QF632-2025-W8

Number of participants: 22

What does the reward signal tell 11 correct answers an RL agent? out of 12 respondents How unpredictable 1 vote the environment is Whether its last action was good or 11 votes 92% bad for its longterm goal The exact next 0 votes action to take How many states

exist in the

environment

0 votes

2. In a standard RL problem, exploration is needed because:

13 correct answers out of 14 respondents

3. Why is the discount factor (γ) usually set to a value less than 1?

14 correct answers out of 16 respondents

If an agent keeps receiving sparse rewards (only at episode end), which technique can make learning easier?

9 correct answers out of 19 respondents

In exploration-exploitation for 5. portfolio RL, too much exploration leads to:

10 correct answers out of 16 respondents

Why might an RL agent overfit 6. when trained on historical price series?

12 correct answers out of 12 respondents

	Because it uses too large a discount factor ($\gamma pprox 1$)	0%	0 votes
⊘	Because it memorizes past market patterns that don't repeat	100%	12 votes
	Because transaction costs are ignored	0%	0 votes
	Because states are Markovian	0%	0 votes

× ×

What's the main advantage of using a distributional RL approach (predicting full return distribution) over standard RL in portfolio tasks?

10 correct answers out of 10 respondents

lt guarantees convergence faster	0%	0 votes
It captures the shape and tail risks of the return distribution, improving risk management	100%	10 votes
It requires no function approximation	0%	0 votes
It avoids the need for bootstrapping	0%	0 votes

In a partially observable market 8. model, integrating an RNN (e.g. LSTM) enables the agent to

9 correct answers out of 10 respondents

A key downside of discrete-time 9. rebalancing (e.g. daily) versus continuous hedging is that:

9 correct answers out of 11 respondents

In multi-objective RL for hedging (balancing return, variance, and 10. cost), a common approach to scalarise the vector reward

10 correct answers out of 10 respondents

 $(r^{
m return}, r^{
m var}, r^{
m cost})$ is to

Use a weighted $\mathrm{sum}\ w_1 r^{\mathrm{return}} - \ w_2 r^{\mathrm{var}} - w_3 r^{\mathrm{cost}}, \ \mathrm{tuning}\ w_i \ \mathrm{to}\ \mathrm{reflect}$ risk-return-cost $\mathrm{trade}\text{-offs}$	100%	10 votes
Ignore variance entirely	0%	0 votes
Optimise only $r^{ m return}$ then adjust for cost later	0%	0 votes
Train three separate agents without sharing experience	0%	0 votes