

Λειτουργικά Συστήματα

Επισκόπηση Λειτουργικών Συστημάτων

Αναπληρωτής Καθηγητής

Τμήμα Ηλεκτρολόγων Μηχ/κών

Μηχ/κών Υπολογιστών, Α.Π.Θ.

Email: asymeon@eng.auth.gr

Στόχοι της Δ-2

- Να παρουσιάσει τις βασικές έννοιες που εμπλέκονται στην ανάπτυξη (και χρήση) ενός λειτουργικού συστήματος
- Να δώσει παραδείγματα για τα προβλήματα που θα μας απασχολήσουν κατά τη διάρκεια του εξαμήνου
- Να κάνει μια ιστορική αναδρομή στα ΛΣ
- Να παρουσιάσει τη διαφορά ανάμεσα στον πολυπρογραμματισμό και την πολυεπεξεργασία
- Να δώσει τις βασικές αρχές που διέπουν τρεις κυρίαρχες γραμμές ΛΣ:
 - Windows-based αρχιτεκτονικές
 - Unix-based αρχιτεκτονικές
 - Linux-based αρχιτεκτονικές

Λειτουργικό Σύστημα

- Ένα πρόγραμμα που ελέγχει την εκτέλεση των εφαρμογών
- Μια διεπαφή ανάμεσα στις εφαρμογές και το υλικό
- Παράδειγμα: read block from file ευκολότερο από τη σειρά εντολών που εμπλέκει τις λεπτομέρειες μετακίνησης της κεφαλής του δίσκου, την αναμονή για σταθεροποίηση κλπ

Στόχοι των ΛΣ:

- Εύκολα στη χρήση
- Αποδοτικά
- □ Ικανά να εξελιχθούν

Επίπεδα και Όψεις

Υπηρεσίες που παρέχει το ΛΣ

- Ανάπτυξη προγραμμάτων
 - Ερμηνευτής εντολών (interpreter) / shell
 - Παραθυρικά συστήματα (windows)
 - Μεταγλωττιστές (compilers)
 - Διορθωτές (editors & debuggers)
 - Αυτά δεν ανήκουν στο λειτουργικό (κατάσταση λειτουργίας πυρήνα και όχι χρήστη). Μπορεί κανείς να γράψει το δικό του μεταγλωττιστή όχι όμως το δικό του χειριστή διακοπών του ρολογιού
- Εκτέλεση προγραμμάτων
- Πρόσβαση σε συσκευές
- Ελεγχόμενη πρόσβαση σε αρχεία
- Πρόσβαση στο σύστημα

Υπηρεσίες που παρέχει το ΛΣ

- Ανίχνευση σφαλμάτων και απόκριση
 - Εσωτερικά και εξωτερικά σφάλματα υλικού
 - Σφάλματα λογισμικού
- Λογιστικά:
 - Συγκέντρωση στατιστικών χρήσης
 - Επίβλεψη επίδοσης
 - Χρήση για τον σχεδιασμό μελλοντικών βελτιώσεων
 - Χρήση για τιμολόγηση

Κυρίες και κύριοι: Το Λειτουργικό Σύστημα!!!

- Υπεύθυνο για τη διαχείριση πόρων
- Λειτουργεί όπως μια τυπική εφαρμογή
 - Είναι και αυτό πρόγραμμα... εκτελείται!
- Το λειτουργικό σύστημα παίρνει τον έλεγχο από τον επεξεργαστή

Το ΛΣ σαν Διαχειριστής Πόρων

Πυρήνας (Kernel)

- Το τμήμα του ΛΣ που βρίσκεται στη μνήμη
- Περιέχει τις πιο συχνά χρησιμοποιούμενες εντολές
- Αλλιώς λέγεται και nucleus
- Το κύριο τμήμα του ΛΣ
- Διαχείριση Διεργασιών και Αρχείων
- Προστατεύεται
 - Δεν ανήκει σε κανένα χρήστη
- Δύο καταστάσεις λειτουργίας
 - Kernel mode
 - User mode

Καταστάσεις λειτουργίας

- Κατάσταση λειτουργίας πυρήνα
 - Διαθέσιμο το σύνολο των εντολών επεξεργαστή και το σύνολο του υλικού
- Κατάσταση λειτουργίας χρήστη
 - Υποσύνολο εντολών και υποσύνολο υλικού όχι εντολές που εμπλέκουν προστασία μνήμης και διαχείριση Ε/Ε
- Ουσιαστικά δύο διαφορετικά επίπεδα, ανεξάρτητα από τα δικαιώματα του χρήστη

Η εξέλιξη των ΛΣ

- Νέες υπηρεσίες
- Κρίσιμες διορθώσεις (Fixes)

1. Σειριακή επεξεργασία

- Κανένα ΛΣ
- Οι μηχανές τρέχουν από μια κονσόλα με φωτάκια, κουμπιά, τερματικά εισόδου και εκτυπωτές
- Χρόνος προγραμματισμού

2. Απλό σύστημα δεσμών

- Παρακολουθεί
 - Λογισμικό το οποίο ελέγχει τις ακολουθίες των γεγονότων
 - Οργανώνει τις εργασίες μαζί
 - Το πρόγραμμα επιστρέφει τον έλεγχο στο monitor όταν ολοκληρώνει την εργασία του

Γλώσσα ελέγχου εργασιών

- Ένας ειδικός τύπος γλωσσών προγραμματισμού
- Δίνει οδηγίες στον παρακολουθητή (monitor)
 - Ποιόν μεταγλωττιστή να χρησιμοποιήσει
 - Ποια δεδομένα να χρησιμοποιήσει

2. Απλό σύστημα δεσμών (συν.)

- Χαρακτηριστικά Υλικού:
 - Προστασία μνήμης
 - ◆ Δεν επιτρέπει τη μεταβολή της περιοχής που περιέχει ο παρακολουθητής
 - Χρονοδιακόπτης
 - ◆ Δεν επιτρέπει σε μια εργασία να μονοπωλεί το σύστημα
 - Προνομιούχες εντολές
 - ◆ Συγκεκριμένες εντολές επιπέδου μηχανής μπορούν να εκτελεστούν μόνο από το monitor
 - Διακοπές
 - ◆ Τα πρώτα υπολογιστικά συστήματα δεν είχαν αυτή τη δυνατότητα

Προστασία μνήμης

- Τα προγράμματα χρηστών εκτελούνται σε κατάσταση χρηστώ (user mode)
 - Ορισμένες εντολές μπορεί να μην εκτελούνται
- Το monitor εκτελείται σε κατάσταση συστήματος (system mode)
 - Κατάσταση πυρήνα (Kernel mode)
 - Εκτελούνται οι προνομιούχες εντολές
 - Προστατευμένες περιοχές της μνήμης είναι δυνατόν να προσπελαστούν

Παράδειγμα χρήσης συστήματος

Εκτέλεση 100 εντολών 1 μs

Αποθήκευση μιας εγγραφής σε αρχείο 15 μs

Σύνολο 31 μs

Ποσοστό χρήσης CPU = 1/31 = 0.032 = 3.2%

Μονοπρογραμματισμός (Uniprogramming)

 Ο επεξεργαστής πρέπει να περιμένει τις εντολές Ι/Ο να ολοκληρωθούν για να συνεχίσει

3. Πολυπρογραμματισμός (Multiprogramming)

 Όσο μια εργασία περιμένει Ι/Ο, ο επεξεργαστής μπορεί να περάσει σε μια άλλη εργασία

Πολυπρογραμματισμός (συν.)

Παράδειγμα

	ΕΡΓΑΣΙΑ 1	ΕΡΓΑΣΙΑ 2	ΕΡΓΑΣΙΑ 3
Τύπος εργασίας	Ισχυρός υπολογιστικός φόρτος	Ισχυρή Ε/Ε	Ισχυρή Ε/Ε
Διάρκεια	5 min	10 min	10 min
Απαιτούμενη Μνήμη	50 K	100 K	80 K
Απαίτηση Δίσκου;	ΌXΙ	ΙΧΟ̈́	NAI
Απαίτηση Τερματικού;	ΌΧI	NAI	ΌΧΙ
Απαίτηση Εκτυπωτή;	OXI	OXI	NAI

Ιστογράμματα Χρήσης

4. Συστήματα Διαμοιρασμού Χρόνου (Time Sharing Systems)

- Χρησιμοποιούν πολυπρογραμματισμό για τη διαχείριση πολλαπλών διαδραστικών εργασιών
- Ο χρόνος του επεξεργαστή διαμοιράζεται ανάμεσα σε πολλούς χρήστες
- Πολλοί χρήστες μπορούν ταυτόχρονα να προσπελάσουν το σύστημα από διαφορετικά τερματικά

Πολυπρογραμματισμός δέσμης vs. Διαμοιρασμός Χρόνου

Μαζικός πολυπρογραμματισμός		Διαμοιραζόμενος Χρόνος
Κύριος στόχος	Μεγιστοποίηση χρήσης επεξεργαστή	Ελαχιστοποίηση χρόνου απόκρισης
Πηγή οδηγιών προς το ΛΣ	Εντολές γλώσσας ελέγχου εργασιών που παρέχονται με την εργασία	Εντολές που εισάγονται από το τερματικό

Λειτουργία CTSS

0 5000 Παρακολουθητής Εργασία 2 25000 Ελεύθερος χώρος

Εργασία 1:

Εργασία 2:

Εργασία 3:

Εργασία 4:

15.000

20.000

5.000

10.000

Κύρια επιτεύγματα

- 1. Διεργασίες
- 2. Διαχείριση μνήμης
- 3. Προστασία της πληροφορίας και ασφάλεια
- 4. Χρονοπρογραμματισμός και διαχείριση πόρων
- 5. Δομή συστήματος

1. Διεργασία

- Ένα πρόγραμμα σε εκτέλεση
- Ένα στιγμιότυπο προγράμματος που τρέχει σε ένα μηχάνημα
- Μια οντότητα που μπορεί να ανατεθεί και να εκτελεστεί σε έναν επεξεργαστή
- Μια μονάδα δράσης που χαρακτηρίζεται από:
 - Ένα μοναδικό ακολουθιακό νήμα εκτέλεσης
 - Μια τρέχουσα κατάσταση
 - Ένα συσχετιζόμενο σετ από πόρους συστήματος

Α. Συμεωνίδης

Διεργασία (συν.)

- Αποτελείται από τρία μέρη:
 - Ένα εκτελέσιμο πρόγραμμα
 - Σχετιζόμενα δεδομένα που είναι αναγκαία από το πρόγραμμα
 - Περιεχόμενο εκτέλεσης από το πρόγραμμα
 - ◆ Όλη η πληροφορία που χρειάζεται το ΛΣ για να διαχειρίζεται τη διεργασία (π.χ. Ποια αρχεία άνοιξε η διεργασία, σε ποια θέση)

Διεργασία (συν.)

Δυσκολίες στη σχεδίαση μηχανισμού διεργασιών

- Ανακριβής συγχρονισμός
- Μη επιτυχημένος αμοιβαίος αποκλεισμός
- Μη-τελεστική λειτουργία προγραμμάτων
- Αδιέξοδα (Deadlocks)

Παράδειγμα: Αδιέξοδα

- Το σταυροδρόμι με τα αυτοκίνητα
- Το δείπνο των φιλοσόφων
- Το πρόβλημα του καταναλωτή-παραγωγού

2. Διαχείριση Μνήμης

- Απομόνωση διεργασιών
- Αυτόματη ανάθεση και διαχείριση
- Υποστήριξη τμηματικού (modular) προγραμματισμού
- Προστασία και έλεγχος προσπέλασης
- Μακροπρόθεσμη αποθήκευση

Ιδεατή μνήμη

- Υλοποιεί τη μακροπρόθεσμη αποθήκευση
- Η πληροφορία αποθηκεύεται σε δομές που ονομάζονται αρχεία
- Επιτρέπει στους προγραμματιστές να αναφέρονται στη μνήμη από μια οπτική λογικής

Σελιδοποίηση (Paging)

- Επιτρέπει τη σύνθεση διεργασιών από έναν αριθμό από blocks σταθερού μεγέθους, τις ονομαζόμενες σελίδες
- Η ιδεατή διεύθυνση (virtual address) είναι ένας αριθμός σελίδας και ένας αντισταθμιστής μέσα σ' αυτήν
- Μια σελίδα μπορεί να βρίσκεται οπουδήποτε στην κύρια μνήμη
- Η πραγματική (real) ή φυσική (physical) διεύθυνση βρίσκεται στην κύρια μνήμη

Ιδεατή Μνήμη (συν.)

Διευθυνσιοδότηση ιδεατής μνήμης

3. Προστασία πληροφορίας & ασφάλεια

- Διαθεσιμότητα
 - Σχετίζεται με την προστασία του συστήματος από διακοπές
- Εμπιστευτικότητα
 - Επιβεβαιώνει ότι οι χρήστες δεν μπορούν να διαβάζουν δεδομένα για τα οποία η πρόσβαση απαγορεύεται
- Ακεραιότητα δεδομένων
 - Προστασία των δεδομένων από μη εξουσιοδοτημένη τροποποίηση
- Αυθεντικοποίηση (Authenticity)
 - Σχετίζεται με την ορθή επιβεβαίωση της ταυτότητας των χρηστών και την επικύρωση των μηνυμάτων ή δεδομένων

4. Χρονοπρογραμματισμός & Διαχείριση Πόρων

- Δικαιοσύνη (Fairness)
 - Απόδοση ίσων δικαιωμάτων πρόσβασης στους πόρους
- Διαφορική απόκριση (Differential responsiveness)
 - Διαχωρισμός ανάμεσα στις διαφορετικές κατηγορίες εργασιών
- Αποδοτικότητα
 - Μεγιστοποίηση ρυθμαπόδοσης (throughput), ελαχιστοποίηση χρόνου απόκρισης, και ικανοποίηση όσο το δυνατόν περισσότερων χρήσεων

Τα βασικά στοιχεία ενός ΛΣ

5. Δομή συστήματος

- Μελέτη του συστήματος σαν μια σειρά από επίπεδα
- Κάθε επίπεδο εκτελεί ένα συγκεκριμένο υποσέτ από λειτουργίες
- Κάθε επίπεδο εξαρτάται από το επόμενο χαμηλότερο επίπεδο για να εκτελέσει πιο βασικές λειτουργίες
- Από κατακερματίζει ένα πρόβλημα σε ένα αριθμό από μικρότερα, πιο εύκολα διαχειρίσιμα υποπροβλήματα

Επίπεδα

Επίπεδο 1

- Ηλεκτρονικά κυκλώματα
- Τα αντικείμενα είναι καταχωρητές, κελιά μνήμης και λογικές πύλες
- Οι λειτουργίες είναι του τύπου καθαρισμού καταχωρητών, ανάγνωσης μιας θέσης μνήμης κτλ.

Επίπεδο 2

- Το σετ εντολών του επεξεργαστή
- Οι λειτουργίες είναι του τύπου πρόσθεσε, αφαίρεσε, φόρτωσε, αποθήκευσε κτλ

Επίπεδο 3

 Προσθέτει την έννοια της διεργασίας ή υπορουτίνας, καθώς κα λειτουργίες κλήσης/επιστροφής (call/return)

Επίπεδα (συν.)

- Διακοπές

Επίπεδο 5

- Η διεργασία ως πρόγραμμα σε εκτέλεση
- Αναστολή και επανεκκίνηση δαιδικασιών

Επίπεδο 6

- Δευτερεύουσες συσκευές αποθήκευσης
- Μεταφορά blocks δεδομένων

Επίπεδο 7

- Δημιουργία ενός χώρου λογικών διευθύνσεων για διεργασίες
- Οργανώνει τον χώρο των εικονικών διευθύνσεων σε blocks

Χειρισμός εξωτερικών αντικειμένων

Επίπεδο 8

Ανταλλαγή πληροφοριών και μηνυμάτων ανάμεσα σε διεργασίες

Επίπεδο 9

- Υποστηρίζει τη μακροπρόθεσμη αποθήκευση αρχείων

Επίπεδο 10

Παρέχει πρόσβαση σε εξωτερικές συσκευές μέσα από καθιερωμένες διεπαφές

Χειρισμός εξωτερικών αντικειμένων

Επίπεδο 11

Υπεύθυνο για την διατήρηση των συσχετίσεων ανάμεσα στους εσωτερικούς και τους εξωτερικούς identifiers

Επίπεδο 12

Παρέχει ένα πλήρες περιβάλλον για την υποστήριξη των διεργασιών

Επίπεδο 13

Παρέχει το περιβάλλον διεπαφής του ΛΣ προς τον χρήστη

Σύγχρονα ΛΣ

- Αρχιτεκτονικές μικροπυρήνων
 - Ο πυρήνας παρέχει μόνο τις απόλυτα βασικές λειτουργίες
 - Χώρος διευθύνσεων
 - ◆ Επικοινωνία μεταξύ των διεργασιών (Interprocess communication – IPC)
 - Βασικός χρονοπρογραμματισμός
- Πολυνηματισμός (Multithreading)
 - Οι διεργασίες διαιρείται σε νήματα που μπορούν να τρέχουν ταυτόχρονα
 - Nήμα
 - Κατανεμητέα μονάδα εργασίας
 - Εκτελείται ακολουθιακά και μπορεί να διακοπεί
 - ◆ Η διεργασία είναι μια συλλογή από ένα ή περισσότερα νήματα

Σύγχρονα ΛΣ (συν.)

- Συμμετρική πολυεπεξεργασία (Symmetric multiprocessing – SMP)
 - Υπάρχουν πολλοί επεξεργαστές
 - Αυτοί οι επεξεργαστές μοιράζονται την ίδια κύρια μνήμη και τις υποδομές Ι/Ο
 - Όλοι οι επεξεργαστές μπορεί να εκτελούν τις ίδιες λειτουργίες

Πολυπρογραμματισμός και πολυεπεξεργασία

Σύγχρονα ΛΣ

Σύγχρονα ΛΣ

- Δημιουργούν την ψευδαίσθηση μιας μοναδικής κοινής μνήμης και ενός μοναδικού κοινού χώρου δευτερεύουσας μνήμης
- Αντικειμενοστραφής σχεδίαση
 - Χρησιμοποιείται για την κατ' αποκοπή προσθήκη επεκτάσεων σε έναν μικρό πυρήνα
 - Παρέχει στους προγραμματιστές τη δυνατότητα να παραμετροποιήσουν ένα ΛΣ χωρίς να επηρεάζουν την ακεραιότητα του συστήματος

Η αρχιτεκτονική των Windows

- Τμηματική δομή για ευελιξία
- Μπορεί να λειτουργήσει σε μια μεγάλη γκάμα από πλατφόρμες υλικού
- Υποστηρίζει τη χρήση εφαρμογών οι οποίες είναι γραμμένες για άλλα ΛΣ

Η αρχιτεκτονική των Windows (συν.)

Τμήματα κατάστασης πυρήνα (Kernel-Mode Components)

- Εκτελεστικός (Executive)
 - Περιέχει τις βασικές υπηρεσίες του ΛΣ
 - Διαχείριση μνήμης
 - ◆Διαχείριση διεργασιών και νημάτων
 - ◆Ασφάλεια
 - **♦**I/O
 - ◆Επικοινωνία ανάμεσα σε διεργασίες

Τμήματα κατάστασης πυρήνα (Kernel-Mode Components)

- Πυρήνας
 - Αποτελείται από τα περισσότερο χρησιμοποιούμενα τμήματα
- Επίπεδο αφαίρεσης υλικού (Hardware abstraction layer – HAL)
 - Απομονώνει το ΛΣ από πιθανές διαφοροποιήσεις στο υλικό

Τμήματα κατάστασης πυρήνα (Kernel-Mode Components)

- Οδηγοί συσκευών (Device drivers)
 - Μεταφράζουν τις κλήσεις συναρτήσεων Ι/Ο των χρηστών συγκεκριμένα αιτήματα υλικού στις συσκευές Ι/Ο
- Παραθυροποίηση και γραφικά συστήματα
 - Υλοποιούν το γραφικό περιβάλλον διεπαφής (graphical user interface GUI)

Windows Executive

- Διαχειριστής Ι/Ο
- Διαχειριστής κρυφής μνήμης
- Διαχειριστής Αντικειμένων
- Διαχειριστής «Plug and play»
- Διαχειριστής ενέργειας

Windows Executive

- Παρακολουθητής ασφάλειας
- Διαχειριστής εικονικής μνήμης
- Διαχειριστής διεργασιών/νημάτων
- Διαχειριστής παραμέτρων (Configuration manager)
- Υποδομή κλήσης τοπικών διαδικασιών (Local procedure call LPC)

Διεργασίες κατάστασης χρηστών (User-Mode Processes)

- Ειδικές διεργασίες συστήματος
 - Πχ: διαχειριστής συνεδριών (session manager), υποσύστημα αυθεντικοποίησης, διαχειριστής υπηρεσιών, διεργασία εισόδου (logon process)
- Διεργασίες υπηρεσιών
- Υποσυστήματα περιβάλλοντος
- Εφαρμογές χρήστη

Μοντέλο Πελάτη/Εξυπηρετητή

- Απλουστεύει την Executive
 - Είναι δυνατή η ανάπτυξη μιας ποικιλίας από APIs
- Βελτιώνει την αξιοπιστία
 - Κάθε εξυπηρετητής τρέχει έξω από τον πυρήνα,
 προστατευμένος από τους άλλος εξυπηρετητές
- Παρέχει έναν ενοποιημένο τρόπο (μέσω RPCs) για την επικοινωνία των εφαρμογών
- Παρέχει τη βάση για κατανεμημένη υπολογιστική

Νήματα και SMP

- Οι ρουτίνες του ΛΣ μπορεί να τρέχουν σε οποιονδήποτε διαθέσιμο επεξεργαστή
- Πολλά νήματα εκτέλεσης μέσα σε μια διεργασία μπορούν να εκτελούνται σε διαφορετικούς επεξεργαστές ταυτόχρονα
- Οι διεργασίες του εξυπηρετητή μπορεί να χρησιμοποιούν πολλαπλά νήματα
- Επιτρέπεται ο διαμοιρασμός δεδομένων και πόρων ανάμεσα στις διεργασίες

Αντικείμενα Windows

- Ενθυλάκωση (Encapsulation)
 - Τα αντικείμενα περιέχουν ένα ή περισσότερα αντικείμενα δεδομένων ή διεργασίες
- Κλάση και στιγμιότυπο αντικειμένου
 - Δημιουργία συγκεκριμένων στιγμιοτύπων ενός αντικειμένου
- Κληρονομικότητα (Inheritance)
- Πολυμορφισμός (Polymorphism)

UNIX

- Το λογισμικό του λειτουργικού συστήματος περιβάλλει το υλικό
- Παρέχει ένα σύνολο από υπηρεσίες χρηστών και διεπαφές
 - Κέλυφος (Shell)
 - Τμήματα του μεταγλωττιστή της γλώσσας C

Γενική αρχιτεκτονική UNIX

Παραδοσιακός πυρήνας UNIX

Σύγχρονος πυρήνας UNIX

Σύγχρονα συστήματα UNIX

- freeBSD v.7.0 (http://www.freebsd.org/)
- Solaris 10 (http://www.sun.com/software/solaris/index.jsp)

Linux

- Δεν χρησιμοποιεί την προσέγγιση του μικρο-πυρήνα
- Μια συλλογή από προγραμματιστικές ενότητες που μπορεί κανείς να τις φορτώσει
 - Δυναμική σύνδεση
 - Ενότητες που μπορούν να μπουν σε στοίβα

Modules πυρήνα Linux

Τμήματα πυρήνα Linux

Βασικά σημεία – Σύνοψη

- Οι βασικές έννοιες που εμπλέκονται στην ανάπτυξη και χρήση) ενός λειτουργικού συστήματος είναι:
 - Διεργασίες
 - Πυρήνας
 - Αδιέξοδα
 - E/E
 - Αρχεία
 - Ασφάλεια
- Πολυπρογραμματισμός και πολυεπεξεργασία βελτιώνουν τις επιδόσεις του υπολογιστικού συστήματος
- Οι τρεις κυρίαρχες γραμμές ΛΣ υιοθετούν διαφορετικές σχεδιαστικές επιλογές, οδηγώντας σε διαφορετικές αποκρίσεις συστήματος

Αναφορές

- "Λειτουργικά Συστήματα Αρχές Σχεδίασης", 4η έκδοση, W. Stallings, Εκδόσεις Τζιόλα, 2008.
- "Operating System Concepts", 7η έκδοση, από Abraham Silberschatz,
 Peter Galvin και Greg Gagne, Addison-Wesley, 2004.
- "Operating Systems: Design and Implementation", 3η έκδοση, από Andrew Tanenbaum και Albert Woodhull, Prentice Hall, 2006.
- Διαφάνειες Δ. Κεχαγιάς, "Λειτουργικά Συστήματα", 2007.

