Autor: Antoni Perużyński

Metody numeryczne w technice

(kierunek Matematyka)

Projekt 4

Metoda predyktor-korektor

Napisać procedurę realizującą algorytm metody predyktor-korektor (argumenty: f, x_0 , y_0 , b, n). Jako metodę startową wykorzystać metodę Rungego-Kutty rzędu trzeciego. Jako metodę predykcji wykorzystać trzy krokową metodę Adamsa-Bashfortha, a jako metodę korekcji trzy krokową metodę Adamsa-Moultona. W metodzie korekcji wykonać dwie iteracje metody iteracji prostej.

Korzystając z napisanej procedury wyznaczyć rozwiązanie przybliżone zagadnienia początkowego:

$$\begin{cases} y'(x) = 2\sin x - y(x), & x \in [0, 15], \\ y(0) = 2. \end{cases}$$

Obliczenia wykonać dla 20 i 100 kroków.

Na wspólnym rysunku wykreślić rozwiązanie dokładne oraz uzyskane rozwiązania przybliżone. Wykreślić także, na jednym rysunku, błędy uzyskanych rozwiązań przybliżonych. Wyznaczyć także błędy maksymalne oraz średnie dla obu siatek.

Rozwiązanie

```
In[27]:=
```

```
RungeKuttyThree[function_, X0_, Y0_, H_, number_] :=
    Module[{f = function, x0 = X0, y0 = Y0, h = H, n = number, xList, yList},
    xList = {x0};
    yList = {y0};

For[i = 1, i ≤ n, i++,
    AppendTo[xList, xList[[i]]+h];
    k1 = f[xList[[i]], yList[[i]]+0.5*h*k1];
    k2 = f[xList[[i]]+0.5*h, yList[[i]]+0.5*h*k1];
    k3 = f[xList[[i]+1], yList[[i]]-h*k1+2*h*k2];
    AppendTo[yList, yList[[i]]+1/6*h*(k1+4*k2+k3)];
];
    Return[Transpose[{xList, yList}]]
]
```

In[129]:=

```
PredyktorKorektor[function_, X0_, Y0_, B_, number_] :=
        Module \{f = function, x0 = X0, y0 = Y0, b = B, n = number\},
       h = (b - x0) / n;
       xList = Table[x0+i*h, {i, 0, n}];
       vectorBAB = \{23/12, -16/12, 5/12\};
       vectorBAM = \{9/24, 19/24, -5/24, 1/24\};
       k = 3;
       Points = RungeKuttyThree[f, x0, y0, h, k];
       ListF = Table[f[Points[i, 1]], Points[i, 2]], {i, 1, k+1}];
       For i = k+1, i \le n, i++,
       yn = Points[i, 2] + h * Sum[vectorBAB[j]] * ListF[i+1-j], {j, 1, 3, 1}];
       xn = Points[i, 1]+h;
       phi[z_] := Points[i, 2] +
             h*Sum[vectorBAM[j+1]*ListF[i+1-j], {j, 1, 3, 1}]+h*vectorBAM[1]*f[xn, z];
       (*Metoda iteracji prostej*)
       For j = 1, j \le 2, j++,
       yn = phi[yn];
       ];
       AppendTo[ListF, f[xn, yn]];
       AppendTo[Points, {xn, yn}];
       Return[Points]
In[36]:=
       f[x_{, y_{, i}} := 2 * Sin[x] - y;
       x0 = 0;
       y0 = 2;
       b = 15;
       PredyktorKorektor[f, x0, y0, b, n];
In[130]:=
       PK20 = PredyktorKorektor[f, x0, y0, b, 20];
       PK50 = PredyktorKorektor[f, x0, y0, b, 50];
       accResult = DSolve[y'[x] == 2 * Sin[x] - y[x], y[0] == 2\}, y[x], x];
```

```
In[133]:=
```

Out[136]=

In[137]:=

xw20 = Transpose[PK20][[1]]; yw20 = Transpose[PK20][[2]]; xw50 = Transpose[PK50][[1]];

yw50 = Transpose[PK50][[2]];

```
In[141]:=
        accResultPoints20 = Table \left[accResult \left[1, 1, 2\right] /. \left\{x \rightarrow xw20 \left[i\right]\right\}, \left\{i, 1, Length \left[xw20\right]\right\}\right];
        bladbezwzgledny20 = Abs[yw20 - accResultPoints20];
        bladwzgledny20 = 100 * bladbezwzgledny20 / Abs[accResultPoints20];
        b20 = ListPlot[Transpose[{xw20, bladbezwzgledny20}],
            PlotStyle → Red, Filling → Axis, PlotRange → Full;
        Show[b20]
Out[145]=
        0.04
        0.03
        0.02
        0.01
                                   6
                                                  10
In[146]:=
        accResultPoints50 = Table \left[accResult \left[1, 1, 2\right] /. \left\{x \rightarrow xw50 \left[i\right]\right\}, \left\{i, 1, Length \left[xw50\right]\right\}\right];
        bladbezwzgledny50 = Abs[yw50 - accResultPoints50];
        bladwzgledny50 = 100 * bladbezwzgledny50 / Abs[accResultPoints50];
        b50 = ListPlot[Transpose[{xw50, bladbezwzgledny50}],
            PlotStyle → Blue, Filling → Axis, PlotRange → Full;
        Show[b50]
Out[150]=
        0.0020
        0.0015
        0.0010
        0.0005
```

In[151]:=

Show[b20, b50]

Out[151]=

In[152]:=

Print["Błąd maksymalny dla 20 krotków wynosi: ", Max[bladbezwzgledny20],

" Średni błąd dla 20 kroków wynosi: ", Mean[bladbezwzgledny20]

Print["Błąd maksymalny dla 50 krotków wynosi: ", Max[bladbezwzgledny50],

" Średni błąd dla 50 kroków wynosi: ", Mean[bladbezwzgledny50]

Błąd maksymalny dla 20 krotków wynosi:

0.0458445 Średni błąd dla 20 kroków wynosi: 0.0150064

Błąd maksymalny dla 50 krotków wynosi:

0.00196139 Średni błąd dla 50 kroków wynosi: 0.000372303