Exercice 55: – Quel est le volume d'une mole d'un gaz parfait à température ambiante (25° C)?

$$\frac{22.42}{273.15} = \frac{x}{298.15} \qquad \underline{x = 24.47 \text{ L}}$$

Exercice 56: – Un réacteur de 10 L contient de l'azote sous une pression de 4,15 atm et à 20° C. Quelle est la masse d'azote qui est contenue dans ce réacteur?

En atm:
$$n = \frac{pV}{RT} = \frac{4.15 \cdot 10}{0.08206 \cdot 293.15} = 1.725 \text{ moles N}_2$$

En Pa:
$$n = \frac{pV}{RT} = \frac{4.205 \cdot 10^5 \cdot 10^{-2}}{8.314 \cdot 293.15} = 1.725 \text{ moles N}_2$$

$$M_{\rm N_2} = 28.014 \text{ g/mol}$$
 1.725 · 28.014 = 48.32 g

Exercice VIII.1.: Le mercure, Hg, est un métal liquide à 25° C. A cette température, la masse de 50 mL correspond à 0,677 kg. Quelle est la masse volumique de Hg à 25° C?

$$\rho = \frac{m}{V} \quad \text{kg m}^{-3} \qquad \rho = \frac{0.677}{5x10^{-5}} = \frac{1.354 \text{ x } 10^4 \text{ kg m}^{-3}}{5x10^{-2}}$$

$$\rho = \frac{0.677}{5x10^{-2}} = \frac{13.54 \text{ kg dm}^{-3}}{5x10^{-2}} \text{ (g/cm}^3)$$

Exercices and Corrigés VIII. 2-4

2. Calculer la pression exercée par 25 g de vapeur d'eau confinée à un volume de 18 L à 100° C.

$$pV = nRT$$
 $p = nRT / V$
calcul de n : 25 g d'eau : 25/18.015 = 1.388 moles $T = 373.15 \text{ K}$
 $p = (1.388 \times 0.08206 \times 373.15) / 18 = 2.36 \text{ atm}$ $(2.39 \times 10^5 \text{ Pa})$

b. Si cette vapeur était condensée en eau liquide à 25° C, quel serait le volume occupé par l'eau ainsi obtenue?

Avec une masse volumique de 1 g/ cm³ pour $H_2O(l)$: V = 0.025 L

3. Remplisser le tableau suivant: $N_A = 6.022 \times 10^{23}$ $n = m / M = \text{nombre d'atomes}/N_A$

Masse de Na (g)	Nombre d'atomes de Na
22.99 x 3.5 = 80.47	$3.5 \times N_A = 2.1 \times 10^{24}$
750	$32.6 \times N_A = 1.96 \times 10^{25}$
$22.99 \times 1.66 \times 10^{-3} = 0.038$	1 x 10 ²¹
$22.99 \times 10^{-4} = 2.299 \times 10^{-3}$	$10^{-4} \times N_A = 6.022 \times 10^{19}$
	22.99 x 3.5 = 80.47 750 22.99 x 1.66 x 10 ⁻³ = 0.038

4. La réaction suivante (non-équilibrée!) est une réaction de combinaison:

$$P_4(s) + Br_2(l) \longrightarrow PBr_5(s)$$

Quelle est la masse de pentabromure de phosphore formée si on chauffe 100 g de phosphor avec 80 g de dibrome dans un recipient fermé?

- a. Établir équation-bilan: $P_4(s) + 10 Br_2(l) \longrightarrow 4 PBr_5(s)$
- b. Calcule des moles: 100 g P: $100 \text{ g} / 30.974 \text{ g mol}^{-1} = 3.23 \text{ moles P}$ 0.807 moles P_4

80 g Br₂:
$$80g / 159.808g \text{ mol}^{-1} = 0.5 \text{ moles Br}_2$$

- c. Trouver le réactif limitant: 0.5 moles Br₂
- d. 0.5 (= 10/20) moles $Br_2 + 0.05$ (= 1/20) moles P_4 donnent 0.2 (= 4/20) moles PBr_5
- e. 0.2 moles PBr_5 : 0.2 x 430.494 = 86.1 g PBr_5

VIII.5a.: Quel est le titre massique d'une solution de 4.5 g de NaCl dans 50 ml de solution?

$$T = (4.5 \times 1000) / 50 = 4.5 \times 20 = 90 \text{ g} / 1$$

VIII.5b.: Il faut quelle masse de glucose, $C_6H_{12}O_6$, pour préparer un volume V = 100 ml de concentration massique: T = 1.8 g/L? Quelle est la quantité de matière exprimée en mol?

1.8 g/L =
$$0.18$$
 g / 0.1 L
 $M = 180.15$ g/mol 0.18 / $180.15 = 1$ x 10^{-3} mol

VIII.6a.: Quel est le pourcentage massique d'une solution de 4.5 g de NaCl dans 50 g de solution?

$$(4.5 \times 100) / 50 = 9 \text{ g} \quad 9\text{g}/100\text{g} = 0.09 \quad \underline{9 \%}$$

VIII.6b.: La formule brute de la vitamine B₁₂ est C₆₃H₉₀O₁₄PCo. Calculer le pourcentage massique du cobalt dans la vitamine B₁₂. Combien y a-t-il de grammes de cobalt dans 6 mg de Vitamine B₁₂ (la dose quotidienne recommandée aux Etats-Unis)?

$$M_{\rm B12} = 1161.306$$
 $M_{\rm co} = 58.933$ $58.933/1161.306 = 0.0507$ 5.07% $6 \, \rm mg \, x \, 0.0507 = 0.304 \, mg$

VIII.7a.: Quelle est la molarité d'une solution de 4.5 g de NaCl dans 50 ml de solution?

$$M_{\text{NaCl}} = 58.44$$
 (4.5 x 1000)/50 = 90 g pro litre 90 / 58.44 = 1.54 mol/L (M)

VIII.7b.: Une tasse de café (4 tasses = 0,946 L) peut contenir jusqu'à 300 mg de caféine, $C_8H_{10}N_4O_2$. Calculer la molarité de la caféine dans une tasse de café.

$$0.946 / 4 = 0.2365 L$$
 $0.3g x 1 / 0.2365 = 1.27 g / L$
 $1.27 / 194.194 = 6.5 x 10^{-3} mol / L$ (M)

VIII.8a.: Quelle est la molalité d'une solution de 4.5 g de NaCl dans 50 g de solvant?

$$(4.5 \times 1000) / 50 = 90 \text{ g} 90/58.44 = 1.54 \text{ mol}$$
 1.54 mol/kg

VIII.8b.: Combien de grammes de I₂ faut-il ajouter à 725 mL de sulfure de carbone, CS₂, (=1,261 g/mL) pour obtenir une solution d'une molalité de I₂ de 0,236 mol kg⁻¹?

masse de
$$CS_2$$
: $(1.261 \times 0.725) / 1 = 0.914 \text{ kg}$
la molalité, b : $0.236 \text{ mol/kg} \times 0.914 \text{ kg} = n$ $n = 0.216 \text{ mol} \text{ I}_2$
 $M = 253.81 \text{ g/mol}$ $253.81 \times 0.216 = \underline{54.82 \text{ g I}_2}$

VIII.9a.: Quelle est la fraction molaire de NaCl dans une solution de 20 g de NaCl dans 50 g d'eau ?

20g NaCl :
$$20 / 58.44 = 0.342$$
 moles $50 \text{ g H}_2\text{O}$: $50 / 18.015 = 2.78$ moles $0.342 / (0.342 + 2.78) = \underline{0.1096}$ 10.96%

VIII.9b.: Décrire comment vous procéderiez pour préparer 1 kg d'une solution aqueuse d'acétone, CH₃COCH₃, dans laquelle la fraction molaire de 1'acétone est égale à 0,14.

Exemple: 1 mole d'acétone: 0.14 = 1/(x+1) x=(1-0.14)/0.14 = 6.143Pour 1 mole CH₃COCH₃ (58.08 g) on a 6.143 moles H₂O (110.666 g). solution totale de 58.08 + 110.666 = 168.746 g Pour 1 kg solution: $(58.08 \times 1000)/(168.746) = 344.19$ g 344.19 g acétone dans (1000 - 344.19) = 655.81 g H₂O

VIII.10a.: 155.3 g d'un échantillon d'eau contiennent 1.7 x 10⁻¹ mg de phosphates. Quelle est la concentration en ppm / ppb?

$$(1.7 \times 10^{-4} / 155.3) \times 10^{6} = 1.095 \text{ ppm}$$

 $(1.7 \times 10^{-4} / 155.3) \times 10^{9} = 1.095 \times 10^{3} \text{ ppb}$

VIII. 10b.: A convertir en %: 325 ppm / 12 ppb $325 \text{ ppm} = 325 \times 10^{-6} \times 100 = \underline{3.25 \times 10^{-2} \%}$ $12 \text{ ppb} = 12 \times 10^{-9} \times 100 = \underline{1.2 \times 10^{-6} \%}$

Corrigés VIII. 11-14

11. Quel est le volume occupé par 12.04 x 10²³ molécules d'azote à 10° C?

Corr.: a. 12.04 x
$$10^{23} / 6.022$$
 x $10^{23} = 2$ mol N₂

- b. $283.15 \text{ K} \times 22.4 \text{ L} / 273.15 \text{ K} = 23.22 \text{ L/mol}$
- c. 23.22 L/mol x 2 mol = 46.44 L
- 12. En attaquant du fer avec du chlorure d'hydrogène, on produit 672 litres d'hydrogène. La réaction se déroule à 35° C et du chlorure de fer(II) est l'autre produit. Quelle masse de fer a-t-il fallu?
 - Corr.: a. réaction chimique équilibrée: Fe + $2 \text{ HCl} \rightarrow \text{H}_2 + \text{FeCl}_2$
 - b. V_{gaz} à 35°C: 308.15 K x 22.4 L mol⁻¹ / 273.15 K = 25.27 L mol⁻¹
 - c. n_{gaz} dans 672 L : 672 L / 25.27 L mol⁻¹ = 26.59 mol
 - d. Il faut 1 mol de Fe pour produire 1 mol de H_2 , \rightarrow 26.59 mol Fe
 - e. 26.59 mol x 55.845 g/mol = 1485,07 g = 1.485 kg Fe

13. Une personne consomme 22,5 L de dioxygène par heure sous conditions TPN. Un astronaute reçois son oxygène de la réaction (non-équilibrée) suivante:

$$Na_2O_2 + H_2O \rightarrow O_2 + NaOH$$

Quelle est la masse de dioxygène nécessaire par astronaute pour un voyage de huit jours?

Quelle est la masse de peroxyde de sodium à emporter pour 4 astronautes, si 90% de Na₂O₂ est transformé en produits?

Corr.: a. V_{gaz} pour 8 jours: 192 h x 22.5 L = 4320 L

b.
$$n_{\text{dioxygène}}$$
: 4320 L / 22.4 L mol⁻¹ = 192.86 mol

$$n \times M = m$$
: 192.86 mol x 31.998 g/mol = 6171.13 g O₂

c. équilibrer la réaction chimique:

$$2Na_2O_2 + 2H_2O \rightarrow O_2 + 4NaOH$$

d. 2 mol de Na₂O₂ produisent 0.9 mol de O₂ (90 % de rendement)

$$192.86 \text{ mol } \times 2 \text{ mol } / 0.9 \text{ mol } = 428.58 \text{ mol } \text{Na}_2\text{O}_2$$

$$428.58 \text{ mol } \times 77.99 \text{ g/mol} = 33424.95 \text{ g} = 33.425 \text{ kg Na}_2\text{O}_2$$

$$33.425 \times 4 = \underline{133.7 \text{ kg Na}_2\text{O}_2}$$

14. L'azote réagit avec du lithium à température ambiante (20°C) selon l'équation (non-équilibrée) suivante:

$$N_2(g) + Li(s) \rightarrow Li_3N(s)$$

500 mg de Li ont été introduit dans une ampoule scellée de 1 L sous atmosphère d'azote, à la pression de 1.23 atm. Après la réaction, la pression se stabilise à 0.94 atm. Combien de g de Li₃N ont été formés?

Corrigés:

- a. équation-bilan: $N_2(g) + 6 \text{ Li}(s) \rightarrow 2 \text{ Li}_3N(s)$
- b. quantité d'azote: pV = nRT n = (1.23 x 1 L) / (293.15 x 0.08206) = 0.0511 mol après réaction: n = (0.94 x 1 L) / (293.15 x 0.08206) = 0.0391 mol $\Delta n = 0.0511 0.0391 = 0.012 \text{ mol N}_2 \text{ ont réagit.}$
- c. quantité de lithium: M Li = 6.941 g/mol 0.5g / 6.941= 0.072 mol Li
- d. 0.012 mol N_2 réagissent avec $(6 \times 0.012) = 0.072 \text{ mol Li}$.
- e. Li est le réactant limitant. 0.072 mol Li donnent (0.072 / 3) = 0.024 mol Li₃N M Li₃N = 34.833 g/ mol 34.833 x 0.024 = <u>0.836 g Li₃N</u>