

© Outline of the Project **©**

- 1. | Importing Libraries: To perform Data Manipulation, Visualization & Model Building.
- 2. **X** Loading Dataset: Load the dataset into a suitable data structure using pandas.
- 3. PExploration of Dataset: Generate basic informations about the data.

4. Pata Cleaning: - garbage cleaning, removing duplicate, and hadling missing values and treating outliers

- 5. ii Exploatory Data Analysis: To identify trends, patterns, and relationships among the variabels.
- 6. Data Preprocessing: To transform data for creating more accurate & robust model.
- 7. Model building:- To build predictive models, using various algorithms.
- 8. Model evaluation: To analyze the Model performance using metrics.
- 9. Property Conclusion: Conclude the project by summarizing the key findings.

Importing Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Loading Dataset

In [2]:

```
dataset = 'German Credit Dataset.csv'
df = pd.read csv(dataset)
df.head()
```

Out[2]:

	checking_balance	months_loan_duration	credit_history	purpose	amount	savin
0	< 0 DM	6	critical	furniture/appliances	1169	
1	1 - 200 DM	48	good	furniture/appliances	5951	
2	unknown	12	critical	education	2096	
3	< 0 DM	42	good	furniture/appliances	7882	
4	< 0 DM	24	poor	car	4870	
4						

Exoloring Dataset

```
In [3]:
df.shape
Out[3]:
(1000, 17)
In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 17 columns):
 #
     Column
                            Non-Null Count Dtype
     ----
                            -----
 0
     checking_balance
                            1000 non-null
                                            object
 1
     months_loan_duration 1000 non-null
                                            int64
 2
                            1000 non-null
                                            object
     credit_history
 3
     purpose
                            1000 non-null
                                            object
 4
     amount
                            1000 non-null
                                            int64
 5
     savings_balance
                            1000 non-null
                                            object
 6
     employment duration
                            1000 non-null
                                            object
 7
     percent_of_income
                            1000 non-null
                                            int64
 8
     years_at_residence
                            1000 non-null
                                            int64
 9
                            1000 non-null
                                            int64
     age
 10
     other_credit
                            1000 non-null
                                            object
 11
     housing
                            1000 non-null
                                            object
     existing_loans_count 1000 non-null
                                            int64
 13
     job
                            1000 non-null
                                            object
    dependents
 14
                            1000 non-null
                                            int64
 15
                            1000 non-null
     phone
                                            object
     default
                            1000 non-null
                                            object
 16
dtypes: int64(7), object(10)
memory usage: 132.9+ KB
In [5]:
object_cols_df = df.select_dtypes(include='object')
object col = list(object cols df.columns)
object_col
Out[5]:
['checking_balance',
 'credit history',
 'purpose',
 'savings_balance',
 'employment_duration',
 'other_credit',
 'housing',
 'job',
 'phone',
 'default']
```

```
In [6]:
```

```
numeric_cols_df = df.select_dtypes(include='number')
num_col = list(numeric_cols_df.columns)
num_col
Out[6]:
['months_loan_duration',
 'amount',
 'percent_of_income',
 'years_at_residence',
 'age',
 'existing_loans_count',
 'dependents']
```


Cleaning of dataset

Checking and Removing Duplicates

In [7]:

```
# Remove duplicates
def drop_dup(df):
   if df.duplicated().any() == True:
        print('The total duplicate row before removing duplicate:', df.duplicated().sum(
        df.drop_duplicates(inplace=True , keep = 'last') # Remove duplicates
        df = df.reset_index(drop=True) #Reset the index
        print('The total duplicate row after removing duplicate:', df.duplicated().sum()
   else:
        return 'No duplicate entries'
drop_dup(df)
```

Out[7]:

'No duplicate entries'

Checking null values

In [8]:

```
df.isnull().sum()
```

Out[8]:

checking_balance 0 months_loan_duration 0 credit_history 0 0 purpose amount 0 savings_balance 0 employment_duration 0 percent_of_income 0 years_at_residence 0 age 0 other_credit 0 housing 0 existing_loans_count 0 job 0 dependents 0 phone 0 0 default dtype: int64

Descriptive Statistics

In [9]:

```
desc=df.describe().T
def descriptive_stats(df):
   plt.figure(figsize=(14,6))
   sns.heatmap(df, annot=True, cmap='Set2', fmt=".2f")
   plt.xticks(size = 12)
   plt.yticks(size = 12, rotation = 0)
   plt.title('Statistical Description')
   plt.show()
descriptive stats(desc)
```


Checking Unique values of different features

In [10]:

```
# Count the number of unique values in each column
def check_unquie_count(df):
   unique_counts = df.nunique().sort_values()
   print('=='*30)
   print(' '*10, 'Total no. of Unique Values')
   print('=='*30)
   print(unique_counts)
   print('=='*30)
# Create a bar plot or count plot of unique values
   #plt.style.use('dark_background')
   plt.figure(figsize=(7, 6))
   sns.barplot(x=unique_counts.index[:-2], y=unique_counts.iloc[:-2],palette='husl' )
   plt.xticks(rotation=75, fontsize= 10)
   plt.yticks( fontsize= 10 )
   plt.xlabel('Columns', fontsize=10)
   plt.ylabel('Number of Unique Values', fontsize=10)
   plt.title('Total no. of Unique Values in Dataset', fontsize=10)
# Display the plot
   plt.show()
check_unquie_count(df.iloc[:,0:-1])
```

```
Total no. of Unique Values
______
dependents
                   2
phone
                   3
other_credit
                   3
housing
checking_balance
                   4
percent_of_income
years at residence
existing_loans_count
job
credit_history
                   5
savings_balance
                   5
employment_duration
                   6
purpose
months_loan_duration
                  33
                  53
age
                 921
amount
dtype: int64
______
```

14


```
Index(['purpose', 'credit_history', 'savings_balance', 'employment_duratio
n',
       'checking_balance', 'existing_loans_count', 'job', 'years_at_reside
nce',
       'percent_of_income', 'housing', 'other_credit', 'dependents', 'phon
е',
       'default'],
      dtype='object')
Out[11]:
```

percentage count of categorical columns

In [12]:

```
plt.figure(figsize=(10,30))
for i, col in enumerate(pie_col):
    colors =['#6F5CA7','#70A39C', '#ACD94D', '#ECA13D','skyblue','pink']
    plt.subplot(7,2,i+1)
    df[col].value_counts().plot(kind='pie', autopct='%1.1f%%', colors =colors)
    plt.title(f'{col}')
    plt.ylabel('')
```


In [15]:

for col in num_col:
 num_dist(col,target ='default')

In [17]:

sns.heatmap(df.select_dtypes('number').corr())

Out[17]:

<Axes: >

In [18]:

```
g = sns.PairGrid(df, hue='default' , diag_sharey=False)
g.map_upper(sns.scatterplot)
g.map_lower(sns.kdeplot)
g.map_diag(sns.kdeplot)
plt.show()
```


Checking Imbalance between the different classes

```
In [19]:
```

```
target = 'default'
value_counts =df[target].value_counts()
print(value_counts)
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
# Plot the bar plot on the first subplot (axes[0])
value_counts.plot(kind='bar', ax=axes[0],)
axes[0].set_xlabel('Category')
axes[0].set_ylabel('Count')
axes[0].set_title('Count Plot of Categories')
value_counts.plot(
   kind='pie',
   ax=axes[1],
   \#explode=[0.1, 0.1,0,0, 0, 0], \#Explode the second category to emphasize it
                             # Display percentage with one decimal place
   autopct='%1.1f%%',
   #shadow=True,
                               # Add a shadow effect to the chart
   #colors=['cyan', 'gray', 'orange', 'green'] # Custom colors for the pie chart
axes[1].set_title('Distribution of Categories')
plt.tight_layout()
plt.show()
```

default no 700 yes 300 Name: count, dtype: int64

** Imbalancy in dataset found**

• Most of the default status are having quality of **no**.

- · A class-imbalance in the target feature is observed.
- To overcome this imbalancy, oversampling method is used for modeling.

Sklearn Libraries

In [20]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.datasets import make_classification

from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, GradientBoosting
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
```

Encoding

1. changing column to category

In [21]:

```
# changing column to category
def col_name_unique_value(data):
    for col in data.columns:
        uniq_tot = data[col].unique()

    if col in data.columns and data[col].nunique() <= 6:
        data[col]=data[col].astype('category')

col_name_unique_value(df)
print(df.dtypes)</pre>
```

checking_balance category months loan duration int64 credit_history category purpose category amount float64 savings_balance category employment_duration category percent_of_income category years_at_residence category age int64 other_credit category housing category existing_loans_count category job category dependents category phone category default category

dtype: object

2. Making list of categorical column

In [22]:

```
all_cols = set(df.columns)
num_cols = set(df._get_numeric_data().columns)
cat_cols = list(all_cols - num_cols)
```

Out[23]:

```
In [23]:
cat_cols
```

```
['housing',
'employment_duration',
'existing_loans_count',
'purpose',
'percent_of_income',
'checking_balance',
'default',
'dependents',
'phone',
'other_credit',
'years_at_residence',
'credit_history',
'job',
'savings_balance']
```

3. Label Encoding

```
In [24]:
```

```
for col in cat_cols:
    if df[col].nunique() <= 2:
        df[col] = df[col].cat.codes
        print(df[col].unique())</pre>
```

[0 1]

[0 1]

[1 0]

4. One-Hot Encoding

In [25]:

```
for col in cat_cols:
   if df[col].nunique() > 2:
        df =pd.get_dummies(df, columns= [col], drop_first = True)
```

In [26]:

df.dtypes

Out[26]:

months_loan_duration	int64
amount	float64
age	int64
dependents	int8
phone	int8
default	int8
housing_own	bool
housing_rent	bool
employment_duration_4 - 7 years	bool
employment_duration_< 1 year	bool
employment_duration_> 7 years	bool
employment_duration_unemployed	bool
existing_loans_count_2	bool
existing_loans_count_3	bool
existing_loans_count_4	bool
purpose_car	bool
purpose_car0	bool
purpose_education	bool
purpose_furniture/appliances	bool
purpose_renovations	bool
percent_of_income_2	bool
percent_of_income_3	bool
percent_of_income_4	bool
checking_balance_< 0 DM	bool
checking_balance_> 200 DM	bool
checking_balance_unknown	bool
other_credit_none	bool
other_credit_store	bool
years_at_residence_2	bool
years_at_residence_3	bool
years_at_residence_4	bool
credit_history_good	bool
credit_history_perfect	bool
credit_history_poor	bool
credit_history_very good	bool
job_skilled	bool
job_unemployed	bool
job_unskilled	bool
savings_balance_500 - 1000 DM	bool
savings_balance_< 100 DM	bool
savings_balance_> 1000 DM	bool
savings_balance_unknown	bool
dtype: object	

Finding correlation

In [27]:

```
plt.figure(figsize=(50,50))
corr = df.corr()
sns.heatmap(corr,)
plt.show()
```


In [28]:

df.corr().loc['default'].round(2)

Out[28]:

months_loan_duration	0.21
amount	0.13
age	-0.09
dependents	-0.00
phone	-0.04
default	1.00
housing_own	-0.13
housing_rent	0.09
<pre>employment_duration_4 - 7 years</pre>	-0.08
<pre>employment_duration_< 1 year</pre>	0.11
<pre>employment_duration_> 7 years</pre>	-0.06
<pre>employment_duration_unemployed</pre>	0.04
existing_loans_count_2	-0.04
existing_loans_count_3	-0.03
existing_loans_count_4	0.01
purpose_car	0.02
purpose_car0	0.03
purpose_education	0.05
purpose_furniture/appliances	-0.08
purpose_renovations	0.02
percent_of_income_2	-0.04
percent_of_income_3	-0.01
percent_of_income_4	0.07
checking_balance_< 0 DM	0.26
checking_balance_> 200 DM	-0.04
checking_balance_unknown	-0.32
other_credit_none	-0.11
other_credit_store	0.05
years_at_residence_2	0.02
years_at_residence_3	-0.01
years_at_residence_4	0.00
credit_history_good	0.04
credit_history_perfect	0.14
credit_history_poor	0.01
credit_history_very good	0.13
job_skilled	-0.01
job_unemployed	0.01
job_unskilled	-0.02
savings_balance_500 - 1000 DM	-0.07
savings_balance_< 100 DM	0.16
savings_balance_> 1000 DM	-0.09
savings_balance_unknown	-0.13
Name: default, dtype: float64	0.15
maine. deradie, deype. 110ac04	

Splitting into target and independent features

In [29]:

```
target = "default"
x = df.drop(columns=target)
y = df[target]
```

Feature Scaling

In [30]:

```
#StandardScaler in dataframe
sc = StandardScaler()
sc_x = pd.DataFrame(sc.fit_transform(x) , columns=x.columns)
sc_x.head()
```

Out[30]:

	months_loan_duration	amount	age	dependents	phone	housing_own	housing
0	-1.236478	-0.860961	2.766456	-0.428290	1.214598	0.634448	-0.4
1	2.248194	1.326550	-1.191404	-0.428290	-0.823318	0.634448	-0.4
2	-0.738668	-0.436908	1.183312	2.334869	-0.823318	0.634448	-0.4
3	1.750384	2.209879	0.831502	2.334869	-0.823318	-1.576173	-0.4
4	0.256953	0.832050	1.535122	2.334869	-0.823318	-1.576173	-0.4

5 rows × 41 columns

Imbalance treatment

In [31]:

```
from imblearn.over_sampling import RandomOverSampler
over = RandomOverSampler()
x_over, y_over = over.fit_resample(sc_x,y)
```

In [32]:

```
y_over.value_counts().plot(kind='bar', color=['skyblue', 'lightgreen'])
```

Out[32]:

<Axes: xlabel='default'>

In [33]:

x_train,x_test,y_train,y_test = train_test_split(x_over,y_over,test_size=0.25,random_sta

Model comparision

```
In [34]:
```

```
Model name Sklearn models

LogisticRegression LogisticRegression()
DecisionTreeClassifier DecisionTreeClassifier(criterion='log_loss', max_depth=11)
BaggingClassifier BaggingClassifier(estimator=RandomForestClassifier())
RandomForestClassifier RandomForestClassifier(criterion='log_loss', max_depth=10, random_state=123)
SupportVectorClassifier SVC(C=0.3)
```

In [35]:

```
Train Accuracy = []
Test Accuracy=[]
Variance =[]
Train_CV=[]
Test_CV=[]
Variance_CV=[]
Precision_tr =[]
Recall_tr =[]
F1_score_tr =[]
Precision_test =[]
Recall_test =[]
F1_score_test =[]
TP=[]
FP=[]
FN=[]
TN=[]
for model name, model in models:
   model.fit(x_train,y_train)
   y_pred_train = model.predict(x_train)
   y_pred_test = model.predict(x_test)
   print('==='*23)
   print(f'
                     Model name: {model_name}')
   print('==='*23)
   print()
#
           Model Accuracy
#-----
   train_acc = accuracy_score(y_train, y_pred_train)
   test_acc = accuracy_score(y_test, y_pred_test)
     Train_Accuracy.append(train_acc.round(2)*100)
     Test_Accuracy.append(test_acc.round(2)*100)
     variance = abs(train_acc - test_acc).round(2)*100
  # print(f'= Training Accuracy, {train_acc.round(2)*100} %' )
  # print(f'= TestAccuracy, {test_acc.round(2)*100} %' )
  # print(f'Variance : {variance}')
   #Variance.append(variance)
   #if (variance > 9) or (train acc > 99):
       #print(f'ATTENTION : The {model name} Model is overfitting')
   print()
#
          Cross Validation
   CV_train_acc =cross_val_score(model, x_train, y_train, cv =10).mean()
   CV_test_acc =cross_val_score(model, x_test, y_test, cv =10).mean()
   Train_CV.append(CV_train_acc.round(2)*100)
   Test_CV.append(CV_test_acc.round(2)*100)
   print(f'= Training Accuracy(CrossValidation), {CV_train_acc.round(2)*100} %' )
   print(f'= TestAccuracy(CrossValidation), {CV_test_acc.round(2)*100} %' )
   variance_CV = abs(CV_train_acc - CV_test_acc).round(2)*100
   Variance_CV.append(variance_CV)
   print(f'Variance (CrossValidation) : {variance_CV}')
```

```
if (variance_CV > 9) or (CV_train_acc > 99):
       print(f'ATTENTION : The {model name} Model is overfitting')
       print()
Evalutaion Metrics
#-----
     print( '--'*30)
#
#
     print( 'Classification_report:\n')
     print( '--'*30)
#
     print( 'Train:')
#
     print( classification_report(y_train, y_pred_train))
#
     print( 'Test:')
#
     print( '--'*30)
#
#
     print(classification_report(y_test, y_pred_test))
     print( '--'*30)
   cm_train= confusion_matrix(y_train, y_pred_train)
   cm_test = confusion_matrix(y_test, y_pred_test)
   #print( '--'*30)
   #print( 'confusion_matrix_Train:\n',cm_train,'\nconfusion_matrix_Test :\n',cm_test )
   #print('--'*30)
   TP_test = cm_test[0,0]
   FP_test = cm_test[0,1]
   FN test = cm test[1,0]
   TN_{test} = cm_{test}[1,1]
   TP.append(TP_test)
   FP.append(FP_test)
   FN.append(FN test)
   TN.append(TN_test)
model=[i[0] for i in models]
#print(len(Train_Accuracy), len(Test_Accuracy),len(Variance),len(Train_CV),len(Test_CV),
metrics={"Model":model, "Train accuracy(CV)":Train_CV, "Test accuracy(CV)":Test_CV, "Varia
         "TP":TP, "TN":TN, "FP":FP, "FN":FN}
metric df = pd.DataFrame(metrics)
#print(metric_df.shape)
metric df
#print(TN)
```

Model name: LogisticRegression

Training Accuracy(CrossValidation), 71.0 %

TestAccuracy(CrossValidation), 70.0 %

Variance (CrossValidation): 1.0

Model name: DecisionTreeClassifier

Training Accuracy(CrossValidation), 78.0 %

TestAccuracy(CrossValidation), 71.0 %

Variance (CrossValidation): 7.000000000000001

Model name: BaggingClassifier

Training Accuracy(CrossValidation), 82.0 %

= TestAccuracy(CrossValidation), 75.0 %

Variance (CrossValidation): 8.0

Model name: RandomForestClassifier

Training Accuracy(CrossValidation), 82.0 %

TestAccuracy(CrossValidation), 77.0 %

Variance (CrossValidation): 6.0

Model name: SupportVectorClassifier

Training Accuracy(CrossValidation), 74.0 %

TestAccuracy(CrossValidation), 71.0 %

Variance (CrossValidation): 3.0

Out[35]:

	Model	Train accuracy(CV)	Test accuracy(CV)	Variance_CV	TP	TN	FP	FN
0	LogisticRegression	71.0	70.0	1.0	117	127	58	48
1	DecisionTreeClassifier	78.0	71.0	7.0	123	149	52	26
2	BaggingClassifier	82.0	75.0	8.0	135	158	40	17
3	RandomForestClassifier	82.0	77.0	6.0	135	151	40	24
4	SupportVectorClassifier	74.0	71.0	3.0	112	144	63	31

In [36]:

```
for model name, model in models:
   model.fit(x_train,y_train)
   y_pred_train = model.predict(x_train)
   y_pred_test = model.predict(x_test)
    cm_test = confusion_matrix(y_test, y_pred_test)
   #y_test_binary = (y_test == 1).astype(int)
   #y_pred_test_binary = (y_pred_test == 1).astype(int)
   fpr, tpr, _ = roc_curve(y_test, y_pred_test, pos_label=1)
    roc auc = auc(fpr, tpr)
   print('--'*15)
   print(model_name)
   print('--'*15)
   print()
   print(f'Test confusion matrix :\n {cm_test}')
   print()
   print(f'Test ROC-AUC : {roc_auc:.2f}')
   plt.figure(figsize = (8,3.5))
   plt.subplot(1,2,1)
    sns.heatmap(cm_test, annot = True, cmap= 'Blues')
   plt.title(f'confusion_matrix_Test {model_name}')
   plt.subplot(1,2,2)
   plt.plot(fpr, tpr, label=f'{model_name}(AUC = {roc_auc:.2f})')
# Plot the diagonal line representing a random classifier (AUC = 0.5)
   plt.plot([0, 1], [0, 1], 'm--', label='AUC = 0.5')
# Set Labels and title
   plt.xlabel('False Positive Rate (FPR))')
   plt.ylabel('True Positive Rate (TPR)')
   plt.title('Receiver Operating Characteristic (ROC) Curve')
   plt.legend(loc='lower right')
   plt.tight_layout()
# Show the plot
plt.show()
```

```
LogisticRegression
Test confusion matrix :
[[117 58]
 [ 48 127]]
Test ROC-AUC: 0.70
-----
DecisionTreeClassifier
______
Test confusion matrix :
[[123 52]
[ 27 148]]
Test ROC-AUC: 0.77
BaggingClassifier
Test confusion matrix :
[[136 39]
[ 17 158]]
Test ROC-AUC: 0.84
RandomForestClassifier
Test confusion matrix :
[[135 40]
[ 24 151]]
Test ROC-AUC: 0.82
SupportVectorClassifier
-----
Test confusion matrix :
[[112 63]
```

Test ROC-AUC: 0.73

[31 144]]

==Conclusion==

* These following findings highlight the relative performance of different classification models on the German credit card dataset

Model	Train accuracy(CV)	Test accuracy(CV)	Variance_CV	Roc
LogisticRegression	71.0	70.0	1.0	0.70
DecisionTreeClassifier	78.0	71.0	7.0	0.77
BaggingClassifier	82.0	75.0	7.0	0.84
RandomForestClassifier	82.0	77.0	5.0	0.82
SupportVectorClassifier	74.0	71.0	3.0	0.73

- The Random Forest Classifier demonstrate stronger predictive capabilities compared to other models, as evidenced by its highest accuracy (77%).
- Bagging Classifier excels in accurately classifying true instances, demonstrating a strong ability to identify true psotive (TP) and true negative (TN) and ROC-AUC scores (0.84).
 - · Payal Mohanty
 - Project completed 7th August 2023