$12n_{0343} (K12n_{0343})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2.35414 \times 10^{25} u^{37} + 6.36686 \times 10^{22} u^{36} + \dots + 1.08506 \times 10^{26} b + 7.17457 \times 10^{26},$$

$$-6.03496 \times 10^{25} u^{37} - 5.08818 \times 10^{25} u^{36} + \dots + 1.08506 \times 10^{26} a - 2.36548 \times 10^{27}, \ u^{38} + u^{37} + \dots + 48u - 10^{28} u^{38} + 48u - 2a - 5u - 2, \ u^2 + 2 \rangle$$

$$I_1^v = \langle a, b + v + 1, v^3 + 2v^2 + v + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 2.35 \times 10^{25} u^{37} + 6.37 \times 10^{22} u^{36} + \dots + 1.09 \times 10^{26} b + 7.17 \times 10^{26}, \ -6.03 \times 10^{25} u^{37} - 5.09 \times 10^{25} u^{36} + \dots + 1.09 \times 10^{26} a - 2.37 \times 10^{27}, \ u^{38} + u^{37} + \dots + 48u + 8 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.556188u^{37} + 0.468931u^{36} + \dots + 66.0065u + 21.8004 \\ -0.216959u^{37} - 0.000586775u^{36} + \dots - 20.1029u - 6.61215 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.773147u^{37} + 0.469518u^{36} + \dots + 86.1094u + 28.4126 \\ -0.216959u^{37} - 0.000586775u^{36} + \dots - 20.1029u - 6.61215 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.540457u^{37} + 0.513997u^{36} + \dots + 61.5142u + 18.9792 \\ 0.118184u^{37} - 0.103841u^{36} + \dots - 10.8806u - 1.99927 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.931000u^{37} - 0.423758u^{36} + \dots - 46.4113u - 16.9685 \\ 0.272358u^{37} + 0.0136024u^{36} + \dots - 4.22233u - 0.0113747 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.34851u^{37} - 0.494264u^{36} + \dots - 50.4295u - 19.4015 \\ 0.448295u^{37} + 0.0937407u^{36} + \dots + 2.84945u + 2.20997 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.237267u^{37} - 0.770027u^{36} + \dots - 6.76734u + 5.06203 \\ 0.216015u^{37} + 0.558969u^{36} + \dots + 14.6047u + 0.926935 \end{pmatrix}$$

- (ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 10u^{37} + \dots - 24u + 1$
c_2, c_5	$u^{38} + 4u^{37} + \dots + 4u - 1$
c_3	$u^{38} - u^{37} + \dots - 16u + 8$
c_4, c_7, c_8	$u^{38} + u^{37} + \dots + 48u + 8$
c_6, c_{11}	$u^{38} - 2u^{37} + \dots + u - 3$
<i>c</i> ₉	$u^{38} + 2u^{37} + \dots - 3029u - 7419$
c_{10}, c_{12}	$u^{38} + 8u^{37} + \dots + 85u + 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1	$y^{38} + 46y^{37} + \dots + 1128y + 1$	
c_2, c_5	$y^{38} - 10y^{37} + \dots + 24y + 1$	
c_3	$y^{38} - 53y^{37} + \dots + 896y + 64$	
c_4, c_7, c_8	$y^{38} + 31y^{37} + \dots - 512y + 64$	
c_6, c_{11}	$y^{38} - 8y^{37} + \dots - 85y + 9$	
c_9	$y^{38} + 120y^{37} + \dots - 2146915177y + 55041561$	
c_{10}, c_{12}	$y^{38} + 48y^{37} + \dots + 1091y + 81$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.053800 + 0.148639I		
a = -0.35198 - 1.75546I	12.2690 - 7.2289I	-0.96626 + 4.68407I
b = 0.976993 + 0.905951I		
u = -1.053800 - 0.148639I		
a = -0.35198 + 1.75546I	12.2690 + 7.2289I	-0.96626 - 4.68407I
b = 0.976993 - 0.905951I		
u = -0.057390 + 0.931497I		
a = 0.49812 + 1.63735I	0.10554 - 3.06762I	-6.46786 + 2.97828I
b = -0.893541 - 0.823917I		
u = -0.057390 - 0.931497I		
a = 0.49812 - 1.63735I	0.10554 + 3.06762I	-6.46786 - 2.97828I
b = -0.893541 + 0.823917I		
u = 1.064480 + 0.094759I		
a = -0.73343 - 1.41153I	12.47990 + 0.43824I	-0.562427 - 0.044649I
b = 0.912968 + 0.941319I		
u = 1.064480 - 0.094759I		
a = -0.73343 + 1.41153I	12.47990 - 0.43824I	-0.562427 + 0.044649I
b = 0.912968 - 0.941319I		
u = 0.156341 + 1.111710I		
a = 1.23758 + 0.87855I	-1.21085 + 3.08073I	-5.55249 - 3.17627I
b = 0.929752 - 0.586434I		
u = 0.156341 - 1.111710I		
a = 1.23758 - 0.87855I	-1.21085 - 3.08073I	-5.55249 + 3.17627I
b = 0.929752 + 0.586434I		
u = -0.191591 + 1.141470I		
a = -1.71195 + 0.26865I	-4.76428 - 2.22122I	-10.55897 + 3.42071I
b = -1.018780 + 0.030482I		
u = -0.191591 - 1.141470I		
a = -1.71195 - 0.26865I	-4.76428 + 2.22122I	-10.55897 - 3.42071I
b = -1.018780 - 0.030482I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.271471 + 0.749945I		
a = -0.032046 - 0.267481I	-0.20728 + 1.53818I	-4.56900 - 2.28483I
b = 0.626757 - 0.614277I		
u = -0.271471 - 0.749945I		
a = -0.032046 + 0.267481I	-0.20728 - 1.53818I	-4.56900 + 2.28483I
b = 0.626757 + 0.614277I		
u = 0.418841 + 1.156790I		
a = -0.417466 - 0.176902I	0.11970 + 3.73317I	-2.97329 - 3.30525I
b = 0.386654 + 0.764550I		
u = 0.418841 - 1.156790I		
a = -0.417466 + 0.176902I	0.11970 - 3.73317I	-2.97329 + 3.30525I
b = 0.386654 - 0.764550I		
u = 0.714927 + 0.180259I		
a = 0.324913 - 1.250580I	3.04719 + 0.49757I	1.21153 - 1.20838I
b = -0.617135 + 0.730511I		
u = 0.714927 - 0.180259I		
a = 0.324913 + 1.250580I	3.04719 - 0.49757I	1.21153 + 1.20838I
b = -0.617135 - 0.730511I		
u = 0.227184 + 0.682533I		
a = 0.429035 + 0.360906I	-0.238421 + 1.266880I	-2.42303 - 5.08329I
b = 0.320049 - 0.507052I		
u = 0.227184 - 0.682533I		
a = 0.429035 - 0.360906I	-0.238421 - 1.266880I	-2.42303 + 5.08329I
b = 0.320049 + 0.507052I		
u = -0.092432 + 1.311290I		
a = 0.14750 - 1.68723I	-6.50773 - 1.47983I	-9.20328 + 4.48160I
b = 0.688190 + 0.376073I		
u = -0.092432 - 1.311290I		
a = 0.14750 + 1.68723I	-6.50773 + 1.47983I	-9.20328 - 4.48160I
b = 0.688190 - 0.376073I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.366037 + 1.277380I		
a = 1.32644 - 1.19862I	-1.99066 - 8.34590I	-7.38920 + 8.20539I
b = 1.025390 + 0.488331I		
u = -0.366037 - 1.277380I		
a = 1.32644 + 1.19862I	-1.99066 + 8.34590I	-7.38920 - 8.20539I
b = 1.025390 - 0.488331I		
u = -0.669684 + 0.020164I		
a = -0.022217 + 1.347390I	1.98177 - 4.45651I	-1.06472 + 6.47147I
b = -0.937251 - 0.595896I		
u = -0.669684 - 0.020164I		
a = -0.022217 - 1.347390I	1.98177 + 4.45651I	-1.06472 - 6.47147I
b = -0.937251 + 0.595896I		
u = -0.618417 + 1.229390I		
a = 0.511319 - 0.554883I	8.97672 + 1.36657I	-4.00000 + 0.I
b = -0.923330 + 0.927636I		
u = -0.618417 - 1.229390I		
a = 0.511319 + 0.554883I	8.97672 - 1.36657I	-4.00000 + 0.I
b = -0.923330 - 0.927636I		
u = 0.590971 + 1.277150I		
a = -0.48725 - 1.50500I	8.85183 + 5.38651I	0
b = -0.961686 + 0.907689I		
u = 0.590971 - 1.277150I		
a = -0.48725 + 1.50500I	8.85183 - 5.38651I	0
b = -0.961686 - 0.907689I		
u = 0.02483 + 1.43079I		
a = 0.637356 + 0.570357I	-1.89195 + 2.85204I	-4.00000 + 0.I
b = 0.863543 - 0.756976I		
u = 0.02483 - 1.43079I		
a = 0.637356 - 0.570357I	-1.89195 - 2.85204I	-4.00000 + 0.I
b = 0.863543 + 0.756976I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.03651 + 1.47301I		
a = -1.199870 + 0.246838I	-7.07448 + 0.98863I	0
b = -0.661912 + 0.244654I		
u = -0.03651 - 1.47301I		
a = -1.199870 - 0.246838I	-7.07448 - 0.98863I	0
b = -0.661912 - 0.244654I		
u = 0.50808 + 1.40664I		
a = 0.592702 + 0.296009I	7.77909 + 6.04150I	0
b = -0.857340 - 0.944975I		
u = 0.50808 - 1.40664I		
a = 0.592702 - 0.296009I	7.77909 - 6.04150I	0
b = -0.857340 + 0.944975I		
u = -0.48076 + 1.42977I		
a = -0.81361 + 1.56632I	7.2987 - 12.7112I	0
b = -1.004820 - 0.868136I		
u = -0.48076 - 1.42977I		
a = -0.81361 - 1.56632I	7.2987 + 12.7112I	0
b = -1.004820 + 0.868136I		
u = -0.406334		
a = 0.579971	-1.62488	-3.64530
b = 0.878349		
u = -0.328792		
a = 4.54970	-2.40058	5.69880
b = -0.587341		

II. $I_2^u = \langle 4a^2u + 2a^2 + 9b - 9, \ 4a^3 + 4au - 2a - 5u - 2, \ u^2 + 2 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{4}{9}a^{2}u - \frac{2}{9}a^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{4}{9}a^{2}u + \frac{2}{9}a^{2} + a - 1 \\ -\frac{4}{9}a^{2}u - \frac{2}{9}a^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{4}{9}a^{2}u + \frac{2}{9}a^{2} + \frac{1}{3}au + \frac{2}{3}a - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{4}{9}a^{2}u + \frac{1}{3}au + \cdots + \frac{2}{3}a - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{4}{9}a^{2}u + \frac{2}{9}a^{2} + \frac{1}{3}au + \frac{2}{3}a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{9}a^{2}u - \frac{1}{3}au + \cdots + \frac{1}{3}a - 1 \\ \frac{1}{3}au + \frac{2}{3}a + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -\frac{16}{9}a^2u \frac{8}{9}a^2 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^6$
c_2	$(u+1)^6$
c_3, c_4, c_7 c_8	$(u^2+2)^3$
<i>C</i> ₆	$(u^3 - u^2 + 1)^2$
c_9,c_{10}	$(u^3 - u^2 + 2u - 1)^2$
c_{11}	$(u^3 + u^2 - 1)^2$
c_{12}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^6$
c_3, c_4, c_7 c_8	$(y+2)^6$
c_6, c_{11}	$(y^3 - y^2 + 2y - 1)^2$
c_9, c_{10}, c_{12}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.414210I		
a = 0.264767 - 1.030640I	-3.55561 - 2.82812I	-8.49024 + 2.97945I
b = 0.877439 + 0.744862I		
u = 1.414210I		
a = 1.059950 + 0.093921I	-3.55561 + 2.82812I	-8.49024 - 2.97945I
b = 0.877439 - 0.744862I		
u = 1.414210I		
a = -1.32472 + 0.93672I	-7.69319	-15.0195 + 0.I
b = -0.754878		
u = -1.414210I		
a = 0.264767 + 1.030640I	-3.55561 + 2.82812I	-8.49024 - 2.97945I
b = 0.877439 - 0.744862I		
u = -1.414210I		
a = 1.059950 - 0.093921I	-3.55561 - 2.82812I	-8.49024 + 2.97945I
b = 0.877439 + 0.744862I		
u = -1.414210I		
a = -1.32472 - 0.93672I	-7.69319	-15.0195 + 0.I
b = -0.754878		

III.
$$I_1^v = \langle a, \ b+v+1, \ v^3+2v^2+v+1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$
$$a_{12} = \begin{pmatrix} v + 1 \\ -v - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -v^2 - 2v - 1 \end{pmatrix}$$
$$a_2 = \begin{pmatrix} v - 1 \\ v^2 + 2v + 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v - 1 \\ v^2 + 2v + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ v^2 + 2v + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -v^2 - 2v \\ v^2 + v - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4v^2 + 2v 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_4, c_7 c_8	u^3
c_5	$(u+1)^3$
c_6	$u^3 + u^2 - 1$
c_9,c_{12}	$u^3 + u^2 + 2u + 1$
c_{10}	$u^3 - u^2 + 2u - 1$
c_{11}	$u^3 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^3$
c_3, c_4, c_7 c_8	y^3
c_6, c_{11}	$y^3 - y^2 + 2y - 1$
c_9, c_{10}, c_{12}	$y^3 + 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.122561 + 0.744862I		
a = 0	1.37919 - 2.82812I	-0.08593 + 2.22005I
b = -0.877439 - 0.744862I		
v = -0.122561 - 0.744862I		
a = 0	1.37919 + 2.82812I	-0.08593 - 2.22005I
b = -0.877439 + 0.744862I		
v = -1.75488		
a = 0	-2.75839	-17.8280
b = 0.754878		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u-1)^9)(u^{38}+10u^{37}+\cdots-24u+1)$	
c_2	$((u-1)^3)(u+1)^6(u^{38}+4u^{37}+\cdots+4u-1)$	
c_3	$u^{3}(u^{2}+2)^{3}(u^{38}-u^{37}+\cdots-16u+8)$	
c_4, c_7, c_8	$u^{3}(u^{2}+2)^{3}(u^{38}+u^{37}+\cdots+48u+8)$	
<i>c</i> ₅	$((u-1)^6)(u+1)^3(u^{38}+4u^{37}+\cdots+4u-1)$	
c_6	$((u^3 - u^2 + 1)^2)(u^3 + u^2 - 1)(u^{38} - 2u^{37} + \dots + u - 3)$	
<i>c</i> 9	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{38} + 2u^{37} + \dots - 3029u - 7u^2)$	7419)
c_{10}	$((u^3 - u^2 + 2u - 1)^3)(u^{38} + 8u^{37} + \dots + 85u + 9)$	
c_{11}	$(u^3 - u^2 + 1)(u^3 + u^2 - 1)^2(u^{38} - 2u^{37} + \dots + u - 3)$	
c ₁₂	$((u^3 + u^2 + 2u + 1)^3)(u^{38} + 8u^{37} + \dots + 85u + 9)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{38} + 46y^{37} + \dots + 1128y + 1)$
c_2, c_5	$((y-1)^9)(y^{38} - 10y^{37} + \dots + 24y + 1)$
c_3	$y^{3}(y+2)^{6}(y^{38} - 53y^{37} + \dots + 896y + 64)$
c_4, c_7, c_8	$y^{3}(y+2)^{6}(y^{38}+31y^{37}+\cdots-512y+64)$
c_6,c_{11}	$((y^3 - y^2 + 2y - 1)^3)(y^{38} - 8y^{37} + \dots - 85y + 9)$
c_9	$(y^3 + 3y^2 + 2y - 1)^3$ $\cdot (y^{38} + 120y^{37} + \dots - 2146915177y + 55041561)$
c_{10}, c_{12}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{38} + 48y^{37} + \dots + 1091y + 81)$