Lógica e Sistemas Digitais

Álgebra de Boole Simplificação algébrica

João Pedro Patriarca (<u>jpatri@cc.isel.ipl.pt</u>)

Slides inspirados nos slides do prof. Mário Véstias

Álgebra de Boole

• Introduzida por George Boole em 1847

- A álgebra de Boole é um ramo da álgebra cujos valores das variáveis correspondem aos valores 1 e 0 (Verdadeiro e Falso, respetivamente)
- As operações principais entre variáveis na álgebra de Boole são a interceção, união e negação
- As variáveis numa função booleana denominam-se por variáveis booleanas

 $f(x_1, x_2, ..., x_n)$, em que $x_1, x_2, ..., x_n$ são variáveis booleanas

Operações AND, OR e NOT

Operação	AND		C	OR	NOT	
Símbolo algébrico	X . Y X and Y			+ Y or Y	$\overline{\overline{X}}$ Not X	
Tabela de verdade	Х Ү	F = X . Y	х ү	F = X + Y	х	$F = \overline{X}$
	0 0	0	0 0	0	0	1
	0 1	0	0 1	1	1	0
	1 0	0	1 0	1		
	1 1	1	1 1	1		

Função booleana

- Uma função booleana descreve a relação entre variáveis binárias através dos operadores da álgebra booleana
- Exemplo do controlo automático de uma lâmpada de um quarto
 - Noção de presença (P), luz solar (S) e estore (E)
 - A lâmpada acende se existir presença no quarto e, ou não existe luz solar, ou existindo luz solar, o estore está corrido para baixo

$$L_{(P,S,E)} = P.(\overline{S} + E)$$

 Qualquer função pode ser representada por uma tabela de verdade onde se indicam os valores da função para todas as combinações de entrada

Р	S	Е	$L = P.(\overline{S} + E)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Axiomas da Álgebra de Boole

Comutatividade

A + B = B + A

• Identidade

A . 1 = A (o valor 1 é o elemento neutro na operação AND)

A + 0 = A (o valor 0 é o elemento neutro na operação OR)

Distributividade

 $A \cdot (B + C) = A \cdot B + A \cdot C$ (o operador AND tem prioridade sobre o operador OR)

$$A + B \cdot C = (A + B) \cdot (A + C)$$

Teoremas da Álgebra de Boole

Idempotência

$$A \cdot A = A$$
$$A + A = A$$

Complemento

A .
$$\overline{A} = 0$$

A + $\overline{A} = 1$

Elemento absorvente

$$A \cdot 0 = 0$$

 $A + 1 = 1$

• Involução $\overline{\overline{A}} = A$

$$(A + B) + C = A + (B + C)$$

 $(A B) C = A (B C)$

Absorção

$$A + A B = A$$

 $A (A + B) = A$

• Redundância

$$A + \overline{A} B = A + B$$
 $\overline{A} + A B = \overline{A} + B$
 $A (\overline{A} + B) = A B$
 $\overline{A} (A + B) = \overline{A} B$

Adjacência

$$A B + A \overline{B} = A$$

 $(A + B) (A + \overline{B}) = A$

• Leis de

De Morgan

$$\frac{\overline{A} \overline{B} = \overline{A} + \overline{B}}{\overline{A} + \overline{B}} = \overline{A} \overline{B}$$

Demonstrações dos axiomas e dos teoremas (1 de 3)

Idempotência

A A	A.A	A + A
0 0	0	0
1 1	1	1

Identidade

Α	A.1	Α	A + 0	
0 1	0	0 0	0	
1 1	1	1 0	1	

Elemento absorvente

Α	A.0	Α	A + 1
0 0	0	0 1	1
1 0	0	1 1	1

Distributividade

Α	В	С	A . (B + C)	AB+A
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Comutatividade

A B	A.B	B.A	A + B	B + A
0 0	0	0	0	0
0 1	0	0	1	1
1 0	0	0	1	1
1 1	1	1	1	1

Complemento

Α	Ā	$A \cdot \overline{A}$	$A + \overline{A}$
0	1	0	1
1	0	0	1

Demonstrações dos axiomas e dos teoremas (2 de 3)

Involução

Α	Ā
0	0
1	1

Absorção, redundância e adjacência

		Absorção		Redundância					Adjacência				
Α	В	A + AB	A(A + B)	$A + \overline{A}B$	A + B	\overline{A} + AB	$\overline{\mathbf{A}}$ + B	$A(\overline{A} + B)$	AB	$\overline{A}(A + B)$	ĀB	$AB + A\overline{B}$	$(A + B)(A + \overline{B})$
0	0	0	0	0	0	1	1	0	0	0	0	0	0
0	1	0	0	1	1	1	1	0	0	1	1	0	0
1	0	1	1	1	1	0	0	0	0	0	0	1	1
1	1	1	1	1	1	1	1	1	1	0	0	1	1

Demonstrações dos axiomas e dos teoremas (3 de 3)

Associatividade

Α	В	C	B + C	A + B	A + (B + C)	(A + B) + C
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Leis de De Morgan

Α	В	$\overline{\mathbf{A} \cdot \mathbf{B}}$	$\overline{A} + \overline{B}$	$\overline{\mathbf{A}+\mathbf{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0

Operadores NAND e NOR

Operação	NAND			NOR		
Símbolo algébrico	X.Y X nand Y			$\overline{X+Y}$ X nor Y		
	X Hariu i			X 1101 1		
Tabela de verdade	X	Y	$F = \overline{X} \cdot \overline{Y}$	X	Y	$F = \overline{X + Y}$
	0	0	1	C	0	1
	0	1	1	C	1	0
	1	0	1	1	0	0
	1	1	0	1	1	0
			-			

Operadores XOR e XNOR

Operação	>	XNOR			
Símbolo algébrico	X X	X⊕Y X xnor Y			
Tabela de verdade	Х Ү	F = X ⊕ Y	X	Υ	$F = \overline{X \oplus Y}$
	0 0	0	0	0	1
	0 1	1	0	1	0
	1 0	1	1	0	0
	1 1	0	1	1	1
		-			-

Definição

$$X \oplus Y = \overline{X} Y + X \overline{Y}$$

$$\overline{X \oplus Y} = \overline{X} \overline{Y} + X Y$$

• Propriedades

$$X \oplus 0 = X$$

$$X \oplus 1 = \overline{X}$$

$$X \oplus X = 0$$

$$X \oplus \overline{X} = 1$$

$$\overline{X \oplus Y} = \overline{X} \oplus Y = X \oplus \overline{Y}$$

Simplificação algébrica

Minimização lógica

• Uma função booleana pode ser simplificada aplicando os teoremas de álgebra de Boole

 A simplificação é relevante na implementação da função em lógica discreta com portas lógicas

 O processo de simplificação corresponde à aplicação sucessiva de propriedades e teoremas até obter a função na sua forma mais simples

Exemplo 1

• Lâmpada acesa função de presença, luz solar e estore (slide 4)

Exemplo 2

$$F_{(A,B,C,D)} = (A + AB) \cdot (C + \bar{C}D) + \bar{A}D$$
 Absorção
$$= (A) \cdot (C + \bar{C}D) + \bar{A}D$$
 Redundância
$$= (A) \cdot (C + D) + \bar{A}D$$
 Distributiva
$$= AC + AD + \bar{A}D$$
 Adjacência
$$= AC + D$$

Exemplo 3 – De Morgan

$$F_{(A,B,C)} = \overline{AB + C}$$

$$= \overline{AB}.\overline{C}$$

$$= (\overline{A} + \overline{B}).\overline{C}$$

A operação OR passa a AND

A operação AND passa a OR. Relevante a introdução de parêntesis para manter a ordem das operações

$$F_{(A,B,C,D)} = \overline{\overline{A+B} + \overline{C+D}}$$

$$=\overline{\overline{A}+\overline{B}},\overline{\overline{C}+\overline{D}}$$

$$= (A + B).(C + D)$$

Involução (mantendo a ordem das operações)

Exercícios

Simplificação de funções aplicando propriedades e teoremas

$$F1_{(A,B,C,D)} = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D} + \bar{A}\bar{B} = \bar{A} + \bar{D}$$

$$F2_{(A,B,C,D)} = (A + \bar{B} + C).(\bar{A} + \bar{B} + C).(B + C + \bar{D}) = C + \bar{B}.\bar{D}$$

$$F3_{(A,B,C)} = \overline{B.\overline{A.B} + \overline{A} + B.\overline{C}} = A$$