Examen AG

Student:	
	Grupa:
	22-23 ianuarie 2009

Problema 1. Fie G un graf conex cu |G|>1 si fără vîrfuri de grad 1. Demonstrați că $|E(G)|\geq n$.

Problema 2. Se consideră un graf $G = (\{1, ..., n\}, E)$ reprezentat cu ajutorul matricii de adiacență. Mulțimea de n-1 muchii A are proprietatea că T = (V, A) este arbore parțial al lui G. Construiți un algoritm care să listeze cele m-n+1 circuite care se formează prin adăugarea muchiilor din E-A la T. Reprezentarea lui T trebuie să permită depistarea fiecărui astfel de circuit în timpul $\mathcal{O}(n)$.

Problema 3. Să se determine numărul arborilor parțiali ai grafului $K_{2,3}$.

Problema 4. Fie G un graf şi v un vârf al său cu $d_G(v) \ge k$. Demonstrați că dacă G - v este k-conex atunci şi G este k-conex.

Problema 5.

Arătați că în orice digraf G = (V, E) există o mulțime $S \subseteq V$ astfel încât $[S]_G = (S, \emptyset)$ si pentru orice vârf $v \notin S$ există un drum de lungime cel mult 2 de la un vârf din S la v.