CS 320: Principles of Programming Languages

Katie Casamento, Portland State University

Winter 2018

Week 8a: Simply-Typed Lambda Calculus & Big Step Semantics

Types

A type categorizes expressions: it can be thought of as a **set** of expressions.

```
true \in bool (if true then false else true) \in bool 0 \in \text{num} (1 + 3) \in \text{num} (\lambda(x: \text{num}). x) \in \text{num} \to \text{num} (\lambda(x: \text{num}). x + 1) \in \text{num} \to \text{num}
```

Working with types

A *statically-typed* language has type information that can be checked before runtime.

- A typechecking procedure decides whether or not a typed expression has some given type
- A type inference procedure attempts to find a type for an untyped expression

A *dynamically-typed* language has type information that can only be checked at runtime.

 Dynamic type checks can be inserted by a compiler/interpreter to check the types of expressions at runtime before evaluating them

Simply-typed lambda calculus (STLC)

Simply-typed lambda calculus

- Introduced by Alonzo Church in 1940¹
- Has interpretations in many domains
 - In PL theory as a programming language
 - In proof theory² as a proof system for intiuitionistic propositional logic
 - In category theory³ as the internal language of Cartesian closed categories
- Foundation of *statically-typed* functional programming languages
- Multiple styles of presentation
 - Intrinsic (or Church-style): types are structurally part of terms
 - This is what we'll use in this class
 - Extrinsic (or Curry-style): types are a tool to analyze untyped terms
- 1. "A formulation of the simple theory of types"
- 2. "The formulae-as-types notion of construction" (William Howard, 1969)
- 3. "Cartesian closed categories and typed lambda-calculi" (Joachim Lambek, 1985)

Simply-typed lambda calculus

The expression syntax is just a slight modification from untyped lambda calculus:

e ::= x |
$$(\lambda(x: t). e)$$
 | $(e_1 e_2)$
| n | $(e_1 + e_2)$ | $(e_1 * e_2)$
| b | if e_1 then e_2 else e_3

The only difference is that lambda arguments are annotated with a *type*:

```
t ::= bool \mid num \mid t_1 \rightarrow t_2
```

The arrow is right-associative, so " $t_1 \rightarrow t_2 \rightarrow t_3$ " reads as " $t_1 \rightarrow (t_2 \rightarrow t_3)$ ".

The arrow is for *function types* (like in Haskell): " $t_1 \rightarrow t_2$ " is the type of functions with argument (or *domain*) type t_1 and return (or *codomain*) type t_2 .

Primitive typing rules

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
| n | (e_1 + e_2) | (e_1 * e_2)
| b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

To specify the types of expressions, we use *typing rules*.

Numeric operation typing rules

e ::= x |
$$(\lambda(x: t). e)$$
 | $(e_1 e_2)$
| n | $(e_1 + e_2)$ | $(e_1 * e_2)$
| b | if e_1 then e_2 else e_3
t ::= bool | num | $t_1 \rightarrow t_2$

T-Plus
$$\frac{e_1 : \text{num} \quad e_2 : \text{num}}{(e_1 + e_2) : \text{num}}$$

if e₁ has type num and e₂ has type num, then (e₁ + e₂) has type num

T-Times
$$\frac{e_1 : num \qquad e_2 : num}{(e_1 * e_2) : num}$$

then $(e_1 * e_2)$ has type num

if e, has type num and e, has type num,

			4.1
I yp	e de	eriva	ations

T-Plus _	e_1 : num e_2 : num	T-Times _	e_1 : num e_2 : num
	$(e_1 + e_2)$: num		$(e_1 * e_2) : num$
	T-Num ———		

n: num

In order to prove that a term has some type, we construct a *type derivation* by combining type rules in a tree structure.

A derivation is *valid* if every horizontal line corresponds to a valid typing rule, and *complete* if the top of every branch of the tree is a true logical statement (or empty).

A term that can be given a complete and valid type derivation is well-typed.

	T-Num		T-Num
		2 : num 3 : num	
T-Num	1 : num	(2 * 3) : num	T-Times
	(1 + (2	2 * 3)) : num	T-Plus

If/then/else typing rule

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
| n | (e_1 + e_2) | (e_1 * e_2)
| b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

Both branches of an if/then/else expression must have the same type.

Otherwise, we wouldn't know which type the whole if/then/else should have.

```
1 : num
true : bool
if true then 1 else true : ???
```

Application typing rule

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
 | n | (e_1 + e_2) | (e_1 * e_2)
 | b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

The application rule requires that the function's input type is the same as the type of the argument being passed to it.

Variable typing rules

T-Var

What type should a **variable** have?

e ::= x |
$$(\lambda(x: t). e)$$
 | $(e_1 e_2)$
 | n | $(e_1 + e_2)$ | $(e_1 * e_2)$
 | b | if e_1 then e_2 else e_3
t ::= bool | num | $t_1 \rightarrow t_2$

$$(\lambda(x : num). x)$$
 $(\lambda(x : bool). x)$

It depends on the *context* of the variable!

x: ???

Variable typing rules

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

What type should a **variable** have?

It depends on the *context* of the variable!

$$\Gamma(x) = t$$
 $\Gamma \vdash x : t$

if x is mapped to type t in context Γ ,

then x has type t under Γ (often pronounced "gamma entails x is of type t")

Contexts

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
  | n | (e_1 + e_2) | (e_1 * e_2)
  | b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

A *type environment* (or *context*) is an **ordered list of mappings** from variables to types.

For example:

a: num, b: bool

```
a: num, f: bool \rightarrow num, a: bool, b: num
```

The syntax " Γ (a) = t" means "the leftmost occurrence of a in Γ is mapped to t".

```
(a: num, b: bool) (a) = num
(a: num, b: bool) (b) = bool
(a: num, f: bool → num, a: bool, b: num) (a) = num
```

The symbol ∅ is sometimes used to represent the empty context.

A type derivation with variables

 $\Gamma(x) = t$

T-Var

es $| n | (e_1 + e_2) | (e_1 * e_2)$ $| b | if e_1 then e_2 else e_3$ $t ::= bool | num | t_1 \rightarrow t_2$

 $e := x | (\lambda(x: t). e) | (e_1 e_2)$

A derivation is *valid* if every horizontal line corresponds to a valid typing rule, and *complete* if the top of every branch of the tree is a true statement (or empty).

T-Num

 $x: bool \vdash (if x then 1 else 0) : num$

Lambda typing rule

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | $n | (e_1 + e_2) | (e_1 * e_2)$ | $b | if e_1 then e_2 else e_3$ t ::= bool | num | $t_1 \rightarrow t_2$

What type should a **lambda** have?

T-Lam
$$\Gamma \vdash (\lambda(x; t_1). e) : t_1 \rightarrow ???$$

We know the argument type from the syntax, but the return type is determined by the **body** of the lambda.

Lambda typing rule

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

What type should a **lambda** have?

The body is typechecked under a context **extended** with a mapping for the argument.

A type derivation with lambdas

 $| n | (e_1 + e_2) | (e_1 * e_2)$ | b | if e then e else e $t ::= bool \mid num \mid t_1 \rightarrow t_2$

 $e := x | (\lambda(x: t). e) | (e_1 e_2)$

T-Var	$\Gamma(x) = t$		$\Gamma \vdash e_1 : num$	$\Gamma \vdash e_2 : num$
	Г⊢х: t	T-Plus T	Γ ⊢ (e ₁ +	e ₂) : num

$$\Gamma \vdash (e_1 + e_2) : num$$

x: t_1 , $\Gamma \vdash e : t_2$

```
T-Lam
                  \Gamma \vdash (\lambda(x: t_1). e) : t_1 \rightarrow t_2
```

$$T-Var = \frac{(x: num, y: num)(x) = num}{x: num, y: num \vdash x : num} = \frac{(x: num, y: num)(y) = num}{x: num, y: num \vdash y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num, y: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash (\lambda(y: num). x + y) : num \rightarrow num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash (\lambda(y: num). x + y) : num \rightarrow num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash (\lambda(y: num). x + y) : num \rightarrow num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash (\lambda(y: num). x + y) : num \rightarrow num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num \vdash x + y : num}{x: num \vdash x + y : num} = \frac{x: num, y: num}{x: num} = \frac{x: num}{x: num} = \frac{x: num, y: num}{x: num}$$

 $\emptyset \vdash (\lambda(x: num) (y: num). x + y) : num \rightarrow (num \rightarrow num)$

All typing rules (so far)

 $\Gamma \vdash b : bool$

T-Bool

 $| n | (e_1 + e_2) | (e_1 * e_2)$ $| b | if e_1 then e_2 else e_3$ $t ::= bool | num | t_1 \rightarrow t_2$

T-Var

 $e ::= x | (\lambda(x: t). e) | (e_1 e_2)$

 $\Gamma(x) = t$

г⊢х: t

$$\frac{\Gamma \vdash e_1 : \text{num} \qquad \Gamma \vdash e_2 : \text{num}}{\Gamma \vdash (e_1 + e_2) : \text{num}} \qquad \qquad \frac{\Gamma \vdash e_1 : \text{num} \qquad \Gamma \vdash e_2 : \text{num}}{\Gamma \vdash (e_1 * e_2) : \text{num}}$$

T-Num

 $\Gamma \vdash n : num$

Static type safety (small-step)

That's a lot to keep track of. What do we get out of it?

"Well-typed terms do not **go wrong**."¹

The property of *static type safety* involves two guarantees about evaluation:

- A *progress theorem* proves that a well-typed term either is a value or can take another step of evaluation (i.e. that it **doesn't get stuck**).
- A preservation theorem proves that if e : t and e ⇒ e', then e' : t (i.e. taking a step of evaluation doesn't change the type of an expression).

These two theorems combine into a very useful property: a well-typed term always normalizes to a value of the same type (or diverges).

1. "Types and Programming Languages", Benjamin Pierce

Static types vs. dynamic types

Benefits of static typing

That's a lot to keep track of. What do we get out of it?

- Often easier to **prove** desirable properties of well-typed programs
- Programmers can use types as **contracts** enforced by the typechecker
- Type information can aid in **comprehension** when reading programs
- Type information gives **static analysis** tools more information to work with
- Typechecking can aid in **refactoring** by highlighting code that needs updates

Untypable terms

What do we give up in exchange for type safety?

Are there any expressions that don't get stuck during normalization, but can't be given a type?

Untypable terms (ambiguous terms)

What do we give up in exchange for type safety?

Are there any expressions that don't get stuck during normalization, but can't be given a type?

```
(if true then 1 else false) + 1

\Rightarrow 1 + 1

\Rightarrow 2

T-If \frac{e_1 : bool \quad e_2 : t \quad e_3 : t}{(if e_1 then e_2 else e_3) : t}
```

```
T-If \frac{\varnothing \vdash \text{true : bool}}{\varnothing \vdash (\text{if x then 1 else false)} + 1 : \text{num}}
```

Untypable terms (divergent terms)

What do we give up in exchange for type safety?

 $\Omega = (\lambda x. x x) (\lambda x. x x)$

Are there any expressions that don't get stuck during normalization, but can't be given a type?

$$\Omega \implies \Omega \implies \Omega \implies \dots$$

$$\text{T-App} \quad \begin{array}{c} e_1 \, : \, t_1 \rightarrow t_2 \qquad e_2 \, : \, t_1 \end{array}$$

$$\text{T-App} \xrightarrow{\varnothing \; \vdash \; (\lambda x. \; x \; x) \; : \; \mathsf{t}_1 \; \to \; \mathsf{t}_2} \quad \overset{\varnothing \; \vdash \; (\lambda x. \; x \; x) \; : \; \mathsf{t}_1}{\varnothing \; \vdash \; (\lambda x. \; x \; x) \; \; (\lambda x. \; x \; x) \; : \; \mathsf{t}_2}$$

 $(e_1 e_2) : t_2$

Untypable terms

What do we give up in exchange for type safety?

We rule out some potentially useful terms!

Simply-typed lambda calculus is **strongly normalizing** in this form: every expression normalizes in a finite number of steps. (So a well-typed term never diverges!)

We can recover nontermination by adding a primitive fix : $(t \rightarrow t) \rightarrow t$ such that $\Omega = \text{fix } (\lambda x. x)$,

but in general there will almost always be some computationally valid terms that can't be given a type.

Drawbacks of static typing

Why not always use static types?

- Type systems almost never have full **coverage**
 - There will be some computationally valid terms that can't be given types
- Type systems often require some amount of syntactic overhead
 - The programmer must write more code in order to achieve the same result
 - Type inference can help
- Statically-typed programs are sometimes harder to **extend** with unforeseen functionality
 - Types enforce a contract, but the contract might need to change over time
 - More expressive type systems can help

Dynamic types

A *dynamically-typed* language has a notion of types at **runtime**, but not necessarily at compile time.

- Dynamic type errors are thrown when a program tries to evaluate an expression with invalid types at runtime
 - "(if true then 1 else false) + 1" evaluates without error
 - "(if false then 1 else false) + 1" throws a dynamic type error
- Common in languages designed for scripting and rapid prototyping
 - Python, Ruby, Javascript, Lua, Scheme, ...
- Gradual typing is a paradigm that lets programmers prototype with dynamically-typed code and add static types incrementally
 - Typescript, Typed Racket, mypy (Python), ...

Big-step semantics

Big-step semantics

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
| n | (e_1 + e_2) | (e_1 * e_2)
| b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

Like small-step semantics, big-step semantics specify the behavior of a program in terms of an abstract machine that operates on ASTs.

Instead of specifying each step of the machine, we define rules that specify what the **final result** of evaluating a term is.

There are a couple benefits over small-step semantics:

- Less rules to deal with
- Straightforward implementation in code as a recursive evaluation function
- Evaluation order is left implicit
- Easier to prove some things about
 - Like type safety!

Big-step semantics

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

The typing rules we've covered hint at a set of evaluation rules:

T-Num
$$\frac{\Gamma \vdash e_1 : \text{num} \qquad \Gamma \vdash e_2 : \text{num}}{\Gamma \vdash (e_1 + e_2) : \text{num}}$$

$$E-\text{Num} = \frac{\langle \rho, n \rangle \Downarrow n}{\langle \rho, n \rangle \Downarrow n}$$

$$E-\text{Plus} = \frac{\langle \rho, e_1 \rangle \Downarrow n_1 \qquad \langle \rho, e_2 \rangle \Downarrow n_2 \qquad n_1 + n_2 = n}{\langle \rho, (e_1 + e_2) \rangle \Downarrow n}$$

e ↓ v means "expression e evaluates to value v".

Big-step arithmetic example

E-Num

<p, 1> ↓ 1 E-Plus ____ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

E-Plus $- \langle \rho, e_1 \rangle \Downarrow n_1 \qquad \langle \rho, e_2 \rangle \Downarrow n_2 \qquad n_1 + n_2 = n$

 $e ::= x | (\lambda(x: t). e) | (e_1 e_2)$

1 + 2 = 3

$$<\rho$$
, $n> \psi$ n $<\rho$, $(e_1 + e_2)> \psi$ n $= -Num$ $= -Num$ $= -Num$ $= -Plus$ $= -Plus$

 $<\rho$, $(1 + 1) > \downarrow 2$

 $\langle \rho_{\bullet} (1 + (1 + 1)) \rangle \downarrow 3$

Big-step variable semantics

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

How do we evaluate a variable?

We need an evaluation environment mapping variables to values.

$$T-Var = \frac{\Gamma(x) = t}{\Gamma + x : t} \qquad E-Var = \sqrt{(x) = v}$$

 $<\rho$, $x> \psi$ v means "variable x evaluates to value v under the context ρ ".

Like type environments, an evaluation environment is an ordered list of mappings.

$$x \mapsto 1, y \mapsto true$$

The → symbol is usually pronounced "maps to".

Big-step variable example

E-Num

<p, n> ↓ n

 $| n | (e_1 + e_2) | (e_1 * e_2)$ $| b | if e_1 then e_2 else e_3$ $t ::= bool | num | t_1 \to t_2$

 $\langle \rho, (e_1 + e_2) \rangle \downarrow n$

E-Plus $\langle \rho, e_1 \rangle \Downarrow n_1 \langle \rho, e_2 \rangle \Downarrow n_2 n_1 + n_2 = n$

 $e ::= x | (\lambda(x: t). e) | (e_1 e_2)$

$$E-Var \xrightarrow{\rho(x) = v}$$

$$= -Var \xrightarrow{(x \mapsto 1, y \mapsto 2)(x) = 1} \xrightarrow{(x \mapsto 1, y \mapsto 2)(y) = 2} \xrightarrow{E-Var}$$

$$= -Plus \xrightarrow{(x \mapsto 1, y \mapsto 2), x \Rightarrow \psi = 1} \xrightarrow{(x \mapsto 1, y \mapsto 2), y \Rightarrow \psi = 2} \xrightarrow{E-Var}$$

$$= -(x \mapsto 1, y \mapsto 2), (x \mapsto 1, y \mapsto 2), (x \mapsto y \Rightarrow \psi = 2)$$

Big-step application semantics

e ::= x |
$$(\lambda(x: t). e)$$
 | $(e_1 e_2)$
| n | $(e_1 + e_2)$ | $(e_1 * e_2)$
| b | if e_1 then e_2 else e_3
t ::= bool | num | $t_1 \rightarrow t_2$

How do we evaluate an application?

A first attempt (not quite right):

if the function e,

and the body of the

evaluates, in environment
$$\rho$$
, to a environment ρ , to a environment ρ , to value evaluates, in environment ρ extended with a mapping for argument value ρ value vertex ρ extended with a mapping for argument ρ extended ρ ext

and the argument e

then function e₁ applied to argument e₂ evaluates to value v

Big-step application semantics

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
| n | (e_1 + e_2) | (e_1 * e_2)
| b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

The body of a function should be evaluated in the environment it **originated** in, not the environment it's **being used** in.

This should evaluate to 2:

$$(\lambda x. (\lambda x. x + 1) 1) 3$$

But with this incorrect application rule, the body x + 1 is evaluated in the outer environment containing $x \mapsto 3$.

E-App
$$\langle \rho, e_1 \rangle \Downarrow (\lambda x. e_1') \qquad \langle \rho, e_2 \rangle \Downarrow v_2 \qquad \langle (x \mapsto v_2, \rho), e_1' \rangle \Downarrow v$$
 $\langle \rho, (e_1 e_2) \rangle \Downarrow v$

Big-step lambda semantics

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
  | n | (e_1 + e_2) | (e_1 * e_2)
  | b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

The body of a function should be evaluated in the environment it **originated** in, not the environment it's **being used** in.

A *closure* is a function paired with an environment; we say the closure *closes over* the environment that it contains.

E-Lam
$$\langle \rho, (\lambda x. e) \rangle \Downarrow \langle \rho, (\lambda x. e) \rangle$$

This is what enables *partial application*, where we can apply a single argument to a multi-argument function and get back a function of one less argument.

$$<\varnothing$$
, $(\lambda x y. x + y) > \qquad \Downarrow <\varnothing$, $(\lambda x y. x + y) > <\varnothing$, $((\lambda x y. x + y) >) > <\varnothing$, $((\lambda x y. x + y) >) > (\lambda y. x + y) > > <\varnothing$

Values

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
| n | (e_1 + e_2) | (e_1 * e_2)
| b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

The body of a function should be evaluated in the environment it **originated** in, not the environment it's **being used** in.

A *closure* is a function paired with an environment; we say the closure *closes over* the environment that it contains.

The set of **values** in a big-step semantics should include closures instead of lambdas.

```
v ::= x | x v_1 ... v_2 | n | b | < \rho, (\lambda x. e) >
```

Big-step application semantics

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
     | n | (e_1 + e_2) | (e_1 * e_2)
     | b | if e, then e, else e,
t ::= bool \mid num \mid t_1 \rightarrow t_2
```

The body of a function should be evaluated in the environment it **originated** in, not the environment it's **being used** in.

Now we can define the correct application rule.

if the function e₁, in environment p, evaluates to a closure with argument x and body e ₁ in environment o

and the argument e₂, in environment ρ, evaluates to value v₂

and the body of the function lambda e', in environment ρ' extended with a mapping for argument value v2, evaluates to value v

$$<\rho$$
, $e_1> \psi < \rho'$, $(\lambda x. e_1')>$

$$\langle \rho, e_2 \rangle \Downarrow v$$

$$\langle \rho, e_{2} \rangle \downarrow v_{2} \qquad \langle (x \mapsto v_{2}, \rho'), e'_{1} \rangle \downarrow v$$

$$\langle \rho_{1} (e_{1} e_{2}) \rangle \psi v$$

then function e₁ applied to argument e₂ evaluates to value v

Big-step application example

E-Num

 $\rho(x) = v$

 $\langle \rho, x \rangle \psi v$

E-Var

e ::= x | $(\lambda(x: t). e)$ | $(e_1 e_2)$ | n | $(e_1 + e_2)$ | $(e_1 * e_2)$ | b | if e_1 then e_2 else e_3 t ::= bool | num | $t_1 \rightarrow t_2$

 $\langle \rho, (\lambda x. e) \rangle \Downarrow \langle \rho, (\lambda x. e) \rangle$

 $\langle \rho, n \rangle \downarrow n$

E-Lam

What does a big-step derivation for a nonterminating term look like?

$$\langle \emptyset$$
, $((\lambda x. x x) (\lambda x. x x)) > \emptyset$???

There are three assumptions to prove:

1.
$$\langle \rho, e_1 \rangle \Downarrow \langle \rho', (\lambda x. e_1') \rangle = \langle \emptyset, (\lambda x. x. x) \rangle \Downarrow \langle \emptyset, (\lambda x. x. x) \rangle$$

2.
$$\langle \rho, e_2 \rangle \Downarrow v_2 = \langle \emptyset, (\lambda x. x. x) \rangle \Downarrow \langle \emptyset, (\lambda x. x. x) \rangle$$

3.
$$\langle (x \mapsto v_2, \rho'), e'_1 \rangle \psi v = \langle (x \mapsto \langle \emptyset, (\lambda x. x. x) \rangle), (x. x) \rangle \psi$$
???

E-App
$$\begin{array}{c} & \textbf{1.} & \textbf{2.} & \textbf{3.} \\ & <\rho, \ e_1> \ \sqrt[4]{c_1}, \ (\lambda x. \ e_1')> & <\rho, \ e_2> \ \sqrt[4]{c_2} & <(x \ \stackrel{\mapsto}{\rightarrow} \ v_2, \ \rho'), \ e_1'> \ \sqrt[4]{c_1}> \ \sqrt[4]{c_2} \\ & <\rho, \ (e_1 \ e_2)> \ \sqrt[4]{c_2} & \\ \end{array}$$

What does a big-step derivation for a nonterminating term look like?

$$\langle \varnothing$$
, $((\lambda x. x x) (\lambda x. x x)) \rangle \Downarrow ???$

1.
$$\langle \rho, e_1 \rangle \Downarrow \langle \rho', (\lambda x. e_1') \rangle = \langle \emptyset, (\lambda x. x x) \rangle \Downarrow \langle \emptyset, (\lambda x. x x) \rangle$$

2. $\langle \rho, e_2 \rangle \Downarrow v_2 = \langle \emptyset, (\lambda x. x x) \rangle \Downarrow \langle \emptyset, (\lambda x. x x) \rangle$
3. $\langle (x \mapsto v_2, \rho^*), e_1' \rangle \Downarrow v = \langle (x \mapsto \langle \emptyset, (\lambda x. x x) \rangle), (x x) \rangle \Downarrow ???$

E-App -

 $\omega = \lambda x \cdot x x$

 $\rho = (x \leftrightarrow \langle \emptyset, \omega \rangle)$

What does a big-step derivation for a nonterminating term look like?

```
\langle \emptyset, ((\lambda x. x x) (\lambda x. x x)) \rangle \downarrow ???
       3. \langle (x \mapsto v_2, \rho'), e'_1 \rangle \psi v = \langle (x \mapsto \langle \emptyset, (\lambda x. x. x) \rangle), (x. x) \rangle \psi???
\langle \rho_1 (e_1 e_2) \rangle \psi v
                                                 \langle \rho, x \rangle \Downarrow \langle \emptyset, \omega \rangle \langle \rho, x \rangle \Downarrow \langle \emptyset, \omega \rangle \langle \rho, (x x) \rangle \Downarrow ???
```

 $\langle \rho_{\bullet} (x x) \rangle \Downarrow ???$

What does a big-step derivation for a nonterminating term look like?

$$\langle \emptyset$$
, $((\lambda x. x x) (\lambda x. x x)) \rangle \Downarrow ???$

The derivation depends on itself - it would have to be infinitely large!

Since this is illegal (the proof system is a formal language), there is **no big-step derivation** for a nonterminating term.

This is sometimes written $< \rho$, $e > \psi \perp$, where the \perp symbol is pronounced "bottom".

Big-step implementation

Big-step implementation

```
e ::= x | (\lambda(x: t). e) | (e_1 e_2)
  | n | (e_1 + e_2) | (e_1 * e_2)
  | b | if e_1 then e_2 else e_3
t ::= bool | num | t_1 \rightarrow t_2
```

The big-step rules suggest cases for a functional *evaluation function*.

E-Num
$$\frac{\langle \rho, e_1 \rangle \Downarrow n_1}{\langle \rho, n \rangle \Downarrow n}$$
 $\frac{\langle \rho, e_2 \rangle \Downarrow n_2}{\langle \rho, (e_1 + e_2) \rangle \Downarrow n}$ $\frac{n_1 + n_2 = n}{\langle \rho, (e_1 + e_2) \rangle \Downarrow n}$

In pseudo-Haskell:

Big-step errors

 $| n | (e_1 + e_2) | (e_1 * e_2)$ $| b | if e_1 then e_2 else e_3$ $t ::= bool | num | t_1 \rightarrow t_2$

 $e ::= x | (\lambda(x: t). e) | (e_1 e_2)$

etc.

The big-step rules suggest cases for a functional evaluation function.

One potential problem is that this function is *partial*: it doesn't define an output for every possible input.

```
eval "true + 1" \emptyset = ???
```

Like in small-step semantics, we can remedy this by adding an **error** value along with rules to reduce every invalid term to an error.

E-PlusErrL
$$\xrightarrow{\langle \rho, e_1 \rangle \not A \ n}$$
 E-PlusErrR $\xrightarrow{\langle \rho, e_2 \rangle \not A \ n}$ $\times \langle \rho, (e_1 + e_2) \rangle \psi$ err $\times \langle \rho, (e_1 + e_2) \rangle \psi$ err

This is effectively a kind of *dynamic typechecking*.

Big-step type safety

Type safety proof sketch

To prove properties of programs, we often use *structural induction*:

- If we can prove the property for every primitive term,
- and we can prove the property for every compound term when assuming the property for all of its subterms,
- then we've proved the property for **all** terms.

In this case, the property we want to prove is:

Every well-typed expression can be given a valid and complete big-step derivation that reduces it to a value of the same type.

(Remember that well-typed expressions never diverge!)

Type safety proof sketch: primitives

Every well-typed expression can be given a valid and complete big-step derivation that results in a value of the same type as the expression.

The **primitive** cases are trivial: every primitive immediately evaluates to a value of the same type (the primitive itself).

T-Num
$$\Gamma \vdash n : \text{num}$$
 $E-\text{Num}$ $<\rho, n> \Downarrow n$ $<$
T-Bool $\Gamma \vdash b : \text{bool}$ $<\rho, b> \Downarrow b$

Type safety proof sketch: addition

Addition is a **compound** term, so we get to assume that type safety holds for both arguments (thanks to structural induction).

- 1. e₁ reduces to some number n₂ (induction hypothesis)
- 2. e₂ reduces to some number n₂ (induction hypothesis)
- 3. There exists some number n such that $n_1 + n_2 = n$ (property of arithmetic)
- 4. So (e₁ + e₂) reduces to some value (n) of type num

Type safety proof sketch: lambdas/closures

Every well-typed expression can be given a valid and complete big-step derivation that results in a value of the same type as the expression.

What is the type of a closure?

T-Lam
$$\begin{array}{c} & \text{x: } t_1 \text{, } \Gamma \vdash e : t_2 \\ \hline \Gamma \vdash (\lambda(x: t_1) \cdot e) : t_1 \rightarrow t_2 \\ \hline \\ \text{T-Cls} \\ \hline \end{array}$$

$$\begin{array}{c} ??? \\ \hline \end{array}$$

$$\begin{array}{c} ??? \\ \hline \end{array}$$

The **body** of the closure should be typed with respect to the **environment** of the closure, not the context the closure appears in!

Type safety proof sketch: environments

We need a notion of a **well-typed environment**:

$$\forall$$
 x. $\Gamma(x) = t$ implies $\rho(x) : t$ if every value in ρ is well-typed under Γ ,
$$\Gamma \vdash \rho$$
 then ρ is well-typed under Γ

A closure's type depends only on the **type context of its environment**.

Type safety proof sketch: lambdas/closures

Now we can show type safety for lambda terms:

$$\begin{array}{c} \forall \texttt{x.} \; \Gamma(\texttt{x}) \; = \; \texttt{t} \; \; & \\ & \texttt{t} \\ \hline & \texttt{T-Env} \\ \hline & & \texttt{T-Cls} \\ \hline & & \texttt{T-Lam} \\ \hline & & \texttt{T-(\lambda(\texttt{x:}\; \texttt{t}_1)\; .\; e)} \; : \; \texttt{t}_1 \to \texttt{t}_2 \\ \hline & & \texttt{E-Lam} \\ \hline & & \texttt{Cp, (\lambda(\texttt{x:}\; \texttt{t}_1)\; .\; e)} > \; \Downarrow \; \texttt{Cp, (\lambda(\texttt{x:}\; \texttt{t}_1)\; .\; e)} > \\ \hline \end{array}$$

- 1. $\lambda(x: t_1)$. e has type $t_1 \rightarrow t_2$ in context Γ
 - 2. $\lambda(x: t_1)$. e evaluates to $\langle \rho, (\lambda(x: t_1). e) \rangle$ in environment ρ 3. So if $\Gamma \vdash \rho$, then $\lambda(x: t_1)$. e reduces to some value
 - ($\langle \rho$, ($\lambda(x: t_1)$. e)>) of type $t_1 \rightarrow t_2$ in context Γ

Type safety proof sketch: applications

- 1. e_1 reduces to some closure with type $t_1 \to t_2$ (induction hypothesis), with argument x, body e_1 , and some environment ρ that's well-typed under some environment Γ
- 2. e₂ reduces to some value v₂ with type t₁ (induction hypothesis)
- 3. e_1' is well-typed under $(x \mapsto t_1, T')$, and reduces to some value v of type t_2
- 4. So (e₁ e₂) reduces to some value (v) of type t₂

QED (sort of)

This is just an high-level description of a proof; a full formal proof requires a bit more care and detail.

The takeaway is:

In a type-safe language, every well-typed expression reduces to a value of the same type.

A full type safety proof is often infeasible (or impossible) for a large practical language, but designers of statically-typed languages usually aim to get close to this goal.