\star Spé - St
 Joseph/ICAM Toulouse \star

Math. - CC 1 - S1 - Analyse

vendredi 04 octobre 2019 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Les deux parties sont indépendantes.

PARTIE I

L'objectif de cette partie est de calculer la somme de la série $\sum_{n\geq 1} \frac{1}{n^2}$.

1. Soit f une fonction de classe C^1 sur $[0,\pi]$. A l'aide d'une intégration par parties, montrer que :

$$\lim_{n \to +\infty} \int_0^{\pi} f(t) \sin\left(\frac{2n+1}{2}t\right) dt = 0$$

2. Montrer que pour $n \in \mathbb{N}^*$, et $t \in]0,\pi]$, on a :

$$C_n(t) = \frac{1}{2} + \sum_{k=1}^{n} \cos(kt) = \frac{\sin(\frac{2n+1}{2}t)}{2\sin(\frac{t}{2})}$$

Rappels: $\forall x \in \mathbb{R}$, $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$, $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$; $\forall (a,b) \in \mathbb{R}^2$, $2\sin a \cos b = \sin(a+b) + \sin(a-b)$.

3. Montrer que l'on a pour tout $k \in \mathbb{N}^*$:

$$\int_0^{\pi} (t^2 - 2\pi t) \cos(kt) dt = \frac{2\pi}{k^2}$$

4. En déduire que pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{2\pi} \int_0^{\pi} (t^2 - 2\pi t) C_n(t) dt = \sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{6}$$

5. Déduire de ce qui précède la somme de la série $\sum_{n\geq 1} \frac{1}{n^2}$.

PARTIE II

L'objectif de cette partie est de montrer que

$$\int_0^1 \frac{\ln(t)}{t^2 - 1} dt = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

 ${\bf 1.}\ \ {\rm Prouver}\ {\rm la}\ {\rm convergence}\ {\rm de}\ {\rm l'int\'egrale}.$

2. Montrer que pour tout $k \in \mathbb{N}$ l'intégrale $I_k = \int_0^1 t^k \ln(t) dt$ converge, et la calculer.

3. Montrer que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=0}^n \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln(t)}{t^2-1} \mathrm{d}t - \int_0^1 \frac{t^{2n+2} \ln(t)}{t^2-1} \mathrm{d}t$$

4. Montrer que la fonction $t\mapsto \frac{t^2\ln(t)}{t^2-1}$ est bornée sur]0,1[.

5. En déduire $\lim_{n\to+\infty} \int_0^1 \frac{t^{2n+2} \ln(t)}{t^2-1} dt = 0$, puis la relation attendue.

6. En utilisant le résultat démontré en partie I, calculer $\int_0^1 \frac{\ln(t)}{1-t^2} dt$.

Fin de l'énoncé d'analyse