

RH850/D1x Evaluation Boards

Evaluation Boards for the D1x Dashboard MCU Series

D1M1-V2 Mango Adapter Board (SBEV-RH850-D1M1-V2)

Please use this manual together with the respective main board manual.

Preliminary Hardware User's Manual Adapter Board D1M1-V2

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

-DRAFT VERSION-

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
- intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control

and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental

compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Contents

ı	mura	OGUCTION	6
2	Boa	ard Overview	7
	2.1	Mounting devices	7
3	Pov	ver supply	8
	3.1	Power supply structure	8
	3.1.	.1 Current Measurement Jumpers	8
	3.1.	.2 Voltage regulators and DC-DC converters	8
	3.1.	.3 Power Supply Selection Matrix	9
4	Clo	ck source	10
	4.1	Overview	10
	4.2	Oscillator circuit	10
	4.3	Function specification	11
5	Ext	ernal Memory function	12
	5.1	Serial Flash	12
	5.2	Octa MCP	12
	5.3	Mounting devices	12
	5.4	Memory connection	13
6	Mul	Itiplex Control	14
	6.1	Overview	14
7	Soc	cket	17
	7.1	Overview	17
	7.2	RH850/D1M1-V2 adapter board structure	17
	7.3	Mounting socket	17
8	Cor	nnectors of the D1M1-V2 adapter board	18
	8.1	Main Board to Adapter Board connectors	18
	8.2	Test pin connectors	22
9	App	pendix	24
	9.1	Components list	24
	9.2	Schematics of the D1x Mango D1M1-V2 Adapter Board	25
10)	Revision history	34

Table list

rable 3-1: Current measurements jumpers (excluding I/O ports supply)	ð
Table 3-2: Current measurement jumpres for I/O port supply	8
Table 3-3: Main Power supply Source IC output voltage (from Main board)	8
Table 3-4: Main Power supply Source IC output voltage	
Table 4-1: Sub-Selection of external oscillator	11
Table 4-2: Selection of crystal or external oscillator	11
Table 5-1: Mounted devices	12
Table 6-1: Signal Assignment and function of DSW2	14
Table 6-2: Multiplex control table (U3) MUX_CONTROL1 (DSW2.1)	15
Table 6-3: Multiplex control table (U6) MUX_CONTROL2 (DSW2.2)	15
Table 6-4: Multiplex control table (U4) MUX_CONTROL3 (DSW2.3)	15
Table 6-5: Multiplex control table (U8) MUX_CONTROL3 (DSW2.3)	15
Table 6-6: Multiplex control table (U7) MUX_CONTROL4 (DSW2.4)	
Table 7-1: IC socket (For the QFP176 Adaptor Board)	17
Table 8-1: Pin assignment of connector (CN1)	18
Table 8-2: Pin assignment of connector (CN2)	20
Table 8-3: Pin assignment of connector (CN3) P0	22
Table 8-4: Pin assignment of connector (CN4) P10	22
Table 8-5: Pin assignment of connector (CN5) JP0	22
Table 8-6: Pin assignment of connector (CN6) System Function Pins	22
Table 8-7: Pin assignment of connector (CN7) P1	22
Table 8-8: Pin assignment of connector (CN8) P11 / Analog Pins	22
Table 8-9: Pin assignment of connector (CN9) P16 / ISM Pins	23
Table 8-10: Pin assignment of connector (CN10) P2	23
Table 8-11: Pin assignment of connector (CN11) P17 / ISM Pins	23
Table 8-12: Pin assignment of connector (CN12) P3	23
Figure list	
Figure 2-1: Adapter board for RH850/D1M1-V2	7
Figure 4-1: Schematic of oscillator block	10
Figure 5-1 Serial Flash memory block diagram	13
Figure 5-2 Octa MCP memory block diagram	
Figure 7-1: Block diagram of the MCU connections on the D1M1-V2 Adapter board	17

1 Introduction

The RH850/D1x Application Board is part of the RH850 Evaluation Platform and serves as a simple and easy to use platform for evaluating the features and performance of Renesas Electronics 32-bit RH850/D1x microcontrollers.

Since the adapter board can not be used as a standalone board, this board has to be mated with a mainboard for full functionality.

Main features of the adapter board:

- Socket for mounting a device
- Power supply from main board
- Device programming capability (Connector on main board)
- Device debugging capability (Connector on main board)
- Pin headers for direct access to each device pin
- MainOSC and SubOSC circuitry
- Connectors to MainBoard
- Serial Flash and Octa MCP

This document describes the functionality provided by the adapter board and guides the user through its operation.

For details regarding the operation of the microcontroller, refer to the RH850/D1x User Manual.

2 Board Overview

The figure below depicts the D1M1-V2 Mango Adapter Board. Functional blocks are highlighted.

Figure 2-1: Adapter board for RH850/D1M1-V2

2.1 Mounting devices

The board is designed for reference use with the following device: RH850/D1M1-V2 (176pin)

3 Power supply

3.1 Power supply structure

3.1.1 Current Measurement Jumpers

Each power supply of the MCU is routed through a single Jumper before connecting it to the MCU. This makes it possible to measure the current consumption of the MCU for each power supply domain in separate.

Table 3-1: Current measuements jumpers (excluding I/O ports supply)

Name Supply	of	Jumper	Function
REG0VCC		JP5	AWO digital circuits via on-chip voltage regulator; nominal 3.3 V and 5 V
OSCVCC	JP7 MainOsc and SubOsc; nominal 3.3 V and 5 V		
REG1VCC JP2 Flash memory, nominal 3.3 V and 5 V ¾1		Flash memory, nominal 3.3 V and 5 V $\%$ 1	
ZPDVCC	ZPDVCC JP17,		Zero point detection circuit; nominal 5 V
ZPDVREF		JP18	Reference voltage of Zero Point detection, normal 5V
A0VREF		JP14	Reference voltage of A/D Converter, normal 3.3V and 5V

X1 D1M1, D1Lx have no ISOVDD, but internal voltage from REG1VCC is also supplied to ISO digital circuit.

Table 3-2: Current measurement jumpres for I/O port supply

Name Supply	of Jumpe	Function
EVCC	JP4	Port buffers P0 and JP0; nominal 3.3 V and 5 V
B0VCC	JP11	Port buffers port group P1; nominal 3.3 V and 5 V
B1VCC	JP12	Port buffers port group P3; nominal 3.3 V and 5 V
B4VCC	JP20	Port buffers port group P42; nominal 3.3 V and 5 V
B5VCC	JP22	Port buffers port groups P43_0, P43_1, P44, and P45; nominal 3.3 V and 5V.
SFVCC	JP19	Port buffers port group P21 (serial flash and MLB); nominal 3.3 V.
ISMVCC	JP16	Port buffers port groups P16 and P17 (Stepper Motor Controller/Driver); • nominal 5 V when used for stepper motor operation • nominal 3.3 V and 5 V when not used for stepper motor operation
A0VCC	JP15	Ports buffers port groups P10 and P11 (A/D Converter analog circuits and input buffers); nominal 3.3 V and 5 V

Notes on current measurement:

Currently, the reset line is not pulled-up to full EVCC voltage. This is caused by the drop out voltage of LED24 "RESET ACT" (V_{RESET} is only ~3.7V when EVCC is 5V). This leads to an EVCC leakage current caused by the RESETZ input buffer. To correctly measure the EVCC current, please add a 6.2k Ω resistor in parallel to LED24 "RESET ACT" on the Mango Main Board.

3.1.2 Voltage regulators and DC-DC converters

The power domains on the adapter board are supplied by the main board. The following voltages are generated on the main board.

Table 3-3: Main Power supply Source IC output voltage (from Main board)

IC	Input voltage	Voltage	Net name	Spec
U7	12V	5V	+5V	Max 4A
U8	12V	3.3V	+3.3V	Max 4A
U9	12V	5V	ISO+5V	Max 2A
U12	12V	3.3V	ISO+3.3V	Max 4A
U5	U12	1.25V	+1.25V	Max 2A
U6	U12	1.8V	+1.8V	Max 0.5A
U1	U8	2.5V	+2.5V	Max 1A
U2	U8	1.25V	+1.2V	Max 1A

3.1.3 Power Supply Selection Matrix

The voltages that can be selected to power each of the domains of the MCU differ for each device type. For D1M1-V2 the following voltages can be configured for each power domain.

Table 3-4: Main Power supply Source IC output voltage

	D1M1-V2				
	other	3v3	5v	iso3v3	iso5v
REG0VCC		Х	D		
OSCVCC		X	X	D	Х
EVCC		Х	D		
REG1VCC		Х		D	Х
ISOVDD	1.25V				
PLLVCC					
B0VCC		Х	Х	D	Х
B1VCC		Х	Х	D	Х
B2VCC					
B3VCC					
B4VCC		Х	Х	D	Х
B5VCC/RVCC		X	X	D	Х
MVCC					
SFVCC		х		D	
SDRBVCC	1.8V				
ISMVCC		Х	Х	Х	D
ZPDVCC		Х	D	Х	Х
A0VCC		Х	Х	D	Х

X: Possible Setting, D: Default Setting

4 Clock source

4.1 Overview

There are 3 options for main clock input to target MCU.

- Crystal (8MHz)
- Crystal oscillator (8MHz)
- Clock input from pulse generator

The default option is to use the soldered crystals for the high speed and the low speed oscillator.

4.2 Oscillator circuit

This figure shows schematic of oscillator block.

Figure 4-1: Schematic of oscillator block

4.3 Function specification

Main oscillator

Terminals: X1/X2 clock selection

- o Crystal (8MHz)
- o Ceralock (8MHz)
- o Direct clock input from external pulse generator

Table 4-1: Sub-Selection of external oscillator

Loc		Function	
JP6	External oscilla	ator sub-selection	
	1-2 select	Use BNC connector (CN14).	
	2-3 select	Use crystal oscillator Y1	

Table 4-2: Selection of crystal or external oscillator

Loc		Function
JP8/	External oscillator	select
JP9	JP8/JP9 open R12 soldered	Use on-board crystal
	JP9 1-2 closed R12 unsoldered	Use on-board crystal
	JP8 JP9-1 closed R12 unsoldered	Use external oscillator (JP6)

Sub oscillator

Terminals: XT1/XT2

o Crystal (32.768KHz)

5 External Memory function

5.1 Serial Flash

1Gbit (128MB) 1x Flash device MX66L1G85G (Macronix) 8bit, DDR@80MHz Device in TFBGA-24 package

5.2 Octa MCP

512Mbit (64MB) Flash and 64Mbit (8MB) RAM in a package 1 x MCP device MX65L12A64AA (Macronix) Device in TFBGA-24 package

5.3 Mounted devices

Table 5-1: Mounted devices

Loc.	Manufacturer	Product name	Note
U2	Macronix	MX66L1G85G	1Gbit: DDR @80MHz, Dual Quad Serial Flash Memory
U5	Macronix	MX65L12A64AA	512Mbit Flash and 64Mbit RAM Octa MCP Memory

5.4 Memory connection

Memory block consists of Serial Flash and Octa MCP.

Serial Flash Memory

Figure 5-1 Serial Flash memory block diagram

Octa MCP

Figure 5-2 Octa MCP memory block diagram

6 Multiplex Control

6.1 Overview

Multiplexers (mainly for Video I/O and Ethernet) shall be manually controlled by the user themselves via DIP switches (DSW2). Thus, the user has responsibility to avoid misconfiguration of the multiplexers that might destroy the device.

The following multiplexers are placed onto the adapter board. This has been done for all high-speed I/O signals in order to avoid unnecessary routing on the main board and for signals that are directly used on the adapter board.

Table 6-1: Signal Assignment and function of DSW2

Switch Position	Signal name	ON Function	OFF Function
DSW2.1	MUX_CONTROL1	Connect to Serial Flash Memory	Connect to P42 *1
DSW2.2	MUX_CONTROL2	Connect to P42 or P43 *1	Connect to Ether *2
DSW2.3	MUX_CONTROL3	Connect to P3_0 and P3_1	Connect to Ether *2
DSW2.4	MUX_CONTROL4	Connect to P42 *1	Connect to P43 *1

^{*1:} It is combination setting DSW2.1, DSW2.2 and DSW2.4.

^{*2:} It is combination setting DSW2.2 and DSW2.3.

The following tables show the signal assignment of the multiplexers with respect to the switch positions.

Table 6-2 and Table 6-6 are multiplexers that route the MCU signals either to the Main Board or to the Adapter Board according to the switch position.

Table 6-2: Multiplex control table (U3) MUX_CONTROL1 (DSW2.1)

Pin	IN	OL	Т		
		MUX_CONTROL1:OFF	MUX_CONTROL1:ON		
1 A	SEL_P42_0	BOTTOM_P42_0	MEMORY_P42_0		
2A	SEL_P42_15	BOTTOM_P42_15	-		
3A	SEL_P42_1	BOTTOM_P42_1	MEMORY_P42_1		
4A	SEL_P42_14	BOTTOM_P42_14	-		
5A	SEL_P42_2	BOTTOM_P42_2	MEMORY_P42_2		
6A	SEL_P42_13	BOTTOM_P42_13	-		
7A	SEL_P42_3	BOTTOM_P42_3	MEMORY_P42_3		
A8	SEL_P42_12	BOTTOM_P42_12	-		
9A	SEL_P42_4	BOTTOM_P42_4	MEMORY_P42_4		
10A	SEL_P42_11	BOTTOM_P42_11	-		
11A	SEL_P42_5	BOTTOM_P42_5	MEMORY_P42_5		
12A	SEL_P42_10	BOTTOM_P42_10	-		
13A	SEL_P42_6	BOTTOM_P42_6	MEMORY_P42_6		
14A	SEL_P42_9	BOTTOM_P42_9	MEMORY_P42_9		
15A	SEL_P42_7	BOTTOM_P42_7	MEMORY_P42_7		
16A	SEL_P42_8	BOTTOM_P42_8	MEMORY_P42_8		

Table 6-3: Multiplex control table (U6) MUX_CONTROL2 (DSW2.2)

Pin	IN		DUT
		MUX_CONTROL2:OFF	MUX_CONTROL2:ON
1A	BOTTOM_P42_0	P42_ETNB0TXD3	SEL_P42_0_P43_2
2A	BOTTOM_P42_15	P42_ETNB0RXER	P42_15
3A	BOTTOM_P42_1	P42_ETNB0TXD2	SEL_P42_1_P43_3
4A	BOTTOM_P42_14	P42_ETNB0RXDV	P42_14
5A	BOTTOM_P42_2	P42_ETNB0TXD1	SEL_P42_2_P43_4
6A	BOTTOM_P42_13	P42_ETNB0RXD0	P42_13
7A	BOTTOM_P42_3	P42_ETNB0TXD0	SEL_P42_3_P43_5
A8	BOTTOM_P42_12	P42_ETNB0RXD1	P42_12
9A	BOTTOM_P42_4	P42_ETNB0TXEN	SEL_P42_4_P43_6
10A	BOTTOM_P42_11	P42_ETNB0RXD2	P42_11
11A	BOTTOM_P42_5	P42_ETNB0TXER	SEL_P42_5_P43_7
12A	BOTTOM_P42_10	P42_ETNB0RXD3	SEL_P42_10_P43_12
13A	BOTTOM_P42_6	P42_ETNB0COL	SEL_P42_6_P43_8
14A	BOTTOM_P42_9	P42_ETNB0RXCLK	SEL_P42_9_P43_11
15A	BOTTOM_P42_7	P42_ETNB0CRSDV	SEL_P42_7_P43_9
16A	BOTTOM_P42_8	P42_ETNB0TXCLK	SEL_P42_8_P43_10

Table 6-4: Multiplex control table (U4) MUX_CONTROL3 (DSW2.3)

Pin	IN	OUT			
		MUX_CONTROL3:OFF	MUX_CONTROL3:ON		
Α	SEL_P3_0	ETNB0MDIO	P3_0		

Table 6-5: Multiplex control table (U8) MUX_CONTROL3 (DSW2.3)

Pin	IN	OUT					
		MUX_CONTROL3:OFF	MUX_CONTROL3:ON				
Α	SEL P3 1	ETNB0MDC	P3 1				

Table 6-6: Multiplex control table (U7) MUX_CONTROL4 (DSW2.4)

			- 1 - 1	
Pin	IN	OUT		
		MUX_CONTROL4:OFF	MUX_CONTROL4:ON	
1A	SEL_P42_0_P43_2	P43_2	P42_0	
2A	-	-	-	
3A	SEL_P42_1_P43_3	P43_3	P42_1	
4A	-	-	-	
5A	SEL_P42_2_P43_4	P43_4	P42_2	
6A	-	-	-	
7A	SEL_P42_3_P43_5	P43_5	P42_3	
8A	-	-	-	
9A	SEL_P42_4_P43_6	P43_6	P42_4	
10A	-	-	-	
11A	SEL_P42_5_P43_7	P43_7	P42_5	
12A	SEL_P42_10_P43_12	P43_12	P42_10	
13A	SEL_P42_6_P43_8	P43_8	P42_6	
14A	SEL_P42_9_P43_11	P43_11	P42_9	
15A	SEL_P42_7_P43_9	P43_9	P42_7	
16A	SEL_P42_8_P43_10	P43_10	P42_8	

7 Socket

This chapter lists all connectors of the D1M1-V2 adapter board. There are mainly three groups of connectors.

7.1 Overview

Adapter boards of MCU block cosists of below components.

- IC socket
- Test pin area and external connectors
- Main board connectors

D1x series have several package variant, therefore the IC socket depends upon the package variant.

7.2 RH850/D1M1-V2 adapter board structure

Figure 7-1 shows D1M1-V2 adapter board block diagram.

Figure 7-1: Block diagram of the MCU connections on the D1M1-V2 Adapter board

7.3 Mounting socket

This board will be fitted with one of the socket types as shown below.

Table 7-1: IC socket (For the QFP176 Adaptor Board)

Manufacturer	Product name	Note			
TOKYO ELETECH CORP.	HQPACK176SD	QFP176 top side parts			
TOKYO ELETECH CORP.	NQPACK176SD-ND	QFP176 PCB mounting side parts			

8 Connectors of the D1M1-V2 adapter board

Connection to each pin of the device is possible via the connectors CN1 to CN12.

8.1 Main Board to Adapter Board connectors

Signal names that are highlighted in dark grey, are not used by the D1M1-V2 adapter board.

Table 8-1: Pin assignment of connector (CN1)

	8-1: Pin assignme		
Pin	Function / Port	Pin	Function / Port
1	+3.3V	2	VR+12V
3	+3.3V	4	VR+12V
5	+5V	6	+12V
7	+5V	8	+12V
9		10	
11	ZPDVCC	12	OSCVCC
13	ZPDVCC	14	OSCVCC
15	EVCC	16	REG0VCC
17	EVCC	18	REGOVCC
19	EVCC	20	REGUVEC
	REG1VCC		ICO//DD
21		22	ISOVDD
23	REG1VCC	24	ISOVDD
25	A0VCC	26	PLLVCC
27	A0VCC	28	PLLVCC
29	ISMVCC	30	MVCC
31	ISMVCC	32	MVCC
33	SFVCC	34	SDRBVCC
35	SFVCC	36	SDRBVCC
37		38	
39	B0VCC	40	B1VCC
41	B0VCC	42	B1VCC
43	B2VCC	44	B3VCC
45	B2VCC	46	B3VCC
47	B4VCC	48	RVCC/B5VCC
49	B4VCC	50	RVCC/B5VCC
51	D4VCC	52	1000/05000
53	MLBSI/SR0	54	P21 10
55	MLBSI/SX0	56	P21_10
57	MOST_INT	58	P21_11
	MOSI_IMI		_
59	\/\dT\ D0	60	SF_RESET
61	VI1ITU_D0	62	VG_RESERVE0
63	VI1ITU_D1	64	VG_RESERVE1
65	VI1ITU_D2	66	VG_RESERVE2
67	VI1ITU_D3	68	VG_RESERVE3
69	VI1ITU_D4	70	VG_RESERVE4
71	VI1ITU_D5	72	VG_RESERVE5
73	VI1ITU_D6	74	
75	VI1ITU_D7	76	GND
77	VI1ITU_CLK	78	GND
79	VI1ITU_HSYNC	80	GND
81	VI1ITU_VSYNC	82	GND
83		84	
85	GND	86	P2 11
87	GND	88	P2 10
89	GND	90	P2 9
91	GND	92	P2 8
93	J. 1D	94	P2 7
95	P1 11	96	P2 6
97	P1 10	98	P2_0 P2_5
99	P1_9	100	P2_4

Pin	Function / Port	Pin	Function / Port
101	P1_8	102	P2_3
103	P1_7	104	P2_2
105	P1_6	106	P2_1
107	P1_5	108	P2_0
109	P1_4	110	
111	P1_3	112	P0_9
113	P1_2	114	P0_8
115	P1_1	116	P0_7
117	P1_0	118	P0_6
119		120	P0_5
121	P3_13	122	P0_4
123	P3_12	124	P0_3
125	P3_11	126	P0_2
127	P3_10	128	P0_1
129	P3_9	130	P0_0
131	P3_8	132	
133	P3_7	134	PWRGD
135	P3_6	136	PWRCTL
137	P3_5	138	RESETZ
139	P3_4	140	FLMD0
141	P3_3	142	
143	P3_2	144	P40_0
145	P3_1	146	P40_1
147	P3_0	148	P40_2
149		150	P40_3
151	JP0_5	152	P40_4
153	JP0_4	154	P40_5
155	JP0_3	156	CSID2P
157	JP0_2	158	CSID2N
159	JP0_1	160	CSID3P
161	JP0_0	162	CSID3N
163		164	
165	GND	166	GND
167	GND	168	GND
169	GND	170	GND
171	GND	172	GND
173	GND	174	GND
175	GND	176	GND
177	GND	178	GND
179	GND	180	GND
181	GND	182	GND
183	GND		

Table 8-2: Pin assignment of connector (CN2)

Т	able 8-2: Pin assignme	ent of c	onnector (CN2)
Pin	Function / Port	Pin	Function / Port
1	P47_X2	2	
3	P47_X1	4	R0 RESERVE
5	P47 10	6	R1 RESERVE
7	P47_9	8	G0 RESERVE
9	P47_8	10	G1 RESERVE
11		12	B0 RESERVE
	P47_7		
13	P47_6	14	B1_RESERVE
15	P47_5	16	D40.45
17	P47_4	18	P42_15
19	P47_3	20	P42_14
21	P47_2	22	P42_13
23	P47_1	24	P42_12
25	P47_0	26	P42_11
27		28	P42_10
29	P46_15	30	P42_9
31	P46_14	32	P42_8
33	P46_13	34	P42_7
35	P46_12	36	P42_6
37	P46_11	38	P42_5
39	P46 10	40	P42_4
41	P46 9	42	P42_3
43	P46 8	44	P42_2
45	P46_7	46	P42_1
47	P46 6	48	P42 0
49	P46_5	50	1 72_0
51	P46_3	52	P43 12
53		54	P43_12
	P46_3		
55	P46_2	56	P43_10
57	P46_1	58	P43_9
59	P46_0	60	P43_8
61		62	P43_7
63	P16_0	64	P43_6
65	P16_1	66	P43_5
67	P16_2	68	P43_4
69	P16_3	70	P43_3
71	P16_4	72	P43_2
73	P16_5	74	P43_1
75	P16_6	76	P43_0
77	P16_7	78	
79	P16_8	80	P17_0
81	P16_9	82	P17_1
83	P16 10	84	P17_2
85	P16_11	86	P17_3
87	_	88	P17_4
89	P45_13	90	P17_5
91	P45_12	92	P17_6
93	P45_11	94	P17_7
95	P45_10	96	P17_8
97	P45_10	98	P17_9
99	P45_8	100	P17_10
101	P45_6	100	P17_10
			F 17_11
103	P45_6	104	D44_44
105	P45_5	106	P44_11
107	P45_4	108	P44_10
109	P45_3	110	P44_9
111	P45_2	112	P44_8
113	P45_1	114	P44_7
115	P45_0	116	P44_6
117		118	P44_5

Pin	Function / Port	Pin	Function / Port
119	P10_0	120	P44_4
121	P10_1	122	P44_3
123	P10_2	124	P44_2
125	P10_3	126	P44_1
127	P10_4	128	P44_0
129	P10_5	130	
131	P10_6	132	P11_0
133	P10_7	134	P11_1
135	P10_8	136	P11_2
137	P10_9	138	P11_3
139	P10_10	140	P11_4
141	P10_11	142	P11_5
143		144	P11_6
145	ETNB0MDIO	146	P11_7
147	ETNB0MDC	148	
149	P467_ETNB0TXD3	150	P42_ETNB0TXD3
151	P467_ETNB0TXD2	152	P42_ETNB0TXD2
153	P467_ETNB0TXD1	154	P42_ETNB0TXD1
155	P467_ETNB0TXD0	156	P42_ETNB0TXD0
157	P467_ETNB0TXEN	158	P42_ETNB0TXEN
159	P467_ETNB0TXER	160	P42_ETNB0TXER
161	P467_ETNB0COL	162	P42_ETNB0COL
163	P467_ETNB0RSDV	164	P42_ETNB0RSDV
165	P467_ETNB0TXCLK	166	P42_ETNB0TXCLK
167	P467_ETNB0RXCLK	168	P42_ETNB0RXCLK
169	P467_ETNB0RXD3	170	P42_ETNB0RXD3
171	P467_ETNB0RXD2	172	P42_ETNB0RXD2
173	P467_ETNB0RXD1	174	P42_ETNB0RXD1
175	P467_ETNB0RXD0	176	P42_ETNB0RXD0
177	P467_ETNB0RXDV	178	P42_ETNB0RXDV
179	P467_ETNB0RXER	180	P42_ETNB0RXER
181	GND	182	GND
183	GND		

8.2 Test pin connectors

Note: The test-pin headers CN3 to CN12 are directly connected to the MCU pins, therefore special care must be taken to avoid any electrostatic or other damage to the device.

Table 8-3: Pin assignment of connector (CN3) P0

Pin	Power Domain	Port	Pin	Power Domain	Port
1	EVCC	P0_0	2	EVCC	P0_1
3	EVCC	P0_2	4	EVCC	P0_3
5	EVCC	P0_4	6	EVCC	P0_5
7	EVCC	P0_6	8	EVCC	P0_7
9	EVCC	P0_8	10	EVCC	P0_9

Table 8-4: Pin assignment of connector (CN4) P10

Pin	Power Domain	Port	Pin	Power Domain	Port
1	A0VCC	P10_0	2	A0VCC	P10_1
3	A0VCC	P10_2	4	A0VCC	P10_3
5	A0VCC	P10_4	6	A0VCC	P10_5
7	A0VCC	P10_6	8	A0VCC	P10_7
9	A0VCC	P10_8	10	A0VCC	P10_9
11	A0VCC	P10_10	12	A0VCC	P10_11

Table 8-5: Pin assignment of connector (CN5) JP0

Pin	Power Domain	Port	Pin	Power Domain	Port
1	EVCC	JP0_0	2	EVCC	JP0_1
3	EVCC	JP0_2	4	EVCC	JP0_3
5	EVCC	JP0_4	6	EVCC	JP0_5

Table 8-6: Pin assignment of connector (CN6) System Function Pins

Pin	Power Domain	Port	Pin	Power Domain	Port
1	EVCC	FLMD0	2	EVCC	PWRCTL
3	EVCC	PWRGD	4	EVCC	RESETZ

Table 8-7: Pin assignment of connector (CN7) P1

Pin	Power Domain	Port	Pin	Power Domain	Port
1	B0VCC	P1_0	2	B0VCC	P1_1
3	B0VCC	P1_2	4	B0VCC	P1_3
5	B0VCC	P1_4	6	B0VCC	P1_5
7			8		
9			10		
11			12		

Table 8-8: Pin assignment of connector (CN8) P11 / Analog Pins

				` '	
Pin	Power Domain	Port	Pin	Power Domain	Port
1	A0VCC	P11_0	2	A0VCC	P11_1
3	A0VCC	P11_2	4	A0VCC	P11_3
5			6		
7			8		

Table 8-9: Pin assignment of connector (CN9) P16 / ISM Pins

Pin	Power Domain	Port	Pin	Power Domain	Port
1	ISMVCC	P16_0	2	ISMVCC	P16_1
3	ISMVCC	P16_2	4	ISMVCC	P16_3
5	ISMVCC	P16_4	6	ISMVCC	P16_5
7	ISMVCC	P16_6	8	ISMVCC	P16_7
9	ISMVCC	P16_8	10	ISMVCC	P16_9
11	ISMVCC	P16_10	12	ISMVCC	P16_11

Table 8-10: Pin assignment of connector (CN10) P2

Pin	Power Domain	Port	Pin	Power Domain	Port
1	B4VCC	P44_10*1	2	B4VCC	P44_11*2
3			4		
5			6		
7			8		
9			10		
11			12		

^{*1:} P44_10 connects to P2_0 on the Main board via JP25.

Table 8-11: Pin assignment of connector (CN11) P17 / ISM Pins

Pin	Power Domain	Port	Pin	Power Domain	Port
1	ISMVCC	P17_0	2	ISMVCC	P17_1
3	ISMVCC	P17_2	4	ISMVCC	P17_3
5	ISMVCC	P17_4	6	ISMVCC	P17_5
7	ISMVCC	P17_6	8	ISMVCC	P17_7
9	ISMVCC	P17_8	10	ISMVCC	P17_9
11	ISMVCC	P17_10	12	ISMVCC	P17_11

Table 8-12: Pin assignment of connector (CN12) P3

Pin	Power Domain	Port	Pin	Power Domain	Port
1	B1VCC	P3_0	2	B1VCC	P3_1
3	B1VCC	P3_2	4	B1VCC	P3_3
5	B1VCC	P3_4	6	B1VCC	P3_5
7	B1VCC	P3_6	8	B1VCC	P3_7
9	B1VCC	P3_8	10	B1VCC	P3_9
11			12		
12			14		

^{*2:} P44_11 connects to P2_1 on the Main board via JP26.

9 Appendix

9.1 Components list

Item	Ref	Components name	Manufacturer
1	CN1,CN2	QTH-090-02-L-D-A	SAMTEC
2	CN3	PREC005DFAN-RC	SULLINS
3	CN4,CN7,CN9,CN10,CN11	PREC006DFAN-RC	SULLINS
4	CN5	PREC003DFAN-RC	SULLINS
5	CN6	PREC002DFAN-RC	SULLINS
6	CN8	PREC004DFAN-RC	SULLINS
7	CN12	PREC007DFAN-RC	SULLINS
8	CN14	*0731310240	MOLEX
9	C153,C154,C155,C156,C157, C158,C159,C160,C161,C162, C163,C164,C165,C166,C167, C168,C169,C170,C171,C172, C173	GRM21BB31C106KE15L 10u/16V/2012/B	Murata
10	C176,C177,C191,C192,C193, C196,C197,C198,C199,C200, C203,C204,C205,C206,C209, C210,C211,C212,C213,C214, C215,C216,C217,C218,C219, C220,C221,C222,C229,C230, C241,C242,C243,C244,C245, C246,C247,C248,C249,C250, C251,C252,C253,C254	GRM155B31C104KA87D 0.1u/16V/1005/B	Murata
11	C194,C195	GRM1552C1H200JZ01D 20p/50V/1005/CH	Murata
12	C201,C202	GRM1552C1H100JZ01D 10p/50V/1005/CH	Murata
13	DSW2	218-4LPST	CTS
14	D4	HSU-83	RENESAS
15	JP2,JP4,JP5,JP7,JP9,JP11,JP12, JP14,JP15,JP16,JP18,JP19,JP20, JP22,JP25,JP26,JP27,JP29, JP30,JP31	XJ8C-0211	OMRON
16	JP10,JP24	*XJ8D-0211	OMRON
17	JP6	XJ8D-0311	OMRON
18	JP8,JP28	XJ8B-0111	OMRON
19	RA1,RA2,RA3,RA4,RA5,RA6,RA7, RA8,RA9,RA10,RA11	*CN1E4ATD223J	KOA
20	R10,R11,R12,R66,R67,R68,R73,	0ohm/1005/1%	KOA
21	R69,R70,R71,R72,	4.7K/1005/1%	KOA
22	R19,	22ohm/1005/1%	KOA
23	R74,R75,R76,R77,R78	10K/1005/1%	KOA
24	U1	RH850/D1M1-V2	Renesas
25	U2	MX66L1G85G	Macronix
26	U3,U6,U7	IDTQS3VH16233PAG8	IDT
27	U4,U8	FSA4159P6X	FAIRCHILD
28	U5	MX65L12A64AA	Macronix
29	X1	NC-206 32.768KHz	KYUSHU DENTSU
30	X2	7A-8.000MAAE-T	TXC
31	Y1	*1-390261-2	TE

9.2 Schematics of the D1x Mango D1M1-V2 Adapter Board

The following pages contain the full schematics of the Mango D1M1-V2 Adapter Board. For the schematics of the Main Board, please see the dedicated Main Board manual.

RH850 D1M1-V2 Adapter Board

Rev1.2

PAGE	SCHEMATIC PAGE TITLE	Rev
1	TABLE of CONTENTS(This Page)	1.2
2	BLOCK DIAGRAM	1.0
3	CPU CONNECTOR	1.2
4	TEST POINT	1.0
5	CPU	1.1
6	POWER JUMPER	1.0
7	CLK & FLASH	1.2
8	SWITCH	1.0

Revision History

DATE	Rev	Page	DESCRIPTION
2017.5.12	1.0		Release Version
2017.6.2	1.1		Change FLMD0
2017.6.16	1.2		Add COMMENT & Cange COLOR

The schematics in this document are provided "AS IS" and any use will be at the customer's own risk. SHIMAFUJI Electric Inc. provides no representation or warranty (i) for the contents of the schematics or their accuracy; (ii) as to the performance of any product made from any one or more of the schematics; or (iii) that the schematics or any product made from the schematics is or will be free from claims of infringement of patent, copyright, mask work rights and other forms of intellectual property.

	TALBE of CONTENT	TS(This Pa	ige)			
Title	RH850 D1M1-V2	Adapter B	oard	i		
Size A3	Document Number 270631001					Rev 1.2
Date:	Friday, June 16, 2017	Sheet	1	of	8	
		5				

RH850 D1M1-V2 Adapter Board Block Diagram

10 Revision history

			Revised contents		
Rev.	Release date	Page	Subject		
Rev.0.01	2017-Jun-30		Initial version created		

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

- ver, is subject to change without any prior notice. Before purchasing or using any Ren Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- as Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Rer technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- You should not after, modify, copy, or otherwise misappropriate any Renesas Electronice product, whether in whole or in part.
 Descriptions of circuits, software and other related information in this document are provided only to litustrate the operation of semiconductor products and application exam the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regular guistions. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is olicable domestic or foreign laws or regu ed under any ap
- nable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Re assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 7. Renease Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Rene Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Reneas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the as Electronics products beyond such specified ranges.
- Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific character maifunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to ntion, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer softw please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics oducts in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assum no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and det

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-595-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Tel. Telescope (China) Co., Ltd.
Tih Floor, Quantum Plaza, No.27 ZhiChunLu Hakilan District, Beljing 100083, P.R.China
Tai: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, A21A Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghal 200120, China Tai: +88-21-5877-1818, Fax:+88-21-4887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1801-1613, 1917., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tet: +852-2886-9316, Fax +862-2886-9022/9044

Renesas Electronics Talwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Talpel, Talwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Tel. +866-2617-3600, r.a.t. +868-26178-3610 Renesas Electronics Singapore Pts. Ltd. 1 harbour-front Avenue, #08-10, keppel Bay Tower, Singapore 098832 Tel: +85-8213-0200, Fax: +86-8278-8001

Renesas Electronics Malaysia Sdn. Bhot.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 48050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tei: +60-3-795-5-390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-373, Fax: 482-2-558-514

© 2011 Renesas Electronics Corporation, All rights reserved.