Solució al problema 50

Fem diferències dividides generalitzades:

	x_i	$f[x_i]$	$f[x_i,x_j]$	$f[x_i,x_j,x_k]$
	0	f_0		_
			f_0'	۰. (
	0	f_0		$\underline{f_1 - f_0 - f_0'}$
	Ŭ	,0	$\frac{f_1 - f_0}{1 - 0}$	1-0
	1	r	1-0	11/1
	T	r_1	11	
Dor tont		-ant		

Per tant,

tant,
$$p(x) = f_0 + f_0'x + (f_1 - f_0 - f_0')x^2.$$

Usem la fórmula de l'error en la interpolació polinomial:

$$|f(x)-p(x)|=\left|\frac{f^{(3)}(\xi(x))}{3!}x^2(x-1)\right|=\frac{|f^{(3)}(\xi(x))|}{6}|x^2(x-1)|.$$

Fitem $q(x) = x^2(x-1)$ a l'interval [0,1]:

$$q(0) = 0,$$
 $q(1) = 0.$
 $q'(x) = 3x^2 - 2x,$

$$q'(x) = 3x^2 - 2x,$$

amb el que q'(x) = 0 sii x = 0 o x = 2/3. Com que q(2/3) = -4/27 tenim que

$$|q(x)| \leq \frac{4}{27}, \qquad \text{per a tot } x \in [0,1].$$

$$|f(x)-p(x)|\leq \frac{2}{81}M_3.$$

- **1** La fórmula serà exacta per a tot $p \in \mathcal{P}_2$ sii és exacte per a una base de \mathcal{P}_2 .
 - Calcularem, doncs, els coeficients c_0, c_0', c_1 imposant exactitud per a la base $1, x, x^2$. Obtenim el sistema

$$\begin{array}{rcl}
1 & = & c_0 + c_1 \\
\frac{1}{2} & = & c'_0 + c_1 \\
\frac{1}{3} & = & c_1
\end{array}$$

Resolent el sistema obtenim $c_1 = 1/3$, $c'_0 = 1/6$, $c_0 = 2/3$.

• Observem que si p(x) interpola f com a l'apartat a) llavors

$$c_0 f(0) + c'_0 f'(0) + c_1 f(1) = c_0 \rho(0) + c'_0 \rho'(0) + c_1 \rho(1) = \int_0^1 \rho(x) dx,$$

on la darrera igualtat es dedueix de 3. Per tant,

$$\int_0^1 f(x) dx - [c_0 f(0) + c'_0 f'(0) + c_1 f(1)] = \int_0^1 f dx - \int_0^1 p(x) dx =$$

$$\int_0^1 (f(x) - p(x)) dx = \int_0^1 \frac{f^{(3)}(\xi(x))}{3!} x^2 (x - 1) dx.$$

Com que $x^2(x-1)$ no canvia de signe a [0,1] i $f^{(3)}$ és contínua, podem usar el teorema del valor mitjà per a integrals:

$$|\mathsf{Error}| = \left| \frac{f^{(3)}(\eta)}{6} \int_0^1 x^2(x-1) \, dx \right| \le \frac{M_3}{6} \left| \int_0^1 x^2(x-1) \, dx \right| = \frac{M_3}{72}.$$

BARCELONA