Tutorial 3

QNo.	Question	Marks
Q1.	(A)Let, $A = \{a, b, c, d, e\}$ $R = \{(a, a), (a,b), (b,c), (c,e), (c,d), (d,e)\}$ Obtain: i) R^2 ii) R^3 iii) R^4 iv) R^{∞} Sol:	4+4=08
	$\mathbf{Set} \ \mathbf{A} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}\}$	
	Relation $R = \{(a,a), (a,b), (b,c), (c,d), (c,e), (d,e)\}$	
	i) $R^2 = R \circ R = \{(a,a), (a,b), (a,c), (b,d), (b,e), (c,e)\}$	
	ii) $R^3 = R^2 \circ R = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,e)\}$	
	iii) $R^4 = R^3 \circ R = \{(a,a), (a,b), (a,c), (a,d), (a,e)\}$	
	iv) R^{∞} (transitive closure) = {(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), (b,d), (b,e), (c,c), (c,d), (c,e), (d,d), (d,e), (e,e)}	
	Explanation: Composition R^n lists pairs (x,z) where there is a path of length n from x to z in the digraph. R^{∞} includes all reachable pairs (including reflexive pairs).	
	(B)Let, A = {H, S, R, G, W, E}, B = {7, 6, 5, 4, 3, 2}, R = {(H,7), (S, 5), (R, 3), (W, 4), (E, 6)}	
	Obtain: i. Domain of R ii. Range of R iii. Diagraph of R iv. M _R	
	Sol:	
	$i) Domain(R) = \{E, H, R, S, W\}$	
	ii) Range(R) = $\{3, 4, 5, 6, 7\}$	
Q2.	Let $A=\{1,2,3,4,5\}$ and R be the relation defined by aRb if and only if $a \le b$ compute R, R^2 and Connectivity Relation. (04)	07

Sol: Relation $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (2,5), (2,6), (2$ (3,3), (3,4), (3,5), (4,4), (4,5), (5,5) $R^2 = R \circ R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (2,5), (2,6),$ (3,3), (3,4), (3,5), (4,4), (4,5), (5,5)Connectivity relation (reachability / transitive closure) for \leq equals R itself because \leq is transitive. So connectivity = R. Draw Digraph of R, R² and Connectivity Relation.(03) Q.3 (A) Suppose R is a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$, as 05+05 $x, y \in A, x R y \Leftrightarrow |x - y| < 2$ (i) What are the ordered pairs in the relation R? (1M) (ii)Draw the directed graph (diagraph) that represents R (1M) (iii)Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive. (3M) Sol: (i)Let $A = \{-2, -1, 0, 1, 2\}$ and define xRy iff |x - y| < 2. Ordered pairs in R: $\{(-1,-1), (-1,-2), (-1,0), (-2,-1), (-2,-2), (0,-1), (0,0), (-2,-1), (-2,-2), (0,-1), (0,0), (-2,-1), (-2,-2), (0,-1), (0,0), (-2,-2), (0,-1), (0,0), (-2,-2), (0,-2), ($ (0,1), (1,0), (1,1), (1,2), (2,1), (2,2)(ii)Directed graph: (iii)Reflexive? Yes, because |x-x| = 0 < 2 for all x. Symmetric? Yes, because |x-y| = |y-x|, so if (x,y) in R then (y,x) in R. Antisymmetric? No: antisymmetry would require x=y whenever (x,y)and (y,x) hold; here distinct neighbors show antisymmetry fails. Transitive? Not necessarily: e.g., -2 R - 1 and -1 R 0 but -2 R 0? |-2 - 0| =2 which is not <2, so transitivity fails. (B)Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$ $a, b \in A$, $a R b \Leftrightarrow a. b \ge 2$

Determine whether the relation R is Equivalence Relation

Sol:

Let $A = \{-2, -1, 0, 1, 2\}$ and define aRb iff $a \cdot b \ge 2$.

Pairs in R: {(-1,-2), (-2,-1), (-2,-2), (1,2), (2,1), (2,2)}

Reflexive? No

Symmetric? Yes

Transitive? No

Conclusion: For equivalence relation all three must hold. Since reflexivity fails (0,0) not in R because $0\cdot0=0<2$, R is not an equivalence relation.