PASTI PRI VGRADNJI KRIPTOGRAFIJE V APLIKACIJSKI **SVET**

MARKO HÖLBL, BOŠTJAN BRUMEN

KRIPTOGRAFIJA

- Zgoščevalne funkcije (hash functions)
 - Prilagojene (dedicated)
- Šifrirni algoritmi (encryption algorithms)
 - Simetrične šifre (symmetric ciphers)
 - Asimetrične šifre (asymmetric cipers)
- Digitalni podpisi (digital signatures)
- Kriptografija javnega ključa (public key cryptography)

KRIPTOGRAFIJA

- ECB
- CBC
- OFB
- .cer, .crt, .der
- .p7b, .p7c
- .p12
- .pfx

NALOGE KRIPTOGRAFIJE

- Zaupnost
- Celovitost
- Overjanje
- Ne-zanikanje

- Algoritmi
- Implementacija

- Zgoščevalne funkcije (hash functions)
 - MD5, SHA1
- Šifrirni algoritmi (encryption algorithms)
 - Simetrične šifre (symmetric ciphers)
 - Blokovne
 - DES, AES
 - Tokovne
 - RC4
 - Asimetrične šifre (asymmetric cipers)
 - RSA
- Digitalni podpisi (digital signatures)
 - RSA
 - DSS

Asimetrična kriptografija

Kriptografija javnega ključa

- V teoriji težko razbiti
- Napake pri implementaciji in rabi
- Najbolj pogoste ranljivosti in napake

NAPAČNA RABA ALGORITMOV

- Zastareli / ranljivi algoritmi
- Pravilna dolžina ključa
 - Vsaj 128 bitov pri simetričnih algoritmih
 - Vsaj 1024 bitov pri asimetričnih
- Daljši ključ = počasnejše delovanje

NEPRAVILNOSTI POVEZANE S KLJUČI (IN DIGITALNIMI POTRDILI)

- nepravilno shranjevanje in zaščita ključev in digitalnih potrdil
 - Močno geslo
 - hranjenje na zunanjem varnem nosilcu (pametna kartica)
- Neustrezno:
 - Ključ zakodirati v prog. Kodi
- Prenos preko varnih kanalov
- Socialno inženirstvo

NEVARNOST POVEZANE Z IMPLEMENTACIJO ALGORITMOV

- Zelo pogosta vrzel
- posegamo po uveljavljenih implementacijah
 - incident z OpenSSL knjižnico
- Bližnjica
 - Dostop do ključev shranjevati najmanjšo možno mero podatkov, ki jih potrebujemo
- Temeljito testiranje
- Tudi pri uveljavljenih implementacijah so možne ranljivosti

PASTI POVEZANE Z NEOZAVEŠČENOSTJO IN POMANJKLJIVIM ZNANJEM

- Razumevanje konceptov
- Tudi končni uporabniki
- Napačna raba = varnostna luknja
- Priporočljivo vpeljati standardne procedure

TEŽAVA NAKLJUČNIH ŠTEVIL

- Zelo pomembna
- Preizkušene implementacije
- Ranljivosti v implementacijah

- Povzete po OWASP in NIST priporočilih
 - 1. Pazite na napake pri prehodu v produkcijo
 - 2. Uporaba uveljavljenih implementacij
 - 3. Hranite samo podatke, ki jih resnično potrebujete
 - 4. Bodite pazljivi pri uporabi generatorjev psevdonaključnih števil
 - 5. Uporabite močne načine šifrirnih algoritmov [14] (načini OFB, CFB ali CBC).
 - 6. Dobra dokumentacija in redno izobraževanje
 - 7. Kriptografski ključi naj bodo pravilno in zadostno varovani
 - 8. Varnostno kritične hranite na zunanjih varnih nosilcih
 - 9. Ključi in digitalna potrdila morajo imeti omejen čas veljavnosti, ki je odvisen od njihove pomembnosti

- 10. Varujte centralna ali jedrna digitalna potrdila in ključe
- 11. Arhiviranje digitalni potrdil in ključev
- 12. Zavedanje uporabnikov o odgovornosti
- 13. Šifrirajte in/ali digitalno podpišite vse pomembne podatke
- Varujte dele programske kode, ki so zadolženi za kriptografijo
- 15. Gesla shranjujete v obliki izvlečkov s soljo

SKLEP

- Izobraževanje in zavedanje
- Spremljanje dogodkov
- Človek = najšibkejši člen