

Unsupervised Learning of Human Actions Using Spatial-Temporal Words

Juan Carlos Niebles^{1,2}, Hongcheng Wang¹, Li Fei-Fei¹

¹University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA

²Universidad del Norte, Barranquilla, Colombia

Summary

Problem statement: identifying and localizing different human actions in video sequences with moving background and moving camera.

Contributions:

- Unsupervised learning of actions using "bag of video words" representation
- Multiple action localization and categorization in a single video.
- Best reported performance on standard dataset.

Training data

- KTH human motions data (6 classes)
- SFU figure skating data (3 classes)

Feature extraction

- Separable linear filters (2D Gaussian + 1D) | Gabor filters)
- A small video cube is extracted around each interest point

Feature representation

Feature description:

Histogram of brightness gradient

Obtaining Codebook:

K-means clustering of video word descriptors

Representation:

Histogram of video words from the codebook

<u>Model</u>

We deploy a pLSA model for video analysis.

d: input video z: action category w: video word

$$P(d_j, w_i) = P(d_j)P(w_i \mid d_j)$$

 $P(w_i|d_i) = \sum_{i=1}^{n} P(z_k|d_i)P(w_i|z_k)$ K = Number of ActionCategories

Classification

Given a new video and the learnt model, we can classify it as belonging to one of the action categories.

$$P(w|d_{test}) = \sum_{k=1}^{K} P(z_k|d_{test}) P(w|z_k)$$

action category = arg max $P(z_k \mid d_{test})$

Exp I: 6-action classes of KTH <u>dataset</u>

Testing with the Caltech dataset

Performance:

walking	.79	.01	.14	.00	.06	.00	Method
running	.01	.88	.11	.00	.00	.00	
		_					Our meth
jogging	.11	.36	.52	.00	.01	.00	Dollar et
handwaving	.00	.00	.00	.93	.01	.06	Schuldt e
							Ke et al.
handclapping	.00	.00	.00	.00	.77	.23	Doob
boxing	.00	.00	.00	.00	.00	1.00	BestMulti
	Walkin	MUM	joggin	handw	hande	poxing	• Unla
			,)	7	. (,	/ (C)	

Method	Recognition Accuracy %				
Our method	81.50				
Dollar et al.	81.17				
Schuldt et al.	71.72				
Ke et al.	62.96				

- Performance
- tiple Actions
- abeled training

Localization

Given a new video, we can localize multiple motions:

Exp II: 3-action classes of

Only the words assigned to the most likely action category are shown.

Long and complex videos

3-class model: Results on a long video sequence

6-class model: Results on a complex natural video

Ref: [1] J.C. Niebles, H. Wang, L. Fei-Fei. Unsupervised Learning of Human Actions Using Spatial-Temporal Words. *Submitted*. 2006. [2] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, 1999.