Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Práctica 02

Vianey Aileen Borrás Pablo - 316033619 Kevin Axel Prestegui Ramos - 316201373

> Arquitectura de Computadoras Dr. Jorge Luis Ortega Arjona.

Fecha de entrega: 12 de marzo de 2020.

• Pregunta 1

Reduce con mapas de Karnaugh la siguiente representación de circuito.

$$WXYZ + WXY\overline{Z} + WX\overline{Y}\overline{Z} + W\overline{X}\overline{Y}Z + \overline{W}\overline{X}\overline{Y}Z + WX\overline{Y}Z$$

4	00	01	11	10
00	0	1	0	0
01	0	0	0	0
11	1	1	1	1
10	0	1	0	0

Figure 1: Mapa de Karnaugh

Entonces la fórmula minimizada es: $WX + \overline{XYZ}$

• Pregunta 2

Considerando el siguiente enunciado:

El club de Tobi tiene 3 integrantes aparte de Tobi, como este no está, a los 3 integrantes se les ocurre realizar un motín para cambiar el nombre del club. Puesto que el club es de Tobi, él es el único que su voto vale doble.

- Tabla de verdad que indica si se realiza el motín. Recordemos que Tobi no está por lo que la tabla de verdad será de tres variables.

M1	M2	М3	BOTÍN
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Figure 2: Tabla de verdad: Motín

- Función booleana

Con base a la tabla de verdad se obtiene la siguiente función booleana.

$$\bar{M}_1 M_2 M_3 + \bar{M}_1 M_2 M_3 + \bar{M}_1 M_2 M_3 + \bar{M}_1 M_2 M_3$$

-Reducción de la función booleana

Reduciendo con mapas de Karnaugh tenemos:

Figure 3: Mapa de Karnaugh del motín

Entonces la fórmula reducida es:

 $Motin = M_1M_3 + M_2M_3 + M_1M_2$

• Pregunta 3

El siguiente circuito puede ser representado por una sola compuerta, ¿Cuál? Justifica.

Observemos que nuestra función resultante de dicho circuito es $\overline{(X+\overline{(X+Y)})}+\overline{(Y+\overline{(X+Y)})}$, representando dicha función en tabla de verdad podemos darnos cuenta que es equivalente a si usaríamos la puerta XNOR.

Х	Υ	¬(X∨¬(X∨Y))	¬(Y∨¬(X∨Y))	¬(¬(X∨¬(X∨Y)) ∨ ¬(Y∨¬(X∨Y)))
0	0	0	0	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

Figure 4: Tabla de verdad del circuito

Х	Υ	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Figure 5: Tabla de verdad XNOR

• Pregunta 4

Determina la expresión correspondiente para el siguiente circuito. Justifica.

Observemos que el circuito esta formado por tres puertas AND por lo que la expresión correspondiente es ABCD.

Figure 6: Justificación de la expresión