Analysis of Time Series, L5

Rolf Larsson

Uppsala University

31 mars 2025

Today

- 3.3: Difference equations (continued)
- 3.4:
 - ACF
 - PACF
 - Summary and examples
- Menti

Difference equations

Order one:

- Solve $u_n \alpha u_{n-1} = 0$, $u_0 = c$.
- Recursion yields $u_n = \alpha^n c$.
- Equivalently, $\alpha(B)u_n = (1 \alpha B)u_n = 0$, $u_0 = c$ is solved by $u_n = (z_0^{-1})^n c$ where $z_0 = \alpha^{-1}$ is a root of $\alpha(z) = 1 \alpha z$.

Difference equations

Order two:

Solve

$$u_n - \alpha_1 u_{n-1} - \alpha_2 u_{n-2} = 0 \tag{1}$$

- Equivalently, write $\alpha(B)u_n = (1 \alpha_1 B \alpha_2 B^2)u_n = 0$.
- Denote the roots of $\alpha(z)$ by z_1 and z_2 .
- If $z_1 \neq z_2$, the general solution to (1) is

$$u_n = c_1 z_1^{-n} + c_2 z_2^{-n}$$
.

• If $z_1 = z_2$, the general solution to (1) is

$$u_n = z_1^{-n}(c_1 + c_2 n).$$

Difference equations

Example 2: AR(2) (causal)

Let

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t,$$

i.e
$$\phi(B)x_t = w_t$$
, $\phi(B) = 1 - \phi_1 B - \phi_2 B^2$.

1 Show that the autocorrelation function satisfies, for $h \ge 1$,

$$\rho(h) - \phi_1 \rho(h-1) - \phi_2 \rho(h-2) = 0.$$

- ② Denote the roots of $\phi(z)$ by z_1 and z_2 . Find an expression for $\rho(h)$ when
 - a) $z_1 \neq z_2$ and real
 - b) $z_1 = z_2$
 - c) $z_1 = \bar{z}_2$ is a complex conjugate pair

MA(q):

Let

$$x_t = \theta_0 w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}, \quad \theta_0 = 1.$$

The ACF is given by (why?)

$$ho(h) = \left\{egin{array}{l} rac{\sum_{j=0}^{q-h} heta_j heta_{j+h}}{\sum_{j=0}^q heta_j^2}, & 1\leq h\leq q, \ 0, & h>q \end{array}
ight.$$

and
$$\rho(-h) = \rho(h)$$
.

A good tool to identify q!

Theoretical ACF of $x_t = w_t + 0.6w_{t-1} + 0.4w_{t-2} + 0.2w_{t-3}$

AR(p):

Let

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t.$$

• The ACF satisfies (why?)

$$\rho(h) - \phi_1 \rho(h-1) - \phi_2 \rho(h-2) - \dots - \phi_p \rho(h-p) = 0, \quad h \ge p.$$

• What is the general form of the solution?

Recall the difference equation of order two:

Solve

$$u_n - \alpha_1 u_{n-1} - \alpha_2 u_{n-2} = 0 (2)$$

- Equivalently, write $\alpha(B)u_n = (1 \alpha_1 B \alpha_2 B^2)u_n = 0$.
- Denote the roots of $\alpha(z)$ by z_1 and z_2 .
- If $z_1 \neq z_2$, the general solution to (2) is

$$u_n = z_1^{-n}c_1 + z_2^{-n}c_2.$$

• If $z_1 = z_2$, the general solution to (2) is

$$u_n = z_1^{-n}(c_1 + c_2 n).$$

In general:

Solve

$$u_n - \alpha_1 u_{n-1} - \alpha_2 u_{n-2} - \dots - \alpha_p u_{n-p} = 0.$$
 (3)

Equivalently, write

$$\alpha(B)u_n = (1 - \alpha_1 B - \alpha_2 B^2 - \dots - \alpha_p B^p)u_n = 0.$$

- Denote the roots of $\alpha(z)$ by $z_1, z_2,..., z_r$, each with multiplicity $m_1, m_2,..., m_r$.
- The general solution to (3) is of the form

$$u_n = z_1^{-n} P_1(n) + z_2^{-n} P_2(n) + ... + z_r^{-n} P_r(n),$$

where $P_1(n), ..., P_r(n)$ are polynomials of degrees $m_1 - 1, ..., m_r - 1$.

AR(p):

Solve

$$\rho(h) - \phi_1 \rho(h-1) - \phi_2 \rho(h-2) - \dots - \phi_p \rho(h-p) = 0, \quad h \ge p. \quad (4)$$

Equivalently, write

$$\phi(B)\rho(h) = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)\rho(h) = 0.$$

- Denote the roots of $\phi(z)$ by $z_1, z_2,..., z_r$, each with multiplicity $m_1, m_2,..., m_r$.
- The general solution to (4) is of the form

$$\rho(h) = z_1^{-h} P_1(h) + z_2^{-h} P_2(h) + \dots + z_r^{-h} P_r(h),$$

where $P_1(h), ..., P_r(h)$ are polynomials of degrees $m_1 - 1, ..., m_r - 1$.

250331

AR(p):

a

$$\rho(h) = z_1^{-h} P_1(h) + z_2^{-h} P_2(h) + ... + z_r^{-h} P_r(h),$$
where $P_1(h), ..., P_r(h)$ are polynomials of degrees $m_1 - 1, ..., m_r - 1$.

- Assume that the model is causal (all $|z_i| > 1$).
- If all roots are real, the ACF decays exponentially fast as $h \to \infty$.
- If some roots are complex, the ACF decays in a sinusoidal fashion.
- Not a good tool for identifying p!

Causality region (inside the triangle) for AR(2):

Theoretical ACF of $x_t = 0.5x_{t-1} + 0.2x_{t-2} + w_t$. (Real roots.)

Theoretical ACF of $x_t = -0.9x_{t-1} - 0.5x_{t-2} + w_t$. (Complex roots.)

Let $x_t = \phi x_{t-1} + w_t$ be causal.

- Calculate $cov(x_{t+2}, x_t)$. Is it zero?
- **2** a) Find a such that $E\{(x_{t+2} ax_{t+1})^2\}$ is minimized.
 - b) Find b such that $E\{(x_t bx_{t+1})^2\}$ is minimized.
- 3 With such a, b, show that

$$cov(x_{t+2} - ax_{t+1}, x_t - bx_{t+1}) = 0.$$

(uncorrelated 'projection errors')

- Let $\{x_t\}$ be a mean zero stationary process. Take any $h \ge 2$.
- Let

$$\hat{x}_{t+h} = a_1 x_{t+h-1} + a_2 x_{t+h-2} + \dots + a_{h-1} x_{t+1}$$

be such that $E\{(x_{t+h} - \hat{x}_{t+h})^2\}$ is minimized.

Let

$$\hat{x}_t = b_1 x_{t+1} + b_2 x_{t+2} + \dots + b_{h-1} x_{t+h-1}$$

be such that $E\{(x_t - \hat{x}_t)^2\}$ is minimized.

Definition (3.9)

The partial autocorrelation function (PACF) is defined as

$$\phi_{hh} = \begin{cases} corr(x_{t+1}, x_t), & h = 1, \\ corr(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t), & h \ge 2. \end{cases}$$

•

 $\phi_{hh} = \begin{cases} \operatorname{corr}(x_{t+1}, x_t), & h = 1, \\ \operatorname{corr}(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t), & h \geq 2. \end{cases}$

• If $\{x_t\}$ is a normal (Gaussian) process,

$$\phi_{hh} = \operatorname{corr}(x_{t+h}, x_t | x_{t+1}, x_{t+2}, ..., x_{t+h-1}),$$

cf Appendix B.

AR(p):

Let

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t.$$

- The PACF $\phi_{hh} = 0$ if h > p. (Why?)
- It is a good tool for identifying p!

Theoretical PACF of $x_t = 0.5x_{t-1} + 0.2x_{t-2} + w_t$.

Equals 0.2 at lag 2 and cuts off after this lag!

Table 3.1:

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

Daily temperature, Uppsala, summer 1984.

Daily temperature, Uppsala, summer 1984, ACF and PACF. AR(1)?

Global mean temperature, ACF and PACF. (Indicates a trend.)

Series temp

Difference of global mean temperature, ACF and PACF. MA(2), MA(4), AR(3) or AR(5)...?

Series diff(temp)

Quarterly unemployment:

Quarterly unemployment, ACF and PACF. MA(4) or AR(5)? Period of 4?

mean number of sunspots per day, 1700-2024

Sunspots, ACF and PACF. ARMA? Period of 10 or 11?

Series s

News of today

- Definition of the partial autocorrelation function (PACF).
- ACF and PACF for
 - MA processes
 - AR processes
 - ARMA processes
- Model identification, examples