

# FORMELSAMMLUNG FWL

Wintersemester 22/23

Name: Tony Pham

Letzte Änderung: 22. Januar 2023

Lizenz: GPLv3

# Inhaltsverzeichnis

| 1 | Gru       | ndlagen 1                                                                                                                                                     |
|---|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1       | title 1                                                                                                                                                       |
|   | 1.2       | Differential operatoren                                                                                                                                       |
|   |           | 1.2.1 Rechenregeln                                                                                                                                            |
|   |           | 1.2.2 Spezielle Vektorfelder                                                                                                                                  |
|   | 1.3       | Vektorrechnung                                                                                                                                                |
|   |           | 1.3.1 Betrag, Richtungswinkel, Normierung                                                                                                                     |
|   |           | 1.3.2 Skalarprodukt                                                                                                                                           |
|   |           | 1.3.3 Kreuzprodukt                                                                                                                                            |
|   | 1.4       | Logarithmische Maße/Pegel                                                                                                                                     |
|   | 1.4       |                                                                                                                                                               |
|   | 1 5       |                                                                                                                                                               |
|   | 1.5       | Umrechnung der KOS                                                                                                                                            |
|   | 1.6       | Kartesische Koordinaten                                                                                                                                       |
|   | 1.7       | Zylinderkoordinaten                                                                                                                                           |
|   | 1.8       | Kugelkoordinaten                                                                                                                                              |
| _ | 7. F      |                                                                                                                                                               |
| 2 |           | xwell-Gleichungen 5                                                                                                                                           |
|   | 2.1       | Integralsätze                                                                                                                                                 |
| 0 | 12.1.1    |                                                                                                                                                               |
| 3 | Feld      |                                                                                                                                                               |
|   | 3.1       | Elektrostatik                                                                                                                                                 |
|   |           | 3.1.1 Potential-/Poisson-Gleichung                                                                                                                            |
|   |           | 3.1.2 Randwertprobleme, -bedingungen (RB) $\dots \dots \dots$ |
|   |           | 3.1.3 Green'sche Funktionen                                                                                                                                   |
|   |           | 3.1.4 Elektrischer Dipol                                                                                                                                      |
|   | 3.2       | Magnetostatik                                                                                                                                                 |
|   |           | 3.2.1 Vektorpotential                                                                                                                                         |
|   |           | 3.2.2 Vektorpotential in Abhängigkeit von der Stromdichte                                                                                                     |
|   |           | 3.2.3 Biot-Savart-Gesetz                                                                                                                                      |
|   |           | 3.2.4 Magnetischer Dipol                                                                                                                                      |
|   | 3.3       | Quasistätionäre Felder (Wechselstrom)                                                                                                                         |
|   |           | 3.3.1 Komplexe Feldgrößen                                                                                                                                     |
|   |           | 3.3.2 Skineffekt                                                                                                                                              |
|   |           | 3.3.3 Näherungen für Skineffekt                                                                                                                               |
|   | 3.4       | E-Felder an Grenzflächen                                                                                                                                      |
|   | 5.4       |                                                                                                                                                               |
|   |           | 3.4.1 Dielektrische Grenzfläche                                                                                                                               |
|   |           | 3.4.2 Grenzfläche Dielektrikum-Leiter                                                                                                                         |
|   |           | 3.4.3 Grenzfläche an magn. Feldern                                                                                                                            |
| 1 | Wel       | lan 0                                                                                                                                                         |
| 4 |           |                                                                                                                                                               |
|   | 4.1       | Ausbreitung                                                                                                                                                   |
|   |           | 4.1.1 Allgemein                                                                                                                                               |
|   |           | 4.1.2 Im leeren Raum(Vakuum)                                                                                                                                  |
|   |           | 4.1.3 Im verlustlosen/idealen Dielektrika                                                                                                                     |
|   |           | 4.1.4 Im Dielektrika mit geringem Verlust                                                                                                                     |
|   |           | 4.1.5 Im guten Leiter                                                                                                                                         |
|   | 4.2       | Übergang                                                                                                                                                      |
|   |           | 4.2.1 Zwischen Dielektrika mit geringem Verlust                                                                                                               |
|   | 4.3       | Poyntingvektor                                                                                                                                                |
|   |           | 4.3.1 Leistung                                                                                                                                                |
|   |           | 4.3.2 Leistung nach Dämpfung                                                                                                                                  |
|   |           | 4.3.3 Leistung vom Kabel transportiert                                                                                                                        |
|   | 4.4       | dÀlembertsche Gleichung (allg.)                                                                                                                               |
|   | 4.5       | Helmholtz-Gleichungen (Frequenzbereich)                                                                                                                       |
|   |           | 4.5.1 Zeitbereich                                                                                                                                             |
|   |           | 4.5.2 Frequenzbereich (harmonisch)                                                                                                                            |
|   | 4.6       | Wellenzahl                                                                                                                                                    |
|   | 4.0 $4.7$ | Wellenlänge                                                                                                                                                   |
|   |           |                                                                                                                                                               |
|   | 4.8       |                                                                                                                                                               |
|   | 4.0       | 4.8.1 Gruppengeschwindigkeit                                                                                                                                  |
|   | 4.9       | Polarisation                                                                                                                                                  |

|   | 4.11  | Totalrefexion                                        | 11       |
|---|-------|------------------------------------------------------|----------|
|   | 4.12  | ? Grenzwinkel                                        | 11       |
|   | 4.13  | Brewster-/Polarisationswinkel                        | 11       |
|   | 4.14  | Senkrechter Einfall                                  | 12       |
|   |       | 4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt | 12       |
|   |       | 4.14.2 Spezialfall Medium 1 ist Luft                 | 12       |
|   |       | 4.14.3 Spezialfall Medium 2 ist Luft                 | 12       |
|   |       | 4.14.4 Spezialfall beide Medien NICHT magnetisch     | 12       |
|   |       | 4.14.5 Spezialfall Medium 2 idealer Leiter           | 12       |
|   | 4.15  | Stehwellenverhältnis                                 | 12       |
|   | 4.16  | Senkrechte (E-Feld) Polarisation (H-Feld parallel)   | 13       |
|   | 4.17  | Parallel (E-Feld) Polarisation (H-Feld senkrecht)    | 13       |
|   |       |                                                      |          |
| 5 |       | tungen                                               | 14       |
|   | 5.1   | Allgemeine Leitung (mit Verlusten)                   | 14       |
|   |       | 5.1.1 Gleichungen                                    | 14       |
|   |       | 5.1.2 Kenngrößen                                     | 14       |
|   |       | 5.1.3 Kurzschluss und Leerlauf                       | 14       |
|   |       | 5.1.4 Lange und Kurze Leitung                        | 14       |
|   | 5.2   | Verlustlose Leitung                                  | 14       |
|   |       | 5.2.1 Kenngrößen                                     | 14       |
|   |       | 5.2.2 verlustloser Reflexionsfaktor                  | 14       |
|   |       | 5.2.3 Beliebiger Abschluss (Last)                    | 15       |
|   |       | 5.2.4 Kurzschluss an Leitungsende                    | 15       |
|   |       | 5.2.5 Leerlauf an Leitungsende                       | 15       |
|   |       | 5.2.6 Leitung als Impedanz-Transformator             | 15       |
|   |       | 5.2.7 Vorgehen Eingangswiderstand                    | 15       |
|   |       | 5.2.8 Stehwellenverhältnis                           | 15       |
|   |       | 5.2.9 Leistung                                       | 15       |
|   |       | 5.2.10 Gleichspannungswert (=Endwert)                | 15<br>15 |
|   |       |                                                      |          |
|   |       | 5.2.12 Spezialfall: Angepasste Leitung               | 15<br>16 |
|   | 5.3   | Mehrfachreflexionen bei fehlender Anpassung          | 16       |
|   | 5.4   |                                                      | 16       |
|   | 0.4   | Kettenmatrix einer Leitung                           | 10       |
| 6 | Smi   | ith-Diagramm                                         | 17       |
|   | 6.1   | Allgemein                                            | 17       |
|   |       | 6.1.1 Normierte Impedanz                             | 17       |
|   |       | 6.1.2 Reflexionsfaktor                               | 17       |
|   |       | 6.1.3 Anpassungsfaktor                               | 17       |
|   | 6.2   | Impedanz/Admetanz umrechnen                          | 17       |
|   | 6.3   | Von Last zu Quelle                                   | 17       |
| _ | *** 1 |                                                      | 10       |
| 7 |       | llenleiter                                           | 18       |
|   | 7.1   | Koaxial Leiter                                       | 18       |
|   |       | 7.1.1 Wellenwiderstand                               | 18       |
|   | 7.0   | 7.1.2 Dämpfung                                       | 18       |
|   | 7.2   | Mikrostreifenleiter                                  | 18       |
|   |       | 7.2.1 Effektive Permittivitätszahl                   | 18       |
|   |       | 7.2.2 Schmale Streifen                               | 18       |
|   | 7.9   | 7.2.3 Breite Streifen                                | 18       |
|   | 7.3   | Hohlleiter                                           | 18       |
|   | 7.4   | VSWR (Voltage Standing Wave Ratio) und Return Loss   | 18       |
|   | 7.5   | Lichtwellenleiter oder Glasfaser                     | 18       |
|   | 7.6   | Leitungsparameter                                    | 18<br>19 |
|   |       |                                                      |          |
|   |       | 7.6.2 Doppelleitung:                                 | 19<br>19 |
|   |       | 7.6.3 Koaxial Leitung                                | 19       |

| 8 | Ant  | ennen                                       | <b>20</b> |
|---|------|---------------------------------------------|-----------|
|   | 8.1  | Herz'scher Dipol                            | <br>20    |
|   |      | 8.1.1 Allgemein                             | <br>20    |
|   |      | 8.1.2 Nahfeld                               | <br>20    |
|   |      | 8.1.3 Fernfeld                              | <br>20    |
|   |      | 8.1.4 Abgestrahlte Leistung im Fernfeld     | <br>20    |
|   |      | 8.1.5 Strahlungswiderstand                  | <br>20    |
|   |      | 8.1.6 Verlustwiderstand                     | <br>20    |
|   | 8.2  | Magnetischer Dipol                          | <br>20    |
|   |      | 8.2.1 Fernfeld                              | <br>20    |
|   |      | 8.2.2 Abgestrahlte Leistung im Fernfeld     | <br>20    |
|   |      | 8.2.3 Nahfeld                               | <br>20    |
|   | 8.3  | Lineare Antenne                             | <br>20    |
|   |      | 8.3.1 Dipolantenne                          | <br>21    |
|   | 8.4  | Antennenkenngrößen                          | <br>21    |
|   |      | 8.4.1 Abgestrahlte Leistung                 | <br>21    |
|   |      | 8.4.2 Verlustleistung                       | <br>21    |
|   |      | 8.4.3 Wirkungsgrad                          | <br>21    |
|   |      | 8.4.4 Richtcharakteristik                   | <br>21    |
|   |      | 8.4.5 Richtfunktion/Richtfaktor             | <br>21    |
|   |      | 8.4.6 Gewinn                                | <br>21    |
|   |      | 8.4.7 Wirksame Antennenfläche               | <br>21    |
|   | 8.5  | Bezugsantennen                              | <br>21    |
|   | 8.6  | Senden und Empfangen                        | <br>21    |
|   |      | 8.6.1 Freiraumdämpfung/Freiraumdämpfungsmaß | <br>22    |
|   |      | 8.6.2 Leistungspegel/Freiraumpegel          | <br>22    |
|   | 8.7  | Antennentabelle                             | <br>23    |
| 9 | Einl | neiten                                      | 24        |

# 1 Grundlagen

# 1.1 title

# 1.2 Differentialoperatoren

Nabla-Operator

$$\nabla = \vec{\nabla} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}$$

Laplace-Operator

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \text{div (grad)} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

 $\mathbf{Divergenz} \ \mathrm{div:} \ \mathrm{Vektorfeld} \to \mathrm{Skalar}$ 

Quelldichte, gibt für jeden Punkt im Raum an, ob Feldlinien entstehen oder verschwinden.

**Rotation** rot: Vektorfeld  $\rightarrow$  Vektorfeld

Wirbeldichte, gibt für jeden Punkt im Raum Betrag und Richtung der Rotationsgeschwindigkeit an.

$$\boxed{ \cot \vec{F} = \nabla \times \vec{F} } = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ \vec{F}_x & \vec{F}_y & \vec{F}_z \end{vmatrix}$$

Gradient grad: Skalarfeld  $\to$  Vektor/Gradientenfeld zeigt in Richtung steilster Anstieg von  $\phi$ 

$$\left[\operatorname{grad}\phi = \nabla \cdot \phi\right] = \begin{pmatrix} \frac{\partial \phi / \partial x}{\partial \phi / \partial y} \\ \frac{\partial \phi / \partial y}{\partial \phi / \partial z} \end{pmatrix} = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

#### 1.2.1 Rechenregeln

 $\phi, \psi$ : Skalarfelder  $\vec{A}, \vec{B}$ : Vektorfelder

$$\begin{array}{lll} \nabla \cdot (\vec{A} \times \vec{B}) & = & (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A} \\ \nabla \cdot (\phi \cdot \psi) & = & \phi(\nabla \psi) + \psi(\nabla \phi) \\ \nabla \cdot (\phi \cdot \vec{A}) & = & \phi(\nabla \vec{A}) + \vec{A}(\nabla \phi) \\ \nabla \times (\phi \cdot \vec{A}) & = & \nabla \phi \times \vec{A} + \phi(\nabla \times \vec{A}) \end{array}$$

# 1.2.2 Spezielle Vektorfelder

quellenfreies Vektorfeld  $\vec{F} \rightarrow$  Vektorpotential  $\vec{E}$ 

$$\operatorname{div} \vec{F} = \operatorname{div}(\operatorname{rot} \vec{E}) = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{rot} \vec{E}$$

wirbelfreies Vektorfeld  $\vec{F} \rightarrow$  Skalar<br/>potential  $\phi$ 

$$\operatorname{rot} \vec{F} = \operatorname{rot}(\operatorname{grad} \phi) = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi$$

quellen- und wirbelfreies Vektorfeld  $\vec{F}$ :

$$\begin{split} & \operatorname{rot} \vec{F} = 0 \quad \operatorname{div} \vec{F} = 0 \\ & \operatorname{div}(\operatorname{grad} \phi) = \Delta \phi = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi \end{split}$$

$$\operatorname{rot}(\operatorname{rot}\vec{F}) = \operatorname{grad}(\operatorname{div}\vec{F}) - \Delta\vec{F}$$

# 1.3 Vektorrechnung

# 1.3.1 Betrag, Richtungswinkel, Normierung Betrag

$$|\vec{r}| = r = \sqrt{r_x^2 + r_y^2 + r_z^2}$$

Richtungswinkel

$$\cos(\alpha) = \frac{a_x}{|\vec{a}|} \qquad \cos(\beta) = \frac{a_y}{|\vec{a}|} \qquad \cos(\gamma) = \frac{a_z}{|\vec{a}|}$$

Normierung, Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|}, \quad |\vec{e}_a| = 1$$

# 1.3.2 Skalarprodukt

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi) \qquad \vec{a} \cdot \vec{b} = 0$$

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{|\vec{a}| \cdot |\vec{b}|}$$

# 1.3.3 Kreuzprodukt

$$A_{Para} = |\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi)$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

Trick: Regel von Sarrus anwenden!

# 1.4 Logarithmische Maße/Pegel

Feldgröße  $F_n$ : Spannung, Strom,  $\vec{E}$ -,  $\vec{H}$ -Feld, Schalldruck Leistungsgröße  $P_n$ : Energie, Intensität, Leistung Wichtig: Feldgrößen sind Effektivwerte!

• Dämpfungsmaß a in Dezibel [dB] und Neper [Np]

$$\begin{array}{ll} 1\,\mathrm{dB} = 0,1151\,\mathrm{Np} & 1\,\mathrm{Np} = 8,686\,\mathrm{dB} \\ a\,[\mathrm{dB}] = 20\cdot\log\frac{F_1}{F_2} & a\,[\mathrm{dB}] = 10\cdot\log\frac{P_1}{P_2} \\ & \frac{F_1}{F_2} = 10^{\frac{a\,[\mathrm{dB}]}{20\mathrm{dB}}} & \frac{P_1}{P_2} = 10^{\frac{a\,[\mathrm{dB}]}{10\mathrm{dB}}} \\ a\,[\mathrm{Np}] = \ln\frac{F_1}{F_2} & a\,[\mathrm{Np}] = \frac{1}{2}\cdot\ln\frac{P_1}{P_2} \\ & \frac{F_1}{F_2} = e^{a\,[\mathrm{Np}]} & \frac{P_1}{P_2} = e^{2a\,[\mathrm{Np}]} \end{array}$$

- absolute Pegel L mit Bezugsgrößen  $P_0, F_0$ 

$$L [dB] = 20 \cdot \log \frac{F_1}{F_0} \qquad \qquad L [dB] = 10 \cdot \log \frac{P_1}{P_0}$$

$$\frac{F_1}{F_0} = 10^{\frac{L[dB]}{20 \text{dB}}} \qquad \qquad \frac{P_1}{P_0} = 10^{\frac{L[dB]}{10 \text{dB}}}$$

| Einheit              | Bezugswert                | Formelzeichen                    |
|----------------------|---------------------------|----------------------------------|
| dBm, dB(mW)          | $P_0 = 1mW$               | $L_{	t P/mW}$                    |
| dBW, dB(W)           | $P_0 = 1W$                | $L_{	t P/W}$                     |
| dBV, dB(V)           | $F_0 = 1V$                | $L_{	t U/	t V}$                  |
| $dB\mu V, dB(\mu V)$ | $F_0 = 1\mu V$            | $L_{\mathtt{U}/\mu\mathtt{V}}$   |
| $dB\mu A, dB(\mu A)$ | $F_0 = 1\mu A$            | $L_{	exttt{I}/\mu	exttt{A}}$     |
| $dB(\mu V/m)$        | $F_0 = 1 \frac{\mu V}{m}$ | $L_{	t E/(\mu 	t V/m)}$          |
| $dB(\mu A/m)$        | $F_0 = 1 \frac{\mu A}{m}$ | $L_{	exttt{H/(}\mu	exttt{A/m)}}$ |

# • Umrechnung (Annäherungswerte)

| Faktor $\frac{F_1}{F_0}$ bzw. $\frac{P_1}{P_0}$ | Energiegröße $P_n$ | Feldgröße $F_n$ |
|-------------------------------------------------|--------------------|-----------------|
| 1                                               | 0                  | 0               |
| 100                                             | 20 dB              | 40 dB           |
| 1000                                            | 30 dB              | 60 dB           |
| 0,1                                             | -10 dB             | -20 dB          |
| 0,01                                            | -20 dB             | -40 dB          |
| 0,001                                           | -30 dB             | -60 dB          |
| 2                                               | 3 dB               | 6 dB            |
| 4                                               | 6 dB               | 12 dB           |
| 8                                               | 9 dB               | 18 dB           |
| 0,5                                             | -3,01 dB           | -6,02 dB        |
| 1,25                                            | 0,97 dB            | 1,94 dB         |
| 0,8                                             | -0,97 dB           | -1,94 dB        |

# • relativer Pegel / Maß

Maß = Differenz zweier (Leistungs)pegel bei gleichem Bezugswert  $P_0$ 

$$\Delta L = L_2 - L_1 = 10 \cdot \log \left(\frac{P_2}{P_1}\right) dB$$

# 1.4.1 Rechnen mit Pegeln

Rechenregeln für Logarithmen (10er-Basis): x, y, a > 0

$$\begin{split} \log(x \cdot y) &= \log(x) - \log(y) &\qquad \log\left(\frac{x}{y}\right) = \log(x) - \log(y) \\ \log(x^a) &= a \cdot \log(x) &\qquad \log\sqrt[a]{x} = \frac{1}{a} \cdot \log(x) \\ \text{Pegel} &= 10 \cdot \log(\text{Faktor}) &\qquad \text{Faktor} &= 10^{\frac{\text{Pegel}}{10}} \end{split}$$

 $\texttt{Pegel} = 10 \cdot \log(\texttt{Faktor})$ 

#### 1.5 Umrechnung der KOS

| Kart.                                                                                 | Zyl.           | Kug.                        |
|---------------------------------------------------------------------------------------|----------------|-----------------------------|
| x                                                                                     | $r\cos\varphi$ | $r\sin\vartheta\cos\varphi$ |
| y                                                                                     | $r\sin\varphi$ | $r\sin\vartheta\sin\varphi$ |
| $\overline{z}$                                                                        | z              | $r\cos\vartheta$            |
| $\sqrt{x^2 + y^2}$                                                                    | r              |                             |
| $\arctan \frac{y}{x}$                                                                 | φ              |                             |
| $\overline{z}$                                                                        | z              |                             |
| $dx\cos\varphi + dy\sin\varphi$                                                       | dr             |                             |
| $dy\cos\varphi - dx\sin\varphi$                                                       | $rd\varphi$    |                             |
| dz                                                                                    | dz             |                             |
| $\sqrt{x^2 + y^2 + z^2}$                                                              |                | r                           |
| $\arctan \frac{y}{x}$                                                                 |                | $\varphi$                   |
| $\arctan \frac{\sqrt{x^2 + y^2}}{z}$                                                  |                | θ                           |
| $dx \sin \vartheta \cos \varphi + dy \sin \vartheta \sin \varphi + dz \cos \vartheta$ |                | dr                          |
| $dy\cos\varphi - dx\sin\varphi$                                                       |                | $r\sin\vartheta d\varphi$   |
| $\frac{dx\cos\theta\cos\varphi}{dy\cos\theta\sin\varphi} + \frac{1}{dz\sin\theta}$    |                | $rd\vartheta$               |

# 1.6 Kartesische Koordinaten

Skalarfeld:

$$\phi = \phi(x; y; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$$

Rechtssystem:

$$\vec{e}_x \times \vec{e}_y = \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dx^2 + dy^2 + dz^2}$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[ \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] \vec{e}_x + \left[ \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right] \vec{e}_y + \left[ \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \vec{e}_z$$

Laplace Operator:

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\begin{split} \Delta \vec{E} &= \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e}_x + \Delta E_y \vec{e}_y + \Delta E_z \vec{e}_z \\ &= \left[ \frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e}_x + \left[ \frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e}_y + \left[ \frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e}_z \end{split}$$

# 1.7 Zylinderkoordinaten

Skalarfeld:

$$\phi = \phi(r; \varphi; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r;\varphi;z) = F_r \vec{e}_r + F_\varphi \vec{e}_\varphi + F_z \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dr^2 + r^2 d\varphi^2 + dz^2}$$

Volumenelemente:

$$dv = rdrd\varphi dz$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left( r \cdot \vec{D}_r \right) + \frac{1}{r} \cdot \frac{\partial \vec{D}_{\varphi}}{\partial \varphi} + \frac{\partial \vec{D}_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[ \frac{1}{r} \cdot \frac{\partial E_z}{\partial \varphi} - \frac{\partial E_\varphi}{\partial z} \right] \vec{e_r} + \left[ \frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right] \vec{e_\varphi} + \frac{1}{r} \left[ \frac{\partial}{\partial r} \left( r \cdot E_\varphi \right) - \frac{\partial E_r}{\partial \varphi} \right] \vec{e_z}$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left( r \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2}$$
 
$$\vec{E} = \left[ \Delta E_r - \frac{2}{r^2} \frac{\partial E_{\varphi}}{\partial \varphi} - \frac{E_r}{r^2} \right] \vec{e}_r + \left[ \Delta E_{\varphi} + \frac{2}{r^2} \frac{\partial E_r}{\partial \varphi} - \frac{E_{\varphi}}{r^2} \right] \vec{e}_{\varphi} + [\Delta E_z] \vec{e}_z$$

# 1.8 Kugelkoordinaten

Skalarfeld:

$$\phi = \phi(r; \vartheta; \varphi)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r; \vartheta; \varphi) = F_r \vec{e}_r + F_\vartheta \vec{e}_\vartheta + F_\varphi \vec{e}_\varphi$$

Linienelement:

$$ds = \sqrt{dr^2 + r^2 \sin^2 \vartheta d\varphi^2 + r^2 d\vartheta^2}$$

Volumenelement:

$$dv = r^2 \sin \vartheta dr d\vartheta d\varphi$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial \phi}{\partial \vartheta} \vec{e_\vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial \phi}{\partial \varphi} \vec{e_\varphi}$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r^2} \frac{\partial (r^2 D_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta \cdot D_\vartheta)}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial D_\varphi}{\partial \varphi}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \frac{1}{r \sin \vartheta} \left[ \frac{\partial \left( \sin \vartheta \cdot E_{\varphi} \right)}{\partial \vartheta} - \frac{\partial E_{\vartheta}}{\partial \varphi} \right] \vec{e}_{r} + \frac{1}{r} \left[ \frac{1}{\sin \vartheta} \frac{\partial E_{r}}{\partial \varphi} - \frac{\partial r E_{\varphi}}{\partial r} \right] \vec{e}_{\vartheta} + \frac{1}{r} \left[ \frac{\partial \left( r E_{\vartheta} \right)}{\partial r} - \frac{\partial E_{r}}{\partial \vartheta} \right] \vec{e}_{\varphi}$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left( r^2 \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin \vartheta} \cdot \frac{\partial}{\partial \vartheta} \left( \sin \vartheta \cdot \frac{\partial \phi}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} \right\}$$

Laplace Operator in Kugelkoordinaten, angewandt auf einen Vektor:

$$\begin{split} \Delta \vec{E} &= \left[ \Delta E_r - \frac{2}{r^2} E_r - \frac{2}{r^2 \sin \vartheta} \frac{\partial \left( \sin \vartheta \cdot E_\vartheta \right)}{\partial \vartheta} - \frac{2}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_r \\ &\quad + \left[ \Delta E_\vartheta - \frac{E_\vartheta}{r^2 \sin^2 \vartheta} + \frac{2}{r^2} \frac{\partial E_r}{\partial \vartheta} - \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_\vartheta \\ &\quad + \left[ \Delta E_\varphi - \frac{E_\varphi}{r^2 \sin^2 \vartheta} + \frac{2}{r^2 \sin \vartheta} \frac{\partial E_r}{\partial \varphi} + \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\vartheta}{\partial \varphi} \right] \vec{e}_\varphi \end{split}$$

# 2 Maxwell-Gleichungen

# differentielle Form

# Integralform

$$\operatorname{div} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho$$

Gauß

$$\iint_{\partial V} \mathbf{D} \cdot d\mathbf{a} = \iiint_{V} \rho \cdot dV = Q(V)$$

**Gaußsches Gesetz**: Das elektrische Feld ist ein Quellenfeld. Die Ladung Q bzw. die Ladungsdichte ρ ist Quelle des elektrischen Feldes.

Der (elektrische) Fluss durch die geschlossene Oberfläche ĉV eines Volumens V ist gleich der elektrischen Ladung in seinem Inneren.

$$\operatorname{div} \mathbf{B} = \nabla \cdot \mathbf{B} = 0$$



$$\iint_{\partial V} \mathbf{B} \cdot d\mathbf{a} = 0$$

Das magnetische Feld ist quellenfrei. Es gibt keine magnetischen Monopole.

Der mag. Fluss durch die geschlossene Oberfläche ∂V eines Volumens V entspricht der magnetischen Ladung in seinem Inneren, nämlich Null, da es keine magnetischen Monopole gibt.

$$\mathsf{rot}\,\mathbf{E} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$



$$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = - \iint_A rac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = - rac{d\Phi_{ ext{eing.}}}{dt}$$

Induktionsgesetz: Jede zeitlichen Änderung eines Magnetfeldes bewirkt ein elektrisches Wirbelfeld. Die induzierte Umlaufspannung bzgl. der Randkurve ∂A einer Fläche A ist gleich der negativen zeitlichen Änderung des magnetischen Flusses durch diese Fläche.

$$rot H = \nabla \times H = j + \frac{\partial D}{\partial t}$$



$$\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \iint_{A} \mathbf{j} \cdot d\mathbf{a} + \iint_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{a}$$

Amperesches Gesetz: Jeder Strom und jede zeitlichen Änderung des elektrischen Feldes (Verschiebungsstrom) bewirkt ein magnetisches Wirbelfeld. Die mag. Umlaufspannung bzgl. der Randkurve ∂A der Fläche A entspricht dem von dieser Fläche eingeschlossenen Strom. (inkl. Verschiebungsstrom)

# Amperesches-/Durchflutungsgesetz:

Elek. Strom ist Ursache für ein magn. Wirbelfeld.

$$\oint_{s} \vec{H} \cdot d\vec{s} = \Theta = I = \iint_{A} \vec{J} \cdot d\vec{A} = \frac{d\Phi_{e}}{dt}$$

Ein sich zeitlich änderndes Magnetfeld erzeugt ein elek. Wirbelfeld.

$$\oint_s \vec{E} \cdot d\vec{s} = u_{ind} = -\frac{d}{dt} \iint_A \vec{B} \cdot d\vec{A} = -\frac{d\Phi_m}{dt}$$

$$\boxed{rot\vec{E} = -\frac{\partial\vec{B}}{\partial t} = -\mu \cdot \frac{\partial\vec{H}}{\partial t} = -j\omega\mu\vec{H}}$$

#### Differentielles ohmsches Gesetz:

Bewegte elektrische Ladung erzeugt Magnetfeld Bei isotropen Stoffen sind  $\varepsilon$  u.  $\mu$  Skalare:

$$\boxed{rot\vec{H} = \vec{J} = \kappa \cdot \vec{E}}$$

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r \qquad \mu = \mu_0 \cdot \mu_r$$

# 2.1 Integralsätze

Fundamentalsatz der Analysis

Gauß: Vektorfeld das aus Oberfläche von Volumen strömt muss aus Quelle in Volumen

Stokes: innere Wirbel kompensieren sich  $\rightarrow$  nur den Rand betrachten.

$$\int_{a}^{b} \operatorname{grad} F \cdot d\vec{s} = F(b) - F(a)$$

$$\iiint_{V} \operatorname{div} \vec{A} \cdot dV = \oiint_{\partial V} \vec{A} \cdot d\vec{a}$$

$$\iint_{A} \operatorname{rot} \vec{A} \cdot d\vec{a} = \oint_{\partial A} \vec{A} \cdot d\vec{r}$$

5

# 3 Felder

# Materialgleichungen

$$\boxed{ \vec{J} = \kappa \vec{E} = \left[ \frac{A}{m^2} \right] } \quad \boxed{ \vec{B} = \mu \vec{H} = [T] } \quad \boxed{ \vec{D} = \varepsilon \vec{E} = \left[ \frac{C}{m^2} \right] }$$

Verkopplung von  $\vec{E}$ - und  $\vec{H}$ -Felder über  $\vec{J} = \kappa \vec{E}$ .

# Feldunterscheidung

$$\vec{E}(x,y,z)$$
  $\hat{\equiv}$  statisches Feld  $\vec{E}(x,y,z,t)$   $\hat{\equiv}$  stationäres Feld  $\vec{E}(x,y,z,t)\cdot\cos(\omega t-\beta z)$   $\hat{\equiv}$  Welle

#### 3.1 Elektrostatik

Wirbelfreie Felder  $\to$  Gradientenfeld  $\to$  elek. Ladungen sind Quellen des  $\vec{E}$ -Feldes (Skalare Potenzialfkt.  $\varphi$ )

$$\operatorname{rot} \vec{E} = 0 = \operatorname{rot} \operatorname{grad} E \qquad \vec{E} = -\operatorname{grad} \varphi$$

$$\operatorname{div} \vec{D} = \rho \qquad \vec{D} = \varepsilon \vec{E}$$

$$\vec{E} = -\operatorname{grad} \varphi = -\left(\frac{\partial \varphi}{\partial x}\right) \vec{e}_x - \left(\frac{\partial \varphi}{\partial y}\right) \vec{e}_y - \left(\frac{\partial \varphi}{\partial z}\right) \vec{e}_z$$

#### 3.1.1 Potential-/Poisson-Gleichung

La-P<br/>Lace-Gleichung, wenn  $\varphi = 0$ 

$$\operatorname{div}\operatorname{grad}\varphi = \Delta\varphi = -\frac{\rho}{\varepsilon}$$

$$\Delta\varphi + \underbrace{\frac{\operatorname{grad}\varepsilon \cdot \operatorname{grad}\varphi}{\varepsilon}}_{=0, \text{ wenn homogen}} = -\frac{\rho(x, y, z)}{\varepsilon}$$

$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^2} + \frac{d^2\varphi}{dz^2} = -\frac{\rho(x, y, z)}{\varepsilon}$$

Vereinfachung zu 1-dimensionalem System:

z.B. mit 
$$\frac{\partial^2 \dots}{\partial y^2} = \frac{\partial^2 \dots}{\partial z^2} = 0 \implies \frac{\partial^2 \varphi}{\partial x^2} = -\frac{\varphi}{\varepsilon}$$

# 3.1.2 Randwertprobleme, -bedingungen (RB)

**Dirichlet-RB**: Gesuchte Potenzialfunktion  $\varphi$  nimmt an den Rändern einen bestimmten Wert an (Bsp.:  $\rho_r = 5V$ )

**Neumann-RB**: Die Normalenableitung  $\frac{\partial \varphi}{\partial n}$  der Fkt.  $\varphi$  nimmt an den Rändern einen bestimmten Wert an. (Bsp.: Grenzfläche unterschiedlicher Dielektrika)

#### 3.1.3 Green'sche Funktionen

• Skalarpotential einer Punktladung

$$\varphi(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r} \qquad [V]$$

• E-Feld einer Punktladung

$$\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot \vec{e_r} \qquad \left[\frac{V}{m}\right]$$

• D-Feld einer Punktladung

$$\vec{D}(r) = \frac{Q}{4\pi \cdot r^2} \cdot \vec{e_r} \qquad \left[ \frac{As}{m^2} = \frac{C}{m^2} \right]$$

• Potential feld einer Ladungsdichteverteilung mit  $\varphi(\infty) = 0$ 

$$\varphi(x,y,z) = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho\left(x',y',z'\right)}{|\vec{r}-\vec{r}'|} \mathrm{d}V'$$

mit der Green'schen Funktion  $G(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon|\vec{r}-\vec{r}'|}$ 

$$\varphi(x,y,z) = \iiint_{V'} G\left(\vec{r}'\vec{r}'\right) \rho\left(\vec{r}'\right) dV'$$

# 3.1.4 Elektrischer Dipol

Dipolmoment  $\vec{p} = Q \cdot \vec{d}$ 





$$\varphi = \frac{Q}{4\pi\varepsilon_0} \left( \frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= \frac{Q}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{r^2}$$

$$\vec{E} = -\nabla \varphi$$

$$= \frac{1}{4\pi\varepsilon_0} \cdot \left( \frac{3(\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3} \right)$$

$$\varphi \approx \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2}$$
$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{\vec{p} \cdot \vec{r}}{r^3}$$

# 3.2 Magnetostatik

Quellenfreie Wirbelfelder mit geschlossenen Feldlinien. Keine magnetischen Monopole: div  $\vec{B}=0$ . Skalarpotential  $\varphi_m$  existiert, wenn  $\vec{H}$  wirbelfrei ist: rot  $\vec{H}=0$ , wenn  $\vec{J}=0$ .

#### 3.2.1 Vektorpotential

Reine Hilfsgröße, in Analogie zum elek. Skalarpotential  $\varphi$ . Coulomb-Eichung, wenn div  $\vec{A} = 0$ , gilt nur für zeitunabhängige Felder.

$$\Delta \vec{A} = -\mu \vec{J} \qquad \qquad \vec{B} = \cot \vec{A}$$

# 3.2.2 Vektorpotential in Abhängigkeit von der Stromdichte

$$\vec{A}(x,y,z) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\vec{J}\left(x',y',z'\right)}{|\vec{r}-\vec{r}'|} dV'$$

#### 3.2.3 Biot-Savart-Gesetz

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \operatorname{grad} \frac{1}{|\vec{r} - \vec{r}'|} \times d\vec{s}'$$

mit grad  $\frac{1}{|\vec{r}-\vec{r}'|} = -\frac{\vec{r}-\vec{r}'}{|\vec{r}-\vec{r}'|^3}$ 

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \frac{\mathrm{d}\vec{s}' \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

 $\vec{r}$ : Aufpunkt  $\vec{r}'$ : Quellpunkt

# 3.2.4 Magnetischer Dipol



I entlang eines Leiters:

$$\begin{split} A(r) &= \frac{\mu_0 \cdot I}{4\pi} \int \frac{d\vec{s}}{|\vec{r} - \vec{s}|} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \\ \vec{B} &= \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \left( \frac{3(\vec{m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \end{split}$$

# 3.3 Quasistätionäre Felder (Wechselstrom)

Homogenes, Isotropes Medium:  $\varepsilon, \mu, \kappa = \texttt{kost}$ . Leiter ist quasineutral:  $\rho = 0$ .

$$\begin{split} \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} = -\mu \frac{\partial \vec{H}}{\partial t} & \operatorname{div} \vec{E} = 0 & \vec{D} = \varepsilon \vec{E} \\ \operatorname{rot} \vec{H} &= \vec{J} = \kappa \vec{E} & \operatorname{div} \vec{B} = 0 & \vec{B} = \mu \vec{H} \\ \operatorname{div} \vec{J} &= -\frac{\partial \rho}{\partial t} & \operatorname{div} \vec{H} = 0 & \vec{J} = \kappa \vec{E} \end{split}$$

# 3.3.1 Komplexe Feldgrößen

• komplexe Amplitude / Phasor:

$$J = J \cdot e^{j\varphi}$$

• komplexer Amplituden-Drehzeiger:

$$J(t) = J \cdot e^{jwt} = J \cdot e^{j(wt + \varphi)}$$

• Darstellung in karthesischen Koordinaten:

$$\underline{J} = \underline{J}_x \cdot \vec{e}_x + \underline{J}_y \cdot \vec{e}_y + \underline{J}_z \cdot \vec{e}_z$$

#### 3.3.2 Skineffekt



**Eindringtiefe**/Äquivalente Leiterschichtdicke (Abfall der Amplitude:  $A_0 \cdot \frac{1}{a}$ ):

$$\delta = \frac{1}{\sqrt{\pi \mu \kappa f}} = \sqrt{\frac{2}{\omega \mu \kappa}} \quad [m]$$

(Oberflächen)widerstand:

$$R_{AC} = \frac{l}{\kappa \cdot A_{\tt eff}} \qquad R_{DC} = \frac{l}{\kappa \pi R^2} \qquad R_F = \frac{1}{\kappa \delta}$$

Feldstärke verglichen mit der Oberfläche:

$$H\left(x,t\right) = H_{0} \cdot e^{-x/\delta} \cdot \cos\left(\omega t - \frac{x}{\delta}\right)$$

analog für E-Feld

Amplitude und Phase bezogen auf  $\delta$ :

Amplitude:  $x = \delta \cdot \ln(D"ampfungsfaktor)$ 

$$\text{D"ampfung}: \alpha = \frac{1}{\delta} \qquad \text{Phase}: \varphi = -\frac{x}{\delta}$$

Leistung verglichen mit der Oberfläche:

$$P\left(x,t\right) = \frac{1}{2} \cdot E_0 \cdot e^{-x/\delta} \cdot H_0 \cdot e^{-x/\delta}$$

Rundleiter - Effektive Fläche:

$$A_{\text{eff}} = A_{\text{ges}} - A_{\sigma} = R^{2}\pi - (R - \delta)^{2}\pi$$
$$= 2 \cdot \pi \delta \left(R - \frac{\delta}{2}\right)$$

Wenn die Länge nicht gegeben ist oder nach Wieviel % der Widerstand bei einer bestimmten Frequenz abnimmt, kann dies mit der folgenden Formel berechnet werden:

# 3.3.3 Näherungen für Skineffekt

Rundleiter:  $R_{DC} = \frac{l}{\kappa \pi r_0^2}$ 

Geometrische Beschreibung (Fehler < 6%)

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für } r_0 < \delta \\ 1 + \left(\frac{r_0^2}{2 \cdot \delta \cdot r_0 - \delta^2}\right)^4 & \text{für} r_0 \ge \delta \end{cases}$$

**Bessel**-Funktion (Fehler < 6%):

$$\begin{split} \frac{R_{AC}}{R_{DC}} &= \begin{cases} 1 + \frac{1}{3}x^4 & \text{für} & x < 1 \\ x + \frac{1}{4} + \frac{3}{64x} & \text{für} & x > 1 \end{cases} \\ \frac{X_{AC}}{R_{DC}} &= \begin{cases} x^2 \left(1 - \frac{x^4}{6}\right) & \text{für} & x < 1 \\ x - \frac{3}{64x} + \frac{3}{128x^2} & \text{für} & x > 1 \end{cases} \end{split}$$

$$x = \frac{r_0}{2\delta}$$
  $r_0 = Außenradius$   $X_{AC} = wL_i$ 

**Empirische** Beschreibung (Fehler < 10%)

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für } r_0 < \delta \\ 1 + \left(\frac{r_0}{2,65 \cdot \delta}\right)^4 & \text{für } \delta < r_0 < 2\delta \\ \\ \frac{r_0}{2 \cdot \delta} + \frac{1}{4} & \text{für } 2\delta < r_0 < 5\delta \\ \\ \frac{r_0}{2 \cdot \delta} & \text{für } 5\delta < r_0 \end{cases}$$
(1)

Anmerkung: (1)  $\stackrel{\frown}{=}$  Kreisring mit Näherung (2)  $\stackrel{\frown}{=}$  Ring mittig

# 3.4 E-Felder an Grenzflächen

#### 3.4.1 Dielektrische Grenzfläche

# Querschichtung:

$$D_{1n} = D_{2n}$$
  $\varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$ 

Schwächeres E-Feld bei höherem  $\varepsilon$ .

# Längsschichtung:

$$E_{1t} = E_{2t} \qquad \qquad \frac{D_{1t}}{\varepsilon_1} = \frac{D_{2t}}{\varepsilon_2}$$

Höheres D-Feld (mehr Ladungen) bei höherem  $\varepsilon$ .

#### Schrägschichtung:

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{D_{2n}/\varepsilon_2}{D_{1n}/\varepsilon_1} = \frac{\varepsilon_1}{\varepsilon_2}$$

# 3.4.2 Grenzfläche Dielektrikum-Leiter

Ladungen verschieben sich so lange, bis im Leiter kein Feld mehr herrscht.  $\to E_{2t}, E_{2n}, D_{2t}, D_{2n} = 0$ 

### Längsschichtung:

$$E_{1t} = E_{2t} = 0$$
  $D_{1t} = \varepsilon_1 E_{1t} = 0$ 

Felder stehen stets senkrecht auf elek. Leitern.

### Querschichtung:

$$D_{1n} - D_{2n} = \frac{Q}{A} \qquad D_{1n} = \frac{Q}{A} \qquad E_{1n} = \frac{Q}{\varepsilon_1 A}$$

D-Feld entspricht der Flächenladungsdichte des Leiters.

# 3.4.3 Grenzfläche an magn. Feldern

# Querschichtung:

$$B_{1n} = B_{2n}$$
  $\mu_1 H_{1n} = \mu_2 H_{2n}$ 

Schwächeres H-Feld bei höherem  $\mu$ .

#### Längsschichtung:

$$H_{1t} = H_{2t}$$
  $\frac{B_{1t}}{mu_1} = \frac{B_{2t}}{\mu_2}$ 

Höheres B-Feld (mehr Fluss) bei höherem  $\mu$ .

# Schrägschichtung:

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_1}{\mu_2}$$

#### 4 $\mathbf{Wellen}$

- Ausbreitungsphänomen von E und H
- Ausbreitungsgeschw. kleiner  $c_0$
- raumzeitlicher Vorgang  $cos(\omega t \beta z)$
- Energie- ohne Materietransport
- Poyntingvektor  $\vec{S} = \vec{E} \times \vec{H}$  Einheit[S]=  $\frac{W}{m^2}$ Falls  $\vec{E} \perp \vec{H}$  und  $\vec{S} \perp \vec{E}$  und  $\vec{S} \perp \vec{H}$

# Wellengleichung

<u>Tatsächlicher Zeitverlauf</u>(Realteil von  $\underline{\vec{E}}(z,t)$ )

$$\vec{E}(z,t) = \underbrace{E_0 \cdot e^{-\alpha z}}_{\text{Amplitude}} \cdot \underbrace{e^{-\alpha z}}_{\text{Deit- und Raumabhängigkeit}} \cdot \vec{e}_z$$

Komplexer Amplitudenvektor

$$\boxed{\underline{\vec{E}}(z,t) = E_0 \cdot e^{-\alpha z} \cdot e^{j(\omega t - \beta z)} \cdot \vec{e}_z = E_0 \cdot e^{-\underline{\gamma}z} \cdot e^{j\omega t} \cdot \vec{e}_z}$$

# Fortpflanzungskonstante $\gamma$

$$\underline{\gamma} = \alpha + j\beta$$

 $\alpha$ : Dämpfungskonstante [Np/m]

 $\beta$ : Phasenkonstante [rad/m]

 $v_p$ : Phasengeschwindigkeit [m/s]

 $v_g$ : Gruppengeschwindigkeit  $[\mathrm{m/s}]$ 

 $\lambda$ : Wellen [m]

#### 4.1 Ausbreitung

#### 4.1.1 Allgemein

$$\lambda = \frac{2\pi}{\beta} \qquad E_2 = E_1 e^{-\alpha z}$$

$$v_p = \lambda \cdot f = \frac{\omega}{\beta}$$

$$\alpha = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)}$$

$$\beta = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)}$$

$$\underline{Z}_F = \underline{\frac{E}{H}} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

#### Im leeren Raum(Vakuum) 4.1.2

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0}$$

$$\lambda = \frac{c_0}{f}$$

$$v_p = c_0$$

$$\underline{Z}_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \approx 377\Omega$$

erlustlos: 
$$\sigma = 0$$
, maximale Wirkleistung

Im verlustlosen/idealen Dielektrika

verlustlos:  $\sigma = 0$ , maximale Wirkleistung  $Z_F$  rein reel  $\rightarrow$  ebene Welle

4.1.3

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c_0}{f} \frac{1}{\sqrt{\mu_r \varepsilon_r}}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}}$$

$$\boxed{\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}}}$$

# 4.1.4 Im Dielektrika mit geringem Verlust

geringer Verlust:  $0 < \sigma \ll \omega \varepsilon$ 

$$\alpha \approx \frac{\sigma}{2} \cdot \sqrt{\frac{\mu}{\varepsilon}} = \frac{\sigma}{2} \cdot Z_{F0}$$

$$\beta \approx \omega \sqrt{\mu \varepsilon} \left( 1 + \frac{1}{8} \cdot \frac{\sigma^2}{\omega^2 \varepsilon^2} \right)$$

$$\lambda = \frac{c_0}{f} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left( \frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left( \frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}} \left( 1 - \frac{j\sigma}{\omega \varepsilon} \right)^{-1/2} \approx Z_{F0} \left( 1 + \frac{j\sigma}{2\omega \varepsilon} \right)$$

#### 4.1.5 Im guten Leiter

geringer Verlust:  $\sigma \gg \omega \varepsilon$ 

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta} \sim \sqrt{f}$$
$$\lambda = 2\pi\sqrt{\frac{2}{\omega\mu\sigma}} = 2\pi\delta$$
$$v_p = \frac{2\pi}{\beta} = \omega\delta$$
$$\underline{Z_F} = \sqrt{\frac{j\omega\mu}{\sigma}} \approx \frac{1+j}{\sigma \cdot \delta}$$

# 4.2 Übergang

# 4.2.1 Zwischen Dielektrika mit geringem Verlust



$$\lambda_{1} = \frac{\lambda_{0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad \lambda_{2} = \frac{\lambda_{0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$= \frac{\lambda_{1} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$\beta_{1} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}} \qquad \beta_{2} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r2}\varepsilon_{r2}}$$

$$Z_{F1} = \frac{Z_{F0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad Z_{F2} = \frac{Z_{F0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

# 4.3 Poyntingvektor

gibt Leistungsfluss einer EM-Welle und Richtung der Energieströmung an.

| Zeitbereich                                                                 | Frequenzbereich                                                                                                  |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| $ec{S} = ec{E} 	imes ec{H}$                                                 | $ec{S}=rac{1}{2}(ec{E}	imesec{H}^*)$                                                                            |  |  |  |
| $\vec{S}_{av} = \overline{\vec{S}(t)} = \frac{1}{T} \int_0^T \vec{S}(t) dt$ | $\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^* \right\}$ |  |  |  |
| Leistungsflussdichte $S_{av} =  \vec{S}_{av} $                              |                                                                                                                  |  |  |  |

$$\begin{split} \vec{S} &= \vec{E} \times \vec{H} & \left[ \frac{\mathbf{W}}{\mathbf{m}^2} \right] \\ \vec{S}_{\mathrm{av}} &= \frac{1}{2} \cdot Re\{\vec{E} \times \vec{H}^*\} \\ S_{AV} &= \frac{1}{2} \cdot E \cdot H = \\ &= \frac{1}{2} \cdot \frac{E^2}{Z_{F0}} = \\ &= \frac{1}{2} \cdot H^2 \cdot Z_{F0} \\ &= \frac{P}{A_{\mathtt{Fläche}}} \end{split}$$

# 4.3.1 Leistung

$$P = \iint \vec{S}_{av} d\vec{a}$$
$$= Re \{ \underline{U} \cdot \underline{I}^* \}$$
$$w_e = 1/_2 \cdot \mu \cdot H^2$$
$$w_e = 1/_2 \cdot \varepsilon \cdot E^2$$

# 4.3.2 Leistung nach Dämpfung

$$P_1 = P_0 \cdot e^{-2\alpha z}$$

# 4.3.3 Leistung vom Kabel transportiert

$$P = \frac{\hat{U}^2}{2 \cdot Z_L}$$

# 4.4 dÀlembertsche Gleichung (allg.)

$$\begin{split} \Delta \vec{E} - \kappa \mu \frac{\partial \vec{E}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} - \kappa \mu \frac{\partial \vec{H}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \end{split}$$

Isolator, ideales Dielektrikum, Nichtleiter  $\kappa=0$ 

$$\begin{split} \Delta \vec{E} &= \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} \end{split}$$

sehr gute Leiter

$$\begin{split} \Delta \vec{E} &= \kappa \mu \frac{\partial \vec{E}}{\partial t} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \kappa \mu \frac{\partial \vec{H}}{\partial t} \end{split}$$

# 4.5 Helmholtz-Gleichungen (Frequenzbereich)

$$\Delta \underline{\vec{E}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{E}} = \operatorname{grad} \frac{\rho}{\varepsilon}$$
$$\Delta \underline{\vec{H}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{H}} = 0$$

#### 4.5.1 Zeitbereich

$$\Delta \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$
$$\Delta \vec{H} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$

# 4.5.2 Frequenzbereich (harmonisch)

$$\Delta \underline{\vec{E}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{E}} = 0$$
$$\Delta \vec{H} + \varepsilon \mu \omega^2 \cdot \vec{H} = 0$$

# Zeitabhängigkeit harmonisch:

$$\Delta \vec{H} = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{H}$$
$$\Delta \vec{E}i = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E} + grad\frac{\rho}{\varepsilon}$$

keine Raumladung  $\rho = 0$ 

$$\Delta \vec{E} = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E}$$

Ebene Wellen

$$\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{E}$$
$$\Delta \vec{H} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{H}$$

T.Pham FWL

# 4.6 Wellenzahl

Im Vakuum:  $k_0 = \frac{\omega}{c_0}$ 

$$k = \frac{\omega}{v_p} = \frac{2\pi f}{v_p} = |\vec{k}|$$
$$= \frac{\omega \cdot n}{c_0} = n \cdot k_0 = \sqrt{\mu_r \cdot \varepsilon_r} \cdot k_0 = k_r \cdot k_0$$

# 4.7 Wellenlänge

$$\lambda = \frac{\lambda_0}{\sqrt{\mu_r \cdot \varepsilon_r}} = \frac{2\pi}{k} = \frac{v_p}{f} = [m]$$
$$= \frac{\lambda_0}{n} = \frac{2\pi}{n \cdot k_0}$$
$$\lambda_0 = \frac{c_0}{f} = \frac{2\pi}{k_0}$$

# 4.8 Phasengeschwindigkeit

$$\frac{dz}{dt} = v_p = c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_r \mu_0 \varepsilon_r \varepsilon_0}} \qquad v_{p, \texttt{Medium} \le c_0}$$

# 4.8.1 Gruppengeschwindigkeit

$$v_g = \frac{d\omega}{dk} = \frac{\text{Wegstück der Wellengruppe}}{\text{Laufzeit der Wellengruppe}}$$

$$\begin{split} E_1(z,t) &= E \cos((\omega_0 - \Delta\omega)t - (\beta_0 - \Delta\beta)z) \\ E_2(z,t) &= E \cos((\omega_0 + \Delta\omega)t - (\beta_0 + \Delta\beta)z) \\ \downarrow \\ E(z,t) &= 2E \cdot \underbrace{\cos(\omega_0 t - \beta_0 z)}_{\text{Grundfrequenz }\omega} \cdot \underbrace{\cos(\Delta\omega t - \Delta\beta z)}_{\text{Einhüllende }\Delta\omega} \\ v_p &= \frac{\omega_0}{\beta_0} \\ v_g &= \frac{\Delta\omega}{\Delta\beta} \end{split}$$

# 4.9 Polarisation

| Lineare      | wenn der Endpunkt<br>des E-Vektors eine Li-<br>nie beschreibt | H oder $E$ |
|--------------|---------------------------------------------------------------|------------|
| Elliptische  | Endpunkt des E-<br>Vektors eine Ellipse<br>beschreibt         | $E \neq H$ |
| Kreisförmige | der Endpunkt des E-<br>Vektors einen Kreis be-<br>schreibt    | E = H      |

#### 4.10 Verlustlose Polarisation

$$\begin{split} Z_F &= \sqrt{\frac{\mu}{\varepsilon}} \\ r_s &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_i - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_t}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cos \theta_i} \\ t_s &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i} \\ r_p &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_t - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cos \theta_t} \\ t_p &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i} \\ \end{split}$$

# 4.11 Totalrefexion

$$\sin \theta_g = \frac{n_2}{n_1} = \frac{\sqrt{\varepsilon_{r2}\mu_{r2}}}{\varepsilon_{r1}\mu_{r1}}$$

# 4.12 Grenzwinkel

$$\alpha_g = \sin^{-1}\left(\sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}}\right)$$

# 4.13 Brewster-/Polarisationswinkel, r = 0

- Snelliusche Brechungsgesetz
- Paralleler Reflexionskoeffizient:

$$\frac{\mu_{r1} = \mu_{r2}}{\sin \theta_b} = \sqrt{\frac{\varepsilon_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\mu_1(\varepsilon_1^2 - \varepsilon_2^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}$$

• Senkrechter Reflexionskoeffizient:

$$\varepsilon_{r1} = \varepsilon_{r2}$$

$$\sin \theta_b = \sqrt{\frac{\mu_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\varepsilon_1(\mu_2^2 - \mu_1^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\mu_2}{\mu_1 + \mu_2}}$$

$$\frac{\sin\vartheta_2}{\sin\vartheta_1} = \frac{k_h}{k_g} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

# 4.14 Senkrechter Einfall $\theta_h = 0$



$$E_{t1} = E_{t2}$$
  $H_{t1} = H_{t2}$  
$$t = \frac{2 \cdot Z_{F2}}{Z_{F1} + Z_{F2}} \qquad r = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}}$$

$$0 < t < 2$$
  $0 < |r| < 1$ 

Elektrisches Feld:

$$E_t = t \cdot E_h$$
$$E_r = r \cdot E_h$$

$$E_t = E_h + E_r$$

$$t \cdot E_h = E_h + r \cdot E_h$$

$$t = 1 + r$$

Magnetisches Feld:

$$H_t = t \cdot H_h$$
$$H_r = r \cdot H_h$$

$$\begin{split} H_t &= H_h + H_r \\ \frac{t \cdot E_h}{Z_{F2}} &= \frac{E_h}{Z_{F1}} - \frac{r \cdot E_h}{Z_{F1}} \\ \frac{t}{Z_{F2}} &= \frac{1}{Z_{F1}} - \frac{r}{Z_{F1}} \end{split}$$

# 4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt. $\sigma = 0$

$$\text{reel: } Z_F = \sqrt{\frac{\mu}{\varepsilon}}$$
 
$$\text{imaginär: } \gamma = j\omega\sqrt{\mu\varepsilon}$$

$$r = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}} = \frac{\sqrt{\frac{\mu_2}{\varepsilon_2}} - \sqrt{\frac{\mu_1}{\varepsilon_1}}}{\sqrt{\frac{\mu_2}{\varepsilon_2}} + \sqrt{\frac{\mu_1}{\varepsilon_1}}}$$
$$t = \frac{2Z_{F2}}{Z_{F1} + Z_{F2}} = \frac{2\sqrt{\varepsilon_{r1}\mu_{r2}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

#### 4.14.2 Spezialfall Medium1 ist Luft

$$\mu_{r1} = \varepsilon_{r1} = 1$$

$$r = \frac{\sqrt{\mu_{r2}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\mu_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

# 4.14.3 Spezialfall Medium2 ist Luft

$$\mu_{r2} = \varepsilon_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\mu_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\mu_{r1}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\mu_{r1}} + \sqrt{\varepsilon_{r1}}}$$

# 4.14.4 Spezialfall <u>beideMedien</u> NICHT magnetisch

$$\mu_{r1} = \mu_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

# 4.14.5 Spezialfall <u>Medium2</u> idealer Leiter

$$Z_{F2} = 0$$

$$r = -1$$

$$t = 0$$

$$\overline{S} = 0$$

$$E_1 = -2j \cdot E_h \cdot \sin(\beta_1 z)$$

$$H_1 = 2 \cdot H_h \cdot \cos(\beta_1 z)$$

### StehendeWelle

 $\rightarrow H_{max}$  und  $E_{min}$  bei  $n \cdot \lambda/2$   $\rightarrow H_{min}$  und  $E_{max}$  bei  $(2n-1) \cdot \lambda/4$  $\rightarrow 90^{\circ} Phasenverschiebung$ 

# 4.15 Stehwellenverhältnis

SWR = 
$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{H_{\text{max}}}{H_{\text{min}}} = \frac{E_h + E_r}{E_h - E_r} = \frac{1 + |r|}{1 - |r|}$$
  $1 < s < \infty$ 

# 4.16 Senkrechte (E-Feld) Polarisation (H- 4.17 Parallel (E-Feld) Polarisation (H-Feld Feld parallel) senkrecht)



mit 
$$Z_{F0}=120\pi pprox 377\Omega$$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$
$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: \mathtt{Brechungsindex} \;\; ; \;\;\; heta_h = heta_r$ 

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{s} = r_{es} = r_{ms} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{h} - Z_{F1} \cdot \cos \theta_{t}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= \frac{\cos \theta_{h} - \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}{\cos \theta_{h} + \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}$$

$$t_{ms} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= (1 - r_{s}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F1}}{Z_{F2}} \cdot t_{es}$$

$$t_{es} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= 1 + r_{s}$$

$$E_r = r_s \cdot E_h$$

$$E_t = t_{es} \cdot E_h$$

$$H_r = r_s \cdot H_h$$

$$H_t = t_{ms} \cdot H_h$$

$$E_t = H_t \cdot Z_{F2}$$

$$E_h = H_h \cdot Z_{F1}$$



mit 
$$Z_{F0}=120\pi\approx 377\Omega$$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$
$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: \mathtt{Brechungsindex} \ ; \ \theta_h = \theta_r$ 

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{p} = r_{ep} = r_{mp} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{t} - Z_{F1} \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{t} + Z_{F1} \cdot \cos \theta_{h}} =$$

$$= \frac{\varepsilon_{r2} \cos \theta_{h} - \sqrt{\varepsilon_{r2}\varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}{\varepsilon_{r2} \cos \theta_{h} + \sqrt{\varepsilon_{r2}\varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}$$

$$t_{mp} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= 1 + r_{p}$$

$$t_{ep} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= (1 - r_{p}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp}$$

$$E_r = r_p \cdot E_h$$

$$E_t = t_{ep} \cdot E_h$$

$$H_r = r_p \cdot H_h$$

$$H_t = t_{mp} \cdot H_h$$

$$E_t = H_t \cdot Z_{F2}$$

$$E_h = H_h \cdot Z_{F1}$$

# 5 Leitungen

# 5.1 Allgemeine Leitung (mit Verlusten)



Eingang:  $\underline{Z}_e$  Anfang:  $\underline{Z}(l) = \underline{Z}_1$  Abschluss:  $\underline{Z}_2 = \underline{Z}_{(l=0)}$  Referenzpunkt **Last** (l=0):

$$\underline{U}(l) = \underline{U}_h \cdot e^{\underline{\gamma}l} + \underline{U}_r \cdot e^{-\underline{\gamma}l}$$

$$\underline{I}(l) = \underline{I}_h \cdot e^{\underline{\gamma}l} + \underline{I}_r \cdot e^{-\underline{\gamma}l}$$

# 5.1.1 Gleichungen

$$\begin{split} \underline{U}(l) &= \underline{U}_2 \cdot \cosh(\underline{\gamma}l) + Z_L \underline{I}_2 \cdot \sinh(\underline{\gamma}l) \\ &= \underline{U}_2 \cdot \left[ \cosh(\underline{\gamma}l) + \frac{\underline{Z}_L}{\underline{Z}_2} \sinh(\underline{\gamma}l) \right] \\ \underline{I}(l) &= \underline{I}_2 \cdot \cosh(\underline{\gamma}l) + \frac{\underline{U}_2}{Z_L} \cdot \sinh(\underline{\gamma}l) \\ &= \underline{I}_2 \cdot \left[ \cosh(\underline{\gamma}l) + \frac{\underline{Z}_2}{\underline{Z}_L} \sinh(\underline{\gamma}l) \right] \\ \underline{Z}(l) &= \frac{\underline{Z}_2 + \underline{Z}_L \tanh(\underline{\gamma}l)}{1 + \frac{\underline{Z}_2}{Z_L} \tanh(\underline{\gamma}l)} = \underline{Z}_L \frac{\underline{Z}_2 + \underline{Z}_L \tanh(\underline{\gamma}l)}{\underline{Z}_L + \underline{Z}_2 \tanh(\underline{\gamma}l)} \end{split}$$

komplexer  $\gamma$  nicht im TR berechenbar:

Lösung:  $\alpha l \left[ \frac{\text{Np}}{\text{m}} \right]$  und  $\beta l \left[ \frac{\text{rad}}{\text{m}} \right]$  einzeln berechnen, dann:

$$\cosh(\underline{\gamma}l) = \frac{1}{2} \left[ e^{\alpha l} \cdot e^{j\beta l} + e^{-\alpha l} \cdot e^{-j\beta l} \right]$$
$$\sinh(\underline{\gamma}l) = \frac{1}{2} \left[ e^{\alpha l} \cdot e^{j\beta l} - e^{-\alpha l} \cdot e^{-j\beta l} \right]$$
$$\tanh(\underline{\gamma}l) = 1 + \frac{2}{e^{\alpha l} \cdot e^{j\beta l} - 1}$$

 $e^{\pm \alpha l}$ : Dämpfung  $e^{\pm j\beta l}$ : Phase ( $\angle$  im TR) Für Winkel  $\alpha l$  bzw.  $\beta l$  auf **RAD** in TR!

#### 5.1.2 Kenngrößen

• Leitungswellenwiderstand:

$$\underline{Z}_L = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \frac{\underline{U}_h}{\underline{I}_h} = -\frac{\underline{U}_r}{\underline{I}_r}$$

komplexer  $\underline{Z}_L$  nicht in TR berechenbar: **Betrag**: erst  $\underline{Z}_L^2$ , dann  $\sqrt{|Z_L^2|}$  ermitteln. **Phase**:  $0.5 \cdot \arg(\underline{Z}_L^2) \rightarrow \underline{\gamma}$  analog vorgehen.

• Fortpflanzungskonstante:

$$\underline{\gamma} = \sqrt{(R + j\omega L) \cdot (G + j\omega C)} = \alpha + j\beta \left[\frac{1}{m}\right]$$
$$= j\omega\sqrt{LC} \cdot \sqrt{\frac{RG}{j^2\omega^2LC} + \frac{G}{j\omega C} + \frac{R}{j\omega L} + 1}$$

• Reflexionsfaktor:  $r(l) = r_1$ : Leitungs an fang  $\underline{r}(l) = \underline{r}_2 \cdot e^{-2\underline{\gamma}l} = \underline{r}_2 \cdot e^{-2\alpha l} \cdot e^{-2j\beta l}$   $= \underline{\underline{U}_r(l)}_{\underline{U}_h(l)} = -\underline{\underline{I}_r(l)}_{\underline{I}_h(l)} = \underline{\underline{Z}(l) - \underline{Z}_L}_{\underline{Z}(l) + \underline{Z}_L} = \underline{\underline{Z}(l)}_{\underline{Z}(l) + 1}^{\underline{Z}(l)}$ 

• weitere Parameter: meistens  $\mu_r = 1$ 

$$\lambda_0 = \frac{c_0}{f} \qquad \lambda = \frac{2\pi}{\beta} = \frac{c_0}{f\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}}$$

$$l_{\text{elek.}} = \beta \cdot l \qquad v_p = \frac{\omega}{\beta} = \frac{c_0}{\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}}$$

# 5.1.3 Kurzschluss und Leerlauf

Eingangswiderstand  $\underline{Z}_e$  am Leitungsende:

mit Kurzschluss 
$$\underline{Z}_{e, \text{kurz}} = \underline{Z}_L \cdot \tanh \left( \underline{\gamma} l \right)$$
 im Leerlauf 
$$\underline{Z}_{e, \text{leer}} = \frac{\underline{Z}_L}{\tanh \left( \underline{\gamma} l \right)}$$
 beliebige Länge 
$$\underline{Z}_L = \sqrt{\underline{Z}_{e, \text{kurz}}(l) \cdot \underline{Z}_{e, \text{leer}}(l)}$$

# 5.1.4 Lange und Kurze Leitung

• kurze Leitung  $\rightarrow l \ll \frac{\lambda}{4} \quad |\underline{\gamma} l| \ll 1$   $\underline{U}(l) \approx \underline{U}_2 + \underline{I}_2 \cdot l(R' + jwL')$   $\underline{I}(l) \approx \underline{I}_2 + \underline{U}_2 \cdot l(G' + jwC')$ 

Leitung wird durch konzentrierte Elemente ersetzt.

• lange Leitung  $\rightarrow l \gg \frac{\lambda}{4} \quad |\underline{\gamma} l| \gg 1$ Abschluss egal, es wird nur  $\underline{Z}_L = \underline{Z}(l)$  gemessen wird.

# 5.2 Verlustlose Leitung

# 5.2.1 Kenngrößen

$$R', G' = 0 \to \alpha = 0 \qquad Z_L, v_p \neq f$$
 
$$Z_L = \sqrt{\frac{L}{C}} \to \text{rein reell!}$$
 
$$\underline{\gamma} = j\beta = j\omega\sqrt{LC} \qquad \beta = \omega \cdot \sqrt{LC}$$
 
$$v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{\sqrt{\mu_r\varepsilon_r}} = \frac{1}{\sqrt{LC}}$$
 
$$\lambda = \frac{2\pi}{\beta} = \frac{v_p}{f} = \frac{c_0}{f\sqrt{\mu_r\varepsilon_r}} = \frac{1}{f\sqrt{LC}}$$

#### 5.2.2 verlustloser Reflexionsfaktor

$$\begin{split} \underline{r}_{(l=0)} &= \underline{r}_2 \qquad 0 < r < 1 \qquad 0 < \Psi < 2\pi \\ \underline{r}_{(l)} &= \underline{r}_2 \cdot e^{-j2\beta l} = r \cdot e^{-j(\Psi_0 + 2\beta l)} = r \cdot e^{j\Psi} \\ &= \frac{\underline{Z}(l) - Z_L}{\underline{Z}(l) + Z_L} \\ \underline{r}_2 &= \frac{\underline{Z}_2 - Z_L}{\underline{Z}_2 + Z_L} = \frac{\underline{U}_2 - \underline{I}_2 Z_L}{\underline{U}_2 + \underline{I}_2 Z_L} \\ \underline{\underline{Z}(l)} &= \frac{1 + \underline{r}_L(l)}{1 - r(l)} \end{split}$$

## 5.2.3 Beliebiger Abschluss (Last)

$$\begin{split} \underline{U}_2 &= \underline{U}_{(l=0)} = \underline{U}_h + \underline{U}_r \qquad \underline{I}_2 = \underline{I}_{(l=0)} = \underline{I}_h + \underline{I}_r \\ \underline{Z}(l) &= \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{1 + j\frac{\underline{Z}_2}{Z_L} \tan(\beta l)} = Z_L \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{Z_L + j\underline{Z}_2 \tan(\beta l)} \\ \underline{U}(l) &= \underline{U}_2 \cdot \left[ \cos(\beta l) + j\frac{Z_L}{\underline{Z}_2} \sin(\beta l) \right] \\ \underline{I}(l) &= \underline{I}_2 \cdot \left[ \cos(\beta l) + j\frac{\underline{Z}_2}{Z_L} \sin(\beta l) \right] \end{split}$$

# 5.2.4 Kurzschluss an Leitungsende

$$\begin{split} \underline{Z}_2 &= 0 \qquad \underline{U}_2 = \underline{U}_{(l=0)} = 0 \to \underline{U}_h = -\underline{U}_r \qquad \underline{I}_h = \underline{I}_r \\ \underline{Z}(l) &= \frac{\underline{U}(l)}{\underline{I}(l)} = Z_L \cdot j \tan(\beta l) \qquad \to \text{rein imaginär!} \\ \underline{U}(l) &= \underline{U}_h \cdot 2j \sin(\beta l) = \underline{I}_2 Z_L \cdot j \sin(\beta l) \\ I(l) &= \underline{I}_h \cdot 2\cos(\beta l) = \underline{I}_2 \cdot \cos(\beta l) \qquad \underline{I}_2 = \frac{2\underline{U}_h}{Z_L} \end{split}$$

Bildung einer Stehen

#### 5.2.5 Leerlauf an Leitungsende

$$\begin{split} \underline{Z}_2 &= \infty \qquad \underline{I}_2 = \underline{I}_{(l=0)} = 0 \to \underline{I}_h = -\underline{I}_r \qquad \underline{U}_h = \underline{U}_r \\ \underline{Z}(l) &= \frac{\underline{U}(l)}{\underline{I}(l)} = -j \, \frac{Z_L}{\tan(\beta l)} \qquad \to \text{rein imaginär!} \\ \underline{U}(l) &= \underline{U}_h \cdot 2\cos(\beta l) = \underline{U}_2 \cdot \cos(\beta l) \qquad \underline{U}_2 = 2\underline{U}_h \\ \underline{I}(l) &= \underline{I}_h \cdot 2j \sin(\beta l) = \frac{\underline{U}_2}{Z_L} \cdot j \sin(\beta l) \end{split}$$

# 5.2.6 Leitung als Impedanz-Transformator

 $\lambda/4$  -Leitung mit Eingangswiderstand  $\underline{Z}_e = \underline{Z}(l)$  aus 5.2.3:

$$\frac{\underline{Z}_e}{Z_L} = \frac{Z_L}{\underline{Z}_2} = \frac{\underline{Y}_2}{Y_L} \to Z_e = \frac{Z_L^2}{\underline{Z}_2}$$

Eine  $\lambda/4$  -Leitung transformiert: L  $\leftrightarrow$  C, Kurzschluss  $\leftrightarrow$  Leerlauf, **großes** R  $\leftrightarrow$  **kleines** R

# 5.2.7 Vorgehen Eingangswiderstand

Wenn mit Smithdiagramm gearbeitet wird liefert dieses Schritte 3 und 4  $\,$ 

1. Lastimpedanz

$$\underline{Z}_A = \frac{1}{\frac{1}{R_A} + j\omega C_A}$$

2. Reflexion am Leitungsende

$$\underline{r}_A = \underline{r}(z=0) = \frac{Z_A - \underline{Z}_L}{Z_A + \underline{Z}_L}$$

3. Reflexion am Leitungsanfang

$$\underline{r}_E = \underline{r}(z = d) = \underline{r}_A \cdot e^{-j2\beta d}$$

4. Bestimmung der Impedanz

$$\underline{Z}_E = \underline{Z}_L \cdot \frac{1 + \underline{r}_E}{1 - \underline{r}_E}$$

5. Eingangswiderstand

$$\underline{Z}_E = \frac{1}{\frac{1}{\underline{Z}_E} + j\omega C_E}$$

#### 5.2.8 Stehwellenverhältnis

siehe auch Kap. 6.1

$$SWR = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(l)|}{1 - |r(l)|} = \frac{|U_h| + |U_r|}{|U_h| - |U_r|}$$

$$= \frac{R_{max}}{Z_L}$$

$$SWR^{-1} = \frac{R_{min}}{Z_L} \qquad |r_A| = \frac{SWR + 1}{SWR - 1}$$

### 5.2.9 Leistung

$$\begin{split} P_A &= P_H - P_R \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} - \frac{1}{2} \cdot \frac{\hat{U}_r^2}{Re\{Z_L\}} \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} \cdot (1 - r^2) \\ &= P_{\text{max}} \cdot (1 - r^2) \\ &= \underline{U}_A \cdot \underline{I}_A^* \\ P_V &= P_q - P_A \\ \underline{I}(z) &= \hat{I} \cdot e^{-\alpha z} \angle \beta z \end{split}$$

# 5.2.10 Gleichspannungswert (=Endwert)

$$U_A = U_q \cdot \frac{R_A}{R_i + R_A}$$

# 5.2.11 Position von Extrema

$$\boxed{r_A = |r_A| \cdot e^{-j\theta_r}} \to \theta_r \text{ in rad}$$
 
$$f_{\texttt{min}} \to \text{Minimum(Knoten) der Spannungen}$$
 
$$f_{\texttt{max}} \to \text{Maximum(B\"{a}uche) der Spannungen}$$

$$\begin{split} \lambda_{\min/\max} &= \frac{c_0}{f_{\min/\max}\sqrt{\mu_{r1}\varepsilon_{r1}}} \\ z_{\min} &= \frac{-n \cdot \lambda_{\min}}{2} \longrightarrow n = -\frac{2z}{\lambda_{\min}} \\ z_{\max} &= \frac{-(2n+1)\lambda_{\max}}{4} \longrightarrow n = -\frac{4z + \lambda_{\max}}{2 \cdot \lambda_{\max}} \\ z &= \frac{\lambda_{\min} \cdot \lambda_{\max}}{4(\lambda_{\min} - \lambda_{\max})} \end{split}$$

# 5.2.12 Spezialfall: Angepasste Leitung

$$Z_A = Z_L = Z(z)$$
 $r_A = 0 o \text{reflexionsfrei}$ 
 $\text{SWR} = 1$ 
 $U(z) = U_h \cdot e^{j\beta z}$ 
 $I(z) = I_h \cdot e^{j\beta z}$ 
 $= \frac{U_h}{Z_L} \cdot e^{j\beta z}$ 

FWL T.Pham

#### 5.2.13 Spezialfall: Ohm'sch abgeschlossene Lei- 5.4 Kettenmatrix einer Leitung

$$r_A = \mathtt{reell}$$
 
$$A = \begin{bmatrix} \cosh(\gamma l) & Z_L \sinh(\gamma l) \\ \frac{1}{Z_L} \sinh(\gamma l) & \cosh(\gamma l) \end{bmatrix}$$

$$R_A>Z_L o heta_r=0 o r_A$$
 ist negativ 
$$o z_{\max}=rac{\lambda}{2}\cdot n$$

$$\begin{split} \underline{R_A < Z_L} &\rightarrow \theta_r = \pi \\ &\rightarrow z_{\min} = \frac{\lambda}{2} \cdot n \end{split}$$

#### Mehrfachreflexionen bei fehlender An-5.3 passung



$$u_{1r} = r_A \cdot u_{1h}$$

$$u_{2h} = r_I \cdot u_{1r} = r_I \cdot r_A \cdot u_{1h}$$

$$u_{2r} = r_A \cdot u_{2h} = r_I \cdot r_A^2 \cdot u_{1h}$$

$$u_{3h} = r_I \cdot u_{2r} = r_I^2 \cdot r_A^2 \cdot u_{1h}$$



Reflexionsfaktor Leitungsanfang:

Reflexionsfaktor Leitungsende:

 $\underline{r}_I = \frac{R_I - Z_L}{R_I + Z_L}$   $\underline{r}_A = \frac{R_A - Z_L}{R_A + Z_L}$   $u_{1h} = \hat{u}_G \cdot \frac{Z_L}{Z_L + R_I}$ Hinlaufende Welle

 $t_d = \frac{l}{c_0} \cdot \sqrt{\mu_r \varepsilon_r}$ Signallaufzeit:

# 6 Smith-Diagramm

# 6.1 Allgemein

# 6.1.1 Normierte Impedanz

$$\underline{z}_n = \frac{Z(l)}{Z_L} = \frac{Z_2 + jZ_L \cdot \tan(\beta l)}{Z_L + jZ_2 \cdot \tan(\beta l)}$$

# 6.1.2 Reflexionsfaktor

 $\underline{r}(l)=\underline{r}$   $\underline{r}_{(l=0)}=\underline{r}_2$  0 < r<1 0 <  $\Psi<2\pi$  Immer gültig, auch ohne Quelle!

$$\begin{split} \underline{r} &= \underline{r}_2 \cdot e^{-j2\beta l} = r \cdot e^{-j(\Psi_0 + 2\beta l)} = r \cdot e^{j\Psi} \\ &= \frac{\underline{z}_n - 1}{\underline{z}_n + 1} \\ \underline{r}_2 &= \frac{\underline{Z}_2 - Z_L}{\underline{Z}_2 + Z_L} = \frac{\underline{U}_2 - \underline{I}_2 Z_L}{\underline{U}_2 + \underline{I}_2 Z_L} \\ \underline{z}_n &= \frac{1 + \underline{r}}{1 - r} \end{split}$$

### 6.1.3 Anpassungsfaktor

Werte von  $m \to \text{Werte von Re}\{\underline{z}_n\} : 0 \le m \le 1$ 

$$m = \frac{U_{min}}{U_{max}} = \frac{I_{min}}{I_{max}} = \frac{1-|\underline{r}|}{1+|\underline{r}|} \qquad |\underline{r}| = \frac{1-m}{1+m} \qquad s = \frac{1}{m}$$



$$\begin{split} \underline{z}_n &= \frac{\underline{Z}_n}{Z_L} \\ \underline{r}_n &= \frac{\underline{Z}_n - Z_L}{\underline{Z}_n + Z_L} = \frac{\underline{z}_n - 1}{\underline{z}_n + 1} = \frac{1 - \underline{y}_n}{1 + \underline{y}_n} \\ m &= \frac{1 - |\underline{r}|}{1 + |\underline{r}|} \\ s &= \frac{1}{m} \end{split}$$

# 6.2 Impedanz/Admetanz umrechnen

Spiegelung von  $\underline{z}_n$ um Mittelpunkt ergibt  $\underline{y}_n.$  (Phase  $\pm 180^\circ/\pm \pi)$ 

# 6.3 Lastseite $\rightarrow$ Quelle

- 1.  $Z_L = Z_B$  ins Diagramm einzeichnen
- 2. Last impedanz bestimmen, wenn z.B. Parallelschaltung etc.
- 3. Normieren

$$\underline{z}_n = \frac{\underline{Z}(l)}{Z_L}$$

- 4. Ims Chart eintragen
- 5. Linie vom Mittelpunkt durch  $\underline{z}_n s$  nach außen Ablesen und Notieren:
  - $\rightarrow$  Relative Länge  $\left[\frac{l}{\lambda}\right]$
  - $\rightarrow$  Relativer Winkel in **Degree**
- 6. Kreis einzeichen

Ablesen und Notieren:

- $\rightarrow$  Maxima: rechter Schnittpunkt mit Re-Achse
- $\rightarrow$  Minima: linker Schnittpunkt mit Re-Achse
- $\rightarrow r$  abmessen und aus oberer Skala auslesen
- 7. Um Leitungslänge im UZS laufen  $\rightarrow$  Linie vom Mittelpunkt durch neuen Punkt nach außen

Ablesen und Notieren:

- →Relativer Winkel
- 8. Wenn  $\alpha \neq 0$ 
  - $\rightarrow$  Dämpung ausrechen  $\rightarrow$  Um Faktor nach innen Spiralieren

 $\underline{Z}_E = \underline{z}_e \cdot Z_L$ 

- 9. Dieser Punkt ist  $\underline{z}_e$
- 10. Eingangsimpedanz ablesen

$$L_s$$
z Serienschaltung
 $R_s$ 
 $C_s$ 
 $R_p$ 
 $C_p$ 
Parallelschaltung

# 7 Wellenleiter

# 7.1 Koaxial Leiter

#### 7.1.1 Wellenwiderstand



D = Außendurchmesserd = Innendurchmesser

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln \frac{D}{d}$$

# 7.1.2 Dämpfung

Ohm'sche Verluste  $R \ll \omega L$ 

$$\alpha_0 = \frac{\sqrt{\frac{f \cdot \mu}{\pi \cdot \sigma}}}{120\Omega} \cdot \frac{\sqrt{\varepsilon_r}}{D} \cdot \frac{1 + \frac{D}{d}}{\ln \frac{D}{d}}$$

<u>Dielektrische Verluste</u>  $G \ll \omega C, \tan \delta = (G/\omega C)$ 

$$\alpha_d = \pi \sqrt{\varepsilon_r} \cdot \tan \delta \cdot \frac{f}{c_0} \sim f$$

# 7.2 Mikrostreifenleiter



w := Leiterbahnbreite h := Substratbreite

#### 7.2.1 Effektive Permittivitätszahl

Unterschiedliche Phasengeschwindigkeit  $\rightarrow$  Dispersion

$$\varepsilon_{r, \text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 10 \cdot \frac{\mathbf{h}}{\mathbf{w}}}}$$

Je größer  $\frac{\mathbf{w}}{\mathbf{h}}$  desto mehr nähert sich  $\varepsilon_{r,\mathtt{eff}}$  an  $\varepsilon_r$  und

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{r, \text{eff}} \cdot \mu_{r, \text{eff}}}}$$

# 7.2.2 Schmale Streifen (ca $20-200\Omega$ )

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_{r,eff}}} \cdot \ln\left(\frac{8h}{w} + \frac{w}{4h}\right)$$

# 7.2.3 Breite Streifen (ca 20-200 $\Omega$ )

$$Z_L = \frac{120\pi\Omega}{\sqrt{\varepsilon_{r, \text{eff}}}} \cdot \frac{1}{\frac{\text{w}}{\text{h}} + 2,42 - 0,44 \cdot \frac{\text{h}}{\text{w}} + \left(1 - \frac{\text{h}}{\text{w}}\right)^6}$$

# 7.3 Hohlleiter

$$f_c = \frac{c_0}{2a}$$

# 7.4 VSWR (Voltage Standing Wave Ratio) und Return Loss

**VSWR** 

$$s = VSWR = \frac{1 + |r|}{1 - |r|} \ge 1$$
 $|r| = \frac{s - 1}{s + 1}$ 

Return Loss

$$\alpha_r = -20\log(r)dB$$

Missmatch Loss

$$ML = -10\log(1 - r^2)dB$$

#### 7.5 Lichtwellenleiter oder Glasfaser

APF := All Plastic Fiber

POF := Polymerfaser

LWL := Lichtwellenleiter

 $B \cdot l :=$  Bandbreitenlängenprodukt

# Dispersion:

Die von der Frequenz des Lichts abhängende Ausbreitungsgeschwindigkeit des Lichts in Medien. Dies hat zur Folge, dass Licht an Übergangsflächen unterschiedlich stark gebrochen wird. Somit verflacht sich beispielsweise ein (Dirac-)Impuls zu einer Gauß'schen Glocke.

### Stufenprofil:

Multimode: leichtes Einkoppeln, geringes  $B \cdot l$ wegen Modendispersion

Single/Monomode: schwieriges Einkoppeln, großes  $B \cdot l,$ keine Modendispersion

#### Gradientenprofil:

Multimode: Kompromiss beim Einkoppeln und Reichweite mit  $B \cdot l$ 

# Bandbreitenlängenprodukt:

$$B' = B \cdot l[\frac{MHz}{km}] = \text{konstant}$$

$$B \sim \frac{1}{l}$$
 und  $l \sim \frac{1}{R}$ 

Bandbreite ist gegen Übertragungslänge austauschbar, solange Dämpfung keine Rolle spielt.

# 7.6 Leitungsparameter

 $\sigma =$  Leitwert des Dielektr.  $\sigma_c =$  Leitwert des Leiters

# Parallele Platten

w = Platten Breited = Abstand zw. Platten

Für Sinus-Anregung:

$$\begin{split} I &= \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta z \cdot e^{j\omega t}} \\ U &= \int \vec{E} d\vec{s} \overset{w \gg d}{=} E \cdot d \to E = \frac{U_0}{d} \cdot ^{-j\beta z} \cdot \vec{e}_x \\ I &= \oint \vec{H} d\vec{s} = H \cdot w \to H = \frac{I_0}{w} \cdot ^{-j\beta z} \cdot \vec{e}_y \end{split}$$



| $R = \frac{2}{w\delta\sigma}$ |
|-------------------------------|
| $L = \frac{\mu d}{w}$         |
| $G = \frac{\sigma w}{d}$      |
| $C = \frac{w\varepsilon}{d}$  |



# 7.6.2 Doppelleitung:

a =Leiter Radius d =Abstand zw. den Leitern

cosh am TR: MENU  $\rightarrow$  1; OPTN  $\rightarrow$  1  $\rightarrow$  5



|   | $R = \frac{1}{\pi a \delta \sigma_c}$          |  |  |  |  |  |
|---|------------------------------------------------|--|--|--|--|--|
| , | $L = \frac{\mu}{\pi} \cosh^{-1} \frac{d}{2a}$  |  |  |  |  |  |
|   | $G = \frac{\pi \sigma}{\cosh^{-1}(d/2a)}$      |  |  |  |  |  |
|   | $C = \frac{\pi \varepsilon}{\cosh^{-1}(d/2a)}$ |  |  |  |  |  |

# 7.6.3 Koaxial Leitung

a = innen Radiusb = außen Radius

$$\vec{H}(r,z) = \frac{\hat{I}}{2\pi r} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi}$$

$$\vec{E}(r,z) = \frac{\hat{I}}{2\pi r} \cdot Z_{F0} \cdot e^{-j\beta z} \cdot \vec{e}_{r} = \frac{\hat{U}}{r \cdot \ln{(b/a)}} \cdot e^{-j\beta z} \cdot \vec{e}_{r}$$

$$\vec{S}_{zeit.Mittel} = \frac{1}{2} \cdot \left[\frac{\hat{I}}{2\pi r}\right]^{2} \cdot Z_{F0} \cdot \vec{e}_{z}$$



| $R = \frac{1}{2\pi\delta\sigma_c} \left[ \frac{1}{a} + \frac{1}{b} \right]$ |
|-----------------------------------------------------------------------------|
| $L = \frac{\mu}{2\pi} \ln \frac{b}{a}$                                      |
| $G = \frac{2\pi\sigma}{\ln(b/a)}$                                           |
| $C = \frac{2\pi\varepsilon}{\ln(^b/_a)}$                                    |

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

$$LC = \mu \varepsilon$$
 und  $\frac{G}{C} = \frac{\sigma}{\varepsilon}$ 

Innere Induktivität:

$$L_i = \frac{R}{w}$$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

# 8 Antennen

# 8.1 Herz'scher Dipol

$$\vec{p} = Q \cdot \vec{d}$$

# 8.1.1 Allgemein

$$\begin{split} \vec{H} &= -\frac{I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left( \frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_{\phi} \\ \vec{E} &= -\frac{Z_F I_0 \Delta l' \beta^2}{2\pi} e^{-j\beta R} \cdot \cos \theta \left( \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{R} \\ &= -\frac{Z_F I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left( \frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{\theta} \end{split}$$

# 8.1.2 Nahfeld(Fresnel-Zone):

$$\frac{\lambda}{2\pi R} \gg 1$$
 oder  $\beta R \ll 1$ 

Überwiegend **Blindleistungsfeld**, da E zu H 90° phasenverschoben

$$|\vec{H} \approx \frac{I_0 \Delta l'}{4\pi R^2} \cdot \sin \theta \cdot \vec{e}_{\phi}$$

$$|\vec{E} \approx \frac{I_0 \Delta l'}{2\pi j \omega \varepsilon R^3} \cos \theta \cdot \vec{e}_R$$

$$+ \frac{I_0 \Delta l'}{4\pi j \omega \varepsilon R^3} \sin \theta \cdot \vec{e}_{\theta}$$

# 8.1.3 Fernfeld(Fraunhofer-Zone):

$$\frac{\lambda}{2\pi R} \ll 1$$
 oder  $\beta R \gg 1$ 

Überwiegend **Wirkleistungsfeld**,  $\vec{S}$  nach außen somit Kugelwelle

mit  $\eta = Z_{F0}$ 

$$H \approx j \frac{\beta I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\phi}$$
$$E \approx j \frac{\beta Z_F I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\theta}$$

#### 8.1.4 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\mathrm{rad}} &= \frac{Z_{F0} I_0^2 \beta^2 (\Delta l')^2}{12\pi} \\ &= \frac{I_0^2 Z_F \pi}{3} \cdot \frac{\Delta l'^2}{\lambda^2} \\ &= 40 \pi^2 \Omega \cdot \left(\frac{I_0 \Delta l'}{\lambda}\right)^2 \\ S_{av} &= \frac{Z_F I_0^2 \beta^2 (\Delta l')^2}{32 \pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

# 8.1.5 Strahlungswiderstand

$$R_S = \frac{2}{3}\pi Z_F \left(\frac{\Delta l'}{\lambda}\right)^2 = 80\pi^2 \Omega \left(\frac{\Delta l'}{\lambda}\right)^2$$

## 8.1.6 Verlustwiderstand

$$R_v = \frac{l}{\sigma \cdot A_\delta}$$

# 8.2 Magnetischer Dipol

$$\vec{m} = \vec{I}\pi\vec{a}^2\vec{e}_z \quad \boxed{m = I \cdot A}$$



$$\vec{A} = \frac{\mu m}{4\pi R^2} (1 + j\beta R) e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi}$$
$$\Delta l \to \beta \pi \ a^2$$

$$\vec{H} = -\frac{j\omega\mu\beta^2 m}{2\pi Z_{F0}} e^{-j\beta R} \cdot \cos\theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3}\right) \vec{e}_R$$

$$= -\frac{j\omega\mu\beta^2 m}{4\pi Z_{F0}} e^{-j\beta R} \cdot \sin\theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3}\right) \vec{e}_\theta$$

$$\vec{E} = \frac{j\omega\mu\beta^2 m}{4\pi} e^{-j\beta R} \sin\theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2}\right) \vec{e}_\phi$$

#### 8.2.1 Fernfeld

$$E \approx -\frac{\beta m \omega \mu}{4\pi R} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi}$$
  
$$H \approx -\frac{\beta m \omega \mu}{4\pi R Z_{F0}} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\theta}$$

#### 8.2.2 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\rm rad} &= \frac{Z_F \beta^4 m^2}{12\pi} \\ &= \frac{m^2 \mu \omega^4}{12\pi v_p^3} \\ S_{av} &= \frac{Z_F \beta^4 m^2}{32\pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

#### 8.2.3 Nahfeld

$$E \approx -\frac{jm\omega\mu}{4\pi R^2} \sin\theta \cdot \vec{e}\phi$$

$$H \approx \frac{m}{4\pi R^3} (2\cos\theta \cdot \vec{e}_R + \sin\theta \cdot \vec{e}_\theta)$$

# 8.3 Lineare Antenne

$$I(z') = I_0 \cdot \sin \left[ \beta \left( \frac{L}{2} - |z'| \right) \right]$$

# 8.3.1 Dipolantenne

$$\vec{H} = j \cdot \frac{I_0}{2\pi R} \cdot e^{-j\beta R} \cdot \frac{\cos\left[\left(\frac{\beta L}{2}\right)\cos\theta\right] - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \cdot \vec{e_{\phi}}$$

$$\vec{E} = H \cdot Z_F \cdot \vec{e_{\theta}}$$

$$I_0 = \sqrt{\frac{2 \cdot P_{Send}}{R_S}}$$

 ${\bf Die\ mittlere\ Strahlungsleistungsdichte}$ 

$$\vec{S}_{av} = \frac{Z_F I_0^2}{8\pi^2 R^2} \left( \frac{\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \right)^2 \cdot \vec{e}_R$$

Die gesamte Strahlungsleistung

$$P_{S} = \frac{Z_{F0}I_{0}^{2}}{4\pi} \int_{\theta=0}^{\theta=\pi} \frac{\left(\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)\right)^{2}}{\sin\theta} \cdot \vec{e}_{\theta}$$

$$= \int_{A} S_{AV} \cdot d\vec{a}$$

$$= \int_{\Phi=0}^{2\pi} \int_{\Theta=0}^{\pi} S_{AV}R^{2} \sin\Theta \cdot d\Theta \cdot d\Phi$$

# 8.4 Antennenkenngrößen



 $\underline{Z}_A := Antennenimpedanz$ 

 $R_V := Verlustwiderstand$ 

 $R_S := Strahlungswiderstand$ 

 $X_A := Antennenblindwiderstand$ 

D := Directifity/Richtfaktor

G := Gain/Gewinn

 ${\cal A}_{eff}:=$  Wirksame Antennenfläche

# 8.4.1 Abgestrahlte Leistung

$$P_S = \frac{1}{2} \cdot I_A^2 \cdot R_S$$

# 8.4.2 Verlustleistung

$$P_V = \frac{1}{2} \cdot I_A^2 \cdot R_V$$

#### 8.4.3 Wirkungsgrad

$$\eta = \frac{P_S}{P_S + P_V} = \frac{R_S}{R_S + R_V}$$

### 8.4.4 Richtcharakteristik

 $C_i \stackrel{\wedge}{=}$ isotroper Kugelstrahler als Bezugsgröße in Hauptabstrahlrichtung

$$\begin{split} C(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_{\max}} = \frac{H(\vartheta,\varphi)}{H_{\max}} = \frac{U(\varphi,\vartheta)}{U_{\max}} \quad 0 \leq C(\vartheta,\varphi) \leq 1 \\ C_i(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_i} = \frac{H(\vartheta,\varphi)}{H_i} \qquad \qquad C_i > 1 \end{split}$$

## 8.4.5 Richtfunktion/Richtfaktor

In [dB] angeben!

$$\begin{split} D(\vartheta,\varphi) &= \frac{S(\vartheta,\varphi)}{S_i} \\ D(\vartheta,\varphi) &= C_i^2(\vartheta,\varphi) = D \cdot C^2(\vartheta,\varphi) \\ D &= \max\{D(\vartheta,\varphi)\} = \frac{S_{\max}}{S_i} \end{split}$$

# 8.4.6 Gewinn

$$G = \eta \cdot D$$
 [dB]

# 8.4.7 Wirksame Antennenfläche

$$A_{\rm eff} = \frac{\lambda^2}{4\pi} \cdot G = \frac{Z_{F0}}{4R_S} \cdot l_{\rm eff}^2$$

# 8.5 Bezugsantennen

$$g = 10 \cdot log(G) dB$$

mit  $P_0$ : Eingangsleistung der Antenne

# $G \rightarrow Bezugsantenne$ :

Elementardipol zu Kugelstrahler

$$D = 1,50 \to g = 1,76 \text{dBi}$$

Halbwellendipol zu Kugelstrahler

$$D = 1,64 \rightarrow q = 2,15 \text{dBi}$$

### EIRP: Eqivalent Isoropic Radiated Power

$$EIRP = P_0 \cdot G_i[dBi]$$

# <u>ERP</u>: Eqivalent Radiated Power (verlustloser Halbwellendipol)

$$ERP = P_0 \cdot G_d[dBd]$$

# 8.6 Senden und Empfangen



Senden = transmit = TX

Empfangen = receive = RX

T.Pham FWL

$$\begin{split} \frac{P_{RX}}{P_{TX}} &= A_{\texttt{eff},RX} \cdot A_{\texttt{eff},TX} \cdot \frac{1}{\lambda^2 r^2} \\ &= D_{i,RX} \cdot \eta_{RX} \cdot D_{i,TX} \cdot \eta_{TX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \\ \hline \\ A_{\texttt{eff}}(\theta) &= G_{RX} \cdot \frac{\lambda^2}{4\pi} \cdot \frac{3}{2} \cdot \sin^2 \theta} \\ \hline \\ P_{RX} &= S_{RX} \cdot A_{\texttt{eff}} \\ &= P_{TX} \cdot G_{TX} \cdot G_{RX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \end{split}$$

# 8.6.1 Freiraumdämpfung/Freiraumdämpfungsmaß

$$F = \frac{P_{TX}}{P_{RX}} \cdot \left(\frac{4\pi d}{\lambda}\right)^2 \qquad [1]$$

$$a_0 = 20 \lg\left(\frac{4\pi d}{\lambda}\right) = 20 \lg\left(\frac{4\pi df}{c_0}\right) \qquad [dB]$$

# 8.6.2 Leistungspegel/Freiraumpegel

$$L = 10 \lg \left( \frac{P}{1 \text{mW}} \right) \quad [\text{dBm}]$$
 
$$L_{RX} = L_{TX} + g_{TX} + g_{RX} - a_0 \quad [\text{dB}]$$

T.Pham

# 8.7 Antennentabelle

| Antennenart                                                                | Darstellung,<br>Belegung                                                                                                               | Richtfaktor,<br>Gewinn<br>Linear (in dB)       | wirksame<br>Antennen –<br>tläche           | effektive<br>Höhe                                              | Strahlungs-<br>Widerstand                            | vertikales<br>Richtdiagramm<br>(3-dB-Bereich)                                                                | horizontales<br>Richtdiagramm                                                                                                     |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| isotrope Antenne                                                           | fiktiv                                                                                                                                 | 1:(0dB)                                        | $\frac{\lambda^2}{4\pi} = 0.08\lambda^2$   | _                                                              | _                                                    | +                                                                                                            | +                                                                                                                                 |
| Hertzscher Dipol,<br>Dipol mit End-<br>kapazität                           | ) j                                                                                                                                    | 1,5; (1,8dB)                                   | $\frac{3\lambda^2}{8\pi} = 0.12 \lambda^2$ | l                                                              | $80\left(\frac{\pi l}{\lambda}\right)^2\Omega$       | 90° &                                                                                                        | +                                                                                                                                 |
| kurze Antenne mit<br>Dachkapazītät auf lei-<br>tender Ebene $h << \lambda$ | 1000                                                                                                                                   | 3;(4.8dB)                                      | $\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$ | h                                                              | $160\left(\frac{\pi h}{\lambda}\right)^2\Omega$      | £, H <sub>Ø</sub>                                                                                            | ϑ-90°<br>⊗ Ε ϑ<br>/ Hφ                                                                                                            |
| kurze Antenne auf<br>leitender Ebene<br>$h << \lambda$                     |                                                                                                                                        | 3; (4,8dB)                                     | $\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$ | <u>h</u> 2                                                     | $40\left(\frac{\pi\hbar}{\lambda}\right)^2\Omega$    | 45° ₩ H <sub>Ø</sub>                                                                                         | +                                                                                                                                 |
| <b>2</b> /4 - Antenne auf<br>leitender Ebene                               | 1/4 59                                                                                                                                 | 3,28;(5,1dB)                                   | 0,065 <b>2</b> ²                           | $\frac{\lambda}{2\pi} = 0.16 \lambda$                          | 40Ω                                                  | 19° ⊗                                                                                                        | +                                                                                                                                 |
| kurzer Dipol<br>l << %                                                     | , J.,                                                                                                                                  | 1,5;(1,8dB)                                    | $\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$  | 1/2                                                            | $20\left(\frac{\pi l}{\lambda}\right)^2\Omega$       | 90° ⊗ H <sub>9</sub>                                                                                         | +                                                                                                                                 |
| <b>2</b> /2 - Dipol                                                        | 1/2 by                                                                                                                                 | 1,64;(2,1dB)                                   | 0,13 <b>λ</b> <sup>2</sup>                 | $\frac{\mathbf{\lambda}}{\mathbf{\pi}} = 0.32\mathbf{\lambda}$ | 73Ω                                                  | 78° 8 8                                                                                                      | Hg                                                                                                                                |
| <b>λ</b> -Dipol                                                            |                                                                                                                                        | 2,41;(3,8dB)                                   | 0,19 <b>2</b> <sup>2</sup>                 | >> <b>λ</b>                                                    | 200Ω                                                 | En Hap                                                                                                       | $ \begin{array}{c}                                     $                                                                          |
| 2/2 -Schleifendipol                                                        | 1/2 p                                                                                                                                  | 1,64;(2,1dB)                                   | 0.13 <b>2</b> <sup>2</sup>                 | $\frac{2\lambda}{\pi} = 0.64\lambda$                           | 290Ω                                                 | (78° ⊗                                                                                                       | $\begin{array}{c} \theta = 90^{\circ} \\ + \\ + \\ + \\ + \\ \theta_{\varphi} \end{array}$                                        |
| Schlitzantenne<br>in Halbraum<br>strahlend                                 | 2/2 p = 0° p                                                                                                                           | 3,28;(5,1dB)                                   | 0,26 <b>2</b> 2                            | -                                                              | ≈ 500 <b>Ω</b>                                       | $\begin{array}{c} H_{\nu} \\ \hline 78^{\circ} \\ \hline -90^{\circ} \le \varphi \le 90^{\circ} \end{array}$ | 9=90°<br>⊗ H <sub>3</sub> y                                                                                                       |
| kleiner Rahmen,<br>n-Windungen,<br>beliebige Form                          | Fläche<br>A $\varphi = 0^{\circ} \bigcirc \bullet \varphi$                                                                             | 1,5;(1,8dB)                                    | $\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$  | <u>2πηΑ</u><br><b>λ</b>                                        | $\frac{31000  n^2 (\text{A/m})^2}{(\lambda/m)^4}$    | φ = 90° Eυ                                                                                                   | \$\tag{90^\circ}\$                                                                                                                |
| Spulenantenne auf<br>langem Ferritstab<br>l >> D                           | $n$ -Windungen $\varphi$                     | 1,5; (1,8dB)                                   | $\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$  | $\frac{\pi^2 \cap \mu_r D^2}{2\lambda}$                        | 19100 $n^2 \mu_r^2 \left(\frac{D}{\lambda}\right)^4$ | φ=90°                                                                                                        | \$\vartheta = 90^\circ}\$                                                                                                         |
| Linie aus<br>Hertzschen Dipolen<br>l >> %                                  | $\bigcup_{\varphi} \phi$                                                                                                               | $\approx \frac{4}{3} \frac{l}{\lambda}$        | $\frac{/\lambda}{8} \approx 0.12/\lambda$  | _                                                              | _                                                    | E.J. ⊙ H <sub>g</sub> p<br>50°2//                                                                            | + E <sub>2</sub> ⊗                                                                                                                |
| Zeile aus<br>Hertzschen Dipolen<br>l >> <b>1</b>                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                   | $\approx \frac{8}{3} \frac{l}{\lambda}$        | $\frac{l  \lambda}{4} = 0.25  \lambda$     | _                                                              |                                                      | H <sub>y</sub> √⊙ E <sub>φ</sub>                                                                             | $\varphi = 0^{\circ}$ $\downarrow E_{\varphi}$ $\otimes$ $\downarrow H_{\psi}$                                                    |
| einseitig strahlende Fläche $a >> \lambda$ , $b >> \lambda$                | $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ | $\approx \frac{6.5 \cdot 10^6  ab}{\lambda^2}$ | ab                                         | -                                                              | _                                                    | 51° <b>λ</b> /b φ=0°                                                                                         | <b>3</b> =90°                                                                                                                     |
| Yagi - Uda-Antenne<br>mit 4 Direktoren                                     |                                                                                                                                        | ≈5+10// <b>λ</b>                               | -                                          | _                                                              | _                                                    | $ \begin{array}{c}                                     $                                                     | $ \begin{array}{ccc} \vartheta = 90^{\circ} \\ & & & & & & & \\ \downarrow 40^{\circ} & & & & & & \\ & & & & & & & & \\ & & & & $ |

T.Pham FWL

# 9 Einheiten

| Symbol          | Größe                         | Einheit                                                          |
|-----------------|-------------------------------|------------------------------------------------------------------|
| A, W            | Arbeit, Energie               | J = VAs = Ws                                                     |
| $ec{A}$         | mag. Vektorpotenzial          | $\frac{Vs}{m} = \frac{T}{m} \ (\vec{B} = \nabla \times \vec{A})$ |
| $ec{B}$         | mag. Flussdichte              | $T = \frac{Vs}{m^2}$                                             |
| $\mathbf{C}$    | Kapazität                     | $F = \frac{As}{V}$                                               |
| $ec{D}$         | dielek. Verschiebung/Erregung | $\frac{As}{m^2}$                                                 |
| e, q, Q         | (Elementar-)ladung            | C = As                                                           |
| $ec{E}$         | elek. Feldstärke              | $\left  \begin{array}{c} \frac{V}{m} \end{array} \right $        |
| $ec{H}$         | mag. Feldstärke/Erregung      | $\frac{A}{m}$                                                    |
| $ec{J}$         | Stromdichte                   | $\frac{A}{m^2}$                                                  |
| $ec{J}_F$       | Flächenstromdichte            | $\frac{A}{m}$                                                    |
| $ec{M}$         | Drehmoment                    | J = Nm = VAs                                                     |
| F               | Kraft                         | $\frac{kgm}{s} = N$                                              |
| $R_{mag}$       | mag. Widerstand               | $\frac{S}{s} = \frac{A}{Vs}$                                     |
| $ec{S}$         | Poynting-Vektor               | $\frac{W}{m^2}$                                                  |
| Z               | Wellenwiderstand              | Ω                                                                |
| $\delta_s$      | Eindringtiefe                 | m                                                                |
| ε               | Dielektrizitätskonstante      | $\frac{As}{Vm}$                                                  |
| arphi           | elek. Skalarpotenzial         | V                                                                |
| $arphi_m$       | mag. Skalarpotenzial          | A                                                                |
| ho              | Raumladungsdichte             | $\frac{As}{m^3}$                                                 |
| ho              | spez. Widerstand              | $\frac{\Omega}{m} = \frac{VA}{m}$                                |
| $\kappa,\sigma$ | elek. Leitfähigkeit           | $\frac{S}{m} = \frac{A}{Vm}$                                     |
| $\lambda$       | Wellenlänge                   | m                                                                |
| $\mu$           | Permiabilitätskonstante       | $\frac{Vs}{Am}$                                                  |
| $\Phi_e$        | elek. Fluss                   | C = As                                                           |
| $\Phi_m$        | mag. Fluss                    | $Wb = \frac{T}{m^2}$                                             |