CPEN 400Q Lecture 20 Conditions for quantum error correction; intro to stabilizers

Monday 24 March 2025

- Quiz 9 today
- Last tutorial assignment tomorrow
- Sign up for project presentations, and final oral interview (Canvas calendar)
- Project rubric will be available in next few days
- A3 due tomorrow 23:59

Last time

We discussed the motivation for quantum error correction, and developed a mathematical (/graphical) model for noise.

2025-03-24 CPEN400Q 2024W2 L20 3 / 24

Last time

We saw our first quantum error correcting code: the quantum repetition code, or bit flip code.

2025-03-24 CPEN400Q 2024W2 L20 4 / 24

Last time

We designed logical operations for the bit flip code.

Learning outcomes

Today:

- Correct bit and phase flip errors with the 9-qubit code
- Outline the conditions under which errors can be corrected
- Of Define the stabilizers of a quantum error correcting code

2025-03-24 CPEN400Q 2024W2 L20 6 / 24

Phase flip errors

With our encoding

and appropriate circuitry, we can correct *bit flip errors* but not phase flip errors.

2025-03-24 CPEN400Q 2024W2 L20 7 / 24

Main idea: make phase flip errors "look like" bit flip errors.

Shor code

To correct a combination of one bit flip and/or phase flip error, we can concatenate codes.

2025-03-24 CPEN400Q 2024W2 L20 9 / 24

Shor code

The Shor code can correct one arbitrary error on a single qubit.

Imagine a bit + phase flip on qubit 6:

Shor code

Correcting arbitrary errors

The 9-qubit code can correct arbitrary errors on a single qubit.

Represent possible errors as $\{E_i\}$, full error channel as

We can correct $\{E_i\} = \{I, X_j, Z_j, X_j Z_j\}_j$. If we can write an arbitrary error \mathcal{E}_k on qubit j as

then we can correct it too.

Conditions for quantum error correction

How do we know if a particular error is correctable by a QECC?

Formal definition of a quantum error correcting code is a *subspace*, *C*, called the **codespace**.

Example: bit flip code.

- Codewords:
- Codespace: contents have the form

Define a projector onto the codespace,

Conditions for quantum error correction

The errors this code corrects are all mapped to different orthogonal subspaces of the full Hilbert space.

2025-03-24 CPEN400Q 2024W2 L20 14 / 24

Conditions for quantum error correction

Theorem 10.1: (Quantum error-correction conditions) Let C be a quantum code, and let P be the projector onto C. Suppose $\mathcal E$ is a quantum operation with operation elements $\{E_i\}$. A necessary and sufficient condition for the existence of an error-correction operation $\mathcal R$ correcting $\mathcal E$ on C is that

(10.16)

for some Hermitian matrix α of complex numbers.

If such an \mathcal{R} exists, $\{E_i\}$ is called a *correctable set of errors*.

Correctable errors: bit flip code

Consider
$$\{I, E_1 = XII, E_2 = IXI, E_3 = IIX\}$$

Try including a 2-qubit error:

Example: amplitude damping

Not immediately clear how to express this in terms of no errors, bit, phase or bit/phase flip errors. Can we still correct it?

Straightforward to re-express K_1 :

For K_0 .

Last class, we considered two recovery circuits for the bit flip code.

We can consider a more general invariant than parity: eigenv

We can consider a more general invariant than parity: eigenvalues w.r.t. special subsets of the Pauli group.

The *n*-qubit Pauli group is

Example: Which two-qubit Paulis is this Bell state a +1 eigenstate of?

Consider our logical states:

Which three-qubit Paulis are these states +1 eigenstates of?

Stabilizers

Let S be a subgroup of \mathcal{P}_n .

Let V_S be a set of states that are +1 eigenstates for all $P \in S$.

Then, S is the **stabilizer** of V_S .

Facts about S:

- \blacksquare -1 is never in S
- all items of S commute
- choosing S uniquely defines the fixed subspace, V_S

Let's determine a *minimal* representation of the group in terms of its **stabilizer generators**.

Bit flip code: stabilizer measurement

We can use this formalism to construct new circuits for error detection and recovery: simply *measure the stabilizer generators*.

Next time

Next class:

■ More stabilizer codes: phase flip, [[5, 1, 3]] code, Steane code

Action items:

- **1** A3 (due 25 March 23:59)
- Work on project

Recommended reading:

- From this class: Codebook EC; 10.3, 10.5
- For next class: Codebook EC; 10.1-10.5