

## Cálculo Lambda

## Origen

En la década de 1930, varios matemáticos estaban interesados en la pregunta: ¿cuándo una función  $f: \mathbb{N} \to \mathbb{N}$  es **computable**?

Es decir, ¿es posible calcular f(n) para cualquier n dado, usando lápiz y papel?

Se desarrollaron tres modelos de computabilidad por separado:

**Kurt Gödel:** Definió las **Funciones Recursivas Generales** y postuló que una función es computable si y solo si es recursiva general.

**Alan Turing:** Definió la **Máquina de Turing** y postuló que una función es computable si y solo si es computable por una máquina de Turing.

**Alonzo Church:** Definió el **Cálculo Lambda** y postuló que una función es computable si y solo si puede escribirse como una expresión lambda.

Luego se demostró que estos tres modelos son equivalentes (**Tesis de Church-Turing**).



### **Funciones**

El Cálculo Lambda incorpora dos simplificaciones para operar con funciones:

1. Las funciones son anónimas. Por ejemplo, la función

suma\_cuadrados
$$(x, y) = x^2 + y^2$$

se puede escribir como

$$(x,y) \mapsto x^2 + y^2$$

2. Todas las funciones son de un solo argumento. Por ejemplo, la función

$$(x,y) \mapsto x^2 + y^2$$

se puede escribir como

$$x \mapsto (y \mapsto x^2 + y^2)$$

Esta transformación se llama currificación (por Haskell Curry).

#### Cálculo Lambda

Consiste en escribir **expresiones lambda** con una sintaxis formal, y aplicar **reglas de reducción** para transformarlas.

#### Una **expresión lambda** puede ser:

- Una variable: x, y, z, ...
- Una abstracción: (λx.M) donde M es una expresión lambda.
- Una aplicación: (M N) donde M y N son expresiones lambda.

Ejemplo:  $(((\lambda x.(x y)) (\lambda y.(y y))) z)$ 

Una **abstracción**  $(\lambda x.M)$  denota una **función anónima** que toma un argumento x y devuelve M, es decir  $x \mapsto M$ .

Una **aplicación** (M N) denota la acción de **invocar** la función M con el argumento N, es decir M(N).

#### **Convenciones**

#### Para simplificar la notación:

- 1. Se pueden omitir los paréntesis externos: M N ≡ (M N)
- 2. Las aplicaciones se asocian a la izquierda:  $M N P \equiv ((M N) P)$
- 4. El cuerpo de la abstracción se extiende todo lo posible hacia la derecha:  $\lambda x.M N = \lambda x.(M N)$
- 5. Se pueden contraer múltiples abstracciones lambda:  $\lambda x.\lambda y.\lambda z.N = \lambda x y z.N$
- 3. Cuando todas las variables son de una única letra, se pueden omitir los espacios: MNP ≡ M N P

#### Ejemplo: para simplificar $(((\lambda x.(\lambda y.(y x))) a) b)$ :

- $((\lambda x.(\lambda y.(y x))))$  a) b (1)
- $(\lambda x.(\lambda y.(y x)))$  a b (2)
- $(\lambda x.\lambda y.y.x)$  a b (3)
- $(\lambda x \ y.y \ x) \ a \ b \ (4)$
- (λxy.yx)ab (5)

## **Variables libres y ligadas**

Una abstracción  $\lambda x.M$  **liga** las variables x que aparecen en el cuerpo M. Todas las demás variables en M son **libres**.

$$(\lambda z.z \times y) (\lambda x.x)$$

## Reglas de reducción

**Conversión Alfa (α):** cambiar variables ligadas

En la abstracción  $\lambda x.M$ , se puede cambiar x por cualquier otra variable que no aparezca libre en M.

Por ejemplo,  $\lambda x.x y \equiv \lambda z.z y$ .

**Reducción Beta** ( $\beta$ ): aplicar una  $\beta$ -redex<sup>1</sup>

Una  $\beta$ -redex es una aplicación de la forma ( $\lambda x.M$ ) N.

Por ejemplo,  $(\lambda u.u z u) a \equiv a z a$ .

**Reducción Eta (\eta):** Reducir una  $\eta$ -redex

Según la regla  $\eta$ ,  $\lambda x.M y = M$ .

<sup>&</sup>lt;sup>1</sup>"redex" = expresión reducible.

# www.ingenieria.uba.ar

f j (ingenieriauba

/FIUBAoficial