r进制霍夫曼编码

- ·每次求缩减信源时,求r个最小概率之和,即将r个概率最小的符号缩减为一个新符号,并分别用1,2,...r-1码元表示,直到最后一次缩减时,r个概率之和为1终止。
- ·新问题:缩减到最后时剩下不到r个符号了。
- •为保证平均码长最小,希望缩减到最后刚好还剩下r个符号。为达到此目的,可给信源添加几个无用的符号(概率为0的符号),使得添加符号后的信源符号数 q 满足:

$$q = (r-1)\theta + r$$
 信源缩减的次数

$$\begin{bmatrix} U \\ P_U \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & u_5 & u_6 \\ 0.32 & 0.22 & 0.18 & 0.16 & 0.08 & 0.04 \end{bmatrix}$$
 3进制霍夫曼编码。
码元集: $X=\{0, 1, 2\}$

$$q=(r-1)\theta+r=2\theta+3$$
 : $q=7$

符号 u _i	概率 P(u _i)	$\eta_c = \frac{H(U)}{\overline{l} \log r} = \frac{2.35}{1.58 \times \log 3} \approx 93.8\%$	码字 W_i	码长 l_i
u_1	0.32	2 (1.00)		
u_2	0.22	1		
u_3	0.18	2 (0.46)		
u_4	0.16	1 0		
u_5	80.0	2 (0.12)		
u_6	0.04	1 0 0		
<i>u</i> ₇	0.00	0		

 $\bar{l} = 0.32 \times 1 + 0.22 \times 1 + 0.18 \times 2 + 0.16 \times 2 + 0.08 \times 3 + 0.04 \times 3 = 1.58$ 码元/符号

符号串的霍夫曼编码

例:对如下DMS进行2进制霍夫曼编码,分别 对单个符号和二元符号串进行编码。

编

码

$$\begin{bmatrix} U \\ P_U \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \\ 0.45 & 0.35 & 0.20 \end{bmatrix} \quad H(U) = 1.518 \text{ bit/符号}$$

对单	$\begin{bmatrix} \pmb{U} \\ \pmb{P}_{\!U} \end{bmatrix}$	$=\begin{bmatrix} u_1 \\ 0.45 \end{bmatrix}$	$\begin{bmatrix} u_2 & u_3 \\ 0.35 & 0.20 \end{bmatrix} H(U) = 1.5$	18 bit/符号
个符	符号	概率		码字码长
付 号	u_1	0.45	1 (1.00)	
号进	u_2	0.35	(0.55)	
行编	U_3	0.20	0	

$$\overline{l} = \sum_{i=1}^{3} P(u_i) l_i = 0.45 \times 1 + 0.35 \times 2 + 0.20 \times 2 = 1.55$$
 码元/符号

$$\eta_c = \frac{H(U)}{\overline{l} \log r} = \frac{1.518}{1.55 \times \log 2} = 97.9\%$$

对二元符号串进行编码

$$\overline{l}_2 = \sum_{j=1}^9 P(\overline{u}_j) l_j = 3.0675 \, 码元/符号 \quad \eta_c = \frac{H(U^2)}{\overline{l}_2 \log r} = \frac{2 \times 1.518}{3.0675 \times \log 2} = 99.0\%$$