2.4

Experiments 4, 5, and 6 show that the gain is approximately 200 V/V.

The missing entry for experiment #3 can be predicted as follows:

#	v_1	v_2	$v_{\rm d} = v_2 - v_1$	v_{O}	v_O/v_d
1	0.00	0.00	0.00	0.00	-
2	-1.00	-1.00	0.00	0.00	_
3	(b)	-1.00	(a)	-1.00	
4	1.00	1.02	0.02	4.01	200.5
5	2.01	2.00	-0.01	-1.99	199
6	1.99	2.00	0.01	2.00	200
7	5.10	(d)	(c)	-5.10	

(a)
$$v_d = \frac{v_O}{A} = \frac{-1.00}{200} = -0.005 \text{ V}.$$

(b)
$$v_1 = v_2 - v_d = -1.00 - (-0.005)$$

$$= -0.995 \text{ V}$$

The missing entries for experiment #7:

(c)
$$v_d = \frac{-5.10}{200} = -0.026 \text{ V}$$

(d)
$$v_2 = v_1 + v_d = 5.10 - 0.026 = 5.074 \text{ V}$$

All the results seem to be reasonable.

2.9

Circuit	$v_o/v_i(V/V)$	$R_{\rm in}$ (k Ω)
a	$\frac{-90}{16} = -6$	15
b	-6	15
c	-6	15
d	-6	15

Note that in circuit (b) the 15-k Ω load resistance has no effect on the closed-loop gain because of the zero output resistance of the ideal op amp. In circuit (c), no current flows in the 15-k Ω resistor connected between the negative input terminal and ground (because of the virtual ground at the inverting input terminal). In circuit (d), zero current flows in the 15-k Ω resistor connected in series with the positive input terminal.

2.10

Closed-loop gain is

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1} = -\frac{10 \text{ k}\Omega}{10 \text{ k}\Omega}$$
$$= -1 \text{ V/V}$$

For
$$v_I = +1.00 \text{ V}$$
,

$$v_0 = -1 \times 1.00$$

$$= -1.00 \text{ V}$$

The two resistors are 1% resistors

$$\left| \frac{v_O}{v_I} \right|_{\min} = \frac{10(1 - 0.01)}{10(1 + 0.01)} = 0.98 \text{ V/V}$$

$$\left| \frac{v_O}{v_I} \right|_{max} = \frac{10(1 + 0.01)}{10(1 - 0.01)} = 1.02 \text{ V/V}$$

Thus the measured output voltage will range from $-0.98~\mathrm{V}$ to $-1.02~\mathrm{V}$.

2.15 Gain is 26 dB

 $26 \, \mathrm{dB} = 20 \log |G|$

$$|G| = 20$$

$$\therefore \frac{v_O}{v_I} = -20 \text{ V/V} = -\frac{R_2}{R_1}$$

$$\Rightarrow R_2 = 20R_1 \le 100 \text{ k}\Omega$$

For the largest possible input resistance, choose

$$R_2 = 100 \text{ k}\Omega$$

$$R_1 = \frac{100 \text{ k}\Omega}{20} = 5 \text{ k}\Omega$$

$$R_{\rm in} = R_1 = 5 \,\mathrm{k}\Omega$$

2.16

Average = -2 V

Highest = 0 V

Lowest = -4 V

The current through R_1 is V_I/R_1 .

2.18 The inverting amplifier has a gain of -10 V/V resulting in an output voltage of +10 V. Thus, there is 2 mA current in R_L . With $R_2 = 10 \text{ k}\Omega$, as shown in Fig. P2.17, there is 1 mA current in R_2 for a total of 3 mA coming from the ideal op-amp output. If the output current must be limited to 2.5 mA with the same gain, the output voltage must remain +10 V and the current in R_2 must be limited to 2.5 - 2 = 0.5 mA. This requires,

$$R_2 = \frac{10}{0.5} = 20 \,\mathrm{k}\Omega$$

To keep the same gain, $-R_2/R_1 = -10$. Hence,

$$R_1 = \frac{R_2}{10} = 2 \text{ k}\Omega$$