

INTEGRATING RELEVANCE FEEDBACK FOR EFFECTIVE PERSONALISATION IN VECTOR SEARCH

Matúš Šikyňa, Pavel Zezula Masaryk University, Brno, Czech Republic

PREVIOUS WORK & OUR PROPOSAL

Towards Personalized Similarity Search for Vector Databases (SISAP24)

- In vector databases, traditionally, **Euclidean distance** is used for **indexing** and **querying**
- Once vectors are indexed with this **fixed distance**, partitioning and filtering remain the **same for all users**
- This contrasts with human perception of similarity, which is **subjective** and **context-dependent**
- Proposed personalized search engine:
 - Index metric: Euclidean distance
 - View metric: Mahalanobis distance
 - * A: personalized matrix trained via user feedback

- Filter with efficient Index metric, and refine with View metric
- Uses the **lower bounding relationship** between Euclidean and Mahalanobis distances
- Limitations: utilizes synthetic feedback for training the matrices and using two metric learning methods: ITML and SDML

Our Approach to Semantic User Feedback

- Integrating relevance feedback, where the user selects only negative (dissimilar) results; results not selected are implicitly positive, creating triplets for metric learning
- Workflow of the personalised vector search pipeline:

- Triplets are created using various **sampling strategies**:
 - **Strategy 1**: draws randomly one positive and one negative result to form a single triplet, runs in iterations (for more triplets)
 - **Strategy 2**: a randomly chosen negative result is paired with every available positive result, producing a set of triplets
 - **Strategy 3**: every negative result is paired with every positive result, but training is triggered only after feedback from $q \in \{1, 2, 5, 10, 20, 40\}$ queries has been accumulated
- For the practical deployment, we present three **operational scenarios**:
 - Balanced Precision-Scaling Factor (BPSF): balances between a low scaling factor and high retrieval precision
 - Minimum Scaling Factor with Acceptable Precision (MSAP): focuses on minimising the scaling factor to maximise efficiency, while still enforcing an acceptable precision increase (at least by 0.1)
 - Maximum Precision (MP): prioritises highest attainable precision, resulting in maximum personalisation
 - Each scenario has variants: (i) Baseline (BAS), (ii) Low Learning Time (LLT) that minimises model learning time, and (iii) Rank Stability (RS) that maximises rank correlation coefficients.

EXPERIMENTAL EVALUATION & RESULTS

Dataset, Queries and Models

- Used the **Profiset database** of 20M images, each as a **768D CLIP ViT-L/14 embedding** (unit-normalized), enabling text–image similarity search
- Created **280 text queries**; retrieved **top-20 images per query** and manually labeled them relevant/irrelevant to build ground-truth
- Trained and tuned multiple **metric learning models** (OASIS, ITML, POLA, AROMA, OMDML, MLOML, RobustODML, SORS, AdaSORS, OPML) with extensive hyperparameter search

Evaluation Metrics

- Final Scaling Factor (FSF): the scaling factor derived after learning the matrix A for all queries incrementally
- **Precision Difference** (Δ MAP): the change in mean-average precision (MAP) obtained when the ranking metric is switched from Euclidean (baseline) to Mahalanobis distance parameterised by the learned user-profile matrix **A** in the ranking function; **A** is first learned using the full query set, and Δ MAP is then evaluated over that same set of queries
- Average Learning Time (ALT): average time (in seconds) needed for integration of a single set of triplets in the metric learning model's learning
- Average Spearman@k (AS@k): the average Spearman rank correlation (across all queries) between two ranked lists the top k results retrieved with Euclidean distance and the top k results retrieved with the learned Mahalanobis distance the tested k are: {20, 100, 1000}
- Average Kendall's Tau@k (AK@k): like AS@k, using Kendall's Tau
- Average Jaccard Sim@k (AJ@k): like AS@k, using Jaccard Similarity

Results: Sampling Strategies Comparison

- With a higher number of feedback inputs, the global ranking using the Mahalanobis distance for ordering deteriorates against the Euclidean distance ranking
- With a higher number of feedback inputs, both scaling factors and precisions increase.

(a) Scaling Factor and Precision

(b) Spearman, Kendall's Tau and Jaccard

Results: Finding Best Models for Operational Scenarios

- OMDML dominates when precision or rank stability matter
- OASIS excels when learning time is low
- Final Scaling Factors (FSF) are low, indicating efficiency of the approach and trained models
- Precision Differences (Δ MAP) are high, indicating the effectiveness of the approach and trained models

Table 1: Calculated evaluation measures for the best model given the scenario and its variant. The Model column is in the form: model and hyperparameters. The Feedback column is in the form: feedback strategy and parameters – 1:(Number of pairs, Replacement), 2:(Batch), 3:(Number of queries).

` -	, 1	, ,	`		_	,	
Scenario-Variant	Model	Feedback	FSF	ΔMAP	ALT	AS@1000	AK@1000
BPSF-BAS	OMDML β : 1e-3, C : 4e-3, γ : 7e-3	2 True	1.095	0.203	1.373	0.708	0.532
BPSF-LLT	$C: 7e-2, \ enforce_\ psd: False$	1 1, False	1.147	0.103	0.001	0.621	0.456
BPSF-RS	OMDML β : 7e-2, C : 1e-3, γ : 1e-4	2 False	1.039	0.134	1.416	0.899	0.738
MSAP-BAS	$\begin{array}{c} \text{MLOML} \\ nl \colon 2, \ \gamma \colon 1\text{e-4}, \ act \colon \tanh, \ \lambda \colon 7\text{e-6} \end{array}$	3 5	1.017	0.102	18.098	0.863	0.693
MSAP-LLT	$C: 1 \text{e-} 2, \ enforce_psd: False$	1 8, False	1.062	0.106	0.008	0.813	0.636
MSAP-RS	$egin{array}{c} ext{OMDML} \ eta : 1.0, \ C \colon ext{7e-4}, \ \gamma \colon ext{4e-4} \end{array}$	1 64, True	1.028	0.101	1.768	0.939	0.798
MP-BAS	OMDML β : 7e-1, C : 1e-2, γ : 1e-2	2 False	1.148	0.211	0.712	0.566	0.411
MP-LLT	$C: 7e-2, \ enforce_\ psd: False$	1 2, True	1.271	0.130	0.003	0.308	0.211
MP-RS	OMDML β : 4e-2, C : 1e-2, γ : 1e-4	2 True	1.077	0.193	1.104	0.788	0.609