Optimisation de la tournée d'un livreur grâce à un algorithme génétique

Objectifs

Problématique : comment optimiser la tournée d'un livreur à l'aide d'un algorithme de colonie de fourmis ?

- Définitions et enjeux
- 2 Les algorithmes génétiques
- 3 Implémentation et résultats

Problème du voyageur de commerce

Cycle hamiltonien

Cycle d'un graphe passant une et une seule fois par chaque sommet.

Figure: Graphe G_1 et un cycle hamiltonien de G_1

Problème du voyageur de commerce

Étant donné un graphe G, quel est le plus court cycle hamiltonien de G?

Un problème NP complet

Le problème du voyageur de commerce est NP-complet.

Temps d'exécution des méthodes exactes

Les algorithmes approchés

(a) Un cycle hamiltonien

(b) Le plus court cycle hamiltonien

Hypothèse métrique

$$d(u,v) \le d(u,w) + d(w,v)$$

Une première solution

- 1 **Entrée** : graphe *G*
- 2 **Sortie** : un cycle hamiltonien de *G*
- 3 Calculer un ACM \mathcal{A} de G
- 4 Calculer l'ordre d'un parcours en profondeur de ${\mathcal A}$
- 5 Retirer les doubles occurences de sommets dans l'ordre calculé

Algorithme par arbre couvrant minimal

Rapide...

Temps d'exécution de la méthode par arbre couvrant minimal

... Mais peu efficace

Longueur du cycle trouvé par la méthode de l'arbre couvrant minimal

Meilleur facteur d'approximation possible : ≈ 1.5

L'algorithme d'optimisation par colonie de fourmis

Icône fourmi : Lele Saa - Noun Proiect

Icône nourriture : Sonika Agarwal - Noun Project

Attractivité d'une arête

$$a(v) = p(v)^{\alpha} d(v)^{-\beta}$$

L'algorithme d'optimisation par colonie de fourmis

Probabilité pour la fourmi de choisir l'arête v_0

$$\mathbb{P}(v_0) = \frac{a(v_0)}{\sum\limits_{v \in V(s)} a(v)}$$

Incrémentation des phéromones

$$p_{k+1}(v) = (1-\varepsilon)p_k(v) + \sum_{C \in \mathcal{C}(v)} \frac{Q}{w(C)}$$

Étude des résultats

- 1 pour chaque tour (5) faire
- pour chaque fourmi (200) faire
- 3 Construire un cycle aléatoire
- 4 Mettre à jour les phéromones
- 5 Renvoyer le meilleur cycle trouvé

Algorithme de colonie de fourmis

Algorithme et étude des résultats

- n sommets placés aléatoirement dans $[0, n]^2$
- Distance euclidienne entre les sommets
- Répétition de l'expérience entre 10 et 50 fois

Un exemple de résultat

Phéromones déposés par les fourmis

Meilleur chemin trouvé

Un algorithme relativement rapide

Temps d'exécution de la méthode par colonie de fourmis

D'excellents résultats sur de petits graphes

Longueur des plus courts cycles trouvés par les différents algorithmes

Et pour de plus grands graphes ?

Longueur des plus courts cycles trouvés par les différents algorithmes

Conclusion

Conclusion sur l'algorithme de colonie de fourmis :

- Une vitesse d'exécution acceptable (< 50 sommets)
- Des cycles hamiltoniens courts

Pistes d'amélioration :

- Optimisation du code
- Amélioration de l'heuristique
- Différentes classes de fourmis

• •

Annexes

Annexes

Annexes

- Algorithme de Prim.
- Code
 - Constantes
 - Fonctions utilitaires
 - Génération des graphes
 - Fonctions graphiques
 - Solution naïve
 - Solution par backtracking
 - Solution par arbre couvrant minimal
 - Solution par colonie de fourmis
 - Comparaison des résultats

Algorithme de Prim

```
1 Entrée : graphe G
2 Sortie : un arbre couvrant minimal de G
3 Initialiser \mathcal{A} = \{0\}
4 Créer le tableau \mathcal T des distances à \mathcal A (+\infty si plus d'une arête)
   tant que |\mathcal{A}| < |\mathcal{G}| faire
        Extraire \nu le sommet du minimum de \mathcal{T}
       Ajouter v \ a
        pour chaque voisin u de v faire
            si d(u, v) < \mathcal{T}[u] alors
9
            \mathcal{T}[u] \leftarrow d(u,v)
10
  retourner \mathcal{A}
```

Algorithme de Prim

Constantes I

```
# Constantes pour la création du graphe
DEFAULT_EVAPORATION = 20 # En pourcents
DEFAULT PHEROMONES = 1
PREFERRED_PHEROMONES = 5 # Phéromones d'un chemin
→ privilégié initialement
COLOR_LIST = ["blue", "red", "green", "orange"]
# Constantes pour l'algorithme colonie de fourmis
ALPHA = 2 # Importance phéromones
BETA = 2 # Importance visibilité ville (visibilité =
→ inverse distance)
Q = PREFERRED_PHEROMONES * 100 # Quantité max de
→ phéromones déposées
```

Fonctions utilitaires I

import networkx as nx

def path_length(graph: nx.Graph, path):
 assert len(path) == len(graph)

Fonctions utilitaires II

Génération des graphes I

```
from random import randint
from constants import *
from math import sqrt
import networkx as nx
def generate_graph(n, evaporation=DEFAULT_EVAPORATION):
    graph = nx.Graph(evaporation=evaporation)
    positions = [0]*n
    for i in range(n):
        pos_i = randint(0, n)
        positions[i] = pos_i
        graph.add_node(i, position=(i, pos_i))
        for j in range(i+1):
```

Génération des graphes II

```
pos_j = positions[j]
length = round(sqrt((i - j) ** 2 + (pos_i -
    pos_j) ** 2) / n, 3)  # On divise la
    longueur par n pour
# adimensionner.
graph.add_edge(i, j, length=length,
    pheromones=DEFAULT_PHEROMONES)
graph.add_edge(j, i, length=length,
    pheromones=DEFAULT_PHEROMONES)
```

```
# add_edges(graph)
return graph
```

Fonctions graphiques I

```
from constants import *
import networkx as nx
import matplotlib.pyplot as plt
def draw_graph(graph: nx.Graph, paths, labels):
    plt.figure(figsize=(18,18))
    plt.box(False)
    pos = nx.get_node_attributes(graph, 'position')
    nx.draw_networkx(graph,
         pos,
         with_labels=True,
         edgelist=[],
```

Fonctions graphiques II

```
node size=1000.
     font size=25)
for i_path in range(len(paths)):
    nx.draw_networkx_edges(graph,
       pos,
       edgelist=[(paths[i_path][i], paths[i_path][i+1])

→ for i in range(len(paths[i_path])-1)],
       width=3*(1+i_path)/len(paths),
       alpha=1 - i_path/len(paths),
       edge_color=COLOR_LIST[i_path % len(COLOR_LIST)])
plt.legend()
plt.show()
```

Fonctions graphiques III

```
def print_pheromones(graph: nx.Graph):
    for i in range(len(graph)):
        for j in range(len(graph)):
            print(round(graph.edges[i, j]["pheromones"],
             \rightarrow 2), end="")
        print()
def draw_graph_with_pheromones(graph: nx.Graph):
    plt.figure(figsize=(18, 18))
    plt.box(False)
    pos = nx.get_node_attributes(graph, 'position')
    nx.draw_networkx(graph,
```

4 D > 4 B > 4 E > 4 E > 9 Q P

Fonctions graphiques IV

```
pos,
     with_labels=True,
     edgelist=[],
     node_color="grey",
     node size=1000.
     font_size=25)
max_pheromones = 0.01
for (u, v, pheromone) in

    graph.edges.data("pheromones"):
    if pheromone > max_pheromones:
        max_pheromones = pheromone
for (u, v, pheromone) in

    graph.edges.data("pheromones"):
```

Fonctions graphiques V

from utils import path_length

Solution naïve I

```
import networkx as nx
def permutation_suivante(permutation: list[int]):
    11 11 11
    Calcule la permutation suivante de [0,n-1] dans
→ l'ordre lexicographique
    :param permutation: Permutation de [0,n-1]
    :return: La permutation suivante, ou False si on a
    atteint la dernière permutation
    11 11 11
    n = len(permutation)
    j = n-2
    while j >= 0 and permutation[j] > permutation[j+1]:
```

Solution naïve II

```
j -= 1
if j == -1:
    return False # On est arrivés à la dernière
    \rightarrow permutation
k = n-1
while permutation[j] > permutation[k]:
    k = 1
tmp = permutation[j]
permutation[j] = permutation[k]
permutation[k] = tmp
for i in range((n-j-1)//2):
    tmp = permutation[i+j+1]
    permutation[i+j+1] = permutation[n-i-1]
    permutation[n-i-1] = tmp
return permutation
```

Solution naïve III

```
def naive_solution(graph: nx.Graph):
    11 11 11
    Calcule la longueur de chaque cycle possible
    Complexité : O(n!)
    :param graph: Le graphe étudié
    :return: La lonqueur et le chemin le plus court
    11 11 11
    n = len(graph)
    path = list(range(n))
    min_path = list(range(n))
    min_length = path_length(graph, path)
    while True:
        path = permutation_suivante(path)
```

Solution naïve IV

Solution par backtracking I

import networkx as nx

```
def backtracking(graph: nx.Graph):
    11 11 11
    Recherche par retour sur trace du plus court chemin du
\rightarrow graphe.
    Complexité dans le pire cas : O(n!)
    11 11 11
    n = len(graph)
    best 1 = float("inf")
    best_path = list(range(n+1))
    def recherche_recursive(visited, nb_visites, path,
        longueur):
```

4□ ▶ 4回 ▶ 4 三 ▶ 4 三 ▶ 9 ♀ ♀

nonlocal best_1, best_path

Solution par backtracking II

```
if longueur > best_l: # Si le chemin est déjà plus
→ long que notre meilleure solution, on coupe la
\rightarrow branche
    return
if nb_visites == n: # Si le chemin est fini, on

→ examine sa longueur

    path[n] = path[0]
    longueur += graph.edges[path[n - 1],
    → path[n]]["length"]
    if longueur < best_1:</pre>
        best_1 = longueur
        for i in range(n+1):
```

◆ロト ◆団 ト ◆ 重 ト ◆ 重 ・ 夕 Q (*)

Solution par backtracking III

```
else: # On explore toutes les branches à partir de
\hookrightarrow ce chemin
    for sommet in range(n):
        if not visited[sommet]:
            visited[sommet] = True
            nb_visites += 1
            path[nb_visites - 1] = sommet
            longueur += graph.edges[path[nb_visites
             → - 2], sommet]["length"]
            recherche_recursive(visited,
             → nb_visites, path, longueur)
            longueur -= graph.edges[path[nb_visites
             → - 2], sommet]["length"]
```

best_path[i] = path[i]

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Solution par backtracking IV

```
return
visites = [False] * n
chemin = \lceil -1 \rceil * (n+1)
for sommet_debut in range(n):
    visites[sommet debut] = True
    chemin[0] = sommet_debut
    recharche recursive(visites, 1, chemin, 0)
    chemin[0] = -1
    visites[sommet_debut] = False
return best_1, best_path
```

nb visites -= 1

path[nb_visites - 1] = None

visited[sommet] = False

Solution par arbre couvrant minimal I

```
import sys
def primMST(graph: nx.Graph):
    11 11 11
    Recherche l'ACM du graphe
    Complexité : O(n^2)
    11 11 11
    n = len(graph)
    T = [sys.maxsize] * n
    parent = [-1] * n
    T[0] = 0
    mstSet = [False] * n
    parent[0] = -1
```

import networkx as nx

Solution par arbre couvrant minimal II

```
for cout in range(n):
    mini = sys.maxsize
    mini_idx = None
    for v in range(n):
        if T[v] < mini and not mstSet[v]:
            mini = T[v]
            mini_idx = v
    u = mini_idx
    mstSet[u] = True
    for v in range(n):
        if 0 < graph.edges[u, v]["length"] < T[v] and
        → not mstSet[v]:
```

Solution par arbre couvrant minimal III

```
T[v] = graph.edges[u, v]["length"]
                 parent[v] = u
    mst_tree = [[] for _ in range(n)]
    for u in range(n):
        mst_tree[parent[u]].append(u)
    return mst_tree
def prim(graph: nx.Graph):
    11 11 11
    Calcule le cycle donné par l'arbre couvrant minimal du
\rightarrow graphe
    Complexité : O(n^2)
    11 11 11
```

Solution par arbre couvrant minimal IV

```
n = len(graph)
B = primMST(graph) \# O(n^2)
cycle = []
length = 0
visited = [False] * n
to_visit = [0]
while to_visit: # O(n^2)
    current = to_visit.pop()
    if len(cycle) > 0:
        length += graph.edges[cycle[-1],

    current] ["length"] # Rajoute 0 si on est
         → au début
    cycle.append(current)
    visited[current] = True
    for neighbor in B[current]:
```

Solution par arbre couvrant minimal V

Solution par colonie de fourmis I

```
from constants import *
from prim import prim
import networkx as nx
import random
import numpy as np
class Ant:
    def __init__(self, graph: nx.Graph, starting_city):
        self.graph = graph
        self.current_position = starting_city
        self.visited cities = \Pi
        self.cycle_length = 0
        self.add_visited_city(self.current_position)
                                         4□ ▶ 4回 ▶ 4 三 ▶ 4 三 ▶ 9 ♀ ♀
```

Solution par colonie de fourmis II

```
def add_visited_city(self, new_city):
    self.visited_cities.append(new_city)
    if len(self.visited cities) > 1:
        self.cycle_length +=

→ self.graph.edges[self.visited_cities[-2],

    self.visited_cities[-1]]["length"]

    self.current_position = new_city
def reset(self):
    self.visited_cities = [self.visited_cities[0]]
    self.cvcle_length = 0
```

```
def attractiveness(graph: nx.Graph, i, j):
```

Solution par colonie de fourmis III

```
def new_round(graph: nx.Graph, ants):
   n = len(graph)
   delta_pheromones_tab = [[0] * n for _ in range(n)]
   for nb_cities_visited in range(n - 1): # O(n)
       for ant in ants: # O(n * m)
          is visited = [False]*n
          for city in ant.visited_cities: # O(n^2 * m)
              is_visited[city] = True
          sum_probabilities = 0
          i = ant.current_position
```

return (graph.edges[i, j]["pheromones"] ** ALPHA) *

Solution par colonie de fourmis IV

```
for j in range(n): \# O(n^2 * m)
    if not is_visited[j]:
        sum_probabilities +=
        → attractiveness(graph, i, j)
        if sum_probabilities > 10**20:
            raise ValueError
probabilities_tab = []
for j in range(n): \# O(n^2 * m)
    if is_visited[j]:
        probabilities_tab.append(0)
    else:
        probabilities_tab.

→ append(attractiveness(graph, i, j)

→ / sum_probabilities)

try:
```

4 D > 4 B > 4 E > 4 E > 9 Q P

Solution par colonie de fourmis V

```
new_city =
           → np.random.choice(list(range(n)),

    p=probabilities_tab)

       except ValueError:
          raise ValueError
       ant.add_visited_city(new_city)
for ant in ants: # Retour au départ
   new_city = ant.visited_cities[0]
   ant.add_visited_city(new_city)
   for i in range(n):
       delta_pheromones_tab[ant.visited_cities[i]] |

→ ant.cycle_length
```

Solution par colonie de fourmis VI

return delta_pheromones_tab

```
def run_colonie(graph: nx.Graph, nb_of_ants=-1,
   nb_of_rounds=100, start_path=None,
  start_length=float("inf")):
    11 11 11
    O(n^2 * nb\_of\_ants * nb\_of\_rounds)
    nb_of_rounds: Nombre de cycles complets (n itérations)
    11 11 11
    ants = \Pi
    n = len(graph)
    if nb_of_ants == -1:
        nb_of_ants = n # Par défaut : autant de fourmis
        <ロト 4周ト 4 恵ト 4 恵ト - 恵 - 夕久で
```

Solution par colonie de fourmis VII

```
for ant in range(nb_of_ants):
    if nb_of_ants % n == 0 or ant < nb_of_ants - n:
        # Si le nombre de fourmis est un multiple du
        → nombre de villes, ou qu'on peut faire un

    → tour complet

        # On distribue uniformément les fourmis
        starting_city = ant % n
    else:
        starting_city = random.randint(0, n-1)
    ants.append(Ant(graph, starting_city))
for (u, v) in graph.edges:
    graph.edges[u, v]["pheromones"] =

→ DEFAULT PHEROMONES
```

Solution par colonie de fourmis VIII

```
if start_path:
   for i in range(len(start_path) - 1):
       graph.edges[start_path[i], start_path[i +
        → 1]]["pheromones"] = PREFERRED_PHEROMONES
best_cycle = start_path
best_length = start_length
for id_round in range(nb_of_rounds):
   delta_pheromones_tab = new_round(graph, ants)
   for (u, v, pheromone) in

    graph.edges.data("pheromones"):
       graph.edges[u, v]["pheromones"] = (1 -
        ◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)
```

Solution par colonie de fourmis IX

```
* graph.edges[u, v]["pheromones"] +
                delta_pheromones_tab[u][v]
    for ant in ants:
        if ant.cycle_length < best_length:
            best_cycle = ant.visited_cities
            best_length = ant.cycle_length
        # On réinitialise la fourmi à sa ville de
        → départ
        ant.reset()
# print_pheromones(graph)
return best_length, best_cycle
```

Solution par colonie de fourmis X

```
def run_colonie_with_prim(graph: nx.Graph, nb_of_ants=-1,
→ nb_of_rounds=100):
    distance, path_prim = prim(graph)
    return run_colonie(graph, nb_of_ants, nb_of_rounds,
    → path_prim, distance)
def run_colonie_partial(graph):
    return run_colonie(graph, nb_of_ants=40,

→ nb_of_rounds=20)

def run_colonie_with_prim_partial(graph):
    return run_colonie_with_prim(graph, nb_of_ants=40,
    \rightarrow nb of rounds=20)
                                         4 D > 4 B > 4 E > 4 E > 9 Q P
```

Comparaison des résultats I

```
from generate_graph import generate_graph
from constants import *
from utils import cycle_length
import time
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from colonie2 import *
def time_strategy(graph, strategy):
    start = time.time()
    longueur, solution = strategy(graph)
    if round(longueur, 0) != round(cycle_length(graph,
    \rightarrow solution), 0):
                                         ◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)
```

Comparaison des résultats II

```
print("Erreur sur la stratégie", strategy, ":",
        → longueur, "!=", cycle_length(graph, solution))
        raise ValueError
    end = time.time()
   return end - start, longueur, solution
def multiple_graph_time_path_length(n_list, repetitions,

→ strategies, strategies_names):
   nb_strategies = len(strategies)
    fig = plt.figure(constrained_layout=True)
    gs = gridspec.GridSpec(1, nb_strategies, figure=fig)
   data_list = [{"time": [], "length": [], "n": []} for _

→ in range(len(strategies))]
```

4日 > 4周 > 4 差 > 4 差 > 差 の 9 ○

Comparaison des résultats III

```
for k in range(len(n_list)):
    starting_time = time.time()
    for i in range(repetitions):
        graph = generate_graph(n_list[k])
        for i_strat in range(len(strategies)):
            duree, length, solution =

    time_strategy(graph,

    strategies[i_strat])

            data_list[i_strat]["time"].append(duree)
            data_list[i_strat]["length"].append(length
            → * n_list[k]) # On remet à l'échelle
            data_list[i_strat]["n"].append(n_list[k])
    ending_time = time.time()
    print(k + 1, "/", len(n_list), "(", n_list[k], ")

    in", round(ending_time - starting_time, 2),
```

Comparaison des résultats IV

```
# Le tracé du 1er graphe est fait à part
gsi = gridspec.GridSpecFromSubplotSpec(2, 1,

    subplot_spec=gs[0])

ax1 = fig.add_subplot(gsi[0])
ax2 = fig.add_subplot(gsi[1])
ax1.set_ylabel("temps (s)")
ax2.set_ylabel("distance")
ax1.scatter(data_list[0]["n"],
            data_list[0]["time"],
            c=COLOR LIST[0].
            s=10)
ax1.set_title(strategies_names[0])
```

Comparaison des résultats V

```
ax2.scatter(data_list[0]["n"],
            data_list[0]["length"],
            c=COLOR LIST[0 % len(COLOR LIST)].
            s=10)
ax2.set xlabel("n")
for i_strat in range(1, len(strategies)):
    ax1 = fig.add_subplot(gsi[0], sharey=ax1)
    ax2 = fig.add_subplot(gsi[1], sharey=ax2)
    ax1.scatter(data_list[i_strat]["n"],
                data list[i strat]["time"].
                c=COLOR LIST[i strat %
                 → len(COLOR LIST)].
```

Comparaison des résultats VI

```
s=10)
        ax1.set_title(strategies_names[i_strat])
        ax2.scatter(data list[i strat]["n"].
                     data_list[i_strat]["length"],
                     c=COLOR_LIST[i_strat %
                     → len(COLOR_LIST)],
                     s=10)
        ax2.set xlabel("n")
    plt.show()
def strategy_to_list(n_list, repetitions, strategies):
    11 11 11
```

Comparaison des résultats VII

```
Renvoie une liste des résultats de la forme suivante :
strat1: {
    n_1: [tps1, dst1], [tps2, dst2] \dots]
    n_2: [ [tps1, dst1], [tps2, dst2] ... ]
strat2: {}
```

Comparaison des résultats VIII

```
11 11 11
nb_strategies = len(strategies)
data_list = [{} for _ in range(nb_strategies)]
for k in range(len(n_list)):
    starting_time = time.time()
    for i_strat in range(nb_strategies):
        data_list[i_strat][n_list[k]] = []
    for i in range(repetitions):
        graph = generate_graph(n_list[k])
        for i_strat in range(len(strategies)):
            duration, length, solution =

→ time_strategy(graph,

    strategies[i_strat])
```

Comparaison des résultats IX

```
data_list[i_strat][n_list[k]].
            → append([duration, length * n_list[k]])
            → # On remet à l'échelle
        if repetitions > 1:
            print(".", end="")
    ending_time = time.time()
    print("\t", end="")
    print(k + 1, "/", len(n_list), "(", n_list[k], ")

→ in", round(ending_time - starting_time, 2),

→ "s")
return data_list
```

Comparaison des résultats X

```
if not file_name:
    file_name = time.strftime("donnees/csv/%d %b %Y

→ "Hh", time.localtime()) + ".csv"

with open(file_name, 'w') as fichier:
    fichier.write("n")
    for i_strat in range(len(strategies)):
        fichier.write(", " + strategies_names[i_strat]
        \rightarrow + " temps (s), " +

    strategies_names[i_strat] + " distance")

    fichier.write("\n")
    for n in n list:
        fichier.write(str(n))
        for i_strat in range(len(strategies)):
            avg\_tps = 0
            avg_dst = 0
```

Comparaison des résultats XI

Comparaison des résultats XII

```
file_name = time.strftime("donnees/tex/%d %b %Y

→ "\", time.localtime()) + strategies_names[
   i_strat] + "tps.txt"
with open(file_name, 'w') as fichier:
   for i_n in range(len(n_list)):
      avg_tps = 0
      for i_rep in range(repetitions):
          avg_tps += data_list[i_strat] |
           avg_tps = avg_tps / repetitions
      fichier.write("(" + str(n_list[i_n]) + ","
       \rightarrow + str(avg_tps) + ")\n")
file_name = time.strftime("donnees/tex/%d %b %Y

→ "Hh", time.localtime()) +
```

with open(file_name, 'w') as fichier:

Comparaison des résultats XIII

```
for i_n in range(len(n_list)):
                avg_dst = 0
                for i_rep in range(repetitions):
                    avg_dst += data_list[i_strat] |
                    avg_dst = avg_dst / repetitions
                fichier.write("(" + str(n_list[i_n]) + ","
                \rightarrow + str(avg_dst) + ")\n")
def recherche_nombre_fourmis(n_list, n_rep):
   nb_of_ants_list = [100, 125, 150, 175, 200, 225, 250,
    \rightarrow 275, 300, 325, 350, 375, 400]
   result = [0] * len(nb_of_ants_list)
```

4 D > 4 B > 4 E > 4 E > 9 Q P

Comparaison des résultats XIV

```
for i_n in range(len(n_list)):
    print(i_n+1, "/", len(n_list), "(", n_list[i_n], ")

→ ")

    for i_rep in range(n_rep):
        graph = generate_graph(n_list[i_n])
        for i_nb_of_ants in
        → range(len(nb_of_ants_list)):
            dist, path = run_colonie(graph,
            → nb_of_ants_list[i_nb_of_ants].
            → 1000//nb_of_ants_list[i_nb_of_ants])
            result[i nb of ants] += dist
plt.scatter(nb_of_ants_list, result)
plt.show()
```