Chapter 8: Security in Computer Networks

- □ Security Goals
- Cryptography
- Authentication
- ☐ Digital Signature

Security Goals

Confidentiality

- to assure that information is available and disclosed only to the authorized parties
- privacy assures that individuals control what information related to them may be collected and stored and by whom and to whom that information may be disclosed

□ Integrity

- data integrity assures that information can be modified only by authorized parties and only in authorized ways
- system integrity assures that a system performs its intended function in an authorized way, free from unauthorized manipulation of the system

Security Goals

Availability

 assures that systems work promptly and service is not denied to authorized users

Authenticity

- user authenticity individuals can assure the validity of the identity of peer
- message authenticity receivers can assure the originality of the message

■ Normal information flow

□ Interruption: attack on availability

□ Interception: attack on confidentiality

■ Modification: attack on integrity

☐ Fabrication: attack on authenticity

Passive attacks:

- Interception
 - attacks confidentiality a.k.a., eavesdropping (or sniffing)
 - Encryption is an effective means to protect interception
- □ Traffic Analysis
 - attacks confidentiality, or anonymity
- Difficult to detect
 - the emphasis is on prevention

Active attacks:

- ☐ Interruption: attacks availability
 - e.g., denial-of-service attacks
- Modification: attacks integrity
 - e.g., man-in-the-middle attacks, masquerading
- ☐ Fabrication: attacks authenticity
 - e.g., replay attacks

Security Manager

Security manager should consider

- Prevention
 - taking measures that prevent damage from possible attacks
 - (e.g.) strong passwords, one-time passwords
- Detection
 - measures that allow detection of when an asset has been damaged, altered, or copied
 - E.g., access logging, intrusion detection system

Security Manager

Security manager should consider

- □ Recovery
 - restoring systems that were compromised
 - (e.g.) periodic backup
- ☐ Assets
 - should know the assets to protect and the value of the assets
 - Assets: hardware, software, data, and person

Secure or Not?

What does it mean for information to be secure?

- ☐ The cost of breaking the security exceeds the value of the secured service or information
- ☐ The time required to break the security exceeds the useful lifetime of the information

Network Security Model

Network Security Model

- ☐ Security techniques has two components:
 - A security-related transformation on the information to be sent
 - Some secret information shared by the principals
- ☐ Trusted third party:
 - responsible for distributing the secret information to the principals
 - Arbitrate disputes among the principals

Cryptography

Cryptography relies on

- Ciphers: mathematical functions used for encryption and decryption of a message
- Encryption: the process of disguising a message in such a way as to hide its substance
- Ciphertext: an encrypted message
- Decryption: the process of returning an encrypted message back into plaintext.

Ciphers

- ☐ The security of a cipher which depends on the secrecy of its *restricted* algorithm is not good
 - Whenever a users leaves a group, the algorithm must change
 - Secrecy can be broken by people smarter than you
- Modern cryptography relies on keys, a selected value from a large set (a key-space)
 - e.g., a 1024-bit key => 2¹⁰²⁴ values!
 - Security is based on secrecy of the key, not the details of the algorithm
 - Change of authorized participants requires only a change in key

Conventional cryptosystem

Secret-key cryptosystem, symmetric cryptosystem

- key distribution issue
- (e.g.) DES, 3-DES, AES, SEED-128, SEED-256

☐ Public-key cryptosystem

Asymmetric cryptosystem: (public-key, private-key)

- (e.g.) RSA, Elliptic curve
- encryption : only the private key can decrypt a message encrypted with the public key
- digital signature : only the public-key can decrypt a message encrypted with the private key
- slower than secret-key algorithms

- ☐ Hybrid of symmetric and public-key approaches
 - Public key cryptosystem is used to distribute a session key (key for conventional cryptosystem) among peers
 - Conventional cryptosystem is used to encrypt/decrypt messages

PE: Public-key algorithm

PE: Secret-key algorithm

SK: session key

KU_B: public-key of B

KR_B: private-key of B

- ☐ Hash algorithms (H): produce a "fingerprint"
 - H: one-way function (SHA-1, SHA-256, MD5, etc.)
 - H can be applied to a block of data at any size and produces a fixed length output
 - H(x) is easy to compute for any given x
 - For any given block (x, h=H(x)), it is computationally infeasible to find y such that H(y) = h

- ☐ Hash algorithms and message authentication
 - Message Authentication using public-key algorithm

 $K_{private}$: private-key of B K_{public} : public-key of B

- ☐ Hash algorithms and message authentication
 - Message Authentication using shared secret

Authentication

- Password based authentication
 - The password file could be stolen
 - An eavesdropper can sniff the password off the network
- Authentication based on the source address
 - IP spoofing is possible
- Authentication based on biometrics : thumb prints, retinal scans
- ☐ Authentication using symmetric keys : Kerberos
- ☐ Authentication using asymmetric cryptosystem

Password-based Authentication

- □ Actual password is not stored -> one-way hashes of passwords are kept and are used for comparison
- □ encrypted password in /etc/passwd → dictionary attack is possible

□ shadowed password: only the "root" user can read the password hashes in the /etc/shadow password file

Protecting Passwords over the network

- ☐ If Alice just sends the password, anyone can read it
- □ In *promiscuous* mode, Ethernet cards will pass to the operating system all received IP packets
- Attackers can use a "packet-sniffer", like wireshark or tcpdump on Unix, to read all packets across your network
- □ Such programs require root privileges

Authentication Using One-time Password (OTP)

Challenge-response method

- ☐ Alice and Bob agree upon a shared, secret key (K_{AB})
- □ Alice requests a log-in challenge from Bob (the remote computer) : A->B: access request
- □ Bob sends Alice a *nonce N* (challenge): B->A: N
 - A nonce is a random string used only once ever
- \square Alice responds (response) : A->B: E(K_{AB}, N)
- ☐ Changing nonces for each access prevents replay attack

Single-Sign-On (SSO)

☐ SSO service

- User receives an access token (T) after the authentication from SSO server; T can be used in a limited amount of time
- User accesses the application server using the token T

Public-key Certificate

☐ How can we get public key of the peer?

Public-key Certificate

- Man-in-the-middle (MITM) attack
 - attacker intervenes in the step of public key exchange

Public-key Certificate

- ☐ Certificate: (owner, public-key, DS of CA)
- ☐ Certification Authority (CA)
 - Issues a certificate for a user
 - Each certificate is signed by the CA

Public-Key Infrastructure

□ Public-Key Infrastructure (PKI)

 An intra-structure to enable users to get correct public keys of others

X.509 Public-key Certificate

☐ X.509 certificate format

Revocation of Certificates

- ☐ Reasons for revocation:
 - The users private key is assumed to be compromised
 - The user is no longer certified by this CA
- CRL (Certification Revocation List)
 - Each CA keeps CRL and updates CRL periodically
 - Checks certificate's validity from CRL
- Delta Revocation
 - To make revocation more efficient, the delta
 CRL has been introduced

(b) Certificate Revocation List

Public-Key Infrastructure

- □ PKI trust model
 - Hierarchical model

Security in Internet Protocols

IP layer security

Transport layer security

Security in Internet Protocols

- □ Security protocols in application layer
 - E-mail service : S/MIME, PGP
 - DNS service : DNSSEC
 - SET protocol
- ☐ Security protocols in transport layer
 - SSL (TLS) protocol
 - HTTP service (https) : http SSL tcp
- □ Security protocols in IP layer
 - IPsec : VPN