Improving eligibility propagation using Izhikevich neurons in a multilayer RSNN.

Presentation 3: Implementing TIMIT

Werner van der Veen (w.k.van.der.veen.2@student.rug.nl)

November 10, 2020

1/6

Where things stand

√	Simulate LIF, ALIF and Izhikevich neuron pairs in e-prop simulation, and observe STDP-like weight change.
✓	Make multilayered spiking recurrent neural network.
✓	Prepend the TIMIT dataset reader to the pipeline.
	Include validation sets.
	Implement Bellec's tricks. Should be able to reproduce thereafter:
	 □ L2 & firing rate regularization □ Firing rate regularization □ Gaussian distribution for broadcast weights □ Adam optimizer
	I will enable the Izhikevich neurons and increase the number of layers $(*)$.
	Implement long-term synaptic scaling in Izhikevich neurons.
	Implement metaplasticity.

Work done since previous meeting

- TIMIT preprocessing and data handling.
- Wrote the outer loops processing the epochs and batches.
 The whole system is now essentially a nested loop:
 - (1) Epochs of batches;
 - (2) Batches of series;
 - (3) Series of time points;
 - (4) Layers to process each time point.

TIMIT preprocessing

- **X**: From .wav to $\mathbf{x}(t) \in \mathbb{R}^{39}$.
- **Y**: From .phn to $\mathbf{y}(t) \in \mathbb{R}^{61}$.
 - (1) The .wav is sampled at SR = 16kHz. Every 10ms (160 samples), we take a sample frame of 25ms (400 samples). The goal is to obtain 39 Mel-frequency cepstral coefficients (MFCCs) for each such frame.
 - (2) Calculate the periodogram estimate of the power spectrum for each frame.
 - (3) Apply a Mel-scaled filterbank to the power spectra and sum the energy in each filter.
 - (4) Take the discrete cosine transform (DCT) of the logarithm of the energies.
 - (5) Only keep DCT coefficients 2-13.
 - (6) Compute the first and second derivatives of the coefficients.
 - (7) Parse the phonemes from the raw .phn and encode them in a one-hot vector that aligns with $\mathbf{x}(t)$.

4/6

Questions

Questions

 Input: now converting signal to Bernoulli spikes, and then feeding them to layer 0.

6/6