Quantifying Plug-in Electric Vehicle Mileage and Resale Value

John Paul Helveston, George Washington University Lujin Zhao, George Washington University Laura Roberson, George Washington University Eliese Ottinger, George Washington University Saurav Pantha, George Washington University

June 20, 2024

Two Studies, One Dataset

Measuring Electric Vehicle Mileage in the United States

Zhao, L., Ottinger, E., Yip, A., & Helveston, J.P. (2023) "Quantifying electric vehicle mileage in the United States00404-X)" *Joule.* 7, 1–15.

Measuring Electric Vehicle **Resale Value** in the United States

Roberson, Laura A., Pantha, S., & Helveston, J.P. (2024) "Battery-Powered Bargains? Assessing Electric Vehicle Resale Value in the United States" *Environmental Research Letters*.

Data: ~13M used vehicle listings from 60k dealerships (2016 - 2022)

	Conventional	Hybrid	PHEV	BEV (Non-Tesla)	BEV (Tesla)
# of Listings	12,604,702	610,946	130,889	118,580	57,193
Miles (1,000)					
mean	52	57	43	27	36
sd	32	35	26	15	21
Age (years)					
mean	4.5	4.7	4.1	4.2	4.2
sd	1.8	1.8	1.4	1.4	1.5
Price (\$USD)					
mean	15,928	15,448	19,263	14,658	50,181
sd	$6,\!852$	5,096	12,748	6,053	$12,\!380$
Electric					
Range (miles)			0.0	101	251
mean			33	104	251
sd			14	48	50
min			11	58	139
max			53	259	402

Quantifying Electric Vehicle Mileage in the United States

Lujin Zhao (Ph.D. Student) Eliese Ottinger (Undergraduate RA) John Paul Helveston, Ph.D.

The George Washington University

We really need to understand PEV usage

- PEV emissions reduction benefit **depends on vehicle usage** Jenn (2020)
- Modelers typically assume **BEV miles = CV miles**
- Revenue from proposed mileage tax **depends on vehicle usage** Metcalf et al. (2022); Zhao and Mattauch (2022); Davis and Sallee (2020)
- PEV adoption depends on **how well PEVs substitute for CVs** Xing et al. (2021)

Conflicting prior results on BEV mileage

Study	Estimated Annual VMT	Sample Location	Sample Size*	Data Year(s)	Data Source
Davis (2019)	6,300	U.S.	436	2017	$ m NHTS^{\dagger}$
Burlig et al. (2021)	6,700	California	57,290	2014 - 2017	Household electricity meter readings
Rush et al. (2022)	8,838	U.S.	Unknown	2013 - 2021	Edmunds vehicle listings
Jia and Chen (2022)	10,000	California	184	2019	2019 California Vehicle Survey
Tal et al. (2020)	12,522	California	100	2015 - 2018	On-board vehicle sensors
This Study	7,165 (cars)	U.S.	175,773 (cars)	2016 - 2022	Used vehicle listings
(2023)	10,587 (SUVs)		12,623 (SUVs)		

^{*}BEV sedans only.

[†]National Household Travel Survey (FHWA, 2017).

Conflicting prior results on BEV mileage

	Study	Estimated Annual VMT	Sample Location	Sample Size*	Data Year(s)	Data Source
(Davis (2019)	6,300	U.S.	436	2017	NHTS^{\dagger}
BEV < CV	Burlig et al. (2021)	6,700	California	57,290	2014 - 2017	Household electricity meter readings
	Rush et al. (2022)	8,838	U.S.	Unknown	2013 - 2021	Edmunds vehicle listings
BEV ~= CV	Jia and Chen (2022)	10,000	California	184	2019	2019 California Vehicle Survey
	Tal et al. (2020)	12,522	California	100	2015 - 2018	On-board vehicle sensors
BEV < CV	This Study	7,165 (cars)	U.S.	175,773 (cars)	2016 - 2022	Used vehicle listings
	*PEV sadans only	10,587 (SUVs)		12,623 (SUVs)		

^{*}BEV sedans only.

[†]National Household Travel Survey (FHWA, 2017).

Inconsistent data quality in prior studies

	Study	Estimated Annual VMT	Sample Location	Sample Size*	Data Year(s)	Data Source
	Davis (2019)	6,300	U.S.	436	2017	$ m NHTS^{\dagger}$
BEV < CV	Burlig et al. (2021)	6,700	California	57,290	2014 - 2017	Household electricity meter readings
	Rush et al. (2022)	8,838	U.S.	Unknown	2013 - 2021	Edmunds vehicle listings
BEV ~= CV	Jia and Chen (2022)	10,000	California	184	2019	2019 California Vehicle Survey
	Tal et al. (2020)	12,522	California	100	2015 - 2018	On-board vehicle sensors
BEV < CV	This Study	7,165 (cars)	U.S.	175,773 (cars)	2016 - 2022	Used vehicle listings
	(2023)	10,587 (SUVs)		12,623 (SUVs)		

Large N	Nationally Representative	Direct VMT Measurement
	X	
X		
	Х	х
		x
		Х
X	х	х

^{*}BEV sedans only.

[†]National Household Travel Survey (FHWA, 2017).

BEVs are driven significantly less than other powertrains

Teslas driven more than non-Tesla BEVs (but not as much as CVs)

BEVs are driven significantly less than other powertrains

 $mileage = \beta_0 + \beta_1 age + \beta_2 age * powertrain + \beta_3 age * cents_p_mile + \epsilon_i$

	Ca	rs	SU	Vs
	Model 1a	Model 1b	Model 2a	Model 2b
age_years	11.642***	11.642***	12.945***	12.945***
	(0.004)	(0.004)	(0.004)	(0.004)
Interactions with age	years			
powertrain_hybrid	0.299***	0.299***	-0.853***	-0.853**
	(0.019)	(0.019)	(0.068)	(0.068)
$powertrain_phev$	-0.529***	-0.529***		ii. Ri
	(0.046)	(0.046)		
powertrain_bev	-4.492^{***}		-2.358***	
	(0.040)		(0.196)	
powertrain_bev_non_te	esla	-5.428***		-4.482**
		(0.050)		(1.317)
powertrain_bev_tesla		-2.856***		-3.809**
		(0.068)		(0.220)
Num. obs.	12,927,779	12,927,779	11,926,367	11,926,367
\mathbb{R}^2	0.406	0.406	0.477	0.477

^{***}p < 0.001; **p < 0.01; *p < 0.05

	Ca	rs	SU	Vs
	Model 1a	Model 1b	Model 2a	Model 2b
age_years	11.642***	11.642***	12.945***	12.945***
	(0.004)	(0.004)	(0.004)	(0.004)
Interactions with age.	years			
powertrain_hybrid	0.299***	0.299***	-0.853^{***}	-0.853**
	(0.019)	(0.019)	(0.068)	(0.068)
$powertrain_phev$	-0.529***	-0.529***		
	(0.046)	(0.046)		
powertrain_bev	-4.492^{***}		-2.358***	
	(0.040)		(0.196)	
powertrain_bev_non_t	esla	-5.428***	, ,	-4.482**
		(0.050)		(1.317)
powertrain_bev_tesla		-2.856***		-3.809***
		(0.068)		(0.220)
Num. obs.	12,927,779	12,927,779	11,926,367	11,926,367
\mathbb{R}^2	0.406	0.406	0.477	0.477

BEVs driven
4,500 miles
less than CVs
on average

^{***}p < 0.001; **p < 0.01; *p < 0.05

	Ca	rs	SU	Vs
	Model 1a	Model 1b	Model 2a	Model 2b
age_years	11.642***	11.642***	12.945***	12.945**
	(0.004)	(0.004)	(0.004)	(0.004)
Interactions with age_	years			
powertrain_hybrid	0.299***	0.299***	-0.853***	-0.853**
7678 7878	(0.019)	(0.019)	(0.068)	(0.068)
$powertrain_phev$	-0.529***	-0.529***	ā (5)	2 8
	(0.046)	(0.046)		
$powertrain_bev$	-4.492^{***}		-2.358***	
	(0.040)		(0.196)	
powertrain_bev_non_te	esla	-5.428***	, ,	-4.482**
		(0.050)		(1.317)
powertrain_bev_tesla		-2.856***		-3.809**
		(0.068)		(0.220)
Num. obs.	12,927,779	12,927,779	11,926,367	11,926,367
\mathbb{R}^2	0.406	0.406	0.477	0.477

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

BEVs driven
4,500 miles
less than CVs
on average

Non-Tesla BEVs: -5,400 miles

Tesla:
- -2,800 miles

Powertrain:	Model 3a BEV	Model 3b PHEV	Model 3c Hybrid	Model 3d Conventional
age_years	5.835*** (0.422)	12.925*** (0.398)	14.028*** (0.359)	11.448*** (0.032)
Operating east and	× 2	ions with age_years	(0.000)	(0.002)
cents_per_mile	-0.059^{**}	0.524^{***}	-0.044	-0.136***
cents_per_mile	(0.020)	(0.039)	(0.028)	(0.002)
range	0.009***	-0.183***	(0.020)	(0.002)
141160	(0.001)	(0.011)		
range*range_low	0.055***	(0.011)		
(<100mi)	(0.010)			
range*range_mid	0.033***			
(100 - 200mi)	(0.009)			
Select model intere	actions with age	_vears		
Reference	Nissan	Toyota	Honda	BMW
level:	Leaf	Prius Prime	Accord	3 Series
bolt ev	-5.672***			
	(0.293)			
model 3	1.056***			
	(0.292)			
model s	0.538^{*}			
	(0.244)			
Num. obs.	175,773	130,025	562,747	12,059,234
\mathbb{R}^2	0.412	0.459	0.403	0.450

^{***}p < 0.001; **p < 0.01; *p < 0.05

Non-linear range effect:

+10 mi range:

Low range (<100 mi): +640 mi/yr

Mid range (100-200 mi): +420 mi/yr

High range (>200 mi): +90 mi/yr

Powertrain:	Model 3a BEV	Model 3b PHEV	Model 3c Hybrid	Model 3d Conventional
age_years 5.835 (0.422		12.925*** (0.398)	14.028*** (0.359)	11.448*** (0.032)
Operating cost and	d range interact	ions with age_years		
cents_per_mile	-0.059**	0.524^{***}	-0.044	-0.136***
	(0.020)	(0.039)	(0.028)	(0.002)
range	0.009***	-0.183***		
	(0.001)	(0.011)		
range*range_low	0.055***			
(<100mi)	(0.010)			
range*range_mid	0.033***			
(100 - 200mi)	(0.009)			
Select model intere	actions with age	e_years		
Reference	Nissan	Toyota	Honda	BMW
level:	Leaf	$Prius\ Prime$	Accord	3 Series
bolt ev	-5.672***			
	(0.293)			
model 3	1.056***			
	(0.292)			
model s	0.538^{*}			
	(0.244)			
Num. obs.	175,773	130,025	562,747	12,059,234
\mathbb{R}^2	0.412	0.459	0.403	0.450

^{***}p < 0.001; **p < 0.01; *p < 0.05

Non-linear range effect:

+10 mi range:

Low range (<100 mi): +640 mi/yr

Mid range (100-200 mi): +420 mi/yr

High range (>200 mi): +90 mi/yr

Tesla effect isn't just from range

Key takeaways

- BEVs are driven significantly less than other powertrains: Non-Tesla BEVs: -5,400 miles; Tesla: -2,800 miles
- Far less variability in BEV mileage than CV mileage (BEVs only substituting for lower-mileage CV usage)
- BEV mileage less sensitive to operating cost than CV mileage
- Range increases mileage for low-range BEVs more than high-range BEVs

Battery-Powered Bargains? Measuring Electric Vehicle Resale Value in the United States

Laura Roberson (Ph.D. Student) John Paul Helveston, Ph.D.

The vehicle resale market is critically important

70% of sales are used vehicles

Used vehicles are more affordable (pre-covid)

We really need to understand PEV resale value

- Depreciation is a key component in "Total Cost of Ownership" (TCO) models, e.g. ANL's TCO Study
- "Resale anxiety" a potential obstacle to electric vehicle adoption Brückmann et al. (2021)
- BEV buyers nervous about depreciation tend to lease rather than buy Dua et al. (2019)

Prior research suggests PEVs depreciate faster than CVs

Study	Model	MSRP Data	Resale Value	Resolution	Sample	Main Results PEVs vs. ICEs
	Years		Data		Size	
This study	2012- 2018	EPA; carsheet.io	marketcheck	Daily listings	9,015,324	BEVs and PHEVs depreciate quicker than CV/HEV but is improving with more recent model years and higher ranges.
Rush et al. (2022)	2012- 2019	Edmunds	Edmunds TMV	Monthly time series	582,000*	CVs and HEVs consistent 3-yr retention; PHEVs and BEVs initially lower but increasing in retained value
Burnham et al. (2021)	2013- 2019	EPA	Edmunds TMV	1 TMV snapshot (July 2020)	686*	BEVs and PHEVs depreciate more quickly than HEVs and CVs
Hamza et al. (2020)	2014- 2019	KBB	KBB	Snapshot (2019)	72*	PHEVs and CVs hold value similarly; BEVs 11% lower retention over 5 years
Guo et al. (2019)	2010- 2016	Wards	Edmunds TMV	Snapshot (Q4 2016)	1,400*	PEV retention lower than gasolines equivalents. Tesla major exception with highest retained value over time.
Schoettle et al. (2018)	2011- 2015	EPA	КВВ	Snapshot (Jan. 2018)	200*	PHEVs retained resale value equally as well as CVs (i.e., 0% average difference), and BEVs improved to an average of -5.7% difference in resale value compared to CVs
Tal et al. (2017)	2011- 2015	New car <u>buyers</u> survey / OEM website	Self-reported used car buyers survey	Snapshot (2016)	160*	PEVs models held 34% (2011 Nissan Leaf) to 80% (2014 Toyota Prius plug-in) of value in 2015 compared to MSRP.
Zhou et al. (2016)	Unknown	NADA guides	NADA guides	Unknown	Unknown	Comparing the adjusted retention rates of PHEVs and BEVs with those of CVs indicates 2-3 year retention rate is lower for PEVs.
Abb EPA TMI KBB	/ = True Market \ = Kelly Blue Bool	Protection Agency (fuele Value (private party data) k (private party data) tomobile Dealers Associat				*Sample sizes estimated based on descriptions of data in papers.

Value Retention Rate: $r=\frac{ListingPrice}{MSRP}$

BEVs & PHEVs are depreciating worse than CVs and HEVs

(Except Tesla)

Data: All listings between 2016 - 2019 (inclusive)

Modeling retention rate as exponential decay

$$r = \alpha \exp(\boldsymbol{\beta} \mathbf{x})$$

$$\log(r) = \alpha + \boldsymbol{\beta} \mathbf{x}$$

Interpretation:

$$\Delta r = \exp(\hat{\beta}) - 1$$

Effect of age on predicted retention rate by powertrain

Newer PEVs are holding value better than older PEVs

Predicted two-year retention rate by powertrain and model year

Predictions made with zero mileage and mean operating cost across all models.

Predicted two-year-old retention rate versus range (select BEVs)

Longer-range
BEVs hold
value better,
w/diminishing
returns at 200+
miles

Indirect Subsidies to Resale Market

Between 2010 and 2019, PEV Subsidies in the New Vehicle Market Have Indirectly Provided \$255 Million in Subsidies to the Resale Market Through Reduced Prices.

Used EVs gain additional benefit from new vehicle subsidies with no additional cost to gov't

COVID-19 had substantial impact on used vehicle pricing

Key takeaways

- BEVs have depreciated faster than CVs, but this is changing!
- Newer model BEVs with higher ranges are holding their value more similarly to CVs.
- Subsidies for new BEVs pass ~3% lower prices in used market
- Post COVID19 pandemic used prices are up ~40%

Thanks!

Slides:

https://slides.jhelvy.com/2024-issst-conf/

@jhelvy@fediscience.org @

@JohnHelveston >

@jhelvy 😯

jhelvy.com 💇

jph@gwu.edu **∢**

Extra slides

Cars

SUVs

BEV mileage less sensitive to operating cost than CV mileage

Powertrain:	Model 3a	Model 3b	Model 3c	Model 3d
	BEV	PHEV	Hybrid	Conventional
age_years	5.835***	12.925***	14.028***	11.448***
	(0.422)	(0.398)	(0.359)	(0.032)
Operating cost as	nd range interacti	$ons \ with \ age_years$		
cents_per_mile	-0.059** (0.020)	0.524^{***} (0.039)	-0.044 (0.028)	-0.136^{***} (0.002)

1 cent increase in operating cost:

BEV: -69 mi/yr CV: -136 mi/yr

BEV mileage less sensitive to operating cost than CV mileage

Powertrain:	Model 3a	Model 3b	Model 3c	Model 3d
	BEV	PHEV	Hybrid	Conventional
age_years	5.835***	12.925***	14.028***	11.448***
	(0.422)	(0.398)	(0.359)	(0.032)

Operating cost and range interactions with age_years

 $cents_per_mile$

1 cent increase in operating cost:

-0.136***

(0.002)

BEV: -69 mi/yr CV: -136 mi/yr

BEVs have much lower operating costs

Intra-household substitution?

Maybe current adopters have multiple cars?

Perhaps, but NHTS data suggests secondary cars are only driven 1,000 - 2,000 miles less per year.

Powertrain:	Model 6a Conventional	Model 6b Hybrid	Model 6c Conventional	
age_years	12.839***	15.157***	12.332***	
	(0.875)	(3.964)	(0.880)	
Interactions with age	e_years			
cents_per_mile	-0.243***	-0.378	-0.239***	
\$700	(0.040)	(0.346)	(0.040)	
secondary vehicle	-1.063***	-2.169*	-1.586***	
****	(0.180)	(0.849)	(0.309)	
HHSIZE 3	1.419***	1.096	1.501***	
	(0.230)	(1.035)	(0.232)	
HHSIZE 4	1.541***	1.356	1.627***	
	(0.265)	(1.195)	(0.268)	
HHSIZE 5	2.644***	2.019	2.676***	
	(0.447)	(2.248)	(0.451)	
HHSIZE 6+	0.340	0.661	0.446	
	(0.703)	(4.386)	(0.711)	
Num. obs.	32, 169	2,139	32, 169	
\mathbb{R}^2	0.368	0.409	0.358	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Maybe newer models are driven more?

Some (limited) evidence this may be the case

(MY 2019: only 10,484 listings, max age of 3.2 years old)

Powertrain:	Model 5a	Model 5b	Model 5c	Model 5d			
age_years	5.835***	6.639***	1.813**	3.746***			
The second secon	(0.422)	(0.449)	(0.573)	(0.632)			
age_years^2	and the second and an arrange of the	-0.093***		-0.156***			
		(0.018)		(0.022)			
Model year interactions with age_years (reference level: my2012)							
my2013	12. 7 0.		1.431***	1.311***			
			(0.158)	(0.159)			
my2014			1.852***	1.580***			
			(0.195)	(0.199)			
my2015			1.626***	1.175***			
			(0.194)	(0.204)			
my2016			1.097***	0.473^{*}			
			(0.200)	(0.218)			
my2017			0.184	-0.616*			
			(0.237)	(0.261)			
my2018			1.531***	0.597			
			(0.296)	(0.323)			
my2019			4.146***	3.021***			
50			(0.469)	(0.494)			
Num. obs.	175,773	175,773	171,701	171,701			
\mathbb{R}^2	0.412	0.413	0.412	0.4138 /			

Selection bias?

Maybe current adopters just have lower driving needs?

No way for us to measure this, but it seems very plausible

$\frac{Price}{MSRP}$

$\frac{Price}{MSRP{-}Subsidy}$

PEV subsidies for new cars (should) impact used car pricing

New Market

(MSRP - Subsidy = Price) \$30,000 - \$7,500 = **\$22,500**

Used Market

(Assuming adequate supply)
Max Price = \$22,500

Two year r by model shows huge gains in newer BEVs

Retention rate