IS 607: Assignment 6

MUSA T. GANIYU March 2, 2016

```
# load the require packages.
library(stringr);
library(dplyr);
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tidyr);
library(ggplot2);
require(knitr);
## Loading required package: knitr
# load data file from url.
data1 <- read.csv("https://raw.githubusercontent.com/mascotinme/MSDA-IS607/master/ontime_delayed.csv",</pre>
kable(head(data1));
```

		Los Angeles	Phoenix	San Diego	San Franscisco	Seatle
ALASKA	on time	497	221	212	503	1,841
NA	delayed	62	12	20	102	305
NA	NA	NA	NA	NA	NA	NA
AM WEST	on time	694	4,840	383	320	201
NA	delayed	117	415	65	129	61

```
# It revealed from the data above that the third role has no data at all (empty), we will therefore rem
which(is.na(data1));

## [1] 2 3 5 8 13 18 23 28 33

data <- data.frame(data1[-3, ]);
kable(head(data))</pre>
```

	Var.1	Var.2	Los.Angeles	Phoenix	San.Diego	San.Franscisco	Seatle
1	ALASKA	on time	497	221	212	503	1,841
2	NA	delayed	62	12	20	102	305
4	AM WEST	on time	694	4,840	383	320	201
5	NA	delayed	117	415	65	129	61

```
# From the glimpes of the data, we can see that the 1st & 2nd columns has no name, we therefore assign
colnames(data)[1] = "Airline"
colnames(data)[2] = "Status"

# after the removal of the row and naming the columns, we saw that there are still empty rows, we there
data[2,1] = "ALASKA"
data[4,1] = "AM WEST"
data[1,7] = 1841
data[3,4] = 4840

kable(head(data));
```

	Airline	Status	Los.Angeles	Phoenix	San.Diego	San.Franscisco	Seatle
1	ALASKA	on time	497	221	212	503	1841
2	ALASKA	delayed	62	12	20	102	305
4	AM WEST	on time	694	4840	383	320	201
5	AM WEST	delayed	117	415	65	129	61

```
# We now use tidyr to gather the respective rows and columns together in a reasonabe manner.
tidy_data <- gather(data, "Destination", "Number_of_time", 3:7, na.rm = TRUE);
kable(head(tidy_data));</pre>
```

Airline	Status	Destination	Number_of_time
ALASKA ALASKA	on time	Los.Angeles Los.Angeles	497 62
AM WEST	on time	Los.Angeles Los.Angeles	694
AM WEST ALASKA	delayed on time	Los.Angeles Phoenix	117 221
ALASKA	011 011110	Phoenix	12

```
tidy_data1 <- spread(tidy_data, key = Status, value= Number_of_time )
colnames(tidy_data1)[4] = "ontime"
kable(head(tidy_data1));</pre>
```

Airline	Destination	delayed	ontime
ALASKA	Los.Angeles	62	497
ALASKA	Phoenix	12	221
ALASKA	San.Diego	20	212

```
AirlineDestinationdelayedontimeALASKASan.Franscisco102503ALASKASeatle3051841AM WESTLos.Angeles117694
```

```
str(tidy_data1)
                    10 obs. of 4 variables:
## 'data.frame':
## $ Airline
                        "ALASKA" "ALASKA" "ALASKA" "ALASKA" ...
                 : chr
                        "Los.Angeles" "Phoenix" "San.Diego" "San.Franscisco" ...
## $ Destination: chr
## $ delayed
                 : chr
                        "62" "12" "20" "102" ...
   $ ontime
                        "497" "221" "212" "503" ...
##
                 : chr
# Note that the data type for ontime & delayed is character format, we now change them to numeric for e
tidy_data1<- within(tidy_data1, {</pre>
delayed<- as.numeric(as.character(delayed))</pre>
ontime<- as.numeric(as.character(ontime))})</pre>
# Summarize the average mean for the ontime
data_avg <- tidy_data1 %>% group_by(Airline, Destination) %>%
summarise(Avg=mean(ontime))
data_avg
## Source: local data frame [10 x 3]
## Groups: Airline [?]
##
##
      Airline
                 Destination
                               Avg
##
        (chr)
                       (chr) (dbl)
## 1
     ALASKA
              Los.Angeles
                               497
## 2
      ALASKA
                     Phoenix
                               221
## 3
       ALASKA
                   San.Diego
                               212
## 4
      ALASKA San.Franscisco
                               503
## 5
      ALASKA
                      Seatle 1841
## 6 AM WEST
                 Los.Angeles
                               694
## 7
     AM WEST
                     Phoenix 4840
## 8 AM WEST
                   San.Diego
                               383
## 9 AM WEST San.Franscisco
                               320
## 10 AM WEST
                      Seatle
                               201
# Plotting the delayed with ontime
options(warn=-1)
plot <- ggplot(data= tidy_data1, aes(y=delayed, x=ontime, fill=factor(Airline))) + geom_point()</pre>
plot + geom_smooth() + facet_wrap(~Airline);
```



```
# plotting graph to visually represent the conclusion.

data_plot <- ggplot(tidy_data1, aes(y=ontime, x=delayed)) + geom_point(shape=1)
data_plot + geom_smooth()</pre>
```


some inferences.

kable(tidy_data1 %>% select(Destination,Airline, ontime, delayed) %>% filter(ontime == max(tidy_data1\$ontime)

Destination	Airline	ontime	delayed
Phoenix	AM WEST	4840	415

kable(tidy_data1 %>% select(Destination,Airline, ontime, delayed) %>% filter(delayed == min(tidy_data1\$

Destination	Airline	ontime	delayed
Phoenix	ALASKA	221	12

summary(c(tidy_data1\$delayed, tidy_data1\$ontime));

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 12.00 92.75 216.50 550.00 435.50 4840.00

THANKS FOR YOUR TIME