Krylov methods for large-scale generalized Sylvester equations with low-rank commuting coefficients

Giampaolo Mele

KTH Royal Institute of technology

13 February 2017

Joint work with D. Palitta, E. Ringh, E. Jarlebring

METT 2017. Pisa

• Sylvester equations: $AX + XB^T = C_1C_2^T$

• Sylvester equations: $AX + XB^T = C_1C_2^T$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_-$

Methods: Krylov, ADI, etc

- Sylvester equations: $AX + XB^T = C_1C_2^T$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_-$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T} \qquad (\star)$$

- Sylvester equations: $AX + XB^T = C_1C_2^T$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_-$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T} \qquad (\star)$$

Low rank solution: N_i, M_i low rank and [Benner,Breiten '13] Methods: Krylov, ADI, etc [Shank et al '15], [Benner,Damm '11] if $\|N_i\| \ll \|A\|$, $\|M_i\| \ll \|B\|$

- Sylvester equations: $AX + XB^T = C_1C_2^T$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_-$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T} \qquad (\star)$$

Low rank solution: N_i , M_i low rank and [Benner,Breiten '13] Methods: Krylov, ADI, etc [Shank et al '15], [Benner,Damm '11] if $\|N_i\| \ll \|A\|$, $\|M_i\| \ll \|B\|$

We consider (★). Our assumptions:

$$AN_i - N_i A = U_i \tilde{U}_i^T,$$
 $BM_i - M_i B = Q_i \tilde{Q}_i^T$

Outline

O Neumann series expansion

O Krylov method: exploiting the low rank commutation

Low rank numerical solutions

Numerical experiments

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T}$$

Solution as a Neumann series

Let $\mathcal{L}(X) := AX + XB^T$ and $\Pi(X) := \sum_{i=1}^m N_i X M_i^T$. Assume $\|\mathcal{L}^{-1}\Pi\| < 1$, then the unique solution satisfies

$$X = \sum_{i=0}^{\infty} (-1)^j Y_j$$

where $\mathcal{L}(Y_0) = C_1 C_2^T$ and $\mathcal{L}(Y_{j+1}) = \Pi(Y_j)$

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T}$$

Solution as a Neumann series

Let $\mathcal{L}(X) := AX + XB^T$ and $\Pi(X) := \sum_{i=1}^m N_i X M_i^T$. Assume $\|\mathcal{L}^{-1}\Pi\| < 1$, then the unique solution satisfies

$$X = \sum_{j=0}^{\infty} (-1)^j Y_j$$

where
$$\mathcal{L}(Y_0) = C_1 C_2^{\mathcal{T}}$$
 and $\mathcal{L}(Y_{j+1}) = \Pi(Y_j)$

Proof:

$$X = (I + \mathcal{L}^{-1}\Pi)^{-1}\mathcal{L}^{-1}(C_1C_2^T) = \sum_{j=0}^{\infty} (-1)^j (\mathcal{L}^{-1}\Pi)^j \mathcal{L}^{-1}(C_1C_2^T)$$

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T}$$

Solution as a Neumann series

Let $\mathcal{L}(X) := AX + XB^T$ and $\Pi(X) := \sum_{i=1}^m N_i X M_i^T$. Assume $\|\mathcal{L}^{-1}\Pi\| < 1$, then the unique solution satisfies

$$X = \sum_{j=0}^{\infty} (-1)^j Y_j$$

where $\mathcal{L}(Y_0) = C_1 C_2^T$ and $\mathcal{L}(Y_{j+1}) = \Pi(Y_j)$

Approximation:

$$X_N = \sum_{j=0}^N (-1)^j Y_j$$

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T}$$

Solution as a Neumann series

Let $\mathcal{L}(X) := AX + XB^T$ and $\Pi(X) := \sum_{i=1}^m N_i X M_i^T$. Assume $\|\mathcal{L}^{-1}\Pi\|<1,$ then the unique solution satisfies

$$X = \sum_{j=0}^{\infty} (-1)^j Y_j$$

where
$$\mathcal{L}(Y_0) = C_1 C_2^T$$
 and $\mathcal{L}(Y_{j+1}) = \Pi(Y_j)$

Approximation:

$$X_N = \sum_{i=0}^N (-1)^j Y_j$$

Error:

$$X_{N} = \sum_{j=0}^{N} (-1)^{j} Y_{j}$$
$$\|X - X_{N}\| \le \|\mathcal{L}^{-1}(C)\| \frac{\|\mathcal{L}^{-1}\Pi\|^{N+1}}{1 - \|\mathcal{L}^{-1}\Pi\|}$$

$$AX + XB^{T} + \sum_{i=1}^{m} N_{i}XM_{i}^{T} = C_{1}C_{2}^{T}$$

Solution as a Neumann series

Let $\mathcal{L}(X) := AX + XB^T$ and $\Pi(X) := \sum_{i=1}^m N_i X M_i^T$. Assume $\|\mathcal{L}^{-1}\Pi\| < 1$, then the unique solution is approximated by

$$X_N = \sum_{j=0}^N (-1)^j Y_j$$

where

$$AY_0 + Y_0B^T = C_1C_2^T$$

 $AY_{j+1} + Y_{j+1}B^T = \sum_{i=1}^m N_iY_jM_i^T$

Krylov method: exploiting the low rank commutation

Projection method for Sylvester equations

$$AX + XB^T = C_1C_2^T$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_k \subset \mathbb{R}^n$, $\mathcal{H}_{k-1} \subset \mathcal{H}_k \subset \mathbb{R}^n$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$X_k = V_k Z_k W_k^T$$

 V_k and W_k are orthogonal and s.t. span $(V_k) = \mathcal{K}_k$, span $(W_k) = \mathcal{H}_k$. Z_k satisfy (Galerkin orth. condition)

$$\tilde{A}_k Z_k + Z_k \tilde{B}_k^T = \tilde{C}_1 \tilde{C}_2^T$$

Projection method for Sylvester equations

$$AX + XB^T = C_1C_2^T$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_k \subset \mathbb{R}^n$, $\mathcal{H}_{k-1} \subset \mathcal{H}_k \subset \mathbb{R}^n$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$X_k = V_k Z_k W_k^T$$

 V_k and W_k are orthogonal and s.t. span $(V_k) = \mathcal{K}_k$, span $(W_k) = \mathcal{H}_k$. Z_k satisfy (Galerkin orth. condition)

$$\tilde{A}_k Z_k + Z_k \tilde{B}_k^T = \tilde{C}_1 \tilde{C}_2^T$$

Our choice: $\mathcal{K}_k = \mathbf{EK}_k^{\square}(A, C_1), \mathcal{H}_k = \mathbf{EK}_k^{\square}(B, C_2).$

Projection method for Sylvester equations

$$AX + XB^T = C_1C_2^T$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_k \subset \mathbb{R}^n$, $\mathcal{H}_{k-1} \subset \mathcal{H}_k \subset \mathbb{R}^n$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$X_k = V_k Z_k W_k^T$$

 V_k and W_k are orthogonal and s.t. span $(V_k) = \mathcal{K}_k$, span $(W_k) = \mathcal{H}_k$. Z_k satisfy (Galerkin orth. condition)

$$\tilde{A}_k Z_k + Z_k \tilde{B}_k^T = \tilde{C}_1 \tilde{C}_2^T$$

Our choice: $\mathcal{K}_k = \mathbf{EK}_k^{\square}(A, C_1), \mathcal{H}_k = \mathbf{EK}_k^{\square}(B, C_2).$

Observation

There are $S_1, S_2 \in \mathbb{C}^{n \times kr}$ s.t. $\operatorname{span}(S_1) \subseteq \operatorname{EK}_k^{\square}(A, C_1), \operatorname{span}(S_2) \subseteq \operatorname{EK}_k^{\square}(B, C_2)$

$$X_k = S_1 S_2^T$$

Consider the generalized Sylvester equation

$$AX + XB^T + NXM^T = C_1C_2^T$$

such that $com(A, N) = U\tilde{U}^T$ and $com(B, M) = Q\tilde{Q}^T$.

Consider the generalized Sylvester equation

$$AX + XB^T + NXM^T = C_1C_2^T$$

such that $com(A, N) = U\tilde{U}^T$ and $com(B, M) = Q\tilde{Q}^T$. Let \tilde{Y}_i be the low-rank numerical solution of

$$AY_0 + Y_0B^T = C_1C_2^T$$

 $AY_{j+1} + Y_{j+1}B^T = N\tilde{Y}_jM^T$,

obtained with the Extended Krylov method with k iterations.

Consider the generalized Sylvester equation

$$AX + XB^T + NXM^T = C_1C_2^T$$

such that $com(A, N) = U\tilde{U}^T$ and $com(B, M) = Q\tilde{Q}^T$. Let \tilde{Y}_i be the low-rank numerical solution of

$$AY_0 + Y_0B^T = C_1C_2^T$$

 $AY_{j+1} + Y_{j+1}B^T = N\tilde{Y}_jM^T$,

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_N = \sum_{j=0}^N (-1)^j \tilde{Y}_j$.

Consider the generalized Sylvester equation

$$AX + XB^T + NXM^T = C_1C_2^T$$

such that $com(A, N) = U\tilde{U}^T$ and $com(B, M) = Q\tilde{Q}^T$. Let \tilde{Y}_i be the low–rank numerical solution of

$$AY_0 + Y_0B^T = C_1C_2^T$$

 $AY_{j+1} + Y_{j+1}B^T = N\tilde{Y}_jM^T$,

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_N = \sum_{j=0}^N (-1)^j \tilde{Y}_j$. Then there exist $S_1 \in \mathbf{EK}_{(N+1)k}^{\square}(A, \hat{C}_1^{(N)})$ and $S_2 \in \mathbf{EK}_{(N+1)k}^{\square}(B, \hat{C}_2^{(N)})$ such that $\tilde{X}_N = S_1 S_2^T$

Consider the generalized Sylvester equation

$$AX + XB^T + NXM^T = C_1C_2^T$$

such that $com(A, N) = U\tilde{U}^T$ and $com(B, M) = Q\tilde{Q}^T$. Let \tilde{Y}_i be the low-rank numerical solution of

$$AY_0 + Y_0B^T = C_1C_2^T$$

 $AY_{j+1} + Y_{j+1}B^T = N\tilde{Y}_jM^T$,

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_N = \sum_{j=0}^N (-1)^j \tilde{Y}_j$. Then there exist $S_1 \in \mathbf{EK}_{(N+1)k}^{\square}(A, \hat{C}_1^{(N)})$ and $S_2 \in \mathbf{EK}_{(N+1)k}^{\square}(B, \hat{C}_2^{(N)})$ such that $\tilde{X}_N = S_1 S_2^T$ where

$$\hat{C}_1^{(N)} = [C_1, NC_1, \dots, N^N C_1, U, NU, \dots, N^{N-1} U]$$

$$\hat{C}_2^{(N)} = [C_2, MC_2, \dots, M^N C_2, Q, MQ, \dots, M^{N-1} Q]$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

Lemma

$$N \cdot \mathsf{EK}_d^{\square}(A, C) \subseteq \mathsf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T$$

Lemma

$$N \cdot \mathsf{EK}_d^{\square}(A, C) \subseteq \mathsf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} \mathsf{Krylov}$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$
$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

Lemma

$$N \cdot \mathsf{EK}_d^{\square}(A, C) \subseteq \mathsf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$
$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_1 + Y_1B^T = NY_0M^T$$

Lemma

$$N \cdot \mathsf{EK}_d^{\square}(A, C) \subseteq \mathsf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$
$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_1 + Y_1B^T = NY_0M^T = (NF_0)(MR_0)^T$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$
$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_1 + Y_1B^T = NY_0M^T = (NF_0)(MR_0)^T \xrightarrow{\text{Extended}} Krylov$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$

$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_1 + Y_1B^T = NY_0M^T = (NF_0)(MR_0)^T \xrightarrow{\text{Extended}}$$

$$Y_1 = F_1R_1^T, \quad F_1 \in \mathbf{EK}_k^{\square}(A, NF_0)$$

$$R_1 \in \mathbf{EK}_k^{\square}(B, MR_0)$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$

$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_1 + Y_1B^T = NY_0M^T = (NF_0)(MR_0)^T \xrightarrow{\mathsf{Extended}}$$

$$Y_1 = F_1R_1^T, \quad F_1 \in \mathbf{EK}_k^{\square}(A, NF_0)$$

$$R_1 \in \mathbf{EK}_k^{\square}(B, MR_0)$$

$$NF_0 \in N \cdot \mathbf{EK}_k^{\square}(A, C_1)$$

$$MR_0 \in M \cdot \mathbf{EK}_k^{\square}(B, C_2)$$

Lemma

$$N \cdot \mathbf{EK}_d^{\square}(A, C) \subseteq \mathbf{EK}_d^{\square}(A, [NC, U])$$

$$AY_0 + Y_0B^T = C_1C_2^T \xrightarrow{\mathsf{Extended}} Y_0 = F_0R_0^T, \quad F_0 \in \mathbf{EK}_k^{\square}(A, C_1)$$

$$R_0 \in \mathbf{EK}_k^{\square}(B, C_2)$$

$$AY_{1} + Y_{1}B^{T} = NY_{0}M^{T} = (NF_{0})(MR_{0})^{T} \xrightarrow{\text{Extended}}$$

$$Y_{1} = F_{1}R_{1}^{T}, \quad F_{1} \in \mathbf{EK}_{k}^{\square}(A, NF_{0})$$

$$R_{1} \in \mathbf{EK}_{k}^{\square}(B, MR_{0})$$

$$NF_{0} \in N \cdot \mathbf{EK}_{k}^{\square}(A, C_{1}) \subseteq \mathbf{EK}_{k}^{\square}(A, [NC_{1}, U])$$

$$MR_{0} \in M \cdot \mathbf{EK}_{k}^{\square}(B, C_{2}) \subseteq \mathbf{EK}_{k}^{\square}(B, [MC_{2}, Q])$$

Projection method for generalized Sylvester equations

$$AX + XB^T + NXM^T = C_1C_2^T$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_k \subset \mathbb{R}^n$, $\mathcal{H}_{k-1} \subset \mathcal{H}_k \subset \mathbb{R}^n$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$X_k = V_k Z_k W_k^T$$

 V_k and W_k are orthogonal and s.t. span $(V_k) = \mathcal{K}_k$, span $(W_k) = \mathcal{H}_k$. Z_k satisfy (Galerkin orth. condition)

$$\tilde{A}_k Z_k + Z_k \tilde{B}_k^T + \tilde{N}_k Z_k \tilde{M}_k^T = \tilde{C}_1 \tilde{C}_2^T$$

$$\mathcal{K}_{k} = \mathbf{EK}_{d}^{\square}(A, [C_{1}, NC_{1}, \dots, N^{N}C_{1}, U, NU, \dots, N^{N-1}U])$$

$$\mathcal{H}_{k} = \mathbf{EK}_{d}^{\square}(B, [C_{2}, MC_{2}, \dots, M^{N}C_{2}, Q, MQ, \dots, M^{N-1}Q])$$

Low rank numerical solutions

Low rank approximations

Let
$$\mathcal{L}(X) := AX + XB^T$$
, $\Pi(X) := \sum_{i=1}^m N_i XM_i^T$ and $C_1, C_2 \in \mathbb{C}^{n \times r}$

Low rank approximations

Let
$$\mathcal{L}(X) := AX + XB^T$$
, $\Pi(X) := \sum_{i=1}^m N_i XM_i^T$ and $C_1, C_2 \in \mathbb{C}^{n \times r}$

Theorem [Grasedyck '04]: low rank Sylvester eq.

Let $\mathcal{L}(X) = C_1 C_2^T$. Then there exists an \bar{X} such that

$$\operatorname{rank}(\bar{X}) \leq (2k+1)r$$

$$||X - \bar{X}|| \le K(\mathcal{L})e^{-\pi\sqrt{k}}$$

Low rank approximations

Let
$$\mathcal{L}(X) := AX + XB^T$$
, $\Pi(X) := \sum_{i=1}^m N_i XM_i^T$ and $C_1, C_2 \in \mathbb{C}^{n \times r}$

Theorem [Grasedyck '04]: low rank Sylvester eq.

Let $\mathcal{L}(X) = C_1 C_2^T$. Then there exists an \bar{X} such that

$$\operatorname{\mathsf{rank}}(ar{X}) \leq (2k+1)r$$
 $\|X - ar{X}\| \leq K(\mathcal{L})e^{-\pi\sqrt{k}}$

Theorem: low rank generalized Sylvester eq.

Let X_N be the matrix obtained by truncating the Neumann series. Then there exists an \bar{X}_N such that

$$\operatorname{\mathsf{rank}}(ar{X}_{\mathcal{N}}) \leq (2k+1)r + \mathcal{N}(2k+1)^{\mathcal{N}+1}m^{\mathcal{N}}r$$
 $\|X_{\mathcal{N}} - ar{X}_{\mathcal{N}}\| \leq \mathcal{K}(\mathcal{L},\mathcal{N})e^{-\pi\sqrt{k}}$

Low rank approximations

Let
$$\mathcal{L}(X) := AX + XB^T$$
, $\Pi(X) := \sum_{i=1}^m N_i XM_i^T$ and $C_1, C_2 \in \mathbb{C}^{n \times r}$

Theorem [Grasedyck '04]: low rank Sylvester eq.

Let $\mathcal{L}(X) = C_1 C_2^T$. Then there exists an \bar{X} such that

$$\operatorname{\mathsf{rank}}(ar{X}) \leq (2k+1)r$$
 $\left\|X - ar{X}
ight\| \leq \mathcal{K}(\mathcal{L})e^{-\pi\sqrt{k}}$

Theorem: low rank generalized Sylvester eq.

Let X_N be the matrix obtained by truncating the Neumann series. Then there exists an \bar{X}_N such that

$$\mathsf{rank}(ar{X}_{\mathcal{N}}) \leq (2k+1)r + \mathcal{N}(2k+1)^{\mathcal{N}+1}m^{\mathcal{N}}r$$
 $\left\|X_{\mathcal{N}} - ar{X}_{\mathcal{N}} \right\| \leq \mathcal{K}(\mathcal{L},\mathcal{N})e^{-\pi\sqrt{k}}$

Similar result for $\Pi(X)$ low rank [Benner, Breiten '13]

Numerical experiments

$$AX + XA^{T} + \gamma^{2}(N_{1}XN_{1}^{T} + N_{2}XN_{2}^{T}) = CC^{T}$$

Application: bilinear systems (stability)

$$AX + XA^{T} + \gamma^{2}(N_{1}XN_{1}^{T} + N_{2}XN_{2}^{T}) = CC^{T}$$

• $\gamma > 0$ small

Application: bilinear systems (stability)

$$AX + XA^T + \gamma^2(N_1XN_1^T + N_2XN_2^T) = CC^T$$

• $\gamma > 0$ small

•

$$A = \begin{pmatrix} -5 & 2 & & & \\ 2 & \ddots & \ddots & & \\ & \ddots & & 2 & \\ & & 2 & -5 \end{pmatrix} \qquad N_1 = \begin{pmatrix} 0 & -3 & & & \\ 3 & \ddots & \ddots & & \\ & \ddots & & -1 & \\ & & 3 & 0 \end{pmatrix}$$

Application: bilinear systems (stability)

$$AX + XA^T + \gamma^2(N_1XN_1^T + N_2XN_2^T) = CC^T$$

• $\gamma > 0$ small

•

$$A = \begin{pmatrix} -5 & 2 & & & \\ 2 & \ddots & \ddots & & \\ & \ddots & & 2 & \\ & & 2 & -5 \end{pmatrix} \qquad N_1 = \begin{pmatrix} 0 & -3 & & & \\ 3 & \ddots & \ddots & & \\ & \ddots & & -1 & \\ & & 3 & 0 \end{pmatrix}$$

•
$$N_2 = -N_1 + I$$

$$AX + XA^T + \gamma^2(N_1XN_1^T + N_2XN_2^T) = CC^T$$

- $\gamma > 0$ small
- 0

$$A = \begin{pmatrix} -5 & 2 & & & \\ 2 & \ddots & \ddots & & \\ & \ddots & & 2 & \\ & & 2 & -5 \end{pmatrix} \qquad N_1 = \begin{pmatrix} 0 & -3 & & & \\ 3 & \ddots & \ddots & & \\ & \ddots & & -1 \\ & & 3 & 0 \end{pmatrix}$$

- $N_2 = -N_1 + I$
- $com(A, N_1) = -com(A, N_2) = 12[e_1, e_n][e_1, -e_n]^T$

$$AX + XA^T + \gamma^2(N_1XN_1^T + N_2XN_2^T) = CC^T$$

- $\gamma > 0$ small
- 0

$$A = \begin{pmatrix} -5 & 2 & & & \\ 2 & \ddots & \ddots & & \\ & \ddots & & 2 & \\ & & 2 & -5 \end{pmatrix} \qquad N_1 = \begin{pmatrix} 0 & -3 & & & \\ 3 & \ddots & \ddots & & \\ & \ddots & & -1 & \\ & & 3 & 0 \end{pmatrix}$$

- $N_2 = -N_1 + I$
- $com(A, N_1) = -com(A, N_2) = 12[e_1, e_n][e_1, -e_n]^T$
- $\mathbf{EK}_{d}^{\square}(A, [C, N_{1}C, [e_{1}, e_{n}]])$

$$AX + XA^{T} + \gamma^{2}(N_{1}XN_{1}^{T} + N_{2}XN_{2}^{T}) = CC^{T}$$

MIMO: comparison with other methods

	γ	Its.	Memory	rank(X)	Lin. solves
Ext. Krylov (low rank-comm)	1/6	8	7.32MB	64	48
BilADI ¹ (4 Wach. shifts)	1/6	15	5.18MB	68	591
BilADI (8 \mathcal{H}_2 -opt. shifts)	1/6	14	5.18MB	68	522
GLEK ²	1/6	13	16.78MB	52	1549
Ext. Krylov (low rank-comm)	1/5	8	7.32MB	72	48
BilADI (4 Wach. shifts)	1/5	20	5.95MB	78	990
BilADI (8 \mathcal{H}_2 -opt. shifts)	1/5	20	5.95MB	78	987
GLEK	1/5	17	20.30MB	59	2309
Ext. Krylov (low rank-comm)	1/4	10	9.16MB	89	60
BilADI (4 Wach. shifts)	1/4	30	7.25MB	95	1978
BilADI (8 \mathcal{H}_2 -opt. shifts)	1/4	33	7.25MB	95	2269
GLEK	1/4	30	33.42MB	118	5330

¹[Benner,Breiten '13] ²[Shank,Simoncini,Szyld '16]

Poisson-Chi problem

$$\Delta u + \chi u = f$$
 $(x, y) \in [0, 1] \times \mathbb{R}$ $u(x, 0) = u(x, 1) = 0$ homogeneous Dirichlet b.c. $u(x, y + 1) = u(x, y)$ periodic b.c.

- f: source term (separable function)
- •

$$\chi(x,y) = \begin{cases} 1 & x,y > 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Poisson-Chi problem

$$\begin{array}{ll} \Delta u + \chi u = f & (x,y) \in [0,1] \times \mathbb{R} \\ u(x,0) = u(x,1) = 0 & \text{homogeneous Dirichlet b.c.} \\ u(x,y+1) = u(x,y) & \text{periodic b.c.} \end{array}$$

Discretization

$$AX + XB^T + DXD^T = C_1C_2^T$$

- A: Circulant tridiagonal with elements $n^2(1, -2, 1)$
- B: Toeplitz tridiagonal with elements $n^2(1, -2, 1)$
- C_1, C_2 low rank, $D = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$

Poisson-Chi: Sylvester equation

$$AX + XB^T + DXD^T = C_1C_2^T$$

Properties

•
$$AD = DA + v_1 w_1^T - w_1 v_1^T - v_2 w_2^T + w_2 v_2^T$$

•
$$BD = DB + v_1 w_1^T - w_1 v_1^T$$

- $D^2 = D$
- A: singular

Let $U = [v_1, v_2, w_1, w_2]$ and $Q = [v_1, w_1]$ then

$$\mathcal{K}_d = \mathbf{EK}_d^{\square}(A, [C_1, DC_1, \dots, D^NC_1, U, N, \dots, D^{N-1}U])$$

$$\mathcal{H}_d = \mathbf{EK}_d^{\square}(B, [C_2, DC_2, \dots, D^N C_2, Q, DQ, \dots, D^{N-1}Q])$$

Poisson-Chi: Sylvester equation

$$AX + XB^T + DXD^T = C_1C_2^T$$

Properties

•
$$AD = DA + v_1 w_1^T - w_1 v_1^T - v_2 w_2^T + w_2 v_2^T$$

•
$$BD = DB + v_1 w_1^T - w_1 v_1^T$$

- $D^2 = D$
- A: singular

Let $U = [v_1, v_2, w_1, w_2]$ and $Q = [v_1, w_1]$ then

$$\mathcal{K}_d = \mathbf{EK}_d^{\square}(A, [C_1, DC_1, U, DU])$$

$$\mathcal{H}_d = \mathbf{EK}_d^{\square}(B, [C_2, DC_2, Q, DQ])$$

Poisson-Chi: Sylvester equation

$$AX + XB^T + DXD^T = C_1C_2^T$$

Properties

•
$$AD = DA + v_1 w_1^T - w_1 v_1^T - v_2 w_2^T + w_2 v_2^T$$

•
$$BD = DB + v_1 w_1^T - w_1 v_1^T$$

- $D^2 = D$
- A: singular

Let $U = [v_1, v_2, w_1, w_2]$ and $Q = [v_1, w_1]$ then

$$\mathcal{K}_d = \mathbf{EK}_d^{\square}(A, [C_1, DC_1, U, DU])$$

$$\mathcal{H}_d = \mathbf{EK}_d^{\square}(B, [C_2, DC_2, Q, DQ])$$

but A is singular...

Poisson-Chi: Sylvester equation

$$(A+I)X + XB^T + DXD^T - X = C_1C_2^T$$

Properties

•
$$AD = DA + v_1 w_1^T - w_1 v_1^T - v_2 w_2^T + w_2 v_2^T$$

•
$$BD = DB + v_1 w_1^T - w_1 v_1^T$$

•
$$D^2 = D$$

• A: singular

Let
$$U = [v_1, v_2, w_1, w_2]$$
 and $Q = [v_1, w_1]$ then

$$\mathcal{K}_d = \mathbf{EK}_d^{\square}(A+I,[C_1,DC_1,U,DU])$$

$$\mathcal{H}_d = \mathbf{EK}_d^{\square}(B, [C_2, DC_2, Q, DQ])$$

Poisson-Chi: Sylvester equation (shifted)

$$(A+I)X + XB^T + DXD^T - X = C_1C_2^T$$

Conclusion

Scientific contributions:

- New low rank method for generalized Sylvester equations
- Structured exploitation for Extended Krylov method
- Characterization of the low rank numerical solutions

Future of this project:

• Preprint available soon