M1 ANDROIDE M1 DAC

Année 2017-2018

Exercice 1 Modèles de Kripke.

On considère le modèle de Kripke M donné par la spécification suivante :

- $W = \{w_1, w_2, w_3, w_4\}$
- $R = \{(w_1, w_2), (w_2, w_3), (w_3, w_4), (w_4, w_3), (w_4, w_2)\}$
- I est défini par $I(a) = \{w_1, w_3\}$ et $I(b) = \{w_2, w_4\}$.
- 1. Commencez par représenter graphiquement ce modèle de Kripke;
- 2. Est-il vrai que $M, w_1 \models b$, que $M, w_1 \models a$, que $M, w_1 \models \Diamond a$, que $M, w_1 \models \Box b$?
- 3. Est-vrai que $M, w_4 \models \Box b \wedge \Box a$, que $M, w_4 \models \Diamond b \wedge \Diamond a$, que $M, w_4 \models \Box b \vee \Box a$?
- 4. Est-il vrai que $M, w_1 \models \Box \Diamond b$, que $M, w_3 \models \Diamond \Diamond \Diamond a$, que $M, w_3 \models \Box \Box \Box a$, que $M, w_2 \models \Diamond (a \rightarrow \Box b)$?
- 5. Est-il vrai que $M \models a \rightarrow \Diamond b$? Et que $M \models \Box (a \rightarrow \Diamond b)$?

Exercice 2 Modélisation.

On considère un modèle de Kripke défini de la manière suivante :

- l'ensemble des mondes sont les chiffres $\{0, \dots, 7\}$
- la relation d'accessibilité est donnée par $\forall i \in \{0,6\} : (i,i+1) \in R$ et $(7,0) \in R$
- le langage utilisé est $\mathcal{L} = \{z, u, d, t, p\}$, et $w \in I(z)$ si le nombre de bits à 1 dans la représentation binaire du chiffre est zéro, $w \in I(u)$ si le nombre de bits à 1 dans la représentation binaire du chiffre est un, $w \in I(d)$ si le nombre de bits à 1 dans la représentation binaire du chiffre est deux, et $w \in I(t)$ si le nombre de bits à 1 dans la représentation binaire du chiffre est trois; tandis que $w \in I(p)$ si le chiffre est pair (son dernier bit est à zéro).
- 1. Représentez graphiquement le modèle de Kripke correspondant;
- 2. Donnez les formules correspondantes aux énoncés suivants :
 - (a) le chiffre 4 ne comporte qu'un bit;
 - (b) aucun chiffre pair n'a de successeur pair;
 - (c) le successeur d'un chiffre comportant un seul bit comporte un ou deux bits;
- 3. Comment interprétez-vous intuitivement la formule suivante : $\neg p \to \Box \Box \neg p$?
- 4. Que pensez de l'affirmation suivante : dans ce modèle on peut utiliser une seule modalité (indistinctement, soit \square soit \lozenge)? Même question en supprimant $(7,0) \in R$

Exercice 3 Validité, satisfiabilité.

Indiquez si les formules suivantes sont valides, simplement satisfiables (mais pas valides), ou insatisfaisables dans la logique K:

- 1. $p \land \Diamond(p \rightarrow q)$
- 2. $\Box p \rightarrow \Diamond p$
- 3. $\Diamond \Box p \to \Box \Diamond p$
- $4. \ \lozenge p \wedge \Box \neg p$
- 5. $\Box(p \land q) \to (\Box p \land \Box q)$