

ECE 528 – Introduction to Random Processes in ECE Lecture 16: Sums of Random Variables Laws of Large Numbers

Bijan Jabbari, PhD
Dept. of Electrical and Computer Eng.
George Mason University
Fairfax, VA 22030-4444, USA
bjabbari@gmu.edu
http://cnl.gmu.edu/bjabbari

December 2, 2019

Note

- These slides cover material partially presented in class. They are provided to help students to follow the textbook. The material here are partly taken from the book by A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 3rd edition, whom I am thankful.
- There are many other topics which have been covered in class using the blackboard as step-by-step derivation and detailed discussions were needed.

Sums of Random Variables

• Let X_1 , X_2 ,..., X_n be a sequence of random variables, and let S_n be their sum:

$$S_n = X_1 + X_2 + ... + X_n$$

- S_n is a sequence of random variables
- What happens to CDF of S_n as n grows?
- How does sequence of S_n behave with n?

Mean of Sum of Random Variables

Regardless of statistical dependence

$$E[X_1 + X_2 + ... + X_n] =$$

$$E[X_1 + X_2 + \cdots + X_n] = E[X_1] + \cdots + E[X_n].$$

Variance of a Sum of RVs

$$VAR(X_1 + X_2 + ... + X_n) =$$

$$VAR(X_1 + X_2 + \dots + X_n) = E \left\{ \sum_{j=1}^n (X_j - E[X_j]) \sum_{k=1}^n (X_k - E[X_k]) \right\}$$

$$= \sum_{j=1}^n \sum_{k=1}^n E[(X_j - E[X_j])(X_k - E[X_k])]$$

$$= \sum_{k=1}^n VAR(X_k) + \sum_{\substack{j=1 \ j \neq k}}^n \sum_{k=1}^n COV(X_j, X_k).$$

• If $X_1 + X_2 + ... + X_n$ are independent random variables then $COV(X_i, X_k) = 0$ for $j \neq k$ and

$$VAR(X_1 + X_2 + ... + X_n) = VAR(X_1) + ... + VAR(X_n)$$

Sum of IID RVs

The mean and variance of the sum of n independent, identically distributed (iid) random variables are:

$$E[S_n] = E[X_1] + ... + E[X_n] = n\mu$$

$$VAR[S_n] = n VAR[X_i] = n\sigma^2$$

Sum of *n* Independent RVs

- Let X₁, X₂, ..., X_n be n independent RVs.
- Then $S_n = X_1 + X_2 + ... + X_n$ has characteristic function:

$$\Phi_Z(\omega) = E[e^{j\omega Z}]$$

$$= E[e^{j\omega(X+Y)}]$$

$$= E[e^{j\omega X}e^{j\omega Y}]$$

$$= E[e^{j\omega X}]E[e^{j\omega Y}]$$

$$= \Phi_X(\omega)\Phi_Y(\omega),$$

Sample Mean

- Suppose X is a RV for which the mean $E[X] = \mu$ is unknown.
- $X_1,...,X_n$ denote *n* independent, repeated measurements of X.
- The **sample mean** is used to estimate E[X]:

$$M_n = \frac{1}{n} \sum_{j=1}^n X_j$$

- How good is M_n as estimator for E[X]?
- What happens to M_n as n becomes large?

©2019

Mean & Variance of Sample Mean

$$E[M_n] = E\left[\frac{1}{n}\sum_{j=1}^n X_j\right] = \frac{1}{n}\sum_{j=1}^n E[X_j] = \mu,$$

Sample mean is an unbiased estimator for μ

$$VAR[M_n] = \frac{1}{n^2} VAR[S_n] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

Variance of sample mean decreases with n.

Weak Law of Large Numbers

$$P[|\mathcal{M}_n - E[\mathcal{M}_n]| \ge \varepsilon] \le \frac{VAR[\mathcal{M}_n]}{\varepsilon^2}$$

• For any choice of error ε and probability $1-\delta$, can select the number of samples n so that M_n is within ε of the true mean with probability $1-\delta$ or greater.

Let $X_1,..., X_n$ be a sequence of iid RVs with finite mean $E[X] = \mu$, then for $\varepsilon > 0$,

$$\lim_{n\to\infty} P[|M_n - \mu| < \varepsilon] = 1$$

©2019 ECE528 10

Example: What Weak Law Says

FIGURE 7.1

Convergence of sequence of sample means to E[X].

Strong Law of Large Numbers

Let $X_1,..., X_n$ be a sequence of iid RVs with finite mean $E[X] = \mu$, then for $\varepsilon > 0$,

$$P[\lim_{n\to\infty} \left| M_n - \mu \right| < \varepsilon] = 1$$

Gaussian RVs: They're Everywhere!

- In nature, many macroscopic phenomena result from summation of numerous independent, microscopic processes.
- In many man-made problems, the averages often consist of the sum of independent RVs.
 - Let $X_1, X_2, ..., X_n$ be a sequence of iid RVs with finite mean μ and finite variance σ^2 , and let S_n be their sum:

$$S_n = X_1 + X_2 + ... + X_n$$

As n becomes large the cdf of a properly normalized S_n approaches that of a Gaussian RV.

Central Limit Theorem

 Let Z_n be the zero-mean, unit-variance random variable defined by

$$Z_{n} = \frac{S_{n} - n\mu}{\sigma\sqrt{n}}$$

Central Limit Theorem

$$\lim_{n \to \infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx$$

 The summands X_j can have any distribution as long as they have a finite mean and finite variance.

Proof of Central Limit Theorem

$$Z_{n} = \frac{S_{n} - n\mu}{\sigma\sqrt{n}} = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^{n} (X_{k} - \mu)$$

$$\Phi_{Z_{n}}(\omega) = E[e^{j\omega Z_{n}}]$$

$$= E\left[\exp\left\{\frac{j\omega}{\sigma\sqrt{n}} \sum_{k=1}^{n} (X_{k} - \mu)\right\}\right]$$

$$= E\left[\prod_{k=1}^{n} e^{j\omega(X_{k} - \mu)/\sigma\sqrt{n}}\right]$$

$$= \left\{E\left[e^{j\omega(X - \mu)/\sigma\sqrt{n}}\right]^{n}$$

$$= \left\{E\left[e^{j\omega(X - \mu)/\sigma\sqrt{n}}\right]\right\}^{n}$$

©2019 ECE528 15

Central Limit Theorem (cont'd)

$$E\left[e^{j\omega(X-\mu)/\sigma\sqrt{n}}\right]$$

$$=E\left[1+\frac{j\omega}{\sigma\sqrt{n}}(X-\mu)+\frac{(j\omega)^{2}}{2!n\sigma^{2}}(X-\mu)^{2}+R(\omega)\right]$$

$$=1+\frac{j\omega}{\sigma\sqrt{n}}E\left[(X-\mu)\right]+\frac{(j\omega)^{2}}{2!n\sigma^{2}}E\left[(X-\mu)^{2}\right]+E\left[R(\omega)\right]$$

$$E\left[e^{j\omega(X-\mu)/\sigma\sqrt{n}}\right]=1-\frac{\omega^{2}}{2n}+E\left[R(\omega)\right]$$

$$\Phi_{Z_n}(\omega) = \left\{ 1 - \frac{\omega^2}{2n} \right\}^n \to e^{-\omega^2/2} \quad \text{as } n \to \infty$$

©2019 ECE528 16

Convergence of Sequences of Random Variables

Random Processes for Engineering Applications

Random Variables, Vectors, and Sequences as Mappings

- Mapping is deterministic
- Randomness is induced by ξ

Sequences of Random Variables

• Vector RV $\mathbf{X} = (X_1, X_2, ..., X_n)$ is a function that assigns a vector of real values to each outcome $\boldsymbol{\xi}$ from some sample space \boldsymbol{S} :

$$\mathbf{X}(\xi) = (X_1(\xi), X_2(\xi), ..., X_n(\xi))$$

- Randomness in **X** induced by randomness in the probability law governing selection of ξ .
- A sequence of random variables X is a function that assigns a countably infinite number of real values to each outcome ξ from sample space S:

$$\mathbf{X}(\xi) = (X_1(\xi), X_2(\xi), ..., X_n(\xi), ...)$$

Convergence of Sequences of RVs

 We are interested in a sequence of random variables (usually not iid) X₁, X₂,... that converges to some random variable X:

$$X_n \to X$$
 as $n \to \infty$

• What does convergence mean?

Example: Explicit Mapping of ξ

• Outcome ξ selected at random from the interval S = [0,1].

 $V_n(\xi) = \xi \left(1 - \frac{1}{n}\right)$

Sequences of functions of ξ

Example: Explicit Mapping of ξ

• Outcome ξ selected at random from the interval S = [0,1].

$$V_n(\xi) = \xi \left(1 - \frac{1}{n}\right)$$

Sequences of random variables

Sequence of random variables as a sequence of functions of ζ ECE528

Example: Urn Experiment

- Urn has 2 black balls and 2 white balls.
- At time n a ball is selected at random and color is noted.
- If # of balls of this color > # of balls of other color, the ball is put back; otherwise ball is left out.
- Let $X_n(\xi)$ be # of black balls after nth draw.

What is behavior of outcomes as n becomes large?

Convergence of Sequences of Numbers

- Suppose that each point in S, say ξ , produces a particular sequence of real numbers, x_1 , x_2 , ... x_n
- The sequence x_n converges to x if, given any $\epsilon > 0$, we can specify an integer N such that for all values of n beyond N we can guarantee that $|x_n x| < \epsilon$.

Convergence of Sequences of Numbers II

Cauchy criterion:

The sequence x_n converges if and only if, given $\epsilon > 0$, we can specify an integer N' such that for m and n greater than N', $|x_n - x_m| < \epsilon$.

Types of Convergence

■ **Sure Convergence:** The sequence of random variables $\{X_n(\xi)\}$ converges surely to the random variable $X(\xi)$ if the sequence of functions $X_n(\xi)$ converges to the function $X(\xi)$ as $n \to \infty$ **for all \xi in S**:

$$X_n(\xi) \to X(\xi)$$
 as $n \to \infty$ for all $\xi \in S$

• Almost-Sure Convergence: The sequence of random variables $\{X_n(\xi)\}$ converges almost surely to the random variable $X(\xi)$ if the sequence of functions $X_n(\xi)$ converges to the function $X(\xi)$ as $n \to \infty$ for all ξ in S, except possibly on a set of probability zero; that is, $P[\xi: X_n(\xi) \to X(\xi)] = 1$

Example: Explicit Mapping of ξ

$$V_n(\xi) = \xi \left(1 - \frac{1}{n}\right) \qquad \qquad V(\xi) = \xi$$

Example 7.17

Let $V_n(\zeta)$ be the sequence of random variables from Example 7.16. Does the sequence of real numbers corresponding to a fixed ζ converge?

From Fig. 7.8(a), we expect that for a fixed value ζ , $V_n(\zeta)$ will converge to the limit ζ . Therefore, we consider the difference between the *n*th number in the sequence and the limit:

$$|V_n(\zeta)-\zeta|=\left|\zeta\left(1-\frac{1}{n}\right)-\zeta\right|=\left|\frac{\zeta}{n}\right|<\frac{1}{n},$$

where the last inequality follows from the fact that ζ is always less than one. In order to keep the above difference less than ε , we choose n so that

$$|V_n(\zeta)-\zeta|<\frac{1}{n}<\varepsilon;$$

that is, we select $n > N = 1/\varepsilon$. Thus the sequence of real numbers $V_n(\zeta)$ converges to ζ .

Example: Urn Experiment

- Urn has 2 black balls and 2 white balls.
- At time n a ball is selected at random.
- If # of balls of this color > # of balls of other color, ball put back; otherwise ball left out.
- Let $X_n(\xi)$ be # of black balls after nth draw.
- Does sequence of random variables converge?

Sequences of Random Variables

 A sequence of random variables X is a function that assigns a countably infinite number of real values to each outcome ξ from sample space S:

$$\mathbf{X}(\xi) = (X_1(\xi), X_2(\xi), ..., X_n(\xi), ...)$$

• Almost-Sure Convergence: The sequence of random variables $\{X_n(\xi)\}$ converges almost surely to the random variable $X(\xi)$ if the sequence of functions $X_n(\xi)$ converges to the function $X(\xi)$ as $n \to \infty$ for all ξ in S, except possibly on a set of probability zero; that is,

$$P[\xi:X_n(\xi)\to X(\xi) \text{ as } n\to\infty]=1$$

Mean Square Convergence

• The sequence of random variables $\{X_n(\xi)\}$ converges in the mean square sense to the random variable $X(\xi)$ if

$$E[(X_n(\xi) \to X(\xi))^2] \to 0 \text{ as } n \to \infty$$

Denoted by (limit in the mean):

l.i.m.
$$X_n(\xi) \to X(\xi)$$
 as $n \to \infty$

- Mean square convergence occurs if the second moment of the error approaches zero as $n \rightarrow \infty$.
- Implies that as n increases, an increasing proportion of sample sequences are close to X.

Convergence in Probability

• The sequence of random variables $\{X_n(\xi)\}$ converges in probability to the random variable X (ξ) if, for any $\varepsilon > 0$,

$$P[|X_n(\xi) - X(\xi)| > \varepsilon] \to 0 \text{ as } n \to \infty$$

Mean square convergence implies convergence in probability since

$$P[|X_n(\xi)-X(\xi)|>\varepsilon]=P[(|X_n(\xi)-X(\xi)|^2|>\varepsilon^2]<\frac{E[(X_n-X)^2)}{\varepsilon^2}$$

Weak Law of Large Numbers

 Let X₁,..., X_n be a sequence of iid RVs with finite mean E[X] = μ and finite variance, then for large n, the sample mean is close to E[X] with high probability

$$P[|M_n = \mu| < \varepsilon] > 1 - \delta$$
 for $n > n_0$

 States that most sample sequences are close to E[X], but not that they necessarily remain close.

n

Example: Mean-square and Almost-sure Convergence

- Let $R_n(\xi)$ be the error introduced by a communication channel in nth transmission.
- Errors introduced as follows:
 - 1st transmission channel introduces an error
 - In next 2 transmissions, channel randomly selects one transmission to introduce an error. Other transmission is error free.
 - In next 3 transmissions, only one has error...
- Does the sequence of transmission errors converge, and if so, in what sense?

Example: Mean-square and Almost-sure Convergence (cont'd)

Example 7.21

Does the sequence $V_n(\zeta)$ in Example 7.18 converge in the mean square sense? In Example 7.18, we found that $V_n(\zeta)$ converges surely to ζ . We therefore consider

$$E[(V_n(\zeta)-\zeta)^2]=E\bigg[\bigg(\frac{\zeta}{n}\bigg)^2\bigg]=\int_0^1\bigg(\frac{\zeta}{n}\bigg)^2\,d\zeta=\frac{1}{3n^2},$$

where we have used the fact that ζ is uniformly distributed in the interval [0, 1]. As n approaches infinity, the mean square error approaches zero, and so we have convergence in the mean square sense.

Convergence in Distribution

• The sequence of random variables X_n with cdfs $\{F_n(x)\}$ converges in distribution to the random variable X with cumulative distribution F(x) if

$$F_n(x) \to F(x)$$
 as $n \to \infty$

for all x at which the cdf is continuous.

- Addresses convergence of cdf's, not of RVs
- Convergence in probability implies convergence in distribution
- Central limit theorem is an example of convergence in distribution.

Convergence Types

Lecture Summary

- Convergence in mean square sense and in probability do not address the convergence behavior of entire sequences, but rather the behavior of the ensemble of sequences at a large values of n.
- Mean square sense convergence implies convergence in probability
- Mean square convergence does not imply convergence almost surely and vice versa.
- Convergence in distribution does not address the behavior of sequences of random variables, but rather of their distribution functions.