National Institute of Technology Mizoram

Mid - Semester Examination, Odd Semester (2022-23)

Advanced Data Structures (CSL 1704)

7th Semester	Full Ma	rks: 30 marks	Duration: 1:30) hours
Answer all		ions. All Questions (10 = 30 Marks)	Carry Same Mark	<u>s</u> <u>19</u>
Le Define O, θ, ar	/ nd Ω asymptotic :	notations.	91	[6]
·	•. ::::::::::::::::::::::::::::::::::::	e empty set. $\lesssim \chi$		[4]
c) Explain why to is meaningless.	he statement, "Th	ne running time of alg	orithm A is at leas	t O(n ²)" [6]
d) Suppose algor that the algorithm A		e solving a same prob algorithm B.	elem. When will yo	ou say [4]
		cedures HEAP-MIN t implement a min-		
		(OR)		
) Differentiate l	between a Splay	tree and a B-tree.		[4]
Write pseudoo	code for insertior	and deletion operati	ons of a Trie.	[6]
3. a) Suppose that a node x is inserted into a red-black tree with RB-INSERT and then is immediately deleted with RB-DELETE. Is the resulting red-black tree the same as the initial red-black tree? Justify your answer. [6]				
b) List out the pro	operties of red-bl	ack tree.		[4]
		(OR)		
c) Show the AVL 12; 19; 8 into an init	tree that result a	fter successively inse tree.	erting the keys 41; [4]	38; 31;
		eting an element fron		[6]
, · · · · ·	~~~~	Best of Luck ~~~~	_	

National Institute of Technology Mizoram

End - Semester Examination, Odd Semester (2022-23)

Advanced Data Structures (CSL 1704)

7th Semester, B.Tech

Maximim Mark: 50

Time: 3 hrs

Answer all 5 (Five) Questions. All Questions Carry Same Marks

(5 * 10 = 50 Marks)

1. What are the disadvantages of reference count garbage collection method? Expla	in how	Mark
and sweep garbage collection method resolve these issues.	[4+	

2. Consider the following sorting algorithms: Insertion sort, Bubble sort, Heap Sort, Merge Sort and Quick Sort. Which of them are stable? Justify your answer.

- 3. Decide whether you think the following statement is true or false. If it is true, give an explanation. If it is false, give a counterexample.

 [5+5]
 - i. Let G be an arbitrary connected, undirected graph with a distinct cost c(e) on every edge e. Suppose e* is the cheapest edge in G; that is, c(e*) < c(e) for every edge $e \neq e*$. Then there is a minimum spanning tree T of G that contains the edge e*.
- ii. Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G. With edge costs that are all positive and distinct. Let T be a minimum spanning tree for this instance. Now suppose we replace each edge cost c by its square, c2, thereby creating a new instance of the problem with the same graph but different costs. Then T must still be a minimum spanning tree for this new instance.
- 4. Given a sequence of a numbers a1, a2, a3, ..., an, derive an algorithm for finding a contiguous subsequence ai, ..., aj for which the sum of elements in the subsequence is maximum. Also, show the step-by-step working of the algorithm by using an example. {Example: for sequence [-2, 11, -4, 4, 5, 2], the maximum sum is 20 given by the subsequence [11, -4, 13]]}.
- 5. What is a skip list? Explain the pseudocode of inserting an element in a skip list. [3 + 7]

---- BEST OF LUCK ----

Set - A

1. Insert the following keys successively into an initially empty red-black tree. Show a step-bystep procedure.

72, 56, 47, 36, 9

2. Explain the pseudocode for inserting a node z from a Binary Search Tree T with examples.

Set - B

1. Insert the following keys successively into an initially empty AVL tree. Show a step-by step procedure.

72, 56, 47, 36, 9

2. Explain the pseudocode for deleting a nodez from a Binary Search Tree T.

4

Set - C

1. Insert the following keys successively into an initially empty red-black tree. Show a step-bystep procedure. [4]

7, 5, 4, 3, 9

If a node in a binery search tree has two children, then show that its successor has no left child and its predecessor has no right child. [4]