Teorema de Hall

Enunciar y probar el Teorema de Hall

El **Teorema de Hall** nos dice que, dado un grafo bipartito $G=(X\cup Y,E)$ con partes X,Y, entonces

$$\forall S \subseteq X, |S| < |\Gamma(S)| \Rightarrow \exists \text{ matching completo en } X$$

La forma en lo que lo vamos a demostrar es probando la contra-recríproca:

$$ot \exists \text{ matching completo en } X \Rightarrow \exists S \subseteq X : |S| > |\Gamma(S)|$$

Para ello, supongamos que queremos ver el cómo se armó el matching usando EK. Por ello, representamos a G como el siguiente Network N:

- Se consideran los nodos $\{s,t\} \cup X \cup Y$
- Se consideran las aristas (todas con capacidad 1. Es decir, el flujo va a ser 0 o 1 indicando si los nodos del extremo no están matcheados o sí, respectivamente)
 - $ullet \overrightarrow{sx} orall x \in X$
 - $egin{array}{c}
 ightarrow \overrightarrow{yt} orall y \in Y \end{array}$
 - $ullet \overrightarrow{xy} orall x \in X, y \in Y, \overrightarrow{xy} \in E$

Dado esto, vamos a considerar la última corrida de EK (donde se arma el corte S) y vamos a definir:

- $S_X = S \cap X$
- ullet $S_Y = S \cap Y$
- Por lo que se cumple que $S = \{s\} \cup S_X \cup S_Y$

Dicho esto, también vamos a considerar el conjunto $S_0 = \text{nodos de X que}$, luego de EK, quedaron sin matchear

• Por suposición, ya que $\not\equiv$ matching completo en X, entonces $S_0 \neq \emptyset$

Analicemos cada uno de estos elementos:

- \bullet S_0
 - Como estos nodos quedaron sin matchear, implica entonces que no reciben ni envían flujo (dado que, sino, por cómo se representó el network, significaría que forman parte de un matcheo)

- Luego, los nodos de S_0 son aquellos $x \in X : in_f(x) = out_f(x) = 0$
- \bullet S_X
 - Como $x \in S_0 \Leftrightarrow in_f(x) = 0 \Leftrightarrow f(\overrightarrow{sx}) = 0$, entonces los nodos de S_0 son los primeros que EK agrega a la cola en su último paso. Luego, $S_0 \subseteq S_x \subseteq S$
 - Luego, los otros elementos de S_X fueron agregados por los que se encuentran en S_Y (ya que s ya agregó a S_0 y no hay aristas entre nodos de X)
 - Como los elementos de S_Y solo tienen aristas con t, la forma de agregar los nodos es mediante *backward*. Luego, esto significa que el nodo $y \in S_Y$ agrega a $x \in S_X$ si x no está ya en la cola y x, y son un matcheo (i.e., su flujo es 1)
 - Por ello, por definición de matching, cada $y \in S_Y$ puede agregar, a lo sumo, 1 nodo.
 - Pero vamos a ver que agrega exactamente 1
 - Supongamos que no pasa, i.e., tenemos $y \in S_Y$ que no puede agregar a $ning\acute{u}n$ nodo de S_X
 - Como S es un corte, $t \not\in S$, por lo que no lo debería poder agregar. Luego, $f(\overrightarrow{yt})=1 \Rightarrow out_f(y)=1$
 - Pero para que esto pase, debe haber algún $x \in S_X$: $f(\overrightarrow{xy}) = 1$. Ahora, ¿por qué no agregamos a x a la cola? Esto solo puede pasar si algún otro nodo z lo puso antes
 - Si $z \in S_Y$, entonces significaría que agregó a x con una backward y, por ende, que $f(\overrightarrow{xz}) = 1$. Luego, no puede pasar porque sino x estaría matcheado con z y con y, no siendo posible por definición
 - Solo queda que z=s, pero esto no puede pasar dado que $x \not\in S_0$ porque como $out_f(x)=1$, entonces $in_f(x)=1$
 - Por lo visto antes, todo $y \in S_Y$ agrega un nodo $x \in S_X$ a la cola. Luego, estos elementos son los de $S S_0$, por lo que $|T| = |S S_0|$
- \bullet S_Y
 - Como $S_Y \subseteq Y$, entonces significa que deben haber sido agregados por alguien de la cola. Luego, entonces $S_Y \subseteq \Gamma(S_X)$
 - Veamos que $S_Y = \Gamma(S_X)$
 - Supongamos que no se cumple la igualdad. Luego, $\exists y \in \Gamma(S_X): y
 otin S_Y$
 - Como $y \in \Gamma(S_X)$, entonces $\exists x \in S_X : \overrightarrow{xy} \in E$ donde x está, por ende, en la cola mientras que y no. ¿Por qué x no agregó a y?
 - La única opción (porque no vale que ya estaba antes dado que no lo está) es que hayan matcheado. Es decir, $f(\overrightarrow{xy}) = 1$
 - Del mismo modo que se vio antes, y bajo un argumento análogo, podemos ver que no hay elemento que haya podido agregar a x a la cola dado que s no puede ser porque $f(\overrightarrow{sx}) = 1$ y tampoco otro nodo de S_Y porque sino significaría que x matcheó con dos, lo cual no es posible por definición

• Luego, por absurdo, tenemos que se cumple la igualdad

Ahora, vistas las propiedades de cada elemento, notemos que:

$$|\Gamma(S)|=|S_Y|=|S-S_0|>|S|$$

por lo que se prueba la contra-recíproca y, por ende, el Teorema.