CLAIMS

What is claimed is:

A compound of formula I, or a pharmaceutically acceptable salt
 thereof,

ı

10

wherein:

$$R_4$$
- R_2 N N N N N is selected from the group consisting of

$$R_{2}$$
 R_{3}
 R_{4}
 R_{6}
 R_{6}
 R_{3}
 R_{4}
 R_{6}
 R_{6}
 R_{4}
 R_{6}
 R_{6}
 R_{4}
 R_{6}
 R_{6}
 R_{4}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}

15

 R_1 , R_2 , R_3 , R_4 are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, C_2 - C_6 alkynyl, halogen, CN, phenyl, nitro, OC(O) R_{15} , C(O) R_{15} , C(O) R_{16} , C(O) $R_{17}R_{18}$, OR₁₉, SR₂₀ and NR₂₁R₂₂;

20

 R_{15} , is independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl and C_4 - C_6 cycloalkenyl;

 R_{16} , R_{19} , and R_{20} are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_{1-6} alkyl substituted with one to three halogen atoms, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_3 - C_6 alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the oxygen or sulfur to which R_{16} , R_{19} , or R_{20} is attached;

R₁₇ and R₁₈ are each independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₄-C₆ cycloalkenyl, and C₃-C₆ alkynyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C₃-C₆ alkenyl or the carbon-carbon triple bond of said C₃-C₆ alkynyl are not the point of attachment to the nitrogen to which R₁₇ and R₁₈ is attached;

15 R₂₁ and R₂₂ are each independently selected from the group consisting of H, OH, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₅-C₆ cycloalkenyl, C₃-C₆ alkynyl, and C(O)R₂₃; provided the carbon atoms which comprise the carbon-carbon double bond of said C₃-C₆ alkenyl, C₄-C₆ cycloalkenyl, or the carbon-carbon triple bond of said C₃-C₆ alkynyl are not the point of attachment to the nitrogen to which R₂₁ and R₂₂ is attached;

 R_{23} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_2 - C_6 alkynyl;

25 R_5 is $(O)_m$, wherein m is 0 or 1;

n is 1 or 2;

5

R₆ is selected from the group consisting of H, C₁-C₆ alkyl,

C₃-C₆ cycloalkyl, C₄-C₆ cycloalkenyl, C(O)R₂₄, C(O)OR₂₅, C(O)NR₂₆R₂₇,

C₃-C₆ alkenyl, and C₃-C₆ alkynyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C₃-C₆ alkenyl or the

carbon-carbon triple bond of said C₃-C₆ alkynyl are not the point of attachment to the nitrogen to which R₆ is attached;

R₂₄ is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₄-C₆ cycloalkenyl, and C₃-C₆ alkynyl;

10

15

 R_{25} is selected from the group consisting of C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_3 - C_6 alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the oxygen to which R_{25} is attached;

 R_{26} and R_{27} are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl, C_5 - C_6 cycloalkenyl, and C_3 - C_6 alkynyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C_3 - C_6 alkenyl, C_5 - C_6 cycloalkenyl, or the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the nitrogen to which R_{26} and R_{27} are attached;

R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₄-C₆ cycloalkenyl, C₂-C₆ alkynyl, CR₂₈R₂₉OR₃₀, C(O)R₃₁, CR₃₂(OR₃₃)OR₃₄, CR₃₅NR₃₆R₃₇, C(O)OR₃₈, C(O)NR₃₉R₄₀, CR₄₁R₄₂F, CR₄₃F₂ and CF₃;

25 R₂₈, R₂₉, R₃₀, R₃₁, R₃₂, R₃₅, R₄₁, R₄₂ and R₄₃ are each independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₄-C₆ cycloalkenyl, C₂-C₆ alkynyl and C(O)R₄₄;

R₃₃, R₃₄ and R₃₈ are each independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₄-C₆ cycloalkenyl, and C₃-C₆ alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C₃-C₆ alkynyl are not the point of attachment to the oxygen to which R₃₄ and R₃₈ are attached;

 R_{36} and R_{37} are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_3 - C_6 alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the nitrogen to which R_{36} and R_{37} are attached;

 R_{39} and R_{40} are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_3 - C_6 alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the nitrogen to which R_{39} and R_{40} are attached; R_{44} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, and C_2 - C_6 alkynyl;

15 Ar is selected from the group consisting of

5

10

A₁, A₂, A₃, A₄, A₅, B₁, B₂, B₃, B₄, C₁, C₂, C₃, D₁, D₂, and D₃ are each independently selected from the group consisting of H, CN, halogen, NO₂, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₄-C₆ cycloalkenyl, C₂-C₆ alkynyl, OR₄₅, NR₄₆R₄₇, SR₄₈, N₃ and CH(-N=N-)-CF₃;

 R_{45} is selected from the group consisting of H, C_1 - C_6 alkyl,

C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₄-C₆ cycloalkenyl and C₃-C₆ alkynyl; provided the carbon atoms which comprise the carbon-carbon triple bond of said C₃-C₆ alkynyl are not the point of attachment to the oxygen to which R₄₅ is attached;

 R_{46} and R_{47} are each independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl, C_5 - C_6 cycloalkenyl, C_3 - C_6 alkynyl and $C(O)R_{50}$; provided the carbon atoms which comprise the carbon-carbon double bond of said C_5 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, or the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of

 R_{48} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_4 - C_6 cycloalkenyl, C_3 - C_6 alkynyl and $C(O)R_{49}$; provided the carbon atoms which comprise the carbon-carbon triple bond of said C_3 - C_6 alkynyl are not the point of attachment to the sulfur to which R_{48} is attached;

attachment to the nitrogen to which R₄₆ and R₄₇ are attached;

R₄₉ is C₁-C₆ alkyl or C₃-C₆ cycloalkyl; and

15

10

5

 R_{50} is selected from the group consisting of H, C_1 - C_6 alkyl, and C_3 - C_6 cycloalkyl.

2. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i and 5ai as identified below:

Compd #	n	R
5a	2	$R_{7-13} = H, R_{14} = (R)$ -Me
5b	2	$R_{7-8} = R_{10-14} = H, R_9 = Et$
5c	1	$R_{7-8} = R_{10-14} = H, R_9 = Et$
5d	2	R ₇₋₁₄ = H
5e	2	$R_{7-8} = R_{10-14} = H, R_9 = Me$
5f	2	$R_{7-13} = H, R_{14} = (S)$ -Me
5g	2	R ₇₋₁₃ = H, R ₁₄ = Et
5h	2	$R_{7-12} = H, R_{13} = R_{14} = Me$
5i	2	$R_{7-8} = R_{10-13} = H, R_9 = R_{14} = Me$
5ai	2	$R_{7-8} = R_{9-13} = H, R_{14} = Me$

3. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 5j, 5k and 5l as identified below:

5

O Ar N R₁₄

Compound #	R ₁₄	Ar
5j	Н	, k
5k	(<i>R</i>)-Me	, k N
51	(<i>R</i>)-Me	O Br

4. A compound of claim 1, or a pharmaceutically acceptable salt thereof, having the formula 5m identified below:

5

5. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 8a, 15a, 16a, 16d and 16e identified below:

10

Compound #	R_2
8a	Н
15a	NO ₂
16a	OMe
16d	OEt
16e	SPr

- 6. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 9a, 9b, 10a, 11a, 11b, 11c, 12a, 14a, 17a-17f, 18a, 19a and 20a
- 15 identified below:

Compound #	R ₂	R ₄	R ₁₄
9a	CI	H	<i>(R)</i> -Me
9b	Н	Cl	(R)-Me
10a	NO ₂	F	(R)-Me
11a	H (when R ₄ =Me), Me (when R ₄ =H)	Me (when R ₂ =H), H (when R ₂ =Me)	(R)-Me
11b	H (when R ₄ =Ph), Ph (when R ₄ =H)	Ph (when R ₂ =H), H (when R ₂ =Ph)	<i>(R)</i> -Me
11c	H (when R ₄ =vinyl), Vinyl (when R ₄ =H)	Vinyl (when R ₂ =H), H (when R ₂ =Vinyl)	<i>(R)</i> -Me
12a	Н	CN	(R)-Me
14a	Н	OH	(R)-Me
17a	OMe	H	(R)-Me
17d	OMe	Н	(S)-Me
17e	OMe	Н	Me
17b	OCH₂CF ₃	Н	<i>(R)</i> -Me
17c	O- <i>i</i> -Pr	Н	<i>(R)</i> -Me
17f	Н	PrS	(R)-Me
18a	NO ₂	Н	<i>(R)</i> -Me
19a	NHOH	Н	(R)-Me
20a	NH ₂	Н	(R)-Me

- 7. A compound of claim 6 or a pharmaceutically acceptable salt thereof, wherein R₂ is –OMe, R₄ is hydrogen, and R₁₄ is (R)-methyl.
 - 8. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 13a, 21a, and 21 b identified below:

- 9. A compound of claim 1, or a pharmaceutically acceptable salt wherein R₂, R₃ and R₄ are each independently selected from the group consisting of H, -OCH₃, -OCH₂CF₃, -OiPr, -OnPr, halogen, CN, NO₂, C₁-C₆ alkyl, NHOH, NH₂, Ph, SR₂₀, and N(CH₃)₂.
- 10. A compound of claim 9, or a pharmaceutically acceptable salt wherein n is 2; R₁ is selected from the group consisting of H, C₁-C₆ alkyl and CH₂CH=CH₂; and R₅ is (O)_m wherein m is 0.
- 11. A compound of claim 10, or a pharmaceutically acceptable salt
 15 thereof, wherein R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each independently H or CH₃, provided one or two of the members of the group R₇-R₁₄ are CH₃ and the remaining members of the group R₇-R₁₄ are H.
- 12. A compound of claim 11, or a pharmaceutically acceptable salt
 20 thereof, wherein one of the members of the group A₁, A₂, A₃, A₄, A₅, B₁,
 B₂, B₃, B₄, C₁, C₂, C₃, D₁, D₂, and D₃ is selected from the group consisting

of hydrogen, halogen and amino and the remaining members of the group A₁, A₂, A₃, A₄, A₅, B₁, B₂, B₃, B₄, C₁, C₂, C₃, D₁, D₂, and D₃ are hydrogen.

13. A compound of claim 1, or a pharmaceutically acceptable saltthereof, of the Formula below:

wherein:

10

R₂ is selected from the group consisting of H, -OCH₃, -OCH₂CF₃, -OPr, halogen, CN, NO₂, and NHOH;

R₄ is selected from the group consisting of H, -halogen, -CN, and hydroxy; and

R₁₄ is CH₃ or H.

- 14. A compound of claim 1, wherein R₄ is selected from the group consisting of OH, CN, halogen, -OCOCH₃ and C₁-C₆ alkyl.
 - 15. A compound of claim 1, or a pharmaceutically acceptable salt thereof, of the formula identified below:

wherein:

5 R₂ is selected from the group consisting of H, F, Cl, Br, OMe, CN, and OH;

 R_4 is selected from the group consisting of H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, Cl, OMe, CN, OH, C(O)NH₂,

10 C(O)NHMe, C(O)NHEt, phenyl and -C(O)CH_{3:}

n is 2;

R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each independently H or CH₃, provided 0-2 of the members of the group R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ may be CH₃ and the remaining members of the group R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are H; and

R₆ is H or CH₃.

20

16. A compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compounds 5p, 5r, 5s, 5q, 5t, 5u, 5v and 27c identified below:

Compound #	R ₄	R ₁₄	R ₂
5p	Н	Н	Н
5r	Н	<i>(R)</i> -Me	Н
5s	Н	(S)-Me	Н
5q	Н	Me	Н
5t	CI	Н	Н
5u	CI	<i>(R)</i> -Me	Н
5v	OMe	<i>(R)</i> -Me	Н
27c	NMe ₂	(R)-Me	Н
5an	CI	Н	OMe
5ao	OMe	H	OMe
5ap	OMe	Me	OMe

17. A compound of claim 1, or a pharmaceutically acceptable salt5 thereof of formula:

wherein:

 R_4 is selected from the group consisting of H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, Cl, OMe, CN, OH, C(O)NH₂, C(O)NHMe, C(O)NHEt, phenyl and -C(O)CH₃;

5 n is 2;

 R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} are each independently H or CH_3 , provided 0-2 of the members of the group R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} may be CH_3 and the remaining members of the group R_8 , R_9 , R_{10} ,

 $10 - R_{11}$, R_{12} , R_{13} , and R_{14} are H; and

R₆ is H or CH₃.

18. A compound of claim 1, or a pharmaceutically acceptable salt
 15 thereof, selected from the group consisting of compounds 5w, 5x, 5y, 5z and 5ak identified below:

Compound #	R ₃	R ₄	R ₆
5w	Н	Н	Н
5x	Н	Me	Н
5y	Н	CI	Н
5z	Н	ОМе	Me
5ak	CI	Ме	Н

- 19. A compound of claim 15 wherein R_4 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} and R_{14} are H; and R_2 is –OMe.
- 5 20. A compound of claim 15 wherein R_2 , R_4 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} and R_{14} are H.
 - 21. A compound of claim 1, or a pharmaceutically acceptable salt thereof, having the formula

10

wherein:

R₂ is H, F, Cl, Br, OMe, CN, or OH;

15

 R_4 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, C_1 , C_6 CN, C_6 CN, C_6 CN, C_7 CONHMe, C_8 CONHMe, C_8 CONHEt, C_8 CONHET, C_8 CONHMe, C_8 CONHET, C_8

n is 2;

20

 R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} and R_{14} are each independently H or CH_3 , provided up to two of these substituents may be methyl;

R₁ is hydrogen;

5

R₅ is unsubstituted; and

R₆ is hydrogen or methyl.

10 22. A compound of claim 1 or pharmaceutically acceptable salts thereof, of the Formula

wherein:

15

 R_2 is H, -OCH₃, -OCH₂CF₃, -OPr, halogen, CN, NO₂, or NHOH;

R₄ is H, -halogen, -CN, or hydroxy;

One or two members of R₇-R₁₄ is methyl and the remaining members are hydrogen;

n is 2;

25 R₁ is hydrogen;

R₅ is (O)_m, where m is O; and

R₆ is hydrogen, methyl, or allyl.

- 23. A pharmaceutical composition which comprises an antiviral effective amount of a compound of Formula I, including pharmaceutically acceptable salts thereof, as claimed in any of claims 1-22.
 - 24. The pharmaceutical composition of claim 23, useful for treating infection by HIV, which additionally comprises an antiviral effective amount of an AIDS treatment agent selected from the group consisting of:
- 10 (a) an AIDS antiviral agent;
 - (b) an anti-infective agent;
 - (c) an immunomodulator; and
 - (d) HIV entry inhibitors.
- 15 25. A method for treating mammals infected with a virus, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, including pharmaceutically acceptable salts thereof, as claimed in any of claims 1-22.

20

25

5

- 26. The method of claim 25 comprising administering to said mammal an antiviral effective amount of a compound of Formula I in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and HIV entry inhibitors.
- 27. The method of claims 25 and 26 wherein the virus is HIV.