CS 446 / ECE 449 Homework 4

Naman Shukla

TOTAL POINTS

14 / 14

QUESTION 1

SVM Basics 10 pts

1.1 a) 2 / 2

- √ 0 pts Correct
 - 0.5 pts Incorrect w
 - 0.5 pts Incorrect b
 - 2 pts Incorrect
 - 0 pts Please select pages for questions
 - 0.5 pts incorrect, without reasoning

1.2 b) 2 / 2

√ - 0 pts Correct

- 2 pts Incorrect
- 0.5 pts 1 is missing
- **0.5** pts 2 is missing
- **0.5 pts** 3 is missing
- **0.5** pts 5 is missing

1.3 C) 4 / 4

√ - 0 pts Correct

- 0.5 pts G is incorrect
- 0.5 pts z is incorrect
- 0.5 pts h is incorrect
- 0.5 pts P is incorrect
- 0.5 pts q is incorrect
- 4 pts Incorrect

1.4 d) 2 / 2

√ - 0 pts Correct

- **0.5 pts** Typo
- 0.5 pts Stated margin for C=\infty is minimized /

always 0

- 1 pts Inverted answers for \infty and 0
- 1 pts Minor mistake
- 2 pts Incorrect/No answer

QUESTION 2

Kernels 4 pts

2.1 a) 2 / 2

- √ 0 pts Correct
 - **0.5 pts** Typo
 - 1 pts Minor mistake
 - 2 pts Incorrect

2.2 b) 2/2

- √ 0 pts Correct
 - **0.5 pts** Typo
 - 1 pts Partial credit
 - O pts Incorrect

CS 446: Machine Learning Homework

Due on Tuesday, Feb 13, 2018, 11:59 a.m. Central Time

1. [10 points] SVM Basics

Consider the following dataset \mathcal{D} in the two-dimensional space; $\mathbf{x}^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{1, -1\}$

i	$\mathbf{x}_1^{(i)}$	$\mathbf{x}_2^{(i)}$	$y^{(i)}$
1	-1	3	1
2	-2.5	-3	-1
3	2	-3	-1
4	4.7	5	1
5	4	3	1
6	-4.3	-4	-1

Recall a hard SVM is as follows:

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1) \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(1)

(a) What is the optimal **w** and b? Show all your work and reasoning. (Hint: Draw it out.)

Your answer: For the given dataset, the best separation is the two dotted lines in the figure.

Since \mathbf{w} is always points perpendicular to the median of the decision boundaries, \mathbf{w} have no component along x1 direction.

Also we know the length of the boundaries are given by $\frac{2}{\|\mathbf{w}\|}$. So we have,

$$\frac{2}{\|\mathbf{w}\|} = 6$$

$$\|\mathbf{w}\| = \frac{1}{3}$$

Hence, we got $\mathbf{w} = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix}$ and now substituting value of \mathbf{w} in $y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) = 1$ with supporting vector points. we get $\mathbf{b} = 0$.

(b) Which of the examples are support vectors?

Your answer: The supporting vectors are : (-1,3), (-2.5,-3), (2,-3) and (4,3)

1.1 a) 2 / 2

- 0.5 pts Incorrect w
- 0.5 pts Incorrect b
- 2 pts Incorrect
- **0 pts** Please select pages for questions
- **0.5 pts** incorrect, without reasoning

CS 446: Machine Learning Homework

Due on Tuesday, Feb 13, 2018, 11:59 a.m. Central Time

1. [10 points] SVM Basics

Consider the following dataset \mathcal{D} in the two-dimensional space; $\mathbf{x}^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{1, -1\}$

i	$\mathbf{x}_1^{(i)}$	$\mathbf{x}_2^{(i)}$	$y^{(i)}$
1	-1	3	1
2	-2.5	-3	-1
3	2	-3	-1
4	4.7	5	1
5	4	3	1
6	-4.3	-4	-1

Recall a hard SVM is as follows:

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1) \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(1)

(a) What is the optimal **w** and b? Show all your work and reasoning. (Hint: Draw it out.)

Your answer: For the given dataset, the best separation is the two dotted lines in the figure.

Since \mathbf{w} is always points perpendicular to the median of the decision boundaries, \mathbf{w} have no component along x1 direction.

Also we know the length of the boundaries are given by $\frac{2}{\|\mathbf{w}\|}$. So we have,

$$\frac{2}{\|\mathbf{w}\|} = 6$$

$$\|\mathbf{w}\| = \frac{1}{3}$$

Hence, we got $\mathbf{w} = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix}$ and now substituting value of \mathbf{w} in $y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) = 1$ with supporting vector points. we get $\mathbf{b} = 0$.

(b) Which of the examples are support vectors?

Your answer: The supporting vectors are : (-1,3), (-2.5,-3), (2,-3) and (4,3)

1.2 b) 2 / 2

- 2 pts Incorrect
- **0.5 pts** 1 is missing
- **0.5** pts 2 is missing
- **0.5 pts** 3 is missing
- **0.5 pts** 5 is missing

(c) A standard quadratic program is as follows,

$$\begin{array}{ll} \underset{\mathbf{z}}{\text{minimize}} & \frac{1}{2}\mathbf{z}^{\mathsf{T}}P\mathbf{z} + \mathbf{q}^{\mathsf{T}}\mathbf{z} \\ \text{subject to} & G\mathbf{z} \leq \mathbf{h} \end{array}$$

Rewrite Equation (1) into the above form. (i.e. define $\mathbf{z}, P, \mathbf{q}, G, \mathbf{h}$ using \mathbf{w}, b and values in \mathcal{D}). Write the constraints in the **same order** as provided in \mathcal{D} and typeset it using bmatrix.

Your answer: Given:

$$\mathbf{x} = \begin{bmatrix} x_{(1,1)} & x_{(1,2)} & x_{(1,3)} \cdots & x_{(1,k)} \\ x_{(2,1)} & x_{(2,2)} & x_{(2,3)} \cdots & x_{(2,k)} \\ \vdots & & & & \\ x_{(|\mathcal{D}|,1)} & x_{(|\mathcal{D}|,2)} & x_{(|\mathcal{D}|,3)} \cdots & x_{(|\mathcal{D}|,k)} \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_1 & w_2 & w_3 \dots w_k \end{bmatrix}$$

including bias term as well, we get:

$$\mathbf{x}' = \begin{bmatrix} x_{(1,1)} & x_{(1,2)} & x_{(1,3)} \cdots & x_{(1,k)} & 1 \\ x_{(2,1)} & x_{(2,2)} & x_{(2,3)} \cdots & x_{(2,k)} & 1 \\ \vdots & & & & & \\ x_{(|\mathcal{D}|,1)} & x_{(|\mathcal{D}|,2)} & x_{(|\mathcal{D}|,3)} \cdots & x_{(|\mathcal{D}|,k)} & 1 \end{bmatrix} \mathbf{w}' = [w_1 \ w_2 \ w_3 \dots w_k \ b]$$

Comparing above equation with equation (1),

$$P_{(k+1,k+1)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

where k is the number of dimensions of $x_{(i)}$

$$\mathbf{q}_{(k+1,1)} := Zeros$$

 $\mathbf{z} := \mathbf{w}'$

Now rewriting the condition equation from equation (1),

$$\operatorname{diag}(y_1, ..., y_{|\mathcal{D}|}) \cdot \mathbf{x'} \cdot \mathbf{w'} \ge 1$$

Where,

$$\operatorname{diag}(y_1,...,y_{|\mathcal{D}|}) := \begin{bmatrix} y_1 & & & \\ & \ddots & & \\ & & y_{|\mathcal{D}|} \end{bmatrix}$$
 and

 $\mathbb{1} := \text{matrix with all ones with dimensions}(|\mathcal{D}| \times 1)$

Now comparing above equation with $G\mathbf{z} \leq \mathbf{h}$ we get,

$$G := - \operatorname{diag}(y_1, ..., y_{|\mathcal{D}|}) \cdot \mathbf{x}'$$

and

$$\mathbf{h} = -1$$

1.3 C) 4 / 4

- 0.5 pts G is incorrect
- 0.5 pts z is incorrect
- 0.5 pts h is incorrect
- **0.5 pts** P is incorrect
- 0.5 pts q is incorrect
- 4 pts Incorrect

(d) Recall that for a soft-SVM we solve the following optimization problem.

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 + C \cdot \sum_{i=1}^{|D|} \xi^{(i)} \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1 - \xi^{(i)}), \xi^{(i)} \ge 0 \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(2)

Describe what happens to the margin when $C = \infty$ and C = 0.

Your answer: The C parameter tells the SVM optimization how much you want to avoid misclassifying each training example. For large values of $C (=\infty)$, the optimization will choose the smallest margin which classify most of the points correctly. This is because the weight for the misclassification term is infinite. On the other hand, if C is 0, the optimization will give large margin even if it missclassify more number of points.

2. [4 points] Kernels

(a) If $K_1(\mathbf{x}, \mathbf{z})$ and $K_2(\mathbf{x}, \mathbf{z})$ are both valid kernel functions, and α and β are positive, prove that

$$\alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

is also a valid kernel function.

Your answer: A function is a valid kernel function if it is a real-valued positive definite function (A real-valued function K on X^2 is called a positive definite function if it is symmetric and follow the below equation)

$$\forall n \in \mathbb{N}^*, \ \forall \{x_i\}_{i=1}^n \in \mathbb{N}, \ \forall \{a_i\}_{i=1}^n \in \mathbb{N}, \ \sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i, x_j) \ge 0.$$

Now, proof:

By construction, the Gram matrix is given by

$$K = \alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

which implies that

$$\forall a \in \mathbb{N}, \quad a^T K a = \alpha(a^T K_1(\mathbf{x}, \mathbf{z})a) + \beta(a^T K_2(\mathbf{x}, \mathbf{z})a) \ge 0$$

due to the positivity of the α and β , hence the validity of the kernel K. Another way:

$$k_1(x,y) = \langle \phi^{(1)}(x), \phi^{(1)}(y) \rangle$$

$$k_2(x,y) = \langle \phi^{(2)}(x), \phi^{(2)}(y) \rangle$$

Let us construct $\phi(x) = \langle \sqrt{a}\phi^{(1)}(x) , \sqrt{b}\phi^{(2)}(x) \rangle$ Clearly then,

$$k(x,y) = a\langle \phi^{(1)}(x), \phi^{(1)}(y) \rangle + b\langle \phi^{(2)}(x), \phi^{(2)}(y) \rangle = ak_1(x,y) + bk_2(x,y)$$

1.4 d) 2 / 2

- **0.5 pts** Typo
- 0.5 pts Stated margin for C=\infty is minimized / always 0
- 1 pts Inverted answers for \infty and 0
- 1 pts Minor mistake
- 2 pts Incorrect/No answer

(d) Recall that for a soft-SVM we solve the following optimization problem.

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 + C \cdot \sum_{i=1}^{|D|} \xi^{(i)} \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1 - \xi^{(i)}), \xi^{(i)} \ge 0 \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(2)

Describe what happens to the margin when $C = \infty$ and C = 0.

Your answer: The C parameter tells the SVM optimization how much you want to avoid misclassifying each training example. For large values of $C (=\infty)$, the optimization will choose the smallest margin which classify most of the points correctly. This is because the weight for the misclassification term is infinite. On the other hand, if C is 0, the optimization will give large margin even if it missclassify more number of points.

2. [4 points] Kernels

(a) If $K_1(\mathbf{x}, \mathbf{z})$ and $K_2(\mathbf{x}, \mathbf{z})$ are both valid kernel functions, and α and β are positive, prove that

$$\alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

is also a valid kernel function.

Your answer: A function is a valid kernel function if it is a real-valued positive definite function (A real-valued function K on X^2 is called a positive definite function if it is symmetric and follow the below equation)

$$\forall n \in \mathbb{N}^*, \ \forall \{x_i\}_{i=1}^n \in \mathbb{N}, \ \forall \{a_i\}_{i=1}^n \in \mathbb{N}, \ \sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i, x_j) \ge 0.$$

Now, proof:

By construction, the Gram matrix is given by

$$K = \alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

which implies that

$$\forall a \in \mathbb{N}, \quad a^T K a = \alpha(a^T K_1(\mathbf{x}, \mathbf{z})a) + \beta(a^T K_2(\mathbf{x}, \mathbf{z})a) \ge 0$$

due to the positivity of the α and β , hence the validity of the kernel K. Another way:

$$k_1(x,y) = \langle \phi^{(1)}(x), \phi^{(1)}(y) \rangle$$

$$k_2(x,y) = \langle \phi^{(2)}(x), \phi^{(2)}(y) \rangle$$

Let us construct $\phi(x) = \langle \sqrt{a}\phi^{(1)}(x) , \sqrt{b}\phi^{(2)}(x) \rangle$ Clearly then,

$$k(x,y) = a\langle \phi^{(1)}(x), \phi^{(1)}(y) \rangle + b\langle \phi^{(2)}(x), \phi^{(2)}(y) \rangle = ak_1(x,y) + bk_2(x,y)$$

2.1 a) 2 / 2

- √ 0 pts Correct
 - **0.5 pts** Typo
 - 1 pts Minor mistake
 - 2 pts Incorrect

(b) Show that $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$ is a valid kernel, for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^2$. (i.e. write out the $\Phi(\cdot)$, such that $K(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x})^{\mathsf{T}} \Phi(\mathbf{z})$

Your answer: For
$$\mathbf{x} = (x_1, x_2), \mathbf{z} = (z_1, z_2)$$
:
$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$$

$$= (x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2)$$

$$= \Phi(\mathbf{x})^{\mathsf{T}} \Phi(\mathbf{z})$$
where, $\Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1 x_2, x_2^2)$

2.2 b) 2 / 2

- √ 0 pts Correct
- **0.5 pts** Typo
- 1 pts Partial credit
- 0 pts Incorrect