

ATTACHMENT A

Claims 1 - 22: (Cancelled)

- 23. (New) A multistage process comprising the following steps:
 - polymerizing a propylene resin optionally comprising one or more monomers selected from ethylene and alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical in presence of a catalyst system, the catalyst system supported on an inert carrier comprising:
 - i) at least one metallocene compound of formula (I):

wherein:

M is a transition metal selected from those belonging to group 3, 4, 5, 6 or to a lanthanide or actinide group in the Periodic Table of the Elements;

p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;

X, same or different, is hydrogen, a halogen, or R, OR, OSO_2CF_3 , OCOR, SR, NR_2 or PR_2 , wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally

containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or OR'O wherein R' is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylidene, C_7 - C_{40} alkylarylidene and C_7 - C_{40} arylalkylidene radicals;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 R^1 and R^2 , equal to or different from each other, are linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T, equal to or different from each other, is a moiety of formula (IIa) or (IIb):

$$R^{10}$$
 R^{9}
 R^{8}
 R^{7}
 R^{6}
 R^{5}
 R^{4}
 R^{6}
 $R^{5'}$
 $R^{4'}$
(IIa)
(IIb)

wherein the atom marked with symbol * bonds the atom marked with the same symbol in the metallocene compound of formula (I);

 R^3 , R^4 , R^5 , R^6 and R^7 , equal to or different from each other, are hydrogen or linear or branched, saturated or unsaturated C_1-C_{40} -alkyl, C_3-C_{40} -cycloalkyl, C_6-C_{40} -aryl, C_7-C_{40} -alkylaryl, or C₇-C₄₀-arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^3 , R^4 , R^5 , R^6 and R^7 can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent; with the proviso that at least one substituent selected from the group consisting of R3, R4, R5, R^6 and R^7 is a linear or branched, saturated or unsaturated C_1-C_{40} -alkyl, C_3-C_{40} -cycloalkyl, $C_6-C_{40}-aryl$, $C_7-C_{40}-alkylaryl$, or $C_7-C_{40}-arylalkyl$ radical optionally containing one heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^8 , R^9 and R^{10} , equal to or different from each other, are hydrogen or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^8 , R^9 and R^{10} can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{10} alkyl substituent;

 R^{11} is hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 $R^{3'}$, $R^{4'}$, $R^{5'}$, $R^{6'}$ and $R^{7'}$ equal to or different from each other, are hydrogen or linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more $R^{3'}$ $R^{4'}$ $R^{5'}$ $R^{6'}$ and $R^{7'}$ can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{10} alkyl substituent;

- ii) an alumoxane or a compound capable of forming
 an alkyl metallocene cation;
- contacting under polymerization conditions in a gas phase, ethylene with one or more alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical, and optionally with a non-conjugated diene to produce an ethylene resin, the ethylene resin is produced in presence of the propylene resin,

wherein the amount of the propylene resin is higher than 4% and lower than 20% by weight, and the amount of the ethylene resin is higher than 80% by weight and lower than 96% by weight.

24. (New) The process according to claim 23, wherein the catalyst system further comprises iii) an organo aluminum compound.

- 25. (New) The process according to claim 24, wherein the process of polymerizing a propylene resin is carried out in presence of an additional organo aluminum compound.
- 26. (New) The process according to claim 23, wherein M is titanium, zirconium or hafnium; p is 2; X is hydrogen, a halogen, or R, wherein R is defined as in claim 23; L is selected from the group consisting of is $Si(CH_3)_2$, $SiPh_2$, SiPhMe, $SiMe(SiMe_3)$, CH_2 , $(CH_2)_2$, $(CH_2)_3$ and $C(CH_3)_2$; and R^1 and R^2 are methyl or ethyl radicals.
- 27. (New) The process according to claim 23, wherein at least one substituent selected from the group consisting of $R^{3'}$, $R^{4'}$, $R^{5'}$, $R^{6'}$ and $R^{7'}$ is a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements.
- 28. (New) The process according to claim 23, wherein R^5 and $R^{5'}$, equal to or different from each other, are linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements.
- 29. (New) The process according to claim 28, wherein R^5 and $R^{5'}$, equal to or different from each other, are branched C_1 - C_{40} -alkyl radicals.

30. (New) The process according to claim 29, wherein R^5 and R^{5^\prime} have formula (III):

$$R^{12} \xrightarrow{R^{12}} R^{12}$$
(III)

wherein R^{12} , equal to or different from each other, is a C_{1-} C_{10} alkyl radical.

- 31. (New) The process according to claim 23, wherein R^3 , R^4 , R^6 , R^7 , $R^{3'}$, $R^{4'}$, $R^{6'}$ and $R^{7'}$ are hydrogen, and R^{11} is a linear or branched, saturated C_1 - C_{20} -alkyl.
- 32. (New) The process according to claim 23, wherein T have formula (IIa) and R^9 is a C_1 - C_{20} alkyl radical.
- 33. (New) The process according to claim 23, wherein T have formula (IIb).
- 34. (New) The process according to claim 23, wherein T have formula (IIa) and R^9 is hydrogen.
- 35. (New) The process according to claim 23, wherein T are different and have formulas (IIb) and (IIa).
- 36. (New) The process according to claim 23, wherein T have formula (IIb) and R^{11} is a linear or branched, saturated $C_1\text{-}C_{20}\text{-}alkyl$ radical.
- 37. (New) The process according to claim 23, wherein the inert carrier is a porous organic polymer.

- 38. (New) The process according to claim 23, wherein the process of polymerizing a propylene resin further comprises a prepolymerization step.
- 39. (New) The process according to claim 38, wherein the catalyst system is prepolymerized.
- 40. (New) The process according to claim 23, wherein the process is carried out in presence of hydrogen.
- 41. (New) The process according to claim 23, wherein the propylene resin produced comprises from 10% to 18% by weight of a propylene homopolymer or propylene copolymer containing up to 20% by mol of ethylene or one or more alpha olefins of formula $CH_2=CHT^1$.
- 42. (New) The process according to claim 23, wherein the ethylene resin produced comprises from 82% to 90% by weight of an ethylene copolymer having from 3% by mol to 60% by mol of derived units of comonomers of formula $CH_2=CHT^1$ and optionally up to 20% by mol of a non conjugated diene.
- 43. (New) The process according to claim 23, wherein the propylene resin is a propylene homopolymer.
- 44. (New) The process according to claim 23, wherein the ethylene resin is an ethylene 1-butene copolymer having a 1-butene content ranging from 5% to 45% by mol.