PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-096159

(43) Date of publication of application: 10.04.2001

(51)Int.CI.

B01J 23/72

B01J 29/072

B01J 29/46

H01M 8/06

(21)Application number: 11-275997

(71)Applicant: DAIHATSU MOTOR CO LTD

(22)Date of filing:

29.09.1999

(72)Inventor:

YAMADA KOJI

ASAZAWA KOICHIRO TANAKA HIROHISA

(54) DIMETHYL ETHER REFORMING CATALYST AND FUEL CELL DEVICE

(57)Abstract:

reforming catalyst that reforms dimethyl ether to obtain a higher hydrogen content of gas, and a fuel cell device using the dimethyl ether reforming catalyst. SOLUTION: A dimethyl ether reforming catalyst is formed by making a solid acid carry copper, or copper and at least one kind of transition metals excluding copper. A mixed gas obtained by a reforming device 2 using this dimethyl ether reforming catalyst is supplied

PROBLEM TO BE SOLVED: To provide a dimethyl ether

LEGAL STATUS

[Date of request for examination]

to a fuel cell 4 as fuel gas.

20.03.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Japanese Patent Provisional Publication No. 2001-96159

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-96159

(P2001-96159A)

(43)公開日 平成13年4月10日(2001.4.10)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
B01J	23/72		B01J	23/72	M	4G069
	29/072			29/072	M	5H027
	29/46			29/46	M	
H 0 1 M	8/06		H 0 1 M	8/06	G	
			審査請	求 未讃求	請求項の数8	OL (全 7 頁)

(21)出願番号	特願平 11-275997	(71)出顧人	000002967 ダイハツ工業株式会社
(22)出顧日	平成11年9月29日(1999.9.29)	(72)発明者	大阪府池田市ダイハツ町1番1号 山田 浩次
			大阪府池田市桃園2丁目1番1号 ダイハ ツ工業株式会社内
		(72)発明者	朝澤 浩一郎 大阪府池田市桃園2丁目1番1号 ダイハ ツ工業株式会社内
		(74)代理人	100103517 弁理士 岡本 寛之 (外1名)

最終頁に続く

(54) 【発明の名称】 ジメチルエーテル改質触媒および燃料電池装置

(57)【要約】

【課題】 ジメチルエーテルを改質して、より水素濃度 の高い混合ガスを得ることができるジメチルエーテル改 質触媒、および、そのジメチルエーテル改質触媒が用い られている燃料電池装置を提供すること。

【解決手段】 ジメチルエーテル改質触媒として、固体酸に、銅または銅と1種以上の銅を除く遷移金属を担持する。そして、このジメチルエーテル改質触媒を用いた改質装置2によって得られた混合ガスを、燃料ガスとして燃料電池4に供給する。

2

【特許請求の範囲】

【請求項1】 固体酸に、銅または銅と1種以上の銅を除く遷移金属が担持されていることを特徴とする、ジメチルエーテル改質触媒。

【請求項2】 固体酸が、活性アルミナ、シリカーアルミナ、ゼオライトからなる群から選ばれる1種以上であることを特徴とする、請求項1に記載のジメチルエーテル改質触媒。

【請求項3】 固体酸に対する、銅または銅と1種以上の銅を除く遷移金属の担持量が、4~20重量%である 10 ことを特徴とする、請求項1または2に記載のジメチルエーテル改質触媒。

【請求項4】 所定の大きさに成形された固体酸に、銅または銅と1種以上の銅を除く遷移金属を担持させることによって得られていることを特徴とする、請求項1~3のいずれかに記載のジメチルエーテル改質触媒。

【請求項5】 固体酸は、微細な形状に成形されていることを特徴とする、請求項4に記載のジメチルエーテル 改質触媒。

【請求項6】 固体酸は、その径の長さが3.5 mm以下のペレット状に成形されていることを特徴とする、請求項4または5に記載のジメチルエーテル改質触媒。

【請求項7】 固体酸は、その粒径が2mm以下の粒状に成形されていることを特徴とする、請求項4または5に記載のジメチルエーテル改質触媒。

【請求項8】 請求項1~7のいずれかに記載のジメチルエーテル改質触媒が用いられ、ジメチルエーテルを改質することにより混合ガスを得る改質装置と、得られた混合ガスが、燃料ガスとして供給される燃料電池とを備えていることを特徴とする、燃料電池装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ジメチルエーテル 改質触媒、詳しくは、燃料電池の燃料ガスの原料として 使用されるジメチルエーテルを改質するためのジメチル エーテル改質触媒、および、そのジメチルエーテル改質 触媒が用いられている燃料電池装置に関する。

[0002]

【従来の技術】従来より、燃料電池として、プロトン導電性の固体高分子膜の両側に、アノードおよびカソード 40 が配設される固体高分子型燃料電池が知られている。この固体高分子型燃料電池は、アノードに、主として水素からなる燃料ガスを供給するとともに、カソードに、空気などの酸化ガスを供給することによって、電気化学反応を生じさせ、固体高分子膜中においてプロトンを移動させることによって、起電力を発生させるものであり、燃料ガスの有する化学エネルギーを、直接電気エネルギーに変換することができ、エネルギー効率が良いものとして知られている。

【0003】このような固体高分子型燃料電池におい

て、アノードに供給するための燃料ガスは、例えば、原料としてメタノールを用い、このメタノールを水蒸気と接触させて改質することにより得ることがよく知られており、そのような改質には、通常、Cu-Zn系触媒が広く用いられている。

【0004】一方、燃料ガスの原料としては、メタノール以外にも、例えば、天然ガスなど種々の原料が提案されており、なかでも、ジメチルエーテルは、常温において数気圧(例えば、5気圧)に加圧するか、あるいは低温(例えば、-25℃)にすると容易に液化するため、運搬、貯蔵および取り扱い易さの点から、その使用が期待されている。

[0005]

【発明が解決しようとする課題】しかし、ジメチルエーテルを改質して水素を得るために、例えば、上記したCu-Zn 系触媒の存在下において、ジメチルエーテルを水蒸気と接触させても、改質により得られる混合ガス中の水素濃度は低く、実用的ではない。

【0006】また、ヨーロッパ公開特許公報(EP-A-754649)には、ジメチルエーテルを、固体酸およびメタノール分解触媒を物理的に混合した触媒の存在下において、水蒸気と下記のように反応させることにより、水素リッチな混合ガスを得る方法が記載されている。

[0007]

CH₃ OCH₃ +H₂ O
$$\rightarrow$$
2 CH₃ OH (1)

$$CH_3 OH + H_2 O \rightarrow 3H_2 + CO_2$$
 (2)

しかし、このような方法によって得られる混合ガス中の 水素濃度は、未だ十分ではなく、燃料電池の燃料ガスと して用いるためには、より水素濃度の高い混合ガスを得 ることが望まれている。

【0008】本発明は、上記の事情に鑑みなされたもので、その目的とするところは、ジメチルエーテルを改質して、より水素濃度の高い混合ガスを得ることができるジメチルエーテル改質触媒、および、そのジメチルエーテル改質触媒が用いられている燃料電池装置を提供することにある。

[0009]

【課題を解決するための手段】上記の目的を達成するために、本発明のジメチルエーテル改質触媒は、固体酸に、銅または銅と1種以上の銅を除く遷移金属が担持されていることを特徴としている。

【0010】また、固体酸が、活性アルミナ、シリカーアルミナ、ゼオライトからなる群から選ばれる1種以上であることが好ましく、固体酸に対する、銅または銅と1種以上の銅を除く遷移金属の担持量が、4~20重量%であることが好ましい。

【0011】また、所定の大きさに成形された固体酸に、銅または銅と1種以上の銅を除く遷移金属を担持さ 50 せることによって得られていることが好ましく、その場 合には、固体酸は、微細な形状に成形されていることが 好ましく、とりわけ、その径の長さが3.5 mm以下の ペレット状に成形されているか、あるいは、その粒径が 2 mm以下の粒状に成形されていることが好ましい。

【0012】また、本発明は、上記した本発明のジメチルエーテル改質触媒が用いられ、ジメチルエーテルを改質することにより混合ガスを得る改質装置と、得られた混合ガスが、燃料ガスとして供給される燃料電池とを備えている燃料電池装置をも含んでいる。

[0013]

【発明の実施の形態】本発明のジメチルエーテル改質触媒は、ジメチルエーテルを改質して水素リッチな混合ガスを得るために用いられるものであって、固体酸に、銅または銅と1種以上の銅を除く遷移金属が担持されている。

【0014】固体酸としては、例えば、金属酸化物、二元金属酸化物、ゼオライト、金属硫酸塩、金属リン酸塩、固体化硫酸、固体化リン酸、陽イオン交換樹脂、ヘテロポリ酸などが挙げられる。

【0015】金属酸化物としては、例えば、活性アルミナが挙げられ、好ましくは、 γ -アルミナ、 δ -アルミナ、 η -アルミナが用いられる。

【0016】二元金属酸化物としては、例えば、SiO2-Al2O3、SiO2-ZrO2、TiO2-Al2O3、TiO2-ZrO2、TiO2-SiO2、Al2O3-ZrO2などが挙げられ、好ましくは、SiO2-Al2O3が用いられる。

【0017】ゼオライトとしては、MFI型ゼオライト (ZSM-5) が好ましく用いられる。

【0018】固体化リン酸としては、例えば、P2 O5 - Si O2 - Ti O2 、P2 O5 - Si O2 などが挙げられる。

【0019】ヘテロポリ酸としては、例えば、P-Mo-Cs-SiO2 などが挙げられる。

【0020】これら固体酸は、単独または2種以上併用してもよく、これら固体酸のなかでは、金属酸化物、二元金属酸化物、ゼオライトが好ましく用いられ、活性アルミナ、シリカーアルミナ、ゼオライトがさらに好ましく用いられる。

【0021】このような固体酸は、例えば、打錠成形や 40 押出成形などの公知の成形方法により、所定の大きさに成形されたものが好ましく用いられる。その形状は、特に限定されないが、微細な形状に成形することが好ましく、例えば、ペレット形状として成形することが好ましい。ペレット形状には、円柱形状、角柱形状などの柱形状が含まれ、その径(横幅)の長さが、3.5 mm以下、さらには、2.0 mm、以下であることが好ましい。なお、その長さ(縦幅)は、特に制限されないが、例えば、20 mm以下、さらには、15 mm以下であることが好ましい。より具体的には、例えば、押出形成に 50

より、その直径が、2.0 \sim 0.1mm、となるように 押し出した後、20 \sim 1mmの長さに切断することが好ましい。

【0022】また、打錠成形などにより成形されている市販品などを、さらに粉砕することにより粒状に成形してもよい。粒状に粉砕する場合には、例えば、その粒径を2mm以下とすることが好ましい。より具体的には、例えば、乾式法により微粉砕し、ふるいなどにより、0.5~2.0mm、好ましくは、0.85~1.7mmの粒径に分級する。

【0023】銅または銅と1種以上の銅を除く遷移金属としては、例えば、銅(Cu)、または、銅(Cu)と、例えば、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)などのうちから選ばれる1種以上の銅を除く遷移金属が挙げられ、銅を除く遷移金属として、好ましくは、亜鉛(Zn)、マンガン(Mn)、クロム(Cr)が用いられる。

【0024】そして、本発明のジメチルエーテル改質触媒は、所定の大きさの固体酸に、銅または銅と1種以上の銅を除く遷移金属を担持させることによって得ることができる。銅または銅と1種以上の銅を除く遷移金属を固体酸に担持させるには、例えば、銅または銅と1種以上の銅を除く遷移金属の塩の水溶液に、固体酸を浸漬し、固体酸に、銅または銅と1種以上の銅を除く遷移金属の塩を含浸させた後、乾燥、焼成すればよい。

【0025】銅または銅と1種以上の銅を除く遷移金属の塩としては、例えば、硝酸塩、酢酸塩、シュウ酸塩、テトラアンミン硫酸塩などが挙げられる。また、水溶液は、銅または銅と1種以上の銅を除く遷移金属の塩の濃度が、例えば、5~50重量%となるように調製される。また、固体酸は、水溶液100重量部に対して、例えば、約150~300重量部の割合で用いられる。なお、含浸時には、水溶液を加熱してもよい。

【0026】そして、含浸後には、乾燥炉などにより、約80~110℃で乾燥して、固体酸に含まれる水分を蒸発させた後、焼成炉などにより、約300~600℃、好ましくは、約400~500℃で焼成して、銅または銅と1種以上の銅を除く遷移金属の塩を分解除去することにより、銅または銅と1種以上の銅を除く遷移金属を固体酸に担持すればよい。なお、この乾燥および焼成は、区別することなく連続して行なってもよい。

【0027】このようにして得られたジメチルエーテル 改質触媒は、固体酸に対する、銅または銅と1種以上の 銅を除く遷移金属の担持量が、4~20重量%、さらに は、5~15重量%であることが好ましい。4重量%よ り少ないと、十分な触媒活性が得られない場合があり、 一方、20重量%を超えると、銅または銅と1種以上の 銅を除く遷移金属の使用量に対する、触媒活性の向上の 効果が少ない場合がある。 【0028】このようにして得られたジメチルエーテル 改質触媒は、固体酸と、銅または銅と1種以上の銅を除 く遷移金属とが物理的に混合されているものではなく、 銅または銅と1種以上の銅を除く遷移金属が、固体酸に 担持されているもののみからなり、ジメチルエーテルを 改質して水素リッチな混合ガスを得るための触媒として 有効に用いられ、このジメチルエーテル改質触媒の存在 下において、ジメチルエーテルを改質すれば、水素濃度 の高い混合ガスを得ることができる。

【0029】次に、このようなジメチルエーテル改質触媒が用いられる燃料電池装置について説明する。図1は、本発明の一実施形態としての燃料電池装置を示す全体構成図である。図1において、この燃料電池装置1は、主要構成として、改質装置2、水素分離装置3および燃料電池4を備えており、付帯構成として、ジメチルエーテルタンク5、水タンク6、エアコンプレッサ7などを備えている。

【0030】改質装置2には、配管8を介してジメチルエーテルタンク5が接続されるとともに、配管9を介して水タンク6が接続されている。ジメチルエーテルタンク5には、改質原料となるジメチルエーテルが貯蔵されている。水タンク6には、改質装置2において水蒸気改質を行なうための水が貯蔵されている。そして、改質装置2に、所定の割合において、ジメチルエーテルタンク5からジメチルエーテルが供給されるとともに、水タンク6から水が供給される。

【0031】 改質装置 2 には、加熱器を備える加熱部と、本発明のジメチルエーテル改質触媒が充填される改質部とが設けられている。 改質装置 2 に供給されたジメチルエーテルと水とは、加熱部において、加熱器により加熱され、ジメチルエーテルが改質温度まで昇温されるとともに、水が気化(水蒸気化)され、次いで、改質部において、ジメチルエーテルが水蒸気改質される。

【0032】この水蒸気改質は、ジメチルエーテルを水蒸気と接触させて、下記の反応により、水素リッチな混合ガスを生成させるものである。なお、この水蒸気改質は、例えば、約250~400℃において行なうことが好ましい。

[0033]

CH₃ OCH₃ +H₂ O
$$\rightarrow$$
2 CH₃ OH (1)

$$CH_3 OH + H_2 O \rightarrow 3H_2 + CO_2$$
 (2)

なお、この反応においては、その他に、微量であるが一 酸化炭素(CO)も生成する。

【0034】また、この改質装置2には、配管10を介してコンプレッサ7が接続されており、この改質部に、コンプレッサ7から空気を供給することにより、水蒸気改質と併せて、下記の反応による、部分酸化による改質を行なってもよい。

[0035]

CH₃ OH+
$$1/2$$
 O₂ \rightarrow 2H₂ +CO₂ (3)

改質装置2には、配管11を介して水素分離装置3が接続されており、改質部によって生成した水素リッチな混合ガスは、この配管11を介して水素分離装置3に供給される。

【0036】混合ガス中に微量に含まれる一酸化炭素は、アノードの触媒として用いられている白金の触媒毒となるため、この水素分離装置3において除去される。水素分離装置3には、例えば、PtまたはPt-Ru触媒などが充填されており、一酸化炭素は、触媒の存在下において酸化除去される。

【0037】水素分離装置3には、配管12を介して燃料電池4が接続されており、一酸化炭素が除去された混合ガスは、燃料ガスとして、この配管12を介して燃料電池4に供給される。

【0038】燃料電池4は、固体高分子型燃料電池であって、単位セルが複数積層されたスタック構造とされている。なお、この燃料電池4には、配管13を介してエアコンプレッサ7が接続されており、エアコンプレッサ7から配管13を介して空気が供給されている。

【0039】単位セルは、パーフルオロスルホン酸膜などのプロトン導電性の固体高分子膜が、白金が担持されるアノードおよびカソードによって挟まれたサンドイッチ構造とされており、アノードにおいては、水素分離装置3から配管12を介して供給される燃料ガス中の水素が、

$$H_2 \rightarrow 2 H^+ + 2 e^-$$
 (4)

の反応により、プロトンと電子とを生成し、生成された プロトンが固体高分子膜を通ってカソードに向かうとと もに、電子が図示しない外部回路に流出される。また、 カソードにおいては、エアコンプレッサ7から配管13 を介して供給される空気中の酸素が、固体高分子膜を移 動してきたプロトンおよび外部回路から流入される電子 と、次のように反応して、

【0040】本実施形態の燃料電池装置1では、改質装置2において、本発明のジメチルエーテル改質触媒が用いられているので、改質装置2においては、水素濃度の高い混合ガスが生成され、この水素濃度の高い混合ガスが燃料ガスとして、燃料電池4に供給されるので、燃料電池4において、効率のよい発電を達成することができる

[0041]

【実施例】以下に本発明のジメチルエーテル改質触媒 を、実施例および比較例を挙げてより具体的に説明する が、本発明のジメチルエーテル改質触媒は、何ら実施例 に限定されるものではない。

【0042】実施例1

市販のγ-アルミナ (比表面積200m²/g) の円柱 50 状成形品 (3.2mmφ×3.2mmL) を92g秤量 7

した。また、 $Cu(NO_3)_2 \cdot 3H_2 O 30.4g$ を秤量し、蒸留水で溶解することにより、45 重量%の硝酸銅水溶液を調製した。この水溶液に、秤量した $\gamma-$ アルミナを加え、 $50\sim80$ ℃に加熱して硝酸銅を含浸させた。次いで、乾燥炉にて100 ℃で水分を蒸発させた後、500 ℃で3時間焼成し、硝酸を分解除去することにより、8 重量%の銅が担持されたアルミナ触媒を得た。

【0043】実施例2

市販の γ -アルミナ(比表面積 $200\,\mathrm{m}^2$ $/\mathrm{g}$)を、押出成形した後、さらに切断することにより、 $1.1\,\mathrm{mm}$ $\phi \times 15\,\mathrm{mm}$ L 0 \sim 10 \sim \sim 10 \sim 10

【0044】実施例3

市販の γ -アルミナ (比表面積 $200\,\mathrm{m}^2$ /g) を、押出成形した後、さらに切断することにより、 $1.1\,\mathrm{mm}$ $\phi \times 7\,\mathrm{mm}\,\mathrm{L}$ のペレット形状として成形し、これを $92\,\mathrm{g}$ 存量した。また、 $Cu\,(\mathrm{NO}_3\,)\,_2$ · $3\,\mathrm{H}_2\,\mathrm{O}\,_3$ $0.4\,\mathrm{g}$ を秤量し、蒸留水で溶解することにより、 $45\,\mathrm{f}$ 重量%の硝酸銅水溶液を調製した。この水溶液に、秤量した γ -アルミナを加え、 $50\sim 80\,\mathrm{Cm}$ に加熱して硝酸銅を含浸させた。次いで、乾燥炉にて $100\,\mathrm{Cm}$ で水分を蒸発させた後、 $500\,\mathrm{Cm}\,_3$ 時間焼成し、硝酸を分解除 $30\,\mathrm{Cm}\,_3$ 表することにより、 $8\,\mathrm{f}\,_3$ の銅が担持されたアルミナ触媒を得た。

【0045】実施例4

市販の γ -アルミナ(比表面積 $200m^2$ /g)の円柱 状成形品(3. $2mm\phi \times 3$. 2mmL)を乾式粉砕 し、目の粗さが、1. 7mmおよび 0. 85mmのふる いにて分級し、1. $7\sim 0$. 85mmの粒径を有するア ルミナ粒を得て、これを 92g秤量した。また、Cu(NO3) $2 \cdot 3H2$ O 30. 4gを秤量し、蒸留水 で溶解することにより、45重量%の硝酸銅水溶液を調 製した。この水溶液に、秤量した γ -アルミナを加え、 $50\sim 80$ ∞ に加熱して硝酸銅を含浸させた。次いで、 乾燥炉にて 100 ∞ で水分を蒸発させた後、500 ∞ で 3時間焼成し、硝酸を分解除去することにより、8 重量 %の銅が担持されたアルミナ触媒を得た。

【0046】実施例5

市販のシリカーアルミナ (SiO2 82%、Al2 O3 13%、比表面積400m²/g)の円柱状成形品 (3.2mmφ×3.2mmL)を92g秤量した。また、Cu (NO3)2・3H2O 30.4gを秤量

し、蒸留水で溶解することにより、45重量%の硝酸銅水溶液を調製した。この水溶液に、秤量したシリカーアルミナを加え、50~80℃に加熱して硝酸銅を含浸させた。次いで、乾燥炉にて100℃で水分を蒸発させた後、500℃で3時間焼成し、硝酸を分解除去することにより、8重量%の銅が担持されたシリカーアルミナ触媒を得た。

【0047】実施例6

市販のMFI型ゼオライト(比表面積360m²/g)を、押出成形した後、さらに切断することにより、1.6mmφ×7mmLのペレット形状として成形し、これを92g秤量した。また、Cu(NO3)2・3H2O30.4gを秤量し、蒸留水で溶解することにより、45重量%の硝酸銅水溶液を調製した。この水溶液に、秤量したゼオライトを加え、50~80℃に加熱して硝酸銅を含浸させた。次いで、乾燥炉にて100℃で水分を蒸発させた後、500℃で3時間焼成し、硝酸を分解除去することにより、8重量%の銅が担持されたゼオライト触媒を得た。

0 【0048】実施例7~14

yーアルミナに対する銅の担持量が、それぞれ、2、 4、6、8、10、15、20、25重量%となるよう に、yーアルミナおよびCu(NO3)2・3H2 Oを 秤量した以外は、実施例1と同様の操作を行ない、アル ミナ触媒を得た。

比較例1

市販の銅亜鉛系触媒(CuO50.1%、ZnO44.2%)の円柱状成形品(3. $2mm\phi \times 3.2mmL$)をそのまま用いた。

【0049】比較例2

市販の銅亜鉛系触媒(CuO50.1%、ZnO44.2%)の円柱状成形品(3.2mmφ×3.2mmL)58mLと、市販のγーアルミナ(比表面積200m²/g)の円柱状成形品(3.2mmφ×3.2mmL)58mLとを用意して、これらを混合することにより、銅ー亜鉛ーアルミナの混合触媒を得た。

評価

実施例1~6および比較例1、2の触媒がそれぞれ充填されたガス流通式の反応装置を用いて、下記の条件によりジメチルエーテル(DME)を改質した。反応装置から流出した成分を分析することにより、水素濃度(体積%)、一酸化炭素(CO)濃度(体積%)および残存DME濃度(体積%)を測定した。その結果を表1に示す。

【0050】反応装置条件:

DME (気体) 流量: 0. 5 L/min H2 O (液体) 流量: 3 mL/min

なお、触媒**星**、触媒体積および床内温度は、表1に記載 の通りである。

[0051]

【表1】

実施例/ 比較例	突施例1		実施例2	爽施例3	灾施例4	奥施例5	爽施例6	比較例1	比較例2
触媒サイズ (mm)	3.2Ф × 3.2L		1.1Ф _. × 15L	1.1 Φ × 7L	粒径 1.7~ 0.85	3.2Ф × 3.2L.	1.6 Φ × 7∟	3.2Ф × 3.2L	3.2Ф × 3.2L
触媒量(g)	95		58	72	90	83	81.6	150	121
触媒体積 (mL)	115		115	115	115	115	115	115	115
床内温度 (℃)	320	385	317	334	340	329	322	300	318
水素濃度 (体積%)	60.6	69.1	64.6	65.5	64.6	61.6	65.0	10.1	17.2
CO濃度 (体積%)	1.0	1.8	1.7	1.6	1.7	1.6	3.2	4.8	4.9
残存DME 濃度 (体積%)	9.5	4.9	7.2	6.8	4.9	8.6	0.41	71	62

【0052】表1から明らかなように、実施例 $1\sim6$ は、比較例1、2に比べて水素濃度が高いことがわかる。

【0053】次いで、実施例 $7 \sim 14$ の触媒がそれぞれ 充填されたガス流通式の反応装置を用いて、上記と同様 の条件(床内温度 385°C)でジメチルエーテル(DME)を改質した。反応装置から流出した水素の濃度(体 積%)を測定した後、その水素濃度を銅の担持量に対してプロットした。その結果を図 2に示す。

【0054】図2から明らかなように、γーアルミナに対する銅の担持量が、4重量%より少なくなると、急激に水素濃度が低くなり、また、20重量%より多くても、銅の使用量に対する水素濃度の向上の効果があまりないことがわかる。

[0055]

【発明の効果】以上述べたように、本発明のジメチルエーテル改質触媒は、ジメチルエーテルを改質して水素リッチな混合ガスを得るための触媒として有効に用いら

れ、このジメチルエーテル改質触媒の存在下において、 ジメチルエーテルを改質すれば、水素濃度の高い混合ガ 20 スを得ることができる。

【0056】そして、このような本発明ジメチルエーテル改質触媒が、改質装置において用いられている燃料電池装置では、水素濃度の高い混合ガスを燃料ガスとして燃料電池に供給することができるので、燃料電池において、効率のよい発電を達成することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態としての燃料電池装置を示す全体構成図である。

【図2】水素濃度を銅の担持量に対してプロットした相 関図である。

【符号の説明】

- 1 燃料電池装置
- 2 改質装置
- 4 燃料電池

フロントページの続き

(72)発明者 田中 裕久 大阪府池田市桃園2丁目1番1号 ダイハ ツ工業株式会社内 F ターム(参考) 4G069 AA03 AA08 AA15 BA01A
BA01B BA03A BA07A BA45A
BB12B BC29A BC29B BC31A
BC31B CB02 CC32 EA02X
EA02Y EA06 EB18X EC03Y
EC22Y FA02 FB13 FB30
FB57 FB67

5H027 AA06 BA01 BA16