APRENDIZAJE AUTOMÁTICO I

UDESA – Maestría en IA - 2025

MATIAS LEONI

INTRODUCCIÓN AL MACHINE LEARNING: CONCEPTOS FUNDAMENTALES

- ¡Bienvenidos al curso de Machine Learning!
- Docente: Matías Leoni
- Agenda de Hoy:
 - ¿Qué es el Machine Learning?
 - Problemas comunes: Clasificación y Regresión.
 - Cómo evaluamos nuestros modelos.
 - Los peligros del sobreajuste (Overfitting).
 - Taller práctico introductorio.
- Objetivo de la clase: Comprender el vocabulario y los conceptos básicos que nos acompañarán durante todo el curso.

¿QUÉ ES MACHINE LEARNING?

- Definición formal: El ML es un campo de la inteligencia artificial que utiliza técnicas estadísticas para dar a los sistemas informáticos la capacidad de "aprender" de los datos, sin ser explícitamente programados.
- Diferencia clave con la programación tradicional:
 - Tradicional: Reglas + Datos → Respuestas.
 - Machine Learning: Respuestas + Datos → Reglas.
- El objetivo es descubrir patrones en los datos para hacer predicciones sobre datos nuevos y nunca antes vistos.

TIPOS PRINCIPALES DE MACHINE LEARNING

Aprendizaje Supervisado (Supervised Learning):

- El más común.
- Aprendemos de datos etiquetados (cada dato tiene una respuesta correcta).
- Ejemplo: Predecir si un email es 'spam' o 'no spam' basándose en emails previamente clasificados.

Aprendizaje No Supervisado (Unsupervised Learning):

- Trabajamos con datos no etiquetados.
- El objetivo es encontrar estructura o patrones ocultos.
- **Ejemplo:** Agrupar clientes con comportamientos de compra similares (Clustering).

Aprendizaje Semi-Supervisado:

- Una mezcla de los dos anteriores. Se utiliza una gran cantidad de datos no etiquetados y una pequeña cantidad de datos etiquetados.
- Útil cuando etiquetar datos es caro o consume mucho tiempo.

PROBLEMA SUPERVISADO: REGRESIÓN

- Objetivo: Predecir un valor continuo o numérico.
- La "respuesta" o variable objetivo (Y) es una cantidad.
- Preguntas que responde: "¿Cuánto?" o "¿Qué valor?".
- Ejemplos Clave:
 - Predecir el precio de una casa según sus características (tamaño, ubicación, etc.).
 - Estimar las ventas de un producto en función de la inversión en publicidad.
 - Pronosticar la temperatura de mañana.

PROBLEMAS MOTIVADORES: CLASIFICACIÓN

- **Objetivo:** Predecir una etiqueta **discreta** o una categoría.
- La variable objetivo pertenece a un conjunto finito de clases.
- **Preguntas que responde:** "¿De qué tipo es?" o "¿A qué grupo pertenece?".
- Ejemplos Clave:
 - Clasificar un correo como spam o no spam (Clasificación Binaria).
 - Diagnosticar si un tumor es benigno o maligno.
 - Identificar la raza de un perro en una foto (Husky, Golden Retriever, Poodle, etc.) (Clasificación Multiclase).

LA IMPORTANCIA DE LA GENERALIZACIÓN: TRAIN, VALIDATION Y TEST

- No nos interesa qué tan bien funciona el modelo en los datos que ya vio.
- El verdadero desafío es que el modelo funcione bien con datos nuevos y nunca antes vistos. Esto se llama generalización.
- Para simular este escenario, dividimos nuestros datos en (al menos) dos conjuntos:
 - Conjunto de Entrenamiento (Training Set): Los datos que usamos para "enseñarle" al modelo.
 - Conjunto de Prueba (Test Set): Datos que mantenemos ocultos. Los usamos una sola vez al final para obtener una evaluación honesta del rendimiento del modelo.
- Analogía: Es como estudiar para un examen. El training set son los ejercicios que resuelves para aprender. El test set es el examen final, con preguntas que nunca has visto antes.

LOS PELIGROS DEL CAMINO: OVERFITTING Y UNDERFITTING

Underfitting (Subajuste):

- El modelo es demasiado simple y no captura la estructura de los datos.
- Tendrá un mal rendimiento tanto en el entrenamiento como en la prueba.
- Causa: Usar un modelo poco flexible para un problema complejo (ej. una línea recta para datos con forma de curva).

Overfitting (Sobreajuste):

- El modelo es demasiado complejo. Se "memoriza" los datos de entrenamiento, incluyendo el ruido.
- Funciona perfectamente en el entrenamiento, pero muy mal en la prueba.
- Causa: Usar un modelo muy flexible que se ajusta a las casualidades de los datos de entrenamiento.
- El punto ideal (Good Fit): Un modelo que captura la tendencia general de los datos y generaliza bien a nuevos datos.

LOS PELIGROS DEL CAMINO: OVERFITTING Y UNDERFITTING

LA DESCOMPOSICIÓN DEL ERROR: SESGO VS. VARIANZA

- El error de predicción de un modelo se puede descomponer conceptualmente: $Error_{total} = (sesgo)^2 + Varianza + Error_{irreducible}$
- **Sesgo (Bias):** Error por suposiciones incorrectas del modelo. Un modelo de alto sesgo es demasiado simple (causa *underfitting*).
 - **Ejemplo:** Asumir que una relación compleja es lineal.
- Varianza (Variance): Sensibilidad del modelo a pequeñas fluctuaciones en los datos de entrenamiento. Un modelo de alta varianza es demasiado complejo (causa overfitting).
- Trade-off Sesgo-Varianza:
 - Aumentar la complejidad del modelo → Disminuye el sesgo, Aumenta la varianza.
 - Disminuir la complejidad del modelo → Aumenta el sesgo,
 Disminuye la varianza.
 - El objetivo es encontrar el balance óptimo.

¿CÓMO MEDIMOS EL ÉXITO? MÉTRICAS DE CLASIFICACIÓN

- Para saber si nuestro modelo es bueno, necesitamos métricas. La elección depende del objetivo del negocio.
- Matriz de Confusión: La base de todo. Es una tabla que visualiza el desempeño del clasificador.
- Accuracy (Exactitud): La métrica más simple. Fórmula: $Accuracy = \frac{VP+VN}{VP+VN+FP+FN}$
- **Significado:** ¿Qué proporción de predicciones fueron correctas?
- ¡Cuidado! Puede ser engañosa si las clases están desbalanceadas (ej. 99% de los emails no son spam. Un modelo que siempre dice "no spam" tiene 99% de accuracy, pero es inútil).

MÉTRICAS CLAVE: PRECISION Y RECALL

Precision (Precisión):

- Fórmula: $Precision = \frac{VP}{VP+FP}$
- Pregunta que responde: De todos los que predijimos como "Positivo", ¿cuántos realmente lo eran?
- Cuándo es importante: Cuando el coste de un Falso Positivo es alto. (Ej: Marcar un email importante como spam).

Recall (Sensibilidad o Cobertura):

- **Fórmula:** $Recall = \frac{VP}{VP + FN}$
- **Pregunta que responde:** De todos los que eran "Positivo" en la realidad, ¿cuántos fuimos capaces de identificar?
- Cuándo es importante: Cuando el coste de un Falso Negativo es alto. (Ej: No detectar una enfermedad grave).

BALANCEANDO PRECISION Y RECALL: FI-SCORE Y AUC-ROC

- FI-Score: La media armónica de Precision y Recall.
 - **Fórmula:** $F_1 = 2 \frac{Precision \times Recall}{Precision + Recall}$
 - **Significado:** Una única métrica que busca un balance entre Precision y Recall. Es alta solo si ambas son altas. Útil para clases desbalanceadas.
- Curva ROC (Receiver Operating Characteristic):
 - Es un gráfico que muestra el rendimiento de un clasificador para todos los umbrales de clasificación.
 - Eje Y:Tasa de Verdaderos Positivos (Recall).
 - Eje X:Tasa de Falsos Positivos (FP/(FP+VN)).
- AUC (Area Under the Curve):
 - El área bajo la curva ROC: 0.5 (azar) y 1.0 (perfecto).
 - Mide la capacidad del modelo para distinguir entre clases.

¿CÓMO MEDIMOS EL ÉXITO EN REGRESIÓN?

- En los problemas de regresión, necesitamos una forma de cuantificar qué tan cerca están nuestras predicciones (\hat{y}) de los valores reales y numéricos (y).
- La métrica más utilizada es el **Error Cuadrático Medio (Mean Squared Error MSE)**. Su fórmula es: $MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i \hat{f}(x_i) \right)^2 \text{ donde } \hat{f}(x_i) \text{ es la predicción que nuestro modelo genera para la i-ésima observación.}$

Intuición del MSE:

- Calcula la diferencia entre el valor real y el predicho para cada observación.
- Eleva estas diferencias al cuadrado (lo que penaliza más los errores grandes y evita que los errores positivos y negativos se cancelen).
- Calcula el promedio de estos errores al cuadrado. Un MSE más bajo es mejor, indicando que el modelo se ajusta bien a los datos.
- Es crucial diferenciar entre el **MSE** de training (calculado sobre los datos usados para entrenar) y el **MSE** de testing (calculado sobre datos nuevos). Nuestro objetivo final es siempre seleccionar el modelo que ofrezca el **MSE** de testing más bajo, ya que esto indica una mejor capacidad de generalización.

UNA EVALUACIÓN MÁS ROBUSTA: VALIDACIÓN CRUZADA

- Problema: Si dividimos los datos solo una vez en train/test, el resultado puede depender mucho de la "suerte" de esa división particular.
- **Solución: K-Fold Cross-Validation.** Una técnica para evaluar la estabilidad del modelo.
- ¿Cómo funciona?
 - Dividimos el conjunto de entrenamiento en K "pliegues" (folds) de igual tamaño (ej. K=5 o K=10).
 - Realizamos K iteraciones. En cada una:
 - Usamos K-I folds para entrenar el modelo.
 - Usamos el fold restante para evaluar (como un mini-test set).
 - El rendimiento final es el promedio de las métricas obtenidas en las K iteraciones.
- Ventajas: Proporciona una estimación del rendimiento mucho más fiable y nos da una idea de la variabilidad (estabilidad) del modelo.

EVITANDO EL EXCESO DE CONFIANZA: REGULARIZACIÓN

- Concepto: Es una técnica para prevenir el overfitting al penalizar la complejidad del modelo.
- Intuición: Si un modelo tiene coeficientes (o "pesos") muy grandes, es probable que esté sobreajustando. La regularización añade un término a la función de coste del modelo para mantener estos coeficientes pequeños. $Costo_{nuevo} = Costo_{vieio} + Penalización$

L2 Regularization (Ridge):

- Penaliza la suma de los cuadrados de los coeficientes.
- Fórmula de penalización: $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$
- Efecto: Encoge los coeficientes hacia cero, pero raramente los hace exactamente cero.

LI Regularization (Lasso):

- Penaliza la suma de los valores absolutos de los coeficientes.
- Fórmula de penalización: $\lambda \sum_{j=1}^{p} |\beta_j|$
- Efecto: Puede encoger algunos coeficientes hasta que sean **exactamente cero**, realizando así una selección automática de características.

¿Y SI NO HAY ETIQUETAS? INTRO A NO SUPERVISADO

- Recordemos: el aprendizaje no supervisado trabaja con datos sin una variable de respuesta (Y) definida.
- El objetivo es descubrir la estructura o patrones inherentes en los datos.
- Clustering (Agrupamiento): La tarea no supervisada más común.
- Objetivo del Clustering: Agrupar las observaciones de modo que los miembros de un mismo grupo (cluster) sean muy similares entre sí, y muy diferentes a los miembros de otros grupos.

RESUMENY ¿QUÉ SIGUE?

- La diferencia entre ML Supervisado (Regresión/Clasificación) y No Supervisado.
- La importancia de la generalización y la división en train/test.
- El dilema central: Overfitting vs Underfitting y el trade-off Sesgo-Varianza.
- Cómo evaluar modelos de clasificación (Matriz de Confusión, Accuracy, Precision, Recall, FI, AUC).
- Técnicas para modelos más robustos: Validación Cruzada y Regularización.
- En la próxima clase: Nos sumergiremos en nuestro primer modelo: la Regresión Lineal, desde sus fundamentos hasta su implementación. ¡Ahora, a la práctica!

TALLER PRÁCTICO

- **Objetivo:** Familiarizarnos con el entorno de trabajo (Jupyter Notebook) y aplicar los conceptos de carga y exploración de datos.
- Herramientas: Python, Jupyter, Pandas, NumPy, Scikit-learn, Matplotlib.
- Actividades:
 - Cargar un dataset clásico (Iris).
 - Explorar sus características: head(), describe(), info().
 - Realizar una visualización simple para entender la relación entre variables.
 - Dividir los datos en conjuntos de entrenamiento y prueba usando train-test split de scikitlearn.
- Abran el Jupyter Notebook Clase01-Intro-ML.ipynb y sigan las instrucciones.