

### **Agenda**

- 1. Introduction
- 2. Data Understanding
- 3. Data Preparation
- 4. Exploratory Data Analysis
- 5. Recommendations



#### 1. Introduction

#### 1.1 Objective

To analyze the loan dataset of a leading lending company, identify risks and issues in applicant's borrowing patterns, and prepare a comprehensive case study. The case study will highlight key risk factors and include observations and recommendations to mitigate potential credit losses.

- Develop a robust decision-making framework for loan applications based on identified risk factors.
- Ensure applications from applicants with the potential to repay the loan are not rejected unnecessarily.
- Prevent the approval of applications from applicants who are likely to default.



#### 2. Data Understanding

The initial data exploration revealed several key observations to streamline the dataset for effective analysis, as outlined below:

- The dataset contains 39,717 rows and 111 columns.
- Most columns are of type object, with some date-like columns (e.g., issue\_d) and categorical columns (e.g., grade, sub\_grade, term, loan\_status, verification\_status).
- Columns such as id, member\_id, url, and desc are irrelevant for risk analysis and can be removed.
- Several columns either have unique values for all rows or are entirely empty; these columns do not contribute to analysis and should be removed.
- 54 columns contain null values for all rows and can be safely deleted.
- Columns with only one unique value (e.g., collections\_12\_mths\_ex\_med, chargeoff\_within\_12\_mths, tax\_liens, pymnt\_plan, policy\_code, etc.) are non-informative and can also be removed.
- The columns loan\_amnt, funded\_amnt, and funded\_amnt\_inv provide overlapping information. Only loan\_amnt (borrower's requested amount) is necessary.
- addr\_state and zip\_code show inconsistent distributions; this requires further investigation. Columns like next\_pymnt\_d lack sufficient data for meaningful analysis and can be excluded.

#### 3. Data Preparation - Data Cleaning

Further data refinement and analysis revealed the following observations to ensure a clean and focused dataset for accurate insights:

- Columns with more than 50% null values (mths\_since\_last\_record, mths\_since\_last\_deling, etc.)
  were removed.
- Relevant columns like emp\_length, pub\_rec\_bankruptcies, and revol\_util with some null values were
  retained, but records with nulls in critical fields like revol\_util were dropped.
- A derived column may be created from the title field for categorical grouping (e.g., "Consolidation,"
   "Home Improvement") or the column can be dropped if deemed unnecessary.
- Numeric columns like <u>loan\_amnt</u> and <u>annual\_inc</u> contain extreme outliers that significantly impact visualization and analysis.
- An interquartile range (IQR) method was used to identify outliers, revealing that 60% of checked columns had less than 8% outliers, which can be sliced for better results.
- Columns such as last\_pymnt\_d and emp\_title were removed due to limited relevance, while others were retained for further analysis.
- Removing all outliers would result in excessive data loss, so only columns with minimal outliers will be adjusted.

#### 3. Data Preparation - Data Engineering

The following data engineering steps were implemented to enrich the dataset with derived features and optimize its structure for analysis:

- Derived columns d\_earliest\_cr\_line\_month and d\_earliest\_cr\_line\_year were created from the earliest cr line date column.
- Additional date-based columns (month, quarter, and year) will be extracted from issue\_d and last\_credit\_pull\_d columns.
- Created income-based categories (High Income, Middle Class, Low Income) derived from the annual\_inc column.
- Derived credit health categories (Excellent, Good, Average, Poor, Critical) based on revol\_util, where higher values indicate lower credit health.
- Categorized credit risk levels (Too many, Many, Moderate, Few, Very few) based on the number of open credit lines (open\_acc).
- Grouped and converted relevant columns into categorical data types for better analysis and efficiency.

### 4. EDA – Univariate Analysis (Numeric)

As the initial step in exploratory data analysis, univariate analysis was performed on numeric columns to derive key insights.

- Most borrowers take loans ranging between \$5,000 and \$14,000, with a few borrowing more than \$27,000.
- The average interest rate is around 12%, but it can go as high as 25%, requiring further investigation into the circumstances leading to such high rates.
- Borrowers' annual incomes typically range from \$40,000 (25th percentile) to \$75,000 (75th percentile).



### 4. EDA – Univariate Analysis (Categoric)

After analyzing the numeric columns, univariate analysis was performed on categoric columns to derive key insights.

- Most loans were offered to Grade B and Grade A customers.
- Within the grades, most of the loans were offered to sub grades, A4, A5, B3, B5 and B4.
- The customers who borrowed the least are the ones with employment length ranging from 7 to 9 years.







#### 4. EDA – Univariate Analysis (Segmented)

Doing segmented univariate analysis on the numeric columns segmented by categories, we get the following insights,

- As expected, the better interest rates were given to the Grade A and B customers.
- It also reveals that, the grades are an ordered collection. The lower the grade the higher the risk of approving a loan application in future.
- The customers who borrowed the most belong to the better grades.
- They're neither in the high- or low-income category, but middle class.





### 4. EDA – Univariate Analysis (Segmented)

Doing further segmented univariate analysis reveal the following,

- The borrowers with lower grades borrowed more than the one with higher grades
- The interest rate for those borrowers with lower sub grades are much higher which proves again that the grades are inversely proportional to risk.
- The customers with lower grades show more disrespectful attitude. This insight is derived from the number of public derogatory records.





#### 4. EDA – Bivariate Analysis

Bivariate analysis helps validate assumptions and clarify insights derived from univariate analysis.

- The first chart on the right shows that borrowers with lower subgrades tend to take larger loans at higher interest rates and default more frequently, leading to a higher number of charged-off loans.
- The second chart reinforces this observation by illustrating the distribution of loan amounts across different grades.





### 4. EDA – Bivariate Analysis



Heatmap based on correlation matrix between numeric variables

#### Key insights from the heatmap,

**—** 60

**—** 40

**—** 20

- A strong correlation (93%) between loan\_amnt and installment highlights that higher loans directly result in larger installment amounts.
- 47% correlation between revol\_util and int\_rate suggests borrowers with higher credit utilization often face higher interest rates.
- A moderate positive correlation (36%) between annual\_inc and loan\_amnt indicates that higher-income borrowers tend to take larger loans.
- Public derogatory records and bankruptcies are strongly associated. An 85% correlation indicates high risk.
- Surprisingly debt-to-income ratio has minimal impact on loan\_amnt and annual inc

#### 4. EDA – Multivariate Analysis



#### **Line plot legends:**

- 1. Public Derogatory records are categorized to ['Yes', 'No'] and indicated by ['Blue', 'Orange'] line colors.
- 2. Loan Term is indicated by the thickness of the lines.

### Key insights from the multivariate analysis using Seaborn's lineplot,

- There are fewer derogatory behavior from customers who has borrowed higher loan amount.
- The density of derogatory behavior is very high when the loan amount is less than \$15,000/-
- The loan amount is gradually increasing as the annual income, which reconfirms higher correlation between the two variables.

#### 4. EDA – Multivariate Analysis





## Insights from multivariate analysis using Seaborn's catplot

- Long term loan amounts are relatively higher compared to short term loan amounts across all grades
- Long term loans fetch more interest than short term loans across all employee lengths.
- Hence offering long term loans will be more profitable and as well have less burden on the customer as the installment amount is inversely proportional to the loan term

#### 4. EDA – Multivariate Analysis

Comparing the annual income against the category of open credit lines based on the loan term gives the following insights,

• Customers with low income tend to have more open credit lines, which directly translates to high risk.



#### 5. Recommendations

| Recommendation<br>Category | Action                                      | Positive Focus on Higher-Grade Customers                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive                   | Focus on Higher-Grade<br>Customers          | <ul> <li>Prioritize loan offers to customers with credit grades A, B, and C.</li> <li>Explore targeted marketing campaigns to attract high-grade customers within the 6-9 years of employment segment.</li> <li>Consider offering competitive interest rates for high-grade customers to remain competitive while potentially increasing loan volume.</li> <li>Analyze the profitability of this segment while considering the lower interest rates.</li> </ul> |
| Positive                   | Incentivize Good<br>Behavior                | <ul> <li>Implement loyalty programs or reward systems for customers with consistently positive payment histories.</li> <li>Educate customers on the importance of maintaining good credit scores and minimizing derogatory records.</li> <li>Offer financial counseling services to assist customers in improving their creditworthiness.</li> <li>Monitor the impact of these incentives on loan approval rates and customer retention.</li> </ul>             |
| Positive                   | Promote Longer Loan<br>Terms                | <ul> <li>Educate customers on the benefits of longer loan terms, such as lower monthly installments and potential long-term cost savings.</li> <li>Offer flexible loan term options to cater to individual customer needs and financial situations.</li> <li>Clearly communicate the impact of loan term on total interest payments to ensure transparency.</li> <li>Monitor customer satisfaction and repayment rates across different loan terms.</li> </ul>  |
| Positive                   | Incorporate Debt-to-<br>Income Ratio        | <ul> <li>Implement a robust debt-to-income (DTI) ratio assessment as a key factor in loan approval decisions.</li> <li>Establish clear DTI thresholds for different loan products and risk categories.</li> <li>Develop a scoring system that incorporates DTI along with other relevant credit risk factors.</li> <li>Regularly review and adjust DTI thresholds based on market trends and internal risk assessments.</li> </ul>                              |
| Negative                   | Avoid Over-reliance on<br>Low-Risk Segments | <ul> <li>Avoid over-concentrating loan portfolios in the low-risk (high-grade) segment, as this may limit overall profitability.</li> <li>Diversify lending strategies to include moderate-risk segments while maintaining appropriate risk controls.</li> <li>Continuously monitor the risk-return profile of the loan portfolio and adjust lending strategies accordingly.</li> </ul>                                                                         |

# Thank you

Facilitator: Uvaraj Thulasiram

Team member: Vaishali Makwana

