omdl

v0.4

Generated by Doxygen 1.8.9.1

Thu Feb 2 2017 18:53:20

ii CONTENTS

Contents

1	omd	omdl Company of the C						
	1.1	What is	is omdl?		1			
	1.2	Quick	Start		2			
	1.3	Using	omdl		2			
		1.3.1	Automated install		2			
	1.4	Contrib	buting		3			
2	Valid	Validation						
	2.1 Primitives Validation				3			
		2.1.1	Variable Tests		4			
		2.1.2	Vector Operations		17			
	2.2	Compu	utations Validation		27			
		2.2.1	Point, Vector and Plane		27			
		2.2.2	Bitwise Operations		31			
3	Todo	o List			36			
4	Mod	ule Inde	ex		37			
	4.1	Module	es		37			
5	File	Index			38			
	5.1	File Lis	st		38			
6	Mod	ule Doc	cumentation		39			
	6.1	2D Ext	trusions		39			
		6.1.1	Detailed Description		40			
		6.1.2	Function Documentation		40			
	6.2	2D Sha	iapes		57			
		6.2.1	Detailed Description		58			
		6.2.2	Function Documentation		58			
6.3 3D Shapes.		3D Sha	iapes		72			
		6.3.1	Detailed Description		72			
		6.3.2	Function Documentation		73			
	6.4	Angle			81			
		6.4.1	Detailed Description		81			
		6.4.2	Function Documentation		82			
	6.5	Bitwise	e Operations		84			

	6.5.1	Detailed Description	85
	6.5.2	Function Documentation	85
6.6	Consol	le	88
	6.6.1	Detailed Description	88
	6.6.2	Function Documentation	89
6.7	Consta	nts	91
	6.7.1	Detailed Description	91
6.8	Data .		92
	6.8.1	Detailed Description	92
6.9	Datatal	ble	93
	6.9.1	Detailed Description	94
	6.9.2	Function Documentation	95
6.10	Design	s	01
6.11	Euclide	ean	02
	6.11.1	Detailed Description	03
6.12	Extrusi	ons	04
	6.12.1	Detailed Description	04
	6.12.2	Function Documentation	04
6.13	Genera	al	80
	6.13.1	Detailed Description	80
6.14	Length		09
	6.14.1	Detailed Description	09
	6.14.2	Function Documentation	11
6.15	Map .		12
	6.15.1	Detailed Description	12
	6.15.2	Function Documentation	13
6.16	Math .		16
	6.16.1	Detailed Description	17
6.17	Parts .		18
6.18	Point, \	Vector and Plane	19
	6.18.1	Detailed Description	19
	6.18.2	Function Documentation	19
6.19	Replica	ations	24
	6.19.1	Detailed Description	24
	6.19.2	Function Documentation	24
6.20	Resolu	tion	26
	6.20.1	Detailed Description	27

iv CONTENTS

	6.20.2 Function Documentation					
6.21	Shapes					
	6.21.1 Detailed Description					
6.22	System					
	6.22.1 Detailed Description					
6.23	Tools					
6.24	Transformations					
	6.24.1 Detailed Description					
6.25	Triangle Solutions					
	6.25.1 Detailed Description					
	6.25.2 Function Documentation					
6.26	Units					
	6.26.1 Detailed Description					
6.27	Utilities					
	6.27.1 Detailed Description					
	6.27.2 Function Documentation					
6.28	Variable Tests					
	6.28.1 Detailed Description					
	6.28.2 Function Documentation					
6.29	Vector Operations					
	6.29.1 Detailed Description					
	6.29.2 Function Documentation					
6.30	n-gon Solutions					
	6.30.1 Detailed Description					
	6.30.2 Function Documentation					
	Documentation 171					
File Documentation						
7.1	console.scad File Reference					
	7.1.1 Detailed Description					
7.2	constants.scad File Reference					
	7.2.1 Detailed Description					
7.3	mainpage.scad File Reference					
	7.3.1 Detailed Description					
7.4	map.scad File Reference					
	7.4.1 Detailed Description					
7.5	math.scad File Reference					
	7.5.1 Detailed Description					

7

1 omdl

7.6	math_bitwise.scad File Reference	. 1/9
	7.6.1 Detailed Description	. 181
7.7	7 primitives.scad File Reference	. 181
	7.7.1 Detailed Description	. 184
7.8	resolution.scad File Reference	. 185
	7.8.1 Detailed Description	. 186
7.9	9 shapes2d.scad File Reference	. 187
	7.9.1 Detailed Description	. 188
7.1	10 shapes2de.scad File Reference	. 189
	7.10.1 Detailed Description	. 191
7.1	11 shapes3d.scad File Reference	. 192
	7.11.1 Detailed Description	. 193
7.1	12 table.scad File Reference	. 193
	7.12.1 Detailed Description	. 195
7.1	13 transform.scad File Reference	. 195
	7.13.1 Detailed Description	. 197
7.1	14 units_angle.scad File Reference	. 197
	7.14.1 Detailed Description	. 198
7.1	15 units_length.scad File Reference	. 199
	7.15.1 Detailed Description	. 199
7.1	16 utilities.scad File Reference	. 200
	7.16.1 Detailed Description	. 201
7.1	17 validation.scad File Reference	. 201
	7.17.1 Detailed Description	. 202
Index		205
HIUCX		203

1 omdl

A collection of documented open-source high-level design primitives for OpenSCAD.

1.1 What is omdl?

It is an OpenSCAD mechanical design library (omd1) that aims to offer open-source high-level design libraries of primitive functions and modules with coherent documentation generated by Doxygen.

With Doxygen, the code documentation is written within the code itself, and is thus easy to keep current. Moreover, it provides a standard way to both write and present OpenSCAD script documentation, compilable to multiple common output formats. This is quite useful for language-based mechanical design. With omdl, all library primitives are parametric with minimal, mostly zero, global variable dependencies and all library API's include Doxygen markups that describe its parameters, behavior, and use. Validation scripts are used to check that the core user-space building blocks

work as expected across evolving OpenSCAD versions. These validation are performed automatically when rebuilding the documentation. See the validation section for the results generated with this documentation.

1.2 Quick Start

The omdl consist of a collection of libraries that may be used or included as expected.

Example:

```
include <shapes2de.scad>;
include <shapes3d.scad>;

$fn = 36;

frame = triangle_vp2vl( [ [30,0], [0,40], [30,40] ] );
core = 2 * frame / 3;
vrnd = [1, 2, 4];

cone( h=20, r=10, vr=2 );
rotate([0, 0, 360/20])
st_radial_copy( n=5, angle=true )
    etriangle_vl_c( vs=frame, vc=core, vr=vrnd, h=10 );

translate([0, -50,0])
linear_extrude(height=10)
text( text="omdl", size=20, halign="center", valign="center" );
```

Table 1: Example Result

1.3 Using omdl

To use omdl the library files must be copied to one of the OpenSCAD Library Locations. This can be done manually, as described in the OpenSCAD documentation, or can be automated using openscad—amu.

The ladder is recommended and has several advantages. When using openscad-amu, the library reference documentation is installed together with the library source code. This reference documentation is also added to a browsable data-table of installed libraries, which facilitates design reference searches. Moreover, with openscad-amu installed, one can rebuild the omdl reference manual or develop documentation for new OpenSCAD designs.

1.3.1 Automated install

More information on installing openscad—amu can be found published on Thingiverse and in the GitHib repository where the source is maintained.

A build script exists for *Linux* and *Cygwin* (pull requests for *macos* are welcome). If wget is not available, here is a downloadable link to the bootstrap script.

1.4 Contributing 3

```
$ mkdir tmp && cd tmp

$ wget https://raw.githubusercontent.com/royasutton/openscad-amu/master/share/scripts/bootstrap.{bash.in,conf}}
$ sed 'ld' bootstrap.bash.in > bootstrap.bash
$ chmod +x bootstrap.bash
$ ./bootstrap.bash --yes --install
$ openscad-seam -v -V
```

If the last step reports the tool build version, then the install most likely completed successfully and the temporary directory created in the first step may be removed when desired (the curious may wish to explore whats there prior).

```
$ cd ..
$ rm -rf tmp
```

Now the documentation for omdl can be compiled and installed with a single command. First download the source from Thingiverse or clone the source repository and install as follows:

```
$ git clone https://github.com/royasutton/omdl.git
$ cd omdl
$ make install
```

The library and documentation should now have been installed to the OpenSCAD built-in library location along with the reference manual that can be views with a web browser (or PDF file viewer).

Have a look in:

- · Linux: \$HOME/.local/share/OpenSCAD/libraries
- Windows: My Documents\OpenSCAD\libraries

Now you may include the desired library primitives in your project as follows, replacing the version number as needed (multiple version of a library may coexists):

```
include <omdl-v0.3/shapes2de.scad>;
include <omdl-v0.3/shapes3d.scad>;
```

1.4 Contributing

omdl uses git for development tracking, and is hosted on GitHub following the usual practice of forking and submitting pull requests to the source repository.

As it is released under the GNU Lesser General Public License, any file you change should bear your copyright notice alongside the original authors' copyright notices typically located at the top of each file.

Ideas, requests, comments, contributions, and constructive criticism are welcome.

2 Validation

- · Primitives Validation
- · Computations Validation

2.1 Primitives Validation

- Variable Tests
- Vector Operations

2.1.1 Variable Tests

- Validation Script (group1)
- · Validation Results (group1)
- · Validation Script (group2)
- Validation Results (group2)

2.1.1.1 Validation Script (group1)

```
include <primitives.scad>;
  use <table.scad>;
  use <console.scad>;
  use <validation.scad>;
                               // show passing tests
// show skipped tests
  show_passing = true;
show_skipped = true;
  echo( str("OpenSCAD Version ", version()) );
  // test-values columns
  test_c =
    ["id", "identifier"],
["td", "description"],
["tv", "test value"]
  // test-values rows
  test_r =
    ["t01", "The undefined value",
["t02", "An odd integer",
["t03", "An small even integer",
                                                      undef],
                                                      101.
     ["t04", "A large integer",
                                                      100000000],
    ["t05", "A small decimal (epsilon)", eps],
["t06", "The max number", number
["t07", "The min number", number
["t08", "The max number^2", number
                                                     number_min],
                                                     number_max *
number_max],
    ["t09", "The invalid number nan", ["t10", "The boolean true",
     ["t11", "The boolean false",
                                                     false],
    ["t12", "A character string", ["t13", "A string",
                                                     "a"],
                                                    "This is a longer string"],
    ["t14", "The empty string",
["t15", "The empty vector",
                                                     empty_str],
                                                      empty_v],
     ["t16", "A 1-tuple vector of undef", [undef]],
    ["t17", "A 1-tuple vector",
["t18", "A 3-tuple vector",
                                                       [10]],
                                                       [1, 2, 3]],
     ["t19", "A vector of vectors",
                                                     [[1,2,3], [4,5,6], [7,8,9]]],
    ["t20", "A shorthand range", ["t21", "A range",
                                                     [0:9]],
                                                       [0:0.5:9]]
  test_ids = table_get_row_ids( test_r );
  // expected columns: ("id" + one column for each test)
  good_c = pmerge([concat("id", test_ids), concat("identifier", test_ids)]);
  // expected rows: ("golden" test results), use 's' to skip test
  t = true; // shortcuts
  f = false;
  u = undef;
  s = -1:
                 // skip test
```

```
good_r =
                   01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
  [ // function
    f, t, t, f, f, f, f, f, f],
     "is_scalar"
                    t, f, f, f, f, f, f, f, s, s],
    ["is_iterable", f, t, t, t, t, t, t, t, s, s],
    ["is_string",
                   f, t, t, t, f, f, f, f, f, f, f],
    ["is vector",
                    f, t, t, t, t, t, s, s],
     "is_boolean",
                    f, f, f, f, f, f, f, f, t, t, f, f],
    ["is_integer",
                   ["is_decimal",
                   ["is_number",
                    f, t, t, t, t, t, t, t, f, f],
    ["is_range",
                    ["is_nan",
                    ["is_inf",
                   ["is_even",
                   ["is_odd",
                   // sanity-test tables
  table_check( test_r, test_c, false );
  table check ( good r, good c, false );
  // validate helper function and module
  function get_value( vid ) = table_get(test_r, test_c, vid, "tv");
 module run_test( fname, fresult, vid )
   value_text = table_get(test_r, test_c, vid, "td");
   pass_value = table_get(good_r, good_c, fname, vid);
   test_pass = validate( cv=fresult, t=pass_value, pf=true );
test_text = validate( str(fname, "(", get_value(vid), ")=", pass_value), fresult,
pass_value );
   if ( pass_value != s )
     if ( !test_pass )
       log_warn( str(vid, "(", value_text, ") ", test_text) );
     else if ( show_passing )
  log_info( str(vid, " ", test_text) );
   else if ( show_skipped )
     log_info( str(vid, " *skip*: '", fname, "(", value_text, ")'") );
  // Indirect function calls would be very useful here!!!
 for (vid=test_ids) run_test( "is_defined", is_defined(get_value(vid)), vid );
for (vid=test_ids) run_test( "not_defined", not_defined(get_value(vid)), vid );
  for (vid=test_ids) run_test( "is_empty", is_empty(get_value(vid)), vid );
for (vid=test_ids) run_test( "is_scalar", is_scalar(get_value(vid)), vid );
for (vid=test_ids) run_test( "is_iterable", is_iterable(get_value(vid)), vid );
 for (vid=test_ids) run_test( "is_string", is_string(get_value(vid)), vid);
for (vid=test_ids) run_test( "is_vector", is_vector(get_value(vid)), vid);
  for (vid=test_ids) run_test( "is_boolean", is_boolean(get_value(vid)), vid );
  for (vid=test_ids) run_test( "is_integer", is_integer(get_value(vid)), vid);
for (vid=test_ids) run_test( "is_decimal", is_decimal(get_value(vid)), vid);
  for (vid=test_ids) run_test( "is_number", is_number(get_value(vid)), vid );
  for (vid=test_ids) run_test( "is_range", is_range(get_value(vid)), vid );
 for (vid=test_ids) run_test( "is_nan", is_nan(get_value(vid)), vid);
for (vid=test_ids) run_test( "is_inf", is_inf(get_value(vid)), vid);
 for (vid=test_ids) run_test( "is_even", is_even(get_value(vid)), vid);
for (vid=test_ids) run_test( "is_odd", is_odd(get_value(vid)), vid);
  // end-of-tests
```

2.1.1.2 Validation Results (group1)

```
1 ECHO: "OpenSCAD Version [2016, 12, 21]"
2 ECHO: "[ INFO ] run_test(); t01 passed: 'is_defined(undef)=false'"
3 ECHO: "[ INFO ]
                    run_test(); t02 passed: 'is_defined(1)=true'
4 ECHO: "[ INFO ] run_test(); t03 passed: 'is_defined(10)=true'"
5 ECHO: "[ INFO ]
                    run_test(); t04 passed: 'is_defined(1e+08)=true'"
6 ECHO: "[ INFO ] run_test(); t05 passed: 'is_defined(0.01)=true'"
7 ECHO: "[ INFO ] run_test(); t06 passed: 'is_defined(1e+308)=true'" 8 ECHO: "[ INFO ] run_test(); t07 passed: 'is_defined(-1e+308)=true'"
9 ECHO: "[ INFO ] run_test(); t08 passed: 'is_defined(inf)=true'
```

```
10 ECHO: "[ INFO ] run_test(); t09 passed: 'is_defined(nan)=true'"
11 ECHO: "[ INFO ] run_test(); t10 passed: 'is_defined(true)=true'"
12 ECHO: "[ INFO ] run_test(); t11 passed: 'is_defined(false)=true'"
13 ECHO: "[ INFO ] run_test(); t12 passed: 'is_defined(a)=true'"
14 ECHO: "[
             INFO ] run_test(); t13 passed: 'is_defined(This is a longer string)=true'"
15 ECHO: "[ INFO ] run_test(); t14 passed: 'is_defined()=true'"
16 ECHO: "[
             INFO ] run_test(); t15 passed: 'is_defined([])=true'"
17 ECHO: "[ INFO ] run_test(); t16 passed: 'is_defined([undef])=true'"
18 ECHO: "[ INFO ] run_test(); t17 passed: 'is_defined([10])=true'
19 ECHO: "[ INFO ] run_test(); t18 passed: 'is_defined([1, 2, 3])=true'"
20 ECHO: "[ INFO ] run_test(); t19 passed: 'is_defined([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=true'"
21 ECHO: "[ INFO ] run_test(); t20 passed: 'is_defined([0 : 1 : 9])=true'"
22 ECHO: "[ INFO ] run_test(); t21 passed: 'is_defined([0 : 0.5 : 9])=true'"
23 ECHO: "[ INFO ] run_test(); t01 passed: 'not_defined(undef)=true'"
24 ECHO: "[ INFO ] run_test(); t02 passed: 'not_defined(1)=false'
25 ECHO: "[ INFO ] run_test(); t03 passed: 'not_defined(10)=false'"
26 ECHO: "[ INFO ] run_test(); t04 passed: 'not_defined(1e+08)=false'"
27 ECHO: "[ INFO ] run_test(); t05 passed: 'not_defined(0.01)=false'"
28 ECHO: "[ INFO ] run_test(); t06 passed: 'not_defined(1e+308)=false'
29 ECHO: "[ INFO ] run_test(); t07 passed: 'not_defined(-1e+308)=false'"
30 ECHO: "[ INFO ] run_test(); t08 passed: 'not_defined(inf)=false'
31 ECHO: "[ INFO ] run_test(); t09 passed: 'not_defined(nan)=false'"
32 ECHO: "[ INFO ] run_test(); t10 passed: 'not_defined(true)=false'"
33 ECHO: "[ INFO ] run_test(); t11 passed: 'not_defined(false)=false'"
34 ECHO: "[ INFO ] run_test(); t12 passed: 'not_defined(a)=false'
35 ECHO: "[ INFO ] run_test(); t13 passed: 'not_defined(This is a longer string)=false'"
36 ECHO: "[ INFO ] run_test(); t14 passed: 'not_defined()=false'
37 ECHO: "[ INFO ] run_test(); t15 passed: 'not_defined([])=false'"
38 ECHO: "[ INFO ] run_test(); t16 passed: 'not_defined([undef])=false'
39 ECHO: "[ INFO ] run_test(); t17 passed: 'not_defined([10])=false'
40 ECHO: "[ INFO ] run_test(); t18 passed: 'not_defined([1, 2, 3])=false'"
41 ECHO: "[ INFO ] run_test(); t19 passed: 'not_defined([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
42 ECHO: "[ INFO ] run_test(); t20 passed: 'not_defined([0 : 1 : 9])=false''
43 ECHO: "[ INFO ] run_test(); t21 passed: 'not_defined([0 : 0.5 : 9])=false'"
44 ECHO: "[ INFO ] run_test(); t01 passed: 'is_empty(undef)=false'"
45 ECHO: "[ INFO ] run_test(); t02 passed: 'is_empty(1)=false'
46 ECHO: "[ INFO ] run_test(); t03 passed: 'is_empty(10)=false'
47 ECHO: "[ INFO ] run_test(); t04 passed: 'is_empty(1e+08)=false'"
48 ECHO: "[ INFO ] run_test(); t05 passed: 'is_empty(0.01)=false'
49 ECHO: "[ INFO ] run_test(); t06 passed: 'is_empty(1e+308)=false'
50 ECHO: "[ INFO ] run_test(); t07 passed: 'is_empty(-1e+308)=false'"
51 ECHO: "[ INFO ] run_test(); t08 passed: 'is_empty(inf)=false'
52 ECHO: "[ INFO ] run_test(); t09 passed: 'is_empty(nan)=false'"
53 ECHO: "[ INFO ] run_test(); t10 passed: 'is_empty(true)=false'
54 ECHO: "[ INFO ] run_test(); t11 passed: 'is_empty(false)=false'"
55 ECHO: "[ INFO ] run_test(); t12 passed: 'is_empty(a)=false'"
56 ECHO: "[ INFO ] run_test(); t13 passed: 'is_empty(This is a longer string)=false'"
57 ECHO: "[ INFO ] run_test(); t14 passed: 'is_empty()=true'
58 ECHO: "[ INFO ] run_test(); t15 passed: 'is_empty([])=true'"
59 ECHO: "[ INFO ] run_test(); t16 passed: 'is_empty([undef])=false'"
60 ECHO: "[ INFO ] run_test(); t17 passed: 'is_empty([10])=false'"
61 ECHO: "[ INFO ] run_test(); t18 passed: 'is_empty([1, 2, 3])=false'"
62 ECHO: "[ INFO ] run_test(); t19 passed: 'is_empty([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'" 63 ECHO: "[ INFO ] run_test(); t20 passed: 'is_empty([0 : 1 : 9])=false'"
64 ECHO: "[ INFO ] run_test(); t21 passed: 'is_empty([0 : 0.5 : 9])=false'"
65 ECHO: "[ INFO ] run_test(); t01 passed: 'is_scalar(undef)=true'"
66 ECHO: "[ INFO ] run_test(); t02 passed: 'is_scalar(1)=true'"
67 ECHO: "[
             INFO ] run_test(); t03 passed: 'is_scalar(10)=true'"
68 ECHO: "[ INFO ] run_test(); t04 passed: 'is_scalar(1e+08)=true'"
69 ECHO: "[ INFO ] run_test(); t05 passed: 'is_scalar(0.01)=true''
70 ECHO: "[ INFO ] run_test(); t06 passed: 'is_scalar(1e+308)=true'
71 ECHO: "[ INFO ] run_test(); t07 passed: 'is_scalar(-1e+308)=true'"
72 ECHO: "[ INFO ] run_test(); t08 passed: 'is_scalar(inf)=true'"
73 ECHO: "[ INFO ] run_test(); t09 passed: 'is_scalar(nan)=true'"
74 ECHO: "[ INFO ] run_test(); t10 passed: 'is_scalar(true)=true'"
75 ECHO: "[ INFO ] run_test(); t11 passed: 'is_scalar(false)=true'"
76 ECHO: "[ INFO ] run_test(); t12 passed: 'is_scalar(a)=false'"
77 ECHO: "[ INFO ] run_test(); t13 passed: 'is_scalar(This is a longer string)=false'"
78 ECHO: "[ INFO ] run_test(); t14 passed: 'is_scalar()=false'"
79 ECHO: "[ INFO ] run_test(); t15 passed: 'is_scalar([])=false'"
80 ECHO: "[ INFO ] run_test(); t16 passed: 'is_scalar([undef])=false'
81 ECHO: "[ INFO ] run_test(); t17 passed: 'is_scalar([10])=false'
82 ECHO: "[ INFO ] run_test(); t18 passed: 'is_scalar([1, 2, 3])=false'"
83 ECHO: "[ INFO ] run_test(); t19 passed: 'js_scalar([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
84 ECHO: "[ INFO ] run_test(); t20 *skip*: 'is_scalar(A shorthand range)'"
85 ECHO: "[ INFO ] run_test(); t21 *skip*: 'is_scalar(A range)'"
86 ECHO: "[ INFO ] run_test(); t01 passed: 'is_iterable(undef)=false
87 ECHO: "[ INFO ] run_test(); t02 passed: 'is_iterable(1)=false'"
88 ECHO: "[ INFO ] run_test(); t03 passed: 'is_iterable(10)=false'"
89 ECHO: "[ INFO ] run_test(); t04 passed: 'is_iterable(le+08)=false'"
90 ECHO: "[ INFO ] run_test(); t05 passed: 'is_iterable(0.01)=false'"
```

```
91 ECHO: "[ INFO ] run_test(); t06 passed: 'is_iterable(1e+308)=false'"
92 ECHO: "[ INFO ] run_test(); t07 passed: 'is_iterable(-1e+308)=false'"
93 ECHO: "[ INFO ] run_test(); t08 passed: 'is_iterable(inf)=false'
94 ECHO: "[ INFO ] run_test(); t09 passed: 'is_iterable(nan)=false'"
95 ECHO: "[
            INFO ] run_test(); t10 passed: 'is_iterable(true)=false'"
96 ECHO: "[ INFO ] run_test(); t11 passed: 'is_iterable(false)=false'"
97 ECHO: "[
            INFO ] run_test(); t12 passed: 'is_iterable(a)=true'"
98 ECHO: "[ INFO ] run_test(); t13 passed: 'is_iterable(This is a longer string)=true'"
99 ECHO: "[ INFO ] run_test(); t14 passed: 'is_iterable()=true'"
100 ECHO: "[ INFO ] run_test(); t15 passed: 'is_iterable([])=true'"
101 ECHO: "[ INFO ] run_test(); t16 passed: 'is_iterable([undef])=true'"
102 ECHO: "[ INFO ] run_test(); t17 passed: 'is_iterable([10])=true'"
103 ECHO: "[ INFO ] run_test(); t18 passed: 'is_iterable([1, 2, 3])=true'"
104 ECHO: "[ INFO ] run_test(); t19 passed: 'is_iterable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=true'"
105 ECHO: "[ INFO ] run_test(); t20 *skip*: 'is_iterable(A shorthand range)'"
106 ECHO: "[ INFO ] run_test(); t21 *skip*: 'is_iterable(A range)'"
107 ECHO: "[ INFO ] run_test(); t01 passed: 'is_string(undef)=false'"
108 ECHO: "[ INFO ] run_test(); t02 passed: 'is_string(1)=false'"
109 ECHO: "[ INFO ] run_test(); t03 passed: 'is_string(10) = false'"
110 ECHO: "[ INFO ] run_test(); t04 passed: 'is_string(1e+08)=false'"
111 ECHO: "[ INFO ] run_test(); t05 passed: 'is_string(0.01)=false'
112 ECHO: "[ INFO ] run_test(); t06 passed: 'is_string(1e+308)=false'"
113 ECHO: "[ INFO ] run_test(); t07 passed: 'is_string(-1e+308)=false'"
114 ECHO: "[ INFO ] run_test(); t08 passed: 'is_string(inf)=false'"
115 ECHO: "[ INFO ] run_test(); t09 passed: 'is_string(nan)=false'"
116 ECHO: "[ INFO ] run_test(); t10 passed: 'is_string(true)=false'
117 ECHO: "[ INFO ] run_test(); t11 passed: 'is_string(false)=false'"
118 ECHO: "[ INFO ] run_test(); t12 passed: 'is_string(a)=true'"
119 ECHO: "[ INFO ] run_test(); t13 passed: 'is_string(This is a longer string)=true'"
120 ECHO: "[ INFO ] run_test(); t14 passed: 'is_string()=true'"
121 ECHO: "[ INFO ] run_test(); t15 passed: 'is_string([])=false'"
122 ECHO: "[ INFO ] run_test(); t16 passed: 'is_string([undef])=false'
123 ECHO: "[ INFO ] run_test(); t17 passed: 'is_string([10])=false''
124 ECHO: "[ INFO ] run_test(); t18 passed: 'is_string([1, 2, 3])=false'"
125 ECHO: "[ INFO ] run_test(); t19 passed: 'is_string([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
126 ECHO: "[ INFO ] run_test(); t20 passed: 'is_string([0 : 1 : 9])=false'"
127 ECHO: "[ INFO ] run_test(); t21 passed: 'is_string([0 : 0.5 : 9])=false'"
128 ECHO: "[ INFO ] run_test(); t01 passed: 'is_vector(undef)=false'
129 ECHO: "[ INFO ] run_test(); t02 passed: 'is_vector(1)=false'"
130 ECHO: "[ INFO ] run_test(); t03 passed: 'is_vector(10)=false'"
131 ECHO: "[ INFO ] run_test(); t04 passed: 'is_vector(1e+08)=false'"
132 ECHO: "[ INFO ] run_test(); t05 passed: 'is_vector(0.01)=false'
133 ECHO: "[ INFO ] run_test(); t06 passed: 'is_vector(1e+308)=false'
134 ECHO: "[ INFO ] run_test(); t07 passed: 'is_vector(-1e+308)=false'"
135 ECHO: "[ INFO ] run_test(); t08 passed: 'is_vector(inf)=false'"
136 ECHO: "[ INFO ] run_test(); t09 passed: 'is_vector(nan)=false'"
137 ECHO: "[ INFO ] run_test(); t10 passed: 'is_vector(true)=false'
138 ECHO: "[ INFO ] run_test(); t11 passed: 'is_vector(false)=false'"
139 ECHO: "[ INFO ] run_test(); t12 passed: 'is_vector(a)=false'"
140 ECHO: "[ INFO ] run_test(); t13 passed: 'is_vector(This is a longer string)=false'"
141 ECHO: "[ INFO ] run_test(); t14 passed: 'is_vector()=false'"
142 ECHO: "[ INFO ] run_test(); t15 passed: 'is_vector([])=true'"
143 ECHO: "[ INFO ] run_test(); t16 passed: 'is_vector([undef])=true'"
144 ECHO: "[ INFO ]
                    run_test(); t17 passed: 'is_vector([10])=true'
145 ECHO: "[ INFO ] run_test(); t18 passed: 'is_vector([1, 2, 3])=true'"
146 ECHO: "[ INFO ]
                    run_test(); t19 passed: 'is_vector([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=true'"
147 ECHO: "[ INFO ] run_test(); t20 *skip*: 'is_vector(A shorthand range)'"
148 ECHO: "[ INFO ] run_test(); t21 *skip*: 'is_vector(A range)'
149 ECHO: "[ INFO ] run_test(); t01 passed: 'is_boolean(undef)=false'"
150 ECHO: "[ INFO ] run_test(); t02 passed: 'is_boolean(1)=false'
151 ECHO: "[ INFO ] run_test(); t03 passed: 'is_boolean(10)=false'"
152 ECHO: "[ INFO ] run_test(); t04 passed: 'is_boolean(1e+08)=false'"
153 ECHO: "[ INFO ] run_test(); t05 passed: 'is_boolean(0.01)=false'"
154 ECHO: "[ INFO ] run_test(); t06 passed: 'is_boolean(1e+308)=false'
155 ECHO: "[ INFO ] run_test(); t07 passed: 'is_boolean(-1e+308)=false'"
156 ECHO: "[ INFO ] run_test(); t08 passed: 'is_boolean(inf)=false'
157 ECHO: "[ INFO ] run_test(); t09 passed: 'is_boolean(nan)=false'"
158 ECHO: "[ INFO ] run_test(); t10 passed: 'is_boolean(true)=true'"
159 ECHO: "[ INFO ] run_test(); t11 passed: 'is_boolean(false)=true'"
160 ECHO: "[ INFO ] run_test(); t12 passed: 'is_boolean(a)=false'
161 ECHO: "[ INFO ] run_test(); t13 passed: 'is_boolean(This is a longer string) = false'"
162 ECHO: "[ INFO ] run_test(); t14 passed: 'is_boolean()=false'
163 ECHO: "[ INFO ] run_test(); t15 passed: 'is_boolean([])=false'"
164 ECHO: "[ INFO ] run_test(); t16 passed: 'is_boolean([undef])=false'"
165 ECHO: "[ INFO ] run_test(); t17 passed: 'is_boolean([10])=false''
166 ECHO: "[ INFO ] run_test(); t18 passed: 'is_boolean([1, 2, 3])=false'"
167 ECHO: "[ INFO ] run_test(); t19 passed: 'is_boolean([1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
168 ECHO: "[ INFO ] run_test(); t20 passed: 'is_boolean([0 : 1 : 9])=false'"
169 ECHO: "[ INFO ] run_test(); t21 passed: 'is_boolean([0 : 0.5 : 9]) = false'
170 ECHO: "[ INFO ] run_test(); t01 passed: 'is_integer(undef)=false''
171 ECHO: "[ INFO ] run_test(); t02 passed: 'is_integer(1)=true'"
```

```
172 ECHO: "[ INFO ] run_test(); t03 passed: 'is_integer(10)=true'"
173 ECHO: "[ INFO ] run_test(); t04 passed: 'is_integer(1e+08)=true'"
                    run_test(); t05 passed: 'is_integer(0.01)=false'"
174 ECHO: "[ INFO ]
175 ECHO: "[ INFO ] run_test(); t06 passed: 'is_integer(1e+308)=true'"
                    run_test(); t07 passed: 'is_integer(-1e+308)=true'"
176 ECHO: "[ INFO
                    run_test(); t08 passed: 'is_integer(inf)=false''
177 ECHO: "[ INFO ]
178 ECHO: "[ INFO
                    run_test(); t09 passed: 'is_integer(nan)=false'"
179 ECHO: "[ INFO ] run_test(); t10 passed: 'is_integer(true)=false'"
180 ECHO: "[ INFO ]
                    run_test(); t11 passed: 'is_integer(false)=false'"
181 ECHO: "[ INFO ] run_test(); t12 passed: 'is_integer(a)=false'"
                    run_test(); t13 passed: 'is_integer(This is a longer string)=false'"
182 ECHO: "[ INFO
183 ECHO: "[ INFO ] run_test(); t14 passed: 'is_integer()=false'"
184 ECHO: "[ INFO ]
                    run_test(); t15 passed: 'is_integer([])=false'"
185 ECHO: "[ INFO ] run_test(); t16 passed: 'is_integer([undef])=false'"
186 ECHO: "[ INFO ]
                    run_test(); t17 passed: 'is_integer([10])=false'
187 ECHO: "[ INFO ] run_test(); t18 passed: 'is_integer([1, 2, 3])=false'"
188 ECHO: "[ INFO ] run_test(); t19 passed: 'is_integer([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
189 ECHO: "[ INFO ] run_test(); t20 passed: 'is_integer([0 : 1 : 9])=false'"
                    run_test(); t21 passed: 'is_integer([0 : 0.5 : 9])=false'"
190 ECHO: "[ INFO ]
191 ECHO: "[ INFO ] run_test(); t01 passed: 'is_decimal(undef)=false'"
192 ECHO: "[ INFO ]
                    run_test(); t02 passed: 'is_decimal(1)=false'
193 ECHO: "[ INFO ] run_test(); t03 passed: 'is_decimal(10)=false'"
194 ECHO: "[ INFO ]
                    run_test(); t04 passed: 'is_decimal(1e+08)=false'
195 ECHO: "[ INFO ] run_test(); t05 passed: 'is_decimal(0.01)=true'
196 ECHO: "[ INFO ]
                    run_test(); t06 passed: 'is_decimal(1e+308)=false'
197 ECHO: "[ INFO ] run_test(); t07 passed: 'is_decimal(-1e+308)=false'"
198 ECHO: "[ INFO ]
                    run_test(); t08 passed: 'is_decimal(inf)=false'
199 ECHO: "[ INFO ] run_test(); t09 passed: 'is_decimal(nan)=false'"
200 ECHO: "[ INFO ]
                    run_test(); t10 passed: 'is_decimal(true)=false'"
201 ECHO: "[ INFO ] run_test(); t11 passed: 'is_decimal(false)=false'"
                    run_test(); t12 passed: 'is_decimal(a)=false'
202 ECHO: "[ INFO ]
203 ECHO: "[ INFO ] run_test(); t13 passed: 'is_decimal(This is a longer string)=false'"
204 ECHO: "[ INFO ]
                    run_test(); t14 passed: 'is_decimal()=false'
205 ECHO: "[ INFO ] run_test(); t15 passed: 'is_decimal([])=false'"
206 ECHO: "[ INFO ] run_test(); t16 passed: 'is_decimal([undef])=false'"
207 ECHO: "[ INFO ] run_test(); t17 passed: 'is_decimal([10])=false'
208 ECHO: "[ INFO ] run_test(); t18 passed: 'is_decimal([1, 2, 3])=false'"
209 ECHO: "[ INFO ] run_test(); t19 passed: 'is_decimal([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
210 ECHO: "[ INFO ] run_test(); t20 passed: 'is_decimal([0 : 1 : 9])=false'
211 ECHO: "[ INFO ] run_test(); t21 passed: 'is_decimal([0 : 0.5 : 9]) = false'"
212 ECHO: "[ INFO ] run_test(); t01 passed: 'is_number(undef)=false'"
213 ECHO: "[ INFO ] run_test(); t02 passed: 'is_number(1)=true'
214 ECHO: "[ INFO ] run_test(); t03 passed: 'is_number(10)=true'"
215 ECHO: "[ INFO ] run_test(); t04 passed: 'is_number(1e+08)=true'"
216 ECHO: "[ INFO ] run_test(); t05 passed: 'is_number(0.01)=true'"
217 ECHO: "[ INFO ] run_test(); t06 passed: 'is_number(1e+308)=true'"
218 ECHO: "[ INFO ] run_test(); t07 passed: 'is_number(-1e+308)=true'"
219 ECHO: "[ INFO ] run_test(); t08 passed: 'is_number(inf)=true'
220 ECHO: "[ INFO ] run_test(); t09 passed: 'is_number(nan)=true'"
221 ECHO: "[ INFO ]
                    run_test(); t10 passed: 'is_number(true)=false''
222 ECHO: "[ INFO ] run_test(); t11 passed: 'is_number(false)=false'"
223 ECHO: "[ INFO ]
                    run_test(); t12 passed: 'is_number(a)=false'"
224 ECHO: "[ INFO ] run_test(); t13 passed: 'is_number(This is a longer string)=false'"
225 ECHO: "[ INFO ]
                    run_test(); t14 passed: 'is_number()=false'"
226 ECHO: "[ INFO ] run_test(); t15 passed: 'is_number([])=false'"
227 ECHO: "[ INFO ]
                    run_test(); t16 passed: 'is_number([undef])=false'"
228 ECHO: "[ INFO ] run_test(); t17 passed: 'is_number([10])=false'"
229 ECHO: "[ INFO ]
                    run_test(); t18 passed: 'is_number([1, 2, 3])=false'"
230 ECHO: "[ INFO ] run_test(); t19 passed: 'is_number([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
                    run_test(); t20 passed: 'is_number([0 : 1 : 9])=false'
231 ECHO: "[ INFO ]
232 ECHO: "[ INFO ] run_test(); t21 passed: 'is_number([0 : 0.5 : 9])=false'"
233 ECHO: "[ INFO ]
                    run_test(); t01 passed: 'is_range(undef)=false'"
234 ECHO: "[ INFO ] run_test(); t02 passed: 'is_range(1)=false'"
235 ECHO: "[ INFO 1
                    run_test(); t03 passed: 'is_range(10)=false'"
236 ECHO: "[ INFO ]
                    run_test(); t04 passed: 'is_range(1e+08)=false'"
237 ECHO: "[ INFO ]
                    run_test(); t05 passed: 'is_range(0.01)=false'"
238 ECHO: "[ INFO ] run_test(); t06 passed: 'is_range(1e+308)=false'"
239 ECHO: "[ INFO ]
                    run_test(); t07 passed: 'is_range(-1e+308)=false'"
240 ECHO: "[ INFO ] run_test(); t08 passed: 'is_range(inf)=false'"
241 ECHO: "[ INFO ]
                    run_test(); t09 passed: 'is_range(nan)=false'"
242 ECHO: "[ INFO ] run_test(); t10 passed: 'is_range(true)=false'"
243 ECHO: "[ INFO ]
                    run_test(); t11 passed: 'is_range(false)=false'"
244 ECHO: "[ INFO ]
                    run_test(); t12 passed: 'is_range(a)=false'"
245 ECHO: "[ INFO ]
                    run_test(); t13 passed: 'is_range(This is a longer string)=false'"
246 ECHO: "[ INFO ] run_test(); t14 passed: 'is_range()=false''
                    run_test(); t15 passed: 'is_range([])=false'"
247 ECHO: "[ INFO ]
248 ECHO: "[ INFO ] run_test(); t16 passed: 'is_range([undef])=false'
249 ECHO: "[ INFO ]
                    run_test(); t17 passed: 'is_range([10])=false'
250 ECHO: "[ INFO ] run_test(); t18 passed: 'is_range([1, 2, 3])=false'"
251 ECHO: "[ INFO ] run_test(); t19 passed: 'is_range([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
252 ECHO: "[ INFO ] run_test(); t20 passed: 'is_range([0 : 1 : 9])=true'"
```

```
253 ECHO: "[ INFO ] run_test(); t21 passed: 'is_range([0 : 0.5 : 9])=true'"
254 ECHO: "[ INFO ] run_test(); t01 passed: 'is_nan(undef)=false'"
                     run_test(); t02 passed: 'is_nan(1)=false'"
255 ECHO: "[ INFO 1
256 ECHO: "[ INFO ] run_test(); t03 passed: 'is_nan(10)=false'"
                     run_test(); t04 passed: 'is_nan(1e+08)=false'"
257 ECHO: "[ INFO ]
258 ECHO: "[ INFO ] run_test(); t05 passed: 'is_nan(0.01)=false'"
259 ECHO: "[ INFO ]
                     run_test(); t06 passed: 'is_nan(1e+308)=false'"
260 ECHO: "[ INFO ] run_test(); t07 passed: 'is_nan(-1e+308)=false'"
                     run_test(); t08 passed: 'is_nan(inf)=false'"
261 ECHO: "[ INFO ]
262 ECHO: "[ INFO ] run_test(); t09 passed: 'is_nan(nan)=true'"
263 ECHO: "[ INFO ]
                     run_test(); t10 passed: 'is_nan(true)=false'"
264 ECHO: "[ INFO ] run_test(); t11 passed: 'is_nan(false)=false'"
265 ECHO: "[ INFO ]
                     run_test(); t12 passed: 'is_nan(a)=false'"
266 ECHO: "[ INFO ] run_test(); t13 passed: 'is_nan(This is a longer string)=false'"
267 ECHO: "[ INFO ] run_test(); t14 passed: 'is_nan()=false'"
268 ECHO: "[ INFO ] run_test(); t15 passed: 'is_nan([])=false'"
269 ECHO: "[ INFO ] run_test(); t16 passed: 'is_nan([undef])=false'"
270 ECHO: "[ INFO ] run_test(); t17 passed: 'is_nan([10])=false'"
271 ECHO: "[ INFO ] run_test(); t18 passed: 'is_nan([1, 2, 3])=false'"
272 ECHO: "[ INFO ] run_test(); t19 passed: 'is_nan([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
273 ECHO: "[ INFO ] run_test(); t20 passed: 'is_nan([0 : 1 : 9])=false'"
274 ECHO: "[ INFO ] run_test(); t21 passed: 'is_nan([0 : 0.5 : 9])=false'"
275 ECHO: "[ INFO ] run_test(); t01 passed: 'is_inf(undef)=false'
276 ECHO: "[ INFO ] run_test(); t02 passed: 'is_inf(1)=false'
277 ECHO: "[ INFO ] run_test(); t03 passed: 'is_inf(10)=false'"
278 ECHO: "[ INFO ] run_test(); t04 passed: 'is_inf(1e+08)=false'"
279 ECHO: "[ INFO ] run_test(); t05 passed: 'is_inf(0.01)=false'"
280 ECHO: "[ INFO ] run_test(); t06 passed: 'is_inf(1e+308)=false'"
281 ECHO: "[ INFO ] run_test(); t07 passed: 'is_inf(-1e+308)=false'"
282 ECHO: "[ INFO ] run_test(); t08 passed: 'is_inf(inf)=true'
283 ECHO: "[ INFO ] run_test(); t09 passed: 'is_inf(nan)=false'"
284 ECHO: "[ INFO ] run_test(); t10 passed: 'is_inf(true)=false'"
285 ECHO: "[ INFO ] run_test(); t11 passed: 'is_inf(false)=false'"
286 ECHO: "[ INFO ] run_test(); t12 passed: 'is_inf(a)=false'
287 ECHO: "[ INFO ] run_test(); t13 passed: 'is_inf(This is a longer string)=false'"
288 ECHO: "[ INFO ] run_test(); t14 passed: 'is_inf()=false'"
289 ECHO: "[ INFO ] run_test(); t15 passed: 'is_inf([])=false'"
290 ECHO: "[ INFO ] run_test(); t16 passed: 'is_inf([undef])=false'"
291 ECHO: "[ INFO ] run_test(); t17 passed: 'is_inf([10])=false'"
292 ECHO: "[ INFO ] run_test(); t18 passed: 'is_inf([1, 2, 3])=false'"
293 ECHO: "[ INFO ] run_test(); t19 passed: 'is_inf([[1, 2, 3], [4, 5, 6], [7, 8, 9]])=false'"
294 ECHO: "[ INFO ] run_test(); t20 passed: 'is_inf([[0 : 1 : 9])=false'"
295 ECHO: "[ INFO ] run_test(); t21 passed: 'is_inf([0 : 0.5 : 9])=false'"
296 ECHO: "[ INFO ] run_test(); t01 *skip*: 'is_even(The undefined value)'"
297 ECHO: "[ INFO ] run_test(); t02 passed: 'is_even(1)=false'"
298 ECHO: "[ INFO ] run_test(); t03 passed: 'is_even(10)=true'"
299 ECHO: "[ INFO ] run_test(); t04 passed: 'is_even(1e+08)=true'"
300 ECHO: "[ INFO ] run_test(); t05 passed: 'is_even(0.01)=false'"
301 ECHO: "[ INFO ] run_test(); t06 passed: 'is_even(1e+308)=true'"
302 ECHO: "[ INFO ] run_test(); t07 passed: 'is_even(-1e+308)=true'"
303 ECHO: "[ INFO ] run_test(); t08 *skip*: 'is_even(The max number^2)'"
304 ECHO: "[ INFO ]
                     run_test(); t09 *skip*: 'is_even(The invalid number nan)'"
305 ECHO: "[ INFO ] run_test(); t10 *skip*: 'is_even(The boolean true)'"
                     run_test(); t11 *skip*: 'is_even(The boolean false)'"
306 ECHO: "[ INFO ]
307 ECHO: "[ INFO ] run_test(); t12 *skip*: 'is_even(A character string)'"
308 ECHO: "[ INFO ]
                     run_test(); t13 *skip*: 'is_even(A string)'"
309 ECHO: "[ INFO ] run_test(); t14 *skip*: 'is_even(The empty string)'"
310 ECHO: "[ INFO ]
                     run_test(); t15 *skip*: 'is_even(The empty vector)'"
311 ECHO: "[ INFO ] run_test(); t16 *skip*: 'is_even(A 1-tuple vector of undef)'"
                     run_test(); t17 *skip*: 'is_even(A 1-tuple vector)'"
312 ECHO: "[ INFO ]
313 ECHO: "[ INFO ] run_test(); t18 *skip*: 'is_even(A 3-tuple vector)'"
314 ECHO: "[ INFO ]
                     run_test(); t19 *skip*: 'is_even(A vector of vectors)'"
315 ECHO: "[ INFO ] run_test(); t20 *skip*: 'is_even(A shorthand range)'"
316 ECHO: "[ INFO ] run_test(); t21 *skip*: 'is_even(A range)'"
317 ECHO: "[ INFO ] run_test(); t01 *skip*: 'is_odd(The undefined value)'"
318 ECHO: "[ INFO ] run_test(); t02 passed: 'is_odd(1)=true'"
319 ECHO: "[ INFO ] run_test(); t03 passed: 'is_odd(10)=false'"
320 ECHO: "[ INFO ] run_test(); t04 passed: 'is_odd(1e+08)=false'"
321 ECHO: "[ INFO ] run_test(); t05 passed: 'is_odd(0.01)=false'"
322 ECHO: "[ INFO ] run_test(); t06 passed: 'is_odd(1e+308)=false'"
323 ECHO: "[ INFO ] run_test(); t07 passed: 'is_odd(-1e+308)=false'"
324 ECHO: "[ INFO ] run_test(); t08 *skip*: 'is_odd(The max number^2)'"
325 ECHO: "[ INFO ] run_test(); t09 *skip*: 'is_odd(The invalid number nan)'"
326 ECHO: "[ INFO ]
                     run_test(); t10 *skip*: 'is_odd(The boolean true)'
327 ECHO: "[ INFO ] run_test(); t11 *skip*: 'is_odd(The boolean false)'"
                     run_test(); t12 *skip*: 'is_odd(A character string)'"
328 ECHO: "[ INFO ]
329 ECHO: "[ INFO ] run test(); t13 *skip*: 'is odd(A string)'"
330 ECHO: "[ INFO ]
                     run_test(); t14 *skip*: 'is_odd(The empty string)''
331 ECHO: "[ INFO ] run_test(); t15 *skip*: 'is_odd(The empty vector)'"
332 ECHO: "[ INFO ] run_test(); t16 *skip*: 'is_odd(A 1-tuple vector of undef)'"
333 ECHO: "[ INFO ] run_test(); t17 *skip*: 'is_odd(A 1-tuple vector)'"
```

```
334 ECHO: "[ INFO ] run_test(); t18 *skip*: 'is_odd(A 3-tuple vector)'"
335 ECHO: "[ INFO ] run_test(); t19 *skip*: 'is_odd(A vector of vectors)'"
336 ECHO: "[ INFO ] run_test(); t20 *skip*: 'is_odd(A shorthand range)'"
337 ECHO: "[ INFO ] run_test(); t21 *skip*: 'is_odd(A range)'"
```

2.1.1.3 Validation Script (group2)

```
include <primitives.scad>;
use <table.scad>;
use <console.scad>;
use <validation.scad>;
show_passing = true;
                    // show passing tests
show_skipped = true;
                    // show skipped tests
echo( str("OpenSCAD Version ", version()) );
// test-values columns
test c =
 ["id", "identifier"],
["td", "description"],
 ["tv", "test value"]
// test-values rows
test_r =
 ["t01", "The undefined value",
                                   undefl.
 ["t02", "An odd integer",
                                   1],
 ["t03", "The boolean true",
                                   truel.
 ["t04", "The boolean false",
["t05", "A character string",
["t06", "A string",
                                   false],
                                    "a"l,
                                   "This is a longer string"],
  ["t07", "The empty string",
                                   empty_str],
  ["t08", "The empty vector",
                                   empty_v],
  ["t09", "A shorthand range", ["t10", "A range",
                                   [0:911,
                                   [0:0.5:9]],
  ["t11", "Test vector 01",
                                   [undef]],
 ["t11", "Test vector 01",
["t12", "Test vector 02",
["t13", "Test vector 03",
["t14", "Test vector 04",
["t15", "Test vector 05",
["t16", "Test vector 06",
["t17", "Test vector 07",
["t18", "Test vector 08",
["t18", "Test vector 08",
                                   [1]],
                                   [1, 2, 3]],
[[1], [2], [3], [4], [5]]],
                                   [[1,2], [2,3]]],
                                   [[1,2], [2,3], [4,5], "ab"]],
                                   [[1,2,3], [4,5,6], [7,8,9], ["a", "b", "c"]]],
                                   [1, 2, 3, undef]],
  ["t19", "Test vector 09",
                                   [undef, undef, undef, undef]],
 ["t20", "Test vector 10", ["t21", "Test vector 11",
                                   [[undef], [undef], [undef]]],
                                   [true, true, true, false]],
  ["t22", "Test vector 12",
                                   [true, false, false, false, false]],
 ["t23", "Test vector 13",
                                   [true, true, true, true]]
test_ids = table_get_row_ids( test_r );
// expected columns: ("id" + one column for each test)
good_c = pmerge([concat("id", test_ids), concat("identifier", test_ids)]);
// expected rows: ("golden" test results), use 's' to skip test
t = true; // shortcuts
u = undef:
s = -1;
         // skip test
good_r =
                   01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[ // function
 ["all_equal_T",
                   ["all_equal_F",
                   ["all_equal_U",
                   ["any_equal_T",
                   ["any_equal_F",
                   ["any_equal_U",
                   t, f, f, f, f, f, f, f, f, t, f, f, f, f, f, t, t, f, f, f, f]
  ["all_defined",
                   ["any_undefined",
                   t, f, f, f, f, f, f, f, f, t, f, f, f, f, f, f, t, t, f, f, f, f],
  ["all scalars",
                   u, t, t, t, f, f, s, s, s, s, t, t, t, f, f, f, f, t, t, f, t, t, t],
  ["all_vectors",
                   u, f, f, f, f, t, t, f, f, f, f, f, t, t, f, t, f, f, f, f, f],
  ["all strings",
                   ["all_numbers",
                   ["all_len_1",
                   ["all_len_2",
                   u, f, f, f, f, s, s, f, f, f, f, f, t, t, t, f, f, f, f, f, f],
```

```
u, f, f, f, f, s, s, f, f, f, f, f, f, f, f, t, f, f, f, f, f, f, f, f],
      ["compare AA",
                                   // sanity-test tables
  table_check( test_r, test_c, false );
  table_check( good_r, good_c, false );
  // validate helper function and module
  function get_value( vid ) = table_get(test_r, test_c, vid, "tv");
  module run_test( fname, fresult, vid )
     value_text = table_get(test_r, test_c, vid, "td");
     pass_value = table_get(good_r, good_c, fname, vid);
     test_pass = validate( cv=fresult, t="equals", ev=pass_value, pf=true );
     test_text = validate( str(fname, "(", get_value(vid), ")=", pass_value), fresult, "equals
", pass value );
     if ( pass value != s )
        if ( !test_pass )
           log_warn( str(vid, "(", value_text, ") ", test_text) );
        else if ( show_passing )
  log_info( str(vid, " ", test_text) );
     else if ( show skipped )
        log_info( str(vid, " *skip*: '", fname, "(", value_text, ")'") );
  // Indirect function calls would be very useful here!!!

for (vid=test_ids) run_test( "all_equal_T", all_equal(get_value(vid),t), vid );

for (vid=test_ids) run_test( "all_equal_F", all_equal(get_value(vid),f), vid );

for (vid=test_ids) run_test( "all_equal_U", all_equal(get_value(vid),u), vid );

for (vid=test_ids) run_test( "any_equal_T", any_equal(get_value(vid),t), vid );

for (vid=test_ids) run_test( "any_equal_F", any_equal(get_value(vid),f), vid );

for (vid=test_ids) run_test( "any_equal_U", any_equal(get_value(vid),u), vid );

for (vid=test_ids) run_test( "any_undefined", all_defined(get_value(vid)), vid );

for (vid=test_ids) run_test( "any_undefined", any_undefined(get_value(vid)), vid );

for (vid=test_ids) run_test( "all_scalars", all_scalars(get_value(vid)), vid );
  for (vid=test_ids) run_test( "all_scalars", all_scalars(get_value(vid)), vid );
  for (vid=test_ids) run_test( "all_vectors", all_vectors(get_value(vid)), vid);
for (vid=test_ids) run_test( "all_strings", all_strings(get_value(vid)), vid);
for (vid=test_ids) run_test( "all_numbers", all_numbers(get_value(vid)), vid);
for (vid=test_ids) run_test( "all_len_1", all_len(get_value(vid)), vid);
  for (vid=test_ids) run_test( "all_len_2", all_len(get_value(vid),2), vid );
for (vid=test_ids) run_test( "all_len_3", all_len(get_value(vid),3), vid );
  for (vid=test_ids) run_test( "almost_equal_AA", almost_equal(get_value(vid),get_value(
vid)), vid );
  for (vid=test_ids) run_test( "almost_equal_T", almost_equal(get_value(vid),t), vid );
for (vid=test_ids) run_test( "almost_equal_F", almost_equal(get_value(vid),f), vid );
for (vid=test_ids) run_test( "almost_equal_U", almost_equal(get_value(vid),u), vid );
  for (vid=test_ids) run_test( "compare_AA", compare(get_value(vid),get_value(vid)) == 0, vid
  // end-of-tests
```

2.1.1.4 Validation Results (group2)

```
1 ECHO: "OpenSCAD Version [2016, 12, 21]"
2 ECHO: "[INFO] run_test(); t01 passed: 'all_equal_T(undef)=false'"
3 ECHO: "[ INFO ] run_test(); t02 passed: 'all_equal_T(1)=false'
4 ECHO: "[ INFO ] run_test(); t03 passed: 'all_equal_T(true)=true'"
5 ECHO: "[ INFO ] run_test(); t04 passed: 'all_equal_T(false)=false'"
6 ECHO: "[ INFO ] run_test(); t05 passed: 'all_equal_T(a)=false'"
7 ECHO: "[ INFO ] run_test(); t06 passed: 'all_equal_T(This is a longer string)=false'"
8 ECHO: "[ INFO ] run_test(); t07 passed: 'all_equal_T()=true'"
9 ECHO: "[ INFO ] run_test(); t08 passed: 'all_equal_T([])=true'"
10 ECHO: "[ INFO ] run_test(); t09 passed: 'all_equal_T([0 : 1 : 9]) = false'"
11 ECHO: "[ INFO ] run_test(); t10 passed: 'all_equal_T([0 : 0.5 : 9])=false'"
12 ECHO: "[ INFO ] run_test(); t11 passed: 'all_equal_T([undef]) = false'
13 ECHO: "[ INFO ] run_test(); t12 passed: 'all_equal_T([1])=false'
14 ECHO: "[ INFO ] run_test(); t13 passed: 'all_equal_T([1, 2, 3])=false'"
14 ECHO: "[INFO] run_test(); t14 passed: 'all_equal_T([[1], [2], [3], [4], [5]])=false'"

16 ECHO: "[INFO] run_test(); t15 passed: 'all_equal_T([[1, 2], [2, 3]])=false'"
17 ECHO: "[ INFO ] run_test(); t16 passed: 'all_equal_T([[1, 2], [2, 3], [4, 5], "ab"])=false'"
```

```
18 ECHO: "[ INFO ] run_test(); t17 passed: 'all_equal_T([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
19 ECHO: "[ INFO ] run_test(); t18 passed: 'all_equal_T([1, 2, 3, undef])=false'"
20 ECHO: "[ INFO ] run_test(); t19 passed: 'all_equal_T([undef, undef, undef, undef])=false'"
             INFO ] run_test(); t20 passed: 'all_equal_T([[undef], [undef]])=false'
21 ECHO: "[
22 ECHO: "[ INFO ] run_test(); t21 passed: 'all_equal_T([true, true, true, true, false])=false'"
23 ECHO: "[
             INFO ] run_test(); t22 passed: 'all_equal_T([true, false, false, false, false])=false'"
24 ECHO: "[ INFO ] run_test(); t23 passed: 'all_equal_T([true, true, true, true])=true'"
25 ECHO: "[ INFO ] run_test(); t01 passed: 'all_equal_F(undef)=false'"
26 ECHO: "[ INFO ] run_test(); t02 passed: 'all_equal_F(1) = false'"
27 ECHO: "[ INFO ] run_test(); t03 passed: 'all_equal_F(true)=false'
28 ECHO: "[ INFO ] run_test(); t04 passed: 'all_equal_F(false)=true'"
29 ECHO: "[ INFO ] run_test(); t05 passed: 'all_equal_F(a)=false''
30 ECHO: "[ INFO ] run_test(); t06 passed: 'all_equal_F(This is a longer string)=false'"
31 ECHO: "[ INFO ] run_test(); t07 passed: 'all_equal_F()=true'"
32 ECHO: "[ INFO ] run_test(); t08 passed: 'all_equal_F([])=true'"
33 ECHO: "[ INFO ] run_test(); t09 passed: 'all_equal_F([0 : 1 : 9]) = false'"
34 ECHO: "[ INFO ] run_test(); t10 passed: 'all_equal_F([0 : 0.5 : 9])=false'"
35 ECHO: "[ INFO ] run_test(); t11 passed: 'all_equal_F([undef]) = false'"
36 ECHO: "[ INFO ] run_test(); t12 passed: 'all_equal_F([1])=false'"
37 ECHO: "[ INFO ] run_test(); t13 passed: 'all_equal_F([1, 2, 3])=false'"
38 ECHO: "[ INFO ] run_test(); t14 passed: 'all_equal_F([[1], [2], [3], [4], [5]])=false'"
39 ECHO: "[ INFO ] run_test(); t15 passed: 'all_equal_F([[1, 2], [2, 3]])=false'"
40 ECHO: "[ INFO ] run_test(); t16 passed: 'all_equal_F([[1, 2], [2, 3], [4, 5], "ab"])=false'"
41 ECHO: "[ INFO ] run_test(); t17 passed: 'all_equal_F([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]]) = false' "
42 ECHO: "[ INFO ] run_test(); t18 passed: 'all_equal_F([1, 2, 3, undef])=false'"
43 ECHO: "[ INFO ] run_test(); t19 passed: 'all_equal_F([undef, undef, undef, undef])=false'"
44 ECHO: "[ INFO ] run_test(); t20 passed: 'all_equal_F([[undef], [undef]])=false'
45 ECHO: "[ INFO ] run_test(); t21 passed: 'all_equal_F([true, true, true, true, false])=false'"
46 ECHO: "[ INFO ] run_test(); t22 passed: 'all_equal_F([true, false, false, false, false])=false'"
47 ECHO: "[ INFO ] run_test(); t23 passed: 'all_equal_F([true, true, true, true])=false'"
48 ECHO: "[ INFO ] run_test(); t01 passed: 'all_equal_U(undef)=true'"
49 ECHO: "[ INFO ] run_test(); t02 passed: 'all_equal_U(1)=false'
50 ECHO: "[ INFO ] run_test(); t03 passed: 'all_equal_U(true)=false'
51 ECHO: "[ INFO ] run_test(); t04 passed: 'all_equal_U(false)=false'"
52 ECHO: "[ INFO ] run_test(); t05 passed: 'all_equal_U(a)=false'"
53 ECHO: "[ INFO ] run_test(); t06 passed: 'all_equal_U(This is a longer string)=false'"
54 ECHO: "[ INFO ] run_test(); t07 passed: 'all_equal_U()=true'"
55 ECHO: "[ INFO ] run_test(); t08 passed: 'all_equal_U([])=true'"
56 ECHO: "[ INFO ] run_test(); t09 passed: 'all_equal_U([0 : 1 : 9])=false'"
57 ECHO: "[ INFO ] run_test(); t10 passed: 'all_equal_U([0 : 0.5 : 9])=false'"
58 ECHO: "[ INFO ] run_test(); t11 passed: 'all_equal_U([undef])=true'
59 ECHO: "[ INFO ] run_test(); t12 passed: 'all_equal_U([1])=false'"
60 ECHO: "[ INFO ] run_test(); t13 passed: 'all_equal_U([1, 2, 3])=false'"
61 ECHO: "[ INFO ] run_test(); t14 passed: 'all_equal_U([[1], [2], [3], [4], [5]])=false'"
61 ECHO: "[ INFO ] run_test(); t14 passed. all_equal_U([[1, 2], [2, 3]])=false'"
62 ECHO: "[ INFO ] run_test(); t15 passed: 'all_equal_U([[1, 2], [2, 3]])=false'"
63 ECHO: "[ INFO ] run_test(); t16 passed: 'all_equal_U([[1, 2], [2, 3], [4, 5], "ab"])=false'"
64 ECHO: "[ INFO ] run_test(); t17 passed: 'all_equal_U([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
65 ECHO: "[ INFO ] run_test(); t18 passed: 'all_equal_U([1, 2, 3, undef])=false'"
66 ECHO: "[ INFO ] run_test(); t19 passed: 'all_equal_U([undef, undef, undef, undef])=true'"
67 ECHO: "[ INFO ] run_test(); t20 passed: 'all_equal_U([[undef], [undef], [undef]])=false'"
68 ECHO: "[ INFO ] run_test(); t21 passed: 'all_equal_U([true, true, true, true, false])=false'"
69 ECHO: "[ INFO ] run_test(); t22 passed: 'all_equal_U([true, false, false, false, false])=false'"
70 ECHO: "[ INFO ] run_test(); t23 passed: 'all_equal_U([true, true, true, true]) = false'
71 ECHO: "[ INFO ] run_test(); t01 passed: 'any_equal_T(undef)=false'"
72 ECHO: "[
             INFO ] run_test(); t02 passed: 'any_equal_T(1)=false''
73 ECHO: "[ INFO ] run_test(); t03 passed: 'any_equal_T(true)=true'"
74 ECHO: "[ INFO ] run_test(); t04 passed: 'any_equal_T(false)=false'"
75 ECHO: "[ INFO ] run_test(); t05 passed: 'any_equal_T(a)=false'"
76 ECHO: "[
             INFO ] run_test(); t06 passed: 'any_equal_T(This is a longer string)=false'"
77 ECHO: "[ INFO ] run_test(); t07 passed: 'any_equal_T()=false'"
78 ECHO: "[ INFO ] run_test(); t08 passed: 'any_equal_T([])=false'"
79 ECHO: "[ INFO ] run_test(); t09 passed: 'any_equal_T([0 : 1 : 9])=false'"
80 ECHO: "[ INFO ] run_test(); t10 passed: 'any_equal_T([0 : 0.5 : 9]) = false'"
81 ECHO: "[ INFO ] run_test(); t11 passed: 'any_equal_T([undef])=false'"
82 ECHO: "[ INFO ] run_test(); t12 passed: 'any_equal_T([1])=false'"
83 ECHO: "[ INFO ] run_test(); t13 passed: 'any_equal_T([1, 2, 3])=false'"
84 ECHO: "[ INFO ] run_test(); t14 passed: 'any_equal_T(([1], [2], [3], [4], [5]))=false'"
85 ECHO: "[ INFO ] run_test(); t15 passed: 'any_equal_T([[1, 2], [2, 3]])=false'"
86 ECHO: "[ INFO ] run_test(); t16 passed: 'any_equal_T([[1, 2], [2, 3], [4, 5], "ab"])=false'"
87 ECHO: "[ INFO ] run_test(); t17 passed: 'any_equal_T([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=false'"
88 ECHO: "[ INFO ] run_test(); t18 passed: 'any_equal_T([1, 2, 3, undef])=false'"
89 ECHO: "[ INFO ] run_test(); t19 passed: 'any_equal_T([undef, undef, undef])=false'"
90 ECHO: "[ INFO ] run_test(); t20 passed: 'any_equal_T([[undef], [undef]])=false'"
91 ECHO: "[ INFO ] run_test(); t21 passed: 'any_equal_T([true, true, true, true, false])=true'"
92 ECHO: "[ INFO ] run_test(); t22 passed: 'any_equal_T([true, false, false, false, false])=true'"
94 ECHO: "[ INFO ] run_test(); t23 passed: 'any_equal_T([true, true, true, true])=true''
94 ECHO: "[ INFO ] run_test(); t01 passed: 'any_equal_F(undef)=false'"
```

```
95 ECHO: "[ INFO ] run_test(); t02 passed: 'any_equal_F(1)=false'"
96 ECHO: "[ INFO ] run_test(); t03 passed: 'any_equal_F(true)=false'"
97 ECHO: "[ INFO ] run_test(); t04 passed: 'any_equal_F(false)=true'"
98 ECHO: "[ INFO ] run_test(); t05 passed: 'any_equal_F(a)=false'"
99 ECHO: "[ INFO ] run_test(); t06 passed: 'any_equal_F(This is a longer string)=false'"
100 ECHO: "[ INFO ] run_test(); t07 passed: 'any_equal_F()=false''
101 ECHO: "[ INFO ] run_test(); t08 passed: 'any_equal_F([])=false'"
102 ECHO: "[ INFO ] run_test(); t09 passed: 'any_equal_F([0 : 1 : 9]) = false'"
103 ECHO: "[ INFO ] run_test(); t10 passed: 'any_equal_F([0 : 0.5 : 9])=false'"
104 ECHO: "[ INFO ] run_test(); t11 passed: 'any_equal_F([undef])=false'"
105 ECHO: "[ INFO ] run_test(); t12 passed: 'any_equal_F([1])=false'"
106 ECHO: "[ INFO ] run_test(); t13 passed: 'any_equal_F([1, 2, 3])=false'"
107 ECHO: "[ INFO ] run_test(); t14 passed: 'any_equal_F([[1], [2], [3], [4], [5]])=false'"
108 ECHO: "[ INFO ] run_test(); t15 passed: 'any_equal_F([[1, 2], [2, 3]])=false'
109 ECHO: "[ INFO ] run_test(); t16 passed: 'any_equal_F([[1, 2], [2, 3], [4, 5], "ab"])=false'"
110 ECHO: "[ INFO ] run_test(); t17 passed: 'any_equal_F([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=false'"
111 ECHO: "[ INFO ] run_test(); t18 passed: 'any_equal_F([1, 2, 3, undef])=false'"
112 ECHO: "[ INFO ] run_test(); t19 passed: 'any_equal_F([undef, undef, undef, undef])=false'"
113 ECHO: "[ INFO ] run_test(); t20 passed: 'any_equal_F([[undef], [undef], [undef]])=false'"
114 ECHO: "[ INFO ] run_test(); t21 passed: 'any_equal_F([true, true, true, true, false])=true'"
115 ECHO: "[ INFO ] run_test(); t22 passed: 'any_equal_F([true, false, false, false, false])=true'"
116 ECHO: "[ INFO ] run_test(); t23 passed: 'any_equal_F([true, true, true])=false'
117 ECHO: "[ INFO ] run_test(); t01 passed: 'any_equal_U(undef)=true'"
118 ECHO: "[ INFO ] run_test(); t02 passed: 'any_equal_U(1)=false'"
119 ECHO: "[ INFO ] run_test(); t03 passed: 'any_equal_U(true)=false'"
120 ECHO: "[ INFO ] run_test(); t04 passed: 'any_equal_U(false)=false'"
121 ECHO: "[ INFO ] run_test(); t05 passed: 'any_equal_U(a)=false'"
122 ECHO: "[ INFO ] run_test(); t06 passed: 'any_equal_U(This is a longer string)=false'"
123 ECHO: "[ INFO ] run_test(); t07 passed: 'any_equal_U()=false'"
124 ECHO: "[ INFO ] run_test(); t08 passed: 'any_equal_U([])=false'"
125 ECHO: "[ INFO ] run_test(); t09 passed: 'any_equal_U([0 : 1 : 9])=false'"
126 ECHO: "[ INFO ] run_test(); t10 passed: 'any_equal_U([0 : 0.5 : 9])=false'"
127 ECHO: "[ INFO ] run_test(); t11 passed: 'any_equal_U([undef])=true'
128 ECHO: "[ INFO ] run_test(); t12 passed: 'any_equal_U([1])=false'"
129 ECHO: "[ INFO ] run_test(); t13 passed: 'any_equal_U([1, 2, 3])=false'"
130 ECHO: "[ INFO ] run_test(); t14 passed: 'any_equal_U([[1], [2], [3], [4], [5]])=false'"
131 ECHO: "[ INFO ] run_test(); t15 passed: 'any_equal_U([[1, 2], [2, 3]])=false'
132 ECHO: "[ INFO ] run_test(); t16 passed: 'any_equal_U([[1, 2], [2, 3], [4, 5], "ab"])=false'"
133 ECHO: "[ INFO ] run_test(); t17 passed: 'any_equal_U([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=false'"
134 ECHO: "[ INFO ] run_test(); t18 passed: 'any_equal_U([1, 2, 3, undef]) = true' "
135 ECHO: "[ INFO ] run_test(); t19 passed: 'any_equal_U([undef, undef, undef, undef]) = true' "
136 ECHO: "[ INFO ] run_test(); t20 passed: 'any_equal_U([[undef], [undef], [undef]])=false'"
137 ECHO: "[ INFO ] run_test(); t21 passed: 'any_equal_U([true, true, true, true, false])=false'"
138 ECHO: "[ INFO ] run_test(); t22 passed: 'any_equal_U([true, false, false, false, false])=false'"
139 ECHO: "[INFO] run_test(); t23 passed: 'any_equal_U([true, true, true, true])=false'"
140 ECHO: "[INFO] run_test(); t01 passed: 'all_defined(undef)=false'"
141 ECHO: "[ INFO ] run_test(); t02 passed: 'all_defined(1)=true'"
142 ECHO: "[ INFO ] run_test(); t03 passed: 'all_defined(true)=true'
143 ECHO: "[ INFO ] run_test(); t04 passed: 'all_defined(false)=true'"
144 ECHO: "[ INFO ] run_test(); t05 passed: 'all_defined(a)=true'"
145 ECHO: "[ INFO ] run_test(); t06 passed: 'all_defined(This is a longer string)=true'"
146 ECHO: "[ INFO ]
                      run_test(); t07 passed: 'all_defined()=true'"
147 ECHO: "[ INFO ] run_test(); t08 passed: 'all_defined([])=true'"
148 ECHO: "[ INFO ] run_test(); t09 passed: 'all_defined([0 : 1 : 9])=true'"
149 ECHO: "[ INFO ] run_test(); t10 passed: 'all_defined([0 : 0.5 : 9]) = true'"
150 ECHO: "[ INFO ] run_test(); t11 passed: 'all_defined([undef])=false''
151 ECHO: "[ INFO ] run_test(); t12 passed: 'all_defined([1])=true'"
152 ECHO: "[ INFO ] run_test(); t13 passed: 'all_defined([1, 2, 3])=true'"
153 ECHO: "[ INFO ] run_test(); t14 passed: 'all_defined([[1], [2], [3], [4], [5]])=true'"
154 ECHO: "[ INFO ] run_test(); t15 passed: 'all_defined([[1, 2], [2, 3]])=true'"
155 ECHO: "[ INFO ] run_test(); t16 passed: 'all_defined([[1, 2], [2, 3], [4, 5], "ab"])=true'"
156 ECHO: "[ INFO ] run_test(); t17 passed: 'all_defined([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=true'"
157 ECHO: "[INFO] run_test(); t18 passed: 'all_defined([1, 2, 3, undef])=false'"
158 ECHO: "[INFO] run_test(); t19 passed: 'all_defined([undef, undef, undef, undef])=false'"
159 ECHO: "[ INFO ] run_test(); t20 passed: 'all_defined([[undef], [undef], [undef]))=true'"
160 ECHO: "[ INFO ] run_test(); t21 passed: 'all_defined([true, true, true, true, false])=true'"
161 ECHO: "[ INFO ] run_test(); t22 passed: 'all_defined([true, false, false, false, false])=true'"
162 ECHO: "[ INFO ] run_test(); t23 passed: 'all_defined([true, true, true, true])=true'"
163 ECHO: "[ INFO ] run_test(); t01 passed: 'any_undefined(undef)=true'"
164 ECHO: "[ INFO ] run_test(); t02 passed: 'any_undefined(1)=false'
165 ECHO: "[ INFO ] run_test(); t03 passed: 'any_undefined(true)=false'"
166 ECHO: "[ INFO ] run_test(); t04 passed: 'any_undefined(false)=false'"
167 ECHO: "[ INFO ] run_test(); t05 passed: 'any_undefined(a)=false'"
168 ECHO: "[ INFO ] run_test(); t06 passed: 'any_undefined(This is a longer string) = false'"
169 ECHO: "[ INFO ] run_test(); t07 passed: 'any_undefined()=false'"
170 ECHO: "[ INFO ] run_test(); t08 passed: 'any_undefined([])=false'"
171 ECHO: "[ INFO ] run_test(); t09 passed: 'any_undefined([0 : 1 : 9])=false'"
172 ECHO: "[ INFO ] run_test(); t10 passed: 'any_undefined([0 : 0.5 : 9])=false'"
```

```
173 ECHO: "[ INFO ] run_test(); tll passed: 'any_undefined([undef])=true'"
174 ECHO: "[ INFO ] run_test(); t12 passed: 'any_undefined([1])=false''
                      run_test(); t13 passed: 'any_undefined([1, 2, 3])=false'"
175 ECHO: "[ INFO ]
176 ECHO: "[ INFO ] run_test(); t14 passed: 'any_undefined([[1], [2], [3], [4], [5]])=false'"
177 ECHO: "[ INFO ] run_test(); t15 passed: 'any_undefined([[1, 2], [2, 3]])=false'"
178 ECHO: "[ INFO ] run_test(); t16 passed: 'any_undefined([[1, 2], [2, 3], [4, 5], "ab"])=false'"
179 ECHO: "[ INFO ] run_test(); t17 passed: 'any_undefined([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
180 ECHO: "[ INFO ] run_test(); t18 passed: 'any_undefined([1, 2, 3, undef])=true'"
181 ECHO: "[ INFO ] run_test(); t19 passed: 'any_undefined([undef, undef, undef, undef])=true'"
                      run_test(); t20 passed: 'any_undefined([[undef], [undef]]) = false'"
182 ECHO: "[ INFO
183 ECHO: "[ INFO ]
                     run_test(); t21 passed: 'any_undefined([true, true, true, true, false])=false'"
184 ECHO: "[ INFO ]
                      run_test(); t22 passed: 'any_undefined([true, false, false, false, false])=false'"
                     run_test(); t23 passed: 'any_undefined([true, true, true])=false'"
run_test(); t01 passed: 'all_scalars(undef)=undef'"
185 ECHO: "[ INFO ]
186 ECHO: "[ INFO
187 ECHO: "[ INFO ] run_test(); t02 passed: 'all_scalars(1)=true'"
188 ECHO: "[ INFO ]
                      run_test(); t03 passed: 'all_scalars(true)=true'"
189 ECHO: "[ INFO ] run_test(); t04 passed: 'all_scalars(false)=true'"
190 ECHO: "[ INFO ]
                      run_test(); t05 passed: 'all_scalars(a)=false'
191 ECHO: "[ INFO ] run_test(); t06 passed: 'all_scalars(This is a longer string)=false'"
192 ECHO: "[ INFO ]
                      run_test(); t07 *skip*: 'all_scalars(The empty string)
193 ECHO: "[ INFO ] run_test(); t08 *skip*: 'all_scalars(The empty vector)'"
194 ECHO: "[ INFO ]
                      run_test(); t09 *skip*: 'all_scalars(A shorthand range)'"
195 ECHO: "[ INFO ] run_test(); t10 *skip*: 'all_scalars(A range)'"
196 ECHO: "[ INFO ]
                      run_test(); t11 passed: 'all_scalars([undef])=true'
197 ECHO: "[ INFO ] run_test(); t12 passed: 'all_scalars([1])=true''
198 ECHO: "[ INFO ]
                      run_test(); t13 passed: 'all_scalars([1, 2, 3])=true'"
199 ECHO: "[ INFO ] run_test(); t14 passed: 'all_scalars([[1], [2], [3], [4], [5]])=false'"
200 ECHO: "[INFO] run_test(); t15 passed: 'all_scalars([[1, 2], [2, 3]])=false'"
201 ECHO: "[INFO] run_test(); t16 passed: 'all_scalars([[1, 2], [2, 3], [4, 5], "ab"])=false'"
202 ECHO: "[ INFO ] run_test(); t17 passed: 'all_scalars([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=false'"
203 ECHO: "[ INFO ] run_test(); t18 passed: 'all_scalars([1, 2, 3, undef])=true'"
204 ECHO: "[INFO] run_test(); t19 passed: 'all_scalars([undef, undef, undef, undef])=true'"
                      run_test(); t20 passed: 'all_scalars([[undef], [undef], [undef]])=false'"
205 ECHO: "[ INFO ]
206 ECHO: "[ INFO ] run_test(); t21 passed: 'all_scalars([true, true, true, true, false])=true'"
207 ECHO: "[ INFO ]
                      run_test(); t22 passed: 'all_scalars([true, false, false, false, false])=true'"
                     run_test(); t23 passed: 'all_scalars([true, true, true, true])=true'
run_test(); t01 passed: 'all_vectors(undef)=undef'"
208 ECHO: "[ INFO ]
209 ECHO: "[ INFO ]
210 ECHO: "[ INFO ] run_test(); t02 passed: 'all_vectors(1)=false'
211 ECHO: "[ INFO ]
                      run_test(); t03 passed: 'all_vectors(true)=false''
212 ECHO: "[ INFO ]
                      run_test(); t04 passed: 'all_vectors(false)=false''
213 ECHO: "[ INFO ]
                      run_test(); t05 passed: 'all_vectors(a)=false'"
214 ECHO: "[ INFO ]
                     run_test(); t06 passed: 'all_vectors(This is a longer string)=false'"
215 ECHO: "[ INFO ]
                      run_test(); t07 passed: 'all_vectors()=true'"
                      run_test(); t08 passed: 'all_vectors([])=true'"
216 ECHO: "[ INFO ]
217 ECHO: "[ INFO ]
                      run_test(); t09 passed: 'all_vectors([0 : 1 : 9])=false'"
218 ECHO: "[ INFO ]
                      run_test(); t10 passed: 'all_vectors([0 : 0.5 : 9])=false'"
219 ECHO: "[ INFO ]
                      run_test(); t11 passed: 'all_vectors([undef])=false'"
220 ECHO: "[ INFO ]
                      run_test(); t12 passed: 'all_vectors([1])=false''
221 ECHO: "[ INFO ]
                      run_test(); t13 passed: 'all_vectors([1, 2, 3])=false'"
222 ECHO: "[ INFO ]
                      run_test(); t14 passed: 'all_vectors([[1], [2], [3], [4], [5]])=true'"
223 ECHO: "[ INFO ] run_test(); t15 passed: 'all_vectors([[1, 2], [2, 3]])=true'"
224 ECHO: "[ INFO ] run_test(); t16 passed: 'all_vectors([[1, 2], [2, 3], [4, 5], "ab"])=false'"
225 ECHO: "[ INFO ] run_test(); t17 passed: 'all_vectors([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=true'
226 ECHO: "[ INFO ] run_test(); t18 passed: 'all_vectors([1, 2, 3, undef])=false'"
227 ECHO: "[ INFO ] run_test(); t19 passed: 'all_vectors([undef, undef, undef])=false'"
228 ECHO: "[ INFO ] run_test(); t20 passed: 'all_vectors([[undef], [undef], [undef]])=true'"
229 ECHO: "[ INFO ]
                      run_test(); t21 passed: 'all_vectors([true, true, true, true, false])=false'"
230 ECHO: "[ INFO ] run_test(); t22 passed: 'all_vectors([true, false, false, false, false])=false'"
231 ECHO: "[ INFO
                      run_test(); t23 passed: 'all_vectors([true, true, true, true])=false'
232 ECHO: "[ INFO ] run_test(); t01 passed: 'all_strings(undef)=undef'"
233 ECHO: "[ INFO 1
                      run_test(); t02 passed: 'all_strings(1)=false'"
234 ECHO: "[ INFO
                      run_test(); t03 passed: 'all_strings(true)=false'"
235 ECHO: "[ INFO
                      run_test(); t04 passed: 'all_strings(false)=false'"
236 ECHO: "[ INFO ] run_test(); t05 passed: 'all_strings(a)=true'"
237 ECHO: "[ INFO ]
                      run_test(); t06 passed: 'all_strings(This is a longer string)=true'"
238 ECHO: "[ INFO ] run_test(); t07 passed: 'all_strings()=true'"
239 ECHO: "[ INFO ]
                      run_test(); t08 *skip*: 'all_strings(The empty vector)'"
240 ECHO: "[ INFO ] run_test(); t09 passed: 'all_strings([0 : 1 : 9])=false'"
241 ECHO: "[ INFO ]
                      run test(); t10 passed: 'all strings([0 : 0.5 : 9])=false'"
242 ECHO: "[ INFO ] run_test(); t11 passed: 'all_strings([undef])=false'"
243 ECHO: "[ INFO ]
                      run_test(); t12 passed: 'all_strings([1])=false'
244 ECHO: "[ INFO ] run_test(); t13 passed: 'all_strings([1, 2, 3])=false'"
245 ECHO: "[ INFO ]
                      run_test(); t14 passed: 'all_strings([[1], [2], [3], [4], [5]])=false'"
           "[ INFO ] run_test(); t15 passed: 'all_strings([[1, 2], [2, 3]])=false'
246 ECHO:
247 ECHO: "[ INFO ] run_test(); t16 passed: 'all_strings([[1, 2], [2, 3], [4, 5], "ab"])=false'"
248 ECHO: "[ INFO ] run_test(); t17 passed: 'all_strings([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"ll)=false'
249 ECHO: "[ INFO ] run_test(); t18 passed: 'all_strings([1, 2, 3, undef])=false'"
```

```
250 ECHO: "[ INFO ] run_test(); t19 passed: 'all_strings([undef, undef, undef, undef])=false'"
251 ECHO: "[ INFO ] run_test(); t20 passed: 'all_strings([[undef], [undef], [undef]])=false'"
                      run_test(); t21 passed: 'all_strings([true, true, true, true, false])=false'"
252 ECHO: "[ INFO ]
253 ECHO: "[ INFO ] run_test(); t22 passed: 'all_strings((true, false, false, false, false))=false'"
254 ECHO: "[ INFO ] run_test(); t23 passed: 'all_strings([true, true, true, true])=false''
255 ECHO: "[ INFO ] run_test(); t01 passed: 'all_numbers(undef)=undef'"
256 ECHO: "[ INFO ]
                      run_test(); t02 passed: 'all_numbers(1)=true'"
257 ECHO: "[ INFO ] run_test(); t03 passed: 'all_numbers(true)=false'"
                     run_test(); t04 passed: 'all_numbers(false)=false'"
258 ECHO: "[ INFO ]
259 ECHO: "[ INFO ] run_test(); t05 passed: 'all_numbers(a)=false'"
260 ECHO: "[ INFO ]
                      run_test(); t06 passed: 'all_numbers(This is a longer string)=false'"
261 ECHO: "[ INFO ] run_test(); t07 *skip*: 'all_numbers(The empty string)'"
262 ECHO: "[ INFO ]
                      run_test(); t08 *skip*: 'all_numbers(The empty vector)'"
263 ECHO: "[ INFO ] run_test(); t09 passed: 'all_numbers([0 : 1 : 9]) = false'"
264 ECHO: "[ INFO ] run_test(); t10 passed: 'all_numbers([0 : 0.5 : 9])=false'"
265 ECHO: "[ INFO ] run_test(); t11 passed: 'all_numbers([undef])=false'"
266 ECHO: "[ INFO ] run_test(); t12 passed: 'all_numbers([1])=true'"
267 ECHO: "[ INFO ] run_test(); t13 passed: 'all_numbers([1, 2, 3])=true'"
268 ECHO: "[ INFO ] run_test(); t14 passed: 'all_numbers([[1], [2], [3], [4], [5]])=false'"
269 ECHO: "[ INFO ] run_test(); t15 passed: 'all_numbers([[1, 2], [2, 3]])=false'"
270 ECHO: "[ INFO ] run_test(); t16 passed: 'all_numbers([[1, 2], [2, 3], [4, 5], "ab"])=false'"
271 ECHO: "[ INFO ] run_test(); t17 passed: 'all_numbers([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
272 ECHO: "[ INFO ] run_test(); t18 passed: 'all_numbers([1, 2, 3, undef]) = false'
273 ECHO: "[ INFO ] run_test(); t19 passed: 'all_numbers([undef, undef, undef])=false'"
274 ECHO: "[ INFO ] run_test(); t20 passed: 'all_numbers([[undef], [undef], [undef]))=false'"
275 ECHO: "[ INFO ] run_test(); t21 passed: 'all_numbers([true, true, true, true, false])=false'"
276 ECHO: "[ INFO ] run_test(); t22 passed: 'all_numbers([true, false, false, false, false)]=false'"
277 ECHO: "[ INFO ] run_test(); t23 passed: 'all_numbers([true, true, true, true])=false' 278 ECHO: "[ INFO ] run_test(); t01 passed: 'all_len_1(undef)=undef'"
279 ECHO: "[ INFO ] run_test(); t02 passed: 'all_len_1(1)=false'"
280 ECHO: "[ INFO ] run_test(); t03 passed: 'all_len_1(true)=false'"
281 ECHO: "[ INFO ] run_test(); t04 passed: 'all_len_1(false)=false'"
282 ECHO: "[ INFO ] run_test(); t05 passed: 'all_len_1(a)=true'"
283 ECHO: "[ INFO ] run_test(); t06 passed: 'all_len_1(This is a longer string)=true'"
284 ECHO: "[ INFO ] run_test(); t07 *skip*: 'all_len_1(The empty string)'"
285 ECHO: "[ INFO ] run_test(); t08 *skip*: 'all_len_1(The empty vector)'"
286 ECHO: "[ INFO ] run_test(); t09 passed: 'all_len_1([0 : 1 : 9])=false'"
287 ECHO: "[ INFO ] run_test(); t10 passed: 'all_len_1([0 : 0.5 : 9])=false'"
288 ECHO: "[ INFO ] run_test(); t11 passed: 'all_len_1([undef])=false'
289 ECHO: "[ INFO ] run_test(); t12 passed: 'all_len_1([1])=false'"
290 ECHO: "[ INFO ] run_test(); t13 passed: 'all_len_1([1, 2, 3])=false'"
291 ECHO: "[ INFO ] run_test(); t14 passed: 'all_len_1([[1], [2], [3], [4], [5]])=true'"
292 ECHO: "[ INFO ] run_test(); t15 passed: 'all_len_1([[1, 2], [2, 3]])=false'"
293 ECHO: "[ INFO ] run_test(); t16 passed: 'all_len_1(([1, 2], [2, 3], [4, 5], "ab"])=false'"
294 ECHO: "[ INFO ] run_test(); t17 passed: 'all_len_1(([1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
295 ECHO: "[ INFO ] run_test(); t18 passed: 'all_len_1([1, 2, 3, undef])=false'"
296 ECHO: "[ INFO ] run_test(); t19 passed: 'all_len_1([undef, undef, undef, undef])=false'"
297 ECHO: "[ INFO ] run_test(); t20 passed: 'all_len_1([[undef], [undef], [undef]))=true'"
298 ECHO: "[ INFO ] run_test(); t21 passed: 'all_len_1([true, true, true, true, false])=false'"
299 ECHO: "[ INFO ] run_test(); t22 passed: 'all_len_1([true, false, false, false, false])=false'"
300 ECHO: "[ INFO ] run_test(); t23 passed: 'all_len_1([true, true, true, true])=false'"
301 ECHO: "[ INFO ]
                      run_test(); t01 passed: 'all_len_2(undef) = undef'"
302 ECHO: "[ INFO ] run_test(); t02 passed: 'all_len_2(1)=false'"
303 ECHO: "[ INFO ]
                      run_test(); t03 passed: 'all_len_2(true)=false''
304 ECHO: "[ INFO ] run_test(); t04 passed: 'all_len_2(false)=false'"
305 ECHO: "[ INFO ] run_test(); t05 passed: 'all_len_2(a)=false'"
306 ECHO: "[ INFO ] run_test(); t06 passed: 'all_len_2(This is a longer string)=false'"
307 ECHO: "[ INFO ] run_test(); t07 *skip*: 'all_len_2(The empty string)'"
308 ECHO: "[ INFO ] run_test(); t08 *skip*: 'all_len_2(The empty vector)'"
309 ECHO: "[ INFO ] run_test(); t09 passed: 'all_len_2([0 : 1 : 9])=false'"
310 ECHO: "[ INFO ] run_test(); t10 passed: 'all_len_2([0 : 0.5 : 9])=false'"
311 ECHO: "[ INFO ] run_test(); t11 passed: 'all_len_2([undef])=false'"
312 ECHO: "[ INFO ] run_test(); t12 passed: 'all_len_2([1])=false'"
313 ECHO: "[ INFO ] run_test(); t13 passed: 'all_len_2([1, 2, 3])=false'"
314 ECHO: "[ INFO ] run_test(); t14 passed: 'all_len_2([[1], [2], [3], [4], [5]))=false'"
315 ECHO: "[ INFO ] run_test(); t15 passed: 'all_len_2([[1, 2], [2, 3]])=true'"
316 ECHO: "[ INFO ] run_test(); t16 passed: 'all_len_2([[1, 2], [2, 3], [4, 5], "ab"])=true'"
317 ECHO: "[ INFO ] run_test(); t17 passed: 'all_len_2([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
       "c"]])=false'"
318 ECHO: "[ INFO ] run_test(); t18 passed: 'all_len_2([1, 2, 3, undef])=false'
319 ECHO: "[ INFO ] run_test(); t19 passed: 'all_len_2([undef, undef, undef, undef])=false'"
320 ECHO: "[ INFO ] run_test(); t20 passed: 'all_len_2([[undef], [undef], [undef]])=false'"
321 ECHO: "[ INFO ] run_test(); t21 passed: 'all_len_(([true, true, true, true, false])=false'"
322 ECHO: "[ INFO ] run_test(); t22 passed: 'all_len_2([true, false, false, false, false])=false'"
323 ECHO: "[ INFO ] run_test(); t23 passed: 'all_len_2([true, true, true, true])=false'"
324 ECHO: "[ INFO ] run_test(); t01 passed: 'all_len_3(undef)=undef'"
325 ECHO: "[ INFO ] run_test(); t02 passed: 'all_len_3(1)=false''
326 ECHO: "[ INFO ] run_test(); t03 passed: 'all_len_3(true)=false'"
327 ECHO: "[ INFO ] run_test(); t04 passed: 'all_len_3(false)=false'"
```

```
328 ECHO: "[ INFO ] run_test(); t05 passed: 'all_len_3(a)=false'"
329 ECHO: "[ INFO ] run_test(); t06 passed: 'all_len_3(This is a longer string)=false'"
330 ECHO: "[ INFO ] run_test(); t07 *skip*: 'all_len_3(The empty string)'"
331 ECHO: "[ INFO ] run_test(); t08 *skip*: 'all_len_3(The empty vector)'"
                       run_test(); t09 passed: 'all_len_3([0 : 1 : 9])=false'"
332 ECHO: "[ INFO ]
333 ECHO: "[ INFO ] run_test(); t10 passed: 'all_len_3([0 : 0.5 : 9]) = false'"
334 ECHO: "[ INFO ]
                       run_test(); t11 passed: 'all_len_3([undef])=false'"
335 ECHO: "[ INFO ] run_test(); t12 passed: 'all_len_3([1])=false'"
336 ECHO: "[ INFO ] run_test(); t13 passed: 'all_len_3([1, 2, 3])=false'"
337 ECHO: "[ INFO ] run_test(); t14 passed: 'all_len_3([[1], [2], [3], [4], [5]])=false'"
338 ECHO: "[ INFO ] run_test(); t15 passed: 'all_len_3([[1, 2], [2, 3]])=false'
339 ECHO: "[ INFO ] run_test(); t16 passed: 'all_len_3([[1, 2], [2, 3], [4, 5], "ab"])=false'"
340 ECHO: "[ INFO ] run_test(); t17 passed: 'all_len_3([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=true'"
341 ECHO: "[ INFO ] run_test(); t18 passed: 'all_len_3([1, 2, 3, undef])=false'
342 ECHO: "[ INFO ] run_test(); t19 passed: 'all_len_3([undef, undef, undef, undef])=false'"
343 ECHO: "[ INFO ] run_test(); t20 passed: 'all_len_3([[undef], [undef]])=false'"
344 ECHO: "[ INFO ] run_test(); t21 passed: 'all_len_3([true, true, true, true, false])=false'"
345 ECHO: "[ INFO ]
                       run_test(); t22 passed: 'all_len_3([true, false, false, false, false])=false'"
346 ECHO: "[ INFO ] run_test(); t23 passed: 'all_len_3([true, true, true, true])=false'"
347 ECHO: "[ INFO ] run_test(); t01 passed: 'almost_equal_AA(undef)=true'"
348 ECHO: "[ INFO ] run_test(); t02 passed: 'almost_equal_AA(1)=true'"
349 ECHO: "[ INFO ] run_test(); t03 passed: 'almost_equal_AA(true)=true'
350 ECHO: "[ INFO ] run_test(); t04 passed: 'almost_equal_AA(false)=true'"
351 ECHO: "[ INFO ] run_test(); t05 passed: 'almost_equal_AA(a)=true'
352 ECHO: "[ INFO ] run_test(); t06 passed: 'almost_equal_AA(This is a longer string)=true'"
353 ECHO: "[ INFO ] run_test(); t07 passed: 'almost_equal_AA()=true'"
354 ECHO: "[ INFO ] run_test(); t08 passed: 'almost_equal_AA([])=true'"
355 ECHO: "[ INFO ] run_test(); t09 passed: 'almost_equal_AA([0 : 1 : 9])=true'"
356 ECHO: "[ INFO ] run_test(); t10 passed: 'almost_equal_AA([0 : 0.5 : 9])=true'"
357 ECHO: "[ INFO ] run_test(); t11 passed: 'almost_equal_AA([undef])=true'
358 ECHO: "[ INFO ] run_test(); t12 passed: 'almost_equal_AA([1])=true'"
359 ECHO: "[ INFO ] run_test(); t13 passed: 'almost_equal_AA([1, 2, 3])=true'"
360 ECHO: "[ INFO ] run_test(); t14 passed: 'almost_equal_AA([[1], [2], [3], [4], [5]])=true'"
361 ECHO: "[INFO] run_test(); t15 passed: 'almost_equal_AA([[1, 2], [2, 3])]=true'"
362 ECHO: "[INFO] run_test(); t16 passed: 'almost_equal_AA([[1, 2], [2, 3], [4, 5], "ab"])=true'"
363 ECHO: "[INFO] run_test(); t17 passed: 'almost_equal_AA([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"]])=true'
364 ECHO: "[ INFO ] run_test(); t18 passed: 'almost_equal_AA([1, 2, 3, undef])=true'"
365 ECHO: "[ INFO ] run_test(); t19 passed: 'almost_equal_AA([undef, undef, undef, undef])=true'"
366 ECHO: "[ INFO ] run_test(); t20 passed: 'almost_equal_AA([[undef], [undef], [undef]])=true'"
367 ECHO: "[ INFO ] run_test(); t21 passed: 'almost_equal_AA([true, true, true, true, false])=true'"
368 ECHO: "[ INFO ] run_test(); t22 passed: 'almost_equal_AA([true, false, false, false, false, false))=true'"
369 ECHO: "[ INFO ] run_test(); t23 passed: 'almost_equal_AA([true, true, true])=true'"
370 ECHO: "[ INFO ] run_test(); t01 passed: 'almost_equal_T(undef)=false'"
371 ECHO: "[ INFO ] run_test(); t02 passed: 'almost_equal_T(1) = false'
372 ECHO: "[ INFO ] run_test(); t03 passed: 'almost_equal_T(true)=true'
373 ECHO: "[ INFO ] run_test(); t04 passed: 'almost_equal_T(false)=false'"
374 ECHO: "[ INFO ] run_test(); t05 passed: 'almost_equal_T(a)=false'"
375 ECHO: "[ INFO ] run_test(); t06 passed: 'almost_equal_T(This is a longer string)=false'"
376 ECHO: "[ INFO ] run_test(); t07 passed: 'almost_equal_T()=false'"
                       run_test(); t08 passed: 'almost_equal_T([])=false'"
377 ECHO: "[ INFO ]
378 ECHO: "[ INFO ] run_test(); t09 passed: 'almost_equal_T([0 : 1 : 9]) = false'"
379 ECHO: "[ INFO ]
                       run_test(); t10 passed: 'almost_equal_T([0 : 0.5 : 9])=false'"
380 ECHO: "[ INFO ] run_test(); tl1 passed: 'almost_equal_T([undef])=false'"
381 ECHO: "[ INFO ]
                       run_test(); t12 passed: 'almost_equal_T([1])=false'"
382 ECHO: "[ INFO ] run_test(); t13 passed: 'almost_equal_T([1, 2, 3]) = false'"
383 ECHO: "[ INFO ] run_test(); t14 passed: 'almost_equal_T([[1], [2], [3], [4], [5]])=false'"
384 ECHO: "[ INFO ] run_test(); t15 passed: 'almost_equal_T([[1, 2], [2, 3]])=false'"
385 ECHO: "[ INFO ] run_test(); t16 passed: 'almost_equal_T([[1, 2], [2, 3], [4, 5], "ab"])=false'"
386 ECHO: "[ INFO ] run_test(); t17 passed: 'almost_equal_T([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
        "c"ll)=false'"
387 ECHO: "[ INFO ] run_test(); t18 passed: 'almost_equal_T([1, 2, 3, undef])=false'"
388 ECHO: "[ INFO ] run_test(); t19 passed: 'almost_equal_T([undef, undef, undef, undef])=false'"
389 ECHO: "[ INFO ] run_test(); t20 passed: 'almost_equal_T([[undef], [undef], [undef]])=false'"
390 ECHO: "[ INFO ] run_test(); t21 passed: 'almost_equal_T([true, true, true, true, false])=false'"
391 ECHO: "[ INFO ] run_test(); t22 passed: 'almost_equal_T([true, false, false, false, false])=false'"
392 ECHO: "[ INFO ] run_test(); t23 passed: 'almost_equal_T([true, true, true, true])=false'"
393 ECHO: "[ INFO ] run_test(); t01 passed: 'almost_equal_F(undef)=false'"
394 ECHO: "[ INFO ]
                       run_test(); t02 passed: 'almost_equal_F(1) = false'
395 ECHO: "[ INFO ] run_test(); t03 passed: 'almost_equal_F(true)=false''
396 ECHO: "[ INFO ] run_test(); t04 passed: 'almost_equal_F(false)=true'
397 ECHO: "[ INFO ] run_test(); t05 passed: 'almost_equal_F(a) = false'"
398 ECHO: "[ INFO ] run_test(); t06 passed: 'almost_equal_F(This is a longer string)=false'"
399 ECHO: "[ INFO ] run_test(); t07 passed: 'almost_equal_F()=false'"
400 ECHO: "[ INFO ]
                       run_test(); t08 passed: 'almost_equal_F([])=false'"
401 ECHO: "[ INFO ] run_test(); t09 passed: 'almost_equal_f([0:1:9])=false'"
402 ECHO: "[ INFO ] run_test(); t10 passed: 'almost_equal_F([0 : 0.5 : 9]) = false'"
403 ECHO: "[ INFO ] run_test(); t11 passed: 'almost_equal_F([undef])=false'"
404 ECHO: "[ INFO ] run_test(); t12 passed: 'almost_equal_F([1]) = false'"
405 ECHO: "[ INFO ] run_test(); t13 passed: 'almost_equal_F([1, 2, 3]) = false'"
```

```
406 ECHO: "[ INFO ] run_test(); t14 passed: 'almost_equal_F([[1], [2], [3], [4], [5]])=false'"
407 ECHO: "[INFO] run_test(); t15 passed: 'almost_equal_F([[1, 2], [2, 3]])=false'"
408 ECHO: "[INFO] run_test(); t16 passed: 'almost_equal_F([[1, 2], [2, 3], [4, 5], "ab"])=false'"
409 ECHO: "[INFO] run_test(); t17 passed: 'almost_equal_F([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
         "c"]])=false'"
410 ECHO: "[ INFO ] run_test(); t18 passed: 'almost_equal_F([1, 2, 3, undef])=false'"
411 ECHO: "[ INFO ] run_test(); t19 passed: 'almost_equal_F([undef, undef, undef])=false'"
412 ECHO: "[ INFO ] run_test(); t20 passed: 'almost_equal_F([[undef], [undef], [undef]))=false'"
413 ECHO: "[ INFO ] run_test(); t21 passed: 'almost_equal_F([true, true, true, true, false])=false'"
414 ECHO: "[ INFO ] run_test(); t22 passed: 'almost_equal_F([true, false, false, false, false])=false'"
415 ECHO: "[ INFO ] run_test(); t23 passed: 'almost_equal_F([true, true, true, true])=false'"
416 ECHO: "[ INFO ] run_test(); t01 passed: 'almost_equal_U(undef)=true'"
417 ECHO: "[ INFO ] run_test(); t02 passed: 'almost_equal_U(1) = false''
418 ECHO: "[ INFO ] run_test(); t03 passed: 'almost_equal_U(true)=false'"
419 ECHO: "[ INFO ] run_test(); t04 passed: 'almost_equal_U(false)=false'"
420 ECHO: "[ INFO ] run_test(); t05 passed: 'almost_equal_U(a)=false'"
421 ECHO: "[ INFO ] run_test(); t06 passed: 'almost_equal_U(This is a longer string) = false'"
422 ECHO: "[ INFO ] run_test(); t07 passed: 'almost_equal_U()=false'"
423 ECHO: "[ INFO ] run_test(); t08 passed: 'almost_equal_U([])=false'"
424 ECHO: "[ INFO ] run_test(); t09 passed: 'almost_equal_U([0 : 1 : 9]) = false'"
425 ECHO: "[ INFO ] run_test(); t10 passed: 'almost_equal_U([0 : 0.5 : 9]) = false'"
426 ECHO: "[ INFO ] run_test(); t11 passed: 'almost_equal_U([undef])=false'"
427 ECHO: "[ INFO ] run_test(); t12 passed: 'almost_equal_U([1])=false'"
428 ECHO: "[ INFO ] run_test(); t13 passed: 'almost_equal_U([1, 2, 3])=false'"
429 ECHO: "[ INFO ] run_test(); t14 passed: 'almost_equal_U([[1], [2], [3], [4], [5]])=false'"

430 ECHO: "[ INFO ] run_test(); t15 passed: 'almost_equal_U([[1, 2], [2, 3]])=false'"

431 ECHO: "[ INFO ] run_test(); t16 passed: 'almost_equal_U([[1, 2], [2, 3], [4, 5], "ab"])=false'"

432 ECHO: "[ INFO ] run_test(); t17 passed: 'almost_equal_U([[1, 2], [2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
         "c"]])=false''
433 ECHO: "[INFO] run_test(); t18 passed: 'almost_equal_U([1, 2, 3, undef])=false'"
434 ECHO: "[INFO] run_test(); t19 passed: 'almost_equal_U([undef, undef, undef, undef])=false'"
435 ECHO: "[INFO] run_test(); t20 passed: 'almost_equal_U([[undef], [undef], [undef]])=false'"
436 ECHO: "[ INFO ] run_test(); t21 passed: 'almost_equal_U([true, true, true, true, false])=false'"
437 ECHO: "[ INFO ] run_test(); t22 passed: 'almost_equal_U([true, false, false, false, false))=false'"
438 ECHO: "[ INFO ] run_test(); t23 passed: 'almost_equal_U([true, true, true, true])=false'
439 ECHO: "[ INFO ] run_test(); t01 passed: 'compare_AA(undef)=true'"
440 ECHO: "[ INFO ] run_test(); t02 passed: 'compare_AA(1)=true'"
441 ECHO: "[ INFO ] run_test(); t03 passed: 'compare_AA(true)=true'"
442 ECHO: "[ INFO ] run_test(); t04 passed: 'compare_AA(false)=true'"
443 ECHO: "[ INFO ] run_test(); t05 passed: 'compare_AA(a)=true'
444 ECHO: "[ INFO ] run_test(); t06 passed: 'compare_AA(This is a longer string)=true'"
445 ECHO: "[ INFO ] run_test(); t07 passed: 'compare_AA()=true'"
446 ECHO: "[ INFO ] run_test(); t08 passed: 'compare_AA([])=true'"
447 ECHO: "[ INFO ] run_test(); t09 passed: 'compare_AA([0 : 1 : 9])=true'"
448 ECHO: "[ INFO ] run_test(); t10 passed: 'compare_AA([0 : 0.5 : 9])=true'"
449 ECHO: "[ INFO ] run_test(); t11 passed: 'compare_AA([undef])=true'
450 ECHO: "[ INFO ] run_test(); t12 passed: 'compare_AA([1])=true'"
451 ECHO: "[ INFO ] run_test(); t13 passed: 'compare_AA([1, 2, 3])=true'"
452 ECHO: "[ INFO ] run_test(); t14 passed: 'compare_AA([[1], [2], [3], [4], [5]])=true'"
453 ECHO: "[ INFO ] run_test(); t15 passed: 'compare_AA([[1, 2], [2, 3]])=true'"
454 ECHO: "[ INFO ] run_test(); t16 passed: 'compare_AA([[1, 2], [2, 3], [4, 5], "ab"])=true'"
455 ECHO: "[ INFO ] run_test(); t17 passed: 'compare_AA([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
         "c"]])=true'"
456 ECHO: "[ INFO ] run_test(); t18 passed: 'compare_AA([1, 2, 3, undef])=true'"
457 ECHO: "[ INFO ] run_test(); t19 passed: 'compare_AA([undef, undef, undef, undef])=true'"
458 ECHO: "[ INFO ] run_test(); t20 passed: 'compare_AA([[undef], [undef], [undef]])=true'"
459 ECHO: "[ INFO ] run_test(); t21 passed: 'compare_AA([true, true, true, true, false])=true'"
460 ECHO: "[ INFO ] run_test(); t22 passed: 'compare_AA([true, false, false, false, false)]=true'"
461 ECHO: "[ INFO ] run_test(); t23 passed: 'compare_AA([true, true, true, true])=true'"
```

2.1.2 Vector Operations

- Validation Script
- · Validation Results

2.1.2.1 Validation Script

```
include <primitives.scad>;
use <table.scad>;
use <console.scad>;
use <validation.scad>;
show_passing = true;  // show passing tests
show_skipped = true;  // show skipped tests
```

```
echo( str("OpenSCAD Version ", version()) );
// test-values columns
test_c =
   ["id", "identifier"],
["td", "description"],
["tv", "test value"]
// test-values rows
test_r =
  ["t01", "The undefined value", undef],
["t02", "The empty vector", empty_v],
["t03", "A range", [0:0.5:9]],
["t04", "A string", "A string"],
["t05", "Test vector 01", ["orange", "apple", "grape", "banana"]],
["t06", "Test vector 02", ["b", "a", "n", "a", "n", "a", "s"]],
["t07", "Test vector 03", [undef]],
["t08", "Test vector 04", [1,2],[2,3]],
["t09", "Test vector 05", ["ab",[1,2],[2,3]],
["t10", "Test vector 06", [1,2,3],[4,5]]],
["t11", "Vector of integers 0 to 15", [for (i=[0:15]) i]]
test_ids = table_get_row_ids( test_r );
// expected columns: ("id" + one column for each test)
good_c = pmerge([concat("id", test_ids), concat("identifier", test_ids)]);
// expected rows: ("golden" test results), use 's' to skip test
skip = -1; // skip test
good_r =
[ // function
   ["consts",
                                                                               // t01
     empty_v,
                                                                               // t02
// t03
     empty_v,
     empty_v,
                                                                               // t04
// t05
     empty_v,
     empty_v,
                                                                               // t06
// t07
     empty_v,
     empty_v,
     empty_v,
                                                                               // t08
     empty_v,
                                                                               // t09
     empty_v,
                                                                               // t10
                                                                               // t11
     empty_v
   ["vstr",
     undef,
                                                                               // t01
     empty_str,
                                                                               // t02
     "[0:0.5:9]",
                                                                               // t03
     "A string",
                                                                               // t04
     "orangeapplegrapebanana",
                                                                               // t05
      "bananas",
                                                                               // t06
     "undef",
                                                                               // t07
     "[1, 2][2, 3]",
                                                                               // t08
     ],
["sum",
     undef,
                                                                               // t01
                                                                               // t02
     85.5,
                                                                               // t03
                                                                               // t04
     undef,
     undef,
                                                                               // t05
                                                                               // t06
     undef,
                                                                               // t07
     undef,
     [3,5],
                                                                               // t08
                                                                               // t09
     undef,
                                                                               // t10
     [undef,undef,undef],
     120
                                                                               // t11
   ["defined_or_D",
      "default",
                                                                               // t01
                                                                               // t02
     empty v.
                                                                               // t03
     [0:0.5:9],
      "A string"
                                                                               // 04
     ["orange", "apple", "grape", "banana"],
                                                                               // t05
```

```
["b", "a", "n", "a", "n", "a", "s"],
                                                                 // t06
  [undef],
                                                                 // t07
                                                                 // t08
  [[1,2],[2,3]],
  ["ab",[1,2],[2,3],[4,5]],
[[1,2,3],[4,5,6],[7,8,9],["a","b","c"]],
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
                                                                 // t09
                                                                 // t10
                                                                 // t11
],
["edefined_or_DE3",
  "default",
                                                                 // t01
  "default",
                                                                 // t02
  "default",
                                                                 // t03
  "t",
                                                                 // t04
  "banana",
                                                                 // t05
  "a",
                                                                 // t06
  "default",
                                                                 // t07
  "default",
                                                                 // t08
  [4,5],
                                                                 // t09
  ["a", "b", "c"],
                                                                 // t10
  3
                                                                 // t11
["first",
                                                                 // t01
  undef,
                                                                 // t02
  undef,
  undef,
                                                                 // t03
                                                                 // t04
// t05
  "A",
  "orange",
  "b",
                                                                 // t06
                                                                 // t07
  undef,
  [1,2],
"ab",
                                                                 // t08
                                                                 // t09
                                                                 // t10
  [1,2,3],
                                                                 // t11
],
["second",
                                                                 // t01
  undef,
                                                                 // t02
  undef,
                                                                 // t02
// t03
// t04
// t05
// t06
  undef,
  "apple",
  "a",
                                                                 // t07
// t08
  undef,
  [2,3],
                                                                 // t09
// t10
  [1,2],
  [4,5,6],
                                                                 // t11
],
["last",
                                                                 // t01
  undef,
                                                                 // t02
// t03
  undef,
  undef,
                                                                 // t04
// t05
  "g",
  "banana",
  "s",
                                                                 // t06
                                                                 // t07
  undef,
  [2,3],
                                                                 // t08
  [4,5],
                                                                 // t09
  ["a", "b", "c"],
                                                                 // t10
  15
                                                                 // t11
["head",
  undef,
                                                                 // t01
  undef,
                                                                 // t02
  undef,
                                                                 // t03
  ["A"],
                                                                 // t04
  ["orange"],
                                                                 // t05
  ["b"],
                                                                 // t06
  [undef],
                                                                 // t07
  [[1,2]],
                                                                 // t08
  ["ab"],
                                                                 // t09
  [[1,2,3]],
                                                                 // t10
  [0]
                                                                 // t11
],
["tail",
                                                                 // t01
  undef,
                                                                 // t02
  undef,
  undef,
                                                                 // t03
  // t04
                                                                 // t05
                                                                 // t06
  empty_v,
[[2,3]],
                                                                 // t07
// t08
```

```
[[1,2],[2,3],[4,5]],
[[4,5,6],[7,8,9],["a","b","c"]],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
                                                                         // t09
                                                                          // t10
                                                                          // t11
["rselect_02",
  undef,
                                                                          // t01
  empty_v,
                                                                          // t02
  empty_v,
undef,
["A"," ","s"],
["orange","apple","grape"],
["b","a","n"],
                                                                          // t03
                                                                          // t04
                                                                          // t05
                                                                          // t06
  undef,
                                                                          // t07
  undef,
                                                                          // t08
  ["ab",[1,2],[2,3]],
                                                                          // t09
  [[1,2,3],[4,5,6],[7,8,9]],
                                                                          // t10
                                                                          // t11
["eselect_F",
                                                                          // t01
  undef,
                                                                          // t02
  empty_v,
  empty_v,
undef,
["A"," ","s","t","r","i","n","g"],
["o","a","g","b"],
["b","a","n","a","n","a","s"],
                                                                          // t03
                                                                          // t04
                                                                          // t05
                                                                          // t06
  [undef],
                                                                          // t07
  [1,2],
["a",1,2,4],
                                                                          // t08
                                                                          // t09
  [1,4,7,"a"],
                                                                          // t10
                                                                          // t11
  skip
],
["eselect L",
  undef,
                                                                          // t01
  empty_v,
                                                                          // t02
// t03
 undef,
["A"," ","s","t","r","i","n","g"],
["e","e","e","a"],
["b","a","n","a","n","a","s"],
...
                                                                          // t04
                                                                          // t05
                                                                          // t06
// t07
  [undef],
                                                                          // t08
  [2,3],
  ["b",2,3,5],
                                                                          // t09
  [3,6,9,"c"],
                                                                          // t10
                                                                          // t11
  skip
],
["eselect_1",
                                                                          // t01
  undef,
  empty_v,
                                                                          // t02
                                                                          // t03
// t04
  undef,
  skip,
  ["r", "p", "r", "a"],
                                                                          // t05
// t06
  skip,
                                                                          // t07
  [undef],
                                                                          // t08
   [2,3],
  ["b",2,3,5],
                                                                          // t09
  [2,5,8,"b"],
                                                                          // t10
  skip
                                                                          // t11
["smerge",
  undef,
                                                                          // t01
  empty_v,
                                                                          // t02
  [[0:0.5:9]],
                                                                          // t03
  ["A string"],
                                                                          // t04
  ["orange", "apple", "grape", "banana"], ["b", "a", "n", "a", "n", "a", "s"],
                                                                          // t05
                                                                          // t06
  [undef],
                                                                          // t07
  [1,2,2,3],
                                                                          // t08
  ["ab",1,2,2,3,4,5],
[1,2,3,4,5,6,7,8,9,"a","b","c"],
                                                                          // t09
                                                                          // t10
  [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
                                                                          // t11
],
["pmerge",
  undef,
                                                                          // t01
                                                                          // t02
// t03
  empty_v,
  undef,
                                                                          // t04
  ["A string"],
    ["o","a","g","b"],["r","p","r","a"],
["a","p","a","n"],["n","l","p","a"],
["g","e","e","n"]
                                                                          // t05
  [["b", "a", "n", "a", "n", "a", "s"]],
                                                                          // t06
                                                                          // t07
  undef.
```

```
[[1,2],[2,3]],
[["a",1,2,4],["b",2,3,5]],
                                                                  // t08
                                                                  // t09
   [[1,4,7,"a"],[2,5,8,"b"],[3,6,9,"c"]],
                                                                  // t10
  undef
                                                                  // t11
],
["reverse",
  undef,
                                                                  // t01
  empty_v,
                                                                  // t02
  undef,
                                                                  // t03
  "n", "i", "r", "t", "s", " ", "A"],
["banana", "grape", "apple", "orange"],
["s", "a", "n", "a", "n", "a", "b"],
                                                                 // t04
                                                                 // t05
                                                                 // t06
  [undef],
                                                                 // t07
  [[2,3],[1,2]],
                                                                 // t08
  [[4,5],[2,3],[1,2],"ab"],
[["a","b","c"],[7,8,9],[4,5,6],[1,2,3]],
                                                                 // t09
                                                                 // t10
  [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
                                                                 // t11
],
["qsort",
  undef,
                                                                  // t01
                                                                  // t02
  empty v,
  undef,
                                                                  // t03
  undef,
                                                                  // t04
  ["apple", "banana", "grape", "orange"],
                                                                  // t05
  ["a", "a", "a", "b", "n", "n", "s"],
                                                                  // t06
                                                                  // t07
  undef,
  undef,
                                                                  // t08
                                                                  // t09
  undef,
                                                                  // t.10
  undef.
  [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
                                                                  // t11
["gsort2_HR",
                                                                  // t01
  undef.
                                                                  // t.02
  empty_v,
                                                                  // t03
  undef.
                                                                  // t04
  undef.
  // t05
                                                                  // t06
  [undef],
                                                                  // t07
  [[3,2],[2,1]],
                                                                 // t08
  [[5,4],[3,2],[2,1],"ab"],
[["c","b","a"],[9,8,7],[6,5,4],[3,2,1]],
[15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]
                                                                 // t09
                                                                  // t.10
                                                                 // t11
["strip",
                                                                 // t01
  undef.
  empty_v,
                                                                 // t02
// t03
 empty__,
undef,
["A"," ","s","t","r","i","n","g"],
["orange","apple","grape","banana"],
["b","a","n","a","n","a","s"],
                                                                 // t04
                                                                 // t05
                                                                 // t06
                                                                 // t07
   [[1,2],[2,3]],
                                                                 // t08
   ["ab",[1,2],[2,3],[4,5]],
                                                                 // t09
   [[1,2,3],[4,5,6],[7,8,9],["a","b","c"]],
                                                                 // t10
  [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
                                                                  // t11
["append_T0",
  undef,
                                                                  // t01
  [[0]],
                                                                  // t02
  undef,
     ["A",0],[" ",0],["s",0],["t",0],
     ["r",0],["i",0],["n",0],["g",0]
     ["orange",0],["apple",0],
     ["grape", 0], ["banana", 0]
                                                                  // t05
     ["b",0],["a",0],["n",0],["a",0],
     ["n",0],["a",0],["s",0]
                                                                  // t06
  [[undef, 0]],
                                                                  // t07
                                                                  // t08
  [[1,2,0],[2,3,0]],
   [["ab",0],[1,2,0],[2,3,0],[4,5,0]],
                                                                  // t09
  [[1,2,3,0],[4,5,6,0],[7,8,9,0],["a","b","c",0]],
                                                                  // t10
     [0,0],[1,0],[2,0],[3,0],[4,0],[5,0],
     [6,0],[7,0],[8,0],[9,0],[10,0],[11,0],
[12,0],[13,0],[14,0],[15,0]
```

```
// t11
     ]
   ["insert_T0",
     undef,
                                                                          // t01
                                                                           // t02
     undef,
     undef.
                                                                           // t03
     undef,
                                                                           // t04
     ["orange", 0, "apple", "grape", "banana"],
                                                                          // t05
     ["b", "a", "n", "a", "n", "a", 0, "s"],
                                                                          // t06
                                                                          // t07
     undef,
     [[1,2],0,[2,3]],
                                                                          // t08
     ["ab", [1,2],0,[2,3],[4,5]],
                                                                          // t09
     undef.
                                                                          // t10
     [0,1,2,3,4,0,5,6,7,8,9,10,11,12,13,14,15]
                                                                          // t11
   ["delete_T0",
     undef,
                                                                          // t01
     empty_v,
                                                                          // t02
     undef,
                                                                          // t03
     ["A"," ","s","t","r","i","n","g"],
                                                                          // t04
     ["orange", "grape", "banana"], ["b", "a", "n", "a", "n", "a"],
                                                                          // t05
                                                                          // t06
     [undef],
                                                                          // t07
     [[1,2]],
                                                                          // t08
     ["ab",[1,2],[4,5]],
[[1,2,3],[4,5,6],[7,8,9],["a","b","c"]],
[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15]
                                                                          // t09
                                                                          // t10
                                                                          // t11
1:
// sanity-test tables
table_check( test_r, test_c, false );
table_check( good_r, good_c, false );
// validate helper function and module
function get_value( vid ) = table_get(test_r, test_c, vid, "tv");
module run_test( fname, fresult, vid )
  value_text = table_get(test_r, test_c, vid, "td");
  pass_value = table_get(good_r, good_c, fname, vid);
  test_pass = validate( cv=fresult, t="equals", ev=pass_value, pf=true );
  test_text = validate( str(fname, "(", get_value(vid), ")=", pass_value), fresult, "equals",
 pass value );
  if ( pass_value != skip )
     if ( !test_pass )
       log_warn( str(vid, "(", value_text, ") ", test_text) );
     else if ( show_passing )
  log_info( str(vid, " ", test_text) );
  else if ( show_skipped )
     log_info( str(vid, " *skip*: '", fname, "(", value_text, ")'") );
// Indirect function calls would be very useful here!!!
for (vid=test_ids) run_test( "consts", consts(get_value(vid)), vid );
for (vid=test_ids) run_test( "vstr", vstr(get_value(vid)), vid );
for (vid=test_ids) run_test( "sum", sum(get_value(vid)), vid );
for (vid=test_ids) run_test( "defined_or_D", defined_or(get_value(vid), "default"), vid );
for (vid=test_ids) run_test( "edefined_or_DE3", edefined_or(get_value(vid),3,"default"),
vid );
for (vid=test_ids) run_test( "first", first(get_value(vid)), vid );
for (vid=test_ids) run_test( "second", second(get_value(vid)), vid );
for (vid=test_ids) run_test( "last", last(get_value(vid)), vid );
for (vid=test_ids) run_test( "head", head(get_value(vid)), vid );
for (vid=test_ids) run_test( "tail", tail(get_value(vid)), vid );
for (vid=test_ids) run_test( "rselect_02", rselect(get_value(vid),i=[0:2]), vid );
for (vid=test_ids) run_test( "eselect_F", eselect(get_value(vid),f=true), vid);
for (vid=test_ids) run_test( "eselect_L", eselect(get_value(vid),f=true), vid);
for (vid=test_ids) run_test( "eselect_1", eselect(get_value(vid),i=1), vid );
for (vid=test_ids) run_test( "smerge", smerge(get_value(vid)), vid );
for (vid=test_ids) run_test( "pmerge", pmerge(get_value(vid)), vid);
for (vid=test_ids) run_test( "reverse", reverse(get_value(vid)), vid);
for (vid=test_ids) run_test( "gsort", gsort(get_value(vid)), vid );
for (vid=test ids) run test ( "gsort2 HR", gsort2 (get value (vid), d=5, r=true), vid );
for (vid=test_ids) run_test( "strip", strip(get_value(vid)), vid );
for (vid=test_ids) run_test( "strip", strip(get_value(vid)), vid );
for (vid=test_ids) run_test( "append_TO", append(0,get_value(vid)), vid );
for (vid=test_ids) run_test( "insert_TO", insert(0,get_value(vid),mv=["x","r","apple","s",[2,3]
,5]), vid);
```

```
for (vid=test_ids) run_test( "delete_T0", delete(get_value(vid), mv=["x", "r", "apple", "s",[2,3],5]),
vid );
// end-of-tests
```

2.1.2.2 Validation Results

```
1 ECHO: "OpenSCAD Version [2016, 12, 21]"
2 ECHO: "[ INFO ] run_test(); t01 passed: 'consts(undef)=[]'"
3 ECHO: "[ INFO ] run_test(); t02 passed: 'consts([])=[]'"
4 ECHO: "[ INFO ] run_test(); t03 passed: 'consts([0 : 0.5 : 9])=[]'"
5 ECHO: "[ INFO ] run_test(); t04 passed: 'consts(A string)=[]'"
6 ECHO: "[ INFO ] run_test(); t05 passed: 'consts(["orange", "apple", "grape", "banana"])=[]'"
7 ECHO: "[ INFO ] run_test(); t06 passed: 'consts(["b", "a", "n", "a", "n", "a", "s"])=[]'"
8 ECHO: "[ INFO ] run_test(); t07 passed: 'consts([undef])=[]'"
9 ECHO: "[ INFO ] run_test(); t08 passed: 'consts([[1, 2], [2, 3]])=[]'"
10 ECHO: "[ INFO ] run_test(); t09 passed: 'consts(["ab", [1, 2], [2, 3], [4, 5]])=[]'"
11 ECHO: "[ INFO ] run_test(); t10 passed: 'consts([1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[]'"
12 ECHO: "[ INFO ] run_test(); t11 passed: 'consts([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
          15])=[]'"
13 ECHO: "[ INFO ] run_test(); t01 passed: 'vstr(undef) = undef'"
14 ECHO: "[ INFO ] run_test(); t02 passed: 'vstr([])='
15 ECHO: "[ INFO ] run_test(); t03 passed: 'vstr([0:0.5:9])=[0:0.5:9]'"
16 ECHO: "[ INFO ] run_test(); t04 passed: 'vstr(A string) = A string'
17 ECHO: "[ INFO ] run_test(); t05 passed: 'vstr(["orange", "apple", "grape",
          "banana"])=orangeapplegrapebanana'"
18 ECHO: "[ INFO ] run_test(); t06 passed: 'vstr(["b", "a", "n", "a", "n", "a", "s"])=bananas'"
19 ECHO: "[ INFO ] run_test(); t07 passed: 'vstr([undef]) = undef'"
20 ECHO: "[ INFO ] run_test(); t08 passed: 'vstr([[1, 2], [2, 3]]) = [1, 2][2, 3]'"
21 ECHO: "[ INFO ] run_test(); t09 passed: 'vstr(["ab", [1, 2], [2, 3], [4, 5]])=ab[1, 2][2, 3][4, 5]'"
22 ECHO: "[ INFO ] run_test(); t10 passed: 'vstr([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[1, 2,
3][4, 5, 6][7, 8, 9]["a", "b", "c"]'"
23 ECHO: "[INFO] run_test(); t11 passed: 'vstr([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
          15])=0123456789101112131415'"
24 ECHO: "[ INFO ] run_test(); t01 passed: 'sum(undef)=undef'"
25 ECHO: "[ INFO ] run_test(); t02 passed: 'sum([])=0'"
26 ECHO: "[ INFO ] run_test(); t03 passed: 'sum([0:0.5:9])=85.5'"
27 ECHO: "[ INFO ] run_test(); t03 passed: 'sum([0: 0.3 | 3])-0.13
27 ECHO: "[ INFO ] run_test(); t04 passed: 'sum([ string) = undef'"
28 ECHO: "[ INFO ] run_test(); t05 passed: 'sum(["orange", "apple", "grape", "banana"]) = undef'"
29 ECHO: "[ INFO ] run_test(); t06 passed: 'sum(["b", "a", "n", "a", "n", "a", "s"]) = undef'"
30 ECHO: "[ INFO ] run_test(); t07 passed: 'sum([undef]) = undef'"
31 ECHO: "[ INFO ] run_test(); t08 passed: 'sum([[1, 2], [2, 3]])=[3, 5]'"
32 ECHO: "[ INFO ] run_test(); t09 passed: 'sum(["ab", [1, 2], [2, 3], [4, 5]])=undef'"
33 ECHO: "[ INFO ] run_test(); t10 passed: 'sum([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[undef,
          undef, undef]'"
34 ECHO: "[INFO] run_test(); t11 passed: 'sum([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=120'"
35 ECHO: "[INFO] run_test(); t01 passed: 'defined_or_D(undef)=default'"
36 ECHO: "[INFO] run_test(); t02 passed: 'defined_or_D([])=[]'"
37 ECHO: "[INFO] run_test(); t03 passed: 'defined_or_D([0:0.5:9])=[0:0.5:9]'"
38 ECHO: "[INFO] run_test(); t04 passed: 'defined_or_D(A string)=A string'"
39 ECHO: "[ INFO ] run_test(); t05 passed: 'defined_or_D(["orange", "apple", "grape", "banana"])=["orange", "apple", "grape", "banana"]'"
40 ECHO: "[ INFO ] run_test(); t06 passed: 'defined_or_D(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n",
"a", "n", "a", "s"]'"

41 ECHO: "[ INFO ] run_test(); t07 passed: 'defined_or_D([undef])=[undef]'"

42 ECHO: "[ INFO ] run_test(); t08 passed: 'defined_or_D([[1, 2], [2, 3]])=[[1, 2], [2, 3]]'"
43 ECHO: "[ INFO ] run_test(); t09 passed: 'defined_or_D(["ab", [1, 2], [2, 3], [4, 5]])=["ab", [1, 2], [2,
3], [4, 5]]'"

44 ECHO: "[ INFO ] run_test(); t10 passed: 'defined_or_D([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
          "c"]])=[[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]]'"
45 ECHO: "[ INFO ] run_test(); t11 passed: 'defined_or_D([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
         15])=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
46 ECHO: "[ INFO ] run_test(); t01 passed: 'edefined_or_DE3(undef)=default'"
47 ECHO: "[ INFO ] run_test(); t02 passed: 'edefined_or_DE3([])=default'"
48 ECHO: "[ INFO ] run_test(); t03 passed: 'edefined_or_DE3([0 : 0.5 : 9]) = default'"
49 ECHO: "[ INFO ] run_test(); t04 passed: 'edefined_or_DE3(A string)=t'"
50 ECHO: "[ INFO ] run_test(); t05 passed: 'dedfined_or_DE3(["orange", "apple", "grape", "banana"])=banana'"
51 ECHO: "[ INFO ] run_test(); t06 passed: 'dedfined_or_DE3(["b", "a", "n", "a", "n", "a", "s"])=a'"
52 ECHO: "[ INFO ] run_test(); t07 passed: 'edefined_or_DE3([undef])=default'"
53 ECHO: "[ INFO ] run_test(); t08 passed: 'edefined_or_DE3([[1, 2], [2, 3]])=default'"
54 ECHO: "[ INFO ] run_test(); t09 passed: 'edefined_or_DE3(["ab", [1, 2], [2, 3], [4, 5])]=[4, 5]'"
55 ECHO: "[ INFO ] run_test(); t10 passed: 'edefined_or_DE3([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
          "c"]])=["a", "b", "c"]'"
56 ECHO: "[ INFO ] run_test(); t11 passed: 'edefined_or_DE3([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
          15])=3'"
57 ECHO: "[ INFO ] run_test(); t01 passed: 'first(undef)=undef
58 ECHO: "[ INFO ] run_test(); t02 passed: 'first([]) = undef'"
59 ECHO: "[ INFO ] run_test(); t03 passed: 'first([0 : 0.5 : 9]) = undef'"
60 ECHO: "[ INFO ] run_test(); t04 passed: 'first(A string)=A'
```

```
61 ECHO: "[ INFO ] run_test(); t05 passed: 'first(["orange", "apple", "grape", "banana"])=orange'"
62 ECHO: "[ INFO ] run_test(); t06 passed: 'first(["b", "a", "n", "a", "n", "a", "s"])=b'"
63 ECHO: "[ INFO ] run_test(); t07 passed: 'first([undef])=undef'"
64 ECHO: "[ INFO ] run_test(); t08 passed: 'first([[1, 2], [2, 3]])=[1, 2]'"
65 ECHO: "[ INFO ] run_test(); t09 passed: 'first(["ab", [1, 2], [2, 3], [4, 5]])=ab'"
66 ECHO: "[ INFO ] run_test(); t10 passed: 'first([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[1, 2,
          31'"
67 ECHO: "[ INFO ] run_test(); t11 passed: 'first([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=0'" 68 ECHO: "[ INFO ] run_test(); t01 passed: 'second(undef)=undef'"
69 ECHO: "[ INFO ] run_test(); t02 passed: 'second([])=undef'"
70 ECHO: "[
                  INFO ] run_test(); t03 passed: 'second([0 : 0.5 : 9]) = undef'"
71 ECHO: "[ INFO ] run_test(); t04 passed: 'second(A string) = '"
72 ECHO: "[ INFO ] run_test(); t05 passed: 'second(["orange", "apple", "grape", "banana"])=apple'"
73 ECHO: "[ INFO ] run_test(); t06 passed: 'second(["b", "a", "n", "a", "n", "a", "s"])=a'"
74 ECHO: "[ INFO ] run_test(); t07 passed: 'second([undef])=undef'"
75 ECHO: "[ INFO ] run_test(); t08 passed: 'second([[1, 2], [2, 3]])=[2, 3]'"
76 ECHO: "[ INFO ] run_test(); t09 passed: 'second([[a,b", [1, 2], [2, 3], [4, 5]])=[1, 2]'"
77 ECHO: "[ INFO ] run_test(); t10 passed: 'second([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[4, 5,
          6]′"
78 ECHO: "[ INFO ] run_test(); t11 passed: 'second([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=1"."
79 ECHO: "[ INFO ] run_test(); t01 passed: 'last(undef)=undef' 80 ECHO: "[ INFO ] run_test(); t02 passed: 'last([])=undef'"
81 ECHO: "[ INFO ] run_test(); t03 passed: 'last([0 : 0.5 : 9]) = undef'"
82 ECHO: "[ INFO ] run_test(); t04 passed: 'last(A string)=g'"
83 ECHO: "[ INFO ] run_test(); t05 passed: 'last(["orange", "apple", "grape", "banana"])=banana'"
84 ECHO: "[ INFO ] run_test(); t06 passed: 'last(["b", "a", "n", "a", "n", "a", "s"])=s'"
85 ECHO: "[ INFO ] run_test(); t07 passed: 'last([undef])=undef'"
86 ECHO: "[ INFO ] run_test(); t08 passed: 'last([[1, 2], [2, 3]])=[2, 3]'"
87 ECHO: "[INFO] run_test(); t09 passed: 'last(["ab", [1, 2], [2, 3], [4, 5]])=[4, 5]'"
88 ECHO: "[INFO] run_test(); t10 passed: 'last([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=["a",
"b", "c"]'"

89 ECHO: "[ INFO ] run_test(); t11 passed: 'last([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=15'"
90 ECHO: "[ INFO ] run_test(); t01 passed: 'head(undef)=undef'"
91 ECHO: "[ INFO ] run_test(); t02 passed: 'head([])=undef'"
92 ECHO: "[ INFO ] run_test(); t03 passed: 'head([0 : 0.5 : 9]) = undef'"
93 ECHO: "[ INFO ] run_test(); t04 passed: 'head(A string)=["A"]'"
94 ECHO: "[INFO] run_test(); t05 passed: head("string," [apple", "grape", "banana"])=["orange"]'"
95 ECHO: "[INFO] run_test(); t06 passed: 'head("b", "a", "n", "a", "n", "a", "s"])=["b"]'"
96 ECHO: "[INFO] run_test(); t07 passed: 'head([undef])=[undef]'"
97 ECHO: "[INFO] run_test(); t08 passed: 'head([[1, 2], [2, 3]])=[[1, 2]]'"
98 ECHO: "[INFO] run_test(); t09 passed: 'head(["ab", [1, 2], [2, 3], [4, 5]])=["ab"]'"
99 ECHO: "[ INFO ] run_test(); t10 passed: 'head([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[1, 2,
          3]]'"
100 ECHO: "[ INFO ] run_test(); t11 passed: 'head([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0]'"
101 ECHO: "[ INFO ] run_test(); t01 passed: 'tail(undef)=undef'"
102 ECHO: "[ INFO ] run_test(); t02 passed: 'tail([])=undef'"
103 ECHO: "[ INFO ] run_test(); t03 passed: 'tail([] : 0.5 : 9])=undef'"
104 ECHO: "[ INFO ] run_test(); t04 passed: 'tail([A string)=[" ", "s", "t", "r", "i", "n", "g"]'"
105 ECHO: "[ INFO ] run_test(); t05 passed: 'tail(["orange", "apple", "grape", "banana"])=["apple", "grape",
           "banana"]'"
106 ECHO: "[INFO] run_test(); t06 passed: 'tail(["b", "a", "n", "a", "n", "a", "s"])=["a", "n", "a", "n", "a", "s"]'"

107 ECHO: "[INFO] run_test(); t07 passed: 'tail([undef])=[]'"

108 ECHO: "[INFO] run_test(); t08 passed: 'tail([[1, 2], [2, 3]])=[[2, 3]]'"

109 ECHO: "[INFO] run_test(); t09 passed: 'tail(["ab", [1, 2], [2, 3], [4, 5]])=[[1, 2], [2, 3], [4, 5]]'"

110 ECHO: "[INFO] run_test(); t10 passed: 'tail([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[4, 5,
6], [7, 8, 9], [a", "b", "c"]]'"

111 ECHO: "[ INFO ] run_test(); t11 passed: 'tail([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
112 ECHO: "[ INFO ] run_test(); t01 passed: 'rselect_02(undef) = undef'"
113 ECHO: "[ INFO ] run_test(); t02 passed: 'rselect_02([])=[]'"
114 ECHO: "[ INFO ] run_test(); t03 passed: 'rselect_02([0 : 0.5 : 9])=undef'"
114 ECHO: "[ INFO ] run_test(); t04 passed: 'rselect_02(A string)=["A", " ", "s"]'"

116 ECHO: "[ INFO ] run_test(); t05 passed: 'rselect_02(["orange", "apple", "grape", "banana"])=["orange",
           "apple", "grape"]'"
117 ECHO: "[ INFO ] run_test(); t06 passed: 'rselect_02(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n"]'"
118 ECHO: "[ INFO ] run_test(); t07 passed: 'rselect_02([undef])=undef'"
119 ECHO: "[ INFO ] run_test(); t08 passed: 'rselect_02([[1, 2], [2, 3]]) = undef'"
120 ECHO: "[ INFO ] run_test(); t09 passed: 'rselect_02(["ab", [1, 2], [2, 3], [4, 5]]) = ["ab", [1, 2], [2,
           3]]'"
121 ECHO: "[ INFO ] run_test(); t10 passed: 'rselect_02([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
"c"]])=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'"
122 ECHO: "[ INFO ] run_test(); t11 passed: 'rselect_02([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
           15])=[0, 1, 2]'"
123 ECHO: "[ INFO ] run_test(); t01 passed: 'eselect_F(undef)=undef'"
124 ECHO: "[ INFO ] run_test(); t02 passed: 'eselect_F([])=[]'"
125 ECHO: "[ INFO ] run_test(); t03 passed: 'eselect_F([0:0.5:9])=undef'
126 ECHO: "[ INFO ] run_test(); t04 passed: 'eselect_F(A string)=["A", " ", "s", "t", "r", "i", "n", "g"]'"
127 ECHO: "[ INFO ] run_test(); t05 passed: 'eselect_F(["orange", "apple", "grape", "banana"])=["o", "a", "g",
           "b"]'"
128 ECHO: "[ INFO ] run_test(); t06 passed: 'eselect_F(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n",
```

```
"a", "n", "a", "s"]'"
129 ECHO: "[ INFO ] run_test(); t07 passed: 'eselect_F([undef])=[undef]'"
130 ECHO: "[ INFO ] run_test(); t08 passed: 'eselect_F([[1, 2], [2, 3]])=[1, 2]'"
131 ECHO: "[ INFO ] run_test(); t09 passed: 'eselect_F(["ab", [1, 2], [2, 3], [4, 5]])=["a", 1, 2, 4]'"
132 ECHO: "[ INFO ] run_test(); t10 passed: 'eselect_F([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[1,
              4, 7, "a"]'"
133 ECHO: "[ INFO ] run_test(); t11 *skip*: 'eselect_F(Vector of integers 0 to 15)'"
134 ECHO: "[ INFO ] run_test(); t01 passed: 'eselect_L(undef)=undef''
135 ECHO: "[ INFO ] run_test(); t02 passed: 'eselect_L([])=[]'"
136 ECHO: "[ INFO ] run_test(); t03 passed: 'eselect_L([0 : 0.5 : 9]) = undef'"
137 ECHO: "[INFO] run_test(); t04 passed: 'eselect_L(A string)=["A", " ", "s", "t", "r", "i", "n", "g"]'"
138 ECHO: "[INFO] run_test(); t05 passed: 'eselect_L(["orange", "apple", "grape", "banana"])=["e", "e", "e",
              "a"]/"
139 ECHO: "[ INFO ] run_test(); t06 passed: 'eselect_L(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n",
"a", "n", "a", "s"]/"

140 ECHO: "[ INFO ] run_test(); t07 passed: 'eselect_L([undef])=[undef]'"
141 ECHO: "[ INFO ] run_test(); t08 passed: 'eselect_L([[1, 2], [2, 3])]=[2, 3]'"

142 ECHO: "[ INFO ] run_test(); t09 passed: 'eselect_L(["ab", [1, 2], [2, 3], [4, 5]])=["b", 2, 3, 5]'"

143 ECHO: "[ INFO ] run_test(); t10 passed: 'eselect_L([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[3,
            6, 9, "c"]'"
144 ECHO: "[ INFO ] run_test(); tl1 *skip*: 'eselect_L(Vector of integers 0 to 15)'"
145 ECHO: "[ INFO ] run_test(); t01 passed: 'eselect_1(undef)=undef'"
146 ECHO: "[ INFO ] run_test(); t02 passed: 'eselect_1([])=[]'"
147 ECHO: "[ INFO ] run_test(); t03 passed: 'eselect_1([0 : 0.5 : 9]) = undef'"
148 ECHO: "[ INFO ] run_test(); t04 *skip*: 'eselect_1(A string)'"
149 ECHO: "[ INFO ] run_test(); t05 passed: 'eselect_1(["orange", "apple", "grape", "banana"])=["r", "p", "r",
              "a"]'"
150 ECHO: "[ INFO ] run_test(); t06 *skip*: 'eselect_1(Test vector 02)'"
150 ECHO: "[INFO] run_test(); t00 *skip*. eselect_1([est vector 02])
151 ECHO: "[INFO] run_test(); t07 passed: 'eselect_1([undef])=[undef]'"
152 ECHO: "[INFO] run_test(); t08 passed: 'eselect_1([[1, 2], [2, 3])]=[2, 3]'"
153 ECHO: "[INFO] run_test(); t09 passed: 'eselect_1(["ab", [1, 2], [2, 3], [4, 5]])=["b", 2, 3, 5]'"
154 ECHO: "[INFO] run_test(); t10 passed: 'eselect_1([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[2,
5, 8, "b"]'"
155 ECHO: "[ INFO ] run_test(); t11 *skip*: 'eselect_1(Vector of integers 0 to 15)'"
156 ECHO: "[ INFO ] run_test(); t01 passed: 'smerge(undef)=undef'
157 ECHO: "[ INFO ] run_test(); t02 passed: 'smerge([])=[]'"
158 ECHO: "[ INFO ] run_test(); t03 passed: 'smerge([0 : 0.5 : 9])=[[0 : 0.5 : 9]]'"
150 ECHO: "[ INFO ] run_test(); t04 passed: 'smerge(A string)=["A string"]'"

160 ECHO: "[ INFO ] run_test(); t05 passed: 'smerge(E"orange", "apple", "grape", "banana"])=["orange", "apple", "apple", "grape", "banana"])=["orange", "apple", "apple", "apple", "banana"])=["orange", "apple", "ap
              "grape", "banana"]'"
161 ECHO: "[ INFO ] run_test(); t06 passed: 'smerge(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n", "a", "s"])
"n", "a", "s"]'"

162 ECHO: "[ INFO ] run_test(); t07 passed: 'smerge([undef])=[undef]'"

163 ECHO: "[ INFO ] run_test(); t08 passed: 'smerge([[1, 2], [2, 3]])=[1, 2, 2, 3]'"
163 ECHO: "[INFO] run_test(); t08 passed: 'smerge([[1, 2], [2, 3]])=[1, 2, 2, 3]'"
164 ECHO: "[INFO] run_test(); t09 passed: 'smerge([[ab", [1, 2], [2, 3], [4, 5]])=["ab", 1, 2, 2, 3, 4, 5]'"
165 ECHO: "[INFO] run_test(); t10 passed: 'smerge([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c"]'"
166 ECHO: "[INFO] run_test(); t11 passed: 'smerge([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0,
             1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
167 ECHO: "[ INFO ] run_test(); t01 passed: 'pmerge(undef)=undef'"
168 ECHO: "[ INFO ] run_test(); t02 passed: 'pmerge([])=[]'"
169 ECHO: "[ INFO ] run_test(); t03 passed: 'pmerge([0 : 0.5 : 9]) = undef'"
170 ECHO: "[ INFO ] run_test(); t04 passed: 'pmerge(A string)=["A string"]'"
171 ECHO: "[ INFO ] run_test(); t05 passed: 'pmerge(["orange", "apple", "grape", "banana"])=[["o", "a", "g", "b"], ["r", "p", "r", "a"], ["a", "p", "a", "n"], ["n", "l", "p", "a"], ["g", "e", "e", "n"]]'"

172 ECHO: "[ INFO ] run_test(); t06 passed: 'pmerge(["b", "a", "n", "a", "n", "a", "s"])=[["b", "a", "n", "a",
"n", "a", "s"]]'"

173 ECHO: "[ INFO ] run_test(); t07 passed: 'pmerge([undef]) = undef'"

174 ECHO: "[ INFO ] run_test(); t08 passed: 'pmerge([[1, 2], [2, 3]]) = [[1, 2], [2, 3]]'"

175 ECHO: "[ INFO ] run_test(); t09 passed: 'pmerge(["ab", [1, 2], [2, 3], [4, 5]]) = [["a", 1, 2, 4], ["b", 2,
              3, 5]]'"
176 ECHO: "[ INFO ] run_test(); t10 passed: 'pmerge([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[1, 4,
             7, "a"], [2, 5, 8, "b"], [3, 6, 9, "c"]]'"
177 ECHO: "[ INFO ] run_test(); t11 passed: 'pmerge([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) = undef'"
178 ECHO: "[ INFO ] run_test(); t01 passed: 'reverse(undef) = undef'"
179 ECHO: "[ INFO ] run_test(); t02 passed: 'reverse([])=[]'"
180 ECHO: "[ INFO ] run_test(); t03 passed: 'reverse([0 : 0.5 : 9]) = undef'"
181 ECHO: "[ INFO ] run_test(); t04 passed: 'reverse(A string)=["g", "n", "i", "r", "t", "s", " ", "A"]'"
182 ECHO: "[ INFO ] run_test(); t05 passed: 'reverse(["orange", "apple", "grape", "banana"])=["banana",
              "grape", "apple", "orange"]'"
183 ECHO: "[ INFO ] run_test(); t06 passed: 'reverse(["b", "a", "n", "a", "n", "a", "s"])=["s", "a", "n", "a",
184 ECHO: "[ INFO ] run_test(); t07 passed: 'reverse([undef])=[undef]'"

185 ECHO: "[ INFO ] run_test(); t08 passed: 'reverse([[1, 2], [2, 3]])=[[2, 3], [1, 2]]'"
186 ECHO: "[ INFO ] run_test(); t09 passed: 'reverse(["ab", [1, 2], [2, 3], [4, 5]])=[[4, 5], [2, 3], [1, 2],
               "ab"]''
187 ECHO: "[ INFO ] run_test(); t10 passed: 'reverse([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[["a",
              "b", "c"], [7, 8, 9], [4, 5, 6], [1, 2, 3]]'"
188 ECHO: "[ INFO ] run_test(); tll passed: 'reverse([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]'"
```

```
189 ECHO: "[ INFO ] run_test(); t01 passed: 'qsort(undef)=undef'"
190 ECHO: "[ INFO ] run_test(); t02 passed: 'qsort([])=[]'"
191 ECHO: "[ INFO ] run_test(); t03 passed: 'qsort([0 : 0.5 : 9])=undef'"
192 ECHO: "[ INFO ] run_test(); t04 passed: 'qsort(A string)=undef'"
193 ECHO: "[ INFO ] run_test(); t05 passed: 'qsort(["orange", "apple", "grape", "banana"])=["apple", "banana",
          "grape", "orange"]'"
194 ECHO: "[ INFO ] run_test(); t06 passed: 'qsort(["b", "a", "n", "a", "n", "a", "s"])=["a", "a", "a", "b",
                 "n", "s"]'"
195 ECHO: "[ INFO ] run_test(); t07 passed: 'qsort([undef])=undef'"
196 ECHO: "[ INFO ] run_test(); t08 passed: 'qsort([[1, 2], [2, 3]])=undef'"
197 ECHO: "[ INFO ] run_test(); t09 passed: 'qsort(["ab", [1, 2], [2, 3], [4, 5]])=undef'"
198 ECHO: "[ INFO ] run_test(); t10 passed: 'qsort([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=undef'"
199 ECHO: "[ INFO ] run_test(); t11 passed: 'qsort([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
200 ECHO: "[ INFO ] run_test(); t01 passed: 'qsort2_HR(undef)=undef'"
201 ECHO: "[ INFO ] run_test(); t02 passed: 'qsort2_HR([])=[]'"
202 ECHO: "[ INFO ] run_test(); t03 passed: 'qsort2_HR([0 : 0.5 : 9]) = undef'"
203 ECHO: "[ INFO ] run_test(); t04 passed: 'qsort2_HR(A string) = undef'"
204 ECHO: "[ INFO ] run_test(); t05 passed: 'qsort2_HR(["orange", "apple", "grape", "banana"])=["orange",
          "grape", "banana", "apple"]'"
205 ECHO: "[ INFO ] run_test(); t06 passed: 'qsort2_HR(["b", "a", "n", "a", "n", "a", "s"])=["s", "n", "n",
                 "a", "a", "a"]'"
206 ECHO: "[ INFO ] run_test(); t07 passed: 'qsort2_HR([undef])=[undef]'"
207 ECHO: "[ INFO ] run_test(); t08 passed: 'qsort2_HR([[1, 2], [2, 3]])=[[3, 2], [2, 1]]'"
208 ECHO: "[ INFO ] run_test(); t09 passed: 'qsort2_HR(["ab", [1, 2], [2, 3], [4, 5]])=[[5, 4], [3, 2], [2, 1],
          "ab"]'"
209 ECHO: "[ INFO ] run_test(); t10 passed: 'qsort2_HR([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
          "c"]])=[["c", "b", "a"], [9, 8, 7], [6, 5, 4], [3, 2, 1]]'"
210 ECHO: "[ INFO ] run_test(); t11 passed: 'qsort2_HR([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]'"
211 ECHO: "[ INFO ] run_test(); t01 passed: 'strip(undef)=undef'"
212 ECHO: "[ INFO ] run_test(); t02 passed: 'strip([])=[]
215 ECHO: "[ INFO ] run_test(); t03 passed: 'strip([0 : 0.5 : 9])=undef'"
214 ECHO: "[ INFO ] run_test(); t04 passed: 'strip(A string)=["A", " ", "s", "t", "r", "i", "n", "g"]'"
215 ECHO: "[ INFO ] run_test(); t05 passed: 'strip(["orange", "apple", "grape", "banana"])=["orange", "apple", "grape", "banana"]'"
216 ECHO: "[ INFO ] run_test(); t06 passed: 'strip(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n", "a", "a", "a", "s"])
217 ECHO: "[ INFO ] run_test(); t07 passed: 'strip([undef])=[undef]'"
218 ECHO: "[ INFO ] run_test(); t08 passed: 'strip([[1, 2], [2, 3]])=[[1, 2], [2, 3]]'"
Line Delic. [ INFO ] run_test(); t08 passed: 'strip([[1, 2], [2, 3]])=[[1, 2], [2, 3]]'"
219 ECHO: "[ INFO ] run_test(); t09 passed: 'strip(["ab", [1, 2], [2, 3], [4, 5]])=["ab", [1, 2], [2, 3], [4, 5]]'"
5]]'"
220 ECHO: "[INFO] run_test(); t10 passed: 'strip([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]]'"
221 ECHO: "[INFO] run_test(); t11 passed: 'strip([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
222 ECHO: "[ INFO ] run_test(); t01 passed: 'append_T0(undef)=undef'"
223 ECHO: "[ INFO ] run_test(); t02 passed: 'append_T0([])=[[0]]'"
224 ECHO: "[ INFO ] run_test(); t03 passed: 'append_T0([0 : 0.5 : 9]) = undef'"
225 ECHO: "[ INFO ] run_test(); t04 passed: 'append_T0(A string)=[["A", 0], [" ", 0], ["s", 0], ["t", 0], ["r",
0], ["i", 0], ["n", 0], ["g", 0]]'"

226 ECHO: "[ INFO ] run_test(); t05 passed: 'append_T0(["orange", "apple", "grape", "banana"])=[["orange", 0],
["apple", 0], ["grape", 0], ["banana", 0]]'"
227 ECHO: "[ INFO ] run_test(); t06 passed: 'append_T0(["b", "a", "n", "a", "n", "a", "s"])=[["b", 0], ["a",
0], ["n", 0], ["a", 0], ["a", 0], ["s", 0]]'"

228 ECHO: "[ INFO ] run_test(); t07 passed: 'append_T0([undef])=[[undef, 0]]'"

229 ECHO: "[ INFO ] run_test(); t08 passed: 'append_T0([[1, 2], [2, 3]])=[[1, 2, 0], [2, 3, 0]]'"
230 ECHO: "[ INFO ] run_test(); t09 passed: 'append_T0(["ab", [1, 2], [2, 3], [4, 5]])=[["ab", 0], [1, 2, 0],
          [2, 3, 0], [4, 5, 0]]"
231 ECHO: "[ INFO ] run_test(); t10 passed: 'append_T0([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[1,
2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0], ["a", "b", "c", 0]]'"
232 ECHO: "[ INFO ] run_test(); t11 passed: 'append_T0([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
          15])=[[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0], [6, 0], [7, 0], [8, 0], [9, 0], [10, 0], [11, 0], [12, 0],
          [13, 0], [14, 0], [15, 0]]"
233 ECHO: "[ INFO ] run_test(); t01 passed: 'insert_T0(undef)=undef'
234 ECHO: "[ INFO ] run_test(); t02 passed: 'insert_T0([]) = undef'"
235 ECHO: "[ INFO ] run_test(); t03 passed: 'insert_T0([0 : 0.5 : 9]) = undef'"
236 ECHO: "[ INFO ] run_test(); t04 passed: 'insert_T0(A string)=undef'"
237 ECHO: "[INFO] run_test(); t05 passed: 'insert_TO(["orange", "apple", "grape", "banana"])=["orange", 0, "apple", "grape", "banana"])=
238 ECHO: "[ INFO ] run_test(); t06 passed: 'insert_T0(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n",
          "a",
                 "n", "a", 0, "s"]'
239 ECHO: "[ INFO ] run_test(); t07 passed: 'insert_T0([undef])=undef'"
240 ECHO: "[ INFO ] run_test(); t08 passed: 'insert_T0([[1, 2], [2, 3]])=[[1, 2], 0, [2, 3]]'"
241 ECHO: "[ INFO ] run_test(); t09 passed: 'insert_T0(["ab", [1, 2], [2, 3], [4, 5]])=["ab", [1, 2], 0, [2,
3], [4, 5]]'"
242 ECHO: "[ INFO ] run_test(); t10 passed: 'insert_TO([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b",
          "c"]]) = undef'"
243 ECHO: "[INFO] run_test(); t11 passed: 'insert_T0([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0, 1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
244 ECHO: "[INFO] run_test(); t01 passed: 'delete_T0(undef)=undef'"
```

```
245 ECHO: "[ INFO ] run_test(); t02 passed: 'delete_T0([])=[]'"
246 ECHO: "[ INFO ] run_test(); t03 passed: 'delete_T0([0 : 0.5 : 9])=undef'"
247 ECHO: "[ INFO ] run_test(); t04 passed: 'delete_T0(A string)=["A", " ", "s", "t", "r", "i", "n", "g"]'"
248 ECHO: "[ INFO ] run_test(); t05 passed: 'delete_T0(["orange", "apple", "grape", "banana"])=["orange", "grape", "banana"]'"
249 ECHO: "[ INFO ] run_test(); t06 passed: 'delete_T0(["b", "a", "n", "a", "n", "a", "s"])=["b", "a", "n", "a", "n", "a", "n", "a"]'"
250 ECHO: "[ INFO ] run_test(); t07 passed: 'delete_T0([undef])=[undef]'"
251 ECHO: "[ INFO ] run_test(); t08 passed: 'delete_T0([[1, 2], [2, 3]])=[[1, 2]]'"
252 ECHO: "[ INFO ] run_test(); t09 passed: 'delete_T0(["ab", [1, 2], [2, 3], [4, 5]])=["ab", [1, 2], [4, 5]]'"
253 ECHO: "[ INFO ] run_test(); t10 passed: 'delete_T0([[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]])=[[1, 2, 3], [4, 5, 6], [7, 8, 9], ["a", "b", "c"]]'"
254 ECHO: "[ INFO ] run_test(); t11 passed: 'delete_T0([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])=[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'"
```

2.2 Computations Validation

- · Point, Vector and Plane
- · Bitwise Operations

2.2.1 Point, Vector and Plane

- Validation Script
- · Validation Results

2.2.1.1 Validation Script

```
include <math.scad>:
use <table.scad>;
use <console.scad>;
use <validation.scad>;
show_passing = true;
                             // show passing tests
show_skipped = true;
                             // show skipped tests
echo( str("OpenSCAD Version ", version()) );
// test-values columns
test_c =
  ["id", "identifier"],
["td", "description"],
["tv", "test value"]
// test-values rows
test_r =
  ["fac", "Function argument count",
["crp", "Result precision",
["t01", "All undefined",
                                                undef],
                                                undef],
                                                 [undef, undef, undef, undef, undef]],
  ["t02", "All empty vector",
                                                 [empty_v,empty_v,
empty_v,empty_v,empty_v,empty_v]],
  ["t03", "All scalars",
["t04", "All 1D vectors",
["t05", "All 2D vectors",
                                                 [60, 50, 40, 30, 20, 10]],
                                                 [[99], [58], [12], [42], [15], [1]]],
                                                   [99,2], [58,16], [12,43], [42,13], [15,59], [1,85]
                                                 11,
  ["t06", "All 3D vectors",
                                                   [199,20,55], [158,116,75], [12,43,90],
                                                   [42,13,34], [15,59,45], [62,33,69]
                                                 11.
  ["t07", "All 4D vectors",
                                                   [169,27,35,10], [178,016,25,20], [12,43,90,30],
                                                   [42,13,34,60], [15,059,45,50], [62,33,69,40]
                                                 11,
  ["t08", "Orthogonal vectors",
                                                   +x axis3d uv. +
v axis3d uv, +z axis3d uv,
```

```
-x_axis3d_uv, -
y_axis3d_uv, -z_axis3d_uv,
                                              ]],
  ["t09", "Coplanar vectors",
                                                +x_axis3d_uv, +
y_axis3d_uv, [2,2,0],
                                                origin3d, origin3d,
origin3d,
test_ids = table_get_row_ids( test_r );
// expected columns: ("id" + one column for each test)
good_c = pmerge([concat("id", test_ids), concat("identifier", test_ids)]);
// expected rows: ("golden" test results), use 'skip' to skip test
skip = -1; // skip test
good_r =
[ // function ["distance_pp",
    2,
                                                                // fac
                                                                // crp
    4,
                                                                // t01
// t02
    undef,
    undef,
                                                                // t03
    undef,
    41,
43.3244,
                                                                // t04
                                                                // t05
                                                                // t06
    106.2873,
    undef,
                                                                // t07
                                                                // t08
    1.4142,
                                                                // t09
    1.4142
  ],
["dot_vv",
                                                                // fac
    4,
                                                               // crp
// t01
// t02
// t03
    4,
    undef,
    undef,
    400.
                                                                // t04
// t05
    1392.
    1269,
                                                                // t06
// t07
    17888.
    22599,
                                                                // t08
    1,
    -2
                                                                // t09
  ],
["cross_vv",
    4,
                                                                // fac
                                                                // crp
// t01
// t02
    4,
    skip,
    skip,
    skip,
                                                                // t03
                                                                // t04
    skip,
    917,
                                                                // t05
                                                                // t06
    [2662,-11727,21929],
    skip,
[1,-1,1],
                                                                // t07
                                                                // t08
    [0,0,-1]
                                                                // t09
  ],
["striple_vvv",
    6,
                                                                // fac
    4,
                                                                // crp
    skip,
                                                                // t01
    skip,
                                                                // t02
    skip,
                                                                // t03
    skip,
                                                                // t04
    [-75981,14663],
                                                                // t05
    199188,
                                                                // t06
                                                                // t07
    skip,
    8,
                                                                // t08
    0
                                                                // t09
  ["angle_vv",
                                                                // fac
    4,
                                                                // crp
// t01
    4.
    undef,
                                                                // t02
    undef,
                                                                // t03
    undef,
                                                                // t04
// t05
    undef,
    35.8525,
```

```
54.4261,
                                                            // t06
    undef,
                                                            // t07
    60,
                                                            // t08
    153.4350
                                                            // t09
  ["angle_vvn",
                                                            // fac
    6,
    4,
                                                            // crp
                                                            // t01
    skip,
                                                            // t02
    skip,
                                                            // t03
    skip,
                                                            // t04
    skip,
    skip,
                                                            // t05
    83.2771,
                                                            // t06 (verify)
    skip,
                                                            // t07
    90,
                                                            // t08
    0
                                                            // t09
  ["unit_v",
    2,
                                                            // fac
                                                            // crp
    4,
    undef,
                                                            // t01
                                                            // t02
    undef,
    undef,
                                                            // t03
                                                            // t04
    [1],
    [0.9464,-0.3231],
                                                            // t05
    [0.3857,-0.9032,-0.1882],
                                                            // t06
                                                            // t07
    undef,
    [0.7071,-0.7071,0],
                                                            // t08
    [0.7071, -0.7071, 0]
                                                            // t09
  ["are_coplanar_vvv",
    6.
                                                            // fac
                                                            // crp
    4,
                                                            // t01
    skip,
                                                            // t02
    skip,
                                                            // t03
// t04
    skip,
    skip,
                                                            // t05
    skip,
                                                            // t06
    false.
                                                            // t07
    skip,
                                                            // t08
    false
                                                            // t09
    true
];
// sanity-test tables
table_check( test_r, test_c, false );
table_check( good_r, good_c, false );
// validate helper function and module
function get_value( vid ) = table_get(test_r, test_c, vid, "tv");
function gv( vid, e ) = get_value( vid )[e];
module run( fname, vid )
  value_text = table_get(test_r, test_c, vid, "td");
 if ( table_get(good_r, good_c, fname, vid) != skip )
   children();
  else if ( show_skipped )
   log_info( str("*skip*: ", vid, " '", fname, "(", value_text, ")'") );
module test (fname, fresult, vid)
  value_text = table_get(test_r, test_c, vid, "td");
 fname_argc = table_get(good_r, good_c, fname, "fac");
comp_prcsn = table_get(good_r, good_c, fname, "crp");
 pass_value = table_get(good_r, good_c, fname, vid);
  test_pass = validate(cv=fresult, t="almost", ev=pass_value, p=comp_prcsn, pf=true);
  farg_text = vstr(append(", ", rselect(get_value(vid), [0:fname_argc-1]), r=false,
j=false, l=false));
 test_text = validate(str(fname, "(", farg_text, ")=~", pass_value), fresult, "almost",
pass_value, comp_prcsn);
  if ( pass_value != skip )
    if ( !test_pass )
      log_warn( str(vid, "(", value_text, ") ", test_text) );
    else if ( show_passing )
  log_info( str(vid, " ", test_text) );
```

```
else if ( show_skipped )
    log_info( str(vid, " *skip*: '", fname, "(", value_text, ")'") );
// Indirect function calls would be very useful here!!!
run_ids = delete( test_ids, mv=["fac", "crp"] );
for (vid=run_ids) run("distance_pp", vid) test( "distance_pp", distance_pp(gv(vid,0),gv(vid
,1),gv(vid,2),gv(vid,3),gv(vid,4),gv(vid,5)), vid);
for (vid=run_ids) run("dot_vv",vid) test( "dot_vv", dot_vv(gv(vid,0),gv(vid,1),gv(vid,2),gv(vid
,3),gv(vid,4),gv(vid,5)), vid);
for (vid=run_ids) run("cross_vv",vid) test( "cross_vv", cross_vv(gv(vid,0),gv(vid,1),gv(vid,2
),gv(vid,3),gv(vid,4),gv(vid,5)), vid );
for (vid=run_ids) run("striple_vvv", vid) test( "striple_vvv", striple_vvv(gv(vid,0),gv(vid
,1),gv(vid,2),gv(vid,3),gv(vid,4),gv(vid,5)), vid);
for (vid=run_ids) run("angle_vv",vid) test( "angle_vv", angle_vv(gv(vid,0),gv(vid,1),gv(vid,2)
),gv(vid,3),gv(vid,4),gv(vid,5)), vid );
for (vid=run_ids) run("angle_vvn",vid) test( "angle_vvn", angle_vvn(gv(vid,0),gv(vid,1),gv(
vid, 2), gv (vid, 3), gv (vid, 4), gv (vid, 5)), vid );
for (vid=run_ids) run("unit_v", vid) test( "unit_v", unit_v(gv(vid,0),gv(vid,1),gv(vid,2),gv(vid
,3),gv(vid,4),gv(vid,5)), vid);
for (vid=run_ids) run("are_coplanar_vvv", vid) test( "are_coplanar_vvv",
are_coplanar_vvv(gv(vid,0),gv(vid,1),gv(vid,2),gv(vid,3),gv(vid,4),gv(vid,5)), vid );
// end-of-tests
```

2.2.1.2 Validation Results

```
1 ECHO: "OpenSCAD Version [2016, 12, 21]"
2 ECHO: "[ INFO ] run(): test(); t01 passed: 'distance_pp(undef, undef)=~undef'"
3 ECHO: "[ INFO ] run(): test(); t02 passed: 'distance_pp([], [])=~undef'
4 ECHO: "[ INFO ] run(): test(); t03 passed: 'distance_pp(60, 50)=~undef'"
5 ECHO: "[ INFO ] run(): test(); t04 passed: 'distance_pp([99], [58])=~41'"
6 ECHO: "[ INFO ] run(): test(); t05 passed: 'distance_pp([99, 2], [58, 16])=~43.3244'"
7 ECHO: "[ INFO ] run(): test(); t06 passed: 'distance_pp([19, 20, 55], [158, 116, 75])=~106.287'"
8 ECHO: "[ INFO ] run(): test(); t07 passed: 'distance_pp([169, 27, 35, 10], [178, 16, 25, 20])=~undef'"
9 ECHO: "[ INFO ] run(): test(); t08 passed: 'distance_pp([1, 0, 0], [0, 1, 0])=~1.4142'"
10 ECHO: "[ INFO ] run(): test(); t09 passed: 'distance_pp([1, 0, 0], [0, 1, 0])=~1.4142'"
11 ECHO: "[ INFO ] run(): test(); t01 passed: 'dot_vv(undef, undef, undef, undef) =~undef'"
12 ECHO: "[ INFO ] run(): test(); t02 passed: 'dot_vv([], [], [], [])=~undef''
13 ECHO: "[ INFO ] run(): test(); t03 passed: 'dot_vv(60, 50, 40, 30)=~400'"
14 ECHO: "[ INFO ] run(): test(); t04 passed: 'dot_vv([99], [58], [12], [42])=~1392'"
15 ECHO: "[ INFO ] run(): test(); t05 passed: 'dot_vv([99, 2], [58, 16], [12, 43], [42, 13])=~1269'"
16 ECHO: "[INFO] run(): test(); t06 passed: dot_vv([199, 20, 55], [158, 116, 75], [12, 43, 90], [42, 13, 34])=~17888'"
17 ECHO: "[ INFO ] run(): test(); t07 passed: 'dot_vv([169, 27, 35, 10], [178, 16, 25, 20], [12, 43, 90, 30], [42, 13, 34, 60])=~22599'"
18 ECHO: "[ INFO ] run(): test(); t08 passed: 'dot_vv([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0])=~1'"
19 ECHO: "[ INFO ] run(): test(); t09 passed: 'dot_vv([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0])=~-2'"
20 ECHO: "[ INFO ] run(); *skip*: t01 'cross_vv(All undefined)'"
21 ECHO: "[ INFO ] run(); *skip*: t02 'cross_vv(All empty vector)'"
22 ECHO: "[ INFO ] run(); *skip*: t03 'cross_vv(All scalars)'"
23 ECHO: "[ INFO ] run(); *skip*: t04 'cross_vv(All 1D vectors)'"
24 ECHO: "[ INFO ] run(): test(); t05 passed: 'cross_vv([99, 2], [58, 16], [12, 43], [42, 13])=~917'"
25 ECHO: "[ INFO ] run(): test(); t06 passed: 'cross_vv([199, 20, 55], [158, 116, 75], [12, 43, 90], [42, 13,
        34])=~[2662, -11727, 21929]'"
26 ECHO: "[ INFO ] run(); *skip*: t07 'cross_vv(All 4D vectors)'"
27 ECHO: "[ INFO ] run(): test(); t08 passed: 'cross_vv([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0])=~[1, -1,
        1]'"
28 ECHO: "[ INFO ] run(): test(); t09 passed: 'cross_vv([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0])=~[0, 0,
        -1]'"
29 ECHO: "[ INFO ] run(); *skip*: t01 'striple_vvv(All undefined)'"
30 ECHO: "[ INFO ] run(); *skip*: t02 'striple_vvv(All empty vector)'"
31 ECHO: "[ INFO ] run(); *skip*: t03 'striple_vvv(All scalars)'"
32 ECHO: "[ INFO ] run(); *skip*: t04 'striple_vvv(All 1D vectors)'"
33 ECHO: "[ INFO ] run(): test(); t05 passed: 'striple_vvv([99, 2], [58, 16], [12, 43], [42, 13], [15, 59],
[1, 85])=~[-75981, 14663]'"

34 ECHO: "[INFO] run(): test(); t06 passed: 'striple_vvv([199, 20, 55], [158, 116, 75], [12, 43, 90], [42,
13, 34], [15, 59, 45], [62, 33, 69])=~199188'"

35 ECHO: "[ INFO ] run(); *skip*: t07 'striple_vvv(All 4D vectors)'"
36 ECHO: "[ INFO ] run(): test(); t08 passed: 'striple_vvv([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0], [0,
        -1, 0], [0, 0, -1])=\sim 8'"
37 ECHO: "[INFO] run(): test(); t09 passed: 'striple_vvv([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0])=~0'"
38 ECHO: "[ INFO ] run(): test(); t01 passed: 'angle_vv(undef, undef, undef, undef) =~undef'
39 ECHO: "[ INFO ] run(): test(); t02 passed: 'angle_vv([], [], [], [])=~undef'"
40 ECHO: "[ INFO ] run(): test(); t03 passed: 'angle_vv(60, 50, 40, 30)=~undef'"
41 ECHO: "[ INFO ] run(): test(); t04 passed: 'angle_vv([99], [58], [12], [42])=~undef'"
42 ECHO: "[ INFO ] run(): test(); t05 passed: 'angle_vv([99, 2], [58, 16], [12, 43], [42, 13])=~35.8525'"
```

```
43 ECHO: "[ INFO ] run(): test(); t06 passed: 'angle_vv([199, 20, 55], [158, 116, 75], [12, 43, 90], [42, 13,
          34])=~54.4261'"
44 ECHO: "[ INFO ] run(): test(); t07 passed: 'angle_vv([169, 27, 35, 10], [178, 16, 25, 20], [12, 43, 90,
         30], [42, 13, 34, 60])=~undef'"
45 ECHO: "[ INFO ] run(): test(); t08 passed: 'angle_vv([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0])=~60'"
46 ECHO: "[ INFO ] run(): test(); t09 passed: 'angle_vv([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0])=~153.435'"
47 ECHO: "[ INFO ] run(); *skip*: t01 'angle_vvn(All undefined)'"
48 ECHO: "[ INFO ] run(); *skip*: t02 'angle_vvn(All empty vector)'"
49 ECHO: "[ INFO ] run(); *skip*: t03 'angle_vvn(All scalars)'"
50 ECHO: "[ INFO ] run(); *skip*: t04 'angle_vvn(All 1D vectors)'"
51 ECHO: "[ INFO ] run(); *skip*: t05 'angle_vvn(All 2D vectors)'"
52 ECHO: "[ INFO ] run(): test(); t06 passed: 'angle_vvn([199, 20, 55], [158, 116, 75], [12, 43, 90], [42, 13,
34], [15, 59, 45], [62, 33, 69])=~83.2771'"
53 ECHO: "[ INFO ] run(); *skip*: t07 'angle_vvn(All 4D vectors)'"
54 ECHO: "[ INFO ] run(): test(); t08 passed: 'angle_vvn([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0], [0, -1,
         0], [0, 0, -1])=~90'"
55 ECHO: "[ INFO ] run(): test(); t09 passed: 'angle_vvn([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0], [0, 0,
0], [0, 0, 0])=~0'"

56 ECHO: "[INFO] run(): test(); t01 passed: 'unit_v(undef, undef)=~undef'"
57 ECHO: "[ INFO ] run(): test(); t02 passed: 'unit_v([], [])=~undef''
58 ECHO: "[ INFO ] run(): test(); t03 passed: 'unit_v(60, 50)=~undef'"
59 ECHO: "[INFO] run(): test(); t04 passed: 'unit_v([99], [58])=~[1]'"
60 ECHO: "[INFO] run(): test(); t05 passed: 'unit_v([99, 2], [58, 16])=~[0.9464, -0.3231]'"
61 ECHO: "[INFO] run(): test(); t06 passed: 'unit_v([199, 20, 55], [158, 116, 75])=~[0.3857, -0.9032,
         -0.1882]′"
62 ECHO: "[ INFO ] run(): test(); t07 passed: 'unit_v([169, 27, 35, 10], [178, 16, 25, 20])=~undef''
63 ECHO: "[ INFO ] run(): test(); t08 passed: 'unit_v([1, 0, 0], [0, 1, 0])=~[0.7071, -0.7071, 0]'''
64 ECHO: "[ INFO ] run(): test(); t09 passed: 'unit_v([1, 0, 0], [0, 1, 0])=~[0.7071, -0.7071, 0]'''
65 ECHO: "[ INFO ] run(); *skip*: t01 'are_coplanar_vvv(All undefined)'"
66 ECHO: "[ INFO ] run(); *skip*: t02 'are_coplanar_vvv(All empty vector)'
67 ECHO: "[ INFO ] run(); *skip*: t03 'are_coplanar_vvv(All scalars)'
68 ECHO: "[ INFO ] run(); *skip*: t04 'are_coplanar_vvv(All 1D vectors)'
69 ECHO: "[ INFO ] run(); *skip*: t05 'are_coplanar_vvv(All 2D vectors)'"
70 ECHO: "[ INFO ] run(): test(); t06 passed: 'are_coplanar_vvv([199, 20, 55], [158, 116, 75], [12, 43, 90],
[42, 13, 34], [15, 59, 45], [62, 33, 69])=~false'"
71 ECHO: "[ INFO ] run(); *skip*: t07 'are_coplanar_vvv(All 4D vectors)'"
72 ECHO: "[INFO] run(): test(); t08 passed: 'are_coplanar_vvv([1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0], [0, -1, 0], [0, 0, -1])=~false'"
73 ECHO: "[ INFO ] run(): test(); t09 passed: 'are_coplanar_vvv([1, 0, 0], [0, 1, 0], [2, 2, 0], [0, 0, 0],
          [0, 0, 0], [0, 0, 0])=~true'"
```

2.2.2 Bitwise Operations

- Validation Script
- · Validation Results

2.2.2.1 Validation Script

```
include <math_bitwise.scad>;
use <table.scad>;
use <console.scad>;
use <validation.scad>;
show_passing = true;
                        // show passing tests
show_skipped = true;
                         // show skipped tests
echo( str("OpenSCAD Version ", version()) );
// test-values columns
test_c =
  ["id", "identifier"],
  ["td", "description"],
  ["tv", "test value"]
// test-values rows
test r =
  ["fac", "Function argument count",
["t01", "All undefined",
                                           undef],
                                            [undef,undef]],
  ["t02", "All empty vector",
                                            [empty_v,empty_v]],
  ["t03", "test value 1",
                                           [254, 0]],
[254, 1]],
  ["t04", "test value 2",
  ["t05", "test value 3",
                                           [255, 0]],
```

```
["t06", "test value 4",
                                             [0, 255]],
  ["t07", "test value 5",
["t08", "test value 6",
["t09", "test value 7",
                                             [126, 63]],
                                              [25, 10]],
                                             [1024, 512]],
  ["t10", "test value 8",
["t11", "test value 9",
["t12", "test value 10",
                                             [4253, 315]],
[835, 769]],
                                              [856, 625]]
test_ids = table_get_row_ids( test_r );
// expected columns: ("id" + one column for each test)
good_c = pmerge([concat("id", test_ids), concat("identifier", test_ids)]);
// expected rows: ("golden" test results), use 'skip' to skip test
skip = -1; // skip test
good_r =
[ // function
  ["bitwise_is_equal_0", 2,
                                         // t01
    false,
    false,
                                         // t02
                                         // t03
    true,
    false,
                                         // t04
    false,
                                         // t05
                                         // t06
    true,
                                         // t07
    true.
                                         // t08
    true,
                                         // t09
    true,
                                         // t10
    true,
                                         // t11
    true,
                                         // t12
    true
  ["bitwise_is_equal_1", 2,
                                         // t01
    false,
                                         // t02
    false,
                                         // t03
    false,
                                         // t04
    true,
                                         // t05
// t06
    true,
    false,
                                         // t07
// t08
    false,
    false,
                                         // t09
// t10
    false,
    false,
                                         // t11
// t12
     false,
    false
  ["bitwise_i2v", 1,
    undef,
                                         // t01
                                         // t02
// t03
// t04
    undef,
     [1,1,1,1,1,1,1,0],
     [1,1,1,1,1,1,1,0],
     [1,1,1,1,1,1,1,1],
                                         // t05
                                         // t06
// t07
// t08
     [1,1,1,1,1,1,0],
     [1,1,0,0,1],
     [1,0,0,0,0,0,0,0,0,0,0],
                                         // t09
     [1,0,0,0,0,1,0,0,1,1,1,0,1],
                                         // t10
                                         // t11
     [1,1,0,1,0,0,0,0,1,1],
     [1,1,0,1,0,1,1,0,0,0]
                                         // t12
  ],
["bitwise_i2v_v2i", 1,
    undef,
                                          // t01
    undef,
                                         // t02
    254,
                                          // t03
                                          // t04
    255,
                                         // t05
                                         // t06
    Ο,
    126,
                                         // t07
                                         // t08
     25,
    1024,
                                         // t09
                                         // t10
// t11
    4253,
    835,
                                         // t12
    856
  ["bitwise_i2s", 1,
                                         // t01
    undef,
                                         // t02
// t03
    undef,
     "11111110",
    "11111110",
"111111111",
                                         // t04
                                         // t05
```

```
"0",
"1111110",
                                             // t06
                                            // t07
// t08
// t09
  "11001",
  "10000000000",
                                            // t10
// t11
  "1000010011101",
  "1101000011",
                                             // t12
  "1101011000"
["bitwise_i2s_s2i", 1,
  undef,
                                             // t01
                                             // t02
// t03
  undef,
  254,
                                             // t04
// t05
  254,
  255,
                                            // t06
// t07
  126,
                                            // t08
// t09
  25,
  1024,
                                            // t10
// t11
  4253,
  835,
                                             // t12
  856
["bitwise_and", 2,
 undef,
                                             // t01
                                             // t02
// t03
  undef,
  0,
                                             // t04
// t05
  0.
  0,
                                             // t06
// t07
  0,
  62,
                                             // t08
  8,
                                             // t09
  0.
                                             // t10
// t11
  25.
  769,
                                             // t12
  592
["bitwise_or", 2,
                                             // t01
// t02
// t03
  undef,
  undef,
254,
                                            // t03
// t04
// t05
// t06
// t07
  255,
  255,
  255,
  127,
                                            // t07
// t08
// t09
// t10
// t11
  27,
  1536,
  4543,
  835,
                                             // t12
  889
],
["bitwise_xor", 2,
                                             // t01
  undef,
                                            // t01
// t02
// t03
// t04
// t05
  undef,
  254,
  255,
  255,
                                            // t06
// t07
// t08
  255,
  65,
  19,
  1536,
                                             // t09
                                             // t10
  4518,
                                             // t11
// t12
  66,
  297
["bitwise_not", 1,
  undef,
                                             // t01
                                             // t02
  undef,
                                             // t03
// t04
  1,
  1,
                                             // t05
// t06
  Ο,
  1,
                                             // t07
// t08
  1,
  6.
                                             // t09
// t10
  1023,
  3938,
  188,
                                             // t11
                                             // t12
  167
["bitwise_lsh", 1,
  undef,
                                             // t01
                                             // t02
  undef,
```

```
508,
                                      // t03
    508,
                                      // t04
    510,
                                      // t05
    Ο,
                                      // t06
    252,
                                      // t07
    50,
                                      // t08
    2048,
                                      // t09
    8506,
                                      // t10
    1670,
                                      // t11
                                      // t12
    1712
  ["bitwise_rsh", 1,
    undef,
                                      // t01
                                      // t02
    undef,
    127,
                                      // t03
    127.
                                      // t04
    127,
                                      // t05
                                      // t06
    0.
                                      // t07
    63,
                                      // t08
    12,
    512,
                                      // t09
    2126,
                                      // t10
    417,
                                      // t11
                                      // t12
    428
 ]
1;
// sanity-test tables
table_check( test_r, test_c, false );
table_check( good_r, good_c, false );
// validate helper function and module
function get_value( vid ) = table_get(test_r, test_c, vid, "tv");
function gv( vid, e ) = get_value( vid )[e];
module run( fname, vid )
  value_text = table_get(test_r, test_c, vid, "td");
 if ( table_get(good_r, good_c, fname, vid) != skip )
   children();
  else if ( show_skipped )
    log_info( str("*skip*: ", vid, " '", fname, "(", value_text, ")'") );
module test (fname, fresult, vid )
  value_text = table_get(test_r, test_c, vid, "td");
  fname_argc = table_get(good_r, good_c, fname, "fac");
  pass_value = table_get(good_r, good_c, fname, vid);
  test_pass = validate(cv=fresult, t="equals", ev=pass_value, pf=true);
  farg_text = vstr(append(", ", rselect(get_value(vid), [0:fname_argc-1]), r=false, j=
  false, l=false));
  test_text = validate(str(fname, "(", farg_text, ")=", pass_value), fresult, "equals",
  pass_value);
  if ( pass_value != skip )
    if ( !test_pass )
      log_warn( str(vid, "(", value_text, ") ", test_text) );
    else if ( show_passing )
  log_info( str(vid, " ", test_text) );
  else if ( show_skipped )
    log_info( str(vid, " *skip*: '", fname, "(", value_text, ")'") );
// Indirect function calls would be very useful here!!!
run_ids = delete( test_ids, mv=["fac", "crp"] );
for (vid=run_ids) run("bitwise_is_equal_0", vid) test( "bitwise_is_equal_0",
bitwise_is_equal(gv(vid,0),gv(vid,1),0), vid);
for (vid=run_ids) run("bitwise_is_equal_1",vid) test( "bitwise_is_equal_1",
 bitwise_is_equal(gv(vid,0),gv(vid,1),1), vid );
for (vid=run_ids) run("bitwise_i2v",vid) test( "bitwise_i2v", bitwise_i2v(gv(vid,0)), vid);
for (vid=run_ids) run("bitwise_i2v_v2i", vid) test( "bitwise_i2v_v2i",
 bitwise_v2i(bitwise_i2v(gv(vid,0))), vid );
for (vid=run_ids) run("bitwise_i2s", vid) test( "bitwise_i2s", bitwise_i2s(gv(vid,0)), vid);
for (vid=run_ids) run("bitwise_i2s_s2i", vid) test( "bitwise_i2s_s2i",
 bitwise s2i(bitwise i2s(qv(vid,0))), vid );
for (vid=run_ids) run("bitwise_and", vid) test( "bitwise_and", bitwise_and(gv(vid,0),gv(vid,1
 )), vid );
for (vid=run_ids) run("bitwise_or", vid) test( "bitwise_or", bitwise_or(qv(vid,0),qv(vid,1)),
```

```
vid );
for (vid=run_ids) run("bitwise_xor",vid) test( "bitwise_xor", bitwise_xor(gv(vid,0),gv(vid,1)), vid );
for (vid=run_ids) run("bitwise_not",vid) test( "bitwise_not", bitwise_not(gv(vid,0)), vid );
for (vid=run_ids) run("bitwise_lsh",vid) test( "bitwise_lsh", bitwise_lsh(gv(vid,0)), vid );
for (vid=run_ids) run("bitwise_rsh",vid) test( "bitwise_rsh", bitwise_rsh(gv(vid,0)), vid );
// end-of-tests
```

2.2.2.2 Validation Results

```
1 ECHO: "OpenSCAD Version [2016, 12, 21]"
2 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_is_equal_0(undef, undef)=false'"
3 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_is_equal_0([], [])=false
4 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_is_equal_0(254, 0)=true'"
5 ECHO: "[ INFO ]
                  run(): test(); t04 passed: 'bitwise_is_equal_0(254, 1)=false'"
6 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_is_equal_0(255, 0)=false'"
7 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_is_equal_0(0, 255)=true'"
8 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_is_equal_0(126, 63)=true'"
9 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_is_equal_0(25, 10)=true'"
10 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_is_equal_0(1024, 512)=true'"
11 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_is_equal_0(4253, 315)=true'"
12 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_is_equal_0(835, 769)=true'"
13 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_is_equal_0(856, 625)=true'"
14 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_is_equal_1(undef, undef)=false'"
15 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_is_equal_1([], [])=false'
16 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_is_equal_1(254, 0)=false'"
17 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_is_equal_1(254, 1)=true'"
18 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_is_equal_1(255, 0)=true'"
19 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_is_equal_1(0, 255)=false'"
20 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_is_equal_1(126, 63)=false'"
21 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_is_equal_1(25, 10)=false'"
22 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_is_equal_1(1024, 512)=false'"
23 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_is_equal_1(4253, 315)=false'"
24 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_is_equal_1(835, 769)=false'"
25 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_is_equal_1(856, 625)=false'"
26 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_i2v(undef)=undef'
27 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_i2v([])=undef'"
28 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_i2v(254)=[1, 1, 1, 1, 1, 1, 1, 1, 0]''
29 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_i2v(254)=[1, 1, 1, 1, 1, 1, 1, 1, 0]'"
30 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_i2v(255)=[1, 1, 1, 1, 1, 1, 1, 1, 1]'"
31 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_i2v(0)=[0]'"
32 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_i2v(126)=[1, 1, 1, 1, 1, 1, 0]'"
33 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_i2v(25)=[1, 1, 0, 0, 1]'"

34 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_i2v(1024)=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'"
39 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_i2v_v2i([])=undef'"
40 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_i2v_v2i(254)=254'"
41 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_i2v_v2i(254)=254'"
42 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_i2v_v2i(255)=255'"
43 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_i2v_v2i(0)=0'"
44 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_i2v_v2i(126)=126'"
45 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_i2v_v2i(25)=25'"
46 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_i2v_v2i(1024)=1024'"
47 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_i2v_v2i(4253)=4253'"
48 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_i2v_v2i(835)=835'"
49 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_i2v_v2i(856)=856'"
50 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_i2s(undef)=undef'"
51 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_i2s([])=undef'"
52 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_i2s(254)=111111110'"
53 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_i2s(254)=111111110'"
54 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_i2s(255)=111111111'"
55 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_i2s(0)=0'"
56 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_i2s(126)=11111110'"
57 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_i2s(25)=11001'"
58 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_i2s(1024)=10000000000"
59 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_i2s(4253)=1000010011101'"
60 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_i2s(835)=1101000011'
61 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_i2s(856)=1101011000'"
62 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_i2s_s2i(undef)=undef'"
63 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_i2s_s2i([])=undef'"
64 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_i2s_s2i(254)=254'"
65 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_i2s_s2i(254)=254'"
66 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_i2s_s2i(255)=255'"
67 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_i2s_s2i(0)=0'"
68 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_i2s_s2i(126)=126'"
```

```
69 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_i2s_s2i(25)=25'"
70 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_i2s_s2i(1024)=1024'"
                   run(): test(); t10 passed: 'bitwise_i2s_s2i(4253)=4253'"
71 ECHO: "[ INFO
72 ECHO: "[ INFO ] run(): test(); tll passed: 'bitwise_i2s_s2i(835)=835'"
73 ECHO: "[
            INFO
                 run(): test(); t12 passed: 'bitwise_i2s_s2i(856)=856'"
                 ] run(): test(); t01 passed: 'bitwise_and(undef, undef)=undef'"
74 ECHO: "[ INFO
75 ECHO: "[
            INFO
                 | run(): test(); t02 passed: 'bitwise_and([], [])=undef'"
76 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_and(254, 0)=0'"
                 ] run(): test(); t04 passed: 'bitwise_and(254, 1)=0'"
77 ECHO: "[
            INFO
78 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_and(255, 0)=0'"
79 ECHO: "[
            INFO
                 ] run(): test(); t06 passed: 'bitwise_and(0, 255)=0'"
80 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_and(126, 63)=62'"
81 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_and(25, 10)=8'"
82 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_and(1024, 512)=0'"
83 ECHO: "[
            INFO ] run(): test(); t10 passed: 'bitwise_and(4253, 315)=25'"
84 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_and(835, 769)=769'"
85 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_and(856, 625)=592'"
86 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_or(undef, undef)=undef'"
87 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_or([], [])=undef'
88 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_or(254, 0)=254'"
89 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_or(254, 1)=255'"
90 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_or(255, 0)=255'"
91 ECHO: "[
            INFO ] run(): test(); t06 passed: 'bitwise_or(0, 255)=255'"
92 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_or(126, 63)=127'"
93 ECHO: "[ INFO ] run(): test(); t08 passed: 'bitwise_or(25, 10)=27'
94 ECHO: "[ INFO ] run(): test(); t09 passed: 'bitwise_or(1024, 512)=1536'"
95 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_or(4253, 315)=4543'"
96 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_or(835, 769)=835'"
97 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise_or(856, 625)=889'"
98 ECHO: "[ INFO ] run(): test(); t01 passed: 'bitwise_xor(undef, undef)=undef'"
99 ECHO: "[ INFO ] run(): test(); t02 passed: 'bitwise_xor([], []) = undef'"
100 ECHO: "[ INFO ] run(): test(); t03 passed: 'bitwise_xor(254, 0)=254'"
101 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_xor(254, 1)=255'"
102 ECHO: "[ INFO ] run(): test(); t05 passed: 'bitwise_xor(255, 0)=255'"
103 ECHO: "[ INFO ]
                    run(): test(); t06 passed: 'bitwise_xor(0, 255)=255'"
104 ECHO: "[ INFO ] run(): test(); t07 passed: 'bitwise_xor(126, 63)=65'"
105 ECHO: "[ INFO ]
                    run(): test(); t08 passed: 'bitwise_xor(25, 10)=19'"
106 ECHO: "[ INFO ]
                   run(): test(); t09 passed: 'bitwise_xor(1024, 512)=1536'"
                   run(): test(); t10 passed: 'bitwise_xor(4253, 315)=4518'"
run(): test(); t11 passed: 'bitwise_xor(835, 769)=66'"
107 ECHO: "[ INFO ]
108 ECHO: "[ INFO ]
109 ECHO: "[ INFO ]
                    run(): test(); t12 passed: 'bitwise_xor(856, 625)=297'"
110 ECHO: "[ INFO ]
                    run(): test(); t01 passed: 'bitwise_not(undef) = undef'"
111 ECHO: "[ INFO ]
                    run(): test(); t02 passed: 'bitwise_not([])=undef'
112 ECHO: "[ INFO ]
                    run(): test(); t03 passed: 'bitwise_not(254)=1'"
113 ECHO: "[ INFO ]
                    run(): test(); t04 passed: 'bitwise_not(254)=1'"
114 ECHO: "[ INFO ]
                    run(): test(); t05 passed: 'bitwise_not(255)=0'"
115 ECHO: "[ INFO ]
                    run(): test(); t06 passed: 'bitwise_not(0)=1'"
                    run(): test(); t07 passed: 'bitwise_not(126)=1'"
116 ECHO: "[ INFO ]
117 ECHO: "[ INFO ]
                    run(): test(); t08 passed: 'bitwise_not(25)=6'"
118 ECHO: "[ INFO ]
                    run(): test(); t09 passed: 'bitwise_not(1024)=1023'"
119 ECHO: "[ INFO ]
                    run(): test(); t10 passed: 'bitwise_not(4253)=3938'"
120 ECHO: "[ INFO ]
                    run(): test(); t11 passed: 'bitwise_not(835)=188'"
121 ECHO: "[ INFO ]
                    run(): test(); t12 passed: 'bitwise_not(856)=167'"
122 ECHO: "[ INFO
                    run(): test(); t01 passed: 'bitwise_lsh(undef)=undef'"
123 ECHO: "[ INFO ]
                    run(): test(); t02 passed: 'bitwise_lsh([])=undef'"
124 ECHO: "[ INFO
                    run(): test(); t03 passed: 'bitwise_lsh(254)=508'"
125 ECHO: "[ INFO ]
                    run(): test(); t04 passed: 'bitwise_lsh(254)=508'"
                    run(): test(); t05 passed: 'bitwise_lsh(255)=510'"
126 ECHO: "[ INFO
                    run(): test(); t06 passed: 'bitwise_lsh(0)=0'"
127 ECHO: "[ INFO ]
                    run(): test(); t07 passed: 'bitwise_lsh(126)=252'"
128 ECHO: "[ INFO
129 ECHO: "[ INFO ]
                   run(): test(); t08 passed: 'bitwise_lsh(25)=50'"
130 ECHO: "[ INFO
                    run(): test(); t09 passed: 'bitwise_lsh(1024)=2048'"
131 ECHO: "[ INFO ]
                    run(): test(); t10 passed: 'bitwise_lsh(4253)=8506'"
132 ECHO: "[ INFO
                    run(): test(); t11 passed: 'bitwise_lsh(835)=1670'"
133 ECHO: "[ INFO
                    run(): test(); t12 passed: 'bitwise_lsh(856)=1712'"
134 ECHO: "[ INFO
                    run(): test(); t01 passed: 'bitwise_rsh(undef)=undef'"
                    run(): test(); t02 passed: 'bitwise_rsh([])=undef'"
136 ECHO: "[ INFO ]
                    run(): test(); t03 passed: 'bitwise_rsh(254)=127'"
137 ECHO: "[ INFO ] run(): test(); t04 passed: 'bitwise_rsh(254)=127'"
138 ECHO: "[ INFO ]
                    run(): test(); t05 passed: 'bitwise_rsh(255)=127'"
139 ECHO: "[ INFO ] run(): test(); t06 passed: 'bitwise_rsh(0)=0'"
140 ECHO: "[ INFO ]
                    run(): test(); t07 passed: 'bitwise_rsh(126)=63'"
                    run(): test(); t08 passed: 'bitwise_rsh(25)=12'"
141 ECHO:
          "[ TNFO
142 ECHO: "[ INFO ]
                    run(): test(); t09 passed: 'bitwise_rsh(1024)=512'"
143 ECHO: "[ INFO ] run(): test(); t10 passed: 'bitwise_rsh(4253)=2126'"
144 ECHO: "[ INFO ] run(): test(); t11 passed: 'bitwise_rsh(835)=417'"
145 ECHO: "[ INFO ] run(): test(); t12 passed: 'bitwise rsh(856)=428'"
```

3 Todo List 37

3 Todo List

globalScope> Global pyramid_q (x, y, z, center=false)

Support vertex rounding radius.

File resolution.scad

Review model for accuracy.

File shapes3d.scad

Complete rounded cylinder.

globalScope> Global tetrahedron (r, center=false)

Support vertex rounding radius.

Identify cause of missing face. Using hull() as a workaround.

globalScope> Global triangle_ppp (v1, v2, v3, vr, v1r, v2r, v3r, centroid=false, incenter=false)

Replace the hull() operation with calculated tangential intersection of the rounded vertexes.

Remove the all or nothing requirement for vertex rounding.

4 Module Index

4.1 Modules

Here is a list of all modules:

Constants	91
Euclidean	102
General	108
System	135
Data	92
Console	88
Datatable	93
Мар	112
Designs	101
Math	116
Bitwise Operations	84
Point, Vector and Plane	119
Triangle Solutions	139
Variable Tests	148
Vector Operations	159

	n-gon Solutions	169
	Parts	118
	Shapes	131
	2D Extrusions	39
	2D Shapes	57
	3D Shapes	72
	Tools	136
	Transformations	137
	Extrusions	104
	Replications	124
	Units	144
	Angle	81
	Length	109
	Resolution	126
	Utilities	145
5	File Index	
5.1	File List	
Her	re is a list of all documented files with brief descriptions:	
	console.scad Message logging functions	171
	constants.scad Mechanical design constants	172
	mainpage.scad Documentation main page	174
	map.scad Mapped key-value pair data access	175
	math.scad Mathematical functions	177
	math_bitwise.scad Mathematical bitwise binary (base-two) functions	179
	primitives.scad Mathematical primitive functions	181

6 Module Documentation 39

resolution.scad	
Arc rendering resolution abstraction	185
shapes2d.scad	
Two-dimensional basic shapes	187
shapes2de.scad	
Linearly extruded two-dimensional basic shapes	189
shapes3d.scad	
Three-dimensional basic shapes	192
table.scad	
Data table encoding and lookup	193
transform.scad	
Shape transformation functions	195
units_angle.scad	
Angle units and conversions	197
units_length.scad	
Length units and conversions	199
utilities.scad	
Miscellaneous utilities	200
validation.scad	
Result validation functions	201

6 Module Documentation

6.1 2D Extrusions

Extruded two dimensional geometric shapes.

Collaboration diagram for 2D Extrusions:

Files

• file shapes2de.scad

Linearly extruded two-dimensional basic shapes.

Functions

• module erectangle (size, h, vr, center=false)

An extruded rectangle.

module erectangle c (size, core, h, t, co, cr=0, vr, vr1, vr2, center=false)

An extruded rectangle with a removed rectangular core.

• module erhombus (size, h, vr, center=false)

An extruded rhombus.

• module etriangle_ppp (v1, v2, v3, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by three vertices.

• module etriangle_vp (v, h, vr, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a vector of its three vertices.

module etriangle_III (s1, s2, s3, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by its three side lengths.

module etriangle vl (v, h, vr, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a vector of its three side lengths.

module etriangle_vl_c (vs, vc, h, co, cr=0, vr, vr1, vr2, centroid=false, incenter=false, center=false)

A general triangle specified by its sides with a removed triangular core.

• module etriangle_lal (s1, a, s2, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by two sides and the included angle.

• module etriangle_ala (a1, s, a2, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a side and two adjacent angles.

module etriangle_aal (a1, a2, s, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a side, one adjacent angle and the opposite angle.

module etriangle II (x, y, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded right-angled triangle specified by its opposite and adjacent side lengths.

module etriangle_la (x, y, aa, oa, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded right-angled triangle specified by a side length and an angle.

• module engon (n, r, h, vr, center=false)

An extruded n-sided equiangular/equilateral regular polygon.

module eellipse (size, h, center=false)

An extruded ellipse.

• module eellipse_c (size, core, h, t, co, cr=0, center=false)

An extruded ellipse with a removed elliptical core.

module eellipse_s (size, h, a1=0, a2=0, center=false)

An extruded ellipse sector.

module eellipse_cs (size, core, h, t, a1=0, a2=0, co, cr=0, center=false)

An extruded sector of an ellipse with a removed elliptical core.

module estar2d (size, h, n=5, vr, center=false)

An extruded two dimensional star.

6.1.1 Detailed Description

Extruded two dimensional geometric shapes.

6.1.2 Function Documentation

6.1.2.1 module eellipse (size , h , center = false)

An extruded ellipse.

Parameters

size	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 1: eellipse

```
1 eellipse( size=[25, 40], h=20, center=true );
```

Definition at line 758 of file shapes2de.scad.

```
6.1.2.2 module eellipse_c ( size, core, h, t, co, cr = 0, center = false )
```

An extruded ellipse with a removed elliptical core.

Parameters

size	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
core	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
t	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
center	<boolean> Center about origin.</boolean>

See also

 $\begin{tabular}{ll} st_linear_extrude_scale for a description on specifying h. \end{tabular}$

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Example

Figure 2: eellipse_c

```
eellipse_c( size=[25,40], core=[16,10], co=[0,10], cr=45, h=20, center=true );
```

Definition at line 798 of file shapes2de.scad.

```
6.1.2.3 module eellipse_cs ( size, core, h, t, a1 = 0, a2 = 0, co, cr = 0, center = false )
```

An extruded sector of an ellipse with a removed elliptical core.

Parameters

size	<vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal>
core	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
t	<vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal>
a1	<decimal> The start angle in degrees.</decimal>
a2	<decimal> The stop angle in degrees.</decimal>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Figure 3: eellipse_cs

```
eellipse_cs( size=[25,40], t=[10,5], a1=90, a2=180, co=[10,0], cr=45, h=20, center=true );
```

Definition at line 878 of file shapes2de.scad.

```
6.1.2.4 module eellipse_s ( size , h , a1 = 0, a2 = 0, center = false )
```

An extruded ellipse sector.

Parameters

size	<vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
a1	<decimal> The start angle in degrees.</decimal>
a2	<decimal> The stop angle in degrees.</decimal>
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 4: eellipse_s

```
1 eellipse_s( size=[25,40], h=20, a1=90, a2=180, center=true );
```

Definition at line 833 of file shapes2de.scad.

6.1.2.5 module engon (n, r, h, vr, center = false)

An extruded n-sided equiangular/equilateral regular polygon.

Parameters

n	<decimal> The number of sides.</decimal>
r	<decimal> The ngon vertex radius.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<decimal> The vertex rounding radius.</decimal>
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 5: engon

```
1 engon( n=6, r=25, h=20, vr=6, center=true );
```

See Wikipedia for more information.

Definition at line 728 of file shapes2de.scad.

6.1.2.6 module erectangle (size , h , vr , center = false)

An extruded rectangle.

size	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<vector decimal="" =""> The corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.

|--|

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 6: erectangle

erectangle(size=[25,40], vr=5, h=20, center=true);

Definition at line 106 of file shapes2de.scad.

6.1.2.7 module erectangle_c (size, core, h, t, co, cr = 0, vr, vr1, vr2, center = false)

An extruded rectangle with a removed rectangular core.

Parameters

size	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
core	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
t	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
vr	<vector decimal="" =""> The default corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or</vector>
	a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
vr1	<vector decimal> The outer corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or</vector decimal>
	a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
vr2	<vector decimal> The core corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Thickness t

• core = size - t; when t and size are given.

• size = core + t; when t and core are given.

Example

Figure 7: erectangle_c

erectangle_c(size=[40,20], t=[10,1], co=[0,-6], cr=10, vr=5, h=30, center=true);

Definition at line 157 of file shapes2de.scad.

6.1.2.8 module erhombus (size , h , vr , center = false)

An extruded rhombus.

Parameters

size	<pre><vector decimal> A vector [w, h] of decimals or a single decimal for (w=h).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<vector decimal="" =""> The corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Figure 8: erhombus

```
erhombus(size=[40,25], h=10, vr=[3,0,3,9], center=true);
```

Definition at line 202 of file shapes2de.scad.

```
6.1.2.9 module estar2d ( size, h, n = 5, vr, center = false )
```

An extruded two dimensional star.

Parameters

size	<pre><vector decimal> A vector [l, w] of decimals or a single decimal for (size=l=2*w).</vector decimal></pre>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
n	<decimal> The number of points.</decimal>
vr	<vector decimal="" =""> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r).
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 9: estar2d

```
1 estar2d( size=[40, 15], h=15, n=5, vr=2, center=true );
```

Definition at line 917 of file shapes2de.scad.

```
6.1.2.10 module etriangle_aal ( a1 , a2 , s , h , x = 1, vr , v1r , v2r , v3r , centroid = false, incenter = false, center = false )
```

An extruded general triangle specified by a side, one adjacent angle and the opposite angle.

a1 <decimal> The opposite angle 1 in degrees.</decimal>

a2	<decimal> The adjacent angle 2 in degrees.</decimal>
S	<decimal> The side length.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s).
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 10: etriangle_aal

1 etriangle_aal(a1=60, a2=30, s=40, h=20, vr=2, centroid=true, center=true);

Definition at line 580 of file shapes2de.scad.

6.1.2.11 module etriangle_ala (a1 , s , a2 , h , x = 1, vr , v1r , v2r , v3r , centroid = false, incenter = false, center = false)

An extruded general triangle specified by a side and two adjacent angles.

a1	<decimal> The adjacent angle 1 in degrees.</decimal>
s	<decimal> The side length adjacent to the angles.</decimal>
a2	<decimal> The adjacent angle 2 in degrees.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>

X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s).
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 11: etriangle_ala

etriangle_ala(a1=30, s=50, a2=60, h=20, vr=2, centroid=true, center=true);

Definition at line 528 of file shapes2de.scad.

 $\textbf{6.1.2.12} \quad \textbf{module etriangle_la (x, y, aa, oa, h, vr, v1r, v2r, v3r, centroid = \texttt{false}, incenter = \texttt{false}, center = \texttt{false})$

An extruded right-angled triangle specified by a side length and an angle.

Х	<decimal> The length of the side along the x-axis.</decimal>
У	<decimal> The length of the side along the y-axis.</decimal>
aa	<decimal> The adjacent angle in degrees.</decimal>
oa	<decimal> The opposite angle in degrees.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>

v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	<boolean> Center centroid at origin.</boolean>
incenter	<boolean> Center incenter at origin.</boolean>
center	 <boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 12: etriangle_la

etriangle_la(x=40, aa=30, h=20, vr=2, centroid=true, center=true);

Note

When both x and y are given, both triangles are rendered. When both aa and oa are given, aa is used.

Definition at line 681 of file shapes2de.scad.

6.1.2.13 module etriangle_lal (s1 , a , s2 , h , x = 1, vr , v1r , v2r , v3r , centroid = false, incenter = false, center = false)

An extruded general triangle specified by two sides and the included angle.

s1	<pre><decimal> The length of the side 1.</decimal></pre>
а	<decimal> The included angle in degrees.</decimal>
s2	<decimal> The length of the side 2.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s1).
vr	<decimal> The default vertex rounding radius.</decimal>

v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	<boolean> Center centroid at origin.</boolean>
incenter	<boolean> Center incenter at origin.</boolean>
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 13: etriangle_lal

1 etriangle_lal(s1=50, a=60, s2=30, h=20, vr=2, centroid=true, center=true);

Definition at line 476 of file shapes2de.scad.

6.1.2.14 module etriangle_II (x, y, h, vr, v1r, v2r, v3r, centroid = false, incenter = false, center = false)

An extruded right-angled triangle specified by its opposite and adjacent side lengths.

X	<decimal> The length of the side along the x-axis.</decimal>
у	<decimal> The length of the side along the y-axis.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	<boolean> Center centroid at origin.</boolean>
incenter	<boolean> Center incenter at origin.</boolean>
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 14: etriangle_ll

etriangle_11(x=30, y=40, h=20, vr=2, centroid=true, center=true);

Definition at line 629 of file shapes2de.scad.

6.1.2.15 module etriangle_III (s1, s2, s3, h, vr, v1r, v2r, v3r, centroid = false, incenter = false, center = false)

An extruded general triangle specified by its three side lengths.

s1	<decimal> The length of the side 1 (along the x-axis).</decimal>
s2	<decimal> The length of the side 2.</decimal>
s3	<decimal> The length of the side 3.</decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 15: etriangle_III

```
1 etriangle_111( s1=30, s2=40, s3=50, h=20, vr=2, centroid=true, center=true );
```

Definition at line 327 of file shapes2de.scad.

 $\textbf{6.1.2.16} \quad \textbf{module etriangle_ppp (v1, v2, v3, h, vr, v1r, v2r, v3r, centroid = \texttt{false}, incenter = \texttt{false}, center = \texttt{false})$

An extruded general triangle specified by three vertices.

v1	<vector> A vector [x, y] for vertex 1.</vector>
v2	<vector> A vector [x, y] for vertex 2.</vector>
v3	<vector> A vector [x, y] for vertex 3.</vector>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 16: etriangle_ppp

```
etriangle_ppp( v1=[0,0], v2=[5,25], v3=[40,5], h=20, vr=2, centroid=true, center=true );
```

Definition at line 239 of file shapes2de.scad.

```
6.1.2.17 module etriangle_vI(v, h, vr, centroid = false, incenter = false, center = false)
```

An extruded general triangle specified by a vector of its three side lengths.

Parameters

V	<vector> A vector [s1, s2, s3] of decimals.</vector>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<vector decimal="" =""> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r).
centroid	 boolean> Center centroid at origin.
incenter	<boolean> Center incenter at origin.</boolean>
center	<boolean> Center about origin.</boolean>

See also

st_linear_extrude_scale for a description on specifying h.

Example

```
t = triangle_lll2vp( 3, 4, 5 );
s = triangle_vp2vl( t );
etriangle_vl( v=s, h=5, vr=2 );
```

Definition at line 376 of file shapes2de.scad.

```
6.1.2.18 module etriangle_vi_c ( vs , vc , h , co , cr = 0, vr , vr1 , vr2 , centroid = false, incenter = false, center = false )
```

A general triangle specified by its sides with a removed triangular core.

Parameters

VS	<pre><vector decimal> The size. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal></pre>
VC	<vector decimal> The core. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
vr	<vector decimal> The default vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r).
vr1	<pre><vector decimal> The outer vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal></pre>
	single decimal for (v1r=v2r=v3r).
vr2	<pre><vector decimal> The core vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal></pre>
	single decimal for (v1r=v2r=v3r).
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.
center	 boolean> Center about origin.

See also

st_linear_extrude_scale for a description on specifying h.

Example

Figure 17: etriangle_vl_c

1 etriangle_vl_c(vs=50, vc=30, h=15, co=[0,-10], cr=180, vr=[2,2,8], centroid=true, center=true);

Note

The outer and inner triangles centroids are aligned prior to the core removal.

Definition at line 424 of file shapes2de.scad.

6.1.2.19 module etriangle_vp (v , h , vr , centroid = false, incenter = false, center = false)

An extruded general triangle specified by a vector of its three vertices.

Parameters

V	<vector> A vector [v1, v2, v3] of vectors [x, y].</vector>
h	<vector decimal> A vector of decimals or a single decimal to specify simple extrusion height.</vector decimal>
vr	<vector decimal> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector decimal>
	decimal for (v1r=v2r=v3r).
centroid	<boolean> Center centroid at origin.</boolean>
incenter	<boolean> Center incenter at origin.</boolean>
center	<boolean> Center about origin.</boolean>

See also

 $\begin{tabular}{ll} st_linear_extrude_scale for a description on specifying h. \end{tabular}$

Example

```
t = triangle_1112vp( 30, 40, 50 );
r = [2, 4, 6];
etriangle_vp( v=t, h=5, vr=r );
```

Definition at line 288 of file shapes2de.scad.

6.2 2D Shapes 57

6.2 2D Shapes

Two dimensional geometric shapes.

Collaboration diagram for 2D Shapes:

Files

· file shapes2d.scad

Two-dimensional basic shapes.

Functions

module rectangle (size, vr, center=false)

A rectangle.

module rectangle_c (size, core, t, co, cr=0, vr, vr1, vr2, center=false)

A rectangle with a removed rectangular core.

module rhombus (size, vr, center=false)

A rhombus

module triangle_ppp (v1, v2, v3, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by three vertices.

• module triangle_vp (v, vr, centroid=false, incenter=false)

A general triangle specified by a vector of its three vertices.

• module triangle_III (s1, s2, s3, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by its three side lengths.

module triangle_vl (v, vr, centroid=false, incenter=false)

A general triangle specified by a vector of its three side lengths.

• module triangle_vl_c (vs, vc, co, cr=0, vr, vr1, vr2, centroid=false, incenter=false)

A general triangle specified by its sides with a removed triangular core.

• module triangle_lal (s1, a, s2, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by two sides and the included angle.

• module triangle_ala (a1, s, a2, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by a side and two adjacent angles.

• module triangle_aal (a1, a2, s, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by a side, one adjacent angle and the opposite angle.

• module triangle_ll (x, y, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A right-angled triangle specified by its opposite and adjacent side lengths.

• module triangle_la (x, y, aa, oa, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A right-angled triangle specified by a side length and an angle.

• module ngon (n, r, vr)

An n-sided equiangular/equilateral regular polygon.

• module ellipse (size)

An ellipse.

• module ellipse_c (size, core, t, co, cr=0)

An ellipse with a removed elliptical core.

• module ellipse_s (size, a1=0, a2=0)

An ellipse sector.

• module ellipse cs (size, core, t, a1=0, a2=0, co, cr=0)

A sector of an ellipse with a removed elliptical core.

• module star2d (size, n=5, vr)

A two dimensional star.

6.2.1 Detailed Description

Two dimensional geometric shapes.

6.2.2 Function Documentation

6.2.2.1 module ellipse (size)

An ellipse.

Parameters

size | <vector|decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).

Example

Figure 18: ellipse

```
1 ellipse( size=[25, 40] );
```

Definition at line 1060 of file shapes2d.scad.

6.2.2.2 module ellipse_c (size , core , t , co , cr = 0)

An ellipse with a removed elliptical core.

6.2 2D Shapes 59

Parameters

size	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
core	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
t	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Example

Figure 19: ellipse_c

```
ellipse_c( size=[25,40], core=[16,10], co=[0,10], cr=45 );
```

Definition at line 1101 of file shapes2d.scad.

```
6.2.2.3 module ellipse_cs ( size , core , t , a1 = 0 , a2 = 0 , co , cr = 0 )
```

A sector of an ellipse with a removed elliptical core.

Parameters

size	<vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal>
core	<pre><vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal></pre>
t	<vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal>
a1	<decimal> The start angle in degrees.</decimal>
a2	<decimal> The stop angle in degrees.</decimal>
СО	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Figure 20: ellipse_cs

```
1 ellipse_cs( size=[25,40], t=[10,5], a1=90, a2=180, co=[10,0], cr=45);
```

Definition at line 1211 of file shapes2d.scad.

```
6.2.2.4 module ellipse_s ( size, a1 = 0, a2 = 0 )
```

An ellipse sector.

Parameters

size	<vector decimal> A vector [rx, ry] of decimals or a single decimal for (rx=ry).</vector decimal>
a1	<decimal> The start angle in degrees.</decimal>
a2	<decimal> The stop angle in degrees.</decimal>

Example

Figure 21: ellipse_s

```
1 ellipse_s( size=[25,40], a1=90, a2=180 );
```

Definition at line 1143 of file shapes2d.scad.

6.2.2.5 module ngon (n , r , vr)

An n-sided equiangular/equilateral regular polygon.

6.2 2D Shapes 61

Parameters

n	<decimal> The number of sides.</decimal>
r	<decimal> The ngon vertex radius.</decimal>
vr	<decimal> The vertex rounding radius.</decimal>

Example

Figure 22: ngon

```
1 ngon( n=6, r=25, vr=6 );
```

See $\ensuremath{\mathtt{Wikipedia}}$ for more information.

Definition at line 1026 of file shapes2d.scad.

6.2.2.6 module rectangle (size , vr , center = false)

A rectangle.

Parameters

size	<vector decimal=""> A vector [x, y] of decimals or a single decimal for (x=y).</vector>
vr	<vector decimal="" =""> The corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
center	 boolean> Center about origin.

Figure 23: rectangle

```
rectangle( size=[25,40], vr=[0,10,10,5], center=true );
```

Definition at line 101 of file shapes2d.scad.

```
6.2.2.7 module rectangle_c ( size, core, t, co, cr = 0, vr, vr1, vr2, center = false )
```

A rectangle with a removed rectangular core.

Parameters

size	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
core	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
t	<pre><vector decimal> A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
vr	<vector decimal="" =""> The default corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or</vector>
	a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
vr1	<vector decimal> The outer corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or</vector decimal>
	a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
vr2	<vector decimal> The core corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
center	<boolean> Center about origin.</boolean>

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Example

Figure 24: rectangle_c

```
1 rectangle_c( size=[40,25], t=[15,5], vr1=[0,0,10,10], vr2=2.5, co=[0,5], center=true );
```

Definition at line 208 of file shapes2d.scad.

```
6.2.2.8 module rhombus ( size , vr , center = false )
```

A rhombus.

6.2 2D Shapes 63

Parameters

size	<vector decimal> A vector [w, h] of decimals or a single decimal for (w=h).</vector decimal>
vr	<vector decimal="" =""> The corner rounding radius. A vector [v1r, v2r, v3r, v4r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.
center	 boolean> Center about origin.

Example

Figure 25: rhombus

1 rhombus(size=[40,25], vr=[2,4,2,4], center=true);

See Wikipedia for more information.

Definition at line 267 of file shapes2d.scad.

6.2.2.9 module star2d (size, n = 5, vr)

A two dimensional star.

Parameters

size	<vector decimal> A vector [I, w] of decimals or a single decimal for (size=I=2*w).</vector decimal>
n	<decimal> The number of points.</decimal>
vr	<vector decimal="" =""> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector>
	decimal for (v1r=v2r=v3r).

Figure 26: star2d

```
star2d( size=[40, 15], n=5, vr=2 );
```

Definition at line 1257 of file shapes2d.scad.

```
6.2.2.10 module triangle_aal ( a1, a2, s, x = 1, vr, v1r, v2r, v3r, centroid = false, incenter = false )
```

A general triangle specified by a side, one adjacent angle and the opposite angle.

Parameters

a1	<decimal> The opposite angle 1 in degrees.</decimal>
a2	<decimal> The adjacent angle 2 in degrees.</decimal>
S	<decimal> The side length.</decimal>
X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s).
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	<boolean> Center centroid at origin.</boolean>
incenter	<boolean> Center incenter at origin.</boolean>

Example

Figure 27: triangle_aal

```
triangle_aal( a1=60, a2=30, s=40, vr=2, centroid=true );
```

See Wikipedia for more information.

Definition at line 854 of file shapes2d.scad.

```
6.2.2.11 module triangle_ala ( a1, s, a2, x = 1, vr, v1r, v2r, v3r, centroid = false, incenter = false)
```

A general triangle specified by a side and two adjacent angles.

а	<decimal> The adjacent angle 1 in degrees.</decimal>	

6.2 2D Shapes 65

S	<decimal> The side length adjacent to the angles.</decimal>
a2	<decimal> The adjacent angle 2 in degrees.</decimal>
X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s).
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.

Example

Figure 28: triangle_ala

```
triangle_ala( a1=30, s=50, a2=60, vr=2, centroid=true );
```

See Wikipedia for more information.

Definition at line 771 of file shapes2d.scad.

```
6.2.2.12 module triangle_la ( x, y, aa, oa, vr, v1r, v2r, v3r, centroid = false, incenter = false )
```

A right-angled triangle specified by a side length and an angle.

Parameters

X	<decimal> The length of the side along the x-axis.</decimal>
У	<decimal> The length of the side along the y-axis.</decimal>
aa	<decimal> The adjacent angle in degrees.</decimal>
oa	<decimal> The opposite angle in degrees.</decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	<boolean> Center incenter at origin.</boolean>

Figure 29: triangle_la

1 triangle_la(x=40, aa=30, vr=2, centroid=true);

Note

When both x and y are given, both triangles are rendered. When both aa and oa are given, aa is used.

Definition at line 974 of file shapes2d.scad.

6.2.2.13 module triangle_lal (s1, a, s2, x = 1, vr, v1r, v2r, v3r, centroid = false, incenter = false)

A general triangle specified by two sides and the included angle.

Parameters

s1	<pre><decimal> The length of the side 1.</decimal></pre>
а	<decimal> The included angle in degrees.</decimal>
s2	<decimal> The length of the side 2.</decimal>
X	<decimal $>$ The side to draw on the positive x-axis (x=1 for s1).
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	<boolean> Center incenter at origin.</boolean>

6.2 2D Shapes 67

Figure 30: triangle_lal

```
triangle_lal( s1=50, a=60, s2=30, vr=2, centroid=true );
```

See Wikipedia for more information.

Definition at line 702 of file shapes2d.scad.

```
6.2.2.14 module triangle_II ( x, y, vr, v1r, v2r, v3r, centroid = false, incenter = false )
```

A right-angled triangle specified by its opposite and adjacent side lengths.

Parameters

X	<decimal> The length of the side along the x-axis.</decimal>
У	<decimal> The length of the side along the y-axis.</decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	<boolean> Center incenter at origin.</boolean>

Example

Figure 31: triangle_II

```
1 triangle_11( x=30, y=40, vr=2, centroid=true );
```

Definition at line 931 of file shapes2d.scad.

6.2.2.15 module triangle_III (s1, s2, s3, vr, v1r, v2r, v3r, centroid = false, incenter = false)

A general triangle specified by its three side lengths.

Parameters

s1	<decimal> The length of the side 1 (along the x-axis).</decimal>
s2	<decimal> The length of the side 2.</decimal>
s3	<decimal> The length of the side 3.</decimal>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>
v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 <boolean> Center incenter at origin.</boolean>

Example

Figure 32: triangle_III

```
triangle_lll( s1=30, s2=40, s3=50, vr=2, centroid=true );
```

See Wikipedia for more information.

Definition at line 494 of file shapes2d.scad.

```
6.2.2.16 module triangle_ppp ( v1 , v2 , v3 , vr , v1r , v2r , v3r , centroid = false, incenter = false )
```

A general triangle specified by three vertices.

v1	<vector> A vector [x, y] for vertex 1.</vector>
v2	<vector> A vector [x, y] for vertex 2.</vector>
v3	<vector> A vector [x, y] for vertex 3.</vector>
vr	<decimal> The default vertex rounding radius.</decimal>
v1r	<decimal> Vertex 1 rounding radius.</decimal>
v2r	<decimal> Vertex 2 rounding radius.</decimal>

6.2 2D Shapes 69

v3r	<decimal> Vertex 3 rounding radius.</decimal>
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.

Example

Figure 33: triangle_ppp

```
triangle_ppp( v1=[0,0], v2=[5,25], v3=[40,5], vr=2, centroid=true );
```

Warning

Currently, in order to round any vertex, all must be given a rounding radius, either via vr or individually.

Todo Replace the hull() operation with calculated tangential intersection of the rounded vertexes.

Remove the all or nothing requirement for vertex rounding.

Definition at line 368 of file shapes2d.scad.

```
6.2.2.17 module triangle_vI ( v , vr , centroid = false, incenter = false )
```

A general triangle specified by a vector of its three side lengths.

Parameters

V	<vector> A vector [s1, s2, s3] of decimals.</vector>
vr	<vector decimal> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector decimal>
	decimal for (v1r=v2r=v3r).
centroid	 boolean> Center centroid at origin.
incenter	 doolean> Center incenter at origin.

Example

```
t = triangle_1112vp( 3, 4, 5 );
s = triangle_vp2v1( t );
triangle_v1( v=s, vr=2, centroid=true );
```

Definition at line 554 of file shapes2d.scad.

```
6.2.2.18 module triangle_vl_c ( vs, vc, co, cr = 0, vr, vr1, vr2, centroid = false, incenter = false)
```

A general triangle specified by its sides with a removed triangular core.

Parameters

VS	<vector decimal> The size. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal>
VC	<vector decimal> The core. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal>
СО	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
vr	<vector decimal=""> The default vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector>
	single decimal for (v1r=v2r=v3r).
vr1	<pre><vector decimal> The outer vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal></pre>
	single decimal for (v1r=v2r=v3r).
vr2	<pre><vector decimal> The core vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal></pre>
	single decimal for (v1r=v2r=v3r).
centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.

Example

Figure 34: triangle_vl_c

```
triangle_vl_c( vs=[30,50,50], vc=[20,40,40], co=[0,-4], vrl=[1,1,6], vr2=4, centroid=true );
```

Note

The outer and inner triangles centroids are aligned prior to the core removal.

Definition at line 610 of file shapes2d.scad.

6.2.2.19 module triangle_vp (v , vr , centroid = false, incenter = false)

A general triangle specified by a vector of its three vertices.

Parameters

ν	<vector> A vector [v1, v2, v3] of vectors [x, y].</vector>
vr	<vector decimal> The vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a single</vector decimal>
	decimal for (v1r=v2r=v3r).

6.2 2D Shapes 71

centroid	 boolean> Center centroid at origin.
incenter	 boolean> Center incenter at origin.

Example

```
t = triangle_1112vp( 30, 40, 50 );
r = [2, 4, 6];
triangle_vp( v=t, vr=r );
```

Definition at line 444 of file shapes2d.scad.

6.3 3D Shapes

Three dimensional geometric shapes.

Collaboration diagram for 3D Shapes:

Files

· file shapes3d.scad

Three-dimensional basic shapes.

Functions

• module cone (r, h, d, vr, vr1, vr2)

A cone.

• module cuboid (size, vr, center=false)

A cuboid.

• module ellipsoid (size)

An ellipsoid.

• module ellipsoid_s (size, a1=0, a2=0)

A sector of an ellipsoid.

• module tetrahedron (r, center=false)

A pyramid with trilateral base formed by four equilateral triangles.

• module pyramid_q (x, y, z, center=false)

A pyramid with quadrilateral base.

• module star3d (size, n=5, half=false)

A three dimensional star.

module torus_rp (size, core, r, l, t, co, cr=0, vr, vr1, vr2, pa=0, ra=360, m=255, center=false, profile=false)

A rectangular cross-sectional profile revolved about the z-axis.

• module torus_tp (vs, vc, r, l, co, cr=0, vr, vr1, vr2, pa=0, ra=360, m=255, centroid=false, incenter=false, pro-file=false,)

A triangular cross-sectional profile revolved about the z-axis.

module torus_ep (size, core, r, l, t, a1=0, a2=0, co, cr=0, pa=0, ra=360, m=255, profile=false)

An elliptical cross-sectional profile revolved about the z-axis.

6.3.1 Detailed Description

Three dimensional geometric shapes.

6.3 3D Shapes 73

6.3.2 Function Documentation

6.3.2.1 module cone (r, h, d, vr, vr1, vr2)

A cone.

Parameters

r	<decimal> The base radius.</decimal>
h	<decimal> The height.</decimal>
d	<decimal> The base diameter.</decimal>
vr	<decimal> The default corner rounding radius.</decimal>
vr1	<decimal> The base corner rounding radius.</decimal>
vr2	<decimal> The point corner rounding radius.</decimal>

Example

Figure 35: cone

```
1 cone( h=25, r=10, vr=2 );
```

Definition at line 103 of file shapes3d.scad.

6.3.2.2 module cuboid (size, vr, center = false)

A cuboid.

Parameters

	size	<vector decimal> A vector [x, y, z] of decimals or a single decimal for (x=y=z).</vector decimal>
	vr	<decimal> The corner rounding radius.</decimal>
Ì	center	<boolean> Center about origin.</boolean>

Example

Figure 36: cuboid

```
cuboid( size=[25,40,20], vr=5, center=true );
```

Definition at line 150 of file shapes3d.scad.

6.3.2.3 module ellipsoid (size)

An ellipsoid.

Parameters

size | <vector|decimal> A vector [w, h] of decimals or a single decimal for (w=h).

Example

Figure 37: ellipsoid

```
1 ellipsoid( size=[40,25] );
```

Definition at line 212 of file shapes3d.scad.

6.3.2.4 module ellipsoid_s (size , a1 = 0 , a2 = 0)

A sector of an ellipsoid.

6.3 3D Shapes 75

Parameters

size	<pre><vector decimal> A vector [w, h] of decimals or a single decimal for (w=h).</vector decimal></pre>
a1	<decimal> The start angle in degrees.</decimal>
a2	<decimal> The stop angle in degrees.</decimal>

Example

Figure 38: ellipsoid_s

ellipsoid_s(size=[60,15], a1=0, a2=270);

Definition at line 244 of file shapes3d.scad.

6.3.2.5 module pyramid_q (x, y, z, center = false)

A pyramid with quadrilateral base.

Parameters

X	<decimal> The base x-length.</decimal>
у	<decimal> The base y-length.</decimal>
Z	<decimal> The z-height.</decimal>
center	 boolean> Center about origin.

Example

Figure 39: pyramid_q

pyramid_q(x=35, y=20, z=5, center=true);

Todo Support vertex rounding radius.

Definition at line 348 of file shapes3d.scad.

6.3.2.6 module star3d (size, n = 5, half = false)

A three dimensional star.

Parameters

size	<pre><vector decimal> A vector [I, w, h] of decimals or a single decimal for (size=I=2*w=4*h).</vector decimal></pre>
n	<decimal> The number of points.</decimal>
half	 boolean> Render upper half only.

Example

Figure 40: star3d

star3d(size=40, n=5, half=true);

Definition at line 396 of file shapes3d.scad.

6.3.2.7 module tetrahedron (r, center = false)

A pyramid with trilateral base formed by four equilateral triangles.

Parameters

r	<decimal> The face radius.</decimal>
center	 boolean> Center about origin.

Example

6.3 3D Shapes 77

Figure 41: tetrahedron

tetrahedron(r = 20, center=true);

Todo Support vertex rounding radius.

Identify cause of missing face. Using hull() as a workaround.

Definition at line 303 of file shapes3d.scad.

6.3.2.8 module torus_ep (size, core, r, I, t, a1 = 0, a2 = 0, co, cr = 0, pa = 0, ra = 360, m = 255, profile = false)

An elliptical cross-sectional profile revolved about the z-axis.

Parameters

size	<pre><vector decimal> The profile size. A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
core	<pre><vector decimal> The profile core. A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
r	<decimal> The rotation radius.</decimal>
1	<pre><vector decimal> The elongation length. A vector [x, y] of decimals or a single decimal for (x=y)</vector decimal></pre>
t	<pre><vector decimal> The profile thickness. A vector [x, y] of decimals or a single decimal for (x=y).</vector decimal></pre>
a1	<decimal> The profile start angle in degrees.</decimal>
a2	<decimal> The profile stop angle in degrees.</decimal>
СО	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
ра	<decimal> The profile pitch angle in degrees.</decimal>
ra	<decimal> The rotation sweep angle in degrees.</decimal>
т	<integer> The section render mode. An 8-bit encoded integer value that indicates the revolution</integer>
	sections to render.
profile	<boolean> Show profile only (do not extrude).</boolean>

See also

st_rotate_extrude_elongate for description of extrude parameters.

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Example

Figure 42: torus_ep

```
torus_ep(size=[20,15], t=[2,4], r=50, a1=0, a2=180, pa=90, ra=270, co=[0,2]);
```

Definition at line 617 of file shapes3d.scad.

```
6.3.2.9 module torus_rp ( size, core, r, I, t, co, cr = 0, vr, vr1, vr2, pa = 0, ra = 360, m = 255, center = false, profile = false )
```

A rectangular cross-sectional profile revolved about the z-axis.

Parameters

size <vector decimal> The profile size. A vector [x, y] of decimals or a single decimal for (x=y). core <vector decimal> The profile core. A vector [x, y] of decimals or a single decimal for (x=y) r <decimal> The rotation radius.</decimal></vector decimal></vector decimal>	
r <decimal> The rotation radius.</decimal>	
	x=y)
	x=y)
/ <pre>// </pre> // <pre>/ <pre>// <pr< td=""><td></td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	
$t \mid \langle \text{vector} \text{decimal} \rangle$ The profile thickness. A vector [x, y] of decimals or a single decimal for ((=y).
co <vector> Core offset. A vector [x, y] of decimals.</vector>	
cr <decimal> Core z-rotation.</decimal>	
vr <decimal> The profile default corner rounding radius.</decimal>	
vr1 <decimal> The profile outer corner rounding radius.</decimal>	
vr2 <decimal> The profile core corner rounding radius.</decimal>	
vr <vector decimal> The profile default corner rounding radius. A vector [v1r, v2r, v3r, v4]</vector decimal>	r] of
decimals or a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.	
vr1 <vector decimal> The profile outer corner rounding radius. A vector [v1r, v2r, v3r, v4r] of</vector decimal>	deci-
mals or a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.	
vr2 <vector decimal=""> The profile core corner rounding radius. A vector [v1r, v2r, v3r, v4r] of</vector>	deci-
mals or a single decimal for (v1r=v2r=v3r=v4r). Unspecified corners are not rounded.	
pa <decimal> The profile pitch angle in degrees.</decimal>	
ra <decimal> The rotation sweep angle in degrees.</decimal>	
m <integer> The section render mode. An 8-bit encoded integer value that indicates the revo</integer>	ution
sections to render.	

6.3 3D Shapes 79

center	 <boolean> Rotate about profile center.</boolean>
profile	 boolean> Show profile only (do not extrude).

See also

st_rotate_extrude_elongate for description of extrude parameters.

Thickness t

- core = size t; when t and size are given.
- size = core + t; when t and core are given.

Example

Figure 43: torus_rp

```
torus_rp( size=[40,20], core=[35,20], r=40, 1=[90,60], co=[0,2.5], vr=2, center=true );
```

Definition at line 481 of file shapes3d.scad.

```
6.3.2.10 module torus_tp ( vs, vc, r, I, co, cr = 0, vr, vr1, vr2, pa = 0, ra = 360, m = 255, centroid = false, incenter = false, profile = false)
```

A triangular cross-sectional profile revolved about the z-axis.

Parameters

VS	<vector decimal> The size. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal>
VC	<vector decimal> The core. A vector [s1, s2, s3] of decimals or a single decimal for (s1=s2=s3).</vector decimal>
r	<decimal> The rotation radius.</decimal>
1	<pre><vector decimal> The elongation length. A vector [x, y] of decimals or a single decimal for (x=y)</vector decimal></pre>
со	<vector> Core offset. A vector [x, y] of decimals.</vector>
cr	<decimal> Core z-rotation.</decimal>
vr	<vector decimal> The default vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r).

vr1	<vector decimal> The outer vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r).
vr2	<vector decimal> The core vertex rounding radius. A vector [v1r, v2r, v3r] of decimals or a</vector decimal>
	single decimal for (v1r=v2r=v3r).
ра	<decimal> The profile pitch angle in degrees.</decimal>
ra	<decimal> The rotation sweep angle in degrees.</decimal>
m	<integer> The section render mode. An 8-bit encoded integer value that indicates the revolution</integer>
	sections to render.
centroid	<boolean> Rotate about profile centroid.</boolean>
incenter	<boolean> Rotate about profile incenter.</boolean>
profile	<boolean> Show profile only (do not extrude).</boolean>

See also

st_rotate_extrude_elongate for description of extrude parameters.

Example

Figure 44: torus_tp

```
torus_tp( vs=40, vc=30, r=60, co=[0,-4], vr=4, pa=90, ra=270, centroid=true );
```

Note

The outer and inner triangles centroids are aligned prior to the core removal.

Definition at line 550 of file shapes3d.scad.

6.4 Angle 81

6.4 Angle

Angle units and conversions.

Collaboration diagram for Angle:

Files

· file units_angle.scad

Angle units and conversions.

Functions

• function unit_angle_name (units=base_unit_angle)

Return the name of the given angle unit identifier.

• function convert_angle (angle, from=base_unit_angle, to=base_unit_angle)

Convert the angle from from units to to units.

Variables

• base unit angle = "d"

<string> Base unit for angle measurements.

6.4.1 Detailed Description

Angle units and conversions.

These functions allow for angles to be specified with units. Angles specified with units are independent of (base_unit← angle). There are also unit conversion functions for converting from one unit to another.

The table below enumerates the supported unit identifiers and their descriptions.

units id	description
r	radian
d	degree
dms	degree, minute, second

Example

```
include <units_angle.scad>;
base_unit_angle = "d";
```

```
// get base unit name
un = unit_angle_name();

// absolute angle measurements in base unit.
c1 = convert_angle(pi/6, "r");
c2 = convert_angle(pi/4, "r");
c3 = convert_angle(180, "d");
c4 = convert_angle([30, 15, 50], "dms");

// convert between units.
c5 = convert_angle([30, 15, 50], from="dms", to="r");
c6 = convert_angle(0.528205, from="r", to="dms");
```

Result (base angle length = \mathbf{r}):

```
1 ECHO: un = "radian"

2 ECHO: c1 = 0.523599

3 ECHO: c2 = 0.785398

4 ECHO: c3 = 3.14159

5 ECHO: c4 = 0.528205

6 ECHO: c5 = 0.528205

7 ECHO: c6 = [30, 15, 50.102]
```

Result (base_angle_length = **d**):

```
1 ECHO: un = "degree"

2 ECHO: c1 = 30

3 ECHO: c2 = 45

4 ECHO: c3 = 180

5 ECHO: c4 = 30.2639

6 ECHO: c5 = 0.528205

7 ECHO: c6 = [30, 15, 50.102]
```

Result (base angle length = **dms**):

```
1 ECHO: un = "degree, minute, second"
2 ECHO: c1 = [29, 59, 60]
3 ECHO: c2 = [45, 0, 0]
4 ECHO: c3 = [180, 0, 0]
5 ECHO: c4 = [30, 15, 50]
6 ECHO: c5 = 0.528205
7 ECHO: c6 = [30, 15, 50.102]
```

6.4.2 Function Documentation

6.4.2.1 function convert_angle (angle , from = base_unit_angle, to = base_unit_angle)

Convert the angle from from units to to units.

Parameters

angle	<decimal vector> An angle to convert (dms angles are 3-tuple vector [d, m, s]).</decimal vector>
from	<string> The units of the angle to be converted.</string>
to	<string> A units to which the angle should be converted.</string>

Returns

<decimal|vector> The conversion result (dms angles are 3-tuple vector [d, m, s]). Returns 'undef' for identifiers that are not defined.

6.4.2.2 function unit_angle_name (units = base_unit_angle)

Return the name of the given angle unit identifier.

6.4 Angle 83

Parameters

units	<string> An angle unit identifier.</string>

Returns

<string> The units name for the given angle unit identifier. Returns 'undef' for identifiers that are not defined.

6.5 Bitwise Operations

Bitwise binary (base-two) operations.

Collaboration diagram for Bitwise Operations:

Files

• file math_bitwise.scad

Mathematical bitwise binary (base-two) functions.

Functions

function bitwise_is_equal (v, b, t=1)

Test if a base-two bit position of an integer value equals a test bit.

• function bitwise_i2v (v, w=1, bv=1)

Encode an integer value as a base-two vector of bits.

function bitwise_v2i (v)

Decode a base-two vector of bits to an integer value.

function bitwise i2s (v, w=1)

Encode an integer value as a base-two string of bits.

• function bitwise_s2i (v)

Decode a base-two string of bits to an integer value.

function bitwise_and (v1, v2, bv=1)

Base-two bitwise AND operation for integers.

function bitwise_or (v1, v2, bv=1)

Base-two bitwise OR operation for integers.

• function bitwise_xor (v1, v2, bv=1)

Base-two bitwise XOR operation for integers.

function bitwise_not (v, w=1, bv=1)

Base-two bitwise NOT operation for an integer.

• function bitwise_lsh (v, s=1, bm=1, bv=1)

Base-two bitwise left-shift operation for an integer.

function bitwise_rsh (v, s=1)

Base-two bitwise right-shift operation for an integer.

6.5.1 Detailed Description

Bitwise binary (base-two) operations.

See Wikipedia binary numbers and operations for more information.

See validation results.

6.5.2 Function Documentation

6.5.2.1 function bitwise_and (v1, v2, bv = 1)

Base-two bitwise AND operation for integers.

Parameters

v1	<integer> An integer value.</integer>
v2	<integer> An integer value.</integer>
bv	(an internal recursion loop variable).

Returns

<integer> result of the base-two bitwise AND of v1 and v2. Returns undef when v1 or v2 is not an integer.

6.5.2.2 function bitwise_i2s (v, w = 1)

Encode an integer value as a base-two string of bits.

Parameters

V	<integer> An integer value.</integer>
W	<integer> The minimum bit width.</integer>

Returns

<string> of bits base-two encoding of the integer value. Returns **undef** when v or w is not an integer.

6.5.2.3 function bitwise_i2v (v, w = 1, bv = 1)

Encode an integer value as a base-two vector of bits.

Parameters

V	<integer> An integer value.</integer>
W	<integer> The minimum bit width.</integer>
bv	(an internal recursion loop variable).

Returns

<vector> of bits base-two encoding of the integer value. Returns **undef** when v or w is not an integer.

6.5.2.4 function bitwise_is_equal (v, b, t = 1)

Test if a base-two bit position of an integer value equals a test bit.

Parameters

V	<integer> An integer value.</integer>
b	<integer> A base-two bit position.</integer>
t	 bit> The bit test value [0 1].

Returns

<booklean> true when the base-two bit position of the integer value equals t, otherwise returns false.

6.5.2.5 function bitwise_lsh (v , s = 1, bm = 1, bv = 1)

Base-two bitwise left-shift operation for an integer.

Parameters

V	<integer> An integer value.</integer>
s	<integer> The number of bits to shift.</integer>
bm	(an internal recursion loop variable).
bv	(an internal recursion loop variable).

Returns

<integer> result of the base-two bitwise left-shift of v by s bits. Returns undef when v or s is not an integer.

6.5.2.6 function bitwise_not (v, w = 1, bv = 1)

Base-two bitwise NOT operation for an integer.

Parameters

V	<integer> An integer value.</integer>
W	<integer> The minimum bit width.</integer>
bv	(an internal recursion loop variable).

Returns

<integer> result of the base-two bitwise NOT of v. Returns **undef** when v is not an integer.

6.5.2.7 function bitwise_or (v1, v2, bv = 1)

Base-two bitwise OR operation for integers.

Parameters

v1	<integer> An integer value.</integer>
v2	<integer> An integer value.</integer>
bv	(an internal recursion loop variable).

Returns

<integer> result of the base-two bitwise OR of v1 and v2. Returns undef when v1 or v2 is not an integer.

6.5.2.8 function bitwise_rsh (v, s = 1)

Base-two bitwise right-shift operation for an integer.

Parameters

V	<integer> An integer value.</integer>
s	<integer> The number of bits to shift.</integer>

Returns

<integer> result of the base-two bitwise right-shift of v by s bits. Returns undef when v or s is not an integer.

6.5.2.9 function bitwise_s2i (v)

Decode a base-two string of bits to an integer value.

Parameters

V	<string> A value encoded as a base-two string of bits.</string>
---	---

Returns

<integer> value encoding of the base-two string of bits. Returns **undef** when v is not a string of bit values.

6.5.2.10 function bitwise_v2i (v)

Decode a base-two vector of bits to an integer value.

Parameters

Γ	V	<vector> A value encoded as a base-two vector of bits.</vector>
	=	

Returns

<integer> value encoding of the base-two vector of bits. Returns **undef** when v is not a vector of bit values.

6.5.2.11 function bitwise_xor (v1, v2, bv = 1)

Base-two bitwise XOR operation for integers.

Parameters

v1	<integer> An integer value.</integer>
v2	<integer> An integer value.</integer>
bv	(an internal recursion loop variable).

Returns

<integer> result of the base-two bitwise XOR of v1 and v2. Returns **undef** when v1 or v2 is not an integer.

6.6 Console

Console message logging.

Collaboration diagram for Console:

Files

· file console.scad

Message logging functions.

Functions

• module log_echo (m)

Output message to console.

• module log_debug (m)

Output diagnostic message to console.

• module log_info (m)

Output information message to console.

• module log_warn (m)

Output warning message to console.

• module log_error (m)

Output error message to console.

6.6.1 Detailed Description

Console message logging.

Example

```
use <console.scad>;
$log_debug = true;
message = "console log message";

// general
log_echo( message );

// debugging
log_debug( message );
log_debug( message, $log_debug = false );

// information
log_info( message );

// warning
```

6.6 Console 89

```
log_warn( message );
// error
log_error( message );
```

Result

```
1 ECHO: "console log message"
2 ECHO: "[ DEBUG ] root(); console log message"
3 ECHO: "[ INFO ] root(); console log message"
4 ECHO:
5 ECHO: "root()"
7 ECHO: "# [ WARNING ] console log message #"
9 ECHO:
10 ECHO: "root()"
11 ECHO: "###################################
12 ECHO: "###################################
13 ECHO: "##
14 ECHO: "## [ ERROR ] console log message ##"
15 ECHO: "##
16 ECHO: "###################################
17 ECHO: "###################################
```

6.6.2 Function Documentation

6.6.2.1 module log_debug (m)

Output diagnostic message to console.

Parameters

```
m <string> An output message.
```

When \$log_debug == true, message is written to the console. When false, output is not generated.

Definition at line 77 of file console.scad.

```
6.6.2.2 module log_echo ( m )
```

Output message to console.

Parameters

```
m <string> An output message.
```

Definition at line 61 of file console.scad.

```
6.6.2.3 module log_error ( m )
```

Output error message to console.

Parameters

```
m <string> An output message.
```

Output an error message to the console. Ideally, rendering should halt and the script should exit. However, no suitable abort function exists. To alert of the critical error, the error message is also rendered graphically.

Definition at line 138 of file console.scad.

```
6.6.2.4 module log_info ( m )
```

Output information message to console.

Parameters

т	<string> An output message.</string>
---	--------------------------------------

Definition at line 94 of file console.scad.

6.6.2.5 module log_warn (m)

Output warning message to console.

Parameters

m <string> An output message.</string>	
--	--

Definition at line 109 of file console.scad.

6.7 Constants 91

6.7 Constants

General design constants.

Collaboration diagram for Constants:

Modules

• Euclidean

Euclidean 2D/3D space mapping.

General

General design constants.

• System

System/Program limits.

Files

· file constants.scad

Mechanical design constants.

6.7.1 Detailed Description

General design constants.

6.8 Data

Data values and reference.

Collaboration diagram for Data:

Modules

• Console

Console message logging.

Datatable

Data table encoding and lookup.

• Map

Mapped data access via key-value pairs.

Files

· file console.scad

Message logging functions.

• file map.scad

Mapped key-value pair data access.

· file table.scad

Data table encoding and lookup.

6.8.1 Detailed Description

Data values and reference.

6.9 Datatable 93

6.9 Datatable

Data table encoding and lookup.

Collaboration diagram for Datatable:

Files

· file table.scad

Data table encoding and lookup.

Functions

function table_get_row_idx (rows, row_id)

Get the index for a table row identifier.

function table_get_row (rows, row_id)

Get the row for a table row identifier.

function table_get_col_idx (cols, col_id)

Get the index for a table column identifier.

function table_get_col (cols, col_id)

Get the column for a table column identifier.

function table_get (rows, cols, row_id, col_id)

Get the value for a table row and column identifier.

function table_get_row_cols (rows, cols, col_id)

Form a vector from the specified column of each table row.

function table_get_row_ids (rows)

Form a vector of each table row identifier.

function table_exists (rows, cols, row_id, col_id)

Test the existence of a table row and column identifier.

function table_size (rows, cols)

Get the size of a table.

• module table_check (rows, cols, verbose=false)

Perform some basic validation/checks on a table.

module table_dump (rows, cols, rows_sel, cols_sel, number=true)

Dump a table to the console.

function table_copy (rows, cols, rows_sel, cols_sel)

Create a copy of select rows and columns of a table.

• function table_sum (rows, cols, rows_sel, cols_sel)

Sum select rows and columns of a table.

6.9.1 Detailed Description

Data table encoding and lookup.

Example

```
use
          <table.scad>;
base unit length = "mm";
table_cols =
[ // id, description
  ["id",
            "row identifier"],
   ["ht",
             "head type [r|h|s]"],
  ["td",
["t1",
            "thread diameter"],
            "thread length"],
   ["hd", "head diameter"],
   ["hl",
             "head length"],
           "hex nut flat-to-flat width"],
   ["nd",
   ["nl", "hex nut length"]
1:
table_rows =
  // id, ht, td, tl, hd, hl, nd, nl
["m3r08r", "r", 3.000, 8.00, 5.50, 3.000, 5.50, convert_length(1.00, "in")],
["m3r14r", "r", 3.000, 14.00, 5.50, 3.000, 5.50, convert_length(1.25, "in")],
["m3r16r", "r", 3.000, 16.00, 5.50, 3.000, 5.50, convert_length(1.50, "in")],
["m3r20r", "r", 3.000, 20.00, 5.50, 3.000, 5.50, convert_length(1.75, "in")]
table_check( table_rows, table_cols, true );
table_dump( table_rows, table_cols );
m3r16r_tl = table_get( table_rows, table_cols, "m3r16r", "tl" );
if ( table_exists( cols=table_cols, col_id="nl" ) )
  echo ( "metric 'nl' available" );
table_ids = table_get_row_ids( table_rows );
table_cols_tl = table_get_row_cols( table_rows, table_cols, "tl" );
echo ( table_ids=table_ids );
echo ( table_cols_tl=table_cols_tl );
tnew = table_copy( table_rows, table_cols, cols_sel=["tl", "nl"] );
tsum = table_sum( table_rows, table_cols, cols_sel=["t1", "n1"] );
echo ( m3r16r_t1=m3r16r_t1 );
echo ( tnew=tnew );
echo ( tsum=tsum );
```

Result

```
1 ECHO: "[ INFO ] table_check(); begin table check"
2 ECHO: "[ INFO ] table_check(); row identifier found at column zero."
3 ECHO: "[ INFO ] table_check(); checking row column counts."
4 ECHO: "[ INFO ] table_check(); checking for repeat column identifiers."
5 ECHO: "[ INFO ] table_check(); checking for repeat row identifiers."
6 ECHO: "[ INFO ] table_check(); table size: 4 rows by 8 columns."
7 ECHO: "[ INFO ] table_check(); end table check" 8 ECHO: ""
9 ECHO: "row: 0"
10 ECHO: "[m3r08r] [id] (row identifier)
                                                        = [m3r08r]"
11 ECHO: "[m3r08r] [ht] (head type [r|h|s])
                                                       = [r]"
                                                        = [3]"
12 ECHO: "[m3r08r] [td] (thread diameter)
13 ECHO: "[m3r08r] [tl] (thread length)
                                                        = [8]"
14 ECHO: "[m3r08r] [hd] (head diameter)
                                                       = [5.5]"
15 ECHO: "[m3r08r] [h1] (head length)
                                                        = [3]"
16 ECHO: "[m3r08r] [nd] (hex nut flat-to-flat width) = [5.5]"
17 ECHO: "[m3r08r] [nl] (hex nut length)
                                                       = [25.4]"
18 ECHO: ""
19 ECHO: "row: 1"
20 ECHO: "[m3r14r] [id] (row identifier)
                                                       = [m3r14r]"
21 ECHO: "[m3r14r] [ht] (head type [rh|s])
22 ECHO: "[m3r14r] [td] (thread diameter)
                                                       = [r]"
                                                       = [3]"
23 ECHO: "[m3r14r] [t1] (thread length)
                                                        = [14]"
```

6.9 Datatable 95

```
24 ECHO: "[m3r14r] [hd] (head diameter)
25 ECHO: "[m3r14r] [hl] (head length)
26 ECHO: "[m3r14r] [nd] (hex nut flat-to-flat width) = [5.5]"
27 ECHO: "[m3r14r] [n1] (hex nut length) = [31.75]"
28 ECHO: ""
29 ECHO: "row: 2"
30 ECHO: "[m3r16r] [id] (row identifier)
31 ECHO: "[m3r16r] [ht] (head type [r|h|s])
32 ECHO: "[m3r16r] [td] (thread diameter)
33 ECHO: "[m3r16r] [tl] (thread length)
                                                           = [16]"
34 ECHO: "[m3r16r] [hd] (head diameter)
35 ECHO: "[m3r16r] [h1] (head length)
36 ECHO: "[m3r16r] [nd] (hex nut flat-to-flat width) = [5.5]"
37 ECHO: "[m3r16r] [n1] (hex nut length) = [38.1]"
38 ECHO: ""
39 ECHO: "row: 3"
40 ECHO: "[m3r20r] [id] (row identifier)
                                                           = [m3r20r]"
41 ECHO: "[m3r20r] [ht] (head type [r|h|s])
                                                           = [r]"
42 ECHO: "[m3r20r] [td] (thread diameter)
                                                           = [3]"
43 ECHO: "[m3r20r] [t1] (thread length)
                                                           = [20]"
44 ECHO: "[m3r20r] [hd] (head diameter)
                                                           = [5.5]"
45 ECHO: "[m3r20r] [h1] (head length)
                                                           = [3]"
46 ECHO: "[m3r20r] [nd] (hex nut flat-to-flat width) = [5.5]"
47 ECHO: "[m3r20r] [nl] (hex nut length) = [44.45
                                                           = [44.45]"
48 ECHO: ""
49 ECHO: "table size: 4 rows by 8 columns."
50 ECHO: "metric 'nl' available"
51 ECHO: table_ids = ["m3r08r", "m3r14r", "m3r16r", "m3r20r"]
52 ECHO: table_cols_t1 = [8, 14, 16, 20]
53 ECHO: m3r16r_t1 = 16
54 ECHO: tnew = [[8, 25.4], [14, 31.75], [16, 38.1], [20, 44.45]]
55 ECHO: tsum = [58, 139.7]
```

6.9.2 Function Documentation

6.9.2.1 module table_check (rows , cols , verbose = false)

Perform some basic validation/checks on a table.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
verbose	 <boolean> Be verbose during check.</boolean>

Check that: (1) the first table column identifier is 'id'. (2) Make sure that each row has the same number of columns as defined in the columns vector. (3) Make sure that there are no repeating column identifiers. (4) Make sure that there are no repeating row identifiers.

Definition at line 254 of file table.scad.

```
6.9.2.2 function table_copy ( rows , cols , rows_sel , cols_sel )
```

Create a copy of select rows and columns of a table.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
rows_sel	<1d-vector> A n-tuple vector of row identifier to select.
cols_sel	<1d-vector> A n-tuple vector of column identifier to select.

Returns

<2d-vector> The selected rows and columns of the table.

6.9.2.3 $\,$ module table_dump (rows , cols , rows_sel , cols_sel , number = true)

Dump a table to the console.

6.9 Datatable 97

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
rows_sel	<1d-vector> A n-tuple vector of row identifier to select.
cols_sel	<1d-vector> A n-tuple vector of column identifier to select.
number	<boolean> Number the table rows.</boolean>

Output each table row to the console. To output only select rows and columns, assign the desired identifiers to $rows \leftarrow _sel$ and $cols_sel$. For example to output only the column identifiers 'c1' and 'c2', assign $cols_sel = ["c1", "c2"]$.

Definition at line 337 of file table.scad.

6.9.2.4 function table_exists (rows , cols , row_id , col_id)

Test the existence of a table row and column identifier.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
row_id	<string> The row identifier string to locate.</string>
col_id	<string> The column identifier string to locate.</string>

Returns

true if the row and column identifier exists, otherwise returns false.

6.9.2.5 function table_get (rows , cols , row_id , col_id)

Get the value for a table row and column identifier.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
row_id	<string> The row identifier string to locate.</string>
col_id	<string> The column identifier string to locate.</string>

Returns

<decimal|string> The value at the located row_id and col_id. If it does not exists, returns undef.

6.9.2.6 function table_get_col (cols , col_id)

Get the column for a table column identifier.

Parameters

cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
col_id	<string> The column identifier string to locate.</string>

Returns

<vector> The column where the row identifier is located. If the identifier does not exists, returns undef.

6.9.2.7 function table_get_col_idx (cols , col_id)

Get the index for a table column identifier.

6.9 Datatable 99

Parameters

cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
col_id	<string> The column identifier string to locate.</string>

Returns

<decimal> The column index where the identifier is located. If the identifier does not exists, returns empty_v.

6.9.2.8 function table_get_row (rows , row_id)

Get the row for a table row identifier.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
row_id	<string> The row identifier string to locate.</string>

Returns

<vector> The row where the row identifier is located. If the identifier does not exists, returns undef.

6.9.2.9 function table_get_row_cols (rows , cols , col_id)

Form a vector from the specified column of each table row.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
col_id	<string> The column identifier string.</string>

Returns

<vector> The vector formed by selecting the col_id for each row in the table. If column does not exists, returns **undef**.

6.9.2.10 function table_get_row_ids (rows)

Form a vector of each table row identifier.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
------	---

Returns

<vector> The vector of table row identifiers. If column "id" does not exists, returns undef.

Note

This functions assumes the first element of each table row to be the row identifier, as enforced by the table_check(). As an alternative, the function table_get_row_cols(), of the form table_get_row_cols(rows, cols, "id"), may be used without this assumption.

6.9.2.11 function table_get_row_idx (rows , row_id)

Get the index for a table row identifier.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
row_id	<string> The row identifier string to locate.</string>

Returns

<decimal> The row index where the identifier is located. If the identifier does not exists, returns empty_v.

6.9.2.12 function table_size (rows , cols)

Get the size of a table.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.

Returns

<decimal> The table size.

The size is reported as: (1) The number of rows when only the rows parameter is specified. (2) The number of columns when only the rows parameter is specified. (3) The (rows * columns) when both parameters are specified.

6.9.2.13 function table_sum (rows , cols , rows_sel , cols_sel)

Sum select rows and columns of a table.

Parameters

rows	<2d-vector> A two dimensional vector (r-tuple x c-tuple) containing the table rows.
cols	<2d-vector> A two dimensional vector (c-tuple x 1-tuple) containing the table columns.
rows_sel	<1d-vector> A vector n-tuple of row identifier to select.
cols_sel	<1d-vector> A vector n-tuple of column identifier to select.

Returns

<1d-vector> The sum of the selected rows and columns of the table.

6.10 Designs 101

6.10 Designs

Standalone parametric designs.

Standalone parametric designs.

6.11 Euclidean

Euclidean 2D/3D space mapping.

Collaboration diagram for Euclidean:

Files

· file constants.scad

Mechanical design constants.

Variables

• x axis vi = 0

The vector index for the x-coordinate of a vector.

y_axis_vi = 1

The vector index for the y-coordinate of a vector.

• z_axis_vi = 2

The vector index for the z-coordinate of a vector.

• origin2d = [0, 0]

The origin coordinates in 2-dimensional Euclidean space.

• x_axis2d_uv = [1, 0]

The unit vector of the positive x-axis in 2-dimensional Euclidean space.

• y_axis2d_uv = [0, 1]

The unit vector of the positive y-axis in 2-dimensional Euclidean space.

• origin3d = [0, 0, 0]

The origin coordinates in 3-dimensional Euclidean space.

• $x_axis3d_uv = [1, 0, 0]$

The unit vector of the positive x-axis in 3-dimensional Euclidean space.

• y_axis3d_uv = [0, 1, 0]

The unit vector of the positive y-axis in 3-dimensional Euclidean space.

• z_axis3d_uv = [0, 0, 1]

The unit vector of the positive z-axis in 3-dimensional Euclidean space.

6.11 Euclidean 103

Euclidean 2D/3D space mapping.

6.12 Extrusions

Shape Extrusions.

Collaboration diagram for Extrusions:

Files

· file transform.scad

Shape transformation functions.

Functions

• module st_rotate_extrude (r, pa=0, ra=360, profile=false)

Revolve the 2D shape about the z-axis.

• module st_rotate_extrude_elongate (r, l, pa=0, ra=360, m=255, profile=false)

Revolve the 2D shape about the z-axis with linear elongation.

• module st_linear_extrude_scale (h, center=false)

Linearly extrude 2D shape with extrusion upper and lower scaling.

6.12.1 Detailed Description

Shape Extrusions.

6.12.2 Function Documentation

6.12.2.1 module st_linear_extrude_scale (h , center = false)

Linearly extrude 2D shape with extrusion upper and lower scaling.

Parameters

h < vector decimal > A vector of decimals or a single decimal to specify simple extrusion height.

6.12 Extrusions 105

center	<boolean> Center extrusion about origin.</boolean>	

When h is a decimal, the shape is extruded linearly as normal. To scale the upper and lower slices of the extrusion, h must be assigned a vector with a minimum of three decimal values as described in the following table.

sym	h[n]	default	description
h	0		total extrusion height
n1	1		(+z) number of scaled
			extrusion slices
h1	2		(+z) extrusion scale
			percentage
x1	3	-h1	(+z) x-dimension scale
			percentage
y1	4	x1	(+z) y-dimension scale
			percentage
n2	5	n1	(-z) number of scaled
			extrusion slices
h2	6	h1	(-z) extrusion scale
			percentage
x2	7	x1	(-z) x-dimension scale
			percentage
y2	8	y1	(-z) y-dimension scale
			percentage

Example

Figure 45: st_linear_extrude_scale

st_linear_extrude_scale([5,10,15,-5], center=true) square([20,15], center=true);

Note

When symmetrical scaling is desired, shape must be centered about origin.

Definition at line 230 of file transform.scad.

6.12.2.2 module st_rotate_extrude (r, pa = 0, ra = 360, profile = false)

Revolve the 2D shape about the z-axis.

Parameters

r	<decimal> The rotation radius.</decimal>
ра	<decimal> The profile pitch angle in degrees.</decimal>
ra	<decimal> The rotation sweep angle in degrees.</decimal>
profile	<boolean> Show profile only (do not extrude).</boolean>

Example

Figure 46: st_rotate_extrude

1 st_rotate_extrude(r=50, pa=45, ra=270) square([10,5], center=true);

Definition at line 103 of file transform.scad.

6.12.2.3 module st_rotate_extrude_elongate (r, I, pa = 0, ra = 360, m = 255, profile = false)

Revolve the 2D shape about the z-axis with linear elongation.

Parameters

r	<decimal> The rotation radius.</decimal>
1	<pre><vector decimal=""> The elongation length. A vector [x, y] of decimals or a single decimal for (x=y)</vector></pre>
ра	<decimal> The profile pitch angle in degrees.</decimal>
ra	<decimal> The rotation sweep angle in degrees.</decimal>
m	<integer> The section render mode. An 8-bit encoded integer value that indicates the revolution</integer>
	sections to render. Bit values 1 enables the corresponding section and bit values 0 are disabled.
	Sections are assigned to the bit position in counter-clockwise order.
profile	 boolean> Show profile only (do not extrude).

Example

6.12 Extrusions 107

Figure 47: st_rotate_extrude_elongate

```
st_rotate_extrude_elongate( r=25, 1=[5, 50], pa=45, m=31 ) square( [10,5], center=true );
```

Note

When elongating (1 > 0), ra is ignored. However, m may be used to control which complete revolution section to render.

Definition at line 139 of file transform.scad.

6.13 General

General design constants.

Collaboration diagram for General:

Files

· file constants.scad

Mechanical design constants.

Variables

- eps = 0.01
 - <decimal> Epsilon, small distance to deal with overlaping shapes
- pi = 3.1415926535897932384626433832795
 - <decimal> The ratio of a circle's circumference to its diameter
- tau = 2*pi
 - <decimal> The ratio of a circle's circumference to its radius

6.13.1 Detailed Description

General design constants.

6.14 Length 109

6.14 Length

Length units and conversions.

Collaboration diagram for Length:

Files

· file units_length.scad

Length units and conversions.

Functions

• function unit_length_name (units=base_unit_length, d=1, w=false)

Return the name of the given unit identifier with dimension.

• function convert_length (value, from=base_unit_length, to=base_unit_length, d=1)

Convert the value from from units to to units with dimensions.

Variables

• base_unit_length = "mm"

<string> Base unit for length measurements.

6.14.1 Detailed Description

Length units and conversions.

These functions allow for lengths to be specified with units. Lengths specified with units are independent of (base_
unit_length). There are also unit conversion functions for converting from one unit to another.

The table below enumerates the supported unit identifiers and their descriptions.

units id	description
pm	picometer
nm	nanometer
um	micrometer
mm	millimeter
cm	centimeter

dm	decimeter
m	meter
km	kilometer
thou, mil	thousandth of an inch
in	inch
ft	feet
yd	yard
mi	mile

Example

```
include <units_length.scad>;
     base_unit_length = "mm";
     // get base unit name
     un = unit_length_name();
     // absolute length measurements in base unit.
     c1 = convert_length(1/8, "in");
c2 = convert_length(3.175, "mm");
     c3 = convert_length(25, "mil");
c4 = convert_length(1, "ft", d=3);
     // convert between units.
     c5 = convert_length(10, from="mil", to="in");
c6 = convert_length(10, from="ft", to="mm");
Result (base_unit_length = mm):
1 ECHO: un = "millimeter"
```

```
2 ECHO: c1 = 3.175
3 \text{ ECHO: } c2 = 3.175
4 ECHO: c3 = 0.635
5 \text{ ECHO: } c4 = 2.83168e+07
6 ECHO: c5 = 0.01
7 \text{ ECHO: } c6 = 3048
```

Result (base_unit_length = **cm**):

```
1 ECHO: un = "centimeter"
2 \text{ ECHO: } c1 = 0.3175
3 \text{ ECHO: } c2 = 0.3175
4 \text{ ECHO: } c3 = 0.0635
5 \text{ ECHO: } c4 = 28316.8
6 ECHO: c5 = 0.01
7 ECHO: c6 = 3048
```

Result (base_unit_length = **mil**):

```
1 ECHO: un = "thousandth"
2 \text{ ECHO: } c1 = 125
3 \text{ ECHO: } c2 = 125
4 ECHO: c3 = 25
5 ECHO: c4 = 1.728e+12
6 ECHO: c5 = 0.01
7 ECHO: c6 = 3048
```

Result (base_unit_length = in):

```
1 ECHO: un = "inch"
2 \text{ ECHO: } c1 = 0.125
3 \text{ ECHO: } c2 = 0.125
4 \text{ ECHO: } c3 = 0.025
5 ECHO: c4 = 1728
6 ECHO: c5 = 0.01
7 \text{ ECHO: } c6 = 3048
```

6.14 Length 111

Example (equivalent lengths)

Figure 48: Unit Lengths

6.14.2 Function Documentation

6.14.2.1 function convert_length (value , from = base_unit_length, to = base_unit_length, d = 1)

Convert the value from from units to to units with dimensions.

Parameters

value	<decimal> A value to convert.</decimal>
from	<string> The units of the value to be converted.</string>
to	<string> A units to which the value should be converted.</string>
d	<pre><decimal> The dimension set to one of [1 2 3].</decimal></pre>

Returns

<decimal> The conversion result. Returns 'undef' for identifiers or dimensions that are not defined.

6.14.2.2 function unit_length_name (units = base_unit_length, d = 1, w = false)

Return the name of the given unit identifier with dimension.

Parameters

W	<boolean> true: use word format, false: use symbol format.</boolean>
units	<string> A length unit identifier.</string>
d	<decimal $>$ A dimension set to one of [1 2 3].

Returns

<string> The units name for the given length unit identifier with is specified dimension. Returns 'undef' for identifiers or dimensions that are not defined.

6.15 Map

Mapped data access via key-value pairs.

Collaboration diagram for Map:

Files

· file map.scad

Mapped key-value pair data access.

Functions

function map get idx (map, key)

Return the index for the storage location of a map key-value pair.

function map_exists (map, key)

Test if a key exists in a map.

• function map_get (map, key)

Get the value associated with a map key.

function map_get_keys (map)

Get a vector of the map entry identifier keys.

function map_get_values (map)

Get a vector of the map entry values.

• function map_size (map)

Get the number of key-value pairs stored in a map.

• module map_check (map, verbose=false)

Perform some basic validation/checks on a map.

• module map_dump (map, sort=true, number=true, p=3)

Dump each map key-value pair to the console.

6.15.1 Detailed Description

Mapped data access via key-value pairs.

Example

6.15 Map 113

```
["screw10", [10, 10, -12]]],
                   ["top", "front", "rear"]],
[21, 5, 0]],
  ["config",
   ["version",
  ["runid",
map_check(map, true);
echo( str("is part0 = ", map_exists(map, "part0")) );
echo( str("is part1 = ", map_exists(map, "part1")) );
p1 = map_get(map, "part1");
echo( c=second(p1) );
keys=map_get_keys(map);
parts = delete(keys, mv=["config", "version", "runid"]);
for (p = parts)
  echo
    n=p,
    p=first(map_get(map, p)),
    l=second(map_get(map, p))
map dump (map);
```

Result

```
1 ECHO: "[ INFO ] map_check(); begin map check"
2 ECHO: "[ INFO ] map_check(); checking map format and keys."
3 ECHO: "[ INFO ] map_check(); map size: 6 entries."
4 ECHO: "[ INFO ] map_check(); end map check"
5 ECHO: "is part0 = false"
6 ECHO: "is part1 = true"
7 ECHO: c = [10, 11, 13]
8 ECHO: n = "part1", p = "screw10", l = [10, 11, 13]
9 ECHO: n = "part2", p = "screw10", l = [20, 21, 30]
10 ECHO: n = "part3", p = "screw10", l = [10, 10, -12]
11 ECHO: "003: 'config' = '["top", "front", "rear"]'"
12 ECHO: "000: 'part1' = '["screw10", [10, 11, 13]]'"
13 ECHO: "001: 'part2' = '["screw10", [20, 21, 30]]'"
14 ECHO: "002: 'part3' = '["screw10", [10, 10, -12]]'"
15 ECHO: "004: 'version' = '[21, 5, 0]'"
17 ECHO: "map size: 6 entries."
```

6.15.2 Function Documentation

6.15.2.1 module map_check (map , verbose = false)

Perform some basic validation/checks on a map.

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.
verbose	 <boolean> Be verbose during check.</boolean>

Check that: (1) each entry has key-value 2-tuple, (2) each key is a string, and (3) key identifiers are unique.

Definition at line 169 of file map.scad.

```
6.15.2.2 module map_dump ( map, sort = true, number = true, p = 3 )
```

Dump each map key-value pair to the console.

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.
sort	<boolean> Sort the output by key.</boolean>
number	<boolean> Output index number.</boolean>
р	<integer> Number of places for zero-padded numbering.</integer>

Definition at line 245 of file map.scad.

6.15.2.3 function map_exists (map , key)

Test if a key exists in a map.

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.
key	<string> A map entry identifier.</string>

Returns

<boolean> true when the key exists and false otherwise.

6.15.2.4 function map_get (map , key)

Get the value associated with a map key.

Parameters

ſ	тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
		elements.
ſ	key	<string> A map entry identifier.</string>

Returns

The map value associated with key. Returns **undef** if key does not exists.

6.15.2.5 function map_get_idx (map , key)

Return the index for the storage location of a map key-value pair.

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.
key	<string> A map entry identifier.</string>

Returns

<integer> The index of the value associated key in the map. Returns **undef** if key is not a string or does not exists.

6.15.2.6 function map_get_keys (map)

Get a vector of the map entry identifier keys.

6.15 Map 115

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.

Returns

<vector> A vector of keys that exist in the associative map.

Note

Uses function eselect to select the first column of the vector defining the map.

6.15.2.7 function map_get_values (map)

Get a vector of the map entry values.

Parameters

m	пар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
		elements.

Returns

<vector> A vector of values stored in the associative map.

Note

Uses function eselect to select the last column of the vector defining the map.

6.15.2.8 function map_size (map)

Get the number of key-value pairs stored in a map.

Parameters

тар	<2d-vector> A two dimensional vector (2-tuple x n-tuple) containing an associative map with n
	elements.

Returns

<integer> The number of key-value pairs stored in the map.

6.16 Math

Mathematical functions.

Collaboration diagram for Math:

Modules

• Bitwise Operations

Bitwise binary (base-two) operations.

• Point, Vector and Plane

Point, vector, and plane computations.

• Triangle Solutions

Triangle computations.

· Variable Tests

Variable property test primitives.

6.16 Math 117

Vector Operations

Vector operation primitives.

• n-gon Solutions

Regular n-sided polygon computations.

Files

· file primitives.scad

Mathematical primitive functions.

· file math.scad

Mathematical functions.

• file math_bitwise.scad

Mathematical bitwise binary (base-two) functions.

6.16.1 Detailed Description

Mathematical functions.

6.17 Parts

Parametric parts/components.

Parametric parts/components.

6.18 Point, Vector and Plane

Point, vector, and plane computations.

Collaboration diagram for Point, Vector and Plane:

Files

· file math.scad

Mathematical functions.

Functions

function distance_pp (p1, p2)

Compute the distance between two points in a Euclidean 1, 2, or 3D-space.

function dot_vv (v1t, v2t, v1i, v2i)

Compute the dot product of two vectors.

• function cross_vv (v1t, v2t, v1i, v2i)

Compute the cross product of two vectors in a Euclidean 3D-space (2D).

function striple_vvv (v1t, v2t, v3t, v1i, v2i, v3i)

Compute scalar triple product of two vectors in a Euclidean 3D-space.

function angle_vv (v1t, v2t, v1i, v2i)

Compute the angle between two vectors in a Euclidean 2 or 3D-space.

function angle_vvn (v1t, v2t, nvt, v1i, v2i, nvi)

Compute the angle between two vectors in a Euclidean 3D-space.

function unit_v (vt, vi)

Compute the normalized unit vector for a 1, 2, or 3 term vector.

function are_coplanar_vvv (v1t, v2t, v3t, v1i, v2i, v3i)

Test if three vectors are coplanar in Euclidean 3D-space.

6.18.1 Detailed Description

Point, vector, and plane computations.

See validation results.

6.18.2 Function Documentation

6.18.2.1 function angle_vv (v1t , v2t , v1i , v2i)

Compute the angle between two vectors in a Euclidean 2 or 3D-space.

Parameters

v1t	<vector> Vector 1 head. A 2 or 3-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. A 2 or 3-tuple of coordinates.</vector>
v1i	<vector> Vector 1 tail. A 2 or 3-tuple of coordinates.</vector>
v2i	<vector> Vector 2 tail. A 2 or 3-tuple of coordinates.</vector>

Returns

<decimal> The angle between the two vectors in degrees. Returns 'undef' when vector coordinates do not have same number of terms or when the vectors do not intersect.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

Note

For 3D vectors, a normal vector is required to uniquely identify the perpendicular plane and axis of rotation for the two vectors. This function calculates the positive angle, and the plane and axis of rotation will be that which fits this assumed positive angle.

See also

```
angle vvn().
```

6.18.2.2 function angle_vvn (v1t, v2t, nvt, v1i, v2i, nvi)

Compute the angle between two vectors in a Euclidean 3D-space.

Parameters

v1t	<vector> Vector 1 head. A 3-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. A 3-tuple of coordinates.</vector>
nvt	<vector> Normal vector head. A 3-tuple of coordinates.</vector>
v1i	<vector> Vector 1 tail. A 3-tuple of coordinates.</vector>
v2i	<vector> Vector 2 tail. A 3-tuple of coordinates.</vector>
nvi	<vector> Normal vector tail. A 3-tuple of coordinates.</vector>

Returns

<decimal> The angle between the two vectors in degrees. Returns **'undef'** when vector coordinates do not have same number of terms or when the vectors do not intersect.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

See also

angle_vv().

6.18.2.3 function are_coplanar_vvv (v1t , v2t , v3t , v1i , v2i , v3i)

Test if three vectors are coplanar in Euclidean 3D-space.

Parameters

v1t	<vector> Vector 1 head. A 3-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. A 3-tuple of coordinates.</vector>
v3t	<vector> Vector 3 head. A 3-tuple of coordinates.</vector>
v1i	<vector> Vector 1 tail. A 3-tuple of coordinates.</vector>
v2i	<vector> Vector 2 tail. A 3-tuple of coordinates.</vector>
v3i	<vector> Vector 3 tail. A 3-tuple of coordinates.</vector>

Returns

<boolean> true when all three vectors are coplanar, and false otherwise.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

See Wikipedia for more information.

Note

Coplanar vectors must all be within the same plane. However, this function can test if vectors are in a plane that is parallel to a coplanar plane by using non-zero vector tails.

6.18.2.4 function cross_vv (v1t , v2t , v1i , v2i)

Compute the cross product of two vectors in a Euclidean 3D-space (2D).

Parameters

v1t	<vector> Vector 1 head. A 2 or 3-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. A 2 or 3-tuple of coordinates.</vector>
v1i	<vector> Vector 1 tail. A 2 or 3-tuple of coordinates.</vector>
v2i	<vector> Vector 2 tail. A 2 or 3-tuple of coordinates.</vector>

Returns

<decimal> The cross product of the two vectors. Returns 'undef' when vector coordinates do not have same number of terms, n.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

See Wikipedia cross and determinant for more information.

Note

Although the cross product of two vectors is defined only in 3D space, this function will return the 2x2 determinant for a 2D vector.

6.18.2.5 function distance_pp (p1 , p2)

Compute the distance between two points in a Euclidean 1, 2, or 3D-space.

Parameters

p1	<vector> A 1, 2, or 3-tuple of coordinates.</vector>
p2	<vector> A 1, 2, or 3-tuple of coordinates.</vector>

Returns

<decimal> The distance between the two points. Returns **'undef'** when x and y do not have same number of terms or for n-tuple where n>3.

When p2 is not given, it is assumed to be at the origin.

Compute the dot product of two vectors.

Parameters

v1t	<vector> Vector 1 head. An n-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. An n-tuple of coordinates.</vector>
v1i	<vector> Vector 1 tail. An n-tuple of coordinates.</vector>
v2i	<vector> Vector 2 tail. An n-tuple of coordinates.</vector>

Returns

<decimal> The dot product of the two vectors. Returns 'undef' when vector coordinates do not have same number of terms, n.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

See Wikipedia for more information.

Compute scalar triple product of two vectors in a Euclidean 3D-space.

Parameters

v1t	<vector> Vector 1 head. A 2 or 3-tuple of coordinates.</vector>
v2t	<vector> Vector 2 head. A 2 or 3-tuple of coordinates.</vector>
v3t	<vector> Vector 3 head. A 2 or 3-tuple of coordinates.</vector>
v1i	<vector> Vector 0 Head. 7/2 of 0 taple of coordinates. <vector> Vector 1 tail. A 2 or 3-tuple of coordinates.</vector></vector>
v2i	· · · · · · · · · · · · · · · · · · ·
	<vector> Vector 2 tail. A 2 or 3-tuple of coordinates.</vector>
v3i	<vector> Vector 3 tail. A 2 or 3-tuple of coordinates.</vector>

Returns

<decimal> The scalar triple product of the three vectors. Returns 'undef' when vector coordinates do not have same number of terms, n.

Each vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

$$[v1, v2, v3] = v1 * (v2 x v3)$$

See Wikipedia for more information.

Warning

For 2D vectors, this function produces a 2D *non-scalar* vector result. The cross produce function computes the 2x2 determinant of the 2D vectors $(v2 \times v3)$, which is a scalar value, and this value is *multiplied* by v1, which results in a 2D vector.

6.18.2.8 function unit_v (vt, vi)

Compute the normalized unit vector for a 1, 2, or 3 term vector.

Parameters

vt	<vector> Vector head. A 1, 2, or 3-tuple of coordinates.</vector>
vi	<vector> Vector tail. A 1, 2, or 3-tuple of coordinates.</vector>

Returns

<vector> The vector normalized to its unit-vector. Returns **'undef'** when vector coordinates do not have same number of terms or for n-tuple where n>3.

The vector may be specified by both its head and tail coordinates. When specified by head coordinate only, the tail is assumed to be at origin.

6.19 Replications

Shape Replications and distribution.

Collaboration diagram for Replications:

Files

· file transform.scad

Shape transformation functions.

Functions

- module st_radial_copy (n, r=1, angle=true, move=false)
 Distribute copies of a 2D or 3D shape equally about a z-axis radius.
- module st_cartesian_copy (grid, incr, copy=1, center=false)

Distribute copies of 2D or 3D shapes about Cartesian grid.

6.19.1 Detailed Description

Shape Replications and distribution.

6.19.2 Function Documentation

6.19.2.1 module st_cartesian_copy (grid , incr , copy = 1, center = false)

Distribute copies of 2D or 3D shapes about Cartesian grid.

Parameters

	grid $<$ vector $ $ decimal $>$ A vector $[x, y, z]$ of decimals or a single decimal for $(x=y=z)$.	
	incr $ $ <vector decimal="" =""> A vector [x, y, z] of decimals or a single decimal for (x=y=z).</vector>	
copy <decimal> Number of times to iterate over children.</decimal>		

6.19 Replications 125

center	<boolean> Center distribution about origin.</boolean>
--------	---

Example

Figure 49: st_cartesian_copy

```
st_cartesian_copy( grid=[5,5,4], incr=10, copy=50, center=true ) {cube(10, center=true); sphere(10);}
```

Definition at line 352 of file transform.scad.

```
6.19.2.2 module st_radial_copy ( n, r = 1, angle = true, move = false )
```

Distribute copies of a 2D or 3D shape equally about a z-axis radius.

Parameters

n	<decimal> The number of equally spaced radii.</decimal>
r	<decimal> The shape move radius.</decimal>
angle	<boolean> Rotate each copy about z-axis.</boolean>
move	<boolean> Move each shape copy to radii coordinate.</boolean>

Example

Figure 50: st_radial_copy

```
st_radial_copy( n=7, r=6, move=true ) square( [20,1], center=true );
```

Definition at line 322 of file transform.scad.

6.20 Resolution

Arch rendering resolution management.

Collaboration diagram for Resolution:

Files

· file resolution.scad

Arc rendering resolution abstraction.

Functions

function resolution_fn (radius)

Return facets number for the given arc radius.

• function resolution fs ()

Return minimum facets size.

• function resolution_fa (radius)

Return the minimum facets angle.

• function resolution_reduced ()

Return the radius at which arc resolution will begin to degrade.

• module resolution_info (radius)

Echo resolution information to the console for given radius.

• function resolution facets (radius)

Return facet count used to render a radius.

• function resolution_facetsv (radius)

Return facet count used to render a radius as vector triple.

Variables

• \$resolution_mode = "fast"

<string> Global special variable that configures the arc resolution mode.

• \$resolution_value = 0

<decimal> Global special variable for modes that use custom resolutions.

6.20 Resolution 127

6.20.1 Detailed Description

Arch rendering resolution management.

Functions, global variables, and configuration presets to provide a common mechanism for managing arc rendering resolution. Specifically, the number of fragments/facets with which arcs (circles, spheres, and cylinders, etc.) are rendered in OpenSCAD.

Example

```
include <resolution.scad>;
    base unit length = "in";
    // set resolution to 25 fpi
    $resolution_mode = "fpi";
    $resolution_value = 25;
    // use radius length of 1 inch
r = convert_length(1, "in");
    $fs=resolution_fs();
    $fa=resolution_fa( r );
    resolution_info( r );
    f = resolution_facets( r );
echo(str("for r = ", r, " ", unit_length_name(), ", facets = ", f));
Result (base unit length = mm):
1 ECHO: "$resolution_mode = [fpi], $resolution_value = 25, base_unit_length = millimeter"
2 ECHO: "$fn = 0, $fa = 2.29183, $fs = 1.016"
3 ECHO: "resolution reduction at radius > 25.4 millimeter"
4 ECHO: "for radius = 25.4 millimeter facets limited to 158 by $fs=1.016 millimeter"
5 ECHO: "for r = 25.4 millimeter, facets = 158"
Result (base_unit_length = cm):
1 ECHO: "$resolution_mode = [fpi], $resolution_value = 25, base_unit_length = centimeter"
2 ECHO: "$fn = 0, $fa = 2.29183, $fs = 0.1016"
3 ECHO: "resolution reduction at radius > 2.54 centimeter"
4 ECHO: "for radius = 2.54 centimeter facets limited to 158 by $fs=0.1016 centimeter"
5 ECHO: "for r = 2.54 centimeter, facets = 158"
Result (base_unit_length = mil):
1 ECHO: "$resolution_mode = [fpi], $resolution_value = 25, base_unit_length = thousandth"
2 ECHO: "$fn = 0, $fa = 2.29183, $fs = 40"
3 ECHO: "resolution reduction at radius > 1000 thousandth"
4 ECHO: "for radius = 1000 thousandth facets limited to 158 by $fs=40 thousandth"
5 ECHO: "for r = 1000 thousandth, facets = 158"
Result (base unit length = in):
1 ECHO: "$resolution_mode = [fpi], $resolution_value = 25, base_unit_length = inch"
2 ECHO: "$fn = 0, $fa = 2.29183, $fs = 0.04"
3 ECHO: "resolution reduction at radius > 1 inch"
4 ECHO: "for radius = 1 inch facets limited to 158 by $fs=0.04 inch"
5 ECHO: "for r = 1 inch, facets = 158"
6.20.2 Function Documentation
```

6.20.2.1 function resolution_fa (radius)

Return the minimum facets angle.

Parameters

radius	<decimal> An arc radius.</decimal>
--------	------------------------------------

Returns

<decimal> Minimum facet angle to be assigned to \$fa.

The return result of this function can be assigned to the OpenSCAD special variables \$fa to render arcs.

6.20.2.2 function resolution_facets (radius)

Return facet count used to render a radius.

Parameters

radius	<decimal> An arc radius.</decimal>

Returns

<decimal> The number of fragments/facets that will be used to render a radius given the current values for \$fn, \$fa, and \$fs.

6.20.2.3 function resolution_facetsv (radius)

Return facet count used to render a radius as vector triple.

Parameters

radius	<decimal> An arc radius.</decimal>
--------	------------------------------------

Returns

A vector triple: [facets <decimal>,limiter <string>,value <decimal>].

Where facets is the number of fragments/facets that will be used to render the radius given the current values for \$fn, \$fa, and \$fs. limiter identifies the special variable that currently limits the facets, and value is the current value assigned to the limiter.

6.20.2.4 function resolution_fn (radius)

Return facets number for the given arc radius.

Parameters

radius	<decimal> An arc radius.</decimal>

Returns

<decimal> The number of facets to be assigned to \$fn.

The return result of this function can be assigned to the special variables fn to render arcs according to the resolution mode set by $resolution_n$ and $resolution_n$.

The following table shows the modes that require \$resolution_value to be set prior to specify the custom values used during resolution calculation.

6.20 Resolution 129

\$resolution_mode	\$resolution_value sets	radius dependent
set	fixed value	no
upf	units per facet	yes
fpu	facets per unit	yes
fpi	facets per inch	yes

The following table has common resolution presets. Equivalent configuration can be obtained using resolution_mode and resolution_value as described in the preview table.

\$resolution_mode	preset description	radius dependent
fast	fast rendering mode	no
low	low resolution	yes
medium	medium resolution	yes
high	high resolution	yes
50um	50 micron per facets	yes
100um	100 micron per facets	yes
200um	200 micron per facets	yes
300um	300 micron per facets	yes
400um	400 micron per facets	yes
500um	500 micron per facets	yes
50mil	50 thousandth per facets	yes
100mil	100 thousandth per facets	yes
200mil	200 thousandth per facets	yes
300mil	300 thousandth per facets	yes
400mil	400 thousandth per facets	yes
500mil	500 thousandth per facets	yes

6.20.2.5 function resolution_fs ()

Return minimum facets size.

Returns

<decimal> Minimum facet size to be assigned to \$fs.

The return result of this function can be assigned to the OpenSCAD special variables fs to render arcs according to the resolution mode set by $resolution_mode$ and $resolution_value$.

The following table shows the modes that require \$resolution_value to be set prior to calling this function in order to specify the custom values used during resolution calculation.

\$resolution_mode	\$resolution_value sets	radius dependent
set	fixed value	no
upf	units per facet	no
fpu	facets per unit	no
fpi	facets per inch	no

The following table has common resolution presets. Equivalent configuration can be obtained using resolution_mode and resolution_value as described in the preview table.

\$resolution_mode	preset description	radius dependent
fast	fast rendering mode	no
low	low resolution	no
medium	medium resolution	no

high	high resolution	no
50um	50 micron per facets	no
100um	100 micron per facets	no
200um	200 micron per facets	no
300um	300 micron per facets	no
400um	400 micron per facets	no
500um	500 micron per facets	no
50mil	50 thousandth per facets	no
100mil	100 thousandth per facets	no
200mil	200 thousandth per facets	no
300mil	300 thousandth per facets	no
400mil	400 thousandth per facets	no
500mil	500 thousandth per facets	no

6.20.2.6 module resolution_info (radius)

Echo resolution information to the console for given radius.

Parameters

_		
	radius	<decimal> An arc radius.</decimal>

Definition at line 319 of file resolution.scad.

6.20.2.7 function resolution_reduced ()

Return the radius at which arc resolution will begin to degrade.

Returns

<decimal> Transition radius where resolution reduction begins.

The OpenSCAD special variables fs and fa work together when fa. For a given fs, the fragment angle of a drawn arc gets smaller with increasing radius. In other words, the fragment angle is inversely proportional to the arc radius for a given fragment size. The special variable fa enforces a minimum fragment angle limit and at some radius, the fragment angle would becomes smaller than this limit. At this point, OpenSCAD limits further reduction in the facet angle which forces the use of increased fragment size. This in effect begins the gradual reduction of arc resolution with increasing radius.

The return result of this function indicates the radius at which this enforced limiting begins. When \$fn != 0, returns 'undef'.

6.21 Shapes 131

6.21 Shapes

2D and 3D shapes.

Collaboration diagram for Shapes:

Modules

• 2D Extrusions

Extruded two dimensional geometric shapes.

• 2D Shapes

Two dimensional geometric shapes.

• 3D Shapes

Three dimensional geometric shapes.

Files

· file shapes2d.scad

Two-dimensional basic shapes.

• file shapes2de.scad

Linearly extruded two-dimensional basic shapes.

· file shapes3d.scad

Three-dimensional basic shapes.

6.21.1 Detailed Description

2D and 3D shapes.

Table 2: 2D Shapes

6.21 Shapes 133

Table 3: 2D Extrusions

Table 4: 3D Shapes

6.22 System 135

6.22 System

System/Program limits.

Collaboration diagram for System:

Files

· file constants.scad

Mechanical design constants.

Variables

• number_max = 1e308

The largest representable number in OpenSCAD scripts.

• number_min = -1e308

The smallest representable number in OpenSCAD scripts.

• empty_str = ""

A string with no content (the empty string).

• empty_v = []

A vector with no content (the empty vector).

6.22.1 Detailed Description

System/Program limits.

6.23 Tools

Design tools and techniques.

Design tools and techniques.

6.24 Transformations 137

6.24 Transformations

Shape transformations.

Collaboration diagram for Transformations:

Modules

• Extrusions

Shape Extrusions.

Replications

Shape Replications and distribution.

Files

· file transform.scad

Shape transformation functions.

6.24.1 Detailed Description

Shape transformations.

Table 5: Extrusions and Replications

6.25 Triangle Solutions

Triangle computations.

Collaboration diagram for Triangle Solutions:

Files

· file math.scad

Mathematical functions.

Functions

function triangle_Ill2vp (s1, s2, s3)

Compute the vertices of a plane triangle given its side lengths.

• function triangle_vl2vp (v)

Compute the vertices of a plane triangle given its side lengths.

• function triangle_ppp2vl (v1, v2, v3)

Compute the side lengths of a triangle given its vertices.

function triangle_vp2vl (v)

Compute the side lengths of a triangle given its vertices.

function triangle_centroid_ppp (v1, v2, v3)

Compute the centroid (geometric center) of a triangle.

function triangle_centroid_vp (v)

Compute the centroid (geometric center) of a triangle.

function triangle_incenter_ppp (v1, v2, v3)

Compute the coordinate for the triangle's incircle.

• function triangle_incenter_vp (v)

Compute the coordinate for the triangle's incircle.

• function triangle_inradius_ppp (v1, v2, v3)

Compute the inradius of a triangle's incircle.

• function triangle_inradius_vp (v)

Compute the inradius of a triangle's incircle.

6.25.1 Detailed Description

Triangle computations.

See Wikipedia for more information.

6.25.2 Function Documentation

6.25.2.1 function triangle_centroid_ppp (v1 , v2 , v3)

Compute the centroid (geometric center) of a triangle.

Parameters

V1	<vector> A vector [x, y] for vertex 1 coordinates.</vector>
v2	<vector> A vector [x, y] for vertex 2 coordinates.</vector>
v3	<vector> A vector [x, y] for vertex 3 coordinates.</vector>

Returns

<vector> A vector [x, y] of coordinates.

6.25.2.2 function triangle_centroid_vp (v)

Compute the centroid (geometric center) of a triangle.

Parameters

V	<pre><vector> A vector [v1, v2, v3] of vectors [x, y] coordinates.</vector></pre>
	• • • • • • • • • • • • • • • • • • • •

Returns

<vector> A vector [x, y] of coordinates.

6.25.2.3 function triangle_incenter_ppp (v1 , v2 , v3)

Compute the coordinate for the triangle's incircle.

Parameters

v1	<vector> A vector [x, y] for vertex 1 coordinates.</vector>
v2	<vector> A vector [x, y] for vertex 2 coordinates.</vector>
<i>v3</i>	<vector> A vector [x, y] for vertex 3 coordinates.</vector>

Returns

<vector> A vector [x, y] of coordinates.

The interior point for which distances to the sides of the triangle are equal.

6.25.2.4 function triangle_incenter_vp (v)

Compute the coordinate for the triangle's incircle.

Parameters

V	<vector> A vector [v1, v2, v3] of vectors [x, y] coordinates.</vector>

Returns

<vector> A vector [x, y] of coordinates.

The interior point for which distances to the sides of the triangle are equal.

6.25.2.5 function triangle_inradius_ppp (v1 , v2 , v3)

Compute the inradius of a triangle's incircle.

Parameters

v1	<vector> A vector [x, y] for vertex 1 coordinates.</vector>
v2	<vector> A vector [x, y] for vertex 2 coordinates.</vector>
<i>v3</i>	<vector> A vector [x, y] for vertex 3 coordinates.</vector>

Returns

<decimal> The incircle radius.

6.25.2.6 function triangle_inradius_vp (v)

Compute the inradius of a triangle's incircle.

Parameters

V	<vector> A vector [v1, v2, v3] of vectors [x, y] coordinates.</vector>
---	--

Returns

<decimal> The incircle radius.

6.25.2.7 function triangle_III2vp (s1 , s2 , s3)

Compute the vertices of a plane triangle given its side lengths.

Parameters

s1	<pre><decimal> The length of the side 1.</decimal></pre>
s2	<pre><decimal> The length of the side 2.</decimal></pre>
s3	<decimal> The length of the side 3.</decimal>

Returns

<vector> A vector [v1, v2, v3] of vectors [x, y] of coordinates.

Vertex v1 at the origin. Geometry required that s1 + s2 is greater then s3. Coordinates v3:[x, y] will be 'nan' when specified triangle does not exists.

Note

Side length s1 is measured along the positive x-axis. Sides are numbered counterclockwise.

6.25.2.8 function triangle_ppp2vl (v1, v2, v3)

Compute the side lengths of a triangle given its vertices.

Parameters

v1	<vector> A vector [x, y] for vertex 1 coordinates.</vector>

v2	<vector> A vector [x, y] for vertex 2 coordinates.</vector>
v3	<vector> A vector [x, y] for vertex 3 coordinates.</vector>

Returns

<vector> A vector [s1, s2, s3] of lengths.

Note

Vertices are numbered counterclockwise.

6.25.2.9 function triangle_vl2vp (v)

Compute the vertices of a plane triangle given its side lengths.

Parameters

V	<vector> of decimal side lengths.</vector>
V	vector > or decimal side lengths.

Returns

<vector> A vector [v1, v2, v3] of vectors [x, y] of coordinates.

Vertex vs[0] at the origin. Geometry required that vs[0] + vs[1] is greater then vs[2]. Coordinates v3:[x, y] will be 'nan' when specified triangle does not exists.

Note

Side length vs[0] is measured along the positive x-axis. Sides are numbered counterclockwise.

6.25.2.10 function triangle_vp2vl (v)

Compute the side lengths of a triangle given its vertices.

Parameters

V	<pre><vector> A vector [v1, v2, v3] of vectors [x, y] coordinates.</vector></pre>
---	---

Returns

<vector> A vector [s1, s2, s3] of lengths.

Note

Vertices are numbered counterclockwise.

6.26 Units

Units and unit conversions.

Collaboration diagram for Units:

Modules

Angle

Angle units and conversions.

Length

Length units and conversions.

• Resolution

Arch rendering resolution management.

Files

• file units_angle.scad

Angle units and conversions.

• file units_length.scad

Length units and conversions.

· file resolution.scad

Arc rendering resolution abstraction.

6.26.1 Detailed Description

Units and unit conversions.

6.27 Utilities 145

6.27 Utilities

General utilities.

Files

· file utilities.scad

Miscellaneous utilities.

· file validation.scad

Result validation functions.

• function stack (b=0, t=0)

Format the function call stack as a string.

• function validate (d, cv, t, ev, p=4, pf=false)

Compare a computed test value with an known good result.

6.27.1 Detailed Description

General utilities.

6.27.2 Function Documentation

6.27.2.1 function stack (
$$b = 0$$
, $t = 0$)

Format the function call stack as a string.

Parameters

b	<decimal> The stack index bottom offset. Include function names above this offset.</decimal>
t	<decimal> The stack index top offset. Include function names below this offset.</decimal>

Returns

<string> A colon-separated list of functions names for the current function call stack.

Note

Returns undef when b is greater than the current number of function instances (ie: bo > \$parent_ \leftarrow modules-1).

Returns the string "root ()" when the function call stack is empty (ie: at the root of the script).

6.27.2.2 function validate (d, cv, t, ev, p = 4, pf = false)

Compare a computed test value with an known good result.

Parameters

d	<string> A description.</string>
CV	<value> A computed value to validate.</value>
t	<string boolean> The validation type.</string boolean>
ev	<value> The expected good value.</value>
р	<number> A numerical precision for approximate comparisons.</number>
pf	<boolean> Result reported as a pass or fail boolean value.</boolean>

Returns

<string|boolean> Validation result indicating if the test passed or failed.

validation types	pass if (else fail)
"almost"	cv almost equals ev
"equals"	cv equals ev
"not"	cv not equal to ev
"true" true	cv is true
"false" false	cv is false

Example

```
use <validation.scad>;
2
       use <console.scad>;
3
4
       // function to validate
5
6
       function f1(x) = (x == undef) ? 1 : 2;
8
9
       farg = undef;
                           // function test argument
                            // correct expected function result
// incorrect expected function result
10
        erv1 = 1;
        erv2 = 3;
11
12
13
14
        // pass test example
15
        pass_result = validate("test-a f1(farg)", f1(farg), "equals", erv1);
16
17
18
        if (!validate(cv=f1(farg), t="equals", ev=erv1, pf=true) )
19
         log_warn( pass_result );
20
21
          log_info( pass_result );
22
23
24
        // fail test example
25
        fail_result = validate("test-b f1(farg)", f1(farg), "equals", erv2);
28
        if ( !validate(cv=f1(farg), t="equals", ev=erv2, pf=true) )
29
         log_warn( fail_result );
30
        else
31
          log_info( fail_result );
32
33
34
        // almost equal test example
35
        tvae1 = [[90.001], [[45.009], true]];
tvae2 = [[90.002], [[45.010], true]];
36
37
38
        log_info( validate("test-c", tvae1, "almost", tvae2, 3) );
log_warn( validate("test-d", tvae1, "almost", tvae2, 4) );
39
40
```

Result

```
1 ECHO: "[ INFO ] root(); passed: 'test-a f1(farg)'"
2 ECHO:
3 ECHO: "root()"
```

6.27 Utilities 147

Note

When performing an almost equal validation type, the comparison precision is controlled by p. This specifies the number of digits of precision for each numerical comparison. A passing result indicates that cv equals ev to the number of decimal digits specified by p. The comparison is performed by the function almost_equal.

6.28 Variable Tests

Variable property test primitives.

Collaboration diagram for Variable Tests:

Files

· file primitives.scad

Mathematical primitive functions.

Functions

• function is_defined (v)

Test if a value is defined.

• function not_defined (v)

Test if a value is not defined.

• function is_empty (v)

Test if an iterable value is empty.

• function is_scalar (v)

Test if a value is a single non-iterable value.

• function is_iterable (v)

Test if a value has multiple parts and is iterable.

• function is_string (v)

Test if a value is a string.

function is_vector (v)

Test if a value is a vector.

function is_boolean (v)

Test if a value is a boolean constant.

• function is_integer (v)

Test if a value is an integer.

• function is_decimal (v)

Test if a value is a decimal.

• function is_number (v)

Test if a value is a number.

function is_range (v)

Test if a value is a range definition.

• function is_nan (v)

Test if a numerical value is invalid.

function is_inf (v)

6.28 Variable Tests 149

Test if a numerical value is infinite.

function is_even (v)

Test if a numerical value is even.

• function is_odd (v)

Test if a numerical value is odd.

function all_equal (v, cv)

Test if all elements of a value equal a comparison value.

function any_equal (v, cv)

Test if any element of a value equals a comparison value.

function all defined (v)

Test if no element of a value is undefined.

• function any_undefined (v)

Test if any element of a value is undefined.

function all_scalars (v)

Test if all elements of a value are scalars.

function all_vectors (v)

Test if all elements of a value are vectors.

function all_strings (v)

Test if all elements of a value are strings.

• function all_numbers (v)

Test if all elements of a value are numbers.

function all_len (v, l)

Test if all elements of a value have a given length.

function almost_equal (v1, v2, p=4)

Test if all elements of two values are approximately equal.

• function compare (v1, v2, s=true)

Compare any two values (may be iterable and/or of different types).

6.28.1 Detailed Description

Variable property test primitives.

See validation results group1 and group2.

6.28.2 Function Documentation

6.28.2.1 function all_defined (v)

Test if no element of a value is undefined.

Parameters

V	<value> A value or an iterable value.</value>
---	---

Returns

<boolean> true when no element is undefined and false otherwise.

Warning

Always returns true when v is empty.

6.28.2.2 function all_equal (v , cv)

Test if all elements of a value equal a comparison value.

6.28 Variable Tests 151

Parameters

V	<value> A value or an iterable value.</value>
CV	<value> A comparison value.</value>

Returns

<boolean> true when all elements equal the value cv and false otherwise.

Warning

Always returns true when v is empty.

```
6.28.2.3 function all_len ( v , I )
```

Test if all elements of a value have a given length.

Parameters

<value> A value or an iterable value.</value>
/ <integer> The length.</integer>

Returns

boolean> **true** when all elements have length equal to 1 and **false** otherwise. Returns the value of v when it is not defined.

Warning

Always returns true when v is empty.

6.28.2.4 function all_numbers (v)

Test if all elements of a value are numbers.

Parameters

V	<value> A value or an iterable value.</value>
---	---

Returns

boolean> **true** when all elements are numerical values and **false** otherwise. Returns **true** when v is a single numerical value. Returns the value of v when it is not defined.

Warning

Always returns \mbox{true} when ${\bf v}$ is empty.

6.28.2.5 function all_scalars (v)

Test if all elements of a value are scalars.

Parameters

V	<value> A value or an iterable value.</value>	
---	---	--

Returns

boolean> **true** when all elements are scalar values and **false** otherwise. Returns **true** when v is a single scalar value. Returns the value of v when it is not defined.

Warning

Always returns true when v is empty.

6.28.2.6 function all_strings (v)

Test if all elements of a value are strings.

Parameters

V	<value> A value or an iterable value.</value>
---	---

Returns

boolean> **true** when all elements are string values and **false** otherwise. Returns **true** when v is a single string value. Returns the value of v when it is not defined.

Warning

Always returns true when v is empty.

6.28.2.7 function all_vectors (v)

Test if all elements of a value are vectors.

Parameters

V	<value> A value or an iterable value.</value>
-	Control of the following the f

Returns

boolean> **true** when all elements are vector values and **false** otherwise. Returns **true** when v is a single vector value. Returns the value of v when it is not defined.

Warning

Always returns true when v is empty.

6.28.2.8 function almost_equal (v1, v2, p = 4)

Test if all elements of two values are approximately equal.

6.28 Variable Tests 153

Parameters

V1	<value> A value or an iterable value 1.</value>
v2	<value> A value or an iterable value 2.</value>
р	<number> A numerical precision.</number>

Returns

Note

The parameter p indicated the number of digits of precision for each numerical comparison.

Warning

Always returns **true** when v is empty.

6.28.2.9 function any_equal (v , cv)

Test if any element of a value equals a comparison value.

Parameters

V	<value> A value or an iterable value.</value>
CV	<value> A comparison value.</value>

Returns

<boolean> true when any element equals the value cv and false otherwise.

Warning

Always returns **false** when \vee is empty.

6.28.2.10 function any_undefined (v)

Test if any element of a value is undefined.

Parameters

V	<value> A value or an iterable value.</value>

Returns

<boolean> true when any element is undefined and false otherwise.

Warning

Always returns **false** when v is empty.

6.28.2.11 function compare (v1, v2, s = true)

Compare any two values (may be iterable and/or of different types).

Parameters

v1	<value> A value or an iterable value 1.</value>
v2	<value> A value or an iterable value 2.</value>
S	<boolean> Order ranges by their numerical sum.</boolean>

Returns

```
<integer> -1 when (v2 < v1), +1 when (v2 > v1), and 0 when (v2 = v1).
```

The following table summarizes how values are ordered.

order	type	s	intra-type ordering
1	undef		(singular)
2	number		numerical comparison
3	string		lexical comparison
4	boolean		false < true
5	vector		lengths then element-wise
			comparison
6	range	true	compare sum of range
			elements
6	range	false	lengths then element-wise
			comparison

Note

When comparing two vectors of equal length, the comparison continue element-by-element until an ordering can be determined. Two vectors are declared equal when all elements have been compared and no ordering has been determined.

Warning

The performance of element-wise comparisons of vectors degrades exponentially with vector size. The sum of a range may quickly exceeded the intermediate variable storage capacity for long ranges.

6.28.2.12 function is_boolean (v)

Test if a value is a boolean constant.

Parameters

V	<value> A value.</value>

Returns

<boolean> true when the value is one of the predefined boolean constants [true|false] and false otherwise.

6.28.2.13 function is_decimal (v)

Test if a value is a decimal.

6.28 Variable Tests 155

Parameters

V	<value> A value.</value>
---	--------------------------

Returns

<boolean> **true** when the value is a decimal and **false** otherwise.

6.28.2.14 function is_defined (v)

Test if a value is defined.

Parameters

```
v <value> A value.
```

Returns

<boolean> true when the value is defined and false otherwise.

6.28.2.15 function is_empty (v)

Test if an iterable value is empty.

Parameters

V	<value> An iterable value.</value>
---	------------------------------------

Returns

<boolean> true when the iterable value has zero elements and false otherwise.

6.28.2.16 function is_even (v)

Test if a numerical value is even.

Parameters

```
v <value> A numerical value.
```

Returns

<boolean> true when the value is determined to be even and false otherwise.

Note

The value must be valid and defined but may be positive or negative. Any value that is not an integer returns false.

6.28.2.17 function is_inf (v)

Test if a numerical value is infinite.

Parameters

V	<value> A numerical value.</value>

Returns

 <boolean> **true** when the value is determined to be **inf** (greater than the largest representable number) and **false** otherwise.

6.28.2.18 function is_integer (v)

Test if a value is an integer.

Parameters

```
v <value> A value.
```

Returns

<boolean> true when the value is an integer and false otherwise.

6.28.2.19 function is_iterable (v)

Test if a value has multiple parts and is iterable.

Parameters

V	<value> A value.</value>
---	--------------------------

Returns

<body><true when the value is an iterable multi-part value and false otherwise.</td>

value is	defined result
undef	false
inf	false
nan	false
integer	false
decimal	false
boolean	false
string	true
vector	true
range	not defined

6.28.2.20 function is_nan (v)

Test if a numerical value is invalid.

Parameters

ĺ	ν	<value> A numerical value.</value>

Returns

6.28.2.21 function is_number (v)

Test if a value is a number.

6.28 Variable Tests 157

Parameters

V	<value> A value.</value>
---	--------------------------

Returns

<boolean> true when the value is a number and false otherwise.

Warning

Returns true even for numerical values that are considered infinite and invalid.

6.28.2.22 function is_odd (v)

Test if a numerical value is odd.

Parameters

v <value> A numerical value.

Returns

<boolean> true when the value is determined to be odd and false otherwise.

Note

The value must be valid and defined but may be positive or negative. Any value that is not an integer returns false.

6.28.2.23 function is_range (v)

Test if a value is a range definition.

Parameters

v <value> A value.

Returns

<boolean> true when the value is a range definition and false otherwise.

6.28.2.24 function is_scalar (v)

Test if a value is a single non-iterable value.

Parameters

v <value> A value.

Returns

<boolean> true when the value is a single non-iterable value and false otherwise.

value is	defined result
undef	true
inf	true
nan	true
integer	true
decimal	true
boolean	true
string	false
vector	false
range	not defined

6.28.2.25 function is_string (v)

Test if a value is a string.

Parameters

v <value> A value.

Returns

<boolean> true when the value is a string and false otherwise.

6.28.2.26 function is_vector (v)

Test if a value is a vector.

Parameters

v <value> A value.

Returns

<boolean> true when the value is a vector and false otherwise.

6.28.2.27 function not_defined (v)

Test if a value is not defined.

Parameters

v <value> A value.

Returns

<boolean> true when the value is not defined and false otherwise.

6.29 Vector Operations

Vector operation primitives.

Collaboration diagram for Vector Operations:

Files

· file primitives.scad

Mathematical primitive functions.

Functions

• function consts (I, v)

Create a vector of constant elements.

• function vstr (v)

Convert all vector elements to strings and concatenate.

• function sum (v, i1, i2)

Compute the sum of a vector of numbers.

• function defined_or (v, d)

Return a defined or default value.

• function edefined_or (v, i, d)

Return a defined vector element or default value.

• function first (v)

Return the first element of an iterable value.

function second (v)

Return the second element of an iterable value.

function last (v)

Return the last element of an iterable value.

• function head (v)

Return a vector containing the first element of an iterable value.

• function tail (v)

Return a vector containing all but the first element of an iterable value.

• function rselect (v, i)

Select a range of elements from an iterable value.

• function eselect (v, f=true, l=false, i)

Select an element from each iterable value.

• function ciselect (v, i)

Case-like select a value from a vector of ordered options by index.

function cmvselect (v, mv)

Case-like select a value from a vector of identified options by match-value.

• function smerge (v, r=false)

Serial-merge vectors of iterable values.

• function pmerge (v, j=true)

Parallel-merge vectors of iterable values.

• function reverse (v)

Reverse the elements of an iterable value.

function qsort (v, r=false)

Sort the numeric or string elements of a vector using quick sort.

• function qsort2 (v, d=0, r=false, s=true)

Hierarchically sort all elements of a vector using quick sort.

function strip (v, mv=empty_v)

Strip all matching values from an iterable value.

• function append (nv, v, r=true, j=true, l=true)

Append a value to each element of an iterable value.

• function insert (nv, v, i=0, mv, mi=0)

Insert a new value into an iterable value.

• function delete (v, i, mv, mc=0)

Delete elements from an iterable value.

6.29.1 Detailed Description

Vector operation primitives.

See validation results.

6.29.2 Function Documentation

```
6.29.2.1 function append ( nv , v , r = true, j = true, l = true )
```

Append a value to each element of an iterable value.

Parameters

nv	<value> A new value to append.</value>
V	<vector> A vector of values.</vector>
r	<boolean> Reduce vector element value before appending.</boolean>
j	<boolean> Join each appendage as a vector.</boolean>
1	 boolean> Append to last element.

Returns

<vector> With nv appended to each element of v. Returns undef when v is not defined or is not iterable.

Example

```
v1=[["a"], ["b"], ["c"], ["d"]];
v2=[1, 2, 3];
echo( append( v2, v1 ) );
echo( append( v2, v1, r=false ) );
echo( append( v2, v1, j=false, l=false ) );
```

Result

```
ECHO: [["a", 1, 2, 3], ["b", 1, 2, 3], ["c", 1, 2, 3], ["d", 1, 2, 3]]
ECHO: [[["a"], 1, 2, 3], [["b"], 1, 2, 3], [["c"], 1, 2, 3], [["d"], 1, 2, 3]]
ECHO: ["a", 1, 2, 3, "b", 1, 2, 3, "c", 1, 2, 3, "d"]
```

Note

Appending with reduction causes nv to be appended to the *elements* of each value of v that is a vector. Otherwise, nv is appended to the *vector* itself of each value of v that is a vector.

6.29.2.2 function ciselect (v , i)

Case-like select a value from a vector of ordered options by index.

Parameters

V	<vector> A vector of values.</vector>
i	<integer> Element selection index.</integer>

Returns

<value> The value of the vector element at the specified index. Returns the default value when i does not map to an element of v or when i is undefined.

Behaves like a case statement for selecting values from a list of ordered options. The default value is: last (v).

Example

6.29.2.3 function cmvselect (v , mv)

Case-like select a value from a vector of identified options by match-value.

Parameters

V	<vector> A two dimensional vector of one or more identified values [[identifier, value],].</vector>
mv	<value> Element selection match value.</value>

Returns

<value> The value from the vector of identified elements with an identifier matching mv. Returns the default value when mv does not match any of the element identifiers of v or when mv is undefined.

Behaves like a case statement for selecting values from a list of identified options. The default value is \leftarrow : second (last (v)).

Example

6.29.2.4 function consts (I, v)

Create a vector of constant elements.

Parameters

1	<integer> The vector length.</integer>
V	<value> The element value.</value>

Returns

<vector> With 1 copies of the element value v. Returns **empty_v** when 1 is not a number or if (1 < 1).

Note

When v is not specified, each element is assigned the value of its index position.

6.29.2.5 function defined_or (v , d)

Return a defined or default value.

Parameters

V	<value> A value.</value>
d	<value> A default value.</value>

Returns

<value> v when it is defined or d otherwise.

6.29.2.6 function delete (v, i, mv, mc = 0)

Delete elements from an iterable value.

Parameters

V	<value> An iterable value.</value>
i	<range vector integer> Deletion Indexes.</range vector integer>
mv	<vector string value> Match value candidates (a vector of values, a string of characters, or a</vector string value>
	single value).
тс	<integer> A match count.</integer>

Returns

<vector> v with all specified element removed. Returns **undef** when i does not map to an element of v. Returns **undef** when v is not defined or is not iterable.

Note

The elements to delete can be specified by an index position, a vector of index positions, an index range, an element match value, or a vector of element match values.

When mv is a vector of match values, all matching values from mv that exists in v are candidates for deletion. For each matching candidate, mc indicates the quantity to remove. If (mc == 0) all candidates are removed. When more than one deletion criteria is specified, the order of precedence is: mv, i.

6.29.2.7 function edefined_or (v , i , d)

Return a defined vector element or default value.

Parameters

V	<vector> A vector.</vector>
i	<integer> An element index.</integer>
d	<value> A default value.</value>

Returns

<value> v [i] when it is defined or d otherwise.

6.29.2.8 function eselect (v , f = true, I = false, i)

Select an element from each iterable value.

Parameters

V	<vector> A vector of iterable values.</vector>
f	 <boolean> Select the first element.</boolean>
1	<boolean> Select the last element.</boolean>
i	<integer> Select a numeric element index position.</integer>

Returns

<vector> Containing the selected element of each iterable value of v. Returns **empty_v** when v is empty. Returns **undef** when v is not defined or is not iterable.

Note

When more than one selection criteria is specified, the order of precedence is: i, l, f.

6.29.2.9 function first (v)

Return the first element of an iterable value.

Parameters

V	<value> An iterable value.</value>

Returns

<value> The first element of v. Returns undef when v is not defined, is not iterable, or is empty.

6.29.2.10 function head (v)

Return a vector containing the first element of an iterable value.

Parameters

V	<value> An iterable value.</value>

Returns

<vector> Containing the first element of v. Returns undef when v is not defined, is not iterable, or is empty.

6.29.2.11 function insert (nv, v, i = 0, mv, mi = 0)

Insert a new value into an iterable value.

Parameters

nv	<value> A new value to insert.</value>
V	<value> An iterable value.</value>
i	<integer> An index insert position.</integer>
mv	<vector string value> Match value candidates (a vector of values, a string of characters, or a</vector string value>
	single value).
mi	<integer> A match index.</integer>

Returns

<vector> With nv inserted into v at the specified position. Returns **undef** when no value of mv exists in v. Returns **undef** when (mi + 1) exceeds the match count of the first matching element of mv. Returns **undef** when v is not defined or is not iterable.

Note

The insert position can be specified by an index, an element match value, or vector of potential match values. When mv is a vector of potential match values, the first matching value from mv that exists in v is selected. When the selected matching value repeats in v, mi indicates which match is use as the insert position. When more than one insert position criteria is specified, the order of precedence is: mv, i.

6.29.2.12 function last (v)

Return the last element of an iterable value.

Parameters

V	<value> An iterable value.</value>

Returns

<value> The last element of v. Returns **undef** when v is not defined, is not iterable, or is empty.

```
6.29.2.13 function pmerge ( v, j = true )
```

Parallel-merge vectors of iterable values.

Parameters

V	<vector> A vector of iterable values.</vector>
j	<boolean> Join each merge as a vector.</boolean>

Returns

<vector> Containing the parallel-wise element concatenation of each iterable value in v. Returns **empty_v** when any element value in v is empty. Returns **undef** when v is not defined or when any element value in v is not iterable.

Example

```
v1=["a", "b", "c", "d"];
v2=[1, 2, 3];
echo( pmerge( [v1, v2], true ) );
echo( pmerge( [v1, v2], false ) );
```

Result

```
ECHO: [["a", 1], ["b", 2], ["c", 3]]
ECHO: ["a", 1, "b", 2, "c", 3]
```

Note

The resulting vector length will be limited by the iterable value with the shortest length. A string, although iterable, is treated as a merged unit.

```
6.29.2.14 function qsort (v, r = false)
```

Sort the numeric or string elements of a vector using quick sort.

Parameters

V	<vector> A vector of values.</vector>
r	 boolean> Reverse sort order.

Returns

<vector> With elements sorted in ascending order. Returns **undef** when v is not all strings or all numbers. Returns **undef** when v is not defined or is not a vector.

Warning

This implementation relies on the comparison operators '<' and '>' which expect the operands to be either two scalar numbers or two strings. Therefore, this function returns **undef** for vectors containing anything other than all scalar numbers or all strings.

See Wikipedia for more information.

```
6.29.2.15 function qsort2 (v, d = 0, r = false, s = true)
```

Hierarchically sort all elements of a vector using quick sort.

Parameters

V	<vector> A vector of values.</vector>
d	<integer> Recursive sort depth.</integer>
r	 boolean> Reverse sort order.
s	<boolean> Order ranges by their numerical sum.</boolean>

Returns

<vector> With all elements sorted in ascending order. Returns undef when v is not defined or is not a vector.

Elements are sorted using the compare function. See its documentation for a description of the parameter s. To recursively sort all elements, set d greater than, or equal to, the maximum level of hierarchy in v.

See Wikipedia for more information.

6.29.2.16 function reverse (v)

Reverse the elements of an iterable value.

Parameters

V	<value> An iterable value.</value>

Returns

<vector> Containing the elements of v in reversed order. Returns empty_v when v is empty. Returns undef
when v is not defined or is not iterable.

6.29.2.17 function rselect (v , i)

Select a range of elements from an iterable value.

Parameters

V	<value> An iterable value.</value>
i	<range vector integer> Index selection.</range vector integer>

Returns

<vector> Containing the vector element indexes selected in i. Returns **undef** when i does not map to an element of v. Returns **empty_v** when v is empty. Returns **undef** when v is not defined or is not iterable.

6.29.2.18 function second (v)

Return the second element of an iterable value.

Parameters

v <value> An iterable value.</value>	
--------------------------------------	--

Returns

<value> The second element of v. Returns undef when v is not defined, is not iterable, or is empty.

6.29.2.19 function smerge (v, r = false)

Serial-merge vectors of iterable values.

Parameters

V	<vector> A vector of iterable values.</vector>
r	

Returns

<vector> Containing the serial-wise element concatenation of each element in v. Returns **empty_v** when v is empty. Returns **undef** when v is not defined.

Note

A string, although iterable, is treated as a merged unit.

6.29.2.20 function strip (v , mv = empty_v)

Strip all matching values from an iterable value.

Parameters

V	<vector> A vector of values.</vector>
mv	<value> A match value.</value>

Returns

<vector> v with all elements equal to mv removed. Returns **undef** when v is not defined or is not iterable.

```
6.29.2.21 function sum ( v , i1 , i2 )
```

Compute the sum of a vector of numbers.

Parameters

V	<range vector> A vector of numerical values.</range vector>
i1	<integer> The element index at which to begin summation (first when not specified).</integer>
i2	<integer> The element index at which to end summation (last when not specified).</integer>

Returns

<decimal> The summation of elements over the index range. Returns \mathbf{v} when it is a scalar number. Returns 0 when \mathbf{v} is empty. Returns **undef** when \mathbf{v} is not defined or is not iterable and not a number.

6.29.2.22 function tail (v)

Return a vector containing all but the first element of an iterable value.

Parameters

V	<value> An iterable value.</value>

Returns

<vector> Containing all but the first element of v. Returns **empty_v** when v contains a single element. Returns **undef** when v is not defined, is not iterable, or is empty.

6.29.2.23 function vstr (v)

Convert all vector elements to strings and concatenate.

Parameters

```
ν <vector> A vector of values.
```

Returns

<string> Constructed by converting each element of the vector to a string and concatenating together. Returns **undef** when v is not defined.

Example

```
v1=["a", "b", "c", "d"];
v2=[1, 2, 3];
echo( vstr(concat(v1, v2)) );
```

Result

```
ECHO: "abcd123"
```

6.30 n-gon Solutions 169

6.30 n-gon Solutions

Regular n-sided polygon computations.

Collaboration diagram for n-gon Solutions:

Files

· file math.scad

Mathematical functions.

Functions

• function ngon_vp (n, r, vr)

Compute the vertices for an n-sided equiangular/equilateral regular polygon.

6.30.1 Detailed Description

Regular n-sided polygon computations.

6.30.2 Function Documentation

```
6.30.2.1 function ngon_vp ( n , r , vr )
```

Compute the vertices for an n-sided equiangular/equilateral regular polygon.

Parameters

ſ	n	<decimal> The number of sides.</decimal>
	r	<decimal> The ngon vertex radius.</decimal>
	vr	<decimal> The vertex rounding radius.</decimal>

Returns

<vector> A vector [v1, v2, ..., vn] of vectors [x, y] of coordinates.

Example

```
vr=5;
hull()
{
    for ( p = ngon_vp( r=20, n=5, vr=vr ) )
```

```
translate( p )
circle( r=vr );
```

7 File Documentation 171

7 File Documentation

7.1 console.scad File Reference

Message logging functions.

#include <utilities.scad>
Include dependency graph for console.scad:

This graph shows which files directly or indirectly include this file:

Functions

• module log_echo (m)

Output message to console.

• module log_debug (m)

Output diagnostic message to console.

• module log_info (m)

Output information message to console.

• module log_warn (m)
Output warning message to console.
• module log_error (m)
Output error message to console.
7.1.1 Detailed Description
Message logging functions.
Author
Roy Allen Sutton
Date COAT COAT
2015-2017
Copyright
This file is part of omdl, an OpenSCAD mechanical design library.
The <i>omdl</i> is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
The <i>omdl</i> is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the <i>omdl</i> ; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.egnu.org/licenses/ .

7.2 constants.scad File Reference

Mechanical design constants.

This graph shows which files directly or indirectly include this file:

Variables

• eps = 0.01

<decimal> Epsilon, small distance to deal with overlaping shapes

• pi = 3.1415926535897932384626433832795

<decimal> The ratio of a circle's circumference to its diameter

• tau = 2*pi

<decimal> The ratio of a circle's circumference to its radius

• number_max = 1e308

The largest representable number in OpenSCAD scripts.

• number_min = -1e308

The smallest representable number in OpenSCAD scripts.

• empty str = ""

A string with no content (the empty string).

• empty_v = []

A vector with no content (the empty vector).

• x_axis_vi = 0

The vector index for the x-coordinate of a vector.

• y_axis_vi = 1

The vector index for the y-coordinate of a vector.

• z_axis_vi = 2

The vector index for the z-coordinate of a vector.

• origin2d = [0, 0]

The origin coordinates in 2-dimensional Euclidean space.

• x_axis2d_uv = [1, 0]

The unit vector of the positive x-axis in 2-dimensional Euclidean space.

• y_axis2d_uv = [0, 1]

The unit vector of the positive y-axis in 2-dimensional Euclidean space.

• origin3d = [0, 0, 0]

The origin coordinates in 3-dimensional Euclidean space.

• $x_axis3d_uv = [1, 0, 0]$

The unit vector of the positive x-axis in 3-dimensional Euclidean space.

• y axis3d uv = [0, 1, 0]

The unit vector of the positive y-axis in 3-dimensional Euclidean space.

• $z_{axis3d_uv} = [0, 0, 1]$

The unit vector of the positive z-axis in 3-dimensional Euclidean space.

7.2.1 Detailed Description

Mechanical design constants.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omd1, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www. \leftarrow gnu.org/licenses/.

Note

Include this library file using the include statement.

7.3 mainpage.scad File Reference

Documentation main page.

7.3.1 Detailed Description

Documentation main page.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.←gnu.org/licenses/.

7.4 map.scad File Reference

Mapped key-value pair data access.

#include <console.scad>
#include <primitives.scad>
Include dependency graph for map.scad:

Functions

function map_get_idx (map, key)

Return the index for the storage location of a map key-value pair.

function map_exists (map, key)

Test if a key exists in a map.

function map_get (map, key)

Get the value associated with a map key.

function map_get_keys (map)

Get a vector of the map entry identifier keys.

function map_get_values (map)

Get a vector of the map entry values.

function map_size (map)

Get the number of key-value pairs stored in a map.

module map_check (map, verbose=false)

Perform some basic validation/checks on a map.

• module map_dump (map, sort=true, number=true, p=3)

Dump each map key-value pair to the console.

7.4.1 Detailed Description

Mapped key-value pair data access.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.←gnu.org/licenses/.

Manage a collection of key-value pairs where keys are unique.

7.5 math.scad File Reference

Mathematical functions.

#include <primitives.scad>
Include dependency graph for math.scad:

This graph shows which files directly or indirectly include this file:

Functions

• function distance_pp (p1, p2)

Compute the distance between two points in a Euclidean 1, 2, or 3D-space.

function dot_vv (v1t, v2t, v1i, v2i)

Compute the dot product of two vectors.

function cross_vv (v1t, v2t, v1i, v2i)

Compute the cross product of two vectors in a Euclidean 3D-space (2D).

function striple_vvv (v1t, v2t, v3t, v1i, v2i, v3i)

Compute scalar triple product of two vectors in a Euclidean 3D-space.

function angle vv (v1t, v2t, v1i, v2i)

Compute the angle between two vectors in a Euclidean 2 or 3D-space.

function angle vvn (v1t, v2t, nvt, v1i, v2i, nvi)

Compute the angle between two vectors in a Euclidean 3D-space.

• function unit v (vt, vi)

Compute the normalized unit vector for a 1, 2, or 3 term vector.

function are coplanar vvv (v1t, v2t, v3t, v1i, v2i, v3i)

Test if three vectors are coplanar in Euclidean 3D-space.

• function ngon_vp (n, r, vr)

Compute the vertices for an n-sided equiangular/equilateral regular polygon.

function triangle III2vp (s1, s2, s3)

Compute the vertices of a plane triangle given its side lengths.

function triangle_vl2vp (v)

Compute the vertices of a plane triangle given its side lengths.

function triangle_ppp2vl (v1, v2, v3)

Compute the side lengths of a triangle given its vertices.

function triangle vp2vl (v)

Compute the side lengths of a triangle given its vertices.

function triangle centroid ppp (v1, v2, v3)

Compute the centroid (geometric center) of a triangle.

function triangle_centroid_vp (v)

Compute the centroid (geometric center) of a triangle.

function triangle_incenter_ppp (v1, v2, v3)

Compute the coordinate for the triangle's incircle.

function triangle_incenter_vp (v)

Compute the coordinate for the triangle's incircle.

function triangle_inradius_ppp (v1, v2, v3)

Compute the inradius of a triangle's incircle.

function triangle_inradius_vp (v)

Compute the inradius of a triangle's incircle.

7.5.1 Detailed Description

Mathematical functions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.cognu.org/licenses/.

Note

Include this library file using the include statement.

7.6 math bitwise.scad File Reference

Mathematical bitwise binary (base-two) functions.

#include <primitives.scad>
Include dependency graph for math_bitwise.scad:

This graph shows which files directly or indirectly include this file:

Functions

• function bitwise_is_equal (v, b, t=1)

Test if a base-two bit position of an integer value equals a test bit.

• function bitwise_i2v (v, w=1, bv=1)

Encode an integer value as a base-two vector of bits.

function bitwise_v2i (v)

Decode a base-two vector of bits to an integer value.

function bitwise_i2s (v, w=1)

Encode an integer value as a base-two string of bits.

• function bitwise_s2i (v)

Decode a base-two string of bits to an integer value.

• function bitwise and (v1, v2, bv=1)

Base-two bitwise AND operation for integers.

• function bitwise_or (v1, v2, bv=1)

Base-two bitwise OR operation for integers.

• function bitwise xor (v1, v2, bv=1)

Base-two bitwise XOR operation for integers.

function bitwise_not (v, w=1, bv=1)

Base-two bitwise NOT operation for an integer.

• function bitwise_lsh (v, s=1, bm=1, bv=1)

Base-two bitwise left-shift operation for an integer.

• function bitwise_rsh (v, s=1)

Base-two bitwise right-shift operation for an integer.

7.6.1 Detailed Description

Mathematical bitwise binary (base-two) functions.

Author

Roy Allen Sutton

Date

2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

Note

Include this library file using the include statement.

7.7 primitives.scad File Reference

Mathematical primitive functions.

#include <constants.scad>
Include dependency graph for primitives.scad:

This graph shows which files directly or indirectly include this file:

Functions

• function is_defined (v)

Test if a value is defined.

function not_defined (v)

Test if a value is not defined.

function is_empty (v)

Test if an iterable value is empty.

• function is_scalar (v)

Test if a value is a single non-iterable value.

• function is_iterable (v)

Test if a value has multiple parts and is iterable.

function is_string (v)

Test if a value is a string.

function is_vector (v)

Test if a value is a vector.

• function is_boolean (v)

Test if a value is a boolean constant.

• function is_integer (v)

Test if a value is an integer.

function is_decimal (v)

Test if a value is a decimal.

function is_number (v)

Test if a value is a number.

• function is_range (v)

Test if a value is a range definition.

• function is_nan (v)

Test if a numerical value is invalid.

• function is_inf (v)

Test if a numerical value is infinite.

function is even (v)

Test if a numerical value is even.

• function is odd (v)

Test if a numerical value is odd.

• function all equal (v, cv)

Test if all elements of a value equal a comparison value.

function any_equal (v, cv)

Test if any element of a value equals a comparison value.

function all defined (v)

Test if no element of a value is undefined.

function any undefined (v)

Test if any element of a value is undefined.

function all_scalars (v)

Test if all elements of a value are scalars.

function all vectors (v)

Test if all elements of a value are vectors.

function all_strings (v)

Test if all elements of a value are strings.

function all_numbers (v)

Test if all elements of a value are numbers.

function all_len (v, l)

Test if all elements of a value have a given length.

• function almost_equal (v1, v2, p=4)

Test if all elements of two values are approximately equal.

function compare (v1, v2, s=true)

Compare any two values (may be iterable and/or of different types).

• function consts (I, v)

Create a vector of constant elements.

• function vstr (v)

Convert all vector elements to strings and concatenate.

• function sum (v, i1, i2)

Compute the sum of a vector of numbers.

function defined or (v, d)

Return a defined or default value.

• function edefined_or (v, i, d)

Return a defined vector element or default value.

function first (v)

Return the first element of an iterable value.

function second (v)

Return the second element of an iterable value.

function last (v)

Return the last element of an iterable value.

function head (v)

Return a vector containing the first element of an iterable value.

• function tail (v)

Return a vector containing all but the first element of an iterable value.

• function rselect (v, i)

Select a range of elements from an iterable value.

• function eselect (v, f=true, l=false, i)

Select an element from each iterable value.

• function ciselect (v, i)

Case-like select a value from a vector of ordered options by index.

function cmvselect (v, mv)

Case-like select a value from a vector of identified options by match-value.

• function smerge (v, r=false)

Serial-merge vectors of iterable values.

• function pmerge (v, j=true)

Parallel-merge vectors of iterable values.

• function reverse (v)

Reverse the elements of an iterable value.

• function qsort (v, r=false)

Sort the numeric or string elements of a vector using quick sort.

• function qsort2 (v, d=0, r=false, s=true)

Hierarchically sort all elements of a vector using quick sort.

• function strip (v, mv=empty_v)

Strip all matching values from an iterable value.

function append (nv, v, r=true, j=true, l=true)

Append a value to each element of an iterable value.

• function insert (nv, v, i=0, mv, mi=0)

Insert a new value into an iterable value.

• function delete (v, i, mv, mc=0)

Delete elements from an iterable value.

7.7.1 Detailed Description

Mathematical primitive functions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.cognu.org/licenses/.

Note

Include this library file using the include statement.

7.8 resolution.scad File Reference

Arc rendering resolution abstraction.

```
#include <console.scad>
#include <constants.scad>
#include <units_length.scad>
```

Include dependency graph for resolution.scad:

Functions

- function resolution_fn (radius)
 Return facets number for the given arc radius.
- function resolution fs ()

Return minimum facets size.

• function resolution fa (radius)

Return the minimum facets angle.

function resolution_reduced ()

Return the radius at which arc resolution will begin to degrade.

module resolution_info (radius)

Echo resolution information to the console for given radius.

function resolution_facets (radius)

Return facet count used to render a radius.

function resolution_facetsv (radius)

Return facet count used to render a radius as vector triple.

Variables

• \$resolution mode = "fast"

<string> Global special variable that configures the arc resolution mode.

\$resolution value = 0

<decimal> Global special variable for modes that use custom resolutions.

7.8.1 Detailed Description

Arc rendering resolution abstraction.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.←gnu.org/licenses/.

Note

Include this library file using the include statement.

Todo Review model for accuracy.

7.9 shapes2d.scad File Reference

Two-dimensional basic shapes.

#include <transform.scad>
Include dependency graph for shapes2d.scad:

This graph shows which files directly or indirectly include this file:

Functions

• module rectangle (size, vr, center=false)

A rectangle.

module rectangle c (size, core, t, co, cr=0, vr, vr1, vr2, center=false)

A rectangle with a removed rectangular core.

module rhombus (size, vr, center=false)

A rhombus.

module triangle ppp (v1, v2, v3, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by three vertices.

module triangle_vp (v, vr, centroid=false, incenter=false)

A general triangle specified by a vector of its three vertices.

module triangle_III (s1, s2, s3, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by its three side lengths.

module triangle vl (v, vr, centroid=false, incenter=false)

A general triangle specified by a vector of its three side lengths.

module triangle_vl_c (vs, vc, co, cr=0, vr, vr1, vr2, centroid=false, incenter=false)

A general triangle specified by its sides with a removed triangular core.

module triangle lal (s1, a, s2, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by two sides and the included angle.

• module triangle_ala (a1, s, a2, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by a side and two adjacent angles.

• module triangle_aal (a1, a2, s, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A general triangle specified by a side, one adjacent angle and the opposite angle.

• module triangle_II (x, y, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A right-angled triangle specified by its opposite and adjacent side lengths.

• module triangle_la (x, y, aa, oa, vr, v1r, v2r, v3r, centroid=false, incenter=false)

A right-angled triangle specified by a side length and an angle.

module ngon (n, r, vr)

An n-sided equiangular/equilateral regular polygon.

• module ellipse (size)

An ellipse.

• module ellipse_c (size, core, t, co, cr=0)

An ellipse with a removed elliptical core.

module ellipse_s (size, a1=0, a2=0)

An ellipse sector.

module ellipse_cs (size, core, t, a1=0, a2=0, co, cr=0)

A sector of an ellipse with a removed elliptical core.

module star2d (size, n=5, vr)

A two dimensional star.

7.9.1 Detailed Description

Two-dimensional basic shapes.

Author

Roy Allen Sutton

Date
2015-2017
Copyright
This file is part of omd1, an OpenSCAD mechanical design library.
The <i>omdl</i> is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
The <i>omdl</i> is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the <i>omdl</i> ; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.cognu.org/licenses/.
7.10 shapes2de.scad File Reference
Linearly extruded two-dimensional basic shapes.

#include <shapes2d.scad>

Include dependency graph for shapes2de.scad:

Functions

• module erectangle (size, h, vr, center=false)

An extruded rectangle.

module erectangle_c (size, core, h, t, co, cr=0, vr, vr1, vr2, center=false)

An extruded rectangle with a removed rectangular core.

• module erhombus (size, h, vr, center=false)

An extruded rhombus.

• module etriangle_ppp (v1, v2, v3, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by three vertices.

• module etriangle vp (v, h, vr, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a vector of its three vertices.

module etriangle_III (s1, s2, s3, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by its three side lengths.

• module etriangle vI (v, h, vr, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a vector of its three side lengths.

• module etriangle_vl_c (vs, vc, h, co, cr=0, vr, vr1, vr2, centroid=false, incenter=false, center=false)

A general triangle specified by its sides with a removed triangular core.

module etriangle_lal (s1, a, s2, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by two sides and the included angle.

module etriangle_ala (a1, s, a2, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a side and two adjacent angles.

module etriangle_aal (a1, a2, s, h, x=1, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded general triangle specified by a side, one adjacent angle and the opposite angle.

module etriangle_II (x, y, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded right-angled triangle specified by its opposite and adjacent side lengths.

• module etriangle_la (x, y, aa, oa, h, vr, v1r, v2r, v3r, centroid=false, incenter=false, center=false)

An extruded right-angled triangle specified by a side length and an angle.

• module engon (n, r, h, vr, center=false)

An extruded n-sided equiangular/equilateral regular polygon.

module eellipse (size, h, center=false)

An extruded ellipse.

module eellipse_c (size, core, h, t, co, cr=0, center=false)

An extruded ellipse with a removed elliptical core.

module eellipse_s (size, h, a1=0, a2=0, center=false)

An extruded ellipse sector.

module eellipse_cs (size, core, h, t, a1=0, a2=0, co, cr=0, center=false)

An extruded sector of an ellipse with a removed elliptical core.

module estar2d (size, h, n=5, vr, center=false)

An extruded two dimensional star.

7.10.1 Detailed Description

Linearly extruded two-dimensional basic shapes.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

7.11 shapes3d.scad File Reference

Three-dimensional basic shapes.

#include <shapes2d.scad>

Include dependency graph for shapes3d.scad:

Functions

• module cone (r, h, d, vr, vr1, vr2)

A cone

• module cuboid (size, vr, center=false)

A cuboid.

• module ellipsoid (size)

An ellipsoid.

• module ellipsoid_s (size, a1=0, a2=0)

A sector of an ellipsoid.

module tetrahedron (r, center=false)

A pyramid with trilateral base formed by four equilateral triangles.

module pyramid_q (x, y, z, center=false)

A pyramid with quadrilateral base.

• module star3d (size, n=5, half=false)

A three dimensional star.

module torus_rp (size, core, r, l, t, co, cr=0, vr, vr1, vr2, pa=0, ra=360, m=255, center=false, profile=false)

A rectangular cross-sectional profile revolved about the z-axis.

• module torus_tp (vs, vc, r, l, co, cr=0, vr, vr1, vr2, pa=0, ra=360, m=255, centroid=false, incenter=false, pro-file=false,)

A triangular cross-sectional profile revolved about the z-axis.

• module torus_ep (size, core, r, l, t, a1=0, a2=0, co, cr=0, pa=0, ra=360, m=255, profile=false)

An elliptical cross-sectional profile revolved about the z-axis.

7.11.1 Detailed Description

Three-dimensional basic shapes.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.egnu.org/licenses/.

Todo Complete rounded cylinder.

7.12 table.scad File Reference

Data table encoding and lookup.

#include <console.scad>
#include <primitives.scad>
Include dependency graph for table.scad:

Functions

function table get row idx (rows, row id)

Get the index for a table row identifier.

function table_get_row (rows, row_id)

Get the row for a table row identifier.

function table_get_col_idx (cols, col_id)

Get the index for a table column identifier.

• function table_get_col (cols, col_id)

Get the column for a table column identifier.

function table_get (rows, cols, row_id, col_id)

Get the value for a table row and column identifier.

function table_get_row_cols (rows, cols, col_id)

Form a vector from the specified column of each table row.

function table_get_row_ids (rows)

Form a vector of each table row identifier.

• function table_exists (rows, cols, row_id, col_id)

Test the existence of a table row and column identifier.

• function table_size (rows, cols)

Get the size of a table.

module table check (rows, cols, verbose=false)

Perform some basic validation/checks on a table.

• module table_dump (rows, cols, rows_sel, cols_sel, number=true)

Dump a table to the console.

function table_copy (rows, cols, rows_sel, cols_sel)

Create a copy of select rows and columns of a table.

• function table_sum (rows, cols, rows_sel, cols_sel)

Sum select rows and columns of a table.

7.12.1 Detailed Description

Data table encoding and lookup.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

7.13 transform.scad File Reference

Shape transformation functions.

```
#include <console.scad>
#include <math.scad>
#include <math_bitwise.scad>
```

Include dependency graph for transform.scad:

This graph shows which files directly or indirectly include this file:

Functions

- module st_rotate_extrude (r, pa=0, ra=360, profile=false)

 Revolve the 2D shape about the z-axis.
- module st_rotate_extrude_elongate (r, l, pa=0, ra=360, m=255, profile=false)

Revolve the 2D shape about the z-axis with linear elongation.

• module st_linear_extrude_scale (h, center=false)

Linearly extrude 2D shape with extrusion upper and lower scaling.

module st_radial_copy (n, r=1, angle=true, move=false)

Distribute copies of a 2D or 3D shape equally about a z-axis radius.

• module st_cartesian_copy (grid, incr, copy=1, center=false)

Distribute copies of 2D or 3D shapes about Cartesian grid.

7.13.1 Detailed Description

Shape transformation functions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

7.14 units_angle.scad File Reference

Angle units and conversions.

#include <constants.scad>

Include dependency graph for units angle.scad:

Functions

• function unit_angle_name (units=base_unit_angle)

Return the name of the given angle unit identifier.

• function convert_angle (angle, from=base_unit_angle, to=base_unit_angle)

Convert the angle from from units to to units.

Variables

• base_unit_angle = "d"

<string> Base unit for angle measurements.

7.14.1 Detailed Description

Angle units and conversions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

Note

Include this library file using the include statement.

7.15 units_length.scad File Reference

Length units and conversions.

This graph shows which files directly or indirectly include this file:

Functions

- function unit_length_name (units=base_unit_length, d=1, w=false)
 - Return the name of the given unit identifier with dimension.
- function convert_length (value, from=base_unit_length, to=base_unit_length, d=1)

Convert the value from from units to to units with dimensions.

Variables

• base_unit_length = "mm"

<string> Base unit for length measurements.

7.15.1 Detailed Description

Length units and conversions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.⇔gnu.org/licenses/.

Note

Include this library file using the include statement.

7.16 utilities.scad File Reference

Miscellaneous utilities.

This graph shows which files directly or indirectly include this file:

Functions

function stack (b=0, t=0)

Format the function call stack as a string.
7.16.1 Detailed Description
Miscellaneous utilities.
Author Roy Allen Sutton
Date 2015-2017
Copyright
This file is part of omdl, an OpenSCAD mechanical design library. The omdl is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option any later version.
The <i>omdl</i> is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with the <i>omdl</i> ; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www.egnu.org/licenses/ .

7.17 validation.scad File Reference

Result validation functions.

#include <primitives.scad>
Include dependency graph for validation.scad:

Functions

function validate (d, cv, t, ev, p=4, pf=false)
 Compare a computed test value with an known good result.

7.17.1 Detailed Description

Result validation functions.

Author

Roy Allen Sutton

Date

2015-2017

Copyright

This file is part of omdl, an OpenSCAD mechanical design library.

The *omdl* is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The *omdl* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with the *omdl*; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA; or see http://www. \leftarrow gnu.org/licenses/.

Index

2D Extrusions, 39		
eellipse_c, 4, 42 eellipse_s, 43 engon, 43 erectangle_q, 44 erectangle_q, 44 erectangle_c, 45 erhombus, 46 estar2d, 47 etriangle_ala, 48 etriangle_la, 49 etriangle_ll, 51 etriangle_lll, 51 etriangle_vl_c, 54 etriangle_vl_c, 69 triangle_vl_c, 69 triangle_vl_c	2D Extrusions, 39	all_defined
eellipse_s, 42 eellipse_s, 43 engon, 43 erectangle, 44 erectangle, 2, 45 erhombus, 46 estar2d, 47 etriangle al, 49 etriangle al, 50 etriangle ll, 50 etriangle vl, 54 etriangle vl, 54 etriangle vl, 54 etriangle vl, 54 etriangle vl, 55 ellipse_c, 58 ellipse_c, 58 ellipse_c, 58 ellipse_c, 58 ellipse_c, 58 ellipse_c, 58 ellipse_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_ala, 64 triangle_ala, 64 triangle_ala, 64 triangle_ala, 64 triangle_ala, 66 triangle_vl, 69 trian	·	Variable Tests, 149
eellipse_s, 43 engon, 43 erectangle, 44 erectangle_c, 45 erhombus, 46 estar2d, 47 etriangle_aal, 47 etriangle_aal, 48 etriangle_la, 50 etriangle_ll, 51 etriangle_yl, 54 etriangle_yl, 54 etriangle_vl, 54 etriangle_vl, 55 2D Shapes, 57 ellipse_c, 58 ellipse_c, 59 ellipse_c, 59 ellipse_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_la, 66 triangle_la, 66 triangle_la, 66 triangle_yl, 69 tria	. —	all_equal
engon, 43 erectangle, 44 erectangle, 2, 45 erhombus, 46 estar2d, 47 etriangle, 2al, 47 etriangle, 2al, 47 etriangle, 2al, 49 etriangle, 2b, 45 etriangle, 2b, 49 etriangle, 2b, 49 etriangle, 2b, 51 etriangle, 2b, 51 etriangle, 2b, 52 etriangle, 2b, 54 etriangle, 2b, 55 etriangle, 2b, 55 ellipse, 58 ellipse, 5, 59 ellipse, 5, 60 ngon, 60 rectangle, 61 rectangle, 62 rhombus, 62 star2d, 63 triangle, 2al, 64 triangle, 2b, 65 triangle, 2b, 66 triangle, 2b, 66 triangle, 2b, 69 triangl	eellipse_cs, 42	Variable Tests, 149
erectangle, c, 45 erbombus, 46 estar2d, 47 etriangle al, 47 etriangle al, 48 etriangle al, 49 etriangle all, 50 etriangle all, 50 etriangle all, 51 etriangle all, 52 etriangle all, 52 etriangle all, 54 etriangle all, 50 etriangle all, 50 etriangle all, 51 etriangle all, 52 etriangle all, 54 etriangle all, 55 etriangle all, 56 etriangle all, 50 etriangle all, 50 etriangle all, 50 etriangle all, 51 etriangle all, 52 etriangle all, 52 etriangle all, 53 etriangle all, 54 etriangle all, 56 rectangle, 61 rectangle, 61 rectangle, 62 rhombus, 62 star2d, 63 triangle all, 64 triangle all, 65 triangle all, 66 triangle all, 66 triangle all, 67 triangle all, 68 triangle all, 68 triangle all, 69 triangle all, 66 triangl	eellipse_s, 43	all_len
erectangle_c, 45 erhombus, 46 estar2d, 47 etriangle_aal, 47 etriangle_aal, 48 etriangle_la, 49 etriangle_lal, 50 etriangle_ll, 51 etriangle_ll, 52 etriangle_vl, 54 etriangle_vl, 54 etriangle_vl, 55 ellipse_c, 58 ellipse_c, 58 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 65 triangle_lal, 65 triangle_lal, 66 triangle_lal, 67 triangle_lal, 67 triangle_vl, 69 triangle	engon, 43	Variable Tests, 151
erhombus, 46 estar2d, 47 etriangle_aal, 47 etriangle_aal, 48 etriangle_lal, 49 etriangle_lal, 50 etriangle_ll, 51 etriangle_ll, 52 etriangle_ll, 52 etriangle_vl, 54 etriangle_vl, 54 etriangle_vl, 55 2D Shapes, 57 ellipse, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_c61 rectangle_c62 rhombus, 62 star2d, 63 triangle_lal, 64 triangle_lal, 66 triangle_lal, 67 triangle_pp, 68 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsol, 74 ellipsold_s, 74 ellipsold_s, 74 ellipsold_s, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_ep, 77 torus_ep, 77 ellipse, 58 ellipse_cal, 65 triangle_lal, 67 triangle_glal, 67 triangle_glal, 67 triangle_glal, 67 triangle_glal, 67 triangle_glal, 66 triangle_vp, 70 shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_ep, 77 bitwise_l2s Bitwise Operations, 85 bitwise_l2s Bi	erectangle, 44	all_numbers
estar2d, 47 etriangle_aal, 47 etriangle_ala, 48 etriangle_la, 49 etriangle_la, 50 etriangle_ll, 50 etriangle_ll, 51 etriangle_yl, 54 etriangle_vl, 54 etriangle_vp, 55 2D Shapes, 57 ellipse_c, 58 ellipse_c, 58 ellipse_c, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_pp, 70 3D Shapes, 72 cone, 73 ellipsold, 74 ellipsold, 74 ellipsold, 74 ellipsold, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_p, 78 ellivise_Operations, 85 ellipse_os, 80 ellipse_cs, 80 ellipse_cs, 80 ellipse_ds, 80 e	erectangle_c, 45	Variable Tests, 151
estar2d, 47 etriangle_aal, 47 etriangle_ala, 48 etriangle_la, 49 etriangle_la, 50 etriangle_ll, 50 etriangle_ll, 51 etriangle_yl, 54 etriangle_vl, 54 etriangle_vp, 55 2D Shapes, 57 ellipse_c, 58 ellipse_c, 58 ellipse_c, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_pp, 70 3D Shapes, 72 cone, 73 ellipsold, 74 ellipsold, 74 ellipsold, 74 ellipsold, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_p, 78 ellivise_Operations, 85 ellipse_os, 80 ellipse_cs, 80 ellipse_cs, 80 ellipse_ds, 80 e	erhombus, 46	all scalars
etriangle_aal, 47 etriangle_lal, 48 etriangle_lal, 49 etriangle_lal, 50 etriangle_lli, 50 etriangle_lli, 51 etriangle_lli, 52 etriangle_lli, 52 etriangle_lpp, 53 etriangle_vi, 54 etriangle_vi, 54 etriangle_vi, 55 2D Shapes, 57 ellipse, 58 ellipse_cs, 59 ellipse_cs, 59 ellipse_cs, 50 rectangle_61 rectangle_61 rectangle_62 retiangle_ala, 64 triangle_ala, 64 triangle_ala, 64 triangle_lal, 67 triangle_lal, 67 triangle_li, 67 triangle_li, 67 triangle_vi, 69 trian		_
etriangle_lal, 48 etriangle_lal, 49 etriangle_lal, 50 etriangle_ll, 50 etriangle_ll, 51 etriangle_ll, 52 etriangle_ll, 52 etriangle_ll, 52 etriangle_vl, 54 etriangle_vl, 54 etriangle_vp, 55 2D Shapes, 57 ellipse_c, 58 ellipse_cs, 59 ellipse_cs, 60 ngon, 60 rectangle, 61 rectangle_al, 64 triangle_al, 64 triangle_al, 64 triangle_lal, 66 triangle_lal, 66 triangle_lal, 66 triangle_ll, 67 triangle_ll, 67 triangle_vl, 69 triangle_vl, 60 triangle_vl, 60 triangle_vl, 60 triangle_vl, 60 triangle_vl, 60 triangle_vl		
etriangle_la, 49 etriangle_ll, 50 etriangle_ll, 51 etriangle_lll, 52 etriangle_pll, 52 etriangle_ppp, 53 etriangle_vlc, 54 etriangle_vlc, 54 etriangle_vp, 55 2D Shapes, 57 ellipse_c, 58 ellipse_c, 58 ellipse_cs, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_la, 64 triangle_la, 64 triangle_la, 66 triangle_la, 66 triangle_la, 66 triangle_la, 66 triangle_la, 66 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetraheder, 77 torus_p, 77 triangle_lat, 65 triangle_lac, 65 triangle_lac, 75 trivingle_lac, 77 torus_p, 77 torus_p, 77 torus_p, 77 torus_p, 77 triviangle_lac, 75 trivingle_lac, 75 trivingle_lac, 75 trivingle_lac, 77 torus_pp, 77 torus_pp, 77 torus_pp, 77 Bitwise_Operations, 85 towner_tandle_trests, 152 almost_equal Variable Tests, 152 almost_equal Variable Tests, 152 ande_variable_Tests, 152 angle_variangle_ala ande_variable_Tests, 152 angle_var convert_angle_ala variable Tests, 152 angle_var convert_angle_ala variable_Tests, 152 angle_var convert_angle_ala variable_Tests, 152 angle_var convert_angle_ala variable_Tests, 152 angle_vvv Point, vector and Plane, 120 angle_vvv Point, vector and Plane, 120 angle_vvv Point, vector and Plane, 120 angle_var convert_angle_ala ande_var convert_angle_ala ande_var convert_angle_ala ande_var convert_angle_ala ande_var convert_angle_ala convert_angle_ala conver	- -	
etriangle_lal, 50 etriangle_lll, 51 etriangle_lll, 52 etriangle_ppp, 53 etriangle_vl, 54 etriangle_vl, 54 etriangle_vl, 55 2D Shapes, 57 ellipse_cs, 58 ellipse_cs, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_lal, 64 triangle_lal, 66 triangle_lal, 66 triangle_ll, 67 triangle_ll, 67 triangle_yp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipse_vi, 59 etriangle_vl, 69 etriangle_vl, 69 etriangle_vp, 70 star3d, 76 etertande, 75 etriangle_ils etriangle_vl, 69 etriangle_vp, 77 etriangle_gand, 75 etriangle_ils etriangle_ils etriangle_vl, 69 etriangle_vl, 69 etriangle_vl, 69 etriangle_vp, 70 star3d, 76 etertander, 76 etriangle_ils etriangle_i	· —	
etriangle_II, 51 etriangle_III, 52 etriangle_ppp, 53 etriangle_vl, 54 etriangle_vl_c, 54 etriangle_vl_c, 54 etriangle_vl_c, 54 etriangle_vl_c, 55 etriangle_vl_c, 55 2D Shapes, 57 ellipse, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 66 triangle_ll, 67 triangle_III, 67 triangle_III, 67 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vl, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 pyramid_q, 75 etriangle_iix etriang	· —	
etriangle_III, 52 etriangle_vp, 53 etriangle_vl, 54 etriangle_vl_c, 54 etriangle_vl_c, 54 etriangle_vp, 55 2D Shapes, 57 ellipse, 58 ellipse_c, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_d, 61 rectangle_aal, 64 triangle_aal, 64 triangle_lal, 65 triangle_lal, 66 triangle_lli, 67 triangle_lli, 67 triangle_pp, 68 triangle_vl_c, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipseid_s etriangle_la, 65 etriangle_pp, 77 ellipse_sis 0 Angle, 81 convert_angle, 82 angle_vv Point, Vector and Plane, 119 angle_vv Point, Vector and Plane, 120 vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 bitwise_ias, 85 bitwise_ias, 85 bitwise_ias, 85 bitwise_ias, 85 bitwise_ias, 85 bitwise_ias, 86 bitwise_ias, 86 bitwise_ias, 86 bitwise_or, 86 bitwise_or, 86 bitwise_vai, 87 bitwise_vai, 87 bitwise_vai, 87 bitwise_vai, 87 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 75 etertahedron, 76 bitwise_i2v Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85	- -	
etriangle_ppp, 53 etriangle_vl_c, 54 etriangle_vl_c, 54 etriangle_vl_c, 55 2D Shapes, 57 ellipse_s, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_lal, 64 triangle_lal, 65 triangle_lal, 66 triangle_lal, 66 triangle_lli, 67 triangle_lli, 67 triangle_ppp, 68 triangle_vl_c, 69 triangle_vl, 69 triangle_vr, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 77 torus_rp, 78 Angle, 81 convert_angle, 82 unit_angle, 82 unit_angle, 82 unit_angle_ne, 82 unit_angle_ne, 82 unit_angle_ne, 82 unit_angle_vv unit_angle_unit_se unit_angle_vv unit_angle_unit_se unit_angle_vv unit_angle_unit_se unit_angle_vv unit_angle_unit_se unit_unit_se unit_u	· —	
etriangle_vl, 54 etriangle_vl, 54 etriangle_vl, 55 etriangle_vp, 55 2D Shapes, 57 ellipse, 58 ellipse_c, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_o, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_ala, 64 triangle_lal, 65 triangle_lal, 66 triangle_lli, 67 triangle_lli, 67 triangle_pp, 68 triangle_vl, 69 triangle_vl, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 77 torus_p, 78 every convert_angle, 82 unit_angle_ne, 82 unit_angle_vv unit_angle_vv angle_vv point, Vector and Plane, 120 variable Tests, 153 append variable Tests, 162 append variable Tests, 153 append variabl	· —	
etriangle_vl_c, 54 etriangle_vp, 55 2D Shapes, 57 ellipse, 58 ellipse_c, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_la, 65 triangle_lal, 66 triangle_ll, 67 triangle_pp, 68 triangle_vl, 69 triangle_vv, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 77 torus_ep, 77 bitwise_i2v Bitwise_Operations, 85		•
etriangle_vp, 55 2D Shapes, 57 ellipse, 58 ellipse_cs, 58 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_cf, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_la, 65 triangle_ll, 67 triangle_pp, 68 triangle_pp, 68 triangle_vp, 69 triangle_vp, 69 triangle_vl_c,	<u> </u>	_ ·
2D Shapes, 57 ellipse, 58 ellipse_cs, 58 ellipse_cs, 59 ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 65 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl_c, 69 triangle_vl_c, 69 triangle_vl_c, 69 triangle_vl_c, 69 triangle_vl_c, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 75 torus_pp, 77 torus_rp, 78 Point, Vector and Plane, 119 angle_vvn Point, Vector and Plane, 120 variable Tests, 153 any_undefined Variable Tests, 153 append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 bitwise_lass, 153 append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 bitwise_operations, 84 bitwise_operations, 84 bitwise_operations, 84 bitwise_operations, 85 bitwise_se_se, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 86 bitwise_ize, 86 bitwise_ize, 86 bitwise_ize, 86 bitwise_ize, 87 bitwise_vai, 87 bitwise_vai, 87 bitwise_ize,	-	
ellipse, 58 ellipse_c, 58 ellipse_c, 58 ellipse_s, 60 ellipse_s, 60 ngon, 60 rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 66 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 76 torus_ep, 77 torus_rp, 78 ellivise_ip, 77 torus_rp, 78 ellipsoid_n7 ellithe indivise_i2v end angle_vvn Point, Vector and Plane, 120 any_equal Variable Tests, 153 any_undefined Variable Tests, 153 any_undefined Variable Tests, 153 any_undefined Variable Tests, 153 ellipse_s, 160 any_equal Variable Tests, 153 any_equal Variable Tests, 153 any_undefined Variable Tests, 153 any_equal Variable Tests, 153 any_equal Variable Tests, 153 any_equal Variable Tests, 153 ellipse_vs, 160 any_equal Variable Tests, 153 any_undefined Variable Tests, 160 any_undefined Variable Tests, 160 any_undefined Variable Tests, 160 any_undefined Variable Testa, 153 any_undefined Variabl	<u> </u>	_
ellipse_c, 58 ellipse_cs, 59 ellipse_cs, 60 ngon, 60 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_al, 64 triangle_lla, 65 triangle_lla, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 70 3D Shapes, 72 cone, 73 ellipsoid, 74 ellipsoid, 74 ellipsoid, 74 ellipsoid, 76 torus_ey, 77 torus_rp, 78 Point, Vector and Plane, 120 any_equal Variable Tests, 153 append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 bletwise_operations, 84 bitwise_operations, 84 bitwise_operations, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 86 bitwise_or, 86 bitwise_or, 86 bitwise_or, 86 bitwise_vzi, 87 bitwise_vzi, 87 bitwise_vzi, 87 bitwise_and Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85	•	
ellipse_cs, 59 ellipse_s, 60 ngon, 60 rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 65 triangle_lli, 67 triangle_ppp, 68 triangle_vi, 69 triangle_vi, 69 triangle_vi, 69 triangle_vy, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 persone desired. ellipsoid_s, 74 ellipsoid_s, 74 ellipsoid_s, 74 torus_rp, 78 ellipsoid_s, 77 torus_rp, 78 ellipsoid_s, 77 torus_rp, 78 ellipsoid_s, 77 bitwise_i2s evall evallered. evallered	•	_
ellipse_s, 60 ngon, 60 rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_ala, 64 triangle_lal, 66 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl_c,	• —	
ngon, 60 rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_aal, 64 triangle_la, 65 triangle_la, 66 triangle_ll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid_s, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 append Variable Tests, 153 append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 Bitwise Operations, 84 triangle_la, 65 bitwise Operations, 84 bitwise_operations, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_rsh, 86 bitwise_rsh, 86 bitwise_rsh, 86 bitwise_szi, 87 bitwise_szi, 87 bitwise_vzi, 87 bitwise_vzi, 87 bitwise_and Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85	• —	
rectangle, 61 rectangle_c, 62 rhombus, 62 star2d, 63 triangle_aal, 64 triangle_la, 65 triangle_ll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 Variable Tests, 153 append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 Bitwise Operations, 84 bitwise Operations, 84 bitwise append are_coplanar_vvv Point, Vector and Plane, 120 Bitwise Operations, 84 bitwise operations, 85 bitwise_izs, 85 bitwise_izs, 85 bitwise_izs, 85 bitwise_izs, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_or, 86 bitwise_rsh, 86 bitwise_szi, 87 bitwise_vzi, 87 bitwise_vzi, 87 bitwise_and Bitwise Operations, 85 bitwise_izs Bitwise Operations, 85 bitwise_izv Bitwise_operations, 85 bitwise_izv Bitwise_Operations, 85	• —	
rectangle_c, 62 rhombus, 62 star2d, 63 triangle_aal, 64 triangle_laa, 65 triangle_laa, 66 triangle_ll, 67 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid, 5, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 ellipsoid, 74 triangle_pc, 78 triangle_nd, 69 triangle_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 ellipsoid_s, 74 triangle_pc, 78 bitwise_i2v append Vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 triangle_nel, 69 bitwise Operations, 84 bitwise Operations, 84 bitwise_nad, 85 bitwise_i2s, 85 bitwise_i2, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_or, 86 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise_i2v Bitwise_i2v Bitwise_i2v Bitwise_operations, 85		· —
rhombus, 62 star2d, 63 triangle_aal, 64 triangle_laa, 65 triangle_laa, 66 triangle_ll, 67 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid, 5, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 vector Operations, 160 are_coplanar_vvv Point, Vector and Plane, 120 Bitwise Operations, 84 triangle_vl, 60 bitwise_operations, 84 bitwise_operations, 84 bitwise_and, 85 bitwise_il2s, 85 bitwise_il2s, 85 bitwise_il2s, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_or, 86 bitwise_or, 86 bitwise_or, 86 bitwise_s2i, 87 bitwise_s2i, 87 bitwise_and Bitwise Operations, 85 bitwise_il2s Bitwise Operations, 85 bitwise_il2s Bitwise Operations, 85 bitwise_il2s Bitwise Operations, 85 bitwise_il2s Bitwise Operations, 85		
star2d, 63 triangle_aal, 64 triangle_ala, 65 triangle_lal, 66 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 Bitwise Operations, 84 bitwise Operations, 84 bitwise Operations, 84 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_ize, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_not, 86 bitwise_or, 86 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_and Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85	rectangle_c, 62	append
triangle_aal, 64 triangle_ala, 65 triangle_lal, 66 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_ll, 67 triangle_ll, 69 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 Bitwise Operations, 85 bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise_operations, 85 bitwise_ize Bitwise Operations, 85 bitwise_ize Bitwise Operations, 85	rhombus, 62	•
triangle_ala, 64 triangle_la, 65 triangle_lal, 66 triangle_ll, 67 triangle_ll, 67 triangle_lll, 67 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 triangle_pl, 65 bitwise_is_equal, 85 bitwise_lsh, 86 bitwise_or, 86 bitwise_or, 86 bitwise_s2i, 87 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_j2v Bitwise_j2v Bitwise Operations, 85	star2d, 63	are_coplanar_vvv
triangle_la, 65 triangle_lal, 66 triangle_ll, 67 triangle_lll, 67 triangle_lll, 67 triangle_lll, 67 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl_c, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 Bitwise Operations, 84 bitwise_and, 85 bitwise_i2s, 85 bitwise_i2v, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_is_equal, 85 bitwise_or, 86 bitwise_or, 86 bitwise_or, 86 bitwise_or, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85	triangle_aal, 64	Point, Vector and Plane, 120
triangle_lal, 66 triangle_ll, 67 triangle_lll, 67 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl_c, 69 triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 bitwise_and, 85 bitwise_i2s, 85 bitwise_i2v, 85 bitwise_lsh, 86 bitwise_not, 86 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise_Operations, 85	triangle_ala, 64	
triangle_ll, 67 triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, 69 triangle_vl, 69 triangle_vp, 70 3D Shapes, 72 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_rp, 78 bitwise_i2s, 85 bitwise_i2v, 85 bitwise_is_equal, 85 bitwise_lsh, 86 bitwise_or, 86 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_xor, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85	triangle_la, 65	Bitwise Operations, 84
triangle_lll, 67 triangle_ppp, 68 triangle_vl, 69 triangle_vl, c, 69 triangle_vp, 70 3D Shapes, 72 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 bitwise_i2v, 85 bitwise_is_equal, 85 bitwise_lsh, 86 bitwise_not, 86 bitwise_or, 86 bitwise_or, 86 bitwise_s2i, 87 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_xor, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85	triangle_lal, 66	bitwise_and, 85
triangle_ppp, 68 triangle_vl, 69 triangle_vl_c, 69 triangle_vp, 70 bitwise_or, 86 triangle_vp, 70 bitwise_or, 86 3D Shapes, 72 bitwise_rsh, 86 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_is_equal, 85 bitwise_lsh, 86 bitwise_or, 86 bitwise_y2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85	triangle_II, 67	bitwise_i2s, 85
triangle_ppp, 68 triangle_vl, 69 triangle_vl_c, 69 triangle_vp, 70 bitwise_or, 86 triangle_vp, 70 bitwise_or, 86 3D Shapes, 72 bitwise_rsh, 86 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_is_equal, 85 bitwise_lsh, 86 bitwise_or, 86 bitwise_y2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85	triangle III, 67	bitwise i2v, 85
triangle_vl, 69 triangle_vl_c, 69 triangle_vp, 70 bitwise_not, 86 triangle_vp, 70 bitwise_or, 86 3D Shapes, 72 bitwise_rsh, 86 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_lsh, 86 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85	triangle ppp, 68	bitwise is equal, 85
triangle_vl_c, 69 triangle_vp, 70 bitwise_not, 86 striangle_vp, 70 bitwise_or, 86 3D Shapes, 72 bitwise_rsh, 86 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_not, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_y2i, 87 bitwise_v2i, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85		
triangle_vp, 70 3D Shapes, 72 cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_or, 86 bitwise_rsh, 86 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_v2i, 87 bitwise_and bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85	- -	- · ·
3D Shapes, 72	·	
cone, 73 cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_s2i, 87 bitwise_v2i, 87 bitwise_ard bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85		
cuboid, 73 ellipsoid, 74 ellipsoid_s, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 tetrahedron, 76 torus_ep, 77 torus_rp, 78 bitwise_v2i, 87 bitwise_xor, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise_Operations, 85	·	- ·
ellipsoid, 74 ellipsoid_s, 74 pyramid_q, 75 star3d, 76 torus_ep, 77 torus_rp, 78 bitwise_xor, 87 bitwise_and Bitwise Operations, 85 bitwise_i2s Bitwise Operations, 85 bitwise_i2v Bitwise_i2v Bitwise_Operations, 85		
ellipsoid_s, 74 pyramid_q, 75 star3d, 76 bitwise_i2s tetrahedron, 76 bitwise_i2s torus_ep, 77 bitwise_i2v torus_rp, 78 Bitwise Operations, 85 bitwise_i2v Bitwise Operations, 85		
pyramid_q, 75 star3d, 76 bitwise_i2s tetrahedron, 76 bitwise_operations, 85 torus_ep, 77 bitwise_i2v torus_rp, 78 Bitwise Operations, 85 bitwise_operations, 85	• •	- '
star3d, 76 bitwise_i2s tetrahedron, 76 Bitwise Operations, 85 torus_ep, 77 bitwise_i2v torus_rp, 78 Bitwise Operations, 85	• — •	-
tetrahedron, 76 Bitwise Operations, 85 torus_ep, 77 bitwise_i2v torus_rp, 78 Bitwise Operations, 85		•
torus_ep, 77 bitwise_i2v torus_rp, 78 Bitwise Operations, 85		-
torus_rp, 78 Bitwise Operations, 85		-
_,	_ ·	-
torus_tp, /9 bitwise_is_equal	_ ·	•
	torus_tp, /9	bitwise_is_equal

Bitwise Operations, 85	table_get_row_ids, 99
bitwise_lsh	table_get_row_idx, 99
Bitwise Operations, 86	table_size, 100
bitwise_not	table_sum, 100
Bitwise Operations, 86	defined_or
bitwise_or	Vector Operations, 163
Bitwise Operations, 86	delete
bitwise_rsh	Vector Operations, 163
Bitwise Operations, 86	Designs, 101
bitwise_s2i	distance_pp
Bitwise Operations, 87	Point, Vector and Plane, 121
bitwise_v2i	dot_vv
Bitwise Operations, 87	Point, Vector and Plane, 122
bitwise_xor	
Bitwise Operations, 87	edefined_or
	Vector Operations, 163
ciselect	eellipse
Vector Operations, 161	2D Extrusions, 40
cmvselect	eellipse_c
Vector Operations, 161	2D Extrusions, 41
compare	eellipse_cs
Variable Tests, 153	2D Extrusions, 42
cone	eellipse_s
3D Shapes, 73	2D Extrusions, 43
Console, 88	ellipse
log_debug, 89	2D Shapes, 58
log_echo, 89	ellipse_c
log_error, 89	2D Shapes, 58
log_info, 89	ellipse_cs
log_warn, 90	2D Shapes, 59
console.scad, 171	ellipse_s
Constants, 91	2D Shapes, 60
constants.scad, 172	ellipsoid
consts	3D Shapes, 74
Vector Operations, 161	ellipsoid_s
convert_angle	3D Shapes, 74
Angle, 82	• •
convert_length	engon
Length, 111	2D Extrusions, 43 erectangle
cross_vv	2D Extrusions, 44
Point, Vector and Plane, 121	•
cuboid	erectangle_c
3D Shapes, 73	2D Extrusions, 45
D	erhombus
Data, 92	2D Extrusions, 46
Datatable, 93	eselect
table_check, 95	Vector Operations, 164
table_copy, 95	estar2d
table_dump, 96	2D Extrusions, 47
table_exists, 97	etriangle_aal
table_get, 97	2D Extrusions, 47
table_get_col, 97	etriangle_ala
table_get_col_idx, 97	2D Extrusions, 48
table_get_row, 99	etriangle_la
table_get_row_cols, 99	2D Extrusions, 49

etriangle_lal	Variable Tests, 157
2D Extrusions, 50	is_string
etriangle_ll	Variable Tests, 158
2D Extrusions, 51	is_vector
etriangle_III	Variable Tests, 158
2D Extrusions, 52	
etriangle_ppp	last
2D Extrusions, 53	Vector Operations, 165
etriangle_vl	Length, 109
2D Extrusions, 54	convert_length, 111
etriangle_vl_c	unit_length_name, 111
2D Extrusions, 54	log_debug
etriangle_vp	Console, 89
2D Extrusions, 55	log_echo
Euclidean, 102	Console, 89
Extrusions, 104	log_error
st_linear_extrude_scale, 104	Console, 89
st_rotate_extrude, 105	log_info
st_rotate_extrude_elongate, 106	Console, 89
	log_warn
first	Console, 90
Vector Operations, 164	
	mainpage.scad, 174
General, 108	Map, 112
	map_check, 113
head	map_dump, 113
Vector Operations, 164	map_exists, 114
	map_get, 114
insert	map_get_idx, 114
Vector Operations, 164	map_get_keys, 114
is_boolean	map_get_values, 115
Variable Tests, 154	map_size, 115
is_decimal	map.scad, 175
Variable Tests, 154	map_check
is_defined	Map, 113
Variable Tests, 155	map_dump
is_empty	Map, 113
Variable Tests, 155	map_exists
is even	Map, 114
Variable Tests, 155	map_get
is inf	Мар, 114
Variable Tests, 155	map_get_idx
is integer	Map, 114
Variable Tests, 156	map_get_keys
is iterable	Мар, 114
Variable Tests, 156	map_get_values
is nan	Map, 115
Variable Tests, 156	
is number	map_size
Variable Tests, 156	Map, 115
is odd	Math, 116
Variable Tests, 157	math.scad, 177
	math_bitwise.scad, 179
is_range Variable Tests, 157	n-gon Solutions, 160
	n-gon Solutions, 169
is_scalar	ngon_vp, 169

ngon	Resolution, 130
2D Shapes, 60	resolution_reduced
ngon_vp	Resolution, 130
n-gon Solutions, 169	reverse
not_defined	Vector Operations, 166
Variable Tests, 158	rhombus
	2D Shapes, 62
Parts, 118	rselect
pmerge	Vector Operations, 167
Vector Operations, 165	,
Point, Vector and Plane, 119	second
angle_vv, 119	Vector Operations, 167
angle_vvn, 120	Shapes, 131
are_coplanar_vvv, 120	shapes2d.scad, 187
cross_vv, 121	shapes2de.scad, 189
distance_pp, 121	shapes3d.scad, 192
dot vv, 122	smerge
striple_vvv, 122	Vector Operations, 167
unit_v, 123	st_cartesian_copy
primitives.scad, 181	Replications, 124
pyramid_q	st_linear_extrude_scale
3D Shapes, 75	Extrusions, 104
ob onapes, 70	st_radial_copy
gsort	Replications, 125
Vector Operations, 166	•
qsort2	st_rotate_extrude
Vector Operations, 166	Extrusions, 105
vector Operations, 100	st_rotate_extrude_elongate
	Endonaria and 100
rectangle	Extrusions, 106
rectangle	stack
2D Shapes, 61	stack Utilities, 145
2D Shapes, 61 rectangle_c	stack Utilities, 145 star2d
2D Shapes, 61 rectangle_c 2D Shapes, 62	stack Utilities, 145 star2d 2D Shapes, 63
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124	stack Utilities, 145 star2d 2D Shapes, 63 star3d
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129 resolution_info, 130	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130 resolution.scad, 185	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table_scad, 193 table_check
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fa, 129 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fn, 128 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa Resolution, 127	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95 table_copy
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fn, 128 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa Resolution, 127 resolution_facets	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table_scad, 193 table_check Datatable, 95 table_copy Datatable, 95
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fn, 128 resolution_info, 130 resolution_reduced, 130 resolution.scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table_scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130 resolution.scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution_facetsv	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table_scad, 193 table_check Datatable, 95 table_copy Datatable, 95
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fa, 129 resolution_info, 130 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution_facets Resolution_facetsv Resolution_facetsv Resolution, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table_scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_fs, 129 resolution_info, 130 resolution_reduced, 130 resolution.scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution_facetsv	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump Datatable, 96
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fa, 129 resolution_info, 130 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution_facets Resolution_facetsv Resolution_facetsv Resolution, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table.check Datatable, 95 table_copy Datatable, 95 table_dump Datatable, 96 table_exists
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_info, 130 resolution_info, 130 resolution_reduced, 130 resolution_scad, 185 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution_facets Resolution_facetsv Resolution_facetsv Resolution_fn	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump Datatable, 96 table_exists Datatable, 97
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_info, 130 resolution_reduced, 130 resolution_reduced, 130 resolution_fa Resolution, 127 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution, 128 resolution_facetsv Resolution, 128 resolution_fn Resolution, 128	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump Datatable, 96 table_exists Datatable, 97 table_get
2D Shapes, 61 rectangle_c 2D Shapes, 62 Replications, 124 st_cartesian_copy, 124 st_radial_copy, 125 Resolution, 126 resolution_fa, 127 resolution_facets, 128 resolution_facetsv, 128 resolution_fn, 128 resolution_info, 130 resolution_reduced, 130 resolution_reduced, 130 resolution_fa Resolution, 127 resolution_facets Resolution, 128 resolution_facets Resolution, 128 resolution_facetsv Resolution_facetsv Resolution_fn Resolution_fn Resolution_fs	stack Utilities, 145 star2d 2D Shapes, 63 star3d 3D Shapes, 76 strip Vector Operations, 167 striple_vvv Point, Vector and Plane, 122 sum Vector Operations, 168 System, 135 table.scad, 193 table_check Datatable, 95 table_copy Datatable, 95 table_dump Datatable, 96 table_exists Datatable, 97 table_get Datatable, 97

table_get_col_idx	triangle_la
Datatable, 97	2D Shapes, 65
table_get_row	triangle_lal
Datatable, 99	2D Shapes, 66
table_get_row_cols	triangle_ll
Datatable, 99	2D Shapes, 67
table_get_row_ids	triangle_III
Datatable, 99	2D Shapes, 67
table_get_row_idx	triangle_III2vp
Datatable, 99	Triangle Solutions, 142
table_size	triangle_ppp
Datatable, 100	2D Shapes, 68
table_sum	triangle_ppp2vl
Datatable, 100	Triangle Solutions, 142
tail	triangle_vl
Vector Operations, 168	2D Shapes, 69
tetrahedron	triangle_vl2vp
3D Shapes, 76	Triangle Solutions, 143
Tools, 136	triangle_vl_c
torus_ep	2D Shapes, 69
3D Shapes, 77	triangle_vp
torus_rp	2D Shapes, 70
3D Shapes, 78	triangle_vp2vl
torus_tp	Triangle Solutions, 143
3D Shapes, 79	unit angle name
transform.scad, 195	unit_angle_name Angle, 82
Transformations, 137	unit_length_name
Triangle Solutions, 139	Length, 111
triangle_centroid_ppp, 140	•
triangle_centroid_vp, 140	unit_v Point, Vector and Plane, 123
triangle_incenter_ppp, 140	Units, 144
triangle_incenter_vp, 140	units_angle.scad, 197
triangle_inradius_ppp, 140	units_length.scad, 199
triangle_inradius_vp, 142	Utilities, 145
triangle_III2vp, 142	stack, 145
triangle_ppp2vl, 142	validate, 145
triangle_vl2vp, 143	utilities.scad, 200
triangle_vp2vl, 143	utilitios.30dd, 200
triangle_aal	validate
2D Shapes, 64	Utilities, 145
triangle_ala	validation.scad, 201
2D Shapes, 64	Variable Tests, 148
triangle_centroid_ppp	all_defined, 149
Triangle Solutions, 140	all_equal, 149
triangle_centroid_vp	all_len, 151
Triangle Solutions, 140	all_numbers, 151
triangle_incenter_ppp	all_scalars, 151
Triangle Solutions, 140	all_strings, 152
triangle_incenter_vp	all_vectors, 152
Triangle Solutions, 140	almost_equal, 152
triangle_inradius_ppp	any_equal, 153
Triangle Solutions, 140	any_undefined, 153
triangle_inradius_vp	compare, 153
Triangle Solutions, 142	is_boolean, 154

```
is_decimal, 154
     is_defined, 155
     is_empty, 155
     is_even, 155
     is_inf, 155
     is_integer, 156
     is iterable, 156
     is_nan, 156
     is number, 156
     is_odd, 157
     is_range, 157
     is_scalar, 157
     is string, 158
     is_vector, 158
     not_defined, 158
Vector Operations, 159
     append, 160
     ciselect, 161
     cmvselect, 161
     consts, 161
     defined_or, 163
     delete, 163
     edefined_or, 163
     eselect, 164
     first, 164
     head, 164
     insert, 164
     last, 165
     pmerge, 165
     qsort, 166
     qsort2, 166
     reverse, 166
     rselect, 167
     second, 167
     smerge, 167
     strip, 167
     sum, 168
     tail, 168
     vstr, 168
vstr
     Vector Operations, 168
```