

厦门大学《线性代数》期末试题

考试日期: 2017.1 信息学院自律督导部整理

单项选择题(每小题2分,共20分)

设A,B均为二阶矩阵, A^*,B^* 分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

$$\begin{pmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{pmatrix}$$
 的伴随矩阵为 ()

A.
$$\begin{pmatrix} \mathbf{0} & \mathbf{3}\mathbf{B}^* \\ \mathbf{2}\mathbf{A}^* & \mathbf{0} \end{pmatrix}$$

B.
$$\begin{pmatrix} \mathbf{0} & \mathbf{2}\mathbf{B}^* \\ \mathbf{3}\mathbf{A}^* & \mathbf{0} \end{pmatrix}$$

$$C. \quad \begin{pmatrix} \mathbf{0} & \mathbf{3}\mathbf{A}^* \\ \mathbf{2}\mathbf{B}^* & \mathbf{0} \end{pmatrix}$$

D.
$$\begin{pmatrix} \mathbf{0} & \mathbf{2}\mathbf{A}^* \\ \mathbf{3}\mathbf{B}^* & \mathbf{0} \end{pmatrix}$$

- 2. 设A 为n阶矩阵,则对于齐次线性方程组 ①AX = 0 和 ② $A^TAX = 0$,必有 ()。
 - A. ①的解是②的解, 但②的解不是①的解;
 - D. ②的解是①的解, ①的解也是②的解.
- 3. 设A为 4×3 矩阵, η_1,η_2,η_3 是非齐次线性方程组 $Ax=\beta$ 的三个线性无关的解, k_1,k_2 为任 意常数,则 $Ax = \beta$ 的通解为(

A.
$$\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1)$$

B.
$$\frac{\eta_2 - \eta_3}{2} + k_2(\eta_3 - \eta_1)$$

C.
$$\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$$

$$\text{C.} \quad \frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1) \\ \qquad \quad \text{D.} \quad \frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$$

- 4. 设 $\alpha_1 = (a,a,a)^T, \alpha_2 = (a-1,a,a-1)^T, \alpha_3 = (1,1,a-1)^T, \beta = (1,2,1)^T$. 若 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 唯一 线性表示,则a的值为(
 - A. a = 0
- B. a = 2 C. $a \neq 0 \perp a \neq 2$
- D. **a=0**或**a=2**
- 5. A, B 为满足 AB = 0 的任意两个非零矩阵,则必有(
- A. A 的列向量组线性相关,B 的行向量组线性相关;
 - B. A 的列向量组线性相关,B 的列向量组线性相关;
 - C. A 的行向量组线性相关,B 的行向量组线性相关;

D. A 的行向量组线性相关, B 的列	」向量组线性相关.	
6. 设不含零向量的 n 元向量组 α_1,α_2,I	$_{\perp}$, $\alpha_{_{m}}$ 是正交向量组,	则必有()。
A. $m \le n$ B. $m \ge n$	C. m < n	D. $m > n$
7. 设 A 为 n 阶实对称矩阵, P 是 n 阶	可逆矩阵. 已知 n 维列	$\ \cap \ _{\alpha} \in A$ 的属于特征值 λ
征向量,则矩阵 $(P^{-1}AP)^T$ 属于特征值 λ 的特征向量的是()。		
A. $\boldsymbol{P}^{-1}\alpha$ B. $\boldsymbol{P}^{T}\alpha$	C. P α	D. $(P^{-1})^T \alpha$
8. 设 A,B 为 n 阶矩阵,且 A 与 B 相似	l, E 为 n 阶单位矩阵	三,则必有 ()。
A. $\lambda \boldsymbol{E} - \boldsymbol{A} = \lambda \boldsymbol{E} - \boldsymbol{B}$;		
B. $A 与 B$ 有相同的特征值和特征向]量;	
C. $A 与 B$ 都相似于一个对角矩阵;		
D. 对于任意常数 t , $tE-A$ 与 $E-B$	引相似.	
9. 设矩阵 $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\bigcirc A = B$)。
A. 合同且相似	B. 合同但不相似	
C. 不合同但相似	D. 既不合同也不相	目似
10. 设 A , B 均为 n 阶矩阵, $x = (x_1, x_2, L, x_n)^T$,且 $x^T A x = x^T B x$,则当()时,		
$m{A} = m{B}$.		
A. $r(A) = r(B)$	B. A 与 B 合同	
C. A 与 B 相似	$D. \boldsymbol{A}^T = \boldsymbol{A} \boldsymbol{\perp} \boldsymbol{B}^T = \boldsymbol{A}$	В
二、 填空题(每小题 3 分, 共 15 分)		
1. 设 $A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $B = P^{-1}AP$, 其中 P 为 3 阶可逆矩阵,则 $B^{2020} - 2A^2 = $		

的特

3. 设
$$\alpha = (\mathbf{1}, \mathbf{1}, \mathbf{1})^T$$
, $\beta = (\mathbf{1}, \mathbf{0}, \mathbf{k})^T$, 若矩阵 $\alpha \beta^T$ 相似于 $\begin{pmatrix} \mathbf{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$, 则

4. 二次型
$$f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$$
的秩为_____。

5. 实对称矩阵 A 的秩等于 r ,它有 t 个正特征值,则它正负惯性指数之差为

1. (10分) 求下列非齐次线性方程组的通解。

$$\begin{cases} x_1 & -x_3 + x_4 = 2, \\ x_1 - x_2 + 2x_3 + x_4 = 1, \\ 2x_1 - x_2 + x_3 + 2x_4 = 3, \\ 3x_1 - x_2 & +3x_4 = 5. \end{cases}$$

2.
$$(10 分)$$
 设 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix}$, 问

- (1) 当t 为何值时,向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关;
- (2) 当t 为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关;
- (3)当向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关时,将 α_3 表示为 α_1,α_2 的线性组合。

3. (10 分)设三阶方阵
$$A$$
 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$, 对应特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$,

$$\xi_3 = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}, \quad \vec{\Re} A^{-1}.$$

4. (10 分) 已知矩阵
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
 和 $B = \begin{pmatrix} 6 & a \\ -1 & b \end{pmatrix}$ 相似,求 a,b 的值,并求可逆矩阵 P ,使
$$P^{-1}AP = B$$
。

5. (10分)已知二次型

$$f(x_1, x_2, x_3) = x_1^2 + 5x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3$$

- (1) 写出二次型f 的矩阵表达式;
- (2) 判断此二次型是否正定。

四、 证明题 (15分):

1. (5分)如果线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + L + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + L + a_{2n}x_n = b_2 \\ L L L L L L L \\ a_{n1}x_1 + a_{n2}x_2 + L + a_{nn}x_n = b_n \end{cases}$$

的系数矩阵A的秩R(A)等于矩阵

$$C = \begin{pmatrix} a_{11} & a_{12} & L & a_{1n} & b_1 \\ a_{21} & a_{22} & L & a_{2n} & b_2 \\ M & M & L & M & M \\ a_{n1} & a_{n2} & L & a_{nn} & b_n \\ b_1 & b_2 & L & b_n & 0 \end{pmatrix}$$

的秩R(C),即R(A) = R(C)。那么该线性方程组有解。

2. (5 分)设向量 β 可以由向量 α_1,α_2,L , α_{t-1},α_t 线性表示,但向量 β 不可以由向量 α_1,α_2,L , α_{t-1} 线性表示,证明向量 α_t 可以由向量 α_1,α_2,L , α_{t-1} , β 线性表示。

3. (5分)证明:设n阶方阵 $A = (a_{ij})$ 的全部特征值为 $\lambda_i (1 \le i \le n)$,则

$$\sum_{i=1}^{n} \chi_{i}^{2} = \sum_{i,j=1}^{n} a_{ij} a_{ji}$$