Textbook sections: 3.3

Consider $ec{x}'=Aec{x}$, where $A\in\mathbb{R}^{2 imes2}$ ($\lambda_1 oec{v}_1,\,\lambda_2 oec{v}_2$).

1. Write down a solution to the system, assuming λ_1 and λ_2 are real and distinct.

$$ec{x}_0=c_1e^{\lambda_1t}ec{v}_1+c_2e^{\lambda_2t}ec{v}_2$$

2. For some $t_0\in\mathbb{R}$, suppose $ec{x}(t_0)=egin{bmatrix} b_1 \ b_2 \end{bmatrix}$. Construct a matrix equation that can be used to solve for c_1,c_2 .

$$egin{aligned} egin{bmatrix} b_1 \ b_2 \end{bmatrix} &= e^{\lambda_1 t_0} ec{v}_1 + e^{\lambda_2 t_0} ec{v}_2 \ &= \left[e^{\lambda_1 t_0} ec{v}_1 & e^{\lambda_2 t_0} ec{v}_2
ight] egin{bmatrix} c_1 \ c_2 \end{bmatrix} \end{aligned}$$

3. Is matrix in (2) invertible?

If the matrix is invertible, then there's a unique solution for $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

The matrix is only invertible if the matrix's determinant (the Wronskian) is zero.

$$|e^{\lambda_1 t_0} ec{v}_1 \quad e^{\lambda_2 t_0} ec{v}_2| = e^{\lambda_1 t_0} e^{\lambda_2 t_0} \, |ec{v}_1 \quad ec{v}_2|$$

Since \vec{v}_1 and \vec{v}_2 are linearly independent and the coefficients are positive, the det cannot be non-zero.

The Wronskian & Linear Independence

Given vector functions $\vec{x}_1(t)$ and $\vec{x}_2(t)$, the **Wronskian** of \vec{x}_1 and \vec{x}_2 is:

$$W[ec{x}_1,ec{x}_2](t) = |ec{x}_1 \quad ec{x}_2| = egin{bmatrix} x_{11} & x_{12} \ x_{21} & x_{22} \end{bmatrix}$$

If $W[\vec{x}_1,\vec{x}_2](t) \neq 0$ on interval of t, \vec{x}_1 and \vec{x}_2 are linearly independent everywhere on that interval.

Vectors are linearly independent if there is no linear combination that results in $\vec{0}$ except for $\vec{0}$.

• e.g
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$ are linearly dependent because $\begin{bmatrix} 5 & 3 & -1 \end{bmatrix}$.

Fundamental Set of Solutions

The fundamental set is \vec{x}_1 and \vec{x}_2 , the two linearly independent solutions to $\vec{x}' = A\vec{x}$ where $A \in \mathbb{R}^{2 \times 2}$.