Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.2.3

по курсу общей физики на тему: «Определение момента инерции твердых тел с помощью трифилярного подвеса»

Работу выполнил: Никифоров Дмитрий (группа Б02-205)

Долгопрудный 18 ноября 2022 г.

1 Введение

Цель работы: исследовать прецессию уравновешенного гироскопа, установить зависимость скорости вынужденной прецессии от величины момента сил, действующий на ось гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии; определить скорость вращения ротора гироскопа и сравнить со значением частоты вращения, полученным при помощи осциллографа.

Оборудование: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

2 Теоретические сведения

В этой работе исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага вокруг вертикальной оси и времени, которое на это ушло, определяемому секундомером. На картинках снизу представлены рисунок маховика ($Puc.1^1$) и гироскопа в кордановом подвесе ($Puc.2^2$)

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},$$

 $^{^2}$ рисунки взят из учебного пособия "Лабораторный пркатикум по общей физике. Том 1. Механика."

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа, I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}.$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\rm ц}$. Для определения момента инерции ротора гироскопа имеем:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},\tag{1}$$

Здесь $T_{\rm u}$ – период крутильных колебаний цилиндра.

Ниже представлена схема экспериментальной установки (Рис. 33)

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две

 $^{^3}$ рисунки взят из учебного пособия "Лабораторный пркатикум по общей физике. Том 1. Механика."

обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользуют для раскрутки гироскопа, а вторую – для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой – переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на экране получаем эллипс.

3 Ход работы

Данные для частоты прецессии и опускания гироскопа: $\Omega = \frac{2\pi N}{t}$

$N_{\overline{0}}$	$m_{ ext{цил}}, \ \Gamma$	t_N , c	N	Т, с	Ω, рад/с
1	341,2	148,50	5	29,70	0,212
2	272,6	186,09	5	37,22	0,169
3	219,2	231,18	5	46,24	0,136
4	178,5	283,69	5	56,74	0,111
5	141,1	214,69	3	71,56	0,088
6	116,4	261,75	3	87,25	0,072
7	92,7	217,92	2	108,96	0,058
8	75,9	134,19	1	134,19	0,047
9	56,5	179,75	1	179,75	0,035

Построим график зависимости $\Omega(m)$:

Рис. 1: Зависимость Ω от m

Из графика получаем коэфициент наклона – k=0.62, который из формулы для скорости прецессии ($\Omega=\frac{gl}{I_z\omega_0}m$) выражается следующим образом: $k=\frac{gl}{I_z\omega_0}$; Из этой формулы выразим искомую частоту вращения ротора:

$$\omega_0 = \frac{gl}{I_z k}$$

Далее найдем момент инерции ротора гироскопа при помощи трифилярного подвеса. По снятым периодам колебания для грузиков с известными параметрами(, а соответсвенно с известными моментами инерции) и для ротора гироскопа определим по формуле (1) момент инерции ротора – I_0 . Для этого посчитаем момент инерции цилиндра, с известной нам массой и диаметром: $I_{\rm q} = \frac{1}{2} m r^2$, а также моменты инерции для грузиков в форме колечек: $I_{\rm rp} = \frac{1}{2} m (r^2 + R^2)$

$N_{\overline{0}}$	$m_{\Gamma \mathrm{p}}, \ \Gamma$	$I_{\rm rp},~{\rm kr}^*{ m cm}^2$	$I_{\Gamma \mathrm{p}} + I_{\mathrm{цил}}$, кг * см 2	T_0^2 , c ²	$T_{\text{ц+гр}}^2$, c ²	I_0 , $\kappa \Gamma^* c M^2$
1	341,2	1,75	14,08	8,38	18,69	6,31
2	272,6	1,40	13,73		18,22	6,31
3	219,2	1,13	13,45		17,96	6,27
4	178,5	0,92	13,25		17,64	6,29
5	141,1	0,72	13,05		17,46	6,26
6	116,4	0,60	12,93		17,20	6,30
7	92,7	0,48	12,80		16,86	6,36
8	75,9	0,39	12,72		16,79	6,35
9	56,5	0,29	12,62		16,66	6,34
10	1617	$I_{ m ext{ t ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	12,33		16,55	6,24

Средний момент инерции ротора - $I_{\rm cp}=6.3~{\rm kr\cdot cm^2}$ Таким образом частота вращения ротора - $\omega_0=2985.9{\rm pag/c}\Leftrightarrow \nu=\frac{\omega_0}{2\pi}=475~\Gamma$ ц

4 Погрешности Ω и I_0

$$\sigma_{\Omega}^{\text{cuct}} = \Omega \varepsilon_T$$

Каждая частота Ω с учетом погрешностей:

•
$$\Omega = (0.2121 \pm 0.0002) \text{ c}^{-1}, \ \Omega = (0.1694 \pm 0.0002) \text{ c}^{-1}$$

•
$$\Omega = (0.1362 \pm 0.0001) \text{ c}^{-1}, \ \Omega = (0.1113 \pm 0.0001) \text{ c}^{-1}$$

•
$$\Omega = (0.0884 \pm 0.0003) \text{ c}^{-1}, \ \Omega = (0.0721 \pm 0.0002) \text{ c}^{-1}$$

•
$$\Omega = (0.0583 \pm 0.0005) \text{ c}^{-1}, \ \Omega = (0.0472 \pm 0.0006) \text{ c}^{-1}$$

•
$$\Omega = (0.0351 \pm 0.0008) \text{ c}^{-1}$$

Погрешность $\sigma_{I_0}^{\text{сист}} = I_0 \cdot \sqrt{\varepsilon_{I_{\text{u}}}^2 + 4\varepsilon_{T_0}^2 + 4\varepsilon_{T_{\text{u}}}^2} \approx 0.1 \; \text{kg·cm}^2,$

$$\sigma_{I_0}^{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (I_{0i} - \overline{I_0})^2} \approx 0.01 \text{kg} \cdot \text{cm}^2$$

$$\sigma_{I_0} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2}$$
, значит $I_0 = (6.30 \pm 0.1) \ \text{кг·см}^2, \ \varepsilon_{I_0} = 1.6\%$

5 Вывод

Частота вращения ротора измереная с помощью осцилографа – $\nu=(400,1\pm0,5)$, причем при выходе из этого диапазона фигура Лиссажу, образованная кратными сигналами с генератора и гироскопа, исчезает. Экспериментально полученное значение частоты вращения ротора – $\nu=(475\pm8)$ Гц, $\varepsilon_{\nu}=1,7\%$. Значения значительно расходятся $(10\sigma_{\nu})$, это может быть связано с грубой ошибкой при снятии измерений.

6 Оценка момента силы трения

Для оценки момента силы трения снимем понижение оси за 6 периодов вынужденной прецессии (с грузом массой - m=272.2 г) – $t=223.3\pm0.1$ с – снижение до вертикального положения равно $\Delta H=1.8\pm0.1$ см. при длине "рычага" в $l=12.8\pm0.1$ см.

Тогда он опустился на $\varphi = \arcsin(\frac{\Delta H}{I}) = 0.141$ рад,

$$\sigma_{\varphi} = \varphi \sqrt{(\frac{\sigma_{\Delta H}}{\Delta H})^2 + (\frac{\sigma_l}{l})^2} = 8 \cdot 10^{-3} \text{рад.}$$

Тогда момент силы трения – $M_{\mathrm{Tp}} = \frac{\varphi}{T} \cdot I\omega = 1{,}19\mathrm{мH},$

$$\sigma_{M_{\mathrm{Tp}}} = \sigma_{M_{\mathrm{Tp}}} \sqrt{(\frac{\sigma_{\varphi}}{\varphi})^2 + (\frac{\sigma_{T}}{T})^2 + (\frac{\sigma_{I}}{I})^2 + (\frac{\sigma_{\omega}}{\omega})^2} = 0,08$$
мH, таким образом $\varepsilon_{M_{\mathrm{Tp}}} = 6,8\%$