

(Lecture 17 – Batch State Estimation: Part II)

Dr. John L. Crassidis

University at Buffalo – State University of New York
Department of Mechanical & Aerospace Engineering
Amherst, NY 14260-4400
johnc@buffalo.edu

http://www.buffalo.edu/~johnc

Continuous-Time (i)

True system and measurements

$$\frac{d}{dt}\mathbf{x}(t) = F(t)\mathbf{x}(t) + B(t)\mathbf{u}(t) + G(t)\mathbf{w}(t)$$
$$\tilde{\mathbf{y}}(t) = H(t)\mathbf{x}(t) + \mathbf{v}(t)$$

Forward filter is the same as the forward Kalman filter

$$\frac{d}{dt}\hat{\mathbf{x}}_{f}(t) = F(t)\,\hat{\mathbf{x}}_{f}(t) + B(t)\,\mathbf{u}(t) + K_{f}(t)[\tilde{\mathbf{y}}(t) - H(t)\,\hat{\mathbf{x}}_{f}(t)]$$

$$K_{f}(t) = P_{f}(t)\,H^{T}(t)\,R^{-1}(t)$$

$$\frac{d}{dt}P_{f}(t) = F(t)\,P_{f}(t) + P_{f}(t)\,F^{T}(t)$$

$$-P_{f}(t)\,H^{T}(t)\,R^{-1}(t)\,H(t)\,P_{f}(t) + G(t)\,Q(t)\,G^{T}(t)$$

Continuous-Time (ii)

Backward filter

$$\frac{d}{dt}\hat{\mathbf{x}}_{b}(t) = F(t)\,\hat{\mathbf{x}}_{b}(t) + B(t)\,\mathbf{u}(t) + K_{b}(t)[\tilde{\mathbf{y}}(t) - H(t)\,\hat{\mathbf{x}}_{b}(t)]$$

$$K_{b}(t) = P_{b}(t)\,H^{T}(t)\,R^{-1}(t)$$

$$\frac{d}{dt}P_{b}(t) = F(t)\,P_{b}(t) + P_{b}(t)\,F^{T}(t)$$

$$-P_{b}(t)\,H^{T}(t)\,R^{-1}(t)\,H(t)\,P_{b}(t) + G(t)\,Q(t)\,G^{T}(t)$$

- These equations much be integrated backwards in time
 - It is convenient to set $\tau=T-t$, where T is the terminal time of the data interval
 - Since $d{\bf x}/dt=-d{\bf x}/d\tau$, writing the truth state equation in terms of τ gives

$$\frac{d}{d\tau}\mathbf{x}(t) = -F(t)\,\mathbf{x}(t) - B(t)\,\mathbf{u}(t) - G(t)\,\mathbf{w}(t)$$

Continuous-Time (iii)

• Therefore, the backward filter equations can be written in terms of τ by replacing F(t) with -F(t), B(t) with -B(t), and G(t) with -G(t), which leads to

$$\frac{d}{d\tau}\hat{\mathbf{x}}_b(t) = -F(t)\,\hat{\mathbf{x}}_b(t) - B(t)\,\mathbf{u}(t) + K_b(t)[\tilde{\mathbf{y}}(t) - H(t)\,\hat{\mathbf{x}}_b(t)] \qquad (1)$$

$$K_b(t) = P_b(t)\,H^T(t)\,R^{-1}(t)$$

$$\frac{d}{d\tau}P_b(t) = -F(t)P_b(t) - P_b(t)F^T(t)
- P_b(t)H^T(t)R^{-1}(t)H(t)P_b(t) + G(t)Q(t)G^T(t)$$
(2)

- From this point forward whenever $d/d\tau$ is used, this will denote a backward differentiation
- Note that if F(t) is stable going forward in time, then -F(t) is stable going backward in time
- The continuous-time smoother combination of the forward and backward state estimates follows exactly from the discrete-time equivalent

Continuous-Time (iv)

 The continuous-time equivalent of smoother covariance is simply given by

$$P(t) = \left[P_f^{-1}(t) + P_b^{-1}(t) \right]^{-1}$$
 (3)

 The continuous-time equivalent of the smoother state estimate is simply given by

$$\hat{\mathbf{x}}(t) = P(t) \left[P_f^{-1}(t) \, \hat{\mathbf{x}}_f(t) + P_b^{-1}(t) \, \hat{\mathbf{x}}_b(t) \right]$$

- Boundary Conditions
 - Since at time t=T the smoother estimate must be the same as the forward Kalman filter
 - This clearly requires the following conditions

$$\hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_f(T)$$
$$P(T) = P_f(T)$$

Continuous-Time (v)

- From Eq. (3) the covariance condition at the terminal time can only be satisfied when $P_b^{-1}(T)=0$
 - Therefore, $P_b(t)$ is not finite at the terminal time
 - To overcome this difficulty, consider taking the time derivative of $P_b^{-1}(t)\,P_b(t)=I$, which gives

$$\left[\frac{d}{d\tau}P_b^{-1}(t)\right]P_b(t) + P_b^{-1}(t)\left[\frac{d}{d\tau}P_b(t)\right] = 0$$

- Rearranging yields

$$\left[\frac{d}{d\tau}P_b^{-1}(t)\right] = -P_b^{-1}(t) \left[\frac{d}{d\tau}P_b(t)\right] P_b^{-1}(t)$$

- Substituting Eq. (2) gives

$$\frac{d}{d\tau}P_{b}^{-1}(t) = P_{b}^{-1}(t) F(t) + F^{T}(t) P_{b}^{-1}(t) \\ - P_{b}^{-1}(t) G(t) Q(t) G^{T}(t) P_{b}^{-1}(t) + H^{T}(t) R^{-1}(t) H(t)$$
 with boundary condition $P_{b}^{-1}(T) = 0$ (4)

Continuous-Time (vi)

- Even with the inverse of $P_b(t)$ computed directly now, Eq. (3) still requires two matrix inverses
 - Overcome by using the matrix inversion lemma on Eq. (3), giving

$$P(t) = P_f(t) - P_f(t) P_b^{-1}(t) [I + P_f(t) P_b^{-1}(t)]^{-1} P_f(t)$$

- Only one inverse is now required
- The final time boundary condition on the backwards state estimate is still unknown
- Define the following variable

$$\hat{\boldsymbol{\chi}}_b(t) \equiv P_b^{-1}(t)\,\hat{\mathbf{x}}_b(t)$$

where $\hat{\boldsymbol{\chi}}_b(T) = \mathbf{0}$ since $P_b^{-1}(T) = 0$

Differentiating gives

$$\left[\frac{d}{d\tau}\hat{\mathbf{\chi}}_b(t)\right] = \left[\frac{d}{d\tau}P_b^{-1}(t)\right]\hat{\mathbf{x}}_b(t) + P_b^{-1}(t)\left[\frac{d}{d\tau}\hat{\mathbf{x}}_b(t)\right]$$

Continuous-Time (vii)

Substituting Eqs. (1) and (4) gives

$$\frac{d}{d\tau}\hat{\boldsymbol{\chi}}_b(t) = \left[F(t) - G(t) Q(t) G^T(t) P_b^{-1}(t)\right]^T \hat{\boldsymbol{\chi}}_b(t)$$
$$- P_b^{-1}(t) B(t) \mathbf{u}(t) + H^T(t) R^{-1}(t) \tilde{\mathbf{y}}(t)$$

Recall the discrete-time smoother state equation

$$\hat{\mathbf{x}}_k = [I - K_k]\hat{\mathbf{x}}_{fk}^+ + P_k\hat{\boldsymbol{\chi}}_{bk}^-$$

Its continuous-time equivalent is given by

$$\hat{\mathbf{x}}(t) = [I - K(t)]\hat{\mathbf{x}}_f(t) + P(t)\hat{\mathbf{\chi}}_b(t)$$

where the gain is given by

$$K(t) \equiv P_f(t) P_b^{-1}(t) [I + P_f(t) P_b^{-1}(t)]^{-1}$$

Continuous-Time Summary (i)

Model	$\frac{d}{dt}\mathbf{x}(t) = F(t)\mathbf{x}(t) + B(t)\mathbf{u}(t) + G(t)\mathbf{w}(t), \mathbf{w}(t) \sim N(0, Q(t))$ $\tilde{\mathbf{y}}(t) = H(t)\mathbf{x}(t) + \mathbf{v}(t), \mathbf{v}(t) \sim N(0, R(t))$
Forward Covariance	$\begin{split} \frac{d}{dt}P_f(t) &= F(t)P_f(t) + P_f(t)F^T(t) & \text{densities} \\ -P_f(t)H^T(t)R^{-1}(t)H(t)P_f(t) \\ &+ G(t)Q(t)G^T(t), \\ P_f(t_0) &= E\{\tilde{\mathbf{x}}_f(t_0)\tilde{\mathbf{x}}_f^T(t_0)\} \end{split}$
Forward Filter	$\frac{d}{dt}\hat{\mathbf{x}}_f(t) = F(t)\hat{\mathbf{x}}_f(t) + B(t)\mathbf{u}(t)$ $+P_f(t)H^T(t)R^{-1}(t)[\tilde{\mathbf{y}}(t) - H(t)\hat{\mathbf{x}}_f(t)], \hat{\mathbf{x}}_f(t_0) = \hat{\mathbf{x}}_{f0}$

Continuous-Time Summary (ii)

Backward Covariance	$\frac{d}{d\tau}P_b^{-1}(t) = P_b^{-1}(t) F(t) + F^T(t) P_b^{-1}(t)$ $-P_b^{-1}(t) G(t) Q(t) G^T(t) P_b^{-1}(t)$ $+H^T(t) R^{-1}(t) H(t), P_b^{-1}(T) = 0$
Backward Filter	$\frac{d}{d\tau}\hat{\boldsymbol{\chi}}_b(t) = \left[F(t) - G(t) Q(t) G^T(t) P_b^{-1}(t) \right]^T \hat{\boldsymbol{\chi}}_b(t)$ $-P_b^{-1}(t) B(t) \mathbf{u}(t) + H^T(t) R^{-1}(t) \tilde{\mathbf{y}}(t), \hat{\boldsymbol{\chi}}_b(T) = 0$
Gain	$K(t) = P_f(t) P_b^{-1}(t) \left[I + P_f(t) P_b^{-1}(t) \right]^{-1}$
Covariance	$P(t) = [I - K(t)]P_f(t)$
Estimate	$\hat{\mathbf{x}}(t) = [I - K(t)]\hat{\mathbf{x}}_f(t) + P(t)\hat{\mathbf{\chi}}_b(t)$

Steady State Smoother (i)

For autonomous systems, at steady state we have

$$P_b^{-1}F + F^T P_b^{-1} - P_b^{-1}GQG^T P_b^{-1} + H^T R^{-1}H = 0$$

As before, form the following Hamiltonian matrix

$$\mathcal{H} \equiv \begin{bmatrix} -F & GQG^T \\ H^TR^{-1}H & F^T \end{bmatrix}$$

Take an eigenvalue/eigenvector decomposition

$$\mathcal{H} = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{bmatrix} \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}^{-1}$$

where Λ is a diagonal matrix of the n eigenvalues in the right-half plane, and W_{11} , W_{21} , W_{12} , and W_{22} are block element of the eigenvector matrix

11

Steady State Smoother (ii)

 Using the same approach as before the steady-state covariance for the update is given by

$$P_b^{-1} = W_{21} W_{11}^{-1}$$

- Compute the steady-state forward covariance and gain from before
- Then the steady-state gain for the backwards filter can be computed, as well as the steady-state smoother gain and covariance

$$K = P_f P_b^{-1} [I + P_f P_b^{-1}]^{-1}$$
$$P = [I - K] P_f$$

母

RTS Smoother (i)

 Rauch, Tung and Striebel (RTS) form begins by taking the backwards time-derivative of

$$P^{-1}(t) = P_f^{-1}(t) + P_b^{-1}(t)$$

which gives

$$\frac{d}{d\tau}P^{-1}(t) = -P_f^{-1}(t) \left[\frac{d}{d\tau}P_f(t) \right] P_f^{-1}(t) + \frac{d}{d\tau}P_b^{-1}(t)$$

using $dP_{\it f}/dt = -dP_{\it f}/d\tau$ gives

$$\frac{d}{d\tau}P^{-1}(t) = P_f^{-1}(t) \left[\frac{d}{dt} P_f(t) \right] P_f^{-1}(t) + \frac{d}{d\tau} P_b^{-1}(t)$$

Substitute the following

$$\frac{d}{d\tau}P_b^{-1}(t) = P_b^{-1}(t) F(t) + F^T(t) P_b^{-1}(t) - P_b^{-1}(t) G(t) Q(t) G^T(t) P_b^{-1}(t) + H^T(t) R^{-1}(t) H(t)$$

RTS Smoother (ii)

and

$$\frac{d}{dt}P_f(t) = F(t) P_f(t) + P_f(t) F^T(t) - P_f(t) H^T(t) R^{-1}(t) H(t) P_f(t) + G(t) Q(t) G^T(t)$$

to give

$$\frac{d}{d\tau}P^{-1}(t) = P_f^{-1}(t) F(t) + F^T(t) P_f^{-1}(t) + P_f^{-1}(t) G(t) Q(t) G^T(t) P_f^{-1}(t) + P_b^{-1}(t) F(t) + F^T(t) P_b^{-1}(t) - P_b^{-1}(t) G(t) Q(t) G^T(t) P_b^{-1}(t)$$

• Next substitute $P_b^{-1}(t) = P^{-1}(t) - P_f^{-1}(t)$ to give

$$\frac{d}{d\tau}P^{-1}(t) = P^{-1}(t) F(t) + F^{T}(t) P^{-1}(t) + P_{f}^{-1}(t) G(t) Q(t) G^{T}(t) P_{f}^{-1}(t)$$
$$- \left[P^{-1}(t) - P_{f}^{-1}(t)\right] G(t) Q(t) G^{T}(t) \left[P^{-1}(t) - P_{f}^{-1}(t)\right]$$

4

RTS Smoother (iii)

Substituting the following relation

$$\left[\frac{d}{d\tau}P^{-1}(t)\right] = P^{-1}(t)\left[\frac{d}{dt}P(t)\right]P^{-1}(t)$$

and then multiplying both sides of the resulting expression by P(t) yields

$$\begin{split} \frac{d}{dt}P(t) &= \left[F(t) + G(t)\,Q(t)\,G^T(t)\,P_f^{-1}(t)\right]P(t) \\ &+ P(t)\left[F(t) + G(t)\,Q(t)\,G^T(t)\,P_f^{-1}(t)\right]^T - G(t)\,Q(t)\,G^T(t) \end{split}$$

- Since $P_b^{-1}(T)=0$, then this equation is integrated backward in time with the boundary condition $P(T)=P_{\it f}(T)$
- This form clearly has significant computational advantages over integrating the backward filter covariance
 - The smoother covariance is calculated directly without the need to first calculate the backward filter covariance

RTS Smoother (iv)

For autonomous systems, at steady state we have

$$0 = \left[F + GQG^{T}P_{f}^{-1} \right] P + P\left[F + GQG^{T}P_{f}^{-1} \right]^{T} - GQG^{T}$$

- Reduces down to an algebraic Lyapunov equation, which is a linear equation
 - Can be used to find the steady-state value of *P*
- Note what happens when Q = 0
 - No viable solution for *P* is possible
 - Again re-enforces that no smoothing is possible without process noise

RTS Smoother (v)

To derive the smoother state equation begin with

$$P^{-1}(t)\hat{\mathbf{x}}(t) = P_f^{-1}(t)\,\hat{\mathbf{x}}_f(t) + \hat{\boldsymbol{\chi}}_b(t)$$

Taking the time derivative gives

$$P^{-1}(t) \left[\frac{d}{dt} \hat{\mathbf{x}}(t) \right] + \left[\frac{d}{dt} P^{-1}(t) \right] \hat{\mathbf{x}}(t)$$

$$= P_f^{-1}(t) \left[\frac{d}{dt} \hat{\mathbf{x}}_f(t) \right] + \left[\frac{d}{dt} P_f^{-1}(t) \right] \hat{\mathbf{x}}_f(t) + \frac{d}{dt} \hat{\mathbf{\chi}}_b(t)$$

Use the following relations

$$\left[\frac{d}{dt}P_f^{-1}(t)\right] = -P_f^{-1}(t) \left[\frac{d}{dt}P_f(t)\right] P_f^{-1}(t)$$

$$\left[\frac{d}{dt}P^{-1}(t)\right] = -P^{-1}(t) \left[\frac{d}{dt}P(t)\right] P^{-1}(t)$$

4

RTS Smoother (vi)

to give

$$P^{-1}(t) \left[\frac{d}{dt} \hat{\mathbf{x}}(t) \right] = P^{-1}(t) \left[\frac{d}{dt} P(t) \right] P^{-1}(t) \hat{\mathbf{x}}(t) + P_f^{-1}(t) \left[\frac{d}{dt} \hat{\mathbf{x}}_f(t) \right]$$
$$- P_f^{-1}(t) \left[\frac{d}{dt} P_f(t) \right] P_f^{-1}(t) \hat{\mathbf{x}}_f(t) + \frac{d}{dt} \hat{\mathbf{x}}_b(t)$$

 Substituting all expressions and after considerable algebraic manipulations yields

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = F(t)\,\hat{\mathbf{x}}(t) + B(t)\,\mathbf{u}(t) + G(t)\,Q(t)\,G^{T}(t)\,P_f^{-1}(t)\left[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_f(t)\right]$$

• Simply use $d/dt \left[\hat{\mathbf{x}}(t) \right] = -d/d\tau \left[\hat{\mathbf{x}}(t) \right]$ to obtain

$$\frac{d}{d\tau}\hat{\mathbf{x}}(t) = -F(t)\,\hat{\mathbf{x}}(t) - B(t)\,\mathbf{u}(t) - G(t)\,Q(t)\,G^{T}(t)\,P_f^{-1}(t)\,[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_f(t)]$$

This integrated backward in time with the boundary condition

$$\hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_f(T)$$

RTS Smoother Summary (i)

Model	$\frac{d}{dt}\mathbf{x}(t) = F(t)\mathbf{x}(t) + B(t)\mathbf{u}(t) + G(t)\mathbf{w}(t),\mathbf{w}(t) \sim N(0, Q(t))$ $\tilde{\mathbf{y}}(t) = H(t)\mathbf{x}(t) + \mathbf{v}(t),\mathbf{v}(t) \sim N(0, R(t))$
Forward Covariance	$\frac{d}{dt}P_f(t) = F(t) P_f(t) + P_f(t) F^T(t)$ $-P_f(t) H^T(t) R^{-1}(t) H(t) P_f(t)$ $+G(t) Q(t) G^T(t),$ $P_f(t_0) = E\{\tilde{\mathbf{x}}_f(t_0) \tilde{\mathbf{x}}_f^T(t_0)\}$
Forward Filter	$\frac{d}{dt}\hat{\mathbf{x}}_f(t) = F(t)\hat{\mathbf{x}}_f(t) + B(t)\mathbf{u}(t)$ $+P_f(t)H^T(t)R^{-1}(t)[\tilde{\mathbf{y}}(t) - H(t)\hat{\mathbf{x}}_f(t)], \hat{\mathbf{x}}_f(t_0) = \hat{\mathbf{x}}_{f0}$

RTS Smoother Summary (ii)

Smoother Covariance	$\frac{d}{d\tau}P(t) = -[F(t) + G(t) Q(t) G^{T}(t) P_{f}^{-1}(t)]P(t)$ $-P(t)[F(t) + G(t) Q(t) G^{T}(t) P_{f}^{-1}(t)]^{T}$ $+G(t) Q(t) G^{T}(t), P(T) = P_{f}(T)$
Smoother Estimate	$\frac{d}{d\tau}\hat{\mathbf{x}}(t) = -F(t)\hat{\mathbf{x}}(t) - B(t)\mathbf{u}(t)$ $-G(t)Q(t)G^{T}(t)P_{f}^{-1}(t)\left[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_{f}(t)\right], \hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_{f}(T)$

- Note how much simpler the backwards equations are compared to the other smoother
- The covariance expression is not needed either to obtain the state estimate

RTS Smoother Stability (i)

 As before, we consider only the homogenous part to prove stability

$$\frac{d}{d\tau}\hat{\mathbf{x}}(t) = -[F(t) + G(t)\,Q(t)\,G^{T}(t)\,P_{f}^{-1}(t)]\,\hat{\mathbf{x}}(t) \tag{1}$$

Consider the following candidate Lyapunov function

$$V[\hat{\mathbf{x}}(t)] = \hat{\mathbf{x}}^{T}(t) P_f^{-1}(t) \hat{\mathbf{x}}(t)$$

Take the time derivative

$$\frac{d}{d\tau}V[\hat{\mathbf{x}}(t)] = \left[\frac{d}{d\tau}\hat{\mathbf{x}}(t)\right]^T P_f^{-1}(t)\,\hat{\mathbf{x}}(t) + \hat{\mathbf{x}}^T(t)\left[\frac{d}{d\tau}P_f^{-1}(t)\right]\,\hat{\mathbf{x}}(t)
+ \hat{\mathbf{x}}^T(t)\,P_f^{-1}(t)\left[\frac{d}{d\tau}\hat{\mathbf{x}}(t)\right]$$

RTS Smoother Stability (ii)

• Now use $dP_f^{-1}/d\tau = -dP_f^{-1}/dt$

$$\frac{d}{d\tau}V[\hat{\mathbf{x}}(t)] = \left[\frac{d}{d\tau}\hat{\mathbf{x}}(t)\right]^{T}P_{f}^{-1}(t)\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}^{T}(t)\left[\frac{d}{dt}P_{f}^{-1}(t)\right]\hat{\mathbf{x}}(t) + \hat{\mathbf{x}}^{T}(t)P_{f}^{-1}(t)\left[\frac{d}{d\tau}\hat{\mathbf{x}}(t)\right]$$

Next use

$$\left[\frac{d}{dt}P_f^{-1}(t)\right] = -P_f^{-1}(t)\left[\frac{d}{dt}P_f(t)\right]P_f^{-1}(t)$$

to give

$$\frac{d}{dt}P_f^{-1}(t) = -P_f^{-1}(t)F(t) - F^T(t)P_f^{-1}(t)$$
$$-P_f^{-1}(t)G(t)Q(t)G^T(t)P_f^{-1}(t) + H^T(t)R^{-1}(t)H(t)P_f(t)$$

 Substitute this equation and Eq. (1) into the derivative of the candidate Lyapunov function

RTS Smoother Stability (iii)

$$\begin{split} \frac{d}{d\tau} V[\hat{\mathbf{x}}(t)] &= -\hat{\mathbf{x}}^T(t) [F^T(t)P_f^{-1}(t) + P_f^{-1}(t) G(t) Q(t) G^T(t) P_f^{-1}(t)] \, \hat{\mathbf{x}}(t) \\ &+ \hat{\mathbf{x}}^T(t) [P_f^{-1}(t) F(t) + F^T(t) P_f^{-1}(t) + P_f^{-1}(t) G(t) Q(t) G^T(t) P_f^{-1}(t) \\ &- H^T(t) R^{-1}(t) H(t) P_f(t)] \, \hat{\mathbf{x}}(t) \\ &- \hat{\mathbf{x}}^T(t) [P_f^{-1}(t) F(t) + P_f^{-1}(t) G(t) Q(t) G^T(t) P_f^{-1}(t)] \, \hat{\mathbf{x}}(t) \end{split}$$

Reduces down to

$$\frac{d}{d\tau} V[\hat{\mathbf{x}}(t)] = -\hat{\mathbf{x}}^T(t) \left[\, H^T(t) \, R^{-1}(t) H(t) + P_f^{-1}(t) \, G(t) \, Q(t) \, G^T(t) \, P_f^{-1}(t) \right] \hat{\mathbf{x}}(t)$$

- Clearly, if R(t) is positive definite and Q(t) is at least positive semi-definite, then the Lyapunov condition is satisfied $(v \circ z) \circ z$
 - So the continuous-time RTS smoother is stable
 - Similar conditions as in the Kalman filter

Qx & Q(E) se

Simple first-order system

$$\dot{x}(t) = f x(t) + w(t)$$
$$y(t) = x(t) + v(t)$$

where f is a constant, and the spectral densities of w(t) and v(t) are given by q and r, respectively

The steady-state smoother covariance is given by solving

$$0 = 2[f + q \, p_f^{-1}(t)] \, p(t) - q$$
 (Lyapuru)

which gives

$$p = \frac{q}{2(f + q \, p_f^{-1})}$$

The steady-state forward covariance is given by solving

$$0=r^{-1}p_f^2-2fp_f-q$$
 (Algebraic vicatta)

which gives (positive root only)

$$p_f^{-1} = \frac{r^{-1}}{a+f}, \quad a \equiv \sqrt{f^2 + r^{-1}q}$$

Example (ii)

Substituting this into the p equation yields

$$p = \frac{q}{2a}$$

The steady-state backward covariance is given by solving

$$0 = q p_b^{-2} - 2 f p_b^{-1} - r^{-1}$$

which gives (positive root only)

$$p_b^{-1} = \frac{a+f}{q}$$

• Let's verify $p^{-1} = p_f^{-1} + p_b^{-1}$; substituting quantities requires

$$\frac{2a}{q} = \frac{r^{-1}}{a+f} + \frac{a+f}{q}$$

$$= \frac{r^{-1}q + (a+f)^2}{q(a+f)}$$

$$= \frac{r^{-1}q/(a+f) + a+f}{q}$$

Example (iii)

• Need to show $[r^{-1}q/(a+f)] + (a+f) = 2a$, or

$$r^{-1}q + (a+f)^2 = 2a(a+f)$$

$$r^{-1}q + f^2 + r^{-1}q + 2f\sqrt{f^2 + r^{-1}q} + f^2 = 2(f^2 + r^{-1}q) + 2f\sqrt{f^2 + r^{-1}q}$$

$$2(f^2 + r^{-1}q) + 2f\sqrt{f^2 + r^{-1}q} = 2(f^2 + r^{-1}q) + 2f\sqrt{f^2 + r^{-1}q}\checkmark$$

- An interesting aspect of the backward filter covariance is that it is zero when q=0
 - Smoother covariance is equivalent to the forward filter covariance
 - Hence, for this case the smoother offers no improvements over the forward filter, which was discussed before
- Consider the following values: f = -1, q = 2, and r = 1
 - Values become $p_{\it f}=$ 0.7321, $p_{\it b}=$ 2.7321, and p= 0.5774
- An interesting case occurs when f = 0, which gives

$$\hat{x}(t) = \frac{1}{2} \left[\hat{x}_f(t) + \hat{x}_b(t) \right]$$

- Using the steady-state smoother the optimal estimate of x(t) is the average of the forward and backward filter estimates 26

These plots are found by integrating the covariance equations

Note that the steady-state values match their analytical solutions

Example (v)

```
t=[0:0.1:10];
[t,pf]=ode23(@ric forfun,t,1000);
[t,pbi]=ode23(@ric backfun,t,0);
pb=pbi.^{(-1)};pb(1)=1000;
p=(pf.^{(-1)}+pbi).^{(-1)};
tt=[10:-0.1:0]'; % plots pb backwards
semilogy(tt,pb,'--',t,pf,'--',t,p)
set(gca,'Fontsize',12)
ylabel('Covariances')
xlabel('Time (Sec)')
set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10])
text(3.8+0.4,3.5,'Backward Filter','Fontsize',12)
text(3.9+0.4,0.93,'Forward Filter','Fontsize',12)
text(4.1+0.4,0.47,'Smoother','Fontsize',12)
```

Example (vi)

function fun=ric_forfun(t,x);

```
% Forward One
f=-1;q=2;r=1;
fun=2*f*x-x^2*inv(r)+q;
function fun=ric_backfun(t,x);
% Backward One
f=-1;q=2;r=1;
fun=2*f*x-x^2*q+inv(r);
```


Nonlinear Smoothing (i)

- First step is to use the forward extended Kalman filter
 - Backward filter is not as straightforward as the extended Kalman filter though
 - This is due to the fact that we linearize the backward-time filter about the forward-time filter estimated trajectory, not the backward-time filter estimate trajectory
 - Hence, the linearized Kalman filter form will be used to derive the backward-time smoother, where the nominal (*a priori*) estimate is given by the forward-time extended Kalman filter
 - The derivation of the nonlinear smoother can be shown by using the same procedure leading to the forward/backward filters shown previously
 - However, we will only show the RTS version of this smoother, since it has clear advantages over the two filter solution

Nonlinear Smoothing (ii)

- First linearize $\mathbf{f}(\hat{\mathbf{x}}(t), \mathbf{u}(t), t)$ about $\hat{\mathbf{x}}_f(t)$
- Then, using $d{\bf x}/dt=-d{\bf x}/d\tau$ to denote the backward-time integration leads to

$$\frac{d}{d\tau}\hat{\mathbf{x}}(t) = -\left[F(t) + K(t)\right]\left[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_f(t)\right] - \mathbf{f}(\hat{\mathbf{x}}_f(t), \mathbf{u}(t), t)$$

where

$$K(t) \equiv G(t) Q(t) G^{T}(t) P_{f}^{-1}(t)$$
$$F(t) \equiv \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\hat{\mathbf{x}}_{f}(t), \mathbf{u}(t)}$$

- This equation must be integrated backward in time with a boundary condition of $\hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_f(T)$
- Note that it is a linear equation, which allows us to use linear integration methods

Nonlinear Smoothing (iii)

Smoother covariance is given as before with the linearized matrices

$$\frac{d}{d\tau}P(t) = -[F(t) + K(t)]P(t) - P(t)[F(t) + K(t)]^{T} + G(t)Q(t)G^{T}(t)$$

- This equation must also be integrated backward in time with a boundary condition of $P(\,T)\,=\,P_f(\,T)$
- Again note that it is a linear equation, which allows us to use linear integration methods

Nonlinear Smoothing (iv)

Grocers Noise

Special

Density

	V. T	<u> </u>
Model	$\frac{d}{d\tau}\mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) + G(t)\mathbf{w}(t), \mathbf{w}(t) \sim N(0, Q(t))$ $\tilde{\mathbf{y}}_k = \mathbf{h}(\mathbf{x}_k) + \mathbf{v}_k, \mathbf{v}_k \sim N(0, R_k)$ ressument	noise
Forward Initialize	$\hat{\mathbf{x}}_f(t_0) = \hat{\mathbf{x}}_{f0}$ $P_{f0} = E\left\{ ilde{\mathbf{x}}_f(t_0) ilde{\mathbf{x}}_f^T(t_0) ight\}$	
Forward Gain	$K_{fk} = P_{fk}^- H_k^T (\hat{\mathbf{x}}_{fk}^-) [H_k(\hat{\mathbf{x}}_{fk}^-) P_{fk}^- H_k^T (\hat{\mathbf{x}}_{fk}^-) + R_k]^{-1}$ $H_k(\hat{\mathbf{x}}_{fk}^-) \equiv \left. \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \right _{\hat{\mathbf{x}}_{fk}^-}$	
Forward Update	$\hat{\mathbf{x}}_{fk}^{+} = \hat{\mathbf{x}}_{fk}^{-} + K_{fk}[\tilde{\mathbf{y}}_k - \mathbf{h}(\hat{\mathbf{x}}_{fk}^{-})]$ $P_{fk}^{+} = [I - K_{fk}H_k(\hat{\mathbf{x}}_{fk}^{-})]P_{fk}^{-}$	
Forward	$\frac{d}{dt}\hat{\mathbf{x}}_f(t) = \mathbf{f}(\hat{\mathbf{x}}_f(t), \mathbf{u}(t), t)$ $\frac{d}{dt}P_f(t) = F(\hat{\mathbf{x}}_f(t), t) P_f(t) + P_f(t) F^T(\hat{\mathbf{x}}_f(t), t)$	
Propagation	$+G(t) Q(t) G^{T}(t)$ $F(\hat{\mathbf{x}}_{f}(t), t) \equiv \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right _{\hat{\mathbf{x}}_{f}(t)}$	33

33

Nonlinear Smoothing (v)

Gain

Smoother Covariance

Smoother Estimate

$$K(t) \equiv G(t) \, Q(t) \, G^T(t) \, P_f^{-1}(t)$$

$$\frac{d}{d\tau}P(t) = -[F(t) + K(t)]P(t) - P(t)[F(t) + K(t)]^{T} + G(t)Q(t)G^{T}(t), \quad P(T) = P_{f}(T)$$

$$\frac{d}{d\tau}\hat{\mathbf{x}}(t) = -\left[F(t) + K(t)\right]\left[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_f(t)\right]$$
$$-\mathbf{f}(\hat{\mathbf{x}}_f(t), \mathbf{u}(t), t), \quad \hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_f(T)$$

Example (i)

Consider Van der Pol's equation

$$m\ddot{x} + 2c(x^2 - 1)\dot{x} + kx = 0$$

• Convert to state space using $\mathbf{x} = \begin{bmatrix} x & \dot{x} \end{bmatrix}^T$

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -2 (c/m)(x_1^2 - 1) x_2 - (k/m) x_1$

- The measurement output is position only, so $H = \begin{bmatrix} 1 & 0 \end{bmatrix}$
- Synthetic states are generated using m=c=k=1, with an initial condition of $\mathbf{x}_0=[1\ \ 0]^T$
- The sampling interval is at 0.01 second intervals and the measurement noise standard deviation is set to 0.01
- The linearized model matrices are given by

$$F = \begin{bmatrix} 0 & 1 \\ -4(c/m)\hat{x}_1\hat{x}_2 - (k/m) & -2(c/m)(\hat{x}_1^2 - 1) \end{bmatrix}, \quad G = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

35

Example (ii)

- Note that no process noise (i.e., no error) is introduced into the first state
 - This is due to the fact that the first state is a kinematical relationship that is correct in theory and in practice (i.e., velocity is always the derivative of position)
- In the EKF the model parameters are assumed to be given by $m=1,\ c=1.5,$ and k=1.2, which introduces errors in the assumed system, compared to the true system
 - Overcome by tuning the process noise covariance matrix
- Since we know the truth we can tune Q until the estimate errors are within their respective 3σ bounds
 - A value of 0.2 is found to give good results
- Initial covariance is set to $P_0 = 1000 I$

Note how the covariance of the smoother "flattens" out versus the EKF

Example (iv)

```
% State and Initialize
dt=0.01;t=[0:dt:10]';m=length(t);
h=[1\ 0];r=0.01^2;
xe=zeros(m,2);x=zeros(m,2);p cov=zeros(m,2);p cov s=zeros(m,2);
ym=zeros(m,1);
x0=[1;0];x(1,:)=x0';xe(1,:)=x0';
p0=1000*eye(2);p=p0;p_cov(1,:)=diag(p0)';
p storep=zeros(m,4); p storeu=zeros(m,4);
xs=zeros(m,2);
% Truth and Model Parameters
c=1;k=1;
cm=1.5;km=1.2;
% Process Noise (note: now continuous)
q=.2*[0 0;0 1];
```

Example (v)

% Main Forward Routine

```
for i=1:m-1;
% Truth and Measurements
f1=dt*polfun(x(i,:),c,k);
f2=dt*polfun(x(i,:)+0.5*f1',c,k);
f3=dt*polfun(x(i,:)+0.5*f2',c,k);
f4=dt*polfun(x(i,:)+f3',c,k);
x(i+1,:)=x(i,:)+1/6*(f1'+2*f2'+2*f3'+f4');
ym(i)=x(i,1)+sqrt(r)*randn(1);
% Kalman Update
gain=p*h'*inv(h*p*h'+r);
p=(eye(2)-gain*h)*p;
p storeu(i,:)=[p(1,1) p(1,2) p(2,1) p(2,2)];
xe(i,:)=xe(i,:)+gain'*(ym(i)-xe(i,1));
```

Example (vi)

end

```
% State Propagation
fl=dt*polfun(xe(i,:),cm,km);
f2=dt*polfun(xe(i,:)+0.5*f1',cm,km);
f3=dt*polfun(xe(i,:)+0.5*f2',cm,km);
f4=dt*polfun(xe(i,:)+f3',cm,km);
xe(i+1,:)=xe(i,:)+1/6*(f1'+2*f2'+2*f3'+f4');
% Covariance Propagation
xdum=[p(1,1) p(1,2) p(2,1) p(2,2)];
fl=dt*polfun cov(xdum,xe(i,:),cm,km,q);
f2=dt*polfun cov(xdum+0.5*f1',xe(i,:),cm,km,q);
f3=dt*polfun cov(xdum+0.5*f2',xe(i,:),cm,km,q);
f4=dt*polfun cov(xdum+f3',xe(i,:),cm,km,q);
xdum=xdum+1/6*(f1'+2*f2'+2*f3'+f4');
p=[xdum(1) xdum(2);xdum(3) xdum(4)];
p storep(i+1,:)=[p(1,1) p(1,2) p(2,1) p(2,2)];
p cov(i+1,:)=diag(p)';
```

40

Example (vii)

```
% RTS Initialize
xs(m,:)=xe(m,:);
p_cov_s(m,:)=p_cov(m,:);
pb=[p_storep(m,1) p_storep(m,2)
    p_storep(m,3) p_storep(m,4)];

p_prop=[p_storep(m,1) p_storep(m,2)
    p_storep(m,3) p_storep(m,4)];
ddd_i=inv(h*p_prop*h'+r);
gain=p_prop*h'*ddd_i;
lam=-(h'*ddd_i*(ym(m)-xe(m,1)))';
```

Example (viii)

```
% Main Backward Routine
for i=m-1:-1:1
% Covariance
p prop=[p storep(i+1,1) p_storep(i+1,2);p_storep(i+1,3) p_storep(i+1,4)];p_propi=inv(p_prop);
% Backward State
fl=dt*polfun_b(xs(i+1,:),p_prop,xe(i+1,:),cm,km,q);
f2=dt*polfun b(xs(i+1,:)+0.5*f1',p prop,xe(i+1,:),cm,km,q);
f3=dt*polfun b(xs(i+1,:)+0.5*f2',p prop,xe(i+1,:),cm,km,q);
f4=dt*polfun b(xs(i+1,:)+f3',p prop,xe(i+1,:),cm,km,q);
xs(i,:)=xs(i+1,:)+1/6*(f1'+2*f2'+2*f3'+f4');
% Backward Covariance
xdum=[pb(1,1) pb(1,2) pb(2,1) pb(2,2)];
fl=dt*polfun covb(xdum,xe(i+1,:),cm,km,q,p propi);
f2=dt*polfun covb(xdum+0.5*f1',xe(i+1,:),cm,km,q,p propi);
f3=dt*polfun covb(xdum+0.5*f2',xe(i+1,:),cm,km,q,p propi);
f4=dt*polfun covb(xdum+f3',xe(i+1,:),cm,km,q,p propi);
xdum=xdum+1/6*(f1'+2*f2'+2*f3'+f4');pb=[xdum(1) xdum(2);xdum(3)
xdum(4)];p cov s(i,:)=diag(pb)';
end
```

Example (ix)

```
% 3-Sigma Outliers
sig3=p cov.^{(0.5)*3};
sig3 s=p cov s.(0.5)*3;
% Plot Results
subplot(221)
plot(t,xe(:,2))
set(gca,'Fontsize',12);
axis([0 10 -5 5]);set(gca,'Xtick',[0 2 4 6 8 10]);set(gca,'Ytick',[-5 -2.5 0 2.5 5]);
xlabel('Time (Sec)')
ylabel('EKF Estimate')
subplot(222)
plot(t,xs(:,2))
set(gca,'Fontsize',12);
axis([0 10 -5 5]);set(gca,'Xtick',[0 2 4 6 8 10]);set(gca,'Ytick',[-5 -2.5 0 2.5 5]);
xlabel('Time (Sec)')
ylabel('Smoother Estimate')
```

Example (x)

```
subplot(223)
plot(t,xe(:,2)-x(:,2),t,sig3(:,2),t,-sig3(:,2))
set(gca,'Fontsize',12);
axis([0 10 -0.5 0.5]);set(gca,'Xtick',[0 2 4 6 8 10]);set(gca,'Ytick',[-0.5 -0.25 0 0.25 0.5]);
xlabel('Time (Sec)')
ylabel('EKF Velocity Error')
subplot(224)
plot(t,xs(:,2)-x(:,2),t,sig3_s(:,2),t,-sig3_s(:,2))
set(gca,'Fontsize',12);
axis([0 10 -0.5 0.5]);set(gca,'Xtick',[0 2 4 6 8 10]);set(gca,'Ytick',[-0.5 -0.25 0 0.25 0.5]);
xlabel('Time (Sec)')
ylabel('Smoother Velocity Error')
```

Example (xi)

function f=polfun(x,c,k)

% Function Routine for Van der Pol's Equation

$$f=[x(2);-2*c*(x(1)^2-1)*x(2)-k*x(1)];$$

```
function f=polfun_cov(x,xe,c,k,q)
```

% Function Routine for Van der Pol's Covariance Equation in Forward Integration

```
% State Matrix fpart=[0 1;-4*c*xe(1)*xe(2)-k -2*c*(xe(1)^2-1)];
```

```
% Covariance

p=[x(1) x(2);x(3) x(4)];

pdot=fpart*p+p*fpart'+q;

f=[pdot(1,1);pdot(1,2);pdot(2,1);pdot(2,2)];
```


Example (xii)

function f=polfun_b(x,p,xf,c,k,q)

% Function Routine for Van der Pol's Equation in Backwards Integration

```
\begin{aligned} &\text{fpart} = [0 \ 1; -4*c*xf(1)*xf(2)-k \ -2*c*(xf(1)^2-1)]; \\ &\text{f} = -[xf(2); -2*c*(xf(1)^2-1)*xf(2)-k*xf(1)] - [q*inv(p)+fpart]*([x(1);x(2)]-[xf(1);xf(2)]); \end{aligned}
```

function f=polfun_covb(x,xe,c,k,q,pfi)

% Function Routine for Van der Pol's Covariance Equation in Backward Integration

```
% State Matrix fpart=[0 1;-4*c*xe(1)*xe(2)-k -2*c*(xe(1)^2-1)];
```

```
% Covariance

p=[x(1) x(2);x(3) x(4)];

pdot=-[fpart+q*pfi]*p-p*[fpart+q*pfi]'+q;

f=[pdot(1,1);pdot(1,2);pdot(2,1);pdot(2,2)];
```


Discrete Measurements (i)

- Handle discrete-time measurement through an "adjoint variable" λ
 - The propagation equations are given by

$$\frac{d}{d\tau} \boldsymbol{\lambda}(t) = F^T(t) \, \boldsymbol{\lambda}(t)$$

$$\frac{d}{d\tau}\Lambda(t) = F^{T}(t)\Lambda(t) + \Lambda(t)F(t)$$

where Λ is the covariance of λ

The backward updates are given by

$$\boldsymbol{\lambda}_{k}^{-} = \left[I - H_{k}^{T}(\hat{\mathbf{x}}_{fk}^{-}) K_{fk}^{T} \right] \boldsymbol{\lambda}_{k}^{+} - H_{k}^{T}(\hat{\mathbf{x}}_{fk}^{-}) D_{fk}^{-1} \left[\tilde{\mathbf{y}}_{k} - \mathbf{h}_{k}(\hat{\mathbf{x}}_{fk}^{-}) \right] \right|$$

$$\Lambda_k^- = \left[I - K_{fk} H_k(\hat{\mathbf{x}}_{fk}^-) \right]^T \Lambda_k^+ \left[I - K_{fk} H_k(\hat{\mathbf{x}}_{fk}^-) \right] + H_k^T(\hat{\mathbf{x}}_{fk}^-) D_{fk}^{-1} H_k(\hat{\mathbf{x}}_{fk}^-)$$

Discrete Measurements (ii)

where

$$D_{fk} \equiv H_k(\hat{\mathbf{x}}_{fk}^-) P_{fk}^- H_k^T(\hat{\mathbf{x}}_{fk}^-) + R_k$$

- Note that in this formulation λ_k^- is used to denote the backward update just before the measurement is processed
- If $T \equiv t_N$ is an observation time, then the boundary conditions are given by

$$\boldsymbol{\lambda}_{N}^{-} = -H_{N}^{T}(\hat{\mathbf{x}}_{fN}^{-}) D_{fN}^{-1} \left[\tilde{\mathbf{y}}_{N} - \mathbf{h}_{N}(\hat{\mathbf{x}}_{fN}^{-}) \right]$$
$$\boldsymbol{\Lambda}_{N}^{-} = H_{T} N^{T}(\hat{\mathbf{x}}_{fN}^{-}) D_{fN}^{-1} H_{N}(\hat{\mathbf{x}}_{fN}^{-})$$

- ullet If T is not an observation time, then the boundary conditions are zero
- Smoother state and covariance can be constructed via either the propagated or updated values of

$$\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_{fk}^{\pm} - P_{fk}^{\pm} \boldsymbol{\lambda}_k^{\pm}$$
$$P_k = P_{fk}^{\pm} - P_{fk}^{\pm} \Lambda_k^{\pm} P_{fk}^{\pm}$$

Optimal Control Approach (i)

- Helps explain where the adjoint variable comes from
 - We'll only focus on the continuous-time version
 - Can derive the full nonlinear continuous-discrete version as well
 - Want to minimize the following loss function

$$J[\mathbf{w}(t)] = \frac{1}{2} \int_{t_0}^{t_N} \left\{ [\tilde{\mathbf{y}}(t) - H(t) \, \mathbf{x}(t)]^T R^{-1}(t) \, [\tilde{\mathbf{y}}(t) - H(t) \, \mathbf{x}(t)] + \mathbf{w}^T(t) \, Q^{-1}(t) \mathbf{w}(t) \right\} \, dt + \frac{1}{2} [\hat{\mathbf{x}}_f(t_0) - \mathbf{x}(t_0)]^T P_f^{-1}(t_0) [\hat{\mathbf{x}}_f(t_0) - \mathbf{x}(t_0)]$$

subject to the dynamic constraint

$$\frac{d}{dt}\mathbf{x}(t) = F(t)\mathbf{x}(t) + B(t)\mathbf{u}(t) + G(t)\mathbf{w}(t)$$

- Note that we are treating $\mathbf{w}(t)$ as a "control input" here
 - It's really a random variable, not a deterministic one, which is assumed here
 - Still, we'll proceed with this assumption

49

Optimal Control Approach (ii)

 Use a Lagrange multiplier approach to derive the following twopoint boundary value problem (TPBVP)

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = F(t)\,\hat{\mathbf{x}}(t) + B(t)\,\mathbf{u}(t) + G(t)\,\mathbf{w}(t) \tag{1a}$$

$$\frac{d}{dt}\boldsymbol{\lambda}(t) = -F^{T}(t)\,\boldsymbol{\lambda}(t) - H^{T}(t)\,R^{-1}(t)\,H(t)\,\hat{\mathbf{x}}(t) + H^{T}(t)\,R^{-1}(t)\,\tilde{\mathbf{y}}(t)$$
(1b)

$$\mathbf{w}(t) = -Q(t) G^{T}(t) \lambda(t)$$
(1c)

where $\lambda(t)$ is the vector of Lagrange multipliers

The boundary conditions are given by

$$\lambda(T) = \mathbf{0}$$
$$\hat{\mathbf{x}}(T) = \hat{\mathbf{x}}_f(T)$$

- Note that because of the boundary conditions, a forwardbackward solution must be employed
 - Also note how $\lambda(t)$ is related to the control input $\mathbf{w}(t)$
 - The vector $\lambda(t)$ tells us how much "control effort" is required

50

Optimal Control Approach (iii)

Substitute (1c) into (1a) to obtain

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = F(t)\,\hat{\mathbf{x}}(t) + B(t)\,\mathbf{u}(t) - G(t)\,Q(t)\,G^{T}(t)\boldsymbol{\lambda}(t)$$
(2a)

$$\frac{d}{dt}\boldsymbol{\lambda}(t) = -F^{T}(t)\,\boldsymbol{\lambda}(t) - H^{T}(t)\,R^{-1}(t)\,H(t)\,\hat{\mathbf{x}}(t) + H^{T}(t)\,R^{-1}(t)\,\tilde{\mathbf{y}}(t)$$
(2b)

Assume that the form of the solution is given by

$$\hat{\mathbf{x}}(t) = \hat{\mathbf{x}}_f(t) - P_f(t)\,\boldsymbol{\lambda}(t) \tag{3}$$

for some matrix $P_f(t)$

• Comparing this to the boundary conditions requires $\pmb{\lambda}(T)=\mathbf{0}$ and

$$\lambda(t_0) = P_f^{-1}(t_0) \left[\hat{\mathbf{x}}_f(t_0) - \hat{\mathbf{x}}(t_0) \right]$$

- Not really needed for anything though
- Take the time derivative of Eq. (3) to obtain

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = \frac{d}{dt}\hat{\mathbf{x}}_f(t) - \left[\frac{d}{dt}P_f(t)\right]\boldsymbol{\lambda}(t) - P_f(t)\left[\frac{d}{dt}\boldsymbol{\lambda}(t)\right]$$

Optimal Control Approach (iv)

Substitute Eq. (2) to obtain

$$F(t)\,\hat{\mathbf{x}}(t) + B(t)\,\mathbf{u}(t) - G(t)\,Q(t)\,G^{T}(t)\boldsymbol{\lambda}(t)$$

$$-\frac{d}{dt}\hat{\mathbf{x}}_{f}(t) + \left[\frac{d}{dt}P_{f}(t)\right]\boldsymbol{\lambda}(t) - P_{f}(t)\,F^{T}(t)\,\boldsymbol{\lambda}(t)$$

$$-P_{f}(t)\,H^{T}(t)\,R^{-1}(t)\,H(t)\,\hat{\mathbf{x}}(t) + P_{f}(t)\,H^{T}(t)\,R^{-1}(t)\,\tilde{\mathbf{y}}(t) = \mathbf{0}$$

Substitute Eq. (3) and collect terms to give

$$\left[\frac{d}{dt} P_f(t) - F(t) P_f(t) - P_f(t) F^T(t) + P_f(t) H^T(t) R^{-1}(t) H(t) P_f(t) \right]
- G(t) Q(t) G^T(t) \lambda(t) + F(t) \hat{\mathbf{x}}_f(t) + B(t) \mathbf{u}(t)
+ P_f(t) H^T(t) R^{-1}(t) [\tilde{\mathbf{y}}(t) - H(t) \hat{\mathbf{x}}_f(t)] - \frac{d}{dt} \hat{\mathbf{x}}_f(t) = \mathbf{0}$$

Optimal Control Approach (v)

• Avoiding the trivial solution of $\lambda(t) = 0$ gives

$$\frac{d}{dt}P_{f}(t) = F(t) P_{f}(t) + P_{f}(t) F^{T}(t) - P_{f}(t) H^{T}(t) R^{-1}(t) H(t) P_{f}(t) + G(t) Q(t) G^{T}(t)$$

$$\frac{d}{dt}\hat{\mathbf{x}}_{f}(t) = F(t) \hat{\mathbf{x}}_{f}(t) + B(t) \mathbf{u}(t) + K_{f}(t) [\tilde{\mathbf{y}}(t) - H(t) \hat{\mathbf{x}}_{f}(t)]$$

where

$$K_f(t) \equiv P_f(t) H^T(t) R^{-1}(t)$$

- This is exactly the forward-time Kalman filter!
- Solving Eq. (3) for $\lambda(t)$ and substituting into Eq. (2a) gives

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = F(t)\,\hat{\mathbf{x}}(t) + B(t)\,\mathbf{u}(t) + G(t)\,Q(t)\,G^{T}(t)\,P_f^{-1}(t)\left[\hat{\mathbf{x}}(t) - \hat{\mathbf{x}}_f(t)\right]$$

- This is exactly the RTS smoother equation!
- A similar approach can be used to derive the discrete-time and nonlinear RTS forms as well

