CAPITULO III.

ESTRUCTURAS BÁSICAS DE UN ALGORITMO

Cap. III Estructuras Básicas de un Algoritmo

- 3.1 Estructura de Secuencia
- 3.2. Operadores Relacionales y Lógicos
- 3.3. Estructuras de Alternativas.
 - 3.3.1. Simple
 - 3.3.2. Doble
 - 3.3.3. Múltiple
- 3.5 Resolver problemas y aplicar pruebas de escritorio

Son necesarias para organizar el flujo de control de un programa.

Controlan la ejecución de uno o varios bloques de instrucciones, dependiendo si se cumple o no alguna condición.

Al utilizar estructuras de control de flujo, los programas dejan de ser una sucesión lineal de instrucciones para convertirse en programas *inteligentes* que pueden tomar decisiones en función del valor de las variables.

.

Existen 3 tipos fundamentales de estructuras de control:
☐ Estructura Secuencial.
☐ Estructura de Alternativa ó Decisión
☐ Estructura de Repetición

1. Estructura Secuencial

La más sencilla, simplemente indica una secuencia de acciones a ser ejecutadas de forma consecutiva.

```
Algoritmo SalarioB
  //Bloque declarativa
   flotante salbase;
    entero horas;
    flotante salbruto = 0;
 //Cuerpo del Programa
     imprimir ("Ingrese salario base :");
     leer(salbase);
     salbruto= salbase*horas:
     imprimir ("Salario Bruto es:", salbruto);
```


2. Estructura de Alternativa o de Decisión

 Controla la ejecución de uno o varios bloques de instrucciones dependiendo si se cumple o nó alguna condición.

Condición es una expresión lógica, una combinación de variables y/o constantes que usa operadores relacionales y/o lógicos que producen resultados ciertos o falsos.

1. Operadores Relacionales

Se utilizan para formar expresiones lógicas que representan condiciones que pueden ser ciertas o falsas.

Operador	Propósito	expresión relacional	RESULTADO	
<	Menor que	5 < 10	cierto	
<=	Menor o igual a	30 * 4 <= 2	falso	
>	Mayor que	15 > 2	cierto	
>=	Mayor o igual a	35 >= 20	cierto	
==	Igual a	"juan" == "Juan"	falso	
!=	No igual a , distinto de	' a' != 'b'	cierto	

Ejemplos de Condiciones usando operadores relacionales :

```
ej: costo_ini = 52.00 preciofin = 10.00

(52.00 > 10.00 )

(costo_inic > preciofin)

C
```

```
ej: total = 17
( 25 <= 17 )
( 25 <= total)
F
```

```
ej: a= 3 b= 10 valor = 13

((3+10) == 13)
((a+b) == valor)
C
```

Estructuras de Control.

2. Operadores lógicos

Sirven para asociar o negar una o más expresiones relacionales. Llamados también conectivas lógicas.

OPERADOR						
	1	PROPÓ:	SITO			
У		como acione	resultado s son ciertas.	Cierto,	si	ambas
0	Si una resultac		las compara Cierto	ciones es	s cie	rta , el
!			so (F) si el res ierto, si el res			0

2. Operador lógico (y)

EJEMPLO:

Para ingresar a la Universidad los estudiantes deben aprobar dos exámenes: el ELASH y la Prueba Académica. En ambas pruebas deben obtener un mínimo de 80 puntos para poder ingresar de lo contrario serán rechazados.

Suponga que cada variable tiene el siguiente valor: elash = 95 ppa = 80

si (elash >= 80) Y (ppa >= 80) imprimir ("Ingresa a la UT.P.); de otro modo

imprimir ("Debe venir el otro año");

RESULTADO → Ingresa a la U.T.P.

2. Operador lógico (O)

EJEMPLO:

Para ingresar a la universidad los estudiantes deben realizar dos pruebas: el ELASH y la Prueba Académica. El estudiante que **obtenga más de 90** puntos en **cualquiera de los exámenes** puede ingresar. Suponga cada variable con el siguiente valor: elash = 70 ppa = 97

imprimir ("Ingresa a la UT.P.); de otro modo

imprimir ("Debe venir el otro año");

RESULTADO → Ingresa a la U.T.P.

Estructuras de Control.

2. Operadores lógicos

Sirven para asociar o negar una o más expresiones relacionales. Llamados también conectivas lógicas.

OPERADOR	PROPÓSITO	EJEMPLOS
y	da como resultado Cierto, si ambas comparaciones son ciertas	(5+7 > 5) y (100 <10) (12 > 5) y (100 <10) C y F \rightarrow F ('a' != 'C') Y (3*2 < 12) ('a' != 'C') Y (6 < 12) C y C \rightarrow C
0	Si una de las comparaciones es cierta , el resultado es Cierto	$((5 + 4) < 6) \circ (75 > 3)$ $(9 < 6) \circ (75 > 3)$ $F \circ C \rightarrow C$ $(5 > 1) \circ ('A' == 'A')$ $C \circ C \rightarrow C$
!	Devuelve falso (F) si el resultado es Cierto devuelve Cierto, si el resultado es falso	! (5>1) !(26<15) F
	Prof. Mitzi Murillo de Velá	squez Msc.

12

Estructuras de Control.

Jerarquía de los operadores relacionales y lógicos

```
1. ()
2. !
3. <, <=, >, >=
4. ==, !=
                    Ejemplo:
5. y
                        1. !(10 < 9) \circ 3 <= 4
6. o
                        2. !Falso o 3 <= 4
                        3. cierto o 3 \le 4
                        4. cierto o cierto --→ cierto
```

Práctica

A. DETERMINE EL RESULTADO:

```
entero i flotante f caracter c = 'q'

f = 7  i = 4

1) f > 5

2. i <= 3

3. (i+f) <= 10

4.(f < 11) y (i > 100)

5.((c != 'p') o (i + f) <= 10)

6.!(f > 5)

7. !(i > (f + 1))
```

DETERMINE EL RESULTADO SI

:

$$i = 8 \ j = 5$$

 $x = 0.005$ $y = -0.01$
8. $(i > 0) \ Y \ (j < 5)$
9. $(x > 0) \ Y \ (i > 0) \ O \ (j < 5)$
10. $(3 * i - 2 * j) < 10$

PRÁCTICA

B. CONSTRUIR EXPRESIONES RELACIONALES Y/O LÓGICAS

Declare las variables en cada caso y construya la expresión.

- 1. Evaluar si un auto rodó 5 kilómetros
- 2. Determinar que un saco de arena pesa más de 180 libras.
- 3. Evaluar que sexo es F ó M y la edad entre 18 y 30 años ?

2. Sentencia Si

Realiza una comparación y luego ejecu ta una de dos acciones dependiendo del resultado (verdadero o falso) de la condición.

Existen 3 instrucciones alternativas básicas:

- 1. Alternativa Simple
- 2. Alternativa Doble
- 3. Alternativa Múltiple

2.1 Alternativa simple

Evalúa una expresión lógica y ejecuta una acción(o

grupo de acciones) si ésta es

cierta y no hace nada si es falsa.

Formato:

```
si (condición )
{
  instrucción(es);
}
```


Ejemplo:

```
entero num;
imprimir("Ingrese un número");
leer(num);
-----
si (num < 1000)
  imprimir( num);
costo = costo + num;
-----
```

Si hay más de una instrucción a ejecutarse, Recordar encerrar entre corchetes.

Ejemplo:

```
flotante a, b, c;
si (b > 0)
{
    c = a/b;
    imprimir("El cociente = ", c);
}
```

2.2 Alternativa Doble:

Ejecuta una acción (o grupo de acciones) si la

expresión es cierta y otra

acción (o grupo) si es falsa.

Formato:

```
si(expresión )
{ sentencias; }
```

de otro modo

{ sentencias; }

Ejemplo 1:

```
si (x==7)
  imprimir(" Valor igual ");
de otro modo
  imprimir("Desigual ");
a = b + x;
```

Ejemplo 2:

```
si (radio>0)
{
  longitud=2*pi*radio;
  imprimir(" Longitud es:
    ",longitud);
  }
  de otro modo
  imprimir("No se puede calcular")
```

Prof. Mitzi Murillo de Velásquez Msc. U.T.P.

2.3 Alternativa Múltiple Si De Otro ModoSi De otroModo

Permite introducir más de una expresión de comparación. Si la primera condición no se cumple, se compara la segunda y así sucesivamente. En el caso de que no se cumpla ninguna de las comparaciones se ejecutan las sentencias correspondientes al **DeOtroModo**.

```
si(expresión) {
    Grupo de sentencias;}
    de otroModo Si (expresión) {
        Grupo2 de sentencias;}
    de otro Modo si(expresión) entonces{
        Grupo3 de sentencias;}
    ...
    de otro Modo{
        Grupo_n de sentencias;}
```

```
entero result;
result = 0;
si (val > val2)
   result = +1;
de otro modo si(val < val2)
      result = -1;
de otro modo
      result = 0;
imprimir (result);
```

EJEMPLO

2. ANALISIS y DISEÑO

ENTRADA	Nombre de estudiante(<u>nomb_e</u>), promedio, 70
PROCESO	Determinar promedio > 70
SALIDA	nomb_e_ "mensaje".

1. DEFINICION DEL PROBLEMA 1

Elabore un algoritmo que recibe el nombre y el promedio de nota de un estudiante. Imprima el nombre y el mensaje "Aprobado" en caso de que éste sea mayor que 70.

3.1 ALGORITMO

Pseudocódigo							
// Se evalúa si un estudiante tiene promedio de pase							
Algoritmo Promedio							
{							
//Area de declarativas							
cadena nomb e;							
flotante promedio;							
//Bloque de instrucciones							
1. imprimir("Nombre del estudiante: "); 2.leer (nomb_e);							
3. imprimir("Ingrese el promedio: ");							
4.leer (promedio);							
/* Evaluando nota de pase*/							
5. si (promedio > 70)							
5.1. Imprimir(nomb_e, ", usted fue aprobado");							
]}							
6. imprimir ("Terminamos");							

3.2 PRUEBA DE ESCRITORIO

	variables	en memoria	Datos de prueba juan y 75	
PASOS	nomb_e	promedio		PANTALLA
1	Juan	75		Nombre del estudiante:: Juan Ingrese el promedio:: 75.00
2			promedio > 70 75 > 70 Cierto	

```
13
    // Programa Principal
14
    int main ()
15 ⊟{
16
      // Bloque de Declarativas
17
        float promedio;
18
        char nombre [20];
       /*----*/
19
20
       cout<<"Introduzca Nombre del estudiante : ";
21
       cin.getline(nombre, 20);
22
       cout<<"Ingrese el promedio : ";
23
       cin>>promedio;
24
       if (promedio > 70)
25
         cout<<nombre <<", usted fue aprobado"<<"\n\n";
26
       cout<<"Terminamos";
27
    qetch();
28
    return 0;
29
30
```

DEFINICIÓN DEL PROBLEMA 2

Construya un algoritmo que lea dos valores enteros y despliegue en la salida el mayor d ellos.

2. ANALISIS y DISEÑO

ENTRADA	Dos números (nu1, nu2)
PROCESO	Determinar número mayor (nu1 > nu2)
SALIDA	valor

3.1 Algoritmo

// Se evalúan dos números para determinar el mayor Algoritmo Mayor IlÁrea de declarativas entero nu1, nu2;

//Bloque de instrucciones

```
1. imprimir("Ingrese numero 1: ");
  2.leer (nu1);
  3. imprimir("Ingrese numero 2: ");
  4.leer (nu2);
  /* Evaluando el mayor*/
       si (nu1 > nu2)
   5.1. mayor = n1;
         de otro modo
    5.2 \text{ mayor} = \text{nu2}
6. imprimir("Valor mayor es: ", mayor);
```

3.2 Prueba de Escritorio

Se prueba con nu1= 19 y nu2=25

	Variab mem				
PASOS	nu1	nu2	mayor		PANTALLA
1	19	25			Ingrese numero 1: 19 Ingrese numero 2: 25
2			25	nu1 > nu2 19 > 25 Falso	
3					Valor mayor es: 25

Prof. Mitzi Murillo de Velásquez Msc. U.T.P.

PRÁCTICA

PRACTICA

- 1. Determinar si un alumno aprueba a reprueba un curso, sabiendo que aprobara si su promedio de tres calificaciones es mayor o igual a 70; reprueba en caso contrario. Imprima la nota y el mensaje.
- 2. Leer un número entero, encontrar el valor absoluto e imprimir el número con su valor absoluto.
- 3. Leer dos números a y b y evaluarlos. Si a es menor que b, multiplicar a * 10, imprimir el contenido y almacenarlo en a, si no se cumple sumarle b a a e imprimir ambos valores.
- **4**. Leer un número y determinar si el número es positivo, si lo es imprimir "POSITIVO", si es negativo imprimir "NEGATIVO", si es cero imprimir "SIN VALOR".
- **5**. Elaborar un programa que permita que una variable llamada A tome el mayor valor entre las variables B y C. Imprima el resultado.