# ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable SoC User Guide

UG954 (v1.3) July 31, 2013





#### Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at <a href="http://www.xilinx.com/warranty.htm">http://www.xilinx.com/warranty.htm</a>; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: <a href="http://www.xilinx.com/warranty.htm#critapps">http://www.xilinx.com/warranty.htm#critapps</a>.

#### **Automotive Applications Disclaimer**

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE ERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2012, 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners

# **Revision History**

The following table shows the revision history for this document.

| Date       | Version | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/08/2012 | 1.0     | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11/21/2012 | 1.1     | Added additional user LED in ZC706 Evaluation Board Features section, Table 1-1, User I/O section, Figure 1-25, and Table 1-28. In Table 1-1, added fan sink information and updated notes for 10/100/1000 Ethernet PHY, user pushbuttons, user DIP switch, and FPGA PROG pushbutton. Added Encryption Key Backup Circuit section. Updated second paragraph in DDR3 SODIMM Memory (PL) section. Updated second paragraph in SD Card Interface section. Updated Table 1-11. Added U53 information to first paragraph in HDMI Video Output section. Added fourth bullet to Real Time Clock (RTC) section. Updated Figure 1-23. Added pin A17 to Table 1-28. Updated Figure 1-32. Replaced UCF in Appendix C. Added additional reference to References in Appendix F. |

| Date       | Version | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04/24/2013 | 1.2     | Chapter 1, ZC706 Evaluation Board Features: Table 1-1 feature descriptions are now linked to their respective sections in the book. Figure 1-2, Figure 1-33, and Figure 1-34 were replaced. Table 1-2 was removed because it was a duplicate of Table 1-11. Table 1-2: Switch SW11 Configuration Option Settings was added. FMC Connector JTAG Bypass, page 33 was updated. Default lane size information below Figure 1-17 was changed. Figure 1-18 PCI Express Lane Size Select Jumper J19 was added. The names of pins 18 and 19 changed in Table 1-17. The address of I <sup>2</sup> C bus PMBUS_DATA/CLOCK changed in Table 1-25. Reference designator DS35 was added to Table 1-27. Callout numbers in the User I/O, page 57 section are now linked to Table 1-1. SW13 information was added to the section User Pushbuttons, page 59. In Table 1-33, J5 pin H22 changed to XC7Z045 (U1) pin AH26 and H23 changed to AH27. The section ZC706 Board Power System, page 72 was added. Voltage levels were changed in VADJ Voltage Control, page 79. Table 1-37 was modified and Table 1-38 was added.  Appendix A, Default Switch and Jumper Settings: The SW11 selection in Table A-1 changed.  Appendix G, Regulatory and Compliance Information: A link to the master answer record was added. |
| 07/31/2013 | 1.3     | Updated Table 1-22. Replaced the master User Constraints File (UCF) list in Appendix C, Master Constraints File Listing with the master Xilinx Design Constraints (XDC) list. Updated references throughout the document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



# **Table of Contents**

| pter 1: ZC706 Evaluation Board Features               |  |
|-------------------------------------------------------|--|
| <b>Overview</b> ZC706 Evaluation Board Features       |  |
|                                                       |  |
| Block Diagram                                         |  |
| Board Layout                                          |  |
| eature Descriptions                                   |  |
| Zynq-7000 XC7Z045 AP SoC                              |  |
| Device Configuration                                  |  |
| Encryption Key Backup Circuit                         |  |
| I/O Voltage Rails                                     |  |
| DDR3 SODIMM Memory (PL)                               |  |
| DDR3 Component Memory (PS)                            |  |
| Quad-SPI Flash Memory                                 |  |
| USB 2.0 ULPI Transceiver                              |  |
| SD Card Interface                                     |  |
| Programmable Logic JTAG Programming Options           |  |
| Programmable Logic JTAG Select Switch                 |  |
| FMC Connector JTAG Bypass                             |  |
| Clock Generation                                      |  |
| System Clock                                          |  |
| Programmable User Clock                               |  |
| User SMA Clock Source                                 |  |
| GTX SMA Clock (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N) |  |
| Jitter Attenuated Clock                               |  |
| GTX Transceivers                                      |  |
| PCI Express Endpoint Connectivity                     |  |
| SFP/SFP+ Module Connector                             |  |
| 10/100/1,000 Mb/s Tri-Speed Ethernet PHY (PL)         |  |
| Ethernet PHY Clock Source                             |  |
| USB-to-UART Bridge                                    |  |
| HDMI Video Output                                     |  |
| I2C Bus                                               |  |
| Real Time Clock (RTC)                                 |  |
| Status and User LEDs.                                 |  |
| Ethernet PHY User LEDs                                |  |
| User I/O                                              |  |
| User LEDs                                             |  |
| User Pushbuttons                                      |  |
| GPIO DIP Switch                                       |  |
| User PMOD GPIO Headers                                |  |
| Switches                                              |  |



| Power On/Off Slide Switch                         |     |
|---------------------------------------------------|-----|
| Program_B Pushbutton                              |     |
| PS Power-On and System Reset Pushbuttons          |     |
| FPGA Mezzanine (FMC) Card Interface               |     |
| HPC Connector J37                                 |     |
| LPC Connector J5                                  |     |
| ZC706 Board Power System                          |     |
| UCD90120A Description                             |     |
| TPS84K Family Regulator Description               |     |
| LMZ22000 Family Regulator Description             |     |
| XADC Power System Measurement                     |     |
| Power Management                                  |     |
| AP SoC Programmable Logic (PL) Voltage Control    |     |
| Monitoring Voltage and Current                    |     |
| Cooling Fan                                       |     |
| XADC Analog-to-Digital Converter                  |     |
| Appendix A: Default Switch and Jumper Settings    |     |
| Switches                                          | 85  |
| Jumpers                                           |     |
| Junipers                                          | 03  |
| Appendix B: VITA 57.1 FMC Connector Pinouts       |     |
| Appendix C: Master Constraints File Listing       |     |
| ZC706 Evaluation Board XDC Listing                | 90  |
| Appendix D: Board Setup                           |     |
| ••                                                |     |
| Installing the ZC706 Board in a PC Chassis        | 104 |
| Appendix E: Board Specifications                  |     |
|                                                   | 40. |
| Dimensions                                        |     |
| Environmental                                     |     |
| Temperature                                       | 106 |
| Humidity                                          |     |
| Operating Voltage                                 |     |
| Appendix F: Additional Resources                  |     |
| ••                                                |     |
| Xilinx Resources                                  |     |
| Solution Centers                                  | 107 |
| Further Resources                                 |     |
|                                                   |     |
| References                                        | 108 |
| Appendix G: Regulatory and Compliance Information |     |
|                                                   | 444 |
| Declaration of Conformity                         |     |
| Directives                                        | 110 |



| Standards                     | 110  |
|-------------------------------|------|
| Electromagnetic Compatibility |      |
| Safety                        | .111 |
| Markings                      | 111  |



# ZC706 Evaluation Board Features

# Overview

The ZC706 evaluation board for the XC7Z045 All Programmable SoC (AP SoC) provides a hardware environment for developing and evaluating designs targeting the Zynq®-7000 XC7Z045-2FFG900C AP SoC. The ZC706 evaluation board provides features common to many embedded processing systems, including DDR3 SODIMM and component memory, a four-lane PCI Express® interface, an Ethernet PHY, general purpose I/O, and two UART interfaces. Other features can be supported using VITA-57 FPGA mezzanine cards (FMC) attached to the low pin count (LPC) FMC and high pin count (HPC) FMC connectors.

### **ZC706 Evaluation Board Features**

The ZC706 evaluation board features are listed in here. Detailed information for each feature is provided in Feature Descriptions starting on page 14.

- Zynq-7000 XC7Z045-2FFG900C AP SoC
- 1 GB DDR3 memory SODIMM on the programmable logic (PL) side
- 1 GB DDR3 component memory (four [256 Mb x 8] devices) on the processing system (PS) side
- Two 128 Mb Quad-SPI (QSPI) flash memory (Dual Quad-SPI)
- USB 2.0 ULPI (UTMI+ low pin interface) transceiver with micro-B USB connector
- Secure Digital (SD) connector
- USB JTAG interface via Digilent module with micro-B USB connector
- Clock sources:
  - Fixed 200 MHz LVDS oscillator (differential)
  - I<sup>2</sup>C programmable LVDS oscillator (differential)
  - Fixed 33.33 MHz LVCMOS oscillator (single-ended)
  - Subminiature version A (SMA) connectors (differential)
  - SMA connectors for GTX transceiver clocking (differential)



- GTX transceivers
  - FMC HPC connector (eight GTX transceivers)
  - FMC LPC connector (one GTX transceiver)
  - SMA connectors (one pair each for TX, RX and REFCLK)
  - PCI Express (four lanes)
  - Small form-factor pluggable plus (SFP+) connector
  - Ethernet PHY RGMII interface
- PCI Express endpoint connectivity
  - Gen1 4-lane (x4)
  - Gen2 4-lane (x4)
- SFP+ Connector
- Ethernet PHY RGMII interface with RJ-45 connector
- USB-to-UART bridge with mini-B USB connector
- HDMI codec with HDMI connector
- I<sup>2</sup>C bus
- I<sup>2</sup>C bus multiplexed to:
  - Si570 user clock
  - ADV7511 HDMI codec
  - M24C08 EEPROM (1 kB)
  - 1-to-16 TCA6416APWR port expander
  - DDR3 SODIMM
  - RTC-8564JE real time clock
  - FMC HPC connector
  - FMC LPC connector
  - PMBUS data/clock
- Status LEDs:
  - Ethernet status
  - TI Power Good
  - Linear Power Good
  - PS DDR3 Component V<sub>tt</sub> Good
  - PL DDR3 SODIMM V<sub>tt</sub> Good



- FMC Power Good
- 12V Input Power On
- FPGA INIT
- FPGA DONE
- User I/O:
  - Four (PL) user LEDs
  - Three (PL) user pushbuttons
  - One (PL) user DIP switch (4-pole)
  - Two Dual row Pmod GPIO headers
- AP SoC PS Reset Pushbuttons:
  - SRST\_B PS reset button
  - POR\_B PS reset button
- VITA 57.1 FMC HPC connector
- VITA 57.1 FMC LPC connector
- Power on/off slide switch
- Program\_B pushbutton
- Power management with PMBus voltage and current monitoring through TI power controller
- Dual 12-bit 1 MSPS XADC analog-to-digital front end
- Configuration options:
  - Dual Quad-SPI flash memory
  - USB JTAG configuration port (Digilent module)
  - Platform cable header JTAG configuration port
  - 20-pin PL PJTAG header



# **Block Diagram**

The ZC706 evaluation board block diagram is shown in Figure 1-1.



Note: Page numbers reference the page number of schematic 0381513.

UG954\_c1\_01\_1002012

Figure 1-1: ZC706 Evaluation Board Block Diagram

# **Board Layout**

Figure 1-2 shows the ZC706 evaluation board. Each numbered feature that is referenced in Figure 1-2 is described in Table 1-1 with a link to detailed information provided under Feature Descriptions starting on page 14.

**Note:** The image in Figure 1-2 is for reference only and might not reflect the current revision of the board.



**CAUTION!** The ZC706 evaluation board can be damaged by electrostatic discharge (ESD). Follow ESD prevention measures when handling the board.





Figure 1-2: ZC706 Evaluation Board Component Locations

**Table 1-1: ZC706 Evaluation Board Component Descriptions** 

| Callout | Feature                                                                           | Notes                                                       | Schematic<br>0381513<br>Page Number |
|---------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
| 1       | Zynq-7000 XC7Z045 AP SoC, page 14<br>Zynq-7000 All Programmable SoC with fan sink | XC7Z045T-2FFG900C with Radian INC3001-7_1.5BU_LI98 fan sink |                                     |
| 2       | DDR3 SODIMM Memory (PL), page 18<br>DDR3 SODIMM Memory Socket (J1)                | Micron MT8JTF12864HZ-1G6G1                                  | 23                                  |
| 3       | DDR3 Component Memory (PS), page 22<br>DDR3 Memory 1GB (4x256M U2-U5)             | Micron MT41J256M8HX-15E                                     | 17-20                               |
| 4       | Quad-SPI Flash Memory, page 25<br>Dual Quad-SPI Flash (128Mb) (U58-U59)           | Spansion S25FL128SAGMFIR01                                  | 21                                  |
| 5       | SD Card Interface, page 29<br>SD Card Interface Connector (J30)                   | Molex 67840-8001                                            | 22                                  |
| 6       | USB 2.0 ULPI Transceiver, page 27 USB JTAG Interface w/Micro-B Connector (U30)    | Digilent USB JTAG Module                                    | 16                                  |
| 7       | System Clock, page 34<br>System Clock, 2.5V LVDS (U64)                            | SiTime SIT9102-243N25E200.0000                              | 34                                  |



Table 1-1: ZC706 Evaluation Board Component Descriptions (Cont'd)

| Callout | Feature                                                                                                          | Notes                                                    | Schematic<br>0381513<br>Page Number |
|---------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|
| 8       | Programmable User Clock, page 35 I <sup>2</sup> C Prog. User Clock 3.3V LVDS (U37, bottom of board)              | Silicon Labs SI570BAB0000544DG,<br>default 156.250 MHz   | 34                                  |
| 9       | User SMA Clock Source, page 36 User Differential SMA Clock P/N (J67/J68)                                         | Rosenberger 32K10K-400L5                                 | 44                                  |
| 10      | GTX SMA Clock (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N), page 37 GTX Differential SMA Clock P/N (J36/J31)          | Rosenberger 32K10K-400L5                                 | 44                                  |
| 11      | Jitter Attenuated Clock, page 38 Jitter Attenuated Clock (U60, bottom of board)                                  | Silicon Labs SI5324C-C-GM                                | 43                                  |
| 12      | GTX Transceivers, page 39<br>GTX Transceivers                                                                    | Embedded within AP SoC U1                                | 8                                   |
| 13      | PCI Express Endpoint Connectivity, page 44 PCI Express Connector (P4)                                            | 4-lane card edge connector                               | 42                                  |
| 14      | SFP/SFP+ Module Connector, page 46<br>SFP/SFP+ Module Connector (P2)                                             | Molex 74441-0010                                         | 41                                  |
| 15      | 10/100/1,000 Mb/s Tri-Speed Ethernet PHY (PL), page 47 RGMII only 10/100/1000 Mb/s Ethernet PHY w/RJ45 (U51, P3) | Marvell 88E1116RA0-NNC1C000                              | 29                                  |
| 16      | GTX Differential SMA TX and RX P/N (J35/J34and J32/J33)                                                          | Rosenberger 32K10K-400L5                                 | 44                                  |
| 17      | USB-to-UART Bridge, page 49<br>USB-to-UART Bridge with Mini-B Connector<br>(U52, J21)                            | Silicon Labs CP2103GM bridge                             | 40                                  |
| 18      | HDMI Video Output, page 50<br>HDMI Controller (U53), HDMI Video Connector<br>(P1)                                | Analog Devices ADV7511KSTZ-P,<br>Molex 500254-1927,      | 32, 33                              |
| 19      | USB 2.0 ULPI Transceiver, page 27<br>USB 2.0 ULPI Controller w/ Micro-B Connector<br>(U12, J2)                   | SMSC USB3320C-EZK                                        | 31                                  |
| 20      | I2C Bus, page 53<br>I <sup>2</sup> C Bus MUX (U65, bottom of board)                                              | TI PCA9548ARGER                                          | 36                                  |
| 21      | Ethernet PHY User LEDs, page 57 Ethernet PHY Status LEDs (DS28-DS30)                                             | EPHY status LED, GREEN single-stack                      | 29                                  |
| 22      | User LEDs, page 58<br>User LEDs (DS8-DS10, DS35)                                                                 | GPIO LEDs, GREEN 0603                                    | 38                                  |
| 23      | User Pushbuttons, page 59 User pushbuttons, active-High (SW7, 9, 8)                                              | E-Switch TL3301EF100QG in Left,<br>Center, Right pattern | 38                                  |



Table 1-1: ZC706 Evaluation Board Component Descriptions (Cont'd)

| Callout | Feature                                                                            | Notes                                               | Schematic<br>0381513<br>Page Number |
|---------|------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|
| 24      | GPIO DIP Switch, page 60<br>GPIO DIP Switch (SW12)                                 | 4-pole C&K SDA04H1SBD                               | 38                                  |
| 25      | ARM® core PJTAG Header (J64)                                                       | 2x10 0.1inch male header, Samtec<br>TST-110-01-G-D  | 39                                  |
| 26      | User PMOD GPIO Headers, page 60<br>PMOD Headers (J57, J58)                         | 2x6 0.1 inch male header                            | 37, 39                              |
| 27      | Power On/Off Slide Switch, page 62<br>Power On/Off Switch (SW1)                    | C&K 1201M2S3AQE2                                    | 48                                  |
| 28      | Program_B Pushbutton, page 63 FPGA PROG pushbutton (SW10)                          | E-Switch TL3301EF100QG                              | 38                                  |
| 29      | AP SoC MIO Config. DIP Switch (SW11)                                               | 5-pole DPDT CTS 206-125                             | 15                                  |
| 30      | HPC Connector J37, page 65<br>FMC HPC connector (J37)                              | Samtec ASP_134486_01                                | 24-27                               |
| 31      | LPC Connector J5, page 70<br>FMC LPC connector (J5)                                | Samtec ASP_134603_01                                | 28                                  |
| 32      | Power Management, page 77 Power Management System (top and bottom of board)        | TI UCD90120ARGC in conjunction w/various regulators | 48-57                               |
| 33      | XADC Analog-to-Digital Converter, page 83<br>XADC Connector (J63)                  | 2x10 0.1inch male header, Samtec TST-110-01-G-D     | 35                                  |
| 34      | Programmable Logic JTAG Select Switch, page 31 JTAG Configuration DIP Switch (SW4) | 2-pole C&K SDA02H1SBD                               | 16                                  |
| 35      | JTAG Flying Lead Header (J62)                                                      | 2x10 0.1inch male header, Samtec TST-110-01-G-D     | 16                                  |
| 36      | 2x5 shrouded PMBus connector J4                                                    | ASSMAN HW10G-0202                                   | 48                                  |
| 37      | 2x7 2mm shrouded JTAG cable connector J3                                           | MOLEX 87832-1420                                    | 16                                  |
| 38      | 12V power input 2x6 connector J22                                                  | MOLEX-39-30-1060                                    | 48                                  |



# **Feature Descriptions**

Detailed information for each feature shown in Figure 1-2 and listed in Table 1-1 is provided in this section.

# Zynq-7000 XC7Z045 AP SoC

[Figure 1-2, callout 1]

The ZC706 evaluation board is populated with the Zynq-7000 XC7Z045-2FFG900C AP SoC.

The XC7Z045 AP SoC consists of an integrated processing system (PS) and programmable logic (PL), on a single die. The high-level block diagram is shown in Figure 1-3.



Figure 1-3: High-Level Block Diagram

The PS integrates two ARM® Cortex<sup>™</sup>-A9 MPCore<sup>™</sup> application processors, AMBA® interconnect, internal memories, external memory interfaces, and peripherals including USB, Ethernet, SPI, SD/SDIO, I<sup>2</sup>C, CAN, UART, and GPIO. The PS runs independently of the PL and boots at power-up or reset.

A system level block diagram is shown in Figure 1-4.





UG954\_c1\_04\_100112

Figure 1-4: Zynq-7000 Block Diagram

For additional information on Zynq-7000 SoC devices, see *Zynq-7000 All Programmable SoC Overview* (DS190) and *Zynq-7000 All Programmable SoC Technical Reference Manual* (UG585).

## **Device Configuration**

the Zynq-7000 XC7Z045 AP SoC uses a multi-stage boot process that supports both a non-secure and a secure boot. The PS is the master of the boot and configuration process. For a secure boot, the PL must be powered on to enable the use of the security block located within the PL, which provides 256-bit AES and SHA decryption/authentication.

The ZC706 evaluation board supports these configuration options:

- PS Configuration: Quad-SPI flash memory
- PS Configuration: Processor System Boot from SD Card (J30)



- PL Configuration: USB JTAG configuration port (Digilent module U30)
- PL Configuration: Platform cable header J3 and flying lead header J62 JTAG configuration ports



**TIP**: Designs using serial configuration based on Quad-SPI flash memory can take advantage of low-cost commodity SPI flash memory.

The JTAG configuration option is selected by setting SW11 (PS) as shown in Table 1-2 and SW4 (PL) as described in Programmable Logic JTAG Programming Options, page 31. SW11 is callout 29 in Figure 1-2.

**Table 1-2:** Switch SW11 Configuration Option Settings

| Boot Mode                | SW11.1 | SW11.2 | SW11.3 | SW11.4 | SW11.5 |
|--------------------------|--------|--------|--------|--------|--------|
| JTAG mode <sup>(1)</sup> | 0      | 0      | 0      | 0      | 0      |
| Independent JTAG mode    | 1      | 0      | 0      | 0      | 0      |
| QSPI mode                | 0      | 0      | 0      | 1      | 0      |
| SD mode                  | 0      | 0      | 1      | 1      | 0      |
| MIO configuration pin    | MIO2   | MIO3   | MIO4   | MIO5   | MIO6   |

#### Notes:

1. Default switch setting

For more information about Zynq-7000 AP SoC configuration settings, see *Zynq-7000 All Programmable SoC Technical Reference Manual* (UG585).

# **Encryption Key Backup Circuit**

The XC7Z045 AP SoC U1 implements bitstream encryption key technology. The ZC706 board provides the encryption key backup battery circuit shown in Figure 1-5. The Seiko TS518FE rechargeable 1.5V lithium button-type battery B2 is soldered to the board with the positive output connected to the XC7Z045 AP SoC U1 VCCBATT pin P9. The battery supply current IBATT specification is 150 nA max when board power is off. B2 is charged from the VCCAUX 1.8V rail through a series diode with a typical forward voltage drop of 0.38V and 4.7 K $\Omega$  current limit resistor. The nominal charging voltage is 1.42V.





Figure 1-5: Encryption Key Backup Circuit

## I/O Voltage Rails

There are eleven I/O banks available on the XC7Z045 AP SoC. The voltages applied to the XC7Z045 AP SoC I/O banks used by the ZC706 evaluation board are listed in Table 1-3.

Table 1-3: I/O Voltage Rails

| XC7Z045 (U1)<br>Bank | Net Name                                              | Voltage | Connected To                                            |  |
|----------------------|-------------------------------------------------------|---------|---------------------------------------------------------|--|
| PL Bank 0            | VCC3V3_FPGA                                           | 3.3V    | AP SoC Configuration Bank 0                             |  |
| PL Bank 9            | PMOD, USER_SMA_CLOCK, SM_FAN, REC_C<br>SFP_TX_DISABLE |         | PMOD, USER_SMA_CLOCK, SM_FAN, REC_CLOCK, SFP_TX_DISABLE |  |
| PL Bank 10           |                                                       | 2.5V    | FMC_LPC, PL_JTAG,GPIO                                   |  |
| PL Bank 11           | VADJ_FPGA                                             |         | FMC_HPC, GPIO_LED, HDMI                                 |  |
| PL Bank 12           |                                                       |         | FMC_LPC, HDMI                                           |  |
| PL Bank 13           |                                                       |         | FMC_HPC, HDMI                                           |  |
| PL Bank 33           |                                                       |         | PL_DDR3_D[31:0]                                         |  |
| PL Bank 34           | VCC1V5_PL                                             | 1.5V    | PL_DDR3_A, SYSCLK                                       |  |
| PL Bank 35           | 35 PL_DDR3_D[63:32], XADC                             |         | PL_DDR3_D[63:32], XADC                                  |  |



Table 1-3: I/O Voltage Rails (Cont'd)

| XC7Z045 (U1)<br>Bank | Net Name | Voltage | Connected To          |  |
|----------------------|----------|---------|-----------------------|--|
| PS Bank 500          |          |         | QSPIO,QSPI1           |  |
| PS Bank 501          | VCCP1V8  | 1.8V    | PHY_IF,SDIO_IF,USB_IF |  |
| PS Bank 502          |          |         | PS_DDR3_IF            |  |

#### Notes:

1. The ZC706 evaluation board is shipped with  $V_{ADJ}$  set to 2.5V.

# DDR3 SODIMM Memory (PL)

[Figure 1-2, callout 2]

The memory module at J1 is a 1 GB DDR3 small outline dual-inline memory module (SODIMM). It provides volatile synchronous dynamic random access memory (SDRAM) for storing user code and data.

Part number: MT8JTF12864HZ-1G6G1 (Micron Technology)

Supply voltage: 1.5V

• Datapath width: 64 bits

Data rate: Up to 1,600 MT/s

The DDR3 interface is implemented across the PL-side I/O banks. Bank 33 and bank 35 have a dedicated DCI VRP/N resistor connection. An external 0.75V reference VTTREF\_SODIMM is provided for data interface banks. Any interface connected to these banks that requires the VTTREF voltage must use this FPGA voltage reference. The connections between the DDR3 memory and the AP SoC are listed in Table 1-4.

Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 AP SoC

| VC7704E (U1) Din | Net Name   | SODIMM Memory |          |  |
|------------------|------------|---------------|----------|--|
| XC7Z045 (U1) Pin | Net Name   | Pin Number    | Pin Name |  |
| E10              | PL_DDR3_A0 | 98            | A0       |  |
| В9               | PL_DDR3_A1 | 97            | A1       |  |
| E11              | PL_DDR3_A2 | 96            | A2       |  |
| A9               | PL_DDR3_A3 | 95            | A3       |  |
| D11              | PL_DDR3_A4 | 92            | A4       |  |
| В6               | PL_DDR3_A5 | 91            | A5       |  |
| F9               | PL_DDR3_A6 | 90            | A6       |  |
| E8               | PL_DDR3_A7 | 86            | A7       |  |
| B10              | PL_DDR3_A8 | 89            | A8       |  |
| J8               | PL_DDR3_A9 | 85            | A9       |  |



Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 AP SoC (Cont'd)

| VC7704F (U1) D:  | Not Nome    | SODIMM     | Memory   |
|------------------|-------------|------------|----------|
| XC7Z045 (U1) Pin | Net Name    | Pin Number | Pin Name |
| D6               | PL_DDR3_A10 | 107        | A10/AP   |
| В7               | PL_DDR3_A11 | 84         | A11      |
| H12              | PL_DDR3_A12 | 83         | A12_BC_N |
| A10              | PL_DDR3_A13 | 119        | A13      |
| G11              | PL_DDR3_A14 | 80         | A14      |
| C6               | PL_DDR3_A15 | 78         | A15      |
| F8               | PL_DDR3_BA0 | 109        | BA0      |
| H7               | PL_DDR3_BA1 | 108        | BA1      |
| A7               | PL_DDR3_BA2 | 79         | BA2      |
| L1               | PL_DDR3_D0  | 5          | DQ0      |
| L2               | PL_DDR3_D1  | 7          | DQ1      |
| K5               | PL_DDR3_D2  | 15         | DQ2      |
| J4               | PL_DDR3_D3  | 17         | DQ3      |
| K1               | PL_DDR3_D4  | 4          | DQ4      |
| L3               | PL_DDR3_D5  | 6          | DQ5      |
| J5               | PL_DDR3_D6  | 16         | DQ6      |
| К6               | PL_DDR3_D7  | 18         | DQ7      |
| G6               | PL_DDR3_D8  | 21 DO      |          |
| H4               | PL_DDR3_D9  | 23 DQ      |          |
| H6               | PL_DDR3_D10 | 33 DQ:     |          |
| H3               | PL_DDR3_D11 | 35         | DQ11     |
| G1               | PL_DDR3_D12 | 22         | DQ12     |
| H2               | PL_DDR3_D13 | 24         | DQ13     |
| G5               | PL_DDR3_D14 | 34         | DQ14     |
| G4               | PL_DDR3_D15 | 36         | DQ15     |
| E2               | PL_DDR3_D16 | 39         | DQ16     |
| E3               | PL_DDR3_D17 | 41         | DQ17     |
| D4               | PL_DDR3_D18 | 51         | DQ18     |
| E5               | PL_DDR3_D19 | 53         | DQ19     |
| F4               | PL_DDR3_D20 | 40         | DQ20     |
| F3               | PL_DDR3_D21 | 42         | DQ21     |
| D1               | PL_DDR3_D22 | 50         | DQ22     |
| D3               | PL_DDR3_D23 | 52         | DQ23     |
| A2               | PL_DDR3_D24 | 57         | DQ24     |
| B2               | PL_DDR3_D25 | 59         | DQ25     |



Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 AP SoC (Cont'd)

| XC7Z045 (U1) Pin  | Net Name        | SODIMM I    | Memory   |
|-------------------|-----------------|-------------|----------|
| XC72045 (U1) PIII | Net Name        | Pin Number  | Pin Name |
| B4                | PL_DDR3_D26     | 67          | DQ26     |
| B5                | PL_DDR3_D27     | 69          | DQ27     |
| A3                | PL_DDR3_D28     | 56          | DQ28     |
| B1                | PL_DDR3_D29     | 58          | DQ29     |
| C1                | PL_DDR3_D30     | 68          | DQ30     |
| C4                | PL_DDR3_D31     | 70          | DQ31     |
| K10               | PL_DDR3_D32     | 129         | DQ32     |
| L9                | PL_DDR3_D33     | 131         | DQ33     |
| K12               | PL_DDR3_D34     | 141         | DQ34     |
| J9                | PL_DDR3_D35     | 143         | DQ35     |
| K11               | PL_DDR3_D36     | 130         | DQ36     |
| L10               | PL_DDR3_D37     | 132         | DQ37     |
| J10               | PL_DDR3_D38     | 140         | DQ38     |
| L7                | PL_DDR3_D39     | 142         | DQ39     |
| F14               | PL_DDR3_D40 147 |             | DQ40     |
| F15               | PL_DDR3_D41     | 149         | DQ41     |
| F13               | PL_DDR3_D42     | 157         | DQ42     |
| G16               | PL_DDR3_D43     | 3_D43 159 I |          |
| G15               | PL_DDR3_D44     | 146         | DQ44     |
| E12               | PL_DDR3_D45     | 148 DQ4     |          |
| D13               | PL_DDR3_D46     | 158         | DQ46     |
| E13               | PL_DDR3_D47     | 160         | DQ47     |
| D15               | PL_DDR3_D48     | 163         | DQ48     |
| E15               | PL_DDR3_D49     | 165         | DQ49     |
| D16               | PL_DDR3_D50     | 175         | DQ50     |
| E16               | PL_DDR3_D51     | 177         | DQ51     |
| C17               | PL_DDR3_D52     | 164         | DQ52     |
| B16               | PL_DDR3_D53     | 166         | DQ53     |
| D14               | PL_DDR3_D54     | 174         | DQ54     |
| B17               | PL_DDR3_D55     | 176         | DQ55     |
| B12               | PL_DDR3_D56     | 181         | DQ56     |
| C12               | PL_DDR3_D57     | 183         | DQ57     |
| A12               | PL_DDR3_D58     | 191         | DQ58     |
| A14               | PL_DDR3_D59     | 193         | DQ59     |
| A13               | PL_DDR3_D60     | 180         | DQ60     |



Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 AP SoC (Cont'd)

| VC7704E (U1) D:- | Not Nama           | SODIMM            | Memory     |  |
|------------------|--------------------|-------------------|------------|--|
| XC7Z045 (U1) Pin | Net Name           | Pin Number        | Pin Name   |  |
| B11              | PL_DDR3_D61        | 182               | DQ61       |  |
| C14              | PL_DDR3_D62        | 192               | DQ62       |  |
| B14              | PL_DDR3_D63        | 194               | DQ63       |  |
| J3               | PL_DDR3_DM0        | 11                | DM0        |  |
| F2               | PL_DDR3_DM1        | 28                | DM1        |  |
| E1               | PL_DDR3_DM2        | 46                | DM2        |  |
| C2               | PL_DDR3_DM3        | 63                | DM3        |  |
| L12              | PL_DDR3_DM4        | 136               | DM4        |  |
| G14              | PL_DDR3_DM5        | 153               | DM5        |  |
| C16              | PL_DDR3_DM6        | 170               | DM6        |  |
| C11              | PL_DDR3_DM7        | 187               | DM7        |  |
| K2               | PL_DDR3_DQS0_N     | 10                | DQS0_N     |  |
| К3               | PL_DDR3_DQS0_P     | 12                | DQS0_P     |  |
| H1               | PL_DDR3_DQS1_N     | 27                | DQS1_N     |  |
| J1               | PL_DDR3_DQS1_P     | 29                | DQS1_P     |  |
| D5               | PL_DDR3_DQS2_N     | 45                | DQS2_N     |  |
| E6               | PL_DDR3_DQS2_P     | 47                | DQS2_P     |  |
| A4               | PL_DDR3_DQS3_N     | PL_DDR3_DQS3_N 62 |            |  |
| A5               | PL_DDR3_DQS3_P     | 64                | DQS3_P     |  |
| K8               | PL_DDR3_DQS4_N     | 135               | DQS4_N     |  |
| L8               | PL_DDR3_DQS4_P     | 137               | DQS4_P     |  |
| F12              | PL_DDR3_DQS5_N     | 152               | DQS5_N     |  |
| G12              | PL_DDR3_DQS5_P     | 154               | DQS5_P     |  |
| E17              | PL_DDR3_DQS6_N     | 169               | DQS6_N     |  |
| F17              | PL_DDR3_DQS6_P     | 171               | DQS6_P     |  |
| A15              | PL_DDR3_DQS7_N     | 186               | DQS7_N     |  |
| B15              | PL_DDR3_DQS7_P     | 188               | DQS7_P     |  |
| G7               | PL_DDR3_ODT0       | 116               | ODT0       |  |
| С9               | PL_DDR3_ODT1       | 120               | ODT1       |  |
| G17              | PL_DDR3_RESET_B    | 30                | RESET_B    |  |
| J11              | PL_DDR3_S0_B       | 114               | S0_B       |  |
| Н8               | PL_DDR3_S1_B       | 121               | S1_B       |  |
| M10              | PL_DDR3_TEMP_EVENT | 198               | 98 EVENT_B |  |
| F7               | PL_DDR3_WE_B       | 113               | WE_B       |  |
| E7 PL_DDR3_CAS_B |                    | 115               | CAS_B      |  |



| VC7704E (U1) Dim | Not Name       | SODIMM Memory |          |  |
|------------------|----------------|---------------|----------|--|
| XC7Z045 (U1) Pin | Net Name       | Pin Number    | Pin Name |  |
| H11              | PL_DDR3_RAS_B  | 110           | RAS_B    |  |
| D10              | PL_DDR3_CKE0   | 73            | CKE0     |  |
| C7               | PL_DDR3_CKE1   | 74            | CKE1     |  |
| F10              | PL_DDR3_CLK0_N | 103           | CK0_N    |  |
| G10              | PL_DDR3_CLK0_P | 101           | CK0_P    |  |
| D8               | PL_DDR3_CLK1_N | 104           | CK1_N    |  |
| D9               | PL DDR3 CLK1 P | 102           | CK1 P    |  |

Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 AP SoC (Cont'd)

The ZC706 DDR3 SODIMM interface adheres to the constraints guidelines documented in the "Dynamic Memory" section of the *Zynq-7000 All Programmable SoC PCB Design and Pin Planning Guide* (UG933). The ZC706 DDR3 SODIMM interface is a  $40\Omega$  impedance implementation.

# **DDR3 Component Memory (PS)**

[Figure 1-2, callout 3]

The 1 GB, 32-bit wide DDR3 component memory system is comprised of four 256 Mb x 8 SDRAMs (Micron MT41J256M8HX-15E) at U2-U5. This memory system is connected to the XC7Z045 AP SoC Processing System (PS) memory interface bank 502. The DDR3 0.75V VTT termination voltage is sourced from linear regulator U27. The connections between the DDR3 component memory and XC7Z045 AP SoC bank 502 are listed in Table 1-5.

| Table 1 F. |                         | · C                               |
|------------|-------------------------|-----------------------------------|
| iabie i-s: | DDR3 Component Iviemory | Connections to the XC7Z045 AP SoC |

| VC7704E (U1) Din | Not Name     | Component Memory |          |           |  |
|------------------|--------------|------------------|----------|-----------|--|
| XC7Z045 (U1) Pin | Net Name     | Pin Number       | Pin Name | Ref. Des. |  |
| E26              | PS_DDR3_DQ0  | В3               | DQ0      | U2        |  |
| A25              | PS_DDR3_DQ1  | C7               | DQ1      | U2        |  |
| E27              | PS_DDR3_DQ2  | C2               | DQ2      | U2        |  |
| E25              | PS_DDR3_DQ3  | C8               | DQ3      | U2        |  |
| D26              | PS_DDR3_DQ4  | E3               | DQ4      | U2        |  |
| B25              | PS_DDR3_DQ5  | E8               | DQ5      | U2        |  |
| D25              | PS_DDR3_DQ6  | D2               | DQ6      | U2        |  |
| B27              | PS_DDR3_DQ7  | E7               | DQ7      | U2        |  |
| A27              | PS_DDR3_DQ8  | В3               | DQ8      | U3        |  |
| A28              | PS_DDR3_DQ9  | C7               | DQ9      | U3        |  |
| A29              | PS_DDR3_DQ10 | C2               | DQ10     | U3        |  |
| C28              | PS_DDR3_DQ11 | C8               | DQ11     | U3        |  |



Table 1-5: DDR3 Component Memory Connections to the XC7Z045 AP SoC (Cont'd)

| V077045 (114) D: |                | (          | Component Memo | ry             |  |
|------------------|----------------|------------|----------------|----------------|--|
| XC7Z045 (U1) Pin | Net Name       | Pin Number | Pin Name       | Ref. Des.      |  |
| D30              | PS_DDR3_DQ12   | E3         | DQ12           | U3             |  |
| A30              | PS_DDR3_DQ13   | E8         | DQ13           | U3             |  |
| D29              | PS_DDR3_DQ14   | D2         | DQ14           | U3             |  |
| D28              | PS_DDR3_DQ15   | E7         | DQ15           | U3             |  |
| H27              | PS_DDR3_DQ16   | В3         | DQ16           | U4             |  |
| G27              | PS_DDR3_DQ17   | C7         | DQ17           | U4             |  |
| H28              | PS_DDR3_DQ18   | C2         | DQ18           | U4             |  |
| E28              | PS_DDR3_DQ19   | C8         | DQ19           | U4             |  |
| E30              | PS_DDR3_DQ20   | E3         | DQ20           | U4             |  |
| F28              | PS_DDR3_DQ21   | E8         | DQ21           | U4             |  |
| G30              | PS_DDR3_DQ22   | D2         | DQ22           | U4             |  |
| F30              | PS_DDR3_DQ23   | E7         | DQ23           | U4             |  |
| K27              | PS_DDR3_DQ24   | В3         | DQ24           | U5             |  |
| J30              | PS_DDR3_DQ25   | C7         | DQ25           | U5             |  |
| J28              | PS_DDR3_DQ26   | C2         | DQ26           | U5             |  |
| J29              | PS_DDR3_DQ27   | C8         | DQ27           | U5             |  |
| K30              | PS_DDR3_DQ28   | E3         | DQ28           | U5             |  |
| M29              | PS_DDR3_DQ29   | E8         | DQ29           | U5             |  |
| L30              | PS_DDR3_DQ30   | D2         | DQ30           | U5             |  |
| M30              | PS_DDR3_DQ31   | E7         | DQ31           | U5             |  |
| C27              | PS_DDR3_DM0    | В7         | DM0            | U2             |  |
| C26              | PS_DDR3_DQS0_P | C3         | DQS0_P         | U2             |  |
| B26              | PS_DDR3_DQS0_N | D3         | DQS0_N         | U2             |  |
| B30              | PS_DDR3_DM1    | В7         | DM1            | U3             |  |
| C29              | PS_DDR3_DQS1_P | C3         | DQS1_P         | U3             |  |
| B29              | PS_DDR3_DQS1_N | D3         | DQS1_N         | U3             |  |
| H29              | PS_DDR3_DM2    | В7         | DM2            | U4             |  |
| G29              | PS_DDR3_DQS2_P | C3         | DQS2_P         | U4             |  |
| F29              | PS_DDR3_DQS2_N | D3         | DQS2_N         | U4             |  |
| K28              | PS_DDR3_DM3    | В7         | DM3            | U5             |  |
| L28              | PS_DDR3_DQS3_P | C3         | DQS3_P         | U5             |  |
| L29              | PS_DDR3_DQS3_N | D3         | DQS3_N         | U5             |  |
| L25              | PS_DDR3_A0     | К3         | Α0             | U2, U3, U4, U5 |  |
| K26              | PS_DDR3_A1     | L7         | A1             | U2, U3, U4, U5 |  |
| L27              | PS_DDR3_A2     | L3         | A2             | U2, U3, U4, U5 |  |



Table 1-5: DDR3 Component Memory Connections to the XC7Z045 AP SoC (Cont'd)

| V077045 (114) Dia | Not Novo        | C          | omponent Memo | ry             |
|-------------------|-----------------|------------|---------------|----------------|
| XC7Z045 (U1) Pin  | Net Name        | Pin Number | Pin Name      | Ref. Des.      |
| G25               | PS_DDR3_A3      | K2         | A3            | U2, U3, U4, U5 |
| J26               | PS_DDR3_A4      | L8         | A4            | U2, U3, U4, U5 |
| G24               | PS_DDR3_A5      | L2         | A5            | U2, U3, U4, U5 |
| H26               | PS_DDR3_A6      | M8         | A6            | U2, U3, U4, U5 |
| K22               | PS_DDR3_A7      | M2         | A7            | U2, U3, U4, U5 |
| F27               | PS_DDR3_A8      | N8         | A8            | U2, U3, U4, U5 |
| J23               | PS_DDR3_A9      | M3         | A9            | U2, U3, U4, U5 |
| G26               | PS_DDR3_A10     | H7         | A10           | U2, U3, U4, U5 |
| H24               | PS_DDR3_A11     | M7         | A11           | U2, U3, U4, U5 |
| K23               | PS_DDR3_A12     | K7         | A12           | U2, U3, U4, U5 |
| H23               | PS_DDR3_A13     | N3         | A13           | U2, U3, U4, U5 |
| J24               | PS_DDR3_A14     | N7         | A14           | U2, U3, U4, U5 |
| M27               | PS_DDR3_BA0     | J2         | BA0           | U2, U3, U4, U5 |
| M26               | PS_DDR3_BA1     | K8         | BA1           | U2, U3, U4, U5 |
| M25               | PS_DDR3_BA2     | J3         | BA2           | U2, U3, U4, U5 |
| K25               | PS_DDR3_CLK_P   | F7         | CK            | U2, U3, U4, U5 |
| J25               | PS_DDR3_CLK_N   | G7         | CK_B          | U2, U3, U4, U5 |
| M22               | PS_DDR3_CKE     | G9         | CKE           | U2, U3, U4, U5 |
| N23               | PS_DDR3_WE_B    | H3         | WE_B          | U2, U3, U4, U5 |
| M24               | PS_DDR3_CAS_B   | G3         | CAS_B         | U2, U3, U4, U5 |
| N24               | PS_DDR3_RAS_B   | F3         | RAS_B         | U2, U3, U4, U5 |
| F25               | PS_DDR3_RESET_B | N2         | RESET_B       | U2, U3, U4, U5 |
| N22               | PS_DDR3_CS_B    | H2         | CS_B          | U2, U3, U4, U5 |
| L23               | PS_DDR3_ODT     | G1         | ODT           | U2, U3, U4, U5 |
| N21               | PS_VRN          |            |               |                |
| M21               | PS_VRP          |            |               |                |
| L22               | VTTVREF_PS      |            |               |                |
| L24               | VTTVREF_PS      |            |               |                |

The ZC706 DDR3 component interface adheres to the constraints guidelines documented in the *DDR3 Design Guidelines* section of *Zynq-7000 All Programmable SoC PCB Design and Pin Planning Guide* (UG933). The ZC706 DDR3 component interface is a  $40\Omega$  impedance implementation.



# **Quad-SPI Flash Memory**

[Figure 1-2, callout 4]

The Quad-SPI flash memory located at U58 and U59 provides 2 x 128 Mb of nonvolatile storage that can be used for configuration and data storage.

Part number: S25FL128SAGMFIR01 (Spansion)

Supply voltage: 1.8VDatapath width: 4 bits

Data rate: Various depending on Single/Dual/Quad mode

The connections between the SPI flash memory and the XC7Z045 AP SoC are listed in Table 1-6.

Table 1-6: Quad-SPI Flash Memory Connections to the XC7Z045 AP SoC

| X        | C7Z045 (L | J1)        | Schematic  | Quad-SPI Flash Memory |            | QSPI Device | MIO Select |
|----------|-----------|------------|------------|-----------------------|------------|-------------|------------|
| Pin Name | Bank      | Pin Number | Net Name   | Pin Number            | Pin Name   | Ref. Des.   | Header     |
| PS_MIO6  | 500       | D24        | QSPI0_CLK  | 16                    | С          | U58         | J74.2      |
| PS_MIO5  | 500       | C24        | QSPI0_IO3  | 1                     | DQ3_HOLD_B | U58         | J73.2      |
| PS_MIO4  | 500       | E23        | QSPI0_IO2  | 9                     | WP_B       | U58         | J72.2      |
| PS_MIO3  | 500       | C23        | QSPI0_IO1  | 8                     | DQ1        | U58         | J71.2      |
| PS_MIO2  | 500       | F23        | QSPI0_IO0  | 15                    | DQ0        | U58         | J70.2      |
| PS_MIO1  | 500       | D23        | QSPIO_CS_B | 7                     | S_B        | U58         | N/A        |
| PS_MIO9  | 500       | A24        | QSPI1_CLK  | 16                    | С          | U59         | N/A        |
| PS_MIO13 | 500       | F22        | QSPI1_IO3  | 1                     | DQ3_HOLD_B | U59         | N/A        |
| PS_MIO12 | 500       | E21        | QSPI1_IO2  | 9                     | WP_B       | U59         | N/A        |
| PS_MIO11 | 500       | A23        | QSPI1_IO1  | 8                     | DQ1        | U59         | N/A        |
| PS_MIO10 | 500       | E22        | QSPI1_IO0  | 15                    | DQ0        | U59         | N/A        |
| PS_MIO0  | 500       | F24        | QSPI1_CS_B | 7                     | S_B        | U59         | N/A        |

The configuration section of <u>UG585</u>, *Zynq-7000 All Programmable SoC Technical Reference Manual* provides details on using the Quad-SPI flash memory.

Figure 1-6 shows the connections of the linear Quad-SPI flash memory on the ZC706 evaluation board. For more details, see the Spansion S25FL128SAGMFIR01 data sheet [Ref 1].





Figure 1-6: 128 Mb Quad-SPI Flash Memory



### **USB 2.0 ULPI Transceiver**

[Figure 1-2, callout 19]

The ZC706 evaluation board uses a Standard Microsystems Corporation USB3320 USB 2.0 ULPI Transceiver at U12 to support a USB connection to the host computer. A USB cable is supplied in the ZC706 evaluation kit (Standard-A connector to host computer, Micro-B connector to ZC706 evaluation board connector J2). The USB3320 is a high-speed USB 2.0 PHY supporting the UTMI+ low pin interface (ULPI) interface standard. The ULPI standard defines the interface between the USB controller IP and the PHY device which drives the physical USB bus. Use of the ULPI standard reduces the interface pin count between the USB controller IP and the PHY device.

The USB3320 is clocked by a 24 MHz crystal. Consult the SMSC USB3320 data sheet for clocking mode details [Ref 2].

The interface to the USB3320 transceiver is implemented through the IP in the XC7Z045 AP SoC Processor System.

Table 1-7 describes the jumper settings for the USB 2.0 circuit.

Table 1-7: USB Jumper Settings

| Header | Function           | Shunt Position                                                                                                |  |  |  |
|--------|--------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| J11    | USB PHY reset      | Shunt ON = USB PHY reset<br>Shunt OFF <sup>(1)</sup> = USB PHY normal operation                               |  |  |  |
| J10    | Host/OTG or device | Shunt ON <sup>(1)</sup> = Host or OTG mode<br>Shunt OFF = Device mode                                         |  |  |  |
| J48    | RVBUS select       | Position 1–2 = Device mode (10 K $\Omega$ )<br>Position 2–3 <sup>(1)</sup> = Host or OTG mode (1 K $\Omega$ ) |  |  |  |
| J50    | CVBUS select       | Position 1-2 = 1 $\mu$ F to GND<br>Position 2-3 <sup>(1)</sup> = 120 $\mu$ F to GND                           |  |  |  |
| J49    | Cable ID select    | Position 1-2 <sup>(1)</sup> = A/B cable detect<br>Position 2-3 = ID not used                                  |  |  |  |
| J51    | USB Micro-B        | Position 1-2 <sup>(1)</sup> = Shield connected to GND<br>Position 2-3 = Shield floating                       |  |  |  |

#### Notes:

1. Default shunt position



The connections between the USB Micro-B connector at J2 and the PHY at U12 are listed in Table 1-8.

Table 1-8: USB Connector Pin Assignments and Signal Definitions Between J2 and U12

| USB Co | nnector<br>1 | Net Name     | Description                                     | USB3320 (U12)<br>Pin |
|--------|--------------|--------------|-------------------------------------------------|----------------------|
| Pin    | Name         |              | ·                                               | FIII                 |
| 1      | VBUS         | USB_VBUS_SEL | +5V from host system                            | 22                   |
| 2      | D_N          | USB_D_N      | Bidirectional differential serial data (N-side) | 19                   |
| 3      | D_P          | USB_D_P      | Bidirectional differential serial data (P-side) | 18                   |
| 5      | GND          | GND          | Signal ground                                   | 33                   |

The connections between the USB 2.0 PHY at U12 and the XC7Z045 AP SoC are listed in Table 1-9.

Table 1-9: USB 2.0 ULPI Transceiver Connections to the XC7Z045 AP SoC

| XC7Z045 (U1) |      | Schematic Net Name | USB3320 (U12) Pin   |                       |
|--------------|------|--------------------|---------------------|-----------------------|
| Pin Name     | Bank | Pin Number         | Scriematic Net Name | U3D3320 (U12) PIII    |
| PS_MIO36     | 501  | H17                | USB_CLKOUT          | 1                     |
| PS_MIO31     | 501  | H21                | USB_NXT             | 2                     |
| PS_MIO32     | 501  | K17                | USB_DATA0           | 3                     |
| PS_MIO33     | 501  | G22                | USB_DATA1           | 4                     |
| PS_MIO34     | 501  | K18                | USB_DATA2           | 5                     |
| PS_MIO35     | 501  | G21                | USB_DATA3           | 6                     |
| PS_MIO28     | 501  | L17                | USB_DATA4           | 7                     |
| PS_MIO37     | 501  | B21                | USB_DATA5           | 9                     |
| PS_MIO38     | 501  | A20                | USB_DATA6           | 10                    |
| PS_MIO39     | 501  | F18                | USB_DATA7           | 13                    |
| PS_MIO30     | 501  | L18                | USB_STP             | 29                    |
| PS_MIO29     | 501  | E8                 | USB_DIR             | 31                    |
| PS_MIO7      | 500  | D5                 | USB_RESET_B_AND     | 27 (via AND gate U13) |

For additional information on the Zynq-7000 AP SoC device USB controllers, see *Zynq-7000 All Programmable SoC Overview* (DS190) and *Zynq-7000 All Programmable SoC Technical Reference Manual* (UG585).



Figure 1-7 shows the USB 2.0 ULPI transceiver circuitry. Note that the shield for the USB Micro-B connector (J2) can be tied to GND by a jumper on header J51 pins 1–2 (default). The USB shield can optionally be connected through a capacitor to GND by installing a capacitor (body size 0402) at location C335 and jumping pins 2-3 on header J51.



Figure 1-7: USB 2.0 ULPI Transceiver

# **SD Card Interface**

[Figure 1-2, callout 5]

The ZC706 evaluation board includes a secure digital input/output (SDIO) interface to provide user-logic access to general purpose nonvolatile SDIO memory cards and peripherals. Information for the SD I/O card specification can be found at the SanDisk and SD card websites [Ref 3], [Ref 4].

The SDIO signals are connected to XC7Z045 AP SoC PS bank 501 which has its VCCMIO set to 1.8V. A MAX13035E high-speed logic-level translator (U11) is used between XC7Z045 AP SoC 1.8V PS bank 501 and the 3.3V SD card connector (J30).



Figure 1-8 shows the connections of the SD card interface on the ZC706 evaluation board.



Figure 1-8: SD Card Interface

Table 1-10 lists the SD card interface connections to the XC7Z045 AP SoC

Table 1-10: SDIO Connections to the XC7Z045 AP SoC

| XC7Z045 (U1) Pin |      |               | Schematic       | Level Shifter (U11) |                  | SDIO Connector (J30) |             |
|------------------|------|---------------|-----------------|---------------------|------------------|----------------------|-------------|
| Pin Name         | Bank | Pin<br>Number | Net Name        | 1.8V Side<br>Pin    | 3.3V Side<br>Pin | Pin<br>Number        | Pin<br>Name |
| PS_MIO15         | 500  | C22           | SDIO_SDWP       | N/A                 | N/A              | 11                   | PROTECT     |
| PS_MIO14         | 500  | B22           | SDIO_SDDET      | N/A                 | N/A              | 10                   | DETECT      |
| PS_MIO41         | 501  | J18           | SDIO_CMD_LS     | 4                   | 20               | 2                    | CMD         |
| PS_MIO40         | 501  | B20           | SDIO_CLK_LS     | 9                   | 19               | 5                    | CLK         |
| PS_MIO44         | 501  | E20           | SDIO_DAT2_LS    | 1                   | 23               | 9                    | DAT2        |
| PS_MIO43         | 501  | E18           | SDIO_DAT1_LS    | 7                   | 16               | 8                    | DAT1        |
| PS_MIO42         | 501  | D20           | SDIO_DAT0_LS    | 6                   | 18               | 7                    | DAT0        |
| PS_MIO45         | 501  | H18           | SDIO_CD_DAT3_LS | 3                   | 22               | 1                    | CD_DAT3     |



# **Programmable Logic JTAG Programming Options**

[Figure 1-2, callout 6]

The ZC706 evaluation board JTAG chain is shown in Figure 1-9.



Figure 1-9: JTAG Chain Block Diagram

## **Programmable Logic JTAG Select Switch**

[Figure 1-2, callout 35]

The PL JTAG chain can be programmed by three different methods made available through a 3-to-1 analog switch (U45, U46, and U47) controlled by a 2-position DIP switch at SW4.

Figure 1-10 shows the JTAG analog switches and DIP switch SW4.





Figure 1-10: PL JTAG Programming Source Analog Switch

DIP switch SW4[1:2] setting 10 selects the 14-pin header J3 for configuration using either a Parallel Cable IV (PC4) or Platform Cable USB II. DIP switch SW4 setting 01 selects the USB-to-JTAG Digilent bridge U30 for configuration over a Standard-A to Micro-B USB cable. DIP switch SW4 setting 11 selects the JTAG 20-pin header at J62. The four JTAG signals TDI, TDO, TCK, and TMS would be connected to J62 through flying leads from a JTAG cable. The 3-to-1 analog switch settings are shown in Table 1-11.



Table 1-11: Switch SW4 Configuration Option Settings

| Configuration Source               | DIP Switch SW4                     |                                    |  |  |
|------------------------------------|------------------------------------|------------------------------------|--|--|
| Configuration Source               | Switch 1 <sup>(1)</sup> JTAG_SEL_1 | Switch 2 <sup>(1)</sup> JTAG_SEL_2 |  |  |
| None                               | 0                                  | 0                                  |  |  |
| Cable Connector J3 <sup>(2)</sup>  | 1                                  | 0                                  |  |  |
| Digilent USB-to-JTAG interface U30 | 0                                  | 1                                  |  |  |
| JTAG (flying lead) Header J62      | 1                                  | 1                                  |  |  |

#### Notes:

- 1. 0 = open, 1 = closed
- 2. Default switch setting

### **FMC Connector JTAG Bypass**

When an FPGA mezzanine card (FMC) is attached to HPC J37 or LPC J5 it is automatically added to the JTAG chain through electronically controlled single-pole single-throw (SPST) switches U32 and U31 respectively. The SPST switches are normally closed and transition to an open state when an FMC is attached. Switch U32 adds an attached FMC to the JTAG chain as determined by the FMC\_HPC\_PRSNT\_M2C\_B signal. Switch U31 adds an attached FMC to the JTAG chain as determined by the FMC\_LPC\_PRSNT\_M2C\_B signal. The attached FMC card must implement a TDI-to-TDO connection through a device or bypass jumper for the JTAG chain to be completed to the AP SoC U1.

The JTAG connectivity on the ZC706 board allows a host computer to download bitstreams to the AP SoC using the Xilinx® iMPACT software. In addition, the JTAG connector allows debug tools such as the Vivado serial I/O analyzer or a software debugger to access the SoC. The iMPACT software tool can also indirectly program the linear QSPI flash memory. To accomplish this, the iMPACT software configures the SoC with a temporary design to access and program the QSPI memory device.

## **Clock Generation**

[Figure 1-2, callouts 7, 8, and 9]

The ZC706 evaluation board provides four clock sources for the XC7Z045 AP SoC. Table 1-12 lists the source devices for each clock.



Table 1-12: ZC706 Evaluation Board Clock Sources

| Clock Name              | Clock Source   | Description                                                                                                                         |  |
|-------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| System Clock            | U64            | SiT9102 2.5V LVDS 200 MHz fixed-frequency oscillator (SiTime). See System Clock, page 34.                                           |  |
| User Clock              | U37            | Si570 3.3V LVDS I <sup>2</sup> C programmable oscillator, 156.250 MHz default (Silicon Labs). See Programmable User Clock, page 35. |  |
| User SMA Clock          | J67(P), J68(N) | User clock input SMAs, limit input swing voltage to VADJ_FPGA setting (1.8V, 2.5V, 3.3V). See User SMA Clock Source, page 36.       |  |
| PS Clock                | U24            | SIT8103 1.8V single-ended CMOS 33.3333 MHz fixed frequency oscillator (SiTime). See Processing System Clock Source, page 37.        |  |
| GTX SMA REF Clock       | J36(P), J31(N) | User clock input SMAs. See GTX SMA Clock (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N), page 37.                                          |  |
| Jitter Attenuated Clock | U60            | Si5324C LVDS precision clock multiplier/jitter attenuator (Silicon Labs).<br>See Jitter Attenuated Clock, page 38.                  |  |

Table 1-13 lists the pin-to-pin connections from each clock source to the XC7Z045 AP SoC.

Table 1-13: Clock Connections, Source to XC7Z045 AP SoC

| Clock Source Pin | Net Name         | XC7Z045 (U1) Pin |
|------------------|------------------|------------------|
| U64.5            | SYSCLK_N         | G9               |
| U64.4            | SYSCLK_P         | H9               |
| U37.5            | USRCLK_N         | AG14             |
| U37.4            | USRCLK_P         | AF14             |
| J67.1            | USER_SMA_CLOCK_P | AD18             |
| J68.1            | USER_SMA_CLOCK_N | AD19             |
| J24.3            | PS_CLK           | A22 (Bank 500)   |
| J36.1            | SMA_MGT_REFCLK_P | W8               |
| J31.1            | SMA_MGT_REFCLK_N | W7               |
| U60.28           | SI5324_OUT_C_P   | AC8              |
| U60.29           | SI5324_OUT_C_N   | AC7              |

# **System Clock**

[Figure 1-2, callout 7]

The system clock source is an LVDS 200 MHz oscillator at U64. It is wired to a multi-region clock capable (MRCC) input on programmable logic (PL) bank 34. The signal pair is named SYSCLK\_P and SYSCLK\_N and each signal is connected to U1 (pins H9 and G9, respectively) on the XC7Z045 AP SoC.

Oscillator: SiTime SiT9102AI-243N25E200.00000 (200 MHz)

• Frequency jitter: 50 ppm



### LVDS Differential Output

The system clock circuit is shown in Figure 1-11.



Figure 1-11: System Clock Source

For more details, see the SiTime SiT9102 data sheet [Ref 5].

### **Programmable User Clock**

[Figure 1-2, callout 8]

The ZC706 evaluation board has a programmable low-jitter 3.3V LVDS differential oscillator (U37) connected to the MRCC inputs of bank 10. This USRCLK\_P and USRCLK\_N clock signal pair is connected to XC7Z045 AP SoC U1 pins AF14 and AG14, respectively. On power-up the user clock defaults to an output frequency of 156.250 MHz. User applications can change the output frequency within the range of 10 MHz to 810 MHz through an I<sup>2</sup>C interface. Power cycling the ZC706 evaluation board reverts the user clock to the default frequency of 156.250 MHz.

- Programmable Oscillator: Silicon Labs Si570BAB0000544DG (10 MHz–810 MHz)
- Frequency jitter: 50 ppm
- LVDS Differential Output



The user clock circuit is shown in Figure 1-12.



Figure 1-12: User Clock Source

See the Silicon Labs Si570 data sheet [Ref 6].

#### **User SMA Clock Source**

The ZC706 board provides a pair of SMAs for differential user clock input into PL Bank 9 (see Figure 1-13). The P-side SMA J67 signal USER\_SMA\_CLOCK\_P is connected to U1 pin AD18, with the N-side SMA J68 signal USER\_SMA\_CLOCK\_N connected to U1 pin AD19. Bank 9 Vcco is VADJ\_FPGA, a variable voltage (1.8V, 2.5V, 3.3V) depending on the ZC706 FMC interface banks voltage. The USER\_SMA\_CLOCK input voltage swing should not exceed the board VADJ\_FPGA voltage setting.



Figure 1-13: User SMA Clock



## **Processing System Clock Source**

The Processing System (PS) clock source is a 1.8V LVCMOS single-ended fixed 33.33333 MHz oscillator at U24. It is wired to PS bank 500, pin A22 (PS\_CLK), on the XC7Z045 AP SoC.

Oscillator: SiTime SiT8103AC-23-18E-33.33333 (33.3 MHz)

• Frequency jitter: 50 ppm

• Single-ended output

The system clock circuit is shown in Figure 1-14.



Figure 1-14: Processing System Clock Source

For more details, see the SiTime SiT8103 data sheet [Ref 5].

## GTX SMA Clock (SMA\_MGT\_REFCLK\_P and SMA\_MGT\_REFCLK\_N)

[Figure 1-2, callout 10]

The ZC706 board includes a pair of SMA connectors for a GTX clock wired to GTX Quad bank 111. This differential clock has signal names SMA\_MGT\_REFCLK\_P and SMA\_REFCLK\_N, which are connected to AP SoC U1 pins W8 and W7 respectively.

- External user-provided GTX reference clock on SMA input connectors
- Differential Input



Figure 1-15 shows this AC-coupled clock circuit.



Figure 1-15: GTX SMA Clock Source

#### **Jitter Attenuated Clock**

[Figure 1-2, callout 11]

The ZC706 board includes a Silicon Labs Si5324 jitter attenuator U60 on the back side of the board. AP SoC user logic can implement a clock recovery circuit and then output this clock to a differential I/O pair on I/O bank 9 (REC\_CLOCK\_C\_P, AP SoC U1 pin AD20 and REC\_CLOCK\_C\_N, AP SoC U1 pin AE20) for jitter attenuation. The jitter attenuated clock (Si5324\_OUT\_C\_P, Si5324\_OUT\_C\_N) is then routed as a reference clock to GTX Quad 110 inputs MGTREFCLK1P (AP SoC U1 pin AC8) and MGTREFCLK1N (AP SoC U1 pin AC7).

The primary purpose of this clock is to support CPRI/OBSAI applications that perform clock recovery from a user-supplied SFP/SFP+ module and use the jitter attenuated recovered clock to drive the reference clock inputs of a GTX transceiver. The jitter attenuated clock circuit is shown in Figure 1-16.





Figure 1-16: Jitter Attenuated Clock

See the Silicon Labs Si5324 data sheet [Ref 6].

## **GTX Transceivers**

[Figure 1-2, callout 12]

The ZC706 board provides access to 16 GTX transceivers:

- Four of the GTX transceivers are wired to the PCI Express x4 endpoint edge connector (P4) fingers
- Eight of the GTX transceivers are wired to the FMC HPC connector (J37)
- One GTX transceiver is wired to the FMC LPC connector (J5)
- One GTX transceiver is wired to SMA connectors (RX: J32, J33 TX: J35, J34)
- One GTX transceiver is wired to the SFP/SFP+ Module connector (P2)



 One GTX transceiver is unused and is wired in a capacitively coupled TX-to-RX loopback configuration

The GTX transceivers in Zynq-7000 series AP SoCs are grouped into four channels described as Quads. The reference clock for a Quad can be sourced from the Quad above or Quad below the GTX Quad of interest. There are four GTX Quads on the ZC706 board with connectivity as shown here:

- Quad 109:
  - MGTREFCLK0 FMC\_HPC\_GBTCLK0\_M2C clock
  - MGTREFCLK1 not connected
  - Contains 4 GTX transceivers allocated to FMC\_HPC\_DP[3:0]\_C2M\_P/N
- Quad 110:
  - MGTREFCLK0 FMC\_HPC\_GBTCLK1\_M2C clock
  - MGTREFCLK1 SI5324\_OUT\_C\_P/N jitter attenuator clock
  - Contains 4 GTX transceivers allocated to FMC\_HPC\_DP[7:4]\_C2M\_P/N
- Quad 111:
  - MGTREFCLK0 FMC\_LPC\_GBTCLK0\_M2C\_C\_P/N
  - MGTREFCLK1 SMA\_MGT\_REFCLK\_P/N SMA GTX clock input
  - Contains 1 GTX transceiver allocated to FMC\_LPC\_DP0\_C2M\_P/N
  - Contains 1 GTX transceiver allocated to SMA\_MGT\_TX\_P/N and RX\_P/N SMA connectors
  - Contains 1 GTX transceiver allocated to SFP\_TX and \_RX\_P/N SFP/SFP+ connector
  - Contains 1 GTX transceiver which is unused and is wired in TX-to-RX loopback configuration
- Quad 112:
  - MGTREFCLK0 PCIE\_CLK\_Q0\_P/N PCIe edge connector clock
  - MGTREFCLK1 not connected
  - Contains 4 GTX transceivers allocated to PCIe lanes 0-3



Table 1-14 lists the GTX Banks 109 and 110 interface connections between the AP SoC U1 and FMC HPC connector J37.

Table 1-14: AP SoC GTX Banks 109 and 110 Interface Connections to FMC HPC J37

| Transceiver<br>Bank | AP SoC U1<br>Pin<br>Number | AP SoC U1 Pin Name | Schematic Net Name          | Connected<br>Pin | Connected<br>Device |
|---------------------|----------------------------|--------------------|-----------------------------|------------------|---------------------|
|                     | AK10                       | MGTPTXP0_109       | FMC_HPC_DP0_C2M_P           | C2               |                     |
|                     | AK9                        | MGTPTXN0_109       | FMC_HPC_DP0_C2M_N           | C3               |                     |
|                     | AH10                       | MGTPRXP0_109       | FMC_HPC_DP0_M2C_P           | C6               |                     |
|                     | AH9                        | MGTPRXN0_109       | FMC_HPC_DP0_M2C_N           | C7               |                     |
|                     | AK6                        | MGTPTXP1_109       | FMC_HPC_DP1_C2M_P           | A22              |                     |
|                     | AK5                        | MGTPTXN1_109       | FMC_HPC_DP1_C2M_N           | A23              |                     |
|                     | AJ8                        | MGTPRXP1_109       | FMC_HPC_DP1_M2C_P           | A2               | FMC HPC<br>J37      |
|                     | AJ7                        | MGTPRXN1_109       | FMC_HPC_DP1_M2C_N           | A3               |                     |
|                     | AJ4                        | MGTPTXP2_109       | FMC_HPC_DP2_C2M_P           | A26              |                     |
| CTV DANK 100        | AJ3                        | MGTPTXN2_109       | FMC_HPC_DP2_C2M_N           | A27              |                     |
| GTX_BANK_109        | AG8                        | MGTPRXP2_109       | FMC_HPC_DP2_M2C_P           | A6               |                     |
|                     | AG7                        | MGTPRXN2_109       | FMC_HPC_DP2_M2C_N           | A7               |                     |
|                     | AK2                        | MGTPTXP3_109       | FMC_HPC_DP3_C2M_P           | A30              |                     |
|                     | AK1                        | MGTPTXN3_109       | FMC_HPC_DP3_C2M_N           | A31              |                     |
|                     | AE8                        | MGTPRXP3_109       | FMC_HPC_DP3_M2C_P           | A10              |                     |
|                     | AE7                        | MGTPRXN3_109       | FMC_HPC_DP3_M2C_N           | A11              |                     |
|                     | AD10                       | MGTREFCLK0P_109    | FMC_HPC_GBTCLK0_M2C_C_P (1) | D4               |                     |
|                     | AD9                        | MGTREFCLK0N_109    | FMC_HPC_GBTCLK0_M2C_C_N (1) | D5               |                     |
|                     | AF10                       | MGTREFCLK1P_109    | NC                          | NA               | NA                  |
|                     | AF9                        | MGTREFCLK1N_109    | NC                          | NA               | NA                  |



Table 1-14: AP SoC GTX Banks 109 and 110 Interface Connections to FMC HPC J37 (Cont'd)

| Transceiver<br>Bank | AP SoC U1<br>Pin<br>Number | AP SoC U1 Pin Name | Schematic Net Name            | Connected<br>Pin | Connected<br>Device |
|---------------------|----------------------------|--------------------|-------------------------------|------------------|---------------------|
|                     | AH2                        | MGTPTXP0_110       | FMC_HPC_DP4_C2M_P             | A34              |                     |
|                     | AH1                        | MGTPTXN0_110       | FMC_HPC_DP4_C2M_N             | A35              |                     |
|                     | AH6                        | MGTPRXP0_110       | FMC_HPC_DP4_M2C_P             | A14              |                     |
|                     | AH5                        | MGTPRXN0_110       | FMC_HPC_DP4_M2C_N             | A15              |                     |
|                     | AF2                        | MGTPTXP1_110       | FMC_HPC_DP5_C2M_P             | A38              |                     |
|                     | AF1                        | MGTPTXN1_110       | FMC_HPC_DP5_C2M_N             | A39              |                     |
|                     | AG4                        | MGTPRXP1_110       | FMC_HPC_DP5_M2C_P             | A18              | FMC HPC<br>J37      |
|                     | AG3                        | MGTPRXN1_110       | FMC_HPC_DP5_M2C_N             | A19              |                     |
|                     | AE4                        | MGTPTXP2_110       | FMC_HPC_DP6_C2M_P             | B36              |                     |
| CTV DANK 110        | AE3                        | MGTPTXN2_110       | FMC_HPC_DP6_C2M_N             | B37              |                     |
| GTX_BANK_110        | AF6                        | MGTPRXP2_110       | FMC_HPC_DP6_M2C_P             | B16              |                     |
|                     | AF5                        | MGTPRXN2_110       | FMC_HPC_DP6_M2C_N             | B17              |                     |
|                     | AD2                        | MGTPTXP3_110       | FMC_HPC_DP7_C2M_P             | B32              |                     |
|                     | AD1                        | MGTPTXN3_110       | FMC_HPC_DP7_C2M_N             | B33              |                     |
|                     | AD6                        | MGTPRXP3_110       | FMC_HPC_DP7_M2C_P             | B12              |                     |
|                     | AD5                        | MGTPRXN3_110       | FMC_HPC_DP7_M2C_N             | B13              |                     |
|                     | AA8                        | MGTREFCLK0P_110    | FMC_HPC_GBTCLK1_M2C_P (1)     | B20              |                     |
|                     | AA7                        | MGTREFCLK0N_110    | FMC_HPC_GBTCLK1_M2C_N (1)     | B21              |                     |
|                     | AC8                        | MGTREFCLK1P_110    | SI5324_OUT_C_P (2)            | 28               | SI5324C             |
|                     | AC7                        | MGTREFCLK1N_110    | SI5324_OUT_C_N <sup>(2)</sup> | 29               | U60                 |

#### Notes:

- 1. AP SoC U1 GTX input clock nets are capacitively coupled to the FMC HPC J37 pins.
- 2. AP SoC U1 GTX input clock nets are capacitively coupled to the SI5324C Recovery Clock U60 output pins.



Table 1-15 lists the GTX Bank interface connections between the AP SoC U1 and FMC LPC connector J5.

Table 1-15: AP SoC GTX Bank 111 Interface Connections to FMC LPC J5

| Transceiver<br>Bank | AP SoC U1<br>Pin<br>Number | AP SoC U1 Pin<br>Name | Schematic Net Name              | Connected<br>Pin | Connected<br>Device |
|---------------------|----------------------------|-----------------------|---------------------------------|------------------|---------------------|
| AB2                 | AB2                        | MGTPTXP0_111          | FMC_LPC_DP0_C2M_P               | C2               |                     |
|                     | AB1                        | MGTPTXN0_111          | FMC_LPC_DP0_C2M_N               | C3               | FMC LPC             |
|                     | AC4                        | MGTPRXP0_111          | FMC_LPC_DP0_M2C_P               | C6               | J5                  |
|                     | AC3                        | MGTPRXN0_111          | FMC_LPC_DP0_M2C_N               | C7               |                     |
|                     | Y2                         | MGTPTXP1_111          | SMA_MGT_TX_P                    | J35.1            |                     |
|                     | Y1                         | MGTPTXN1_111          | SMA_MGT_TX_N                    | J34.1            | GTX TX/RX           |
|                     | AB6                        | MGTPRXP1_111          | SMA_MGT_RX_P (2)                | J32.1            | SMA                 |
|                     | AB5                        | MGTPRXN1_111          | SMA_MGT_RX_N (2)                | J33.1            |                     |
|                     | W4                         | MGTPTXP2_111          | SFP_TX_P                        | 18               |                     |
| GTX BANK 11         | W3                         | MGTPTXN2_111          | SFP_TX_N                        | 19               | SFP+                |
| 1                   | Y6                         | MGTPRXP2_111          | SFP_RX_P                        | 13               | Conn. P2            |
|                     | Y5                         | MGTPRXN2_111          | SFP_RX_N                        | 12               |                     |
|                     | V2                         | MGTPTXP3_111          | (capacitively coupled to AA4)   | U1.AA4           |                     |
|                     | V1                         | MGTPTXN3_111          | (Cooperatively coupled to AA3)  | U1.AA3           | AP SoC U1<br>GTX    |
|                     | AA4                        | MGTPRXP3_111          | See Pin V2 loopback             | U1.V2            | Loopback            |
|                     | AA3                        | MGTPRXN3_111          | See Pin V1 loopback             | U1.V1            |                     |
|                     | U8                         | MGTREFCLK0P_111       | FMC_LPC_GBTCLK0_M2C_C_P (1)     | D4               | FMC LPC             |
|                     | U7                         | MGTREFCLK0N_111       | FMC_LPC_GBTCLK0_M2C_C_N (1)     | D5               | J5                  |
|                     | W8                         | MGTREFCLK1P_111       | SMA_MGT_REFCLK_P (2)            | J36.1            | GTX                 |
|                     | W7                         | MGTREFCLK1N_111       | SMA_MGT_REFCLK_N <sup>(2)</sup> | J31.1            | REFCLK<br>SMA       |

#### Notes:

For additional information on Zynq-7000 GTX transceivers, see *7 Series FPGAs GTX/GTH Transceivers User Guide* (UG476).

<sup>1.</sup> AP SoC U1 GTX input clock nets are capacitively coupled to the FMC LPC J5 pins.

<sup>2.</sup> AP SoC U1 GTX input nets are capacitively coupled to the RX and MGT\_REFCLK SMA pins.



# **PCI Express Endpoint Connectivity**

[Figure 1-2, callout 13]

The 4-lane PCI Express edge connector performs data transfers at the rate of 2.5 GT/s for a Gen1 application and 5.0 GT/s for a Gen2 application. The PCIe transmit and receive signal data paths have a characteristic impedance of  $85\Omega \pm 10\%$ . The PCIe clock is routed as a  $100\Omega$  differential pair.

The XC7Z045-2FFG900C AP SoC (-2 speed grade) included with the ZC706 board supports up to Gen2 x4.

The PCIe clock is input from the edge connector. It is AC coupled to the AP SoC through the MGTREFCLK0 pins of Quad 112. PCIE\_CLK\_Q0\_P is connected to AP SoC U1 pin N8, and the \_N net is connected to pin N7. The PCI Express clock circuit is shown in Figure 1-17.



Figure 1-17: PCI Express Clock

PCIe lane width/size is selected by jumper J19 (Figure 1-17). The default lane size selection is 4-lane (J19 pins 3 and 4 jumpered).



Figure 1-18: PCI Express Lane Size Select Jumper J19



Table 1-17 lists the GTX Bank 112 interface connections between the AP SoC U1 and PCIe 4-lane connector P4.

Table 1-16: AP SoC GTX Bank 112 Interface Connections to PCIe 4-Lane Connector P4

| Transceiver<br>Bank | AP SoC U1 Pin<br>Number | AP SoC U1 Pin Name | Schematic Net Name | PCIe 4-Lane Conn. P4<br>Pin Number |
|---------------------|-------------------------|--------------------|--------------------|------------------------------------|
| GTX_BANK_112        | T2                      | MGTPTXP0_112       | PCIE_TX3_P         | A29 (1)                            |
|                     | T1                      | MGTPTXN0_112       | PCIE_TX3_N         | A30 (1)                            |
|                     | V6                      | MGTPRXP0_112       | PCIE_RX3_P         | B27                                |
|                     | V5                      | MGTPRXN0_112       | PCIE_RX3_N         | B28                                |
|                     | R4                      | MGTPTXP1_112       | PCIE_TX2_P         | A25 (1)                            |
|                     | R3                      | MGTPTXN1_112       | PCIE_TX2_N         | A26 (1)                            |
|                     | U4                      | MGTPRXP1_112       | PCIE_RX2_P         | B23                                |
|                     | U3                      | MGTPRXN1_112       | PCIE_RX2_N         | B24                                |
|                     | P2                      | MGTPTXP2_112       | PCIE_TX1_P         | A21 (1)                            |
|                     | P1                      | MGTPTXN2_112       | PCIE_TX1_N         | A22 (1)                            |
|                     | T6                      | MGTPRXP2_112       | PCIE_RX1_P         | B19                                |
|                     | T5                      | MGTPRXN2_112       | PCIE_RX1_N         | B20                                |
|                     | N4                      | MGTPTXP3_112       | PCIE_TX0_P         | A16 (1)                            |
|                     | N3                      | MGTPTXN3_112       | PCIE_TX0_N         | A17 (1)                            |
|                     | P6                      | MGTPRXP3_112       | PCIE_RX0_P         | B14                                |
|                     | P5                      | MGTPRXN3_112       | PCIE_RX0_N         | B15                                |
|                     | N8                      | MGTREFCLK0P_112    | PCIE_CLK_QO_P      | A13 (1)                            |
|                     | N7                      | MGTREFCLK0N_112    | PCIE_CLK_QO_N      | A14 (1)                            |
|                     | R8                      | MGTREFCLK1P_112    | NC                 | NA                                 |
|                     | R7                      | MGTREFCLK1N_112    | NC                 | NA                                 |

#### Notes:

For additional information about Zynq-7000 PCIe functionality, see *7 Series FPGAs Integrated Block for PCI Express Product Guide for Vivado Design Suite* (PG054). Additional information about the PCI Express standard is available [Ref 7].

<sup>1.</sup> PCIE\_TXn\_P/N and PCIE\_CLK\_Q0\_P/N are capacitively coupled to the PCIe edge connector P4.



### SFP/SFP+ Module Connector

[Figure 1-2, callout 14]

The ZC706 board contains a small form-factor pluggable (SFP/SFP+) connector and cage assembly P2 that accepts SFP or SFP+ modules. Figure 1-19 shows the SFP/SFP+ module connector circuitry.



Figure 1-19: SFP+ Module Connector

Table 1-17 lists the SFP+ module RX and TX connections to the AP SoC.



Table 1-17: AP SoC U1 to SFP+ Module Connections

| AP SoC (U1) Pin  | Schematic Net name   | SFP+ Module (P2) Pin Name |            |  |
|------------------|----------------------|---------------------------|------------|--|
| AF 300 (01) FIII | Schematic Net name   |                           |            |  |
| Y5               | SFP_RX_N             | 12                        | RD_N       |  |
| Y6               | SFP_RX_P             | 13                        | RD_P       |  |
| W4               | SFP_TX_P             | 18                        | TD_P       |  |
| W3               | SFP_TX_N             | 19                        | TD_N       |  |
| AA18             | SFP_TX_DISABLE_TRANS | 3                         | TX_DISABLE |  |

Table 1-18 lists the SFP+ module control and status connections to the AP SoC.

Table 1-18: SFP+ Module Control and Status Connections

| SFP Control/ Status<br>Signal |                 | Board Connection                       |
|-------------------------------|-----------------|----------------------------------------|
| SFP_TX_FAULT                  | Test Point J23  | High = Fault                           |
| SFF_IX_IAULI                  | lest Follit J23 | Low = Normal operation                 |
| CED TV DICABLE                | lumper 17       | Off = SFP Disabled                     |
| SFP_TX_DISABLE                | Jumper 17       | On = SFP enabled                       |
| SED MOD DETECT                | Test Point J24  | High = Module not present              |
| SFP_MOD_DETECT                | lest Follit J24 | Low = Module present                   |
| CED DCO                       | lumper E6       | Jumper pins 1-2 = Full RX bandwidth    |
| SFP_RS0                       | Jumper 56       | Jumper pins 2-3 = Reduced RX bandwidth |
| CED DC1                       | lumper FF       | Jumper pins 1-2 = Full TX bandwidth    |
| SFP_RS1                       | Jumper 55       | Jumper pins 2-3 = Reduced TX bandwidth |
| CED TOC                       | Tost Doint 125  | High = Loss of receiver signal         |
| SFP_LOS                       | Test Point J25  | Low = Normal operation                 |

For additional information about the enhanced Small Form Factor Pluggable (SFP+) module, see the SFF-8431 specification [Ref 8].

## 10/100/1,000 Mb/s Tri-Speed Ethernet PHY (PL)

[Figure 1-2, callout 15]

The ZC706 evaluation board uses the Marvell Alaska PHY device (88E1116R) at U51 for Ethernet communications at 10 Mb/s, 100 Mb/s, or 1,000 Mb/s. The board supports RGMII mode only. The PHY connection to a user-provided Ethernet cable is through a Halo HFJ11-1G01E RJ-45 connector (P3) with built-in magnetics.

On power-up, or on reset, the PHY is configured to operate in RGMII mode with PHY address 0b00111 using the settings shown in Table 1-19. These settings can be overwritten via software commands passed over the MDIO interface.



**Table 1-19:** Board Connections for PHY Configuration Pins

| U51 Pin     | Setting  | Configuration |            |
|-------------|----------|---------------|------------|
| CONFIG (64) | VCCP1V8  | PHYAD[1]=1    | PHYAD[0]=1 |
| CONFIG1 (1) | PHY_LED0 | PHYAD[3]=0    | PHYAD[2]=1 |
|             | GND      | ENA_XC=0      | PHYAD[4]=0 |
| CONFIG2 (2) | PHY_LED0 | ENA_XC=0      | PHYAD[4]=1 |
|             | VCCP1V8  | ENA_XC=1      | PHYAD[4]=1 |
|             | GND      | RGMII_TX=0    | RGMII_RX=0 |
| CONFIG3 (3) | PHY_LED0 | RGMII_TX=0    | RGMII_RX=1 |
|             | PHY_LED1 | RGMII_TX=1    | RGMII_RX=0 |
|             | VCCP1V8  | RGMII_TX=1    | RGMII_RX=1 |

The Ethernet connections from the XC7Z045 AP SoC at U1 to the 88E1116R PHY device at U51 are listed in Table 1-20.

Table 1-20: Ethernet Connections, XC7Z045 AP SoC to the PHY Device

| XC7Z045 (U1) Pin |      |               | Schematic   | M88E1116R PHY U51 |         |  |
|------------------|------|---------------|-------------|-------------------|---------|--|
| Pin Name         | Bank | Pin<br>Number | Net Name    | Pin               | Name    |  |
| PS_MIO53         | 501  | C18           | PHY_MDIO    | 45                | MDIO    |  |
| PS_MIO52         | 501  | D19           | PHY_MDC     | 48                | MDC     |  |
| PS_MIO16         | 501  | L19           | PHY_TX_CLK  | 60                | TX_CLK  |  |
| PS_MIO21         | 501  | J19           | PHY_TX_CTRL | 63                | TX_CTRL |  |
| PS_MIO20         | 501  | M20           | PHY_TXD3    | 62                | TXD3    |  |
| PS_MIO19         | 501  | J20           | PHY_TXD2    | 61                | TXD2    |  |
| PS_MIO18         | 501  | K20           | PHY_TXD1    | 59                | TXD1    |  |
| PS_MIO17         | 501  | K21           | PHY_TXD0    | 58                | TXD0    |  |
| PS_MIO22         | 501  | L20           | PHY_RX_CLK  | 53                | RX_CLK  |  |
| PS_MIO27         | 501  | G20           | PHY_RX_CTRL | 49                | RX_CTRL |  |
| PS_MIO26         | 501  | M17           | PHY_RXD3    | 55                | RXD3    |  |
| PS_MIO25         | 501  | G19           | PHY_RXD2    | 54                | RXD2    |  |
| PS_MIO24         | 501  | M19           | PHY_RXD1    | 51                | RXD1    |  |
| PS_MIO23         | 501  | J21           | PHY_RXD0    | 50                | RXD0    |  |

### **Ethernet PHY Clock Source**

A 25.00 MHz 50 ppm crystal at X1 is the clock source for the 881116R PHY at U51. Figure 1-20 shows the clock source.





Figure 1-20: Ethernet PHY Clock Source

The data sheet can be obtained under NDA with Marvell. Contact information can be found at their website [Ref 9].

For additional information on the Zynq-7000 AP SoC device gigabit Ethernet controller, see Zynq-7000 All Programmable SoC Overview (DS190) and Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).

## **USB-to-UART Bridge**

[Figure 1-2, callout 17]

The ZC706 evaluation board contains a Silicon Labs CP2103GM USB-to-UART bridge device (U52) which allows a connection to a host computer with a USB port. The USB cable is supplied in the ZC706 evaluation kit (Standard-A end to host computer, Type Mini-B end to ZC706 evaluation board connector J21). The CP2103GM is powered by the USB 5V provided by the host PC when the USB cable is plugged into the USB port on the ZC706 evaluation board.

The CP2013GM TX and RX pins are wired to the UART\_1 IP block within the XC7Z045 AP SoC PS I/O Peripherals set. The XC7Z045 AP SoC supports the USB-to-UART bridge using two signal pins: Transmit (TX) and Receive (RX).

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers for the host computer. These drivers permit the CP2103GM USB-to-UART bridge to appear as a COM port to communications application software (for example, TeraTerm or HyperTerm) that runs on the host computer. The VCP device drivers must be installed on the host PC prior to establishing communications with the ZC706 evaluation board.

The USB Connector pin assignments and signal definitions between J21 and U52 are listed in Table 1-21.



USB Connector (J21) CP2103GM (U52) **Net Name** Description Pin Name Pin Name 7 REGIN **VBUS** USB\_UART\_VBUS +5V VBUS Powered **VBUS** 8 D - $D_N$ USB\_UART\_D\_N Bidirectional differential serial data (N-side) 4 3  $D_P$ USB\_UART\_D\_P Bidirectional differential serial data (P-side) 3 D + 2 GND1 **GND** 5 USB\_UART\_GND Signal ground 29 CNR GND

Table 1-21: USB Connector J21 Pin Assignments and Signal Definitions

Table 1-22 lists the USB connections between the XC7Z045 AP SoC PS Bank 501 and the CP2103 UART bridge.

Table 1-22: XC7Z045 AP SoC to CP2103 Connections

| XC7045 AP SoC (U1) |      |     | Schematic Net | CP2       | 103GM De   | vice (U52)  |     |          |           |
|--------------------|------|-----|---------------|-----------|------------|-------------|-----|----------|-----------|
| Pin Name           | Bank | PIN | Function      | Direction | IOSTANDARD | Name        | PIN | Function | Direction |
| PS_MIO48           | 501  | C19 | TX            | Output    | LVCMOS18   | USB_UART_RX | 24  | RXD      | Input     |
| PS_MIO49           | 501  | D18 | RX            | Input     | LVCMOS18   | USB_UART_TX | 25  | TXD      | Output    |

Refer to the Silicon Labs website for technical information on the CP2103GM and the VCP drivers [Ref 6].

For additional information on the Zynq-7000 AP SoC device UART controller, see *Zynq-7000 All Programmable SoC Overview* (DS190) and *Zynq-7000 All Programmable SoC Technical Reference Manual* (UG585).

# **HDMI Video Output**

[Figure 1-2, callout 18]

The ZC706 evaluation board provides a high-definition multimedia interface (HDMI®) video output using an Analog Devices ADV7511KSTZ-P HDMI transmitter at U53. The HDMI transmitter U53 is connected to the XC7Z045 AP SoC PL-side banks 12 and 13 and its output is provided on a Molex 500254-1927 HDMI type-A receptacle at P1. The ADV7511 supports 1080P 60Hz, YCbCr 4:4:4 encoding via 24-bit input data mapping.

The ZC706 evaluation board supports the following HDMI device interfaces:

- 24 data lines
- Independent VSYNC, HSYNC
- Single-ended input CLK
- Interrupt Out pin to XC7Z045 AP SoC



- I<sup>2</sup>C
- SPDIF

Figure 1-21 shows the HDMI codec circuit.



Figure 1-21: HDMI Codec Circuit



Table 1-23 lists the connections between the codec and the XC7Z045 AP SoC.

Table 1-23: XC7Z045 AP SoC U1 to HDMI Codec Connections (ADV7511)

| V077045 (U4) D:  |                   | ADV75 | 11 (U53)  |
|------------------|-------------------|-------|-----------|
| XC7Z045 (U1) Pin | Net Name          | Pin   | Name      |
| U24              | HDMI_R_D4         | 92    | D4        |
| T22              | HDMI_R_D5         | 91    | D5        |
| R23              | HDMI_R_D6         | 90    | D6        |
| AA25             | HDMI_R_D7         | 89    | D7        |
| AE28             | HDMI_R_D8         | 88    | D8        |
| T23              | HDMI_R_D9         | 87    | D9        |
| AB25             | HDMI_R_D10        | 86    | D10       |
| T27              | HDMI_R_D11        | 85    | D11       |
| AD26             | HDMI_R_D16        | 80    | D16       |
| AB26             | HDMI_R_D17        | 78    | D17       |
| AA28             | HDMI_R_D18        | 74    | D18       |
| AC26             | HDMI_R_D19        | 73    | D19       |
| AE30             | HDMI_R_D20        | 72    | D20       |
| Y25              | HDMI_R_D21        | 71    | D21       |
| AA29             | HDMI_R_D22        | 70    | D22       |
| AD30             | HDMI_R_D23        | 69    | D23       |
| Y28              | HDMI_R_D28        | 64    | D28       |
| AF28             | HDMI_R_D29        | 63    | D29       |
| V22              | HDMI_R_D30        | 62    | D30       |
| AA27             | HDMI_R_D31        | 61    | D31       |
| U22              | HDMI_R_D32        | 60    | D32       |
| N28              | HDMI_R_D33        | 59    | D33       |
| V21              | HDMI_R_D34        | 58    | D34       |
| AC22             | HDMI_R_D35        | 57    | D35       |
| V24              | HDMI_R_DE         | 97    | DE        |
| R22              | HDMI_R_HSYNC      | 98    | HSYNC     |
| U21              | HDMI_R_VSYNC      | 2     | VSYNC     |
| P28              | HDMI_R_CLK        | 79    | CLK       |
| AC23             | HDMI_INT          | 45    | INT       |
| AC21             | HDMI_R_SPDIF      | 10    | SPDIF     |
| AB22             | HDMI_SPDIF_OUT_LS | 46    | SPDIF_OUT |



Table 1-24 lists the connections between the codec and the HDMI receptacle P1.

*Table 1-24:* ADV7511 to HDMI Receptacle Connections

| ADV7511 (U53) | Net Name    | HDMI Receptacle<br>P1 Pin |
|---------------|-------------|---------------------------|
| 36            | HDMI_D0_P   | 7                         |
| 35            | HDMI_D0_N   | 9                         |
| 40            | HDMI_D1_P   | 4                         |
| 39            | HDMI_D1_N   | 6                         |
| 43            | HDMI_D2_P   | 1                         |
| 42            | HDMI_D2_N   | 3                         |
| 33            | HDMI_CLK_P  | 10                        |
| 32            | HDMI_CLK_N  | 12                        |
| 54            | HDMI_DDCSDA | 16                        |
| 53            | HDMI_DDCSCL | 15                        |
| 52            | HDMI_HEAC_P | 14                        |
| 51            | HDMI_HEAC_N | 19                        |
| 48            | HDMI_CEC    | 13                        |

Information about the ADV7511KSTZ-P is available on the Analog Devices website [Ref 10].

For additional information about HDMI IP options, see the *LogiCORE IP DisplayPort Product Guide for Vivado Design Suite* (PG064).

### **12C Bus**

[Figure 1-2, callout 20]

The ZC706 evaluation board implements two I<sup>2</sup>C ports on the XC7Z045 AP SoC. The PL-side I<sup>2</sup>C port (IIC\_SDA and \_SCL\_MAIN) is routed to level shifter U87. The PS-side I<sup>2</sup>C port (PS\_SDA and \_SCL\_MAIN) is routed to level shifter U88. The "output" side of the two level shifters are wired to the common I<sup>2</sup>C bus IIC\_SDA and \_SCL\_MAIN which is connected to TI Semiconductor PCA9548 1-to-8 channel I<sup>2</sup>C bus switch (U65). The bus switch can operated at speeds up to 400 kHz.



The ZC706 evaluation board I<sup>2</sup>C bus topology is shown in Figure 1-22.



Figure 1-22: I<sup>2</sup>C Bus Topology

User applications that communicate with devices on one of the downstream  $I^2C$  buses must first set up a path to the desired bus through the U65 bus switch at  $I^2C$  address  $0 \times 74$  (0b01110100). Table 1-25 lists the address for each bus.

| Table 1-25: | I <sup>2</sup> C Bus | <b>Addresses</b> |
|-------------|----------------------|------------------|
|-------------|----------------------|------------------|

| I <sup>2</sup> C Bus         | I <sup>2</sup> C Switch Position | I <sup>2</sup> C Address | Device            |
|------------------------------|----------------------------------|--------------------------|-------------------|
| PCA9548 8-Channel bus switch | NA                               | 0b1110100                | PCA9548 U65       |
| USRCLK_SDA/SCL               | 0                                | 0b1011101                | Si570 U37         |
| OSKCEK_SDAYSCE               | U                                | 0b1010000                | SFP+ Conn. P2     |
| IIC_SDA_HDMI                 | 1                                | 0b0111001                | ADV7511 U53       |
| IIC_EEPROM_SDA/SCL           | 2                                | 0b1010100                | M24C08 U9         |
|                              |                                  | 0b0100001                | Port Expander U16 |
| IIC_PORT_EXPANDER_SDA/SCL    | 3                                | 0b1010000                | DDR3 SODIMM J1    |
|                              |                                  | 0b0011000                | DDNS SODIMIN 71   |
| IIC_RTC_SDA/SCL              | 4                                | 0b1010001                | RTC8564JE U26     |
|                              | 4                                | 0b1101000                | SI5324 U60        |
| FMC_HPC_IIC_SDA/SCL          | 5                                | 0bxxxxxd0                | FMC HPC J37       |
| FMC_LPC_IIC_SDA/SCL          | 6                                | 0bxxxxxd0                | FMC LPC J5        |
| PMBUS_DATA/CLOCK             | 7                                | 0b1100101                | UCD90120A U48     |

Information about the PCA9548 is available on the TI Semiconductor website at [Ref 11].

For additional information on the Zynq-7000 AP SoC device I<sup>2</sup>C controller, see *Zynq-7000 All Programmable SoC Overview* (DS190) and *Zynq-7000 All Programmable SoC Technical Reference Manual* (UG585).



## Real Time Clock (RTC)

The Epson RTC-8564JE (U26) is an  $I^2C$  bus interface real-time clock that has a built-in 32.768 KHz oscillator with these features:

- Frequency output options: 32.768 KHz, 1,024 Hz, 32 Hz or 1 Hz
- Calendar output functions: Year, month, day, weekday, hour, minute and second
- Clock counter, alarm and fixed-cycle timer interrupt functions
- Back-up battery B3 Panasonic ML621S/DN, 3.0V rechargeable cell

Programming information for the RTC-8564JE is available in the *RTC-8564JE/NB Application Manual* [Ref 14].

Figure 1-23 shows the real time clock circuit.



Figure 1-23: Real Time Clock Circuit

Real time clock connections to the XC7Z045 AP SoC and the PCA9548 8-Channel bus switch are listed in Table 1-26. Refer to Table 1-25 for the RTC I<sup>2</sup>C address.

Table 1-26: Real Time Clock Connections

| RTC-8564JE (U16) Pin | Net Name        | Connects To                         |
|----------------------|-----------------|-------------------------------------|
| 6                    | IIC_RTC_SCL     | U65.11 (PCA9548 SC4)                |
| 7                    | IIC_RTC_SDA     | U65.10 (PCA9548 SD4)                |
| 10                   | IIC_RTC_IRQ_1_B | U1.AA17 (XC7Z045 AP SoC PL BANK 10) |

Information about the RTC-8564JE is available at the Epson Electronics America website [Ref 15].



# **Status and User LEDs**

Table 1-27 defines the status and user LEDs.

Table 1-27: Status LEDs

| Net Name             | LED Color                                                                                                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POR                  | RED                                                                                                                                                                                                                                                               | Processor System Power-ON reset is active                                                                                                                                                                                                                                                                          |
| FPGA_INIT_B          | GRN/RED                                                                                                                                                                                                                                                           | Green: FPGA initialization was successful<br>Red: FPGA initialization is in progress                                                                                                                                                                                                                               |
| DONE                 | GRN                                                                                                                                                                                                                                                               | FPGA bit file download is complete                                                                                                                                                                                                                                                                                 |
| GPIO_LED_LEFT        | GRN                                                                                                                                                                                                                                                               | Geographically LEFT located user LED                                                                                                                                                                                                                                                                               |
| GPIO_LED_CENTER      | GRN                                                                                                                                                                                                                                                               | Geographically CENTER located user LED                                                                                                                                                                                                                                                                             |
| GPIO_LED_RIGHT       | GRN                                                                                                                                                                                                                                                               | Geographically RIGHT located user LED                                                                                                                                                                                                                                                                              |
| VCCINT               | GRN                                                                                                                                                                                                                                                               | VCCINT voltage on indicator                                                                                                                                                                                                                                                                                        |
| VCC1V5_PL            | GRN                                                                                                                                                                                                                                                               | VCC1V5_PL voltage on indicator                                                                                                                                                                                                                                                                                     |
| VADJ_FPGA            | GRN                                                                                                                                                                                                                                                               | VADJ_FPGA voltage on indicator                                                                                                                                                                                                                                                                                     |
| VCC3V3_FPGA          | GRN                                                                                                                                                                                                                                                               | VCC3V3 voltage on indicator                                                                                                                                                                                                                                                                                        |
| PS_DDR_LINEAR_PG     | GRN                                                                                                                                                                                                                                                               | VTTDDR_PS voltage on indicator                                                                                                                                                                                                                                                                                     |
| SODIMM_DDR_LINEAR_PG | GRN                                                                                                                                                                                                                                                               | VTTDDR_SODIMM voltage on indicator                                                                                                                                                                                                                                                                                 |
| VCC12_P              | GRN                                                                                                                                                                                                                                                               | VCC12_P voltage on indicator                                                                                                                                                                                                                                                                                       |
| PWRCTL1_FMC_PG_C2M   | GRN                                                                                                                                                                                                                                                               | FMC power good INDICATOR                                                                                                                                                                                                                                                                                           |
| CTRL1_PWRGOOD        | GRN                                                                                                                                                                                                                                                               | Power Controller controlled voltage regulator outputs are all ≥ their minimum "good" threshold                                                                                                                                                                                                                     |
| U22_FLG              | RED                                                                                                                                                                                                                                                               | USB 2.0 MOSFET power switch fault                                                                                                                                                                                                                                                                                  |
| LINEAR_POWER_GOOD    | GRN                                                                                                                                                                                                                                                               | MGTAVCC, MGTAVTT, MGTVCCAUX voltage regulator outputs are all ≥ their minimum "good" threshold                                                                                                                                                                                                                     |
| VCCAUX               | GRN                                                                                                                                                                                                                                                               | VCCAUX voltage on indicator                                                                                                                                                                                                                                                                                        |
| PHY_LED0             | GRN                                                                                                                                                                                                                                                               | Ethernet PHY LED0                                                                                                                                                                                                                                                                                                  |
| PHY_LED1             | GRN                                                                                                                                                                                                                                                               | Ethernet PHY LED1                                                                                                                                                                                                                                                                                                  |
| PHY_LED2             | GRN                                                                                                                                                                                                                                                               | Ethernet PHY LED2                                                                                                                                                                                                                                                                                                  |
| GPIO_LED_0           | GRN                                                                                                                                                                                                                                                               | General Purpose user LED                                                                                                                                                                                                                                                                                           |
|                      | POR FPGA_INIT_B  DONE GPIO_LED_LEFT GPIO_LED_CENTER GPIO_LED_RIGHT  VCC1V5_PL  VADJ_FPGA  VCC3V3_FPGA  PS_DDR_LINEAR_PG  SODIMM_DDR_LINEAR_PG  VCC12_P  PWRCTL1_FMC_PG_C2M  CTRL1_PWRGOOD  J22_FLG  LINEAR_POWER_GOOD  VCCAUX PHY_LED0 PHY_LED1 PHY_LED1 PHY_LED2 | POR RED PGA_INIT_B GRN/RED  DONE GRN  GPIO_LED_LEFT GRN  GPIO_LED_CENTER GRN  GPIO_LED_RIGHT GRN  VCCINT GRN  VCCIV5_PL GRN  VADJ_FPGA GRN  PS_DDR_LINEAR_PG GRN  SODIMM_DDR_LINEAR_PG GRN  VCC12_P GRN  PWRCTL1_FMC_PG_C2M GRN  CTRL1_PWRGOOD GRN  VCCAUX GRN  PHY_LED0 GRN  PHY_LED1 GRN  PHY_LED1  PHY_LED2 GRN |



### **Ethernet PHY User LEDs**

[Figure 1-2, callout 21]

The three Ethernet PHY user LEDs shown in Figure 1-24 are located near the RJ45 Ethernet jack P3. The on/off state for each LED is software dependent and has no specific meaning at Ethernet PHY power on.

Refer to the Marvell 881116R Alaska Gigabit Ethernet transceiver data sheet for details concerning the use of the Ethernet PHY user LEDs. They are referred to in the data sheet as LED0, LED1, and LED2. See the data sheet and other product information for the Marvell 881116R Alaska Gigabit Ethernet Transceiver [Ref 9].



Figure 1-24: Ethernet PHY User LEDs

### User I/O

[Figure 1-2, callout 22-24]

The ZC706 evaluation board provides the following user and general purpose I/O capabilities:

- Four user LEDs (callout 22)
  - GPIO\_LED\_LEFT DS8, GPIO\_LED\_CENTER DS9, GPIO\_LED\_RIGHT DS10, GPIO\_LED\_0 DS35
- Three user pushbuttons (callout 23)
  - GPIO\_SW\_LEFT SW7, GPIO\_SW\_CENTER SW9, GPIO\_SW\_RIGHT SW8
- PL CPU reset pushbutton
  - PL CPU RESET SW13
- 4-position user DIP Switch (callout 24)



- GPIO\_DIP\_SW[3:0] SW12
- Two user GPIO male pin headers (callout 26)
- 2 x 6 0.1 in. pitch PMOD1 J57
- 2 x 6 0.1 in. pitch PMOD2 J58

#### **User LEDs**

[Figure 1-2, callout 22]

The ZC706 evaluation board supports four user LEDs connected to XC7Z045 AP SoC Banks 11, 33, and 35. Figure 1-25 shows the user LED circuits.



Figure 1-25: User LEDs

Table 1-28 lists the user LED connections to XC7Z045 AP SoC U1.

Table 1-28: User LED Connections to XC7Z045 AP SoC U1

| XC7Z045 AP SoC (U1) Pin | Net Name        | LED Reference |
|-------------------------|-----------------|---------------|
| Y21                     | GPIO_LED_LEFT   | DS8           |
| G2                      | GPIO_LED_CENTER | DS9           |
| W21                     | GPIO_LED_RIGHT  | DS10          |
| A17                     | GPIO_LED_0      | DS35          |



### **User Pushbuttons**

[Figure 1-2, callout 23]

Figure 1-26 shows the user pushbutton circuits.



Figure 1-26: User Pushbuttons

Table 1-29 lists the user pushbutton connections to XC7Z045 AP SoC U1.

Table 1-29: User Pushbutton Connections to XC7Z045 AP SoC U1

| XC7Z045 AP SoC (U1) Pin | Net Name       | Pushbutton Reference |
|-------------------------|----------------|----------------------|
| AK25                    | GPIO_SW_LEFT   | SW7                  |
| K15                     | GPIO_SW_CENTER | SW9                  |
| R27                     | GPIO_SW_RIGHT  | SW8                  |
| A8                      | PL_CPU_RESET   | SW13                 |



### **GPIO DIP Switch**

Figure 1-27 shows the GPIO DIP switch circuit.



Figure 1-27: GPIO DIP Switch

Table 1-30 lists the GPIO DIP switch connections to XC7Z045 AP SoC U1.

Table 1-30: GPIO DIP Switch Connections to XC7Z045 AP SoC at U1

| XC7Z045 AP S0C (U1) Pin | Net Name     | DIP Switch SW12 Pin |
|-------------------------|--------------|---------------------|
| AB17                    | GPIO_DIP_SW0 | 1                   |
| AC16                    | GPIO_DIP_SW1 | 2                   |
| AC17                    | GPIO_DIP_SW2 | 3                   |
| AJ13                    | GPIO_DIP_SW3 | 4                   |

#### **User PMOD GPIO Headers**

[Figure 1-2, callout 26]

The ZC706 evaluation board supports two GPIO headers J57 and J58. The PMOD nets connected to these headers are accessed via I<sup>2</sup>C bus expander U16 (PMOD0 J57) and level-shifter U40 (PMOD1 J58).



Figure 1-28 shows the user GPIO male pin header circuits.



Figure 1-28: User GPIO Headers



Table 1-31 lists the GPIO Header connections to XC7Z045 AP SoC U1.

Table 1-31: GPIO Header Connections to XC7Z045 AP SoC at U1

| TCA6416APWR (U16) PORT: Pin | Net Name   | GPIO Header J57 Pin |
|-----------------------------|------------|---------------------|
| P00:4                       | IIC_PMOD_0 | J57.1               |
| P01:5                       | IIC_PMOD_1 | J57.3               |
| P02:6                       | IIC_PMOD_2 | J57.5               |
| P03:7                       | IIC_PMOD_3 | J57.7               |
| P04:8                       | IIC_PMOD_4 | J57.2               |
| P05:9                       | IIC_PMOD_5 | J57.4               |
| P06:10                      | IIC_PMOD_6 | J57.6               |
| P07:11                      | IIC_PMOD_7 | J57.8               |
| XC7Z045 AP SoC (U1) Pin     | Net Name   | GPIO Header J58 Pin |
| AJ21                        | PMOD1_0    | J58.1               |
| AK21                        | PMOD1_1    | J58.3               |
| AB21                        | PMOD1_2    | J58.5               |
| AB16                        | PMOD1_3    | J58.7               |
| Y20                         | PMOD1_4    | J58.2               |
| AA20                        | PMOD1_5    | J58.4               |
| AC18                        | PMOD1_6    | J58.6               |
| AC19                        | PMOD1_7    | J58.8               |

See *Zynq-7000 All Programmable SoC Technical Reference Manual* (<u>UG585</u>) for information about the PS PJTAG functionality.

## **Switches**

The ZC706 evaluation board includes a power and a configuration (PL PROG\_B) switch:

- Power On/Off slide switch SW1 (callout 27)
- SW10 (FPGA\_PROG\_B), active-Low pushbutton (callout 28)
- PS System Reset Pushbuttons

#### Power On/Off Slide Switch

[Figure 1-2, callout 27]

The ZC706 evaluation board power switch is SW1. Sliding the switch actuator from the Off to On position applies 12V power from J22 a 6-pin mini-fit connector. Green LED DS22 illuminates when the ZC706 evaluation board power is on. See Power Management for details on the onboard power system.





**CAUTION!** Do NOT plug a PC ATX power supply 6-pin connector into J22 on the ZC706 Evaluation Board. The ATX 6-pin connector has a different pinout than J22. Connecting an ATX 6-pin connector into J22 will damage the ZC706 Evaluation Board and void the board warranty.

The ZC706 evaluation kit provides the adapter cable shown in Figure 1-29 for powering the ZC706 board from the ATX power supply 4-pin peripheral connector. The Xilinx part number for this cable is 2600304, and is equivalent to Sourcegate Technologies part number AZCBL-WH-1109-RA4.



Figure 1-29: ATX Power Supply Adapter Cable

Figure 1-30 shows the power connector J22, power switch SW1 and indicator LED DS22.



Figure 1-30: Power On/Off Switch SW1

## Program\_B Pushbutton

[Figure 1-2, callout 28]

Switch SW10 grounds the XC7Z045 AP SoC PROG\_B pin when pressed. This action clears the programmable logic configuration. The FPGA\_PROG\_B signal is connected to XC7Z045 AP SoC U1 pin Y9.

See 7 Series FPGAs Configuration User Guide for further details on configuring the 7 series FPGAs (UG470).



Figure 1-31 shows SW10.



Figure 1-31: PROG\_B Pushbutton SW10

### **PS Power-On and System Reset Pushbuttons**

Figure 1-32 shows the reset circuitry for the processing system.



Figure 1-32: PS Power On and System Reset Circuitry

Depressing and then releasing pushbutton SW1 causes PS\_POR\_B\_SW to strobe low.

**PS\_POR\_B**: This reset is used to hold the PS in reset until all PS power supplies are at the required voltage levels. It must be held Low through PS power-up. PS\_POR\_B should be generated by the power supply *power-good* signal.



Depressing and then releasing pushbutton SW3 causes PS\_SRST\_B\_SW (connected to the XC7Z045 AP SoC U1 dedicated PS Bank 500 pin D21) to strobe low.

**PS\_SRST\_B**: This reset is used to force a system reset. It can be tied or pulled High, and can be High during the PS supply power ramps.

See *Zynq-7000 All Programmable SoC Technical Reference Manual* (<u>UG585</u>) for information concerning the resets.

## FPGA Mezzanine (FMC) Card Interface

[Figure 1-2, callout 30 and 31]

The ZC706 evaluation board supports the VITA 57.1 FPGA Mezzanine Card (FMC) specification by providing subset implementations of the high pin count (HPC) connector at J37 and low pin count (LPC) version at J5. Both connectors use a 10 x 40 form factor. The HPC connector is populated with 400 pins, while the LPC connector is partially populated with 160 pins. The connectors are keyed so that a mezzanine card, when installed in either of these FMC connectors on the ZC706 evaluation board, faces away from the ZC706 board.

Signaling Speed Ratings:

- Single-ended: 9 GHz (18 Gb/s)
- Differential Optimal Vertical: 9 GHz (18 Gb/s)
- Differential Optimal Horizontal: 16 GHz (32 Gb/s)
- High Density Vertical: 7 GHz (15 Gb/s)

The Samtec connector system is rated for signaling speeds up to 9 GHz (18 Gb/s) based on a –3 dB insertion loss point within a two-level signaling environment.

#### Connector Type:

• Samtec SEAF Series, 1.27 mm (0.050 in) pitch. Mates with SEAM series connector

More information about SEAF series connectors is available at the Samtec website [Ref 16].

#### **HPC Connector J37**

[Figure 1-2, callout 30]

The 400-pin HPC connector defined by the FMC specification (Figure B-1, page 88) provides connectivity for up to:

- 160 single-ended or 80 differential user-defined signals
- 10 GTX transceivers
- 2 GTX clocks



- 4 differential clocks
- 159 ground and 15 power connections

The connections between the HPC connector at J37 and AP SoC U1 (Table 1-32) implements a subset of this connectivity:

- 34 differential user-defined pairs (34 LA pairs, LA00–LA33)
- 8 GTX transceivers
- 2 GTX clocks
- 2 differential clocks
- 159 ground and 15 power connections

The ZC706 board  $V_{ADJ}$  voltage for the J37 and J5 connectors is determined by the FMC  $V_{ADJ}$  power sequencing logic described in the Power Management, page 77.

Table 1-32 shows the J37 HPC FMC to AP SoC U1 connections.

Table 1-32: J37 HPC FMC Connections to XC7Z045 AP SoC U1

| J37<br>Pin | Net Name          | XC7Z045 (U1)<br>Pin | J37<br>Pin | Net Name              | XC7Z045 (U1)<br>Pin |
|------------|-------------------|---------------------|------------|-----------------------|---------------------|
| A2         | FMC_HPC_DP1_M2C_P | AJ8                 | B1         | NC                    |                     |
| A3         | FMC_HPC_DP1_M2C_N | AJ7                 | B4         | NC                    |                     |
| A6         | FMC_HPC_DP2_M2C_P | AG8                 | B5         | NC                    |                     |
| A7         | FMC_HPC_DP2_M2C_N | AG7                 | В8         | NC                    |                     |
| A10        | FMC_HPC_DP3_M2C_P | AE8                 | В9         | NC                    |                     |
| A11        | FMC_HPC_DP3_M2C_N | AE7                 | B12        | FMC_HPC_DP7_M2C_P     | AD6                 |
| A14        | FMC_HPC_DP4_M2C_P | AH6                 | B13        | FMC_HPC_DP7_M2C_N     | AD5                 |
| A15        | FMC_HPC_DP4_M2C_N | AH5                 | B16        | FMC_HPC_DP6_M2C_P     | AF6                 |
| A18        | FMC_HPC_DP5_M2C_P | AG4                 | B17        | FMC_HPC_DP6_M2C_N     | AF5                 |
| A19        | FMC_HPC_DP5_M2C_N | AG3                 | B20        | FMC_HPC_GBTCLK1_M2C_P | AA8                 |
| A22        | FMC_HPC_DP1_C2M_P | AK6                 | B21        | FMC_HPC_GBTCLK1_M2C_N | AA7                 |
| A23        | FMC_HPC_DP1_C2M_N | AK5                 | B24        | NC                    |                     |
| A26        | FMC_HPC_DP2_C2M_P | AJ4                 | B25        | NC                    |                     |
| A27        | FMC_HPC_DP2_C2M_N | AJ3                 | B28        | NC                    |                     |
| A30        | FMC_HPC_DP3_C2M_P | AK2                 | B29        | NC                    |                     |
| A31        | FMC_HPC_DP3_C2M_N | AK1                 | B32        | FMC_HPC_DP7_C2M_P     | AD2                 |
| A34        | FMC_HPC_DP4_C2M_P | AH2                 | B33        | FMC_HPC_DP7_C2M_N     | AD1                 |
| A35        | FMC_HPC_DP4_C2M_N | AH1                 | B36        | FMC_HPC_DP6_C2M_P     | AE4                 |
| A38        | FMC_HPC_DP5_C2M_P | AF2                 | B37        | FMC_HPC_DP6_C2M_N     | AE3                 |



Table 1-32: J37 HPC FMC Connections to XC7Z045 AP SoC U1 (Cont'd)

| J37<br>Pin | Net Name          | XC7Z045 (U1)<br>Pin | J37<br>Pin | Net Name                | XC7Z045 (U1)<br>Pin |
|------------|-------------------|---------------------|------------|-------------------------|---------------------|
| A39        | FMC_HPC_DP5_C2M_N | AF1                 | B40        | NC                      |                     |
|            |                   |                     |            |                         |                     |
| C2         | FMC_HPC_DP0_C2M_P | AK10                | D1         | PWRCTL1_FMC_PG_C2M      | AB20                |
| C3         | FMC_HPC_DP0_C2M_N | AK9                 | D4         | FMC_HPC_GBTCLK0_M2C_P   | AD10                |
| C6         | FMC_HPC_DP0_M2C_P | AH10                | D5         | FMC_HPC_GBTCLK0_M2C_N   | AD9                 |
| C7         | FMC_HPC_DP0_M2C_N | АН9                 | D8         | FMC_HPC_LA01_CC_P       | AG21                |
| C10        | FMC_HPC_LA06_P    | AG22                | D9         | FMC_HPC_LA01_CC_N       | AH21                |
| C11        | FMC_HPC_LA06_N    | AH22                | D11        | FMC_HPC_LA05_P          | AH23                |
| C14        | FMC_HPC_LA10_P    | AG24                | D12        | FMC_HPC_LA05_N          | AH24                |
| C15        | FMC_HPC_LA10_N    | AG25                | D14        | FMC_HPC_LA09_P          | AD21                |
| C18        | FMC_HPC_LA14_P    | AC24                | D15        | FMC_HPC_LA09_N          | AE21                |
| C19        | FMC_HPC_LA14_N    | AD24                | D17        | FMC_HPC_LA13_P          | AA22                |
| C22        | FMC_HPC_LA18_CC_P | W25                 | D18        | FMC_HPC_LA13_N          | AA23                |
| C23        | FMC_HPC_LA18_CC_N | W26                 | D20        | FMC_HPC_LA17_CC_P       | V23                 |
| C26        | FMC_HPC_LA27_P    | V28                 | D21        | FMC_HPC_LA17_CC_N       | W24                 |
| C27        | FMC_HPC_LA27_N    | V29                 | D23        | FMC_HPC_LA23_P          | P25                 |
| C30        | FMC_HPC_IIC_SCL   | U65.13              | D24        | FMC_HPC_LA23_N          | P26                 |
| C31        | FMC_HPC_IIC_SDA   | U65.12              | D26        | FMC_HPC_LA26_P          | R28                 |
| C34        | GND               |                     | D27        | FMC_HPC_LA26_N          | T28                 |
| C35        | VCC12_P           |                     | D29        | FMC_HPC_TCK_BUF         | U23.15              |
| C37        | VCC12_P           |                     | D30        | FMC_TDI_BUF             | U23.18              |
| C39        | VCC3V3            |                     | D31        | FMC_HPC_TDO_FMC_LPC_TDI | U32.2               |
|            |                   |                     | D32        | VCC3V3                  |                     |
|            |                   |                     | D33        | FMC_HPC_TMS_BUF         | U23.17              |
|            |                   |                     | D34        | NC                      |                     |
|            |                   |                     | D35        | GND                     |                     |
|            |                   |                     | D36        | VCC3V3                  |                     |
|            |                   |                     | D38        | VCC3V3                  |                     |
|            |                   |                     | D40        | VCC3V3                  |                     |
| E2         | NC                |                     | F1         | FMC_HPC_PG_M2C          | U16.16              |
| E3         | NC                |                     | F4         | NC                      |                     |
| E6         | NC                |                     | F5         | NC                      |                     |
| E7         | NC                |                     | F7         | NC                      |                     |



Table 1-32: J37 HPC FMC Connections to XC7Z045 AP SoC U1 (Cont'd)

| J37<br>Pin | Net Name           | XC7Z045 (U1)<br>Pin | J37<br>Pin | Net Name            | XC7Z045 (U1)<br>Pin |
|------------|--------------------|---------------------|------------|---------------------|---------------------|
| E9         | NC                 |                     | F8         | NC                  |                     |
| E10        | NC                 |                     | F10        | NC                  |                     |
| E12        | NC                 |                     | F11        | NC                  |                     |
| E13        | NC                 |                     | F13        | NC                  |                     |
| E15        | NC                 |                     | F14        | NC                  |                     |
| E16        | NC                 |                     | F16        | NC                  |                     |
| E18        | NC                 |                     | F17        | NC                  |                     |
| E19        | NC                 |                     | F19        | NC                  |                     |
| E21        | NC                 |                     | F20        | NC                  |                     |
| E22        | NC                 |                     | F22        | NC                  |                     |
| E24        | NC                 |                     | F23        | NC                  |                     |
| E25        | NC                 |                     | F25        | NC                  |                     |
| E27        | NC                 |                     | F26        | NC                  |                     |
| E28        | NC                 |                     | F28        | NC                  |                     |
| E30        | NC                 |                     | F29        | NC                  |                     |
| E31        | NC                 |                     | F31        | NC                  |                     |
| E33        | NC                 |                     | F32        | NC                  |                     |
| E34        | NC                 |                     | F34        | NC                  |                     |
| E36        | NC                 |                     | F35        | NC                  |                     |
| E37        | NC                 |                     | F37        | NC                  |                     |
| E39        | VADJ               |                     | F38        | NC                  |                     |
|            |                    |                     | F40        | VADJ                |                     |
| G2         | FMC_HPC_CLK1_M2C_P | U26                 | H1         | NC                  |                     |
| G3         | FMC_HPC_CLK1_M2C_N | U27                 | H2         | FMC_HPC_PRSNT_M2C_B | U16.15              |
| G6         | FMC_HPC_LA00_CC_P  | AF20                | H4         | FMC_HPC_CLK0_M2C_P  | AE22                |
| <b>G</b> 7 | FMC_HPC_LA00_CC_N  | AG20                | H5         | FMC_HPC_CLK0_M2C_N  | AF22                |
| <b>G</b> 9 | FMC_HPC_LA03_P     | AH19                | H7         | FMC_HPC_LA02_P      | AK17                |
| G10        | FMC_HPC_LA03_N     | AJ19                | Н8         | FMC_HPC_LA02_N      | AK18                |
| G12        | FMC_HPC_LA08_P     | AF19                | H10        | FMC_HPC_LA04_P      | AJ20                |
| G13        | FMC_HPC_LA08_N     | AG19                | H11        | FMC_HPC_LA04_N      | AK20                |
| G15        | FMC_HPC_LA12_P     | AF23                | H13        | FMC_HPC_LA07_P      | AJ23                |
| G16        | FMC_HPC_LA12_N     | AF24                | H14        | FMC_HPC_LA07_N      | AJ24                |
| G18        | FMC_HPC_LA16_P     | AA24                | H16        | FMC_HPC_LA11_P      | AD23                |



Table 1-32: J37 HPC FMC Connections to XC7Z045 AP SoC U1 (Cont'd)

| J37<br>Pin | Net Name       | XC7Z045 (U1)<br>Pin | J37<br>Pin | Net Name       | XC7Z045 (U1)<br>Pin |
|------------|----------------|---------------------|------------|----------------|---------------------|
| G19        | FMC_HPC_LA16_N | AB24                | H17        | FMC_HPC_LA11_N | AE23                |
| G21        | FMC_HPC_LA20_P | U25                 | H19        | FMC_HPC_LA15_P | Y22                 |
| G22        | FMC_HPC_LA20_N | V26                 | H20        | FMC_HPC_LA15_N | Y23                 |
| G24        | FMC_HPC_LA22_P | V27                 | H22        | FMC_HPC_LA19_P | T24                 |
| G25        | FMC_HPC_LA22_N | W28                 | H23        | FMC_HPC_LA19_N | T25                 |
| G27        | FMC_HPC_LA25_P | T29                 | H25        | FMC_HPC_LA21_P | W29                 |
| G28        | FMC_HPC_LA25_N | U29                 | H26        | FMC_HPC_LA21_N | W30                 |
| G30        | FMC_HPC_LA29_P | R25                 | H28        | FMC_HPC_LA24_P | T30                 |
| G31        | FMC_HPC_LA29_N | R26                 | H29        | FMC_HPC_LA24_N | U30                 |
| G33        | FMC_HPC_LA31_P | N29                 | H31        | FMC_HPC_LA28_P | P30                 |
| G34        | FMC_HPC_LA31_N | P29                 | H32        | FMC_HPC_LA28_N | R30                 |
| G36        | FMC_HPC_LA33_P | N26                 | H34        | FMC_HPC_LA30_P | P23                 |
| G37        | FMC_HPC_LA33_N | N27                 | H35        | FMC_HPC_LA30_N | P24                 |
| G39        | VADJ           |                     | H37        | FMC_HPC_LA32_P | P21                 |
|            |                |                     | H38        | FMC_HPC_LA32_N | R21                 |
|            |                |                     | H40        | VADJ           |                     |
|            |                |                     |            |                |                     |
| J2         | NC             |                     | K1         | NC             |                     |
| J3         | NC             |                     | K4         | NC             |                     |
| J6         | NC             |                     | K5         | NC             |                     |
| J7         | NC             |                     | K7         | NC             |                     |
| J9         | NC             |                     | K8         | NC             |                     |
| J10        | NC             |                     | K10        | NC             |                     |
| J12        | NC             |                     | K11        | NC             |                     |
| J13        | NC             |                     | K13        | NC             |                     |
| J15        | NC             |                     | K14        | NC             |                     |
| J16        | NC             |                     | K16        | NC             |                     |
| J18        | NC             |                     | K17        | NC             |                     |
| J19        | NC             |                     | K19        | NC             |                     |
| J21        | NC             |                     | K20        | NC             |                     |
| J22        | NC             |                     | K22        | NC             |                     |
| J24        | NC             |                     | K23        | NC             |                     |
| J25        | NC             |                     | K25        | NC             |                     |
| J27        | NC             |                     | K26        | NC             |                     |



Table 1-32: J37 HPC FMC Connections to XC7Z045 AP SoC U1 (Cont'd)

| J37<br>Pin | Net Name | XC7Z045 (U1)<br>Pin | J37<br>Pin | Net Name | XC7Z045 (U1)<br>Pin |
|------------|----------|---------------------|------------|----------|---------------------|
| J28        | NC       |                     | K28        | NC       |                     |
| J30        | NC       |                     | K29        | NC       |                     |
| J31        | NC       |                     | K31        | NC       |                     |
| J33        | NC       |                     | K32        | NC       |                     |
| J34        | NC       |                     | K34        | NC       |                     |
| J36        | NC       |                     | K35        | NC       |                     |
| J37        | NC       |                     | K37        | NC       |                     |
| J39        | NC       |                     | K38        | NC       |                     |
|            |          |                     | K40        | NC       |                     |

### **LPC Connector J5**

[Figure 1-2, callout 31]

The 160-pin LPC connector defined by the FMC specification (Figure B-1, page 88) provides connectivity for up to:

- 68 single-ended or 34 differential user-defined signals
- 1 GTX transceiver
- 1 GTX clock
- 2 differential clocks
- 61 ground and 10 power connections

The connections between the HPC connector at J5 and AP SoC U1 implements a subset of this connectivity:

- 34 differential user-defined pairs (34 LA pairs, LA00–LA33)
- 1 GTX transceiver
- 1 GTX clock
- 2 differential clocks
- 61 ground and 9 power connections



Table 1-33 shows the FMC LPC connections between J5 and XC7Z045 AP SoC U1.

Table 1-33: J5 LPC FMC Connections to AP SoC U1

| J5 Pin | Net Name           | XC7Z045 (U1)<br>Pin | J5 Pin | Net Name                | XC7Z045 (U1)<br>Pin |
|--------|--------------------|---------------------|--------|-------------------------|---------------------|
| C2     | FMC_LPC_DP0_C2M_P  | AB2                 | D1     | PWRCTL1_FMC_PG_C2M      | AB20                |
| C3     | FMC_LPC_DP0_C2M_N  | AB1                 | D4     | FMC_LPC_GBTCLK0_M2C_P   | U8                  |
| C6     | FMC_LPC_DP0_M2C_P  | AC4                 | D5     | FMC_LPC_GBTCLK0_M2C_N   | U7                  |
| C7     | FMC_LPC_DP0_M2C_N  | AC3                 | D8     | FMC_LPC_LA01_CC_P       | AF15                |
| C10    | FMC_LPC_LA06_P     | AB12                | D9     | FMC_LPC_LA01_CC_N       | AG15                |
| C11    | FMC_LPC_LA06_N     | AC12                | D11    | FMC_LPC_LA05_P          | AE16                |
| C14    | FMC_LPC_LA10_P     | AC14                | D12    | FMC_LPC_LA05_N          | AE15                |
| C15    | FMC_LPC_LA10_N     | AC13                | D14    | FMC_LPC_LA09_P          | AH14                |
| C18    | FMC_LPC_LA14_P     | AF18                | D15    | FMC_LPC_LA09_N          | AH13                |
| C19    | FMC_LPC_LA14_N     | AF17                | D17    | FMC_LPC_LA13_P          | AH17                |
| C22    | FMC_LPC_LA18_CC_P  | AE27                | D18    | FMC_LPC_LA13_N          | AH16                |
| C23    | FMC_LPC_LA18_CC_N  | AF27                | D20    | FMC_LPC_LA17_CC_P       | AB27                |
| C26    | FMC_LPC_LA27_P     | AJ28                | D21    | FMC_LPC_LA17_CC_N       | AC27                |
| C27    | FMC_LPC_LA27_N     | AJ29                | D23    | FMC_LPC_LA23_P          | AJ26                |
| C30    | FMC_LPC_IIC_SCL    | U65.15              | D24    | FMC_LPC_LA23_N          | AK26                |
| C31    | FMC_LPC_IIC_SDA    | U65.14              | D26    | FMC_LPC_LA26_P          | AJ30                |
| C34    | GND                |                     | D27    | FMC_LPC_LA26_N          | AK30                |
| C35    | VCC12_P            |                     | D29    | FMC_LPC_TCK_BUF         | U23.14              |
| C37    | VCC12_P            |                     | D30    | FMC_HPC_TDO_FMC_LPC_TDI | U31.1               |
| C39    | VCC3V3             |                     | D31    | FMC_LPC_TDO_FPGA_TDI    | U31.2               |
|        |                    |                     | D32    | VCC3V3                  |                     |
|        |                    |                     | D33    | FMC_LPC_TMS_BUF         | U23.16              |
|        |                    |                     | D34    | NC                      |                     |
|        |                    |                     | D35    | GND                     |                     |
|        |                    |                     | D36    | VCC3V3                  |                     |
|        |                    |                     | D38    | VCC3V3                  |                     |
|        |                    |                     | D40    | VCC3V3                  |                     |
| G2     | FMC_LPC_CLK1_M2C_P | AC28                | H1     | NC                      |                     |
| G3     | FMC_LPC_CLK1_M2C_N | AD28                | H2     | FMC_LPC_PRSNT_M2C_B     | U16.14              |
| G6     | FMC_LPC_LA00_CC_P  | AE13                | H4     | FMC_LPC_CLK0_M2C_P      | AG17                |
| G7     | FMC_LPC_LA00_CC_N  | AF13                | H5     | FMC_LPC_CLK0_M2C_N      | AG16                |



Table 1-33: J5 LPC FMC Connections to AP SoC U1 (Cont'd)

| J5 Pin | Net Name       | XC7Z045 (U1)<br>Pin | J5 Pin | Net Name       | XC7Z045 (U1)<br>Pin |
|--------|----------------|---------------------|--------|----------------|---------------------|
| G9     | FMC_LPC_LA03_P | AG12                | H7     | FMC_LPC_LA02_P | AE12                |
| G10    | FMC_LPC_LA03_N | AH12                | H8     | FMC_LPC_LA02_N | AF12                |
| G12    | FMC_LPC_LA08_P | AD14                | H10    | FMC_LPC_LA04_P | AJ15                |
| G13    | FMC_LPC_LA08_N | AD13                | H11    | FMC_LPC_LA04_N | AK15                |
| G15    | FMC_LPC_LA12_P | AD16                | H13    | FMC_LPC_LA07_P | AA15                |
| G16    | FMC_LPC_LA12_N | AD15                | H14    | FMC_LPC_LA07_N | AA14                |
| G18    | FMC_LPC_LA16_P | AE18                | H16    | FMC_LPC_LA11_P | AJ16                |
| G19    | FMC_LPC_LA16_N | AE17                | H17    | FMC_LPC_LA11_N | AK16                |
| G21    | FMC_LPC_LA20_P | AG26                | H19    | FMC_LPC_LA15_P | AB15                |
| G22    | FMC_LPC_LA20_N | AG27                | H20    | FMC_LPC_LA15_N | AB14                |
| G24    | FMC_LPC_LA22_P | AK27                | H22    | FMC_LPC_LA19_P | AH26                |
| G25    | FMC_LPC_LA22_N | AK28                | H23    | FMC_LPC_LA19_N | AH27                |
| G27    | FMC_LPC_LA25_P | AF29                | H25    | FMC_LPC_LA21_P | AH28                |
| G28    | FMC_LPC_LA25_N | AG29                | H26    | FMC_LPC_LA21_N | AH29                |
| G30    | FMC_LPC_LA29_P | AE25                | H28    | FMC_LPC_LA24_P | AF30                |
| G31    | FMC_LPC_LA29_N | AF25                | H29    | FMC_LPC_LA24_N | AG30                |
| G33    | FMC_LPC_LA31_P | AC29                | H31    | FMC_LPC_LA28_P | AD25                |
| G34    | FMC_LPC_LA31_N | AD29                | H32    | FMC_LPC_LA28_N | AE26                |
| G36    | FMC_LPC_LA33_P | Y30                 | H34    | FMC_LPC_LA30_P | AB29                |
| G37    | FMC_LPC_LA33_N | AA30                | H35    | FMC_LPC_LA30_N | AB30                |
| G39    | VADJ           |                     | H37    | FMC_LPC_LA32_P | Y26                 |
|        |                |                     | H38    | FMC_LPC_LA32_N | Y27                 |
|        |                |                     | H40    | VADJ           |                     |

# **ZC706 Board Power System**

The ZC706 board hosts a power system based on the Texas Instruments (TI) UCD90120A power supply sequencer and monitor, and the TI TPS84K and LMZ22000 family voltage regulators.

## **UCD90120A Description**

The UCD90120A is a 12-rail PMBus/ $I^2C$  addressable power-supply sequencer and monitor. The device integrates a 12-bit ADC for monitoring up to 12 power-supply voltage inputs. Twenty-six GPIO pins can be used for power supply enables, power-on reset signals, external interrupts, cascading, or other system functions. Twelve of these pins offer pulse



width modulation (PWM) functionality. Using these pins, the UCD90120A offers support for margining and general purpose PWM functions.

The TI Fusion Digital Power™ designer software is provided for device configuration. This PC-based graphical user interface (GUI) offers an intuitive interface for configuring, storing, and monitoring all system operating parameters.

#### TPS84K Family Regulator Description

The TPS84621RUQ (6A) and TPS84320RUQ (3A) regulators are integrated synchronous buck power solutions that combine a DC-DC converter with power MOSFETs, an inductor, and passives into low profile BQFN packages. The TPS84K devices accept an input voltage rail between 4.5V and 14.5V and deliver an adjustable output voltage in the 0.6V to 5.5V range. This type of power solution allows as few as three external components and eliminates the loop compensation and magnetic parts selection process.

### LMZ22000 Family Regulator Description

The LMZ22010 SIMPLE SWITCHER® power module is a step-down DC-DC solution capable of driving up to 10A load. The LMZ22010 module can accept an input voltage rail between 6V and 20V and deliver an adjustable and highly accurate output voltage as low as 0.8V. The LMZ22010 module only requires two external resistors and external capacitors to complete the power solution. The LMZ22010 module is a reliable and robust design with the following protection features: thermal shutdown, programmable input under-voltage lockout, output over-voltage protection, short-circuits protection, output current limit, and allows startup into a pre-biased output. The sync input allows synchronization over the 314 kHz to 600 kHz switching frequency range and up to six modules can be connected in parallel for higher load currents.

Table 1-34 shows the ZC706 board TI power system configuration for controller U48.

|           |      |          | mor oyotom comigura |     |
|-----------|------|----------|---------------------|-----|
| Sequencer |      | Schema   | ntic Page           | De  |
| Sequencei | Page | Contents | Net Name            | I/C |

Table 1-34: ZC706 TI Controller U48 Power System Configuration

| Saguancar             |      | Schema           | ntic Page          | Pogulator Type 11# | Voltage | Current |
|-----------------------|------|------------------|--------------------|--------------------|---------|---------|
| Sequencer             | Page | Contents         | Net Name           | Regulator Type, U# | voitage | Current |
|                       | 49   | UCD90120A        |                    |                    |         |         |
|                       | 50   | Addr 101, Rail 1 | VCCINT             | 2xLMZ22008 U42,U43 | 1.0V    | 16A     |
| U48 PMBus<br>Addr 101 | 51   | Addr 101, Rail 2 | VCCAUX             | LMZ22010           | 1.8V    | 10A     |
| 5 Rails               | 52   | Addr 101, Rail 3 | VCC1V5_PL          | TPS84621 U85       | 1.5V    | 6A      |
|                       | 53   | Addr 101, Rail 4 | VADJ_FPGA,VADJ     | TPS84621 U86       | 2.5V    | 6A      |
|                       | 54   | Addr 101, Rail 5 | VCC3V3_FPGA,VCC3V3 | LMZ22010           | 3.3V    | 10A     |



VCCINT 1.0V Nom. Input 12V 2x LMZ12000 Filter UCD90120A Controller U48 Bulk Filter Caps Vin U42 + U43 Rail Enable GPIO (out) VCCINT 1.0V  $V_{fb}$ PWM Margin Sense Connected FPWM (out) G=25.27 at Point of Load Current Sense VCCINT 0A-16A ADC (in) ÷~~ ~~ CS = 0V-2.02VVoltage Sense ADC (in) Low Power II Radj Low Pwr Select -o`\~ GPIO (out) Low = 1.0V (Default) High = 0.9V Input VCCAUX 1.8V Nom. Filter LMZ22010 VCC1V8 1.8V Bulk Filter Caps Vin U98 Rail Enable GPIO (out) ΕN Vout VCCAUX 1.8V  $V_{fb} \\$ PWM Margin FPWM (out) Sense Connected G=96.24 at Point of Load Current Sense ADC (in) VCCAUX 0A-4.2A <u>-</u>~ CS = 0V-2.02VVoltage Sense 星 ADC (in) Input VCC1V5\_PL 1.5V Nom. Filter TPS84621 **Bulk Filter Caps** U85 Rail Enable GPIO (out) ΕN Vout VCC1V5\_PL 1.5V  $V_{\text{fb}} \\$ PWM Margin FPWM (out) Sense Connected G=105.93 Current Sense at Point of Load ADC (in) VCC1V5\_PL 0A-3.8A ÷\_\_\_\_\_ Voltage Sense CS = 0V-2.02VADC (in) Input VADJ\_FPGA 2.5V Nom. Filter VADDJ 2.5V TPS84621 Bulk Filter Caps Vin U86 Rail Enable GPIO (out) FN Vout VADJ FPGA 2.5V  $V_{fb} \\$ PWM Margin FPWM (out) FΒ Sense Connected G=365.96 Current Sense at Point of Load ADC (in) VADJ\_FPGA 0A-1A CS = 0V-2.01VVoltage Sense ADC (in) FMC\_ADJ\_SEL[1:0] [10] U66 0 0 I0B 0 1 I1B 1 0 I2B VCC3V3 FPGA 3.3V Nom. I3B Input FMC\_ADJ\_SEL[1:0] GPIO (out) S[1:0] Filter LMZ22010 VCC3V3 3.3V Bulk Filter Caps U15 Dual 4-to-1 Mux Rail Enable GPIO (out) ΕN Vout VCC3V3 FPGA 3.3V  $V_{\text{fb}}$ PWM Margin FPWM (out) Sense Connected G=807.45 at Point of Load Current Sense ADC (in) VCC3V3\_FPGA <u>\_</u>\_\_\_\_\_ 0A-0.5A Voltage Sense 📱 ADC (in) CS = 0V-2.02V

Figure 1-33 shows the power system for UCD90120A U48 controller.

#### Notes

- Capacitors labeled Cf are bulk filter capacitors.
- 2. Voltage Sense is connected a point of load.

UG954\_c1\_33\_041113

Figure 1-33: ZC706 TI UCD90120A Controller U48 Power System



Both the TPS84K and LMZ22000 family adjustable voltage regulators have their output voltage set through an external resistor. The regulator topology on the ZC706 board permits the TI UCD90120A module to monitor rail voltage and current. Voltage margining at +5% and -5% is also implemented.

Each voltage regulator's external  $V_{OUT}$  setting resistor is calculated and implemented as if the regulator is stand-alone. The TI UCD90120A module has two ADC inputs allocated per voltage rail, one input for the remote voltage sense connection, the other for the current sense resistor op amp output voltage connection. The TI UCD90120A ADC full scale input is 2.5V. The remote voltage feedback is scaled to approximately 2V if it exceeds 2V, that is, the  $V_{CCO\_VADJ}$  rail for the 2.5V and 3.3V modes, and the FPGA\_3V3 rail also at 3.3V are resistor-attenuated to scale the remotely sensed voltage at a ratio of 0.606 to give approximately 2V at the ADC input pin for a 3.3V remote sense value. Rails below 2V are not scaled.

Each rail's current sense op amp has its gain set to provide approximately 2V maximum at the TI UCD90120A ADC input pin when the rail current is at its expected maximum current level, as can be seen in the U48 controller power system figure (Figure 1-33).

The TI UCD90120A module has an assignable group of GPIO pins with PWM capability. Each controller "channel" has a PWM GPIO pin wired to the associated voltage regulator V<sub>ADJ</sub> pin. The external V<sub>OUT</sub> setting resistor is also wired to this pin. The PWM GPIO pin is configured in 3-state mode. This pin is not driven unless a Margin command is executed. The Margin command is available within the TI Fusion Digital Power™ designer software.

During the margin-High or Low operation, the PWM GPIO pin drives a voltage into the voltage regulator  $V_{ADJ}$  pin, which causes a slight voltage change resulting in the regulator  $V_{OUT}$  moving to the margin +5% or -5% voltage commanded.

### **XADC Power System Measurement**

The ZC706 board XADC interface includes power system voltage and current measuring capability. The  $V_{CCINT}$  and  $V_{CCAUX}$  rail voltages are measured using the XADC internal voltage measurement capability. Other rails are measured through an external Analog Devices ADG707BRU multiplexer U6. Each rail has a separate TI INA333 op amp strapped across its series current sense resistor Kelvin terminals. This op amp has its gain adjusted to give approximately 1V at the expected full scale current value for the rail.



Figure 1-34 shows the XADC external MUX block diagram.



Figure 1-34: XADC External MUX Block Diagram

See Table 1-35 which lists the ZC706 XADC power system voltage and current measurement details for the external MUX U6.

Table 1-35: XADC Measurements through MUX U6

| 24            |              | 0                |                         | Isense Op Am                       | p        |                     | 8-to-1     | MUX U6      |            |
|---------------|--------------|------------------|-------------------------|------------------------------------|----------|---------------------|------------|-------------|------------|
| Meas.<br>Type | Rail Name    | Current<br>Range | Reference<br>Designator | Gain                               | Vo Range | Schematic Net Name  | Pin<br>Num | Pin<br>Name | MUX A[2:0] |
| V             | VCCINT       | NA               | NA                      | NA                                 | NA       | XADC INTERNAL       | NA         | NA          | NA         |
| I             | VCCINT CS    | 0A-8A            | U69                     | 20                                 | 0V-0.8V  | VCCINT_XADC_CS_P    | 19         | S1A         | 000        |
|               |              |                  |                         |                                    |          | VCCINT_XADC_CS_N    | 11         | S1B         |            |
| V             | VCCAUX       | NA               | NA                      | NA                                 | NA       | XADC INTERNAL       | NA         | NA          | NA         |
| I             | VCCAUX CS    | 0A-4A            | U68                     | 50                                 | 0V-1V    | VCCAUX_XADC_CS_P    | 20         | S2A         | 001        |
|               |              |                  |                         |                                    |          | VCCAUX_XADC_CS_N    | 10         | S2B         |            |
| V             | VCC1V5_PL    | NA               | _                       | REMOTE SEN                         |          | VCC1V5_PL_XADC_P    | 21         | S3A         | 010        |
|               |              |                  | _                       | TO DELIVER 0.75V<br>VCC1V5_PL_XAD( |          | VCC1V5_PL_SENSE_N   | 9          | S3B         |            |
| I             | VCC1V5_PL CS | 0A-2A            | U67                     | 100                                | 0V-1V    | VCC1V5_PL_XADC_CS_P | 22         | S4A         | 011        |
|               |              |                  |                         |                                    |          | VCC1V5_PL_XADC_CS_N | 8          | S4B         |            |



Table 1-35: XADC Measurements through MUX U6 (Cont'd)

| N4            |                | Current          |                         | Isense Op Am                                                                    | p        |                       | 8-to-1     | MUX U6      |            |
|---------------|----------------|------------------|-------------------------|---------------------------------------------------------------------------------|----------|-----------------------|------------|-------------|------------|
| Meas.<br>Type | Rail Name      | Current<br>Range | Reference<br>Designator | Gain                                                                            | Vo Range | Schematic Net Name    | Pin<br>Num | Pin<br>Name | MUX A[2:0] |
| V             | VADJ_FPGA      | NA               | _                       | VADJ_FPGA 2.5V REMOTE SENSE<br>DIVIDED TO DELIVER 0.625V ON<br>VADJ_FPGA_XADC_P |          | VADJ_FPGA_XADC_P      | 23         | S5A         | 100        |
|               |                |                  |                         |                                                                                 |          | VADJ_FPGA_SENSE_N     | 7          | S5B         |            |
| I             | VADJ_FPGA CS   | 0A-2A            | U70                     | 100                                                                             | 0V-1V    | VADJ_FPGA_XADC_CS_P   | 24         | S6A         | 101        |
|               |                |                  |                         |                                                                                 |          | VADJ_FPGA_XADC_CS_N   | 6          | S6B         |            |
| V             | VCC3V3_FPGA    | NA               |                         | _FPGA REMO                                                                      |          | VCC3V3_FPGA_XADC_P    | 25         | S7A         | 110        |
|               |                |                  |                         | TO DELIVER (<br>3V3_FPGA_XA                                                     |          | VCC3V3_FPGA_SENSE_N   | 5          | S7B         |            |
| I             | VCC3V3_FPGA CS | 0A-2A            | U97                     | 100                                                                             | 0V-1V    | VCC3V3_FPGA_XADC_CS_P | 26         | S8A         | 111        |
|               |                |                  |                         |                                                                                 |          | VCC3V3_FPGA_XADC_CS_N | 4          | S8B         |            |

### **Power Management**

[Figure 1-2, callout 32]

The ZC706 board uses power regulators and a PMBus-compliant system controller from Texas Instruments to supply core and auxiliary voltages. The Texas Instruments Fusion Digital Power graphical user interface is used to monitor the voltage and current levels of the board power modules.

The PCB layout and power system design meet the recommended criteria described in *Zyng-7000 All Programmable SoC PCB Design and Pin Planning Guide* (UG933).

The ZC706 evaluation board power distribution diagram is shown in Figure 1-35.





Figure 1-35: Onboard Power Regulators

The ZC706 evaluation board uses power regulators and PMBus compliant PWM system controllers from Texas Instruments to supply the core and auxiliary voltages listed in Table 1-36.



Table 1-36: Onboard Power System Devices

| Device Type               | Reference<br>Designator | Description                                            | Power Rail<br>Net Name   | Power Rail<br>Voltage | Schematic<br>Page |
|---------------------------|-------------------------|--------------------------------------------------------|--------------------------|-----------------------|-------------------|
| UCD90120A                 | U48                     | PMBus Controller, PMBus Addr = 101                     |                          |                       | 49                |
| LMZ22008TZ <sup>(1)</sup> | U42                     | 1 of 2 8A 0.8V - 6V shared Adj. Switching<br>Regulator | VCCINT <sup>(2)</sup>    | 1.00V                 | 50                |
| LMZ22008TZ <sup>(1)</sup> | U43                     | 2 of 2 8A 0.8V - 6V shared Adj. Switching<br>Regulator | VCCINT                   | 1.00V                 | 50                |
| LMZ22010TZ                | U98                     | 10A 0.8V - 6V Adj. Switching Regulator                 | VCCAUX (3)               | 1.80V                 | 51                |
| TPS84621RUQ               | U85                     | 6A 0.6V - 5.5V Adj. Switching Regulator                | VCC1V5_PL                | 1.50V                 | 52                |
| TPS84621RUQ               | U86                     | 6A 0.6V - 5.5V Adj. Switching Regulator                | VADJ_FPGA <sup>(4)</sup> | 2.50V                 | 53                |
| LMZ22010TZ                | U15                     | 10A 0.8V - 6V Adj. Switching Regulator                 | VCC3V3_FPGA (5)          | 3.30V                 | 54                |
|                           | ı                       |                                                        |                          | 1                     |                   |
| TPS54291PWP               | U104                    | 2.5A 0.8V - 10V Adj. Switching Regulator               | VCCPINT                  | 1.00V                 | 55                |
| (Dual Output)             | 0104                    | 2.5A 0.8V - 10V Adj. Switching Regulator               | VCC1V5_PS                | 1.50V                 | 55                |
| TPS54291PWP               | U105                    | 2.5A 0.8V - 10V Adj. Switching Regulator               | VCCP1V8                  | 1.80V                 | 55                |
| (Dual Output)             | 0103                    | 2.5A 0.8V - 10V Adj. Switching Regulator               | VCC3V3_PS                | 3.30V                 | 55                |
| TPS51200DR                | U27                     | 3A Push/Pull Tracking Regulator                        | VTTDDR_PS                | 0.75V                 | 56                |
| TPS51200DR                | U28                     | 3A Push/Pull Tracking Regulator                        | VTTDDR_SODI<br>MM        | 0.75V                 | 56                |
| TPS74901RGW               | U92                     | 3A 0.8V - 3.6V Adj. Linear Regulator                   | VCCAUX_IO                | 2.00V                 | 57                |
| TPS74901RGW               | U93                     | 3A 0.8V - 3.6V Adj. Linear Regulator                   | MGTAVCC                  | 1.00V                 | 57                |
| TPS74901RGW               | U94                     | 3A 0.8V - 3.6V Adj. Linear Regulator                   | MGTAVTT                  | 1.20V                 | 57                |
| TPS74901RGW               | U95                     | 3A 0.8V - 3.6V Adj. Linear Regulator                   | MGTVCCAUX                | 1.80V                 | 57                |
| TL1963A                   | U19                     | 1.5A 1.21V - 3.3V Adj. Linear Regulator                | VCC2V5                   | 2.50V                 | 57                |
| TPS79433                  | U20                     | 0.25A 3.3V Fixed Linear Regulator                      | V33D_CTL1                | 3.30V                 | 49                |

#### Notes:

- 1. VCCINT max. current is 16A
- 2. VCCBRAM 1.0V is also sourced from the Vccint rail
- 3. VCC1V8 1.80V is also sourced from the Vccaux rail
- 4. VADJ (1.80V/2.50V/3.30V) for the FMC connectors is also sourced from the Vadj\_fpga rail
- 5. VCC3V3 3.30V is also sourced from the Vcc3v3\_fpga rail

### **VADJ Voltage Control**

The  $V_{ADJ}$  rail is set to 2.5V. When the ZC706 evaluation board is powered on, the state of the FMC\_VADJ\_ON\_B signal wired to header J18 is sampled by the TI UCD90120A controller U48. If a jumper is installed on J18 signal FMC\_VADJ\_ON\_B is held Low, and the TI controller U48 energizes the  $V_{ADJ}$  rail at power on.



Because the rail turn on decision is made at power on time based on the presence of the J18 jumper, removing the jumper at J18 after the board is powered up does not affect the 2.5V power delivered to the  $V_{\rm ADJ}$  rail and it remains on.

A jumper installed at J18 is the default setting.

In this mode the user can control when to turn on  $V_{ADJ}$  and to which voltage level (1.8V, 2.5V, 3.3V). With  $V_{ADJ}$  off the XC7Z045 AP SoC still configures and has access to the TI controller PMBUS along with the FMC\_VADJ\_ON\_B signal. The combination of these allows the user to develop code to command the  $V_{ADJ}$  rail to be set to something other than the default setting of 2.5V. Once the new  $V_{ADJ}$  voltage level has been programmed into TI controller U48, the FMC\_VADJ\_ON\_B signal can be driven low by the user logic and the  $V_{ADJ}$  rail comes up at the new  $V_{ADJ}$  voltage level. Installing a jumper at J18 after a ZC706 board powers up in the  $V_{ADJ}$  off (no jumper on J18 at ZC706 power up) mode turns on the  $V_{ADJ}$  rail.

The FMC\_VADJ\_ON\_B signal is connected to the TCA6416APWR I<sup>2</sup>C port expander U16 pin 13 (see Figure 1-28). The XC7Z045 AP SoC is thus able to drive the FMC\_VADJ\_ON\_B signal by writing to the I<sup>2</sup>C port expander U16.

The I<sup>2</sup>C port expander IIC\_PORT\_EXPANDER SDA/SCL bus is wired to the PCA9548ARGER I<sup>2</sup>C U65 bus switch (see I2C Bus, page 53).

Documentation describing PMBUS programming for the UCD90120A power controller is available at the website [Ref 11].

### AP SoC Programmable Logic (PL) Voltage Control

All PL and PS power rails are enabled by default. When the ZC706 board is powered on, the state of the PL\_PWR\_ON signal wired to 2-pin header J66 is sampled by the TI UCD90120A controller U48. If a jumper is not installed on J66, signal PL\_PWR\_ON is held high, and the TI controller U48 energizes all the PL and PS power rails.

Because the rail turn on decision is made at power on time based on the presence of the J66 jumper, installing the jumper at J66 after the board is powered up does not affect power delivered to the any PS or PL rails, all rails remain on.

A jumper not installed at J66 is the default setting.

If a jumper is installed on J66 when the ZC706 board is powered on, signal PL\_PWR\_ON is held low, and the ZC706 board does not energize the PL side power rails at power on.

### Monitoring Voltage and Current

Voltage and current monitoring and control are available for selected power rails through Texas Instruments' Fusion Digital Power Designer graphical user interface. The onboard TI power controller (U48 at address 101) is accessed through the PMBus connector J4, which is provided for use with the TI USB Interface Adapter PMBus pod (TI part number EVM USB-TO-GPIO), which can be ordered from the Texas Instruments website [Ref 12] and



associated TI Fusion Digital Power Designer GUI (downloadable from the TI site [Ref 13]. This is the simplest and most convenient way to monitor the voltage and current values for the power rails listed in Table 1-37.

In the table, the Power Good (PG) On Threshold is the setpoint at or above which the particular rail is deemed "good". The PG Off Threshold is the setpoint at or below which the particular rail is no longer deemed "good". The controller internally OR's these per rail PG conditions together and drives an output PG pin high only if all active rail PG states are "good". The On and Off Delay and parameters are relative to when the board power on-off slide switch SW12 is turned on and off.

Table 1-37 Power Rail Specifications for UCD90120A PMBus controller at Address 101 defines the voltage and current values for each power rail controlled by the UCD90120A U48.



**IMPORTANT**: In Table 1-37, the values defined in the Shutdown columns are the voltage and current thresholds that cause the regulator to shut down if the value is exceeded.

Table 1-37: Power Rail Specifications for UCD90120A PMBus Controller at Address 101

|                  |         | Nomi |              | Nominal | Power               | Power | Turn                               | Turn                 | Shutd                           | own <sup>(1)</sup> |
|------------------|---------|------|--------------|---------|---------------------|-------|------------------------------------|----------------------|---------------------------------|--------------------|
| Device           | Address |      | Rail Voltage |         | Good Good<br>On Off |       | On<br>Delay<br>(ms) <sup>(2)</sup> | Off<br>Delay<br>(ms) | Over<br>Voltage Over<br>Current |                    |
|                  | 101d    | 1    | VCCINT       | 1.000   | 0.900               | 0.850 | 0.0                                | 25.0                 | 1.150                           | 11.50              |
|                  |         | 2    | VCCAUX       | 1.800   | 1.620               | 1.530 | 5.0                                | 20.0                 | 2.070                           | 6.91               |
| UCD90120A<br>U48 |         | 3    | VCC1V5_PL    | 1.500   | 1.350               | 1.275 | 5.0                                | 10.0                 | 1.725                           | 3.50               |
|                  |         | 4    | VADJ_FPGA    | 2.500   | 2.250               | 2.125 | 5.0                                | 5.0                  | 2.875                           | 3.50               |
|                  |         | 5    | VCC3V3_FPGA  | 3.300   | 2.970               | 2.805 | 5.0                                | 15.0                 | 3.795                           | 6.91               |

#### Notes:

- 1. The values defined in these columns are the voltage and current thresholds that cause the regulator to shut down if the value is exceeded.
- 2. See Table 1-39 for rail turn on dependency details.

The ZC706 power system rail turn on timing is not strictly controlled through the Turn On Delay shown in Table 1-37. The Table 1-37 Turn On Delay delay values are applied after the preceding rail has reached 90% of its nominal voltage. See Table 1-38 for rail turn on dependency details.



| Device    | Address | Rail |             | Nominal<br>Voltage | Turn On Order | Turn On Timing               |
|-----------|---------|------|-------------|--------------------|---------------|------------------------------|
|           |         | 1    | VCCINT      | 1.000              | 1             | Turn on at board power-on    |
|           |         | 2    | VCCAUX      | 1.800              | 2             | 5ms after VCCINT hits 90%    |
| UCD90120A | 101d    | 5    | VCC3V3_FPGA | 3.300              | 3             | 5ms after VCCAUX hits 90%    |
|           |         | 3    | VCC1V5_PL   | 1.500              | 4             | 5ms after VCC3V3 hits 90%    |
|           |         | 4    | VADJ FPGA   | 2.500              | 5             | 5ms after VCC1V5 PL hits 90% |

Table 1-38: Power Rail Sequence On Dependencies for UCD90120A PMBus Controller at Address 101

### **Cooling Fan**

The XC7Z045 AP SoC cooling fan connector is shown in Figure 1-36.



Figure 1-36: Cooling Fan Circuit

The fan turns on when the ZC706 is power up due to pull-up resistor R369. The SM\_FAN\_PWM and SM\_FAN\_TACH signals are wired to XC7Z045 AP SoC U1 pins AB19 and AA19 respectively, enabling the user to implement their own fan speed control IP in the AP SoC PL logic.

More information about the power system components used by the ZC706 evaluation board are available from the Texas Instruments digital power website [Ref 17].



## **XADC Analog-to-Digital Converter**

[Figure 1-2, callout 33]

The XC7Z045 AP SoC provides an Analog Front End XADC block. The XADC block includes a dual 12-bit, 1 MSPS Analog-to-Digital Convertor (ADC) and on-chip sensors. See 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (UG480) for details on the capabilities of the analog front end. Figure 1-37 shows the XADC block diagram.



Figure 1-37: XADC Block Diagram

The ZC706 evaluation board supports both the internal XC7Z045 AP SoC sensor measurements and the external measurement capabilities of the XADC. Internal measurements of the die temperature, VCCINT, VCCAUX, and VCCBRAM are available.



Jumper J52 can be used to select either an external voltage reference (VREF) or on-chip voltage reference for the analog-to-digital converter.

For external measurements an XADC header (J63) is provided. This header can be used to provide analog inputs to the XC7Z045 AP SoC's dedicated VP/VN channel, and to the VAUXP[0]/VAUXN[0], VAUXP[8]/VAUXN[8] auxiliary analog input channels. Simultaneous sampling of Channel 0 and Channel 8 is supported.

A user-provided analog signal multiplexer card can be used to sample additional external analog inputs using the 4 GPIO pins available on the XADC header as multiplexer address lines. Figure 1-38 shows the XADC header connections.



Figure 1-38: XADC Header (J63)

Table 1-39 describes the XADC header J40 pin functions.

Table 1-39: XADC Header J63 Pinout

| Net Name             | J63 Pin<br>Number | Description                                                                                                                                                             |
|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VN, VP               | 1, 2              | Dedicated analog input channel for the XADC.                                                                                                                            |
| XADC_VAUX0P, N       | 3, 6              | Auxiliary analog input channel 0. Also supports use as I/O inputs when anti alias capacitor is not present.                                                             |
| XADC_VAUX8N, P       | 7, 8              | Auxiliary analog input channel 8. Also supports use as I/O inputs when anti alias capacitor is not present.                                                             |
| DXP, DXN             | 9, 12             | Access to thermal diode.                                                                                                                                                |
| XADC_AGND            | 4, 5, 10          | Analog ground reference.                                                                                                                                                |
| XADC_VREF            | 11                | 1.25V reference from the board.                                                                                                                                         |
| XADC_VCC5V0          | 13                | Filtered 5V supply from board.                                                                                                                                          |
| XADC_VCC_HEADER      | 14                | Analog 1.8V supply for XADC.                                                                                                                                            |
| VCC1V5_PL            | 15                | VCCO supply for bank which is the source of DIO pins.                                                                                                                   |
| GND                  | 16                | Digital Ground (board) Reference                                                                                                                                        |
| XADC_GPIO_3, 2, 1, 0 | 19, 20, 17,<br>18 | Digital I/O. These pins should come from the same bank. These IOs should not be shared with other functions because they are required to support three-state operation. |



# Default Switch and Jumper Settings

The default switch and jumper settings for the ZC706 evaluation board are provided in this appendix.

### **Switches**

[Figure 1-2, callout 24]

Default switch settings are listed in Table A-1.

Table A-1: Default Switch Settings

| Switch | Function                                                            | Default  | Selects                   | Figure 1-2<br>Callout |
|--------|---------------------------------------------------------------------|----------|---------------------------|-----------------------|
| SW1    | Board main power On-Off Slide Switch                                | OFF      | Delivered in OFF position | 27                    |
| SW4    | 2-pole SPST DIP Switch, JTAG mode select signals JTAG_SEL_[1:2]     | 10       | JTAG = cable connector J3 | 34                    |
| SW11   | 5-pole DPDT DIP Switch, PS Boot Mode select signals MIO[6:2]_SELECT | All Down | JTAG flat cable header J3 | 29                    |
| SW12   | 4-pole SPST DIP Switch, user signals GPIO_DIP_SW[0:3], poles [1:4]  | All OFF  | All = 0 (4.7K p/d to GND) | 24                    |

## **Jumpers**

[Figure 1-2, callout 24]

Default jumper positions are listed in Table A-2.

Table A-2: Default Jumper Settings

| Jumper | Function                                        | <b>Default Position</b> | Selects                |
|--------|-------------------------------------------------|-------------------------|------------------------|
|        | HDR_1 X 2                                       |                         |                        |
| J6     | AP SoC U1 Bank 0 CFGBVS pin V9 pull-down to GND | OPEN                    | Not pulled down to GND |



Table A-2: Default Jumper Settings (Cont'd)

| Jumper | Function                                                           | Default Position | Selects                       |
|--------|--------------------------------------------------------------------|------------------|-------------------------------|
| J7     | U8 Power-On Reset Device MR_B pin to GND                           | OPEN             | MR_B pin not<br>GND           |
| 18     | JTAG Header J62 pin 2 can be connected to 3.3V                     | OPEN             | J62.2 not conn. to 3.3V       |
| 19     | U51 Ethernet PHY CONFIG2 pin 2 1K pull-down to GND Select Header   | 1-2              | CONFIG2 = 0 (p/d to GND)      |
| J10    | U12 USB3320 2.0 Host/OTG or Device<br>Select Header                | 1-2              | HOST sources<br>VBUS power    |
| J11    | U12 USB3320 2.0 RESET Header                                       | OPEN             | U12 not held in RESET         |
| J12    | U38 REF3012 VREF XADC_AGND-to-GND<br>L3 inductor bypass            | OPEN             | L3 not bypassed               |
| J13    | U38 REF3012 VREF XADC_AGND-to-GND<br>Select Header                 | 1-2              | XADC_GND conn.<br>to GND      |
| J14    | XADC circuit VCC5V0 sources<br>XADC_VCC5V0 Select Header           | 1-2              | XADC_VCC5V0 = filtered VCC5V0 |
| J15    | ARM PJTAG Header J64 pin 2 can be connected to VADJ                | OPEN             | J64.2 not conn. to VADJ       |
| J17    | SPF+ P2 SFP_TX_DISABLE_TRANS Header                                | OPEN             | SFP+ P2 TX<br>enabled         |
| J18    | FMC_VADJ_ON_B Header                                               | 1-2              | VADJ rail enabled             |
| J19    | PCIe® Lane Width Select Header                                     | 3-4              | PCIe = 4-Lanes                |
| J66    | PL_PWR_ON Header                                                   | OPEN             | PL power enabled              |
| J69    | XADC Power System Vccint Current Sense<br>OpAmp Gain Select Header | OPEN             | Gain = 10                     |
| J70    | MIO Select Header MIO2 (Note: DIP SW11 pole 1 affects this signal) | 1-2              | QSPI0_IO0 =<br>MIO2_SELECT    |
| J71    | MIO Select Header MIO3 (Note: DIP SW11 pole 2 affects this signal) | 1-2              | QSPI0_IO1 =<br>MIO3_SELECT    |
| J72    | MIO Select Header MIO4 (Note: DIP SW11 pole 3 affects this signal) | 1-2              | QSPI0_IO4 =<br>MIO2_SELECT    |
| J73    | MIO Select Header MIO5 (Note: DIP SW11 pole 4 affects this signal) | 1-2              | QSPI0_IO5 =<br>MIO2_SELECT    |
| J74    | MIO Select Header MIO6 (Note: DIP SW11 pole 5 affects this signal) | 1-2              | QSPIO_CLK =<br>MIO6_SELECT    |
|        | HDR_1 X 3                                                          |                  |                               |
| 142    |                                                                    | 1.2              | Coursed by 110                |
| J43    | PS_SRST_B Select Header                                            | 1-2              | Sourced by U8<br>POR MAX16025 |
| J44    | PS_POR_B Select Header                                             | 1-2              | Sourced by U8<br>POR MAX16025 |



Table A-2: Default Jumper Settings (Cont'd)

| Jumper | Function                                                                                     | <b>Default Position</b> | Selects                    |
|--------|----------------------------------------------------------------------------------------------|-------------------------|----------------------------|
| J45    | U51 Ethernet PHY CONFIG3 pin 3 1K<br>pull-up to 1.8V or 1K pull-down to GND<br>Select Header | 1-2                     | CONFIG3 = 1 (p/u to 1.8V)  |
| J46    | U51 Ethernet PHY CONFIG2 pin 2 tie to 1.8V or LED0 Select Header                             | OPEN                    | J9 sets CONFIG2 condition  |
| J47    | U51 Ethernet PHY CONFIG3 pin 3 LED1 or LED0 Select Header                                    | OPEN                    | J44 sets CONFIG3 condition |
| J48    | U12 USB3320 2.0 MODE Select Header                                                           | 2-3                     | HOST/OTG mode              |
| J49    | USB 2.0 Micro-B connector J2 ID pin 4 function Select Header                                 | 1-2                     | Function = USB ID          |
| J50    | USB_VBUS_SEL capacitor to GND Select<br>Header                                               | 2-3                     | 120uF to GND               |
| J51    | USB 2.0 Micro-B connector J2 ID shield pins connection Select Header                         | 1-2                     | J2 shield pins to GND      |
| J52    | XADC_VREFP source Select Header                                                              | 1-2                     | XADC_VREFP = XADC_VREF     |
| J53    | XADC_VCC source Select Header                                                                | 2-3                     | XADC_VCC = U14<br>ADP123   |
| J54    | U38 REF3012 VREF Vin Select Header                                                           | 2-3                     | U38 powered by XADC_VCC    |
| J55    | SPF+ P2 SFP_RS1 BW Select Header                                                             | 2-3                     | Low BW TX                  |
| J56    | SPF+ P2 SFP_RS0 BW Select Header                                                             | 2-3                     | Low BW RX                  |



# VITA 57.1 FMC Connector Pinouts

Figure B-1 shows the pinout of the FPGA mezzanine card (FMC) low pin count (LPC) connector defined by the VITA 57.1 FMC specification. For a description of how the ZC706 evaluation board implements the FMC specification, see FPGA Mezzanine (FMC) Card Interface, page 65 and LPC Connector J5, page 70.

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC N |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC N |
| NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC N |
| 5         NC         NC         CLK0 M2C N         GND         NC         NC         GBTCLK0 M2C N         GND         NC           6         NC         NC         GND         LA00 P CC         NC         NC         GND         DP0 M2C P         NC           7         NC         NC         LA02 P         LA00 N CC         NC         NC         GND         DP0 M2C N         NC           8         NC         NC         LA02 N         GND         NC         NC         LA01 P CC         GND         NC           9         NC         NC         GND         LA03 P NC         NC         NC         LA01 P CC         GND         NC           10         NC         NC         GND         LA03 P NC         NC         NC         LA06 P NC         NC           11         NC         NC         LA04 P LA03 N NC         NC         NC         LA06 N NC         NC         LA06 P NC         NC         LA06 N NC         NC<                                                                                                                                                                                                                                                                                                                                                                                      | NC N |
| 6 NC NC GND LA00_P_CC NC NC GND DP0_M2C_P NC 7 NC NC LA02_P LA00_N_CC NC NC GND DP0_M2C_N NC 8 NC NC LA02_N GND NC NC LA01_P_CC GND NC 9 NC NC LA03_P NC NC LA01_P_CC GND NC 10 NC NC LA04_P LA03_N NC NC LA01_N_CC GND NC 11 NC NC LA04_P LA03_N NC NC GND LA06_P NC 12 NC NC GND LA08_P NC NC LA05_P LA06_N NC 13 NC NC GND LA08_P NC NC LA05_N GND NC 14 NC NC LA07_P LA08_N NC NC GND GND NC 15 NC NC LA07_P LA08_N NC NC LA09_P LA10_P NC 15 NC NC LA07_P LA08_N NC NC LA09_P LA10_P NC 16 NC NC GND LA12_P NC NC LA09_P LA10_N NC 17 NC NC GND LA12_P NC NC LA09_N LA10_N NC 18 NC NC GND LA12_P NC NC LA09_N LA10_N NC 19 NC NC LA11_P LA12_N NC NC LA09_N LA10_N NC 11 NC NC LA11_P LA12_N NC NC LA13_P GND NC 11 NC NC GND LA16_P NC NC LA13_N LA14_P NC 11 NC NC LA15_P LA16_N NC NC LA13_N LA14_P NC 11 NC NC LA15_N GND NC NC LA15_P CND NC 11 NC NC LA15_N GND NC NC LA14_N NC 11 NC NC LA15_N GND NC NC LA14_N NC 11 NC NC LA15_N GND NC NC LA14_N NC 11 NC NC LA15_N GND NC NC LA14_N NC 11 NC NC LA15_N GND NC NC LA14_N NC 11 NC NC LA15_N GND NC NC LA15_N CC NC 12 NC NC LA15_N GND NC NC LA15_N CC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N CC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N CC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N NC 12 NC NC LA15_N GND NC NC LA15_N LA15_N NC 13 NC NC LA15_N GND NC NC LA15_N NC | NC N |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC N |
| 8         NC         NC         LA02_N         GND         NC         NC         LA01_P_CC         GND         NC           9         NC         NC         NC         NC         NC         LA01_P_CC         GND         NC           10         NC         NC         NC         NC         NC         NC         GND         NC           11         NC         NC         LA04_P         LA03_N         NC         NC         GND         LA06_P         NC           12         NC         NC         LA04_N         GND         NC         NC         LA06_N         NC           12         NC         NC         GND         LA08_P         NC         NC         LA06_N         NC           13         NC         NC         LA07_N         GND         NC         NC         GND         NC           14         NC         NC         LA07_N         GND         NC         NC         LA09_P         LA10_P         NC           15         NC         NC         NC         NC         NC         LA09_P         LA10_P         NC           16         NC         NC         NC         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC   |
| 9 NC NC GND LA03_P NC NC LA01_N_CC GND NC 10 NC NC LA04_P LA03_N NC NC GND LA06_P NC 11 NC NC LA04_N GND NC NC LA05_P LA06_N NC 12 NC NC GND LA08_P NC NC LA05_N GND NC 13 NC NC LA07_P LA08_N NC NC GND GND NC 14 NC NC LA07_P LA08_N NC NC GND GND NC 15 NC NC LA07_P LA08_N NC NC LA09_P LA10_P NC 16 NC NC LA07_N GND NC NC LA09_P LA10_P NC 17 NC NC GND LA12_P NC NC LA09_N LA10_N NC 18 NC NC GND LA12_P NC NC LA09_N LA10_N NC 19 NC NC LA11_P LA12_N NC NC GND GND NC 11 NC NC LA11_P LA12_N NC NC GND GND NC 11 NC NC LA11_P LA12_N NC NC LA13_P GND NC 12 NC LA11_P LA16_N NC NC LA13_N LA14_P NC 19 NC NC LA15_P LA16_N NC NC LA13_N LA14_P NC 19 NC NC LA15_N GND NC NC LA15_P COND NC 19 NC NC LA15_N GND NC NC LA15_P COND NC 19 NC NC LA15_N GND NC NC LA15_P COND NC 20 NC NC LA15_N GND NC NC LA17_P_CC GND NC 21 NC NC LA15_P LA16_N NC NC LA17_P_CC GND NC 22 NC NC LA19_N GND NC NC LA18_P_CC NC 23 NC NC LA19_N GND NC NC LA23_P LA18_N_CC NC 23 NC NC LA19_N GND NC NC LA23_P LA18_N_CC NC 24 NC NC LA19_N GND NC NC LA23_P LA18_N_CC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC<br>NC<br>NC<br>NC<br>NC         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC<br>NC<br>NC<br>NC               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC<br>NC<br>NC                     |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC<br>NC                           |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC<br>NC                           |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>NC                                 |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| 18         NC         NC         GND         LA16_P         NC         NC         LA13_N         LA14_P         NC           19         NC         NC         NC         NC         NC         GND         LA14_N         NC           20         NC         NC         NC         LA15_N         GND         NC         NC         LA17_P_CC         GND         NC           21         NC         NC         GND         LA20_P         NC         NC         LA17_P_CC         GND         NC           22         NC         NC         LA19_P         LA20_N         NC         NC         GND         LA18_P_CC         NC           23         NC         NC         LA19_N         GND         NC         NC         LA23_P         LA18_N_CC         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 20         NC         NC         LA15_N         GND         NC         NC         LA17_P_CC         GND         NC           21         NC         NC         NC         NC         LA17_N_CC         GND         NC           22         NC         NC         LA19_P         LA20_N         NC         NC         GND         LA18_P_CC         NC           23         NC         NC         LA19_N         GND         NC         NC         LA23_P         LA18_N_CC         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC                                       |
| 21         NC         NC         GND         LA20_P         NC         NC         LA17_N_CC         GND         NC           22         NC         NC         LA19_P         LA20_N         NC         NC         GND         LA18_P_CC         NC           23         NC         NC         LA19_N         GND         NC         NC         LA23_P         LA18_N_CC         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 22         NC         NC         LA19_P         LA20_N         NC         NC         GND         LA18_P_CC         NC           23         NC         NC         LA19_N         GND         NC         NC         LA23_P         LA18_N_CC         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC                                       |
| 23 NC NC LA19_N GND NC NC LA23_P LA18_N_CC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC                                       |
| 24 NC NC GND LA22 P NC NC LA23 N GND NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC                                       |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 26         NC         NC         LA21_N         GND         NC         NC         LA26_P         LA27_P         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 27         NC         NC         GND         LA25_P         NC         NC         LA26_N         LA27_N         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 28         NC         NC         LA24_P         LA25_N         NC         NC         GND         GND         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC                                       |
| 29         NC         NC         LA24_N         GND         NC         NC         TCK         GND         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC                                       |
| 30 NC NC GND LA29_P NC NC TDI SCL NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC                                       |
| 31 NC NC LA28_P LA29_N NC NC TDO SDA NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC                                       |
| 32 NC NC LA28_N GND NC NC 3P3VAUX GND NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC                                       |
| 33 NC NC GND LA31_P NC NC TMS GND NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC                                       |
| 34         NC         NC         LA30_P         LA31_N         NC         NC         TRST_L         GA0         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC                                       |
| 35 NC NC LA30_N GND NC NC GA1 12P0V NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC                                       |
| 36         NC         NC         GND         LA33_P         NC         NC         3P3V         GND         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC                                       |
| 37   NC   NC   LA32_P   LA33_N   NC   NC   GND   12P0V   NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| 38         NC         NC         LA32_N         GND         NC         NC         3P3V         GND         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC                                       |
| 39         NC         NC         GND         VADJ         NC         NC         GND         3P3V         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC                                       |
| 40 NC NC VADJ GND NC NC 3P3V GND NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |

UG954\_aB\_01\_100112

Figure B-1: FMC LPC Connector Pinout

Figure B-2 shows the pinout of the FPGA mezzanine card (FMC) high pin count (HPC) connector defined by the VITA 57.1 FMC specification. For a description of how the ZC706 evaluation board implements the FMC specification, see FPGA Mezzanine (FMC) Card Interface, page 65 and HPC Connector J37, page 65.



|    | К          | J          | Н           | G          | F         | Ε         | D             | С         | В             | Α         |
|----|------------|------------|-------------|------------|-----------|-----------|---------------|-----------|---------------|-----------|
| 1  | VREF_B_M2C | GND        | VREF_A_M2C  | GND        | PG_M2C    | GND       | PG_C2M        | GND       | RES1          | GND       |
| 2  | GND        | CLK3_M2C_P | PRSNT_M2C_L | CLK1_M2C_P | GND       | HA01_P_CC | GND           | DP0_C2M_P | GND           | DP1_M2C_P |
| 3  | GND        | CLK3_M2C_N | GND         | CLK1_M2C_N | GND       | HA01_N_CC | GND           | DP0_C2M_N | GND           | DP1_M2C_N |
| 4  | CLK2_M2C_P | GND        | CLK0_M2C_P  | GND        | HA00_P_CC | GND       | GBTCLK0_M2C_P | GND       | DP9_M2C_P     | GND       |
| 5  | CLK2_M2C_N | GND        | CLK0_M2C_N  | GND        | HA00_N_CC | GND       | GBTCLK0_M2C_N | GND       | DP9_M2C_N     | GND       |
| 6  | GND        | HA03_P     | GND         | LA00_P_CC  | GND       | HA05_P    | GND           | DP0_M2C_P | GND           | DP2_M2C_P |
| 7  | HA02_P     | HA03_N     | LA02_P      | LA00_N_CC  | HA04_P    | HA05_N    | GND           | DP0_M2C_N | GND           | DP2_M2C_N |
| 8  | HA02_N     | GND        | LA02_N      | GND        | HA04_N    | GND       | LA01_P_CC     | GND       | DP8_M2C_P     | GND       |
| 9  | GND        | HA07_P     | GND         | LA03_P     | GND       | HA09_P    | LA01_N_CC     | GND       | DP8_M2C_N     | GND       |
| 10 | HA06_P     | HA07_N     | LA04_P      | LA03_N     | HA08_P    | HA09_N    | GND           | LA06_P    | GND           | DP3_M2C_P |
| 11 | HA06_N     | GND        | LA04_N      | GND        | HA08_N    | GND       | LA05_P        | LA06_N    | GND           | DP3_M2C_N |
| 12 | GND        | HA11_P     | GND         | LA08_P     | GND       | HA13_P    | LA05_N        | GND       | DP7_M2C_P     | GND       |
| 13 | HA10_P     | HA11_N     | LA07_P      | LA08_N     | HA12_P    | HA13_N    | GND           | GND       | DP7_M2C_N     | GND       |
| 14 | HA10_N     | GND        | LA07_N      | GND        | HA12_N    | GND       | LA09_P        | LA10_P    | GND           | DP4_M2C_P |
| 15 | GND        | HA14_P     | GND         | LA12_P     | GND       | HA16_P    | LA09_N        | LA10_N    | GND           | DP4_M2C_N |
| 16 | HA17_P_CC  | HA14_N     | LA11_P      | LA12_N     | HA15_P    | HA16_N    | GND           | GND       | DP6_M2C_P     | GND       |
| 17 | HA17_N_CC  | GND        | LA11_N      | GND        | HA15_N    | GND       | LA13_P        | GND       | DP6_M2C_N     | GND       |
| 18 | GND        | HA18_P     | GND         | LA16_P     | GND       | HA20_P    | LA13_N        | LA14_P    | GND           | DP5_M2C_P |
| 19 | HA21_P     | HA18_N     | LA15_P      | LA16_N     | HA19_P    | HA20_N    | GND           | LA14_N    | GND           | DP5_M2C_N |
| 20 | HA21_N     | GND        | LA15_N      | GND        | HA19_N    | GND       | LA17_P_CC     | GND       | GBTCLK1_M2C_P | GND       |
| 21 | GND        | HA22_P     | GND         | LA20_P     | GND       | HB03_P    | LA17_N_CC     | GND       | GBTCLK1_M2C_N | GND       |
| 22 | HA23_P     | HA22_N     | LA19_P      | LA20_N     | HB02_P    | HB03_N    | GND           | LA18_P_CC | GND           | DP1_C2M_P |
| 23 | HA23_N     | GND        | LA19_N      | GND        | HB02_N    | GND       | LA23_P        | LA18_N_CC | GND           | DP1_C2M_N |
| 24 | GND        | HB01_P     | GND         | LA22_P     | GND       | HB05_P    | LA23_N        | GND       | DP9_C2M_P     | GND       |
| 25 | HB00_P_CC  | HB01_N     | LA21_P      | LA22_N     | HB04_P    | HB05_N    | GND           | GND       | DP9_C2M_N     | GND       |
| 26 | HB00_N_CC  | GND        | LA21_N      | GND        | HB04_N    | GND       | LA26_P        | LA27_P    | GND           | DP2_C2M_P |
| 27 | GND        | HB07_P     | GND         | LA25_P     | GND       | HB09_P    | LA26_N        | LA27_N    | GND           | DP2_C2M_N |
| 28 | HB06_P_CC  | HB07_N     | LA24_P      | LA25_N     | HB08_P    | HB09_N    | GND           | GND       | DP8_C2M_P     | GND       |
| 29 | HB06_N_CC  | GND        | LA24_N      | GND        | HB08_N    | GND       | TCK           | GND       | DP8_C2M_N     | GND       |
| 30 | GND        | HB11_P     | GND         | LA29_P     | GND       | HB13_P    | TDI           | SCL       | GND           | DP3_C2M_P |
| 31 | HB10_P     | HB11_N     | LA28_P      | LA29_N     | HB12_P    | HB13_N    | TDO           | SDA       | GND           | DP3_C2M_N |
| 32 | HB10_N     | GND        | LA28_N      | GND        | HB12_N    | GND       | 3P3VAUX       | GND       | DP7_C2M_P     | GND       |
| 33 | GND        | HB15_P     | GND         | LA31_P     | GND       | HB19_P    | TMS           | GND       | DP7_C2M_N     | GND       |
| 34 | HB14_P     | HB15_N     | LA30_P      | LA31_N     | HB16_P    | HB19_N    | TRST_L        | GA0       | GND           | DP4_C2M_P |
| 35 | HB14_N     | GND        | LA30_N      | GND        | HB16_N    | GND       | GA1           | 12P0V     | GND           | DP4_C2M_N |
| 36 | GND        | HB18_P     | GND         | LA33_P     | GND       | HB21_P    | 3P3V          | GND       | DP6_C2M_P     | GND       |
| 37 | HB17_P_CC  | HB18_N     | LA32_P      | LA33_N     | HB20_P    | HB21_N    | GND           | 12P0V     | DP6_C2M_N     | GND       |
| 38 | HB17_N_CC  | GND        | LA32_N      | GND        | HB20_N    | GND       | 3P3V          | GND       | GND           | DP5_C2M_P |
| 39 | GND        | VIO_B_M2C  | GND         | VADJ       | GND       | VADJ      | GND           | 3P3V      | GND           | DP5_C2M_N |
| 40 | VIO_B_M2C  | GND        | VADJ        | GND        | VADJ      | GND       | 3P3V          | GND       | RES0          | GND       |

UG954\_aB\_02\_100112

Figure B-2: FMC HPC Connector Pinout



# Master Constraints File Listing

The master Xilinx Design Constraints (XDC) file template for the ZC706 board provides for designs targeting the ZC706 evaluation board. Net names in the constraints listed below correlate with net names on the latest ZC706 evaluation board schematic. Users must identify the appropriate pins and replace the net names with net names in the user RTL. See *Vivado Design Suite User Guide: Using Constraints* (UG903) for more information.

For detailed I/O standards information required for a particular interface, users can refer to the constraint files generated by tools like the Memory Interface Generator (MIG) and Base System Builder (BSB).

The FMC connectors J37 and J5 are connected to  $2.5 \text{V}_{\text{ADJ}}$  banks. Because different FMC cards implement different circuitry, the FMC bank I/O standards must be uniquely defined by each customer.

**Note:** The constraints file listed in this appendix might not be the latest version. Always refer to the Xilinx Zynq-7000 All Programmable SoC ZC706 Evaluation Kit product page (<a href="www.xilinx.com/zc706">www.xilinx.com/zc706</a>) for the latest pins constraints file.

# **ZC706 Evaluation Board XDC Listing**

```
set_property PACKAGE_PIN Y20 [get_ports PMOD1_4_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_4_LS]
set_property PACKAGE_PIN AA20 [get_ports PMOD1_5_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_5_LS]
set_property PACKAGE_PIN AC18 [get_ports PMOD1_6_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_6_LS]
set_property PACKAGE_PIN AC19 [get_ports PMOD1_7_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_7_LS]
set_property PACKAGE_PIN AD18 [get_ports USER_SMA_CLOCK_P]
set_property IOSTANDARD LVDS_25 [get_ports USER_SMA_CLOCK_P]
set_property PACKAGE_PIN AD19 [get_ports USER_SMA_CLOCK_N]
set_property IOSTANDARD LVDS_25 [get_ports USER_SMA_CLOCK_N]
set_property PACKAGE_PIN AA18 [get_ports SFP_TX_DISABLE]
set_property IOSTANDARD LVCMOS25 [get_ports SFP_TX_DISABLE]
set_property PACKAGE_PIN AA19 [get_ports SM_FAN_TACH]
set_property IOSTANDARD LVCMOS25 [get_ports SM_FAN_TACH]
set_property PACKAGE_PIN AB19 [get_ports SM_FAN_PWM]
set_property IOSTANDARD LVCMOS25 [get_ports SM_FAN_PWM]
set_property PACKAGE_PIN AB20 [get_ports PWRCTL1_FMC_PG_C2M_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PWRCTL1_FMC_PG_C2M_LS]
set_property PACKAGE_PIN AD20 [get_ports REC_CLOCK_C_P]
```



```
set_property IOSTANDARD LVDS_25 [get_ports REC_CLOCK_C_P]
set_property PACKAGE_PIN AE20 [get_ports REC_CLOCK_C_N]
set_property IOSTANDARD LVDS_25 [get_ports REC_CLOCK_C_N]
set_property PACKAGE_PIN AA13 [get_ports PL_PJTAG_TDO_R]
set_property IOSTANDARD LVCMOS25 [get_ports PL_PJTAG_TDO_R]
set_property PACKAGE_PIN AK13 [get_ports PL_PJTAG_TCK]
set_property IOSTANDARD LVCMOS25 [get_ports PL_PJTAG_TCK]
set_property PACKAGE_PIN AK12 [get_ports PL_PJTAG_TMS]
set_property IOSTANDARD LVCMOS25 [get_ports PL_PJTAG_TMS]
set_property PACKAGE_PIN AH18 [get_ports PL_PJTAG_TDI]
set_property IOSTANDARD LVCMOS25 [get_ports PL_PJTAG_TDI]
set_property PACKAGE_PIN AJ18 [get_ports IIC_SDA_MAIN_LS]
set_property IOSTANDARD LVCMOS25 [get_ports IIC_SDA_MAIN_LS]
set_property PACKAGE_PIN AJ14 [get_ports IIC_SCL_MAIN_LS]
set_property IOSTANDARD LVCMOS25 [get_ports IIC_SCL_MAIN_LS]
set_property PACKAGE_PIN AJ13 [get_ports GPIO_DIP_SW3]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_DIP_SW3]
set_property PACKAGE_PIN AJ16 [get_ports FMC_LPC_LA11_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA11_P]
set_property PACKAGE_PIN AK16 [get_ports FMC_LPC_LA11_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA11_N]
set_property PACKAGE_PIN AJ15 [get_ports FMC_LPC_LA04_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA04_P]
set_property PACKAGE_PIN AK15 [get_ports FMC_LPC_LA04_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA04_N]
set_property PACKAGE_PIN AH17 [get_ports FMC_LPC_LA13_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA13_P]
set_property PACKAGE_PIN AH16 [get_ports FMC_LPC_LA13_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA13_N]
set_property PACKAGE_PIN AE12 [get_ports FMC_LPC_LA02_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA02_P]
set_property PACKAGE_PIN AF12 [get_ports FMC_LPC_LA02_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA02_N]
set_property PACKAGE_PIN AH14 [get_ports FMC_LPC_LA09_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA09_P]
set_property PACKAGE_PIN AH13 [get_ports FMC_LPC_LA09_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA09_N]
set_property PACKAGE_PIN AD14 [get_ports FMC_LPC_LA08_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA08_P]
set_property PACKAGE_PIN AD13 [get_ports FMC_LPC_LA08_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA08_N]
set_property PACKAGE_PIN AG12 [get_ports FMC_LPC_LA03_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA03_P]
set_property PACKAGE_PIN AH12 [get_ports FMC_LPC_LA03_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA03_N]
set_property PACKAGE_PIN AE13 [get_ports FMC_LPC_LA00_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA00_CC_P]
set_property PACKAGE_PIN AF13 [get_ports FMC_LPC_LA00_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA00_CC_N]
set_property PACKAGE_PIN AF14 [get_ports USRCLK_P]
set_property IOSTANDARD LVDS_25 [get_ports USRCLK_P]
set_property PACKAGE_PIN AG14 [get_ports USRCLK_N]
set_property IOSTANDARD LVDS_25 [get_ports USRCLK_N]
set_property PACKAGE_PIN AG17 [get_ports FMC_LPC_CLK0_M2C_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_CLK0_M2C_P]
set_property PACKAGE_PIN AG16 [get_ports FMC_LPC_CLK0_M2C_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_CLK0_M2C_N]
set_property PACKAGE_PIN AF15 [get_ports FMC_LPC_LA01_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA01_CC_P]
```



```
set_property PACKAGE_PIN AG15 [get_ports FMC_LPC_LA01_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA01_CC_N]
set_property PACKAGE_PIN AF18 [get_ports FMC_LPC_LA14_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA14_P]
set_property PACKAGE_PIN AF17 [get_ports FMC_LPC_LA14_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA14_N]
set_property PACKAGE_PIN AE16 [get_ports FMC_LPC_LA05_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA05_P]
set_property PACKAGE_PIN AE15 [get_ports FMC_LPC_LA05_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA05_N]
set_property PACKAGE_PIN AE18 [get_ports FMC_LPC_LA16_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA16_P]
set_property PACKAGE_PIN AE17 [get_ports FMC_LPC_LA16_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA16_N]
set_property PACKAGE_PIN AD16 [get_ports FMC_LPC_LA12_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA12_P]
set_property PACKAGE_PIN AD15 [get_ports FMC_LPC_LA12_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA12_N]
set_property PACKAGE_PIN AC14 [get_ports FMC_LPC_LA10_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA10_P]
set_property PACKAGE_PIN AC13 [get_ports FMC_LPC_LA10_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA10_N]
set_property PACKAGE_PIN AA15 [get_ports FMC_LPC_LA07_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA07_P]
set_property PACKAGE_PIN AA14 [get_ports FMC_LPC_LA07_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA07_N]
set_property PACKAGE_PIN AB12 [get_ports FMC_LPC_LA06_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA06_P]
set_property PACKAGE_PIN AC12 [get_ports FMC_LPC_LA06_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA06_N]
set_property PACKAGE_PIN AB15 [get_ports FMC_LPC_LA15_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA15_P]
set_property PACKAGE_PIN AB14 [get_ports FMC_LPC_LA15_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA15_N]
set_property PACKAGE_PIN AC17 [get_ports GPIO_DIP_SW2]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_DIP_SW2]
set_property PACKAGE_PIN AC16 [get_ports GPIO_DIP_SW1]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_DIP_SW1]
set_property PACKAGE_PIN AB17 [get_ports GPIO_DIP_SW0]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_DIP_SW0]
set_property PACKAGE_PIN AB16 [get_ports PMOD1_3_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_3_LS]
set_property PACKAGE_PIN AA17 [get_ports IIC_RTC_IRQ_1_B]
set_property IOSTANDARD LVCMOS25 [get_ports IIC_RTC_IRQ_1_B]
set_property PACKAGE_PIN W23 [get_ports SI5324_RST_LS]
set_property IOSTANDARD LVCMOS25 [get_ports SI5324_RST_LS]
set_property PACKAGE_PIN AJ25 [get_ports SI5324_INT_ALM_LS]
set_property IOSTANDARD LVCMOS25 [get_ports SI5324_INT_ALM_LS]
set_property PACKAGE_PIN AK25 [get_ports GPIO_SW_LEFT]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_SW_LEFT]
set_property PACKAGE_PIN AK22 [get_ports PCIE_WAKE_B_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PCIE_WAKE_B_LS]
set_property PACKAGE_PIN AK23 [get_ports PCIE_PERST_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PCIE_PERST_LS]
set_property PACKAGE_PIN AJ21 [get_ports PMOD1_0_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_0_LS]
set_property PACKAGE_PIN AK21 [get_ports PMOD1_1_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_1_LS]
set_property PACKAGE_PIN AJ23 [get_ports FMC_HPC_LA07_P]
```



```
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA07_P]
set_property PACKAGE_PIN AJ24 [get_ports FMC_HPC_LA07_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA07_N]
set_property PACKAGE_PIN AH23 [get_ports FMC_HPC_LA05_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA05_P]
set_property PACKAGE_PIN AH24 [get_ports FMC_HPC_LA05_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA05_N]
set_property PACKAGE_PIN AG22 [get_ports FMC_HPC_LA06_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA06_P]
set_property PACKAGE_PIN AH22 [get_ports FMC_HPC_LA06_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA06_N]
set_property PACKAGE_PIN AC24 [get_ports FMC_HPC_LA14_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA14_P]
set_property PACKAGE_PIN AD24 [get_ports FMC_HPC_LA14_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA14_N]
set_property PACKAGE_PIN AG24 [get_ports FMC_HPC_LA10_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA10_P]
set_property PACKAGE_PIN AG25 [get_ports FMC_HPC_LA10_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA10_N]
set_property PACKAGE_PIN AF23 [get_ports FMC_HPC_LA12_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA12_P]
set_property PACKAGE_PIN AF24 [get_ports FMC_HPC_LA12_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA12_N]
set_property PACKAGE_PIN AD21 [get_ports FMC_HPC_LA09_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA09_P]
set_property PACKAGE_PIN AE21 [get_ports FMC_HPC_LA09_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA09_N]
set_property PACKAGE_PIN AD23 [get_ports FMC_HPC_LA11_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA11_P]
set_property PACKAGE_PIN AE23 [get_ports FMC_HPC_LA11_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA11_N]
set_property PACKAGE_PIN AE22 [get_ports FMC_HPC_CLK0_M2C_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_CLK0_M2C_P]
set_property PACKAGE_PIN AF22 [get_ports FMC_HPC_CLK0_M2C_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_CLK0_M2C_N]
set_property PACKAGE_PIN AG21 [get_ports FMC_HPC_LA01_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA01_CC_P]
set_property PACKAGE_PIN AH21 [get_ports FMC_HPC_LA01_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA01_CC_N]
set_property PACKAGE_PIN AF20 [get_ports FMC_HPC_LA00_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA00_CC_P]
set_property PACKAGE_PIN AG20 [get_ports FMC_HPC_LA00_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA00_CC_N]
set_property PACKAGE_PIN AJ20 [get_ports FMC_HPC_LA04_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA04_P]
set_property PACKAGE_PIN AK20 [get_ports FMC_HPC_LA04_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA04_N]
set_property PACKAGE_PIN AK17 [get_ports FMC_HPC_LA02_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA02_P]
set_property PACKAGE_PIN AK18 [get_ports FMC_HPC_LA02_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA02_N]
set_property PACKAGE_PIN AH19 [get_ports FMC_HPC_LA03_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA03_P]
set_property PACKAGE_PIN AJ19 [get_ports FMC_HPC_LA03_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA03_N]
set_property PACKAGE_PIN AF19 [get_ports FMC_HPC_LA08_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA08_P]
set_property PACKAGE_PIN AG19 [get_ports FMC_HPC_LA08_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA08_N]
```



```
set_property PACKAGE_PIN AB21 [get_ports PMOD1_2_LS]
set_property IOSTANDARD LVCMOS25 [get_ports PMOD1_2_LS]
set_property PACKAGE_PIN AB22 [get_ports HDMI_SPDIF_OUT_LS]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_SPDIF_OUT_LS]
set_property PACKAGE_PIN W21 [get_ports GPIO_LED_RIGHT]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_LED_RIGHT]
set_property PACKAGE_PIN Y21 [get_ports GPIO_LED_LEFT]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_LED_LEFT]
set_property PACKAGE_PIN Y22 [get_ports FMC_HPC_LA15_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA15_P]
set_property PACKAGE_PIN Y23 [get_ports FMC_HPC_LA15_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA15_N]
set_property PACKAGE_PIN AA24 [get_ports FMC_HPC_LA16_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA16_P]
set_property PACKAGE_PIN AB24 [get_ports FMC_HPC_LA16_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA16_N]
set_property PACKAGE_PIN AA22 [get_ports FMC_HPC_LA13_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA13_P]
set_property PACKAGE_PIN AA23 [get_ports FMC_HPC_LA13_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA13_N]
set_property PACKAGE_PIN AC22 [get_ports HDMI_R_D35]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D35]
set_property PACKAGE_PIN AC23 [get_ports HDMI_INT]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_INT]
set_property PACKAGE_PIN AC21 [get_ports HDMI_R_SPDIF]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_SPDIF]
set_property PACKAGE_PIN Y25 [get_ports HDMI_R_D21]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D21]
set_property PACKAGE_PIN Y30 [get_ports FMC_LPC_LA33_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA33_P]
set_property PACKAGE_PIN AA30 [get_ports FMC_LPC_LA33_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA33_N]
set_property PACKAGE_PIN AB29 [get_ports FMC_LPC_LA30_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA30_P]
set_property PACKAGE_PIN AB30 [get_ports FMC_LPC_LA30_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA30_N]
set_property PACKAGE_PIN Y26 [get_ports FMC_LPC_LA32_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA32_P]
set_property PACKAGE_PIN Y27 [get_ports FMC_LPC_LA32_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA32_N]
set_property PACKAGE_PIN Y28 [get_ports HDMI_R_D28]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D28]
set_property PACKAGE_PIN AA29 [get_ports HDMI_R_D22]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D22]
set_property PACKAGE_PIN AA27 [get_ports HDMI_R_D31]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D31]
set_property PACKAGE_PIN AA28 [get_ports HDMI_R_D18]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D18]
set_property PACKAGE_PIN AB25 [get_ports HDMI_R_D10]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D10]
set_property PACKAGE_PIN AB26 [get_ports HDMI_R_D17]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D17]
set_property PACKAGE_PIN AC26 [get_ports HDMI_R_D19]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D19]
set_property PACKAGE_PIN AD26 [get_ports HDMI_R_D16]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D16]
set_property PACKAGE_PIN AD30 [get_ports HDMI_R_D23]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D23]
set_property PACKAGE_PIN AE30 [get_ports HDMI_R_D20]
```



```
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D20]
set_property PACKAGE_PIN AC29 [get_ports FMC_LPC_LA31_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA31_P]
set_property PACKAGE_PIN AD29 [get_ports FMC_LPC_LA31_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA31_N]
set_property PACKAGE_PIN AD25 [get_ports FMC_LPC_LA28_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA28_P]
set_property PACKAGE_PIN AE26 [get_ports FMC_LPC_LA28_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA28_N]
set_property PACKAGE_PIN AB27 [get_ports FMC_LPC_LA17_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA17_CC_P]
set_property PACKAGE_PIN AC27 [get_ports FMC_LPC_LA17_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA17_CC_N]
set_property PACKAGE_PIN AC28 [get_ports FMC_LPC_CLK1_M2C_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_CLK1_M2C_P]
set_property PACKAGE_PIN AD28 [get_ports FMC_LPC_CLK1_M2C_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_CLK1_M2C_N]
set_property PACKAGE_PIN AE28 [get_ports HDMI_R_D8]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D8]
set_property PACKAGE_PIN AF28 [get_ports HDMI_R_D29]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D29]
set_property PACKAGE_PIN AE27 [get_ports FMC_LPC_LA18_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA18_CC_P]
set_property PACKAGE_PIN AF27 [get_ports FMC_LPC_LA18_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA18_CC_N]
set_property PACKAGE_PIN AF29 [get_ports FMC_LPC_LA25_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA25_P]
set_property PACKAGE_PIN AG29 [get_ports FMC_LPC_LA25_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA25_N]
set_property PACKAGE_PIN AF30 [get_ports FMC_LPC_LA24_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA24_P]
set_property PACKAGE_PIN AG30 [get_ports FMC_LPC_LA24_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA24_N]
set_property PACKAGE_PIN AG26 [get_ports FMC_LPC_LA20_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA20_P]
set_property PACKAGE_PIN AG27 [get_ports FMC_LPC_LA20_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA20_N]
set_property PACKAGE_PIN AE25 [get_ports FMC_LPC_LA29_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA29_P]
set_property PACKAGE_PIN AF25 [get_ports FMC_LPC_LA29_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA29_N]
set_property PACKAGE_PIN AH28 [get_ports FMC_LPC_LA21_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA21_P]
set_property PACKAGE_PIN AH29 [get_ports FMC_LPC_LA21_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA21_N]
set_property PACKAGE_PIN AJ30 [get_ports FMC_LPC_LA26_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA26_P]
set_property PACKAGE_PIN AK30 [get_ports FMC_LPC_LA26_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA26_N]
set_property PACKAGE_PIN AJ28 [get_ports FMC_LPC_LA27_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA27_P]
set_property PACKAGE_PIN AJ29 [get_ports FMC_LPC_LA27_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA27_N]
set_property PACKAGE_PIN AK27 [get_ports FMC_LPC_LA22_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA22_P]
set_property PACKAGE_PIN AK28 [get_ports FMC_LPC_LA22_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA22_N]
set_property PACKAGE_PIN AH26 [get_ports FMC_LPC_LA19_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA19_P]
```



```
set_property PACKAGE_PIN AH27 [get_ports FMC_LPC_LA19_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA19_N]
set_property PACKAGE_PIN AJ26 [get_ports FMC_LPC_LA23_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA23_P]
set_property PACKAGE_PIN AK26 [get_ports FMC_LPC_LA23_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_LPC_LA23_N]
set_property PACKAGE_PIN AA25 [get_ports HDMI_R_D7]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D7]
set_property PACKAGE_PIN U21 [get_ports HDMI_R_VSYNC]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_VSYNC]
set_property PACKAGE_PIN P30 [get_ports FMC_HPC_LA28_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA28_P]
set_property PACKAGE_PIN R30 [get_ports FMC_HPC_LA28_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA28_N]
set_property PACKAGE_PIN T30 [get_ports FMC_HPC_LA24_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA24_P]
set_property PACKAGE_PIN U30 [get_ports FMC_HPC_LA24_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA24_N]
set_property PACKAGE_PIN N28 [get_ports HDMI_R_D33]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D33]
set_property PACKAGE_PIN P28 [get_ports HDMI_R_CLK]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_CLK]
set_property PACKAGE_PIN N29 [get_ports FMC_HPC_LA31_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA31_P]
set_property PACKAGE_PIN P29 [get_ports FMC_HPC_LA31_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA31_N]
set_property PACKAGE_PIN T29 [get_ports FMC_HPC_LA25_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA25_P]
set_property PACKAGE_PIN U29 [get_ports FMC_HPC_LA25_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA25_N]
set_property PACKAGE_PIN R28 [get_ports FMC_HPC_LA26_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA26_P]
set_property PACKAGE_PIN T28 [get_ports FMC_HPC_LA26_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA26_N]
set_property PACKAGE_PIN V28 [get_ports FMC_HPC_LA27_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA27_P]
set_property PACKAGE_PIN V29 [get_ports FMC_HPC_LA27_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA27_N]
set_property PACKAGE_PIN W29 [get_ports FMC_HPC_LA21_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA21_P]
set_property PACKAGE_PIN W30 [get_ports FMC_HPC_LA21_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA21_N]
set_property PACKAGE_PIN V27 [get_ports FMC_HPC_LA22_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA22_P]
set_property PACKAGE_PIN W28 [get_ports FMC_HPC_LA22_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA22_N]
set_property PACKAGE_PIN W25 [get_ports FMC_HPC_LA18_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA18_CC_P]
set_property PACKAGE_PIN W26 [get_ports FMC_HPC_LA18_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA18_CC_N]
set_property PACKAGE_PIN U25 [get_ports FMC_HPC_LA20_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA20_P]
set_property PACKAGE_PIN V26 [get_ports FMC_HPC_LA20_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA20_N]
set_property PACKAGE_PIN U26 [get_ports FMC_HPC_CLK1_M2C_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_CLK1_M2C_P]
set_property PACKAGE_PIN U27 [get_ports FMC_HPC_CLK1_M2C_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_CLK1_M2C_N]
set_property PACKAGE_PIN R25 [get_ports FMC_HPC_LA29_P]
```



```
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA29_P]
set_property PACKAGE_PIN R26 [get_ports FMC_HPC_LA29_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA29_N]
set_property PACKAGE_PIN R27 [get_ports GPIO_SW_RIGHT]
set_property IOSTANDARD LVCMOS25 [get_ports GPIO_SW_RIGHT]
set_property PACKAGE_PIN T27 [get_ports HDMI_R_D11]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D11]
set_property PACKAGE_PIN N26 [get_ports FMC_HPC_LA33_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA33_P]
set_property PACKAGE_PIN N27 [get_ports FMC_HPC_LA33_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA33_N]
set_property PACKAGE_PIN P25 [get_ports FMC_HPC_LA23_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA23_P]
set_property PACKAGE_PIN P26 [get_ports FMC_HPC_LA23_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA23_N]
set_property PACKAGE_PIN T24 [get_ports FMC_HPC_LA19_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA19_P]
set_property PACKAGE_PIN T25 [get_ports FMC_HPC_LA19_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA19_N]
set_property PACKAGE_PIN P23 [get_ports FMC_HPC_LA30_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA30_P]
set_property PACKAGE_PIN P24 [get_ports FMC_HPC_LA30_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA30_N]
set_property PACKAGE_PIN P21 [get_ports FMC_HPC_LA32_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA32_P]
set_property PACKAGE_PIN R21 [get_ports FMC_HPC_LA32_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA32_N]
set_property PACKAGE_PIN T22 [get_ports HDMI_R_D5]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D5]
set_property PACKAGE_PIN T23 [get_ports HDMI_R_D9]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D9]
set_property PACKAGE_PIN R22 [get_ports HDMI_R_HSYNC]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_HSYNC]
set_property PACKAGE_PIN R23 [get_ports HDMI_R_D6]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D6]
set_property PACKAGE_PIN U22 [get_ports HDMI_R_D32]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D32]
set_property PACKAGE_PIN V22 [get_ports HDMI_R_D30]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D30]
set_property PACKAGE_PIN U24 [get_ports HDMI_R_D4]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D4]
set_property PACKAGE_PIN V24 [get_ports HDMI_R_DE]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_DE]
set_property PACKAGE_PIN V23 [get_ports FMC_HPC_LA17_CC_P]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA17_CC_P]
set_property PACKAGE_PIN W24 [get_ports FMC_HPC_LA17_CC_N]
set_property IOSTANDARD LVCMOS25 [get_ports FMC_HPC_LA17_CC_N]
set_property PACKAGE_PIN V21 [get_ports HDMI_R_D34]
set_property IOSTANDARD LVCMOS25 [get_ports HDMI_R_D34]
set_property PACKAGE_PIN J4 [get_ports PL_DDR3_D3]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D3]
set_property PACKAGE_PIN J3 [get_ports PL_DDR3_DM0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM0]
set_property PACKAGE_PIN L1 [get_ports PL_DDR3_D0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D0]
set_property PACKAGE_PIN K1 [get_ports PL_DDR3_D4]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D4]
set_property PACKAGE_PIN K3 [get_ports PL_DDR3_DQS0_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS0_P]
```



```
set_property PACKAGE_PIN K2 [get_ports PL_DDR3_DQS0_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS0_N]
set_property PACKAGE_PIN L3 [get_ports PL_DDR3_D5]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D5]
set_property PACKAGE_PIN L2 [get_ports PL_DDR3_D1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D1]
set_property PACKAGE_PIN K5 [get_ports PL_DDR3_D2]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D2]
set_property PACKAGE_PIN J5 [get_ports PL_DDR3_D6]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D6]
set_property PACKAGE_PIN K6 [get_ports PL_DDR3_D7]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D7]
set_property PACKAGE_PIN G2 [get_ports GPIO_LED_CENTER]
set_property IOSTANDARD LVCMOS15 [get_ports GPIO_LED_CENTER]
set_property PACKAGE_PIN F2 [get_ports PL_DDR3_DM1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM1]
set_property PACKAGE_PIN H6 [get_ports PL_DDR3_D10]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D10]
set_property PACKAGE_PIN G6 [get_ports PL_DDR3_D8]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D8]
set_property PACKAGE_PIN J1 [get_ports PL_DDR3_DQS1_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS1_P]
set_property PACKAGE_PIN H1 [get_ports PL_DDR3_DQS1_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS1_N]
set_property PACKAGE_PIN H2 [get_ports PL_DDR3_D13]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D13]
set_property PACKAGE_PIN G1 [get_ports PL_DDR3_D12]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D12]
set_property PACKAGE_PIN H4 [get_ports PL_DDR3_D9]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D9]
set_property PACKAGE_PIN H3 [get_ports PL_DDR3_D11]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D11]
set_property PACKAGE_PIN G5 [get_ports PL_DDR3_D14]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D14]
set_property PACKAGE_PIN G4 [get_ports PL_DDR3_D15]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D15]
set_property PACKAGE_PIN F5 [get_ports 6N1792]
set_property IOSTANDARD SSTL15 [get_ports 6N1792]
set_property PACKAGE_PIN E5 [get_ports PL_DDR3_D19]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D19]
set_property PACKAGE_PIN F4 [get_ports PL_DDR3_D20]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D20]
set_property PACKAGE_PIN F3 [get_ports PL_DDR3_D21]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D21]
set_property PACKAGE_PIN E6 [get_ports PL_DDR3_DQS2_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS2_P]
set_property PACKAGE_PIN D5 [get_ports PL_DDR3_DQS2_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS2_N]
set_property PACKAGE_PIN D4 [get_ports PL_DDR3_D18]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D18]
set_property PACKAGE_PIN D3 [get_ports PL_DDR3_D23]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D23]
set_property PACKAGE_PIN E3 [get_ports PL_DDR3_D17]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D17]
set_property PACKAGE_PIN E2 [get_ports PL_DDR3_D16]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D16]
set_property PACKAGE_PIN E1 [get_ports PL_DDR3_DM2]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM2]
set_property PACKAGE_PIN D1 [get_ports PL_DDR3_D22]
```



```
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D22]
set_property PACKAGE_PIN C4 [get_ports PL_DDR3_D31]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D31]
set_property PACKAGE_PIN B5 [get_ports PL_DDR3_D27]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D27]
set_property PACKAGE_PIN B4 [get_ports PL_DDR3_D26]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D26]
set_property PACKAGE_PIN A5 [get_ports PL_DDR3_DQS3_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS3_P]
set_property PACKAGE_PIN A4 [get_ports PL_DDR3_DQS3_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS3_N]
set_property PACKAGE_PIN C2 [get_ports PL_DDR3_DM3]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM3]
set_property PACKAGE_PIN C1 [get_ports PL_DDR3_D30]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D30]
set_property PACKAGE_PIN B2 [get_ports PL_DDR3_D25]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D25]
set_property PACKAGE_PIN B1 [get_ports PL_DDR3_D29]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D29]
set_property PACKAGE_PIN A3 [get_ports PL_DDR3_D28]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D28]
set_property PACKAGE_PIN A2 [get_ports PL_DDR3_D24]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D24]
set_property PACKAGE_PIN M12 [get_ports 6N2017]
set_property IOSTANDARD LVCMOS15 [get_ports 6N2017]
set_property PACKAGE_PIN B10 [get_ports PL_DDR3_A8]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A8]
set_property PACKAGE_PIN A10 [get_ports PL_DDR3_A13]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A13]
set_property PACKAGE_PIN B9 [get_ports PL_DDR3_A1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A1]
set_property PACKAGE_PIN A9 [get_ports PL_DDR3_A3]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A3]
set_property PACKAGE_PIN A8 [get_ports PL_CPU_RESET]
set_property IOSTANDARD LVCMOS15 [get_ports PL_CPU_RESET]
set_property PACKAGE_PIN A7 [get_ports PL_DDR3_BA2]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_BA2]
set_property PACKAGE_PIN C7 [get_ports PL_DDR3_CKE1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_CKE1]
set_property PACKAGE_PIN B7 [get_ports PL_DDR3_A11]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A11]
set_property PACKAGE_PIN C6 [get_ports PL_DDR3_A15]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A15]
set_property PACKAGE_PIN B6 [get_ports PL_DDR3_A5]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A5]
set_property PACKAGE_PIN C9 [get_ports PL_DDR3_ODT1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_ODT1]
set_property PACKAGE_PIN J11 [get_ports PL_DDR3_S0_B]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_S0_B]
set_property PACKAGE_PIN H11 [get_ports PL_DDR3_RAS_B]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_RAS_B]
set_property PACKAGE_PIN E11 [get_ports PL_DDR3_A2]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A2]
set_property PACKAGE_PIN D11 [get_ports PL_DDR3_A4]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A4]
set_property PACKAGE_PIN H12 [get_ports PL_DDR3_A12]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A12]
set_property PACKAGE_PIN G11 [get_ports PL_DDR3_A14]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A14]
```



```
set_property PACKAGE_PIN E10 [get_ports PL_DDR3_A0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A0]
set_property PACKAGE_PIN D10 [get_ports PL_DDR3_CKE0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_CKE0]
set_property PACKAGE_PIN G10 [get_ports PL_DDR3_CLK0_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_CLK0_P]
set_property PACKAGE_PIN F10 [get_ports PL_DDR3_CLK0_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_CLK0_N]
set_property PACKAGE_PIN D9 [get_ports PL_DDR3_CLK1_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_CLK1_P]
set_property PACKAGE_PIN D8 [get_ports PL_DDR3_CLK1_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_CLK1_N]
set_property PACKAGE_PIN H9 [get_ports SYSCLK_P]
set_property IOSTANDARD LVDS [get_ports SYSCLK_P]
set_property PACKAGE_PIN G9 [get_ports SYSCLK_N]
set_property IOSTANDARD LVDS [get_ports SYSCLK_N]
set_property PACKAGE_PIN F9 [get_ports PL_DDR3_A6]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A6]
set_property PACKAGE_PIN E8 [get_ports PL_DDR3_A7]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A7]
set_property PACKAGE_PIN J8 [get_ports PL_DDR3_A9]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A9]
set_property PACKAGE_PIN H8 [get_ports PL_DDR3_S1_B]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_S1_B]
set_property PACKAGE_PIN F8 [get_ports PL_DDR3_BA0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_BA0]
set_property PACKAGE_PIN F7 [get_ports PL_DDR3_WE_B]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_WE_B]
set_property PACKAGE_PIN E7 [get_ports PL_DDR3_CAS_B]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_CAS_B]
set_property PACKAGE_PIN D6 [get_ports PL_DDR3_A10]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_A10]
set_property PACKAGE_PIN H7 [get_ports PL_DDR3_BA1]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_BA1]
set_property PACKAGE_PIN G7 [get_ports PL_DDR3_ODT0]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_ODT0]
set_property PACKAGE_PIN L7 [get_ports PL_DDR3_D39]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D39]
set_property PACKAGE_PIN J10 [get_ports PL_DDR3_D38]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D38]
set_property PACKAGE_PIN J9 [get_ports PL_DDR3_D35]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D35]
set_property PACKAGE_PIN L8 [get_ports PL_DDR3_DQS4_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS4_P]
set_property PACKAGE_PIN K8 [get_ports PL_DDR3_DQS4_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS4_N]
set_property PACKAGE_PIN K11 [get_ports PL_DDR3_D36]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D36]
set_property PACKAGE_PIN K10 [get_ports PL_DDR3_D32]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D32]
set_property PACKAGE_PIN L10 [get_ports PL_DDR3_D37]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D37]
set_property PACKAGE_PIN L9 [get_ports PL_DDR3_D33]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D33]
set_property PACKAGE_PIN L12 [get_ports PL_DDR3_DM4]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM4]
set_property PACKAGE_PIN K12 [get_ports PL_DDR3_D34]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D34]
set_property PACKAGE_PIN M10 [get_ports PL_DDR3_TEMP_EVENT]
```



```
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_TEMP_EVENT]
set_property PACKAGE_PIN L15 [get_ports XADC_VAUX0P_R]
set_property IOSTANDARD LVCMOS5 [get_ports XADC_VAUX0P_R]
set_property PACKAGE_PIN L14 [get_ports XADC_VAUX0N_R]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_VAUX0N_R]
set_property PACKAGE_PIN J13 [get_ports XADC_VAUX8P_R]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_VAUX8P_R]
set_property PACKAGE_PIN H13 [get_ports XADC_VAUX8N_R]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_VAUX8N_R]
set_property PACKAGE_PIN L13 [get_ports XADC_AD1_R_P]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_AD1_R_P]
set_property PACKAGE_PIN K13 [get_ports XADC_AD1_R_N]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_AD1_R_N]
set_property PACKAGE_PIN J14 [get_ports XADC_GPIO_3]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_GPIO_3]
set_property PACKAGE_PIN H14 [get_ports XADC_GPIO_0]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_GPIO_0]
set_property PACKAGE_PIN K15 [get_ports GPIO_SW_CENTER]
set_property IOSTANDARD LVCMOS15 [get_ports GPIO_SW_CENTER]
set_property PACKAGE_PIN J15 [get_ports XADC_GPIO_1]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_GPIO_1]
set_property PACKAGE_PIN J16 [get_ports XADC_GPIO_2]
set_property IOSTANDARD LVCMOS15 [get_ports XADC_GPIO_2]
set_property PACKAGE_PIN G17 [get_ports PL_DDR3_RESET_B]
set_property IOSTANDARD LVCMOS15 [get_ports PL_DDR3_RESET_B]
set_property PACKAGE_PIN G16 [get_ports PL_DDR3_D43]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D43]
set_property PACKAGE_PIN G15 [get_ports PL_DDR3_D44]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D44]
set_property PACKAGE_PIN G14 [get_ports PL_DDR3_DM5]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM5]
set_property PACKAGE_PIN G12 [get_ports PL_DDR3_DQS5_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS5_P]
set_property PACKAGE_PIN F12 [get_ports PL_DDR3_DQS5_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS5_N]
set_property PACKAGE_PIN F13 [get_ports PL_DDR3_D42]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D42]
set_property PACKAGE_PIN E12 [get_ports PL_DDR3_D45]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D45]
set_property PACKAGE_PIN E13 [get_ports PL_DDR3_D47]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D47]
set_property PACKAGE_PIN D13 [get_ports PL_DDR3_D46]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D46]
set_property PACKAGE_PIN F15 [get_ports PL_DDR3_D41]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D41]
set_property PACKAGE_PIN F14 [get_ports PL_DDR3_D40]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D40]
set_property PACKAGE_PIN E16 [get_ports PL_DDR3_D51]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D51]
set_property PACKAGE_PIN E15 [get_ports PL_DDR3_D49]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D49]
set_property PACKAGE_PIN D15 [get_ports PL_DDR3_D48]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D48]
set_property PACKAGE_PIN D14 [get_ports PL_DDR3_D54]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D54]
set_property PACKAGE_PIN F17 [get_ports PL_DDR3_DQS6_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS6_P]
set_property PACKAGE_PIN E17 [get_ports PL_DDR3_DQS6_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS6_N]
```



```
set_property PACKAGE_PIN D16 [get_ports PL_DDR3_D50]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D50]
set_property PACKAGE_PIN C16 [get_ports PL_DDR3_DM6]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM6]
set_property PACKAGE_PIN C17 [get_ports PL_DDR3_D52]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D52]
set_property PACKAGE_PIN B16 [get_ports PL_DDR3_D53]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D53]
set_property PACKAGE_PIN B17 [get_ports PL_DDR3_D55]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D55]
set_property PACKAGE_PIN A17 [get_ports GPIO_LED_0]
set_property IOSTANDARD LVCMOS15 [get_ports GPIO_LED_0]
set_property PACKAGE_PIN C14 [get_ports PL_DDR3_D62]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D62]
set_property PACKAGE_PIN C12 [get_ports PL_DDR3_D57]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D57]
set_property PACKAGE_PIN B12 [get_ports PL_DDR3_D56]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D56]
set_property PACKAGE_PIN B15 [get_ports PL_DDR3_DQS7_P]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS7_P]
set_property PACKAGE_PIN A15 [get_ports PL_DDR3_DQS7_N]
set_property IOSTANDARD DIFF_SSTL15 [get_ports PL_DDR3_DQS7_N]
set_property PACKAGE_PIN C11 [get_ports PL_DDR3_DM7]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_DM7]
set_property PACKAGE_PIN B11 [get_ports PL_DDR3_D61]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D61]
set_property PACKAGE_PIN B14 [get_ports PL_DDR3_D63]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D63]
set_property PACKAGE_PIN A14 [get_ports PL_DDR3_D59]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D59]
set_property PACKAGE_PIN A13 [get_ports PL_DDR3_D60]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D60]
set_property PACKAGE_PIN A12 [get_ports PL_DDR3_D58]
set_property IOSTANDARD SSTL15 [get_ports PL_DDR3_D58]
set_property PACKAGE_PIN AK2 [get_ports FMC_HPC_DP3_C2M_P]
set_property PACKAGE_PIN AE8 [get_ports FMC_HPC_DP3_M2C_P]
set_property PACKAGE_PIN AK1 [get_ports FMC_HPC_DP3_C2M_N]
set_property PACKAGE_PIN AE7 [get_ports FMC_HPC_DP3_M2C_N]
set_property PACKAGE_PIN AJ4 [get_ports FMC_HPC_DP2_C2M_P]
set_property PACKAGE_PIN AG8 [get_ports FMC_HPC_DP2_M2C_P]
set_property PACKAGE_PIN AJ3 [get_ports FMC_HPC_DP2_C2M_N]
set_property PACKAGE_PIN AD10 [get_ports FMC_HPC_GBTCLK0_M2C_C_P]
set_property PACKAGE_PIN AG7 [get_ports FMC_HPC_DP2_M2C_N]
set_property PACKAGE_PIN AD9 [get_ports FMC_HPC_GBTCLK0_M2C_C_N]
set_property PACKAGE_PIN AF9 [get_ports 8N241]
set_property PACKAGE_PIN AF10 [get_ports 8N242]
set_property PACKAGE_PIN AK6 [get_ports FMC_HPC_DP1_C2M_P]
set_property PACKAGE_PIN AJ8 [get_ports FMC_HPC_DP1_M2C_P]
set_property PACKAGE_PIN AK5 [get_ports FMC_HPC_DP1_C2M_N]
set_property PACKAGE_PIN AJ7 [get_ports FMC_HPC_DP1_M2C_N]
set_property PACKAGE_PIN AK10 [get_ports FMC_HPC_DP0_C2M_P]
set_property PACKAGE_PIN AH10 [get_ports FMC_HPC_DP0_M2C_P]
set_property PACKAGE_PIN AK9 [get_ports FMC_HPC_DP0_C2M_N]
set_property PACKAGE_PIN AH9 [get_ports FMC_HPC_DP0_M2C_N]
set_property PACKAGE_PIN AD2 [get_ports FMC_HPC_DP7_C2M_P]
set_property PACKAGE_PIN AD6 [get_ports FMC_HPC_DP7_M2C_P]
set_property PACKAGE_PIN AD1 [get_ports FMC_HPC_DP7_C2M_N]
set_property PACKAGE_PIN AD5 [get_ports FMC_HPC_DP7_M2C_N]
set_property PACKAGE_PIN AE4 [get_ports FMC_HPC_DP6_C2M_P]
```



```
set_property PACKAGE_PIN AF6 [get_ports FMC_HPC_DP6_M2C_P]
set_property PACKAGE_PIN AE3 [get_ports FMC_HPC_DP6_C2M_N]
set_property PACKAGE_PIN AA8 [get_ports FMC_HPC_GBTCLK1_M2C_C_P]
set_property PACKAGE_PIN AF5 [get_ports FMC_HPC_DP6_M2C_N]
set_property PACKAGE_PIN AA7 [get_ports FMC_HPC_GBTCLK1_M2C_C_N]
set_property PACKAGE_PIN AC7 [get_ports SI5324_OUT_C_N]
set_property PACKAGE_PIN AC8 [get_ports SI5324_OUT_C_P]
set_property PACKAGE_PIN AF2 [get_ports FMC_HPC_DP5_C2M_P]
set_property PACKAGE_PIN AG4 [get_ports FMC_HPC_DP5_M2C_P]
set_property PACKAGE_PIN AF1 [get_ports FMC_HPC_DP5_C2M_N]
set_property PACKAGE_PIN AG3 [get_ports FMC_HPC_DP5_M2C_N]
set_property PACKAGE_PIN AH2 [get_ports FMC_HPC_DP4_C2M_P]
set_property PACKAGE_PIN AH6 [get_ports FMC_HPC_DP4_M2C_P]
set_property PACKAGE_PIN AH1 [get_ports FMC_HPC_DP4_C2M_N]
set_property PACKAGE_PIN AH5 [get_ports FMC_HPC_DP4_M2C_N]
set_property PACKAGE_PIN V2 [get_ports 8N281]
set_property PACKAGE_PIN AA4 [get_ports 8N261]
set_property PACKAGE_PIN V1 [get_ports 8N278]
set_property PACKAGE_PIN AA3 [get_ports 8N282]
set_property PACKAGE_PIN W4 [get_ports SFP_TX_P]
set_property PACKAGE_PIN Y6 [get_ports SFP_RX_P]
set_property PACKAGE_PIN_W3 [get_ports_SFP_TX_N]
set_property PACKAGE_PIN U8 [get_ports FMC_LPC_GBTCLK0_M2C_C_P]
set_property PACKAGE_PIN Y5 [get_ports SFP_RX_N]
set_property PACKAGE_PIN U7 [get_ports FMC_LPC_GBTCLK0_M2C_C_N]
set_property PACKAGE_PIN W7 [get_ports SMA_MGT_REFCLK_N]
set_property PACKAGE_PIN W8 [get_ports SMA_MGT_REFCLK_P]
set_property PACKAGE_PIN Y2 [get_ports SMA_MGT_TX_P]
set_property PACKAGE_PIN AB6 [get_ports SMA_MGT_RX_P]
set_property PACKAGE_PIN Y1 [get_ports SMA_MGT_TX_N]
set_property PACKAGE_PIN AB5 [get_ports SMA_MGT_RX_N]
set_property PACKAGE_PIN AB2 [get_ports FMC_LPC_DP0_C2M_P]
set_property PACKAGE_PIN AC4 [get_ports FMC_LPC_DP0_M2C_P]
set_property PACKAGE_PIN AB1 [get_ports FMC_LPC_DP0_C2M_N]
set_property PACKAGE_PIN AC3 [get_ports FMC_LPC_DP0_M2C_N]
set_property PACKAGE_PIN N4 [get_ports PCIE_TX0_P]
set_property PACKAGE_PIN P6 [get_ports PCIE_RX0_P]
set_property PACKAGE_PIN N3 [get_ports PCIE_TX0_N]
set_property PACKAGE_PIN P5 [get_ports PCIE_RX0_N]
set_property PACKAGE_PIN P2 [get_ports PCIE_TX1_P]
set_property PACKAGE_PIN T6 [get_ports PCIE_RX1_P]
set_property PACKAGE_PIN P1 [get_ports PCIE_TX1_N]
set_property PACKAGE_PIN N8 [get_ports PCIE_CLK_QO_P]
set_property PACKAGE_PIN T5 [get_ports PCIE_RX1_N]
set_property PACKAGE_PIN N7 [get_ports PCIE_CLK_QO_N]
set_property PACKAGE_PIN AB9 [get_ports 8N91]
set_property PACKAGE_PIN R7 [get_ports 8N236]
set_property PACKAGE_PIN R8 [get_ports 8N235]
set_property PACKAGE_PIN R4 [get_ports PCIE_TX2_P]
set_property PACKAGE_PIN U4 [get_ports PCIE_RX2_P]
set_property PACKAGE_PIN R3 [get_ports PCIE_TX2_N]
set_property PACKAGE_PIN U3 [get_ports PCIE_RX2_N]
set_property PACKAGE_PIN T2 [get_ports PCIE_TX3_P]
set_property PACKAGE_PIN V6 [get_ports PCIE_RX3_P]
set_property PACKAGE_PIN T1 [get_ports PCIE_TX3_N]
set_property PACKAGE_PIN V5 [get_ports PCIE_RX3_N]
```



# **Board Setup**

## Installing the ZC706 Board in a PC Chassis

Installation of the ZC706 board inside a computer chassis is required when developing or testing PCI Express® functionality.

When the ZC706 board is used inside a computer chassis (that is, plugged in to the PCIe® slot), power is provided from the ATX power supply 4-pin peripheral connector through the ATX adapter cable shown in Figure D-1 to J22 on the ZC706 board. The Xilinx part number for this cable is 2600304.



Figure D-1: ATX Power Supply Adapter Cable

To install the ZC706 board in a PC chassis:

- 1. On the ZC706 board, remove all six rubber feet and standoffs and the PCIe bracket. The standoffs and feet are affixed to the board by screws on the top side of the board. Remove all six screws.
- 2. Re-attach the PCIe bracket to the ZC706 board using two of the previously removed screws.
- 3. Power down the host computer and remove the power cord from the PC.
- 4. Open the PC chassis following the instructions provided with the PC.
- 5. Select a vacant PCIe expansion slot and remove the expansion cover (at the back of the chassis) by removing the screws on the top and bottom of the cover.
- 6. Plug the ZC706 board into the PCIe connector at this slot and secure its PCIe bracket to the chassis with a screw at the top of the bracket.



- 7. The ZC706 board is taller than standard PCIe cards. Ensure that the height of the card is free of obstructions.
- 8. Connect the ATX power supply to the ZC706 board using the ATX power supply adapter cable as shown in Figure D-1:
  - a. Plug the 6-pin 2 x 3 Molex connector on the adapter cable into J22 on the ZC706 board.
  - b. Plug the 4-pin 1 x 4 peripheral power connector from the ATX power supply into the 4-pin adapter cable connector.
- 9. Slide the ZC706 board power switch SW1 to the ON position. The PC can now be powered on.



# **Board Specifications**

### **Dimensions**

Height 5.5 inch (14.0 cm)

Length 10.5 inch (26.7 cm)

*Note:* The ZC706 board height exceeds the standard 4.376 inch (11.15 cm) height of a PCI Express card.

## **Environmental**

### **Temperature**

Operating: 0°C to +45°C

Storage: -25°C to +60°C

### Humidity

10% to 90% non-condensing

### **Operating Voltage**

 $+12 V_{DC}$ 



# **Additional Resources**

### Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:

www.xilinx.com/support

For continual updates, add the Answer Record to your myAlerts:

www.xilinx.com/support/myalerts

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm

### **Solution Centers**

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

### **Further Resources**

The most up to date information related to the ZC706 board, its documentation, and schematics, are available on the following websites.

The Xilinx Zynq-7000 All Programmable SoC ZC706 Evaluation Kit product page:

www.xilinx.com/zc706



The Zynq-7000 AP SoC ZC706 Evaluation Kit - Known Issues and Release Notes Master Answer Record is AR# 51899.

These Xilinx documents provide supplemental material useful with this guide:

DS190, Zynq-7000 All Programmable SoC Overview

PG064, LogiCORE IP DisplayPort Product Guide for Vivado Design Suite

PG051, LogiCORE IP Tri-Mode Ethernet MAC Product Guide for Vivado Design Suite

UG473, 7 Series FPGAs Memory Resources User Guide

UG470, 7 Series FPGAs Configuration User Guide

UG476, 7 Series FPGAs GTX/GTH Transceivers User Guide

<u>PG054</u>, 7 Series FPGAs Integrated Block for PCI Express Product Guide for Vivado Design Suite

<u>UG480</u>, 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide

UG585, Zynq-7000 All Programmable SoC Technical Reference Manual

UG586, 7 Series FPGAs Memory Interface Solutions User Guide

UG865, Zynq-7000 All Programmable SoC Packaging and Pinout Product Specification

UG886, AMS101 Evaluation Card User Guide

UG903, Vivado Design Suite User Guide: Using Constraints

UG933, Zynq-7000 All Programmable SoC PCB Design and Pin Planning Guide

Other documents associated with Xilinx devices, design tools, intellectual property, boards, and kits are available at the Xilinx documentation website at:

www.xilinx.com/support/documentation/index

### References

Documents associated with other devices used by the ZC706 evaluation board are available at these vendor websites:

1. Spansion Inc.: <a href="https://www.spansion.com">www.spansion.com</a> (S25FL128SAGMFIR01)



- Standard Microsystems Corporation: <a href="https://www.smsc.com/">www.smsc.com/</a>
  (USB3320)
- 3. SanDisk: <u>www.sandisk.com</u>
- 4. SD Association: <a href="https://www.sdcard.org">www.sdcard.org</a>.
- 5. SiTime: <u>www.sitime.com</u> (SiT9102)
- 6. Silicon Labs: <u>www.silabs.com</u> (Si570, Si5324C)
- 7. PCI Express® standard: www.pcisig.com/specifications
- 8. SFF-8431 specification: ftp.seagate.com/sff
- 9. Marvell Semiconductor: www.marvell.com, www.marvell.com/transceivers/alaska-gbe
- 10. Analog Devices: <a href="https://www.analog.com/en/index.html">www.analog.com/en/index.html</a> (ADP 123, ADV7511KSTZ-P)
- 11. Texas Instruments: <a href="www.ti.com">www.ti.com</a>/fusiondocs
  (UCD90120A, TPS84621RUQ, LMZ22010TZ, LMZ12008TZ, LMZ12002, TPS54291PWP, TPS51200DR, PCA9548)
- 12. Texas Instruments: <a href="www.ti.com/xilinx\_usb">www.ti.com/xilinx\_usb</a> (to order EVM USB-TO-GPIO)
- 13. Texas Instruments: <a href="www.ti.com/fusion-gui">www.ti.com/fusion-gui</a> (to download FUSION\_DIGITAL\_POWER\_DESIGNER)
- 14. RTC-8564JE/NB Application Manual: www.epsondevice.com/docs/qd/en/DownloadServlet?id=ID000498
- 15. Epson Electronics America: <a href="www.eea.epson.com">www.eea.epson.com</a>. (RTC-8564JE)
- 16. Samtec: <a href="www.samtec.com">www.samtec.com</a>. (SEAF series connectors)
- 17. Texas Instruments digital power: www.ti.com/ww/en/analog/digital-power/index.html
- 18. Maxim Integrated: <a href="https://www.maximintegrated.com">www.maximintegrated.com</a> (Maxim MAX13035E)
- 19. Micron Semiconductor: www.micron.com
- 20. Digilent: <a href="https://www.digilentinc.com">www.digilentinc.com</a>
  (Pmod Peripheral Modules)



# Regulatory and Compliance Information

This product is designed and tested to conform to the European Union directives and standards described in this section.

Refer to the Zynq-7000 AP SoC ZC706 Evaluation Kit - Known Issues and Release Notes Master Answer Record concerning the CE requirements for the PC Test Environment:

www.xilinx.com/support/answers/51899

# **Declaration of Conformity**

To view the Declaration of Conformity online, please visit:

www.xilinx.com/support/documentation/boards\_and\_kits/ce-declarations-of-conformit y-xtp251.zip

### **Directives**

2006/95/EC, Low Voltage Directive (LVD)

2004/108/EC, Electromagnetic Compatibility (EMC) Directive

### **Standards**

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).



### **Electromagnetic Compatibility**

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

### Safety

IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements

EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements

# Markings



This product complies with Directive 2002/96/EC on waste electrical and electronic equipment (WEEE). The affixed product label indicates that the user must not discard this electrical or electronic product in domestic household waste.



This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.



This product complies with CE Directives 2006/95/EC, Low Voltage Directive (LVD) and 2004/108/EC, Electromagnetic Compatibility (EMC) Directive.