Sample Question Paper - 1 Class- IX Session- 2021-22 TERM 2

Subject- Mathematics

Time Allowed: 2 hour Maximum Marks: 40

General Instructions:

- *(i)* The question paper consists of 14 questions divided into 3 sections A, B and C.
- (ii) All questions are compulsory.
- (iii) Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- (iv) Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- (v) Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

Section - A

(2 Marks each)

- **1.** Find the value of the polynomial $p(x) = x^3 3x^2 2x + 6$ at $x = \sqrt{2}$
- **2.** Factorize: $64a^3 27b^3 144a^2b + 108ab^2$

OR

Find the value of k, so that polynomial $x^3 + 3x^2 - kx - 3$ has one factor as x + 3.

- **3.** In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angle.
- **4.** In the figure, if $\angle DAB = 60^{\circ}$, $\angle ABD = 50^{\circ}$, then find $\angle ACB$.

OR

If a line intersects two concentric circles with common centre O, at A, B, C and D. Prove that AB = CD.

5. A coin is tossed 1200 times with the following outcomes:

Head: 455, Tail: 745

Compute the probability for: (i) getting head, (ii) getting tail.

6. A die is rolled 200 times and its outcomes are recorded as below:

Outcome	1	2	3	4	5	6
Frequency	25	35	40	28	42	30

Find probability of getting:

- (i) An even prime
- (ii) A multiple of 3.

Section - B

(3 Marks each)

- **7.** If $f(x) = 5x^2 4x + 5$, find f(1) + f(-1) + f(0).
- **8.** Construct $\angle POY = 30^{\circ}$, using compass and ruler.
- **9.** If ab + bc + ca = 0, then find the value of $\frac{1}{a^2 bc} + \frac{1}{b^2 ca} + \frac{1}{c^2 ac}$.
- **10.** Find the radius of the base of a right circular cylinder whose curved surface area is $\frac{2}{3}$ of the sum of the surface areas of two circular faces. The height of the cylinder is given to be 15 cm.

OR

The radius and slant height of a cone are in the ratio 4: 7. If its curved surface area is 792 cm², find its radius.

Section - C

(4 Marks each)

- **11.** In the given figure, ABCD is a parallelogram. P and Q are the mid-points of AB and DC. Show that:
 - (i) APCQ is a parallelogram.
 - (ii) DPBQ is a parallelogram.
 - (iii) PSQR is a parallelogram.

12. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (Use $\pi = 3.14$).

OR

Twenty-seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S'. Find the (i) radius R' of the new sphere, (ii) ratio of S' and S.

Case Study-1

13. Read the following text and answer the following questions on the basis of the same:

Beti Bachao, Beti Padhao (BBBP) is a personal campaign of the Government of India that aims to generate awareness and improve the efficiency of welfare services intended for girls.

In a school, a group of (x + y) teachers, $(x^2 + y^2)$ girls and $(x^3 + y^3)$ boys organised a campaign on Beti Bachao, Beti Padhao.

- (i) If in the group, there are 10 teachers and 58 girls, then what is the number of boys? [2]
- (ii) If x y = 23, then find $x^2 y^2$. [2]

Case Study-2

14. Read the following text and answer the following questions on the basis of the same:

A circular park of radius 20 m is situated in a colony. Three boys Anant, Bibhav and Chandra are sitting at equal distances on its boundary, each having a toy telephone in his hands to talk to each other.

Here, A, B and C be the positions of Anant, Bibhav and Chandra and also let D, E and F are the medians of $\triangle ABC$ and G be its centroid.

- (i) What is length of GD? [2]
- (ii) Find the length of BD. [2]

Solution

Section - A

1. Given,
$$p(x) = x^3 - 3x^2 - 2x + 6$$

Then,
$$p(\sqrt{2}) = (\sqrt{2})^3 - 3(\sqrt{2})^2 - 2(\sqrt{2}) + 6$$
 1
= $2\sqrt{2} - 6 - 2\sqrt{2} + 6$
= 0

2.
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

= $(4a)^3 - (3b)^3 - 3 \times (4a)^2 \times (3b) + 3 \times (4a) \times (3b)^2$ 1
[Using identity, $x^3 - y^3 - 3x^2y + 3xy^2 = (x - y)^3$]
= $(4a - 3b)^3$.

Commonly Made Error

• While factorizing the sum, the students factorize once and leave the answer without checking.

Answering Tip

• Students should be particular and check whether an expression can be further factorize otherwise they tend to miss one step and thereby deduct their marks.

Let
$$f(x) = x^3 + 3x^2 - kx - 3$$

Since, $(x + 3)$ is a factor of $f(x)$.
Then, $f(-3) = 0$ 1
or, $(-3)^3 + 3(-3)^2 - k(-3) - 3 = 0$
or, $-27 + 27 + 3k - 3 = 0$
or, $3k - 3 = 0$
or, $k = 1$. 1

3. Let ABCD be a parallelogram, then

$$\angle ADC + \angle BCD = 180^{\circ}$$

[Co-interior angles]

or,
$$\frac{1}{2} \angle ADC + \frac{1}{2} \angle BCD = 90^{\circ}$$
 [Divide by 2]
or $\angle 2 + \angle 1 = 90^{\circ}$ ½

In ΔODC,

$$\angle 1 + \angle 2 + \angle DOC = 180^{\circ}$$

[Angle sum property of a triangle]

$$\angle DOC = 90^{\circ}$$
.

1

Hence, the angle bisectors of two adjacent angles intersect at 90°.

4. In ΔADB,

:.

By angle sum property

$$\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$$

∴
$$50^{\circ} + \angle ADB + 60^{\circ} = 180^{\circ}$$

∴ $\angle ADB = 180^{\circ} - (50^{\circ} + 60^{\circ})$
 $= 70^{\circ}$ ½
∴ $\angle ACB = \angle ADB = 70^{\circ}$. ½

[: angles in the same segment of a circle are equal] hence, \angle ACB = 70°

Draw OP perpendicular to XY from the centre O to a chord BC and bisecting it.

$$OP \perp to chord BC.$$
 1/2

or,
$$BP = PC$$

Similarly,
$$AP = PD$$

...(ii) ½

...(i)

Hence Proved. 1

AP = PD

Subtracting eqn. (i) from eqn. (ii), we get

$$AP - BP = PD - PC$$

5. (i) Number of favorable outcomes
$$n(A) = 455$$

Total outcomes $n(S) = 455 + 745 = 1200$

AB = CD

Probability of getting head =
$$\frac{n(A)}{n(S)}$$
 1
$$= \frac{455}{1200} = \frac{91}{240}$$

(ii) Number of favourable outcomes n(B) = 745Total outcomes n(S) = 1200

Probability of getting tail =
$$\frac{n(B)}{n(S)}$$

= $\frac{745}{1200} = \frac{149}{240}$ 1

Commonly Made Error

• Students directly find out the probability without listing the possible and total outcomes.

Answering Tip

or,

- Steps carry marks so students should first list the favourable and total outcomes and then find the probability.
- **6.** (i) An even prime number *i.e.*, '2'.

$$\therefore P(\text{getting an even prime number}) = \frac{35}{200}$$

$$= \frac{7}{40} \quad 1$$

(ii) Multiple of 3 *i.e.*, 3 and 6

P(getting multiple of 3) =
$$\frac{40 + 30}{200}$$

= $\frac{70}{200}$
= $\frac{7}{20}$ 1

[CBSE Marking Scheme, 2016]

Section - B

7. Given,
$$f(x) = 5x^2 - 4x + 5$$

 $f(1) = 5 - 4 + 5$
 $f(2) = 5 - 4 + 5$
 $f(3) = 5 - 4 + 5$
 $f(4) = 5 - 4 + 5$
 $f(5) = 6$
and $f(5) = 5 - 4 + 5$

and
$$f(0) = 5$$
 1
 $f(1) + f(-1) + f(0) = 6 + 14 + 5 = 25$. 1

= 5 + 4 + 5 = 14

- **8.** Steps of Construction :
 - (i) Draw any line OP.
 - With O as centre and any suitable radius, draw an arc to meet OP at R.
 - (iii) With R as centre and same radius (as in step (ii)), draw an arc to intersect the previous arc at S.
 - (iv) Join OS and produce it to Q, then $\angle POO = 60^{\circ}$.
 - With R as centre and any suitable radius $(> \frac{1}{2}$ RS), draw an arc. Also, with S as

centre and same radius draw another arc to intersect the previous arc at Y.

(vi) Join OY. ∠POY is the required angle of

Commonly Made Error

Students have to draw angles using compass and ruler while doing construction. They draw angles with protractor and there by getting less marks.

Answering Tip

Students should do the practice of basic construction of angles of 60°, 30°, 45° etc.

9.
$$ab + bc + ca = 0$$
 ...(i)
 $\Rightarrow -bc = ab + ca$...(ii)
 $-ca = ab + bc$...(iii)
and $-ab = bc + ca$...(iv) 1
Now, $\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$
 $= \frac{1}{a^2 + ab + ca} + \frac{1}{b^2 + ab + bc} + \frac{1}{c^2 + bc + ca}$ $\frac{1}{2}$ [Using (i), (iii) & (iv)]
 $= \frac{1}{a(a+b+c)} + \frac{1}{b(a+b+c)} + \frac{1}{c(a+b+c)}$ $\frac{1}{2}$

$$= \frac{1}{a(a+b+c)} + \frac{1}{b(a+b+c)} + \frac{1}{c(a+b+c)}$$
 1/2

$$= \frac{1}{a+b+c} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$
 1/2

$$= \frac{bc + ca + ab}{abc(a+b+c)}$$
 [Using (i)]
$$= 0$$
 1/2

10. Let the radius and height of the cylinder be *r* and *h* respectively, then

$$h = 15 \text{ cm}$$
 [given]

C.S.A. of the cylinder = $\frac{2}{3}$

(Sum of areas of 2 circular faces) 1

$$2\pi rh = \frac{2}{3} (2\pi r^2)$$

$$h = \frac{2}{3} r$$

$$15 = \frac{2}{3}r$$

Or, r = 22.5 cm. 1

Let the radius of cone be r = 4x

and slant height l = 7x 1 :: CSA of a cone = 792 cm^2 [given]

$$\therefore \qquad \pi r l = 792$$

or,
$$\frac{22}{7} \times 4x \times 7x = 792$$
 \frac{1}{2}

$$x^2 = \frac{792 \times 7}{22 \times 4 \times 7} = 9$$
 \frac{1}{2}

or, x = 3

$$\therefore \quad \text{radius} = 4 \times 3$$
$$= 12 \text{ cm}.$$

Section - C

11. (i) Since, ABCD is a parallelogram

$$AB = CD \text{ and } AB \parallel CD$$

$$Q \qquad C$$

or,
$$\frac{1}{2}AB = \frac{1}{2}CD$$

i.e.,
$$AP = CQ$$
 and $AP \parallel CQ$

Hence, APCQ is a parallelogram.

Proved. 1

1

1

(ii) Again,

$$\frac{1}{2}AB = \frac{1}{2}CD$$

[From part (i)]

i.e., PB = DQ and $PB \parallel DQ$

Hence, DPBQ is a parallelogram.

Proved. 1

(iii) QS || PR and SP || QR Hence, PSQR is a parallelogram.

Proved. 1

12. Given, Conical tent: height (h) = 8 m

$$l^2 = 8^2 + 6^2$$

 $l = \sqrt{64 + 36} = 10 \text{ m}$ 1

C.S.A of tent =
$$\pi r l$$
 unit²
= $3.14 \times 6 \times 10 \text{ m}^2$
= 188.4 m^2

Area of Tarpaulin = C.S.A of tent width \times length of tarpaulin = 188.4 m² $3 \times$ length of tarpaulin = 188.4 m²

length of tarpaulin =
$$\frac{188.4}{3}$$
 = 62.8 m 1

Extra length required for stitching and wastage of cutting

$$= 20 \text{ cm} = 0.20 \text{ m}$$

:. Total length of tarpaulin

$$= 62.8 + 0.2 = 63 \,\mathrm{m}$$

OR

Given: radius of each sphere = r

Volume of 1 solid iron sphere = $\frac{4}{3}\pi r^3$ ½

Volume of 27 solid iron spheres = $\frac{4}{3} \pi r^3 \times 27$

Volume of new sphere = $\frac{4}{3} \times 27\pi r^3$ ½

Let radius of now sphere be R, then according to given condition,

Volume of new sphere made after melting 27 spheres = Volume of 27 spheres

$$\frac{4}{3}\pi R^3 = \frac{4}{3} \times 27\pi r^3$$

$$R^3 = 27r^3$$

$$R = 3r \text{ unit}$$

(i)
$$R = 3r \text{ unit}$$
 1
(ii) Surface area of new sphere $= 4\pi R^2$ $S' = 4\pi \times (3r)^2$ $S' = 4\pi \times 9r^2 \text{ unit}^2$ Surface area of Sphere (S) $= 4\pi r^2$

Now,
$$\frac{S'}{S} = \frac{4\pi \times 9r^2}{4\pi r^2} = \frac{9}{1}$$

 $S': S = 9: 1$

1

Case Study-1

13. (i) No. of teachers=
$$x + y = 10$$

 $\Rightarrow (x + y)^2 = (10)^2$
 $\Rightarrow x^2 + y^2 + 2xy = 100$...(i)
No. of girls = $(x^2 + y^2) = 58$
 $\Rightarrow 58 + 2xy = 100$
...using equation (i)
 $\Rightarrow 2xy = 100 - 58$ 1
 $\Rightarrow 2xy = 42$

$$\Rightarrow xy = \frac{42}{2}$$

$$\Rightarrow xy = 21$$
Now, since $(x + y)^3 = [x^3 + y^3 + 3xy(x + y)]$

$$\Rightarrow (10)^3 = [x^3 + y^3 + 3 \times 21(10)]$$

$$\Rightarrow 1000 = (x^3 + y^3 + 630)$$

$$\Rightarrow 1000 - 630 = (x^3 + y^3)$$

$$\Rightarrow (x^3 + y^3) = 370$$
1

(ii) Given
$$x-y=23$$

Also, $x+y=10$
[Taking from part (i)] $x^2-y^2=(x+y)(x-y)$ 1

Hence, no. boys = 370

=
$$10 \times 23 = 230$$

Hence, the value of $x^2 - y^2$ is 230. 1
Case Study-2

14. (i) Since, the centroid of a triangle divides the median in the ratio 2:1, then 1

$$\frac{GA}{GD} = \frac{2}{1}$$

$$\Rightarrow \frac{20}{GD} = \frac{2}{1}$$

$$\Rightarrow GD = 10 \text{ m}$$
1

(ii) Here, BG = 20 m[given] and GD = 10 m[Proved in part (i)] ··· BD = DC[given] $\angle BDG = 90^{\circ} \ [\because G \text{ is a centroid}] \mathbf{1}$ In right ΔBDG, $(BG)^2 = (BD)^2 + (GD)^2$ [Using Pythagoras Theorem] $(20)^2 = (BD)^2 + (10)^2$ $BD = \sqrt{400 - 100}$ \Rightarrow $=\sqrt{300}$

 $= 10\sqrt{3}$ m.

1