

N73-30218
CR-134005

REPORT FOR NASA-JSC CONTRACT
NAS9-7644

FINAL REPORT

EXTRAVEHICULAR MOBILITY UNIT
THERMAL SIMULATOR

REPORT NO. T155-03

31 JULY 1973

SUBMITTED BY

CASE FILE
COPY

VOUGHT SYSTEM DIVISION
LTV AEROSPACE CORPORATION
P. O. BOX 5907 - Dallas, Texas - 75222

TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER - HOUSTON, TEXAS

REPORT FOR NASA-JSC CONTRACT
NAS9-7644

FINAL REPORT

EXTRAVEHICULAR MOBILITY UNIT
THERMAL SIMULATOR

REPORT NO. T155-03

31 JULY 1973

SUBMITTED BY

VOUGHT SYSTEM DIVISION
LTV AEROSPACE CORPORATION
P. O. BOX 5907 - Dallas, Texas - 75222

TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER - HOUSTON, TEXAS

Prepared by

C. W. Hixon
C. W. Hixon

M. A. Phillips
M. A. Phillips

Approved by

R. J. French
R. J. French,
Supervisor, EC/LS
Group

TABLE OF CONTENTS

	PAGE
1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 ANALYTICAL METHODS	3
3.1 Thermal Analysis	3
3.1.1 Structure Lumps	4
3.1.2 Tube Lumps	6
3.1.3 Fluid Lumps	7
3.2 Convergence and Accuracy Criteria	8
3.2.1 Stability	8
3.2.2 Oscillation	9
3.2.3 Truncation Error	10
3.2.4 Steady State Nodes	10
3.3 Fluid Heat Transfer Coefficient	11
3.3.1 Laminar Flow	11
3.3.2 Turbulent Flow	13
3.4 Fluid Pressure Loss	14
3.5 Flow System Characterization	14
3.6 Crewman Characterization	19
3.7 Component Characterization	19
3.7.1 Fan	19
3.7.2 Lithium Hydroxide Canister	19
3.7.3 Sublimator	22
3.7.4 Water Separator	30
3.7.5 Suit	30
3.7.6 Pump	32
3.7.7 Transport Water Diverter Valve	32
3.7.8 Liquid Cooling Garment	33
3.7.9 Oxygen Regulator	38
3.7.10 Oxygen Purge System (OPS) Heater	38
3.8 Consumables Characterization	38
3.9 Oxygen Bottle Blowdown Characterization	39

TABLE OF CONTENTS (CONTINUED)

	<u>PAGE</u>
3.10 Heat Leak Calculation	40
3.11 Heat Storage Calculation	42
3.12 LEVA Visor Analysis	42
3.13 Local Temperature Perturbation (LTP) Calculation. .	45
3.14 Thermal Model Data Options	46
3.14.1 Suit, Gloves, and EV Boots Node Identification	46
3.14.2 Configuration-Associated Node Identification	46
3.14.3 Heat Flux Curve Assignment	46
3.14.4 Prescribed Wall Temperature Data	48
3.14.5 Time Variant Node Data	48
3.14.6 Special Tube/Fluid Connection Data	48
4.0 BASELINE THERMAL MODEL	50
5.0 USER'S MANUAL	78
5.1 Program Description	78
5.2 List of System Subroutines Used	89
5.3 MSC Run Submission Requirements	89
5.4 Run Time and Output Estimation	94
5.5 Restrictions	95
5.5.1 Programming	95
5.5.2 Analytical	96
5.5.3 Core Storage Space	97
5.6 Program Options	100
5.6.1 Plot Tape	100
5.6.2 LRV Prescribed Temperature Curves on Tape .	101
5.6.3 Restart	102
5.6.4 EDIT	103
5.6.5 Imposed Node Temperature History	104
5.6.6 Heat Flux and Prescribed Temperature Data From EHFR	104

TABLE OF CONTENTS (CONTINUED)

	<u>PAGE</u>
5.7 Data Card Preparation For EMU	106
5.7.1 Parameter Cards	106
5.7.2 Fluid Data Cards	114
5.7.3 Tube Data Cards	115
5.7.4 Structure Data Cards	118
5.7.5 Local Temperature Perturbation Data Cards .	120
5.7.6 Heat Leak Data Cards	121
5.7.7 Heat Storage Data Cards	122
5.7.8 Helmet and Visor Data Cards	123
5.7.9 Suit, Gloves, and EV Boots Node Identification Cards	124
5.7.10 Configuration-Associated Node Identification Cards	124
5.7.11 Heat Flux Curve Assignment Data Cards . . .	124
5.7.12 Prescribed Wall Temperature Data Cards . .	126
5.7.13 Time Variant Node Data Cards	127
5.7.14 Time Variant Nodal Connection Data Cards. .	128
5.7.15 Special Tube/Fluid Connection Data Cards. .	128
5.7.16 Curve Data Cards.	129
5.8 Output Description	133
6.0 LIST OF SYMBOLS	135
7.0 REFERENCES	137

APPENDICES

A EMU NODAL BREAKDOWN DATA	A-1
B EMU NORMAL PRINT OUTPUT.	B-1
C EMU SAMPLE DATA LISTING	C-1

LIST OF FIGURES

	<u>PAGE</u>
3-1 Laminar Flow Nusselt Numbers	12
3-2 Ventilation Gas System Schematic	15
3-3 Transport Water System Schematic	16
3-4 Oxygen Purge System Schematic	17
3-5 Oxygen Fan Flowrate	20
3-6 Effect of Oxygen Inlet Temperature on Sublimator Oxygen Outlet Temperature	23
3-7 Effect of Oxygen Flowrate on Sublimator Oxygen Outlet Temperature	24
3-8 Effect of Oxygen Inlet Dew Point Temperature On Sublimator Oxygen Outlet Temperature	25
3-9 Sublimator Outlet Temperature - Oxygen	26
3-10 Effect of Water Inlet Temperature On Sublimator Water Outlet Temperature	27
3-11 Effect of Water Flowrate on Sublimator Water Outlet Temperature	28
3-12 Sublimator Dryout/Recovery Transients	31
3-13 Crewman Heat Storage Comfort Band	34
3-14 Liquid Cooling Garment Flow Schematic	35
3-15 Liquid Cooling Garment Model	36
3-16 Typical Heat Leak Model	41
3-17 Lunar Extravehicular Visor Assembly	44
4-1 Suit, Boots, and Gloves Baseline Thermal Model	51
4-2 Typical Suit Cross-Section	52
4-3 Sun Visor Thermal Model	57
4-4 Protective Visor Thermal Model	59
4-5 LEVA Exterior Thermal Model	61
4-6 LEVA Interior Thermal Model	62
4-7 Pressure Bubble Helmet Thermal Model	63
4-8 PLSS Hardcover Nodal Breakdown	65

LIST OF FIGURES (CONTINUED)

	<u>PAGE</u>
4-9 OPS Hardcover Nodal Breakdown	66
4-10 RCU Shell Nodal Breakdown	67
4-11 EMU Umbilical Thermal Model	68
4-12 BSLSS Umbilical Thermal Model	72
4-13 LRV Thermal Model	73
4-14 LRV Center Module Thermal Model	74
4-15 LRV Second Crewman Thermal Model	75
4-16 LRV Aft Storage Bay Thermal Model	75
4-17 LRV Control Console Thermal Model	76
4-18 LRV Forward Electronics Bay Thermal Model	77

LIST OF TABLES

	<u>PAGE</u>
3-1	47
4-1	53
4-2	58
4-3	60
4-4	69
4-5	71
5-1	79

1.0 SUMMARY

This report presents the analytical methods, thermal model, and user's instructions for the Extravehicular Mobility Unit (EMU) routine. This digital computer program was developed for detailed thermal performance predictions of the Extravehicular Mobility Unit on the NASA-MSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as single and two-phase fluid flow and flow controls.

The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the EMU structure, fluid systems, astronaut, and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, (3) output tabular and/or plotted histories of temperature, flow rates, and other parameters describing system operating modes, (4) allow stopping and restarting during a mission simulation, and (5) permit a steady state analysis.

The analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which accounts for temperature or time dependent thermo-physical properties. These generalized methods are applied within the routine to the majority of nodes which describe the structure and fluid systems. Additional specialized methods are written into the routine to characterize: (1) the ventilation gas and oxygen purge systems, (2) transport water and sublimator feedwater systems, (3) oxygen regulators, (4) oxygen bottle blowdown, (5) the lithium hydroxide canister, (6) the sublimator, (7) the water separator, (8) the helmet visors, (9) crewman, (10) variation of system flowrates resulting from pump flowrate/pressure drop characteristics.

The EMU routine utilizes an integrated thermal model of the EMU structure and flow systems which was assembled from Hamilton Standard drawings and component data.

The user's manual and supporting appendices provide a complete routine description including instructions for problem submission in compliance with current NASA-MSC Computation and Analysis Division procedures. Methods are provided for estimating run time, amount of paper output, and core storage space requirements. A detailed description of data card preparation, examples of program output, and run failure analysis are given.

2.0 INTRODUCTION

This report describes the EMU digital simulator (routine) and the Baseline Thermal Model developed by the LTV Aerospace Corporation. The thermal model was created from hardware manufacturer's drawings (Hamilton Standard), procurement specifications, and design verification test results.

The routine simulates the suited crewman using the Portable Life Support System (PLSS) or Oxygen Purge System (OPS) in a vacuum environment. The thermal model uses the -7 PLSS and -4 Remote Control Unit as the baseline input data. More detailed information on the thermal model is presented in Section 4.0. The routine simulates the crewman in the suited, partially suited and shirtsleeves modes. In the suited or partially suited mode, the crewman may be simulated using the PLSS, OPS or the Lunar Module Suit Gas Loop.

The routine and thermal model have been correlated against the EMU Manned Lunar Qualification Tests of 1969, Part III Unmanned Investigative Space Suit Tests of 1969, Apollo 12 flight data, Buddy Secondary Life Support System (BSLSS) Design Verification Test and Apollo 15 EMU Manned Qualification Test of 1971.

3.0 ANALYTICAL METHODS

Sections 3.1 through 3.4 describe generalized heat balance and flow system calculation methods used in this computer routine which may be applied to other thermal simulation models. Sections 3.5 through 3.8 describe specialized analytical characterizations which have been created for the Extravehicular Mobility Unit (EMU) program formulation.

Differential equations which describe conductive, convective, and radiative heat transfer, and internally generated heat as well, are solved by the familiar explicit finite difference approximation technique (Reference 1). In this technique the subject of the analysis is divided into lumps which are considered to be isothermal for evaluation of thermal properties and heat capacitance effects, and which are considered to have temperatures located at their geometric centers (nodes or lumps) for conduction effects.

3.1 Thermal Analysis

In the computer routine, lumps are classified as: (1) structure lumps; (2) tube lumps; and (3) fluid lumps. In general, structure lumps are lumps which are not in contact with any flowing fluid. Tube lumps are lumps which are in contact with a flowing fluid, as well as structure lumps and other tube lumps. Fluid lumps are flowing or stagnant liquid or gas lumps which experience convective heat transfer interchange with tube lumps. These three classifications, which are discussed below, govern much of the computer routine input data format discussed in Section 5.7. Each lump must be numbered, and the lump numbers in each classification start at 1 and go consecutively through the maximum number for that classification.

As will be seen later, nodes requiring special analysis do not necessarily follow the classifications described above. In most instances where the classifications break down, the node is made a structure node which requires less interrelated input data.

The finite-difference equations used for each lump classification are described below.

3.1.1 Structure Lumps (illustrated by the sketch below)

$$w_i c_i \frac{T_j - T_i}{\Delta \tau} = \sum_j U_{ij} (T_j - T_i) + \alpha_i A_i Q_i + \sum_j \sigma F_{i-j} A_i (T_j^4 - T_i^4) \quad (1)$$

Heat Stored Net Heat Flux

Equation (1) may be rewritten in the form:

$$T_i^{'} = T_i + \frac{\Delta\tau}{w_i c_i} \left[\sum_j U_{ij}(T_j - T_i) + (\alpha A)_i Q_i + \sum_j \sigma(\mathcal{F}_A)_{ij}(T_j^4 - T_i^4) \right] \quad (2)$$

Equation (2) is the basic form of the structure lump heat balance equation.

where: i = lump number (data input)

T_i = temperature of lump i at time τ , °R (Routine input and output are in °F)

T_i = temperature of lump i at time $\tau + \Delta\tau$, °R

$\Delta\tau$ = time increment of next step in calculation as determined
by convergence criteria within the routine (see Section 3.2.1)
hrs

w_i = weight of lump i , (input data - 1bs)

c_i = specific heat of lump i. This quantity is entered as a table of specific heat (BTU/lb-°F) versus temperature in °F.

U_{ij} = the conductance between structure lump i and adjacent structure lumps, j, BTU/hr-°F

$$U_{ij} = \frac{1}{R_i + R_j} \quad \text{This form of } U_{ij} \text{ permits an accounting of temperature dependent dissimilar materials in adjacent nodes.} \quad (3)$$

R_i = that portion of the conduction resistance from lump i to j which is attributed to i, $\frac{Y_i}{K_i A_{ij}}$ (input as R_1 , hr-°F/BTU)

R_j = that portion of the resistance from lump i to j which is attributed to j, $\frac{Y_j}{K_j A_{ij}}$ (input as R_2 , hr-°F/BTU)

where: Y_i = is that portion of the conduction path length between node i and j which lies in lump i

Y_j = is that portion of the conduction path length between node i and j which lies in lump j

A_{ij} = is the effective conduction area between lumps i and j

K_i = is the thermal conductivity of lump i

K_j = is the thermal conductivity of lump j

k_i = thermal conductivity of lump i at the present temperature (time τ) normalized by the thermal conductivity at which R_i was evaluated, i.e., K_i/K_{R_i} . This quantity is entered as a table of normalized conductivity versus temperature in °F for each lump, dimensionless

k_j = thermal conductivity of lump j at the present temperature (time τ) normalized by the thermal conductivity at which R_j was evaluated, i.e., K_j/K_{R_j} , dimensionless

In the case of constant thermal conductivity, the entire resistance may be calculated as R_i , and R_j is entered as 0.0. This is desirable since

it saves data space in the computer core.

T_j = temperature of adjacent lumps at time τ (lump numbers, j, which are connected to lump i are data input), $^{\circ}\text{R}$

$(\alpha A)_i$ = incident heat application area for lump i, (data input sq. in.). This quantity can be entered as absorptance (α_i) times area (A_i) or as area alone depending on how Q_i is entered. BTU/hr

Q_i = incident heat on lump i, BTU/ $\text{ft}^2\text{-hr}$. This quantity is entered as a table versus time in hours. Obviously absorbed heat (αQ) could be entered here in which case αA would be entered as area only.

σ = Stefan-Boltzmann constant, 0.173×10^{-8} BTU/ $\text{hr}\cdot\text{ft}^2(^{\circ}\text{R})^4$

$(\mathcal{F}A)_{ij}$ = Gray-body configuration factor (a function of surface emittances, areas, and geometry) from lump i to lump j, sq. ft. (data input - sq. in.)

The routine calculates the energy entering a structure lump for each connection to that lump prescribed in the data. The calculated energy is summed algebraically and stored in the TSQRAT array until the structure temperatures are updated.

3.1.2 Tube Lumps

The development of the equations for tube lumps departs in subtle but significant ways from the explicit finite difference method of the structure equations. Tube lump temperatures are calculated using a hybrid implicit-explicit numerical differencing technique (Reference 2). The advantage of the hybrid finite difference equations is that they are numerically stable for relatively large time increments. The hybrid form of the tube temperature equation is written as follows:

$$\dot{Q}_{\text{STORED}} = \dot{Q}_{\text{CONV}} + \dot{Q}_{\text{COND}} + \dot{Q}_{\text{RAD}} + \dot{Q}_{\text{ABSORBED}}$$

$$\frac{wC_i}{\Delta\tau} (T'_i - T_i) = h_f A_f (T'_f - T'_i) + \sum_j (UA)_{ij} (T_j - T_i) + \sum_j \sigma (\mathcal{F}A)_{ij} (T_j^4 - T_i^4) + \dot{Q} \quad (4)$$

where:

- h_f = convective heat transfer coefficient,
BTU/(hr-ft²-°F)
- A_f = area for convective heat transfer, ft²
(data input - in²)
- T_f = updated temperature of fluid lump associated
with tube lump i , °R
- T_j = tube or structure lump j to which tube lump i
is connected

The input data for tube lumps includes all of the data input required for structure lumps plus the lump number of the enclosed fluid lump and the convective heat transfer area, A_f . Data required for computing the heat transfer coefficient is given with the enclosed fluid lump input data. Heat transfer coefficient computation is discussed in Section 3.3.

To solve for T_i' explicitly, it is necessary to have the updated fluid temperature, T_f' .

$$T_i' = \frac{\frac{(wc)_i}{\Delta\tau} T_i + h_f A_f + \sum_j (UA)_{ij} (T_j - T_i) + \sum_j \sigma (\mathcal{F}A)_{ij} (T_j^4 - T_i^4) + (\alpha A)_i Q_i}{\frac{(wc)_i}{\Delta\tau} + h_f A_f} \quad (5)$$

Therefore, the fluid temperatures must be known or calculated at each time increment ($\Delta\tau$) prior to the tube lump calculation.

3.1.3 Fluid Lumps

Fluid lump temperatures are calculated using the hybrid finite difference based on the following energy balance.

$$\dot{Q}_{STORED} = \dot{Q}_{MASS_FLUX} + \dot{Q}_{CONV}$$

$$\frac{(wc)_f}{\Delta\tau} (T_f' - T_f) = w c_p (T_{fu} - T_f') + \sum_t (hA)_t (T_t' - T_f) \quad (6)$$

Solving for T_f' and substituting equation (5) for T_t' :

$$T_f' = \frac{\frac{(wc)}{\Delta\tau} f T_f + \dot{w}c_p T_{fu}' + \sum_t (hA)_t \left(\frac{\frac{(wc)}{\Delta\tau} t T_t' + \sum_j (UA)_j (T_j - T_t)}{\frac{wc}{\Delta\tau} t + (hA)_t} \right)}{\frac{(wc)}{\Delta\tau} f + \dot{w}c_p + \sum_t (hA)_t \frac{\frac{(wc)}{\Delta\tau} t}{\frac{(wc)}{\Delta\tau} t + (hA)_t}} \quad (7)$$

Inspection of equation (7) reveals the requirement for the updated upstream fluid temperature, T_{fu}' , while the other temperatures are known from the previous time increment. Each separate system has a system starting point from which the temperature calculations proceed in the direction of the flow each iteration. Therefore T_{fu}' is established initially at the system starting point in a closed loop system and then calculated on subsequent iterations. In an open system the T_{fu}' must be known as a function of time at the origination of flow.

3.2 Convergence and Accuracy Criteria

The heat transfer equations used in the computer routine described herein are based on explicit and implicit-explicit hybrid methods of finite difference solution. With the first method, the future temperature of any structure lump is evaluated from the present temperature of surrounding lumps and the thermal environment. The validity of this type of solution depends on satisfying criteria for stability, oscillation, and truncation error minimization. The hybrid method was employed to remove the heat transfer coefficient from the stability criteria for the tube lump analysis.

3.2.1 Stability

The term stability usually refers to errors in equation solution that progressively increase or accumulate as the calculations proceed. Clark (Reference 3) concludes that any explicit forward difference equation will yield stable results for the future temperatures of any lump if the coefficients of the present lump temperature are at least zero or have the same sign as the other coefficients of known temperatures. This stability criterion defines the size of the time step to be used with the basic equations. The

equations used in the computer routine are rearranged below to show the development of the stability requirement for structure lumps. It should be noted that failure to meet this stability criteria means only that the solution may be unstable and not that it is. For structure lumps, Equation (2) may be written as:

$$T_i' = \frac{\Delta\tau}{w_i c_i} \left[\sum_j U_{ij} T_j + (\alpha A)_i Q_i + \sum_j \sigma (\mathcal{F}_A)_{ij} (T_i^2 + T_j^2) (T_i + T_j) T_j \right] \\ + T_i \left[1 - \frac{\Delta\tau}{w_i c_i} \left(\sum_j U_{ij} + \sum_j \sigma (\mathcal{F}_A)_{ij} (T_i^2 + T_j^2) (T_i + T_j) \right) \right] \quad (8)$$

According to Reference (4) the linearized radiation can cause oscillations when the radiative coupling is dominant and suggests replacing

$$\sum_j \sigma (\mathcal{F}_A)_{ij} (T_i^2 + T_j^2) (T_i + T_j) \text{ with } 4 \sigma \sum_j (\mathcal{F}_A)_{ij} T_i^3$$

in the stability criterion equation. For the coefficient of T_i to be positive,

$$\Delta\tau \leq \frac{w_i c_i}{\sum_j U_{ij} + 4 \sigma T_i^3 \sum_j (\mathcal{F}_A)_{ij}} \quad (9)$$

An identical stability equation exists for the tube lump Equation (5). The hybrid technique as written for the fluid lump temperature (Equation 7) is inherently stable according to Clark's criterion.

3.2.2 Oscillation

Even though a solution is stable, it may oscillate around a correct mean value. An oscillatory condition is dependent on the problem boundary conditions and the node spacing. In cases where oscillation occurs, this undesirable condition may be damped or eliminated by use of a $\Delta\tau$ smaller than the limiting value specified by equation (13). This is accommodated by the input of TINCMN described in Section 3.2.4.

3.2.3 Truncation Error

The truncation error in the routine solution results from replacing derivatives with finite differences. In order to provide a measure of the accumulated truncation error, results for smaller time and space increments (subject to stability and oscillation criteria) should be compared. Chu (Reference 5) recommends halving the space increment and quartering the time increment to obtain an estimate of the error in a numerical result. In general, an investigation of truncation error must be made by changing lump sizes for each type of problem to determine the maximum size of isothermal lumps that can be used for a valid solution.

The truncation error has been shown to be of the form $A + B$ (Ref. 3) where A is proportional to the time increment and B is proportional to the square of the lump linear dimension. LTV experience indicates that time truncation error (A) is relatively small (≈ 3 percent) if the time increment satisfies the stability criteria. The spatial truncation error (B) can be evaluated at steady state.

3.2.4 Steady State Nodes

In a large complex thermal model such as the one to which this routine is applied, it is generally desirable to decrease computation time by having the temperature calculations advance at a larger time increment, $\Delta\tau$, than the calculated maximum time increment, $\Delta\tau_{max}$ (equation 9), for some individual lumps. For this reason the routine was setup so that the computing interval, TINCMN, is supplied by the user on Parameter Card 2, Section 5.7.1. In order to prevent oscillation in those lumps having a $\Delta\tau_{max}$ less than TINCMN, the routine tests TINCMN against the $\Delta\tau_{max}$ for each lump, and in cases where $\Delta\tau_{max}$ is smaller, the heat balance equation is modified so that the individual values of $\Delta\tau_{max}$ are applied to compute T for these particular lumps. This is illustrated below for a structure lump with no radiation or incident heat flux. The operation is commonly referred to as "overriding" these particular lumps.

$$T_i^t = T_i + \frac{\Delta\tau}{w_i c_i} \sum u_{ij} (T_j - T_i) \quad (10)$$

$$\Delta\tau_{max} = \frac{w_i c_i}{\sum u_{ij}} \quad (11)$$

Substitute (11) into (10) and

$$T_i' = T_i + \frac{\sum U_{ij}(T_j - T_i)}{\sum U_{ij}} = T_i + \frac{\sum U_{ij}T_j}{\sum U_{ij}} - T_i$$

$$T_i' = \frac{\sum U_{ij}T_i}{\sum U_{ij}} \quad \text{or} \quad \sum U_{ij}(T_j - T_i') = 0 \quad (12)$$

Thus, T_i' is the temperature which would yield an equilibrium heat balance with lump i and surrounding temperatures of T_j . While this feature allows greater run speed and prevents "overridden" lump oscillation, care should be exercised to prevent large errors which can result from "overriding" two adjacent lumps.

3.3 Fluid Heat Transfer Coefficient

Commonly used equations for determining both laminar and turbulent fluid heat transfer coefficients were programmed into the computer routine. An option was also included to permit the program user to input heat transfer coefficient as a function of flow rate in a table (Card 2, Fluid Data Cards). This option is useful for characterizing convective heat transfer in fluid system components when applicable performance data is available.

The use of theoretical solutions based on the assumption of constant fluid properties may introduce errors for fluids where viscosity is a strong function of temperature. The EMU uses two fluids; oxygen and water, the latter has a significant viscosity variation with temperature. This variation is accounted for through curve data input (Section 5.7.16).

3.3.1 Laminar Flow

Both the thermal entry length and the fully developed flow regimes must be considered to properly evaluate a laminar flow heat transfer coefficient. The thermal entry length region is usually considered to include those values of $(1/Re Pr)(L/D_h)$ below .050.

Results are shown in Figure 3-1 for theoretical local and mean Nusselt Numbers obtained by the Graetz solution for circular tubes with uniform surface temperature (Reference 6). The solutions exhibit an asymptotic approach to a

FIGURE 3-1 LAMINAR FLOW NUSSELT NUMBERS

$\frac{1}{Re \cdot Pr} \cdot \frac{L}{Dh}$

fully developed flow Nusselt Number of 3.66. A plot of the Sieder-Tate equation (Reference 7) which represents an experimental correlation of test data for $(1/\text{RePr})(L/D_h)$ of 0.003 and below is also shown in Figure 3-1. The entry length heat transfer coefficient equation programmed in the computer routine is the Sieder-Tate correlation modified by a factor of 0.575. This equation is shown to provide an adequate fit for the theoretical local heat transfer coefficients which are needed for the individual lumps in the computer routine.

$$h_f = (1.86)(.575) K_f/D_h \left[\frac{\text{Re Pr}}{L/D_h} \right]^{1/3} \quad (13)$$

where:

h_f = convective heat transfer coefficient, BTU/hr-ft²-°F

K_f = fluid thermal conductivity, BTU/hr-ft-°F

L = length from tube entrance, ft

D_h = tube hydraulic diameter = 4 CSA/WP, ft

CSA = cross sectional area of tube, ft² (data input - in²)

WP = wetted perimeter of tube, ft (data input - in)

Re = Reynolds number, dimensionless

Pr = Prandtl number, dimensionless

The values calculated with Equation (13) are compared with the values calculated by the fully developed flow heat transfer equation:

$$h_f = 3.66 K_f/D_h \quad (14)$$

and the higher value is used in the heat balance equation.

In this routine it is also possible to have stagnant fluid in flow systems. When this occurs equation (14) is used to determine the heat transfer coefficient to the fluid.

3.3.2 Turbulent Flow

The correlation of equation (15), recommended in Reference 8, is used to determine heat transfer coefficients at Reynolds numbers greater than 2000.

$$h_f = .023 \frac{K_f}{D_h} (\text{Re})^{.8} (\text{Pr})^{1/3} \quad (15)$$

In turbulent flow the undeveloped region of heat transfer is short (\approx 4 diameters) such that for most cases it will constitute only a small portion of the total internal heat transfer region.

3.4 Fluid Pressure Loss

The flow system pressure loss is calculated by the Fanning equation with a dynamic head loss factor (K) added. The pressure loss for each fluid lump is calculated by:

$$\Delta P = 4 f \frac{FLL}{D_h} \frac{\rho V^2}{2} + K \frac{\rho V^2}{2} = \frac{\dot{w}^2}{2\rho CSA^2} \left[\frac{f(WP)FLL}{CSA} + K \right] \quad (22)$$

where f = friction factor $16/Re$ for Reynolds Numbers less than 2000 and is read from input data for Reynolds Numbers greater than 2000 (NFFC, Fluid Data Card 2). The laminar flow friction factor may also be multiplied by FRE, Fluid Data Card 2 to account for non-circular pipe flow.

FLL = fluid lump length (not necessarily equal to tube lump length)

K = number of fluid dynamic head losses

\dot{w} = tube fluid flow rate, lb/hr

WP = wetted perimeter, ft (data input - in)

CSA = fluid cross section area, ft^2 (data input - in^2)

D_h = tube hydraulic diameter - $4 CSA/WP$, ft

ρ = fluid density, lb/ft^3

v = fluid velocity, ft/hr

The fluid lump type cards provide for inputs of (K) which can be different for each fluid lump type. The term is used to account for pressure losses in tube entrance regions, bends, contractions, and expansions. Entrance pressure losses for varying duct geometries (Reference 9) may also be specified by (K).

3.5 Flow System Characterization

There are five flow systems in the PLSS and OPS (Figures 3-2, 3-3, and 3-4) and all are simulated in this work. The purpose of the ventilation gas system (Figure 3-2) is to supply life sustaining oxygen to the crewman at a comfortable humidity and temperature. This system is a multi-component

FIGURE 3-2 VENTILATION GAS SYSTEM SCHEMATIC

FIGURE 3-3 TRANSPORT WATER SYSTEM SCHEMATIC

FIGURE 3-4 OXYGEN PURGE SYSTEM SCHEMATIC

fluid system composed of oxygen, water vapor, and carbon dioxide. The latter two are controlled to acceptable levels by components in the loop. The water vapor is condensed in the sublimator and removed in the water separator while the LiOH canister removes the CO₂. The gas leaving the sublimator is assumed to be saturated. When the total heat load on the sublimator is less than the maximum sublimator heat load input by the curve data (Section 5.7.16). Another assumption made on the system is that the removal rate of CO₂ in the canister is equal to the crewman's production rate of CO₂. System oxygen pressure is input as a function of time for the gas at the fan exit port. The total system flowrate is approximately 7 pounds of O₂ per hour. The water vapor flowrate is relatively high between the suit exit and the sublimator when the crewman is working at a high metabolic rate. Tubes 11 and 12 (Figure 3-2) are checked to determine if condensation can occur. If a tube node in tubes 11 or 12 is cool enough, water vapor is removed from the stream, however, no provisions are made for reevaporation. The rate of condensation and the total amount condensed is output per tube.

The primary oxygen system (Figure 3-2) is an open system used to replenish the oxygen lost from the ventilation gas system due to suit leakage and oxygen consumption. CO₂ removed in the LiOH canister would slowly reduce the total gas flow if not replaced. The primary oxygen system has a regulator to control the gas expansion from the oxygen bottle and the simulation assumes no variation in regulator outlet pressure as the upstream pressure of the regulator is reduced.

The transport water system (Figure 3-3) is designed to provide heat removal from the crewman. Since the work rate of the crewman varies over a fairly wide range, a bypass line is used to vary the inlet water temperature to the liquid cooling garment. By manual operation the crewman selects one of three discrete cooling positions on a bypass valve for individual comfort. Flow through the sublimator is never zero but in the minimum cooling position the flow is less than 1% of the total flow. Flow passing through the sublimator cools the fan motor before being mixed with the bypassed flow.

The sublimator feedwater system (Figure 3-3) carries water from the water reservoir to the porous plate in the sublimator. This system is pressurized by the ventilation gas system at the water separator.

The oxygen purge system (Figure 3-4) is used to purge the suit in case of dangerous CO₂ buildup or may be used as a reserve oxygen supply. The system flowrate is determined from user input as a function of time.

3.6 Crewman Characterization

The EMU simulator has incorporated the 41-node metabolic man simulation developed by the National Aeronautics and Space Administration (NASA)-Manned Spacecraft Center (MSC) (Reference 10). Program logic change was necessary to interface the 41-node man with the simulator but the basic relationships representing the thermal regulatory processes are unchanged. The principle area of significant change is at the man's skin/environment interface. NASA's simulation of the undergarment, and the Liquid Cooled Garment (LCG) (Section 3.7.8) were modified from the original steady state analysis to a transient calculation of temperatures.

All forty-one man temperatures, temperature averages for skin and muscle plus twelve other variables to determine the man's relationship to his environment are output at each print interval.

3.7 Component Characterization

3.7.1 Fan

The ventilation gas is circulated by a fan. The system pressure drop is calculated by summing all the individual pressure drops of components and connecting lines around the closed loop containing the fan. System pressure varies from about 3.8 psia when the PLSS is operating in a vacuum to approximately 8.8 psia when the PLSS is operating in the pressurized Lunar Module cabin. The user selects a system pressure which is compatible with the environment to be analyzed and the simulator iterates on the oxygen flowrate and system pressure (see Figure 3-5) drop until acceptable convergence is obtained. Heating of the gas as it passes through the fan has been correlated with test data in the form of a convective heat transfer coefficient to obtain the proper gas temperature rise. The fan motor is modelled as a structure lump with an internal heat generation having connections to the volute housing and a transport water cooling tube.

3.7.2 Lithium Hydroxide Canister

The lithium hydroxide (LiOH) canister is the first component the ventilation gas passes through upon returning from the crewman's suit to the

FIGURE 3-5 OXYGEN FAN FLOWRATE

PLSS. In the suit the gas stream picks up exhaled carbon dioxide, water vapor, and odorous gas traces. Carbon dioxide (CO_2) reacts with the LiOH in the following exothermic reaction.

The process occurring in the canister is dependent on a number of variables which affect the chemical reaction; however, for the majority of the extra-vehicular activities the LiOH canister design is such that the chemical reaction may be assumed to occur as written above. The simulator analysis assumes the canister removes all CO_2 as it is generated. The canister contains activated charcoal to eliminate pungent odors.

To calculate the heat generated in the LiOH bed, the generation rate of CO_2 is required. The CO_2 generation rate is dependent upon the respiratory quotient (RQ). The simulator uses $RQ = .82$ which results in the following equation:

$$\dot{Q}_{\text{canister}} = .162 \text{ RM}$$

where $\dot{Q}_{\text{canister}}$ = the heat generation rate in the canister, BTU/hr
 RM = the crewman metabolic rate, BTU/hr

The water vapor added to the gas stream due to the chemical reaction is

$$\dot{w}_{\text{H}_2\text{O}} = \frac{M_{\text{H}_2\text{O}}}{M_{\text{CO}_2}} \dot{w}_{\text{CO}_2}$$

where $\dot{w}_{\text{H}_2\text{O}}$ = the water vapor generation rate, LB/hr
 $M_{\text{H}_2\text{O}}$ = molecular weight of water, 18
 M_{CO_2} = molecular weight of carbon dioxide, 44
 \dot{w}_{CO_2} = .000189 RM = the mass rate of CO_2 added to the reaction, LB/hr

The pressure drop of the gas through the LiOH canister is calculated by the equation:

$$\Delta P = C_2 \frac{T_{in}}{P_{in}} (W)^{N_2}$$

where ΔP = the pressure drop of the gas through the canister, psi

T_{in} = the gas temperature into the canister, $^{\circ}$ R

P_{in} = the gas pressure into the canister, psia

W = the gas flowrate, LB/hr

Suggested values for $C_2 = 4.58E-6$ and $N_2 = 2.044$ (See Section 5.7, Card 6)

3.7.3 Sublimator

The sublimator cools the ventilation gas and transport water loops by dissipating heat with an expendable water supply. Simulation of the sublimator includes start-up transient, maximum cooling capability, effectiveness (temperature out for both loops), effect of humidity and condensation in the gas side, pressure drop of both loops, and the shut-down transient.

An initial specific humidity out of the sublimator on the gas side is input for the first iteration. Subsequent specific humidity values are dependent on the water introduced into the system and the maximum cooling capacity (input data) of the sublimator. If the sublimator has the capacity to cool both the transport water and ventilation gas streams plus absorb the heat from the PLSS structure, the gas leaving the sublimator will be saturated. Since the ventilation gas flowrate is relatively constant, the simulation of the outlet gas temperature reduces to a function of inlet temperature and inlet dew point temperature. Figure 3-6, 3-7, and 3-8 present component data on the sublimator taken from Reference (11), Memorandum NA-SS-3326 and used to generate Figure 3-9. Analytical expressions were derived for the data represented in Figure 3-9 and are formulated in subroutine SUBLIM.

The sublimator water outlet temperature is determined by interpolating on a bivariate curve with the sublimator water flowrate and inlet temperature. The curve data were generated from Figures 3-10 and 3-11 (reproduced from NA-SS-3326). The data were extrapolated such that an inlet temperature

FIGURE 3-6 EFFECT OF OXYGEN INLET TEMPERATURE ON SUBLIMATOR OXYGEN OUTLET TEMPERATURE

FIGURE 3-7 EFFECT OF OXYGEN FLOWRATE ON SUBLIMATOR OXYGEN OUTLET TEMPERATURE

FIGURE 3-8 EFFECT OF OXYGEN INLET DEW POINT TEMPERATURES ON SUBLIMATOR OXYGEN OUTLET TEMPERATURE

FIGURE 3-9 SUBLIMATOR OUTLET TEMPERATURE - OXYGEN

FIGURE 3-10 EFFECT OF WATER INLET TEMPERATURE ON SUBLIMATOR
WATER OUTLET TEMPERATURE

FIGURE 3-11 EFFECT OF WATER FLOWRATE ON
SUBLIMATOR WATER OUTLET
TEMPERATURE

of 32⁰F would give an outlet of 32⁰F for any flowrate and that zero flowrate would give an outlet temperature of 32⁰F.

The maximum capacity or cooling rate of the sublimator is simulated by allowing the core temperature to rise above 32⁰F. Using the outlet temperatures of the two loops and all other connection data, the net heat into the sublimator is calculated and compared to the maximum cooling rate input in the curve data. If the cooling rate is less than the net heat gained, this difference is used to calculate a new sublimator core temperature to be used on the following iteration.

As stated previously the pressure drop through the sublimator is calculated for both loops and used to calculate a system pressure drop in the respective loops. To provide for as much latitude as possible with components, the user is allowed to supply the constants in the equations for pressure drop thus making new component data easy to incorporate. For the gas side, the equation is:

$$\Delta P = C_1 \frac{T_{in}}{P_{in}} (W)^{N_1}$$

where: ΔP = the pressure drop of the gas through the sublimator, psi

T_{in} = temperature of gas into the sublimator, ⁰R

P_{in} = total pressure of gas into the sublimator, psia

W = the gas flowrates, LB/hr

Suggested values for $C_1 = 1.28E-5$ and $N_1 = 1.55$

For the water side, the equation is

$$\Delta P = C_2 (W)^{N_2}$$

where: ΔP = the pressure drop of the water through the sublimator, psi

W = the water flowrate, LB/hr

Suggested values for $C_2 = 1.583E-6$ and $N_2 = 8.2023$

Sublimator performance is independent of feedwater pressure in the simulator, therefore the program does not stop with the emptying of the water reservoir. However, continuous monitoring of the feedwater reservoir quantity is maintained throughout the mission and if the available water quantity becomes zero, automatic sublimator dryout commences. The automatic dryout

profile is shown in Figure 3-12, and occurs if the primary and auxiliary water reservoirs are depleted or if the primary supply is depleted and the auxiliary water shut-off valve is closed. The auxiliary supply is not used until the primary reservoir registers empty. If the auxiliary water shut-off valve is opened during a dryout transient, the sublimator enters a recovery transient (Figure 3-12) and will eventually attain the input value. The user must enter his own dryout transient when he wishes to terminate the mission prior to exhausting the available water.

3.7.4 Water Separator

The water separator is located in the ventilation gas loop downstream of the sublimator. Entrained water droplets condensed in the sublimator are removed from the gas flow by the water separator. Water picked up by the separator flows to the backside of the bladder in the water reservoir. This process is simulated as well as the pressure drop of the gas through the water separator. The pressure drop is calculated by the following equation.

$$\Delta P = C_3 \frac{T_{in}}{P_{in}} (W)^{N_3}$$

where: ΔP = the pressure drop of the gas through the water separator, psi

T_{in} = the gas temperature into the separator, $^{\circ}$ R

P_{in} = the gas pressure into the separator, psia

Suggested values for C_3 = 7.317E-6 and N_3 = 2.142

3.7.5 Suit

The crewman's space suit is composed of the pressure garment assembly (PGA) and the integrated thermal/meteoroid garment (ITMG). The flow-splits in the PGA for the suited modes were furnished in the subroutines of the 41-node metabolic man program (NASA) and were used without change. Likewise, the convection and radiation heat transfer between the suit wall and crewman's undergarment are calculated as in the NASA program with provisions added to handle multi-node suit areas around a single skin compartment.

The PGA may be assumed to have leakage by inputting a curve of leakage rate versus time. Gas leakage leaves the PGA and the gas loop at the outlet gas connector at a humidity which is the average of the inlet and

QEMAX - Sublimator Maximum Load Capability (Btu/hr)

To - Time at which Primary Feedwater quantity goes to zero and auxiliary feedwater shut-off valve closed

or

primary and auxiliary feedwater depleted.

T_1 - Time at which QEMAX has reached two thirds of value at T_0

T_2 - Time at which dryout is complete

Q - MAXIMUM LOAD INPUT BY THE USER

FIGURE 3-12 SUBLIMATOR DRYOUT/RECOVERY TRANSIENT

outlet humidities of the suit gas. Pressure drop through the suit is calculated using the following equation:

$$\Delta P = C_7 \frac{T_{in}}{P_{in}} N_7$$

where ΔP = the pressure drop through the suit, psi

T_{in} = gas temperature into the suit, $^{\circ}$ R

P_{in} = gas system pressure into the suit, psia

\dot{W} = gas flowrate, LB/hr

Suggested values for $C_7 = 1.062E-5$ and $N_7 = 1.862$

3.7.6 Pump

The transport water system pump is located immediately upstream of the tee which directs flow to the sublimator or sublimator bypass line.

The system pressure drop is calculated using the line containing the sublimator (since the flow is never zero in this line) and used in the following equation to find the total flow for the next iteration.

$$W = C_6 \Delta P N_6$$

where: \dot{W} = the total water flow, LB/hr

ΔP = transport water system pressure drop, psi

Suggested values for $C_6 = 656.$ and $N_6 = -.686$

3.7.7 Transport Water Diverter Valve

The diverter valve is a three-position, manually-operated valve by which the crewman controls the LCG inlet temperature. The three positions have been named according to the cooling capacity as maximum, intermediate and minimum.

In the maximum cooling position, the diverter valve closes the sublimator bypass and forces total transport water flow through the sublimator. If the crewman selects the intermediate cooling position of the valve, 87.5 percent of the total flow is bypassed around the sublimator. In the minimum

cooling position , the valve bypasses 96.5 percent of the total flow. The above percentages are based on the nominal steady-state flowrates called for in Hamilton Standard's specification SVHS3133, Section 3.5.2.2.

The valve position is input as a Type 34 curve, position code versus time. The following codes determine valve position: 1, maximum cooling; 2, intermediate cooling; 3, minimum cooling. One additional code is available to the user; 4, automatic positioning of the diverter valve as a function of the crewman's internal heat storage. Figure 3-13 shows the comfort band of the average crewman as a function of the metabolic rate. If the crewman's heat storage rises above the comfort band, the valve position is moved one position to provide increased cooling. The valve may be moved to provide further cooling after 3 minutes has elapsed from time of the last position change if the diverter valve is not already set to maximum cooling. The three minute delay between position changes simulates crewman and system response time. If the crewman's internal heat storage falls below the comfort band, the diverter valve position is changed to reduce the cooling at three minute intervals until minimum cooling is reached or the crewman's internal heat storage is in the comfort band. When using the automatic positioning option, it is necessary to initialize the valve in one of the other three positions before going to automatic.

3.7.8 Liquid Cooling Garment

At high metabolic rates the convective and evaporative heat transfer cannot maintain an acceptable crewman heat storage level; therefore, a liquid cooling garment (LCG) is worn during extravehicular activity. The LCG is constructed of one layer each of chiffon and Spandex with Tygon tubing sandwiched between the two layers. Water, chilled by the PLSS sublimator, flows through the LCG tubing which covers the crewman's legs, torso, and arms. Figure 3-14 shows the parallel flow paths of the LCG distribution system and includes the fluid and tube lump numbers used in the LCG thermal model. The model shown in Figure 3-14 is a departure from the steady state method used by NASA in their 41-node man characterization. The total UA (conductance) between the crewman and LCG was maintained the same for both simulations at 43.5 BTU/hr. Figure 3-15 shows the details of the thermal model bounded by

FIGURE 3-13 CREWMAN HEAT STORAGE COMFORT BAND

LEGEND:

XXX FLUID NODE
(XXX) TUBE NODE
XX FLOW TUBE

FIGURE 3-14 LIQUID COOLING GARMENT FLOW SCHEMATIC

TRUNK

HANDS

FEET

FIGURE 3-15 LIQUID COOLING GARMENT MODEL

HEAD

ARMS

LEGS

FIGURE 3-15 (CONT'D) LIQUID COOLING GARMENT MODEL

the crewman's skin and the pressure garment assembly. The reciprocal of R_{cond} summed for the trunk, arms, and legs from the skin nodes to the LCG tube nodes will give the total LCG conductance.

3.7.9 Oxygen Regulator

The EMU has two oxygen regulators in which the oxygen is expanded to a lower pressure. The expansion process cools the gas which in turn cools the regulator. The temperature and pressure into the regulator are known and used to interpolate on a curve to find the enthalpy of the gas entering the regulator. An isoenthalpic expansion is assumed as the gas enters the regulator. The user inputs the heat transfer coefficient between the expanded gas and the regulator .

3.7.10 Oxygen Purge System (OPS) Heater

The heater, heater controller, and battery were deleted in OPS's assembled for Apollo 14 and subsequent flights. Logic to analyze the heater was retained but the data tape was modified to reflect the deletion. The following paragraph documents the heater as originally used.

The OPS heater is located upstream of the OPS oxygen regulator and preheats the oxygen before it is expanded in the regulator. Downstream of the regulator is a fluid sensor which determines when the heater is on. The user inputs the heat transfer coefficient between the gas and heater element and the heater power. Two sensor set point temperatures (TSEN1, TSEN2) are input. If the sensor temperature is below TSEN1 and increasing, heater power will be maintained at a constant value (user input) until the TSEN2 valve is exceeded. If the sensor temperature is above TSEN2 and decreasing, the heater remains off until the sensor temperature drops below TSEN1. The heater may be on or off if the sensor temperature is within the TSEN1 to TSEN2 band as explained above.

3.8 Consumables Characterization

The EMU simulator considers the depletion and/or conversion of the following expendables; lithium hydroxide, oxygen, and water. The user inputs initial values for each of the expendables and the simulator subtracts the quantity used and outputs the quantity remaining.

The lithium hydroxide combines with CO₂ in the gas stream and forms lithium carbonate and water vapor. The weight of the lithium carbonate is

increasing as the lithium hydroxide is depleted. The user is required to input the fluid lump number of the canister cartridge used in the model. This is needed in determining the cartridge tube lump number which has a variable thermal capacitance. Lithium carbonate is heavier and has a larger specific heat than lithium hydroxide thus increasing the thermal capacitance of the cartridge.

Oxygen quantity in the three oxygen bottles is indicated by the number of pounds remaining and the bottle pressure. The oxygen and oxygen bottle are entered as structure lumps with the heat transfer coefficient, initial pressure, and volume input. Bottle pressure is updated each iteration to account for temperature and/or mass changes. Mass of the oxygen initially in the primary oxygen bottle is input as the product of the mass times the specific heat as described on the structure type data card for the oxygen. The input for the OPS oxygen is similar. In the baseline thermal model, the initial mass of the oxygen is split equally between the two OPS bottles. An average temperature out of the OPS bottles is used since the OPS bottles blowdown simultaneously.

The PLSS has two water reservoirs. An auxiliary water reservoir was added beginning with the Apollo 15 mission. Although the auxiliary reservoir has a separate shut-off valve, it is connected to the feedwater supply system through the primary reservoir shut-off valve. This arrangement allows the primary shut-off valve to control the flow from both reservoirs. The water reservoirs and the water quantities are modeled as structure lumps. The thermal mass of the water structure lump is varied as water flows out of the bladder to the sublimator and as condensed water vapor collected by the water separator flows to the backside of the bladder.

3.9 Oxygen Bottle Blowdown Characterization

The EMU has three oxygen bottles. The primary oxygen supply in the PLSS and two bottles which comprise an emergency or purge supply in the OPS. The flowrate from each bottle is known as a function of time. Flow from the primary oxygen bottle is determined from crewman consumption and suit leakage. The OPS oxygen flowrate is determined by a purge relief valve placed in the right hand side, oxygen, suit outlet connector.

The increase in stored energy of the gas is, semantically:

$$\left[\begin{array}{l} \text{Increase in} \\ \text{Stored Energy} \\ \text{of Gas in Bottle} \end{array} \right] = \left[\begin{array}{l} \text{Energy Added to} \\ \text{Gas From Bottle} \end{array} \right] - \left[\begin{array}{l} \text{Energy of Gas} \\ \text{Leaving Bottle} \end{array} \right]$$

Using the above equation the temperature of the gas is calculated. This temperature and the last bottle pressure value is used to interpolate on a compressibility factor curve. The gas temperature and mass remain constant while the pressure and compressibility factor are interated until the pressure on successive iterations is within DPTOL.

The heat transfer coefficient inside each oxygen bottle is input and is constant for a mission.

3.10 Heat Leak Calculation

The EMU simulator has the capability of calculating the heat flux between any two nodes. Data input format (see Section 5.7.6) permits the user to group pairs of nodes to create the desired control volume. Figure 3-16 presents a typical heat leak model to calculate the heat transferred across the boundary of a control volume. The input data would be set up with one group consisting of five heat leak paths. Semantically, the analysis per heat leak path is:

$$\left[\begin{array}{l} \text{Energy Entering} \\ \text{The} \\ \text{Control Volume} \end{array} \right] = \left[\begin{array}{l} \text{Energy Conducted} \\ \text{To Node j} \\ \text{From Node K} \end{array} \right] + \left[\begin{array}{l} \text{Energy Radiated} \\ \text{To Node j} \\ \text{From Node k} \end{array} \right] - \left[\begin{array}{l} \text{Energy Stored} \\ \text{By Node j} \end{array} \right]$$

Notice that the heat leak into the control volume (or from node k to node j) is assumed positive.

In the EMU simulator, heat leak groups for the Lunar Extravehicular Visor Assembly (LEVA), Pressure Garment Assembly (PGA), and several other components of interest are set up. There is no program limit on the number of groups or the number of heat leak paths (node pairings) per group. One restriction is made; and it requires the first group to be the LEVA heat leak group. This requirement arises because the LEVA visor material transmits solar wavelength energy through "node j". The energy entering the LEVA through the visors is automatically added to the first heat leak group. There are other unique features associated with the visor analysis as explained in Section 3.12..

FIGURE 3-16 TYPICAL HEAT LEAK MODEL

To identify a heat leak path the user enters the two nodes (j and k) and a connection number for conduction and radiation between nodes j and k. The connection number is determined from node j lump card (tube or structure) by counting, from left to right, the "to" lumps to node k. It is necessary that the user know which node j to node k connection is the conduction connection and which is radiation to properly assign the connection numbers in the heat leak data. A check of the type data for node j will aid the user in establishing the kind of connection made to node j. Notice, when node j is connected to node k by conduction and radiation, node k will appear twice as a "to" lump on the node j lump card. Therefore, the connection numbers for a node pair in the heat leak data cannot be equal.

3.11 Heat Storage Calculation

The EMU simulator has the capability of calculating the energy stored by a node from initial condition (i.e., initial temperature on lump card) to some later time. Net heat stored by a node at time, τ , is calculated by the following equation

$$Q_{\text{stored},j} = WC_j, \text{ at } \tau (T_j, \text{ at } \tau - T_j, \text{ at } \tau=\tau_i)$$

If the computer run is interrupted and restarted, the initial temperature used in the above equation is identical to the temperature input on the tube or structure lump card. The WC product is the current value including any adjustments prescribed by the Time-Variant Mass Data and/or the specific heat curve data. The user inputs the node number and the applicable identifying code (see Section 5.7.7) of the nodes for which heat storage calculations are desired. A single value of heat storage will be output when several nodes are grouped together. There is no program limit on the number of groups or the number of nodes per group that may be input.

3.12 LEVA Visor Analysis

The crewman's face is protected by two retractable visors and a pressure bubble. The retractable visors have special coatings which transmit radiation in the visible spectrum and block infrared radiation. A visor analysis is required to calculate the fraction of external incident

energy absorbed by each visor and the crewman's face. The analysis is complicated by the fact that the visors may be positioned in three unique configurations (see Figure 3-17); both visors down, sun visor up, and both sun visor and impact visor up.

The fraction of incident energy absorbed by a visor surface can be determined from coating properties and has been done by A. J. Chapman as recorded in informal documentation received October 1966. Chapman numbers the surfaces 1 to seven with one being the crewman's face and seven, the outer surface of the sun visor (Figure 3-17). This same convention is followed below as well as Chapman's notation of the energy fraction. $F_i^{(k)}$ refers to the fraction of the external incident radiation on the i th surface for the k th visor configuration. To shorten the equations we define R_{ij} as the fraction, $1/(1-\rho_i \rho_j)$, where ρ is the solar reflectivity and i and j are visor surfaces.

Each node on the visor and helmet surfaces is assigned a position number; one to the total number of nodes on the visor and helmet surfaces. In addition to a position number, the user inputs a position type (see Section 5.7.8) to associate the correct surface properties with the visor, helmet, and face nodes. The visor analysis is a two band spectral distribution analysis with the separation point between solar and infrared radiation established by the flux data input from the Environmental Heat Flux Routine (Reference 12).

With both visors retracted - $n = 1$

$$F_1^{(1)} = \tau_{23} R_{12}; F_2^{(1)} = \rho_1 F_1^{(1)}; F_3^{(1)} = 1.$$

Transmissivity, τ_{23} , is the solar transmissivity of the pressure bubble and, in Chapman's development of the $F_i^{(n)}$, the assumption was made that $\tau_{ij} = \tau_{ji}$.

With the impact visor down and sun visor up - $n = 2$

$$F_1^{(2)} = F_1^{(1)} F_3^{(2)}$$

$$F_2^{(2)} = F_2^{(1)} F_3^{(2)}$$

FIGURE 3-17 LUNAR EXTRAVEHICULAR VISOR ASSEMBLY (LEVA)

$$F_3^{(2)} = \frac{\tau_{45} R_{34}}{1 - \rho_4 \tau_{23} R_{34} F_2^{(1)}}$$

$$F_4^{(2)} = \rho_3 \tau_{45} R_{34} + \tau_{23} R_{34} F_2^{(1)} F_3^{(2)}$$

$$F_5^{(2)} = 1.$$

With sun visor down - n = 3

$$F_1^{(3)} = F_1^{(2)} F_5^{(3)}$$

$$F_2^{(3)} = F_2^{(2)} F_5^{(3)}$$

$$F_3^{(3)} = F_3^{(2)} F_5^{(3)}$$

$$F_4^{(3)} = F_4^{(2)} F_5^{(3)}$$

$$F_5^{(3)} = \frac{\tau_{67} R_{56}}{1 - \rho_6 \tau_{45} R_{56} F_4^{(2)}}$$

$$F_6^{(3)} = \rho_5 \tau_{67} R_{56} + \tau_{45} R_{56} F_4^{(2)} F_5^{(3)}$$

$$F_7^{(3)} = 1.$$

3.13 Local Temperature Perturbation (LTP) Calculation

The simulator has the capability of calculating the effect of a perturbed suit condition on the crewman. By perturbed suit condition is meant the local compression of the suit against the crewman due to sitting, kneeling, gripping with the gloves, etc. The purpose of the capability is to determine crewman comfort (skin temperature below threshold of pain) when engaged in any activity which involves "shorting" the suit multilayer insulation. Section 5.7.5 details the input data for local temperature perturbation calculations. It is important to remember when preparing data for the LTP model that this model is completely independent of the basic EMU model and has no feedback to it. Notice should be made that LTP model lump numbers are described in the regular data and that Section 5.7.5 provides additional information which

identifies certain lump numbers as LTP lump numbers. All LTP model fluid (gas) lumps must be input in tube 43 which satisfies the data input requirement for a flow tube but the order of fluid lumps in tube 43 is arbitrary.

3.14 Thermal Model Data Options

The simulator has several unique data options which are required to describe the thermal model or provide the user flexibility desired.

3.14.1 Suit, Gloves, and EV Boots Node Identification

This option is required to simulate the suit donning and doffing procedures by the crewman in the Lunar Module (LM). Table 3-1 defines the EMU configuration modes the user may select to include in the mission analysis. Each category of nodes is identified either directly or by the process of elimination. The pressure bubble nodes are identified through Helmet and Visor Data and with the suit, gloves and boots identified all other nodes are considered to be in the remaining category of Portable Life Support System (PLSS), Oxygen Purge System (OPS) and Remote Control Unit (RCU). All node connections are made in the baseline thermal model necessary to analyze EMU Configuration Mode 1. When other modes are specified the simulator stops analyzing components designated as "off" and no temperature update of nodes identified with "off" components occurs until a mode is again selected in which those components are designated as "on".

3.14.2 Configuration-Associated Node Identification

This option is similar to the one discussed above but requires more input data to establish the same configuration. The user may view this option as an override of the configurations specified by Table 3-1. As an example of how this option may be used, consider Mode 8 which specifies analysis of the crewman in his shirtsleeves only. To obtain the effect of an enclosure such as the LM cabin walls on a shirtsleeves crewman, structure nodes representing the wall can be input in the regular data and then associated with Configuration Mode 8.

3.14.3 Heat Flux Curve Assignment

The simulator uses the Environmental Heat Flux Routine (EHFR) described in Reference 12 as a source of input flux data representing various lunar surface topology. The EHFR has geometric heat flux models of the EMU and the Lunar Roving Vehicle (LRV) which are consistent with the surface areas

TABLE 3-1 EMU CONFIGURATION MODES

MODES	PLSS OPS & RCU	ITMG SUIT	GLOVES	EV BOOTS	PRESSURE BUBBLE	TYPE ACTIVITY	NOTES
± 1	ON	ON	ON	ON	ON	EV	LEVA ON + PGA FLOW DIV. VLV. ,HOR. (IV) - PGA FLOW DIV. VLV. ,VERT. (EV)
± 2	ON	ON	ON	ON	ON	IV	LEVA MAY BE ON OR OFF + OR - INDICATES PGA FLOW SPLIT
± 3	ON	ON	OFF	ON	ON	IV	+ OR - INDICATES PGA FLOW SPLIT, PGA AND EV GLOVES REMOVED TOGETHER
4	ON	ON	OFF	ON	OFF	IV	ON ARS* AND -192 PACKAGE **
5	OFF	ON	OFF	ON	OFF	IV	ON ARS AND -192 PACKAGE
6	OFF	ON	OFF	OFF	OFF	IV	ON ARS AND -192 PACKAGE
± 7	OFF	ON	ON	OFF	ON	IV	
8	OFF	OFF	OFF	OFF	OFF	IV	PGA OFF - SHIRT SLEEVES

* Atmospheric Revitalization System (LM)
** LCG Water Cooling Component (LM)

of the simulator baseline thermal model. Section 5.7.1, Cards 4 and 5 give instructions on the manipulation of the EHFR generated flux data actually creating heat flux curves. Although the curves have been created and are available, heat flux curve assignment data is required to apply the flux to a particular thermal model node. The EHFR outputs a contact temperature which represents the lunar surface temperature and this temperature is prescribed to a baseline thermal model node which is in contact with the extra-vehicular boot soles. All EHFR input data is assigned through the data described in Section 5.7.11.

3.14.4 Prescribed Wall Temperature Data

The simulator has two types of prescribed wall temperatures excluding the contact temperature discussed in Section 3.14.3. These prescribed temperatures are designated as type numbers 10 and 11 in Sections 5.7.12 and 5.7.16. Type 10 is used to create a "deep space" node held constant at -459.69°F or other prescribed temperatures where the entire curve can be put on the data tape. Type 11 is used to input LRV prescribed temperatures either the complete curve or segments of a large curve contained on an independent input tape. Variable NPRTCD on Card 2 (Section 5.7.1) designates how the LRV temperatures will be input. The simulator will interrogate NPRTCD and, if 1, will read additional LRV temperature data when the largest time of the segment of the curve in the computer is less than mission time.

3.14.5 Time Variant Node Data

Time variant data allows the user to vary with time the mass of a node and/or the connection between two nodes. This data is a multiplying factor applied after variations in specific heat and thermal conductivity have been taken into account. The time variant mass data is straight forward with the user identifying the node and the controlling curve number. If a connection between two nodes is to be varied, the user must identify the "from" node and specify a connection number. The connection number for a node varies from 1 to the number of "to" nodes listed in the tube and structure lump cards for the node. This option applies to both conduction and radiation connections for tube and structure nodes.

3.14.6 Special Tube/Fluid Connection Data

This option is required to transiently analyze the Liquid Cooled Garment (LCG) and may not be used as a general capability for placing two

fluids in contact with a single tube node. A fluid node can be enclosed by several tube nodes by inputting that fluid node on Card 34, however occasions arise when two fluids wet a single tube node. In the model of the LCG, water flows in the tygon tubing and suit oxygen flows over the outside of the tygon tubing. If the tubing nodes were modeled as two radial nodes connected by a large conduction, experience has taught that the situation would result in instability. Data input for this option identifies a second fluid and film heat transfer coefficient with a LCG tube node.

4.0 BASELINE THERMAL MODEL

A baseline thermal model was created in conjunction with the EMU simulator and contains the following items:

1. ITMG - Integrated Thermal/Meteoroid Garment (A7LB)
2. PGA - Pressure Garment Assembly
3. LCG - Liquid Cooling Garment
4. Boots - Lunar EVA Configuration
5. Gloves - Extravehicular Configuration
6. LEVA - Lunar Extravehicular Visor Assembly
7. PLSS - Portable Life Support System (-7)
8. OPS - Oxygen Purge System
9. RCU - Remote Control Unit (-4)
10. CREWMAN - 41 Node Man (Ref. 10)
11. LRV - Lunar Roving Vehicle
12. BSLSS - Buddy Secondary Life Support System

The model is composed of the three types of nodes described in Section 3.1. The number of flow tubes in the simulator is 43 for NBSY = 0 and 45 for NBSY = 1 or 2 as input in column 72 on Card 2 of Section 5.7.1. The simulator is programmed to expect the number of tubes indicated above and program modifications are required to change the tube arrangement. Although the user is limited in the extent to which he can change the basic thermal model, important options are open as to the fineness of the model breakdown and the amount and type of data output.

The ITMG, PGA, Boots, and Gloves were broken up into 96 surface nodes and 5 nodes through the thickness. Figure 4-1 and 4-2 show the surface nodes as numbered in the baseline thermal model and a typical cross-section of the suit. Table 4-1 presents the complete suit node numbering with the "EXTERIOR ITMG NODE" column corresponding to the nodes on Figure 4-1. The multilayer insulation has the same fineness of nodal breakdown as the exterior suit surface, but the three interior node layers have fewer nodes as indicated by the brackets in Table 4-1 connecting two or more insulation nodes to an "INTERIOR ITMG NODE". Figure 4-1 presents a surface area lumping of a more detailed geometric suit model found in Reference 12. Conductance values for the

FIGURE 4-1 SUIT, BOOTS, AND GLOVES BASELINE THERMAL MODEL

FIGURE 4-2 TYPICAL SUIT CROSS-SECTION

TABLE 4-1
NODAL NUMBERING THROUGH SPACE SUIT

<u>EXTERIOR ITGM NODE</u>	<u>INSULATION NODE</u>	<u>INTERIOR ITMG NODE</u>	<u>EXPERIOR PGA NODE</u>	<u>INTERIOR PGA NODE</u>
39	60			
40	61	81	217	62
41	62			
	62			
42	63			
43	64	82	218	63
44	65			
45	66			
	66			
46	67	81	217	62
47	68	83	219	64
48	69			
	69			
59	70	89	225	70
	70			
50	71	91	227	72
	71			
51	72	84	220	65
52	73			
	73			
53	74	92	228	73
	74			
54	75	90	226	71
	75			
55	76	83	219	64
56	77			
	76			
	77			
57	78			
58	79	86	222	67
59	80			
	80			
407	482			
408	483	85	221	66
409	484			
410	485			
	485			
411	486	86	222	67
412	487			
413	488	88	224	69
414	489			
	489			
415	490			
416	491			
417	492	87	223	68
418	493			
	493			
		88	224	69

TABLE 4-1(CONTINUED)

<u>EXTERIOR ITMG NODE</u>	<u>INSULATION NODE</u>	<u>INTERIOR ITMG NODE</u>	<u>EXTERIOR PGA NODE</u>	<u>INTERIOR PGA NODE</u>
419	494	88	224	69
420	495	549	561	169
421	496			
422	497	100	236	167
423	498			
424	499	553	565	173
425	500			
426	501	551	563	171
427	502			
428	503	550	562	170
429	504			
430	505	101	237	168
431	506			
432	507	554	566	174
433	508			
434	509	552	564	172
435	510			
436	511	89	225	70
437	512	91	227	72
438	513			
439	514	89	225	70
440	515	94	230	75
441	516	96	232	77
442	517			
443	518	94	230	75
444	519	90	226	71
445	520			
446	521	92	228	73
447	522			
448	523	93	229	74
449	524			
450	525	95	231	76
451	526			
452	527	99	235	81
453	528			
454	529	98	234	80
455	530			
456	531	97	233	79
457	532			
458	533	624	625	78
459	534			
460	535	557	569	177
461	536			
462	537	555	567	175
463	538			
464	539	559		
465	540			
466	541	558	571	179
467	542		570	178

TABLE 4-1(CONTINUED)

<u>EXTERIOR ITMG NODE</u>	<u>INSULATION NODE</u>	<u>INTERIOR ITMG NODE</u>	<u>EXTERIOR PGA NODE</u>	<u>INTERIOR PGA NODE</u>
468	543			
469	544			
470	545			
471	546			
472	547			
473	548	556	568	176
	BIB DATA, IF BIB IS WORN			
480	573	560	572	180
481	576	574	474	181
		577	475	182
			476	183
			477	184
			478	185
			479	186
			575	187
			578	188

multilayer buildup were generated by the Lockheed Electronics Corporation under the direction of the Crew Systems Division - Manned Spacecraft Center and edited into the baseline thermal model data tape. These conductances were based on data obtained from manned and unmanned suit tests conducted by NASA at the Manned Spacecraft Center.

The LCG is modeled with 13 nodes as depicted in Figure 3-14. Nine of the 13 nodes are in contact with the trunk due to the fact that the distribution points of the flow system are located about the waist. This nodal arrangement attempts to model the torso heating of the water before and after it flows over the extremities. The total conductance between the LCG water and the skin over the entire skin area of contact is 43.5 BTU/hr-°F. Individual skin node conductances are obtained as a ratio of the individual skin areas to the total contact area and proportioning the total conductance according to the various ratios.

The LEVA thermal model consists of the sun visor, protective visor, pressure bubble, and LEVA shell as presented in Figures 4-3 through 4-7. Tables 4-2 and 4-3 are to be used in conjunction with Figures 4-3 and 4-4 respectively in interpreting the thermal model data. The simulator allows the user to specify visor configuration changes throughout the mission. The three helmet modes illustrated in Figure 3-17 require connections between nodes peculiar to an individual helmet mode, therefore for the sun visor (SV) and protective visor (PV) there is a set of nodes for each helmet mode. When the helmet is in MODE 1, only the nodes corresponding to this mode for the SV and the PV are analyzed; however the other nodes are updated each iteration. A change to a different helmet mode changes the set of nodes being analyzed and the initial temperatures for the new modes are the last temperatures calculated for MODE 1 because of the continuous iteration update. A similar discussion applies when the helmet mode is begun in MODE 2 or MODE 3.

The LEVA shell is divided into two layers thus the node numbering in Figures 4-5 and 4-6. The exterior layer of the LEVA shell thermal model is the beta cloth cover while the interior layer includes the multilayer insulation and the polycarbonate inner shell. There is a single set of nodes for the LEVA shell layers. The surface area nodal breakdown is a modified version of that found in Reference 13. Nodes near the side of the helmet were increased

FIGURE 4-3 SUN VISOR THERMAL MODEL

TABLE 4-2
SUN VISOR NODE CORRESPONDENCE FOR HELMET MODES

<u>MODE 1</u> <u>(SUN VISOR DOWN)</u>	<u>MODE 2</u> <u>(SUN VISOR ONLY UP)</u>	<u>MODE 3</u> <u>(BOTH VISORS UP)</u>
11	181	193
12	182	194
13	183	195
14	184	196
15	185	197
16	186	198
238	256	274
239	257	275
240	258	276
241	259	277
242	260	278
243	261	279
244	262	280
245	263	281
246	264	282
247	265	283
248	266	284
249	267	285
250	268	286
251	269	287
252	270	288
253	271	289
254	272	290
255	273	291

All nodes are structure nodes.

FIGURE 4-4 PROTECTIVE VISOR THERMAL MODEL

TABLE 4-3

PROTECTIVE VISOR NODE CORRESPONDENCE FOR HELMET MODES

<u>MODE 1 (SUN VISOR DOWN)</u>	<u>MODE 2 (SUN VISOR ONLY UP)</u>	<u>MODE 3 (BOTH VISORS UP)</u>
17	187	199
18	188	200
19	189	201
20	190	202
21	191	203
22	192	204
293	311	329
294	312	330
295	313	331
296	314	332
297	315	333
298	316	334
299	317	335
300	318	336
301	319	337
302	320	338
303	321	339
304	322	340
305	323	341
306	324	342
307	325	343
308	326	344
309	327	345
310	328	346

All nodes are structure nodes.

FIGURE 4-5 LEVA EXTERIOR THERMAL MODEL

FIGURE 4-6 LEVA INTERIOR THERMAL MODEL

FIGURE 4-7 PRESSURE BUBBLE HELMET THERMAL MODEL

in area and an additional row of node areas were created along the vertical centerline maintaining a constant number of nodes.

The pressure bubble is modeled as tube nodes because the inside of the bubble is in contact with the suit oxygen flow. A single set of nodes is used for all three visor configurations and the nodes are analyzed continuously as are the LEVA shell nodes. Two types of connections from the pressure bubble tube nodes must be made a function of the helmet mode. The first is the pressure bubble connection to space when both visors are up and the second is the connection to the interior layer of the LEVA shell when both visors are down. Since both the pressure bubble, the space node, and the LEVA nodes are analyzed continuously, some method of making and breaking the connections described above is required. The simulator has such a capability called Time Variant Connections (Section 3.14.5) and it is used to coordinate pressure bubble connections with the visor connections which are determined by the set of visor nodes analyzed. No intermediate positions of the visors are allowed; a visor is either all the way up or all the way down. The LEVA has three sun shades which may be varied by the crewman through an infinite number of positions. These sun shades are not modeled in the baseline thermal model.

The PLSS, OPS, and RCU were modeled using the information from Reference 13 and the manufacturer's hardware drawings. The flow systems were broken up into fluid and tube nodes as shown in Figures 3-2, 3-3, and 3-4. As a general rule, the system piping was broken at rubber splice joints and components. The fluid type data for the components was input so the regular pressure drop calculation would yield a zero delta P. Figures 4-8, 4-9, and 4-10 show the break-up of the PLSS, OPS and RCU structure. Note the seven layers of multilayer insulation are modeled as two nodes through the thickness for the PLSS and OPS thermal covers. Multilayer insulation conductances used in the baseline thermal model were obtained from correlations of unmanned space suit test conducted at NASA and LTV Aerospace.

Five umbilicals attach to the space suit and are modeled in the EMU simulator. Each umbilical is four-sided along the full length in regard to the calculation of heat flux. Table 4-4 and Figure 4-11 describe the umbilicals as modeled in the baseline thermal model. Note that each umbilical has three

FIGURE 4-8 PLSS HARDCOVER NODAL BREAKDOWN

NOTE: Oxygen tanks, heater/
regulator and umbilical
omitted for clarity

FIGURE 4-9 OPS HARDCOVER NODAL BREAKDOWN

FIGURE 4-10 RCU SHELL NODAL BREAKDOWN

FIGURE 4-11 EMU UMBILICAL THERMAL MODEL

TABLE 4-4
UMBILICAL NODE CORRESPONDENCE

<u>EXTERIOR NODE</u>	<u>INSULATION NODE</u>	<u>INTERIOR NODE</u>	<u>UMBILICAL NODE</u>
579	580	581	59T
582	583	584	
585	586	587	
588	589	590	33S
591	592	593	
594	595	596	
597	598	599	6T
600	601	602	
603	604	605	
606	607	608	14T
609	610	611	
612	613	614	
615	616	617	53T, 55T*
618	619	620	
621	622	623	

* INLET AND OUTLET LCG TUBES FORM LCG UMBILICAL

surface nodes and two insulation nodes beneath the exterior node.

With the advent of longer and more adventurous EVA's, the BLSS was added to the EMU equipment as an emergency/rescue item. If a crewman experienced a PLSS failure, he can activate his OPS and use the BLSS umbilical to connect to his "buddy's" PLSS effecting the rescue. The water-charged BSLSS umbilical is stored in an insulated bag and carried on the back of a crewman's PLSS on walking EVA's. On EVAs using the LRV the BSLSS bag is strapped to the back of the right-hand seat of the LRV. There are two sets of nodes for the umbilical sheath (insulation cover) exterior. The "stowed" set of exterior nodes (Table 4-5) have connections to the umbilical bag and each other as shown in Figure 4-12. When the umbilical is deployed, the deployed set of nodes have temperatures corresponding to the last temperatures calculated for stowed nodes. Connections to the deployed nodes, which are zero until the deployed umbilical is to be simulated, are determined by the time variant connection data. Appendix A provides additional descriptive information on the fluid, tube, and structure nodes discussed in this section.

The LRV is modeled with 59 structure nodes as shown in Figures 4-13 through 4-18. All LRV nodes are prescribed temperature nodes and are not analyzed transiently. The purpose of the LRV in the EMU simulation is to simulate the heat flux environment on the crewman as affected by the LRV emitting, reflecting and blocking energy. The Boeing Company, under direction of the NASA - Structure and Mechanics Division developed a computer program to perform a thermal analysis of the LRV throughout the EVA and output temperatures on magnetic tape. Temperatures corresponding to the models shown in Figures 4-13 through 4-18 were used to create the LRV prescribed temperature curves.

TABLE 4-5
BSLSS UMBILICAL NODAL CORRESPONDENCE

SHEATH EXTERIOR NODE (STOWED)	SHEATH EXTERIOR NODE (DEPLOYED)	SHEATH INTERIOR NODE	UMBILICAL NODE (SUPPLY)	UMBILICAL NODE (RETURN)
638	668	653	198	213
639	669	654	199	214
640	670	655	200	215
641	671	656	201	216
642	672	657	202	217
643	673	658	203	218
644	674	659	204	219
645	675	660	205	220
646	676	661	206	221
647	677	662	207	222
648	678	663	208	223
649	679	664	209	224
650	680	665	210	225
651	681	666	211	226
652	682	667	212	227

FIGURE 4-12 BSLSS UMBILICAL THERMAL MODEL

FIGURE 4-13 LRV THERMAL MODEL

FIGURE 4-15 LRV SECOND CREWMAN THERMAL MODEL

FIGURE 4-16 LRV AFT STORAGE BAY THERMAL MODEL

FIGURE 4-17 LRV CONTROL CONSOLE THERMAL MODEL

FIGURE 4-18 LRV FORWARD ELECTRONICS BAY THERMAL MODEL

5.0 USER'S MANUAL

5.1 Program Description

This computer routine was written in Fortran V for the UNIVAC 1108 computer which has a core storage capacity of 65,536 words (with 53,248 words of memory available to the user) and a maximum of eight magnetic tape drives accessible. These tape units are used to maximum advantage for eliminating handling of large volumes of data cards and for providing the user with a flexibility to make data changes, interrupt the program for inspection of results and/or continuation of the analysis at a later time. There are options permitting the use of thirteen separate tape units, however, some of the options are mutually exclusive, so that no more than eight units are required at any given time.

A flow schematic of the routine is given in Figure 5-1. The program makes use of the overlay feature of Fortran V to provide for a large data block by minimizing the amount of core storage required for the program during data execution. This is accomplished by having subroutines SUB1, SUB2, SUB3, SUB4, SUB5, SUB6, and SUB7 share the same core storage location.

The first six main subroutines (SUB1 through SUB6) read, process and store data in a packed data block, and the seventh subroutine (SUB7) performs the analysis. The operations performed by each subroutine are outlined briefly in the following paragraphs.

MAIN calls the seven main subroutines (SUB1 through SUB7)

SUB1

1. Calls subroutine SUBX to read the first two data cards and stores all of the first for a heading to be printed at the top of every page of output; stores the parameters of the second card.

2. Tests the restart code. If it is zero, the data processing will be continued by SUB1 as described in the following paragraphs. If it is one or two, this indicates that all data is from the dump of a previous problem. In the case where the restart code is one, SUB1 reads data from Unit J; when the restart code is two, data is read from Unit J for the man with an active PLSS and from Unit K for the man with a failed PLSS to continue a mission with the BSLSS employed. In both cases where the restart

FIGURE 5-1 EMU PROGRAM SCHEMATIC

FIGURE 5-1 (CONT'D) ENU PROGRAM SCHEMATIC

code is not zero, execution is transferred through MAIN to SUB6.

3. Calls subroutine EDIT if required to make changes to the data tape.

4. Calls subroutine SUEHFR which reads and stores the parameters of the third data card, which calls subroutine CENVTP if required to create absorbed heat flux, prescribed temperature and radiant interchange mode curves on tape Unit E using data on tape Unit D and parameter cards 4 and 5.

5. Calls subroutine SUBY to read, check and store the parameters on cards 6 through 20, which calls subroutine CHAPMAN to calculate the fraction of the incident solar absorbed by the visors.

6. Calls subroutine SUBZ to read and store the parameters on cards 21 through 26.

7. Writes amount of data space used by parameter card data.

8. Returns to MAIN which calls subroutine SUB2.

SUB2

1. Calls subroutine SUBAT to read, check and store the fluid type data.

2. Writes amount of data space used thus far.

3. Calls subroutine SUBAL to read, check and store the fluid lump data.

4. Writes amount of data space used thus far.

5. Calls subroutine SUBBT to read, check and store the tube type data.

6. Writes amount of data space used thus far.

7. Calls subroutine SUBBL to read, check and store the tube lump data.

8. Writes amount of data space used thus far.

9. Returns to MAIN which calls SUB3.

SUB3

1. Calls subroutine SUBCT to read, check and store the structure type data.

2. Writes amount of data space used thus far.

3. Calls subroutine SUBCL to read, check and store the structure lump data.

4. Writes amount of data space used thus far.
5. Calls subroutine SUBD to read, check and store local temperature perturbation data, heat leak data, and heat storage data.
6. Writes amount of data space used thus far.
7. Calls subroutine SUBE to read, check and store helmet and visor data, lump identification data, and configuration-associated node identification data.
8. Writes amount of data space used thus far.
9. Calls subroutine SUBF to read, check and store heat flux curve assignment data and prescribed wall temperature data.
10. Writes amount of data space used thus far.
11. Calls subroutine SUBG to read, check and store time variant mass data and time variant connection data.
12. Writes amount of data space used thus far.
13. Calls subroutine SUBH to read, check and store special tube/fluid connection data.
14. Writes amount of data space used thus far.
15. Returns to MAIN which calls subroutine SUB4.

SUB4

1. Reads, checks and stores all the curve data.
2. Calls subroutine BIGSRH to setup curve type number information, BIGSRH calls subroutine CURSRH to see if a curve is needed.
3. Calls subroutine OPERAT to alter code curves by a $\pm .5$ and converts temperature curves from degrees Fahrenheit to degrees Rankine.
4. Checks for specific heat curve and calls subroutine ENTHPY to generate an enthalphy curve and a reverse enthalpy curve.
5. Calls subroutine BIGCHK to setup calls to CURCHK for curve types. BIGCHK calls subroutine CURCHK to see if necessary curves have been supplied.
6. Writes amount of data space used thus far.
7. Returns to MAIN which calls SUB5.

SUB5

1. Calls subroutine SUMISC to define some constant values.

2. Calls subroutine SUGRP to setup arrays for the last fluid lump in each tube, for fluid lumps down a tube for each tube, and for tube lump numbers which enclose the fluid lumps down each tube.
3. Calls subroutine SUMAN to setup the 43 man nodes temperatures, checks and stores enclosed fluid lumps for the man's ten skin and undergarment tube lumps.
4. Calls subroutine SUCODS to set codes for special fluid, tube and structure lumps which are not to have temperature calculations.
5. Calls subroutine SUSWIT to set logical codes.
6. Calls subroutine SUDPFL to setup data for pressure drop analysis.
7. Calls subroutine SUHTVR to setup data for helmet and visor analysis.
8. Calls subroutine MOVVAL to interpolate specific heat, conductivity and time variant mass curves for initial conditions.
9. Writes amount of data space used thus far.
10. Calls subroutine MOVCOD to move code arrays to configuration data block.
11. Calls subroutine SUCONS to setup data for radiation and conduction connections between tubes and structure lumps.
12. Calls subroutine SUWCP to setup data for weight-specific heat of tube and structure lumps.
13. Calls subroutine SUQINC to setup data for lumps with incident heat curves.
14. Calls subroutine SUMODS to setup codes for classes of lumps to be analyzed for each EMU configuration mode.
15. Calls subroutine SUCLSS to store lumps by classes for EMU configuration modes. SUCLSS writes amount of data space used thus far.
16. Calls subroutine SUHYBR to setup codes for the order of hybrid calculations for each EMU configuration mode.
17. Calls subroutine SUSECT to store fluid lumps to be analyzed for each EMU configuration mode.
18. Calls subroutine CHKSPC to check special connection fluid and tube lumps.

19. Writes amount of data space used thus far.
20. Calls subroutine SUHOPR to setup data space for various types of analysis for a particular EMU configuration mode.
21. Calls subroutine SUSYSM to setup initial constants and set diverter valve conditions.
22. Calls subroutine SUPRNT to setup temperature print array.
23. Calls subroutine SULOAD to zero arrays for initial conditions.
24. Calls subroutine SURESV to setup some arrays for use during iteration loop.
25. Calls subroutine CHKLMP to check lumps in certain tubes as defined under restrictions.
26. Calls subroutine CHKCON to check lumps which cannot have connections.
27. Writes amount of data space used thus far.
28. Returns to MAIN which calls SUB6.

SUB6

1. Stores initial temperatures for the forty-three nodes of the man.
2. Stores area for heat transfer and its reciprocal for the undergarment tube lumps.
3. Test the plot code. If it is not zero, the title and item count are written on the first record of tape Unit I.
4. Test the code for a restart from a previous plot tape. If it is not zero, temperatures are read from tape unit H for the time input as TMPTIM.
5. Returns to MAIN which calls SUB7.

SUB7

1. Test the restart code (ISTART). If it is zero, execution is transferred to FIXMOD; otherwise execution is continued as follows:
2. Test the LRV prescribed temperature code (NPRTCD). If it is not zero, then LRV prescribed temperature curves (Type 11) read from tape Unit L.
3. Test the heat flux and prescribed temperature code (NENVTP). If it is not zero, then absorbed heat curves are read from Unit E.

4. Calls subroutine ZEROUT to zero arrays for conductance summation, temperature change and heating rates for fluid, tube and structure lumps.

5. Calls the following subroutines as needed:

(a) EVAPOL which interpolates and stores values for absorbed heat flux (Type 19), prescribed temperature (Type 20) and the generated radiant interchange mode curves.

(b) RDINCH which reads radiation connections from UNIT G.

(c) MODCVC which calculates connection value for lumps with conductivity variant connections.

(d) MODTVC which calculates connection value for lumps with time variant connections.

(e) MODCPV which calculates weight-specific heat for lumps with variant specific heat.

(f) MODTVW which calculates weight-specific heat for lumps with time variant mass.

(g) RADITN which calculates and stores heat rate for lumps with radiation connections.

(h) CONDCT which calculates and stores heat rate for lumps with conduction connections.

(i) TSQINC which adds heat rate for lumps with incident heat curves (Type 9)

(j) EVAHT which adds heat rate for absorbed heat fluxes.

(k) VISOR which calculates the amount of heat absorbed by each helmet and visor lump.

6. Calls subroutine FLPORT which calls subroutine FLCOEF to calculate heat transfer coefficient for fluid lumps.

7. Calls the following subroutines as needed:

(a) OPSHTR which determines whether the oxygen purge system heater is on or off and adds the heat to appropriate lump if it is on.

(b) CONSUM which performs calculations for the LiOH canister and water reservoirs.

(c) BOTTEM which calculates temperature for oxygen purge system and primary oxygen bottles.

(d) SPTCHK which performs spot check for condensation in tubes 11 and 12 and determines condensation in the sublimator. If condensation exists, heat is added to the appropriate lump. It also calculates water vapor into and out of suit.

(e) SHIRT which calculates variables needed when the man is in a shirtsleeve mode.

(f) GASTMP which calculates gas temperature for man fluid lumps.

(g) SUITFL which calculates variables for suit with flowing gas.

(h) SUITST which calculates variables for suit with stagnant gas.

(i) CARDOX which calculates the partial pressure of carbon dioxide in the helmet.

(j) HHHHLP which calculates the heat transfer coefficient and conductance summation for local temperature perturbation tube lumps.

(k) GSPCON which calculates the heat transfer coefficient, conductance and heat rate for special connection of a fluid lump to a tube lump.

(l) TSTEMPS which calculates temperature for structure lumps being analyzed.

(m) TUBFLD which calculates conductance and heat rates for tube and fluid lumps being analyzed.

8. Calls subroutine HYBRID which determines fluid lump temperatures and lumps requiring special calculation using the following subroutines:

(a) TUPSTR which determines the upstream temperature for the lumps using the following subroutines:

(1) REGTEM which calculates the upstream temperature for the oxygen purge system and primary oxygen system regulators.

(2) SYSSTR which calculates first temperature in the system.

(3) TMIX which calculates a temperature when two or more fluids are mixed together.

(4) SUBLIM which determines oxygen and water temperatures out of the sublimator.

- (5) QSPCON which calculates heat rate for fluid lumps with special connections.
 - (6) MAN which calculates the man temperatures.
 - (7) HEATLP which calculates heat rate for local perturbation tube lumps.
 - (8) VAPOUT which calculates water vapor added to the gas by the man, and specific humidity out of the suit.
- (b) FLTEMS which calculates temperatures of fluid lump being analyzed.
9. Calls the following subroutines as needed:
- (a) TBTEMS which calculates temperatures of tube lumps being analyzed.
 - (b) TEMPLP which calculates temperatures for local perturbation fluid and tube lumps.
 - (c) PRTEMP which interpolates prescribed wall temperature curves type 10 and sets temperatures of appropriate lumps.
 - (d) PRTLKV which interpolates LRV prescribed temperature curves type 11 and set temperatures of appropriate lumps.
 - (e) EVATEM which sets the temperature of lumps with prescribed temperature curves, type 20.
 - (f) EQTEMP which sets temperatures of unanalyzed helmet and visor lumps to temperature of analyzed lumps.
 - (g) STDSST which checks man's sweat or shiver rate for stabilization and temperature difference against steady state criterion.
10. FIXMOD which set variables for this iteration depending on the helmet and EMU configuration modes. It calls subroutines GETDAT and GETHYB to store lumps to be analyzed in this iteration, DOFFBP to doff the backpack, DOFFST to doff the suit and SWITCH which determines logical variables which are used by SUB7 to determine which subroutines will be called.
11. Calls the following subroutines as needed:
- (a) SUBARS which sets inlet temperature, flowrate and pressure into the suit when the ARS is activated .
 - (b) SUB192 which sets inlet temperature and flowrate into the LCG when the 192 package is activated.

- (c) BOTPSI which determines pressure of the oxygen purge system and primary oxygen system bottles.
 - (d) FLWBOT which sets flowrate in oxygen purge system tubes 7 and 8 and primary oxygen system tubes 4 and 6.
 - (e) FLWVTG which sets flowrate in oxygen tubes 1 and 9. FLWVTG calls SETOXY to set flowrate in tube 16, EQSOXY which sets flowrate in oxygen tubes 2,3,5,11,12,13,14 and 15, DPTEMP, DPFLOW and DPOXY which calculate pressure drop in the tubes mentioned above.
 - (f) FLWFWR which calculates amount of feedwater out of reservoir, sets flowrate in water tubes 17, 18 and 19 and calculates sublimator feedwater dryout.
 - (g) FLWWTL which calculates flowrate in tube 20 and sets diverter valve position. FLWWTL calls EQSWTR which sets flow in water tubes 21 through 25, 32, 44 and 45, DPTEMP, DPFLOW and DPWTR which calculate pressure drop in the tubes mentioned above.
 - (h) FLWLCG which sets flowrate in the LCG (tubes 33 through 38).
 - (i) FLWMAN which sets flowrate in the man oxygen tubes 10, 26 through 31 and 39 through 42.
 - (j) STGCHG which calculates water vapor of suit gas nodes when the suit has no flow.
12. Calls the following when it is time to print.
- (a) OUTPUT which writes headings.
 - (b) CPRINT which writes consumable data.
 - (c) MPRINT which writes man temperatures and man associated quantities.
 - (d) HLSHCL which calculates heat leak and heat storage.
 - (e) SPCIAL which calculates solar energy transmitted through the visors and added to the first heat leak group.
 - (f) HLSHWT which writes heat leak and heat storage data.
 - (g) FRDPWT which writes flowrates and pressure drops.
 - (h) SUBWT which converts a block of temperatures from Rankine to Fahrenheit, writes the temperatures, and converts them back to Rankine.

- (i) HISTRY which writes history tape on Unit K.
- (j) TERMIN which writes a message when the run is terminated.

13. Test the computer time usage and ends the run if requested time is exceeded.

14. Writes the entire data block and the variable block on tape Unit I, if the run is ended before completion or if the dump option is used, so that the problem can be restarted at a later time.

Miscellaneous

- (1) Function BIPOL - does table look-up and straight line interpolation on bi-variant curves.
- (2) Function Pol - does table look-up and straight line interpolation.
- (3) Subroutine SPCTIM - checks data space required against data space available and writes amount of data used.
- (4) Subroutine SUBP - starts a new page of output and writes parameter card one as a heading.

5.2 List of System Subroutines Used

The following is a list of the Univac 1108, Fortran V, system subroutines which are used with the EMU routine.

*1. ALOG	12. NEXP2\$	23. NRWND\$
*2. CBRT	13. NFINP\$	24. NSTOP\$
*3. CLOCK	14. NFMT\$	25. NTAB\$
4. DEPTH	15. NFOUT\$	*26. NTRAN
*5. EXP	16. NFTV\$	*27. SQRT
6. FPACK\$	17. NIER\$	28. THRU\$
7. MAUTO\$	18. NININ\$	29. TINTL\$
8. NBDCV\$	19. NINPT\$	30. TLBL\$
9. NBUFF\$	20. NIOIN\$	31. TSCRH\$
10. NCNVT\$	21. NOTIN\$	32. TSWAP\$
11. NERR\$	22. NOUT\$	

* These subroutines are necessary regardless of the system on which the program is run.

5.3 MSC Run Submission Requirements

For operation on the MSC Univac systems (Fortran V), using the overlay provisions, the program is stored on tape and the data deck with

appropriate control cards submitted.

The EMU deck set up is as follows:

* 7
8_Z_RUN

* 7
8_N_MSG

7
8_ASG_A=AXXXXX (Input Program Tape Number)

7
8_ASG_B=AXXXXX (Input Old Data Tape Number) or

7
8_ASG_B=DATA (Output New Data Tape)

7
8_ASG_C=AXXXXX (Input Old Data Tape Number)

7
8_ASG_D=AXXXXX (Input EHFR Output Tape Number)

7
8_ASG_E=AXXXXX (Input Heat Flux & Prescribed Temperature Tape Number) or

7
8_ASG_E=FLUX (Output Heat Flux and Prescribed Temperature Tape)

7
8_ASG_G=AXXXXX (Input Radiant Interchange Data Tape Number)

7
8_ASG_H=AXXXXX (Input NEWTMP Tape Number)

7
8_ASG_I=DUMP (Output Data Dump and/or Plot Tape)

7
8_ASG_J=AXXXXX (Input Restart Tape Number)

7
8_ASG_L=AXXXXX (Input LRV Prescribed Temperature Tape Number)

7
8_XQT_CUR

--TRW_A

_IN_A

_TRI_A

7

8_XQT_PROG

DATA (See Section 5.7)

7

8_EOF

* See CAD Procedures Manual - MSC EXEC II Part 19 Page 19.30.110

Description of Tape Units Used:

A - is the tape on which the program is stored and is always an input tape. (A is logical unit 1)

B - may be an input tape, an output tape, or not used at all; depending on the value of INDATA. If INDATA = 0, B is not used at all. If INDATA = 1 or 2, B is an output tape on which the new data is stored. If INDATA = 3, B is an input tape on which data has been stored prior to this run. (B is logical unit 2)

C - is an input tape necessary only if INDATA = 2. The data to be edited was stored on this tape in an earlier run. (C is logical unit 3)

D - is an input tape necessary only if NENVTP = 2. This tape is an EHFR output tape. (D is logical unit 4)

E - may be an input tape, an output tape or not used at all, depending on the value of NENVTP. If NENVTP = 0, E is not used at all. If NENVTP = 1, E is an input tape which was created on an earlier run. If NENVTP = 2, E is an output tape on which created heat flux and prescribed temperature curves are written (E is logical unit 7)

G - is an input tape necessary only if NRIC = 1. This tape has script FA connections for radiant interchange and radiation to space of external suit nodes. (G is logical unit 9)

H - is an input tape necessary only if NEWTMP = 1. This tape was the I tape from a previous problem with IPLOTN = 1. (H is logical unit 10)

I - is an output tape necessary only if IDUMP = 1 and/or IPLOTN = 1. This tape need not be generated unless the problem is to be restarted and/or plots of the mission are to be made. (I is logical unit 11)

J - is an input tape necessary only if ISTART = 1 or 2. This tape was the I tape from a previous run with IDUMP = 1. (J is logical unit 12)

L - is an input tape necessary only if NPRTCD = 1. This tape is used to supply LRV prescribed temperature curves. Every type 11** curve must start on the data tape. (L is logical unit 14)

** See Section 5.7 curve Data Cards

The EMU deck set-up for a restart with BSLSS employed (assuming the man #1 has an operating PLSS and man #2 has a failed PLSS) is as follows:

7 Z_RUN
8

7 N_MSG
8

7
8 ASG_A=AXXXXX (Input Program Tape Number)

7
8 ASG_G=AXXXXX (Input Radiant Interchange Data Tape Number)

7
8 ASG_E=AXXXXX (Input Flux Tape Number For Man #1)

7
8 ASG_S=AXXXXX (Input Flux Tape Number For Man #2)

7
8 ASG_J=AXXXXX (Input Restart Tape Number For Man #1)

7
8 ASG_K=AXXXXX (Input Restart Tape Number For Man #2)

7 S_ASG_I=DUMP1 (Output Data Dump and/or Plot Tape For Man #1)
8

7 S_ASG_R=DUMP2 (Output Data Dump and/or Plot Tape For Man #2)
8

7
8 XQT_CUR

-- TRW_A

-- IN_A

-- TRI_A

7
8 XQT_PROG

DATA (See Section 5.7)

7

8_EOF

Description of Tape Units Used On BSLSS Restart

A - is the tape on which the program is stored and is always an input tape. (A is logical unit 1)

E - is an input tape with heat flux and prescribed temperatures generated from a previous EMU man #1 problem. (E is logical unit 7)

G - is an input tape necessary only if NRIC = 1. This tape has script FA connections for radiant interchange and radiation to space of external suit nodes. (G is logical unit 9)

I - is an output tape necessary only if IDUMP = 1 and/or IPLOTN = 1. This tape will contain man #1 data dump and plot information. (I is logical unit 11)

J - is an input data dump tape generated from a previous EMU man #1 problem with IDUMP = 1. (J is logical unit 12)

K - is an input data dump tape generated from a previous EMU man #2 problem with IDUMP = 1. (K is logical unit 13)

R - is an output tape necessary only if IDUMP = 1 and/or IPLOTN = 1. This tape will contain man #2 data dump and plot information (R is logical unit 21)

S - is an input tape with heat flux and prescribed temperatures generated from a previous EMU man #2 problem. (S is logical unit 22)

The only cards necessary for a run if the data is supplied on cards (i.e., INDATA = 0) are those marked by an asterisk. Depending on the options chosen, other input tapes may be incorporated and various output tapes may be generated.

The other ⁷₈ ASG" or ⁷₈ S_ASG" cards are required when the various options are exercised. Any required input tape must be signified by a ⁷₈ ASG" card. Any required output tape must be signified by a ⁷₈ S_ASG" card. The proper unit must be designated on this card (e.g., a restart tape is always input on unit J, a plot tape is always output on unit I, etc.). It is imperative that the proper unit be specified.

If a tape is an input tape, the number of the tape should be punched immediately following the equal sign without skipping any spaces between the equal sign and the tape number. If a tape is an output tape, the same rule applies except the number is replaced by a symbolic name. This symbolic name should also appear on the run request card under the heading "FILE NAME" for the corresponding output tape.

All input and output tapes must be so designated on the run request card (MSC FORM 588). If the output tapes are to be saved, separate tape reel labels (MSC FORM 874) should be submitted with the run for each tape. The appropriate information for each tape should be supplied on these forms. A method for estimating run time and program output required on these forms is provided in the following section.

5.4 Run Time and Output Estimation

Run time for the EMU may be estimated for the Univac 1108 using the following equation:

$$RTIME = AI + \left(\frac{FL + TL + SL}{40800} \right) \left(\frac{TAU - TIME}{TINCMN} \right)$$

where:

- | | |
|--------|--------------------------------------|
| RTIME | = requested computer time in minutes |
| FL | = number of fluid lumps |
| TL | = number of tube lumps |
| SL | = number of structure lumps |
| TAU | = mission completion time, hours |
| TIME | = mission start time, hours |
| TINCMN | = input time interval, hours |
| AI | = 0, if the run is a restart |
| | = 3, if the run is not a restart |

This expression is not valid when the print interval is less than 0.1 hours. This expression is also an approximation because the amount of time spent in determining flow rates is dependent on the severity of the transient being run and cannot be readily estimated in advance.

Output from EMU may be estimated using the following equation:

$$NPO = 18 + 3 \frac{TAU - TIME}{DELTAU} + 23 AI + 70 BI$$

where:

NPO = number of pages of output
TAU = mission completion time
TIME = mission start time
DELTAU = print interval
AI = 0, if the run is restart
= 1, if the run is not a restart
BI = 0, if the data tape is not edited
= 1, if the data tape is edited

5.5 Restrictions

Programming, analytical, and core storage space restrictions applicable to the EMU are outlined in the following paragraphs.

5.5.1 Programming

Some of the programming restrictions are described in other parts of the report and are listed here to emphasize their importance.

- A. A fluid lump may be enclosed by more than one tube lump, but it must be enclosed by at least one.
- B. When setting up the fluid lump data, care must be exercised to insure that upstream lumps are set up properly. Data should be listed so that it is possible to go from the last lump in the tube to the first lump in that tube simply by following the upstream lump numbers. All fluid lumps in the tube should be covered in this search.
- C. When conduction data is set-up, the second conductance value may be zero, but the first should never be in order to save core storage space.
- D. Tubes 26, 27, 28, 29, 30, 31, 39, 40, 41 and 42 contain the vent gas flow over the trunk, right arm, right leg, head,

right hand, right foot, left arm, left leg, left hand and left foot respectively and must contain one and only one fluid lump. Each preceding fluid lump must be enclosed by at least two tube lumps one of which must be the corresponding skin tube lump number. Additional tube lumps, enclosing the suit fluid lumps and representing the inside suit wall, are required by the program.

- E. Tubes 9, 11, 12, 13, 15, 24, 32 must contain at least two fluid lumps.
- F. The sublimator oxygen fluid lump, sublimator water fluid lump, first fluid lump in tube 9, and the first fluid lump in tube 32 must be surrounded by only one tube lump.
- G. The last fluid lump in tubes 11 and 12 must be respectively the lithium hydroxide canister lump and the sublimator oxygen lump.
- H. The sublimator water fluid lump must be in tube 21, but not the first lump or last lump of that tube.
- I. The structure lump of oxygen in the OPS bottle on left side and right side, the structure lump of oxygen in the primary oxygen bottle, and the tube lump surrounding the first lump in tubes 9 and 32 must not have any connections.
- J. In the special tube/fluid connection data the fluid lump must be a lump surrounding the man and the tube lump must be a man skin lump or a lump in tubes 32 through 38.
- K. If a lump has a prescribed temperature, the temperature is prescribed for the entire problem according to the curve data input.
- L. A BSLSS Man No. 1 run must always have at least one local temperature perturbation calculation.

5.5.2 Analytical

In addition to the analytical restrictions for any finite difference approximation to differential equations, the user of the EMU should also be aware of the following:

- A. The EMU has special equations or curves for computing the pressure drop of various components. In order to compute a pressure drop of zero for the fluid lump which represents the component, a wetted perimeter of zero must be specified for the fluid lump. However, the specifying of a wetted perimeter of zero causes the calculation of a zero heat transfer coefficient for the fluid lump. Therefore, if a heat transfer coefficient other than zero is needed, it must be specified on a curve as a function of flow rate.
- B. The EMU automatically determines for the lumps on the visors the amount of incident solar and incident infrared radiation absorbed as a function of visor position. The visor node connections are made and broken automatically according to visor position. The pressure bubble lumps connected to the LEVA shell lumps must be done manually by use of lumps with time variant properties. The time variant curve must be consistent with the helmet mode curve which is a function of mission time.

5.5.3 Core Storage Space

The computer program requires approximately 8000 core locations. In addition, a blank common block of 40,980 is allocated for storing input and calculated data. The largest part of the common block is assigned to an array called DATA. Basically the size of this array is determined by the size of core and the size of the SUB7 link. For operation on the Univac 1108 the dimensioned size of DATA is 40,000 locations. The DATA array is divided into three sections: transient, permanent and temporary. The transient section has two blocks, iteration and configuration, which share the 14,000 locations available. Only one block is stored in core at a time, while the other is stored on a drum. The iteration block occupies core all the time except when an EMU configuration change takes place and the configuration block is in core to make necessary changes to the permanent section. The permanent and temporary sections have variable length which cannot exceed 26,000 locations. These storage values are allocated as shown in the following paragraph.

A. The equations for determining the amount of core space in the DATA block that a thermal model will require are:

(1) Transient Section - Iteration Block

$$\begin{aligned} \text{Storage required} = & 200 + 14 \text{ NIHEVA} + 14 \text{ NPTEVA} + \\ & 14 \text{ NTFL} + 2 \text{ NTML} + 3 \text{ NGRHL} + 3 \text{ NGRSH} \\ & + 3 \text{ NPHHL} + 2 \text{ NNDSH} + 10 \text{ NHVPOS} + \\ & 2 \text{ NNEVAH} + 2 \text{ NCR1} + 4 \text{ NCR2} + 2 \text{ NP1} \\ & + \text{NP2} + \text{NP3} + \text{NP2} * \text{NP3} \end{aligned}$$

(2) Transient Section - Configuration Block

$$\begin{aligned} \text{Storage required} = & 200 + 3 \text{ NTFL} + 6 \text{ NTML} + 6 \text{ NSL} + \\ & 3 \text{ NUMCON} + \text{NLMPEM} \end{aligned}$$

(3) Permanent and Temporary Section

$$\begin{aligned} \text{Storage required} = & 300 + 6 \text{ NFLT} + 13 \text{ NTFL} + 10 \text{ NMLT} + \\ & 14 \text{ NTML} + 7 \text{ NT} + 13 \text{ NSL} + 10 \text{ NLOCPT} \\ & + 2 \text{ NNEVAT} + 2 \text{ NPRTEM} + 4 \text{ NUMTVW} + \\ & 4 \text{ NUMTVC} + 6 \text{ NSPCON} + 3 \text{ NHV123} + \\ & 5 \text{ NUMCON} + 7 \text{ NUMCVC} + 4 \text{ NUMCPV} + \\ & 4 \text{ NUMQIN} + 2 \text{ NLMPID} + 2 \text{ NLMPEM} + \\ & 2 \text{ NPTLRV} + \text{NRFST} + \text{NRFTT} \end{aligned}$$

B. Identification of Symbols Used in Above Equations:

NCR1	- Number of curves other than bivariant curves
NCR2	- Number of bivariant curves
NFLT	- Number of fluid lump types
NGRHL	- Number of groups of nodes for heat leak calculations
NGRSH	- Number of groups of nodes for heat storage calculations
NHVPOS	- Number of positions on helmet and visor
NHV123	- Number of type 1, 2, and 3 positions on helmet and visor
NIHEVA	- Number of heat flux curves
NLMPEM	- Number of structure lumps associated with an EMU configuration
NLMPID	- Number of structure lump identified as suit, glove, and boot node

NLOCPT	- Number of local temperature perturbation nodes
NMLT	- Number of tube lump types
NNDSH	- Total number of nodes for heat storage calculations
NNEVAH	- Number of nodes with heat flux curve assignments
NNEVAT	- Number of nodes with prescribed temperature curve assignments
NPHHL	- Total number of paths for heat leak calculations
NPRTEM	- Number of prescribed temperature curves
NPTEVA	- Number of prescribed temperature curves generated from EHFR input
NPTLRV	- Number of LRV prescribed temperature curves
NP1	- Total number of points on all curves other than fluid specific heat and bivariant curves
NP2	- Total number of points on fluid specific heat curves
NP3	- Total number of dependent variables on bivariant curves
NRFST	- Number of resistors and FAs in structure type data
NRFTT	- Number of resistors and FAs in tube type data
NSL	- Number of structure lumps
NSPCON	- Number of special tube/fluid connections
NT	- Number of structure lump types
NTFL	- Number of fluid lumps
NTML	- Number of tube lumps
NUMCON	- Number of connections
NUMCPC	- Number of nodes with variable specific heat
NUMCVC	- Number of nodes with variable conductivity connections
NUMQIN	- Number of nodes with incident heat applied
NUMTVC	- Number of nodes with time variant connections
NUMTVW	- Number of nodes with time variant mass

5.6 Program Options

5.6.1 Plot Tape

A "1" punch in column 68 of parameter card 2 will cause the generation of a plot tape. This tape will have all of the fluid, tube, and structure lump temperatures, plus other items indicated below, recorded on it under control of the plot interval given on Card 2. The plot tape is generated on tape UNIT I. Set-up cards are required when the program is submitted to cause the tape to be mounted as discussed in Section 5.3. Also, the computer request card must indicate that there is to be an output tape on UNIT I.

The format of the plot tape is:

Record No. 1

Title (from title card, 12A6), 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 2, 2, 2, 7, 8, 43, number of groups
of heat leak calculations, number of groups of heat storage
calculations, number of flowrates, number of pressure drops,
number of fluid temperatures, number of tube temperatures,
number of structure temperatures.

Record No. 2

Time, LCG delta temperature, crewman stored heat, partial
pressure of CO₂ in helmet, dewpoint temperature in helmet,
suit inlet specific humidity, suit outlet specific humidity,
pressure in OPS bottles, pressure in primary bottle, condensation
rate in tube 11, condensation rate in tube 12, sublimator heat
load, crewman sensible heat loss, crewman evaporation heat loss,
crewman latent heat loss, crewman storage rate, crewman shiver
rate, crewman metabolic rate, oxygen in OPS bottles, oxygen in
primary bottle, total condensation in tube 11, total condensation
in tube 12, usable water in reservoir, unusable water in reservoir,
lithium hydroxide in canister, unremoved sweat on crewman,
crewman temperatures, flowrates, pressure drops, fluid lump tem-
peratures, tube lump temperatures, and structure lump temperatures.

Record No. 3

Time, etc.

The last record has a negative time to indicate end of output. This record need not be included in the plot since the values printed out are identical to those on the previous record.

5.6.2 LRV Prescribed Temperature Curves on Tape

LRV prescribed temperature curves may be read from tape by putting a "1" punch in column 66 of Card 2. Also, the tape unit L must be designated on the computer request card, and the proper set-up cards must be included. (Section 5.3.1) An auxiliary routine must be used to "block" the prescribed temperatures on the tape prior to its use as an input tape.

Restrictions on the option are:

- (1) All LRV prescribed temperature curves must be read from tape.
- (2) The initial block of curve data must be input on cards or data tape in the usual manner (Section 5.7.16)
- (3) Each curve on tape must have the same number of points per block of curve data as were input on cards initially.
- (4) Each curve must have the same number of points per block and therefore the same total number of points.
- (5) The order of the curves on the tape must be the same as curves in the data deck.

The data is read from a binary tape which has the following format:

Record No. 1

First Read Time, 9A6

Record No. 2

Number of points on Curve No. 1 (Integer), Curve 1 independent variables, Curve 1 dependent variables, Number of points on Curve 2, Curve 2 independent variables, Curve 2 dependent variables, etc. for all curves.

Record No. 3

Second Read Time, 9A6

Record No. 4

Same as Record No. 2

Record No. 5

Same as Record No. 1 but for the third read time.

Etc. until all blocks of data are on tape.

The amount of the data which can be read in from tape is unlimited since successive tapes can be mounted and read. The amount of data which can be read in a given block is dependent upon the data space available in the computer. It is possible to restart a problem which reads prescribed temperature curve data from tape. Although the tape rewinds on a program restart, the program searches for the proper program time before reading.

5.6.3 Restart

Requested Dump for Restarting

Any problem can be dumped and restarted at a later time. This is achieved by punching a "1" in column 70 on parameter card 2. This option is useful in data checkout in that a problem can be submitted for a short transient time, and, after examination of the results, restarted for a longer transient time. The computer request card must specify that the output tape is expected, and the proper set-up card must be included in the deck.

Automatic Dump for Restarting

If a problem does not attain the specified mission transient time within the requested computer time, the problem is dumped and may be restarted later. This occurs whether there is a "1" in column 70 on parameter card 2 or not. The computer request card must specify that an output tape is expected or the dump will be lost; a save tape label must also be provided.

Restart Procedure

The procedure for restarting a problem which has been dumped is:

- (1) Fill out the computer request card as in an initial run, except specify the previously dumped tape as an input tape on UNIT J.
- (2) If on the initial run, an EHFR tape was input on UNIT D, the output tape created on UNIT E is specified as an input tape on restart. An EHFR tape cannot be used directly on restart.

- (3) Submit only the first two of the data cards (that is, parameter cards 1 and 2) with a "1" punch in column 60 on Card 2 to indicate that data is to be read from a restart tape.
- (4) See Section 5.3.2 for restarting with BSLSS option.

5.6.4 EDIT

The large number of data cards required for problems run on this routine presents three problems: (1) increased probability of operator and/or card reader error, (2) increased probability of a card reader jam, and (3) significant extra time required to read in data from the card reader when problem (2) occurs. For these reasons a routine was developed (Reference 14) for reading input data from tape with the capability for modifying the data on read-in.

The EDIT routine is called by parameter INDATA input on columns 61 and 62 on parameter card 2. Possible inputs are:

- (1) INDATA = 0, All data is supplied on cards.
- (2) INDATA = 1, All data is supplied on cards and the card images are written on tape on UNIT B. (Should be specified as an output tape on job card).
- (3) INDATA = 2, Use data input on tape on UNIT C with desired changes on cards to write a new data tape on UNIT B. (C is input tape and B is output tape)
- (4) INDATA = 3, Use the data read in from UNIT B without change. Parameter cards 1 and 2 are read in from cards. (B is input tape)

If INDATA <0, the card images are punched as they are written on UNIT B.

When INDATA = 2, deck set-up consists of parameter cards 1 and 2, the EDIT control cards (described below), and the new data cards (with the same format as the cards being replaced).

The EDIT control cards, used only when INDATA has a value of ± 2 are:

COLUMN	FORMAT	NAME	DESCRIPTION
1	A1	ID	* in column 1 identifies the card as an EDIT control card

COLUMN	FORMAT	NAME	DESCRIPTION
6-15	I10	K3	Card number of first card to be removed if K3 is positive and K4 > 0. If K3 is negative, K3 is the card number of the card for which a merge correction will be performed. If K4 is blank or zero, cards change cards between this card and the next EDIT Control card will be added immediately following card K3.
16-25	I10	K4	Card number of last card to be removed prior to inserting the change cards in the data. If K3 is negative, K4 is ignored.

The UNIT C tape is not altered in any way should there be errors in the edit deck which cause fatal errors in the LTV program. It is the responsibility of the user to maintain extra copies of the data tape and/or an up-to-date card deck.

5.6.5 Imposed Node Temperature History

It is possible to impose a temperature history on structure nodes for the duration of the problem. The temperature history is called a prescribed wall temperature and data preparation is given in Section 5.7.12.

5.6.6 Heat Flux and Prescribed Temperature Data From EHFR

The Environmental Heat Flux Routine (EHFR) outputs on a tape, incident heat in two wavelength bands (solar and infrared) for each helmet and visor node of its geometrical model of the EMU. Absorbed heat for each remaining node and a contact temperature is also output on the tape. This tape is used as input to the EMU simulator on tape UNIT D when NENVTP = 2. This parameter is specified in column 30 of parameter card 3. When NENVTP = 2, the EMU simulator reads data from UNIT D and creates on UNIT E curves of absorbed heat, incident solar heat, incident infrared heat, and contact temperature as specified on parameter cards 4 and 5. The incident solar and incident infrared heat curves are assigned in the Helmet and Visor Data (Section 5.7.8) while the absorbed heat and contact temperature curves are assigned in the Curve Assignment Data (Section 5.7.11). The tape created

on UNIT E on one run can be used on other runs as an input tape by specifying NENVTP = 1. The user can, by specifying NENVTP = 0, input curves requested on parameter card 3 in the Curve Data (Section 5.7.16) as type 19 and type 20 curves. Parameter cards 4 and 5 must be omitted and tapes are not specified for UNIT D and UNIT E. If NENVTP = 0 and NRIC = 1, the user must supply a type 21 (radiant interchange mode) curve. This curve determines the set of radiant interchange connection values to be used from UNIT G as a function of time. The connection values should correspond to the variation in EHFR heat flux which is a function of the EMU geometric configuration.

To restart a run which uses an EHFR tape as input on UNIT D, a tape must have been created on UNIT E and saved for restart. The tape generated on UNIT E becomes an input tape read from the same unit. UNIT D cannot be used on restart. (Section 5.6.3)

5.7 DATA CARD PREPARATION FOR EMU

5.7.1 PARAMETER CARDS

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 1</u>			
1-72	I2A6	TITLE	Any 72 alphanumeric characters to be used for page heading
<u>Card 2</u>			
1-10	F10.5	TIME	Mission start time (hrs)
11-15	F5.5	TINCMN	Minimum time increment (hrs)
16-20	F5.5	PLTINC	Plot interval (hrs)
21-25	F5.5	DELTAU	Print interval (hrs)
26-35	F10.5	TAU	Mission completion time (hrs)
36-40	F5.0	SSTEST	Steady state tolerance ($^{\circ}$ F)
41-45	F5.0	RTIME	Computer time requested (minutes)
46-50	F5.0	TMPTIM	Time of initial temperatures from history tape (UNIT H)
51-55	F5.0	DPTOL	Pressure drop tolerance (.01)
56			Blank
57-58	I2	NSTEAD	= 0, Not steady state ≠ 0, Steady state run
59-60	I2	ISTART	= 0, New data follows = 1, Read data from restart tape to continue mission = 2, Read data from two restart tapes to continue mission with BSLSS employed
61-62	I2	INDATA	= 0, All data supplied on cards = 1, Write card images on UNIT B = 2, Use cards from C to update B = 3, Use B without edit =-2, Punch data
63-64	I2	NEWTMP	= 0, Use current temperature tables = 1, Read initial temperatures from Unit H

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 2 (Continued)</u>			
65-66	I2	NPRTCD	= 0, Use current LRV prescribed temperature tables = 1, LRV prescribed temperature tables supplied by unit L
67-68	I2	IPLOTN	= 0, No temperature history = 1, Write temperature history on Unit I
69-70	I2	IDUMP	= 0, No dump tape to be written = 1, Dump data on UNIT I when either TAU or RTIME is exceeded
71-72	I2	NBSY	= 0, Normal EMU run = 1, Initial EMU run with BSLSS for man with active PLSS = 2, Initial EMU run with BSLSS for man with failed PLSS
<u>Card 3</u>			
1-5	I5	NTFL	Total number of fluid lumps
6-10	I5	NTML	Total number of tube lumps
11-15	I5	NSL	Total number of structure lumps
16-20	I5	NIHEVA	Number of heat flux curves to be created from EHFR output or supplied in curve data. If none, enter zero
21-25	I5	NPTEVA	Number of prescribed temperatures history curves to be created from EHFR output or supplied in curve data. If none enter zero
26-30	I5	NENVTP	Code for heat flux curves, type 19, and prescribed temperature curves, type 20, = 0, Curves supplied in curve data = 1, Heat flux and prescribed temperature curves read from UNIT E, = 2, Heat flux and prescribed temperature curves created on UNIT E from EHFR output on UNIT D
31-35	I5	NRIC	= 0, No radiant interchange tape = 1, Read radiant interchange tape on UNIT G

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 4</u>			
1-5	I5	NUM	Curve number assigned to this group of combined heat fluxes (or temperature histories)
6-10	I5	NF	Number of heat fluxes (or temperature histories) from EHFR composing this group

<u>Card 5</u>			
1-5	I5	NF1	First facet number corresponding to the heat flux (or temperature history) included in this group
6-10	F5.0	FRAC1	Fraction of heat flux (or temperature history) of first facet included in this group
11-15	I5	NF2	Second facet number corresponding to the heat flux (or temperature history) included in this group
16-20	F5.0	FRAC2	Fraction of heat flux (or temperature history) of second facet included in this group
21-25	I5	NF3	Third facet number corresponding to the heat flux (or temperature history) included in this group
26-30	F5.0	FRAC3	etc.

Alternate the facet number and fraction in the proper format through column 70. Then, repeat Card 5 until NF facet numbers and the appropriate fraction have been supplied. Repeat Card 4 followed by Card 5 for the heat flux curves NIHEVA times followed by Cards 4 and 5 for prescribed temperature history curves as required. If NENVTP = 0, omit Cards 4 and 5.

<u>Card 6</u>			
1-10	E10.5	C1	Suit $\Delta P(\text{psi}) = C1 * \frac{T}{P_{\text{in}}} (W_o)$ END1
11-20	E10.5	END1	
21-30	E10.5	C2	Canister $\Delta P(\text{psi}) = C2 * \frac{T}{P_{\text{in}}} (W_o)$ END2
31-40	E10.5	END2	
41-50	E10.5	C3	Sublimator oxygen $\Delta P(\text{psi}) =$
51-60	E10.5	END3	$C3 * \frac{T}{P_{\text{in}}} (W_o)$ END3

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 7</u>			
1-10	E10.5	C4	Water separator, ΔP (psi) =
11-20	E10.5	END4	$C4 * \frac{T_{in}}{P_{in}} (W_o)$ END4
21-30	E10.5	C5	Sublimator water, ΔP (psi) =
31-40	E10.5	END5	$C5 * (\dot{W}_w)$ END5
41-50	E10.5	CW1	Flowrate of water pump (lbs/hr) =
51-60	E10.5	CW2	$CW1 * (\Delta P_{SYS})^{CW2}$
<u>Card 8</u>			
1-5	I5	LMPCAN	Canister fluid lump number
6-10	I5	LMPBSO	Sublimator oxygen fluid lump number
11-15	I5	LMPWSP	Water separator fluid lump number
16-20	I5	LMPSBW	Sublimator water fluid lump number
21-25	I5	LMPWRS	Lump number of water in water reservoir (structure)
26-30	I5	LMPWAX	Lump number of water in auxiliary water reservoir (structure)
<u>Card 9</u>			
1-5	I5	LMPHTR	OPS heater tube lump number
6-10	I5	LSNHTR	OPS heater fluid sensor lump number
11-20	F10.5	TSEN1	OPS "heater-on" temperature, °F
21-30	F10.5	TSEN2	OPS "heater-off" temperature, °F
31-40	F10.5	QHTR	Heater dissipation rate, Btu/hr
<u>Card 10</u>			
1-5	I5	LIØPS1	Lump number of oxygen in OPS bottle on left side (structure)
6-10	I5	LØØPS1	Lump number of shell of OPS bottle on left side (structure)
11-20	F10.5	HAØPS1	HA for left hand side OPS bottle, BTU/hr-°F
21-30	F10.5	PGØPS1	Initial pressure in left hand side OPS bottle, psi
<u>Card 11</u>			
Same as <u>Card 10</u> except for right hand side OPS bottle.			

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
----------------	---------------	--------------	--------------------

Card 12

Same as Card 10 except for Primary oxygen bottle.

Card 13

1-10	F10.5	VØLØPS	OPS bottle volume, in ³
11-20	F10.5	VØLPRI	Primary oxygen bottle volume, in ³
21-30	F10.5	PSISUB	Initial specific humidity out of sublimator
31-40	F10.5	DPDIV	Diverter valve pressure drop, psi

Card 14

1-10	F10.5	WTRUSE	Usable water in main reservoir, lb
11-20	F10.5	WTRSTR	Unusable water in main reservoir, lb
21-30	F10.5	WRAXUS	Usable water in auxiliary reservoir, lb
31-40	F10.5	WRAXST	Unusable water in auxiliary reservoir, lb
41-50	F10.5	VOLHMT	Net helmet volume, in ³
51-60	F10.5	CO2WGT	Initial weight of CO ₂ in helmet, lb

Card 15

1-5	I5	L1	Trunk skin tube lump number
6-10	I5	L2	Right arm skin tube lump number
11-15	I5	L3	Left arm skin tube lump number
16-20	I5	L4	Right leg skin tube lump number
21-25	I5	L5	Left leg skin tube lump number
26-30	I5	L6	Head skin tube lump number
31-35	I5	L7	Right hand skin tube lump number
36-40	I5	L8	Left hand skin tube lump number
41-45	I5	L9	Right foot skin tube lump number
46-50	I5	L10	Left foot skin tube lump number

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 16</u>			
1-5	I5	L11	Trunk undergarment tube lump number
6-10	I5	L12	Right arm undergarment tube lump number
11-15	I5	L13	Left arm undergarment tube lump number
16-20	I5	L14	Right leg undergarment tube lump number
21-25	I5	L15	Left leg undergarment tube lump number
26-30	I5	L16	Head undergarment tube lump number
31-35	I5	L17	Right hand undergarment tube lump number
36-40	I5	L18	Left hand undergarment tube lump number
41-45	I5	L19	Right foot undergarment tube lump number
46-50	I5	L20	Left foot undergarment tube lump number
<u>Card 17</u>			
1-10	F10.5	WGLIØH	Weight of LiOH in canister, lb
11-20	F10.5	WGLICØ	Initial weight of Li_2CO_3 in canister, lb
21-30	F10.5	WGSHEL	Weight of LiOH cartridge shell, lb
31-40	F10.5	CPLIØH	Specific heat of LiOH, Btu/lb °F
41-50	F10.5	CPLICØ	Specific heat of Li_2CO_3 , Btu/lb °F
51-60	F10.5	CPSHEL	Specific heat of LiOH cartridge shell, Btu/lb °F
<u>Card 18</u>			
1-10	F10.5	RF1	Solar reflectivity of astronaut's face
11-20	F10.5	RF2	Solar reflectivity of inside of pressure bubble
21-30	F10.5	RF3	Solar reflectivity of outside of pressure bubble
31-40	F10.5	RF4	Solar reflectivity of inside of impact visor

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 18 (Continued)</u>			
41-50	F10.5	RF5	Solar reflectivity of outside of impact visor
51-60	F10.5	RF6	Solar reflectivity of inside of sun visor
61-70	F10.5	RF7	Solar reflectivity of outside of sun visor
<u>Card 19</u>			
1-10	F10.5	RFT	Solar reflectivity of helmet top
11-20	F10.5	T23	Solar transmissivity of pressure bubble
21-30	F10.5	T45	Solar transmissivity of impact visor
31-40	F10.5	T67	Solar transmissivity of sun visor
<u>Card 20</u>			
1-10	F10.5	EM1	Infrared emittance of outer surface of sun visor
11-20	F10.5	EM2	Infrared emittance of outer surface of impact visor
21-30	F10.5	EM3	Infrared emittance of outer surface of helmet top
31-40	F10.5	EM4	Infrared emittance of outer surface of pressure bubble
41-50	F10.5	EM5	Infrared emittance of man's face
<u>Card 21</u>			
1-5	I5	NOXDEN	Oxygen density curve number
6-10	I5	NOXCON	Oxygen conductivity curve number
11-15	I5	NOXSPH	Oxygen specific heat curve number
16-20	I5	NOXVIS	Oxygen viscosity curve number
21-25	I5	NOXFRR	Oxygen friction factor curve number

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 22</u>			
1-5	I5	NWRDEN	Water density curve number
6-10	I5	NWRCON	Water conductivity curve number
11-15	I5	NWRSPH	Water specific heat curve number
16-20	I5	NWRVIS	Water viscosity curve number
21-25	I5	NWRFFR	Water friction factor curve number
<u>Card 23</u>			
1-5	I5	NTCAB	Cabin gas temperature curve number
6-10	I5	NTDEWC	Cabin gas dew point temperature curve number
11-15	I5	NOXYDP	Suit inlet dew point temperature curve number
16-20	I5	NOXYIT	Suit inlet temperature curve number
21-25	I5	NWTRIT	LCG inlet temperature curve number
All curves on this card are type 12.			
<u>Card 24</u>			
1-5	I5	NZFACT	Compressibility factor curve number, Z (PR,TR)
6-10	I5	NEBLOW	Oxygen enthalpy curve number, H (P,T)
11-15	I5	NDPLCG	LCG pressure drop curve number, DP(W,T)
16-20	I5	NTOUTW	Sublimator water outlet temperature curve number, T (W,T _{inlet})
21-25	I5	NFANCR	PLSS fan pressure curve number
<u>Card 25</u>			
1-5	I5	NSLEAK	Suit leakage rate curve number
6-10	I5	NWLEAK	Water leakage rate curve number
11-15	I5	NXM	Metabolic rate curve number

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 25 (Continued)</u>			
16-20	I5	NUEFF	Man efficiency curve number
21-25	I5	NPSUIT	Suit gas pressure curve number
26-30	I5	NGRAV	Gravity multiplying factor curve number
31-35	I5	NVCAB	Cabin freestream velocity curve number
36-40	I5	NVEFF	Cabin ventilation efficiency curve number
41-45	I5	NPCAB	Cabin gas pressure curve number
46-50	I5	NOXYFL	Suit inlet gas flow curve number
51-55	I5	NWTRFL	LCG inlet flowrate curve number

All curves on this card are type 34.

Card 26

1-5	I5	NPOXY	Fan exit pressure curve number
6-10	I5	NNPOS	Primary oxygen system On/Off curve number
11-15	I5	NNDIV	Diverter valve position curve number
16-20	I5	NQEMAX	Sublimator maximum heat load curve number
21-25	I5	NOPS	OPS flowrate curve number
26-30	I5	NHMOD	Helmet mode curve number
31-35	I5	NEMODE	EMU configuration mode curve number
36-40	I5	NAXRSV	Auxiliary reservoir shut-off valve curve number

All curves on this card are type 35.

5.7.2 FLUID DATA CARDS

Card 27

1-5	I5	NFLT	Number of types of fluid lumps
-----	----	------	--------------------------------

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 28</u> (Type Data Cards)			
1-25			Blank
26-30	I5	NKPDC	Head loss coefficient curve number
31-35	I5	NHHH	= 0, Use regular equation for HHH ≠ 0, Curve number for HHH = f (w)
36-45	F10.5	FLL	Fluid lump length, inches
46-55	F10.5	CSA	Fluid cross sectional area, sq. in.
56-62	F7.5	WP	Wetted perimeter, inches
63-67	F5.4	FRE	Factor for computing friction factor as a function of Reynold's number. Routine sets to 1.0 if left blank
68-72	I5	LTYPE	Type number

Repeat Card 28 for each fluid type.

Card 29 (Fluid Lump Cards)

1-5	I5	LN	Lump number
6-10	I5	NLU	Lump upstream. NLU = 0 for first lump in every tube.
11-15	I5	NTB	Tube number
16-20	I5	NTYPEF	Type number
21-30	F10.5	FTI	Initial temperature, °F

Repeat Card 29 for every fluid lump.

5.7.3 TUBE DATA CARDS

Card 30

1-5	I5	NMLT	Number of types of tube lumps
-----	----	------	-------------------------------

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 31</u>	(Type Data Cards)		
1-5	F5.0	WGTT	Weight of tube lump, lbs
6-10	I5	NCNCT	Conductivity curve number
11-15	I5	NSHCT	Specific heat curve number
16-20	I5	NTCT	Number of tube lumps 'conducted to' by tube lumps of this type
21-25	I5	NFCTT	Number of structure lumps 'conducted to' by tube lumps of this type
26-30	I5	NTRT	Number of tube lumps 'radiated to' by tube lumps of this type
31-35	I5	NFRRT	Number of structure lumps 'radiated to' by tube lumps of this type
36-45	F10.5	AHT	Area of heat transfer to enclosed fluid lump, sq. in.
46-55	F10.5	AERT	Area of surface for incident heat application, sq. in.
56-65	F10.5	FAC	Factor for dividing conduction distances. Routine sets to 1.0 if left blank
66-70	I5	LTYPE	Type number
<u>Card 32</u>	(Conduction Data, required for all lumps conducted to by tube lumps of this type)		
1-5	F5.5	R ₁ ₁	Conduction data for tube lumps of this type of the first lump listed in the connections on the tube lump card
6-10	F5.5	R ₂ ₁	$U = \frac{1}{\frac{R_{1_1}}{K_1} + \frac{R_{2_1}}{K_2}}$ <p>Resistor values are input in pairs, but R₂ may be left blank when thermal conductivity is constant.</p>
11-15	F5.5	R ₁ ₂	Conduction data for tube lumps of this type to the second lump listed in the connections on the tube lump cards
16-20	F5.5	R ₂ ₂	
.	.	.	.
.	.	.	.
.	.	.	.

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 32 (Continued)</u>			
61-65	F5.5	R1 ₇	Conduction data for tube lumps of this type to the seventh lump listed in the connections on the tube lump card
66-70	F5.5	R2 ₇	

Repeat Card 32 as many times as needed to supply conduction data for the total number of lumps conducted to by tube lumps of this type. Data must be given as follows: (1) all conduction data to tube lumps, (2) all conduction data to structure lumps.

Card 33 (Radiation Data, required for all lumps radiated to by tube lumps of this type)

1-5	F5.0	FA1	Gray-body shape factor, FA (sq. in.) between tube lumps of this type and the first lump 'radiated to' listed in the connections on the tube lump cards.
6-10	F5.0	FA2	Gray-body shape factor between tube lumps of this type and the second lump 'radiated to' listed in the connections on the tube lump card
.	.	.	.
.	.	.	.
.	.	.	.
66-70	F5.0	FA1 ¹⁴	Gray-body shape factor between tube lumps of this type and the 14th lump 'radiated to' listed in the connections on the tube lump cards

Repeat Card 33 as many times as needed to supply the gray-body shape factor for the total number of lumps radiated to by tube lumps of this type. Data must be given as follows: (1) all radiation data to tube lumps, (2) all radiation data to structure lumps.

Repeat Card 31 (followed by Cards 32 and 33 if needed) for each tube type.

Card 34 (Tube Lump Cards)

1-5	I5	LN	Lump number
6-10	I5	NFL	Enclosed fluid lump number
11-15	I5	NTYPET	Type number
16-25	F10.5	TTI	Initial temperature, °F

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 34</u> (Continued)			
26-30	I5	NQICT	Incident heat curve number
31-35	I5	NTLL	First lump to which this tube lump has a connection either by conduction or radiation
.	.	.	.
.	.	.	.
.	.	.	.
66-70	I5	NTL8	Eighth lump to which this tube lump has a connection

Card 35 (Additional connections, if required)

1-5	I5	NTL9	Ninth lump to which this tube lump has a connection
.	.	.	.
.	.	.	.
.	.	.	.
66-70	I5	NTL22	Twenty-second lump to which this tube lump has a connection

The order of the connected lumps is the same as the other in which the conduction and radiation data were given on the corresponding type card.

Recall that the connections should be listed as follows; conduction to tube lumps, conduction to structure lumps, radiation to tube lumps and radiation to structure lumps. Repeat Card 35 if needed to supply all lumps to which the tube lump has a connection.

Repeat Card 34 (followed by Card 35, if required) for every tube lump.

5.7.4 STRUCTURE DATA CARDS

Card 36

1-5	I5	NT	Number of types of structure lumps
-----	----	----	------------------------------------

Card 37 (Type Data Cards)

1-5	F5.0	WGTS	Weight of structure lump, lbs
6-10	I5	NC0NCS	Conductivity curve number
11-15	I5	NSHCS	Specific heat curve number

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 37</u> (Continued)			
16-20	I5	NFCTS	Number of structure lumps 'conducted to' by structure lumps of this type
21-25	I5	NFRTS	Number of structure lumps 'radiated to' by structure lumps of this type
26-35	F10.5	AERS	Area of surface for incident heat application, sq. in.
36-45	F10.5	FAC	Factor for dividing conduction distances. Routine sets to 1.0 is left blank.
66-70	I5	LTYPE	Type number

Card 38 (Conduction Data, required for all lumps conducted to by structure lumps of this type)

1-5	F5.5	R ₁₁	Conduction data for structure lumps of this type to the first lump listed in the connections on the structure lump card
6-10	F5.5	R ₂₁	
.	.	.	.
.	.	.	.
.	.	.	.
61-65	F5.5	R ₁₇	
66-70	F5.5	R ₂₇	

Repeat Card 38 as needed.

Card 39 (Radiation Data, required for all lumps radiated to by structure lumps of this type)

1-5	F5.0	F _{A1}	Gray-body shape factor, F _A (in ²), between structure lumps of this type and the first lump 'radiated to' listed in the connections on the structure lump cards.
.	.	.	.
.	.	.	.
.	.	.	.
66-70	F5.0	F _{A14}	

Repeat Card 39 as needed.

Repeat Card 37 (followed by Cards 38 and 39, if needed) for each structure type.

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 40</u>	(Structure Lump Cards)		
1-5	I5	LN	Lump number
6-10	I5	NTYPES	Type number
11-20	F10.5	STI	Initial temperature, °F
21-25	I5	NQICS	Incident heat curve number
26-30	I5	NTL1	First lump to which this structure lump has a connection either by conduction or radiation
.	.	.	.
.	.	.	.
.	.	.	.
66-70	I5	NTL9	Ninth lump to which this structure lump has a connection

Card 41 (Additional connections, if required)

1-5	I5	NTL10	10th lump
.	.	.	.
.	.	.	.
.	.	.	.
66-70	I5	NTL23	23rd lump

The order of the connected lumps is the same as the order in which the conduction and radiation data were given on the corresponding type card.

Repeat Card 41 as needed to supply all lumps to which the structure lump has a connection.

Repeat Card 40 (followed by Card 41, if needed) for each structure lump.

5.7.5 LOCAL TEMPERATURE PERTURBATION DATA CARDS

Card 42

1-5	I5	NLOCPT	Number of local temperature perturbations (LTP) (enter zero if none desired and omit <u>Card 43</u>)
-----	----	--------	--

Card 43

1-5	I5	NSKIN	Skin area number = 1, Trunk = 2, Right arm = 3, Left arm = 4, Right leg = 5, Left leg = 6, Head
-----	----	-------	---

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 43 (Continued)</u>			
			= 7, Right hand = 8, Left hand = 9, Right foot = 10, Left foot
6-10	I5	NNODE	Skin tube lump number (loc. pert. model)
11-15	I5	NUGNOD	Undergarment tube lump number (loc. pert. model) Zero if no undergarment over skin
16-20	I5	NFLUID	Fluid (gas) lump number (loc. pert. model) (Must be in tube 43)
21-25	I5	NLCGLP	LCG tube lump number (loc. pert. model)
26-30	I5	NLCGBS	LCG tube lump number of baseline EMU model corresponding to the skin area
31-35	I5	NKRDIFF	Diffusion factor curve number (Type 29)
36-40	I5	NKRSWT	Sweat factor curve number (Type 29)
41-45	I5	NKRHHH	Heat transfer factor curve number (Type 29)

5.7.6 HEAT LEAK DATA CARDS

Card 44

1-5 I5 NGRHL Number of groups of heat leak calculations
(Enter zero if none desired and omit Cards 45 and 46)

Card 45

1-5 I5 NG1 Number of paths of heat leak in group 1
10-15 A6 ID1 Six character identification of group 1

Card 46

1-4	I4	JNODE	J node number
5	A1	JTYPE	J node code T = tube node S = structure node

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 46 (Continued)</u>			
6-10	I5	NCOND	Connection number for conduction value - has values 1 to n where n is the number of connections input on <u>Card 34</u> or <u>Card 40</u>
11-15	I5	NRAD	Connection number for radiation value - has values 1 to n where n is the number of connections input on <u>Card 34</u> or <u>Card 40</u>
16-19	I4	JNODE	J node number
20	A1	JTYPE	J node code T = tube node S = structure node
21-25	I5	NCOND	Connection number for conduction value - has values 1 to n where n is the number of connections input on <u>Card 34</u> or <u>Card 40</u>
26-30	I5	NRAD	Connection number for radiation value - has values 1 to n where n is the number of connections input on <u>Card 34</u> or <u>Card 40</u>

Two heat leak paths are input per card and Card 46 is repeated as necessary to supply NGL paths. Repeat Card 45 followed by Card 46 as needed for NGRHL groups.

5.7.7 HEAT STORAGE DATA CARDS

Card 47

1-5	I5	NGRSH	Number of group of nodes for heat storage calculations (Enter zero if none desired and omit <u>Cards 48 and 49</u>)
-----	----	-------	--

Card 48

1-5	I5	NGS1	Number of nodes in group 1
10-15	A6	IDS1	Six character identification of group 1

Card 49

1-4	I4	NODE1	First node number
5	A1	TYPE1	First node code F = fluid T = tube node S = structure node

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 49 (Continued)</u>			
6-9	I4	NODE2	Second node number
10	A1	TYPE2	Second node code F = fluid node T = tube node S = structure node
etc. through column 70			

Repeat Card 49 as necessary until NGS1 nodes have been supplied. Repeat Card 48 followed by Card 49 for NGRSH groups.

5.7.8 HELMET AND VISOR DATA CARDS

Card 50

1-5	I5	NHVPOS	Number of positions on helmet and visor (Enter zero if none desired and omit <u>Card 51</u>)
-----	----	--------	--

Card 51

1-5	I5	NPOS	Position number
6-10	I5	NTYPE	Position type 1 - Sun visor 2 - Impact visor 3 - Top of helmet 4 - Pressure bubble 5 - Face
11-15	I5	NODE1	Node number for Mode 1 (Both visors down)
16-20	I5	NR1	Incident IR flux curve number
21-25	I5	NS1	Incident solar flux curve number
26-30	I5	NODE2	Node number for Mode 2 (Sun visor up)
31-35	I5	NR2	Incident IR flux curve number
36-40	I5	NS2	Incident solar flux curve number
41-45	I5	NODE3	Node number for Mode 3 (Both visors up)
46-50	I5	NR3	Incident IR flux curve number
51-55	I5	NS3	Incident solar flux curve number

Repeat Card 51 NHVPOS times.

5.7.9 SUIT, GLOVES, AND EV BOOTS NODE IDENTIFICATION CARDS

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 52</u>			
1-5	I5	NLMPID	Total number of structure node comprising suit, gloves, & boots (Enter zero if none desired and omit <u>Card 53</u>)

Card 53

1-4	I4	LUMP	Node number
5	A1	IDEN	Identification code G = Glove node S = Suit node B = EV boot node

etc. through column 70

Repeat Card 53 as necessary to identify all suit, glove, and boot nodes.

5.7.10 CONFIGURATION ASSOCIATED NODE IDENTIFICATION CARDS

Card 54

1-5	I5	NLMPEN	Number of structure nodes to be identified with a configuration mode. (Enter zero if none desired and omit <u>Card 55</u>)
-----	----	--------	---

Card 55

1-5	I5	LMPL	First structure node number
6-10	I5	NEN1	First configuration mode identification code

etc. through column 70

Repeat Card 55 as necessary to supply NLMPEN sets of node number and code.

5.7.11 HEAT FLUX CURVE ASSIGNMENT DATA CARDS (USED FOR TYPES 19 AND 20 ONLY)

Card 56

1-5	I5	NNEVAH	Number of nodes with type 19 incident heat curves (Enter zero if none desired and omit <u>Card 57</u>)
-----	----	--------	---

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 57</u>			
1-4	I4	NØDEL	First node number
5	A1	TYPE1	First node code T = tube node S = structure node
6-10	I5	KURVEL	First type 19 incident heat curve number
11-14	I4	NØDE2	Second node number
15	A1	TYPE2	Second node code T = tube node S = structure node
16-20	I5	KURVE2	Second type 19 incident heat curve number
etc. through column 70			

Repeat Card 57 as necessary to assign curve numbers to NNEVAH nodes.

Card 58

1-5	I5	NNEVAT	Number of nodes with type 20 contact temperature history curves (Enter zero if none desired and omit <u>Card 59</u>)
-----	----	--------	---

Card 59

1-4	I4	NØDEL	First node number
5	A1	TYPE1	First node code T = tube node S = structure node
6-10	I5	KURVEL	First type 20 contact temperature curve number
11-14	I4	NØDE2	Second node number
15	A1	TYPE2	Second node code T = tube node S = structure node

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 59</u> (Continued)			
16-20	I5	KURVE2	Second type 20 contact temperature curve number
.			
.			
etc. through column 70			
Repeat <u>Card 59</u> as necessary to assign curve numbers to NNEVAT nodes.			
5.7.12 PRESCRIBED WALL TEMPERATURE DATA CARDS (USED FOR TYPES 10 AND 11 ONLY)			
<u>Card 60</u>			
1-5	I5	NPRTEM	Number of lumps which have type 10 prescribed wall temperature curves (Enter zero if none desired and omit <u>Card 61</u>)
<u>Card 61</u>			
1-4	I4	NODE1	First node number
5	A1	TYPE1	First node code T = tube node S = structure node
6-10	I5	KURVEL	First type 10 prescribed temperature curve number
11-14	I4	NODE2	Second node number
15	A1	TYPE2	Second node code
16-20	I5	KURVE2	Second type 10 prescribed temperature curve number
.			
.			
etc. through column 70			
Repeat <u>Card 61</u> as necessary to assign curve numbers to NPRTEM nodes.			

Card 62 (LRV Prescribed Temperature Data Cards)

1-5 I5 NPTLRV Number of LRV structure lumps which have type 11 prescribed wall temperature curves (Enter zero if none desired and omit Card 63)

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 63</u>			
1-5	I5	NØDE1	First node number
6-10	I5	KURVEL	First type 11 prescribed temperature curve number
11-15	I5	NØDE2	Second node number
16-20	I5	KURVE2	Second type 11 prescribed temperature curve number

etc. through column 70

5.7.13 TIME VARIANT NODE DATA CARDS

Card 64

1-5	I5	NUMTVW	Number of nodes with type 30 time variant mass (Enter zero if none desired and omit <u>Card 65</u>)
-----	----	--------	--

Card 65

1-4	I4	NØDE1	First node number
5	A1	TYPE1	First node code T = tube node S = structure node
6-10	I5	KURVEL	First type 30 time variant mass factor curve number
11-14	I4	NØDE2	Second node number
15	A1	TYPE2	Second node code
16-20	I5	KURVE2	Second type 30 time variant mass factor curve number

etc. through column 70

Repeat Card 65 as necessary to assign curve numbers to NUMTVW nodes.

5.7.14 TIME VARIANT NODAL CONNECTION DATA CARDS

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 66</u>			
1-5	I5	NUMTVC	Number of type 30 time variant connections (Enter zero if none desired and omit <u>Card 67</u>)
<u>Card 67</u>			
1-4	I4	NØDEL	First node number
5	A1	TYPE1	First node code T = tube node S = structure node
6-10	I5	NLØC1	Connection number - has values 1 to n where n is the number of connections input on <u>Card 34</u> or <u>Card 40</u>
11-15	I5	KURVEL	Type 30 time variant multiplying factor curve number
16-19	I4	NØDE2	Second node number
20	A1	TYPE2	Second node code T = tube node S = structure node
21-25	I5	NLØC2	Connection number
26-30	I5	KURVE2	Type 30 time variant multiplying factor curve number
etc.	through column 60		

Repeat Card 67 as necessary to supply NUMTVC time variant connections.

5.7.15 SPECIAL TUBE/FLUID CONNECTION DATA CARDS

Card 68

1-5	I5	NSPCON	Number of special connections (Enter zero if none desired and omit <u>Card 69</u>)
-----	----	--------	--

Card 69

1-5	I5	NFLDND1	Fluid lump number of special connection number 1
-----	----	---------	---

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
<u>Card 69 (Continued)</u>			
6-10	I5	NTUBND1	Tube lump number of special connection number 1
11-20	F10.5	AREASPL	Area for heat transfer of special connection number 1
21-25	I5	NFLOND2	Fluid lump number of special connection number 2
26-30	I5	NTUBND2	Tube lump number of special connection number 2
31-40	F10.5	AREASP2	Area for heat transfer of special connection number 2
41-45	I5	NFLOND3	Fluid lump number of special connection number 3
46-50	I5	NTUBND3	Tube lump number of special connection number 3
51-70	F10.5	AREASP3	Area for heat transfer of special connection number 3

Repeat Card 69 as needed to input NSPCON sets of data.

5.7.16 CURVE DATA CARDS

Card 70 (Curve Header Card)

1-5	I5	KCRV	Curve type
0			Head loss coefficient = f (R_e)
1			Fluid density, (lbm/ft^3) = f ($^{\circ}\text{F}$)
2			Fluid viscosity, ($\frac{\text{lbm}}{\text{ft}^2 \text{sec}}$) = f ($^{\circ}\text{F}$)
3			Friction factor for fluid (used when $Re > 2000$) F = f (R_e)
4			Conductivity, (K/K_i) = f ($^{\circ}\text{F}$)
5			Specific heat, ($\text{Btu}/\text{lbm} ^{\circ}\text{F}$) = f ($^{\circ}\text{F}$)
9			Incident heat, ($\frac{\text{Btu}}{\text{hr ft}^2}$) = f (hrs)
10			Wall temp, $^{\circ}\text{F}$ = f (hrs)
11			LRV wall temp, $^{\circ}\text{F}$ = f (hrs)
12			Fluid temperature, $^{\circ}\text{F}$ = f (τ)
19			Combined heat fluxes, (Btu/hr) = f (τ)
20			Prescribed temperature histories, ($^{\circ}\text{F}$) = f (τ)
21			Radiant Interchange Mode 1. = Mode 1 2. = Mode 2 3. = Mode 3

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
	24		HHH Curve, ($\frac{\text{BTU}}{\text{hr}\cdot\text{ft}^2\text{oF}}$) = f (lb/hr)
	29		Local perturbation multiplying factor
	30		Time variant factors: Mass factor = f (τ) Connection factor = f (τ)
	33		Bivariant curves: Compressibility factor, Z = f (PR,TR) Oxygen enthalpy, h = f (P,T) LCG pressure drop, ΔP = f (W,T) Sublimator water outlet temperature, T = f (W,T _{in})
	34		Fan flowrate, W = f (P _{sys} , ΔP _{sys}) Time variant curves: Suit leak rate, lb/hr = f (τ) Multiple water connector leak rate, lb/hr = f (τ) Metabolic load, Btu/hr = f (τ) Man efficiency, Percent/100 = f (τ) Suit gas pressure, psia = f (τ) Gravity factor, fraction = f (τ) Cabin freestream velocity, ft/min = f (τ) Cabin ventilation efficiency, percent/ 100 = f (τ) Cabin gas pressure, psia = f (τ) ARS suit flowrate, lb/hr = f (τ) LCG flowrate, lb/hr = f (τ)
	35		System control curves: Fan exit pressure, psia = f (τ) 0. = fan off POS on/off = f (τ) 0. = off 1. = on Diverter valve position = f (τ) 0. = pump off 1. = maximum cooling 2. = intermediate cooling 3. = minimum cooling 4. = automatic control Maximum sublimator heat load, Btu/hr = f (τ), zero load indicates feedwater shut off OPS flowrate, lb/hr = f (τ) zero indicates OPS off Helmet mode = f (τ) 0. = LEVA off 1. = both visors down 2. = sun visor up 3. = both visors up EMU configuration mode = f (τ) Auxiliary water reservoir shut-off valve 0. = valve closed 1. = valve open

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
6-10	I5	NC	Curve number
11-15	I5	NP	Number of points on curve, if KCRV = 33 NP equal the number of independent variable input first
16-20	Blank except for KCRV = 33		
	I5	NTU	Number of independent variables input second

21-25 Blank

26-72 7A6 CTITLE May be used for curve title

Card 71 (If KCRV ≠ 33)

1-10 F10.5 X₁ Independent variable

11-20 F10.5 X₂

21-30 F10.5 X₃

etc.

F10.5 Y₁ Dependent variable

F10.5 Y₂

F10.5 Y₃

etc.

Start Y₁ in the first field after X_{NP}. Do not write beyond column 70. If the number of points is 1, the value in columns 11-20 will be used for the dependent variable.

Card 71 (If KCRV = 33)

1-5 F5.4 FR₁ Values of the first independent variable

6-10 F5.4 FR₂

11-15 F5.4 FR₃

etc.

F5.4 TU₁ Values of the second independent variable

F5.4 TU₂

F5.4 TU₃

etc.

<u>Columns</u>	<u>Format</u>	<u>Title</u>	<u>Description</u>
----------------	---------------	--------------	--------------------

Card 71 (Continued)

F5.4 P(FR₁,TU₁) Values of dependent variable

F5.4 P(FR₁,TU₂)

F5.4 P(FR₁,TU₃)

etc.

F5.4 P(FR₂,TU₁)

F5.4 P(FR₂,TU₂)

F5.4 P(FR₂,TU₃)

etc.

End of Data

1-5 I5 LCD Input the number 13

5.8 Output Description

An example of EMU Simulator paper printout is shown in Appendix B. An explanation of the terms appearing in the paper printout is given below with units where applicable.

Parameters Print

The beginning of a print interval is indicated by the output of the following parameters at the top of a page.

MISSION TIME	Mission time in hours
COMPUTER TIME	The amount of computer time used to this point in minutes
ROUTINE ITERATIONS	The current iteration number

Consumables and Man Print

Both of these printouts have sufficient descriptions and unit indications for the quantities printed as to be self-explanatory.

Heat Leak and Stored Heat Print

These occur only if such calculations were requested in the data (see Sections 5.7.6 and 5.7.7). The six character identification specified for each group is printed before the quantity. Six groups are printed per line. The units are BTU/hr for heat leak and BTU for stored heat.

Flow Rates

Flow rates are printed in numerical order for each flow tube. The units are lbs/hr. Ten flow rates are output on each line with the tube number of the tenth flow rate printed to the right of it.

Pressure Drops

Pressure drops are printed in numerical order for each flow tube. The units are psi. Ten pressure drops are printed out per line with the tube number of the tenth pressure drop printed out to the right of it.

Temperatures

The temperatures are grouped according to fluid, tube, and structure designations with each group printed in increasing numerical order. All the temperatures are printed in degrees Fahrenheit. The temperatures are printed

ten per line with a wider space between the fifth and sixth temperatures and lump numbers at each end of the line to aid in locating lump temperatures.

6.0 LIST OF SYMBOLS

Alphabetic

A_f	Area for convective heat transfer, square inches
A_{ij}	Effective conduction or radiation area between lumps, square inches
c, c_p	Specific heat, BTU/lb-°F
CSA	Cross sectional area, square inches
D_h	Hydraulic diameter, inches
f	Friction factor used for turbulent or laminar flow pressure drop computations
(αA)	Gray-body configuration factor between lumps, square inches
FLL	Fluid lump length, inches
FRE	Factor applied to laminar flow friction factor to account for non-circular pipe flow
h_f, HHH	Heat transfer coefficient, BTU/hr-ft ² -°F
i	Lump number
j	Adjacent lump number
K	Fluid dynamic head losses
K	Thermal conductivity, BTU/hr-ft-°F
k_i	Thermal conductivity of a lump at the present temperature normalized by the thermal conductivity at which R_i was evaluated, e.g., K_i/K_{Ri} or K_j/K_{Rj}
L	Length from tube entrance, inches
Nu	Nusselt number
P	Pressure, psia
P_{SYS}	System pressure, psia
Pr	Prandtl number
Q	Energy flux relative to a control volume

Re	Reynolds number
R_i, R_1	That portion of the conduction resistance from lump i to j which is attributed to i = $Y_j/K_j A_{ij}$, hr-°F/BTU
R_j, R_2	That portion of the conduction resistance from lump i to j which is attributed to j = $Y_j/K_j A_{ij}$, hr-°F/BTU
T	Temperature of a lump at time τ
T'	Temperature of a lump at time $\tau + \Delta\tau$
T'_{fu}	Upstream fluid lump temperature, °R
U_{ij}	Conductance between adjacent structure lumps, BTU/hr-°F
V	Fluid velocity, ft/sec
w	Fluid flow rate, lb/hr
w	Weight of lump, lbs
WP	Wetted perimeter, inches
Y	A portion of the conduction path length between nodes, e.g., Y_i is that portion of the conduction path length between nodes i and j which lies in lump i

Greek Symbols

(αA)	Surface absorptance times incident heat application area, square inches
ΔP	Pressure drop, psi
$\Delta\tau$	Calculation time increment, hrs
σ	Stefan-Boltzmann constant $.173 \times 10^{-8} \frac{\text{BTU}}{\text{hr ft}^2 (\text{°R})^4}$
τ	Time, hours
μ	Fluid viscosity, lbs/ft-sec

Subscripts

f	Fluid lump
fu	Upstream fluid lump
i	Lump under consideration
j	Lump adjacent to lump i
t	Tube

7.0

REFERENCES

1. Dusinberre, G. M., "Heat Transfer Calculations by Finite Differences", International Textbook Company, Scranton, Penn., 1961.
2. Leach, J. W., "Hybrid Implicit-Explicit Numerical Technique", LTV-MSC 350-DIR-13, February 1968.
3. Clark, T. B., "Finite Difference Methods of Heat Conduction Problems", M.S. Thesis, Southern Methodist University, 23 March 1961.
4. Leach, J. W., "Thermal Equilibrium Extrapolation Technique" LTV-MSC Report No. 00.1083, July 1968, page 22.
5. Chu, W. H., "Transient Heat Transfer with Radiation and Convection", Memorandum Enclosure to "Development of Generalized Computer Program and Radiant Heat Transfer", by D. R. Falconer and G. E. Nevill, Jr., Southwest Research Institute, San Antonio, Texas, December 1962.
6. Sellers, J. R., Tribus, Myron, Klein, S. J., "Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit - The Graetz Problem Extended", Trans. ASME, Vol. 78, 1956, pp. 441-448.
7. Sieder, E. N., and Tate, G. E., "Industrial Engineering Chemistry", 28, 1429-1436 (1936).
8. McAdams, W. H., "Heat Transmission", Third Edition, McGraw-Hill Book Company, Inc., New York, 1954, pp. 237.
9. Lundgren, T. S., Sparrow, E. M., Stan, J. B., "Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section", Journal of Basic Engineering, Vol. 86, pp 620-626, 1964.
10. Morgan, L. W., Collett, G., and Cook, D. W., Jr., "Transient Metabolic Simulation Program", Program J 116, May 1969.
11. Hamilton Standard Engineering Memorandum, NA-SS-3326, October 25, 1968.
12. Environmental Heat Flux Routine, Version 4, Final Report, LTV Aerospace Report No. T155-01, March 1973.
13. Webb, C. M., "Geometrical Models of EVVA, EV Boots, EV Gloves, PLSS and OPS for Thermal Analysis Program", General Electric, Apollo Support Division, TIR-580-S-8140, May 1968.
14. Sarbeck, T. L., "Edit", Unpublished, dated 6 October 1966.

APPENDIX A

The purpose of this Appendix is to present additional descriptive information on the baseline thermal model. Table A-1 is arranged in the order of increasing tube node number. Each tube node has the fluid node it encloses listed along with a brief node description or an identifying location. Tube nodes 110 through 116 and 236 through 241 do not show the suit ventilation gas node association made in Special Tube/Fluid Connection Data (Section 5.7.15).

Note that there is a difference in tube node numbers for MAN No. 1 and MAN No. 2. This designation refers to the BSLSS rescue simulation. MAN No. 1 data includes the BSLSS bag and umbilical nodes. The first 197 tube nodes and the first 625 structure nodes are identical for both Man 1 and 2 data tapes. LRV structure nodes are included on the Man No. 1 data tape.

TABLE A-1
EMU BASELINE MODEL NODAL BREAKDOWN DATA

TUBE NODE	FLUID NODE	LOCATION/DESCRIPTION
1	1	INVOLUTE FAN HOUSING
2	2	TUBE DOWNSTREAM OF FAN
3	3	VENTILATION GAS FLOW SENSOR
4	4	TUBE FROM VENT GAS SENSOR TO WELDED JUNCTION
5	5	TUBE FROM WELDED JUNCTION TO BACKFLOW CHECKVALVE
6	6	INLET OXYGEN UMBILICAL
7	7	CREWMAN HEAD SKIN
8	8	CREWMAN TRUNK SKIN
9	9	DUMMY (SUIT OUTLET)
10	10	CREWMAN SKIN RIGHT ARM
11	11	CREWMAN SKIN RIGHT HAND
12	12	CREWMAN SKIN RIGHT LEG
13	13	CREWMAN SKIN RIGHT FOOT
14	14	OUTLET OXYGEN UMBILICAL
15	15	LIOH CANISTER SHELL
16	16	SUBLIMATOR - GAS SIDE
17	17	TUBE BETWEEN SUBLIMATOR AND WATER SEPARATOR
18	18	WATER SEPARATOR
19	19	TUBE BETWEEN WATER SEPARATOR AND FAN (PART OF SEPARATOR)
20	20	TUBE BETWEEN POS TANK AND REGULATOR
21	21	POS REGULATOR
22	22	POS FLOW SENSOR
23	23	TUBE BETWEEN FLOW SENSOR AND PRESSURE SENSOR HOUSING
24	24	PRESSURE SENSOR HOUSING
25	25	TUBE DOWNSTREAM OF PRESSURE SENSOR HOUSING
26	26	TUBE WELDED TO VENT GAS TUBE, DOWNSTREAM OF VENT GAS SENSOR
27	27	WATER SEPARATOR DRAIN TUBE TO FIRST SPLICE JOINT
28	28	TUBE BETWEEN WATER SEPARATOR AND S/O VALVE BETWEEN SPLICE JOINT
29	29	WATER SEPARATOR DRAIN TUBE SECTION WELDED TO S/O VALVE
30	30	SUBLIMATOR FEEDWATER TUBE SECTION WELDED TO S/O VALVE
31	31	TUBE BETWEEN TUBE NODE 30 AND CHECK/RELIEF VALVE
32	32	TUBE BETWEEN CHECK/RELIEF VALVE AND DOWNSTREAM SPLICE JOINT
33	33	TUBE IMMEDIATELY UPSTREAM OF SUBLIMATOR IN FEEDWATER LOOP
34	34	TUBE BETWEEN CHECK/RELIEF VALVE AND TRANSPORT LOOP TUBING
35	35	DIFFERENTIAL TEMPERATURE TRANSDUCER
36	36	TUBE BETWEEN DIFF. TEMP. TRANSDUCER AND PUMP
37	37	WATER PUMP

38	38	TEE DOWNSTREAM OF WATER PUMP
39	39	TUBE BETWEEN TEE AND WATER SIDE OF SUBLIMATOR
40	40	SUBLIMATOR - WATER SIDE
41	41	TUBE IMMEDIATELY DOWNSTREAM OF SUBLIMATOR IN TRANSPORT LOOP
42	42	TUBE BETWEEN SPLICE JOINT AND FAN MOTOR COOLANT TUBE
43	43	FAN MOTOR COOLANT TUBE
44	44	TUBE BETWEEN FAN MOTOR COOLANT AND SPLICE JOINT
45	45	TUBE BETWEEN SPLICE JOINTS DOWNSTREAM OF FAN MOTOR COOLANT TUBE
46	46	TUBE DOWNSTREAM OF TUBE NODE 45, WELDED TO DIVERTER VALVE
47	47	TUBE BETWEEN TEE AND DIVERTER VALVE SPLICE JOINTS
48	48	TUBE DOWNSTREAM OF TUBE 47, WELDED TO DIVERTER VALVE
49	49	DIVERTER VALVE
50	50	TUBE OUTLET TO DIVERTER VALVE, WELDED TO VALVE
51	51	DIFFERENTIAL TEMPERATURE TRANSDUCER
52	52	LCG INLET TEMPERATURE TRANSDUCER
53	53	LCG INLET UMBILICAL
54	54	LCG
55	55	LCG OUTLET UMBILICAL
56	56	OPS REGULATOR
57	57	TUBE BETWEEN OPS REGULATOR AND OPS UMBILICAL
58	58	OXYGEN BACKFLOW CHECK VALVE
59	59	OPS UMBILICAL
60	60	TUBE BETWEEN LIOH CANISTER AND SUBLIMATOR
61	61	CO2 SENSOR
62	7	PGA INTERIOR-NECK AREA
63	7	PGA INTERIOR-NECK AREA
64	8	PGA INTERIOR-TRUNK
65	8	PGA INTERIOR-TRUNK
66	8	PGA INTERIOR-TRUNK
67	8	PGA INTERIOR-TRUNK
68	8	PGA INTERIOR-TRUNK
69	8	PGA INTERIOR-TRUNK
70	114	PGA INTERIOR-LEFT ARM
71	10	PGA INTERIOR-RIGHT ARM
72	114	PGA INTERIOR-LEFT ARM
73	10	PGA INTERIOR-RIGHT ARM
74	10	PGA INTERIOR-RIGHT ARM
75	114	PGA INTERIOR-LEFT ARM
76	10	PGA INTERIOR-RIGHT ARM
77	114	PGA INTERIOR-LEFT ARM
78	11	PGA INTERIOR-RIGHT HAND
79	11	PGA INTERIOR-RIGHT HAND
80	115	PGA INTERIOR-LEFT HAND
81	115	PGA INTERIOR-LEFT HAND
82	81	UPSTREAM OF FAN (TUBE 15 REQUIRES 2 LUMPS)
83	7	PRESSURE BUBBLE

84	7	PRESSURE BUBBLE
85	7	PRESSURE BUBBLE
86	7	PRESSURE BUBBLE
87	7	PRESSURE BUBBLE
88	7	PRESSURE BUBBLE
89	7	PRESSURE BUBBLE
90	7	PRESSURE BUBBLE
91	7	PRESSURE BUBBLE
92	7	PRESSURE BUBBLE
93	7	PRESSURE BUBBLE
94	7	PRESSURE BUBBLE
95	7	PRESSURE BUBBLE
96	7	PRESSURE BUBBLE
97	7	PRESSURE BUBBLE
98	7	PRESSURE BUBBLE
99	62	TUBE BETWEEN S/O VALVE AND WATER RESERVOIR
100	63	TUBE BETWEEN WATER RESERVOIR AND S/O VALVE
101	64	WATER SHUT OFF AND RELIEF VALVE
102	65	DUMMY (NECESSARY)
103	66	OPS HEATER
104	67	DUMMY (NECESSARY) OPS
105	68	LIOH CANISTER INLET
106	69	LIOH CARTRIDGE
107	70	DUMMY (FIRST LUMP OF TUBE 9, ARS ENTRY POINT)
108	71	DUMMY (NECESSARY)
109	72	LCG TUBING IN CONTACT WITH TRANSPORT WATER
110	73	LCG TUBING IN CONTACT WITH TRANSPORT WATER
111	74	LCG TUBING IN CONTACT WITH TRANSPORT WATER
112	75	LCG TUBING IN CONTACT WITH TRANSPORT WATER
113	76	LCG TUBING IN CONTACT WITH TRANSPORT WATER
114	77	LCG TUBING IN CONTACT WITH TRANSPORT WATER
115	78	LCG TUBING IN CONTACT WITH TRANSPORT WATER
116	79	LCG TUBING IN CONTACT WITH TRANSPORT WATER
117	80	LCG TUBING IN CONTACT WITH TRANSPORT WATER
118	82	LOCAL PERTURBATIONS MODEL (SKIN)
119	82	LOCAL PERTURBATIONS MODEL (UNDERGARMENT)
120	82	LOCAL PERTURBATIONS MODEL (LCG)
121	7	PRESSURE BUBBLE
122	7	PRESSURE BUBBLE
123	7	PRESSURE BUBBLE
124	7	PRESSURE BUBBLE
125	7	PRESSURE BUBBLE
126	7	PRESSURE BUBBLE
127	7	PRESSURE BUBBLE
128	7	PRESSURE BUBBLE
129	7	PRESSURE BUBBLE
130	7	PRESSURE BUBBLE
131	7	PRESSURE BUBBLE
132	7	PRESSURE BUBBLE
133	7	PRESSURE BUBBLE
134	7	PRESSURE BUBBLE
135	7	PRESSURE BUBBLE
136	7	PRESSURE BUBBLE
137	7	PRESSURE BUBBLE
138	7	PRESSURE BUBBLE

139	7	PRESSURE BUBBLE
140	7	PRESSURE BUBBLE
141	7	PRESSURE BUBBLE
142	7	PRESSURE BUBBLE
143	7	PRESSURE BUBBLE
144	7	PRESSURE BUBBLE
145	7	PRESSURE BUBBLE
146	7	PRESSURE BUBBLE
147	7	PRESSURE BUBBLE
148	7	PRESSURE BUBBLE
149	7	PRESSURE BUBBLE
150	7	PRESSURE BUBBLE
151	7	PRESSURE BUBBLE
152	7	PRESSURE BUBBLE
153	7	PRESSURE BUBBLE
154	7	PRESSURE BUBBLE
155	7	PRESSURE BUBBLE
156	7	PRESSURE BUBBLE
157	7	PRESSURE BUBBLE
158	7	PRESSURE BUBBLE
159	7	PRESSURE BUBBLE
160	7	PRESSURE BUBBLE
161	7	PRESSURE BUBBLE
162	7	PRESSURE BUBBLE
163	7	PRESSURE BUBBLE
164	7	PRESSURE BUBBLE
165	7	PRESSURE BUBBLE
166	7	PRESSURE BUBBLE
167	12	PGA INTERIOR-RIGHT LEG
168	116	PGA INTERIOR-LEFT LEG
169	12	PGA INTERIOR-RIGHT LEG
170	116	PGA INTERIOR-LEFT LEG
171	12	PGA INTERIOR-RIGHT LEG
172	116	PGA INTERIOR-LEFT LEG
173	12	PGA INTERIOR-RIGHT LEG
174	116	PGA INTERIOR-LEFT LEG
175	13	PGA INTERIOR-RIGHT FOOT
176	117	PGA INTERIOR-LEFT FOOT
177	13	PGA INTERIOR-RIGHT FOOT
178	117	PGA INTERIOR-LEFT FOOT
179	13	PGA INTERIOR-RIGHT FOOT
180	117	PGA INTERIOR-LEFT FOOT
181	8	PGA ELECTRICAL CONNECTOR
182	8	MULTIPLE WATER CONNECTOR, INLET
183	8	OPS OXYGEN INLET CONNECTOR
184	8	PLSS OXYGEN INLET CONNECTOR
185	8	OXYGEN PURGE VALVE
186	8	PLSS OXYGEN OUTLET CONNECTOR
187	10	SUIT PRESSURE GAGE
188	10	SUIT PRESSURE RELIEF VALVE
189	8	MULTIPLE WATER CONNECTOR, OUTLET
190	8	UNDERGARMENT (TRUNK)
191	10	UNDERGARMENT-RIGHT ARM
192	12	UNDERGARMENT-RIGHT LEG
193	13	UNDERGARMENT-RIGHT FOOT

	194	7	NECKRING (LEFT FRONT)
	195	7	NECKRING (LEFT REAR)
	196	7	NECKRING (RIGHT FRONT)
	197	7	NECKRING (RIGHT REAR)
MAN NO. 1	198	83	SLSS UMBILICAL (SUPPLY)
	199	84	SLSS UMBILICAL (SUPPLY)
	200	85	SLSS UMBILICAL (SUPPLY)
	201	86	SLSS UMBILICAL (SUPPLY)
	202	87	SLSS UMBILICAL (SUPPLY)
	203	88	SLSS UMBILICAL (SUPPLY)
	204	89	SLSS UMBILICAL (SUPPLY)
	205	90	SLSS UMBILICAL (SUPPLY)
	206	91	SLSS UMBILICAL (SUPPLY)
	207	92	SLSS UMBILICAL (SUPPLY)
	208	93	SLSS UMBILICAL (SUPPLY)
	209	94	SLSS UMBILICAL (SUPPLY)
	210	95	SLSS UMBILICAL (SUPPLY)
	211	96	SLSS UMBILICAL (SUPPLY)
	212	97	SLSS UMBILICAL (SUPPLY)
	213	98	SLSS UMBILICAL (RETURN)
	214	99	SLSS UMBILICAL (RETURN)
	215	100	SLSS UMBILICAL (RETURN)
	216	101	SLSS UMBILICAL (RETURN)
	217	102	SLSS UMBILICAL (RETURN)
	218	103	SLSS UMBILICAL (RETURN)
	219	104	SLSS UMBILICAL (RETURN)
	220	105	SLSS UMBILICAL (RETURN)
	221	106	SLSS UMBILICAL (RETURN)
	222	107	SLSS UMBILICAL (RETURN)
	223	108	SLSS UMBILICAL (RETURN)
	224	109	SLSS UMBILICAL (RETURN)
	225	110	SLSS UMBILICAL (RETURN)
	226	111	SLSS UMBILICAL (RETURN)
	227	112	SLSS UMBILICAL (RETURN)
	228	113	GAS SEPARATOR
	229	114	UNDERGARMENT LEFT ARM
	230	116	UNDERGARMENT LEFT LEG
	231	117	UNDERGARMENT LEFT FOOT
	232	114	CREWMAN SKIN LEFT ARM
	233	116	CREWMAN SKIN LEFT LEG
	234	117	CREWMAN SKIN LEFT FOOT
	235	115	CREWMAN SKIN LEFT HAND
	236	118	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	237	119	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	238	120	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	239	121	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	240	122	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	241	123	LCG TUBING IN CONTACT WITH TRANSPORT WATER

MAN NO. 2	198	83	GAS SEPARATOR
	199	84	UNDERGARMENT LEFT ARM
	200	86	UNDERGARMENT LEFT LEG
	201	87	UNDERGARMENT LEFT FOOT
	202	84	CREWMAN SKIN LEFT ARM
	203	86	CREWMAN SKIN LEFT LEG
	204	87	CREWMAN SKIN LEFT FOOT
	205	85	CREWMAN SKIN LEFT HAND
	206	88	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	207	89	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	208	90	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	209	91	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	210	92	LCG TUBING IN CONTACT WITH TRANSPORT WATER
	211	93	LCG TUBING IN CONTACT WITH TRANSPORT WATER

00335

TABLE A-2
EMU BASELINE MODEL NODAL BREAKDOWN DATA
LOCATION/DESCRIPTION

STRUCTURE NODE	LOCATION/DESCRIPTION
1	LEVA THERMAL COVER
2	LEVA THERMAL COVER
3	LEVA THERMAL COVER
4	LEVA THERMAL COVER
5	LEVA THERMAL COVER
6	LEVA THERMAL COVER
7	LEVA THERMAL COVER
8	LEVA THERMAL COVER
9	LEVA THERMAL COVER
10	LEVA THERMAL COVER
11	SUN VISOR (HELMET MODE 1)
12	SUN VISOR (HELMET MODE 1)
13	SUN VISOR (HELMET MODE 1)
14	SUN VISOR (HELMET MODE 1)
15	SUN VISOR (HELMET MODE 1)
16	SUN VISOR (HELMET MODE 1)
17	PROTECTIVE VISOR (HELMET MODE 1)
18	PROTECTIVE VISOR (HELMET MODE 1)
19	PROTECTIVE VISOR (HELMET MODE 1)
20	PROTECTIVE VISOR (HELMET MODE 1)
21	PROTECTIVE VISOR (HELMET MODE 1)
22	PROTECTIVE VISOR (HELMET MODE 1)
23	FAN SWITCH, RCU
24	PUMP SWITCH, RCU
25	SELECTOR SWITCH, RCU
26	VOLUME CONTROL POTENTIOMETER, RCU
27	RCU HARSHHELL
28	RCU HARSHHELL
29	RCU HARSHHELL
30	RCU HARSHHELL
31	RCU HARSHHELL
32	RCU HARSHHELL
33	ELECTRICAL UMBILICAL, RCU
34	RCU THERMAL COVER
35	RCU THERMAL COVER
36	RCU THERMAL COVER
37	RCU THERMAL COVER
38	RCU THERMAL COVER
39	ITMG EXTERIOR
40	ITMG EXTERIOR
41	ITMG EXTERIOR
42	ITMG EXTERIOR
43	ITMG EXTERIOR
44	ITMG EXTERIOR
45	ITMG EXTERIOR
46	ITMG EXTERIOR
47	ITMG EXTERIOR
48	ITMG EXTERIOR
49	ITMG EXTERIOR
50	ITMG EXTERIOR

51	ITMG EXTERIOR
52	ITMG EXTERIOR
53	ITMG EXTERIOR
54	ITMG EXTERIOR
55	ITMG EXTERIOR
56	ITMG EXTERIOR
57	ITMG EXTERIOR
58	ITMG EXTERIOR
59	ITMG EXTERIOR
60	ITMG INSULATION
61	ITMG INSULATION
62	ITMG INSULATION
63	ITMG INSULATION
64	ITMG INSULATION
65	ITMG INSULATION
66	ITMG INSULATION
67	ITMG INSULATION
68	ITMG INSULATION
69	ITMG INSULATION
70	ITMG INSULATION
71	ITMG INSULATION
72	ITMG INSULATION
73	ITMG INSULATION
74	ITMG INSULATION
75	ITMG INSULATION
76	ITMG INSULATION
77	ITMG INSULATION
78	ITMG INSULATION
79	ITMG INSULATION
80	ITMG INSULATION
81	ITMG INTERIOR
82	ITMG INTERIOR
83	ITMG INTERIOR
84	ITMG INTERIOR
85	ITMG INTERIOR
86	ITMG INTERIOR
87	ITMG INTERIOR
88	ITMG INTERIOR
89	ITMG INTERIOR
90	ITMG INTERIOR
91	ITMG INTERIOR
92	ITMG INTERIOR
93	ITMG INTERIOR
94	ITMG INTERIOR
95	ITMG INTERIOR
96	ITMG INTERIOR
97	ITMG INTERIOR
98	ITMG INTERIOR
99	ITMG INTERIOR
100	ITMG INTERIOR
101	ITMG INTERIOR
102	RCU THERMAL INSULATION
103	OPS ACTIVATION SWITCH BRACKET (RCU MOUNTED)
104	OPS OXYGEN TANK, LEFT
105	OPS OXYGEN TANK, RIGHT

106	OPS FRAME
107	OPS PLATE
108	OPS (DUMMY)
109	OPS (DUMMY)
110	OPS OXYGEN TANK SUPPORT
111	OPS OXYGEN TANK SUPPORT
112	OPS FRAME
113	OPS FRAME
114	OPS FRAME
115	OPS FRAME
116	OPS FRAME
117	OPS FRAME
118	OPS FRAME
119	OPS FRAME
120	OPS FRAME
121	OPS HARDHELL (BACK)
122	OPS HARDHELL (L.S.)
123	OPS HARDHELL (R.S.)
124	CPS HARDHELL (TOP)
125	OPS THERMAL COVER (BACK INTERIOR)
126	OPS THERMAL COVER (L.S. INTERIOR)
127	OPS THERMAL COVER (R.S. INTERIOR)
128	OPS THERMAL COVER (TOP INTERIOR)
129	OPS THERMAL COVER (FRONT INTERIOR)
130	OPS THERMAL COVER (BACK EXTERIOR)
131	OPS THERMAL COVER (L.S. EXTERIOR)
132	OPS THERMAL COVER (R.S. EXTERIOR)
133	OPS THERMAL COVER (TOP EXTERIOR)
134	OPS THERMAL COVER (FRONT EXTERIOR)
135	OPS HARDHELL (FRONT)
136	EVCS
137	OXYGEN BOTTLE SHIELD
138	FAN MOTOR
139	UPPER CONFORMAL PAD
140	LOWER CONFORMAL PAD
141	MAIN POWER SUPPLY
142	PLSS HARDHELL MOUNTING BRACKET
143	PLSS HARDHELL MOUNTING BRACKET
144	RCU ELECTRICAL UMBILICAL CONNECTOR
145	PLSS SWITCH BRACKET
146	PLSS HARDHELL (BOTTOM)
147	PLSS HARDHELL (R.S.)
148	PLSS HARDHELL (L.S.)
149	PLSS HARDHELL (LOWER BACK)
150	SPACE NODE
151	PLSS HARDHELL (UPPER BACK)
152	PLSS HARDHELL (R.S. TOP)
153	PLSS HARDHELL (L.S. TOP)
154	PLSS THERMAL COVER (BOT. INTERIOR)
155	PLSS THERMAL COVER (BOT. EXTERIOR)
156	PLSS THERMAL COVER (L.S. INTERIOR)
157	PLSS THERMAL COVER (L.S. EXTERIOR)
158	PLSS THERMAL COVER (R.S. INTERIOR)
159	PLSS THERMAL COVER (R.S. EXTERIOR)
160	PLSS THERMAL COVER (LOWER BACK INTERIOR)

161 PLSS THERMAL COVER (LOWERS BACK EXTERIOR)
162 PLSS THERMAL COVER (UPPER BACK INTERIOR)
163 PLSS THERMAL COVER (UPPER BACK EXTERIOR)
164 PLSS THERMAL COVER (TOP INTERIOR)
165 PLSS THERMAL COVER (TOP EXTERIOR)
166 TERMINAL BOX A-1
167 TERMINAL BOX A-2
168 WATER RESERVOIR ASSY
169 WATER PUMP MOTOR
170 WATER RESERVOIR CAP
171 PRIMARY OXYGEN BOTTLE
172 OXYGEN IN PRIMARY OXYGEN BOTTLE
173 OXYGEN IN LEFT HAND OPS BOTTLE
174 OXYGEN IN RIGHT HAND OPS BOTTLE
175 WATER IN WATER RESERVOIR ASSY
176 OPS THERMAL COVER (BOTTOM INTERIOR)
177 OPS THERMAL COVER (BOTTOM EXTERIOR)
178 FLOOR
179 PLSS THERMAL COVER (FRONT EXTERIOR)
180 PLSS THERMAL COVER (FRONT INSULATION)
181 SUN VISOR (HELMET MODE 2)
182 SUN VISOR (HELMET MODE 2)
183 SUN VISOR (HELMET MODE 2)
184 SUN VISOR (HELMET MODE 2)
185 SUN VISOR (HELMET MODE 2)
186 SUN VISOR (HELMET MODE 2)
187 PROTECTIVE VISOR (HELMET MODE 2)
188 PROTECTIVE VISOR (HELMET MODE 2)
189 PROTECTIVE VISOR (HELMET MODE 2)
190 PROTECTIVE VISOR (HELMET MODE 2)
191 PROTECTIVE VISOR (HELMET MODE 2)
192 PROTECTIVE VISOR (HELMET MODE 2)
193 SUN VISOR (HELMET MODE 3)
194 SUN VISOR (HELMET MODE 3)
195 SUN VISOR (HELMET MODE 3)
196 SUN VISOR (HELMET MODE 3)
197 SUN VISOR (HELMET MODE 3)
198 SUN VISOR (HELMET MODE 3)
199 PROTECTIVE VISOR (HELMET MODE 3)
200 PROTECTIVE VISOR (HELMET MODE 3)
201 PROTECTIVE VISOR (HELMET MODE 3)
202 PROTECTIVE VISOR (HELMET MODE 3)
203 PROTECTIVE VISOR (HELMET MODE 3)
203 PROTECTIVE VISOR (HELMET MODE 3)
204 PROTECTIVE VISOR (HELMET MODE 3)
205 LEVA THERMAL COVER (HELMET MODE 2)
206 LEVA THERMAL COVER (HELMET MODE 2)
207 LEVA THERMAL COVER (HELMET MODE 2)
208 LEVA THERMAL COVER (HELMET MODE 2)
209 LEVA THERMAL COVER (HELMET MODE 2)
210 LEVA THERMAL COVER (HELMET MODE 2)
211 DEEP SPACE(HELMET MODE 2)
212 DEEP SPACE(HELMET MODE 1)
213 PLSS MOUNTING PLATE R.S.
214 PLSS MOUNTING PLATE L.S.

215	DUMMY
216	DUMMY
217	PGA EXTERIOR
218	PGA EXTERIOR
219	PGA EXTERIOR
220	PGA EXTERIOR
221	PGA EXTERIOR
222	PGA EXTERIOR
223	PGA EXTERIOR
224	PGA EXTERIOR
225	PGA EXTERIOR
226	PGA EXTERIOR
227	PGA EXTERIOR
228	PGA EXTERIOR
229	PGA EXTERIOR
230	PGA EXTERIOR
231	PGA EXTERIOR
232	PGA EXTERIOR
233	PGA EXTERIOR
234	PGA EXTERIOR
235	PGA EXTERIOR
236	PGA EXTERIOR
237	PGA EXTERIOR
238	SUN VISOR (HELMET MODE 1)
239	SUN VISOR (HELMET MODE 1)
240	SUN VISOR (HELMET MODE 1)
241	SUN VISOR (HELMET MODE 1)
242	SUN VISOR (HELMET MODE 1)
243	SUN VISOR (HELMET MODE 1)
244	SUN VISOR (HELMET MODE 1)
245	SUN VISOR (HELMET MODE 1)
246	SUN VISOR (HELMET MODE 1)
247	SUN VISOR (HELMET MODE 1)
248	SUN VISOR (HELMET MODE 1)
249	SUN VISOR (HELMET MODE 1)
250	SUN VISOR (HELMET MODE 1)
251	SUN VISOR (HELMET MODE 1)
252	SUN VISOR (HELMET MODE 1)
253	SUN VISOR (HELMET MODE 1)
254	SUN VISOR (HELMET MODE 1)
255	SUN VISOR (HELMET MODE 1)
256	SUN VISOR (HELMET MODE 2)
257	SUN VISOR (HELMET MODE 2)
258	SUN VISOR (HELMET MODE 2)
259	SUN VISOR (HELMET MODE 2)
260	SUN VISOR (HELMET MODE 2)
261	SUN VISOR (HELMET MODE 2)
262	SUN VISOR (HELMET MODE 2)
263	SUN VISOR (HELMET MODE 2)
264	SUN VISOR (HELMET MODE 2)
265	SUN VISOR (HELMET MODE 2)
266	SUN VISOR (HELMET MODE 2)
267	SUN VISOR (HELMET MODE 2)
268	SUN VISOR (HELMET MODE 2)
269	SUN VISOR (HELMET MODE 2)

270 SUN VISOR (HELMET MODE 2)
271 SUN VISOR (HELMET MODE 2)
272 SUN VISOR (HELMET MODE 2)
273 SUN VISOR (HELMET MODE 2)
274 SUN VISOR (HELMET MODE 3)
275 SUN VISOR (HELMET MODE 3)
276 SUN VISOR (HELMET MODE 3)
277 SUN VISOR (HELMET MODE 3)
278 SUN VISOR (HELMET MODE 3)
279 SUN VISOR (HELMET MODE 3)
280 SUN VISOR (HELMET MODE 3)
281 SUN VISOR (HELMET MODE 3)
292 SUN VISOR (HELMET MODE 3)
283 SUN VISOR (HELMET MODE 3)
294 SUN VISOR (HELMET MODE 3)
285 SUN VISOR (HELMET MODE 3)
286 SUN VISOR (HELMET MODE 3)
287 SUN VISOR (HELMET MODE 3)
288 SUN VISOR (HELMET MODE 3)
289 SUN VISOR (HELMET MODE 3)
290 SUN VISOR (HELMET MODE 3)
291 SUN VISOR (HELMET MODE 3)
292 PLSS THERMAL COVER (FRONT INTERIOR)
293 PROTECTIVE VISOR (HELMET MODE 1)
294 PROTECTIVE VISOR (HELMET MODE 1)
295 PROTECTIVE VISOR (HELMET MODE 1)
296 PROTECTIVE VISOR (HELMET MODE 1)
297 PROTECTIVE VISOR (HELMET MODE 1)
298 PROTECTIVE VISOR (HELMET MODE 1)
299 PROTECTIVE VISOR (HELMET MODE 1)
300 PROTECTIVE VISOR (HELMET MODE 1)
301 PROTECTIVE VISOR (HELMET MODE 1)
302 PROTECTIVE VISOR (HELMET MODE 1)
303 PROTECTIVE VISOR (HELMET MODE 1)
304 PROTECTIVE VISOR (HELMET MODE 1)
305 PROTECTIVE VISOR (HELMET MODE 1)
306 PROTECTIVE VISOR (HELMET MODE 1)
307 PROTECTIVE VISOR (HELMET MODE 1)
308 PROTECTIVE VISOR (HELMET MODE 1)
309 PROTECTIVE VISOR (HELMET MODE 1)
310 PROTECTIVE VISOR (HELMET MODE 1)
311 PROTECTIVE VISOR (HELMET MODE 2)
312 PROTECTIVE VISOR (HELMET MODE 2)
313 PROTECTIVE VISOR (HELMET MODE 2)
314 PROTECTIVE VISOR (HELMET MODE 2)
315 PROTECTIVE VISOR (HELMET MODE 2)
316 PROTECTIVE VISOR (HELMET MODE 2)
317 PROTECTIVE VISOR (HELMET MODE 2)
318 PROTECTIVE VISOR (HELMET MODE 2)
319 PROTECTIVE VISOR (HELMET MODE 2)
320 PROTECTIVE VISOR (HELMET MODE 2)
321 PROTECTIVE VISOR (HELMET MODE 2)
322 PROTECTIVE VISOR (HELMET MODE 2)
323 PROTECTIVE VISOR (HELMET MODE 2)
324 PROTECTIVE VISOR (HELMET MODE 2)

325	PROTECTIVE VISOR (HELMET MODE 2)
326	PROTECTIVE VISOR (HELMET MODE 2)
327	PROTECTIVE VISOR (HELMET MODE 2)
328	PROTECTIVE VISOR (HELMET MODE 2)
329	PROTECTIVE VISOR (HELMET MODE 3)
330	PROTECTIVE VISOR (HELMET MODE 3)
331	PROTECTIVE VISOR (HELMET MODE 3)
332	PROTECTIVE VISOR (HELMET MODE 3)
333	PROTECTIVE VISOR (HELMET MODE 3)
334	PROTECTIVE VISOR (HELMET MODE 3)
335	PROTECTIVE VISOR (HELMET MODE 3)
336	PROTECTIVE VISOR (HELMET MODE 3)
337	PROTECTIVE VISOR (HELMET MODE 3)
338	PROTECTIVE VISOR (HELMET MODE 3)
339	PROTECTIVE VISOR (HELMET MODE 3)
340	PROTECTIVE VISOR (HELMET MODE 3)
341	PROTECTIVE VISOR (HELMET MODE 3)
342	PROTECTIVE VISOR (HELMET MODE 3)
343	PROTECTIVE VISOR (HELMET MODE 3)
344	PROTECTIVE VISOR (HELMET MODE 3)
345	PROTECTIVE VISOR (HELMET MODE 3)
346	PROTECTIVE VISOR (HELMET MODE 3)
347	LEVA SHELL
348	LEVA SHELL
349	LEVA SHELL
350	LEVA SHELL
351	LEVA SHELL
352	LEVA SHELL
353	LEVA SHELL
354	LEVA SHELL
355	LEVA SHELL
356	LEVA SHELL
357	LEVA SHELL
358	LEVA SHELL
359	LEVA SHELL
360	LEVA SHELL
361	LEVA SHELL
362	LEVA SHELL
363	LEVA SHELL
364	LEVA SHELL
365	LEVA SHELL
366	LEVA SHELL
367	LEVA SHELL
368	LEVA SHELL
369	LEVA SHELL
370	LEVA SHELL
371	LEVA SHELL
372	LEVA SHELL
373	LEVA SHELL
374	LEVA SHELL
375	LEVA SHELL
376	LEVA SHELL
377	LEVA SHELL
378	LEVA SHELL
379	LEVA SHELL

380	LEVA SHELL
381	LEVA SHELL
382	LEVA SHELL
383	LEVA SHELL
384	LEVA SHELL
385	LEVA THERMAL COVER
386	LEVA THERMAL COVER
387	LEVA THERMAL COVER
388	LEVA THERMAL COVER
389	LEVA THERMAL COVER
390	LEVA THERMAL COVER
391	LEVA THERMAL COVER
392	LEVA THERMAL COVER
393	LEVA THERMAL COVER
394	LEVA THERMAL COVER
395	LEVA THERMAL COVER
396	LEVA THERMAL COVER
397	LEVA THERMAL COVER
398	LEVA THERMAL COVER
399	LEVA THERMAL COVER
400	LEVA THERMAL COVER
401	LEVA THERMAL COVER
402	LEVA THERMAL COVER
403	LEVA THERMAL COVER
404	LEVA THERMAL COVER
405	LEVA THERMAL COVER
406	LEVA THERMAL COVER
407	ITMG EXTERIOR
408	ITMG EXTERIOR
409	ITMG EXTERIOR
410	ITMG EXTERIOR
411	ITMG EXTERIOR
412	ITMG EXTERIOR
413	ITMG EXTERIOR
414	ITMG EXTERIOR
415	ITMG EXTERIOR
416	ITMG EXTERIOR
417	ITMG EXTERIOR
418	ITMG EXTERIOR
419	ITMG EXTERIOR
420	ITMG EXTERIOR
421	ITMG EXTERIOR
422	ITMG EXTERIOR
423	ITMG EXTERIOR
424	ITMG EXTERIOR
425	ITMG EXTERIOR
426	ITMG EXTERIOR
427	ITMG EXTERIOR
428	ITMG EXTERIOR
429	ITMG EXTERIOR
430	ITMG EXTERIOR
431	ITMG EXTERIOR
432	ITMG EXTERIOR
433	ITMG EXTERIOR
434	ITMG EXTERIOR

435	ITMG EXTERIOR
436	ITMG EXTERIOR
437	ITMG EXTERIOR
438	ITMG EXTERIOR
439	ITMG EXTERIOR
440	ITMG EXTERIOR
441	ITMG EXTERIOR
442	ITMG EXTERIOR
443	ITMG EXTERIOR
444	ITMG EXTERIOR
445	ITMG EXTERIOR
446	ITMG EXTERIOR
447	ITMG EXTERIOR
448	ITMG EXTERIOR
449	ITMG EXTERIOR
450	ITMG EXTERIOR
451	ITMG EXTERIOR
452	ITMG EXTERIOR
453	ITMG EXTERIOR
454	ITMG EXTERIOR
455	ITMG EXTERIOR
456	ITMG EXTERIOR
457	ITMG EXTERIOR
458	ITMG EXTERIOR
459	ITMG EXTERIOR
460	ITMG EXTERIOR
461	ITMG EXTERIOR
462	ITMG EXTERIOR
463	ITMG EXTERIOR
464	ITMG EXTERIOR
465	ITMG EXTERIOR
466	BOOT SOLE
467	ITMG EXTERIOR
468	ITMG EXTERIOR
469	ITMG EXTERIOR
470	ITMG EXTERIOR
471	ITMG EXTERIOR
472	ITMG EXTERIOR
473	BOOT SOLE
474	SUIT ELECTRICAL CONNECTOR (EXTERIOR)
475	LCG WATER CONNECTOR (EXTERIOR)
476	RIGHT HAND INLET O2 CONNECTOR (EXTERIOR)
477	LEFT HAND INLET O2 CONNECTOR (EXTERIOR)
478	RIGHT HAND OUTLET O2 CONNECTOR (EXTERIOR)
479	LEFT HAND OUTLET O2 CONNECTOR (EXTERIOR)
480	SUIT PRESSURE GAGE THERMAL COVER (EXTERIOR)
481	SUIT RELIEF VALVE THERMAL COVER (EXTERIOR)
482	ITMG INSULATION
483	ITMG INSULATION
484	ITMG INSULATION
485	ITMG INSULATION
486	ITMG INSULATION
487	ITMG INSULATION
488	ITMG INSULATION
489	ITMG INSULATION

490	ITMG INSULATION
491	ITMG INSULATION
492	ITMG INSULATION
493	ITMG INSULATION
494	ITMG INSULATION
495	ITMG INSULATION
496	ITMG INSULATION
497	ITMG INSULATION
498	ITMG INSULATION
499	ITMG INSULATION
500	ITMG INSULATION
501	ITMG INSULATION
502	ITMG INSULATION
503	ITMG INSULATION
504	ITMG INSULATION
505	ITMG INSULATION
506	ITMG INSULATION
507	ITMG INSULATION
508	ITMG INSULATION
509	ITMG INSULATION
510	ITMG INSULATION
511	ITMG INSULATION
512	ITMG INSULATION
513	ITMG INSULATION
514	ITMG INSULATION
515	ITMG INSULATION
516	ITMG INSULATION
517	ITMG INSULATION
518	ITMG INSULATION
519	ITMG INSULATION
520	ITMG INSULATION
521	ITMG INSULATION
522	ITMG INSULATION
523	ITMG INSULATION
524	ITMG INSULATION
525	ITMG INSULATION
526	ITMG INSULATION
527	ITMG INSULATION
528	ITMG INSULATION
529	ITMG INSULATION
530	ITMG INSULATION
531	ITMG INSULATION
532	ITMG INSULATION
533	ITMG INSULATION
534	ITMG INSULATION
535	ITMG INSULATION
536	ITMG INSULATION
537	ITMG INSULATION
538	ITMG INSULATION
539	ITMG INSULATION
540	ITMG INSULATION
541	ITMG INSULATION
542	ITMG INSULATION
543	ITMG INSULATION
544	ITMG INSULATION

545	ITMG INSULATION
546	ITMG INSULATION
547	ITMG INSULATION
548	ITMG INSULATION
549	ITMG INTERIOR
550	ITMG INTERIOR
551	ITMG INTERIOR
552	ITMG INTERIOR
553	ITMG INTERIOR
554	ITMG INTERIOR
555	ITMG INTERIOR
556	ITMG INTERIOR
557	ITMG INTERIOR
558	ITMG INTERIOR
559	ITMG INTERIOR
560	ITMG INTERIOR
561	PGA EXTERIOR
562	PGA EXTERIOR
563	PGA EXTERIOR
564	PGA EXTERIOR
565	PGA EXTERIOR
566	PGA EXTERIOR
567	PGA EXTERIOR
568	PGA EXTERIOR
569	PGA EXTERIOR
570	PGA EXTERIOR
571	PGA EXTERIOR
572	PGA EXTERIOR
573	SUIT PRESSURE GAGE THERMAL COVER INSULATION
574	SUIT PRESSURE GAGE THERMAL COVER INTERIOR
575	SUIT PRESSURE GAGE
576	SUIT RELIEF VALVE THERMAL COVER INSULATION
577	SUIT RELIEF VALVE THERMAL COVER INTERIOR
578	SUIT RELIEF VALVE
579	OPS O2 UMBILICAL SHEATH EXTERIOR
580	OPS C2 UMBILICAL SHEATH INSULATION
581	OPS O2 UMBILICAL SHEATH INTERIOR
582	OPS C2 UMBILICAL SHEATH EXTERIOR
583	OPS O2 UMBILICAL SHEATH INSULATION
584	OPS O2 UMBILICAL SHEATH INTERIOR
585	OPS C2 UMBILICAL SHEATH EXTERIOR
586	OPS C2 UMBILICAL SHEATH INSULATION
587	OPS C2 UMBILICAL SHEATH INTERIOR
588	RCU ELECTRICAL UMBILICAL SHEATH EXTERIOR
589	RCU ELECTRICAL UMBILICAL SHEATH INSULATION
590	RCU ELECTRICAL UMBILICAL SHEATH INTERIOR
591	RCU ELECTRICAL UMBILICAL SHEATH EXTERIOR
592	RCU ELECTRICAL UMBILICAL SHEATH INSULATION
593	RCU ELECTRICAL UMBILICAL SHEATH INTERIOR
594	RCU ELECTRICAL UMBILICAL SHEATH EXTERIOR
595	RCU ELECTRICAL UMBILICAL SHEATH INSULATION
596	RCU ELECTRICAL UMBILICAL SHEATH INTERIOR
597	SUIT O2 INLET UMBILICAL SHEATH EXTERIOR
598	SUIT C2 INLET UMBILICAL SHEATH INSULATION
599	SUIT C2 INLET UMBILICAL SHEATH INTERIOR

	600	SUIT 02 INLET UMBILICAL SHEATH EXTERIOR
	601	SUIT 02 INLET UMBILICAL SHEATH INSULATION
	602	SUIT 02 INLET UMBILICAL SHEATH INTERIOR
	603	SUIT 02 INLET UMBILICAL SHEATH EXTERIOR
	604	SUIT 02 INLET UMBILICAL SHEATH INSULATION
	605	SUIT 02 INLET UMBILICAL SHEATH INTERIOR
	606	SUIT 02 OUTLET UMBILICAL SHEATH EXTERIOR
	607	SUIT 02 OUTLET UMBILICAL SHEATH INSULATION
	608	SUIT 02 OUTLET UMBILICAL SHEATH INTERIOR
	609	SUIT 02 OUTLET UMBILICAL SHEATH EXTERIOR
	610	SUIT 02 OUTLET UMBILICAL SHEATH INSULATION
	611	SUIT 02 OUTLET UMBILICAL SHEATH INTERIOR
	612	SUIT 02 OUTLET UMBILICAL SHEATH EXTERIOR
	613	SUIT 02 OUTLET UMBILICAL SHEATH INSULATION
	614	SUIT 02 OUTLET UMBILICAL SHEATH INTERIOR
	615	LCG UMBILICAL SHEATH EXTERIOR
	616	LCG UMBILICAL SHEATH INSULATION
	617	LCG UMBILICAL SHEATH INTERIOR
	618	LCG UMBILICAL SHEATH EXTERIOR
	619	LCG UMBILICAL SHEATH INSULATION
	620	LCG UMBILICAL SHEATH INTERIOR
	621	LCG UMBILICAL SHEATH EXTERIOR
	622	LCG UMBILICAL SHEATH INSULATION
	623	LCG UMBILICAL SHEATH INTERIOR
	624	ITMG INTERIOR
	625	PGA EXTERIOR
MAN NO. 1	626	SLSS STORAGE BAG TOP EXTERIOR
	627	SLSS STORAGE BAG BOTTOM EXTERIOR
	628	SLSS STORAGE BAG LEFT SIDE EXTERIOR
	629	SLSS STORAGE BAG RIGHT SIDE EXTERIOR
	630	SLSS STORAGE BAG BACK EXTERIOR
	631	SLSS STORAGE BAG FRONT EXTERIOR
	632	SLSS STORAGE BAG TOP INTERIOR
	633	SLSS STORAGE BAG BOTTOM INTERIOR
	634	SLSS STORAGE BAG LEFT SIDE INTERIOR
	635	SLSS STORAGE BAG RIGHT SIDE INTERIOR
	636	SLSS STORAGE BAG BACK INTERIOR
	637	SLSS STORAGE BAG FRONT INTERIOR
	638	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	639	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	640	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	641	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	642	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	643	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	644	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	645	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	646	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	647	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	648	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	649	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	650	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	651	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	652	SLSS (STOWED) UMBILICAL SHEATH (EXTERIOR)
	653	SLSS UMBILICAL SHEATH (INTERIOR)
	654	SLSS UMBILICAL SHEATH (INTERIOR)

655 SLSS UMBILICAL SHEATH (INTERIOR)
656 SLSS UMBILICAL SHEATH (INTERIOR)
657 SLSS UMBILICAL SHEATH (INTERIOR)
658 SLSS UMBILICAL SHEATH (INTERIOR)
659 SLSS UMBILICAL SHEATH (INTERIOR)
660 SLSS UMBILICAL SHEATH (INTERIOR)
661 SLSS UMBILICAL SHEATH (INTERIOR)
662 SLSS UMBILICAL SHEATH (INTERIOR)
663 SLSS UMBILICAL SHEATH (INTERIOR)
664 SLSS UMBILICAL SHEATH (INTERIOR)
665 SLSS UMBILICAL SHEATH (INTERIOR)
666 SLSS UMBILICAL SHEATH (INTERIOR)
667 SLSS UMBILICAL SHEATH (INTERIOR)
668 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
669 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
670 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
671 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
672 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
673 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
674 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
675 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
676 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
677 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
678 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
679 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
680 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
681 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
682 SLSS (DEPLOYED) UMBILICAL SHEATH (EXTERIOR)
683 AUXILIARY WATER RESERVOIR
684 AUXILIARY WATER RESERVOIR SHUT/OFF VALVE
685 ALARM SYSTEM PACKAGE
686 AUXILIARY WATER RESERVOIR WATER
687 WHEEL RIGHT FRONT, FACING LRV
688 WHEEL RIGHT REAR , FACING LRV
689 WHEEL LEFT REAR , FACING LRV
690 WHEEL LEFT FRONT, FACING LRV
691 FENDER RIGHT FRONT, FACING LRV
692 FENDER RIGHT REAR , FACING LRV
693 FENDER LEFT REAR , FACING LRV
694 FENDER LEFT FRONT, FACING LRV
695 DISPLAY CONSOLE, FORWARD TPP
696 DISPLAY CONSOLE, BACK
697 DISPLAY CONSOLE, LEFT SIDE
698 DISPLAY CONSOLE, RIGHT SIDE
699 CONTROL BOX, TOP
700 CONTROL BOX, LEFT SIDE
701 CONTROL BOX, RIGHT SIDE
702 CONTROL BOX, BACK
703 FORWARD EQUIP. SECTION, LEFT SIDE
704 FORWARD EQUIP. SECTION, BACK
705 FORWARD EQUIP. SECTION, RIGHT SIDE
706 FORWARD EQUIP. SECTION, TOP
707 DISPLAY CONSOLE HANDHLD
708 LEFT SEAT HANDHLD
709 FOOTREST

710	TV CAMERA, TOP
711	TV CAMERA, LEFT SIDE
712	TV CAMERA, BACK
713	T-HANDLE
714	ARM REST
715	LCRU RIGHT SIDE
716	LCRU LEFT SIDE
717	LCRU TOP
718	PANEL CENTER CHASSIS TOP
719	PANEL REAR CHASSIS TOP
720	TOOL BOX FRONT, MAN NO. 1
721	TOOL BOX TOP, MAN NO. 1
722	NO. 2 MAN, PLSS-OPS, LEFT SIDE
723	NO. 2 MAN, PLSS BACK
724	NO. 2 MAN, VISOR
725	NO. 2 MAN, LEVA
726	NO. 2 MAN, SHOULDER
727	NO. 2 MAN, CHEST
728	NO. 2 MAN, ARM AND SIDE
729	NO. 2 MAN, LAP
730	NO. 2 MAN, LEG
731	NO. 2 MAN, SHIN
732	NO. 2 MAN, CALF
733	NO. 2 MAN, TOE
734	PAYLOAD TOP
735	PAYLOAD FRONT
736	PAYLOAD LEFT SIDE
737	ANTENNA
738	SEAT BELT, SIDE
739	SEAT BELT, TOP
740	BSLSS REAR SURFACE
741	EMU SEAT TOP SURFACE
742	EMU SEAT BACK, REAR SURFACE
743	EMU SEAT BACK, FRONT SURFACE
744	EMU SEAT, BOTTOM SURFACE
745	NO. 2 EMU SEAT BACK, REAR SURFACE

MAN NO. 2	626	AUXILIARY WATER RESERVOIR
	627	AUXILIARY WATER RESERVOIR SHUT/OFF VALVE
	628	ALARM SYSTEM PACKAGE
	629	AUXILIARY WATER RESERVOIR WATER

00112

APPENDIX B

SPECIAL RUN TO SAVE E TAPE

PAGE 9

MISSION TIME = 3.5000 HOURS COMPUTER TIME = 5.875 MINUTES ROUTINE ITERATIONS = 40

CONSUMABLES

OXYGEN IN OPS BOTTLES(LB)

OXYGEN IN PRIMARY BOTTLE(LB)

CONDENSATION RATE IN TUBE 11(LB/HR)

CONDENSATION RATE IN TUBE 12(LB/HR)

USABLE WATER IN RESERVOIR(LB)

USABLE WATER IN AUXILIARY RESERVOIR(LB)

LITHIUM HYDROXIDE IN CANISTER(LB)

CENTRAL BLOOD

5.7000 PRESSURE IN OPS BOTTLES(PSI)
 1.8500 PRESSURE IN PRIMARY BOTTLE(PSI)
 .0029 TOTAL CONDENSATION IN TUBE 11(LB)
 .0000 TOTAL CONDENSATION IN TUBE 12(LB)
 6.0000 UNUSABLE WATER IN RESERVOIR(LB)
 2.9200 UNUSABLE WATER IN AUXILIARY RESERVOIR(LB)
 3.0945 SUBLIMATOR HEAT LOAD(BTU/HR)
 .0000

MAN TEMPERATURE(DEGREES F)

HEAD CORE 98.002 HEAD MUSCLE

TRUNK CORE 98.682 TRUNK MUSCLE

RT. ARM CORE 96.338 RT. ARM MUSCLE

LT. ARM CORE 96.338 LT. ARM MUSCLE

RT. LEG CORE 97.740 RT. LEG MUSCLE

LT. LEG CORE 97.740 LT. LEG MUSCLE

RT. HAND CORE 96.582 RT. HAND MUSCLE

LT. HAND CORE 96.581 LT. HAND MUSCLE

RT. FOOT CORE 95.168 RT. FOOT MUSCLE

LT. FOOT CORE 95.169 LT. FOOT MUSCLE

97.866 AVERAGE SKIN

95.880 HEAD FAT
 98.348 TRUNK FAT
 95.987 RT. ARM FAT
 95.987 LT. ARM FAT
 97.817 RT. LEG FAT
 97.812 LT. LEG FAT
 96.604 RT. HAND FAT
 96.603 LT. HAND FAT
 95.00 RT. FOOT FAT
 95.103 LT. FOOT FAT
 92.484 AVERAGE MUSCLE

MAN'S SENSIBLE HEAT LOSS(BTU/HR)

MAN'S LATENT HEAT LOSS(BTU/HR)

MAN'S SHIVER RATE(BTU/HR)

SUIT INLET SPECIFIC HUMIDITY

PARTIAL PRESSURE OF CO₂ IN HELMET(IN HG)

UNREMOVED SWEAT(LB)

313.5056 MAN'S EVAPORATION HEAT LOSS(BTU/HR)
 62.2487 MAN'S STORAGE RATE(BTU/HR)
 19.633 MAN STORED IN MAN(BU)
 .0631 SUIT OUTLET SPECIFIC HUMIDITY
 2.6443 DEW POINT TEMPERATURE IN HELMET(DEG F)
 .0000 LCG DELTA TEMPERATURE

HEAT LEAK(BTU/HR)

PHB -24.55 PGA -175.64 PLSS -6.21 OPS

TOTAL PGH = -200.20 TOTAL EMU = -251.54

FLOW RATES(TLB/HR)

1 8.09 8.09 8.09 8.09 8.09 8.09

11 6.07 7.99 7.99 7.89 7.89 7.98

21 *0.00 *0.00 *0.00 *0.00 *0.00 *0.00

31 1.01 *0.00 *0.00 *0.00 *0.00 *0.00

41 3.02 1.01 *0.00 *0.00 *0.00 *0.00

.23 P=HOLE -46.64 O=HOLE 1.29

PRESSURE DROPS (PSI)

1 *0.0092 *0.0049 *0.0000 *0.00760 *0.0000 *0.0000

11 *0.04016 *0.03559 *0.0777 *0.0000 *0.0000 *0.00010

21 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000

31 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000

41 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000

*0.00000 *0.00000 *0.00000 *0.00000 *0.00000 *0.00000

FLUID LUMP TEMPERATURES (DEG F)

1 82.84 82.72 82.71 82.53 82.33

11 84.64 87.01 83.95 83.43 83.03

21 71.59 70.00 70.00 70.00 70.00

79.70 92.47 86.50 84.43 84.95 1.0
 79.51 79.19 79.11 72.94 72.94 70.00

SPECIAL RUN TO STAFFE TAPE

PAGE 10

31	70.00	81.55	73.34	70.00	71.68	74.76	80.00	80.00	80.18	79.51	40	7
41	76.71	81.75	95.31	86.74	75.58	80.00	74.49	80.00	80.00	80.00	50	8
51	72.49	70.66	75.27	75.27	75.23	71.59	71.67	82.11	70.70	82.96	60	9
61	70.93	72.11	70.00	70.00	79.19	70.00	70.00	70.00	83.21	84.38	79.70	10
71	79.70	70.00	78.38	89.64	78.38	86.99	78.03	90.75	78.03	78.03	70	11
81	79.11	84.81	69.95	69.95	69.95	69.95	69.95	69.95	69.95	69.95	90	12
91	69.96	69.97	69.96	69.99	69.93	69.95	69.95	69.95	69.95	69.95	100	
101	69.96	69.95	69.96	69.95	69.95	69.97	69.97	69.97	69.97	69.97	110	
111	69.95	69.95	70.01	84.81	84.50	86.65	84.04	84.04	86.65	86.65	120	
121	78.03	90.65	78.03									

TUBE LUMP TEMPERATURES (DEG F)

1	84.33	81.82	70.68	80.71	81.26	77.38	92.10	91.28	70.00	91.66	10	
21	95.90	92.88	94.18	82.58	81.94	79.51	73.78	77.25	79.86	70.31	20	
31	71.59	70.98	70.00	70.00	70.00	79.94	74.81	72.98	70.00	70.00	30	
41	70.00	81.74	73.41	70.00	71.66	74.76	82.58	80.76	80.36	79.51	40	
51	76.81	82.20	96.04	87.50	75.54	71.19	74.45	71.19	71.42	70.84	50	
61	72.48	70.69	75.37	75.27	75.30	71.59	71.67	80.88	70.70	81.22	60	
71	70.86	89.94	87.98	82.25	80.20	81.42	81.13	80.83	80.53	79.27	70	
81	79.69	79.24	79.81	80.16	79.96	80.59	80.12	83.33	83.07	80		
91	83.23	81.28	42.18	40.54	44.73	44.75	40.75	45.22	50.87	39.14	90	
101	44.31	44.42	39.58	42.49	40.79	40.88	45.16	45.48	70.00	70.00	100	
111	70.00	70.00	71.63	70.00	82.46	84.76	79.70	70.00	70.00	89.01	110	
121	89.65	89.01	88.99	88.62	90.75	88.62	70.00	93.70	70.00	90.25	120	
131	41.93	43.18	48.44	47.57	53.22	53.80	49.33	46.18	86.48	86.34	130	
141	87.52	87.52	86.35	87.04	86.22	87.06	88.13	88.13	87.07	87.67	140	
151	86.44	87.04	88.13	88.13	87.04	87.68	86.27	86.96	88.28	88.28	150	
161	74.79	73.83	75.20	75.40	74.56	73.66	73.27	73.32	73.75	74.67	160	
171	83.29	83.19	83.64	83.32	79.47	74.69	82.13	80.36	82.34	81.74	170	
181	81.92	70.01	70.57	70.40	70.57	53.80	78.66	78.66	81.13	81.15	180	
191	90.24	91.46	93.50	73.25	73.27	73.29	73.31	69.83	69.83	69.81	200	
201	69.86	69.82	69.86	69.84	69.88	69.84	69.88	69.88	69.96	69.75	210	
211	69.80	69.80	69.83	69.83	69.81	69.81	69.86	69.82	69.85	69.84	220	
221	69.84	69.88	69.85	69.85	69.75	69.80	69.80	70.05	90.20	91.37	230	
231	93.52	91.65	92.85	94.18	95.89	89.01	89.01	89.01	89.01	88.62	90.45	
241	88.62											

STRUCTURE LUMP TEMPERATURES (DEG F)

1	60.83	63.15	68.45	68.45	63.35	65.29	61.61	62.48	67.48	67.48	10	
11	70.40	70.34	70.45	70.41	70.38	70.41	81.25	63.31	75.34	75.66	20	
21	67.69	71.62	70.06	70.04	70.00	70.03	70.03	70.03	70.04	70.04	30	
31	71.05	75.48	71.39	258.24	65.17	57.14	3.22	184.56	40.47	156.40	40	
41	202.31	53.03	79.64	63.28	123.68	121.51	204.81	83.36	46.05	46.97	50	
51	67.59	69.65	91.07	108.96	100.27	279.09	130.56	125.68	113.60	72.49	60	
61	79.73	84.62	81.83	82.15	81.97	82.23	77.39	81.06	73.61	72.40	70	
71	73.03	73.32	74.39	74.64	75.12	74.52	88.42	75.19	75.32	74.43	60	
81	79.42	82.89	76.52	75.30	75.21	75.15	75.15	75.15	75.15	75.15	90	
91	74.68	75.91	74.49	74.07	75.75	74.57	75.00	74.71	75.29	75.31	100	
101	74.13	520.55	81.80	71.85	72.00	71.44	71.56	70.00	70.00	71.86	110	
111	71.61	71.58	71.53	71.37	71.71	71.80	70.92	71.77	71.33	71.33	120	
121	70.36	70.32	70.92	70.34	70.88	66.17	78.71	66.12	69.09	74.08	130	

FORM 1411-3
PRINTED IN U.S.A.

SPECIAL RUN TO SAVE E TAPE

PAGE 11

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

4
5
6
7
8
9
10
11
12

691	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00
701	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00
711	70.00	70.00	65.59	63.92	70.00	70.00	70.00	70.00	70.00	70.00	70.00
721	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00
731	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00
741	44.19	70.00	-39.89	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00

COMPUTER TIME EXCEEDED TIME REQUESTED

DUMP TAPE HAS BEEN WRITTEN

APPENDIX C

SPECIAL RUN TO SAVE E TAPE

PAGE

TIME =	3.00000	TINCNN =	.00500	PLTINC =	.05000	DELTAU =	.00000	TAU =	.00000	LOSSIEST =	.01000
RTIME =	5.00000	TAU TIME	3.30000	OPTOL =	.01000	NCKOUT =	0	NSTEAD =	0	ISTART =	0
INDATA =	2	NEWMP =	0	NPATCD =	1	IPLOTTG =	1	IDUMPS =	1	INBSY =	1

C-4

C-5											
	0	1	2	3	4	5	6	7	8	9	0
1	11	12	13	14	5	2.02	0.0730	0.	10.3	33	10627
1	1	2	3	4	5	92.75	0.442	2.36	34	10628	
1	1	2	3	4	5	0.494	0.0254	1.	35	10629	
1	1	2	3	4	5	0.875	2.0657	2.96	36	10630	
1	1	2	3	4	5	1.083	0.0254	0.	37	10631	
1	1	2	3	4	5	28.97	0.075	1.1624	11.2	38	10632
1	1	2	3	4	5	39.87	0.1075	1.1624	10.6	40	10633
1	1	2	3	4	5	9.95	0.0254	0.5655	41	10634	
1	1	2	3	4	5	6.364	0.0254	0.5655	42	10635	
1	1	2	3	4	5	2.0	2.964	2.92	43	10636	
1	1	2	3	4	5	5.58	0.0254	0.	44	10637	
1	1	2	3	4	5	2	1.	1.	45	10638	
1	1	2	3	4	5	3	1.	1.	46	10639	
1	1	2	3	4	5	4	50.	1.	47	10640	
1	1	2	3	4	5	4	98.2	1.	48	10641	
1	1	2	3	4	5	5	1.	1.	49	10642	
1	1	2	3	4	5	6.65	0.0254	0.	50	10643	
1	1	2	3	4	5	7.45	0.057	0.88	51	10644	
1	1	2	3	4	5	5.2	0.4301	0.4301	52	10645	
1	1	2	3	4	5	9.37	0.4301	1.1624	53	10646	
1	1	2	3	4	5	4.37	0.4301	1.1624	54	10647	
1	1	2	3	4	5	4.95	0.4301	1.1624	55	10648	
1	1	2	3	4	5	6.35	0.4301	1.1624	56	10649	
1	1	2	3	4	5	9.35	0.4301	1.1624	57	10650	
1	1	2	3	4	5	7.80	0.4301	1.1624	58	10651	
1	1	2	3	4	5	6.00	0.4301	1.1624	59	10652	
1	1	2	3	4	5	8.10	0.4301	1.1624	60	10653	
1	1	2	3	4	5	6.35	0.4301	1.1624	61	10654	
1	1	2	3	4	5	9.35	0.4301	1.1624	62	10655	
1	1	2	3	4	5	7.	0.4301	1.1624	63	10656	
1	1	2	3	4	5	9.5	0.4301	1.1624	64	10657	
1	1	2	3	4	5	9.6	0.4301	1.1624	65	10658	
1	1	2	3	4	5	7	100%	1.1624	66	10659	
1	1	2	3	4	5	7	1.	1.	66	10660	CARD 29
1	1	2	3	4	5	0	0	0.	67	10661	
1	1	2	3	4	5	2.	1	2	68	10662	
1	1	2	3	4	5	3.	2	3	69	10663	
1	1	2	3	4	5	28.	26	28	70	10664	
1	1	2	3	4	5	5.	6.	7.	75.	10665	
1	1	2	3	4	5	58.	5	30	80.	10666	
1	1	2	3	4	5	7.	0	29	75.	10667	
1	1	2	3	4	5	0	26	1	75.	10668	
1	1	2	3	4	5	9.	0	10	1.	10669	
1	1	2	3	4	5	10.	0	27	1.	10670	
1	1	2	3	4	5	11.	0	30	1.	10671	
1	1	2	3	4	5	12.	0	28	1.	10672	
1	1	2	3	4	5	13.	0	31	1.	10673	
1	1	2	3	4	5	14.	0	11	31	10674	
1	1	2	3	4	5	15.	0	12	47	10675	
1	1	2	3	4	5	16.	40	12	1.	10676	
1	1	2	3	4	5	17.	0	13	36	10677	
1	1	2	3	4	5	18.	17	13	1.	10678	

CARD 52, SECTION 5.7.9											
CARD 53, SECTION 5.7.9											
CARD 54, SECTION 5.7.10											
CARD 55, SECTION 5.7.11											
	0	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
	101	4	96	0	148	96	0	148	96	210	148
	102	4	97	0	149	97	0	149	97	211	149
	103	4	98	0	150	98	0	150	98	212	150
	104	4	121	0	151	121	0	151	121	213	151
	105	4	122	0	152	122	0	152	122	214	152
	106	4	123	0	153	123	0	153	123	215	153
	107	4	124	0	154	124	0	154	124	216	154
	108	4	125	0	155	125	0	155	125	217	155
	109	4	126	0	156	126	0	156	126	218	156
	110	4	127	0	157	127	0	157	127	219	157
	111	4	128	0	158	128	0	158	128	220	158
	112	5	7	0	259	7	0	259	7	0	259
	257				--IDENT. SUIT, GLOVES, BOOTS, STRUCT. NODES--						
	395	405	415	425	435	445	455	465	475	485	495
	535	545	555	565	575	585	595	4075	4085	4105	4115
	4145	4155	4165	4175	4185	4195	4205	4225	4235	4245	4255
	4285	4295	4305	4315	4325	4335	4345	4355	4365	4375	4385
	4425	4435	4445	4455	4465	4475	4485	4495	4505	4515	4525
	4566	4576	4586	4596	4606	4616	4626	4636	4646	4656	4666
	4708	4718	4728	4738	4748	4758	4768	4778	4788	4798	4808
	625	635	645	655	665	675	685	695	705	715	725
	765	775	785	795	805	805	805	805	805	805	805
	4915	4925	4935	4945	4955	4965	4975	4985	4995	5005	5015
	5055	5065	5075	5085	5095	5105	5115	5125	5135	5145	5155
	5195	5205	5215	5225	5235	5245	5255	5265	5275	5285	5295
C-13	5336	5346	5356	5366	5376	5386	5396	5406	5416	5426	5436
	5478	5488	5498	5508	5518	5528	5538	5548	5558	5568	5578
	935	945	955	965	975	985	995	995	995	995	995
	5645	5558	5568	5578	5588	5598	5608	2175	2185	2195	2205
	2245	2255	2265	2275	2285	2295	2305	2315	2325	2335	2345
	5625	5635	5645	5655	5665	5675	5685	5695	5705	5715	5725
	5765	5775	5785	5795	5805	5815	5825	5835	5845	5855	5865
	0				--ENVIRON.-ASSOC. NODE IDENT.--						
	159	1	405	2	415	3	425	4	435	5	445
	195				--EVAL TYPE 19) HF CURVE ASSIGN--						
	465	8	475	9	485	10	495	11	505	12	515
	535	15	545	16	555	17	565	18	575	19	585
	4075	22	4085	23	4095	24	4105	25	4115	26	4125
	4145	29	4155	30	4165	31	4175	32	4185	33	4195
	4215	36	4225	37	4235	38	4245	39	4255	40	4265
	4285	43	4295	44	4305	45	4315	46	4325	47	4335
	4355	50	4365	51	4375	52	4385	53	4395	54	4405
	4425	57	4435	58	4445	59	4455	60	4465	61	4475
	4495	64	4505	65	4515	66	4525	67	4535	68	4545
	4565	71	4575	72	4585	73	4595	74	4605	75	4615
	4635	78	4645	79	4655	80	4665	81	4675	82	4685
	4705	85	4715	86	4725	87	4735	88	4745	89	4755
	4775	92	4785	93	4795	94	4805	95	4815	96	4825
	5855	99	5865	100	5875	101	5885	102	5895	103	5905
	6065	106	6075	107	6085	108	6095	109	6105	110	6125
	1575	113	1615	114	1635	115	1655	116	1675	117	1795
	1305	120	1325	121	1335	122	1345	123	1775	124	385

30. 35. 40. 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95. 100.

1076.04b 4b.6b
1076.04b

35 8 10 AUX. WTR RESERVOIR SHUT-OFF VALVE

1984-1

卷之三

THE JOURNAL OF CLIMATE

THE JOURNAL OF CLIMATE

卷之三

卷之三

THE JOURNAL OF CLIMATE

卷之三

卷之三

THE JOURNAL OF CLIMATE

卷之三