3D Game Programming game history & 2D intro

Ming-Te Chi Department of Computer Science, National Chengchi University

Outline

- game history
- Coordinate system
- Simple 2D game example
- Simple 2D game example (OpenGL)

2D VIDEO GAME HISTORY

The first video game

Tennis for Two was a game developed in 1958 on an analog computer, which simulates a game of tennis or ping pong on an oscilloscope.

2D GAME

PONG 1972.

– earliest video game

Snake (1970s)

Control a snake to move, and avoid hitting to wall or its growing tail.

Galaxian (1979 by Namco)

Basic elements

Mechanics

the procedures and rules

the sequence of events that unfolds in your game

Aesthetics

 how your game looks, sounds, tastes, and feels.

Technology

any materials and interactions that make your game possible

Pac Man 1980 by Namco

Game & Watch 1980

Game & Watch is a line of handheld electronic games produced by Nintendo from 1980 to 1991.

Ball: the first game & watch game

Family Computer(FAMICOM)

Mario series. By Nintendo

Donkey Kong 1981

Mario Bros. 1983

Super Mario Bros. 1985

Tetris

- Design by 阿列克謝·帕基特諾夫
- (Алексей Леонидович Пажитнов) $in\ 1984$
- Puzzle game

1984 version

Super Mario World. 1990

Rich color, Parallax scrolling, zoom and rotate sprite.

Doom 1993

 A landmark 1993 firstperson shooter (FPS)video game by *id Software*.

3D Graphics – evolution

3D Graphics – evolution

3D Graphics

Social game

Happy Farm

Mobile game – touch

flight control by Firemint

Angry Birds by Rovio

LBS & AR

Snake in 2014

Super Mario Sunshine (2002)

Fall Guys (2020)

2D BASIC COMCEPT

Cartesian Plane

Coordinate Clipping

Game World

scrolling

Start from 5:09

Viewport

Mapping drawing coordinates to

windows coordinates

Projection

- Getting 3D to 2D
 - Orthographic projections

Perspective projections

2D GAME

What is a Game?

Games are an exercise of voluntary control systems, in which there is a contest between powers, confined by rules in order to produce a disequilibrial outcome.

Elliot Avedon and Brian Sutton-Smith

Game architecture

Asset Management

loading

saving

caching

Game Loop

Start()

Update(delta)

Display(delta)

I/O System

Keyboard, mouse

audio

storage

A simple example

- A character has three states: **stand**, walk, and jump
- Use "A" and "D" key to move the character
- When press "space", the character will jump, and the score will increase by 1.

State

Position, Direction, Gamescore

Debug & moving

```
// Use this for initialization
void Start () {
    Debug.Log("Hello, start!!");
}

// Update is called once per frame
void Update () {
        this.transform.position += new Vector3(1, 0, 0);
}
```

Control speed

```
float speed = 20;

// Use this for initialization
void Start () {
    Debug.Log("Hello, start!!");
}

// Update is called once per frame
void Update () {
    this.transform.position += new Vector3(speed*Time.deltaTime, 0, 0);
}
```

Walking

```
void Update () {
    if (Input.GetKey(KeyCode.D))
    {
        this.transform.position += new Vector3(speed*Time.deltaTime, 0, 0);
    }
    ...
}
```

Jump

```
bool IsJump = false;
int JumpCount = -1;

void Update () {
    if(Input.GetKey(KeyCode.Space))
    {
        if(!IsJump)
        {
            IsJump = true;
            JumpCount = 0;
        }
    }
    ....
}
```

```
float dis = speed * Time.deltaTime;
if (JumpCount >= 0)
  if(JumpCount < 20)
     this.transform.position += new Vector3(0, dis, 0);
  else
     this.transform.position += new Vector3(0, -dis, 0);
  JumpCount++;
  if (JumpCount>39)
     IsJump = false;
     JumpCount = -1;
```

Sprite switch

```
public Sprite[] sprites;
int sprites_index = 0;

// Update is called once per frame
void Update () {

   if (Input.GetKey(KeyCode.D))
   {

      this.transform.position += new Vector3(speed * Time.deltaTime, 0, 0);
      int i = (++sprites_index)%2;
      this.GetComponent<SpriteRenderer>().sprite = sprites[i];
   }
}
```

Art challenges technology; technology inspires the art. - John Lasseter

OPENGL 2D

class RGBApixmap

```
RGBApixmap pic;
pic.readBMPFile( "stand.bmp" );
pic.setChromaKey(232, 248, 248);
// draw
pic.blendtex(picX, picY, 1.0, 1.0);
```

State and Image

State

Change State

```
void SpecialKeys(int key, int x,
int y)
  switch(key) {
    case GLUT KEY LEFT:
         picX = 5;
         if (whichPic==0)
                  whichPic=1;
         else
                  whichPic=0;
         DirectState=1; //left
         break:
    case GLUT KEY RIGHT:
         picX += 5;
         if (whichPic==0)
                  whichPic=1;
         else
                  whichPic=0;
         DirectState=0; //right
         break;
```

```
void display() {
...

if (DirectState==0) { //向右
    pic[whichPic].blendTex(picX, picY, 1, 1);
} else { //向左
    int offset = pic[whichPic].nCols; //圖的
寬度
    pic[whichPic].blendTex(picX+offset, picY, -1, 1);
    //調整x位置,並以x=0為軸翻轉影像
}
...
```

Font rendering

```
//Font
       char mss[30];
       sprintf(mss, "Score %d", Gamescore);
       glColor3f(1.0, 0.0, 0.0); //set font color
       glRasterPos2i(10, 550); //set font start position
       void * font = GLUT BITMAP 9 BY 15;
       for(int i=0; i < strlen(mss); i++) {
               glutBitmapCharacter(font, mss[i]);
```

Press **Space** to Trigger jump()

```
void myKeys(unsigned char key, int x, int y)
        switch(key)
                                                   if(jumpState==0) {
                 case
                                  jumpState=1;
                                  Gamescore++;
                                  jump(0);
                         break;
        glutPostRedisplay();
```

Jump motion

```
void jump(int i)
                                           piçY
           whichPic=2; //switch state
           if(i < = 10) {
                       if (i < 5) picY+=4;
                       else picY-=4;
                                                         5
                      i++;
                       glutTimerFunc(100, jump, i);
           }else {
                       whichPic=0;
                      jumpState=0;
           glutPostRedisplay();
```