Optional Exercise: Deeper Analysis of NYC Taxi Data

Objective

Students will extend the base script to explore additional insights from the NYC Yellow Taxi dataset hosted on S3. This reinforces skills in working with large datasets, time-based grouping, and summarization.

Task 1: Most Frequent Drop-off Locations

Update your script to:

- Count the most frequent drop-off locations using the DOLocationID column
- Display the top 10

Hint:

```
print("Top 10 Drop-off Locations:")
print(df['DOLocationID'].value counts().head(10))
```

Task 2: Analyze Fare Amount by Trip Distance

Group trips by trip distance buckets and calculate the average fare for each bucket.

Steps:

- Create buckets: 0–1 mile, 1–2 miles, 2–5 miles, 5–10 miles, 10+ miles
- Plot or print the average fare per bucket

Hint:

```
bins = [0, 1, 2, 5, 10, float('inf')]
labels = ['0-1', '1-2', '2-5', '5-10', '10+']
df['distance_group'] = pd.cut(df['trip_distance'], bins=bins,
labels=labels)

print("Average Fare by Distance Group:")
print(df.groupby('distance_group')['fare_amount'].mean())
```

Task 3: Time-Based Pickup Patterns

Explore how pickups vary by:

- Hour of day
- · Day of week

Steps:

- Extract hour and day of week from tpep pickup datetime
- Count trips per hour/day and visualize or tabulate the results

Hint:

```
df['weekday'] = df['tpep_pickup_datetime'].dt.day_name()
print("Trips per Day of Week:")
print(df['weekday'].value_counts())

print("Trips per Hour:")
print(df['hour'].value_counts().sort_index())
```

Task 4 (Optional Advanced): Calculate Average Speed

Compute average speed (in mph) using trip distance and trip duration.

Hint:

```
df['tpep_dropoff_datetime'] =
pd.to_datetime(df['tpep_dropoff_datetime'])
df['duration_minutes'] = (df['tpep_dropoff_datetime'] -
df['tpep_pickup_datetime']).dt.total_seconds() / 60
df['average_speed_mph'] = df['trip_distance'] / (df['duration_minutes']
/ 60)
print("Average Speed Stats:")
print(df['average_speed_mph'].describe())
```

Submission (Optional)

Have students:

- Save their updated Python code to a .py file
- Include comments explaining each task
- Present their results (e.g., in a Teams video or brief written rep