Deep Learning Introduction

講者:Isaac

Outline

- Why Deep Learning
- What is Deep Learning
- Different kinds of Application
- TensorFlow Introduction

Why Deep Learning

Powerful of Deep Learning

Powerful of Deep Learning

- In the past
 - We need feature engineering (take lots of human labor)
- Deep learning
 - It learns suitable features for this task

Detect if this image is "zero" or "one"

Traditional method


```
Feature #I = if black part is round

Feature #2 = ratio of black pixels in image

.....

.....

Feature #N = center of image pixel is white
```

Deep Neural Network

Classifier would automatically learn features based on dataset

• • • • •

What is Deep Learning

AI v.s. ML v.s. Deep Learning

- Supervised Learning
 - ▶ Give machine data and corresponding label

- Unsupervised Learning
 - Cluster unlabelled data

- Semi-supervised Learning
 - Some data are labelled but some are not

- Reinforcement Learning
 - ▶ Given unlabelled data, make machine self-learning

We will focus on supervised learning in this course !!!

We want to find a function such that.....

- ▶ Define hypothesis function set f1, f2,
 - Y = ax + b, where "b" is a variable and "a" is a constant

Feed training data to find the best function

Use this best function to predict future data

Use this new line to predict

Note:

In real word, most of work may be non-linear separable. So, Function set may be non-linear

A Neuron

NAND gate truth table			
хI	x2	output	
0	0	I	
0	I	I	
1	0	I	
	I	0	

NAND gate truth table

хI	x2	output
0	0	1
0	1	1
I	0	I
I	I	0

output

$$= \begin{cases} 0 & if \ x1*w1+x2*w2+b \leq threshold \\ 1 & if \ x1*w1+x2*w2+b > threshold \end{cases}$$

NAND gate truth table

хI	x2	output
0	0	I
0	1	1
ı	0	I
I	I	0

output

$$= \begin{cases} 0 & if \ x1 * w1 + x2 * w2 + b \le threshold \\ 1 & if \ x1 * w1 + x2 * w2 + b > threshold \end{cases}$$

How about XOR?

XOR gate truth table			
хI	x2	output	
0	0	0	
0	1	I	
1	0	I	
	I	0	

XOR gate truth table			
хI	x2	output	
0	0	0	
0	1	1	
1	0	I	
	I	0	

How about more complex situation?

 $f: \mathbb{R}^N \to \mathbb{R}^M$

- Consist of input layer, hidden layer, and output layer
 - ▶ If # of hidden layer > I, we call "deep" neural network

"Non-deep" feedforward neural network

Deep neural network

Is NN Enough?

- Think about logic gate
 - {AND, NOT }, {NAND, NOR }
 - functionally complete
- Universal approximation theorem
 - NN with single hidden layer can emulate any continuous functions.

Different kind of Neural Network

Different kinds of Application

Deep Learning Application

- Image recognition
 - Face recognition
 - Object category
- Speech recognition
 - Semantic analysis
 - Language translation
- Generate text/image/voice
- Play game

There are much more.....

Image Recognition and Detection

Image Caption

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Image Style Transfer

Automatic Machine Translation

Text Generator

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

AlphaGo

Google Lens

- An App that understand the world around you through your smartphone camera
 - Display relevant content on your screen
- Interesting function include
 - Restaurant rating, species of flowers, Wi-Fi hotspot login, prominent building in a city, ticket info on concert poster, etc.....

Amazon echo

Apple Siri

TensorFlow Introduction

Different Framework

TensorFlow

- An open source software library for machine intelligence
 - Developed by the Google Brain team and released in November 2015
 - Version 1.0.0 was launched in February 2017
 - https://github.com/tensorflow/tensorflow
- Support many useful tool
 - tensorboard, tfrecord,
- Support multi-GPU and distributed environment

Popularity of TensorFlow

Growing Use of Deep Learning in Google

Across many products/areas:

Android Apps drug discovery Gmail

Image understanding

Maps

Natural language

understanding

Photos

Robotics research

Speech

Translation

YouTube

... many others ...

TensorFlow v.s. Numpy

Numpy	TensorFlow
a = np.zeros((2,2)); b = np.ones((2,2))	a = tf.zeros((2,2)), b = tf.ones((2,2))
np.sum(b, axis=1)	tf.reduce_sum(a,reduction_indices=[1])
a.shape	a.get_shape()
np.reshape(a, (1,4))	tf.reshape(a, (1,4))
b * 5 + 1	b * 5 + 1
np.dot(a,b)	tf.matmul(a, b)
a[0,0], a[:,0], a[0,:]	a[0,0], a[:,0], a[0,:]

What is "Tensor"

Formally, tensors are multilinear maps from vector spaces to the real numbers (Vvector space, and V* dual space)

$$f: \underbrace{V^* \times \cdots V^*}_{p \text{ copies}} \times \underbrace{V \times \cdots V}_{q \text{ copies}} \to \mathbb{R}$$

A scalar is a tensor $(f : \mathbb{R} \to \mathbb{R}, f(e_1) = c)$

A vector is a tensor $(f : \mathbb{R}^n \to \mathbb{R}, f(e_i) = v_i)$

A matrix is a tensor $(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, \ f(e_i, e_j) = A_{ij})$

Common to have fixed basis, so a tensor can be represented as a multidimensional array of numbers.

What is "Flow"

- Computation can be regarded as directed graph(computation graph)
 - ▶ Each node represent a operation
 - Each edge represent a status(variable)

TensorFlow Summary

Programming Model	Dataflow-like model
Language	• Python • C++
Deployment	Code once, Run everywhere
Computing Resource	• CPU • GPU
Distribution Process	Local Implementation Distributed Implementation
Math Expressions	Math Graph Expression Auto Differentiation
Optimization	Auto Elimination Kernel Optimization Communication Optimization Support model, data parallelism

