ИТМО

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение

Дисциплина «Основы профессиональной деятельности»

Отчёт по лабораторной работе №2 Исследование работы БЭВМ

Вариант №15022

Выполнил

Галак Екатерина Анатольевна

P3115

Проверил

Блохина Елена Николаевна

Оглавление

Задание	3
Назначение программы и реализуемая ею функция	
Описание и назначение исходных данных, область представления и область допустимых значений исходных данных и результата	
Расположение в памяти ЭВМ программы, исходных данных и результатов	
Адреса первой и последней выполняемой команд программы	5
Вариант программы с меньшим числом команд	5
Заключение	7

Задание

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

Введите номер варианта 15022

150: A15C 151: E150 152: 0100 153: + A15C 154: 4151 155: E15B 156: 0200 157: 3152 158: 315B 159: E150 15A: 0100 15B: 4151 15C: 3152

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарии
153	A15C	LD 15C	Загрузить содержимое ячейки 15С в
			аккумулятор:
			$(15C) \to AC$
154	4151	ADD 151	Прибавить содержимое ячейки 151
			к аккумулятору:
			$(151) + AC \rightarrow AC$
155	E15B	ST 15B	Сохранить содержимое
			аккумулятора в ячейку памяти 15В:
			$AC \rightarrow (15B)$
156	0200	CLA	Очистить аккумулятор:
			$0 \rightarrow AC$
157	3152	OR 152	Выполнить операцию логического
			«ИЛИ» над содержимым ячейки
			памяти 152 и аккумулятором,
			результат записать в аккумулятор:
			$^{(\land}(AC \& ^{\land}(152)) \rightarrow AC$
158	315B	OR 15B	Выполнить операцию логического
			«ИЛИ» над содержимым ячейки
			памяти 15В и аккумулятором,
			результат записать в аккумулятор:
			$^{(\land}(AC \& ^{\land}(15B)) \rightarrow AC$
159	E150	ST 150	Сохранить содержимое
			аккумулятора в ячейку памяти 150:
			$AC \rightarrow (150)$

Назначение программы и реализуемая ею функция

Назначение программы и реализуемая ею функция:

Реализуется следующая функция:

$$\mathbf{R} = (\mathbf{E} + \mathbf{B}) \vee (\mathbf{0} \vee \mathbf{C}) = (\mathbf{E} + \mathbf{B}) \vee \mathbf{C}$$

Описание и назначение исходных данных, область представления и область допустимых значений исходных данных и результата Область представления:

- R, C, D (D = E + B; результат арифметической операции (E + B) трактуется как логический операнд) набор из 16-ти однобитных значений, $[0; 2^{16} 1]$
- E, B знаковое, 16-ти разрядное число, [-2¹⁵; 2¹⁵ 1]

Область допустимых значений (ОДЗ):

Очевидно, что ОДЗ нужно расписывать только для (E + B), так как логическое или не предполагает возникновение переполнения.

$$-2^{15} \le E + B \le 2^{15} - 1$$

Рассмотрим случаи:

1. Ограничим разрядность слагаемых

$$-2^{14} \le E$$
, B $\le 2^{14} - 1$

Действительно, максимальная сумма E и B будет равна $2*(2^{14}-1)=2^{15}-2<2^{15}-1$; минимальная сумма E и B равна $2*(-2^{14})=-2^{15}<=2^{15}$. Т.е. при таких ограничениях переполнение не возникает.

2. Переполнение никогда не возникнет, если слагаемые разных знаков, так как результат сложения в таком случае будет всегда меньше уменьшаемого (слагаемого со знаком "+"), т.е. всегда поместится в разрядную сетку.

$$2.1. \begin{cases} -2^{14} \le E \le 2^{14} \\ -2^{14} \le B \le 2^{14} - 1 \end{cases}$$

$$2.2. \begin{cases} 2^{14} + 1 \le E \le 2^{15} - 1 \\ -2^{15} \le B \le 0 \end{cases}$$

$$2.3. \begin{cases} -2^{15} \le E \le -2^{14} - 1 \\ 0 \le B \le 2^{15} - 1 \end{cases}$$

Расположение в памяти ЭВМ программы, исходных данных и результатов

- Программа расположена в ячейках 153 15А
- Исходные данные расположены в ячейках 151, 152, 15С (В, С, Е соответственно)
- Промежуточный результат расположен в ячейке **15B**; итоговый результат в ячейке **150** (**R**)

Адреса первой и последней выполняемой команд программы

- Первая 153
- Последняя 15A

Трассировка

Новые исходные данные для таблицы трассировка в десятичном формате:

 $B = -890_{10}$

 $C = -9875_{10}$

 $E = 15899_{10}$

Переведём в шестнадцатиричный формат, при этом отрицательные числа будем преобразовывать в дополнительный код:

$$B = -890_{10} \rightarrow (2^{16} - 890)_{10} = (FC86)_{16}$$

$$C = -9875_{10} \rightarrow (2^{16} - 9875)_{10} = (D96D)_{16}$$

$$E = 15899_{10} = (3E1B)_{16}$$

Адрес	Значение
151	FC86
152	D96D
15C	3E1B

Таблица трассировки программы:

	олняем оманда	Содержимое регистров процессора после выполнения команды					Ячейка, содержимое которой изменилось после выполнения команды				
Адр	Код	IP	CR	AR	DR	SP	BR	AC	NZ	Адр	Новый
ec									VC	ec	код
153	A15C	154	A15C	15C	3E1B	000	0153	3E1B	0000	-	-
154	4151	155	4151	151	FC86	000	0154	3AA1	0001	ı	-
155	E15B	156	E15B	15B	3AA1	000	0155	3AA1	0001	15B	3AA1
156	0200	157	0200	156	0200	000	0156	0000	0101	1	-
157	3152	158	3152	152	D96D	000	2692	D96D	1001	1	-
158	315B	159	315B	15B	3AA1	000	0412	FBED	1001	1	-
159	E150	15A	E150	150	FBED	000	0159	FBED	1001	150	FBED
15A	0100	15B	0100	15A	0100	000	015A	FBED	1001	-	-

Вариант программы с меньшим числом команд

$$R = (E + B) \lor C$$

	7.0	3.6	***
Адрес	Код команды	Мнемоника	Комментарии
1 ідрес	команды	IVIIICMOITING	Kommentaphh

153	A15C	LD 15C	Загрузить содержимое ячейки 15С в
			аккумулятор:
			$(15C) \to AC$
154	4151	ADD 151	Прибавить содержимое ячейки 151
			к аккумулятору:
			$(151) + AC \rightarrow AC$
155	3152	OR 152	Выполнить операцию логического
			«ИЛИ» над содержимым ячейки
			памяти 152 и аккумулятором,
			результат записать в аккумулятор:
			^(^(AC & ^(152)) → AC
156	E150	ST 150	Сохранить содержимое
			аккумулятора в ячейку памяти 150:
			$AC \rightarrow (150)$
157	0100	HLT	Останов

Заключение

Во время выполнения лабораторной работы было изучено устройство БЭВМ (память, процессор, состоящий из ряда регистров, АЛУ с коммутатором и блоком установки признаков результата, а также устройства управления). Изучены виды команд (адресные и безадресные) и цикл команд, включающий в себя машинные циклы: выборки команды, выборки адреса, выборки операнда, исполнения и прерывания. Была определена функция, вычисляемая программой, найдена область представления и область допустимых значений для исходных данных и результатов (итогового и промежуточного), выполнена трассировка программы и предложен вариант с меньшим числом команд.