lu-kong 1/3

This is the personnal note for W1 of CNN at COURSERA

1. Computer vision problem

The procesuss of using a filter or kernal to modifiing the original pictures is called "convolution":

• in Python: conv-forword

• in tensorflow: tf.nn.con2d

e.g

```
[[1 1 -1],
[1 0 -1],
[1 0 -1]]
```

is a vertical edge detector #enhence the vertical edges so after the convolution with this filter all the charactor with vertical property will show up more clearly

2. More Edge Detection

Sobel filter

```
[[1 0 -1],
[2 0 -2],
[1 0 -1]]
```

Schass filter

```
[[ 3 0 -3 ],
[10 0 -10],
[ 3 0 -3 ]]
```

3. Padding

- size of pictures : n * n
- size of filters : f * f so the output after the convolution size of (n-f+1)*(n-f+1)

So there are clearly two results of doing convolution

- Shrink output
- Throug away a lot of information from edges

lu-kong 2/3

In order to fix this problem: we pad the image $\rightarrow p = padding$ if we take a padding = p = 1 so the size of image is transferred to (n+2p)*(n+2p) in return, out put size is still $\rightarrow n*n$

Valid and Same convolutions

- 1. Valid ⇔ no padding
- 2. Same $\Leftrightarrow n+2p-f+1=n \Rightarrow 2p=f-1$ filter size is usually odd #it's nice to have a centre pixel

4. Strided Convolutions

Strip = 2

jump strip times 跳过一行计算,中心直接隔开一个

$$(\frac{n+2p-f}{s}+1)*(\frac{n+2p-f}{s}+1)$$

We can also note it as cross-correlation

5. Convolutions Over Volume

• on RGB images there are channels! so we make the filtre of 3 channels, too. we make it like a filter cube and the output is just 2D

• Multiple filters

When we have many different filters at the same time ⇒ make the output of different filters into different channels of the output.

6. One layer of a convolutional NN

If layer I is a convolutional layer:

- f^l = filter size of layer l
- p^l = padding
- s^l = stride
- n_c^l = number of filters

7. Simple convolutional network

7.1 Types of layers in a convolutional network

- Convolution
- Pooling
- · Fully connected

7.2 CNN Examples

• Neural network example

lu-kong 3/3

LeNet - 5

• Pooling layers don't have weight

7.3 Some Excellent Examples

- Why Convolutions?
 - Conv layers have much smaller number of parameters
 - Parameter sharing:
 - A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.
 - Sparsity of connection:
 In each layer, each output value depends only a small numbers of inputs.