4章 指数関数と対数関数

BASIC

220 (1)
$$\log_2 128 = m$$
 とおくと $2^m = 128$ $2^m = 2^7$ よって, $m = 7$ であるから,与式 $= 7$ 〔別解〕 与式 $= \log_2 2^7$ $= 7\log_2 2$

 $= 7 \cdot 1 = 7$

(2)
$$\log_{\frac{1}{4}}1=m$$
 とおくと
$$\left(\frac{1}{4}\right)^m=1$$

$$\left(\frac{1}{4}\right)^m=\left(\frac{1}{4}\right)^0$$
 よって, $m=0$ であるから,与式 $=0$

(3)
$$\log_{0.1}0.001=m$$
 とおくと $0.1^m=0.001$ $0.1^m=0.1^3$ よって, $m=3$ であるから,与式 $=3$ (別解) 与式 $=\log_{0.1}(0.1)^3$ $=3\log_{0.1}0.1$

 $= 3 \cdot 1 = 3$

(4)
$$\log_3 \frac{1}{81} = m$$
 とおくと $3^m = \frac{1}{81}$ $3^m = \frac{1}{3^4}$ $3^m = 3^{-4}$

$$(5) \log_2 0.25 = m$$
 とおくと $2^m = 0.25$ $2^m = \frac{1}{4}$ $2^m = \frac{1}{2^2}$ $2^m = 2^{-2}$ よって, $m = -2$ であるから,与式 $= -2$ 〔別解〕 与式 $= \log_2 \frac{25}{100}$

 $= -4 \cdot 1 = -4$

与式 =
$$\log_2 \frac{25}{100}$$

= $\log_2 \frac{1}{4}$
= $\log_2 \frac{1}{2^2}$
= $\log_2 2^{-2}$
= $-2 \log_2 2$
= $-2 \cdot 1 = -2$

$$(6) \log_{16} 2 = m$$
 とおくと $16^m = 2$ $(2^4)^m = 2^1$ $2^{4m} = 2^1$ よって, $4m = 1$ であるから,与式 $= \frac{1}{4}$ (別解) 与式 $= \log_{16} \sqrt[4]{16}$ $= \log_{16} 16^{\frac{1}{4}}$ $= \frac{1}{4} \log_{16} 16$ $= \frac{1}{4} \cdot 1 = \frac{1}{4}$

または,底の変換を学習した後であれば 与式
$$= \frac{\log_2 2}{\log_2 16}$$
 $= \frac{1}{\log_2 2^4}$ $= \frac{1}{4\log_2 2}$ $= \frac{1}{4\cdot 1} = \frac{1}{4}$

$$(\ 7\)\log_{7}\sqrt[5]{7}=m$$
 とおくと $7^{m}=\sqrt[5]{7}$ $7^{m}=7^{\frac{1}{5}}$ よって, $m=\frac{1}{5}$ であるから,与式 $=\frac{1}{5}$ (別解) 与式 $=\log_{7}7^{\frac{1}{5}}$ $=\frac{1}{5}\log_{7}7$ $=\frac{1}{5}\cdot 1=\frac{1}{5}$

$$(\ 8\)\log_2\sqrt[5]{2^3}=m$$
 とおくと $2^m=\sqrt[5]{2^3}$ $2^m=7^{\frac{3}{5}}$ よって, $m=\frac{3}{5}$ であるから,与式 $=\frac{3}{5}$ (別解) 与式 $=\log_22^{\frac{3}{5}}$ $=\frac{3}{5}\log_22$ $=\frac{3}{5}\cdot 1=\frac{3}{5}$

221 (1) 与式 =
$$\log_3 \left(6 \cdot \frac{3}{2}\right)$$

= $\log_3 3^2$
= $2\log_3 3$
= $2 \cdot 1 = \mathbf{2}$

(2) 与式 =
$$\log_2 \frac{12}{6}$$

= $\log_2 2 = 1$
(3) 与式 = $\log_{10} \left(\frac{75}{13} \div \frac{1}{20} \right)$

(3) 与式 =
$$\log_{10} \left(\frac{75}{13} \div \frac{15}{26} \right)$$

= $\log_{10} \left(\frac{75}{13} \cdot \frac{26}{15} \right)$
= $\log_{10} 10 = 1$

(4)
$$= \log_2 \frac{56}{7}$$

 $= \log_2 8$
 $= \log_2 2^3$
 $= 3 \log_2 2$
 $= 3 \cdot 1 = 3$

(6) 与式 =
$$\log_4(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})$$

= $\log_4(7 - 5)$
= $\log_4 2$
= $\log_4 \sqrt{4}$
= $\log_4 4^{\frac{1}{2}}$
= $\frac{1}{2}\log_4 4$
= $\frac{1}{2} \cdot 1 = \frac{1}{2}$

223 (1)
$$= \log_5 \sqrt{2} + \log_5 (\sqrt{8})^3$$

$$= \log_5 \sqrt{2} + \log_5 8\sqrt{8}$$

$$= \log_5 \sqrt{2} + \log_5 16\sqrt{2}$$

$$= \log_5 (\sqrt{2} \cdot 16\sqrt{2})$$

$$= \log_5 32$$

$$= \log_5 2^5 = 5 \log_5 2$$

(2) 与式 =
$$\log_2 12^2 - 4 \log_2 2$$

= $\log_2 (2^2 \times 3)^2 - \log_2 2^4$
= $\log_2 \frac{2^4 \times 3^2}{2^4}$
= $\log_2 3^2 = 2 \log_2 3$

(3) 与式 =
$$\log_4 \frac{\sqrt{6} \cdot \sqrt{10}}{\sqrt{15}}$$

$$= \log_4 \sqrt{\frac{(2 \times 3) \cdot (2 \times 5)}{3 \times 5}}$$

$$= \log_4 \sqrt{2^2}$$

$$= \log_4 \sqrt{4}$$

$$= \log_4 4^{\frac{1}{2}}$$

$$= \frac{1}{2} \log_4 4 = \frac{1}{2}$$
(4) 与式 = $\log_{10} 15^{\frac{1}{2}} + \log_{10} 8^{\frac{1}{3}} - \log_{10} 36^{\frac{1}{4}}$

$$= \log_{10} \frac{(3 \times 5)^{\frac{1}{2}} \times (2^3)^{\frac{1}{3}}}{(2^2 \times 3^2)^{\frac{1}{4}}}$$

$$= \log_{10} \frac{(3 \times 5)^{\frac{1}{2}} \times (2^{3})^{\frac{1}{3}}}{(2^{2} \times 3^{2})^{\frac{1}{4}}}$$

$$= \log_{10} \frac{3^{\frac{1}{2}} \times 5^{\frac{1}{2}} \times 2}{2^{\frac{1}{2}} \times 3^{\frac{1}{2}}}$$

$$= \log_{10} 5^{\frac{1}{2}} \times 2^{1-\frac{1}{2}}$$

$$= \log_{10} 5^{\frac{1}{2}} \times 2^{\frac{1}{2}}$$

$$= \log_{10} (5 \times 2)^{\frac{1}{2}}$$

$$= \log_{10} 10^{\frac{1}{2}}$$

$$= \frac{1}{2} \log_{10} 10 = \frac{1}{2}$$

(5) 与式 =
$$\log_3 5^{\frac{1}{2}} + \log_3 6^{\frac{3}{2}} - \log_3 30^{\frac{1}{2}}$$

$$= \log_3 \frac{5^{\frac{1}{2}} \times (2 \times 3)^{\frac{3}{2}}}{(2 \times 3 \times 5)^{\frac{1}{2}}}$$

$$= \log_3 \frac{5^{\frac{1}{2}} \times 2^{\frac{3}{2}} \times 3^{\frac{3}{2}}}{2^{\frac{1}{2}} \times 3^{\frac{1}{2}} \times 5^{\frac{1}{2}}}$$

$$= \log_3 2^{\frac{3}{2} - \frac{1}{2}} \times 3^{\frac{3}{2} - \frac{1}{2}}$$

$$= \log_3 2 \cdot 3 = \log_3 6$$

証明のために,まず次の2つを示しておきます.

$$a>0,\ b>0,\ a \ne 1,\ b \ne 1$$
 とする .

$$\begin{array}{ll}
 \text{log}_a b = \frac{1}{\log_b a} \\
 \text{2} \quad a^{\log_a b} = b
\end{array}$$

① について

底の変換公式により

$$\log_a b = \frac{\log_b b}{\log_b a}$$
$$= \frac{1}{\log_b a}$$

② について

$$a^{\log_a b} = m$$
 とおき , これを対数を用いて表すと
$$\log_a b = \log_a m$$

〔証明〕

左辺 =
$$a^{\log_a b}$$
 $= a^{\log_a b \cdot \frac{1}{\log_a c}}$ $= a^{\log_a b \cdot \log_c a}$ ①より $= (a^{\log_a b})^{\log_c a}$ $= b^{\log_c a}$ ②より $= 右辺$

(2) 与式 =
$$\log_3 4 \cdot \frac{\log_3 125}{\log_3 8} \cdot \frac{\log_3 9}{\log_3 5}$$

= $\log_3 2^2 \cdot \frac{\log_3 5^3}{\log_3 2^3} \cdot \frac{\log_3 3^2}{\log_3 5}$
= $2\log_3 2 \cdot \frac{3\log_3 5}{3\log_3 2} \cdot \frac{2\log_3 3}{\log_3 5} = 4$

(3) 与式 =
$$(\log_2 1 - \log_2 3) \cdot \frac{\log_2 8}{\log_2 3} \cdot \frac{\log_2 27}{\log_2 9}$$

= $-\log_2 3 \cdot \frac{\log_2 2^3}{\log_2 3} \cdot \frac{\log_2 3^3}{\log_2 3^2}$
= $-\log_2 3 \cdot \frac{3\log_2 2}{\log_2 3} \cdot \frac{3\log_2 3}{2\log_2 3} = -\frac{9}{2}$

226 (1) $x=1\, {\it m}$ とき , y=0 $x=5\, {\it m}$ とき , $y=\log_5 5=1$

グラフは , y 軸を漸近線とし , 2 点 $(1,\ 0),(5,\ 1)$ を通る単調に増加する曲線となる .

(2) $x=1 \, \mathfrak{O} \text{ Lき , } y=0$ $x=5 \, \mathfrak{O} \text{ Lき , } y=\log_{\frac{1}{2}}5=-1$

グラフは , y 軸を漸近線とし , 2 点 $(1,\ 0),(5,\ -1)$ を通る単調に減少する曲線となる .

(3) この関数のグラフは , $y=\log_{\frac{1}{2}}x$ のグラフを y 軸について 対称移動したものである .

$$x = -1$$
 のとき , $y = 0$

$$x=-2$$
 のとき , $y=\log_{\frac{1}{2}}2=-1$

グラフは , y 軸を漸近線とし , 2 点 $(-1,\ 0),(-2,\ -1)$ を通る単調に増加する曲線となる .

(4) この関数のグラフは, $y = \log_2 x$ のグラフを x 軸方向に -1 平行移動したものである.

$$x=0$$
 のとき , $y=0$

$$x=1$$
 ගද් , $y=\log_2(1+1)=1$

グラフは , y=-1 を漸近線とし , 2 点 $(0,\ 0),(1,\ 1)$ を通る単調に増加する曲線となる .

(5) $y=\log_2\{-(x-1)\}\ {\it c}$ であるから,この関数のグラフは, $y=\log_2(-x)\ {\it o}$ グラフを x 軸方向に 1 平行移動したもので ある

$$x=0$$
 のとき , $y=0$
$$x=-1$$
 のとき , $y=\log_2\{-(-1-1)\}=1$

グラフは , y=1 を漸近線とし , 2 点 $(0,\ 0),(-1,\ 1)$ を通る単調に減少する曲線となる .

(6)
$$y = \log_2 4 + \log_2 x$$
$$= \log_2 2^2 + \log_2 x$$
$$= 2\log_2 2 + \log_2 x$$
$$= \log_2 x + 2$$

よって,この関数のグラフは, $y=\log_2 x$ のグラフを y 軸方向に 2 平行移動したものである.

$$x=1$$
 のとき , $y=2$

x=2 ගද් , $y=\log_2 2+1=3$

グラフは , y 軸を漸近線とし , 2 点 $(1,\ 2),(2,\ 3)$ を通る単調に増加する曲線となる .

$$y=0$$
 のとき , $4x=1$ より , $x=rac{1}{4}$

227 (1)
$$\frac{1}{125} = \frac{1}{5^3} = 5^{-3}$$
$$25\sqrt[3]{5} = 5^2 \cdot 5^{\frac{1}{3}} = 5^{\frac{7}{3}}$$

であるから,定義域は

$$5^{-3} \le x < 5^{\frac{7}{3}}$$

 $y = \log_5 x$ は単調に増加するので $\log_5 5^{-3} \le \log_5 x < \log_5 5^{\frac{7}{3}}$

すなわち

$$\begin{split} \log_5 5^{-3} & \leq y < \log_5 5^{\frac{7}{3}} \\ -3\log_5 5 & \leq y < \frac{7}{3}\log_5 5 \\ \text{よって , } -3 & \leq y < \frac{7}{3} \end{split}$$

(2)
$$\frac{1}{\sqrt{27}} = \frac{1}{(3^3)^{\frac{1}{2}}} = \frac{1}{3^{\frac{3}{2}}} = \left(\frac{1}{3}\right)^{\frac{3}{2}}$$
$$\sqrt[4]{27} = (3^3)^{\frac{1}{4}} = 3^{\frac{3}{4}} = (3^{-1})^{-\frac{3}{4}} = \left(\frac{1}{3}\right)^{-\frac{3}{4}}$$

であるから,定義域は
$$\left(rac{1}{3}
ight)^{rac{3}{2}} < x < \left(rac{1}{3}
ight)^{-rac{3}{4}}$$
 $y = \log_{rac{1}{3}} x$ は単調に減少するので

$$\log_{\frac{1}{3}} \left(\frac{1}{3}\right)^{\frac{3}{2}} > \log_{\frac{1}{3}} x > \log_{\frac{1}{3}} \left(\frac{1}{3}\right)^{-\frac{3}{4}}$$

$$\begin{split} \log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{\frac{3}{2}} &> y > \log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{-\frac{3}{4}} \\ \frac{3}{2}\log_{\frac{1}{3}}\frac{1}{3} &> y > -\frac{3}{4}\log_{\frac{1}{3}}\frac{1}{3} \\ \text{よって,} &-\frac{3}{4} < y < \frac{3}{2} \end{split}$$

228 (1)

$$\begin{array}{cccc} \log_7 2\sqrt{6} & & \log_7 5 & & \log_7 \sqrt{20} \\ \downarrow & & \downarrow & & \downarrow \\ \log_7 \sqrt{24} & & \log_7 \sqrt{25} & & \log_7 \sqrt{20} \end{array}$$

 $y = \log_7 x$ は , 単調に増加するので

 $\log_7 \sqrt{20} < \log_7 \sqrt{24} < \log_7 \sqrt{25}$

よって

 $\log_7 \sqrt{20} < \log_7 2\sqrt{6} < \log_7 5$

(2)
$$\log_{\frac{1}{5}} 0.3 \qquad \qquad \log_{\frac{1}{5}} \frac{1}{4}$$

 $y = \log_{\frac{1}{\epsilon}} x$ は,単調に減少するので $\log_{\frac{1}{5}} 0.3 < \log_{\frac{1}{5}} 0.285 \cdots < \log_{\frac{1}{5}} 0.25$

$$\log_{\frac{1}{5}} 0.3 < \log_{\frac{1}{5}} \frac{2}{7} < \log_{\frac{1}{5}} \frac{1}{4}$$

229 (1) 真数条件より, $x>0\cdots$ ①

$$\log_4 x^2 = 1$$

対数の定義より

$$x^2=4^1=4$$

$$x=\pm 2$$
 ①より, $x=2$

〔別解〕

真数条件より , $x>0\cdots$ ①

$$\log_4 x^2 = 1\log_4 4$$
$$\log_4 x^2 = \log_4 4$$

よって

$$x^2 = 4$$

$$x = \pm 2$$

①より,
$$x=2$$

(2) 真数条件より , $\begin{cases} x-1>0 & \cdots ① \\ x>0 & \cdots ② \end{cases}$

よって,
$$x > 1 \cdots ③$$

$$\log_2(x-1)x = 1$$

対数の定義より

$$(x-1)x = 2^1 = 2$$

$$x^2 - x - 2 = 0$$

$$(x+1)(x-2) = 0$$

$$x = -1, 2$$

$$③$$
より, $x=2$

〔別解〕

真数条件より , $\begin{cases} x-1>0 & \cdots \\ x>0 & \cdots \end{cases}$

① より,
$$x > 1$$

よって,
$$x > 1 \cdots ③$$

$$\log_2(x-1)x = 1\log_2 2$$

$$\log_2(x-1)x = \log_2 2$$

よって

$$(x-1)x = 2$$

$$x^2 - x - 2 = 0$$

$$(x+1)(x-2) = 0$$

$$x = -1, 2$$

③より,
$$x=2$$

(3) 真数条件より, $\begin{cases} 4x-7>0 & \cdots ① \\ x+1>0 & \cdots ② \end{cases}$

① より ,
$$x > \frac{7}{4}$$

② より ,
$$x>-1$$

よって,
$$x>rac{7}{4}\cdots ③$$

$$\frac{4x-7}{x+1} = 3^{-1} = \frac{1}{3}$$
$$3(4x-7) = x+1$$

$$12x - 21 = x + 1$$

$$11x = 22$$

$$x = 2$$

これは , ③を満たすので , x=2

〔別解〕

真数条件より ,
$$\begin{cases} 4x-7>0 & \cdots ① \\ x+1>0 & \cdots ② \end{cases}$$

① より,
$$x>rac{7}{4}$$

② より ,
$$x>-1$$

よって,
$$x > \frac{7}{4} \cdots 3$$

$$\log_3 \frac{4x - 7}{x + 1} = -\log_3 3$$

$$\log_3 \frac{4x - 7}{x + 1} = -\log_3 3$$

$$\log_3 \frac{4x - 7}{x + 1} = \log_3 3^{-1}$$

$$\log_3 \frac{4x - 7}{x + 1} = \log_3 \frac{1}{3}$$

$$\log_3 \frac{4x - 7}{x + 1} = \log_3 \frac{1}{3}$$

$$\frac{4x-7}{x+1} = \frac{1}{3}$$

$$3(4x-7) = x+1$$

$$12x - 21 = x + 1$$

$$11x = 22$$

x = 2

これは , ①を満たすので , $x=\mathbf{2}$

(4) 真数条件より , $\begin{cases} x-1>0 & \cdots ① \\ x-2>0 & \cdots ② \end{cases}$

- ① より,x > 1
- ② より, x > 2

よって,
$$x>2\cdots3$$

$$\log_{0.5}(x-1)(x-2) = -1$$

対数の定義より

$$(x-1)(x-2) = 0.5^{-1} = \left(\frac{1}{2}\right)^{-1} = 2$$

$$x^2 - 3x + 2 = 2$$

$$x^2 - 3x = 0$$

$$x(x-3) = 0$$

x = 0, 3

③より,x=3

〔別解〕

真数条件より ,
$$\begin{cases} x-1>0 & \cdots ① \\ x-2>0 & \cdots ② \end{cases}$$

- ① より , x > 1
- ② より, x > 2

よって,
$$x>2\cdots3$$

$$\log_{0.5}(x-1)(x-2) = -\log_{0.5}0.5$$

$$\log_{0.5}(x-1)(x-2) = \log_{0.5} 0.5^{-1}$$

$$\log_{0.5}(x-1)(x-2) = \log_{0.5}\left(\frac{1}{2}\right)^{-1}$$

$$\log_{0.5}(x-1)(x-2) = \log_{0.5} 2$$

よって

$$(x-1)(x-2) = 2$$

$$x^2 - 3x + 2 = 2$$

$$x^2 - 3x = 0$$

$$x(x-3) = 0$$

x = 0, 3

③より , x=3

230 (1) 真数条件より, x+1>0 すなわち, $x>-1\cdots$ ①

$$\log_3(x+1) > 2\log_3 3$$

$$\log_3(x+1) > \log_3 3^2$$

$$\log_3(x+1) > \log_3 9$$

$$x+1>9$$

これと①より , x>8

(2) 真数条件より, x-1>0 すなわち, $x>1\cdots$ ①

$$\log_2(x-1) < 3\log_2 2$$

$$\log_2(x-1) < \log_2 2^3$$

$$\log_2(x-1) < \log_2 8$$

底が1より大きいので

$$x - 1 < 8$$

これと①より , 1 < x < 9

(
$$3$$
) 真数条件より, $2x-1>0$ すなわち, $x>\frac{1}{2}\cdots$ ①

$$0\log_2 2 < \log_2(2x - 1) < 1\log_2 2$$

$$\log_2 2^0 < \log_2 (2x - 1) < \log_2 2^1$$

$$\log_2 1 < \log_2 (2x - 1) < \log_2 2$$

底が1より大きいので

$$1 < 2x - 1 < 2$$

$$1 < x < \frac{3}{2}$$

これと
$$①$$
より , $1 < x < rac{3}{2}$

(4) 真数条件より,
$$\left\{egin{array}{ll} x^2-1>0 & \cdots & \\ x+1>0 & \cdots & 2 \end{array}
ight.$$

$$(x+1)(x-1) > 0$$

$$x < -1, 1 < x$$

② より,
$$x > -1$$

よって,
$$x > 1 \cdots ③$$

$$\log_{10}(x^2 - 1) < \log_{10} 10 + \log_{10}(x + 1)$$

$$\log_{10}(x^2 - 1) < \log_{10} 10(x + 1)$$

底が1より大きいので

$$x^2 - 1 < 10(x+1)$$

$$x^2 - 10x - 11 < 0$$

$$(x+1)(x-11) < 0$$

$$-1 < x < 11$$

これと
$$3$$
より , $1 < x < 11$

231 (1) 与式 =
$$\log_{10} \frac{2}{10}$$

$$= \log_{10} 2 - \log_{10} 10$$

$$= 0.3010 - 1$$

$$= -0.6990$$

(2) 与式 =
$$\log_{10} 2^3 \cdot 3$$

$$= \log_{10} 2^3 + \log_{10} 3$$

$$= 3\log_{10} 2 + \log_{10} 3$$

$$= 3 \cdot 0.3010 + 0.4771$$

= 1.3801

(3) 与武 =
$$\frac{\log_{10} 9}{\log_{10} 2}$$

$$= \frac{\log_{10} 3^2}{\log_{10} 2}$$

$$= \frac{2 \log_{10} 3}{\log_{10} 2}$$

$$= \frac{2 \cdot 0.4771}{0.3010}$$

$$= 3.1701$$

232 (1)両辺の常用対数をとると,

$$\log_{10} 10^n \le \log_{10} 5^{10}$$

すなわち,

 $n \le 10 \log_{10} 5$

対数表より, $\log_{10} 5 = 0.6990$ であるから

$$n \leq 10 \cdot 0.6990$$

= 6.990

したがって , これを満たす最大の自然数 n は 6 である。

(2)両辺の常用対数をとると,

$$\log_{10} 10^{-n} \ge \log_{10} 3^{-20}$$

すなわち,

$$-n \ge -20\log_{10}3$$

 $n \le 20 \log_{10} 3$

対数表より , $\log_{10} 3 = 0.4771$ であるから

$$n \le 20 \cdot 0.4771$$

= 9.542

したがって,これを満たす最大の自然数 n は 9 である。 よって,n=9

 $oldsymbol{233}$ n 時間後に最初の量の 100 倍を越えるとすると,

$$1.5^n > 100$$

すなわち,

$$\left(\frac{3}{2}\right)^n > 100$$

この不等式の両辺の常用対数をとると

$$\log_{10} \left(\frac{3}{2}\right)^n > \log_{10} 10^2$$

$$n(\log_{10} 3 - \log_{10} 2) > 2$$

$$n > \frac{2}{\log_{10} 3 - \log_{10} 2}$$

$$= \frac{2}{0.4771 - 0.3010}$$

$$= \frac{2}{0.1761}$$

したがって , これを満たす最小の自然数 n は 12 である。 よって , $\mathbf{12}$ 時間後

CHECK

234 (1) 対数の定義より, $x = 5^3 = 125$

〔別解〕

$$\log_5 x = 3\log_5 5$$

$$\log_5 x = \log_5 5^3$$

$$\log_5 x = \log_5 125$$

よって ,
$$x=125$$

(2) 対数の定義より,
$$x=10^{-2}=\frac{1}{10^2}=\frac{1}{100}$$
 [別解]
$$\log_{10}x=-2\log_{10}10$$

$$\log_{10}x=\log_{10}10^{-2}$$

$$\log_{10}x=\log_{10}\frac{1}{10^2}$$

$$\log_{10}x=\log_{10}\frac{1}{100}$$
 よって, $x=\frac{1}{100}$

(3) 対数の定義より, $x^{-\frac{1}{2}}=\frac{1}{5}$ $(x^{-\frac{1}{2}})^{-2}=(5^{-1})^{-2}$

$$x = 5^2 = 25$$

〔別解〕

$$\log_x \frac{1}{5} = -\frac{1}{2} \log_x x$$

$$-2 \log_x \frac{1}{5} = \log_x x$$

$$\log_x (5^{-1})^{-2} = \log_x x$$

$$\log_x 5^2 = \log_x x$$

$$\log_x 25 = \log_x x$$
よって, $x = 25$

(4) 対数の定義より, $x^{-\frac{4}{3}}=\frac{1}{16}$ $(x^{-\frac{4}{3}})^{-\frac{3}{4}}=(16^{-1})^{-\frac{3}{4}}$

$$x = 16^{\frac{3}{4}} = (2^4)^{\frac{3}{4}} = 2^3 = 8$$

〔別解〕

$$\log_x \frac{1}{16} = -\frac{4}{3} \log_x x$$

$$-\frac{3}{4} \log_x \frac{1}{16} = \log_x x$$

$$\log_x (16^{-1})^{-\frac{3}{4}} = \log_x x$$

$$\log_x (16^{-1})^{-\frac{3}{4}} = \log_x x$$

$$\log_x 16^{\frac{3}{4}} = \log_x x$$

$$\log_x 2^{\frac{3}{4}} = \log_x x$$

$$\log_x 2^3 = \log_x x$$

$$\log_x 2^3 = \log_x x$$

$$\log_x 8 = \log_x x$$

235 (1) 与式 = $\log_6(72 \cdot 108)$ = $\log_6(2^3 \times 3^2 \cdot 2^2 \times 3^3)$

よって , x=8

$$= \log_6(2^5 \times 3^5)$$

$$= \log_6(2 \times 3)^5$$

$$= 5\log_6 6$$

$$=5\cdot 1=\mathbf{5}$$

(2) 与式 =
$$\log_3 \frac{486}{6}$$

= $\log_3 81$
= $\log_3 3^4$
= $4\log_3 3$
= $4 \cdot 1 = 4$

(3) 与式 =
$$\log_2 288 - \log_2 6^2$$

= $\log_2 \frac{288}{36}$
= $\log_2 8$
= $\log_2 2^3$
= $3\log_2 2$
= $3 \cdot 1 = 3$

236 (1) 与式 =
$$\log_2(\sqrt{10})^3 + \log_2\frac{4}{5\sqrt{5}}$$

= $\log_2 10\sqrt{10} \times \frac{4}{5\sqrt{5}}$
= $\log_2 \frac{10\sqrt{10} \times 4}{5\sqrt{5}}$
= $\log_2 8\sqrt{2}$
= $\log_2 2^3 \cdot 2^{\frac{1}{2}}$
= $\log_2 2^{\frac{7}{2}}$
= $\frac{7}{2}\log_2 2$
= $\frac{7}{2} \cdot 1 = \frac{7}{2}$
(2) 与式 = $\log_3 \frac{\sqrt{6} \cdot \sqrt{90}}{\sqrt{20}}$
= $\log_3 \sqrt{\frac{6 \cdot 90}{20}}$
= $\log_3 \sqrt{27}$
= $\log_3 (3^3)^{\frac{1}{2}}$
= $\log_3 3^{\frac{3}{2}}$

 $= \frac{3}{2} \log_3 3$

 $=\frac{3}{2}\cdot 1=\frac{3}{2}$

(2) 与式 =
$$(\log_2 1 - \log_2 3) \cdot \frac{\log_2 4}{\log_2 3}$$

= $(0 - \log_2 3) \cdot \frac{\log_2 2^2}{\log_2 3}$
= $-\log_2 3 \cdot \frac{2\log_2 2}{\log_2 3}$
= $-2\log_2 2$
= $-2 \cdot 1 = -2$

(3)
$$= \frac{\log_5 3}{\log_5 \sqrt{5}} \cdot \frac{\log_5 25}{\log_5 27}$$

$$= \frac{\log_5 3}{\log_5 5^{\frac{1}{2}}} \cdot \frac{\log_5 5^2}{\log_5 3^3}$$

$$= \frac{\log_5 3}{\frac{1}{2} \log_5 5} \cdot \frac{2 \log_5 5}{3 \log_5 3}$$

$$= \frac{2}{\frac{3}{2}} = \frac{4}{3}$$

(4) 与式
$$= \frac{\log_2 7}{\log_2 8} \cdot \frac{\log_2 6}{\log_2 7} \cdot \frac{\log_2 5}{\log_2 6} \cdot \frac{\log_2 4}{\log_2 5} \cdot \frac{\log_2 3}{\log_2 4} \cdot \frac{\log_2 2}{\log_2 3}$$

$$= \frac{\log_2 2}{\log_2 8}$$

$$= \frac{\log_2 2}{\log_2 2^3}$$

$$= \frac{\log_2 2}{3 \log_2 2} = \frac{1}{3}$$

- 238 (1) x 軸方向に 2, y 軸方向に 1 平行移動したものである.
 - (2) $y = \log_2\{-(x+1)\}$ であるから,y 軸に関して対称移動 し,x 軸方向に -1 平行移動したものである.
 - (3) x 軸に関して対称移動し,x 軸方向に-1 平行移動したものである.
 - (4) $y=-\log_2\{-(x-1)\}$ であるから,原点に関して対称移動し,x 軸方向に 1 平行移動したものである.

239 (1) 真数条件より,
$$\begin{cases} 2x-1>0 & \cdots & 0 \\ x>0 & \cdots & 0 \end{cases}$$
 ① より, $x>\frac{1}{2}$ これと② より, $x>\frac{1}{2}\cdots & 0$ $\log_3(2x-1)=\log_3x^2$ よって $2x-1=x^2$ $x^2-2x+1=0$ $(x-1)^2=0$ $x=1$ これは,③ を満たすので, $x=1$

(2) 真数条件より,
$$\begin{cases} x^2-x-2>0 & \cdots ① \\ x-2>0 & \cdots ② \end{cases}$$
 ① より $(x+1)(x-2)>0$ $x<-1,\ 2< x$ ② より, $x>2$ よって, $x>2\cdots ③$

$$\log_5 rac{x^2-x-2}{x-2} = 2\log_5 5$$
 $\log_5 rac{(x+1)(x-2)}{x-2} = \log_5 5^2$ $\log_5 (x+1) = \log_5 25$ よって $x+1=25$ $x=24$ これは,③ を満たすので, $x=24$

(3) 真数条件より,
$$\begin{cases} x+2>0 & \cdots & 0 \\ \sqrt{x}>0 & \cdots & 0 \end{cases}$$
 $x>-2$
② より, $x>0$
よって, $x>0\cdots$ ③ $\log_{10}\frac{x+2}{\sqrt{x}}=\log_{10}3$
よって
$$\frac{x+2}{\sqrt{x}}=3$$
 $x+2=3\sqrt{x}$
 $(x+2)^2=(3\sqrt{x})^2$
 $x^2+4x+4=9x$
 $x^2-5x+4=0$
 $(x-1)(x-4)=0$
 $x=1,4$

240 (1) 真数条件より,
$$x-2>0$$
 であるから, $x>2\cdots$ ① $\log_8(x-2)>\frac{4}{3}\log_8 8$ $\log_8(x-2)>\log_8 8^{\frac{4}{3}}$ $\log_8(x-2)>\log_8(2^3)^{\frac{4}{3}}$ $\log_8(x-2)>\log_8 2^4$ $\log_8(x-2)>\log_8 16$ 底は 8 で, 1 より大きいので

これは , ③ を満たすので , $x=1,\ 4$

x - 2 > 16

これと ① より,2 < x < 18

〔2) 真数条件より,
$$x+1>0$$
 であるから, $x>-1\cdots$ ①
$$\log_{\frac{1}{3}}(x+1)>-\log_{\frac{1}{3}}\frac{1}{3}$$

$$\log_{\frac{1}{3}}(x+1)>\log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{-1}$$

$$\log_{\frac{1}{3}}(x+1)>\log_{\frac{1}{3}}3$$
 底は $\frac{1}{3}$ で, 1 より小さいので $x+1<3$ $x<2$ これと ① より, $-1< x<2$

241 (1) 与式 =
$$\log_{10}(2 \times 3)$$

= $\log_{10} 2 + \log_{10} 3$
= $a + b$
(2) 与式 = $\log_{10} \frac{10}{2}$

(2) 与式 =
$$\log_{10} \frac{10}{2}$$

= $\log_{10} 10 - \log_{10} 2$
= $1 - a$

(3) 与式 =
$$\frac{\log_{10} 3}{\log_{10} 5}$$

= $\frac{b}{1-a}$
(4) 与式 = $\frac{\log_{10} 8}{\log_{10} 3}$
= $\frac{\log_{10} 2^3}{\log_{10} 3}$
= $\frac{3\log_{10} 2}{\log_{10} 3}$
= $\frac{3a}{b}$
(5) 与式 = $\log_{10} \frac{3}{10}$
= $\log_{10} 3 - \log_{10} 10$
= $b - 1$
(6) 与式 = $\frac{\log_{10} 4}{\log_{10} 9}$
= $\frac{\log_{10} 2^2}{\log_{10} 3^2}$
= $\frac{2\log_{10} 2}{2\log_{10} 3}$
= $\frac{2\log_{10} 2}{2\log_{10} 3}$
= $\frac{2a}{2b} = \frac{a}{b}$

STEP UP

242 (1) 真数条件より,
$$\begin{cases} x+1>0 & \cdots \\ (x+2)^2>0 & \cdots \\ 2 \end{cases}$$
 ① より, $x>-1$ ② より, $x \ne -2$ よって, $x>-1\cdots$ ③ $\log_{\frac{1}{2}}(x+1)=2\log_{\frac{1}{2}}\frac{1}{2}+\log_{\frac{1}{2}}(x+2)^2$ $\log_{\frac{1}{2}}(x+1)=\log_{\frac{1}{2}}\left(\frac{1}{2}\right)^2+\log_{\frac{1}{2}}(x+2)^2$ $\log_{\frac{1}{2}}(x+1)=\log_{\frac{1}{2}}\frac{1}{4}(x+2)^2$ よって $x+1=\frac{1}{4}(x+2)^2$ 4 $x+4=x^2+4x+4$ $x^2=0$ $x=0$ これは ③ を満たすので, $x=0$

(2) 真数条件より,
$$\begin{cases} x>0 & \cdots \\ 8x^2>0 & \cdots \\ 2 \end{cases}$$
 ② より, $x \neq 0$ これと① より, $x>0\cdots$ 3
$$(\log_2 x)^2 + (\log_2 8 + \log_2 x^4) = 0$$

$$(\log_2 x)^2 + \log_2 2^3 + \log_2 x^4 = 0$$

$$(\log_2 x)^2 + 4\log_2 x^4 + 3\log_2 2 = 0$$

$$(\log_2 x)^2 + 4\log_2 x^4 + 3 = 0$$

$$(\log_2 x)^2 + 4\log_2 x^4 + 3 = 0$$

$$(\log_2 x)^2 + 4\log_2 x^4 + 3 = 0$$

$$(\log_2 x)^2 + 4\log_2 x^4 + 3 = 0$$

$$\log_2 x = -1, \quad -3$$

$$\log_2 x = -3$$
 のとき

$$\log_2 x = \log_2 2^{-3}$$
 より , $x=\frac{1}{8}$ これらは 3 を満たすので , $x=\frac{1}{2},\;\frac{1}{8}$

243 (1) 真数条件より,
$$\begin{cases} x-2>0 & \cdots \\ 4-x>0 & \cdots \\ 2 \end{cases}$$
 ① より, $x>2$ ② より, $x<4$ よって, $2< x<4\cdots$ ③ 底は 0.1 で, 1 より小さいので $x-2<4-x$ $2x<6$ $x<3$ これと ③ より, $2< x<3$

(2) 真数条件より,
$$\begin{cases} x>0 & \cdots \\ x+2>0 & \cdots \\ 2 \end{cases}$$
 まり, $x>-2$ これと① より, $x>0\cdots 3$ $\log_{\frac{1}{2}}x>\log_{\frac{1}{2}}(x+2)+\log_{\frac{1}{2}}\frac{1}{2}$ $\log_{\frac{1}{2}}x>\log_{\frac{1}{2}}(x+2)$ 底は $\frac{1}{2}$ で, 1 より小さいので $x<\frac{1}{2}(x+2)$ $2x< x+2$ $x<2$ これと③ より, $0< x<2$

244 (1) 真数条件より,
$$\begin{cases} 2(x-1)^2>0 & \cdots \\ -3x+5>0 & \cdots \\ 2 & \text{まり,} x \neq 1 \\ 2 & \text{まり,} x < \frac{5}{3} \\ & \text{よって,} x < 1, \ 1 < x < \frac{5}{3} \cdots \\ & \text{底の変換公式により} \\ & \log_3 2(x-1)^2 = \frac{2\log_3(-3x+5)}{\log_2 9} \end{cases}$$

$$\log_3 2(x-1)^2 = \frac{2\log_3(-3x+5)}{2\log_3 3}$$
 $\log_3 2(x-1)^2 = \log_3(-3x+5)$ よって $2(x-1)^2 = -3x+5$ $2(x^2-2x+1) = -3x+5$ $2x^2-4x+2=-3x+5$ $2x^2-x-3=0$ $(x+1)(2x-3)=0$ よって, $x=-1,\ \frac{3}{2}$ これらはいずれも ③ を満たすので, $x=-1$

これらはいずれも \Im を満たすので , $x=-1,\;rac{3}{2}$

(2) 真数条件より,
$$\begin{cases} 2-x>0 & \cdots & 0 \\ x+2>0 & \cdots & 0 \end{cases}$$
① より, $x<2$
② より, $x>-2$
よって, $-2< x<2\cdots & 0$
底の変換公式により
$$\frac{\log_2(2-x)}{\log_2\sqrt{2}} - \log_2(x+2) = 2\log_2 2$$

$$\frac{\log_2(2-x)}{\log_2 2^{\frac{1}{2}}} - \log_2(x+2) = \log_2 2^2$$

$$\frac{\log_2(2-x)}{\frac{1}{2}} - \log_2(x+2) = \log_2 4$$

$$2\log_2(2-x) - \log_2(x+2) = \log_2 4 + \log_2(x+2)$$

$$\log_2(2-x)^2 = \log_2 4 + \log_2(x+2)$$
よって
$$(2-x)^2 = 4(x+2)$$

$$4-4x+x^2=4x+8$$

$$x^2-8x-4=0$$

$$x=\frac{4\pm\sqrt{16+4}}{1}$$

$$=4\pm2\sqrt{5}$$
③ より, $x=4-2\sqrt{5}$

③ より ,
$$x=4-2\sqrt{5}$$

(3) 真数条件より, $x>0\cdots$ ① また,底の条件より, x>0, $x \ne 1\cdots$ ② ②,②より,0 < x < 1, $1 < x \cdots$ 3

底の変換公式により

$$\log_2 x + \frac{\log_2 4}{\log_2 x} = 3$$
 $\log_2 x + \frac{2}{\log_2 x} = 3$
 $(\log_2 x)^2 + 2 = 3\log_2 x$
 $(\log_2 x)^2 - 3\log_2 x + 2 = 0$
 $(\log_2 x - 1)(\log_2 x - 2) = 0$
よって, $\log_2 x = 1$,2
 $\log_2 x = 1$ のとき
 $\log_2 x = \log_2 2$ より, $x = 2$
 $\log_2 x = 2$ のとき
 $\log_2 x = 2\log_2 2 = \log_2 4$ より, $x = 4$
これらはいずれも ③ を満たすので, $x = 2$,4

245 (1) 2^{50} の常用対数をとると $\log_{10} 2^{50} = 50 \log_{10} 2$ $= 50 \cdot 0.3010$ = 15.05

よって

$$15 < \log_{10} 2^{50} < 16$$
 $15 \log_{10} 10 < \log_{10} 2^{50} < 16 \log_{10} 10$ $\log_{10} 10^{15} < \log_{10} 2^{50} < \log_{10} 10^{16}$ すなわち, $10^{15} < 2^{50} < 10^{16}$ よって, 2^{50} は, 16 桁の整数である.

(2) 6^{20} の常用対数をとると

$$\begin{split} \log_{10} 6^{20} &= 20 \log_{10} 6 \\ &= 20 (\log_{10} 2 + \log_{10} 3) \\ &= 20 (0.3010 + 0.4771) \\ &= 20 \cdot 0.7781 \\ &= 15.562 \end{split}$$

よって

$$15 < \log_{10} 6^{20} < 16$$
 $15 \log_{10} 10 < \log_{10} 6^{20} < 16 \log_{10} 10$ $\log_{10} 10^{15} < \log_{10} 6^{20} < \log_{10} 10^{16}$ すなわち, $10^{15} < 6^{20} < 10^{16}$ よって, 6^{20} は, 16 桁の整数である.

246 (1) 各辺の常用対数をとると

$$\begin{split} \log_{10} 2^n &< \log_{10} 3^{13} < \log_{10} 2^{n+1} \\ n \log_{10} 2 &< 13 \log_{10} 3 < (n+1) \log_{10} 2 \\ n \log_{10} 2 &< 13 \log_{10} 3 \text{ J} \text{)} \\ n &< \frac{13 \log_{10} 3}{\log_{10} 2} \\ &= \frac{13 \times 0.4771}{0.3010} \\ &= 20.6 \cdots \\ 13 \log_{10} 3 &< (n+1) \log_{10} 2 \text{ J} \text{)} \\ n+1 &> \frac{13 \log_{10} 3}{\log_{10} 2} \\ n &> \frac{13 \cdot 0.4771}{0.3010} - 1 \end{split}$$

よって , 19.6 < n < 20.6

 $=19.6\cdots$

n は整数であるから,n=20

(2) 各辺の常用対数をとると

$$\log_{10} 10^{-5} < \log_{10} \left(\frac{8}{10}\right)^n < \log_{10} 10^{-4}$$

$$-5 < n \log_{10} \left(\frac{8}{10}\right) < -4$$

$$-5 < n (\log_{10} 8 - \log_{10} 10) < -4$$

$$-5 < n (\log_{10} 2^3 - 1) < -4$$

$$-5 < n (3 \log_{10} 2 - 1) < -4$$

$$-5 < n (3 \times 0.3010 - 1) < -4$$

$$-5 < -0.097n < -4$$

$$\frac{5}{0.097} > n > \frac{4}{0.097}$$

$$51.5 \dots > n > 41.2 \dots$$

PLUS

n は整数であるから, $n=42,\ 43,\ \cdots,51$

247 必要な記憶素子を
$$n$$
 バイトとすると
$$(2^8)^n=25^{1000} \quad \text{ すなわち , } 2^{8n}=25^{1000}$$
 両辺の常用対数をとると
$$\log_{10}2^{8n}=\log_{10}25^{1000}=\log_{10}5^{2000}$$

$$8n\log_{10}2=2000\log_{10}5$$

対数表より, $\log_{10}2=0.3010$, $\log_{10}5=0.6990$ であるから
$$n=\frac{2000\log_{10}5}{8\log_{10}2}$$

$$=\frac{2000\cdot0.6990}{8\cdot0.3010}$$

$$=580.56\cdots$$
 よって,約 580 バイト

248 1 等星の明るさを I_1 , 6 等星の明るさを I_6 とすると

$$1=c-2.5\log_{10}I_1\cdots ①$$
 $6=c-2.5\log_{10}I_6\cdots ②$ ② $-①$ より $5=2.5\log_{10}I_1-2.5\log_{10}I_6$ $5=2.5(\log_{10}I_1-\log_{10}I_6)$ $5=2.5\log_{10}\frac{I_1}{I_6}$ $2=\log_{10}\frac{I_1}{I_6}$ $2\log_{10}10=\log_{10}\frac{I_1}{I_6}$ よって, $\frac{I_1}{I_6}=10^2$ すなわち, $I_1=100I_6$ であるから,明るさは 100 倍