Pauta de Corrección

Primer Certamen

Introducción a la Informática Teórica Informática Teórica

19 de enero de 2016

1. Por turno.

a) Es simple ver que las gramáticas siguientes dan lo solicitado:

Para L_1 :

$$S \to aSc \mid aAc$$
$$A \to Ab \mid b$$

Vemos que $S \Rightarrow^* a^{m-1} Sc^{m-1} \Rightarrow a^m Ac^m \Rightarrow^* a^m b^n c^m$, realmente no hay caminos alternativos.

Para L_2 :

$$S \rightarrow Sc \mid Ac$$

 $A \rightarrow aAb \mid ab$

Tenemos $S \Rightarrow^* Sc^{n-1} \Rightarrow Ac^n \Rightarrow^* a^m b^m c^n$, y nuevamente no hay caminos alternativos.

b) Resulta $L_1 \cap L_2 = \{a^n b^n c^n : n \in \mathbb{N}\}$, que vimos en clase no es de contexto libre.

Como si L_1 y L_2 son de contexto libre no siempre es de contexto libre $L_1 \cap L_2$, los lenguajes de contexto libre no son cerrados respecto de intersección.

Total			25
a) Gramáticas		16	
L_1 y explicación	8		
L_2 y explicación	8		
b) $L_1 \cap L_2$		9	
$L_1 \cap L_2 = \{a^n b^n c^n \colon n \in \mathbb{N}\}$	6		
$L_1 \cap L_2$ no es CFL, conclusión	3		

2. Supongamos que el lenguaje dado es de contexto libre, por lo que cumple el lema de bombeo. Sea N la constante del lema, elijamos una palabra σ del lenguaje:

$$\sigma = a^N b^N a^N b^N$$

Es $|\sigma|=4N\geq N$, Por el lema de bombeo, hay u,v,w,x,y con $|vwx|\leq N$ y $vx\neq \epsilon$ tales que:

$$\sigma = uvwxy$$

y uv^kwx^ky pertenece al lenguaje para todo $k\in\mathbb{N}_0$. Como $|vwx|\leq N$, al repetir v e x a lo más se pueden repetir las a y b de dos de las cuatro secuencias que forman σ , y el resultado no pertenece al lenguaje. Hemos llegado a una contradicción, el lenguaje no es de contexto libre.

Total		20
Aplicar lema de bombeo	5	
Elección de σ	5	
Condición sobre v, w, x	2	
Llegar a contradicción	8	

3. Por la pista, basta generar palabras de la forma:

$$\alpha x \alpha' \beta y \beta'$$

con $|\alpha| = |\alpha'|$ y $|\beta| = |\beta'|$ pero $x \neq y$. La siguiente gramática logra lo pedido:

$$S \rightarrow A \mid B$$

 $A \rightarrow aaA \mid abA \mid baA \mid bbA \mid a \mid b$

 $B \rightarrow CD \mid DC$

 $C \rightarrow aCa \mid aCb \mid bCa \mid bCb \mid a$

 $D \rightarrow aDa \mid aDb \mid bDa \mid bDb \mid b$

Vemos que *A* genera todas las palabras de largo impar, mientras *B* genera palabras de largo par, pero cuyas mitades difieren a lo menos en un símbolo.

Como hallamos una gramática de contexto libre para \overline{L}_3 , este lenguaje es de contexto libre. Pero su complemento L_3 no es de contexto libre por la pregunta 3. Concluimos que los lenguajes de contexto libre no son cerrados respecto de complemento.

Puntajes

Total25Plantear gramática correcta, según la pista20Conclusión5

- 4. Consideramos lenguajes C, que es NP-completo; N, que está en NP; P que está en P; R que es recursivamente enumerable y D que es decidible (recursivo). Veamos cada caso:
 - a) $R \leq D$:

Esto nos dice que *R* es recursivo.

b) $C \leq_n N$

Esto permite concluir que N es NP-completo

c) $P \leq_p N$:

No es novedad, P está en $P \subseteq NP$, y todo problema en NP puede reducirse polinomialmente a C por ser NP-completo.

d) $\overline{R} \leq C$:

Como la reducción indicada es arbitraria, solo es relevante que C es recursivo. Esta reducción permite concluir que \overline{R} es recursivo. Pero siendo \overline{R} recursivo, es recursivo R.

e) $C \leq P$:

No es novedad, la "reducción" puede hacer el trabajo pesado de resolver el problema, y resolver la instancia de *P* resultante en corto tiempo nada permite concluir sobre el tiempo necesario para resolver *C*.

Total		30
a) $R \leq D$	6	
R es recursivo		
b) $C \leq_p N$	8	
N es NP-duro y en NP		
N es NP-completo		
c) $P \leq_p N$	4	
No es novedad		
d) $\overline{R} \le C$	8	
C es recursivo		
\overline{R} es recursivo		
R es recursivo		
e) $C \leq P$	4	
Reducción arbitraria hace el trabaio		

5. Cada punto en turno.

- *a*) Un lenguaje L está en P si podemos decidir en tiempo polinomial en el largo de σ si $\sigma \in L$. Pero entonces podemos decidir en tiempo polinomial si $\sigma \notin L$. Concluimos que si $L \in \text{coP}$ entonces $L \in P$, o sea P = coP.
- b) Sabemos que $P \subseteq NP$. Dado $L \in P$, si podemos determinar en tiempo polinomial que $\sigma \in L$ podemos determinar en tiempo polinomial que $\sigma \in \overline{L}$, lo que es simplemente un caso particular de determinar en tiempo polinomial en una máquina no determinista. Vale decir, si $L \in P$ entonces $L \in coNP$. Uniendo las anteriores, tenemos $L \in NP$ y $L \in coNP$, con lo que $P \subseteq NP \cap coNP$.
- c) Determinar si la fórmula Φ está en TAUTOLOGY es lo mismo que determinar si $\overline{\Phi}$ es siempre falsa, que es exactamente el complemento de SAT. Como SAT es NP-completo, está en NP; concluimos que TAUTOLOGY está en coNP.

Total			30
a)		8	
Qué significa $L \in P$	3		
Corresponde a $\overline{L} \in P$	3		
Concluir $P = coP$	2		
b)		8	
Sabemos $P \subseteq NP$	2		
Demostrar $L \in P$ implica $L \in coNP$	3		
$P \subseteq NP y P \subseteq coNP es P \subseteq NP \cap coNP$	3		
c)		14	
$\Phi \in TAUTOLOGY$ es equivalente a $\overline{\Phi} \in \overline{SAT}$	5		
SAT es NP-completo, está en NP	5		
Conclusión por la reducción anterior	4		