- Earth materials contain magnetic domains that behave like magnetic dipoles
- Magnetization is the total dipole moment per unit volume

$$\vec{M} = \frac{\Sigma \vec{m}_i}{Volume}$$

- Magnetic dipoles will re-orient along the direction of an inducing field
- The strength of induced magnetization is defined by the magnetic susceptibility

- Magnetization produces a magnetic field
- Field lines got from North to South pole
- All together:

Anomalous field (due to magnetization) Inducing field $|\vec{B} = \mu_0 (\vec{H} + \vec{H}_A)$ $= \vec{B}_0 + \vec{B}_A$

Physical Property: Magnetic susceptibility

• Earth's magnetic field, B₀ is the source:

- Induces magnetization (may also have remanence):
 - → Creates anomalous field B_A

• Measure total magnetic field $B = B_0 + B_A$

Today's topics

- Basic principles
 - The source
 - Magnetization of Earth materials
 - Anomalous field

Basic principles (Source)

Reading on the GPG:

https://gpg.geosci.xyz/content/magnetics/magnetics_basic_principles.html#basic-principles

Earth's Magnetic field

Geomagnetic dynamo

 Complicated inside the earth near the core

 Outside the earth it looks like a magnetic field due to a dipole

Magnetic vs Geographic North

Defining Earth's Field on Surface

- A vector field
- How is the field described anywhere?
 - Orthogonal decomposition: X, Y, Z
 - Inclination, Declination, Magnitude

Defining Earth's Field on Surface

- Declination: CW degree angle from geographic North
- Inclination: Degree angle from horizontal (+ve down)
- Amplitude: Magnetic flux in units nT

Earth's Magnetic Field Amplitude

Earth's magnetic field: Strength |B| Inclination I Declination

 $B_{max} = 70,000 \text{ nT}$ $H_{max} = 55.7 \text{A/m}$ $B_{min} = 20,000 \text{ nT}$ $H_{min} = 15.9 \text{A/m}$

http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/igrfpg.pl

Earth's magnetic field: Strength |B| Inclination I Declination

VANCOUVER

Latitude: 49° 15' 0" N

Longitude: 123° 7' 60" W

Magnetic declination: +16° 19'
Declination is POSITIVE (EAST)

Inclination: 70° 11'

Magnetic field strength: 54197.1 nT

http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/igrfpg.pl

Demo: Magnetometer on Cell Phones

Physics toolbox

Compass: magnetic N and S

Magnetometer on Cell Phones

Physics toolbox

Compass: magnetic N and S

3-axis magnetometer: Total, X, Y, Z

Verify the total field and inclination in Vancouver

Basic principles (Magnetization)

Reading on the GPG:

https://gpg.geosci.xyz/content/magnetics/magnetics_basic_principles.html#basic-principles

Induced Magnetization

$$ec{M}=\kappaec{H}$$

Induced magnetization parallel to inducing field

 The strength of induced magnetization depends on susceptibility and strength of inducing field

Remanent Magnetization

- A permanent magnetization contribution which is **not** supported by an external field
- Total magnetization is vector sum:

$$\overrightarrow{M}_T = \overrightarrow{M}_I + \overrightarrow{M}_R$$

 Only significant in ferromagnetic materials (magnetite, steel etc...) so typically can be ignored

Anomalous fields (no remanence)

Reading on the GPG:

https://gpg.geosci.xyz/content/magnetics/magnetics_basic_principles.html#basic-principles

The composite field

Composite field:

$$B = B_0 + B_A$$

B is a vector:

$$B = \{B_x, B_y, B_z\}$$

Total field:

$$|B| = |B_0 + B_A|$$

The composite field

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$

$$|\mathsf{B}| = |\mathsf{B}_0 + \mathsf{B}_\mathsf{A}|$$

The composite field

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$

$$|\mathsf{B}| = |\mathsf{B}_0 + \mathsf{B}_\mathsf{A}|$$

The anomalous field

Measured field $B = B_0 + B_A$

Link to GPG

- The total field anomaly: $\Delta B = |B| |B_0|$
- If $|B_A| \ll |B_0|$ then
- That is, total field anomaly ∆B is the projection of the anomalous field onto the direction of the inducing field.

$$\triangle \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$$

Why is the total field anomaly $\triangle \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$

Vector Diagram

$$|\triangle \vec{B}| = |\vec{B}_0 + \vec{B}_A| - |\vec{B}_0|$$

$$\simeq \vec{B}_A \cdot \hat{B}_0$$

$$= |\vec{B}_A| \cos \theta$$

Often call this B_t: total field anomaly; also referred to as TMI data

Superposition of Magnetic Anomalies

Magnetic field for one prism Prism own dipole-like field

Magnetic field for 5 prisms Superposition

What if there is significant remanence?

- Affects total magnetization of the block
 - → Changes strength and orientation of anomalous B-field
 - → Changes shape and location of TMI anomaly
- Failure to recognize and ruin interpretation

Magnetic anomaly map of North America

http://pubs.usgs.gov/sm/mag_map/mag_s.pdf

Types of anomalies

Effects on Earth's field orientation

Same object buried at different locations on the earth yields different total field anomalies

Magnetic dipole app

Link to app and questions:

https://mybinder.org/v2/gh/geoscixyz/gpgLabs/master?filepa th=notebooks%2FMagneticDipoleApplet.ipynb

Magnetic Prism App

- A single prism with uniform magnetization
- Arbitrary dimensions
- Arbitrary orientation of the body
- Arbitrary strength and orientation of remanent magnetization.
- Can model cubes, rods, sheets, dykes ...

https://mybinder.org/v2/gh/geoscixyz/gpgLabs/master?filepath=notebooks%2FMagneticPrismApplet.ipynb

Recap

Earth's magnetic field acts as a source

It is defined by inclination, declination and amplitude

• The Earth's field induces magnetization in susceptible

bodies

Recap

Induces magnetization is parallel to the Earth's field

$$ec{M}=\kappaec{H}$$

The total magnetization is induced + remanent (if it exists)

$$\overrightarrow{M}_T = \overrightarrow{M}_I + \overrightarrow{M}_R$$

The measured field is

$$B = B_0 + B_A$$

 Anomaly depends on strength and direction of anomalous field relative to B₀

Unit Activities

- Labs: (Magnetics I)
 - Monday, September 16th
 - Tuesday, September 17th
- Labs: (Magnetics II)
 - Monday, September 23rd
 - Tuesday, September 24th
- TBL:
 - Monday, September 23rd
- Quiz:
 - Monday, September 23rd