AMATH 383 HW 3

Nan Tang 1662478

February 23, 2020

Table 3.3

Year	Balance	(9	decimals)	Balance	(10	decimals)	
0	58000.000				58000.0000		
1	221908.000				221908.0000		
2		73	39902.518		739	9902.5186	
3		13:	17242.863		1317	7242.8633	
4	63585.171			63585.1704			
5		24	12211.462		242	2211.4599	
6		79	92846.671		792	2846.6656	
7		128	85569.152		128	5569.1569	
8		18	84212.474		184	4212.4560	
9		63	35047.189		63	5047.1371	
10		133	30333.959		1330	0333.9493	
11			11970.508		1:	1970.5472	
12		4	47452.152		47	7452.3067	
13		18	33053.487		183	3054.0625	
14		63	31688.210		63:	1689.8806	
15		132	29662.856		1329	9663.2066	
16		:	14641.492		14	4640.0974	
17		į	57922.848		5	7917.3922	
18		22	21626.223		22:	1606.2958	
19		73	39150.343		739	9097.1321	
20		13:	17571.683		1317	7594.8163	
21		(32301.312		62	2210.9653	
22		23	37560.887		23	7233.2485	
23		78	30938.022		780	0094.1514	
24		129	94159.505		1294	4735.9504	
25		15	52091.546		149	9920.2578	
26		53	38970.668		532	2252.7801	

27	1284414.529	1279132.0546
28	188496.069	207991.7790
29	647391.971	702185.3756
30	1332218.791	1329548.5972
31	4454.442	15095.9718
32	17758.241	59700.2221
33	70086.898	228108.5388
34	265611.072	756333.6387
35	850796.563	1309212.8357
36	1231621.877	94736.5953
37	375810.164	352021.3137
38	1079540.817	1036328.2389
39	821938.141	923384.2993
40	1261005.641	1135621.5046
41	273616.884	673577.4132
42	869868.938	1333190.0580
43	1209459.844	573.0397
44	449460.033	2291.1736
45	1191797.168	9148.9459

R code for reproducing chaotic bank balance

```
yr <- 45
K <- 1
p0 < -0.058
rt <- 3
p_set_9 <- numeric(yr)</pre>
p_{set_9[1]} \leftarrow p0
p_set_10 <- numeric(yr)</pre>
p_set_10[1] <- p0
# keep decimal to given level
keep_decimal <- function(origin_num, decimal_place) {</pre>
  temp_num <- floor(origin_num * 10^(decimal_place))</pre>
  return(temp_num / 10^(decimal_place))
}
# calculate balance at t + delta t
interest_cal <- function(curr_p, decimal_place) {</pre>
  new_p <- curr_p + rt * curr_p * (1 - curr_p)</pre>
  return(keep_decimal(new_p, decimal_place))
```

```
for (i in 1:yr) {
    new_p_9 <- interest_cal(p_set_9[i], 9)
    p_set_9[i+1] <- new_p_9

    new_p_10 <- interest_cal(p_set_10[i], 10)
    p_set_10[i+1] <- new_p_10
}

result <- data.frame(0:45, p_set_9 * 1000000, p_set_10 * 1000000)
names(result) <- c('Year', 'Balance (9 decimals)', 'Balance (10 decimals)')
print(result, row.names = F)</pre>
```

Exercise 2.4

 \mathbf{a}

Plug in equations $m = m_c N_c$, $Y = y_0 m^{\frac{3}{4}}$ into differential equation.

$$\frac{dN_c}{dt} = \frac{dN_c}{dm} \cdot \frac{dm}{dt} = \frac{1}{m_c} \frac{dm}{dt}$$

$$Y = Y_c N_c + E_c \frac{dN_c}{dt}$$

$$y_0 m^{\frac{3}{4}} = Y_c N_c + E_c \frac{1}{m_c} \frac{dm}{dt}$$

$$\frac{dm}{dt} = (\frac{y_0 m_c}{E_c}) m^{\frac{3}{4}} - (\frac{Y_c}{E_c}) m$$

b

Find M by setting $\frac{dm}{dt} = 0$

$$\frac{dm}{dt} = aM^{\frac{3}{4}} - bM = 0$$

$$aM^{\frac{3}{4}} = bM$$

$$M = (\frac{a}{b})^4$$

Then $b = \frac{a}{M^{\frac{1}{4}}}$, plug in equation of b into differential equation.

$$\frac{dm}{dt} = am^{\frac{3}{4}} - \frac{a}{M^{\frac{1}{4}}}m = am^{\frac{3}{4}}(1 - (\frac{m}{M})^{\frac{1}{4}})$$

 \mathbf{c}

Solve the separable differential equation.

$$\begin{split} \frac{dR}{dt} &= -(\frac{a}{M^{1/4}})R\\ \int_0^t \frac{1}{R} dR &= \int -(\frac{a}{M^{1/4}}) dt\\ ln(R(t)) - ln(R(0)) &= -(\frac{a}{M^{1/4}})t\\ ln(R(t)/R(0)) &= -(\frac{at}{M^{1/4}})\\ ln(\frac{R(t)}{R(0)})/(\frac{at}{M^{1/4}}) &= -1 \end{split}$$

This shows slope of of $ln(\frac{R(t)}{R(0)})$ vs $(\frac{at}{M^{1/4}})$ is equal to -1

 \mathbf{d}

Previous problem shows that $ln(\frac{R(t)}{R(0)}) = -\frac{at}{M^{1/4}}$, where a is a constant. Therefore, for some given time t, the interval between heartbeats depends on $M^{\frac{1}{4}}$.