!pip install bayesian-optimization

Collecting bayesian-optimization
Downloading bayesian\_optimization-1.4.3-py3-none-any.whl (18 kB)
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.25.2)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.11.4)
Requirement already satisfied: scikit-learn>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization)
Collecting colorama>=0.4.6 (from bayesian-optimization)
Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->bayesian
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->b
Installing collected packages: colorama, bayesian-optimization
Successfully installed bayesian-optimization-1.4.3 colorama-0.4.6

!git clone https://github.com/808ss/thesis.git

```
→ Cloning into 'thesis'...
    remote: Enumerating objects: 27, done.
    remote: Counting objects: 100% (27/27), done.
    remote: Compressing objects: 100% (26/26), done.
    remote: Total 27 (delta 0), reused 0 (delta 0), pack-reused 0
    Receiving objects: 100% (27/27), 311.32 KiB | 1.26 MiB/s, done.
import numpy as np
import pandas as pd
import xqboost as xqb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
from bayes_opt import BayesianOptimization
random\_seed = 808
np.random.seed(random_seed)
```

#### MBBR

## Importing MBBR and Splitting

```
MBBR = pd.read csv('thesis/MBBR-Chlorination.csv')
MBBR.drop(columns='Date',inplace=True)
X_orig_MBBR = MBBR.drop(columns='Residual chlorine\n(ppm)')
y_orig_MBBR = MBBR['Residual chlorine\n(ppm)']
X_train_orig_MBBR, X_test_orig_MBBR, y_train_orig_MBBR, y_test_orig_MBBR = train_test_split(X_orig_MBBR,
                                                                                         y_orig_MBBR,
                                                                                         test_size = 0.3,
                                                                                         random state=808)
df_train_orig_MBBR = pd.concat([X_train_orig_MBBR,y_train_orig_MBBR], axis=1)
df_test_orig_MBBR = pd.concat([X_test_orig_MBBR,y_test_orig_MBBR], axis=1)
   Data Analysis for Raw Dataset
missing_rate_MBBR = [(MBBR.isnull().sum()[val]/MBBR.shape[0])*100 for val in range(0,MBBR.shape[1])]
pd.options.display.float_format = '{:,.2f}'.format
MBBR_transposed = MBBR.describe().T
MBBR_transposed['Missingness Rate'] = missing_rate_MBBR
MBBR_transposed
```



|                                           | count  | mean           | std            | min        | 25%           | 50%           | 75%            | max              | Missingnes:<br>Rate |
|-------------------------------------------|--------|----------------|----------------|------------|---------------|---------------|----------------|------------------|---------------------|
| Flow Rate Influent (m3/d)                 | 332.00 | 4,787.53       | 2,211.48       | 197.00     | 3,344.00      | 4,709.50      | 6,232.00       | 11,147.00        | 0.00                |
| Total Coliform<br>Influent<br>(MPN/100mL) | 270.00 | 290,896,939.26 | 733,941,441.61 | 1,600.00   | 17,250,000.00 | 40,500,000.00 | 160,000,000.00 | 5,200,000,000.00 | 18.6 <sup>°</sup>   |
| Total Coliform<br>Effluent<br>(MPN/100mL) | 329.00 | 733,375.06     | 9,402,984.69   | 0.00       | 2.00          | 10.00         | 471.00         | 143,900,000.00   | 0.91                |
| Fecal Coliform<br>Influent<br>(MPN/100mL) | 103.00 | 236,377,087.38 | 621,705,589.64 | 230,000.00 | 8,550,000.00  | 23,000,000.00 | 37,650,000.00  | 3,000,000,000.00 | 68.9                |
| Fecal Coliform<br>Effluent<br>(MPN/100mL) | 171.00 | 746.87         | 3,947.85       | 2.00       | 10.00         | 10.00         | 10.00          | 24,196.00        | 48.49               |
| BOD Influent (ppm)                        | 273.00 | 152.40         | 148.02         | 8.00       | 68.00         | 119.00        | 196.00         | 1,425.00         | 17.7                |
| BOD Pre-<br>chlorination\n(ppm)           | 274.00 | 11.28          | 12.82          | 1.00       | 4.00          | 8.00          | 14.00          | 119.00           | 17.4                |

# Data Analysis for Training Set (Pre-Imputation)

 $missing\_rate\_train\_orig\_MBBR = [(df\_train\_orig\_MBBR.isnull().sum()[val]/df\_train\_orig\_MBBR.shape[0])*100 \ for \ val \ in \ range(0,df\_train\_orig\_MBBR.shape[0])*100 \ for \ val \ range$ 

pd.options.display.float\_format = '{:,.2f}'.format
#pd.set\_option('display.float\_format', '{:e}'.format)
df\_train\_orig\_MBBR\_transposed = df\_train\_orig\_MBBR.describe().T
df\_train\_orig\_MBBR\_transposed['Missingness Rate'] = missing\_rate\_train\_orig\_MBBR

df\_train\_orig\_MBBR\_transposed



| 7  |                                           | count  | mean           | std            | min        | 25%           | 50%           | 75%            | max              | Missingnes:<br>Rate |
|----|-------------------------------------------|--------|----------------|----------------|------------|---------------|---------------|----------------|------------------|---------------------|
| F  | Flow Rate Influent (m3/d)                 | 232.00 | 4,882.74       | 2,204.80       | 197.00     | 3,344.00      | 4,762.00      | 6,349.00       | 10,999.00        | 0.0                 |
|    | Total Coliform<br>Influent<br>(MPN/100mL) | 185.00 | 315,522,010.81 | 790,769,090.66 | 16,000.00  | 18,000,000.00 | 41,000,000.00 | 160,000,000.00 | 5,200,000,000.00 | 20.2                |
|    | Total Coliform<br>Effluent<br>(MPN/100mL) | 230.00 | 1,045,242.88   | 11,238,969.87  | 0.00       | 2.25          | 10.00         | 1,280.75       | 143,900,000.00   | 0.80                |
|    | Fecal Coliform<br>Influent<br>(MPN/100mL) | 68.00  | 298,124,117.65 | 669,480,560.27 | 230,000.00 | 10,400,000.00 | 24,000,000.00 | 40,950,000.00  | 2,600,000,000.00 | 70.6!               |
|    | Fecal Coliform<br>Effluent<br>(MPN/100mL) | 120.00 | 892.02         | 4,352.93       | 2.00       | 10.00         | 10.00         | 10.00          | 24,196.00        | 48.2                |
| В  | OD Influent (ppm)                         | 187.00 | 162.30         | 167.60         | 8.00       | 70.50         | 122.00        | 199.00         | 1,425.00         | 19.4                |
| cl | BOD Pre-<br>hlorination\n(ppm)            | 188.00 | 11.12          | 12.31          | 1.00       | 5.00          | 8.00          | 14.00          | 119.00           | 18.9                |

# Data Analysis for Testing Set (Pre-imputation)

 $missing\_rate\_test\_orig\_MBBR = [(df\_test\_orig\_MBBR.isnull().sum()[val]/df\_test\_orig\_MBBR.shape[0]) * 100 for val in range(0,df\_test\_orig\_MBBR.isnull().sum()[val]/df\_test\_orig\_MBBR.shape[0]) * 100 for val in range(0,df\_test\_orig\_MBBR.isnull().sum()[val]/df\_test\_orig\_MBBR.shape[0]) * 100 for val in range(0,df\_test\_orig\_mBBR.shape[0]) * 100 for val i$ 

#pd.options.display.float\_format = '{:,.2f}'.format
pd.set\_option('display.float\_format', '{:e}'.format)
df\_test\_orig\_MBBR\_transposed = df\_test\_orig\_MBBR.describe().T
df\_test\_orig\_MBBR\_transposed['Missingness Rate'] = missing\_rate\_test\_orig\_MBBR

df\_test\_orig\_MBBR\_transposed



|                                           | count        | mean         | std          | min          | 25%          | 50%          | 75%          | max          | Missing  |
|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|
| Flow Rate Influent<br>(m3/d)              | 1.000000e+02 | 4.566650e+03 | 2.222244e+03 | 2.170000e+02 | 3.343750e+03 | 4.641500e+03 | 6.112250e+03 | 1.114700e+04 | 0.000000 |
| Total Coliform<br>Influent<br>(MPN/100mL) | 8.500000e+01 | 2.373012e+08 | 5.924907e+08 | 1.600000e+03 | 1.700000e+07 | 4.000000e+07 | 1.600000e+08 | 3.500000e+09 | 1.500000 |
| Total Coliform<br>Effluent<br>(MPN/100mL) | 9.900000e+01 | 8.833667e+03 | 3.764360e+04 | 0.000000e+00 | 2.000000e+00 | 1.000000e+01 | 9.000000e+01 | 2.419600e+05 | 1.000000 |
| Fecal Coliform<br>Influent<br>(MPN/100mL) | 3.500000e+01 | 1.164114e+08 | 5.038721e+08 | 1.000000e+06 | 7.450000e+06 | 1.700000e+07 | 3.045000e+07 | 3.000000e+09 | 6.500000 |
| Fecal Coliform<br>Effluent<br>(MPN/100mL) | 5.100000e+01 | 4.053529e+02 | 2.779390e+03 | 2.000000e+00 | 2.000000e+00 | 1.000000e+01 | 1.000000e+01 | 1.986300e+04 | 4.900000 |
| BOD Influent (ppm)                        | 8.600000e+01 | 1.308605e+02 | 8.921358e+01 | 1.900000e+01 | 6.600000e+01 | 1.060000e+02 | 1.830000e+02 | 4.090000e+02 | 1.400000 |
| BOD Pre-<br>chlorination\n(ppm)           | 8.600000e+01 | 1.162791e+01 | 1.393434e+01 | 1.000000e+00 | 4.000000e+00 | 8.000000e+00 | 1.400000e+01 | 1.080000e+02 | 1.400000 |

## Data Imputation

## Exporting Datasets to R

```
df_train_orig_MBBR.to_csv('MBBR_train_set.csv',index=False)
df_test_orig_MBBR.to_csv('MBBR_test_set.csv',index=False)
# Export to R for mixgb
```

## Mixgb imputation

```
library(mixgb)
library(openxlsx)
set.seed(808)

MBBR_train_set <- read.csv("c:/Users/nikko/PycharmProjects/Thesis/MBBR_train_set.csv")

MBBR_train_set <- read.csv("c:/Users/nikko/PycharmProjects/Thesis/MBBR_train_set.csv")

MBBR_train_set_df = as.data.frame(MBBR_train_set)
MBBR_test_set_df = as.data.frame(MBBR_train_set)
MBBR_test_set_df = as.data.clean(MBBR_train_set_df)
clean_MBBR_train_set_df <- data_clean(MBBR_train_set_df)
clean_MBBR_train_set_df <- data_clean(MBBR_train_set_df)
cv.results_1$evaluation.log
cv.results_1
```

## Import imputed datasets from R

```
dfs = []
for val in range(1,6):
    source = f'thesis/mbbr_m{val}_imputed_train.xlsx'
```

```
dfs.append(pd.read_excel(source))
average_MBBR_train = pd.concat(dfs).groupby(level=0).mean()

dfs = []
for val in range(1,6):
    source = f'thesis/mbbr_m{val}_imputed_test.xlsx'
    dfs.append(pd.read_excel(source))

average_MBBR_test = pd.concat(dfs).groupby(level=0).mean()
```

## Data Analysis for Training Set (Post-Imputation)

```
#pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.float_format', '{:e}'.format)
average_MBBR_train_transposed = average_MBBR_train.describe().T
```

 $average\_{\tt MBBR\_train\_transposed}$ 

| <del>_</del> |                                 | count        | mean         | std          | min          | 25%          | 50%          | 75%          |         |
|--------------|---------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
|              | Flow.Rate.Influentm3.d.         | 2.320000e+02 | 4.882741e+03 | 2.204801e+03 | 1.970000e+02 | 3.344000e+03 | 4.762000e+03 | 6.349000e+03 | 1.09990 |
| To           | tal.Coliform.InfluentMPN.100mL. | 2.320000e+02 | 3.480306e+08 | 7.784700e+08 | 1.600000e+04 | 2.175000e+07 | 5.400000e+07 | 2.200000e+08 | 5.20000 |
| Tot          | tal.Coliform.EffluentMPN.100mL. | 2.320000e+02 | 1.036336e+06 | 1.119062e+07 | 0.000000e+00 | 2.750000e+00 | 1.000000e+01 | 1.600000e+03 | 1.43900 |
| Fee          | cal.Coliform.InfluentMPN.100mL. | 2.320000e+02 | 1.965840e+08 | 5.001635e+08 | 2.300000e+05 | 1.428500e+07 | 2.740000e+07 | 3.821000e+07 | 2.60000 |
| Fed          | cal.Coliform.EffluentMPN.100mL. | 2.320000e+02 | 4.182178e+03 | 8.256544e+03 | 2.000000e+00 | 8.800000e+00 | 1.000000e+01 | 2.282500e+02 | 2.41960 |
|              | BOD.Influentppm.                | 2.320000e+02 | 1.585655e+02 | 1.533443e+02 | 8.000000e+00 | 7.585000e+01 | 1.250000e+02 | 1.950500e+02 | 1.42500 |
|              | BOD.Pre.chlorinationppm.        | 2.320000e+02 | 1.199138e+01 | 1.246310e+01 | 1.000000e+00 | 5.000000e+00 | 9.000000e+00 | 1.500000e+01 | 1.19000 |
|              | COD.Influentppm.                | 2.320000e+02 | 3.458931e+02 | 5.439009e+02 | 1.300000e+01 | 1.750000e+02 | 2.510000e+02 | 3.745000e+02 | 7.73400 |
|              | COD.Pre.chlorinationppm.        | 2.320000e+02 | 4.940431e+01 | 3.795535e+01 | 5.000000e+00 | 2.475000e+01 | 4.150000e+01 | 6.300000e+01 | 3.43000 |
|              | TSS.Pre.chlorinationppm.        | 2.320000e+02 | 1.756897e+01 | 2.094736e+01 | 1.000000e+00 | 6.000000e+00 | 1.200000e+01 | 2.000000e+01 | 1.60000 |
|              | pH.Pre.chlorination             | 2.320000e+02 | 7.185121e+00 | 3.010609e-01 | 6.120000e+00 | 7.000000e+00 | 7.200000e+00 | 7.362500e+00 | 8.38000 |
|              | Chlorine.dosageL.d.             | 2.320000e+02 | 8.721017e+02 | 4.852711e+02 | 0.000000e+00 | 6.000000e+02 | 8.500000e+02 | 1.160000e+03 | 2.80000 |
|              | Residual.chlorineppm.           | 2.320000e+02 | 2.082141e+00 | 1.913163e+00 | 0.000000e+00 | 3.815000e-01 | 1.205700e+00 | 3.917150e+00 | 5.48000 |

# Data Analysis for Testing Set (Post-Imputation)

 $average\_{\tt MBBR\_test\_transposed}$ 

```
pd.options.display.float_format = '{:,.2f}'.format
#pd.set_option('display.float_format', '{:e}'.format)
average_MBBR_test_transposed = average_MBBR_test.describe().T
```

 $https://colab.research.google.com/drive/1oM-O\_Ol8nYRuQhBIRZIr3LPokFoVWq61?usp=drive\_link\#printMode=true$ 



|                                   | count  | mean           | std            | min          | 25%           | 50%           | 75%            | I             |
|-----------------------------------|--------|----------------|----------------|--------------|---------------|---------------|----------------|---------------|
| Flow.Rate.Influentm3.d.           | 100.00 | 4,566.65       | 2,222.24       | 217.00       | 3,343.75      | 4,641.50      | 6,112.25       | 11,147        |
| Total.Coliform.InfluentMPN.100mL. | 100.00 | 288,973,956.00 | 647,069,268.14 | 1,600.00     | 22,750,000.00 | 45,000,000.00 | 200,000,000.00 | 3,500,000,000 |
| Total.Coliform.EffluentMPN.100mL. | 100.00 | 8,933.07       | 37,466.19      | 0.00         | 2.00          | 10.00         | 134.75         | 241,960       |
| Fecal.Coliform.InfluentMPN.100mL. | 100.00 | 147,284,740.00 | 427,084,482.81 | 1,000,000.00 | 12,000,000.00 | 25,320,000.00 | 41,560,000.00  | 3,000,000,000 |
| Fecal.Coliform.EffluentMPN.100mL. | 100.00 | 2,363.05       | 6,219.15       | 2.00         | 10.00         | 10.00         | 107.30         | 24,196        |
| BOD.Influentppm.                  | 100.00 | 134.13         | 88.52          | 19.00        | 66.45         | 108.40        | 188.25         | 409           |
| BOD.Pre.chlorinationppm.          | 100.00 | 12.06          | 13.39          | 1.00         | 5.00          | 9.00          | 15.00          | 108           |
| COD.Influentppm.                  | 100.00 | 268.66         | 192.32         | 41.00        | 135.75        | 210.00        | 357.25         | 1,256         |
| COD.Pre.chlorinationppm.          | 100.00 | 45.03          | 47.09          | 5.00         | 20.00         | 29.70         | 53.55          | 314           |
| TSS.Pre.chlorinationppm.          | 100.00 | 18.00          | 24.39          | 1.00         | 5.00          | 10.00         | 19.25          | 164           |
| pH.Pre.chlorination               | 100.00 | 7.21           | 0.37           | 5.28         | 7.10          | 7.21          | 7.40           | }             |
| Chlorine.dosageL.d.               | 100.00 | 809.32         | 498.65         | 0.00         | 488.70        | 748.90        | 1,005.05       | 2,900         |
| Residual.chlorineppm.             | 100.00 | 2.14           | 1.69           | 0.01         | 0.49          | 2.05          | 3.57           | ŧ             |

#### Exhaustive Feature Selection

## → For Imputed Dataset

```
pd.reset_option('display.float_format')
X_train_MBBR = average_MBBR_train.drop(columns='Residual.chlorine..ppm.')
y_train_MBBR = average_MBBR_train['Residual.chlorine..ppm.']
X_test_MBBR = average_MBBR_test.drop(columns='Residual.chlorine..ppm.')
y_test_MBBR = average_MBBR_test['Residual.chlorine..ppm.']
features_wo_chlorine_dosage = X_train_MBBR.columns[:-1]
features_wo_chlorine_dosage
Findex(['Flow.Rate.Influent..m3.d.', 'Total.Coliform.Influent..MPN.100mL.',
            'Total.Coliform.Effluent..MPN.100mL.'
            'Fecal.Coliform.Influent..MPN.100mL.',
'Fecal.Coliform.Effluent..MPN.100mL.', 'BOD.Influent..ppm.',
            'BOD.Pre.chlorination..ppm.', 'COD.Influent..ppm.', 'COD.Pre.chlorination..ppm.', 'TSS.Pre.chlorination..ppm.',
            'pH.Pre.chlorination'],
           dtype='object')
# Generate all combinations of the other features
combinations = []
for r in range(1, len(features_wo_chlorine_dosage) + 1):
    combinations.extend(itertools.combinations(features_wo_chlorine_dosage, r))
# Add the first feature to each combination
combinations = [(X_train_MBBR.columns[-1],) + combo for combo in combinations]
params = {'objective': 'reg:squarederror'}
results = []
for combo in combinations:
    dtrain = xgb.DMatrix(X_train_MBBR[list(combo)], label=y_train_MBBR)
    cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)
    last_round_metrics = cv_result.iloc[-1]
    results.append([combo, last_round_metrics['train-rmse-mean'], last_round_metrics['test-rmse-mean'],
                     last_round_metrics['train-rmse-std'], last_round_metrics['test-rmse-std']])
results_df_MBBR = pd.DataFrame(results, columns=['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.', ' Valid
results_df_MBBR.sort_values(by='Validation RMSE')
```

| 27, 1.05 / HVI                                                                  |                                                                                                                                                                                      | [1] MDD      | ok - Am - Chlorine Res | nadar rangetapjino condo |                          |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|--------------------------|--------------------------|
| <b>→</b>                                                                        | Combination                                                                                                                                                                          | Train RMSE   | Validation RMSE        | Train RMSE Std. Dev.     | Validation RMSE Std. Dev |
| 1851                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.348480     | 1.394428               | 0.028309                 | 0.143395                 |
| 1167                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.315027     | 1.411094               | 0.044549                 | 0.073128                 |
| 1636                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.302548     | 1.415478               | 0.028380                 | 0.069078                 |
| 1502                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.344748     | 1.417683               | 0.018418                 | 0.113160                 |
| 1493                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.340146     | 1.418291               | 0.035193                 | 0.142621                 |
|                                                                                 |                                                                                                                                                                                      |              |                        |                          |                          |
| 193                                                                             | (Chlorine.dosageL.d., Fecal.Coliform.Influen                                                                                                                                         | 0.788887     | 2.085864               | 0.043836                 | 0.179699                 |
| 187                                                                             | (Chlorine.dosageL.d., Fecal.Coliform.Influen                                                                                                                                         | 0.742502     | 2.099164               | 0.053870                 | 0.108392                 |
| 3                                                                               | (Chlorine.dosageL.d., Fecal.Coliform.Influen                                                                                                                                         | 0.966307     | 2.111154               | 0.030007                 | 0.200713                 |
| 8                                                                               | (Chlorine.dosageL.d., COD.Pre.chlorination                                                                                                                                           | 1.070077     | 2.117816               | 0.101896                 | 0.117162                 |
| 42                                                                              | (Chlorine.dosageL.d., Fecal.Coliform.Influen                                                                                                                                         | 0.857085     | 2.160103               | 0.053470                 | 0.113003                 |
| 2047 rd                                                                         | ows × 5 columns                                                                                                                                                                      |              |                        |                          |                          |
|                                                                                 | _MBBR.sort_values(by='Validation RMSE                                                                                                                                                |              |                        |                          |                          |
| <b>→</b>                                                                        |                                                                                                                                                                                      |              |                        |                          | Validation RMSE Std. Dev |
| 1851                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.348480     | 1.394428               | 0.028309                 | 0.143395                 |
| 1167                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.315027     | 1.411094               | 0.044549                 | 0.073128                 |
| 1636                                                                            | (Chlorine.dosageL.d., Flow.Rate.Influentm3                                                                                                                                           | 0.302548     | 1.415478               | 0.028380                 | 0.069078                 |
| 'Fecc. 'B0D 'B0D 'C0D 'TSS  results_df  → ('Chl. 'Flot. 'Flot. 'Fecc. 'B0D 'B0D | al.Coliform.EffluentMPN.100mL.', al.Coliform.EffluentMPN.100mL.', .Influentppm.', .Pre.chlorinationppm.', .Pre.chlorinationppm.')                                                    | :').iloc[1][ | 'Combination']         |                          |                          |
| results_df                                                                      | -<br>MBBR.sort_values(by='Validation RMSE                                                                                                                                            | E').iloc[2][ | 'Combination']         |                          |                          |
| 'Flor'<br>'Total<br>'Fecal<br>'BOD<br>'BOD<br>'TSS                              | orine.dosageL.d.', w.Rate.Influentm3.d.', al.Coliform.EffluentMPN.100mL.', al.Coliform.InfluentMPN.100mL.', .Influentppm.', .Pre.chlorinationppm.', Pre.chlorination')               |              |                        |                          |                          |
| . –                                                                             | eatures_MBBR = results_df_MBBR.sort_va<br>eatures_MBBR                                                                                                                               | alues(by='Va | lidation RMSE').i      | loc[0]['Combination']    |                          |
| 'Flo<br>'Tot<br>'Tot<br>'Fec<br>'BOD                                            | orine.dosageL.d.', w.Rate.Influentm3.d.', al.Coliform.InfluentMPN.100mL.', al.Coliform.EffluentMPN.100mL.', al.Coliform.EffluentMPN.100mL.', .Influentppm.', .Pre.chlorinationppm.', |              |                        |                          |                          |

```
'COD.Influent..ppm.',
    'TSS.Pre.chlorination..ppm.')

results_df_MBBR['count'] = results_df_MBBR['Combination'].apply(lambda x: len(x))
results_df_MBBR.to_csv('MBBR Exhaustive Feature Selection.csv', index=False)
```

#### For Raw Dataset

```
non_imputed_mask_MBBR_train = ~np.isnan(y_train_orig_MBBR)
non_imputed_mask_MBBR_test = ~np.isnan(y_test_orig_MBBR)
X_train_MBBR_dropped = X_train_orig_MBBR[non_imputed_mask_MBBR_train]
y_train_MBBR_dropped = y_train_orig_MBBR[non_imputed_mask_MBBR_train]
X_test_MBBR_dropped = X_test_orig_MBBR[non_imputed_mask_MBBR_test]
y_test_MBBR_dropped = y_test_orig_MBBR[non_imputed_mask_MBBR_test]
features_wo_chlorine_dosage_dropped = X_train_MBBR_dropped.columns[:-1]
features_wo_chlorine_dosage_dropped
Fig. Index(['Flow Rate Influent (m3/d)', 'Total Coliform Influent (MPN/100mL)',
             'Total Coliform Effluent (MPN/100mL)',
            'Fecal Coliform Influent (MPN/100mL)',
'Fecal Coliform Effluent (MPN/100mL)', 'BOD Influent (ppm)',
            'BOD Pre-chlorination\n(ppm)', 'COD Influent (ppm)',
'COD Pre-chlorination\n(ppm)', 'TSS Pre-chlorination (ppm)',
            'pH Pre-chlorination'],
           dtype='object')
# Generate all combinations of the other features
combinations = []
for r in range(1, len(features_wo_chlorine_dosage_dropped) + 1):
    combinations.extend(itertools.combinations(features wo chlorine dosage dropped, r))
# Add the first feature to each combination
combinations = [(X_train_MBBR_dropped.columns[-1],) + combo for combo in combinations]
params = {'objective': 'reg:squarederror'}
results = []
for combo in combinations:
    dtrain = xgb.DMatrix(X_train_MBBR_dropped[list(combo)], label=y_train_MBBR_dropped)
    cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)
    last round metrics = cv result.iloc[-1]
    results.append([combo, last_round_metrics['train-rmse-mean'], last_round_metrics['test-rmse-mean'],
                     last_round_metrics['train-rmse-std'],last_round_metrics['test-rmse-std']])
results_df_MBBR_dropped = pd.DataFrame(results, columns=['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.',
results_df_MBBR_dropped.sort_values(by='Validation RMSE')
```

| -   | Combination                                      | Train RMSE | Validation RMSE | Train RMSE Std. Dev. | Validation RMSE Std. Dev |
|-----|--------------------------------------------------|------------|-----------------|----------------------|--------------------------|
| 31  | (Chlorine dosage (L/d), Total Coliform Effluen   | 1.022659   | 1.512094        | 0.031956             | 0.180507                 |
| 2   | (Chlorine dosage (L/d), Total Coliform Effluen   | 1.031525   | 1.520116        | 0.038504             | 0.184722                 |
| 32  | (Chlorine dosage (L/d), Total Coliform Effluen   | 0.636437   | 1.554748        | 0.050116             | 0.192632                 |
| 160 | Chlorine dosage (L/d), Total Coliform Effluen    | 0.612772   | 1.574227        | 0.047039             | 0.187918                 |
| 574 | (Chlorine dosage (L/d), Flow Rate Influent (m3   | 0.424320   | 1.577279        | 0.044534             | 0.284987                 |
|     |                                                  | •••        |                 |                      |                          |
| 100 | 0 (Chlorine dosage (L/d), Fecal Coliform Influen | 0.420868   | 2.110952        | 0.038620             | 0.188357                 |
| 139 | (Chlorine dosage (L/d), Total Coliform Influen   | 0.576095   | 2.111329        | 0.039815             | 0.206058                 |
| 44  | (Chlorine dosage (L/d), Fecal Coliform Influen   | 0.804355   | 2.112326        | 0.033380             | 0.167510                 |
| 52  | 6 (Chlorine dosage (L/d), Fecal Coliform Influen | 0.415596   | 2.112704        | 0.030191             | 0.144628                 |
| 58  | (Chlorine dosage (L/d), BOD Pre-chlorination\n   | 0.648844   | 2.153476        | 0.061506             | 0.111363                 |

2047 rows × 5 columns

 $\rightarrow$ 

results\_df\_MBBR\_dropped.sort\_values(by='Validation RMSE').iloc[0:3]

```
\rightarrow
                                  Combination Train RMSE Validation RMSE Train RMSE Std. Dev. Validation RMSE Std. Dev
     31 (Chlorine dosage (L/d), Total Coliform Effluen...
                                                   1.022659
                                                                     1.512094
                                                                                            0.031956
                                                                                                                       0.180507
      2 (Chlorine dosage (L/d), Total Coliform Effluen...
                                                   1.031525
                                                                     1.520116
                                                                                            0.038504
                                                                                                                       0.184722
     32 (Chlorine dosage (L/d), Total Coliform Effluen...
                                                                                            0.050116
                                                   0.636437
                                                                     1.554748
                                                                                                                       0.192632
results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']
    ('Chlorine dosage (L/d)',
      'Total Coliform Effluent (MPN/100mL)'
      'Fecal Coliform Effluent (MPN/100mL)')
results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[1]['Combination']
→ ('Chlorine dosage (L/d)', 'Total Coliform Effluent (MPN/100mL)')
results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[2]['Combination']
    ('Chlorine dosage (L/d)',
      'Total Coliform Effluent (MPN/100mL)',
      'BOD Influent (ppm)')
optimal_features_MBBR_dropped = results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']
optimal_features_MBBR_dropped
→ ('Chlorine dosage (L/d)',
      'Total Coliform Effluent (MPN/100mL)'
      'Fecal Coliform Effluent (MPN/100mL)')
results_df_MBBR_dropped['count'] = results_df_MBBR_dropped['Combination'].apply(lambda x: len(x))
results_df_MBBR_dropped.to_csv('MBBR Dropped Exhaustive Feature Selection.csv', index=False)
```

# Hyperparameter Optimization

#### For Imputed Dataset

```
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR[list(optimal_features_MBBR)], label=y_train_MBBR)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
    alpha = 10**alpha
    lambd = 10**lambd
    gamma = 10**gamma
    max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
              'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_MBBR = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0),
                                              'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                              'gamma': (-6, 1.8),
                                              'subsample': (0.5, 1),
                                              'col_subsample': (0.3, 1),
```

'max\_depth': (1, 3)},

random\_state=808)

# Optimize the hyperparameters
xgb\_bo\_MBBR.maximize(n\_iter=1000, init\_points=10)# Convert the data into DMatrix format

| <del></del> | iter     | target             | alpha               | col_su             | eta                 | gamma              | lambd              | l max depth      | subsample            |
|-------------|----------|--------------------|---------------------|--------------------|---------------------|--------------------|--------------------|------------------|----------------------|
| <u> </u>    |          |                    |                     |                    | ·<br>               |                    |                    | ·                | ·                    |
| !           | 1        | 1.402              | 0.04075             | 0.4513             | -2.68               | -1.662             | -1.582             | 2.026            | 0.7673               |
| !           | 2        | -1.348             | -4.514              | 0.7529             | -1.843              | -2.2               | -1.339             | 1.596            | 0.5436               |
| !           | 3        | -1.412             | -1.108              | 0.5069             | -1.136              | -4.974             | -0.5216            | 2.693            | 0.8202               |
| !           | 4        | -1.522             | -3.147              | 0.6275             | -2.063              | 1.604              | -0.4504            | 1.466            | 0.7294               |
| !           | 5        | -1.52              | -2.356              | 0.4052             | -0.3806             | -0.09483           | -5.01              | 1.643            | 0.6674               |
| !           | 6        | -1.394             | -2.162              | 0.5228             | -2.659              | -5.793             | -3.144             | 2.227            | 0.7522               |
| - !         | 7        | -1.358             | -0.1605             | 0.6002             | -1.973              | 0.8823             | -3.597             | 1.193            | 0.6362               |
| - !         | 9        | -1.457             | -0.9486             | 0.7394             | -0.4943             | -0.4982            | -3.564             | 2.166            | 0.5334               |
| - !         | 10       | -1.366<br>  -1.425 | -1.814              | 0.8098             | -2.344<br>  -0.4746 | -2.07              | -3.54              | 1.193<br>  2.478 | 0.8742  <br>  0.7132 |
| -           | 11       | -1.425             | 0.06321<br>  -3.666 | 0.6188<br>  0.7745 | -0.4740<br>  -2.039 | -0.88<br>  -2.261  | -0.04974<br>-2.019 | 1.466            | 0.6498               |
| - 1         | 12       | -1.369             | -4.779              | 0.7515             | -2.282              | -3.912             | -1.445             | 1.719            | 0.5189               |
| - 1         | 13       | -1.519             | 0.3                 | 1.0                | -3.0                | -0.6697            | -4.177             | 1.0              | 1.0                  |
| i           | 14       | -1.375             | -3.855              | 0.624              | -1.615              | -3.091             | -1.079             | 2.011            | 0.5656               |
| i           | 15       | -1.376             | -4.864              | 1.0                | -1.381              | -2.951             | -1.98              | 1.0              | 1.0                  |
| i           | 16       | -1.419             | -4.974              | 1.0                | -2.542              | -2.482             | -2.042             | 2.534            | 0.7778               |
| i           | 17       | -1.469             | -4.32               | 0.3                | -2.628              | -2.757             | -0.931             | 1.0              | 0.5                  |
| i           | 18       | -1.378             | -4.246              | 1.0                | -1.217              | -2.451             | -1.794             | 1.763            | 0.5                  |
| i           | 19       | -1.409             | -3.904              | 1.0                | -1.692              | -1.784             | -1.176             | 1.852            | 1.0                  |
| i           | 20       | -1.356             | -5.034              | 0.8484             | -1.528              | -2.992             | -1.23              | 1.806            | 0.5 j                |
| i           | 21       | -1.366             | -5.255              | 0.3                | -1.323              | -2.058             | -1.617             | 1.505            | 0.5                  |
| i           | 22       | -1.365             | -2.753              | 0.8147             | -2.132              | -2.934             | -3.035             | 1.351            | 0.688 j              |
| i           | 23       | -1.65              | 0.2354              | 0.3                | -1.693              | 1.8                | -3.051             | 1.0              | 0.5                  |
| į           | 24       | -1.359             | -4.182              | 0.9605             | -2.47               | -2.19              | -5.291             | 1.743            | 0.6425               |
| İ           | 25       | -1.377             | -4.618              | 0.3175             | -1.709              | -2.825             | -1.826             | 1.709            | 0.6598               |
|             | 26       | -1.36              | -4.716              | 0.6659             | -1.086              | -2.492             | -1.014             | 1.248            | 0.6906               |
|             | 27       | -1.363             | -0.8163             | 0.831              | -2.159              | 0.6714             | -3.988             | 1.437            | 0.6369               |
|             | 28       | -1.365             | -3.208              | 0.8849             | -2.387              | -2.277             | -4.094             | 1.469            | 0.7267               |
| ļ           | 29       | -1.491             | -2.64               | 0.3146             | -2.72               | -2.235             | -3.162             | 1.577            | 0.5261               |
| . !         | 30       | -1.373             | -2.419              | 0.5783             | -1.985              | -4.593             | -0.2901            | 2.045            | 0.5732               |
| !           | 31       | -1.4               | -5.969              | 0.4113             | -2.329              | 0.1311             | -5.538             | 2.738            | 0.6068               |
| !           | 32       | -1.499             | -5.795              | 0.5584             | -0.178              | -3.244             | -4.061             | 1.057            | 0.508                |
| !           | 33       | -1.457             | -3.113              | 0.9634             | -0.422              | -4.206             | -1.789             | 1.987            | 0.6836               |
| - !         | 34<br>35 | -1.372             | -2.865<br>  -2.907  | 0.7614             | -1.505              | -2.07              | -4.461             | 1.634            | 0.9723  <br>  0.8259 |
| -           | 36       | -1.371<br>  -1.368 | -2.907<br>  -2.447  | 0.856<br>  1.0     | -1.397<br>  -1.7    | -1.989<br>  -2.718 | -4.378<br>-3.784   | 1.861<br>  1.005 | 0.6239               |
| - 1         | 37       | -1.373             | -3.591              | 1.0                | -1.7                | -2.627             | -3.764             | 1.351            | 0.9302               |
| - 1         | 38       | -1.373             | -3.588              | 1.0                | -1.909              | -2.899             | -4.723             | 1.739            | 0.6063               |
| i           | 39       | -1.411             | -3.949              | 1.0                | -2.045              | -2.256             | -4.447             | 2.322            | 1.0                  |
| i           | 40       | -1.352             | -3.344              | 1.0                | -2.252              | -2.499             | -5.117             | 1.0              | 0.5                  |
| i           | 41       | -1.363             | -2.548              | 1.0                | -2.219              | -3.058             | -4.758             | 1.618            | 0.5                  |
| i           | 42       | -1.353             | -3.447              | 1.0                | -2.287              | -3.416             | -4.166             | 1.0              | 0.5 j                |
| i           | 43       | -1.411             | -3.575              | 0.403              | -2.635              | -3.262             | -5.615             | 1.558            | 0.6814               |
| i           | 44       | -1.372             | -2.979              | 1.0                | -1.585              | -3.56              | -3.864             | 1.791            | 0.5                  |
| i           | 45       | -1.354             | -4.308              | 1.0                | -2.306              | -2.561             | -4.458             | 1.0              | 0.5                  |
| į           | 46       | -1.365             | -3.449              | 1.0                | -1.179              | -2.868             | -4.695             | 1.0              | 0.5                  |
| į           | 47       | -1.381             | -3.527              | 1.0                | -2.304              | -3.819             | -2.835             | 1.0              | 1.0                  |
| İ           | 48       | -1.35              | -3.97               | 1.0                | -1.909              | -1.476             | -4.887             | 1.0              | 0.5                  |
| ĺ           | 49       | -1.368             | -4.382              | 1.0                | -1.569              | -2.171             | -5.768             | 1.0              | 0.5                  |
| - 1         | 50       | -1.494             | -4.512              | 1.0                | -3.0                | -1.336             | -5.316             | 1.0              | 0.5                  |
| - 1         | 51       | -1.389             | -5.461              | 1.0                | -1.462              | -1.956             | -0.6024            | 1.824            | 0.5                  |
| Į           | 52       | -1.399             | -4.266              | 0.5629             | -1.188              | -2.059             | -4.868             | 1.38             | 0.6287               |
| ļ           | 53       | -1.387             | -2.169              | 1.0                | -2.508              | -3.768             | -3.724             | 1.0              | 0.9673               |
| ļ           | 54       | -1.359             | -3.305              | 1.0                | -1.753              | -1.914             | -5.561             | 1.692            | 0.5                  |
| ļ           | 55       | -1.38              | -4.22               | 1.0                | -1.916              | -3.475             | -4.89              | 1.0              | 1.0                  |
| ļ           | 56       | -1.347             | -2.784              | 1.0                | -2.061              | -1.497             | -4.684             | 1.0              | 0.5                  |

```
# Extract the optimal hyperparameters from the Bayesian Optimization object
best_params_MBBR = xgb_bo_MBBR.max['params']
```

```
# Transform the hyperparameters from log space to original space
best_params_MBBR['eta'] = 10 ** best_params_MBBR['eta']
best_params_MBBR['alpha'] = 10 ** best_params_MBBR['lambd']
best_params_MBBR['lambda'] = 10 ** best_params_MBBR['lambd']
best_params_MBBR['gamma'] = 10 ** best_params_MBBR['gamma']
best_params_MBBR['max_depth'] = int(round(2 ** best_params_MBBR['max_depth']))

# Define the remaining xgboost parameters
best_params_MBBR['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_MBBR['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_MBBR['colsample_bytree'] = best_params_MBBR['col_subsample']
best_params_MBBR['subsample'] = best_params_MBBR['subsample']
```

#### → For Raw Dataset

```
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR_dropped[list(optimal_features_MBBR_dropped)], label=y_train_MBBR_dropped)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
    alpha = 10**alpha
    lambd = 10**lambd
    gamma = 10**gamma
    max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
              'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_MBBR_dropped = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0),
                                              'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                              'gamma': (-6, 1.8),
                                              'subsample': (0.5, 1),
                                              'col_subsample': (0.3, 1),
                                              'max_depth': (1, 3)},
                              random_state=808)
```

# Optimize the hyperparameters
xgb\_bo\_MBBR\_dropped.maximize(n\_iter=1000, init\_points=10)# Convert the data into DMatrix format

| ₹ | iter | target | alpha   | col_su | eta     | gamma    | lambd    | max_depth | subsample |
|---|------|--------|---------|--------|---------|----------|----------|-----------|-----------|
|   | 1    | -1.592 | 0.04075 | 0.4513 | -2.68   | -1.662   | -1.582   | 2.026     | 0.7673    |
|   | 2    | -1.483 | -4.514  | 0.7529 | -1.843  | -2.2     | -1.339   | 1.596     | 0.5436    |
|   | 3    | -1.534 | -1.108  | 0.5069 | -1.136  | -4.974   | -0.5216  | 2.693     | 0.8202    |
|   | 4    | -1.654 | -3.147  | 0.6275 | -2.063  | 1.604    | -0.4504  | 1.466     | 0.7294    |
|   | 5    | -1.566 | -2.356  | 0.4052 | -0.3806 | -0.09483 | -5.01    | 1.643     | 0.6674    |
|   | 6    | -1.569 | -2.162  | 0.5228 | -2.659  | -5.793   | -3.144   | 2.227     | 0.7522    |
|   | 7    | -1.551 | -0.1605 | 0.6002 | -1.973  | 0.8823   | -3.597   | 1.193     | 0.6362    |
|   | 8    | -1.504 | -0.9486 | 0.7394 | -0.4943 | -0.4982  | -3.564   | 2.166     | 0.5334    |
|   | 9    | -1.522 | -1.814  | 0.8098 | -2.344  | -2.07    | -3.54    | 1.193     | 0.8742    |
|   | 10   | -1.56  | 0.06321 | 0.6188 | -0.4746 | -0.88    | -0.04974 | 2.478     | 0.7132    |
|   | 11   | -1.542 | -5.294  | 0.6658 | -1.215  | -5.342   | -0.3629  | 2.421     | 0.9975    |
|   | 12   | -1.622 | -4.018  | 0.5023 | -2.865  | -0.7772  | -2.167   | 2.849     | 0.9048    |
|   | 13   | -1.477 | -5.736  | 0.7323 | -1.385  | -3.443   | -1.267   | 1.381     | 0.8479    |
|   | 14   | -1.509 | -4.497  | 0.9763 | -1.066  | -3.183   | -1.361   | 1.0       | 0.5       |
|   | 15   | -1.531 | -5.569  | 0.6173 | -2.111  | -2.615   | -0.5689  | 1.211     | 0.5       |
|   | 16   | -1.466 | -5.204  | 0.7135 | -1.388  | -2.85    | -1.831   | 1.981     | 0.9342    |
|   | 17   | -1.521 | -5.694  | 0.9343 | -1.793  | -3.029   | -2.629   | 1.079     | 1.0       |
|   | 18   | -1.594 | -5.566  | 0.3124 | -0.3799 | -2.642   | -1.238   | 2.008     | 1.0       |
|   | 19   | -1.489 | -4.999  | 0.9307 | -1.94   | -3.211   | -1.569   | 1.718     | 0.7673    |
|   | 20   | -1.532 | -5.065  | 0.3    | -1.622  | -2.747   | -1.902   | 1.44      | 0.5       |
|   | 21   | -1.486 | -5.674  | 1.0    | -1.506  | -3.387   | -1.795   | 2.028     | 1.0       |

```
-1.496
                          -4.543
                                      1.0
                                                    -1.514
                                                                 -2.659
                                                                              -1.56
                                                                                                        1.0
23
             -1.487
                         -5.493
                                      1.0
                                                    -1.826
                                                                -2.421
                                                                              -1.567
                                                                                           1.919
                                                                                                        1.0
24
            -1.5
                         -5.182
                                       1.0
                                                    -1.595
                                                                 -2.758
                                                                              -2.514
                                                                                           2.436
                                                                                                        1.0
25
                                                                 -4.249
             -1.514
                          -5.436
                                       1.0
                                                    -1.351
                                                                              -1.52
                                                                                           1.0
                                                                                                        1.0
                                                                                           2.547
26
             -1.542
                         -5.319
                                       0.3351
                                                    -1.932
                                                                 -3.1
                                                                              -1.522
                                                                                                        1.0
27
             -1.475
                                                                 -2.865
                                                                                           1.382
                         -5.226
                                       1.0
                                                    -1.3
                                                                              -1.619
                                                                                                        1.0
28
            -1.529
                         -3.836
                                       1.0
                                                    -1.964
                                                                 -2.295
                                                                              -0.9241
                                                                                           1.0
                                                                                                        1.0
29
            -1.494
                         -4.798
                                      1.0
                                                    -0.9794
                                                                -3.405
                                                                              -2.251
                                                                                           1.843
                                                                                                        1.0
                                                                 -1.978
             -1.478
                         -4.697
                                                                                           1.594
30
                                       1.0
                                                    -1.243
                                                                              -2.177
                                                                                                        1.0
                                                                              -2.309
            -1.502
                         -3.63
                                                                -2.029
31
                                       1.0
                                                    -0.7825
                                                                                           1.527
                                                                                                        0.5
             -1.487
32
                          -4.715
                                       1.0
                                                    -0.4656
                                                                 -2.014
                                                                              -3.38
                                                                                           1.625
                                                                                                        1.0
33
                                                    -0.5147
                                                                 -0.9607
                                                                              -2.811
             -1.503
                          -4.725
                                       1.0
                                                                                           1.0
                                                                                                        1.0
34
            -1.538
                                                    0.0
                                                                 -2.665
                                                                              -3.611
                         -3.747
                                       1.0
                                                                                           1.0
                                                                                                        1.0
                                                                -1.543
35
             -1.515
                          -5.402
                                       1.0
                                                    -0.801
                                                                              -2.923
                                                                                           2.097
                                                                                                        0.5
36
             -1.518
                          -4.402
                                       1.0
                                                    -1.567
                                                                 -1.757
                                                                              -3.441
                                                                                           1.123
                                                                                                        1.0
37
                                                    0.0
            -1.538
                         -5.597
                                      1.0
                                                                -1.542
                                                                              -4.242
                                                                                           1.227
                                                                                                        1.0
38
             -1.517
                          -4.125
                                       1.0
                                                    -0.165
                                                                 -1.594
                                                                              -2.846
                                                                                           2.41
                                                                                                        1.0
39
             -1.48
                          0.03424
                                       1.0
                                                    0.0
                                                                 -1.2
                                                                              -3.918
                                                                                           3.0
                                                                                                        0.5
                                                                 -1.751
                                                                                           1.927
40
             -1.54
                          0.04954
                                      1.0
                                                    0.0
                                                                              -3.964
                                                                                                        0.5
41
             -1.514
                          0.1303
                                                    0.0
                                                                 -0.1083
                                                                              -3.742
                                       1.0
                                                                                           3.0
                                                                                                        0.5
42
            -1.555
                          -0.7936
                                       1.0
                                                    0.0
                                                                 -1.263
                                                                              -3.339
                                                                                           3.0
                                                                                                        1.0
43
            -1.489
                         -4.593
                                       1.0
                                                    -1.203
                                                                 -1.466
                                                                              -1.485
                                                                                           1.387
                                                                                                        0.5
             -1.494
                                                    -0.1538
                                                                 -2.206
                                                                              -2.432
                                                                                                        0.9766
44
                          -4.851
                                       0.935
                                                                                           1.018
45
            -1.523
                          -4.05
                                       1.0
                                                    -0.2374
                                                                -1.385
                                                                              -1.646
                                                                                           1.0
                                                                                                        1.0
             -1.472
                                                                -1.037
46
                          0.3
                                       0.8367
                                                    -0.3183
                                                                              -4.812
                                                                                           3.0
                                                                                                        0.5
47
             -1.479
                                                                 -1.109
                                                                              -4.229
                                       1.0
                                                    -1.099
                                                                                           3.0
                                                                                                        0.5
                         0.3
48
            -1.527
                          0.3
                                       0.3
                                                    -0.6027
                                                                -1.715
                                                                              -4.459
                                                                                           3.0
                                                                                                        0.5
                                                                 -0.5424
49
             -1.476
                          -0.3601
                                                    -0.815
                                                                              -4.82
                                       1.0
                                                                                           3.0
                                                                                                        0.5
50
             -1.487
                          0.3
                                       1.0
                                                    -1.237
                                                                 -0.6958
                                                                              -5.547
                                                                                           3.0
                                                                                                        0.5
51
                         0.06674
            -1.557
                                       0.3517
                                                    -0.3089
                                                                 -0.1756
                                                                              -5.308
                                                                                           2.71
                                                                                                        0.926
52
             -1.476
                          -0.5299
                                       1.0
                                                    -1.743
                                                                 -1.145
                                                                              -4.928
                                                                                           3.0
                                                                                                        0.5
53
             -1.478
                          6.574e-05
                                       1.0
                                                    -2.012
                                                                 -0.3042
                                                                              -4.579
                                                                                           3.0
                                                                                                        0.5
54
             -1.505
                          0.3
                                       1.0
                                                    -2.669
                                                                 -1.15
                                                                              -5.25
                                                                                           3.0
                                                                                                        0.5
55
                          -0.988
                                                                 -0.5035
             -1.481
                                       1.0
                                                    -1.731
                                                                              -4.081
                                                                                           3.0
                                                                                                        0.5
56
            -1.48
                          -1.051
                                      1.0
                                                    -2.212
                                                                 -0.159
                                                                              -5.326
                                                                                          3.0
                                                                                                        0.5
```

```
# Extract the optimal hyperparameters from the Bayesian Optimization object
best_params_MBBR_dropped = xgb_bo_MBBR_dropped.max['params']
# Transform the hyperparameters from log space to original space
best_params_MBBR_dropped['eta'] = 10 ** best_params_MBBR_dropped['eta']
best_params_MBBR_dropped['alpha'] = 10 ** best_params_MBBR_dropped['alpha']
best_params_MBBR_dropped['lambda'] = 10 ** best_params_MBBR_dropped['lambd']
best_params_MBBR_dropped['gamma'] = 10 ** best_params_MBBR_dropped['gamma']
best_params_MBBR_dropped['max_depth'] = int(round(2 ** best_params_MBBR_dropped['max_depth']))
# Define the remaining xgboost parameters
best_params_MBBR_dropped['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_MBBR_dropped['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_MBBR_dropped['colsample_bytree'] = best_params_MBBR_dropped['col_subsample']
best_params_MBBR_dropped['subsample'] = best_params_MBBR_dropped['subsample']
del best_params_MBBR_dropped['col_subsample']
del best_params_MBBR_dropped['lambd']
best_params_MBBR_dropped
₹ {'alpha': 1.9952623149688795,
      'eta': 1.0,
      'gamma': 3.5362952331631605e-06,
      'max_depth': 8,
      'subsample': 0.5,
      'lambda': 0.0013228849154839303,
      'objective': 'reg:squarederror',
      'eval_metric': 'rmse'
      'colsample_bytree': 1.0}
```

## Final Model Training and Testing

## Optimized XGBoost 1

- · Optimal Features
- · Optimal Hyperparameters
- · Trained on Imputed Dataset

```
# Convert test data to DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR[list(optimal_features_MBBR)], label=y_train_MBBR)
dtest = xgb.DMatrix(X_test_MBBR[list(optimal_features_MBBR)], label=y_test_MBBR)
```

Determination of optimal num\_boost\_round

```
evals_result_MBBR = {}
# Train the final model
final_model_MBBR = xgb.train(best_params_MBBR, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),
                   evals_result=evals_result_MBBR)
\overline{2}
     [0]
             train-rmse:1.89580
                                      test-rmse:1.67027
     [1]
             train-rmse:1.88279
                                      test-rmse:1.66121
     [2]
             train-rmse:1.86983
                                      test-rmse:1.65117
     [3]
             train-rmse:1.85503
                                      test-rmse:1.63816
     [4]
             train-rmse:1.84013
                                      test-rmse:1.62826
     [5]
             train-rmse:1.82402
                                      test-rmse:1.61516
     [6]
             train-rmse:1.81098
                                      test-rmse:1.60398
     [7]
             train-rmse:1.79862
                                      test-rmse:1.59604
             train-rmse:1.78539
                                      test-rmse:1.58872
     [8]
     [9]
             train-rmse:1.77381
                                      test-rmse:1.57905
     [10]
             train-rmse:1.76347
                                      test-rmse:1.57110
     [11]
             train-rmse:1.75198
                                      test-rmse:1.56259
     [12]
             train-rmse:1.74061
                                      test-rmse:1.55405
     [13]
             train-rmse:1.72947
                                      test-rmse:1.54406
     [14]
             train-rmse:1.71715
                                      test-rmse:1.53413
     [15]
             train-rmse:1.70808
                                      test-rmse:1.52759
     [16]
             train-rmse:1.69746
                                      test-rmse:1.51868
     [17]
             train-rmse:1.68885
                                      test-rmse:1.51230
     [18]
             train-rmse:1.67976
                                      test-rmse:1.50661
     [19]
             train-rmse:1.66936
                                      test-rmse:1.49765
     [20]
             train-rmse:1.66027
                                      test-rmse:1.49073
     [21]
             train-rmse:1.65113
                                      test-rmse:1.48462
     [22]
             train-rmse:1.64232
                                      test-rmse:1.47666
     [23]
             train-rmse:1.63335
                                      test-rmse:1.47031
     [24]
             train-rmse:1.62509
                                      test-rmse:1.46416
     [25]
             train-rmse:1.61514
                                      test-rmse:1.45730
     [26]
             train-rmse:1.60729
                                      test-rmse:1.45055
     [27]
                                      test-rmse:1.44506
             train-rmse: 1.59934
     [28]
             train-rmse:1.59199
                                      test-rmse:1.44014
     [29]
             train-rmse:1.58413
                                      test-rmse:1.43469
     [30]
                                      test-rmse:1.43374
             train-rmse:1.57770
     [31]
             train-rmse:1.57084
                                      test-rmse:1.43176
     [32]
             train-rmse:1.56459
                                      test-rmse:1.43103
     [33]
             train-rmse:1.55869
                                      test-rmse:1.42501
     [34]
             train-rmse:1.55168
                                      test-rmse:1.42217
     [35]
             train-rmse:1.54636
                                      test-rmse:1.41497
     [36]
             train-rmse:1.53919
                                      test-rmse:1.41274
     [37]
             train-rmse:1.53261
                                      test-rmse:1.40841
     [38]
             train-rmse:1.52630
                                      test-rmse:1.40358
     [39]
             train-rmse:1.52123
                                      test-rmse:1.39981
     [40]
             train-rmse:1.51534
                                      test-rmse:1.39807
     [41]
             train-rmse:1.51026
                                      test-rmse:1.39440
     [42]
             train-rmse:1.50429
                                      test-rmse:1.39118
     [43]
             train-rmse:1.49733
                                      test-rmse:1.38788
     [44]
             train-rmse:1.49122
                                      test-rmse:1.38612
     [45]
             train-rmse:1.48625
                                      test-rmse:1.38300
     [46]
             train-rmse:1.48070
                                      test-rmse:1.38198
     [47]
             train-rmse:1.47634
                                      test-rmse:1.38154
     [48]
             train-rmse:1.47079
                                      test-rmse:1.37774
     [49]
             train-rmse:1.46649
                                      test-rmse:1.37562
     [50]
             train-rmse:1.46387
                                      test-rmse:1.37056
     [51]
             train-rmse:1.45850
                                      test-rmse:1.36800
     [52]
             train-rmse:1.45355
                                      test-rmse:1.36455
     [53]
             train-rmse:1.45090
                                      test-rmse:1.36019
     [54]
             train-rmse:1.44614
                                      test-rmse:1.35726
     [55]
             train-rmse:1.44204
                                      test-rmse:1.35660
     [56]
             train-rmse:1.43899
                                      test-rmse:1.35240
     [57]
             train-rmse:1.43568
                                      test-rmse:1.34738
# Train the final model
final_model_MBBR = xgb.train(best_params_MBBR, dtrain, num_boost_round=(np.argmin(evals_result_MBBR['train']['rmse'])+1), early_
                  evals_result=evals_result_MBBR)
# Make predictions on the test set
y_pred_final_MBBR = final_model_MBBR.predict(dtest)
     [0]
             train-rmse:1.89580
                                      test-rmse:1.67027
₹
             train-rmse:1.88279
                                      test-rmse:1.66121
```

```
train-rmse:1.86983
                                 test-rmse:1.65117
[3]
        train-rmse:1.85503
                                 test-rmse:1.63816
[4]
        train-rmse:1.84013
                                 test-rmse:1.62826
                                 test-rmse:1.61516
[5]
        train-rmse:1.82402
[6]
        train-rmse:1.81098
                                 test-rmse:1.60398
[7]
        train-rmse:1.79862
                                 test-rmse:1.59604
[8]
        train-rmse:1.78539
                                 test-rmse:1.58872
[9]
        train-rmse:1.77381
                                 test-rmse:1.57905
        train-rmse:1.76347
                                 test-rmse:1.57110
[10]
[11]
        train-rmse:1.75198
                                 test-rmse:1.56259
[12]
        train-rmse:1.74061
                                 test-rmse:1.55405
[13]
        train-rmse:1.72947
                                 test-rmse:1.54406
[14]
        train-rmse:1.71715
                                 test-rmse:1.53413
[15]
        train-rmse:1.70808
                                 test-rmse:1.52759
[16]
        train-rmse:1.69746
                                 test-rmse:1.51868
[17]
        train-rmse:1.68885
                                 test-rmse:1.51230
[18]
        train-rmse:1.67976
                                 test-rmse:1.50661
[19]
        train-rmse:1.66936
                                 test-rmse:1.49765
[20]
        train-rmse:1.66027
                                 test-rmse:1.49073
[21]
        train-rmse:1.65113
                                 test-rmse:1.48462
[22]
        train-rmse:1.64232
                                 test-rmse:1.47666
[23]
        train-rmse:1.63335
                                 test-rmse:1.47031
[24]
        train-rmse:1.62509
                                 test-rmse:1.46416
[25]
        train-rmse:1.61514
                                 test-rmse:1.45730
[26]
        train-rmse:1.60729
                                 test-rmse:1.45055
[27]
        train-rmse:1.59934
                                 test-rmse:1.44506
[28]
        train-rmse:1.59199
                                 test-rmse:1.44014
[29]
                                 test-rmse:1.43469
        train-rmse:1.58413
[30]
        train-rmse:1.57770
                                 test-rmse:1.43374
[31]
        train-rmse:1.57084
                                 test-rmse:1.43176
[32]
        train-rmse:1.56459
                                 test-rmse:1.43103
[33]
        train-rmse:1.55869
                                 test-rmse:1.42501
[34]
        train-rmse:1.55168
                                 test-rmse:1.42217
[35]
        train-rmse:1.54636
                                 test-rmse:1.41497
        train-rmse:1.53919
[36]
                                 test-rmse:1.41274
[37]
        train-rmse:1.53261
                                 test-rmse:1.40841
[38]
                                 test-rmse:1.40358
        train-rmse:1.52630
[39]
        train-rmse:1.52123
                                 test-rmse:1.39981
[40]
        train-rmse:1.51534
                                 test-rmse:1.39807
[41]
        train-rmse:1.51026
                                 test-rmse:1.39440
[42]
        train-rmse:1.50429
                                 test-rmse:1.39118
        train-rmse:1.49733
                                 test-rmse:1.38788
[43]
[44]
        train-rmse:1.49122
                                 test-rmse:1.38612
[45]
        train-rmse:1.48625
                                 test-rmse:1.38300
[46]
        train-rmse:1.48070
                                 test-rmse:1.38198
[47]
        train-rmse:1.47634
                                 test-rmse:1.38154
[48]
        train-rmse:1.47079
                                 test-rmse:1.37774
[49]
        train-rmse:1.46649
                                 test-rmse:1.37562
[50]
        train-rmse:1.46387
                                 test-rmse:1.37056
[51]
                                 test-rmse:1.36800
        train-rmse:1.45850
[52]
        train-rmse:1.45355
                                 test-rmse:1.36455
[53]
        train-rmse:1.45090
                                 test-rmse:1.36019
[54]
        train-rmse:1.44614
                                 test-rmse:1.35726
[55]
        train-rmse:1.44204
                                 test-rmse:1.35660
[56]
        train-rmse:1.43899
                                 test-rmse:1.35240
[57]
        train-rmse:1.43568
                                 test-rmse:1.34738
```

## → Optimized XGBoost 2

- · Optimal Features
- · Optimal Hyperparameters
- · Trained on Raw Dataset

```
# Convert test data to DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR_dropped[list(optimal_features_MBBR_dropped)], label=y_train_MBBR_dropped)
dtest = xgb.DMatrix(X_test_MBBR_dropped[list(optimal_features_MBBR_dropped)], label=y_test_MBBR_dropped)
```

#### Determination of optimal num\_boost\_round

```
evals_result_MBBR_dropped = {}

# Train the final model
final_model_MBBR_dropped = xgb.train(best_params_MBBR_dropped, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(c evals_result=evals_result_MBBR_dropped)

The image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a second of the image is a
```

```
train-rmse:1.17688
                                      test-rmse:2.07116
     [4]
             train-rmse:1.16131
                                      test-rmse:2.06647
     [5]
             train-rmse:1.14904
                                      test-rmse:2.07194
             train-rmse:1.13173
                                      test-rmse:2.09764
     [6]
     [7]
             train-rmse:1.09817
                                      test-rmse:2.06489
     [8]
             train-rmse:1.09566
                                      test-rmse:2.07525
     [9]
             train-rmse:1.09732
                                      test-rmse:2.00322
     [10]
             train-rmse:1.11771
                                      test-rmse:2.03887
             train-rmse:1.11762
                                      test-rmse:1.97840
     [11]
     [12]
             train-rmse:1.09616
                                      test-rmse:2.02052
     [13]
             train-rmse:1.10368
                                      test-rmse:2.05023
     [14]
             train-rmse:1.08516
                                      test-rmse:2.11001
     [15]
             train-rmse:1.08605
                                      test-rmse:2.01925
     [16]
             train-rmse:1.08371
                                      test-rmse:2.07020
     [17]
             train-rmse:1.10454
                                      test-rmse:2.13831
     [18]
             train-rmse:1.07585
                                      test-rmse:2.05609
     [19]
             train-rmse:1.08941
                                      test-rmse:2.02826
     [20]
             train-rmse:1.07219
                                      test-rmse:2.02971
     [21]
             train-rmse:1.08773
                                      test-rmse:2.15171
     [22]
             train-rmse:1.07759
                                      test-rmse:2.15857
     [23]
             train-rmse:1.07577
                                      test-rmse:2.05925
     [24]
             train-rmse:1.05174
                                      test-rmse:1.99394
     [25]
             train-rmse: 1.04971
                                      test-rmse:2.05482
     [26]
             train-rmse:1.07189
                                      test-rmse:1.94906
     [27]
             train-rmse:1.05623
                                      test-rmse:2.04827
     [28]
             train-rmse:1.06337
                                      test-rmse:2.03752
     [29]
             train-rmse:1.06458
                                      test-rmse:2.04442
     [30]
             train-rmse:1.05708
                                      test-rmse:1.97872
# Train the final model
```

final\_model\_MBBR\_dropped = xgb.train(best\_params\_MBBR\_dropped, dtrain, num\_boost\_round=(np.argmin(evals\_result\_MBBR\_dropped['tra evals\_result=evals\_result\_MBBR\_dropped)

# Make predictions on the test set y\_pred\_final\_MBBR\_dropped = final\_model\_MBBR\_dropped.predict(dtest)

```
₹
    [0]
            train-rmse:1.40870
                                     test-rmse:1.71140
    [1]
            train-rmse:1.24142
                                     test-rmse:1.80005
    [2]
            train-rmse:1.23788
                                     test-rmse:1.89925
    [3]
            train-rmse:1.17688
                                     test-rmse:2.07116
    [4]
            train-rmse:1.16131
                                     test-rmse:2.06647
    [5]
            train-rmse:1.14904
                                     test-rmse:2.07194
                                     test-rmse:2.09764
    [6]
            train-rmse:1.13173
    [7]
            train-rmse:1.09817
                                     test-rmse:2.06489
    [8]
            train-rmse:1.09566
                                     test-rmse:2.07525
    [9]
            train-rmse:1.09732
                                     test-rmse:2.00322
    [10]
            train-rmse:1.11771
                                     test-rmse:2.03887
    [11]
            train-rmse:1.11762
                                     test-rmse:1.97840
    [12]
            train-rmse:1.09616
                                     test-rmse:2.02052
            train-rmse:1.10368
    [13]
                                     test-rmse:2.05023
    [14]
            train-rmse:1.08516
                                     test-rmse:2.11001
    [15]
            train-rmse:1.08605
                                     test-rmse:2.01925
    [16]
            train-rmse:1.08371
                                     test-rmse:2.07020
    [17]
            train-rmse:1.10454
                                     test-rmse:2.13831
            train-rmse:1.07585
    [18]
                                     test-rmse:2.05609
    [19]
            train-rmse:1.08941
                                     test-rmse:2.02826
    [20]
                                     test-rmse:2.02971
            train-rmse:1.07219
    [21]
            train-rmse:1.08773
                                     test-rmse:2.15171
    [22]
            train-rmse:1.07759
                                     test-rmse:2.15857
    [23]
            train-rmse:1.07577
                                     test-rmse:2.05925
    [24]
            train-rmse:1.05174
                                     test-rmse:1.99394
    [25]
            train-rmse:1.04971
                                     test-rmse:2.05482
```

#### Untuned XGBoost 1

- · No Feature Selection
- · No Hyperparameter Tuning
- · Trained on Imputed Dataset

```
dtrain = xgb.DMatrix(X_train_MBBR, label=y_train_MBBR)
dtest = xgb.DMatrix(X_test_MBBR, label=y_test_MBBR)
params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
```

```
# Train the out of the box xgboost model
oob_model_imputed_MBBR = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dte
# Make predictions on the test set
y_pred_oob_imputed_MBBR = oob_model_imputed_MBBR.predict(dtest)
            train-rmse:1.47201
                                      test-rmse:1.51096
     [1]
             train-rmse:1.15157
                                      test-rmse:1.38235
    [2]
             train-rmse:0.94782
                                      test-rmse:1.30895
     [3]
             train-rmse:0.76046
                                      test-rmse:1.30758
     [4]
             train-rmse:0.62928
                                      test-rmse:1.28191
     [5]
            train-rmse:0.54018
                                      test-rmse:1.29572
     [6]
            train-rmse:0.47154
                                      test-rmse:1.29169
     [7]
             train-rmse:0.39595
                                      test-rmse:1.30802
    [8]
             train-rmse:0.32587
                                      test-rmse:1.29979
     [9]
            train-rmse:0.28197
                                      test-rmse:1.29710
     [10]
             train-rmse:0.25631
                                      test-rmse:1.30237
    [11]
                                      test-rmse:1.30027
            train-rmse:0.22741
     [12]
            train-rmse:0.20132
                                      test-rmse:1.29721
     [13]
             train-rmse:0.18149
                                      test-rmse:1.30206
    [14]
             train-rmse:0.17027
                                      test-rmse:1.29957
     [15]
            train-rmse:0.16005
                                      test-rmse:1.30077
    [16]
            train-rmse:0.14791
                                      test-rmse:1.30029
     [17]
             train-rmse:0.14193
                                      test-rmse:1.30079
     [18]
             train-rmse:0.13104
                                      test-rmse:1.30447
    [19]
            train-rmse:0.12352
                                      test-rmse:1.30207
     [20]
            train-rmse:0.10744
                                      test-rmse:1.30586
     [21]
             train-rmse:0.10091
                                      test-rmse:1.30774
    [22]
             train-rmse:0.09209
                                      test-rmse:1.30716
     [23]
            train-rmse:0.08606
                                      test-rmse:1.30459
     [24]
             train-rmse:0.07575
                                      test-rmse:1.30595
    [25]
            train-rmse:0.07116
                                      test-rmse:1.30555
     [26]
            train-rmse:0.06702
                                      test-rmse:1.30691
     [27]
             train-rmse:0.06049
                                      test-rmse:1.30692
     [28]
            train-rmse:0.05737
                                      test-rmse:1.30844
     [29]
                                      test-rmse:1.30800
            train-rmse:0.05287
    [30]
            train-rmse:0.04900
                                      test-rmse:1.30782
    [31]
             train-rmse:0.04693
                                      test-rmse:1.30807
             train-rmse:0.04091
                                      test-rmse:1.30711
    [32]
    [33]
             train-rmse:0.03893
                                      test-rmse:1.30770
    [34]
            train-rmse:0.03709
                                      test-rmse:1.30662

    Untuned XGBoost 2
```

• No Feature Selection

[13]

- No Hyperparameter Tuning
- Trained on Non-Imputed (Raw) Dataset

train-rmse:0.21035

```
dtrain = xgb.DMatrix(X_train_MBBR_dropped, label=y_train_MBBR_dropped)
dtest = xgb.DMatrix(X_test_MBBR_dropped, label=y_test_MBBR_dropped)
params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
# Train the out of the box xgboost model
oob_model_MBBR = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dtest, 'tes
# Make predictions on the test set
y_pred_oob_MBBR = oob_model_MBBR.predict(dtest)
[0]
            train-rmse:1.54958
                                     test-rmse:1.48793
     [1]
            train-rmse:1.24651
                                     test-rmse:1.46705
     [2]
            train-rmse:0.97843
                                     test-rmse:1.47737
     [3]
            train-rmse:0.79490
                                     test-rmse:1.49702
    [4]
            train-rmse:0.66246
                                     test-rmse:1.51259
                                     test-rmse:1.53194
     [5]
            train-rmse:0.56802
     [6]
            train-rmse:0.50260
                                     test-rmse:1.53623
     [7]
            train-rmse:0.42722
                                     test-rmse:1.55193
     [8]
                                     test-rmse:1.56244
            train-rmse:0.38135
    [9]
            train-rmse:0.33632
                                     test-rmse:1.57958
     [10]
            train-rmse:0.28438
                                     test-rmse:1.58056
    [11]
            train-rmse:0.26198
                                     test-rmse:1.58829
    [12]
            train-rmse:0.23728
                                     test-rmse:1.60317
```

test-rmse:1.59406

```
[14]
                                 test-rmse:1.60318
        train-rmse:0.18668
[15]
        train-rmse:0.16417
                                 test-rmse:1.59872
[16]
        train-rmse:0.15322
                                 test-rmse:1.60157
[17]
        train-rmse:0.13933
                                 test-rmse:1.60271
[18]
        train-rmse:0.12366
                                 test-rmse:1.60606
[19]
                                 test-rmse:1.60355
        train-rmse:0.11291
[20]
        train-rmse:0.10587
                                 test-rmse:1.60410
[21]
        train-rmse:0.10023
                                 test-rmse:1.60809
                                 test-rmse:1.60888
        train-rmse:0.09571
[22]
[23]
        train-rmse:0.08612
                                 test-rmse:1.61020
[24]
        train-rmse:0.08365
                                 test-rmse:1.61056
[25]
        train-rmse:0.08099
                                 test-rmse:1.61055
[26]
        train-rmse:0.06964
                                 test-rmse:1.60636
[27]
        train-rmse:0.06130
                                 test-rmse:1.60454
[28]
        train-rmse:0.05457
                                 test-rmse:1.60606
[29]
        train-rmse:0.05111
                                 test-rmse:1.60840
[30]
        train-rmse:0.04773
                                 test-rmse:1.60865
[31]
        train-rmse:0.04429
                                 test-rmse:1.60893
```

#### Naive Model 1

· Always predicts the mean effluent chlorine residual of the imputed training dataset

```
y_pred_naive_MBBR = np.full(y_test_MBBR.shape, y_train_MBBR.mean())
```

#### → Naive Model 2

· Always predicts the mean effluent chlorine residual of the Non-imputed (raw) training dataset

```
y_pred_naive_orig_MBBR = np.full(y_test_MBBR.shape, y_train_orig_MBBR.mean())
```

#### Model Evaluation

```
def compute_metrics(y_pred,y_test):
  std_obs = np.std(y_test)
  std_sim = np.std(y_pred)
 mean_obs = np.mean(y_test)
 mean_sim = np.mean(y_pred)
  # Computing correlation
  r = np.corrcoef(y_test, y_pred)[0, 1]
  # Computing KGE
  alpha = std_sim / std_obs
  beta = mean_sim / mean_obs
  kge = 1 - np.sqrt(np.square(r - 1) + np.square(alpha - 1) + np.square(beta - 1))
 # PBIAS Calculation
  pbias = np.sum((y_test - y_pred)) / np.sum(y_test) * 100
  # Computing NSE
  nse = 1 - (np.sum((y_test-y_pred)**2))/(np.sum((y_test-np.mean(y_test))**2))
  if nse > 0.35:
    nse = (nse,'good')
  else:
    nse = (nse,'bad')
  if abs(pbias) < 15:
    pbias = (abs(pbias), 'good')
   pbias = (abs(pbias),'bad')
  if kge > -0.41:
   kge = (kge, 'good')
    kge = (kge,'bad')
  return(nse,pbias,kge)
```

```
def compute_nrmse(y_true, y_pred):
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    nrmse = rmse / (np.max(y_true) - np.min(y_true))
    return nrmse
non_imputed_mask_MBBR = ~np.isnan(y_test_orig_MBBR)
```

# Model Metrics evaluated on Imputed Test Set

```
Optimized XGBoost 1
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR, y_test_MBBR)
print(f"Final model metrics:\n\nNSE: {nse_final}, \nFBIAS: {pbias_final}, \nKGE: {kge_final}")
rmse = mean_squared_error(y_test_MBBR, y_pred_final_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_final_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
→ Final model metrics:
     NSE: (0.4673669183754957, 'good'),
    PBIAS: (9.522618153764945, 'good'),
KGE: (0.6053104518179091, 'good')
     Root Mean Squared Error: 1.227489850806859
    Normalized Root Mean Squared Error: 0.24030733179460825
  Untuned XGBoost 1
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_imputed_MBBR, y_test_MBBR)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_MBBR, y_pred_oob_imputed_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_oob_imputed_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
→ Final model metrics:
    NSE: (0.39648104797579675, 'good'), PBIAS: (10.577718752388224, 'good'),
    KGE: (0.62675033458363, 'good')
     Root Mean Squared Error: 1.306619989012038
    Normalized Root Mean Squared Error: 0.25579874491230187
   Naive Model 1
rmse = mean_squared_error(y_test_MBBR, y_pred_naive_MBBR, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_naive_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 1.6828674290904115
     Normalized Root Mean Squared Error: 0.3294572100803468
```

#### Naive Model 2

```
rmse = mean_squared_error(y_test_MBBR, y_pred_naive_orig_MBBR, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_naive_orig_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
```

```
→ Root Mean Squared Error: 1.6828999269810896
   Normalized Root Mean Squared Error: 0.329463572235922
```

#### Model Metrics evaluated on Non-Imputed (Raw) Test Set

```
Optimized XGBoost 1
```

```
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR[non_imputed_mask_MBBR], y_test_MBBR_dropped)
print(f"Final model metrics:\n\nNSE: {nse_final}, \nPBIAS: {pbias_final}, \nKGE: {kge_final}")
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_final_MBBR[non_imputed_mask_MBBR],squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_final_MBBR[non_imputed_mask_MBBR])
print(f"Normalized Root Mean Squared Error: {nrmse}")
→ Final model metrics:
     NSE: (0.1979687665925126, 'bad'),
     PBIAS: (18.554287736175443, 'bad'),
KGE: (0.42710098316921574, 'good')
     Root Mean Squared Error: 1.4822555796583785
     Normalized Root Mean Squared Error: 0.29704520634436443
  Optimized XGBoost 2
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR_dropped, y_test_MBBR_dropped)
print(f"Final model metrics:\\ \nNSE: \{nse\_final\}, \nPBIAS: \{pbias\_final\}, \nKGE: \{kge\_final\}"\}
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_final_MBBR_dropped,squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_final_MBBR_dropped)
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
     NSE: (-0.5413266020400924, 'bad'),
PBIAS: (20.85801659458364, 'bad'),
KGE: (0.29327000235137435, 'good')
     Root Mean Squared Error: 2.054824760065243
     Normalized Root Mean Squared Error: 0.411788529071191
   Untuned XGBoost 2
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_MBBR, y_test_MBBR_dropped)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_oob_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_oob_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
→ Final model metrics:
     NSE: (0.05503191654014583, 'bad'),
     PBIAS: (8.674598570215617, 'good'),
KGE: (0.44942410077765016, 'good')
     Root Mean Squared Error: 1.608925827702348
     Normalized Root Mean Squared Error: 0.3224300255916529
   Naive Model 1
```

rmse = mean\_squared\_error(y\_test\_MBBR\_dropped, y\_pred\_naive\_MBBR[non\_imputed\_mask\_MBBR],squared=False) print(f"Root Mean Squared Error: {rmse}")

```
9/25/24, 1:05 AM
                                                        [1] MBBR - All - Chlorine Residual Target.ipynb - Colab
   nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_naive_MBBR[non_imputed_mask_MBBR])
   print(f"Normalized Root Mean Squared Error: {nrmse}")
        Root Mean Squared Error: 1.6631881676095377
        Normalized Root Mean Squared Error: 0.33330424200591935
     Naive Model 2
   rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_naive_orig_MBBR[non_imputed_mask_MBBR],squared=False)
   print(f"Root Mean Squared Error: {rmse}")
   nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_naive_orig_MBBR[non_imputed_mask_MBBR])
   print(f"Normalized Root Mean Squared Error: {nrmse}")
        Root Mean Squared Error: 1.6630941882756551
        Normalized Root Mean Squared Error: 0.33328540847207516
      Feature Importance
   # Get feature importance
   importance_MBBR = final_model_MBBR.get_score(importance_type='gain')
   name_dict_MBBR = {
        'Flow.Rate.Influent..m3.d.': 'Flow Rate Influent',
        'BOD.Influent..ppm.': 'BOD Influent',
        'Total.Coliform.Effluent..MPN.100mL.': 'Total Coliform Effluent',
       'pH.Pre.chlorination': 'pH Pre-Chlorination',
       'Chlorine.dosage..L.d.':'Chlorine Dosage',
       'TSS.Pre.chlorination..ppm.':'TSS Pre-Chlorination',
       'Total.Coliform.Influent..MPN.100mL.': 'Total Coliform Influent',
        'Fecal.Coliform.Influent..MPN.100mL.':'Fecal Coliform Influent',
       'BOD.Pre.chlorination..ppm.':'BOD Pre-Chlorination',
       'Fecal.Coliform.Effluent..MPN.100mL.':'Fecal Coliform Effluent',
       'COD.Influent..ppm.':'COD Influent',
       'COD.Pre.chlorination..ppm.':'COD Pre-Chlorination',
       }
   # For visualization, it is better to convert it to a DataFrame
   importance_df_MBBR = pd.DataFrame({
        'Feature': list(importance_MBBR.keys()),
        'Importance': list(importance_MBBR.values())
   })
   importance_df_MBBR['Feature'] = importance_df_MBBR['Feature'].replace(name_dict_MBBR)
```

importance\_df\_MBBR = importance\_df\_MBBR.sort\_values(by='Importance', ascending=False)

plt.barh(importance\_df\_MBBR['Feature'], importance\_df\_MBBR['Importance'], color='skyblue')

# Sort the DataFrame by importance

# Plot feature importance plt.figure(figsize=(10, 8))







- Data Visualization for Model Evaluation
- Optimized XGBoost on Imputed Test Dataset

```
# with imputation
plt.scatter(y_test_MBBR,y_pred_final_MBBR);
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```



# Create an x-axis range based on the length of the series/array  $x = range(1, len(y_test_MBBR) + 1)$ 

```
# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_MBBR, label='True', marker='o')
plt.plot(x, y_pred_final_MBBR, label='Predicted', marker='x')

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Effluent Chlorine Residual')
plt.title('Comparison of True and Predicted Values on Imputed Test Data')
plt.legend()

# Show plot
plt.show()
```



#### Optimized XGBoost on Non-Imputed (Raw) Test Dataset

```
# without imputation
plt.scatter(y_test_orig_MBBR[non_imputed_mask_MBBR],y_pred_final_MBBR[non_imputed_mask_MBBR])
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```



```
# Create an x-axis range based on the length of the series/array x = range(1, len(y_test_orig_MBBR[non_imputed_mask_MBBR]) + 1)
```

 $\rightarrow$ 

```
# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_orig_MBBR[non_imputed_mask_MBBR], label='True', marker='o')
plt.plot(x, y_pred_final_MBBR[non_imputed_mask_MBBR], label='Predicted', marker='x'

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Effluent Chlorine Residual')
plt.title('Comparison of True and Predicted Values on Raw Test Data')
plt.legend()

# Show plot
nlt.show()
```



## Exporting Results

```
# Determine the maximum length of the columns
max_length = max(len(y_test_MBBR), len(y_test_MBBR_dropped), len(y_pred_final_MBBR), len(y_pred_final_MBBR_dropped), len(y_pred_
# Function to extend a series or array to the maximum length with NaN values
def extend_with_nan(data, length):
    if isinstance(data, np.ndarray):
        data = pd.Series(data)
```