Esercizi 01 — 6 pt

1-1 pt

Si determini la distanza fra il numero 2 (in base decimale) e il suo successivo rappresentato nell'insieme $\mathbb{F}(2,4,-5,5)$. Si riporti il risultato in base decimale.

0.25

2-1 pt

Si consideri l'insieme dei numeri floating–point $\mathbb{F}(2,5,-3,3)$. Scelto il segno s=1, la mantissa $m=(10101)_2$ e l'esponente e=1, si riporti il corrispondente numero x in base decimale.

-1.3125

3 — 1 pt

Si considerino le funzioni $f_1(x) = (x-1)^7$ e $f_2(x) = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1$, equivalenti in aritmetica esatta. Utilizzando Matlab[®] si determini l'errore relativo percentuale commesso valutando le due funzioni in $\overline{x} = 1.01$, ovvero si riporti il valore $100 \frac{|f_1(\overline{x}) - f_2(\overline{x})|}{|f_1(\overline{x})|}$.

42.1085%

4 — 2 pt

Si consideri la matrice di Toeplitz $A \in \mathbb{R}^{n \times n}$, ovvero tale che $(A)_{i,j} = c_{i-j}$ per $i,j=1,\ldots,n$, essendo le costanti $c_k \in \mathbb{R}$ per $k=(1-n),(2-n),\ldots,(n-2),(n-1)$. Si pongano ora n=100 e $c_k=100-|k|$, per $k=-99,\ldots,99$, e si assegni la matrice A in Matlab[®]. Si riportino i valori della somma s_1 degli elementi sull'ultima riga di A e della somma s_2 degli elementi sull'antidiagonale di A.

$$s_1 = 5050, \quad s_2 = 5000$$

5-1 pt

Si consideri il metodo babilonese per approssimare \sqrt{S} , dove $S \in \mathbb{R}$ e S > 0. Ovvero si usi la successione $x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right)$, per $n = 0, 1, \ldots$, essendo x_0 assegnato, tale che $\lim_{n \to +\infty} x_n = \sqrt{S}$. Posti $S = 10^5$ e $x_0 = S$, si applichi il precedente metodo in Matlab[®] e si riporti l'approssimazione ottenuta all'iterata n = 10, ovvero x_{10} .

317.2029