# OPENCOURSEWARE UNIVERSIA\_UNIVERSIDAD DE LEÓN



# José Luis Fanjul Suárez / Rocío Fanjul Coya



FLUJOS NETOS DE CAJA
COSTE DE CAPITAL
TIPO DE REINVERSIÓN
TASA DE INFLACIÓN
RIESGO

ACTIVO CORRIENTE

ACTIVO NO CORRIENTE

CONJUNTO FINITO DE

PROYECTOS (DIVISIBLES E INDEPENDIENTES) CONOCIDOS CON CERTIDUMBRE.
NO EXISTEN LIMITACIONES AL CAPITAL DISPONIBLE A COSTE DE CAPITAL CONSTANTE.



COMPROMETER AHORA una cantidad de RECURSOS FINANCIEROS dada, de manera que nos proporcione OTRA MAYOR EN EL <u>FUTURO</u>; que COMPENSE la PÉRDIDA DE UTILIDAD (la RENUNCIA al «CONSUMO»).

3. DECISIÓN DE INVERSIÓN EN AMBIENTE DE CERTIDUMBRE



- 3.1. PARÁMETROS DE UN PROYECTO
- 3.2. MÉTODOS PARA ASIGNAR UNA MEDIDA DE LA RENTABILIDAD
- 3.3. VALOR ACTUAL NETO
- 3.4. TIPO INTERNO DE RENDIMIENTO

# FLUJOS NETOS DE CAJA (positivos, negativos,

nulos): Cobros menos Pagos 
$$(Q_j = C_j - P_j)$$

$$Q_i$$
;  $j = 0, 1, ..., t, ..., n$ .

# COSTE DE CAPITAL

(FUENTES DE FINANCIACIÓN: PROPIAS, AJENAS)

# **TIPO DE REINVERSIÓN**

(INVERSIÓN COMPLEMENTARIA: Q<sub>i</sub> positivos).

# TASA DE INFLACIÓN

# **RIESGO**

(ANÁLISIS, VALORACIÓN, MEDIDA,

**GESTIÓN (COBERTURA)).** 



# MÉTODOS PARA ASIGNAR UNA MEDIDA DE LA RENTABILIDAD (SUPUESTOS)

Existe un CONJUNTO FINITO DE PROYECTOS, cada uno de los cuales está IDENTIFICADO por una serie de Flujos Netos de Caja, CONOCIDOS CON **CERTIDUMBRE**, que se «producen» AL FINAL DE CADA PERÍODO.

NO EXISTEN LIMITACIONES AL CAPITAL DISPONIBLE, al Coste de Capital DADO que es CONSTANTE.

Los Proyectos son Perfectamente Divisibles e INDEPENDIENTES.

# MÉTODOS ESTÁTICOS PARA ASIGNAR UNA MEDIDA DE LA RENTABILIDAD

- (1) FLUJO NETO DE CAJA TOTAL
- (2) FLUJO NETO DE CAJA TOTAL POR UNIDAD MONETARIA COMPROMETIDA
- (3) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA
- (4) PLAZO DE RECUPERACIÓN (PR)
- (5) TASA DE RENDIMIENTO CONTABLE (TRC)

- CRITERIO DE ACEPTACIÓN: RESULTADO POSITIVO (EXCEPTO EL PR).
- CRITERIO DE ORDENACIÓN: DE MAYOR A MENOR VALOR (EXCEPTO EL PR).



### (1) FLUJO NETO DE CAJA TOTAL

$$FNCT = Q_0 + Q_1 + Q_2 + \square + Q_n = \sum_{j=0}^{j-n} Q_j$$

## (2) FLUJO NETO DE CAJA TOTAL POR UNIDAD MONETARIA COMPROMETIDA

$$FNCT_{u.m.} = \frac{Q_o + Q_1 + \dots + Q_n}{\left| Q_o + Q_1 + \dots + Q_p \right|} = \frac{\sum_{j=0}^{j-n} Q_j}{\sum_{j=0}^{j=p} \left| Q_j \right|} = \frac{FNCT}{\left| Q_o + Q_1 + \dots + Q_p \right|}$$

# (3) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA

$$FNCM_{u.m.} = \frac{1}{n} \cdot \frac{Q_o + Q_1 + \dots + Q_n}{|Q_o + Q_1 + \dots + Q_p|} = \frac{1}{n} \cdot \frac{\sum_{j=0}^{n} Q_j}{\sum_{j=0}^{n} |Q_j|} = \frac{1}{n} \cdot \frac{FNCT}{|Q_o + Q_1 + \dots + Q_p|} = \frac{FNCT_{u.m.}}{n}$$

# (4) PLAZO DE RECUPERACIÓN (PR)

$$PR \equiv t \Rightarrow Q_0 + Q_1 + \square + Q_p = Q_{p+1} + Q_{p+2} + \square + Q_t$$

# Métodos estáticos adaptados

## (2.1.) FLUJO NETO DE CAJA TOTAL POR UNIDAD MONETARIA COMPROMETIDA

$$FNCT_{u.m.} = rac{Q_{p+1} + Q_{p+2} + \Box + Q_n}{\left|Q_0 + Q_1 + \Box + Q_p
ight|} = rac{\sum\limits_{j=p+1}^{j-n}Q_j}{\sum\limits_{j=0}^{j-n}Q_j}$$

(3.1.) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA

$$FNCM_{u.m.} = \frac{1}{n} \cdot \frac{Q_{p+1} + Q_{p+2} + \Box + Q_{n}}{|Q_{0} + Q_{1} + \Box + Q_{p}|} = \frac{1}{n} \cdot \frac{\sum_{j=p+1}^{p} Q_{j}}{\sum_{j=0}^{p+1} |Q_{j}|}$$





# (5) TASA DE RENDIMIENTO CONTABLE (TRC):

Dividiendo el Beneficio anual después de deducir la Amortización y los Impuestos, por el desembolso inicial de la Inversión.

$$TRC_{j} = \frac{R_{j}}{Q_{0}}$$

#### Donde:

 $R_i =$  Beneficio después de deducir la Amortización y los Impuestos

 $Q_0$  = Desembolso inicial, que incluye el Activo corriente y el Activo no corriente

# Una ADAPTACIÓN DEL MÉTODO consiste en UTILIZAR VALORES MEDIOS:

$$\overline{TRC_j} = \frac{R_j}{\overline{Q_0}}$$

#### Donde:

$$\overline{R_j} = \frac{R_j}{n}$$
 Beneficio medio después de deducir la Amortización y los Impuestos

$$\overline{Q_0} = \frac{Q_0}{p_0}$$
 Desembolso inicial medio, que incluye el Activo corriente y el Activo no corriente

$$n=$$
 Vida del Proyecto



#### Ejemplo 1:

| Proyecto | $Q_0$ | $\mathbf{Q}_1$ | $Q_2$ | $Q_3$ | $\mathbf{Q}_4$ |
|----------|-------|----------------|-------|-------|----------------|
| Α        | -100  | 20             | 40    | 60    | 80             |
| В        | -100  | 20             | 40    | 80    | 60             |
| С        | -100  | 40             | 60    | 40    | 80             |
| D        | -100  | 40             | 60    | 60    | 40             |

1) Flujo Neto de Caja Total ( 
$$FNCT$$
 ): 
$$FNCT_A = -100 + 20 + 40 + 60 + 80 = 100$$
 
$$FNCT_B = -100 + 20 + 40 + 80 + 60 = 100$$
 
$$FNCT_C = -100 + 40 + 60 + 40 + 80 = 120$$
 
$$FNCT_D = -100 + 40 + 60 + 60 + 40 = 100$$

Los proyectos. A, B y D; son igualmente rentables al proporcionar 100 unidades monetarias (u. m.) y el proyecto C es el más rentable de todos al proporcionar 120 u.m..

2) Flujo Neto de Caja Total por unidad monetaria comprometida ( 
$$FNCT_{u.m.}$$
 ):  $FNCT_{u.m.(A)} = \frac{100}{100} = 1$ 

2) Flujo Neto de Caja Total por unidad monetaria comprometida (
$$FNCT_{u.m.}$$
):  $FNCT_{u.m.(A)} = \frac{100}{|-100|} = 1$  
$$FNCT_{u.m.(B)} = \frac{100}{|-100|} = 1$$
 
$$FNCT_{u.m.(C)} = \frac{120}{|-100|} = 1'2$$
 
$$FNCT_{u.m.(D)} = \frac{100}{|-100|} = 1$$

Los proyectos. A, B y D; son igualmente rentables al proporcionar 1 unidad monetaria (u. m.) por cada u. m. invertida

El proyecto C es el más rentable al proporcionar 1'20 unidades monetarias por cada u.m. invertida.



#### 3) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA ( $FNCM_{u,m}$ ):

$$FNCM_{u.m.(A)} = \frac{1}{4} = 0'25$$

$$FNCM_{u.m.(B)} = \frac{1}{4} = 0'25$$

$$FNCM_{u.m.(C)} = \frac{1'2}{4} = 0'30$$

$$FNCM_{u.m.(D)} = \frac{1}{4} = 0'25$$

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ |
|----------|-------|-------|-------|-------|-------|
| Α        | -100  | 20    | 40    | 60    | 80    |
| В        | -100  | 20    | 40    | 80    | 60    |
| С        | -100  | 40    | 60    | 40    | 80    |
| D        | -100  | 40    | 60    | 60    | 40    |

Los proyectos. A, B y D; son igualmente rentables al proporcionar 0´25 unidades monetarias (u. m.) por cada unidad monetaria invertida y año.

El proyecto C es el más rentable de todos al proporcionar 0´30 unidades monetarias por cada u.m. invertida y año.

$$PR_A \equiv 2 \ a\tilde{n}os \ y \ 8 \ meses \Rightarrow \ \left| -100 \right| = 20 + 40 + 60 \cdot \frac{8}{12}$$

$$PR_B \equiv 2 \ a\tilde{n}os \ y \ 6 \ meses \Rightarrow \ \left| -100 \right| = 20 + 40 + 80 \cdot \frac{6}{12}$$

$$PR_C \equiv 2 \ a\tilde{n}os \Rightarrow \ \left| -100 \right| = 40 + 60$$

$$PR_D \equiv 2 \ a\tilde{n}os \Rightarrow \ \left| -100 \right| = 40 + 60$$

Los proyectos C y D son igualmente rentables al recuperarse en dos años.

El proyecto B tarda en recuperarse 2 años y seis meses.

El proyecto A tarda 2 años y ocho meses.

Aplicando las definiciones de los cuatro Métodos estáticos de valoración y selección de inversiones; obtenemos el Cuadro adjunto, relativo a la valoración y ordenación de los Proyectos: A, B, C, D.

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | FNCT | Orden      | FNCTum | Orden      | FNCMum | Orden      | PR               | Orden |
|----------|-------|-------|-------|-------|-------|------|------------|--------|------------|--------|------------|------------------|-------|
| Α        | -100  | 20    | 40    | 60    | 80    | 100  | <b>2</b> º | 1,00   | <b>2</b> º | 0,25   | <b>2</b> º | 2 años y 8 meses | 3º    |
| В        | -100  | 20    | 40    | 80    | 60    | 100  | <b>2</b> º | 1,00   | <b>2</b> º | 0,25   | <b>2</b> ° | 2 años y 6 meses | 2º    |
| С        | -100  | 40    | 60    | 40    | 80    | 120  | 10         | 1,20   | 10         | 0,30   | 10         | 2 años           | 1º    |
| D        | -100  | 40    | 60    | 60    | 40    | 100  | <b>2</b> º | 1,00   | <b>2</b> º | 0,25   | <b>2</b> ° | 2 años           | 1º    |

Estos cuatro Métodos ORDENAN los Proyectos DE MAYOR A MENOR RENTABILIDAD (EXCEPTUANDO el Plazo de Recuperación, que ordena DE MENOR A MAYOR DURACIÓN); y no son recomendables porque adolecen del mismo inconveniente: operan con cantidades heterogéneas; lo que equivale a considerar que:

- > EL COSTE DE CAPITAL DE LA EMPRESA ES NULO,
- > NO EXISTE TASA DE INFLACIÓN Y
- > NO EXISTE RIESGO.

#### Ejemplo 2

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ |
|----------|-------|-------|-------|-------|-------|
| Α        | -100  | -20   | 60    | 60    | 80    |
| В        | -100  | -20   | 40    | 80    | 60    |
| С        | -100  | -40   | 60    | 40    | 80    |
| D        | -100  | -40   | 60    | 60    | 40    |

1) FLUJO NETO DE CAJA TOTAL ( 
$$FNCT$$
 ):  $FNCT_A = -100 - 20 + 60 + 60 + 80 = 80$ 

$$FNCT_B = -100 - 20 + 40 + 80 + 60 = 60$$

$$FNCT_C = -100 - 40 + 60 + 40 + 80 = 40$$

$$FNCT_D = -100 - 40 + 60 + 60 + 40 = 20$$

#### El Proyecto A es el más rentable al proporcionar 80 unidades monetarias (u. m.)

2) FLUJO NETO DE CAJA TOTAL POR UNIDAD MONETARIA COMPROMETIDA ( 
$$FNCT_{u.m.}$$
 ):

$$FNCT_{u.m.(A)} = \frac{80}{|-120|} = 0'666666$$

$$FNCT_{u.m.(B)} = \frac{60}{|-120|} = 0'5$$

$$FNCT_{u.m.(C)} = \frac{40}{|-140|} = 0'285714$$

$$FNCT_{u.m.(D)} = \frac{20}{|-140|} = 0'142857$$

El Proyecto A es el más rentable al proporcionar 0'666666 unidades monetarias por cada u.m. invertida

#### 3) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA ( FNCM,,,,):

$$FNCM_{u.m.(A)} = \frac{0.666666}{4} = 0.166666$$

$$FNCM_{u.m.(B)} = \frac{0.5}{4} = 0.125$$

$$FNCM_{u.m.(C)} = \frac{0.285714}{4} = 0.071428$$

$$FNCM_{u.m.(D)} = \frac{0.142857}{4} = 0.035714$$

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ |
|----------|-------|-------|-------|-------|-------|
| Α        | -100  | -20   | 60    | 60    | 80    |
| В        | -100  | -20   | 40    | 80    | 60    |
| С        | -100  | -40   | 60    | 40    | 80    |
| D        | -100  | -40   | 60    | 60    | 40    |

El proyecto A es el más rentable al proporcionar 0´166666 unidades monetarias por cada u.m. invertida y año.

$$PR_{A} \equiv 2 \quad a\tilde{n}os \quad \Rightarrow \quad \left| -100 - 20 \right| = 60 + 60$$

$$PR_{B} \equiv 2 \quad a\tilde{n}os \quad \Rightarrow \quad \left| -100 - 20 \right| = 40 + 80$$

$$PR_{C} \equiv 2 \quad a\tilde{n}os \quad y \quad seis \quad meses \Rightarrow \quad \left| -100 - 40 \right| = 60 + 40 + 80 \cdot \frac{6}{12}$$

$$PR_{D} \equiv 2 \quad a\tilde{n}os \quad y \quad seis \quad meses \Rightarrow \quad \left| -100 - 40 \right| = 60 + 60 + 40 \cdot \frac{6}{12}$$

Los proyectos más rentables son: A y B, porque se recuperan en dos años. Los proyectos C y D, son igualmente rentables al recuperarse en dos años y seis meses. Aplicando las definiciones de los cuatro Métodos estáticos de valoración y selección de inversiones; obtenemos el Cuadro adjunto, relativo a la valoración y ordenación de los Proyectos: A, B, C, D.

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | FNCT | Orden      | FNCTum | Orden      | FNCMum | Orden      | PR                  | Orden |
|----------|-------|-------|-------|-------|-------|------|------------|--------|------------|--------|------------|---------------------|-------|
| Α        | -100  | -20   | 60    | 60    | 80    | 80   | 10         | 0,6667 | 10         | 0,1667 | 10         | 2 años              | 1º    |
| В        | -100  | -20   | 40    | 80    | 60    | 60   | <b>2</b> º | 0,5000 | <b>2</b> º | 0,1250 | <b>2</b> º | 2 años              | 1º    |
| С        | -100  | -40   | 60    | 40    | 80    | 40   | 3º         | 0,2857 | 3º         | 0,0714 | 30         | 2 años y 6 meses    | 2º    |
| D        | -100  | -40   | 60    | 60    | 40    | 20   | 40         | 0,1429 | <b>4</b> º | 0,0357 | 40         | 2 años y seis meses | 2º    |

Estos cuatro Métodos ORDENAN los Proyectos DE MAYOR A MENOR RENTABILIDAD (EXCEPTUANDO el Plazo de Recuperación, que ordena DE MENOR A MAYOR DURACIÓN); y no son recomendables porque adolecen del mismo inconveniente: operan con cantidades heterogéneas; lo que equivale a considerar que:

- > EL COSTE DE CAPITAL DE LA EMPRESA ES NULO,
- > NO EXISTE TASA DE INFLACIÓN Y
- > NO EXISTE RIESGO.

- 3.3. Valor Actual Neto de un Proyecto de Inversión: formulación.-
- 3.4. TIPO INTERNO DE RENDIMIENTO DE UN PROYECTO DE INVERSIÓN: FORMULACIÓN.-
  - VALOR ACTUAL NETO (VAN)
     VALOR PRESENTE NETO (VPN)
     NET PRESENT VALUE (NPV)
  - TIPO INTERNO DE RENDIMIENTO (TIR)

TASA DE RETORNO

INTERNAL RATE RETURN (IRR)

RENDIMIENTO DEL CAPITAL INVERTIDO (RCI)

• CRITERIO DE ACEPTACIÓN:

$$VAN(k) \ge 0$$
$$r \ge k$$

CRITERIO DE <u>ORDENACIÓN</u>:
 DE MAYOR A MENOR VALOR.

#### ACTUALIZACIÓN DE LOS FLUJOS NETOS DE CAJA DE UN PROYECTO DE INVERSIÓN



# MÉTODOS <u>DINÁMICOS</u> PARA ASIGNAR UNA MEDIDA DE LA RENTABILIDAD

VALOR ACTUAL NETO (VAN) = VALOR PRESENTE NETO (VPN) = = NET PRESENT VALUE (NPV):

$$VAN(k) = Q_0 + \frac{Q_1}{(1+k)} + \frac{Q_2}{(1+k)^2} + \dots + \frac{Q_n}{(1+k)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+k)^j}$$

TIPO INTERNO DE RENDIMIENTO (TIR) = INTERNAL RATE RETURN (IRR) = RENDIMIENTO DEL CAPITAL INVERTIDO (RCI):

$$VAN(r) = Q_0 + \frac{Q_1}{(1+r)} + \frac{Q_2}{(1+r)^2} + \dots + \frac{Q_n}{(1+r)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+r)^j} = 0$$

**VALOR MÁXIMO:** 

$$VAN(0) = Q_0 + Q_1 + Q_2 + \square + Q_n = \sum_{j=0}^{j-n} Q_j$$

VALORES POSITIVOS:  $k_1 < r$ 

VALORES NEGATIVOS: 
$$k_2 > r$$

**VALOR NULO:** 

$$TIR \equiv r, \ tal \ que : VAN(r) = \sum_{j=0}^{j=n} \frac{Q_j}{(1+r)^j} = 0$$

CRITERIO DE ACEPTACIÓN:

$$VAN(k) \ge 0$$

$$r \geq k$$



# REPRESENTACIÓN DE LA RENTABILIDAD DE UN PROYECTO <u>PURO</u> DE INVERSIÓN



#### **CASOS PARTICULARES**



## (1) FLUJOS NETOS DE CAJA CONSTANTES

$$VAN(k) = Q_0 + \frac{Q}{(1+k)} + \frac{Q}{(1+k)^2} + \dots + \frac{Q}{(1+k)^n} = Q_0 + Q \bullet a_{\overline{n}|_k}$$

$$TIR = r$$
,  $tal\ que: 0 = Q_0 + \frac{Q}{(1+r)} + \frac{Q}{(1+r)^2} + \dots + \frac{Q}{(1+r)^n} = Q_0 + Q \bullet a_{\overline{n}|_r}$ 

$$Por tanto: a_{\overline{n}|_r} = \frac{-Q_0}{Q}$$

## (2) FLUJOS NETOS DE CAJA CONSTANTES Y VIDA ILIMITADA

$$VAN(k) = Q_0 + \frac{Q}{k}$$

$$Por tanto: r = \frac{Q}{-Q_0}$$





- TIPO INTERNO DE RENDIMIENTO O TASA DE RETORNO (TIR) (IRR)
- <u>MÉTODO DE APROXIMACIÓN DE UNA RAÍZ</u>:

$$X_n = \left\{ \frac{|Q_0|}{\sum\limits_{j=1}^{j=n} j \cdot Q_j} \right\} \begin{bmatrix} \sum\limits_{j=1}^{j=n} j \cdot Q_j \\ \sum\limits_{j=1}^{j=n} j \cdot Q_j \end{bmatrix}$$



Ejemplo 3:

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | ${\sf Q}_4$ |
|----------|-------|-------|-------|-------|-------------|
| Α        | -100  | 20    | 30    | 50    | 40          |
| В        | -100  | 20    | 30    | 40    | 50          |
| С        | -100  | 20    | 50    | 40    | 50          |
| D        | -100  | 40    | 50    | 20    | 50          |

TIPO INTERNO DE RENDIMIENTO (TIR) O TASA DE RETORNO O RENDIMIENTO DEL CAPITAL INVERTIDO

$$egin{aligned} m{X}_n = & \left\{ rac{|Q_0|}{\sum\limits_{j=n}^{j=n} j \cdot Q_j} 
ight\} & \sum\limits_{j=1}^{j=1} j \cdot Q_j \ \left| \sum\limits_{j=1}^{j=n} Q_j \mid \end{array} \end{aligned}$$

$$X_n^A = \left\{\frac{100}{140}\right\}^{-\frac{140}{390}}$$
 - 1 = 0'128382  $\approx$  12'83 % 
$$X_n^B = \left\{\frac{100}{140}\right\}^{-\frac{140}{400}}$$
 - 1 = 0'124980  $\approx$  12'49 % 
$$X_n^C = \left\{\frac{100}{160}\right\}^{-\frac{160}{440}}$$
 - 1 = 0'186384  $\approx$  18'63 % 
$$X_n^D = \left\{\frac{100}{160}\right\}^{-\frac{160}{400}}$$
 - 1 = 0'206835  $\approx$  20'68 %

# Ejemplo 3.2:

| Proyecto | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ |
|----------|-------|-------|-------|-------|-------|
| Α        | -100  | 20    | 30    | 60    | 80    |
| В        | -100  | 20    | 30    | 80    | 60    |
| С        | -100  | 40    | 50    | 40    | 80    |
| D        | -100  | 40    | 50    | 60    | 40    |

#### TIPO INTERNO DE RENDIMIENTO (TIR) O TASA DE RETORNO O RENDIMIENTO DEL CAPITAL INVERTIDO

|          |       |       | Flujos Netos | s de Caja |       | VAN | VAN     | VAN     | VAN      | TIR    |
|----------|-------|-------|--------------|-----------|-------|-----|---------|---------|----------|--------|
| Proyecto | $Q_0$ | $Q_1$ | $Q_2$        | $Q_3$     | $Q_4$ | k=0 | k=0,10  | k=0,20  | k=0,30   |        |
| Α        | -100  | 20    | 30           | 60        | 80    | 90  | 42,6952 | 10,8025 | -11,5437 | 0,2442 |
| В        | -100  | 20    | 30           | 80        | 60    | 90  | 44,0612 | 12,7315 | -9,4429  | 0,2534 |
| С        | -100  | 40    | 50           | 40        | 80    | 110 | 62,3796 | 29,7840 | 6,5719   | 0,3351 |
| D        | -100  | 40    | 50           | 60        | 40    | 90  | 50,0854 | 22,0679 | 1,6701   | 0,3097 |

#### Ejemplo 4:

|          |       | Flujos Netos de Caja |       |       |                |  |  |  |  |  |  |  |  |
|----------|-------|----------------------|-------|-------|----------------|--|--|--|--|--|--|--|--|
| Proyecto | $Q_0$ | $Q_1$                | $Q_2$ | $Q_3$ | $\mathbf{Q}_4$ |  |  |  |  |  |  |  |  |
| Α        | -100  | 40                   | 40    | 40    | 40             |  |  |  |  |  |  |  |  |
| В        | -100  | -20                  | 40    | 80    | 40             |  |  |  |  |  |  |  |  |
| С        | -100  | -40                  | 60    | 80    | 40             |  |  |  |  |  |  |  |  |
| D        | -100  | 40                   | -20   | 80    | 40             |  |  |  |  |  |  |  |  |

#### 1) FLUJO NETO DE CAJA TOTAL ( FNCT ):

$$FNCT_A = -100 + 40 + 40 + 40 + 40 = 60$$

$$FNCT_B = -100 - 20 + 40 + 80 + 40 = 40$$

$$FNCT_C = -100 - 40 + 60 + 80 + 40 = 40$$

$$FNCT_D = -100 + 40 - 20 + 80 + 40 = 40$$

Los Proyectos B, C y D, son igualmente rentables: 40 unidades monetarias (u. m.). El Proyecto A es el más rentable de todos al proporcionar 60 u. m.

2) Flujo Neto de Caja Total por unidad monetaria comprometida ( 
$$FNCT_{u.m.}$$
 ):

$$FNCT_{u.m.(A)} = \frac{60}{|-100|} = 0.6$$

$$FNCT_{u.m.(B)} = \frac{40}{|-100|} = 0.4$$

$$FNCT_{u.m.(C)} = \frac{40}{|-100|} = 0.4$$

$$FNCT_{u.m.(D)} = \frac{40}{|-100|} = 0.4$$

Los Proyectos B, C y D son igualmente rentables: 0´4 unidad monetaria (u. m.) por cada unidad monetaria invertida.

El Proyecto A es el más rentable: 0'6 unidades monetarias por cada u. m. invertida



#### 3) FLUJO NETO DE CAJA MEDIO POR UNIDAD MONETARIA COMPROMETIDA ( $FNCM_{u,m}$ ):

$$FNCM_{u.m.(A)} = \frac{0'6}{4} = 0'15$$

$$FNCM_{u.m.(B)} = \frac{0'4}{4} = 0'10$$

$$FNCM_{u.m.(C)} = \frac{0'4}{4} = 0'10$$

$$FNCM_{u.m.(D)} = \frac{0'4}{4} = 0'10$$

|          |       | Flujos Netos de Caja |       |       |       |  |  |  |  |  |  |  |  |
|----------|-------|----------------------|-------|-------|-------|--|--|--|--|--|--|--|--|
| Proyecto | $Q_0$ | $Q_1$                | $Q_2$ | $Q_3$ | $Q_4$ |  |  |  |  |  |  |  |  |
| Α        | -100  | 40                   | 40    | 40    | 40    |  |  |  |  |  |  |  |  |
| В        | -100  | -20                  | 40    | 80    | 40    |  |  |  |  |  |  |  |  |
| С        | -100  | -40                  | 60    | 80    | 40    |  |  |  |  |  |  |  |  |
| D        | -100  | 40                   | -20   | 80    | 40    |  |  |  |  |  |  |  |  |

Los Proyectos B, C y D, son igualmente rentables: 0'10 unidades monetarias (u. m.) por cada unidad monetaria invertida y año.

El Proyecto A es el más rentable: 0´15 unidades monetarias por cada u. m. invertida y año.

$$PR_{A} \equiv 2 \ a\tilde{n}os \ y \ 6 \ meses \Rightarrow \ \left| -100 \right| = 40 + 40 + 40 + 40 \cdot \frac{6}{12}$$
 $PR_{B} \equiv 3 \ a\tilde{n}os \Rightarrow \left| -100 - 20 \right| = 40 + 80$ 
 $PR_{C} \equiv 3 \ a\tilde{n}os \Rightarrow \left| -100 - 40 \right| = 60 + 80$ 
 $PR_{D} \equiv 3 \ a\tilde{n}os \Rightarrow \left| -100 \right| = 40 - 20 + 80$ 

Los proyectos B, C y D, son igualmente rentables al recuperarse en tres años. El proyecto A tarda en recuperarse 2 años y seis meses

Aplicando las definiciones de los cuatro Métodos estáticos de valoración y selección de inversiones; obtenemos el Cuadro adjunto, relativo a la valoración y ordenación de los Proyectos: A, B, C, D.

| Proyecto | $Q_0$ | Q <sub>1</sub> | $Q_2$ | $Q_3$ | $Q_4$ | FNCT | Orden      | FNCTum | Orden      | FNCMum | Orden      | PR               | Orden |
|----------|-------|----------------|-------|-------|-------|------|------------|--------|------------|--------|------------|------------------|-------|
| Α        | -100  | 40             | 40    | 40    | 40    | 60   | 1º         | 0,6000 | 1º         | 0,1500 | 1º         | 2 años y 6 meses | 10    |
| В        | -100  | -20            | 40    | 80    | 40    | 40   | <b>2</b> º | 0,3333 | 3º         | 0,0833 | 3º         | 3 años           | 20    |
| С        | -100  | -40            | 60    | 80    | 40    | 40   | <b>2</b> º | 0,2857 | <b>4</b> º | 0,0714 | 40         | 3 años           | 20    |
| D        | -100  | 40             | -20   | 80    | 40    | 40   | <b>2</b> º | 0,4000 | <b>2</b> º | 0,1000 | <b>2</b> º | 3 años           | 2º    |

Estos cuatro Métodos ORDENAN los Proyectos DE MAYOR A MENOR RENTABILIDAD (EXCEPTUANDO el Plazo de Recuperación, que ordena DE MENOR A MAYOR DURACIÓN); y no son recomendables porque adolecen del mismo inconveniente: operan con cantidades heterogéneas; lo que equivale a considerar que:

- > EL COSTE DE CAPITAL DE LA EMPRESA ES NULO,
- > NO EXISTE TASA DE INFLACIÓN Y
- > NO EXISTE RIESGO.

#### 5) VALOR PRESENTE NETO (VALOR ACTUAL NETO)

#### 6) TIPO INTERNO DE RENDIMIENTO (TIR) O TASA DE RETORNO O RENDIMIENTO DEL CAPITAL INVERTIDO

|          | Flujos Netos de Caja |       |       |       |       | VAN | VAN     | VAN      | VAN      | TIR    |
|----------|----------------------|-------|-------|-------|-------|-----|---------|----------|----------|--------|
| Proyecto | $Q_0$                | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | k=0 | k=0,10  | k=0,20   | k=0,30   |        |
| Α        | -100                 | 40    | 40    | 40    | 40    | 60  | 26,7946 | 3,5494   | -13,3504 | 0,2186 |
| В        | -100                 | -20   | 40    | 80    | 40    | 40  | 2,3018  | -23,3025 | -41,2976 | 0,1076 |
| С        | -100                 | -40   | 60    | 80    | 40    | 40  | 0,6489  | -26,0802 | -44,8479 | 0,1020 |
| D        | -100                 | 40    | -20   | 80    | 40    | 40  | 7,2604  | -14,9691 | -30,6467 | 0,1288 |

$$X_{n} = \left\{\frac{|\mathcal{Q}|}{\sum_{j=1}^{l}}\right\}^{-\sum_{j=1}^{l}\mathcal{Q}_{j}} - 1 \begin{cases} X_{n}^{A} = \left\{\frac{100}{160}\right\}^{-\frac{160}{400}} - 1 = 0'206835 \approx 20'68\% \\ X_{n}^{B} = \left\{\frac{100}{140}\right\}^{-\frac{140}{460}} - 1 = 0'107832 \approx 10'78\% \end{cases}$$

$$X_{n}^{B} = \left\{\frac{120}{160}\right\}^{-\frac{160}{480}} - 1 = 0'100642 \approx 10'06\%$$

# OPENCOURSEWARE UNIVERSIA\_UNIVERSIDAD DE LEÓN



# universidad deleón

# Gracias

- 3. DECISIÓN DE INVERSIÓN EN AMBIENTE DE CERTIDUMBRE
- 3.1. PARÁMETROS DE UN PROYECTO
- 3.2. MÉTODOS PARA ASIGNAR UNA MEDIDA DE LA RENTABILIDAD
- 3.3. VALOR ACTUAL NETO
- 3.4. TIPO INTERNO DE RENDIMIENTO

José Luis Fanjul Suárez / Rocío Fanjul Coya

