Chapter 4 General Vector Spaces

- 4.1. Real Vector Spaces
- 4.2. Subspaces
- 4.3. Spanning Sets
- 4.4. Linear Independence
- 4.5. Coordinates and Basis
- 4.6. Dimension
- 4.8. Row Space, Column Space, and Null Space
- 4.9. Rank, Nullity, and the Fundamental Matrix Spaces

Chapter 4.1

Real Vector Spaces

Vector Space Axioms

DEFINITION 1

Let V be an arbitrary nonempty set of objects on which two operations are defined: addition, and multiplication by scalars. By *addition* we mean a rule for associating with each pair of objects \mathbf{u} and \mathbf{v} in V an object $\mathbf{u} + \mathbf{v}$, called the *sum* of \mathbf{u} and \mathbf{v} ; by *scalar multiplication* we mean a rule for associating with each scalar k and each object \mathbf{u} in V an object $k\mathbf{u}$, called the *scalar multiple* of \mathbf{u} by k.

If the following axioms are satisfied by all objects \mathbf{u} , \mathbf{v} , \mathbf{w} in V and all scalars k and m, then we call V a *vector space* and we call the objects in V *vectors*.

Vector Space Axioms

DEFINITION 1

- 1. If \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- 2. u + v = v + u
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. There exists an object in V, called the *zero vector*, that is denoted by $\mathbf{0}$ and has the property that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$ for all \mathbf{u} in V.
- 5. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called a *negative* of \mathbf{u} , such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.

Vector Space Axioms

DEFINITION 1

6. If k is any scalar and \mathbf{u} is any object in V, then $k\mathbf{u}$ is in V.

7.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

8.
$$(k+m)u = ku + mu$$

9.
$$k(m\mathbf{u}) = (km)(\mathbf{u})$$

10.
$$1u = u$$

Group Definition (explained) Abstract Algebra

https://www.youtube.com/watch?v=g7L r6zw4-c

Examples of groups

https://planetmath.org/examplesofgroups

Show that a Set with Two Operations is a Vector Space

- **Step 1** Identify the set *V* of objects that will become vectors.
- **Step 2** Identify the addition and scalar multiplication operations on *V*.
- Step 3 Verify Axioms 1 and 6; that is, adding two vectors in *V* produces a vector in *V*, and multiplying a vector in *V* by a scalar also produces a vector in *V*.
 Axiom 1 is called *closure under addition*, and Axiom 6 is called *closure under scalar multiplication*.
- **Step 4** Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

The Zero Vector Space

EXAMPLE 1

Let V consist of a single object, which we denote by $\mathbf{0}$, and define

$$\mathbf{0} + \mathbf{0} = \mathbf{0}$$
 and $k\mathbf{0} = \mathbf{0}$ for all scalars k.

It is easy to check that all the vector space axioms are satisfied.

We call this the zero vector space.

Vector Space Rⁿ

EXAMPLE 2

Let $V = \mathbb{R}^n$, and define the vector space operations on V to be the usual operations of addition and scalar multiplication of n-tuples;

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$k\mathbf{u} = (ku_1, ku_2, \dots, ku_n)$$

The set $V = \mathbb{R}^n$ is closed under addition and scalar multiplication because the foregoing operations produce n-tuples as their end result, and these operations satisfy Axioms 2, 3, 4, 5, 7, 8, 9, and 10 by virtue of Theorem 3.1.1.

A Vector Space of 2 x 2 Matrices

EXAMPLE 3

Let V be the set of 2×2 matrices with real entries,

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$

$$k\mathbf{u} = k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix}$$

Axioms 1, 2, 3, 6, 7, 8, 9 holds.

This leaves Axioms 4, 5, and 10 that remain to be verified.

EXAMPLE 3 Continued

To confirm that Axiom 4 is satisfied, we must find a 2×2 matrix $\mathbf{0}$ in V for which $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$ for all 2×2 matrices in V. We can do this by taking

$$\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{0} + \mathbf{u} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

and similarly $\mathbf{u} + \mathbf{0} = \mathbf{u}$.

EXAMPLE 3 Continued

To verify that Axiom 5 holds we must show that each object \mathbf{u} in V has a negative $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ and $(-\mathbf{u}) + \mathbf{u} = \mathbf{0}$. This can be done by defining the negative of \mathbf{u} to be

$$-\mathbf{u} = \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix}$$

$$\mathbf{u} + (-\mathbf{u}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$$

and similarly $(-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.

Finally, Axiom 10 holds because

$$1\mathbf{u} = 1 \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

A Set That Is Not a Vector Space

EXAMPLE 4

Let $V = R^2$ and define addition and scalar multiplication operations as follows:

If $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$, then define

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$$

and if *k* is any real number, then define

$$k\mathbf{u} = (ku_1, 0)$$

[Note]

An Unusual Vector Space

EXAMPLE 5

Let V be the set of positive real numbers, let $\mathbf{u} = u$ and $\mathbf{v} = v$ be any vectors (i.e., positive real numbers) in V, and let k be any scalar. Define the operations on V to be

u + v = uv [Vector addition is numerical multiplication.] $ku = u^k$ [Scalar multiplication is numerical exponentiation.]

[Note]

Some Properties of Vectors

THEOREM 4.1.1

Let V be a vector space, \mathbf{u} a vector in V, and k a scalar; then:

- (a) $0\mathbf{u} = \mathbf{0}$
- (b) k**0**=**0**
- (c) (-1)u = -u
- (d) If $k\mathbf{u} = \mathbf{0}$, then k = 0 or $\mathbf{u} = \mathbf{0}$.

Proof

[same as in Chapter 3]

Chapter 4-1 Objectives

- Determine whether a given set with two operations is a vector space.
- Show that a set with two operations is not a vector space by demonstrating that at least one of the vector space axioms fails.