HOMEWORK 9

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE)

Proposition 6.31.

Let p be prime and m,n $\in \mathbb{N}$. If p|mn then p|m or p|n.

Proof. Assume $p \nmid m$. We must prove $p \mid n$. By the definition of greatest common divisor, we have qp + rm = gcd(p, m). Because p is prime and $p \nmid m$, we know gcd(p,m) = 1. Thus we have qp + rm = 1. If we multiply by n on both sides, we have (qp + rm)n = qpn + rmn = n. Because $p \mid mn$ and $p \mid qpn$, $p \mid (qpn + rmn)$. Thus, $p \mid n$.

Theorem 6.35. If $m \in \mathbb{Z}$ and p is prime, then $m^p \equiv m \pmod{p}$.

Proof. Case 1. m = 0. $0^p \equiv 0$. Clearly, $0^p \equiv 0 \pmod{p}$.

Case 2. $m \ge 1$ We argue by induction on $m \ge 1$ for P(m) " $m^p \equiv m \pmod{p}$."

Base. m = 1. So $1^p = 1$. Clearly, $1^p \equiv 1 \pmod{p}$.

Successor. Suppose P(m) holds. Consider $(m+1)^p$. By the binomial theorem, $(m+1)^p = \sum_{n=0}^p \binom{p}{n} m^n \cdot 1^{p-n} = \sum_{n=0}^p \binom{p}{n} m^n = \binom{p}{0} m^0 + \sum_{n=1}^{p-1} \binom{p}{n} m^n + \binom{p}{p} m^p$. By proposition 6.34, $p | \binom{p}{n}$ and $p | \binom{p}{n} m^n$ for $1 \le n \le p-1$. Thus, $p | \sum_{n=1}^{p-1} \binom{p}{n} m^n$. We may write $\sum_{n=1}^{p-1} \binom{p}{n} m^n$ as $p \cdot j$ for some j. Hence, $(m+1)^p = \binom{p}{0} + p \cdot j + \binom{p}{p} m^p = 1 + p \cdot j + m^p$. We now see that $(m+1)^p$ mod $p = 1 + pj + m^p$ mod $p = 1 \mod p + pj$ mod $p + m^p$ mod $p = 1 \mod p + m^p$ mod $p = 1 \mod p$. We conclude that $(m+1)^p \equiv (m+1)$ mod p = 1. This completes the induction. Case 3. $m \le -1$.

Base. m = -1. So $-1^p = \pm 1$. Clearly, $-1^p \equiv -1 \pmod{p}$.

Successor. Suppose P(m) holds. Consider $-(m+1)^p$. Because we've already proven P(m + 1) holds and \equiv is an equivalence relation, we may negate both sides of the equality to see that $-(m+1)^p \equiv -(m+1)$ mod p

Date: March 27, 2017.

Proposition 6.33. Let $m, n \in \mathbb{N}$. If m divides n and p is a prime factor of n that is not a prime factor of m, then m divides $\frac{n}{n}$.

Proof. Since m|n, we can find $j \in \mathbb{Z}$ such that $m \cdot j = n$. From Euclid's lemma, since p|n, it must be the case that p|m or p|j. Since p|j, we can write $j = i \cdot p$, so $n = m \cdot i \cdot p$. We can conclude that $m|\frac{n}{p}$.

Lemma. Let p be a prime. If $p|(a_1 \ldots a_n)$, then $p|a_i$ for some $1 \leq i \leq n$.

Proof. let P(k) be the statement " $p|a_i$ " for some $1 \le i \le k$. Let's first observe P(1).

Base. n = 1. $p|a_1$ because it is the only number given to us.

Base. n = 2. $p|a_1 \cdot a_2$. By Euclid's lemma, p must divide a_1 or a_2 .

Successor. Assume P(n) holds. That is, $p|a_i$ for some $1 \leq i \leq n$. Consider the event that $p|(a_1 \ldots a_{n+1})$. By Euclid's lemma, either $p|(a_1 \ldots a_n)$ or $p|a_{n+1}$. If $p|a_{n+1}$, we are done. Otherwise, our induction hypothesis states that $p|a_i$ for some $1 \leq i \leq n$. Therefore the proposition holds by induction.