

Remarks on curvature dimension conditions on graphs

Florentin Münch

January 26, 2015

Abstract

We show a connection between the CDE' inequality introduced in [4] and the $CD\psi$ inequality established in [5]. In particular, we introduce a CD_ψ^φ inequality as a slight generalization of $CD\psi$ which turns out to be equivalent to CDE' with appropriate choices of φ and ψ . We use this to prove that the CDE' inequality implies the classical CD inequality on graphs, and that the CDE' inequality with curvature bound zero holds on Ricci-flat graphs.

1 Introduction

There is an immense interest in the heat equation on graphs. In this context, curvature-dimension conditions have attracted particular attention. In particular, recent works [2, 4, 5] have introduced a variety of such conditions. In this note, we will extend ideas of [5] to show a connection between them (Proposition 2.3 and Section 3). Moreover, we will prove that Ricci-flat graphs satisfy the CDE' condition (Section 4).

Throughout the note, we will use notation and definitions introduced in [1, 2, 3, 4, 5] which can also be found in the appendix.

Acknowledgements

I wish to thank Matthias Keller and Daniel Lenz for their support and for sharing ideas in many fruitful discussions.

2 The connection between the CDE' and the $CD\psi$ inequality

First, we consider the connection between Γ (cf. Definition A.6) and Γ^ψ (cf. Definition A.11), and between $\tilde{\Gamma}_2$ (cf. Definition A.8) and $\tilde{\Gamma}_2^\psi$ (cf. Definition A.12).

Lemma 2.1. *For all $f \in C^+(V)$,*

$$f\Gamma^{\sqrt{\cdot}}(f) = \Gamma(\sqrt{f}), \quad (2.1)$$

$$f\Gamma_2^{\sqrt{\cdot}}(f) = \tilde{\Gamma}_2(\sqrt{f}). \quad (2.2)$$

Proof. Let $f \in C^+(V)$ and $x \in V$. Then for the proof of (2.1),

$$2 \left[f\Gamma^{\sqrt{\cdot}}(f) \right](x) = 2f(x) \left[\frac{\Delta f}{2f} - \Delta \sqrt{\frac{f}{f(x)}} \right](x) = \left[\Delta f - 2\sqrt{f}\Delta\sqrt{f} \right](x) = 2\Gamma(\sqrt{f})(x).$$

Next, we prove (2.2). In [2, (4.7)], it is shown that for all positive solutions $u \in C^1(V \times \mathbb{R}_0^+)$ to the heat equation, one has

$$2\tilde{\Gamma}_2\sqrt{u} = \mathcal{L}(\Gamma\sqrt{u}).$$

Now, we set $u := P_t f$ and we apply the above proven identity (2.1) and the identity $2u\Gamma_2^\psi(u) = \mathcal{L}(u\Gamma^\psi(u))$ (cf. [5, Subsection 3.2]) to obtain

$$2\tilde{\Gamma}_2(\sqrt{f}) = [\mathcal{L}(\Gamma(\sqrt{u}))]_{t=0} = [\mathcal{L}(u\Gamma^\sqrt{.}(u))]_{t=0} = 2f\Gamma_2^\sqrt{.}(f).$$

This finishes the proof. \square

The following definition extends the $CD\psi$ inequality to compare it to the CDE' inequality.

Definition 2.2 (CD_ψ^φ condition). Let $d \in (0, \infty]$ and $K \in \mathbb{R}$. Let $\varphi, \psi \in C^1(\mathbb{R}^+)$ be concave functions. A graph $G = (V, E)$ satisfies the $CD_\psi^\varphi(d, K)$ condition, if for all $f \in C^+(V)$,

$$\Gamma_2^\psi(f) \geq \frac{1}{d} (\Delta^\varphi f)^2 + K\Gamma^\psi(f).$$

Indeed, this definition is an extension of $CD\psi$ which is equivalent to CD_ψ^φ .

Proposition 2.3. *Let $G = (V, E)$ be a graph, let $d \in (0, \infty]$ and $K \in \mathbb{R}$. Then, the following statements are equivalent.*

(i) G satisfies the $CDE'(d, K)$ inequality.

(ii) G satisfies the $CD_{\sqrt{.}}^{\log}(4d, K)$ inequality.

Proof. By definition, the $CDE'(d, K)$ inequality is equivalent to

$$\tilde{\Gamma}_2(f) \geq \frac{1}{d} f^2 (\Delta \log f)^2 + K\Gamma(f), \quad f \in C^+(V).$$

By replacing f by \sqrt{f} (all allowed $f \in C(V)$ are strictly positive), this is equivalent to

$$\tilde{\Gamma}_2(\sqrt{f}) \geq \frac{1}{d} f (\Delta \log \sqrt{f})^2 + K\Gamma(\sqrt{f}), \quad f \in C^+(V).$$

By applying Lemma 2.1 and the fact that $\Delta^{\log} = \Delta \circ \log$, this is equivalent to

$$f\Gamma_2^\sqrt{.}(f) \geq \frac{1}{4d} f (\Delta^{\log} f)^2 + fK\Gamma^\sqrt{.}(f), \quad f \in C^+(V).$$

By dividing by f (all allowed $f \in C(V)$ are strictly positive), this is equivalent to

$$\Gamma_2^\sqrt{.}(f) \geq \frac{1}{4d} (\Delta^{\log} f)^2 + K\Gamma^\sqrt{.}(f), \quad f \in C^+(V).$$

By definition, this is equivalent to $CD_{\sqrt{.}}^{\log}(4d, K)$. This finishes the proof. \square

3 The CDE' inequality implies the CD inequality

First, we recall a limit theorem [5, Theorem 3.18] by which it is shown that the $CD\psi$ condition implies the CD condition (cf. [5, Corollary 3.20]).

Theorem 3.1 (Limit of the ψ -operators). *Let $G = (V, E)$ be a finite graph. Then for all $f \in C(V)$, one has the pointwise limits*

$$\lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \Delta^\psi(1 + \varepsilon f) = \psi'(1) \Delta f \quad \text{for } \psi \in C^1(\mathbb{R}^+), \quad (3.1)$$

$$\lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} \Gamma^\psi(1 + \varepsilon f) = -\psi''(1) \Gamma(f) \quad \text{for } \psi \in C^2(\mathbb{R}^+), \quad (3.2)$$

$$\lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} \Gamma_2^\psi(1 + \varepsilon f) = -\psi''(1) \Gamma_2(f) \quad \text{for } \psi \in C^2(\mathbb{R}^+). \quad (3.3)$$

Since all $f \in C(V)$ are bounded, one obviously has $1 + \varepsilon f > 0$ for small enough $\varepsilon > 0$.

Proof. For a proof, we refer the reader to the proof of [5, Theorem 3.18]. \square

By adapting the methods of the proof of [5, Corollary 3.20], we can show that CD_ψ^φ implies CD and, especially, we can handle the CDE' condition.

Theorem 3.2. *Let $\varphi, \psi \in C^2(\mathbb{R}^+)$ be concave with $\psi''(1) \neq 0 \neq \varphi'(1)$ and let $d \in \mathbb{R}^+$. Let $G = (V, E)$ be a graph satisfying the $CD_\psi^\varphi(d, K)$ condition. Then, G also satisfies the $CD\left(\frac{-\psi''(1)}{\varphi'(1)^2}d, K\right)$ condition.*

Proof. Let $f \in C(V)$. We apply [5, Theorem 3.18] in the following both equations and since G satisfies the $CD_\psi^\varphi(d, K)$ condition,

$$\begin{aligned} -\psi''(1) \Gamma_2(f) &= \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} \Gamma_2^\psi(1 + \varepsilon f) \geq \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^2} \left(\frac{1}{d} [\Delta^\varphi(1 + \varepsilon f)]^2 + K \Gamma^\psi(1 + \varepsilon f) \right) \\ &= \frac{\varphi'(1)^2}{d} (\Delta f)^2 - \psi''(1) K \Gamma(f). \end{aligned}$$

Since ψ is concave and $\psi''(1) \neq 0$, one has $-\psi''(1) > 0$. Thus, we obtain that G satisfies the $CD\left(\frac{-\psi''(1)}{\varphi'(1)^2}d, 0\right)$ condition. \square

Corollary 3.3. *If $G = (V, E)$ satisfies the $CDE'(d, K)$, i.e., the $CD_{\sqrt{\cdot}}^{\log}(4d, K)$, then G also satisfies the $CD(d, K)$ condition since $-4\sqrt{\cdot}''(1) = 1 = \log'(1)$.*

4 The CDE' inequality on Ricci-flat graphs

In [4], the CDE' inequality is introduced. Examples for graphs satisfying this inequality have not been provided yet. In this section, we show that the more general CD_ψ^φ condition holds on Ricci-flat graphs (cf. [3]). We will refer to the proof of the $CD\psi$ inequality on Ricci-flat graphs (cf. [5, Theorem 6.6]). Similarly to [5], we introduce a constant C_ψ^φ describing the relation between the degree of the graph and the dimension parameter in the CD_ψ^φ inequality.

Definition 4.1. Let $\varphi, \psi \in C^1(\mathbb{R})$. Then for all $x, y > 0$, we write

$$\tilde{\psi}(x, y) := [\psi'(x) + \psi'(y)](1 - xy) + x[\psi(y) - \psi(1/x)] + y[\psi(x) - \psi(1/y)]$$

and

$$C_\psi^\varphi := \inf_{(x,y) \in A_\varphi} \frac{\tilde{\psi}(x, y)}{(\varphi(x) + \varphi(y) - 2\varphi(1))^2} \in [-\infty, \infty]$$

with $A_\varphi := \{(x, y) \in (\mathbb{R}^+)^2 : \varphi(x) + \varphi(y) \neq 2\varphi(1)\}$. We have $C_\psi^\varphi = \infty$ iff $A_\varphi = \emptyset$.

Theorem 4.2 (CD_ψ^φ for Ricci-flat graphs). *Let $D \in \mathbb{N}$, let $G = (V, E)$ be a D -Ricci-flat graph, and let $\psi, \varphi \in C^1(\mathbb{R}^+)$ be concave functions, such that $C_\psi^\varphi > 0$. Then, G satisfies the $CD_\psi^\varphi(d, 0)$ inequality with $d = D/C_\psi^\varphi$.*

Proof. We can assume $\psi(1) = 0$ without loss of generality since Γ_2^ψ , Δ^ψ and C_ψ are invariant under adding constants to ψ . Let $v \in V$ and $f \in C(V)$. Since G is Ricci-flat, there are maps $\eta_1, \dots, \eta_D : N(v) := \{v\} \cup \{w \sim v\} \rightarrow V$ as demanded in Definition A.5. For all $i, j \in \{1, \dots, D\}$, we denote $y := f(v)$, $y_i := f(\eta_i(v))$, $y_{ij} := f(\eta_j(\eta_i(v)))$, $z_i := y_i/y$, $z_{ij} := y_{ij}/y_i$.

We take the sequence of inequalities at the end of the proof of [5, Theorem 6.6]. First, we extract the inequality

$$2\Gamma_2^\psi(f)(v) \geq \frac{1}{2} \sum_i \tilde{\psi}(z_i, z_{i'}).$$

with ψ and for an adequate permutation $i \mapsto i'$.

Secondly instead of continuing this estimate as in the proof of [5, Theorem 6.6], we take the latter part applied with φ instead of ψ to see

$$\frac{1}{2} \sum_i [\varphi(z_i) + \varphi(z_{i'})]^2 \geq \frac{2}{D} [\Delta^\varphi f(v)]^2.$$

Since $\tilde{\psi}(z_i, z_{i'}) \geq C_\psi^\varphi [\varphi(z_i) + \varphi(z_{i'})]^2$, we conclude

$$2\Gamma_2^\psi(f)(v) \geq \frac{2C_\psi^\varphi}{D} [\Delta^\varphi f(v)]^2.$$

This finishes the proof. □

The above theorem reduces the problem, whether CD_ψ^φ holds on Ricci-flat graphs, to the question whether $C_\psi^\varphi > 0$. By using this fact, we can give the example of the CDE' condition on Ricci-flat graphs.

Example 4.3. Numerical computations indicate that $C_{\sqrt{\cdot}}^{\log} > 0.1104$. Consequently by Theorem 4.2, d -Ricci-flat graphs satisfy the $CD_{\sqrt{\cdot}}^{\log}(9.058d, 0)$ inequality and thus due to Proposition 2.3, also the $CDE'(2.265d, 0)$ inequality.

Now, we give an analytic estimate of $C_{\sqrt{\cdot}}^{\log}$ by using methods similar to the proof of [5, Example 6.11] which shows $C_{\log}^{\log} \geq 1/2$.

Lemma 4.4. $C_{\sqrt{\cdot}}^{\log} \geq 1/16 = 0.0625$.

Proof. For $\psi = \sqrt{\cdot}$, we write

$$\begin{aligned}\widetilde{\sqrt{\cdot}}(x, y) = \widetilde{\psi}(x, y) &= [\psi'(x) + \psi'(y)] (1 - xy) + x[\psi(y) - \psi(1/x)] + y[\psi(x) - \psi(1/y)] \\ &= \left[\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \right] (1 - xy) + x \left[\sqrt{y} - \frac{1}{\sqrt{x}} \right] + y \left[\sqrt{x} - \frac{1}{\sqrt{y}} \right] \\ &= \frac{\sqrt{x} + \sqrt{y}}{2} \cdot \left(\frac{1}{\sqrt{xy}} - \sqrt{xy} \right) + (\sqrt{x} + \sqrt{y}) (\sqrt{xy} - 1) \\ &= \frac{\sqrt{x} + \sqrt{y}}{2} \cdot \left((xy)^{1/4} - (xy)^{-1/4} \right)^2 \\ &\geq (xy)^{1/4} \cdot \left((xy)^{1/4} - (xy)^{-1/4} \right)^2.\end{aligned}$$

Hence by substituting $e^{2t} := (xy)^{1/4}$,

$$\begin{aligned}\frac{\widetilde{\sqrt{\cdot}}(x, y)}{(\log x + \log y)^2} &\geq (xy)^{1/4} \cdot \left(\frac{(xy)^{1/4} - (xy)^{-1/4}}{4 \log(xy)^{1/4}} \right)^2 \\ &= e^{2t} \cdot \left(\frac{e^{2t} - e^{-2t}}{8t} \right)^2 \\ &= \left(\frac{e^{3t} - e^{-t}}{8t} \right)^2.\end{aligned}$$

We expand the fraction to

$$\frac{e^{3t} - e^{-t}}{8t} = \frac{e^{3t} - e^{-t}}{e^t - e^{-t}} \cdot \frac{e^t - e^{-t}}{8t}.$$

Moreover,

$$\frac{e^{3t} - e^{-t}}{e^t - e^{-t}} = e^{2t} + 1 \geq 1$$

and, by the estimate $\frac{\sinh t}{t} \geq 1$,

$$\frac{e^t - e^{-t}}{8t} \geq 1/4.$$

Putting together the above estimates yields

$$C_{\sqrt{\cdot}}^{\log} = \inf_{x, y > 0, xy \neq 1} \frac{\widetilde{\sqrt{\cdot}}(x, y)}{(\log x + \log y)^2} \geq (1/4)^2 = 1/16.$$

This finishes the proof. \square

A Appendix

Definition A.1 (Graph). A pair $G = (V, E)$ with a finite set V and a relation $E \subset V \times V$ is called a *finite graph* if $(v, v) \notin E$ for all $v \in V$ and if $(v, w) \in E$ implies $(w, v) \in E$ for $v, w \in V$. For $v, w \in V$, we write $v \sim w$ if $(v, w) \in E$.

Definition A.2 (Laplacian Δ). Let $G = (V, E)$ be a finite graph. The *Laplacian* $\Delta : C(V) := \mathbb{R}^V \rightarrow C(V)$ is defined for $f \in C(V)$ and $v \in V$ as $\Delta f(v) := \sum_{w \sim v} (f(w) - f(v))$.

Definition A.3. We write $\mathbb{R}^+ := (0, \infty)$ and $\mathbb{R}_0^+ := [0, \infty)$. Let $G = (V, E)$ be a finite graph. Then, we write $C^+(V) := \{f : V \rightarrow \mathbb{R}^+\}$.

Definition A.4 (Heat operator \mathcal{L}). Let $G = (V, E)$ be a graph. The *heat operator* $\mathcal{L} : C^1(V \times \mathbb{R}^+) \rightarrow C(V \times \mathbb{R}^+)$ is defined by $\mathcal{L}(u) := \Delta u - \partial_t u$ for all $u \in C^1(V \times \mathbb{R}^+)$. We call a function $u \in C^1(V \times \mathbb{R}_0^+)$ a *solution to the heat equation* on G if $\mathcal{L}(u) = 0$.

Definition A.5 (Ricci-flat graphs). Let $D \in \mathbb{N}$. A finite graph $G = (V, E)$ is called *D-Ricci-flat* in $v \in V$ if all $w \in N(v) := \{v\} \cup \{w \in V : w \sim v\}$ have the degree D , and if there are maps $\eta_1, \dots, \eta_D : N(v) \rightarrow V$, such that for all $w \in N(v)$ and all $i, j \in \{1, \dots, D\}$ with $i \neq j$, one has $\eta_i(w) \sim w$, $\eta_i(w) \neq \eta_j(w)$, $\bigcup_k \eta_k(\eta_i(v)) = \bigcup_k \eta_i(\eta_k(v))$. The graph G is called *D-Ricci-flat* if it is *D-Ricci-flat* in all $v \in V$.

A.1 The CD condition via Γ calculus

We give the definition of the Γ -calculus and the CD condition following [1].

Definition A.6 (Γ -calculus). Let $G = (V, E)$ be a finite graph. Then, the *gradient form* or *carré du champ* operator $\Gamma : C(V) \times C(V) \rightarrow C(V)$ is defined by

$$2\Gamma(f, g) := \Delta(fg) - f\Delta g - g\Delta f.$$

Similarly, the *second gradient form* $\Gamma_2 : C(V) \times C(V) \rightarrow C(V)$ is defined by

$$2\Gamma_2(f, g) := \Delta\Gamma(f, g) - \Gamma(f, \Delta g) - \Gamma(g, \Delta f).$$

We write $\Gamma(f) := \Gamma(f, f)$ and $\Gamma_2(f) := \Gamma_2(f, f)$.

Definition A.7 ($CD(d, K)$ condition). Let $G = (V, E)$ be a finite graph and $d \in \mathbb{R}^+$. We say G satisfies the *curvature-dimension inequality* $CD(d, K)$ if for all $f \in C(V)$,

$$\Gamma_2(f) \geq \frac{1}{d}(\Delta f)^2 + K\Gamma(f).$$

We can interpret this as meaning that the graph G has a dimension (at most) d and a Ricci curvature larger than K .

A.2 The CDE and CDE' conditions via $\widetilde{\Gamma}_2$

We give the definitions of CDE and CDE' following [2, 4]

Definition A.8 (The CDE inequality). We say that a graph $G = (V, E)$ satisfies the $CDE(x, d, K)$ inequality if for any $f \in C^+(V)$ such that $\Delta f(x) < 0$, we have

$$\widetilde{\Gamma}_2(f)(x) := \Gamma_2(f)(x) - \Gamma\left(f, \frac{\Gamma(f)}{f}\right)(x) \geq \frac{1}{d}(\Delta f)^2(x) + K\Gamma(f)(x).$$

We say that $CDE(d, k)$ is satisfied if $CDE(x, d, K)$ is satisfied for all $x \in V$.

Definition A.9 (The CDE' inequality). We say that a graph $G = (V, E)$ satisfies the $CDE'(d, K)$ inequality if for any $f \in C^+(V)$, we have

$$\widetilde{\Gamma}_2(f) \geq \frac{1}{d}f^2(\Delta \log f)^2 + K\Gamma(f).$$

A.3 The $CD\psi$ conditions via Γ^ψ calculus

We give the definition of the Γ^ψ -calculus and the $CD\psi$ condition following [5].

Definition A.10 (ψ -Laplacian Δ^ψ). Let $\psi \in C^1(\mathbb{R}^+)$ and let $G = (V, E)$ be a finite graph. Then, we call $\Delta^\psi : C^+(V) \rightarrow C(V)$, defined as

$$(\Delta^\psi f)(v) := \left(\Delta \left[\psi \left(\frac{f}{f(v)} \right) \right] \right) (v),$$

the ψ -Laplacian.

Definition A.11 (ψ -gradient Γ^ψ). Let $\psi \in C^1(\mathbb{R}^+)$ be a concave function and let $G = (V, E)$ be a finite graph. We define

$$\bar{\psi}(x) := \psi'(1) \cdot (x - 1) - (\psi(x) - \psi(1)).$$

Moreover, we define the ψ -gradient as $\Gamma^\psi : C^+(V) \rightarrow C(V)$,

$$\Gamma^\psi := \Delta^{\bar{\psi}}.$$

Definition A.12 (Second ψ -gradient Γ_2^ψ). Let $\psi \in C^1(\mathbb{R}^+)$, and let $G = (V, E)$ be a finite graph. Then, we define $\Omega^\psi : C^+(V) \rightarrow C(V)$ by

$$(\Omega^\psi f)(v) := \left(\Delta \left[\psi' \left(\frac{f}{f(v)} \right) \cdot \frac{f}{f(v)} \left[\frac{\Delta f}{f} - \frac{(\Delta f)(v)}{f(v)} \right] \right] \right) (v).$$

Furthermore, we define the second ψ -gradient $\Gamma_2^\psi : C^+(V) \rightarrow C(V)$ by

$$2\Gamma_2^\psi(f) := \Omega^\psi f + \frac{\Delta f \Delta^\psi f}{f} - \frac{\Delta(f \Delta^\psi f)}{f}.$$

Definition A.13 ($CD\psi$ condition). Let $G = (V, E)$ be a finite graph, $K \in \mathbb{R}$ and $d \in \mathbb{R}^+$. We say G satisfies the $CD\psi(d, K)$ inequality if for all $f \in C^+(V)$, one has

$$\Gamma_2^\psi(f) \geq \frac{1}{d} \left(\Delta^\psi f \right)^2 + K \Gamma^\psi(f).$$

References

- [1] D. BAKRY, M. ÉMERY, *Diffusions hypercontractives. (French) [Hypercontractive diffusions]*, Séminaire de probabilité, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985.
- [2] F. BAUER, P. HORN, Y. LIN, G. LIPPNER, D. MANGOUBI, S.-T. YAU, *Li-Yau inequality on graphs*, to appear in J. Differential Geom., Arxiv: 1306.2561v2 (2013).
- [3] F. CHUNG, S.-T. YAU, *Logarithmic Harnack inequalities*, Math. Res. Lett. **3** (1996),
- [4] P. HORN, Y. LIN, S. LIU, S.-T. YAU, *Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for nonnegative curvature graphs*, Arxiv: 1411.5087v2 (2014).
- [5] F. MÜNCH, *Li-Yau inequality on finite graphs via non-linear curvature dimension conditions*, Arxiv: 1412.3340v1 (2014).