CMPT 729 G100

Jason Peng

Overview

- What is reinforcement learning?
- Applications
- Logistics

What is Reinforcement Learning?

What is Reinforcement Learning

Reinforcement Learning = Area of machine learning that studies techniques for solving decision making problems.

[Garry Kasparov vs. Deep Blue 1997]

Manual Controller Design

[Raibert and Hodgins 1991]

[Vukobratović and Borovac 2004]

[Yin et al. 2007]

[Geyer et al. 2003]

[Da Silva et al. 2008]

Manual Controller Design

[Boston Dynamics 2018]

[ANYbotics 2018]

[MIT Biomimetic Robotics Lab 2019]

Manual Controller Design

[Coros et al., 2011]

Supervised Learning

 $\{(\mathbf{x}_i, y_i)\}$

Cat

Dog

Cat

Dog

Reinforcement Learning

 $\{(\mathbf{x}_i, y_i, r_i)\}$

Unsupervised Learning

 $\{\mathbf{x}_i\}$

Supervised Learning

 $\{(\mathbf{x}_i, y_i)\}$

Cat

Dog

Cat

Dog

Reinforcement Learning

 $\{(\mathbf{x}_i, y_i, r_i)\}$

Unsupervised Learning

 $\{\mathbf{x}_i\}$

Supervised Learning

$$\{(\mathbf{x}_i, y_i)\}$$

Dog

Reinforcement Learning $\{(\mathbf{x}_i, y_i, r_i)\}$

Unsupervised Learning

 $\{\mathbf{x}_i\}$

Supervised Learning

$$\{(\mathbf{x}_i, y_i)\}$$

Cat

Cat

Dog Dog

Reinforcement Learning

 $\{(\mathbf{x}_i, y_i, r_i)\}$

$$\{\mathbf{x}_i\}$$

$$\{(\mathbf{x}_i,y_i,r_i)\}$$
 $\{(\mathbf{y}_i,y_i,r_i)\}$ $f(y_i|\mathbf{x}_i)$

$$\mathbf{x}_i \Rightarrow f \Rightarrow y_i \Rightarrow r_i$$

• Learning through trial-and-error

Learning through trial-and-error

Learning through trial-and-error

[AlphaGo 2016]

Data Sources

Supervised Learning

$$\{(\mathbf{x}_i, y_i)\}$$

Dog

Cat

Dog

Reinforcement Learning

Passive Learning

Passive Learning: Agent is given a fixed dataset to learn from

- Agent passively observes the world
- does not affect its environment

Active Learning

Active Learning: Agent collects its own data

- Agent interact and affects its environment
- Data depends on the agent's behaviors

Applications

Games

[Tesauro 1995]

[Mnih et al. 2015]

[Silver 2017]

Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning [Vinyals 2019]

Robotic Manipulation

place banana in ceramic cup' place bottle in tray "place banana on white sponge" "push purple bowl across table"

[Nagabandi et al. 2019]

[Jang et al. 2021]

Robotic Locomotion

[Miki et al. 2022]

[Li et al. 2023]

Autonomous Driving

[Bojarski et al. 2016]

[Wu et al. 2021]

Energy Conservation

Safety-First AI for Autonomous Data Centre Cooling and Industrial Control [Gamble and Gao 2018]

Recommendation Systems

Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems [Zou et al. 2019]

Computer Graphics

ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters [Peng et al. 2022]

Logistics

Preliminaries

- There will be **a lot** of math
 - Probability theory
 - Calculus
 - Linear algebra

- Machine learning
 - Neural networks
 - Optimization
 - Supervised learning
 - Unsupervised learning

- Programming
 - Python
 - PyTorch

Lectures

00: Introduction **10:** On-Policy vs. Off-Policy Algorithms

01: MDP **11:** Advance Policy Gradient

02: Policy Evaluation **12:** Advance Q-learning

03: Behavioral Cloning **13:** Exploration

04: Policy Search **14:** Unsupervised RL

05: RL Algorithms **15:** Imitation Learning

06: Policy Gradient **16:** Domain Transfer

07: Q-Learning **17:** Offline RL

08: Actor-Critic Algorithms

09: Model-Based RL *Tentative

Grading

• 3 programming assignments (10% each)

Paper presentation (20%)

- Course project (50%)
 - Proposal (10%)
 - Presentation (20%)
 - Report (20%)

No exams

Paper Presentation

Present an RL-related paper

• Groups 3-4 (depending on class size)

Course Project

- Apply reinforcement learning to solve an interesting problem
 - No board games
 - No Atari games
 - No standard benchmark problems (OpenAI gym, DeepMind Control Suite)
- Groups 3-4 (depending on class size)
- 1-2 page proposal due in mid June
- Project presentations at the end of the semester
- Project report due at the end of the semester

CoursSys

CourSys / CMPT 729 G1 / Discussion Logout

Search

● This site ○ SFU.ca

CMPT 729 G1: Discussion Forum

Search posts:

0141 1 727 0 11 Bis	
[Forum Summary]	Unanswered Questions
[New Thread]	
Nothing posted yet.	None
[Discussion forum identities]	A question is considered "answered" if (1) an instructor/TA has replied, (2) an instructor/TA has reacted positively (4, ,) to a student reply, or (3) the question-asker has marked it answered or reacted positively to a reply.
[Activity digest]	Unread Activity
	None
	Search Posts

Office Hours

Jason: Thursday 2-3pm in TASC 9213

Ruiqi: Monday 3-4pm in TASC 8004

Summary

- What is reinforcement learning?
- Applications
- Logistics