TRANSLATOR: A TRANSlator from LAnguage TO Rules

David Hirtle

David R. Cheriton School of Computer Science University of Waterloo

(Work done at the University of New Brunswick)

October 13, 2006

Outline

- Introduction
- Translating Language to Rules
- Attempto Controlled English
- Discourse Representation Structures
- Rule Markup Language
- Future Work
- Conclusion

Introduction

- Semantic Web still not widely used
 - Focus: machine-readable (meta)data
 - facts, rules and ontologies
 - Problem: only experts can contribute
 - formal standards like RDF and OWL (and soon RIF) are difficult to learn
 - need to lower the barrier to entry

Example: Semantic Web rule

Every student gets a discount of 15 percent.

```
<Implies>
 <body>
    <Atom>
      <Rel>student</Rel>
      <Var>customer</Var>
    </Atom>
  </body>
  <head>
    <Atom>
      <Rel>discount</Rel>
      <Var>customer</Var>
      <Data>15%
    </Atom>
  </head>
</Implies>
```

Our Approach

- Provide a user-friendly format
 - why not English?
 - easy
 - familiar
 - expressive
 - but ambiguous
 - "controlled English" avoids ambiguity
 - formal, yet natural

★ TRANSLATOR: TRANSlator from LAnguage TO Rules	
Input	
Enter Attempto Controlled English text:	
Every student gets a discount of 15 percent.	
₩ <u>I</u> ranslate	
Output	
☐ Text ☐ Paraphrase ☑ DRS ☐ FOL	
<forall></forall>	_
<var>A</var>	
<implies></implies>	
<and></and>	
<atom></atom>	
<rel>object</rel>	
<var>A</var> <ind>atomic</ind>	
<ind>atomic</ind>	
<ind>scudence/Ind></ind>	
<ind>person() Ind></ind>	
☑ Help	■ Save

Java Web Start

Step 1: Input

Attempto Controlled English (1)

- Looks like English
 - Every honest student who does not procrastinate receives a good mark and easily passes the course.
- Actually a formal language, like RDF
 - tractable subset of English
 - all ACE sentences are English, but not vice versa
 - unambiguously translatable into logic

Attempto Controlled English (2)

- Strategies for handling ambiguity:
 - exclude imprecise phrasings
 - Students hate annoying professors.
 - interpretation rules
 - The student brings a friend who is an alumnus and receives a discount.
 - Who receives the discount?
 - » in ACE, student does (by default)
 - » repeat relative pronoun for other interpretation The student brings a friend who is an alumnus and who receives a discount.

Attempto Controlled English (3)

- How can rules be expressed?
 - in natural language, many different forms
 - e.g., Everyone is mortal.
 All humanity is mortal.
 Every human being is mortal.
 For each person the person is mortal.
 If there is a member of the human race then he/she is mortal.
 - all above are valid ACE
 - further embellishment
 - negation, relative clauses, etc.

Attempto Controlled English (4)

- What can't yet be easily expressed?
 - "infix" implication
 - The student is happy if there is no class.
 - but TRANSLATOR supports it
 - just swap condition(s) and conclusion(s)
 - » result: If there is no class then the student is happy.
 - production and reaction rules
 - involve actions
 - If a student is caught cheating then send a report to the registrar's office.
 - require imperative mood (not yet in ACE)

Step 2: Query APE for DRS

Discourse Representation Structures

- Output by Attempto Parsing Engine (APE)
- Syntactic variant of first-order logic
 - facilitates translation to RuleML
- Basis is Discourse Representation Theory
 - formal way to handle contextual meaning across multiple sentences
 - developed by Hans Kamp (1981)
- APE uses extended "flat" notation
 - -e.g., student(X) \rightarrow object(X,..., student,...)

(ACE)

Every honest student who does not procrastinate receives a good mark and easily passes the course.


```
[]
   [A]
  object(A, atomic, student, person, cardinality, count unit, eq. 1)-1
  property (A, honest) -1
     NOT
      [B]
     predicate(B, unspecified, procrastinate, A)-1
  =>
   [C, D, E, F]
  object(C, atomic, mark, object, cardinality, count unit, eq, 1)-1
  property (C, good) -1
  predicate (D, unspecified, receive, A, C)-1
  predicate (E, unspecified, pass, A, F)-1
  modifier(E, manner, none, easily)-1
  object(F, atomic, course, object, cardinality, count unit, eq, 1)-1
```

Step 3: Parse DRS

Step 4: Map to RuleML

DRS-to-RuleML Mapping

- Performed "on-the-fly" by actions (Java code) embedded in DRS grammar
- Direct
 - preserves extended notation
 - uses positional RuleML syntax
- Explicit
 - -e.g., quantifers: <Forall>, <Exists>
- Reversible
 - enables future rules → English extension

Every honest student who does not procrastinate receives a good mark and easily passes the course.

(ACE)

```
<Forall>
                                                               <Var>A</Var>
[]
                                                               <Implies>
    \mathbf{A}
                                                                <And>
                                                                  <Atom><Rel>object</Rel>...<Ind>student</Ind>...</Atom>
    object(A, ... student, ...)
                                                                  <a href="https://kel>mc/Atom></a></a>l>property</re>/Rel>mc/Ind></atom>
    property (A, honest)
                                                                  <Neg>
         NOT
                                                                   <Exists>
                                                                     <Var>B</Var>
         [B]
                                                                     <Atom><Rel>predicate</Rel>...<Ind>procrastinate</Ind> ...
         predicate(B, ... procrastinate, A)
                                                                   </Exists>
                                                                  </Neg>
                                                                </And>
    =>
                                                                <Exists>
                                                                  <Var>C</Var><Var>D</Var><Var>E</Var><Var>F</Var>
    [C, D, E, F]
                                                                  <And>
                                                                    <a href="https://kel>...<Ind>mark</Ind>...</atom>
    object(C, ... mark, ...)
                                                                    <a href="https://kel>mc/Atom>cathon/Rel>mc/Atom>cathon/kel>propertyc/Rel>mc/Ind>codc/Ind>c/Atom>
    property(C, good)
                                                                   <a href="https://kel>mc/Atom>ceivec/Ind>mc/Atom">ceivec/Ind>mc/Atom>ceivec/Ind>mc/Atom>
    predicate(D, ... receive, A, C)
                                                                   <a href="https://kel>mc/Atom>cate/Rel>mc/Rel>mc/Rel>mc/Atom>cate/Rel>mc/Rel>mc/Rel>mc/Atom>cate/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel>mc/Rel
    predicate(E, ... pass, A, F)
                                                                   <a href="https://kel>modifier</kel>...</a></a href="https://kel>modifier</kel>...</a></a href="https://kel>...</a>
    modifier(E, manner, ... easily)
                                                                   <a href="https://kel>...<Ind>course</Ind>...</atom>
    object(F, ... course, ...)
                                                                  </And>
                                                                </Exists>
                                                               </Implies>
                                                                                                      (RuleML)
                                                             </Forall>
```

Rule Markup Language (1)

- Goal is interoperable rule markup
 - XSLT translators to other Semantic Web languages
- Family of "sublanguages"
 - modular XML Schemas
 - each represents well-known rule system
 - TRANSLATOR uses First-Order Logic sublanguage

Rule Markup Language (2)

- Why use RuleML?
 - ease of interchange (XML)
 - compatibility with RDF, OWL and SWRL
 - also major input to W3C's upcoming RIF
 - availability of tools
 - OO jDREW, Mandarax, NxBRE, ...
 - wide variety of features
 - negation-as-failure, data types, weights, etc.

Step 5: Display results

Future Work

- Support new extensions in ACE 5
 - modality
 - If a student procrastinates and an assignment's due date is near then the student must work quickly.
 - If the student misses the due date then he **can** only beg the professor for an extension.
 - negation as failure and passive voice
 - If a transaction is not recorded by the bank then it is not provable that the transaction happens.
- Investigate adding option for "non-flat" notation
- Extend TRANSLATOR to be bidirectional (also capable of "verbalizing" rules)

Conclusion

- TRANSLATOR allows non-experts to write facts and rules for the Semantic Web
 - critical factor in success of original Web?
- Automated mapping from controlled English input to formal representation
 - ACE → DRS → RuleML
- Ongoing development by Attempto team

For more information

dhirtle@cs.uwaterloo.ca

http://www.ruleml.org/translator (includes Java Web Start demo)

http://www.ifi.unizh.ch/attempto/tools