ABSTRACTS

Japanese patent Publication 2-27660 (B2)

[Application] Published, June 19, 1990; Laid-Open No. 59-45439, Published, March 14, 1984; Filed, June 20, 1983; Priority: U.S.A., August 23, 1982; Ser. 410201

[Assignee] IBM

[Composition] A resist composition comprising a polymer containing recurrent acid labile pendant groups and a photopolymerization initiator. The initiator includes diaryliodonium or triarylsulfonium metal halides.

[Claim1] A resist composition comprising a polymer containing recurrent acid labile pendant groups which are tert-butyl esters of carboxylic acids or tert-butyl carbonates of phenols and a photopolymerization initiator which generates an acid on exposure to radiation.

[Example 1]

Poly(p-tert-butoxycarbonyloxy- α -methylstyrene) (number average molecular weight 46,900) was dissolved in diglyme to reach 20 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added in an amount of 20 % by weight of the polymer. The solution was spin coated onto silicon wafers at 3000rpm to form a 0.6. μ thick layer. The coated film was baked at 100 °C for 30 minutes and then exposed via a quartz mask to UV radiation at a dose rate of 5-10 mJ/cm². Postbaking at 100°C for 5 seconds, followed by development in an aqueous base solution for 60 seconds gave a high-resolution positive type image. Similarly development in dichloromethane/hexane for 5-10 seconds gave a negative type image. [Advantages]

This invention provides a positive or negative resist sensitive to UV, electron beam and X-ray radiation dependent on the developer selected and is related to a composition comprising a polymer having recurrent pendant groups such as tert-butyl ester or tert-butyl carbonates that give an acid form with a photoinitiator which generates acid upon radiolysis. The diaryliodonium or triarylsulfonium metal halide photoinitiator is photosensitive to deep UV 200-300mm.

TABLE 1

Resin	Irradiation time (secs)	Irradia	ted coating
II II	1 1 4	hard,	tack-free tack-free tack-free

Resin I = diglycidyl ether of 2,2-bis(4-hydroxyphenyl)propane.

Resin II = 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane-carboxylate.

Resin III = diglycidyl1,2-cyclohexanedicarboxylate.

[Advantages]

The photopolymerizable composition of this invention comprising a cationically polymerizable material, such as an epoxide resin, a phenoplast, or an aminoplast and a diaryliodosyl salt of formula

$$\left(\begin{array}{c} B_{i} \\ B_{i} \end{array}\right) I_{+} = 0 \quad X_{X_{-}}$$
 (A)

as photoinitiator may be used as surface coatings and adhesives and for the preparation of reinforced composites and printed circuits. Ddiaryliodosyl salts of formula V include diphenyliodosyl, hexafluorophosphate, hexafluoroantimonate, tetrafluoroborate, toluene-p-sulfonate and chloride.

00 特許出願公告

◎特 許 公 報(B2)

平2-27660

filmt_Cl 5 G 03 F H 01 L 21/027 織別記号 庁内整理番号 7124-2H

Ø → 公会 平成 2年(1990) 6月19日

7124-2H 7376--5F H 01 L 21/30

301 発明の数 1 (全6頁)

60発明の名称 レジスト組成物

图 8358-109463

外1名

697. 開 昭59-45439 ❸昭59(1984)3月14日

金出 晒 昭58(1983)6月20日 優先権主張

❷1982年8月23日❸米国(US)⑩410201 (7)発明者 ヒロシ・イトー

アメリカ合衆国カリフオルニア州サンノゼ・ヴィア・コリ ナ7221番地

②発明 老 カールトン・グラン ト・ウイルソン

アメリカ合衆国カリフオルニア州サンノゼ・ハーデイン グ・アベニュー896番地

70発明者 ジーン・エム・ジェ イ・フレヒト

カナダ園オンタリオ州オタワ・スタンステツド・ロード 810番船

の出 頭 人 インターナショナル ビジネス マシーンズ

アメリカ合衆国 10504 ニューヨーク州 アーモンク (番地なし)

コーポレーション 10代理人 弁理士 岡田 次生

審查官 阿久津 41. 网络考文献 特開 昭51-36932 (JP. A) 特開 昭52-110102 (JP, A)

特開 昭49~84638 (JP, A) 特開 昭51-45518 (JP. A)

1

の特許請求の範囲

1 カルボン酸のtertープチル・エステル又はフ エノールのtert―ブチル・カルポナートよりな る、酸に対して不安定な反復的に存在する枝分れ した基を有する重合体と、放射に対してさらされ 5 たときに酸を生じる光重合開始剤とを含むレジス **卜組成物**。

発明の詳細な説明

〔技術分野)

本発明は、レジスト組成物に於て有用な、或る 10 種の重合体と光陽イオン重合開始剤(cationic photoinitiator)との混合物に係り、更に具体的 に云えば、現像剤を選択することによつてポジ型 又はネガ型に働きそして又遠紫外線から可視光線 迄の種々の波長に対して感応し得る、有用な混合 15 物に係る。それらの中の或る種の混合物は更に、 プラズマ食刻及び反応性イオン食刻に対して耐性

を有している。 〔従来技術〕

ピニル及び復素環の単量体の光陽イオン重合、 並びにオニウム塩の光分解により生じた酸によつ て開始されるオキシラン及びチラン (thirane) の環を含む重合体の光交叉結合は周知であ。米国 特許第4210449号及び第4273668号明細書は、陽イ オン重合及び交叉結合の為の光重合開始剤として オニウム塩を用いる事を示している。

2

米国特許第3984253号明細書は、ポジ型の像を 形成するために、ジアゾニウム塩の如き酸を生じ る化合物を加えることにより、ポリフタル酸アル デヒドを紫外線、電子ピーム及びX線に対して感 応せしめることを示している。

米国特許第4311782号明細書は、酸を形成する 化合物と、周期的に存在するオルトカルボン酸エ ステルを有する重合性化合物とを含む、ポジ型の

レリーフ像を形成するための、放射に対して感応 する混合物を示している。

米国特許第4104070号明細書は、修正された像 反転プロセス (Modified Image Reversal Process-MIRP) について記載しているが、そ 5 の方法は第3成分の添加及び全面露来工程を必要 とする.

いずれの従来技術も、本発明に於ける特定の重 合体を用いることを示しておらず、又その重合体 の枝分れした基を劈開 (cleave) させて、それら 10 の反復的に存在する基の構造を、重合体被膜の翼 光領域及び未露光領域の溶解度特性に大きな相違 が生じる迄、変化させるために、光陽イオン重合 開始剤を用いることについても開示していない。 (発明の概要)

本発明に従つて、酸に対して不安定な反復的に 存在する枝分れした基 (recurrent acid labile pendant groups) を、アリールジアゾニウム、 ジアリールヨードニウム、又はトリアリールスル ホニウム等の金属ハロゲン化物と組合わせること 20 きに特に有用且つ有利である。 により、現像剤を適切に選択することによつてボ ジ型又はネガ型のレジストとして働く、紫外線、 電子ピームはX線に対して感応するレジスト組成 物が得られる。上記開始剤を含む重合体が基板ト でペークされ、放射に対してパターン状にさらさ れ、そして制御された条件の下でポーストペーク される。放射に対してさらされた被膝の部分に於 て、重合体の酸に対して不安定な反復的に存在す 的に存在する基が形成され、露光領域がアルカリ 現像利又は極性溶媒で処理されることにより選択 的に除去される。上記被職の未露光領域は、無極 性であるために、無極性溶媒で処理されることに 未露光領域の溶解度特性に大きな相違が存在する ために、現像剤を適切に選択することによつて、 像の反転が極めて容易に達成される。本発明に於 ける溶解特性に相違を生ぜしめる機構は、上記従 来技術の機構と全く異つている。 上記従来技術 40 は、ネガ型の場合には交叉結合に依存してポジ型 の場合には主鎖の劣化に依存しているが、本発明 は側鎖の劈開に関連している。

本発明の一実施例に於ては、用いられる組成物

が遠紫外線から可視光線迄の種々の波長に対して 感応する様にされる。例えば、芳香族の環に於け る置換によつて、アリールジアゾニウム塩の吸収 極大が水銀ランプの出力のスペクトルに適合され 得る。更に、ジアリールヨードニウム塩及びトリ アリールスルホニウム塩は、約300nm辺は吸収1 ないが、単に増越剤成分を更に加えることによっ て、中間の紫外線から可視光線迄のより長い液長 に於けるパターン化が可能になる。

反復的に存在する芳香族の環を含む、本発明に よる組成物は、プラズマ食刻及び反応性イオン食 刻に対して耐性を有するという、もう1つの望ま しい特性を有している。

ジアリールヨードニウム又はトリアリールスル 15 ホニウム金属ハロゲン化物を含む本発明による組 成物は、遠紫外線に対して著しく感応して、2m よりも厚い被膜に於ても垂直に近い壁の角度を有 する極めて高解像力の像を生じるので、遠紫外線 (200~300nm) による露光とともに用いられたと

本発明に於ては、放射に対してさらにさらされ たときに強い酸を生じるすべての物質が光重合開 始創になり得ることを理解されたい。しかしなが ら、最も好ましい光重合開始初は、僧様されてい に薄に被膜として被覆され、制御された条件の下 25 ない、及び対称的に又は非対称的に置換された、 ジアリールヨードニウム塩又はトリアリールスル ホニウム塩である。トリアリールセレノニウム塩 も有用である。置換されたアリールジアニウム塩 も同様に用いられ得る。本発明に於ける塩の最も る枝分れした基が劈開されて、極性を有する反復 30 好ましい対アニオン (gegenanions) は、テトラ フルオロ硼素酸塩、ヘキサフルオロアンチモン酸 塩、ヘキサフルオロ砒素酸塩及びヘキサフルオロ 燐酸塩の如き錯体金属ハロゲン化物であるが、本 発明がそれらの対アニオン及び光重合開始制に現 より選択的に除去される。従って、露光領域及び 35 定されることはない。放射に対してさらされたと きに酸を生じる、広範囲の化合物が用いられ得 る。本発明に於て、用いられる開始剤の量は、重 合体に対して1万至100重量%の範囲である。そ の好ましい濃度範囲は5万至50重量%である。

本発明に於ける好ましい重合体は、効率的に加 酸分解を生じて、前駆物質と極めて異なる条件 (溶解度)を有する生成物を生じる、周期的に存 在する枝分れした基を含むビニル重合体である。 しかしながら、本発明は、ビニル付加重合によつ て得られた重合体に限定されない。本発明に於て 有用な重合体を合成するために、縮合、重付加及 び付加縮合の如き、他の重合も用いられ得る。

好ましい酸に対して不安定な枝分れした基は、 カルボン酸のtert-ブチル・エステル及びフェノ 5 ールのtertープチル・カルボナートであるが、酵 に対して不安定である広範囲の基が本発明に於て 有用であることを理解されたい。それらは、当技 術分野に於て周知である、トリチル、ペンジル及 びベンズヒドリルによる変性体等を含む。

最も好ましい重合体は、ポリ (p-tert-ブト キシカルボニルオキシーα-メチルスチレン)、 ボリ(p-tert-ブトキシカルボニルオキシスチ レン)、ポリ(tertープチルーpービニルペンゾ アート)、ポリ(tertープチルー p ーイソプロペ 15 A-2 ニルフエニルオキシアセタート)、及びポリ (tertープチル・メタクリラート) である。

レジスト組成物を中位の紫外線から可視光線法 のより長い波長に対して感応させるために、ジア リールヨードニウム塩又はトリアリールスルホニ 20 ウム塩とともに用いられる好ましい化合物は、ビ レン及びベリレンの如き、多環式の芳香族であ る。有効な増感剤である、アクリジン等の他の私 料も用いられ得る。本発明が、特定の類の染料の 使用に限定されることはない。 25 〔実施例の説明〕

次に、前述の好ましい重合体を形成する為の好 ましい合成方法を示す。光重合開始初の合成につ いては、既に文献に詳細に示されている。本発明 を用いる為の好ましい方法も、以下に示されてい 30

A p-tert-ブトキシカルボニルオキシーα-メチルスチレンの形成: A---1

150 alの乾燥したテトラヒドロフラン 35 (THF) 中に溶解された5.44gのp--ヒドロ オキシアセトフエノンより成る溶液が、4.48 9のカリウム・tertープトキシドで処理され た。その混合物に、THF中に溶解された 10.02 g のジーtertープチル・ジカルボナート 40 が加えられる。室温で1時監問の間攪拌され た後、その反応混合物が冷水中に注がれ、得 られた混合物が酢酸エチルを用いて抽出され た。標準的処理工程の後、その恣意が遺稿さ

れ、生成物が室温に於て結晶化された (92) g、収率97%)。50×1の乾燥1 たTHF中に次 解さけた3.57分の臭化メチルトリフエニルホ スホニウムより成る懸濁液が、1.12.4のカリ ウム、tertープトキシドで処理された。30分 間攪拌された後、20mLのTHF中に溶解され た2369のnーtertープトキシカルポニルナ キシアセトフエノンより成る溶液が加えられ た。標準的処理工程の後、有機物の層が濃縮 されて、粘性の材料が得られ、その材料がへ キサンを溶離剤として用いた高圧液体クロマ トグラフィにより精製されて、1.55 # (68 %) の純粋なpーrtertーブトキシカルポニ ルオキシーα-メチルスチレンが得られた。

10

2、2-ビス (p-ヒドロキシフエニル) プロパンの塩基触媒劈開により合成された 5.64 f のpーヒドロキシーαーメチルスチレ ンと、6.5 f のカリウム・tert-ブトキシと が、50×1の乾燥したTHF中に溶解された湯 合物が、10分間機律され。それからTHF中 に溶解された12.7gのジーtert-ブチル・ジ カルボナートより成る溶液が加えられた。そ の結果得られたゼラチン状混合物が、20分間 機械的に攪拌された後に、冷水中に注がれ た。標準的処理工程の後、抽出溶剤(酢酸エ チル)を蒸発させることにより、相生成物が 得られた。ヘキサンを溶離剤として用いた高 圧液体クロマトグラフィにより精製されて、 8.03 f (81%) の純粋なp-tert-プトキシ カルポニルオキシーαーメチルスチレンが得 られた。

B pーtertープトキシカルポニルオキシスチレ ンの形成:

乾燥したTHF中に溶解された21.7gのp-ヒドロオキシペンズアルデヒドより成る溶液 が、窒素雰囲気の下で、19.94%のカリウム・ tertープトキシドで処理された。 室温で数分間 攪拌された後に、42.8 f のジーtertープチル・ ジカルポナートが加えられ、その混合物が更に 室温で1時間の間攪拌された。薄層クロマトグ ラフイにより、反応が完了したことが示され、 その混合物が氷水中に注がれた。その生成物が 酢酸エチルを用いて抽出され、水洗いされ、硫 酸マグネシウム上で乾燥された。溶剤が恋発さ れて、n-tert-プトキシカルポニルオキシス チレンを形成するために直接用いられ得る、39 **タ (99%)** の粗材料が得られた。又、その生成 物は、純粋な材料のp-tert-ブトキシカルボ 5 ニルオキシペンズアルデヒドを得るために、高 圧液体クロマトグラフィ (HPLC) により搭載

400mlの乾燥したTHF中に溶解された34.1 g の臭化メチルフエニルホスホニウムより成る懸 10 獨液が、窒素雰囲気の下で、10.79のカリウ ム・tertープトキシドで処理された。室温で10 分間攪拌された後、その黄色の溶液が、100元 の乾燥したTHF中に溶解された21.29のptertープトキシカルポニルオキシベンズアルデ 25 ヒドより成る溶液で処理された。 1 時間の間滑 **拌された後、その混合物が冷水中に注がれ、酢** 酸エチルを用いて抽出された。有機物の相が洗 浄され、硫酸マグネシウム上で乾燥されて、濃 縮された。その租生成物が高圧液体クマトグラ 20 フイにより精製されて、16.69 (79%) の純粋 なnーtertープトキシカルポニルオキシスチレ ンが得られた。又は、上記租生成物は、減圧素 留によつて精製された。

C p-tert-プトキシカルボニルオキシスチレ 25 D-3 p-tert-プトキシカルボニルオキシス ンの形成:

p-tert-プトキシカルボニルオキシーα-メチルスチレン (3.000 %) が高直空状態の下 で乾燥され、重合アンプル中に真空蒸留された 10回の乾燥した液状の二酸化硫黄中に溶解され、30 て、黄色の溶液が得られた。液体窒素温度で凍 結されたその単量体溶液とともに、三弗化硼素 エーテル錯化合物 (0.02 ml、単量体に対して 1.2モル%) が真空蒸留により導入された。-65 ℃で溶けたとき、その混合物は混濁し、更に- 35 65℃に於て1時間後に、相分離が観察された。 それから、殆ど全質量が固体化した。26時間後 に、アンブルが切られて開かれ、冷たいメタノ ールが-65°Cで加えられて、重合体が白色の沈 殿物として得られた。その重合体がジクロルメ 40 タン中に溶解され、メタノール中に沈殿され、 メタノール中で再沈殿されることにより精製さ れ、38℃で真空乾燥されて、数平均分子量 46900(膜オスモメトリ) を有する2.614 g

(87.1%) の生成物が得られた。

D ポリ(p-tert-ブトキシカルボニルオキシ

R

スチレン)の形成:

D-1

市販のポリ(nーtertービニルフェノー ル)が、相転条件の下で、ジーtertーブチ ル・ジカルボナート及び炭酸ナトリウムと反 応された。得られた重合体が沈殿により有機 物の相から分離されて、アリール・アルキ ル・カルポナートのカルポニル吸収性を示 す、収率90%以上の生成物が得られた。

D-2 p-tert-プトキシカルポニルオキシス チレンの遊離基重合:

0.039のアゾピスイソブチロニトリルを含 む5 叫のトルエン中に力解された5 4 の ptert-プトキシカルポニルオキシスチレンよ り成る溶液が窒素の下で65万至75℃に加熱さ れた。その混合物は一晩の後に極めて粘性に なり、ジクロルメタンで希釈された後、重合 体が石油エーテル中に沈殿された。白色の固 形物が石油エーテルで洗浄され、更にメタノ ールで洗浄された。その重合体は、4.19 (収率82%) の重量及び43000の数平均分子量 (オスモメトリ) を有した。

チレンの陽イオン重合:

p-tert-ブトキシカルポニルオキシスチ レン (1.000 g) が高真空状態の下で乾燥さ れ、重合アンブル中に真空蒸留された3.0ml の乾燥した液状の二酸化硫黄中に溶解され て、黄色の溶液が得られた。液体窒素温度が 凍結されたその単量体溶液とともに、三弗化 硼素エーテル錯化合物 (5μℓ、単量体に対 して0.8モル%)で直空蒸留により進入され た。重合が-65℃で27時間の間行われた。ア ンプルが切られて閉かれ、冷たいメタノール が-65℃で加えられて、重合体が白色の沈殿 物として得られた。その重合体がクロロホル ム中に溶解され、メタノール中に沈殿され、 メタノール中で再沈殿されることにより精製 され、40℃で乾燥されて、数平均分子最 28900(GPC) を有する0.901 f (90.1%) の 生成物が得られた。

E レジスト溶液の形成、露光及び現像:

1つの典型的な実験に於て、重合体がジグラ イム (diglyme) 又はシクロヘキサノン中に周 形物が20重量%になる様に溶解され、それにオ ニウム塩が重合体に対して20重量%の量で加え

られる。

その溶液が0.2μのテフロン・フイルタを経で 濾過される。その溶液をシリコン・ウェハトに 回転被覆することにより、レジスト層が形成さ れる。その被覆された被膜が90乃至100℃で30 分間ベークされる。

次に、上記被膜が、Oriel(商品名) 照射装置 又はHybrid Technology Group Model 345 -10(商品名) Xe-Hgランプからの紫外線の 放射に対して石英マスクを経て露光され、又は 射に対してハターン状に露光される。

露光された被膜が90乃至100℃で5万15秒間 加熱される。

その露光及び加熱された被膜が塩基の水溶液 於ける被膜の厚さを減じることなく高解像力を 有するポジ型の像が得られる。上記系は、露光 及びペークされた後に、ジクロルメタンの如き 無極性溶媒、又はヘキサンとジクロルメタンの ガ型にされ得る。

より長い波長に対する感応性は、上記レジス ト溶液に少量のピレン又はペリレンを加えるこ とによつて達成され得る。ピレンは、ジフエニ ルヨードニウム塩を含むレジスト組成物を 30 313nmの放射に対して感応する様にするために 有効である。ペリレンは、ジフェニルヨードニ ウム塩又はトリフエニルスルホニウム塩を含む レジスト組成物を365nm、404nm及び436nmの る。

F 実施例:

実施例 1

ポリ(p-tert-ブトキシカルボニルオキシー クライム中に、固形物が20重量%になる様に、溶 解された。トリフエニルスルホニウム・ヘキサフ ルオロアーセナートが、重合体に対して20重量% の量で加えられた。その溶液をシリコン・ウェハ

上に3000rpmの速度で回転被覆することにより、 0.6μの厚さを有するレジストの被膜が形成され た。その被膜が100°Cで30分間ペークされ、柴外 線の放射に対して5万至10mJ/ciの照射量で石 5 英マスクを経で露光された。100℃で5秒間ボー ストベークされた後、塩基の水溶液中で60秒間段 像されることにより、高解像力を有するポジ型の 像が得られた。同様に、ジクロルメタン/ヘキサ ン中で5万至10秒間現像されることにより、ネガ 10 型の像が得られた。

10

実施例 2

ポリ (p-tert-ブトキシカルボニルオキシー αーメチルスチレン)(数平均分子量46900)がシ クロヘキサン中に、固形物が30重量%になる様 25KeVの走査電子ピームの放射或はX線の放 15 に、溶解された。トリフエニルスルホニウム・ヘ キサフルオロアーセナートが、重合体に対して20 重量%の量で加えられた。渡過されたその溶液を シリコン・ウエハ上に2000rpmの速度で回転被覆 することにより、2.4μの厚さを有するレジストの 又はアルコール中で現像されて、未露光領域に 20 被膜が形成された。その被膜が100℃で330分間ベ ークされ、254nmの狭帯域幅の紫外線に対して 50mJ/cdの照射量で石英マスクを経て露光され た。その露光された被膜が100℃で15秒間ボース トベークされた。イソプロパノール中で30秒間現 混合物中で現像されることによつて、容易にネ 25 像されることにより、垂直に近い壁の角度を有し ている、高解像力を有するポジ型の像が得られ た。又、ジクロルメタン中で30秒間現像されるこ とにより、ネガ型の像が得られた。

実施例 3

ポリ (p-tert-ブトキシカルポニルオキシス チレン)(数平均分子量21600)が、1、1、2、 2-テトラクロルエタンとジグライム (5:1) との混合物中に、固形物が3重量%になる様に、 溶解された。ジフエニルヨードニウム・ヘキサフ 放射に対して感応する様にするために有効であ 35 ルオロアーセナート (重合体に対して20重量%) 及び少量のペリレンが、重合体の溶液に加えられ た。その溶液を石英ウエハ上に2500rpmの速度で 回転被覆することにより、厚さ1μの被膜が形成 された。その被膜が100℃で10分ペークされ、 αーメチルスチレン)(数平均分子量46900) がジ 40 365nmの狭帯域幅の紫外線の放射に対して 25m]/cdの照射量で露光された。100℃で2分間 ポーストペークされた後、紫外線及び赤外線分光 分析により、側鎖の基が完全に劈開されているこ とが確認された。

実施例 4

ポリ (p-tert-ブトキシカルボニルオキシー αーメチルスチレン)(数平均分子最46000) がジ グライム中に、固形物が20重量%になる様に、液 ルオロアーセナートが、垂合体に対して20重量% の量で加えられた。その溶液をシリコン・ウェハ 上に3000mmの速度で回転被覆することにより、 厚さ0.6uのレジストの被膜が形成された。その被 線で得られる様に、25KeVの走査電子ビームの 放射に対して50、20、10及び5uC/clの照射量で 露光された。その露光された被膜が100℃で5秒 間ポーストペークされ、イソプロパノール中で現

12 た。その像の質は、10uC/caに於て有好である。 実施例 5

遊麟基重合により合成されたポリ(tert--プチ ル・メタクリラート) がジグライム中に、固形物 解された。トリフエニルスルホニウム・ヘキサフ 5 が20重量%になる様に溶解された。トリフエニル スルホニウム・ヘキサフルオロアーセナートが、 重合体に対して20重量%の量で加えられた。その 窓液をシリコン・ウエハトに3000rpmの速度で回 転被覆することにより、厚さ0.6μのレジストの被 膜が100℃で30分間ベークされ、4.0乃至0.25μの 10 膜が形成された。その被膜が100℃で30分間ベー クされ、紫外線の放射に対して55mJ/ciの照射 量で石英マスクを経で露光された。その露光され た被膜が100℃で20秒間ポーストベークされて、 ジクロルメタン中で30秒間現像されて、高解像力 像されて、高解像力を有するボジ型の像が得られ 15 を有するネガ型の像が得られた。