# CHEM 1220 Lecture Notes OpenStax Chemistry 2e

Matthew Rowley

August 26, 2025

## **COURSE ADMINISTRATIVE DETAILS**

- o My office hours
- o Intro to my research
- o Introductory Quiz
- o Grading details
  - · Exams 40, Final 20, Online Homework 15, Book Homework 15, Quizzes 10
  - $\cdot$  Online homework
  - · Frequent quizzes
- o Importance of reading and learning on your own
- o Learning resources
  - · My Office Hours
  - · Tutoring services https://www.suu.edu/academicsuccess/tutoring/
- Show how to access Canvas
  - · Calendar, Grades, Modules, etc.
  - · Quizzes
  - · Textbook
- Introduction to chemistry
  - · Ruby fluorescence
  - · Levomethamphetamine
  - · Rubber band elasticity
  - · Structure of the periodic table
  - · Salt on ice and purifying hydrogen peroxide

#### CHAPTER O

## 1210 REVIEW

There is a whole semester of material from 1210, and these are only the topics which are *most* important for success in 1220

- o Composition of atoms and ions (protons, neutrons and electrons)
- o Chemical formulas and names
  - · Formulas and molar masses
  - · Polyatomic ion names
  - · Naming ionic compounds
  - · Naming binary molecular compounds
  - · Naming acids
- o Balancing molecular equations
- o Solubility rules
- o Fundamentals of acid/base chemistry
- o Measurements vs. chemistry
  - · Converting from measurements to moles and back
  - · Stoichiometry and predicting amounts
  - · Limiting reactants
- o Enthalpy of reaction and heat equations
- Lewis structures

CHEM 1210 Review Quiz

## LIQUIDS AND SOLIDS

#### 10.1 Intermolecular Forces

- Many physical properties of solids, liquids, and gases can be explained by the strength of attractive forces between particles (Figure 10.5)
- Phase changes happen due to the interplay between kinetic energy and intermolecular forces (Figure 10.2)
- Pressure can also play a role in phase changes, as discussed later
- o These intermolecular forces come in different varieties
  - Dispersion Forces Non-polar molecules, impacted by polarizability, molecular weight, and surface area
    - \* Dominant in non-polar molecules
    - \* Created by induced dipoles (Figure 10.6)
    - \* Impacted by polarizability (Table 10.1)
    - \* Impacted by molecular weight (hydrocarbons from methane to wax)
    - \* Impacted by molecule shape (Figure 10.7 compares the boiling points of pentane isomers)
  - · Dipole-Dipole Forces
    - \* Dominant in polar molecules
    - \* Results from attraction between permanent dipoles (Figure 10.9)
  - · Hydrogen Bonding
    - \* Dominant only in molecules capable of hydrogen bonding
    - \* Must contain a hydrogen-donor atom (H attached to N, O, or F)
    - \* Must contain a hydrogen-acceptor atom (lone pair of electrons attached to N, O, or F)
    - \* Hydrogen bonds are more than just particularly strong dipole-dipole forces. They have strong directionality according to VSEPR
    - \* Figures 10.10, 10.14, and other figures on the Internet show water, DNA, and proteins all organized by hydrogen bonds
    - \* Figures 10.11 and 10.12 illustrate how much hydrogen bonds exceed dipole-dipole forces in strength

## 10.2 Properties of Liquids

Viscosity is a fluid's resistance to flow

- · We intuitively know that both water and honey flow...but at very different rates
- · Viscosity is proportional to the strength of intermolecular forces (high IF = high viscosity)
- · As temperature increases, kinetic energy is able to overcome intermolecular forces and viscosity decreases
- Table 10.2 gives the viscosities of some common substances (note the unusual units!)
- Surface tension is a force which minimizes a fluid's surface area
  - · Cohesive vs. adhesive forces
  - Bulk molecules have lower energy than surface molecules due to being *surrounded* by cohesive forces (Figure 10.16)
  - · Figure 10.17 illustrates a waterbug supporting itself on water surface tension
  - Surface tension is often in conflict with gravity and other forces, making most liquids rounded but not perfect spheres
  - · Surface tension is proportional to intermolecular forces (Table 10.3)
  - · Surface tension can be strongly affected by addition of certain solutes, called surfactants
- o Capillary action is a force between a fluid and narrow channels or capillaries of solid materials
  - Due to adhesive forces with the solid, liquids will be drawn up (or, less often, pushed down) a capillary
  - Figure 10.19 shows how paper towels are made to maximize capillary action, so they soak up water-based spills
  - The top of the liquid (called the meniscus) will curve differently depending on the reletive strength of cohesive and adhesive forces (Figure 10.18)
  - · Figure 10.20 shows capillary action in a variety of situations, including capillary repulsion
  - · Remember that when measuring volumes, convention is to read the *bottom* of the meniscus regardless of how it curves
  - · Don't worry about the formula given here

## Quiz 10.1 - Intermolecular Forces and Liquid Properties

#### Homework 10.1

- o 10.11: Predicting trends in boiling points
- o 10.21: Identifying intermolecular forces
- 10.25: Affect of temperature on viscosity

## 10.3 Phase Transitions

- Vaporization and condensation are the transitions between liquid and gas phases
  - · The enthalpy of vaporization  $(\Delta H_{vap})$  is the energy required to transition from liquid to gas phase
  - · Enthalpy of condensation is the opposite  $\Delta H_{con} = -\Delta H_{vap}$
  - · In a closed volume, these processes will reach a *dynamic equilibrium*
  - The partial pressure of the liquid at this equilibrium state is called its *vapor pressure* (Figure 10.22)
  - · Higher intermolecular forces lead to lower vapor pressures
  - · Higher temperatures increase the vapor pressure due to increased kinetic energy (Figure 10.23)

#### Boiling points

- · Figure 10.24 shows vapor pressure curves and the normal boiling points of several liquids
- Boiling points generally depend on the pressure (pressure cookers, boiling water to freezing, etc.)
- · The Clausius-Clapeyron equation defines these curves (Note the rearrangments I've made)  $P = Ae^{-\Delta H_{vap}/RT} \qquad \ln P = -\frac{\Delta H_{vap}}{RT} + \ln A \qquad \ln \left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} \frac{1}{T_1}\right)$
- Fusion (melting), freezing, sublimation, and deposition all have their enthalpies and transition temperatures
- $\circ$  These enthalpies are state functions, such that  $\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$  (Figure 10.28)
- Heating and Cooling curves
  - · When heat is added to a system, it will either cause a phase change, or a change in temperature
  - For phase changes,  $q = n\Delta H_{change}$
  - · For temperature changes,  $q=mc\Delta T$ , where c is the specific heat for that substance and phase
  - · Sometimes  $\Delta H_{change}$  is given as a -per gram value, and sometimes c is given as a -per mole value, but usually not:(
  - Figure 10.29 shows a typical heating curve (Work example 10.10 in the text)

#### Quiz 10.2 - Heating Curves

## Homework 10.2

- o 10.31: Temperature during a phase transition
- o 10.39: Definition of normal boiling point
- 10.51: Heating curve problem

## 10.4 Phase Diagrams

- The stable phase at different temperatures and pressures is best illustrated with a phase diagram (Figures 10.30, 10.31)
- We can tell at a glance what transitions might occur as we increase or decrease either the temperature or pressure
- Note that at some pressures, sublimation may occur instead of fusion
- The triple point is a unique point where liquid, solid, and gas can all exist at equilibrium (contrast with a glass of icy water on a humid day)
- o The critical point is where the distinction between liquid and solid phases disappears
- Figure 10.34 shows the phase diagram of CO<sub>2</sub>
- Supercritical fluids exhibit some interesting properties, and are often great solvents (Nile Blue Youtube video)
- o Critical points vary widely depending on the intermolecular forces, and other factors (Table in text)

## Quiz 10.3 - Phase Diagrams

## 10.5 The Solid State of Matter

## 10.6 Lattice Structures in Crystalline Solids

## SOLUTIONS AND COLLOIDS

- 11.1 The Dissolution Process
- 11.2 Electrolytes
- 11.3 Solubilty
- 11.4 Colligative Properties
- 11.5 Colloids

## **KINETICS**

- 12.1 Chemical Reaction Rates
- 12.2 Factors Affecting Reaction Rates
- 12.3 Rate Laws
- 12.4 Integrated Rate Laws
- 12.5 Collision Theory
- 12.6 Reaction Mechanisms
- 12.7 Catalysis

## FUNDAMENTAL EQUILIBRIUM CONCEPTS

- 13.1 Chemical Equilibria
- 13.2 Equilibrium Constants
- 13.3 Shifting Equilibria: Le Châtelier's Principle
- 13.4 Equilibrium Calculations

## ACID-BASE EQUILIBRIA

- 14.1 Brønsted-Lowry Acids and Bases
- 14.2 pH and pOH
- 14.3 Relative Strengths of Acids and Bases
- 14.4 Hydrolysis of Salts
- 14.5 Polyprotic Acids
- 14.6 Buffers
- 14.7 Acid-Base Titrations

## EQUILIBRIA OF OTHER REACTION CLASSES

- 15.1 Precipitation and Dissolution
- 15.2 Lewis Acids and Bases
- 15.3 Coupled Equilibria

## **THERMODYNAMICS**

- 16.1 Spontaneity
- 16.2 Entropy
- 16.3 The Second and Third Laws of Thermodynamics
- 16.4 Free Energy

## **ELECTROCHEMISTRY**

| 17.1 | Review of Redox Chemistry |
|------|---------------------------|
| 17.2 | Galvanic Cells            |

- 17.3 Electrode and Cell Potentials
- 17.4 Potential, Fee Energy, and Equilibrium
- 17.5 Batteries and Fuel Cells
- 17.6 Corrosion
- 17.7 Electrolysis

## **NUCLEAR CHEMISTRY**

- 21.1 Nuclear Structure and Stability
- 21.2 Nuclear Equations
- 21.3 Radioactive Decay
- 21.4 Transmutation and Nuclear Energy
- 21.5 Uses of Radioisotopes
- 21.6 Biological Effects of Radiation

## **ERRATA**