

Diego Bertolini

diegobertolini@utfpr.edu.br
http://www.inf.ufpr.br/diegob/

Aula 014

- Aula Anterior:
 - Prova
- Aula de Hoje:
 - Aprendizagem Não Supervisionada

Objetivo

O que vocês devem saber ao final da aula:

Noções basicas de aprendizagem não supervisionada. Algoritmos k-means e BSAS.

Formas de Aprendizado

Aprendizado Supervisionado

- K-Nearest Neighbor (KNN).
- Árvores de Decisão.
- Support Vector Machines (SVM).
- Redes Neurais.

Aprendizado Não-Supervisionado

- BSAS
- k-means

Aprendizado Por Reforço

 No aprendizado supervisionado, todas os exemplos de treinamento eram rotulados.

• 0.51 0.14 0.12 0.04 0.65 0.01 0.08 2

Vetor de Atributos Classe

 Estes exemplos são ditos "supervisionados", pois, contém tanto a entrada (atributos), quanto a saída (classe).

 Porém, muitas vezes temos que lidar com exemplos "não-supervisionados", isto é, exemplos não rotulados.

Por que?

 Coletar e rotular um grande conjunto de exemplos pode custar muito tempo, esforço, dinheiro...

- Entretanto, podemos utilizar grandes quantidades de dados não rotulados para encontrar padrões existentes nestes dados. E somente depois supervisionar a rotulação dos agrupamentos encontrados.
- Esta abordagem é bastante utilizada em aplicações de mineração de dados (datamining), onde o conteúdo de grandes bases de dados não é conhecido antecipadamente.

 O principal interesse do aprendizado nãosupervisionado é desvendar a organização dos padrões existentes nos dados através de clusters (agrupamentos) consistentes.

 Com isso, é possível descobrir similaridades e diferenças entre os padrões existentes, assim como derivar conclusões úteis a respeito deles.

Exemplos de agrupamentos (clusters):

Passaro Lagarto

Gato Peixe

Cachorro
Tubarão Sapo Ovelha

Exemplos de agrupamentos (clusters):

Existencia de pulmões

Ambiente onde vivem

Clusterização

- A clusterização é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares.
- Um cluster é uma coleção de objetos que são similares uns aos outros (de acordo com algum critério de similaridade prédefinido) e dissimilares a objetos pertencentes a outros clusters.

As etapas do processo de aprendizagem não supervisionada são:

- (1) Seleção de atributos
- (2) Medida de proximidade
- (3) Critério de agrupamento
- (4) Algoritmo de agrupamento
- (5) Verificação dos resultados
- (6) Interpretação dos resultados

(1) Seleção de Atributos:

- Atributos devem ser adequadamente selecionados de forma a codificar a maior quantidade possível de informações relacionada a tarefa de interesse.
- Os atributos devem ter também uma redundância mínima entre eles.

(2) Medida de Proximidade:

- Medida para quantificar quão similar ou dissimilar são dois vetores de atributos.
- É ideal que todos os atributos contribuam de maneira igual no cálculo da medida de proximidade.
 - Um atributo n\u00e3o pode ser dominante sobre o outro, ou seja, \u00e9 importante normalizar os dados.

(3) Critério de Agrupamento:

- Depende da interpretação que o especialista dá ao termo sensível com base no tipo de cluster que são esperados.
- Por exemplo, um cluster compacto de vetores de atributos pode ser sensível de acordo com um critério enquanto outro cluster alongado, pode ser sensível de acordo com outro critério.

(4) Algoritmo de Agrupamento:

 Tendo adotado uma medida de proximidade e um critério de agrupamento devemos escolher um algoritmo de clusterização que revele a estrutura agrupada do conjunto de dados.

(5) Validação dos Resultados:

- Uma vez obtidos os resultados do algoritmo de agrupamento, devemos verificar se o resultado esta correto.
- Isto geralmente é feito através de testes apropriados.

(6) Interpretação dos Resultados:

 Em geral, os resultados da clusterização devem ser integrados com outras evidências experimentais e análises para chegar as conclusões corretas.

 Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de clusterização levam a resultados totalmente diferentes.

Qual resultado é o correto?

Clusterização

Dado um conjunto de dados X:

$$X = \{x_1, x_2, ..., x_n\}$$

Definimos como um m-agrupamento de X a partição de X em m conjuntos (clusters ou grupos) C_1 , C_2 , ..., C_m tal que as três condições seguintes sejam satisfeitas:

Nenhum cluster pode ser vazio ($C_i \neq \emptyset$).

A união de todos os cluster deve ser igual ao conjunto de dados que gerou os clusters, ou seja, X.

A interseção de dois clusters deve ser vazio, ou seja, dois cluster não podem conter vetores em comum $(C_i \cap C_i = \emptyset)$.

Clusterização

 Os vetores contidos em um cluster C_i devem ser mais similares uns aos outros e menos similares aos vetores presentes nos outros clusters.

Tipos de Clusters:

Clusters compactos

Clusters alongados

Clusters esféricos e ellipsoidals

Algoritmos de Clustering

 Os algoritmos de clusterização buscam identificar padrões existentes em conjuntos de dados.

- Os algoritmos de clusterização podem ser divididos em varias categorias:
 - Sequenciais;
 - Hierárquicos;
 - Baseados na otimização de funções custo;
 - Outros: Fuzzy, SOM, Db_Index,

Algoritmos Sequenciais

São algoritmos diretos e rápidos.

 Geralmente, todos os vetores de características são apresentados ao algoritmo uma ou várias vezes.

 O resultado final geralmente depende da ordem de apresentação dos vetores de características.

Algoritmos Sequenciais

- Basic Sequential Algorithmic Scheme (BSAS)
 - Todos os vetores são apresentados uma única vez ao algoritmo.
 - Número de clusters não é conhecido inicialmente.
 - Novos clusters são criados enquanto o algoritmo evolui.

Parâmetros do BSAS:

- d(x, C): métrica de distância entre um vetor de características x e um cluster C.
- Θ: limiar de dissimilaridade.
- q: número máximo de clusters.

Ideia Geral do Algoritmo:

 Para um dado vetor de características, designá-lo para um cluster existente ou criar um novo cluster (depende da distância entre o vetor e os clusters já formados).

 Os algoritmos de clusterização hierárquica podem ser divididos em 2 subcategorias:

Aglomerativos:

- Produzem uma sequência de agrupamentos com um número decrescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da fusão de dois clusters em um.

Divisivos:

- Atuam na direção oposta, isto é, eles produzem uma sequência de agrupamentos com um número crescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da partição de um único cluster em dois.

Exemplo 1 - Aglomerativo:

Exemplo 1 - Aglomerativo:

1ª iteração

Exemplo 1 - Aglomerativo:

Exemplo 1 - Aglomerativo:

Exemplo 1 - Aglomerativo:

Exemplo 1 - Aglomerativo:

Exemplo 1 - Aglomerativo:

Exemplo 2 - Divisivo:

Processo inverso.

K-Means

- É a técnica mais simples de aprendizagem não supervisionada.
- Consiste em fixar k centróides (de maneira aleatória), um para cada grupo (clusters).
- Associar cada indivíduo ao seu centróide mais próximo.
- Recalcular os centróides com base nos indivíduos classificados.

- (1) Selecione k centróides iniciais.
 - (2) Forme k clusters associando cada exemplo ao seu centróide mais próximo.
 - (3) Recalcule a posição dos centróides com base no centro de gravidade do cluster.
- (4) Repita os passos 2 e 3 até que os centróides não sejam mais movimentados.

Exemplo:

Exemplo: k = 3

Seleciona-se k centróides iniciais.

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo: k = 3

Repite-se os passos anteriores até que os centróides não se movam mais.

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Exemplo:

$$k = 3$$

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Aprendizado Não-Supervisionado

- O aprendizado não-supervisionado ou clusterização (agrupamento) busca extrair informação relevante de dados não rotulados.
- Existem vários algoritmos agrupamento de dados.
- Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de clusterização levam a resultados totalmente diferentes.

Bibliografia e Materiais.

Estes slides foram adaptados do Livro:

Pattern Recognition; Chapter 10: UNSUPERVISED LEARNING AND CLUSTERING

Adaptado das Aulas do Professor Ederley – PUC-RIO

Curiosidades

Objetivos Gerais do *Data Mining*

- Determinação de perfil (profiling)
- Localização do "indivíduo" desejado "casamento perfeito" (matching).
- ☐ Segmentação (clustering)
 - identificação de sub-grupos dentro do grupo alvo.
- Previsão (scoring).

Objetivos Específicos do *Data Mining* em Negócios

Marketing Direcionado

- □ Detecção de fraudes (seguros, cartões de crédito).
- □ Previsão/antecipação de futuras doenças (planos de saúde).
- □ Previsão/antecipação de quebra de máquinas (processos industriais)

Objetivos Específicos do *Data Mining* em Negócios

Marketing Direcionado

- Detecção de segmentos de clientes com determinado perfil.
- Monitoração das necessidades de clientes em potencial.
- ☐ Controle do abandono de clientes (*churn*)
 - programas de lealdade
 - previsão dos clientes com maior probabilidade de se evadirem para o concorrente
 - previsão dos clientes com maior valor ao longo da vida útil como clientes
 - determinação de ações eficazes para reter clientes.

Objetivos Específicos do *Data Mining* em Negócios

Marketing Direcionado

- Marketing one-to-one nem sempre é possível em função dos elevados custos.
- □ 20% dos clientes representam 80% dos ganhos (em geral).
- Concentrar os esforços nos 20% de clientes preferenciais é uma estratégia que, normalmente, traz melhores resultados do que tratar a todos da mesma maneira.
- □ PROBLEMA DESTA ABORDAGEM: entre os 80% menos atrativos podem estar clientes que têm as mesmas características dos clientes preferenciais, mas são contas novas e, portanto, ainda não representam valor expressivo. O datamining é capaz de detectar isso e alertar o analista para o potencial do novo cliente.

Matching na Polícia

A polícia também se interessa por seus "clientes"...

- ☐ Grandes quantidades de dados são armazenadas sobre crimes e sobre criminosos.
- Ao procurar por um suspeito em suas bases de dados, a polícia enfrente um dilema: deseja-se, por um lado, incluir toda a informação disponível. Por outro lado, não se quer que alguma informação equivocada evite que o verdadeiro criminoso apareça no resultado da pesquisa.
- □ Qualquer pessoa é capaz de perceber que a descrição "branco, 1,70 m, 25 anos, tatuagem de aranha" bate com a descrição de um suspeito "branco, 1,71 m, 24 anos, tatuagem de inseto".
- Programas de computador convencionais não seriam capazes disto.

"Causos": cervejas e fraldas

- O exemplo mais famoso de análise de cestas de compra dos últimos anos: quem compra fraldas tende a comprar cerveja.
- ☐ Em 1990, K. Heath rodava algoritmos de mineração de dados procurando encontrar conjuntos de itens complementares para bebês que pudessem ser particularmente lucrativos.
- Acabou encontrando o padrão frale cerveja analisando os dados de 50 lojas longo de um período de 3 meses.
- Considerou o padrão como provavelmen não significativo, mas um exemplo curio que explica associações.

"Causos": Instituição financeira

- Um estudo sobre os resultados de um programa de mala-direta realizado por uma instituição financeira demonstrou que pessoas mais velhas, particularmente as com mais de 65 anos, não tinham interesse em contratar planos de previdência privada e aposentadoria.
- O diretor que recebeu o relatório questionou, irritado, o motivo de estar pagando quantias elevadas para receber relatórios sobre descobertas tão óbvias.
- O consultor que realizara a análise dos dados respondeu: porque é a sua empresa que está enviando as propostas de adesão a esses planos aos velhinhos.

O sonho do Data Mining perfeito

Prezado Senhor Silva:

Observamos que o senhor não tem comprado camisinhas no supermercado local nas últimas semanas. A última compra ocorreu a mais de 8 semanas. O senhor também não tem mais comprado produtos de higiene feminina. Em compensação, seu consumo de produtos congelados, salgadinhos e cerveja aumentou consideravelmente no mesmo período.

Está claro para nós que o senhor levou um "chute" da Sra. Silva, fato que confirmamos com a companhia de telefone celular, já que sua ex-esposa solicitou a mudança do endereço de cobrança.

Nós da empresa SABE TUDO SOBRE OS CLIENTES gostaríamos de nos solidarizar com o senhor neste momento difícil e oferecer os seguintes produtos...

Cuidado com supostas relações causa x efeito

- Aranha sem perna é surda.
- O casamento é a causa número 1 para o divórcio (estatísticamente, 100% dos divórcios começam com casamento).