Noções de Lógica QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

- Argumento válido e Raciocínio Dedutivo
- Conectivos Lógicos
- Tabelas-verdade
- Fórmulas Equivalentes
- Conjunto-verdade de um predicado

Referências para esta aula

- **Seções 1.1, 1.3, 2.1 e 2.2** do livro: Kenneth H. Rosen. *Matemática Discreta e suas Aplicações*. (Sexta Edição).
- Capítulo 1 do livro: Daniel J. VELLEMAN. How to Prove it. A structured approach. (3rd Edition). Cambridge University Press; 3rd Edition, 2019.

Introdução

Forma de um argumento × seu conteúdo

- Forma de um argumento: conceito central na lógica dedutiva.
- Argumento: sequência de afirmações para demonstrar a validade de uma asserção.

Forma de um argumento × seu conteúdo

- Forma de um argumento: conceito central na lógica dedutiva.
- Argumento: sequência de afirmações para demonstrar a validade de uma asserção.
- Como saber que a conclusão obtida de um argumento é válida?
 - As afirmações que compõem o argumento são aceitas como válidas, ou podem ser deduzidas de afirmações anteriores.

Forma de um argumento × seu conteúdo

- Forma de um argumento: conceito central na lógica dedutiva.
- Argumento: sequência de afirmações para demonstrar a validade de uma asserção.
- Como saber que a conclusão obtida de um argumento é válida?
 - As afirmações que compõem o argumento são aceitas como válidas, ou podem ser deduzidas de afirmações anteriores.
- Em lógica, forma de um argumento \neq seu conteúdo.
- Análise lógica não determina a validade do conteúdo de um argumento.
 - Ela determina se a verdade de uma conclusão pode ser obtida da verdade de argumentos propostos.

- 1. Hoje, ou eu vou para a praia, ou eu fico em casa;
- 2. Estou cansado para viajar;
- 3. Portanto, ficarei em em casa.

- 1. Hoje, ou eu vou para a praia, ou eu fico em casa;
- 2. Estou cansado para viajar;
- 3. Portanto, ficarei em em casa.

Premissas: itens 1. e 2.

Conclusão: item 3.

- 1. Hoje, ou eu vou para a praia, ou eu fico em casa;
- 2. Estou cansado para viajar;
- 3. Portanto, ficarei em em casa.

Premissas: itens 1. e 2.

Conclusão: item 3.

- Premissas forçam a conclusão.
- Não podemos afirmar que a conclusão seja verdadeira, mas

se as premissas forem verdadeiras, então a conclusão também o é.

- 1. Ou irei trabalhar hoje ou eu irei trabalhar amanhã;
- 2. Vou ficar em casa hoje;
- 3. Portanto, irei trabalhar amanhã.

- 1. Ou irei trabalhar hoje ou eu irei trabalhar amanhã;
- 2. Vou ficar em casa hoje;
- 3. Portanto, irei trabalhar amanhã.

- 1. Ou irei trabalhar hoje ou eu irei trabalhar amanhã;
- 2. Vou ficar em casa hoje;
- 3. Portanto, irei trabalhar amanhã.

- 1. Ou o mordomo ou a governanta é culpada;
- 2. Ou o chofer ou a governanta é culpada;
- 3. Portanto, ou o mordomo ou o chofer é culpado.

- 1. Ou irei trabalhar hoje ou eu irei trabalhar amanhã;
- 2. Vou ficar em casa hoje;
- 3. Portanto, irei trabalhar amanhã.

- 1. Ou o mordomo ou a governanta é culpada;
- 2. Ou o chofer ou a governanta é culpada;
- 3. Portanto, ou o mordomo ou o chofer é culpado.

Um argumento é **válido** quando as premissas não podem ser verdadeiras sem que a conclusão o seja.

Um argumento é **válido** quando as premissas não podem ser verdadeiras sem que a conclusão o seja.

Voltando aos exemplos anteriores

Um argumento é **válido** quando as premissas não podem ser verdadeiras sem que a conclusão o seja.

Voltando aos exemplos anteriores

Exemplo 1

P= "hoje vou para a praia"

Q = "hoje fico em casa"

- 1. P ou Q;
- 2. não P;
- 3. Portanto, Q.

Um argumento é **válido** quando as premissas não podem ser verdadeiras sem que a conclusão o seja.

Voltando aos exemplos anteriores

Exemplo 1

P = "hoje vou para a praia" Q = "hoje fico em casa"

- 1. P ou Q;
- 2. não P;
- 3. Portanto, Q.

Exemplo 2

P = "hoje irei trabalhar" Q = "amanhã irei trabalhar"

- 1. P ou Q;
- 2. não P;
- 3. **Portanto**, Q.

Um argumento é **válido** quando as premissas não podem ser verdadeiras sem que a conclusão o seja.

Voltando aos exemplos anteriores

Exemplo 1

P = "hoje vou para a praia" Q = "hoje fico em casa"

1. P ou Q:

2. não P;

3. Portanto, Q.

Exemplo 2

P = "hoje irei trabalhar"

 $\mathsf{Q} = \text{``amanhã''}$ irei trabalhar''

1. P ou Q;

2. não P;

3. **Portanto**, Q.

Não é o conteúdo específico que importa, mas a sua forma lógica.

Poucas palavras que são a chave para o entendimento do argumento.

Nos nossos exemplos: "ou" (or); "e" (and); e "não" (not).

Poucas palavras que são a chave para o entendimento do argumento.

```
Nos nossos exemplos: "ou" (or); "e" (and); e "não"(not).
```

• ∧ (AND) e ∨ (OR) são operadores binários;

Poucas palavras que são a chave para o entendimento do argumento.

```
Nos nossos exemplos: "ou" (or); "e" (and); e "não"(not).
```

- ↑ (AND) e ∨ (OR) são operadores binários;
- ¬ (NOT) é um operador unário.

Poucas palavras que são a chave para o entendimento do argumento.

```
Nos nossos exemplos: "ou" (or); "e" (and); e "não"(not).
```

- ↑ (AND) e ∨ (OR) são operadores binários;
- ¬ (NOT) é um operador unário.
- Atenção: nem todo uso destes termos na língua pode ser traduzido com estes conectivos. Por exemplo:

"João e Maria são amigos".

- Em toda teoria matemática, usam-se termos já definidos na concepção de novas definições.
- Mas como fazer com os termos mais primitivos?
 - o Termos primitivos ou iniciais não são definidos.
 - Em lógica, os termos sentença, verdadeiro, e falso são os termos iniciais não definidos.

 Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.
- A partir de uma proposição simples, construímos proposições mais complexas usando os conectivos lógicos.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.
- A partir de uma proposição simples, construímos proposições mais complexas usando os conectivos lógicos.
 - Ou eu vou trabalhar hoje ou eu vou trabalhar amanhã.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.
- A partir de uma proposição simples, construímos proposições mais complexas usando os conectivos lógicos.
 - Ou eu vou trabalhar hoje ou eu vou trabalhar amanhã.
 - o Maria tem um notebook e João tem um tablet.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.
- A partir de uma proposição simples, construímos proposições mais complexas usando os conectivos lógicos.
 - o Ou eu vou trabalhar hoje ou eu vou trabalhar amanhã.
 - o Maria tem um notebook e João tem um tablet.
 - Eu não tenho um tablet.

- Proposição é uma sentença à qual pode ser atribuído um valor-verdade, que pode ser verdadeiro ou falso.
- Entretanto, a uma proposição nunca pode ser atribuído verdadeiro e falso simultaneamente ou um terceiro valor.
- A partir de uma proposição simples, construímos proposições mais complexas usando os conectivos lógicos.
 - Ou eu vou trabalhar hoje ou eu vou trabalhar amanhã.
 - o Maria tem um notebook e João tem um tablet.
 - Eu não tenho um tablet.

Precisamos analisar como os conectivos lógicos contribuem para o valor-verdade final.

Proposições Compostas

- Nos exemplos usados daqui para frente, usaremos letras (por exemplo, P, Q, R) para representar afirmações.
- Os seguintes símbolos podem ser usados para definir expressões lógicas mais complexas a partir de expressões mais simples:
 - ¬: não
 ¬P é lido como "não P" e é chamado de negação de P
 - o \wedge : **e** $P \wedge Q$ é lido como "P **e** Q" e é chamado de **conjunção** de P e Q.
 - o \lor : ou $P \lor Q$ é lido como "P ou Q" e é chamado de disjunção de P e Q.

Proposições Compostas

- ¬ é um operador unário e ∧ e ∨ são operadores binários.
- Avaliação na seguinte ordem:
 - 1. ¬ (negação)
 - 2. ∧, ∨ (conjunção, disjunção)

Observação: Alguns autores consideram que a conjunção tem prioridade sobre a disjunção, enquanto outros definem a mesma prioridade para os dois operadores. O melhor é usar parêntesis para indicar a prioridade, evitando esse problema.

• Exemplo:

$$\neg P \lor Q = (\neg P) \lor Q$$

 $P \lor Q \land R$ é ambíguo pela dicussão acima.

Melhor solução: $(P \lor Q) \land R$ ou $P \lor (Q \land R)$.

Tabelas-verdade

Para uma sentença ser uma proposição é necessário ter um valor-verdade bem definido, isto é, V ou F.

• P e Q $(P \land Q)$ é verdadeiro apenas quando ambos P e Q são verdadeiros.

Р	Q	∧ (AND)
F	F	F
F	V	F
V	F	F
V	V	V

Tabelas-verdade

Para uma sentença ser uma proposição é necessário ter um valor-verdade bem definido, isto é, V ou F.

• P e Q $(P \land Q)$ é verdadeiro apenas quando ambos P e Q são verdadeiros.

Р	Q	∧ (AND)	
F	F	F]
F	V	F	l
V	F	F	l
V	V	V	

• Não P $(\neg P)$ é verdadeiro apenas quando P for falso.

P	$\neg P \text{ (NOT)}$
F	V
V	F

Tabelas-verdade

• P ou Q $(P \lor Q)$ é falso apenas quando ambos $P \in Q$ são falsos.

P	Q	∨ (OR)
F	F	F
F	V	V
V	F	V
V	V	V

Tabelas-verdade

• P ou Q $(P \lor Q)$ é falso apenas quando ambos P e Q são falsos.

P	Q	∨ (OR)
F	F	F
F	V	V
V	F	V
V	V	V

• Atenção: em Matemática o ou é sempre inclusivo.

Tabelas-verdade

• P ou Q $(P \lor Q)$ é falso apenas quando ambos P e Q são falsos.

P	Q	∨ (OR)
F	F	F
F	V	V
V	F	V
V	V	V

- Atenção: em Matemática o ou é sempre inclusivo.
- Analisar a fórmula (bem-formada) $\neg (P \land Q) \lor \neg R$:
 - o pelo método com uma coluna para cada passo;
 - o pelo método com cada símbolo como uma coluna.

$$E = (P \lor Q) \land \neg (P \land Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	Ε
V	V				
V	F				
F	V				
F	F				

$$E = (P \vee Q) \wedge \neg (P \wedge Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	Ε
V	V	V			
V	F	V			
F	V	V			
F	F	F			

$$E = (P \lor Q) \land \neg (P \land Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	Ε
V	V	V	V		
V	F	V	F		
F	V	V	F		
F	F	F	F		

$$E = (P \lor Q) \land \neg (P \land Q)$$

Р	Q	$P \lor Q$	$P \wedge Q$	$\neg(P \land Q)$	Ε
V	V	V	V	F	
V	F	V	F	V	
F	V	V	F	V	
F	F	F	F	V	

$$E = (P \lor Q) \land \neg (P \land Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	Ε
V	V	V	V	F	F
V	F	V	F	V	V
F	V	V	F	V	V
F	F	F	F	V	F

$$E = (P \oplus Q) = P \text{ xor } Q \text{ (ou exclusivo)}$$

Construa a tabela verdade para a expressão:

$$E = (P \vee Q) \wedge \neg (P \wedge Q)$$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	E
V	V	V	V	F	F
V	F	V	F	V	V
F	V	V	F	V	V
F	F	F	F	V	F

$$E = (P \oplus Q) = P \text{ xor } Q \text{ (ou exclusivo)}$$

 O ponto fundamental em assinalar valores-verdade para proposições compostas é que permite o uso da lógica para decidir a verdade de uma proposição usando somente o conhecimento das partes.

 Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - ∘ *P*∧ *(uma tautologia)* é equivalente a *P*;

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - P∧ (uma tautologia) é equivalente a P;
 - ∘ P∨ *(uma tautologia)* é uma tautologia;

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - ∘ $P \land$ (uma tautologia) é equivalente a P;
 - ∘ P∨ (uma tautologia) é uma tautologia;
 - o a negação de uma tautologia é uma contradição.

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - P∧ (uma tautologia) é equivalente a P;
 - ∘ P∨ (uma tautologia) é uma tautologia;
 - o a negação de uma tautologia é uma contradição.
- Leis da contradição:

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - P∧ (uma tautologia) é equivalente a P;
 - ∘ P∨ (uma tautologia) é uma tautologia;
 - o a negação de uma tautologia é uma contradição.
- Leis da contradição:
 - P∧ (uma contradição) é uma contradição;

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - P∧ (uma tautologia) é equivalente a P;
 - ∘ P∨ (uma tautologia) é uma tautologia;
 - o a negação de uma tautologia é uma contradição.
- Leis da contradição:
 - ∘ *P*∧ (*uma contradição*) é uma contradição;
 - ∘ P∨ (uma contradição) é equivalente a P;

- Uma tautologia é uma fórmula que é sempre verdadeira independente dos valores-verdade das afirmações que compõem a proposição.
- Uma contradição é uma fórmula que é sempre falsa independente dos valores-verdade das afirmações que compõem a proposição.
- Leis da tautologia:
 - P∧ (uma tautologia) é equivalente a P;
 - ∘ P∨ (uma tautologia) é uma tautologia;
 - o a negação de uma tautologia é uma contradição.
- Leis da contradição:
 - ∘ P∧ (uma contradição) é uma contradição;
 - ∘ *P*∨ *(uma contradição)* é equivalente a *P*;
 - o a negação de uma contradição é uma tautologia.

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"
 - Q = "João é preguiçoso"

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"
 - Q = "João é preguiçoso"
- 1. $(\neg P \land Q) \lor P$

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"
- Q = "João é preguiçoso"
- 1. $(\neg P \land Q) \lor P$
- 2. *P*

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"
- Q = "João é preguiçoso"
- 1. $(\neg P \land Q) \lor P$
- 2. P
- 3. $\neg Q$

O argumento a seguir é válido?

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso
 - P = "João é estúpido"
 - Q = "João é preguiçoso"
- 1. $(\neg P \land Q) \lor P$
- 2. P
- 3. $\neg Q$

Então, a pergunta é se é verdade que

$$\begin{array}{c} (\neg P \land Q) \lor P \\ \hline P \\ \hline \vdots \neg Q \end{array}$$

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F								
F	V								
V	F								
V	V								

P	Q	(¬	Р	\wedge	Q)	\vee	Р	Р	$\neg Q$
F	F						F		
F	V						F		
V	F						V		
V	V						V		

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F		F				F		
F	V		F				F		
V	F		V				V		
V	V		V				V		

P	Q	(¬		\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F				F		
F	V	V	F				F		
V	F	F	V				V		
V	V	F	V				V		

P	Q	(¬		Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F		F		
F	V	V	F	V		F		
V	F	F	V	F		V		
V	V	F	V	V		V		

P		(¬				\vee	Р	P	$\neg Q$
F	F	V	F	F	F		F		
F	V F	V V F	F	V	V		F		
V	F	F	V	F	F		V		
V	V	F	V	F	V		V		

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F		
F	V	V	F	V	V	V	F		
V	F	F	V	F	F	V	V		
V	V	V V F F	V	F	V	V	V		

P	Q	(¬	Р	\wedge	Q)	V	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	
F	V	V	F	V	V	V	F	F	
V	F	F	V	F	F	V	V	V	
V	V	V V F	V	F	V	V	V	V	

P	Q	(¬	Р	\wedge	Q)	V	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	¬ <i>Q</i> V F V F

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	V F V F

O argumento **não** é válido.

Raciocínio dedutivo – exemplo

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	V F V F

O argumento não é válido.

• Olhando a primeira premissa mais detalhadamente:

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	V F V F

O argumento não é válido.

• Olhando a primeira premissa mais detalhadamente:

P	Q	$(\neg P \land Q) \lor P$	$P \lor Q$
F	F	F	
F	V	V	
V	F	V	
V	V	V	

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	V F V F

O argumento não é válido.

• Olhando a primeira premissa mais detalhadamente:

P	Q	$(\neg P \land Q) \lor P$	$P \lor Q$
F	F	F	F
F	V	V	V
V	F	V	V
V	V	V	V

Raciocínio dedutivo – exemplo

P	Q	(¬	Р	\wedge	Q)	\vee	Р	P	$\neg Q$
F	F	V	F	F	F	F	F	F	V
F	V	V	F	V	V	V	F	F	F
V	F	F	V	F	F	V	V	V	V
V	V	F	V	F	V	V	V	V	V F V F

O argumento não é válido.

• Olhando a primeira premissa mais detalhadamente:

P	Q	$(\neg P \land Q) \lor P$	$P \lor Q$
F	F	F	F
F	V	V	V
V	F	V	V
V	V	V	V

As duas fórmulas são equivalentes.

Fórmulas equivalentes

possuem sempre o mesmo valor-verdade!

Fórmulas equivalentes

possuem sempre o mesmo valor-verdade!

O argumento

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso

é o mesmo que

- ou João é estúpido ou João é preguiçoso (ou ambos);
- João é estúpido;
- 3. Portanto, João não é preguiçoso

Fórmulas equivalentes

possuem sempre o mesmo valor-verdade!

O argumento

- 1. Ou João não é estúpido mas é preguiçoso, ou ele é estúpido;
- 2. João é estúpido;
- 3. Portanto, João não é preguiçoso

é o mesmo que

- ou João é estúpido ou João é preguiçoso (ou ambos);
- João é estúpido;
- 3. Portanto, João não é preguiçoso

Simplificar fórmulas, buscando fórmulas equivalentes à original, contribui para o entendimento.

• Leis de DeMorgan:
$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$
; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.
- Leis associativas: $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.
- Leis associativas: $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
- Leis distributivas: $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$ $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.
- Leis associativas: $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
- Leis distributivas: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
- Leis idempotentes: $P \land P \equiv P$ $P \lor P \equiv P$

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.
- Leis associativas: $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
- Leis distributivas: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
- Leis idempotentes: $P \land P \equiv P$ $P \lor P \equiv P$
- Leis de absorção: $P \lor (P \land Q) \equiv P$ $P \land (P \lor Q) \equiv P$

- Leis de DeMorgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$; $\neg(P \lor Q) \equiv \neg P \land \neg Q$.
- Leis comutativas: $P \land Q \equiv Q \land P$; $P \lor Q \equiv Q \lor P$.
- Leis associativas: $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
- Leis distributivas: $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$ $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$
- Leis idempotentes: $P \land P \equiv P$ $P \lor P \equiv P$
- Leis de absorção: $P \lor (P \land Q) \equiv P$ $P \land (P \lor Q) \equiv P$
- Lei da negação dupla: $\neg \neg P \equiv P$.

 $\neg(Q \land \neg P) \lor P$ é equivalente a

$$\neg(Q \land \neg P) \lor P$$
 é equivalente a

$$(\neg Q \lor \neg \neg P) \lor P$$
 (Lei de DeMorgan), que é equivalente a

$$\neg(Q \land \neg P) \lor P$$
 é equivalente a

$$(\neg Q \lor \neg \neg P) \lor P$$
 (Lei de DeMorgan), que é equivalente a

$$(\neg Q \lor P) \lor P$$
 (Lei da negação dupla), que é equivalente a

$$\neg(Q \land \neg P) \lor P$$
 é equivalente a
$$(\neg Q \lor \neg \neg P) \lor P \qquad \text{(Lei de DeMorgan), que é equivalente a}$$

$$(\neg Q \lor P) \lor P \qquad \text{(Lei da negação dupla), que é equivalente a}$$

$$\neg Q \lor (P \lor P) \qquad \qquad \text{(Lei associativa), que é equivalente a}$$

$$\neg(Q \land \neg P) \lor P \text{ \'e equivalente a}$$

$$(\neg Q \lor \neg \neg P) \lor P \qquad \text{(Lei de DeMorgan), que \'e equivalente a}$$

$$(\neg Q \lor P) \lor P \qquad \text{(Lei da negação dupla), que \'e equivalente a}$$

$$\neg Q \lor (P \lor P) \qquad \qquad \text{(Lei associativa), que \'e equivalente a}$$

$$\neg Q \lor P \qquad \qquad \text{(Lei idempotente)}.$$

$$\neg(Q \land \neg P) \lor P \text{ \'e equivalente a}$$

$$(\neg Q \lor \neg \neg P) \lor P \qquad \text{(Lei de DeMorgan), que \'e equivalente a}$$

$$(\neg Q \lor P) \lor P \qquad \text{(Lei da negação dupla), que \'e equivalente a}$$

$$\neg Q \lor (P \lor P) \qquad \qquad \text{(Lei associativa), que \'e equivalente a}$$

$$\neg Q \lor P \qquad \qquad \text{(Lei idempotente)}.$$

$$|\neg(Q \land \neg P) \lor P \equiv \neg Q \lor P$$

Proposição condicional ou implicação

- Sejam P e Q proposições.
 - \circ "Se P então Q" (ou P implica Q) é representado por

$$P \rightarrow Q$$
.

 \circ *P* é chamado de **hipótese** e *Q* de **conclusão**.

Proposição condicional ou implicação

- Sejam P e Q proposições.
 - \circ "Se P então Q" (ou P implica Q) é representado por

$$P \rightarrow Q$$
.

- o P é chamado de **hipótese** e Q de **conclusão**.
- Sobre o uso típico de uma proposição condicional ou implicação:
 - Este tipo de sentença é usado tanto em linguagem natural quanto em raciocínio matemático para dizer que a verdade da proposição Q (conclusão) está condicionada à verdade da proposição P (hipótese/premissa).
 - No entanto, uma proposição condicional (do ponto de vista matemático) é independente de uma relação causa-efeito entre hipótese e conclusão.

Proposição condicional ou implicação

- Sejam P e Q proposições.
 - \circ "Se P então Q" (ou P implica Q) é representado por

$$P \rightarrow Q$$
.

- o P é chamado de **hipótese** e Q de **conclusão**.
- Sobre o uso típico de uma proposição condicional ou implicação:
 - Este tipo de sentença é usado tanto em linguagem natural quanto em raciocínio matemático para dizer que a verdade da proposição Q (conclusão) está condicionada à verdade da proposição P (hipótese/premissa).
 - No entanto, uma proposição condicional (do ponto de vista matemático) é independente de uma relação causa-efeito entre hipótese e conclusão.
- **Exemplo:** Se (48 é divisível por 6)_{=p}, então (48 é divisível por 3)_{=q}.

Proposição condicional - Tabela-verdade

- ullet ightarrow é um conectivo lógico binário para o qual podem ser definidos valores-verdade.
- Determinando a tabela-verdade para → (se-então)
 - A única combinação em que a sentença condicional é falsa é quando a hipótese é V e a conclusão é F (por definição).

Р	Q	P o Q
V	V	V
V	F	F
F	V	V
F	F	V

Proposição condicional - Tabela-verdade

- Determinando a tabela-verdade para → (se-então)
 - A única combinação em que a sentença condicional é falsa é quando a hipótese é V e a conclusão é F (por definição).

P	Q	P o Q
V	V	V
V	F	F
F	V	V
F	F	V

- Prioridade do conectivo lógico →:
 - Último a ser avaliado em expressões que contêm ¬, ∨, ∧

Proposição condicional

- Seja a seguinte sentença que descreve uma promessa:
 - Se (você se apresentar para trabalhar na segunda-feira pela manhã) = p, então (você terá emprego) = q.
- Em que situação o empregador não falou a verdade, ou seja, a promessa (sentença) é falsa?

Proposição condicional

- Seja a seguinte sentença que descreve uma promessa:
 - Se (você se apresentar para trabalhar na segunda-feira pela manhã) = p, então (você terá emprego) = q.
- Em que situação o empregador não falou a verdade, ou seja, a promessa (sentença) é falsa?

$$p = V \wedge q = F$$

Proposição condicional

- Seja a seguinte sentença que descreve uma promessa:
 - Se (você se apresentar para trabalhar na segunda-feira pela manhã) = p, então (você terá emprego) = q.
- Em que situação o empregador não falou a verdade, ou seja, a promessa (sentença) é falsa?

$$p = V \wedge q = F$$

- E se a afirmação p não for satisfeita?
 - o Não é justo dizer que a promessa é falsa.

Proposição condicional: Contrapositiva

• A proposição **contrapositiva** de $(p \rightarrow q)$ é $(\neg q \rightarrow \neg p)$

Proposição condicional: Contrapositiva

- A proposição **contrapositiva** de $(p \rightarrow q)$ é $(\neg q \rightarrow \neg p)$
- **Exercício:** Prove que $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Proposição condicional: Contrapositiva

- A proposição **contrapositiva** de $(p \rightarrow q)$ é $(\neg q \rightarrow \neg p)$
- **Exercício:** Prove que $p \rightarrow q \equiv \neg q \rightarrow \neg p$

• Exemplo:

p
ightarrow q : Se hoje é Natal então amanhã é segunda-feira.

 $\neg q
ightarrow \neg p$: Se amanhã não é segunda-feira então hoje não é Natal.

Proposição condicional: Oposta

• A proposição **oposta** de $(p \rightarrow q)$ é $(q \rightarrow p)$

Proposição condicional: Oposta

- A proposição **oposta** de $(p \rightarrow q)$ é $(q \rightarrow p)$
- Exercício: $p \rightarrow q \not\equiv q \rightarrow p$

Proposição condicional: Oposta

- A proposição **oposta** de $(p \rightarrow q)$ é $(q \rightarrow p)$
- Exercício: $p \rightarrow q \not\equiv q \rightarrow p$
- Exemplo:

p
ightarrow q : Se está chovendo, então o time da casa ganha.

 $q \rightarrow p$: Se o time da casa ganha, então está chovendo.

Proposição condicional: Inversa

• A proposição **inversa** de (p o q) é $(\neg p o \neg q)$

Proposição condicional: Inversa

- A proposição **inversa** de $(p \rightarrow q)$ é $(\neg p \rightarrow \neg q)$
- Exercício: $p \rightarrow q \not\equiv \neg p \rightarrow \neg q$

Proposição condicional: Inversa

- A proposição **inversa** de (p o q) é $(\neg p o \neg q)$
- Exercício: $p \rightarrow q \not\equiv \neg p \rightarrow \neg q$

• Exemplo:

Original: Se hoje é Natal, então amanhã é segunda-feira.

Contrapositiva: Se amanhã não é segunda-feira, então hoje não é Natal.

Oposta: Se amanhã é segunda-feira, então hoje é Natal.

Inversa: Se hoje não é Natal, então amanhã não é segunda-feira.

Proposição condicional: Somente se

• A sentença "**p somente se q**" significa que (acresecentando verbos):

```
p [pode ocorrer] somente se q [ocorre].
```

```
\therefore Se q não ocorre, então p não pode ocorrer , i.e., Se \neg q então \neg p \equiv Se p então q ou p \rightarrow q.
```

Proposição condicional: Somente se

- A sentença "p somente se q" significa que (acresecentando verbos):
 - p [pode ocorrer] somente se q [ocorre].
 - \therefore Se q não ocorre, então p não pode ocorrer , i.e., Se $\neg q$ então $\neg p \equiv$ Se p então q ou $p \rightarrow q$.
- Proposições condicionais:
 - \circ *p* somente se $p \equiv q$.
 - **Exercício:** p somente se $q \not\equiv p$ se q.
 - **Exercício:** p se $q \equiv q \rightarrow p$.

Proposição condicional: Bicondicional (se e somente se)

- A sentença bicondicional entre p e q é expressa como "p se somente se q"
- É representada por $p \leftrightarrow q$

- A sentença bicondicional entre p e q é expressa como "p se somente se q"
- É representada por $p \leftrightarrow q$
- E tem a seguinte tabela-verdade:

P	Q	$P \leftrightarrow Q$
F	F	V
F	V	F
V	F	F
V	V	V

Proposição condicional: Bicondicional (se e somente se)

- A sentença bicondicional entre p e q é expressa como "p se somente se q"
- É representada por $p \leftrightarrow q$
- E tem a seguinte tabela-verdade:

P	Q	$P \leftrightarrow Q$
F	F	V
F	V	F
V	F	F
V	V	V

• O conectivo \leftrightarrow tem a mesma prioridade do conectivo \leftarrow .

Proposição condicional: Bicondicional (se e somente se)

• Exemplo:

Este programa está correto se somente se ele produz a resposta correta para todos os possíveis valores de dados de entrada.

• Reescrevendo como uma conjunção de duas sentenças se-então:

Se este programa está correto então ele produz a resposta correta para todos os possíveis valores de dados de entrada.

е

Se o programa produz a resposta correta para todos os possíveis valores de dados de entrada então ele está correto.

Sejam r e s afirmações.

Proposição condicional: Condição necessária & Condição suficiente

Sejam r e s afirmações.

- r é uma condição suficiente para s:
 - ∘ se *r* então *s*
 - \therefore A ocorrência de r é suficiente para garantir a ocorrência de s.

Proposição condicional: Condição necessária & Condição suficiente

Sejam r e s afirmações.

- r é uma condição suficiente para s:
 - ∘ se *r* então *s*
 - \therefore A ocorrência de r é suficiente para garantir a ocorrência de s.
- r é uma condição suficiente para s:
 - se não r então não $s \equiv$ se s então r.
 - \therefore Se r não ocorrer, então s também não pode ocorrer, i.e., a ocorrência de r é necessária para se ter a ocorrência de s.
- A frase: r é uma condição necessária e suficiente para s significa "r se e somente se s."

• Proposições:

- ∘ *P* = "2 é um número primo";
- \circ Q = "9 'equiv divisivel por 5";
- \circ R = "João tem 2 filhos".

- Proposições:
 - ∘ *P* = "2 é um número primo";
 - $\circ Q = "9 \text{ \'e divis\'ivel por 5"};$
 - \circ R = "João tem 2 filhos".

Necessidade: afirmações sobre objetos que podem variar.

- Proposições:
 - P = 2 é um número primo; Q = 9 é divisível por 5; R = 3 João tem 2 filhos.

Necessidade: afirmações sobre objetos que podem variar.

Representados por letras ou símbolos e denominados variáveis.

- Proposições:
 - P = "2 é um número primo";
 Q = "9 é divisível por 5";
 R = "João tem 2 filhos".

Necessidade: afirmações sobre objetos que podem variar.

Representados por letras ou símbolos e denominados variáveis.

- Exemplos:
 - $\circ x, y$ representam números inteiros positivos e z representa uma pessoa.

- Proposições:
 - ∘ *P* = "2 é um número primo";
 - o Q = "9 é divisível por 5";
 - \circ R = "João tem 2 filhos".

Necessidade: afirmações sobre objetos que podem variar.

Representados por letras ou símbolos e denominados variáveis.

- Exemplos:
 - $\circ x, y$ representam números inteiros positivos e z representa uma pessoa.
 - "x é um número primo" $\longrightarrow P(x)$;

• Proposições:

```
P = "2 é um número primo";
Q = "9 é divisível por 5";
R = "João tem 2 filhos".
```

Necessidade: afirmações sobre objetos que podem variar.

Representados por letras ou símbolos e denominados variáveis.

• Exemplos:

- $\circ x, y$ representam números inteiros positivos e z representa uma pessoa.
 - " $x \in \text{um número primo}$ " $\longrightarrow P(x)$;
 - " $x \in \text{divisível por } y$ " $\longrightarrow Q(x,y)$;

• Proposições:

```
P = "2 é um número primo";
Q = "9 é divisível por 5";
R = "João tem 2 filhos".
```

Necessidade: afirmações sobre objetos que podem variar.

Representados por letras ou símbolos e denominados variáveis.

• Exemplos:

- $\circ x, y$ representam números inteiros positivos e z representa uma pessoa.
 - " $x \in \text{um número primo}$ " $\longrightarrow P(x)$;
 - "x é divisível por y" $\longrightarrow Q(x,y)$;
 - "z tem x filhos" $\longrightarrow R(z,x)$;

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

 \circ Considere P(x) = "x 'e um n'umero primo."

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

○ Considere P(x) = "x 'e um n'umero primo."

Como dizer se P(x) é falso ou verdadeiro?

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

∘ Considere P(x) = "xé um número primo."

Como dizer se P(x) é falso ou verdadeiro?

• P(7) é verdadeiro.

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

∘ Considere P(x) = "xé um número primo."

Como dizer se P(x) é falso ou verdadeiro?

- P(7) é verdadeiro.
- *P*(8) é falso.

 Proposições (sem variáveis): atribuir um valor lógico é natural pois uma proposição será sempre verdadeira ou falsa.

 Sentenças com variáveis (propriedades): esta avaliação simples não é mais possível.

○ Considere P(x) = "x 'e um n'umero primo."

Como dizer se P(x) é falso ou verdadeiro?

- P(7) é verdadeiro.
- *P*(8) é falso.

E agora?

FIM