Math 478 HW 1

Lucas Bouck

9/15/16

1 Problem 1.5.1

Use the gradient method to find the outward normal unit vector to a point on the boundary of the following regions.

1.1 Part a

$$\Omega = \{(x, y) \in \mathbb{R}^2 : x^2/25 + y^2/36 < 1\}$$

Answer: Our $G(x,y) = x^2/25 + y^2/36$, so $\nabla G(x,y) = (2x/25, y/18)$. To see if it is inward or outward, I'll just use a test point $\nabla G(0,6) = (0,1/3)$, so the gradient is pointing out. By dividing by $||\nabla G||$, the vector is now a unit vector and

$$n(x,y) = \frac{1}{\sqrt{\left(\frac{2x}{25}\right)^2 + \left(\frac{y}{18}\right)^2}} \left(\frac{2x}{25}, \frac{y}{18}\right)$$

1.2 Part b

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2/4 + y^2/9 + z^2/81 < 1\}$$

Answer: Our $G(x,y,z)=x^2/4+y^2/9+z^2/81$, so $\nabla G(x,y,z)=\left(\frac{x}{2},\frac{2y}{9},\frac{2z}{81}\right)$. To see if it is inward or outward, I'll just use a test point $\nabla G(2,0,0)=(1,0,0)$, which is away from the domain, so the gradient is pointing out. By dividing by $||\nabla G||$, the vector is now a unit vector and

$$n(x,y,z) = \frac{1}{\sqrt{\left(\frac{x}{2}\right)^2 + \left(\frac{2y}{9}\right)^2 + \left(\frac{2z}{81}\right)^2}} \left(\frac{x}{2}, \frac{2y}{9}, \frac{2z}{81}\right)$$

1.3 Part c

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 16\}$$

Answer: Our $G(x, y, z) = x^2 + y^2$, so $\nabla G(x, y, z) = (2x, 2y, 0)$. To see if it is inward or outward, I'll just use a test point $\nabla G(4, 0, 0) = (8, 0, 0)$, which is away from the domain, so the gradient is pointing out. By dividing by $||\nabla G||$, the vector is now a unit vector and

$$n(x, y, z) = \frac{1}{\sqrt{4x^2 + 4y^2}} (2x, 2y, 0)$$

1.4 Part d

$$\Omega = \{(x, y) \in \mathbb{R}^2 : y - 3x^2 > 0\}$$

Answer: Our $G(x, y, z) = y - 3x^2$, so $\nabla G(x, y) = (-6x, 1)$. To see if it is inward or outward, I'll just use a test point $\nabla G(0, 0) = (0, 1)$, which is pointing into the domain, so we need to multiply the gradient by -1 to get an outward vector. Now $-\nabla G(x, y) = (6x, -1)$. By dividing by $||\nabla G||$, the vector is now a unit vector and

$$n(x,y) = \frac{1}{\sqrt{36x^2 + 1}} (6x, -1)$$

2 Problem 1.5.2

2.1 Part a

Find $\frac{\partial F}{\partial n}$ for $F(x,y) = x^2 + y^2$ and $\Omega = \{(x,y) : x^2/4 + y^2/9 < 1\}$ at (2,0).

Answer: $\nabla F(x,y) = (2x,2y)$ and $n(x,y) = \frac{1}{\sqrt{(x/2)^2 + (2y/9)^2}} (x/2,2y/9)$. Then, $\nabla F(2,0) = (4,0)$ and n(2,0) = (1,0). Then,

$$\frac{\partial F}{\partial n}(2,0) = \nabla F(2,0) \cdot n(2,0) = (4,0) \cdot (1,0) = 4$$

2.2 Part b

Find $\frac{\partial F}{\partial n}$ for $F(x,y) = \ln x + y^2$ and $\Omega = \{(x,y) : 3y - x^2 < 17\}$ at (2,7).

Answer: $\nabla F(x,y) = (1/x,2y)$ and $n(x,y) = \frac{1}{\sqrt{4x^2+9}}(-2x,3)$. Then, $\nabla F(2,7) = (1/2,14)$ and n(2,7) = (-4/5,3/5). Then,

$$\frac{\partial F}{\partial n}(2,7) = \nabla F(2,7) \cdot n(2,7) = (1/2,14) \cdot (-4/5,3/5) = -4/10 + 3*14/5 = -2/5 + 42/5 = 8$$

2.3 Part c

Find $\frac{\partial F}{\partial n}$ for $F(x,y) = 5x^2 + y^2 + xyz$ and $\Omega = \{(x,y,z) : x^2 + y^2 < 16\}$ at $(2,2\sqrt{3},3)$.

Answer: $\nabla F(x,y,z) = (10x + yz, 2y + xz, xy)$ and $n(x,y,z) = \frac{1}{\sqrt{4x^2 + 4y^2}}(2x, 2y, 0)$. Then, $\nabla F(2, 2\sqrt{3}, 0) = (20 + 6\sqrt{3}, 4\sqrt{3} + 6, 4\sqrt{3})$ and $n(2, 2\sqrt{3}, 0) = \frac{1}{\sqrt{4(2)^2 + (2\sqrt{3})^2}}(4, 4\sqrt{3}, 0) = (1/2, \sqrt{3}/2, 0)$. Then,

$$\frac{\partial F}{\partial n}(2, 2\sqrt{3}, 0) = \nabla F((2, 2\sqrt{3}, 0) \cdot n(2, 2\sqrt{3}, 0)) = (20 + 6\sqrt{3}, 4\sqrt{3} + 6, 4\sqrt{3}) \cdot (1/2, \sqrt{3}/2, 0)$$
$$= (10 + 3\sqrt{3}) + (6 + 3\sqrt{3}) = 16 + 6\sqrt{3}$$

3 Problem 1.5.6

Assume that u satisfies Laplace's equation on a domain $\Omega \subset \mathbb{R}^3$ and that v is a continuously differentiable function such that $v(x) = \text{for all } x \in \partial \Omega$. Use the divergence theorem to show that

 $\int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx = 0$

.

Answer: Let u satisfy Laplace's equation, $\Delta u = 0$, on $\Omega \subset \mathbb{R}^3$ and let v be a continuously differentiable function such that v(x) = 0 for all $x \in \partial \Omega$. Then, by the integration by parts formula, which comes from divergence theorem,

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx = \int_{\partial \Omega} v(x) (\nabla u(x) \cdot n(s)) ds + \int_{\Omega} v(x) \operatorname{div}(\nabla u(x)) dx$$

The function v(x) is 0 on $\partial\Omega$, so

$$\int_{\partial\Omega} v(x)(\nabla u(x) \cdot n(s))ds = 0.$$

We know that $\operatorname{div}(\nabla u(x)) = \Delta u$, and we assumed u(x) satisfied $\Delta u = 0$ in Ω . Therefore,

$$\int_{\Omega} v(x) \operatorname{div}(\nabla u(x)) dx = \int_{\Omega} v(x) \Delta u(x) dx = 0.$$

Thus,

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx = \int_{\partial \Omega} v(x) (\nabla u(x) \cdot n(s)) ds + \int_{\Omega} v(x) \operatorname{div}(\nabla u(x)) dx = 0 + 0 = 0,$$

which is what we want.

4 Problem 1.5.9

Let u denote a solution to the heat equation $u_t = ku_{xx}$ subject to homogeneous Dirichlet boundary conditions on $\Omega = (0, L)$ and define

$$E(t) = \int_0^L u(t, x)^2 dx \text{ for } t \ge 0.$$

Show that E(t) is a decreasing function of time by showing that the derivative of this function satisfies $dE(t)/dt \leq 0$ for all t > 0.

Answer: Let t > 0. Then,

$$\begin{aligned} \frac{dE(t)}{dt} &= \frac{d}{dt} \int_0^L u(t,x)^2 dx \\ &= \int_0^L 2u(t,x) u_t(t,x) dx \\ &= 2k \int_0^L u(t,x) u_{xx}(t,x) dx \\ &= 2k u_x(t,x) u(t,x) \Big|_0^L - 2k \int_0^L u_x(t,x)^2 dx \\ &= 2k [u_x(t,L)u(t,L) - u_x(t,0)u(t,0)] - 2k \int_0^L u_x(t,x)^2 dx \end{aligned}$$

The solution u satisfies homogeneous Dirichlet boundary conditions, so u(t,0) = u(t,L) = 0 for all $t \ge 0$. This means $2k[u_x(t,L)u(t,L) - u_x(t,0)u(t,0)] = 0$ and

$$\frac{dE(t)}{dt} = -2k \int_0^L u_x(t,x)^2 dx$$

The function $u_x(t,x)^2 \geq 0$, for all x,t, so $\int_0^L u_x(t,x)^2 dx \geq 0$ and

$$\frac{dE(t)}{dt} = -2k \int_0^L u_x(t,x)^2 dx \le 0,$$

which is what we want. Therefore, E(t) is a decreasing function of time.