# **Overfitting**

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

### **Bias-variance tradeoff**

#### Interpretation:

- $Var(\hat{f})$  is the amount of variability in our predictor with respect to the training data. Increases with increasing model flexibility.
- $Bias(\hat{f})$  is the systematic error introduced by model approximation. Decreases with increasing model flexibility.
- $\sigma^2$  is *irreducible error*, inherent in the error term  $\epsilon$ . Cannot get rid of this!

If we have a family of flexible regression methods, we should try to balance squared bias and variance.

# **Summary from today**

- Least squares coefficients correspond to minimum of a quadratic surface
- Confidence intervals computed using standard errors of coefficients
- R<sup>2</sup> is a scale-invariant accuracy measure proportion of variance in Y explained by the model
- Multiple linear regression (many predictors) estimated by solving a linear system — normal equations

#### Two flavors of classifiers

*Generative models* model both the input *X* and the output *Y*.

*Discriminative models* model only the output *Y* given *X*.

Which one is logistic regression? Which do you think is better?

### **Generative models**

$$p(x_i, y_i) = p(x_i | y_i)p(y_i) = p(y_i|x_i)p(x_i).$$

In the generative case we typically estimate the joint distribution by maximizing the *joint likelihood*:

$$\prod_{i=1}^{n} p(x_i, y_i) = \prod_{\substack{i=1 \text{parametric model}}}^{n} p(x_i \mid y_i) \prod_{\substack{i=1 \text{Bernoulli}}}^{n} p(y_i).$$

### **Discriminative models**

$$p(x_i, y_i) = p(x_i | y_i)p(y_i) = p(y_i|x_i)p(x_i).$$

In the generative case we typically estimate the joint distribution by maximizing the *conditional likelihood*:

$$\prod_{i=1}^{n} p(x_i, y_i) = \prod_{\substack{i=1 \text{parametric model ignored}}}^{n} p(x_i, y_i) = \prod_{\substack{i=1 \text{parametric model}}}^{n} p(x_i) \prod_{\substack{i=1 \text{ignored}}}^{n} p(x_i).$$

## What did we learn today?

- Classifiers come in two flavors: generative & discriminitive.
- Linear Gaussian discriminant analysis is a simple generative classifier.
- Logistic regression is the discriminative version. Default method.
- Can be fit with iterative, weighted least squared regression.

# **Improving Upon Gradient Descent**

Each step of (batch) gradient descent requires a calculation involving all of the data points.

**Stochastic gradient descent**, in contrast, only computes based on a smaller subset of the data points (e.g. 1 observation) at each step.

# Approaches to feature selection

- Subset selection use a "good subset" of the p predictors
- Shrinkage use all p predictors but encourage more coefficients to be near 0
- Dimension reduction condense the set of predictors by projecting to a lower subspace

# Subset selection: Stepwise selection

#### 1. Forward stepwise selection

Starting from the null model, build an increasing sequence of *nested* models.

- Start with M<sub>0</sub>.
- For k = 1, ..., p, pick the best **one** of the remaining unused predictors to add to  $\mathcal{M}_{k-1}$  to form  $\mathcal{M}_k$ .
- Select the best model among  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$  on basis of estimated prediction error.

# Subset selection: Stepwise selection

#### 2. Backward stepwise selection

Starting from the full model, build a decreasing sequence of *nested models*.

- Start with  $\mathcal{M}_p$ .
- For k = p 1, p 2, ..., 0, pick the worst **one** of the existing predictors to remove from  $\mathcal{M}_{k+1}$  to form  $\mathcal{M}_k$ .
- Select the best model among  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$  on basis of estimated prediction error.

Backward and forward stepwise selection are more computationally feasible than best subsets, but no guarantee they'll find the best subset of the p predictors to use.

### **Leave-One-Out Cross-Validation**

How do we use more data to train with?

- Use a tiny validation set (e.g.  $(x_1, y_1)$ )
- Train with the rest (e.g.  $\{(x_2, y_2), ..., (x_n, y_n)\}\)$

How do we feel about error rate evaluated on a single observation?

Not good, but we can iterate through the dataset, each time using a different  $(x_i, y_i)$  as the validation set and obtaining an error  $MSE_i$ .

#### k-fold Cross-Validation

#### A potentially faster approach:

- Randomly divide the dataset into k folds.
- For b = 1, ..., k:
  - ▶ Use b-th fold ("batch") as validation set.
  - Use everything else as training set.
  - Compute validation error on b-th fold.
- Estimate test error using:

$$CV_{(k)} = \sum_{b} \frac{n_b}{n} MSE_b,$$

where  $n_b$  is the total # observations in the b-th fold, and n is the total # observations in the entire dataset.

# Classification and Regression Trees (CART)

Trees provide alternative ways of modeling nonlinear relationships, and give a **nonparametric** approach that does not require any assumptions about the underlying data.

- Can be used for either classification or regression.
- Feature variables can be categorical or quantitative.
- Yields a set of interpretable decision rules (popular in medicine).
- Predictive ability is often mediocre, but can be improved with ideas of resampling (will be covered on Thursday).

#### **Bias vs Variance**

- As tree is grown deeper, bias decreases
- But the variance increases
- How to choose the right size of tree?

Option 1: Change the stopping criterion.

## What did we learn today?

- Trees are a nonparametric method
- Gives interpretable decision rules
- Shallow trees have high bias and low variance, deep trees have low bias, high variance
- Trees are grown greedily to the full, then pruned back

#### **Ensemble methods**

Ensemble methods pool together multiple different models to arrive at more reliable predictions.

To ensure the models are different, we will train each one slightly differently:

- bootstrap aggregation (bagging): randomizes training data
- random forests (feature bagging): randomizes training data + randomizes features
- boosting: changes/weights training data

These techniques are **general** and can be applied to other models – today we focus on trees.

### **Ensemble methods: Pros & Cons**

### Bagging:

- Advantages: Reduces variance / avoids overfitting. Can be parallelized.
- Disadvantages: Can suffer from bias. Training base models may be computationally expensive. Not be desirable when base models still highly correlated.

#### Peature bagging:

- Advantages: Reduces variance / avoids overfitting. Better at de-correlating base models. Can be parallelized.
- Disadvantages: Can suffer from bias. Training base models may be computationally expensive.

#### Boosting:

- Advantages: Reduces bias. Training base models is fast.
- ▶ Disadvantages: Not as effective against overfitting. Has to be done sequentially (may be more costly overall).

# **Unsupervised Learning**

Supervised learning is about being able to predict a Y using a series of predictors  $X_1, X_2, \ldots, X_p$ .

Unsupervised learning deals with data that do not have labels Y.

We are not trying to predict anything. So what else might we hope to do?

#### Consider:

- Are there interesting ways to visualize/summarize the data?
- Are there natural subgroups in the data?

## **PCA: Summary**

- PCA is an unsupervised method
- Finds directions of greatest variation in the data
- The directions are called the *principal vectors*; the weightings on the vectors are called the *principal components*
- The first few vectors may be interpretable
- Orthogonality makes interpretation difficult for the higher components
- Can be used for visualization or dimensionality reduction
- Let's go to the notebook!

## **Bayesian Inference**

The parameter  $\theta$  of a model is viewed as a random variable. Inference usually carried out as follows:

- Choose a *generative model*  $p(x | \theta)$  for the data.
- Choose a *prior distribution*  $\pi(\theta)$  that expresses beliefs about the parameter before seeing any data.
- After observing data  $\mathcal{D}_n = \{x_1, \dots, x_n\}$ , update beliefs and calculate the *posterior distribution*  $p(\theta \mid \mathcal{D}_n)$ .

### Generative model for LDA



- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

## LDA as a graphical model



- Nodes are random variables; edges indicate dependence.
- Shaded nodes are observed.
- Plates indicate replicated variables.

## Language models

 A language model is a way of assigning a probability to any sequence of words (or string of text)

$$p(w_1,\ldots,w_n)$$

By the basic rules of conditional probability we can factor this as

$$p(w_1,...,w_n) = p(w_1)p(w_2 | w_1)...p(w_n | w_1,...,w_{n-1})$$

- The number of *histories* grows as  $V^{n-1}$ . Number of parameters in model grows as  $V^n$ , where V is number of words in vocabulary.
- What are some ways of reducing the number of parameters?

## **Class-based bigram model**

Model takes form

$$p(w_2 | w_1) = p(class(w_2) | class(w_1)) p(w_2 | class(w_2))$$
  
=  $p(c_2 | c_1) p(w_2 | c_2)$ 

- Use bottom-up agglomerative clustering to group the words.
- In each step, merge the pair of classes that gives the smallest reduction in likelihood of the data. (The MLE bigram model has the greatest likelihood.)
- $O(V^5)$  complexity to go down to O(1) classes.
- V is number of words in vocabulary

Brown et al., "Class-based *n*-gram models of natural language"

# **Perplexity**

"perplexity" is evaluated as

Perplexity(
$$\theta$$
) =  $\left(\prod_{i=1}^{N} p_{\theta}(w_i \mid w_{1:i-1})\right)^{-1/N}$ 

If perplexity is 100, then the model predicts, on average, as if there were 100 equally likely words to follow.

## Pointwise mutual information (PMI)

Related statistic is "pointwise mutual information" (PMI)

$$\log\left(\frac{p_{\text{near}}(w_1, w_2)}{p(w_1)p(w_2)}\right)$$

 How likely are specific words/clusters to co-occur together within some window, compared to if they were independent?

# Core idea of embeddings

- Form a language model but replace classes by vectors, one for each word
- Use PMI-like scores to fit the vectors
- Can be applied whenever have cooccurrence data.

# **Analogies**

These heuristics enable training on very large text collections. Leads to vector representations of words with interesting properties.

For example, analogies:

king is to man as? is to woman
Paris is to France as? is to Germany

$$\begin{split} \phi(\texttt{king}) - \phi(\texttt{man}) &\stackrel{?}{\approx} \phi(\texttt{queen}) - \phi(\texttt{woman}) \\ \widehat{\pmb{w}} &= \underset{\pmb{w}}{\mathsf{arg}} \min_{\pmb{w}} \|\phi(\texttt{king}) - \phi(\texttt{man}) + \phi(\texttt{woman}) - \phi(\pmb{w})\|^2 \end{split}$$

Does  $\widehat{\mathbf{w}} = \text{queen}$ ?

# **Embedding embeddings: t-SNE**

- How can we visualize the embeddings?
- We're in a very high dimensional space
- Can do PCA, but this will introduce an additional projection/approximation step
- Many visualization techniques exist. A currently popular one is t-SNE: "Student-t Stochastic Neighborhood Embedding"

# **Summary: Word embeddings**

- Word embeddings are vector representations of words, learned from cooccurrence statistics
- The models can be viewed in terms of logistic regression and class-based bigram models
- Surprising semantic relations are encoded in linear relations
- Various heuristics have been introduced to get scalability
- Embeddings improve with more data
- t-SNE is an algorithm for visualizing embeddings

## Summary: What did we learn today?

- Autoencoders compress the input and then reconstruct it
- Bottleneck forces extraction of useful features
- Will overfit and "memorize" the data
- Overfitting mitigated by denoising autoencoders
- More fundamental view: Latent variable generative models and posterior inference
- Parameterize variational parameters in terms of neural networks
- Reparameterization trick allows simultaneous training of both networks