FMI, Info, Anul II, 2021-2022 Fundamentele Limbajelor de Programare

Seminar 4 Rezoluţie SLD

Teorie pentru S4.1:

- O clauză definită este o formulă de forma:
 - $-P(t_1,\ldots,t_n)$ (formulă atomică), unde P este un simbol de predicat, iar t_1,\ldots,t_n termeni
 - $-P_1 \wedge \ldots \wedge P_n \rightarrow Q$, unde toate P_i, Q sunt formule atomice.
- O regulă din Prolog $Q: -P_1, \ldots, P_n$ este o clauză $P_1 \wedge \ldots \wedge P_n \to Q$, iar un fapt din Prolog $P(t_1, ..., t_n)$ este o formulă atomică $P(t_1, ..., t_n)$.
- O clauză definită $P_1 \wedge \ldots \wedge P_n \to Q$ poate fi gândită ca formula $Q \vee \neg P_1 \vee \ldots \vee \neg P_n$.
- Pentru o multime de clauze definite T, regula rezolutiei SLD este

SLD
$$\frac{\neg P_1 \lor \dots \lor \neg P_i \lor \dots \lor \neg P_n}{(\neg P_1 \lor \dots \lor \neg Q_1 \lor \dots \lor \neg Q_m \lor \dots \lor \neg P_n)\theta}$$

unde $Q \vee \neg Q_1 \vee \cdots \vee \neg Q_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și θ este c.g.u pentru P_i și Q.

• Fie T o mulțime de clauze definite și $P_1 \wedge \ldots \wedge P_m$ o țintă, unde P_i sunt formule atomice. O derivare din T prin rezoluție SLD este o secvență $G_0 := \neg P_1 \lor \ldots \lor \neg P_m, G_1, \ldots, G_k, \ldots$ în care G_{i+1} se obține din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Teorema 1 (Completitudinea SLD-rezoluției). Sunt echivalente:

- (i) există o SLD-respingere a lui $P_1 \wedge \ldots \wedge P_m$ din T,
- (ii) $T \models P_1 \land \cdots \land P_m$.

(S4.1) Găsiți o SLD-respingere pentru următoarele programe Prolog și ținte:

- 5. t. (a) 1. r := p,q.
 - 6. q. 7. u. 8. p. 2. s := p,q. 6. q.
 - 3. v := t,u.
 - 4. w :- v,s.
- (b) 1. q(X,Y) := q(Y,X), q(Y,f(f(Y))). ?- q(f(Z),a).
 - 2. q(a,f(f(X))).

```
(c) 1. p(X) := q(X,f(Y)), r(a). 4. r(X) := q(X,Y). ?- p(X), q(Y,Z). 2. p(X) := r(X). 5. r(f(b)). 3. q(X,Y) := p(Y).
```

Teorie pentru S4.2:

Fie T o mulțime de clauze definite și o țintă $G_0 = \neg P_1 \lor ... \lor \neg P_m$. Un arbore SLD este definit astfel:

- Fiecare nod al arborelui este o ţintă (posibil vidă)
- Rădăcina este G_0
- Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i şi G_{i+1} este etichetată cu C_i .

Dacă un arbore SLD cu rădăcina G_0 are o frunză \square (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

(S4.2) Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?- p(X,X).

1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a). 2. p(X,X) := s(X). 8. s(X) := t(X,b). 3. q(X,b). 9. s(X) := t(X,X). 4. q(b,a). 10. t(a,b). 5. q(X,a) := r(a,X). 11. t(b,a). 6. r(b,a).