B. Volcanoes

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

lahub got lost in a very big desert. The desert can be represented as a $n \times n$ square matrix, where each cell is a zone of the desert. The cell (i,j) represents the cell at row i and column j $(1 \le i,j \le n)$. lahub can go from one cell (i,j) only down or right, that is to cells (i+1,j) or (i,j+1).

Also, there are m cells that are occupied by volcanoes, which lahub cannot enter.

lahub is initially at cell (1, 1) and he needs to travel to cell (n, n). Knowing that lahub needs 1 second to travel from one cell to another, find the minimum time in which he can arrive in cell (n, n).

Input

The first line contains two integers n ($1 \le n \le 10^9$) and m ($1 \le m \le 10^5$). Each of the next m lines contains a pair of integers, x and y ($1 \le x, y \le n$), representing the coordinates of the volcanoes.

Consider matrix rows are numbered from 1 to n from top to bottom, and matrix columns are numbered from 1 to n from left to right. There is no volcano in cell (1, 1). No two volcanoes occupy the same location.

Output

Print one integer, the minimum time in which lahub can arrive at cell (n, n). If no solution exists (there is no path to the final cell), print -1.

Examples

input	
4 2	
1 3	
1 4	
output	
6	

input
⁷ 8
. 6
6
5
6
4 3
1
2
3
output
2

```
input
2 2
1 2
2 1
0utput
-1
```

Note

Consider the first sample. A possible road is: $(1,1) \rightarrow (1,2) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) \rightarrow (4,4)$.