Analyse, classification et indexation des données: feuille 1 Eléments de Matlab

L'objectif de ce premier TD est de rassembler les outils Matlab nécessaires dans la suite. Vous travaillerez dans le fichier TD1.m qui contient des instructions à tester. Vous pourrez également y ajouter les réponses aux exercices suivants. Toutes les lignes du fichier TD1.m sont commentées. Décommentez au fur et à mesure les instructions à tester.

Pour lancer Matlab: \$ matlab

Documentation: https://fr.mathworks.com/help/matlab/index.html

1 Vecteurs et matrices

Un élément unique, un vecteur ligne ou colonne sont des cas particuliers de matrice (tableau 2D).

Exercice 1. Création de tableaux, accès à un élément d'un tableau

Testez instruction par instruction la partie Exercice 1 du fichier TD1.m. Ajoutez un point virgule à la fin d'une instruction. Quelle est la différence?

Vérifiez que vous maitrisez les éléments de syntaxe matlab suivants :

□ création d'un tableau (vecteur ligne, vecteur colonne, matrice)

□ les différentes initialisations possibles (vous pouvez en lister au moins cinq)

□ accès à un élément, à un sous-tableau

□ duplication et concaténation de tableaux

□ modification de la taille d'un tableau en conservant les mêmes éléments dans un parcours colonne par colonne

Exercice 2. Tri

- 1. Testez la partie Exercice 2 du fichier TD1.m.
- 2. Créez une matrice d'entiers M de 4 lignes et 9 colonnes.
- 3. Triez M de telle sorte que $M(i,j) \le M(i,k)$ pour k > j et que $M(i,j) \le M(k,l)$ avec k > i. Indice: la fonction transpose permet d'échanger les lignes et les colonnes d'une matrice.

Exercice 3. Indexation logique

- 1. Testez la partie Exercice 3 du fichier TD1.m.
- 2. Créez deux vecteurs ligne d'entiers Va et Vb, de même taille.
- 3. En utilisant la fonction \max et sans utiliser de boucle, créez un nouveau vecteur $V\max$ tel que $V\max[i] = \max(Va[i], Vb[i])$.

- 4. Comment obtenir le même résultat sans utiliser la fonction max et toujours sans utiliser de boucle? Indice: l'opérateur .* permet de calculer le produit terme à terme de deux vecteurs et on obtient la négation d'un booléen avec l'opérateur ~ (qui peut aussi s'appliquer à tout un tableau de booléens).
- 5. Reprenez l'exercice en remplaçant le maximum par le minimum.

Exercice 4. Opérations arithmétiques sur vecteurs et matrices

Testez la partie Exercice 4 du fichier TD1.m.

Vérifiez que vous maitrisez les éléments de syntaxe matlab suivants :

□ transposition

П	addition.	soustraction/	de	deux	vecteurs	011	matrices	de	mêmes	dimensions
-	addition	boubulaction.	uc	acax	vccucuis	Ou	1110011005	uc	IIICIIICO	difficinotoni

- \square multiplication terme à terme de deux vecteurs ou matrices de mêmes dimensions
- \square multiplication de deux vecteurs ou matrices de dimensions compatibles

Pour vérifier ce dernier point, utilisez l'exemple suivant. Les matrices $M_{5,5}$, $M_{10,5}$, $M_{5,3}$ sont respectivement de taille 5×5 , 10×5 et 5×3 . Le vecteur V_{L5} est un vecteur ligne de taille 5 et le vecteur V_{C5} un vecteur colonne de taille 5. Quels sont les produits possibles?

*	$M_{5,5}$	M _{10,5}	$M_{5,3}$	V_{L5}	V_{C5}
$M_{5,5}$					
$M_{10,5}$					
$M_{10,5}$ $M_{5,3}$					
V_{L5}					
V_{C5}					

2 Affichage d'ensembles de points, définition de fonctions

Exercice 5. Tests en 2D et 3D

Testez la partie Exercice 5 du fichier TD1.m.

Cherchez dans la documentation quelle fonction mathématique correspond à la fonction Matlab normpdf. Expérimentez différentes façons de paramétrer plot (couleur et style de la ligne, marquage des points). Quelle est la différence entre plot et scatter?

Exercice 6. Affichage de droites en 2D

- Ecrire la fonction y = droite2DVD (x, vd, p) telle que le point (x,y) appartienne à la droite passant par le point p et dont le vecteur directeur est vd. Afficher la droite définie par vd = [1 2] et p = [1 1].
- Ecrire la fonction y = droite2DNorm (x, n, p) telle que le point (x,y) appartienne à la droite passant par le point p et dont la normale est donnée par le vecteur n. Afficher la droite définie par n = [1 2] et p = [1 1].

3 Application: régression linéaire

On suppose qu'on dispose d'un ensemble d'observations composé de points 2D :

Obs =
$$\{(x_1, y_1), \dots, (x_m, y_m)\}$$

On suppose également que la relation entre x et y est linéaire : $y = \theta_1 x + \theta_0$. Le code matlab suivant permet de générer un ensemble Obs en bruitant les points d'une droite :

```
m = 40;
sizeNoise = 10;
x = rand(m,1).*50 + 5;
noise = rand(m,1) * sizeNoise;
pente = 0.8;
c = 20;
y = c + pente*x + noise;
```

- 1. Affichez le nuage de points correspondant.
- 2. La droite de régression linéaire basée sur les moindres carrés peut être calculée avec :

$$\theta_1 = \frac{m \sum (x_i y_i) - \sum (x_i) \sum (y_i)}{m \sum (x_i^2) - (\sum (x_i))^2}$$

$$\theta_0 = \frac{\sum (y_i) - \theta_1 \sum (x_i)}{m}$$

Affichez cette droite sur le nuage de points.

3. Comparer votre résultat avec celui de la fonction matlab regress.