Statistical Machine Learning

Lecture 11-12-13
Point Processes I & II & III
Temporal Point Processes

Spring 2021
Sharif University of Technology

(FROM ICML TUTORIAL, JULY 2018)

Outline

INTRODUCTION TO POINT PROCESSES (PPs)

TEMPORAL POINT PROCESSES (TPPs)

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Introduction to Point Processes

- Point processes are used to describe data that are localized at a finite set of time (location) points.
- A point process can take on only one of two possible values, indicating whether or not an event occurs at that time.
- Point processes have many applications in real world data.
- For example: the study of point processes is especially crucial for neural data analysis.
- Brain areas receive, process, and transmit information about the outside world via stereotyped electrical events, called action potentials or spikes.
- Spikes are the starting point for virtually all of the processing performed by the brain. This can be modeled by point processes.

Introduction to Point Processes

- Point processes are used to describe event that are localized in space or time.
- A temporal point process is a stochastic, or random process composed of a time-series of binary events that occur in continuous time.

Poisson point process

Introduction to Temporal Point Processes

More examples: many discrete events in continuous time

Online actions

Financial trading

Disease dynamics

Mobility dynamics

Introduction to Tempoarl Point Processes

Variety of processes behind these events Events are (noisy) observations of a variety of complex dynamic processes...

Flu spreading

Article creation in Wikipedia

News spread in **Twitter**

a Reviews and sales in Amazon

Ride-sharing requests

A user's reputation in Quora

FAST

...in a wide range of temporal

Point Processes and Information propagation

Point Processes and Information propagation

Point Processes and Information propagation

1st year computer science student

Aren't these event traces just time series?

Discrete and continuous times series

Discrete events in continuous time

What about aggregating events in *epochs*?

How long is each epoch?

How to aggregate events per epoch?

What if no event in one epoch?

What about time-related queries?

Aren't these event traces just time series?

Temporal Point Processes (TPPs):

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time $\mathcal{H} = \{t_i\}$

Model time as a random variable

Likelihood of a timeline: $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

Intensity function

Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \quad \Rightarrow \quad \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation: $\lambda^*(t)$ It is a rate = # of events / unit of time

Advantages of intensity parametrization (I)

$$\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \lambda^*(t) \exp\left(-\int_0^T \lambda^*(\tau) d\tau\right)$$

$$\langle w, \phi^*(t_1) \rangle \qquad \langle w, \phi^*(t_3) \rangle \qquad \exp\left(-\int_0^T \langle w, \phi^*(\tau) \rangle d\tau\right)$$

Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Relation between f^* , F^* , S^* , λ^*

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Poisson process

Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

Fitting & sampling from a Poisson

Fitting by maximum likelihood:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Sampling using inversion sampling:

$$t \sim \mu \exp(-\mu(t-t_3))$$

$$t = -\frac{1}{\mu} \log(1-u) + t_3$$

$$f_t^*(t)$$

$$F_t^{-1}(u)$$

Uniform(0,1)

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \geqslant 0$$
 (Independent of history)

Fitting & sampling from inhomogeneous Poisson

Fitting by maximum likelihood: $\max_{g(t)} \sum_{i=1}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau$

Sampling using thinning (reject. sampling) + inverse sampling:

- 1. Sample t from Poisson process with intensity μ using inverse sampling
- 2. Generate $u_2 \sim \textit{Uniform}(0,1)$ 3. Keep the sample if $u_2 \leq g(t) / \mu$

Keep sample with prob. $g(t)/\mu$

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \geqslant 0$$

Observations:

1. Limited number of occurrences

Self-exciting (or Hawkes) process

Observations:

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline

Fitting by maximum likelihood:

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity λ_0 changes over time

Summary

Building blocks to represent **different dynamic processes**:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inhomogeneous Poisson processes:

$$\lambda^*(t) = g(t)$$

Terminating point processes:

$$\lambda^*(t) = g^*(t)(1 - N(t))$$

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Summary

Building blocks to represent **different dynamic processes**:

Poisson processes:

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Mutually exciting process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_b'(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i)$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i) \right)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time

Independent identically distributed marks

Distribution for the marks:

$$x^*(t_i) \sim p(x)$$

Observations:

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Dependent marks: SDEs with jumps

Marks given by stochastic differential equation with jumps:

$$x(t+dt)-x(t)=dx(t)=f(x(t),t)dt+h(x(t),t)dN(t)$$
 Observations: Drift Event influence

- 1. Marks dependent of the temporal dynamics
- 2. Defined for all values of t

Dependent marks: distribution + SDE with jumps

$$x^*(t_i) \sim p\left(x^*|x(t)\right) \longrightarrow dx(t) = f(x(t),t)dt + h(x(t),t)dN(t)$$
Observations: Drift Event influence

- Marks dependent on the temporal dynamics
- Distribution represents additional source of uncertainty

Mutually exciting + marks

Marks affected by neighbors

$$dx(t) = f(x(t), t)dt + g(x(t), t)dM(t)$$
 Drift Neighbor influence

Marked TPPs as stochastic dynamical systems

Example: Susceptible-Infected-Susceptible (SIS)

$$X_i(t) = 0$$

Susceptible

$$X_i(t) = 1$$

Infected

Susceptible

$$dX_i(t) = dY_i(t) - dW_i(t)$$
It gets It recovers

infected

 $\mathbb{E}\left[dY_i(t)\right] = \lambda_{Y_i}(t)dt$

Node is susceptible

$$\lambda_{Y_i}(t)dt = (1 - X_i(t))\beta \sum_{j \in \mathcal{N}(i)} X_j(t)dt$$

If friends are infected, higher infection

SDE with jumps

Recovery rate

$$\mathbb{E}\left[dW_i(t)\right] = \lambda_{W_i}(t)dt$$

 $d\lambda_{W_i}(t) = \delta dY_i(t) - \lambda_{W_i}(t)dW_i(t) + \rho dN_i(t)$

node gets infected

Self-recovery rate when If node recovers, Rate increases if rate to zero node gets treated

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences as cascades

An example: idea adoption

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Infection cascade representation

We represent an infection cascade using terminating temporal point processes:

Infection intensity

Model inference from multiple cascades

Conditional intensities

$$\lambda_u^*(t)$$

Diffusion log-likelihood

$$\mathfrak{L} = \sum_{u=1}^{n} \log \lambda_u^*(t_u) - \int_0^T \lambda_u^*(\tau) d\tau$$

Maximum likelihood approach to find model parameters!

Sum up log-likelihoods of multiple cascades!

Theorem. For any choice of parametric memory, the **maximum likelihood** problem is **convex in B**.

In some cases, influence change over time:

Propagation over networks 0 with variable influence

Recurrent events: beyond cascades

Up to this point, each users is only infected once, and event sequences can be seen as cascades.

In general, users perform recurrent events over time. E.g., people repeatedly express their opinion online:

How social media is revolutionizing debates

The New York Times

Social Media Are Giving a Voice to Taste Buds

Twitter Unveils A New Set Of Brand-Centric Analytics

The New york Times

Campaigns Use Social Media to Lure Younger Voters

Recurrent events representation

We represent messages using **nonterminating temporal point processes**:

Recurrent events intensity

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences

we have assumed the cascade (topic, etc.) that each event belongs to was known.

Often, the cluster (topic, etc.) that each event in a sequence belongs to is not known:

Assume the event cluster to be hidden and aim to automatically learn the cluster assigments from the data:

Bayesian methods to cluster event sequences in the context of:

Health care

Method	DMHP
ICU Patient	0.3778
IPTV User	0.2004

[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]

Hierarchical Dirichlet Hawkes process

1st year computer science student

Events representation

We represent the events using marked temporal point processes:

Cluster intensity

User events intensity

Users adopt more than one cluster:

A user's learning events as a multidimensional Hawkes:

Time cluster
$$\lambda_{u,1}^*(t)$$
 \vdots $\lambda_{u,\infty}^*(t)$

Content
$$\Rightarrow = \boldsymbol{\omega} \ q_n \sim P(\cdot|\theta_{p_n}) \qquad \omega_j \sim Multinomial(\boldsymbol{\theta}_p)$$
[Mavroforakis et al., WWW 2017]

People share same clusters

Different users adopt same clusters

Cluster distribution from a **Dirichlet process**:

- Infinite # of clusters.
- Shared parameters across users.

People share same clusters

Different users adopt same clusters

- Shared parameters across users.

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

RNN to Capture Complex Dynamics

Up to now, we have focused on simple temporal dynamics (and intensity functions):

Recent works make use of RNNs to capture more complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017; Trivedi et al., 2017; Xiao et al., 2017a; 2018]

Neural Hawkes process

- 1) History effect does not need to be additive
- 2) Allows for complex memory effects (such as delays)

Neural Hawkes process

Applications (I): Predictive Models

Key idea: Intensity- and likelihood-free models

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

Recent works have focused on performing causal inference

[Xu et al., 2016; Achab et al., 2017; Kuśmierczyk & Gomez-Rodriguez, 2018]

causality graph

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t - t') dN_v(t')$$

Effect of v's past events on u

Granger causality:

"X causes Y in the sense of Granger causality if forecasting future values of Y is more successful while taking X past values into account"

[Granger, 1969]

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t - t') dN_v(t')$$

Effect of v's past events on u

Granger causality on multivariate Hawkes processes:

" $N_v(t)$ does not Ganger-cause $N_u(t)$ w.r.t. N(t) if and only if $k_{u,v}(\tau)=0$ for $\tau\in\Re^+$ "

[Eichler et al., 2016]

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \text{ for all } u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the direct causal relationship between nodes.

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \text{ for all } u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the direct causal relationship between nodes.

Key idea: Estimate G using the cumulants the dN(t) of the Hawkes process.

Key idea: Estimate G using the cumulants the dN(t) of the Hawkes process.

[Achab et al., ICML 2017]