From Latent Heterogeneity to Out-of-Distribution Generalization

Heterogeneous Risk Minimization(ICML 2021) Kernelized Heterogeneous Risk Minimization(NeurIPS 2021)

Jiashuo Liu

TrustWorthy-Al Group, CST, Tsinghua University

2021.10.18

- 1 Background of OOD Generalization problem
- 2 Invariance-Based Optimization
- 3 Limitations
- 4 Heterogeneous Risk Minimization(HRM)
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)
- **6** Conclusion

- 2 Invariance-Based Optimization
- 3 Limitations
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)

$$\theta_{ERM} = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; X_i, Y_i)$$
 (1)

- Optimize the average error oof data points.
- Focus on the major group of data.
- Ignore the minor group of data \rightarrow Break down under distributional shifts

Data are collected from multiple sources, which induces latent heterogeneity.

- ERM excessively focuses on the majority and ignores the minor components in data.
- Overall Good = Majority Perfect + Minority Bad
- Majority and Minority can change across different data sources/environments.
- Latent Heterogeneity renders ERM break down under distributional shifts.

Insights: We should leverage the latent heterogeneity in data and develop more rational risk minimization approach to achieve Majority Good and Minority Good, resulting in our Heterogeneous Risk Minimization.

Out-of-Distribution Generalization Problem (OOD Problem)

Out-of-Distribution Generalization Problem(OOD Problem) is proposed in order to guarantee the generalization ability under distributional shifts, which can be formalized as:

$$\theta_{OOD} = \arg\min_{\theta} \max_{e \in \text{supp}(\mathcal{E})} \mathcal{L}^{e}(\theta; X, Y)$$
 (2)

where

- ullet E is the random variable on indices of all possible environments, and for each environment $e \in \text{supp}(\mathcal{E})$, the data distribution is denoted as $P^e(X, Y)$.
- The data distribution $P^e(X, Y)$ can be quite different among environments in $supp(\mathcal{E}).$
- $\mathcal{L}^e(\theta; X, Y)$ denotes the risk of predictor θ on environment e, whose formulation is given by:

$$\mathcal{L}^{e}(\theta; X, Y) = \mathbb{E}_{X, Y \sim P^{e}}[\ell(\theta; X, Y)]$$
(3)

OOD problem hopes to optimize the worst-case risk of all possible environments or distributions in $supp(\mathcal{E})$

Related Works

$$f_{\theta}^* = \arg\min_{f_{\theta}} \mathbb{E}_{X,Y \sim P_{tr}}[\ell(f_{\theta}(X), Y)]$$
 (4)

Categorize the existing methods into three parts based on their positions in the whole learning pipeline accordingly¹:

- Unsupervised Representation Learning: Disentangled Representation Learning, Causal Representation Learning
- Supervised Model Learning: Causal Learning, Stable Learning, Domain Generalization
- Optimization: Distributionally Robust Optimization, Invariance-Based Optimization

¹Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., & Cui, P. (2021). Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624. Website for paper list: http://out-of-distribution-generalization.com

- Background of OOD Generalization problem
- 2 Invariance-Based Optimization
- 3 Limitations
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)

Invariance Assumption

To deal with the potential distributional shifts, one common assumption made in invariant learning is the Invariance Assumption.

Assumption (Invariance Assumption)

There exists random variable $\Phi^*(X)$ such that the following properties hold:

1 Invariance property: for all $e_1, e_2 \in \text{supp}(\mathcal{E})$, we have

$$P^{e_1}(Y|\Phi^*(X)) = P^{e_2}(Y|\Phi^*(X)) \tag{5}$$

2 Sufficiency property: $Y = f(\Phi^*) + \epsilon$, $\epsilon \perp X$.

Here we make some demonstrations on the Invariance Assumption:

- The first property assumes that the relationship between $\Phi^*(X)$ and Y remains invariant across environments, which is also referred to as causal relationship.
- The second property assumes that $\Phi^*(X)$ can provide all information of the target label Y.
- $\Phi^*(X)$ is referred to as (Causally) Invariant Predictors.

Maximal Invariant Predictor

To obtain the invariant predictor $\Phi^*(X)$, one can seeks for the **Maximal Invariant Predictor**²³, which is defined as follows:

Definition (Invariance Set & Maximal Invariant Predictor)

The invariance set \mathcal{I} with respect to \mathcal{E} is defined as:

$$\mathcal{I}_{\mathcal{E}} = \{\Phi(X) : Y \perp \mathcal{E}|\Phi(X)\} = \{\Phi(X) : H[Y|\Phi(X)] = H[Y|\Phi(X), \mathcal{E}]\}$$
(6)

where $H[\cdot]$ is the Shannon entropy of a random variable. The corresponding maximal invariant predictor (MIP) of $\mathcal{I}_{\mathcal{E}}$ is defined as:

$$S = \arg \max_{\Phi \in \mathcal{I}_{\mathcal{E}}} I(Y; \Phi) \tag{7}$$

where $I(\cdot;\cdot)$ measures Shannon mutual information between two random variables.

Remarks:

- Φ*(X) is MIP.
- Optimal for OOD is $\hat{Y} = \mathbb{E}[Y|\Phi^*(X)]$.
- "Find $\Phi^*(X)$ " \rightarrow "Find MIP"

²Chang, S., Zhang, Y. et al. (2020, November). Invariant rationalization.

 $^{^3}$ Koyama, M., & Yamaguchi, S. (2021). When is invariance useful in an Out-of-Distribution Generalization problem ?

- Background of OOD Generalization problem
- 3 Limitations
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)

No Training Environments

Modern datasets are frequently assembled by merging data from multiple sources without explicit source labels, which means there are not multiple environments but only one pooled dataset.

Quality of Training Environments

• The flow of Invariant Learning methods:

Given
$$\mathcal{E}_{tr} \to \text{Find MIP } \Phi_{tr}^*$$
 of $\mathcal{I}_{\mathcal{E}_{tr}} \to \text{Predict using } \Phi_{tr}^* \to \text{OOD "Optimal?"}$

Recall the definition of MIP:

$$\arg \max_{\Phi \in \mathcal{I}_{\mathcal{E}}} I(Y; \Phi) \tag{8}$$

- 1. MIP relies on the invariance set $\mathcal{I}_{\mathcal{E}}$
- 2. Invariance set $\mathcal{I}_{\mathcal{E}}$ relies on the given environments \mathcal{E} .
- What happens when \mathcal{E} is replaced by \mathcal{E}_{tr} ?
 - 1. $\operatorname{supp}(\mathcal{E}_{tr}) \subset \operatorname{supp}(\mathcal{E})$
 - 2. $\mathcal{I}_{\mathcal{E}} \subset \mathcal{I}_{\mathcal{E}_{tr}}$
 - 3. Φ_{r}^* NOT INVARIANT.

Remark: We need training environments where $\mathcal{I}_{\mathcal{E}_{tr}} o \mathcal{I}_{\mathcal{E}}$

	CI	ass 0 (Cat	ts)	Class 1 (Dogs)						
Index	X_1	X_2	X_3	X_1	X_2	X_3				
e_1	Cats	Water	Irma	Dogs	Grass	Eric				
e_2	Cats	Grass	Eric	Dogs	Water	Irma				
e ₃	Cats	Water	Eric	Dogs	Grass	Irma				
e ₄	Cats	Grass	Irma	Dogs	Water	Eric				
e ₅	Mixture: 90% data from e_1 and 10% data from e_2									
e ₆	Mixtu	Mixture: 90% data from e_3 and 10% data from e_4								

表 1: A Toy Example for the difference between $\mathcal{I}_{\mathcal{E}}$ and $\mathcal{I}_{\mathcal{E}_{tr}}$.

- When supp $(\mathcal{E}) = \{e_1, e_2, e_3, e_4, e_5, e_6\}, \mathcal{I}_{\mathcal{E}} = \{\Phi | \Phi = \Phi(X_1)\}.$
- When supp $(\mathcal{E}_{tr}) = \{e_5, e_6\}, \mathcal{I}_{\mathcal{E}_{tr}} = \{\Phi | \Phi = \Phi(X_1, X_2)\}.$
- When e_5 and e_6 can be further divided into e_1 , e_2 and e_3 , e_4 respectively, $\mathcal{I}_{\mathcal{E}_{tr}}$ becomes $\mathcal{I}_{\mathcal{E}_{tr}} = \mathcal{I}_{\mathcal{E}} = \{\Phi(X_1)\}.$

What Kind of Environments is Needed?

- Recall the limitations:
 - 1. No training environments.
 - 2. Despite having environments, the quality of given environments.
- What kind of environments is needed?
 - 1. As heterogeneous as possible.
 - 2. Make $\mathcal{I}_{\mathcal{E}_{tr}}$ as close to $\mathcal{I}_{\mathcal{E}}$ as possible.
- How to Generate Environments?
 - 1. Randomly Split?
 - 2

- Background of OOD Generalization problem
- 2 Invariance-Based Optimization
- 3 Limitations
- 4 Heterogeneous Risk Minimization(HRM)
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)

Background of OOD Generalization problem Invariance-Based Optimization Limitations 00000 Invariance-Based Optimization Univariance Based Optimization Univ

HRM Problem

Assumption (Heterogeneity Assumption)

For random variable pair (X,Φ^*) and Φ^* satisfying the Invariance Assumption, using functional representation lemma⁴, there exists random variable Ψ^* such that $X=X(\Phi^*,\Psi^*)$, then we assume $P^e(Y|\Psi^*)$ can arbitrary change across environments $e\in \operatorname{supp}(\mathcal{E})$.

Problem (Heterogeneous Risk Minimization Problem)

Given heterogeneous dataset $D = \{D^e\}_{e \in \operatorname{supp}(\mathcal{E}_{latent})}$ without environment labels, the task is to generate environments \mathcal{E}_{learn} with minimal $|\mathcal{I}_{\mathcal{E}_{learn}}|$ and learn invariant model under learned \mathcal{E}_{learn} with good OOD performance.

• This work temporarily focuses on a simple but general setting, where $X = [\Phi^*, \Psi^*]^T$ in raw feature level and Φ^*, Ψ^* satisfy the Invariance Assumption.

⁴El Gamal, A. and Kim, Y.-H. Network information theory. Network Information Theory, 12 2011.

The Whole Algorithm⁵

Our HRM contains two modules, named **Heterogeneity Identification** module \mathcal{M}_c and Invariant Prediction module \mathcal{M}_p .

- The two modules can mutually promote each other, meaning that the invariant prediction and the quality of \mathcal{E}_{learn} can both get better and better.
- We adopt feature selection to accomplish the conversion from $\Phi(X)$ to $\Psi(X)$.
- Under our raw feature setting, we simply let $\Phi(X) = M \odot X$ and $\Psi(X) = (1 - M) \odot X$.

⁵ Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Heterogeneous Risk Minimization. In ICML 2021.

The Heterogeneity Identification Module \mathcal{M}_c

Recall that for \mathcal{M}_c .

$$\Psi(X) \to \mathcal{M}_c \to \mathcal{E}_{learn}$$

we implement it with a convex clustering method. Different from other clustering methods, we cluster the data according to the **relationship** between $\Psi(X)$ and Y.

• Assume the j-th cluster centre $P_{\Theta_i}(Y|\Psi)$ parameterized by Θ_j to be a Gaussian around $f_{\Theta_i}(\Psi)$ as $\mathcal{N}(f_{\Theta_i}(\Psi), \sigma^2)$:

$$h_j(\Psi, Y) = P_{\Theta_j}(Y|\Psi) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(Y - f_{\Theta_j}(\Psi))^2}{2\sigma^2}\right)$$
(9)

- The empirical data distribution is $\hat{P}_N = \frac{1}{N} \sum_{i=1}^N \delta_i(\Psi, Y)$
- The target is to find a distribution in $\mathcal{Q} = \{Q | Q = \sum_{i \in [K]} q_i h_i(\Psi, Y), q \in \Delta_K\}$ to fit the empirical distribution best.
- The objective function of our heterogeneous clustering is:

$$\min_{Q \in \mathcal{Q}} D_{KL}(\hat{P}_N || Q) \tag{10}$$

The Invariant Prediction Module \mathcal{M}_p

Recall that for \mathcal{M}_p ,

$$\mathcal{E}_{\textit{learn}} o \mathcal{M}_{\textit{p}} o \Phi(\textit{X}) = \textit{M} \odot \textit{X}$$

The algorithm involves two parts, invariant prediction and feature selection.

• For invariant prediction, we adopt the regularizer⁶ as:

$$\mathcal{L}_{p}(M \odot X, Y; \theta) = \mathbb{E}_{\mathcal{E}_{tr}}[\mathcal{L}^{e}] + \lambda \operatorname{trace}(\operatorname{Var}_{\mathcal{E}_{tr}}(\nabla_{\theta} \mathcal{L}^{e}))$$
 (11)

- Restrict the gradient across environments to be the same.
- Only use invariant features.
- For feature selection, we adopt the continuous feature selection method that allows for continuous optimization of M:

$$\mathcal{L}^{e}(\theta, \mu) = \mathbb{E}_{P^{e}} \mathbb{E}_{M} \left[\ell(M \odot X^{e}, Y^{e}; \theta) + \alpha \|M\|_{0} \right]$$
 (12)

- ||M||₀ controls the number of selected features.
- Conduct continuous optimization as ⁷.

 $^{^6{\}rm Koyama},\,{\rm M.},\,\&$ Yamaguchi, S. (2021). When is invariance useful in an Out-of-Distribution Generalization problem ?

⁷Yamada, Y., Lindenbaum, O., Negahban, S., and Kluger, Y. Feature selection using stochastic gates, in ICMI 2020

The Mutual Promotion

ullet Insight: We should only use Ψ^* for Heterogeneity Identification.

Assumption (Heterogeneity Assumption from Information Theory)

Assume the pooled training data is made up of heterogeneous data sources: $P_{tr} = \sum_{e \in \text{supp}(\mathcal{E}_{tr})} w_e P^e$. For any $e_i, e_j \in \mathcal{E}_{tr}, e_i \neq e_j$, we assume

$$I_{i,j}^{c}(Y; \Phi^{*}|\Psi^{*}) \ge \max(I_{i}(Y; \Phi^{*}|\Psi^{*}), I_{j}(Y; \Phi^{*}|\Psi^{*}))$$
 (13)

where Φ^* is invariant feature and Ψ^* the variant. I_i represents mutual information in P^{e_i} and $I_{i,i}^c$ represents the cross mutual information between P^{e_i} and P^{e_j} takes the form of $I_{i,i}^{c}(Y;\Phi|\Psi) = H_{i,i}^{c}[Y|\Psi] - H_{i,i}^{c}[Y|\Phi,\Psi]$ and $H_{i,i}^{c}[Y] = -\int p^{e_i}(y) \log p^{e_j}(y) dy$.

- The mutual information $I_i(Y; \Phi^*) = H_i[Y] H_i[Y] \Phi^*$ can be viewed as the error reduction if we use Φ^* to predict Y rather than predict by nothing.
- The cross mutual information $I_{i,i}^{c}(Y;\Phi^{*})$ can be viewed as the error reduction if we use the predictor learned on Φ^* in environment e_i to predict in environment e: rather than predict by nothing.

Theorem (Why using only Ψ ?)

For $e_i, e_i \in \text{supp}(\mathcal{E}_{tr})$, assume that $X = [\Phi^*, \Psi^*]^T$ satisfying Invariance and Heterogeneity Assumption, where Φ^* is invariant and Ψ^* variant. Then we have $D_{KL}(P^{e_i}(Y|X)||P^{e_j}(Y|X)) < D_{KL}(P^{e_i}(Y|\Psi^*)||P^{e_j}(Y|\Psi^*))$

Experiment Results

Baselines:

- Empirical Risk Minimization(ERM): $\min_{\theta} \mathbb{E}_{P_{\Omega}}[\ell(\theta; X, Y)]$
- Distributionally Robust Optimization(DRO[1]): $\min_{\theta} \sup_{Q \in W(Q,P_0) < \rho} \mathbb{E}_Q[\ell(\theta; X, Y)]$
- Environment Inference for Invariant Learning(EIIL[2]):

$$\min_{\Phi} \max_{u} \sum_{e \in \mathcal{E}} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i) + \sum_{e \in \mathcal{E}} \lambda \|\nabla_{w|w=1.0} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i)\|_2$$
(14)

• Invariant Risk Minimization(IRM[3]) with environment \mathcal{E}_{tr} labels:

$$\min_{\Phi} \sum_{e \in \mathcal{E}_{tr}} \mathcal{L}^{e} + \lambda \|\nabla_{w|w=1.0} \mathcal{L}^{e}(w \odot \Phi)\|^{2}$$
 (15)

Evaluation Criterion:

- Mean_Error: Mean_Error = $\frac{1}{|\mathcal{E}_{tot}|} \sum_{e \in \mathcal{E}_{test}} \mathcal{L}^e$
- Std_Error: Std_Error = $\sqrt{\frac{1}{|\mathcal{E}_{rect}|-1}\sum_{e \in \mathcal{E}_{tect}}(\mathcal{L}^e \text{Mean_Error})^2}$
- Max_Error: Max_Error = max_{e∈E_{test}} L^e

Selection Bias

• Setting: $X=[\Phi^*,\Psi^*]^T\in\mathbb{R}^d$ and $Y=f(\Phi^*)+\epsilon$ and that $P(Y|\Phi^*)$ remains invariant across environments while $P(Y|\Psi^*)$ changes arbitrarily. We select data points according to a certain variable set $V_b \subset \Psi^*$:

$$\hat{P}(x) = \prod_{v_i \in V_h} |r|^{-5*|f(\phi^*) - sign(r) * v_i|}$$
(16)

where |r| > 1, $V_b \in \mathbb{R}^{n_b}$ and $\hat{P}(x)$ denotes the probability of point x to be selected.

- Training: sum = 2000 data points, where $\kappa = 95\%$ points from environment e_1 with a predefined r and $1 - \kappa = 5\%$ points from e_2 with r = -1.1.
- Testing: 10 environments with $r \in [-3, -2.7, -2.3, \dots, 2.3, 2.7, 3.0]$.

Some demonstrations:

- |r| eventually controls the strengths of the spurious correlation between V_h and Y, the larger |r|, the more biased the data are.
- sign(r) controls the direction of the spurious correlation between V_h and Y.

Selection Bias Results

表 2: Results in selection bias simulation experiments of different methods with varying selection bias r, and dimensions n_b and d of training data, and each result is averaged over ten times runs.

Scenario 1: varying selection bias rate r $(d = 10, n_b = 1)$										
r	r = 1.5			r = 1.9			r = 2.3			
Methods	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	
ERM	0.476	0.064	0.524	0.510	0.108	0.608	0.532	0.139	0.690	
DRO	0.467	0.046	0.516	0.512	0.111	0.625	0.535	0.143	0.746	
EIIL	0.477	0.057	0.543	0.507	0.102	0.613	0.540	0.139	0.683	
IRM(with \mathcal{E}_{tr} label)	0.460	0.014	0.475	0.456	0.015	0.472	0.461	0.015	0.475	
HRMs	0.465	0.045	0.511	0.488	0.078	0.577	0.506	0.096	0.596	
HRM	0.447	0.011	0.462	0.449	0.010	0.465	0.447	0.011	0.463	
		S	cenario 2: vary	ing dimension a	$(r = 1.9, n_E)$	= 0.1d)				
d	d = 10			d = 20			d = 40			
Methods	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	Mean_Error	Std_Error	Max_Error	
ERM	0.510	0.108	0.608	0.533	0.141	0.733	0.528	0.175	0.719	
DRO	0.512	0.111	0.625	0.564	0.186	0.746	0.555	0.196	0.758	
EIIL	0.507	0.102	0.613	0.543	0.147	0.699	0.542	0.178	0.727	
IRM(with \mathcal{E}_{tr} label)	0.456	0.015	0.472	0.484	0.014	0.489	0.500	0.051	0.540	
HRMs	0.488	0.078	0.577	0.486	0.069	0.555	0.477	0.081	0.553	
HRM	0.449	0.010	0.465	0.466	0.011	0.478	0.465	0.015	0.482	

Selection Bias Results

We visualize the differences between environments using Task2Vec⁸ as follows:

- ullet The quality of $\mathcal{E}_{\textit{learn}}$ becomes better.
- The quality of \mathcal{E}_{learn} is even better than the ground truth environments.

⁸Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C. C., Soatto, S., and Perona, P. Task2vec: Task embedding for meta-learning.

Anti-Causal Effect

• Setting: $X = [\Phi^*, \Psi^*]^T \in \mathbb{R}^d$ and firstly sample Φ^* from $\sum_{i=1}^k z_k \mathcal{N}(\mu_i, I)$ and $Y = \theta_\phi^T \Phi^* + \beta \Phi_1 \Phi_2 \Phi_3 + \mathcal{N}(0, 0.3)$. Then the spurious correlations between Ψ^* and Y are generated by anti-causal effect as

$$\Psi^* = \theta_{\psi} Y + \mathcal{N}(0, \sigma(\mu_i)^2) \tag{17}$$

• The larger the $\sigma(\mu_i)$ is, the weaker correlation between Ψ^* and Y.

表 3: Prediction errors of the anti-causal effect experiment. We design two settings with different dimensions of Φ^* and Ψ^* as n_ϕ and n_ψ respectively. The results are averaged over 10 runs.

Scenario 1: $n_{\phi} = 9, \ n_{\psi} = 1$										
e	Training environments			Testing environments						
Methods	e ₁	e ₂	e ₃	e4	e 5	e 6	e7	e 8	e 9	e10
ERM	0.290	0.308	0.376	0.419	0.478	0.538	0.596	0.626	0.640	0.689
DRO	0.289	0.310	0.388	0.428	0.517	0.610	0.627	0.669	0.679	0.739
EIIL	0.075	0.128	0.349	0.485	0.795	1.162	1.286	1.527	1.558	1.884
IRM(with \mathcal{E}_{tr} label)	0.306	0.312	0.325	0.328	0.343	0.358	0.365	0.374	0.377	0.392
HRM ^s	1.060	1.085	1.112	1.130	1.207	1.280	1.325	1.340	1.371	1.430
HRM	0.317	0.314	0.322	0.318	0.321	0.317	0.315	0.315	0.316	0.320
Scenario 2: $n_{\phi}=5,\ n_{\psi}=5$										
e	Training environments			Testing environments						
Methods	e ₁	e ₂	e 3	e4	e 5	e 6	e7	e 8	e 9	e10
ERM	0.238	0.286	0.433	0.512	0.629	0.727	0.818	0.860	0.895	0.980
DRO	0.237	0.294	0.452	0.529	0.651	0.778	0.859	0.911	0.950	1.028
EIIL	0.043	0.145	0.521	0.828	1.237	1.971	2.523	2.514	2.506	3.512
IRM(with \mathcal{E}_{tr} label)	0.287	0.293	0.329	0.345	0.382	0.420	0.444	0.461	0.478	0.504
HRM ^s	0.455	0.463	0.479	0.478	0.495	0.508	0.513	0.519	0.525	0.533
HRM	0.316	0.315	0.315	0.330	0.320	0.317	0.326	0.330	0.333	0.335

Real-World Datasets

Datasets:

- Car Insurance⁹
- People Income Prediction¹⁰
- House Price Prediction 11

- for the car insurance prediction. Left income prediction. sub-figure shows the training results for 5 settings and the right shows their corresponding testing results.
- (a) Training and testing accuracy (b) Mis-Classification Rate for the (c) Prediction error for the house price prediction. RMSE refers to the Root Mean Square Error.
- 图 1: Results of real-world datasets, including training and testing performance for five methods.

⁹https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction 11 https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

¹⁰Dua, D. and Graff, C. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

2 Invariance-Based Optimization

3 Limitations

5 Kernelized Heterogeneous Risk Minimization(KerHRM)

Limitations of HRM

- $\Phi(X) = M \odot X$ and $\Psi(X) = (1 M) \odot X$
- HRM can only deal with raw feature data, when features are mixed (e.g. $X = H[S, V]^{T}$) such feature selection procedure will fail.

The Goal of KerHRM: Extend HRM to Complicated Data

Preliminaries

• Kernel function: A kernel is a function κ that for all $x, z \in \mathcal{X}$ satisfies

$$\kappa(x, z) = \langle \phi(x), \phi(z) \rangle \tag{18}$$

where ϕ is a mapping from \mathcal{X} to an inner product feature space \mathcal{H} : $\phi: x \mapsto \phi(x) \in \mathcal{H}$.

- Judgement: Gram 矩阵 $(K_{i,j} = \kappa(x_i, x_i))$
- Linear kernel: $\kappa_{lin}(x, y) = x^T y$
- Gaussian-RBF kernel: $\kappa(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{2})$

$$\phi(x_j) = \exp(-x_j^2)[1, \sqrt{\frac{2}{1!}}x_j, \sqrt{\frac{2^2}{2!}}x_j^2, \sqrt{\frac{2^3}{3!}}x_i^3 \dots]$$
 (19)

• Representer Theorem: Consider linear model differentiable with losses ℓ_i and L_2 regularizer:

$$\arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{n} \ell_i(\mathbf{w}^T \mathbf{x}_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
 (20)

Any solution w^* can be written as a linear combination of features x_i :

$$w^* = \frac{1}{\lambda} \sum_{i=1}^n \frac{\partial \ell_i}{\partial w} (w^T x_i) x_i = \sum_{i=1}^n z_i x_i = X^T z$$
 (21)

Preliminaries: Ridge Regression from Kernel Perspective

• Ridge Regression Objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|Xw - Y\|^2 + \frac{\lambda}{2} \|w\|^2$$
 (22)

The minimum is given by $w = (X^TX + \lambda I)_{d \times d}^{-1} X^T Y = X^T (XX^T + \lambda I)_{n \times n}^{-1} Y$

ullet For new data $\tilde{X} \in \mathbb{R}^{t \times d}$, the prediction is:

$$\tilde{Y} = \tilde{X}w \in \mathbb{R}^{t}
= \tilde{X}X^{T}(XX^{T} + \lambda I)Y
= \tilde{K}_{t \times n}(K + \lambda I)_{n \times n}^{-1}Y$$
(23)

•
$$\phi(x), \phi(z)$$
 is hidden in $\kappa(x, z)$

• Another formulation: according to the representer theorem, we have $w=\sum_{i=1}^n z_i x_i$, then the prediction becomes:

$$\tilde{Y}(x) = \sum_{i=1}^{n} z_i \kappa(x, x_i)$$
(24)

Kernel can measure the similarity between data.

• From MLP to Linear:

$$f(x, \mathbf{w}) \approx f(x, w_0) + \nabla_w f(x, w_0)^T (\mathbf{w} - w_0)$$
(25)

- lazy training makes such Taylor expansion not approximate too much
- $\bullet \nabla_w f(x, w_0)^T \in \mathbb{R}^{n \times p}$
- Neural Tangent Kernel(κ_{NTK}):

$$\kappa_{NTK}(x_i, x_j) = \mathbb{E}_{w_0} \left[\langle \nabla_w f(x_i, w_0), \nabla_w f(x_j, w_0) \rangle \right]$$
(26)

- \mathbb{E}_{w_0} is not important, since $w w_0$ is quite tiny due to lazy training
- X is mapped to $\nabla_w f(X, w_0)^T \in \mathbb{R}^{n \times p}$. Define $\Phi(X)$ as:

$$\Phi(X)^T = \nabla_w f(X, w_0)^T \in \mathbb{R}^{n \times p}$$
(27)

Idea: Convert the input space to Neural Tangent Feature Space.

Kernelized Heterogeneous Risk Minimization(KerHRM¹²)

• Step 0:

$$f_w(X) \approx f_{w_0}(X) + \nabla_w f_{w_0}(X)^T (w - w_0)$$
 (28)

$$= f_{w_0}(X) + \Phi(X)^T (w - w_0)$$
 (29)

$$\approx f_{w_0}(X) + USV^T(w - w_0) \tag{30}$$

$$= f_{w_0}(X) + \Psi(X) \left(V^{\mathsf{T}}(w - w_0) \right) = f_{w_0}(X) + \Psi(X)\theta$$
 (31)

where $\Psi(X) \in \mathbb{R}^k$ is called the reduced Neural Tangent Features(Reduced NTFs), which convert the complicated data, non-linear setting into raw feature data, linear setting.

33 / 43

¹² Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.

Algorithms

• Step 1: \mathcal{M}_p Invariant Learning with Reduced NTFs $\Psi(X)^{13}$:

$$\theta_{\mathit{inv}} = \arg\min_{\theta} \sum_{e \in \mathcal{E}_{\mathit{learn}}} \mathcal{L}^{e}(\theta; \Psi, Y) + \alpha \mathsf{Var}_{\mathcal{E}_{\mathit{learn}}}(\nabla_{\theta} \mathcal{L}^{e})$$
 (32)

The obtained θ_{inv} captures the invariant component in data, which can be used to wipe out the invariant part inside data.

- Step 2: Variant Component Decomposition with θ_{inv} .
 - The initial similarity of two data points x_i and x_j :

$$\kappa_c^{(0)}(x_i, x_j) = \phi(x_i)^\mathsf{T} \phi(x_j) = \langle U_i S, U_j S \rangle \tag{33}$$

• Wipe out the invariant component with θ_{inv} :

$$\Psi_{V}^{(t+1)}(x_i) \leftarrow U_i S - \left\langle U_i S, \theta_{inv}^{(t)} \right\rangle \theta_{inv}^{(t)} / \|\theta_{inv}^{(t)}\|^2 \tag{34}$$

• Obtain a new kernel for clustering:

$$\kappa_c^{(t+1)}(x_i, x_j) = \Psi_V^{(t+1)}(x_i)^T \Psi_V^{(t+1)}(x_j)$$
(35)

34 / 43

¹³Here we adopt the regularizer proposed in 'Masanori Koyama, Shoichiro Yamaguchi. When is invariance useful in an Out-of-Distribution Generalization problem ?'

Algorithms

- Step 3: \mathcal{M}_c Heterogeneity Exploration with κ_c
 - Capture the different relationship between Ψ_V^* and Y.
- ullet Use $P(Y|\Psi_V)$ as the cluster centre: assume the j-th cluster centre $P_{\Theta_i}(Y|\Psi_V(X))$ to be a Gaussian around $f(\Theta_i;\Psi_V(X))$ as:

$$h_j(\Psi_V(X), Y) = P_{Theta_j}(Y|\Psi_V(X)) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-(Y - f(\Theta_j; \Psi_V(X)))^2/2]\sigma^2)$$
 (36)

 Propose on convex clustering algorithm, which finds a mixture distribution in distribution set Q defined as:

$$Q = \{Q : Q = \sum_{k \in [K]} q_j h_j\}$$
(37)

and gives the objective function:

$$\min_{Q \in \mathcal{Q}} D_{KL}(\hat{P}_N || Q) \Leftrightarrow \min_{\Theta, \mathbf{q}} \left\{ \mathcal{L}_c = -\frac{1}{N} \sum_{i \in [N]} \log \left[\sum_{j \in [K]} q_j h_j(\psi_V(x_i), y_i) \right] \right\}$$
(38)

Baselines:

- Empirical Risk Minimization(ERM): $\min_{\theta} \mathbb{E}_{P_0}[\ell(\theta; X, Y)]$
- Distributionally Robust Optimization(DRO[1]): $\min_{\theta} \sup_{Q \in W(Q, P_Q) \leq \rho} \mathbb{E}_Q[\ell(\theta; X, Y)]$
- Environment Inference for Invariant Learning(EIIL[2]):

$$\min_{\Phi} \max_{u} \sum_{e \in \mathcal{E}} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i) + \sum_{e \in \mathcal{E}} \lambda \|\nabla_{w|w=1.0} \frac{1}{N_e} \sum_{i} u_i(e) \ell(w \odot \Phi(x_i), y_i)\|_2$$
(39)

- Heterogeneous Risk Minimization
- Invariant Risk Minimization(IRM[3]) with environment \mathcal{E}_{tr} labels:

$$\min_{\Phi} \sum_{e \in \mathcal{E}_{tr}} \mathcal{L}^{e} + \lambda \|\nabla_{w|w=1.0} \mathcal{L}^{e}(w \odot \Phi)\|^{2}$$
(40)

Simulation: Classification with Spurious Correlation

Data Generation:

$$S|Y \sim \mathcal{N}(Y1, \sigma_s^2 I_d), \ V|A \sim \mathcal{N}(A1, \sigma_v^2 I_d)$$
 (41)

where the label $Y \in \{+1, -1\}$ and the spurious attribute $A \in \{+1, -1\}$. Each environment is characterized by its bias rate $r \in (0, 1]$ (for 100 * r% data, A = Y, for others, A = -Y).

$$X = H[S, V]^{T} \in \mathbb{R}^{2d} \tag{42}$$

where $H \in \mathbb{R}^{2d \times 2d}$ is a random orthogonal matrix.

• Settings: for training, $r_1 = 0.9$, $r_2 = r$; for testing, $r_3 = 0.1$.

37 / 43

Table 1: Results in classification simulation experiments of different methods with varying bias rate r_2 , and scrambled matrix H, and each result is averaged over ten times runs.

r_2	$r_2 =$	0.70	$r_2 =$	0.75	$r_2 = 0.80$		
Methods	Train_Acc	Test_Acc	Train_Acc	Test_Acc	Train_Acc	Test_Acc	
ERM	0.850	0.400	0.862	0.325	0.875	0.254	
DRO	0.857	0.473	0.870	0.432	0.883	0.395	
EIIL	0.927	0.523	0.925	0.470	0.946	0.463	
HRM	0.836	0.543	0.832	0.519	0.852	0.488	
IRM(with \mathcal{E}_{tr} label)	0.836	0.606	0.853	0.544	0.877	0.401	
KerHIL ^s	0.764	0.671	0.782	0.632	0.663	0.619	
KerHIL	0.759	0.724	0.760	0.686	0.741	0.693	

Simulation: Colored MNIST

Data Generation 14:

- Firstly, a binary label Y is assigned to each images according to its digits: Y = 0 for digits $0 \sim 4$ and Y = 1 for digits $5 \sim 9$.
- Secondly, we sample the color id $\it C$ by flipping $\it Y$ with probability $\it e$ and therefore forms environments, where $\it e=0.1$ for the first training environment, $\it e=0.2$ for the second training environments and $\it e=0.9$ for the testing environment.
- Thirdly, we induce noisy labels by randomly flipping the label Y with probability 0.2.

Settings:

- For training, $e_1 = 0.1, e_2 = 0.2$.
- For testing, *e*₃ = 0.9.
- The correlation between Color and Label is inverse between training and testing.

¹⁴Martin Arjovsky et al. Invariant Risk Minimization

Surprising Results

• D_{KL} denotes $KL(P_1(Y|C)||P_2(Y|C))$

- Background of OOD Generalization problem
- 2 Invariance-Based Optimization
- 3 Limitations
- **5** Kernelized Heterogeneous Risk Minimization(KerHRM)
- 6 Conclusion

Conclusion

As for HRMs, there exist some drawbacks:

- The convergence guarantee of the whole framework, especially the frontend, still remains ambiguous.
- Extend to more complicated data?

As for the OOD Generalization problem, there exist some open problems

- How to formulate the OOD Generalization problem? How to justify its learnability?
- Environment complexity of methods for OOD Generalization.
- Real datasets to evaluate the effect of methods for OOD Generalization?
- Incorporate pre-trained models to deal with complicated data?

Some other materials

- Anual Progress Report on Out-of-Distribution Generalization¹⁵
- Stable Learning and its Causal Implication¹⁶

¹⁵http://pengcui.thumedialab.com/papers/OOD_APR_valse2021.pdf

¹⁶http://pengcui.thumedialab.com/papers/Stable%20Learning-tutorial-valse2021.pdf

Contact

Jiashuo Liu

- **)** (+86) 13015155336
- ♥ @liujiashuo77
- liujiashuo77@gmail.com
- A ljsthu.github.io
- https://github.com/LJSthu