

Linear regression

Machine Learning

Norman Juchler

Example

- A basketball coach wants to analyze the effect of yoga sessions on the performance of their players.
- They thus collect data on the points scored during training (y) and number of yoga sessions attended (x), for each of their four players:

X	у
1	6
2	5
3	7
4	10

To model the effect, they choose the following model:

points scored = $\beta 0 + \beta 1 \cdot (yoga sessions)$

Linear model

- Assume we have a set of p features: $\boldsymbol{x}_i := (x_{i1}, x_{i2}, \dots, x_{ip})$
- We want to use them to predict a target variable y
- The simple assumption we can make is (model ansatz):

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}$$
$$f_i(\boldsymbol{x}, \boldsymbol{\beta}) = \boldsymbol{\beta} \boldsymbol{x}$$

• Where the β_i are unknown parameters that we want to determine from the data

Ordinary least squares (OLS) regression

Optimization objective for linear regression:

$$\boldsymbol{\beta}^* = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - f(x_i, \boldsymbol{\beta}))^2 = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{\beta})$$

- In words: Find parameters β such that the sum of squared residuals (green lines) is minimized.
- Using calculus, we can derive an analytical solution. For the above example (see also figure):

$$\mathcal{L}(\boldsymbol{\beta}) = S(\beta_0, \beta_1) = r_1^2 + r_2^2 + r_3^2 + r_4^2$$

$$= [6 - (\beta_0 + 1\beta_1)]^2 + [5 - (\beta_0 + 2\beta_1)]^2 + [7 - (\beta_0 + 3\beta_1)]^2 + [10 - (\beta_0 + 4\beta_1)]^2$$

$$= 4\beta_0^2 + 30\beta_1^2 + 20\beta_0\beta_1 - 56\beta_0 - 154\beta_1 + 210$$

$$\Rightarrow \begin{cases} \frac{\partial \mathcal{L}}{\partial \beta_0} = 0 = 8\beta_0 + 20\beta_1 - 56 \\ \frac{\partial \mathcal{L}}{\partial \beta_1} = 0 = 20\beta_0 + 60\beta_1 - 154 \end{cases} \Rightarrow \begin{cases} \beta_0 = 3.5 \\ \beta_1 = 1.4 \end{cases}$$

Ordinary least squares (OLS) regression

Optimization objective for linear regression:

$$\boldsymbol{\beta}^* = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - f(x_i, \boldsymbol{\beta}))^2 = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{\beta})$$

- In words: Find parameters β such that the sum of squared residuals (green lines) is minimized.
- Using calculus, we can derive an analytical solution.
- For a general solution of the OLS regression problem, as well as proof, see here:
 - Definition: Simple linear regression
 - Proof: Ordinary least squares / optimal parameters β

Loss functions

 A loss function (a.k.a. cost function) in the context of machine learning usually measures how well the predicted values match the true target values.

$$\mathcal{L}(y - \hat{y})$$

For regression, we used the residual sum of squares (RSS) as loss function.

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Sometimes, it is more meaningful to compute the mean squared error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} RSS$$

• (Note: both yield the same optimal solution!)

Model fitting ↔ **training**

- Goal of model fitting: Find parameter values β that minimize the loss function
- This requires solving an optimization problem.
- Possible approaches:
 - Try random parameter values and choose the best of these
 - Use calculus to derive exact solution
 - Use heuristic iterative method (Newton's method)
 - Gradient descent

Numerical methods for optimization: Newton's method

- There is no analytical solution for many (if not most) optimization problems
- We usually must rely on numerical/iterative methods to find (approximate) solutions
- Newton's method for finding the roots x^* (Nullstellen) of a function f(x):
 - Start with an initial guess: x₀
 - Update the current guess x_n according to

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Under certain conditions, the Newton method is guaranteed to converge to the true value of x^* .
- Newton's method for optimization:
 - Use Newton's method to solve f'(x) = 0

Numerical methods for optimization: Gradient descent

- Gradient descent is another iterative method to find solutions to f'(x) = 0
- The method advances a small step in the direction of the gradient each time
- Gradient descent is applicable under more relaxed conditions

Example of a model fit

Multivariate regression

- Multivariate regression: Predict multiple target variables $y_1, ..., y_q$ simultaneously
- Example: The basketball coach extends the analysis to predict also the healthiness of the players:

$$y_1$$
 = points scored, y_2 = healthiness

• We then have two equations of the form (with j=1,2):

$$y_{ij} = \beta_{0j} + \beta_{1j}x_{i1} + \beta_{2j}x_{i2} + \ldots + \beta_{pj}x_{ip}$$

...where the same x features are used