データマイニング工学 第2回レポート

濱崎 直紀

(学籍番号:28G19096)

令和2年1月28日

問題 1

正例包絡では、訓練データが全て正しく判別できるように境界を決めるため、訓練データに対する精度は基本的に 100% となる. よって、正例包絡において訓練データに対する性能が検証データに対する性能より悪くなることはない.

しかし、一般的な機械学習では必ずしも訓練データ全てを正しく判別できるように学習するわけではなく、 外れ値を無視するなどの計算が行われる.よって一般的な機械学習では、訓練データに対する性能が検証データに対する性能より悪くなるとは言い切れない.

問題 2

 C^* について以下が成り立つ

$$C^* = \hat{C}_{fit} \cup \bigcup_{i=1}^4 A_i \setminus \{ (A_1 \cap A_2) \cup (A_2 \cap A_3) \cup (A_3 \cap A_4) \cup (A_4 \cap A_1) \}$$

よって

$$C^* \subseteq \hat{C}_{\mathrm{fit}} \cup \bigcup_{i=1}^4 A_i$$

なので

$$C^* \setminus \hat{C}_{\mathrm{fit}} \subseteq \bigcup_{i=1}^4 A_i$$

が成り立つ

問題 3

まず、 $B_i \subset A_i \Rightarrow x_j \notin B_i$ 、for all j = 1, ..., n について証明する.

 $B_i \subset A_i$ のとき、 $x_j \in B_i$ となる x_j が存在すると仮定する.

上式から $x_j \subset A_i$ となる.

また、 $x_i \subset \hat{C}_{\mathrm{fit}}$, for all $j=1,\ldots,n$ であるから A_i と \hat{C}_{fit} は一部重複することになる.

しかし定義より、 A_i と \hat{C}_{fit} は互いに排反であるのでこれに矛盾する.

よって仮定が間違っていることから、 $B_i \subset A_i \Rightarrow x_j \notin B_i$, for all j = 1, ..., n が示された.

次に、 $B_i \subset A_i \Leftarrow x_j \notin B_i$, for all j = 1, ..., n について証明する.

 $oldsymbol{x}_j \notin B_i$, for all $j=1,\ldots,n$ より、 B_i と \hat{C}_{fit} は排反である.

さらに $B_i \subset C^*$ より、 $B_i \subset A_i$ となる.

よって、 $B_i \subset A_i \Leftarrow x_j \notin B_i$ 、for all j = 1, ..., n が示された.

ゆえに、 $B_i \subset A_i \Leftrightarrow x_j \notin B_i$, for all j = 1, ..., n が示された.

問題 4

データが単位正方形の上で、一様分布に従うとすると、R(C) は図の着色部分の面積に等しい.

次に,任意の長方形の上で一様に分布している場合の R(C) について考える. 図のように任意の長方形の横と縦の長さをそれぞれ $p,\,q$ とおき,着色部分の面積を S とおくと

$$R(C) = \frac{S}{pq}$$

となる.

