Esboçando gráficos: zeros no denominador e retas assíntotas

Na aula 6, estivemos concentrados no estudo de funções contínuas em \mathbb{R} , com derivadas primeira e segunda também contínuas.

Nesta aula, estaremos voltando nossa atenção para funções algébricas. Uma função é algébrica quando sua fórmula f(x) envolve todas ou algumas das quatro operações racionais +, -, \times e \div , e eventualmente extrações de raízes n-ésimas ($\sqrt[n]{}$).

Na verdade, as funções da aula 6 são também funções algébricas.

As funções algébricas que estaremos estudando agora, porém, tem uma ou várias das seguintes peculiaridades:

- (i) o denominador na fórmula de f(x) se anula para um ou mais valores de x;
- (ii) para alguns valores de x, f é contínua em x, mas f' não o é;
- (iii) para alguns valores de x, f e f' são contínuas em x, mas f" não o é;
- (iv) quando $x \to +\infty$ (ou quando $x \to -\infty$), a curva y = f(x) aproxima-se indefinidamente de uma reta (chamada *reta assíntota da curva* y = f(x)). (Os gráficos das funções dos problemas 4 e 6, página 62, tem retas assíntotas horizontais).

AULA 7

7.1 Assíntotas verticais, assíntotas horizontais, assíntotas inclinadas

A apresentação desses novos aspectos no esboço de gráficos de funções será feita através de exemplos. Vamos a eles.

Exemplo 7.1. Esboçar o gráfico de f, sendo $f(x) = \frac{2x+1}{x-2}$, ou seja, esboçar a curva de equação $y = \frac{2x+1}{x-2}$.

Detectando assíntotas verticais.

Repare que $D(f) = \mathbb{R} - \{2\}$.

Agora,
$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2} = \frac{5}{0^+} = +\infty$$
, $\lim_{x\to 2^-} f(x) = \lim_{x\to 2} = \frac{5}{0^-} = -\infty$

Esses limites laterais, sendo infinitos, detectam que a reta vertical de equação x=2 é uma assíntota vertical do gráfico de f. Mais precisamente, esses limites laterais detectam que

quando $x \to 2^+$, os pontos correspondentes, no gráfico, "sobem" no plano xy, aproximando-se indefinidamente dessa reta. Quando $x \to 2^-$, os pontos do gráfico "descem" no plano xy, também aproximando-se indefinidamente da reta assíntota.

Crescimento e decrescimento.

Temos

$$f'(x) = \frac{(2x+1)'(x-2) - (x-2)'(2x+1)}{(x-2)^2} = \frac{2(x-2) - (2x+1)}{(x-2)^2}$$

Portanto

$$f'(x) = \frac{-5}{(x-2)^2}$$

Assim sendo f'(x) < 0 para todo x em $D(f) = \mathbb{R} - \{2\}$. Esta função f não pode ter máximos nem mínimos locais.

Temos então o seguinte diagrama de sinais de f' e intervalos de crescimento e decrescimento de f:

Concavidades do gráfico.

Temos

$$f''(x) = \left[\frac{-5}{(x-2)^2}\right]' = \left[-5(x-2)^{-2}\right]' = 10(x-2)^{-3} = \frac{10}{(x-2)^3}$$

Temos então o seguinte diagrama de sinais de f'' e direções de concavidades do gráfico de f:

Como 2 ∉ D(f), o gráfico não tem ponto de inflexão.

Comportamento de f no infinito (assíntotas horizontais).

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+1}{x-2} = 2$$

Também $\lim_{x \to -\infty} f(x) = 2$

Assim, a reta y = 2 é uma assíntota horizontal à direita e à esquerda do gráfico de f.

Esboço do gráfico de f, com base nos dados estudados anteriormente: figura 7.1.

Figura 7.1. Gráfico de $y = \frac{2x+1}{x-2}$, com retas assíntotas em tracejado.

Exemplo 7.2. Esboçar o gráfico de $y = \frac{x^2 - 2x + 2}{x - 1}$.

Detectando assíntotas verticais.

Por conveniência e para o bem da simplicidade chamaremos de y = y(x) a função a ser estudada.

Repare que $D(y) = \mathbb{R} - \{1\}$.

Agora,
$$\lim_{x \to 1^+} \frac{x^2 - 2x + 2}{x - 1} = \frac{1}{0^+} = +\infty$$
, $\lim_{x \to 1^-} \frac{x^2 - 2x + 2}{x - 1} = \frac{1}{0^-} = -\infty$

A reta vertical de equação x=1 é uma assíntota vertical do gráfico da curva $y=\frac{x^2-2x+2}{x-1}$.

Quando x está próximo de 1, pontos da curva y = y(x) "sobem" no plano xy, aproximando-se da assíntota, à direita, e "descem", aproximando-se da assíntota, à esquerda.

Crescimento e decrescimento da função. Máximos e mínimos locais.

Temos

$$y' = \frac{(x^2 + 2x + 2)'(x - 1) - (x - 1)'(x^2 + 2x + 2)}{(x - 1)^2}$$
$$= \frac{(2x - 2)(x - 1) - (x^2 - 2x + 2)}{(x - 1)^2} = \frac{x^2 - 2x}{(x - 1)^2}$$

Portanto

$$y' = \frac{x(x-2)}{(x-1)^2}$$

Assim, y' = 0 para x = 0 e para x = 2.

As raízes do numerador de y' são 0 e 2, enquanto que 1 é raiz do denominador. Além disso, em cada um dos intervalos $]-\infty,0[$,]0,1[,]1,2[e $]2,+\infty[$, a derivada y' mantém-se positiva ou negativa.

Esta permanência de sinal de y', em cada um dos intervalos mencionados, nos é garantida por um teorema da Análise Matemática, chamado teorema do anulamento, ou teorema de Bolzano, que enuncia¹

Teorema de Bolzano Se uma função contínua f não tem raízes em um intervalo, então f(x) mantém-se positiva ou negativa em todos os pontos x do intervalo.

¹A forma original deste teorema é a contra-recíproca da afirmação enunciada aqui: Se em um intervalo [a,b] a função f é contínua, e é tal que f(a) e f(b) tem sinais contrários então a função f tem uma raiz no intervalo [a,b].

Com base nessas observações, para analisar a variação de sinais de y' podemos recorrer ao seguinte argumento:

Quando x é muito grande, $y' = \frac{x(x-2)}{(x-1)^2} > 0$. Assim, y' > 0 no intervalo x > 2 (pois y' é contínua e não tem raízes quando x > 2).

Quando x "passa" por 2, y' troca de sinal. Portanto, y' < 0 para 1 < x < 2 (y' não se define quando x = 1).

Quando x passa por 1, y' não muda de sinal porque o termo x-1 aparece elevado ao quadrado no denominador. Assim sendo, temos ainda y' < 0 no intervalo 0 < x < 1.

Quando x passa por 0, y' troca de sinal novamente e temos então y' > 0 quando x < 0.

Temos então o seguinte diagrama de sinais de y' e intervalos de crescimento e decrescimento de y(y(x) significa f(x)):

$$y' + 0 \qquad y' = 0$$

$$y + 0 - 1 - 2 + X$$

$$y \qquad \text{pto. de } \qquad \cancel{\not} y(1) \qquad \text{pto. de } \qquad \cancel{min. local}$$

Temos então que y cresce em $]-\infty,0]$, decresce em [0,1[e também 2 em]1,2], e cresce em $[2,+\infty[$ (tendo uma descontinuidade em x=1).

Concavidades e inflexões do gráfico.

Agora calculamos

$$y'' = \left[\frac{x^2 - 2x}{(x - 1)^2}\right]' = \frac{(x^2 - 2x)'(x - 1)^2 - [(x - 1)^2]'(x^2 - 2x)}{(x - 1)^4}$$
$$= \frac{(2x - 2)(x - 1)^2 - 2(x - 1)(x^2 - 2x)}{(x - 1)^4}$$
$$= \frac{(2x - 2)(x - 1) - 2(x^2 - 2x)}{(x - 1)^3} = \frac{2}{(x - 1)^3}$$

Sendo $y'' = \frac{2}{(x-1)^3}$, temos então o seguinte diagrama de sinais de y'' e direções de concavidades da curva y = y(x):

²Isto não quer dizer que y seja decrescente na reunião de intervalos $[0,1[\cup]1,2]$.

Como y não é definido para x = 1, o gráfico não tem ponto de inflexão.

Comportamento da função no infinito (outras assíntotas)

$$\lim_{x\to +\infty}y(x)=\lim_{x\to +\infty}\frac{x^2-2x+2}{x-1}=\lim_{x\to +\infty}\frac{x^2}{x}=\lim_{x\to +\infty}x=+\infty$$

Temos ainda
$$\lim_{x \to -\infty} y(x) = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

Assim, a curva não tem assíntota horizontal.

Esboço do gráfico de y = y(x), com base nos elementos coletados acima: figura 7.2

Figura 7.2. Um primeiro esboço do gráfico de $y = \frac{x^2 - 2x + 2}{x - 1}$.

Assintotas inclinadas!

Há algo mais que pode ser agregado ao gráfico esboçado na figura 7.2: a existência, até aqui insuspeita, de uma assíntota inclinada (também chamada assíntota oblíqua).

Se $\lim_{x\to +\infty} [f(x) - (\alpha x + b)] = 0$, para certos números reais α e b, temos que a reta $y = \alpha x + b$ é uma assíntota do gráfico de f à direita, sendo uma assíntota inclinada se $\alpha \neq 0$.

Neste caso, à medida em que x cresce, tornando-se cada vez maior, com valores positivos, f(x) torna-se cada vez mais próximo de ax + b.

Analogamente, a reta y = ax + b é uma assíntota do gráfico de f, à esquerda, quando $\lim_{x \to -\infty} [f(x) - (ax + b)] = 0$.

Sa reta y = ax + b é uma assíntota do gráfico de f, como determinar os coeficientes a e b?

Para determinar α , note que se $\lim_{x\to\pm\infty} [f(x)-(\alpha x+b)]=0$, então

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\left[f(x) - (ax + b)\right] + (ax + b)}{x}$$

$$= \lim_{x \to \pm \infty} \frac{f(x) - (ax + b)}{x} + \lim_{x \to \pm \infty} \frac{ax + b}{x}$$

$$= \frac{0}{+\infty} + a = a$$

Assim, se a reta y = ax + b é uma assíntota do gráfico de f então

$$\lim_{x\to\pm\infty}\frac{f(x)}{x}=a$$

Calculado o valor do coeficiente a, para determinar b calculamos (usando o mesmo sinal para ∞ usado no limite anterior)

$$\lim_{x \to +\infty} (f(x) - ax) = b$$

Reciprocamente, se $\alpha \in \mathbb{R}$, e se $\lim_{x \to +\infty} \frac{f(x)}{x} = \alpha$, e $\lim_{x \to +\infty} (f(x) - \alpha x) = b$, então $\lim_{x \to +\infty} [f(x) - (\alpha x + b)] = 0$ e a reta $y = \alpha x + b$ é uma assíntota do gráfico de f quando $x \to +\infty$. Observação análoga é válida se $x \to -\infty$.

No caso da curva que estamos estudando,

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{y}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 2}{x(x - 1)}$$
$$= \lim_{x \to \pm \infty} \frac{x^2 - 2x + 2}{x^2 - x} = \lim_{x \to \pm \infty} \frac{x^2}{x^2} = 1$$

e assim obtemos $\alpha = 1$.

Além disso,

$$\lim_{x \to \pm \infty} \left(\frac{x^2 - 2x + 2}{x - 1} - \alpha x \right) = \lim_{x \to \pm \infty} \left(\frac{x^2 - 2x + 2}{x - 1} - x \right)$$

$$= \lim_{x \to \pm \infty} \frac{x^2 - 2x + 2 - x(x - 1)}{x - 1}$$

$$= \lim_{x \to \pm \infty} \frac{-x + 2}{x - 1} = -1$$

e assim obtemos b = -1.

Portanto, a reta y = x - 1 é assíntota inclinada da curva.

Com base nos elementos coletados acima, incluindo a informação adicional sobre a assíntota inclinada, temos um novo esboço, mais preciso, da curva da figura 7.2, na figura 7.3.

Figura 7.3. Esboço do gráfico de $y = \frac{x^2 - 2x + 2}{x - 1}$, mostrando (em tracejado) uma reta assíntota inclinada.

7.2 Um exemplo de função contínua com derivada descontínua

Exploraremos agora um interessante exemplo de uma função contínua cuja expressão da derivada tem um zero no denominador.

Exemplo 7.3. Esboçar o gráfico de $y = f(x) = (x+2)\sqrt[3]{(x-3)^2}$.

O gráfico desta função f não apresenta assíntotas verticais, visto que a função f é contínua em todo o conjunto \mathbb{R} , isto é, em todos os pontos de \mathbb{R} .

Crescimento e decrescimento. Máximos e mínimos locais

Temos y =
$$(x+2)\sqrt[3]{(x-3)^2}$$
.

Para calcular y', primeiro faremos

$$y = (x + 2)(x - 3)^{2/3}$$

Desse modo, pela regra da derivada de um produto,

$$y' = (x-3)^{2/3} + (x+2) \cdot \frac{2}{3}(x-3)^{-1/3}$$

Agora, para facilitar a análise de sinais da derivada, primeiramente colocamos em evidência a fração 1/3, e também a potência de x-3 de menor expoente (que no caso é $(x-3)^{-1/3}$):

$$y' = \frac{1}{3}(x-3)^{-1/3} \cdot [3(x-3)^{1} + 2(x+2)]$$
$$= \frac{1}{3}(x-3)^{-1/3} \cdot (5x-5)$$
$$= \frac{5}{3}(x-3)^{-1/3} \cdot (x-1)$$

Para termos clareza quanto aos sinais de y', reescrevemos y' usando radicais:

$$y' = \frac{5(x-1)}{3\sqrt[3]{x-3}}$$

Note que a função f é contínua em todos os pontos de \mathbb{R} , mas f'(x) não se define e é descontínua quando x = 3.

As raízes do numerador e do denominador de y' são 1 e 3, sendo y' = 0 para x = 1.

Temos então o seguinte diagrama de sinais de y', e correspondentes intervalos de crescimento e decrescimento de f:

$$y'$$
 + 1 - 3 + x

y pto. de pto. de max. local min. local $y' = 0$ $\nexists y'(3)$

Temos então que f cresce em $]-\infty,1]$, decresce em [1,3] e cresce novamente em $[3,+\infty[$. Aqui temos uma "novidade": f não tem derivada em $x_0=3$, mas $x_0=3$ é um

74 AULA 7

ponto de mínimo local de f! Como é a geometria do gráfico de f nas proximidades do ponto $x_0 = 3$? A resposta a esta questão virá com o estudo das concavidades do gráfico.

Concavidades e inflexões da curva

Para calcular y'', retomamos a expressão de y' com expoentes fracionários.

$$y'' = \left[\frac{5}{3}(x-3)^{-1/3} \cdot (x-1)\right]'$$

$$= \frac{-5}{9}(x-3)^{-4/3}(x-1) + \frac{5}{3}(x-3)^{-1/3}$$

$$= \frac{5}{9}(x-3)^{-4/3}[-(x-1) + 3(x-3)^{1}]$$

$$= \frac{5}{9}(x-3)^{-4/3}(2x-8)$$

$$= \frac{10}{9}(x-3)^{-4/3}(x-4)$$

Para estudo dos sinais de f" consideramos a expressão da segunda derivada usando radicais.

$$f''(x) = \frac{10(x-4)}{9\sqrt[3]{(x-3)^4}}$$

Temos o seguinte diagrama de sinais de y'' e direções de concavidades do gráfico de f (resista à tentação de simplificar o radical $\sqrt[3]{(\)^4}$, isto pode trazer mais complicações):

$$y'' - 3 - 4 +$$

$$y = f(x) \qquad X$$

Deduzimos portanto as direções de concavidades do gráfico e o fato de que o ponto (4, f(4)) = (4, 6) é ponto de inflexão do gráfico.

Deixamos ao leitor a verificação de que o gráfico de f não tem retas assíntotas no infinito, pois $\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$.

Com base nos elementos coletados acima, temos um esboço da curva y = f(x) na figura 7.4.

Neste esboço levamos em conta as aproximações $f(1) = 3\sqrt[3]{4} \approx 3 \cdot (1,6) = 4,8$, $f(0) = 2\sqrt[3]{9} \approx 2 \cdot (2,1) = 4,2$. Levamos em conta também que -2 e 3 são raízes de f (isto é, soluções de f(x) = 0).

Note que, antes e pouco depois de $x_0 = 3$, o gráfico tem concavidade voltada para baixo. Como f decresce em [1,3] e cresce em $[3,+\infty[$, temos, no gráfico de f,

Figura 7.4. Esboço do gráfico de $f(x) = (x+2)\sqrt[3]{(x-3)^2}$.

a formação de um "bico" agudo, ou mais apropriadamente de uma cúspide³ no ponto (3,0). Isto explica a inexistência de derivada em x_0 . Não há reta tangente ao gráfico no ponto (3,0).

Observação 7.1 (O gráfico de uma função f em pontos nos quais os limites laterais da derivada são infinitos).

Quando uma função f é contínua em um intervalo contendo um ponto x_0 no seu interior, e a derivada f' é contínua em todos os pontos desse intervalo, exceto em x_0 e, além disso, $\lim_{x\to x_0} f'(x) = +\infty$ ou $-\infty$, temos uma reta vertical tangente ao gráfico de f em $P = (x_0, f(x_0))$. Estes dois casos são ilustrados na figura 7.5.

Quando $\lim_{x \to x_0^+} f'(x) = +\infty$ e $\lim_{x \to x_0^-} f'(x) = -\infty$, o gráfico forma um bico (ou uma cúspide) em $P = (x_0, f(x_0))$, tal como no ponto P do gráfico à esquerda na figura 7.6.

Na figura 7.4 o ponto (3,0) é uma cúspide da curva do gráfico, sendo $\lim_{x\to 3^-} f'(x) = -\infty$ e $\lim_{x\to 3^+} f'(x) = +\infty$.

Quando $\lim_{x \to x_0^+} f'(x) = -\infty$ e $\lim_{x \to x_0^-} f'(x) = +\infty$, temos novamente um bico em P, só que agora apontando para cima, tal como no gráfico ilustrado à direita na figura 7.6.

 $^{^3}$ O ponto em questão é uma *cúspide* do gráfico, ou seja, um ponto P = $(x_0, f(x_0))$ tal que f é contínua mas não derivável em x_0 , sendo o limites laterais de f'(x) em x_0 infinitos e de sinais contrários.

Figura 7.6. À esquerda, $\lim_{x\to x_0^+} f'(x) = +\infty$, e $\lim_{x\to x_0^-} f'(x) = -\infty$. À direita, $\lim_{x\to x_0^+} f'(x) = -\infty$, e $\lim_{x\to x_0^-} f'(x) = +\infty$

7.3 Problemas

Um importante teorema sobre funções contínuas, chamado *teorema de Bolzano* ou *teorema do anulamento*, enuncia o seguinte:

Teorema de Bolzano ou Teorema do anulamento $Se\ f\ é\ uma\ função\ contínua no intervalo <math>[\alpha,b]$, $com\ f(\alpha)<0\ e\ f(b)>0$ (ou $com\ f(\alpha)>0\ e\ f(b)<0$), então $f\ tem\ uma\ raiz\ no\ intervalo\]\alpha,b[$, isto \acute{e} , existe x_0 , $\alpha< x_0< b$, tal que $f(x_0)=0$.

Na página 68, desta aula, foi enunciada uma versão equivalente deste teorema.

Este teorema está ilustrado nos gráficos das funções (contínuas) dos problemas 3 e 5, página 64, da aula 6. A função do problema 3 satisfaz f(0) > 0 e f(1) < 0, e também f(2) < 0 e f(3) > 0, o que lhe garante a existência de uma raiz entre 0 e 1, e de uma outra entre 2 e 3. Já a função do problema 5 possui uma raiz no intervalo]2,3[.

- 1. Usando o teorema do anulamento, enunciado acima, mostre que
 - (a) $f(x) = x^5 + x + 1$ possui uma raiz no intervalo]-1,0[.
 - (b) A equação $x^3 4x + 2 = 0$ tem três raízes reais distintas entre si.

2. Mostre que todo polinômio p(x), de grau ímpar, com coeficientes reais, tem ao menos uma raiz real.

Sugestão: Considere os limites $\lim_{x\to +\infty} p(x)$ e $\lim_{x\to -\infty} p(x)$.

Para cada uma das funções dadas abaixo,

- (a) Determine o domínio da função e, com base nisto, verifique se a curva y = f(x) tem retas assíntotas verticais.
- (b) Calcule f'(x) e determine os intervalos em que f é crescente e aqueles em que f é decrescente;
- (c) Determine os pontos de máximo locais e os pontos de mínimo locais de f, bem como os valores de f(x) nesses pontos;
- (d) Calcule f''(x) e determine os intervalos em que a curva y = f(x) é côncava para cima e aqueles em que ela é côncava para baixo;
- (e) Determine os pontos de inflexão da curva y = f(x);
- (f) Calcule as raízes de f (soluções da equação f(x) = 0), quando isto não for difícil;
- (g) Verifique se a curva y = f(x) tem retas assíntotas horizontais ou inclinadas.
- (h) A partir dos dados coletados acima, faça um esboço bonito do gráfico de f.
- (i) Indique os pontos do gráfico onde a reta tangente é vertical e os pontos onde inexiste tal reta tangente (procure por pontos onde f é contínua, mas f' não é definida).

3.
$$f(x) = \frac{x}{x^2 - 2}$$
 4. $f(x) = \frac{x^2}{1 + x}$ 5. $f(x) = \sqrt[3]{x^2} - 1$

6.
$$f(x) = \sqrt[3]{1-x^3}$$
 7. $f(x) = \sqrt[3]{6x^2-x^3}$ 8. $f(x) = 2x - 2\sqrt[3]{x^3+1}$

7.3.1 Respostas e sugestões

Para cada um dos problemas de 3 a 8, daremos como respostas apenas as derivadas primeira e segunda, e o esboço do gráfico, indicando graficamente as assíntotas quando houver.

3.
$$f'(x) = -\frac{x^2 + 2}{(x^2 - 2)^2}$$
, $f''(x) = -\frac{2x^3 + 12x}{(x^2 - 2)^3}$

4.
$$f'(x) = \frac{2x + x^2}{(1+x)^2}$$
, $f''(x) = \frac{2}{(1+x)^3}$

78

5.
$$f'(x) = \frac{2}{3\sqrt[3]{x}}$$
, $f''(x) = \frac{-2}{9\sqrt[3]{x^4}}$

6.
$$f'(x) = \frac{-x^2}{\sqrt[3]{(1-x^3)^2}}, \quad f''(x) = \frac{-2x}{\sqrt[3]{(1-x^3)^5}}$$

7.
$$f'(x) = \frac{4-x}{\sqrt[3]{x(6-x)^2}}, \quad f''(x) = \frac{-8}{x\sqrt[3]{(6-x)^5}}$$

8.
$$f'(x) = 2 - \frac{2x^2}{\sqrt[3]{(x^3 + 1)^2}}, \quad f''(x) = \frac{-4x}{\sqrt[3]{(x^3 + 1)^5}}$$

Esboços dos gráficos. Retas assíntotas são indicadas em tracejado.

7. Dado numérico: $\sqrt[3]{4} \approx 1.6$

8. Dado numérico: $\sqrt[3]{1/2} \approx 0.8$

