[PRINT]

01002 Matematik 1b (polyteknisk grundlag) F25/Möbius fredag F25, Gustav Bellaiche, 6/11/25 at 1:42:06 PM CEST

Question1: Score 0/1

Lad følgende matricer være givet:

$$x=egin{bmatrix} x_1\ x_2 \end{bmatrix}$$
 , $A=egin{bmatrix} 6 & -6\ 2 & 15 \end{bmatrix}$, $b=egin{bmatrix} 14\ 24 \end{bmatrix}$

En kvadratisk form q er givet ved følgende to udtryk:

$$\left| q\left({{x_1},{x_2}} \right) = {x^T}Ax \; + \; {x^T}b + 1 = {k_1}x_1^2 + {k_2}x_2^2 + {k_3}{x_1}{x_2} + {k_4}{x_1} + {k_5}{x_2} + 1
ight.$$

Angiv værdien af følgende konstanter:

 $k_1 =$

Your response	Correct response
	6

Auto graded Grade: 0/1.0

l. .

$k_3 =$	
Your response	Correct response
	-4

Auto graded Grade: 0/1.0

k= =

<u>~5 —</u>	
Your response	Correct response
	24

Auto graded Grade: 0/1.0

Total grade: 0.0×1/3 + 0.0×1/3 + 0.0×1/3 = 0% + 0% + 0%

Question2: Score 0/1

Lad W=(-1,0,4,0,0,1) være en vektor i $\mathbb{R}^{oldsymbol{6}}$.

Angiv længden af W:

Husk \sqrt{a} skrives som sqrt(a) i Möbius

||W|| =

Your response	Correct response
No answer	3*2^(1/2)

Auto graded Grade: 0/1.0

S Total grade: $0.0 \times 1/1 = 0\%$

Question3: Score 0/1

Lad $v_1=(6,5,-2,0)$ og $v_2=(-1,7,5,12)$ være to vektorer i \mathbb{R}^4 .

Angiv skalarproduktet af de to vektorer:

 $v_1 \cdot v_2 =$

Your response	Correct response
	19

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/1 = 0\%$

Question4: Score 0/1

Lad q være en kvadratisk form med forskrift:

$$\left| q\left({x,y}
ight) = 8 \cdot {x^2} + 4 \cdot {y^2} - 14 \cdot x \cdot y$$

Bestem en symmetrisk 2x2 matrix A så q(x,y) kan skrives på formen:

$$egin{aligned} q\left(x,y
ight) = \left[egin{aligned} x & y \end{aligned}
ight] \cdot A \cdot \left[egin{aligned} x \ y \end{aligned}
ight] \end{aligned}$$

(Bemærk en matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ kan skrives som <1,2;3,4> i Möbius).

A =

Your response	Correct response
	Matrix $(2,2,\{(1, 1) = 8, (1, 2) = -7, (2, 1) = -7, (2, 2) =$
No answer	4},datatype = anything,storage = rectangular,order
	= Fortran_order,shape = [])

Auto graded Grade: 0/1.0 😢

Total grade: 0.0×1/1 = 0%

Question5: Score 0/1

Givet en funktionen f med gradient givet ved:

$$\nabla f(x,y) = \left(3 \cdot x^2 \cdot \exp(4 \cdot y), 4 \cdot x^3 \cdot \exp(4 \cdot y)\right)$$

Bestem nedenstående dobbelt partielle afledte i punktet (1,0):

$$\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)\right)(1,0) =$$

Your response	Correct response
	6

Grade: 0/1.0 😂 Auto graded

$$\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)\right) (1,0) =$$

Your response	Correct response
	16

Grade: 0/1.0 Auto graded

$$\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)\right)(1,0) =$$

Your response	Correct response
	12

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/3 + 0.0 \times 1/3 + 0.0 \times 1/3 = 0\% + 0\% + 0\%$

Question6: Score 0/1

En funktions forskrift er givet ved:

$$f\left({{x_1},{x_2}} \right) = 1 \cdot x_1^3 + 4 \cdot x_2^4 - 2 \cdot {x_1} \cdot {x_2} - 1$$

Beregn gradienten af f i punktet $\left(x_1,x_2
ight)=(-1,-2)$,og angiv dens koordinater nedenfor.

Første koordinaten for $\nabla f(-1,-2)$ =

Your response	Correct response
	7

Auto graded Grade: 0/1.0

Anden koordinaten for $\nabla f(-1,-2)$ =

• (
Your response	Correct response
	-126

Auto graded Grade: 0/1.0

Question7: Score 0/1

En funktion $f:\mathbb{R}^2 o \mathbb{R}$ er givet ved forskriften:

$$\left| f\left(x_{1},x_{2}\right) = 2 \cdot x_{1} - x_{2} + 3 \right|$$

Hvilke af nedenstående punkter ligger på den niveaukurve til f der går gennem punktet (1,4).

Your response	Correct response
	(2,6)
	(5,12)

Total grade: 0.0×1/1 = 0%

Question8: Score 0/1

Find de to partielle afledte af funktionen $f:\mathbb{R}^2 o\mathbb{R}$ med forskrift:

$$f(x,y) = 3 \cdot y \cdot x \cdot \cos(5 x)$$

$$\left| \frac{\partial f}{\partial x} \left(x, y \right) \right| =$$

Your response	Correct response
No answer	3*y*cos(5*x)-15*x*y*sin(5*x)

Auto graded Grade: 0/1.0

∂f		
v_j	(x,y)	_
ðη	(x,y)	

$\circ g$		
	Your response	Correct response
	No answer	3*x*cos(5*x)

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question9: Score 0/1

En funktion $f:\mathbb{R}^2 o\mathbb{R}$ er givet ved forskriften:

$$f(x,y) = x^2 + y^2 - 8x + 10y + 41$$

Vi betragter den niveaukurve der går gennem punktet (3,3), det oplyses at niveaukurven er en cirkel.

Angiv nedenfor koordinaterne for cirklens centrum $\left(x_{0},y_{0}
ight)$ samt cirklens radius r :

 $x_0 =$

Your response	Correct response
	4

	Your response	Correct response
$y_0 =$		

65^(1/2)

Auto graded Grade: 0/1.0

r= Your response Correct response

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/3 + 0.0 \times 1/3 + 0.0 \times 1/3 = 0\% + 0\% + 0\%$

Question10: Score 0/1

En funktion $f:\mathbb{R}^3 o\mathbb{R}$ er givet ved forskriften:

$$f\left(x_{1},x_{2},x_{3}
ight)=x_{1}^{2}\cdot\cos\left(x_{2}
ight)-\left|x_{1}\cdot\sin\left(2\left|x_{2}
ight|
ight)+x_{3}$$

Angiv nedenstående funktionsværdi:

 $f(1,2,\pi,-3) =$

Your response	Correct response
	-2

Auto graded Grade: 0/1.0 😵

Total grade: 0.0×1/1 = 0%

Question11: Score 0/1

Betragt 2 vektorer i \mathbb{R}^4 :

$$x = \left[egin{array}{c} 9 \ -1 \ 4 \ 1 \end{array}
ight] \;,\;\; y = \left[egin{array}{c} -1 \ 2 \ 1 \ 0 \end{array}
ight]$$

Lad Y = span(y), angiv nedenstående projektion:

(Bemærk en søjlevektor $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ kan skrives som <1,2> i Möbius)

 $proj_{\mathbf{V}}(x) =$

Your response	Correct response
	Vector[column](4,{1 = 7/6, 2 = -7/3, 3 =
No answer	-7/6},datatype = anything,storage =
	rectangular,order = Fortran_order,shape = [])

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question12: Score 0/1

Betragt vektorrummet P_4 [-1,1] bestående af polynomier af grad højst 4 defineret ipå intervallet [-1,1], udstyret med L^2 -indre produkt.

Angiv nedenstående indreprodukt:

$$\left|\left\langle 7\;x,5\;x^3+7\;x^4
ight
angle \;=\;$$

Your response	Correct response
	14

Auto graded Grade: 0/1.0

0		
W	Total grade: 0.0×1/1	= 0%

Question13: Score 0/1

Lad A betegne en vilkårlig $n \times n$ matrix.

Hvilke af nedenstående matricer er symmetriske?

Your response	Correct response
	$\begin{bmatrix} 1 & 6 & 10 \\ 6 & 5 & -10 \\ 10 & -10 & 9 \end{bmatrix}$ $A + A^T$
	$A+A^{T} \ A\cdot A^{T}$

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question14: Score 0/1

Lad $v_1=(4,2,-2,0)$ og $v_2=(-1,2,5,12)$ være to vektorer i \mathbb{R}^4 .

Angiv skalarproduktet af de to vektorer:

$$\langle v_1, v_2 \rangle =$$

Your response	Correct response
	-10

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question15: Score 0/1

Lad $v = (7 \cdot i, -1 \cdot i, 9)$ være en vektor i ${f C}^3$.

Angiv nedenfor en egentlig vektor w som er ortogonal på v ?

Husk at den komplekse enhed skrives som I (stort i) og en vektor kan skrives som <1,2,3>

w =

Your response	Correct response
No answer	Correct Answer not defined

Auto graded Grade: 0/1.0

Question16: Score 0/1

Lad $v_1=(2,1)$ og $\ v_2=(4,1)$ være to vektorer i \mathbb{R}^2 udstyret med sædvanligt indre produkt.

a) Bestem normen af v_1 og v_2 :

$$||v_1|| =$$

<u> </u>	
Your response	Correct response
No answer	5^(1/2)

Auto graded Grade: 0/1.0

b) Bestem normen af vektoren $v_1 - 2 \cdot v_2$:

$$||v_1 - 2 \cdot v_2|| =$$

Your response Correct response

Auto graded Grade: 0/1.0

Question17: Score 0/1

Lad v=(3,2,1) være en vektor i \mathbb{R}^3 .

Hvilke af nedenstående vektorer ligger i det ortogonale komplement til span $\left(v
ight)$?

Your response	Correct response
	[1]
	3
	$\lfloor -9 \rfloor$

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question18: Score 0/1

Lad f være en glat funktion med forskrift:

$$f(x,y) = x^2 \cdot y^3$$

Angiv Hessematricen for f i punktet (1,1) .

$$H_f(1,1) =$$

J	
Your response	Correct response
	Matrix $(2,2,\{(1,1)=2,(1,2)=6,(2,1)=6,(2,2)=$
No answer	6},datatype = anything,storage = rectangular,order
	= Fortran_order,shape = [])

Auto graded Grade: 0/1.0 **★**

Question19: Score 0/1

Lad matricen $B \in M_{m{n}}(C)$ være givet ved:

$$B = \left[egin{array}{cccc} 3 & i & 4 \ 6+3 \ i & 0 & 4-5 \ 0 & -2 & 7 \ i \end{array}
ight]$$

Angiv nedenfor den adjungerede matrix B

Husk at den komplekse enhed skrives som I (stort i) og en matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ skrives som <1,2;3,4> i Möbius.

B' =

Your response	Correct response
No answer	Matrix(3,3,{(1, 1) = 3, (1, 2) = 6-3*l, (2, 1) = -l, (2, 3) = -2, (3, 1) = 4, (3, 2) = 4+5*l, (3, 3) = -7*l},datatype = anything,storage = rectangular,order = Fortran_order,shape = [])

Auto graded Grade: 0/1.0 😢

Er matricen B Hermitisk?

Your response	Correct response
	Nej

Auto graded Grade: 0/1.0 😢

S Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question20: Score 0/1

Givet en funktion $f:\mathbb{R}^2 o\mathbb{R}^3$ med forskrift:

$$f\left(x_{1},x_{2}
ight)=\left(6\ x_{2},6-8\ x_{1}^{2},x_{1}\cdot x_{2}^{3}
ight)$$

Beregn Jacobianten ${\cal J}_f$ og angiv den med evalueringspunkt (5,1).

(Bemærk en matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ skrives som <1,2;3,4> i Möbius)

 $J_{f}\left(5,1\right) =% {\int d^{3}x^{3}} dx^{3}dx$

Your response	Correct response
	Matrix $(3,2,\{(1,2)=6,(2,1)=-80,(3,1)=1,(3,2)=$
No answer	15},datatype = anything,storage = rectangular,order
	= Fortran_order,shape = [])

Question21: Score 0/1

Vi betragter en funktion $f: \mathbb{R} o \mathbb{R}$.

Lad $P_{n}\left(x
ight)$ og $R_{n}\left(x
ight)$ betegne henholdsvis approksimerende polynomium og restfunktion for en funktion f, med udviklingspunkt $x_0 = 0$.

Det oplyses:

$$P_{n}\left(1\right)=7$$

$$|R_n\left(1\right)|<0.8$$

Hvilke af nedenstående værdier kan **ikke** være en mulig værdi for f(1)?

Your response	Correct response
	6.12
	8.20

Auto graded Grade: 0/1.0 😢

Total grade: 0.0×1/1 = 0%

Question22: Score 0/1

Vi betragter den naturlige eksponentialfunktion:

$$f(x) = e^{4x}$$

Lad $P_{n}\left(x
ight)$ betegne det approksimerende polynomium af grad n for funktionen f med udviklingspunkt $x_{0}=0$. Lad $a_{m k}$ betegne koefficienten til k'te gradsleddet, angiv værdien af de to koefficienter:

$$a_4 =$$

Your response	Correct response
	32/3

Grade: 0/1.0 Auto graded

 $a_5 =$

<u>0</u>	
Your response	Correct response
	128/15

Grade: 0/1.0 😢 Auto graded

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question23: Score 0/1

Vi ser på grænseværdien:

$$\lim_{x \to 0} \frac{f(x)}{g(x)}$$

Om funktionen f oplyses: $f(x) = \ln{(1+7\cdot x)} - 7\cdot x$

Om funktionen g oplyses: $g\left(x
ight)=rac{1}{5}x^{2}+x^{2}\cdot\epsilon\left(x
ight)$

Hvor $\epsilon(x)$ er en ϵ —funktion.

Angiv grænseværdien:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} =$$

Your response	Correct response
No answer	-245/2

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/1 = 0\%$

Question24: Score 0/1

Lad k være en kvadratisk form med forskrift:

$$k(x_1, x_2) = 8 \cdot x_1^2 + 5 \cdot x_2^2 - 16 \cdot x \cdot_1 x_2$$

Bestem en symmetrisk 2x2 matrix A så $k\left(x_{1},x_{2}
ight)$ kan skrives på formen:

$$k\left(x_{1},x_{2}
ight)=\left[egin{array}{cc}x_{1} & x_{2}\end{array}
ight]\cdot A\cdot \left[egin{array}{c}x_{1}\x_{2}\end{array}
ight]$$

$$A =$$

Your response **Correct response**

No answer 5},datatype = anything,storage = rectangular,order = Fortran_order,shape = [])		Matrix $(2,2,\{(1, 1) = 8, (1, 2) = -8, (2, 1) = -8, (2, 2) =$
= Fortran_order,shape = [])	No answer	5},datatype = anything,storage = rectangular,order
		= Fortran_order,shape = [])

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question25: Score 0/1

Lad $f:\mathbb{R}^2 o\mathbb{R}$ være en funktion. Gradienten for funktionen er givet ved:

$$oxed{
abla} f\left(x_1,x_2
ight) = \left(9\ x^8\cdot y^9, 9\ x^9\cdot y^8
ight)$$

Angiv Hessematricen for f i punktet (1,1) .

(Bemærk en matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ kan skrives som <1,2;3,4> i Möbius)

 $H_f(1,1) =$

Your response	Correct response
No onouge	Matrix $(2,2,\{(1,1)=72,(1,2)=81,(2,1)=81,(2,2)=72\}$
No answer	72},datatype = anything,storage = rectangular,order = Fortran_order,shape = [])

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question26: Score 0/1

Om en funktion f gives nedenstående 3 oplysninger:

Værdien af f i punktet (1,2) er f(1,2)=1

Gradienten af f i punktet (1,2) er $abla f(1,2)=(4\;,\;3)$

Hessematricen for f i punktet (1,2) er $H_{f}\left(1,2
ight)=egin{bmatrix}0&2\2&-1\end{bmatrix}$

Lad P_2 betegne det approksimerende 2-gradspolynomium for f med udviklingspunkt (1,2).

Udregn nedenstående funktionsværdi:

$$P_2(1,1) =$$

Your response	Correct response
	-5/2

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 =	0%
------------------------	----

Question27: Score 0/1

Lad f være en funktion med forskrift:

$$f(x,y) = (4 \cdot y - 1)^2 \cdot \cos(2 \cdot x)$$

Angiv nedenfor det approksimerende 2. gradspolynomium for f med udviklingspunktet i (0,0).

$$P_2(x,y) =$$

Your response	Correct response
No answer	-2*x^2+16*y^2-8*y+1

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question28: Score 0/1

Lad en kvadratisk form have forskriften:

$$k(x,y) = 4 \cdot x^2 + 4 \cdot y^2 - 10 \cdot x \cdot y$$

Et skift af koordinater svarende til en ny ortonormal basis, giver den kvadratiske form en forskrift uden blandede produktled.

$$\left| k\left(x_{1},y_{1}
ight) =a\cdot x_{1}^{2}+b\cdot y_{1}^{2}$$

Angiv nedenfor værdien af produktet af koefficienterne:

 $a \cdot b =$

Your response	Correct response
	-9

Auto graded Grade: 0/1.0 😢

Total grade: $0.0 \times 1/1 = 0\%$

Question29: Score 0/1

Givet en funktion f med forskrift:

$$f(x,y) = x \cdot y^2$$

Bestem en forskrift for det approksimerende førstegradspolynomium i punktet (-4,3,f(-4,3)), og bring forskriften på formen:

$$P_1(x,y) = a \cdot x + b \cdot y + c$$

Angiv nedenfor værdier af de 3 koefficienter:

a =

Your response	Correct response
	9

Grade: 0/1.0 😢 Auto graded

0 =	
Your response	Correct response
	-24

Auto graded Grade: 0/1.0 😢

c =Your response **Correct response**

72

Grade: 0/1.0 😵 Auto graded

Total grade: 0.0×1/3 + 0.0×1/3 + 0.0×1/3 = 0% + 0% + 0%

Question30: Score 0/1

Gradienten af en funktion f er givet ved:

$$egin{equation}
abla f\left(x_1, x_2
ight) = \left(2 \cdot x_1 \cdot x_2 \; , x_1^2
ight)
onumber \end{aligned}$$

Grafen for f går gennem punktet (-3,-4,-36)

Bestem det approksimerende førstegradspolynomium $P_1\left(x_1,x_2
ight)$, for funktionen f med udviklingspunkt (-3,-4) .

Angiv nedenfor værdien af P_1^- i punktet med koordinaterne (-2,-5) :

$$P_1(-2,-5) =$$

Your response	Correct response
	-21

Auto graded Grade: 0/1.0 😢

Total grade: 0.0×1/1 = 0%

Question31: Score 0/1

Betragt funktionen $f:\mathbb{R}^2 o\mathbb{R}$ med forskrift:

$$f(x,y) = -16 x^2 - y^2 + 40 x + 8 y - 43$$

Det oplyses at funktionens Hessematrix i punktet $\left(x_0,y_0
ight)=(7,7)$, er givet ved:

$$H\left(x_{0},y_{0}
ight)=\left[egin{matrix} -32 & 0 \ 0 & -2 \end{matrix}
ight]$$

Er det korrekt at funktionen har lokalt maksimun i $ig(x_0,y_0ig)=(7,7)$?

(Tænk før du svarer)

Your response	Correct response
	Nej

Auto graded Grade: 0/1.0 🕄

Total grade: 0.0×1/1 = 0%

Question32: Score 0/1

Betragt funktionen $f:\mathbb{R}^2 o\mathbb{R}$ med forskrift:

$$f(x,y) = x^2 + 16y^2 - 6x + 16y + 17$$

Det oplyses at funktionen har et stationært punkt med koordinaterne $ig(x_0,y_0ig)=(3,-1/2)$.

a) Angiv determinanten af Hessematricen i punktet $(x_0,y_0)=(3,-1/2)$:

$$det\left(H\left(x_{0},y_{0}\right)\right)=$$

Your response	Correct response
	64

Auto graded Grade: 0/1.0

b) Angiv arten af ekstremaet i punktet $\left(x_0,y_0
ight)=(3,-1/2).$

Your response	Correct response
	lokalt minimum

Auto graded Grade: 0/1.0

8 Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question33: Score 0/1

Betragt funktionen $f:\mathbb{R}^2 o\mathbb{R}$ med forskrift:

$$f(x,y) = 9 x^2 + 36 y^2 - 30 x - 24 y + 33$$

Angiv egenværdierne for Hessematricen $(\lambda_1 < \lambda_2)$.

 $\lambda_1 =$

Your response	Correct response
	18

$\lambda_2 =$	
Your response	Correct response
	72

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question34: Score 0/1

Betragt funktionen $f:\mathbb{R}^2 o\mathbb{R}$ med forskrift:

$$f(x,y) = 16 x^2 + y^2 - 40 x - 10 y + 53$$

Det oplyses at funktionen har et stationært punkt (x_0, y_0) , angiv koordinaterne:

 $x_0 =$

Varia va an an an	Oawaat waananaa
Your response	Correct response
	5/4

Auto graded Grade: 0/1.0

$y_0 =$	
Your response	Correct response
	5

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question35: Score 0/1

Betragt den lineære funktion $f:[6,10] o\mathbb{R}$ med forskrift:

$$f(x) = -3 \cdot x + 49$$

a) Funktionens værdimængde antager en af følgende 4 muligheder, angiv den korrekte:

Your response	Correct response
	[a,b]

Auto graded Grade: 0/1.0

b) Angiv værdierne af a og b:

a =

Your response Correct response

		19
Auto graded	Grade: 0/1.0 ❸	
b =		
	Your response	Correct response
		31
Auto graded	Grade: 0/1.0 ★	

Total grade: $0.0 \times 1/3 + 0.0 \times 1/3 + 0.0 \times 1/3 = 0\% + 0\% + 0\%$

Question36: Score 0/1

Auto graded Grade: 0/1.0

Auto graded Grade: 0/1.0 😵

S Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question37: Score 0/1

Givet funktionen $f:[0,5] imes[0,3] o\mathbb{R}$ med forskrift:

$$f(x_1, x_2) = 3 (x_1^2 + x_2^2)$$

Angiv nedenfor funktionens minimale og maksimale værdi.

 $f_{\min} =$

Your response	Correct response
	0

Auto graded Grade: 0/1.0

 $f_{
m max} =$ Your response Correct response

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question38: Score 0/1

Betragt funktionen $f:[1,100] o\mathbb{R}$ med forskrift:

$$f(x) = \frac{1}{3} x^3 - \frac{3}{2} x^2 - 10 x$$

Funktion har et stationært punkt $x_{f 0}$ angiv det nedenfor:

 $x_0 =$

ŀ	· ·	
	Your response	Correct response
		5

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question39: Score 0/1

Betragt funktionen $f:[-4,5] o\mathbb{R}$ med forskrift:

$$f(x) = \begin{cases} -3 \cdot x , -4 \le x \le 0 \\ x^2 , 0 < x \le 5 \end{cases}$$

Angiv maksimalværdien af funktionen:

 $f_{
m max} =$

Your response	Correct response
	25

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question40: Score 0/1

En funktions forskrift er givet ved:

$$f(x_1, x_2) = 7 \cdot x_1 - 7 \cdot x_2 - 5$$

a) Beregn gradienten af f:

Første koordinaten for $\nabla f(x_1, x_2)$ =

(= = /	
Your response	Correct response
	7

Auto graded Grade: 0/1.0

Anden koordinaten for $\nabla f(x_1, x_2) =$

- (1 · 2)	
Your response	Correct response
	-7

Auto graded Grade: 0/1.0

b) Har funktionen lokale ekstrema?

Your response	Correct response
	Nej

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/3 + 0.0 \times 1/3 + 0.0 \times 1/3 = 0\% + 0\% + 0\%$

Question41: Score 0/1

Betragt funktionen $f:[0,10] o\mathbb{R}$ med forskrift:

$$f(x) = 4 \ x - 4$$

Vi betragter nu en Riemannsum med 2 deleintervaller, med ens intervalbredder.

Funktionen skal evalueres i midtpunktet af hvert deleinterval, angiv en værdi for Riemannsummen S.

S =

Your response	Correct response
	160

Auto graded Grade: 0/1.0 😢

Total grade: $0.0 \times 1/1 = 0\%$

Question42: Score 0/1

En funktion f er givet ved forskriften:

$$f(x) = rac{1}{\sqrt[4]{x}}$$

Angiv værdien af nedenstående uegentlige integral.

$$\int_{0}^{8} f(x) \, \mathrm{d} \, x =$$

Your response	Correct response
No answer	4/3*8^(3/4)

Auto graded Grade: 0/1.0 😢

Total grade: 0.0×1/1 = 0%

Question43: Score 0/1

En funktion f er givet ved forskriften:

$$f(x) = \exp\left(-3 \ x\right)$$

Angiv værdien af nedenstående uegentlige integral.

Husk at e^x skrives som $\exp(x)$ i Möbius)

$$\int\limits_{3}^{\infty}f(x)\,\mathrm{d}\,x=$$

Your response	Correct response
No answer	1/3*exp(-9)

Grade: 0/1.0 😢 Auto graded

Total grade: 0.0×1/1 = 0%

Question44: Score 0/1

En funktion h er givet ved forskriften:

$$h\left(x
ight) =rac{x}{\left(1+5\,\,x^{2}
ight) }$$
 , $x>0$

Find vha. substitutionsmetoden en stamfunktion H hørende til funktionen h .

H(x) =

Your response	Correct response
No answer	1/10*ln(5*x^2+1)

Auto graded Grade: 0/1.0 😢

Total grade: 0.0×1/1 = 0%

Question45: Score 0/1

To talfølger $\{a_n\}$ og $\{b_n\}$ er givet ved:

$$a_n = \frac{1}{n}(-1)^n + 15$$

$$b_n = \left(\frac{1}{n} + 15\right) \cdot (-1)^n$$

Hvilken af de to talfølger er konvergent?

Your response	Correct response
---------------	------------------

 $\{a_n\}$

Grade: 0/1.0 😢 Auto graded

Angiv i boksen nedenfor grænseværdien af den konvergente følge.

Your response	Correct response
	15

Grade: 0/1.0 😂 Auto graded

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question46: Score 0/1

En funktion f er givet ved forskriften:

$$f(x) = x \cdot \exp(x)$$

Angiv nedenstående funktionsværdi, til den stamfunktion til f der går gennem punktet (0,4)

Husk at e^x skrives som $\exp(x)$ i Möbius)

$$F(2) =$$

Your response	Correct response
No answer	exp(2)+5

Grade: 0/1.0 😢 Auto graded

Total grade: 0.0×1/1 = 0%

Question47: Score 0/1

Lad en funktion f have forskriften:

$$f(x) = \frac{8}{(x+1)^2}$$

Beregn værdien af nedenstående bestemte integral.

$$\int\limits_{0}^{1}f\left(x\right) \mathrm{d}\,x=$$

Your response	Correct response
	4

Total grade: 0.0×1/1 = 0%

Question48: Score 0/1

En funktion f er givet ved forskriften:

$$f(u,v) = v \cdot \cos(u \cdot v)$$

Bestem værdien af nedenstående dobbeltintegral.

$$\int\limits_0^\pi\int\limits_0^3 f(u,v)\ du\ dv=$$

Your response	Correct response
	2/3

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question49: Score 0/1

En funktion f er givet ved forskriften:

$$f(x) = 3 \cdot (9 \ x + 5)^2$$

Find en stamfunktion F hørende til funktionen f .

$$F(x) =$$

Your response	Correct response
No answer	1/9*(9*x+5)^3

Auto graded Grade: 0/1.0

Question50: Score 0/1

En flade i (x,y,z)-rummet har parameterfremstillingen:

$$r\left(u,v
ight) = \left(u+3,v^2\cdot u,2\cdot v
ight) \; , \; u\in\left[1,10
ight] \; , \; v\in\left[-10,10
ight]$$

Et punkt på fladen har (x, y, z)-koordinaterne:

$$(x,y,z) = (8,180,12)$$

Angiv nedenfor parameterværdierne for punktet:

u =

Your response	Correct response
	5

Grade: 0/1.0 😢 Auto graded

v =	
Your response	Correct response
	6

Auto graded Grade: 0/1.0

S Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question51: Score 0/1

Betragt en kugle K med radius 2 og centrum i (0,0,0).

Angiv nedenfor værdien af integralet:

$$\int_K rac{3}{\pi} \sqrt{x^2+y^2+z^2} d(x,y,z) =$$

Your response	Correct response
No answer	48

Grade: 0/1.0 🕃 Auto graded

Total grade: 0.0×1/1 = 0%

Question52: Score 0/1

En cylinder med grundfladeradius 2 og højde 5, er placeret med grundfladen i (x,y) planen og med z aksens positive del som midterlinje.

Funktionen ρ angiver densiteten af cylinderen i ethvert punkt.

$$\rho\left(x,y,z\right)=6\ z^{2}$$

Angiv massemidtpunktet koordinater (x_0, y_0, z_0) :

 $x_0 =$

Your response	Correct response
	0

Auto graded Grade: 0/1.0

 $y_0 =$

- 0	
Your response	Correct response
	0

Grade: 0/1.0 😢 Auto graded

U	
Your response	Correct response
	15/4

Grade: 0/1.0 😢 Auto graded

Total grade: 0.0×1/3 + 0.0×1/3 + 0.0×1/3 = 0% + 0% + 0%

Question53: Score 0/1

En punktmængde A i (x,y,z)-rummet er givet ved parameterfremstillingen:

$$r\left(u,v,w
ight) = \left(-2\cdot u,rac{1}{2}\cdot u\cdot v^2,u\cdot 2\cdot w
ight),\;\;u\in[-10,10]\;\;,\;v\in[-10,10]\;\;,\;w\in[-10,10]$$

Find Jacobideterminantens værdi i punktet (u, v, w) = (1, 4, 2).

 $det\left(J_{r}\left(1,4,2
ight)
ight) =% {\displaystyle\int_{0}^{\infty}} dr\left(1,4,2
ight) \left(1,4,2
ight$

Your response	Correct response
	-16

Total grade: 0.0×1/1 = 0%

Question54: Score 0/1

Vi betragter et plant område B i (x,y)-planen med parameterfremstilling:

$$r\left(u,v
ight)$$
 , $-4\leq u\leq 4$, $2\leq v\leq 7$

Det oplyses at parameterfremstillings Jacobideterminant er konstant med værdien:

$$\det\left(J_{r}\left(u,v\right)\right) = -6$$

Angiv nedenfor arealet af området B :

Arealet af B =

Your response	Correct response
	240

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question55: Score 0/1

En punktmængde B i (x,y)-planen er givet ved parameterfremstillingen:

$$r\left(u,v
ight) =\left(4+u,\;u\cdot v
ight) ,\;\;u\in \left[-10,10
ight] \;\;,\;\;v=\left[0,10
ight]$$

Bestem parameterværdierne hørende til punktet (x,y)=(13,81) .

n =

Your response	Correct response
	9

Auto graded Grade: 0/1.0

Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$

Question56: Score 0/1

En punktmængde i (x,y)-planen er givet ved:

$$B = \{(x,y) | 3 \le x \le 6, -1 \le y \le 1\}$$

Udregn planintegralet:

$$\int\limits_{B}y^{2}\ d\left(x,y\right) =$$

Your response	Correct response
	2

Grade: 0/1.0 😢 Auto graded

Total grade: $0.0 \times 1/1 = 0\%$

Question57: Score 0/1

En punktmængde B i (x,y)-planen er givet ved parameterfremstillingen:

$$r(u,v) = \left(-1 \cdot u, \frac{1}{2} \cdot u \cdot v^2\right), \ \ u \in [-10,10] \ \ , \ \ v = [-10,10]$$

Find Jacobideterminantens værdi i punktet $(u,v)=\ (1,5)$.

$$det(J_{r}(1,5)) =$$

Your response	Correct response
	-5

Grade: 0/1.0 😢 Auto graded

Total grade: $0.0 \times 1/1 = 0\%$

Question58: Score 0/1

En cirkel-ring i (x,y)-planen er givet ved:

$$\left|\left\{(x,y) \ \middle|\ 2^2 \leq \ x^2 + y^2 \leq 4^2
ight\}
ight|$$

Lad punktmængden A betegne den del af cirkelringen der ligger i første kvadrant.

Beregn værdien af nedenstående planintegral.

$$\int\limits_{A}\sqrt{x^{2}+y^{2}}\,d\left(x,y
ight) \ =$$

Your response	Correct response
	28/3*Pi

Grade: 0/1.0 😢 Auto graded

Total grade: $0.0 \times 1/1 = 0\%$

Question59: Score 0/1

En punktmængde B i (x,y) planen er bestemt ved nedenstående parameterfremstilling:

$$r(u,v) = \left(u, 6 \cdot u^2 + u \cdot (3 - 6 \cdot v)\right) , \quad 0 \le u \le 3/2 , \quad 0 \le v \le 1$$

Beregn arealet af punktmængden B.

Areal af B =

Your response	Correct response
	27/4

Auto graded Grade: 0/1.0 🕄

Total grade: $0.0 \times 1/1 = 0\%$

Question60: Score 0/1

Vi betragter en punktmængde M i (x,y,z)-rummet med parameterfremstilling:

$$r(u, v, w)$$
 , $0 \le u \le 6$, $3 \le v \le 5$, $0 \le w \le 1$

Det oplyses at parameterfremstillings Jacobideterminant er:

$$det\left(J_{T}\left(u,v,w
ight)
ight)=2\cdot \ w\cdot u\cdot \left(e^{ extbf{u}^{2}}+1
ight)$$

Angiv nedenfor rumfanget af punktmængden M :

Husk at e^x skrives som $\exp(x)$ i Möbius.

Rumfanget af M =

Your response	Correct response
No answer	35+exp(36)

Auto graded Grade: 0/1.0

_		
IJ	Total grade: 0.0×1/1	= 0%

Question61: Score 0/1

Givet er vektorfelt i planen med forskrift:

$$V(x,y) = (7 \cdot y, 2 \cdot x)$$

Lad C betegne en cirkel i xy-planen med centrum i (0,0) og radius 1.

(Mulig parameterfremstilling:
$$r\left(u
ight) = \left(\cos\left(u
ight), \sin\left(u
ight)
ight) \quad , \quad u \in [0, 2 \,\, \pi]$$

Beregn beregn det tangentielle kurveintegral af V langs kurven C, hvis kurven gennemløbes mod uret.

(Det oplyses
$$\int\limits_0^2 \pi (\cos{(x)})^2 \,\mathrm{d}\,x = \pi \,\mathrm{og}\,\int\limits_0^2 \pi (\sin{(x)})^2 \,\mathrm{d}\,x = \pi$$
)

$$\int\limits_C V \, \cdot \mathrm{d}\, s =$$

Your response	Correct response
	-5*Pi

Question62: Score 0/1

En funktion er givet ved forskriften:

$$f(x, y, z) = 2 \cdot x \cdot y^2$$

Lad U være gradientvektorfeltet $U = \nabla f$.

Lad en parametriseret kurve k_r være givet ved:

$$r\left(t
ight)=\left(2\cdot t,-2,2\cdot t
ight)\;\;,\;\;\mathrm{t}\in\left[0,1
ight]$$

Beregn det tangentielle kurveintegral af U langs kurven k_r .

(e betegner en enhedsvektor i kurvetangents retning)

$$egin{bmatrix} \int U \cdot e \ ds &= \int U \cdot ds \ = \ k_T \end{split}$$

Your response	Correct response
	16

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question63: Score 0/1

En funktion $f:\mathbb{R}^3 o\mathbb{R}$ er givet ved forskriften:

$$f(x, y, z) = 6 \cdot x \cdot y^3 - \ln(z)$$

Lad $V = \nabla f$ være et gradientvektorfelt.

Angiv nedenfor koordinaterne $\left(V_{x},V_{y},V_{z}
ight)$ for vektoren $V\left(1,-1,3
ight)$.

 $|V_x| =$

Your response	Correct response
	-6

Auto graded Grade: 0/1.0

$V_{\mathcal{Y}} =$	
Your response	Correct response
	18

$V_{\mathcal{Z}} =$	
Your response	Correct response
	-1/3

Auto graded Grade: 0/1.0

Question64: Score 0/1

Lad et vektorfelt i (x,y)-planen være givet ved:

$$V\left({x,y}
ight) = \left({6 \cdot {x^5} \cdot {y^6},a \cdot {x^b} \cdot {y^5}}
ight)$$

Bestem konstanterne a og b så V bliver et gradientfelt.

a =

Your response	Correct response
	6

Auto graded Grade: 0/1.0

b =	
Your response	Correct response
	6

Auto graded Grade: 0/1.0

Question65: Score 0/1

Et vektorfelt er givet ved:

$$V\left(x,y,z
ight) =\left(7\cdot y+4\cdot z,7\cdot x,4\cdot x
ight) .$$

Det oplyses at $\,V=
abla f\,$ er et gradientvektorfelt.

Beregn en stamfunktion f til vektorfeltet V .

$$|f(x,y,z)| =$$

Your response	Correct response
No answer	7*x*y+4*x*z

Question66: Score 0/1

Et vektorfelt er givet ved udtrykket:

$$V(x,y,z) = (x,y,3\cdot z)$$

En parametriseret rumkurve k_r er givet ved:

$$r(u) = \left(u, u^2, 4 \cdot u\right)$$
 , $u \in [0, 1]$

Beregn det tangentielle kurveintegral af vektorfeltet V langs kurven K_{r} .

(e betegner en enhedsvektor i kurvetangents retning)

$$egin{bmatrix} \int V \cdot e \ ds &= \int V \cdot ds \ = \ k_{m{r}} \end{split}$$

Your response	Correct response
	25

Auto graded Grade: 0/1.0

0		
W	Total grade: 0.0×1/1 = 0%	

Question67: Score 0/1

En funktion er givet ved forskriften:

$$h(x,y) = 6 \cdot x + 5 \cdot y + 9$$

En grafflade er givet ved:

$$B = \{(x,y,z) \mid z = h \, (x,y) \; , \; x \in [0,1] \; , \; y \in [0,1] \}$$

Udregn fladeintegralet:

$$\int_{B} 6 \cdot y \ dS =$$

Your response	Correct response
	3*62^(1/2)

Total grade:
$$0.0 \times 1/1 = 0\%$$

Question68: Score 0/1

Vi betragter en flade F_r i (x,y,z)-rummet med parameterfremstilling:

r(u,v) , $3 \le u \le 5$, $1 \le v \le 2$

Det oplyses at Jacobianten for parameterfremstilling er:

 $Jacobianten\left(u,v
ight)=u\cdot\sqrt{5\cdot u^{2}+1}$

Angiv nedenfor arealet af fladen $F_{m{r}}$:

Areal af A =

Your response	Correct response
	42/5*126^(1/2)-46/15*46^(1/2)

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question69: Score 0/1

En kurve K_r i rummet er givet ved parameterfremstillingen:

 $r\left(u
ight) = \left(\cos\left(2\cdot u
ight), \sin\left(2\cdot u
ight), 4\cdot u
ight) \;,\;\; u\in\left[0,5
ight]$

Bestem længden af kurven K_{r} .

Længden af kurven =

Your response	Correct response
	10*5^(1/2)

Auto graded Grade: 0/1.0

Total grade: 0.0×1/1 = 0%

Question70: Score 0/1

En kurve K_{r} i (x,y)-planen er givet ved parameterfremstillingen.

$$r\left(u
ight)=\left(u,5\cdot u^{2}
ight)\;,\;\;\mathrm{u}\in\left[0,1
ight]$$

En funktion af 2 variable er givet ved forskriften:

$$f(x,y) = -2 \cdot x$$

Bestem nedenstående kurveintegral.

$$\int\limits_{K_{r}}f\left(x,y
ight) ds=% \int\limits_{K_{r}}f\left(x,y
ight) ds =% \int\limits_{K$$

Your response	Correct response
	-101/150*101^(1/2)+1/150

Grade: 0/1.0 😢 Auto graded

Total grade: $0.0 \times 1/1 = 0\%$