Note O: REVIEW C	SETS	AND NO	MOITATO
------------------	------	--------	---------

	MOTE O. KENICOO OL JC 12 HOD 100 11111010
	REVIEW OF SETS
	- set = well defined collections of objects
	- objects = elements = members
	A TX is member of A: x E A
	1 x is not member of A: x &A = 88 - 88 5 88
	- A and B are equal if they have the same elements: A=B
	- order and repetition doesn't matter A-A-
	-set of rational numbers: Q or { a a b are integers, b +0}
	- set of all items which satisfy this condition
	Eitem condition on that items
	=> CARDINALITY
	= size of set: IAI
	- if A is finite, it's cardinality must be non-negative integer
	- there is unique set with cardinality U
	= empty set, \$
	=> SUBSETS AND PROPER SUBSETS
	-A is subset of B: ASB
	-it every element of set A is also in set B
48	-Bis superset of A: BZA
	- proper subset
-	-if A = B, but A + B -> A CB
	2 (8-properties) (18) (18) (18) (18) (18) (18)
	-empty set is a proper subset of any nonempty set: \$CA
	-empty set is a subset of every set B: \$ = B
	- every set A is a subset of itself: ASA
	=> INTERSECTIONS AND UNIONS
	-intersection: ANB
	-disjoint sets if ANB= \$
	-union: AUB
	-proper les
	->AUB=BUA
	$\rightarrow AU\phi = A$
	-> ANB=BNA
	$\rightarrow A \cap \phi = \phi$

NOGO REVIEW OF SETS AND NOTATION

```
=> RELATIVE COMPLEMENT
                                                  -relative complement of A in B: B-A BIA
                                                  = set difference between B and A

- set of elements in B, but not in A {x \in B | x \in A}

-> \lambda 1, 2\rangle -\lambda 1, 2\rangle
                              - properties
                                                                -> A - A = $\delta \text{ } \t
                                                   -> A-d=A
                                                     -> φ - A = φ
                                                         -generally A-B + B-A
                                     =) SIGNIFICANT SETS!
                                                     - IV ... natural numbers 20,1,2...3
                                                      - Z...nlegers
                                                      - Q...rational
                                                        - IR .. real
                                                         - C... complex
                                      =) PRODUCTS AND POWER SETS
                                                         - Cartesian product = cross product : AxB
                                                          - set of all pairs whose first component is an element
                                                                 of A and second element of B
                                                            ->A={1,2,3}, B={4,v}
                                                                       -> A ×B = { (1, u), (2, u), (3, u), (1, v), (2, v), (3, v)}
                                                          -power set of S: P(s)
                                                     -set of all subsets of S: {TITES}
                                             9 = 9 -> S= $1,2,37
                                                                                        -> P(s)={{}, {1}, {2}, ..., {2,3}, {1,2,3}}
                                                                      - ( IsI=k (hen | O(s)) = 2
· REVIEW OF MATHEMATICAL NOTATION
              =) SUMS AND PRUDUCTS
                                      \frac{n}{\sum_{i=1}^{n} + (i) = (m) + (m+1) + ... + (n)}
```

$\frac{n}{1} f(i) = f(m) \cdot f(m+1) \cdot \dots \cdot f(n)$ $x = m$	
$\frac{n}{\parallel} = 1.2n$	
=> UNIVERSAL AND EXISTENTIAL QUALIFIERS	
-> (here exists: 7	
- for any claim C-statement (7x = \$)(C(x)) is false	
-statement (∀x ∈ φ) (C(x)) is true 4) vacuously or trivially true	
· QUANTIFIERS AND IMPLICATIONS	
-> \times \text{Yy P(x,y) => \text{Yy P(x,y)} True	
-> \times \text{Yy P(x,y) => \text{Yy X P(x,y)} True \text{Yx Yy for all x and y in our universe}	
-> \for all x and y in our universe -> \for all x and y in our universe -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe}	
-> \for all x and y in our universe -> \for all x and y in our universe -> \for all x \for all x \text{ and y in our universe} -> \for all x \for all x \text{ and y in our universe} -> \for \for \for \for \for \for \for \for	
-> \for all x and y in our universe -> \for all x and y in our universe -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe} -> \for all x \for all x \text{or all x and y in our universe}	
-> \for all x and y in our universe -> \for all x and y in our universe -> \for \for \for \for \for \for \for \for	