CS7015-Deep Learning **Programming Assignment** 3

Jeshuren Chelladurai (CS17M017) Ajith Kumar M (CS17M009)

March 27, 2018

1. Architecture of our Best Model

Table 1: Best Model

Layer	Parameters
CONV1	32 (3x3) kernels, same padding, ReLU
CONV2	64 (3x3) kernels, same padding, ReLU
POOL1	(2x2) max pooling, (2x2) strides
DROPOUT1	0.4 dropout rate
CONV3	128 (3x3) kernels, same padding, ReLU
CONV4	256 (3x3) kernels, same padding, ReLU
POOL2	(2x2) max pooling, (2x2) strides
DROPOUT2	0.4 dropout rate
FC1	128 units ,ReLU
DROPOUT3	0.4 dropout rate
FC2+SOFTMAX	10 units , Linear

Validation Accuracy Achieved: 94.58%

2. Learning Curve

Figure 1: Learning Curve for the model described in the assignment problem statement

3. Performance on the test data for the best model

Kaggle Public Leaderboard F-score : 94.2 Kaggle Private Leaderboard F-score : TBD

4. Training Parameter Settings for the best model:

• Adam Optimizer with initial learning rate = 0.001 and retraining with learning rate = 0.0001.

Batch size: 100Cross-entropy loss

5. Dimensions of Input and Output at Each Layer

Table 2: Dimensions of Input and Output at Each Layer

Layer	Dimension of Input	Dimension of Output		
Conv1	$28 \times 28 \times 1$	$28 \times 28 \times 64$		
Pool1	$28 \times 28 \times 64$	14 × 14 × 64		
Conv2	$14 \times 14 \times 64$	$14 \times 14 \times 128$		
Pool2	$14 \times 14 \times 128$	$7 \times 7 \times 128$		
Conv3	$7 \times 7 \times 128$	$7 \times 7 \times 256$		
Conv4	$7 \times 7 \times 256$	$7 \times 7 \times 256$		
Pool3	$7 \times 7 \times 256$	$3 \times 3 \times 256$		
FC1	1×2304	1024 × 1		
FC2	1024 × 1	1024 × 1		
Softmax	1024 × 1	10 × 1		

6. Parameters in the network

Table 3: Parameters in the Conv and FC Layers

Layer	Weights	Biases	Total	
Conv1	576(3×3×64)	64	640	
Conv2	$73,728(3\times3\times64\times128)$	128	73,856	
Conv3	294,912(3×3×128×256)	256	295,168	
Conv4	589,824(3×3×256×256)	256	590,080	
Total Par	959,744			
FC1	2,359,296(2304×1024)	2,360,320		
FC2	1,048,576(1024×1024) 1024			
Softmax	10240(1024 × 10)	10	10,250	
Total Parameters in FC Layers(II)			3,420,170	
Total Par	4,379,914			

7. Neurons in the Network

Table 4: Neurons in the Conv and FC Layers

Layer	Neurons
Conv1	64
Conv2	128
Conv3	256
Conv4	256
FC1	1024
FC2	1024
Softmax	10
Total	2506

8. Effect of Batch Normalization

Figure 2: Plot of the learning curve between a model trained with and without batch normalization with the other settings remaining constant.

Effect of different initializers

Figure 3: Plot of the learning curve between a model trained with Xavier and He initializers with the other settings remaining constant.

9. Plot of 64 layer 1 filters

Figure 4: Plot of the 64 filters in the first layer. Rescaled to 300×300 for easier viewing.

10. Guided backpropogation

Figure 5: Guided backpropogation

11. Fooling the network

Figure 6: Decrease in F-score for random % of change in pixels in the image

Figure 7: Plot of the images used to fool the network. The images along the diagonal are the original ones, whereas the off-diagonal images are the modified images used to make the network think that they are from the other class.

12. HyperParameter Tuning

We tried different hyper-parameter settings for the number of convolutional layers, filter size, activations etc., The models that we experimented are given in Table 5

Table 5: Different Model Configurations

Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Conv1 - 32 3x3	Conv1 - 32 3x3						
Conv2 - 64 3x3	Conv2 - 64 3x3						
MaxPool -	MaxPool -						
2x2 w/ dropout(0.5)	2x2						
2x2 w/ dropodi(0.5)	w/ dropout(0.5)	Same as Model1	Same as Model2	Same as Model1	Same as Model 1	Same as Model 2	Same as Model 2
Conv3 - 128 3x3	Conv3 - 128 3x3	with Data	with Data				
Conv4 - 256 3x3	Conv4 - 256 3x3	Augumentation	Augumentation				
MaxPool	MaxPool -	1					
3x3	3x3						
w/ dropout(0.5)	w/ dropout(0.5)						
FC1 - 256	FC1 - 256						
(Leaky ReLU)	(ReLU)						
w/dropout(0.5)	w/dropout(0.5)						
FC2 - 256	FC2 - 256						
(Leaky ReLU)	(ReLU)						
w/dropout(0.5)	w/dropout(0.5)						
Softmax - 10	Softmax - 10						
Learning Rate - 0.001	Learning Rate - 0.001			LR - 0.01	LR - 0.001	LR - 0.001	LR - 0.001
Batch Size - 500	Batch Size - 500			Batch Size - 100	Batch Size - 1000	Batch Size -100	Batch Size - 1000

Figure 8: Learning Curves

Figure 9: Learning Curves

13. Data Augumentation

We tried the following data augumentation,

- Vertical Flip
- Horizontal Flip
- Rotation
- Adding Random Noise