De la combinatoire aux graphes (HLIN201) – L1 Relations binaires, relations d'équivalence et d'ordre

Sèverine Bérard

Université de Montpellier

2e semestre 2017-18

Sommaire

- Introduction
- Autour des relations binaires
 - Relations binaires construites à partir d'autres relations binaires
 - Relations binaires d'un ensemble vers lui-même
- Relations d'équivalence
- Relations d'ordre et ensembles ordonnés

Sommaire

- Introduction
- 2 Autour des relations binaires
- Relations d'équivalence
- Relations d'ordre et ensembles ordonnés

Rappels (superflus)

Définition

Soient X et Y deux ensembles

Une relation binaire \mathcal{R} de X vers Y est une partie de $X \times Y$,c.-à-d. $\mathcal{R} \subseteq X \times Y$

Notation

Pour $(x, y) \in \mathcal{R}$, on note $x\mathcal{R}y$, sinon $x \mathcal{R}y$

Attention

La majorité des relations binaires ne sont pas fonctionnelles

Exemple

Sommaire

- Introduction
- Autour des relations binaires
 - Relations binaires construites à partir d'autres relations binaires
 - Relations binaires d'un ensemble vers lui-même
- Relations d'équivalence
- A Relations d'ordre et ensembles ordonnés

La relation réciproque

Définition

Soit \mathcal{R} une relation de X vers Y

 \mathcal{R}^{-1} est la relation réciproque de Y vers X définie, pour $(y, x) \in Y \times X$ par :

$$y\mathcal{R}^{-1}x$$
 ssi $x\mathcal{R}y$

On la note parfois ${}^t\mathcal{R}$

Propriétés

- Si \mathcal{R} est une application injective, \mathcal{R}^{-1} est fonctionnelle
- Si \mathcal{R} est application bijective, \mathcal{R}^{-1} l'est aussi

La relation réciproque : exemple

La relation complémentaire

Définition

La relation complémentaire de \mathcal{R} de X vers Y est définie, pour $(x,y) \in X \times Y$ par $x\bar{\mathcal{R}}y$ ssi $x \in \mathcal{R}y$ (parfois notée $\neg \mathcal{R}$)

Objets $\bar{\mathcal{P}}$ Personnes tabletteAlice• smartphone BobordinateurCarla• baladeur

Les relations issues d'opération ensemblistes

Définition

Pour deux relations \mathcal{R} et \mathcal{S} de X dans Y, on construit les relations union, intersection et différence par *opération ensembliste* sur les parties de $X \times Y$ correspondant à \mathcal{R} et \mathcal{S} .

\mathcal{P}_1 et \mathcal{P}_2 : Personnes \longrightarrow Objets


```
\mathcal{P}_1 \cup \mathcal{P}_2?
 {(Alice, tablette),
  (Alice, smartphone),
  (Alice, ordinateur),
  (Alice, baladeur),
  (Bob, ordinateur),
  (Bob, baladeur),
  (Carla, baladeur)}
\mathcal{P}_1 \cap \mathcal{P}_2?
 {(Alice, ordinateur),
  (Carla, baladeur)}
\mathcal{P}_1 \setminus \mathcal{P}_2?
```

Composée de relations

Définition

Une relation $\mathcal R$ de X vers $\overset{\mathbf Y}{}$ se compose avec $\mathcal S$ de $\overset{\mathbf Y}{}$ vers Z en $\mathcal S\circ\mathcal R$ de X vers Z, et

 $(x,z) \in \mathcal{S} \circ \mathcal{R} \text{ si } \exists y \in Y \text{ tel que } (x,y) \in \mathcal{R} \text{ et } (y,z) \in \mathcal{S}$

Plus généralement

Pour deux relations $\mathcal{R} \subseteq X \times Y$ et $\mathcal{S} \subseteq Y' \times Z$ avec $Y \subseteq Y'$, leur composée $\mathcal{S} \circ \mathcal{R} \subseteq X \times Z$ est définie, pour tout $x \in X, z \in Z$, par

 $x (S \circ R) z ssi \exists y \in Y tel que xRy et ySz.$

Exemple de composition

Relations binaires d'un ensemble vers lui-même

Soit une relation binaire \mathcal{R} de X vers X On dit alors que \mathcal{R} est définie de X dans X (ou de X sur X), donc une partie de $X \times X$.

Représentation

Lorsque X est fini, et |X| est suffisamment petit, on représente graphiquement une relation binaire $\mathcal R$ sur X par un graphe, un dessin dont les sommets sont les éléments de X et on dessine un arc (une flèche) entre deux sommets x et y si $(x,y)\in \mathcal R$.

Exemple

Attention

Changement de vocabulaire : "dans X", "sur X" et de représentation. Mais $\mathcal{L} = \{(Alice, Carla), (Bob, Alice), (Bob, Diego), (Diego, Alice), (Elke, Carla), (Elke, Diego), (Elke, Elke)\}$ et $\mathcal{L} \subseteq Personnes \times Personnes$

Elke

Diego

Propriétés

Soit une relation binaire \mathcal{R} de X dans X

Réflexivité

 \mathcal{R} est réflexive si $\forall x \in X, x \mathcal{R} x$

pour tout sommet : -

Symétrie

 \mathcal{R} est symétrique si $\forall x, y \in X, x\mathcal{R}y \Rightarrow y\mathcal{R}x$

à tout aller, un retour :

Antisymétrie

 \mathcal{R} est antisymétrique si $\forall x, y \in X$, $(x\mathcal{R}y \text{ et } v\mathcal{R}x) \Rightarrow x = y$

un motif interdit :

Transitivité

 \mathcal{R} est transitive si $\forall x, y, z \in X$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z$

tous les arcs de transitivités :

Mise en pratique

Réflexive ? Symétrique ? Antisymétrique ? Transitive ? OUI NON OUI OUI

La relation divise sur $[2..9]_{\mathbb{N}}$

Mise en pratique

Réflexive ? NON Symétrique ? NON Antisymétrique ? OUI Transitive ? NON

La relation $(x, y) \in \mathcal{R}$ si x = y - 1 sur $[2..9]_{\mathbb{N}}$ (en d'autres termes à x on associe x + 1)

Mise en pratique

Une relation ni symétrique, ni antisymétrique?

Avec 3 éléments : $X = \{a, b, c\}$ et $\mathcal{R} = \{(a, b), (b, a), (b, c)\}$

Une relation à la fois symétrique et antisymétrique?

Toujours avec 3 éléments : $Y = \{1, 2, 3\}$ et $S = \{(1, 1), (2, 2), (3, 3)\}$

Et la relation vide?

Soit \mathcal{R} sur X, tel que $X \neq \{\}$ et $\mathcal{R} = \{\}$

 ${\cal R}$ n'est pas réflexive, elle est symétrique, antisymétrique et transitive

Et si X est vide?

Une seule relation possible sur $X = \{\}$, c'est la relation vide Dans ce cas elle est réflexive

Relation itérée

Définition

On définit la relation itérée $\mathbb{R}^n = \mathbb{R} \circ \cdots \circ \mathbb{R}$

Exemple : la relation $(x, y) \in \mathbb{R}$ si x = y - 1 sur $[2..9]_{\mathbb{N}}$

Prolongement/restriction de relations binaires

On peut prolonger une relation \mathcal{R}

- en une relation réflexive R_R = R ∪ Δ_X en ajoutant la diagonale Δ_X = {(x, x) ∈ X × X} (parfois notée I)
 La relation obtenue est dite fermeture réflexive de R
- en une relation symétrique en prenant l'union avec la relation inverse $\mathcal{R}_S = \mathcal{R} \cup \mathcal{R}^{-1}$
- en une relation *transitive* en prenant l'union des puissances positives,
 R⁺ = ∪_{n>0}Rⁿ
 C'est la fermeture transitive de R
- en une relation réflexive et transitive : R* = R+ ∪ Δχ
 C'est la fermeture réflexo-transitive de R

Prolongement/restriction de relations binaires

On peut restreindre une relation \mathcal{R}

On peut restreindre une relation en une relation antisymétrique

Par exemple en prenant la différence avec la relation inverse hors de la diagonale

Soit \mathcal{R} une relation de $X \times X$, on la restreint en une relation \mathcal{R}_{as} antisymétrique de la manière suivante

$$\mathcal{R}_{as} = \mathcal{R} \setminus (\mathcal{R}^{-1} \setminus \Delta_X)$$

Dans \mathcal{R}_{as} on a enlevé tous les motifs "aller-retours" de \mathcal{R} , on pourrait aussi restreindre \mathcal{R} en n'enlevant qu'une des deux flèches des motifs "aller-retours"

Sommaire

- Introduction
- Autour des relations binaires
- Relations d'équivalence
- Relations d'ordre et ensembles ordonnés

Définitions

Relation d'équivalence

Une relation \sim : $X \longrightarrow X$ qui est *réflexive, symétrique et transitive* est appelée relation d'équivalence

La relation $x \sim y$ se lit «x est équivalent à y».

Classe d'équivalence

Pour un élément $x \in X$ donné, l'ensemble des éléments qui sont en relation avec lui est appelée sa classe d'équivalence, notée $\bar{x} = \{z \in X \mid x \sim z\}$ Un élément $z \in \bar{x}$ est appelé un *représentant* de la classe \bar{x}

Ensemble quotient

L'ensemble des classes d'équivalence est appelé l'ensemble quotient noté $X/\sim=\{\bar{x}\,|\,x\in X\}$

Exemple d'une relation d'équivalence

Soit X={coco, métro, boulot, dodo, pipeau, cadeau, banco, égo, là-haut}.

On définit une relation \sim sur X telle que $u\sim v$ ssi u a le même nombre de caractère o que v

Exemple : boulot \sim dodo et pipeau \sim là-haut.

Classes d'équivalence et ensemble quotient

Pour un élément $x \in X$ donné, l'ensemble des éléments qui sont en relation avec lui est appelée sa classe d'équivalence

La classe d'équivalence de coco est $c\bar{o}co = \{coco, boulot, dodo\}$ L'ensemble quotient de cette relation est $X/\sim=\{c\bar{o}co, ba\bar{n}co, ca\bar{d}eau\}$

Sommaire

- Introduction
- Autour des relations binaires
- Relations d'équivalence
- A Relations d'ordre et ensembles ordonnés

Définitions

Relation d'ordre

Une relation $\leq X \longrightarrow X$ qui est *réflexive, antisymétrique et transitive* est appelée une relation d'ordre. On dit que (X, \leq) est *ordonné*.

Comparable

Pour une paire d'éléments $(x, y) \in X^2$, on dira que x et y sont *comparables* si $x \le y$ ou $y \le x$

Ordre total et ordre partiel

Si tous les éléments sont comparables, on dit que l'ordre est total sinon il n'est que partiel. D'où

- un ensemble ordonné (X, ≤) est totalement ordonné si ≤ est un ordre total, c.-à-d. si ∀x, y, x ≤ y ou y ≤ x
- il est partiellement ordonné sinon, c.-à-d. si $\exists x$ et y avec $x \neq y$ tels que $x \nleq y$ et $y \nleq x$

Définitions

Notation

La relation $x \le y$ se lit « x est plus petit ou égal à y » ou « y est plus grand ou égal à x », qu'on note également $y \ge x$.

Pour deux éléments comparables et différents, $x \le y$ et $x \ne y$, on note x < y

Couverture

On dit que y couvre x si x < y et s'il n'existe pas d'éléments entre eux :

$$x \leqslant z \leqslant y \Rightarrow \begin{cases} x = z \text{ ou} \\ z = y. \end{cases}$$

Diagramme de Hasse

Si X est fini, le diagramme de Hasse d'une relation d'ordre sur X est le graphe orienté dont les sommets sont les éléments de X et les arêtes (représentées du bas vers le haut) les couples (x, y) où y couvre x.

Exemple

$$X = \{a, b, c, d, e, f\}, \leq = \{(d, e), (d, f), (b, d), (c, d), (a, b), (a, c), (a, d), (a, e), (a, f), (b, e), (b, f), (c, e), (c, f), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f)\}$$

$$\mathbf{d} \leq \mathbf{e} \quad \mathbf{d} \leq \mathbf{f} \quad \mathbf{e} \quad \mathbf{f}$$

$$\mathbf{b} \leq \mathbf{d} \quad \mathbf{c} \leq \mathbf{d} \quad \mathbf{b} \quad \mathbf{e} \quad \mathbf{c}$$

a < c

 $a \leq b$

Encore des définitions

Chaîne et anti-chaîne

Une partie $Y \subseteq X$ d'un ensemble partiellement ordonné hérite de l'ordre partiel

- Si l'ordre est total sur Y, on l'appelle une chaîne
- Un sous-ensemble ou aucune paire n'est comparable est une anti-chaîne

Intervalle

L'intervalle $[x..y] \subseteq X$ est l'ensemble des éléments comparables à x et y et compris entre eux :

$$[x,y] = \{z \in X \mid x \leqslant z \leqslant y\}.$$

Toujours des définitions

Pour les 8 définitions d'éléments particuliers qui suivent, on se donne une relation d'ordre \leq définit sur X, et Y tel que $Y \subseteq X$

Minimum

Le $\frac{\text{minimum}}{\text{minimum}}$ ou $\frac{\text{plus petit élément}}{\text{element}}$ d'un ensemble Y est un élément qui est plus petit ou égal à tous les autres

$$m = \min(Y) \iff \begin{cases} m \in Y \text{ et} \\ \forall y \in Y, \ m \leqslant y. \end{cases}$$

Maximum

Le \max imum ou plus grand élément d'un ensemble Y est un élément qui est plus grand ou égal à tous les autres

$$M = \max(Y) \iff \begin{cases} M \in Y \text{ et} \\ \forall y \in Y, \ y \leqslant M. \end{cases}$$

Toujours des définitions

Élément minimal

Un élément $m \in Y$ est minimal s'il est plus petit ou égal à tous ceux qui lui sont comparables dans Y

$$\forall y \in Y, \ y \leqslant m \Rightarrow y = m$$

Élément maximal

De même pour la notion d'élément maximal

Minorant

Un élément $m \in X$ est un minorant de Y dans X s'il est plus petit que tous les éléments de Y

$$\forall y \in Y, \ m \leqslant y$$

Majorant

De même pour la notion de majorant

Toujours des définitions

La borne inférieure

La borne inférieure de Y dans X, notée $\inf_X(Y)$, est (s'il existe) le plus grand des minorants de Y

$$\forall x \in X, \ (\forall y \in Y, x \leqslant y) \Rightarrow x \leqslant \inf_{X} (Y).$$

Si Y admet un minimum, c'est également la borne inférieure.

La borne supérieure

De même pour la notion de borne supérieure

Une dernière

Treillis

Un treillis est un ensemble partiellement ordonné où tout couple $(x, y) \in X^2$ admet une borne supérieure et une borne inférieure

$$\exists m, M \in X, \ m = \inf_{X} (\{x, y\}) \leqslant x, y \leqslant M = \sup_{X} (\{x, y\}).$$

Exemples

- b et c ne sont pas comparables
- $\{b, d, f\}$ est une chaîne, l'intervalle $[a..d] = \{a, b, c, d\}$
- le minimum de X est a, qui est aussi sa borne inférieure et son unique élément minimal
- il n'a pas de maximum ni de borne supérieure, e et f sont des éléments maximaux
- a, b, c et d sont les minorants de {d} dans X, d, e et f ses majorants
- X n'est pas bien ordonné. X n'est pas un treillis mais $X \setminus \{f\}$ en est un

Le diagramme de Hasse des diviseurs de 18

- Le minimum de A? 3
- Le maximum de A? il n'existe pas
- L'ensemble des éléments minimaux de A? {3}
- L'ensemble des éléments maximaux de A? {6,9}
- L'ensemble des minorants de A dans E ? {3,1}
- L'ensemble des majorants de A dans E ? {18}
- La borne inférieure de A dans E? 3
- La borne supérieure de A dans E? 18