(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-32556

(43)公開日 平成8年(1996)2月2日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI	技術表示箇所
H 0 4 L	1/04				
H 0 4 B	1/10	Α			
H 0 4 L	1/00	Z			

審査請求 未請求 請求項の数10 OL (全 17 頁)

		番食請求 木請求 請求項の数10 〇L (全 17)
(21)出願番号	特願平6-163899	(71)出願人 000005821 松下電器産業株式会社
(22)出願日	平成6年(1994)7月15日	大阪府門真市大字門真1006番地
		(72)発明者 高井 均 大阪府門真市大字門真1006番地 松下電 産業株式会社内
		(72)発明者 浦部 嘉夫 大阪府門真市大字門真1006番地 松下電 産業株式会社内
		(72)発明者 山▲崎▼ 秀聡 大阪府門真市大字門真1006番地 松下電 産業株式会社内
		(74)代理人 弁理士 松田 正道

(54) 【発明の名称】 データ送受信装置

(57)【要約】

【目的】強力な妨害波が存在しても正しい復号データを得るデータ送受信装置の提供。

【構成】送信データは,パケット組立て器16にて所定ビット数ごとに分けられエニークワードと誤り検出ピットが付加されデータパケットを構成する。送信装置10は,このデータパケットで複数の搬送波をディジクル変調し、それらの被変調波を合わせてマルチキャリア伝送信号aとして送出する。このマルチキャリア伝送信号aは、帯域通過手段21A等に入力され部分的な帯域の成分のみが取り出され中間信号cが得られる。検波器22A等は中間信号cを検波し検波信号bを得る。クロック再生器25A等は中間信号cを検波し検波信号bを得る。クロック再生器25A等は再生クロックを生成する一方,復号器23A等はこの再生クロックを基に検波信号bから判定データ別d゚mを判定出力する。エニ-クワード検出器26A等はフレーム信号を出力し、パケット検出器27A等は復号デーウパケットを抽出し、誤り検出器29A等は復号データパケットを抽出し、誤り検出器29A等は復号データパケットを抽出し、誤り検出器29A等は復号データパケットを用い繋ぎ合わせて,復号デークを得て出力する構成。

1

【特許請求の範囲】

【請求項1】送信データを所定ビット数ごとに分け、少なくともユニークワードと誤り検出ビットを加えてデータバケットを構成し、異なる周波数を有する複数の搬送波を各々前記データバケットでディジタル変調して得られる複数の被変調信号を合成して得られるマルチキャリア伝送信号を出力する送信装置と、前記伝送信号を復調し復号データを出力する受信装置とを有するデータ送受信装置において、

前記受信装置は、前記マルチキャリア伝送信号の帯域内 10 の部分的な帯域の信号成分のみを取り出す複数の帯域通過手段と、前記帯域通過手段の出力である複数の中間信号をそれぞれ検波する複数の検波器と、前記検波器の出力である複数の検波信号からそれぞれ再生クロックを生成する複数のクロック再生器と、前記検波信号と前記再生クロックからそれぞれ判定データ列を出力する複数の復号器と、複数の前記判定データ列からそれぞれ前記ユニークワードを検出することによりそれぞれ復号データパケットの先頭を見いだす複数のユニークワード検出器と、前記ユニークワード検出器の出力であるフレーム信号を基に前記判定データ列からそれぞれ前記復号データパケットを抽出する複数のパケット抽出器と、前記誤り検出ピットを用いて前記復号データパケットの中のピット誤りをそれぞれ検出する複数の誤り検出器とを有し、

前配誤り検出器によってピット誤りが無いと判定した前 記復号データバケットから前記復号データを得ることを 特徴とするデータ送受信装置。

【請求項2】帯域通過手段は、周波数混合器と、前記周波数混合器に局部発振信号を供給する局部発振器と、前 過局部発振信号の周波数との差の周波数帯に変換された 30 前記周波数混合器の出力の部分的な帯域の信号成分のみを取り出す帯域通過フィルタとで構成されることを特徴とする請求項1記載のデータ送受信装置。

【請求項3】帯域通過手段および検波器およびクロック 再生器および復号器およびユニークワード検出器および パケット抽出器および誤り検出器は、すべて2系統ある ことを特徴とする請求項1配載のデータ送受信装置。

【請求項4】帯域通過手段は、対応する誤り検出器がピット誤りを検出した場合、前記帯域通過手段の通過帯域を変更することを特徴とする請求項1記載のデータ送受 40 信装置。

【請求項5】受信装置は、任意のユニークワード検出器が、それ以外の1つあるいは複数のユニークワード検出器からのフレーム信号が出力されてから、所定時間の間フレーム信号を出力しない場合、前配任意のユニークワード検出器はユニークワード検出に失敗したものと判定し、フレームエラー信号を出力するフレームエラー検出器を具備することを特徴とする請求項1記載のデータ送受信装置。

【請求項6】帯域通過手段は、フレームエラー検出器の 50 えば、「Spread Spectrum Systems」, R.C. Dixon)。

出力するフレームエラー信号によって、前記帯域通過手 段の通過帯域を変更することを特徴とする請求項5記載 のデータ送受信装置。

【請求項7】ディジタル変調は、多値変調であり、

クロック再生器は、その出力である再生クロックとして、検波信号のシンポルに同期した再生シンポルクロックを生成し、

復号器は、前記再生シンボルクロックに基づき前記検波 信号を順次サンプリングして判定することにより判定シ ンボルデータ列を得て、さらに、前記判定シンボルデー タ列をパラレル・シリアル変換することにより、ビット 列である判定データ列を出力するものであり、

ユニークワード検出器は、前記判定データ列と、ユニークワードとをビット列として比較照合することにより、フレームタイミングを抽出し、フレーム信号を出力することを特徴とする請求項1記載のデータ送受信装置。

【請求項8】パケット抽出器は、対応するフレームエラー検出器がフレームエラー信号を出力した場合、他のユニークワード検出器からのフレーム信号のタイミングを基に、復号データパケットを抽出することを特徴とする請求項5記載のデータ送受信装置。

【請求項9】復号器は、対応するフレームエラー検出器 がフレームエラー信号を出力した場合、フレーム信号を 出力した他のユニークワード検出器に対応するクロック 再生器の出力する再生クロックに基づいて判定データ列 を出力することを特徴とする請求項8記載のデータ送受信装置。

【請求項10】クロック再生器は、その出力である再生 クロックとして、検波信号のシンボルに同期した再生シ ンボルクロックを生成し、

復号器は、前記再生シンボルクロックに基づき前配検波 信号を順次サンプリングして判定することにより、シン ボル列である判定データ列を出力するものであり、

ユニークワード検出器は、前記判定データ列と、ユニークワードとをシンポル列として比較照合することにより、フレームタイミングを抽出し、フレーム信号を出力することを特徴とする請求項1,8,又は9記載のデータ送受信装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば、マルチキャリア伝送信号を使用して、耐ジャミング特性を有するデータ伝送を行うためのデータ送受信装置に関するものである。

[0002]

【従来の技術】従来、耐ジャミング(妨害)特性を有する変復調方式としては、スペクトル拡散通信方式が良く知られており、種々の妨害・雑音環境において、高信頼通信が行える方式として注目されてきた経緯がある(例えば、「Spread Spectrum Systems」 R.C. Dixon)。

【0003】以下図面を参照しながら、上記スペクトル 拡散方式を用いるデータ送受信装置の一例の構成および 動作について説明する。

【0004】図13は、直接拡散方式 (DS) と呼ばれ る、代表的なスペクトル拡散方式の一方式を用いたデー 夕送受信装置の一例のプロック図を示すものである。ま た、図14は図13の装置の各部の信号波形を示すもの である。図13の送信装置10'において、11は差動 符号化器、12は位相変調器、13は擬似雑音信号発生 器、14は乗算器である。一方、図13の受信装置2 0'において、13'は擬似雑音信号発生器、14'は 乗算器、15は帯域通過フィルタ、25はクロック再生 器、23は復号器、そして、22は検波器であり、シン ボル遅延器221、乗算器222、および低域通過フィ ルタ223により構成される。

【0005】ビット列である送信データdは差動符号化 器11で差動符号化された後、位相変調器12で変調 し、シンボル周期Tの2相位相変調波である一次変調信 号pを得る。よって、一次変調信号pは、送信データd が1の時に前シンボルと同じ位相となり、データdが-20 1の時に前シンポルに対し逆の位相となる(±1の2値 データとする)。 擬似雑音信号発生器 13は、シンボル 周期に等しい周期を有する擬似雑音信号qを発生する。 擬似雑音信号 g は、例えば、M系列等、2 値の疑似ラン ダムバルス列である。乗算器14は一次変調信号pと接 似雑音信号gを乗算し、スペクトル拡散信号a'を得 る。

【0006】図14 (a) に、一次変調信号p、擬似雑 ☆信号 q 、およびスペクトル拡散信号 a 'の時間波形を ...,。但し、図14においては、検波信号b以外は、便 30 がある場合、拡散率は、10程度まで低くせざるをえ 宜上ペースパンド波形を図示している。

【0007】このようにして得られたスペクトル拡散信 号a'は、伝送路を通り受信装置20'に入力される。 受信装置20′において、乗算器14′は、受信したス ベクトル拡散信号 a'と、擬似雑音信号発生器 13'で 発生した送信倒と同一で位相の合った擬似雑音信号とを **乗算し、さらに帯域通過フィルタ15により不要な帯域** 外信号成分を取り除いて逆拡散後信号p'を得る。図1 4 (b) に図示されるように、本質的に以上の過程は、 送信側での拡散過程の逆過程に相当し、得られた逆拡散 40 後信号p'は、送信側における一次変調信号pに相当す

【0008】さて、以上のようにして、得られた逆拡散 後信号は、情報データェ1に対応して、シンポルの位相 が変化するので、シンポル遅延器221でシンポル周期 Tだけ遅延させた信号と掛け合わせることにより、デー 夕を復号することができる。実際には、低域通過フィル タ223の影響で波形がなまるが、図14(b)に示す 検波信号bのように、その極性にデータが現れる。クロ 別タイミングを有するシンボルクロックを再生し、復号 器23は、このシンボル識別タイミングに基づいて、検 波信号bをサンプルし、極性を判別することにより、復 号データ d'を得る。

【0009】一方、妨害(ジャミング)波に対しては、 逆拡散の過程での動作が異なる。一般に、妨害波は、擬 似雑音信号qとの相互相関が小さいので、両者の乗算結 果である乗算器 14'の出力は、図14(b)の逆拡散 後信号p'とは異なり、雑音状の広帯域の信号のままで あり、帯域通過フィルタ15をほとんど通過できず、排 除できるので、検波器22におけるその後の検波過程に おいて、妨害波の影響を軽減することができる。この妨 害を軽減できる割合は、データのピット速度に対する、 擬似雑音信号のチップ速度の比、いわゆる、拡散率で決 まる(例えば、「Spread Spectrum Systems」, R.C. Di . (aor

【0010】このように、従来のスペクトル拡散方式を 用いると、妨害排除能力を有するデータ装置が得られ る。

[0011]

【発明が解決しようとする課題】しかしながら上記のよ うな構成では、信号の帯域内に、目的信号に対して、拡 散率に相当する程度(正確には、さらに検波のためのマ ージンを見込む必要がある)を上回る強力な妨害成分が 加わった場合には、妨害排除能力が不足して、妨害成分 の帯域が信号帯域の一部にしか重なっていない場合でも 受信不能となる。

【0012】実際上、無線LAN等への応用など、伝送 速度が高くなり、総計での割り当て周波数帯域幅に制限 ず、一方では、受信信号強度は、無線伝送の場合、フェ ージングの現象と相まって、大幅に変化する。このた め、上記に説明した従来のデータ送受信装置では、妨害 (ジャミング) の影響を大きく受けて、信頼性のあるデ ータ通信を行うことは不可能であるという課題を有して

【0013】本発明は、上記課題を解決するもので、ス ペクトル拡散信号の帯域内に非常に強い妨害(ジャミン グ)が加わった場合にも確実な伝送を可能にするデータ 送受信装置を提供することを目的とする。

[0014]

【課題を解決するための手段】上記課題を解決するため に本発明のデータ送受信装置は、送信データを所定ビッ ト数ごとに分け、ユニークワードと誤り検出ビット含む データパケットを構成し、異なる周波数を有する複数の 搬送波を各々前記データパケットでディジタル変調して 得られる複数の被変調信号を合成して得られるマルチキ ャリア伝送信号を出力する送信装置と、前記マルチキャ リア伝送信号を復調し復号データを出力する受信装置か ック再生器 2 5 は、この検波信号 b 自身からシンボル識 50 ら成り、前記受信装置は、前記マルチキャリア伝送信号 の帯域内の、互いに異なる部分的な帯域の信号成分のみを取り出し復調する、複数の系統の、帯域通過手段と検波器とクロック再生器と復号器とユニークワード検出器とパケット抽出器と誤り検出器とを有し、前記誤り検出器により、ビット誤りが含まれない系統の出力を繋いで前記復調データとするよう構成して成るものである。

[0015]

【作用】本発明は上記した構成によって、マルチキャリア伝送信号の帯域内の部分的な、複数の帯域の信号成分を同時に検波するので、信号帯域内に局在する強い妨害 10 波に対して、これらの劣化要因の影響を避けて受信状態が良好な方の帯域の信号成分を選択的に利用することができ、強力な妨害波による誤り率の劣化を軽減することができる。

[0016]

【実施例】以下、本発明の実施例のデータ送受信装置に ついて、図面を参照しながら説明する。

【0017】図1は、本発明にかかる第1の実施例のデータ送受信装置のブロック図を示すものであり、同図を用いて本実施例の構成を説明する。

【0018】図1において、10は送信装置、20は受信装置、16はパケット組立て器、12A~12Bは変調器、15A~15Bは搬送波発生器、17は合波器、21A~21Bは帯域通過手段、22A~22Bは検波器、23A~23Bは復号器、25A~25Bはクロック再生器、26A~26Bはユニークワード検出器、27A~27Bはパケット抽出器、29A~29Bは誤り検出器、24は判定選択器である。なお、検波器22A~22Bの構成は、図13における検波器22と同様であり、図13に示したように、例えば、シンボル遅延器 30221、乗算器222、低域通過フィルタ223で構成される。一方、送信装置10の中の変調器12A~12Bの構成は、例えば、図13の送信装置10,の中の差動符号化器11と位相変調器12をまとめたものに相当する。

【0019】以下、さらに、パケット組立て器16の出力するデータパケットの一例の符号構成図である図2、復号器23A~23Bの出力である判定データ列に観測されるデータパケットの一例の説明図である図3、各部の信号スペクトル図である図4を用いて、本実施例の動 40作を説明する。

【0020】図1の送信装置10の構成および動作は、「従来の技術」の項目で説明した図13における動作とほぼ同様であるが、パケット組立て器16が追加されており、送信データをパケット状に構成し、その各々のパケットに対応した伝送信号を出力するところが異なる。

【0021】つまり、送信データは、まず、所定のピット数ごとに分けられ、図2に1例を示すように、情報データ93となり、プリアンプル91、ユニークワード92、誤り検出ピット94を付加されてデータパケット650

1~64を構成する。データバケット61~64は、変調器12A~12Bに入力され、各々のパケットに対応した、この場合パースト状の変調信号となる。それぞれの変調器12A~12Bに供給される搬送波は、各々搬送波発生器15A~15Bで作られるが、互いの被変調波が分離受信できる程度に離れた異なる周波数を有する。そして、変調器12A~12Bの出力である、それぞれの被変調波は、合波器17で構成され、マルチキャリア伝送信号aが、伝送信号として送出される。

【0022】なお、変調方式には、例えば、2、4、8相等の(差動)位相変調等が使われ、その基本構成および動作は、「従来の技術」の項目で説明した図13の差動符号化器11および位相変調器12の構成および動作と同様であるので省略する。なお、パーストの急峻な立ち上がり立ち下がりは、送信スペクトル幅の拡大を生じるので、パーストの前縁および後縁に包絡線が滑らかに変化するランプ波形を加えるものであってもよい。また、図2のデータパケット61~64は、パケット間に隙間のあるパースト状の送信形態を示しているが、互いのデータパケットが隣接するか、あるいは、何らかの他のデータ列を間にはさむことにより、連続送信するものであってもよい。

【0023】また、本実施例では、複数の搬送被発生器 15A~15Bをそれぞれ変調器12A~12Bで変調 した複数の被変調波を合波器17で合成してマルチキャリア伝送信号 aを得ているが、このマルチキャリア伝送信号 aのペースパンド信号をデジタル信号処理によって一括して生成し、1つの搬送波発生器からの搬送波を直交変調器で一括変調することによって、等価的に、同等の伝送信号を得るものであってもよい。

[0024] ユニークワード92は、後述するように、受信装置20での復号過程で対応するデータパケットを見いだすために挿入された固定のビットパターン列である。一方、誤り検出ビット94は、受信装置20にて、情報データ93および誤り検出ビット94それ自身の中にピット誤りが発生したかどうかを調べるために挿入された可変ビットパターン列である。誤り検出ビット94は、実際には、パリティ符号あるいはCRC (Cyclic Redundacy Check) 符号等を用いる。

【0025】以下、変調方式が2相差動位相変調の場合 を典型として、受信装置20を中心に、さらに詳細に動作を説明する。

【0026】伝送路を通ったマルチキャリア伝送信号 a は、受信装置 20に入り、まず帯域通過手段 21A~21Bで帯域制限され、中間信号 cとなる。図4は、受信されたマルチキャリア伝送信号 a のスペクトルの概略および帯域通過手段 21A~21Bの取り得る帯域が3つである(B1~B3)場合について例示したものである。取り得る帯域は、図4に示すように、搬送波発生装置 15A~15Bの発生する搬送波を中心とした、それ

ぞれの被変調波を各々分離抽出するように設定される。 そして、帯域通過手段21A~21Bは、それぞれ帯域 通過フィルタで構成されており、それぞれが通過帯域B 1~B3のすべて、あるいは、一部に対応する。なお、 通過帯域は、図4に示したように3つに限るものではな く、2以上の複数であればよい。また、同様に、帯域通 過手段21A~21Bは、図1に示したように、複数で あればよく、典型例として2つの場合も含まれる。

【0027】このようにして得られた中間信号 cは、検 波器 2 2 A ~ 2 2 B でそれぞれ検波され、検波信号 bが 10 得られる。検波器22A~22Bは、例えば、図13の 22に示すような遅延検波器が用いられる。検波器22 A~22Bの動作については、図13の従来例で説明し たのと同様であるので、省略する。なお、図13は2相 位相変調の場合だが、4相、8相等の多値変調の場合 も、その検波過程は同様である。異なる点は、検波器2 2A~22Bの構成が、直交軸を加えた2系統あること と、復号器23A~23Bでは、検波信号bを識別判定 - して判定シンボルデータ列を得た後、パラレル・シリア ル変換することにより、ピット列である判定データ列 20 d'.を出力することである(例えば、W.R.Bennet、J.R. Davey著、「データ伝送」、ラテイス)。

【0028】さて、判定データ列は、図2のデータパケ ット61~64に相当する、同一構造の図3のデータバ ケット61'~64'が含まれる。ユニークワード検出 器26A~26Bは、判定データ列d'。と、ユニークワ ードの固定パターンとを随時照合し、一致を検出する フレーム信号を出力する。パケット抽出器27A~ 17Bは、このフレーム信号のタイミングを基に、情報 ノータ93'と誤り検出ピット94'からなる復号デー 30 タパケット95'を抽出し、誤り検出器29A~29B。 に引き渡す。誤り検出器29A~29Bはそれぞれ誤り 検出ピット94'を基に、復号データパケット95'中 のピット誤りを検出し、その結果を判定選択器24に引 き渡すとともに、復号データパケット95'中の情報デ ータ93'も併せて判定選択器24に引き渡す。判定選 択器24は、ビット誤りの検出されなかった系統の情報 データ93'のみを選択繋ぎ合わせて、受信装置20の 最終出力の復号データとして出力する。

【0029】さて、いま、伝送路において図4に示す妨 40 害波」が加わった場合を考える。図13に示した従来の 装置によれば、妨害波jのエネルギーの大半が、拡散率 に相当する分だけ軽減されるものの、検波器に印加され るため、正常な受信が不可能となる場合が生じやすい。 しかしながら、図1に示す本実施例の装置によれば、送 信されるマルチキャリア伝送信号aの部分的な帯域B1 ~B3のみ通過させる帯域通過手段21A~21Bを設 けているので、図4に示すように、帯域通過手段21A ~21Bの中の1つあるいは複数が通過帯域B1に設定 されていれば、その系統の検波器の入力の中間信号bは 50 検出した場合、対応する帯域通過手段21A~21Bの

妨害波」の影響を受けず、正常な受信が行なわれる。従 って、他の系統は、受信が正常に行なわれず、当該誤り 検出器がピット誤りを検出しても、上記のように、妨害 波 j の影響を避け得た系統が1つでもあれば、その系統 の誤り検出器はピット誤りを検出せず、判定選択器24 は、その系統の情報データ93'を選択し、復号データ として出力するので、正常な受信が継続される。

【0030】一般に妨害・ジャミング波のスペクトル は、一様に分布するよりも、特定周波数に集中すること が多く、図13に説明した従来例では、一律に、拡散率 相当の妨害波軽減能力を有するが (例えば、拡散率10 倍に対して10dB、100倍に対して20dB)、本 発明の送受信装置の場合、帯域通過手段の帯域外減衰 は、容易に50dB程度以上の値を期待できるので、一 様に分布した妨害波でない限り、格段に優れた妨害波排 除能力が期待できる。

【0031】なお、帯域通過手段21A~21Bは、図 5に示す、帯域通過手段21のように、帯域通過フィル 夕211および周波数混合器212および局部発振器2 13により構成してもよい。この場合、入力信号は、周 波数混合器212によって、局部発振器213の出力で ある局部発振信号との差の周波数帯に変換された後、帯 域通過フィルタ211で帯域制限され、周波数変換され たマルチキャリア伝送信号aの一部の周波数成分のみ取 り出されて、中間信号cとして出力される。局部発振器 213は、通常、PLL (Phase Locked Loop) シンセ サイザで構成され、搬送波発生器15A~15Bの発生 する搬送波の周波数間隔で、局部発振信号の周波数を可 変する、あるいは、各帯域通過手段21A~21Bの局 部発振器213は、この周波数間隔だけ異なる周波数の 局部発振信号を生成するものを複数用意し、切り替えて もよい。等価的に、局部発振信号の周波数を変えること により、元のマルチキャリア伝送信号aの周波数成分の 異なる部分の成分を中間信号cとして取り出すことがで きる。帯域通過手段21A~21Bのそれぞれの中間信 号の中心周波数を同一に選び、局部発振信号の周波数を 違えて、異なる通過帯域を得るようにした場合、それぞ れの帯域通過フィルタ211および検波器22A~22 Bは、同一のものを使用できるので、製造が容易になる 長所がある。

【0032】図6は、本発明の第2の実施例の送受信装 置のプロック図を示すものであり、同図を用いて、本実 施例の動作及び構成を説明する。

【0033】本実施例において、送信装置10は図1に 示した第1の実施例の送信装置10と同様である。

【0034】また、受信装置201の各部の構成および 動作も、第1の実施例の受信装置20とほぼ同様ではあ るが、第1の実施例と異なるのは、図6において受信装 置201は、誤り検出器29A~29Bがビット誤りを

30

通過帯域を変更させるところが異なる。

【0035】帯域通過手段21A~21Bの各々の通過 帯域を合わせた全体の帯域が伝送信号であるマルチキャ リア伝送信号aの帯域の一部である場合、誤り検出器2 9A~29Bによって妨害の有無を判定し、ピット誤り の検出をもって妨害を検出した場合、その対応する帯域 通過手段の通過帯域を、現在受信に使用されていない帯 域に変更することによって、効率的な妨害回避が可能と なる。例えば、通過帯域は多数(3以上)で、帯域通過 手段21A~21Bから誤り検出器29A~29Bまで 10 の受信系統がこれらの通過帯域の中の2つに割り当てら れた2系統のみであっても、これら2系統が同時に妨害 を受ける確率は低く、また、どちらか一方が妨害を受け た時点で、受けた系統を未使用帯域に割り当てることに より、ハード規模がさほど大きくなく、効率的な妨害回 避が実現できる。なお、図6に示した帯域通過手段21 Aから21Bの通過帯域の変更は、例えば、それぞれが 複数の帯域通過フィルタを切り替え選択し実現する。そ の場合、それぞれの帯域通過手段21A~21Bが複数 の帯域通過フィルタを切り替え選択する場合、一部ある 20 いはすべての帯域通過フィルタを、一部あるいはすべて の帯域通過手段で共有する構造となっていてもよい。ま た、帯域通過手段21A~21Bを図5に示したように 等価的に実現している場合、局部発振器213を、通 常、PLL (Phase Locked Loop) シンセサイザで構成 し、搬送波発生器15A~15Bの搬送波周波数間隔で 周波数を可変して実現してもよい。

【0036】図7は、本発明の第3の実施例の送受信装 **園のプロック図を示すものであり、同図等を用いて、本** 天施例の構成及び動作を説明する。

【0037】本実施例において、送信装置10は図1に 示した第1あるいは第2の実施例の送信装置10と同様 である。

【0038】また、受信装置202の各部の構成および 動作も、第1の実施例の受信装置20あるいは第2の実 施例の受信装置201とほぼ同様ではあるが、第1ある いは第2の実施例と異なるのは、図7において受信装置 202は、フレームエラー検出器28A~28Bが追加 され、その出力であるフレームエラー信号によって、対 応する帯域通過手段21A~21Bの通過帯域を変更さ 40 せるところが異なる。

【0039】以下、図7に一例を示した本実施例につい て、その受信装置202の動作を図8を用いて説明す る。

【0040】図7において、それぞれのフレームエラー 検出器28A~28Bには、ユニークワード検出器26 A~26Bの出力であるフレーム信号がすべて入力さ れ、それぞれの系統のユニークワード検出失敗を判定 し、フレームエラー信号を出力する。図8はその動作の 一例を説明したもので、図8において、再生クロックA 50 より、他系統のフレーム信号のタイミングを基に、復号

およびBは各々クロック再生器25Aおよび25B、判 定データ列AおよびBは各々復号器23Aおよび23 B、フレーム信号AおよびBは各々ユニークワード検出 器26Aおよび26B、フレームエラー信号Bはフレー ムエラー検出器28Bのそれぞれ出力である。

10

【0041】図8に示すように、ある時点で、ユニーク ワード検出器26Aが、ユニークワード92'の終了を 見いだし、フレーム信号Aを出力したとすると、それか ら所定の時間を観測期間として、他の系統のフレーム信 号が出力されるかどうかを観測する。図8の場合、この 期間にフレーム信号Bが出力されれば(点線の場合)、 フレームエラー信号Bは出力されないが、もし、この期 間にフレーム信号Bが出力されなければ(実線の場 合)、観測期間の終わりにて、フレームエラー信号Bが 出力される。

【0042】なお、観測期間は、伝搬路/信号処理の遅 延特性や再生クロックのジッター等による誤判定を避け るためのものであり、少なくとも、約1シンボル長程度 以上が必要である。また、図7および図8は、受信系統 が2系統の場合について示しているが、3系統以上ある 時も全く同様であり、その時の観測期間は、他の系統で 最も早く出力されたフレーム信号のタイミングを起点と する。

【0043】以上のように、もし、フレームエラーが検 出された場合、そのフレームエラー信号により、対応す る帯域制限手段は、第2の実施例に述べたと同様の手段 をもって、その通過帯域を変更させる。妨害を受けた場 合、ユニークワードの検出に失敗し、フレームエラーが 発生するので、第2の実施例と同様、ハード規模がさほ ど大きくなく、効率的な妨害回避が実現できる。しか も、第2の実施例の場合は、復号データパケットの終了 してからでないと、誤り検出器29A~29Bはピット 誤りを検出できず、それから、通過帯域の変更に取りか かるため、次の復号データパケットをも取り損なう可能 性があるが、本実施例の場合、復号データパケットのか なり早期に判定が終了するため (図3参照)、このよう な支障を生じない長所を有する。

【0044】図9は、本発明の第4の実施例の送受信装 置のプロック図を示すものであり、同図等を用いて、本 実施例の構成及び動作を説明する。

【0045】本実施例において、送信装置10は図1に 示した第1の実施例の送信装置10と同様である。

【0046】また、受信装置203の各部の構成および 動作も、第3の実施例の受信装置202とほぼ同様では あるが、第3の実施例と異なるのは、図9において、パ ケット抽出器27A'~27B'は、もし、自系統のユ ニークワード検出器がユニークワード検出に失敗し、そ れからのフレーム信号を受け取らなかった場合、フレー ムエラー検出器28A~28Bの出力を参照することに

データパケットを抽出する所が異なる。

【0047】以下、図9に一例を示した本実施例につい て、その動作を図10を用いて説明する。

【0048】図9において、それぞれのフレームエラー 検出器28A~28Bの出力であるフレームエラー信号 は、それぞれ対応するパケット抽出器27A'~27 B'に入力される。図10において、フレームエラー検 出器28A~28Bに関する動作は、第3の実施例にお ける図8の説明と全く同様なので省略する。第3の実施 例の場合と異なっているのは、当該系統(図10の場合 10 はB系統)のフレーム信号Bが出力されなかった場合、 その代わりに、フレームエラー信号Bを用い、所定の補 正遅延量を与えた遅延判定データ列Bと、それに対応し てタイミングを調整された再生クロックB' に対して同 等の処理を行なうことにより、復号データパケットを抽 出する機能がパケット抽出器27A'~27B'に付加 されていることである。

【0049】ユニークワードはそのワード長を十分長く 設定した場合、誤捕捉する確率は極めて小さいが、見逃 し確率はかなり大きくなる。特に、本実施例の場合のよ 20 うに、パースト伝送を行なう場合、図2に示すように、 情報データや誤り検出ビットにはビット誤りを生じてい ないのに、ユニークワードはパーストの前方にあるた め、AGC系や各種同期系の迫従不良によるピット誤り がユニークワードの見逃しにつながり、復号パケットを 抽出できず、情報データが失われるケースが増加する。 一方、受信各系統の判定データ列のタイミングは、伝搬 遅延差や信号処理時間差や再生クロックジッター相当の 相互時間差が存在するが、これらは一般に、0.5シンボ ル長程度以下で十分小さく、ユニークワードを見逃した 30 としても、他系統の検出タイミングを用いて、復号パケ ットを抽出することにより、上記のようなケースの情報 データをも復号することができ、受信品質を改善でき る。図10から明かなように、フレームエラー信号Bは そもそもユニークワードを検出できた系統のフレーム信 号Aから観測時間だけ遅延した信号であるので、補正遅 延量をこの観測時間相当に設定することで、ユニークワ ードを見逃したとしても、他系統の検出タイミングを用 いて、復号パケットを抽出することができ、受信品質を 改善できる。

【0050】なお、補正遅延量を判定データ列Bに与え る(遅延判定データ列B)と同時に、再生クロックBに も同量の遅延を与えてもよいが(再生クロックB')、 再生クロックは繰り返し波形であることに留意して、繰 り返し周期の整数倍と、補正遅延量との差の分だけ、タ イミングを調整してもよい。なお、図10の例では、観 測期間、補正遅延量ともに、再生クロック1周期となっ ているので、再生クロックBへの遅延は不要である。

【0051】なお、図9は受信系統が2系統の場合につ いて示しているが、3系統以上ある時も第3の実施例の 50 いて、その動作を図12を用いて説明する。

12

場合と同様、そのまま拡張でき、以上の説明は同様に適 用される。

【0052】また、4相系以上の多値伝送の時、第1の 実施例の説明したように、復号器23A~23Bの中に パラレル・シリアル変換器を有し、それらは、ピット列 である判定データ列A~Bと、対応する再生ピットクロ ックA~Bを出力するもので(この時、ユニークワード 検出器26A~26Bは、ピット列として比較照合を行 なう)、図10の各再生クロックおよび各判定データ は、ビットクロックおよび判定ビットデータとして考え てよい(2相の場合は、ピット列とシンポル列は一致す る)。しかしながら、受信各系統間の相互時間差(上記 のように最大0.5シンボル長程度)が存在すると、周期 がシンボルクロックより、1/2(4相系の場合)ある いは1/3(8相系の場合)と短いピットクロックを基 本に、他系統のタイミングを用いて自系統のタイミング を推定すると、ビットずれを生じ、復号データパケット の抽出に失敗する頻度が増大する欠点がある。従って、 本実施例では、4相系以上の多値伝送の時、復号器23 A~23Bは、シンボル列である判定データ列A~B と、対応する再生シンボルクロックA~Bを出力するも ので (この時、ユニークワード検出器26A~26B は、シンポル列として比較照合を行なう)、図10の各 再生クロックおよび各判定データは、シンポルクロック および判定シンポルデータを表わし、パケット抽出器2 7A'~27B'の復号データパケットの出力の直前 か、誤り検出器29A~29Bにパラレル・シリアル変 換器を有しシンポル列からピット列への変換を行なう か、あるいは、最終の復号データがシンボル列を出力す るものである方が好ましい。

【0053】図11は、本発明の第5の実施例の送受信 装置のプロック図を示すものであり、同図等を用いて、 本実施例の構成及び動作を説明する。

【0054】本実施例において、送信装置10は図1に 示した第1の実施例の送信装置10と同様である。

【0055】また、受信装置204の各部の構成も、第 4の実施例の受信装置203とほぼ同様ではあるが、第 4の実施例と異なるのは、フレームエラー検出器28A ~28Bの出力で制御される切替え器251A~251 Bと、再生クロックのタイミングを調整する調整器25 40 2A~252Bと、調整器252A~252Bを通して 他系統の再生クロックを参照して判別データ列を出力す る復号器23A'~23B'が付加され、もし、自系統 のユニークワード検出器がユニークワード検出に失敗 し、フレームエラー検出器がフレームエラー信号を出力 した場合、他系統のクロック再生器の出力である再生ク ロックを用いて復号した判定データ列から復号パケット の抽出を行なう所が異なる。

【0056】以下、図11に一例を示した本実施例につ

ているが、3系統以上ある時も、そのまま拡張できるの で以上の説明は同様に適用される。

14

【0057】図11において、迫加された復号器23 A'~23B'は、それぞれ他系統のクロック再生器2 5A~25Bの出力する再生クロックA~Bを調整器2 52A~252Bでタイミング調整した再生クロック A'~B'を基に、判定データ列A'~B'を出力す る。 切替え器 2 5 1 A~2 5 1 Bは、対応するフレーム エラー検出器28A~28Bからのフレームエラー信号 を受けると、それぞれ接点を切替えて、第1の実施例で 説明した、通常の復号器23Aあるいは23Bの出力で ある判別データ列AあるいはBから、上記の判定データ 10 列A'あるいはB'に切り替える。ユニークワード検出 矢敗には、種々の理由が考えられるが、再生クロック追 従不良によるものならば、第4の実施例のように、他系 統からユニークワードのタイミングを与えても、抽出し た復号データ中にも、ビット誤りを含む可能性が高い。 本実施例では、このような場合、同時に、再生クロック についても、他系統から供給するため、受信品質の向上 が望める。

【0058】図12は、Bの系統でユニークワード検出 に失敗した時の動作を示している。つまり、検波器22 20 Bの出力する検波信号Bに対して、自系統のクロック再 生器25Bの出力する再生クロックBは、追従不良のた め、アイパターン(検波信号B内部の菱形部)の端部の 部分のタイミングを示しており、復号器23Bの出力す る判定データ列Bにはピット誤りが含まれる可能性が高 い。一方、他系統のクロック再生器25Aの出力する再 生クロックAから調整器252Aを通して得た再生クロ "クA'を用いて復号器23B'が出力する判定データ 例B'には、ピット誤りが少ない可能性がある。いま、 山走データ列Bにピット誤りが含まれ、ユニークワード 30 が検出されず、第3の実施例で説明したのと同様、フレ ームエラー信号Bが出力されると、切替え器251B は、判定データ列B'の方をパケット抽出器27B'に 供給し、同時に、パケット抽出器27B'は、第4の実 施例と同様、フレームエラー信号Bをフレーム信号の代 替として復号データバケットの抽出動作を開始する。こ のようにして、品質の良い可能性が高い判定データ列 B'を選択することになるので、さらに、受信品質の向 上が望める。

【0059】なお、調整器252A~252Bによる、調整時間は、通常は信号処理遅延相当分であり、あるいは、無くしてもよい。一方、補正遅延量に関しては、観測期間相当分を再生クロック繰り返し周期単位で遅延させればよい。ただ、第4の実施例と異なるのは、この補正遅延量は、パケット抽出器27A'~27B'の入力倒ではなく、復号器23A'~23B'の入力側の検液信号bを遅延させるか、あるいは、出力側の判定データ列を遅延させて行なう。

【0060】また、本実施例においても、第4の実施例 と同様、図11は受信系統が2系統の場合について示し 50

【0061】また、4相系以上の多値伝送の時、第4の実施例と同様、復号器23A~23Bおよび23A'~23B'の出力は、内部にパラレル・シリアル変換器を有し、ビットクロックおよび判定ビットデータであってもよいが、ビットずれによる復号データパケットの抽出失敗の頻度を減ずるため、シンボルクロックおよび判定シンボルデータであるものの方が好ましい。

【0062】以上のように、上記実施例によれば、送信 倒では、送信データをパケット化して、複数の周波数の 異なる搬送波に変調を施したマルチキャリア伝送信号を 送信し、受信倒では、その伝送信号の帯域内の部分的 な、複数帯域の信号成分のみを取り出して得られる中間 信号を検波し、常に良好な受信状態にある系の検波出力 から復号データを得るので、周波数的に局在する強力な 妨害波による誤り率の劣化を軽減することができる。

[0063]

【発明の効果】以上述べたところから明らかなように本発明は、周波数的に局在する強力な妨害波による誤り率の劣化を従来に比べてより一層軽減することができるという長所を有する。

【図面の簡単な説明】

【図1】本発明の第1の実施例におけるデータ送受信装置のプロック図

【図2】同実施例におけるデータバケットの一例の符号 構成図

【図3】同実施例における判定データ列に観測されるデータパケットの一例の説明図

30 【図4】同実施例における受信装置における信号のスペクトルの概略図

【図5】同実施例における帯域通過手段の構成例を示す プロック図

【図6】本発明の第2の実施例におけるデータ送受信装 置のプロック図

【図7】本発明の第3の実施例におけるデータ送受信装 置のプロック図

【図8】同実施例における受信装置の動作の説明図

【図9】本発明の第4の実施例におけるデータ送受信装 置のブロック図

【図10】同実施例における受信装置の動作の説明図

【図11】本発明の第5の実施例におけるデータ送受信 装置のブロック図

【図12】同実施例における受信装置の動作の説明図

【図13】従来のデータ送受信装置のプロック図

【図14】従来のデータ送受信装置の信号波形を示す信 号波形図

【符号の説明】

10, 10'

送信装置

11

差動符号

15		16	
化器		22, 22A~22B	検波器
1 2	位相変調	2 2 1	シンポル
器.		遅延器	
1 2 A~1 2 B	変調器	2 2 3	低域通過
13, 13'	摄似雑音	フィルタ	
信号発生器		23A~23B, 23A'~23B', 23	復号器
14.222	乗算器	2 4	判定選択
15A~15B	搬送波発	器	
生器		25A~25B, 25	クロック
1 6	ハケット 10	再生器	
組立て器		2 6 A ~ 2 6 B	ユニーク
1 7	合波器	ワード検出器	
20, 201~204, 20'	受信装置	27A~27B, 27A'~27B'	パケット
21, 21A~21B	帯域通過	抽出器	
手段		28A~28B	フレーム
15, 211	帯域通過	エラー検出器	
フィルタ		29A~29B	誤り検出
2 1 2	周波数混	器	
合器		251A~251B	切替え器
2 1 3	局部発振 20	2 5 2 A~2 5 2 B	調整器
器			

(9)

【図2】

[図3]

[図5]

2 1 ・・・・帯域通過手段 2 1 1 ・・・帯域通過フィルタ 2 1 2 ・・・周波象滅合器

【図1】

【図8】

【図10】

【図11】

【図12】

【図14】

【図13】

14、14'・・乗算器 15・・・・・帯域通過フィルタ 22・・・・・検波器