MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER

2021

Sachin Mehta Apple **Mohammad Rastegari** Apple

论文下载: https://arxiv.org/abs/2110.02178

官方源码 (Pytorch实现): https://github.com/apple/ml-cvnets

自己从ml-cvnets仓库中剥离的代码: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/MobileViT

对应博文: https://blog.csdn.net/qq_37541097/article/details/126715733

公众号: 阿喆学习小记

目录

- 0. 前言
- 1. 模型结构解析
 - 1.1 Vision Transformer结构简介
 - 1.2 MobileViT介绍
 - 1.3 Patch Size对性能的影响
- 2. 模型详细配置

前言

当前纯Transformer模型存在的问题

- > Transformer参数多,算力要求高
- > Transformer缺少空间归纳偏置
- > Transformer迁移到其他任务比较繁琐
- > Transformer模型训练困难

Row #	Model	Augmentation	# Params. \Downarrow	Top-1 ↑
R1	DeIT	Basic	5.7 M	68.7
R2	T2T	Advanced	4.3 M	71.7
R3	DeIT	Advanced	5.7 M	72.2
R4	PiT	Basic	10.6 M	72.4
R5	Mobile-former	Advanced	4.6 M	72.8
R6	PiT	Advanced	4.9 M	73.0
R7	CrossViT	Advanced	6.9 M	73.4
R8	MobileViT-XS (Ours)	Basic	2.3 M	74.8
R9	CeiT	Advanced	6.4 M	76.4
R10	DeIT	Advanced	10 M	75.9
R11	T2T	Advanced	6.9 M	76.5
R12	ViL	Advanced	6.7 M	76.7
R13	LocalVit	Advanced	7.7 M	76.1
R14	Mobile-former	Advanced	9.4 M	76.7
R15	PVT	Advanced	13.2 M	75.1
R16	ConViT	Advanced	10 M	76.7
R17	PiT	Advanced	10.6 M	78.1
R18	BoTNet	Basic	20.8 M	77.0
R19	BoTNet	Advanced	20.8 M	78.3
R20	MobileViT-S (Ours)	Basic	5.6 M	78.4

(b)

Figure 7: **MobileViT vs. ViTs** on ImageNet-1k validation set. Here, **basic** means ResNet-style augmentation while **advanced** means a combination of augmentation methods with basic (e.g., MixUp (Zhang et al., 2018), RandAugmentation (Cubuk et al., 2019), and CutMix (Zhong et al., 2020)).

前言

(a) Comparison	with light-	weight CNNs
----------------	-------------	-------------

Model	# Params. \Downarrow	Top-1 ↑	
MobileNetv1	2.6 M	68.4	
MobileNetv2	2.6 M	69.8	
MobileNetv3	2.5 M	67.4	
ShuffleNetv2	2.3 M	69.4	
ESPNetv2	2.3 M	69.2	
MobileViT-XS (Ours)	2.3 M	74.8	

(b) Comparison with light-weight CNNs (similar parameters)

Model	# Params. \Downarrow	Top-1 ↑
DenseNet-169	14 M	76.2
EfficientNet-B0	5.3 M	76.3
ResNet-101	44.5 M	77.4
ResNet-101-SE	49.3 M	77.6
MobileViT-S (Ours)	5.6 M	78.4

(c) Comparison with heavy-weight CNNs

Figure 6: MobileViT vs. CNNs on ImageNet-1k validation set. All models use basic augmentation.

移动端

Model	# Params. ↓	FLOPs ↓	Time ↓	Top-1 ↑
MobileNetv2 [†]	3.5 M	0.3 G	0.92 ms	73.3
DeIT	5.7 M	1.3 G	10.99 ms	72.2
PiT	4.9 M	0.7 G	10.56 ms	73.0
MobileViT (Ours)	2.3 M	0.7 G	7.28 ms	74.8

Table 3: ViTs are slower than CNNs. †Results with multi-scale sampler (§B).

Vision Transformer

(a) Standard visual transformer (ViT)

$$c1 = WHC$$

$$c2 = \frac{WHC}{4}$$

Patch Size影响

(a) Classification @ 256×256

(b) Detection @ 320×320

(c) Segmentation @ 512×512

对语义细节要求逐渐提高

- ➤ MobileViT-S(small)
- ➤ MobileViT-XS(extra small)
- ➤ MobileViT-XXS(extra extra small)

对于MobileViT-XXS, Layer1~5的详细配置信息如下:

layer	/out_channels	mv2_exp	transformer_channels	ffn_dim	patch_h	patch_w	num_heads
layer1	16	2	None	None	None	None	None
layer2	24	2	None	None	None	None	None
layer3	48	2	64	128	2	2	4
layer4	64	2	80	160	2	2	4
layer5	80	2	96	192	2	2	4

对于MobileViT-XS, Layer1~5的详细配置信息如下:

layer	/out_channels	mv2_exp	transformer_channels	ffn_dim	patch_h	patch_w	num_heads
layer1	32	4	None	None	None	None	None
layer2	48	4	None	None	None	None	None
layer3	64	4	96	192	2	2	4
layer4	80	4	120	240	2	2	4
layer5	96	4	144	288	2	2	4

对于MobileViT-S, Layer1~5的详细配置信息如下:

layer	/out_channels	mv2_exp	transformer_channels	ffn_dim	patch_h	patch_w	num_heads
layer1	32	4	None	None	None	None	None
layer2	64	4	None	None	None	None	None
layer3	96	4	144	288	2	2	4
layer4	128	4	192	384	2	2	4
layer5	160	4	240	480	2	2	4