Classification methods

Jimeng Sun

GRADIENT DESCENT METHOD

GDM FOR LINEAR REGRESSION

STOCHASTIC GRADIENT DESCENT (SGD) METHOD

SGD FOR LINEAR REGRESSION

Learn Linear regression model

 Likelihood is the joint probability of D as a function of parameters

$$L(\beta) = \prod_{i=1}^{m} p(y^{(i)}|\mathbf{x}^{(i)};\beta)$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y^{(i)} - \beta^T \mathbf{x}^{(i)})^2}{2\sigma^2}}$$

• Log-likelihood $l(\beta) = \log L(\beta)$

$$\begin{aligned} &= \log L(\beta) \\ &= \log \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y^{(i)} - \beta^T \mathbf{x}^{(i)})^2}{2\sigma^2}} \\ &= \sum_{i=1}^m \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y^{(i)} - \beta^T \mathbf{x}^{(i)})^2}{2\sigma^2}} \\ &= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^m (y^{(i)} - \beta^T \mathbf{x}^{(i)})^2 \\ &= \text{constant} \end{aligned}$$

ENSEMBLE METHOD

ENSEMBLE METHOD

BIAS VARIANCE TRADEOFF

BIAS VARIANCE TRADEOFF

BIAS VARIANCE TRADEOFF QUIZ

Rank from lowest to highest model complexity.

BIAS VARIANCE TRADEOFF QUIZ 2

Which is the best model?

ENSEMBLE METHOD

BAGGING

RANDOM FOREST

RANDOM FOREST

Random Forrest Algorithm

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbb{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

WHY BAGGING WORKS

Reduce Variance Without Increasing Bias

$$Var(\bar{X}) = \frac{Var(X)}{T}$$
 (when X are independent)

DECREASE BIAS?

BOOSTING

Boosting algorithm (high level)

- For t from 1 to T
 - Learning the *t*-th weak classifier c with respect to a data distribution
 - Assign weight to c based on c's performance
 - Adding c based on its weight to the final strong classifier C
 - Update data distribution by reweighting
- Output C

Ada-boost

AdaBoost, short for "Adaptive Boosting" by Yoav Freund and Robert Schapire

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$.

Initialize: $D_1(i) = 1/m$ for i = 1, ..., m.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Boosting example

A sample of a single	classifier on an imaginary set of data.		
(Original) Training Set			
Training-set-1:	1, 2, 3, 4, 5, 6, 7, 8		

A sample of Boosting on the same data.		
	(Resampled) Training Set	
Training-set-1:	2, 7, 8, 3, 7, 6, 3, 1	
Training-set-2:	1, 4, 5, 4, 1, 5, 6, 4	
Training-set-3:	7, 1, 5, 8, 1, 8, 1, 4	
Training-set-4:	1, 1, 6, 1, 1, 3, 1, 5	

- Sampling probability proportional to error
- Dependency between training sets
 - Errors on earlier training sets determine the sampling probability on later training sets

http://jair.org/media/614/live-614-1812-jair.pdf

BOOSTING

BAGGING

BAGGING VS. BOOSTING QUIZ

	BAGGING	BOOSTING
COMBINING METHOD	Simple average Weighted average	O Simple average Weighted average
PARALLEL	O Hard S Easy	Ø Hard O Easy
SENSITIVE TO NOISE	O Less O More	O Less More
ACCURACY	Good in all cases Better in most cases	O Good in all cases Better in most cases

SUMMARY FOR ENSEMBLE METHODS

PROS

- Simple
- Almost no parameter
 (except T)
- Flexible (combine with any algorithm)
- Theoretical guarantee

CONS

- Computational expensive due to computing multiple models
 - Both training and scoring need to deal with multiple models
- Lack of interpretation