Nr Ćwiczenia 103	Data wykonania 12.11.2024	Wydział WIiT	Semestr 3	Grupa LAB L1
Prowadzący: mgr inż. Taras Zhezhera		Stanisław Fiedler		Ocena:

Sprawozdanie Laboratorium Fizyka dla informatyków

Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych.

Stanisław Fiedler 160250

LAB 2, 12 listopada 2024

Spis treści

1	Wstęp teoretyczny								
2	Wy	Wyniki pomiarów							
3	Opi	Opracowanie wyników							
	3.1	Wykres							
	3.2	Obliczenia							
		3.2.1 Długości początkowe i niepewności							
		3.2.2 Miedź							
		3.2.3 Mosiądz							
		3.2.4 Stal							
	3.3	Wyniki							
	3 4	Wnioski							

1 Wstęp teoretyczny

Zmianie temperatury ciała towarzyszy na ogół zmiana jego wymiarów linowych, a więc także zmiana jego objętości. Przyrost temperatury dT ciała, którego długość całkowita wynosi l, powoduje przyrost długości dl określony wzorem:

$$dl = \alpha l \, dT \tag{1}$$

Współczynnik α nazywamy współczynnikiem rozszerzalności liniowej. W zakresie niewielkich zmian temperatury możemy przyjąć, że współczynnik α jest stały, a długość wzrasta wprost proporcjonalnie do temperatury. W tym przypadku odpowiednikiem wzoru (1) jest wzór:

$$l - l_0 = \alpha_{sr} l_o \Delta T \tag{2}$$

$$\alpha_{sr} = \frac{l - l_0}{l_0 \Delta T} \tag{3}$$

Przyczyna rozszerzalności cieplnej leży w strukturze mikroskopowej ciał. Ciała zbudowane są z atomów tworzących sieć krystaliczną. Dostarczona energia cieplna powoduje drgania atomów wokół położeń równowagi. Amplituda tych drgań rośnie wraz z temperaturą. Wraz ze wzrostem amplitudy drgań roście średnia odległość między atomami co obserwujemy jako rozszerzalność cieplna.

2 Wyniki pomiarów

ZINIOG	NACZANIE WS	STAKYCH	DO252ERZACUCI At = 0,0°C AV = 00,5°M
1 1 1 000		Mujosic (mm)	stal (DL) = 0,02
temperatura (°C)	miech	morridz	3101
20,5	772,6-1,\$	771.5 -0,4	712,5 -0,9
25,1	+0,05	+ 9,06	+ 0,03
300	40,11	× 0,12	+ 6,08
34,0	+00,17	+000,20	40 4000 11
20,5	+05,17	+025	40,16
145,4	60,31	+ 0, 34	4022
50,6	10,30	+0,43	40,27
30548	+0 44	+0,19	10,32
59,9	(0,62	+0,57	+0,37
66,4	(40,50)	40,665	+0,42
	40,62	+0,609	40,44
693		+0,58	+0,37-
65,2	40,53		40,32
60,1	40,45		
55,2	+0,38	+0,642	t 0,26
50,5	40,32	+0,35	+0,22
145 (W	(+0, 25	*0,27	+0,017
40,4	+0,10	+0,20	40,11
			A 1)
			TUM
			1
			1

3 Opracowanie wyników

3.1 Wykres

Regresja liniowa oraz jej błąd zostały wyznaczone w python z użyciem biblioteki scipy.

3.2 Obliczenia

W celu wyznaczenia współczynnika rozszerzalności z danych pomiarowych zapiszemy równanie (2) w postaci:

$$\Delta l = \alpha_{sr} l_0 T - \alpha_{sr} l_0 T_0 \tag{4}$$

Równanie to oznacza, że wydłużenie jest linową funkcją temperatury i że współczynnik nachylenia prostej $a=\alpha_{sr}l_0$. Więc współczynnik rozszerzalności wyznaczymy ze wzoru:

$$\alpha = \frac{a}{l_0} \tag{5}$$

Błąd zostanie obliczony z użyciem metody różniczki logarytmicznej na podstawie niepewności współczynnika nachylenia regresji liniowej oraz niepewności pomiaru długości.

$$\alpha = a^1 \cdot l_0^{-1}$$
$$\Delta \alpha = \left(\frac{\Delta a}{a} + \frac{\Delta l_0}{l_0}\right) \alpha$$

3.2.1 Długości początkowe i niepewności

Początkowa długość prętów:

• Miedź 772,6 - 1,3 = 771,3mm

• Mosiądz 771,5 - 0.4 = 771.1 mm

• Stal 772.5 - 0.9 = 771.6 mm

Niepewności pomiarowe:

• $\Delta T = 0.5^{\circ}C$

• $\Delta l = 0,5mm$

• $\Delta(\Delta l) = 0,02mm$

3.2.2 Miedź

Równanie prostej:

 $a = 0,0129592 \pm 0,0005936$

$$\alpha_{miedz} = \frac{a}{l_0}$$

$$\alpha_{miedz} = \frac{0,0129592}{771,3} \quad \frac{1}{K}$$

$$\alpha_{miedz} = 1.6801 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\Delta \alpha = \left(\frac{0,0005936}{0,0129592} + \frac{0,05}{771,3}\right) 1.6801763 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\Delta \alpha = 0,077 \cdot 10^{-5} \quad \frac{1}{K}$$

3.2.3 Mosiadz

Równanie prostej:

$$a = 0,014277 \pm 0.000716$$

$$\alpha_{mosiadz} = \frac{a}{l_0} \qquad \qquad \Delta\alpha = \left(\frac{\Delta a}{a} + \frac{\Delta l_0}{l_0}\right)\alpha$$

$$\alpha_{mosiadz} = \frac{0,014277}{771,1} \quad \frac{1}{K} \qquad \qquad \Delta\alpha = \left(\frac{0.000716}{0,014277} + \frac{0,05}{771,1}\right)1.85151 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\alpha_{mosiadz} = 1.85151 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\Delta\alpha = 0.093 \cdot 10^{-5} \quad \frac{1}{K}$$

3.2.4 Stal

Równanie prostej:

$$a = 0,009379 \pm 0.000525$$

$$\alpha_{stal} = \frac{a}{l_0}$$

$$\alpha_{stal} = \frac{0,009379}{771,6} \quad \frac{1}{K}$$

$$\alpha_{stal} = 1.2155 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\Delta \alpha = \left(\frac{0.000525}{0,009379} + \frac{0,05}{771,6}\right) 1.2155 \cdot 10^{-5} \quad \frac{1}{K}$$

$$\Delta \alpha = 0.0681 \cdot 10^{-5} \quad \frac{1}{K}$$

3.3 Wyniki

Miedź
$$\alpha = (1, 68 \pm 0, 07) \cdot 10^{-5} \quad \frac{1}{K}$$
 Mosiądz
$$\alpha = (1, 85 \pm 0, 09) \cdot 10^{-5} \quad \frac{1}{K}$$
 Stal
$$\alpha = (1, 22 \pm 0, 07) \cdot 10^{-5} \quad \frac{1}{K}$$

3.4 Wnioski

Wartości tablicowe współczynników rozszerzalności linowej, podane za openstax.org , wynoszą dla:

Miedź
$$1,7\cdot 10^{-5}\frac{1}{K}$$

Mosiądz
$$1, 9 \cdot 10^{-5} \frac{1}{K}$$

Stal
$$1, 2 \cdot 10^{-5} \frac{1}{K}$$

Jak widać wyznaczone wartości zgadzają się z wartościami tablicowymi, a powstałe różnice mogą wynikać z różnic między proporcjami składników w stopach stali i mosiądzu.