or equivalently by

$$||f|| = \inf\{\lambda \in \mathbb{R} \mid ||f(x)|| \le \lambda ||x||, \text{ for all } x \in E\}.$$

Here because E may be infinite-dimensional, sup can't be replaced by max and inf can't be replaced by min. It is not hard to show that the map $f \mapsto ||f||$ is a norm on $\mathcal{L}(E; F)$ satisfying the property

$$||f(x)|| \le ||f|| \, ||x||$$

for all $x \in E$, and that if $f \in \mathcal{L}(E; F)$ and $g \in \mathcal{L}(F; G)$, then

$$||g \circ f|| \le ||g|| \, ||f|| \, .$$

Operator norms play an important role in functional analysis, especially when the spaces E and F are complete.

9.4 Inequalities Involving Subordinate Norms

In this section we discuss two technical inequalities which will be needed for certain proofs in the last three sections of this chapter. First we prove a proposition which will be needed when we deal with the condition number of a matrix.

Proposition 9.11. Let $\| \|$ be any matrix norm, and let $B \in M_n(\mathbb{C})$ such that $\|B\| < 1$.

(1) If $\| \|$ is a subordinate matrix norm, then the matrix I + B is invertible and

$$||(I+B)^{-1}|| \le \frac{1}{1-||B||}.$$

(2) If a matrix of the form I + B is singular, then $||B|| \ge 1$ for every matrix norm (not necessarily subordinate).

Proof. (1) Observe that (I + B)u = 0 implies Bu = -u, so

$$||u|| = ||Bu||.$$

Recall that

$$||Bu|| \le ||B|| \, ||u||$$

for every subordinate norm. Since ||B|| < 1, if $u \neq 0$, then

$$||Bu|| < ||u||,$$

which contradicts ||u|| = ||Bu||. Therefore, we must have u = 0, which proves that I + B is injective, and thus bijective, i.e., invertible. Then we have

$$(I+B)^{-1} + B(I+B)^{-1} = (I+B)(I+B)^{-1} = I,$$