Ciencia de Datos e Inteligencia de Negocios

Índices de Similitud o Similaridad

Los índices de similitud o similaridad, son medidas que se calculan para determinar qué tan similar es un vector o conjunto de datos con otro. Los índices de similaridad o similitud dependen mucho del tipo de datos que se están modelando.

1. Datos binarios

Para datos binarios, se debe de considerar que las medidas de similitud propuestas hasta ahora, parte de los conteos que se muestran en la siguiente tabla:

Esta matriz de generalmente es llamada matriz de confusión y esta implementada en la paquetería de python sklearn.

from sklearn.metrics import confusion_matrix

a. Emparejamiento simple
 El emparejamiento esta implementado en Python en la paquetería sklearn.
 Ejemplo:

```
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 1, 0, 1, 0, 0]
>>> y_true = [1, 1, 1, 0, 0, 0]
```

```
>>> accuracy_score(y_true, y_pred)
>>> accuracy_score(y_true, y_pred, normalize=False)
```

b. Jaccard
 El índice de Jaccard se encuentra en la paquetería sklearn en Python.
 Ejemplo 1: Sklearn

```
>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 1, 0, 1, 0, 0]
>>> y_true = [1, 1, 1, 0, 0, 0]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2
```

Ejemplo 2: Scipy from scipy.spatial.distance import jaccard jaccard(u, v)

c. Dice

Ejemplo 1: Scipy from scipy.spatial.distance import dice dice(u, v)

d. Kulczynski

Ejemplo 1: Scipy from scipy.spatial.distance import kulsinski kulsinski (u, v)

e.

2. Datos Multiestado

from sklearn.metrics import confusion_matrix y_true = [2, 0, 2, 2, 0, 1] y_pred = [0, 0, 2, 2, 0, 2] confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]])

a. Emparejamiento simple

```
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
>>> accuracy_score(y_true, y_pred, normalize=False)
```

b. Jaccard

```
>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
```

c.

- 3. Datos Cuantitativos
 - a. Distancia EuclideanaEjemplo 1: Numpy

```
import numpy as np
a = np.array([1,2,3])
b = np.array([2,3,4])
dist = numpy.linalg.norm(a-b)
```

Ejemplo 2: Sklearn

```
>>> from sklearn.metrics.pairwise import euclidean_distances
```

>>> # distance between rows of X

>>> euclidean_distances(X, X)

>>> # get distance to origin

>>> euclidean_distances(X, [[0, 0]])

Ejemplo 3: Scipy

from scipy.spatial.distance import euclidean euclidean(u,v)

b. Coeficiente de Pearson

Ejemplo 1: Scipy

#Find a correlation

>>> from scipy.stats.stats import pearsonr

The dependent variable

The independent variable

#First value is the r-value, 2nd is the p-value

>>> pearsonr(x,y)

(0.98139984935586166, 0.0030366388199721478)

c. Bray-Curtis

Ejemplo 1: Scipy

from scipy.spatial.distance import braycurtis braycurtis(u, v)

d. Minkowski

Ejemplo 1: Scipy

from scipy.spatial.distance import minkowski minkowski(u, v)

e.

f.