Correction du TD

I | Circuit de Wien

On réalise le montage suivant. On ferme l'interrupteur à l'instant $t=0,\,C$ traversé par i' étant initialement chargé et C traversé par i étant initialement déchargé.

On pose $\tau = RC$. Données : $R = 10 \,\mathrm{k}\Omega$ et $C = 0.1 \,\mathrm{\mu F}$.

1. À partir de considérations physiques, préciser les valeurs de la tension v lorsque t=0 et $t=\infty$.

Réponse :

Le condensateur de tension v est indiqué être initialement déchargé, on a donc $v(0^-)=0$. Comme un condensateur est de tension continue, on a donc $v(0^+)=0$. De plus, à $t \to \infty$, les deux condensateurs seront forcément déchargés à cause des résistances dissipant l'énergie, il ne peut y avoir conservation : il seront donc équivalent à des interrupteurs ouverts, et on aura donc notamment $v(\infty)=0$.

2. Établir l'équation différentielle du second ordre dont la tension v est solution.

Réponse:

Avec une loi des mailles, on a

$$u = v + Ri'$$

Or, la RCT du condensateur de gauche en convention générateur est

$$i' = -C \frac{\mathrm{d}u}{\mathrm{d}t} \Rightarrow i' = -C \frac{\mathrm{d}v}{\mathrm{d}t} - RC \frac{\mathrm{d}i'}{\mathrm{d}t}$$

On a donc une équation avec $\frac{dv}{dt}$. On cherche donc à exprimer i' en fonction de v, ce que l'on fait avec la loi des nœuds et les RCT du condensateur de droite $i = C \frac{dv}{dt}$ et de la résistance R(i'-i) = v:

$$i' = i + \frac{v}{R} \Leftrightarrow i' = C \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{R}$$
 (4.1)

En combinant les deux, on a

$$C\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{R} = -C\frac{\mathrm{d}v}{\mathrm{d}t} - RC\frac{\mathrm{d}}{\mathrm{d}t}\left(C\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{R}\right) \Leftrightarrow C\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{R} = -C\frac{\mathrm{d}v}{\mathrm{d}t} - RC^2\frac{\mathrm{d}^2v}{\mathrm{d}t^2} - C\frac{\mathrm{d}v}{\mathrm{d}t}$$
$$\Leftrightarrow \frac{\mathrm{d}^2v}{\mathrm{d}t^2} + \frac{3}{RC}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{(RC)^2} = 0 \Leftrightarrow \boxed{\frac{\mathrm{d}^2v}{\mathrm{d}t^2} + \frac{3}{\tau}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{\tau^2} = 0}$$

3. En déduire l'expression de v(t) sans chercher à déterminer les constantes d'intégration.

Réponse:

On écrit l'équation caractéristique de discriminant Δ :

$$r^{2} + \frac{3}{\tau}r + \frac{1}{\tau^{2}} = 0 \Rightarrow \Delta = \frac{9}{\tau^{2}} - \frac{4}{\tau^{2}} = \frac{5}{\tau^{2}} > 0$$
$$\Longrightarrow r_{\pm} = -\frac{3}{2\tau} \pm \frac{\sqrt{5}}{2\tau} < 0$$

On a donc un régime apériodique, dont les solutions générales sont

$$v(t) = Ae^{r_+t} + Be^{r_-t}$$

4. Donner l'allure du graphe correspondant à v(t).

Réponse:

Le condensateur est initialement chargé. Soit E sa tension initiale. On utilise l'équation 4.1 pour trouver que $\frac{dv}{dt}(0) = \frac{i'(0)}{C}$, sachant qu'à t = 0 le circuit est équivalent à un circuit RC en décharge et qu'on a donc i'(0) = E/R. On trouve ainsi

$$\frac{\mathrm{d}v}{\mathrm{d}t}(0) = \frac{E}{\tau}$$

En finissant la détermination des constantes d'intégration, on trouve

$$v(t) = \frac{E}{\tau(r_{+} - r_{-})} \left[e^{r_{+}t} - e^{r_{-}t} \right]$$

