Estação de controle para Veículos Aéreos Não Tripulados

Autor: Arthur Benemann

Orientador: Prof. Dr. Carlos Eduardo Pereira

Objetivos

Desenvolvimento de uma Estação de Controle.

- Visualização de dados de voo em tempo real
- Planejamento de missões autônomas
- Controle do VANT
- Configurar parâmetros do VANT
- Baixo custo
- Portátil
- Fácil utilização em campo

Conceitos: Veículos aéreos não tripulados (VANT)

 Aeronaves que realizam voo autônomo ou assistido por pilotos no solo

Conceitos: Veículos aéreos não tripulados (VANT)

Conceitos: Aerofotogrametria

- Mapeamento topográfico utilizando VANTs
- Planejamento de voo para obtenção de fotos com a sobreposição desejada

Hardware: Estação de controle

Dispositivos Android:

- Programação simples
- Altamente disponíveis
- Baixo custo
- Alto poder computacional
- Baixo peso
- Portáteis

Hardware: Link de comunicação

Necessidades:

- Link de comunicação estável
- 57 kbits/s
- Baixo consumo de energético
- Pequenas dimensões

Links Avaliados:

- Xbee
- HopeRF
- WiFi
- Bluetooth

WiFi

Xbee

Hope-RF

Bluetooth

Link de comunicação: MAVLink

- Protocolo de comunicação open-source para VANTs
- Utilizado por diversos sistemas comerciais
- Baseado no protocolo CAN

Hardware: Link de comunicação USB

Módulos USB disponíveis

Hardware: MAVBridge

Desenvolvimento de um link de comunicação mais apropriado para esta aplicação.

- Não é necessário ter nenhum dispositivo conectado a estação de controle
- Possibilidade de posicionar a antena em um local mais elevado
- Maior autonomia para a estação de controle

Hardware: MAVBridge

Diagrama de blocos

Hardware: MAVBridge

Componentes

Camada superior

Camada inferior

Software: DroidPlanner

- Android
- Java
- Eclipse
- GNU GPLv3
- GIT
- GITHUB

Software: Modelo MVC

Software: Arquitetura Geral

Software: Diagrama da Interface de Usuário

- Meio de comunicação do usuário com a estação de controle
- Exibi dados do VANT virtual

Software: Diagrama do VANT virtual

- Armazena informações localmente do estado do VANT
- Transações de missões
- Decodifica as mensagens do protocolo MAVLink

Software: Diagrama da Interface de Comunicação

- USB Comunicação direta com Xbee e modulo HopeRF
- Bluetooth MAVBridge
- TCP Link de comunicação 3G
- UDP Link de comunicação WiFi

Interface de Usuário: Informações de voo

Interface de Usuário: Heads Up Display

Interface de Usuário: Planejamento

Interface de Usuário: Planejamento aerofotogramétrico

Interface de Usuário:

Interface de Usuário:

8 0 m				ę	3:11
Parameter	s _	REFRESH	WRITE	DISCONNECT	ŧ
ACRO_PITCH_RATE	ACRO mode pitch rate (degrees/second)				180
ACRO_ROLL_RATE	ACRO mode roll rate (degrees/second)				180
AHRS_COMP_BETA	AHRS Velocity Complmentary Filter Beta Coefficient				0.1
AHRS_GPS_GAIN	AHRS GPS gain				1
AHRS_GPS_MINSATS	AHRS GPS Minimum satellites				6
AHRS_GPS_USE	AHRS use GPS for navigation				1
AHRS_ORIENTATION	Board Orientation				0
AHRS_RP_P	AHRS RP_P				0.3
AHRS_TRIM_X	AHRS Trim Roll (Radians)				0
AHRS_TRIM_Y	AHRS Trim Pitch (Radians)				0
AHRS_TRIM_Z	AHRS Trim Yaw (Radians)				0
AHRS_WIND_MAX	Maximum wind (m/s)				0
	$\qquad \qquad \bigcirc$				

Interface de Usuário:

Resultados: Open-Source

Dados quantitativos sobre o projeto:

- 24 desenvolvedores
- 1244 sub-versões (commits)
- ~ 50000 linhas de código fonte
- ~ 970 arquivos
- Traduzido para 12 línguas diferentes
- 12 meses de desenvolvimento

Resultados: Dispositivos Android testados

- Nexus 7 (2013)
- Nexus 5
- Nexus 4
- Nexus 10
- Asus TF300T and TF300TG
- Samsung Galaxy Note 2
- Samsung Galaxy Note 3
- Samsung Galaxy Tab 2 7.0
- Samsung Galaxy Tab 10.1
- Samsung Galaxy S3
- Samsung Galaxy S4
- Samsung Galaxy Nexus
- Xperia Z and Z1
- Tablet Genesis GT-7230
- T-pad tablet IS701 and IS709C
- Acer Iconia A500, A501 and A510

Resultados: Aerofotogrametria

 Exemplo de resultados obtidos com um voo auxiliado por está estação de controle de solo

Obrigado!

