Reading notes

Linfan

This document contains all notes taken while reading materials (e.g., textbooks, literature) in preparation for the capstone project. Black text are information consolidated from the readings; blue text are notes (proofs, explanations); red text are questions.

Contents

1	Theory of Ordinary Differential Equations (Coddington Levinson)	2
	1.1 Chapter 11: Algebraic properties of linear boundary-value problems on a finite interval	2
	1.1.1 Introduction	2
	1.1.2 Boundary form formula	5
	1.1.3 Homogeneous Boundary-value Problems and Adjoint Problems	10
	1.1.4 Nonhomogeneous Boundary-value Problems and Green's Function	17
Ι	odo list	
	Why the $(-1)^n$?	5
	Does this mean that, given a boundary form, its adjoint boundary forms are related to each other by	
	linear transformation?	9
	Is the direction correct? e.g., from the existence of J , construct U^+ and U_c^+	10
	Proposition 1.1.18 poses condition on F and invokes the existence of G ; what are the objects corre-	
	sponding to F and G here?	10
	U^+ is not uniquely determined by U but by U and U_c . But D^+ is the set of functions x satisfying	
	$U^+x=0$; if U^+ is not uniquely determined by U , how can D^+ be?	11
	Is this understanding correct?	11
	Is this by Theorem 1.1.19? But it says adjoint boundary forms are related by multiplication by	
	nonsingular matrices, not that the multiplication of an adjoint boundary form by a nonsingular	
	matrix is still an adjoint boundary form	13
	Given that U^+ is not uniquely determined by U , is the adjoint problem unique?	13
	This is the definition of Ux in Remark 1.1.13?	15
	By change of basis?	15
	This is how I interpreted "uniqueness" in the next line. But why is this a problem / where is the	
	contradiction?	16
	This is not the same as requiring ψ_j to be solutions to π_{2n-m} , is it? Since there is an extra $U^+\psi_j=0$	
	to fulfill?	16
	Proposition 1.1.21 requires that $U\varphi_i = 0$ and $U^+\psi_j = 0$; are these conditions fulfilled?	16
	Does this mean we don't know $U^+\psi_j=0$? If so, how could we use Proposition 1.1.21 above?	16
	This is different from the proof in the book. Actually in the corollary statement, is the sentence after	
	"and" part of the conclusion or condition?	19
	Why is the equation 0?	21
	Doesn't this follow from 1.1.28?	
	Why?	
	How?	
	We assume π_n only has the trivial solution?	21

1 Theory of Ordinary Differential Equations (Coddington Levinson)

1.1 Chapter 11: Algebraic properties of linear boundary-value problems on a finite interval

1.1.1 Introduction

Definition 1.1.1. Let L be the linear differential operator of oder $n \ (n \ge 1)$ defined by

$$Lx = p_0 x^{(n)} + p_1 x^{(n-1)} + \dots + p_{n-1} x' + p_n x$$

where the p_k are complex-valued functions of class C^{n-k} on a closed bounded interval [a,b] (i.e., derivatives $p_k, p'_k, \ldots, p_k^{(n-k)}$ exist on [a,b] and are continuous) and $p_0(t) \neq 0$ on [a,b].

Definition 1.1.2. Homogeneous boundary conditions refer to a set of equations/constraints of the type

$$\sum_{k=1}^{n} (M_{jk} x^{(k-1)}(a) + N_{jk} x^{(k-1)}(b)) = 0 \quad (j = 1, \dots, m)$$
(1.1.1)

where M_{jk} , N_{jk} are complex constants.

Definition 1.1.3. A homogeneous boundary-value problem concerns finding the solutions of

$$Lx = 0$$

on [a, b] which satisfy some homogeneous boundary conditions defined above.

Definition 1.1.4. For any homogeneous boundary value problem, an **adjoint problem** refers to the problem of finding the solutions of

$$L^+x := (-1)^n (\bar{p}_0 x)^{(n)} + (-1)^{n-1} (\bar{p}_1 x)^{(n-1)} + \dots + \bar{p}_n x = 0$$

on [a, b] which satisfy some homogeneous boundary conditions "complementary" to the conditions associated with the solutions of Lx = 0.

Theorem 1.1.5. (Green's formula) For $u, v \in C^n$ on [a, b],

$$\int_{t_1}^{t_2} (Lu)\overline{v} \, dt - \int_{t_1}^{t_2} u(\overline{L^+v}) \, dt = [uv](t_2) - [uv](t_1)$$
(1.1.2)

where $a \le t_1 < t_2 \le b$ and [uv](t) is the form in $(u, u', \ldots, u^{(n-1)})$ and $(v, v', \ldots, v^{(n-1)})$ given by

$$[uv](t) = \sum_{m=1}^{n} \sum_{j+k=m-1} (-1)^{i} u^{(k)}(t) (p_{n-m}\bar{v})^{(j)}(t)$$
(1.1.3)

Remark 1.1.6. Alternatively, [uv](t) can be written as (checked for n=2)

$$[uv](t) = \sum_{j,k=1}^{n} B_{jk}(t)u^{(k-1)}(t)\bar{v}^{(j-1)}(t)$$
(1.1.4)

where B_{jk} are the j, k-entry of the $n \times n$ matrix

$$B(t) = \begin{bmatrix} B_{11} & B_{12} & \cdots & p_0(t) \\ \vdots & \vdots & \cdots & -p_0(t) & 0 \\ (-1)^{n-1}p_0(t) & 0 & \cdots & 0 & 0 \end{bmatrix}.$$
 (1.1.5)

Since B(t) is square with $\det B(t) = (p_0(t))^n$ where $p_0(t) \neq 0$ on [a, b] (as in the definition of L), B(t) is nonsingular/invertible for $t \in [a, b]$.

Definition 1.1.7. For vectors $f = (f_1, \ldots, f_k), g = (g_1, \ldots, g_k)$, define the product

$$f \cdot g := \sum_{i=1}^{k} f_i \bar{g}_i.$$

Note that $f \cdot g = g^* f$.

Definition 1.1.8. A semibilinear form is a complex-valued function S defined for pairs of vectors $f = (f_1, \ldots, f_k), g = (g_1, \ldots, g_k)$ satisfying

$$S(\alpha f + \beta g, h) = \alpha S(f, h) + \beta S(g, h)$$

$$S(f, \alpha g + \beta h) = \bar{\alpha} S(f, g) + \bar{\beta} S(f, h)$$

for any complex numbers α, β and vectors f, g, h.

Note that S is linear in the first argument but not the second one. If S were bilinear, it would be linear in each argument.

Remark 1.1.9. If

$$S = \begin{bmatrix} s_{11} & \cdots & s_{1k} \\ \vdots & & \vdots \\ s_{k1} & \cdots & s_{kk} \end{bmatrix},$$

then $Sf \cdot g$ is a semibilinear form

$$S(f,g) := Sf \cdot g$$

$$= \begin{bmatrix} s_{11} & \cdots & s_{1k} \\ \vdots & & \vdots \\ s_{k1} & \cdots & s_{kk} \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_k \end{bmatrix} \cdot \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^k s_{1j} f_j \\ \vdots \\ \sum_{j=1}^k s_{kj} f_j \end{bmatrix} \cdot \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

$$= \sum_{i=1}^k \left(\sum_{j=1}^k s_{ij} f_j \right) \bar{g}_i$$

$$= \sum_{i,j=1}^k s_{ij} f_i \bar{g}_i.$$

$$(1.1.6)$$

Indeed:

$$S(\alpha f + \beta g, h) = \sum_{i,j=1}^{k} s_{ij} (\alpha f_j + \beta g_j) \bar{h}_i$$

$$= \alpha \sum_{i,j=1}^{k} s_{ij} f_j \bar{h}_i + \beta \sum_{i,j=1}^{k} g_j \bar{h}_i$$

$$= \alpha S f \cdot h + \beta S g \cdot h$$

$$= \alpha S (f, h) + \beta S (g, h).$$

Similarly,

$$S(f, \alpha g + \beta h) = \sum_{i,j=1}^{k} s_{ij} f_j(\alpha g_i + \beta h_i)$$

$$= \bar{\alpha} \sum_{i,j=1}^{k} s_{ij} f_j \bar{g}_i + \bar{\beta} \sum_{i,j=1}^{k} f_j \bar{h}_i$$
$$= \bar{\alpha} S f \cdot g + \bar{\beta} S f \cdot h$$
$$= \bar{\alpha} S (f,g) + \bar{\beta} S (f,h).$$

Remark 1.1.10. Under a similar matrix framework, we see that [uv](t) is a semibilinear form with matrix B(t): Let $\vec{u} = (u, u', \dots, u^{(n-1)})$ and $\vec{v} = (v, v', \dots, v^{(n-1)})$. Then we have

$$[uv](t) = \sum_{j,k=1}^{n} B_{jk}(t)u^{(k-1)}(t)\bar{v}^{(j-1)}(t) \quad \text{(by (1.1.4))}$$

$$= \sum_{i,j=1}^{n} (B_{ij}u^{(j-1)}\bar{v}^{(i-1)})(t)$$

$$= (B\vec{u}\cdot\vec{v})(t)$$

$$= S(\vec{u},\vec{v})(t).$$
(1.1.7)

With this notation, we can rewrite the right hand side of Green's formula as a semibilinear form below:

$$[uv](t_2) - [uv](t_1) = \sum_{j,k=1}^{n} B_{jk}(t_2)u^{(k-1)}(t_2)\bar{v}^{(j-1)}(t_2) - \sum_{j,k=1}^{n} B_{jk}(t_2)u^{(k-1)}(t_1)\bar{v}^{(j-1)}(t_1)$$

$$= B(t_2)\bar{u}(t_2) \cdot \bar{v}(t_2) - B(t_1)\bar{u}(t_1) \cdot \bar{v}(t_1)$$

$$= \begin{bmatrix} B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots \\ B_{n1}(t_2) & \cdots & B_{nn}(t_2) \end{bmatrix} \begin{bmatrix} u(t_2) \\ \vdots \\ u^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} - \begin{bmatrix} B_{11}(t_1) & \cdots & B_{1n}(t_1) \\ \vdots & & \vdots \\ B_{n1}(t_1) & \cdots & B_{nn}(t_1) \end{bmatrix} \begin{bmatrix} u(t_1) \\ \vdots \\ u^{(n-1)}(t_1) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \end{bmatrix}$$

$$= \begin{bmatrix} -B_{11}(t_1) & \cdots & -B_{1n}(t_1) \\ \vdots & & \vdots \\ -B_{n1}(t_1) & \cdots & -B_{nn}(t_1) \end{bmatrix} \begin{bmatrix} u(t_1) \\ \vdots \\ u^{(n-1)}(t_1) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \end{bmatrix} + \begin{bmatrix} B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots \\ B_{n1}(t_2) & \cdots & B_{nn}(t_2) \end{bmatrix} \begin{bmatrix} u(t_2) \\ \vdots \\ u^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix}$$

$$= \begin{bmatrix} -B_{11}(t_1) & \cdots & -B_{nn}(t_1) & 0 & \cdots & 0 \\ 0 & \cdots & 0 & B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & B_{11}(t_2) & \cdots & B_{1n}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\$$

Since $\det \hat{B} = (-1)^n \det B(t_1) \det B(t_2)$, \hat{B} is nonsingular for $t_1, t_2 \in [a, b]$ (since B(t) is nonsingular for $t \in [a, b]$, as shown before).

Why the $(-1)^n$?

1.1.2 Boundary form formula

Definition 1.1.11. Given any set of 2mn complex constants M_{ij}, N_{ij} (i = 1, ..., m; j = 1, ..., n), define m boundary operators (boundary forms) $U_1, ..., U_m$ for functions x on [a, b], for which $x^{(j)}$ (j = 1, ..., n-1) exists at a and b, by

$$U_{i}x = \sum_{j=1}^{n} (M_{ij}x^{(j-1)}(a) + N_{ij}x^{(j-1)}(b)) \quad (i = 1, \dots, m)$$
(1.1.9)

 U_i are linearly independent if the only set of complex constants c_1, \ldots, c_m for which

$$\sum_{i=1}^{m} c_i U_i x = 0$$

for all $x \in C^{n-1}$ on [a, b] is $c_1 = c_2 = \cdots = c_m = 0$.

Remark 1.1.12. Note that for $\alpha, \beta \in \mathbb{C}$ and $x_1, x_2 \in C^{n-1}$ on [a, b],

$$U_{i}(\alpha x_{1} + \beta x_{2}) = \sum_{j=1}^{n} (M_{ij}(\alpha x_{1} + \beta x_{2})^{(j-1)}(a) + N_{ij}(\alpha x_{1} + \beta x_{2})^{(j-1)}(b))$$

$$= \alpha \sum_{j=1}^{n} (M_{ij}x_{1}^{(j-1)}(a) + N_{ij}x_{1}^{(j-1)}(b)) + \beta \sum_{j=1}^{n} (M_{ij}x_{2}^{(j-1)}(a) + N_{ij}x_{2}^{(j-1)}(b)) \quad \text{(by linearity of derivatives)}$$

$$= \alpha U_{i}x_{1} + \beta U_{i}x_{2}.$$

So U_i are linear operators.

Remark 1.1.13. To describe (1.1.9) with matrices, define

$$\xi := \begin{bmatrix} x \\ x' \\ \vdots \\ x^{(n-1)} \end{bmatrix}; \quad U := \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{bmatrix}; \quad M := \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix}; \quad N := \begin{bmatrix} N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots \\ N_{m1} & \cdots & N_{mn} \end{bmatrix}.$$

Then (1.1.9) can be written as

$$Ux = M\xi(a) + N\xi(b).$$

Indeed:

$$M\xi(a) + N\xi(b) = \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix} \begin{bmatrix} x(a) \\ x'(a) \\ \vdots \\ x^{(n-1)}(a) \end{bmatrix} + \begin{bmatrix} N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots \\ N_{m1} & \cdots & N_{mn} \end{bmatrix} \begin{bmatrix} x(b) \\ x'(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^{n} M_{1j}x^{(j-1)}(a) \\ \vdots \\ \sum_{j=1}^{n} M_{mj}x^{(j-1)}(a) \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^{n} N_{1j}x^{(j-1)}(b) \\ \vdots \\ \sum_{j=1}^{n} N_{mj}x^{(j-1)}(b) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^{n} (M_{1j}x^{(j-1)}(a) + N_{1j}x^{(j-1)}(b)) \\ \vdots \\ \sum_{j=1}^{n} (M_{mj}x^{(j-1)}(a) + N_{mj}x^{(j-1)}(b)) \end{bmatrix}$$

$$= \begin{bmatrix} U_{1}x \\ \vdots \\ U_{m}x \end{bmatrix} = \begin{bmatrix} U_{1} \\ U_{2} \\ \vdots \\ U_{m} \end{bmatrix} x = Ux.$$

Define the $m \times 2n$ matrix

$$(M:N) := \begin{bmatrix} M_{11} & \cdots & M_{1n} & N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} & N_{m1} & \cdots & N_{mn} \end{bmatrix}.$$

Then U_1, \ldots, U_m are linearly independent if and only if $\operatorname{rank}(M:N) = m$, or equivalently, $\operatorname{rank}(U) = m$. Recall that the rank of a matrix is the largest number of linearly independent rows or columns in it. For a matrix $A_{m \times n}$, $\operatorname{rank}(A) \leq \min\{m, n\}$ and $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

Ux can be written as

$$Ux = \begin{bmatrix} \sum_{j=1}^{n} (M_{1j}x^{(j-1)}(a) + N_{1j}x^{(j-1)}(b)) \\ \vdots \\ \sum_{j=1}^{n} (M_{mj}x^{(j-1)}(a) + N_{mj}x^{(j-1)}(b)) \end{bmatrix}$$

$$= \begin{bmatrix} M_{11} & \cdots & M_{1n} & N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} & N_{m1} & \cdots & N_{mn} \end{bmatrix} \begin{bmatrix} x(a) \\ \vdots \\ x^{(n-1)}(a) \\ x(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}$$

$$= (M:N) \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}.$$

Definition 1.1.14. If $U = (U_1, \ldots, U_m)$ is any boundary form with rank(U) = m and $U_c = (U_{m+1}, \ldots, U_{2n})$ any form with rank $(U_c) = 2n - m$ such that (U_1, \ldots, U_{2n}) has rank 2n, then U and U_c are **complementary boundary forms**. "Adjoining" U_{m+1}, \ldots, U_{2n} to U_1, \ldots, U_m is equivalent to imbedding the matrix (M:N) in a $2n \times 2n$ nonsingular matrix (recall that for square matrices, nonsingular \iff full rank).

We wish to describe the right hand side of Green's formula (1.1.2) as a linear combination of a boundary form U and a complementary form U_c . To do so, we consider the following results about the semibilinear form (1.1.6).

Definition 1.1.15. For a matrix $A = (a_{ij})$, its **adjoint** is defined as the conjugate transpose $A^* = (\bar{a}_{ij})$.

Proposition 1.1.16. In the context of the semibilinear form (1.1.6), we have

$$Sf \cdot g = f \cdot S^*g. \tag{1.1.10}$$

Proof.

$$Sf \cdot g = \sum_{i,j=1}^{k} s_{ij} f_j \bar{g}_i \quad \text{(by (1.1.6))};$$

$$f \cdot S^* g = \begin{bmatrix} f_1 \\ \vdots \\ f_k \end{bmatrix} \cdot \begin{bmatrix} \bar{s}_{11} & \cdots & \bar{s}_{k1} \\ \vdots & & \vdots \\ \bar{s}_{1k} & \cdots & \bar{s}_{kk} \end{bmatrix} \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

$$= \begin{bmatrix} f_1 \\ \vdots \\ f_k \end{bmatrix} \cdot \begin{bmatrix} \sum_{j=1}^{k} \bar{s}_{j1} g_j \\ \vdots \\ \sum_{j=1}^{k} \bar{s}_{jk} g_j \end{bmatrix}$$

$$= \sum_{i=1}^{k} f_i \cdot \overline{\left(\sum_{j=1}^{k} \bar{s}_{ji} g_j\right)}$$

$$= \sum_{i=1}^{k} f_i \cdot \left(\sum_{j=1}^{k} s_{ji} \bar{g}_j \right)$$
$$= \sum_{i,j=1}^{k} s_{ji} f_i \bar{g}_j = Sf \cdot g.$$

Proposition 1.1.17. Let S be the semibilinear form associated with a nonsingular matrix S. Suppose $\bar{f} := Ff$ where F is a nonsingular matrix. Then there exists a unique nonsingular matrix G such that if $\bar{g} = Gg$, then $S(f,g) = \bar{f} \cdot \bar{g}$ for all f,g.

Proof. Let $G := (SF^{-1})^*$, then

$$S(f,g) = Sf \cdot g$$

$$= S(F^{-1}F)f \cdot g$$

$$= SF^{-1}(Ff) \cdot g$$

$$= SF^{-1}\bar{f} \cdot g$$

$$= \bar{f} \cdot (SF^{-1})^*g \quad \text{(by (1.1.10))}$$

$$= \bar{f} \cdot G * g$$

$$= \bar{f} \cdot \bar{q}.$$

To see that G is nonsingular, note that $\det G = \det((\overline{SF^{-1}})^T) = \det(\overline{SF^{-1}}) = \overline{\det(SF^{-1})} = \overline{\det(S)\det(F)^{-1}} \neq 0$ since S, F are nonsingular.

Proposition 1.1.18. Suppose S is associated with the unit matrix E, i.e., $S(f,g) = f \cdot g$. Let F be a nonsingular matrix such that the first j $(1 \le j < k)$ components of $\bar{f} = Ff$ are the same as those of f. Then the unique nonsingular matrix G such that $\bar{g} = Gg$ and $\bar{f} \cdot \bar{g} = f \cdot g$ (as in Proposition 1.1.17) is such that the last k - j components of \bar{g} are linear combinations of the last k - j components of g with nonsingular coefficient matrix.

Proof. We note that for the condition on F to hold, F must have the form

$$\begin{bmatrix} E_j & 0_+ \\ F_+ & F_{k-j} \end{bmatrix}_{k \times k}$$

where E_j is the $j \times j$ identity matrix, 0_+ is the $j \times (k-j)$ zero matrix, F_+ is a $(k-j) \times j$ matrix, and F_{k-j} a $(k-j) \times (k-j)$ matrix. Let G be the unique nonsingular matrix in Proposition 1.1.17. Write G as

$$\begin{bmatrix} G_j & G_- \\ G_- & G_{k-j} \end{bmatrix}_{k \times k}$$

where $G_j, G_-, G_=, G_{k-j}$ are $j \times j, j \times (k-j), (k-j) \times j, (k-j) \times (k-j)$ matrices, respectively. By the definition of G,

$$f \cdot g = F f \cdot G g = \bar{f} \cdot G g = G^* \bar{f} \cdot g = G^* F f \cdot g$$

(where the third equality follows from a reverse application of (1.1.10) with \bar{f} as f, G^* as S) which implies

$$G^*F = E_k$$
.

Since

$$\begin{split} G^*F &= \begin{bmatrix} G_j^* & G_{=}^* \\ G_{-}^* & G_{k-j}^* \end{bmatrix} \begin{bmatrix} E_j & 0_+ \\ F_+ & F_{k-j} \end{bmatrix} \\ &= \begin{bmatrix} G_j^* + G_{=}^* F_+ & G_{=}^* F_{k-j} \\ G_{-}^* + G_{k-j}^* F_+ & G_{k-j}^* F_{k-j} \end{bmatrix} \\ &= \begin{bmatrix} E_j & 0_{j \times (k-j)} \\ 0_{(k-j) \times j} & E_{k-j} \end{bmatrix}. \end{split}$$

Thus, $G_{=}^*F_{k-j}=0_+$, the $j\times (k-j)$ zero matrix. But $\det F=\det(E_j)\cdot\det(F_{k-j})\neq 0$, so $\det F_{k-j}\neq 0$ and we must have $G_{=}^*=0_+$, i.e., $G_{=}=0_{(k-j)\times j}$. Thus, G is upper-triangular, and so $\det G=\det G_j\cdot\det G_{k-j}\neq 0$, which implies $\det G_{k-j}\neq 0$ and G_{k-j} is nonsingular. Hence,

$$\bar{g} = Gg = \begin{bmatrix} G_j & G_- \\ 0_{(k-j)\times j} & G_{k-j} \end{bmatrix} \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

where G_{k-j} is the nonsingular coefficient matrix such that

$$\begin{bmatrix} \bar{g}_{j-1} \\ \vdots \\ \bar{g}_k \end{bmatrix} = G_{k-j} \begin{bmatrix} g_{j-1} \\ \vdots \\ g_k \end{bmatrix}.$$

Theorem 1.1.19. (Boundary-form formula) Given any boundary form U of rank m (Definition 1.1.11), and any complementary form U_c (Definition 1.1.14), there exist unique boundary forms U_c^+ , U^+ of rank m and 2n-m, respectively, such that

$$[xy](b) - [xy](a) = Ux \cdot U_c^+ y + U_{cx} \cdot U^+ y.$$
(1.1.11)

If \tilde{U}_c is any other complementary form to U, and \tilde{U}_c^+ , \tilde{U}^+ the corresponding forms of rank m and 2n-m, then

$$\tilde{U}^+ y = C^* U^+ y$$

for some nonsingular matrix C.

Does this mean that, given a boundary form, its adjoint boundary forms are related to each other by linear transformation?

Proof. Recall from (1.1.8) that the left hand side of (1.1.11) can be considered as a semibilinear form $S(f,g) = \hat{B}f \cdot g$ for vectors

$$f = \begin{bmatrix} x(a) \\ \vdots \\ x^{(n-1)}(a) \\ x(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}, g = \begin{bmatrix} y(a) \\ \vdots \\ y^{(n-1)}(a) \\ y(b) \\ \vdots \\ y^{(n-1)}(b) \end{bmatrix}$$

with the nonsingular matrix

$$\hat{B} = \begin{bmatrix} -B(a) & 0_n \\ 0_n & B(b) \end{bmatrix}.$$

Recall from Remark 1.1.13 that

$$Ux = M\xi(a) + N\xi(b) = (M:N) \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}$$

for M, N, ξ are as defined there. With the definition of f, we have $f = \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}$ and thus

$$Ux = (M:N)f.$$

By Definition 1.1.14, $U_c x = (\tilde{M} : \tilde{N}) f$ for two appropriate matrices \tilde{M}, \tilde{N} for which

$$H = \begin{bmatrix} M & N \\ \tilde{M} & \tilde{N} \end{bmatrix}_{2n \times 2n}$$

has rank 2n. Thus,

$$\begin{bmatrix} Ux \\ U_cx \end{bmatrix} = \begin{bmatrix} (M:N)f \\ (\tilde{M}:\tilde{N})f \end{bmatrix} = \begin{bmatrix} M & N \\ \tilde{M} & \tilde{N} \end{bmatrix} f = Hf.$$

By Proposition 1.1.17, there exists a unique $2n \times 2n$ nonsingular matrix J such that $\mathcal{S}(f,g) = Hf \cdot Jg$. Let U^+, U^+_c be such that

Is the direction correct? e.g., from the existence of J, construct U^+ and U_c^+ .

$$Jg = \begin{bmatrix} U_c^+ y \\ U^+ y \end{bmatrix},$$

then (1.1.11) holds since

$$[xy](b) - [xy](a) = \mathcal{S}(f,g) = Hf \cdot Jg = \begin{bmatrix} Ux \\ U_cx \end{bmatrix} \cdot \begin{bmatrix} U_c^+y \\ U^+y \end{bmatrix} = Ux \cdot U_c^+y + U_cx \cdot U^+y.$$

The second statement in the theorem follows from Proposition 1.1.18 with Hf and Jg corresponding to f and

Proposition 1.1.18 poses condition on F and invokes the existence of G; what are the objects corresponding to F and G here?

1.1.3 Homogeneous Boundary-value Problems and Adjoint Problems

Definition 1.1.20. For any boundary form U of rank m there is associated the **homogeneous boundary** condition

$$Ux = 0 ag{1.1.12}$$

for functions $x \in C^{n-1}$ on [a, b]. If U^+ is any boundary form of rank 2n - m determined as in Theorem 1.1.19, then the homogeneous boundary condition

$$U^+ x = 0 (1.1.13)$$

is an adjoint boundary condition to 1.1.12.

Proposition 1.1.21. By Green's formula (1.1.2) and the boundary-form formula (1.1.11), for $(u,v):=\int_a^b u\bar{v}\,dt$,

$$(Lu, v) = (u, L^+v)$$

for all $u \in C^n$ on [a, b] satisfying (1.1.12) and all $v \in C^n$ on [a, b] satisfying (1.1.13).

Proof.

$$(Lu, v) - (u, L^{+}v) = \int_{a}^{b} Lu\bar{v} dt - \int_{a}^{b} u(\overline{L^{+}v}) dt$$

$$= [uv](a) - [uv](b) \quad \text{(by Green's formula (1.1.2))}$$

$$= Uu \cdot U_{c}^{+}v + U_{c}u \cdot U^{+}v \quad \text{(by boundary-form formula (1.1.11))}$$

$$= 0 \cdot U_{c}^{+}v + U_{c}u \cdot 0 \quad \text{(by (1.1.12) and (1.1.13))}$$

$$= 0.$$
(1.1.14)

Remark 1.1.22. Let D, D^+ be the set of functions $u \in C^n$ satisfying (1.1.12) and (1.1.13), respectively. Then Theorem 1.1.19 shows that D^+ is uniquely determined by U, although U^+ is not (because U^+ is uniquely determined by U and U_c ?).

 U^+ is not uniquely determined by U but by U and U_c . But D^+ is the set of functions x satisfying $U^+x=0$; if U^+ is not uniquely determined by U, how can D^+ be?

Just like how U is associated with two $m \times n$ matrices M, N (Remark 1.1.13), U^+ is associated with two $n \times (2n - m)$ matrices P, Q such that $(P^* : Q^*)$ has rank 2n - m and

$$U^{+}x = P^{*}\xi(a) + Q^{*}\xi(b) \tag{1.1.15}$$

Note that imbedding M, N, P^*, Q^* in the same matrix gives

$$\begin{bmatrix} (M:N)_{m\times 2n} \\ (P^*:Q^*)_{(2n-m)\times 2n} \end{bmatrix}_{2n\times 2n} = \begin{bmatrix} M & N \\ P^* & Q^* \end{bmatrix}$$

is an $2n \times 2n$ matrix of full rank.

We want to characterize the adjoint condition (1.1.13) in terms of the matrices M, N, P, Q.

Theorem 1.1.23. The boundary condition $U^+x=0$ is adjoint to Ux=0 if and only if

$$MB^{-1}(a)P = NB^{-1}(b)Q (1.1.16)$$

where B(t) is the $n \times n$ matrix associated with the form [xy](t) ((1.1.5)).

Proof. Let $\eta := (y, y', \dots, y^{(n-1)})$, then $[xy](t) = B(t)\xi(t) \cdot \eta(t)$ by (1.1.7).

Suppose $U^+x=0$ is adjoint to Ux=0. By definition of adjoint boundary condition 1.1.13, U^+ is determined as in Theorem 1.1.19. But by Theorem 1.1.19, in determining U^+ , there exist boundary forms U_c , U_c^+ of rank 2n-m and m, respectively, such that 1.1.11 holds.

Put

$$U_c x = M_c \xi(a) + N_c \xi(b)$$
 $\operatorname{rank}(M_c : N_c) = 2n - m$
 $U_c^+ y = P_c^* \eta(a) + Q_c^* \eta(b)$ $\operatorname{rank}(P_c^* : Q_c^*) = m$.

Then by the boundary-form formula,

$$B(b)\xi(b) \cdot \eta(b) - B(a)\xi(a) \cdot \eta(a) = (M\xi(a) + N\xi(b)) \cdot (P_c^*\eta(a) + Q_c^*\eta(b)) + (M_c\xi(a) + N_c\xi(b)) \cdot (P^*\eta(a) + Q^*\eta(b)).$$

But M is $m \times n$ and P_c^* is $m \times n$ (P_c is $n \times m$), so considering the matrices' dimensions, the above should be written as

$$B(b)\xi(b)\cdot\eta(b) - B(a)\xi(a)\cdot\eta(a) = (P_cM + PM_c)\xi(a)\cdot\eta(a) + (Q_cM + QM_c)\xi(a)\cdot\eta(b)$$

Is this understanding correct?

$$(P_cN + PN_c)\xi(b) \cdot \eta(a) + (Q_cN + QN_c)\xi(b) \cdot \eta(b).$$

Thus, we have

$$P_cM + PM_c = -B(a)$$

$$Q_cM + QM_c = 0_n$$

$$Q_cN + QN_c = B(b).$$

Since det $B(t) \neq 0$ on $t \in [a, b]$, $B^{-1}(a)$, $B^{-1}(b)$ exist, and thus

$$\begin{bmatrix} -B^{-1}(a)P_c & -B^{-1}(a)P \\ B^{-1}(b)Q_c & B^{-1}(b)Q \end{bmatrix} \begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix} = \begin{bmatrix} E_n & 0_n \\ 0_n & E_n \end{bmatrix}.$$

Recall that $\begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix}$ has full rank, which means that it is nonsingular (Definition 1.1.14). Thus, the two matrices on the left are inverses of each other. So we also have

$$\begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix} \begin{bmatrix} -B^{-1}(a)P_c & -B^{-1}(a)P \\ B^{-1}(b)Q_c & B^{-1}(b)Q \end{bmatrix} = \begin{bmatrix} E_m & 0_+ \\ 0_- & E_{2n-m} \end{bmatrix}.$$

Therefore,

$$-MB^{-1}(a)P + NB^{-1}(b)Q = 0_+,$$

which is (1.1.16).

Conversely, let U_1^+ is a boundary form of rank 2n-m such that

$$U_1^+ y = P_1^* \eta(a) + Q_1^* \eta(b)$$

for appropriate P_1^* , Q_1^* with rank $(P_1^*:Q_1^*)=2n-m$. Suppose

$$MB^{-1}(a)P_1 = NB^{-1}(b)Q_1 (1.1.17)$$

holds.

Recall that dim(solution space) + rank(matrix) = # of unknown variables. Let u be a $2n \times 1$ vector, then there exist exactly 2n - m linearly independent $2n \times 1$ vector solutions of the linear system $(M:N)_{m \times 2n} u = 0$. By (1.1.17),

$$MB^{-1}(a)P_1 - NB^{-1}(b)Q = 0,$$

and thus

$$(M:N)_{m \times 2n} \begin{bmatrix} B^{-1}(a)P_1 \\ -B^{-1}(b)Q_1 \end{bmatrix}_{2n \times (2n-m)} = 0_{m \times (2n-m)}.$$

So the 2n-m columns of the matrix

$$H_1 := \begin{bmatrix} B^{-1}(a)P_1 \\ -B^{-1}(b)Q_1 \end{bmatrix}$$

are solutions of this system. Since rank $(P_1^*: Q_1^*) = 2n - m$,

$$\operatorname{rank} \begin{bmatrix} P_1 \\ Q_1 \end{bmatrix} = 2n - m.$$

Since B(a), B(b) are nonsingular, $rank(H_1) = 2n - m$.

If $U^+x = P^*\xi(a) + Q^*\xi(b) = 0$ is a boundary condition adjoint to Ux = 0, then the matrix

$$\begin{bmatrix} -B^{-1}(a)P_c & -B^{-1}(a)P \\ B^{-1}(b)Q_c & B^{-1}(b)Q \end{bmatrix}_{2n \times 2n}$$

is nonsingular (because it has inverse $\begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix}$), i.e., it has full rank. Thus, if

$$H = \begin{bmatrix} -B^{-1}(a)P \\ B^{-1}(b)Q \end{bmatrix}_{n \times (2n-m)},$$

then $\operatorname{rank}(H) = 2n - m$. Therefore, by (1.1.16), the 2n - m columns of H also form 2n = m linearly independent solutions of (M:N)u = 0, as in the case of H_1 . Hence, there exists a nonsingular $(2n - m) \times (2n - m)$ matrix A such that $H_1 = HA$ (change of basis in the solution space). Thus we have

$$\begin{bmatrix} B^{-1}(a)P_1 \\ -B^{-1}(b)Q_1 \end{bmatrix} = H_1 = HA = \begin{bmatrix} B^{-1}(a)PA \\ -B^{-1}(b)QA \end{bmatrix},$$

or $P_1 = PA$, $Q_1 = QA$. Thus,

$$U_1^+ y = P_1^* \eta(a) + Q_1^* \eta(b) = A^* P^* \eta(a) + A^* Q^* \eta(b) = A^* U^+ y.$$

This implies that $U_1^+y=0$ is an adjoint boundary condition to Ux=0.

Is this by Theorem 1.1.19? But it says adjoint boundary forms are related by multiplication by nonsingular matrices, not that the multiplication of an adjoint boundary form by a nonsingular matrix is still an adjoint boundary form.

Definition 1.1.24. If U is a boundary form of rank m, the problem of finding solutions of

$$\pi_m: Lx = 0 \quad Ux = 0$$

on [a,b] is a homogeneous boundary-value problem of rank m. The problem

$$\pi_{2n-m}^+: L^+x = 0 \quad U^+x = 0$$

on [a, b] is the adjoint boundary-value problem to π_m .

Given that U^+ is not uniquely determined by U, is the adjoint problem unique?

In fact, π_m and π_{2n-m}^+ are adjoint problems to each other. The zero function on [a, b] is a solution to both π_m and π_{2n-m}^+ , known as the **trivial solution**.

Theorem 1.1.25. If m = n, the boundary condition Ux = 0 is adjoint to itself if and only if

$$MB^{-1}(a)M^* = NB^{-1}(b)N^*.$$

Proof. Replace P, Q with M, N in Theorem 1.1.23.

Theorem 1.1.26. If Ux = 0 is self-adjoint and $L^+ = L$, the boundary-value problem π_m is self-adjoint, i.e., if $u, v \in C^n$ on [a, b] and satisfy Ux = 0, then

$$(Lu, v) = (u, Lv).$$

Proof. The equation follows as a special case of Proposition 1.1.21.

Definition 1.1.27. Let $\varphi_1, \ldots, \varphi_n$ be a fundamental set (basis of the solution space to Lx = 0). Let Φ denote the nonsingular matrix

$$\Phi := \begin{bmatrix} \varphi_1 & \cdots & \varphi_n \\ \varphi'_1 & \cdots & \varphi'_n \\ \vdots & & \vdots \\ \varphi_1^{(n-1)} & \vdots & \varphi_n^{(n-1)} \end{bmatrix}.$$

Then Φ is a fundamental matrix associated with Lx = 0. Similarly, if ψ_1, \ldots, ψ_n is a fundamental set fo $L^+x = 0$, then the corresponding fundamental matrix is

$$\Psi := \begin{bmatrix} \psi_1 & \cdots & \psi_n \\ \psi'_1 & \cdots & \psi'_n \\ \vdots & & \vdots \\ \psi_1^{(n-1)} & \vdots & \psi_n^{(n-1)} \end{bmatrix}.$$

The meanings of U, U^+ can be extended from vectors (Remark 1.1.13) to matrices as follows:

$$U\Phi := M\Phi(a) + N\Phi(b)$$

$$U^{+}\Psi := P^{*}\Psi(a) + Q^{*}\Psi(b).$$

Remark 1.1.28. We note that

$$\begin{split} V\Phi &= M\Phi(a) + N\Phi(b) \\ &= \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix} \begin{bmatrix} \varphi_1(a) & \cdots & \varphi_n(a) \\ \varphi_1'(a) & \cdots & \varphi_n'(a) \\ \vdots & & \vdots \\ \varphi_1^{(n-1)}(a) & \vdots & \varphi_n^{(n-1)}(a) \end{bmatrix} + \begin{bmatrix} N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots \\ N_{m1} & \cdots & N_{mn} \end{bmatrix} \begin{bmatrix} \varphi_1(b) & \cdots & \varphi_n(b) \\ \varphi_1'(b) & \cdots & \varphi_n'(b) \\ \vdots & & \vdots \\ \varphi_1^{(n-1)}(b) & \vdots & \varphi_n^{(n-1)}(b) \end{bmatrix} \\ &= \begin{bmatrix} \sum_{j=1}^n M_{1j} \varphi_1^{(j-1)}(a) & \cdots & \sum_{j=1}^n M_{1j} \varphi_n^{(j-1)}(a) \\ \vdots & & & \vdots \\ \sum_{j=1}^n M_{mj} \varphi_1^{(j-1)}(a) & \cdots & \sum_{j=1}^n M_{mj} \varphi_n^{(j-1)}(a) \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^n N_{1j} \varphi_1^{(j-1)}(b) & \cdots & \sum_{j=1}^n N_{1j} \varphi_n^{(j-1)}(b) \\ \vdots & & \vdots \\ \sum_{j=1}^n N_{mj} \varphi_1^{(j-1)}(b) & \cdots & \sum_{j=1}^n N_{mj} \varphi_n^{(j-1)}(b) \end{bmatrix} \\ &= \begin{bmatrix} \sum_{j=1}^n (M_{1j} \varphi_1^{(j-1)}(a) + N_{1j} \varphi_1^{(j-1)}(b)) & \cdots & (\sum_{j=1}^n M_{1j} \varphi_n^{(j-1)}(a) + N_{1j} \varphi_n^{(j-1)}(b)) \\ \vdots & & \vdots \\ \sum_{j=1}^n (M_{mj} \varphi_1^{(j-1)}(a) + N_{mj} \varphi_1^{(j-1)}(b)) & \cdots & (\sum_{j=1}^n M_{mj} \varphi_n^{(j-1)}(a) + N_{mj} \varphi_n^{(j-1)}(b)) \end{bmatrix} \\ &= \begin{bmatrix} U_1 \varphi_1 & \cdots & U_1 \varphi_n \\ \vdots & & \vdots \\ U_m \varphi_1 & \cdots & U_m \varphi_n \end{bmatrix}. \end{split}$$

Theorem 1.1.29. The problem π_m has exactly k $(0 \le k \le n)$ linearly independent solutions if and only if $U\Phi$ has rank n-k, where Φ is any fundamental matrix associated with Lx=0.

Proof. A function φ satisfies Lx=0 if and only if the corresponding vector $\vec{\varphi}=(\varphi,\varphi',\ldots,\varphi^{(n-1)})$ is of the form $\vec{\varphi}=\Phi\vec{c}$, where $\vec{c}=(c_1,\ldots,c_n)$ is a constant vector.

Indeed: Suppose φ is a solution to Lx = 0. Then by definition of fundamental set $\varphi_1, \ldots, \varphi_n, \varphi = c_1 \varphi_1 + c_2 \varphi_1$

 $\cdots + c_n \varphi_n$ for some $c_1, \ldots, c_n \in \mathbb{C}$. By linearity of derivatives, $\varphi^{(j)} = c_1 \varphi_1^{(j)} + \cdots + c_n \varphi_n^{(j)}$. Thus,

$$\vec{\varphi} = \begin{bmatrix} \varphi \\ \varphi' \\ \vdots \\ \varphi^{(n-1)} \end{bmatrix} = \begin{bmatrix} c_1 \varphi_1 + \dots + v_n \varphi_n \\ c_1 \varphi'_1 + \dots + v_n \varphi'_n \\ \vdots \\ c_1 \varphi_1^{(n-1)} + \dots + v_n \varphi_n^{(n-1)} \end{bmatrix}$$
$$= \begin{bmatrix} \varphi_1 & \dots & \varphi_n \\ \varphi'_1 & \dots & \varphi'_n \\ \vdots & & \vdots \\ \varphi_1^{(n-1)} & \dots & \varphi_n^{(n-1)} \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \Phi \vec{c}.$$

Thus, $U\varphi = 0$

This is the definition of Ux in Remark 1.1.13?

if and only if

$$U(\Phi c) = (U\Phi)c = 0.$$

Since dim(solution space)+rank(matrix) = # of unknown variables, the number of linearly independent vectors \vec{c} satisfying $(U\Phi)c = 0$ is $n - \text{rank}(U\Phi)$. Thus, the number of solutions φ to Lx = 0 is $n - \text{rank}(U\Phi)$.

If Φ_1 is any other fundamental matrix associated with Lx=0, then $\Phi_1=\Phi C$, where C is a nonsingular constant matrix. Therefore

By change of basis?

$$rank(U\Phi_1) = rank(U\Phi).$$

Theorem 1.1.30. If π_m has exactly k linearly independent solutions, then π_{2n-m}^+ has exactly k+m-n linearly independent solutions.

Proof. Let $\varphi_1, \ldots, \varphi_k$ be k linearly independent solutions of π_m . Suppose U_c where

$$U_c x = M_c \xi(a) + N_c \xi(b)$$

is a boundary form of rank 2n-m complementary to U. We show that the vectors $U_c\varphi_i$ $(i=1,\ldots,k)$ are linearly independent. Suppose not, then for some constants $\alpha_1,\ldots,\alpha_k\in\mathbb{C}$ not all zero,

$$\sum_{i=1}^{k} \alpha_i U_c \varphi_i = 0,$$

which implies

$$U_c\left(\sum_{i=1}^k \alpha_i \varphi_i\right) = 0.$$

But since each φ_i is a solution to π_m , they each satisfy Ux = 0. Thus,

$$U\left(\sum_{i=1}^k \alpha_i \varphi_i\right) = 0.$$

Let $\bar{\varphi} = \sum_{i=1}^k \alpha_i \varphi_i$. Let $\bar{\xi} = (\bar{\varphi}, \bar{\varphi}', \dots, \bar{\varphi}^{(n-1)})$. Then by Remark 1.1.13, the above equations imply

$$\begin{split} M\bar{\xi}(a) + N\bar{\xi}(b) &= U\bar{\xi} = 0\\ M_c\bar{\xi}(a) + N_c\bar{\xi}(b) &= U_c\bar{\xi} = 0. \end{split}$$

Or

$$\begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix} \begin{bmatrix} \bar{\xi}(a) \\ \bar{\xi}(b) \end{bmatrix} = 0_{2n \times 1}.$$

But rank $\begin{bmatrix} M & N \\ M_c & N_c \end{bmatrix} = 2n$, which implies it is nonsingular. Thus $\bar{\xi}(a) = \bar{\xi}(b) = 0_{n \times 1}$. But since $\varphi_1, \dots, \varphi_k$ are solutions to Lx = 0, we have

$$L\bar{\varphi} = L\left(\sum_{i=1}^{k} \alpha_i \varphi_i\right) = \sum_{i=1}^{k} \alpha_i L\varphi_i = 0.$$

We show that this implies $\bar{\varphi} = 0$. Indeed: If not, then L maps a nonzero function to 0, which means if two distinct functions x_1 , x_2 are such that $x_1 - x_2 = \bar{\varphi}$, then $Lx_1 - Lx_2 = L(x_1 - x_2) = 0$, i.e., the pre-image of 0 under L is not unique.

This is how I interpreted "uniqueness" in the next line. But why is this a problem / where is the contradiction?

Thus by uniqueness, $\bar{\varphi}(t) = 0$ for $t \in [a, b]$. This contradicts the definition of $\bar{\varphi}$ as a nontrivial linear combination of $\varphi_1, \ldots, \varphi$ (i.e., not all α_i are 0). Hence

$$\alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$

and $U_c\varphi_i$ are linearly independent.

Let ψ_1, \ldots, ψ_n be *n* linearly independent solutions of $L^+x = 0$. Suppose Ψ is the corresponding fundamental matrix. Since φ_i , ψ_j are solutions to π_m and $L^+x = 0$,

This is not the same as requiring ψ_j to be solutions to π_{2n-m} , is it? Since there is an extra $U^+\psi_j=0$ to fulfill?

respectively, by Proposition 1.1.21,

Proposition 1.1.21 requires that $U\varphi_i = 0$ and $U^+\psi_j = 0$; are these conditions fulfilled?

$$(L\varphi_i, \psi_i) = (\varphi_i, L^+\psi_i).$$

By Green's formula (1.1.2),

$$0 = (L\varphi_i, \psi_i) - (\varphi_i, L^+\psi_i) = [\varphi_i\psi_i](b) - [\varphi_i\psi_i](a)$$

for i = 1, ..., k, j = 1, ..., n. By the boundary-form formula (1.1.11),

$$[\varphi_i \psi_j](b) - [\varphi_i \psi_j](a) = U_{\varphi_i} \cdot U_c^+ \psi_j + U_{c\varphi_i} \cdot U^+ \psi_j.$$

Since φ_i are solutions to π_m , we have $U\varphi_i = 0$ for i = 1, ..., k. Thus,

$$U_{c\varphi_i} \cdot U^+ \psi_i = 0.$$

Does this mean we don't know $U^+\psi_i=0$? If so, how could we use Proposition 1.1.21 above?

By definition of $f \cdot g1.1.7$, $f \cdot g = g^* f$ for any column vectors f, g of the same dimension, so

$$(U^+\psi_j)^*U_{c\varphi_i} = 0 \quad (i = 1, \dots, k).$$

We have shown before that $U_c\varphi_i$ are linearly independent. So the system $(U^+\psi_j)^*v=0$ has (at least) the k linearly independent $(2n-m\times 1)$ vectors $U_c\varphi_1,\ldots,U_c\varphi_k$ as solutions. Therefore,

$$rank(U^{+}\Psi) = rank(U^{+}\Psi)^{*} \le (2n - m) - k.$$

Suppose $\operatorname{rank}(U^+\psi) = r < (2n-m)-k$. Then by similar reasoning it can be shown that, if Φ is any fundamental matrix associated with Lx = 0, $\operatorname{rank}(U\phi) \leq m - (n-r) < n-k$. By Theorem 1.1.29, this contradicts with the assumption that π_m has exactly k linearly independent solutions. Thus, we must have

$$rank(U^+\Psi) = 2n - m - k.$$

By Theorem 1.1.29, there exist exactly k+m-n linearly independent solutions of π_{2n-m}^+ .

Corollary 1.1.31. π_n and π^+n have the same number of independent solutions.

Proof. Apply Theorem 1.1.30 on
$$m = n$$
.

1.1.4 Nonhomogeneous Boundary-value Problems and Green's Function

Definition 1.1.32. A nonhomogeneous boundary-value problem associated with π_m is a problem of the form

$$Lx = f \quad Ux = \gamma \tag{1.1.18}$$

on $t \in [a, b]$, where f is a complex-valued continuous function on [a, b] and γ is a complex constant vector such that either f is not the zero function or $\gamma \neq 0$.

Remark 1.1.33. If φ and $\bar{\varphi}$ are two solutions of 1.1.18, their difference $\varphi - \bar{\varphi}$ is a solution of π_m . Hence, if π_m has k linearly independent solutions $\varphi_1, \ldots, \varphi_k$, then $\varphi = \bar{\varphi} + \sum_{i=1}^k c_i \varphi_i$ for some constants $c_i \in \mathbb{C}$ (since $\varphi_1, \ldots, \varphi_k$ are a basis for the solution space of π_m).

Proposition 1.1.34. Let A be a matrix and b a vector. Ax = b has a solution if and only if $b \cdot u = u^*b = 0$ for every solution u of $A^*x = 0$.

Theorem 1.1.35. The nonhomogeneous problem 1.1.18 has a solution if and only if

$$(f,\psi) = \gamma \cdot U_c^+ \psi \tag{1.1.19}$$

holds for every solution ψ of the adjoint homogeneous problem π_{2n-m}^+ .

Remark 1.1.36. Since (f, ψ) is an inner product, $\gamma = 0$ implies f is orthogonal to all solutions ψ of π_{2n-m}^+ .

Proof. Let φ be a solution of 1.1.18. Let ψ be a solution of the adjoint homogeneous problem π_{2n-m}^+ . Then by Green's formula (1.1.2) and the boundary-form formula (1.1.11),

$$(L\varphi,\psi) - (\varphi,L^+\psi) = U\varphi \cdot U_c^+\psi + U_c\varphi \cdot U^+\psi.$$

Since $L\varphi = f$, $U\varphi = \gamma$, $L^+\psi = 0$, and $U^+\psi = 0$, the above implies that

$$(f, \psi) - (\varphi, 0) = \gamma \cdot U_c^+ \psi + 0,$$

or

$$(f, \psi) = \gamma \cdot U_c^+ \psi.$$

Now suppose 1.1.19 holds for all solutions ψ of π_{2n-m}^+ . Let $\varphi_1, \ldots, \varphi_n$ be a fundamental set for Lx = 0. Let $\bar{\varphi}$ be a solution of Lx = f. Then every solution φ of Lx = f is of the form

$$\varphi = \bar{\varphi} + \sum_{i=1}^{n} c_i \varphi_i$$

for some constants $c_i \in \mathbb{C}$. Applying U to both sides, we have that 1.1.18 has a solution if and only if there exist c_i such that

$$U\varphi = U\bar{\varphi} + \sum_{i=1}^{n} c_i U\varphi_i$$

is equal to γ . Equivalently,

$$(U\Phi)c = \gamma - U\bar{\varphi} \tag{1.1.20}$$

where Φ is the fundamental matrix corresponding to $\varphi_1, \ldots, \varphi_n$, and c a constant vector. Note that by Remark 1.1.28,

$$(U\Phi)c = \begin{bmatrix} U_1\varphi_1 & \cdots & U_1\varphi_n \\ \vdots & & \vdots \\ U_m\varphi_1 & \cdots & U_m\varphi_n \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^n c_i U_1 \varphi_i \\ \vdots \\ \sum_{i=1}^n c_i U_m \varphi_i \end{bmatrix}$$

$$= \sum_{i=1}^n \begin{bmatrix} c_i U_1 \varphi_i \\ \vdots \\ c_i U_m \varphi_i \end{bmatrix}$$

$$= \sum_{i=1}^n c_i U \varphi_i$$

By Proposition 1.1.34, the above has a solution c if and only if $\gamma - U\bar{\varphi}$ is orthogonal to every solution u of

$$(U\Phi)^* u = 0, (1.1.21)$$

that is,

$$(\gamma - U\bar{\varphi}) \cdot u = 0 \tag{1.1.22}$$

Suppose π_{2n-m}^+ have exactly k^+ linearly independent solutions ψ_1,\ldots,ψ_{k^+} . By the same argument in Theorem 1.1.30, the k^+ vectors $U_c^+\psi_1,\ldots,U_c^+\psi_{k^+}$ are linearly independent m-dimensional vectors which are solutions to 1.1.21. Let k be the number of linearly independent solutions of π_m . Then by Theorem 1.1.29, $\operatorname{rank}(U\Phi) = n - k$. Thus, the number of linearly independent solutions of 1.1.21 is $m - \operatorname{rank}(U\Phi^*) = m - \operatorname{rank}(U\Phi) = m - (n-k)$. But by Theorem 1.1.30, $k^+ = m - n + k$. Thus, since $U_c^+\varphi_i$ are basis for the solution space of 1.1.21, 1.1.22 holds for every u satisfying 1.1.21 if and only if

$$(\gamma - U\bar{\varphi}) \cdot U_c^+ \psi_i = 0 \quad (i = 1, \dots, k^+)$$
 (1.1.23)

By Green's formula (1.1.2) and the boundary-form formula (1.1.11),

$$(L\bar{\varphi},\psi_i) - (\bar{\varphi},L^+\psi_i) = U_{\bar{\varphi}} \cdot U_c^+\psi_i + U_c\bar{\varphi} \cdot U^+\psi_i. \tag{1.1.24}$$

But ψ_i is a solution to π_{2n-m}^+ , so $L^+\psi_i=0$ and $U^+\psi_i=0$. Thus, the above becomes

$$(f, \psi_i) = (L\bar{\varphi}, \psi_i) = (L\bar{\varphi}, \psi_i) - 0 = U_{\bar{\varphi}} \cdot U_c^+ \psi_i + 0 = U_{\bar{\varphi}} \cdot U_c^+ \psi_i. \tag{1.1.25}$$

But by the hypothesis, 1.1.19 holds. Thus,

$$U_{\bar{\varphi}} \cdot U_c^+ \psi_i \stackrel{1.1.25}{=} (f, \psi_i) \stackrel{1.1.19}{=} \gamma \cdot U_c^+ \psi_i.$$

Hence,

$$(\gamma - U\bar{\varphi}) \cdot U_c^+ \psi_i = 0.$$

So 1.1.23 is satisfied. Reversing the direction of the argument from 1.1.23, we have that 1.1.22 holds. This implies that 1.1.20 has a solution c, which then implies that 1.1.18 has a solution.

Corollary 1.1.37. 1.1.18 has a unique solution if m = n and the only solution of π_n is the trivial one.

Proof. Suppose m = n and π_n only has the trivial solution (note that π_n is the homogeneous problem). Let φ , $\bar{\varphi}$ be two solutions of 1.1.18. Then $\varphi - \bar{\varphi}$ is a solution of π_n . By the hypothesis, $\varphi - \bar{\varphi} = 0$. Thus, 1.1.18 has a unique solution φ .

This is different from the proof in the book. Actually in the corollary statement, is the sentence after "and" part of the conclusion or condition?

Definition 1.1.38. The **Dirac's delta function** can be loosely thought of as a function on \mathbb{R} which is zero everywhere except at the origin, where it is infinite. It is given by

$$\delta(x) = \begin{cases} +\infty & x = 0 \\ 0 & x \neq 0. \end{cases}$$

It is also constrained to satisfy the identity

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1.$$

Definition 1.1.39. ¹ Given a linear differential operator L = L(x), a **Green's function** G = G(x, s) at the point $s \in \Omega \in \mathbb{R}^n$ corresponding to L is any solution of

$$LG(x,s) = \delta(x-s) \tag{1.1.26}$$

where δ denotes the Dirac's delta function.

Remark 1.1.40. A Green's function is an **integral kernel** that can be used to solve differential equations, such as ordinary differential equations with initial or boundary value conditions. Recall the Fourier kernel $e^{i\lambda x}$ in the Fourier transform

$$\mathcal{F}[f] := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\lambda x} dx.$$

To see the motivation for defining Green's function, we note that multiplying both sides of 1.1.26 by a function f(s) and integrating with respect to s gives

$$\int LG(x,s)f(s) ds = \int \delta(x-s)f(s) ds.$$

The right-hand side reduces to f(x) due to properties of δ , and because L is a linear operator acting only on x and not on s, the left-hand side can be rewritten as

$$L\left(\int G(x,s)f(s)\,ds\right).$$

This reduction is particularly useful when solving for u = u(x) in differential equations of the form

$$Lu(x) = f(x),$$

since we have

$$Lu(x) = L\left(\int G(x,s)f(s)\,ds\right),$$

which implies

$$u(x) = \int G(x, s) f(s) \, ds.$$

 $^{^{1} \}verb|http://mathworld.wolfram.com/GreensFunction.htm||$

Suppose m = n. By Theorem 1.1.30, π_n and π_n^+ have the same number k of linearly independent solutions. If k = 0, then π_n has only the trivial solution. In this case, it is possible to solve the nonhomogeneous problem 1.1.18 explicitly in terms of the Green's function:

Proposition 1.1.41. The nonhomogeneous problem

$$Lx = f$$
 $Ux = 0$

has a unique solution given by $x(t) = \int_a^b f(s)G(s,t) ds$ where G(s,t) is a Green's function satisfying some properties.

Definition 1.1.42. The problem

$$\pi: Lx = \ell x \quad Ux = 0$$

is an eigenvalue problem. If ℓ is such that π has a nontrivial solution, then ℓ is an eigenvalue of π , and the nontrivial solutions of π are the eigenfunctions of π .

We introduce the following results.

Proposition 1.1.43. Let π denote the problem

$$Lx - \ell x = 0$$
 $Ux = 0$.

If π has no (nontrivial) solution for at least one value of ℓ , then there exists unique $G = G(t, \tau, \ell)$ defined for (t, τ) on the square $a \leq t, \tau \leq b$ and for all complex ℓ except the eigenvalues of π and having the following properties:

- (i) $\frac{\partial^k G}{\partial t^k}$ $(k=0,1,\ldots,n-2)$ exist and are continuous in (t,τ,ℓ) for (t,τ) on the square $a\leq t,\,\tau\leq b$ and ℓ not at an eigenvalue of π . Moreover, $\frac{\partial^k G}{\partial t^k}$ for k=n-1,n are continuous in (t,τ,ℓ) for (t,τ) on the triangles $a\leq t\leq \tau\leq b$ and $a\leq \tau\leq t\leq b$ and ℓ not an eigenvalue of π .
- (ii) $\frac{\partial^{n-1}G}{\partial t^{n-1}}(r+0,r,\ell) \frac{\partial^{n-1}G}{\partial t^{n-1}}(r-0,r,\ell) = \frac{1}{p_0(\tau)}.$
- (iii) As a function of t, G satisfies $Lx = \ell x$ if $t \neq \tau$.
- (iv) As a function of t, G satisfies the boundary conditions Ux = 0 for $a \le \tau \le b$.

If for one value of ℓ the homogeneous problem π has no solution, then it would have solutions only for a set of ℓ which are the zeroes of an entire function.

Here, $\ell = 0$ and it is assumed that π_n has only the trivial solution. Denote $G(t, \tau, 0)$ as $G(t, \tau)$. The unique solution of 1.1.18 with $\gamma = 0$ is given by

$$\mathcal{G}f(t) = \int_{a}^{b} G(t,\tau)f(\tau) d\tau.$$

If π_n has only the trivial solution, then by Theorem 1.1.30, π_n^+ has only the trivial solution (with k=1 and m=n). By Proposition 1.1.43, the Green's function G^+ for π_n^+ exists and is unique.

Theorem 1.1.44. If π_n has only the trivial solution, Green's function G^+ for π_n^+ is given by

$$G^{+}(t,\tau) = \bar{G}(\tau,t).$$
 (1.1.27)

Proof. Let $a < \tau_1 < \tau_2 < b$. Consider the functions G_1 and G_2^+ given by $G_1(t) = G(t, \tau_1)$, $G_2^+(t) = G^+(t, \tau_2)$. Then applying Green's formula 1.1.2 to the intervals $[a, \tau_1 - 0]$, $[\tau_1 + 0, \tau_2 - 0]$, $[\tau_2 + 0, b]$, we have

$$[G_1G_2^+](\tau_1 - 0) - [G_1G_2^+](a) + [G_1G_2^+](\tau_2 - 0) - [G_1G_2^+](\tau_1 + 0) + [G_1G_2^+](b) - [G_1G_2^+](\tau_2 + 0) = 0 \quad (1.1.28)$$

Why is the equation 0?

By the boundary-form formula 1.1.11,

$$[G_1G_2^+](b) - [G_1G_2^+](a) = 0. (1.1.29)$$

Doesn't this follow from 1.1.28?

From the form of [xy](t) 1.1.3 it follows that the only terms of interest in 1.1.28 are those involving the (n-1)st derivatives, and these are

Why?

$$p_0(t)[(-1)^{n-1}x(t)\bar{y}^{(n-1)}(t) + x^{(n-1)}(t)\bar{y}(t)]. \tag{1.1.30}$$

Now by Proposition 1.1.43(ii), G satisfies

$$\frac{\partial^{n-1} G}{\partial t^{n-1}}(r+0,r,\ell) - \frac{\partial^{n-1} G}{\partial t^{n-1}}(r-0,r,\ell) = \frac{1}{p_0(\tau)}. \tag{1.1.31}$$

Similarly for G^+ ,

$$\frac{\partial^{n-1}G^{+}}{\partial t^{n-1}}(r+0,r,\ell) - \frac{\partial^{n-1}G^{+}}{\partial t^{n-1}}(r-0,r,\ell) = \frac{1}{(-1)^{n}\bar{p}_{0}(\tau)}.$$
(1.1.32)

Thus,
$$\bar{G}^+(\tau_1, \tau_2) - G(\tau_2, \tau_1) = 0.$$

 $\square \vdash \text{How}?$

Remark 1.1.45. To consider $G(t, \tau, \ell)$, the differential operation (L-l) is considered instead of L. Let $L_1 = L - \ell$. Consider the problem

$$L_1 x = 0 \quad U x = 0 \tag{1.1.33}$$

The adjoint problem is given in $L_1^+ = L^+ - \bar{\ell}$ and U^+ . Applying Theorem 1.1.44 to 1.1.33,

We assume π_n only has the trivial solution?

we have

$$G^+(t, \tau, \ell) = \bar{G}(\tau, t, \bar{\ell}).$$

For the self-adjoint problem where $L^+ = L$ and U equivalent to U^+ , it follows that

$$G(t, \tau, \ell) = \bar{G}(\tau, t, \ell).$$