Introduction

brief history - trends

Contents

- Early development of computers.
- . Computer Architecture
- Trends in performance
- Trends in Technology
- Trends in Power and Energy
- Measuring performance
- Amdahl's Law
- Processor Performance Equation

Bibliography

- Computer Architecture, Sixth Edition_ A Quantitative Approach. John L. Hennessy, David A. Patterson.
- Computer Organization and Design Risc-V Edition
- The essentials of computer organization and architecture / Linda Null, Julia Lobur.
- Organización y arquitectura de computadores Séptima Edición WILLIAM STALLINGS

Early development of computers.

- Generation Zero: Mechanical Calculating Machines
- 1st Generation: Vacuum tubes
- 2nd Generation: Transistor
- 3rd Generation: IC
- Last Generation: VLIC

1st Generation: Vacuum tubes

- 1946 ENIAC (Electronic numerical integrator and calculator)
- Ballistics Research Laboratory
- 18.000 tubes 30 tons 140 KW
- 20 10-digit registers
- 5000 adds per sec (200 us)

1st Generation - von Neumann

- stored-program computers
- IAS 1952

1st Generation - Commercial developments

- Eckert-Mauchly Sperry-Rand. UNIVAC 1 1951
- IBM 1953 701, 702, 704, 705

2nd Generation: Transistor

- IBM 7000
- DEC PDP-1

Model Number	First Delivery	CPU Technology	Memory Technology	Cycle Time(#s)	Memory Size(K)
701	1952	Vacuum Tubes	Electro- Static tubes	30	2-4
704	1955	Vacuum Tubes	Core	12	4-32
709	1958	Vacuum Tubes	Core	12	32
7090	1960	Transistor	Core	2.18	32
7094 I	1962	Transistor	Core	2	32
7094 II	1964	Transistor	Core	1.4	32

Table 2.3 Example members of the IBM 700/7000 Series

Model Number	First Delivery	CPU Tech- nology	Memory Tech- nology	Cycle Time (µs)	Memory Size (K)	Number of Opcodes	Number of Index Registers	Hardwired Floating- Point	I/O Overlap (Chan- nels)	Instruc- tion Fetch Overlap	Speed (relative to 701)
701	1952	Vacuum tubes	Electrostatic tubes	30	2–4	24	0	no	no	no	1
704	1955	Vacuum tubes	Core	12	4–32	80	3	yes	no	no	2.5
709	1958	Vacuum tubes	Core	12	32	140	3	yes	yes	no	4
7090	1960	Transistor	Core	2.18	32	169	3	yes	yes	no	25
7094 I	1962	Transistor	Core	2	32	185	7	yes (double precision)	yes	yes	30
7094 II	1964	Transistor	Core	1.4	32	185	7	yes (double precision)	yes	yes	50

3rd Generation - Integrated Circuits

- IBM Sys/360
- DEC PDP-8

3rd Generation - Moore's Law

- Processing speed
- Price

Last Generation.

- SSI (small scale integration) 10 to 100 components per chip
- MSI (medium scale integration) 100 to 1,000 components per chip
- LSI (large scale integration) 1,000 to 10,000 components per chip
- VLSI (very large scale integration) > 10,000 components per chip. → Intel 4004

microprocessor

- 1971 Intel 4004 4 bits
- 1972 Intel 8008 8 bits
- 1974 Intel 8080 8 bits
- 1978 Intel 8086 16 bits
- 1982 Intel 80286 16 bits
- 1985 Intel 386 32 bits
-

	4004	8008	8080	8086	8088
Fecha de introducción	1971	1972	1974	1978	1979
Velocidad de reloj	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Ancho del bus	4 bits	8 bits	8 bits	16 bits	8 bits
N.º de transistores	2.300	3.500	6.500	29.000	29.000
Tamaño (μm)	10	_	6	3	6
Memoria direccionable	640 Bytes	16 KB	64 KB	1 MB	1 MB
Memoria virtual	_	-	_	_	3 1

	80286	386TM DX	386TM SX	486TM DX CPU
Fecha de introducción	1982	1985	1988	1989
Velocidad de reloj	6-12,5 MHz	16-33 MHz	16-33 MHz	25-50 MHz
Ancho del bus	16 bits	32 bits	16 bits	32 bits
N.º de transistores	134.000	275.000	275.000	1,2 millones
Tamaño (μm)	1,5	1	1	0,8-1
Memoria direccionable	16 megabytes	4 gigabytes	16 megabytes	4 gigabytes
Memoria virtual	1 gigabyte	64 terabytes	64 terabytes	64 terabytes

	486TM SX	Pentium	Pentium Pro	Pentium II
Fecha de introducción	1991	1993	1995	1997
Velocidad de reloj	16-33 MHz	60-166 MHz	150-200 MHz	200-300 MHz
Ancho del bus	32 bits	32 bits	64 bits	64 bits
N.º de transistores	1,185 millones	3,1 millones	5,5 millones	7,5 millones
Tamaño (μm)	1	0,8	0,6	0,35
Memoria direccionable	4 gigabytes	4 gigabytes	64 gigabytes	64 gigabytes
Memoria virtual	64 terabytes	64 terabytes	64 terabytes	64 terabytes

·	Pentium III	Pentium 4	Itanium	Itanium II
Fecha de introducción	1999	2000	2001	2002
Velocidad de reloj	450-660 MHz	1,3-1,8 GHz	733-800 MHz	900 MHz-1 GHz
Ancho del bus	64 bits	64 bits	64 bits	64 bits
N.º de transistores	9,5 millones	42 millones	25 millones	220 millones
Tamaño (μm)	0,25	0,18	0,18	0,18
Memoria direccionable	64 gigabytes	64 gigabytes	64 gigabytes	64 gigabytes
Memoria virtual	64 terabytes	64 terabytes	64 terabytes	64 terabytes

Tabla 2.2. Generación de computadores.

Generación	Fechas aproximadas	Tecnología	Velocidad típica (operaciones por segundo)
1	1946-1957	Válvulas	40 000
2	1958-1964	Transistores	200 000
3	1965-1971	Pequeña y media integración	1 000 000
4	1972-1977	Gran integración (LSI)	10 000 000
5	1978-1991	Alta integración (VLSI)	100 000 000
6	1991-	Ultra alta integración (ULSI)	1 000 000 000

Computer Architecture

- ISA (Instruction set architecture)
 - o programmer's interface
 - classes: register-memory, load-store
 - memory addressing
 - addressing modes
 - type and size operands
 - operations
 - control flow instructions
 - encoding
- HW components
- Organization (micro-architecture)

Trends in performance

- processors performance:
 - Technology size / clock frequency
 - power density
 - Delay
 - micro-architecture techniques

Trends in Technology: bandwidth vs latency

Trends in technology: scaling of transistors

Microprocessor	16-Bit address/ bus, microcoded	32-Bit address/ bus, microcoded	5-Stage pipeline, on-chip I & D caches, FPU	2-Way superscalar, 64-bit bus	Out-of-order 3-way superscalar	Out-of-order superpipelined, on-chip L2 cache	Multicore OOO 4-way on chip L3 cache, Turbo
Product	Intel 80286	Intel 80386	Intel 80486	Intel Pentium	Intel Pentium Pro	Intel Pentium 4	Intel Core i7
Year	1982	1985	1989	1993	1997	2001	2015
Die size (mm²)	47	43	81	90	308	217	122
Transistors	134,000	275,000	1,200,000	3,100,000	5,500,000	42,000,000	1,750,000,000
Processors/chip	1	1	1	1	1	1	4
Pins	68	132	168	273	387	423	1400
Latency (clocks)	6	5	5	5	10	22	14
Bus width (bits)	16	32	32	64	64	64	196
Clock rate (MHz)	12.5	16	25	66	200	1500	4000
Bandwidth (MIPS)	2	6	25	132	600	4500	64,000
Latency (ns)	320	313	200	76	50	15	4
Memory module	DRAM	Page mode DRAM	Fast page mode DRAM	Fast page mode DRAM	Synchronous DRAM	Double data rate SDRAM	DDR4 SDRAM
Module width (bits)	16	16	32	64	64	64	64
Year	1980	1983	1986	1993	1997	2000	2016
Mbits/DRAM chip	0.06	0.25	1	16	64	256	4096
Die size (mm²)	35	45	70	130	170	204	50
Pins/DRAM chip	16	16	18	20	54	66	134
Bandwidth (MBytes/s)	13	40	160	267	640	1600	27,000
Latency (ns)	225	170	125	75	62	52	30

Trends in technology: scaling of transistors

Local area network	Ethernet	Fast Ethernet	Gigabit Ethernet	10 Gigabit Ethernet	100 Gigabit Ethernet	400 Gigabit Ethernet	_
IEEE standard	802.3	803.3u	802.3ab	802.3ac	802.3ba	802.3bs	
Year	1978	1995	1999	2003	2010	2017	
Bandwidth (Mbits/seconds)	10	100	1000	10,000	100,000	400,000	
Latency (µs)	3000	500	340	190	100	60	200
Hard disk	3600 RPM	5400 RPM	7200 RPM	10,000 RPM	15,000 RPM	15,000 RPM	
Product	CDC WrenI 94145-36	Seagate ST41600	Seagate ST15150	Seagate ST39102	Seagate ST373453	Seagate ST600MX0062	
Year	1983	1990	1994	1998	2003	2016	
Capacity (GB)	0.03	1.4	4.3	9.1	73.4	600	
Disk form factor	5.25 in.	5.25 in.	3.5 in.	3.5 in.	3.5 in.	3.5 in.	
Media diameter	5.25 in.	5.25 in.	3.5 in.	3.0 in.	2.5 in.	2.5 in.	
Interface	ST-412	SCSI	SCSI	SCSI	SCSI	SAS	
Bandwidth (MBytes/s)	0.6	4	9	24	86	250	
Latency (ms)	48.3	17.1	12.7	8.8	5.7	3.6	

Trends in Power and Energy

Energy
$$d = C \times V2$$
 (0->1->0; 1->0->1)

Energy
$$d = \frac{1}{2} \times C \times V2 \quad (0->1; 1->0)$$

Power $d = \frac{1}{2} \times C \times V2 \times Freq$

- Intel 80386 used about 2 W, whereas a 4.0 GHz Intel Core i7-6700K consumes 95 W.
- Given that this heat must be dissipated from a chip that is about 1.5 cm on a side, we are near the limit of what can be cooled by air, and this is where we have been stuck for nearly a decade.

techniques to improve energy efficiency

- Do nothing well
- Dynamic voltage-frequency scaling
- Design for the typical case
- Overclocking

Static power

Power s = Current static x Voltage

- leakage current flows even when a transistor is off
- static power is proportional to the number of devices.

→power gating

Measuring performance

When we say one computer is faster than another one is, what do we mean?

execution time? throughput?

Benchmarks

- Programs, which are programs that many companies use to establish the relative performance of their computers.
- SPEC (Standard Performance Evaluation Corporation) http://www.spec.org.
- SPEC CPU2017 consists of a set of 10 integer benchmarks (CINT2017) and 17 floating-point benchmarks (CFP2017).
- real programs modified to be portable and to minimize the effect of I/O on performance. The integer benchmarks vary from part of a C compiler to a go program to a video compression. The floating-point benchmarks include molecular dynamics, ray tracing, and weather forecasting

Amdahl's Law

- The performance gain that can be obtained by improving some portion of a computer can be calculated using Amdahl's Law.
- The performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used.

$$Speedup_{overall} = \frac{Execution \ time_{old}}{Execution \ time_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

 if an enhancement is usable only for a fraction of a task, then we can't speed up the task by more than the reciprocal of 1 minus that fraction.

Processor Performance Equation

• CPU time for a program can be expressed in two ways:

CPU time = CPU clock cycles for a program
$$\times$$
 Clock cycle time or
$$CPU \ time = \frac{CPU \ clock \ cycles \ for \ a \ program}{Clock \ rate}$$

 If we know the number of clock cycles and the instruction count, we can calculate the average number of clock cycles per instruction (CPI).

$$CPI = \frac{CPU \text{ clock cycles for a program}}{Instruction count}$$

 transposing the instruction count in the preceding formula, clock cycles can be defined as IC CPI.

$$CPU \ time = Instruction \ count \times Cycles \ per \ instruction \times Clock \ cycle \ time$$

• Expanding the first formula into the units of measurement shows how the pieces fit together:

$$\frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle} = \frac{Seconds}{Program} = CPU\ time$$

 processor performance is dependent upon three characteristics: clock cycle (or rate), clock cycles per instruction, and instruction