

Species

Tree Diversity

60

20

"common mynah" "asian pied starling" "black drongo" 40


```
18
        "spotted dove"
16
        "asian openbill"
14
        "blyth's reed warbler"
        "common iora"
11
        "red-vented bulbul"
10
        "scaly-breasted munia"
9
        "yellow-bellied sunbird"
7
        "white-throated kingfisher"
6
6
        "rose-ringed parakeet"
        "jungle babbler"
6
        "great egret"
6
        "plain prinia"
5
        "grey sunbird"
5
        "*(indian swift)"
5
        "spotted owlet"
4
        "oriental magpie robin"
4
        "house crow"
4
Э
        "long-tailed shrike"
Э
        "brown-capped pygmy woodpecker"
        "streaked-fantail warbler"
2
        "rufous treepie"
2
        "jungle mynah"
2
        "cotton pygmy goose"
2
2
        "cattle egret"
        "green bee-eater"
1
        "common flameback"
1
        "*(scaly munia-like black crow)"
1
        "*(black bird)"
1
#!/usr/bin/env python
# Calculates the simpson index of diversity for given data.
# Usage:
    ./simpson.py [frequencies]
# frequencies list (space separated) of frequencies of species
from os import sys
import math
data = map(int, sys.argv[1:])
n = sum(data)
0 = b
for x in data:
    p = x * 1.0 / n
    d += p*p
print d
```

10976	"HUMBLA"	281	"GOMPSE"	60	"WALSPI"	4	"MEMEA_"
8788	"AGROIN"	261	"TRICER"	56	"NOTHFO"	3	"SYMPEL"
7203	"MESUNA"	237	"EUPHLO"	55	"SYZYAM"	3	"CASEZE"
4460	"UNIDEN"	232	"SYMPCO"	53	"EUGERI"	3	"BOMBCE"
3926	"GARCHE"	224	"PODATH"	52	"DYSOBI"	2	"SYZYMI"
	"SHORDI"						
3614		222	"SEMESU"	51	"SCOLAC"	2	"SYMPCC"
3567	"AGROHO"	216	"DILLRE"	50	"LIJNGA"	2	"PAGIDI"
2912	"PSYCNI"	215	"CALOBR"	49	"CHIOAL"	2	"EUONWA"
2886	"MESUFE"	197	"SYZYMA"	48	"CAMPZE"	2	"CLIDHI"
2249	"SHORWO"	179	"ACTIAL"	45	"MELAMA"	2	"CANTDI"
2062	"SHORAF"	174	"TIMOJA"	41	"PALAHI"	1	"WENDBI"
2037	"UROPEL"	167	"ELAESU"	41	"CALOTR"	1	"STRYMI"
1005	"SHORCR"	165	"GYRIWA"	40	"BYRSEL"	1	"PALAGR"
1859	"CULLCE"	163	"URANAP"	37	"SYZYOP"	1	"MASTNI"
1724	"SCHUCA"	163	"SYMPCU"	37	"DESMZE"	1	"KOKOZE"
1680	"PALACA"	162	"STRONA"	37	"ARTONO"	1	"FRAGZE"
1596	"SHORME"	161	"PUTRRO"	36	"MEMEB_"	1	"CARYUR"
1340	"MYRIDA"	159	"CINNVE"	35	"MEMESY"	1	"BRIDRE"
1320	"SHORTR"	154	"PAVEIN"	35	"MEMED_"		
1190	"GAERVA"	141	"SYZYLI"	33	"PRUNWA"		
1148	"CULLRO"	139	"MALLRH"	33	"PALALA"		
1126	"XYLOCH"	137	"GOMPTE"	30	"CLE I PA"		
1123	"SEMEWA"	132	"SYZYSY"	30	"CINNRI"		
1100	"PSYCDU"		"PRISTE"		"GARCTE"		
		131		29			
1090	"PALATH"	124	"SEMEAC"	29	"ARDIGA"		
1000	"PALAPE"	123	"MADHFU"	25	"MEMERY"		
896	"GAERRO"	121	"NEOLCA"	25	"MEMEC_"		
	"ANISCI"		"DIOSQU"		"ABARBI"		
834		120		25			
768	"DIOSAC"	115	"EURYAC"	23	"STEMCA"		
748	"GLOCAC"	113	"DIOSIN"	23	"DIOSRA"		
735	"SYZYNE"	112	"GLOCZE"	19	"OSMEGA"		
703	"MEMEAR"	110	"MEMEPR"	19	"GLOCNE"		
663	"MEMERO"	110	"DYSOPE"	18	"GARCTH"		
659	"CALOTH"	106	"LASIOB"	16	"HORSIR"		
646	"SEMEGA"	106	"ANTIPY"	16	"CLERIN"		
624	"MASTTE"	99	"MALLFU"	15	"MACAIN"		
562	"MANGZE"	97	"SYZYCY"	15	"LASIOL"		
539	"CRYPWI"	97	"MEMEVA"	15	"EUGEIN"		
512	"LITSLO"	97	"AXINZE"	15	"CHAEFE"		
500	"LEEAIN"	95	"SYMPHI"	14	"ADENBI"		
478	"ALLOZE"	94	"ISONLA"	13	"HOMACE"		
472	"SHORST"	91	"PSYCPL"	12	"SYZYCA"		
464	"BHESCE"	90	"GLYCPE"	12	"PERSMA"		
463	"HYDNOC"	88	"POMETO"	12	"CARABR"		
453	"SHORCN"	87	"CARACA"	11	"RANDGA"		
429	"DIOSHI"	86	"VITEAL"	11	"MEMEGR"		
412	"CHAECO"	86	"GON I HO"	11	"CANAZE"		
394	"NARGMA"	90	"SEMENI"	10	"DESMEL"		
392	"HOPEJU"	90	"GARCSP"	9	"MICRWA"		
374	"SYZYWI"	77	"ELAEGL"	9	"FICUHI"		
373	"SYZYSP"	75	"LITSGA"	7	"MACAPE"		
345	"IXORJU"	72	"DIPTHI"	7	"GLOCB_"		
					_		
328	"CHAECA"	71	"ERYTOB"	7	"DIOSCH"		
311	"PSEUCH"	70	"SYZYAQ"	6	"ARTOGO"		
297	"APAMSI"	68	"MEMECL"	5	"SWIEMA"		
295	"GARCMO"	68	"AGLAAP"	5	"DIOSSY"		
	"CINNCA"			5	"DILLTR"		
294		67	"CINNDU"				
287	"NOTHBE"	66	"DIOSAL"	5	"CHRYRO"		
287	"GLENUN"	63	"PSYCGL"	5	"BRIDMO"		
282	"LITSIT"	63	"HOPEDI"	5	"APORCA"		
				J			

```
#!/usr/bin/env python
# Calculates species-individual curve data by repeated, random sampling.
                 ./species_individual.py trials step [frequencies]
 # trials
                                                                                            number of trials for a given sample size
 # step
                                                                                          incremenent of sample size
 # frequencies list (space separated) of frequencies of species
 from os import sys
 from statistics import stdev
 import random
 import math
trials = int(sys.argv[1])
step = int(sys.argv[2])
data = map(int, sys.argv[3:])
n = sum(data)
 individuals = []
 for i, frequency in enumerate(data):
                        individuals += [i] * frequency
 def count_unique(l):
                       return len(set(1))
 for i in range(step, n, step):
                        counts = []
                        for j in range(trials):
                                              counts.append(count_unique(random.sample(individuals, i)))
                       s = stdev(counts)
                       if s == 0:
                                              s = 1e-12
                       print \{ \} \setminus \{ \} 
 #!/usr/bin/env python
 # Calculates the shannon index of diversity for given data.
 # Usage:
                       ./shannon.py [frequencies]
 # frequencies list (space separated) of frequencies of species
 from os import sys
 import math
data = map(int, sys.argv[1:])
n = sum(data)
h = 0
 for x in data:
                       p = x * 1.0 / n
                       h += p * math.log(p)
print -h
```