Peckness of Edge Posets

David Hemminger¹, Aaron Landesman², Zijian Yao³

 1 Duke University , 2 Harvard University , 3 Brown University

August 6, 2014

Outline of Talk

- Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

Basic Definitions

Definition

Let P be a finite graded poset of rank n, that is:

- Elements of P are a disjoint union of P_0, P_1, \ldots, P_n , called the *ranks*
- If $x \in P_i$ and $x \lessdot y$, then $y \in P_{i+1}$
- Define rk(x) = k, where $x \in P_k$.

Definition

A map $f: P \to Q$ is a morphism from P to Q if $x \leq_P y \implies f(x) \leq_Q f(y)$ and $\operatorname{rk}(x) = \operatorname{rk}(f(x))$. We say that f is injective/surjective/bijective if it is an injection/surjection/bijection from P to Q as sets.

Peck Posets

Definition

Write $p_i = |P_i|$. P is

- Rank-symmetric if $p_i = p_{n-i}$ for all $1 \le i \le n$
- Rank-unimodal if for some $0 \le k \le n$ we have

$$p_0 \leq p_1 \leq \ldots \leq p_k \geq p_{k+1} \geq \ldots \geq p_n$$

- k-Sperner if no disjoint union of k antichains (sets of pairwise incomparable elements) in P is larger than the disjoint union of the largest k ranks of P
- Strongly Sperner if it is k-Sperner for all $1 \le k \le n$.
- Peck if P is rank-symmetric, rank-unimodal, and strongly Sperner.

Definition

Let V(P) and $V(P_i)$ be the complex vector spaces with bases $\{x|x\in P\}$ and $\{x|x\in P_i\}$

Lemma (Stanley, 1980)

P is Peck if and only if there exists an linear transformation $U\colon V(P)\to V(P)$ such that

• For every basis element $x \in P$,

$$U(x) = \sum_{y>x} c_{x,y} y$$

• For all $0 \le i < \frac{n}{2}$, the map $U^{n-2i} : V(P_i) \to V(P_{n-i})$ is an isomorphism.

Definition

If the Lefschetz map defined by

$$L(x) = \sum_{y > x} y$$

satisfies the second condition in the previous lemma, then P is unitary Peck.

Outline of Talk

- 1 Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

Definition of the Edge Poset

Definition

For P a finite graded poset, it's edge poset $\mathcal{E}(P)$ is the finite graded poset defined as follows.

- Elements of $\mathcal{E}(P)$ are ordered pairs $(x,y) \in P \times P$ where $x \leq y$
- Define $(x, y) \lessdot_{\mathcal{E}} (x', y')$ if $x \lessdot_{P} x'$ and $y \lessdot_{P} y'$
- Define $\leq_{\mathcal{E}}$ to be the transitive closure of $\lessdot_{\mathcal{E}}$
- Define $\operatorname{rk}_{\mathcal{E}}(x,y) = \operatorname{rk}_{P}(x)$.

Basic Example

Conjecture on the Peckness of Edge Posets

Definition

The boolean algebra of rank n is the poset whose elements are subsets of [n] with order given by containment, i.e. for $x, y \in B_n$, $x \le y$ if $x \subseteq y$.

Conjecture (Hemminger, Landesman, and Yao 2014)

Let $G \subseteq Aut(B_n)$. Then $\mathcal{E}(B_n/G)$ is Peck.

Outline of Talk

- Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

Main Result

Definition

A group action of G on P is *cover transitive* if whenever $x,y,z\in P$ such that $x\lessdot z,\ y\lessdot z$, and $y\in Gx$, there exists some $g\in \operatorname{Stab}_G(z)$ such that $g\cdot x=y$.

Theorem (Hemminger, Landesman, and Yao 2014)

If a group action of G on B_n is cover transitive, then $\mathcal{E}(B_n/G)$ is Peck

Definition

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g\cdot (x,y)=(g\cdot x,g\cdot y)$ for all $g\in G$.

Definition

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g \cdot (x,y) = (g \cdot x, g \cdot y)$ for all $g \in G$.

Proposition

The map $q: \mathcal{E}(P)/G \to \mathcal{E}(P/G)$ defined by q(G(x,y)) = (Gx,Gy) is a surjective morphism. Furthermore, q is also injective if and only if the action of G on P is cover transitive.

Lemma

If $f: P \rightarrow Q$ is a bijective morphism and P is Peck then Q is Peck.

Theorem (Stanley, 1984)

If P is unitary Peck and $G \subseteq Aut(P)$, then P/G is Peck.

It would then suffice to show that $\mathcal{E}(B_n)$ is unitary Peck, but our proof for this is complicated. Instead we construct a unitary Peck poset $\mathcal{H}(B_n)$ such that there is a bijective morphism $\mathcal{H}(B_n)/G \to \mathcal{E}(B_n)/G$.

Definition of $\mathcal{H}(P)$

Definition

For P a finite graded poset, define the graded poset $\mathcal{H}(P)$ as follows.

- Elements are pairs $(x, y) \in P \times P$ such that $x \lessdot y$
- Define $(x, y) \lessdot_{\mathcal{H}} (x', y')$ if $x \lessdot_{P} x', y \lessdot_{P} y'$ and $y \neq x'$
- \bullet Define $\leq_{\mathfrak{H}}$ to be the transitive closure of $\lessdot_{\mathfrak{H}}$
- Define $rk_{\mathcal{H}}(x,y) = rk_P(x)$.

The Boolean Algebra B_3

$\mathcal{H}(B_3)$ is unitary Peck

$$(\{2,3\},\{1,2,3\}) \qquad (\{1,3\},\{1,2,3\}) \qquad (\{1,2\},\{1,2,3\}) \\ (\{2\},\{1,2\}) \quad (\{3\},\{1,3\}) \quad (\{1\},\{1,2\}) \quad (\{3\},\{2,3\}) \quad (\{1\},\{1,3\}) \quad (\{2\},\{2,3\}) \\ (\emptyset,\{1\}) \qquad (\emptyset,\{2\}) \qquad (\emptyset,\{3\}) \\ \mathcal{H}(B_3)$$

Definition

As before, for G acting on P, define $g \cdot (x, y) = (g \cdot x, g \cdot y)$.

Remark

Since $\mathcal{E}(P)$ and $\mathcal{H}(P)$ have the same elements and $(x,y) \leq_{\mathcal{H}} (x',y') \implies (x,y) \leq_{\mathcal{E}} (x',y')$, there is a natural bijective morphism $\mathcal{H}(P)/G \to \mathcal{E}(P)/G$.

Proof of Main Result.

 $\mathcal{H}(B_n)$ unitary Peck $\implies \mathcal{H}(B_n)/G$ Peck $\implies \mathcal{E}(B_n)/G$ Peck $\implies \mathcal{E}(B_n/G)$ Peck.

Outline of Talk

- 1 Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

CCT actions

Lemma

Let G be a group acting on a graded poset P. The following are equivalent:

- The action of G on P is CCT.
- **2** Whenever $x \le y, x \le z$, and $y \in Gz$, there exists some $g \in Stab(x)$ with gx = z.
- **1** The map $q: \mathcal{E}^r(P)/G \to \mathcal{E}^1(P/G)$ defined by q(G(x,y)) = (Gx,Gy) is an bijective morphism (but not necessarily an isomorphism).
- **1** The map $q: \mathcal{E}^r(P)/G \to \mathcal{E}^1(P/G)$ defined by q(G(x,y)) = (Gx,Gy) is an injective morphism.
- **5** For all i there is an equality $|(\mathcal{E}^1(P)/G)_i| = |(\mathcal{E}^1(P/G))_i|$

Some examples of CCT actions

The direct product

Theorem

For $\phi: G \times P \to P, \psi: H \times Q \to Q$ two CCT actions, then the direct product $\phi \times \psi: (G \times H) \times (P \times Q) \to (P \times Q), (g, h) \cdot (x, y) \mapsto (gx, hy)$ is also CCT.

The semi-direct product

Proposition '

Let $G \subseteq \operatorname{Aut}(P)$, $H \triangleleft G$, $K \subset G$ such that $G = H \rtimes K$. Suppose that H acts CC transitively on P and K acts CC transitively on P/H. Then G acts CC transitively on P.

The wreath product

Definition

For G, H groups, with $H \subset S_I$, the wreath product, notated $G \wr H$, is the group whose elements are pairs $(g, h) \in G^I \times H$ with multiplication defined by

$$((g_1',\ldots,g_I'),h')\cdot ((g_1,\ldots,g_I),h) = ((g_{h'(1)}'g_1,\ldots,g_{h'(I)}'g_I),hh')$$

where $h \in H$ acts on [I] by the restriction of the permutation action of S_I to H.

The wreath product

Theorem

If $\psi: G \times P \to P$ is CCT, then $\phi: G \wr S_I \times P^I \to P^I$ where ϕ is the induced action is also CCT.

The automorphism of rooted trees

Automorphism of rooted trees

The Dihedral group D_{2p} and D_{4p}

Outline of Talk

- Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

Unimodality of ranks of certain edge posets

Outline of Talk

- Background
- 2 Edge Poset Construction
- Main Result
- 4 CCT actions
- Non CCT actions
- 6 A q-analog

The q analog of the problem

References

Acknowledgements

- Thanks to Dr. Victor Reiner and Elise DelMas for mentoring and TAing this project.
- Thanks to Dr. Gregg Musiker and the University of Minnesota School of Mathematics for coordinating and hosting this REU.
- This research was supported by the RTG grant NSF/DMS-1148634.