EE 2000 Logic Circuit Design Semester B 2023/24

Tutorial 1

- 1. Simplify the following expressions using boolean algebra
 - (a) $f(w, x, y, z) = xy + \overline{w}\overline{y}z + \overline{w}x\overline{y} + wxy\overline{z} + \overline{w}yz + wz$ Hint: Use adjacency and absorption

Ans: $f(w, x, y, z) = xy + z + \overline{w}x\overline{y}$

(b) $f(x, y, z) = (x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})$

Hint: Use adjacency

Ans: f(x, y, z) = x

(c) f(a, b, c, d) = ab + bcd + ab'c' + abd + bc + abc'

Hint: Use adjacency, absorption and consensus

Ans: f(a, b, c, d) = ac' + bc

(d) $f(a,b,c) = (a+b+c)(a+\overline{b}+c)(a+\overline{b}+\overline{c})(\overline{a}+\overline{b}+\overline{c})$

Hint: Use adjacency

Ans: $f(a,b,c) = (a+c)(\bar{b}+\bar{c})$

- 2. Given a function $f(x, y, z) = \sum m(0,2,4,6)$
 - (a) Show the truth table.

Ans:

]	nput	Output	
x	у	z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(b) Show the algebraic expression in standard SOP form.

Ans: f(x, y, z) = x'y'z' + x'yz' + xy'z' + xyz'

(c) Show the minimum SOP expression and draw the circuit diagram.

Ans: f(x, y, z) = z' $Z \longrightarrow F$

(d) Show the algebraic expression in standard POS form.

Ans:
$$f(x, y, z) = (x + y + z')(x + y' + z')(x' + y + z')(x' + y' + z')$$

(e) Show the minimum POS expression.

Ans: f(x, y, z) = z'

3. A simple locker system that has an output signal Z = 1 when the hexadecimal keypad input is either 0, 1, 2, 3, 7, 8, 9, A or E; otherwise Z = 0. Assume that A_3 A_2 A_1 A_0 represent a 4-digit binary number output from the keypad (A_3 as the MSB). Block A decodes these signals and outputs the signal Z.

(a) Write down the truth table of Block A.

Input	Inputs				Output
	A_3	A_2	A_1	A_0	Z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
Α	1	0	1	0	1
В	1	0	1	1	0
С	1	1	0	0	0
D	1	1	0	1	0
E	1	1	1	0	1
F	1	1	1	1	0

(b) Find the SOP and POS expression of Block A.

$$f(A_3, A_2, A_1, A_0) = f(w, x, y, z) = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz + wx'y'z' + wx'y'z' + wx'y'z' + wx'y'z' + wxyz'$$

$$f(w, x, y, z) = w'x'y' + w'x'y + w'xyz + wx'y' + wyz'$$

= w'x'y' + w'y(x'+xz) + wx'y' + wyz'

. . .

$$= w'x' + w'yz + wx'y' + wyz'$$

Ans:
$$f(A_3, A_2, A_1, A_0) = A_3'A_2' + A_3'A_1A_0 + A_3A_2'A_1' + A_3A_1A_0'$$

$$f(A_3, A_2, A_1, A_0) = f(w, x, y, z)$$

$$= (w + x' + y + z)(w + x' + y + z')(w + x' + y' + z)(w' + x + y' + z')$$

$$+ z')(w' + x' + y + z)(w' + x' + y + z')(w' + x' + y' + z')$$

$$= (w + x' + y)(w + x' + y' + z)(w' + y' + z')(w' + x' + y)$$

$$= (w + x' + y(y' + z))(w' + y' + z')(w' + x' + y)$$
...
$$= (x' + y)(w + x' + z)(w' + y' + z')$$

Ans:
$$f(A_3, A_2, A_1, A_0) = (A'_2 + A_1)(A_3 + A'_2 + A_0)(A'_3 + A'_1 + A'_0)$$

Remarks: you might have different approach. As long as the answer is correct, then it is ok. You can also attempt this question using K-map. It is more straightforward.

(c) Design the circuit of Block A using minimum number of 2-input AND, OR gates and NOT gates.

Ans:

4. (a) Derive Boolean functions to describe the operations of the combinational circuit as follow:

Ans:

$$F = A + B$$

$$G = 1$$

$$H = D'$$

(b) Hence, simplify and draw a new logic circuit.

Ans:

(c) Redraw the logic circuit with only 2-input NAND gates.

Ans:

