Analysis of Variance

In the previous section we used
 Z- and t-Distributions to answer the question
 "What is the probability that two samples come from the same population?"

Analysis of Variance

- In this section we introduce a new distribution – the F-Distribution
- Used to answer the question "What is the probability that two samples come from populations that have the same variance?"

Analysis of Variance

- In this section we introduce a new distribution – the F-Distribution
- Can also answer the question "What is the probability that three or more samples come from the same population?"

ANOVA Analysis of Variance

- In the previous section we tested two samples to see if they likely came from the same parent population.
- What if we had three (or more) samples?
- Could we do the same thing?

 Our null hypothesis would look like:

 H_0 : $\mu_A = \mu_B = \mu_C$

• We *could* test each pair:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$

$$H_0$$
: $\mu_A = \mu_C$ $\alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C$ $\alpha = 0.05$

The problem is, our overall confidence drops:

$$H_0$$
: $\mu_A = \mu_B$

$$\alpha = 0.05$$

$$.95 \times .95 \times .95 = .857$$

$$H_0$$
: $\mu_A = \mu_C$

$$\alpha$$
 =0.05

$$H_0$$
: $\mu_B = \mu_C$

$$\alpha$$
 =0.05

85.7% confidencelevel

- This is where ANOVA comes in!
- We compute an F value, and compare it to a critical value determined by our degrees of freedom (the number of groups, and the number of items in each group)

Let's work with some data:

First calculate the sample me

Next calculate the overall mea^S

 $\mu_{A,B,C}$

μтот

GroupA GroupB GroupC

ANOVA considers two types of variance:

Between Groups

how far group means stray from the total mean

Within Groups

how far individual values stray from their respective group mean

The F value we're trying to calculate is simply the ratio between these two variances!

$$F = \frac{VarianceBetweenGroups}{VarianceWithinGroups}$$

Recall the equation for variance:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1} = \frac{SS}{df}$$

Here $\Sigma(x-\bar{x})^2$ is the "sum of squares" *SS* and n-1 is the "degrees of freedom" df

So the formula for the F value becomes:

$$F = \frac{VarianceBetweenGroups}{VarianceWithinGroups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

$$df_{groups}$$
 = degrees of freedom (groups) df_{error} = degrees of freedom (error)

SSG = 420

= 25

=16

42

roupA	GroupB	Group
-------	--------	-------

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2$$

$$(\mu_B - \mu_{TOT})^2 = (50 - 49)^2$$

$$(\mu_C - \mu_{TOT})^2 = (53 - 49)^2$$

Multiply by the number of items in eachgroup:

$$42 \times 10 = 420$$

μа,в,с

μтот

$$SSG = 420$$
 $df_{groups} = 2$

GroupA GroupB GroupC 50

$$df_{groups} = n_{groups} - 1$$
= 3-1

 $\mu_{\text{A,B,C}}$

μтот

SSG = 420 $df_{groups} = 2$ SSE = 3300

GroupB GroupC **GroupA**

Sum of Squares Error

 $(x_A-\mu_A)^2 (x_A-\mu_A)^2 (x_B-\mu_B)^2 (x_B-\mu_B)^2 (x_C-\mu_C)^2 (x_C-\mu_C)^2$

 $(37-44)^2$

 $=(-7)^2$ =49

 $\mu_{\text{A,B,C}}$

TOTAL

μтот

Degrees of Freedom Error

$$df_{error} = (n_{rows} - 1) *n_{g roups}$$

= (10-1) *3

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

 $\mu_{A,B,C}$

μтот

$$SSG = 420$$

 $df_{groups} = 2$
 $SSE = 3300$
 $df_{error} = 27$

GroupA GroupB GroupC

Plug these into our for mula:

$$F = \frac{\frac{SSG}{d \ groups}}{\frac{SSE}{d ferror}} = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122.2} = 1.718$$

_	55	44	53
3	39	31	43
	39	49	65
	23	57	43

 $\mu_{A,B,C}$

μтот

ANOVA with Excel Data Analysis

	Α	В	С	D	Е	Data Analysis				?	×
1	Anova: Single Factor									•	
2						Analysis Tool	5			ОК	
3	SUMMARY					Anova: Single		-	^	_	
4	Groups	Count	Sum	Average	Variance		Factor With Replicatio Factor Without Replica			Canc	51
5	GroupA	10	440	44	118	Correlation				<u>H</u> elp	,
6	GroupB	10	500	50	193.555556	Covariance Descriptive S	Statistics			22.1	
7	GroupC	10	530	53	55.11111111	Exponential :	Smoothing				
8						F-Test Two-Sample for Variances Fourier Analysis Histogram					
9											
10	ANOVA										
11	Source of Variation	SS	df	MS	F	P-value	F crit				
12	Between Groups	420	2	210	1.718181818	198430533	3.354130829				
13	Within Groups	3300	27	122.2222							
14											
15	Total	3720	29								
16											

F Distribution

F-Distribution

F-Distribution

Look up our critical value from an F-table

use a table set for 95% confidence find numerator df find denominator df critical value =3.35

\wedge			F-Table Up	per Tail Aı	ea of 0.05	
		Numerator df				
		1	2	3	4	5
*	25	4.24	3.39	2.99	2.76	2.60
9.0	26	4.23	3.37	2.98	2.74	2.59
nat	27	4.21	3.35	2.96	2.73	2.57
denominator df	28	4.20	3.34	2.95	2.71	2.56
eno e	29	4.18	3.33	2.93	2.70	2.55
γp	30	4.17	3.32	2.92	2.69	2.53

F-Scores in MS Excel

• In Microsoft Excel, the following function returns an F-score:

α	df1	df2	Formula	Output Value
0.05	2	27	=FINV(A2,B2,C2)	3.3541308285292

F-Scores in Python

```
>>> from scipy import stats
```

- >>> stats.f.ppf(1-.05,dfn=2,dfd=27)
- 3.3541308285291986

- In an effort to receive faster payment of invoices, a company introduces two discount plans
- One set of customers is given a 2% discount if they pay their invoice early
- Another set is offered a 1%discount
- A third set is not offered any incentive

- The results are as follows:
- Using ANOVA, can we say that the offers result in faster payments?

2% disc	1% disc	no disc			
11	21	14			
16	15	11			
9	23	18			
14	10	16			
10	16	21			

1. Calculate the means

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
μ _{2,1,0}	12	17	16
μтот	15		

SSG = 70

ANOVA Exercise #1

2. Find Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

 $(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$
 $(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$

Multiply by the number of items in eachgroup:

$$14 \times 5 = 70$$

14

2% disc	1% disc	no disc				
11	21	14				
16	15	11				
9	23	18				
14	10	16				
10	16	21				

 $\mu_{2,1,0}$

 μ_{TOT}

$$\begin{vmatrix} SSG = 70 \\ df_{groups} = 2 \end{vmatrix}$$

3. Degrees of Freedom Group s

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21

 $\mu_{2,1,0}$

μтот

SSG = 70 $df_{groups} = 2$ SSE = 198

4. Sum of Squares Error

(x ₂ -µ ₂) ²	(x ₁ -µ ₁) ²	$(x_0-\mu_0)^2$
1	16	4
16	4	25
9	36	4
4	49	0
4	1	25
34	106	58
	TOTAL	198

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
μ _{2,1,0}	12	17	16
μтот	15		

SSG = 70 $df_{groups} = 2$ SSE = 198 $df_{error} = 12$

 $\mu_{2,1,0}$

μтот

5. Degrees of Freedom Error

```
df_{error} = (n_{rows} - 1) * n_{groups}
= (5-1) *3
= 12
```

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

 $\mu_{2,1,0}$

μтот

6. Calculate F value:

$$F = \frac{\frac{SSG}{df \, groups}}{\frac{SSE}{df \, error}} = \frac{\frac{70}{2}}{\frac{198}{12}} = \frac{35}{16.5} = 2.121$$

2% disc 1% disc no disc

7. Look up F_{critical}: 3.885

SSG = 70 $df_{groups} = 2$ SSE = 198 $df_{error} = 12$

Since F falls to the left of $F_{critical}$ 2.121 < 3.885

we fail to reject the null hypothesis!

We don't have enough to support the idea that our offers changed the average number of days that customers took to pay their invoices!

- In the previous examples we used one-way ANOVA to test one independent variable.
- For the invoice problem, the independent variable was the incentive offered.
- The dependent variable was the time it took to receive payment.

- Two-Way ANOVA lets us test two independent variables at the same time
- For the invoice example, we might also consider the amount due
- We would have 3 invoices for \$50, 3 for \$100, etc. and offer different incentives at each dollar amount.

- The resulting datamight look like this:
- Here, each row or dollar amount is called a block.

	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

 Essentially, we want to isolate and remove any variance contributed by the blocks, to better understand the variance in the groups.

So how do we do that?

	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

- The goal of ANOVA is to separate different aspects of the total variance.
- In the previous examples we had only

Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

- » between groups
- » within groups

 These two variances
 SSG and SSE add up to our total variance
 Sum of Squares Total (SST)

Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

- » between groups
- » within groups

 Now we'll look at variance between rows, or blocks

	Group 1	Group 2	
Block A	8	11	
Block B	10	12	
Block C	12	13	μтот
μ _{1,2}	10	12	11

Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

- » between groups
- » within groups

 First calculate the block means

- Then calculate the Sum of Squares Blocks (SSB)
 Sum of Squares Groups (SSG)
 and Sum of Squares Error (SSE)
- » between blocks
- » between groups
- » within groups

 $F = rac{Var.BetweenGroups}{Var.WithinGroups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$

 ANOVA still considers the relationship between the SSG and the SSE

	Group 1	Group	2	$\mu_{A,B,C}$
BlockA	8	11		- 9.5
Block B	10	12	۲	— 11
Block C	12	13		_12.5
μ _{1,2}	10	12		11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
and Sum of Squares Error (SSE)

- » between blocks
- » between groups
- » within groups

 By calculating the SSB, we remove some of the variance in SSE

		SSG
E _	Var.BetweenGroups	df_{groups}
Г –	Var.WithinGroups	SSE
		df_{error}

	Group 1	Group	2	$\mu_{A,B,C}$
BlockA	8	11		- 9.5
Block B	10	12	_	— 11
Block C	12	13		_12.5
μ _{1,2}	10	12		11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
and Sum of Squares Error (SSE)

- » between blocks
- » between groups
- » within groups

$$F = \frac{Var.BetweenGroups}{Var.WithinGroups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

Sum of Squares Groups (SSG)

$$(\mu_1 - \mu_{TOT})^2 = (10 - 11)^2 = 1$$

 $(\mu_2 - \mu_{TOT})^2 = (12 - 11)^2 = 1$

multiply by the number of items in each group: 2×3

SSG = 6

$$2 \times 3 = 6$$

$$F = rac{Var.BetweenGroups}{Var.WithinGroups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

Sum of Squares Blocks (SSB)

$$(\mu_A - \mu_{TOT})^2 = (9.5 - 11)^2 = 2.25$$

$$(\mu_B - \mu)^2 = (11 - 11)^2 = 0$$

$$(\mu_C - \mu_T T_O^T)^2 = (12.5 - 11)^2 = 2.25$$

		Group 1	Group	2	μ _{A,B,C}
Blo	ck A	8	11		
Blo	ck B	10	12	۲	_
Blo	ck C	12	13		
	μ _{1,2}				11

4.5

multiply by thenumber of items in each block:

$$4.5 \times 2 = 9$$

Sum of Squares Total (SST)

$$(8-11)^2+(11-11)^2+$$

$$(10-11)^2+(12-11)^2+$$

$$(12-11)^2+(13-11)^2=16$$

no need to multiply since every item is represented

	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12 _	13/1	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$F = \frac{Var.BetweenGroups}{Var.WithinGroups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

Sum of Squares Error (SSE)

$$SSE = SST - SSG - SSB$$
$$= 16 - 6 - 9 = 1$$

	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

no need to multiply since we're working with totals already

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$SSE = 1$$

So how do we calculate F?

Degrees of Freedom Groups is unchanged:

$$df_{groups} = n_{groups} - 1$$

$$= 2 - 1$$

$$= 1$$

		SSG
F -	Var.BetweenGroups	df_{groups}
<i>I</i> –	Var.WithinGroups	<u>SSE</u>
		df_{error}

	Group 1	Group 2	μ _{Α,Β,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$

So how do we calculate F?

Degrees of Freedom Error has changed:

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(3 - 1)(2 - 1)$
= 2

	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

So how do we calculate F?

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{6}{1}}{\frac{1}{2}} = 12$$

r	Var. BetweenGroups	$\frac{SSG}{df_{groups}}$	
7 =	Var.WithinGroups	<u> </u>	
	•	$df_{\it error}$	

CCC

	Say error		error
	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1.2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

$$F = \frac{Var.BetweenGroups}{Var.WithinGroups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

 F_{groups} =12 feels like a high value.

	•		-
	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

However, in a two-way ANOVA, $F_{critical}$ is found for groups and blocks separately!

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

$$F_{groups}$$
=12 feels like a high value.

For groups, with 1df in the numerator and 2 df in the denominator,

$$F_{critical} = 18.5$$

E -	Var. Between Groups	$\frac{33G}{df_{groups}}$
F =	Var.WithinGroups	<u>SSE</u>
		$df_{\it error}$

CCC

	Group 1	Group 2	μ _{А,В,С}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

- Let's go back to the invoice problem, and add a new independent variable
- Here each block represents an invoice amount
- The dependent variable is still days elapsed untilpayment

			1 1
	2%	1%	no
	disc	disc	disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

1. Calculate the group means, the block means, and the totalmean

			1 1	
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

2. Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

 $(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$
 $(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$

Multiply by the number of

items in eachgroup:

 $14 \times 5 = 70$

			1 1	
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

$$SSG = 70$$

3. Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$=3-1$$

			1 1	
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

$$SSG = 70$$
 $df_{groups} = 2$

4. Sum of	Squares Blocks
$(\mu_{50} - \mu$	$)^{2} = (20 - 15)^{2} = 25$
$(\mu_{100}-\mu_T T_0^Q)$	$^{2} = (17 - 15)^{2}$
π_{200} $-\mu_{TOT}$	$)^2 = (15 - 15)^2 = 0$
$(\mu_{200} - \mu_{TOT})^2$	$^{2} = (13 - 15)^{2} = 4$
$(\mu_{250} - \mu$	$)^2 = (10 - 15)^2 = 25$
$T \cap$	

 $58 \times 3 = 174$

			11	
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ_{col}				15

SSG = 70SSB = 174

58

 df_{groups} =2

5. Sum of Squares Total

$(x_2-\mu_{tot})^2$	$(x_1-\mu_{tot})^2$	$(x_0-\mu_{tot})^2$
1	64	36
1	36	1
16	1	9
25	0	1
36	25	16
79	126	63
	TOTAL	268

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

$$SSG = 70$$
$$SSB = 174$$
$$SST = 268$$

$$df_{groups}$$
=2

6. Sum of Squares Error

$$SSE = SST - SSG - SSB$$

= $268 - 70 - 174 = 24$

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ_{col}				15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

$$df_{groups}$$
=2

7. Degrees of Freedom Error

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(5 - 1)(3 - 1)$
= 8

			1 1	
	2% disc	1% disc	no disc	$\mu_{ extsf{block}}$
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

SSG = 70	
<i>SSB</i> = 174	
<i>SST</i> = 268	
SSE = 24	

$$df_{groups}$$
=2
 df_{error} =8

8. Calculate F

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{70}{2}}{\frac{24}{8}} = \frac{35}{3} = 11.67$$

			1 1	
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
$\mu_{ extsf{col}}$				15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$
 $df_{error} = 8$
 $SST = 268$
 F=11.67

 $SSE = 24$

9. Find
$$F_{critical}$$
 $\alpha = 0.05$
 $df_{numerator} = 2$
 $df_{denominator} = 8$
 $F_{critical} = 4.46$

			11	
	2% disc	1% disc	no disc	$\mu_{ extsf{block}}$
\$50	16	23	21	
\$100	14	21	16	
\$150	11	16	18	
\$200	10	15	14	
\$250	9	10	11	
μ _{col}				15

<i>SSG</i> = 70	$ddff_{comps}=2$
<i>SSB</i> = 174	df_{error} =8
SST = 268	F=11.67
<i>SSE</i> = 24	F _{otica} =4.46

Since F falls to the right of $F_{critical}$ 4.46< 11.67

we reject the null hypothesis!

SSG = 70

$$df_{groups}$$
 = 2

 SSB = 174
 df_{error} = 8

 SST = 268
 F=11.67

 SSE = 24
 Foita = 4.46

2-way ANOVA in Excel

Two-Way ANOVA with Replication

Without vs With Replication

without replication

	GroupA	GroupB	GroupC
Block1	16	23	21
Block2	14	21	16
Block3	11	16	18
Block4	10	15	14
Block5	9	10	11
Block6	8	8	10

with replication

	GroupA	GroupB	GroupC
Block1	16	23	21
	14	21	16
	11	16	18
Block2	10	15	14
	9	10	11
	8	8	10

Samples have multiple values Samples have a mean value

Two-Way ANOVA with Replication

- Introduces the concept of sample means and sample variance
- Introduces the concept of interactions

Two-Way ANOVA with Replication

- As with our previous 2-way ANOVA, we consider two independent variables organized into groups and blocks
- We sample every block/group combination
- With replication, block/group samples have multiple measurements

Two-Way ANOVA with Replication

- Consider an experiment that measures the height of plants
- We apply three types of fertilizer A, B & C
 - these are our Groups
- Plants are kept at two temperatures
 (warm & cold) these are our Blocks
- We assign 3 plants to each sample

- First calculate the mean for each 3-item sample
- Calculate column means
- Calculate block means
- Calculate the overall mean

Fertilizer:	Α	В	С	
Warm	13	21	18	E
	14	19	15	16
	12	17	15	16 C
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	r
Sample	13	19	16	
Means	17	13	12	
Column Means	1.3	16	14	15

 As before, calculate the Sum of Squares Blocks

$$(16-15)^2 + (14-15)^2 = 2$$

× 9 items per block = 18

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16 0
	12	17	15	16 0 C k
Cold	16	14	15	М
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

$$SSB = 18$$

 As before, calculate the Sum of Squares Columns

$$(15-15)^2 + (16-15)^2 +$$

 $(14-15)^2 = 2$
× 6 items per column = 12

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16 0
	12	17	15	16 o c k
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

$$SSB = 18$$
 $SSC = 12$

 As before, calculate the Degrees of Freedom Columns

$$df_{columns} = (3-1) = 2$$

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16 0
	12	17	15	16 0 C k
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

SSB =
$$18$$
 SSC = 12 df_{columns} = 2

- We have a new statistic:
 SS Interactions
- For each sample mean, subtract the matching block and column means, add back the overall mean, square the result

SSB = 18 SSC = 12 df_{columns} = 2

$$(13-16-15+15)$$
 $)^{2} +$ $(19-16-16+15^{2}+)$ $(16-16-14+15^{2}+)$ $(17-14-15+15^{2}+)$ $(13-14-16+15^{2}+)$ $(12-14-14+15)^{2} = 28$ $\times 3 itemspersample = 84$

SSB =
$$18$$
 SSC = 12 df_{columns} = 2 SSI = 84

 Calculate the Sum of Squares Total

4	36	9	
1	16	0	
9	4	0	
1	1	0	
9	16	4	
4	1	49	164

SST = 164

 Calculate the Sum of Squares Error by subtracting the other values from the SST: 164-18-12-84=50

SSE = 50

SSI = 84

SST = 164

Degrees of Freedom Error

blocks×columns× (items-1)
$$=2\times3\times (3-1) = 12$$

Sample

Fertilizer:

Warm

A

13

В

21

19

19

16

C

18

15

I o c k

Μ

e a

n

16

Means 17 13 12 Column 15 16 14 Means $df_{columns} = 2$ SSB = 18SSC = 12SSI = 84SSE = 50 $df_{error} = 12$ SST = 164

Calculate F

$$F = \frac{\frac{SSC}{df_{columns}}}{\frac{SSE}{df_{error}}} = \frac{\frac{12}{2}}{\frac{50}{12}} = 1.44$$

SSE = 50

SSI = 84

SST = 164

 $df_{error} = 12$

$$F = 1.44$$

Look up F_{critical}

$$F_{(0.05, 2, 12)} = 3.885$$

SSE = 50

SSI = 84

SST = 164

 $df_{error} = 12$

A look at Interaction:

SSE = 50

SSI = 84

SST = 164

 $df_{error} = 12$

2-way with Replication in Excel

	Α	В	С	D	Е	F	G	Н	1	J	K	L	
1	Anova: Two-	Factor With F	Replication										
2						Data Analysis					1	? ×	
3	SUMMARY	Fertilizer A	Fertilizer B	Fertilizer C	Total	Analysis Tools	Analysis Tools						
4	WARM						Anova: Single Factor						
5	Count	3	3	3	9		Anova: Two-Factor With Replication Cancel						
6	Sum	39	57	48	144		Anova: Two-Factor Without Replication						
7	Average	13	19	16	16	Covariance	Descriptive Statistics						
8	Variance	1	4	3	8.75								
9							Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis						
10	COLD					Fourier Analysi							
11	Count	3	3	3	9	Histogram					~		
12	Sum	51	39	36	126								
13	Average	17	13	12	14								
14	Variance	1	3	13	9.5								
15													
16	Total					ANOVA							
17	Count	6	6	6		Source of Variation	SS	df	MS	F	P-value	F crit	
18	Sum	90	96	84		Sample	18	1	18	4.32	0.059785686	4.747225347	
19	Average	15	16	14		Columns	12	2	6	1.44	0.275086887	3.88529 <mark>3835</mark>	
20	Variance	5.6	13.6	11.2		Interaction	84	2	42	10.08	0.002698928	3.885293835	
21						Within	50	12	4.16667				