

Assignment: SQL Notebook for Peer Assignment

Introduction

Using this Python notebook you will:

- 1. Understand the Spacex DataSet
- 2. Load the dataset into the corresponding table in a Db2 database
- 3. Execute SQL queries to answer assignment questions

Overview of the DataSet

SpaceX has gained worldwide attention for a series of historic milestones.

It is the only private company ever to return a spacecraft from low-earth orbit, which it first accomplished in December 2010. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars wheras other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.

Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

This dataset includes a record for each payload carried during a SpaceX mission into outer space.

Download the datasets

This assignment requires to load the spacex dataset.

In many cases the dataset to be analyzed is available as a .CSV (comma separated values) file, perhaps on the internet. Click on the link below to download and save the dataset (.CSV file):

Spacex DataSet

```
Collecting sqlalchemy==1.3.9
  Downloading SQLAlchemy-1.3.9.tar.gz (6.0 MB)
                                             - 6.0/6.0 MB 49.1 MB/s eta 0:00:00:00:
010:01
  Preparing metadata (setup.py) ... done
Building wheels for collected packages: sqlalchemy
  Building wheel for sqlalchemy (setup.py) ... done
  Created wheel for sqlalchemy: filename=SQLAlchemy-1.3.9-cp37-cp37m-linux x86 64.
whl size=1159122 sha256=8bd1e083b40f91d8111506e861131e08e72c8980d4c96fbd957f413f91
ab98b2
  Stored in directory: /home/jupyterlab/.cache/pip/wheels/ef/95/ac/c232f83b415900c
26553c64266e1a2b2863bc63e7a5d606c7e
Successfully built sqlalchemy
Installing collected packages: sqlalchemy
  Attempting uninstall: sqlalchemy
    Found existing installation: SQLAlchemy 1.3.24
    Uninstalling SQLAlchemy-1.3.24:
      Successfully uninstalled SQLAlchemy-1.3.24
Successfully installed sqlalchemy-1.3.9
```

Connect to the database

Let us first load the SQL extension and establish a connection with the database

```
In [2]: %load_ext sql
In [3]: import csv, sqlite3
       con = sqlite3.connect("my_data1.db")
       cur = con.cursor()
In [4]: !pip install -q pandas==1.1.5
       %sql sqlite:///my_data1.db
In [5]:
       'Connected: @my_data1.db'
Out[5]:
In [6]:
       import pandas as pd
       df.to_sql("SPACEXTBL", con, if_exists='replace', index=False,method="multi")
       /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/pandas/core/generi
       c.py:2882: UserWarning: The spaces in these column names will not be changed. In p
       andas versions < 0.14, spaces were converted to underscores.
         both result in 0.1234 being formatted as 0.12.
```

Tasks

Task 1

Display the names of the unique launch sites in the space mission

```
Out[16]:
                    Time
          Date
                          Booster_Version Launch_Site
                                                           Payload PAYLOAD_MASS_KG_ Orbit Customer
                   (UTC)
                                                            Dragon
            04-
                                             CCAFS LC-
                                                         Spacecraft
            06-
                 18:45:00
                             F9 v1.0 B0003
                                                                                       0
                                                                                           LEO
                                                                                                   SpaceX
                                                   40 Qualification
           2010
                                                              Unit
                                                            Dragon
                                                        demo flight
            08-
                                                            C1, two
                                                                                                    NASA
                                             CCAFS LC-
                                                                                           LEO
                             F9 v1.0 B0004
            12- 15:43:00
                                                                                       0
                                                                                                    (COTS)
                                                          CubeSats,
                                                   40
                                                                                           (ISS)
           2010
                                                           barrel of
                                                                                                     NRO
                                                           Brouere
                                                            cheese
In [14]:
           %%sql
           SELECT DISTINCT Launch_Site FROM SPACEXTBL;
            * sqlite:///my_data1.db
           Done.
Out[14]:
            Launch_Site
            CCAFS LC-40
            VAFB SLC-4E
             KSC LC-39A
           CCAFS SLC-40
```

Display 5 records where launch sites begin with the string 'CCA'

Out[21]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_N	MASS_KG_	Orbit	Customer
	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		0	LEO	SpaceX
	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0	LEO (ISS)	NASA (COTS) NRO
	22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2		525	LEO (ISS)	NASA (COTS)
	08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1		500	LEO (ISS)	NASA (CRS)
	01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2		677	LEO (ISS)	NASA (CRS)
4									•

Display the total payload mass carried by boosters launched by NASA (CRS)

Task 4

Display average payload mass carried by booster version F9 v1.1

Out[26]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_M	ASS_KG_	Orbit	Customer
	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		0	LEO	SpaceX
	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0	LEO (ISS)	NASA (COTS) NRO
4									•

List the date when the first successful landing outcome in ground pad was achieved.

```
In [58]:  

**sql
Limit 1;

* sqlite:///my_data1.db
Done.

Out[58]:  

Date Time (UTC) Landing_Outcome

22-12-2015  01:29:00 Success (ground pad)
```

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
In [61]: %%sql
          SELECT * FROM SPACEXTBL
          WHERE "Mission_Outcome" = 'Success'
          AND "PAYLOAD_MASS__KG_" BETWEEN 4000 AND 6000 LIMIT 3;
           * sqlite:///my_data1.db
          Done.
Out[61]:
                   Time
          Date
                          Booster_Version Launch_Site Payload PAYLOAD_MASS_KG_ Orbit Customer M
                   (UTC)
            05-
                                           CCAFS LC-
                                                       AsiaSat
                                  F9 v1.1
            -80
                08:00:00
                                                                              4535
                                                                                     GTO
                                                                                             AsiaSat
                                                  40
           2014
            07-
                                           CCAFS LC-
                                                       AsiaSat
            09- 05:00:00
                            F9 v1.1 B1011
                                                                                             AsiaSat
                                                                              4428
                                                                                     GTO
                                                  40
           2014
                                                       ABS-3A
            02-
                                           CCAFS LC-
                                                       Eutelsat
                                                                                                ABS
            03- 03:50:00
                            F9 v1.1 B1014
                                                                              4159
                                                                                     GTO
                                                                                             Eutelsat
                                                  40
                                                          115
          2015
                                                        West B
```

List the total number of successful and failure mission outcomes

%%sql In [83]: SELECT DISTINCT Mission_Outcome, COUNT(Mission_Outcome) FROM SPACEXTBL GROUP BY Mission_Outcome; * sqlite:///my_data1.db COUNT(Mission_Outcome) Out[83]: Mission_Outcome Failure (in flight) 1 98 Success Success 1 Success (payload status unclear) 1

Task 8

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

In [91]:	SELECT Booster	Version, PAYLOAD_N _MASSKG_ = (SELECT
	* sqlite:///m Done.	ny_data1.db
Out[91]:	Booster_Version	PAYLOAD_MASS_KG_
	F9 B5 B1048.4	15600
	F9 B5 B1049.4	15600
	F9 B5 B1051.3	15600
	F9 B5 B1056.4	15600
	F9 B5 B1048.5	15600
	F9 B5 B1051.4	15600
	F9 B5 B1049.5	15600
	F9 B5 B1060.2	15600
	F9 B5 B1058.3	15600
	F9 B5 B1051.6	15600
	F9 B5 B1060.3	15600
	F9 B5 B1049.7	15600

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

```
SELECT substr("Date", 4, 2) AS 'Month', "Landing _Outcome", "Booster_Version", "Landing _Outcome", "Booster_Version", "Landing substr("Date", 7,4)='2015'
AND substr("Date", 4, 2)
AND "Landing _Outcome" LIKE "%Failure%";
```

* sqlite:///my_data1.db Done.

Out[101]:

Month		Landing _Outcome	Booster_Version	Launch_Site	
	01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40	
	04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40	

Task 10

Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

* sqlite:///my_data1.db Done.

Out[122]:

•	Date	Landing _Outcome	LandingOutcomeCount	Booster_Version	Launch_Site	
	18-07-2016	Success (ground pad)	6	F9 FT B1025.1	CCAFS LC-40	
	08-04-2016	Success (drone ship)	8	F9 FT B1021.1	CCAFS LC-40	
	07-08-2018	Success	20	F9 B5 B1046.2	CCAFS SLC-40	