Performing Differentiation More on Regression

What to do when the number of features is 3 or more for Linear Regression?

Logistic Regression

What can we do after learning NumPy?

- The arithmetic calculations which we usually do by hand, can be done via code using NumPy.
- Some intelligent tasks like grouping and averaging all the points belonging to the same cluster can be easily done using NumPy.

But, can we use NumPy to perform differentiation?

- We can perform differentiation by hand.
- $L = w^2$
- Determine $\frac{dL}{dv}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?
- Now the question is, can this be done using NumPy?

Introducing TensorFlow

- Want to build Machine Learning/ Deep Learning model from scratch?
- TensorFlow can be your solution (for the differentiation based models.)
- Now, let's use TensorFlow to perform some differentiations.

TensorFlow and Differentiation

Have you done this by hand yet?

- $L = w^2$
- Determine $\frac{dL}{dw}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?

TensorFlow and Differentiation

Have you done this by hand yet?

- $L = w^2$
- Determine $\frac{dL}{dw}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?

```
import tensorflow as tf

w = tf.Variable(4.0)

with tf.GradientTape() as tape:
    L = w**2

grad = tape.gradient(L, w)

print(f"The value of dL/dw when w=4 is: {grad.numpy()}")

The value of dL/dw when w=4 is: 8.0
```

Another One

•
$$z = 3 + 10x$$

$$\bullet \ a = \frac{1}{1 + e^{-z}}$$

•
$$\frac{da}{dx} =$$
?

• What is the value of $\frac{da}{dx}$ for x=2?

Another One

•
$$z = 3 + 10x$$

$$\bullet \ a = \frac{1}{1 + e^{-z}}$$

•
$$\frac{da}{dx} = ?$$

• What is the value of $\frac{da}{dx}$ for x=5?

```
import tensorflow as tf
    x = tf.Variable([5.0], dtype=tf.float32)
    with tf.GradientTape(persistent=True) as tape:
        z = 3 + 10 * x
        a = 1 / (1 + tf.exp(-z))
    da by dx = tape.gradient(a, x)
    result= da by dx.numpy()
    print("Gradient da/dx:", da_by_dx.numpy())
→ Gradient da/dx: [9.60268e-23]
```

Linear Regression Again

- Previously we could perform linear regression with up to 2 features.
- But now we are going to use 3 or more.

SN	No of Rooms	Area	In DOHS?	Rent
1	3	1100	0(No)	6,000
2	5	1300	0	8,000
3	2	1200	1	7,500
4	4	2200	1	20,000
•••			•••	

Visual Representation of Linear Regression

Ok so how do we find the w's?

- Yes! By using differentiation.
- But differentiate w.r.t. what?

The Loss Function

The Loss Function

 It is the measure of how much the predicted output varies from the actual output

							3		1100	0(No)	6,000
SN	No of Rooms	Area	In DOHS?	Rent		'					
1	3	1100	0(No)	6,000							
2	5	1300	0	8,000				Regres	sion mo	odel	
3	2	1200	1	7,500							
4	4	2200	1	20,000							
•••		•••							1		6,000
					Loss			- 1	ossFur	action (y	Pred,ykeal)

The Loss Function

 It is the measure of how much the predicted output varies from the actual output

SN	No of Rooms	Area	In DOHS?	Rent
1	3	1100	0(No)	6,000
2	5	1300	0	8,000
3	2	1200	1	7,500
4	4	2200	1	20,000
•••			•••	

The Algorithm – for linear regression

Get Dataset:

X and Y

Initialize Parameters:

- Set initial weights
- •Define learning rate.
- •Define number of epochs.

For i = 1 to epochs:

1.Prepare a gradient tape

2.Make predictions:

- •Calculate Ypred=X·W+b
- •Compute the loss L(Y,Ypred):

3. Compute gradients

Calculate dL/dw and dL/db

4. Update the weights and bias:

- $\bullet W = W Ir*dL/dW$
- \bullet b = b lr*dL/db

Hill Climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow \text{MAKE-NODE}(problem.\text{INITIAL-STATE})
loop do
neighbor \leftarrow \text{a highest-valued successor of } current
if neighbor.\text{VALUE} \leq \text{current.} \text{VALUE} then return current.\text{STATE}
current \leftarrow neighbor
```

Let's solve a problem using Hill Climbing

A better version of hill climbing – Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" current \leftarrow \text{MAKE-NODE}(problem.\text{INITIAL-STATE}) for t=1 to \infty do T \leftarrow schedule(t) if T=0 then return current next \leftarrow a randomly selected successor of current \Delta E \leftarrow next.\text{VALUE} - current.\text{VALUE} if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated Annealing

```
function SIMULATED_ANNEALING ()
  current ← MAKE-NODE(problem.INITIAL-STATE)
  INITIAL_TEMPERATURE ← 100
  MAX_ITERATIONS ← 1000
  for t = 1 to MAX_ITERATIONS do
    T ← INITIAL TEMPERATURE / (1 + t)
     if T = 0 then
       return current
     next ← RANDOM_SUCCESSOR(current)
     \Delta E \leftarrow next.Value - current.Value # Calculate change in value (<math>\Delta E)
     if \Delta E > 0 then # if the new state is better, simply take it
       current ← next
     else
       probability \leftarrow e^{\wedge}(\Delta E / T) # Calculate acceptance probability for worse state
       if RANDOM(0, 1) < probability then
          current ← next
  return current
```

Thank You