## Live Subtitles: Assistant vocal en Java

Présenté par Hssaine Mohammed Amine

3A - IATD-SI

19 mai 2025

# Plan de la présentation

- Introduction et problématique
- Objectifs du projet
- Technologies et bibliothèques
- 4 Architecture et fonctionnement
- État d'avancement
- 6 Perspectives d'évolution
- Conclusion



## Introduction et problématique

- Contexte actuel : Omniprésence des assistants vocaux et des solutions de transcription
- Limites des solutions existantes :
  - Forte dépendance aux services cloud
  - Questions de confidentialité des données
  - Solutions souvent propriétaires et coûteuses
- **Problématique** : Comment proposer une solution de reconnaissance vocale accessible, performante et adaptée aux ordinateurs personnels ?

# Objectifs du projet

- Développer une application desktop en Java :
  - Proposant des sous-titres en temps réel
  - Avec une interface utilisateur intuitive
  - Fonctionnant sur des configurations matérielles standard
- Utiliser des technologies open source et multiplateformes
- Poser les bases d'un système évolutif et adaptable

## Moteur de reconnaissance vocale

#### Vosk API

- Moteur de reconnaissance vocale open source
- Utilise des modèles acoustiques pré-entraînés
- Support multilingue
- Traitement du signal optimisé pour Java

#### Avantages principaux :

- Flexibilité d'utilisation
- Intégration facilitée dans les projets Java
- Communauté de développement active
- Modèles adaptés à plusieurs cas d'usage

# Outils de traitement et développement

#### DL4J et ND4J

- Bibliothèques de calcul scientifique pour Java
- Optimisation des opérations matricielles
- Support pour l'intégration de deep learning

#### Maven

- Gestion structurée des dépendances
- Organisation du cycle de vie du projet
- Facilitation du déploiement

#### Interfaces utilisateur

- Swing : robuste et éprouvé
- JavaFX : moderne et flexible

# Architecture du système

## Composants principaux:

- Module de capture audio
  - Acquisition du signal via les APIs Java standards
  - Prétraitement du signal pour optimisation
- Module de reconnaissance
  - Intégration de Vosk pour l'analyse audio
  - Traitement par segments optimisés
- Module d'affichage
  - Interface graphique réactive
  - Affichage des sous-titres synchronisés

## Flux de fonctionnement

- Capture audio via le microphone du système
- Segmentation et prétraitement du signal
- 4 Analyse par le moteur de reconnaissance Vosk
- Optimisation avec les bibliothèques ND4J
- Affichage en temps réel dans l'interface graphique

#### Principes de conception :

- Architecture modulaire et découplée
- Traitement par flux pour optimiser les performances
- Gestion efficace des ressources système

## État d'avancement

## Fonctionnalités implémentées

- Système de capture audio
- Intégration du moteur Vosk
- Interface utilisateur de base
- Transcription en temps réel
- Support pour français et anglais

## Performance générale

- Latence acceptable pour utilisation en temps réel
- Bonne précision de reconnaissance en environnement contrôlé
- Consommation de ressources raisonnable
- Stabilité sur différentes configurations

#### Points forts actuels

Fiabilité de la reconnaissance vocale Adaptabilité à différents environnements sonores Facilité d'utilisation de l'interface



## Évolution vers une architecture web

## Migration vers une architecture Spring Boot

- Création d'une API REST dédiée
- Séparation backend/frontend
- Facilité de déploiement et évolutivité

#### Interface web moderne

- Développement frontend avec React ou Angular
- Expérience utilisateur améliorée
- Accessibilité multi-plateforme

#### Avantages attendus

- Flexibilité d'accès accrue
- Maintenance simplifiée
- Possibilité d'intégration à d'autres services

# Améliorations technologiques

## Intégration avancée avec DL4J

- Développement de modèles adaptés au contexte
- Amélioration continue de la précision
- Adaptation aux spécificités linguistiques

#### Architecture distribuée

- Traitement modulaire et scalable
- Options de synchronisation entre local et cloud
- Équilibre entre performances et protection des données

#### Enrichissements fonctionnels

- Support multilingue étendu
- Adaptation au vocabulaire spécifique
- Options d'export et partage des transcriptions

## Conclusion

#### Contribution du projet

- Solution de reconnaissance vocale accessible en Java
- Alternative aux services propriétaires existants
- Démonstration de la faisabilité technique

#### Défis relevés

- Optimisation des performances sur environnement Java
- Intégration d'outils de reconnaissance vocale avancés
- Conception d'une architecture évolutive

#### Impact potentiel

- Amélioration de l'accessibilité numérique
- Meilleure maîtrise des données utilisateurs
- Base pour des développements communautaires

# Questions?

Merci de votre attention!

Questions et discussions