Γεννήτριες Συναρτήσεις

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Email: fotakis@cs. ntua. gr

1 Γεννήτριες Συναρτήσεις

Η συνήθης Γεννήτοια Συνάστηση μιας ακολουθίας $\alpha_0, \alpha_1, \ldots, \alpha_n, \ldots$ δίνεται από τη σειφά A(x) = $\sum_{i=0}^{\infty} \alpha_i x^i$. Ο συντελεστής του x^i είναι ο i-οστός όρος της ακολουθίας $(\delta \eta \lambda. \circ \alpha_i)$.

Οι Γεννήτριες Συναρτήσεις (ΓΣ) αποτελούν έναν εναλλακτικό τρόπο αναπαράστασης / κωδικοποίησης των ακολουθιών. Κάθε ακολουθία αντιστοιχεί σε μια μοναδική $\Gamma\Sigma$ και αντίστροφα. Αν γνωρίζουμε την ακολουθία $\alpha_0, \alpha_1, \ldots, \alpha_n, \ldots$ είναι εύκολο να υπολογίσουμε τη $\Gamma \Sigma A(x)$ με βάση τον ορισμό. Αν γνωρίζουμε τη $\Gamma\Sigma$ A(x) υπολογίζουμε τους όρους της ακολουθίας / συντελεστές των δυνάμεων του x από τη σχέση $\alpha_n = (1/n!)A^{(n)}(0)$, όπου $A^{(n)}(0)$ είναι η τιμή της n-οστής παραγώγου της A(x) στο 0.

Για παράδειγμα, η ΓΣ της απολουθίας με n-οστό όρο $\alpha_n = b\lambda^n$ είναι

$$A(x) = b \sum_{i=0}^{\infty} \lambda^{i} x^{i} = \frac{b}{1 - \lambda x}$$

Η ΓΣ της απολουθίας 1,1,1,1,0,0,0,... είναι $1+x+x^2+x^3$. Η ΓΣ της απολουθίας $7,6,5,4,3,2,1,0,0,0,\dots$ είναι $7+6x+5x^2+4x^3+3x^4+2x^5+x^6$. Αντίστροφα, η ακολουθία που αντιστοιχεί στη $\Gamma\Sigma A(x) = 5/(1-4x)$ έχει n-οστό όρο $\alpha_n = 5 \cdot 4^n$, και η ακολουθία που αντιστοιχεί στη $\Gamma\Sigma B(x) = 2 + 3x + 4x^2 + x^3$ είναι η 2,3,4,1,0,0,0,0,...

Άσμηση 1. Να υπολογίσετε την ακολουθία που αντιστοιχεί στη $\Gamma \Sigma \, \frac{1}{1+x}$

Λύση. Εφαρμόζοντας το δυωνυμικό ανάπτυγμα², προκύπτει ότι

$$(1+x)^{-1} = 1 + \sum_{k=1}^{\infty} \frac{(-1)(-1-1)\cdots(-1-k+1)}{k!} x^k = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{1 \cdot 2 \cdots k}{k!} x^k = \sum_{k=0}^{\infty} (-1)^k x^k$$

Επομένως, η ακολουθία είναι $\alpha_n = (-1)^n$.

 $^{^{1}}$ Θα θεωρούμε πάντα ότι οι τιμές που παίρνει η μεταβλητή x είναι αρκετά μικρές ώστε η σειρά να συγκλίνει. Εξ' αιτίας αυτής της υπόθεσης, μπορούμε να χειριστούμε τη σειρά σαν πεπερασμένο άθροισμα. Για παράδειγμα, θεωρούμε ότι

η συνάστηση $A(x)=\sum_{i=0}^{\infty}\alpha_ix^i$ είναι όπειρα παραγωγίσιμη (αναλυτική) και οι παράγωγοί της υπολογίζονται παραγωγίζοντας τη σειρά σαν πεπερασμένο άθροισμα. Με άλλα λόγια, $A'(x)=\sum_{i=0}^{\infty}i\alpha_ix^{i-1}$. 2 Το ανάπτυγμα της παράστασης $(1+x)^n$ είναι $(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k$ όταν το n είναι φυσικός αριθμός, και $(1+x)^n=1+\sum_{k=1}^{\infty}\frac{n(n-1)\cdots(n-k+1)}{k!}x^k$ διαφορετικά (π.χ. όταν το n είναι αρνητικός ακέραιος ή μη-ακέραιος αριθμός). Αυτό το ανάπτυγμα είναι γνωστό σαν *δυωνυμικό ανάπτυγμα*. Μια συνηθισμένη ειδική περίπτωση είναι το ανάπτυγμα του $(1-x)^{-n}$ όπου το n είναι φυσιμός αριθμός. Σε αυτή την περίπτωση, $(1-x)^{-n}=1+\sum_{k=1}^{\infty} {n+k-1 \choose k} x^k$.

2 Βασικές Ιδιότητες

Για τη συνέχεια, θεωρούμε απολουθίες $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ παι $\beta = (\beta_0, \beta_1, \dots, \beta_n, \dots)$ με ΓΣ A(x) παι B(x) αντίστοιχα.

Γραμμική Ιδιότητα. Έστω c,d σταθερές. Η ΓΣ της ακολουθίας c α + d β είναι c A(x) + d B(x). Για παράδειγμα, η ΓΣ της ακολουθίας $4^n + 9 \cdot 2^n$ είναι $\frac{1}{1-4x} + \frac{9}{1-2x} = \frac{10-38x}{1-6x+8x^2}$. Αντίστροφα, για να βρούμε την ακολουθία με ΓΣ $\frac{9-47x}{1-10x+21x^2}$ αναλύουμε τη ΓΣ σε μερικά κλάσματα $\frac{5}{1-3x} + \frac{4}{1-7x}$. Η ακολουθία είναι $5 \cdot 3^n + 4 \cdot 7^n$.

Ιδιότητα της Ολίσθησης. Συμβολίζουμε με $S^k \alpha$ την αχολουθία με τιμές:

$$(S^k \alpha)_n = \begin{cases} 0 & \text{ fix } n = 0, \dots, k-1. \\ \alpha_{n-k} & \text{ fix } n \ge k. \end{cases}$$

Δηλαδή πρόκειται για την ακολουθία που προκύπτει από την "δεξιά ολίσθηση" της α κατά k όρους. Η $\Gamma\Sigma$ της ακολουθίας $S^k\alpha$ είναι η $x^kA(x)$. Πράγματι,

$$x^{k}A(x) = \sum_{j=0}^{\infty} \alpha_{j}x^{j+k} = \sum_{n=0}^{k-1} 0x^{n} + \sum_{n=k}^{\infty} \alpha_{n-k}x^{n}$$

Το τελευταίο άθροισμα προχύπτει από το πρώτο με αλλαγή μεταβλητής (θέτουμε n = j + k).

Εφαρμόζοντας αυτή την ιδιότητα βρίσκουμε ότι η $\Gamma\Sigma$ της ακολουθίας $0,0,0,0,1,1,1,1,\dots$ είναι $\frac{x^4}{1-x}$. Ομοίως, η $\Gamma\Sigma$ της ακολουθίας $0,0,1,2,4,\dots,2^{n-2},\dots$ είναι $\frac{x^2}{1-2x}$.

Συμβολίζουμε με $S^{-k} \alpha$ την αχολουθία με τιμές:

$$(S^{-k}\alpha)_n = \alpha_{n+k}$$
 για κάθε $n \ge 0$.

Δηλαδή πρόκειται για την ακολουθία που προκύπτει από την "αριστερή ολίσθηση" της α κατά k όρους. Είναι εύκολο να επιβεβαιώσουμε ότι η $\Gamma\Sigma$ της ακολουθίας $S^{-k}\alpha$ είναι:

$$x^{-k} \left(A(x) - \sum_{i=0}^{k-1} \alpha_i x^i \right)$$

Εφαρμόζοντας αυτή την ιδιότητα, βρίσχουμε ότι η $\Gamma\Sigma$ της αχολουθίας $8, 16, 32, \ldots, 2^{n+3}, \ldots$ είναι:

$$x^{-3}\left[\frac{1}{1-2x} - 1 - 2x - 4x^2\right] = \frac{8}{1-2x}$$

Βέβαια σε αυτή την απλή περίπτωση μπορούμε εύχολα να καταλήξουμε στο ίδιο συμπέρασμα χρησιμοποιώντας τον ορισμό.

Ασχηση 2. Έστω αχολουθία $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ με $\Gamma\Sigma$ A(x). Να υπολογίσετε τη $\Gamma\Sigma$ της αχολουθίας $\beta_n = c\alpha_n + d$, όπου c, d δύο σταθερές.

Λύση. Από τη γραμμική ιδιότητα προκύπτει ότι η ζητούμενη ΓΣ είναι $B(x)=cA(x)+rac{d}{1-x}$. \Box

Ασκηση 3. Έστω ακολουθία $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ με $\Gamma\Sigma A(x)$. Να υπολογίσετε τη $\Gamma\Sigma$ της ακολουθίας $\beta_n = c^n \alpha_n$, όπου c μία σταθερά.