

연속공정에서의 공장 에너지 수요 분석 및 예측모델

Presenter Kwanyeong Lee

Emails: lcy6297305@gmail.com

Feb 8, 2023

CONTENTS

01

- 연구개요
- 연구 배경
- 연구 목표

02

데이터 분석

- EDA
- 스펙트럼 분석
- 시계열 구조
- 데이터 전처리 모델링

03

모델링 및 분석결과

- 예측 모델링 및 성능평가
- 결론

2023년 한국통신학회 동계종합학술발표회

2023년 한국통신학회 동계종합학술발표회

01 연구 개요

출처: 펄프/제지 산업용 엔코더 및 센서 , Leine &Linde AB

1. 에너지 모니터링

- ICT 장치를 통한 실시간 계측.공장 전체 에너지 모니터링 및 데이터 수집
- 이상 상황 경보,즉각적 대응력 강화

2. 다각적 현황 분석

- 에너지 소비 및 제품 생산, 환경 현황 등 다각적 분석
- 원단위, 효율, 원가 등 성능지표 제공 개선점 발굴 및 문제 원인 분석

5. 최적화

- 에너지비용 및 온실가스배출 최소화
- 에너지 생산/소비 최적화

4. 시뮬레이션

생산 일정계획 변경, 설비교체 개선 활동에 대한 효과 시뮬레이션

FEMS

프로세스

에너지 소비 변동에 대한 시뮬레이션

5. 에너지 수요 예측

- 전설비 및 센서 계측 데이터, 과거 데이터 환경변화, 조업계획 등 정보 통합 및 분석
- 에너지 생산/소비량 예측, 에너지 사용 기준 수립 및 효율 향상 방안 마련

에너지 수요 예측 모델링

출처:wikipedia, 시계열(Time Series)

출처: 에너지로 바꾸는 세상, 임춘택 외 6인

2023년 한국통신학회 동계종합학술발표회

02 데이터 분석

시간별 전력사용량

시간별 평균 전력사용량(kWh)

EDA 분석결과 : 해당 공정은 24시간 풀가동중인 **연속공정** 상태임

시간대별 비중

비중(%)

hour	
0	3.98%
1	4.14%
2	4.18%
3	4.00%
4	3.98%
5	4.44%
6	4.02%
7	4.08%
8	4.53%
9	4.47%
10	4.19%
11	4.17%
12	4.18%
13	4.19%
14	4.15%
15	4.17%
16	4.17%
17	4.19%
18	4.18%
19	4.18%
20	4.15%
21	4.14%
22	4.09%
23	4.03%

시계열 구조

Original

Decomposed

Trend + Seasonality + Residual

스펙트럼 분석

스펙트럼 분석결과 : 2주 단위 이상의 스펙트럼에서 예측의 유의미한 결과를 나타냄

2-4 데이터 전처리 모델링

Time Series Cross Validation

월 단위로 Cross validation 시행

● 성능 평가 지수

$$1 - MAPE(\%) = 1 - \frac{1}{N} \sum_{i=1}^{n} \frac{|true_i - predict_i|}{true_i}$$

- 예측모델 라이브러리

- 예측모델링

모델링 및 분석결과

2023년 한국통신학회 동계종합학술발표회

03 모델링 및 분석결과

3-1 이동 평균선(Moving Average) 모델

Moving Average

LSTM 모델

3-3 잡음신호를 처리한 적층형 하이브리드 [2023년 한국통신학회

적층형 하이브리드(Stacked Hybrid) 모델

FFT 적용된 적층형 하이브리드

DWT 적용된 적층형 하이브리드

예측모델 정확도(%)

- 기대효과

보다 정확한 예측모델 구현

제조공정 안정화 → 에너지의 안정적인 수급 가능 → 공정최적화 및 품질개선에 기여

설비고장 이상탐지 예측 및 예지보전 → 작업시간 손실율(Loss) 절감

2023년 한국통신학회 동계종합학술발표회

Electronics and Telecommunications Research Institute

THANK YOU