

Bits

- 1. Count:
 - (a) How many different 8-bit strings are there?
 - (b) How many gigabits are there if you have one bit for every possible 32-bit string?
 - (c) How many bits are required if you need 18 unique bit strings?
- 2. Calculate the following expressions using bitwise operations:
 - (a) 0011 & 1010
 - (b) 0011 | 1010
 - (c) 0011 ^ 1010
 - (d) ~ 1010
- 3. In the following, explain how to use bitwise operators to manipulate individual bits.
 - (a) In $\overline{x} = 1010$, turn on bit 2
 - (b) In $\overline{x} = 1100$, turn off all but bits 1 and 2
 - (c) In $\overline{x} = 1110$, flip bit 3
 - (d) In $\overline{x} = 0110$, turn off bit 1

Python bit manipulation

- 1. Define a Python function that takes two integers, x and j, and returns a value which is x, but with bit j set (set to 1).
- 2. Define a Python function that takes two integers, x and j, and returns a value which is x, but with bit j cleared (set to 0).
- 3. Define a Python function that takes two integers, x and j, and returns a value which is x, but with bit j flipped.
- 4. Define a Python function that takes two integers, x and j, and returns True if the jth bit of x is 1, otherwise False.

Character and text representations

- 1. Find the ASCII representations of the following using the ASCII chart from the Lecture 2 slides
 - (a) "A"
 - (b) "1"
 - (c) ";"

- 2. Give the C-string for "CAB"
- 3. Put these string in lexicographic order: 1010, 11, 00110, 110011, 00001
- 4. (Stretch question) The modern system for character encodings is Unicode. Unicode is actually a family of encodings for a common set of characters. The most common encoding is UTF-8, which is a variable length encoding. Some characters require only 8 bits to encode, and others require 16, 24 or 32 bits. How do you think this is accomplished? In particular, when looking at, say, 8 bytes. How do you know where the characters start and end if they can have different lengths?

Integer representations

- 1. Convert these binary numbers to base-10
 - (a) 111
 - (b) 1010
- 2. Add these binary numbers
 - (a) 101 + 011
 - (b) 1110 + 1010
- 3. Convert these binary strings to hexidecimal
 - (a) 11001011
 - (b) 00001001
- 4. Convert these hexidecimal strings to binary
 - (a) AE
 - (b) 10
- 5. Assuming 4-bit numbers with 2's complement encoding, decode the following:
 - (a) 1100
 - (b) 0101
- 6. (Stretch question) To negate a number x in 2's complement, you need to find the binary representation for $2^n x$. There is a shortcut to doing this, which is used internally in CPUs. Supposing that \overline{z} is the binary representation for x,
 - (a) NOT each bit in \overline{z}
 - (b) add 1 to the result.

Show that this procedure produces the binary representation for $2^n - x$. Hint: look at a binary representation $x = \sum_{j=0}^{n-1} z_j 2^j$ and the version after applying the procedure: $1 + \sum_{j=0}^{n-1} (1-z_j) 2^j$. And yes, for a bit b, \sim b is the same as 1-b.