Sets

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$
 natural numbers
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 integers
$$\mathbb{Q} = \left\{\frac{k}{n} \mid k, n \in \mathbb{N}, n \neq 0\right\}$$
 rationals
$$\mathbb{R} =$$
 real numbers
$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$$
 complex numbers

where *i* is the *imaginary unit* characterized by $i^2 = -1$.

$$\mathbb{R}^d = \{(a_1, a_2, ..., a_d) \mid a_i \in \mathbb{R}\}$$
 d-dimensional space
$$\mathbb{R}^\infty = \{(a_0, a_1, a_2, ...) \mid a_i \in \mathbb{R}\}$$
 space of infinite sequences of reals

Set Operations

Let A and B be sets:

$A \cup B = \{c \mid c \in A \text{ or } c \in B\}$	union
$A \cap B = \{c \mid c \in A \text{ and } c \in B\}$	intersection
$A \setminus B = \{c \mid c \in A \text{ and } c \notin B\}$	difference
$A\Delta B = (A \cup B) \setminus (A \cap B)$	symmetric difference

Indexed Families of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be a family of sets indexed by the set I:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$

Maps

Let A and B be sets. A *map* $f: A \to B$ is an *assignment* that assigns to each element a in A a unique element f(a) in B, which is called the *value* of f at a.

Note: f assigns to each $a \in A$ a value, but there may exist $b \in B$ such that $f(a) \neq b$ for some $a \in A$.

A is called the *domain* of f, and B is called the *target space* of f.

If $A' \subseteq A$, then the *restriction* of f to A' is denoted by $f' = f|_{A'}$ and defined as $f' : A' \to B$, f'(a) = f(a) for all $a \in A'$.

Examples

- 1. $f: \mathbb{R} \to \mathbb{R}$, $x \to \sin(x)$ (f is the sine function).
- 2. $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \to \frac{1}{x}$ (f is the reciprocal function).
- 3. $g: \mathbb{R} \to \mathbb{R}, x \to \begin{cases} x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ (g is a piecewise function).
- 4. $f: V \to \{\text{set of subspaces of } V\}, v \to \text{span}(v)$ (f assigns the span of a vector).
- 5. $D: P(\mathbb{R}) \to P(\mathbb{R}), p(x) \to p'(x)$ (D is the derivative of a polynomial).