Lecture #1: Introduction and History of Enzymes

- (1) Historical Aspects
- (2) Discovery of enzymes
- (3) Chemistry of enzymes
- (4) Enzymes as proteins
- (5) Function and importance
- (6) Enzymes in Biotechnology
 - Aspartic proteases
 - Pectinases
 - Detergents
 - Proteases
 - Lipases
 - Amylases
 - Cellulases
 - Sucrases

Lecture #1: Introduction and History of Enzymes

1. <u>Historical Aspects</u>

Enzymes are catalysts: increase the rate of reaction without undergoing change

- -1 reaction: 1 or more enzymes
- -E. coli--3000 enzymes

-eukaryotic cell--50,000 enzymes

-used by man--fermentation of alcohol and cheese

2. <u>Discovery of enzymes</u>

- -enzyme first used in 1878 by W. Kühne while working with trypsin from pancreatic juices
- -yeast were organized systems capable of fermentation
- -1897 E. Büchner showed that yeast extracts could also ferment sugar to alcohol
 - -dispelled the doctrine of "vitalism": 'living organisms are fundamentally different from non-living entities'

-the term enzyme (in yeast) adopted and now refers to biological catalysts

produced by living organisms

Willhelm Kühne, German **Physiologist**

Eduard Buchner, 1860–1917

Lehninger Principles of Biochemistry, Seventh Edition

Nobel Prize in Chemistry in 1907

-extracts of yeast could ferment sugar to alcohol

3. Characterization of Enzymes as Proteins

- •attempts to purify enzymes began in early 1900's
- crystallization of urease by Sumner in 1926
 - enzyme consisted of protein!

urease catalyzes the hydrolysis of urea to form CO₂ and NH₃

1887–1955 Nobel Prize in Chemistry 1946

Theo Svedberg

Nobel Prize in Chemistry in 1926

- •ultracentrifugation by T. Svedberg showed large mass of enzymes as proteins
- •(M_r of 10^4 10^7 D) for enzymes
- each enzyme is a homogeneous population of proteins

4. Chemistry of enzymes

- •first required an understanding of their structure
- •Ribonuclease A
 - •large positive surface charge (pl = 8.6)
 - •very polar with little nonpolar core
 - •required 4 disulfide bonds to stabilize the structure
- •1st amino acid sequence (RNase A) obtained in 1960
 - 1st enzyme synthesized in 1969 (chemically)
 - Synthesized enzyme (124 residues) was low purity and low activity
- 1st 3D structure of an enzyme (X-ray crystal structure) of lysozyme in 1965
- some knowledge of their mechanism of action (Fischer's lock & key model - 1894) by detailed kinetic investigation

- present day can easily synthesize proteins by recombinant DNA methodology
- manipulate the structure using **site-directed mutagenesis** to examine important sections of the enzyme

Lactate dehydrogenase from a parasitic protist

5. Function and importance

- enzymes are biological catalysts
 - Catalytic "nanomachines"
- primary function: to catalyze all metabolic processes within a cell

an understanding of enzymes therefore leads to an understanding of the 1.1 billion years glycine decarboxylation

relationships and control of cellular function Enzymes are <u>necessary</u> because: (1) reactions must be biologically friendly, (2) reactions must be specific,

(3) reactions must have very high reaction rates

enzymes are also used as analytical reagents, eg. ELISA

4 years ribose phosphodiester hydrolysis 2 days triosephosphate isomerization 7 hours chorismate mutation 23 seconds peptide cis-trans isomerization 5 seconds CO2 hydration 20 milliseconds lifetime of a typical enzyme-substrate complex

78 million years OMP decarboxylation 12 million years α-O-glycoside hydrolysis 700,000 years fumarate hydration

> 500,000 years phosphomonoester hydrolysis

36,000 years pyrimidine ribonucleoside hydrolysis

450 years peptide, purine ribonucleoside hydrolysis

130,000 years phosphodiester hydrolysis 72,000 years mandelate racemization

6000 years amino acid racemization

73 years cytidine deamination 50 years deoxyribonucleoside hydrolysis

A sandwich ELISA. (1) Plate is coated with a capture antibody; (2) sample is added, and any antigen present binds to capture antibody; (3) detecting antibody is added, and binds to antigen; (4) enzyme-linked secondary antibody is added, and binds to detecting antibody; (5) substrate is added, and is converted by enzyme to detectable form.

Genetic Disorders

many human genetic disorders are caused by a defective enzyme

TABLE 18-2 Son	Some Human Genetic Disorders Affecting Amino Acid Catabolism				
Medical condition	Approximate incidence (per 100,000 births)	Defective process	Defective enzyme	Symptoms and effects	
Albinism	<3	Melanin synthesis from tyrosine	Tyrosine 3- monooxygenase (tyrosinase)	Lack of pigmentation; white hair, pink skin	
Alkaptonuria	<0.4	Tyrosine degradation	Homogentisate 1,2- dioxygenase	Dark pigment in urine; late-developing arthritis	
Argininemia	<0.5	Urea synthesis	Arginase	Intellectual disability	
Argininosuccinic acidemia	<1.5	Urea synthesis	Argininosuccinase	Vomiting; convulsions	
Carbamoyl phosphate synthetase I deficiency	<0.5	Urea synthesis	Carbamoyl phosphate synthetase I	Lethargy; convulsions; early death	
Homocystinuria	<0.5	Methionine degradation	Cystathionine <i>β</i> -synthase	Faulty bone development; Intellectual disability	
Maple syrup urine disease (branchedchain ketoaciduria)	<0.4	Isoleucine, leucine, and valine degradation	Branched-chain α-keto acid dehydrogenase complex	Vomiting; convulsions; Intellectual disability; early death	
Methylmalonic acidemia	<0.5	Conversion of propionyl-CoA to succinyl-CoA	Methyl-malonyl-CoA mutase	Vomiting; convulsions; Intellectual disability; early death	
Phenylketonuria Lehninger 7 th ed (2017)	<8	Conversion of phenylalanine to tyrosine	Phenylalanine hydroxylase	Neonatal vomiting; Intellectual disability 10	

Phenylketonuria (PKU)

• caused by a genetic defect in phenylalanine hydroxylase

(1st enzyme in catabolism of Phe)

L7:18-23a

Tyrosine

- Much of the phenylpyruvate is decarboxylated or reduced
- •Phe and its metabolites compete with other amino acids for transport across the bloodbrain barrier ⇒ impairs brain development in infants ⇒ severe mental disabilities (permanent)!
- Test-blood sample taken from heel of baby
- •(2-3 days after birth) and test for phenylhydroxylase activity in blood

Figure 18-25
Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company

The blood of a two week-old infant is collected for a phenylketonuria, or PKU, screening https://en.wikipedia.org/wiki/Neonatal_heel_prick

- •Treatment-dietary control to ensure that only enough Phe and Tyr are consumed for protein synthesis needs
 - -People with PKU need to avoid various high-protein foods, including:
 - · Milk and cheese
 - Eggs
 - Nuts
 - Soybeans
 - Beans
 - Chicken, pork or beef
 - Fish
 - Peas
 - beer

6. Enzymes in Biotechnology/Industry

Catalyzing the production of required materials

– Examples:

Sector	Enzymes	Applications	
Pharmaceuticals	Nitrile hydratase, transaminase, monoamine oxidase, lipase, penicillin acylase	Synthesis of intermediates for production of active pharmaceutical ingredients	
Food Processing	Trypsin, amylase, glucose isomerase, papain, pectinase	Conversion of starch to glucose, production of high fructose corn syrup, production of prebiotics, debittering of fruit juice	
Detergent	Protease, lipase, amylase, cellulase	Stain removal, removal of fats and oils, color retention,	
Biofuels Lipase, cellulase, xylanase		Production of fatty acid methyl esters, decomposition of lignocellulotic material for bioethanol production	
Paper and Pulp Lipase, cellulase, xylanase		Removal of lignin for improved bleaching, improvement in fiber properties	

Catalyzing the production of required materials

- In the pharmaceutical industry, several enzymes are used to produce active ingredients with high specificity
- These enzyme catalyze various chemical reactions
- Some have been engineered for improved activity/stability
- Examples:

Drug	Disease or Condition	Enzyme	Catalyzed Reaction	Company
Cymbalta	Depression	Ketoreductase	$C=O\longrightarrow C-OH$	Codexis
Lipitor	High cholesterol	Halohydrin dehalogenase	$C\text{-}Cl \longrightarrow C\text{-}C\equiv N$	Codexis
Januvia	Diabetes	Transaminase	$C=O \longrightarrow C-NH_2$	Codexis
Lyrica	Epilepsy	Esterase	$COO-Et \longrightarrow COOH$	Pfizer
Tekturna	Hypertension	Esterase	$COO\text{-Me} \longrightarrow COOH$	DSM

- Aspartic proteases (AP) used in cheese making
 - •APs hydrolyse the Phe¹⁰⁵-Met¹⁰⁶ of bovine κ-casein splitting the protein into the hydrophobic and hydrophilic parts
 - natural source: rennet from young calves
 - Recombinant source: bovine chymosin from *E. coli*
 - Coagulation of casein micelles due to destabilization from proteolysis

κ-casein with Phe¹⁰⁵-Met¹⁰⁶ bond

Goat

cheese

Pepper

•Pectinases (P) degrade complex polysaccharides of plant cell walls which clarifies fruit juices and lowers the viscosity for drinking

polygalacturonase from Aspergillus aculeatus

Enzymes in household detergents

Enzymes break down stains and dirt into soluble and smaller fragments which aid household detergents in the solubilization process
Involves proteases, amylases, and lipases that have been genetically engineered for greater thermal, pH and detergent stability

Proteases

- -remove protein stains (grass, blood, egg and human sweat)
- -organic stains adhere to textile fibres preventing the water-detergent systems from removing pigments and street dirt
- -proteases hydrolyse proteins and break them down into more soluble polypeptides or free amino acids

BiotouchTM Detergent Proteases (Ab Enzymes)—tailored detergent enzyme solutions

- Effective at lower temp $(20 40^{\circ}C)$
- Work well even "in soft" water

Improved enzyme stability (stable even after 18 weeks)

Subtilisins, trypsin and chymotrypsin-like, metalloproteases

17

PDB:1SBC

Lipases

- -the trend towards lower washing temperatures has made the removal of grease spots a **big problem**
- -lipases remove fatty stains such as fats, butter, salad oil, sauces and the tough stains on collars and cuffs
- -break ester bonds in triglycerides and phospholipids and produce more soluble fatty acids

B. subtilis lipase PDB:3D2A

triglyceride

Amylases

- remove residues of starch-based foods (potatoes, spaghetti, custards, gravies and chocolate)
- -breakdown complex carbohydrates into short-chain (soluble sugars) -α-amylases, β-amylases
- -application: used for cleaning stains from clothes and dishes

B. licheniformis α-amylase PDB:1BLI

Cellulases

- Cotton fibrils are degraded by cellulases restoring a smooth surface to the fibre and restoring the garment to its original color
- Softening-the enzyme has a softening effect on the fabric, probably due to the removal of the microfibrils
- Soil removal -some dirt particles are trapped in the network of microfibrils and are released when the microfibrils are removed by cellulases

Denim finishing

- denim jeans are treated with cellulases
- Cellulases partly hydrolyze the surface of the denim fiber causing the release of indigo dye to give a random, faded pattern

Sucrase

catalyzes the hydrolysis of sucrose

How do they get the Caramilk into the Caramilk[™] bar?

• use solid sucrose caramilk centre with a miniscule (fmol) of **sucrase** ⇒ converts sucrose to fructose + glucose (more soluble and much sweeter than sucrose-Merrill hypothesis)