The Pumping Lemma

Regular Expressions

 We have seen that Regular Expressions can be used to describe the set of permitted lexemes in a programming language

Identifier: [a-zA-Z][a-zA-Z]*

Number: [1-9][0-9]*

- We have also seen how to represent REs by NFAs and DFAs and how this leads to an implementation for the matching problem
- Can we also use REs to go beyond single lexemes?
- Yes, we can describe an entire statement from a programming language

```
abc = 344;
```

by a RE like

Statement: Identifier "=" Number ";"

But there is a limit....

Limitation of Regular Languages

- Can we describe complex expressions by a RE, for example ((a+3)*2+4)/7?
- Let's look at a simpler problem: Can we give a RE for all strings consisting of a number of opening parenthesis followed by the same number of closing parenthesis, i.e.,

■ More general: Is the language over alphabet $Ω = \{a, b\}$ $\{a^nb^n \mid n \in \mathbb{N}\}$

a regular language?

The answer is: no!

The Pumping Lemma

- Let *L* be a regular language
- The Pumping Lemma says: There exists a natural number $p \ge 1$ for L such that every sequence of characters $s \in L$ with length $\ge p$ can be decomposed into three subsequences x, y, z in the form

$$s = x y z$$

with

- length of $y \ge 1$
- length of $x y \le p$
- for all $n \ge 0$: $x y^n z \in L$

Intuitive Proof of the Pumping Lemma

- lacksquare If L is a regular language, there is a DFA with a finite number of states that accepts L
- If the DFA accepts a sequence of characters that is "very long", it must go through a loop somewhere in the DFA. Example:

The DFA accepts the sequence acd, and also (by "pumping up" acd) acbcd, acbcbcd, acbcbcbcd, acbcbcbcd...

Showing that $\{a^nb^n\}$ is not regular

- Assume $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is regular. Then there must be a natural number $p \ge 1$ satisfying the pumping lemma.
- Let's look at the sequence $a^pb^p \in L$. The pumping lemma says:
 - We can write $a^p b^p$ as xyz with length $(xy) \le p$. This means that x and y only contain the letter a
 - y is not empty, i.e., $y = a^v$ where $v \ge 1$
 - We are allowed to repeat y as often as we want, i.e., $a^{p+v}b^p$ should be also in L
 - ⇒ Contradiction
- Conclusion: $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is not a regular language
- If we want to describe L in a formal way, we need something more powerful than regular expressions and NFAs/DFAs
- Warnung: If L is regular it can be "pumped", but the opposite is not true: There are "pumpable" languages that are not regular.