002074129

WPI Acc No: 1978-87204A/197848

Conductive grinding wheel prodn. - by mixing grinding particles, binder

and e.g. silver oxide, sintering and reducing

Patent Assignee: INOUE (INOZ)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Kind Date Applicat No Kind Date Week Patent No 197848 B JP 78041833 B 19781107 197848

JP 50076684 A 19750623

Priority Applications (No Type Date): JP 73126546 A 19731109

Abstract (Basic): JP 78041833 B

Grinding particles, a binder and an easily reduceable metal oxide such as Ag2O are mixed. The mixt. is sintered to make a grinding wheel and the grinding wheel is then treated in a reducing atmos. to provide a conductive grinding wheel.

特許公報

昭53-41833

① Int.Cl.2	識別記号	 日本分類	庁内整理番号	@公告	昭和53年(1978) 11月	7日
B 24 D 3/14 B 22 F 3/24 B 23 P 1/00	· .	74 K 021 74 K 021.12 12 A 63	6327—46 6327—46 6793—42		発明の数 ₁	
B 24 D 3/34		10 A 604	6735 -42		(全 2	頁)

69導電性砥石の製造方法

願 昭48-126546 21)特 四出 顧 昭48(1973)11月9日 公 開 昭50-76684 **③昭50(1975)6月23日** 79発 明 者 井上潔 東京都世田谷区上用賀3の16の

横浜市緑区長津田町字道正5289

の特許請求の範囲

1 研削砥粒と結合材と更に還元し易い金属酸化 物を所要の導電性を与えるのに必要とする所要量 15 する電極砥石の製造方法を提案するものであり、 を添加して焼結により多孔質に結合成形せしめ、 前記金属酸化物が全体に均一に分布介在し、且つ 前記多孔質の空隙が介在する前記金属酸化物に均 一に通じるような状態にし、次にこの焼結砥石を 還元処理により前記金属酸化物の一部乃至は大部 20 分を制御しながら選元せしめ、全体均一に所要の 導電性を付与することを特徴とする導電性低石の 製造方法。

発明の詳細な説明

極砥石の製造方法に関し、特に電気通電性にすぐ れるのみならず、機械研削性能においても極めて 優れた特性を有する導電性電極砥石の製造方法に 係る。

電解研削加工は、砥石電極と被加工体との間に 30 剤による饒成温度以下において溶易に還元され、 電解液薄膜を介在せしめ、該電解液を通じて大電 流密度で通電し電解腐食による電解加工作用と低 石、被加工体間の相対的摺動による機械研削作用 との組合せによつて加工するものであり、これに よれば加工対象物の硬度や機械研削に関係なく高 35 速度で、且つ砥石も消耗も少なくて研削加工する ことができるといり利点を有するため、従来から

超硬合金の加工等に広く利用されている。しかし ながら、上記電解研削加工はかくる高能率、底消 耗の加工ができる利点を有する反面、その加工精 **度においては通常の機械研削加工に及ばないとい** 5 5欠点をも有しているため、この欠点をおぎたう ものとして、加工初期に於ける荒研削を上記電解 研削加工によつて行ない、次いで通電を停止する と共に電極砥石を回転したまゝ被加工体に押圧し、 該電極砥石を機械研削砥石として作用させて仕上 ⑪出 願 人 株式会社井上ジャパックス研究所 10 げ加工を行をう加工法が提案され、これによつて 高能率、且つ高精度の加工が行ない得るようにな つた。

> 本発明は、この種加工に用いるための通電性が 良好で、且つ機械的研削性にもすぐれた特性を有 一般の研削砥粒を結合剤として還元し易い金属酸 化物を添加したものを用いて多孔質に結合せしめ た後に還元処理を施して前記金属酸化物を還元す るようにしたことを特徴とするものである。

本発明における研削砥粒としては、TiO。, B_4C , SiC, SiO_2 , Al_2O_3 , ZrO_2 , BN, BeO_3 等通常機械研削材として使用されているものを用 いることができ、又、結合剤としては、Na2SiO3, SiO, , Al, O, , Li, O, ZrO, , CaO, MgO, 本発明は電解研削加工に用いて極めて好適な電 25 Na F, TiO₂, P₂O₅, BeO, BeO₃, Na₂O, 等 の一種或いは複数種を混合して用いられる。

> 本発明に用いた還元し易い金属酸化物としては IrO2, SnO2, Ag2O, CuO, PbO2, MoO3 & 用いることができ、それらは常温或いは上記結合 金属単体とたり得るものであり、それらの特性を 示すと次表のようになる。

I r O ₂	400℃以下で熱分解
SnO ₂	H₂ ガス中600℃で還元
Ag ₂ O	H ₂ ガス中常温にて直ちに選元

kangangan penggungan penggungan penggungan penggungan penggungan penggungan penggungan penggungan penggungan p

CuO H₂ ガス中20~880℃で還元 が温度上昇と共に進行、或いは 1026℃で熱分解 H, ガス中20~290℃で還元 PbO, が温度上昇と共に進行、或いは 290℃で熱分解 H, ガス中20~798℃で還元 MoO₃ が温度上昇と共に進行、或いは 798℃で熱分解

かゝる金属酸化物を、通常の結合剤に添加し、 それとSiC,Al₂O₃等一般に使用せられる研削 砥粒と混合し、加圧成形した後焼成して得られる 研削砥石は、通常の機械研削石として広く用いら れている所謂ビトリファイド砥石とその研削性、 を有するものである。またかくして得られた砥石 は混合した金属酸化物が全体に均一に分布介在し、 多孔質でその空隙が介在する金属酸化物に均一に 通じるような状態で焼結されており、次にこの焼 或いはN2, He 等の中性ガス中において加熱する 等、上記結合剤中に添加した金属酸化物の種類に よつて定められる適当を還元処理を施すが還元ガ スが前記多孔質の空隙を通じて内部まで良く流通 し、全体的に均一に還元処理ができ、前記砥石気 25 孔壁面に- 様に分布存在する金属酸化物は選元さ れ、その化合物中の酸素を放出し元の金属に戻る ため、前記砥石は全体に均一な通電性を有するよ うになる。 この処理時間等前記還元処理の程度を 性を賦与すことができるのである。上記金属酸 化物の結合剤中の添加量は体積比で5%~50% 好ましくは10~258程度にて充分を効果を奏 し得るものであり、5多以下の混合比においては 還元処理によつても砥石に充分な通電性を賦与す 35 るととができず、又50%以上混入した場合は通 電性において良好なるも、砥石の機械的強度の面 で不充分となる。

a - 18.

次に本発明の一実施例を掲げるならば、砥粒と して60メツシュのAl2O3 60重量多と120 40

大學 医大大学 医阿尔克斯 计数据处理 医线线线线

メッシュの ZrO240 重量多の混合体を用い、ま た重量比でSiO₂66.2%,Aℓ₂O₃24.6%. Fe₂O₃0.2%, K₂O 5.1%の組成を有する結合 材に重量比で45.7%のCuOを添加して用い、 5 との結合材と金属酸化物 (CuO) を混合したもの を重量比で40男と前記砥粒の混合体を60多の 割合で混合し、更にこの混合物に重量比で4%の 水を加えて充分攪拌混合した後型に入れて250 Kg/cdの圧力で加圧成形し、空気中または酸化性 10 雰囲気中にて、1 2 8 0℃ で 4 時間焼成した後、 88℃ 迄温度を下げ、H₂ ガス中にてほい1時間 保持した後、常温まで徐冷して電気抵抗が2× 10^{-4} Ω cmの砥石を得ることができた。前記砥 石の電気抵抗は、CuO を良く混合して均一に介 強度等において殆んど変らないすぐれた研削特性 15 在した状態で焼結し、これを還元処理してCu を 析出させたから全体均っな導電性が与えられ、前 記電気抵抗は砥石全体にほゞ等しい値であつた。 たお前記電気抵抗値は還元処理時間を短縮すれば 抵抗値を増加でき、目的とする砥石用途に応じて 結岻石を、H2 ガス中等の還元雰囲気中において、20 好ましい値に制御できる。またこのように還元処 理を制御して電気抵抗を制御しても全体均一に分 布する金属酸化物がいずれも同程度の率で還元さ れるものであるから電気抵抗は全体が常に均一で あり良好な砥石が得られる。

以上のように本発明によれば、通常のビトリフ アイド砥石の製造時に、結合剤中に還元され易い 金属酸化物を添し、焼成後還元処理するという非 常に簡単な方法で機械的研削性においては、上記 ビトリファイド砥石と殆んど同等の特性を有し、 適宜選ぶことにより、砥石に対して種々の通電特 30 しかも良好な通電性を有する研削砥石を製造する ことができ、しかもこれによつて得られる砥石は 全体均一な性質を有せしめ得るため、ドレツシン グやツールイング等も容易に行たうことができる ものである。

69引用文献

粉末冶金 若林卓治外1名著 昭44.5.31 第38頁 梯技術書院発行

•	•			•
			•	
·				
·				
•				
		•		
		•		
			:	
	•	•		
		•		
••				
•				
		·		
		•		
		•		
	·		•	
•				
	T T F Handa			
		,		
1				