

# **FCC Test Report**

| Product Name | Evoko Liso Room Manager /Evoko Liso |
|--------------|-------------------------------------|
| Model No     | ERM2001                             |
| FCC ID       | 2AH64-ERM2001                       |

| Applicant | Evoko Unlimited AB                                 |
|-----------|----------------------------------------------------|
| Address   | Hästholmsvägen 32, 5th floor, 131 30 Nacka, SWEDEN |

| Date of Receipt | Apr. 26, 2016       |
|-----------------|---------------------|
| Issued Date     | May 12, 2016        |
| Report No.      | 1650010R-RFUSP06V00 |
| Report Version  | V1.0                |





The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.



# Test Report

Issued Date: May 12, 2016

Report No.: 1650010R-RFUSP06V00



| Product Name                        | Evoko Liso Room Manager /Evoko Liso                      |  |  |  |
|-------------------------------------|----------------------------------------------------------|--|--|--|
| Applicant                           | Evoko Unlimited AB                                       |  |  |  |
| Address                             | Hästholmsvägen 32, 5th floor, 131 30 Nacka, SWEDEN       |  |  |  |
| Manufacturer                        | Ubiqconn Technology, Inc.                                |  |  |  |
| Model No.                           | ERM2001                                                  |  |  |  |
| FCC ID.                             | 2AH64-ERM2001                                            |  |  |  |
| EUT Rated Voltage                   | AC 100-240V, 50-60Hz                                     |  |  |  |
| EUT Test Voltage                    | AC 120V/60Hz                                             |  |  |  |
| Trade Name                          | Evoko                                                    |  |  |  |
| Applicable Standard                 | FCC CFR Title 47 Part 15 Subpart E: 2015                 |  |  |  |
| ANSI C63.4: 2014, ANSI C63.10: 2013 |                                                          |  |  |  |
|                                     | 789033 D02 General UNII Test Procedures New Rules v01r02 |  |  |  |
| Test Result                         | Complied                                                 |  |  |  |

| Documented By | : _ | Gente Chang                              |
|---------------|-----|------------------------------------------|
|               |     | ( Senior Adm. Specialist / Genie Chang ) |
| Tested By     | : _ | Nick Chen                                |
|               | _   | (Engineer / Nick Chen)                   |
| Approved By   | :   | Hand S                                   |

( Director / Vincent Lin )



## TABLE OF CONTENTS

| 1    | Description                                   | Page |
|------|-----------------------------------------------|------|
| 1.   | GENERAL INFORMATION                           | 5    |
| 1.1. | EUT Description                               | 5    |
| 1.2. | Operational Description                       |      |
| 1.3. | Tested System Datails                         | 8    |
| 1.4. | Configuration of tested System                |      |
| 1.5. | EUT Exercise Software                         |      |
| 1.6. | Test Facility                                 |      |
| 2.   | Conducted Emission                            |      |
| 2.1. | Test Equipment                                |      |
| 2.2. | Test Setup                                    | 10   |
| 2.3. | Limits                                        | 11   |
| 2.4. | Test Procedure                                | 11   |
| 2.5. | Uncertainty                                   | 11   |
| 2.6. | Test Result of Conducted Emission             |      |
| 3.   | Maximun conducted output power                | 20   |
| 3.1. | Test Equipment                                | 20   |
| 3.2. | Test Setup.                                   |      |
| 3.3. | Limits                                        |      |
| 3.4. | Test Procedure                                |      |
| 3.5. | Uncertainty                                   |      |
| 3.6. | Test Result of Maximum conducted output power |      |
| 4.   | Peak Power Spectral Density                   | 46   |
| 4.1. | Test Equipment                                | 46   |
| 4.2. | Test Setup                                    |      |
| 4.3. | Limits                                        |      |
| 4.4. | Test Procedure                                |      |
| 4.5. | Uncertainty                                   |      |
| 4.6. | Test Result of Peak Power Spectral Density    |      |
| 5.   | Radiated Emission                             |      |
| 5.1. | Test Equipment                                |      |
| 5.2. | Test Setup                                    |      |
| 5.3. | Limits                                        |      |
| 5.4. | Test Procedure                                |      |
| 5.5. | Uncertainty                                   |      |
| 5.6. | Test Result of Radiated Emission              |      |
| 6.   | Band Edge                                     | 128  |
| 6.1. | Test Equipment                                | 128  |
| 6.2. | Test Setup                                    | 129  |
| 6.3. | Limits                                        | 130  |
| 6.4. | Test Procedure                                | 130  |
| 6.5. | Uncertainty                                   | 131  |
| 6.6. | Test Result of Band Edge                      |      |
| 7.   | Occupied Bandwidth                            | 168  |



| 9.   | EMI Reduction Method During Compliance Testing | 188 |
|------|------------------------------------------------|-----|
| 8.6. | Test Result of Frequency Stability             | 178 |
| 8.5. | Uncertainty                                    | 177 |
| 8.4. | Test Procedure                                 |     |
| 8.3. | Limits                                         |     |
| 8.2. | Test Setup                                     | 177 |
| 8.1. | Test Equipment                                 | 177 |
| 8.   | Frequency Stability                            | 177 |
| 7.6. | Test Result of Occupied Bandwidth              | 169 |
| 7.5. | Uncertainty                                    |     |
| 7.4. | .Test Procedure                                | 168 |
| 7.3. | Limits                                         |     |
| 7.2. | Test Setup                                     |     |
| 7.1. | Test Equipment                                 | 168 |

Attachment 1: EUT Test Photographs
Attachment 2: EUT Detailed Photographs



## 1. GENERAL INFORMATION

## 1.1. EUT Description

| Product Name       | Evoko Liso Room Manager /Evoko Liso                                                                               |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Trade Name         | Evoko                                                                                                             |  |  |  |
| FCC ID.            | 2AH64-ERM2001                                                                                                     |  |  |  |
| Model No.          | ERM2001                                                                                                           |  |  |  |
| Frequency Range    | 802.11a/n-20MHz: 5180-5320MHz, 5500-5700MHz, 5745-5825MHz<br>802.11n-40MHz: 5190-5310, 5510-5670MHz, 5755-5795MHz |  |  |  |
| Number of Channels | 802.11a/n-20MHz: 24; 802.11n-40MHz: 11                                                                            |  |  |  |
| Data Rate          | 802.11a: 6 - 54Mbps<br>802.11n: up to 300Mbps                                                                     |  |  |  |
| Channel Control    | Auto                                                                                                              |  |  |  |
| Type of Modulation | 802.11a/n:OFDM, BPSK, QPSK, 16QAM, 64QAM                                                                          |  |  |  |
| Antenna type       | PIFA Antenna                                                                                                      |  |  |  |
| Antenna Gain       | Refer to the table "Antenna List"                                                                                 |  |  |  |
| Power Adapter      | MFR: Elementech, M/N: A124-11202050                                                                               |  |  |  |
|                    | Input: AC 100-240V~50/60Hz, 0.6A                                                                                  |  |  |  |
|                    | Output: 12V==2A                                                                                                   |  |  |  |
|                    | Cable Out: Non-Shielded, 1.2m                                                                                     |  |  |  |
| Contain Module     | ain Module AMPAK/AP62X2SD a/b/g/n +BT+BLE                                                                         |  |  |  |

#### **Antenna List**

| No. | Manufacturer | Part No. | Antenna Type | Peak Gain                 |
|-----|--------------|----------|--------------|---------------------------|
| 1   | Anjie        | N/A      | PIFA Antenna | 4.50dBi For 5.15~5.25GHz  |
|     |              |          |              | 4.50dBi For 5.25~5.35GHz  |
|     |              |          |              | 4.82dBi For 5.47~5.725GHz |
|     |              |          |              | 4.35dBi For5.725~5.850GHz |

Note: The antenna of EUT is conform to FCC 15.203



## 802.11a/n-20MHz Center Working Frequency of Each Channel:

| Channel      | Frequency | Channel      | Frequency | Channel      | Frequency | Channel      | Frequency |
|--------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|
| Channel 36:  | 5180 MHz  | Channel 40:  | 5200 MHz  | Channel 44:  | 5220 MHz  | Channel 48:  | 5240 MHz  |
| Channel 52:  | 5260 MHz  | Channel 56:  | 5280 MHz  | Channel 60:  | 5300 MHz  | Channel 64:  | 5320 MHz  |
| Channel 100: | 5500 MHz  | Channel 104: | 5520 MHz  | Channel 108: | 5540 MHz  | Channel 112: | 5560 MHz  |
| Channel 116: | 5580 MHz  | Channel 120: | 5600 MHz  | Channel 124: | 5620 MHz  | Channel 128: | 5640 MHz  |
| Channel 132: | 5660 MHz  | Channel 136: | 5680 MHz  | Channel 140: | 5700 MHz  | Channel 149: | 5745 MHz  |
| Channel 153: | 5765 MHz  | Channel 157: | 5785 MHz  | Channel 161: | 5805 MHz  | Channel 165: | 5825 MHz  |

#### 802.11n-40MHz Center Working Frequency of Each Channel:

| Channel      | Frequency | Channel      | Frequency | Channel      | Frequency | Channel      | Frequency |
|--------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|
| Channel 38:  | 5190 MHz  | Channel 46:  | 5230 MHz  | Channel 54:  | 5270 MHz  | Channel 62:  | 5310 MHz  |
| Channel 102: | 5510 MHz  | Channel 110: | 5550 MHz  | Channel 118: | 5590 MHz  | Channel 126: | 5630 MHz  |
| Channel 134: | 5670 MHz  | Channel 151: | 5755 MHz  | Channel 159: | 5795 MHz  |              |           |

- 1. This device is an Evoko Liso Room Manager /Evoko Liso with a built-in WLAN · Bluetooth and NFC transceiver, this report for WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test
- 3. At result of pretests, module supports dual-channel transmission, only the worst case is shown in the report. (802.11a is chain A)
- 4. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11a is 6Mbps \ 802.11n-20BW is 14.4Mbps \ 802.11n-40BW is 30Mbps)
- 5. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.
- 6. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

| Test Mode | Mode 1: Transmit (802.11a-6Mbps)         |
|-----------|------------------------------------------|
|           | Mode 2: Transmit (802.11n-20BW 14.4Mbps) |
|           | Mode 3: Transmit (802.11n-40BW 30Mbps)   |



## 1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

|   | Product  | Manufacturer | Model No. | Serial No. | Power Cord |
|---|----------|--------------|-----------|------------|------------|
| 1 | Keyboard | Logitech     | Y-UR83    | SY848UK    | N/A        |
| 2 | Mouse    | acer         | M-VrACR1  | N/A        | N/A        |

| Signal Cable Type |                | Signal cable Description |  |  |
|-------------------|----------------|--------------------------|--|--|
| A                 | RJ45 Cable     | Shielded, 1.8m           |  |  |
| В                 | Keyboard Cable | Shielded, 1.8m           |  |  |
| C                 | Mouse Cable    | Shielded, 1.8m           |  |  |

## 1.4. Configuration of tested System



#### 1.5. EUT Exercise Software

- (1) Setup the EUT as shown on 1.4
- (2) Execute software "Terminal" on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.



## 1.6. Test Facility

Ambient conditions in the laboratory:

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 20-35    |
| Humidity (%RH)             | 25-75               | 50-65    |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <a href="http://www.quietek.com/chinese/about/certificates.aspx?bval=5">http://www.quietek.com/chinese/about/certificates.aspx?bval=5</a>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <a href="http://www.quietek.com/">http://www.quietek.com/</a>

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Registration Number: 92195

Site Name: Quietek Corporation

Site Address: No.5-22, Ruishukeng Linkou Dist., New Taipei City

24451, Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014



#### 2. Conducted Emission

## 2.1. Test Equipment

|   | Equipment                | Manufacturer | Model No. / Serial No. | Last Cal.  | Remark      |
|---|--------------------------|--------------|------------------------|------------|-------------|
| X | Test Receiver            | R & S        | ESCS 30 / 825442/018   | Sep., 2015 |             |
| X | Artificial Mains Network | R & S        | ENV4200 / 848411/10    | Feb., 2016 | Peripherals |
| X | LISN                     | R & S        | ESH3-Z5 / 825562/002   | Feb., 2016 | EUT         |
|   | DC LISN                  | Schwarzbeck  | 8226 / 176             | Mar, 2016  | EUT         |
| X | Pulse Limiter            | R & S        | ESH3-Z2 / 357.8810.52  | Feb., 2016 |             |
|   | No.1 Shielded Room       |              |                        |            |             |

#### Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

## 2.2. Test Setup





#### 2.3. Limits

| FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit |        |       |  |  |  |  |
|-----------------------------------------------------|--------|-------|--|--|--|--|
| Frequency                                           | Limits |       |  |  |  |  |
| MHz                                                 | QP     | AV    |  |  |  |  |
| 0.15 - 0.50                                         | 66-56  | 56-46 |  |  |  |  |
| 0.50-5.0                                            | 56     | 46    |  |  |  |  |
| 5.0 - 30                                            | 60     | 50    |  |  |  |  |

Remarks: In the above table, the tighter limit applies at the band edges.

#### 2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

## 2.5. Uncertainty

 $\pm 2.26 \text{ dB}$ 



#### 2.6. Test Result of Conducted Emission

Product : Evoko Liso Room Manager /Evoko Liso

Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit     |
|------------|---------|-----------|-------------|---------|-----------|
|            | Factor  | Level     | Level       |         |           |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | $dB\mu V$ |
| LINE 1     |         |           |             |         |           |
| Quasi-Peak |         |           |             |         |           |
| 0.154      | 9.783   | 36.880    | 46.663      | -19.223 | 65.886    |
| 0.205      | 9.775   | 23.370    | 33.145      | -31.284 | 64.429    |
| 0.455      | 9.784   | 20.760    | 30.544      | -26.742 | 57.286    |
| 1.150      | 9.848   | 17.710    | 27.558      | -28.442 | 56.000    |
| 2.923      | 9.953   | 9.710     | 19.663      | -36.337 | 56.000    |
| 15.302     | 10.159  | 21.310    | 31.469      | -28.531 | 60.000    |
|            |         |           |             |         |           |
| Average    |         |           |             |         |           |
| 0.154      | 9.783   | 22.660    | 32.443      | -23.443 | 55.886    |
| 0.205      | 9.775   | 6.690     | 16.465      | -37.964 | 54.429    |
| 0.455      | 9.784   | 12.300    | 22.084      | -25.202 | 47.286    |
| 1.150      | 9.848   | 11.130    | 20.978      | -25.022 | 46.000    |
| 2.923      | 9.953   | -0.590    | 9.363       | -36.637 | 46.000    |
| 15.302     | 10.159  | 12.640    | 22.799      | -27.201 | 50.000    |

<sup>1.</sup> All Reading Levels are Quasi-Peak and average value.

<sup>2. &</sup>quot;means the worst emission level.

<sup>3.</sup> Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 2

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit     |
|------------|---------|-----------|-------------|---------|-----------|
|            | Factor  | Level     | Level       |         |           |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | $dB\mu V$ |
| LINE 2     |         |           |             |         |           |
| Quasi-Peak |         |           |             |         |           |
| 0.201      | 9.835   | 22.680    | 32.515      | -32.028 | 64.543    |
| 0.255      | 9.839   | 23.800    | 33.639      | -29.361 | 63.000    |
| 0.451      | 9.854   | 21.250    | 31.104      | -26.296 | 57.400    |
| 1.060      | 9.901   | 15.160    | 25.061      | -30.939 | 56.000    |
| 2.787      | 10.021  | 10.190    | 20.211      | -35.789 | 56.000    |
| 16.298     | 10.318  | 16.340    | 26.658      | -33.342 | 60.000    |
|            |         |           |             |         |           |
| Average    |         |           |             |         |           |
| 0.201      | 9.835   | 8.190     | 18.025      | -36.518 | 54.543    |
| 0.255      | 9.839   | 8.660     | 18.499      | -34.501 | 53.000    |
| 0.451      | 9.854   | 13.620    | 23.474      | -23.926 | 47.400    |
| 1.060      | 9.901   | 8.410     | 18.311      | -27.689 | 46.000    |
| 2.787      | 10.021  | 1.180     | 11.201      | -34.799 | 46.000    |
| 16.298     | 10.318  | 6.960     | 17.278      | -32.722 | 50.000    |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit     |
|------------|---------|-----------|-------------|---------|-----------|
|            | Factor  | Level     | Level       |         |           |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | $dB\mu V$ |
| LINE 1     |         |           |             |         |           |
| Quasi-Peak |         |           |             |         |           |
| 0.150      | 9.784   | 36.390    | 46.174      | -19.826 | 66.000    |
| 0.193      | 9.774   | 31.420    | 41.194      | -23.577 | 64.771    |
| 0.244      | 9.778   | 25.020    | 34.798      | -28.516 | 63.314    |
| 0.509      | 9.789   | 18.210    | 27.999      | -28.001 | 56.000    |
| 1.150      | 9.848   | 17.870    | 27.718      | -28.282 | 56.000    |
| 15.384     | 10.160  | 21.810    | 31.970      | -28.030 | 60.000    |
| Average    |         |           |             |         |           |
| 0.150      | 9.784   | 19.210    | 28.994      | -27.006 | 56.000    |
| 0.193      | 9.774   | 15.520    | 25.294      | -29.477 | 54.771    |
| 0.244      | 9.778   | 11.260    | 21.038      | -32.276 | 53.314    |
| 0.509      | 9.789   | 10.240    | 20.029      | -25.971 | 46.000    |
| 1.150      | 9.848   | 11.330    | 21.178      | -24.822 | 46.000    |
| 15.384     | 10.160  | 13.020    | 23.180      | -26.820 | 50.000    |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 2

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit  |
|------------|---------|-----------|-------------|---------|--------|
|            | Factor  | Level     | Level       |         |        |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | dΒμV   |
| LINE 2     |         |           |             |         | _      |
| Quasi-Peak |         |           |             |         |        |
| 0.154      | 9.831   | 42.760    | 52.591      | -13.295 | 65.886 |
| 0.212      | 9.836   | 28.270    | 38.106      | -26.123 | 64.229 |
| 0.287      | 9.841   | 20.280    | 30.121      | -31.965 | 62.086 |
| 0.463      | 9.855   | 19.100    | 28.955      | -28.102 | 57.057 |
| 1.162      | 9.909   | 16.080    | 25.989      | -30.011 | 56.000 |
| 16.873     | 10.323  | 13.770    | 24.093      | -35.907 | 60.000 |
|            |         |           |             |         |        |
| Average    |         |           |             |         |        |
| 0.154      | 9.831   | 21.680    | 31.511      | -24.375 | 55.886 |
| 0.212      | 9.836   | 10.710    | 20.546      | -33.683 | 54.229 |
| 0.287      | 9.841   | 8.890     | 18.731      | -33.355 | 52.086 |
| 0.463      | 9.855   | 10.260    | 20.115      | -26.942 | 47.057 |
| 1.162      | 9.909   | 9.370     | 19.279      | -26.721 | 46.000 |
| 16.873     | 10.323  | 7.230     | 17.553      | -32.447 | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit  |
|------------|---------|-----------|-------------|---------|--------|
|            | Factor  | Level     | Level       |         |        |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | dΒμV   |
| LINE 1     |         |           |             |         | _      |
| Quasi-Peak |         |           |             |         |        |
| 0.162      | 9.781   | 35.620    | 45.401      | -20.256 | 65.657 |
| 0.224      | 9.777   | 27.420    | 37.197      | -26.689 | 63.886 |
| 0.560      | 9.793   | 13.810    | 23.603      | -32.397 | 56.000 |
| 1.138      | 9.847   | 17.630    | 27.477      | -28.523 | 56.000 |
| 2.193      | 9.939   | 8.080     | 18.019      | -37.981 | 56.000 |
| 15.306     | 10.159  | 21.370    | 31.529      | -28.471 | 60.000 |
|            |         |           |             |         |        |
| Average    |         |           |             |         |        |
| 0.162      | 9.781   | 19.290    | 29.071      | -26.586 | 55.657 |
| 0.224      | 9.777   | 13.420    | 23.197      | -30.689 | 53.886 |
| 0.560      | 9.793   | 4.610     | 14.403      | -31.597 | 46.000 |
| 1.138      | 9.847   | 11.180    | 21.027      | -24.973 | 46.000 |
| 2.193      | 9.939   | -0.100    | 9.839       | -36.161 | 46.000 |
| 15.306     | 10.159  | 12.900    | 23.059      | -26.941 | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 2

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit  |
|------------|---------|-----------|-------------|---------|--------|
|            | Factor  | Level     | Level       |         |        |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | dΒμV   |
| LINE 2     |         |           |             |         | _      |
| Quasi-Peak |         |           |             |         |        |
| 0.154      | 9.831   | 36.100    | 45.931      | -19.955 | 65.886 |
| 0.193      | 9.834   | 31.160    | 40.994      | -23.777 | 64.771 |
| 0.459      | 9.855   | 20.080    | 29.935      | -27.236 | 57.171 |
| 0.974      | 9.895   | 15.900    | 25.795      | -30.205 | 56.000 |
| 2.451      | 10.004  | 9.560     | 19.564      | -36.436 | 56.000 |
| 16.271     | 10.318  | 16.340    | 26.658      | -33.342 | 60.000 |
|            |         |           |             |         |        |
| Average    |         |           |             |         |        |
| 0.154      | 9.831   | 22.010    | 31.841      | -24.045 | 55.886 |
| 0.193      | 9.834   | 15.810    | 25.644      | -29.127 | 54.771 |
| 0.459      | 9.855   | 11.970    | 21.825      | -25.346 | 47.171 |
| 0.974      | 9.895   | 7.330     | 17.225      | -28.775 | 46.000 |
| 2.451      | 10.004  | 2.030     | 12.034      | -33.966 | 46.000 |
| 16.271     | 10.318  | 6.800     | 17.118      | -32.882 | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5755MHz)

| Frequency  | Correct | Reading   | Measurement | Margin  | Limit     |
|------------|---------|-----------|-------------|---------|-----------|
|            | Factor  | Level     | Level       |         |           |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$   | dB      | $dB\mu V$ |
| LINE 1     |         |           |             |         |           |
| Quasi-Peak |         |           |             |         |           |
| 0.150      | 9.784   | 36.000    | 45.784      | -20.216 | 66.000    |
| 0.185      | 9.775   | 31.870    | 41.645      | -23.355 | 65.000    |
| 0.220      | 9.776   | 27.720    | 37.496      | -26.504 | 64.000    |
| 0.455      | 9.784   | 21.030    | 30.814      | -26.472 | 57.286    |
| 1.154      | 9.848   | 17.710    | 27.558      | -28.442 | 56.000    |
| 15.283     | 10.158  | 21.480    | 31.638      | -28.362 | 60.000    |
| Average    |         |           |             |         |           |
| 0.150      | 9.784   | 18.970    | 28.754      | -27.246 | 56.000    |
| 0.185      | 9.775   | 17.090    | 26.865      | -28.135 | 55.000    |
| 0.220      | 9.776   | 13.660    | 23.436      | -30.564 | 54.000    |
| 0.455      | 9.784   | 12.390    | 22.174      | -25.112 | 47.286    |
| 1.154      | 9.848   | 11.280    | 21.128      | -24.872 | 46.000    |
| 15.283     | 10.158  | 12.800    | 22.958      | -27.042 | 50.000    |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



Test Item : Conducted Emission Test

Power Line : Line 2

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) (5755MHz)

| Frequency  | Correct | Reading   | Reading Measurement |         | Limit  |
|------------|---------|-----------|---------------------|---------|--------|
|            | Factor  | Level     | Level               |         |        |
| MHz        | dB      | $dB\mu V$ | $dB\mu V$           | dB      | dΒμV   |
| LINE 2     |         |           |                     |         | _      |
| Quasi-Peak |         |           |                     |         |        |
| 0.162      | 9.832   | 35.340    | 45.172              | -20.485 | 65.657 |
| 0.193      | 9.834   | 31.020    | 40.854              | -23.917 | 64.771 |
| 0.451      | 9.854   | 21.510    | 31.364              | -26.036 | 57.400 |
| 1.158      | 9.909   | 16.590    | 26.499              | -29.501 | 56.000 |
| 2.181      | 9.998   | 9.220     | 19.218              | -36.782 | 56.000 |
| 15.310     | 10.299  | 15.680    | 25.979              | -34.021 | 60.000 |
|            |         |           |                     |         |        |
| Average    |         |           |                     |         |        |
| 0.162      | 9.832   | 19.290    | 29.122              | -26.535 | 55.657 |
| 0.193      | 9.834   | 15.760    | 25.594              | -29.177 | 54.771 |
| 0.451      | 9.854   | 13.620    | 23.474              | -23.926 | 47.400 |
| 1.158      | 9.909   | 9.890     | 19.799              | -26.201 | 46.000 |
| 2.181      | 9.998   | 2.370     | 12.368              | -33.632 | 46.000 |
| 15.310     | 10.299  | 7.500     | 17.799              | -32.201 | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



## 3. Maximun conducted output power

## 3.1. Test Equipment

|      | Equipment         | Manufacturer | Model No./Serial No. | Last Cal.  |
|------|-------------------|--------------|----------------------|------------|
| X    | Power Meter       | Anritsu      | ML2495A/6K00003357   | May, 2016  |
| X    | Power Sensor      | Anritsu      | MA2411B/0738448      | Jun., 2015 |
| X    | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr., 2016 |
| Note | e:                |              |                      |            |

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

## 3.2. Test Setup

#### 26dBc Occupied Bandwidth



#### **Conduction Power Measurement (for 802.11an)**





#### 3.3. Limits

#### 3.3.1. For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3.3.2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3.3.3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in



this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 3.4. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW ≤ 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter)

Note: the power meter have a video bandwidth that is greater than or equal to the measurement bandwidth, (Anritsu/ MA2411B video bandwidth: 65MHz)

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D01 section F) procedure is used for measurements.

#### 3.5. Uncertainty

 $\pm 1.27 dB$ 



## 3.6. Test Result of Maximum conducted output power

Product : Evoko Liso Room Manager /Evoko Liso

Test Item : Maximum conducted output power

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11a-6Mbps)

#### **CHAIN A**

| Cable loss=1dB |                 | Maximum conducted output power |       |       |         |         |       |       |       |                |
|----------------|-----------------|--------------------------------|-------|-------|---------|---------|-------|-------|-------|----------------|
|                |                 |                                |       |       |         |         |       |       |       |                |
| Channel No.    | Frequency (MHz) | 6                              | 9     | 12    | 18      | 24      | 36    | 48    | 54    | Required Limit |
|                |                 |                                |       | Measi | ırement | Level ( | dBm)  |       |       |                |
| 36             | 5180            | 12.97                          |       |       |         |         |       |       |       | <24dBm         |
| 44             | 5220            | 12.99                          | 12.97 | 12.95 | 12.91   | 12.88   | 12.85 | 12.81 | 12.78 | <24dBm         |
| 48             | 5240            | 12.91                          |       | -     |         |         |       |       |       | <24dBm         |
| 52             | 5260            | 12.93                          |       | -     | -       |         |       | -     |       | <24dBm         |
| 60             | 5300            | 12.85                          | 12.82 | 12.78 | 12.76   | 12.74   | 12.70 | 12.68 | 12.65 | <24dBm         |
| 64             | 5320            | 13.31                          |       |       |         |         |       |       |       | <24dBm         |
| 100            | 5500            | 14.57                          | 14.55 | 14.52 | 14.49   | 14.47   | 14.42 | 14.39 | 14.36 | <24dBm         |
| 116            | 5580            | 12.89                          | 12.87 | 12.85 | 12.81   | 12.79   | 12.77 | 12.74 | 12.71 | <24dBm         |
| 140            | 5700            | 12.86                          |       | -     |         |         |       |       |       | <24dBm         |
| 149            | 5745            | 13.01                          | 12.97 | 12.94 | 12.91   | 12.88   | 12.84 | 12.81 | 12.79 | <30dBm         |
| 157            | 5785            | 12.95                          | 12.91 | 12.88 | 12.85   | 12.81   | 12.78 | 12.75 | 12.71 | <30dBm         |
| 165            | 5825            | 12.99                          |       | 1     | 1       |         |       | 1     |       | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss



## CHAIN B

| Cable       |                 | Maximum conducted output power |       |       |         |         |       |       |       |                |
|-------------|-----------------|--------------------------------|-------|-------|---------|---------|-------|-------|-------|----------------|
|             |                 | Data Rate (Mbps)               |       |       |         |         |       |       |       |                |
| Channel No. | Frequency (MHz) | 6                              | 9     | 12    | 18      | 24      | 36    | 48    | 54    | Required Limit |
|             |                 |                                |       | Meası | ırement | Level ( | dBm)  |       |       |                |
| 36          | 5180            | 11.82                          |       |       |         |         |       |       |       | <24dBm         |
| 44          | 5220            | 11.63                          | 11.61 | 11.58 | 11.55   | 11.52   | 11.48 | 11.45 | 11.43 | <24dBm         |
| 48          | 5240            | 11.32                          |       |       |         |         |       |       |       | <24dBm         |
| 52          | 5260            | 11.07                          |       |       |         |         |       |       |       | <24dBm         |
| 60          | 5300            | 11.01                          | 10.98 | 10.96 | 10.93   | 10.91   | 10.88 | 10.85 | 10.83 | <24dBm         |
| 64          | 5320            | 12.81                          |       |       |         |         |       |       |       | <24dBm         |
| 100         | 5500            | 10.78                          |       |       |         |         |       |       |       | <24dBm         |
| 116         | 5580            | 12.27                          | 12.24 | 12.21 | 12.18   | 12.16   | 12.14 | 12.11 | 12.07 | <24dBm         |
| 140         | 5700            | 11.83                          |       |       | -       |         |       | -     |       | <24dBm         |
| 149         | 5745            | 12.65                          |       |       | I       |         |       |       |       | <30dBm         |
| 157         | 5785            | 12.92                          | 12.88 | 12.86 | 12.84   | 12.81   | 12.78 | 12.75 | 12.71 | <30dBm         |
| 165         | 5825            | 13.54                          |       |       |         |         |       |       |       | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss



## **Maximum conducted output power Measurement:**

## CHAIN A

| Channel No | Frequency<br>Range | IC99%<br>Bandwidth | Output<br>Power | Output Power Limit |               |  |  |
|------------|--------------------|--------------------|-----------------|--------------------|---------------|--|--|
|            | (MHz)              | (MHz)              | (dBm)           | (dBm)              | dBm+10log(BW) |  |  |
| 36         | 5180               | -1                 | 12.97           | 24                 |               |  |  |
| 44         | 5220               |                    | 12.99           | 24                 |               |  |  |
| 48         | 5240               |                    | 12.91           | 24                 |               |  |  |
| 52         | 5260               | 17.294             | 12.93           | 24                 | 23.38         |  |  |
| 60         | 5300               | 17.241             | 12.85           | 24                 | 23.37         |  |  |
| 64         | 5320               | 17.287             | 13.31           | 24                 | 23.38         |  |  |
| 100        | 5500               | 17.685             | 14.57           | 24                 | 23.48         |  |  |
| 116        | 5580               | 22.297             | 12.89           | 24                 | 24.48         |  |  |
| 140        | 5700               | 21.649             | 12.86           | 24                 | 24.35         |  |  |
| 149        | 5745               |                    | 13.01           | 30                 |               |  |  |
| 157        | 5785               |                    | 12.95           | 30                 |               |  |  |
| 165        | 5825               |                    | 12.99           | 30                 |               |  |  |

#### Note:

1. Power Output Value = Reading value on average power meter + cable loss



# IC 99% Bandwidth: Channel 52:



#### Channel 60:





#### **Channel 64:**



#### Channel 100:





#### Channel 116:



#### Channel 140:





Product : Evoko Liso Room Manager /Evoko Liso
Test Item : Maximum conducted output power

Test Site : No.3 OATS

Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps)

#### **CHAIN A**

| Cable loss=1dB |                 | Maximum conducted output power |       |       |       |       |       |       |       |                |
|----------------|-----------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|----------------|
|                |                 |                                |       |       |       |       |       |       |       |                |
| Channel No.    | Frequency (MHz) | 14.4                           | 28.9  | 43.3  | 57.8  | 86.7  | 115.6 | 130   | 144.4 | Required Limit |
|                |                 |                                |       |       |       |       |       |       |       |                |
| 36             | 5180            | 12.62                          |       |       |       | -     |       |       |       | <24dBm         |
| 44             | 5220            | 12.59                          | 12.57 | 12.55 | 12.51 | 12.48 | 12.46 | 12.42 | 12.40 | <24dBm         |
| 48             | 5240            | 12.68                          |       | 1     | 1     | 1     |       | 1     |       | <24dBm         |
| 52             | 5260            | 13.28                          |       | -     |       | -     |       |       |       | <24dBm         |
| 60             | 5300            | 12.94                          | 12.91 | 12.87 | 12.84 | 12.81 | 12.78 | 12.76 | 12.72 | <24dBm         |
| 64             | 5320            | 12.95                          |       |       |       |       |       |       |       | <24dBm         |
| 100            | 5500            | 12.28                          |       | ı     | ı     | I     |       | 1     |       | <24dBm         |
| 116            | 5580            | 12.12                          | 12.09 | 12.06 | 12.02 | 11.97 | 11.95 | 11.92 | 11.88 | <24dBm         |
| 140            | 5700            | 12.21                          |       | ŀ     | -     | ŀ     |       | -     |       | <24dBm         |
| 149            | 5745            | 12.02                          |       | ŀ     | -     | ŀ     |       | -     |       | <30dBm         |
| 157            | 5785            | 11.75                          | 11.73 | 11.71 | 11.67 | 11.63 | 11.61 | 11.58 | 11.56 | <30dBm         |
| 165            | 5825            | 11.61                          |       | -     | 1     | -     |       | 1     |       | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss



## **CHAIN B**

| Cable loss=1dB |                 | Maximum conducted output power |       |       |         |         |       |       |       |                |
|----------------|-----------------|--------------------------------|-------|-------|---------|---------|-------|-------|-------|----------------|
|                |                 |                                |       |       |         |         |       |       |       |                |
| Channel No.    | Frequency (MHz) | 14.4                           | 28.9  | 43.3  | 57.8    | 86.7    | 115.6 | 130   | 144.4 | Required Limit |
|                |                 |                                |       | Measi | ırement | Level ( | dBm)  |       |       |                |
| 36             | 5180            | 11.28                          |       |       |         |         |       |       |       | <24dBm         |
| 44             | 5220            | 11.21                          | 11.18 | 11.15 | 11.12   | 11.09   | 11.05 | 11.03 | 10.99 | <24dBm         |
| 48             | 5240            | 11.28                          |       |       |         | -       |       |       |       | <24dBm         |
| 52             | 5260            | 10.35                          |       |       |         |         |       |       |       | <24dBm         |
| 60             | 5300            | 10.73                          | 10.7  | 10.68 | 10.66   | 10.64   | 10.61 | 10.58 | 10.55 | <24dBm         |
| 64             | 5320            | 10.83                          |       |       |         | -       |       |       |       | <24dBm         |
| 100            | 5500            | 11.54                          |       |       |         | -       |       |       |       | <24dBm         |
| 116            | 5580            | 11.86                          | 11.84 | 11.81 | 11.78   | 11.74   | 11.71 | 11.68 | 11.64 | <24dBm         |
| 140            | 5700            | 11.61                          |       |       |         | -       |       |       |       | <24dBm         |
| 149            | 5745            | 11.95                          |       |       | -       | -       |       | -     |       | <30dBm         |
| 157            | 5785            | 12.17                          | 12.13 | 12.11 | 12.07   | 12.05   | 12.03 | 12.01 | 11.97 | <30dBm         |
| 165            | 5825            | 12.32                          |       |       |         |         |       |       |       | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss



## Maximum conducted output power Measurement:

## (CHAIN A+ B)

| Channel<br>Number | Frequency | IC99%<br>Bandwidth | Chain A<br>Power | Chain B<br>Power | Output<br>Power | Outp  | ut Power Limit |  |
|-------------------|-----------|--------------------|------------------|------------------|-----------------|-------|----------------|--|
|                   | (MHz)     | (MHz)              | (dBm)            | (dBm)            | (dBm)           | (dBm) | dBm+10log(BW)  |  |
| 36                | 5180      |                    | 12.62            | 11.28            | 15.01           | 24    |                |  |
| 44                | 5220      |                    | 12.59            | 11.21            | 14.96           | 24    |                |  |
| 48                | 5240      |                    | 12.68            | 11.28            | 15.05           | 24    |                |  |
| 52                | 5260      | 18.147             | 13.28            | 10.35            | 15.07           | 24    | 23.59          |  |
| 60                | 5300      | 18.099             | 12.94            | 10.73            | 14.98           | 24    | 23.58          |  |
| 64                | 5320      | 17.936             | 12.95            | 10.83            | 15.03           | 24    | 23.54          |  |
| 100               | 5500      | 18.204             | 12.28            | 11.54            | 14.94           | 24    | 23.60          |  |
| 116               | 5580      | 23.341             | 12.12            | 11.86            | 15.00           | 24    | 24.68          |  |
| 140               | 5700      | 18.449             | 12.21            | 11.61            | 14.93           | 24    | 23.66          |  |
| 149               | 5745      |                    | 12.02            | 11.95            | 15.00           | 30    |                |  |
| 157               | 5785      |                    | 11.75            | 12.17            | 14.98           | 30    |                |  |
| 165               | 5825      |                    | 11.61            | 12.32            | 14.99           | 30    |                |  |

- 1. Power Output Value = Reading value on average power meter + cable loss
- 2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 3. IC99% Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.



## IC 99% Bandwidth: Channel 52 -Chain A



#### Channel 60 - Chain A





#### Channel 64 - Chain A



#### Channel 100 - Chain A





## Channel 116 -Chain A



#### Channel 140 - Chain A





#### IC 99% Occupied Bandwidth: Channel 52 -Chain B



#### Channel 60 - Chain B





#### Channel 64 - Chain B



#### Channel 100 - Chain B





#### **Channel 116 - Chain B**



#### **Channel 140 - Chain B**





Product : Evoko Liso Room Manager /Evoko Liso
Test Item : Maximum conducted output power

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps)

# CHAIN A

| Cable       | Cable loss=1dB  |       | Maximum conducted output power |       |       |       |       |       |       |                |
|-------------|-----------------|-------|--------------------------------|-------|-------|-------|-------|-------|-------|----------------|
|             |                 |       |                                |       |       |       |       |       |       |                |
| Channel No. | Frequency (MHz) | 30    | 60                             | 90    | 120   | 180   | 240   | 270   | 300   | Required Limit |
|             |                 |       | Measurement Level (dBm)        |       |       |       |       |       |       |                |
| 38          | 5190            | 11.81 |                                |       | -     |       |       | -     |       | <24dBm         |
| 46          | 5230            | 11.96 | 11.93                          | 11.88 | 11.85 | 11.81 | 11.78 | 11.75 | 11.71 | <24dBm         |
| 54          | 5270            | 12.07 |                                |       | 1     |       |       | 1     |       | <24dBm         |
| 62          | 5310            | 11.88 | 11.85                          | 11.81 | 11.78 | 11.75 | 11.73 | 11.70 | 11.67 | <24dBm         |
| 102         | 5510            | 12.53 |                                |       | ŀ     |       |       | -     |       | <24dBm         |
| 110         | 5550            | 12.39 | 12.36                          | 12.33 | 12.29 | 12.26 | 12.24 | 12.22 | 12.19 | <24dBm         |
| 134         | 5670            | 12.37 |                                |       | 1     |       |       | 1     |       | <24dBm         |
| 151         | 5755            | 13.01 |                                |       | 1     |       |       | 1     |       | <30dBm         |
| 159         | 5795            | 13.06 | 13.03                          | 12.99 | 12.97 | 12.94 | 12.92 | 12.88 | 12.84 | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

# CHAIN B

| CHAIN B     | CHAIN D         |                  |                                |       |         |         |       |       |       |                |
|-------------|-----------------|------------------|--------------------------------|-------|---------|---------|-------|-------|-------|----------------|
| Cable       | Cable loss=1dB  |                  | Maximum conducted output power |       |         |         |       |       |       |                |
|             |                 | Data Rate (Mbps) |                                |       |         |         |       |       |       |                |
| Channel No. | Frequency (MHz) | 30               | 60                             | 90    | 120     | 180     | 240   | 270   | 300   | Required Limit |
|             |                 |                  |                                | Meası | ırement | Level ( | dBm)  |       |       |                |
| 38          | 5190            | 12.18            |                                | 1     | 1       |         |       | 1     |       | <24dBm         |
| 46          | 5230            | 11.93            | 11.9                           | 11.88 | 11.85   | 11.83   | 11.79 | 11.76 | 11.74 | <24dBm         |
| 54          | 5270            | 12.09            |                                |       |         |         |       |       |       | <24dBm         |
| 62          | 5310            | 12.03            | 11.99                          | 11.95 | 11.93   | 11.90   | 11.87 | 11.83 | 11.80 | <24dBm         |
| 102         | 5510            | 11.45            |                                |       |         |         |       |       |       | <24dBm         |
| 110         | 5550            | 11.36            | 11.33                          | 11.31 | 11.27   | 11.24   | 11.20 | 11.16 | 11.12 | <24dBm         |
| 134         | 5670            | 11.63            |                                |       |         |         |       |       |       | <24dBm         |
| 151         | 5755            | 10.56            |                                | 1     | 1       |         |       | 1     |       | <30dBm         |
| 159         | 5795            | 10.33            | 10.3                           | 10.27 | 10.24   | 10.22   | 10.20 | 10.17 | 10.13 | <30dBm         |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss



# Maximum conducted output power Measurement:

# (CHAIN A+ B)

| Channel<br>Number | Frequency | IC99%<br>Bandwidth | Chain A<br>Power | Chain B<br>Power | Output<br>Power | Outp  | out Power Limit |
|-------------------|-----------|--------------------|------------------|------------------|-----------------|-------|-----------------|
|                   | (MHz)     | (MHz)              | (dBm)            | (dBm)            | (dBm)           | (dBm) | dBm+10log(BW)   |
| 38                | 5190      |                    | 11.81            | 12.18            | 15.01           | 24    |                 |
| 46                | 5230      |                    | 11.96            | 11.93            | 14.96           | 24    |                 |
| 54                | 5270      | 36.663             | 12.07            | 12.09            | 15.09           | 24    | 26.64           |
| 62                | 5310      | 36.689             | 11.88            | 12.03            | 14.97           | 24    | 26.65           |
| 102               | 5510      | 37.009             | 12.53            | 11.45            | 15.03           | 24    | 26.68           |
| 110               | 5550      | 37.100             | 12.39            | 11.36            | 14.92           | 24    | 26.69           |
| 134               | 5670      | 37.502             | 12.37            | 11.63            | 15.03           | 24    | 26.74           |
| 151               | 5755      |                    | 13.01            | 10.56            | 14.97           | 30    |                 |
| 159               | 5795      |                    | 13.06            | 10.33            | 14.92           | 30    |                 |

### Note:

- 1. Power Output Value = Reading value on average power meter + cable loss
- 2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 3. IC99% Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.



# IC 99% Bandwidth: Channel 54 – Chain A



### Channel 62 - Chain A





#### Channel 102 - Chain A



#### Channel 110 - Chain A











# IC 99% Occupied Bandwidth: Channel 54 – Chain B



#### Channel 62 - Chain B





#### Channel 102 - Chain B



#### Channel 110 - Chain B





### Channel 134 – Chain B





# 4. Peak Power Spectral Density

### 4.1. Test Equipment

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal.  |  |
|---|-------------------|--------------|----------------------|------------|--|
|   | Spectrum Analyzer | R&S          | FSP40 / 100170       | Jun., 2015 |  |
|   | Spectrum Analyzer | Agilent      | E4407B / US39440758  | Jun., 2015 |  |
| X | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr, 2016  |  |

#### Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

# 4.2. Test Setup



### 4.3. Limits

- (1) For the band 5.15-5.25 GHz,
  - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
  - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
  - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the



equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.+

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 4.4. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

SA-1 method is selected to run the test.

For the band 5.725-5.85 GHz, Scale the observed power level to an equivalent value in 500 kHz by adjusting (increase) the measured power by a bandwidth correction factor (BWCF) where  $BWCF = 10\log (500 \text{ kHz}/100 \text{ kHz}) = 6.98 \text{ dB}$ .

### 4.5. Uncertainty

 $\pm 1.27 dB$ 



# 4.6. Test Result of Peak Power Spectral Density

Product : Evoko Liso Room Manager /Evoko Liso

Test Item : Peak Power Spectral Density

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11a-6Mbps)

| Channel<br>Number | Frequency (MHz) | Data Rata<br>(Mbps) | Measurement Level (dBm) | Required Limit (dBm) | Result |
|-------------------|-----------------|---------------------|-------------------------|----------------------|--------|
| 36                | 5180            | 6                   | 4.110                   | 11                   | Pass   |
| 44                | 5220            | 6                   | 3.940                   | 11                   | Pass   |
| 48                | 5240            | 6                   | 3.940                   | 11                   | Pass   |
| 52                | 5260            | 6                   | 4.230                   | 11                   | Pass   |
| 60                | 5300            | 6                   | 4.020                   | 11                   | Pass   |
| 64                | 5320            | 6                   | 3.900                   | 11                   | Pass   |
| 100               | 5500            | 6                   | 3.430                   | 11                   | Pass   |
| 116               | 5580            | 6                   | 5.510                   | 11                   | Pass   |
| 140               | 5700            | 6                   | 3.930                   | 11                   | Pass   |

| Channel<br>Number | Frequency (MHz) | Data Rata<br>(Mbps) | PPSD (dBm) | BWCF (dB) | Total PPSD (dBm) | Required Limit (dBm) | Result |
|-------------------|-----------------|---------------------|------------|-----------|------------------|----------------------|--------|
| 149               | 5745            | 6                   | -6.400     | 6.980     | 0.580            | <30                  | Pass   |
| 157               | 5785            | 6                   | -6.520     | 6.980     | 0.460            | <30                  | Pass   |
| 165               | 5825            | 6                   | -5.500     | 6.980     | 1.480            | <30                  | Pass   |



### Channel 36:



#### Channel 44:





### Channel 48:



# Channel 52:





### Channel 60:



#### Channel 64:





### Channel 100:



#### Channel 116:





### Channel 140:



#### Channel 149









#### **Channel 165**





Product : Evoko Liso Room Manager /Evoko Liso

Test Item : Peak Power Spectral Density

Test Site : No.3 OATS

Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps)

| Channel<br>Number | Frequency (MHz) | Chain | PPSD (dBm) | Total<br>PPSD (dBm) | Required Limit (dBm) | Result |
|-------------------|-----------------|-------|------------|---------------------|----------------------|--------|
| 26                | 5100            | A     | 3.760      | 6.770               | 11                   | Pass   |
| 36                | 5180            | В     | 0.820      | 3.830               | 11                   | Pass   |
| 4.4               | 5220            | A     | 3.450      | 6.460               | 11                   | Pass   |
| 44                | 5220            | В     | 2.350      | 5.360               | 11                   | Pass   |
| 40                | 5240            | A     | 3.790      | 6.800               | 11                   | Pass   |
| 48                | 5240            | В     | 3.220      | 6.230               | 11                   | Pass   |
| 50                | 5260            | A     | 4.260      | 7.270               | 11                   | Pass   |
| 52                |                 | В     | 3.100      | 6.110               | 11                   | Pass   |
| (0)               | 5200            | A     | 4.270      | 7.280               | 11                   | Pass   |
| 60                | 5300            | В     | 2.810      | 5.820               | 11                   | Pass   |
| (4                | 5220            | A     | 4.200      | 7.210               | 11                   | Pass   |
| 64                | 5320            | В     | 0.610      | 3.620               | 11                   | Pass   |
| 100               | 5500            | A     | 4.620      | 7.630               | 11                   | Pass   |
| 100               | 5500            | В     | 1.150      | 4.160               | 11                   | Pass   |
| 116               | 5500            | A     | 4.730      | 7.740               | 11                   | Pass   |
| 116               | 5580            | В     | 4.780      | 7.790               | 11                   | Pass   |
| 140               | 5700            | A     | 3.250      | 6.260               | 11                   | Pass   |
| 140               | 5700            | В     | 1.120      | 4.130               | 11                   | Pass   |

| Channel<br>Number | Frequency (MHz) | Chain | PPSD (dBm) | BWCF (dB) | Total PPSD (dBm) | Required Limit (dBm) | Result |
|-------------------|-----------------|-------|------------|-----------|------------------|----------------------|--------|
| 110 5715          | 5745            | A     | -6.490     | 6.980     | 3.500            | <30                  | Pass   |
| 149               | 5745            | В     | -6.930     | 6.980     | 3.060            | <30                  | Pass   |
| 1.57              | 5705            | A     | -6.010     | 6.980     | 3.980            | <30                  | Pass   |
| 157               | 5785            | В     | -6.860     | 6.980     | 3.130            | <30                  | Pass   |
| 165               | 5825            | A     | -5.540     | 6.980     | 4.450            | <30                  | Pass   |
|                   |                 | В     | -7.060     | 6.980     | 2.930            | <30                  | Pass   |

Note 1: The quantity 10\*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.



### Channel 36 - Chain A



#### Channel 44 – Chain A





### Channel 48 - Chain A



#### Channel 52 - Chain A





### Channel 60 - Chain A



#### Channel 64 – Chain A





### Channel 100 - Chain A



#### Channel 116 - Chain A





### Channel 140 - Chain A



#### .Channel 149 – Chain A





### Channel 157 - Chain A



#### Channel 165 - Chain A





Channel 36 – Chain B



### Channel 44 - Chain B





### Channel 48 - Chain B



# Channel 52 - Chain B





### Channel 60 - Chain B



# Channel 64 - Chain B





### Channel 100 - Chain B



#### Channel 116 – Chain B





### Channel 140 - Chain B



#### Channel 149 – Chain B





### Channel 157 - Chain B



#### Channel 165 - Chain B





Product : Evoko Liso Room Manager /Evoko Liso

Test Item : Peak Power Spectral Density

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps)

| Channel<br>Number | Frequency (MHz) | Chain | PPSD (dBm) | Total<br>PPSD (dBm) | Required Limit (dBm) | Result |
|-------------------|-----------------|-------|------------|---------------------|----------------------|--------|
| 20                | 5100            | A     | -0.480     | 2.530               | 11                   | Pass   |
| 38                | 5190            | В     | -3.550     | -0.540              | 11                   | Pass   |
| 4.6               | 5220            | A     | -0.970     | 2.040               | 11                   | Pass   |
| 46                | 5230            | В     | -2.410     | 0.600               | 11                   | Pass   |
| 5.4               | 5270            | A     | -0.490     | 2.520               | 11                   | Pass   |
| 54                |                 | В     | -2.560     | 0.450               | 11                   | Pass   |
|                   | 5210            | A     | -0.750     | 2.260               | 11                   | Pass   |
| 62                | 5310            | В     | -3.420     | -0.410              | 11                   | Pass   |
| 102               | 5510            | A     | -1.890     | 1.120               | 11                   | Pass   |
| 102               | 5510            | В     | -2.920     | 0.090               | 11                   | Pass   |
| 110               | 5550            | A     | -2.080     | 0.930               | 11                   | Pass   |
| 110               | 5550            | В     | -2.300     | 0.710               | 11                   | Pass   |
| 124               | 5.670           | A     | -1.620     | 1.390               | 11                   | Pass   |
| 134               | 5670            | В     | -2.930     | 0.080               | 11                   | Pass   |

| Channel<br>Number | Frequency (MHz) | Chain | PPSD (dBm) | BWCF (dB) | Total PPSD (dBm)1 | Required Limit (dBm) | Result |
|-------------------|-----------------|-------|------------|-----------|-------------------|----------------------|--------|
| 1.7.1             | 5755            | A     | -11.250    | 6.980     | -1.260            | <30                  | Pass   |
| 151               | 5755            | В     | -12.070    | 6.980     | -2.080            | <30                  | Pass   |
| 150               | 5705            | A     | -11.110    | 6.980     | -1.120            | <30                  | Pass   |
| 159               | 5795            | В     | -12.420    | 6.980     | -2.430            | <30                  | Pass   |

Note 1: The quantity 10\*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.



### Channel 38 - Chain A



#### Channel 46 – Chain A





### Channel 54 - Chain A



### Channel 62 - Chain A





### Channel 102 - Chain A



#### Channel 110 – Chain A





### Channel 134 - Chain A



#### Channel 151 – Chain A









Channel 38 - Chain B



### Channel 46 - Chain B









### Channel 62 - Chain B





### Channel 102 - Chain B



#### Channel 110 - Chain B





### Channel 134 - Chain B



#### Channel 151 – Chain B





### Channel 159 - Chain B

