Qualifying Exam

Computational Mathematics

August 2010

Do all six problems. Each problem is worth 20 points.

1. (20 points) Consider a system of ODEs of the form:

$$u_t = \mathcal{L}(u),$$

where $\mathcal{L}(u)$ is an operator that represents some spatial discretization coming from some PDE. Assume that the spatial discretization represented in $\mathcal{L}(u)$ is chosen so that the forward Euler method in time:

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \Delta t \, \mathcal{L} \left(\boldsymbol{u}^n \right),$$

satisfies the strong stability requirement:

$$\|\boldsymbol{u}^{n+1}\| \leq \|\boldsymbol{u}^n\|$$

in some norm $\|\cdot\|$, under the CFL condition:

$$\Delta t \leq \Delta t_{\rm FE}$$
.

(a) (10 points) Consider an s-stage Runge-Kutta method of the form:

$$\begin{split} \boldsymbol{u}^{(0)} &= \boldsymbol{u}^n \\ \text{for} \quad i = 1, \dots, s \\ \boldsymbol{u}^{(i)} &= \sum_{k=0}^{i-1} \left\{ \alpha_{ik} \, \boldsymbol{u}^{(k)} + \Delta t \, \beta_{ik} \, \mathcal{L} \left(\boldsymbol{u}^{(k)} \right) \right\} \\ \text{end} \\ \boldsymbol{u}^{n+1} &= \boldsymbol{u}^{(s)}, \end{split}$$

where

$$\alpha_{ik} \ge 0 \quad \forall i, k, \qquad \beta_{ik} \ge 0 \quad \forall i, k, \qquad \sum_{k=0}^{i-1} \alpha_{ik} = 1 \quad \forall i.$$

Prove that under some appropriate time-step restriction that this method also satisfies the *strong stability requirement*.

(b) (10 points) Find a 2-stage Runge-Kutta method of the same form as in part (a) that is second-order accurate and has the largest allowable Δt to still satisfy the *strong stability requirement*.

2. (20 points) Consider the constant coefficient advection equation in \mathbb{R}^2 :

PDE:
$$q_t + u q_x + v q_y = 0$$
,
IC: $q(x, y, 0) = f(x, y)$,

where u > 0 and v > 0. Furthermore, consider a Cartesian grid defined by the grid points

$$x_i = i\Delta x$$
 $y_j = j\Delta y$,

and let

$$Q_{ij}^n \approx q(x_i, y_j, t^n).$$

Construct a single finite difference method that satisfies **ALL** following requirements:

- Second-order accurate in space and time;
- Stable for $0 \le \nu \le 1$, where

$$\nu = \max\left(\frac{u\Delta t}{\Delta x}, \frac{v\Delta t}{\Delta y}\right);$$

• Makes use of the smallest possible stencil.

You must prove that your method satisfies each of these three requirements.

3. (20 points) Consider the following nonlinear two-point boundary value problem:

ODE:
$$u''(x) = f(x, u(x), u'(x)), x \in [0, 1],$$

BCs: $u(0) = \alpha, u(1) = \beta.$

- (a) (10 points) Assume that this **BVP** has a unique solution. Explain <u>in detail</u> how you would discretize and solve this problem using a finite difference approach based on second order accurate central finite differences.
- (b) (10 points) Consider next an approach that replaces the above **BVP** by an **IVP** of the form:

ODE:
$$u''(x) = f(x, u(x), u'(x)), x \in [0, 1],$$

ICs: $u(0) = \alpha, u'(0) = \gamma,$

where γ is now also an unknown. Explain <u>in detail</u> how this **IVP** can be used to find a solution to the above **BVP**. Also explain <u>in detail</u> you would discretize and solve this problem.

4. (20 points) Consider the problem of interpolating the following data made up of n+1 distinct points:

$$(x_0, f_0), (x_1, f_1), (x_2, f_2), \dots, (x_n, f_n).$$

- (a) (4 points) Prove that there exists a unique **global** polynomial of degree at most n that interpolates the above data.
- (b) (6 points) Consider the Chebyshev polynomials:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2x T_n(x) - T_{n-1(x)}$ $n > 0$.

Prove all of the following:

- i. (2 points) $T_n(x)$ is a polynomial of degree exactly n with n distinct real roots between $-1 \le x \le 1$;
- ii. (2 points) $-1 \le T_n(x) \le 1$ for all $-1 \le x \le 1$;
- iii. (2 points) The coefficient of x^n in $T_n(x)$ is exactly 2^{n-1} for n > 0.
- (c) (8 points) Consider the problem of interpolating the function f(x) at the n+1 distinct points x_0, x_1, \ldots, x_n , where $-1 \leq x_0 < x_1 < x_2 < \cdots < x_n \leq 1$, with the global polynomial $p_n(x)$. Prove that the max-norm error:

$$||f(x) - p_n(x)||_{\infty} := \max_{-1 \le x \le 1} |f(x) - p_n(x)|$$

is minimized over all possible choices of the points x_0, x_1, \ldots, x_n if these points are the n+1 roots of $T_{n+1}(x)$.

- (d) (2 points) How does $||f(x) p_n(x)||_{\infty}$ decay with increasing n.
- 5. (20 points) Consider the following 1D advection-diffusion equation:

PDE:
$$u_t + au_x = \kappa u_{xx}, \quad \kappa > 0, \quad 0 \le x \le 1,$$

BCs:
$$u(0,t) = u(1,t) = 0$$
,

IC:
$$u(x,0) = f(x)$$
.

- (a) (4 points) Find a weak formulation for this PDE. Prove that both the PDE and the weak formulation have a unique solution. Prove that the two formulations have the same solution.
- (b) (8 points) Construct a finite element method that uses cG(1) elements in both space and time. Write out in detail the discrete problem that must be solved in order to update the solution.
- (c) (4 points) Prove that the method from part (b) has a unique solution.
- (d) (4 points) What happens to this method as $\kappa \to 0^+$?

6. (20 points) Consider the following 1D heat equation:

PDE:
$$u_t = u_{xx}, \quad 0 \le x \le 1,$$

BCs: $u(0,t) = 0, \quad u(1,t) = 0.$
IC: $u(x,0) = f(x)$

- (a) (4 points) Construct a Taylor series in time for the solution $u(x, t + \Delta t)$ about $\Delta t = 0$, retaining the $\mathcal{O}(1)$, $\mathcal{O}(\Delta t)$, and $\mathcal{O}(\Delta t^2)$ terms. Replace any time derivatives with spatial derivatives via the PDE.
- (b) (8 points) Construct a Galerkin finite element method for the Taylor series computed in part (a) with basis functions that are linear in each element and C^0 across element edges.
- (c) (8 points) Construct a Galerkin finite element method for the Taylor series computed in part (a) with basis functions that are cubic in each element and C^1 across element edges.