Data Mining; Assignemt 6

 $\label{eq:Jesse Annan} \mbox{ ID: } 002708111$

 $March\ 29,\ 2023$

Find step by step procedure of 1-5 in attached excel file.

1. K-means algorithm

Starting with k=4 clusters. I selected (0,7), (4,4), (0,0), and (9,9) as my initial cluster centers.

d(x,y) = Manhattan distance.

First Iteration:

	Cluster	centers	
(0, 7) cluster 1	(4, 4) cluster 2	(0, 0) cluster 3	(9, 9) cluster 4
(0,7) (1,6) (1,8) (2,7) (2,8) (3,7)	(2,5) (3,6) (5,3) (6,2) (6,4) (7,2) (7,3) (7,5) (8,3) (8,4)	(1,1) (3,0)	(7,8) (9,9)

Second Iteration:

$(1.5, 7.1\dot{6})$	Cluster (5.9, 3.7)	centers $(2, 0.5)$	(8, 8.5)
cluster 1		cluster 3	cluster 4
- Clubici i	Cluster 2	Clustel 0	Clubici 1
(0,7)	(5,3)	(1,1)	(7,8)
(1,6)	(6,2)	(3,0)	(9,9)
(1,8)	(6,4)		
(2,5)	(7,2)		
(2,7)	(7,3)		
(2,8)	(7,5)		
(3,6)	(8,3)		
(3,7)	(8,4)		

Third Iteration:

	Cluster ce	$_{ m nters}$	
(1.75, 6.75)	(6.75, 3.25)	(2, 0.5)	(8, 8.5)
cluster 1	cluster 2	cluster 3	cluster 4
(0,7)	(5,3)	(1,1)	(7,8)
(1,6)	(6,2)	(3,0)	(9,9)
(1,8)	(6,4)		
(2,5)	(7,2)		
(2,7)	(7,3)		
(2,8)	(7,5)		
(3,6)	(8,3)		
(3,7)	(8,4)		

Algorithm terminated since the clusters where the same.

2. K-medoid algorithm

Starting with k=4 clusters. I selected $(1,8),\ (1,1),\ (2,5),\ and\ (7,8)$ as my initial cluster centers.

d(x,y) = Manhattan distance.

First Iteration:

Cluster centers								
(1, 8)	(1, 1)	(2, 5)	(7, 8)					
cluster 1	${\rm cluster}\ 2$	${\rm cluster}\ 3$	cluster 4					
(0,7)	(1,1)	(1,6)	(7,2)					
(1,8)	(3,0)	(2,5)	(7,3)					
(2,7)	(6,2)	(3,6)	(7,5)					
(2,8)		(5,3)	(7,8)					
(3,7)		(6,4)	(8,3)					
			(8,4)					
			(9,9)					
Cost = 59								

Second Iteration:

	Cluster	centers	
(1, 8)	(1, 1)	$(5, \ 3)$	(7, 8)
cluster 1	cluster 2	cluster 3	cluster 4
(0,7)	(1,1)	(5,3)	(7,5)
(1,6)	(3,0)	(6,2)	(7,8)
(1,8)		(6,4)	(9,9)
(2,5)		(7,2)	
(2,7)		(7,3)	
(2,8)		(8,3)	
(3,6)		(8,4)	
(3,7)			
Cost = 43			

Third Iteration:

	Cluster	$\operatorname{centers}$	
(1, 8)	(1, 1)	(7, 3)	(7, 8)
cluster 1		cluster 3	cluster 4
(0,7)	(1,1)	(5,3)	(7,8)
(1,6)	(3,0)	(6,2)	(9,9)
(1,8)		(6,4)	
(2,5)		(7,2)	
(2,7)		(7,3)	
(2,8)		(7,5)	
(3,6)		(8,3)	
(3,7)		(8,4)	
Cost = 36			

Forth Iteration:

(1 0)	Cluster		(7 0)
(1, 8)	$(1, \ 1)$	$(7, \ 3)$	(7, 8)
cluster 1	cluster 2	cluster 3	cluster 4
(0,7)	(1,1)	(5,3)	(7,8)
(1,6)	(3,0)	(6,2)	(9,9)
(1,8)		(6,4)	
(2,5)		(7,2)	
(2,7)		(7,3)	
(2,8)		(7,5)	
(3,6)		(8,3)	
(3,7)		(8,4)	
Cost = 30			

Algorithm terminated because of the reduced cost and unchanged clusters.

3. AGNES algorithm $d(x,y) = Manhattan \ distance. \label{eq:distance}$

Algorithm terminated because every single cluster joined the hierarchical tree. $\,$

 $\begin{array}{l} {\rm 4.~DBSCAN~algorithm} \\ {\rm d}({\rm x,y}) = {\rm Euclidean~distance.} \end{array}$

	Core points							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
(6,2)	(6,4)	(7,2)	(7,3)	(8,3)	(8,4)			
	Border points							
	(0,7)	(2,5)	(5,3)	(7,5)				

Clustering core points.

Core points						
Cluster 1	(1,6)	(1,8)	(2,7)	(2,8)	(3,6)	(3,7)
Cluster 2						(8,4)

Adding border points to the clusters

Cluster points								
Cluster 1	(0,7)	(1,6)	(1,8)	(2,5)	(2,7)	(2,8)	(3,6)	(3,7)
Cluster 2	(5,3)	(6,2)	(6,4)	(7,2)	(7,3)	(7,5)	(8,3)	(8,4)
Outlier points								
	(1,1) $(3,0)$ $(7,8)$ $(9,9)$							

5. OPTICS algorithm $d(x,y) = {\rm Manhattan\ distance}.$

 $\begin{array}{ll} {\rm 6. \ \, Spectral \ \, clustering \ \, algorithm} \\ {\it Kindly \ \, check \ \, attached \ \, jupyter \ \, notebook \ \, file.} \end{array}$