Projet d'aide à la décision

Paul Adenot, Etienne Brodu, Maxime Gaudin, Monica Golumbeanu, Yoann Rodière $5\ {\rm octobre}\ 2010$

Table des matières

I	Programmation Linéaire monocritère	3
1	Données	4
	1.1 Contraintes	4
2	Objectif: Comptable	5
	2.1 Modélisation	
	2.2 Décisions	5
3	Objectif: Responsable d'atelier	6
	3.1 Modélisation	
	3.2 Décisions	6
4	Objectif : Responsable commercial	7
	4.1 Modélisation	7
	4.2 Décisions	7

Résumé

Première partie

Programmation Linéaire monocritère

Hexanome 4203 1 DONNÉES

1 Données

Soient:

- T la matrice des temps unitaires d'usinage d'un produit sur une machine (minutes) (C.f. Table 1).
- Q la matrice de quantité de matières premières par produit (C.f. Table 2).
- S la matrice des quantité maximum de matières premières (C.f. Table 3).
- V la matrice des prix de vente des produits finis (C.f. Table 4)
- A la matrice des prix d'achat des matières premières.
- C la matrice des coûts horaires des machines (C.f. Table 5).

1.1 Contraintes

Considérons:

- -7 machines $j \in \{1, 2, 3, 4, 5, 6, 7\}$
- 6 produits $i \in A, B, C, D, E, F$
- $-n_i$ le nombre de d'unités i fabriquées

L'ensemble de la chaine de production est régie par les contraintes suivantes :

- Le nombre de produits usinés : Il doit être non nul

$$\forall i, n_i \ge 0 \tag{1}$$

- La quantité de matières premières : Elle doit être positive.

$$\forall i, S_i \ge 0 \tag{2}$$

– Le temps d'occupation de chaque machine i: Il doit être inférieur au temps de travail

$$\sum_{j=A}^{F} T_{j,i} \cdot n_j \le 2.8.60.5 = 4800 \tag{3}$$

soit un temps de travail en deux huit, 5 jours par semaine.

- L'utilisation de chaque matière première i : Elle doit être inférieure au stock

$$\sum_{j=A}^{F} Q_{i,j}.n_j \le S_i \tag{4}$$

2 Objectif: Comptable

Le comptable cherche à maximiser les bénefices sous les contraintes définies précedemment.

2.1 Modélisation

Soit n_i le nombre de produit i fabriqué. Le coup fixe de production n'influant pas sur notre décision, nous ne considérerons que le coût variable de production. Il est défini par la formule suivante :

$$CV(i) = n_i * \left(\sum_{j=1}^{7} T_{i,j} \cdot \frac{C_{i,j}}{60} + \sum_{k=1}^{3} Q_{k,i} \cdot A_k\right)$$

Le chiffre d'affaire par produit est :

$$CA(i) = n_i.V_i$$

Par conséquent le bénefice par produit se calcule de la manière suivante :

$$B(i) = CA(i) - CV(i)$$

$$B(i) = n_i * \left(V_i - \sum_{j=1}^{7} T_{i,j} \cdot \frac{C_{i,j}}{60} + \sum_{k=1}^{3} Q_{k,i} \cdot A_k\right)$$

2.2 Décisions

3 Objectif: Responsable d'atelier

Le responsable d'atelier cherche à maximiser le nombre d'unités (toutes catégories confondues) produites sous les contraintes définies précedemment.

3.1 Modélisation

Soit N le nombre de produits fabriqués.

$$N = \sum_{i=A}^{F} \tag{5}$$

3.2 Décisions

4 Objectif: Responsable commercial

Le responsable commercial cherche à équilibrer le nombre d'unités de A, B, C (famille 1) et D, E, F (famille 2) afin que ces deux familles contiennent le même nombre d'unités (à ϵ unité(s) près).

4.1 Modélisation

Soient:

- $-N_1$ le nombre de produits de la famille 1 fabriqués.
- $-\ N_2$ le nombre de produits de la famille 2 fabriqués.

$$\begin{aligned} |N_1 - N_2| & \leq & \epsilon \\ \Leftrightarrow -\epsilon \leq N_1 - N_2 & \leq & \epsilon \\ \Leftrightarrow -\epsilon \leq \sum_{i=A}^C n_i - \sum_{j=D}^F n_j & \leq & \epsilon \end{aligned}$$

4.2 Décisions