

- ◆级联系统的冲激响应
- ◆并联系统的冲激响应
- ◆ 冲激响应与系统因果性
- ◆ 冲激响应与系统稳定性

系统不同则其冲激响应h(t)也不同,利用h(t)表示连续系统的时域特性。

几个常见系统的冲激响应

无失真传输系统: 输入: $\delta(t) \implies h(t) = K\delta(t - t_d)$ K为正常数, t_d 是输入信号 通过系统后的延迟时间。

理想积分器: 输入: $\delta(t) \implies h(t) = u(t)$

理想微分器: 输入: $\delta(t) \implies h(t) = \delta'(t)$

1. 级联系统的冲激响应

2. 并联系统的冲激响应

[例] 求图示连续系统的冲激响应h(t),其中 $h_1(t) = e^{-3t} u(t)$, $h_2(t) = \delta(t-1)$, $h_3(t) = u(t)$ 。

解: 子系统 $h_1(t)$ 与 $h_2(t)$ 级联, $h_3(t)$ 支路与 $h_1(t)$ $h_2(t)$ 级联支路并联。

$$h(t) = h_1(t) * h_2(t) + h_3(t)$$

$$= \delta(t-1) * e^{-3t} u(t) + u(t)$$

$$= e^{-3(t-1)} u(t-1) + u(t)$$

[例] 求图示连续系统的冲激响应h(t),其中 $h_1(t) = e^{-3t} u(t)$, $h_2(t) = \delta(t-1)$, $h_3(t) = u(t)$ 。

解:
$$h(t) = h_1(t) * h_2(t) + h_3(t) + \delta(t)$$

= $\delta(t-1) * e^{-3t}u(t) + u(t) + \delta(t)$
= $e^{-3(t-1)}u(t-1) + u(t) + \delta(t)$

3. 冲激响应与系统因果性

因果系统定义:

系统46时刻的输出只与46时刻及以前的输入信号有关。

连续时间LTI系统是因果系统的充分必要条件

$$h(t) = 0, \quad t < 0$$

4. 冲激响应与系统稳定性

稳定系统定义:

若系统对任意的有界输入其输出也有界,则称该系统是稳定系统。(BIBO稳定)

连续时间LTI系统是BIBO稳定系统的充分必要条件为

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = S < +\infty$$

[例] 已知某连续LTI连续系统的冲激响应为 $h(t) = e^{at} u(t)$, 试判断该系统是否为因果、稳定的系统。

解: 由于 $h(t) = e^{at} u(t)$,

满足 h(t) = 0, t < 0

因此该系统为因果系统。

曲于
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = \int_{0}^{\infty} e^{a\tau} d\tau = \frac{1}{a} e^{a\tau} \Big|_{0}^{\infty}$$

✓ 当
$$a$$
<0 时,
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = -\frac{1}{a}$$
 系统稳定。
✓ 当 $a \ge 0$ 时,
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau \to \infty$$
 系统不稳定。

✓ 当
$$a \ge 0$$
 时, $h(\tau) d\tau \to \infty$ 系统不稳定。

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来 源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!