

Departamento de Matemáticas

Cálculo vectorial

Taller de clase: Integral de línea

Profesora: Lida Buitrago García - Noviembre de 2021

Ī		
Nombres:	G 110	
	Grupo: Calificación:	

- 1. [16 puntos]. Complete el enunciado indicando todos los procedimientos
 - a) PA1___. El campo gradiente de la función $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$ es:
 - b) RM1___. La función f(x,y)= tiene como campo gradiente a $\nabla f=\left\langle \frac{2x}{y},\frac{1-x^2}{y^2}\right\rangle$
 - c) SP1___. El trabajo realizado por la fuerza $\mathbf{F} = \langle xy^2, 2x^2y x \rangle$ sobre la línea que va del punto A(1,1) hasta B(2,3) es ____.
 - d) PA1___. El rotacional y la divergencia del campo $\mathbf{F}(x,y,z) = \langle 6x^2 + 2xy, 2y + x^2z, 4x^2y^3 \rangle$ en el punto P(1,-2,2) son: y , respectivamente.
- 2. [12 puntos]. RM2___. PA2___. Para el campo vectorial $\mathbf{F}(x,y,z) = \langle x^2 + y, y^2 + x, ze^z \rangle$
 - a) Muestre que **F** es conservativo.
 - b) Halle la función potencial f(x, y, z) tal que $\mathbf{F} = \nabla f$
 - c) Determine el trabajo realizado por el campo sobre la trayectoria que va por el eje X, desde el punto (1,0,0) a (0,0,0) seguido de la parábola $z=x^2,y=0$ desde (0,0,0) hasta (1,0,1) usando dos formas diferentes de cálculo.
- 3. [10 puntos]. RM2___. PA2___. Calcular la integral de línea $\int_C (y^2 \arctan x) dx + (3x + \sin y) dy$ si C es la frontera de la región limitada por la parábola $y = x^2$ y la recta y = 4. Usando dos formas diferentes.
- 4. [12 puntos]. RM2___. Dado un campo escalar f y un campo vectorial \mathbf{F} . Determinar si tiene sentido cada una de las expresiones, explicando el porque de la decisión. Si tiene sentido indicar si el resultado es un campo escalar o un campo vectorial.
 - a) **rot** (f)

 $e) \mathbf{rot} (\mathbf{rot} (\mathbf{F}))$

i) $\nabla (\operatorname{div}(\mathbf{F}))$

 $b) \operatorname{div}(\mathbf{F})$

 $f) \nabla f \times \operatorname{div} \mathbf{F}$

 $j) \nabla (\mathbf{rot}(\mathbf{F}))$

 $c) \nabla f$

 $g) \nabla \mathbf{F}$

k) div (div (\mathbf{F}))

d) div (grad (f))

 $h) \mathbf{rot} (\nabla f)$

l) div $(\mathbf{rot}(\nabla(f)))$

_