POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

Name	٥f	Q+		on	+
IVame	OIL	. T.	1161	$\omega_{\rm H}$	

-Enrollment Number:

BENNETT UNIVERSITY, GREATER NOIDA Supplementary Examination, December 2019

COURSE CODE:

EMAT102L

MAX. TIME: 2 Hours.

COURSE NAME: COURSE CREDIT:

Linear Algebra and Ordinary Differential Equations

3-1-0-4

MAX. MARKS: 100

Instructions

- There are ten questions in this question paper and all questions are mandatory.
- Rough work must be carried out at the back of the answer script.
- 1. For what values of $\lambda \in \mathbb{R}$, the following system of equations has (i) no solution, (ii) a unique solution, and (iii) infinitely many solutions? x + y + 2z = 3, $2y + \lambda z = 6$, 4z = 8.
- 2. Apply Gram-Schmidt process to the set $\{[1, 1, 0]^t, [0, 0, 1]^t, [1, 1, 1]^t\}$ to obtain an orthonormal set in \mathbb{R}^3 .
- 3. Let A be a diagonalizable matrix such that each eigenvalue of A is equal to 2. Prove that A = 2I.
- 4. The following statements are true/false. Justify your answer. $[3 \times 5=15]$
 - (a) $W = \{A \in M_{n \times n}(\mathbb{R}) : A \text{ is singular}\}\$ is a subspace of $M_{n \times n}(\mathbb{R})$.
 - (b) If the eigenvalues of a 3×3 matrix A are 2, i, then traceA = 2, detA = -2.
 - (c) Let $T: M_{3\times 4}(\mathbb{R}) \to M_{2\times 3}(\mathbb{R})$ be a linear transformation which is onto, then dimension of nullspace of T is 3.
 - (d) The vectors (2,0,1,1) and (-1,2,i,2) in $\mathbb{C}^4(\mathbb{R})$ are orthogonal.
 - (e) If f, g both are continuous functions on [0,1], then

$$\int_0^{10} f(x)g(x)dx \le \left(\int_0^{10} |f(x)|^2 dx\right)^{\frac{1}{2}} \left(\int_0^{10} |g(x)|^2 dx\right)^{\frac{1}{2}}.$$

5. Find an orthogonal basis for the subspace $W = \{p(x) \in \mathcal{P}_3(\mathbb{R}) \mid p(0) = p(1) = 0\}$, where the inner product is given by $\langle p, q \rangle = \int_{-1}^1 p(x)q(x)dx$. [10]

6. Under what conditions on a and b, the following differential equation

[8]

$$(x^3 + xy^2)dx + (ax^2y + bxy^2)dy = 0.$$

is exact?

7. Do any TWO parts.

 $[2 \times 8 = 16]$

- (a) If y_1 and y_2 are linearly independent solutions of $xy'' + 2y' + xe^x y = 0, x \in (0, \infty)$ and if $W(y_1, y_2)(1) = 2$, find the value of $W(y_1, y_2)(5)$.
- (b) Test whether the differential equation $(x+y)^2 dx (y^2 2xy x^2) dy = 0$ is exact or not and hence solve it.
- (c) Discuss the existence and uniqueness of the solution for the IVP

$$\frac{dy}{dx} = 16 + y^2$$
, $y(0) = 0$, $|x| \le 1$, $|y| \le 1$.

- 8. (a) Show that $y = a\cos(mx + b)$ is a solution of $\frac{d^2y}{dx^2} + m^2y = 0$. [4]
 - (b) Check whether $y_1(x) = \sin x$ and $y_2(x) = \cos x$ are linearly independent solutions of the differential equation y'' + y = 0, $x \in \mathbb{R}$ or not? [6]
- 9. By using the method of variation of parameters, find the general solution of the following differential equation.

$$y'' + y = \sec x.$$

- 10. (a) Find the inverse Laplace transform of $\frac{1}{s(s+7)}$. [4]
 - (b) Solve the following system of differential equation using Laplace transforms [6] $y'_1 + y_2 = 2\cos x$, $y_1 + y'_2 = 0$, $y_1(0) = 0$, $y_2(0) = 1$.