CS 228 : Logic in Computer Science

Krishna. S

Consider the formula

$$\varphi = \forall x. Q_a(x) \vee [\forall x. (Q_a(x) \Rightarrow \exists y. (Q_b(y) \land x < y))].$$

- 1. The word *aaa* is a model for φ : True
- 2. The word *b* is a model for φ : True
- 3. The word ab is a model for φ : True
- 4. The word *aba* is a model for φ : False
- 5. The word *bab* is a model for φ : True
- 6. The word *abab* is a model for φ : True
- 7. The word *baaaaa* is a model for φ : False
- 8. The word *bbb* is a model for φ , but *bb* is not : False
- 9. The word *abb* is not a model for φ , but *bba* is : False
- 10. Every word over a, b is a model for φ : False

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - ► Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - ► Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
 - ▶ Valid, if for any τ -structure \mathcal{A} and any assignment α for x_1, \ldots, x_n in $u(\mathcal{A}), \mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - ► Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
 - ▶ Valid, if for any τ -structure \mathcal{A} and any assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$, $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
- ▶ Assume we fix the type of the structure A, say words
- ► FO over words (why words?)

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - ► Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
 - ▶ Valid, if for any τ -structure \mathcal{A} and any assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$, $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
- ▶ Assume we fix the type of the structure A, say words
- ► FO over words (why words?)

Verification through Model Checking

Verification through Model Checking

Model Checking

- ➤ Abstract the given system = code/circuit as a finite state transition system, G
- Behaviours of the system = sequence of actions taken by G (these are words, and the actions are the symbols of the alphabet)
- ightharpoonup Write the property of interest in a chosen logic as formula φ
- ▶ Check $G \models \varphi$

Sequential Circuits

- ▶ Input variable *x*, output variable *y*, register *r*
- ▶ Output $\neg(x \oplus r)$ and register evaluates to $x \lor r$

$$\rightarrow (x=0, r=0, y=1)$$

$$\left(x=0,r=1,y=0\right)$$

$$(x=1,r=1,y=1)$$

Initially, assume r = 0

7/22

Initially, assume r = 0

Some possible behaviours :

Initially, assume r = 0

Some possible behaviours : j

Initially, assume r = 0

Some possible behaviours : j j

Initially, assume r = 0

Some possible behaviours : j j i

Initially, assume r = 0

Some possible behaviours : j j i a

Initially, assume r = 0

Some possible behaviours : j j i ae,

Initially, assume r = 0

Some possible behaviours : j j i ae, i b d d d

- Some possible behaviours : j j i ae, i b d d d
- ▶ Property : No two *i* actions $\neg \exists x \exists y (x \neq y \land Q_i(x) \land Q_i(y))$

- ► Some possible behaviours : j j i ae, i b d d d
- ▶ Property : No two *i* actions $\neg \exists x \exists y (x \neq y \land Q_i(x) \land Q_i(y))$
- ▶ Property : Every *i* is followed by an *a* or *b* : $\forall x(Q_i(x) \Rightarrow \exists y(x < y \land [Q_a(y) \lor Q_b(y)]))$

First-Order Logic over Words

FO Over Words

- ▶ Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ

FO Over Words

- \blacktriangleright Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ
- ▶ There could be infinitely many words w satisfying φ
- ▶ $L(\varphi) = \{ \text{ words } w \mid w \models \varphi \}$ is called the language of φ

FO Over Words

- \blacktriangleright Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ
- ▶ There could be infinitely many words w satisfying φ
- ▶ $L(\varphi) = \{ \text{ words } w \mid w \models \varphi \} \text{ is called the language of } \varphi$
- ▶ Given φ , write an algorithm to check $L(\varphi) = \emptyset$?

- ► Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property
 - If you cannot, show that FO cannot capture your property.
- Satisfiability

- ► Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property
 - If you cannot, show that FO cannot capture your property.
- Satisfiability
 - Given a FO formula φ over words, is $L(\varphi)$ non-empty?

A Primer for Words

Alphabet

▶ An alphabet Σ is a finite set

12/2

Alphabet

- An alphabet Σ is a finite set
 - $\triangleright \Sigma = \{a, b, \dots, z\}$
 - $\blacktriangleright \ \Sigma = \{+, \alpha, 100, \textit{B}\}$

An alphabet Σ is a finite set

```
 Σ = {a, b, ..., z}

 Σ = {+, α, 100, B}
```

Elements of Σ called letters or symbols

```
 Σ = {a, b, ..., z}

 Σ = {+, α, 100, B}
```

- ► Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ

```
 Σ = {a, b, ..., z}

 Σ = {+, α, 100, B}
```

- Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ
- If $\Sigma = \{a, b\}$, then abababa is a word of length 7

```
 Σ = {a, b, ..., z}

 Σ = {+, α, 100, B}
```

- Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ
- ▶ If $\Sigma = \{a, b\}$, then abababa is a word of length 7
- ▶ The length of a word w is denoted |w|

```
► \Sigma = \{a, b, ..., z\}

► \Sigma = \{+, \alpha, 100, B\}
```

- Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ
- ▶ If $\Sigma = \{a, b\}$, then abababa is a word of length 7
- ▶ The length of a word w is denoted |w|
- ▶ There is a unique word of length 0 denoted ϵ , called the empty word

```
► \Sigma = \{a, b, ..., z\}

► \Sigma = \{+, \alpha, 100, B\}
```

- Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ
- ▶ If $\Sigma = \{a, b\}$, then abababa is a word of length 7
- ▶ The length of a word w is denoted |w|
- ▶ There is a unique word of length 0 denoted ϵ , called the empty word
- $|\epsilon| = 0$

► aaaaa denoted a⁵

- ► aaaaa denoted a⁵
- $ightharpoonup a^0 = \epsilon$

- ► aaaaa denoted a⁵
- $\rightarrow a^0 = \epsilon$
- $a^{n+1} = a^n \cdot a = a \cdot a^n$

- ► aaaaa denoted a⁵
- $ightharpoonup a^0 = \epsilon$
- $a^{n+1} = a^n.a = a.a^n$
- ▶ The set of all words over Σ is denoted Σ^*

- ▶ aaaaa denoted a⁵
- $\rightarrow a^0 = \epsilon$
- $a^{n+1} = a^n.a = a.a^n$
- ▶ The set of all words over Σ is denoted Σ^*
 - $\{a,b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
 - $\{a\}^* = \{\epsilon, a, aa, aaa, ...\} = \{a^n \mid n \geqslant 0\}$

- ▶ aaaaa denoted a⁵
- ightharpoonup $a^0 = \epsilon$
- $a^{n+1} = a^n.a = a.a^n$
- ▶ The set of all words over Σ is denoted Σ^*
 - $\{a,b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
 - $\{a\}^* = \{\epsilon, a, aa, aaa, \dots\} = \{a^n \mid n \geqslant 0\}$
- ▶ By convention, $\{\}^* = \{\epsilon\}$

 \triangleright Σ is a finite set

- \triangleright Σ is a finite set
- ightharpoonup Σ* is the set of all finite words over alphabet Σ

- Σ is a finite set
- ightharpoonup Σ* is the set of all finite words over alphabet Σ
- \triangleright Σ^* is an infinite set

- Σ is a finite set
- $ightharpoonup \Sigma^*$ is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word

- Σ is a finite set
- ightharpoonup Σ* is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $\{a,b\} = \{b,a\}$ but $ab \neq ba$

- Σ is a finite set
- $ightharpoonup \Sigma^*$ is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $ightharpoonup \{a,b\} = \{b,a\} \text{ but } ab \neq ba$
 - $\{a, a, b\} = \{a, b\}$ but $aab \neq ab$

- Σ is a finite set
- \triangleright Σ^* is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $\{a,b\} = \{b,a\}$ but $ab \neq ba$
 - $\{a, a, b\} = \{a, b\}$ but $aab \neq ab$
 - ▶ ∅ is the set consisting of no words

- Σ is a finite set
- $ightharpoonup \Sigma^*$ is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $\{a,b\} = \{b,a\}$ but $ab \neq ba$
 - $\{a, a, b\} = \{a, b\}$ but $aab \neq ab$
 - ▶ ∅ is the set consisting of no words
 - $\{\epsilon\}$ is a set having the single word ϵ

- Σ is a finite set
- \triangleright Σ^* is the set of all finite words over alphabet Σ
- Σ* is an infinite set
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $\{a,b\} = \{b,a\}$ but $ab \neq ba$

 - Ø is the set consisting of no words
 - $\{\epsilon\}$ is a set having the single word ϵ
 - $ightharpoonup \epsilon$ is a word

▶ Concatenation of words : x.y = xy

- ▶ Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z

- ▶ Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$

- ▶ Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon x = x \cdot \epsilon = x$

- ▶ Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|

- ▶ Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ► Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- ▶ xⁿ : catenating word x n times

- ► Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- ▶ xⁿ : catenating word x n times
 - $(aab)^5 = aabaabaabaabaab$

- ► Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- ▶ xⁿ : catenating word x n times
 - ightharpoonup (aab)⁵ = aabaabaabaabaab
 - $(aab)^0 = \epsilon$

- ► Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- ➤ xⁿ: catenating word x n times
 - $(aab)^5 = aabaabaabaabaab$
 - $(aab)^0 = \epsilon$
 - $(aab)^* = \{\epsilon, aab, aabaab, aabaabaab, \ldots\}$

- Concatenation of words : x.y = xy
 - ▶ Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- ➤ xⁿ: catenating word x n times
 - $(aab)^5 = aabaabaabaabaab$
 - $(aab)^0 = \epsilon$
 - $(aab)^* = \{\epsilon, aab, aabaab, aabaabaab, ...\}$
 - $x^{n+1} \equiv x^n x$

▶ For $a \in \Sigma$ and $x \in \Sigma^*$,

 $|x|_a$ = number of times the symbol a occurs in the word x

16/2

▶ For $a \in \Sigma$ and $x \in \Sigma^*$,

 $|x|_a$ = number of times the symbol a occurs in the word x

- ▶ $|aabbaa|_a = 4, |aabbaa|_b = 2$
- $|\epsilon|_a=0$

▶ For $a \in \Sigma$ and $x \in \Sigma^*$,

 $|x|_a$ = number of times the symbol a occurs in the word x

- ▶ $|aabbaa|_a = 4$, $|aabbaa|_b = 2$
- $|\epsilon|_a=0$
- ▶ Prefix of a word $w \in \Sigma^*$ is an initial subword of w

$$Pref(w) = \{x \in \Sigma^* \mid \exists y \in \Sigma^*, w = x.y\}$$

▶ For $a \in \Sigma$ and $x \in \Sigma^*$,

 $|x|_a$ = number of times the symbol a occurs in the word x

- ▶ $|aabbaa|_a = 4$, $|aabbaa|_b = 2$
- $|\epsilon|_a=0$
- ▶ Prefix of a word $w \in \Sigma^*$ is an initial subword of w

$$Pref(w) = \{x \in \Sigma^* \mid \exists y \in \Sigma^*, w = x.y\}$$

- ▶ $Pref(aaba) = \{\epsilon, a, aa, aab, aaba\}$
- Proper prefixes = {a, aa, aab}
- $ightharpoonup \epsilon$, aaba improper prefixes

Operation on Sets

Given a finite alphabet Σ , denote by A, B, C, \ldots subsets of Σ^*

Subsets of Σ* are called languages

17/2

- Subsets of Σ* are called languages
- $A \cup B = \{ x \in \Sigma^* \mid x \in A \text{ or } x \in B \}$
 - $A = a^*, B = \{b, bb\}, A \cup B = a^* \cup \{b, bb\}$

- Subsets of Σ* are called languages
- ▶ $A \cup B = \{x \in \Sigma^* \mid x \in A \text{ or } x \in B\}$
 - ► $A = a^*, B = \{b, bb\}, A \cup B = a^* \cup \{b, bb\}$
- ▶ $A \cap B = \{x \in \Sigma^* \mid x \in A \text{ and } x \in B\}$
 - $ightharpoonup A = (ab)^*, B = \{abab, \epsilon, bb\}, A \cap B = \{\epsilon, abab\}$

- Subsets of Σ* are called languages
- ▶ $A \cup B = \{x \in \Sigma^* \mid x \in A \text{ or } x \in B\}$
 - ► $A = a^*, B = \{b, bb\}, A \cup B = a^* \cup \{b, bb\}$
- ▶ $A \cap B = \{x \in \Sigma^* \mid x \in A \text{ and } x \in B\}$
 - $A = (ab)^*, B = \{abab, \epsilon, bb\}, A \cap B = \{\epsilon, abab\}$
- $ightharpoonup \overline{A} = \{x \in \Sigma^* \mid x \notin A\}$
 - For $\Sigma = \{a\}$ and $A = (aa)^*, \overline{A} = \{a, a^3, a^5, \dots\}$

- Subsets of Σ* are called languages
- ▶ $A \cup B = \{x \in \Sigma^* \mid x \in A \text{ or } x \in B\}$

►
$$A = a^*, B = \{b, bb\}, A \cup B = a^* \cup \{b, bb\}$$

- ▶ $A \cap B = \{x \in \Sigma^* \mid x \in A \text{ and } x \in B\}$
 - $ightharpoonup A = (ab)^*, B = \{abab, \epsilon, bb\}, A \cap B = \{\epsilon, abab\}$
- $ightharpoonup \overline{A} = \{x \in \Sigma^* \mid x \notin A\}$
 - For $\Sigma = \{a\}$ and $A = (aa)^*, \overline{A} = \{a, a^3, a^5, \dots\}$
- $ightharpoonup AB = \{xy \mid x \in A, y \in B\}$
 - $A = \{a, ba\}, B = \{\epsilon, aa, bb\}$
 - $AB = \{a, a^3, abb, ba, ba^3, babb\}$
 - \triangleright BA = {a, ba, a³, aaba, bba, bbba}

For a set $A \subseteq \Sigma^*$,

 $\quad \blacktriangle^0 = \{\epsilon\}$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i>0} A^i$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A.A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i \ge 0} A^i$
- $A^+ = AA^* = A \cup A^2 \cup \cdots = \bigcup_{i>1} A^i$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A.A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i \ge 0} A^i$
- $A^+ = AA^* = A \cup A^2 \cup \cdots = \bigcup_{i>1} A^i$
- Union : Associative, commutative
- Concatenation : Associative, Non commutative
- $A \cup \emptyset = \emptyset \cup A = A$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A.A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i \ge 0} A^i$
- $A^+ = AA^* = A \cup A^2 \cup \cdots = \bigcup_{i>1} A^i$
- Union : Associative, commutative
- Concatenation : Associative, Non commutative
- $A \cup \emptyset = \emptyset \cup A = A$

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A.A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i \ge 0} A^i$
- $A^+ = AA^* = A \cup A^2 \cup \cdots = \bigcup_{i>1} A^i$
- Union : Associative, commutative
- Concatenation : Associative, Non commutative
- $A \cup \emptyset = \emptyset \cup A = A$
- $\triangleright \emptyset A = A\emptyset = \emptyset$

- ▶ Union, Intersection distribute over union
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- ▶ Union, Intersection distribute over union
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Concatenation distributes over union
 - $A(\cup_{i\in I}B_i)=\cup_{i\in I}AB_i$
 - $(\cup_{i \in I} B_i) A = \cup_{i \in I} B_i A$

- Union, Intersection distribute over union
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Concatenation distributes over union
 - $A(\cup_{i\in I}B_i) = \cup_{i\in I}AB_i$
 - $(\cup_{i\in I}B_i)A = \cup_{i\in I}B_iA$
- ► Concatenation does not distribute over interesection
 - $A = \{a, ab\}, B = \{b\}, C = \{\epsilon\}$
 - ▶ $A(B \cap C) \neq AB \cap AC$

FO for Languages

Write FO formulae φ_i such that $L(\varphi_i) = L_i$ for i = 1, ..., 5.

▶ L_1 = Words that have exactly one occurrence of the letter c

21/2

- ▶ L_1 = Words that have exactly one occurrence of the letter c
- ► L₂ = Words that begin with a and end with b

- ▶ L_1 = Words that have exactly one occurrence of the letter c
- ► L_2 = Words that begin with a and end with b
- ► L_3 = Words that have no two consecutive *a*'s

- ▶ L_1 = Words that have exactly one occurrence of the letter c
- ► L₂ = Words that begin with a and end with b
- ► L_3 = Words that have no two consecutive *a*'s
- ► L_4 = Words in which any a is followed immediately by a b

- ▶ L_1 = Words that have exactly one occurrence of the letter c
- ► L_2 = Words that begin with a and end with b
- ► L_3 = Words that have no two consecutive *a*'s
- ► L_4 = Words in which any a is followed immediately by a b
- ▶ L_5 = Words in which whenever an a occurs, it is followed eventually by a b, and no c occurs in between the a and the b aabbabab, $aabbcbccaab ∈ <math>L_5$, $aacaab ∉ L_5$.

Satisfiability of FO over Words

▶ Recall : Given an FO sentence φ over words, is $L(\varphi) = \emptyset$?

Satisfiability of FO over Words

- ▶ Recall : Given an FO sentence φ over words, is $L(\varphi) = \emptyset$?
- ► Algorithm?

Satisfiability of FO over Words

- ▶ Recall : Given an FO sentence φ over words, is $L(\varphi) = \emptyset$?
- ► Algorithm?
- Given φ, can we easily convert φ into some other mechanism M, which we know how to deal with?