Trusted Design in FPGAs

Programming

Software

Attacks

- Cloning, Overproducing, Mislabeling
- Reverse Engineering the Bitstream
- Readback
- Side Channels
 - Power Analysis
 - EM Analysis
 - Timing Analysis
 - Ionizing Radiation
- Invasive and Semi-Invasive
- Brute Force, Crippling, Fault Injection
- Relay and Replay

Cloning, Overproducing, Mislabeling

- FPGA's are generic
 - A generated bitstream will work on any device within the respective device family and size
 - Attackers can clone bitstreams
 - Recording in transmission to FPGA
 - Use them in other systems
 - Cheaper clones

Reverse Engineering the Bitstream

 Bitstream Reversal: transformation of an encoded bitstream into functionally equivalent description of the original design

Bitstream Reversal

Partial reversal

- Extraction of data from bitstream without full functionality
 - BRAM/LUT
 - Memory cell states
 - Keys could be compromised

Full reversal would divulge the entire design

Readback

- Readback: Process of reading back data from the FPGA device to verify that the design was downloaded properly.
- Retrieving a snapshot of the FPGA's current state while still in operation
 - Configuration
 - LUT
 - Memory contents
- Useful for vendors to verify correct operation
- If enabled, an attacker can add missing header/footer info
 - Use in another device
 - Reprogram FPGA with modified version, Tamper with a Trojan
 - Reverse engineering
 - "Readback Difference Attack"

Readback

- Defensive usage
 - Providing evidence of tampering
 - Ionizing radiation attack
- Xilinx provides a bitstream bit to disable readback, but is easily found
- Altera's devices do not provide readback capabilities

Side Channel

 Challenge: isolate internal operations of IC from the environment

- Power Analysis
- EM Analysis
- Timing Analysis
- Ionizing Radiation

Power Analysis

- SPA on Xilinx Virtex FPGA
 - Not practical for most paralleled cryptographic operations
- DPA possible
 - Statistical correlation techniques against AES and DES
- Power analysis attacks could be made harder
 - Equivalent power signatures

Electromagnetic Field Analysis

- Movement of charge
- Used to efficiently inject signal/noise in attacks
- Successful side channel attack to be exploited

Timing Analysis

- Timing attacks are difficult on FPGA
- Off chip for functionality
- Observable via device pins

Ionizing Radiation

- Single event upsets (SEU, Soft Errors)
 - Radiation induced errors caused when charged particles lose energy by ionizing the medium through which they pass
 - May cause transient pulse resulting in delay faults
 - Cause memory bit to change state
- Exhaustively irradiating device until desired results are obtained
- Given the number of transistors & devices, this may not be practical

Ionizing Radiation Detection

- FPGA vendors introduced measures to ensure highreliability
 - CRC or Hamming
- Triple Modular Redundancy
- Chip "scrubbing" to remove block faults from SEU

Flip Chip Packaging

Side Channel: Conclusion

- Some challenges an attacker faces with most side channel attacks:
 - Familiarity with implementation details
 - Isolation of target function
 - Obtaining high signal to noise ratio
 - Probing BGA packages
 - Devices manufactured at 90/65/45nm technologies

Crippling & Fault Injection

- Subvert a system to perform malicious functions or take it off-line
- Reprogramming with or without encryption can take the system down
 - Authentication can solve this issue
- Attempt to force the device to execute an incorrect operation, or be left in a compromising state
 - Altering input clock or voltage

Relay Attack

- Loaded bitstream uses an authentication protocol to communicate to a chip nearby in which case they share a key. This is meant to prevent the bitstream from being used on another system.
- Relay attacks allow an adversary to impersonate a participant during an authentication protocol

Replay

- Attacker resends recorded protocol transaction data
 - ex. impersonation of a participant in authentication protocol
- Cloning of bitstreams is the simplest form

Replay

Defenses

Bitstream Encryption

- Key Storage
- Key Management

Theft Deterrents

- PUFs
- Digital Right Management

Bitstream Encryption

- Encrypt bitstream at end of design flow
- Decrypt it on the FPGA
 - Cloning
 - Reverse Engineering
 - Tampering
- Bitstream produced
 - Software requests key
 - Encryption
- User 'programs' same key into FPGA
- Bitstream is downloaded, directed through decryption circuitry

Key Storage

- Keys must be present inside the device to decrypt
- Two storage devices
 - Volatile
 - SRAM
 - Non-volatile
 - Fuses
 - Flash
 - EEPROM
 - PUF

Key Management

- Encryption
 - Xilinx: Triple DES, AES 256
 - - Stratus II : AES 128
 - Stratus III: volatile & non volatile, AES 256
- If encryption is used:
 - Disable readback & partial configuration

Key Management

- Establishing Value
 - Simple: One key
 - Catastrophe if compromised
 - More secure: One key per device
 - Very costly
 - If compromised, single stream is affected
 - Database of keys is threat

Design Theft Deterrents

- Vendors offer a few cloning deterrents that rely on secrecy of bitstream encoding
 - Xilinx Spartan 3A "Device DNA"
 - Challenge-response schemes

Watermarking and Fingerprinting

- Passive
- Proves ownership
- Fingerprinting is a watermark used to identify specific end users
- Can be inserted:
 - HDL
 - Netlist
 - Bitstream
- Do not prevent theft, but can provide proof in court of fraud

Ongoing Research

- Physically Unclonable Functions
- Bitstream Authentication
- FPGA Digital Rights Management

Bitstream Authentication

- Allows two major items:
 - Sender verification
 - Message integrity
- Sometimes considered more important than encryption
- Very complex methods have been devised
- Restrictions for bitstreams and cores from being used in unauthorized devices
 - Pay-per-use

VHDL '08 Protect

`protect begin_protected

protect directives and encoded encrypted information
`protect end_protected

Example: