Busca Competitiva

Professor: José Eurípedes Ferreira de Jesus Filho jeferreirajf@gmail.com

Universidade Federal de Goiás – Unidade de Jataí

Agenda

- Introdução.
- Jogos.
- Algoritmo min-max.
- Poda alfa-beta.
- Exercício.

Introdução

- Na aula anterior.
 - PSRs e suas características.
 - Domínios finitos e domínios infinitos.
 - Busca com retrocesso.
 - Retrocesso baseado em conflito.
 - Conjunto de conflito.
 - Várias heurísticas.

- Problemas.
 - O que é busca competitiva?
 - Ambiente multi-agente no qual a meta dos agentes estão em conflito.
 - Competição.
 - Jogos.
 - Teoria dos jogos: Ramo da economia.
 - Planejamento com antecedência.
 - Um ou mais agentes também planejando contra nós.
 - O que devemos examinar?
 - Como examinar?
 - Que tipo de busca funcionaria?
 - Como prever o movimento de outros agentes?

- Jogos em IA:
 - Determinísticos de revezamento de dois jogadores de **soma zero**.
 - Informações perfeitas.
 - Quer dizer:
 - Ambientes determinísticos.
 - Completamente observáveis.
 - Dois agentes que alternam ações.
 - Os valores da utilidade no fim do jogo são iguais e opostos.
 - Um deve ganhar (+1) e o outro deve perder (-1).
 - A competição vem da oposição da utilidade.

- Xadrez;
- Futebol de robôs;
- Damas;
- Cartas;

• Etc...

- Precisamos tomar alguma decisão!
 - Em muitos casos o cálculo da decisão ótima é completamente inviável.
 - A árvore de busca para vários jogos possuem fator médio ou alto de ramificação.
 - Problemas difíceis!
 - Ineficiência portanto é extremamente punida.
 - O tempo gasto para a tomada de decisão é um fator importante!
 - Não queremos esperar infinito para que a máquina faça um movimento no xadrez.

- Definição.
 - Estado inicial: Inclui a posição do tabuleiro e identifica o jogador que fará o primeiro movimento.
 - **Função sucessor:** Retorna uma lista de pares (movimento, estado), cada qual informa um movimento válido e o estado resultante.
 - **Teste de término:** Determina quando o jogo termina. Estados onde o jogo é encerrado são chamados de **estados terminais**.
 - Função de utilidade: Dá um valor numérico aos estados terminais. Em xadrez, por exemplo, o resultado pode ser vitória (+1), empate (0) ou derrota (-1).

- Jogos com dois jogadores.
 - Um se chama MIN e o outro MAX.
 - Queremos maximizar a recompensa de MAX e minimizar a de MIN.
 - Desejamos portanto que MAX ganhe e MIN perca.
 - Queremos encontrar estratégias de contingência para MAX em cada estado.
 - Uma estratégia ótima é equivalente a um oponente infalível.

Árvore de busca

- Definições.
 - Movimento: Considera-se que MAX e MIN tenham jogado uma vez.
 - Jogada: "Meio movimento".
 - Valor minmax: Dado a árvore de jogo, é o valor retornado pela árvore de busca que analisa as jogadas da partida. Representa <u>a utilidade para MAX</u> em um dado nó.

$$ValorMinMax(n) = \begin{cases} Utilidade(n), se \ n \ \'e \ um \ estado \ terminal \\ \max_{a \ \in \ A\varsigma\~oes(n)} ValorMinMax(Sucessor(a,n)), se \ n \ \'e \ n\'o \ de \ MAX. \\ \min_{a \ \in \ A\varsigma\~oes(n)} ValorMinMax(Sucessor(a,n)), se \ n \ \'e \ n\'o \ de \ MIN. \end{cases}$$

```
função DECISÃO-MINIMAX(estado) retorna uma ação
  retornar arg maxa∈AçõES<sub>(S)</sub> VALOR-MIN(RESULTADO(estado, a))
função VALOR-MAX(estado) retorna um valor de utilidade
  se TESTE TERMINAL (estado) então retornar UTILIDADE(estado)
  v \leftarrow -\infty
  para cada a em AÇÕES(estado) faça
     v \leftarrow \text{MAX}(v, \text{VALOR-MIN}(\text{RESULTADO}(s, a)))
  retornar v
função VALOR-MIN(estado) retorna um valor de utilidade
  se TESTE-TERMINAL(estado) então retornar UTILIDADE(estado)
  v \leftarrow -\infty
  para cada a em AÇÕES(estado) faça
     v \leftarrow \text{MIN}(v, \text{VALOR-MAX}(\text{RESULTADO}(s, a)))
  retornar v
```

• E se tivermos mais de dois jogadores?

Poda alfa-beta

- A poda considera valores máximos e mínimos.
 - Beta: melhor valor possível encontrado pelo caminho para MAX.
 - Alfa: melhor valor possível encontrado pelo caminho para MIN.

Poda alfa-beta

Poda alfa-beta

```
função BUSCA-ALFA-BETA(estado) retorna uma ação

ν ← VALOR-MAX(estado, -∞, +∞)

retornar a ação em AÇÕES(estado) com valor ν

função VALOR-MAX(estado, α, β) retorna um valor de utilidade

se TESTE-TERMINAL(estado) então retornar UTILIDADE(estado)
```

```
v \leftarrow -\infty
  para cada a, em AÇÕES(estado) faça
     v \leftarrow \text{MAX}(v, \text{VALOR-MIN}(\text{RESULTADO}(s, a), \alpha, \beta))
     se v > \beta então retornar v
      \alpha \leftarrow \text{MAX}(\alpha, \nu)
  retornar v
função VALOR-MIN(estado, \alpha, \beta) retorna um valor de utilidade
  se TESTE-TERMINAL(estado) então retornar UTILIDADE(estado)
  v \leftarrow +\infty
  para cada a, em AÇÕES(estado) faça
     v \leftarrow \text{MIN}(v, \text{VALOR-MIN}(\text{RESULTADO}(s, a), \alpha, \beta))
      se v \le a então retornar v
     \beta \leftarrow \text{MIN}(\beta, \nu)
  retornar v
```

Exercício

• Qual é o erro no algoritmo busca-alfa-beta do slide anterior?

Próxima aula

Agentes lógicos.

• Para casa:

- Implemente um algoritmo busca-alfa-beta para o jogo da velha.
- Entregue no SIGAA.

• Mini pesquisa: N/A.