« Mathematical foundations: (5) Fixpoint theory » Part I

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 1 — © P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 3 —

© P. Cousot, 2005

Alfred Tarski

[1] A. Tarski. "A lattice-theoretical fixpoint theorem and its applications". Pacific J. of Math., 5:285–310, 1955.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 2 —

© P. Cousot, 2005

Fixpoint

- A fixpoint of an operator f on a set L is $x \in L$ such that f(x) = x
- An operator may have 0, 1 or many fixpoints (e.g. $\lambda x \cdot x$

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005 — 4 —

Fixpoints, prefixpoint and postfixpoints of an operator on a poset

Let $f \in L \mapsto L$ be an operator on a poset $\langle L, \, \Box \rangle$. We define its

- set of fixpoints: $fp(f) \stackrel{\text{def}}{=} \{x \in L \mid f(x) = x\}$
- set of pre-fixpoints: prefp $(f) \stackrel{\text{def}}{=} \{x \in L \mid x \sqsubseteq f(x)\}$
- dual set of post-fixpoints: postfp $(f) \stackrel{\text{def}}{=} \{x \in L \mid x \supset f(x)\}$
- Note that $fp(f) \subseteq prefp(f)$, $fp(f) \subseteq postfp(f)$ by reflexivity and $fp(f) = prefp(f) \cap postfp(f)$ by antisymmetry
- In general, these sets can be empty:

a and b not comparable for =

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Notations for extreme (least/greatest) fixpoints

- Ifp (f) least fixpoint (if any)
 - $f(\operatorname{lfp} f) = \operatorname{lfp} f$
 - $\forall x \in L : (f(x) = x) \Longrightarrow (\mathsf{lfp}\ f \sqsubseteq x)$
- qfp f greatest fixpoint (if any)
 - $f(\mathsf{gfp}\ f) = \mathsf{gfp}\ f$
 - $orall x \in L: (f(x) = x) \Longrightarrow (\mathsf{gfp}\ f \sqsupset x)$

If the order \sqsubseteq is not clear from the context, we write If p = f and gf p = f to make it explicit.

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Extreme (least/greatest) fixpoints

A fixpoint x of an operator $f \in L \mapsto L$ on a poset $\langle L, \Box \rangle$ is:

- The least fixpoint of f iff $\forall y \in L : (f(y) = y) \Longrightarrow$ $(x \sqsubseteq y)$
- Dually, the greatest fixpoint of f iff $\forall y \in L : (f(y) =$ $(y) \Longrightarrow (x \supset y)$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

Iterates

Iterates of an operator on a set

- Let f be an operator on a set L. The iterates of ffrom $a \in L$ are:

$$f^0(a)=a \ f^{n+1}(a)=f(f^n(a)) \quad n\in \mathbb{N}$$

so that $f^n = \underbrace{f \circ f \circ \dots \circ f}_{n \text{ times}}$. We have (by recurrence):

$$f^{n+1} = f^n \circ f$$
 $f^n \circ f^m = f^{n+m}$
 $(f^n)^m = f^{n imes m}$

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005 — 9 —

© P. Cousot, 2005

Iterates of an operator on a finite set

- Let $\langle f^n(a), n \in \mathbb{N} \rangle$ be the iterates of $f \in L \mapsto L$
- If L is finite of cardinality $|L| < \aleph_0$, we have $\forall k > |L|$: $\exists n < |L| : f^k(a) = f^n(a)$ and so
 - either the iterates reach a fixpoint:

- or they reach a cycle:

1 also called "orbit".

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Computation of the iterates

- Since

$$f^{2n} = (f^n)^2$$

 $f^{2n+1} = f \circ (f^n)^2$

we can compute f^n in time $\mathcal{O}(\ln n)$ PROVIDED f^n can be computed in the same time as f (which is often not the case except in few cases like functions represented by polynomials or BDDs which can be composed symbollically before doing the computation)

Basin of attraction

- All iterates ending in the same cycle are called a basin of attraction

– The relation $x \equiv y \iff \exists i,j \in \mathbb{N}: f^i(x) = f^j(y)$ is an equivalence². Each class contains exactly one cycle (including the particular case of fixpoints). And so the set L is partitionned into disjoint basins of attraction.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 12 —

For transitivity, if $f^i(x) = f^j(y)$ and $f^k(y) = f^{\ell}(z)$ and e.g. $j \le k$ then $f^{i+d} = f^{j+d} = f^k(y) = f^{\ell}(z)$ where

Iterates of an operator on an infinite set

If L is infinite of cardinality $|L| \geq \aleph_0$, we have three possibilities

- either the iterates reach a fixpoint:

- or they reach a cycle:

- or the iteration is infinite:

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

Fixpoint example 1: Numerical fixpoint

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005 — 15 —

© P. Cousot, 2005

Fixpoint Examples

Fixpoint example 2: Equivalence relation

Fixpoint example 3: Grammar semantics

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Course 16.399; "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

Example of fixpoint definition: equivalence relations

Let S be a set. We have the complete lattice of relations $\langle \wp(S \times S), \subset, \emptyset, S \times S, \cup, \cap \rangle$. Given $r \subset S \times S$, let $f(r) = \lambda x \cdot 1_S \cup r \cup x^{-1} \cup x \circ x$. f(r) is monotonic. Its least fixpoint $\mathsf{Ifp}_{\emptyset}^{\subseteq} f(r)$ is the least equivalence relation including r. The map $\mathcal{E} \stackrel{\mathrm{def}}{=} \lambda r \cdot \mathsf{lfp}_{\emptyset}^{\subseteq} f(r)$ is an upper closure operator which fixpoints are exactly the equivalence relations on $S \times S$, which by Ward's theorem is therefore a complete lattice $\langle \mathcal{E}(\wp(S \times S)), \subseteq, 1_S, S \times S,$ $\lambda X \cdot \mathcal{E}(\cup X)^3, \cap \rangle$.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Example of fixpoint definition: semantics of context free grammars

The meta syntax of grammars is:

Terminals $T \in \mathcal{T}$ Nonterminals $N \in \mathcal{N}$ Empty $G ::= P \mid PG$ Grammar P ::= N '::=' R Production/rule $P \in \mathcal{P}$ $R ::= TR \mid NR \mid arepsilon$ righthand side

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005

³ The union of equivalence relations need not be an equivalence relation, but the transitive closure of a union of equivalence relations is an equivalence relation, indeed the least.

Example of meta derivation

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

The above equations have exactly the same least fixpoint as:

$$\ell(X) = \ell(Y) \cdot \ell(X) \cup \ell(Y) \cup \ell(X)$$

$$\ell(Y) = \{a\} \cup \{b\} \cup \ell(Y)$$

The equations can be rewritten as:

$$\ell = \ell[X := \ell(Y) \cdot \ell(X)] \dot{\cup} \ell[X := \ell(Y)] \dot{\cup} \ell[X := \ell(X)] \\ \dot{\cup} \ell[Y := \{a\}] \dot{\cup} \ell[Y := \{b\}] \dot{\cup} \ell[Y := \ell(Y)]$$

that is

$$\ell = F(\ell)$$

where

$$F(\ell) = \ell[X := \ell(Y) \cdot \ell(X)] \dot{\cup} \ell[X := \ell(Y)] \dot{\cup} \ell[X := \ell(X)]$$
$$\dot{\cup} \ell[Y := \{a\}] \dot{\cup} \ell[Y := \{b\}] \dot{\cup} \ell[Y := \ell(Y)]$$

The operator F = S[G] associated to a grammar G can be defined by structural induction on the metagrammar.

Course 16,399; "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

Example of grammar semantics

Let $\ell(X)$ be the language generated by the nonterminal X in grammar G. The Rice-Ginsburgh/Schützenberger equations:

$$\ell(X) = \ell(Y) \cdot \ell(X) \cup \ell(Y) \ \ell(Y) = \{a\} \cup \{b\}$$

(where the concatenation of languages is $\mathcal{X} \cdot \mathcal{Y} = \{\sigma\sigma' \mid$ $\sigma \in \mathcal{X} \land \sigma' \in \mathcal{Y}$) have a least fixpoint which associate the language generated by the grammar to each nonterminal $\ell = \{X \rightarrow (a|b)^+, Y \rightarrow a|b\}.$

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Structural definition of the grammar semantics

Given a grammar $G = \langle \mathcal{T}, \mathcal{N}, A, \mathcal{P} \rangle$ with axiom $A \in \mathcal{N}$, define $\mathcal{S}[\![G]\!] \in (\mathcal{N} \mapsto \mathcal{T}^{\vec{*}}) \stackrel{\mathrm{m}}{\longmapsto} (\mathcal{N} \mapsto \mathcal{T}^{\vec{*}})$ by

$$egin{aligned} &\mathcal{S} \llbracket PG
rbracket \ell &= \mathcal{S} \llbracket P
rbracket \ell \ \mathcal{S} \llbracket N \ iny ::=' R
rbracket \ell &= \ell [N := \mathcal{S} \llbracket R
rbracket \ell] \ell \ &\mathcal{S} \llbracket TR
rbracket \ell &= \{T\} \cdot \mathcal{S} \llbracket R
rbracket \ell \ &\mathcal{S} \llbracket NR
rbracket \ell &= \ell (N) \cdot \mathcal{S} \llbracket R
rbracket \ell \ &\mathcal{S} \llbracket arepsilon \ell &= \{ec{\epsilon}\} \end{aligned}$$

The semantics of G is $(\mathsf{Ifp}_{\dot{\alpha}}^{\,\subseteq\,}\mathcal{S}\llbracket G \rrbracket)(A)$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

Example

$$G=X::=YX\quad X`::='Y\quad Y`::='a\quad Y`::='b$$

$$S[X ::= YX \quad X '::= 'Y \quad Y '::= 'a \quad Y '::= 'b]\ell$$

$$= \ \mathcal{S}[\![X ::= YX]\!]\ell \ \dot{\cup} \ \mathcal{S}[\![X \ '::= 'Y \quad Y \ '::= 'a \quad Y \ '::= 'b]\!]\ell$$

$$= \mathcal{S} \llbracket X ::= YX \rrbracket \ell \ \dot{\cup} \ \mathcal{S} \llbracket X \ '::=' \ Y \rrbracket \ell \ \dot{\cup} \ \mathcal{S} \llbracket Y \ '::=' \ a \quad Y \ '::=' \ b \rrbracket \ell$$

$$= \mathcal{S} \llbracket X ::= YX \rrbracket \ell \dot{\cup} \mathcal{S} \llbracket X '::= 'Y \rrbracket \ell \dot{\cup} \mathcal{S} \llbracket Y '::= 'a \rrbracket \ell \dot{\cup} \mathcal{S} \llbracket Y '::= 'b \rrbracket \ell$$

$$= \ \ell[X := \mathcal{S} \llbracket YX \rrbracket \ell] \ \dot{\cup} \ \ell[X := \mathcal{S} \llbracket Y \rrbracket \ell] \ \dot{\cup} \ \ell[Y := \mathcal{S} \llbracket a \rrbracket \ell] \ \dot{\cup} \ \ell[Y := \mathcal{S} \llbracket b \rrbracket \ell]$$

$$= \ell[X := \mathcal{S} \llbracket YX \rrbracket \ell \,\dot\cup\, \mathcal{S} \llbracket Y \rrbracket \ell] \,\dot\cup\, \ell[Y := \mathcal{S} \llbracket a \rrbracket \ell \,\dot\cup\, \mathcal{S} \llbracket b \rrbracket \ell]$$

$$= \ \ell[X := \ell(Y) \cdot \mathcal{S}[\![X]\!] \ell \ \dot \cup \ \mathcal{S}[\![Y]\!] \ell] \ \dot \cup \ \ell[Y := \mathcal{S}[\![a]\!] \ell \ \dot \cup \ \mathcal{S}[\![b]\!] \ell]$$

$$= \ \ell[X := \ell(Y) \cdot \ell(X) \cdot \mathcal{S}[\![\varepsilon]\!] \ell \ \dot{\cup} \ \ell(Y) \cdot \mathcal{S}[\![\varepsilon]\!] \ell] \ \dot{\cup} \ \ell[Y := \{a\} \cdot \mathcal{S}[\![\varepsilon]\!] \ell \ \dot{\cup} \ \{b\} \cdot \mathcal{S}[\![\varepsilon]\!] \ell]$$

$$= \ell[X := \ell(Y) \cdot \ell(X) \cdot \{\vec{\epsilon}\} \ \dot{\cup} \ \ell(Y) \cdot \{\vec{\epsilon}\}] \ \dot{\cup} \ \ell[Y := \{a\} \cdot \{\vec{\epsilon}\} \ \dot{\cup} \ \{b\} \cdot \{\vec{\epsilon}\}]$$

$$= \ell[X := \ell(Y) \cdot \ell(X) \cup \ell(Y)] \cup \ell[Y := \{a\} \dot{\cup} \{b\}]$$

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005 — 25 —

© P. Cousot, 2005

Iterative resolution of the equations

$$\begin{cases} \mathcal{X} &= \mathcal{Y} \cdot \mathcal{X} \cup \mathcal{Y}) \cup \mathcal{X} \\ \mathcal{Y} &= \{a\} \cup \{b\} \cup \mathcal{Y} \\ \mathcal{Z} &= \mathcal{Z} \end{cases} & \text{when } \mathcal{Z} \not\in \{X,Y\} \\ \\ -\mathcal{X}^0 &= \mathcal{Y}^0 = \mathcal{Z}^0 = \emptyset \\ -\mathcal{X}^1 &= \emptyset, \ \mathcal{Y}^1 = \{a,b\}, \ \mathcal{Z}^1 = \emptyset \\ -\mathcal{X}^2 &= \{a,b\}, \ \mathcal{Y}^2 = \{a,b\}, \ \mathcal{Z}^2 = \emptyset \\ -\mathcal{X}^3 &= \{a,b\} \cdot \{a,b\} \cup \{a,b\} \cup \{a,b\} = \{aa,ab,ba,bb,a,b\} = \bigcup_{i=1}^2 (a|b)^i \\ -\dots \\ -\mathcal{X}^n &= \bigcup_{i=1}^{n-1} (a|b)^i & \text{induction hypothesis} \\ -\mathcal{X}^{n+1} &= \mathcal{X}^n \cdot \mathcal{Y}^n \cup \mathcal{Y}^n \cup \mathcal{X}^n \\ &= \bigcup_{i=1}^{n-1} (a|b)^i \cdot (a|b)^1 \cup (a|b)^1 \cup \bigcup_{i=1}^{n-1} (a|b)^i \\ &= \bigcup_{i=1}^{n-1} (a|b)^{i+1} \cup \bigcup_{i=1}^{n-1} (a|b)^i \\ &= \bigcup_{j=2}^n (a|b)^j \cup \bigcup_{i=1}^{n-1} (a|b)^i \end{cases} \qquad j=i+1$$

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005 — 27 —

© P. Cousot, 2005

so that the equation

$$\ell = \mathcal{S} \llbracket G
rbracket \ell$$

is

$$\begin{cases} \ell(X) = \ell(Y) \cdot \ell(X) \cup \ell(Y) \cup \ell(X) \\ \ell(Y) = \{a\} \cup \{b\} \cup \ell(Y) \\ \ell(Z) = \ell(Z) \end{cases} \quad \text{when } Z \not \in \{X,Y\}$$

$$\begin{split} &-\dots\\ &-\mathcal{X}^{\omega}=\bigcup_{n<\omega}\mathcal{X}^n=\bigcup_{2\leq n<\omega}\bigcup_{i=1}^{n-1}(a|b)^i\bigcup_{n<\omega}\bigcup_{i=1}^{n-1}(a|b)^i=\bigcup_{n\geq 1}(a|b)^n=(a|b)^+\\ &-\mathcal{X}^{\omega+1}=\mathcal{X}^{\omega}\cdot\mathcal{Y}^{\omega}\cup\mathcal{Y}^{\omega}\cup\mathcal{X}^{\omega}\\ &=(a|b)^+\cdot(a|b)\cup(a|b)\cup(a|b)^+=(a|b)^+=\mathcal{X}^{\omega}\\ &\text{so }\mathsf{lfp}_{\hat{\emptyset}}^{\subseteq}\mathcal{S}\llbracket G\rrbracket=\{X\to(a|b)^+,Y\to(A|b)\} \text{ whence for the axiom }\mathsf{lfp}_{\hat{\emptyset}}^{\subseteq}\mathcal{S}\llbracket G\rrbracket(X)\\ &=(a|b)^+. \end{split}$$

Fixpoint example 4: Lattice of closure operators

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- We conclude that $mon(f) \in L \xrightarrow{m} L$ and if $f \stackrel{\square}{\sqsubset} q \in L \xrightarrow{m} L$ then $mon(f) \stackrel{\square}{\sqsubset}$ П

THEOREM. The set $L \stackrel{\text{m}}{\longmapsto} L$ of monotone maps on a complete lattice $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ is a complete lattice $\langle L \stackrel{\mathrm{m}}{\longmapsto} L, \, \dot{\sqsubseteq}, \, \dot{\perp}, \, \dot{\uparrow}, \, \dot{\sqcup}, \, \dot{\sqcap} \rangle$

PROOF. Observe that mon is an upper closure operator and $L \stackrel{\text{m}}{\longmapsto} L =$ $mon(L \mapsto L)$. By Ward theorem, $(L \stackrel{m}{\longmapsto} L, \stackrel{\perp}{\sqsubseteq}, mon(\stackrel{\perp}{\bot}), \stackrel{\dagger}{\downarrow}, \lambda S \cdot mon(\stackrel{\sqcup}{\sqcup} S),$ $|\dot{\Box}\rangle$ is a complete lattice. By duality, we can define

$$\mathsf{mon}' \stackrel{\mathrm{def}}{=} \lambda f \cdot \lambda x \cdot igcap \{ f(y) \mid y \sqsupseteq x \}$$

so that mon' is a lower closure operator and $L \stackrel{\text{m}}{\longmapsto} L = \text{mon'}(L \mapsto L)$. By the dual of Ward theorem, $\langle L \stackrel{\text{m}}{\longmapsto} L, \dot{\sqsubseteq}, \dot{\perp}, \text{mon}'(\dot{\top}), \dot{\sqcup}, \lambda S \cdot \text{mon}(\dot{\sqcap}S) \rangle$ is a complete lattice. Combining the two results, we get $mon(\dot{\bot}) = \dot{\bot}$ and $\lambda S \cdot mon(\dot{\sqcap} S) = \dot{\sqcap}$ whence the complete lattice $\langle L \stackrel{\text{m}}{\longmapsto} L, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq}, \stackrel{\dot{\bot}}{\downarrow}, \stackrel{\dot{\vdash}}{\sqcup}, \stackrel{\dot{}}{\sqcap} \rangle$.

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

The complete lattice of monotone operators on a complete lattice

Let $\langle L, \, \square, \, \perp, \, \top, \, \sqcup, \, \sqcap \rangle$ be a complete lattice and define $\mathsf{mon} \stackrel{\mathsf{def}}{=} \lambda f \cdot \lambda x \cdot ig| \ ig| \{ f(y) \mid y \sqsubseteq x \}$

LEMMA. Given $f \in L \mapsto L$, mon(f) is the least monotone operator \square -greater than of equal to f

PROOF. – Given $a, b \in L$ such that $a \sqsubseteq b$, we have $y \sqsubseteq b$ implies $a \sqsubseteq y$ so $\{f(y) \mid y \sqsubseteq a\} \subseteq \{f(y) \mid y \sqsubseteq b\}$ proving $mon(f)a \subseteq mon(f)b$ so mon(f) is monotone.

- Observe that $x \subseteq x$ so $f(x) \in \{f(y) \mid y \sqsubseteq x\}$ proving that $f \stackrel{\dot}{\sqsubseteq} \text{mon}(f)$.
- Let $g \in L \stackrel{\text{m}}{\longmapsto} L$ be such that $f \stackrel{\dot}{\sqsubseteq} g$. We have $\forall y \in L : f(y) \sqsubseteq g(y)$ so that $\forall a \in L : \mathsf{mon}(f)(a) = \bigsqcup \{f(y) \mid y \sqsubseteq a\} \sqsubseteq \bigsqcup \{g(y) \mid y \sqsubseteq a\} \sqsubseteq \bigcup \{g(y) \mid y \sqsubseteq a\} \sqsubseteq \bigoplus \{g(y) \mid y \sqsubseteq a\} \sqsubseteq$ $g(y) \sqsubseteq g(a) \} \sqsubseteq g(a)$ proving that mon $(f) \stackrel{.}{\sqsubseteq} g$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 30 —

© P. Cousot, 2005

The complete lattice of extensive operators on a complete lattice

THEOREM. Let $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ be a complete lattice. Define ext $\stackrel{\text{def}}{=} \lambda f \cdot \lambda x \cdot x \sqcup f(x)$. Then ext(f) is the least extensive operator greater than of equal to $f \in L \mapsto L$. ext is an upper closure operator. The set $\langle \text{ext}(L \mapsto L),$ $\dot{\Box}$, $\lambda x \cdot x$, $\dot{\top}$, $\dot{\Box}$, $\dot{\Box}$ is the complete lattice of extensive operators on L.

PROOF. – An operator f on L is extensive iff ext(f) = f.

- If $f \stackrel{.}{\sqsubset} g$ and g is extensive then $\text{ext}(f) = \lambda x \cdot x \sqcup f(x) \stackrel{.}{\sqsubset} \lambda x \cdot x \sqcup g(x) = g$.
- So $\langle \text{ext}(L \mapsto L), \dot{\sqsubseteq}, \text{ ext}(\dot{\bot}), \dot{\top}, \lambda S \cdot \text{ext}(\dot{\sqcup}S), \dot{\sqcap} \rangle$ is a complete lattice by Ward's theorem.

Course 16.399; "Abstract interpretation". Tuesday April 5th, 2005

- But $\operatorname{ext}(\dot{\perp}) = \lambda x \cdot x$ and if $S \subset \operatorname{ext}(L \mapsto L)$ is a set of extensive opeartors on L then $\forall x \in L : x \sqsubseteq f(x)$ so $x \sqsubseteq \bigsqcup_{f \in S} f(x) = (\bigsqcup S)(x)$ proving $\bigsqcup S$ to be extensive so $\lambda S \cdot \text{ext}(\dot{\Box} S) = \lambda S \cdot |\dot{}| S = |\dot{}|$. П

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- We have $\operatorname{uclo}(f)(x) = \operatorname{lfp}(\lambda y \cdot x \sqcup \operatorname{mon}(f)(y))$ so $\operatorname{uclo}(f)(x) = x \sqcup \operatorname{mon}(f)(\operatorname{uclo}(f)(x))$ $\supset x$, proving uclo(f) to be extensive.
- We have $x \sqsubseteq \mathsf{uclo}(f)(x)$ so $\mathsf{mon}(f)(x) \sqsubseteq \mathsf{mon}(f)(\mathsf{uclo}(f)(x))$ by monotony. Hence $mon(f)(x) \sqsubseteq uclo(f)(x)$ since $uclo(f)(x) = \mathbf{lfp}(\lambda y \cdot x \sqcup mon(f)(y))$.

For idempotency, $uclo(f)(uclo(f)(x)) = lfp(\lambda y \cdot uclo(f)(x) \sqcup mon(f)(y)).$

The iterates are

Course 16 399: "Abstract interpretation" Tuesday April 5th 2005 — 35 —

© P. Cousot, 2005

Fixpoint definition of the closure operators on a complete lattice

THEOREM. Let $\langle L, \, \square, \, \bot, \, \top, \, \sqcup, \, \sqcap \rangle$ be a complete lattice. Define

 $\mathsf{uclo} \stackrel{\mathrm{def}}{=} \lambda f \cdot \lambda x \cdot \mathsf{lfp} \left(\lambda y \cdot x \sqcup \mathsf{mon}(f)(y) \right)$

Then uclo(f) is the least upper closure operator greater than of equal to $f \in L \mapsto L$.

PROOF. – Given $f \in L \mapsto L$, mon(f) is monotone and so is $\lambda y \cdot x \sqcup \text{mon}(f)(y)$ so that by Knaster-Tarski fixpoint theorem (on page 39), Ifp $(\lambda y \cdot x \sqcup mon(f)(y))$ exists for all $x \in L$ and so uclo is well defined.

- If $x_1 \sqsubseteq x_2$ then $\lambda y \cdot x_1 \sqcup \mathsf{mon}(f)(y) \sqsubseteq \lambda y \cdot x_2 \sqcup \mathsf{mon}(f)(y)$ so that, by the fispoint comparison theorem (on page 73), we have $uclo(f)(x_1) = lfp(\lambda y \cdot x_1 \sqcup x_2 \sqcup x_3 \sqcup x_4 \sqcup x$ $mon(f)(y) \subseteq lfp(\lambda y \cdot x_2 \sqcup mon(f)(y)) = uclo(f)(x_2)$ proving uclo(f) to be monotonic.

Course 16.399; "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

- We have proved $uclo(f) \stackrel{.}{\sqsubset} mon(f) \stackrel{.}{\sqsubset} f$ so that uclo(f) is pointwise greater than of equal to f.
- If $f \sqsubseteq g$ then $\lambda y \cdot x \sqcup \mathsf{mon}(f)(y) \sqsubseteq \lambda y \cdot x \sqcup \mathsf{mon}(g)(y)$ so $\mathsf{lfp}(\lambda y \cdot x \sqcup \mathsf{mon}(f)(y))$ \sqsubseteq If $\mathbf{p}(\lambda y \cdot x \sqcup \mathsf{mon}(f)(y))$ by forthcoming fixpoint comparison theorem (on page 73) proving that $uclo(f) \stackrel{.}{\sqsubseteq} uclo(q)$ whence that uclo is monotonic
- Let ρ be a closure operator. We have $\mathsf{uclo}(\rho)(x) = \mathsf{lfp}(\lambda y \cdot x \sqcup \mathsf{mon}(\rho)(y)) =$ If $p(\lambda y \cdot x \sqcup \rho(y))$ since ρ is monotone. Let us compute the transfinite iterates

$$\begin{array}{lll} y^0 = & \bot \\ y^1 = & x \sqcup \rho(\bot) \\ & \sqsubseteq & \rho(x) & \text{(since $\bot \sqsubseteq x$ so $\rho(\bot) \sqsubseteq \rho(x)$ by monotony and $x \sqcup \rho(\bot) \sqsubseteq $\rho(x) \sqcup \rho(x) \sqcup \rho(x)$ } \\ y^\delta \sqsubseteq & \rho(x) & \text{(induction hyppthesis)} \\ y^{\delta+1} = & x \sqcup \rho(y^\delta) \\ & \sqsubseteq & x \sqcup \rho(\rho(x)) & \text{(by monotony)} \end{array}$$

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

 $= x \sqcup \rho(x)$ by idempotency \ by extensivity \ $= \rho(x)$

If λ is a limit ordinal and $\forall \beta < \lambda : y^{\beta} \sqsubseteq \rho(x)$ then $y^{\lambda} = \bigsqcup_{\beta < \lambda} y^{\beta} \sqsubseteq \rho(x)$. By transfinite induction all iterates are upper bounded by $\rho(x)$ whence so is the least fixpoint $\mathsf{lfp}(\lambda y \cdot x \sqcup \mathsf{mon}(f)(y))$ which is one of these transfinite iterates (by forthcoming constructive fixpoint theorem. We conclude that $\mathsf{uclo}(f)(x) \sqsubseteq \rho(x)$.

- Finally, given a closure operator ρ greater that or equal to f, we have $f \sqsubseteq \rho$ which implies by monotony $uclo(f) \stackrel{.}{\sqsubset} uclo(\rho) = \rho$ so that uclo(f) is the least upper closure operator greater than or equal to f.

COROLLARY. The set $\operatorname{uclo}(L \mapsto L)$ of upper closure operator on a complete lattice $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is a complete lattice $\langle \mathsf{uclo}(L \mapsto L), \, \Box, \, \lambda x \cdot x, \, \dot{\top}, \, \lambda S \cdot \mathsf{uclo}(\dot{\sqcup} S), \, \dot{\sqcap} \rangle$

PROOF. By Ward's theorem. П

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005 - 37 -

© P. Cousot, 2005

П

Knaster-Tarski fixpoint theorem for monotone operators on a complete lattice

Theorem. A monotonic map $\varphi \in L \mapsto L$ on a complete lattice:

$$\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$$

has a least fixpoint:

$$\operatorname{lfp} \varphi = \bigcap \operatorname{postfp}(\varphi), \\
= \bigcap \{x \in L \mid \varphi(x) \sqsubseteq x\} \tag{1}$$

and, dually, a greatest fixpoint:

$$\mathsf{gfp}\,\varphi = \sqcup \,\mathsf{prefp}\,\varphi, \\ = \sqcup \{x \in L \mid x \sqsubseteq \varphi(x)\}$$

[2] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics.

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005 — 39 —

© P. Cousot, 2005

Fixpoint theorems

PROOF. – Let $a = \sqcap P$ and $P = \mathsf{postfp}(\varphi) = \{x \in L \mid \varphi(x) \sqsubseteq x\}.$

- For all $x \in P$, we have:

or all
$$x \in I$$
, we have.

 $-a \sqsubseteq x$ [a glb of P]

-
$$\varphi(a) \sqsubseteq \varphi(x)$$
 [φ monotonic]

-
$$\varphi(a) \sqsubseteq x$$
 [def. P and transitivity]

whence $\varphi(a)$ is a lower bound of P.

$$\begin{array}{lll}
- \varphi(a) \sqsubseteq a & [\varphi(a) \text{ lower bound of } P \text{ and } a \text{ glb of } P] \\
\Rightarrow \varphi(\varphi(a)) \sqsubseteq \varphi(a) & [\varphi \text{ monotonic}] \\
\Rightarrow \varphi(a) \in P & [\text{def. } P] \\
\Rightarrow a \sqsubseteq \varphi(a) & [a \text{ lower bound of } P] \\
\Rightarrow \varphi(a) = a & [\text{antisymmetry}]
\end{array}$$

- If $\varphi(x) = x$ then $x \in P$ whence $a \sqsubseteq x$ since a is the greatest lower bound of P.
- $-\operatorname{\mathsf{qfp}}\varphi = \sqcup\operatorname{\mathsf{prefp}}\varphi$ by duality (replacing $\sqsubseteq, \bot, \top, \sqcup, \sqcap$ respectively by $\exists, \top, \bot, \sqcap, \sqcup$ in the above proof).

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 40 —

© P. Cousot, 2005

П

THEOREM. The set of fixpoints of a monotone operator $f \in L \stackrel{\mathrm{m}}{\longmapsto} L$ on a complete lattice $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ is a complete lattice.

PROOF. – We know that fp(f) is not empty.

- Let $X \subset fp(f)$
 - The interval $L' = [| \ | X, \top]$ is a complete lattice
 - Let $a = \mathsf{lfp} \, f|_{L'}$ be the least fixpoint of f restricted to L'
 - We have
 - 1. $a \in fp(f)$
 - 2. $\forall x \in X : x \square \sqcup X \square a \text{ since } | X \text{ is the infimum of } L'$
 - 3. if $y \in fp(f)$ is such that $\forall x \in X : x \sqsubseteq y$, we have $| |X \sqsubseteq y|$ so $y \in L'$ proving that $a \sqsubseteq y$

___ Reference

[3] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- The fixpoint can be unique:

but in general there are many.

- In general, the set of fixpoints is not a sublattice of L. A counter example is

a and b are fixpoints of f but $c = a \sqcup b$ is not.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- It follows that a is the lub of $X \subseteq fp(f)$ in fp(f) for \sqsubseteq proving that $\langle fp(f), \sqsubseteq \rangle$ is a complete lattice.

Reflexive/strict transitive closure of a binary relation on a set (remainder from lecture 4)

Let S be a set and $r, r_1, r_2 \subseteq S \times S$ be relations on S:

$$- \ r_1 \circ r_2 \stackrel{\mathrm{def}}{=} \{\langle x,\ z
angle \mid \exists y : x\ r_1\ y \wedge y\ r_2\ z \} \quad ext{ composition}$$

$$-\ 1_S\stackrel{\mathrm{def}}{=} \{\langle x,\ x
angle \mid x\in S\}$$

identity

$$-r^0 \stackrel{\text{def}}{=} 1_S$$

powers

$$-r^{n+1}\stackrel{\mathrm{def}}{=} r^n\circ r\ (=r\circ r^n)$$

$$- extit{r}^\star \stackrel{ ext{def}}{=} igcup_{n \in \mathbb{N}} r^n$$

reflexive transitive closure

$$-\stackrel{r^+}{=}\stackrel{ ext{def}}{=}\bigcup_{n\in\mathbb{N}\setminus\{0\}}r^n$$

strict transitive closure

so
$$r^\star = r^+ \cup 1_S$$

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005 — 44 —

© P. Cousot, 2005

Least fixpoint definition of the reflexive/strict transitive closure

THEOREM.

$$egin{aligned} r^{\star} &= \mathsf{lfp}^{\subseteq} \, \lambda X \cdot 1_S \cup X \circ r \ r^{+} &= \mathsf{lfp}^{\subseteq} \, \lambda X \cdot r \circ (1_S \cup X) \end{aligned}$$

PROOF. $-\langle \wp(S \times S), \subset, \emptyset, S, \cup, \cap \rangle$ is a complete lattice

- $\lambda X \cdot 1_S \cup X \circ r$ is monotone since

$$egin{aligned} X \subseteq Y \ \implies X \circ r \subseteq Y \circ r \ \implies 1_S \cup X \circ r \subseteq 1_S \cup Y \circ r \end{aligned}$$

- $\lambda X \cdot r \circ (1_S \cup X)$ is monotone since

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

П

© P. Cousot, 2005

Least fixpoint definition of the lefthand side restriction of the reflexive/strict transitive closure

Let S be a set, $r \subseteq S \times S$ be a relation on S, and E, $F \subseteq$ S. We define

$$m{E}
estriction m{r} \stackrel{ ext{def}}{=} \{ \langle x, \, y
angle \in r \mid x \in E \} \quad ext{left restriction} \ m{r}
estriction m{F} \stackrel{ ext{def}}{=} \{ \langle x, \, y
angle \in r \mid y \in F \} \quad ext{right restriction}$$

We have

THEOREM.

$$E \upharpoonright r^\star = \mathsf{lfp}^\subseteq \lambda X \cdot E \upharpoonright 1_S \cup X \circ r$$
 $r^\star \upharpoonright F = \mathsf{lfp}^\subseteq \lambda X \cdot 1_S \upharpoonright F \cup X \circ r$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005 — 47 —

© P. Cousot, 2005

$$X \subseteq Y$$
 $\Longrightarrow (1_S \cup X) \subseteq (1_S \cup Y)$
 $\Longrightarrow r \circ (1_S \cup X) \subseteq r \circ (1_S \cup Y)$

- The existence of the fixpoints follows from Knaster-Tarski theorem
- We have $r^\star=igcup_{n\in\mathbb{N}} r^n=r^0\cupigcup_{n>0} r^n=r^0\cupigcup_{n>0} r^{n+1}=r^0\cupigcup_{n>0} (r\circ r^n)$ $= r^0 \cup r \circ (\bigcup_{n>0} r^n) = 1_S \cup r \circ r^*$ so that r^* is a fixpoint of $\lambda X \cdot 1_S \cup X$. Let R be another fixpoint that is $R = 1_S \cup X \circ R$. We have $r^0 = 1_S \subseteq$ $1_S \cup X \circ R = R$. Assume by induction hypothesis that $r^n \subseteq R$ then $r^{n+1}=r\circ r^n\subset r\circ R\subset 1_S\cup X\circ R=R.$ By recurrence, $\forall n:r^n\subset R$ proving $r^* = \bigcup_{n \in \mathbb{N}} r^n \subseteq R$ to be the least fixpoint.
- The proof is similar for r^+

Proof. $r^\star = \lambda X \cdot 1_S \cup X \circ r$ $\implies r^{\star} = \bigcap \{X \mid 1_S \cup X \circ r \subseteq X\}$ Knaster-Tarski $\implies E \upharpoonright r^\star = E \upharpoonright \bigcap \{X \mid 1_S \cup X \circ r \subseteq X\}$ $=\bigcap\{E\upharpoonright X\mid 1_S\cup X\circ r\subseteq X\}$ $= \bigcap \{E \upharpoonright X \mid E \upharpoonright (1_S \cup X \circ r) \subseteq E \upharpoonright X\}$ $= \bigcap \{E \upharpoonright X \mid E \upharpoonright 1_S \cup (E \upharpoonright X) \circ r \subseteq E \upharpoonright X\}$ $=\bigcap\{Y\mid (E\uparrow 1_S)\cup Y\circ r\subset Y\}$ by letting $Y = (E \mid X)$ $= \mathsf{lfp}^{\subseteq} \lambda X \cdot E \mid 1_S \cup X \circ r$ Knaster-Tarski The proof is similar for $r^* \upharpoonright F$.

Course 16.399; "Abstract interpretation". Tuesday April 5th, 2005

Banach's lemma

THEOREM. Let A and B be two sets and suppose there exist two maps $f \in A \mapsto B$ and $g \in B \mapsto A$. Then there exist partitions $A = A_1 \cup A_2$ with $A_1 \cap A_2 = \emptyset$ and $B = B_1 \cup B_2$ with $B_1 \cap B_2 = \emptyset$ such that $f(A_1) = B_1$ and $g(B_2) = A_2$.

PROOF. $\langle \wp(A), \subset, \emptyset, A, \cup, \cap \rangle$ is a complete lattice. Define $F(X) = A \setminus$ $g(B \setminus f(X))$. If $X \subseteq Y$ then $f(X) = \{f(x) \mid x \in X\} \subseteq \{f(x) \mid x \in Y\} = \{f(x) \mid x \in Y\}$ f(Y) so $(B \setminus f(X)) \supset (B \setminus f(Y))$ so $g(B \setminus f(X)) \supset g(B \setminus f(Y))$ whence $(A \setminus g(B \setminus f(X))) \subseteq (A \setminus g(B \setminus f(X)))$, that is $F(X) \subseteq F(Y)$, proving F to be monotone. By Knaster-Tarski, we can define $A_1 = \mathsf{lfp}_{a}^{\subseteq} F$. Moreover define $A_2 = A \setminus A_1$, $B_1 = f(A_1)$ and $B_2 = B \setminus B_1$ so that we have partitions. It remains to prove that $g(B_2) = A_2$. Indeed $A \setminus g(B_2) = A \setminus g(B \setminus B_1) =$ $A \setminus q(B \setminus f(A_1)) = F(A_1) = A_1$ by the fixpoint property. It follows that $q(B_2)$ $= A \setminus (A \setminus q(B_2)) = A \setminus A_1 = A_2 \text{ Q.E.D.}$

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

David Park upper fixpoint induction principle 4

THEOREM. Let $f \in L \stackrel{\text{m}}{\longmapsto} L$ on $\langle L, \, \Box, \, \bot, \, \top, \, \Box, \, \Box \rangle$.

$$\mathsf{lfp}^{\sqsubseteq} f \sqsubseteq P \\ \iff \exists I \in L : f(I) \sqsubseteq I \land I \sqsubseteq P$$

PROOF. (\Leftarrow) Soundness

If $f(I) \subseteq I$ then $I \in \{X \in L \mid F(X) \subseteq X\}$ so by Knaster-Tarski $\mathsf{lfp}^{\sqsubseteq} f = \bigcap \{X \in L \mid F(X) \subseteq X\} \subseteq I$, whence by $I \subseteq P$ and transitivity, $\mathsf{lfp}^{\vdash} f \sqsubseteq P$

(⇒) Relative completenesss

Assume $\mathsf{lfp}^{\sqsubseteq} f \sqsubseteq P$. Choose $I = \mathsf{lfp}^{\sqsubseteq} f$. Then $f(I) \sqsubseteq I$ by reflexivity and $I \sqsubseteq P$ by hypothesis and def. I.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

П

The Cantor-Schröder-Bertein theorem

COROLLARY. Let A and B be two sets and suppose there exist injective maps $f \in A \rightarrow B$ and $g \in B \rightarrow A$. Then there exists a bijective map $h \in A \rightarrow B$ of X onto Y.

PROOF. We apply Banach's lemma and by injectivity $|A_1| = |B_1|$ and $|A_2| =$ $|B_2|$ so |A| = |B|.

Application to the relational forward deductive positive proof principle

THEOREM.

$$egin{array}{l} orall \underline{s}, \overline{s} \in S : (\underline{s} \in E \land \langle \underline{s}, \, \overline{s} \rangle \in t^{\star} \land \overline{s} \in F) \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in \Psi \ \Leftrightarrow \exists I : orall \underline{s}, s', \overline{s} : \underline{s} \in E \Longrightarrow \langle \underline{s}, \, \underline{s} \rangle \in I \ \land (\langle \underline{s}, \, s' \rangle \in I \land \langle s', \, s'' \rangle \in t) \Longrightarrow \langle \underline{s}, \, s'' \rangle \in I \ \land (\langle \underline{s}, \, \overline{s} \rangle \in I \land \overline{s} \in F) \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in \Psi \end{array}$$

PROOF.

$$\begin{split} \forall \underline{s}, \overline{s} \in S : & (\underline{s} \in E \land \langle \underline{s}, \ \overline{s} \rangle \in t^{\star} \land \overline{s} \in F) \Longrightarrow \langle \underline{s}, \ \overline{s} \rangle \in \Psi \\ \iff \forall \underline{s}, \overline{s} \in S : & (\langle \underline{s} \in E \land \underline{s}, \ \overline{s} \rangle \in t^{\star}) \Longrightarrow (\underline{s} \in F \Longrightarrow \langle \underline{s}, \ \overline{s} \rangle \in \Psi) \\ & \qquad \qquad \\ & \text{Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005} & -52 - & © P. \text{Cousot, 2005} \end{split}$$

 $^{^4}$ This induction principle is very important and underlies many safety proof methods (such as Floyd/Naur for partial correctness). By analogy, I is called an invariant.

 $\iff E \upharpoonright t^* \subseteq P \qquad \text{ where } P = \{\langle s, \, \overline{s} \rangle \in S^2 \mid (\overline{s} \in F) \Longrightarrow (\langle s, \, \overline{s} \rangle \in \Psi)\} \}$

 $\iff (\mathsf{lfp}^{\subseteq} \lambda X \cdot E \mid 1_S \cup X \circ t) \subseteq P$

 $\iff \exists I \in L : (E \uparrow 1_S \cup I \circ t) \sqsubseteq I \land I \sqsubseteq P$

 $\iff \exists I \in L : E \upharpoonright 1_S \sqsubseteq I \land I \circ t \sqsubseteq I \land I \sqsubseteq P$

 $\iff \exists I \in L : \forall \underline{s}, \overline{s} \in S : [\underline{s} \in E \land \underline{s} = \overline{s} \Longrightarrow \langle \underline{s}, \overline{s} \rangle \in I] \land [\exists s' : \langle \underline{s}, s' \rangle \in I]$ $I \wedge \langle s', \, \overline{s} \rangle \in t \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in I] \wedge [\langle \underline{s}, \, \overline{s} \rangle \in I \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in P]$

 $\iff \exists I: \forall \underline{s}, \underline{s'}, \overline{s}: [\underline{s} \in E \implies \langle \underline{s}, \underline{s'} \rangle \in I] \land [(\langle \underline{s}, \underline{s'} \rangle \in I \land \langle \underline{s'}, \overline{s} \rangle \in t) \implies$ $\langle s, \overline{s} \rangle \in I \land [(\langle s, \overline{s} \rangle \in I \land \overline{s} \in F) \Longrightarrow \langle s, \overline{s} \rangle \in \Psi]$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

A variant of the Knaster-Tarski fixpoint theorem for monotone operators on a poset

THEOREM. Let $f \in L \stackrel{\text{m}}{\longmapsto} L$ be a monotone operator on a poset $\langle L, \square \rangle$ which possesses a least postfixpoint p:

$$f(p) \sqsubseteq p \wedge orall x \in L: (f(x) \sqsubseteq x) \Longrightarrow (p \sqsubseteq x)$$

then

$$\mathsf{lfp}^{\sqsubseteq} f = p \wedge orall x \in L : (f(x) \sqsubseteq x) \Longrightarrow (\mathsf{lfp}^{\sqsubseteq} f \sqsubseteq x)$$

PROOF. – Since p postfp(f) and f is monotone, we have $f(f(p)) \sqsubseteq f(p)$ so $p \sqsubseteq$ f(p) since p is the least postfixpoint of f, we get f(p) = p by antisymmetry. Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005 — 55 — © P. Cousot, 2005

David Park lower fixpoint induction principle

THEOREM. Let $f \in L \xrightarrow{m} L$ on $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$.

$$P\sqsubseteq \mathsf{gfp}^{\sqsubseteq}f \iff \exists I\in L: I\sqsubseteq f(I)\wedge P\sqsubseteq I$$

PROOF. By duality.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- Let x be any fixpoint of f. f(x) = x implies $f(x) \sqsubseteq x$ by reflexivity so $p \sqsubseteq x$ proving that $p = \mathsf{lfp}^{\sqsubseteq} f$.

Example:

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

П

Least fixpoint of a monotone operator greater than or equal to a given prefixpoint

We write $\operatorname{\sf lfp}_a^{\sqsubseteq} f$ for the \sqsubseteq -least fixpoint of $f \in L \mapsto L$ on the poset $\langle L, \, \Box \rangle$ greater than or equal to a (if it ever exists):

$$- \ a \sqsubseteq \operatorname{lfp}_a^{\sqsubseteq} f = f(\operatorname{lfp}_a^{\sqsubseteq} f)$$

$$- \ \forall x \in L : [a \sqsubseteq x = f(x)] \Longrightarrow [\mathsf{lfp}_a^{\sqsubseteq} f \sqsubseteq x]$$

THEOREM. If $f \in L \stackrel{\mathrm{m}}{\longmapsto} L$ on $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ and $a \in \mathsf{prefp}(f)$ then $\mathsf{lfp}_a^{\sqsubseteq} f$ exists.

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

Taking $a = \bot$, we get the Knaster-Tarski classical result. Observe that if $a \not\sqsubseteq f(a)$ then $\mathsf{lfp}_a^{\vdash} f$ may not exist, as shown by the following counter-example:

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

PROOF. – $L'\stackrel{\mathrm{def}}{=}[a,\top]\sqsubseteq L$ is a complete lattice and $f\in L'\stackrel{\mathrm{m}}{\longmapsto} L'$ since $x \in L' \Longrightarrow a \sqsubseteq x \Longrightarrow f(a) \sqsubseteq f(x) \Longrightarrow a \sqsubseteq f(x) ext{ since } a \sqsubseteq f(a).$ By Knaster-Tarki If $\mathbf{p}^{\sqsubseteq} f|_{L'}$ exists on L' and is a fixpoint of $f \in L \mapsto L$ greater than or equal to a

- It is the least since any other one x would have $a \sqsubseteq x = f(x) = f|_{I'}(x)$ would not be the least one of $f|_{L'}$ on L'. П

Corollary. If $f \in L \xrightarrow{\mathrm{m}} L$ on $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ and $a\in \mathsf{prefp}(f) \; \mathsf{then} \; \mathsf{lfp}_a^{\sqsubseteq} f = \bigcap \{x\in L \; | \; a\sqsubseteq x \wedge f(x)\sqsubseteq x\}.$

PROOF. By Knaster-Tarski, $\mathsf{lfp}^{\sqsubseteq}_{a}f = \mathsf{lfp}^{\sqsubseteq}f|_{L'} = \bigcap\{x \in L' \mid f|_{L'}(x) \sqsubseteq x\} = f$ $\prod \{x \in L \mid a \sqsubseteq x \land f(x) \sqsubseteq x\}.$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

David Park upper fixpoint induction principle revisited

THEOREM. If $f \in L \stackrel{\text{m}}{\longmapsto} L$ on $\langle L, \, \Box, \, \bot, \, \top, \, \sqcup, \, \Box \rangle$ and $a \in \operatorname{prefp}(f), P \in L \text{ then}$

$$\begin{split} & \mathsf{lfp}_a^{\sqsubseteq} f \sqsubseteq P \\ \iff & \exists I \in L : a \sqsubseteq I \land F(I) \sqsubseteq I \land I \sqsubseteq P. \end{split}$$

PROOF. by Park upper fixpoint induction principle on $L' = [a, \top]$.

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

By duality,

THEOREM. If $f \in L \xrightarrow{m} L$ on $\langle L, \square, \bot, \top, \sqcup, \square \rangle$ and $a \in postfp(f), P \in L$ then the greatest fixpoint of f less than or equal to a exists and is

$$\operatorname{gfp}_a^\sqsubseteq f = igcap \{x \in L \mid x \sqsubseteq f(x) \land x \sqsubseteq a\}$$
 $P \sqsubseteq \operatorname{gfp}_a^\sqsubseteq f \iff \exists I \in L : P \sqsubseteq I \land I \sqsubseteq F(I) \land I \sqsubseteq a$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

Conjugate of an operator on a complete boolean lattice (reminder)

- Let $f \in L \mapsto L$ be an operator on the complete boolean lattice $\langle L, \, \square, \, \bot, \, \top, \, \sqcup, \, \neg, \, \neg \rangle$. We define $\widetilde{f} \stackrel{\mathrm{def}}{=} \lambda x \cdot \neg f(\neg x)$

to be the *conjuguate* of f in L.

- $-\tilde{f}$ is sometimes denoted f^* (which may be confusing with the reflexive transitive closure notation)
- $-\tilde{f}$ is sometimes called the dual of f (which is confusing with the lattice dual, but is consistent since $x \sqsubseteq y$ $\iff \neg x \sqsubset \neg x$).

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005 — **63** —

© P. Cousot, 2005

Characterization of the least fixpoint of a monotone operator greater than or equal to a given prefixpoint 5

THEOREM. If $f \in L \stackrel{\text{m}}{\longmapsto} L$ on $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ and $a \in \mathsf{prefp}(f) \; \mathsf{then} \; \mathsf{lfp}_a^{\sqsubseteq} f = \mathsf{lfp}_{\bot}^{\sqsubseteq} \lambda x \cdot a \sqcup f(x).$

PROOF. Let $A = \mathsf{lfp}^{\sqsubseteq}_{a} f$ and $B = \mathsf{lfp}^{\sqsubseteq}_{a} \lambda x \cdot a \sqcup f(x)$

- 1. A = f(A) and $a \sqsubseteq A$ so $a \sqcup f(A) \sqsubseteq A \sqcup A = A$ proving that $A \in$ postfp $(\lambda x \cdot a \sqcup f(x))$ whence $B \sqsubseteq A$ by Knaster-Tarski.
- 2. We have $B = a \sqcup f(B)$ whence $a \subseteq B$ so $f(a) \subseteq f(B)$. By hypothesis $a \sqsubseteq f(a)$ so that by transitivity, $a \sqsubseteq f(B)$. It follows that $a \sqcup f(B) =$ f(B) whence B = f(B) and $a \subseteq B$ so $A \subseteq B$, and by antisymmetry, we get A = B.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

- we have $\langle L \stackrel{\text{m}}{\longmapsto} L, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \rangle \stackrel{\lambda f \cdot \tilde{f}}{\longleftrightarrow} \langle L \stackrel{\text{m}}{\longmapsto} L, \stackrel{\dot{\sqsubseteq}}{\sqsupseteq} \rangle$

PROOF.

$$\lambda f \cdot \widetilde{f}(g) \mathrel{\dot\sqsubseteq} h$$

$$\iff \widetilde{g} \stackrel{.}{\sqsubseteq} h$$

$$\iff orall x \in L :
eg g(
eg x) \mathrel{\dot\sqsubseteq} h(x)$$

$$\iff \forall x \in L: q(\neg x) \mathrel{\dot{\sqsubset}} \neg h(x)$$

$$\iff \forall x \in L: q(\neg x) \mathrel{\dot{\sqsubset}} \neg h(x)$$

$$\iff \forall y \in L : g(y) \sqsubseteq \neg h(\neg y)$$

by letting $y = \neg x$

$$\iff g \stackrel{.}{\sqsubseteq} \widetilde{h}$$

$$\iff g \sqsubseteq \lambda f \cdot \widetilde{f}(h)$$

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

П

⁵ Observe that we get the variant of Park induction principle on page 60 by applying the classical principle of page 51 to B.

Park conjugate (dual) fixpoint theorem in complete boolean lattices

THEOREM. Let $f \in L \stackrel{\text{m}}{\longmapsto} L$ be a monotone operator on the complete boolean lattice $\langle L, \, \Box, \, \bot, \, \top, \, \sqcup, \, \neg \rangle$. Then

$$\begin{array}{ll} \operatorname{gfp} f &= \neg \operatorname{lfp} \lambda x . \neg f(\neg x) \\ \operatorname{lfp} f &= \neg \operatorname{gfp} \lambda x . \neg f(\neg x) \end{array}$$

PROOF. If $x \sqsubseteq y$ then $\neg y \sqsubseteq \neg x$ so $f(\neg y) \sqsubseteq f(\neg x)$ whence $\neg f(\neg x) \sqsubseteq \neg f(\neg y)$ proving $\lambda x \cdot \neg f(\neg x) \in L \xrightarrow{\mathbb{m}} L$ whence by Knaster-Tarski that the extreme fixpoints do exist.

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

Park unique fixpoint condition in a complete boolean lattice

THEOREM. Let $f \in L \xrightarrow{m} L$ be a monotone operator on the complete boolean lattice $\langle L, \, \Box, \, \bot, \, \top, \, \sqcup, \, \neg \rangle$. Then

(1) Ifp
$$\lambda x \cdot \neg f(\neg x) \sqcap$$
 Ifp $f = \bot$

$$(2)$$
 (Ifp $\lambda x \cdot \neg \hat{f}(\neg \hat{x}) \sqcup$ Ifp $f = \top) \iff ($ Ifp $f =$ gfp $f)$

PROOF.

(1) Ifp
$$f \sqsubseteq \mathsf{gfp} f$$

$$\Longrightarrow \quad \neg \mathsf{gfp} \, f \sqsubseteq \neg \mathsf{lfp} \, f$$

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005 — 67 —

© P. Cousot, 2005

We have

$$\neg \mathsf{lfp} \, \lambda x \cdot \neg f(\neg x)$$

$$= \neg \bigcap \{x \mid \neg f(\neg x) \sqsubseteq x\} \qquad \qquad (\mathsf{Knaster-Tarski}) \}$$

$$= \bigsqcup \{\neg x \mid \neg f(\neg x) \sqsubseteq x\} \qquad \qquad (\mathsf{Complete bool. lattice}) \}$$

$$= \bigsqcup \{y \mid y \sqsubseteq f(y)\} \qquad \qquad (\mathsf{by letting} \, y = \neg x) \}$$

$$= \mathsf{gfp} \, f \qquad \qquad (\mathsf{Knaster-Tarski}) \}$$
By duality $\mathsf{lfp} \, f = \neg \mathsf{gfp} \, \lambda x \cdot \neg f(\neg x)$.

$$\implies \neg \mathsf{gfp} \ f \sqcap \neg \mathsf{lfp} \ f \sqsubseteq \neg \mathsf{lfp} \ f \sqcap \mathsf{lfp} \ f$$
$$\implies \neg \mathsf{gfp} \ f \sqcap \neg \mathsf{lfp} \ f \sqsubseteq \bot$$

$$\implies \neg \mathsf{gfp} \ f \sqcap \neg \mathsf{lfp} \ f = \bot$$

$$\implies \qquad \mathsf{lfp}\, \lambda x \,.\, \neg f(\neg x) \sqcap \mathsf{lfp}\, f = \bot$$

(2,
$$\Leftarrow$$
) Ifp $\lambda x \cdot \neg f(\neg x) = \neg \mathsf{gfp} \ f$ so Ifp $f = \mathsf{gfp} \ f$ implies $\top = \neg \mathsf{Ifp} \ f \sqcup \mathsf{Ifp} \ f = \neg \mathsf{gfp} \ f \sqcup \mathsf{Ifp} \ f = \mathsf{Ifp} \ \lambda x \cdot \neg f(\neg x) \sqcup \mathsf{Ifp} \ f = \top$

$$(2,\Rightarrow)$$
 By (1) and the hypothesis Ifp $\lambda x \cdot \neg f(\neg x) \sqcup$ Ifp $f=\top$, we get Ifp $\lambda x \cdot \neg f(\neg x)$ and Ifp f are complement hence $\neg($ Ifp $\lambda x \cdot \neg f(\neg x)) =$ Ifp f proving that is Ifp $f=$ gfp f by the previous theorem due to Park.

Application to the relational forward predictive contrapositive proof principle

THEOREM.

$$\begin{array}{l} \forall \underline{s},\overline{s} \in S: (\underline{s} \in E \land \langle \underline{s}, \, \overline{s} \rangle \in t^{\star} \land \overline{s} \in F) \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in \Psi \\ \Leftrightarrow \exists I: \forall \underline{s},\overline{s}: (\underline{s} \in E \land \langle \underline{s}, \, \overline{s} \rangle \not\in \Psi) \Longrightarrow \langle \underline{s}, \, \overline{s} \rangle \in I \\ \land \langle \underline{s}, \, \overline{s} \rangle \in I \Longrightarrow [\forall s' \in S: \langle \underline{s}, \, s' \rangle \in t \Longrightarrow \langle s', \, \overline{s} \rangle \in I] \\ \land \overline{s} \in F \Longrightarrow \langle \overline{s}, \, \overline{s} \rangle \not\in I \end{array}$$

PROOF.

$$\iff \forall \underline{s}, \overline{s} \in S : (\underline{s} \in E \land \langle \underline{s}, \overline{s} \rangle \in t^{\star} \land \overline{s} \in F) \Longrightarrow \langle \underline{s}, \overline{s} \rangle \in \Psi$$

$$\iff \forall \underline{s}, \overline{s} \in S : (\langle \underline{s}, \ \overline{s} \rangle \in t^{\star} \land \overline{s} \in F) \Longrightarrow (\underline{s} \in E \Longrightarrow \langle \underline{s}, \ \overline{s} \rangle \in \Psi)$$

$$\iff t^{\star} \upharpoonright F \subset \{\langle s, \overline{s} \rangle \in S^2 \mid (\overline{s} \in E) \Longrightarrow (\langle s, \overline{s} \rangle \in \Psi)\}$$

$$\iff t^{\star} \upharpoonright F \subseteq P \qquad \qquad \langle P = \{ \langle \underline{s}, \, \overline{s} \rangle \in S^2 \mid (\overline{s} \in E) \Longrightarrow (\langle \underline{s}, \, \overline{s} \rangle \in \Psi) \} \rangle$$

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

Fixpoint of the composition of monotone functions

THEOREM. Let $\langle L, \square \rangle$ and $\langle M, < \rangle$ be complete lattices and $f \in L \stackrel{m}{\longmapsto} M$, $g \in M \stackrel{m}{\longmapsto} L$. Then $g(\text{lfp } f \circ g) =$ Ifp $q \circ f$.

PROOF. $-(g \circ f)(g(\mathsf{lfp}\ f \circ g) = g(f \circ g(\mathsf{lfp}\ f \circ g)) = g(\mathsf{lfp}\ f \circ g) \text{ so } g(\mathsf{lfp}\ f \circ g) \in$ $\{x\mid q\circ f(x)\sqsubseteq x\}$ so, by Knaster-Tarski, $\mathsf{lfp}\,q\circ f=\bigcap\{x\mid q\circ f(x)\sqsubseteq x\}\sqsubseteq x\}$ $q(\mathbf{lfp}\ f\circ q).$

- Let $x \in L$ be such that $g \circ f(x) \sqsubseteq x$.

$$\implies f(g \circ f(x)) < f(x)$$

by monotony \

$$\implies f\circ g(f(x))\leq f(x)$$

7by def. ∘ \

$$\Longrightarrow$$
 Ifp $f \circ g \leq f(x)$

7 Knaster-Tarski \

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

П

- \iff Ifp $\lambda X \cdot t \circ X \cup 1_S \upharpoonright F \subseteq P$
- $\iff \neg \mathsf{gfp} \ \lambda X \cdot \neg (t \circ (\neg X) \cup 1_S \upharpoonright F) \subseteq P$
- $\iff \neg P \subseteq \mathsf{qfp} \ \lambda X \cdot \neg (t \circ (\neg X)) \cap \neg (1_S \upharpoonright F)$
- $\iff \exists I : \neg P \subseteq I \land I \subseteq \neg (t \circ (\neg I)) \land I \subseteq \neg (1_S \upharpoonright F)$
- $\iff \exists I : \neg P \subseteq I \land I \subseteq \neg (t \circ (\neg I)) \land (1_S \upharpoonright F) \subseteq \neg I$
- $\iff \exists I: \forall s, \overline{s}: (s \in E \land \langle s, \overline{s} \rangle \not\in \Psi) \Longrightarrow \langle s, \overline{s} \rangle \in I \land \langle s, \overline{s} \rangle \in I \Longrightarrow \neg [\exists s' \in \Psi]$ $S: \langle s, s' \rangle \in t \land \langle s', \overline{s} \rangle \not\in I] \land \overline{s} \in F \Longrightarrow \langle \overline{s}, \overline{s} \rangle \not\in I$
- $\iff \exists I: \forall \underline{s}, \overline{s}: (\underline{s} \in E \land \langle \underline{s}, \overline{s} \rangle \not\in \Psi) \Longrightarrow \langle \underline{s}, \overline{s} \rangle \in I \land \langle \underline{s}, \overline{s} \rangle \in I \Longrightarrow [\forall s' \in S:$ $\langle s, s' \rangle \in t \Longrightarrow \langle s', \overline{s} \rangle \in I \land \overline{s} \in F \Longrightarrow \langle \overline{s}, \overline{s} \rangle \notin I$

Other equivalent induction principles are found in [4].

$$\implies g(\mathsf{lfp}\ f\circ g)\sqsubseteq g\circ f(x) \qquad \qquad \text{\langle by monotony$}$$

$$\implies g(\mathsf{lfp}\ f\circ g)\sqsubseteq x \qquad \qquad \text{\langle by hyp. } g\circ f(x)\sqsubseteq x \text{ and transitivity \langle}$$

So $g(\operatorname{lfp} f \circ g) \sqsubseteq \bigcap \{x \mid g \circ f(x) \sqsubseteq x\} = \operatorname{lfp} g \circ f$ by def. glb and Knaster-Tarski

- By antisymmetry, $g(\mathsf{lfp}\ f \circ g) = \mathsf{lfp}\ g \circ f$.

^[4] P. Cousot and R. Cousot. Induction principles for proving invariance properties of programs. In Tools & Notions for Program Construction: an Advanced Course, D. Néel (Ed.), Cambridge University Press, Cambridge, UK, pp. 75-119, August 1982.

Fixpoints of pointwise comparable monotone operators on a complete lattice

THEOREM. Let $f, g \in L \stackrel{\text{m}}{\longmapsto} L$ be a pointwise comparable monotone operators on the complete boolean lattice $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap, \neg \rangle$: $f \stackrel{.}{\sqsubseteq} g$. Then Ifp $f \sqsubseteq$ Ifp g.

PROOF. $f \sqsubseteq g$ implies $\{x \mid f(x) \sqsubseteq x\} \subseteq \{x \mid g(x) \sqsubseteq x\}$ whence $\prod \{x \mid g(x) \sqsubseteq x\}$ $x \subseteq \prod \{x \mid f(x) \subseteq x\}$ by def. of lubs whence $f \subseteq f \subseteq f$ by Knaster-Tarski.

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

The Bekić-Leszczylowski fixpoint theorem

THEOREM. Let $F \in L^{n+m} \stackrel{\text{m}}{\longmapsto} L^n$ and $G \in L^{n+m} \stackrel{\text{m}}{\longmapsto} L^m$ be monotone operators and $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ be a complete lattice. We write $\langle X, Y \rangle = \langle X_1, \ldots, X_n, Y_1, \ldots, Y_m \rangle$ when $x \in L^n$ and $Y \in L^m$. Let us consider the set of equations

(1)
$$\begin{cases} X = F(\dot{X}, Y) \\ Y = G(X, Y) \end{cases}$$

the resolvant $R = \lambda Y$ If $\rho \lambda X$ F(X,Y) and the system of equations:

(2) $\begin{cases} X = R(Y) \\ Y = G(R(Y), Y) \end{cases}$ Let us write $\operatorname{fp}(I)$ and $\operatorname{lfp}(i)$, i=1,2 for the respective set of fixpoints and least componentwise solution of (i). We have $fp(2) \subseteq fp(1)$ and Ifp(2) = Ifp(1)

Course 16,399; "Abstract interpretation", Tuesday April 5th, 2005 — 75 —

© P. Cousot, 2005

Abstraction soundness

COROLLARY.

$$\begin{array}{l} \operatorname{lfp} f \sqsubseteq P \\ \iff \exists g \in L \stackrel{\operatorname{m}}{\longmapsto} L : f \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} g \wedge \operatorname{lfp} g \sqsubseteq P \end{array}$$

The soundness of static analysis or abstract model checking directly results from this principle since concrete verification conditions for f are replaced by mode abstract verification conditions for q with which the proof is performed.

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

PROOF. – If $Y, Z \in L^m$ then $Y \subseteq Z$ implies $\langle X, Y \rangle \stackrel{.}{\subseteq} \langle X, Z \rangle$ so $\lambda X \cdot F(X, Y) \stackrel{.}{\subseteq}$ $\lambda X \cdot F(X,Z)$ so Ifp $\lambda X \cdot F(X,Y) \stackrel{.}{\sqsubset} \lambda X \cdot F(X,Z)$ whence $R(Y) \stackrel{.}{\sqsubset} R(Z)$ proving that $R \in L^m \stackrel{\text{m}}{\longmapsto} L^n$ whence fp(2) is not empty.

- Let $\langle A_2 B_2, \in \rangle$ fp(2) be a fixpoint of (2). Then $A_2 = R(B_2)$ so Ifp $\lambda X \cdot F(X, B_2) =$ A_2 whence $A_2 = F(A_2, B_2)$ and $B_2 = G(R(B_2), B_2)$ that is $B_2 = G(A_2, B_2)$ proving that $\langle A_2B_2, \in \rangle$ fp(1) so fp(2) \subseteq fp(1).
- In general fp(2) \neq fp(1). A counter-example is provided by $L = \{\bot, \top\}$ with $\bot \Box \bot \Box \top \Box \top$,

$$\begin{cases} F(X,Y) = X \sqcap Y \\ G(X,Y) = X \sqcup Y \end{cases}$$

so that the resolvant is $R = \lambda Y \cdot \mathsf{lfp} \, \lambda X \cdot F(X,Y) = \lambda Y \cdot \mathsf{lfp} \, \lambda X \cdot X \cap Y =$ $\lambda Y \cdot \perp$. The system of equation (1) has the solution $\langle \top, \top \rangle$ which is not a solution of (2) in that particular case.

- Since $\mathsf{lfp}(2) \in \mathsf{fp}(1)$ we have $\mathsf{lfp}(1) \stackrel{\dot}{\sqsubset} \mathsf{lfp}(2)$.

Course 16.399; "Abstract interpretation". Tuesday April 5th, 2005

- Let $\langle A_1B_1, \in \rangle$ fp(1) be a fixpoint of (1). We have $F(A_1, B_1) = A_1$ whence $F(A_1, B_1) \stackrel{.}{\sqsubset} A_1$ whence A_1 is a pointfixpoint of $\lambda X \cdot F(X, B_1)$ which implies by Knaster-Tarski that Ifp $\lambda X \cdot F(X, B_1) \stackrel{.}{\sqsubset} A_1$ that is $R(B_1) \stackrel{.}{\sqsubset} A_1$. Since $\langle R(B_1), B_1 \rangle \stackrel{.}{\sqsubset} \langle A_1, B_1 \rangle$ and G is monotone $G(R(B_1), B_1) \stackrel{.}{\sqsubset} G(A_1, B_1) \stackrel{.}{\sqsubset}$ B_1 since $\langle A_1, B_1 \rangle$ is a postfixpoint of (1). It follows that $\langle A_1, B_1 \rangle$ is a postfixpoint of (2) which implies $lfp(2) \stackrel{.}{\sqsubset} \langle A_1, B_1 \rangle$ in particular $lfp(2) \stackrel{.}{\sqsubset}$ Ifp (1).
- By antisymmetry, lfp(1) = lfp(2).

П

Course 16,399: "Abstract interpretation". Tuesday April 5th, 2005

© P. Cousot, 2005

$\Longrightarrow lfp f \sqcap P = lfp f$	(def. glb)
$(b) lfp f \sqsubseteq P$	
$\Longrightarrow f(lfp f) \sqsubseteq f(P)$	(monotony)
\Longrightarrow Ifp $f\sqsubseteq f(P)$	\(\) fixpoint \(\)
$\Longrightarrow lfp f = lfp f \sqcap P$	(def. glb)
(c) if $lfp f \sqsubseteq P$ then	
$f(lfp f\sqcap P)$	
$\sqsubseteq f(lfp f) \sqcap f(P)$	(monotony and def. glb)
$= lfp f \sqcap f(P)$	{fixpoint}
$=\operatorname{lfp} f$	(by (b))
$= lfp f \sqcap P$	(by (a))

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005 — 79 —

© P. Cousot, 2005

Fixpoint clipping

THEOREM. Let $f \in L \xrightarrow{m} L$ be a monotone operator on the complete boolean lattice $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap, \neg \rangle$ and $P \in L$. Then

$$\mathsf{lfp}\, f \sqsubseteq P \iff f(\mathsf{lfp}\, f \sqcap P) \sqsubseteq (\mathsf{lfp}\, f \sqcap P)$$

PROOF.

$$(\Leftarrow) \ f(\mathsf{lfp} \ f \sqcap P) \sqsubseteq (\mathsf{lfp} \ f \sqcap P) \\ \implies \mathsf{lfp} \ f \sqsubseteq \mathsf{lfp} \ f \sqcap P \\ \implies \mathsf{lfp} \ f = \mathsf{lfp} \ f \sqcap P \\ \implies \mathsf{lfp} \ f = \mathsf{lfp} \ f \sqcap P \\ \implies \mathsf{lfp} \ f = \mathsf{lfp} \ f \sqcap P \\ \implies \mathsf{lfp} \ f \sqsubseteq P \\ (\mathsf{def. glb})$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(\Rightarrow) \ (a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(a) \ \mathsf{lfp} \ f \sqsubseteq P$$

$$(b) \ \mathsf{lfp} \ f \vdash P$$

$$(b) \ \mathsf{lfp$$

Fixpoint induction with clipping

THEOREM. Let $f \in L \xrightarrow{m} L$ be a monotone operator on the complete boolean lattice $\langle L, \, \Box, \, \bot, \, \top, \, \sqcup, \, \neg \rangle$ and $P \in L$. Then

$$| \mathsf{lfp} \ f \sqsubseteq P \\ \iff \exists I \in L : f(I) \sqcap P \sqsubseteq I \land f(I) \sqsubseteq P$$

PROOF.

 (\Rightarrow) Let $I = \mathsf{lfp}\,f$. $f(I) \cap P = f(\mathsf{lfp}\,f) \cap P = \mathsf{lfp}\,f \cap P = \mathsf{lfp}\,f = I$ since $\mathsf{lfp}\,f \subseteq P$. Moreover, $f(I) = f(\mathsf{lfp}\, f) = \mathsf{lfp}\, f \sqsubseteq P$ proving that $\exists I \in L : f(I) \sqcap P \sqsubseteq$ $I \wedge f(I) \sqsubseteq P$.

Course 16.399; "Abstract interpretation", Tuesday April 5th, 2005

 (\Leftarrow) Reciprocally, $f(I) \sqsubseteq P$ so $f(I) \sqcap P = f(I)$ which by $f(I) \sqcap P \sqsubseteq I$ implies $f(I) \subseteq I$, proving Ifp $f \subseteq I$ by Knaster-tarski. Since f is monotone Ifp f = $f(\operatorname{lfp} f) \sqsubseteq f(I) \sqsubseteq P$ proving $\operatorname{lfp} f \sqsubseteq P$ by transitivity.

Course 16,399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

So the proof consists in:

- 1. Finding an invariant I^{6} with the semantics clipped by absence of runtime errors:
 - $\ orall s \in \Sigma \llbracket P
 rangle : (s \in E \land s
 ot \in \Omega \llbracket P
 rangle) \Longrightarrow \langle s, s \rangle \in I$
 - $-\ orall s,s',s\in \Sigma \llbracket P
 rbracket : (\langle \underline{s},\ s'
 angle \in I \land \langle s',\ s
 angle \in t \land s
 ot\in S$ $\Omega[P] \Longrightarrow (\langle s, s \rangle \in I)$
- 2. Checking the absence of runtime error:
 - $abla \forall s \in \Sigma \llbracket P \rrbracket : s \in E \Longrightarrow s \not\in \Omega \llbracket P \rrbracket$
 - $-\ orall \underline{s}, s', s \in \Sigma \llbracket P
 rbracket : (\langle \underline{s}, \, s' \rangle \in I \land \langle s', \, s \rangle \in t) \Longrightarrow$ $(s \not\in \Omega \llbracket P \rrbracket)$

Course 16.399: "Abstract interpretation". Tuesday April 5th, 2005 — 83 —

© P. Cousot, 2005

Application to the proof of absence of runtime errors

- $\Sigma[P]$: set of states of a program P
- $-t[P] \subset \Sigma[P] \times \Sigma[P]$: small-step operational semantics
- $E[P] \subseteq \Sigma[P]$: initial states
- $\Omega[P] \subseteq \Sigma[P]$: erroneous state

The absence of run-time errors is $\forall s, s \in \Sigma \llbracket P \rrbracket$:

$$egin{aligned} \underline{s} \in E \wedge \langle \underline{s}, \ s \rangle \in (t\llbracket P \rrbracket)^\star &\Longrightarrow s
ot\in \Omega\llbracket P \rrbracket \\ &\Longleftrightarrow \ E\llbracket P \rrbracket \uparrow (t\llbracket P \rrbracket)^\star \subseteq (1_{\Sigma\llbracket P \rrbracket} \upharpoonright \neg \Omega\llbracket P \rrbracket) \end{aligned}$$

- \iff Ifp $f \subseteq S$ by the fixpoint definition of the lefthand side restriction of the reflexive transitive closure on page 47 and, where $f \stackrel{\text{def}}{=}$
- $\begin{array}{c} \lambda X \cdot E\llbracket P \rrbracket \uparrow 1_{\varSigma\llbracket P \rrbracket} \cup X \circ t\llbracket P \rrbracket \text{ and } S \stackrel{\text{def}}{=} 1_{\varSigma\llbracket P \rrbracket} \upharpoonright \neg \Omega\llbracket P \rrbracket \circlearrowleft \\ \Longleftrightarrow \exists I \in \varSigma\llbracket P \rrbracket \times \varSigma\llbracket P \rrbracket : f(I) \cap S \subseteq I \wedge f(I) \subseteq S \end{array}$

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

© P. Cousot, 2005

7 def. \subset

THE END

My MIT web site is http://www.mit.edu/~cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16.399: "Abstract interpretation", Tuesday April 5th, 2005

⁶ e.g. by automatic static analysis