Aufgaben zum Lambdakalkül

Aufgabe 1

Das SKI-Kalkül verwendet die Kombinatoren $S = \lambda x$. λy . λz . x z (y z), $K = \lambda x$. λy . x und $I = \lambda x$. x. Zusätzlich lassen sich die Kombinatoren $C = \lambda f$. λx . λy . f y x und $B = \lambda f$. λg . λx . f (g x) definieren.

- 1. Zeigen Sie S K $\stackrel{\eta,\beta}{=}$ K I, indem Sie zeigen: S K x y \Rightarrow * Z und K I x y \Rightarrow * Z für den gleichen Term Z.
- 2. Der Kombinator Ψ ist wie folgt definiert: $\Psi = \lambda f$. λg . λx . λy . f(g x)(g y).
 - (a) Geben Sie den allgemeinsten Typ von Ψ an.
 - (b) Zeigen Sie C I x y \Rightarrow^* y x.
 - (c) Der Kombinator C' sei definiert durch C' = B (B C) C. Zeigen Sie: C' f x y z \Rightarrow^* f z x y.
 - (d) Der Kombinator S kann dargestellt werden als C' (B (Ψ I) (C I)). Zeigen Sie, dass tatsächlich C' (B (Ψ I) (C I)) x y z \Rightarrow * x z (y z).

Aufgabe 2

Die Church-Booleans waren wie folgt definiert: $c_{true} = (\lambda t. \lambda f. t)$ und $c_{false} = (\lambda t. \lambda f. f)$, die Church-Integer als $c_n = (\lambda s. \lambda z. s^n z)$.

- 1. Geben Sie einen Lambdaterm "not" an, der die Negation eines gegebenen Church-Booleans berechnet.
- 2. Geben Sie nun (z.B. mithilfe von "not") einen Lambdaterm "even" an, der zurückgibt, ob ein gegebener Church-Integer gerade ist.
- 3. Schreiben Sie einen Lambdaterm "max", der das Maximum von zwei gegebenen Church-Integern berechnet. Sie dürfen die Funktion "less_eq" verwenden, wobei "less_eq n m" angibt, ob $n \leq m$ gilt.
- 4. Der Kombinator B sei definiert durch B = $(\lambda f. \lambda g. \lambda x. f (g x))$. Zeigen Sie, dass $(\lambda a. \lambda b. \lambda c. B B B \max \max a b c)$ das Maximum von 3 Zahlen berechnet. Sie dürfen dazu verwenden, dass $\max(a, b, c) = \max(\max(a, b), c)$.