Problem Set #2 Part 1

OSM Lab, Professor Stachurski Dan Ehrlich

Problem 1 We first need to show that the set of complete and bounded functions $(\mathscr{C}, \|\cdot\|_{\sup})$ is complete. We now show that T is a contraction mapping on \mathscr{C} . We have that for a specific $y \in \mathbb{R}_+$:

$$\begin{aligned} &|Uw(y) - Uw'(y)| = \\ &= \left| u(\sigma(y)) + \beta \int w(f(y - \sigma(y))z)\phi(dz) - u(\sigma(y)) - \beta \int w'(f(y - \sigma(y))z)\phi(dz) \right| \\ &= \beta \left| \int \left[w(f(y - \sigma(y))z) - w'(f(y - \sigma(y))z) \right]\phi(dz) \right| \\ &\leq \beta \int \left| \left| w(f(y - \sigma(y))z) - w'(f(y - \sigma(y))z) \right| \phi(dz) \right| \\ &\leq \beta \int \|w - w'\|_{\sup_{y \in \mathbb{R}_+}} \phi(dz) = \beta \|w - w'\|_{\sup_{y \in \mathbb{R}_+}} \end{aligned}$$

Taking the sup over $y \in \mathbb{R}_+$ gives us the desired result that

$$||Uw - Uw'||_{\sup_{y \in \mathbb{R}_+}} \le \beta ||w - w'||_{\sup_{y \in \mathbb{R}_+}}$$

This proves that U is a contraction mapping and there exists a unique fixed point solution. We now argue that the unique fixed point of U in $\mathscr C$ is v_{σ} . We know that v_{σ} is the expected lifetime utility given that policy $\sigma(y)$ is used. If $v'_{\sigma}(y')$ is the expected lifetime utility a period forward then $v'_{\sigma}(y') = v_{\sigma}(y')$ because otherwise the individual's preferences must have changed. It is therefore a fixed point of the equation.

Problem 2 Refer to the python notebook "DP_Part2".