STAT 576 Bayesian Analysis

Lecture 0: Overview

Chencheng Cai

Washington State University

Course Information

```
Lecture Tu/Th 12:05 — 1:20 PM @SLOAN 7
```

Office Hours Tu/Wed 1:30 — 3:30 PM @Neill 405 or by appointment

- Contact email: chencheng.cai@wsu.edu
 - zoom: https://wsu.zoom.us/my/chenchengcai
 - phone: (509)-335-3141

 - Site Canvas
 - http://math.wsu.edu/faculty/ccai/stat576.html

Course Requirements

- ▶ Prerequisites: STAT 536, STAT 556, and R/Python programming.
- ► Textbook:

Bayesian Data Analysis, 3rd Edition. Gelman, Carlin, Stern, Dunson, Vehtari and Rubin. 2013.

Free online access from the book website (http://www.stat.columbia.edu/gelman/book/)

Recommended reading:

The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2nd Edition. Robert. 2007.

Monte Carlo Methods for Scientific Computing. Liu. Springer. 2008.

Assessment

- ► Homework: 40%

 Around six homework in total.
- ► Mid-term Exam: 30% One closed-book exam.
- Project: 30%One data analytic project.

Tenative Schedule

- ▶ (1 week): Introduction and review.
- ▶ (5 weeks): Foundations of Bayesian inference
- ▶ (4 weeks): Bayesian computation.
- ▶ (2 weeks): Bayesian regression models.
- ▶ (2 weeks): State-space models and sequential Monte Carlo.

▶ Image you are given a coin and you flip it 10 times.

- ▶ Image you are given a coin and you flip it 10 times.
- ▶ What you read from the outcomes:

$$\mathcal{S}=H,\,T,\,H,\,H,\,H,\,H,\,H,\,H,\,H$$

- ▶ Image you are given a coin and you flip it 10 times.
- ▶ What you read from the outcomes:

$$\mathcal{S}=H,\,T,\,H,\,H,\,H,\,H,\,H,\,H,\,H$$

▶ Do you think the coin is fair?

- ▶ Image you are given a coin and you flip it 10 times.
- What you read from the outcomes:

$$S = H, T, H, H, H, H, H, H, H$$

- Do you think the coin is fair?
 - No: **Hypothesis testing** gives a rejection of the null that the coin is fair.
 - Yes: if there is no sign that the coin is defective, 9H/1T case just happens by chance.

- ▶ Image you are given a coin and you flip it 10 times.
- What you read from the outcomes:

$$S = H, T, H, H, H, H, H, H, H$$

- Do you think the coin is fair?
 - No: **Hypothesis testing** gives a rejection of the null that the coin is fair.
 - Yes: if there is no sign that the coin is defective, 9H/1T case just happens by chance.
- Will you change your mind if the following scenarios are given:
 - lt is a **standard quarter coin** manufactured by U.S. Mint.
 - lt is a coin you picked up from a **casino**.
 - It is a coin that your magician friend gave you.

Frequentist Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0,1]$.
- \triangleright θ is **unknown** and **fixed**.

Frequentist Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0,1]$.
- \triangleright θ is **unknown** and **fixed**.
- ightharpoonup The conditional probability of observing the H/T sequence:

$$\mathbb{P}[\mathcal{S} \mid \theta] = 10 \times \theta^9 (1 - \theta)$$

The above can be viewed as a function of θ given S. The function is called the **likelihood** function:

$$L(\theta; S) := \mathbb{P}[S \mid \theta] = 10 \times \theta^{9}(1 - \theta)$$

Frequentist Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0, 1]$.
- \triangleright θ is **unknown** and **fixed**.
- ▶ The conditional probability of observing the H/T sequence:

$$\mathbb{P}[\mathcal{S} \mid \theta] = 10 \times \theta^9 (1 - \theta)$$

The above can be viewed as a function of θ given S. The function is called the **likelihood** function:

$$L(\theta; \mathcal{S}) := \mathbb{P}[\mathcal{S} \mid \theta] = 10 \times \theta^9 (1 - \theta)$$

Maximize the likelihood function to get Maximum Likelihood Estimator:

$$\hat{\theta} = \underset{\theta \in [0,1]}{\arg \max} \ L(\theta; \mathcal{S}) = 0.9$$

 \blacktriangleright We can also construct a **confidence interval** (l, r) such that:

$$\mathbb{P}[\theta \in (l,r)] \ge 1 - \alpha$$

Bayesian Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0,1]$.
- lacktriangledown heta is **unknown** and **random** by following a **prior** distribution $heta \sim \pi(\cdot)$

Bayesian Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0,1]$.
- lacktriangledown heta is **unknown** and **random** by following a **prior** distribution $heta \sim \pi(\cdot)$
- ▶ The probability of observing S is the **sampling** distribution:

$$\mathbb{P}[\mathcal{S} \mid \theta] = 10 \times \theta^9 (1 - \theta)$$

• Use **Bayes' rule** to get the **posterior** distribution for θ :

$$\pi(\theta \mid \mathcal{S}) = \frac{\mathbb{P}[\mathcal{S} \mid \theta]\pi(\theta)}{\int_{\theta} \mathbb{P}[\mathcal{S} \mid \theta]\pi(\theta)d\theta}$$

Bayesian Inference

- ▶ Flipping a coin is a **Bernoulli** event with success (head) probability $\theta \in [0, 1]$.
- lacktriangledown heta is **unknown** and **random** by following a **prior** distribution $heta \sim \pi(\cdot)$
- ▶ The probability of observing S is the **sampling** distribution:

$$\mathbb{P}[\mathcal{S} \mid \theta] = 10 \times \theta^9 (1 - \theta)$$

▶ Use **Bayes' rule** to get the **posterior** distribution for θ :

$$\pi(\theta \mid \mathcal{S}) = \frac{\mathbb{P}[\mathcal{S} \mid \theta]\pi(\theta)}{\int_{\theta} \mathbb{P}[\mathcal{S} \mid \theta]\pi(\theta)d\theta}$$

▶ We may use the **maximum a posteriori (MAP)** estimation:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ \pi(\theta \mid \mathcal{S})$$

ightharpoonup A credible interval can be constructed as [l,u] such that

$$\int_{1}^{u} \pi(\theta \mid \mathcal{S}) \ d\theta \ge 1 - \alpha$$

	Frequentist	Bayesian
Parameter	fixed	random
inference based on	likelihood	posterior
point estimator	MLE	MAP
interval estimation	confidence interval	credible interval

	Frequentist	Bayesian
Parameter	fixed	random
inference based on	likelihood	posterior
point estimator	MLE	MAP
interval estimation	confidence interval	credible interval

▶ The likelihood function is **NOT** a distribution of θ , while the posterior **is**.

	Frequentist	Bayesian
Parameter	fixed	random
inference based on	likelihood	posterior
point estimator	MLE	MAP
interval estimation	confidence interval	credible interval

- \triangleright The likelihood function is **NOT** a distribution of θ , while the posterior **is**.
- Interpretation of confidence interval: if you repeat the experiment (same θ) many times, in at least $1-\alpha$ of the experiments, the confidence interval covers the true parameter θ .

	Frequentist	Bayesian
Parameter	fixed	random
inference based on	likelihood	posterior
point estimator	MLE	MAP
interval estimation	confidence interval	credible interval

- ▶ The likelihood function is **NOT** a distribution of θ , while the posterior **is**.
- Interpretation of confidence interval: if you repeat the experiment (same θ) many times, in at least $1-\alpha$ of the experiments, the confidence interval **covers** the true parameter θ .
- Interpretation of credible interval: if you repeat the experiment (random θ) many times, in at least $1-\alpha$ of the experiments, the true parameter θ is in the credible interval. The statement can be made when conditioned on the observations.

Bayesian

Thomas Bayes (1702–1761)

Pierre-Simon Laplace (1749–1827)

Frequentist

Ronald Fisher (1890-1962)

Jerzy Neyman (1894-1981)

Egon Pearson (1895-1980)

- ▶ Bayesian inference was developed much earlier than the frequentist.
- ▶ But it was neglected for centuries because of the difficulties in estimation.

- Bayesian inference was developed much earlier than the frequentist.
- ▶ But it was neglected for centuries because of the difficulties in estimation.
- ▶ Modern statistics are mostly built on frequentist inference.
 - Likelihood, confidence interval, MLE, hypothesis testing, etc..

- Bayesian inference was developed much earlier than the frequentist.
- ▶ But it was neglected for centuries because of the difficulties in estimation.
- ▶ Modern statistics are mostly built on frequentist inference.
 - Likelihood, confidence interval, MLE, hypothesis testing, etc..
- ▶ Bayesian inference regains popularity around 1980s because of the developments and advances in Markov Chain Monte Carlo (MCMC).
 - Bayesian inference through Monte Carlo sampling instead of theoretical calculation.

- Bayesian inference was developed much earlier than the frequentist.
- ▶ But it was neglected for centuries because of the difficulties in estimation.
- ▶ Modern statistics are mostly built on frequentist inference.
 - Likelihood, confidence interval, MLE, hypothesis testing, etc..
- ▶ Bayesian inference regains popularity around 1980s because of the developments and advances in Markov Chain Monte Carlo (MCMC).
 - ▶ Bayesian inference through Monte Carlo sampling instead of theoretical calculation.
- The third paradigm: fiducial inference
 - Fisher developed fiducial inference as a compromise of frequentist and Bayesian.
 - Fisher's try was not successful.
 - ▶ David Cox (1924–2022) developed the confidence distribution (CD).
 - ▶ Inference based on the confidence distributions is a new area of research.

Bayesian, Frequentist, Fiducial

Why Bayesian Statistics?

- Bayesians argue that it is the only correct form of inference.
- It allows a combination of prior knowledge with observations.
- ► Can solve problems with limited sample size (small sample problem, high-dimensional inference, etc..)
- Consistent with frequentist statistics under certain settings.
- Bayesian inference is decision-theoretical optimal.

Topics in Bayesian Statistics

- Prior elicitation.
 - Subjective Bayes
 - Objective Bayes
- Estimation from the posterior and prediction.
- Decision-theoretical properties.
- Large-sample properties.
- Bayesian hypothesis testing.
- Hierarchical models, sequential models...
- Bayesian computation.
 - Direct sampling from posterior.
 - Expectation-Maximization algorithm.
 - Markov Chain Monte Carlo.
 - Approximate Bayesian Computation.

