Exercice 2

1.

étape 1

$$\begin{split} &H_2O_{2(aq)} + 2F{e^{3+}}_{(aq)} \rightarrow 2F{e^{2+}}_{(aq)} + O_{2(aq)} + 2H^+_{(aq)} \\ &\text{\'etape 2} \\ &H_2O_{2(aq)} + 2F{e^{2+}}_{(aq)} + 2H^+_{(aq)} \rightarrow 2F{e^{3+}}_{(aq)} + 2H_2O_{(l)} \end{split}$$

Equation globale: étape 1+ étape 2

$$\begin{split} \text{H}_2\text{O}_{2(\text{aq})} + 2\text{Fe}^{3+}_{(\text{aq})} + \text{H}_2\text{O}_{2(\text{aq})} + 2\text{Fe}^{2+}_{(\text{aq})} + 2\text{H}^+_{(\text{aq})} \\ & \quad \rightarrow 2\text{Fe}^{2+}_{(\text{aq})} + \text{O}_{2(\text{aq})} + 2\text{H}^+_{(\text{aq})} + 2\text{Fe}^{3+}_{(\text{aq})} + 2\text{H}_2\text{O}_{(\text{l})} \\ \text{H}_2\text{O}_{2(\text{aq})} + 2\text{Fe}^{\frac{3+}{(\text{aq})}} + \text{H}_2\text{O}_{2(\text{aq})} + 2\text{Fe}^{\frac{2+}{(\text{aq})}} + 2\text{H}^+_{\frac{1}{(\text{aq})}} \\ & \quad \rightarrow 2\text{Fe}^{\frac{2+}{(\text{aq})}} + \text{O}_{2(\text{aq})} + 2\text{H}_2\text{O}_{(\text{l})} \\ \text{H}_2\text{O}_{2(\text{aq})} + \text{H}_2\text{O}_{2(\text{aq})} \rightarrow \text{O}_{2(\text{aq})} + 2\text{H}_2\text{O}_{(\text{l})} \end{split}$$

$$2H_2O_{2(aq)} \rightarrow O_{2(aq)} + 2H_2O_{(l)}$$

Un catalyseur est une espèce qui augmente la vitesse d'une transformation, sans figurer dans l'équation de la réaction.

L'ion fer Fe^{3+} est un réactif de l'étape 1 et un produit de l'étape 2 : il ne figure pas dans le bilan de la réaction.

De plus, l'ion fer Fe³⁺ permet d'accélérer la réaction.

L'ion fer Fe³⁺ est donc un catalyseur

2.

Les sept erlenmeyers contiennent de l'eau distillée glacée :

- L'eau distillée permet de diluer le prélèvement et ainsi diminuer la concentration et donc la vitesse de réaction.
- Le fait que l'eau soit glacée permet de diminuer la température et donc la vitesse de réaction.

Ces deux facteurs cinétiques sont mis en œuvre pour stopper la réaction de dismutation le temps du dosage.

3.

La seule espèce chimique colorée est l'ion permanganate.

Avant l'équivalence, le permanganate est le réactif limitant. La solution reste incolore.

Après l'équivalence, le permanganate est le réactif en excès. La solution devient rose-violet.

A l'équivalence on observe un changement de couleur de l'incolore au rose-violet.

4

$$5H_2O_{2(aq)} + 2MnO_{4(aq)}^- + 6H_{(aq)}^+ \rightarrow 5O_{2(aq)} + 2Mn^{2+}_{(aq)} + 8H_2O_{(l)}$$

A l'équivalence, les réactifs ont été introduits dans les proportions stoechiométrique :

$$\begin{split} \frac{n_{\text{H}_2\text{O}_2}^{\text{i}}}{5} &= \frac{n_{\text{MnO}_4}^{\text{eq}}}{2} \\ \frac{[\text{H}_2\text{O}_2] \times \text{V}_{\text{R}}}{5} &= \frac{\text{C}_{\text{p}} \times \text{V}_{\text{E}}}{2} \\ [\text{H}_2\text{O}_2] &= \frac{5 \times \text{C}_{\text{p}} \times \text{V}_{\text{E}}}{2 \times \text{V}_{\text{R}}} \end{split}$$

5.

$$\begin{split} [\mathrm{H_2O_2}] &= \frac{5 \times \mathrm{C_p} \times \mathrm{V_E}}{2 \times \mathrm{V_R}} \\ [\mathrm{H_2O_2}] &= \frac{5 \times 2,00 \times 10^{-2} \times 11,4 \times 10^{-3}}{2 \times 10,0 \times 10^{-3}} \\ [\mathrm{H_2O_2}] &= 5,70 \times 10^{-2} \; \mathrm{mol.} \; \mathrm{L^{-1}} \\ [\mathrm{H_2O_2}] &= 57,0 \times 10^{-3} \; \mathrm{mol.} \; \mathrm{L^{-1}} \\ [\mathrm{H_2O_2}] &= 57,0 \; \mathrm{mmol.} \; \mathrm{L^{-1}} \end{split}$$

6.

$$v_d = -\frac{d[H_2O_2]}{dt}$$

Dans le cas d'une loi de vitesse d'ordre 1 : $v_d = k \times [H_2O_2]$

$$-\frac{d[H_2O_2]}{dt} = k \times [H_2O_2]$$
$$\frac{d[H_2O_2]}{dt} = -k \times [H_2O_2]$$

7.

$$[H_2O_2]_{(t)} = B \times e^{-k \times t}$$

A instant initial:

$$[H_2O_2]_{(t=0)} = B \times e^{-k \times 0}$$

$$[H_2O_2]_{(t=0)} = B \times 1$$

$$[H_2O_2]_{(t=0)} = B$$

B est la concentration en peroxyde d'hydrogène initiale.

8.

Dans le cas d'une loi de vitesse d'ordre 1, on obtient la relation (2) suivante :

$$\ln \left[\frac{[H_2 O_2]}{c^0} \right] = \ln \left[\frac{B}{c^0} \right] - kt$$

In([R](t)) est une fonction affine décroissante (le coefficient directeur est négatif).

Expérimentalement, on obtient une droite qui ne passe pas par l'origine : c'est une fonction affine du type $\ln\left[\frac{[H_2O_2]}{c^0}\right] = at + b$, avec a le coefficient directeur.

Figure 2 - Évolution temporelle de $\ln \left[\frac{[H_2O_2]}{c^0}\right]$ avec $[H_2O_2]$ en mol·L⁻¹ et $c^0=1$ mol·L⁻¹

L'hypothèse selon laquelle la dismutation du peroxyde d'hydrogène suit une loi cinétique d'ordre 1 est bien valide.

« a » est le coefficient directeur de la droite :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

$$a = \frac{-5 - (-2,5)}{75 - 0} = -3,3.10^{-2} \text{min}^{-1}$$

$$k = -a$$

$$k = 3,3.10^{-2} min^{-1}$$

9.

 $t_{1/2}$ est la durée nécessaire pour que l'avancement atteigne la moitié de sa valeur finale : x(t1/2) = xf/2.

$$[H_2O_2]_{\left(t=t_{1/2}\right)} = \frac{[H_2O_2]_i}{2}$$

Dans les conditions de l'expérience :

$$[H_2O_2]_{(t=t_{1/2})} = \frac{[H_2O_2]_i}{2} = \frac{83}{2} = 41,5 \text{ mmol. L}^{-1}$$

Par lecture graphique : $t_{1/2}$ = 20 min.

10.

$$k \times t_{1/2} = \ln(2)$$

 $k = \frac{\ln(2)}{t_{1/2}}$

Or d'après l'énoncé, pour une réaction qui suit une cinétique d'ordre 1, $t_{1/2}$ est indépendant de la concentration initiale. Ainsi, k qui ne dépend que de $t_{1/2}$ est indépendant de la concentration initiale $[H_2O_2]_0$.

Ainsi, si $[H_2O_2]_0$ diminue, k reste inchangé.

EXERCICE 2

L'acide butanoïque

Étude de l'influence de la concentration en acide butanoïque sur le quotient de réaction.

Q1.

$$C_3H_7COOH(aq) + H_2O(l) \rightleftharpoons C_3H_7COO^-(aq) + H_3O^+(aq)$$

 $C_3H_7COOH(aq)$ se transforme en $C_3H_7COO^-(aq)$ en perdant un proton H^+ selon la demi équation : $C_3H_7COOH(aq) = C_3H_7COO^-(aq) + H^+$

Le couple acide/base correspondant est : $C_3H_7COOH(aq)/C_3H_7COO^-(aq)$

 $H_2O(1)$ se transforme en $H_3O^+(aq)$ en gagnant un proton H^+ selon la demi équation :

$$H_2O(1) + H^+ = H_3O^+(aq)$$

Le couple acide/base correspondant est : $H_3O^+(aq)/H_2O(l)$

Q2.

		C ₃ H ₇ COOH(aq)	+ H ₂ O(l)		$(q) + H_3O^+(aq)$
	Avancement	Quantités de matière			
État initial	x = 0	n _i	excès	0	0
État intermédiaire	Х	$n_i - x$	excès	X	X
État final si réaction totale	X=X _{max}	$n_i - x_{max}$	excès	X _{max}	x _{max}
État final observé	X=X _f	$n_i - x_f$	excès	x_f	x _f

Q3.

$$[H_3O^+]_f = \frac{n(H_3O^+)_f}{V}$$

Or d'après le tableau d'avancement :

$$n(H_3O^+)_f = x_f$$

$$[H_3O^+]_f = \frac{x_f}{V}$$

$$[C_3H_7COO^-]_f = \frac{n(C_3H_7COO^-)_f}{V}$$

Or d'après le tableau d'avancement :

$$n(C_3H_7COO^-)_f = x_f$$

 $[C_3H_7COO^-]_f = \frac{x_f}{V}$

Ainsi:

$$[H_3O^+]_f = [C_3H_7COO^-]_f$$

Q4.

Loi de Kohlrausch:

$$\sigma = \Sigma \lambda_i[X_i]$$

$$\sigma = \lambda_{H_3O^+}[H_3O^+] + \lambda_{C_3H_7COO^-}[C_3H_7COO^-]$$

$$\sigma_f = \lambda_{H_3O^+}[H_3O^+]_f + \lambda_{C_3H_7COO^-}[C_3H_7COO^-]_f$$

$$\sigma_f = \lambda_{H_3O^+}[H_3O^+]_f + \lambda_{C_3H_7COO^-}[C_3H_7COO^-]_f$$

Or (voir Q3.)

$$[H_3O^+]_f = [C_3H_7COO^-]_f$$

Ainsi:

$$\sigma_f = \lambda_{H_2O^+}[H_3O^+]_f + \lambda_{C_3H_7COO^-}[H_3O^+]_f$$

$$\sigma_f = \left(\lambda_{H_3O^+} + \lambda_{C_3H_7COO^-}\right) \times [H_3O^+]_f$$

$$\left(\lambda_{H_3O^+} + \lambda_{C_3H_7COO^-}\right) \times [H_3O^+]_f = \sigma_f$$

$$[H_3O^+]_f = \frac{\sigma_f}{(\lambda_{H_3O^+} + \lambda_{C_3H_7COO^-})}$$

$$[H_3O^+]_f = \frac{14,70}{35,0+3,58}$$

$$[H_3O^+]_f = \frac{14,70}{35.0 + 3.58}$$

$$[H_3O^+]_f = 0.381 \text{ mmol. L}^{-1}$$

Ainsi:

$$[C_3H_7COO^-]_f = 0.381 \text{ mmol. L}^{-1}$$

Q6.

$$C_3H_7COOH(aq) + H_2O(l) \rightleftharpoons C_3H_7COO^-(aq) + H_3O^+(aq)$$

$$Q_{r,f} = \frac{[H_3O^+]_f \times [C_3H_7COO^-]_f}{[C_3H_7COOH]_f \times C^0}$$

Pour le mélange 1 :

$$\begin{split} Q_{r,f} &= \frac{0.381 \times 10^{-3} \times 0.381 \times 10^{-3}}{9.619 \times 10^{-3} \times 1} \\ Q_{r,f} &= 1.51 \times 10^{-5} \end{split}$$

On remarque que la valeur de Q_{r,f} est identique pour tous les mélanges.

Mélange	1	2	3
[H ₃ O ⁺] _f en mmol·L ⁻¹	0,381	0,267	0,115
[C ₃ H ₇ COO ⁻] _f en mmol·L ⁻¹	0,381	0,267	0,115
[C ₃ H ₇ COOH] _f en mmol·L ⁻¹	9,619	4,73	0,885
$Q_{r,f}$?	1,51×10 ^{–5}	1,51×10 ^{–5}

Calcul du taux d'avancement de la réaction mettant en jeu la transformation de l'acide butanoïque avec l'eau dans le cas général.

Q7.

$$Ka = Q_{r,f} = \frac{[H_3O^+]_f \times [C_3H_7COO^-]_f}{[C_3H_7COOH]_f \times C^0}$$

		C ₃ H ₇ COOH(aq)	+ H ₂ O(l)	C ₃ H ₇ COO ⁻ (ac	$(q) + H_3O^+(aq)$
	Avancement	Quantités de matière			
État initial	x = 0	n _i	excès	0	0
État	Х	$n_i - x$	excès	X	X
intermédiaire					
État final si	x=x _{max}	$n_i - x_{max}$	excès	x _{max}	X _{max}
réaction totale					
État final	x=x _f	$n_i - x_f$	excès	x_f	x_f
observé					

$$[H_3O^+]_f = \frac{n(H_3O^+)_f}{V}$$

Or d'après le tableau d'avancement :

$$n(H_3O^+)_f = x_f$$

$$[H_3O^+]_f = \frac{x_f}{V}$$

$$[\mathsf{C_3H_7COO^-}]_{\mathrm{f}} = \frac{\mathsf{n}(\mathsf{C_3H_7COO^-})_{\mathrm{f}}}{\mathsf{V}}$$

Or d'après le tableau d'avancement :

$$n(C_3H_7COO^-)_f = x_f$$

$$[C_3H_7COO^-]_f = \frac{x_f}{V}$$

$$[\mathsf{C_3H_7COOH}]_{\mathrm{f}} = \frac{\mathsf{n}(\mathsf{C_3H_7COOH})_{\mathrm{f}}}{\mathsf{V}}$$

Or d'après le tableau d'avancement :

$$n(C_3H_7COOH)_f = n_i - x$$

$$\begin{split} &n(\mathsf{C_3H_7COOH})_f = n_i - x_f \\ &[\mathsf{C_3H_7COOH}]_f = \frac{n_i - x_f}{V} \end{split}$$

$$Ka = \frac{\frac{\frac{\mathbf{X_f}}{V} \times \frac{\mathbf{X_f}}{V}}{\frac{\mathbf{n_i} - \mathbf{X_f}}{V} \times C^0}$$

$$Ka = \frac{\left(\frac{x_f}{V}\right)^2}{\left(\frac{n_i}{V} - \frac{x_f}{V}\right) \times C^0}$$

$$\frac{n_i}{V} = C$$

Ainsi:

$$Ka = \frac{\left(\frac{x_f}{V}\right)^2}{\left(C - \frac{x_f}{V}\right) \times C^0}$$

Q8.

D'où

$$Ka = \frac{\left(\frac{x_f}{V}\right)^2}{\left(C - \frac{x_f}{V}\right) \times C^0}$$

On remplace par les valeurs numériques :

- $K_A = 10^{-pKa} = 10^{-4,82} = 1,51 \times 10^{-5}$ $C^0 = 1 \text{ mol. L}^{-1}$
- $C = 1.0 \times 10^{-3} \text{ mol. L}^{-1}$
- V = 1,00 L

$$1,51 \times 10^{-5} = \frac{\left(\frac{x_f}{1,00}\right)^2}{\left(1,0 \times 10^{-3} - \frac{x_f}{1,00}\right) \times 1}$$

$$1,51 \times 10^{-5} = \frac{(x_f)^2}{(1,0 \times 10^{-3} - x_f)}$$

$$1,51 \times 10^{-5} \times (1,0 \times 10^{-3} - x_f) = x_f^2$$

$$1,51 \times 10^{-5} \times 1,0 \times 10^{-3} - 1,51 \times 10^{-5} \times x_f = x_f^2$$

$$-x_f^2 - 1,51 \times 10^{-5} \times x_f + 1,51 \times 10^{-8} = 0$$

C'est une équation du second degré :

$$\Delta = b^2 - 4ac$$

$$\Delta = (-1.51 \times 10^{-5})^2 - 4 \times -1 \times 1.51 \times 10^{-8}$$

$$\Delta = 6.06 \times 10^{-8}$$

$$\begin{split} x_{f_1} &= \frac{-b + \sqrt{\Delta}}{2a} \\ x_{f_1} &= \frac{-(-1{,}51 \times 10^{-5}) + \sqrt{6{,}06 \times 10^{-8}}}{2 \times -1} \\ x_{f_1} &= -1{,}31 \times 10^{-4} \text{ mol} \end{split}$$

$$\begin{split} x_{f_2} &= \frac{-b + \sqrt{\Delta}}{2a} \\ x_{f_2} &= \frac{-(-1,\!51 \times 10^{-5}) - \sqrt{6,\!06 \times 10^{-8}}}{2 \times -1} \\ x_{f_2} &= 1,\!16 \times 10^{-4} \text{ mol} \end{split}$$

On ne garde pas la valeur négative.

$$x_f = 1.16 \times 10^{-4} \text{ mol}$$

Trouvons x_{max}:

$$n_i - x_{max} = 0$$
$$-x_{max} = -n_i$$

$$x_{max} = n_i$$

$$x_{max} = C \times V$$

$$x_{max} = 1.0 \times 10^{-3} \times 1.00$$

$$x_{\text{max}} = 1.0 \times 10^{-3} \text{ mol}$$

Calculons le taux d'avancement de la réaction de l'acide butanoïque avec l'eau :

$$\tau = \frac{x_f}{x_{max}}$$

$$\tau = \frac{1,16 \times 10^{-4}}{1,0 \times 10^{-3}}$$

$$\tau = 0,12$$

$$\tau = 12\%$$

Exercice III - pH d'un mélange

I – ÉTUDE DE DEUX SOLUTIONS

1.

a)

Réaction entre l'acide nitreux et l'eau :

$$\mathsf{HNO}_{2(aq)} + \mathsf{H}_2\mathsf{O}_{(l)} \rightleftarrows \mathsf{NO}_{2(aq)}^- + \mathsf{H}_3\mathsf{O}_{(aq)}^+$$

$$K_1 = Q_{r,eq} = \frac{[NO_2^-]_{eq} \times [H_3O^+]_{eq}}{[HNO_2]_{eq}}$$

b)

Réaction entre l'ion méthanoate et l'eau :

$$HCCO_{(aq)}^- + H_2O_{(l)} \rightleftarrows HCOOH_{(aq)} + HO_{(aq)}^-$$

$$K_2 = Q_{r,eq} = \frac{[HCOOH]_{eq} \times [HO^-]_{eq}}{[HCOO^-]_{eq}}$$

2.

a)

b)

Le pH d'une solution aqueuse d'acide nitreux $HNO_{2(aq)}$, a pour valeur $pH_1 = 2.0$ $pH_1 < pKa_1 : HCOOH$ est prédominant.

Le pH d'une solution aqueuse de méthanoate de sodium (HCOO⁻(aq) + Na⁺(aq)) a pour valeur pH₂ = 8,7. pH₂> pKa₂ : NO_2^- est prédominant.

II – ÉTUDE D'UN MÉLANGE DE CES SOLUTIONS

1.

a)

Réaction entre l'acide nitreux et l'ion méthanoate :

$$\mathsf{HNO}_{\mathsf{2}(\mathsf{aq})} + \mathsf{HCCO}^-_{(\mathsf{aq})} \rightleftarrows \mathsf{NO}^-_{\mathsf{2}(\mathsf{aq})} + \mathsf{HCOOH}_{(\mathsf{aq})}$$

b)

$$Q_{r,i} = \frac{[NO_2^-]_i \times [HCOOH]_i}{[HNO_2]_i \times [HCOO^-]_i}$$

Or à l'instant initial la concentration des produits est nulle : $[NO_2^-]_i = [HCOOH]_i = 0 \text{ mol. } L^{-1}Q_{r,i} = 0$

c)

$$Q_{r,eq} = \frac{[NO_2^-]_{eq} \times [HCOOH]_{eq}}{[HNO_2]_{eq} \times [HCOO^-]_{eq}}$$

Point méthode : Pour faire apparaître Ka il faut faire multiplier le numérateur et le dénominateur par $[H_3O^+]_{eq}$ et c^0 .

$$Q_{r,eq} = \frac{[\text{NO}_2^-]_{eq} \times [\text{HCOOH}]_{eq}}{[\text{HNO}_2]_{eq} \times [\text{HCOO}^-]_{eq}} \times \frac{[\text{H}_3\text{O}^+]_{eq}}{[\text{H}_3\text{O}^+]_{eq}} \times \frac{c^0}{c^0}$$

$$Q_{r,eq} = \frac{[NO_2^-]_{eq} \times [H_3O^+]_{eq}}{[HNO_2]_{eq} \times c^0} \times \frac{[HCOOH]_{eq} \times c^0}{[HCOO^-]_{eq} \times [H_3O^+]_{eq}}$$

Or

$$\begin{split} K_{A1} &= \frac{[NO_2^-]_{eq} \times [H_3O^+]_{eq}}{[HNO_2]_{eq} \times c^0} \\ K_{A2} &= \frac{[HCOO^-]_{eq} \times [H_3O^+]_{eq}}{[HCOOH]_{eq} \times c^0} \\ \frac{1}{K_{A2}} &= \frac{[HCOOH]_{eq} \times c^0}{[HCOO^-]_{eq} \times [H_3O^+]_{eq}} \\ \text{Ainsi:} \\ Q_{r,eq} &= K_{A1} \times \frac{1}{K_{A2}} \\ Q_{r,eq} &= \frac{K_{A1}}{K_{A2}} \end{split}$$

Avec

•
$$K_{A1} = c^0 \times 10^{-pKa1}$$

$$\begin{array}{c} \bullet \quad K_{A2} = c^{0} \times 10^{-pKa2} \\ Q_{r,eq} = \frac{c^{0} \times 10^{-pKa1}}{c^{0} \times 10^{-pKa2}} \end{array}$$

$$\begin{split} Q_{r,eq} &= \frac{10^{-pKa1}}{10^{-pKa2}} \\ Q_{r,eq} &= \frac{10^{-3,3}}{10^{-3,8}} \\ Q_{r,eq} &= 3,2 \end{split}$$

d)

 $Q_{\text{r},\text{i}} < Q_{\text{r},\text{eq}}$: la réaction évolue dans le sens direct.

2. a)

a)

Équation		HNO _{2(aq)}	+ HCCO ⁻ _(aq)	= NO _{2(aq)}	+ HCOOH _(aq)
État du système chimique	Avancement (mol)	Quantités de matière (mol)			
		n(HNO _{2(aq)})	n(HCOO-(aq))	$n(NO_{2(aq)}^{-})$	$n(HCOOH_{(aq)})$
État initial	x = 0	n ₁	n ₂	0	0
État intermédiaire	х	n ₁ – x	n ₂ - x	X	X
État d'équilibre	$x = x_{éq}$	$n_1 - x_{eq}$	$n_2 - x_{eq}$	x _{eq}	x _{eq}

b)

$$\begin{split} [\text{HNO}_2]_{\text{eq}} &= \frac{\text{n} \big(\text{HNO}_{2(\text{aq})} \big)_{\text{eq}}}{\text{v}_{\text{Sol}}} = \frac{\text{n}_1 - \text{x}_{\text{eq}}}{2\text{v}} = \frac{4,0 \times 10^{-2} - 3,3 \times 10^{-2}}{2 \times 200 \times 10^{-3}} = 1,8 \times 10^{-2} \text{ mol. L}^{-1} \\ [\text{HCOO}^-]_{\text{eq}} &= \frac{\text{n} (\text{HCOO}^-)_{\text{eq}}}{\text{v}_{\text{Sol}}} = \frac{\text{n}_2 - \text{x}_{\text{eq}}}{2\text{v}} = \frac{8,0 \times 10^{-2} - 3,3 \times 10^{-2}}{2 \times 200 \times 10^{-3}} = 1,2 \times 10^{-1} \text{ mol. L}^{-1} \end{split}$$

$$\begin{split} [\text{NO}_2^-]_{eq} &= \frac{n \left(\text{NO}_{2(\text{aq})}^- \right)_{eq}}{v_{\text{Sol}}} = \frac{x_{eq}}{2v} = \frac{3.3 \times 10^{-2}}{2 \times 200 \times 10^{-3}} = 8.3 \times 10^{-2} \text{ mol. L}^{-1} \\ [\text{HCOOH}]_{eq} &= \frac{n \left(\text{HCOOH}_{(\text{aq})} \right)_{eq}}{v_{\text{Sol}}} = \frac{x_{eq}}{2v} = \frac{3.3 \times 10^{-2}}{2 \times 200 \times 10^{-3}} = 8.3 \times 10^{-2} \text{ mol. L}^{-1} \end{split}$$

c)
$$Q_{r,eq} = \frac{[NO_2^-]_{eq} \times [HCOOH]_{eq}}{[HNO_2]_{eq} \times [HCOO^-]_{eq}}$$

$$Q_{r,eq} = \frac{8.3 \times 10^{-2} \times 8.3 \times 10^{-2}}{1.8 \times 10^{-2} \times 1.2 \times 10^{-1}}$$

$$Q_{r,eq} = 3.2$$

Nous obtenons la même valeur que celle de la question 1.c)

3.

$$\begin{split} \text{Ka} &= \frac{[\text{A}^-]_{\text{eq}} \times [\text{H}_3\text{O}^+]_{\text{eq}}}{[\text{HA}]_{\text{eq}} \times c^0} \\ \text{pKa} &= -\log \left(\text{Ka} \right) = -\log \left(\frac{[\text{A}^-]_{\text{eq}} \times [\text{H}_3\text{O}^+]_{\text{eq}}}{[\text{HA}]_{\text{eq}} \times c^0} \right) \\ \text{pKa} &= -\log \left(\frac{[\text{A}^-]_{\text{eq}}}{[\text{HA}]_{\text{eq}}} \right) - \log \left(\frac{[\text{H}_3\text{O}^+]_{\text{eq}}}{c^0} \right) \\ \text{pKa} &= -\log \left(\frac{[\text{A}^-]_{\text{eq}}}{[\text{HA}]_{\text{eq}}} \right) + \text{pH} \\ \\ \text{pH} &= \text{pKa} + \log \left(\frac{[\text{A}^-]_{\text{eq}}}{[\text{HA}]_{\text{eq}}} \right) \end{split}$$

Avec le couple
$$\text{HNO}_{2(aq)}/\text{NO}_{2(aq)}^{-}$$

 $\text{pH} = \text{pKa}_1 + \log\left(\frac{[\text{NO}_2^-]_{eq}}{[\text{HNO}_2]_{eq}}\right)$
 $\text{pH} = 3.3 + \log\left(\frac{8.3 \times 10^{-2}}{1.8 \times 10^{-2}}\right)$
 $\text{pH} = 4.0$

Avec le couple
$$\text{HCOOH}_{(aq)}/\text{HCCO}_{(aq)}^{-}$$

 $\text{pH} = \text{pKa}_2 + \log \left(\frac{[\text{HCOO}^-]_{eq}}{[\text{HCOOH}]_{eq}} \right)$
 $\text{pH} = 3.8 + \log \left(\frac{1.2 \times 10^{-1}}{8.3 \times 10^{-2}} \right)$
 $\text{pH} = 4.0$

Ainsi, la valeur du pH du mélange est proche de la valeur pH₃ = 4.

Ammoniac dans un détachant

55 1. a.
$$[H_3O^+]_{\text{éq}} = c^0 10^{-pH} = 8 \times 10^{-12} \text{ mol} \cdot L^{-1}$$

$$et \ [HO^{\text{-}}]_{\acute{e}q} = \frac{{{{\textit{K}}_{e}}{{\left({{c}^{0}} \right)}^{2}}}}{{{{\left[{{H}_{3}}{{O}^{\text{+}}} \right]}_{\acute{e}q}}}} = \frac{{{10}^{\text{-p}{{\textit{K}}_{e}}}}{{{{\left({{c}^{0}} \right)}^{2}}}} = {c^{\text{0}}}{10^{\text{-p}{{\textit{K}}_{e}}}} + pH}$$

 $[HO^{-}]_{\text{éq}} = 1 \times 10^{-3} \text{ mol} \cdot L^{-1}$

Par conséquent, $[HO^-]_{\acute{e}q} > [H_3O^+]_{\acute{e}q}$ et la solution est basique.

b. NH_{3 (aq)} est la base conjuguée de NH₄+ (aq). En effet, $NH_{3 (aq)} + H^{+} = NH_{4}^{+}_{(aq)}$ donc le couple est $NH_{4}^{+}_{(aq)}/NH_{3 (aq)}$. c. À pH = 11,1 > p K_A , l'espèce prédominante est NH_{3 (aq)}.

$$NH_4^+$$
 NH_3 prédomine $pK_A = 9,23$ $pH = 11,1$ pH

2. a. $NH_{3 (aq)} + H_{3}O^{+}_{(aq)} \rightarrow NH_{4}^{+}_{(aq)} + H_{2}O_{(a)}$

$$K = \frac{\left(\frac{\left[NH_{4}^{+}\right]_{\acute{e}q}}{c^{0}}\right)^{1} \times 1}{\left(\frac{\left[NH_{3}\right]_{\acute{e}q}}{c^{0}}\right)^{1} \times \left(\frac{\left[H_{3}O^{+}\right]_{\acute{e}q}}{c^{0}}\right)^{1}} = \frac{\left[NH_{4}^{+}\right]_{\acute{e}q} \times c^{0}}{\left[NH_{3}\right]_{\acute{e}q} \times \left[H_{3}O^{+}\right]_{\acute{e}q}} = \frac{1}{K_{A}}$$

$$K = 10^{pK_A} = 1.6 \times 10^9$$

Cette constante étant très grande, la réaction peut être considérée comme totale.

b. $V_A = 6.0 \text{ mL} < V_{AE} = 10.4 \text{ mL}$: avant l'équivalence, le réactif limitant est le réactif titrant, H₃O⁺ (aq).

		$NH_{3 (aq)} + H_{3}O^{+}_{(aq)} \rightarrow NH_{4}^{+}_{(aq)} + H_{2}O_{(6)}$			
Av.	Quantité de matière	de NH _{3 (aq)}	…de H₃O⁺ (aq)	…de NH4 ⁺ (aq)	de H₂O (4)
О	apportée à l'état initial	cVB	CAVA	0	solvant
Xf	présente à l'état final	$cV_B - x_f$	$c_{A}V_{A}-x_{f}$	$0 + x_f$	solvant
Xmax	qui serait présente à l'état d'avancement maximal	cV _B − x _{max}	$C_AV_A - x_{max}$ = O	$0 + x_{\text{max}} \\ = c_{\text{A}}V_{\text{A}}$	solvant

$$[H_3O^+]_{eq} = c^0 10^{-pH} = \frac{c_A V_A - x_f}{V_A + V}$$

$$\begin{split} [\text{H}_3\text{O}^+]_\text{eq} &= \text{c}^0 \text{10}^\text{-pH} = \frac{\text{c}_\text{A} \text{V}_\text{A} - \text{x}_\text{f}}{\text{V}_\text{A} + \text{V}} \\ \text{Donc } x_\text{f} &= \text{c}_\text{A} \text{V}_\text{A} - \text{c}^0 \text{10}^\text{-pH} (\text{V}_\text{A} + \text{V}) = 3,0 \times 10^{-4} \text{ mol} \\ \text{et } x_\text{max} &= \text{c}_\text{A} \text{V}_\text{A} = 3,0 \times 10^{-4} \text{ mol} \end{split}$$

Par conséquent, $\tau_f = \frac{x_f}{x_{\text{max}}} = 1,0$: la réaction est totale.

- 3. a. Grâce au simulateur, on retrouve $V_{AE} = 18,7$ mL. Avant l'équivalence, le BBT est bleu, tandis qu'après l'équivalence, il est jaune : l'équivalence est repérée par le virage au vert du BBT.
- b. Si on suppose que le choix d'indicateur était justifié. on peut dire que le pH à l'équivalence est compris entre 6,0 et 7,6. En effet, un indicateur est adapté à un titrage acido-basique si le pH à l'équivalence est inclus dans la zone de virage de l'indicateur.
- c. À l'équivalence, les réactifs titré et titrant ont été introduits dans les proportions stœchiométriques, ce qui correspond ici à des quantités de matière égales puisque leurs nombres stœchiométriques sont égaux :

$$cV_B = c_A V_{AE}$$
 donc $c = \frac{c_A V_{AE}}{V_B} = 9.4 \times 10^{-2} \text{ mol} \cdot L^{-1}$
 $c_0 = 100c = 9.4 \text{ mol} \cdot L^{-1}$

d. Si V est le volume de la solution commerciale :

$$p_{\text{exp}} = \frac{c_0 VM}{\rho_0 V} = \frac{c_0 M}{\rho_0} = 17,4 \%$$

e.
$$\frac{\left|p_{\text{exp}} - p_{\text{réf}}\right|}{u(p)} = \frac{0.6}{0.5} = 1.2$$

La valeur pexp est conforme à la valeur de référence.