Fundamentos de Matemática Discreta para a Computação

- Para definir uma linguagem:
 - Alfabeto
 - Palavras ou cadeias de caracteres
- A especificação da construção apropriada de sentenças é chamada sintaxe da linguagem.
- Estudaremos a sintaxe da uma classe de linguagens chamadas gramática com estrutura de frase.

Modelos Abstratos de Máquina

Linguagens

- Gramática com estrutura de frase
 - Definição 1: Um vocabulário (ou alfabeto) V é um conjunto finito e não-vazio de elementos chamados símbolos. Exemplo: letras e dígitos.
 - Uma palavra (ou sentença) sobre V é uma cadeia de tamanho finito sobre V. A cadeia vazia ou cadeia nula, denotado por λ, é a cadeia que não contém símbolos.
 - Se $V = \{a, b\}$ então:
 - $V^* = {\lambda, a, b, aa, ab, ba, bb, aaa, ...}$
 - O conjunto de todas as palavras sobre V é denotado por V*.

- Uma linguagem sobre V é um subconjunto de V*.
- Linguagens podem ser especificadas de várias formas:
 - a) Listando todas as palavras da linguagem.
 - b) Fornecendo um certo critério que deve ser satisfeito pelas palavras que pertençam à linguagem.
 - c) Através do uso de uma gramática.
- Uma gramática provê um conjunto de vários tipos de símbolos e um conjunto de regras para produção de palavras.

- Uma gramática possui um vocabulário V, que é o conjunto de símbolos utilizados para derivar membros da linguagem.
- Alguns elementos do vocabulário não podem ser substituídos por outros símbolos. Eles são chamados de terminais e os outros símbolos do vocabulário que podem ser substituídos por outros símbolos são chamados de não-terminais. Os conjuntos de terminais e não-terminais são denotados por T e N respectivamente.
- Existe um membro especial do vocabulário chamado símbolo inicial, denotado por S.

- As regras que especificam quando podemos substituir uma cadeia de V* por outra string são chamadas de **produções** da gramática. Denotamos por $Z_0 \rightarrow Z_1$ a produção que especifica que Z_0 pode ser substituído por Z_1 em uma cadeia.
- Definição 2: Uma gramática com estrutura de frase G = (V, T, S, P) consiste de um vocabulário V, um subconjunto T de V de elementos terminais. Um símbolo inicial S de V e de um conjunto de produções P. Toda produção em P deve conter somente símbolos não terminais do seu lado esquerdo.

Exemplo: Seja G = (V, T, S, P) onde V = {a, b, A, B, S}, T = {a, b}, S é o símbolo inicial e P = {S → ABa, A → BB, B → ab, AB → b}.

• Definição 3: Seja G = (V, T, S, P). Sejam w_0 = Iz_or (ou seja, a concatenação de I, z_o e r) e w₁ = Iz₁r, cadeias sobre V. Se $z_0 \rightarrow z_1$ é uma produção de G, dizemos que w₁ é diretamente derivável de w_0 e escrevemos $w_0 => w_1$. Se w_0 , w_1 , ..., w_n são cadeias sobre V, tal que $w_0 => w_1 => \dots => w_n$, então dizemos que w_n é derivável de w_o e escrevemos $w_0 \doteq > w_n$. A seqüência de passos utilizados para obter w_n a partir de w_o é chamada de derivação.

Definição 4: Seja G = (V, T, S, P). A linguagem gerada por G (ou a linguagem de G), denotado por L(G), é o conjunto de todas as cadeias de terminais que são deriváveis a partir do estado inicial S, ou seja, L(G) = {w ∈ T* | S ≐> w}

Exemplo: Seja G a gramática com vocabulário V = {S, A, a, b}, T = {a, b}, S = S e P = {S → aA, S → b, A → aa}. Qual a linguagem L(G) desta gramática?

- Exemplos de concatenação:
 - $a^5 = aaaaa$
 - $(bc)^4 = bcbcbcbc$
- Exemplo: Seja G a gramática com vocabulário V = $\{S, 0, 1\}$, T = $\{0, 1\}$, S = S e P = $\{S \rightarrow 11S, S \rightarrow 0\}$. Qual a linguagem L(G) gerada por esta gramática?
- Resposta: A linguagem de todas as cadeias que possuem um número par de 1's e que terminam com o. L(G) = {1ⁿo | n é par}

• Exemplo: Ache a gramática com estrutura de frase que gere o conjunto $\{o^m1^n\}$ m e n $\in Z^+$.

```
□ G1 = (V, T, S, P)

• V = {S, 0, 1}

• T = {0, 1}

• P = {S → oS, S → S1, S → λ}

□ G2 = (V, T, S, P)

• V = {S, A, 0, 1}

• T = {0, 1}

• P = {S → oS, S → 1A, S → 1, A → 1A, A → 1, S → λ}
```

Tipos de Gramáticas com Estrutura de Frase

- Uma gramática do tipo o não tem restrições em suas produções.
- Uma gramática do tipo 1 pode possuir produções de forma $w_1 \rightarrow w_2$ onde o tamanho de w_2 é maior que o tamanho de w_1 ou da forma $w_1 \rightarrow \lambda$.
- Uma gramática do tipo 2 pode possuir produções apenas de forma $w_1 \rightarrow w_2$, onde w_1 é um único símbolo e é um símbolo não-terminal.

Tipos de Gramáticas com Estrutura de Frase

- Uma gramática do tipo 3 pode possuir produções apenas da forma $w_1 \rightarrow w_2$ com $w_1 = A$ e tanto $w_2 = aB$ ou $w_2 = a$ onde A e B são símbolos não-terminais e a é um símbolo terminal, ou ainda com $w_1 = S$ e $w_2 = \lambda$.
- Gramáticas do tipo 3 são também chamadas de gramáticas regulares. Uma linguagem gerada por uma gramática regular é chamada regular.
- Exemplo: oⁿ1ⁿ é uma linguagem tipo 2, pois as produções da gramática são S → oS1 e S → λ.

- Em estudos anteriores, consideramos o conjunto S* consistindo de todas as cadeias finitas (strings) de elementos de um conjunto (alfabeto) S.
- Existem várias interpretações para os elementos de S*, dependendo da natureza de S.
 - se pensarmos em S como um conjunto de "palavras", então S* pode ser considerado como o conjunto de todas as possíveis "sentenças" formadas a partir de palavras de S. Claro que tais sentenças não necessitam ter um significado.

- Devemos pensar em uma linguagem como uma especificação completa, pelo menos em princípio, de 3 elementos.
 - 1. Deve existir um conjunto S de palavras que fazem parte da linguagem.
 - 2. Um subconjunto de S* deve ser designado como o conjunto de "sentenças corretamente construídas" da linguagem.
 - 3. Deve ser determinado quais das sentenças corretamente construídas têm significado e qual seu significado.

Comprimento de cadeias

- Seja w_n uma palavra em $\{a,b\}^*$ n = 1, 2, 3...
 - Exemplos:
 - $w_1 = aab$
 - $w_2 = abbba$
 - w_3 = abababaaa
 - O comprimento de w é representado por |w|, assim:
 - $|w_1| = 3$
 - $|W_2| = 5$
 - $|w_3| = 9$

Prefixo, sufixo, subpalavra e expressão regular

- Seja w uma palavra de $\{a, b\}^*$ e w = aabab
 - Conjunto dos prefixos de w:
 - $P = \{a, aa, aab, aaba aabab\}$
 - Conjunto dos sufixos de w:
 - $S = \{b, ab, bab, abab, aabab\}$
 - Conjunto das subpalavras de w:
 - PUS
- Expressão regular
 - □ a*bc+b²
 - * → qualquer quantidade de vezes (inclusive zero vezes).
 - \cdot + \rightarrow uma ou mais vezes.
 - x (algum número natural) $\rightarrow x$ vezes.

Exemplo:

- Seja S o conjunto dos inteiros, dos símbolos +, -, ×
 e ÷ e os parênteses ().
- Nós obteremos uma linguagem se considerarmos apropriada aquelas cadeias em S* que representam de maneira não ambígua expressões algébricas.
 - $((3-2)+(4\times7)) \div 9$
 - $\cdot (7 (8 (9 10)))$
 - · São sentenças corretamente construídas nesta linguagem.

• Exemplo: Qual é uma das gramáticas que produzem as sentenças abaixo?

```
((3-2)+(4\times7))\div9(7-(8-(9-10)))
```

```
S
ABC
(ABA) ÷9
(A+A) ÷9
((ABA)+(ABA)) ÷9
((C-C)+(CxC)) ÷9
((3-2)+(4×7)) ÷9

S
ABC
(ABA)
((ABA)
((C-(ABA))
((7-(C-(ABA)))
((7-(8-(C-C)))
((3-2)+(4×7)) ÷9
```

```
V = \{S, A, B, C, +, -, \times, \div, (,), 2, 3, 4, 7, 8, 9, 10\}
T = \{+, -, \times, \div, (,), 2, 3, 4, 7, 8, 9, 10\}
S = S
P = \{ S \rightarrow A, S \rightarrow A B C, A \rightarrow (A B A), A \rightarrow C, B \rightarrow + |-| \times | \div, C \rightarrow 2|3|4|7|8|9|10
\}
```

Exercício

```
    Para a gramática G = (V, T, S, P)

                                                                     E
                                                                     E*E
                                                      E+E
  com:
                                                                     E+E*E
                                                      I+E
  • V = \{E, I, a, b, +, *\}
                                                                     I+E*E
                                                      a+E
                                                                     a+E*E
  • T = \{a, b, +, *\}
                                                      a+E*E
                                                                     a+I*E
                                                      a+I*E
  \cdot S = E
                                                                     a+b*E
                                                      a+b*E
  • P = \{ E \rightarrow I \mid E + E \mid E * E \}
                                                                     A+b*I
                                                      a+b*I
                                                                     a+b*a
             I \rightarrow a \mid b \mid Ia \mid Ib \}
                                                      a+b*a
```

 Encontre a árvore de derivação da palavra a+b*a.