CHM129

Acid-Base Equilibrium: Weak Acids and Bases (Practice)

1. A 0.100M solution of chloroacetic acid (ClCH₂COOH) is 11.0% ionized. Calculate $[H^+]$, $[ClCH_2COO^-]$, $[ClCH_2COOH]$ and K_a for chloroacetic acid.

CICHECOOH (197) (CICHECOOT), [CICHECOOH) and RE TOP chilotoacectic actu.

CICHECOOH (197) + H2O(1)
$$\rightleftharpoons$$
 HBO* (197) + CICHECOOC(197) % ion $=$ [H+T] × 100

[CH+T] = (11.0%)(0.100 H) = 0.0110 H

[CH+T] = (11.0%)(0.100 H) = 0

2. The pKa of saccharin (HNC₇H₄SO₃) is 2.32 at 25°C. What is the pH of a 0.10M solution of saccharin?

0.10M solution of saccharin?

HNC7H4SO349 + H2O(0) = H3Oto9 + NC7H4SO3-ap)

$$Ka = \frac{\text{LHSOT}[NGH4SO3]}{\text{LHNC7H4SO3]}} = 4.8\times10^{-3}$$
 $\frac{(X)(X)}{NLD-X} = 4.8\times10^{-3}$

$$\chi^{2} + \frac{4.8 \times 10^{-3} \times -4.8 \times 10^{-4}}{5} = 0$$

$$\chi = -\frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$

$$X = 0.015$$
; -0.825 [H₃0f] = 0.015 M
 $PH = -log(0.015) = 1.81$

$$Ka = 10^{-P}Ka$$

$$= 10^{-2.32} = 4.8 \times 10^{-3}$$

	[HA]	CH3Ut]	[A-]
I	0.10	٥	٥
C	-x	+×	+*
E	0-10-X	X	×
	•		ľ

$$\frac{\text{[HA]}}{\text{Ka}} = \frac{0.10}{4.8 \times 10^3} = 20.9 < 400$$

Cannot assume x is small

3. What is the pH of a 0.15 M NH₃ solution? $K_b = 1.8 \times 10^{-5}$

$$NH_{3}(a_{5}) + H_{2}U(w) = NH_{4}(a_{5}) + OH_{6}(a_{5})$$

$$K_{b} = \frac{(NH_{4})[OH^{-}]}{[NH_{3}]} = 1.8 \times 10^{-5}$$

$$\frac{(x)(x)}{0.15 - x} = 1.8 \times 10^{-5}$$

$$\frac{x^{2}}{0.15} = 1.8 \times 10^{-5}$$
Assume x is small
$$x = \sqrt{(0.15)(1.8 \times 10^{-5})} = 1.6 \times 10^{-3}M = [OH^{-}]$$

$$\frac{\text{[NH3]}}{\text{Kb}} = \frac{0.15}{1.8 \times 10^{-5}} = 8300 > 400$$

pH= [4.00-p0H=14.00-2.78=11.22]4. Given that the Kb of ammonia (NH₃) is 1.8×10^{-5} and that for hydroxylammine (NH₂OH) is 1.1×10^{-8} , which is the stronger base? Predict which has the strongest conjugate acid. Determine Ka for NH₄+ and NH₃OH+. Was your prediction correct?

NH3 has a larger Kb. NH3 is stronger than NH2OH.

Conjugate acids: NH3: NH4+

POH = -log [OH] = -log (1.6×103) = 2.78

NH2OH: NH3OH+

NHz DH+ is the stronger conjugate acid because it's the conjugate acid of the weaker base.

 $Ka, NH_3OH^4 = \frac{1.0 \times 10^{-44}}{1.1 \times 10^{-8}} = 9.1 \times 10^{-7}$ = Stronger acid becauseits Ka value is larger