Mixed representations in V1 neurons

Wistful Wolves (Neuronas Stringer)

Julián Guiral Adrián Alemán-Zapata

Background and goals

- Mixed neuronal representations (Stringer et al. 2019).
- Question: Do the combined motor and sensory information increase the accuracy of a predictive model describing the population activity of V1 cortex neurons, compared to models trained with individual motor or sensory variables?
- **Hypothesis:** The prediction of neural activity should improve with a model trained using motor and sensory features.
- Methodology: We trained several regression models with 1) Sensory, 2) Motor and 3) Combined information during periods of high and low motion.

High-motion and Low-motion states

Prediction of principal components per neuron type: Motor, Non-Motor, Common (High-motion) and Common (Low-motion)

Neural Network model

- Prediction of PC neuronal activity from speed and stimulation angle data.
- Combined speed+angle input.
- Fully connected network.
- Three layers:
- 60/30/1 neurons.

Best models per Neuron type during stimulus

Neurons active during High-motion period

Showed higher mixed-representations.

Non-motor neurons

Model with lowest error. Best prediction when only using angle.

Common/multistate neurons:

Less error during High motion compared to Low motion. They benefit from Angle+ Speed to improve prediction.

Conclusions

- Neurons active during High-motion period showed higher mixed representations.
- Prediction improved with combined sensory+motor features as inputs, except for non-motor neurons.
- Lack of stimulus in spontaneous condition led to worse prediction.
- Common neurons (Low-motion) during spontaneous condition potentially a signature of resting-state replay.

Acknowledgements:

José Rey Lopez (TA) and other pod members.