$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

Lagrangian density
$-t_1 \omega_{\alpha}^{\ \alpha\prime} \omega_{\kappa\alpha}^{\ \ \kappa} -t_1 \omega_{\kappa\lambda}^{\ \ \kappa\lambda} \omega_{\kappa\lambda}^{\ \ \prime} -r_5 \partial_{\imath} \omega^{\kappa\lambda}_{\ \ \kappa} \partial^{\imath} \omega_{\lambda}^{\ \ \alpha} + \frac{2}{3} r_2 \partial^{\beta} \omega^{\theta\alpha}_{\ \ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} - \frac{1}{3} \omega_{\alpha\beta}^{\ \ \ \kappa} \partial_{\alpha\beta}^{\ \ \ \kappa} \partial_{\alpha\beta}^{\ \ \ \ \ \delta} \partial_{\alpha\beta}^{\ \ \ \ \ \delta} $
$rac{1}{3} r_2 \partial_{ heta} \omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$r_5\partial_\theta\omega_^\alpha_{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ - $r_5\partial_\alpha\omega_^\alpha_{\theta}\partial_\kappa\omega^{\kappa\lambda\theta}+2r_5\partial_\theta\omega_^\alpha_{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ -
$\frac{1}{2}t_1\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\ \ \theta}-\frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \ \theta}-\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda}+$
$t_1\;\omega_{\kappalpha}^{\;$
$2t_1\;\omega_{_{I}\kappa\theta}\;\partial^\kappa f^{'\theta}-t_1\;\omega_{_{I}\alpha}^{\;\;\alpha}\;\partial^\kappa f^{'}_{\;\;\kappa}-t_1\;\omega_{_{I}\lambda}^{\;\;\lambda}\;\partial^\kappa f^{'}_{\;\;\kappa}+\frac{1}{2}t_1\partial^\alpha f^{\lambda}_{\;\;\kappa}\partial^\kappa f_{\lambda\alpha}+$
$\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\theta}^{\lambda} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} +$
$rac{1}{3} r_2 \partial_{\kappa} \omega^{lphaeta heta} \partial^{\kappa} \omega_{lphaeta heta} + rac{2}{3} r_2 \partial_{\kappa} \omega^{eta lphaeta} \partial^{\kappa} \omega_{lphaeta heta} - rac{2}{3} r_2 \partial^{eta} \omega_{ }^{ lpha \lambda} \partial_{\lambda} \omega_{ lpha eta}^{ \prime} +$
$rac{2}{3} r_2 \partial^{eta} \omega_{\lambda}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}^{\prime\prime} + r_5 \partial_{lpha} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{eta \kappa}{}^{\prime\prime} - r_5 \partial_{eta} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{eta \kappa}{}^{\prime\prime}$
Added source term: $\left f^{lphaeta} ight _{lphaeta} au_{lphaeta} \sigma_{lphaeta\chi}$

		$\sigma_{0^+}^{\sharp 1}$	† - _ (1+	$\frac{1}{(2k^2)^2}$	$\frac{1}{t_1}$ $\frac{1}{(1+t_1)}$	i √2 k -2 k ²) ² i	_ :1	0		0
$\tau_{0}^{\#1}$ †			$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$		$-\frac{2k^2}{(1+2k^2)^2t_1}$		0		0	
		$\tau_{0}^{\#2}$	t	0		0		0		0
		$\sigma_0^{\sharp_1}$ -		0		0		0	$\frac{1}{k^2 r_2 - t_1}$	
		$f_{1}^{\#2}$	0	0	0	$i k t_1$	C		0	0
		$\omega_{1}^{#2} \alpha f_{1}^{#1} \alpha f_{1}^{#2}$	0	0	0	0	Û	>	0	0
くか		$\omega_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	Û		0	0
		$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	<u>1</u>	$\sqrt{2}$	0	$-ikt_1$
g J		$f_{1}^{\#1}_{+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	O		0	0
_		$\omega_{1}^{\#2}{}_{\alpha\beta}\;f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	O		0	0
		$\omega_1^{\#1}{}_+ \alpha_eta \;\;\; 0$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	C	>	0	0
			$\omega_1^{\#1} + \alpha \beta \frac{k^2 r_5 - \frac{t_1}{2}}{2}$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^-}^{\#_1} +^\alpha$	",#2 + α	ω_{1^-}	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{\#2} +^{\alpha}$

 $\tau_{0}^{#2}$ $\sigma_{0}^{#1}$

	#	1	1	3	3	3	2	91
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}^{\alpha\beta} = 0$	Total #:

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}_{\alpha\beta\chi}$	
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{i kt_1}{\sqrt{2}}$	0	
$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2	

L	$\omega_{0}^{#1}$ +	f #2 t	$\omega_{0^-}^{\#1} \dagger$
$\sigma_{2^{-}}^{*_{1}} \alpha \beta \chi$	0	0	² / ₁
$\tau_2^{"+}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2 t_1}$	0
$\sigma_2^{"\pm}\alpha\beta$	$\frac{2}{(1+2k^2)^2t_1}$	$\tau_2^{\#1} + \alpha \beta \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1}$	0
	$\sigma_{2}^{#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha^{\beta}$	$\sigma_{2}^{\#1} +^{\alpha \beta \chi}$

0

0

 $-2 k^2 t_1$

 $-i\sqrt{2}kt_1$

0

0

 $\sqrt{2} kt_1$

 $f_0^{\#2}$

 $f_{0}^{\#1}$

0

0 0

0 0

0 0

	Massive particl	le
? $J^P = 0^-$	Pole residue:	$-\frac{1}{r_2} > 0$
3 = 0	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Massive partic	le
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$\frac{t_1}{r_2} > 0$
Spin:	0
Parity:	Odd
	Pole residue: Polarisations: Square mass: Spin:

(No massless particles)

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$