Cross Validation & Ensembling

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

Outline

- Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

Outline

- Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

Cross Validation

- So far, we use the hold out method for:
 - Hyperparameter tuning: validation set
 - Performance reporting: testing set
- What if we get an "unfortunate" split?

Cross Validation

- So far, we use the hold out method for:
 - Hyperparameter tuning: validation set
 - Performance reporting: testing set
- What if we get an "unfortunate" split?
- K-fold cross validation:
 - ① Split the data set X evenly into K subsets $X^{(i)}$ (called **folds**)
 - ② For $i = 1, \dots, K$, train $f_{-N(i)}$ using all data but the *i*-th fold $(\mathbb{X} \setminus \mathbb{X}^{(i)})$
 - 3 Report the *cross-validation error* C_{CV} by averaging all testing errors $C[f_{-N^{(i)}}]$'s on $\mathbb{X}^{(i)}$

 Cross validation (CV) can be applied to both hyperparameter tuning and performance reporting

• E.g. 5×2 nested CV

 Cross validation (CV) can be applied to both hyperparameter tuning and performance reporting

- E.g., 5×2 nested CV
- ① Inner (2 folds): select hyperparameters giving lowest $C_{
 m CV}$
 - Can be wrapped by grid search

 Cross validation (CV) can be applied to both hyperparameter tuning and performance reporting

- E.g., 5×2 nested CV
- $\begin{array}{ccc} \textbf{1} & \text{Inner (2 folds): select} \\ & \text{hyperparameters giving lowest} \\ & C_{\text{CV}} \\ \end{array}$
 - Can be wrapped by grid search
- Train final model using both training and validation sets with the selected hyperparameters

 Cross validation (CV) can be applied to both hyperparameter tuning and performance reporting

- E.g., 5×2 nested CV
- $\begin{array}{ccc} \textbf{1} & \text{Inner (2 folds): select} \\ & \text{hyperparameters giving lowest} \\ & C_{\text{CV}} \\ \end{array}$
 - Can be wrapped by grid search
- 2 Train final model using both training and validation sets with the selected hyperparameters
- 3 Outer (5 folds): report C_{CV} as test error

Outline

- Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

 \bullet The cross-validation error C_{CV} is an average of $C[f_{-N^{(i)}}]$'s

- ullet The cross-validation error C_{CV} is an average of $C[f_{-N^{(i)}}]$'s
- \bullet Regard each $C[f_{-N^{(i)}}]$ as an estimator of the expected generalization error $\mathbf{E}_{\mathbb{X}}(C[f_N])$

- ullet The cross-validation error $C_{ extsf{CV}}$ is an average of $C[f_{-N^{(i)}}]$'s
- \bullet Regard each $C[f_{-N^{(i)}}]$ as an estimator of the expected generalization error $\mathrm{E}_{\mathbb{X}}(C[f_N])$
- \bullet C_{CV} is an estimator too, and we have

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

$$\mathbf{E}_{\mathbb{X}}\left[(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta})^{2}\right]=\mathbf{E}\left[(\hat{\boldsymbol{\theta}}_{n}-\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]+\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]-\boldsymbol{\theta})^{2}\right]$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

$$\begin{split} \mathbf{E}_{\mathbb{X}}\left[(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta})^{2}\right] &= \mathbf{E}\left[(\hat{\boldsymbol{\theta}}_{n}-\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]+\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]-\boldsymbol{\theta})^{2}\right] \\ &= \mathbf{E}\left[(\hat{\boldsymbol{\theta}}_{n}-\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2}+(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]-\boldsymbol{\theta})^{2}+2(\hat{\boldsymbol{\theta}}_{n}-\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}]-\boldsymbol{\theta})\right] \end{split}$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

$$\begin{split} \mathbf{E}_{\mathbb{X}}\left[(\hat{\theta}_{n}-\theta)^{2}\right] &= \mathbf{E}\left[(\hat{\theta}_{n}-\mathbf{E}[\hat{\theta}_{n}]+\mathbf{E}[\hat{\theta}_{n}]-\theta)^{2}\right] \\ &= \mathbf{E}\left[(\hat{\theta}_{n}-\mathbf{E}[\hat{\theta}_{n}])^{2}+(\mathbf{E}[\hat{\theta}_{n}]-\theta)^{2}+2(\hat{\theta}_{n}-\mathbf{E}[\hat{\theta}_{n}])(\mathbf{E}[\hat{\theta}_{n}]-\theta)\right] \\ &= \mathbf{E}\left[(\hat{\theta}_{n}-\mathbf{E}[\hat{\theta}_{n}])^{2}\right]+\mathbf{E}\left[(\mathbf{E}[\hat{\theta}_{n}]-\theta)^{2}\right]+2\mathbf{E}\left(\hat{\theta}_{n}-\mathbf{E}[\hat{\theta}_{n}]\right)(\mathbf{E}[\hat{\theta}_{n}]-\theta) \end{split}$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

$$\begin{split} \mathbf{E}_{\mathbb{X}} \left[(\hat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta})^{2} \right] &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] + \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} \right] \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} + (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} + 2(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \right] \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} \right] + \mathbf{E} \left[(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} \right] + 2\mathbf{E} \left(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] \right) (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} \right] + \left(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta} \right)^{2} + 2 \cdot \mathbf{0} \cdot (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \end{split}$$

- Let $\hat{\theta}_n$ be an estimator of quantity θ related to random variable \mathbf{x} mapped from n i.i.d samples of \mathbf{x}
- Mean square error of $\hat{\theta}_n$:

$$MSE(\hat{\theta}_n) = E_{\mathbf{X}} \left[(\hat{\theta}_n - \theta)^2 \right]$$

• Can be decomposed into the bias and variance:

$$\begin{split} \mathbf{E}_{\mathbb{X}} \left[(\hat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta})^{2} \right] &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] + \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} \right] \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} + (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} + 2(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \right] \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} \right] + \mathbf{E} \left[(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta})^{2} \right] + 2\mathbf{E} \left(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] \right) (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \\ &= \mathbf{E} \left[(\hat{\boldsymbol{\theta}}_{n} - \mathbf{E}[\hat{\boldsymbol{\theta}}_{n}])^{2} \right] + \left(\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta} \right)^{2} + 2 \cdot \mathbf{0} \cdot (\mathbf{E}[\hat{\boldsymbol{\theta}}_{n}] - \boldsymbol{\theta}) \\ &= \mathbf{Var}_{\mathbb{X}} (\hat{\boldsymbol{\theta}}_{n}) + \mathbf{bias}(\hat{\boldsymbol{\theta}}_{n})^{2} \end{split}$$

MSE of an unbiased estimator is its variance

我們喜歡unbiased的θ 因為它的MSE就是variance

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

• Consider polynomial regression where $P(y|x) = \sin(x) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

- Consider polynomial regression where $P(y|x) = \sin(x) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ullet Let $C[\cdot]$ be the MSE of predictions (made by a function) to true labels

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

- Consider polynomial regression where $P(y|x) = \sin(x) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ullet Let $C[\cdot]$ be the MSE of predictions (made by a function) to true labels
- $E_{\mathbb{X}}(C[f_N])$: read line

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

- Consider polynomial regression where $P(y|x) = \sin(x) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ullet Let $C[\cdot]$ be the MSE of predictions (made by a function) to true labels
- $E_{\mathbb{X}}(C[f_N])$: read line
- ullet bias (C_{CV}) : gaps between the red and other solid lines $ig(E_{\mathbb{X}}[C_{\mathsf{CV}}] ig)$

$$MSE(C_{CV}) = E_{\mathbb{X}}[(C_{CV} - E_{\mathbb{X}}(C[f_N]))^2] = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$

- Consider polynomial regression where $P(y|x) = \sin(x) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ullet Let $C[\cdot]$ be the MSE of predictions (made by a function) to true labels
- $E_{\mathbb{X}}(C[f_N])$: read line
- bias (C_{CV}) : gaps between the red and other solid lines $(E_{\mathbb{X}}[C_{CV}])$
- $Var_{\mathbb{X}}(C_{\mathsf{CV}})$: shaded areas

fold 較少 bias 較大 但 var會較小

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

bias
$$(C_{CV}) = E_{\mathbb{X}}(C_{CV}) - E_{\mathbb{X}}(C[f_N]) = E(\sum_{i} \frac{1}{K}C[f_{-N^{(i)}}]) - E(C[f_N])$$

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

bias
$$(C_{CV}) = E_{\mathbb{X}}(C_{CV}) - E_{\mathbb{X}}(C[f_N]) = E(\sum_i \frac{1}{K}C[f_{-N^{(i)}}]) - E(C[f_N])$$

= $\frac{1}{K}\sum_i E(C[f_{-N^{(i)}}]) - E(C[f_N])$

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

bias
$$(C_{CV}) = E_{\mathbb{X}}(C_{CV}) - E_{\mathbb{X}}(C[f_N]) = E\left(\sum_i \frac{1}{K}C[f_{-N^{(i)}}]\right) - E(C[f_N])$$

= $\frac{1}{K}\sum_i E\left(C[f_{-N^{(i)}}]\right) - E(C[f_N])$
= $E\left(C[f_{-N^{(s)}}]\right) - E(C[f_N]), \forall s$

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

bias
$$(C_{CV}) = E_{\mathbb{X}}(C_{CV}) - E_{\mathbb{X}}(C[f_N]) = E\left(\sum_i \frac{1}{K}C[f_{-N^{(i)}}]\right) - E(C[f_N])$$

 $= \frac{1}{K}\sum_i E\left(C[f_{-N^{(i)}}]\right) - E(C[f_N])$
 $= E\left(C[f_{-N^{(s)}}]\right) - E(C[f_N]), \forall s$
 $= \text{bias}\left(C[f_{-N^{(s)}}]\right), \forall s$

• C_{CV} is an estimator of the expected generalization error $E_{\mathbb{X}}(C[f_N])$:

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

$$\begin{aligned} \text{bias} & (C_{\text{CV}}) = \mathbf{E}_{\mathbb{X}}(C_{\text{CV}}) - \mathbf{E}_{\mathbb{X}}(C[f_N]) = \mathbf{E}\left(\sum_i \frac{1}{K}C[f_{-N^{(i)}}]\right) - \mathbf{E}(C[f_N]) \\ &= \frac{1}{K}\sum_i \mathbf{E}\left(C[f_{-N^{(i)}}]\right) - \mathbf{E}(C[f_N]) \\ &= \mathbf{E}\left(C[f_{-N^{(s)}}]\right) - \mathbf{E}(C[f_N]), \forall s \\ &= \text{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \end{aligned}$$

$$\operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) = \operatorname{Var}\left(\sum_{i} \frac{1}{K} C[f_{-N^{(i)}}]\right) = \frac{1}{K^2} \operatorname{Var}\left(\sum_{i} C[f_{-N^{(i)}}]\right)$$

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

$$\begin{aligned} & \text{bias} \left(C_{\text{CV}} \right) = \mathbf{E}_{\mathbb{X}} \left(C_{\text{CV}} \right) - \mathbf{E}_{\mathbb{X}} (C[f_N]) = \mathbf{E} \left(\sum_{i} \frac{1}{K} C[f_{-N^{(i)}}] \right) - \mathbf{E} (C[f_N]) \\ &= \frac{1}{K} \sum_{i} \mathbf{E} \left(C[f_{-N^{(i)}}] \right) - \mathbf{E} (C[f_N]) \\ &= \mathbf{E} \left(C[f_{-N^{(s)}}] \right) - \mathbf{E} (C[f_N]), \forall s \\ &= \text{bias} \left(C[f_{-N^{(s)}}] \right), \forall s \end{aligned}$$

$$\begin{aligned} \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \operatorname{Var}\left(\sum_{i} \frac{1}{K} C[f_{-N^{(i)}}]\right) = \frac{1}{K^{2}} \operatorname{Var}\left(\sum_{i} C[f_{-N^{(i)}}]\right) \\ &= \frac{1}{K^{2}} \left(\sum_{i} \operatorname{Var}\left(C[f_{-N^{(i)}}]\right) + 2\sum_{i,j,j>i} \operatorname{Cov}_{\mathbb{X}}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right)\right) \end{aligned}$$

• C_{CV} is an estimator of the expected generalization error $E_{\mathbb{X}}(C[f_N])$:

$$MSE(C_{CV}) = Var_{\mathbb{X}}(C_{CV}) + bias(C_{CV})^2$$
, where

$$\begin{aligned} & \text{bias} \left(C_{\text{CV}} \right) = \mathbf{E}_{\mathbb{X}} \left(C_{\text{CV}} \right) - \mathbf{E}_{\mathbb{X}} (C[f_N]) = \mathbf{E} \left(\sum_{i} \frac{1}{K} C[f_{-N^{(i)}}] \right) - \mathbf{E} (C[f_N]) \\ &= \frac{1}{K} \sum_{i} \mathbf{E} \left(C[f_{-N^{(i)}}] \right) - \mathbf{E} (C[f_N]) \\ &= \mathbf{E} \left(C[f_{-N^{(s)}}] \right) - \mathbf{E} (C[f_N]), \forall s \\ &= \text{bias} \left(C[f_{-N^{(s)}}] \right), \forall s \end{aligned}$$

$$\begin{aligned} & \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) = \operatorname{Var}\left(\sum_{i} \frac{1}{K} C[f_{-N^{(i)}}]\right) = \frac{1}{K^{2}} \operatorname{Var}\left(\sum_{i} C[f_{-N^{(i)}}]\right) \\ &= \frac{1}{K^{2}} \left(\sum_{i} \operatorname{Var}\left(C[f_{-N^{(i)}}]\right) + 2\sum_{i,j,j>i} \operatorname{Cov}_{\mathbb{X}}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right)\right) \\ &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^{2}} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

$$\begin{split} \operatorname{MSE}(C_{\mathsf{CV}}) &= \operatorname{Var}_{\mathbb{X}}(C_{\mathsf{CV}}) + \operatorname{bias}(C_{\mathsf{CV}})^2, \text{ where} \\ \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \\ &\xrightarrow{\mathsf{trade off}} \end{split}$$

- We can reduce bias (C_{CV}) and $Var(C_{CV})$ by **learning theory**
 - Choosing the right model complexity avoiding both underfitting and overfitting
 - Collecting more training examples (N)

$$\begin{split} \text{MSE}(C_{\text{CV}}) &= \text{Var}_{\mathbb{X}}(C_{\text{CV}}) + \text{bias}(C_{\text{CV}})^2, \text{ where} \\ & \text{bias}\left(C_{\text{CV}}\right) = \frac{\text{bias}}{\text{bias}}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \text{Var}\left(C_{\text{CV}}\right) &= \frac{1}{K} \text{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \text{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{split}$$

- We can reduce bias (C_{CV}) and $Var(C_{CV})$ by *learning theory*
 - Choosing the right model complexity avoiding both underfitting and overfitting
 - Collecting more training examples (N)
- ullet Furthermore, we can reduce ${
 m Var}(C_{
 m CV})$ by ${\it making}\, f_{-N^{(i)}}$ ${\it and}\, f_{-N^{(j)}}$ ${\it uncorrelated}$

How Many Folds K? III

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

• With a large K, the C_{CV} tends to have:

How Many Folds K? III

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

- With a large K, the C_{CV} tends to have:
 - Low $\operatorname{bias}\left(C[f_{-N^{(s)}}]\right)$ and $\operatorname{Var}\left(C[f_{-N^{(s)}}]\right)$, as $f_{-N^{(s)}}$ is trained on more examples

How Many Folds *K*? III

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

- With a large K, the C_{CV} tends to have:
 - Low bias $(C[f_{-N(s)}])$ and $Var(C[f_{-N(s)}])$, as $f_{-N(s)}$ is trained on more examples
 - High $\operatorname{Cov}\left(C[f_{-N^{(i)}}],C[f_{-N^{(j)}}]\right)$, as training sets $\mathbb{X}\backslash\mathbb{X}^{(i)}$ and $\mathbb{X}\backslash\mathbb{X}^{(j)}$ are more similar thus $C[f_{-N^{(i)}}]$ and $C[f_{-N^{(j)}}]$ are more positively correlated

K 越大 data set會被切越細 每次都99% train 1%validation 那每一次拿來train的資料都會很相似 Cov(i i)會高

How Many Folds *K*? IV

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

• Conversely, with a small K, the cross-validation error tends to have a high bias $(C[f_{-N^{(s)}}])$ and $Var(C[f_{-N^{(s)}}])$ but low $Cov(C[f_{-N^{(i)}}], C[f_{-N^{(i)}}])$

How Many Folds *K*? IV

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left({\color{red}C[f_{-N^{(s)}}]}\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left({\color{blue}C_{\mathsf{CV}}}\right) &= \frac{1}{K} \operatorname{Var}\left({\color{blue}C[f_{-N^{(s)}}]}\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left({\color{blue}C[f_{-N^{(i)}}]}, {\color{blue}C[f_{-N^{(i)}}]}\right), \forall s \end{aligned}$$

- Conversely, with a small K, the cross-validation error tends to have a high bias $(C[f_{-N^{(s)}}])$ and $\mathrm{Var}\left(C[f_{-N^{(s)}}]\right)$ but low $\mathrm{Cov}\left(C[f_{-N^{(i)}}],C[f_{-N^{(i)}}]\right)$
- In practice, we usually set K = 5 or 10

Leave-One-Out CV

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^{2}} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

- For very small dataset:
 - MSE (C_{CV}) is dominated by bias $(C[f_{-N(s)}])$ and $Var(C[f_{-N(s)}])$
 - Not $\operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right)$

Leave-One-Out CV

$$\begin{aligned} \operatorname{bias}\left(C_{\mathsf{CV}}\right) &= \operatorname{bias}\left(C[f_{-N^{(s)}}]\right), \forall s \\ \operatorname{Var}_{\mathbb{X}}\left(C_{\mathsf{CV}}\right) &= \frac{1}{K} \operatorname{Var}\left(C[f_{-N^{(s)}}]\right) + \frac{2}{K^2} \sum_{i,j,j>i} \operatorname{Cov}\left(C[f_{-N^{(i)}}], C[f_{-N^{(j)}}]\right), \forall s \end{aligned}$$

- For very small dataset:
 - MSE (C_{CV}) is dominated by bias $(C[f_{-N(s)}])$ and $Var(C[f_{-N(s)}])$
 - Not Cov $(C[f_{-N(i)}], C[f_{-N(i)}])$
- We can choose K = N, which we call the *leave-one-out CV*

Outline

Cross Validation
• How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

• No free lunch theorem: there is no single ML algorithm that always outperforms the others in all domains/tasks

- No free lunch theorem: there is no single ML algorithm that always outperforms the others in all domains/tasks
- Can we combine multiple base-learners to improve
 - Applicability across different domains, and/or
 - Generalization performance in a specific task?

- No free lunch theorem: there is no single ML algorithm that always outperforms the others in all domains/tasks
- Can we combine multiple base-learners to improve
 - Applicability across different domains, and/or
 - Generalization performance in a specific task?
- These are the goals of ensemble learning

- No free lunch theorem: there is no single ML algorithm that always outperforms the others in all domains/tasks
- Can we combine multiple base-learners to improve
 - Applicability across different domains, and/or
 - Generalization performance in a specific task?
- These are the goals of ensemble learning
- How to "combine" multiple base-learners?

Outline

- 1 Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

Voting

• **Voting**: linear combining the predictions of base-learners for each x:

$$\tilde{y}_k = \sum_j w_j \hat{y}_k^{(j)}$$
 where $w_j \ge 0, \sum_j w_j = 1$.

• If all learners are given equal weight $w_j = 1/L$, we have the **plurality vote** (multi-class version of majority vote)

Voting Rule	Formular
Sum	$\tilde{y}_k = \frac{1}{L} \sum_{j=1}^L \hat{y}_k^{(j)}$
Weighted sum	$\tilde{y}_k = \sum_j w_j \hat{y}_k^{(j)}, w_j \ge 0, \sum_j w_j = 1$
Median	$ ilde{y}_k = median_j \hat{y}_k^{(j)}$
Minimum	$ ilde{y}_k = \min_j \hat{y}_k^{(j)}$
Maximum	$\tilde{y}_k = \max_j \hat{y}_k^{(j)}$
Product	$ ilde{y}_k = \prod_j \hat{y}_k^{(j)}$

Why Voting Works? I

Why Voting Works? I

- Assume that each $\hat{y}^{(j)}$ has the expected value $\mathrm{E}_{\mathbb{X}}\left(\hat{y}^{(j)}\,|\,\boldsymbol{x}\right)$ and variance $\mathrm{Var}_{\mathbb{X}}\left(\hat{y}^{(j)}\,|\,\boldsymbol{x}\right)$
- When $w_i = 1/L$, we have:

$$\mathbf{E}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) = \mathbf{E}\left(\sum_{j} \frac{1}{L} \hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) = \frac{1}{L} \sum_{j} \mathbf{E}\left(\hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) = \mathbf{E}\left(\hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right)$$

$$\operatorname{Var}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\,|\,\boldsymbol{x}\right) = \operatorname{Var}\left(\sum_{j} \frac{1}{L} \hat{\mathbf{y}}^{(j)} \,|\,\boldsymbol{x}\right) = \frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} \hat{\mathbf{y}}^{(j)} \,|\,\boldsymbol{x}\right)$$
$$= \frac{1}{L} \operatorname{Var}\left(\hat{\mathbf{y}}^{(j)} \,|\,\boldsymbol{x}\right) + \frac{2}{L^{2}} \sum_{j: i \neq j} \operatorname{Cov}\left(\hat{\mathbf{y}}^{(i)}, \hat{\mathbf{y}}^{(j)} \,|\,\boldsymbol{x}\right)$$

Why Voting Works? I

- Assume that each $\hat{y}^{(j)}$ has the expected value $\mathrm{E}_{\mathbb{X}}\left(\hat{y}^{(j)}\,|\,m{x}\right)$ and variance $\mathrm{Var}_{\mathbb{X}}\left(\hat{y}^{(j)}\,|\,m{x}\right)$
- When $w_i = 1/L$, we have:

$$\mathbf{E}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) = \mathbf{E}\left(\sum_{j} \frac{1}{L} \hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) = \frac{1}{L} \sum_{j} \mathbf{E}\left(\hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) = \mathbf{E}\left(\hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right)$$

$$\begin{aligned} \operatorname{Var}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) &= \operatorname{Var}\left(\sum_{j} \frac{1}{L} \hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) = \frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} \hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) \\ &= \frac{1}{L} \operatorname{Var}\left(\hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) + \frac{2}{L^{2}} \sum_{i,j,i < j} \operatorname{Cov}\left(\hat{\mathbf{y}}^{(i)}, \hat{\mathbf{y}}^{(j)} \left|\boldsymbol{x}\right.\right) \end{aligned}$$

• The expected value doesn't change, so the bias doesn't change

Why Voting Works? II

$$\operatorname{Var}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) = \frac{1}{L}\operatorname{Var}\left(\hat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right) + \frac{2}{L^{2}}\sum_{i:i,j< i}\operatorname{Cov}\left(\hat{\mathbf{y}}^{(i)},\hat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right)$$

Why Voting Works? II

$$\operatorname{Var}_{\mathbb{X}}\left(\tilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) = \frac{1}{L}\operatorname{Var}\left(\hat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right) + \frac{2}{L^{2}}\sum_{i:i\neq i}\operatorname{Cov}\left(\hat{\mathbf{y}}^{(i)},\hat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right)$$

• If $\hat{y}^{(i)}$ and $\hat{y}^{(j)}$ are uncorrelated, the variance can be reduced

Why Voting Works? II

$$\mathrm{Var}_{\mathbb{X}}\left(\widetilde{\mathbf{y}}\left|\boldsymbol{x}\right.\right) = \frac{1}{L}\mathrm{Var}\left(\widehat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right) + \frac{2}{L^{2}}\sum_{i,j,i < j}\mathrm{Cov}\left(\widehat{\mathbf{y}}^{(i)},\widehat{\mathbf{y}}^{(j)}\left|\boldsymbol{x}\right.\right)$$

- If $\hat{y}^{(i)}$ and $\hat{y}^{(j)}$ are uncorrelated, the variance can be reduced
- Unfortunately, $\hat{y}^{(j)}$'s may **not** be i.i.d. in practice
- If voters are positively correlated, variance increases

Outline

- 1 Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

- Bagging (short for bootstrap aggregating) is a voting method, but base-learners are made different deliberately
- How?

- Bagging (short for bootstrap aggregating) is a voting method, but base-learners are made different deliberately
- How? Why not train them using slightly different training sets?

- Bagging (short for bootstrap aggregating) is a voting method, but base-learners are made different deliberately
- How? Why not train them using slightly different training sets?
- ① Generate L slightly different samples from a given sample is done by **bootstrap**: given \mathbb{X} of size N, we draw N points randomly from \mathbb{X} with replacement to get $\mathbb{X}^{(j)}$
 - It is possible that some instances are drawn more than once and some are not at all

- Bagging (short for bootstrap aggregating) is a voting method, but base-learners are made different deliberately
- How? Why not train them using slightly different training sets?
- ① Generate L slightly different samples from a given sample is done by **bootstrap**: given \mathbb{X} of size N, we draw N points randomly from \mathbb{X} with replacement to get $\mathbb{X}^{(j)}$
 - It is possible that some instances are drawn more than once and some are not at all
- 2 Train a base-learner for each $X^{(j)}$

Outline

- 1 Cross Validation
 - How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

• In bagging, generating "uncorrelated" base-learners is left to chance and unstability of the learning method

- In bagging, generating "uncorrelated" base-learners is left to chance and unstability of the learning method
- In **boosting**, we generate **complementary** base-learners
- How?

- In bagging, generating "uncorrelated" base-learners is left to chance and unstability of the learning method
- In **boosting**, we generate **complementary** base-learners
- How? Why not train the next learner on the mistakes of the previous learners

- In bagging, generating "uncorrelated" base-learners is left to chance and unstability of the learning method
- In **boosting**, we generate **complementary** base-learners
- How? Why not train the next learner on the mistakes of the previous learners
- \bullet For simplicity, let's consider the binary classification here: $d^{(j)}(\pmb{x}) \in \{1,-1\}$
- The original boosting algorithm combines three weak learners to generate a strong learner
 - A week learner has error probability less than 1/2 (better than random guessing)
 - A strong learner has arbitrarily small error probability

- Training
- 1 Given a large training set, randomly divide it into three

- Training
- Given a large training set, randomly divide it into three
- ② Use $\mathbb{X}^{(1)}$ to train the first learner $d^{(1)}$ and feed $\mathbb{X}^{(2)}$ to $d^{(1)}$

- Training
- 1 Given a large training set, randomly divide it into three
- 2 Use $\mathbb{X}^{(1)}$ to train the first learner $d^{(1)}$ and feed $\mathbb{X}^{(2)}$ to $d^{(1)}$
- **3** Use all points misclassified by $d^{(1)}$ and $\mathbb{X}^{(2)}$ to train $d^{(2)}$. Then feed $\mathbb{X}^{(3)}$ to $d^{(1)}$ and $d^{(2)}$

- Training
- 1 Given a large training set, randomly divide it into three
- ② Use $\mathbb{X}^{(1)}$ to train the first learner $d^{(1)}$ and feed $\mathbb{X}^{(2)}$ to $d^{(1)}$
- **3** Use all points misclassified by $d^{(1)}$ and $\mathbb{X}^{(2)}$ to train $d^{(2)}$. Then feed $\mathbb{X}^{(3)}$ to $d^{(1)}$ and $d^{(2)}$
- **9** Use the points on which $d^{(1)}$ and $d^{(2)}$ disagree to train $d^{(3)}$

- Training
- 1 Given a large training set, randomly divide it into three
- 2 Use $\mathbb{X}^{(1)}$ to train the first learner $d^{(1)}$ and feed $\mathbb{X}^{(2)}$ to $d^{(1)}$
- **3** Use all points misclassified by $d^{(1)}$ and $\mathbb{X}^{(2)}$ to train $d^{(2)}$. Then feed $\mathbb{X}^{(3)}$ to $d^{(1)}$ and $d^{(2)}$
- **9** Use the points on which $d^{(1)}$ and $d^{(2)}$ disagree to train $d^{(3)}$
 - Testing
- ① Feed a point it to $d^{(1)}$ and $d^{(2)}$ first. If their outputs agree, use them as the final prediction

- Training
- 1 Given a large training set, randomly divide it into three
- ② Use $\mathbb{X}^{(1)}$ to train the first learner $d^{(1)}$ and feed $\mathbb{X}^{(2)}$ to $d^{(1)}$
- **3** Use all points misclassified by $d^{(1)}$ and $\mathbb{X}^{(2)}$ to train $d^{(2)}$. Then feed $\mathbb{X}^{(3)}$ to $d^{(1)}$ and $d^{(2)}$
- 4 Use the points on which $d^{(1)}$ and $d^{(2)}$ disagree to train $d^{(3)}$
 - Testing
- ① Feed a point it to $d^{(1)}$ and $d^{(2)}$ first. If their outputs agree, use them as the final prediction
- ② Otherwise the output of $d^{(3)}$ is taken

Example

• Assuming $\mathbb{X}^{(1)}$, $\mathbb{X}^{(2)}$, and $\mathbb{X}^{(3)}$ are the same:

Disadvantage: requires a large training set to afford the three-way split

AdaBoost

- AdaBoost: uses the same training set over and over again
- How to make some points "larger?"

AdaBoost

- AdaBoost: uses the same training set over and over again
- How to make some points "larger?"
- Modify the probabilities of drawing the instances as a function of error

AdaBoost

- AdaBoost: uses the same training set over and over again
- How to make some points "larger?"
- Modify the probabilities of drawing the instances as a function of error
- Notation:
- \bullet $\Pr^{(i,j)}$: probability that an example $(\pmb{x}^{(i)},y^{(i)})$ is drawn to train the jth base-learner $d^{(j)}$
- $\varepsilon^{(j)} = \sum_i \Pr^{(i,j)} 1(y^{(i)} \neq d^{(j)}(\boldsymbol{x}^{(i)}))$: error rate of $d^{(j)}$ on its training set

- Training
- ① Initialize $Pr^{(i,1)} = \frac{1}{N}$ for all i
- 2 Start from j = 1:

- Training
- ① Initialize $Pr^{(i,1)} = \frac{1}{N}$ for all i
- 2 Start from j = 1:
 - floor Randomly draw N examples from $\Bbb X$ with probabilities $\Pr^{(i,j)}$ and use them to train $d^{(j)}$
 - 2 Stop adding new base-learners if ${m arepsilon}^{(j)} \geq {1\over 2}$

- Training
- ① Initialize $Pr^{(i,1)} = \frac{1}{N}$ for all i
- 2 Start from j = 1:
 - f 0 Randomly draw N examples from $\Bbb X$ with probabilities $\Pr^{(i,j)}$ and use them to train $d^{(j)}$
 - 2 Stop adding new base-learners if $arepsilon^{(j)} \geq rac{1}{2}$
 - ① Define $\alpha_j = \frac{1}{2} \log \left(\frac{1 \varepsilon^{(j)}}{\varepsilon^{(j)}} \right) > 0$ and set $\Pr^{(i,j+1)} = \Pr^{(i,j)} \cdot \exp(-\alpha_i y^{(i)} d^{(j)}(x^{(i)}))$ for all i

預測對的話 exp(-a) = 1 / exp(a) 機率變小 預測錯的話 exp(a) 抽到的機率變大

- Training
- ① Initialize $Pr^{(i,1)} = \frac{1}{N}$ for all i
- 2 Start from j = 1:
 - f 0 Randomly draw N examples from $\Bbb X$ with probabilities $\Pr^{(i,j)}$ and use them to train $d^{(j)}$
 - 2 Stop adding new base-learners if $arepsilon^{(j)} \geq rac{1}{2}$

 - $oldsymbol{\Phi}$ Normalize $\Pr(i,j+1)$, orall i, by multiplying $\left(\sum_i \Pr(i,j+1)\right)^{-1}$

再normalize讓所有機率加起來還是1

- Training
- **1** Initialize $Pr^{(i,1)} = \frac{1}{N}$ for all i
- 2 Start from i = 1:
 - **1** Randomly draw N examples from \mathbb{X} with probabilities $\Pr^{(i,j)}$ and use them to train $d^{(j)}$
 - 2 Stop adding new base-learners if $\varepsilon^{(j)} \geq \frac{1}{2}$
 - ① Define $\alpha_j = \frac{1}{2} \log \left(\frac{1 \varepsilon^{(j)}}{\varepsilon^{(j)}} \right) > 0$ and set $\Pr^{(i,j+1)} = \Pr^{(i,j)} \cdot \exp(-\alpha_i y^{(i)} d^{(j)}(x^{(i)}))$ for all i
 - $lack ext{Normalize } ext{Pr}^{(i,j+1)}, \ orall i, \ ext{by multiplying } \left(\sum_i ext{Pr}^{(i,j+1)}
 ight)^{-1}$
 - Testing
- **①** Given \boldsymbol{x} , calculate $\hat{\boldsymbol{y}}^{(j)}$ for all j
- ② Make final prediction \tilde{y} by voting: $\tilde{y} = \sum_i \alpha_i d^{(j)}(x)$

Example

 \bullet $d^{(j+1)}$ complements $d^{(j)}$ and $d^{(j-1)}$ by focusing on predictions they disagree

Example

- $d^{(j+1)}$ complements $d^{(j)}$ and $d^{(j-1)}$ by focusing on predictions they disagree
- Voting weights $(\alpha_j = \frac{1}{2}\log\left(\frac{1-\varepsilon^{(j)}}{\varepsilon^{(j)}}\right))$ in predictions are proportional to the base-learner's accuracy

Outline

Cross Validation
• How Many Folds?

- 2 Ensemble Methods
 - Voting
 - Bagging
 - Boosting
 - Why AdaBoost Works?

• Why AdaBoost improves performance?

- Why AdaBoost improves performance?
- By increasing model complexity?

- Why AdaBoost improves performance?
- By increasing model complexity? Not exactly
 - Empirical study: AdaBoost *reduces overfitting* as *L* grows, even when there is no training error

C4.5 decision trees (Schapire et al., 1998).

- Why AdaBoost improves performance?
- By increasing model complexity? Not exactly
 - Empirical study: AdaBoost reduces overfitting as L grows, even when there is no training error
- AdaBoost *increases margin* [1, 2]

C4.5 decision trees (Schapire et al., 1998).

Margin as Confidence of Predictions

Recall in SVC, a larger margin improves generalizability

Margin as Confidence of Predictions

- Recall in SVC, a larger margin improves generalizability
- Due to higher confidence predictions over training examples

Margin as Confidence of Predictions

- Recall in SVC, a larger margin improves generalizability
- Due to higher confidence predictions over training examples

- We can define the margin for AdaBoost similarly
- In binary classification, define *margin* of a prediction of an example $(x^{(i)}, y^{(i)}) \in \mathbb{X}$ as:

$$margin(\mathbf{x}^{(i)}, y^{(i)}) = y^{(i)}f(\mathbf{x}^{(i)}) = \sum_{j: y^{(i)} = d^{(j)}(\mathbf{x}^{(i)})} \alpha_j - \sum_{j: y^{(i)} \neq d^{(j)}(\mathbf{x}^{(i)})} \alpha_j$$

Margin Distribution

• Margin distribution over θ :

$$\Pr_{\mathbb{X}}(y^{(i)}f(\boldsymbol{x}^{(i)}) \leq \boldsymbol{\theta}) \approx \frac{|(\boldsymbol{x}^{(i)}, y^{(i)}) : y^{(i)}f(\boldsymbol{x}^{(i)}) \leq \boldsymbol{\theta}|}{|\mathbb{X}|}$$

LEGEND: (small dash, large dash, solid) lines equal (5, 100, 1000) rounds of boosting

cumulative distribution

Margin Distribution

• Margin distribution over θ :

$$\Pr_{\mathbb{X}}(y^{(i)}f(\boldsymbol{x}^{(i)}) \leq \boldsymbol{\theta}) \approx \frac{|(\boldsymbol{x}^{(i)}, y^{(i)}) : y^{(i)}f(\boldsymbol{x}^{(i)}) \leq \boldsymbol{\theta}|}{|\mathbb{X}|}$$

LEGEND: (small dash, large dash, solid) lines equal (5, 100, 1000) rounds of boosting

- A complementary learner:
- Clarifies low confidence areas
- Increases margin of points in these areas

Reference I

- [1] Yoav Freund, Robert Schapire, and N Abe.
 - A short introduction to boosting.
 - Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.
- [2] Liwei Wang, Masashi Sugiyama, Cheng Yang, Zhi-Hua Zhou, and Jufu Feng.
 - On the margin explanation of boosting algorithms.
 - In COLT, pages 479-490. Citeseer, 2008.