Problems with LAN Technologies

- From previous discussions on LANs there are a variety of networking technologies available to facilitate communications between host computers:
 - For any given LAN implementation, host computers can only communicate with other hosts attached to the <u>same</u> networking technology.
- It is not unreasonable to assume that many organizations may employ a variety of technologies:
 - This is usually for historical reasons due to mergers and take-overs etc.

Problems with LAN Technologies

- Historically this can lead to the creation of islands of networks within organisations:
 - Differences in Frame formats, Electrical characteristics
 (voltages, wiring types etc.) and Addressing schemes
 prevented <u>direct</u> communications between hosts connected
 to different LAN technologies.

Problems with LAN Technologies

- Today there is a need to facilitate communication between <u>any</u> two hosts regardless of the type of LAN they attach to:
 - This is similar to telephone systems which facilitate communication between any two telephones. For example between a mobile phone and a fixed-line phone
 - This is known as universal service and is a fundamental concept within networking.

Universal Service

With Universal Service:

- A user on any host in any part of an organization can send messages or data to any other user without any knowledge of the underlying networking technology.
- Whilst highly desirable universal service can be difficult to achieve due to incompatibilities between network technologies.
- The provision of *Universal Service* for host computers requires addressing the problems associated with <u>heterogeneous</u> (multiple) network technologies:
 - The introduction of *Internetworking* technology is the solution.

Universal Service through Internetworking

- Internetworking introduces a new <u>hardware</u> component and new <u>software</u>:
 - Additional *hardware* is needed to provide a physical interconnection between LANs for the purpose of routing traffic:
 - This hardware needs a physical connection to each LAN using the correct NIC.
 - Only then can it <u>route</u> and <u>deliver</u> traffic between LANs.
 - Additional software is also required to:
 - Address the <u>lack of</u> uniqueness when using MAC addresses,
 - Address the <u>lack of</u> summary routing when using MAC addresses,
 - Introduce a single, unique "framing" structure/format understood by all hosts.

Universal Service through Internetworking

- The result is a system of connected physical networks known as an internetwork or internet as shown in the next slide.
 - There is no restriction on the size of an *internet*. However, there are reliability, efficiency and performance issues to consider when designing and/or attaching to an internet.

An example of a small internet

An internet comprised of four interconnected LANs. There is no restriction on the size of an *internet*.

An example of a larger internet

The Hardware Component - Routers

- The hardware component is called a Router.
- It is a special purpose computer used for interconnecting networks:
 - It is like any host computer in that it contains: a CPU, RAM,
 I/O interfaces (Network Interface Cards) etc.
- Whilst the previous diagram shows a router connecting only two networks; in practise a single router can connect many LANs.
 - Also, many organisations use <u>multiple</u> routers to maximise performance and to allow for *redundancy*.
- To provide universal service the routers must physically pass data between the LANs.

The Software Component – Internet Protocol (IP)

- As already discussed, passing data directly between different LANs technologies is impossible due to differing frame formats and addressing schemes.
- Internet protocol software addresses these issues by:
 - Introducing a <u>single</u> globally-unique addressing scheme:
 - This single scheme hides the underlying <u>multiplicity</u> of physical addressing schemes (recall static, dynamic and configurable MAC addresses) employed on each LAN.
 - Introducing a <u>single</u> "framing" structure called a "Packet/Datagram" that is understood by <u>all</u> host computers.

The IP Datagram/Packet

0	4	8	16	19	24 3	31
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS	FRAGMENT OFFSET		
TIME TO LIVE TYPE			HEADER CHECKSUM			
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP OPTIONS (MAY BE OMITTED)					PADDING	
BEGINNING OF DATA						

IP Datagram and the internet

Internetworking technology – Providing Universal Service for Host Computers

- The routers combined with the internet protocol software makes universal access possible.
- However, internets are really an abstraction
 - No such network exists in reality consequently they are often called *virtual networks*.
- We will now examine the concepts behind interworking.
- Firstly, we will look at the globally unique addressing scheme design especially for interworks.
- Secondly, we will look at the role played by the router in delivering data across different network technologies.