

Mathematics: Units 2A and 2B Formula sheet

Number and algebra: Functions and graphs

$$y = mx + c$$
, where $m = \text{gradient}$; $c = y - \text{intercept}$

Space and measurement: Measurement

In a right triangle:
$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

Pythagoras' Theorem:

In a right triangle ABC, where a,b are the short sides; and c is the hypotenuse, $c^2 = a^2 + b^2$

Circle: Circumference,
$$C = 2\pi r = \pi D$$

Area = πr^2

Triangle: Area =
$$\frac{1}{2}$$
 × base × perpendicular height

Trapezium: Area =
$$\frac{1}{2}(a+b) \times \text{height}$$
, where a and b are the lengths of the parallel sides

Prism: Volume = Area of base
$$\times$$
 height

Cylinder: Total surface area =
$$2\pi r h + 2\pi r^2$$

Volume =
$$\pi r^2 \times h$$

Pyramid: Volume =
$$\frac{1}{3}$$
 × area of base × height

Cone: Total surface area =
$$\pi r s + \pi r^2$$
, s is the slant height

Volume =
$$\frac{1}{3} \times \pi r^2 \times h$$

Sphere: Total surface area =
$$4\pi r^2$$

Volume =
$$\frac{4}{3}\pi r^3$$

Space and measurement: Coordinate geometry

Gradient of line,
$$m$$
, through the points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Distance, *d*, between the points
$$(x_1, y_1)$$
 and (x_2, y_2) is given by $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$.

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.