Predicate logic

Methods: Logic, Part 5

Michael Franke

natural language	PropLog	PredLog
Dumbo is an elephant.	р	Ed
Kimbi is an elephant.	9	Ek
All elephants are mammals.	???	$\forall x (Ex \to Mx)$
Dumbo is a mammal.	r	Md
Kimbi is a mammal.	s	M_{k}

Elements of the language of predicate logic

- individual constants a, b, c, \ldots, v
- predicate letters *A*, *B*, *C*, *D* . . .
- variables w, x, y, z
- parentheses ()
- sentential connectives \neg , \land , \lor , \rightarrow , \leftrightarrow
- quantifiers \exists , \forall

Formula of predicate logic

- (i) If A is an n-ary predicate letter and if t_1, \ldots, t_n are individual constants or variables, then $At_1 \dots t_n$ is a formula.
- (ii) If φ is a formula, then so is $\neg \varphi$.
- (iii) If φ and ψ are formulas, so are:
 - a. $(\varphi \land \psi)$ b. $(\varphi \lor \psi)$ c. $(\varphi \to \psi)$ d. $(\varphi \leftrightarrow \psi)$

- (iv) If φ is a formula and if x is a variable, then these are formulas:
 - a. $\forall x \varphi$ [universal statement]

- b. $\exists x \varphi$ [existential statement]
- (v) Anything that cannot be constructed by (i)–(iv) is not a formula.

Syntactic trees

Translation

Domain of quantification

Translation key

Lxy: x likes y

all human beings

a: Alexb: Bo

Px: x is a pilot

Fx: x is friendly

Sxy: *x* & *y* are siblings

Examples

Alex is a pilot.

Рa

Bo is a friendly pilot.

 $Fb \wedge Pb$

No pilot is friendly.

 $\forall x (Px \rightarrow \neg Fx)$

Nobody likes pilots.

 $\neg \exists x \, \exists y \, (Py \land Lxy)$

Bo has a friendly sibling.

 $\exists x (Fx \land Sbx)$

Every pilot has a friendly sibling.

 $\forall x (Px \to (\exists y (Fy \land Sxy)))$