Efficient volume and edge-skeleton computation for polytopes defined by oracles

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

EuroCG, TU Braunschweig, 19.Mar.2013

► Algorithm: [Emiris F Konaxis Peñaranda SoCG'12] vertex oracle + incremental construction = output-sensitive

- ► Algorithm: [Emiris F Konaxis Peñaranda SoCG'12] vertex oracle + incremental construction = output-sensitive
- ▶ Software: computation in < 7 dimensions

- ► Algorithm: [Emiris F Konaxis Peñaranda SoCG'12] vertex oracle + incremental construction = output-sensitive
- ► Software: computation in < 7 dimensions
- ightharpoonup Q: Can we compute information when dim. > 7 ? (eg. volume)

- ► Algorithm: [Emiris F Konaxis Peñaranda SoCG'12] vertex oracle + incremental construction = output-sensitive
- ► Software: computation in < 7 dimensions
- ightharpoonup Q: Can we compute information when dim. > 7? (eg. volume)
- ▶ Hint: Can precompute *all* edge vectors, if the input is generic.

Applications

Geometric Modeling (Implicitization) [EKKL'12]

 Combinatorics of 4-d resultant polytopes (with Emiris & Dickenstein)

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Experimental Results

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Experimental Results

Polytope representation

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P) , Face lattice

Implicit: Oracles (OPT_P, MEM_P)

We study algorithms for polytopes given by OPT_P:

- Resultant, Discriminant, Secondary polytopes
- Minkowski sums

Oracles and duality [Grötschel et al.'93]

Oracles and duality [Grötschel et al.'93]

(Polar) Duality (D):

 $\mathbf{0} \in \mathrm{int}(P), \quad P^* := \{c \in \mathbb{R}^n : c^\mathsf{T} x \le 1, \text{ for all } x \in P\} \subseteq (\mathbb{R}^n)^*$

Oracles and duality [Grötschel et al.'93]

Prop. Given OPT compute MEM in $O^*(\mathfrak{n})$ OPT_P calls + $O^*(\mathfrak{n}^{3.38})$ arithmetic ops. utilizing algorithm of [Vaidya89] Note: $O^*(\cdot)$ hides log factors of ρ/r , where $B(\rho) \subseteq P \subseteq B(r)$.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Experimental Results

Input:

- ► OPT_P
- ► Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$

Input:

- ▶ OPT_P
- ► Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$

Input:

- OPT_P
- ► Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ► Remove from S all segments (x, y) s.t. $y \notin P$ $(OPT_P \to MEM_P)$

Input:

- ▶ OPT_P
- ► Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ► Remove from S all segments (x, y) s.t. $y \notin P$ $(OPT_P \to MEM_P)$
- ▶ Remove from S the segments that are not extreme

Input:

- \triangleright OPT_P
- ► Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of Algorithm:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- Remove from S all segments (x, y) s.t. y ∉ P (OPT_P → MEM_P)
- ▶ Remove from S the segments that are not extreme

Open problem 1: Do not use $OPT_P \rightarrow MEM_P$.

Proposition

[RothblumOnn07] Let $P \subseteq \mathbb{R}^n$ given by OPT_P , and $E \supseteq D(P)$. All vertices of P can be computed in

 $O(|E|^{n-1})$ calls to $OPT_P + O(|E|^{n-1})$ arithmetic operations.

Theorem

The edge skeleton of P can be computed in

 $O^*(m^3n)$ calls to $OPT_P \ + O^*(m^3n^{3.38} + m^4n)$ arithmetic operations,

m: the number of vertices of P.

Corollary

For resultant polytopes $R \subset \mathbb{Z}^n$ this becomes (d is a constant)

$$O^*(m^3n^{\lfloor (d/2)+1\rfloor}+m^4n).$$

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Experimental Results

Efficient volume approximation [Dyer et.al'91]

Volume approximation of P reduces to uniform sampling from P $\,$

Proposition (Lovász et al.'04)

The volume of $P \subseteq \mathbb{R}^n$, given by MEM_P oracle s.t. $B(1) \subseteq P \subseteq B(\rho)$, can be approximated with relative error ϵ and probability $1-\delta$ using

$$O\left(\frac{n^4}{\epsilon^2}\log^9\frac{n}{\epsilon\delta} + n^4\log^8\frac{n}{\delta}\log\rho\right) = O^*(n^4)$$

oracle calls.

Note: $O^*(\cdot)$ hides polylog factors in argument and error parameter

Random points in polytopes with MEM_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ▶ move x to a uniform distributed point on $P \cap \ell$

Random points in polytopes with MEM_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ▶ move x to a uniform disrtibuted point on $P \cap \ell$

Random points in polytopes with MEM_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ► move x to a uniform disrtibuted point on P ∩ l

Random points in polytopes with MEM_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ▶ move x to a uniform disrtibuted point on $P \cap \ell$

x will be "uniformly disrtibuted" in P after $O(\mathfrak{n}^3)$ hit-and-run steps <code>[Lovász98]</code>

Random points in polytopes with OPTP

1. Hit-and-Run walk with OPT \rightarrow MEM in every step

Volume of polytopes given by OPT_P

Input: OPT_P, ρ : B(1) \subseteq P \subseteq B(ρ)

Output: ϵ -approximation vol(P)

- Call volume algorithm
- ► Each MEM_P oracle calls feasibility/optimization algorithm

Corollary

An approximation of the volume of resultant and Minkowski sum polytopes given by OPT oracles can be computed in $O^*(n^{\lfloor (d/2)+5\rfloor})$ and $O^*(n^{7.38})$ respectively, where d is a constant.

- 1. Hit-and-Run walk with OPT \rightarrow MEM in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - segment ℓ , connect x, $OPT_P(c)$
 - $\begin{tabular}{ll} \bf & move \ x \ to \ a \ uniform \ disrtibuted \\ point \ on \ \ell \end{tabular}$

- 1. Hit-and-Run walk with OPT \rightarrow MEM in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - segment ℓ , connect x, $OPT_P(c)$
 - ▶ move x to a uniform disrtibuted point on ℓ

- 1. Hit-and-Run walk with OPT \rightarrow MEM in every step
- 2. Vertex walk
 - ▶ for uniform c compute OPT_P(c)
 - segment ℓ , connect x, $OPT_P(c)$
 - $\begin{tabular}{ll} \bf & move \ x \ to \ a \ uniform \ disrtibuted \\ point \ on \ \ell \end{tabular}$

- 1. Hit-and-Run walk with OPT \rightarrow MEM in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - ▶ segment ℓ , connect x, OPT_P(c)
 - ► move x to a uniform disrtibuted point on ℓ

Open problem 2: Generate uniform points in P using OPTP

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximatior

Experimental Results

Experiments Volume given Membership oracle

▶ n-cubes (table), σ =average absolute deviation, μ =average 20 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	4	0.06	2218	8	3.84	4.12	3.97	0.05	0.23
4	16	0.06	2738	7	14.99	16.25	15.59	0.32	1.77
6	64	0.09	5308	38	60.85	67.17	64.31	1.12	39.66
8	256	2.62	8215	16	242.08	262.95	252.71	5.09	46.83
10	1024	388.25	11370	40	964.58	1068.22	1019.02	30.72	228.58
12	4096	_	14725	82	3820.94	4247.96	4034.39	80.08	863.72

- (the only known) implementation of [Lovász et al.'12] tested only for cubes up to n=8
- ▶ no hope for exact methods in much higher than 10 dim

Experimental evidences:

- lacktriangle volume up to dimension 12 within mins with < 2% error
- ▶ the minimum and maximum values bounds the exact volume

Experiments Volume of Minkowski sum

Mink. sum of n-cube and n-crosspolytope, σ =average absolute deviation, μ =average over 10 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	14.00	0.01	216	11	12.60	19.16	15.16	1.34	119.00
3	45.33	0.01	200	7	42.92	57.87	49.13	3.92	462.65
4	139.33	0.03	100	7	100.78	203.64	130.79	21.57	721.42
5	412.26	0.23	100	7	194.17	488.14	304.80	59.66	1707.97

- ▶ at every hit-and-run step: OPT → MEM
- Implementation: LasVegas optimization algorithm of [BertsimasVempala04]
- slower than volume with MEM but improvements in optimization and volume implementation improve also this

Last slide!

The code

http://sourceforge.net/projects/randgeom

Thank You !!!