Homework

Math 451: Spring 2024

Homework 1: Due Tuesday, May 14

- (1) For each statement about sets given below, either *prove* the statement if it is true for all sets, or else give a *counterexample* using specific sets if it is false.
 - (a) $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$.
 - (b) $(A \cup B) \setminus C \supseteq A \cup (B \setminus C)$.
 - (c) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$.
 - (d) $A \subseteq B$ if and only if $A \cap B = A$.
- (2) For each $n \in \mathbb{N}$, let $A_n = \{nk : k \in \mathbb{N}\}.$
 - (a) What is $A_2 \cap A_3$?
 - (b) Determine (i.e., give simple descriptions of) the sets $\bigcup_{n=2}^{\infty} A_n$ and $\bigcap_{n=2}^{\infty} A_n$.
- (3) (a) Guess a formula for $1+3+\cdots+(2n-1)$ by evaluating the sum for n=1, 2, 3,and 4. (For n=1, the sum is simply 1).
 - (b) Prove that your formula is correct using mathematical induction.
- (4) Determine for which integers the inequality $2^n > n^2$ is true, and prove your claim by induction.
- (5) For each of the subsets of ℝ given in (a) (x) below, state (i) whether or not the set is bounded above; (ii) whether or not it is bounded below; (iii) what the supremum is (if it exists); and what the infimum is (if it exists). You may write all your answers on one line, with no justification needed, as in the answer for (a) given below:

"Bounded below but not above; $\inf = 1$."

(b) [0,1)

(c) $\{2,7\}$

(d) $\{\pi, e\}$

(e) $\{\frac{1}{n} : n \in \mathbb{N}\}$

 $(f) \{0\}$

(g) $[0,1] \cup [2,3]$

(h) $\bigcup_{n=1}^{\infty} [2n, 2n+1]$

(i) $\bigcap_{n=1}^{\infty} \left[-\frac{1}{n}, 1 + \frac{1}{n} \right]$

(j) $\{1 - \frac{1}{3^n} : n \in \mathbb{N}\}$

 $(k) \{ n + \frac{(-1)^n}{n} : n \in \mathbb{N} \}$

$$(1) \{ r \in \mathbb{Q} : r < 2 \}$$

(m)
$$\{r \in \mathbb{O} : r^2 < 4\}$$

(n)
$$\{r \in \mathbb{O} : r^2 < 2\}$$

(o)
$$\{x \in \mathbb{R} : x < 0\}$$

(p)
$$\{1, \frac{\pi}{2}, \pi^2, 10\}$$

(q)
$$\{0, 1, 2, 4, 8, 16\}$$

(r)
$$\bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$$

(s)
$$\{\frac{1}{n} : n \in \mathbb{N} \text{ and } n \text{ is prime}\}$$

(t)
$$\{x \in \mathbb{R} : x^3 < 8\}$$

(u)
$$\{x^2 : x \in \mathbb{R}\}$$

(v)
$$\{\cos(\frac{n\pi}{3}) : n \in \mathbb{N}\}$$

(w)
$$\bigcup_{n=1}^{\infty} \left\{ \frac{k}{n} : k \in \mathbb{N} \right\}$$
 (x) $\bigcap_{n=1}^{\infty} \left\{ \frac{k}{n} : k \in \mathbb{N} \right\}$

- (6) The complex numbers form a *field*; that is, the algebraic structure $(\mathbb{C}, +, \cdot, 0, 1)$ satisfies our Axioms 1–9. In fact, \mathbb{C} also satisfies a version of the Completeness Axiom, so that \mathbb{C} is a *complete* field. Prove, however, that it is impossible to define a linear order relation < on \mathbb{C} that makes \mathbb{C} an *ordered* field; i.e., it is impossible to define a linear order relation < on \mathbb{C} that satisfies Axioms (13) and (14). [HINT: argue by contradiction. The *only* things you are allowed to use without proof are the ordered field axioms and the results in the handout "Elementary Properties of Real Numbers," which hold in any ordered field.]
- (7) (a) Let $a, b \in \mathbb{R}$. Show that if $a \leq c$ for every c > b, then $a \leq b$.
 - (b) Let $A \subseteq \mathbb{R}$ and $L \in \mathbb{R}$, and suppose L is an upper bound of A. Show that $L = \sup A$ if and only if for every $\epsilon > 0$ there is $a \in A$ such that $L \epsilon < a \le L$.
- (8) Let S and T be nonempty bounded subsets of \mathbb{R} .
 - (a) Prove that $\inf S \leq \sup S$.
 - (b) Supposing that $S \subseteq T$, put the four numbers $\sup S$, $\inf S$, $\sup T$, $\inf T$ in order (with respect to \leq), and prove your claims.
 - (c) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$
- (9) Let A and B be nonempty bounded subsets of \mathbb{R} , and let $A+B=\{a+b:a\in A \text{ and } b\in B\}$. Prove that $\sup(A+B)=\sup A+\sup B$.
- (10) Prove that $\mathbb{R} \setminus \mathbb{Q}$ is *dense* in \mathbb{R} in the sense that for every pair of real numbers a and b, if a < b then there exists an irrational number r such that a < r < b.
- A set $A \subseteq \mathbb{R}$ is discrete if for every $a \in A$ there is $\epsilon > 0$ such that $V_{\epsilon}(a) \cap A = \{a\}$, where $V_{\epsilon}(a) = (a \epsilon, a + \epsilon)$ is the open interval of radius ϵ centered at a.
- (11) (a) Prove that every finite subset of \mathbb{R} is discrete.
 - (b) Either prove the following if it is true, or else give a counterexample if it is false: if $A \subseteq \mathbb{R}$ is discrete, then there is $\epsilon > 0$ such that $|a b| \ge \epsilon$ for every pair of distinct elements $a, b \in A$.
- (12) OPTIONAL CHALLENGE PROBLEM.¹ For $A, B \subseteq \mathbb{R}$, let $AB = \{ab : a \in A \text{ and } b \in B\}$. Find a simple expression for $\sup(AB)$ in the case where A and B are nonempty and bounded, and prove your result.

 $^{^{1}}$ These may come up every now and then; you don't have to do them, and they will not be graded.