Mathematical Analysis

Inverted Pastry

Papyrus

June 27, 2024

Preface

Preface.

Beijing, February 2024

Inverted Pastry

Contents

Preface	iii
1 Limits	1
Bibliography	3
Index	5

CONTENTS CONTENTS

Chapter 1

Limits

Definition 1. A sequence $\{x_n\}_{n=0}^{+\infty}$ in a metric space (X, d) is said to *converge*, if there exists a point $x \in X$, such that for every $\varepsilon > 0$, there is an index N, where $d(x_n, x) < \varepsilon$ for all integers n > N. In this case, we say that x is the *limit* of $\{x_n\}$, or that $\{x_n\}$ converges to x, written $\lim_{n \to +\infty} x_n = x$ or simply $x_n \to x$. Symbolically,

$$(\lim_{n\to+\infty}x_n=x):=\forall_{\varepsilon\in\mathbb{R}_{>0}}\exists_N\forall_{n\in\mathbb{Z}_{\geq0}}(n>N\implies(x_n,x)<\varepsilon).$$

A sequence that does not converge is said to *diverge*.

Bibliography

- [1] Walter Rudin. *Principles of mathematical analysis*. 3rd ed. International series in pure and applied mathematics. New York: McGraw-Hill, 1976. ISBN: 978-0-07-054235-8.
- [2] В. А. Зорич. *Математический анализ*. 13-е изд. Т. І. Москва: МЦНМО, 2024. ISBN: 978-5-4439-4641-2.
- [3] В. А. Зорич. *Математический анализ*. 13-е изд. Т. II. Москва: МЦНМО, 2024. ISBN: 978-5-4439-4642-9.

BIBLIOGRAPHY BIBLIOGRAPHY

Index

limit of a sequence, 1