Energía. Potencia media. Intensidad

Energía

•
$$< dE > = \frac{1}{2}\rho \cdot A^2 \cdot \omega^2$$

•
$$\langle E \rangle = \frac{1}{2} \rho \cdot A^2 \cdot \omega^2 \cdot V_{ol} = \frac{1}{2} \rho \cdot A^2 \cdot \omega^2 \cdot \Delta x \cdot Sec$$

Potencia media

•
$$P = \frac{\langle E \rangle}{\Delta t} = \frac{1}{2} \rho \cdot A^2 \cdot \omega^2 \cdot \frac{\Delta x}{\Delta t} \cdot Sec = \frac{1}{2} \rho \cdot A^2 \cdot \omega^2 \cdot v_p \cdot Sec$$

• En el caso de una soga
$$\mu = \rho \cdot Sec \rightarrow P = \frac{1}{2}\mu \cdot A^2 \cdot \omega^2 \cdot v_p$$

• Intensidad: Flujo de energía

•
$$I = \frac{P}{Sec} = \frac{\langle E \rangle}{Sec \cdot \Delta t} = \frac{1}{2} \rho \cdot v_p \cdot A^2 \cdot \omega^2$$

Sonido. Nivel de intensidad

• El oído humano puede detectar frecuencias entre 20 Hz y 20 kHz. Las perturbaciones que tienen una frecuencia menor a 20 Hz se califican como **infrasonidos** y las que tienen una frecuencia mayor a 20 kHz se califican como **ultrasonidos**.

Nivel de intensidad

•
$$\beta=10\cdot\log\left(\frac{I}{I_o}\right)$$
 donde $I_o=10^{-12}\frac{W}{m^2}$ y $[\beta]=dB$

•
$$\beta = 10 \cdot log\left(\frac{p^2}{p_o^2}\right) = 20 \cdot log\left(\frac{p}{p_o}\right)$$
 donde $p_o = 2 \cdot 10^{-5} \frac{N}{m^2}$

- 11. El sonido más débil que se puede percibir tiene una amplitud de presión igual a 2*10⁻⁵ N/m² y el más fuerte sin que cause dolor tiene una amplitud de presión de 20 Pa aproximadamente. En cada caso determinar:
- a) la intensidad del sonido en W/m² y en dB
- b) la amplitud de desplazamiento de las moléculas de aire, si la frecuencia es de 500 Hz. Suponga que la densidad del aire es de 1,29 kg/m³ y la velocidad del sonido de 345 m/s.

11.a)

- Sabiendo que el nivel de intensidad es: $\beta = 20 \cdot log\left(\frac{p}{p_o}\right)$
 - Si $p = 2 \cdot 10^{-5} \frac{N}{m^2}$ $\rightarrow \beta = 20 \cdot log(1) = 0dB$
 - Si $p = 20 \frac{N}{m^2}$ $\rightarrow \beta = 20 \cdot log(10^6) = 120 dB$
- Considerando que: $\beta = 10 \cdot log\left(\frac{I}{I_o}\right)$
 - Si $\beta = 0 = 10 \cdot log\left(\frac{I}{I_o}\right)$ \rightarrow $I = I_o = 10^{-12} \frac{W}{m^2}$
 - Si $\beta=120=10\cdot\log\left(\frac{I}{I_o}\right)$ \rightarrow $I=10^{12}\cdot I_o=1\frac{W}{m^2}$

11.b)

• Sabiendo que la intensidad es: $I = \frac{1}{2}\rho \cdot v_p \cdot A^2 \cdot \omega^2$

• Datos:
$$\rho=1$$
,29 $\frac{kg}{m^3}$; $v_p=345\frac{m}{s}$; $\omega=2\pi\cdot f=1000\pi\frac{1}{s}$

• Entonces:

• Si
$$I = 10^{-12} \frac{W}{m^2} = \frac{1}{2} \cdot 1,29 \frac{kg}{m^3} \cdot 345 \frac{m}{s} \cdot A^2 \cdot \left(1000 \pi \frac{1}{s}\right)^2 \rightarrow A \cong 2,13 \cdot 10^{-11} m$$

• Si
$$I = 1 \frac{W}{m^2} = \frac{1}{2} \cdot 1,29 \frac{kg}{m^3} \cdot 345 \frac{m}{s} \cdot A^2 \cdot \left(1000 \pi \frac{1}{s}\right)^2 \rightarrow A \cong 2,13 \cdot 10^{-5} m$$