Сверточные нейронные сети (CNN)

Федоров Игорь НИУ ВШЭ 01.11.2019

Для начала... биология

- Первичная зрительная кора каскад простых и сложных клеток
- Эти клетки образуют иерархическую структуру
- Соседние нейроны обрабатывают соседние области изображения
- Создается пространственная карта поля зрения

Когнитрон и неокогнитрон (1980)

- Попытка математически реализовать структуру зрительной коры
- Задача распознавания образов
- Обучение без учителя

Ян ЛеКун и архитектура LeNet (1998)

- Создавалась для задачи распознавания рукописных цифр MNIST
- Обучение с учителем метод обратного распространения ошибки
- LeNet-5 ~60k параметров

LeNet-5

Сверточные слои (convolution)

- Аналог "простых клеток" зрительной коры распознавание признака
- На первом шаге используются простые примитивы
- На последующих более высокоуровневые образы
- Ядро 3х3, 5х5, 7х7... Может быть многоканальным
- Шаг не более половины размера
- Создание рамки (padding)

$$\frac{W-F+2P}{S}+1$$

Субдискретизирующие слои (pooling)

- Аналог "сложных клеток" уплотнение признаковой карты
- Работает благодаря локальной корреляции пикселей
- Шаг не больше размера окна

MaxPool > AvgPool

Как это работало в LeNet?

FC & Softmax Layers

- В самом конце сети нас ждут полносвязные слои (один или несколько)
- Softmax получение вероятностей принадлежности к классам
- Впрочем, ЛеКун использовал Euclidean Radial Basis Function

$$y_i = \sum_j (x_j - w_{ij})^2$$

А результаты можно глянуть?

• Ошибка на тестовой части MNIST для LeNet5 - 0.95%

ImageNet Large Scale Visual Recognition Challenge

• >1.2M hi-res изображений

- Задача 1 угадать, что на них изображено (1000 классов)
- Метрики top-1 и top-5 accuracy

- Задача 2 на каждом изображении выделить область с описываемым объектом
- Метрика размер перекрытия

AlexNet(2012) - идеи Крижевского

- Топология как у LeNet, но размер гораздо больше (~ в 1000 раз)
- Обучение на GPU
- Аугментация
- ReLU
- Dropout
- MaxPooling с перекрыванием

Зачем GPU?

- GPU созданы для ускоренного расчета графики (шейдеры, etc.)
- FLOPS, Bandwidth, Parallelism
- Обучение нейросети это примерно то же самое
- TPU, NPU… еще быстрее

AlexNet обучалась на двух GPU - 60М параметров

Почему важна аугментация?

- Вместо картинки 256х256 10 картинок 224х224
- Color deformation
- Простой способ увеличить количество данных и глубже обучить сеть

Взглянем же на этого красавца!

У меня есть статья с более чем 40k цитирований, а у тебя нет

Ну и сеть его тоже оценим

ImageNet Classification Error (Top 5)

VGG (2014)

- Свертка 5х5 25 параметров
- Последовательность сверток 3х3 18 параметров
- Последняя работа, использующая "стандартную топологию"
- VGG19 144М параметров

Проблемы стандартной топологии

- Увеличение в ширину вероятнее переобучаемся
- Увеличение в глубину затухающие градиенты
- Качество уже не растет
- Пора придумать что-то новое!

Network In Network - MLPConv

- Сверточный слой по сути линейная модель над признаками, работающая за счет избыточного представления
- Заменим линейный фильтр на многослойный перцептрон
- Cascaded Cross Channel Parametric Pooling (CCCP Pooling)
- CNN, у которой сверточные слои CNN

$$f_{i,j,k} = \max(w_k^T x_{i,j}, 0).$$

$$\begin{array}{rcl} f_{i,j,k_1}^1 & = & \max(w_{k_1}^1 \,^T x_{i,j} + b_{k_1}, 0). \\ & & \vdots \\ f_{i,j,k_n}^n & = & \max(w_{k_n}^n \,^T f_{i,j}^{n-1} + b_{k_n}, 0). \end{array}$$

Network In Network - Global Average Pooling

- В сетях стандартной топологии 80% вычислений уходят на сверточные слои, а 80% памяти на полносвязные
- Давайте от них избавимся

Inception / GoogLeNet (2014)

- Наследие идей NIN 1х1 свертки и GAP
- Что если у признаков разный масштаб?
- Применим свертки разного размера параллельно

ResNet

- Нейросеть может аппроксимировать почти любую H(x)
- Также она может аппроксимировать F(X) = H(x) x
- Целевая функция будет равна F(x) + x

DenseNet

- А что если соединить каждый слой с каждым?
- Параметров меньше, слоев больше, качество лучше

Хорошо, но как этим пользоваться?

- Готовые CNN-модели есть во всех популярных фреймворках
- С нуля обучать часто не нужно fine-tuning
- Не забывайте про GPU

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23.851.784	159

0.803

0.704

0.713

0.750

0.762

0.773

0.744

0.825

0.953 55.873.736

0.932 14.307.880

0.936 20.242.984

0.960 88.949.818

4.253.864

3.538.984

8,062,504

5,326,716

121

201

Documentation for individual models

InceptionResNetV2 215 MB

16 MB

14 MB

33 MB

57 MB

80 MB

23 MB

343 MB

MobileNet

MobileNetV2

DenseNet121

DenseNet169

DenseNet201

NASNetLarge

NASNetMobile

Transfer learning

MobileNet

- SOTA-результаты достигнуты, время заняться оптимизацией
- Depthwise separable convolution сначала сворачиваем каждый канал 3x3 сверткой, затем меняем глубину 1x1 сверткой
- Множитель ширины и множитель разрешения
- Размеры позволяют работать на телефоне

Вопросы

1. Размерность входа сверточного слоя - 32х32х1. Размерность выхода - 28х28х6. Сколько в этом слое было применено сверточных фильтров, с какой размерностью и шагом?

2. Опишите идею и работу блока Inception.

3. Почему в большинстве задач, решаемых с помощью CNN, рекомендуется использовать предобученные модели?

Источники

- Gradient-Based Learning Applied to Document Recognition LeCun et al., 1998
- ImageNet Classification with Deep Convolutional Neural Networks -Krizhevsky et al., 2012
- Network in Network Lin et al., 2014
- Going deeper with convolutions Szegedy et al., 2014
- Deep residual learning for image recognition He et al., 2015

Convolutional Neural Networks (CNN)

Федоров Игорь НИУ ВШЭ 01.11.2019