Correction du TD N°1

Algorithmes itératifs

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

Séquence-1:

For i = 1 to N do

Opération;

Endfor

Nombre d'exécution de l'opération: n fois

La complexité est

O(n)

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

```
Séquence-2 :

For i = 1 to N do

For j = 1 to i do

Opération ;

Endfor

Séquence-2 :

Nombre d'exécution de l'opération: n*n fois

La complexité est

O(n^2)

Endfor
```

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

Séquence-3:

i=1;

While (i < N) Do

i = 2*i;

Opération;

Endwhile

$$N=2=2^1 \rightarrow 1$$
 opération

 $N=4=2^2 \rightarrow 2$ opérations

 $N=8=2^3 \rightarrow 3$ opérations

$$N=16=2^4 \rightarrow 4$$
 opérations

$$N=32=2^5 \rightarrow 5$$
 opérations

$$N=64=2^6 \rightarrow 6$$
 opérations

$$N=2^a$$
 a: nombre d'opérations $a=log_2(N)$

La complexité est $O(log_2(n))$

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

Séquence-4 : For i = 1 To N Do

```
For i = 1 To N Do J=1; While (J < N ) Do J=2*J; O(log_2(n)) Opération; Endwhile O(nlog_2(n))
```

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de

```
chaque séquence
```

Séquence-5:

```
i = 1;
While ( i < N ) Do
i = 2*i;
For j = 1 to i Do
Opération;
```

Endwhile

```
N=2 =2<sup>1</sup>-> 2 opérations
                                   Nombre de
                                   termes
N=3 -> 2+4 opérations 2
                                           3
N=4 = 2^2 -> 2+4 \text{ opérations} 2
                                           2
N=5 ->2+4+8 opérations
N=6 ->2+4+8 opérations
N=7 ->2+4+8 opérations
                                              2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N=8 = 2^3 - 2 + 4 + 8 opérations
N=16=2^4->2+4+8+16 opérations
N=32=2^5 -> 2+4+8+16+32 opérations
     =2<sup>k</sup>-> 2+4+8+16+32+....+N opérations
                                              k:nbr_termes
suite géométrique: 2+(2*2)+(2*4)+(2*8)+(2*16)+...+(2*n)
```

- raison q=2
- $U_0=2$
- nombre de termes= $log_2(n)$

$$U_0 \frac{1 - q^{nbr_termes}}{1 - q}$$

$$=>2\frac{1-2^{\log(n)}}{1-2} \cong O(2^{\log_2(n)})$$

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

Séquence-6:

i = 1

For j=1 To n do

i = 2*i

Endfor

For j=1 to i do

Opération;

Endfor

N=2 ->
$$i=2*2=4 => 2^2$$
 opération

N=3 ->i=
$$2*2*2=8=>2^3$$
 opérations

$$N=4$$
 -> $i=2*2*2*2=16 => 2^4$ opérations

N=5 ->
$$i=2*2*2*2*2=32 => 2^5$$
 opérations

 $O(2^{n})$

Exercice 2: Déterminer (en fonction de n à O() près) la complexité en nombre « d'opérations » de chaque séquence

Séquence-7:

For
$$k = 1$$
 to n do
$$i = 1$$
For $j = 1$ to k do
$$i = 2*i$$
Endfor
For $j = 1$ to i do
Opération
Endfor

Endfor

N=1 ->k=1 => 2 opérations
N=2 -> (k=1,k=2)=> 2+4 opérations
N=3 -> (k=1,k=2,k=3)=> 2+4+8 opérations
N=4 -> (k=1,k=2,k=3,k=4)=> 2+4+8+16 opérations
N=5 -> (k=1,k=2,k=3,k=4,k=5)=> 2+4+8+16+32 opérations
N =>
$$2^1 + 2^2 + 2^3 + 2^4 + \cdots + 2^n$$
 opérations

$$U_0 \frac{1 - q^{nbr_termes}}{1 - q}$$

$$2(2^{0} + 2^{1} + 2^{2} + \dots + 2^{n-1}) = 2 * 1 * \frac{1-2^{n}}{1-2} = 2(2^{n} - 1)$$

suite géométrique de raison 2

$$=2^{n+1}-2 \qquad \cong O(2^n)$$