Matrices et algèbre linéaire

(♥) Exercices d'application directe

Exercice 1 Déterminer les matrices dans les bases canoniques respectives des applications linéaires suivantes :

$$u_{1}: \mathbb{R}^{2} \to \mathbb{R}^{3}$$

$$(x,y) \mapsto (2x-y,x+y,3y),$$

$$u_{2}: \mathbb{R}_{n}[X] \to \mathbb{R}$$

$$P \mapsto P(1),$$

$$u_{3}: \mathbb{R}_{n}[X] \to \mathbb{R}$$

$$P \mapsto \int_{0}^{1} P(t)dt,$$

$$u_{4}: \mathbb{C}_{3}[X] \to \mathbb{C}_{3}[X]$$

$$P \mapsto P(X+1) - P(X).$$

Exercice 2 On considère la base $\mathcal{B} = (1, X, X^2, X^3)$ de $\mathbb{R}_3[X]$.

- 1) Montrer que la famille $\mathcal{B}' = (1, X, X(X-1), X(X-1)(X-2))$ est une base de $\mathbb{R}_3[X]$.
- 2) Déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' .
- 3) Déterminer la matrice de passage de \mathcal{B}' à \mathcal{B} .
- 4) Soit u l'endomorphisme de dérivation. Déterminer la matrice de u dans la base \mathcal{B} puis la matrice de u dans la base \mathcal{B}' .

Exercice 3 Calculer le rang des matrices suivantes.

$$\diamondsuit = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}, \ \heartsuit = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \spadesuit = \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 3 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}, \ \clubsuit = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 3 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}.$$

(🖏) Un exercice corrigé

Exercice 4 E est un \mathbb{R} -espace vectoriel de dimension 3, $\mathcal{B} = (e_1, e_2, e_3)$ est une base de E. f est l'endomorphisme de E ayant, dans cette basse, pour matrice :

$$M = \left(\begin{array}{rrr} -7 & 0 & -8 \\ 3 & 1 & 2 \\ 4 & 0 & 5 \end{array}\right)$$

On considère les trois vecteurs suivants : $u_1 = e_2, u_2 = e_1 - e_3, u_3 = 2e_1 - e_2 - e_3$

- 1) Montrer que (u_1, u_2, u_3) est une base de E
- 2) Ecrire la matrice de f dans cette nouvelle base.
- 3) En déduire que $f^3 + f^2 5f + 3Id_E = 0$
- 4) En déduire que f est bijective ; donner la matrice de f^{-1} dans la base \mathcal{B}