KAN & FinRL

Group 24 - Artificial Idiot

Introduction

Introduction

- Improve performance of RL on finRL
 - Two Way approach
 - Feature Engineering of dataset
 - KAN to visualize the trained model
- FinRL
 - o from NIPS Datasets and Benchmarks 2022

Related work - PPO

- Proximal Policy Optimization (PPO)
- Aims to improve reinforcement learning (RL) stability and sample efficiency
 - By balancing between the efficiency of policy gradient methods and the stability of trust region methods.

Related work - KAN

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) pprox \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes
Formula (Deep)	$\mathrm{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c) W_3 — O_2 — O_3 — O_4 —	(d) Φ_3 \bullet nonlinear, learnable \bullet \bullet \bullet

https://arxiv.org/abs/2404.19756

Dataset - FinRL

https://github.com/AI4Finance-Foundation/FinRL-Meta

Dataset - FinRL

	Training Data	Testing Data	
Dataset	Dow Jones Industrial Average (DJIA) Components (Data from Yahoo Finance)		
Time Period	2024-01-01~2024-04-30 (Time interval: 1Hr)	2024-05-01~2024-05-15 (Time interval: 15Min)	
Size	17430×15	8580×15	

Baseline & Evaluation Metric

- The initial amount: 1 Million US Dollars
- Baseline
 - The origin model of FinRL
- Evaluation Metric
 - Return Rate = Return / initial amount = (account_value initial amount) / initial amount
 - Annualized Return Rate =
 [Return Rate * (trading days each year / trading days in testing period) 1] * 100%

Main Approach

KAN for Visualization

- Train KAN by the input/output of trained PPO
 - Direct replace MLP in PPO will result in long training time
- Plot the trained model to show the relationship between input and output

FinRL feature Engineering

- Implement data fetcher to get financial data from yahoo finance
- Fix the bug in finRL

FinRL feature Engineering

- Optimize the gain of returns by utilizing WorldQuant 101 Alphas as factors.
- Adjust the time interval of data
- Use the KAN model to identify useless factors
 - Retaining those that are useful for prediction results
 - Eliminating factors that have little impact on the outcomes.

Results & Analysis

Test Results

Return Rate in 15 days = 1.08

⇒Annualized Return Rate ≒ 192%

KAN Visualization Result

- GS/MSFT KAN plot result
- Input: ["money", "close", "holding"]+["boll_ub", "boll_lb", "rsi_30", "dx_30", "close_30_sma"]
- Action has a relatively low correlation with money
- Trained function are almost linear
 - can't fit the input/output well
 - Too much noise in input/output

GS

Feature Selection Results

The short-term results are better than the long-term results

	Long-Term	Short-term
Time Period	2023-05-16~ 2024-05-15	2024-05-01~ 2024-05-15
Return Rate	1.37	1.08
Annualize Return Rate	37%	192%

Analysis:

In long-term trading, the agent's trading frequency is lower, and its strategy tends to be buy and hold.

Feature Selection Results

 We tried adding some factors, such as WorldQuant 101 Alphas, to improve the result, but there are no obvious improvement

Feature Selection Results

 After that, we tried to remove some of the indicators, and finally, we get a better result.

Analysis:

Due to the removal of the indicators, the model can focus on those useful factors. This makes the result better.

Comparison

Our annualized return rate is twice that of the baseline model.

	Baseline	Result
Time Period	2024-05-01~2024-05-15	
Return Rate	1.04	1.08
Annualize Return Rate	96%	192%

Limitations

KAN Limitations

- KAN's potential may not have been fully realized
- We only trained KAN using the input/output data from the trained PPO model
- The data was processed in multiple parts
- The neglect of inter-stock relationships
- More hyperparameter selection may be needed for better results.
- We could try replacing the MLP in PPO with KAN for testing
 - But much longer training time

Appendix

Appendix

- Github link: https://github.com/freddy645645/NYCU 2024 Al Final
- Script: Script
- Reference
 - FinRL
 - o <u>KAN</u>
 - pykan
 - ElegantRL
 - o kanrl
 - FinRL_Contest

Appendix - Contribution of each member

黃銘宇	KAN visualization: code, slide	35%
鄒東祐	Feature Selection: code, slide	35%
王睿宇	Feature Selection, Presentation	30%
黄致皓		0%