Синтез цифровых автоматов

План лекции

- Обобщенная структура цифровых устройств
- Классификация управляющих автоматов
- Управляющий автомат Мили.
- Управляющий автомат Мура.
- Микропрограммный автомат

Структура цифрового устройства

34-Запоминающая часть ОЧ-Операционная часть УЧ – управляющая часть (управляющий автомат)

- D_I − входные данные
- D_0 выходные данные
- X сигналы условий (признаков)
- Y управляющие сигналы
- С команды

Операционная часть выполняет обработку цифровых данных под управлением управляющего автомата.

Такт и Кварцевый резонатор

- ✓ Работа любого цифрового вычислительного устройства синхронизируется специальными тактовыми импульсами.
- ✓ Кварцевый резонатор позволяет сделать частоту этих импульсов стабильной, не зависящей от внешних факторов

Схема включения кварцевого генератора

На материнской плате

Типы управляющих автоматов

- Управляющий цифровой автомат
 - Преобразователь информации, способный принимать различные состояния, переходить под воздействием входных сигналов из одного состояния в другое по шагам заданного алгоритма и выдавать в каждом состоянии выходные управляющие сигналы.

- Дискретный управляющий автомат с жёсткой (фиксированной) логикой
 - Реализуется аппаратно.
- Микропрограммный автомат
 - Реализуется с помощью хранимой в памяти автомата микропрограммы

Дискретный управляющий автомат с жёсткой (фиксированной) логикой

Дискретный автомат на жесткой логике

- Абстрактный автомат
 - математическая модель не учитывающая его внутреннюю структуру и описывает только его поведение
- Структурный автомат
 - реализация цифрового автомата с помощью заданного набора логических элементов.

Абстрактный автомат

Абстрактный автомат –задается вектором

$$S=(Q,Z,W,\delta,\lambda,q_0)$$

- Q= $\{q_1,...,q_m\}$ множество внутренних состояний абстрактного автомата,
- $Z=[z_1,...,z_k]$ множества входных слов
- $W=\{w_1,...,w_l\}$ множества выходных слов
- δ функция переходов,
- λ функция выходов,
- q₀ начальное состояние автомата.

Автомат называется конечным, если множества Q, Z, W конечны.

Абстрактные Мили и Мура

- По способу формирования функции выходов все множество автоматов с жесткой логикой можно подразделить на два основных класса:
 - Автомат Мили описывается системой уравнений:

$$Q(t+1) = \delta(Q(t), Z(t));$$

$$W(t) = \lambda(Q(t), Z(t)).$$

• Автомат Мура описывается системой уравнений.

$$Q(t+1) = \delta(Q(t), Z(t));$$

$$W(t) = \lambda(Q(t)).$$

Способы задания абстрактного автомата

- С помощью графа
- С помощью таблиц переходов и выходов

$$Q=\{q_1,q_2,q_3,q_4\}, Z=\{z_1,z_2,z_3,z_4\}, W=\{w_1,w_2,w_3,w_4,w_5,w_6\}$$
 Таблица переходов Таблица выходов

δ	$\mathbf{q_1}$	\mathbf{q}_2	\mathbf{q}_3	\mathbf{q}_4
\mathbf{z}_1	\mathbf{q}_2	\mathbf{q}_2	ı	\mathbf{q}_4
\mathbf{z}_2	q_4	-	\mathbf{q}_2	\mathbf{q}_2
Z ₃	\mathbf{q}_3	\mathbf{q}_3	\mathbf{q}_4	\mathbf{q}_3
Z_4	-	\mathbf{q}_4	-	\mathbf{q}_1

$$Q(t+1)=\delta(Q(t),Z(t))$$

Таблица выходов

λ	q_1	\mathbf{q}_2	q_3	\mathbf{q}_4
z_1	\mathbf{w}_1	\mathbf{w}_2		W_5
Z ₂	\mathbf{w}_2	-	W_4	W_6
Z ₃	\mathbf{W}_3	\mathbf{w}_1	W_3	W_5
\mathbf{Z}_4	-	\mathbf{w}_2	•	W_1

$$W(t)=\lambda(Q(t),Z(t))$$

Совмец	ценная	таблица

δ	q_1	\mathbf{q}_2	\mathbf{q}_3	\mathbf{q}_4
z_1	$\mathbf{q}_{2}\mathbf{w}_{1}$	q_{2} w_{2}	<u>-/-</u>	$q_4 w_5$
\mathbf{z}_2	$\mathbf{q}_{\mathbf{w}_2}$	<u> </u>	$q_{2_{W_4}}$	$q_2 w_6$
\mathbf{Z}_3	q_{3} w_{3}	q_{3} w_{1}	q_{4W_3}	q_{3} w_{5}
Z_4	-/-	q_{4w_2}	<u> </u>	$q_{i_{W_1}}$

Так как следующее состояние получается из текущего, то текущее состояние должно хранится в памяти состояний.

Структурный автомат МИЛИ

- КС комбинационная схема формирует выходные управляющие сигналы **У** и следующие состояния **D**
 - Х множество входных сигналов
 - Ү множество выходных сигналов
 - D номер следующего состояния (сигналы «возбуждения» памяти)
 - Т- номер текущего состояния
- $D=\delta(X,T)$ функция переходов $Y=\lambda(X,T)$ функция выходов

Переход от абстрактного к структурному автомату

 Кодирование входных (Z), выходных сигналов (W) текущих и следующих состояний (Q)

Кодирование множеств Z, W, Q

$z^{\setminus X}$	x ₁	\mathbf{x}_2
Z ₁	0	0
Z ₂	0	1
Z ₃	1	0
Z_4	1	1

w^{Y}	y ₁	y ₂	y ₃
\mathbf{w}_1	0	0	0
\mathbf{w}_2	0	0	1
\mathbf{W}_3	0	1	0
W_4	0	1	1
W ₅	1	0	0
w6	1	0	1

Q^{T}	T ₁	T ₂
\mathbf{q}_1	0	0
\mathbf{q}_2	0	1
\mathbf{q}_3	1	0
q_4	1	1

Q/D	D ₁	D ₂
\mathbf{q}_1	0	0
\mathbf{q}_2	0	1
\mathbf{q}_3	1	0
\mathbf{q}_4	1	1

Количество входных, выходных линий и разрядов памяти автоматов

$$L = \lceil L \log_2 Z \rceil = \lceil L \log_2 4 \rceil = 2$$

$$N = \lceil L \log_2 Q \rceil = \lceil L \log_2 4 \rceil = 2$$

$$M = \lceil L \log_2 W \rceil = \lceil L \log_2 6 \rceil = 3$$

Переход от абстрактного к структурному автомату

Совмещенная таблица

δ	q_1	\mathbf{q}_2	\mathbf{q}_3	\mathbf{q}_4		
z_1	$q_2 \widetilde{w_1}$	q_{2} w_{2}	<u>-/-</u>	$q_4 w_5$		
\mathbf{z}_2	q_{4} w_{2}	-/-	q_{2W_4}	$q_2 \vec{w_6}$		
\mathbf{Z}_3	$q_3 w_3$	q_{3} \hat{w}_{1}	q_{4W_3}	q ₃ w ₅		
Z_4	-/-	q_{4w_2}]-	$q_{i_{\widetilde{\mathbf{W}}_1}}$		

Абстрактный автомат

Таблица переходов

T_1T_2	00	01	10	11
x_1x_2	g_1	g_2	g_3	g_4
00	01	01	•	11
Z ₁				
01	11	_	01	01
\mathbf{Z}_2				
10	10	10	11	10
Z ₃				
11		11	-	00
Z_4				
	įį			įį
	D_1D_2			D_1D_2

Таблица выходов

T_1T_2	00	01	10	11
x_1x_2	g_1	g_2	g_3	g_4
00	000	001	_	100
Z 1	\mathbf{w}_1	\mathbf{w}_2		\mathbf{W}_5
01	001	_	011	101
Z 2	\mathbf{w}_2		W_4	W ₆
10	010	000	010	100
Z 3	\mathbf{W}_3	\mathbf{w}_1	W_3	\mathbf{W}_5
11		001	_	000
Z 4		\mathbf{w}_2		\mathbf{w}_1
	↓ ↓ ↓			+ + +
y 1 y 2 y 3				У 1 У 2 У

Структурный автомат

$$D1 = \overline{T1} \cdot \overline{T2} \cdot \overline{x1} \cdot x2 + \overline{T1} \cdot \overline{T2} \cdot x1 \cdot \overline{x2} + \overline{T1} \cdot T2 \cdot \overline{x1} \cdot x2 + \overline{T1} \cdot T2 \cdot x1 \cdot x2 + \overline{T1} \cdot T2 \cdot x1 \cdot x2 + \overline{T1} \cdot \overline{T2} \cdot x1 \cdot \overline{x2} + \overline{T1} \cdot \overline{T2} \cdot x1 \cdot \overline{x$$

$$D2 = \overline{T1} \cdot \overline{T2} \cdot \overline{x1} \cdot \overline{x2} + \overline{T1} \cdot \overline{T2} \cdot \overline{x1} \cdot x2 + \cdots$$

$$Y1 = T1 \cdot T2 \cdot \overline{x1} \cdot \overline{x2} + T1 \cdot T2 \cdot \overline{x1} \cdot x2 + T1 \cdot T2 \cdot x1 \cdot \overline{x2}$$

$$Y2 = \overline{T1} \cdot \overline{T2} \cdot x1 \cdot \overline{x2} + T1 \cdot \overline{T2} \cdot x1 \cdot \overline{x2} + \cdots$$

Далее реализуем автомат по заданным функциям

Пример синтеза УА

- Разработать устройство суммирования двух чисел .
- Одно из слагаемых может быть положительным или отрицательным.
- Используем дополнительный код

Структурная схема операционной части

RG D1, RG D2 – регистры для хранения входных чисел

Х0,Х1 – знак

Y0 – сигнал записи в RG1, RG2

Y1 – сигнал управления мультиплексором MS1

Y2 – сигнал управления мультиплексором MS2

Y3, Y4 – сигналы записи в регистры RGдоп и RGрез

Операционная часть

Разметка графа

- 1. Символом Q0 помечаем вход вершины, следующий за начальной и вход конечной вершины.
- 2.Входы всех вершин, следующих за операторными, помечаем символами состояний Q1-Q5
- 3. Вход вершины отмечаются одним символом .

Кодирование состояний

 Всего шесть состояний для их кодирования надо три элемента памяти (триггера)

Номер	Код состояния			
состояния				
	T <u>1</u>	T2	T3	
Q0	0	0	0	
Q1	1	0	0	
Q2	0	1	0	
Q3	1	1	0	
Q4	0	0	1	
Q5	1	0	1	

Объединенная таблица переходов и выходов

+‡+																		
	Исх.	Код			Условия		След.	Код			Выходные сигналы							
	COCT.	исходного			перехода		Сост.	следующего										
		состояния						co	стоян	ия								
		T1 T2 T3		X0	X1		D1	D2	D3	Y0	Y1	Y2	Y3	Y4				
	Q0	0	0	0	*	*	Q1	1	0	0	0	0	0	0	0			
	Q1	1	0	0	*	*	Q2	0	1	0	1	0	0	0	0			
	Q2	0	1	0	0	*	Q4	0	0	1	0	0	0	1	0			
	Q2	0	1	0	1	*	Q3	1	1	0	0	0	1	0	0			
	Q3	1	1	0	1	*	Q4	0	0	1	0	0	1	1	0			
	Q4	0	0	1	*	0	Q0	0	0	0	0	0	0	0	1			
	Q4	0	0	1	*	1	Q5	1	0	1	0	1	0	0	0			
	Q5	1	0	1	*	1	Q0	0	0	0	0	1	0	0	1			

Состояние Q0 необходимо для начальной установки данных D1, D2.

В состоянии Q1 данные записываются во входные регистры.

Логические выражения

$$Y0 = T1 \cdot \overline{T2} \cdot \overline{T3}$$

$$Y1 = \overline{T1} \cdot \overline{T2} \cdot T3 \cdot x1 + T1 \cdot \overline{T2} \cdot T3 \cdot x1$$

$$Y2 = \overline{T1} \cdot T2 \cdot \overline{T3} \cdot x0 + T1 \cdot T2 \cdot \overline{T3} \cdot x0 = T2 \cdot \overline{T3} \cdot x0(\overline{T1} + T1) = T2 \cdot \overline{T3} \cdot x0$$

$$Y3 = \overline{T1} \cdot T2 \cdot \overline{T3} \cdot \overline{x0} + T1 \cdot T2 \cdot \overline{T3} \cdot X0$$

$$Y4 = \overline{T1} \cdot \overline{T2} \cdot T3 \cdot \overline{x1} + T1 \cdot \overline{T2} \cdot T3 \cdot \overline{x1}$$

$$D1 = \overline{T1} \cdot \overline{T2} \cdot \overline{T3} + \overline{T1} \cdot T2 \cdot \overline{T3} \cdot x0 + \overline{T1} \cdot \overline{T2} \cdot T3 \cdot x1$$

$$D2 = T1 \cdot \overline{T2} \cdot \overline{T3} + \overline{T1} \cdot T2 \cdot \overline{T3} \cdot x0$$

$$D3 = \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot \overline{x0} + T1 \cdot T2 \cdot \overline{T3} \cdot x0 + \overline{T1} \cdot \overline{T2} \cdot T3 \cdot x1$$

Логические выражения

$$D1 = \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot \overline{x0} \cdot \overline{x1} + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot \overline{x1} + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot \overline{x0} \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot x1$$

$$D2 = T1 \cdot \overline{T2} \cdot \overline{T3} \cdot \overline{x0} \cdot \overline{x1} + T1 \cdot \overline{T2} \cdot \overline{T3} \cdot \overline{x0} \cdot x1 + T1 \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot \overline{x1} + T1 \cdot \overline{T2} \cdot \overline{T3} \cdot x0 \cdot x1 + \overline{T1} \cdot T2 \cdot \overline{T3} \cdot x0 \cdot x1$$

$$D3 = \overline{T1} T 2 \cdot \overline{T3} \cdot \overline{x0} \cdot \overline{x1} + \overline{T1} T 2 \cdot \overline{T3} \cdot \overline{x0} \cdot x1 + T1 \cdot T 2 \cdot \overline{T3} \cdot x0 \cdot \overline{x1} + T1 \cdot T 2 \cdot \overline{T3} \cdot x0 \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot T 3 \cdot \overline{x0} \cdot x1 + \overline{T1} \cdot \overline{T2} \cdot T 3 \cdot x0 \cdot x1$$

Управляющая часть

Управляющая часть

Управляющая часть

Синтез автомата Мура

- Две комбинационные схемы
- КС1 реализует функцию переходов $D = \delta(X, T)$,
- КС2 реализует функцию вызодов $Y = \lambda(X, T)$.
- Для каждой комбинационной схемы строится своя таблица состояний.

У автомата Мура выход «развязан» от входа

Правила разметки ГСА для автомата Мура

- 1. Символом Q0 отмечается начальная и конечная вершина.
- 2. Символами Q1-Q5 отмечаются все операторные вершины.
- 3. Каждая операторная вершина помечается одним символом.

Кодирование состояний и таблица выходов для КС2

Всего 9 состояний – надо 4 триггера

Номер		Код сос	стояния		Значения выходных сигналов						
состояния					Y						
	T <u>1</u>	T <u>2</u>	T3	T4	<u>Y0-Y4</u> =0						
Q0	0	0	0	0	<u>Y0-Y4</u> =0						
Q1	1	0	0	0	<u>Y0-Y4</u> =0						
Q2	0	1	0	0	<u>Y1-Y4</u> =0	<u>Y0</u> =1					
Q3	1	1	0	0	Y0,Y1,Y2,Y4=0	<u>Y3</u> =1					
Q4	0	0	1	0	Y0,Y1,Y3,Y4=0	<u>Y2</u> =1					
Q5	1	0	1	0	Y0,Y1,Y4=0	Y2,Y3=1					
Q6	0	1	1	0	Y0,Y1,Y2,Y3=0	Y4=1					
Q7	1	1	1	0	Y0,Y2,Y3, <u>Y4</u> =0	Y1=1					
<u>Q8</u>	0	0	0	1	Y0,Y2,Y3=0	Y1,Y4=1					

$$Y0 = Q2 = \overline{T1} \cdot T2 \cdot \overline{T3} \cdot T4$$

$$Y1 = Q7 + Q8 = \overline{T1} \cdot T2 \cdot T3 \cdot \overline{T4} + T1 \cdot T2 \cdot T3 \cdot \overline{T4}$$

Кодирование состояний и таблица переходов для КС1

Исх.	Ко	од исх	кодно	ого	Усло	пиво	След.	Код					
COCT.		состо	кинк	I	пере	хода	Сост.	следующего					
								состояния					
	T1 T2 T3 T4		X0	X1		D1	D2	D3	D4				
Q0	0	0	0	0	*	*	Q1	1	0	0	0		
Q1	1	0	0	0	*	*	Q2	0	1	0	0		
Q2	0	1	0	0	1	*	Q4	0	0	1	0		
Q2	0 1 0 0		0	*	Q3	1	1	0	0				
Q3	1	1	0	0	*	0	Q6	0	1	1	0		
Q3	1	1	0	0	*	1	Q7	1	1	1	0		
Q4	0	0	1	0	1	*	Q5	1	0	1	0		
Q5	1	0	1	0	*	0	Q6	1	0	1	0		
Q5	1	0	1	0	*	1	Q7	1	1	1	0		
Q6	0	1	1	0	*	*	Q0	0	0	0	0		
Q7	1	1	1	0	*	*	Q8	0	0	0	1		
Q8	0 0		0	1	*	*	Q0	0 0		0	0		

$$D4 = Q7 = T1 \cdot T2 \cdot T3 \cdot \overline{T4}$$

• Минимизируем и разрабатываем схему

Недостатки УА на основе жесткой логики

- 1. При необходимости внесения любых, даже небольших изменений алгоритма работы схему автомата надо полностью пересинтезировать.
- 2. При большом числе входных и выходных сигналов схема автомата сильно разрастается, а синтез сильно усложняется.

Микропрограммный автомат (общая схема)

- Каждая ячейка ПЗУ хранит биты микрокоманды (МК)
- Микрокоманда содержит поля:
 - Ү– набор бит управляющих сигналов для каждого состояния
 - Т код следующего состояния (адрес ячейки ПЗУ).
- Схема Управления ПЗУ формирует новый адрес ячейки ПЗУ для перехода в следующее состояние

ПЗУ

- При ОЕ = 1 выводы находятся в третьем состоянии,
- ОЕ=0 и СЕ=0 режим чтения байта по адресу А0-А11

Байт ориентированная память

• Матрица памяти (прямоугольная)

Ячейки выбираются построчно

Микропрограммный автомат (структура)

Номер входа мультиплексора

Структура микропрограммного автомата

Номер входа мультиплексора

- ПЗУ хранит коды микрокоманд
- Счётчик-РАМК (регистр адреса микрокоманды) при V=0 выполняет загрузку адреса команды со входов D, при V=1 выполняется счёт по тактовым импульсам на входе +1.
- РМК-регистр микрокоманды, временно хранит микрокоманду
- Бит V определяет тип микрокоманды
- V=1 ОМК операционная микрокоманда, содержащая сигналы управления Y Yk.
- V=0 УМК управляющая микрокоманда (команда перехода)
- Поле Nx Закодированный номер проверяемой входной переменной. Это значение подается на адресные входы мультиплексора и разрешает прохождение на его выход значения соответствующей переменной Xi.
- Поле А адрес перехода, подаётся на входы предзагрузки счётчика и в зависимости от значения анализируемой переменной Хі на входе V может записывать в счетчик адрес следующего перехода
- Безусловный переход реализуется путем фиксирования лог. 0 на одном из входов MS.

Микропрограммный автомат

Граф - схема алгоритма сложения

Кодировка входных сигналов автомата x0, x1

Входы данных мультиплексора Адресные входы мультиплексора

Вход¤	Поле· <u>Nx</u> ·микрокоманды¤
0⋅(лог.⋅0) Безусловный	переход 00□
1·(x0)¤	01 ¤
2·(x1)¤	10¤

Таблица переходов / микропрограмма

Nº MK	Тек.		Ад на вхо	рес де ПЗУ	7	Адрес следующей МК				Пол	e Nx			Выходные сигналы				ĭ	
		A3	A2,	A1	AQ.	A3	A2,	A1	АQ П 3V	NX1	NX0	V	hex	Y 4	Y3 П ЗУ	Y 2 2	Y 1	Y	
MĸQ.	Q0	0	0	0	0	0	0	0	1	1	1	1	F	0	0	0	0	0	MK
Mĸ1.		0	0	0	1	0	0	1	0	1	1	1	17	0	0	0	0	0	
Mĸ2	Q2	0	0	1	0	0	0	1	1	1	1	1	1F	0	0	0	0	1	
Мк3	Q2	0	0	1	1		0		0	0	1	0	52	0	0	0	0	1	
Mĸ4	Q4	0	1	0	9	0	1	0	1	1	1	1	2F	0	0	1	0	0	
Mĸ5	Q5	0	1	0	1	0	1	1	0	1	1	1	37	0	1	1	0	0	
MKQ.	Q5	0	1	74	0	Д		0	0	1	0	0	64	0	1	1	0	0	
Mĸ7	Q7	0	1	1	1	1	0	0	0	1	1	1	47	0	0	0	1	0	
Mk8	Q8		~ &	0	0	1	0	0	1	1	1	1	4F	1	0	0	1	0	
Бп	Q8	1	0	0	1	~ 0	0	0	1	0	0	0	08	1	0	0	1	0	
MĸQ.	Q3 🕊	1	U	1	0	1	0	1	1	1	1	1	5F	0	1	0	0	0	
Бп	Q3	1	0	1	1	- 0	1		0	0	0	0	30	0	1	0	0	0	
Mĸ10	Q6 🗸	1	1	0	V	I	1	0	1	1	1	1	6F	1	0	0	0	0	
Бп	Q6	1	1	0	1	-	0	0	T	0	0	0	08	1	0	0	0	0	

 Микропрограмма занимает 14 ячеек памяти. Разрядность выходных данных ПЗУ определяется: V+N_x+A+Y=1+2+4+5=12. надо две ПЗУ.

Создание НЕХ-файла

- LLAAAATTDDCC
- LL поле длины показывает количество байт данных (DD) в записи;
- AA AA- поле адреса представляет адрес записи в памяти
- ТТ поле типа. Оно может принимать следующие значения:
 - 00 запись содержит данные двоичного файла.
 - 01 запись является концом файла.
- DD поле данных.
- СС контрольная сумма.
 - Вычисляется CC = 01h + NOT(LLh + AAh + AAh + TTh + DDh).
- Байт данных 0001001 по адресу 0000 можно представить в hexформате

Формат hex - файла

: 01 0000000FF0 : 01 00000000FF : 01 0001 0017E7 : 01 0001 0000FE : 01 0002 001FDE : 01 0002 0001FC : 01 0003 005 2AA : 01 0003 0001FB : 01 0004 002 FCC : 01 0004 0004F7

Запись микропрограммы

