Assignment 11 - Integration Theorems II + Taylor Series Due April 23rd

- 1. (1 pt) Let $f(z) = \text{Log}(e^{2\pi z})$ and D the open disk of radius 1 around 0. Show that there exists a closed simple curve C in D such that $\int_C f(z)dz \neq 0$
- 2. (1 pt) Show there is no entire function f such that $|f(x+iy)| = x^2 + y^2 + 1$.
- 3. (1 pt each) Let $f(z) = \frac{1}{z+i}$.
 - a) Compute the first four terms of the Taylor series of f around 0
 - b) Write the Taylor series of f around 0 (in Σ notation)
 - c) Find the radius of convergence of the Taylor series of f around 0