

Olimpiada Națională de Fizică Vaslui 2015 Problema IV (Optică)

Interferență și polarizare

1. Se consideră dispozitivul interferențial din figură, în care se cunoaște distanța d dintre fantele S_1 și S_2 , precum și distanța D de la paravanul opac cu fante până la ecranul S. Fasciculele 1 și 2 sunt monocromatice (λ cunoscut) și

coerente. Le considerăm liniar polarizate la abscisa z=0, cu câmpul electric având doar componentele

$$\vec{E}_1 = \vec{1}_x E_0 \cos(\omega t) \, \text{si} \, \vec{E}_2 = \vec{1}_x E_0 \cos(\omega t) \,. \tag{1}$$

Aici $\vec{1}_x$ este versorul axei x (perpendiculară pe planul desenului).

Determinați expresia $I(\theta)$ a intensității luminii pe ecran, în direcția indicată de unghiul θ , în funcție de θ,d,E_0,ω și c, precum și media sa în timp $\left\langle I(\theta)\right\rangle$. Atenuarea fasciculelor luminoase în timpul propagării se neglijează.

- **2.** O lamelă perfect transparentă, cu grosimea w și cu indicele de refracție μ , se așează transversal în drumul fasciculului 1, după fanta S_1 . Care va fi expresia lui $\langle I(\theta) \rangle$ în această nouă situație ?
- **3.** În drumul fasciculului 1, înainte de fanta S_1 , se introduce o lamă sfert de undă (QWP), scoțându-se însă lamela din spatele acestei fante. Lama QWP reușește să schimbe starea de polarizare a acestui fascicul de la polarizarea liniară $\vec{E}_1 = \vec{1}_x E_0 \cos(\omega t)$ la polarizarea circulară

$$\vec{E}_1 = \frac{E_0}{\sqrt{2}} \left[\vec{1}_x \cos(\omega t) + \vec{1}_y \sin(\omega t) \right]$$
 (2)

Presupuneți că lama QWP nu introduce nici-o diferență suplimentară de fază și că e perfect transparentă. Acum, în proiecție pe planul xOy, vârful vectorului \vec{E}_1 descrie un cerc (de aici denumirea de undă circular-polarizată). Considerați că unghiul θ este suficient de mic și că intensitatea de la fanta S_1 nu depinde de θ nici pentru componenta de pe direcția $\vec{1}_{\nu}$.

- 3.a). Care este acum expresia lui $\langle I(\theta) \rangle$?
- 3.b). Care este valoarea maximă a acestei intensități $\left\langle I(\theta) \right\rangle_{\max}$?
- 3.c). Care este valoarea minimă a acestei intensități $\left\langle I(\theta) \right\rangle_{\min}$?

^{1.} Fiecare dintre subiecte se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele.

^{3.} Durata probei este de 5 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 0 (fără punct din oficiu). Punctajul final reprezintă suma acestora.

Pagina 2 din 2

4. Considerăm acum un nou experiment, anume cel schițat în figura de mai jos. Pe traiectul fasciculului 1 este prezentă lama sfert de undă (QWP) descrisă la punctul precedent, un polarizor liniar I, plasat între z=a și z=b, care transmite mai departe doar componenta pe axa

 $\vec{1}_x' = \vec{1}_x \cos \gamma + \vec{1}_y \sin \gamma$ a câmpului electric, și un alt polarizor II, plasat între z = b și z = c, care readuce polarizarea undei pe direcția $\vec{1}_x$. Considerând că polarizorii I și II sunt perfect transparenți și că ei nu introduc nici-o diferență suplimentară de fază:

- 4.1). Scrieți expresia lui $\vec{E}_1(z=b)$;
- 4.2). Scrieți expresia lui $\, \vec{E}_1(z=c) \,$;
- 4.3). Aflați diferența de fază între fasciculele 1 și 2 la nivelul fantelor ($\alpha = ?$)

Problemă propusă de

Prof. univ. dr. Florea ULIU, Universitatea din Craiova

^{1.} Fiecare dintre subiecte se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele.

^{3.} Durata probei este de 5 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 0 (fără punct din oficiu). Punctajul final reprezintă suma acestora.