INTRODUCTION TO PROBABILITY AND STATISTICS FOURTEENTH EDITION

CH11 VS CH12?

- In Chapter 11, we used ANOVA to investigate the effect of various factor-level combinations (treatments) on a response.
 - Our objective was to see whether the treatment means were different.
- In Chapters 12 and 13, we investigate a response y which is affected by various independent variables, x_i .

INTRODUCTION

- Our objective is to use the information provided by the x_i to predict the value of y.
- We plot the value of x in the x-axis, and the value of y in the y-axis.
 - *x*, factor, explanatory variable, independent variable, input
 - y, response variable, dependent variable, output

SUM OF SQUARES: DEFINITIONS AND SIMPLICATIONS

$$\begin{split} S_{xx} &:= \sum (x_i - \bar{x})^2 = \sum (x_i^2 - 2\bar{x}x_i + \bar{x}^2) = \sum x_i^2 - 2\bar{x}(n\bar{x}) + n\bar{x}^2 = \sum x_i^2 - n\bar{x}^2 \\ S_{yy} &:= \sum (y_i - \bar{y})^2 = \sum (y_i^2 - 2\bar{y}y_i + \bar{y}^2) = \sum y_i^2 - 2\bar{y}(n\bar{y}) + n\bar{y}^2 = \sum y_i^2 - n\bar{y}^2 \\ S_{xy} &:= \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum (x_i y_i - \bar{x}y_i - \bar{y}x_i + \bar{x}\bar{y}) = \sum x_i y_i - \bar{x}(n\bar{y}) - \bar{y}n\bar{x} + n\bar{x}\bar{y} = \sum x_i y_i - n\bar{x}\bar{y} \,. \end{split}$$

12.1 SIMPLE LINEAR REGRESSION

EXAMPLE

- Let *y* be a student's college achievement, measured by his/her GPA. This might be a function of several variables:
 - x_1 = rank in high school class
 - x_2 = high school's overall rating
 - x_3 = high school GPA
 - $x_4 = SAT$ scores
- We want to predict y using knowledge of x_1 , x_2 , x_3 and x_4 .

EXAMPLE

- Let y be the monthly sales revenue for a company. This might be a function of several variables:
 - x_1 = advertising expenditure
 - x_2 = time of year
 - x_3 = state of economy
 - x_4 = size of inventory
- We want to predict y using knowledge of x_1 , x_2 , x_3 and x_4 .

- Which of the independent variables are useful and which are not?
- How could we create a prediction equation to allow us to predict y using knowledge of x_1 , x_2 , x_3 etc?
- How good is this prediction?

We start with the simplest case, in which the response *y* is a function of a single independent variable, *x*.

A SIMPLE LINEAR MODEL

- In Chapter 3, we used the equation of a line to describe the relationship between y and x for a **sample** of n pairs, (x, y).
- If we want to describe the relationship between *y* and *x* for the **whole population**, there are two models we can choose
- •Deterministic (Economic) Model: $y = \alpha + \beta x$
- •Probabilistic (Econometric) Model:
 - •y = deterministic model + random error
 - •y = $\alpha + \beta x + \epsilon$

A SIMPLE LINEAR MODEL

- Since the bivariate measurements that we observe do not generally fall **exactly** on a straight line, we choose to use:
- Probabilistic Model:

$$\bullet \mathbf{y} = \alpha + \beta \mathbf{x} + \varepsilon$$

• $E(y \mid x) = \alpha + \beta x$ Points deviate from the line of means by an amount

 ϵ where ϵ has a normal distribution with mean 0 and variance σ^2 .

THE RANDOM ERROR

- The line of means, $E(y | x) = \alpha + \beta x$, describes average value of y for any fixed value of x.
- The population of measurements is generated as y deviates from the population line by ε. We estimate α and β using sample information.

$$E(y) := E(y \mid x) = \alpha + \beta x$$

The line of means

$$E(y) := E(y \mid x) = \alpha + \beta x,$$

is also called:

- \circ the conditional mean given *x*:
- \circ the conditional expectation given x,
- the simple regression function
- the regression function
- Interpretations of α and β
 - α : when x = 0, on avereage, y is α . 當x=0, y平均而言是 α
 - \circ β : when x increases one unit, on average, y increases β unit. 當 x增加一個單位,平均而言,y增加 β 個單位。

THE METHOD OF LEAST SQUARES

• The equation of the best-fitting line is calculated using a set of n pairs (x_i, y_i) .

•We choose our estimates a and b to estimate α and β so that the vertical distances of the points from the line, are minimized.

Bestfitting line: $\hat{y} = a + bx$

Choose a and b to minimize

$$SSE = \sum (y - \hat{y})^2 = \sum (y - a - bx)^2$$

APPENDIX: PROOF OF LSE

• Least squares estimators a and b minimize SSE(a, b), where

SSE
$$(a, b) = \sum_{i=1}^{n} (y - \hat{y})^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2.$$

• Results: The least squares estimators are:

$$b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}},$$

$$a = \bar{y} - b\bar{x}.$$

• The *estimated* or *fitted* regression line is: $\hat{y}_i = a + bx_i$.

EXAMPLE

The table shows the math achievement test scores for a random sample of n = 10 college freshmen, along with their final calculus grades.

Student	1	2	3	4	5	6	7	8	9	10
Math test, x	39	43	21	64	57	47	28	75	34	52
Calculus grade, y	65	78	52	82	92	89	73	98	56	75

Use your calculator to find the sums and sums of squares.

$$\sum x = 460$$
 $\sum y = 760$
 $\sum x^2 = 23634$ $\sum y^2 = 59816$
 $\sum xy = 36854$
 $\bar{x} = 46$ $\bar{y} = 76$

EXAMPLE

$$S_{xx} = 23634 - \frac{(460)^2}{10} = 2474$$

$$S_{yy} = 59816 - \frac{(760)^2}{10} = 2056$$

$$S_{xy} = 36854 - \frac{(460)(760)}{10} = 1894$$

$$b = \frac{1894}{2474} = .76556$$
 and $a = 76 - .76556(46) = 40.78$

Bestfitting line: $\hat{y} = 40.78 + .77x$

16

Demo.
$$SSE(a,b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
.

$$a = -1.41, b = -4.10$$

a = 5.07, b = 2.59

APPENDIX A: LSE formulas derivations

Recall that $SSE(a, b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$. First-order-Condition:

$$\frac{\partial SSE(a,b)}{\partial a} = -2\sum_{i} (y_i - a - bx_i) = 0,$$

$$\frac{\partial SSE(a,b)}{\partial b} = -2\sum_{i} x_i (y_i - a - bx_i) = 0.$$

Simple math gives

$$\sum y_i = na + (\sum x_i)b,\tag{1}$$

$$\sum x_i y_i = (\sum x_i) a + (\sum x_i^2) b.$$
 (2)

• Multipling (1) by $(\sum x_i)$ and multiply (2) by n, we have

$$(\sum x_i)(\sum y_i) = n(\sum x_i)a + (\sum x_i)^2b, \tag{3}$$

$$n(\sum x_i y_i) = n(\sum x_i)a + n(\sum x_i^2)b. \tag{4}$$

• Thus, (4)-(3) gives

$$b = \frac{n(\sum x_i y_i) - (\sum x_i \sum y_i)}{n(\sum x_i)^2 - (\sum x_i)^2} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}.$$

Plug b back to (1), we have $a = \bar{y} - \bar{x}b$.

12.2 AN ANALYSIS OF VARIANCE FOR LIENAR REGRESSION

THE ANOVA TABLE

Total
$$df = n-1$$

Regression
$$df = 1$$

Error
$$df = n-1-1=n-2$$

Mean Squares

$$MSR = SSR/(1)$$

$$MSE = SSE/(n-2)$$

Source	df	SS	MS	F
Regression	1	SSR	MSR=SSR/(1)	F=MSR/MSE
Error	n - 2	SSE	MSE=SSE/(n-2)	
Total	n -1	Total SS		

The total variation in the experiment is measured by the **total sum of squares**:

Total SS=
$$S_{yy} = \sum (y - \overline{y})^2$$

The **Total SS** is divided into two parts:

✓ SSR (sum of squares for regression): measures the variation explained by using *x* in the model.

✓SSE (sum of squares for error): measures the leftover variation not explained by *x*.

TOTAL SS

- Total SS = $\sum (y_i \bar{y})^2 = S_{yy}$.
- Note that $\sum_{i=1}^{n} y_i = n\bar{y}$.
- Thus,

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i^2 - 2\bar{y}y_i + \bar{y}^2) = \sum_{i=1}^{n} y_i^2 - 2\bar{y} \sum_{i=1}^{n} y_i + n\bar{y}^2$$

$$= \sum_{i=1}^{n} y_i^2 - 2\bar{y}(n\bar{y}) + n\bar{y}^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2$$

HOW TO CALCULATE ANOVA TABLE?

1. Total SS =
$$\sum (y - \bar{y})^2 = S_{yy}$$
.

2. SSR

$$\begin{split} \text{SSR:=} & \sum (\hat{y}_i - \bar{y})^2 = \sum ((a + bx_i) - \bar{y})^2 = \sum ((\bar{y} - b\bar{x}) + bx_i - \bar{y})^2 \\ & = \sum (b(x_i - \bar{x}))^2 = b^2 S_{xx} = \left(\frac{S_{xy}}{S_{xx}}\right)^2 S_{xx} = \frac{S_{xy}^2}{S_{xx}} \,. \end{split}$$

3. SSE = Total SS - SSR

THE ANALYSIS OF VARIANCE

We calculate

$$SSR = \frac{(S_{xy})^2}{S_{xx}} = \frac{1894^2}{2474}$$

= 1449.9741

SSE= Total SS- SSR

$$=S_{yy}-\frac{(S_{xy})^2}{S_{xx}}$$

=2056-1449.9741

=606.0259

THE CALCULUS PROBLEM

$$SSR = \frac{(S_{xy})^2}{S_{xx}} = \frac{1894^2}{2474} = 1449.9741$$

SSE= Total SS- SSR=
$$S_{yy} - \frac{(S_{xy})^2}{S_{xx}}$$

= 2056 - 1449.9741 = 606.0259

Source	df	SS	MS	F
Regression	1	1449.9741	1449.9741	19.14
Error	8	606.0259	75.7532	
Total	9	2056.0000		

CALCULATION OF CH 12.1-12.2

- A: Calculate($\sum x_i$), ($\sum y_i$), ($\sum x_i^2$), ($\sum y_i^2$),($\sum x_i y_i$), \bar{x} , and \bar{y}
- B: Calculate

$$S_{xx} := \sum (x - \bar{x})^2 = \sum x^2 - (\sum x)^2 / n .$$

$$S_{yy} := \sum (y - \bar{y})^2 = \sum y^2 - (\sum y)^2 / n.$$

$$\circ S_{xy} := \sum (x - \bar{x})(y - \bar{y}) = \sum xy - (\sum x)(\sum y)/n.$$

- C: Calculate
 - $\circ b = S_{xy}/S_{xx}$
 - $\circ a = \bar{y} b\bar{x}$
 - Best fitting line: y = a + bx
- D: Complete the ANOVA table:
 - (1) totalSS = S_{yy}
 - (2) SSR = S_{xy}^2 / S_{xx} ,
 - (3) SSE = totalSS SSR.

12.3 TESTING THE USEFULNESS OF THE LINEAR REGRESSION MODEL

THREE EQUIVELENT APPROAHCES

- 1. H_0 : model is not useful in explaining the response variable vs H_1 : model is useful in explaining the response variable
 - Using ANOVA, F test, right-tailed test
- $2. H_0: \beta = 0 \text{ vs } H_1: \beta \neq 0$
- $3. H_0: \rho = 0 \text{ vs } H_1: \rho \neq 0$
 - $t_{STAT} = r \sqrt{\frac{n-2}{(1-r^2)}} \sim t_{(n-2)}, t \text{ test, two-sided test}$

TESTING THE USEFULNESS OF THE MODEL

- The first question to ask is whether the independent variable x is of any use in predicting y.
- If it is not, then the value of *y* does not change, regardless of the value of *x*. This implies that the slope of the line, β, is zero.

$$H_0: \beta = 0 \quad \text{versus } H_a: \beta \neq 0$$

KEY INGREDIENTS

$$a \sim N\left(\alpha, \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2}\right),$$

$$^{\circ} b \sim N\left(\beta, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right).$$

- See appendix for derivations in p.44 p.49.
- With the above information, we can do statistical inference:
 - Confidence interval
 - Hypothesis test

t-TEST

- 1. H_0 : $\beta = 0$ vs H_1 : $\beta \neq 0$
- 2. Set α

3.
$$t_{STAT} = \frac{b-0}{\sqrt{MSE/S_{xx}}} \sim t_{(n-2)}$$
.

- 4. Calulate *t**
- 5. Find the rejection region or *p*-value. (two-tail test).
- 6. Conclude.

SUMMARY

• The $100(1-\alpha)\%$ CI for β is

$$b \pm t_{(n-2);\alpha/2} \sqrt{\frac{\text{MSE}}{S_{xx}}}.$$

• To ask whether x is useful in predicting y, we set $H_0: \beta = 0$ vs $H_1: \beta \neq 0$. The test statistic is

$$t_{STAT} = \frac{b-0}{\sqrt{\frac{\text{MSE}}{S_{xx}}}} \sim t_{(n-2)}.$$

THE CALCULUS PROBLEM

• Is there a significant relationship between the calculus grades and the test scores at the 5% level of significance?

$$H_0: \beta = 0 \text{ versus} H_a: \beta \neq 0$$

$$t = \frac{b - 0}{\sqrt{\text{MSE}/S_{xx}}} = \frac{.7656 - 0}{\sqrt{75.7532/2474}} = 4.38$$

Reject H_0 when |t| > 2.306. Since t = 4.38 falls into the rejection region, H_0 is rejected.

There is a significant linear relationship between the calculus grades and the test scores for the population of college freshmen.

• You can test the overall usefulness of the model using an F test. If the model is useful, MSR will be large compared to the unexplained variation, MSE.

To test H₀: model is useful in predicting y

Test Statistic:
$$F = \frac{MSR}{MSE}$$

RejectH₀ if $F > F_{\alpha}$ with 1 and n - 2 df.

THE F TEST

You can test the overall usefulness of the model using an *F* test. If the model is useful, MSR will be large compared to the unexplained variation MSE.

- 1. H_0 : The model is not useful in predicting y vs H_1 : The model is useful in predicting y
- 2. Set up α
- 3. Test statistic: $F_{STAT} = \frac{MSR}{MSE} \sim F_{1,(n-2)}$.
- 4. Calculate realized statistic F^* .
- 5. Find rejection region of *p*-value.

This is a right-tailed test!

6. Conclude

This test is exactly equivalent to the t-test, with $t^2 = F$.

MINITAB OUTPUT

Least squares regression line

To test $H_0: \beta = 0$

Regression Analysis: y versus x

The regression equation is y = 40.8 + 0.766 x

Predictor Coef SE Coef T P

Constant 40.784 8.507 4.79 0.001

x 0.7656 0.1750 4.38 0.002

$$S = 8.70363$$
 $R-Sq = 70.5\%$ $R-Sq(adj) = 66.8\%$

Analysis of Variance

Source DF SS Regression 1 1450.0 Residual Error 8 606.0

Total 9 2056.0

F P 19.14 0.002

Regression coefficients, *a* and *b*

MS

1450.0

75.8

WHY
$$t_{STAT}^2 = F_{STAT}$$
?

• The *t* test and *F* test are indeed the same! This is because:

$$t_{STAT}^{2} = \left(\frac{b}{\sqrt{MSE/S_{xx}}}\right)^{2} = \frac{b^{2}}{MSE/S_{xx}} = \frac{b^{2}S_{xx}}{MSE}$$
$$= \frac{S_{xy}^{2}}{S_{xx}^{2}} \frac{S_{xx}}{MSE}$$
$$= \frac{S_{xy}^{2}}{S_{xx}MSE} = \frac{SSR}{MSE} = \frac{SSR/1}{MSE} = \frac{MSR}{MSE} = F_{STAT}$$

MEASURING THE STRENGTH OF THE RELATIONSHIP

- If the independent variable *x* is useful in predicting *y*, you will want to know how well the model fits.
- The strength of the relationship between *x* and *y* can be measured using:
- Correlation coefficient: $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$.
- Coefficient of determination: $R^2 = \frac{\text{SSR}}{\text{Total SS}}$ (pronounced "R squared").

R^2

- Because Total = SS+SSE, R^2 measures the proportion of the total variation in the response that can be explained by using the explanatory variable x in the model.
- The percent reduction the total variation by using the regression equation rather than just using the sample mean \bar{y} to estimate y.
- For the calculation problem, $R^2 = 0.705$ or 70.5%. The model is working well!

WHY $R^2 = r^2$?

• This is because

$$r^{2} = \left(\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}\right)^{2} = \frac{S_{xy}^{2}}{S_{xx}S_{yy}} = \frac{S_{xy}^{2}}{S_{xx}} \frac{1}{S_{yy}} = \frac{SSR}{Total SS} = R^{2}$$

$$Recall that SSR = \frac{S_{xy}^{2}}{S_{xx}}!$$

INTERPRETING A SIGNIFICANT REGRESSION

- Even if you do not reject the null hypothesis that the slope of the line equals 0, it does not necessarily mean that y and x are unrelated.
- Type II error—falsely declaring that the slope is 0 and that x and y are unrelated.
- It may happen that y and x are perfectly related in a nonlinear way.

SOME CAUTIONS

- Extrapolation—predicting values of *y* outside the range of the fitted data.
- Causality—Do not conclude that *x* causes *y*. There may be an unknown variable at work!

APPENDIX B: A USEFUL FORMULA

• Linear combinations of indepedenent normal distributions remain a normal distribution. Specifically, if $X_i \sim N(\mu_i, \sigma^2)$ and X_i are independent, then

$$\sum a_i X_i \sim N\left(\sum a_i \mu_i, \sigma^2(\sum a_i^2)\right).$$

APPENDIX: WHY $b \sim N(\beta, \frac{\sigma^2}{\sum (x_i - \bar{x})^2})$?

• Because $\sum (x_i - \bar{x}) = 0$, we rewrite b as $b = \sum \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ $= \sum \frac{(x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}$ $= \sum \left(\frac{x_i - \bar{x}}{\sum (x_i - \bar{x})^2} \right) y_i$ $= \sum w_i y_i,$ where $w_i = \frac{x_i - \bar{x}}{\sum (x_i - \bar{x})^2}$.

 b is a linear combination of normal distribution, and hence a normal distribution. • To find the expectation and variance of *b*, note the following identities:

$$\sum w_{i} = 0;$$

$$\sum w_{i}x_{i} = \sum \frac{(x_{i} - \bar{x})x_{i}}{\sum (x_{i} - \bar{x})^{2}} = \sum \frac{(x_{i} - \bar{x})x_{i} - (x_{i} - \bar{x})\bar{x}}{\sum (x_{i} - \bar{x})^{2}} = \sum \frac{(x_{i} - \bar{x})(x_{i} - \bar{x})}{\sum (x_{i} - \bar{x})^{2}} = 1;$$

$$\sum w_{i}^{2} = \sum \left(\frac{(x_{i} - \bar{x})x_{i}}{\sum (x_{i} - \bar{x})^{2}}\right)^{2} = \frac{1}{\sum (x_{i} - \bar{x})^{2}}.$$

Rewrite

$$b = \sum w_i(\alpha + \beta x_i + e_i)$$

$$= \alpha \sum w_i + \beta \sum w_i x_i + \sum w_i e_i$$

$$= \beta + \sum w_i e_i.$$

• Therefore,

$$E(b) = \beta$$

•
$$var(b) = \sum w_i^2 \sigma^2 = \sigma^2 \frac{1}{\sum (x_i - \bar{x})^2}$$
.

APPENDIX: WHY
$$a \sim N(\alpha, \sigma^2 \frac{\sum x_i^2}{n \sum (x_i - \bar{x})^2})$$
?

• Now, we write $a = \bar{y} - b\bar{x}$

$$= \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}w_i\right) y_i$$

$$= \sum_{i} \left(\frac{1}{n} - \bar{x}w_i\right)(\alpha + \beta x_i + e_i)$$

$$= (\alpha - \alpha \bar{x} \sum w_i) + \left(\beta \bar{x} - \bar{x}\beta \sum x_i w_i\right) + \sum \left(\frac{1}{n} - \bar{x}w_i\right) e_i$$

$$= \alpha + \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} w_i \right) e_i.$$

Hence, a is a normal distribution.

• To find the expectation and variance of *a*, it is easy to see

$$E(a) = \alpha + \sum_{i=1}^{n} \left[\left(\frac{1}{n} - \bar{x}w_{i} \right) 0 \right] = \alpha$$

$$var(a) = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i} \right)^{2} \sigma^{2}$$

$$= \sigma^{2} \left(\sum_{i=1}^{n} \frac{1}{n^{2}} - 2 \sum_{i=1}^{n} w_{i} + \bar{x}^{2} \sum_{i=1}^{n} w_{i}^{2} \right)$$

$$= \sigma^{2} \left(\frac{1}{n} + \bar{x}^{2} \frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right)$$

$$= \sigma^{2} \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + n\bar{x}^{2}}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= \sigma^{2} \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \sigma^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}.$$

12.4

49

Diagnostic Tools for checking the regression assumptions

CHECKING THE REGRESSION ASSUMPTIONS

- 1. The relationship between x and y is linear, given by $y = \alpha + \beta x + \epsilon$. ϵ : error $\not\equiv$
- 2. The random error terms ε are independent and, for any value of x, have a normal distribution with mean 0 and variance σ^2 .
- Remember that the results of a regression analysis are only valid when the necessary assumptions have been satisfied.

50

DIAGNOSTIC TOOLS

- We use the same diagnostic tools used in Chapter 11 to check the normality assumption and the assumption of equal variances.
 - 1. Normal probability plot of residuals
 - 2. Plot of residuals versus fit or residuals versus variables

RESIDUALS

- ●Residual = 殘差, estimated error:
- $r_i := y_i \hat{y}_i = y_i a bx_i.$
- •If all assumptions have been met, these residuals should be $N(0,\sigma^2)$.
- ■Informal way
 - 1. Residuals plots (identical and independent)
 - $\circ r_i \text{ vs } y_i$
 - \circ r_i vs i
 - $\circ r_i \text{ vs } x_i$
 - Normal distribution
 - Normal probability plot
 - histogram

The **residual error** is the "leftover" variation in each data point after the variation explained by the regression model has been removed.

RESIDUALS VERSUS FITS

- ✓ If the equal variance assumption is valid, the plot should appear as a random scatter around the zero center line.
- ✓ If not, you will see a pattern in the residuals.

NORMAL PROBABILITY PLOT

- ✓ If the normality assumption is valid, the plot should resemble a straight line, sloping upward to the right.
- ✓ If not, you will often see the pattern fail in the tails of the graph.

12.5

55

Estimation and prediction using the fitted line

ESTIMATION AND PREDICTION

- Once you have
 - √ (12.4) used the diagnostic plots to check for violation of the regression assumptions.
 - \checkmark (12.2) determined that the regression line is useful ($\beta \neq 0$)
- You are ready to use the regression line to

- ✓ Estimate the average value of y for a given value of x: $E(y \mid x)$
- ✓ Predict a particular value of y for a given value of x: y_{new}

ESTIMATION AND PREDICTION

• The best estimate of either E(y) or y for a given value $x = x_0$ is

$$\hat{y} = a + bx_0$$

 Particular values of y are more difficult to predict, requiring a wider range of values in the prediction interval.

HOW DO WE OBTAIN CI

- Target: $E(y | x_0) = \alpha + \beta x_0$
- We use $\hat{y} = a + bx_0$ to estimate $E(y | x_0)$
- Appendix has shown that $(a + bx_0) \sim N(\alpha + \beta x_0, \sigma^2(\frac{1}{n} + \frac{(x_0 \bar{x})^2}{S_{xx}}))$

Therefore,
$$\frac{(a + bx_0) - (\alpha + \beta x_0)}{\sqrt{MSE(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}} \sim t_{(n-2)}$$

• To obtain the CI, we start with

$$1 - \alpha = P \left(-t_{(n-2);\alpha/2} < \frac{(a + bx_0) - (\alpha + \beta x_0)}{\sqrt{MSE(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}} < t_{(n-2);\alpha/2} \right)$$

HOW DO WE OBTAIN PREDICTION

INTERVAL? \checkmark Predict a particular value of y for a given value of x: y_{new}

- Target: $y_{new} = \alpha + \beta x_0 + \varepsilon_{new}$
- We use $\hat{y}_{new} = a + bx_0 + 0 = a + bx_0$ to predict y_{new}
- Vedio shows the forecast error:

$$\epsilon = y_{new} - \hat{y}_{new} = (\alpha + \beta x_0 + \varepsilon_{new}) - ((a + bx_0)) \sim N(0, \sigma^2 (1 + \frac{1}{n} + (x_0 - \bar{x})^2 / S_{xx}))$$

Therefore,
$$\frac{(y_{new}) - (\hat{y}_{new})}{\sqrt{MSE(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}} \sim t_{(n-2)}$$

• To obtain the PI, again, we start with

$$1 - \alpha = P \left(-t_{(n-2);\alpha/2} < \frac{y_{new} - (\hat{y}_{new})}{\sqrt{MSE(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}} < t_{(n-2);\alpha/2} \right)$$

$$= P\left(-t_{(n-2);\alpha/2}\sqrt{MSE(1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{S_{xx}})} < y_{new} - (\hat{y}_{new}) < t_{(n-2);\alpha/2}\sqrt{MSE(1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{S_{xx}})}\right)$$

ESTIMATION AND PREDICTION

Confidence interval (CI) for the average value of y given $x = x_0$

$$\hat{y} \pm t_{(n-2),\alpha/2} \sqrt{MSE(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}$$

Prediction interval (PI) for a *particular value* of y given $x = x_0$

$$\hat{y} \pm t_{(n-2),\alpha/2} \sqrt{MSE(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})}$$

$$MSE = \frac{SSE}{n-2}$$

Procedures in finding the best fitting regression line

- 1. Calculate $(\sum x_i)$, $(\sum y_i)$, $(\sum x_i^2)$, $(\sum y_i^2)$, $(\sum x_iy_i)$, \bar{x} , and \bar{y}
- 2. Calculate

•
$$S_{xx} = \sum (x - \bar{x})^2 = \sum x^2 - (\sum x)^2/n$$
.

•
$$S_{yy} = \sum (y - \bar{y})^2 = \sum y^2 - (\sum y)^2 / n$$
.

•
$$S_{xy} = \sum (x - \bar{x})(y - \bar{y}) = \sum xy - (\sum x)(\sum y)/n$$
.

3. Calculate

•
$$b = S_{xy}/S_{xx}$$

•
$$a = \bar{y} - b\bar{x}$$

Best fitting line: $\hat{y} = a + bx$ with a and b in Step 3.

4. Complete the ANOVA table:

totalSS =
$$S_{yy}$$
, SSR = S_{xy}^2/S_{xx} , SSE = totalSS - SSR.

https://youtu.be/onFoHVDoWhA?si=9X8NB8GdE0sZFUaA

62

THE CALCULUS PROBLEM

• Estimate the average calculus grade for students whose achievement score is 50 with a 95% confidence interval.

Calculate
$$\hat{y} = 40.78424 + .76556(50) = 79.06$$

$$\hat{y} \pm 2.306 \sqrt{75.7532 \left(\frac{1}{10} + \frac{(50 - 46)^2}{2474}\right)}$$

$$79.06 \pm 6.55 \text{ or } 72.51 \text{ to } 85.61.$$

THE CALCULUS PROBLEM

• Predict the calculus grade for a particular student whose achievement score is 50 with a 95% prediction interval.

Calculate
$$\hat{y} = 40.78424 + .76556(50) = 79.06$$

$$\hat{y} \pm 2.306 \sqrt{75.7532 \left(1 + \frac{1}{10} + \frac{(50 - 46)^2}{2474}\right)}$$

 79.06 ± 21.11 or 57.95 to 100.17.

Notice how much wider this interval is!

MINITAB OUTPUT

Confidence and

Predicted Values for New Observations

New Obs Fit SE Fit 79.06 2.84

95.0% CI (72.51, 85.61) (57.95,100.17)

95.0% PI

Values of Predictors for New Observations

New Obs 50.0

- √Green prediction bands are always wider than red confidence bands.
- √Both intervals are narrowest when x = *x*-bar.

12.6 CORRELATION ANALYSIS

CORRELATION ANALYSIS

 The strength of the relationship between x and y is measured using the coefficient of correlation:

Correlation coefficient:
$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

- Recall from Chapter 3 that
- (1) $-1 \le r \le 1$ (2) r and b have the same sign
- (3) $r \approx 0$ means no linear relationship
- (4) $r \approx 1$ or -1 means a strong (+) or (-) linear 67 relationship

EXAMPLE

The table shows the heights and weights of n = 10 randomly selected college football players.

Player	1	2	3	4	5	6	7	8	9	10
Height, x	73	71	75	72	72	75	67	69	71	69
Weight, y	185	175	200	210	190	195	150	170	180	175

Use your calculator to find the sums and sums of squares.

$$S_{xy} = 328$$
 $S_{xx} = 60.4$ $S_{yy} = 2610$

$$r = \frac{328}{\sqrt{(60.4)(2610)}} = .8261$$

FOOTBALL PLAYERS

r = .8261

Strong positive correlation

As the player's height increases, so does his weight.

SOME CORRELATION PATTERNS

Use the **Exploring Correlation** applet to explore some correlation patterns:

r = 0; No (linear) correlation

r = .931; Strong positive correlation

r = 1.0100.0 80.0 60.0 40.0 20.0 0.0 0.0 40.0 100.0

ρ V.S. r

Population quantity:

$$\rho = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sqrt{E(X - \mu_X)^2 E(Y - \mu_Y)^2}}$$

 \circ Sample estimate for ρ

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.$$

$$t_{STAT} = r\sqrt{\frac{n-2}{1-r^2}} \sim t_{(n-2)}$$

 The population coefficient of correlation is called ρ ("rho"). We can test for a significant correlation between x and y

To test
$$H_0: \rho = 0$$
 versus $H_a: \rho \neq 0$

Test Statistic:
$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

This test is exactly equivalent to the t-test for the slope β =0.

RejectH₀ if $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$ with n - 2 df.

EQUAL TO THE T-TEST FOR $H_0: \beta = 0$?

$$\left(r\sqrt{\frac{n-2}{1-r^2}}\right)^2 = r^2 \frac{n-2}{1-r^2} = R^2 \frac{n-2}{1-R^2}$$

$$= \frac{(n-2)\text{SSR/SSTotal}}{\text{SSE/SSTotal}}$$

$$= \frac{\text{SSR}}{\text{SSE/(n-2)}} = \frac{\text{SSR/1}}{\text{SSE/(n-2)}}$$

$$= \frac{\text{MSR}}{\text{MSE}} = F_{STAT} = (t_{STAT})^2.$$

Recall

$$r^2 = R^2$$

$$\circ$$
 SSE + SSR = SSTotal

$$F_{STAT} = (t_{STAT})^2$$

r = .8261 **EXAMPLE**

Is there a significant positive correlation between weight and height in the population of all college football players?

$$H_0: \rho = 0$$

 $H_a: \rho > 0$

Use the *t*-table with *n-2* = 8 df to bound the p-value as pvalue < .005. There is a significant positive correlation.

I. A Linear Probabilistic Model

- 1. When the data exhibit a linear relationship, the appropriate model is $y = \alpha + \beta x + \epsilon$.
- 2. The random error ε has a normal distribution with mean 0 and variance σ^2 .

II. Method of Least Squares

- 1. Estimates a and b, for α and β , are chosen to minimize SSE, the sum of the squared deviations about the regression line, $\hat{y} = a + bx$.
- 2. The least squares estimates are $b = S_{xy}/S_{xx}$ and a = y bx.

III. Analysis of Variance

- 1. Total SS = SSR + SSE, where Total SS = S_{yy} and SSR = $(S_{xy})^2 / S_{xx}$.
- 2. The best estimate of σ^2 is MSE = SSE / (n-2).

IV. Testing, Estimation, and Prediction

1. A test for the significance of the linear regression— $H_0: \beta = 0$ can be implemented using one of two test statistics:

$$t = \frac{b}{\sqrt{\text{MSE}/S_{xx}}}$$
 or $F = \frac{\text{MSR}}{\text{MSE}}$

2. The strength of the relationship between *x* and *y* can be measured using

$$R^2 = \frac{\text{SSR}}{\text{Total SS}}$$

which gets closer to 1 as the relationship gets stronger.

- 3. Use **residual plots** to check for nonnormality, inequality of variances, and an incorrectly fit model.
- 4. **Confidence intervals** can be constructed to estimate the intercept α and slope β of the regression line and to estimate the average value of y, E(y), for a given value of x.
- 5. **Prediction intervals** can be constructed to predict a particular observation, *y*, for a given value of *x*. For a given *x*, prediction intervals are always wider than confidence intervals.

V. Correlation Analysis

Use the correlation coefficient to measure the relationship between x and y when both variables are random:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

- The sign of r indicates the direction of the relationship; r near 0 indicates no linear relationship, and r near 1 or -1 indicates a strong linear relationship.
- A test of the significance of the correlation coefficient is identical to the test of the slope β^{78}