

Bitcoin

Mechanics of Blocks and Transactions

Dr Sourav SEN GUPTA Lecturer, SCSE, NTU

Bitcoin Transactions

Keys, Addresses and Ownership

Recall: Digital Signatures

Comprises of two stages : Sign and Verify

Recall: Identity and Authentication

Claim identity as PubKey → Prove identity by PriKey → Verify identity by PubKey

"Anonymous" Identity

Public-Private Key Pair allows for verifiable "anonymous" Identities

- Publish your Public Key (or hash of it) as your "anonymous" identity
- Sign digital records with your Private Key when you want to prove it
- Verification of the claim (identity) and the proof (signature) entails:
 - Checking that your Public Key is correct (or the hash of it matches)
 - Checking that your signature can be verified using your Public Key

Bitcoin generally uses hashed-and-encoded Public Key as identity.

Bitcoin Addresses ¹

Key Generation: Elliptic Curve Cryptography (curve secp256k1)

Address Generation: SHA256 and RIPEMD160 (hash functions)

Food for thought: What if someone can derive backwards, $A \rightarrow K \rightarrow k$?

[1] reading: Chapter 4 of the book "Mastering Bitcoin"

Transfer of Assets

Bitcoin Keys and Addresses allow for verifiable Transfer of Assets

- Receiving: Digital Assets "assigned" to receiver's Bitcoin address.
- Sending: Sign with corresponding Private Key to "reassign" Asset
- Verification of the asset transfer and the ownership proof entails:
 - Checking that recipient's Public Key matches the Bitcoin address
 - Checking that sender's Signature is verified using that Public Key

Sender must prove ownership (receipt) of Asset before a transfer.

Bitcoin Transactions

Motivation and Construction

Account-based Ledger

Ledger keeper verifies Accounts and Balances for correctness of Transaction

Transaction-based Ledger

Ledger keeper verifies Signature and Receipts for correctness of Transaction

Bitcoin Transaction ²

Verifiable data structure created by the Sender

- Proof of Balance : Pointer to a past Transaction within the Ledger
- Proof of Ownership : Signature corresponding to that Transaction
- Transfer of Ownership : State Bitcoin address(es) of Recipient(s)

Verification of a Transaction requires two checks

- 1. Check that the past transaction is valid and unspent on record.
- 2. Check that the signature matches recipient of past transaction.

[2] reading: Chapter 5 of the book "Mastering Bitcoin"

Constructing a Transaction

Verifiable data structure created by the Sender

Example #1

1.54 Bitcoin Receipt Spent 1.54 Bitcoin Input [0]: Past Transaction [index] Signature corresponding to Receipt Bitcoin Address of intended Receiver Metadata for this new Transaction Alice Bob

Example #2

Example #3

Bitcoin Transactions

Spending a Transaction

Recall: Receiving Bitcoin

Sender "specifies" the Receiver's Bitcoin Address in Transaction Output

UTXO: Unspent Transaction Output

Sender "locks" certain Bitcoin amount to the Receiver's Public Key

Spending Bitcoin UTXO 2

Sender "specifies" the Receivers' Bitcoin Address(es) as Transaction Output

[2] reading: Chapter 5 of the book "Mastering Bitcoin"

Bitcoin Transaction in Practice

Single-input to two-output Transaction with "anonymous" Bitcoin Addresses

Total Input	1.60493224 BTC
Total Output	1.60444905 BTC
Fees	0.00048319 BTC

Fee is never specified in the Transaction Fee is the gap between Input and Output

ref: https://www.blockchain.com/btc/tx/8a39aa4c73cb4b87904db0f0b8c27f24b0b8b9d17bd8087b7dba7342ab8a0be8

Bitcoin Transaction Inputs and Outputs

ref: https://www.blockchain.com/btc/tx/8a39aa4c73cb4b87904db0f0b8c27f24b0b8b9d17bd8087b7dba7342ab8a0be8

Bitcoin Transaction in JSON

```
"ver":2.
"inputs":[ list of input transactions ],
"weight":900,
                                              Check on your own: Entire Transaction Format
"block_height":644979,
                                              Especially, the format for Inputs and Outputs
"relayed_by":"0.0.0.0",
"out":[list of output transactions],
"lock time":644978,
"size":225.
"rbf":true.
"block_index":0,
"time":1598179958,
"tx index":0,
"vin sz":1,
"hash":"8a39aa4c73cb4b87904db0f0b8c27f24b0b8b9d17bd8087b7dba7342ab8a0be8",
"vout_sz":2
```

ref: https://blockchain.info/tx/8a39aa4c73cb4b87904db0f0b8c27f24b0b8b9d17bd8087b7dba7342ab8a0be8?format=json

Bitcoin Coinbase Transaction

Transaction with no Input, meant to Mine new Bitcoin into the ecosystem.

Coinbase Transactions generally go to the Miner of a Block Coinbase Transactions contain Mining Reward and Tx Fees

ref: https://www.blockchain.com/btc/tx/8785cfd428b67e6f4419db7fb4529eb1216fd936476ceed888f77daaec63fd64

Bitcoin Ledger

Recording the Transactions

Transaction Lifecycle

Bitcoin Transactions go through **five phases** in the Network

- Construction : Sender(s) construct the Transaction and Sign(s) Input(s)
- o Communication: Transaction sent to any Node in the Bitcoin Network
- Validation: Each node listening to the Transaction will check its Validity
 - Check: All input transactions refer to UTXOs with valid signatures
 - Check: Total input is greater than or equal to total output Bitcoin
- Propagation: Each node will send valid Transactions to its Neighbors
- Recording: Mining nodes will Record the Transaction in local Ledger

Construct

Alice

Input [0]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Input [1]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Output [0]: Script to "lock" UTXO

Output [1]: Script to "lock" UTXO

Metadata for this new Transaction

required

UTXOs in own Wallet Recipient Public Key

input

UTXO Hash Pointers
Index of Input UTXO

output

UTXO Locking Script

Communicate

Alice

Input [0]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Input [1]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Output [0] : Script to "lock" UTXO

Output [1]: Script to "lock" UTXO

Metadata for this new Transaction

Validate

required

Bitcoin Script Exec Recipient Public Key

iteration

Validate all Inputs

track

Fee = Input - Output

Input [0]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Input [1]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Output [0] : Script to "lock" UTXO

Output [1]: Script to "lock" UTXO

Metadata for this new Transaction

UTXO [index]

Amount: Bitcoin in Satoshi

Lock: Public Key Script (K)

Unlock: Signature Script (k)

Propagate

if valid transaction Send to Neighbors Send forth "Accept"

if invalid transaction Send back "Reject"

track

All Transactions

Input [0]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Input [1]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Output [0]: Script to "lock" UTXO

Output [1]: Script to "lock" UTXO

Metadata for this new Transaction

Record

record

Transactions + HP Coinbase Trans.

HP HP

Input [0]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Input [1]: UTXO in own Wallet [index]

Signature Script to "unlock" UTXO

Output [0]: Script to "lock" UTXO

Output [1]: Script to "lock" UTXO

Metadata for this new Transaction

Record

Merkle Tree of Transactions
Block as part of Local Ledger

HP

HP

HP

