Д.В.Карпов

Алгебра. Глава 3. Многочлены.

Д.В.Карпов

2025

- 1) Кольцо многочленов над K состоит из бесконечных последовательностей $(a_0, \ldots, a_n, \ldots)$ с коэффициентами из K, в которых лишь конечное число ненулевых коэффициентов.
- 2) Сложение многочленов покоэффициентное:

$$(a_0,\ldots,a_n,\ldots)+(b_0,\ldots,b_n,\ldots):=(a_0+b_0,\ldots,a_n+b_n,\ldots).$$

3) Определим умножение многочленов:

$$(a_0,\ldots,a_n,\ldots)\cdot(b_0,\ldots,b_n,\ldots)=(c_0,\ldots,c_n,\ldots)$$
, где $c_n=\sum\limits_{i=0}^n a_ib_{n-i}.$

- 4) Степень многочлена $f = (a_0, ..., a_n, ...)$ это максимальный номер ненулевого коэффициента (обозначение: $\deg(f)$). Отдельно определим степень многочлена
- $0 := (0, \ldots, 0, \ldots)$: положим $\deg(0) := -\infty$. Если $\deg(f) = n \in \mathbb{N}_0$, то a_n называется старшим коэффициентом f.
- Если $f = (a_0, ..., a_n, ...)$ и $\deg(f) < n$, часто применяется запись $f(t) = a_n t^n + \cdots + a_1 t + a_0$, где $t - \phi$ ормальная переменная. Кольцо многочленов над кольцом K обозначается через K[t], где t — переменная.

Алгебра, Глава 3. Многочлены.

Д. В. Карпов

Д. В. Карпов

Свойство 1

 $\deg(fg) \leq \deg(f) + \deg(g)$. Если K — кольцо без делителей 0, $\tau o \deg(fg) = \deg(f) + \deg(g).$

Доказательство. • Если один из многочленов f и g равен 0, то несложно проверить, что произведение также равно 0. Тогда $\deg(fg) = -\infty = \deg(f) + \deg(g)$ (так как $-\infty$ при сложении с любой возможной степенью даст $-\infty$).

- \bullet Пусть $\deg(f) = n$, $\deg(g) = m$, где $m, n \in \mathbb{N}_0$. $f = (a_0, \ldots, a_s, \ldots), g = (b_0, \ldots, b_s, \ldots)$ u $fg = (c_0, \ldots, c_s, \ldots).$
- ullet При k>n+m имеем $c_k=(\sum_{i=0}^n a_i b_{k-i})+(\sum_{i=n+1}^n a_i b_{k-i})=0.$

(В первой сумме k-i>m, поэтому $b_{k-i}=0$. Во второй сумме i > n, поэтому $a_i = 0$.)

- Значит, $\deg(fg) \leq \deg(f) + \deg(g)$.
- $c_{n+m} = (\sum_{i=0}^{n-1} a_i b_{n+m-i}) + a_n b_m + (\sum_{i=n+1}^{n+m} a_i b_{n+m-i}) = a_n b_m \neq 0,$

если K — без делителей 0. В этом случае $\deg(fg) = m + n$.

• (В первой сумме n + m - i > m, поэтому $b_{n+m-i} = 0$. Во второй сумме i>n, поэтому $a_i=0$.)

 $\deg(f+g) \leq \max(\deg(f),\deg(g))$. Если $\deg(f) \neq \deg(g)$, то $\deg(f+g) = \max(\deg(f), \deg(g)).$

Доказательство. • $f = (a_1, ..., a_n, ...), g = (b_1, ..., b_n, ...).$

- При $k > \max(\deg(f), \deg(g))$ имеем $a_k = b_k = 0$, а значит и $a_k + b_k = 0$. Следовательно, $\deg(f + g) \leq \max(\deg(f), \deg(g))$.
- ullet Пусть HУО $\deg(f)=n>\deg(g)$. Тогда $a_n+b_n=a_n+0
 eq 0$, а значит, в этом случае $\deg(f+g)=n$.

Теорема 1

Пусть K — коммутативное кольцо. Тогда K[t] — тоже коммутативное кольцо. Если при этом K — кольцо c 1, то K[t]тоже с 1.

Доказательство. Ассоциативность и коммутативность сложения в K[t] следуют из ассоциативности и коммутативности сложения в K (так как сложение покоэффициентное).

Ноль. Несложно проверить, что многочлен 0 будет нолем в K[t].

Обратный элемент по сложению. Для $f = (a_0, \ldots, a_n, \ldots)$ положим $-f:=(-a_0,\ldots,-a_n,\ldots)$.

Коммутативность умножения. Пусть
$$f=(a_0,\ldots,a_n,\ldots,)$$
 и $g=(b_0,\ldots,b_n,\ldots,)$, $fg=(d_0,\ldots,d_n,\ldots)$ и $gf=(d'_0,\ldots,d'_n,\ldots)$. Тогда $d_n=\sum\limits_{i=0}^n a_ib_{n-i}=\sum\limits_{j=0}^n b_ja_{n-j}=d'_n$.

$$(f+g)h=(d_o,\ldots,d_n,\ldots,), \ fh=(p_0,\ldots,p_n,\ldots,)$$
 и $gh=(q_0,\ldots,q_n,\ldots,).$ Тогда $d_n=\sum\limits_{i=0}^n(a_i+b_i)c_{n-i}=(\sum\limits_{i=0}^na_ic_{n-i})+(\sum\limits_{i=0}^nb_ic_{n-i})=p_n+q_n,$ а это коэффициент многочлена $fh+gh.$

Дистрибутивность. Пусть $h = (c_0, ..., c_n, ...,),$

Ассоциативность умножения. Пусть
$$fg = (d_0, \ldots, d_n, \ldots)$$
 и $(fg)h = (p_0, \ldots, p_n, \ldots)$. Тогда
$$p_n = \sum_{k=0}^n d_k c_{n-k} = \sum_{k=0}^n (\sum_{i=0}^k a_i b_{k-i}) c_{n-k} = \sum_{i,j,\ell \in \mathbb{N}_0, \ i+j+\ell=n} a_i b_j c_\ell.$$

При другом порядке скобок, очевидно, получится то же самое.

Единица. Если существует $1 \in K$, то несложно проверить, что $1 := (1,0,\ldots,0,\ldots)$ — единица в K[t].

Константы

Лемма 1

Пусть K — коммутативное кольцо, $\varphi: K \to K[t]$ задано формулой $\varphi(c):=(c,0,0,\dots)$. Тогда φ — мономорфизм колец.

Доказательство. • Пусть $a,b \in K$. Тогда $\varphi(a+b) = (a+b,0,\dots,0,\dots) = (a,0,\dots,0,\dots) + (b,0,\dots,0,\dots) = \varphi(a) + \varphi(b).$

• $\varphi(ab) = (ab, 0, \dots, 0, \dots)$, a $\varphi(a)\varphi(b) = (a, 0, \dots, 0, \dots) \cdot (b, 0, \dots, 0, \dots) =: (c_0, c_1, \dots)$.

Тогда $c_0=a_0b_0$, а при n>0 имеем $c_n=\sum\limits_{i=0}a_ib_{n-i}=0$, так как каждое слагаемое равно 0 (если i>0, то $a_i=0$, иначе $b_{n-i}=0$). Значит, $\varphi(ab)=\varphi(a)\varphi(b)$.

- ullet Таким образом, arphi гомоморфизм.
- ullet Пусть $a\in {
 m Ker}(arphi)$, Тогда $(a,0,\dots)=arphi(a)=(0,0,\dots)$, значит, a=0.

- Нетрудно проверить, что для $a \in K$ и $f = (b_0, b_1, \dots)$ выполнено $(a, 0, 0 \dots) \cdot (b_0, b_1, \dots) = (ab_0, ab_1, \dots)$. Мы будем обозначать такой многочлен af и говорить, что он получен из f умножением на константу.
- ullet Далее будем рассматривать случай, когда K поле (то есть, многочлены с коэффициентами из поля).

Лемма 2

Если K — поле, то обратимые элементы K[t] — это в точности ненулевые константы.

Доказательство. • Пусть $f,g\in K[t]$, fg=1. Тогда $0=\deg(1)=\deg(f)+\deg(g)$, откуда следует $\deg(f)=\deg(g)=0$, то есть, f и g — ненулевые константы.

• Наоборот, если $a \in K$, $a \ne 0$, то существует $a^{-1} \in K$. Числам a и a^{-1} соответствуют взаимно обратные многочлены-константы в K[t].

Пусть $f,g\in K[t]$, K — поле. Будем говорить, что f и g ассоциированы, если f=cg, где $c\in K$, $c\neq 0$ (обозначение: $f\sim g$).

Лемма 3

Ассоциированность — отношение эквивалентности.

Доказательство. Рефлексивность. $f=1\cdot f$, значит, $f\sim f$.

Симметричность. Пусть $f\sim g$, тогда $\exists a\in K$, $a\neq 0$, такое, что f=ag. Тогда $g=a^{-1}f$, а значит, $g\sim f$.

Транзитивность. Пусть $f \sim g$ и $g \sim h$, тогда $\exists a, b \in K$ такие, что f = ag и g = bh. Тогда f = ag = (ab)h, а значит, $f \sim h$.

- ullet Если $f,g\in K[t]$ и $f\sim g$, то $\deg(f)=\deg(g)$.
- $-f = (-1) \cdot f$, следовательно, $(-f) \sim f$.

Теорема 2

подходит q=0 и r=f.

Пусть K — поле, $f,g \in K[t]$, причем $g \neq 0$. Тогда существуют единственные такие $q,r \in K[t]$, что f = gq + r и $\deg(r) < \deg(g)$.

• Многочлен r из этого представления называется остатком от деления f на g.

Доказательство. Пусть $\deg(f) = n$, $\deg(g) = m$, $f(t) = a_n t^n + \dots + a_0$ и $g(t) = b_m t^m + \dots + b_0$. \exists . \bullet Индукция по $\deg(f)$. База для случая n < m: тогда

Переход. • Пусть $n \ge m$ и для многочленов степени менее n утверждение доказано.

- ullet Так как $f_1(t)=f(t)-rac{a_n}{b_m}t^{n-m}\cdot g(t)$ имеет степень $\deg(f_1)< n$, по индукционному предположению, $f_1=q_1g+r$, где $\deg(r)< m$.
- ullet Тогда $f(t)=(q_1(t)+rac{a_n}{b_m}t^{n-m})\cdot g(t)+r(t)$ искомое представление для f .

- ullet Пусть $q_1
 eq q_2$. Тогда $\deg(q_2-q_1) \in \mathbb{N}_0$ и $\deg((q_2-q_1)g) = \deg(q_2-q_1) + \deg(g) \geq m$. С другой стороны, $\deg(r_1-r_2) \leq \max(\deg(r_1),\deg(r_2)) < m$, противоречие.
- ullet Значит, $q_1=q_2$, тогда и $r_1=r_2$.

Делимость многочленов

Определение

Пусть K — поле, $f,g\in K[t]$, $g\neq 0$. Говорят, что f делится на g (обозначение f:g), если существует такой $h\in K[t]$, что f=gh.

Свойство 1

Eсли f : g и g : h, то f : h.

Доказательство. Тогда f=pg и g=qh, где $p,q\in K[t]$, откуда следует f=(pq)h.

Свойство 2

Пусть $f,g \ \vdots \ h$, a $p,q \in K[t]$. Тогда $fp+gq \ \vdots \ h$.

Доказательство. Тогда f=ah и g=bh, где $a,b\in K[t]$, откуда следует fp+gq=(ap+bq)h.

Свойство 3

Пусть $f,g\in K[t]$, f
eq 0, f
eq g. Тогда $\deg(f)\geq \deg(g)$.

Доказательство. Тогда f=gh, где $h\in K[t]$, причем понятно, что $h\neq 0$. Следовательно, $\deg(f)=\deg(g)+\deg(h)\geq \deg(g)$.

Свойство 4

Пусть $f,g\in K[t]$, $f,g\neq 0$, $f\nmid g$ и $\deg(f)=\deg(g)$. Тогда $f\sim g$.

Доказательство. ullet Тогда f=gh, где $h\in K[t]$, и $\deg(g)=\deg(f)=\deg(g)+\deg(h)$.

ullet Следовательно, $\deg(h) = 0$, значит, $h \in K$, $h \neq 0$, то есть, $f \sim g$.

4日 → 4周 → 4 目 → 4 目 → 9 Q P

Свойство 5

Пусть $f,g\in K[t]$, f,g
eq 0, $f\stackrel{.}{\cdot} g$ и $g\stackrel{.}{\cdot} f$. Тогда $f\sim g$.

Доказательство. Тогда $\deg(f) \geq \deg(g)$ и $\deg(g) \geq \deg(f)$. Следовательно, $\deg(f) = \deg(g)$. По Свойству 4, $f \sim g$.

Идеалы в кольце многочленов над полем.

Теорема 3

Пусть K — поле, а I — Идеал в K[t]. Тогда I=dK[t] для некоторого $d\in K[t]$.

Доказательство. ullet Если $I=\{0\}$, то подойдет d=0.

- Пусть $I \neq \{0\}$. Тогда рассмотрим все ненулевые многочлены из I и найдем из них многочлен наименьшей степени d.
- ullet Докажем, что все многочлены из I делятся на d (тогда I=dK[t]).
- ullet Пусть $f \not \mid d$, тогда поделим f на d с остатком: f = qd + r, $\deg(r) < \deg(d)$, $r \neq 0$.
- ullet Так как $f,d\in I$, мы имеем $r=f-dq\in I$. Противоречие с минимальностью $\deg(d)$.

Пусть K — поле, $f_1, \ldots, f_n \in K[t]$. Тогда $\mathrm{OD}(f_1, \ldots, f_n)$ — это множество всех многочленов, являющихся общими делителями f_1, \ldots, f_n , а их $HOД(f_1, \ldots, f_n))$ — это любой многочлен наибольшей степени из $OD(f_1, \ldots, f_n)$.

- Мы докажем, что многочлены наибольшей степени в $\mathrm{OD}(f_1,\ldots,f_n)$ — это в точности множество попарно ассоциированных многочленов.
- В таком случае нам все равно, какой из них считать НОДом, для удобства будем считать НОДом любой из них. Запись $(f_1,\ldots,f_n)=d$ в этом случае следует понимать так: НОД любой из многочленов, ассоциированных с d.

Определение

Линейное представление НОД — это представление вида $(f_1,\ldots,f_n)=p_1f_1+p_2f_2+\cdots+p_nf_n$, где $p_1,\ldots,p_n\in K[t]$.

• Если найти линейное представление любого НОД, то найдутся и линейные представления всех остальных (мы докажем, что все НОД попарно ассоциированы).

Д. В. Карпов

- 1) Существует линейное представление (f_1, \ldots, f_n) .
- 2) $\mathrm{OD}(f_1,\ldots,f_n)$ состоит из всех делителей (f_1,\ldots,f_n) .
- 3) Все НОД f_1, \ldots, f_n попарно ассоциированы.

Доказательство. 1) • Пусть $I = \langle f_1, \dots, f_n \rangle$ (напомним, что это идеал, состоящий из всех линейных комбинаций f_1, \dots, f_n).

- ullet По Теореме 3, I=dK[t] для некоторого многочлена $d\in K[t].$
- ullet Так как $f_1,\ldots,f_n\in I$, все они делятся на d. Значит, $d\in \mathrm{OD}(f_1,\ldots,f_n).$
- ullet Так как $d\in I$, существует представление $d=p_1f_1+\cdots+p_nf_n.$
- ullet Пусть $g\in \mathrm{OD}(f_1,\ldots,f_n)$. Тогда $d\in g$, следовательно, $\deg(d)\geq \deg(g)$.
- Следовательно, d многочлен наибольшей степени в $\mathrm{OD}(f_1,\ldots,f_n)$, то есть, HOД этих многочленов.
- 2) Выше доказано, что d делится на все ненулевые многочлены из $\mathrm{OD}(f_1,\ldots,f_n)$.

- 3) ullet Пусть $g\in \mathrm{OD}(f_1,\ldots,f_n)$ и $\deg(g)=\deg(d)$. Тогда по Свойству 4 делимости многочленов $d\sim g$.
- Наоборот, если $g\sim d$, то, очевидно, $g\in I$. Множество кратных d совпадает с множеством кратных g, поэтому, I=gK[t] и все доказанное выше для d верно и для g.
- Следовательно, НОДы f_1, \dots, f_n это в точности все многочлены, ассоциированные с d.

Свойство 1

Если $f,g,h \in K[t]$, то $(fh,gh) \sim (f,g)h$.

Доказательство. • Пусть $I = \langle f, g \rangle$ и $I_h = \langle fh, gh \rangle$. Первый идеал состоит из линейных комбинаций f и g, а второй — из линейных комбинаций fh и gh.

- ullet Следовательно, $p\in I\iff p=qf+rg\iff ph=q(fh)+r(gh)\iff ph\in I_h$ (здесь $q,r\in K[t]$).
- Поэтому, если I = dK[t], то $I_h = (dh)K[t]$. Остается заметить, что (f,g) = d и (fh,gh) = dh.

Доказательство. Пусть $I = \langle f, g \rangle$. Так как f : g, то все линейные комбинации f и g — это в точности все кратные gмногочлены. Значит, I = gK[t].

Свойство 3

Если $f, g, h, p \in K[t]$ и h = f + pg, то $(f, g) \sim (h, g)$.

Доказательство. • Пусть $I_f = \langle f, g \rangle$ и $I_h = \langle h, g \rangle$.

- Так как h = f + pg, линейная комбинация h и g является линейной комбинацией f и g. Следовательно, $I_f \supset I_h$.
- Так как f = h pg, аналогично получаем $I_h \supset I_f$. Значит, $I_f = I_h = dK[t]$. Теперь из Теоремы 4 ясно, что $(f,g) \sim d \sim (h,g).$
- Теорема 4 не помогает найти линейное представление НОД двух многочленов. А помогает алгоритм Евклида, который, как и для целых чисел, состоит в последовательном делении с остатком.
- Последний остаток (на который разделится предыдущий) и будет НОДом по Свойствам 2 и 3. ◆□ → ◆□ → ◆□ → □ → ○○○

3. Многочлены.

Д. В. Карпов

- Евклида назад, мы получим линейное представление НОД.
 С помощью следующей леммы строится линейное
- Лемма 4

Пусть
$$n\geq 2,\; f_1,\ldots,f_n\in K[t].$$
 Положим $d_2=(f_1,f_2),$ $d_3=(d_2,f_3),\;\ldots,\;d_n=(d_{n-1},f_n).$ Тогда $d_n=(f_1,\ldots,f_n).$

представление НОД нескольких многочленов.

Доказательство. ullet Индукцией по k докажем, что $\mathrm{OD}(f_1,\ldots,f_k)$ — все делители d_k .

- \bullet База k=2 доказана в Теореме 4.
- Переход $k \to k+1$. $\mathrm{OD}(f_1,\dots,f_k,f_{k+1})$ это все многочлены из $\mathrm{OD}(f_1,\dots,f_k)$, являющиеся делителями f_{k+1} .
- ullet Так как $\mathrm{OD}(f_1,\dots,f_k)$ это все делители d_k , получаем, что $\mathrm{OD}(f_1,\dots,f_k,f_{k+1})=\mathrm{OD}(d_k,f_{k+1})$, а это все делители $d_{k+1}=(d_k,f_{k+1})$ по Теореме 4.
- Итак, утверждение доказано и $\mathrm{OD}(f_1,\ldots,f_n)$ это все делители d_n . Наибольшую степень из них имеет d_n , значит, $d_n=(f_1,\ldots,f_n)$.

Пусть K — поле, $f_1, \ldots, f_n \in K[t]$

- 1) Многочлены f_1,\ldots,f_n взаимно просты, если $(f_1,\ldots,f_n)\sim 1.$
- 2) Многочлены f_1, \dots, f_n попарно взаимно просты, если любые два из них взаимно просты.

Свойство 1

Если $f,g,h\in K[t]$ и $(f,g)\sim 1$, то $(fh,g)\sim (h,g)$.

Доказательство. \bullet Пусть p=(h,g) и q=(fh,g).

- ullet Из $h \ \dot{\ } p$ следует, что $fh \ \dot{\ } p$. Значит, $p \in \mathrm{OD}(fh,g)$ и по Теореме 4 $q \ \dot{\ } p$.
- ullet Из $g \ \dot{} \ q$ следует, что $gh \ \dot{} \ q$. Значит, $q \in \mathrm{OD}(\mathit{fh}, \mathit{gh})$.
- ullet По Свойству 1 НОД и Теореме 4, $h \sim h(f,g) \sim (fh,gh) \ \vdots \ q.$
- ullet Следовательно, $q\in \mathrm{OD}(h,g)$ и по Теореме 4 мы имеем $p \ \dot{\cdot} \ q.$
- ullet Из $p \ | \ q$ и $q \ | \ p$ по Свойству 5 делимости $p \sim q$.

Если $f,g,h\in K[t]$, $(f,g)\sim 1$ и $fh\mathrel{\dot{!}} g$, то $h\mathrel{\dot{!}} g$.

Доказательство. По Свойству 1 $(h,g) \sim (fh,g) \sim g$ (последнее верно, так как $fh \ \vdots \ g$). Следовательно, $h \ \vdots \ g$.

Свойство 3

Пусть $f_1, \ldots, f_n, g_1, \ldots, g_m \in K[t]$, причем $(f_i, g_j) \sim 1$ для всех $i \in \{1, \ldots, n\}$ и $j \in \{1, \ldots, m\}$. Тогда $(f_1 \ldots f_n, g_1 \ldots g_m) \sim 1$.

Доказательство. • Докажем, что $(f_1 \dots f_k, g_j) \sim 1$ для всех $j \in \{1, \dots, m\}$ и $k \in \{1, \dots, n\}$ индукцией по k.

База k=1: дано в условии.

Переход $k \to k+1$: $(f_1 \dots f_k f_{k+1}, g_j) \sim (f_1 \dots f_k, g_j) \sim 1$ по индукционному предположению (переход верен так как $(f_{k+1}, g_j) \sim 1$).

ullet Пусть $F=f_1\dots f_n$. Докажем, что $(F,g_1\dots g_k)\sim 1$ для всех $k\in\{1,\dots,m\}$ индукцией по k.

База k=1: доказано выше.

Переход $k \to k+1$: $(F, g_1 \dots g_k g_{k+1}) \sim (F, g_1 \dots g_k) \sim 1$ по индукционному предположению (так как $(F, g_{k+1}) \sim 1$).

Свойство 4

Пусть $f, p_1, \ldots, p_n \in K[t]$, причем p_1, \ldots, p_n попарно взаимно просты, а $f \in p_i$ для всех $i \in \{1, \ldots, n\}$. Тогда $f \in p_1 p_2 \ldots p_n$.

Доказательство. ullet Пусть $q_\ell=p_1\dots p_\ell$. Докажем по индукции, что $f\stackrel{.}{:} q_\ell$.

- ullet База $\ell=1$ очевидна.
- Переход $\ell \to \ell+1$. По индукционному предположению $f = hq_\ell$, где $h \in K[t]$.
- ullet Так как $hq_\ell=f\ \dot{\ }p_{\ell+1}$ и $(q_\ell,p_{\ell+1})\sim 1$ (по Свойству 3), по Свойству 2 имеем $h\ \dot{\ }p_{\ell+1}.$
- ullet Тогда $h=gp_{\ell+1}$ и $f=gp_{\ell+1}q_\ell=gq_{\ell+1}.$

Пусть $f \in K[t]$, $\deg(f) > 0$.

- ullet Многочлен f называется приводимым, если f=gh, где $g,h\in K[t]$, $0<\deg(g)<\deg(f)$ и $0<\deg(h)<\deg(f)$
- ullet Если такого разложения не существует, то f называется неприводимым.
- ullet Если $f\in K[t]$ неприводимый и f=gh (где $g,h\in K[t]$), то один из многочленов g и h константа, а другой тогда ассоциирован с f.
- ullet Если $f \in K[t]$ неприводимый, $f \mid g$ и $0 < \deg(g)$, то $g \sim f$.

 $(f,g)\sim 1.$

- Доказательство. Пусть d = (f, g). Тогда g : d, то есть $g = dh, h \in K[t].$
- Тогда либо $\deg(d) = 0$ (в этом случае $(f,g) = d \sim 1$), либо $\deg(h) = 0.$
- Если $\deg(h) = 0$, то $h \in K$ константа и $g \sim d$.
- Так как f : d и $d \sim g$, то f : g.

Свойство 2

Пусть $g, f_1, \ldots, f_n \in K[t]$ таковы, что $f_1 \ldots f_n \cdot g$ и g неприводимый. Тогда существует такое $i \in \{1, ..., n\}$, что $f_i \cdot g$.

Доказательство. • Предположим противное, пусть f_i / g для всех $i \in \{1, ..., n\}$. По Свойству 1 тогда $(f_i, g) \sim 1$.

- По Свойству 3 взаимно простых многочленов, тогда и $(f_1 \ldots f_n, g) \sim 1.$
- Но тогда $f_1 \dots f_n \not = g$ (в этом случае должно быть $(f_1 \dots f_n, g) \sim g$). Противоречие. 4 D > 4 A > 4 B > 4 B > B + 4 Q C

Теорема 5

Пусть K — поле, $f \in K[t]$, $\deg(f) \geq 1$, а c — старший коэффициент f. Тогда существует разложение $f = c \cdot p_1 \dots p_n$, где p_1, \dots, p_n — неприводимые, со старшим коэффициентом 1. Такое разложение единственно c точностью до порядка сомножителей.

Доказательство. \exists . Индукция по $\deg(f)$. База — случай неприводимого f. Тогда $p = c^{-1} \cdot f$ — также неприводимый, со старшим коэффициентом 1, и $f = c \cdot p$ — искомое разложение, Переход. \bullet Пусть для многочленов степени меньше $\deg(f)$ утверждение доказано и f — приводимый. Тогда f = gh, где $g, h \in K[t]$, $\deg(g) < \deg(f)$ и $\deg(h) < \deg(f)$.

- Пусть a и b старшие коэффициенты g и h соответственно. Тогда по индукционному предположению $g=a\cdot q_1\dots q_s$, а $h=b\cdot r_1\dots r_\ell$, где $q_1,\dots,q_s,r_1,\dots,r_\ell\in K[t]$ неприводимые со старшими коэффициентами 1.
- ullet Тогда $f=c\cdot q_1\dots q_s r_1\dots r_\ell$ искомое разложение для f (очевидно, ab=c).

Д.В.Карпов

База: • Пусть f — неприводимый и имеет разложение $f = cp_1 \dots p_n$, где $p_1, \dots, p_n \in K[t]$ — неприводимые.

 \bullet Тогда $f = p_1 g$, где $g \in K[t]$ и $\deg(p_1) > 0$. Следовательно, $f \sim p_1$, но тогда $f = cp_1$, а такое разложение ровно одно.

Переход. • Пусть единственность с точностью до перестановки доказана для многочленов степени меньше чем $\deg(f)$.

• Предположим, $f = cp_1 \dots p_n = cq_1 \dots q_m$. Тогда $q_1 \dots q_m \cdot p_1$. ullet По Свойству 2 неприводимых многочленов $\exists i \in \{1, \dots m\}$

такое, что $q_i : p_1$. НУО i = 1.

ullet Так как $q_1 : p_1, q_1$ неприводим и $\deg(p_1) \geq 1$, имеем $q_1 \sim p_1$. Но оба многочлена имеют старшие коэффициенты 1, следовательно, $q_1 = p_1$.

ullet $f=c\cdot p_1g$, где $g\in K[t]$, $\deg(g)\geq 1$ (иначе f неприводим, а этот случай разобран).

• Для многочлена g разложение на неприводимые единственно с точностью до перестановки, значит, разложения $g = p_2 \dots p_n$ и $g = q_2 \dots q_m$ могут отличаться только порядком сомножителей.

 \bullet Значит, два рассматриваемых разложения f также отличаются только порядком сомножителей. 🔻 🖘 🔞 🗖 🤈

Каноническое разложение многочлена $f \in K[t]$ — это представление его в виде

$$f=c\cdot p_1^{k_1}\ldots p_m^{k_m},$$

где c — старший коэффициент f, а p_1,\ldots,p_m — различные неприводимые многочлены со старшими коэффициентами 1.

• Из ОТА следует, что каноническое разложение существует. Нужно взять разложение на неприводимые многочлены из Теоремы 5 и сгруппировать одинаковые многочлены — получится каноническое разложение.

Пусть $f = a_n t^n + \cdots + a_1 t + a_0 \in K[t]$.

- 1) Значение многочлена f в точке $\beta \in K$ это число $f(\beta) = a_n \beta^n + \dots + a_1 \beta + a_0$.
- 2) Если $f(\beta)=0$, то $\beta-$ корень многочлена f.

Теорема 6

Пусть K — поле, $f \in K[t]$, $\alpha \in K$. Тогда остаток от деления f(t) на $t-\alpha$ равен $f(\alpha)$.

Доказательство. • По теореме о делении с остатком, $f(t) = (t - \alpha)q(t) + r(t)$, где $\deg(r) < \deg(t - \alpha) = 1$. Следовательно, $r(t) = r \in \mathcal{K}$ — константа.

ullet Итак, f(t)=(t-lpha)q(t)+r, где $r\in K$. Подставим lpha и получим f(lpha)=0 q(t)+r=r, что нам и нужно.

Следствие 1

Пусть K — поле, $f \in K[t]$, $\alpha \in K$ — корень f . Тогда $f(t) \stackrel{.}{:} t - \alpha$.

Доказательство. Следует из Теоремы 6, так как $f(\alpha)=0$.

Пусть $f \in K[t]$, $\alpha \in K$. Число α является корнем кратности m многочлена f, если $f(t) \ (t-\alpha)^m$, но $f(t) \ (t-\alpha)^{m+1}$.

• По Следствию 1 любой корень многочлена $f \in \mathcal{K}[t]$ имеет кратность хотя бы 1.

Теорема 7

Пусть K — поле, $f \in K[t]$, $\deg(f) = n$, $\alpha_1, \ldots, \alpha_k \in K$ — все различные корни f, причем корень α_i имеет кратность m_i . Тогда:

- 1) $f(t) : \prod_{i=1}^{k} (t \alpha_i)^{m_i};$
- 2) $m_1 + \cdots + m_k \le n$. В частности, $k \le n$.

Доказательство. 1) • Для любых $i \neq j$, очевидно, $((t-\alpha_i)^{m_i}, (t-\alpha_j)^{m_j}) \sim 1$.

- ullet Для каждого $i\in\{1,\ldots,k\}$ имеем $f\in(t-lpha_i)^{m_i}.$ Теперь пункт 1 следует из Свойства 4 взаимно простых многочленов.
- 2) Прямое следствие пункта 1.

Производная многочлена

введенное обозначение корректно.

- Здесь K поле. Значит, существует $1 \in K$. Будем использовать в поле K обозначение $n := \underbrace{1 + \dots + 1}$.
- В этих обозначениях из дистрибутивности следует, что $m\cdot n=(\underbrace{1+\cdots+1})\cdot(\underbrace{1+\cdots+1})=\underbrace{1+\cdots+1}=mn$, так что

Определение

Пусть $f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0 \in K[t]$. Производная многочлена f — это $f'(t) := n a_n t^{n-1} + (n-1) a_{n-1} t^{n-2} + \dots + a_1$.

Лемма 5

Для $f,g\in K[t]$ выполнено (f+g)'=f'+g'.

Доказательство. • Пусть $f(t) = a_n t^n + \cdots + a_0$, $g(t) = b_n t^n + \cdots + b_0$. (Степени можно считать одинаковыми, иначе допишем нулевых коэффициентов.)

• Тогда $(f+g)(t) = (a_n+b_n)t^n + \dots + (a_1+b_1)t + (a_0+b_0)$ и $(f+g)'(t) = n(a_n+b_n)t^{n-1} + \dots + (a_1+b_1) = (na_nt^{n-1} + \dots + a_1) + (nb_nt^{n-1} + \dots + b_1) = f'(t) + g'(t)$. Д.В.Карпов

Для $f,g \in K[t]$ выполнено (fg)' = fg' + f'g.

Доказательство. • Сначала рассмотрим случай одночлена:

$$((a_k t^k)(b_\ell t^\ell))' = (a_k b_\ell t^{k+\ell})' = (k+\ell)a_k b_\ell t^{k+\ell-1} = (a_k t^k) \cdot (\ell b_\ell t^{\ell-1}) + (k a_k t^{k-1}) \cdot (b_\ell t^\ell) = (a_k t^k) \cdot (b_\ell t^\ell)' + (a_k t^k)' \cdot (b_\ell t^\ell).$$

• Теперь общий случай $f(t) = a_n t^n + \cdots + a_0$, $g(t) = b_m t^m + \cdots + b_0$:

$$(fg)' = \left(\left(\sum_{i=0}^{n} a_{i} t^{i} \right) \cdot \left(\sum_{j=0}^{m} b_{j} t^{j} \right) \right)' = \left(\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} b_{j} t^{i+j} \right)' =$$

$$\sum_{i=0}^{n} \sum_{j=0}^{m} (a_{i} b_{j} t^{i+j})' = \sum_{i=0}^{n} \sum_{j=0}^{m} (a_{i} t^{i})' (b_{j} t^{j}) + \sum_{i=0}^{n} \sum_{j=0}^{m} (a_{i} t^{i}) (b_{j} t^{j})' =$$

$$\left(\sum_{i=0}^{n} (a_{i} t^{i})' \right) \cdot \left(\sum_{j=0}^{m} b_{j} t^{j} \right) + \left(\sum_{i=0}^{n} a_{i} t^{i} \right) \cdot \left(\sum_{j=0}^{m} (b_{j} t^{j})' \right) =$$

$$\left(\sum_{i=0}^{n} a_{i} t^{i} \right)' \cdot \left(\sum_{j=0}^{m} b_{j} t^{j} \right) + \left(\sum_{i=0}^{n} a_{i} t^{i} \right) \cdot \left(\sum_{j=0}^{m} b_{j} t^{j} \right)' = f'g + fg'. \quad \Box$$

Алгебра, Глава 3. Многочлены.

Д. В. Карпов

эти числа различны). Тогда $f'(t) = \sum_{i=1}^{n} \frac{f(t)}{t-\alpha_i}$.

Доказательство. Индукция по n. База n=1 очевидна (тогда f'(t) = 1.

Переход. Пусть $g(t) = \frac{f(t)}{t - \alpha_n} = \prod_{i=1}^{n-1} (t - \alpha_i)$. По Лемме 6 и индукционному предположению

$$f'(t) = (g(t)(t - \alpha_n))' = g'(t)(t - \alpha_n) + g(t)(t - \alpha_n)' =$$

$$\left(\sum_{i=1}^{n-1} \frac{g(t)}{t - \alpha_i}\right)(t - \alpha_n) + g(t) = \sum_{i=1}^{n} \frac{f(t)}{t - \alpha_i}. \quad \Box$$

Следствие 2

Пусть $\alpha \in K$, $f(t) = (t - \alpha)^n$. Тогда $f'(t) = n(t - \alpha)^{n-1}$.

Доказательство. Воспользуемся Леммой 7 для $\alpha_1 = \cdots = \alpha_n = \alpha$.

4□ > 4♬ > 4 를 > 4 를 > 9 Q Q

ullet Для $f\in K[t]$ и $s\in \mathbb{N}$ через $f^{(s)}(t)$ обозначим s-ю производную многочлена f.

Теорема 8

Пусть K — поле, $\mathrm{char}(K) = 0$, $f \in K[t]$, $\alpha \in K$ — корень f. Тогда α — корень кратности m многочлена f, если и только если $f(\alpha) = 0$, $f'(\alpha) = 0$, ..., $f^{(m-1)}(\alpha) = 0$, a $f^{(m)}(\alpha) \neq 0$.

Доказательство. \Rightarrow • Если α — корень кратности m многочлена f, то $f(t)=(t-\alpha)^mg(t)$, где $g(t)\in K[t]$, $g(t)\not =(t-\alpha)$.

• Тогда по Лемме 7 и Следствию 2

$$f'(t) = ((t - \alpha)^m \cdot g(t))' = ((t - \alpha)^m)'g(t) + (t - \alpha)^m g'(t) = m(t - \alpha)^{m-1}g(t) + (t - \alpha)^m g'(t) = (t - \alpha)^{m-1}(mg(t) + (t - \alpha)g'(t)).$$
(1)

• Понятно, что $f'(t) \ (t-\alpha)^{m-1}$. Так как $g(t) \ / \ (t-\alpha)$ и $m \neq 0$ ввиду $\mathrm{char}(K) = 0$, из (1) следует, что $f'(t) \ / \ (t-\alpha)^m$.

- Таким образом, при взятии производной кратность корня α понизилась ровно на 1. Значит, все производные до m-1 включительно, будут делиться на $t-\alpha$, а $f^{(m)} \not \ (t-\alpha)$.
- Так как h(t) : $(t-\alpha) \iff h(\alpha) = 0$ по Следствию 1, мы имеем $f(\alpha) = 0$, $f'(\alpha) = 0$, ... $f^{(m-1)}(\alpha) = 0$ и $f^{(m)}(\alpha) \neq 0$.
- \leftarrow Пусть α корень кратности ℓ , понятно, что $\ell \in \mathbb{N}$.
- Тогда по доказанной ранее части $f(\alpha) = 0$, $f'(\alpha) = 0$, ..., $f^{(\ell-1)}(\alpha) = 0$, а $f^{(\ell)}(\alpha) \neq 0$, откуда следует, что $m = \ell$.

Теорема 9

Любой многочлен из $\mathbb{C}[t]$ имеет корень из \mathbb{C} .

Следствие 3

Неприводимые многочлены в $\mathbb{C}[t]$ — это в точности многочлены степени 1.

Доказательство. • Многочлены степени 1 всегда являются неприводимыми, это следует из определения.

- ullet Пусть $f\in \mathbb{C}[t]$ неприводимый, $\deg(f)>1.$ По Теореме 9, f имеет корень lpha.
- имеет корень α . • Тогда $f(t)=(t-\alpha)g(t)$, откуда видно, что
- Следствие 4

 $0 < \deg(g) < \deg(f)$, противоречие с неприводимость f.

Пусть $f(t) \in \mathbb{C}[t]$, $n = \deg(f)$, c - cтарший коэффициент f. Тогда $f(t) = c(t - \alpha_1) \dots (t - \alpha_n)$, где $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ (не обязательно все эти числа различны).

Доказательство. По Теореме 5, существует разложение $f = c \cdot p_1 \dots p_n$, где p_1, \dots, p_n — неприводимые, со старшим коэффициентом 1. По Следствию 3, $p_i = t_{ij} \cdot \alpha_i$, где $\alpha_i \in \mathbb{C}$. \square

Д.В.Карпов

- ullet Для многочлена $f(t)=a_nt^n+\cdots+a_0$ введем обозначение $\overline{f}(t):=\overline{a_n}t^n+\cdots+\overline{a_0}$.
- ullet Так как $\overline{xy}=\overline{x}\cdot\overline{y}$ и $\overline{x+y}=\overline{x}+\overline{y}$, мы имеем $\overline{f}(\overline{t})=\overline{f(t)}.$

Лемма 8

Пусть $f\in\mathbb{C}[t]$, $lpha\in\mathbb{C}$ — корень f кратности m. Тогда \overline{lpha} — корень \overline{f} кратности m.

Доказательство. \bullet По условию, $f(t) = (t - \alpha)^m g(t)$.

- ullet тогда $\overline{f}(\overline{t})=(\overline{t}-\overline{lpha})^m\cdot \overline{g}(\overline{t})$, значит, \overline{lpha} корень \overline{f} кратности не менее m.
- ullet Если бы \overline{lpha} оказался корнем \overline{f} кратности k>m, то аналогично доказывается, что $lpha=\overline{\overline{lpha}}$ корень $f=\overline{\overline{f}}$ кратности не менее k, что не так.
- ullet Значит, $\overline{\alpha}$ корень \overline{f} кратности ровно m.

Многочлен $f \in \mathbb{R}[t]$ степени $\deg(f) = n \geq 1$ со старшим коэффициентом с раскладывается в $\mathbb{C}[t]$ на множители

$$f(t) = c(t-\alpha_1)^{k_1} \dots (t-\alpha_s)^{k_s} (t-\beta_1)^{m_1} (t-\overline{\beta_1})^{m_1} \dots (t-\beta_\ell)^{m_\ell} (t-\overline{\beta_\ell})^{m_\ell},$$

где $\alpha_1, \ldots, \alpha_s \in \mathbb{R}$, $\beta_1, \ldots, \beta_\ell \in \mathbb{C} \setminus \mathbb{R}$ — различные числа, никакие два из eta_1,\ldots,eta_ℓ не сопряжены друг другу и $n = \sum\limits_{i=1}^{n} k_i + 2\sum\limits_{i=1}^{n} m_i$ (возможно, одно из чисел s и ℓ равно 0).

Доказательство. • По Следствию 4, существует разложение $f(t) = c \prod_{i=1}^{p} (t - lpha_i)^{k_i}$, где $\sum_{i=1}^{p} k_i = n$ (возьмем разложение на

неприводимые многочлены из Следствия 4 и переделаем его в каноническое разложение, сгруппировав одинаковые).

- НУО можно считать, что $\alpha_1, \ldots, \alpha_s \in \mathbb{R}$ (возможно, s=0) а остальные корни не вещественны.
- По Лемме 8, если $\beta \in \mathbb{C} \setminus \mathbb{R}$ корень f кратности m, то и $\overline{\beta}$ — корень $\overline{f} = f$ кратности m.
- ullet Следовательно p-s \vdots 2. Если $p \neq s$, то $p-s=2\ell$ и корни $\alpha_{s+1}, \ldots, \alpha_p$ можно переобозначить $\beta_1, \overline{\beta_1}, \ldots, \beta_\ell, \overline{\beta_\ell}$ так, что кратности корней β_i и β_i одинаковы и равны m_i \longrightarrow \longrightarrow \longrightarrow \longrightarrow \bigcirc

Неприводимые многочлены в $\mathbb{R}[t]$ — это многочлены степени 1 и многочлены степени 2 с отрицательным дискриминантом.

Доказательство. ullet Пусть $f \in \mathbb{R}[t]$ — неприводимый и $\deg(f) = n > 1$.

- ullet Если f имеет корень $lpha\in\mathbb{R}$, то f(t)=(t-lpha)g(t), где $g\in\mathbb{R}[t]$, $0<\deg(g)< n$, противоречие с неприводимостью f.
- Значит, f не имеет вещественных корней. По Теореме 9 тогда f имеет корень $\beta \in \mathbb{C} \setminus \mathbb{R}$, но тогда по Теореме 10 и $\overline{\beta}$ корень f, причем $f(t) : (t \beta)(t \overline{\beta}) = t^2 2\mathrm{Re}(\beta)t + N(\beta)$.
- При $n \ge 3$ имеем $f(t) = (t^2 2\text{Re}(\beta)t + N(\beta))g(t)$, где $0 < \deg(g) < n$, противоречие с неприводимостью f.
- Если n=2, то $f(t)=c(t^2-2{\rm Re}(\beta)t+N(\beta))$, где c- старший коэффициент f и его дискриминант $D(f)=4c^2(({\rm Re}(\beta))^2-N(\beta))=-4c^2({\rm Im}(\beta))^2<0$.

Следствие 5

Многочлен $f \in \mathbb{R}[t]$ нечетной степени обязательно имеет \mathbb{R} корень.

Доказательство. • По Теореме 10, сумма кратностей всех комплексных корней f равна $\deg(f) \not | 2$, а сумма кратностей невещественных корней четна.

 \bullet Значит, сумма кратностей вещественных корней f нечетна, то есть, такой корень есть.

Следствие 6

Многочлен $f \in \mathbb{R}[t]$ степени $\deg(f) = n \geq 1$ со старшим коэффициентом c раскладывается $\mathsf{B}\,\mathbb{R}[t]$ на множители $f(t) = c(t-\alpha_1)^{k_1}\dots(t-\alpha_s)^{k_s}(t^2+p_1t+q_1)^{m_1}\dots(t^2+p_\ell t+q_\ell)^{m_\ell}$, где $D(t^2+p_it+q_i)=p_i^2-4q_i<0$ для всех $i\in\{1,\dots,\ell\}$ (возможно, одно из чисел S и ℓ равно 0).

Доказательство. • По ОТА (Теореме 5) в $\mathbb{R}[t]$ существует разложение $\frac{1}{c}f$ в произведение неприводимых многочленов со старшим коэффициентом 1, которые имеют такой вид по Теореме 11.

• Пусть K — коммутативное кольцо, $a_1, \ldots, a_n \in K$ (не обязательно все числа различны). Введем обозначения:

$$\sigma_1(a_1,\dots,a_n)=a_1+a_2+\dots+a_n;$$
 $\sigma_2(a_1,\dots,a_n)=\sum\limits_{1\leq i< j\leq n}a_ia_j$ (сумма всех произведений по два числа); при $k\leq n$

 $\sigma_k(a_1,\dots,a_n) = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} a_{i_1} a_{i_2} \dots a_{i_k}$ (сумма всех произведений по k чисел); $\sigma_n(a_1,\dots,a_n) = a_1 a_2 \dots a_n$.

Теорема 12

Пусть $f = c_n t^n + \dots + c_1 t + c_0 \in K[t]$, причем $f = c_n (t - a_1) \dots (t - a_n)$. Тогда $\frac{c_i}{c_n} = (-1)^{n-i} \sigma_{n-i} (a_1, \dots, a_n)$ для каждого $i \in \{0, \dots, n-1\}$.

Доказательство. ullet $\frac{c_i}{c_n}$ — это коэффициент многочлена $(t-a_1)\dots(t-a_n)$ при t^i .

• Из i скобок мы должны выбрать t, а из остальных n-i скобок вида $(t-a_j)$ должны выбрать $-a_j$. Перемножим все выбранные числа, сложим по всем выборкам и вынесем $(-1)^{n-i}$ — получим в точности $\sigma_{n-i}(a_1,\ldots,a_n)$.

Д.В.Карпов

- Пусть K поле, даны различные числа $x_0, x_1, \ldots, x_n \in K$ и (не обязательно различные) $y_0, y_1, \ldots, y_n \in K$.
- Нужно построить *интерполяционный многочлен* $f \in K[t]$: такой, что $\deg(f) \le n$ и $f(x_i) = y_i$ для всех $i \in \{0, 1, \dots, n\}$.

Лемма 9

Существует не более одного интерполяционного многочлена для заданных $x_0, x_1, \ldots, x_n \in K$ (различных) и $y_0, y_1, \ldots, y_n \in K$.

Доказательство. • Пусть f_1 и f_2 — два разных интерполяционных многочлена. Тогда $f_1-f_2\in K[t]$, $\deg(f_1-f_2)\leq \max(\deg(f_1),\deg(f_2))\leq n$.

ullet Однако, многочлен f_1-f_2 имеет n+1 различных корней x_0,\dots,x_n (так как $f_1(x_i)=f_2(x_i)$), противоречие с Теоремой 7.

- Пусть $\varphi(t) = (t x_0)(t x_1) \dots (t x_n)$, а $\varphi_i(t) = \frac{\varphi(t)}{(t x_i)}$ это тоже многочлен из K[t].
- ullet Так как $f_i(x_j)=0$ при $j\in\{1,\ldots,n\}$, j
 eq i, по Теореме 7 $f_i(t)$ \vdots $\varphi_i(t)$. Так как $\deg(f_i)=\deg(\varphi_i)$, мы имеем $f_i=c_i\varphi_i(t)$, где $c_i\in K$.
- ullet Подставим x_i , чтобы найти c_i : $1=f_i(x_i)=c_i arphi_i(x_i)$, откуда $c_i=rac{1}{arphi_i(x_i)}.$
- По Лемме 7, $\varphi'(t) = \sum_{i=0}^{n} \varphi_i(t)$. При $j \neq i$ мы имеем $\varphi_j(x_i) = 0$. Следовательно, $\varphi'(x_i) = \varphi_i(x_i)$.
- Таким образом, $f_i(t) = \frac{\varphi_i(t)}{\varphi_i(x_i)} = \frac{\varphi(t)}{\varphi'(x_i) \cdot (t-x_i)}$.
- Следовательно,

$$f(t) = \sum_{i=0}^{n} y_i f_i(t) = \sum_{i=0}^{n} y_i \cdot \frac{\varphi(t)}{\varphi'(x_i) \cdot (t - x_i)}.$$

- Будем по индукции строить такой многочлен $g_k(t)$, что $g_k(x_i) = y_i$ при $i \in \{0, ..., k\}$ и $\deg(g_k) \le k$.
- База k = 0: подойдет $g_0(t) = y_0$.
- Переход $k \to k+1$. Пусть построен многочлен g_k .

Будем искать g_{k+1} в виде

$$g_{k+1}(t) = a_k(t-x_0)...(t-x_k) + g_k(t).$$

- Тогда $g_{k+1}(x_i) = v_i$ при $i \in \{0, ..., k\}$ и $\deg(g_{k+1}) < \max(k+1, \deg(g_k)) = k+1.$
- Остается найти коэффициент a_k . Для этого подставим X_{k+1} :

$$y_{k+1} = g_{k+1}(x_{k+1}) = a_k(x_{k+1} - x_0) \dots (x_{k+1} - x_k) + g_k(x_{k+1})$$

$$\iff a_k = \frac{y_{k+1} - g_k(x_{k+1})}{(x_{k+1} - x_0) \dots (x_{k+1} - x_k)}.$$

• Пусть K — поле. Очевидно, в кольце многочленов K[t] нет делителей ноля (если fg=0 в K[t], то f=0 или g=0). Поэтому, следующее определение корректно.

Определение

Поле рациональных функций K(t) — это поле частных кольца многочленов K[t].

• Элементы K(t) — дробно-рациональные функции вида $\frac{f(t)}{g(t)}$, где $f,g\in K[t],\ g\neq 0$ (точнее говоря, классы эквивалентности таких функций). Мы будем называть такие функции просто дробями.

Определение

Правильная дробь в K(t) — это дробь вида $\frac{f(t)}{g(t)}$, где $\deg(f) < \deg(g)$.

Свойство 1

Если дробь $\frac{f}{g}\in K(t)$ правильная и $\frac{f_1}{g_1}\sim \frac{f}{g}$, то дробь $\frac{f_1}{g_1}$ Тоже правильная.

Доказательство. • Если один из многочленов f и f_1 равен 0, то другой тоже. В этом случае утверждение очевидно.

- ullet Далее пусть f
 eq 0 и $f_1
 eq 0$.
- ullet ullet ullet $\frac{f_1}{g_1}\sim rac{f}{g}\iff f_1g=g_1f$, откуда следует, что $\deg(f_1)+\deg(g)=\deg(f_1g)=\deg(fg_1)=\deg(f)+\deg(g_1).$
- ullet Так как $0 \leq \deg(f) < \deg(g)$, отсюда следует, что $\deg(f_1) < \deg(g_1)$, то есть, $rac{f_1}{g_1}$ правильная дробь.

Свойство 2

Если дробь $\frac{f}{g} \in K(t)$ правильная и $c \in K$, то и $\frac{cf}{g}$ — правильная дробь.

Доказательство. Очевидно ввиду $\deg(cf) \leq \deg(f)$.

Д.В.Карпов

Свойство 3

Если дроби $rac{f_1}{g_1},rac{f_2}{g_2}\in K(t)$ правильные, то и $rac{f_1}{g_1}\cdotrac{f_2}{g_2}$ — правильная дробь.

Доказательство. Тогда $\deg(f_1) < \deg(g_1)$ и $\deg(f_2) < \deg(g_2)$, откуда $\deg(f_1f_2) = \deg(f_1) + \deg(f_2) < \deg(g_1) + \deg(g_2) = \deg(g_1g_2)$, а значит, дробь $\frac{f_1}{g_1} \cdot \frac{f_2}{g_2} = \frac{f_1f_2}{g_1g_2}$ — правильная.

Свойство 4

Если дроби $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(t)$ правильные, то и $\frac{f_1}{g_1} + \frac{f_2}{g_2}$ правильная дробь.

Доказательство. $\frac{f_1}{g_1}+\frac{f_2}{g_2}=\frac{f_1g_2+g_1f_2}{g_1g_2}$. Нужно проверить, что $\deg(f_1g_2+g_1f_2)<\deg(g_1g_2)$:

$$\begin{split} \deg(f_1g_2+g_1f_2) &\leq \max(\deg(f_1g_2),\deg(g_1f_2)) = \\ \max(\deg(f_1)+\deg(g_2),\deg(g_1)+\deg(f_2)) &< \\ \deg(g_1)+\deg(g_2) &= \deg(g_1g_2), \end{split}$$

так как $\deg(f_1) < \deg(g_1)$ и $\deg(f_2) < \deg(g_2)$.

Лемма 10

Пусть $g_1,g_2\in K[t]$ взаимно просты, а $\frac{f}{g_1g_2}\in K(t)$ — правильная дробь. Тогда $\exists f_1,f_2\in K[t]$ такие, что $\frac{f}{g_1g_2}=\frac{f_1}{g_1}+\frac{f_2}{g_2}$ и обе дроби $\frac{f_1}{g_1}$ и $\frac{f_2}{g_2}$ правильные.

Доказательство. • Так как $(g_1,g_2)\sim 1$, существуют такие $p_1,p_2\in K[t]$, что $p_1g_1+p_2g_2=1$ (линейное представление НОД).

- ullet Тогда $rac{f}{g_1g_2}=rac{f(p_1g_1+p_2g_2)}{g_1g_2}=rac{fp_1g_1}{g_1g_2}+rac{fp_2g_2}{g_1g_2}=rac{fp_1}{g_2}+rac{fp_2}{g_2}$.
- Недостаток полученного представления в том, что дроби могут оказаться неправильными. Поделим fp_1 на g_2 с остатком: $fp_1 = qg_2 + r$, где $\deg(r) < \deg(g_2)$.
- ullet Тогда $rac{fp_1}{g_2} = rac{qg_2 + r}{g_2} = q + rac{r}{g_2}.$
- ullet Следовательно, $rac{f}{g_1g_2}=rac{r}{g_2}+q+rac{fp_2}{g_1}=rac{r}{g_2}+rac{qg_1+fp_2}{g_1}.$
- ullet Так как дроби $rac{f}{g_1g_2}$ и $rac{r}{g_2}$ правильные, по Свойству 4 дробь $rac{qg_1+fp_2}{g_1}=rac{f}{g_1g_2}-rac{r}{g_2}$ также правильная.

Пусть $\frac{f}{g} \in K(t)$ — правильная дробь, а $g = q_1^{k_1} \dots q_m^{k_m}$ — каноническое разложение. Тогда существует разложение $\frac{f}{g} = \frac{f_1}{q_1^{k_1}} + \dots + \frac{f_m}{q_m^{k_m}}$, где дробь $\frac{f_i}{q_i^{k_i}}$ правильная для всех $i \in \{1,\dots,m\}$.

Доказательство. • Докажем индукцией по ℓ , что существует разложение на правильные дроби $\frac{f}{q_1^{k_1} \dots q_\ell^{k_\ell}} = \frac{f_1}{q_1^{k_1}} + \dots + \frac{f_\ell}{q_\ell^{k_\ell}}$.

ullet База для $\ell=1$ очевидна.

Переход $\ell o \ell+1$. Отметим, что многочлен $h=q_1^{k_1}\dots q_\ell^{k_\ell}$ взаимно прост с $q_{\ell+1}^{k_{\ell+1}}$.

• По Лемме 10 и индукционному предположению для $\frac{f^*}{h}$ существует разложение в сумму правильных дробей

$$egin{aligned} rac{f}{(q_1^{k_1}\dots q_\ell^{k_\ell})q_{\ell+1}^{k_{\ell+1}}} &= rac{f}{h\cdot q_{\ell+1}^{k_{\ell+1}}} &= rac{f^*}{h} + rac{f_{\ell+1}}{q_{\ell+1}^{k_{\ell+1}}} \ &= rac{f_1}{q_1^{k_1}} + \dots + rac{f_\ell}{q_\ell^{k_\ell}} + rac{f_{\ell+1}}{q_{\ell+1}^{k_{\ell+1}}}. \end{aligned}$$

Определение

Дробь $\frac{f}{g} \in K(t)$ — простейшая, если $g = p^k$, где $p \in K[t]$ — неприводимый многочлен и $\deg(f) < \deg(p)$.

Теорема 13

Любая правильная дробь $\frac{f}{g} \in K(t)$ раскладывается в сумму простейших.

Доказательство. • Можно считать, что старший коэффициент g равен 1 (иначе сократим на него f).

- Пусть $g=q_1^{k_1}\dots q_m^{k_m}$ каноническое разложение. Тогда по Лемме 11 существует разложение в сумму правильных дробей $\frac{f}{g}=\frac{f_1}{q_1^{k_1}}+\dots+\frac{f_m}{q_m^{k_m}}.$
- Теперь достаточно научиться раскладывать в сумму простейших правильную дробь вида $\frac{h}{p^k}$, где p неприводимый многочлен.

ullet Докажем существование такого разложения индукцией по k. База k=1 очевидна (тогда $\deg(h)<\deg(p)$ и дробь уже простейшая).

Переход $k \to k+1$.

- ullet Если $\deg(h) < \deg(p)$, то дробь $rac{h}{p^{k+1}}$ простейшая.
- ullet Если $\deg(h) \geq \deg(p)$, то поделим h на p с остатком: h = qp + r, где $\deg(r) < \deg(p)$.
- ullet Тогда $rac{h}{p^{k+1}}=rac{qp+r}{p^{k+1}}=rac{q}{p^k}+rac{r}{p^{k+1}}$, где дробь $rac{r}{p^{k+1}}$ простейшая.
- Так как $\frac{q}{p^k} = \frac{h}{p^{k+1}} \frac{r}{p^{k+1}}$, а две последние дроби правильные, то $\frac{q}{p^k}$ правильная дробь.
- Заменим $\frac{q}{p^k}$ на разложение в сумму простейших, которое существует по индукционному предположению, и получим искомое разложение.

- Пусть K поле. Покажем простой способ разложения на простейшие правильной дроби $\frac{f(x)}{g(x)} \in K(x)$, где $g(x) = (x-a_1)\dots(x-a_n)$, и a_1,\dots,a_n различны.
- Рассмотрим интерполяционную задачу с точками a_1 , ..., a_n и значениями $f(a_1)$, ..., $f(a_n)$ в них соответственно.
- Так как $\deg(f) < n$, многочлен f и есть единственный интерполяционный многочлен для рассматриваемой задачи. Запишем формулу Лагранжа:

$$f(x) = \sum_{i=1}^{n} \frac{f(a_i)}{g'(a_i)} \frac{g(x)}{x - a_i} \quad \Rightarrow \quad \frac{f(x)}{g(x)} = \sum_{i=1}^{n} \frac{f(a_i)}{g'(a_i)} \frac{1}{x - a_i}.$$

ullet Мы получили разложение $rac{f(x)}{g(x)}$ на простейшие.

• А как понять, что многочлен не имеет кратных корней?

Лемма 12

- 1) Если K поле и многочлен $g \in K[t]$ таков $(g,g') \sim 1$, то g не имеет кратных корней (то есть, корней кратности более 1).
- $(g,g')\sim 1.$

Доказательство. 1) Если g имеет корень α кратности не менее 2, то α — корень g' по Теореме 8. Тогда $(g,g') \stackrel{.}{:} (t-\alpha)$, противоречие.

- 2) Так как g не имеет кратных корней, по Теореме 8 ни один из корней g не является корнем g'.
- Если при этом $(g, g') \sim h$, $\deg(h) \geq 1$, то h по основной теореме алгебры, имеет корень, который является общим корнем g и g', противоречие.

$$\mathbb{C} \simeq \mathbb{R}[t]/(t^2+1)\mathbb{R}[t].$$

Доказательство. ullet Определим отображение $\varphi: \mathbb{R}[t] \to \mathbb{C}$ формулой $\varphi(f):=f(i)$.

- ullet Докажем, что arphi гомоморфизм. Пусть $f,g\in K[t]$.
- $\varphi(f+g)=(f+g)(i)=f(i)+g(i)=\varphi(f)+\varphi(g);$
- $\varphi(fg) = (fg)(i) = f(i) \cdot g(i) = \varphi(f) \cdot \varphi(g).$
- ullet Докажем, что arphi сюръекция. Пусть $z=a+bi\in\mathbb{C}$, где $a,b\in\mathbb{R}$. Тогда $bt+a\in\mathbb{R}[t]$ и arphi(bt+a)=a+bi.
- Пусть $f \in \mathrm{Ker}(\varphi)$, разделим f с остатком на t^2+1 : $f(t)=(t^2+1)g(t)+bt+a$ (степень остатка по определению не превосходит 1, значит, он представляется в виде bt+a).
- ullet Тогда $0=arphi(f)=f(i)=(i^2+1)g(i)+bi+a=bi+a \iff a=b=0 \iff f \ \dot{:}\ t^2+1.$
- Таким образом, $\operatorname{Im}(\varphi) = \mathbb{C}$, $\operatorname{Ker}(\varphi) = (t^2 + 1)\mathbb{R}[t]$ и по теореме о гомоморфизме колец имеем $\mathbb{C} = \operatorname{Im}(\varphi) \simeq \mathbb{R}[t]/\operatorname{Ker}(\varphi) = \mathbb{R}[t]/(t^2 + 1)\mathbb{R}[t]$.

• Напомним определение.

Определение

Пусть $n\in\mathbb{N}$. Число $\varepsilon\in\mathbb{C}$ такое, что $\varepsilon^n=1$, но $\varepsilon^k\neq 1$ при натуральных k< n называется первообразным корнем из 1 степени n.

• По Теореме 2.25 существует ровно $\varphi(n)$ первообразных корней из 1 степени n, и они имеют вид $\varepsilon_k = (\cos(\frac{2\pi k}{n}), \sin(\frac{2\pi k}{n}))$, где $k \in \{1, \dots, n-1\}$, (k, n) = 1.

Определение

Многочлен деления круга $\Phi_n(t) := \prod_{1 \leq k \leq n, \; (k,n)=1} (t-arepsilon_k).$

ullet Из определения следует, что $\Phi_n \in \mathbb{C}[t]$. Мы докажем, что все коэффициенты этого многочлена целые.

Д.В.Карпов

Лемма 13
$$t^n - 1 = \prod_{d \mid n} \Phi_d(t)$$
.

Доказательство. • Если $d \mid n$, то первообразный корень из 1 степени d, очевидно, является корнем из 1 степени n.

- ullet Следовательно, $t^n-1 \ \dot{b} \ \Phi_d(t)$.
- ullet Так как каждый корень из 1 является первообразным корнем ровно одной степени, $t^n-1 \in \prod_{d \mid n} \Phi_d(t).$
- Пусть $\varepsilon_0, \dots, \varepsilon_{n-1}$ все корни степени n из 1, $\varepsilon_k = (\cos(\frac{2\pi k}{n}), \sin(\frac{2\pi k}{n})).$
- Пусть (k, n) = d, k = k'd, n = n'd. Тогда $\varepsilon_k = (\cos(\frac{2\pi k'}{n'}), \sin(\frac{2\pi k'}{n'}))$.
- ullet Так как дробь (k',n')=1, по Теореме 2.25 $arepsilon_k$ первообразный корень степени n' из 1, причем $n'\mid n$.
- Следовательно, все корни из 1 степени n являются первообразными корнями степеней-делителей n.
- ullet Следовательно, $t^n-1\mid \prod_{d\mid n}\Phi_d(t).$

1)
$$\Phi_n(t) = \prod_{d \mid n} (t^d - 1)^{\mu(\frac{n}{d})}.$$
 (*)

 $(t) \Phi_n \in \mathbb{Z}[t]$ — унитарный многочлен (то есть, старший коэффициент Φ_n равен 1).

Доказательство. 1) • По Лемме 13 имеем $t^n-1=\prod\limits_{d\mid n}\Phi_d(t).$

- Теперь (*) непосредственно следует из мультипликативной формулы обращения Мёбиуса (Теоремы 2.22).
- 2) Формулу (*) можно переписать в виде $\Phi_n(t) = \frac{f(t)}{g(t)}$, где $f,g \in \mathbb{Z}[t]$ унитарные многочлены (каждый из f и g представляется в виде произведения нескольких многочленов вида x^d-1).
- При делении в столбик унитарного многочлена f с целыми коэффициентами на унитарный многочлен g с целыми коэффициентами нетрудно убедиться, что неполное частное будет унитарным многочленом с целыми коэффициентами.
- При этом, f разделится на g без остатка и частное получится равным $\Phi_n(t)$.

