Zadanie 212

Jadwiga Świerczyńska

5 stycznia 2022

Mamy daną funkcję f, która jest ciągła i ograniczona na (a,∞) . Weźmy dowolne T. Zauważmy, że wystarczy rozważać $T\geq 0$ - w przeciwnym przypadku dowód jest analogiczny. Pokażemy, że istnieje ciąg x_n , taki że $\lim_{n\to\infty} x_n=\infty$ oraz $\lim_{n\to\infty} f(x_n)-f(x_n+T)=0$.

Oznaczmy g(x) = f(x) - f(x+T). Oczywiście g jest ciągła i ograniczona na $(a+T,\infty)$.

Lemat. Dla dowolnego $\varepsilon > 0$ zbiór $\{x > a + T : |g(x)| < \varepsilon\}$ jest nieograniczony. **Dowód Lematu.** Ustalmy $\varepsilon > 0$. Oznaczmy

$$\begin{split} A &= \{x > a + T : g(x) \geq \varepsilon\}, \\ B &= \{x > a + T : g(x) \leq -\varepsilon\}, \\ C &= \{x > a + T : |g(x)| < \varepsilon\}. \end{split}$$

Załóżmy nie wprost, że C jest ograniczony. Niech M>0 będzie takie, że dla każdego $x\in C$ mamy, że |x|< M. Mamy 2 przypadki:

- A i B są nieograniczone. Istnieje $x_a \in A$, takie że $x_a > M$ oraz $x_b \in B$, takie że $x_b > M$. Z własności Darboux dla pewnego x pomiędzy x_a i x_b mamy, że g(x) = 0. Oznacza to, że dla x > M zachodzi $|g(x)| < \varepsilon$, czyli sprzeczność z tym, że M jest ograniczeniem zbioru C.
- Dokładnie jeden ze zbiorów A,B jest nieogranioczony (bez straty ogólności przyjmijmy, że jest to A). Istnieje zatem $M_A > a+T$, takie że każdego $x > M_A$ zachodzi $x \in A$. Zdefiniujmy ciąg y_n w taki sposób, że dla każdego $n \in \mathbb{N}$ mamy $y_n = M_A + nT$. Mamy więc $g(y_n) \geq \varepsilon$, czyli $f(y_n) \geq f(y_n+T) + \varepsilon$, co oznacza, że $f(y_n) \geq f(y_{n+1}) + \varepsilon$. Jednak wówczas dla dowolnego $M_y > 0$ istnieje $N_y \in \mathbb{N}$, takie że dla każdego $n > N_y$ zachodzi $|f(y_n)| > M_y$, czyli sprzeczność z tym, że f jest ograniczona na (a, ∞) .

Otrzymane sprzeczności prowadzą do wniosku, że C nie jest ograniczony, co kończy dowód Lematu.

Oznaczmy przez C_k zbiór, taki że $C_k = \{x > a : |g(x)| < \frac{1}{k}\}$. Na mocy Lematu każdy ze zbiorów C_1, C_2, C_3, \ldots jest nieograniczony. Niech x_n będzie ciągiem, takim że dla każdego $n \in \mathbb{N}$ mamy, że $x_n \in C_n$ oraz $x_n > n$. Wówczas $\lim_{n \to \infty} x_n = \infty$ oraz $|g(x_n)| < \frac{1}{n}$, co oznacza, że $\lim_{n \to \infty} g(x_n) = 0$. Jest to równoważne ze stwierdzeniem, że $\lim_{n \to \infty} f(x_n) - f(x_n + T) = 0$, co należało wykazać. \square