Amieur Belkacem U.Bechar

Centre Universitaire de Béchar Institut de: des Sciences Exactes

2^{ème} Année L.M.D MIAS Module : Pr Lin

Rattrapage

Exercice 1 (8 Pts):

En utilisant la méthode graphique, résoudre le programme linéaire suivant :

s.c.
$$\begin{cases} 9x_1 + 10x_2 \le 90 \\ 3x_1 - 2x_2 \le 6 \\ -8x_1 + 5x_2 \le 20 \\ x_2 \ge 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Une fois pour la fonction Max $Z = 54x_1 + 45x_2$, et une autre fois pour la fonction Max $Z = 18x_1 + 20x_2$

Exercice 2 (12 Pts):

Un artisan fabrique trois (02) types d'objets, la réalisation du premier objet demande 30 DA de matière première et 125 DA de main d'ouvre tandis que le seconde demande 70 DA de matière première et 75 DA de main d'ouvre. Les profits réalisés sont de 54 DA et 45 DA respectivement.

Les dépenses journalières en matière première ne doit pas dépasser 560 DA et celles de main d'ouvre ne doit pas dépasser 1250 DA.

- 1) Déterminer le programme linéaire du problème.
- 2) Trouver la forme canonique du programme dual.
- 3) Trouver la forme standard de ce dernier.
- 4) Trouver la solution du programme linéaire **primal** à partir de la solution de son **dual** en utilisant la méthode de **SIMPLEXE** pour maximiser le bénéfice.

Bonne chance

Centre Universitaire de Béchar Institut de: des Sciences Exactes

2^{ème} Année L.M.D MIAS Module : Pr Lin

Solution du Rattrapage

Exercice 1 (8 Pts):

Max
$$Z = 54 x_1 + 45 x_2$$
s.c.
$$\begin{cases} 9x_1 + 10 x_2 \le 90 \\ 3x_1 - 2x_2 \le 6 \\ -8x_1 + 5x_2 \le 20 \\ x_2 \ge 3 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Après le traçage des contraintes, on trouve la zone de faisabilité limitée par les points extrêmes suivants:

(0,3), (0,4),(4,3), Un point d'intersection entre les contraintes C_1 et C_2 et un point d'intersection entre les contraintes C_1 et C_2

	1 0		
X_1	X_2	Z_1	Z_2
0	3	135	60
0	4	180	80
4	3	351	132
5	4.5	472.5	180
2	7.2	432	180

La solution d'après le tableau c'est : Max $Z_1 = 472.5$ au po int $(x_1 = 5, x_2 = 4.5)$

La solution d'après le tableau c'est : Max $Z_2 = 180$ au point $(x_1 = 5, x_2 = 4.5)$ et $(x_1 = 2, x_2 = 7.2)$

Amieur Belkacem U.Bechar

Exercice 2 (12 Pts):

- x_1 : le n^{bre} d'unités du premier objet A.
- x_2 : le n^{bre} d'unités du deuxième objet B.

Le programme linéaire qui modélise ce problème :

Max
$$Z = 54x_1 + 45x_2$$

s.c.
$$\begin{cases} 30x_1 + 70x_2 \le 560 \\ 125x_1 + 75x_2 \le 1250 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$
 (1P^{te})

Le dual de ce programme linéaire est :

Forme canonique du dual

Forme standard du dual

Min
$$Z = 560y_1 + 1250 y_2$$
 Min $Z = 560y_1 + 1250 y_2$
s.c. $\begin{cases} 30 y_1 + 125 y_2 \ge 54 \\ 70 y_1 + 75 y_2 \ge 45 \end{cases}$ (1P^{ts}) $\begin{cases} 30 y_1 + 125 y_2 - y_3 + y_5 = 54 \\ 70 y_1 + 75 y_2 - y_4 + y_6 = 45 \end{cases}$ s.c. $\begin{cases} 30 y_1 + 125 y_2 - y_3 + y_5 = 54 \\ 70 y_1 + 75 y_2 - y_4 + y_6 = 45 \end{cases}$ $\begin{cases} y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0 \end{cases}$

$C_\mathtt{J}$		560	1250	0	0	M	M		
V.B	C.V.B	В	У1	y ₂	Υ3	У4	У5	Y_6	θ
Y ₅	M	54	30	125	-1	0	1	0	54/125
Y_6	М	45	70	75	0	-1	0	1	45/75
Z_J			100M	200M	-M	-M	M	M	
C_J - Z_J		560-100M	1250-200M	M	M	0	0		

 Y_2 entre dans la base, y_5 sort et le pivot=125 (2P^{ts})

	C_J		560	1250	0	0	M	M	
V.B	C.V.B	В	Y 1	У2	Y ₃	У4	У5	Y ₆	θ
Y ₂	1250	54/125	30/125	1	-1/125	0	1/125	0	54/30
Y ₆	М	63/5	52		3/5	1	-3/5	1	62/260
- 6	141	63/3	52	U	3/3	-1	-3/3		63/260
-		63/3	300+52M	1250	10-3M/5	-M	10-3M/5	M	63/260

 Y_1 entre dans la base , y_6 sort et le pivot=52 (2Pts)

$C_{\mathtt{J}}$			560	1250	0	0	M	M	
V.B	C.V.B	В	У1	Y_2	Y_3	У4	У5	Y_6	θ
Y_2	1250	486/1300	0	1	-7/650	6/1300	7/650	-6/1300	
Y_1	560	63/5	1	0	3/260	-1/52	-3/260	1/52	
$\mathrm{Z}_\mathtt{J}$		560	1250	-7	-5	7	5		
$C_J - Z_J$			0	0	7	5	-7+M	-5+M	

Le tableau est optimal, la solution est donc : $x_1 = |c_3 - z_3| = 7$, $x_2 = |c_4 - z_4| = 5$ et le $Z_{max} = 603$

(2P^{ts})