Course Code	MTH2xx		
Course Name	Real Analysis I		
Credits	A A I I I I I I I I I I I I I I I I I I		
	14		
Course Offered to	UG		
Course Description	This course covers topics in real analysis, single-variable ar system, then discusses sequences and series in detail. Sing section of the course, concepts and methods of multivaria	le-variable calculus is covered in d	letail with emphasis on rigour and proofs. In the final
	Pre-requisite:	5	
Pre-requisite (Mandatory)	Pre-requisite (Desirable)	Pre-requisite(other)	
	Post Conditions*(For suggestions on verbs	please refer the second sheet)	
CO1	CO2	CO3	CO4
Students are familiar with the real number system, can determine convergence-divergence of sequences and series, and are able to construct epsilon-delta proofs related to limits and continuity.	Students are familiar with the concepts of differentiation and integration and are able to apply the methods of single-variable calculus.	Students are able to apply concepts of continuity, differentiability, extrema and integrability of multivariable functions and evaluate various integrals (line, double, triple and surface integrals).	
	Weekly Lecture I	Plan	
Week Number	Lecture Topic	COs Met	Assignment/Labs/Tutorial
Week 1	Real Numbers: Countable and uncountable sets, Supremum, Infimum, Completeness Axiom, Archimedean Property, Density Property . (3 lectures)	CO1	HW1

Weeks 2 to 4	Sequences and Series of real numbers: Definition of a sequence, bounded sequence, convergence & divergence of a sequence, Operations on sequences, Cauchy sequence, Cauchy's criterion for convergence, Monotone sequence, Bolzano-Weierstrass theorem, limit superior and inferior, examples of some special sequences. Definition of a series, convergence and divergence of series, absolute and conditional convergence, Alternating series. Comparison, Ratio, Root, Cauchy's condensation and Leibnitz tests for convergence of series. Rearrangements, Riemann's Theorem (statement only). (9 lectures)		HW2, HW3,HW4
Week 5 to 9	Single-variable Differential & Integral Calculus: Limits of real-valued functions, continuity, Boundary value theorem, Intermediate Value Theorem, uniform continuity, differentiability, Mean Value Theorems and applications, Taylor's theorem, L' Hospital's Rule, Taylor series and applications. Definition of Riemann integral, Properties of the integral, fundamental theorems, Applications to area, arc length, volume and surface area, Improper integrals of first and second kind, Beta and Gamma functions, Differentiation under the integral sign and applications. (15 lectures)	CO2	HW5, HW6,HW7,HW8,HW9
Week 10 to 13	Multivariable Differential and Integral Calculus in several variables: Functions of several variables, limits, continuity, Partial derivatives, Mixed derivative theorem (statement only), chain rule, directional derivatives, Maxima & minima and method of Lagrange multiplies. Double & triple integrals, Fubini's Theorem for regular domains (statement only), the Jacobian & change of variables, Applications to area, volume, mass and moments. (12 lectures)	CO3	HW10,HW11,HW12

Weekly Lab Plan						
Week Number	Laboratory Exercise	COs Met	Platform (Hardware/Software			
Not Applicable						
3		Assessment Plan				
Type of Evaluation	% Contribution in Grade	% Contribution in Grade				
Quiz 1	10					
Midsem	20					
Endsem	45					
Homeworks (best 10 out of 12)	25					
Remark: Subject to modification (no	t more than 5%)					
		Resource Material				
Туре	Title					
Textbook	G. B. Thomas and R. L. Finney, Calculus, Pearson					
	R. Goldberg , Methods of Real Analysis, Oxford & Ibh					
Reference Book	R. Goldberg , Methods of Real Analysis, C	Oxford & Ibh				
Reference Book Reference Book	R. Goldberg , Methods of Real Analysis, C K. A. Ross, Elementary Analysis: The Theo					
		ory of Calculus, Springer				
Reference Book	K. A. Ross, Elementary Analysis: The Thec	ory of Calculus, Springer I Analysis, McGraw-Hill				