

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 2nd SESSIONAL TEST QUESTION PAPER 2018–19 Even SEMESTER

USN					

Degree : B.E Semester : IV

Branch : Computer Science & Engineering Subject Code : 17CS43

Subject Title: Design and Analysis of Algorithms
Duration: 90 Minutes
Date: 2019-04-16
Max Marks: 30

Note: Answer ONE full question from each part.

Note: Answer ONE full question from each part.							
Q No.	Question	Marks	K Level	CO mapping			
	PART-A			11 0			
1(a)	Use Divide and conquer approach and construct an algorithm to find \mathbf{k}^{th} smallest element in the given sequence of \mathbf{n} elements. Hint: Use the idea of quicksort except that only one sub-problem has to be solved. Identify which subsequence contains the \mathbf{k}^{th} smallest element and use that subsequence to find the solution.	5	Applying	CO2			
(b)	Make use of fractional knapsack algorithm to build a solution for the instance n=7, knapsack size m=15, profits p_1 =10, p_2 =5 p_3 =15, p_4 =7, p_5 =6, p_6 =18, p_7 =3, and weights as w_1 =2, w_2 =3, w_3 =5, w_4 =7, w_5 =1, w_6 =4, w_7 =1.	5	Applying	CO2			
(c)	Consider that a country has coins in the denominations of Rs 14, 12, 5, and 1. Show an example value to prove that greedy algorithm always does not generate change with minimum number of coins.		Under- standing	СО3			
	OR						
2(a)	Analyze time complexity for QuickSort in worst case. Hint: Define and explain the recurrence relation for worst case and solve the same.	5	Analyzing	CO2			
(b)	Consider <i>Dijkstra's</i> algorithm to find the single source shortest path for a weighted graph. Identify the changes that you need to make in this algorithm to find a shortest path between given two vertices i.e. develop the algorithm for single-pair-shortest-paths problem.	5	Applying	CO3			
(c)	Apply the algorithm developed in Q2(b) to find the shortest path from node F to node B. Compare the path thus found using this algorithm with actual shortest path and explain the difference.	5	Applying, Analyzing	СО3			
	PART-B						

3(a)	Illustrate the product $P(x)*Q(x)$ computation manually using divide and conquer multiplication approach for following polynomials. $P(x) = 0+1x+2x^2+3x^3++7x^7$ $Q(x) = 8+7x+6x^2+5x^3++1x^7$	5	Under- standing	CO2
(b)	Construct a Minimum Cost Spanning Tree using Prim's algorithm for the graph shown in Q2(c) starting from node C as the root of the spanning tree. Please note that some edges have negative weights associated with them		Applying	соз
(c)	Analyze the time complexity of <i>Prim's</i> algorithm using both <i>Adjacency Martrix</i> and <i>Adjacency List</i> representation.	5	Analyzing	CO3
	OR			
4(a)	For the graph below, Identify and List all possible topological sorting orders.	5	Applying	CO2
(b)	Analyze the time complexity of Kruskal's algorithm using <i>Union-Find</i> with fixed cost of Union operation as $O(1)$ and varying cost of Find operation.		Analyzing	CO3
(c)	Consider the graph as shown in Q2(c), and develop Union Find trees to check for cycle formation when considering each edge for Minimum Cost Spanning Tree.	5	Applying	СО3