Un algorithme distribué d'énumération des noeuds d'un réseau et application au calcul des distances entre 2 noeuds quelconques et du diamètre d'un réseau

Yves Métivier, John Michael Robson, Akka Zemmari

LaBRI - Université de Bordeaux

AlgoTel 2016 25 Mai 2013

Plan

- Introduction
- 2 Contribution
- Conclusion
- 4 Références

Plan

- Introduction
- 2 Contribution
- Conclusion
- A Références

Le problème

Etant donné un réseau :

- attribuer un numéro de 1 à n (la taille du réseau) à chaque noeud,
- utiliser cette énumération pour :
 - calculer (tous) les plus courts chemins,
 - calculer le diamètre du réseau,
 - autres paramètres : la maille, ...

Modèle

Réseau de communication connexe modélisé par un graphe G = (V, E) :

- les noeuds communiquent par passage de messages,
- système synchrone : les noeuds commencent en même temps et opèrent par rondes synchrones
- anonymat : les noeuds n'ont pas des identifiants différents,
- un noeud est dans un état Leader.

Modèle

Complexité en temps :

- une ronde (pour un neoud): 1. envoyer des messages à des voisins, 2. recevoir des messages des voisins, 3. réaliser un calcul local,
- complexité en temps : le nombre de rondes nécessaires pour que tous les noeuds terminent.

Complexité en bits :

- dans chaque ronde, chaque noeud peut envoyer/recevoir un bit à/de chaque voisin,
- complexité en bits : le nombre de rondes nécessaires pour que tous les noeuds terminent

Etat de l'art

	Temps	Taille des messages	complexité en
		(nombre de bits)	bits
Almeida et al.	O(D)	$O(n \log n)$	$O(Dn \log n)$
Holzer and Watten-	O(n)	$O(\log n)$	$O(n \log n)$
hofer (PODC 2012)			
Peleg et al.	O(n)	$O(\log n)$	$O(n \log n)$
(ICALP12)			
Frischknecht et al.		В	$\Omega(n/B)$
(SODA 2012)			
Cet article	O(n)	O(1)	O(n)

Calcul du diamètre.

Plan

- Introduction
- 2 Contribution
- Conclusion
- A Références

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

DEA : un algorithme distribué qui attribue à chaque sommet du graphe un nombre unique dans $\{1, 2, \dots, n\}$, et tel que :

- la distance entre deux sommets ayant des numéros consécutifs est au plus 3,
- les messages échangés sont de taille O(1),
- la complexité en temps est en O(n).

- calcul d'un arbre couvrant BFS de G, dont la racine est le sommet Leader,
- énumération des sommets de G selon une traversée spéciale (Algorithme Trav).

Algorithme Trav:

Lemme.

Pour tout sommet u, ν_u est pair ssi u se trouve à un niveau pair et ν_u' est pair ssi u se trouve à un niveau impair.

Corollaire.

Pour tout sommet u, si ν_u est pair (resp. impair) alors ν_u' est impair (resp. pair).

Lemme.

Soit G un graphe connexe. La distance, dans G, entre deux sommets ayant des numéros consécutifs est d'au plus 3.

⇒ l'algorithme est optimal : il n'existe pas d'énumération des noeuds telle que deux noeuds ayant des numéros consécutifs sont à distance au plus 2.

Lemme.

DistCal permet à chaque sommet de connaître sa distance au Leader. Sa complexité en temps et sa complexité en bits sont O(n).

Propriété. Si v initialise une vague alors tout sommet w à distance d de v la reçoit à l'instant d et (éventuellement) à l'instant d + 1.

Lemme. Les vagues commencées par deux sommets consécutifs n'entrent jamais en collision.

Théorème

Soit G un graphe de taille n avec un sommet distingué. Il existe un algorithme distribué synchrone calculant les plus cours chemins en O(n) rondes et ayant une complexité en bits égale à O(n).

Application 2 : Calcul du diamètre

Principe:

- chaque sommet calcule le maximum des distances (des sommets) de ses sous arbres au Leader, et l'envoie à son père;
- Le Leader "centralise" le calcul;
- 3 Le Leader envoie le maximum à tous les sommets de l'arbre.

Application 2 : Calcul du diamètre

Théorème.

Soit G un graphe de taille n avec un sommet distingué. Il existe un algorithme distribué synchrone permettant de calculer le diamètre D de G en O(n) rondes avec une complexité en bits égale à O(n). Chaque sommet connaît la valeur de D à la fin de l'algorithme.

Plan

- Introduction
- 2 Contribution
- Conclusion
- A Références

Conclusion

La même énumération peut être utilisée pour :

- o calculer la maille du graphe,
- déterminer les isthmes,
- déterminer les points d'articulation.

Plan

- Introduction
- Contribution
- Conclusion
- 4 Références

Bibliographie

- Y. Métivier, J. M. Robson and A. Zemmari. A distributed enumeration algorithm and applications to all pairs shortest paths, diameter... Inf. Comput. 247: 141-151 (2016)
- P. S. Almeida, C. Baquero, and A. Cunha. Fast distributed computation of distances in networks. CoRR, abs/1111.6087, 2011.
- D. Peleg, L. Roditty, and E. Tal. Distributed algorithms for network diameter and girth. In ICALP (2), pages 660 - 672, 2012.
- S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and applications. In PODC, pages 355 - 364, 2012.
- S. Frischknecht, S. Holzer and R. Wattenhofer. Networks cannot compute their diameter in sublinear time. In SODA 2012, pages 1150-1162, 2012.

MERCI