# Отчет по проектированию модуля ALU с регистром

Курс: «Введение в архитектуру вычислительных систем»

Студент: Манро Эйден Форбс

Группа: Б01-307

25 марта 2025 г.

## Содержание

| 1 | Вве       | едение                           |
|---|-----------|----------------------------------|
|   | 1.1       | Цель работы                      |
|   | 1.2       | Задачи                           |
| 2 | Tex       | кническое задание                |
|   | 2.1       | Требования                       |
|   | 2.2       | Спецификация                     |
| 3 | Ap        | хитектура модуля                 |
|   | 3.1       | Структурная схема                |
|   | 3.2       | Принцип работы                   |
| 4 | Pea       | олизация                         |
|   | 4.1       | Параметры                        |
|   | 4.2       | Порты                            |
|   | 4.3       | Коды операций                    |
|   | 4.4       | Полный код модуля                |
| 5 | Tec       | тирование и верификация          |
|   | 5.1       | Стратегия тестирования           |
|   | 5.2       | Методология                      |
|   | 5.3       | Реализация тестов                |
|   | 5.4       | Граничные условия                |
|   | 5.5       | Результаты                       |
|   | 5.6       | Временная диаграмма              |
| 6 | Зак       | ключение                         |
|   | 6.1       | Выводы                           |
| 7 | Прі       | иложения                         |
|   | $7.1^{-}$ | Список использованных источников |
|   | 7.2       | Исходные коды                    |

## 1 Введение

#### 1.1 Цель работы

Разработка, верификация и тестирование модуля арифметико-логического устройства (ALU) с регистром хранения результата на языке Verilog.

#### 1.2 Задачи

- Разработать архитектуру модуля
- Реализовать все требуемые операции
- Создать тестовое окружение
- Провести функциональную верификацию
- Анализировать временные диаграммы

## 2 Техническое задание

#### 2.1 Требования

- Поддержка 8 арифметико-логических операций
- Параметризуемая разрядность
- Синхронный сброс
- Задержка вывода на 1 такт

## 2.2 Спецификация

Таблица 1: Спецификация модуля

| Параметр     | Значение       | Описание                        |
|--------------|----------------|---------------------------------|
| Технология   | Verilog HDL    | Язык описания аппаратуры        |
| Тактовая ча- | До 100 МГц     | Ограничение тестового окружения |
| стота        |                |                                 |
| Разрядность  | Параметр       | По умолчанию 8 бит              |
| данных       | WIDTH          |                                 |
| Потребляемая | Не оценивается | Для учебного проекта            |
| мощность     |                |                                 |

## 3 Архитектура модуля

#### 3.1 Структурная схема



Комбинационная часть Последовательная часть

Рис. 1: Схема модуля ALU с регистром хранения

#### 3.2 Принцип работы

- 1. На входы подаются операнды и код операции
- 2. В текущем такте ALU вычисляет результат
- 3. По положительному фронту тактового сигнала результат записывается в регистр
- 4. На следующем такте значение появляется на выходе

## 4 Реализация

## 4.1 Параметры

```
parameter WIDTH = 8; //
```

## 4.2 Порты

Таблица 2: Описание портов

| Имя      | Ширина | Направление | Описание         |
|----------|--------|-------------|------------------|
| clk_i    | 1      | Вход        | Тактовый сигнал  |
| rst_i    | 1      | Вход        | Синхронный сброс |
| first_i  | WIDTH  | Вход        | Первый операнд   |
| second_i | WIDTH  | Вход        | Второй операнд   |
| opcode_i | 3      | Вход        | Код операции     |
| result_o | WIDTH  | Выход       | Результат        |

## 4.3 Коды операций

Таблица 3: Таблица операций

| Код    | Мнемоника | Описание                    |
|--------|-----------|-----------------------------|
| 3'b000 | NAND      | Побитовое И-НЕ              |
| 3'b001 | XOR       | Исключающее ИЛИ             |
| 3'b010 | ADD       | Сложение                    |
| 3'b011 | ASR       | Арифметический сдвиг вправо |
| 3'b100 | OR        | Побитовое ИЛИ               |
| 3'b101 | LSL       | Логический сдвиг влево      |
| 3'b110 | NOT       | Побитовая инверсия          |
| 3'b111 | LT        | Сравнение (меньше)          |

#### 4.4 Полный код модуля

```
nodule alu_register #(parameter WIDTH = 8) (
      input wire
                                      clk_i,
3
      input wire
                                      rst_i,
      input wire [WIDTH-1:0]
                                      first_i,
      input wire [WIDTH-1:0]
                                      second_i,
      input wire [2:0]
                                      opcode_i,
6
      output reg [WIDTH-1:0]
                                      result_o
  );
8
      reg [WIDTH-1:0] result_reg;
9
10
      always @(posedge clk_i) begin
11
           if (rst_i)
12
               result_reg <= 0;
13
           else begin
14
               case (opcode_i)
                    3'b000: result_reg <= ~(first_i & second_i);</pre>
16
                    3'b001: result_reg <= first_i ^ second_i;</pre>
17
                    3'b010: result_reg <= first_i + second_i;</pre>
18
                    3'b011: result_reg <= $signed(first_i) >>> second_i;
19
                    3'b100: result_reg <= first_i | second_i;</pre>
20
                    3'b101: result_reg <= first_i << second_i;</pre>
                    3'b110: result_reg <=
                                             ~first_i;
22
                    3'b111: result_reg <= (first_i < second_i) ? 1 : 0;
23
24
                    default: result_reg <= {WIDTH{1'b0}};</pre>
                endcase
26
           end
27
      end
       always @(posedge clk_i) begin
30
           result_o <= result_reg;
31
32
       end
34 endmodule
```

Листинг 1: Реализация модуля ALU

## 5 Тестирование и верификация

## 5.1 Стратегия тестирования

Модуль проверялся по следующим аспектам:

- Функциональная полнота: соответствие всех операций техническому заданию
- Граничные условия: обработка минимальных/максимальных значений
- Корректность сброса: инициализация регистров
- Временные характеристики: соблюдение временных диаграмм

#### 5.2 Методология

Использован комбинированный подход:

Таблица 4: Методы тестирования

| Тип теста      | Инструмент      | Критерий               |
|----------------|-----------------|------------------------|
| Модульный      | SystemVerilog   | 100% покрытия кода     |
| Функциональный | Тестбенч        | Все операции           |
| Граничный      | Анализ значений | Min/Max                |
| Временной      | GTKWave         | Соответствие таймингам |

#### 5.3 Реализация тестов

Разработана универсальная тестовая функция:

Листинг 2: Функция автоматического тестирования

## 5.4 Граничные условия

Протестированы особые случаи:

Таблица 5: Критические тест-кейсы

| Операция Входные данные |                               | Ожидаемый результат      |
|-------------------------|-------------------------------|--------------------------|
| ADD                     | $8^{\circ}hFF + 8^{\circ}h01$ | 8'h00 (переполнение)     |
| ASR                     | 8'h80 » 7                     | 8'hFF (сохранение знака) |

#### 5.5 Результаты

- 100% покрытие операций
- Обнаружено 0 ошибок
- Соответствие временным ограничениям

#### 5.6 Временная диаграмма



Рис. 2: Временные диаграммы работы модуля

#### 6 Заключение

#### 6.1 Выводы

- Модуль успешно реализует все требуемые функции
- Тестовое покрытие составляет 100% операций
- Временные характеристики соответствуют требованиям

## 7 Приложения

#### 7.1 Список использованных источников

- 1. IEEE Standard for Verilog Hardware Description Language (IEEE Std 1364-2005)
- 2. Цифровая схемотехника и архитектура компьютера. Харрис-Харрис

#### 7.2 Исходные коды

Полные исходные коды доступны в репозитории: https://github.com/aidenfmunro/alu-register