

CENG 407 - 408

Software Requirement Specification (SRS)

Licence Plate Recognition System

Mehmet Furkan Turan - 201726072 Arda Kayış - 201711043 Doğukan Tutak - 201711065 Burak Çetin - 201711015 Muhammed Emin Atalık - 201711003

1. Introduction

1.1. Purpose

In the License Plate Recognition System, we aim to determine the characteristics such as the type, color and size of the vehicles by using image processing, image detection and recognition methods. In addition to these methods, we aim to ensure that the Plate Recognition System gives accurate results by using the deep learning method with libraries such as TensorFlow and Keras.

1.2. Scope of Project

License Plate Identification System is a method that is frequently used in the identification of vehicles, in parking lots, in urban areas and in places where security is important such as road cameras. A license plate identification system is used to identify a vehicle.

The license plate recognition system is made by detecting the license plate region of the vehicles with the vehicle image and reading and separating the characters on the plate with image processing. By developing the license plate recognition system with deep learning and image processing, it will be tried to work towards detecting license plate recognition and the type of vehicle whose license plate is recognized.

With the License Plate Recognition System, our goal is to determine the license plates of vehicles using image processing methods such as character recognition and segmentation. We aim to determine the characteristics such as the type, size and color of the vehicles by using the determined plates. OCR (Optical Character Recognition) technology is used to recognize the characters of number plates. In addition, we aim to use the deep learning method using different vehicle images and datasets of some libraries in order to be accurate and realistic when defining the license plates in the License Plate Recognition System.

2. General Description

2.1 Glossary (Definitions, Acronyms, and Abbreviations)

Term	Definition
Camera	A device for recording visual images in the form
	of photographic, film or video signals.
Character	Character recognition is a method for computers
Recognition	to recognize written or printed characters like
	numbers or letters and convert them into a format
	that the computer can understand.
Character	Character segmentation is a process that attempts
Segmentation	to break down a picture of a series of characters
	into individual symbol subimages. It's one of the
	decision-making stages of an optical character
	recognition system (OCR).
Deep Learning	Deep learning is a machine learning and artificial
	intelligence (AI) technique that is modeled after
	how humans learn. In contrast to the usual,
	machine learning algorithms, which are linear, the
	complexity and abstraction of deep learning
	algorithms are constructed in a hierarchy.
Keras	Keras is an open-source software library for
	artificial neural networks that includes a Python
	interface. Keras acts as an interface for the
	TensorFlow.
Licence Plate	A license plate is a sign that is placed on the front
	and back of a car and displays the vehicle's license
	number. A rectangular, generally metal plate with
	a series of numbers, letters, or both that is issued
	by a government to identify a legally registered
	vehicle one of the signs with numbers on it at the
	front and back of a car.
Licence Plate	A license plate recognition system is a form of

Recognition	technology, primarily software, that allows	
System	computers to read the registration number (license	
	number) of automobiles from digital images	
	automatically.	
Optical	The electronic or mechanical translation of images	
Character	of typed, handwritten, or printed text into	
Recognition	machine-encoded text, whether from a scanned	
(OCR)	document, a photo of a document, a scene photo,	
	or subtitle text superimposed on an image, is	
	known as optical character recognition or optical	
	character reader.	
OpenCV (Open		
Source	OpenCV is a programming library geared mostly	
Computer Vision	at real-time computer vision.	
Library)		
Python	Python has a standard library in the works, as well	
	as a few AI libraries. It offers a simple control	
	flow and data structures, as well as a	
	straightforward syntax. It also allows for	
	interpretative run-time without the use of	
	traditional compiler languages. Python is very	
	good for prototyping AI algorithms because of	
	this.	
Software	A document that completely specifies all of the	
Requirements	functions of a proposed system as well as the	
Specification	limitations that it must work under. For example,	
	this document.	
Users	The person using the License Plate Recognition	
OSCIS	System.	

2.2 User Characteristics

Users are which Persons or institutions that use, operate and observe the License Plate Recognition System.

Licence Plate Recognition System is a system that enables to read the license plates of the vehicles by detecting the vehicle according to the color and type of the vehicles. While doing license plate reading, it detects the vehicle, detects the location of the license plate and performs license plate recognition by reading the characters on the plate with OCR.

Support system manager is the person who helps the License Plate Recognition System when there is a problem with the system, camera or license plate reading.

2.3 Product Perspective

In the License Plate Recognition System, the system works by training the license plate position in the photos of the vehicles at different angles and in different frames, using the deep learning method, so that the license plates of the vehicles can be determined easily. For License Plate Recognition System, we prefer Python language to be used in the system due to its wide library possibilities such as TensorFlow, OpenCV and Keras. During the development of the project software, we aim to use Python supported compilers such as Visual Studio, PyCharm and Spyder.

In the License Plate Recognition System, besides the deep learning method, it is also aimed to use image processing and machine learning techniques. The system should be trained and tested using the sources in the license plate recognition system available on the internet, different vehicle images and the TensorFlow library dataset.

In case an external camera such as ESP32 is used as an external camera, images are taken via the ESP32 camera and transferred over Wi-Fi to a sufficiently equipped computer to operate the system. Thus, in the images transferred to the computer, first the location of the plate is determined, then the character cementation is done. Finally, character recognition is done and license plate recognition is done.

2.4 Overview of Functional Requirements

In the Plate Recognition System, the recognition process of the plates first takes place by finding all the contours in the picture. It happens that each stroke has its bounding rectangle. Then it has to compare and verify the side ratio and area of each bounding rectangle with an average plate. Image segmentation is then applied to the image within the verified contour to find the characters inside the plate. As the last step, the characters on the plate are recognized by using OCR (Optical Character Recognition). In the license plate recognition system, there is also a training phase by using the deep learning method for more recognition of the license plate in the images. Thus, different directions of vehicles and license plate positions can be better detected using multiple images or different sections of a video. In this way, it also provides convenience in terms of accuracy and speed in plate recognition.

2.5 General Constraints and Assumptions

Software Conditions: Since the images and times to be used for teaching using deep learning in the license plate recognition system can vary, it can be seen as the challenging part. Since the type of car will be determined with different vehicle images, the teaching time may vary. Every user shall need a computer and compiler that can run the codes in the software part of the license plate recognition system well.

Ambient Conditions: In order for the License Plate Recognition System to work properly, the camera must be in sufficient light and in suitable weather conditions, day or night.

Hardware Conditions: In case of using an external camera such as ESP32 other than the normal camera, the video must be at a suitable distance to be sent. Also the videos need to be sent via the Wi-Fi module over the network.

Security Conditions: In case of using an external camera such as ESP32, since the camera will be connected via Wi-Fi when connecting to the system, other devices using the same Wi-Fi must not block or access the camera. For this, the security of the camera is provided via Wi-Fi.

It is assumed that the system should be trained and tested using the sources in the license plate recognition system available on the internet, different vehicle images and the libraries such as TensorFlow library dataset.

3. Specific Requirements

3.1 Interface Requirements

3.1.1 User Interface

Since the users will use more compilers in the License Plate Recognition System, the recognized license plates on the vehicles and their outputs will be displayed here.

Requirement 1: Running the Compiler

In this interface, the user can operate the system with the buttons on the compiler and observe the outputs.

3.1.2 Hardware Interface

Requirement 1: For the License Plate Recognition System, a computer that can train the data in deep learning and that has good enough hardware should be used.

Requirement 2: Thanks to the ESP32 camera module as an external camera, video transfer is carried out over Wi-Fi. The video taken from the camera reaches the computer and plate recognition is performed. The connection between the ESP32 camera module and the computer is provided by the FTDI module. In case the ESP32 is used other than the computer, the battery is used as the power supply and the cables are used for the connection.

3.1.3 Software Interfaces

Requirement 1: As operating systems, any Windows, Linux and MacOS operating systems with the latest version are chosen as much as possible for the best support and ease of use.

Requirement 2: Libraries such as TensorFlow and OpenCV are planned to be used for the

license plate recognition system. Therefore, compilers such as Visual Studio, PyCharm,

Spyder and Arduino IDE are used that support these libraries and Python language.

3.1.4 Communication Interfaces

Requirement 1: In case of using the external camera, the network connection is required to

be stable in order to establish the connection properly.

3.2 Detailed Description of Functional Requirements

By using the deep learning method in the License Plate Recognition System, it provides license

plate recognition by training the pictures of the vehicles with their license plates from different

angles and frames. Thus, high accuracy results are obtained by minimizing the error rate and

false results. In the License Plate Recognition System, a picture is taken first, and the location

of the plate is determined in the picture taken. Then, character segmentation is done and finally

the process is completed by character recognition.

Requirement 1: The user operates and uses the License Plate Recognition System.

Requirement 2: Pictures or videos are uploaded to the License Plate Recognition System.

Requirement 3: For the License Plate Recognition System, firstly, the defined pictures or

videos are trained to detect different angles and frames by deep learning method.

Requirement 4: Vehicle image defined in License Plate Recognition System is converted to

grayscale format.

Requirement 5: The image is binarized to reveal the plate.

Requirement 6: In the License Plate Recognition System, all the contours of the vehicle picture

are found.

Requirement 7: The bounding rectangle of each contour in the vehicle image is found.

Requirement 8: In the License Plate Recognition System, a comparison and verification of the side ratio and area of each bounding rectangle with an average plate in the vehicle image is made.

Requirement 9: Image segmentation is applied to the image within the verified contour to find the characters in the license plate found in the system.

Requirement 10: In the Plate Recognition System, the characters are recognized separately by using OCR (Optic Character Recognition) as the last process.

Requirement 11: Users can see the license plates of the defined vehicles as a result of the operations in the License Plate Recognition System.

Requirement 12: Support System Manager assists the user and fixes any problem that occurs during the operation of the License Plate Recognition System.

3.3 Non-Functional Requirements

Requirement 1: Speed

In the License Plate Recognition System, it is important that there is a minimum delay in the image source.

Requirement 2: Size

According to the size of the images in the Plate Recognition System and the size of the libraries used, it will occupy a certain space on the computer.

Requirement 3: Performance

In the License Plate Recognition System, the performance of the recognition process of the license plates may vary depending on the camera or the current operating speed of the computer.

Requirement 4: Usability

In order to use the deep learning method in the License Plate Recognition System, certain

libraries must be on the computer and the images must be transferred to the computer to be run.

Requirement 5: Reliability

If an external camera such as ESP332 is used in the License Plate Recognition System, since the connection of this camera with the computer is done via Wi-Fi, necessary protection measures must be taken over Wi-Fi.

Requirement 6: Robustness

License plate recognition shall be done according to changing ambient conditions and ambient light.

Requirement 7: Portability

License Plate Recognition System can be used in any computer environment.

4. Analysis –UML

4.1 Use cases

4.1.1 Drawing Use Case Diagram

4.1.2 Describing Most Use Cases

4.1.2.1 Operate The System

Use Case Name	Operate The System
Actor	Users, Licence Plate Recognition System
Description	1. It is necessary to start the software from
	the compiler.
Trigger	Compile the program
Preconditions	Users starts the Licence Plate Recognition
	System project source code.
Postconditions	After users start the system, they can
	observe the results.

4.1.2.2 Receive The Image

Use Case Name	Receive The Image
Actor	Licence Plate Recognition System
Description	1. The system compiles images from vehicle
	images and video frames in the IDE.
Trigger	Receiving the image.
Preconditions	Licence Plate Recognition system gets the
	image.
Postconditions	Pictures are made ready to apply the
	operations by the License Plate Recognition
	System.

4.1.2.3 Detect Vehicles

Use Case Name	Detect Vehicles
Actor	Licence Plate Recognition System
Description	1. The processed image is converted to
	grayscale format and the image is blurred.
	2. The blurred image has vertical edges.
	3. The image is binarized to reveal the plate.
	4. All contours in the picture are found.
Trigger	Process the image.
Preconditions	The system detects the vehicle by using
	software.
Postconditions	After the vehicle is detected, the license
	plate recognition phase starts in the License
	Plate Recognition System.

4.1.2.4 Detect Licence Plates

Use Case Name	Detect Licence Plates
Actor	Licence Plate Recognition System
Description	1. The transformation is applied to the
	thresholded image.
	2. The rectangular white box of the plate is
	revealed.
	3. Contours are drawn in the binary and
	transformed image.
	4. By drawing all the extracted contours to
	the original image, the boundaries of the
	license plate and vehicle are determined.
	5. For the plates, the minimum area
	rectangle enclosed by each contour is found
	and the side proportions and area are

	verified.
	6. The minimum and maximum area of the
	plate is defined according to the plate to be
	used.
	7. The plate has contours in the verified
	region, and the lateral proportions and area
	of the bounding rectangle of the largest
	contour in that region are verified.
	8. The found contour is subtracted from the
	original image and the view of the plate is
	obtained.
Trigger	Detection of vehicles
Preconditions	Determination of the contours of vehicles.
Postconditions	Character segmentation process is started.

4.1.2.5 Perform Character Segmentation

Use Case Name	Perform Character Segmentation
Actor	Licence Plate Recognition System
Description	1. To fully recognize the characters on the
	plate, image segmentation needs to be
	applied and the value channel is extracted
	from the HSV format of the plate image.
	2. Adaptive thresholding is applied to the
	value channel image of the plate to binarize
	and reveal characters.
	3. In order to find the connected components
	in the image, not bitwise processing is
	applied on the image.
	4. A mask is created to display all character
	components and their contours in the mask.
	By subtracting the contours, the largest is

	taken, the bounding rectangle is found, and
	the side ratios are verified.
	5. By verifying the lateral proportions, the
	convex shell of the contour is found and
	drawn on the character candidate mask.
	6. All contours in the character candidate
	mask are found and these contour areas are
	extracted from the threshold value image of
	the plate, all characters are taken separately.
Trigger	Detect Licence Plates
Preconditions	Defining the plate perimeter and contour.
Postconditions	The optical character recognition stage is
	applied.

4.1.2.6 Perform Optical Character Recognition

Use Case Name	Perform Optical Character Recognition
Actor	Licence Plate Recognition System
Description	1. Plate texts are obtained from the picture
	with character segmentation.
Trigger	Completion of character segmentation.
Preconditions	Obtaining the characters on the plate
	separately as a picture.
Postconditions	Determination of vehicle type and features
	and recognition of license plate.

4.1.2.7 Give Vehicle Information

Use Case Name	Give Vehicle Information
Actor	Licence Plate Recognition System
Description	1. Providing vehicle type and features by
	using plates.
Trigger	End of Optical Character Recognition.
Preconditions	Completion of license plate recognition
	processes.
Postconditions	Proceeding to the display stage.

4.1.2.8 Display Result

Use Case Name	Display Result
Actor	Licence Plate Recognition System
Description	1. After the license plate recognition process is completed, the plate is printed in text
	format.
Trigger	End of Optical Character Recognition processes.
Preconditions	Vehicle information is defined.
Postconditions	Printing the License Plate Recognition System.

4.1.2.9 Provide Support

Use Case Name	Provide Support
Actor	Support System Manager, Licence Plate
	Recognition System
Description	1. System problems are addressed and
	necessary solutions are realized.
Trigger	Error message.
Preconditions	Error occurred in the system.
Postconditions	Support system manager solves the problem.

5. References

- https://dergipark.org.tr/tr/download/issue-file/34765
- https://www.geeksforgeeks.org/detect-and-recognize-car-license-plate-from-a-video-in-real-time/
- https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/deep-learningbased-method-for-vehicle-licenseplate-recognition-in-natural-scene/5C9EE6C71559B5E0B2EA1B89401A068C
- https://data.nal.usda.gov/data-dictionary-examples
- https://creately.com/lp/data-flow-diagram-software-online/
- https://lucid.app/