

Label Propagation for Deep Semi-supervised Learning

Ahmet Iscen 1 , Giorgos Tolias 1 , Yannis Avrithis 2 , Ondřej Chum 1

¹Visual Recognition Group, CTU in Prague, ²Inria

Overview

▶ Labeled examples L (♠, ♠, ♠), unlabeled examples U (•)

- Use transductive learning [1] and transfer the result to deep network training with inductive setup
- Complementary to state-of-the-art approaches with consistency loss, e.g. Mean-Teacher [2]

Label propagation (transductive)

- Extract descriptors with a given network
- lacksquare Construct normalized affinity matrix ${\cal W}$ (nearest neighbor graph)
- ightharpoonup Label matrix Y with elements:

$$Y_{ij} := \begin{cases} 1, & \text{if } i \in L \land y_i = j \\ 0, & \text{otherwise} \end{cases}$$

Label propagation [1] by solving linear system (unknown Z):

$$(I - \alpha \mathcal{W})Z = Y$$

 $Z^{(t)} = \alpha \mathcal{W} Z^{(t-1)} + (1-\alpha) Y$ converges to solution Z

Prediction for unlabeled examples:

$$\hat{y}_i := \arg\max_i z_{ij},$$

▶ Pseudo-labels (\bullet , \bullet , \bullet), bigger circle \rightarrow higher certainty

Label propagation (inductive)

Loss function

• Weighted cross-entropy loss ℓ_{CE} with labeled and unlabeled examples:

$$\begin{split} L &= L_s(X_L, Y_L; \theta) + L_w(X_U, \hat{Y}_U; \theta) \\ &= \sum_{i \in L} \zeta_{y_i} \ell_{\mathsf{CE}} \left(f_{\theta}(x_i), y_i \right) + \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_{\mathsf{CE}} \left(f_{\theta}(x_i), \hat{y}_i \right) \end{split}$$

ullet Weight ω_i is the entropy-based certainty of the pseudo-label prediction for example x_i :

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log(c)}$$

 $ightharpoonup \zeta_j$ is the class balancing weight for class j:

$$\zeta_j:=(|L_j|+|U_j|)^{-1}$$

$$L_j=\{i\in L\land y_i=j\} \text{ and } U_j=\{i\in U\land \hat{y}_i=j\}$$

References

- [1] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. In NIPS, 2003.
- [2] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS, 2017.
- [3] Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng Ma, Xiaoyu Tao, and Nanning Zheng. Transductive semi-supervised deep learning using min-max features. In

Certainty weight distribution

lacksquare Distribution of weights ω_i in CIFAR-10

Experiments

- Error rate is reported (lower is better)
- "13-layer" network for CIFAR-10 and CIFAR-100
- Resnet-18 for Mini-ImageNet

Pseudo-labeling	ω_i	$\overline{\zeta_j}$	CIFAR-10		
l ala al		-	36.53 ± 1.42		
		1	36.17 ± 1.98		
Label propagation	✓		33.32 ± 1.53		
	1	✓	32.40 ± 1.80		
Network	1	✓	35.17 ± 2.46		

Comparison with state of the art:

Dataset	CIFAR-10					
Nb. labeled images	500	1000	2000	4000		
Fully supervised	49.08 ± 0.83	40.03 ± 1.11	29.58 ± 0.93	21.63 ± 0.38		
TDCNN [3] [†]	-	32.67 ± 1.93	22.99 ± 0.79	16.17 ± 0.37		
Network prediction	35.17 ± 2.46	23.79 ± 1.31	16.64 ± 0.48	13.21 ± 0.61		
Ours	32.40 ± 1.80	22.02 ± 0.88	15.66 ± 0.35	12.69 ± 0.29		
VAT †	-	-	-	11.36		
Π model †	-	-	-	12.36 ± 0.31		
Temporal Ensemble †	-	_	-	12.16 ± 0.24		
MT [2] [†]	-	27.36 ± 1.30	15.73 ± 0.31	12.31 ± 0.28		
MT [2]	27.45 ± 2.64	19.04 ± 0.51	14.35 ± 0.31	11.41 ± 0.25		
MT + Ours	24.02 ± 2.44	16.93 ± 0.70	13.22 ± 0.29	10.61 ± 0.28		

† denotes scores reported in prior work

Dataset	CIFAR-100		Mini-ImageNet-top5		
Nb. labeled images	4000	10000	4000	10000	
Fully supervised	55.43 ± 0.11	40.67 ± 0.49	53.07 ± 0.68	38.28 ± 0.38	
Ours	46.20 ± 0.76	38.43 ± 1.88	47.58 ± 0.94	36.14 ± 2.19	
MT [2]	45.36 ± 0.49	36.08 ± 0.51	49.35 ± 0.22	32.51 ± 1.31	
MT + Ours	43.73 ± 0.20	35.92 ± 0.47	50.52 ± 0.39	31.99 ± 0.55	