TTK4225 - Systems Theory, Autumn 2020

Damiano Varagnolo

Transfer functions

Discussion: what did Laplace transforms enable us to do?

Summary / Roadmap of TTK4225

Roadmap

- definition of transfer function
- connections with impulse responses
- transfer functions of generic ARMA models
- examples

This unit = transfer functions

i.e., complete description of the behavior of a LTI system in terms of a Laplace-object

This unit = transfer functions

i.e., complete description of the behavior of a LTI system in terms of a Laplace-object

Discussion: which other object was a complete description of a LTI system?

This unit = transfer functions

i.e., complete description of the behavior of a LTI system in terms of a Laplace-object

Discussion: which other object was a complete description of a LTI system? impulse responses and transfer functions need to be connected somehow (and now we will see how)

$$\ddot{x} = a_1 \dot{x} + a_0 x = u(t), \quad x(0) = x_0, \quad \dot{x}(0) = x_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$\ddot{x} = a_1 \dot{x} + a_0 x = u(t), \quad x(0) = x_0, \quad \dot{x}(0) = x_1$$

$$\downarrow s^2 X - sx(0) - \dot{x}(0) = a_1 (sX - x(0)) + a_0 X + U$$

$$\downarrow (s^2 - a_1 s - a_0) X = (s - a_1) x(0) + \dot{x}(0) + U$$

$$\downarrow X(s) = \underbrace{\frac{1}{s^2 - a_1 s - a_0}}_{H(s)} \left(\underbrace{(s - a_1) x(0) + \dot{x}(0)}_{M(s)} + U(s) \right)$$

$$\ddot{x} = a_1 \dot{x} + a_0 x = u(t), \quad x(0) = x_0, \quad \dot{x}(0) = x_1$$

$$\downarrow s^2 X - sx(0) - \dot{x}(0) = a_1 (sX - x(0)) + a_0 X + U$$

$$\downarrow (s^2 - a_1 s - a_0) X = (s - a_1) x(0) + \dot{x}(0) + U$$

$$\downarrow X(s) = \underbrace{\frac{1}{s^2 - a_1 s - a_0}}_{H(s)} \underbrace{\left(\underbrace{(s - a_1) x(0) + \dot{x}(0)}_{M(s)} + U(s)\right)}_{X(s) = H(s) M(s) + H(s) U(s)}$$

What are the roles of the objects here?

$$X(s) = H(s)M(s) + H(s)U(s)$$

- H(s) = response of the system, the actual *transfer function*
- M(s) = effect of the initial conditions, its combination with H(s) gives the free evolution
- U(s) = input, its combination with H(s) gives the forced response

What are the roles of the objects here?

$$X(s) = H(s)M(s) + H(s)U(s)$$

- H(s) = response of the system, the actual *transfer function*
- M(s) = effect of the initial conditions, its combination with H(s) gives the free evolution
- U(s) = input, its combination with H(s) gives the forced response

this is another viewpoint that confirms the superposition of the effects

$$X(s) = H(s)M(s) + H(s)U(s)$$

$$X(s) = H(s)M(s) + H(s)U(s)$$

Discussion: what about M(s) = 0, U(s) = 1?

$$X(s) = H(s)M(s) + H(s)U(s)$$

Discussion: what about M(s) = 0, U(s) = 1? Answer: X(s) = H(s)

$$X(s) = H(s)M(s) + H(s)U(s)$$

Discussion: what about M(s) = 0, U(s) = 1? Answer: X(s) = H(s)

but U(s) = 1 implies u a Dirac delta, so X(s) = H(s) must be the Laplace transform of the impulse response h(t)

$$X(s) = H(s)M(s) + H(s)U(s)$$

$$x(t) = x_0 h(t) + h * u(t)$$

remember: "multiplication in frequency = convolution in time"

$$X(s) = H(s)M(s) + H(s)U(s)$$

$$x(t) = x_0 h(t) + h * u(t)$$

remember: "multiplication in frequency = convolution in time"

remember: knowing h(t) means being able to reconstruct any x(t), and thus knowing everything about the system

$$X(s) = H(s)M(s) + H(s)U(s)$$

$$x(t) = x_0 h(t) + h * u(t)$$

remember: "multiplication in frequency = convolution in time"

remember: knowing h(t) means being able to reconstruct any x(t), and thus knowing everything about the system

implication: knowing H(s) means knowing everything about the system

If
$$x(0) = 0, \dot{x}(0) = 0, \ddot{x}(0) = 0, \dots$$
 then $M(s) = 0$.

If
$$x(0) = 0, \dot{x}(0) = 0, \ddot{x}(0) = 0, \dots$$
 then $M(s) = 0$. But then

 $X(s) = H(s)M(s) + H(s)U(s) \rightarrow X(s) = H(s)U(s)$

If
$$x(0)=0, \dot{x}(0)=0, \ddot{x}(0)=0, \ldots$$
 then $M(s)=0$. But then
$$X(s)=H(s)M(s)+H(s)U(s) \quad \mapsto \quad X(s)=H(s)U(s)$$

$$\Longrightarrow \quad H(s)=\frac{X(s)}{U(s)}$$

If
$$x(0)=0, \dot{x}(0)=0, \ddot{x}(0)=0, \ldots$$
 then $M(s)=0$. But then
$$X(s)=H(s)M(s)+H(s)U(s) \quad \mapsto \quad X(s)=H(s)U(s)$$

$$\implies H(s) = \frac{X(s)}{U(s)}$$

and, if we choose $u(t) = \delta(t)$ so that U(s) = 1,

$$\implies$$
 $H(s) = X(s)$

$$x^{(n)} = a_{n-1}x^{(n-1)} + \ldots + a_0x + b_mu^{(m)} + \ldots + b_0u$$

$$x^{(n)} = a_{n-1}x^{(n-1)} + \dots + a_0x + b_mu^{(m)} + \dots + b_0u$$

Since all the initial conditions are zero this means

$$s^{n}X = a_{n-1}s^{n-1}X + \dots + a_{0}X + b_{m}s^{m}U + \dots + b_{0}U$$

$$x^{(n)} = a_{n-1}x^{(n-1)} + \dots + a_0x + b_mu^{(m)} + \dots + b_0u$$

Since all the initial conditions are zero this means

$$s^{n}X = a_{n-1}s^{n-1}X + \ldots + a_{0}X + b_{m}s^{m}U + \ldots + b_{0}U$$

Moreover since U(s) = 1 this means

$$(s^n - a_{n-1}s^{n-1} - \dots - a_0)X = b_m s^m + \dots + b_0$$

$$x^{(n)} = a_{n-1}x^{(n-1)} + \dots + a_0x + b_mu^{(m)} + \dots + b_0u$$

Since all the initial conditions are zero this means

$$s^{n}X = a_{n-1}s^{n-1}X + \dots + a_{0}X + b_{m}s^{m}U + \dots + b_{0}U$$

Moreover since U(s) = 1 this means

$$(s^n - a_{n-1}s^{n-1} - \dots - a_0)X = b_m s^m + \dots + b_0$$

Thus, since H(s) = X(s),

$$H = \frac{b_m s^m + \dots + b_0}{s^n - a_{n-1} s^{n-1} - \dots - a_0}$$

How is knowing H(s) simplify our life w.r.t. knowing h(t)?

$$H = \frac{b_m s^m + \dots + b_1 s + b_0}{s^n - a_{n-1} s^{n-1} - \dots a_1 s - a_0}$$

How is knowing H(s) simplify our life w.r.t. knowing h(t)?

$$H = \frac{b_m s^m + \dots + b_1 s + b_0}{s^n - a_{n-1} s^{n-1} - \dots a_1 s - a_0}$$

- simpler analysis of the stability properties
- simpler analysis of the natural modes of the system (and thus its oscillatory behaviors)
- simpler analysis of the time constants of the system

Example: RCL circuits

$$L\ddot{x} + R\dot{x} + \frac{1}{C}x = \dot{e}(t), \quad e(t) = \delta(t) \implies H(s) = X(s), E(s) = 1$$
 (1)

Example: RCL circuits

$$L\ddot{x} + R\dot{x} + \frac{1}{C}x = \dot{e}(t), \quad e(t) = \delta(t) \implies H(s) = X(s), E(s) = 1$$
 (1)

$$\left(Ls^2 + Rs + 1/C\right)X(s) = s$$

Example: RCL circuits

$$L\ddot{x} + R\dot{x} + \frac{1}{C}x = \dot{e}(t), \quad e(t) = \delta(t) \implies H(s) = X(s), \ E(s) = 1$$

$$(Ls^2 + Rs + 1/C)X(s) = s \rightarrow H(s) = \frac{s}{20s^2 + 160s + 500}$$

(1)

(2)

Connecting transfer functions and impulse responses, take 2

$$H(s) = \frac{s}{20s^2 + 160s + 500} = \frac{1}{20} \frac{s}{s^2 + 8s + 25}$$

Discussion: how do we find the impulse response h(t)?

Connecting transfer functions and impulse responses, take 2

$$H(s) = \frac{s}{20s^2 + 160s + 500} = \frac{1}{20} \frac{s}{s^2 + 8s + 25}$$

Discussion: how do we find the impulse response h(t)? Solution: inverse-transform H(s) using a partial fraction expansion \implies we need to understand how the denominator looks like!

$$s^{2} + 8s + 25 = 0 \implies s^{2} + 8s = -25$$

$$s^{2} + 2 \cdot 4s = -25$$

$$s^{2} + 2 \cdot 4s + 4^{2} = -25 + 4^{2}$$

$$\mapsto (s+4)^{2} + 9 = 0$$
(3)

Connecting transfer functions and impulse responses, take 2

$$H(s) = \frac{s}{20s^2 + 160s + 500} = \frac{1}{20} \frac{s}{s^2 + 8s + 25}$$

Discussion: how do we find the impulse response h(t)? Solution: inverse-transform H(s) using a partial fraction expansion \implies we need to understand how the denominator looks like!

$$s^{2} + 8s + 25 = 0 \implies s^{2} + 8s = -25$$

$$s^{2} + 2 \cdot 4s = -25$$

$$s^{2} + 2 \cdot 4s + 4^{2} = -25 + 4^{2}$$

$$(3)$$

$$(4)$$

$$(5 + 4)^{2} + 9 = 0$$

Discussion: may the impulse response be an oscillatory one?

Laplace-transforms of oscillatory behaviors = the second most useful formulas that you may remember

$$\mathcal{L}\left\{e^{at}\sin\omega t\right\} = \frac{\omega}{(s-a)^2 + \omega^2}$$

$$\mathcal{L}\left\{e^{at}\cos\omega t\right\} = \frac{s-a}{(s-a)^2 + \omega^2}$$

with limit case a = 0, so that

$$\mathcal{L}\left\{\sin\omega t\right\} = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}\left\{\cos\omega t\right\} = \frac{s}{s^2 + \omega^2}$$

Continuing the example above

$$H(s) = \frac{1}{20} \frac{s}{s^2 + 8s + 25} = \frac{1}{20} \frac{(s+4) - 4}{(s+4)^2 + 9}$$

Continuing the example above

$$H(s) = \frac{1}{20} \frac{s}{s^2 + 8s + 25} = \frac{1}{20} \frac{(s+4) - 4}{(s+4)^2 + 9}$$
$$h(t) = \frac{1}{20} e^{-4t} \cos 3t - \frac{4}{20} e^{-4t} \sin 3t$$

?

Representing rational transfer functions through gain, zeros, and poles

Roadmap

- checking that not all the transfer functions are rational
- decomposition of rational transfer functions into gain, zeros, and poles

$$\ddot{y} = a_1\dot{y} + a_2y + b_0\ddot{u} + b_1\dot{u} + b_2u$$
 initial conditions = 0

$$\ddot{y} = a_1\dot{y} + a_2y + b_0\ddot{u} + b_1\dot{u} + b_2u \qquad \text{initial conditions} = 0$$

$$\mathcal{L}\left\{\ddot{y} - a_1\dot{y} - a_2y\right\} = \mathcal{L}\left\{b_0\ddot{u} + b_1\dot{u} + b_2u\right\}$$

$$\ddot{y} = a_1 \dot{y} + a_2 y + b_0 \ddot{u} + b_1 \dot{u} + b_2 u \qquad \text{initial conditions} = 0$$

$$\mathcal{L} \left\{ \ddot{y} - a_1 \dot{y} - a_2 y \right\} = \mathcal{L} \left\{ b_0 \ddot{u} + b_1 \dot{u} + b_2 u \right\}$$

$$\downarrow$$

$$\mathcal{L} \left\{ \ddot{y} \right\} - a_1 \mathcal{L} \left\{ \dot{y} \right\} - a_2 \mathcal{L} \left\{ y \right\} = b_0 \mathcal{L} \left\{ \ddot{u} \right\} + b_1 \mathcal{L} \left\{ \dot{u} \right\} + b_2 \mathcal{L} \left\{ u \right\}$$

$$\ddot{y} = a_1 \dot{y} + a_2 y + b_0 \ddot{u} + b_1 \dot{u} + b_2 u \qquad \text{initial conditions} = 0$$

$$\mathcal{L} \left\{ \ddot{y} - a_1 \dot{y} - a_2 y \right\} = \mathcal{L} \left\{ b_0 \ddot{u} + b_1 \dot{u} + b_2 u \right\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L} \left\{ \ddot{y} \right\} - a_1 \mathcal{L} \left\{ \dot{y} \right\} - a_2 \mathcal{L} \left\{ y \right\} = b_0 \mathcal{L} \left\{ \ddot{u} \right\} + b_1 \mathcal{L} \left\{ \dot{u} \right\} + b_2 \mathcal{L} \left\{ u \right\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$s^2 Y(s) - a_1 s Y(s) - a_2 Y(s) = b_0 s^2 U(s) + b_1 s U(s) + b_2 U(s)$$

$$\ddot{y} = a_1 \dot{y} + a_2 y + b_0 \ddot{u} + b_1 \dot{u} + b_2 u \qquad \text{initial conditions} = 0$$

$$\mathcal{L} \left\{ \ddot{y} - a_1 \dot{y} - a_2 y \right\} = \mathcal{L} \left\{ b_0 \ddot{u} + b_1 \dot{u} + b_2 u \right\}$$

$$\downarrow$$

$$\mathcal{L} \left\{ \ddot{y} \right\} - a_1 \mathcal{L} \left\{ \dot{y} \right\} - a_2 \mathcal{L} \left\{ y \right\} = b_0 \mathcal{L} \left\{ \ddot{u} \right\} + b_1 \mathcal{L} \left\{ \dot{u} \right\} + b_2 \mathcal{L} \left\{ u \right\}$$

$$\downarrow$$

$$s^2 Y(s) - a_1 s Y(s) - a_2 Y(s) = b_0 s^2 U(s) + b_1 s U(s) + b_2 U(s)$$

$$\downarrow$$

$$Y(s) = \frac{b_0 s^2 + b_1 s + b_2}{s^2 - a_1 s - a_2} U(s)$$

$$\ddot{y} = a_1 \dot{y} + a_2 y + b_0 \ddot{u} + b_1 \dot{u} + b_2 u \qquad \text{initial conditions} = 0$$

$$\mathcal{L} \{ \ddot{y} - a_1 \dot{y} - a_2 y \} = \mathcal{L} \{ b_0 \ddot{u} + b_1 \dot{u} + b_2 u \}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L} \{ \ddot{y} \} - a_1 \mathcal{L} \{ \dot{y} \} - a_2 \mathcal{L} \{ y \} = b_0 \mathcal{L} \{ \ddot{u} \} + b_1 \mathcal{L} \{ \dot{u} \} + b_2 \mathcal{L} \{ u \}$$

$$\downarrow \qquad \qquad \downarrow$$

$$s^2 Y(s) - a_1 s Y(s) - a_2 Y(s) = b_0 s^2 U(s) + b_1 s U(s) + b_2 U(s)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y(s) = \frac{b_0 s^2 + b_1 s + b_2}{s^2 - a_1 s - a_2} U(s)$$

problem: rational means finite polynomials; but not all the TFs are rational!

Delays

Remember: time shifting in Laplace transforms:

$$\mathcal{L}\left\{y(t-\tau)H\left(t-\tau\right)\right\} = e^{-\tau s}Y(s)$$

Delays

Remember: time shifting in Laplace transforms:

$$\mathcal{L}\left\{y(t-\tau)H\left(t-\tau\right)\right\} = e^{-\tau s}Y(s)$$

example: $\mathcal{L}\left\{\delta t - \tau\right\}$ =?

Delays

Remember: time shifting in Laplace transforms:

$$\mathcal{L}\left\{y(t-\tau)H\left(t-\tau\right)\right\} = e^{-\tau s}Y(s)$$

example: $\mathcal{L}\left\{\delta t - \tau\right\}$ =? Solution: $e^{-\tau s}$

$$h(t) \mapsto h(t-\tau)$$

$$H(s) \mapsto e^{-\tau s}H(s) = \frac{1}{e^{\tau s}}H(s)$$

$$h(t) \mapsto h(t-\tau)$$

$$H(s) \mapsto e^{-\tau s}H(s) = \frac{1}{e^{\tau s}}H(s)$$

Problem: $e^{\tau s} = \sum_{n=0}^{+\infty} \frac{(\tau s)^n}{n!}$:

$$\frac{b_0 s^2 + b_1 s + b_2}{e^{\tau s} \left(s^2 - a_1 s - a_2\right)}$$

$$h(t) \mapsto h(t-\tau)$$

$$H(s) \mapsto e^{-\tau s}H(s) = \frac{1}{e^{\tau s}}H(s)$$

Problem:
$$e^{\tau s} = \sum_{n=0}^{+\infty} \frac{(\tau s)^n}{n!}$$
:

$$\frac{b_0 s^2 + b_1 s + b_2}{e^{\tau s} \left(s^2 - a_1 s - a_2\right)}$$

Discussion: if H(s) is rational, is $e^{-\tau s}H(s)$ rational too?

Partially solving the issue: Padé approximations

definition of Padé approximant: the "best" approximation of a function by a rational function of given order (thus a concept applicable to any function)

Partially solving the issue: Padé approximations

```
definition of Padé approximant: the "best" approximation of a function by a rational function of given order (thus a concept applicable to any function)
```

explicit formulas a bit boring:

```
https://mathoverflow.net/questions/41226/pade-approximant-to-exponential-function
```

ZPK decompositions

Assumption:

$$H(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n - a_1 s^{n-1} - \dots - a_n}$$

ZPK decompositions

Assumption:

$$H(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n - a_1 s^{n-1} - \dots - a_n}$$

then

$$H(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)}$$

with

- $z_1, \ldots, z_m =: \text{zeros of } H(s)$
- $p_1, \ldots, p_n =: \text{ poles of } H(s)$
- K =: gain of H(s)

How do we find ZPK representations?

I.e., how do we go from
$$\frac{b_0 s^m + b_1 s^{m-1} + \ldots + b_m}{s^n - a_1 s^{n-1} - \ldots - a_n}$$
 to $K = \prod_{i=1}^m (s - z_i)$?

How do we find ZPK representations?

I.e., how do we go from
$$\frac{b_0s^m+b_1s^{m-1}+\ldots+b_m}{s^n-a_1s^{n-1}-\ldots-a_n}$$
 to $K\prod_{i=1}^m (s-z_i)$? *Problem:* we

know from the fundamental theorem of algebra¹ that that z_i and p_j exist; but how to find them, if we also know from Abel's impossibility theorem that there is no solution in radicals to general polynomial equations of degree five or higher with *arbitrary* coefficients?

 $^{^{1}}$ Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots.

Solution = rely on numerical aids

```
Solving the "polynomial roots" problem:
```

```
Matlab: r = roots(p)
```

Python: r = numpy.roots(p)

Solution = rely on numerical aids

```
Solving the "polynomial roots" problem:

Matlab: r = roots(p)
```

Python: r = numpy.roots(p)

Finding ZPK representations:

Matlab: zpksys = zpk(sys)

Python: zkpsys = tf2zpk(b, a) (requires the "python-control" package)

Ok, and so what?

$$H(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)}$$

Spoiler alert:

- p_j 's = poles = natural modes of the system
- z_i 's = zeros = complex exponentials that are killed by H(s), but also factors modulating the amplitudes of the modes
- ullet $K=\mathrm{gain}=\mathrm{how}$ the system asymmtotically responds to a step-input

Ok, and so what?

$$H(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)}$$

Spoiler alert:

- p_j 's = poles = natural modes of the system
- z_i 's = zeros = complex exponentials that are killed by H(s), but also factors modulating the amplitudes of the modes
- ullet $K=\mathrm{gain}=\mathrm{how}$ the system asymmtotically responds to a step-input

in other words, ZPK representations are interpretable

?

What are the poles of a system?

Roadmap

- partial fraction expansions
- differences between single and multiple poles
- examples

Physical meaning of a pole (partial fraction expansion)

$$H(s) = K \frac{\prod (s - z_i)}{\prod (s - p_j)} = \frac{\kappa_{1,1}}{s - p_1} + \frac{\kappa_{1,2}}{(s - p_1)^2} + \frac{\kappa_{1,3}}{(s - p_1)^3} + \dots + \frac{\kappa_{2,1}}{s - p_2} + \frac{\kappa_{2,2}}{(s - p_2)^2} + \dots + \dots$$

Physical meaning of a pole (partial fraction expansion)

$$H(s) = K \frac{\prod (s - z_i)}{\prod (s - p_j)} = \frac{\kappa_{1,1}}{s - p_1} + \frac{\kappa_{1,2}}{(s - p_1)^2} + \frac{\kappa_{1,3}}{(s - p_1)^3} + \dots + \frac{\kappa_{2,1}}{s - p_2} + \frac{\kappa_{2,2}}{(s - p_2)^2} + \dots + \dots$$

Thanks to the linearity of \mathcal{L} and \mathcal{L}^{-1} ,

$$H(s) = H_{1,1}(s) + H_{1,2}(s) + \dots$$

$$\updownarrow$$

$$h(t) = h_{1,1}(t) + h_{1,2}(t) + \dots$$

Physical meaning of a pole (partial fraction expansion)

$$H(s) = K \frac{\prod (s - z_i)}{\prod (s - p_j)} = \frac{\kappa_{1,1}}{s - p_1} + \frac{\kappa_{1,2}}{(s - p_1)^2} + \frac{\kappa_{1,3}}{(s - p_1)^3} + \dots + \frac{\kappa_{2,1}}{s - p_2} + \frac{\kappa_{2,2}}{(s - p_2)^2} + \dots + \dots$$

Thanks to the linearity of \mathcal{L} and \mathcal{L}^{-1} ,

$$H(s) = H_{1,1}(s) + H_{1,2}(s) + \dots$$

$$\updownarrow$$

$$h(t) = h_{1,1}(t) + h_{1,2}(t) + \dots$$

In words, h(t) = sum of *all* the impulse responses relative to the various poles in the partial fraction expansion

The cover-up method

if
$$H(s) = K \frac{\prod_{i} (s - z_i)}{\prod_{i} (s - p_i)}$$
 does not have multiple poles then

$$H(s) = \sum_{j} \frac{\kappa_{j}}{(s - p_{j})}$$

with

$$\kappa_j = (s - p_j) H(s) \Big|_{s = p_j}$$

The cover-up method

if
$$H(s) = K \frac{\prod_{i} (s - z_i)}{\prod_{j} (s - p_j)}$$
 does not have multiple poles then

$$H(s) = \sum_{j} \frac{\kappa_{j}}{(s - p_{j})}$$

with

$$\kappa_j = (s - p_j) H(s) \Big|_{s = p_j}$$

Example:

$$H(s) = \frac{3}{(s+1)(s+2)} \implies h(t) = \dots?$$

Physical meaning of a pole - What is $h_{j,\beta}(t)$?

$$H(s) = H_{1,1}(s) + H_{1,2}(s) + \dots$$

$$\updownarrow$$

$$h(t) = h_{1,1}(t) + h_{1,2}(t) + \dots$$

Physical meaning of a pole - What is $h_{i,\beta}(t)$?

$$H(s) = H_{1,1}(s) + H_{1,2}(s) + \dots$$

$$\updownarrow$$

$$h(t) = h_{1,1}(t) + h_{1,2}(t) + \dots$$

simple root:

$$H_{j,1}(s) = \frac{\kappa_{j,1}}{s - p_j} \Longrightarrow h_{j,1}(t) \propto e^{p_j t}$$

Physical meaning of a pole - What is $h_{j,\beta}(t)$?

$$H(s) = H_{1,1}(s) + H_{1,2}(s) + \dots$$

$$\updownarrow$$

$$h(t) = h_{1,1}(t) + h_{1,2}(t) + \dots$$

simple root:

$$H_{j,1}(s) = \frac{\kappa_{j,1}}{s - p_j} \Longrightarrow h_{j,1}(t) \propto e^{p_j t}$$

multiple root:

$$H_{j,\beta}(s) = \frac{\kappa_{j,\beta}}{(s-p_i)^{\beta}} \Longrightarrow h_{j,\beta}(t) \propto t^{\beta-1} e^{p_j t}$$

What is $h_{j,1}(t)$? (i.e., when the roots are simple)

What is $h_{i,1}(t)$? (i.e., when the roots are multiple)

Physical meaning of a pole - Example

$$H(s) = K \frac{s^2 + 4}{s^3 + 3s^2 + 3s + 1} = K \frac{(s+2j)(s-2j)}{(s+1)^3} \implies h(t) = \kappa_1 e^{-t} + \kappa_2 t e^{-t} + \kappa_3 t^2 e^{-t}$$

Physical meaning of a pole - Example

$$H(s) = K \frac{(s+2j)(s-2j)}{(s+1)^3(s+2)} \implies h(t) = \dots??$$

What are the zeros of a system?

Roadmap

- generic definition
- definition for the LTI systems case
- examples of the effects of choosing different zeros

Definition (Zero of a function)

$$z_i$$
 = zero of $H(\cdot)$ if $H(z_i)$ = 0

Physical meaning of a zero of a transfer function

$$H \text{ LTI:} \qquad u(t) = e^{\overline{s}t} \qquad \Longrightarrow \qquad y(t) = H(\overline{s})e^{\overline{s}t}$$

Physical meaning of a zero of a transfer function

$$H \; \mathrm{LTI:} \qquad u(t) = e^{\overline{s}t} \qquad \Longrightarrow \qquad y(t) = H(\overline{s})e^{\overline{s}t}$$
 thus $y(0) = 0, \quad H(s) = K \frac{\prod\limits_{i=1}^{m} (s - z_i)}{\prod\limits_{j=1}^{n} (s - p_j)}, \quad \mathrm{and} \quad u(t) \propto e^{z_i t} \quad \Longrightarrow \quad y(t) = 0$

Physical meaning of a zero of a transfer function

$$H \text{ LTI:} \qquad u(t) = e^{\overline{s}t} \qquad \Longrightarrow \qquad y(t) = H(\overline{s})e^{\overline{s}t}$$

thus
$$y(0) = 0$$
, $H(s) = K \frac{\prod\limits_{i=1}^{m} (s - z_i)}{\prod\limits_{j=1}^{n} (s - p_j)}$, and $u(t) \propto e^{z_i t} \implies y(t) = 0$

What is $e^{z_i t}$? Euler's formulae $(t \in \mathbb{R}, z_i \in \mathbb{C})$:

•
$$e^{z_i t} = e^{(\sigma + j\omega)t} = e^{\sigma t} \Big(\cos(\omega t) + j \sin(\omega t) \Big)$$

•
$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

What is $e^{z_i t}$?

•
$$e^{z_i t} = e^{(\sigma + j\omega)t} = e^{\sigma t} \left(\cos(\omega t) + j\sin(\omega t)\right)$$

• $\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t}\right)$
Im

 $y(t)$

Re

Physical meaning of a zero - Example

$$H(s) = K \frac{s^2 + 4}{s^3 + 3s^2 + 3s + 1} = K \frac{(s+2j)(s-2j)}{(s+1)^3}$$

Thus
$$u(t) = 2\cos(2t) = \left(e^{j2t} + e^{-j2t}\right) \implies y(t) = H(2j)e^{2jt} + H(-2j)e^{-2jt} = 0$$

Discussion

Is it that

$$H(s) = K \frac{(s-2j)}{(s+1)^3}$$

implies

$$u(t) = 2\cos(2t) = (e^{j2t} + e^{-j2t}) \implies y(t) = 0$$
?

Discussion

Is it that

$$H(s) = K \frac{(s+1-2j)(s+1+2j)}{(s+1)^3}$$

implies

$$u(t) = 2\cos(2t) = (e^{j2t} + e^{-j2t}) \implies y(t) = 0$$
 ?

Example

$$H(s) = \frac{(s+\alpha)^2 + 1}{(s+1)((s+0.1)^2 + 1)}$$

Example

-0.5

○ ○ ◎ -1

$$H(s) = \frac{(s+\alpha)^2 + 1}{(s+1)((s+0.1)^2 + 1)}$$

$$0 \quad 0 \quad 0 \quad 1$$

$$1.5 \quad 7$$

What is the gain of a system?

Roadmap

- definition from an intuitive perspective
- final value theorem
- examples

Gain, in generic terms

Concept, intuitively:

- I use an unitary step as the input
- I check what is the output at the end of the times

Gain, in generic terms

Concept, intuitively:

- I use an unitary step as the input
- I check what is the output at the end of the times

important implication of linearity: for a LTI system, the ratio $\Delta u/\Delta y$ when the transient has passed is independent of the original u!

Gain, in generic terms

Concept, intuitively:

- I use an unitary step as the input
- I check what is the output at the end of the times

important implication of linearity: for a LTI system, the ratio $\Delta u/\Delta y$ when the transient has passed is independent of the original u!

Discussion: does this hold also for nonlinear systems?

Tool to be used: final value theorem (but remember the caveats on its validity²).

²I.e., the limit must exist and be finite

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s)$$

²I.e., the limit must exist and be finite

$$\lim_{t\to +\infty}y(t)=\lim_{s\to 0}sY(s)=\lim_{s\to 0}sG(s)U(s)$$

²I.e., the limit must exist and be finite

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)U(s) = \lim_{s \to 0} sG(s)\frac{1}{s}$$

²I.e., the limit must exist and be finite

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)U(s) = \lim_{s \to 0} sG(s) - \lim_{s \to 0} sG(s)$$

²I.e., the limit must exist and be finite

Tool to be used: *final value theorem* (but remember the caveats on its validity²). For continuous time systems:

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)U(s) = \lim_{s \to 0} sG(s)\frac{1}{s} = \lim_{s \to 0} G(s)$$

Discussion: what is the gain associated to $\frac{10}{s+20}$?

²I.e., the limit must exist and be finite

For the sake of completeness . . .

Final value theorem:

$$\lim_{t\to +\infty}y(t)=\lim_{s\to 0}sY(s)$$

For the sake of completeness . . .

Final value theorem:

$$\lim_{t\to+\infty}y(t)=\lim_{s\to0}sY(s)$$

Initial value theorem:

$$\lim_{t\to 0} y(t) = \lim_{s\to \infty} sY(s)$$

For the sake of completeness . . .

Final value theorem:

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s)$$

Initial value theorem:

$$\lim_{t \to 0} y(t) = \lim_{s \to \infty} sY(s)$$

Discussion: why $s \to \infty$ and not $s \to +\infty$?

Final value theorem – proof

$$\lim_{s\to 0} sF(s) = \lim_{s\to 0} \left(\mathcal{L}\left\{\dot{f}(t)\right\} + f(0)\right)$$

Final value theorem – proof

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left(\mathcal{L} \left\{ \dot{f}(t) \right\} + f(0) \right)$$
$$= \lim_{s \to 0} \left(\int_0^{+\infty} \dot{f}(t) e^{-st} dt \right) + f(0)$$

Final value theorem - proof

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left(\mathcal{L} \left\{ \dot{f}(t) \right\} + f(0) \right)$$

$$= \lim_{s \to 0} \left(\int_0^{+\infty} \dot{f}(t) e^{-st} dt \right) + f(0)$$

$$= \int_0^{+\infty} \lim_{s \to 0} \left(\dot{f}(t) e^{-st} dt \right) + f(0)$$

Final value theorem - proof

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left(\mathcal{L} \left\{ \dot{f}(t) \right\} + f(0) \right)$$

$$= \lim_{s \to 0} \left(\int_0^{+\infty} \dot{f}(t) e^{-st} dt \right) + f(0)$$

$$= \int_0^{+\infty} \lim_{s \to 0} \left(\dot{f}(t) e^{-st} dt \right) + f(0)$$

$$= \int_0^{+\infty} \dot{f}(t) dt + f(0)$$

Final value theorem – proof

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} (\mathcal{L} \{ \dot{f}(t) \} + f(0))$$

$$= \lim_{s \to 0} (\int_{0}^{+\infty} \dot{f}(t)e^{-st}dt) + f(0)$$

$$= \int_{0}^{+\infty} \lim_{s \to 0} (\dot{f}(t)e^{-st}dt) + f(0)$$

$$= \int_{0}^{+\infty} \dot{f}(t)dt + f(0)$$

$$= f(+\infty) - f(0) + f(0)$$

Final value theorem - example of how to use it correctly

$$X(s) = \frac{1}{s} \cdot \frac{6}{s+2} \qquad \lim_{t \to +\infty} x(t) = ?$$

Final value theorem - example of how to use it correctly

$$X(s) = \frac{1}{s} \cdot \frac{6}{s+2} \qquad \lim_{t \to +\infty} x(t) = ?$$

$$\lim_{t\to+\infty} x(t) = \lim_{s\to 0} sX(s)$$

Final value theorem - example of how to use it correctly

$$X(s) = \frac{1}{s} \cdot \frac{6}{s+2} \qquad \lim_{t \to +\infty} x(t) = ?$$

$$\lim_{t \to +\infty} x(t) = \lim_{s \to 0} sX(s)$$
$$= \lim_{s \to 0} \frac{6s}{s(s+2)}$$

Final value theorem - example of how to use it wrongly

$$X(s) = \frac{1}{s} \cdot \frac{6}{s-2} \qquad \lim_{t \to +\infty} x(t) = ?$$

$$\lim_{t \to +\infty} x(t) = \lim_{s \to 0} sX(s)$$
$$= \lim_{s \to 0} \frac{6s}{s(s-2)}$$

true?

Final value theorem - example of how to use it wrongly

$$X(s) = \frac{1}{s} \cdot \frac{6}{s-2} \qquad \lim_{t \to +\infty} x(t) = ?$$

$$\lim_{t \to +\infty} x(t) = \lim_{s \to 0} sX(s)$$
$$= \lim_{s \to 0} \frac{6s}{s(s-2)}$$

true? $\underset{t\to+\infty}{no!} \lim_{t\to+\infty} x(t)$ must exist and be finite!

no stability, no party!

Connections with step responses

Roadmap

- definition of step response
- properties for first order systems
- other important examples

Definition: step response

$$Y(s) = H(s)U(s), \qquad U(s) = \frac{1}{s}$$

Definition: step response

$$Y(s) = H(s)U(s), \qquad U(s) = \frac{1}{s}$$

Discussion: may we easily implement step responses in real systems? What are the limitations?

Example:
$$\dot{x}(t) = ax(t) + bu(t)$$
, with $u(t) = H(t)$, implies

$$sX(s) - x_0 = aX(s) + bU(s)$$
 \Longrightarrow $X(s) = \frac{1}{s-a}x_0 + \frac{b}{s(s-a)}$

and thus
$$x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t)).$$

Example:
$$\dot{x}(t) = ax(t) + bu(t)$$
, with $u(t) = H(t)$, implies

$$sX(s) - x_0 = aX(s) + bU(s)$$
 \Longrightarrow $X(s) = \frac{1}{s-a}x_0 + \frac{b}{s(s-a)}$

and thus
$$x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t))$$
. So, how does this look like, if $x_0 = 0$?

Example: $\dot{x}(t) = ax(t) + bu(t)$, with u(t) = H(t), implies

$$sX(s) - x_0 = aX(s) + bU(s) \qquad \Longrightarrow \qquad X(s) = \frac{1}{s - a}x_0 + \frac{b}{s(s - a)}$$

and thus $x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t))$. So, how does this look like, if $x_0 = 0$?

 $\kappa \left(H\left(t\right) -e^{at}\right)$ = generic step response of first order systems

Example: $\dot{x}(t) = ax(t) + bu(t)$, with u(t) = H(t), implies

$$sX(s) - x_0 = aX(s) + bU(s) \qquad \Longrightarrow \qquad X(s) = \frac{1}{s - a}x_0 + \frac{b}{s(s - a)}$$

and thus $x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t))$. So, how does this look like, if $x_0 = 0$?

$$\kappa\left(H\left(t
ight)-e^{at}
ight)$$
 = generic step response of first order systems

Discussion:

• does the system converge somewhere?

Example: $\dot{x}(t) = ax(t) + bu(t)$, with u(t) = H(t), implies

$$sX(s) - x_0 = aX(s) + bU(s)$$
 \Longrightarrow $X(s) = \frac{1}{s-a}x_0 + \frac{b}{s(s-a)}$

and thus $x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t))$. So, how does this look like, if $x_0 = 0$?

$$\kappa\left(H\left(t\right)-e^{at}\right)$$
 = generic step response of first order systems

Discussion:

- does the system converge somewhere?
- may the system response pass this value?

Example: $\dot{x}(t) = ax(t) + bu(t)$, with u(t) = H(t), implies

$$sX(s) - x_0 = aX(s) + bU(s)$$
 \Longrightarrow $X(s) = \frac{1}{s-a}x_0 + \frac{b}{s(s-a)}$

and thus $x(t) = e^{at}x_0 + \frac{b}{a}(e^{at} - H(t))$. So, how does this look like, if $x_0 = 0$?

$$\kappa\left(H\left(t
ight)-e^{at}
ight)$$
 = generic step response of first order systems

Discussion:

- does the system converge somewhere?
- may the system response pass this value?
- may we compute the time constant of the system in this case?

Examples for zeroth order systems

Examples for first order systems

Examples for second order systems

Important message

if the input is \dot{u} then the step response gives the impulse response that we would get if the input were u, instead

Discussion

What about
$$\frac{K(s+a)}{1+2\xi\frac{s}{\omega}+\left(\frac{s}{\omega}\right)^2}$$
 ?

Block diagrams

Roadmap

- recap of the diagrams in the time domain
- recap of the diagrams in the frequency domain
- rules for how to transform the diagrams
- examples

Block diagrams - why?

- used very often in companies
- aid visualization (until a certain complexity is reached...)
- enable "drag & drop" way of programming
- here primarily used for interpretations

Most common block diagrams in the time domain

Representing a first order DE with a block scheme

$$\dot{y} = ay + bu$$

Discussion: how do we represent $\ddot{x} + \frac{f}{m}\dot{x} + \frac{k}{m}x = \frac{1}{m}u$?

Block diagrams that are equal in both time and frequency domains

Block diagrams that are logically the same in both time and frequency domains

Block diagrams that do not exist in the frequency domain

Discussion: why?

Series of transfer functions

$$U(s) \longrightarrow H_a(s) \longrightarrow H_b(s) \longrightarrow Y(s)$$

is equivalent to

$$U(s) \longrightarrow H_a(s)H_b(s) \longrightarrow Y(s)$$

Series of transfer functions

$$U(s) \longrightarrow H_a(s) \longrightarrow H_b(s) \longrightarrow Y(s)$$

is equivalent to

$$U(s) \longrightarrow H_a(s)H_b(s) \longrightarrow Y(s)$$

Discussion: why?

Parallel of transfer functions

is equivalent to

$$U(s) \longrightarrow H_a(s) + H_b(s) \longrightarrow Y(s)$$

Parallel of transfer functions

is equivalent to

$$U(s) \longrightarrow H_a(s) + H_b(s) \longrightarrow Y(s)$$

Discussion: why?

Elimination of feedback loops

is equivalent to

$$U(s) \longrightarrow \frac{H_a(s)}{1 - H_a(s)H_b(s)} \longrightarrow Y(s)$$

Elimination of feedback loops: how to remember the formula

Elimination of feedback loops: how to remember the formula

- $Y = H_a X_{\alpha}$
- $\bullet \ X_{\alpha} = U + X_{\beta}$
- $\bullet \ X_{\beta} = H_b Y$

Elimination of feedback loops: how to remember the formula

- \bullet $Y = H_a X_{\alpha}$
- $\bullet \ X_{\alpha} = U + X_{\beta}$
- $\bullet \ X_{\beta} = H_b Y$
- $\bullet \implies Y = H_a \left(U + H_b Y \right)$