1. $\forall x, y \in M$.

By the definition of M, f(x) = f(y).

Because *S* is a convex set, $\forall \theta \in [0,1], \theta x + \bar{\theta} y \in S = dom f$.

Because f is convex, $f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y) = f(x)$.

By the definition of M, f(x) is the global minima of f.

Thus, $f(\theta x + \bar{\theta} y) \ge f(x)$.

So $f(\theta x + \bar{\theta} y) = f(x)$.

Namely, $\theta x + \bar{\theta} y \in M.M$ is a convex set.

2. Suppose that $\exists \alpha \in [0, \theta_0]$ such that $f(\alpha x + \bar{\alpha} y) < \alpha f(x) + \bar{\alpha} f(y)$.

Apparently, there exists $\beta \in [0,1]$, such that $\theta_0 x + \overline{\theta_0} y = \beta(\alpha x + \overline{\alpha} y) + \overline{\beta} y$.

Because f is a convex function, $f(\theta_0 x + \overline{\theta_0} y) \le \beta f(\alpha x + \overline{\alpha} y) + \overline{\beta} f(y)$.

But
$$f(\theta_0 x + \overline{\theta_0} y) = \theta_0 f(x) + \overline{\theta_0} f(y) > \beta f(\alpha x + \overline{\alpha} y) + \overline{\beta} f(y)$$
.

It's a contradiction.

So the supposition is false. There doesn't exist such α .

Namely, the conclusion holds for all $\theta \in [0,1]$.

- 3. (a) convex
 - (b) convex
 - (c) neither
 - (d) neither
 - (e) convex, when $\alpha = 1$

Neither, when $\alpha < 1$

4. $\forall x_i, y_i, i = 1,2 \text{ and } \theta \in [0,1].$

Because f_1 and f_2 are strictly convex,

$$f_1(\theta x_1 + \bar{\theta} x_2) < \theta f_1(x_1) + \bar{\theta} f_1(x_2)$$
 and $f_2(\theta y_1 + \bar{\theta} y_2) < \theta f_2(y_1) + \bar{\theta} f_2(y_2)$.

So
$$f_1(\theta x_1 + \bar{\theta} x_2) + f_2(\theta y_1 + \bar{\theta} y_2) < \theta f_1(x_1) + \bar{\theta} f_1(x_2) + \theta f_2(y_1) + \bar{\theta} f_2(y_2)$$

Namely,
$$f(\theta x_1 + \bar{\theta} x_2, \theta y_1 + \bar{\theta} y_2) < \theta f(x_1, y_1) + \bar{\theta} f(x_2, y_2)$$
.

So, f is convex.

Specially,
$$H(x_1^2 + x_2^4) = {2 \over 0} {0 \over 12x_2^2}$$
 is a definite matrix.

So
$$f(x_1, x_2) = x_1^2 + x_2^4$$
 is strictly convex.

5.

 $\forall x < y \text{ and } \theta \in [0, 1].$ $\theta[f(x) - f(\theta x + \bar{\theta} y)] = \theta \nabla f(\delta_1)(\theta x + \bar{\theta} y - x)...*1$, where $\delta_1 \in [x, \theta x + \bar{\theta} y]$

And $\bar{\theta}[f(\theta x + \bar{\theta}y) - f(y)] = \bar{\theta}\nabla f(\delta_2)(y - \theta x - \bar{\theta}y)$...*2, where $\delta_2 \in [\theta x + \bar{\theta}y, y]$. Let *1-*2.

$$\theta f(x) + \bar{\theta} f(y) - f(\theta x + \bar{\theta} y) = \theta \nabla f(\delta_1)(\theta x + \bar{\theta} y - x) - \bar{\theta} \nabla f(\delta_2)(\theta x + \bar{\theta} y - y)$$
$$= 2\theta \bar{\theta} < (\nabla f(\delta_1) - \nabla f(\delta_2)), (x - y) >$$

Because
$$< (\nabla f(\delta_1) - \nabla f(\delta_2)), (\delta_1 - \delta_2) > \ge 0, < (\nabla f(\delta_1) - \nabla f(\delta_2)), (x - y) > \ge 0.$$

Thus, $\theta f(x) + \bar{\theta} f(y) - f(\theta x + \bar{\theta} y) \ge 0$. f is convex.

→:

The above process is reversible.