1 Просто типизированное лямбда-исчисление

Как мы уже убедились из парадокса Карри, лямбда-исчисление - это слишком мощная конструкция. Чтобы ее упорядочить, предпринимались многочисленные попытки. Сперва мы рассмотрим просто типизированное лямбда-исчисление.

Идея восходит к типизации теории множеств. Там, чтобы избежать парадоксов, можно предложить каждому множеству приписать некоторое значение (тип). Например, мы можем приписать пустому множеству тип 0, множеству, состоящему только из пустоготип 1, и вообще, множеству, состоящему из типов a_1, a_2, \ldots тип $Upb_{Ord}\{a_1, a_2, \ldots\}$. При этом некоторые

Здесь мы поступим похоже, только элементарных значений (и, соответственно, типов) у нас будет не одно, а счетное количество.

Определение 1.1. Тип — это:

- Элементарный тип маленькая греческая буква $(\alpha, \beta, ...)$
- Составной тип. Если τ и σ некоторые типы, то запись вида $\tau \to \sigma$ это также некоторый тип.

Существует два основных стиля типизации лямбда-исчисления — по Чёрчу и по Карри.

1.1 Изоморфизм Карри-Ховарда

Теперь мы готовы показать, что просто типизированное лямбда-исчисление в некотором смысле изоморфно импликационному фрагменту интуиционистской логики.

Заметим сперва, что T содержит в точности те же формулы, что и введенный в предыдущем параграфе язык.

Теорема 1.1. (Об изоморфизме Карри-Ховарда)

- 1. Если $\Gamma \vdash_{\P} M : \phi$, то $types(\Gamma) \vdash \phi$.
- 2. Если $\Gamma \vdash \phi$, то найдется такой $M \in \Lambda_T$, что $\{x_{\phi} | \phi \in \Gamma\} \vdash_{\P} M : \phi$.

Доказательство. Доказательство обоих частей теоремы несложно, но мы приведем доказательство второй части из методических соображений.

Покажем существование M индукцией по структуре доказательства $\Gamma \vdash \phi$. Для этого рассмотрим заключительное правило и разберем случаи.

2 Лямбда-исчисление по Карри

Существует второй вариант исчисления. Главное его отличие — в отсутствии типов при указании переменных в лямбда-термах. Правила типизации:

Принципиальных отличий нет, легко показать следующую теорему:

Теорема 2.1. Пусть отображение $Er: \Lambda_T \to \Lambda$ задано так: $Er(\lambda x: \sigma.A) = \lambda x.Er(A)$. Тогда (стирание):

- 1. Если $M \to_{\beta} N$, то $Er(M) \to_{\beta} Er(N)$
- 2. Если $\Gamma \vdash_{\pi} M : \alpha$, то $\Gamma \vdash_{\kappa} Er(M) : \alpha$.

Поднятие:

1. Если $M \to_{\beta} N$, то для любого $M_T \in \Lambda_T$, такого, что $Er(M_T) = M$, найдется $N_T \in \Lambda_T$, такой, что $Er(N_T) = T$ и $M_T \to_{\beta} N_T$.

2. Если $\Gamma \vdash_{\kappa} M : \alpha$, то найдется такой $M_T \in \Lambda_T$, что $Er(M_T) = M$ и $\Gamma \vdash_{\mathfrak{q}} N : \alpha$.

Доказательство. Упражнение.

Также, легко доказать аналоги теорем Черча-Россера и теоремы о нормализации.

Однако, несмотря на сходство, есть и отличие — типизация по Карри несколько более широкая. А именно, если $\Gamma \vdash M : \sigma$ и $\Gamma \vdash M : \tau$, то из этого не следует $\sigma = \tau$. Скажем, справедливо $\vdash_{\mathbf{k}} \lambda x.x : \alpha \to \alpha$ и $\vdash_{\mathbf{k}} \lambda x.x : \beta \to \beta$.

Теорема 2.2. О слабой нормализации. Пусть некоторый лямбда-терм имеет тип σ . Тогда существует конечная последовательность бета-редукций, приводящая к нормальной форме.

Лемма 2.3. Пусть A и B — лямбда-термы, а x — некоторая переменная. Тогда $h(A[x:=B]) \leq max(h(A),h(B),)$.

oоказательство.

Доказательство. Доказательство теоремы о слабой нормализации.

Мы покажем утверждение теоремы, доказав, что последовательность редукций, при которой редуцируется самый вложенный редекс максимальной степени (такой редекс $R = (\lambda x : \sigma.A^{\tau})B$ выражения $E = \dots R \dots$, что h(R) = h(E), и h(A) < h(R), как и h(B) < h(R)), приводит к нормальной форме.

Рассмотрим, что произойдет с количеством редексов высоты h(R) в результате редукции R. Рассмотрим некоторый редекс P в новом выражении $F=\ldots A[x:=B]\ldots$, получающемся из E путем редукции R. Он может:

- \bullet находиться целиком вне результата редукции редекса R, тогда он никак не изменяется при данной редукции;
- являться правой частью внешнего редекса $F = \dots (\lambda y : \theta.Q) A[x := B] \dots$ В этом случае, поскольку тип переменной x совпадает с типом терма B, изменения высоты данного редекса не произойдет;
- являться левой частью внешнего редекса $F = \dots A^{\theta}[x := B]Q^{\rho}\dots$ В этом случае неизбежно $A = \lambda y : \rho.C^{\theta}$ для некоторого C, и $h(A[x := B]Q) = h(\rho \to \theta) < h((\lambda x : \sigma.\lambda y : \rho.C)BQ) = h(\sigma \to \rho \to \theta)$, то есть, в этом случае появившийся редекс будет иметь высоту, меньшую h(R);
- находиться целиком внутри результата редукции. Заметим, что из $R: \sigma \to \tau$ следует, что $h(R) = h(\sigma \to \tau) > h(\sigma)$, и по принципу построения последовательности редукций, h(R) > h(A) и h(R) > h(B). Тогда, воспользовавшись леммой, заключаем $h(A[x:=B]) \le max(h(A),h(B),h(\sigma)) < h(R)$.

Таким образом, поскольку сам редекс R будет разрушен, и никаких новых редексов данной или большей высоты не добавится, количество редексов высоты h(R) уменьшится минимум на 1.

Рассмотрим функцию $m(E)=(h(E),n_E(h(E)))$, где $n_E(x)$ — количество редексов высоты x в формуле E. Если $n_E(h(E))>1$, то редукция самого вложенного редекса степени h(E) уменьшит $n_E(h(E))$ минимум на 1, если же их остался один — то редукция устранит их совсем, не добавив новых. Значит, мы получим строго убывающую последовательность m(E), ограниченную снизу: она прервется, когда в выражении не останется ни одного редекса. То есть, данная последовательность редукций приведет выражение к нормальной форме.

3 О классе функций, определимых в просто типизированном лямбда-исчислении

Определение 3.1. Назовем расширенным полиномом функцию

Лемма 3.1. Если в выражении X^{ξ} , находящемся в нормальной форме, подтерм T^{τ} не является свободной переменной выражения T, и $T \neq X$, то всегда найдется такой подтерм S^{σ} , что $h(\sigma) > h(\tau)$, причем $\sigma = \tau \to \rho$ или $\sigma = \rho \to \tau$.

Доказательство. Рассмотрим подтерм T. Возможны следующие варианты:

- 1. T это некоторая переменная x (она обязана быть связанной по условию леммы). То есть T часть выражения $S = \lambda x : \tau \dots x \dots$ Тогда $S : \tau \to \rho$, и $h(\tau \to \rho) > h(\tau)$.
- 2. T это некоторая абстракция $T = \lambda x : \sigma.P^{\pi}$. Тогда заметим, что по условию $T \neq X$. Значит, T входит в некоторое более общее выражение либо в абстракцию $S^{v \to \tau} = \lambda y : v.T$, либо в применение $S^{\tau \to v}T$ (применение вида TA является редексом и потому невозможно).
- 3. T это некоторое применение $T = S^v \to \tau Y$.

Теорема 3.2. При фиксированном типе для целых чисел $\nu = (\alpha \to \alpha) \to (\alpha \to \alpha)$ в типизированном исчислении по Чёрчу класс двуместных функций ограничен расширенными полиномами.

Доказательство. Рассмотрим некоторый лямбда-терм $Ra^{\nu}b^{\nu}f^{\alpha\to\alpha}:\alpha\to\alpha$, здесь a и b — переменные, содержащие чёрчевские нумералы (аргументы функции), f — первый аргумент чёрчевского нумерала.

Согласно свойству слабой нормализации, данный терм имеет нормальную форму N. Рассмотрим ее. Заметим, что если T^{τ} — подтерм N, то он обязан соответствовать одному из следующих вариантов:

Доказать это можно разбором случаев с использованием индукции и предыдущей леммы, для примера разберем случай $h(\tau) \geq 2$.

- Если $h(\tau) \geq 3$, то T=a или T=b. Пусть это не так, и существуют такие P^{π} , что $P \neq a, P \neq b$ и $h(\pi) \geq 3$. Возьмем среди таких P подтерм с типом максимальной глубины. Однако, по лемме в нем неизбежно найдется такой S^{σ} , что $h(\sigma) > h(\pi)$, что противоречит максимальности $h(\pi)$.
- Если $h(\tau) = 2$, то τ имеет вид либо $\alpha \to (\alpha \to \alpha)$, либо $(\alpha \to \alpha) \to \alpha$. По лемме найдется такой S^{σ} , что $\sigma = \tau \to \rho$ или $\sigma = \rho \to \tau$. В любом из случаев не найдется такого ρ , что $\nu = \sigma$, то есть $S \neq a$ и $S \neq b$, что невозможно по предыдущему пункту.

Теперь рассмотрим весь терм N. Он имеет тип $\alpha \to \alpha$. Введем обозначение $\overline{m} = \lambda f$: $\alpha \to \alpha.\lambda x: \alpha.f^mx$. Покажем по индукции, что $N[a:=\overline{m},b:=\overline{n}]=_{\beta}\lambda fx.f^{\overline{E(m,n)}}x$.

Т.о., в выражении возможны 3 только типа элементарных формул, типов α , $\alpha \to \alpha$ и $(\alpha \to \alpha) \to (\alpha \to \alpha)$.

Про вариант $(\alpha \to \alpha) \to (\alpha \to \alpha)$ мы уже разобрались, теперь рассмотрим $\alpha \to \alpha$. Это может быть либо f, либо $aS^{\alpha \to \alpha}$, либо $bS^{\alpha \to \alpha}$, либо их комбинация: $\lambda x : \alpha.S_1^{\alpha \to \alpha}(S_2^{\alpha \to \alpha} \dots S_n^{\alpha \to \alpha}(S_n^{\alpha \to \alpha} \dots S$

3.1 Импликационный фрагмент интуиционистской логики

Рассмотрим следующее исчисление, являющееся подмножеством интуиционистской логики, содержащим только импликацию. Это исчисление генценовского типа.

Формула — либо маленькая буква греческого алфавита, либо выражение вида phi o psi.

Аксиомы и правила вывода:

1. Схема аксиом:

$$\overline{\Gamma, \phi \vdash \phi}$$

2. Введение импликации:

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

3. Удаление импликации:

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi}$$

Следующая теорема покажет, что если некоторая формула (составленная только из импликаций и переменных) выводима в интуиционистской логике, то она выводима и в импликационном ее фрагменте.

Теорема 3.3. Модели Крипке корректны и полны для данного исчисления.

Доказательство. Корректность моделей Крипке для данного исчисления следует из их корректности для полного исчисления. Для полноты же нам достаточно показать, что если неверно $\Gamma \vdash \alpha$, то найдется модель Крипке, в которой неверно и $\Gamma \models \alpha$. Построим такую модель.

В качестве миров в этой модели мы возьмем множества формул, замкнутых относительно выводимости: $D(\Gamma) = \{\alpha | \Gamma \vdash \alpha\}$. Отношение вынуждения определим так: $\Gamma \Vdash p$, если $p \in \Gamma$. Наследование же миров будем рассматривать по включению: $\Gamma < \Delta$, если $\Gamma \in \Delta$.

Покажем, что так заданная модель — корректна и полна. То есть, $\Gamma \vdash \alpha$ тогда и только тогда, когда $\Gamma \Vdash \alpha$. Сделаем это индукцией по структуре формулы α .

- $\alpha = x$. Тогда, по определению, $\Gamma \vdash x$ эквивалентно $x \in \Gamma$ и эквивалентно $\Gamma \Vdash x$.
- $\alpha = \beta \rightarrow \gamma$.

Сперва покажем полноту. Пусть $\Gamma \Vdash \beta \to \gamma$. Значит (определение вынуждения импликации в моделях Крипке) $D(\Gamma \cup \beta) \Vdash \gamma$. Раз так, то $\Gamma, \beta \vdash \gamma$ (предположение индукции). По правилу введения импликации тогда $\Gamma \vdash \beta \to \gamma$.

Теперь покажем корректность. Пусть $\Gamma \vdash \beta \to \gamma$ и в некотором мире $\Gamma_n \geq \Gamma$ выполнено $\Gamma_n \Vdash \beta$. Раз $\Gamma \vdash \beta \to \gamma$, то $\Gamma_n \vdash \beta \to \gamma$. Раз $\Gamma_n \Vdash \beta$, то $\Gamma_n \vdash \beta$ (по полноте, доказанной выше). Тогда $\Gamma_n \vdash \gamma$ (по правилу удаления импликации), и, следовательно, $\Gamma_n \Vdash \gamma$ (по индукционному предположению). Значит, и $\Gamma_n \Vdash \beta \to \gamma$.

4 Основные задачи

Можно задаться вопросом: что мы можем получить с этой теории? Традиционно рассматривают следующие три задачи:

- 1. Задача проверки типов проверить, выполнено ли $\Gamma \vdash M : \sigma$ для данных Γ, M и σ .
- 2. Задача восстановления (синтеза) типов (типизируемости) проверить, возможно ли для данного лямбда-выражения M найти такие Γ и σ , что $\Gamma \vdash M : \sigma$.
- 3. Задача населенности типа проверить, найдется ли для данного типа σ терм M, такой, что что $\vdash M : \sigma$.

Для просто типизируемого лямбда-исчисления существует алгоритмическое решение для всех трех задач. Сейчас мы познакомимся с ним.

5 Синтез типа и обитаемость типа

Прежде чем перейти к более сложным типовым системам, нам осталось ответить на важный вопрос о наличии эффективных процедур, позволяющих определить, существует ли лямбда-выражение, имеющее некоторый тип в некотором контексте: $\Gamma \vdash ? : \sigma$

Определение 5.1. Мы будем называть некоторый тип σ в контексте Γ *обитаемым*, если найдется такое выражение M, что $\Gamma \vdash M : \sigma$.

Теорема 5.1. Задача определения обитаемости типа — разрешима.

Доказательство. Для доказательства предоставим разрешающий алгоритм.

6 Упорядоченные пары и алгебраические типы данных

Сперва попробуем расширить понятие типа экстенсивно: через добавление новых связок, не изменяя порядка исчисления. Естественные кандидаты здесь — конъюнкция и дизъюнкция, для которых изоморфизм Карри-Ховарда предлагает следующие аналоги:

Конструкция	Связка	Операции
Упорядоченная пара	$\alpha \& \beta$	$\pi_1: \alpha \& \beta \to \alpha$
		$\pi_2: \alpha \& \beta \to \beta$
		$\langle \alpha, \beta \rangle : \alpha \to \beta \to \alpha \& \beta$
Алгебраический тип	$\alpha \vee \beta$	$in_1:\alpha \to \alpha \vee \beta$
		$in_2: \beta \to \alpha \vee \beta$
		$case: (\alpha \to \gamma) \to (\beta \to \gamma) \to \alpha \lor \beta \to \gamma$

7 Исчисление 1-го порядка

Более радикальный путь усиления теории — рассмотрение исчислений 1-го и высших порядков. Подробно на теориях 1-го порядка мы останавливаться не будем, единственное, отметим, что такая теория будет требовать определение выражений двух сортов: предметных и логических. Аналогом с точки зрения изоморфизма Карри-Ховарда для логических значений будут типы, а предметными выражениями могут быть любые выражения над не-типовыми значениями: например, над строками, целыми числами и т.п.

Аналог предиката в данном случае — это функция, отображающая значение предметного множества в тип. Такой тип, зависящий от предметной переменной, называется *зависимым*.

Самый, видимо, известный пример подобного — шаблоны в C++. Если мы будем рассматривать значения, представимые в откомпилированном коде, в качестве элементов предметного множества, типы — как значения пропозициональных переменных, а шаблоны, параметризованные элементарными значениями — как предикаты, то мы как раз получим исчисление с зависимыми типами.

Например, шаблону

```
template <int a>
struct X { int v[a]; };
```

мы могли бы сопоставить тип: $X : \forall a$.

Хотя, конечно, система типов в C++ значительно сложнее и в приведенное исчисление 1-го порядка не помещается в точности: например, мы проигнорировали в формализации, что аргументы шаблонов имеют тип (и получается, что кванторы ограничены некоторым подмножеством предметного множества).

8 Исчисление 2-го порядка

Те же шаблоны из C++ позволяют задавать и более сильные операции: отображения из типов в типы. Такие типы (зависящие от других типов) в логике имеют аналогом предикаты, зависящие от других логических значений. Это уже — исчисление предикатов 2-го порядка. Изучение такого исчисления и соответствующей ему системы типов и будет нашей ближайшей целью.

8.1 Импликационный фрагмент интуиционистского исчисления второго порядка

8.2 Система F

Определение 8.1.