MOMENTUM

CRISP-DM:: Modeling

팀별 활동을 통해 실습과 이론을 동시에~

개요

- 지난 시간 복습 브리핑
- 데이터 이해 왜 해야하는가?

•

머신러닝이 뭔가요?

머신러닝 모델을 이용하여 데이터의 **패턴을 학습(Fit)**하고, 미래에 대한 **판단이나 예측(Predict)**을 하는 것

머신러닝의 종류

지도학습과 비지도학습

지도학습

비지도학습

정답이 있는 데이터를 학습

정의

정답 없이 데이터의 패턴 및 구조 학습

예측 또는 분류

목표

군집화, 차원 축소

훈련데이터(X) + 정답데이터(Y)

입력데이터

훈련데이터(X)만 있음

고객 이탈예측, 주택 가격 예측

예시

고객 군집화, 차원 축소

선형/로지스틱회귀, 랜덤포레스트

주요 알고리즘

K-Means, DBSCAN

지도학습 – 회귀와 분류

회귀

숫자(연속값)을 예측

정의

카테고리(범주형 값)을 예측해 분류

가격, 시각, 확률 등 수치등을 예측

목표

Yes/No, A or B, 고양이 강아지등을 분류

가격 예측, 재구매 확률 예측

예시 스펨 메일 분류, 질병 유무 진단, 고객 이탈 예측

선형회귀, 라쏘, 릿지, 랜덤포레스트 주요 알고리즘

로지스틱 회귀, 랜덤포레스트

요구사항 정의

데이터 수집 및 전처리

모델 정의하기

평가하기

무엇을 예측할 것인가?

우리의 목표는 무엇인가?

예측 목표 : 고객이 서비스에서 이탈하는지 여부 예측

예측 타겟 변수 : 이탈여부 (1=이탈, 0 =유지)

요구사항 정의

데이터 수집 및 전처리

모델 정의하기

평가하기

어떤 데이터를 수집할 것인가? 데이터를 종류별로 어떻게 전처리할 것인가?

고객ID	가입일수	총 결제금액	최근 접속일	성별	알림 설정	이탈여부
001	180일	200,000원	5일 전 전정,?	남자	ON	이탈안함
002	30일	15,000원	20일 전	여자	OFF	이탈함

고객ID	가입일수	총 결제금액	최근 접속일	성별	알림 설정	이탈여부
001	180	200000	5	1	1	0
002	30	15000	20	0	0	1

컴퓨터가 이해할 수 있도록 데이터 처리하기 스케일링, 인코딩,결측치 처리

요구사항 정의

데이터 수집 및 전처리

모델 정의하기

평가하기

어떤 모델을 사용할 것인가?

지도학습인가?

비지도학습인가?

분류인가?

회귀인가?

고객ID	가입일수	총 결제금액	최근 접속일	성별	알림 설정	이탈여부
001	180	200000	5	1	1	0
002	30	15000	20	0	0	1

X : 독립변수

Y : 종속변수

X와 Y를 모두 학습하니 지도 학습이며, 이진 분류 모델을 사용해야함 X에 따른 Y(이탈여부)를 모델에 학습 (훈련데이터) Fit한다

고객ID	가입일수	총 결제금액	최근 접속일	성별	알림 설정	이탈여부
102	200	123123	3	1	1	?
150	3	100	201	0	1	?

X:독립변수

Y : 종속변수

훈련시킨 모델을 통해 다른 고객의 이탈 여부를 예측한다. 같은 독립 변수를 갖고 있는 고객들의 데이터를 X로 넣고 Y를 **Predict한다**

요구사항 정의

데이터 수집 및 전처리

모델 정의하기

평가하기

그래서 잘 예측이 되었는가?

예측

102번 : 이탈

150번 : 이탈X

실제

102번 : 이탈X

150번 : 이탈X

실제값과 예측값을 비교해 모델의 성능을 평가한다.

Scikit-learn 라이브러리

파이썬 기반 머신러닝 라이브러리

분류, 회귀, 군집, 차원축소등 다양한 ML 기능 제공

복잡한 수학 없이 간단한 코드로 머신러닝 모델을 구현할 수 있음

데이터 수집 및 전처리

모델 정의하기

평가하기

- 데이터 준비
- 데이터 전처리
- 학습/테스트 분리 (Train/Test Split)

- 모델 학습(Fit)

- 예측 (Predict)

- 예측 결과 평가

train data의 구성 - 학습용 (Fit)

- X (독립변수)
 - 모델이 학습할 수 있도록 주는 데이터
- Y (Target data, 종속변수)
 - 모델이 예측 해야하는 정답

Test data의 구성 - 실제 예측용 (Predict)

< Train data>

고객ID	가입일수	총 결제금액	최근 접속일	성별	알림 설정	이탈여부
001	180	200000	5	1	1	0
002	30	15000	20	0	0	1

< Test data>

102 200					
102 200	123123	3	1	1	?
150 3	100	201	0	1	?

train test split

- 그런데... train한 모델이 성능이 잘 나오는지 알고 싶어요..
- 근데 제가 공부한 데이터로 답을 맞춰보면 당연히 다 맞겠죠!
- 그래서 train 데이터의 일부를 test 데이터로 모의고사를 봅니다!

train test split

- 100개의 데이터 중, 80개는 학습하고
- 나머지 20개는 모의고사를 보면서 실제로 답을 잘 맞추는지 확인해요.
- 그 후 실제 test 데이터로 예측을 단 한 번만 수행!

훈련데이터세트 나누기

인코딩(Encoding)

고객ID	가입일수	총 결제금액	최근 접속일	<mark>성별</mark>	알림 설정	이탈여부
001	180	200000	5	남자	1	0
002	30	15000	20	여자	0	1
003	12	31	2	외계인	0	0

고객ID	가입일수	총 결제금액	최근 접속일	<mark>성별</mark>	알림 설정	이탈여부
001	180	200000	5	<mark>0</mark>	1	0
002	30	15000	20	1	0	1
003	12	31	2	3	0	0

인코딩(Encoding) – 라벨 인코딩

고객ID	가입일수	총 결제금 액	최근 접속 일	<mark>성별</mark>	알림 설정	이탈여 부
001	180	200000	5	남자	1	0
002	30	15000	20	여자	0	1
003	12	31	2	외계인	0	0

고객ID	가입일수	총 결제금 액	최근 접속 일	성별	<mark>성별</mark> 알림 설정 이탈 ⁰ 부	
001	180	200000	5	0	1	0
002	30	15000	20	1	0	1
003	12	31	2	3	0	0

- 그럼 여자보다 외계인의 영향력이 큰건가?
- 성별에 순서가 있는건가?

인코딩(Encoding) – 원핫 인코딩

고객ID	가입일수	총 결제금 액	최근 접속 일	성별	<mark>성별</mark> 알림 설정 이탈 ⁽ 부	
001	180	200000	5	남자	1	0
002	30	15000	20	여자	0	1
003	12	31	2	외계인	0	0

- 성별을 개별 컬럼으로 만들어주고, 해당 항목에만 1을 부여
- 컬럼의 수(차원)이 너무 많아질 가능성 존재

고객ID	가입일수	총 결제금 액	최근 접속 일	<mark>성별_남자</mark>	<mark>성별_여자</mark>	<mark>성별_외계</mark> 인	알림 설정	이탈여 부
001	180	200000	5	1	O	O	1	0
002	30	15000	20	O	1	o	0	1
003	12	31	2	O	O	1	0	0

정규화(Normalization) - MinMaxScaler

고객ID	가입일수	총 결제금액	최근 접속 일	성별_남자	성별_여자	성별_외계 인	알림 설정	이탈여 부
001	180	200000	5	1	0	0	1	0
002	30	15000	20	0	1	0	0	1
003	12	31	2	0	0	1	0	0

- 값의 범위를 0~1로 사이로 바꾸어 주는 것
- 200000과 2의 차이가 크므로, 총 결제 금액의 영향력이 비대해 지는 것을 방지

표준화(Standardization) - StandardScaler

고객ID	가입일수	총 결제금액	최근 접속 일	성별_남자	성별_여자	성별_외계 인	알림 설정	이탈여 부
001	180	<mark>200000</mark>	5	1	0	0	1	0
002	30	15000	20	0	1	0	0	1
003	12	31	<mark>2</mark>	0	0	1	0	0

- 값의 범위를 평균이 0 분산 1로 바꾸어 주는 것
- 200000과 2의 차이가 크므로, 총 결제 금액의 영향력이 비대해 지는 것을 방지
- 표준정규분포화 시켜준다!

KNN (K-Nearest Neighbors) 알고리즘

- K개의 가장 가까운 주변 데이터의 종류를 보고 예측 하겠다.

출처: MEDIUM.COM

KNN (K-Nearest Neighbors) 알고리즘

- K개의 가장 가까운 주변 데이터의 종류를 보고 예측 하겠다.

출처: MEDIUM.COM

장점

- 간단하고 쉬움
- 적은 데이터에서도 분류 가능

단점

- 차원이 늘어나면, 정확도 저하
- 이상치에 민감함

로지스틱 회귀 알고리즘

- 선형 회귀처럼 독립변수들의 선형 조합을 사용하되, 결과를 0과 1사이의 확률로 예측하는 모델
- 오즈를 계산해서 로짓 변환을 해서 그걸 시그모이드함수에 넣어서 다시 확률롤 출력한다...
- 그래서 얘가 1일 확률이 어느정도고 0일 확률은 어느정도야??
- 1일 확률이 0.5 이상 -> 1로 분류
- 0일 확률이 0.5 이상 -> 0으로 분류

로지스틱 회귀 알고리즘

장점

- 해석이 수월하다

단점

- 회귀분석이므로, 분포에 대한 가정이 필요하다.

랜덤 포레스트 알고리즘 (앙상블 중 배깅)

- 의사결정 나무(Decision Tree)를 여러개 만들어, 각 나무의 결과를 합치는 방식

 사망(0)과 생존(1)의 분류가 잘 되게 기준이 설정되고, 트리가 만들어짐

랜덤 포레스트 알고리즘 (앙상블 중 배깅)

- 의사결정 나무(Decision Tree)를 여러개 만들어, 각 나무의 결과를 합치는 방식

-표본 추출을 통해 의사결정 나무를 여러개 만들어, 해당 결과를 다수결로 판단하거나, 평균으로 합치는 방식

- 1번을 0이라고 분류한 의사결정 트리가 3개
- 1번을 1이라고 분류한 의사결정 트리가 1개
- -> 1번은 0으로 분류함

랜덤 포레스트 알고리즘 (앙상블 중 배깅)

- 의사결정 나무(Decision Tree)를 여러개 만들어, 각 나무의 결과를 합치는 방식

장점

- 쉬움!
- 대용량 데이터 처리가 쉬움
- 스케일링이 필요없음

단점

- 느림!
- 앙상블이므로, 해석이 어려움!

MOMENTUM

평가하기

혼동행렬 (Confusion-Matrix)

예측 클래스 (Predicted Class)

	Negative(0)	Positive(1)		
Negative(0)	TN (True Negative)	F P (False Positive)		
실제 클래스 (Actual Class) Positive(1)	FN (False Negative)	T P (True Positive)		

- TN : N(0)으로 예측했는데 진짜 N임

- FP : P(1)라고 예측했는데 사실 N임

- FN : N(0)으로 예측했는데 사실 P임

- TP : P(1)라고 예측했는데 진짜 P임

평가하기(추가예정)

정밀도

- TP / FP + TP
- P라고 예측한 애들 중 진짜 P인경우

오늘의 실습 데이터 Titanic

컬럼명	설명	자료형	예시
PassengerId	탑승객 고유 ID	int	892
Survived	생존 여부 (타깃 변수)0 = 사망, 1 = 생존	int (0 or 1)	1
Pclass	객실 등급 (1=1등석, 2=2등석, 3=3등석)	int	3
Name	이름	string	"Braund, Mr. Owen Harris"
Sex	성별	string	"male" / "female"
Age	나이 (결측값 존재)	float	22.0
SibSp	함께 탑승한 형제/배우자 수	int	1
Parch	함께 탑승한 부모/자녀 수	int	0
Ticket	티켓 번호	string	"A/5 21171"
Fare	운임 요금	float	7.25
Cabin	객실 번호 (결측값 다수 존재)	string	"C85"
Embarked	탑승 항구 (C = Cherbourg, Q = Queenstown, S = Southampton)	string	"S"

Task #04 :: EDA 및 시각화

다음의 항목들을 Point Plot 을 이용하여 시각화 하시오.

- (1) 연월 별 총 매출
- (2) 연월 별 총 판매량

*정답과 관련없는 플롯 예시입니다.