Part II: Written Questions (Total 60 minutes; 3 questions)

Question 1 (10 points, 12 minutes)

It is known that $i_1 = \frac{1}{2}i_0$, and $v_1 = 3v_2$ in the following circuit.

Fig. Q1

(1) Determine the values of R_1 , and R_2 .

(6 points)

(2) If $i_1 = 0.8$ A, find the power supplied by the voltage source.

(4 points)

Question 2 (18 points, 22 minutes)

A circuit is given in Fig. Q2.

(1) If $R_1 = 4 \Omega$ and $R_2 = 2 \Omega$, find the current *i* and voltage *v*;

(5 points)

(2) If i = 2 A and v = 36 V, find the resistances R_1 and R_2 ;

(5 points)

(3) Suppose the voltage and current sources supply powers of 36 W and 90 W, respectively, find the current i, voltage v, and resistances R_1 and R_2 . (8 points)

Fig. Q2

Question 3 (22 points, 26 minutes)

The following circuit has two parts: the 'Source' and 'load' parts.

Fig. Q3a

- (1) Find the Thevenin equivalent circuit looking into the 'source' part from the terminals a-b in Fig. Q3a; (4 points)
- (2) Find the voltage v and powers P_1 and P_2 consumed by the two 4- Ω resistors in Fig. Q3a; (6 points)
- (3) If the 'load' part is replaced by a resistor R in Fig. Q3b, find the resistance of R that will consume the maximum power P_{max} and the value of the corresponding P_{max} ; and (6 points)
- (4) If the 'load' part is replaced by a current-controlled voltage source as shown in Fig. Q3c, find the current *i*. **(6 points)**

Solution:

Q1

(1)

Given by

 $v_1 = v_{20 \Omega} + v_2$ $v_1 = 3v_2$ $v_{20 \Omega} = 2v_2$

Based on voltage division

 $R_2 = \frac{1}{2} R_{20 \,\Omega} = 10 \,\Omega$

Given by

 $i_1 = \frac{1}{2}i_0$ $R_1 = R_{20 \Omega} + R_2 = 30 \Omega$

Based on Current division

(2)

$$i_1 = 0.8 \text{ A}$$
 $i_0 = 2i_1 = 1.6 \text{ A}$
 $R_{eq} = 6 \Omega + 4 \Omega + (R_1 || (R_{20 \Omega} + R_2)) = 25 \Omega$
 $P = I^2 R_{eq} = 64 \text{ W}$

 $\mathbf{Q2}$

$$v = 24 \text{ V}, i = -1.5 \text{ A}.$$

$$R_1 = 18 \Omega$$
, $R_2 = 6 \Omega$

$$i = -36/18 = -2 \text{ A}, v = 90/3 = 30 \text{ V}$$

Then

 $R_1 = 3.6 \Omega, R_2 = 4 \Omega$

Q3 (1)

$$R_{ab} = 8 \Omega$$

When the current source is killed, $U_{ab1} = 24 V$.

When the voltage source is killed,

$$I_N = 6 \times \frac{5}{8} = \frac{15}{4} A$$

$$\therefore U_{ab2} = 8 \times \frac{15}{4} = 30 V$$

$$\therefore U_{ab} = U_{ab1} + U_{ab2} = 54 V$$

(2)

Since this is a DC circuit, therefore the capacitor opens the circuit, and the inductor is regarded as a short line

Thus, $P_2 = 0$.

Set *I* is the current through the resistor 4 Ω whose power is $P_1 = 0$ W

$$I = \frac{54}{8+4} = 4.5 \text{ A}$$

$$P_1 = I^2 R = 4.5^2 \times 4 = 81 \text{ W}$$

(3)

The maximum power will be obtained when the load equals to the R_{th} , say $R = R_{th} = 8 \Omega$.

Therefore,
$$P_{max} = \frac{54^2}{R_{ab} + R} \times \frac{1}{2} = 91.125 \text{ W}$$

(4)

Set the current inside the first mesh and second mesh are I_1 and I_2 , respectively.

Then, $i = I_1$

$$\begin{cases} 24 = 5I_1 + 3I_2 + 4I_1 \\ I_2 - I_1 = 6 \text{ A} \end{cases} \rightarrow i = I1 = 0.5 \text{ A}$$