CS 410/510 Introduction to Quantum Computing Lecture 11

Portland State U, Spring 2017

May 9, 2017 Lecturer: Fang Song Scribe: Ben Hamlin

Version: October 9, 2017

Theory of Quantum Information

A.K.A. Quantum information processing

- What it's not: Quantum computation
 - Algorithms (e.g., search, order-finding)
 - Complexity (e.g., QBP, QMA)
 - In general: Making quantum states meaningful.
- What it is: Quantum information
 - More fundamental tasks (e.g., create, copy, store, communicate, ...)
 - Focus on theory (experiments also exist)
 - In general: Making quantum states availiable.

Information theory

Classical setting

Claude Shannon, "A Mathematical Theory of Communication," 1948.

Alice Bob
$$m$$
 — Comm. Channel — \hat{m} phone line, cable, etc.

Central Questions:

- 0. What is information?
- 1. How many bits do we need to describe a source? (Shannon entropy) [Shannon's Source Coding Theorem]
- 2. How can we transmit messages over a noisy channel? [Shannon's Noisy-channel Coding Theorem]

2.2 Quantum setting

Alice Bob
$$|m\rangle$$
 — Quantum Channel $|\hat{m}\rangle$ Q. data fiber

Central questions:

	classical channel	quantum channel	
classical data	 Source Coding Thm. Noisy Channel Thm. 	 How much classical info is in a Q. state [Holevo] Classical capacity of Q. channel (QECC) 	
		1) Min. qubits to describe Q. source [Schumacher] 2) Q. capacity of Q. channel (QECC)	

New resource: Entanglement

- Teleportation: Transmit quantum states over a classical using two bits
- Superdense coding: Transmit two classical bits using a single qubit
- Non-local games

New tasks:

- Getting around the No-cloning Theorem
- Distinguishing quantum states

3 No-cloning Theorem

Classically...

$$a \in \{0,1\} \xrightarrow{\bullet} a$$
 $0 \xrightarrow{\bullet} a$

The above classical circuit "clones" the bit *a* reversibly. I.e., it calculates $\rangle a$, $0 \langle \mapsto \rangle a$, $a \langle \cdot \rangle a$

Quantumly...

Is there a quantum circuit *U* that calculates $|a\rangle|0\rangle \stackrel{U}{\mapsto} |a\rangle|a\rangle$? *No-cloning Theorem*

Why does CNOT fail?

Succeeds in some cases, e.g., $|0\rangle$, $|1\rangle$:

$$\begin{array}{c|cccc} |0\rangle & & & & |0\rangle \\ |0\rangle & & & & |0\rangle \end{array} \qquad \begin{array}{c|cccc} |1\rangle & & & |1\rangle \\ |0\rangle & & & |1\rangle \end{array}$$

Fails in others, e.g., $|+\rangle$:

$$\begin{vmatrix} |0\rangle & - \\ |0\rangle & - \end{vmatrix} \frac{|00\rangle + |11\rangle}{\sqrt{2}} \neq |+\rangle |+\rangle$$

Proof. Suppose for contradiction that there exists a unitary U and a fixed preparation $|s\rangle$ s.t. for all states $|\psi\rangle$,

$$|\psi\rangle|s\rangle \stackrel{U}{\mapsto} |\psi\rangle|\psi\rangle$$

Then for any distinct quantum states $|\psi\rangle$ and $|\psi'\rangle$,

$$|\psi\rangle|s\rangle \stackrel{U}{\mapsto} |\psi\rangle|\psi\rangle$$
$$|\psi'\rangle|s\rangle \stackrel{U}{\mapsto} |\psi'\rangle|\psi'\rangle$$

And since unitary operations preserve inner product,

$$\langle \psi s | \psi' s \rangle = \langle \psi \psi | \psi' \psi' \rangle \tag{1}$$

$$(\langle \psi | \otimes \langle s |)(|\psi'\rangle \otimes |s\rangle) = (\langle \psi | \otimes \langle \psi |)(|\psi'\rangle \otimes |\psi'\rangle) \tag{2}$$

$$\langle \psi | \psi' \rangle \otimes \langle s | s \rangle = \langle \psi | \psi' \rangle \otimes \langle \psi | \psi' \rangle \tag{3}$$

$$\langle \psi | \psi' \rangle = \langle s | s \rangle \tag{4}$$

And since $\langle s|s\rangle$ is a constant, line 4 clearly cannot be true for all distinct $|\psi\rangle$, $|\psi'\rangle$. Therefore by contradiction, no such U can exist.

4 The Power of Entanglement

Examples of entangled states:

• 2-qubit

$$\text{Bell States: } \left\{ \begin{array}{l} |\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\} \text{EPR Pairs}$$

• 3-qubit

GHZ State:
$$\frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

Teleportation:

Suppose Alice wants to send $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ to Bob.

- Alice may not know α and β .
- Even if she does, she still cant send $\alpha, \beta \in \mathbb{C}$ with infinite precision.

Claim: If Alice and Bob share an EPR pair, Alice can send 2 classical bits to Bob s.t. Bob can reproduce $|\psi\rangle$ exactly [Bennet, Brassard, et al. '93].

Teleportation circuit:

Alice (1) (2) (3) (4) Bob
$$|\psi\rangle M \longrightarrow H \longrightarrow a$$

$$|\Phi^{+}\rangle \begin{cases} A \longrightarrow B \\ B \longrightarrow X \longrightarrow Z \longrightarrow |\psi\rangle \end{cases}$$

- 1. $\frac{1}{\sqrt{2}}(\alpha(|000\rangle+|011\rangle)+\beta(|100\rangle+|111\rangle))$
- 2. $\frac{1}{\sqrt{2}}(\alpha(|000\rangle+|011\rangle)+\beta(|110\rangle+|101\rangle))$
- $3.\ \ \tfrac{1}{2}(|00\rangle(\alpha|0\rangle+\beta|1\rangle)|10\rangle(\alpha|0\rangle-\beta|1\rangle)|01\rangle(\alpha|1\rangle+\beta|0\rangle)|11\rangle(\alpha|1\rangle-\beta|0\rangle))$

	MA	w.p.	В		
4.	00	$\frac{1}{4}$	$ \alpha 0\rangle + \beta 1\rangle$	$\stackrel{1}{\mapsto}$	$ \psi angle$
	01	$\frac{1}{4}$	$ \alpha 1\rangle + \beta 0\rangle$	\xrightarrow{X}	$ \psi angle$
	10	$\frac{1}{4}$	$ \alpha 0\rangle - \beta 1\rangle$	\xrightarrow{Z}	$ \psi angle$
	11	$\frac{1}{4}$	$ \alpha 1\rangle - \beta 0\rangle$	\xrightarrow{ZX}	$ \psi angle$