HOMEWORK QUIZ 8 Math 1910

NAME: SOLUTIONS 26 October 2017

(1) Evaluate the integral: $\int \sin^2(\theta) \cos^2(\theta) d\theta$.

Solution: First use the identity $\cos^2 \theta = 1 - \sin^2 \theta$ to write

$$\int \cos^2\theta \sin^2\theta \ d\theta = \int (1-\sin^2\theta) \sin^2\theta \ d\theta = \int \sin^2\theta \ d\theta - \int \sin^4\theta \ d\theta.$$

Using the reduction formula for $\sin^{m}(x)$,

$$\int \cos^2 \theta \sin^2 \theta \, d\theta = \int \sin^2 \theta \, d\theta - \left(-\frac{1}{4} \sin^3 \theta \cos \theta + \frac{3}{4} \int \sin^2 \theta \, d\theta \right)$$

$$= \frac{1}{4} \sin^3 \theta \cos \theta + \frac{1}{4} \int \sin^2 \theta \, d\theta$$

$$= \frac{1}{4} \sin^3 \theta \cos \theta + \frac{1}{4} \left(-\frac{1}{2} \sin \theta \cos \theta + \frac{1}{2} \int d\theta \right)$$

$$= \left[\frac{1}{4} \sin^3 \theta \cos \theta - \frac{1}{8} \sin \theta \cos \theta + \frac{1}{8} \theta + C \right]$$

(2) Evaluate the integral: $\int_{1}^{2} x \ln(x) dx$.

SOLUTION: Let u = ln(x), $dv = x \, dx$. Then $du = \frac{1}{x} \, dx$ and $v = x^2/2$.

$$\int_{1}^{2} x \ln(x) dx = \frac{1}{2} x^{2} \ln(x) \Big|_{1}^{2} - \int_{1}^{2} \frac{x^{2}}{2} \frac{1}{x} dx$$

$$= \frac{1}{2} x^{2} \ln(x) \Big|_{1}^{2} - \int_{1}^{2} \frac{x}{2} dx$$

$$= \frac{1}{2} (4 \ln(4) - \ln(1)) - \frac{1}{4} x^{2} \Big|_{1}^{2}$$

$$= 2 \ln(4) - \frac{1}{4} (4 - 1)$$

$$= 2 \ln(4) - \frac{3}{4}$$

11 July 2018

(1) Evaluate the integral.

(a)
$$\int \cos(x) \sin^5(x) dx$$

(a) $\int \cos(x) \sin^5(x) dx$ SOLUTION: Substitute $u = \sin x$, $du = \cos(x) dx$.

$$\int \cos(x) \sin^5(x) dx = \int u^5 du = \frac{u^6}{6} + C = \boxed{\frac{\sin^6(x)}{6} + C}.$$

(b) $\int \tan(x) dx$

SOLUTION: Rewrite $tan(x) = \frac{\sin(x)}{\cos(x)}$ and substitute $u = \cos(x)$. The answer is

$$\int \tan(x) \, dx = \ln|\sec(x)| + C.$$

(c) $\int \cos^2(4x) \, dx$

SOLUTION: Use the substitution u = 4x and du = 4 dx. Then

$$\int \cos^2(4x) \, dx = \frac{1}{4} \int \cos^2(u) \, du$$

$$= \frac{1}{4} \left(\frac{1}{2} u + \frac{1}{2} \sin(u) \cos(u) \right) + C$$

$$= \left[\frac{1}{2} x + \frac{1}{8} \sin(4x) \cos(4x) + C \right]$$

(d) $\int \tan^3(x) \sec(x) dx$

SOLUTION: Use the identity $tan^2(x) = sec^2(x) - 1$ to rewrite the integral

$$\int \tan^3(x) \sec(x) dx = \int \tan(x) (\sec^2(x) - 1) \sec(x) dx$$

Then substitute $u = \sec(x)$, $du = \sec(x) \tan(x) dx$. The answer is

$$\frac{1}{3}\sec^3(x) - \sec(x) + C.$$

(e) $\int \sin^3(x) \cos^3(x) dx$

SOLUTION: Rewrite $\sin^3(x) = (1 - \cos^2(x)) \sin(x)$, and let $u = \cos(x)$.

(f) $\int x \sec^2(x) dx$

SOLUTION: Use integration by parts, with u = x and $dv = \sec^2(x) dx$.

(g) $\int \sin^4(x) \cos^2(x) dx$

$$\int \sin^4(x) \cos^2(x) \, dx = \int \sin^4(x) (1 - \sin^2(x)) \, dx = \int \sin^4(x) \, dx - \int \sin^6(x) \, dx$$

Using the reduction formula, we get

$$\int \sin^4(x)\cos^2(x) \ dx = \frac{1}{6}\sin^5(x)\cos(x) - \frac{1}{24}\sin^3(x)\cos(x) - \frac{1}{16}\sin(x)\cos(x) + \frac{1}{16}x + C$$

(h)
$$\int \frac{\cos^5(x)}{\sin^3(x)} \, dx$$

Solution: Using the identity $\cos^2(x) = 1\sin^2(x)$, we have

$$\int \frac{\cos^5(x)}{\sin^3(x)} \, dx = \int \frac{(1 - \sin^2(x))^2}{\sin^2(x)} \cos(x) \, dx$$

Then substitute $u = \sin(x)$. The answer is

$$\boxed{\frac{-1}{2\sin^2(x)} - 2\ln(\sin(x)) + \frac{1}{2}\sin^2(x) + C.}$$

(i)
$$\int_0^{\pi} \sin(2x) \sin(x) \, dx$$

ANSWER:
$$\int_0^{\pi} \sin(2x) \sin(x) dx = 0$$