Лабораторная работа 2:

Продвинутые методы безусловной оптимизации.

Срок сдачи: 14 апреля 2024 (воскресенье), 23:59

1 Алгоритмы

В этом задании все рассматриваемые алгоритмы будут решать общую задачу нелинейной безусловной оптимизации:

$$\min_{x \in \mathbb{R}^n} f(x)$$

где функция $f: \mathbb{R}^n \to \mathbb{R}$ является достаточно гладкой.

1.1 Метод сопряженных градиентов

Стандартный метод сопряженных градиентов является итерационным методом (неточного) решения системы линейных уравнений

$$Ax = b$$

где $A \in \mathbb{S}^n_{++}$ и $b, x \in \mathbb{R}^n$.

Обозначим невязку на k-м шаге через $g_k := Ax_k - b$. Итерация метода:

$$x_{k+1} = x_k + \frac{\langle g_k, g_k \rangle}{\langle Ad_k, d_k \rangle} d_k.$$

Направления пересчитываются по правилу:

$$d_{k+1} = -g_{k+1} + \frac{\langle g_{k+1}, g_{k+1} \rangle}{\langle g_k, g_k \rangle} d_k,$$

где $d_0 := -g_0$.

Заметим, что методу сама матрица A не нужна, а нужна процедура умножения этой матрицы на произвольный вектор. Это является одним из основных преимуществ метода над точными процедурами типа метода Гаусса или разложения Холецкого.

Важно: В эффективной реализации метода должно быть лишь одно матрично-векторное произведение за итерацию.

В качестве критерия остановки обычно используют тест

$$||Ax_k - b|| \le \epsilon ||b||.$$

1.2 Усеченный метод Ньютона

Напомним, что обычный (демпфированный) метод Ньютона итеративно строит последовательность точек $(x_k)_{k=0}^{\infty}$ по следующему правилу:

$$x_{k+1} = x_k + \alpha_k d_k$$

где направление поиска d_k находится из следующей системы линейных уравнений:

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k). \tag{1}$$

Здесь $\nabla^2 f(x_k) \in \mathbb{S}^n_{++}$ — гессиан функции f в точке x_k . Длина шага α_k выбирается с помощью линейного поиска.

В усеченном методе Ньютона² система (1) решается с помощью метода сопряженных градиентов. В этом случае сама матрица $\nabla^2 f(x_k)$ методу не нужна, а нужна только процедура умножения матрицы $\nabla^2 f(x_k)$ на произвольный вектор $v \in \mathbb{R}^n$. Кроме того, не имеет большого смысла решать систему (1) очень точно, если текущая точка x_k находится далеко от оптимума. Поэтому обычно метод сопряженных градиентов останавливают, как только невязка $r_k(d) := \nabla^2 f(x_k) d + \nabla f(x_k)$ удовлетворяет условию

$$||r_k(d)|| \le \eta_k ||\nabla f(x_k)||. \tag{2}$$

Последовательность $\eta_k \in (0,1)$, называется форсирующей последовательностью и обычно выбирается следующим образом:

$$\eta_k := \min \left\{ 0.5, \sqrt{\left\|\nabla f\left(x_k\right)\right\|} \right\}$$

Такой выбор гарантирует локальную сверхлинейную скорость сходимости метода в невырожденном случае.

Следует отметить, что ранний выход из метода сопряженных градиентов по условию (2), вообще говоря, не гарантирует того, что найденное направление d_k будет направлением спуска функции f в точке x_k (в отличие от точного решения $-\left[\nabla^2 f\left(x_k\right)\right]^{-1}\nabla f\left(x_k\right)$ системы (1)). Поэтому после выхода из метода сопряженных градиентов нужно дополнительно проверять, удовлетворяет ли d_k условию $\langle \nabla f\left(x_k\right), d_k \rangle < 0$, и если нет, то снова запустить метод сопряженных градиентов, но теперь уже из начальной точки d_k и с меньшим значением η_k (например, уменьшить η_k в 10 раз). Такую процедуру нужно повторять до тех пор, пока d_k не станет направлением спуска (что гарантированно рано или поздно произойдет).

Внимание: для консистентности реализаций в качестве начального приближения в методе сопряжённых градиентов (аргумент $_0$) рекомендуется использовать точку $-\nabla f\left(x_k\right)$

Заметим, что в усеченном методе Ньютона, так же, как и в обычном методе Ньютона, важно начинать линейный поиск с $\alpha_k^{(0)}=1$. В противном случае никакой локальной сверхлинейной сходимости может и не быть.

¹Здесь предполагается, что гессиан $\nabla^2 f\left(x_k\right)$ является положительно определенным. Одно из достаточных условий для этого - строгая выпуклость функции f. Если гессиан $\nabla^2 f\left(x_k\right)$ оказался не положительно определенным, то обычно выполняют его модификацию. В этом задании мы не будем рассматривать модификации гессиана.

 $^{^2}$ В литературе этот метод также известен как неточный метод Ньютона или безгессианный метод Ньютона.

1.3 Meтод L-BFGS

Метод BFGS принадлежит классу квазинъютоновских методов, которые на каждом шаге аппроксимируют настоящий гессиан $\nabla^2 f(x_k)$ с помощью некоторой матрицы B_k и выбирают направление спуска d_k как решение следующей системы (аналогичной ньютоновской):

$$B_k d_k = -\nabla f(x_k) \quad \Leftrightarrow \quad d_k = -H_k \nabla f(x_k), \quad \text{где } H_k := B_k^{-1}.$$

Дальше, из текущей точки x_k , как обычно, выполняется шаг в этом направлении:

$$x_{k+1} = x_k + \alpha_k d_k$$

где $\alpha_k > 0$ - длина шага, настраиваемая с помощью линейного поиска.

Основная работа на каждой итерации квазиньютоновского метода затрачивается на построение аппроксимации гессиана и вычисление направления поиска.

Начиная с $B_0=I$, алгоритм пересчитывает аппроксимацию гессиана по правилу $B_{k+1}=B_k+U_k$, где U_k- некоторое низкоранговое обновление. Маленький ранг U_k необходим для построения эффективной процедуры вычисления обратной матрицы $H_{k+1}=B_{k+1}^{-1}=\left(B_k+U_k\right)^{-1}$. Конкретный вид обновления U_k следует из выполнения нескольких требований. Основное из них - уравнение секущей: $B_{k+1}\left(x_{k+1}-x_k\right)=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_k\right)$, справедливое для всех квазиньютоновских методов. Одного этого уравнения недостаточно, чтобы однозначно определить B_{k+1} . Конкретную квазиньютоновскую схему получают с помощью наложения на аппроксимацию гессиана дополнительных требований.

Наиболее популярным и устойчивым на практике является правило BFGS (по фамилиям авторов: Бройден-Флетчер-Гольдфарб-Шанно). Обозначим:

$$s_k := x_{k+1} - x_k,$$

$$y_k := \nabla f(x_{k+1}) - \nabla f(x_k).$$

Тогда, схема пересчета BFGS имеет следующий вид:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{\langle B_k s_k, s_k \rangle} + \frac{y_k y_k^T}{\langle y_k, s_k \rangle}$$

$$H_{k+1} = \left(I_n - \frac{s_k y_k^T}{\langle y_k, s_k \rangle} \right) H_k \left(I_n - \frac{y_k s_k^T}{\langle y_k, s_k \rangle} \right) + \frac{s_k s_k^T}{\langle y_k, s_k \rangle}$$
(3)

Метод L-BFGS является модификацией метода BFGS для случаев, когда не удаётся поместить матрицу H_k в память. Для этого на каждой итерации метода поддерживается история $\mathcal{H}_k := ((s_{k-i}, y_{k-i}))_{i=1}^l$ из последних l векторов, где l - некоторый параметр (типичное значение l=10; при k < l история \mathcal{H}_k состоит только из k пар.) Далее в качестве матрицы H_k выбирается матрица, полученная с помощью l-кратного рекуррентного применения формулы обновления (3), где в качестве начальной матрицы выбирается

$$H_{k-l} := \gamma_0^{(k)} I_n, \quad \text{где } \gamma_0^{(k)} := \frac{\langle y_{k-1}, s_{k-1} \rangle}{\langle y_{k-1}, y_{k-1} \rangle}$$
 (4)

Таким образом, метод L-BFGS является усеченной версией BFGS со специальном выбором начальной матрицы по формуле (4) (так называемое правило Барзилая-Борвейна).

Преимуществом такой схемы является то, что для ее реализации никаких матриц хранить в памяти не требуется. Действительно, напомним, что методу сама матрица H_k не нужна, а нужен вектор $d_k = -H_k \nabla f\left(x_k\right)$. Таким образом, нужна процедура, вычисляющая результат умножения L-BFGS матрицы H_k на произвольный вектор $v \in \mathbb{R}^n$. Умножая обе части (3) на v, видно, что такую процедуру можно организовать рекурсивно без явного формирования каких-либо матриц в памяти:

```
Алгоритм 1 Рекурсивное умножение L-BFGS матрицы на вектор function BFGS_MULTIPLY(v,\mathcal{H},\gamma_0) if \mathcal{H}=\emptyset then return \gamma_0v end if (s,y)\leftarrow последняя пара из \mathcal{H}. \mathcal{H}'\leftarrow\mathcal{H} без последней пары. v'\leftarrow v-\frac{(s,v)}{\langle y,s\rangle}y z\leftarrow BFGS_MULTIPLY(v',\mathcal{H}',\gamma_0) return z+\frac{(s,v)-\langle y,z\rangle}{\langle y,s\rangle}s. end function
```

Имея в распоряжении указанную процедуру, направление d_k вычислить легко:

```
Алгоритм 2 Вычисление направления поиска d_k в методе L-BFGS function LBFGS_direction (s,y) \leftarrow \text{последняя пара из } \mathcal{H}_k \gamma_0 \leftarrow \frac{\langle y,s \rangle}{\langle y,y \rangle} return BFGS_Multiply(-\nabla f(x_k), \mathcal{H}_k, \gamma_0) end function
```

1.4 Разностная проверка произведения гессиана на вектор

Проверить правильность подсчета произведения гессиана $\nabla^2 f(x) \in \mathbb{S}^n$ на заданный вектор $v \in \mathbb{R}^n$ можно с помощью конечных разностей:

$$\left[\nabla^{2} f(x) v\right]_{i} \approx \frac{f\left(x+\epsilon_{2} v+\epsilon_{2} e_{i}\right)-f\left(x+\epsilon_{2} v\right)-f\left(x+\epsilon_{2} e_{i}\right)+f(x)}{\epsilon_{2}^{2}},$$

где $e_i := (0, \dots, 0, 1, 0, \dots, 0) - i$ -й базисный орт, а $\epsilon_2 \sim \sqrt[3]{\epsilon_{\rm mach}}$, где $\epsilon_{\rm mach}$ -машинная точность ($\approx 10^{-16}$ для типа double).

2 Формулировка задания

- 1. Даны прототипы функций, которые Вам нужно будет реализовать. Некоторые процедуры уже частично или полностью реализованы. Обратите внимание, что реализацию классов линейного поиска и оракула логистической регрессии Вы можете взять из Вашей реализации первого практического задания.
- 2. Реализуйте метод сопряженных градиентов для решения системы линейных уравнений (функция conjugate_gradients в модуле optimization).

3. Для оракула логистической регрессии (класс LogRegL20racle в модуле oracles) реализуйте метод hess_vec, выполняющий умножение гессиана на заданный вектор.

Замечание: Ваш код должен поддерживать как плотные матрицы A типа np.array, так и разреженные типа scipy.sparse.csr matrix.

- 4. Реализуйте подсчет разностной аппроксимации произведения гессиана на заданный вектор (функция hess_vec_finite_diff в модуле oracles). С помощью реализованной процедуры проверьте правильность реализации метода hess_vec логистического оракула. Для этого сгенерируйте небольшую модельную выборку и сравните значения, выдаваемые методом hess_vec, с соответствующими разностными аппроксимациями в нескольких пробных точках.
- 5. Реализуйте усеченный метод Ньютона (функция hessian_free_newton в модуле optimization). При реализации этого метода используйте свою реализацию метода сопряженных градиентов (функция conjugate gradients).
 - 6. Реализуйте метод L-BFGS (функция lbfgs в модуле optimization).
 - 7. Проведите эксперименты, описанные ниже. Напишите отчет.
- 8. (Бонусная часть для эксперимента 2.4) Реализуйте процедуру, вычисляющую аналитический минимум многомерной квадратичной функции по заданному направлению (метод minimize_directional в классе Quadratic0racle в модуле oracles). Эта процедура далее будет использоваться в линейном поиске (класс LineSearchTool в модуле utils) для вычисления оптимальной длины шага на квадратичной функции.

2.1 Эксперимент: Зависимость числа итераций метода сопряженных градиентов от числа обусловленности и размерности пространства

Проведите эксперимент, аналогичный соответствующему эксперименту с градиентным спуском из первого практического задания. Сравните результат метода сопряженных градиентов с результатом градиентного спуска. Какие выводы можно сделать?

2.2 Эксперимент: Выбор размера истории в методе L-BFGS

Исследуйте, как влияет размер истории в методе L-BFGS на поведение метода.

Прежде всего, оцените размер требуемой памяти и сложность итерации метода L-BFGS в зависимости от размера истории l и размерности пространства n. (Здесь не нужно учитывать сложность оракула.)

Рассмотрите несколько вариантов вариантов выбора размера истории (например, $l=0, l=1, l=5, \, l=10, l=50, l=100)$ и постройте следующие графики:

- (а) Зависимость относительного квадрата нормы градиента $\|\nabla f(x_k)\|^2 / \|\nabla f(x_0)\|^2$ (в логарифмической шкале) против номера итерации.
- (b) Зависимость относительного квадрата нормы градиента $\|\nabla f(x_k)\|^2 / \|\nabla f(x_0)\|^2$ (в логарифмической шкале) против реального времени работы.

При этом разные варианты выбора размера истории нужно рисовать на одном и том же графике.

В качестве тестовой функции возьмите логистическую регрессию с l^2 регуляризатором на данных gisette или news20.binary с сайта LIBSVM³. Коэффициент регуляризации и начальную точку выберите стандартным образом: $\lambda = 1/m, x_0 = 0$.

Какие выводы можно сделать?

2.3 Эксперимент: Сравнение методов на реальной задаче логистической регрессии

Сравните усеченный метод Ньютона, метод L-BFGS и градиентный спуск (реализацию взять из предыдущего задания) на реальной задаче логистической регрессии. В качестве реальных данных используйте следующие наборы данных с сайта LIBSVM: w8a, gisette, real-sim, news20.binary, rcv1.binary. Коэффициент регуляризации возьмите стандартным: $\lambda=1/m$. Параметры всех методов возьмите равными параметрам по умолчанию. Начальную точку выберите $x_0=0$.

Постройте следующие графики:

- (а) Зависимость значения функции против номера итерации метода.
- (b) Зависимость значения функции против реального времени работы.
- (c) Зависимость относительного квадрата нормы градиента $\|\nabla f(x_k)\|^2 / \|\nabla f(x_0)\|^2$ (в логарифмической шкале) против реального времени работы.

При этом все методы нужно рисовать на одном и том же графике.

Какие выводы можно сделать по результатам этого эксперимента? Какой из методов лучше и в каких ситуациях?

2.4 (Дополнительное задание) Эксперимент: Сравнение метода сопряженных градиентов и L-BFGS на квадратичной функции

Сравните метод сопряженных градиентов и метод L-BFGS на квадратичной строго выпуклой функции:

$$f(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle, \quad x \in \mathbb{R}^n$$

где $A \in \mathbb{S}^n_{++}$ и $b \in \mathbb{R}^n$.

Для этого сгенерируйте случайным образом пару квадратичных функций и запустите на каждой из них оба метода (из одной и той же начальной точки). Постройте графики сходимости в терминах евклидовой нормы невязки $r_k := Ax_k - b$ (в логарифмической шкале) против номера итерации. При этом оба метода нарисуйте на одном и том же графике, но разными линиями: один - сплошным, другой - пунктиром.

Важно: Поскольку функция квадратичная, то в этом случае для произвольного метода спуска $x_{k+1} = x_k + \alpha_k d_k$ можно аналитически вычислить наилучшую длину шага $\alpha_k := \operatorname{argmin}_{\alpha \geq 0} f(x_k + \alpha d_k)$. Выпишите в отчет соответствующее выражение для α_k . Заметим, что в методе сопряженных

³http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.

градиентов автоматически используется оптимальная длина шага. Поэтому, чтобы сравнение было честным, в методе L-BFGS также используйте точный линейный поиск.

Как отличаются графики этих методов? Попробуйте выбрать другие значения размера истории в методе L-BFGS (в частности, попробуйте крайние случаи l=1 и l=0). Меняется ли при этом что-нибудь? Как Вы можете объяснить полученные результаты?

2.5 (Дополнительное задание) Эксперимент: Какая точность оптимизации нужна в реальных задачах?

В реальных задачах целевая функция, которая оптимизируется методами оптимизации, как правило, не является конечным критерием качества решения задачи. Например, рассмотрим задачу классификации и модель логистической регрессии. В этом случае оптимизируемой функцией является логистическая функция потерь. Однако само значение логистической функции потерь, с точки зрения решения задачи классификации, представляет мало интереса. А что, действительно, представляет интерес - это, например, процент ошибок при классификации на тестовой выборке. Возникает естественный вопрос: как влияет точность оптимизации целевой функции на итоговое качество решения самой задачи?

В этом эксперименте Вам предлагается исследовать этот вопрос для задачи бинарной классификации и модели логистической регрессии с l^2 -регуляризатором. Для этого выберите несколько реальных наборов данных и выполните следующий эксперимент.

Возьмите любой метод оптимизации (например, L-BFGS) и запустите его (на обучающей выборке) с разными параметрами требуемой точности ϵ^4 . Для каждого ϵ возьмите итоговую точку \hat{x} , которую вернул метод, и сравните качество прогноза логистической регрессии $\hat{b}_{\text{test}} := \text{sign}\left(A_{\text{test}}\;\hat{x}_{\text{test}}\right)$ с истинными значениями меток b_{test} . При сравнении используйте процент ошибок - среднее число позиций, в которых векторы b_{test} и \hat{b}_{test} отличаются. Нарисуйте график зависимости процента ошибок против точности оптимизации ϵ (в логарифмической шкале). Коэффициент регуляризации и начальную точку возьмите стандартными: $\lambda = 1/m$ и $x_0 = 0$.

В чем разница между маленькой точностью оптимизации и большой? Какие выводы можно сделать?

Рекомендация. Параметр ϵ имеет смысл перебрать по логарифмической сетке: от самой маленькой точности $\epsilon=1$ (никакой оптимизации, вернуть начальную точку x_0) до самой большой точности $\epsilon=10^{-6}$ или $\epsilon=10^{-8}$ (оптимизировать функцию до «машинной» точности).

3 Оформление задания

Результатом выполнения задания являются

(a) Файлы optimization.py, oracles.py и utils. py с реализованными методами и оракулами.

⁴Напомним, что во всех наших методах оптимизации $\epsilon \in (0,1)$ задает относительную точность по квадрату нормы градиента: $\|\nabla f(\hat{x})\|^2 \le \epsilon \|\nabla f(x_0)\|^2$.

- (b) Полные исходные коды для проведения экспериментов и рисования всех графиков. Все результаты должны быть воспроизводимыми. Если вы используете случайность зафиксируйте seed.
 - (c) Отчет в формате PDF о проведенных исследованиях.

Каждый проведенный эксперимент следует оформить как отдельный раздел в PDF документе (название раздела - название соответствующего эксперимента). Для каждого эксперимента необходимо сначала написать его описание: какие функции оптимизируются, каким образом генерируются данные, какие методы и с какими параметрами используются. Далее должны быть представлены результаты соответствующего эксперимента - графики, таблицы и т. д. Наконец, после результатов эксперимента должны быть написаны Ваши выводы - какая зависимость наблюдается и почему.

Важно: Отчет не должен содержать никакого кода. Каждый график должен быть прокомментирован - что на нем изображено, какие выводы можно сделать из этого эксперимента. Обязательно должны быть подписаны оси. Если на графике нарисовано несколько кривых, то должна быть легенда. Сами линии следует рисовать достаточно толстыми, чтобы они были хорошо видимыми.

Важно: Практическое задание выполняется самостоятельно. Если вы получили ценные советы (по реализации или проведению экспериментов) от другого студента, то об этом должно быть явно написано в отчёте. В противном случае «похожие» решения считаются плагиатом.