

SEMICONDUCTOR TECHNICAL DATA

KIA78L05F~KIA78L24F

BIPOLAR LINEAR INTEGRATED CIRCUIT

THREE TERMINAL POSITIVE VOLTAGE REGULATORS 5V, 6V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V.

FEATURES

- · Best Suited to Power Supply for TTL, C2-MOS.
- · No External Part Needed.
- · Built-in Thermal Protective Circuit.
- · Max. Output Current 150mA (T_i=25 °C).
- · Packaged in Power Mini.

MAXIMUM RATINGS (Ta=25 °C)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT
Input Voltage	(5V~15V)	V _{IN}	35	V
input voitage	(18V ~24V)	▼ IN	40	V
Power Dissipation		P_{D}	500	mW
Operating Junction T	emperature	T _j	-30 ~150	$^{\circ}\mathbb{C}$
Operating Temperatu	ıre	T _{opr}	-30~75	$^{\circ}$
Storage Temperature		T_{stg}	-55~150	$^{\circ}$ C

EQUIVALENT CIRCUIT

Marking

Type No.	Marking	Type No.	Marking	Type No.	Marking
KIA78L05F	8A	KIA78L10F	8F	KIA78L20F	8K
KIA78L06F	8B	KIA78L12F	8G	KIA78L24F	8L
KIA78L08F	8D	KIA78L15F	81		
KIA78L09F	8E	KIA78L18F	8J		

ELECTRICAL CHARACTERISTICS

KIA78L05F

(Unless otherwise specified, V_{IN} =10V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 °C \leq $T_{j} \leq$ 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	$V_{ m OUT}$	1	T _j =25 °C		4.75	5.0	5.25	V
Locat Deceletion	Dan line	1	T-25 %	$7.0V \leq V_{IN} \leq 20V$	-	55	150	
Input Regulation	Reg line	1	T _j =25 ℃	$8.0V \le V_{IN} \le 20V$	-	45	100	- mV
Lood Boundation	Danland	1	T-25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	11	60	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	5.0	30	m v
Output Voltage	$V_{ m OUT}$	1	$7.0V \leq V_{IN}$ $1.0mA \leq I_{C}$	i≤20V, _{OUT} ≤40mA	4.65	-	5.3	· V
Output voltage	VOUT	I I	V _{IN} =10V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	4.65	-	5.3	V
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.1	6.0	- mA
Quiescent Current	IB		T _j =125 ℃		-	-	5.5	IIIA
Quiescent Current Change	AI.	1	$8.0V \leq V_{IN}$	≤20V	-	-	1.5	mA
Quiescent Current Change		1	1.0mA ≤ I ₀	_{DUT} ≤40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Ta=25 ℃,	10Hz≤f≤100kHz	-	40	-	$\mu V_{ m rms}$
Long Term Stability	⊿V _{OUT} /⊿t	1			-	12	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 8.0V≤V _{IN}	_i ≤18V, T _j =25°C	41	49	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-0.6	-	mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L06F

(Unless otherwise specified, V_{IN} =11V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 °C \leq $T_{j} \leq$ 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	Т	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	$V_{ m OUT}$	1	T _j =25 ℃		5.7	6.0	6.3	V
Lucus De colletion	Dan line	1	T-25 %	$8.1V \le V_{IN} \le 21V$	-	50	150	
Input Regulation	Reg line	1	T _j =25 ℃	$9.0V \le V_{IN} \le 21V$	-	45	110	mV
I and Dave before	D 1 1	1	T 25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	12	70	
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	5.5	35	mV
Outrot Vales -	V	1	$8.1V \leq V_{IN}$ $1.0mA \leq I_{C}$	i≤21V, _{OUT} ≤40mA	5.58	-	6.42	· V
Output Voltage	V _{OUT}	1	V _{IN} =11V,	$1.0\text{mA} \leq I_{OUT} \leq 70\text{mA}$	5.58	-	6.42	V
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.1	6.0	mA
Quiescent Current	1 _B	I	T _j =125 ℃		-	-	5.5	IIIA
Ovieseant Current Change	41	1	$9.0V \leq V_{IN}$	≤20V	-	-	1.5	A
Quiescent Current Change		1	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	mA
Output Noise Voltage	V _{NO}	1	Ta=25 ℃,	10Hz≤f≤100kHz	-	40	-	$\mu V_{ m rms}$
Long Term Stability	⊿V _{OUT} /⊿t	1			-	14	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 9.0V ≤V _{IN}	₁ ≤19V, T _j =25°C	39	47	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-0.7		mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L08F

 $(Unless \ otherwise \ specified, \ V_{IN}=14V, \ I_{OUT}=40mA, \ C_{IN}=0.33\,\mu\!F, \ C_{OUT}=0.1\,\mu\!F, \ 0\,^{\circ}\text{C} \leq T_{j} \leq 125\,^{\circ}\text{C})$

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	Т	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃		7.6	8.0	8.4	V
Input Regulation	Reg line	1	T _i =25 ℃	$10.5V \leq V_{IN} \leq 23V$	-	20	175	mV
input Regulation	Keg iiile	1	1 _j -23 C	$11V \leq V_{IN} \leq 23V$	-	12	125	IIIV
Load Domilation	Dania	1	T-25 °C	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	15	80	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	7.0	40	mv
Output Voltage	V	1	$10.5V \le V_{I}$ $1.0mA \le I_{C}$	N ≤23V OUT ≤40mA	7.44	-	8.56	V
Output Voltage	V _{OUT}	1	V _{IN} =14V,	$1.0\text{mA} \le I_{OUT} \le 70\text{mA}$	7.44	-	8.56	v
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.1	6.5	А
Quiesceni Curreni	1B	1	T _j =125 ℃		-	-	6.0	mA
Ovigenant Comment Change	41	1	$11V \leq V_{IN}$	<u>≤</u> 23V	-	-	1.5	А
Quiescent Current Change	ΔI_{B}	1	1.0mA ≤I _C	_{OUT} ≤40mA	-	-	0.1	mA
Output Noise Voltage	V _{NO}	1	Ta=25℃,	10Hz≤f≤100kHz	-	60	-	$\mu V_{ m rms}$
Long Term Stability	∠V _{OUT} /∠t	1			-	20	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 12V ≤V _{IN}	≤23V, T _j =25 °C	37	45	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-0.8	-	mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L09F

(Unless otherwise specified, V_{IN} =15V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 $^{\circ}$ C \leq T_{j} \leq 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		9.0	9.45	V
Jan (Dec letter	D U.	1	T 25 %	$11.4V \leq V_{IN} \leq 24V$	-	80	200	
Input Regulation	Reg line	1	T _j =25 ℃	$12V \leq V_{IN} \leq 24V$	-	20	160	- mV
Lord Declaring	D 1 1	1	T 25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	17	90	
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	8.0	45	- mV
Output Voltage	V _{OUT}	1	$11.4V \le V_1$ $1.0mA \le I_0$	_{IN} ≦24V _{DUT} ≤40mA	8.37	-	9.63	V
Output Voltage	VOUT	1	V _{IN} =15V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	8.37	-	9.63	·
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.2	6.5	mA
Quiescein Currein	1B	1	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change		1	$12V \leq V_{IN}$	≤24V	-	-	1.5	mA
Quiesceni Curreni Change	∠/1 _B	1	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Та=25℃,	10Hz ≤f ≤100kHz	-	65	-	μV_{rms}
Long Term Stability	∠V _{OUT} /∠t	1			-	21	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 12V≤V _{IN}	≤24V, T _j =25 °C	36	44	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-0.85	-	mV/ ℃

ELECTRICAL CHARACTERISTICS

KIA78L10F

(Unless otherwise specified, V_{IN} =16V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 $^{\circ}$ C \leq T $_{j}$ \leq 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		10	10.5	V
I D	D 1	1	T. 25%	$12.5V \leq V_{IN} \leq 25V$	-	80	230	37
Input Regulation	Reg line	1	T _j =25 ℃	$13V \leq V_{IN} \leq 25V$	-	30	170	- mV
I ID I	D 1 1	1	T. 25%	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	18	90	3.7
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	8.5	45	- mV
Output Voltage	$V_{ m OUT}$	1	$12.5V \le V_1$ $1.0mA \le I_0$	_{IN} ≤25V _{DUT} ≤40mA	9.3	-	10.7	V
Output Voltage	V OUT	1	V _{IN} =16V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	9.3	-	10.7	v
Quiescent Current	ı	1	T _j =25 ℃		-	3.2	6.5	mA
Quiesceni Curreni	I_{B}	I	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change	41	1	$13V \leq V_{IN}$	≤25V	-	-	1.5	mA
Quiesceni Curreni Change		I	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Ta=25 °C,	10Hz ≤f ≤100kHz	-	70	-	$\mu V_{ m rms}$
Long Term Stability	⊿V _{OUT} /⊿t	1			-	22	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 13V≤V _{IN}	≤24V, T _j =25 °C	36	43	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-0.9	-	mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L12F

(Unless otherwise specified, V_{IN} =19V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 °C \leq $T_{j} \leq$ 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		12	12.6	V
Land Day Letter	D 1	1	T 25 %	$14.5V \le V_{IN} \le 27V$	-	120	250	
Input Regulation	Reg line	1	T _j =25 ℃	$16V \le V_{IN} \le 27V$	-	100	200	mV
I and Dave designs	D 1 1	1	T 25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	20	100	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{\text{OUT}} \leq 40\text{mA}$	-	10	50	mv
Output Voltage	$V_{ m OUT}$	1	$14.5V \le V_1$ $1.0mA \le I_0$	_{IN} ≦27V _{DUT} ≤40mA	11.16	-	12.84	V
Output Voltage	VOUT	1	V _{IN} =19V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	11.16	-	12.84	V
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.2	6.5	mA
Quiesceni Curreni	IB	1	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change		1	$16V \leq V_{IN}$	≤27V	-	-	1.5	mA.
Quiescent Current Change	∠/1 _B	1	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Ta=25℃,	10Hz ≤f ≤100kHz	-	80	-	$\mu V_{ m rms}$
Long Term Stability	⊿V _{OUT} /⊿t	1			-	24	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 15V≦V _{IN}	≤25V, T _j =25 °C	36	41	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-1.0	-	mV/ ℃

ELECTRICAL CHARACTERISTICS

KIA78L15F

(Unless otherwise specified, V_{IN} =23V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, $0 \, ^{\circ}\text{C} \leq T_{j} \leq 125 \, ^{\circ}\text{C}$)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		15	15.75	V
Lucat Decadation	Dan line	1	T -25 %	$17.5V \leq V_{IN} \leq 30V$	-	130	300	
Input Regulation	Reg line	1	T _j =25 ℃	$20V \leq V_{IN} \leq 30V$	-	110	250	- mV
Lood Boundation	Dec leed	1	T-25 °C	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	25	150	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \leq I_{OUT} \leq 40\text{mA}$	-	12	75	- mv
Output Voltage	V	1	$17.5V \leq V_1$ $1.0mA \leq I_0$	_{IN} ≤30V _{DUT} ≤40mA	13.95	-	16.05	V
Output Voltage	$V_{ m OUT}$	I	V _{IN} =23V,	$1.0\text{mA} \le I_{OUT} \le 70\text{mA}$	13.95	-	16.05	V
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.3	6.5	- mA
Quiescent Current	1 _B	I I	T _j =125 ℃		-	-	6.0	IIIA
Onice and Compart Change	41	1	$20V \leq V_{IN}$	≤30V	-	-	1.5	4
Quiescent Current Change		1	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	- mA
Output Noise Voltage	V _{NO}	1	Ta=25 °C,	10Hz≤f≤100kHz	-	90	-	μV_{rms}
Long Term Stability	⊿V _{OUT} /⊿t	1			-	30	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 18.5V ≤V	$_{\rm IN} \leq 28.5 \text{V}, \ T_{\rm j} = 25 ^{\circ}\text{C}$	34	40	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-1.3	-	mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L18F

(Unless otherwise specified, V_{IN} =27V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 °C \leq $T_{j} \leq$ 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		18	18.9	V
Louist Description	Dag line	1	T_25 %	$21.4V \le V_{IN} \le 33V$	-	32	325	mV
Input Regulation	Reg line	I	T _j =25 ℃	$22V \le V_{IN} \le 33V$	-	27	275	IIIV
Load Doubletion	Dania	1	T-25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	30	170	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \le I_{\text{OUT}} \le 40\text{mA}$	-	15	75	IIIV
Output Voltage	$V_{ m OUT}$	1	$ 21.4V \leq V_1 \\ 1.0mA \leq I_0 $	_{IN} ≤33V _{DUT} ≤40mA	16.74	-	19.26	V
Output Voltage	VOUT	1	V _{IN} =27V,	$1.0\text{mA} \leq I_{OUT} \leq 70\text{mA}$	16.74	-	19.26	v
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.3	6.5	mA
Quiescent Current	18	1	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change	$_{\it \Delta} I_{\rm B}$	1	$22V \leq V_{IN}$	≤33V	-	-	1.5	mA
Quiescent Current Change	∠J1 _B	1	1.0mA ≤ I ₀	_{OUT} ≤40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Ta=25 °C,	10Hz ≤f ≤100kHz	-	150	-	μV_{rms}
Long Term Stability	∠V _{OUT} /∠t	1			-	45	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, $23V \le V_{IN}$	≤33V, T _j =25 °C	32	38	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-1.5	-	mV/ ℃

ELECTRICAL CHARACTERISTICS

KIA78L20F

 $(Unless \ otherwise \ specified, \ V_{IN}=29V, \ I_{OUT}=40mA, \ C_{IN}=0.33\,\mu\!F, \ C_{OUT}=0.1\,\mu\!F, \ 0\,^{\circ}\text{C} \leq T_{j} \leq 125\,^{\circ}\text{C})$

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		20	21.0	V
Los (Doo letter	D 1	1	T-25 %	$23.5V \leq V_{IN} \leq 35V$	-	33	330	
Input Regulation	Reg line	1	T _j =25 ℃	$24V \leq V_{IN} \leq 35V$	-	28	285	- mV
Load Regulation	Pag land	1	T-25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	33	180	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0 \text{mA} \leq I_{\text{OUT}} \leq 40 \text{mA}$	-	17	90	IIIV
Output Voltage	$ m V_{OUT}$	1	$23.5V \le V_1$ $1.0mA \le I_0$	_{IN} ≦35V _{DUT} ≦40mA	18.6	-	21.4	V
Output voltage	VOUT	1	V _{IN} =29V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	18.6	-	21.4	v
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.3	6.5	mA
Quiescent Current	18	1	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change	AI.	1	$24V \leq V_{IN}$	≤35V	-	-	1.5	- mA
Quiescent Current Change	$_{\it d}I_{\rm B}$	1	1.0mA ≤I ₀	_{DUT} ≤40mA	-	-	0.1	- IIIA
Output Noise Voltage	V _{NO}	1	Ta=25 °C,	10Hz ≤f ≤100kHz	-	170	-	μV_{rms}
Long Term Stability	$\Delta V_{OUT}/\Delta t$	1			-	49	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 25V ≤V _{IN}	≤35V, T _j =25°C	31	37	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{vo}	1	I _{OUT} =5mA		-	-1.7	-	mV/℃

ELECTRICAL CHARACTERISTICS

KIA78L24F

(Unless otherwise specified, V_{IN} =33V, I_{OUT} =40mA, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, 0 °C \leq $T_{j} \leq$ 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	1	T _j =25 ℃	T _j =25 ℃		24	25.2	V
Lucat Deceletion	Dog line	1	T _25 °C	$27.5V \leq V_{IN} \leq 38V$	-	35	350	
Input Regulation	Reg line	1	T _j =25 ℃	$28V \le V_{IN} \le 38V$	-	30	300	mV
Lord Domilation	Doglasd	1	T-25 %	$1.0\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$	-	40	200	mV
Load Regulation	Reg load	1	T _j =25 ℃	$1.0\text{mA} \le I_{\text{OUT}} \le 40\text{mA}$	-	20	100	IIIV
Output Voltage	$V_{ m OUT}$	1	$27.5V \le V_1$ $1.0mA \le I_0$	_{IN} ≦38V _{DUT} ≦40mA	22.32	-	25.68	V
Output Voltage	VOUT	1	V _{IN} =33V,	$1.0\text{mA} \leq I_{\text{OUT}} \leq 70\text{mA}$	22.32	-	25.68	v
Quiescent Current	I_{B}	1	T _j =25 ℃		-	3.5	6.5	- mA
Quiescein Currein	1B	1	T _j =125 ℃		-	-	6.0	IIIA
Quiescent Current Change	$_{\it \Delta} I_{\rm B}$	1	$28V \leq V_{IN}$	≤38V	-	-	1.5	- mA
Quiescent Current Change	∠/1B	1	1.0mA ≤I ₀	_{DUT} ≦40mA	-	-	0.1	IIIA
Output Noise Voltage	V _{NO}	1	Ta=25℃,	10Hz ≤f ≤100kHz	-	200	-	$\mu V_{ m rms}$
Long Term Stability	⊿V _{OUT} /⊿t	1			-	56	-	mV/ 1.0kHrs
Ripple Rejection Ratio	RR	2	f=120Hz, 29V≤V _{IN}	≤39V, T _j =25 °C	31	35	-	dB
Dropout Voltage	V _{IN} -V _{OUT}	1	T _j =25 ℃		-	1.7	-	V
Average Temperature Coefficient of Output Voltage	TC _{VO}	1	I _{OUT} =5mA		-	-2.0	-	mV/ ℃

TEST CIRCUIT / STANDARD APPLICATION CIRCUIT

TEST CIRCUIT

1. V_{OUT} , R_{eg} · line , R_{eg} · load , V_{OUT} , I_B , $\triangle I_B$, V_{NO} , $\triangle V_{OUT}$ / $\triangle t$, $\mid V_{IN}$ - $V_{OUT}\mid$, TC_{VO}

EXAMPLS OF TYPICAL CIRCUIT

(1) STANDARD APPLICATION

 $\begin{array}{ccc} D1 & : & Protection \ Diode \\ & & High \ speed \ diode \ D1 \ should \ be \\ & & connected \ as \ shown \ in \ the \ figure \\ & & if \ the \ condition \ V_{IN} < V_{OUT} \\ & & might \ occur \ by \ surge \ voltage \ or \\ & & power \ supply \ ON/OFF. \end{array}$

 $\begin{array}{c} R_{SD} \ : \ Power \ limiting \ resistor \\ \ for \ large \ V_{IN}, \ resistor \ R_{SD} \ is \\ \ needed \ to \ limit \ IC \ power \\ \ dissipation. \end{array}$

(2) A. CURRENT BOOST VOLTAGE REGULATOR

Heat sink is needed for Q1

$$R1 \leqq \ \frac{V_{BE1}}{I_{B(MAX)}}$$

where, V_{BE1} : V_{BE} of external transistor Q1

I_{B(MAX)}: Quiescent current of IC

B. SHORT-CIRCUIT PROTECTION

$$R_{SC} = \frac{V_{BE2}}{I_{SC}}$$

where, I_{SC}: Short-Circuit current

(3) CURRENT REGULATOR

$$I_{OUT} = \frac{V_{OUT}}{R} + I_{B}$$

(4) VOLTAGE BOOST REGULATOR

 $V_{OUT} = V_Z + V_{OUT}$ (of IC) Apply current of several mA to R.

(5) NEGATIVE REGULATOR

(6) POSITIVE AND NEGATIVE REGULATOR

PRECAUTIONS FOR USE

When such a high voltage as exceeds 10V beyond the fixed output voltage(Typ. value) of is applied to its output terminal, IC may be destroyed. In this case, connect a zener diode between the output terminal and GND to prevent application of excessive voltage. In particular, in such a current boosting circuit as shown in application circuit example(2), if input voltage is suddenly applied by stages and furthermore load is light, excessive voltage may be applied transiently to the output terminal of IC. In such a case as this, it may become necessary to increase capacity of output capacitor as appropriate, use a smaller R1(a resistor for bypassing IC bias current) or gradually rise input voltage in addition to use of a zener diode as mentioned above.

SOLDERING

Flat Package (SOT-89 Package)

Elements mounting styles of electronic devices are gaining in further diversification over recent years, and needs for components are all the more expanding in varieties. Especially, surface mounting is steadily penetrating into industrial segments as a world-wide popular technical trend. Although exposure to high temperature is inevitable during soldering we recommend limiting the soldering temperature to low levels as shown in figure for the sake of retaining inherent excellent reliability.

- (a) When employing solder reflow method
 - \bigcirc Atmospheric temperature around resin surfaces must be less than 240 $^{\circ}$ C, not exceeding the time length of 10 sec.
 - 2 Recommend temperature profile
 - ③ Precautions on heating method

When resin in kept exposed to high temperature for a long time, device reliability may be marred.

Therefore, it is essential to complete soldering in the shortest time possible to prevent temperature of resin from rising.

(b) When employing halogen lamps or infrared-ray heaters

When halogen lamps or infrared-ray heaters are used, avoid direct irradiation onto resin surfaces; such devices cause extensive localized temperature rise.

* Please keep a reflow solder operating when SOT-89 package's soldering.

