

- 1. Organisatorisches
- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- 4. Wahrscheinlichkeitsräume und σ-Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- **7.** Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

1. Organisatorisches

- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- **4.** Wahrscheinlichkeitsräume und σ -Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- **7.** Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

Ziel

- Mein Ziel: Begeisterung und Verständnis für das Modellieren von zufälligen Ereignissen (Stochastik) und Entwickeln von Schätz- und Testverfahren (Statistik) zu entwickeln
 - Stochastik & Statistik hat enge Beziehung zu Künstlicher Intelligenz!
- Lernziele: Einführung in Grundlagen der Stochastik und Statistik
 - 1. Sie haben ein intuitives Verständnis für den Begriff der Wahrscheinlichkeit.
 - 2. Sie können Zufallsereignisse formal beschreiben.
 - 3. Sie können das Zusammenspiel von Ereignissen modellieren.
 - 4. Sie wissen, wann man welche Wahrscheinlichkeitsverteilungen benutzt.
 - 5. Sie können statistische Tests entwickeln und durchführen.
 - 6. Sie können Daten praktisch analysieren und Schätzprozesse durchführen.

Mathe III

Format

- Ähnlich zu Mathe III in früheren Semestern
 - 2 Vorlesungen pro Woche
 - Montag: 13:30 15:00 Uhr (HS1)
 - Donnerstag: 13:30 15:00 Uhr (HS1)
 - 1 Großübung pro Woche
 - Mittwoch: 15:15 16:45 Uhr (HS1)
 - 1 Übungsblatt pro Woche pro Zweier-Gruppe [insgesamt 12 Übungsblätter]
 - Ausgabe: Montag, 7:00 Uhr (Moodle) [ab 21. Oktober]
 - Abgabe: Montag in Folgewoche, 7:00 Uhr (Moodle)
 - Bewertung: In 30 Minuten Terminen mit Tutoren in der Folgewoche
- Mehr Details und alle Updates auf Moodle:
 - https://moodle.hpi.de/course/view.php?id=803

Mathe III

Klausur

Klausurzulassung

70% der Übungsblätter bestanden

Klausurinhalte

- Verständnisfragen zu Stochastik & Statistik
- Kurze/kleine Beweise (aus Vorlesung & Übung)
- Rechenaufgaben

Klausurtermine

Hauptklausur: Montag, 17. Februar 2025, 9:00 Uhr

Mathe III

Literatur

Angewandt mit vielen Beispielen (PDF)

Größerer Fokus auf Stochastik mit vielen praktischen Beispielen (<u>PDF</u>)

<u>Einschließlich auf Stochastik</u> mit mathematischer Tiefe

Unit 1a - Wahrscheinlichkeit

- 1. Organisatorisches
- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- 4. Wahrscheinlichkeitsräume und σ-Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- 7. Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

Was ist Wahrscheinlichkeit?

Wettervorhersage: Ein Meteorologe sagt

"Mit 60% Wahrscheinlichkeit regnet es morgen in Bangalore"

Zwei Interpretationen:

- Der Meteorologe hat alle Regionen analysiert, deren Umgebungsbedingungen ähnlich zu der von Bangalore heute waren. Seine (**objektive**) Schätzung basierend auf den Daten ist, dass sein Verfahren, welches Regen vorhersagt, in 60% der Fälle korrekt ist.
- 2. Der Meteorologe *glaubt*, dass es wahrscheinlicher ist, dass es morgen in Bangalore regnet als, dass es nicht regnet. 60% ist die Quantifizierung des (**subjektiven**) *Glaubens* des Meteorologen.

Mathe III

Frequentistische und Subjektive Interpretation

Frequentistische/Objektive Interpretation

- Wahrscheinlichkeit ist eine Eigenschaft des Ereignisses ("es regnet")
- Kann operationalisiert werden durch wiederholtes Experiment
- Typischerweise von Wissenschaftlern und Ingenieuren verwendet

Subjektivistische Interpretation

- Wahrscheinlichkeit ist ein Ausdruck des Glaubens (belief) der Person, welche die Aussage über das Ereignis macht ("ich glaube, es regnet")
- Ist subjektiv und personenabhängig: Zwei Personen können bei identischer Datenlage unterschiedliche Wahrscheinlichkeiten haben!
- Kann durch Wetten operationalisiert werden
- Typischerweise von Philosophen und Ökonomen verwendet

Mathe III

- 1. Wahrscheinlichkeit ist keine physikalische Größe sondern ein **Denkmodell** für Zufall!
- 2. Die Rechenregeln für Wahrscheinlichkeit sind **identisch** für beide Interpretationen!

- 1. Organisatorisches
- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- 4. Wahrscheinlichkeitsräume und σ -Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- **7.** Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

Geschichte der Wahrscheinlichkeit

v. Chr.:

- Glücksspiele waren hochpopulär im alten Griechenland & Rom
- Keine mathematische Analyse von Zufall (fehlende Algebra)

16. Jahrhundert:

Girolamo Cardano veröffentlich erstes Buch über Methoden zur Berechnung von Wahrscheinlichkeiten bei Würfel- und Kartenspielen

Gerolamo Cardano (1501 - 1575)

Blaise Pascal (1623 - 1662)

Geschichte der Wahrscheinlichkeit (ctd)

18. Jahrhundert:

- Jacob Bernoulli untersucht zufällige Münzwürfe und beweist das Gesetz der großen Zahlen
- Thomas Bayes untersucht bedingte Wahrscheinlichkeiten und formuliert den Satz von Bayes
- Abraham de Moivre führt die Normalverteilung ein und beweist den Grenzwertsatz

19. Jahrhundert:

- Carl Friedrich Gauss führt die Methode der kleinsten Quadrate ein und zeigt, dass Fehler normalverteilt sind
- Pierre-Simon Laplace publiziert die Théorie analytique des probabilités in der er Wahrscheinlichkeit und Statistik zusammenführt und Hypothesentests einführt

Jacob Bernoulli (1655 – 1705)

Thomas Bayes (1701 - 1761)

Abraham de Moivre (1667 – 1754)

Pierre-Simon Laplace (1749 – 1827)

Geschichte der Wahrscheinlichkeit (ctd)

20. Jahrhundert:

- Andrey Kolmogorov führt Axiome ein, die Wahrscheinlichkeiten unabhängig von relativen Häufigkeiten erklären (Grundlage der frequentistischen Interpretation)
- Richard Threlkeld Cox führt Axiome ein, die Wahrscheinlichkeiten als Grad des Glaubens (*degree of belief*) erklären (Grundlage der subjektiven Interpretation)

- Vladimir Vapnik führt Wahrscheinlichkeit als die Basis für die Theorie des maschinellen Lernens ein
- Judea Pearl und Phil Dawid führen graphische Modelle ein, die es erlauben mit Wahrscheinlichkeitstheorie komplexe und kausale Prozesse zu formulieren und zu operationalisieren
- Wahrscheinlichkeit und Statistik ist nicht mehr aus modernen Wissenschaften wegzudenken

Andrey Kolmogorov (1903 - 1987)

Richard Threlkeld Cox (1898 – 1991)

Vladimir Vapnik (1936 -)

Judea Pearl (1936–)

Philip Dawid (1946–)

- 1. Organisatorisches
- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- 4. Wahrscheinlichkeitsräume und σ -Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- 7. Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

Zufallsexperimente und Ergebnisse (samples)

- Wenn wir Zufall mathematisch beschreiben, gehen wir immer von einem
 Zufallsexperiment aus
 - Ist möglicherweise ein fiktives Experiment, welches wir nur zur Modellierung benutzen.
 - □ Ein Zufallsexperiment hat mehrere mögliche Ergebnisse (*outcomes*).
 - Wir benutzen Mengen(theorie) um Ergebnisse formal zu beschreiben.
- **Definition (Ergebnismenge)**. Die Menge aller möglichen Ausgänge $\Omega \neq \emptyset$ eines Zufallsexperiments nennt man Ergebnismenge (*sample space*).
- Bemerkung (Ergebnismenge)
 - $\ \square$ Die Ergebnismenge Ω wird auch Ergebnisraum oder Stichprobenraum genannt.
 - Die Ergebnisse $\omega \in \Omega$ werden auch Stichproben (samples) genannt.
 - Die Ergebnisse eines Zufallsversuchs müssen sich gegenseitig ausschließen.

Mathe III

Ergebnismenge: Beispiele

- Beispiel 1. Sichtbare Augenzahl nach Wurf mit einem Würfel
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Beispiel 2. Dauer einer Partie Schach in Sekunden
 - $\Omega = \mathbb{N}$
- **Beispiel 3**. Code eines vierstelligen Zahlenschlosses
 - $\Omega = \{(a, b, c, d) | 0 \le a \le 9 \land 0 \le b \le 9 \land 0 \le c \le 9 \land 0 \le d \le 9\} \subset \mathbb{N}^4$
- Beispiel 4. Positionen im Ziel beim Rennen von 7 Rennpferden
 - $\square \quad \Omega = \left\{ (i_1, i_2, \dots, i_7) | \forall j \in \{1, \dots, 7\} : \forall k \in \{1, \dots, 7\} : i_j \in \{1, \dots, 7\} \land i_j \neq i_k \Leftrightarrow j \neq k \right\}$
- Beispiel 5. Wetter in Potsdam Babelsberg
 - $\Omega = \{\text{Sonne, Wolken, Regen}\}$
 - Problem: Wolken und Regen schließen sich nicht aus, genauso wenig wie Sonne und Wolken, oder Sonne und Regen.

Mathe III

Angemessene Ergebnismenge

- Angemessene (appropriate) Ergebnismenge hängt oft von den Fragen ab, die wir modellieren wollen
 - Bemerkung. Ergebnismenge sollte immer so klein als möglich gewählt werden
- Beispiel. Zehn zufällige Münzwürfe
 - Szenario 1: Wir bekommen €1 jedes Mal wenn die Münze Kopf zeigt und wollen wissen, wieviel Profit wir in zehn zufälligen Münzwürfen machen.
 - Die Reihenfolge der Münzwürfe spielt keine Rolle für den Ausgang des Experiments und nur die totale Summe der Anzahl Münzen, die Kopf zeigen, ist relevant!
 - Szenario 2: Wir bekommen €1 für jeden Münzwurf bis die Münze Kopf zeigt, ab dann €2 für jeden Münzwurf bis die Münze wieder Kopf zeigt, ab dann €4 für jeden Münzwurf bis die Münze Kopf zeigt (und so weiter) und wollen wissen, wieviel Profit wir in zehn zufälligen Münzwürfen machen.
 - Die Reihenfolge der Münzwürfe spielt eine Rolle für den Profit nach 10 Münzwürfen!

Mathe III

Ereignisse (events)

- **Definition (Ereignis)**. Ein Ereignis $A \subseteq \Omega$ ist eine **Teilmenge der Ergebnismenge** Ω , d.h. eine gemeinsame Betrachtung eines oder mehrerer Ergebnisse.
 - Beispiel 1. Sichtbare Augenzahl nach Wurf mit einem Würfel ist gerade
 - $A = \{2,4,6\} \subset \{1,2,3,4,5,6\}$
 - Beispiel 2. Partie Schach dauert mehr als eine Stunde
 - $A = { s ∈ N | s > 3600 } ⊂ N$
 - Beispiel 3. Code eines vierstelligen Zahlenschlosses hat vier gleiche Ziffern
 - $A = \{ (a, b, c, d) \mid 0 \le a, b, c, d \le 9 \land a = b = c = d \} \subset \{ (a, b, c, d) \mid 0 \le a, b, c, d \le 9 \}$
 - Beispiel 4. Positionen im Ziel beim Rennen von 7 Rennpferden wobei Pferd 2 gewinnt
 - $A = \{(2, i_2, \dots, i_7) | \forall j \in \{2, \dots, 7\}: i_j \in \{1, 3, 4, 5, 6, 7\} \land i_j \neq i_k \Leftrightarrow j \neq k\} \subset \{(i_1, i_2, \dots, i_7) | \forall j \in \{1, \dots, 7\}: i_j \in \{1, \dots, 7\} \land i_j \neq i_k \Leftrightarrow j \neq k\}$

Mathe III

Darstellung von Ereignissen: Venn Diagramme

Definition (Venn Diagramm). Hilfreiche Weisen, Mengen und die Ergebnisse von Mengenoperationen darzustellen, indem einzelne Mengen als Kreise oder Ellipsen dargestellt werden.

John Venn (1834 - 1923)

Anwendung: Elementare Ereignisse grafisch darstellen

 $A \cup B$

Anwendung: Geometrische Beweise führen (z.B. De-Morgan'sches Gesetz $\overline{A \cup B} = \overline{A} \cap \overline{B}$)

Darstellung von Ereignissen: Punktwolkendiagramme

- **Definition (Punktwolkendiagramm).** Wenn das Zufallsexperiment im \mathbb{N}^2 liegt, kann man die Ergebnisse (samples) auch als Punkte darstellen und Ereignisse als Punktwolken.
 - Beispiel. Sichtbare Augenzahl nach Wurf mit zwei Würfeln

Ereignissystem

- Wir wollen jedem Ereignis eine Wahrscheinlichkeit zuordnen.
 - Ist nur möglich wenn wir (maximal) abzählbar unendlich viele Ereignisse haben.
 - Aus diesem Grund beschränken wir unsere Ereignisse auf ein Ereignissystem.
- **Definition (Ereignissystem)**. Ein Ereignissystem \mathcal{F} zur Ergebnismenge Ω ist eine Menge von Teilmengen von Ω , wobei gilt:
 - **1.** Abschluss unter sicherem Ereignis: $\Omega \in \mathcal{F}$
 - **2.** Abschluss unter dem Komplement: $\forall A \in \mathcal{F}: \bar{A} \in \mathcal{F} \ (\bar{A}: = \Omega \setminus A)$
 - **3.** Abschluss unter abzählbarer Vereinigung: $\forall A_1, A_2 \in \mathcal{F}: A_1 \cup A_2 \in \mathcal{F}$

Wir bezeichnen $\Omega \in \mathcal{F}$ als das **sichere Ereignis** und $\emptyset \in \mathcal{F}$ als **unmögliches Ereignis**.

Mathe III

Unit 1a - Wahrscheinlichkeit

Bemerkung (σ -Algebra). Ein Ereignissystem wird auch σ -Algebra genannt.

Wahrscheinlichkeitsraum

Grundbegriffe

- **Definition (Wahrscheinlichkeitsraum)**. Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, \mathcal{F}, P) bestehend aus
 - \Box einer Ergebnismenge Ω ,
 - \Box einem Ereignissystem $\mathcal F$ und
 - einer Wahrscheinlichkeitsverteilung $P: \mathcal{F} \mapsto [0,1]$ mit folgenden drei Eigenschaften:
 - **1.** Nicht-Negativität: Für alle $A \in \mathcal{F}$, $0 \le P(A) \le 1$.

- Die Wahrscheinlichkeitsverteilung wird auch als Wahrscheinlichkeitsmaß oder kurz als Verteilung bezeichnet.
- Die drei Regeln 1. 3. sind die sogenannten Kolmogorov-Axiome

Andrey Kolmogorov (1903 - 1987)

Mathe III

Beispiel eines Wahrscheinlichkeitsraums

- **Beispiel**. Wahrscheinlichkeitsraum für den Wurf einer fairen Münze
 - Ergebnismenge:
 - $\Omega = \{ \text{ Kopf, Zahl } \}$

-
$$\mathcal{F} = \{ \emptyset, \{ \text{Kopf} \}, \{ \text{Zahl} \}, \{ \text{Kopf}, \text{Zahl} \} \}$$

- Wahrscheinlichkeitsverteilung:
 - $P(\emptyset) = 0$
 - $P(\{ Kopf \}) = P(\{ Zahl \}) = 0.5$
 - $P(\{ Kopf, Zahl \}) = 1$

Mathe III

- 1. Organisatorisches
- 2. Wahrscheinlichkeitsbegriff
- 3. Geschichte der Wahrscheinlichkeit
- 4. Wahrscheinlichkeitsräume und σ -Algebra
- 5. Rechenregeln von Wahrscheinlichkeitsräumen
- 6. Gleichverteilung
- 7. Counting Prinzip
- 8. Permutationen, Variationen und Kombinationen
 - Numerische Approximation

Mathe III

Rechenregeln für Wahrscheinlichkeiten

■ Satz (Wahrscheinlichkeit des Gegenereignisses). Für alle $A \in \mathcal{F}$ gilt

$$P(A) + P(\overline{A}) = 1$$

- **Beweis**: Für alle $A \in \mathcal{F}$ gilt, $A \cup \bar{A} = \Omega$ und $A \cap \bar{A} = \emptyset$. Nach 2. und 3. folgt $1 = P(\Omega) = P(A \cup \bar{A}) = P(A) + P(\bar{A})$
- Korollar (Wahrscheinlichkeit der leeren Menge). Es gilt $P(\emptyset) = 0$.
 - **Beweis**: Benutze $A = \Omega \in \mathcal{F}$ im vorherigen Satz und 3.
- Satz (Endliche Additivität). Für alle $A, B \in \mathcal{F}$ gilt

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

■ **Beweis**: Sei $Z = A \cap B$, $X = A \setminus Z$, $Y = B \setminus Z$. Dann gilt $X \cap Y = X \cap Z = Y \cap Z = \emptyset$ und $A = X \cup Z$ und $B = Y \cup Z$. Daher gilt

$$P(A) = P(X) + P(Z)$$

$$P(B) = P(Y) + P(Z)$$

$$P(A \cup B) = P(X) + P(Y) + P(Z) = P(A) + P(B) - P(Z)$$

Kolmogorov Axiome

1. Für alle $A \in \mathcal{F}$, $0 \le P(A) \le 1$ 2. Für alle $A_1, \ldots, A_n \in \mathcal{F}$ mit $A_i \cap A_j = \emptyset \Leftrightarrow i \ne j$ gilt

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$
3. Es gilt $P(\Omega) = 1$

Beispiel für endliche Additivität

Beispiel. Raucher in Nevada

Szenario: 28 Prozent aller Einwohner in Nevada rauchen Zigaretten, 6 Prozent aller Einwohner in Nevada rauchen Zigarre, und 3 Prozent aller Einwohner in Nevada rauchen Zigarre und Zigarette. Wie groß ist der Prozentsatz von Einwohnern in Nevada, die nicht rauchen?

Ergebnismenge:

 $-\Omega = \{1,2,...,3104614\}$ (eindeutige Zahl für jeden Einwohner in Nevada)

Zwei Ereignisse:

- $A = {i ∈ Ω | Person i raucht Zigarette }$
- $B = {i ∈ Ω | Person i raucht Zigarre }$

Lösung:

$$P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)]$$

$$P(\overline{A \cup B}) = 1 - [0.28 + 0.06 - 0.03] = 0.69$$

Mathe III

Rechenregeln für Wahrscheinlichkeiten (ctd)

- Satz (Monotonie). Zusätzliche Ergebnisse können die Wahrscheinlichkeit eines Ereignisses nicht mindern, d. h. wenn $A \subseteq B$, dann ist $P(A) \le P(B)$.
 - **Beweis**: Sei $C = B \setminus A$. Dann gilt $A \cap C = \emptyset$ und $B = A \cup C$. Aus 1. und 2. folgt $P(B) = P(A \cup C) = P(A) + P(C) \ge P(A)$
- Satz (Union Bound). Die Vereinigung zweier Ereignisse tritt h\u00f6chstens mit der Summe der Wahrscheinlichkeiten der Einzelereignisse ein
 - $P(A \cup B) \le P(A) + P(B)$
 - **Beweis:** Folgt direkt aus $P(A \cup B) = P(A) + P(B) P(A \cap B)$ und 1. für $P(A \cap B)$.
- Satz (σ -Stetigkeit). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von Ereignissen, für die für alle $i\in\mathbb{N}$ gilt, dass $A_i\subseteq A_{i+1}$. Sei zudem $A=\bigcup_{i\in\mathbb{N}}A_i$. Dann ist $\lim_{n\to\infty}P(A_n)=P(A)$
 - Beweis: Definiere $F_1 = A_1$ und $F_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j$. Dann gilt aufgrund von 2.

$$P(A) = P\left(\bigcup_{i \in \mathbb{N}} F_i\right) = \lim_{n \to \infty} \sum_{i=1}^n P(F_i) = \lim_{n \to \infty} P(A_n)$$

Kolmogorov Axiome

1. Für alle $A \in \mathcal{F}$, $0 \le P(A) \le 1$ 2. Für alle $A_1, ..., A_n \in \mathcal{F}$ mit $A_i \cap A_j = \emptyset \Leftrightarrow i \neq j$ gilt

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$$
 3. Es gilt $P(\Omega) = 1$

Beispiel: Linda-Problem

Szenario: Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

b) Linda is a bank teller and is active in the feminist movement.

- $\Omega = \{\text{alle Singles die 31 Jahre alt sind und Linda heißen}\}\$
- **Zwei Ereignisse:**
 - $A = \{i \in \Omega | \text{Person } i \text{ ist Bankangestellte } \}$
 - $B = \{i \in \Omega | \text{Person } i \text{ ist aktiv in der Frauenbewegung } \}$
- Lösung:

$$P(A) = P(A \cap B) + P(A \setminus (A \cap B)) \ge P(A \cap B)$$

Amos Tversky (1937 - 1996)

Daniel Kahneman (1934 - 2024)

Viel Spaß bis zur nächsten Vorlesung!