Projet de Programmation Une surface télécommande mains libres partagée

Guillaume Béchade, Raphaël Jorel, Craig Josse, Antoine Laulan Client : M. Serge Chaumette

Université de Bordeaux

Année 2014/2015

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

Présentation du projet

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

-Introduction

Présentation du projet

Contexte

Domaine

- Logiciel à produire : application mobile + application PC,
- Système d'exploitation : Android,
- Type de connexion : connexion Wi-Fi,
- Utilisation des capteurs d'un smartphone,
- Échange de données.

∟État de l'art

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Allalyses des besoils

Possing non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

État de l'art

Télécommande Android

Introduction

État de l'art

Analyse de données

Figure: Kmeans

Remarques sur l'existant

- De nombreuses télécommandes,
- Plusieurs algorithmes d'analyse de données utilisant les capteurs,
- ► Apparemment pas d'application mélangeant les deux.

└─ Introduction └─ Environnement de travail

Plan

Introduction

État de l'art

Environnement de travail

Besoins fonctionnels

Architecture et fonctionnalités

Diagrammes statiques Fonctionnalités implémentées Quelques détails techniques

Limites, tests et améliorations possibles

Performances et robustesse

Introduction

Environnement de travail

Cadre

université BORDEAUX

Technologies utilisées

- Langages de programmation : Java, XML,
- ▶ Integrated Development Environment : Eclipse
- Outils : Android SDK, JUnit, Emma,
- Gestionnaire de version : SVN

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

Besoins fonctionnels

Plan

Introduction

Présentation du projet État de l'art

Analyses des besoins

Besoins fonctionnels

Besoins non-tonctionnels

Architecture et fonctionnalités

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

- Analyses des besoins
 - Besoins fonctionnels

Contexte

- —Analyses des besoins
 - Besoins fonctionnels

Communication

Type de messages :

- initialisation de connexion (application et driver),
- spécification des séquences d'événements attendues (driver),
- informations quant aux séquences effectuées par l'utilisateur (application).

Application : écoute et analyse

- Analyses des besoins
 - Besoins fonctionnels

Application: Interface Homme Machine

- Connexion au driver,
- Aide textuelle pour guider l'utilisateur,
- ▶ Mode capture et analyse pour contrôler le programme tiers.

- -Analyses des besoins
 - Besoins fonctionnels

Driver

- Démarrer une session serveur (modèle client-serveur),
- Récupérer l'information venant de l'application,
- ► Contrôler un programme tiers et lui donner des ordres.

Analyses des besoins
Besoins non-fonctionnels

Plan

Introduction

État de l'art

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

- Analyses des besoins
 - Besoins non-fonctionnels

Adaptabilité

- ► Support des dernières versions d'Android, 4.x et 5.x au minimum,
- Fonctionnement sur différents matériels, dont les sensibilités des capteurs sont différentes.

Vélocité générale

- Structures de données appropriées,
- Séquençage d'événements,
- ▶ Envoi des informations sur le canal de communication.

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

└ Diagrammes statiques

Plan

Introduction

Présentation du projet État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

- Architecture et fonctionnalités
 - ☐ Diagrammes statiques

Diagramme de paquetages

- Architecture et fonctionnalités
 - ☐ Diagrammes statiques

Diagramme de classe général

- Architecture et fonctionnalités
 - └ Diagrammes statiques

Paquetage Driver

Architecture et fonctionnalités

└ Diagrammes statiques

Paquetage Analysis

Architecture et fonctionnalités
Fonctionnalités implémentées

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

- Architecture et fonctionnalités
 - Fonctionnalités implémentées

Fonctionnalités implémentées

- Architecture et fonctionnalités
 - Fonctionnalités implémentées

Connexion

- Architecture et fonctionnalités
 - Fonctionnalités implémentées

Capteurs

- Architecture et fonctionnalités
 - Fonctionnalités implémentées

Capture

└─Architecture et fonctionnalités └─Quelques détails techniques

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentée

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

- Architecture et fonctionnalités
 - Quelques détails techniques

Algorithme d'analyse

Figure: Accélération sur l'axe z

- Architecture et fonctionnalités
 - Quelques détails techniques

Algorithme de séquençage

aaaabRbaaaRabb

$$\begin{cases}
 a^1 & \longrightarrow & 0 \\
 a^3 & \longrightarrow & 1 \\
 b^2 & \longrightarrow & 2 \\
 b^5 & \longrightarrow & 3
\end{cases}$$

└ Quelques détails techniques

$$\begin{cases}
 a^1 & \longrightarrow & 0 \\
 a^3 & \longrightarrow & 1 \\
 b^2 & \longrightarrow & 2 \\
 b^5 & \longrightarrow & 3
\end{cases}$$

- Architecture et fonctionnalités
 - └ Quelques détails techniques

 $\begin{cases}
 a^1 & \longrightarrow & 0 \\
 a^3 & \longrightarrow & 1 \\
 b^2 & \longrightarrow & 2 \\
 b^5 & \longrightarrow & 3
\end{cases}$

- Architecture et fonctionnalités
 - Quelques détails techniques

$$\begin{cases}
 a^1 & \longrightarrow & 0 \\
 a^3 & \longrightarrow & 1 \\
 b^2 & \longrightarrow & 2 \\
 b^5 & \longrightarrow & 3
\end{cases}$$

☐ Quelques détails techniques

$$\begin{cases}
a^1 & \longrightarrow & 0 \\
a^3 & \longrightarrow & 1 \\
b^2 & \longrightarrow & 2 \\
b^5 & \longrightarrow & 3
\end{cases}$$

└ Quelques détails techniques

$$aaaabR \underbrace{b}_{\emptyset}$$

$$\begin{cases}
 a^1 & \longrightarrow & 0 \\
 a^3 & \longrightarrow & 1 \\
 b^2 & \longrightarrow & 2 \\
 b^5 & \longrightarrow & 3
\end{cases}$$

- Architecture et fonctionnalités
 - Quelques détails techniques

Algorithme de séquençage : exemple de spécification

```
\begin{cases}
    a^1 & \longrightarrow & 0 \\
    a^3 & \longrightarrow & 1 \\
    b^2 & \longrightarrow & 2 \\
    b^5 & \longrightarrow & 3
\end{cases}
```

```
<?xml version="1.0" encoding="UTF-8" ?>
<root>
    <entry>
        <event>a</event>
        <number>1</number>
        <id>0</id>
    </entry>
    <entry>
        <event>a</event>
        <number>3</number>
        <id><id>>1</id>
    </entry>
    <entry>
        <event>b</event>
        <number>2</number>
        <id>>2</id>
    </entry>
    <entry>
        <event>b</event>
        <number>5</number>
        <id>3</id>
    </entry>
</root>
```

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

Plan

Introduction

Présentation du projet État de l'art

Environment de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

Limites et tests unitaires

Limites

- Comparaisons de valeurs par rapport à des seuils,
- Les valeurs sont fixées en dur dans le code, elles sont adaptées pour le Nexus 4.

Figure: Google LG Nexus 4

Limites et tests unitaires

Tests unitaires

Outils utilisés : JUnit4 et EclEmma

- L'analyse des données,
- La partie connexion,
- L'application PC.

Limites, tests et améliorations possibles
Performances et robustesse

Plan

Introduction

Présentation du projet

État de l'art

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Fonctionnalités implémentées

Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

Performances et robustesse

Consommation batterie

Figure: Après 3H30 d'utilisation

Performances et robustesse

Consommation CPU

```
      Nem: 1718984K used, 160828K free, 0K shrd, 103288K buff, 976952K cached

      CPU: 13.5% usr 25.2% sys 0.0% nic 61.1% idle 0.0% io 0.0% irq 0.0% sirq

      Load average: 0.74 1.37 1.73 1/1211 17068

      PID PPID USER
      STAT VSZ %VSZ CPU %CPU COMMAND

      1780 1460 system
      5 < 1622m 88.1 0 12.3 system_server</td>

      16821 1460 app_144 5 1485m 80.6 0 10.5 (eaux.rgacremote) com.bordeaux.rgacremote

      1461 1 nobody 5 9560 0.5 0 6.1 /system/bin/sensors.qcom

      16760 16720 app_97 R < 940 0.0 0 3.5 top -d 1</td>
```

Figure: Application smartphone en action

```
Mem: 1722392K used, 157420K free, 0K shrd, 193304K buff, 976960K cached CPU: 30.0% usr 69.9% sys 0.0% nic 0.0% idle 0.0% io 0.0% irq 0.0% sirq Load average: 0.85 1.10 1.57 4/1177 17429

PID PPID USER STAT VSZ %VSZ CPU %CPU COMMAND 17284 1460 app_144 5 1485m 80.6 1 97.3 {eaux.rgacremote} com.bordeaux.rgacremote 17253 16720 app_97 R < 940 0.0 0.9 top -d 1
```

Figure: Application smartphone après l'avoir mis en pause

- Limites, tests et améliorations possibles
 - Performances et robustesse

Robustesse

- Perturbations lors de la capture,
- ► Taux de réussite de reconnaissance de mouvements : 78.4%.
 - succession de LEFT / RIGHT : 86%,
 - succession de UP / DOWN : 72%,
 - succession de "un tap" : 73%,
 - succession de "deux taps" : 81%,
 - succession de "trois taps" : 79%,
 - succession de MIC LOW : 88%,
 - succession de MIC HIGH : 70%.

Améliorations et conclusion

Plan

Introduction

Présentation du projet

État de l'art

Environnement de travail

Analyses des besoins

Besoins fonctionnels

Besoins non-fonctionnels

Architecture et fonctionnalités

Diagrammes statiques

Fonctionnalités implémentée Quelques détails techniques

Limites, tests et améliorations possibles

Limites et tests unitaires

Performances et robustesse

☐ Améliorations et conclusion

Améliorations possibles

- Des algorithmes plus performants,
- Un meilleur séquençage,
- Fichier XML pour ne pas avoir de valeurs en dur,
- Consommation CPU de notre application en veille.

Améliorations et conclusion

Conclusion

Figure: Notre application en action

- Limites, tests et améliorations possibles
 - Améliorations et conclusion

Merci pour votre attention

