CLAIMS

1	1. A composite material comprising:
2	a first component which is a metal phosphate; and
3	a second component which is selected from the group consisting of:
4	metal nitrides, metal oxynitrides, and combinations thereof.
1	2. The material of claim 1, wherein said metal phosphate is a
2	lithiated metal phosphate.
1	3. The composite material of claim 1, wherein said first component
2	comprises a core and said second component is present on at least a portion of
3	the surface of said core.
1	4. The composite material of claim 1, wherein said second
2	component is disposed in at least a portion of the bulk of said first component.
1	5. The composite material of claim 1, wherein said metal
2	phosphate is a transition metal phosphate.
1	6. The composite material of claim 5, wherein said transition metal
2	is selected from the group consisting of Fe, V, Mn, and combinations thereof.

TJT-13902/16 40102aka/gs

4

1	7. The composite material of claim 1, wherein said first component		
2	has an olivine or nasicon structure.		
1	8. The composite material of claim 1, wherein said second		
2	component is selected from the group consisting of transition metal nitrides,		
3	transition metal oxynitrides, and combinations thereof.		
1	9. The composite material of claim 1, further including a dopant.		
1	10. The composite material of claim 9, wherein said dopant is		
2	selected from the group consisting of: carbon, a metal ion having a +2 valence,		
3	a metal ion having a +3 valence, Nb ⁺⁵ , Zr ⁺⁴ , Ti ⁺⁴ , W ⁺⁶ , and combinations		
4	thereof.		
1	11. The composite material of claim 1, wherein said first component		
2	is substitutionally doped at the phosphate site by a member selected from the		
3	group consisting of: halogens, $(SO_4)^{-2}$, $(SiO_4)^{-4}$, $(TiO_4)^{-4}$, $(AlO_3)^{-3}$, and		
4	combinations thereof.		
1	12. An electrode comprising a composite material, said composite		
2	material comprising: a first component which is a metal phosphate, and a		
3	second component which is selected from the group consisting of: metal		

nitrides, metal oxynitrides, and combinations thereof.

1	13.	The electrode of claim 12, wherein said metal phosphate is a
2	lithiated meta	al phosphate.
1	14.	The electrode of claim 12, wherein said first component
2	comprises a	core and said second component is present on at least a portion of
3	the surface of	f said core
J	the barrace of	i suid voic.
1	15.	The electrode of claim 12, wherein said second component is
2	dispersed in a	at least a portion of the bulk of said first component.
1	16.	The electrode of claim 12, wherein said first component is a
		•
2	transition me	tal phosphate.
1	17.	The electrode of claim 16, wherein said second component is
2	selected from	the group consisting of transition metal nitrides, transition metal
3	ox vnitrides, a	and combinations thereof.
_		
		·
1	18.	The electrode of claim 12, where said metal phosphate has an
2	olivine or a n	asicon structure.
1	19.	The electrode of claim 12, wherein said composite material
		•
2	includes a do	рапі.

1	20. A method of making a composite material, said method
2	comprising the steps of:
3	providing a plurality of precursor compounds, said precursor
4	compounds including: a metal containing compound, a lithium containing
5	compound, and a phosphorous containing compound;
6	mixing said plurality of precursor compounds so as to form a mixture
7	thereof;
8	calcining said mixture so as to produce a lithiated phosphate of said
9	metal; and
10	subjecting said lithiated phosphate of said metal to a nitriding process
11	wherein a portion of said lithiated phosphate of said metal is converted to a
12	nitride or an oxynitride of said metal.
1	21. The method of claim 20, wherein the step of mixing comprises
2	milling.
1	22. The method of claim 21, wherein said step of milling comprises
2	ball milling.
1	23. The method of claim 20, wherein said compound of a metal
2	comprises a compound of at least one transition metal.

TJT-13902/16 40102aka/gs

1

2

1

2

3

28.

includes ammonia.

1 24. The method of claim 23, wherein said transition metal is selected from the group consisting of: Fe, V, Mn, and combinations thereof. 2 The method of claim 20, wherein the step of providing a 1 25. plurality of precursor compounds further comprises providing a dopant 2 precursor compound. 3 The method of claim 25, wherein said dopant precursor 26. 1 compound includes a member selected from the group consisting of: Nb, Mg, 2 Zr, Ti, Al, and combinations thereof. 3 27. The method of claim 20, wherein the step of subjecting said 1 2 lithiated phosphate of said metal to a nitriding process comprises heating said lithiated phosphate of said metal to an elevated temperature in the presence of a 3 4 nitriding atmosphere.

29. A lithium battery having a cathode comprised of a composite material said composite material comprising a first component which is a lithiated transition metal phosphate having an olivine or nasicon structure, and

The method of claim 27, wherein said nitriding atmosphere

TJT-13902/16 40102aka/gs

- a second component which is selected from the group consisting of transition
 metal nitrides, transition metal oxynitrides, and combinations thereof.
- 1 30. The battery of claim 29, wherein said composite material further includes a dopant.
- The battery of claim 29, wherein said first component of said composite material comprises a core and said second component is present on at least a portion of the surface of said core.
- 1 32. The battery of claim 29, wherein said second component of said composite material is disposed in at least a portion of the bulk of said first component of said composite material.