13 29102024-164339

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Рисунок 2 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широполосной нагрузкой $R=20~{
m Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=3.4~\Gamma\Gamma$ ц и $f_{\rm B}=9.2~\Gamma\Gamma$ ц, модули коэффициентов отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.73 + j0;
- 3 использован *наикратчайший* отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

- 1) 2.1 дБ
- 2) 4.3 дБ
- 3) 1.3 дБ
- 4) 1.6 дБ

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.64~f_{\scriptscriptstyle \rm B}$:

```
s_{11} = -0.243 + 0.109\mathrm{i} . (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

- 1) 92 O_M
- 2) 43 O_M
- 3) 68 Ом
- 4) 37 Om

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте $9.7~\Gamma\Gamma$ ц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

$$-0.8 + 0.6i$$

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 34.9 cm
- 2) 10.0 см
- 3) 2.3 cm
- 4) 6.6 cm

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 32 Ом;
- 2 толщиной 0.406 мм и с волновым сопротивлением 79 Ом;
- 3 толщиной 0.305 мм и с волновым сопротивлением 51 Ом;
- 4 толщиной 0.508 мм и с волновым сопротивлением 79 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9

Выбрать Г-образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 2 на частоте 1.3 ГГц так, чтобы отрезки длинной линии имели угловые электрические длины меньше $\frac{\pi}{2}$, то есть $\theta_{\Pi} < \frac{\pi}{2}$ и $\theta_{T} < \frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника