Отчет по лабораторной работе №6

Модель эпидемии - вариант 48

Казаков Александр НПИбд-02-19

Содержание

Сп	исок литературы	11
4	Выводы	10
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 7
2	Задание	5
1	Цель работы	4

List of Figures

3.1	График изменения числа особей в случае $I(0) \leq I^*$	9
3.2	График изменения числа особей в случае $I(0) > I^*$	9

1 Цель работы

Изучить простейшую модель эпидемии.

2 Задание

- 1. Изучить простейшую модель эпидемии.
- 2. Построить графики изменения числа особей в каждой из трех групп.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) - это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & \mbox{,ecли } I(t) > I^* \ 0 & \mbox{,ecли } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecли } I(t) > I^* \ -eta I & ext{,ecли } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

3.2 Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=7823) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=103, А число здоровых людей с иммунитетом к болезни R(0)=10. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: $1.I(0) \leq I^*$ $2.I(0) > I^*$

model lab6 1

parameter Real a = 0.01;

```
parameter Real b = 0.02;
Real S(start = 7710);
Real I(start = 103);
Real R(start = 10);
equation
der(S) = 0;
der(I) = -b * I;
der(R) = b * I;
annotation(experiment(StartTime = 0, StopTime = 500, Interval = 0.05));
end lab6_1;
model lab6_2
parameter Real a = 0.01;
parameter Real b = 0.02;
Real S(start = 7710);
Real I(start = 103);
Real R(start = 10);
equation
der(S) = -a * S;
der(I) = a * S - b * I;
der(R) = b * I;
annotation(experiment(StartTime = 0, StopTime = 500, Interval = 0.05));
```

end lab6_2;

Figure 3.1: График изменения числа особей в случае $I(0) \leq I^*$

Figure 3.2: График изменения числа особей в случае $I(0)>I^{st}$

4 Выводы

Изучена простейшая модель эпидемии, построены графики изменения числа особей.

Список литературы

- 1. Документация по системе Modelica Режим доступа: https://www.modelica.org/
- 2. Введение в математическое моделирование : учебное пособие / В.Н. Ашихмин, М.Б. Гитман, И.Э. Келлер [и др.]; Под ред. П.В. Трусова. Электронные текстовые данные. М. : Логос, 2015. 440 с. : ил. (Новая Университетская Библиотека). ISBN 978-5-98704-637-1.