

$$U(\Box) < U(O) < U(\Box)$$
=> $u_{s_{1}} < 2\pi < nt_{1}$
=> $\frac{u_{1}}{2} \leq s_{1} < 2\pi < \frac{u_{2}}{2} t_{1}$

$$S_{2n} = \sqrt{2 - 14 - s_{1}^{2}} \qquad t_{2n} = \frac{2}{4n} (\sqrt{4nt_{1}^{2}} - 2)$$

A36

$$S_{2n} = \sqrt{2-\sqrt{4-s_n^2}} = \sqrt{2-2-4-\frac{s_n^2}{4}}$$

=> Subtraction rever fast identischer Zehlen!

-> Ausläschung !!!= trjobnis bostcht fost nur nach aus Rondungsfehlern.

neu: $\sqrt{\frac{5}{2+\sqrt{4-5^2}}}$

AZa

$$a_{+}^{2}(\frac{5}{2})^{2} = 1^{2}$$

$$= a_{+}^{2}(\frac{5}{2})^{2} = 1^{2}$$

$$= a_{+}^{2}(\frac{5}$$

2 strahlensatz
$$\frac{\xi_{/2}}{=}$$
 $\frac{d}{\sqrt{2}}$ $\frac{d}{\sqrt{2}}$

1. Strahlusatz:
$$\frac{d}{1} = \frac{a+b}{a}$$

=> $t = \frac{a+b}{a}$. S

= $\frac{a+1-a}{a}$. S = $\frac{1}{a}$. S = $\sqrt{1-s^2}$. S

= $\sqrt{1-s^2}$. J = $\sqrt{2}$ S

= $\sqrt{1-\frac{5^2}{4}}$. J = $\sqrt{4\sqrt{4-\frac{5^2}{4}}}$ = $\sqrt{4\sqrt{4\sqrt{4-\frac{5^2}{4}}}}$ = $\sqrt{4\sqrt{4\sqrt{4-\frac{5^2}{4}}}}$ = $\sqrt{4\sqrt{4\sqrt{$

