Setting X: Haus don'the Topological space Riemann Susfaces

 $\psi: \mathcal{U} \to \mathcal{V}$

 $\gamma \circ \varphi^{-1} := \gamma_b \circ \beta_b^{-1}$

Surfaces is. 2 dimensional manifold i.e. locally like IR2 on C.

in the intersection of these nobol is conformally same as an open

Spaces

Chart: q: U→V is a homeo from U 2 PenX to VC C. Notational Convention $\varphi: unu' \longrightarrow \varphi(unu')$ P = Plunu $\varphi \colon \mathcal{U} \longrightarrow V$

y: unu - y (unu)

Yo = Wlunu

Last transformation.

Now let us come to the analytic part. Analytically compatible: φ & ψ are Analytically compatible if $\psi \circ \varphi^{-1}$ is compound.

Analytic: A on X is called analytic if every pair QRY is conformal. Now, take ARB st. AUB analytic

so such atlases will be called essentially equal

Riemann Sunbaces. (X,[1]) consists of topological space & a class of analytic atlases.

(i) $il_X : X \longrightarrow X$ analytic (ii) $\chi \xrightarrow{f} Y \xrightarrow{g} Z$ gof is analytic

.: Riemann Susfaces from a category with analytic maps as the mosphisms.

41U:= { \$ \$ 10 | 9= 6 }

* f,ge O(X)

Eg. (C, ?id}) is Riemann Susface. Once you have an example We can have the function Hom (-, C)

Ly i.e. analytic maps from $X \to C$ they are called analytic functions

fale Uy

Hom (-, c) and why not Hom (c,_) ·· Hom (-, c) this functions map it $RS \rightarrow Rings$ why? O(X) := Hom(X, C) set of analytic bns.

Forget fundor think it as a ging * f+g & O(X) f.g & O(X) *cfeO(x) ceC

Mone questions, Is O(x) integral domain? What about units? O(C) is integral domain f(a).g(a) = 0 f \(\neq 0 \) = g(x)=0 \forall ne C(x) discrete set $X=f^{-1}(0)$ > g = 0 by identity theorem Is if you want to prove ID then you need identity Eg? Riemann Sphere:[[,] $\begin{array}{cccc}
\overline{C} & & & & & \downarrow \\
& & & & & \downarrow \\
& & & & & \downarrow \\
\overline{C} & & & & \downarrow \\
& & & & & \downarrow \\
& & & & & \downarrow \\
& &$ chart transformation: [203 -> [203 conformal z→느 Hom (X, €): All the analytic functions from X to C. $f:X\longrightarrow \overline{C}$ s.t. $f^{-1}(\infty)$ is a discrete subset of $X\longrightarrow$ menomorphic functions $f: \overline{C} \to \overline{C}$ are meromorphic in complex analysis sense. $\mathcal{O}(x) \hookrightarrow \mathcal{N}(x)$ 4this is indeed a field in some cases 6this will also prove O(x) is integral domain. Thm: \times conn $S\subseteq \times$ where S has limit pt. λ $f(s)=0 \Rightarrow f\equiv g$ in \times Pf: X is locally path conn. → X is path conn. let ass be a limit pt. U=a s.t. U is conn. inside co-ordinale ngbd f(u) inside co-ordinal ngbd ⇒ φ(snu) has limit p.t. & roto 0= = 100 0 0= 0 0 (SUN) > Y of op = Y og op on snu \$ f=g on sou Let bex 3 path or. Cover to by U, ..., Un s.t. U; are nice nglods. number them in such a way that UinUit1≠¢. Uin Uin is homeomorphic to infinite set hence has limit pl. by induction feg on Un => +(6) =g(6) > f=g on X.

PF: Let F \$0. $g = \frac{1}{F}$ is meanmandic & $g(Z(A)) = \infty$ \Rightarrow g is analytic at $X \sim Z(G)$ & Z(+) is discacte. $\frac{1}{g(\varphi(a))}$ is analytic at Z(f) \Rightarrow g is analytic $X \rightarrow \overline{c}$ 2 $g^{\dagger}(x) = Z(t)$ is discrete. > 9 € H(x) .: M(x) , a feel & O(x) is id. M: Rs → Fields Is Frac (O(x))= M(x)? No (Not always) Thm: X-cpt connected R.S. > the only analytic functions are constant functions. 野: Let Let L CX I a s.t. f attains maximum at a. Let a & Up \Rightarrow $f \circ p^{-1} : V_p \rightarrow C$ attains maxima at a > top is constant ⇒ f is const By prev. than f is const everywhere. This shows O(x) only consists of constant functions whereas M(X) can consist of non-constant functions Thm: X - connected R.S. $f:X \rightarrow Y$ is an non-const. holomosphic map $\Rightarrow f$ is open. PF: We will prove flat & f(X) take U=a & Uy=f(a) S.t. Up is conn. I f(Up) = Uy. $\gamma \circ f \circ \varphi^{-1}$ is an open map $V_{\varphi} \longrightarrow V_{\psi}$.. Y(f(a)) ∈ fq, y (Vφ) f(a) & Y (fg, y (Vg)) & Vy is open => Y (Vy) is open. $\Rightarrow f(4) \in f(X)^{\circ}$

Thm: M(x) is a field.

Grening Spaces
Thm: Y: R.S. p: X -> Y covering. I! Riemann surface structure on X = X w.n.t. which p is holomorphic.
Pf. Faistence
let 26 X take Up3p(x) evenly covered noted of p(x) 2 Up is also a co-ordinate ngbd
take Uz>2 s.t. p : Uz→U is homeomosphism
Now, $U_n \xrightarrow{p} U_p \xrightarrow{q} V_p$
.: gop is a homeo, on Uz sco-ordinate rybol of n.
.: Ai= Epopgeely
2 YOPOPTOPT = YOPT -> conformal
νορορίορ' = 409) > p is analytic
Uniqueness Lemma: X1, X2 coverings of Y. Diagram commutes then f is holomosphic X-
Pf: $\alpha_1 \in X$, $y = P_1(\alpha_1) = P_2(\alpha_2)$ where $k_2 = f(\alpha_1)$
take Uzy co-ordinale nglod.
U, = n, Uz = nz s.t. Plu. Ui ~ U.
γοg of o(φορ,)-1
= 40 p 0 p -1
= $\gamma' \circ \varphi^{-1} \rightarrow analytic$
This proves uniqueness [: isomorphic topologically => isomorphic conformally]
Lattice: ω, Z +ω2 Z ⊆ C
C/n is a Riemann susface
take af C/p
UFA evenly covered
map it to the fundamental parallelogram.
4. 9 is translation and hence analytic
⇒ 8'×5' is Riemann Sunface