Topic 25 - One-Way Random Effects Models

STAT 525 - Fall 2013

STAT 525

Outline

- One-way Random effects
 - Model
 - Variance component estimation
 - Confidence intervals

Topic 25

STAT 525

Random Effects vs Fixed Effects

- Consider factor with numerous levels
- Want to draw inference **on population of levels**, not specifically concerned with comparing observed levels
- Clear example of difference (1=fixed, 2=random)
 - 1. Compare reading ability of 10 2nd grade classes in Indiana Go to each of the r=10 specific classes of interest and randomly choose n students from each classroom.
 - 2. Compare variability **among all** 2nd grade classes in Indiana **Randomly choose** r=10 classes from population of 2nd grade classes. Then randomly choose n students from each classroom.
- Inference broader in random effects case
- \bullet Levels chosen randomly \rightarrow inference on pop of levels

STAT 525

Data for One-way Random Effects Model

- Exact same data framework as fixed effects case.....
- Y is the response variable
- Factor with levels i = 1, 2, ..., r
- Y_{ij} is the j^{th} observation from cell i
- Consider $j = 1, 2, ..., n_i$
- but different statistical model.

Topic 25

3

Topic 25

Example Page 1036

- Interested in studying the <u>variability</u> in the rating of job applicants
- <u>Two</u> sources of variability
 - Variability among applicants
 - Variability among personnel officers
- Y is the job applicant rating
- Factor: officer/interviewer (r = 5)
- Interviewers selected <u>at random</u> from population of personnel officers (assume population large)
- Twenty applicants randomly and equally assigned (n = 4) to each personnel officer

Topic 25

```
options nocenter;
data a1; infile 'u:\.www\datasets525\CH25TA01.txt';
   input rating officer;
proc print data=a1; run;
title1 'Plot of the data';
symbol1 v=circle i=none c=black;
                                       ***Scatterplot;
proc gplot data=a1;
   plot rating*officer/frame;
proc means data=a1; output out=a2 mean=avrate;
   var rating; by officer;
title1 'Plot of the means';
symbol1 v=circle i=join c=black;
proc gplot data=a2;
                                      ***Means plot;
   plot avrate*officer/frame;
run;
```

SAS Commands

Topic 25

STAT 525

Topic 25

Output

0bs	rating	officer	Obs	rating	officer
1	76	1	13	74	4
2	65	1	14	71	4
3	85	1	15	85	4
4	74	1	16	89	4
5	59	2	17	66	5
6	75	2	18	84	5
7	81	2	19	80	5
8	67	2	20	79	5
9	49	3			
10	63	3			
11	61	3			
12	46	3			

STAT 525

Topic 25

Random Effects Model

• Expressed numerically

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

$$\mu_i \sim N(\mu, \sigma_\mu^2)$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

 μ_i and ε_{ij} independent

- Implies $Y_{ij} \sim N(\mu, \sigma_{\mu}^2 + \sigma^2)$
- $Cov(Y_{ij}, Y_{ik}) = \sigma_{\mu}^2$ Correlation between some obs
- Also called *Model II*

Topic 25

STAT 525

Random Factor Effects Model

• Statistical model is

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

 μ - population mean $\tau_i \sim N(0, \sigma_\mu^2)$ $\varepsilon_{ij} \sim N(0, \sigma^2)$

- There are <u>TWO</u> parameters/variances in each model
- Cell means are random variables, not parameters

STAT 525

Topic 25

Quantities of Interest

• Often interested in the percent of total variability due to factor

$$\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2} = \frac{\sigma_{\mu}^2}{\sigma_Y^2}$$

• Is also called the <u>intraclass correlation coefficient</u> because it describes the correlation between two observations from the same factor level

$$\rho_{IC} = \frac{\text{Cov}(Y_{ij}, Y_{ik})}{\sqrt{\text{Var}(Y_{ij})\text{Var}(Y_{ik})}} = \frac{\sigma_{\mu}^2}{\sigma_Y^2}$$

• Depending of example, may want this value small or large

Least Squares Approach: ANOVA Table and EMS

- Terms and layout of ANOVA table the <u>same</u> as that in the fixed effects case
- The expected means squares (EMS) are <u>different</u> because of the different model assumptions
- This also means the hypotheses being tested are different

Topic 25

13

STAT 525

Likelihood Approach: General Mixed Effect Model

- Cov(Y) = ZGZ' + R
- If $R = \sigma^2 I$ and Z = 0, back to standard linear model
- \bullet SAS Proc Mixed allows one to specify G and R
- G through RANDOM, R through REPEATED

Likelihood Approach: General Mixed Effect Model

• Consider expressing the model

$$Y = X\beta + Z\delta + \varepsilon$$

 β is a vector of fixed-effect parameters δ is a vector of random-effect parameters ε is the error vector

- δ and ε assumed uncorrelated
 - means 0
 - covariance matrices G and R

Topic 25

STAT 525

Topic 25

Likelihood Approach: General Mixed Effect Model

• For known G and R,

$$\hat{\beta} = (X'\Sigma^{-1}X)^{-1} X'\Sigma^{-1}Y$$
$$\hat{\delta} = GZ'\Sigma^{-1}(Y - X\hat{\beta})$$

- For unknown G and R, their REML estimates can be substituted into these expressions
- REML uses likelihood to take into account loss of DF

$$-2\log L = (n-p)\log(2\pi) + \log(|\Sigma|) + r'\Sigma^{-1}r + \log(|X'\Sigma^{-1}X|)$$
where $r = Y - X\hat{\beta}$

Topic 25

15

10

Topic 25

Random Effects Model

• The hypotheses are:

 H_0 : $\sigma_{\mu}^2 = 0$ H_a : $\sigma_{\mu}^2 > 0$

• Same breakdown of Total SS but

 $E(MSE) = \sigma^2$ $E(MSTR) = \sigma^2 + n\sigma_{\mu}^2$

- Under H_0 , $F_0 \sim F_{\alpha,r-1,n_T-r}$
- Same F test as before
- Conclusion pertains to entire population of levels

Topic 25

SAS Commands

```
proc glm data=a1;
    class officer;
    model rating=officer;
    random officer;
run;

proc mixed data=a1 cl;
    class officer;
    model rating=;
    random officer/vcorr;
run;
```

Model Estimates

- Typically interested in estimating variances and functions of these variances
- Under ANOVA/least squares approach, use mean squares

$$\begin{split} \hat{\sigma}^2 &= \text{MSE} \\ \hat{\sigma}_{\mu}^2 &= (\text{MSTR} - \text{MSE})/\text{n} \\ \text{If unbalanced, replace } n \text{ with} \\ n_0 &= ((\sum n_i)^2 - \sum n_i^2)/((r-1)\sum n_i) \end{split}$$

- Under this approach, estimate of σ_{μ}^2 can be negative
 - Supports H_0 so use zero as estimate?
 - If σ_{μ}^2 small, chance variation can result in negative estimate
 - Bayesian approach (nonnegative prior)
 - Residual maximum likelihood (nonnegative restriction)

Topic 25

STAT 525

19

Output

```
Sum of
Source
                       Squares
                                Mean Square F Value Pr > F
Model
                 4 1579.700000
                                 394.925000
                                                5.39 0.0068
                   1099.250000
                                  73.283333
Corrected Total 19 2678.950000
             Coeff Var
R-Square
                           Root MSE
                                       rating Mean
0.589671
              11.98120
                           8.560569
                                          71.45000
                     Type I SS Mean Square F Value Pr > F
Source
officer
                   1579.700000
                                 394,925000
                                                5.39 0.0068
                DF Type III SS Mean Square F Value Pr > F
Source
                 4 1579.700000
                                 394.925000
officer
                                                5.39 0.0068
Source
                       Type III Expected Mean Square
officer
                       Var(Error) + 4 Var(officer)
```

Topic 25

20

Output

Estimat	ed V Corre	elation Ma [.]	trix for	Subject 1
Row	Col1	Col2	Col3	Col4
1	1.0000	0.5232	0.5232	0.5232
2	0.5232	1.0000	0.5232	0.5232
3	0.5232	0.5232	1.0000	0.5232
4	0 5232	0 5232	0 5232	1 0000

Covariance Parameter Estimates

Cov Parm	Estimate	Alpha	Lower	Upper
officer	80.4104	0.05	24.4572	1498.97
Residual	73.2833	0.05	39.9896	175.54

Fit Statistics

-2 Res Log Likelihood	145.2
AIC (smaller is better)	149.2
AICC (smaller is better)	150.0
BIC (smaller is better)	148.5

Topic 25

Confidence intervals

• σ^2 : Page 1041

$$\frac{r(n-1)\text{MSE}}{\sigma^2} \sim \chi_{r(n-1)}^2$$
$$\frac{r(n-1)\text{MSE}}{\chi_{\alpha/2,r(n-1)}^2} \le \sigma^2 \le \frac{r(n-1)\text{MSE}}{\chi_{1-\alpha/2,r(n-1)}^2}$$

• σ_{μ}^2 : Page 1043

$$\frac{(r-1)\text{MSTR}}{\sigma^2 + n\sigma_{\mu}^2} \sim \chi_{r-1}^2$$

SC

$$f(\sigma_{\mu}^2) = \frac{\sigma^2 + n\sigma_{\tau}^2}{n(r-1)}\chi_{r-1}^2 - \frac{\sigma^2}{nr(n-1)}\chi_{r(n-1)}^2$$

No closed form expression for this distribution Satterthwaite Procedure page 1043 (Proc Mixed) MLS Procedure page 1045

Topic 25

STAT 525

Confidence intervals

• Intraclass Correlation Coefficient : Page 1040

Uses ratio of previous two χ^2 distributions (i.e., F dist)

$$\frac{L}{L+1} \le \frac{\sigma_{\mu}^2}{\sigma^2 + \sigma_{\mu}^2} \le \frac{U}{U+1}$$

$$L = \frac{1}{n} \left(\frac{MS_{Trt}}{MS_E F_{\alpha/2,a-1,N-a}} - 1 \right)$$

$$U = \frac{1}{n} \left(\frac{MS_{Trt}}{MS_E F_{1-\alpha/2,a-1,N-a}} - 1 \right)$$

$$\overline{Y}_{\cdot \cdot} = \frac{1}{r} (\overline{Y}_{1 \cdot} + \overline{Y}_{2 \cdot} + \dots + \overline{Y}_{r \cdot})$$

$$\overline{Y}_{i.} \sim N\left(\mu, \sigma_{\mu}^2 + \frac{\sigma^2}{n}\right)$$

STAT 525

Background Reading

- KNNL Section 25.1
- knnl1036.sas
- KNNL Sections 25.2-25.6

Topic 25

23

Topic 25