Расчет кинематической схемы в системе компьютерной математики "MathCAD"

А.А. Дубанов

к.т.н., доцент, Сибирский Государственный Университет Телекоммуникаций и Информатики, e-mail: alandubanov@mail.ru

1. Введение

В данной статье предлагается рассмотреть алгоритм и методика расчета кинематических схем. Применяется в данном алгоритме метод решения систем нелинейных уравнений, описанный в работе [1] (метод Драгилева). Данная статья была написана после плодотворных дискуссий на форуме сайта exponenta.ru в топике под названием «Рычажные механизмы». Следует сразу отметить, что результаты, отображаемые в данной статье, далеко не единственные, поскольку много участников дискуссии проводили свои исследования. Наиболее полно метод решения ОДУ представлен в источнике [4]

2. Постановка задачи

Для демонстрации работы алгоритма расчета необходимо выбрать реальную кинематическую схему. Мы остановили выбор на схеме уборки шасси самолета-амфибии, (Рис.1). Рисунок был предоставлен на форуме Exponenta.ru В.Ф. Очковым (МЭИ, д.т.н., профессор).

Мы немного упростили кинематическую схему (Рис.2). Расстояние $|P_1P_2|$ изменяется с постоянной скоростью. Точки P_1 , P_3 , P_4 закреплены неподвижно, точки P_2 , P_5 изменяют свое положение в зависимости от расстояния $|P_1P_2|$. В нашей кинематической схеме примем следующее:

$$\begin{cases} |P_2 - P_1| = S(t) \\ |P_3 - P_2| = R_1 \\ |P_5 - P_4| = R_2 \\ |P_5 - P_2| = L \end{cases}$$
(1)

где R_1, R_2, L , а S изменяется линейно от времени t с постоянной скоростью v, $S(t) = S_0 - v \cdot t. \ S(t) = S_0 - v \cdot t.$

3. Формализация задачи

Систему уравнений (1) для того, чтобы подвести под решение системы нелинейных уравнений методом Драгилева, необходимо подготовить следующим образом. Пусть абцисса и ордината точки P_2 будут X_1 и X_2 . Абцисса и ордината точки P_5 будут X_3 , X_4 . Время будет $t = X_5$. Тогда система уравнений (1) приобретает следующий вид:

$$\begin{bmatrix} (X_1 - P_{1,x})^2 + (X_2 - P_{1,y})^2 - S(X_5)^2 \\ (X_1 - P_{3,x})^2 + (X_2 - P_{3,y})^2 - R_1^2 \\ (X_3 - P_{4,x})^2 + (X_4 - P_{4,y})^2 - R_2^2 \\ (X_1 - X_3)^2 + (X_2 - X_4)^2 - L^2 \end{bmatrix} = 0$$
(2)

Мы имеем систему уравнений (2) из 4 уравнений с 5 неизвестными. Далее, система (2) дифференцируется по формальному параметру T

$$\begin{bmatrix} \frac{\partial F_1}{\partial X_1} \cdot \frac{dX_1}{dT} + \dots + \frac{\partial F_1}{\partial X_5} \cdot \frac{dX_5}{dT} \\ \frac{\partial F_2}{\partial X_1} \cdot \frac{dX_1}{dT} + \dots + \frac{\partial F_2}{\partial X_5} \cdot \frac{dX_5}{dT} \\ \frac{\partial F_3}{\partial X_1} \cdot \frac{dX_1}{dT} + \dots + \frac{\partial F_3}{\partial X_5} \cdot \frac{dX_5}{dT} \\ \frac{\partial F_3}{\partial X_1} \cdot \frac{dX_1}{dT} + \dots + \frac{\partial F_4}{\partial X_5} \cdot \frac{dX_5}{dT} \\ \frac{\partial F_4}{\partial X_1} \cdot \frac{dX_1}{dT} + \dots + \frac{\partial F_4}{\partial X_5} \cdot \frac{dX_5}{dT} \end{bmatrix} = 0, \text{ где}$$

$$F_1 = (X_1 - P_{1,x})^2 + (X_2 - P_{1,y})^2 - S(X_5)^2$$

$$F_2 = (X_1 - P_{3,x})^2 + (X_2 - P_{3,y})^2 - R_1^2$$

$$F_3 = (X_3 - P_{4,x})^2 + (X_4 - P_{4,y})^2 - R_2^2$$

$$F_4 = (X_1 - X_3)^2 + (X_2 - X_4)^2 - L^2$$

$$E_4 = (X_1 - X_3)^2 + (X_2 - X_4)^2 - L^2$$

$$E_5 = (X_1 - X_3)^2 + (X_2 - X_4)^2 - L^2$$

В качестве одного из нетривиальных решений системы однородных линейных уравнений (3) относительно вектора переменных $\left[\frac{dX_1}{dT} \quad \frac{dX_2}{dT} \quad \frac{dX_3}{dT} \quad \frac{dX_4}{dT}\right]^T$ предлагается следующее решение:

$$\begin{bmatrix}
\frac{dX_1}{dT} \\
\frac{dX_2}{dT} \\
\frac{dX_3}{dT} \\
\frac{dX_4}{dT}
\end{bmatrix} = - \begin{bmatrix}
\begin{pmatrix}
\frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_4} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_4}{\partial X_1} & \cdots & \frac{\partial F_4}{\partial X_4}
\end{pmatrix} \end{bmatrix}^{-1} \cdot \begin{bmatrix}
\frac{\partial F_1}{\partial X_5} \\
\frac{\partial F_2}{\partial X_5} \\
\frac{\partial F_3}{\partial X_5} \\
\frac{\partial F_4}{\partial X_5}
\end{bmatrix} \cdot \frac{dX_5}{dT}$$
(4)

Если предположить, что $X_5 = T = t$, то система уравнений (4) приобретает законченный вид для передачи во встроенные решатели систем обыкновенных дифференциальных уравнений известных пакетов компьютерной математики.

$$\begin{bmatrix}
\frac{dX_1}{dt} \\
\frac{dX_2}{dt} \\
\frac{dX_3}{dt} \\
\frac{dX_4}{dt}
\end{bmatrix} = - \begin{bmatrix}
\left(\frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_4} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_4}{\partial X_1} & \cdots & \frac{\partial F_4}{\partial X_4}
\end{bmatrix} - 1 \cdot \begin{bmatrix}
\frac{\partial F_1}{\partial t} \\
\frac{\partial F_2}{\partial t} \\
\frac{\partial F_3}{\partial t} \\
\frac{\partial F_4}{\partial t}
\end{bmatrix}$$
(5)

Если мы найдем численное решение системы уравнений (5), то это будет определение координат точек P_2 и P_5 , при условии, что расстояние $|P_1P_2|$ будет сокращаться с постоянной скоростью v, в зависимости от времени t.

3. Реализация задачи в системе компьютерной математики «MathCAD»

Поскольку мы не обладаем информацией о реальных геометрических характеристиках схемы уборки шасси самолета-амфибии (Рис. 1), то мы позволили себе создать в системе «AutoCAD» чертеж (Рис. 2) с произвольными параметрами, схематически похожий на шасси самолета-амфибии. Далее, произведен импорт точек чертежа в два текстовых файла, отвечающих за начальное и конечное положение системы. В следующей таблице приводится программный код решения задачи расчета динамики рычажного механизма, указанного в Рис. 2.

	READPRN("C:\WorkMathCAD\linkage\Cons 1.txt") READPRN("C:\WorkMathCAD\linkage\Cons 2.txt")	Для корректной работы программы необходимо создать каталог с указанными файлами.
Condition1 =	$ \begin{pmatrix} 60 & 120 & 0 \\ 103.0386 & 73.5891 & 0 \\ 60 & 67.1429 & 0 \\ 70 & 62.8571 & 0 \\ 112.8829 & 55.4453 & 0 \\ 103.0386 & 73.5891 & 0 \end{pmatrix} P := \begin{pmatrix} 60 & 120 & 0 \\ 103.0386 & 73.5891 & 0 \\ 60 & 67.1429 & 0 \\ 70 & 62.8571 & 0 \\ 112.8829 & 55.4453 & 0 \\ 103.0386 & 73.5891 & 0 \end{pmatrix} $	
Condition2 =	$ \begin{pmatrix} 60 & 120 & 0 \\ 88.5192 & 100.0143 & 0 \\ 60 & 67.1429 & 0 \\ 70 & 62.8571 & 0 \\ 105.4126 & 88.1519 & 0 \\ 88.5192 & 100.0143 & 0 \end{pmatrix} P2 := \begin{pmatrix} 60 & 120 & 0 \\ 88.5192 & 100.0143 & 0 \\ 60 & 67.1429 & 0 \\ 70 & 62.8571 & 0 \\ 105.4126 & 88.1519 & 0 \\ 88.5192 & 100.0143 & 0 \end{pmatrix} $	Начальное и конечное положение системы
R ₂ :=	$= \sqrt{\left(P_{3,1} - P_{2,1}\right)^2 + \left(P_{3,2} - P_{2,2}\right)^2} R_1 = 43.519$ $= \sqrt{\left(P_{5,1} - P_{4,1}\right)^2 + \left(P_{5,2} - P_{4,2}\right)^2} R_2 = 43.519$ $= \sqrt{\left(P_{5,1} - P_{2,1}\right)^2 + \left(P_{5,2} - P_{2,2}\right)^2} L = 20.642$ $= \sqrt{\left(P_{2,1} - P_{1,1}\right)^2 + \left(P_{2,2} - P_{1,2}\right)^2} S_0 = 63.295$	Расчет геометрических характеристик чертежа (Рис. 2)
	$V := 2 S(t) := S_0 - V \cdot t$	Задание скорости сокращения расстояния $ P_1P_2 $
	$F(X) := \begin{bmatrix} \left(X_1 - P_{1,1}\right)^2 + \left(X_2 - P_{1,2}\right)^2 - S\left(X_5\right)^2 \\ \left(X_1 - P_{3,1}\right)^2 + \left(X_2 - P_{3,2}\right)^2 - R_1^2 \\ \left(X_3 - P_{4,1}\right)^2 + \left(X_4 - P_{4,2}\right)^2 - R_2^2 \\ \left(X_1 - X_3\right)^2 + \left(X_2 - X_4\right)^2 - L^2 \end{bmatrix}$	Задание системы уравнений (2) $ \begin{bmatrix} (X_1 - P_{1,x})^2 + (X_2 - P_{1,y})^2 - S(X_5)^2 \\ (X_1 - P_{3,x})^2 + (X_2 - P_{3,y})^2 - R_1^2 \\ (X_3 - P_{4,x})^2 + (X_4 - P_{4,y})^2 - R_2^2 \\ (X_1 - X_3)^2 + (X_2 - X_4)^2 - L^2 \end{bmatrix} = 0 $
Jacobian(X)÷ Jaeob(F(:	$ \begin{array}{c} -2X_1 & 120 & -2X_2 & 240 & 0 & 0 & 253.1811281678900580983333333333333333333333333333333333$	Вычисление матрицы (Якобиан) $\begin{bmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_5} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_4}{\partial X_1} & \cdots & \frac{\partial F_4}{\partial X_5} \end{bmatrix}$

По ссылке [2] можно просмотреть анимированное изображение в зависимости от времени. Скачать текст программы в системе компьютерной математики «MathCAD 15» можно по следующей ссылке [3]

- [1] Элетронный журнал «Прикладная Геометрия»

 http://www.apg.mai.ru/Volume9/Number19/duban919.pdf

 http://www.apg.mai.ru/Volume9/Number19/duban919.pdf
- [2] http://www.youtube.com/watch?v=bsMJk10KN4M
- [3] http://dubanov.exponenta.ru . Вкладка «Статья «Рычажные механизмы»»
- [4] http://malplab.ru/invitation_to_the_scientific_debate/