

27,969.2Avg Energy/Capita (kWH)

Temporal Trends of Per Capita

CO₂ Emissions, Energy

Consumption, and Economic

Efficiency (2000–2023)

A general decline in per capita emissions is observed despite an increase in energy consumption. The GDP/CO₂ ratio shows a gradual improvement, indicating a rise in emission efficiency.

Year	~
2000	2024
0	

name	~
Afghanistan	
Albania	
☐ Algeria	
Angeria American Sar	200
	IIOa
Andorra	
Angola	
Anguilla	
Antarctica	
Antigua and	Barbuda
Argentina	
Armenia	
Aruba	
Australia	
Austria	
Azerbaijan	
Bahamas	
Bahrain	
Bangladesh	
Barbados	
Belarus	
☐ Belgium ☐ Belize	
Benin	
Bermuda	
1 1 61 .	

749,909,313,352

CO2 Emmisions (Tonnes)

26,698.4

CO2 Emissions/Capita (Tonnes)

2000	24,229,917,333	108,194
Year	C02 Emmisions (Tonnes)	Energy (TWh)
2001	24,426,286,471	109,140
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2002	24,979,384,037	111,465
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2003	26,307,129,045	115,261
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2004 Year	27,168,117,157 C02 Emmisions (Tonnes)	121,021 Energy (TWh)
2005	28,100,444,289	125,108
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2006	29,047,825,536	128,808
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2007	29,888,894,932	132,791
Year	CO2 Emmisions (Tonnes)	Energy (TWh)
2008	30,403,480,713	134,472
Year	C02 Emmisions (Tonnes)	Energy (TWh)
2009	29.908.378.996	132.047

name	\vee
Afghanistan	
Albania	
Algeria	
American Samoa	
Andorra	
Angola	
Anguilla	
Antarctica	
Antigua and Barbuda	à
Argentina	
Armenia	
Aruba	
Australia	
Austria	
Azerbaijan	
Bahamas	
Bahrain	
Bangladesh	
Barbados	
Belarus	
Belgium	
Belize	
Benin	
Bermuda	
□ . .	

60T

50T

40T

30T

20T

Belize Benin Bermuda

Key Global Trends

- CO₂ Emissions per Capita increased steadily from 2000 to 2019, followed by a sharp decline in 2020 due to the COVID-19 pandemic. While emissions rebounded post-2020, they have not fully returned to pre-pandemic levels, indicating a possible long-term shift in energy demand and industrial activity.
- Energy Consumption per Capita followed a similar trajectory, with major disruptions during economic and health crises.

Regional Emission Shifts

- China became the largest CO₂ emitter in absolute terms (~35% of global emissions by 2023) and surpassed several developed countries in CO₂ per capita.
- India overtook the EU in total CO₂ emissions in 2023, becoming the world's third-largest emitter.
- Developing Asia now contributes nearly 50% of global CO₂ emissions, compared to ~25% in 2000.
- Developed economies (US, EU, Japan) still have ~70% higher emissions per capita than the global average, despite decreasing absolute emissions.

CO₂ Efficiency & Decoupling from GDP

- CO, intensity of GDP (CO, per \$GDP) has improved globally. In 2022, the world reached a record low of 0.386 tCO, eq per \$1000 PPP, a 2% decrease from 2021.
- This indicates progress toward "decoupling" economic growth from emissions: more economic output is being generated per tonne of CO₂.
- \bullet Countries like **Germany**, **UK**, and **Japan** have shown the greatest improvements in CO_2 efficiency.

Impact of Global Shocks

- 2008–2009 Global Financial Crisis: Significant drop in both emissions and energy demand.
- 2020 COVID-19 Pandemic: Record declines in energy use and CO₂ emissions due to reduced transportation, industrial slowdown, and global lockdowns.
- \bullet These events are clearly visible in year-over-year $\mathrm{CO}_{\!\scriptscriptstyle 2}$ and energy charts.

Top Insights

- The global energy landscape is shifting rapidly, with emerging economies driving both demand and emissions.
- Efficiency gains are evident, as GDP is growing faster than CO₂ emissions in many countries.
- The energy transition remains uneven while developed countries reduce emissions, global totals remain high due to rapid industrialization elsewhere.
- Global climate goals will depend heavily on how China, India, and Southeast Asia manage their future energy mix and economic growth.