GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Mechanical Operation

(Course Code: 4330501)

Diploma programmer in which this course is offered	Semester in which offered
Chemical Engineering	Third

1. RATIONALE

The operations of chemical plants require use of material handling and size reduction equipments, screens, agitator, mixers, centrifuges, cyclones, filters, storage & conveying of solids and other mechanical separation equipments. Therefore students must have information about the principles, construction, working and application of these equipments so that they can plan for their efficient use in plants. In this course the students would also learn simple calculations to judge the performance of these equipments.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

Plan and supervise operation of mechanical operation equipments.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Use fundamentals of mechanical operation.
- b) Apply concept of size reduction, separation, agitation-mixing, Storage and Conveying of Solid & Fluid.
- c) Operate size reduction equipment, separators, agitators, mixers and conveyors.
- d) Calculate properties of solid particles, power consumption, and resistance, crushing law constants, efficiency and material balance.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme						
(Ir	ո Hour	s)	(L+T+P/2)	Theory Marks		Theory Marks		Practica	l Marks	Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks		
3	0	4	5	30	70	50	50	200		

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of COs, and the remaining 20 marks are the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (Course Outcomes in psychomotor and affective domain) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in affective domain as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Practical Outcomes (PrOs)		Option	Approx. Hrs. Required
1.	Measure volume surface mean diameter, mass mean diameter, number of particles using a sieve shaker.			4
2.	Perform differential and cumulative screen analysis	III		4
3.	Test Kicks law for crushing in Jaw crusher.	П		4
4.	Test Bond's law for crushing in a Roll crusher.	II		4
5.	5. Test Rittinger's law for grinding in a Ball mill and measure critical speed.			4
6.	Measure efficiency and cut diameter of Cyclone IV Separator.			4
7.	Determine rate of settling by Sedimentation.	IV		4
8.	Measure rate of filtration, filter medium & cake resistance in Gravity filtration.		Any three	4
9.	Measure rate of filtration, filter medium & cake resistance in Vacuum filtration.	IV		4
10.	Measure cake resistance, filter media resistance in IV Pressure filtration.			4
11.	Measure rate of filtration, cake resistance, filter media resistance in Centrifuge.	IV		4
12.	Measure efficiency of separation in froth flotation cell.	Ш	Any	4
13.	Measure efficiency of separation in Magnetic separator.	III	two	4
14.	Measure efficiency of separation in Electrostatic separator.	III		4

15.	Evaluate mixing index in mixer.	V	4
16.	Measure power consumption in baffled and unbaffled Agitation vessel.	V	4

<u>Note</u>

More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to use in uniformity of practical's in all institutions across the state.

Sr.	Equipment Name with Broad Specifications	PrO. No.
No.		
1	Sieve shaker – Sieve dia – 100 mm to 200 mm, no of sieve – 6-8 and Pan, Opening – as per standards (micro or coarse particle)	1,2
2	Jaw crusher – 10-50 kg/hr capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply with energy meter	3
3	Laboratory Roll crusher – 5-25 kg/hr capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply with energy meter	4
	Laboratory Ball mill - 5kg capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply with energy meter	5
4	Cyclone separators – Product Particle as per requirement, Suitable for operation on 220V, Power: 1000W with energy meter	6
5	Batch Sedimentation Set up (Lab Scale Model using Glassware)	7
6	Gravity filter (Lab scale model using Glassware)	8
7	Vacuum Filter (Lab scale model using Glassware and Vacuum pump)	9
8	Laboratory filter Press - Suitable for operation on 220V, Power: 1000W	10
9	Basket centrifuge - Suitable for operation on 415V, 50Hz, 3 Phase, AC supply	11
10	Froth flotation Cell, 5-15 kg/hr capacity, Suitable for operation on 220V, Power: 1000W with energy meter	12
11	Magnetic separator suitable for operation on 220V, Power: 1000W	13
12	Electrostatic separator.	14

Sr.	Equipment Name with Broad Specifications	PrO. No.
No.		
13	Double cone mixer - Suitable for operation on 220V, Power:	15
	1000W	
14	Ribbon Blender- Suitable for operation on 220V, Power:	15
	1000W	
15	Sigma Mixer- Suitable for operation on 220V, Power: 1000W	15
16	Agitation vessel setup – Suitable for operation on 220V,	16
	Power: 1000W with energy meter (with removable baffles)	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Follow ethical practices.
- b) Practice good housekeeping.
- c) Demonstrate working as a leader/a team member during brainstorming.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major Underpinning Theory is formulated as given below and only higher level UOs of *Revised Bloom's taxonomy* are mentioned for development of the COs and competency in the students by the teachers. (Higher level UOs automatically include lower level UOs in them). If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics	
Unit – I	1a. Define Unit Operation and	1.1 Fundamentals of Un	
Fundamental of	Unit Process	Operation and Unit	
Mechanical	1b. Differentiate Unit Operation	Process	
Operation	and Unit Process	1.2 Examples of Unit	
		Operation and Unit	
			Process
	1c. Describe specific properties	1.3	Define & Calculate
	of solids	 Particle density and Bulk 	
		de	ensity

		Coborisite:
		• Sphericity
		Equivalent diameter
		Specific surface area
		Volume surface mean
		diameter
		 Mass mean diameter
		Shape factor
		 Number of particles in solid
	2a. Explain size reduction with	2.1 Principles of Size reduction and
	applications	its application
	2b. Select Size reduction	2.2 Factors for selection of size
	equipments	reduction equipment
	2c. Calculate Energy and power	2.3 Energy and power requirement
	requirement in comminution	in comminution
	2d. Explain Empirical laws of size	2.4 Laws of size reduction:
	reduction and work Index	(i) Rittinger's law
		(ii) Bond's law
		(iii) Kick's law
		2.5 Calculate Power required for
		size reduction using empirical laws
		and calculation of work Index.
Unit- II		
Size Reduction	2e. Explain Different Size	2.6 Principle, construction,
Size Reduction	reduction equipments	working and Application of
		Jaw crusher
		Gyratory crusher
		Roll Crusher
		Ball mill
		Hammer mill
	2f. Compute Angle of nip for Roll	2.7 Derive equation of angle of nip
	Crusher	2.8 Calculation of angle of nip for
	Crusher	Roll crusher
	2g. Calculate Critical speed of	2.9 Derivation of equation of
	Ball mill	critical speed for Ball Mill
		2.10 Calculation of operating
		speed and critical speed for Ball
		Mill
	2h. Explain Open and Close	2.11 Difference between open
	circuit grinding	circuit and close circuit grinding
	3a. Explain Screening	3.1 Basics of Ideal and Actual
	,	Screen
Unit- III Solid-	3b. Compare types of screen	3.2 Types of Screen Analysis
Solid separation	analysis	Cumulative analysis
		Differential analysis
	3c. Derive formula for	3.3 Capacity and effectiveness of
	JC. Delive Idillidia Idi	3.3 Capacity and effectiveness of

1	effectiveness of screen	screen
	3d. Calculate capacity and effectiveness of screen	 Derivation of formula for overall effectiveness of screen
	3e. Explain different screening equipment	 Calculation of capacity and effectiveness of screen 3.4 Principle, Construction, Working & Application of Trommel, grizzlies, vibrating screen
	3b. Explain different Solid separation equipments	3.5 Principle, Construction, Working & Application of Hydraulic Jig Double cone classifier Electrostatic precipitator Magnetic separator Froth flotation cell
	3c. Select solid separation equipment	3.6 Factors affecting selection of equipment for solid separation
	4a. Describe filtration and Differentiate constant rate and constant pressure filtration 4b. Characterize filter media 4c. Explain filter aids and its	 4.1 Basics of filtration Constant Rate filtration Constant Pressure filtration 4.2 Filter media and its characteristics 4.3 Filter Aid & its application
Unit- IV Solid- fluid Separation	application 4d.Explain cake resistance, filter media resistance for various conditions 4e. Classify equipments for liquid-solid separation	4.4 Cake Resistance, Filter medium Resistance
	4f. Explain sedimentation 4g. Draw batch sedimentation curve	 4.6 Basic of Sedimentation Hindered settling Free settling 4.7 Batch Sedimentation Experiment Interphase height Vs Time curve for batch sedimentation
	4h. Explain Gravity Thickener	4.8 Principle, construction,

	4i. Explain Terminal settling velocity	working and application of Gravity Thickener 4.9 Terminal settling velocity
	4j. Describe Cyclone Separator	4.10 Principle, construction, working and application of Cyclone Separator
	4k. Calculate Cut diameter and efficiency of cyclone	4.11 Cut diameter and Efficiency of Cyclone Separator
Unit– V Agitation and mixing	 5a. Describe agitation and mixing 5b. Classify impellers 5c. Compare various impellers 5d. Explain vortex formation and prevention 5e. Explain factors affecting agitation 5f. Calculate power consumption 5g. Describe Agitated vessel 	5.1 Define agitation and mixing 5.2 Classification of Impellers and brief explanation 5.3 Vortex formation and swirling 5.4 Methods for Prevention of Vortex 5.5 Factors affecting on agitation and Mixing 5.6 Calculation of Mixing index & Power Consumption 5.7 Principle, construction, working and application of Agitated vessel
	5h. Explain different Types of Mixers	 5.8 Principle, construction, working and application of Ribbon blender Kneaders Banbury mixer Muller mixer
Unit VI Storage & Conveying of Solid and Fluid	6a. Describe different Storage of Solids	6.1 Angle of repose6.2 Bulk storage6.3 Storage in bins and silos
	6b Explain different types of Conveyor	 6.4 Types of Conveyors Screw conveyors Belt conveyors Bucket elevators Pneumatic conveyor Hydraulic Conveyor

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title		Distribution of Theory Marks			rks
		Teachin	R	U	Α	Total
		g	Level	Level	Level	Marks
		Hours				
ı	Fundamental of Mechanical	0.4	•	2	2	07
	Operation	04	2	2	3	07
II	Size Reduction	10	4	5	8	17
Ш	Solid-Solid Separation	07	3	4	4	11
IV	Solid-Fluid Separation	10	4	5	8	17
V	Agitation and Mixing	07	3	5	3	11
VI	Storage and Conveying	04	2	3	2	07
	Total		18	24	28	70

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

Following is the list of proposed student activities like:

- 1. Assignments
- 2. Technical Quiz/MCQ Test
- 3. Presentation on some course topic
- 4. I-net based assignments
- 5. Undertake micro-Project in team/individually
- 6. Students are encouraged to register themselves in various MOOCS such as: Swayam, edx, Coursera, Udemy etc to further enhance their learning

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Guide student(s) in undertaking micro-projects.
- b) Diagnosing Essential Missed Learning concepts that will help for students to improve their performance.
- c) Guide Students to do Personalized learning so that students can understand the course material at his or her pace.
- d) Encourage students to do Group learning by sharing so that learning can be enhanced.
- e) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods. Guide students on addressing the issues on environment and sustainability using the knowledge of this course.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about **14-16** (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. Prepare a chart/model of Size reduction equipments along with their Principle and applications.
- 2. Prepare chart/model for various types of impellers used in Industry.
- 3. Interpret results of Cumulative Analysis and Differential Analysis using Microsoft excel.
- 4. Prepare chart for Vortex formation and swirling and Methods for their prevention.
- 5. Draw suitability chart for various factors for selection of various mechanical equipment.
- 6. Prepare 15-20 slides power point presentation showing classification, construction and working of any mechanical equipment.
- 7. Compare Screen Effectiveness by Manual & Mechanical Method using Literature/ experimental data by the use of Microsoft excel.
- 8. Prepare Laboratory set up for Batch Sedimentation.
- 9. Prepare Working model of any mechanical operation equipment.
- 10. Prepare a demonstrative model of any mechanical operation equipment.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Unit Operations of Chemical Engineering	McCabe and Smith	McGraw Hill Publications, New Delhi

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
2	Introduction to Chemical Engineering	Badger W. L. and Banchero J. T	McGraw Hill Publications, New Delhi
3	Unit Operation –I	Gavhane K. A.	Nirali Prakashan, Pune
4	Mechanical Operations	Swain A.K., G.K.Roy	Tata McGraw Hill Publications, New Delhi
5	'Chemical Engineering' Vol II,	J.M. Coulson & J.F. Richardson 'Chemical Engineering' Vol II,	6th Ed. Elsevier, 2003
6	Transport Processes and Separation Process Principles'	C.G. Geankopolis	4th Ed, Prentice Hall India, 2003.

14. SOFTWARE/LEARNING WEBSITES

- a. https://ndl.iitkgp.ac.in
- b. https://onlinecourses.nptel.ac.in
- c. https://swayam.gov.in/explorer
- d. www.cheresources.com

15. PO-COMPETENCY-CO MAPPING

Semester-III	Mechanical Operation (Course Code:4330501)						
	POs						
Competency	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
& Course Outcomes	Basic & Discipline specific knowledge	Problem Analysis	Problem Design/ development of solutions Testing Tengineering practices for Experimentation & Sustainabilit Testing y & environment		Project Manage- ment	Life-long learning	
Competency	Select and Operate Mechanical Operation equipment in the Chemical industry.						
Course Outcomes	2	-	-	-	-	-	-
CO a) Use fundamental of mechanical operation.							
CO b) Apply concept of size reduction, separation, agitation-mixing, Storage and Conveying of solid and Fluid.	2	2	2	2	2	2	2

CO c) Operate size reduction equipment, separators, agitators, mixers and conveyors.	3	2	2	2	3	2	2
CO d)Calculate properties of solid particles, power consumption, and resistance, crushing law constants, efficiency and material balance	2	2	2	3	2	-	1

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No	Name and Designation	Institute	Contact No.	Email
1.	Mrs. Bhoomi Luckvindersingh Guleria	Government Polytechnic Gandhinagar	8128349140	bhoomitrivedi87@gmail. com
2.	Mrs. Bhumika Bhavin Makwana	Shri K.J. Polytechnic, Bharuch	9662032947	bhmkrn@gmail.com