Big M for a max (min) Linear Programming problem:

Step 1. Introduce artificial variables in each row (with no basic variable).

Step 2. Put the artificial variables into the objective function: For max problem $\max z = c^t x - Ma_1 - Ma_2 - \ldots - Ma_m$. (For min problem $\min z = c^t x + Ma_1 + Ma_2 + \ldots + Ma_m$

Step 3. "clean-up" the objective function.

Step 4. Solve the LP by simplex.

If at opt all $a_i = 0$, we got the optimal solution for the original LP.

Otherwise (some $a_i > 0$ at opt) the original LP is infeasible.

$$\min z = 2x_1 + 3x_2$$
s.t. $(1/2)x_1 + (1/4)x_2 \le 4$

$$x_1 + 3x_2 \ge 20$$

$$x_1 + x_2 = 10$$

$$x_1, x_2 \ge 0$$

In standard form:

Add artificial variables in constraints 2 and 3:

$$\min z - 2x_1 - 3x_2 - Ma_2 - Ma_3 = 0$$
s.t.
$$(1/2)x_1 + (1/4)x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 20$$

$$x_1 + x_2 + a_3 = 10$$

$$x_1, x_2, s_1, e_2, a_2, a_3 \ge 0$$

Tableau before "clean-up":

z	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	-2	-3	0	0	-M	-M	0
0	1/2	1/4	1	0	0	0	4
0	1	3	0	-1	1	0	20
0	1	1	0	0	0	1	10

z	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	2M - 2	4M - 3	0	-M	0	0	30M
0	1/2	1/4	1	0	0	0	4
0	1	3	0	-1	1	0	20
0	1	1	0	0	0	1	10

 \boldsymbol{x}_2 enters \boldsymbol{a}_2 leaves the basis. Next tableau:

z	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	(2M-3)/3	0	0	(M-3)/3	(3-4M)/3	0	(60 + 10M)/3
0	5/12	0	1	1/12	-1/12	0	7/3
0	1/3	1	0	-1/3	1/3	0	20/3
0	2/3	0	0	1/3	-1/3	1	10/3

 x_1 enters a_3 leaves the basis. Next tableau:

z	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	0	0	0	-1/2	(1-2M)/2	(3-2M)/2	25
0	0	0	1	-1/8	1/8	-5/8	1/4
0	0	1	0	-1/2	1/2	-1/2	5
0	1	0	0	1/2	-1/2	3/2	5

$$\begin{array}{rll} \max \ z &=& x_1 + x_2 \\ \text{s.t.} & 2x_1 + x_2 & \geq 3 \\ & 3x_1 + x_2 & \leq 3.5 \\ & x_1 + x_2 & \leq 1 \\ & x_1, x_2 & \geq 0 \end{array}$$

In standard form, with an artificial variable in constraint 1:

$$\begin{array}{lll} \max & z - x_1 - x_2 + Ma_1 &= 0 \\ \text{s.t.} & 2x_1 + x_2 - e + a_1 &= 3 \\ & 3x_1 + x_2 + s_2 &= 3.5 \\ & x_1 + x_2 + s_3 &= 1 \\ & x_1, x_2, e, a_1, s_2, s_3 &\geq 0 \end{array}$$

z	x_1	x_2	e	a_1	s_2	s_3	RHS
1	-2M - 1	-M - 1	M	0	0	0	-3M
0	2	1	-1	1	0	0	3
0	3	1	0	0	1	0	3.5
0	1	1	0	0	0	1	1

 x_1 enters a_1 leaves the basis. Next tableau:

z	x_1	x_2	e	a_1	s_2	s_3	RHS
1	0	M	M	0	0	2M + 1	-M + 1
0	0	-1	-1	1	0	-2	1
0	0	-2	0	0	1	-3	0.5
0	1	1	0	0	0	1	1

2 phase method for a Linear Programming problem:

Step 1. Introduce artificial variables in each row (with no basic variable).

Step 2. Objective for phase 1: $\min w = a_1 + a_2 + \ldots + a_m$.

Step 3. "clean-up" the objective function.

Step 4. Solve the phase 1 LP by simplex.

If at opt all $a_i = 0$, we got a feasible solution for the original LP. Goto step 5.

Otherwise (some $a_i > 0$ at opt) the original LP is infeasible. Stop.

Step 5. Phase 2: Solve the original LP by simplex, with the starting solution found in phase 1.

$$\min z = 2x_1 + 3x_2$$
s.t. $(1/2)x_1 + (1/4)x_2 \le 4$

$$x_1 + 3x_2 \ge 20$$

$$x_1 + x_2 = 10$$

$$x_1, x_2 \ge 0$$

In standard form:

$$\begin{aligned} & \min & z - 2x_1 - 3x_2 & = 0 \\ & \text{s.t.} & & (1/2)x_1 + (1/4)x_2 + s_1 & = 4 \\ & & x_1 + 3x_2 - e_2 & = 20 \\ & & x_1 + x_2 & = 10 \\ & & x_1, x_2, s_1, e_2 & \geq 0 \end{aligned}$$

Add artificial variables in constraints 2 and 3, phase 1 LP:

$$\begin{array}{lll} \min & w-a_2-a_3 & = 0 \\ \text{s.t.} & (1/2)x_1+(1/4)x_2+s_1 & = 4 \\ & x_1+3x_2-e_2+a_2 & = 20 \\ & x_1+x_2+a_3 & = 10 \\ & x_1,x_2,s_1,e_2,a_2,a_3 & \geq 0 \end{array}$$

Tableau before "clean-up":

w	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	0	0	0	0	-1	-1	0
0	1/2	1/4	1	0	0	0	4
0	1	3	0	-1	1	0	20
0	1	1	0	0	0	1	10

w	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	2	4	0	-1	0	0	30
0	1/2	1/4	1	0	0	0	4
0	1	3	0	-1	1	0	20
_0	1	1	0	0	0	1	10

 \boldsymbol{x}_2 enters \boldsymbol{a}_2 leaves the basis. Next tableau:

w	x_1	x_2	s_1	e_2	a_2	a_3	RHS
					-4/3		
0	5/12	0	1	1/12	-1/12	0	7/3
0	1/3	1	0	-1/3	1/3	0	20/3
0	2/3	0	0	1/3	-1/3	1	10/3

 x_1 enters a_3 leaves the basis. Next tableau:

w	x_1	x_2	s_1	e_2	a_2	a_3	RHS
1	0	0	0	0	-1	-1	0
0	0	0	1	-1/8	1/8	-5/8	1/4
0	0	1	0	-1/2	1/2	-1/2	5
0	1	0	0	1/2	-1/2	3/2	5

End of phase 1. w = 0 so?

First tableau of phase 2, before clean-up:

z	x_1	x_2	s_1	e_2	RHS
1	-2	-3	0	0	0
0	0	0	1	-1/8	1/4
0	0	1	0	-1/2	5
0	1	0	0	1/2	5

First tableau of phase 2, after clean-up:

z	x_1	x_2	s_1	e_2	RHS
1	0	0	0	-1/2	25
0	0	0	1	-1/8	1/4
0	0	1	0	-1/2	5
0	1	0	0	1/2	5

End of phase 2.

$$\begin{array}{rll} \max \ z &=& x_1 + x_2 \\ \text{s.t.} & 2x_1 + x_2 & \geq 3 \\ & 3x_1 + x_2 & \leq 3.5 \\ & x_1 + x_2 & \leq 1 \\ & x_1, x_2 & \geq 0 \end{array}$$

In standard form, with an artificial variable in constraint 1:

$$\begin{aligned} & \min & w - a_1 & = 0 \\ & \text{s.t.} & 2x_1 + x_2 - e + a_1 & = 3 \\ & & 3x_1 + x_2 + s_2 & = 3.5 \\ & & x_1 + x_2 + s_3 & = 1 \\ & & x_1, x_2, e, a_1, s_2, s_3 & \geq 0 \end{aligned}$$

w	x_1	x_2	e	a_1	s_2	s_3	RHS
1	2	1	-1	0	0	0	3
0	2	1	-1	1	0	0	3
0	3	1	0	0	1	0	3.5
0	1	1	0	0	0	1	1

 x_1 enters a_1 leaves the basis. Next tableau:

w	x_1	x_2	e	a_1	s_2	s_3	RHS
1	0	-1	-1	0	0	-2	1
0	0	-1	-1	1	0	-2	1
0	0	-2	0	0	1	-3	0.5
0	1	1	0	0	0	1	1

End of phase 1.