### LECTURER: Nghia Duong-Trung

# **MACHINE LEARNING**

| Introduction to Machine Learning       | 1 |
|----------------------------------------|---|
| —————————————————————————————————————— | _ |
| Clustering                             | 2 |
| Regression                             | 3 |
| Support Vector Machines                | 4 |
| Decision Trees                         | 5 |
| Genetic Algorithm                      | 6 |

# **DECISION TREES**

#### **STUDY GOALS**



- Know the definitions and terms used for decision trees
- Comprehend common applications of decision trees
- Understand different methods of decision trees
- Understand the process of decision tree construction
   & pruning
- Implement decision tree methods in Python

### **Decision Trees:**

- A supervised learning method
- Based on the construction of a **tree** like structure
- A set of decision rules to categorize the input objects



Example: Decision tree for predicting a person is fit or unfit

#### INTRODUCTION



# **Methods of Decision Trees ID3 & INFORMATION GAIN ID3 & STANDARD DEVIATION**

#### **5.1 BASICS**

- Two steps: leaning & decision
- Structure:
  - Decision nodes : decision based on features
  - Branches: conditional statements (if)
  - Leaf nodes: classes
- Decision trees work with both continuous & discrete features



Example of a simple decision tree



Decision trees for continuous and discrete values

#### **5.2 DECISION TREE FOR CLASSIFICATION**

#### **ID3 and Information Gain**

- Iterative Dichotomiser (ID3) uses information gain (IG) to select the best splitting features
- ID3 measures the degree of **homogeneity** of the classes induced by a decision node
- IG is based on the **entropy**, i.e., the degree of disorganization and randomness:

$$Gain(f) = Info(D) - Info_f(D)$$

Where:

$$Info(D) = \sum_{k=1}^{m} -P_k \cdot \log(P_k)$$
: entropy of dataset D

 $Info_f(D) = \sum_{i=1}^v \frac{|d_i|}{|D|} \cdot Info(d_i)$ : entropy of dataset D with respect to feature f which splits D into v subsets  $d_i$ 

 $P_k$  is the probability that any instance in the dataset D belongs to class k



An example of dataset homogeneity

In statistics, entropy measures the *level of impurity(heterogeneity) in a dataset*. A fully homogenous dataset has an entropy of 0 whereas a skewed dataset has an entropy closer to 1 as shown in the figure below:



#### **ENTROPY CALCULATIONS**

IF we have a set with k different values in it, we can calculate the entropy as follows:

Entropy(set) = I(set) = 
$$-\sum_{i=1}^{k} P(value_i) \cdot log_2(P(value_i))$$

Where  $P(value_i)$  is the probability of getting the  $i^{th}$  value when randomly selecting one from the set.

Example: a set  $R = \{a,a,a,b,b,b,b,b\}$ 

Entropy(R) = I(R) = 
$$-\left[\frac{3}{8}log_2(\frac{3}{8}) + \frac{5}{8}log_2(\frac{5}{8})\right]$$

#### **ENTROPY CALCULATIONS**

16 instances: 9 positive, 7 negative

I(data) = 
$$-\left[\frac{9}{16}\log_2\left(\frac{9}{16}\right) + \frac{7}{16}\log_2\left(\frac{7}{16}\right)\right] = 0.9836$$

This makes sense. It's almost a 50/50 split; so, the entropy should be close to 1.

| ID | Color  | Size  | Shape     | Target/Class |
|----|--------|-------|-----------|--------------|
| 1  | Yellow | Small | Round     | 1            |
| 2  | Yellow | Small | Round     | 0            |
| 3  | Green  | Small | Irregular | 1            |
| 4  | Green  | Large | Irregular | 0            |
| 5  | Yellow | Large | Round     | 1            |
| 6  | Yellow | Small | Round     | 1            |
| 7  | Yellow | Small | Round     | 1            |
| 8  | Yellow | Small | Round     | 1            |
| 9  | Green  | Small | Round     | 0            |
| 10 | Yellow | Large | Round     | 0            |
| 11 | Yellow | Large | Round     | 1            |
| 12 | Yellow | Large | Round     | 0            |
| 13 | Yellow | Large | Round     | 0            |
| 14 | Yellow | Large | Round     | 0            |
| 15 | Yellow | Small | Irregular | 1            |
| 16 | Yellow | Large | Irregular | 1            |

#### **ENTROPY CALCULATIONS**

### Size

Small

Large

| ID | Color  | Size  | Shape     | Target/Class |
|----|--------|-------|-----------|--------------|
| 1  | Yellow | Small | Round     | 1            |
| 2  | Yellow | Small | Round     | 0            |
| 3  | Green  | Small | Irregular | 1            |
| 4  | Yellow | Small | Round     | 1            |
| 5  | Yellow | Small | Round     | 1            |
| 6  | Yellow | Small | Round     | 1            |
| 7  | Green  | Small | Round     | 0            |
| 8  | Yellow | Small | Irregular | 1            |

| ID | Color  | Size  | Shape     | Target/Class |
|----|--------|-------|-----------|--------------|
| 1  | Green  | Large | Irregular | 0            |
| 2  | Yellow | Large | Round     | 1            |
| 3  | Yellow | Large | Round     | 0            |
| 4  | Yellow | Large | Round     | 1            |
| 5  | Yellow | Large | Round     | 0            |
| 6  | Yellow | Large | Round     | 0            |
| 7  | Yellow | Large | Round     | 0            |
| 8  | Yellow | Large | Irregular | 1            |

### From ID3 to C4.5

- What is information entropy?
- How Information entropy used to calculate information gain?
- How ID3 decision tree uses information gain?
- Why C4.5 decision tree uses gain ratio over information gain?

# C4.5 and Gain Ratio

- C4.5 handles the problem of generalization when applying IG for the datasets with high homogeneity
- It can deal with both continuous and discrete features
- Method: normalizing the information gain:

$$gainRatio(f) = \frac{gain(f)}{SplitInfo(f)}$$

Where:

$$SplitInfo_f(D) = \sum_{i=1}^{v} \frac{|d_i|}{|D|} \cdot log\left(\frac{|d_i|}{|D|}\right)$$
 - normalizing factor

#### **C4.5 OBJECTIVE**

Decision rules will be found based on entropy and information gain ratio pair of each feature. In each level of decision tree, the feature having the maximum gain ratio will be the decision rule.

#### **WEATHER EXAMPLE**

Firstly, we need to calculate global entropy. There are 14 examples; 9 instances refer to yes decision, and 5 instances refer to no decision.

Entropy(Decision) = 
$$\sum - p(I) \cdot \log_2 p(I)$$
  
=  $- p(Yes) \cdot \log_2 p(Yes) - p(No) \cdot \log_2 p(No)$   
=  $- (9/14) \cdot \log_2 (9/14) - (5/14) \cdot \log_2 (5/14) = 0.940$ 

Here, we need to calculate gain ratios instead of gains.

$$gainRatio(f) = \frac{gain(f)}{SplitInfo(f)}$$

| Day | Outlook  | Temp. | Humidity | Wind   | Decision |
|-----|----------|-------|----------|--------|----------|
| 1   | Sunny    | 85    | 85       | Weak   | No       |
| 2   | Sunny    | 80    | 90       | Strong | No       |
| 3   | Overcast | 83    | 78       | Weak   | Yes      |
| 4   | Rain     | 70    | 96       | Weak   | Yes      |
| 5   | Rain     | 68    | 80       | Weak   | Yes      |
| 6   | Rain     | 65    | 70       | Strong | No       |
| 7   | Overcast | 64    | 65       | Strong | Yes      |
| 8   | Sunny    | 72    | 95       | Weak   | No       |
| 9   | Sunny    | 69    | 70       | Weak   | Yes      |
| 10  | Rain     | 75    | 80       | Weak   | Yes      |
| 11  | Sunny    | 75    | 70       | Strong | Yes      |
| 12  | Overcast | 72    | 90       | Strong | Yes      |
| 13  | Overcast | 81    | 75       | Weak   | Yes      |
| 14  | Rain     | 71    | 80       | Strong | No       |
|     |          |       |          |        |          |

#### **WIND ATTRIBUTE**

#### **WIND ATTRIBUTE**

There are 8 weak wind instances. 2 of them are concluded as no, 6 of them are concluded as yes.

Entropy(Decision|Wind=Weak) =  $-p(No) * log_2p(No) - p(Yes) * log_2p(Yes)$ =  $-(2/8) * log_2(2/8) - (6/8) * log_2(6/8) = 0.811$ 

Entropy(Decision|Wind=Strong) =  $-(3/6) * log_2(3/6) - (3/6) * log_2(3/6) = 1$ 

Gain(Decision, Wind) = 0.940 - (8/14)\*(0.811) - (6/14)\*(1) = 0.940 - 0.463 - 0.428 = 0.049

There are 8 decisions for weak wind, and 6 decisions for strong wind.

SplitInfo(Decision, Wind) =  $-(8/14)*\log_2(8/14) - (6/14)*\log_2(6/14) = 0.461 + 0.524 = 0.985$ 

GainRatio(Decision, Wind) = Gain(Decision, Wind) / SplitInfo(Decision, Wind) = 0.049 / 0.985 = 0.049

#### **OUTLOOK ATTRIBUTE**

Outlook is a nominal attribute, too. Its possible values are sunny, overcast and rain.

Gain(Decision, Outlook) = Entropy(Decision) –  $\sum$  (p(Decision|Outlook) \* Entropy(Decision|Outlook))

Gain(Decision, Outlook) = Entropy(Decision) - p(Decision|Outlook=Sunny) \*

Entropy(Decision|Outlook=Sunny) - p(Decision|Outlook=Overcast) \*

Entropy(Decision|Outlook=Overcast) – p(Decision|Outlook=Rain) \* Entropy(Decision|Outlook=Rain)

There are 5 sunny instances. 3 of them are concluded as no, 2 of them are concluded as yes.

Entropy(Decision|Outlook=Sunny) =  $-p(No) * log_2p(No) - p(Yes) * log_2p(Yes) = -(3/5)*log_2(3/5) - (2/5)*log_2(2/5) = 0.441 + 0.528 = 0.970$ 

Entropy(Decision|Outlook=Overcast) =  $-p(No) * log_2p(No) - p(Yes) * log_2p(Yes) = -(0/4).log_2(0/4) - (4/4).log_2(4/4) = 0$ 

Entropy(Decision|Outlook=Rain) =  $-p(No) \cdot log_2p(No) - p(Yes) \cdot log_2p(Yes) = -(2/5) \cdot log_2(2/5) - (3/5) \cdot log_2(3/5) = 0.528 + 0.441 = 0.970$ 

Gain(Decision, Outlook) = 0.940 – (5/14).(0.970) – (4/14).(0) – (5/14).(0.970) – (5/14).(0.970) = 0.246

There are 5 instances for sunny, 4 instances for overcast and 5 instances for rain SplitInfo(Decision, Outlook) =  $-(5/14) \cdot \log_2(5/14) \cdot (4/14) \cdot \log_2(4/14) \cdot (5/14) \cdot \log_2(5/14) = 1.577$  GainRatio(Decision, Outlook) = Gain(Decision, Outlook)/SplitInfo(Decision, Outlook) = 0.246/1.577 = 0.155

As an exception, humidity is a continuous attribute. We need to convert continuous values to nominal ones. C4.5 proposes to perform binary split based on a threshold value. Threshold should be a value which offers maximum gain for that attribute. Let's focus on humidity attribute. Firstly, we need to sort humidity values smallest to largest.

Now, we need to iterate on all humidity values and seperate dataset into two parts as instances less than or equal to current value, and instances greater than the current value. We would calculate the gain or gain ratio for every step. The value which maximizes the gain would be the threshold.

| Day | Humidity | Decision |
|-----|----------|----------|
| 7   | 65       | Yes      |
| 6   | 70       | No       |
| 9   | 70       | Yes      |
| 11  | 70       | Yes      |
| 13  | 75       | Yes      |
| 3   | 78       | Yes      |
| 5   | 80       | Yes      |
| 10  | 80       | Yes      |
| 14  | 80       | No       |
| 1   | 85       | No       |
| 2   | 90       | No       |
| 12  | 90       | Yes      |
| 8   | 95       | No       |
| 4   | 96       | Yes      |

Check 65 as a threshold for humidity

Entropy(Decision|Humidity<=65) = 
$$-p(No) * log_2p(No) - p(Yes) * log_2p(Yes) = -(0/1)*log_2(0/1) - (1/1)*log_2(1/1) = 0$$

Entropy(Decision|Humidity>65) =  $-(5/13)*log_2(5/13) - (8/13)*log_2(8/13) = 0.530 + 0.431 = 0.961$ 

Gain(Decision, Humidity<>65) = 0.940 - (1/14)\*0 - (13/14)\*(0.961) = 0.048

SplitInfo(Decision, Humidity<>65) = -(1/14)\*log2(1/14) - (13/14)\*log2(13/14) = 0.371

GainRatio(Decision, Humidity<> 65) = 0.126

Check 70 as a threshold for humidity

Entropy(Decision|Humidity<=70) =  $-(1/4)*log_2(1/4) - (3/4)*log_2(3/4) = 0.811$ 

Entropy(Decision|Humidity>70) =  $-(4/10)*log_2(4/10) - (6/10)*log_2(6/10) = 0.970$ 

Gain(Decision, Humidity<>70) = 0.940 – (4/14)\*(0.811) – (10/14)\*(0.970) = 0.940 – 0.231 – 0.692 = 0.014

SplitInfo(Decision, Humidity<> 70) =  $-(4/14)*log_2(4/14) - (10/14)*log_2(10/14) = 0.863$ 

GainRatio(Decision, Humidity<> 70) = 0.016

Check 75 as a threshold for humidity

Entropy(Decision|Humidity<=75) =  $-(1/5).\log_2(1/5) - (4/5).\log_2(4/5) = 0.721$ 

Entropy(Decision|Humidity>75) =  $-(4/9).\log_2(4/9) - (5/9).\log_2(5/9) = 0.991$ 

Gain(Decision, Humidity<>75) = 0.940 – (5/14).(0.721) – (9/14).(0.991) = 0.940 – 0.2575 – 0.637 =

0.045

SplitInfo(Decision, Humidity<> 75) =  $-(5/14) \cdot \log_2(4/14) \cdot (9/14) \cdot \log_2(10/14) = 0.940$ 

GainRatio(Decision, Humidity<> 75) = 0.047

Gain(Decision, Humidity <> 78) =0.090, GainRatio(Decision, Humidity <> 78) =0.090 **Gain(Decision, Humidity <> 80) = 0.101, GainRatio(Decision, Humidity <> 80) = 0.107**Gain(Decision, Humidity <> 85) = 0.024, GainRatio(Decision, Humidity <> 85) = 0.027

Gain(Decision, Humidity <> 90) = 0.010, GainRatio(Decision, Humidity <> 90) = 0.016

Gain(Decision, Humidity <> 95) = 0.048, GainRatio(Decision, Humidity <> 95) = 0.128

Here, I ignore the value 96 as threshold because humidity cannot be greater than this value. As seen, gain maximizes when threshold is equal to 80 for humidity. This means that we need to compare other nominal attributes and comparison of humidity to 80 to create a branch in our tree.

#### **TEMPERATURE ATTRIBUTE**

Temperature feature is continuous as well. When I apply binary split to temperature for all possible split points, the following decision rule maximizes for both gain and gain ratio.

Gain(Decision, Temperature <> 83) = 0.113, GainRatio(Decision, Temperature <> 83) = 0.305

#### **WEATHER EXAMPLE**

Let's summarize calculated gain and gain ratios. Outlook attribute comes with both maximized gain and gain ratio. This means that we need to put outlook decision in root of decision tree.

| Attribute         | Gain  | GainRatio |
|-------------------|-------|-----------|
| Wind              | 0.049 | 0.049     |
| Outlook           | 0.246 | 0.155     |
| Humidity <> 80    | 0.101 | 0.107     |
| Temperature <> 83 | 0.113 | 0.305     |

If we will use gain metric, then outlook will be the root node because it has the highest gain value. On the other hand, if we use gain ratio metric, then temperature will be the root node because it has the highest gain ratio value.

### **CART and Gini Index**

- CART uses Gini Index Gini(D) to measure the **impurity** in a dataset D:

$$Gini(D) = 1 - \sum_{k=1}^{m} P_k^2$$

where:  $P_k$  - probability that an instance in D belongs to class k

The feature that maximizes the **impurity reduction**  $\Delta Gini(f)$  is selected as an important feature:

$$\Delta Gini(f) = Gini(D) - Gini_f(D)$$

where:  $Gini_f(D)=\frac{d_1}{D}Gini(d_1)+\frac{d_2}{D}Gini(d_2)$  - impurity index with respect to the feature f which splits D into  $d_1$  and  $d_2$ 

#### **5.3 DECISION TREE FOR REGRESSION**

### **ID3 & Standard deviation**

- ID3 can be applied for regression problems by using standard deviation reduction instead of IG
- Standard deviation S of target  $c: S_c = \sqrt{\frac{\sum (c \bar{c})^2}{n}}$
- Standard deviation based on the feature vector x:  $S(c, x) = \sum_{v \in x} P(v) \cdot S_c(v)$
- **Reduction** in standard deviation: SDR(c,x) = S(c) S(c,x)
- **Coefficient** of variation:  $CV = \frac{S}{\bar{x}} \cdot 100\%$

# **Top-down process** to construct a decision tree:

- 1. Select the highest ranked feature → create the decision node
- 2. From this node, create the branches with distinct value (range)
- If all instances of this feature value (range) are of the same class:
  - → the child node from this branch is a leaf node
- else:
  - → repeat step 1 and 2

# Decision tree **pruning:**

- handles overfitting by decreasing the size of the tree to make it less complex
- Method: Removing sub-trees in the decision tree that have low classification power
- Two types:
  - Pre-pruning: avoids building up the low-discriminating sub-trees while the decision tree is being constructed, and replaces with leaf nodes
  - Post-pruning: removes spurious sub-trees from the fully constructed decision tree, and replaces with leaf nodes

# **Ensemble** methods:

- combine a series of machine learning algorithms to improve the learning performance
- train many weak base-classifiers that are good at different parts of the input space.
- Types:
  - Homogenous: bagging (or bootstrapping) & boosting
  - Heterogeneous





#### 5.7. IMPLEMENTATION OF DECISION TREE IN PYTHON

#### # Decision tree classifier

# Import libraries from sklearn.datasets import load\_iris from sklearn.tree import DecisionTreeClassifier, plot\_tree import matplotlib.pyplot as plt

# Load the iris dataset
iris = load\_iris()

# Define the decision tree classifier model
clf = DecisionTreeClassifier(max\_depth=3)

# Train the model on the iris dataset clf.fit(iris.data, iris.target)

# Plot the decision tree
fig, ax = plt.subplots(figsize=(12, 12))
plot\_tree(clf, filled=True, feature\_names=iris.feature\_names,
class\_names=iris.target\_names, ax=ax)
plt.show()



Decision tree classifier

#### 5.7. IMPLEMENTATION OF DECISION TREE IN PYTHON

#### # Decision tree regressor

```
# Import libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor, plot_tree
import matplotlib.pyplot as plt
# Create dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(100, 1), axis=0)
y = np.sin(X).ravel(); y[::5] += 3 * (0.5 - rng.rand(20))
# Defin regressor
regr = DecisionTreeRegressor(max_depth=2)
# Train & test the model
regr.fit(X, y)
X_{\text{test}} = \text{np.arange}(0.0, 5.0, 0.01)[:, np.newaxis];
y_1 = regr.predict(X_test)
# Plot the results
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="yellow", label="data")
plt.plot(X_test, y_1, color="red", label="Regressor", linewidth=2)
plt.xlabel("X"); plt.ylabel("y"); plt.title("Decision Tree Regression")
plt.legend(); plt.show()
```



#### **REVIEW STUDY GOALS**



- Know the definitions and terms used for decision trees
- Comprehend common applications of decision trees
- Understand different methods of decision trees
- Understand the process of decision tree construction
   & pruning
- Implement decision tree methods in Python

SESSION 5

# **DECISION TREES**

- 1. Implement decision tree classifier for Iris dataset with the following configuration:
- Classification criteria: information gain (entropy)
- Maximum depth of the decision tree: 5
- 2. Create a dataset using the following code:

```
>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = np.sort(10 * rng.rand(80, 1), axis=0)
>>> y = np.sin(X).ravel(); y[::5] += 3 * (0.5 - rng.rand(16))
```

# Implement decision tree regressor with the following configuration:

- Regression criteria: absolute error
- Maximum depth of the decision tree: 3

# TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.



#### **LEARNING CONTROL QUESTIONS**

- 1. \_\_\_\_\_ area decision support tool that use a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility.
  - a) Graphs
  - b) Trees
  - c) Decision trees
  - d) Neural networks



- 2. The ID3, C4.5, and CART approaches use \_\_\_\_\_, \_\_\_\_, and \_\_\_\_\_ techniques for feature ranking, respectively.
  - a) Gini index, information gain and gain ratio
  - b) Information gain, gain ratio and Gini index
  - C) Gain ratio, Gini index and information gain
  - d) Gain ratio, information gain and Gini index

#### **LEARNING CONTROL QUESTIONS**



- 3. The \_\_\_\_\_ technique provides a higher ranking value to the features having more distinct values.
  - a) Information gain
  - b) Gain ratio and Gini index
  - c) Gain ratio
  - d) Gini index

#### **LEARNING CONTROL QUESTIONS**



4. The \_\_\_\_\_ technique provides a higher ranking value to the features that maximize the reduction in the impurity of the partitioned instance sets.

- a) Gain ratio
- b) Information gain
- C) Gain ratio and Gini index
- d) Gini index



- 5. Which of the following is/are true about boosting trees?
- (1): In boosting trees, individual weak learners are independent of each other.
- (2): It is the method for improving the performance by aggregating the results of weak learners.
  - a) Option 2 is correct
  - b) Neither option is correct
  - c) Option 1 and 2 are correct
  - d) Option 1 is correct

#### **LIST OF SOURCES**

#### Text:

Zöller, T. (2022). Course Book – Machine Learning. *IU International University of Applied Science*.

Navlani, A. (2018). Decision tree classification in Python. <a href="https://www.datacamp.com/community/tutorials/decision-tree-classification-python">https://www.datacamp.com/community/tutorials/decision-tree-classification-python</a>
Quinlan, J.R.(1986). Introduction of decision trees. Machine Learning, 1(1), 81-106. <a href="https://doi.org/10.1023/A:1022643204877">https://doi.org/10.1023/A:1022643204877</a>
Scikit-Learn. (n.d). Machine Learning in Python. Open-source: <a href="https://scikit-learn.org/stable/modules/tree.html#decision-trees">https://scikit-learn.org/stable/modules/tree.html#decision-trees</a>

#### **Images:**

Zöller (2022).

Zöller (2022, p. 109).

Zöller (2022, p. 112).

Zöller (2022, p. 125-126).

