DoSA-Open_3D 사용 메뉴얼

Example of Solenoid

2019-11-26 권기태 (zgitae@gmail.com)

DoSA 구성

프로그램 구성

Toolbar

1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정

✓ Steel: 연자성체 추가 및 사양 설정

3. 가상실험

✓ Force : 구동부 자기력 예측

해석 모델

해석모델 설명

1. 형상 모델

2. 제품 사양

가. 코일권선

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. 전원

• Voltage : 14.5V

(작업 예제파일 : DoSA 설치 디렉토리 > Samples > Solenoid)

Design 생성

1. Toolbar > New 버튼 클릭

- 2. Design Name : 작업 명칭 입력 (Solenoid)
- 3. Shape File (STEP): Solenoid.step 선택하기 (작업 예제파일: DoSA 설치 디렉토리 > Samples > Solenoid)

Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.

Design 생성

8. Design 생성을 확인한다.

Parts Design

Coil 추가

- 1. Toolbar > Coil 버튼 클릭
- Coll
- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭

Coil 설계

1. Coil 기구사양 입력

✓ Part Material : Copper

✓ Current Direction: IN (안쪽 방향)

✓ Moving Parts : FIXED (고정 부품)

✓ Coil Wire Grade: Enameled IEC Grade 2

✓ Inner Diameter : 9.6 mm

✓ Outer Diameter : 21.6 mm

✓ Coil Height : 16 mm

✓ Copper Diameter: 0.27 mm

✓ Horizontal Coefficient : 0.9 (Enameled Type)

✓ Vertical Coefficient : 0.98 (Enameled Type)

✓ Resistance Coefficient : 1 (Enameled Type)

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

Coil Design

1

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
▲ Design Fields (optional)		
	Coil Wire Grade	Enameled_IEC_Grade_2
	Inner Diameter [mm]	9.6
	Outer Diameter [mm]	21.6
	Coil Height [mm]	16
	Copper Diameter [mm]	0,27
	Wire Diameter [mm]	0,31072
	Coil Temperature [°€]	20
	Horizontal Coefficient	0.9
	Vertical Coefficient	0,98
	Resistance Coefficient	1

Armature 추가

- 1. Toolbar > Steel 버튼 클릭
- Steel
- 2. List Box 에서 "Armature" 선택
- 3. OK 버튼 클릭

Armature 설정

1. Armature 속성 설정

✓ Part Material : SUS_430 선택

✓ Moving Parts : Moving (동작 부품)

[BH 곡선]

1

Core 추가

- 1. Toolbar > Steel 버튼 클릭
- Steel
- 2. List Box 에서 "Core" 선택
- 3. OK 버튼 클릭

Core 설정

1. Core 속성 설정

✓ Part Material : SUS_430 선택

✔ Moving Parts : FIXED (고정 부품)

[BH 곡선]

1

Case 생성

- 1. Toolbar > Steel 버튼 클릭
- Steel
- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭

Case 설정

1. Case 속성 설정

✓ Part Material : SUS_430 선택

✔ Moving Parts : FIXED (고정 부품)

[BH 곡선]

1

■ Common Fields	
Node Name	Case
Specification Fields	
Part Material	SUS_430
Moving Parts	FIXED

Virtual Experiments

자기력 가상실험

1. Toolbar > Force 버튼 클릭

- 2. Experiment Name 입력: "force"
- 3. OK 버튼 클릭
- 4. 자기력 가상실험 설정
 - ✓ Voltage: 14.5 V
- 5. 해석조건 설정
 - ✓ Mesh Size Percent : 5 %✓ Actuator Type : Solenoid
- 6. Force Test 버튼 클릭

자기력 가상실험 실행

7. 형상을 확인 하고 Run 버튼 클릭

자기력 가상실험 결과

- 8. 해석 결과를 확인함 (Mesh Percent 5% 인 경우는 해석시간 약 8분, Memory 약 1.4GB 가 소요됨)
- 9. Gmsh 를 종료함

Thank You