Teste de Programação e Computadores – FEUP – Dep^{to} Engenharia Civil Duração: 2h00m+30m **24/01/2000**

- Leia atentamente o enunciado completo antes de responder.
- Responda a cada grupo em folhas separadas.

GRUPO I (6 valores)

- 1 Responda, numa frase, a cada uma das alíneas seguintes:
 - a) O que é o CPU?
 - b) Indique duas vantagens na utilização de subprogramas.
 - c) Para que servem as instruções OPEN e CLOSE?
 - d) Represente o número "binário" 100110.001₂ na base 10 (apresente os cálculos efectuados).
- 2 Num programa em *Fortran* foram declaradas as seguintes variáveis:

```
REAL :: a, b, c
INTEGER :: k, m, n
```

Qual o valor que irá ser armazenado em cada uma das variáveis (apresente os cálculos efectuados):

```
a = 12 / (2 ** 3 / COS(0.)) + 3.25
b = EXP(REAL(3 / 4)) / 2
c = ABS(4 - 2 * SQRT(4 * 56.25))
k = MOD(43,7) + 7 / 2 * 5
m = 2 + 4 ** 2 / 2
n = 42 / 2.5 + nint(2 + 187.2 / 9)
```

3 - Num programa em *Fortran* definiram-se as seguintes instruções:

```
REAL :: a = 12.325, b = 7.2543, c=1.236E3
INTEGER :: k = 2, m = 4
CHARACTER (LEN = 6) :: pais = 'Portugal'
WRITE (*,"(3(1X,F6.3))") a, b, c
WRITE (*,"(X,'Europeu de',X,A8,1X,I1,'00',I1)") pais, k, m
```

Apresente o resultado da execução dessas instruções.

4 - Escreva um subprograma que recebe uma matriz de números inteiros com três linhas e três colunas e devolve o valor 1 se essa matriz é simétrica ou o valor 0 se não for simétrica.

Grupo II (5 valores)

Pretende-se calcular numericamente o integral: $I = \int_{0}^{2} e^{-x^2} dx$.

A regra dos trapézios permite obter um valor aproximado desse integral. Este método consiste em dividir o intervalo [0, 2] em n sub-intervalos e obter o valor aproximado do integral pela seguinte fórmula:

$$I(n) = \frac{1}{n} \left[1 + e^{-4} + 2 \sum_{i=1}^{n-1} e^{-\left(\frac{2i}{n}\right)^2} \right]$$

O valor aproximado do integral será tanto mais próximo do valor exacto quanto maior o número, n, de sub-intervalos.

- a) Escreva um subprograma que, dado o valor de n, determine o valor aproximado do integral, de acordo com a fórmula acima definida.
- b) Escreva um programa principal que use o subprograma anterior para calcular o valor aproximado do integral *I* usando o seguinte procedimento iterativo:
 - começar por calcular I(1);
 - calcular sucessivamente *I*(2), *I*(3), ...;
 - terminar o processo quando $|I(n) I(n-1)| < 10^{-6}$.

(*Nota*: Obviamente, na resolução deste exercício não é necessário usar variáveis indexadas.)

Grupo III (5 valores)

O curso prático de "Informática para empresas" decorreu em <u>14 aulas</u>. Desse curso existe a seguinte informação de <u>cada aluno</u> (identificado com um número inteiro, i, de 1 a N):

- Número total de aulas assistidas (armazenado no vector AULAS);
- Classificação final, inteiro de 0 a 20 (armazenada no vector NOTAS).
- a) Escrever um subprograma que calcule:
 - o valor médio, máximo e mínimo da classificação final considerando todos os alunos;
 - o valor médio, máximo e mínimo da classificação final considerando <u>os alunos que</u> faltaram até 3 aulas.
- b) Escrever um subprograma que calcule o valor da classificação que ocorreu mais vezes.

Teste de Programação e Computadores – FEUP – Dep^{to} Engenharia Civil Duração: 30m+15m **24/01/2000**

• Leia atentamente o enunciado completo antes de responder.

Grupo IV (4 valores)

Um jornalista de um diário desportivo pretende obter uma estatística rápida sobre o rendimento das equipas de futebol da I Liga Portuguesa para a poder incluir nas reportagens. A informação está organizada sob a forma de variáveis indexadas (vectores) com 18 elementos cada (número total de equipas de futebol da I Liga):

Descrição	Variável
nome do clube	CLUBE(i)
número de jogos efectuados	JOGOS(i)
número de vitórias	VITORIAS(i)
número de derrotas	DERROTAS(i)
número de cartões amarelos	AMARELOS(i)
número de cartões vermelhos	VERMELHOS(i)

Escreva um subprograma que determine:

- o número de empates de cada equipa;
- os pontos de fair-play de cada equipa, de acordo com os critérios definidos na seguinte tabela:

Pontuações para cartões amarelos	
escalões	pontos por cartão
até 6	3
de 7 até 12	5
mais de 12	10

Pontuações por cartões vermelhos	
escalões	pontos por cartão
até 3	6
de 4 até 6	10
mais de 6	20

• o nome da equipa com melhor fair-play (isto é, com menor número de pontos de fair-play).