

Éléments de Physique : Électromagnétisme

CHAPITRE 1 : FORCE ET CHAMP ÉLECTRIQUES

Table des matières

- 1. Charge électrique
- 2. Loi de Coulomb
- 3. Champ électrique
- 4. Cas particuliers : dipôle et plans chargés

Un peu d'histoire

L'électricité est un phénomène qui se manifeste de nombreuses manières dans la nature.

Thalès de Milet (-600) remarque qu'un morceau d'ambre attire certains matériaux légers : **électricité statique**

Un peu d'histoire

Autres exemples : foudre, torpilles, feu de Saint-Elme...

Charge électrique

La **charge électrique** est une propriété de la matière. Il en existe 2 types : positive ou négative.

Unité : le coulomb [C]

Origine microscopique des charges : protons (p+) et électrons (e-)

Charge élémentaire : $e = 1.6 \times 10^{-19}$ C

$$q_e = -e = -1.6 \times 10^{-19} \,\mathrm{C}$$

$$q_p = e = 1.6 \times 10^{-19} \,\mathrm{C}$$

Un coulomb est une grandeur énorme, équivalent à 6×10^{18} électrons !

Matière neutre : nombre de p+ = nombre d'e-

Force de Coulomb

Conservation de la charge

La charge totale d'un système isolé reste constante.

Force de Coulomb

Une force, appelée **force de Coulomb**, apparaît entre deux objets chargés. Son orientation dépend du signe des charges.

Loi de Coulomb

Entre deux charges ponctuelles, la force est donnée par la **loi de Coulomb** et

- \triangleright est proportionnelle aux charges q_1 et q_2
- \triangleright varie en $\frac{1}{r_{21}^2}$
- \triangleright est radiale : $F_{21} \parallel r_{21}$ (vecteurs)

$$F_{21}$$
 q_1
 r_{21}
 r_{21}
 r_{12}

$$\boldsymbol{F}_{21} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{21}^2} \hat{\boldsymbol{r}}_{21}$$

 \hat{r}_{21} est le vecteur unitaire allant de la charge 2 vers la charge 1.

 $\varepsilon_0 = 8,85 \times 10^{-12} \ {\rm C^2.s^2.kg^{\text{-}1}.m^{\text{-}3}}$ est la **permittivité diélectrique du vide**.

Champ électrique

Principe de superposition

En présence de plusieurs charges q_i , la force totale sur une charge q placée en ${\bf r}$ est :

$$\begin{aligned} \pmb{F} &= \pmb{F}_1 + \pmb{F}_2 + \pmb{F}_3 + \dots = \frac{1}{4\pi\varepsilon_0} \frac{qq_1}{r_1^2} \hat{\pmb{r}}_1 + \frac{1}{4\pi\varepsilon_0} \frac{qq_2}{r_2^2} \hat{\pmb{r}}_2 + \frac{1}{4\pi\varepsilon_0} \frac{qq_3}{r_3^2} \hat{\pmb{r}}_3 + \dots \\ &= q \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1^2} \hat{\pmb{r}}_1 + \frac{q_2}{r_2^2} \hat{\pmb{r}}_2 + \frac{q_3}{r_3^2} \hat{\pmb{r}}_3 + \dots \right) & \hat{\pmb{r}}_i = \text{vecteurs unitaires allant de } q_i \text{ vers } q. \\ &= q \pmb{E} \end{aligned}$$

Le champ électrique E en r correspond à la force exercée sur une charge unitaire placée en r.

Pour une charge ponctuelle Q, le champ électrique est donné par

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{\boldsymbol{r}}$$

Représentation du champ électrique

Si le signe et la valeur de Q changent, F est modifiée mais pas E:

- **E** est un champ et est donc une **propriété de l'espace** uniquement
- > E est vectoriel (direction et sens du champ)

Le vecteur champ électrique est défini en chaque point de l'espace.

Représentation du champ électrique

Le champ électrique créé par une charge ${\it Q}$ en un point donné est orienté

- \triangleright vers Q si Q < 0
- \triangleright à l'opposé de Q si Q > 0

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{\boldsymbol{r}}$$

La force exercée sur une charge q placée dans \boldsymbol{E} est

- \triangleright dans le même sens que E si q > 0
- \triangleright dans le sens opposé à E si q < 0

$$\mathbf{F} = q\mathbf{E}$$

Principe de superposition

En présence de plusieurs charges q_i , le champ électrique total en \boldsymbol{r} est :

$$E(r) = E_1(r) + E_2(r) + E_3(r) + \cdots$$

Lignes de champ

Le champ électrique est parallèle aux lignes de champ.

Les lignes de champ ne se croisent jamais! Module de E pas constant!

Analogie avec le champ gravitationnel

Force gravitationnelle

La force gravitationnelle qui s'exerce sur une masse m placée à une distance r d'une autre masse M s'écrit :

$$m{F}_g = -G rac{mM}{r^2} \hat{m{r}} = -mm{g}$$
 Unités de $m{g}$: N/kg

Force électrique

La force électrique qui s'exerce sur une charge q placée à une distance r d'une autre charge Q s'écrit :

$$\boldsymbol{F}_{e} = \frac{1}{4\pi\varepsilon_{0}} \frac{qQ}{r^{2}} \hat{\boldsymbol{r}} = q\boldsymbol{E}$$
 Unités de \boldsymbol{E} : N/C

Différence importante : la force électrique est attractive ou répulsive suivant le signe des charges, la force gravitationnelle est toujours attractive (il n'existe pas de masse négative).

Cas particulier : charges ponctuelles

Charges ponctuelles

une charge
$$q: \quad \boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{\boldsymbol{r}}$$

deux charges :
$$\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_1^2} \hat{\boldsymbol{r}}_1 + \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r_2^2} \hat{\boldsymbol{r}}_2$$

N charges:
$$\boldsymbol{E} = \sum_{i}^{N} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_i^2} \hat{\boldsymbol{r}}_i$$

Cas particulier : dipôle

Dipôle électrique

Deux charges, $q_2 = -q_1$, séparées d'une distance d.

Moment dipolaire : p = qd (vecteur orienté de la charge – vers +)

Moment dipolaire pour une distribution de i charges : $p = \sum_{i} q_i r_i$

Application : une antenne est un dipôle, qui oscille dans le temps (GSM, WiFi, radio, TV...)

Cas particulier : plan chargé

Plan chargé (infini)

- \triangleright Charge surfacique $\sigma = \text{charge par unité de surface [C/m²]}$
- ightharpoonup Chaque élément de charge $\mathrm{d}q=\sigma\;\mathrm{d}S$ fournit une contribution $\mathrm{d}E$ au champ électrique total E :

$$\mathrm{d}\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{\mathrm{d}q}{r^2} \hat{\boldsymbol{r}}$$

 \blacktriangleright Pour obtenir E à une distance h du plan, il faut intégrer sur tout le plan :

$$\mathbf{E} = \frac{\sigma}{2\varepsilon_0} \hat{\mathbf{n}}$$

 \hat{n} = normale à la surface

Cas particulier : deux plans (infinis)

Deux plans infinis de charge opposée

Sommer le champ électrique de chaque plan : $E = E_+ + E_-$

- $ightharpoonup oldsymbol{E} = rac{\sigma}{arepsilon_0} \widehat{oldsymbol{n}}$ entre les plans
- > 0 ailleurs

Cette situation est intéressante, car elle semblable au condensateur.

Si le plan n'est pas infini, on a des différences au bord (inhomogénéités).

