

SEQUENCE LISTING

<110> Genencor International, Inc.

Dunn-Coleman, N.

Shetty, J.

Duan, G.

Sung, A.

Qian, Y.

<120> A Method for the Preparation of a High Purity Rice Protein Concentrate

<130> GC830-PCT

<140> PCT/US05/05320

<141> 2005-02-17

<150> US 60/547,153

<151> 2004-02-23

<160> 11

<170> PatentIn version 3.2

<210> 1

<211> 2103

<212> DNA

<213> Humicola grisea var. thermoidea

<400> 1

atgcataacct	tctccaagct	cctcgccctg	ggctctgccg	tccagtctgc	cctcgggcgg	60
cctcacggct	tttcgcgtct	ccaggaacgc	gctgccgttg	ataccttcat	caacaccgag	120
aagcccatcg	catggAACAA	gctgctcgcc	aacatcgGCC	ctaacggcaa	agccgctccc	180
ggtgccgccc	ccggcgttgt	gattgccAGC	ccttccagga	cggaccctcc	ttgtacgtgg	240
tggcatggaa	tggACCCAAg	agactggTTT	tagatgAAAG	agagtttctg	ctaaccgcca	300
caccCAGACT	tcttcacctg	gaccCGCgat	gccgcctgg	tcctCACCCG	catcatcgag	360
tccCTTGGCC	acaactacaa	caccACCCtG	cagaccgtca	tccagaacta	cgtcgctcg	420
caggCCAAGC	tgcAGCAGGT	ctcGAACCCC	tcggAACCT	tcgCCGACGG	ctcgGGTctc	480
ggtgaggCCA	agttCAATGT	cgacCtCACT	gcTTCACTG	gcGAATGGGG	tcgcCCTCAG	540
agggACGGCC	cgccccTGCg	cgCCATCGCT	ctCATCCAGT	acGCCAAGTG	gtGTATCGCC	600
aacggCTACA	agAGCACGGC	caAGAGCGTC	gtCTGGCCG	tcgtCAAGAA	cgatCTCGCC	660
tacacGGCCC	agtACTGGAA	cgAGACCggc	ttcGATCTCT	gggAGGAGGT	ccccGGCAGC	720
tcgttCTTA	ccatCGCCAG	ctctCACAGG	ggtgAGTCAT	ttATTGTTCA	gtgtTTTCTC	780
attGAATAAT	taccGGAAATG	ccactGACGC	caaACAGCTC	tgactGAGGG	tgCTTACCTC	840
gccgCTCAGC	tcgACACCgA	gtGCCGCGCC	tgCACGACCG	tcGCCCTCA	gttCTGTGc	900
ttccAGCAGG	ccttCTGGAA	ctccaAGGGC	aactATGTG	tctccaACAG	taAGATCCCT	960
acaccaACAA	aaaaAAATG	aaAGGAACGT	tagCTGACCC	ttCTAGTCAA	cgGCGGCGAG	1020
tatcgCTCCG	gcaAGGACG	caactCGATC	ctggCGTCCA	tccACAACTT	cgACCCtGAG	1080
gccggCTGCG	acaACCTGAC	cttCCAGCC	tgCAGCGAGC	gcGCCCTGGC	caACCACAAg	1140
gcctatGTG	actCGTTCCG	caacCTCTAC	gccatCAACA	aggGCATCGC	ccAGGGCAAG	1200
gccgTTGCCG	tcggCCGCTA	ctcggAGGAT	gtCTACTACA	acGGCAACCC	gtggTACCTG	1260
gccaACTT	ccggCCGCCG	gcAGCTCTAC	gacGCCATCT	acGTGTGGAA	caAGCAGGGC	1320
tccatCACCG	tgacCTCGGT	ctccCTGCC	ttCTTCCGCG	acCTTGTCTC	gtcggtCAGC	1380
accggCACCT	actCCAAGAG	cagCTGACCC	ttcACCAACA	tcgtCAACGC	cgtCAAGGCC	1440
tacGCCGACG	gCTTCAATG	ggTGGCGGCC	aagtACACCC	cgtCCAACGG	cgcGCTCGCC	1500
gagCAGTACG	accGCAACAC	gggCAAGGCC	gactCGGCCG	ccgACCTGAC	gtggTCgtac	1560
tcggCCTCC	tctCGGCCAT	cgaccGCCG	gcggGTCTCG	tccccCCAG	ctggCGGGCC	1620

agcgtggcca	agagccagct	gccgtccacc	tgctcgca	tcgaggctgc	cggcacctac	1680
gtcgccgcca	cgagcacctc	gttcccgtcc	aagcagaccc	cgaacccctc	cgcggcgccc	1740
tccccgtccc	cctaccgcac	cgcctgcgcg	gacgctagcg	aggtgtacgt	caccttcaac	1800
gagcgcgtgt	cgaccgcgtg	gggcgagacc	atcaaggtgg	tgggcaacgt	gccggcgctg	1860
gggaactggg	acacgtccaa	ggcggtgacc	ctgtcgcca	gcgggtacaa	gtcaaatgat	1920
cccctctgga	gcatcacggt	gcccatcaag	gacgacggct	cggccgtgca	gtacaagtat	1980
atcaaggtcg	gcaccaacgg	gaagattact	tgggagtcgg	accccaacag	gagcattacc	2040
ctgcagacgg	cgtcgtctgc	ggcaagtgc	gccgcgcaga	cggtgaatga	ttcgtggcgt	2100
taa						2103

<210> 2
<211> 634
<212> PRT
<213> Humicola grisea var. thermoidea

<400> 2						
Met His Thr Phe Ser Lys Leu Leu Val	Leu Gly Ser Ala Val Gln Ser					
1 5	10 15					
Ala Leu Gly Arg Pro His Gly Ser Ser	Arg Leu Gln Glu Arg Ala Ala					
20 25	30					
Val Asp Thr Phe Ile Asn Thr Glu Lys	Pro Ile Ala Trp Asn Lys Leu					
35 40	45					
Leu Ala Asn Ile Gly Pro Asn Gly Lys	Ala Ala Pro Gly Ala Ala Ala					
50 55	60					
Gly Val Val Ile Ala Ser Pro Ser Arg	Thr Asp Pro Pro Tyr Phe Phe					
65 70	75 80					
Thr Trp Thr Arg Asp Ala Ala Leu Val	Leu Thr Gly Ile Ile Glu Ser					
85 90	95					
Leu Gly His Asn Tyr Asn Thr Thr Leu	Gln Thr Val Ile Gln Asn Tyr					
100 105	110					
Val Ala Ser Gln Ala Lys Leu Gln Gln	Val Ser Asn Pro Ser Gly Thr					
115 120	125					
Phe Ala Asp Gly Ser Gly Leu Gly Glu	Ala Lys Phe Asn Val Asp Leu					
130 135	140					
Thr Ala Phe Thr Gly Glu Trp Gly Arg	Pro Gln Arg Asp Gly Pro Pro					
145 150	155 160					
Leu Arg Ala Ile Ala Leu Ile Gln Tyr	Ala Lys Trp Leu Ile Ala Asn					
165 170	175					
Gly Tyr Lys Ser Thr Ala Lys Ser Val	Val Trp Pro Val Val Lys Asn					
180 185	190					
Asp Leu Ala Tyr Thr Ala Gln Tyr Trp	Asn Glu Thr Gly Phe Asp Leu					
195 200	205					
Trp Glu Glu Val Pro Gly Ser Ser	Phe Phe Thr Ile Ala Ser Ser His					
210 215	220					
Arg Ala Leu Thr Glu Gly Ala Tyr Leu	Ala Ala Gln Leu Asp Thr Glu					
225 230	235 240					
Cys Arg Ala Cys Thr Thr Val Ala Pro	Gln Val Leu Cys Phe Gln Gln					
245 250	255					
Ala Phe Trp Asn Ser Lys Gly Asn Tyr	Val Val Ser Asn Ile Asn Gly					
260 265	270					
Gly Glu Tyr Arg Ser Gly Lys Asp Ala	Asn Ser Ile Leu Ala Ser Ile					
275 280	285					
His Asn Phe Asp Pro Glu Ala Gly Cys	Asp Asn Leu Thr Phe Gln Pro					
290 295	300					
Cys Ser Glu Arg Ala Leu Ala Asn His	Lys Ala Tyr Val Asp Ser Phe					
305 310	315 320					
Arg Asn Leu Tyr Ala Ile Asn Lys Gly	Ile Ala Gln Gly Lys Ala Val					

325	330	335
Ala Val Gly Arg Tyr Ser Glu Asp Val	Tyr Tyr Asn Gly Asn Pro Trp	
340	345	350
Tyr Leu Ala Asn Phe Ala Ala Ala	Glu Gln Leu Tyr Asp Ala Ile Tyr	
355	360	365
Val Trp Asn Lys Gln Gly Ser Ile Thr Val Thr Ser Val Ser Leu Pro		
370	375	380
Phe Phe Arg Asp Leu Val Ser Ser Val Ser Thr Gly Thr Tyr Ser Lys		
385	390	395
Ser Ser Ser Thr Phe Thr Asn Ile Val Asn Ala Val Lys Ala Tyr Ala		
405	410	415
Asp Gly Phe Ile Glu Val Ala Ala Lys Tyr Thr Pro Ser Asn Gly Ala		
420	425	430
Leu Ala Glu Gln Tyr Asp Arg Asn Thr Gly Lys Pro Asp Ser Ala Ala		
435	440	445
Asp Leu Thr Trp Ser Tyr Ser Ala Phe Leu Ser Ala Ile Asp Arg Arg		
450	455	460
Ala Gly Leu Val Pro Pro Ser Trp Arg Ala Ser Val Ala Lys Ser Gln		
465	470	475
Leu Pro Ser Thr Cys Ser Arg Ile Glu Val Ala Gly Thr Tyr Val Ala		
485	490	495
Ala Thr Ser Thr Ser Phe Pro Ser Lys Gln Thr Pro Asn Pro Ser Ala		
500	505	510
Ala Pro Ser Pro Ser Pro Tyr Pro Thr Ala Cys Ala Asp Ala Ser Glu		
515	520	525
Val Tyr Val Thr Phe Asn Glu Arg Val Ser Thr Ala Trp Gly Glu Thr		
530	535	540
Ile Lys Val Val Gly Asn Val Pro Ala Leu Gly Asn Trp Asp Thr Ser		
545	550	555
Lys Ala Val Thr Leu Ser Ala Ser Gly Tyr Lys Ser Asn Asp Pro Leu		
565	570	575
Trp Ser Ile Thr Val Pro Ile Lys Ala Thr Gly Ser Ala Val Gln Tyr		
580	585	590
Lys Tyr Ile Lys Val Gly Thr Asn Gly Lys Ile Thr Trp Glu Ser Asp		
595	600	605
Pro Asn Arg Ser Ile Thr Leu Gln Thr Ala Ser Ser Ala Gly Lys Cys		
610	615	620
Ala Ala Gln Thr Val Asn Asp Ser Trp Arg		
625	630	

<210> 3
 <211> 604
 <212> PRT
 <213> Humicola grisea var. thermoidea

<400> 3		
Ala Ala Val Asp Thr Phe Ile Asn Thr Glu Lys Pro Ile Ala Trp Asn		
1 5 10 15		
Lys Leu Leu Ala Asn Ile Gly Pro Asn Gly Lys Ala Ala Pro Gly Ala		
20 25 30		
Ala Ala Gly Val Val Ile Ala Ser Pro Ser Arg Thr Asp Pro Pro Tyr		
35 40 45		
Phe Phe Thr Trp Thr Arg Asp Ala Ala Leu Val Leu Thr Gly Ile Ile		
50 55 60		
Glu Ser Leu Gly His Asn Tyr Asn Thr Thr Leu Gln Thr Val Ile Gln		
65 70 75 80		
Asn Tyr Val Ala Ser Gln Ala Lys Leu Gln Gln Val Ser Asn Pro Ser		

85	90	95
Gly Thr Phe Ala Asp Gly Ser Gly	Leu Gly Glu Ala Lys Phe Asn Val	
100	105	110
Asp Leu Thr Ala Phe Thr Gly Glu Trp Gly Arg Pro Gln Arg Asp Gly		
115	120	125
Pro Pro Leu Arg Ala Ile Ala Leu Ile Gln Tyr Ala Lys Trp Leu Ile		
130	135	140
Ala Asn Gly Tyr Lys Ser Thr Ala Lys Ser Val Val Trp Pro Val Val		
145	150	155
Lys Asn Asp Leu Ala Tyr Thr Ala Gln Tyr Trp Asn Glu Thr Gly Phe		
165	170	175
Asp Leu Trp Glu Glu Val Pro Gly Ser Ser Phe Phe Thr Ile Ala Ser		
180	185	190
Ser His Arg Ala Leu Thr Glu Gly Ala Tyr Leu Ala Ala Gln Leu Asp		
195	200	205
Thr Glu Cys Arg Ala Cys Thr Thr Val Ala Pro Gln Val Leu Cys Phe		
210	215	220
Gln Gln Ala Phe Trp Asn Ser Lys Gly Asn Tyr Val Val Ser Asn Ile		
225	230	235
Asn Gly Gly Glu Tyr Arg Ser Gly Lys Asp Ala Asn Ser Ile Leu Ala		
245	250	255
Ser Ile His Asn Phe Asp Pro Glu Ala Gly Cys Asp Asn Leu Thr Phe		
260	265	270
Gln Pro Cys Ser Glu Arg Ala Leu Ala Asn His Lys Ala Tyr Val Asp		
275	280	285
Ser Phe Arg Asn Leu Tyr Ala Ile Asn Lys Gly Ile Ala Gln Gly Lys		
290	295	300
Ala Val Ala Val Gly Arg Tyr Ser Glu Asp Val Tyr Tyr Asn Gly Asn		
305	310	315
Pro Trp Tyr Leu Ala Asn Phe Ala Ala Glu Gln Leu Tyr Asp Ala		
325	330	335
Ile Tyr Val Trp Asn Lys Gln Gly Ser Ile Thr Val Thr Ser Val Ser		
340	345	350
Leu Pro Phe Phe Arg Asp Leu Val Ser Ser Val Ser Thr Gly Thr Tyr		
355	360	365
Ser Lys Ser Ser Ser Thr Phe Thr Asn Ile Val Asn Ala Val Lys Ala		
370	375	380
Tyr Ala Asp Gly Phe Ile Glu Val Ala Ala Lys Tyr Thr Pro Ser Asn		
385	390	395
Gly Ala Leu Ala Glu Gln Tyr Asp Arg Asn Thr Gly Lys Pro Asp Ser		
405	410	415
Ala Ala Asp Leu Thr Trp Ser Tyr Ser Ala Phe Leu Ser Ala Ile Asp		
420	425	430
Arg Arg Ala Gly Leu Val Pro Pro Ser Trp Arg Ala Ser Val Ala Lys		
435	440	445
Ser Gln Leu Pro Ser Thr Cys Ser Arg Ile Glu Val Ala Gly Thr Tyr		
450	455	460
Val Ala Ala Thr Ser Thr Ser Phe Pro Ser Lys Gln Thr Pro Asn Pro		
465	470	475
Ser Ala Ala Pro Ser Pro Ser Pro Tyr Pro Thr Ala Cys Ala Asp Ala		
485	490	495
Ser Glu Val Tyr Val Thr Phe Asn Glu Arg Val Ser Thr Ala Trp Gly		
500	505	510
Glu Thr Ile Lys Val Val Gly Asn Val Pro Ala Leu Gly Asn Trp Asp		
515	520	525
Thr Ser Lys Ala Val Thr Leu Ser Ala Ser Gly Tyr Lys Ser Asn Asp		
530	535	540

Pro Leu Trp Ser Ile Thr Val Pro Ile Lys Ala Thr Gly Ser Ala Val
 545 550 555 560
 Gln Tyr Lys Tyr Ile Lys Val Gly Thr Asn Gly Lys Ile Thr Trp Glu
 565 570 575
 Ser Asp Pro Asn Arg Ser Ile Thr Leu Gln Thr Ala Ser Ser Ala Gly
 580 585 590
 Lys Cys Ala Ala Gln Thr Val Asn Asp Ser Trp Arg
 595 600

<210> 4
 <211> 10739
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pTrex3g_N13 plasmid

<400> 4
 aagcttacta gtacttctcg agctctgtac atgtccggtc ggcacgtacg cgtatcgatg 60
 qcgccagctg caggcggccg cctgcagcca cttgcagtcc cgtggaaattc tcacggtgaa 120
 tgttaggcctt ttgttagggta ggaatttgtca ctcaagcacc cccaacctcc attacgcctc 180
 ccccatagag ttcccaatca gtgagtcatg gcactgttct caaatagatt ggggagaagt 240
 tgacttccgc ccagagctga aggtcgacaca accgcatgat atagggtcgg caacggcaa 300
 aaagcacgtg gctcaccgaa aagcaagatg tttgcgatct aacatccagg aacctggata 360
 catccatcat cacgcacgac cactttgatc tgctggtaaa ctcgtattcg ccctaaaccg 420
 aagtgcgtgg taaatctaca cgtgggcccc tttcggtata ctgcgtgtgt cttctctagg 480
 tgccatttctt ttcccttcct cttagtgtga attgtttgtg ttggagtcgg agctgttaact 540
 acctctgaat ctctggagaa tggtgacta acgactaccg tgcacctgca tcatgtatat 600
 aatagtgatc ctgagaaggg gggtttggag caatgtggga ctttgatggt catcaaacaa 660
 agaacgaaga cgccctttt gcaaagttt gtttggcta cggtaagaaa ctggataactt 720
 gttgtgtctt ctgtgtatTT ttgtggcaac aagaggccag agacaatcta ttcaaaccacc 780
 aagcttgctc ttttgagcta caagaacctg tggggtatAT atctagagtt gtgaagtcgg 840
 taatcccgct gtatagtaat acgagtcgca tctaaatact ccgaagctgc tgcgaacccg 900
 gagaatcggat atgtgctgga aagcttctag cgagcggcta aattagcatg aaaggctatg 960
 agaaattctg gagacggctt gttgaatcat ggcgttccat tcttcgacaa gcaaagcgTT 1020
 ccgtcgcagt agcaggcact cattccgaa aaaactcgga gattcctaag tagcgatgga 1080
 accggaataa tataataggc aatacattga gttgcctcgat cgggtcaat gcaggggtaC 1140
 tgagcttggat cataactgtt ccgtacccca cctcttctca acctttggcg tttccctgat 1200
 tcagcgtaacc cgtacaagtgc gtaatcacta ttaacccaga ctgaccggac gtgtttgcc 1260
 cttcatttgg agaaataatg tcattgcgtat gtgttaatttgc cctgcttgcac cgactggggc 1320
 tgttcgaagc ccgaatgttag gattgttattc cgaactctgc tcgttagagggc atgttgtgaa 1380
 tctgtgtcgat gcaggacacg cctcgaaggat tcacggcaag ggaaaccacc gatagcagtg 1440
 tctagtagca acctgtaaAG ccgcaatgca gcatcactgg aaaatacAAA ccaatggcta 1500
 aaagtacata agttaatgcc taaagaagtc atataccaggc ggctaataat tgtacaatca 1560
 agtggctaaa cgtaccgtaa ttggcaacg gcttgggggg ttgcagaagc aacggcaaAG 1620
 ccccacttcc ccacgttgc ttcttcactc agtccaatct cagctggta tcccccaatt 1680
 gggtcgttg ttgttccgg tgaagtggaaa gaagacagag gtaagaatgt ctgactcgga 1740
 gcggtttgca tacaaccaag ggcagtgtatc gaaagacagtg aaatgttgcac attcaaggag 1800
 tatttagcca gggatgttg agtgtatcgt gtaaggaggt ttgtctggcc atacgacgaa 1860
 tactgtatag tcacttctga tgaagtggtc catattggaaa tggtaaagtgc gcaactgaaca 1920
 ggcaaaagat tgagttggaaa ctgcctaaga tctcggggccc tcggggcattc ggccttggg 1980
 tgtacatgtt tggctccgg gcaaattgca agtgtggtag gatcgaaacac actgctgcct 2040
 ttaccaagca gctgagggtt gttgataggc aaatgttgcag gggccactgc atgggttgc 2100
 atagaaagag aagcttagcc aagaacaata gccgataaag atagcctcat taaacggaa 2160
 gagcttagtag gcaaagtgcag cgaatgtgtatataaaagg ttgcagggtcc gtgcctccct 2220
 catgctctcc ccatctactc atcaactcag atcctccagg agacttgcac accatcttt 2280
 gaggcacaga aaccaatag tcaaccatca caagttgtatcaaaaaaagca ggctccgcgg 2340

ccgccccctt	caacatgcat	actttctcca	agtcctcgt	cctgggctct	gccgtccagt	2400
ctgcctcgg	gccccctcac	ggcttctcg	gtctccagga	acgcgtcgcc	gttgataacct	2460
tcatcaacac	cgagaagccc	atcgcatgga	acaagctgct	cgccaaacatc	ggccctaacg	2520
gcaaagccgc	tcccggtgcc	gccgccccggc	ttgtgattgc	cagcccttcc	aggacggacc	2580
ctccttgtac	gtggtggcat	ggaatggacc	caagagactg	gttttagatg	aaagagagtt	2640
tctgctaacc	gccacaccca	gacttctca	cctggaccgg	cgatgcccgc	ctggctctca	2700
ccggcatcat	cgagtcctt	ggccacaact	acaacaccac	cctgcagacc	gtcatccaga	2760
actacgtcgc	gtcgccaggcc	aagctgcagc	aggtctcgaa	cccctcgaaa	accttcgccc	2820
acggctcgaa	tctcggtgag	gccaagttca	atgtcgaccc	cactgccttc	actggcgaat	2880
ggggtcgccc	tcagagggac	ggcccgcccc	tgcgcgccc	cgctctcattc	cagtacgcca	2940
agtggctgat	cgccaaacggc	tacaagagca	cgccaaagag	cgtcgtctgg	cccgctgtca	3000
agaacgatct	cgccctacacg	gcccagtact	ggaacgagac	cggttcgat	ctctgggagg	3060
aggtccccgg	cagctcggtt	tttaccatcg	ccagctctca	cagggggtgag	tcatttattg	3120
ttcagtgttt	tctcattgaa	taattaccgg	aatgcccactg	acgccaaaca	gctctgactg	3180
agggtgctt	cctcgccgct	cagctcgaca	ccgagtgccc	cgccctgcacg	accgtcgccc	3240
ctcaggttct	gtgcttccag	caggccttct	ggaactccaa	gggcaactat	gtcgctcca	3300
acagtaagat	ccctacacca	acaaaaaaaaa	tcgaaaagga	acgttagctg	acccttctag	3360
tcaacggcgg	cgagtatcgc	tccggcaagg	acgccaactc	gatcctggcg	tccatccaca	3420
acttcgaccc	tgagggccggc	tgcgacaacc	tgaccttcca	gccctgcagc	gagcgcgccc	3480
tggccaaacca	caaggccatat	gtcgactcgt	tccgcaaccc	ctacgcccattc	aacaaggggca	3540
tcgcccaggg	caaggccgtt	gccgtcgccc	gctactcgga	ggatgtctac	tacaacggca	3600
accctggta	cctggccaac	tttgcgcgg	ccgagcagct	ctacgacgccc	atctacgtgt	3660
ggaacaagca	gggctccatc	accgtgaccc	cggtctccct	gcccttcttc	cgcgaccttg	3720
tctcgcttgt	cagcacccggc	acttactcca	agagcagctc	gaccccttacc	aacatcgta	3780
acggcgtaa	ggcctacgccc	gacggcttca	tcgaggtggc	ggccaagttac	acccctgtcca	3840
acggcgccgt	cgccgagcag	tacgaccgca	acacgggca	gcccgaactg	gcccggacc	3900
tgacgtggc	gtactcggtt	ttcctctcg	ccatcgaccg	ccgcccgggt	ctcgcccccc	3960
cgagctggcg	ggccagcgtg	gccaagagcc	agctggcgtc	cacccgtctg	cgcatcgagg	4020
tcgcccggcac	ctacgtcgcc	gccacgagca	cctcggtttcc	gtccaagcag	acccctgaaacc	4080
cctccggcgc	gccctccccg	tccccctacc	cgaccgcctg	cgccgacgct	agcgagggtgt	4140
acgtcacctt	caacgagcgc	gtgtcgaccg	cgtggggcga	gaccatcaag	gtggggcga	4200
acgtccggc	gctggggaaac	tgggacacgt	ccaggccgtt	gaccctgtcg	gccagcgggt	4260
acaagtgc	tgatccccctc	tggagcatca	cggtgcccatt	caaggcgacg	ggctcgccgg	4320
tgcagttacaa	gtatatacag	gtcgccacca	acggaaagat	tacttgggag	tcggacccca	4380
acaggagcat	taccctgcag	acggcgttgt	ctggggcga	gtgcggccgc	cagacggta	4440
atgattcg	gcgttaaaag	ggtggcgcgc	ccgaccaccgc	tttcttgcac	aaagtggta	4500
tcgcgccagc	tccgtgcgaa	agctgacgc	accggtagat	tcttggttag	cccgtatcat	4560
gacggcggcg	ggagctacat	ggcccccgggt	gatttatttt	ttttgtatct	acttctgacc	4620
ctttcaat	atacggtaaa	ctcatcttc	actggagatg	ccgcctgttt	ggtattgcga	4680
tgttgc	ttggcaattt	gtggcttcc	aaaacacaaa	acgattccctt	atgtgcatt	4740
catttaaga	taacggaaa	gaagaaagag	gaaattaaaa	aaaaaaaaaa	aacaaacatc	4800
ccgttcataa	cccgtagaaat	ccgcgtctt	cgtgtatccc	agtaccagg	tatttgaat	4860
agctcgcccg	ctggagagca	tcctgaatgc	aagtaacaaac	cgttagaggt	gacacggcag	4920
gtgttgc	ggagcgttgt	gttctacaag	gccagacgtc	ttcgcgggtt	atatatatgt	4980
atgtttgact	gcaggctgt	cagcgacgac	agtcaagtcc	gccctcgctg	cttgcataat	5040
aatcgcagt	gggaagccac	accgtgactc	ccatcttca	gtaaagctt	gttgggttt	5100
atcagcaata	cacgttaattt	aaactcgta	gcatggggct	gatagcttac	ttaccgttta	5160
ccagtgc	ggttctgcag	ctttcttgg	cccgtaaaat	tcggcgaagc	cagccaatca	5220
ccagctaggc	accagctaaa	ccctataatt	agtctttat	caacaccatc	cgcccccgg	5280
ggatcaatga	ggagaatgag	ggggatgcgg	ggctaaagaa	gcctacataa	ccctcatgcc	5340
aactcccagt	ttacactcg	cgagccaaca	tcctgactat	aagctaacc	agaatgcctc	5400
aatccctggg	agaactggcc	gtgtataagc	gcccggccct	cgcaaaaacc	atccctgtat	5460
aatggaaagt	ccagacgctg	cctgcggaaag	acagcgttat	tgatttccca	aagaatcg	5520
ggatc	agaggccgaa	ctgaagatca	cagaggcctc	cgctgcagat	cttgcgttca	5580
agctggcgc	cgagagttt	acctcggtgg	aagttacgt	agcattctgt	aaacgggcag	5640
caatcgccca	cgagttagta	gggtccccctc	tacctctcg	ggagatgtaa	caacgcccacc	5700
ttatggact	atcaagctga	cgctggctt	tgtgcagaca	aactgcgc	acgagttctt	5760

ccctgacgcc	gctctcgccg	aggcaaggga	actcgatgaa	tactacgcaa	agcacaagag	5820
accgggtgt	ccactccatg	gcctccccat	ctctctcaa	gaccagctt	gagtcaaggt	5880
acaccgttc	ccctaagtctg	ttagatgtcc	cttttgtca	gctaaacatat	gccaccaggg	5940
ctacgaaaca	tcaatgggct	acatctcatg	gctaaacaag	tacgacgaag	gggactcggt	6000
tctgacaacc	atgctccgca	aagccgggtc	cgtcttctac	gtcaagacct	ctgtcccgca	6060
gaccctgatg	gtctgcgaga	cagtcaacaa	catcatcggt	cgcaccgtca	acccacgcaa	6120
caagaactgg	tcgtgcggcg	gcagttctgg	tggtgagggt	gcatcggtt	ggattcgcrv	6180
tggtggcgctc	atcggtgttag	gaacggatat	cggtggtcg	attcgagtgc	cgcccggtt	6240
caacttcctg	tacggctcaa	ggccgagtca	tggggggctg	cctgtatgcaa	agatggcgaa	6300
cagcatggag	ggtcaggaga	cgggtcacag	cgttgcggg	ccgattacgc	actctgtta	6360
gggtgagtcc	ttcgccctt	ccttctttc	ctgctctata	ccaggccccc	actgtccctcc	6420
tttcttgctt	tttatactat	atacgagacc	ggcagtcact	gatgaagtat	gttagacctc	6480
cgccttcca	ccaaatccgt	cctcggtcag	gagccatgga	aatacgactc	caaggtcata	6540
cccatgcct	ggcgcctcgtc	cgagtcggac	attattgcct	ccaagatcaa	gaacggcggt	6600
ctcaatatcg	gctactacaa	cttcgacggc	aatgtccctc	cacaccctcc	tatcctgcgc	6660
ggcgtggaaa	ccaccgtcgc	cgactcgcc	aaagccggc	acaccgtgac	cccggtggac	6720
ccatacaagc	acgatttcgg	ccacgatctc	atctccata	tctacgcggc	tgacggcagc	6780
crvgccgacg	taatgcgcga	tatcagtgc	tccggcgac	ccgcgattcc	aaatatcaa	6840
gacctactga	acccgaacat	caaagctgtt	aacatgaacg	agctctggga	cacgcatactc	6900
cagaagtgg	attaccagat	ggagtacctt	gagaaatggc	gggaggctg	agaaaaaggcc	6960
gggaaggaac	tggacccat	catcgcccg	attacgccta	ccgctcggt	acggcatgac	7020
cagttccgg	actatgggt	tgccctgtt	atcaacctgc	tggtttcac	gagcgtgggt	7080
gttccggta	ccttgcgga	taagaacatc	gataagaaga	atgagagtt	caaggcggtt	7140
agttagctt	atgcctctgt	gcaggaagag	tatgatccgg	aggcgatcca	tggggcaccg	7200
gttgcagtgc	aggttatcgg	acggagactc	agtgaagaga	ggacgttggc	gattcgagag	7260
gaagtgggaa	agttgctgg	aaatgtggt	actccatagc	taataagtgt	cagatagcaa	7320
tttgcacaag	aaatcaatac	cagcaactgt	aaatacgcc	tgaagtgacc	atgcctatgt	7380
acgaaaagagc	agaaaaaaaaac	ctgcccgtaga	accgaagaga	tatgacacgc	ttccatctct	7440
caaaggaaga	atcccttcag	ggttgcgtt	ccagtcata	cacgtataac	ggcacaagtg	7500
tctctcacca	aatgggttat	atctcaatg	tgtatctaagg	atggaaagcc	cagaatatcg	7560
atcgccgcga	gatccatata	tagggcccg	gttataatta	cctcaggtcg	acgtcccatg	7620
gccattcgaa	ttcgtaatca	tggtcata	tgtttctgt	gtgaaattgt	tatccgctca	7680
caattccaca	caacatacga	gccggaaagca	taaagtgtaa	agcctgggtt	gcctaatacg	7740
tgagctaact	cacattaatt	gcgttgcgt	cactgcccgc	tttccagtcg	ggaaacactgt	7800
cgtgccagct	gcattaatga	atcgcccaac	gcccggggag	aggcggttt	cgtattggc	7860
gctttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cggtcggt	cgccgagcgg	7920
tatcagctca	ctcaaaggcg	gtaatacgg	tatccacaga	atcagggat	aacgcaggaa	7980
agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	8040
cgttttcca	taggctccgc	ccccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	8100
ggtggcgaaa	cccgacacg	ctataaagat	accaggcg	tcccccgtt	agctccctcg	8160
tgcgctctcc	tgttccgacc	ctgcccgtt	ccggatacct	gtccgcctt	ctcccttcgg	8220
gaagcgtggc	gtttctcat	agctcacgt	gtaggtatct	cagttcggt	taggtcggt	8280
gctccaagct	gggctgtgt	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	8340
gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcc	8400
ctggtaacag	gattagcaga	gcgaggtatg	taggcgggtc	tacagagtcc	ttgaagtgg	8460
ggcctaacta	cggctacact	agaagaacag	tatttggat	ctgcgtctg	ctgaagccag	8520
ttaccttcgg	aaaaagagtt	ggtagctt	gatccggcaa	acaaaccacc	gctggtagcg	8580
gtggttttt	tgttgcag	cagcagatta	cgccgacaaa	aaaaggatct	caagaagatc	8640
ctttgatctt	ttctacgggg	tctgacgtc	agtggaaacg	aaactcacgt	taagggattt	8700
tggtcatgag	attatcaaaa	aggatcttca	cctagatctt	tttaaattaa	aaatgaagtt	8760
ttaaatcaat	ctaaagtata	tatgagtaa	cttggctga	cagttaacaa	tgcttaatca	8820
gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgc	tgactccccg	8880
tcgtgttagat	aactacgata	cgggagggtc	taccatctgg	ccccagtgc	gcaatgatac	8940
cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcc	gccggaaggg	9000
ccgagcgcag	aagtggctt	gcaactttat	ccgcctccat	ccagtctatt	aatttttgcc	9060
gggaagctag	agtaagtagt	tcgcccgtt	atagttgcg	caacgttgg	gccattgct	9120
caggcatcg	ggtgtcacgc	tcgtcggtt	gtatggctt	attcagctcc	ggttcccaac	9180

gatcaaggcg	agttacatga	tccccatgt	tgtcaaaaaa	agcggttagc	tcctcggtc	9240
ctccgatgt	tgtcagaagt	aagtggccg	cagtgttac	actcatggt	atggcagcac	9300
tgcataattc	tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagact	9360
caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	ttgcttgc	ccggcgtcaa	9420
tacgggataa	taccgcgcca	catagcagaa	cttaaaagt	gctcatcatt	ggaaaacgtt	9480
cttcggggcg	aaaactctca	aggatcttac	cgtcttgag	atccagttcg	atgttaaccca	9540
ctcggtcacc	caactgtatct	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	9600
aaacaggaag	gaaaaatgcc	gcaaaaaaagg	gaataaggc	gacacggaaa	tgttgaatac	9660
tcatactctt	ccttttcaa	tattattgaa	gcatttatca	gggttattgt	ctcatgagcg	9720
gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	9780
gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	gacattaacc	tataaaaata	9840
ggcgatcac	gaggccctt	cgtctcgcc	gttctggta	tgacggtcaa	aacctctgac	9900
acatgcagct	cccggagacg	gtcacagctt	gtctgtaa	ggatgcccgg	agcagacaag	9960
cccgctcagg	cgcgtcagcg	ggtgttggcg	ggtgtcgggg	ctggcttaac	tatgcggcat	10020
cagagcagat	tgtactgaga	gtgcaccata	aaattgtaaa	cgttaatatt	ttgttaaaat	10080
tcgcgttaaa	tttttgttaa	atcagctcat	tttttaacca	ataggccgaa	atcgccaaaa	10140
tcccttataa	atcaaaagaa	tagcccgaga	tagggtttag	tgttgttcca	gttttggaaaca	10200
agagtccact	attaaagaac	gtggactcca	acgtcaaagg	gcaaaaaacc	gtctatcagg	10260
gcatggccc	actacgtgaa	ccatcaccca	aatcaagttt	tttggggctcg	aggtgccgta	10320
aagactaaa	tccgaaccct	aaagggagcc	cccgatttag	agcttgcacgg	ggaaagccgg	10380
cgaacgtggc	gagaaaggaa	gggaagaaag	cgaaaggagc	gggcgtctagg	gchgctggcaa	10440
gtgttagcggt	cacgcgtcgc	gttaaccacca	cacccgcgc	gcttaatgcg	ccgctacagg	10500
gcccgtacta	tgggtgttt	gacgtatgcg	gtgtgaaata	ccgcacagat	gchtaaggag	10560
aaaataccgc	atcaggcgcc	attcgccatt	caggctcgcc	aactgttggg	aaggcgatc	10620
gtgtcgccgc	tcttcgttat	tacgcccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	10680
aagttggta	acgcccagggt	tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgccc	10739

<210> 5
<211> 2169
<212> DNA
<213> Aspergillus awamori var. kawachi

<400> 5						
atgtcggtcc	gatctttctt	cgccctgagc	ggccttgc	gctcggtt	ggcaagtgt	60
atttccaagc	gcgcgacctt	ggattcgtgg	ttgagcaacg	aagcgaccgt	ggcccgta	120
gcgcattctga	ataacatcg	ggcgacgg	gcttgggtgt	cgggcgccg	ctctggcatt	180
gtcggttgc	gtcccagcac	cgataacccg	gactgtatgt	tttgagttcg	gattatgaat	240
gtgtcttgg	tgattgtatgc	tgactggcg	gtctttgtat	gattgttagac	ttctacacct	300
ggactcgcga	ctctggtctc	gtcatcaaga	ccctcgctga	ccttccgc	aatggagata	360
ctgatctcct	ttccaccatt	gagcaactaca	tctccctca	ggcaattatt	cagggtgtca	420
gttaaccctc	tggtgatctg	tccagcggtg	gtcttggta	gcccagttc	aatgtcgatg	480
agactgccta	caccggttct	tggggacggc	cgcagcgtga	tggtcctg	ctgagagcaa	540
ctgctatgt	cggctttggg	cagtggtc	ttgtatgttc	tccacctcct	tgcgtctgat	600
ctgcaacata	tgtagccgac	tggtcaggac	aatggctaca	ccagcgctgc	aacagagatt	660
gtttggccccc	tgcgttaggaa	cgacctgtcg	tatgtggctc	agtaactggaa	ccagacggga	720
tatgggtgt	ttgattgtatc	gggggtcaag	ggtgtttgt	catcgagct	aacttcgcgg	780
tcgcagatct	ctgggaagaa	gttaatggct	cgtccttctt	cactattgcc	gtcaacacc	840
gcccgcgt	cgaaggtagt	gcctcgcga	cggccgtcg	ctcgtctgc	tcctgggtg	900
attcgcaggc	acctcagatt	ctctgttact	tgcagtcctt	ctggaccggc	agctacatcc	960
tggccaactt	tgacagcagc	cggtccggca	aggacacaaa	caccctcctg	ggaagcatcc	1020
acaccttta	tcctgaggct	ggatgcgacg	actccaccc	ccagccctgc	tcccccgcgt	1080
cgctcgccaa	ccataaggag	gtttagact	cttccgctc	gatctatact	ctcaacgatg	1140
gtctcagtga	cagtggcg	gttgcggctcg	gtcggtaccc	tgaggatagc	tactacaacg	1200
gcaaccctgt	gttcctgtc	accttggctg	ccgcggaaaca	gctgtacgat	gctctgtacc	1260
agtgggacaa	gcaggggtcg	ttggagatca	cagacgtgtc	acttgacttc	ttcaaggctc	1320
tgtacagtgg	tgctgcccacc	ggcacgtact	cttcgtccag	ctcgacctat	agcagcattg	1380
tgagtggccgt	caagacttcc	gctgtatggtt	ttgtttctat	tgtggtaagt	ctacgctaga	1440

cgagcgctca	tat	ttacaga	gggtgcgtac	taacaggatt	aggaaactca	cggcga	1500
aacggcttc	tgt	ctgagca	attcgacaag	tctgatggcg	acgagcttc	tgctcgat	1560
ctgacctgtt	ctt	acgctgc	tctgctgacc	gccaacaacc	gtcgttaattc	tgtcg	1620
ccgtcttggg	gtg	agacctc	tgccagc	gtgcccggca	cctgtgcggc	tacctctg	1680
tctggta	acct	acagcagt	gaccgtc	acc	tcgtggccga	gcatcg	1740
accactacg	cg	gctactac	cactggatcg	ggcggcgtga	cctcgaccag	caagaccacc	1800
acaactgcta	gt	aagaccag	caccactacg	tcctcgac	cctgcaccac	ccccactg	1860
gtagctgt	ctt	ttgatct	gacggcgacc	accac	ctcgatct	ctac	1920
gggtcgatct	ctc	agctcg	tgactggag	accagcgat	gcatagct	gagcg	1980
aagtacactt	ccagcaaccc	gcttggtat	gtaactgt	ctctgccc	tggtg	gagtca	2040
ttttagtaca	at	ttcatccg	cgtcgag	gatgactcc	tgagtg	gagc	2100
aaccggaaat	acaccgttcc	tcaggcgt	g	gcgagtc	ccgcgac	gaccgac	2160
		ttggcgttag					2169

<210> 6
<211> 24
<212> PRT
<213> Aspergillus awamori var. kawachi

<400>	6															
Met	Ser	Phe	Arg	Ser	Leu	Leu	Ala	Leu	Ser	Gly	Leu	Val	Cys	Ser	Gly	
1																15
Leu	Ala	Ser	Val	Ile	Ser	Lys	Arg									
																20

<210> 7
<211> 615
<212> PRT
<213> Aspergillus awamori var. kawachi

<400>	7															
Ala	Thr	Leu	Asp	Ser	Trp	Leu	Ser	Asn	Glu	Ala	Thr	Val	Ala	Arg	Thr	
1																15
Ala	Ile	Leu	Asn	Asn	Ile	Gly	Ala	Asp	Gly	Ala	Trp	Val	Ser	Gly	Ala	
																20
Asp	Ser	Gly	Ile	Val	Val	Ala	Ser	Pro	Ser	Thr	Asp	Asn	Pro	Asp	Tyr	
																35
Phe	Tyr	Thr	Trp	Thr	Arg	Asp	Ser	Gly	Leu	Val	Ile	Lys	Thr	Leu	Val	
																50
Asp	Leu	Phe	Arg	Asn	Gly	Asp	Thr	Asp	Leu	Leu	Ser	Thr	Ile	Glu	His	
																65
Tyr	Ile	Ser	Ser	Gln	Ala	Ile	Ile	Gln	Gly	Val	Ser	Asn	Pro	Ser	Gly	
																85
Asp	Leu	Ser	Ser	Gly	Gly	Leu	Gly	Glu	Pro	Lys	Phe	Asn	Val	Asp	Glu	
																100
Thr	Ala	Tyr	Thr	Gly	Ser	Trp	Gly	Arg	Pro	Gln	Arg	Asp	Gly	Pro	Ala	
																115
Leu	Arg	Ala	Thr	Ala	Met	Ile	Gly	Phe	Gly	Gln	Trp	Leu	Leu	Asp	Asn	
																130
Gly	Tyr	Thr	Ser	Ala	Ala	Thr	Glu	Ile	Val	Trp	Pro	Leu	Val	Arg	Asn	
																145
Asp	Leu	Ser	Tyr	Val	Ala	Gln	Tyr	Trp	Asn	Gln	Thr	Gly	Tyr	Asp	Leu	
																165
Trp	Glu	Glu	Val	Asn	Gly	Ser	Ser	Phe	Phe	Thr	Ile	Ala	Val	Gln	His	
																180
Arg	Ala	Leu	Val	Glu	Gly	Ser	Ala	Phe	Ala	Thr	Ala	Val	Gly	Ser	Ser	
																195
																200
																205

Cys Ser Trp Cys Asp Ser Gln Ala Pro Gln Ile Leu Cys Tyr Leu Gln
 210 215 220
 Ser Phe Trp Thr Gly Ser Tyr Ile Leu Ala Asn Phe Asp Ser Ser Arg
 225 230 235 240
 Ser Gly Lys Asp Thr Asn Thr Leu Leu Gly Ser Ile His Thr Phe Asp
 245 250 255
 Pro Glu Ala Gly Cys Asp Asp Ser Thr Phe Gln Pro Cys Ser Pro Arg
 260 265 270
 Ala Leu Ala Asn His Lys Glu Val Val Asp Ser Phe Arg Ser Ile Tyr
 275 280 285
 Thr Leu Asn Asp Gly Leu Ser Asp Ser Glu Ala Val Ala Val Gly Arg
 290 295 300
 Tyr Pro Glu Asp Ser Tyr Tyr Asn Gly Asn Pro Trp Phe Leu Cys Thr
 305 310 315 320
 Leu Ala Ala Ala Glu Gln Leu Tyr Asp Ala Leu Tyr Gln Trp Asp Lys
 325 330 335
 Gln Gly Ser Leu Glu Ile Thr Asp Val Ser Leu Asp Phe Phe Lys Ala
 340 345 350
 Leu Tyr Ser Gly Ala Ala Thr Gly Thr Tyr Ser Ser Ser Ser Thr
 355 360 365
 Tyr Ser Ser Ile Val Ser Ala Val Lys Thr Phe Ala Asp Gly Phe Val
 370 375 380
 Ser Ile Val Glu Thr His Ala Ala Ser Asn Gly Ser Leu Ser Glu Gln
 385 390 395 400
 Phe Asp Lys Ser Asp Gly Asp Glu Leu Ser Ala Arg Asp Leu Thr Trp
 405 410 415
 Ser Tyr Ala Ala Leu Leu Thr Ala Asn Asn Arg Arg Asn Ser Val Val
 420 425 430
 Pro Pro Ser Trp Gly Glu Thr Ser Ala Ser Ser Val Pro Gly Thr Cys
 435 440 445
 Ala Ala Thr Ser Ala Ser Gly Thr Tyr Ser Ser Val Thr Val Thr Ser
 450 455 460
 Trp Pro Ser Ile Val Ala Thr Gly Gly Thr Thr Thr Ala Thr Thr
 465 470 475 480
 Thr Gly Ser Gly Gly Val Thr Ser Thr Ser Lys Thr Thr Thr Ala
 485 490 495
 Ser Lys Thr Ser Thr Thr Ser Ser Thr Ser Cys Thr Thr Pro Thr
 500 505 510
 Ala Val Ala Val Thr Phe Asp Leu Thr Ala Thr Thr Tyr Gly Glu
 515 520 525
 Asn Ile Tyr Leu Val Gly Ser Ile Ser Gln Leu Gly Asp Trp Glu Thr
 530 535 540
 Ser Asp Gly Ile Ala Leu Ser Ala Asp Lys Tyr Thr Ser Ser Asn Pro
 545 550 555 560
 Leu Trp Tyr Val Thr Val Thr Leu Pro Ala Gly Glu Ser Phe Glu Tyr
 565 570 575
 Lys Phe Ile Arg Val Glu Ser Asp Asp Ser Val Glu Trp Glu Ser Asp
 580 585 590
 Pro Asn Arg Glu Tyr Thr Val Pro Gln Ala Cys Gly Glu Ser Thr Ala
 595 600 605
 Thr Val Thr Asp Thr Trp Arg
 610 615

<210> 8
 <211> 28
 <212> DNA
 <213> Artificial Sequence

<220>
<223> primer

<400> 8
caacatgcat actttctcca agtcctc 28

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 9
ttaacgccac gaatcattca ccgtc 25

<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
caccatgtcg ttccgatctc ttctc 25

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
ctaccggccag gtgtcggtca c 21