Track Machine Learning Applications by ml flow Tracking

Shuhsi Lin @ PyConTW 2020

About Me

Working in a manufacturing company With data and people

Focus on

- Agile/Engineering culture
- IoT applications
- Streaming process
- Data visualization

Shuhsi Lin

sucitw@gmail.com

https://medium.com/@suci/

Lurking in PyHug, Taipei.py and various Meetups

Agenda - What we will focus on

Logging & ML monitoring

ML Life Cycle MLOPS

Track ML

- Basic logging
- Model logging
- Auto-logging

What we will not focus on

- Details of ML Platform/ MLOps
 - Deployment/Operation/Administration

- 2. MLflow Projects/Models/Model Registry
- 3. Infrastructure Details
- 4. Comparison of Different Tools
- 5. Machine Learning Algorithms or Frameworks

Logging

Everything

Why Logging is important

Business Analytics

Stakeholder

- Auditing for business
- Product improvement from log statistics

Problem Solving

End-User

Self-Troubleshooting

Developer

- Profiling for performance
- Debugging

Sysadmin

- Stability monitoring
- Troubleshooting

Security

Auditing for security

What is Logging in Machine Learning

ML Life Cycle

Elements for ML systems -

ML Life Cycle

Development

Exploratory

Analysis

• ETL

Data collection

DEV

Model
Dev/Analysis

- Selection
- Training
- Evaluation
- Validation
- Versioned

Featuring Engineering

Deployment

PRD

Deployment Pipeline

- Audit
- Score/Serve

(Batch + Realtime)

Delivery

PRD

-KD

er Interface

- Dashboard
- Recommendation
- Interdiction

• ..

Management

PRD

Operation

- Model registry
- Monitor
- Alert
- Debug
- Feedback
- Resource manage
- ...

Retrain and re-tuning

New model development/update features

The Maturity of the MLOPS Process

level 0 Manual process

level 1 ML pipeline automation

level 2 CI/CD pipeline automation

MLOps: <u>DevOps</u> principles to ML systems

- MLOps is an ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system operation (Ops).
- Practicing MLOps means that you advocate for automation and monitoring at all steps of ML system construction, including integration, testing, releasing, deployment and infrastructure management.

MLOps level 0: Manual process

MLOps level 1: ML pipeline automation

Experiment Tracking

Model development & Post-Deployment

- Prove value of experiment
 - Need baseline to show and compare
- Collaborate
 - Need to refer and access models and artifacts from other members.
- Reproduce work
 - Need same parameters and model of ex-run

What we should log/track in ML

Log day-to-day work in ML life cycle

- Hyper parameters
- Training/modeling performances
- o Model
 - Type
 - Building environment
 - Modeling version
- and so on

Evaluation metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RSME)
- R-squared (r2)
- ...

parameters

- Convolutional filter
- Kernel size
- Max pooling
- Dropout
- Dense
- Batch_size
- Epochs
-

ML is complex and need to be tracked

https://github.com/mlflow

- Since 2018 from DataBricks (Main contributor)
- An open platform for the machine learning lifecycle
- Python Library; runs locally and on the cloud
- Built-in UI for experiment visualization
- Logging integrations for major frameworks: scikit-learn, PyTorch, TF,...

Collaboration with MLflow

Built-in integrations:

Organizations using and contributing to MLflow:

Bering

mificw Components

MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components:

MLflow Tracking

Record and query experiments: code, data, config, and results

Read more

MLflow Projects

Package data science code in a format to reproduce runs on any platform

Read more

MLflow Models

Deploy machine learning models in diverse serving environments

Read more

Model Registry

Store, annotate, discover, and manage models in a central repository

Read more

Main focus of this sharing!

Similar Tools

- Neptune (commercial)
- Tensorboard (+MLflow.tensorflow)

TorchServe (+ MLflow.pytorch)

- Kubeflow (Meta)
- Data Science Workbench
- ...

TorchServe

Kubeflow

Getting Started with mlflow Tracking

MLflow Components

Experiment tracking

Outer feedback loop

Terminology

Project

Experiments

Run Run Run Run Run Run

Entity

- Code version
- Start and end time
- Source
- (Hyper) Parameters
- Metrics
- Tags/Notes

Backend stores

- File store
- Database

Artifacts

- Output files
- a. Images
- b. Pickled models
- c. Data files...

File storage

- Amazon S3
- Azure Blob Storage
- Google Cloud Storage
- FTP server
- SFTP Server
- NFS
- HDFS

MLflow Tracking for ML Development

mlflow Tracking DEMO Examples

https://github.com/sucitw/mlflow_tracking

31

Example Architecture

mlflow server

- --backend-store-uri \$FILE STORE
- --default-artifact-root \$ARTIFACT_STORE
- --host \$SERVER HOST
- --port \$SERVER_PORT

docker run -d -p 5000:5000 \

- -v /tmp/artifactStore:/tmp/mlflow/artifactStore \frac{1}{2}
- --name mlflow-tracking-server \

suci/mlflow-tracking

Tracking-Experiments

Setup & Initialize

```
# Setup & Initialize MLflow experiment
experiment_name = "PyconTW 2020 Demo"
tracking_server = "http://localhost:5000"
```

mlflow.set_tracking_uri(tracking_server)
mlflow.set_experiment(experiment_name)

```
#System Env setting

#backend-store-uri
$FILE_STORE
#default-artifact-root
$ARTIFACT_STORE
#host
$SERVER_HOST
#port
$SERVER_PORT
```


Tracking-Run

Train & Inference

```
with mlflow start run() as run:
    # Log a parameter (key-value pair)
     log_param("param1", randint(0, 100))
                                                                                  Log (Hyper)parameter
    # Log a metric; metrics can be updated throughout the run
     log metric("metricsA", random())
     log metric("metricsA", random() + 1)
                                                                                  Log metrics
     log metric("metricsA", random() + 2)
     log metric("metricsB", random() + 2)
    # Log an artifact (output file)
    with open("outputs/test.txt", "w") as f:
       f.write("hello world! Run id:{}".format(type(mlflow.active run().info)))
     log artifacts("outputs")
                                                                                  Log artifact
```


Compare Two Runs

Compare Two Runs

Model

Log->Load->deploy

mlflow.<model-type>.log model(model, ...) mlflow.<model-type>.load model(modelpath) mlflow.<model-type>.deploy()

mlflow.sklearn.log_model(lr, "model")

Built-In Model Flavors < model-type>

- Python Function (python function)
- R Function (crate)
- H₂O (h₂o)
- Keras (keras)
- MLeap (mleap)
- PyTorch (pytorch)

- Scikit-learn (sklearn)
- Spark MLlib (spark)
- TensorFlow (tensorflow)
- ONNX (onnx)
- MXNet Gluon (gluon)

- XGBoost (xgboost)
- LightGBM (lightgbm)
- Spacy(spaCy)
- Fastai(fastai)

Artifacts

Full Path: /tmp/mlflow/artifactStore/4/557a222e5c8e454689a112cd... Size: 150B

channels:

- defaults
- conda-forge

dependencies:

- python=3.7.1
- scikit-learn=0.23.2
- pip
- pip:
 - mlflow
 - cloudpickle==1.5.0

name: mlflow-env

Automated MLflow Tracking

Currently supported libraries:

https://www.mlflow.org/docs/latest/tracking.html#automatic-logging

Auto-Logging - TF

Manually logging

import mlflow

mlflow.log_param("layers", layers)

model = train_model()

mlflow.log_metric("mse", model.mse())

mlflow.log_artifact("plot", plot(model))

mlflow.tensorflow.log_model(model)

With autologging

import mlflow

mlflow.tensorflow.autolog()

model = train_model()

Capture TensorBoard metrics

ML is COMPLEX and need to be Tracked

What **mlflow** can help

Managing the machine learning lifecycle - (Experiment) Tracking

Easy use in at the same way

- Remotely /cloud or locally
- Individual, team or large orgs

Tracking Metrics

- Simplified tracking for ML models means faster time to insights and value
- Integrated with popular ML library & languages

Model management

 Launch of model registry enhances governance and core proposition of model management.

More mlflow

- MLflow Tracking
- MLflow Project
- MLflow Models
- MLflow Model registry
- MLflow Deployment

Experiment tracking

Model deployment/serving

Model governance

Reference

- MLflow official Doc
- MLflow tracking
- Learning MLflow
 - 2020_Workshop | Managing the Complete Machine Learning Lifecycle with MLflow (DataBricks)
- MLOps: Continuous delivery and automation pipelines in machine learning
- 2020 Spark Summit: Enabling Scalable Data Science Pipelines with MLflow and Model Registry at Thermo Fisher Scientific
- 2020 DEEM workshop: Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle
- Example codes of this talk (Github)

Thanks!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

