

CSE 6140/ CX 4140:

Computational Science and Engineering ALGORITHMS

Instructor: Anne Benoit

Visiting Associate Professor, CSE

Based on slides by Bistra Dilkina

KT 11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j .

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

Implementation. O(n log m) using a priority queue.

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_{j} t_j$. Pf.

- The total processing time is $\Sigma_i t_i$.
- One of m machines must do at least a 1/m fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i t_j \Rightarrow L_i t_j \leq L_k$ for all $1 \leq k \leq m$.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i, i.e. $L_i = \max_k L_k$.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i t_j \Rightarrow L_i t_j \leq L_k$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

Now
$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*.$$

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, n=m(m-1)+1 jobs where m(m-1) jobs length 1 jobs, one job of length m

m = 10

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

Load Balancing: LPT Rule (Offline Scheduling)

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling (m, n, t_1, t_2, ..., t_n) {
    Sort jobs so that t_1 \ge t_2 \ge ... \ge t_n
    for i = 1 to m {
        L_i \leftarrow 0 \leftarrow load on machine i
        J(i) \leftarrow \phi \leftarrow jobs assigned to machine i
    for j = 1 to n {
        i = argmin_k L_k — machine i has smallest load
        J(i) \leftarrow J(i) \cup \{j\} \leftarrow assign job j to machine i
        L_i \leftarrow L_i + t_j — update load of machine i
    return J(1), ..., J(m)
```

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine.

Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$. Pf.

- Consider first m+1 jobs $t_1, ..., t_{m+1}$.
- Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, in ANY solution at least one machine gets two jobs from the jobs t_1 , ..., t_{m+1} .

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq \frac{1}{2}L^*} \leq \frac{3}{2}L^*.$$

If machine i has 1 job, then job j <= \dot{m} and hence j=1, L_i = t_{max} , and Greedy is optimal Else in Greedy bottleneck machine i has at least 2 jobs, and hence j >= m+1 and t_j <= t_{m+1} Apply Lemma 3, t_j <= t_{m+1} <= t_m +1

Load Balancing: LPT Rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

- Q. Is Graham's 4/3 analysis of LPT rule tight?
- A. Essentially yes.

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines. Pf. 2-PARTITION \leq PLOAD-BALANCE.

KT 11.2 Clustering

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Application: where to put the branch offices w.r.t. clients?

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min $c \in C$ dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

```
    dist(x, x) = 0 (identity)
    dist(x, y) = dist(y, x) (symmetry)
    dist(x, y) \le dist(x, z) + dist(z, y) (triangle inequality)
```

Also known as Metric Facility Location problem

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Ex: similarly in multi-dimensional space, where each site is a feature vector

Remark: search can be infinite!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,...,s<sub>n</sub>) {

C = φ
repeat k times {
    Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
    Add s<sub>i</sub> to C
}

site farthest from any center
return C
}
```

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

Observation. Upon termination, all centers in \mathcal{C} are pairwise at least $r(\mathcal{C})$ apart.

Pf.

Remember that $r(C) = \max_i dist(s_i, C)$ Let us call the point that achieves this maximum radius s'

- . clearly s' is not one of the chosen centers, k < n
- s' is at least r(C) away from any chosen center

Assume there are two centers c_i and c_j at distance < r(C) (let i < j) - when we chose j, its distance to the current C was < r(C) due to c_i - s' was an option to choose as center and it was at least r(C) away from all centers in current $C \Rightarrow s'$ is further than j By construction of algorithm, we always choose the furthest point from the current $C \Rightarrow C$ ontradiction

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction)

Assume $r(C) > 2r(C^*)$, i.e. $r(C^*) < \frac{1}{2} r(C)$.

- For each center c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- dist $(c_i, C^*) \le r(C^*) < \frac{1}{2} r(C)$, so at least one c_i^* in each ball in CBy definition of radius

 By our assumption

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C) > 2r(C^*)$, i.e. $r(C^*) < \frac{1}{2} r(C)$.

- at least one c_i^* in each ball in C
- Every pair of $c_{i'}$'s in C are at least r(C) apart (by alg.), so each ball around a c_i in C does not intersect with any other ball
- Each ball has at least one c_i^* and $|C| = |C^*| = k$, so at most one c_i^* in each ball
- Therefore exactly one c_i* in each ball

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C) > 2r(C^*)$, i.e. $r(C^*) < \frac{1}{2} r(C)$.

- exactly one c_i^* in each ball in C; let c_i be the site paired with c_i^*
- Consider <u>any</u> site s and its closest center c_i^* in C^* .
- $dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i^*) + dist(c_i^*, c_i) \leq 2r(C^*)$.

 min across all c_i Δ -inequality $\leq r(C^*)$ since c_i^* is closest center to both s and c_i
- true for any site s including the one that has dist(s,C)=r(C)
- Thus $r(C) \leq 2r(C^*)$, this is a contradiction with our assumption •

