DISTRIBUIÇÃO NORMAL

Introdução

Exemplo: Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população.

O histograma por densidade é o seguinte:

A análise do histograma indica que:

- a distribuição dos valores é aproximadamente simétrica em torno de 70 kg;

- a maioria dos valores (88%) encontra-se no intervalo (55;85);
- existe uma pequena proporção de valores abaixo de $48 \ kg \ (1,2\%)$ e acima de $92 \ kg \ (1\%)$.

Consideremos a variável aleatória

X: peso de uma pessoa adulta escolhida ao acaso da população (em kg).

Como se distribuem as probabilidades associadas aos valores da variável aleatória X, isto é, qual é a <u>distribuição de probabilidades</u> de X?

A curva contínua da figura denomina-se *curva Normal* (ou *curva de Gauss*).

A distribuição Normal é uma das mais importantes distribuições contínuas de probabilidade pois:

- Muitos fenômenos aleatórios comportam-se próximos a essa distribuição:
 - 1. altura;
 - 2. pressão sangüínea;
 - 3. Peso
 - 4. muitas outras.
- Pode ser utilizada para calcular, de forma aproximada, probabilidades para outras distribuições, como por exemplo, para a distribuição binomial (como veremos aula que vem).
 - → O modelo normal de probabilidade foi desenvolvido por Carl Friedrich Gauss

Nem todos os fenômenos se ajustam à distribuição Normal.

Exemplo: Considere a variável aleatória

Y: duração de uma lâmpada de certa marca selecionada ao acaso.

A experiência sugere que esta distribuição deve ser assimétrica - grande proporção de valores entre 0 e 500 horas e pequena proporção de valores acima de 1500 horas.

Modelos Contínuos de Probabilidade

Variável Aleatória Contínua

- Assume valores num intervalo de números reais.
- Não é possível listar individualmente todos os possíveis valores da variável aleatória contínua.
- Associamos probabilidades a intervalos de valores da variável.

Propriedades dos modelos contínuos:

Uma v.a. X contínua é caracterizada por sua *função densidade de probabilidade f(x)*, com as propriedades:

- (i) A área sob a curva de densidade é 1;
- (ii) $P(a \le X \le b)$ = área sob a curva da densidade f(x) e acima do eixo x, entre os pontos a e b;

(iii)
$$f(x) \ge 0$$
, para todo x ;

(iv)
$$P(X = x_0) = 0$$
, para x_0 fixo.

Assim,

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b).$$

A DISTRIBUIÇÃO NORMAL (ou Gaussiana)

A v. a. X tem <u>distribuição Normal</u> com parâmetros μ e σ^2 se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty.$$

Pode ser mostrado que:

- 1. μ é o valor esperado (média) de X, com - ∞ < μ < ∞ ;
- 2. σ^2 é a variância de X, com $\sigma^2 > 0$.

Notação : $X \sim N(\mu ; \sigma^2)$

Propriedades de $X \sim N(\mu; \sigma^2)$

- $E(X) = \mu$ (média ou valor esperado);
- $Var(X) = \sigma^2$ (e portanto, $DP(X) = \sigma$);
- $f(x) \to 0$, quando $x \to \pm \infty$;
- $x = \mu$ é ponto de máximo de f(x);
- μ σ e μ + σ são pontos de inflexão de f(x);
- a curva Normal é simétrica em torno da média μ.

A distribuição Normal depende dos parâmetros μ e σ^2

Curvas Normais com mesma variância σ^2 mas médias diferentes $(\mu_2 > \mu_1)$.

Influência de σ^2 na curva Normal

Curvas Normais com <u>mesma média</u> μ mas com <u>variâncias diferentes</u> $(\sigma_2 > \sigma_1)$.

Cálculo de probabilidades

$$P(a < X < b) = P(a \le X \le b)$$

Área sob a curva e acima do eixo horizontal (x) entre $a \in b$.

Se
$$X \sim N(\mu; \sigma^2)$$
, definimos

$$Z = \frac{X - \mu}{\sigma}$$

A v.a. $Z \sim N(0;1)$ denomina-se normal padrão ou reduzida.

Portanto,

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Dada a v.a. $Z \sim N(0;1)$ podemos obter a v.a. $X \sim N(\mu; \sigma^2)$ através da transformação inversa

$$X = \mu + Z \times \sigma$$
.

USO DA TABELA NORMAL PADRÃO

Denotamos : $A(z) = P(Z \le z)$, para $z \ge 0$.

Exemplo: Seja $Z \sim N(0; 1)$, calcular

a)
$$P(Z \le 0.32)$$

$$P(Z \le 0.32) = A(0.32) = 0.6255.$$

Encontrando o valor na Tabela N(0;1):

Z	0	1	2
0,0	0,5000	0,5039	0,5079
0,1	0,5398	0,5437	0,5477
0,2	0,5792	0,5831	0,5870
0,3	0,6179	0,6217	0,6255
•	•	•	•

<u>Tabela</u>

y------

b)
$$P(0 < Z \le 1,71)$$

$$= P(Z \le 1,71) - P(Z \le 0)$$

$$= A(1,71) - A(0)$$

$$= 0.9564 - 0.5 = 0.4564.$$

Obs.: A(0)=P(Z<0)=P(Z>0)=0,5.

c)
$$P(-1.32 < Z < 0) = P(0 < Z < 1.32)$$

$$= P(Z \le 1,32) - P(Z \le 0)$$

$$= A(1,32) - 0,5$$

$$= 0.9066 - 0.5 = 0.4066.$$

d) $P(1,32 < Z \le 1,79)$

$$= P(Z \le 1,79) - P(Z \le 1,32)$$

$$= A(1,79) - A(1,32)$$

$$= 0.9633 - 0.9066 = 0.0567.$$

e)
$$P(-2,3 < Z \le -1,49)$$

$$= P(1,49 \le Z < 2,3)$$

$$= A(2,3) - A(1,49)$$

$$= 0.9893 - 0.9319$$

$$= 0.0574.$$

f)
$$P(Z \ge 1.5)$$

$$= 1 - P(Z \le 1,5)$$

$$= 1 - A(1,5)$$

$$= 1 - 0.9332 = 0.0668.$$

g)
$$P(Z \le -1,3)$$

$$= P(Z \ge 1,3) = 1 - P(Z \le 1,3)$$
$$= 1 - A(1,3)$$

$$= 1 - 0.9032 = 0.0968.$$

<u>Tabela</u>

Obs.: Pela simetria, $P(Z \le -1.3) = P(Z \ge 1.3)$.

h)
$$P(-1,5 \le Z \le 1,5)$$

$$= P(Z \le 1,5) - P(Z \le -1,5)$$

$$= P(Z \le 1,5) - P(Z \ge 1,5)$$

$$= P(Z \le 1,5) - [1-P(Z \le 1,5)]$$

$$= 2 \times P(Z \le 1,5) -1 = 2 \times A(1,5) -1$$

$$= 2 \times 0,9332 - 1 = 0,8664.$$

i)
$$P(-1 \le Z \le 2)$$

$$= P(Z \le 2) - P(Z \le -1)$$

$$= A(2) - P(Z \ge 1) = A(2) - (1 - A(1))$$

$$= 0.9773 - (1 - 0.8413)$$

$$= 0.9773 - 0.1587 = 0.8186.$$

Como encontrar o valor z da distribuição N(0;1) tal que:

(i)
$$P(Z \le z) = 0.975$$

z é tal que A(z) = 0.975.

Pela tabela, z = 1,96.

(ii)
$$P(0 < Z \le z) = 0.4975$$

z é tal que
$$A(z) = 0.5 + 0.4975 = 0.9975$$
.

Pela tabela z = 2,81.

(iii)
$$P(Z \ge z) = 0.3$$

z é tal que
$$A(z) = 0,7$$
.

Pela tabela, z = 0.53.

$$a \in \text{tal que } A(a) = 0.975 \text{ e } z = -a.$$

Pela tabela a = 1,96.

Então, z = -1,96.

(v)
$$P(Z \le z) = 0.10$$

a é tal que A(a)=0,90 e z = -a. Pela tabela, a = 1,28 e, assim, z = - 1,28.

(vi)
$$P(-z \le Z \le z) = 0.80$$

$$z ext{ \'e tal que } P(Z < -z) = P(Z > z) = 0,1.$$

Isto é,
$$P(Z < z) = A(z) = 0.90$$

$$\Rightarrow$$
 z = 1,28 (pela tabela).

Exemplo: Seja $X \sim N(10; 64)$ ($\mu = 10, \sigma^2 = 64 \text{ e } \sigma = 8$)

Calcular: (a) $P(6 \le X \le 12)$

$$= P\left(\frac{6-10}{8} < \frac{X-10}{8} < \frac{12-10}{8}\right) = P + 0.5 < Z < 0.25$$

$$= A(0,25) - (1 - A(0,5))$$

$$= 0,5987 - (1 - 0,6915)$$

$$= 0,5987 - 0,3085 = 0,2902$$

(b) $P(X \le 8 \text{ ou } X > 14)$

$$= 1 - A(0,25) + 1 - A(0,5)$$
$$= 1 - 0,5987 + 1 - 0,6915$$
$$= 0,7098$$

c) *k* tal que
$$P(X \ge k) = 0.05$$

$$P(X \ge k) = 0.05 \Rightarrow P\left(\frac{X - 10}{8} \ge \frac{k - 10}{8}\right) = P\left(Z \ge \frac{k - 10}{8}\right) = 0.05.$$

Então,
$$z = \frac{k-10}{8} = 1,64.$$

Logo
$$k = 10 + 1,64 \times 8 = 23,12$$
.

Tabela

d) k tal que $P(X \le k) = 0.025$

$$P(X \le k) = 0.025 \Rightarrow P\left(\frac{X - 10}{8} \le \frac{k - 10}{8}\right) = P\left(Z \le \frac{k - 10}{8}\right) = 0.025.$$

Então,
$$\frac{k-10}{8} = -z = -1,96$$
.

Logo
$$k = 10 - 1,96 \times 8 = -5,68$$
.

Observação : Se $X \sim N(\mu ; \sigma^2)$, então

$$(i)P(\mu-\sigma \le X \le \mu+\sigma) = P\left(\frac{\mu-\sigma-\mu}{\sigma} \le Z \le \frac{\mu+\sigma-\mu}{\sigma}\right)$$

$$= P(-1 \le Z \le 1)$$

$$= 2 \times (A(1) - 0.5)$$

$$= 2 \times (0.8413 - 0.5)$$

$$= 0,6826$$

95,5%

99,7%

ou seja, $P(\mu - \sigma \le X \le \mu + \sigma) = 0.683$. Analogamente,

(ii)
$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 0.955$$
.

(iii)
$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) = P(-3 \le Z \le 3) = 0.997.$$

Tabela

Exemplo: O tempo gasto no exame vestibular de uma universidade tem distribuição Normal, com média 120 *min* e desvio padrão 15 *min*.

a) Sorteando-se um aluno ao acaso, qual é a probabilidade dele terminar o exame antes de 100 minutos?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$= 1 - A(1,33)$$

$$= 1 - 0.9082 = 0.0918.$$

b) Qual deve ser o tempo de prova, de modo a permitir que 95% dos vestibulandos terminem no prazo estipulado?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$P(X \le x) = 0.95 \Rightarrow P\left(Z \le \frac{x - 120}{15}\right) = 0.95$$

$$z = ?$$
 tal que $A(z) = 0.95$.

Pela tabela z = 1,64.

Então,
$$z = 1,64 = \frac{x - 120}{15}$$
 $\Rightarrow x = 120 + 1,64 \times 15$ $\Rightarrow x = 144,6 \text{ min.}$

Tabela

c) Qual é o intervalo de tempo, simétrico em torno da média (intervalo central), tal que 80% dos estudantes gastam para completar o exame?

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120, 15^2)$

$$P(x_1 \le X \le x_2) = 0.80 \Rightarrow P\left(\frac{x_1 - 120}{15} \le Z \le \frac{x_2 - 120}{15}\right) = 0.80$$

$$z = ?$$
 tal que $A(z) = 0.90$.

Pela tabela, z = 1,28.

$$-z = \frac{x_1 - 120}{15} = -1,28 \implies x_1 = 120 - 1, 28 \times 15 \implies x_1 = 100,8 \text{ min.}$$

$$z = \frac{x_2 - 120}{15} = 1,28 \implies x_2 = 120 + 1,28 \times 15 \implies x_2 = 139,2 \text{ min.}$$

					<u> </u>	<u> </u>	:				
		•	4		Segun 3				-		•
	0.0	0 0.5000	1 0.5040	2 0.5080	0.5120	4 0.5160	5 0.5199	6 0.5239	7 0.5279	8 0.5319	9 0.5359
	0.0	0.5398	0.5438	0.5478	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5793	0.5436	0.5478	0.5917	0.5948	0.5987	0.6026	0.6064	0.6103	0.5753
	0.2	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.3	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
_	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.8	0.9999	0.9999	0.9999	0.9999					0.9999	0.9999
	3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000