Proposta modifica modello di coverage

Alta coverage

Bassa coverage

- L = locazioni, |L| = H
- U = utenti, |U| = K ogni utente percorre T_i traiettorie
- X_{ij}^h è la v.a. degli eventi in Ω nella forma: utente u_i accetta un detour verso I^h ad una certa distanza x lungo la traiettoria j.
- $P(X_{i,i}^h = x)$ è la prob. che u_i esegue un detour verso I^h a distanza x lungo j

$$X_{i,j}^h\Omega \to \mathbb{R}$$

X_{i}	$P(X_i^h = X)$
5 metri	0,5
7 metri	0,3
25 metri	0,2

- La PDF di $X_{i,j}^h$ è una esponenziale di scale = $1/\lambda$
- Lo *scale* modella la dispersione della probabilità nello spazio campionario
- Nel nostro caso modella la distanza tipica alla quale gli utenti accettano più probabilmente il detour
 - Scale = 10,50,100

- $|D_{i,i}| = n$ distanze dell'utente u_i da l_h lungo j
- La probabilità che u_i esegua il detour verso l^h è data dalla probabilità che u_i esegua il detour da uno dei punti della traiettoria j
- Calcolo la probabilità di n eventi **mutuamente esclusivi,** assumo che u_i faccia al più un solo detour verso I^h lungo **una** traiettoria (dati A,B, P(A o B) = P(A)+P(B))

$$P(X_{i,j}^h) = \sum_{x \in D_{i,j}^h} \int_x^{x+\Delta} f_{X_{i,j}^h}(x) dx$$
 Dato Δ = 5 metri come intervallo di integrazione

 Dato Δ = 5 metri come intervallo di integ calcolo le prob. evitando di sovrapporre gli intervalli

Utente percorre T_i traiettorie distinte, la prob. **media** (o altra statistica) che l'utente faccia un detour verso l^h è data da:

$$P(X_i^h) = \frac{1}{|T_i|} \sum_{\forall t \in T} P(X_{i,t}^h)$$

Probabilità detour di K utenti

- Dati |U| = K utenti, la prob. di detour per ogni utente verso I^h è modellata da $P(X_1^h)$, $P(X_2^h) \cdots P(X_k^h)$
- La probabilità media di detour verso la locazione l^h è data da:

$$P(X^h) = \frac{1}{|U|} \sum_{\forall i \in U} P(X_i^h)$$

Problemi con modello esistente

 Data una v.a. il prodotto della probabilità di due eventi A, B modella il fatto che si verifichino simultaneamente A e B, ovvero che l'utente faccia detour da A e B

• Quindi:
$$\prod_{\forall x \in D_i^h} 1 - P(X_{ij} \in [x, x + \Delta x]), \forall \Delta$$

è la prob. che l'utente u_i **non** faccia detour verso lh da **nessuno** dei punti in D, il suo inverso è la probabilità che l'utente u_i faccia detour da tutti i punti in D

- L'insieme D contiene tutte le distanze di u_i da l^h di tutte le traiettorie:
 - 1. Non modelliamo se un utente fa un solo detour o più di uno lungo una traiettoria
 - 2. Utente può fare detour lungo la traiettoria t_i e successivamente lungo la traiettoria t_i

Problemi con modello esistente

 Non posso combinare tra loro eventi di variabili aleatorie differenti (ex. X1h e X2h) poiché non otterrei una probabilità, in quanto sono eventi di spazi campionari diversi

$$\prod_{\forall u_i \in U} (1 - \prod_{\forall x \in D_i^h} (1 - P(X_{ij} \in [x, x + \Delta x]))), \forall \Delta$$

La prima produttoria moltiplica le probabilità di utenti differenti (ui ∈U) potrei ottenere un valore
> 1

- Inverso delle probabilità non torna
 - P(X) = 1-(1-P(X))
 - 1- PROD(1-P(X)) ≠ PROD(1-(1-P(X)))

$$X_i^h \in [x - \Delta, x + \Delta] = 1 - \prod_{\forall x \in D_i^h} 1 - P(X_{ij} \in [x, x + \Delta x]), \forall \Delta \qquad (2)$$