Lecture 10

Maximum Modulus Theorem: If f is analytic in a domain D and if there is a point $a \in D$ such that $|f(a)| \ge |f(z)|$ for all $z \in D$, then f is a constant function.

The above theorem can also be stated as 'A non-constant analytic function cannot take its maximum value at any interior point of D'.

Corollary 1: If f is analytic on a compact (i.e. closed and bounded) set $K \subset C$, then |f| assumes its maximum value on the boundary of K.

Corollary 2: Let
$$M(r) = \max_{|z| \le r} |f(z)|$$
. Then, $M(r) = \max_{|z| = r} |f(z)|$.

Corollary 3: Let $M(r) = \max_{|z|=r} |f(z)|$. Then, M(r) is an increasing function of r.

The following proposition is needed for the proof of Maximum Modulus Theorem:

Proposition: Let $\varphi(x)$ be continuous and $\varphi(x) \le K$ in [a,b]. If $\frac{1}{b-a} \int_a^b \varphi(x) dx \ge K$ (*). Then, $\varphi(x) \equiv K$ on [a,b].

Proof: Let $\varphi(c) < K$ for some $c \in (a,b)$. Since $\varphi(x)$ is continuous at c, for some ε_0 ,

$$\varphi(x) \le K - \varepsilon_0$$
 for some interval $(c - \delta_0, c + \delta_0)$

$$\Rightarrow \int_{a}^{b} \varphi(x) dx \le 2\delta_0(K - \varepsilon_0) + (b - a - 2\delta_0)K.$$

$$= (b-a)K - 2\delta_0 \varepsilon_0, \quad a \ contradiction \ of \ (*).$$

Proof of Maximum Modulus Theorem:

Let $|f(z)| \le |f(a)|$ for all $z \in D$. By Cauchy Integral Formula,

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma_r} \frac{f(w)}{w - a} dw, \ \gamma_r(t) = a + re^{it} \subset D, \ 0 \le t \le 2\pi.$$
 (1)

Let,
$$\frac{f(w)}{f(a)} = \rho(t)e^{i\varphi(t)}$$
 on $\gamma_r(t)$. Therefore, by (1),
$$1 = \frac{1}{2\pi} \int_0^{2\pi} \rho e^{i\varphi} dt.$$
Now, $(2) \Rightarrow 1 \le \frac{1}{2\pi} \int_0^{2\pi} \rho dt$. (2)

Since, $\rho(t)$ is a continuous function of t and $\rho(t) \le 1$ (*since*, $|f(w)| \le |f(a)|$). Therefore, by the above proposition, $\rho(t) \equiv 1$ *for all t*.

Taking real part in (2) with $\rho(t) \equiv 1$, $1 = \frac{1}{2\pi} \int_{0}^{2\pi} \cos \varphi \, dt$. Since, $\cos \varphi(t)$ is a continuous function of t and $\cos \varphi(t) \leq 1$, using the above proposition again, it follows that $\cos \varphi(t) \equiv 1$.

Since $\rho(t) \equiv 1$ and $\cos \varphi \equiv 1$ on γ_r , $\frac{f(w)}{f(a)} = \rho(t)e^{i\varphi(t)}$ on γ_r gives f(w) = f(a) on γ_r . This, in view of Isolated Zeros Theorem, gives that f(w) = f(a) everywhere in D.

Example. Let $f(z) = e^{e^z}$ and

$$D = \{ z = x + iy : -\infty < x < \infty, -\pi / 2 \le y \le \pi / 2 \}.$$

Then, $|f(z)| = e^{\operatorname{Re} e^z} = e^{e^x \cos y} = 1$, if $y = \pm \pi / 2 \Rightarrow |f(z)| \equiv 1$ on boundary of D.

But, $f(x) \to \infty$ as $x \to \infty$.

Thus, $\max |f(z)|$ need not be assumed on the boundary of D, if D is an unbounded domain.

Minimum Modulus Principle. If f is analytic in a domain D and $f(z) \neq 0$ for any $z \in D$, then |f(z)| can not assume its minimum value at any point of D, unless $f(z) \equiv constant$.

Proof: Apply Maximum Modulus Theorem for $g(z) = \frac{1}{f(z)}$.

Schwarz Lemma. Let f be analytic in $|z| \le R$ and satisfies $|f(z)| \le M$ on |z| = R. If f(0) = 0, then,

$$|f(z)| \le \frac{M|z|}{R}$$
, for $|z| < R$. (1)

Further,
$$|f'(0)| \le \frac{M}{R}$$
. (2)

Equality holds in the above inequalities (1) and (2) for some point in |z| < R iff $f(z) = \frac{M}{R} e^{i\alpha} z$, for some real α .

Proof: Define

$$\varphi(z) = \begin{cases} \frac{f(z)}{z} & \text{if } 0 < |z| \le R \\ f'(0) & \text{if } z = 0 \end{cases}$$

Then, $\varphi(z)$ is analytic in $|z| \le R$ (because $\varphi(z)$ is given by the power series $\varphi(z) = f'(0) + \frac{f''(0)}{2}z + \dots$, which is absolutely convergent at all the points of $|z| \le R$).

$$\Rightarrow |\varphi(z)| \le \frac{M}{R} \text{ for all } z \text{ on } |z| = R$$

$$\Rightarrow |\varphi(z)| \le \frac{M}{R} \text{ for all } z \text{ in } |z| < R, \text{ (by Max. Mod. Theorem)}$$
 (3)
$$\Rightarrow |f(z)| \le \frac{M|z|}{R} \text{ for all } z \text{ in } 0 < |z| < R$$

The last inequality is trivially true for z=0. This completes the proof of (1).

To prove (2), observe that $|f'(0)| = |\varphi(0)|$, $\Rightarrow |f'(0)| < M$ (by (2))

$$\Rightarrow |f'(0)| \le \frac{M}{R}, \quad (by (3))$$

Equality holds in (1) and (2) for some point z_0 in |z| < R if and only if $|\varphi(z_0)| = \frac{M}{R}$

 $\Rightarrow |\varphi(z)|$ assumes its maximum at an interior point z_0 of |z| < R.

$$\Rightarrow \varphi(z) \equiv \frac{M}{R} \text{in } |z| < R \text{ (by Maximum Modulus Theorem)}$$

$$\Leftrightarrow \varphi(z) = \frac{M}{R} e^{i\alpha}$$
 for some real α in $|z| < R$

$$\Leftrightarrow f(z) = \frac{Me^{i\alpha}}{R}z \text{ in } |z| < R.$$