Diszkrét matematika 2

9. előadás Polinomok

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Emlékeztető, motiváció

- Egy $f \in \mathbb{K}[x]$ polinom irreducibilis, ha nem írható f = gh szorzatként, hogy $\deg g, \deg h < \deg f$.
- Például az $f = x^2 + x + 1 \in \mathbb{Z}_2[x]$ polnom irreducibilis.
- Speciálisan az f-nek nincs gyöke (v.ö. gyöktényező kiemelhetősége)
- Szeretnénk olyan j formális számot bevezetni, hogy f(j) = 0.

Kitérő: test fogalma

A test egy olyan számkör, ahol a szokásos számolási szabályok érvényesek $(+,-,\cdot,/)$.

- példa testekre: \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z}_p
- példa nem testekre: \mathbb{Z} , \mathbb{Z}_8 , $\mathbb{R}^{n \times n}$ (nem minden nem-nulla elemmel lehet osztani, vagy a \times nem kommutatív)

Konstrukció testekre:

- Komplex számok \mathbb{C} : formálisan számolni az i komplex egységgyökkel az $i^2 = -1$ szabály szerint, azaz $\mathbb{C} \cong \{f \mod x^2 + 1 : f \in \mathbb{R}[x]\}$ (a megfeleltetés: $x \longleftrightarrow i$)
- $\bullet \ \mathbb{Z}_p \cong \{n \bmod p : n \in \mathbb{Z}\}$

Kitérő: test fogalma

Konstrukció (NB)

Legyen \mathbb{K} egy test és $f \in \mathbb{K}[x]$ egy irreducibilis polinom. Ekkor $\{h \mod f : h \in \mathbb{K}[x]\}$ testet alkot. Ennek jelölése $\mathbb{K}[x]/(f)$.

A $\mathbb{K}[x]/(f)$ elemei: \mathbb{K} és x-ből képzett formális kifejezések, hogy x gyöke f-nek.

Példa

- $\bullet \ \mathbb{C} \cong \mathbb{R}[x]/(x^2+1) \ (i \longleftrightarrow x).$
- $\mathbb{Q}[x]/(x^2-2)$: \mathbb{Q} és $\sqrt{2}$ elemekből álló formális kifejezések ($\sqrt{2} \longleftrightarrow x$).

Kitérő: test fogalma

Konstrukció: Legyen \mathbb{K} egy test és $f \in \mathbb{K}[x]$ egy irreducibilis polinom. Ekkor $\{h \bmod f : h \in \mathbb{K}[x]\}$ testet alkot. Ennek jelölése $\mathbb{K}[x]/(f)$.

Példa

 $\bullet \ \mathbb{C} \cong \mathbb{R}[x]/(x^2+1).$

Megjegyzés:

- Az +, -, · a szokásos számolási szabályok szerint.
- Osztás: Legyen $h \not\equiv 0 \mod f$. Ekkor h-val lehet osztani, azaz minden g-hez létezik $q \in \mathbb{K}[x]$: $g \equiv h \cdot q \mod f$.

Mivel $f \nmid h$ és f irreducibilis, a bővített euklideszi algoritmus szerint

$$1 = uf + vh$$
.

Beszorozva g-vel:

$$g = guf + gvh \equiv gvh \mod f$$
,

$$igy q \equiv gv \bmod f.$$

Véges testek

Egy számkör véges testet alkot, ha test (szokásos számolási szabályok) és véges sok eleme van.

Példa

- Véges testek: \mathbb{Z}_2 , \mathbb{Z}_3 , ..., \mathbb{Z}_p
- Nem véges testek:

```
\mathbb{C}, \mathbb{R}, \mathbb{Q} (testek de nem végesek),
```

 $\mathbb{Z}_6, \mathbb{Z}_8, \mathbb{Z}_2^{2 \times 2}, \dots$ (végesek, de nem testek)

Tétel (NB)

Minden q prímhatvány esetén létezik q-elemű véges test. Ez lényegében egyértelmű, jelölése \mathbb{F}_q (vagy GF(q)).

Példa

- \bullet $\mathbb{F}_p = \mathbb{Z}_p$
- $\mathbb{F}_{p^n} = \mathbb{Z}_p[x]/(f)$ ahol $f \in \mathbb{Z}_p[x]$ egy n-ed fokú irreducibilis polinom.

Véges testek – egy példa

$$f = x^2 + x + 1 \in \mathbb{Z}_2[x]$$
 irreducibilis. Ekkor $\mathbb{F}_4 = \mathbb{Z}_2[x]/(x^2 + x + 1)$.

- \mathbb{F}_4 elemei: polinomok modulo $x^2 + x + 1$: 0, 1, x, x + 1.
- összeadás, szorzás:

+	0	1	X	x+1
0	0	1	х	x+1
1	1	0	x+1	х
х	x	x+1	0	1
x+1	x+1	X	1	0

×	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
X	0	X	x+1	1
x+1	0	x+1	1	х

Például:

- $\bullet \ x \cdot x = x^2 \equiv x + 1 \mod x^2 + x + 1$
- $\bullet x \cdot (x+1) = x^2 + x \equiv 1 \mod x^2 + x + 1$
- $(x+1) \cdot (x+1) = x^2 + 1 \equiv x \mod x^2 + x + 1$
- $\bullet \ \frac{x}{x+1} \equiv x+1 \mod x^2 + x + 1$

Testek: összefoglaló

- Testek foglama: szokásos számolási szabályok, pl. $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p$ vizsgán nem kell
- Konstrukció testekre: \mathbb{K} test, $f \in \mathbb{K}[x]$ irreducibilis, ekkor $\mathbb{K}[x]/(f)$ szintén test, vizsgán nem kell
- Véges testek: $\mathbb{F}_{p^n} = GF(p^n) = \mathbb{Z}_p/(f) = \{g \mod f : g \in \mathbb{Z}_p[x]\}, f \in \mathbb{Z}_p[x] \text{ irreducibilis, vizsgán kell}$

Lagrange interpoláció

Probléma: Legyenek $x_0, x_1, \ldots, x_n \in \mathbb{C}$ páronként különböző alappontok és $y_0, y_1, \ldots, y_n \in \mathbb{C}$ tetszőleges értékek. Létezik-e olyan f polinom, hogy $f(x_i) = y_i$. Interpoláció az

 L_i Lagrange alappolinomokkal:

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Ekkor

$$L_i(x_i) = 1$$
 és $L_i(x_j) = 0$, $i \neq j$

ĺgy

$$f = \sum_{i=0}^{n} y_i L$$

Lagrange interpoláció

Legyen

$$L_i = \prod_{\substack{j=0 \ j \neq i}}^n rac{x - x_i}{x_j - x_i}$$
 és $f = \sum_{i=0}^n y_i L_i$

Tétel

Legyenek $x_0, x_1, \ldots, x_n \in \mathbb{C}$ páronként különböző alappontok és $y_0, y_1, \ldots, y_n \in \mathbb{C}$ tetszőleges értékek. Ekkor egyértelműen létezik olyan f polinom, hogy $\deg f \leq n$ és $f(x_i) = y_i$.

Bizonyítás.

- Létezés: volt, Lagrange alappolinomokkal.
- $\deg f$: mivel $\deg L_i = 0$, $\operatorname{fgy} \operatorname{deg} f = \deg \sum_i y_i L_i \le n$.
- egyértelműség: ha $f(x_i) = g(x_i) = y_i$, (i = 0, 1, ..., n) és $\deg f, \deg g \le n$, akkor legyen F = f g. Ekkor $\deg F \le n$. Ekkor $F(x_i) = 0$, így F-nek n + 1 gyöke van, ellentmondás.

Lagrange interpoláció

Példa

Legyenek $x_0 = 0, x_1 = 1, x_2 = 2$ és $y_0 = 3, y_1 = 0, y_2 = 1$. Keresünk $f \in \mathbb{Z}_5[x]$: $f(x_i) = y_i$.

• Alappolinomok:

$$L_0 \equiv \frac{(x-1)(x-2)}{(0-1)(0-2)} \equiv \frac{1}{2}(x-1)(x-2) \equiv 3(x-1)(x-2) \mod 5$$

$$L_1 \equiv \frac{(x-0)(x-2)}{(1-0)(1-2)} \equiv -(x-0)(x-2) \equiv 4(x-0)(x-2) \mod 5$$

$$L_2 \equiv \frac{(x-0)(x-1)}{(2-0)(2-1)} \equiv \frac{1}{2}(x-0)(x-1) \equiv 3(x-0)(x-1) \mod 5$$

ĺgy

$$f = 3 \cdot L_0 + 0 \cdot L_1 + 1 \cdot L_2 = 3 \cdot 3(x - 1)(x - 2) + 3(x - 0)(x - 1)$$

$$\equiv 2x^2 + 3 \mod 5$$

Kriptográfiai alkalmazás: titokmegosztás

Probléma: Szeretnénk szétosztani *n* résztvevő között titok darabokat, hogy

- bármely k résztvevő ki tudja számolni az eredeti titkot;
- k-nál kevesebb résztvevő ne tudjon semmilyen információt meg a titokról.

Példa

Legyen n = k = 2 és $s \in \mathbb{Z}_2$ egy titkos bit.

Válasszunk egy $r \in \mathbb{Z}_2$ bitet véletlenszerűen, és A kapja meg r-et, B kapja meg $r + s \mod 2$ -t.

Kriptográfiai alkalmazás: titokmegosztás

Megoldás:

- Legyen q > n egy prímhatvány és $s \in \mathbb{F}_q$ a titok.
- Legyen $f \in \mathbb{F}_q[x]$, hogy $\deg f = k 1$ és f(0) = s.

- Az *i*-edik résztvevő kapja meg a (i, f(i)) párost (i = 1, ..., n).
- Ha k résztvevő kiszámolja a Lagrange interpolációs polinomot a saját pontjaikon keresztül, akkor az egyértelműség miatt ez f lesz és f(0) = s.

Kriptográfiai alkalmazás: titokmegosztás

Példa:

- Legyen n = 6 és k = 4. Válasszuk q = 7-et.
- Legyen $0 \in \mathbb{F}_7$ a titok.
- Legyen

$$f = x^3 + 3x^2 + x \in \mathbb{F}_7[x].$$

• Osszuk szét a résztvevők között az (i, f(i)) párokat:

$$(1,5), (2,1), (3,1), (4,4), (5,2), (6,1)$$

• Ekkor bármely 4 pár meghatározza f-et.