CS 435: Introduction to Cryptography

Spring 2020

Quiz April 22, 2020

Professor Somesh Jha April 22, 2020

1. (40 points): Alice has six files $F_1, F_2, F_3, F_4, F_5, F_6$ that she wants to store on a remote server S.

Part (a): Show the Merkle hash tree for the six files. What does Alice store on her computer?

Part (b): Suppose Alice wants retrieve file F_1 from the server S. What should the server S send along with the file to convince Alice that the file has not been modified?

Part (c): Show that the server S cannot convince Alice that some other file F'_1 (not equal to F_1) is the "legitimate" file. This is similar to the proof we did in a Lecturelet.

Part (d): Suppose Alice wants to retrieve two files F_2 and F_4 . Can the server send a shorter proof? The obvious way is to send to separate proofs for F_2 and F_4 .

2. (30 points): Let H and G be a collision resistant hash functions. Answer the following: Part(a): Is $H \circ G$ a collision-resistant hash function? Please justify your answer. \circ denotes composition (e.g. $H \circ G(x) = H(G(x))$ Part(b): Prove that H^i (H^i is H composed with itself i times. $H^2(x) = H(H(x))$).

Hint: Use part (a) and induction.

3. (30 points): Let F be a PRF where all the relevant sizes are n-bits (i.e key size, input, and output sizes). Recall that we proved that the MAC scheme that computes the tag as $t = F_k(m)$ is secure (assume that the key size is a random n-bit string). However, that scheme can only handle n-bit messages. Consider the following schemes for domain extension (i.e. handling larger messages). Prove that all of them are insecure.

Part (a): To authenticate message $m=m_1\cdots m_l$ (each message block m_i is of size $\frac{n}{2}$ bits), compute $t=F_k(\langle 1\rangle||m_1)\oplus\cdots\oplus F_k(\langle l\rangle||m_l)$. Let $\langle i\rangle$ denote the $\frac{n}{2}$ -bit encoding of integer i.

Part (b): To authenticate message $m = m_1 \cdots m_l$ (each message block m_i is of size $\frac{n}{2}$ bits), compute $t = F_k(r) \oplus F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle l \rangle || m_l)$. For each message $r \leftarrow \{0,1\}^n$ is chosen randomly. Recall that the random number r is sent by the sender along with the tags t_i (otherwise the MAC cannot be verified at the other end).