Introduction to

Algorithm Design and Analysis

[06] MergeSort

Jingwei Xu
http://cs.nju.edu.cn/ics/people/jingweixu
Institute of Computer Software
Nanjing University

In the last class ...

- Heap
 - Partial order property
 - FixHeap
 - ConstructHeap
 - Heap structure
 - Array-based implementation
- HeapSort
 - Complexity
 - Accelerated HeapSort

MergeSort

- MergeSort
 - Worst-case analysis of MergeSort
- Lower Bounds for comparison-based sorting
 - Worst-case
 - Average-case

MergeSort: the Strategy

- Easy division
 - No comparison is conducted during the division
 - Minimizing the size difference between the divided subproblems
- Merging two sorted subranges
 - Using Merge

Merging Sorted Arrays

Merge: the Specification

Input

 Array A with k elements and B with m elements, whose keys are in non-decreasing order

Output

- Array C containing n=k+m elements from A and B in non-decreasing order
- C is passed in and the algorithm fills it

Merge: Recursive Version

```
merge(A,B,C)
  if (A is empty)
                                                    Base cases
     rest of C = rest of B
  else if (B is empty)
     rest of C = rest of A
  else
     if (first of A \leq first of B)
        first of C = first of A
        merge(rest of A, B, rest of C)
     else
        first of C = first of B
        merge(A, rest of B, rest of C)
  return
```

Worst Case Complexity of Merge

Observations

- Worst case is that the last comparison is conducted between A[k-1] and B[m-1]
 - After each comparison, at least one element is inserted into Array C, at least.
 - After entering Array C, an element will never be compared again.
 - After the last comparison, at least two elements have not yet been moved to Array C. So at most n-1 comparisons are done.
- In worst case, n-1 comparisons are done, where n=k+m

Optimality of Merge

- Any algorithm to merge two sorted arrays, each containing k=m=n/2 entries, by comparison of keys, does at least n-1 comparisons in the worst case.
 - Choose keys so that:

$$b_0 < a_0 < b_1 < a_1 < ... < b_i < a_i < b_{i+1}, ..., < b_{m-1} < a_{k-1}$$

Then the algorithm must compare a_i with b_i for every i in [0, m-1], and must compare a_i with b_{i+1} for every i in [0, m-2], so, there are n-1 comparisons.

Space Complexity of Merge

- An algorithm is "in space"
 - If the extra space it has to use is in Θ(1)
- Merge is not a algorithm "in space"
 - Since it needs O(n) extra space to store the merged sequence during the merging process.

Overlapping Arrays for Merge

MergeSort

- Input: Array E and indexes first, and last, such that the elements of E[i] are defined for first≤i≤last.
- Output: E[first],...,E[last] is a sorted rearrangement of the same elements.
- Procedure

```
void mergeSort(Element[] E, int first, int last)
if (first < last)
int mid = (first+last) / 2;
mergeSort(E, first, mid);
mergeSort(E, mid + 1, last);
merge(E, first, mid, last);
return;</pre>
```

Analysis of MergeSort

The recurrence equation for MergeSort

$$W(n) = W(\lfloor n/2 \rfloor) + W(\lceil n/2 \rceil) + n - 1$$

$$W(1) = 0$$

Where n = last - first + 1, the size of range to be sorted

 The Master Theorem applies for the equation, so:

$$W(n) \in \Theta(n \log n)$$

Recursion Tree for MergeSort

T(n/2)

T(n/8)

n/2-1

n/8-1

T(n)

T(n/4)

n-1

n/4-1

non recursive costs on level k is n-2^k for all level without base case node.

Non-complete Recursion Tree

Number of Comparison of MergeSort

- The maximum depth D of the recursive tree is \[\lfootnote{\text{Ig(n+1)}} \].
- Let B base case nodes on depth D-1, and n-B on depth D, (Note: base case node has non-recursive cost 0).
- (n-B)/2 non-base case nodes at depth D-1, each has non-recursive cost 1.
- So:

$$W(n) = \sum_{d=0}^{D-2} (n-2^d) + \frac{n-B}{2} = n(D-1) - (2^{D-1}-1) + \frac{n-B}{2}$$
Since $(2^D - 2B) + B = n$, that is $B = 2^D - n$

$$So, W(n) = nD - 2^D + 1$$

$$Let \frac{2^D}{n} = 1 + \frac{B}{n} = \alpha$$
, then $1 \le \alpha < 2$, $D = \lg n + \lg \alpha$

$$So, W(n) = n\lg n - (\alpha - \lg \alpha)n + 1$$

• $\lceil n \lg(n) - n + 1 \rceil \le number of comparison \le \lceil n \lg(n) - 0.914n \rceil$

The MergeSort D&C

- Counting the number of inversions
 - Brute force: O(n²)
 - Can we use divide & conquer
 - In O(nlogn)=>combination in O(n)
- MergeSort as the carrier
 - Sorted subarrays
 - A[0..k-1] and B[0..m-1]
 - Compare the left and right elements
 - A[i] v.s. B[j]

The MergeSort D&C


```
if A[i]>B[j]
(i,j) is an inversion
All (i',j) are inversions (i'>i)
B[j] is selected
```

if A[i]<B[j]
No inversion found
A[i] is selected

The MergeSort D&C

- Max-sum subsequence
- Maxima on a plane
- Finding the frequent element
- Integer/matrix multiplication

Linear-time combination T(n)=2T(n/2)+O(n) $T(n)\in O(nlogn)$

• ...

Lower Bounds for Comparison-based Sorting

- Upper bound, e.g., worst-case cost
 - For any possible input, the cost of the specific algorithm A is no more than the upper bound
 - Max{cost(i) | i is an input}
- Lower bound, e.g., comparison-based sorting
 - For any possible (comparison-based) sorting algorithm
 A, the worst-case cost is no less than the lower bound
 - Min{worst-case(a) | a is an algorithm}

2-Tree

• 2-Tree

internal nodes

external nodes no child any type

Common Binary Tree

Both left and right children of these nodes are empty tree

Decision Tree for Sorting

- Decision tree is a 2-tree (Assuming no same keys)
- The action of Sort on a particular input corresponds to following on path in its decision tree from the root to a leaf associated to the specific output

Characterizing the Decision Tree

- For a sequence of n distinct elements, there are n! different permutation
 - So, the decision tree has at least n! leaves, and exactly n! leaves can be reached from the root.
 - So, for the purpose of lower bounds evaluation, we use trees with exactly n! leaves.
- The number of comparison done in the worst case is the height of the tree.
- The average number of comparison done is the average of the lengths of all paths from the root to a leaf.

Lower Bound for Worst Case

- Theorem: Any algorithm to sort n items by comparisons of keys must do at least \[\lfootnote{g} n! \], or approximately \[\lfootnote{n} \lfootnote{g} n-1.443n \], key comparisons in the worst case.
 - Note: Let L=n!, which is the number of leaves, then $L \le 2^h$, where h is the height of the tree, that is $h \ge \lceil \lg L \rceil = \lceil \lg n! \rceil$
 - For the asymptotic behavior:

$$\lg(n!) \ge \lg[n(n-1)...\left(\left\lceil \frac{n}{2}\right\rceil\right)] \ge \lg\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2}\lg\left(\frac{n}{2}\right) \in \Theta(n\lg n)$$

derived using:
$$\lg n! = \sum_{j=1}^{n} \lg(j)$$

External Path Length (EPL)

- The EPL of a 2-tree t is defined as follows:
 - [Base case] 0 for a single external node
 - [Recursion] t is non-leaf with sub-trees L and R, then the sum of:
 - the external path length of *L*;
 - the number of external node of L;
 - the external path length of R;
 - the number of external node of R;

More Balanced 2-tree, Less EPL

More Balanced 2-tree, Less EPL

Assuming that h-k>1, when calculating epl, h+h+k is replaced by (h-1)+2(k+1). The net change in epl is k-h+1<0, that is, the epl decreases.

So, more balanced 2-tree has smaller epl.

Properties of EPL

- Let t is a 2-tree, then the epl of t is the sum of the paths from the root to each external node.
- $epl \ge m \lg(m)$, where m is the number of external nodes in t
 - $epl=epl_L+epl_R+m \ge m_L \lg(m_L)+m_R \lg(m_R)+m$,
 - note $f(x)+f(y)\geq 2f((x+y)/2)$ for $f(x)=x\log x$
 - so, $epl \ge 2((m_L + m_R)/2) \lg((m_L + m_R)/2) + m = m(\lg(m)-1) + m$ $= m \lg m$.

Lower Bound for Average Behavior

- Since a decision tree with L leaves is a 2-tree, the average path length from the root to a leaf is $\frac{epl}{L}$
 - Recall that $epl \ge L \lg(L)$.
- **Theorem**: The average number of comparison done by an algorithm to sort *n* items by comparison of keys is at least lg(*n*!), which is about *n*lg*n*-1.443*n*.

MergeSort Has Optimal Average Performance

- The average number of comparisons done by an algorithm to sort n items by comparison of keys is at least about nlgn-1.443n
- The worst complexity of MergeSort is in $\Theta(n \lg n)$
- But, the average performance can not be worse than the worst case performance.
- So, MergeSort is optimal as for its average performance.

Thank you! Q & A