Mathematik I für Studierende der Informatik (Diskrete Mathematik)

Thomas Andreae, Christoph Stephan

Wintersemester 2011/12 Blatt 1

A: Präsenzaufgaben am 20./21. Oktober 2011

1. Für die Mengen $A = \{1, 2, 3, 4, 5\}$ und $B = \{u, v, w, x, y, z\}$ betrachten wir die folgenden Pfeildiagramme:

- a) Stellen diese Pfeildiagramme Funktionen $f:A\to B$ dar? Was muss ggf. geändert werden, damit Funktionen $f:A\to B$ dargestellt werden?
- b) Was ist zu ändern, damit injektive Funktionen dargestellt werden?
- c) Ist es möglich, die Pfeile so zu ändern, dass surjektive Funktionen $f:A\to B$ dargestellt werden?
- **2.** Für A und B wie in Aufgabe 1 sei eine Funktion $f:A\to B$ in Form einer Tabelle gegeben, die allerdings noch nicht ganz vollständig ist.

\underline{a}	f(a)
1	v
2	w
3	y
4	
5	z

- a) Ergänzen Sie die Tabelle so, dass f injektiv wird.
- b) Ergänzen Sie die Tabelle so, dass f nicht injektiv wird.
- **3.** Durch die folgenden Formeln werden Funktionen $\mathbb{Z} \to \mathbb{Z}$ definiert: $f(x) = x^2$, g(x) = 2x + 5 und h = x + 2.
 - a) Beweisen Sie:
 - (i) f ist nicht injektiv.
 - (ii) g ist injektiv.
 - (iii) g ist nicht surjektiv.
 - (iv) h ist surjektiv.

Hinweis: Bei (ii) und (iii) gehe man wie auf Seite 7 im Skript vor, d.h., man gebe indirekte Beweise (Beweis durch Widerspruch).

- b) Ist eine der drei Funktionen bijektiv? Ist eine der Funktionen weder injektiv noch surjektiv?
- **4.** Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ sei definiert durch $f(n) = ((n-2)^2, n^2)$ für alle $n \in \mathbb{Z}$. Man beweise oder widerlege:
 - a) f ist injektiv.
 - b) f ist surjektiv.

5. Lesen Sie im Skript auf Seite 8 nach, was man unter einer Potenzmenge $\mathcal{P}(M)$ einer Menge M versteht und geben Sie die Potenzmenge $\mathcal{P}(M)$ der Menge $M = \{1, 2, 3\}$ an.

B: Hausaufgaben zum 27./28. Oktober 2011

- **1.** a) Es seien $A = \{1, 2, 3\}$ und $B = \{3, 4\}$. Falls möglich, finde man Funktionen $f: A \to B$, $g: A \to B$ und $h: A \to B$, für die gilt:
 - (i) f ist surjektiv, aber nicht injektiv.
 - (ii) g ist injektiv, aber nicht surjektiv.
 - (iii) h ist bijektiv.

Falls Funktionen f, g und h mit den genannten Eigenschaften existieren, so gebe man diese Funktionen sowohl in Tabellenform als auch als Pfeildiagramme an. Andernfalls gebe man eine (kurze!) Begründung für deren Nichtexistenz.

- b) Wie a) für $A = \{1, 2, 3\}$ und $B = \{3, 4, 5\}$.
- c) Wie a) für $A = \{1, 2, 3\}$ und $B = \{3, 4, 5, 6\}$.
- **2.** Durch die folgenden Formeln werden Funktionen $\mathbb{Z} \to \mathbb{Z}$ definiert: $f(x) = x^2 5$, g(x) = 5x 3 und h(x) = x + 5.

Welche dieser Funktionen sind injektiv, welche sind nicht injektiv. Ebenso für surjektiv und bijektiv. (Man gebe nicht nur die Antworten an, sondern auch die dazugehörigen Beweise!)

- 3. Untersuchen Sie, ob die folgenden Funktionen injektiv oder surjektiv sind. (Beweise!)
 - a) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(n,m) = n m$
 - b) $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, g(n,m) = (n+m, n-m)$
 - c) $h: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, h(n) = ((n+1)^2, n^2 + 1).$
- **4.** a) Man beweise die De Morgansche Regel $\overline{A \cap B} = \overline{A} \cup \overline{B}$ mit Hilfe einer Wahrheitstafel und veranschauliche diese Regel mit Hilfe von Venn-Diagrammen.
 - b) Es sei $M = \{a, b, c, d\}$. Man gebe die Potenzmenge $\mathcal{P}(M)$ dieser Menge M an.
 - c) Es sei $M = \{a\}$. Welche der folgenden Aussagen sind wahr, welche sind falsch?
 - (i) $a \in \mathcal{P}(M)$
 - (ii) $a \subseteq \mathcal{P}(M)$
 - (iii) $\{a\} \in \mathcal{P}(M)$
 - (iv) $\{a\} \subseteq \mathcal{P}(M)$
 - $(v) \{\{a\}\} \in \mathcal{P}(M)$
 - (vi) $\{\{a\}\}\subseteq \mathcal{P}(M)$