19^{es} Journées Francophones des Systèmes Multi-Agents 17-19 octobre 2011, Valenciennes

Observation macroscopique et émergence dans les SMA de très grande taille

Robin Lamarche-Perrin, Yves Demazeau et Jean-Marc Vincent
Laboratoire d'Informatique de Grenoble
Équipes MAGMA & MESCAL

Systèmes étudiés

- Les DALMAS
 - Dencentralized, Asynchronous
 - Large-scale
 - Multi-Agent Systems

- Problématique : une image macroscopique de processus microscopiques ?
- Solution : le concept d'émergence !

Présentation

1. Un concept d'émergence pour les DALMAS ?

- Exemple d'émergence : Émergence de descriptions causales macroscopiques
- 3. Le calcul de l'émergence pour les DALMAS Méthode d'observation macroscopique
- 4. Évaluation sur un modèle de colonie de fourmis

5. Démonstration à 17h

1. Un concept d'émergence pour les DALMAS ?

Conceptualisations de l'émergence

R. Lamarche-Perrin. Conceptualisations de l'émergence : dynamiques microscopiques et analyse macroscopique des SMA. *Plateforme AFIA'11 : atelier FUTURAMA*, mai 2011.

microscopiques

Conceptualisations de l'émergence

R. Lamarche-Perrin. Conceptualisations de l'émergence : dynamiques microscopiques et analyse macroscopique des SMA. *Plateforme AFIA'11 : atelier FUTURAMA*, mai 2011.

Conceptualisations de l'émergence

R. Lamarche-Perrin. Conceptualisations de l'émergence : dynamiques microscopiques et analyse macroscopique des SMA. *Plateforme AFIA'11 : atelier FUTURAMA*, mai 2011.

Conception **Analyse Descriptions** macroscopiques Até macroscopiqu Niveau macro Niveau micro Entités Description

microscopique

microscopiques

État de l'art

Conception

- Approches dualistes
 - [Sawyer, 2001]
 - [Gil-Quijano et al., 2010]

Niveau macro

Niveau micro

Entités microscopiques

Analyse

- Approches émergentistes
 - [Bonabeau et Dessalles, 1997]
 - [Picard, 2004]

- Approches éliminativistes
 - [Darley, 1994]
 - [Bedau, 1997]

Émergence et complexité

- [Bonabeau et Dessalles, 1997]
 - « Emergence is associated with a decrease of the relative complexity. »

2. Descriptions causales, agrégations et émergence

Des descriptions génériques

- Généricité du modèle de description
 - S'extraire de la sémantique des interactions
 - Se fonder sur la syntaxe des interactions
 - → Modéliser la **structure causale** de l'exécution

- Le background des systèmes distribués
 - Les SMA sont des cas particuliers de SD [Poutakidis et al., 2002]
 - Modélisation de l'exécution des SD
 - → Adaptation à la modélisation des SMA

Description causale

Diagrammes d'interactions adaptés de [Mattern, 1989]

$$e_1 < e_2 < e_3 < e_4$$
 $e_0 \parallel e_1$

Fonctions de complexité

Fonctions simples

- Complexité spatiale
- Complexité temporelle
- Complexité spatio-temporelle
- Complexité interactionnelle $C_i = \mathcal{O}(|I_d|)$

$$C_{\scriptscriptstyle S} = \mathcal{O}(|A_d|)$$

$$C_t = \mathcal{O}(|\Gamma_d|)$$

$$C_{st} = \mathcal{O}(|E_d|)$$

$$C_i = \mathcal{O}(|I_d|)$$

Agrégation spatiale

- Réduction de la complexité spatiale
- Réduction éventuelle de la complexité interactionnelle
- Conservation de la complexité temporelle

Agrégation temporelle

- Réduire la complexité d'une description
- Engendrer des abstractions utiles
- → Produire une description manipulable en pratique

3. Description macroscopique des DALMAS

Approches microscopiques

Analyse de traces d'exécutions [Journaa, 2009] Analyse par simulation des SMA [Luie et Carley, 2008] Analyse Description Exécution Niveau macroscopique du SMA macro Traitement des données Niveau Exécutions Description micro des agents Observation microscopique microscopique P2: taille des Conception P1: décentralisation données et asynchronisme

Approches macroscopiques

Pas d'antériorité à notre connaissance.

Observation macroscopique

Principe

- Incorporer le processus d'observation au sein de l'exécution
- Distribuer le calcul des descriptions macroscopiques dans l'espace et dans le temps
- Les agents participent à leur propre observation
- Le processus d'observation est lui-même émergent

4. Observation macroscopique d'une colonie de fourmis

Observation d'une colonie de fourmis

- AntsForage sur MASON [Luke et al., 2005]
- Observation microscopique

 Observation macroscopique
- Phénomènes émergents
 - Création des pistes de phéromones
 - 2. Exploitation des sources de nourriture
- Choix de l'application
 - SMA classique et bien connu
 - Objectif pédagogique
 - Première évaluation

Observation microscopique

Observation microscopique

Observation microscopique

Sondes et agrégation spatiale

- Centralisation de l'information
- Agents agrégés : fourmis partant d'une sonde
- Interactions entre sondes : transfert d'une fourmi d'une piste à l'autre

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

- Synchronisation de l'information Adapté du Snapshot algorithm [Chandy et Lamport, 1985]
- Intervalles agrégés : correspondant à l'aller-retour d'une fourmi
- Interaction entre sonde : flux d'activité pendant un aller-retour

Description macroscopique finale

Description macroscopique finale

perte d'information

Découverte des sources 2 et 3

Exploitation des sources 2 et 3

Résultats

- |X| = 100 simulations
- 6400 fourmis, 6400 pas de temps
- 10 sources, 4 obstacles, grille 220×200

Complexité	Taux d'émergence moyen	Écart type
Spatiale	$\overline{\rho_X} = 300$	$\sigma_X = 1.4$
Temporelle	$\overline{\rho_X} = 180$	$\sigma_X = 1.2$
Interactionnelle	$\overline{\rho_X} = 14000$	$\sigma_X = 1.5$
Interactionnelle relative	$\overline{\rho_X} = 58$	$\sigma_X = 1.5$

Résultats

Complexité spatiale

En fonction du nombre d'agents

CONSTANT STEPS = 6400

Complexité temporelle

En fonction du temps d'exécution

CONSTANT AGENTS = 6400

Bilan et perspectives

Bilan

- Concept d'émergence pour les DALMAS
- Exemple d'émergence à partir de descriptions causales
- Calcul de l'émergence dans les DALMAS

Perspectives

- Application sur les Systèmes d'Information Géographique (plus grands, plus complexes, moins contrôlés)
- Analyse théorique et empirique des effets de sonde (à partir de travaux en systèmes distribués [Chassin de Kergommeaux, 2001])

Merci pour votre attention Démonstration à 17h

Robin.Lamarche-Perrin@imag.fr