Lecture 7: Generating random variables – acceptance-rejection sampling

Ciaran Evans

Previously

- ▶ Generate $U \sim Uniform(0,1)$ with random number generator (LCG, Mersenne twister, etc)
- Some other random variables can be generated by transformations
 - Inverse transform method (if inverse cdf is easy to get)
 - Other transformations for certain variables

Today: What is another alternative?

Example

Suppose we would like to generate $X \sim \textit{Beta}(\alpha, \beta)$

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
 $x \in (0, 1)$

▶ Inverse transform method: $F_X(t) = ?$

Other transformations / relationships with other distributions?

Acceptance-rejection sampling: motivation

▶ Want: $X \sim Beta(\alpha, \beta)$, $f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$

However, it may be difficult to directly simulate from this distribution. Can you think of another distribution on (0,1) which is *easier* to simulate?

Acceptance-rejection sampling: motivation

- ▶ Want: $X \sim Beta(\alpha, \beta)$, $f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
- ▶ Can get: $Y \sim Uniform(0,1)$

Suppose we sample $Y \sim Uniform(0,1)$ and observe y=0.9. Is it likely we would observe that draw from the Beta distribution shown here?

Acceptance-rejection sampling: motivation

- ▶ Want: $X \sim Beta(\alpha, \beta)$, $f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
- ▶ Can get: $Y \sim Uniform(0,1)$

Suppose we sample $Y \sim \textit{Uniform}(0,1)$ and observe y = 0.25. Is it likely we would observe that draw from the Beta distribution shown here?

Acceptance-rejection sampling

Suppose we would like to generate a continuous random variable X with pdf f.

Illustration

Target density: $f(t) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ t \in (0,1)$

Candidate density: g(t) = 1, $t \in (0,1)$

Illustration

Now sample $Y \sim g$ and $U \sim \textit{Uniform}(0,1)$. Accept Y if $U \leq \frac{f(Y)}{cg(Y)}$

Suppose we observe Y = 0.25. Are we likely to accept or reject 0.25 as a sample from f?