Solution of Nonlinear Systems

The position of a two-link robot arm can be described in terms of the angle α that the first link makes with the horizontal axis and the angle β that the second link makes with the first link. The problem is to find the angles α and β that allow the end of the second link to be at a specified point, with coordinates (x, y).

First Link
$$x_1 = d_1 \cos(\alpha)$$
 $y_1 = d_1 \sin(\alpha)$
Second Link $x_2 = x_1 + d_2 \cos(\alpha + \beta)$ $y_2 = y_1 + d_2 \sin(\alpha + \beta)$

Thus, we need to solve for the unknown angles α and β

$$x = d_1 \cos(\alpha) + d_2 \cos(\alpha + \beta)$$
$$y = d_1 \sin(\alpha) + d_2 \sin(\alpha + \beta)$$

When we have a system of simultaneous nonlinear equations, the situation is more difficult. In fact, some sets have no real solutions.

Consider this example of pair of equations:

$$x^2 + y^2 = 4,$$
$$e^x + y = 1.$$

Graphically, the solution to this system is represented by the intersection of the circle $x^2 + y^2 = 4$ with the curve $e^x + y = 1$.

Figure shows that these are near (-1.8, 0.8) and (1,-1.8).

Fixed Point Iteration for Nonlinear Systems

The fixed point iteration can be modified to solve two simultaneous, nonlinear equations. We know how to solve a single nonlinear equation by fixed iterations. We rearrange it to solve for the variable in a way that successive computations may reach a solution. Sometimes we can do the same for a system

Let

$$F(x_1, x_2, ..., x_n) = \begin{pmatrix} f_1(x_1, x_2, ..., x_n) \\ f_2(x_1, x_2, ..., x_n) \\ f_3(x_1, x_2, ..., x_n) \\ . \\ . \\ . \\ . \\ . \\ . \\ f_n(x_1, x_2, ..., x_n) \end{pmatrix}$$

Suppose G is a continuous function generated from the F with continuous first partial derivatives and

th continuous first partial derivatives and
$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le 1$$
 $j = 1, 2, ..., n$ and each component function g_i .

Then the sequence $x^{(k)}$ defined by an arbitrarily selected $x^{(0)}$ generated by

$$x^{(k)} = G(x^{(k-1)}).$$

This approach will be illustrated in the following example.

Example: Consider this pair of equations:

$$x^2 + y^2 = 4,$$
$$e^x + y = 1.$$

Use fixed point iteration to determine the roots of the given system.

If we will try this rearrangement:

$$y = -\sqrt{(4 - x^2)},$$

$$x = \ln(1 - y).$$

and

$$y_{i+1} = -\sqrt{(4 - x_i^2)},$$

$$x_{i+1} = \ln(1 - y_i).$$

For simplification

$$y_{i+1} = -\sqrt{(4 - x_i^2)},$$

$$x_{i+1} = \ln(1 - y_{i+1}).$$

And begin with $x_0=1.0$, the successive values for y

$$y_1 = -\sqrt{(4-1^2)} = -1.7321,$$

 $x_1 = \ln(1+1.7321) = 1.0051$

$$y_2 = -\sqrt{(4 - 1.0051^2)} = -1.7291,$$

 $x_2 = \ln(1 + 1.7291) = 1.00397$

Other rearrangements are possible.

$$y = (4 - x^2)/y$$
,
 $x = \ln(1 - y)$.

and

$$y_{i+1} = (4 - x_i^2) / y_i,$$

 $x_{i+1} = \ln(1 - y_i).$

Try these arrangements to solve the system and compare results. Begin with $x_0=1.0$ and $y_0=-1.7$ MATLAB SOLUTION

 $>> [x,y] = solve('x^2+y^2=4','exp(x)+y=1')$

x = -1.8162640688251505742443123715859

 $y = 1 - \exp(-1.8162640688251505742443123715859) + 1$

>>

BUT THIS IS THE LEFTMOST INTERSECTION. WE CAN GET ONE NEAR (1,-1.7) WITH

>> [x,y]=solve('abs(x^2)+y^2=4','exp(x)+y=1')

x = 1.0041687384746591657874315472901

y = -1.7296372870258699313633129362508

>>

Consider this pair of equations:

$$e^x - y = 0,$$
$$xy - e^x = 0.$$

Use fixed point iteration to determine the roots of the given system.

Let us solve the first of the pair for and the second for y:

$$x = \ln(y),$$

 $y = e^{x} / x.$ and $x_{i+1} = \ln(y_i),$
 $y_{i+1} = e^{x_i} / x_i.$

Rewrite the formula as

$$x_{i+1} = \ln(y_i),$$

 $y_{i+1} = e^{x_{i+1}} / x_{i+1}.$

To start, we guess at a value for y, say, $y_0=2$.

$$x_1 = \ln(y_0) = 0.69315,$$

 $y_1 = e^{0.69315} / 0.69315 = 2.88539$

i	y-value	x-value	
1	2.88539	0.69315	
2	2.72294	1.05966	
3	2.71829	1.00171	
4	2.71828	1.00000	

which are precisely the correct results. (Look the figure)

MATLAB SOLUTION

Given the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin(x_3) + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

Use Fixed Point Iteration method to obtain the first five iterates with the initial approximation is

$$x^{(0)} = \begin{bmatrix} 0.1\\ 0.1\\ -0.1 \end{bmatrix}$$

Solution:

If the ith equation is solved for x_i , the system can be changed into the fixed point problem

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin(x_3) + 1.06} - 0.1,$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}$$

 $G(x)=(g_1(x),g_2(x),g_3(x))^T$ where **Then**

$$g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2 x_3) + \frac{1}{6},$$

$$g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin(x_3) + 1.06} - 0.1,$$

$$g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1 x_2} - \frac{10\pi - 3}{60}$$

First we obtain partial derivatives for g_i to check convergence.

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0,$$

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \quad \left| \frac{\partial g_1}{\partial x_2} \right| = \frac{1}{3} |x_3| |\sin x_2 x_3| = 0.0003334, \quad \left| \frac{\partial g_1}{\partial x_3} \right| = \frac{1}{3} |x_2| |\sin x_2 x_3| = 0.0003334,$$

$$\left| \frac{\partial g_1}{\partial x_3} \right| = \frac{1}{3} |x_2| |\sin x_2 x_3| = 0.0003334,$$

$$\left| \frac{\partial g_2}{\partial x_1} \right| = \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} = 0.01028,$$

$$\left| \frac{\partial g_2}{\partial x_2} \right| = 0,$$

$$\left| \frac{\partial g_2}{\partial x_3} \right| = \frac{\left| \cos x_3 \right|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} = 0.057,$$

$$\left| \frac{\partial g_3}{\partial x_1} \right| = \frac{|x_2|}{20} e^{-x_1 x_2} = 0.00496,$$

$$\left| \frac{\partial g_3}{\partial x_1} \right| = \frac{|x_2|}{20} e^{-x_1 x_2} = 0.00496, \quad \left| \frac{\partial g_3}{\partial x_2} \right| = \frac{|x_1|}{20} e^{-x_1 x_2} = 0.00496,$$

$$\left| \frac{\partial g_2}{\partial x_3} \right| = 0,$$

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le 0.057$$
 for each $i = 1,2,3$ and $j = 1,2,3$.

$$g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2 x_3) + \frac{1}{6},$$

$$g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin(x_3) + 1.06} - 0.1,$$

$$g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1 x_2} - \frac{10\pi - 3}{60}$$

Then the sequence of vectors generated by

$$x_1^{(k)} = \frac{1}{3}\cos(x_2^{(k-1)}x_3^{(k-1)}) + \frac{1}{6},$$

$$x_2^{(k)} = \frac{1}{9}\sqrt{(x_1^{(k-1)})^2 + \sin(x_3^{(k-1)}) + 1.06} - 0.1,$$

$$x_3^{(k)} = -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}$$

The results are given in the following Table.

k	$\mathcal{X}_1^{(k)}$	$X_2^{(k)}$	$\chi_3^{(k)}$
0	0.10000000	0.10000000	-0.10000000
1	0.49998333	0.00944115	-0.52310127
2	0.49999593	0.00002557	-0.52336331
3	0.50000000	0.00001234	-0.52359814
4	0.50000000	0.00000003	-0.52359847
5	0.50000000	0.00000002	-0.52359877

$$||x^{(5)} - x^{(4)}|| = 3.1 \cdot 10^{-7}$$

Exercise: Fixed Point Iteration

Consider the problem of finding the points of intersection of two curves. The first equation represents an ellipse of eccentricity 0.5. The second equation represents a circle with the <u>same area as</u> ellipse. Both curves are centered at the origin.

$$x^2 + y^2 - \sqrt{3}/2 = 0.$$

Use fixed point iteration to determine the roots of the given system.

Exercise:

Use fixed point iteration for the following system.

$$x^2 + xy = 10,$$

$$y + 3xy^2 = 57.$$

MATLAB M-File (Nonlinear Fixed Point Systems-

Nonlinear Seidel Iteration)

```
function [P,iter] = seideldim(G,P,delta, maxit)
%Input - G is the nonlinear fixed-point system
          saved as an M-file function
%
         - P is the initial guess at the solution
%
         - delta is the error bound
         - maxit is the number of iterations
%Output - P is the seidel approximation to the solution
        - iter is the number of iterations required
%Use the @ notation call [P.iter]=seidel(@G, P. delta, maxit).
N=length(P);
for k=1:maxit
 X=P:
  % X is the kth approximation to the solution
 for j=1:N
   A=G(X):
   % Update the terms of X as they are calculated
   X(j)=A(j);
 end
 err=abs(norm(X-P));
 relerr=err/(norm(X)+eps);
 P=X;
 iter=k:
 if (err<delta)|(relerr<delta)</pre>
  break
 end
end
```