

Spark Project

18/12/2018 - Massively Parallel Machine Learning

Prof. Alberto Mozo

Filippo Calzavara Nicolae Righeriu

Data Preprocessing

- Cleaning
 - Removed 57th column
- Sum and transposition
 - Create a structure to mantain the sum and transpose the data
- Keying and shuffling
 - To each sample is assigned a random id. The structure is the sorted by id (shuffling)
- Structure returned:

(int sample_id, boolean train_or_test, Float[] X, boolean target)

Normalization and Split

- Calculation of the average
 - For each column
- Calculation of the variance
 - For each column
- Apply normalization
 - To each column

$$mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$s_x^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \overline{x})^2$$

$$x_i' = \frac{x_i - \mu}{\sigma}$$

Training

- Holdout split 80-20%
 - Train/Test
- Train on (k-1)-folds
 - Performing
- Test on the validation fold
 - To each column

Grid

- A grid was implemented
 - To select the best parameters
- Once best parameters are found
 - Performing the training on the train dataset
- Evaluation on the test partition

80%

20%

Parallelization

- Preprocessing, labelling data as train/test
- Calculating residuals for normalization and shuffling
- Splitting data for k-Fold CV
- Predicting labels and computing weights in gradient descent
- Filtering predictions to compute confusion matrix
- Computing Gradient descent cost

Performances

Algorithm Performance

True Positive	False Positive
23.20%	1.41%
False Negative	True Negative
17.90%	57.48%

• Precision: 94.25%

• Recall: 56.44%

• F1-Score: 70.61%

Accuracy: 80.68%

Holdout: 0.8 | (learning_rate, lambda_reg) = (0.36, 0.196) | Iterations: 50 | Threshold: 0.5 | Workers: 8

Time Performance

Speedup Curve

Test error

Conclusions

Strength

- No external library was used to store structure
- SGD is well parallelized
- Good accuracy, and small false positive classification
- Good logging

Weakness

Cross validation could be parallelized better

Thank you Any questions?