

TPB23

Hardware Guide

Version 1.0

SerComm Confidential

Copyright© 2017 by SerComm Corp.® All rights reserved.

This document contains information of a proprietary nature. **ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN STRICT CONFIDENTIAL.** None of this information shall be divulged to persons other than SerComm employees authorized by the nature of their duties to receive information, or individuals and organizations authorized by SerComm in accordance with existing policy regarding release of company information.

SerComm Corporation

8F,No.3-1, YuanQu St., NanKang, Taipei 115, Taiwan, R.O.C

Tel: 886-2-26553988 Fax: 886-2-26553966

http://www.sercomm.com

SerComm (Suzhou) R&D Center

NO, 26, Xinghai Street, Suzhou Industrial Park, Jiangsu, China

Tel: 86-512-67612332 Fax: 86-512-67612331 http://www.sercomm.com

	Revision					
Ver.	Date	Description				
V1.0	2017/10/26	Initial Release				

Table of Contents

1. About This Document	4
2. Introduction	5
2.1. Product Description 2.2. Function Description 2.3. Block Circuit Diagram 2.4. EVK Board 3. Application Port	6 6
3.1. Module Pin Definition 3.2. Power Port	11
3.2.2. Reference Design	12
3.3. UART Port 3.4. USIM Port 3.4.1. Pin Definition	13
3.5. AIO Port	
4.1. Pin Definition 4.2. Operation Band 4.3. Reference Design. 4.3.1. Matching Circuit	15 15
4.3.2. RF_ANT to antenna RF trace PCB Design	16
5. Operation Modes	17
6. Power on and off sequence	18
6.1. Power on sequence6.2. Power off sequence7. Electrical Power, Reliability, and RF Characteristics	18
7.1. Operation and Storage Environment7.2. VBAT power consumption.7.3. ESD and EMC Characteristics7.3.1. ESD.	19 19
7.3.2. EMC	19
7.4. RF Characteristics	
7.4.2. RF receiver characteristics	20
8. Mechanical Characteristic	21
9. Recommend Re-flow Profile	22
10. Acronyms or Abbreviations	23

1. About This Document

Purpose

This document describes the TPB23 module from the following aspects: overall introduction, hardware ports, port specifications, electrical characteristics, and related product information, helping you have quick overview of application scenarios, hardware specifications, and design suggestions of the TPB23 module.

Intended Audience

This document is intended for hardware engineers.

Draft A (2017-10-28)

This is the draft of TPB23 Module Hardware Guide.

2. Introduction

2.1. Product Description

The TPB23 module is used on Narrow-band Internet ofThings (NB-IoT) networks, and it communicates with mobile network operator (MNO) devices in compliance with the NB-IoT wireless communication protocol. <u>Figure 2-1</u> illustrates the position of the TPB23 module on NB-IoT networks.

Figure 2–1 Network architecture

The following part details each item in the network architecture:

- NB-IoT terminal, such as smart water meter and gas meter
 Consists of terminals and NB-IoT modules and uses NB-IoT modules to communicate with an eNodeB over the Uu interface.
- NB-IoT module

Lets terminals communicate with NB-IoT networks in compliance with the NB-IoT wireless communication protocol.

- Terminal, such as smart water meters and gas meters
 Communicates with NB-IoT modules in compliance with the universal asynchronous receiver/transmitter (UART).
- eNodeB

Processes network access messages over the Uu interface, manages cells, and forwards non-access stratum (NAS) data to a higher-layer network element (NE) for processing. An eNodeB is connected to the IoT EPC over the S1-lite interface.

- IoT EPC
 - Exchanges information with NB-IoT terminals at the NAS layer and forwards data related to NB-IoT services to the IoT platform for processing.
- IoT platform, referred to the IoT platform in this document
 Converges different types of IoT data from diversified radio access networks and forwards such data to a required service application for processing based on the data type.
- Application server

Functions as an IoT data convergence point and processes data based on customer requirements.

2.2. Function Description

The TPB23 module provides the interconnection between NB-IoT networks and terminals.

- Interconnection with NB-IoT eNodeBs
 - The TPB23 module receives signals sent from NB-IoT networks, processes then, and sends commands or data to terminals, to perform the operation and maintenance (O&M) for terminals.
 - The TPB23 module receives data and commands from terminals, transfers those data and commands to NB-IoT networks through NB-IoT eNodeBs, and then delivers them to application servers (ASs).
- Interconnection with terminals
 - The TPB23 module reads terminal data and uploads it to the NB-IoT platform.
 - The TPB23 module receives commands from the NB-IoT platform and performs O&M for terminals.

2.3. Block Circuit Diagram

The TPB23 module is based on the NB-IoT module developed by Boudica 150 chip. <u>Figure 2-2</u> shows the module block circuit diagram.

Figure 2-2 TPB23 module hardware overview diagram

2.4. EVK Board

Sercomm develops the Evaluation Kit (EVK) of the TPB23 module to help you easily use the TPB23

module, and quickly understand and control or test the TPB23 module. For details about how to use the EVK, see *TPB23 Module EVK User Guide*.

3. Application Port

3.1. Module Pin Definition

The TPB23 module provides 94-pin ports for external usage.

The pin define from TOP side as Figure 3-1 shows:

Figure 3-1 Sequence of TPB23 module pins

Table 3-1 I/O Parameters Definition

Туре	Description	
DI	Digital input	
DO	Digital output	
I/O	Bidirectional input/output	
AI	Analog input	
AO	Analog output	
PO	Power output	
PI	Power input	
OD	Open drain	

 Table 3-2 TPB23 module pin definition

Pin Name	Pin No.	I/O Type	Description	PU/PD
VDD_IO_L1	1	РО	IO_L1 power supply, default value is 0V, if this pin is not used, please floating.	-
GND	2, 43, 47, 48, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 81, 82, 83, 92, 93, and 94	N/A	Used for grounding	
NC	5, 6, 7, 8, 9, 23, 24, 25, 35, 36, 37, 44, 49, 50, 55, 56, 57, 58, 68, 69, 70, 75, 76, 77, 88, 89, 90 and 91	N/A	Unconnected	
RESERVED	11, 12, 13, 14, 18, 31, 32, 33, 34, 67, 78, 79, 80, 84, 85, 86 and 87	N/A	Reserved pins, please floating.	
SWD_DATA	3	DI/DO	Serial wire data signal,	

Pin Name	Pin No.	I/O Type	Description	PU/PD
SWD_CLK	4	DI	Serial wire clock signal	
PIO20	10	I/O	PIO20 for external use, voltage can configured from 1.5V to 3.3V by software, step is 0.3V.	
RESET	15	DI	Module Boudica reset, active low (pull-up is always enabled)	
RIO<1>	16	I/O	For future use	
PIO32	17	I/O	PIO32 for external use, voltage can configured from 1.5V to 3.3V by software, step is 0.3V.	
DBG_RXD	19	DI	UART1: data receiving	
DBG_TXD	20	DO	UART1: data transmission	
AIO<1>	21	AI	Analog peripheral input/output lines	
AIO<0>	22	AI	Analog peripheral input/output lines	
VDD_IO_D	26	PO	IO_D power supply, default value is 3.3V, and max current is 10mA, if this pin is not used, please floating.	
PIO21	27	I/O	PIO21 for external use, voltage can configured from 1.5V to 3.3V by software, step is 0.3V.	
PIO33	28	I/O	PIO33 for external use, voltage can configured from 1.5V	

Pin Name	Pin No.	I/O Type	Description	PU/PD
			to 3.3V by software, step is 0.3V.	
MAIN_RXD	29	DI	UART: data receiving	
MAIN_TXD	30	DO	UART: data transmission	
USIM_VDD	38	РО	Power supply for USIM card	
USIM_RST	39	DO	USIM reset	
USIM_DATA	40	I/O	USIM data	
USIM_CLK	41	DO	USIM clock	
USIM_GND	42	N/A	USIM ground	
VBAT	45 and 46	PI	Main power supply of module: VBAT = 3.1 V to 4.2 V	
RF_ANT	53	I/O	RF antenna pad	

3.2. Power Port

The power ports in the TPB23 module include:

- Port VBAT for power supply
- Port VDD_IO_L1 and VDD_IO_D for IO power level
- Port USIM_VDD for USIM power output

3.2.1. Pin Definition

<u>Table 3-3</u> defines power port pins.

Table 3-3 Definition of power port pins

Pin Name	Pin No.	I/O Type	Description
VBAT	45 and 46	PI	Main power supply

Pin Name	Pin No.	I/O Type	Description
			of module: VBAT = 3.1 V to 4.2 V
VDD_IO_L1	1	PO	IO_L1 power supply for external use, default value is 0V, if not used, please let it floating.
VDD_IO_D	26	РО	Power supply for external use, default value is 3.3V, and max current is 10mA.
GND	2, 43, 47, 48, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 81, 82, 83, 92, 93, and 94	N/A	Ground

3.2.2. Reference Design

You are advised to use the Low Dropout Regulator (LDO) or battery as the power supply. It is recommended that the LDO power current be greater than or equal to 500 mA. Energy storage capacitance must be included in the LDO output to ensure that the voltage sag in case of large current is less than 0.1 V.

Figure 3-2 Recommended power supply circuit diagram

3.3. UART Port

The TPB23 module provides two serial ports. One port is for data interconnection with terminals (for receiving and sending AT commands), and the other one is for monitoring Boudica chip Operation status. The default voltage level of the UART port is 3.3V.

	Table 3-4	UART	AT 1	oin	definition
--	-----------	------	------	-----	------------

Pin Name	Pin No.	I/O Type	Description
MAIN_RXD	29	DI	UART: data receiving
MAIN_TXD	30	DO	UART: data transmission

Table 3-5 UART Log pin definition

Pin Name	Pin No.	I/O Type	Description
DBG_RXD	19	DI	Secondary UART: data receiving
DBG_TXD	20	DO	Secondary UART: data transmission

3.4. USIM Port

Figure 3-3 shows the reference design diagram of the SIM port circuit.

Figure 3-3 Reference circuit diagram of the SIM port

3.4.1. Pin Definition

Pin Name	Pin No.	I/O Type	Description
USIM_VDD	38	PO	Power supply for USIM card
USIM_RST	39	DO	USIM reset
USIM_DATA	40	I/O	USIM data, need add 20Kohm pull up register
USIM_CLK	41	DO	USIM clock
USIM_GND	42	N/A	USIM ground

3.5. AIO Port

The TPB23 module provides a 10-bit ADC. This ADC is available in Active and Standby modes of operation and is accessible via AIO<1:0> and as per Table 3-7 programmable-gain input buffer provides six ADC sensitivity settings. The ADC is capable of performing single measurements as well as continuous sampling with a programmable sampling rate.

Table 3-7 Application ADC characteristics

PMU ADC Characteristics ADC Full-Scale Range (FSR):	Min	Тур	Max	Unit
Gain = 0		1.45		V
Gain = 1		2.0		V
Gain = 2		2.5		V
Gain = 3		3.0		V
Gain = 4		3.5		V
Gain = 5		4.0		V
Sampling frequency	0		25	MHz

4. Antenna Port

4.1. Pin Definition

 Table 4-1 Definition of antenna port pins

Pin Name	Pin No.	I/O Type	Description
RF_ANT	53	I/O	RF antenna pad
GND	52,54	N/A	Ground

4.2. Operation Band

Table 4-2 Antenna Operation band

Band	Up-link	Down-link
Band 1	1920 MHz to 1980 MHz	2110 MHz to 2170 MHz
Band 2	1850 MHz to 1910 MHz	1930 MHz to 1990 MHz
Band 3	1710 MHz to 1785 MHz	1805 MHz to 1880 MHz
Band 5	824 MHz to 849 MHz	869 MHz to 894 MHz
Band 8	880 MHz to 915 MHz	925 MHz to 960 MHz
Band 12	699MHz to 716 MHz	729 MHz to 746 MHz
Band 13	777 MHz to 787 MHz	746 MHz to 756 MHz
Band 17	704 MHz to 716 MHz	815 MHz to 830 MHz
Band 18	815 MHz to 830 MHz	860 MHz to 875 MHz
Band 19	830 MHz to 845 MHz	875 MHz to 890 MHz
Band 20	832 MHz to 862 MHz	791 MHz to821 MHz
Band 26	814 MHz to 849 MHz	859 MHz to 894 MHz
Band 28	703 MHz to 748 MHz	758 MHz to 803 MHz
Band 66	1710 MHz to 1780 MHz	2110 MHz to 2200 MHz

4.3. Reference Design

4.3.1. Matching Circuit

The matching circuit is located between the passive antenna and radio frequency (RF) cable, and is used to optimize antenna standing wave parameters, to ensure that energies are effectively radiated. Figure 4-1

Figure 4-1 Common PI model

4.3.2. RF_ANT to antenna RF trace PCB Design

The following lists the printed circuit board (PCB) layout design rules:

- The characteristic impedance of the transmission line must be 50 ohm.
- The PCB cable must be as short as possible to reduce antenna cable loss.
- The PCB cable must be routed as straight as possible, and right-angle cable layout is not allowed. The PCB cable would better not be connected to different layers through a via hole.
- The PCB cable must have a good reference ground around, to avoid other signal lines close to the antenna cable without ground isolated.

The recommended PCB design about 4-Layer as Figure 4-2 follow:

		l olerance M	1ınımum Maxımum
Substrate 1 Height	H1	8.6000 +/- 0.0000	8.6000 Calculate
Substrate 1 Dielectric	Er1	4.2000 +/- 0.0000	4.2000 4.2000 Calculate
Lower Trace Width	W1	10.0000 +/- 0.0000	10.0000 10.0000
Upper Trace Width	W2	9.0000 +/- 0.0000	9.0000 9.0000 Calculate
Lower Ground Strip Width	G1	100.9998 +/- 0.0000 1	00.9998 100.9998
Upper Ground Strip Width	G2	99.9998 +/- 0.0000	99.9998 99.9998
Ground Strip Separation	D1	5.0000 +/- 0.0000	5.0000 Calculate
Trace Thickness	T1	1.7000 +/- 0.0000	1.7000 1.7000 Calculate
Coating Above Substrate	C1	1.0000 +/- 0.0000	1.0000 1.0000
Coating Above Trace	C2	1.0000 +/- 0.0000	1.0000 1.0000
Coating Between Traces	C3	1.0000 +/- 0.0000	1.0000 1.0000
Coating Dielectric	CEr	4.2000 +/- 0.0000	4.2000 4.2000
Impedance	Zo	49.68	49.68 Calculate

Units: mil

Figure 4-2 Recommended PCB design

5. Operation Modes

The TPB23 module has three Operation modes, which can determine availability of functions for different levels of power-saving.

Table 5-1 Operation modes

Mode	Function	Description
	Active	In active mode, all functions of the module are available and all process are active. Radio transmission and reception can be performed. Transitions powers also can changed by software for different application for power save in active mode.
Operation Modes	Idle	In Idle mode, all processors are inactive, but all peripherals can be active. The system clock is active and power consumption is reduced via clock gating and power gating. Idle mode is entered when all processors are executing a wait-for-interrupt (WFI) instruction.
	Power Slave Mode(PSM)	In PSM mode, only the 32kHz RTC is working, which means the module can be moved to active state by an RTC interrupt or by an external event through the peripherals that are using the RTC. This mode is entered by all processors setting the "sleep-deep" bit and then executing a WFI

Mode	Function	Description
		instruction.

6. Power on and off sequence

6.1. Power on sequence

The module can be automatically turned on by supplied power source to VBAT pins.

Figure 6-1 Power on sequence

6.2. Power off sequence

The module can be automatically turned off by shut down the VBAT power supply.

7. Electrical Power, Reliability, and RF Characteristics

7.1. Operation and Storage Environment

Table 7-1 Operation and Storage Environment

Item	Minimum Value	Typical Value	Maximum Value	Unit
Operation temperature	-30	25	75	°C
Storage temperature	-40	25	85	°C
VBAT	3.1	3.6	4.2	V

7.2. VBAT power consumption

Table 7-2 VBAT power consumption (With 3.6V typical VBAT power supply)

Item	Band	TX Power	Minimu m Value	Typical Value	Maximu m Value	Unit
Module Boot	3				60	mA
PSM	3			4		uA
Idle	3			6		mA
Rx-mode	3			65		mA
Power off	3			5	6000	uA
	3	-10dBm		60		mA
Connected Mode (TX/RX call enabled)	3	0dBm		88		mA
(112121 can enacion)	3	10dBm		100		mA
	3	23dBm		260-300		mA

7.3. ESD and EMC Characteristics

7.3.1. ESD

The TPB23 module has no electrostatic discharge (ESD) protection measures, and its sensitive pins needs external ESD protection. Appropriate ESD measures need to be taken during the overall manufacturing, transporting, and Operation stages.

Consider ESD measures for critical output and input ports, and place protection components near ports. <u>Table 7-2</u> shows the ESD requirements for the TPB23 module.

Table 7-3 ESD requirements for the TPB23 module

Pin	Contact Discharge	Air Discharge	Unit
VBAT	±5	±10	KV
ANT	±4	±8	KV
Other ports	±0.5	±1	KV

7.3.2. EMC

The signal integrity and power integrity issues caused by electromagnetic compatibility (EMC) need to be considered when you use the TPB23 module to design. The following part lists some suggestions:

- The coupling of the TPB23 module and other digital chips must be deployed remotely as far as possible, to avoid mutual interference.
- The power supply (CSS), clock, high-speed digital signals, EMI components, and RF simulation parts must be deployed remotely as far as possible.
- The CSS, clock, high-speed digital signals, EMI components, and antennas must be coupled remotely as far as possible in space.
- During cabling routing, the RF reference ground is complete, digital and analog areas are separated, and all cables are routed in compliance with specified requirements to avoid mutual coupling between lines.

The decoupling capacitor is placed near pins.

7.4. RF Characteristics

RF parameters are defined at Module pins.

7.4.1. RF transmitter characteristics

Table 7-4 RF transmitter characteristics

Item	Min	Тур	Max	Unit	Comments
Maximum Transmit Power	/	23	/	dBm	See "Operating Licensed Spectrum" Bands

7.4.2. RF receiver characteristics

Table 7-5 RF receiver characteristics

Item	Min	Тур	Max	Unit	Comments
Max receivable input	/	/	10	dBm	See "Operating Licensed Spectrum" Bands
Sensitivity	/	-129	/	dBm	At rep_128. And ant rep_1 is -109dBm.

8. Mechanical Characteristic

The module size is 24 x 20 x 2.4 mm:

For details about the bottom dimensions of the TPB23 module as follow:

Figure 8–1 The bottom dimensions

9. Recommend Re-flow Profile

TPB-20 reflow profile	Min	Тур	Max	Unit
Temperature T ₁	150			,C
Temperature T ₂			200	℃
Temperature T ₁		217		°C
Temperature T,			260	°C
Time ts (T, to T,)	60		120	sec
Time t (above T _r)	60		150	sec
Ramp Up Rate T _r to T,			3	°C
Ramp Down Rate T, to T,			6	°C

10. Acronyms or Abbreviations

AI Analog Input

DI Digital Input

DO Digital Output

EMC Electromagnetic Compatibility

EPC Evolved Packet Core

ESD Electrostatic Discharge

EVK Evaluation Kit

LDO Low Dropout Regulator

NB-IoT Narrowband Internet of Things

RF Radio Rrequency

UART Universal Asynchronous Receiver/Transmitter

USIM Universal Subscriber Identity Module