# 159.355 Concurrent Systems Hans W. Guesgen

Based on slides provided with:

Mordechai (Moti) Ben-Ari
Principles of Concurrent and Distributed Programming (SE)
Addison-Wesley, 2006

http://www.weizmann.ac.il/sci-tea/benari/

#### Consensus

- One of the primary motivations for building distributed systems is to improve reliability.
- There are two properties to achieve in a reliable system
  - **♦** Fail safe
  - System failures do not cause damage to the system or to its users.
  - **♦** Fault tolerant
  - ◆ System continues to fulfil its requirements even if there are failures.
- A distributed system is not automatically fail safe or fault tolerant.

# Architecture for a Reliable System



- When input sensors are replicated, they may not all give exactly the same data.
- A faulty input sensor or processor may not fail gracefully.
- If all processors are using the same software, the system is not tolerant of software bugs.

#### The Problem Statement

- A group of Byzantine armies is surrounding an enemy city.
- If all armies attack together, they can capture the city.
- Otherwise, they must all retreat to avoid defeat.
- The generals have reliable messengers but some of the generals may be traitors.
- The task is to devise an algorithm so that all loyal generals come to a consensus.
- Problem statement applied to faults in distributed systems:
  - **♦** Crash failures
  - ◆ A failure node (traitor) stops sending messages at any arbitrary point during the execution of the algorithm.
  - **♦** Byzantine failures
  - ◆ A traitor can send arbitrary messages, not just the messages required by the algorithm.

- The values of planType are A for attack and R for retreat.
- Each general chooses a plan and sends it to the other generals.
- The final plan is the majority vote among all plans (both the general's own plan and the plans received from the others).

### Messages Sent in a One-Round Algorithm



- Suppose Zoe and Leo are loyal, while Basil is a traitor.
- Basil and Zoe choose to attack, while Leo chooses to retreat.
- Basil crashes after sending a message to Leo and before sending a similar message to Zoe.

# Data Structures in a One-Round Algorithm

| Leo      |      |  |  |
|----------|------|--|--|
| general  | plan |  |  |
| Basil    | Α    |  |  |
| Leo      | R    |  |  |
| Zoe      | А    |  |  |
| majority | А    |  |  |

| Zoe      |       |  |  |
|----------|-------|--|--|
| general  | plans |  |  |
| Basil    | _     |  |  |
| Leo      | R     |  |  |
| Zoe      | А     |  |  |
| majority | R     |  |  |

- $\blacksquare$  By a majority vote of 2–1, Leo chooses A.
- Zoe chooses R, because we assume that ties are broken in favour of R.
- If a general crashes, the remaining loyal generals can fail to come to a consensus.

### The Byzantine Generals Algorithm

- The one-round algorithm does not use the fact that certain generals are loyal.
- An individual node cannot know the identities of the traitors directly but must ensure that the plan of the traitors cannot prevent the loyal generals from reaching consensus.
- The Byzantine Generals algorithm achieves this by using extra rounds of sending messages:
  - In the first round, each general sends its own plan.
  - ◆ In subsequent rounds, each general sends what it received from other generals about their plans.
- By definition, loyal generals always relay exactly what they received.
- If there are enough loyal generals, they can overcome the attempts of the traitors to prevent them from reaching a consensus.

```
Algorithm 12.2: Consensus - Byzantine Generals algorithm
                  planType finalPlan
                  planType array[generals] plan, majorityPlan
                  planType array[generals, generals] reportedPlan
p1: plan[mylD] \leftarrow chooseAttackOrRetreat
p2: for all other generals G
                                                 // First round
   send(G, myID, plan[myID])
p3:
p4: for all other generals G
    receive(G, plan[G])
   for all other generals G
                                                 // Second round
p7: for all other generals G' except G
         send(G', myID, G, plan[G])
p9: for all other generals G
p10: for all other generals G' except G
         receive(G, G', reportedPlan[G, G'])
p11:
p12: for all other generals G
                                                // First vote
     majorityPlan[G] \leftarrow majority(plan[G] \cup reportedPlan[*, G])
p14: majorityPlan[myID] \leftarrow plan[myID] // Second vote
p15: finalPlan \leftarrow majority(majorityPlan)
```

# Crash Failure - First Scenario (Leo)

| Leo      |      |        |       |          |  |  |
|----------|------|--------|-------|----------|--|--|
| general  | plan | report | ed by | majority |  |  |
|          |      | Basil  | Zoe   |          |  |  |
| Basil    | А    | _      |       | А        |  |  |
| Leo      | R    |        |       | R        |  |  |
| Zoe      | A    | _      |       | А        |  |  |
| majority |      |        |       | А        |  |  |

- Suppose Zoe and Leo are loyal, while Basil is a traitor.
- Basil and Zoe choose to attack, while Leo chooses to retreat.
- Basil sends a message to Leo before crashing.

# Crash Failure - First Scenario (Zoe)

| Zoe      |      |        |       |          |  |  |
|----------|------|--------|-------|----------|--|--|
| general  | plan | report | ed by | majority |  |  |
|          |      | Basil  | Leo   |          |  |  |
| Basil    | _    | Α      |       | А        |  |  |
| Leo      | R    | _      |       | R        |  |  |
| Zoe      | А    |        |       | А        |  |  |
| majority |      |        |       | А        |  |  |

- Basil crashes before sending a message to Zoe.
- Leo sends the plan to retreat to Zoe in the first round.
- Leo relays Basil's plan to Zoe in the second round.

# **Crash Failure - Second Scenario (Leo)**

| Leo      |      |        |       |          |  |  |
|----------|------|--------|-------|----------|--|--|
| general  | plan | report | ed by | majority |  |  |
|          |      | Basil  | Zoe   |          |  |  |
| Basil    | А    | А      |       | А        |  |  |
| Leo      | R    |        |       | R        |  |  |
| Zoe      | Α    | А      |       | А        |  |  |
| majority |      |        |       | А        |  |  |

- Both Basil and Zoe report their plans to Leo in the first round.
- Both Basil and Zoe relay the other general's plan to Leo in the second round.

# Crash Failure - Second Scenario (Zoe)

| Zoe      |      |        |       |          |  |  |  |
|----------|------|--------|-------|----------|--|--|--|
| general  | plan | report | ed by | majority |  |  |  |
|          |      | Basil  | Leo   |          |  |  |  |
| Basil    | А    | А      |       | А        |  |  |  |
| Leo      | R    | _      |       | R        |  |  |  |
| Zoe      | А    |        |       | А        |  |  |  |
| majority |      |        |       | А        |  |  |  |

- Leo sends the plan to retreat to Zoe in the first round.
- Leo relays Basil's plan to Zoe in the second round.
- Basil sends the plan to attack to Zoe in the first round but crashes before relaying Leo's plan.
- In both scenarios, the loyal generals have consistent data structures and come to the same decision about the final plan!

### **Byzantine Failure with Three Generals**



- Suppose Zoe and Leo are loyal, while Basil is a traitor.
- A traitor is allowed to send an attack or retreat message, regardless of its internal state.
- Basil sends an attack message to Leo but a retreat message to Zoe.

#### Data Stuctures for Leo and Zoe After First Round

| Leo      |       |  |  |
|----------|-------|--|--|
| general  | plans |  |  |
| Basil    | А     |  |  |
| Leo      | R     |  |  |
| Zoe      | А     |  |  |
| majority | А     |  |  |

| Zoe      |       |  |  |  |
|----------|-------|--|--|--|
| general  | plans |  |  |  |
| Basil    | R     |  |  |  |
| Leo      | R     |  |  |  |
| Zoe      | А     |  |  |  |
| majority | R     |  |  |  |

- After the first round, Leo and Zoe reach different decisions.
- No surprise, because the one-round algorithm was not correct even in the presence of crash failures.

#### Data Stuctures for Leo After Second Round

| Leo      |       |        |       |          |  |  |
|----------|-------|--------|-------|----------|--|--|
| general  | plans | report | ed by | majority |  |  |
|          |       | Basil  | Zoe   |          |  |  |
| Basil    | А     | А      |       | А        |  |  |
| Leo      | R     |        |       | R        |  |  |
| Zoe      | А     | R      |       | R        |  |  |
| majority |       |        |       | R        |  |  |

- In the second round, Basil erroneously reports to Leo that Zoe's plan is to retreat.
- This causes Leo to make an erroneous decision about Zoe's plan (tie-break).

#### Data Stuctures for Zoe After Second Round

| Zoe      |       |           |       |          |  |  |  |
|----------|-------|-----------|-------|----------|--|--|--|
| general  | plans | report    | ed by | majority |  |  |  |
|          |       | Basil Leo |       |          |  |  |  |
| Basil    | А     | А         |       | А        |  |  |  |
| Leo      | R     | R         |       | R        |  |  |  |
| Zoe      | А     |           |       | А        |  |  |  |
| majority |       |           |       | А        |  |  |  |

- In the second round, Basil correctly reports to Zoe that Leo's plan is to retreat.
- The two loyal generals reach inconsistent final decisions.
- This means that the algorithm is incorrect for three generals of whom one is a traitor.

# Four Generals: Data Structure of Basil (1)

| Basil    |      |      |       |     |          |  |
|----------|------|------|-------|-----|----------|--|
| general  | plan | rep  | orted | by  | majority |  |
|          |      | John | Leo   | Zoe |          |  |
| Basil    | А    |      |       |     | А        |  |
| John     | Α    |      | Α     | ?   | А        |  |
| Leo      | R    | R    |       | ?   | R        |  |
| Zoe      | ?    | ?    | ?     |     | ?        |  |
| majority |      |      |       |     | ?        |  |

- Suppose Basil, John, and Leo are loyal, while Zoe is a traitor.
- Basil and John choose to attack, while Leo chooses to retreat.
- Basil receives the correct plan of John, both directly from John as well as indirectly from Leo.
- The report from Zoe cannot change the majority vote for John.
- The same holds for Leo.

# Four Generals: Data Structure of Basil (2)

| Basil   |       |      |       |     |          |
|---------|-------|------|-------|-----|----------|
| general | plans | rep  | orted | by  | majority |
|         |       | John | Leo   | Zoe |          |
| Basil   | А     |      |       |     | А        |
| John    | А     |      | Α     | ?   | А        |
| Leo     | R     | R    |       | ?   | R        |
| Zoe     | R     | A R  |       |     | R        |
|         |       |      |       |     | R        |

- Suppose Zoe sends first-round retreat messages to Basil and Leo, but an attack message to John.
- These are relayed correctly in the second round by the loyal generals.
- Regardless of what messages Zoe sends, the loyal generals come to the same decision about Zoe's plan.

# Complexity of the Byzantine Generals Algorithm

| traitors | generals | messages |
|----------|----------|----------|
| 1        | 4        | 36       |
| 2        | 7        | 392      |
| 3        | 10       | 1790     |
| 4        | 13       | 5408     |

- The Byzantine Generals algorithm can be generalised to any number of generals.
- For every additional traitor, an additional round of messages must be sent.
- The total number of generals must be at least 3t + 1, where t is the number of traitors.
- The algorithm quickly becomes impractical as the number of traitors increases!

```
Algorithm 12.3: Consensus - flooding algorithm

\begin{array}{c} \text{planType finalPlan} \\ \text{set of planType plan} \leftarrow \{\text{chooseAttackOrRetreat}\} \\ \text{set of planType receivedPlan} \\ \end{array}
\begin{array}{c} \text{p1: do } t+1 \text{ times} \\ \text{p2: for all } other \text{ generals G} \\ \text{p3: send(G, plan)} \\ \text{p4: for all } other \text{ generals G} \\ \text{p5: receive(G, receivedPlan)} \\ \text{p6: plan} \leftarrow \text{plan} \cup \text{ receivedPlan} \\ \end{array}
```

■ Very simple algorithm for consensus in the presence of crash failures.

finalPlan  $\leftarrow$  majority(plan)

- Each general repeatedly sends the set of plans that he has received.
- It is sufficient that a single such message from a loyal general reaches every other loyal general.
- If there are t traitors and t+1 rounds of sending and receiving messages, then one such message must have been sent and received without crashing.

  Slides © 2006 by M. Ben-Ari and 2019 by Hans W. Guesgen 12.20

# The King Algorithm

■ The Byzantine Generals algorithm requires a large number of messages, while the King algorithm gets away with fewer messages:

| Byzantine Generals |          |          |  |  |  |  |  |  |
|--------------------|----------|----------|--|--|--|--|--|--|
| traitors           | generals | messages |  |  |  |  |  |  |
| 1                  | 4        | 36       |  |  |  |  |  |  |
| 2                  | 7        | 392      |  |  |  |  |  |  |
| 3                  | 10       | 1790     |  |  |  |  |  |  |
| 4                  | 13       | 5408     |  |  |  |  |  |  |

|          | King     |          |
|----------|----------|----------|
| traitors | generals | messages |
| 1        | 5        | 48       |
| 2        | 9        | 240      |
| 3        | 13       | 672      |
| 4        | 17       | 1440     |

- The downside is that an extra general is required per traitor, which means that the total number of generals must be at least 4t + 1, where t is the number of traitors.
- The idea of the algorithm is to give one general in each round the special status of king.
- The king sends his plan to the other generals, who consider replacing their plans with the king's plan.

```
Algorithm 12.4: Consensus - King algorithm - 5 generals
              planType finalPlan, myMajority, kingPlan
              planType array[generals] plan
              integer votesMajority
p1: plan[mylD] \leftarrow chooseAttackOrRetreat
    do two times
                                           // First and third rounds
       for all other generals G
p3:
          send(G, myID, plan[myID])
p4:
     for all other generals G
p5:
         receive(G, plan[G])
p6:
    \mathsf{myMajority} \leftarrow \mathsf{majority(plan)}
p7:
       votesMajority ← number of votes for myMajority
:8q
```

# Algorithm 12.4: Consensus - King algorithm - 5 generals (continued)

```
if my turn to be king
                                           // Second and fourth rounds
p9:
          for all other generals G
p10:
             send(G, myID, myMajority)
p11:
          plan[myID] \leftarrow myMajority
p12:
       else
          receive(kingID, kingPlan)
p13:
      if votesMajority > 3
p14:
             plan[myID] \leftarrow myMajority
p15:
          else
             plan[myID] \leftarrow kingPlan
p16:
p17: finalPlan \leftarrow plan[myID]
                                              Final decision
```

# Scenario for King Algorithm: First King Loyal General Zoe (1)

| Basil      |           |          |           |          |                   |                    |                      |  |
|------------|-----------|----------|-----------|----------|-------------------|--------------------|----------------------|--|
| Basil      | John      | Leo      | Mike      | Zoe      | myMajority        | votesMajority      | kingPlan             |  |
| А          | А         | R        | R         | R        | R                 | 3                  |                      |  |
|            |           |          |           |          | John              |                    |                      |  |
| Basil      | John      | Leo      | Mike      | Zoe      | myMajority        | votesMajority      | kingPlan             |  |
| Α          | А         | R        | А         | R        | А                 | 3                  |                      |  |
| Leo        |           |          |           |          |                   |                    |                      |  |
|            |           |          |           |          | Leo               |                    |                      |  |
| Basil      | John      | Leo      | Mike      | Zoe      | Leo<br>myMajority | votesMajority      | kingPlan             |  |
| Basil<br>A | John<br>A | Leo<br>R | Mike<br>A | Zoe<br>R |                   | votesMajority<br>3 | kingPlan             |  |
|            |           |          | _         |          | myMajority        | <b>3</b> 3         | kingPlan             |  |
|            |           |          | _         |          | myMajority<br>A   | <b>3</b> 3         | kingPlan<br>kingPlan |  |

# Scenario for King Algorithm: First King Loyal General Zoe (2)

| Basil          |      |          |              |     |                |                             |               |  |
|----------------|------|----------|--------------|-----|----------------|-----------------------------|---------------|--|
| Basil          | John | Leo      | Mike         | Zoe | myMajority     | votesMajority               | kingPlan      |  |
| R              |      |          |              |     |                |                             | R             |  |
|                |      |          |              |     | John           |                             |               |  |
| Basil          | John | Leo      | Mike         | Zoe | myMajority     | votesMajority               | kingPlan      |  |
|                | R    |          |              |     |                |                             | R             |  |
|                |      |          |              |     | Leo            |                             |               |  |
|                |      |          |              |     |                |                             |               |  |
| Basil          | John | Leo      | Mike         | Zoe | myMajority     | votes Majority              | kingPlan      |  |
| Basil          | John | Leo<br>R | Mike         | Zoe | myMajority     | votesMajority               | kingPlan<br>R |  |
| Basil          | John |          | Mike         | Zoe | myMajority Zoe | votesMajority               |               |  |
| Basil<br>Basil | John |          | Mike<br>Mike | Zoe |                | votesMajority votesMajority |               |  |

# Scenario for King Algorithm: First King Loyal General Zoe (3)

| Basil      |           |          |           |          |                 |                      |                      |  |
|------------|-----------|----------|-----------|----------|-----------------|----------------------|----------------------|--|
| Basil      | John      | Leo      | Mike      | Zoe      | myMajority      | votesMajority        | kingPlan             |  |
| R          | R         | R        | ?         | R        | R               | 4–5                  |                      |  |
|            |           |          |           |          | John            |                      |                      |  |
| Basil      | John      | Leo      | Mike      | Zoe      | myMajority      | votesMajority        | kingPlan             |  |
| R          | R         | R        | ?         | R        | R               | 4–5                  |                      |  |
| Leo        |           |          |           |          |                 |                      |                      |  |
|            |           |          |           |          | Leo             |                      |                      |  |
| Basil      | John      | Leo      | Mike      | Zoe      | myMajority      | votesMajority        | kingPlan             |  |
| Basil<br>R | John<br>R | Leo<br>R | Mike<br>? | Zoe<br>R | ·               | votesMajority<br>4–5 | kingPlan             |  |
|            |           |          |           |          | myMajority      | <b>3</b> 3           | kingPlan             |  |
|            |           |          |           |          | myMajority<br>R | <b>3</b> 3           | kingPlan<br>kingPlan |  |

# Scenario for King Algorithm: First King Traitor Mike (1)

| Basil          |              |          |              |     |                |                             |               |  |  |
|----------------|--------------|----------|--------------|-----|----------------|-----------------------------|---------------|--|--|
| Basil          | John         | Leo      | Mike         | Zoe | myMajority     | votesMajority               | kingPlan      |  |  |
| R              |              |          |              |     |                |                             | R             |  |  |
|                |              |          |              |     | John           |                             |               |  |  |
| Basil          | John         | Leo      | Mike         | Zoe | myMajority     | votesMajority               | kingPlan      |  |  |
|                | А            |          |              |     |                |                             | А             |  |  |
|                | Leo          |          |              |     |                |                             |               |  |  |
|                |              |          |              |     |                |                             |               |  |  |
| Basil          | John         | Leo      | Mike         | Zoe | myMajority     | votesMajority               | kingPlan      |  |  |
| Basil          | John         | Leo<br>A | Mike         | Zoe | myMajority     | votesMajority               | kingPlan<br>A |  |  |
| Basil          | John         |          | Mike         | Zoe | myMajority Zoe | votesMajority               |               |  |  |
| Basil<br>Basil | John<br>John |          | Mike<br>Mike | Zoe |                | votesMajority votesMajority |               |  |  |

# Scenario for King Algorithm: First King Traitor Mike (2)

| Basil |      |     |      |     |            |               |          |  |
|-------|------|-----|------|-----|------------|---------------|----------|--|
| Basil | John | Leo | Mike | Zoe | myMajority | votesMajority | kingPlan |  |
| R     | А    | Α   | ?    | R   | ?          | 3             |          |  |
|       |      |     |      |     | John       |               |          |  |
| Basil | John | Leo | Mike | Zoe | myMajority | votesMajority | kingPlan |  |
| R     | А    | Α   | ?    | R   | ?          | 3             |          |  |
|       |      |     |      |     | Leo        |               |          |  |
| Basil | John | Leo | Mike | Zoe | myMajority | votesMajority | kingPlan |  |
| R     | А    | Α   | ?    | R   | ?          | 3             |          |  |
|       |      |     |      |     | Zoe        |               |          |  |
| Basil | John | Leo | Mike | Zoe | myMajority | votesMajority | kingPlan |  |
| R     | Α    | Α   | ?    | R   | ?          | 3             |          |  |

# Scenario for King Algorithm: First King Traitor Mike (3)

| Basil |      |          |      |     |                   |               |               |  |
|-------|------|----------|------|-----|-------------------|---------------|---------------|--|
| Basil | John | Leo      | Mike | Zoe | myMajority        | votesMajority | kingPlan      |  |
| А     |      |          |      |     |                   |               | А             |  |
|       |      |          |      |     | John              |               |               |  |
| Basil | John | Leo      | Mike | Zoe | myMajority        | votesMajority | kingPlan      |  |
|       | А    |          |      |     |                   |               | А             |  |
| Leo   |      |          |      |     |                   |               |               |  |
|       |      |          |      |     | Leo               |               |               |  |
| Basil | John | Leo      | Mike | Zoe | Leo<br>myMajority | votesMajority | kingPlan      |  |
| Basil | John | Leo<br>A | Mike | Zoe |                   | votesMajority | kingPlan<br>A |  |
| Basil | John | _        | Mike | Zoe |                   | votesMajority |               |  |
| Basil | John | _        | Mike | Zoe | myMajority        | votesMajority |               |  |