Solution	Marks	Rem
		Remarks
$P(B) \qquad P(B)$		
= P(B A)P(A) + P(B A')P(A')	lM	
=(0.45)(0.8)+(0.6)(1-0.8)	1A	
= 0.48		
$P(B \cap A)$		
$= P(B \mid A)P(A)$		
=(0.45)(0.8)		
= 0.36		
$P(B \cap A')$		
$= P(B \mid A')P(A')$		1
=(0.6)(1-0.8)		
= 0.12		
P(B)		
$= P(B \cap A) + P(B \cap A')$		
=0.36+0.12	1M	
= 0.48	1A	
(b) $P(A B)$		
P(B A)P(A)		
= $P(B)$		
$=\frac{(0.45)(0.8)}{}$	1M	1
0.48	INI	*
=0.75	1A	
(c) $P(B \cap A)$		
$= P(B \mid A)P(A)$		
= (0.45)(0.8)		
= 0.36		
$P(A \cup B)$		
$= P(A) + P(B) - P(A \cap B)$		•
= 0.8 + 0.48 - 0.36		
= 0.92	1A	
		5)
		7
		1
		1

/			
/	The sample proportion	Marks	Remarks
(a)	0.0915 + 0.3085		
•			
	= 0.2		
	.n. •	1A	
	(i) $\frac{g}{0.3085 - 0.0915}$		*
	$=$ $\sqrt{0.2(1-0.2)}$		
	$2\sqrt{\frac{64}{64}}$	1M	
	= 2.17		
	Thus, we have $\beta = 97$.		
		ÍA	
4)	Let <i>n</i> be the number of households. $(1-0.2)^n > 0.999$		
(U)	1-(1-0.2)		
	$0.001 > 0.8^n$	1M	
	$\log 0.001 > \log(0.8'')$,
	$\log 0.001 > n \log 0.8$	1M	
	$n > \frac{-3}{\log 0.8}$		
	n > 30.95655348		
	Thus, the least number of households is 31.	1 14	
		1A (6)	*
			,
			*
(a)	The required probability		
(4)	9.16-9		
	$= P\left(Z > \frac{9.16 - 9}{0.125}\right)$	lM	
	= P(Z > 1.28)		
	= 0.1003	1A	
(b)	(i) $P(X \le 3)$		
	$= 0.1003 + (1 - 0.1003)(0.1003) + (1 - 0.1003)^{2}(0.1003)$	1M	
	1027417233157		
	≈ 0.2717	1A	r.t. 0.2717
	(II) E(V)		
	(ii) E(X)		
	0.1003	1M	
	0.1003 19.9700899781		
	≈ 9.9701	1A	r.t. 9.9701
		(6)	
	58		

		Solution	Marks	Remarks
4.	(a)	p+0.25+0.5=1	lM	
	(-7	p=0.25	Ī	
		E(Y)	1M	
		= -2(0.25) + 2(0.25) + 0.5m = 0.5m		
		Var(?)		
		$= 0.25(-2 - 0.5m)^2 + 0.25(2 - 0.5m)^2 + 0.5(m - 0.5m)^2$	1M	
		$= 0.25(4 + 2m + 0.25m^2 + 4 - 2m + 0.25m^2) + 0.125m^2$		
		$=0.25m^2+2$	1	
		0.25 + p + 0.5 = 1	1M	
		p = 0.25		
		E(Y)		
		=-2(0.25)+2(0.25)+0.5m	1M	
		= 0.5m	1141	
		l		
		Var(Y)		
		$= (-2)^2(0.25) + (2)^2(0.25) + m^2(0.5) - (0.5m)^2$	1M	
		$=0.25m^2+2$	1	
((b)	Note that $E(2Y-1)=2E(Y)-1$ and $Var(2Y-1)=4Var(Y)$.	1M+1M	
		Var(2Y-1)=8E(2Y-1)		
		4Var(Y) = 16E(Y) - 8		
		$4(0.25m^2+2)=16(0.5m)-8$		
		$m^2 - 8m + 16 = 0$ m = 4		
		m-7	1A (7)	
			(/)	
				3
				d d

Solution		
	Marks	Remarks
Note that $3x^2 - 24x + 49 = 3(x - 4)^2 + 1 \neq 0$. (a) $f'(x) = 0$ $\frac{12x - 48}{(3x^2 - 24x + 49)^2} = 0$ $x = 4$	IM	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Thus, we have $\alpha = 4$. $f'(x) = 0$	1A	
$\frac{12x - 48}{(3x^2 - 24x + 49)^2} = 0$ $x = 4$	1M	
$f''(x) = \frac{-108x^2 + 864x - 1716}{(3x^2 - 24x + 49)^3}$ $f''(4) = 12$ > 0 So, $f(x)$ attains its minimum value at $x = 4$. Thus, we have $\alpha = 4$.	1A	
(i) Let $v = 3x^2 - 24x + 49$. Then, we have $\frac{dv}{dx} = 6x - 24$. $f(x)$ $= \int \frac{12x - 48}{(3x^2 - 24x + 49)^2} dx$ $= \int \frac{2}{v^2} dv$ $= \frac{-2}{v} + C$ $= \frac{-2}{3x^2 - 24x + 49} + C$	IM	
Since $f(x)$ has only one extreme value, we have $f(4) = 5$. $\frac{-2}{3(4)^2 - 24(4) + 49} + C = 5$ $C = 7$	1M	
Thus, we have $f(x) = \frac{-2}{3x^2 - 24x + 49} + 7$.	1A	
$\lim_{x \to \infty} f(x)$ = 7	1A (6)	

	Marks	Rem
Solution		Remarks
(a) $e^{kx} + e^{2x}$ = $\left(1 + kx + \frac{(kx)^2}{2!} + \cdots\right) + \left(1 + 2x + \frac{(2x)^2}{2!} + \cdots\right)$	1M	for expanding ekx
$=2+(k+2)x+\frac{(k^2+4)}{2}x^2+\cdots$	1A	0
(b) $(1-3x)^8$ = $1+C_1^8(-3x)+C_2^8(-3x)^2+\cdots$	1M	
$= 1 - 24x + 252x^2 + \cdots$ $e^{kx} + e^{2x} - 1$		
$=1+(k+2)x+\frac{(k^2+4)}{2}x^2+\cdots$		
$(1)(k+2) + (-24)(1) = (1)\left(\frac{k^2+4}{2}\right) + (-24)(k+2) + (252)(1)$	1M+1M	
$k^2 - 50k + 456 = 0$ k = 12 or $k = 38$	1A (6)

Solution		
(a) d <i>y</i>	Marks	Remarks
$= 2x\sqrt{h-x} + x^{2} \left(\frac{1}{2}\right)(h-x)^{\frac{-1}{2}}(-1)$ $= \frac{4hx - 5x^{2}}{2\sqrt{h-x}}$	IM	
$\frac{4h(4)-5(4)^2}{2\sqrt{h-4}} = 30$ $16h-80 = 60\sqrt{h-4}$ $(16h-80)^2 = (60\sqrt{h-4})^2$ $16h^2 - 385h + 1300 = 0$ $h = 20 \text{ or } h = 4.0625$ Note that $16(4.0625) - 80 = -15 < 0$.	1M	
Thus, we have $h=20$.	1	
(b) For $\frac{dy}{dx} = 0$, we have $\frac{80x - 5x^2}{2\sqrt{20 - x}} = 0$. So, we have $x = 16$ or $x = 0$ (rejected)	1M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1М	for testing
Thus, the maximum point of C is $(16, 512)$.	1A	
For $\frac{dy}{dx} = 0$, we have $\frac{80x - 5x^2}{2\sqrt{20 - x}} = 0$. So, we have $x = 16$ or $x = 0$ (rejected) $\frac{d^2y}{dx^2}$ $= \frac{15x^2 - 480x + 3200}{4\sqrt{(20 - x)^3}}$	1М	
$\frac{d^2y}{dx^2}\Big _{x=16}$ = -20 < 0 Thus, the maximum point of C is (16, 512).	lM 1A	for testing
(c) $y = 512$	1M (7)	
62		

	Marks	Remarks
Solution $= x \left(\frac{1}{x}\right) + \ln x$ $= 1 + \ln x$	1М	7.00 45
So, we have $\ln x = \frac{d}{dx}(x \ln x) - 1$. $\int \ln x dx$ $= x \ln x - x + \text{constant}$	1A	
(b) $\int \frac{\ln x}{x} dx$ $= \frac{(\ln x)^2}{2} + \text{constant}$	1A	
(c) $y=0$ $\frac{(x-1)(\ln x-1)}{x}=0$ $x=1 \text{ or } x=e$ The required error	1A	can be absorbed
The required area $= -\int_{1}^{e} \frac{(x-1)(\ln x - 1)}{x} dx$ $= -\int_{1}^{e} \frac{x \ln x - x - \ln x + 1}{x} dx$	1M	
$= -\int_{1}^{e} \frac{dx}{x}$ $= -\int_{1}^{e} \left(\ln x - 1 - \frac{\ln x}{x} + \frac{1}{x} \right) dx$		
$= -\left[x \ln x - x - x - \frac{(\ln x)^2}{2} + \ln x\right]_1^e$	1M	
$=e-\frac{5}{2}$	1A (7)	
6:	3	

$P(H' > 260) = 0.1056$ $P(H' < H' \le 260) = 0.5 - 0.1056$ $P(0 < Z \le \frac{260 - \mu}{16}) = 0.3944$ $P(0 < Z \le \frac{260 - \mu}{16}) = 0.3944$ $P(a < H' \le 240) = 0.7357 - 0.3944$ $P(\frac{a - 240}{16} < Z \le 0) = 0.3413$ $\frac{a - 240}{16} = -1$ $a = 224$ The required probability $= C_6^8 (0.7357)^6 (1 - 0.7357)^2 + C_7^8 (0.7357)^7 (1 - 0.7357) + C_8^8 (0.7357)^8$ $= 0.642619261$ ≈ 0.6426		for eight	ther one
The required probability $= C_6^8 (0.7357)^6 (1 - 0.7357)^2 + C_7^8 (0.7357)^7 (1 - 0.7357) + C_8^8 (0.7357)^8$ $= 0.642619261$		(3)	
	1M		
(i) The required probability	1A	-(2) r.t.	0.6426
$= (C_7^8 (0.7357)^7 (0.1587))^3 + 6(C_6^8 (0.7357)^6 (0.1587)^2)(C_7^8 (0.7357)^7 (0.1587))(0.7357)^8$ $= 1856 (0.7357)^{21} (0.1587)^3$ ≈ 0.0118	1 1M		.t. 0.0118
(ii) The required probability $\approx \frac{1856(0.7357)^{21}(0.1587)^3}{(0.642619261)^3}$ ≈ 0.044376559 ≈ 0.0444		+ 1M	r.t. 0.0444
(iii) The required probability $= \frac{1856(0.7357)^{21}(0.1587)^3}{c_{21}^{24}(0.7357)^{21}(0.1587)^3}$ $= \frac{232}{253}$		ım	0.0777
≈ 0.9170 The required probability		1A	r.t. 0.9170
$= \frac{1856(0.7357)^{21}(0.1587)^{3}}{1856(0.7357)^{21}(0.1587)^{3} + 3(C_{5}^{8}(0.7357)^{5}(0.1587)^{3})((0.7357)^{2})(0.7357)^{2}}$ $= \frac{232}{253}$ ≈ 0.9170	7)8)2	IM IA	r.t. 0.9170

		Marks	Remarks
	Solution		
	The required probability	1M	
). (a)	$=e^{-1.8}\left(\frac{1.8^{\circ}}{0!}+\frac{1.5}{1!}\right)$	1A	r.t. 0.4628
	$= 2.8e^{-1.8}$ $= 0.4628$ $= 0.4628$	(2)	
(b)	Let $p = 2.8e^{-1.8}$. The expected bonus according to Suggestion I $= 5000p^4 + 2500C_1^4 p^3 (1-p) + 1500C_2^4 p^2 (1-p)^2 + 600C_3^4 p (1-p)^3$ $= 1000p^4 + 2500C_1^4 p^3 (1-p) + 1500C_2^4 p^2 (1-p)^2 + 600C_3^4 p (1-p)^3$	1M+1M	
	≈ \$1490.5055 The probability that Albert is late for fewer than 5 times in four months $= e^{-72} \left(\frac{7.2^0}{0!} + \frac{7.2^1}{1!} + \frac{7.2^2}{2!} + \frac{7.2^3}{3!} + \frac{7.2^4}{4!} \right)$	1M+1M	
	= $208.3024e^{-7.2}$ ≈ 0.155515616 The expected bonus according to Suggestion II = $(8000)(208.3024e^{-7.2})$	1M	
	\$160641922 ≈ \$1244.1249 <\$1490.5055 Thus, Suggstion I is more favourable to Albert.	1A (6)	f.t.
(c)	(i) The required probability $= \left(\frac{1.8^2}{2!}e^{-1.8}\right) \left(\frac{\lambda^0}{0!}e^{-\lambda}\right)$	1M	
	$= \left(\frac{2!}{2!} e^{-1.8-\lambda} \right) $ $= 1.62e^{-1.8-\lambda}$	1A	
	(ii) $\frac{1.62e^{-1.8-\lambda}}{\left(\frac{1.8^2}{2!}e^{-1.8}\right)\left(\frac{\lambda^0}{0!}e^{-\lambda}\right) + \left(\frac{1.8}{1!}e^{-1.8}\right)\left(\frac{\lambda^1}{1!}e^{-\lambda}\right) + \left(\frac{1.8^0}{0!}e^{-1.8}\right)\left(\frac{\lambda^2}{2!}e^{-\lambda}\right)} = 0.36$	1M+1M	1M for using (c)(i) in numerator+1M for dear
	$\frac{1.62}{1.62 + 1.8\lambda + 0.5\lambda^2} = 0.36$ $\lambda^2 + 3.6\lambda - 5.76 = 0$ $\lambda = 1.2 \text{ or } \lambda = -4.8 \text{ (rejected)}$ Thus, we have $\lambda = 1.2$.	1A (5)	,
	65		,

	Solution			
		Marks	Remarks	
1. (2) (1)	$D_1 = \frac{1}{2} \left(\frac{0.5 - 0.1}{4} \right) (A(0.1) + A(0.5) + 2(A(0.2) + A(0.3) + A(0.4)))$ $= 50.2513$	1M		
(ii)	$\frac{dA}{dt}$ = 60(e ^{-2t} (10) + (1+10t)e ^{-2t} (-2))	\ '`	r.t. 50.251	3
	$= 480e^{-2t} - 1200te^{-2t}$ For all $t \in [0.1, 0.5]$,	1A		
	$\frac{d^2A}{dt^2}$ = $480e^{-2t}(-2) - 1200e^{-2t} - 1200te^{-2t}(-2)$			
	$= 2400te^{-2t} - 2160e^{-2t}$ $= 240e^{-2t}(10t - 9)$	1M 1A	1	
÷	<0 Thus, D_1 is an under-estimate of D .	12	A f.t.	
(b) (i)	Let $u=1+2t$. Then, we have $\frac{du}{dt}=2$.	1	м	
	D_2			×
	$=\int_{0.1}^{0.5} \mathbf{B}(t) \mathrm{d}t$		1M	
	$=25\int_{1.2}^{2} \frac{5u-4}{u} du$			
	$= 25 \left[5u - 4 \ln u \right]_{1.2}^{2}$ $= 100 - 100 \ln \frac{5}{3}$		1M 1A r.t	. 48.9174
	≈48.91743762 ≈ 48.9174			
	Note that $\frac{1+10t}{1+2t} = \frac{-4}{1+2t} + 5$.		1M	
	$= \int_{0.1}^{0.5} B(t) dt$		1M	
	$=50\left[-2\ln(1+2t)+5t\right]_{0.1}^{0.5}$		1M	
	$= 100 - 100 \ln \frac{5}{3}$ ≈ 48.91743762 ≈ 48.9174		1A	r.t. 48.9174
(ii)	By (a)(ii), D_1 is an under-estimate of D .			
	Since $D_2 < D_1$, we have $D_2 < D_1 < D$. Thus, the claim is disagreed.		IM IA	(6) f.t.

Solution 12. (a) $r = 9 \atop s \text{ in } 3 = -0.1 \text{ in } 9 \atop s \text{ in } 3 = -0.2 \text{ in } 3 \atop s = -0.2 \text{ in } 3 \atop s$		Marks D	
(a) (b) (c) $\ln\left(\frac{120-3N}{N}\right) = \ln 9 - (0.2 \ln 3)V$ $\ln\left(\frac{120-3N}{N}\right) = \ln 9 + \ln 3^{-0.2}V$ $\ln\left(\frac{120-3N}{N}\right) = \ln 9 + \ln 3^{-0.2}V$ $\ln\left(\frac{120-3N}{N}\right) = \frac{3^{2}-0.2}{N}$ $120-3N = N(3^{2}-0.2)$ $N = \frac{120}{3^{2}-0.2}$ $N = \frac{40}{3^{1}-0.2} + 1$ (ii) $4 = \frac{40}{3^{1}-0.2} + 1$ (iii) $4 = \frac{40}{3^{1}-0.2} + 1$ $3^{1-0.2} = 9$ $t = -5$ Note that $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. Note that $N = 10$ when $t = 0$. $\frac{dN}{dt}$ $= -40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1}-0.2t} + 1)^{2}}$ 1M for $3^{1-0.2t}(\ln 3)(-0.2t)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1}-0.2t} + 1)^{2}}$ 1M for $3^{1-0.2t}(\ln 3)(-0.2t)$	Solution	1A	temarks
$\frac{120-3N}{N} = 3^{2-0.2t}$ $120-3N = N(3^{3-0.2t})$ $N = \frac{120}{3^{2-0.2t}+3}$ $N = \frac{40}{3^{1-0.2t}+1}$ (ii) $4 = \frac{40}{3^{1-0.2t}+1}$ $3^{1-0.2t} = 9$ $t = -5$ Note that $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. Note that $N = 10$ when $t = 0$. $\frac{dN}{dt}$ $= -40(3^{1-0.2t}+1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t}+1)^{-2}} > 0$ Note that $N = 10$ is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. 1M 1A 1. 1	$\sin 3 = -0.2 \text{m} 3$		
$N = \frac{40}{3^{1-0.2t}+1}$ (ii) $4 = \frac{40}{3^{1-0.2t}+1}$ $3^{1-0.2t} = 9$ $t = -5$ Note that $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. Note that $N = 10$ when $t = 0$. $\frac{dN}{dt}$ $= -40(3^{1-0.2t}+1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t}+1)^2}$ > 0 Note that N is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. 1M 1A 1. (iii) $\frac{dN}{dt}$ $= -40(3^{1-0.2t}+1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t}+1)^{-2}}{(3^{1-0.2t}+1)^{-2}}$ 1M 1A for $3^{1-0.2t}(\ln 3)(-0.2t)$ $= \frac{8(\ln 3)(3^{1-0.2t}+1)^{-2}}{(3^{1-0.2t}+1)^{2}}$ 1A	$\frac{120 - 3N}{N} = 3^{2 - 0.2i}$ $120 - 3N = N(3^{2 - 0.2i})$	1M	
$3^{1-0.2t} = 9$ $t = -5$ Note that $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. Note that $N = 10$ when $t = 0$. $\frac{dN}{dt}$ $= -40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ > 0 Note that N is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. 1A f.t. (iii) $\frac{dN}{dt}$ $= -40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ 1M for $3^{1-0.2t}(\ln 3)(-0.2t)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$		1	
during the experiment. Note that $N = 10$ when $t = 0$. $\frac{dN}{dt}$ = $-40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ = $\frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ > 0 Note that N is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. 1A 1b. 1c. 1b. 1c. 1c. 1c. 1c. 1d. 1d. 1d. 1d	$3^{1-0.2t} = 9$ $t = -5$ Note that $0 < t < 20$	1 M	and the second s
$\frac{dN}{dt}$ = $-40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ = $\frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ > 0 Note that N is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room during the experiment. (iii) $\frac{dN}{dt}$ = $-40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ = $\frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ IM for $3^{1-0.2t}(\ln 3)(-0.2t)$ 1A	Thus, it is not possible that there are 4 million bacteria in the room during the experiment.	1A	£t.
$= -40(3^{1-0.2i} + 1)^{-2}(3^{1-0.2i})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2i})}{(3^{1-0.2i} + 1)^2}$ for $3^{1-0.2i}(\ln 3)(-0.2)$	$\frac{dN}{dt}$ $= -40(3^{1-0.2t} + 1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$ $= \frac{8(\ln 3)(3^{1-0.2t})}{(3^{1-0.2t} + 1)^2}$ > 0 Note that N is increasing and its least value is 10 for $0 \le t \le 20$. Thus, it is not possible that there are 4 million bacteria in the room		f.t.
$= \frac{1}{(3^{1-0.2i}+1)^2}$	$=-40(3^{1-0.2t}+1)^{-2}(3^{1-0.2t})(\ln 3)(-0.2)$	lM	for 3 ^{1-0.2} (ln 3)(-0.2)
$\frac{d^2N}{dt^2}$	$=\frac{3(115)(5)}{(3^{1-0.2t}+1)^2}$ $\frac{d^2N}{dt^2}$	1A	
$=\frac{8(\ln 3)((3^{1-0.2i}+1)^2(3^{1-0.2i})(\ln 3)(-0.2)-(3^{1-0.2i})(2)(3^{1-0.2i}+1)(3^{1-0.2i})(\ln 3)(-0.2))}{1-0.2i}$	$=\frac{8(\ln 3)((3^{1-0.2i}+1)^2(3^{1-0.2i})(\ln 3)(-0.2)-(3^{1-0.2i})(2)(3^{1-0.2i}+1)(3^{1-0.2i})(\ln 3)(-0.2)}{(3^{1-0.2i}+1)^4}$		for quotient rule
67	67		