

Horn Minimization

An overview of some existing algorithms

Simon Vilmin

HSE - ISIMA

12 mars 2018

Closure operator and systems

1.1 - Elements of set theory

Set Σ of attributes. A map $\varphi: 2^{\Sigma} \longrightarrow 2^{\Sigma}$ is a *closure operator* if, $\forall X, Y, Z \subseteq \Sigma:$

- $ightharpoonup X \subseteq \varphi(X)$ (increasing)
- $\triangleright \varphi(\varphi(X)) = \varphi(X)$ (idempotent)

Some details:

- \blacktriangleright (Σ , φ) is a closure space,
- ightharpoonup X is *closed* if $X = \varphi(X)$,
- \triangleright Σ^{φ} set of closed sets : *closure system*.

Closure Example

1.1 - Elements of set theory

- ightharpoonup Directed graph G = (V, E).
- ► Closure $\varphi(X)$ of $X \subseteq V$: all the reachable vertices starting from X.
- $ightharpoonup \varphi(\{A, B\}) = \{A, B, C, D\}.$
- $\varphi(\{F\}) = \{F\}, \{F\} \text{ is } closed.$

FIGURE – Closure of a vertex in a directed graph

Notations

1.1 - Elements of set theory

title

1.1 - Elements of set theory

title

2.1 - early 80s

title

2.1 - early 80s

title 3.1 - Pouf

title 3.1 - Pouf

