TD3. Comportement asymptotiques des martingales.

Exercice 1. Urne de Polya: On dispose (d'une infinité) de boules rouges et vertes. A l'instant 0, une urne contient une boule de chaque couleur et on effectue une succession de tirages définis par la règle suivante: on tire une boule de l'urne "au hasard" et on la remet dans l'urne en ajoutant une boule du même couleur. Soit S_n le nombre de boules rouges au temps n, et $X_n = S_n/(n+2)$ la proportion de boules rouges au temps n.

- a) Montrer que X_n est une martingale par rapport à sa filtration naturelle et calculer $\mathbb{E}(X_n)$.
- b) Montrer que $X_n \to X_\infty$ presque sûrement et dans L^1 .
- c) Pour tout $k \ge 1$ soit

$$Z_n^{(k)} = \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+2)\cdots(n+k+1)}.$$

Montrer que $(Z_n^{(k)})_{n\geqslant 0}$ est une martingale pour tout $k\geqslant 1$ et calculer $\mathbb{E}[Z_n^{(k)}]$.

d) Montrer que

$$\mathbb{E}[X_{\infty}^k] = \mathbb{E}[Z_0^k] = \frac{1}{k+1}$$

e) Par un calcul de fonction caractéristique en déduire que la v.a. X_{∞} suive une loi uniforme sur [0,1].

Exercice 2. Soient $(Y_n)_{n\geqslant 1}$ v.a. i.i.d. , $Y_n\geq 0$ et $\mathbb{E}(Y_n)=1$. Soit $X_n=\prod_{k=1}^n Y_k$ pour tout $n\geqslant 1$ et $X_0=1$.

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une martingale par rapport à la filtration engendrée par les $(Y_n)_{n\geqslant 1}$ $(\mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$ pour $n\geqslant 1$ et $\mathcal{F}_0=\{\emptyset,\Omega\}$)
- b) Supposons que $Y_n \ge \delta$ pour quelque $\delta > 0$. Montrer que $\mathbb{E}[\log Y_1] < 0$ et utiliser la loi des grandes nombres pour $\log X_n/n$ pour montrer que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n\to\infty} X_n = 0 \qquad p.s.$$

c) Soit maintenant $Z_n = \max(\delta, Y_n)$. Montrer qu'il existe $\delta > 0$ tel que $\mathbb{E}[\log Z_n] < 0$ et conclure que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n\to\infty} X_n = 0 \qquad p.s.$$

sans l'hypothèses supplémentaires sur $(Y_n)_{n \geq 0}$.

d) En déduire qu'en général la convergence de $X_n \to X_\infty$ dans le théorème de Doob n'a pas lieu dans $L^1(\Omega)$ mais seulement presque sûrement.

Exercice 3. Soient définies des v.a. indépendantes X, ξ_1 , ξ_2 , ... telles que $X \sim \mathcal{N}(0, 1)$ et $\xi_n \sim \mathcal{N}(0, \varepsilon_n^2)$ avec $\varepsilon_n > 0$ pour tout $n \ge 1$. Soit $Y_n = X + \xi_n$ et

$$X_n = \mathbb{E}[X | \mathcal{F}_n], \qquad n \geqslant 1$$

avec $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$. On peut voir X comme une quantité inconnue qu'on cherche à estimer. La v.a. Y_n est le résultat obtenu en mesurant X au temps n, la mesure étant brouillée par une erreur aléatoire. On suppose que les erreurs commises en temps différents sont indépendantes. Au temps n, notre meilleure estimation L^2 de X est donnée par X_n . On se pose la question de savoir si X_n converge vers X quand $n \to \infty$.

- a) Montrer que le processus $(X_n)_{n\geqslant 1}$ est une martingale uniformément bornée dans L^2 (c-à-d $\sup_n \mathbb{E}[X_n^2] < +\infty$)
- b) Montrer que la suite $(X_n)_{n\geqslant 1}$ converge presque sûrement vers une variable X_∞ et que $X_\infty\in L^2$. La v.a. X_∞ représente notre meilleure prévision de X (au sens L^2) donnée par l'observation de toutes les v.a. $(Y_n)_{n\geqslant 1}$.
- c) Montrer que pour tout $n \ge 1$ et tout $1 \le i \le n$ on a $\mathbb{E}[Z_n Y_i] = 0$ où la v.a. Z_n est définie par

$$Z_n = X - \frac{1}{1 + \sum_{k=1}^n \varepsilon_k^{-2}} \sum_{k=1}^n \varepsilon_k^{-2} Y_k.$$

- d) En déduire que pour tout $n \ge 1$ la v.a. Z_n est indépendante du vecteur $(Y_1, ..., Y_n)$ puis que $X_n = X Z_n$.
- e) Calculer $\mathbb{E}[(X-X_n)^2]$ et en déduire que $X_n \to X$ presque sûrement si et seulement si

$$\sum_{n=1}^{\infty} \varepsilon_n^{-2} = +\infty.$$

Donc si $\sum_{n=1}^{\infty} \varepsilon_n^{-2} < +\infty$ il est impossible de déterminer la quantité inconnue X même avec un nombre infini d'observations.

Exercice 4. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. indépendantes et identiquement distribuées telles que $\mathbb{E}[X_i]=0$, $\mathbb{E}[X_i^2]=1$ et $\mathbb{E}[X_i^4]<\infty$ pour tout $i\geqslant 1$. On appelle $(\mathcal{F}_n)_{n\geqslant 1}$ la filtration naturelle des $(X_n)_{n\geqslant 1}$, c-à-d $\mathcal{F}_0=\{\emptyset,\Omega\}$, $\mathcal{F}_n=\sigma(X_1,...,X_n)$ pour $n\geqslant 1$. Soit $(a_{i,j})_{i,j\geqslant 1}$ une suite à deux indices de nombres réels, vérifiant la condition de symétrie $a_{i,j}=a_{j,i}$ pour tous $i,j\geqslant 1$. On suppose aussi que $C=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{i,j}^2<+\infty$. On considère les processus $(Q_n)_{n\geqslant 1}$, $(U_n)_{n\geqslant 1}$, $(V_n)_{n\geqslant 1}$ définis par

$$Q_n = \sum_{1\leqslant i,j\leqslant n} a_{i,j} X_i X_j, \quad V_n = \sum_{1\leqslant i\leqslant n} a_{i,i} \left(X_i^2 - 1\right) \quad \text{pour } n \geqslant 1;$$

et
$$U_1 = 0$$
, $U_n = \sum_{1 \le i < j \le n} a_{i,j} X_i X_j = \sum_{i=2}^n \left(\sum_{j=1}^{i-1} a_{i,j} X_j \right) X_i$ pour $n \ge 2$.

- a) Pour $n \ge 1$ on pose $A_n = \sum_{1 \le i \le n} a_{i,i}$, $M_n = Q_n A_n$. Montrer que $M_n = 2U_n + V_n$ et que les processus $(U_n)_{n \ge 1}$, $(V_n)_{n \ge 1}$ et $(M_n)_{n \ge 1}$ sont des martingales par rapport à la filtration $(\mathcal{F}_n)_{n \ge 1}$.
- b) Montrer que $(U_n)_{n\geqslant 1}$ et $(V_n)_{n\geqslant 1}$ sont des processus bornés dans $L^2(\Omega)$.

- c) En déduire que le processus $(M_n)_{n\geqslant 1}$ converge presque sûrement vers une v.a. finie M_{∞} .
- d) Expliquer pourquoi $\mathbb{E}[M_{\infty}] = 0$ et $Var(M_{\infty}) = \lim_{n \to \infty} Var(M_n)$.

Exercice 5. (ALGORITHME DE ROBBINS-MONROE) Soit $(X_n)_{n\geqslant 1}$ une suite iid de loi donnée par la fonction de répartition F ($\mathbb{P}(X_1\leqslant t)=F(t)$). On suppose F continue. Soit $(Y_n)_{n\geqslant 0}$ la suite définie par récurrence par

$$Y_{n+1} = Y_n - \gamma_n (\mathbb{I}_{X_{n+1} \leqslant Y_n} - \alpha) \qquad n \geqslant 0$$

où Y_0 est une constante arbitraire et $\alpha \in]0, 1[$. La suite $(\gamma_n)_{n\geqslant 0}$ est positive et décroissante et telle que $\sum \gamma_n^2 < +\infty$ et $\sum \gamma_n = +\infty$. On veut montrer que $Y_n \to q_\alpha$ p.s. où q_α est le quantile de niveau α de F (la seule solution de l'équation $F(q_\alpha) = \alpha$). La récurrence donne ainsi un algorithme pour approcher le quantile q_α .

a) Soit $(Z_n = (Y_n - q_\alpha)^2)_{n \ge 0}$. Calculer $\mathbb{E}[Z_{n+1}|\mathcal{F}_n]$ et montrer que il existe une suite croissante et bornée $(U_n)_{n \ge 1}$ telle que $W_n = Z_n - U_n$ satisfait

$$0 \leqslant \gamma_n (Y_n - q_\alpha) (F(Y_n) - \alpha) \leqslant W_n - \mathbb{E}[W_{n+1} | \mathcal{F}_n]$$
(1)

- b) Montrer que $(W_n)_{n\geqslant 1}$ converge p.s. .
- c) Montrer que l'eq. (1) implique que la série

$$\sum_{n \ge 0} \gamma_n (Y_n - q_\alpha) (F(Y_n) - \alpha)$$

converge dans L^1 et p.s. et que cette observation et la condition $\sum \gamma_n = +\infty$ impliquent que $Y_n \to q_\alpha$ p.s. .