ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова

ОТЧЕТ

по домашней работе 1

по дисциплине «Электротехника, электроника и метрология» Вариант $\underline{1}$

Выполнен студентом: Авдеюк Степан, группа БИВ201

вариант 1

R1	R2	R3	R4	R5	R6	R7	R8	E1	E2	E3	E4	E5	E6	J, A
	Ом							В						
8	5	4	6	6	7	2	3	20	50	30	40	50	30	1

Исследуемая схема:

Ветвей – 8

Узлов – 5

по закону токов Кирхгофа необходимо составить = K_T =5-1=4 уравнения по закону напряжений Кирхгофа — K_H =8-5+1=4 уравнения

Неизвестными являются токи I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 а также напряжение на источнике тока U_J .

Запишем первое правило Кирхгофа для узлов 1, 2, 3, 4 и второе правило Кирхгофа для обходов I, II, III, IV.

Тогда получается система уравнений:

$$(1) I_6 + I_7 - J = 0$$

(2)
$$I_3+I_4-I_7=0$$

$$(3) I_1+I_2-I_4=0$$

(4)
$$I_5+J-I_3-I_2=0$$

(I)
$$R_5I_5 + R_2I_2 - R_1I_1 = E_5 + E_2 - E_1$$

(I I)
$$R_3I_3$$
- R_4I_4 - R_2I_2 = E_3 - E_4 - E_2

(I I I)
$$R_6I_6 - R_5I_5 = E_6 - E_5 + U_i$$

(IV)
$$R_6I_6$$
- R_7I_7 - R_3I_3 - R_5I_5 = E_6 - E_3 - E_5

С помощью калькулятора получим такие значения:

Система уравнений: $\begin{bmatrix} 0 & I_1 + & 0 & I_2 + & 0 & I_3 + & 0 & I_4 + & 0 & I_5 + & 1 & I_6 + & 1 & I_7 + & 0 & U_j = & 1 \\ 0 & I_1 + & 0 & I_2 + & 1 & I_3 + & 1 & I_4 + & 0 & I_5 + & 0 & I_6 + & -1 & I_7 + & 0 & U_j = & 0 \\ 1 & I_1 + & 1 & I_2 + & 0 & I_3 + & -1 & I_4 + & 0 & I_5 + & 0 & I_6 + & 0 & I_7 + & 0 & U_j = & 0 \\ 0 & I_1 + & -1 & I_2 + & -1 & I_3 + & 0 & I_4 + & 1 & I_5 + & 0 & I_6 + & 0 & I_7 + & 0 & U_j = & -1 \\ 0 & I_1 + & 5 & I_2 + & 0 & I_3 + & 0 & I_4 + & 6 & I_5 + & 0 & I_6 + & 0 & I_7 + & 0 & U_j = & 80 \\ 0 & I_1 + & -5 & I_2 + & 4 & I_3 + & -6 & I_4 + & 0 & I_5 + & 0 & I_6 + & 0 & I_7 + & 0 & U_j = & -60 \\ 0 & I_1 + & 0 & I_2 + & 0 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & 0 & I_7 + & -1 & U_j = & -20 \\ 0 & I_1 + & 0 & I_2 + & 0 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & 0 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & -4 & I_3 + & 0 & I_4 + & -6 & I_5 + & 7 & I_6 + & -2 & I_7 + & 0 & U_j = & -50 \\ 0 & I_1 + & 0 & I_2 + & 0 & I_3 + & 0 & I_4 + & -$

Otbet:
$$I_1 = -2,351$$

$$I_2 = 6,485$$

$$I_3 = -0,691$$

$$I_4 = 4,135$$

$$I_5 = 4,795$$

$$I_6 = -2,444$$

$$I_7 = 3,444$$

$$U_j = -25,876$$

Схема, выполненная в LTspice:

(Operating Point		
V(n001):	-38.805	voltage	
V(p001):	-20	voltage	
V(a):	-17.5726	voltage	
V(p002):	-50	voltage	
V(n003):	15.1909	voltage	
V (p003) :	12.4274	voltage	
V(b):	-24.8091	voltage	
V(p004):	-21.6971	voltage	
V(n002):	8.3029	voltage	
V(p005):	-67.5726	voltage	
I(I1):	1	device_current	
I(R5):	-4.79461	device_current	
I(R7):	3.44398	device_current	
I(R6):	2.44398	device_current	
I(R4):	-4.13485	device_current	
I(R3):	0.690871	device_current	
I (R2):	6.48548	device_current	
I (R1):	-2.35062	device_current	
I(E6):	2.44398	device_current	
I(E5):	-4.79461	device_current	
I(E4):	-4.13485	device_current	
I(E3):	0.690871	device_current	
I(E2):	-6.48548	device_current	
I(E1):	2.35062	device_current	

Теоретические расчёты и расчёты в LTspice совпадают в пределах погрешности.

Составим баланс мощностей для исходной схемы.

Мощность потребителей:

$$P_1 = I_1^2 R_1 + I_2^2 R_2 + I_3^2 R_3 + I_4^2 R_4 + I_5^2 R_5 + I_6^2 R_6 + I_7^2 R_7 = 562,479381$$

Мощность источников:

$$P_2 = E_1I_1 + E_2I_2 + E_3I_3 + E_4I_4 + E_5I_5 + E_6I_6 - JU_i = 562,454$$

Р₁=Р₂ в пределах погрешности. Баланс мощностей соблюдён.

Найдем напряжение на вольтметре V1.

Теоретически: $V1=I_2R_2+I_4R_4-E_2=-7,235$

По расчетам LTspice: V(b)-V(a)=-7,2365

Теоретические расчёты и расчёты в LTspice совпадают в пределах погрешности.