frac{\alpha}{1 - \alpha \beta} \ln \alpha \beta k^{\alpha} + A \right]$$

$$= \ln(1 - \alpha \beta) + \alpha \ln k + \beta \left[\frac{\alpha}{1 - \alpha \beta} \left[\ln \alpha \beta + \alpha \ln k \right] + k \right]$$

$$= \alpha \ln k + \frac{\alpha \beta}{1 - \alpha \beta} \alpha \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \beta) A + \beta A \qquad \text{整理时间: December 18, 2023}$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + A \qquad \text{Email: zhangxinhang19@foxmail.com}$$

所以, 左边 = 右边, 证毕。

Version: 1.00

目 录

1	5 道i	果后习题	3
	1.1	第一章课后习题	3
	1.2	第二章课后习题	6
	1.3	第三章课后习题	8
2	随机	变量生成	10
	2.1	方法介绍	10
	2.2	分布绘图	14

第1章

5 道课后习题

1.1 第一章课后习题

Example: 1.27 设 $X_1 \sim Ga(\alpha_1, \lambda), X_2 \sim Ga(\alpha_2, \lambda)$, 且 X_1 与 X_2 独立, 证明:

$$(1)Y_1 = X_1 + X_2Y_2 = X_1/(X_1 + X_2)$$
 独立,且 $Y_2 \sim Be(\alpha_1, \alpha_2)$;

(2)
$$Y_1 = X_1 + X_2 Y_3 = X_1 / X_2$$
 独立, 且 $Y_3 \sim Z(\alpha_1, \alpha_2)$.

证:

(1)

A. 由 $X_1 \sim Ga(\alpha_1, \lambda), X_2 \sim Ga(\alpha_2, \lambda)$ 知:

a X_1, X_2 的联合分布为

$$p_{X_1,X_2}(x_1,x_2) = \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x_1^{\alpha_1-1} e^{-\lambda x_1} x_2^{\alpha_2-1} e^{-\lambda x_2}.$$

b
$$Y_1=X_1+X_2\sim Ga(\alpha_1+\alpha_2,\lambda)$$
 , $\mbox{ II}$

$$p_{Y_1}(y_1) = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y_1^{\alpha_1 + \alpha_2 - 1} e^{-\lambda y_1}$$

B.
$$\diamondsuit U = X_1, V = \frac{X_1}{X_1 + X_2}$$
,则

$$\begin{cases} X_1 = U \\ X_2 = U/V - U \end{cases},$$

且变换的行列式为

$$J = \begin{vmatrix} 1 & 0 \\ 1/v - 1 & -u/v^2 \end{vmatrix} = -\frac{u}{v^2}.$$

U,V 的联合分布为:

$$p_{U,V}(u,v) = p_{X_1,X_2}(u,v)|J|$$

$$= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1 - 1} e^{-\lambda u} (\frac{u}{v} - u)^{\alpha_2 - 1} e^{-\lambda(u/v - u)} \frac{u}{v^2},$$

则 V 的边缘分布为:

$$p_V(v) = \int_0^\infty p_{U,V}(u,v)du = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1},$$

即 $Y_2 \sim Be(\alpha_1, \alpha_2)$.

C. 以下求 Y_1, Y_2 的联合分布.

$$\diamondsuit U = X_1 + X_2, V = \frac{X_1}{X_1 + X_2}$$
,则

$$\begin{cases} X_1 = UV \\ X_2 = U - UV \end{cases},$$

且变换的行列式为

$$J = \left| \begin{array}{cc} v & u \\ 1 - v & -u \end{array} \right| = -u.$$

U, V 的联合分布为:

$$p_{U,V}(u,v) = p_{X_1,X_2}(u,v)|J|$$

$$= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} e^{-\lambda u} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1}.$$

D. 由

a
$$p_{Y_1,Y_2}(y_1,y_2) = \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)} y_1^{\alpha_1+\alpha_2-1} e^{-\lambda y_1} \underbrace{\frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}} y_2^{\alpha_1-1} (1-y_2)^{\alpha_2-1},$$

b

$$p_{Y_1}(y_1) = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y_1^{\alpha_1 + \alpha_2 - 1} e^{-\lambda y_1},$$

c

$$p_{Y_2}(y_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} y_2^{\alpha_1 - 1} (1 - y_2)^{\alpha_2 - 1},$$

显然有 $p_{Y_1,Y_2}(y_1,y_2) = p_{Y_1}(y_1)p_{Y_2}(y_2)$, 独立性得证.

(2)

A.
$$\diamondsuit U=X_1,V=rac{X_1}{X_2}$$
,则

$$\begin{cases} X_1 = U \\ X_2 = U/V \end{cases}$$

, 且变换的行列式为

$$J = \left| \begin{array}{cc} 1 & 0 \\ 1/v & -u/v^2 \end{array} \right| = -\frac{u}{v^2}.$$

U,V 的联合分布为:

$$p_{U,V}(u,v) = p_{X_1,X_2}(u,v)|J|$$

$$= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1-1} e^{-\lambda u} \left(\frac{u}{v}\right)^{\alpha_2-1} e^{-\lambda u/v} \frac{u}{v^2}.$$

则 V 的边缘分布为:

$$p_{V}(v) = \int_{0}^{\infty} p_{U,V}(u,v) du = \frac{\Gamma(\alpha_{1} + \alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \frac{v^{\alpha_{1}-1}}{(1+v)^{\alpha_{1}+\alpha_{2}}},$$

即 $Y_3 \sim Z(\alpha_1, \alpha_2)$.

B.
$$\diamondsuit U = X_1 + X_2, V = \frac{X_1}{X_2}$$
,则

$$\begin{cases} X_1 = UV/(1+V) \\ X_2 = U/(1+V) \end{cases}$$

,且变换的行列式为

$$J = \begin{vmatrix} v/(1+v) & u/(1+v)^2 \\ 1/(1+v) & -u/(1+v)^2 \end{vmatrix} = -\frac{u}{(1+v)^2}.$$

U,V 的联合分布为:

$$p_{U,V}(u,v) = p_{X_1,X_2}(u,v)|J|$$

$$= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \left(\frac{uv}{1+v}\right)^{\alpha_1-1} e^{-\lambda \frac{uv}{1+v}} \left(\frac{u}{1+v}\right)^{\alpha_2-1} e^{-\lambda \frac{u}{1+v}} \frac{u}{(1+v)^2}$$

$$= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1+\alpha_2-1} e^{-\lambda u} \frac{v^{\alpha_1-1}}{(1+v)^{\alpha_1+\alpha_2}}.$$

C. 由

a

$$p_{Y_1,Y_3}(y_1,y_3) = y_3^{\alpha_1 - 1} (1 - y_3)^{\alpha_2 - 1}$$

$$= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y_1^{\alpha_1 + \alpha_2 - 1} e^{-\lambda y_1} \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \frac{y_3^{\alpha_1 - 1}}{(1 + y_3)^{\alpha_1 + \alpha_2}},$$

b

$$p_{Y_1}(y_1) = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y_1^{\alpha_1 + \alpha_2 - 1} e^{-\lambda y_1},$$

С

$$p_{Y_3}(y_3) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \frac{y_3^{\alpha_1 - 1}}{(1 + y_3)^{\alpha_1 + \alpha_2}},$$

显然有 $p_{Y_1,Y_3}(y_1,y_3) = p_{Y_1}(y_1)p_{Y_3}(y_3)$, 独立性得证.

Example: 1.36 设 X_1, \dots, X_n 是来自总体分布函数 F(x) 的一个样本,F(x) 为其经验分布函数

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leqslant x\}}$$

证明:

$$\sqrt{n}[F_n(x) - F(x)] \xrightarrow{L} N(0, F(x)[1 - F(x)]).$$

证明:记:

$$G_n = \sqrt{n}[F_n(x) - F(x)] = \sqrt{n} \left[\frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}} - F(x) \right]$$
$$= \sum_{i=1}^n \frac{I_{\{X_i \le x\}} - F(x)}{\sqrt{n}} = \sum_{i=1}^n g_n(X_i),$$

则

$$\begin{split} \mathbb{E}[g_n(X_i)] &= \mathbb{E}\left[\frac{I_{\{X_i \leqslant x\}} - F(x)}{\sqrt{n}}\right] = \frac{\mathbb{E}I_{\{X_i \leqslant x\}} - F(x)}{\sqrt{n}} = 0 \\ & \underline{\mathbb{H}}. \ \mathrm{Var}[g_n(X_i)] = \mathrm{Var}\left[\frac{I_{\{X_i \leqslant x\}} - F(x)}{\sqrt{n}}\right] = \frac{F(x)[1 - F(x)]}{n} < \infty. \end{split}$$

故 $\mathrm{E}(G_n)=0$,且 $\mathrm{Var}(G_n)=F(x)[1-F(x)]$,由中心极限定理可知 : $\frac{G_n-0}{\sqrt{F(x)[1-F(x)]}}\stackrel{L}{\to} N(0,1)$,

故有 $\sqrt{n}[F_n(x) - F(x)] \xrightarrow{L} N(0, F(x)[1 - F(x)])$. 命题得证.

1.2 第二章课后习题

Example: 2.1 设 X_1, X_2 独立同分布,其共同的密度函数为 $p(x; \theta) = 3x^2/\theta^3, \ 0 < x < \theta, \ \theta > 0.$

- (1) 证明 $T_1 = \frac{2}{3}(X_1 + X_2)$ 和 $T_2 = \frac{7}{6}\max(X_1, X_2)$ 都是 θ 的无偏估计;
- (2) 计算 T_1 和 T_2 的均方误差并进行比较;
- (3) 证明: 在均方误差意义下,在形如 $T_c = c \max(X_1, X_2)$ 的估计中, $T_{8/7}$ 最优. 解:
- (1)由

$$E(X_1) = E(X_2) = \int_0^\theta x \frac{3x^2}{\theta^3} dx = \frac{1}{\theta^3} \left[\frac{3}{4} x^4 \right]_0^\theta = \frac{3}{4} \theta$$

得 $E(T_1) = \frac{2}{3}E(X_1) + \frac{2}{3}E(X_2) = \frac{2}{3} \cdot \frac{3}{4}\theta \cdot 2 = \theta$.

 $rightarrow Y = \max(X_1, X_2)$, 因为

$$P(Y \leqslant y) = P(X_1 \leqslant y)P(X_2 \leqslant y) = P^2(X_1 \leqslant y)$$

且有

$$P(X_1 \leqslant y) = \int_0^y 3x^2/\theta^3 dx = \frac{y^3}{\theta^3}$$

,故
$$p_Y(y) = [P^2(X_1 \leqslant y)]' = \frac{6y^5}{\theta^6},$$
则

$$E(Y) = \int_0^\theta y \frac{6y^5}{\theta^6} dy = \frac{1}{\theta^6} \left[\frac{6}{7} y^7 \right]_0^\theta = \frac{6}{7} \theta . E(T_2) = \frac{7}{6} E(Y) = \theta.$$

证毕.

(2) 由

$$E(X_1^2) = E(X_2^2) = \int_0^\theta x^2 \frac{3x^2}{\theta^3} dx = \frac{1}{\theta^3} \left[\frac{3}{5} x^5 \right]_0^\theta = \frac{3}{5} \theta^2$$

得

$$Var(X_1) = Var(X_2) = E(X_1^2) - E^2(X_1) = \frac{3}{5}\theta^2 - \left[\frac{3}{4}\theta\right]^2 = \frac{3}{80}\theta^2$$

故

$$\mathrm{Var}(T_1) = \frac{4}{9} \mathrm{Var}(X_1) + \frac{4}{9} \mathrm{Var}(X_2) = \frac{4}{9} \cdot \frac{3}{80} \theta^2 \cdot 2 = \frac{1}{30} \theta^2.$$

由

$$E(Y^{2}) = \int_{0}^{\theta} y^{2} \frac{6y^{5}}{\theta^{6}} dy = \frac{1}{\theta^{6}} \left[\frac{6}{8} y^{8} \right]_{0}^{\theta} = \frac{3}{4} \theta^{2}$$

得

$$Var(Y) = E(Y^2) - E^2(Y) = \frac{3}{4}\theta^2 - \left[\frac{6}{7}\theta\right]^2 = \frac{3}{4 \cdot 49}\theta^2,$$

故
$$Var(T_2) = \frac{49}{36} Var(Y) = \frac{1}{48} \theta^2$$
.

故有

$$MSE(T_1) = Var(T_1) = \frac{1}{30}\theta^2 > \frac{1}{48}\theta^2 = Var(T_2) = MSE(T_2).$$

(3) 由 $E(T_c) = cE(Y)$, 有

$$\begin{split} \text{MSE}(T_c) &= \text{E}(T_c - \theta)^2 = \text{Var}(T_c) + \text{E}^2(T_c - \theta) \\ &= c^2 \text{Var}(Y) + [c \text{E}(Y) - \theta]^2 \\ &= c^2 \frac{3}{4 \cdot 49} \theta^2 + [c \frac{6}{7} \theta - \theta]^2 \\ &= \left[\frac{3}{4 \cdot 49} c^2 + \left(\frac{6}{7} c - 1 \right)^2 \right] \theta^2 \\ &= \left[\frac{3}{4} c^2 - \frac{12}{7} c + 1 \right] \theta^2, \end{split}$$

故当 $c = -\frac{-\frac{12}{7}}{2 \cdot \frac{3}{2}} = \frac{8}{7}$ 时,上述 $MSE(T_c)$ 取得最小值 $\frac{1}{49}\theta^2$. 证毕.

Example: 2.11 设 X_1,\cdots,X_n 是来自均值为 μ ,方差为 σ^2 的分布的一个样本, μ,σ^2 均未知,考虑 μ 的线性无偏估计类 $\mathcal{L}_\theta=\{T(X):T(X)=\sum_{i=1}^nc_iX_i\}$.

- (1) 证明: T(X) 为 μ 的无偏估计的充要条件是 $\sum c_i = 1$;
- (2) 证明: \bar{X} 在线性无偏估计类中方差一致达到最小. 证明:

(1) 由 T(X) 为 μ 的无偏估计,则 $E(T(X)) = \mu$.

由 X_1, \cdots, X_n 同分布知 $\mathrm{E}(T(X)) = (\sum_{i=1}^n c_i \mathrm{E}T(X_i)) = \mu \sum_{i=1}^n c_i$

对于任意的 $\mu \in R$, $\mu \sum_{i=1}^{n} c_i = \mu \Leftrightarrow \sum_{i=1}^{n} c_i = 1$, 故得证.

(2) 对于任意的 $T(X) \in \mathcal{L}_{\theta}$, 由 X_1, \dots, X_n 独立同分布知

$$\operatorname{Var}(T(X)) = \sum_{i=1}^{n} c_i^2 \operatorname{Var}(X_i) = \sigma^2 \sum_{i=1}^{n} c_i^2.$$

根据 Cauchy-shcwarz 不等式可得,

$$\left| \sum_{i=1}^{n} c_i \right|^2 \leqslant \sum_{i=1}^{n} c_i^2 \cdot \sum_{i=1}^{n} 1^2,$$

当且仅当 $c_1=c_2=\cdots=c_n$ 时上式取等号. 又由 (1) 知 $\sum_{i=1}^n c_i=1$,所以当 $c_i=\frac{1}{n}, i=1,\cdots,n$ 即 $T(X)=\bar{X} {\rm Var}(T(X))$ 最小,命题得证.

注: (2) 问本质上是条件极值问题,即

$$\begin{cases} \min \sum_{i=1}^{n} c_i^2 \\ \text{s.t. } \sum_{i=1}^{n} c_i = 1 \end{cases}$$

由拉格朗日乘数法,令 $L = \sum_{i=1}^n c_i^2 + \lambda \left(\sum_{i=1}^n c_i - 1 \right)$,则

$$\begin{cases} \frac{\partial L}{\partial c_i} = 0, i = 1, 2, \cdots, n \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases} \Rightarrow \begin{cases} c_i = \frac{1}{n}, i = 1, 2, \cdots, n \\ \lambda = -\frac{2}{n} \end{cases}$$

即证得 $T(X) = \bar{X}$ 在线性无偏类中方差一致达到最小.

1.3 第三章课后习题

Example: 3.1 电话交换台单位时间内接到的呼唤次数服从 Poisson 分布 $P(\lambda)$, $\lambda > 0$. λ 为单位时间内接到的平均呼唤次数. 设 $x = (x_1, \dots, x_{10})$ 是该电话交换台的 10 次记录. 考虑假设检验问题: 原假设 $H_0: \lambda \geqslant 1$ 对备择假设 $H_1: \lambda < 1$. 取水平为 $\alpha = 0.05$.

解: 取检验统计量为 λ 的完备充分统计量 $T(x) = \sum_{i=1}^{n} x_i$. 对于 $H_0: \lambda \geqslant 1$ 和 $H_1: \lambda < 1$,其拒绝域为 $W = \{x: \sum_{i=1}^{n} x_i \leqslant c\}$,检验函数为:

$$\phi(x) = \begin{cases} 1, & T(x) < c, \\ r, & T(x) = c, \\ 0, & T(x) > c. \end{cases}$$

势函数为:

$$g(\lambda) = P_{\lambda}(x \in W) = \sum_{k=0}^{c-1} \frac{(n\lambda)^k}{k!} e^{-n\lambda} + r \frac{(n\lambda)^c}{c!} e^{-n\lambda}$$

当 n=10, $\lambda=1$ 时,由

$$\begin{cases} \sum_{k=0}^{4} \frac{(n\lambda)^k}{k!} e^{(-n\lambda)} = 0.02921\\ \sum_{k=0}^{5} \frac{(n\lambda)^k}{k!} e^{(-n\lambda)} = 0.06704 \end{cases}$$

得 c = 5.

即
$$\sum_{k=0}^4 rac{(n\lambda)^k e^{(-n\lambda)}}{k!} + r rac{(n\lambda)^c}{c!} e^{-n\lambda} = 0.05$$
,解得 $r=0.5496$. 故检验函数为:

$$\phi(x) = \begin{cases} 1, & T(x) < c, \\ 0.5496, & T(x) = c, \\ 0, & T(x) > c. \end{cases}$$

第2章

随机变量生成

2.1 方法介绍

2.1.1 反变换法

Proposition 2.1 反变换法 (Inverse-Transform)

- 基本思想
 - 已知: $F(x) \in [0,1], R \sim U[0,1]$
 - 令 R = F(x),可以反解出 $x = F^{-1}(R)$,如果反解出的 x 服从所需的分布,则问题的解。
- 需要证明
 - F(x) 服从均匀分布, 即 $F(x) \sim U[0,1]$
 - 算出数据的 CDF 为所需的 F(x),即 $P\left\{F^{-1}(R) < x\right\} = F(x)$

Example: 1. 某分布的累积分布函数为:

$$F(x) = \begin{cases} 0, & x \leq 0 \\ x, & 0 \leq x < \frac{1}{4} \\ \frac{3x+1}{7}, & \frac{1}{4} \leq x < 2 \\ 1, & x \geqslant 2 \end{cases}$$

求出 F(x) 的逆函数

$$x = F^{-1}(r) = \begin{cases} r, & 0 \leqslant r < \frac{1}{4} \\ \frac{7r - 1}{3}, & \frac{1}{4} \leqslant r \leqslant 1 \end{cases}$$

Example: 2.三角分布:

概率密度函数:

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & a \leqslant x \leqslant b\\ \frac{2(c-x)}{(c-b)(c-a)}, & b < x \leqslant c\\ 0, & elsewhere \end{cases}$$

累积分布函数:

$$F(x) = \begin{cases} 0, & x \leq a \\ \frac{(x-a)^2}{(b-a)(c-a)}, & a \leq x < b \\ \frac{-x^2 + 2cx + ab - ac - bc}{(c-a)(c-b)}, & b \leq x < c \\ 1, & c \leq x \end{cases}$$

$$F^{-1}(r) = \begin{cases} \sqrt{(b-a)(c-a)r} + a, & 0 \le r < \frac{b-a}{c-a} \\ c - \sqrt{(c-a)(c-b)(1-r)}, & \frac{b-a}{c-a} \le r \le 1 \end{cases}$$

Example: 3.均匀分布:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$

概率 否 度函数:
$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$
 累积分布函数:
$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leqslant x \leqslant b \\ 0, & others \end{cases}$$

$$F^{-1}(r) = a + (b - a)r$$

Example: 4.指数分布:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

累积分布函数为:

$$F(x) = \begin{cases} 0, & x \le 0\\ 1 - e^{-\lambda x}, & x > 0 \end{cases}$$

$$F^{-1}(r) = -\frac{\ln(1-r)}{\lambda}$$

Example: 5.威布尔分布:

$$f(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x - v}{\alpha} \right)^{\beta - 1} e^{-\left(\frac{x - v}{\alpha} \right)^{\beta}} \\ 0, \end{cases}$$

则称 X 服从参数为 c, α, β 的威布尔分

$$(\alpha > 0, \beta > 0)$$

其累积分布函数:

$$F(x) = \begin{cases} 1 - e^{-(\frac{x - v}{\alpha})^{\beta}}, & x \geqslant v \\ 0, & x < v \end{cases}$$

逆函数:

$$F^{-1}(r) = \alpha \left[-\ln(1-r) \right]^{1/\beta} \ (v=0)$$

Example: 6.已知样本点序列的连续经验分布函数

- 假设随机变量在相邻样本点之间均匀分布
- 假设随机变量在各个区间的概率相同,都为1/n

概率密度函数:
$$f(x) = \begin{cases} \frac{1}{n(x_i - x_{i-1})}, & x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \cdots, n \\ 0, & others \end{cases}$$
 累积分布函数:
$$F(x) = \begin{cases} 0, & x < x_0 \\ \frac{n-1}{n} + \frac{x - x_{i-1}}{n(x_i - x_{i-1})}, & x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \cdots, n \\ 1, & x > x_n \end{cases}$$

$$R = \frac{x - x_{i-1}}{n(x_i - x_{i-1})} + \frac{i-1}{R} \qquad x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \cdots, n$$

$$x = x_{i-1} + n (x_i - x_{i-1}) \left(R - \frac{i-1}{n} \right) \qquad \frac{i-1}{n} \leqslant R \leqslant \frac{i}{n}, \ i = 1, 2, \cdots, n \end{cases}$$

Example: 7.已知样本频率的连续经验分布函数

- 不同的区间具有不同的概率密度
- 概率密度函数为分段函数

概率密度函数:
$$f(x) = \begin{cases} \frac{p_i}{x_i - x_{i-1}} = \frac{c_i - c_{i-1}}{x_i - x_{i-1}}, & x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \cdots, n \\ 0, & others \end{cases}$$
 累积分布函数:
$$F(x) = \begin{cases} 0, & x < x_0 \\ c_{i-1} + \frac{c_i - c_{i-1}}{x_i - x_{i-1}} (x - x_{i-1}), & x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \cdots, n \\ 1, & x > x_n \end{cases}$$

$$R = c_{i-1} + \frac{c_i - c_{i-1}}{x_i - x_{i-1}} (x - x_{i-1}) \qquad x_{i-1} \leqslant x \leqslant x_i, \ i = 1, 2, \dots, n$$

$$x = x_{i-1} + a_i (R - c_{i-1}) \qquad c_{i-1} \leqslant R \leqslant c_i, \ i = 1, 2, \dots, n$$

$$a_i = \frac{x_i - x_{i-1}}{c_i - c_{i-1}}$$

2.1 方法介绍 -13/20-

例: 我们收集了 Shady Lane 国民银行的一个免下车服务窗口的服务时间数据, 这些数据按照给定区问整理如下: 利用查表法, 用于生成服务时间。

解:

i	区间 (秒)	频率	相对频率	累计频率 c_i	斜率 α_i
1	$15 \leqslant x \leqslant 30$	10	$\frac{1}{15}$	0.067	225
2	$30 \leqslant x \leqslant 45$	20	$\frac{2}{15}$	0.2	112.5
3	$45 \leqslant x \leqslant 60$	25	$\frac{1}{6}$	0.37	90
4	$60 \leqslant x \leqslant 90$	35	$\frac{7}{30}$	0.6	128.6
5	$90 \leqslant x \leqslant 120$	30	$\frac{1}{5}$	0.8	150
6	$120 \leqslant x \leqslant 180$	20	$\frac{2}{15}$	0.93	450
7	$180 \leqslant x \leqslant 300$	10	$\frac{1}{15}$	1	1800

区间	频率
$15 \sim 30$	10
$30 \sim 45$	20
$45 \sim 60$	25
$60 \sim 90$	35
$90 \sim 120$	30
$120\sim180$	20
$180 \sim 300$	10

生成随机数: 0.9473、0.0822、0.3561、0.2482、0.8832。根据公式 $X = x_{i-1} + \alpha_i(R - c_{i-1}), c_{i-1} < R < c_i$,对应生成的随机变量如下表:

R	0.9473	0.0822	0.3561	0.2482	0.8832	
X	205.14	31.75	59.05	49.34	157.44	

2.1.2 拒绝法

Proposition 2.2 拒绝法 (Acceptance-Rejection)

- 基本思想:直接基于 f(x) 生成
 - 依据: 如果 (X,Y) 是 f(x) 曲线与 X 轴形成的面 S_f 上均匀分布的的随机点,则X 的密度为 f(x)。
- 步骤:
 - 取一个包括 S_f 的形状简单的平面 B,在其中均匀地选取随机点 (X,Y)
 - 如果 (X,Y) 不位于 S_f 内,则重新取点。
 - 如果 (X,Y) 不位于 S_f 内,则实际上再 S_f 中均匀分布。
 - -X 就是服从密度为 f(x) 的随机变量。

算法: $f(x) >= 0, x \in [a, b]$

• 给定 pdf: $\int_a^b f(x) dx = 1$

• 计算 f(x) 的最大值 f_{max}

$$f'(x) = 0 \Rightarrow x = x^* \in [a, b], f_{max} = f(x^*)$$

• 生成两个均匀分布随机变量

$$R_x \in U(a,b), R_y \in U(0, f_{max})$$

- 如果 $R_u \leq f(R_x)$, 就接受 R_x
- 否则拒绝

Example: 给定
$$\mathrm{pdf} : f(x) = \left\{ \begin{array}{ll} 60x^3(1-x)^2, & 0 \leqslant x \leqslant 1 \\ 0, & others \end{array} \right.$$

最大值:

$$x^* = \frac{3}{5}, f_{max} = \frac{12960}{625} = 2.0736$$

生成均匀分布随机变量: $R_x \in U(0,1), R_y \in U(0,2.0736)$

如果: $R_y \leq 60R_x^3(1-R_x)^2$ 就接受 R_x , 否则拒绝 R_x

2.2 分布绘图

2.2.1 Gamma 分布

Definition 2.1 Gamma 分布族

在 (R^+,\mathscr{B}_{R^+}) 上的密度函数形如

$$p(x; \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} I_{(0, +\infty)}(x), \ (\alpha > 0, \lambda > 0)$$

 \Diamond

的分布称为参数为 α , λ 的Gamma 分布族,记为 $Ga(\alpha,\lambda)$ 。其中, $\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}\,dx$ 为 Gamma 函数。

$$\int_{-\infty}^{+\infty} p(x; \alpha, \lambda) = \frac{\Gamma(\alpha)}{\Gamma(\alpha)} = 1$$

- Note:
 - 由图 2.1, α 影响 $Ga(\alpha,\lambda)$ 的形状, λ 影响 $Ga(\alpha,\lambda)$ 的尺寸

2.2 分布绘图 -15/20-

图 2.1: α 和 λ 对 $Ga(\alpha, \lambda)$ 的影响

- $\alpha \le 1$ 时,严减; $1 < \alpha \le 2$ 时,先上凸,后下凸; $\alpha > 2$ 时,先下凸,再上凸,最后下凸,两个拐点
- 入影响密度函数的胖瘦

设 $Z \sim Ga(\alpha, \lambda)$, 则其 k 阶矩

$$EZ^{k} = \int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+k-1} e^{-\lambda x} dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\lambda^{k}} \int_{0}^{+\infty} \frac{\lambda^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k-1} e^{-\lambda x} dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\lambda^{k}} = \frac{(\alpha+k-1)(\alpha+k-2)\cdots\alpha}{\lambda^{k}}$$

令 $\alpha = 5, \lambda = 2$, 生成 100 个服从 Ga(5,2) 的随机数见表 2.1。

表 2.1: 100 个服从 Ga(5,2) 的随机数

8.970	7.436	10.130	13.857	14.477	11.317	5.305	19.204	12.134	17.741
10.786	15.782	12.751	7.865	5.020	7.973	6.702	11.365	1.864	8.272
6.363	8.856	11.532	13.531	12.901	9.747	3.660	6.329	11.149	22.713
14.703	1.921	8.829	12.124	5.686	22.171	10.194	6.213	6.221	11.494
8.251	16.907	8.061	13.385	2.639	4.600	12.246	10.625	8.867	11.413
24.037	6.107	9.044	20.585	7.057	6.604	7.033	9.545	4.226	3.549
6.894	12.698	10.479	4.221	8.659	7.955	3.959	6.650	14.066	20.703
10.081	2.352	12.030	13.182	6.721	11.273	7.286	4.925	7.724	12.348
8.184	15.014	6.267	7.876	8.262	15.584	26.987	4.301	11.088	10.851
18.763	15.270	14.215	9.960	10.059	11.084	8.172	14.539	18.870	6.694

生成的 100 个随机数的经验分布函数和理论分布函数如图 2.2。为了与密度函数对应得比较好,我们生成 5000 个服从 Ga(5,2) 的随机数,如图 2.3。

图 2.2: Ga(5,2) 的分布函数

图 2.3: Ga(5,2) 的密度函数

代码见 Listing 2.1。

Listing 2.1: 生成 Ga(5,2) 的 matlab 代码

```
% below
 1
2
   clc;
   close;
4
   clear;
5
   seed = 6;
   rng(seed);
6
  % gamma cdf and 100 samples
   alpha = 5;
8
   lambda = 2;
   gammaSamples = gamrnd(alpha,lambda,[100,1]);
10
11 A = reshape (gammaSamples, 10, 10);
   save('gammaSamples.csv', 'A', '-ascii');
12
   figure(1);
13
14 % theory cdf
   x = 0:0.1:30;
15
   y = gamcdf(x, alpha, lambda);
16
   plot(x,y,'.-','linewidth',1);
17
   hold on;
18
  % experience cdf
```


2.2 分布绘图 -17/20-

```
[yExp, xExp] = ecdf(gammaSamples);
   plot(xExp,yExp,'--','linewidth',1);
21
   legend('理论分布函数','径验分布函数');
22
    xlabel('$x$','interpreter', 'latex', 'fontsize',10.5);
23
    ylabel('$p$','interpreter', 'latex', 'fontsize',10.5);
24
    title(strcat('$\alpha=', num2str(alpha),',\, \lambda=',num2str(lambda),
25
       $'),...
        'interpreter', 'latex', 'fontsize',10.5);
26
   % gamma pdf and 5000 samples
27
28 % 5000 samples
   gammaSamples = gamrnd(alpha,lambda,[5000,1]);
29
30
   figure (2);
   histogram (gammaSamples, 'Normalization', 'pdf')
31
32 | hold on;
33 % gamma pdf
34 \mid x = 0:0.1:30;
35 \mid y = gampdf(x, alpha, lambda);
   plot(x, y,'--','linewidth',1);
36
    xlabel('$x$','interpreter', 'latex', 'fontsize',10.5);
37
    ylabel('$p$','interpreter', 'latex', 'fontsize',10.5);
38
   xlim([0,31]); ylim([0,0.11]);
39
    title(strcat('$\alpha=', num2str(alpha),',\, \lambda=', num2str(lambda),
40
       $') ,...
        'interpreter', 'latex', 'fontsize',10.5);
41
```

2.2.2 Beta 分布族

Definition 2.2 Beta 分布

设
$$D=(0,1)$$
,定义在 (D,\mathcal{B}_D) ,密度函数形如 $p(x;a,b)=\frac{1}{B(a,b)}x^{\alpha-1}(1-x)^{b-1}I_{(0,1)}(x), (a>0,b>0)$ 的分布成为参数为 a,b 的 Beta 分布,记为 $Be(a,b)$ 。 以 其中 $B(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}\,dx=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Note: 由图 2.4

• a > 1 和 b > 1, p(x) 单峰状, 在 x = (a-1)/(a+b-2) 处达到最大值

图 2.4: a 和 b 对 Be(a,b) 的影响

- a < 1 和 b < 1, p(x)U形, 在 x = (a-1)/(a+b-2) 处达到最小值
- 当 a = b + 1/2 时, Beta 分布为反正弦分布
- a < 1 和 b > 1, p(x) 严减
- a > 1 和 b < 1, p(x) 严增

Note: 设 $Z \sim Be(a,b)$, 则 Z 的 k 阶矩

$$EZ^{k} = \int_{0}^{1} \frac{1}{B(a,b)} x^{a+k-1} (1-x)^{b-1} dx$$

$$= \frac{B(a+k,b)}{B(a,b)} \int_{0}^{1} \frac{1}{B(a+k,1)} x^{a+k-1} (1-x)^{b-1} dx$$

$$= \frac{B(a+k,b)}{B(a,b)} = \frac{\Gamma(a+k)\Gamma(b)}{\Gamma(a+k+b)} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} = \frac{\Gamma(a+k)\Gamma(a+b)}{\Gamma(a)\Gamma(a+k+b)}$$

$$= \frac{(a+k-1)(a+k-2)\cdots(a)}{(a+b+k-1)(a+b+k-2)\cdots(a+b)}$$

特别的,

$$EZ = \frac{a}{a+b}$$

$$E^2 = \frac{(a+1)a}{(a+b+1)(a+b)}$$

$$\text{Var } Z = EZ^2 - (EZ)^2 = \left[(\frac{a+1}{a+b+1})^2 - 1 \right] (\frac{a}{a+b})^2$$

令 a = 1.5, b = 2, 生成 100 个服从 Be(1.5, 2) 的随机数见表 2.2

2.2 分布绘图 -19/20-

0.1675	0.8582	0.9322	0.0391	0.6434	0.6455	0.2496	0.3051	0.4312	0.1467
0.0999	0.1250	0.3282	0.2971	0.5698	0.2195	0.0985	0.5245	0.3720	0.1986
0.7823	0.7478	0.6951	0.5802	0.3194	0.4065	0.6905	0.1559	0.3785	0.5306
0.1999	0.1590	0.3840	0.3212	0.6368	0.7172	0.7610	0.3014	0.3848	0.4387
0.4263	0.3776	0.4602	0.3675	0.4937	0.1559	0.5325	0.3720	0.6380	0.2773
0.6846	0.6322	0.5647	0.1297	0.5743	0.3728	0.1223	0.6585	0.6322	0.2977
0.5291	0.4154	0.5662	0.0220	0.1352	0.3076	0.7311	0.7020	0.3809	0.3629
0.5882	0.0989	0.6627	0.0925	0.1623	0.3002	0.3496	0.3998	0.4126	0.1960
0.2560	0.1002	0.7634	0.5528	0.7717	0.4144	0.6347	0.3866	0.6521	0.4663
0.2750	0.5877	0.2553	0.6150	0.2477	0.4492	0.3713	0.1073	0.4405	0.3347

生成的 100 个随机数的经验分布函数和理论分布函数如图 2.5,为了与密度函数对应得比较好,我们生成 5000 个服从 Be(1.5,2) 的随机数,绘制其分布函数,经验分布函数如图 2.6。

0.5 Be(1.5, 2)

0.5 0.6 0.7 0.8 0.9 1

图 2.5: Be(1.5, 2) 的分布函数

图 2.6: Be(1.5, 2) 的密度函数

代码见 Listing 2.2。

Listing 2.2: 生成 Be(1.5, 2) 的 matlab 代码


```
8 \mid a = 1.5;
 9 |b| = 2;
10 | betaSamples = betarnd(a,b,[100,1]);
11 A = reshape(betaSamples, 10, 10);
   save('betaSamples.csv', 'A', '-ascii');
12
13
   figure(1);
14 % theory cdf
15 x = 0:0.002:1;
16 \mid y = betacdf(x,a,b);
17
   plot(x,y,'.-','linewidth',1);
18 hold on:
19 % experience cdf
   [yExp, xExp] = ecdf(betaSamples);
20
   plot(xExp,yExp,'--','linewidth',1);
21
   legend('理论分布函数','径验分布函数');
22
   xlabel('$x$','interpreter', 'latex', 'fontsize',10.5);
23
   ylabel('$p$','interpreter', 'latex', 'fontsize',10.5);
24
25
   xlim([0,1]);
   title(strcat('$Be(', num2str(a),',\,',num2str(b), ')$'),'interpreter', '
26
       latex');
27 % beta pdf and 5000 samples
28 % 5000 samples
29 |\text{betaSamples} = \text{betarnd}(a,b,[5000,1]);
30
   figure (2);
31 | histogram (betaSamples, 'Normalization', 'pdf');
32 | hold on;
33 % beta pdf
34 \mid x = 0:0.002:1;
35 y = betapdf(x,a,b);
   plot(x, y,'--','linewidth',1);
36
    xlabel('$x$','interpreter', 'latex', 'fontsize',10.5);
37
   ylabel('$p$', 'interpreter', 'latex', 'fontsize',10.5);
38
39
   xlim([0,1]);
    title(strcat('$Be(', num2str(a),',\,',num2str(b), ')$'),'interpreter', '
40
       latex');
```

