EE210: HW-14

Date: 11/04/2019

Q.1 What are different regions of operation of the Enhancement mode NMOS Transistor?

Q.2 Design the circuit of Fig. shown below, that is, determine the values of R_D and R_S, so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has Vt = 0.7 V, $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $W = 32 \,\mu\text{m}$. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

Q.3 Analyze the circuit shown in Fig. below to determine the voltages at all nodes and the currents through all branches. Let $V_{tn}=1~V$ and $k_{n}{'}$ (W / L) = 1 mA/V² and Neglect the channel-length modulation effect.

Q.4 The NMOS and PMOS transistors in the circuit shown below are matched, with k_n' (W_n/L_n) = k_p' (W_p/L_p) = 1 mA/V² and, $V_{tn} = -V_{tp} = 1$ V. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} , as well as the voltage v_O , for $v_I = 0$ V, +2.5 V, -2.5 V.

Q.5 For the Common Drain circuit shown in Fig. below, assume that the MOSFET M has W/L = 10 and $\lambda = 0$. Other parameters are: $k_n = 40 \,\mu\text{A/V}^2$, $\gamma = 0.4 \,V^{1/2}$, $2\phi_F = 0.6 \,V$, and $V_{TN0} = 0.7 \,V$. Find the dc output voltage V_0 , and the ac small-signal midband voltage gain v_0/v_i under the following conditions:

- (i) Ignoring body effect and with $R \rightarrow \infty$.
- (ii) Including body effect and with $R \rightarrow \infty$.

Q.6 Repeat Q.5 under the following conditions:

- (i) Ignoring body effect and with R \rightarrow 100k Ω .
- (ii) Including body effect and with R \rightarrow 10k Ω .