Лабораторна робота 2 СИНТАКСИЧНИЙ АНАЛІЗ

Мета: дослідити техніки роботи з синтаксичними аналізаторами, набути практичних навичок використання засобу для генерації синтаксичного аналізатору ANTLR 4.

Оцінювання роботи: 20 балів

Термін здачі роботи без штрафних балів: 29.03.2017 – 28.04.2017

Завлання

- 1) За допомогою засобу ANTLR 4 [1,2] побудувати лексичний аналізатор для виразу згідно з індивідуальним варіантом (табл. 1).
 - матриці задаються у такому вигляді: [[1, 3, 4], [4, 78, -4], [67, 8, 0]]
 - вектори задаються у такому вигляді: [1, 3, 4]
 - позначення (мнемоніку) операцій в більшості випадків збігається з позначенням у формулі або наведена у дужках в примітках
 - на вхід лексера подається вираз, в якому відсутні зайві пробільні символи, тому з виразу, який ввів користувач, їх треба прибрати
- 2) За результати обробки виразу синтаксичним аналізатором отримати дані і обчислити вираз з матрицями і векторами згідно з індивідуальним варіантом (табл. 1).
 - пріоритет операцій встановити за правилом PEMDAS
 - для роботи з матрицями можна використати бібліотеку JAMA [3]

Рекомендована література:

- 1. ANTLR Home Page: http://www.antlr.org/
- 2. ANTLR Development Tools: http://www.antlr.org/tools.html
- 3. Офіційна сторінка проєкту JAMA : A Java Matrix Package: http://math.nist.gov/javanumerics/jama/

Основи технологій програмування

Індівідуальні завдання

Таблиця 2

Варіант	Вираз	Варіант	Вираз
1	2	3	4
1	$A^T * B + C * k$	12	$\left(B^T + C^{-1}\right) * k$
2	$rank(A^{-1}+C*B)$	13	$(V1\times V2)*B^T$
3	$k * A + B * C^{-1}$	14	rank(V *B)
4	$\det(A/k-C)$	15	$A*B-C^{-1}$
5	$(V1 \bullet V2) * A^{-1}$	16	$V1 \bullet V2 + \det(A+B)$
6	$C^T / rank(A)$	17	$A/k*rank(B^T)$
7	$C^{-1} - k * B^T$	18	$\left(k * A^{-1} + C\right)/k$
8	$\det(A+k*B)$	19	(V1 + rank(A)) * B
9	$(V1 \bullet V2) * V3 $	20	$(B^{-1}-C)*k$
10	$(A-B^T)*rank(C)$	21	$(A+B)^T*k$
11	$\det(A) * B - C^{-1}$	22	$det (A + B^{-1})$

1

* Примітка до позначень, застосованих у виразі:

A, B, C матриці V1, V2, V3 вектори k скалярне значення A + Bсума матриць det(A)детермінант матриці A/kділення матриці на скалярне значення обернення матриці (А^1) A^{-1} добуток матриць A * Bдобуток матриці і скалярного значення A*krank(A)ранг матриці віднімання матриць A - Bтранспозиція матриці (А^Т) A^{T} $V1 \bullet V2$ скалярний добуток двух векторів (V1*V2) модуль вектора |V| $V1 \times V2$ векторний добуток двох векторів (V1xV2)