3D打印切片及使用

一.设备介绍

1.官网: https://www.raise3d.cn/

2.型号: Raise 3DRaise pro3 plus

3.基本参数:

①打印尺寸: 300×300×605mm (单喷头)

255×300×605mm (双喷头)

②机身尺寸: 620×626×1105mm

③耗材直径: 1.75mm

④支持材料: PLA/ABS/HIPS/PC/TPU/TPE/PETG......

⑤层厚: 0.01mm~0.25mm

⑥支持格式: .stl / .obj / .3MF / .OLTP

4.切片软件: ideaMaker 🕕 ideaMaker

详细: ideaMaker (raise3d.cn)

二.使用3D打印步骤

主tideaMaker切片软件使用方法

都换式 主 底 stepk 格式装换。

将3D模型保存成为 .stl 格式,并拖入ideaMaker切片软件中

step2 模型摆放

- ①调整模型摆放位置和方向,摆放的位置方向会直接影响模型打印的质量
- ②模型的摆放可以参考下图,"√"比"▲"打印的质量更好,"×"非必要的话尽量不这样摆放。事实上合 无论你如何摆放模型,都可以打印,只是打印质量不一。
- ③尽量遵循下面大,上面小的原则,上大下小则需要添加支撑, (即模型不允许出现悬空位置,如有悬空位置,需要添加支撑材料)。另外,模型和支撑结构接触的面会较为粗糙。
- ④打印时,与打印机X轴和Y轴垂直的面,打印出来面较为光滑,其次是Z轴,既不与XYZ垂直的面较为粗糙

⑤如果你对某个面有较高的精度要求,需要表面平整光滑,那请将该摆放成与Z轴相平行的位置,如下图所示如果箭头所指的面需要较为光滑,请安图一方式摆放,图二摆放会较为粗糙

图一摆放需要打印支撑材料,和支撑材料接触的面较为粗糙,图二摆放不需要打印支撑材料

不同的需求有不同的摆放方式,摆放前请思考自己的实际需求

⑤模型平放:

如果你的模型在软件建模时坐标系就是标准的(面就是与三坐标垂直的),那么导入切片软件后通常摆放就是OK的。如果你是通过其他途径获得的模型,或者建模时三坐标不标准,那么导入的模型就是斜的,例如上图③ "×",这时候需要在切片软件中放平。

方法是鼠标左键选中模型 → 鼠标右键 → 【模型平放】 → 点选模型中的一个面(底面)

→ 弹出对话框 → 点击【应用】→ 模型即可平放 (也可以通过旋转平移命令进行调整,但是没这么精准)

Step3 检查模型是否报错

将模型导入切片软件后,如果右下角出现报错提示,则需要对模型进行修复,否则后续切片时会出现模型缺失等问题。报错如下图所示。

修复方式: 点击切片软件菜单栏的【修复】命令即可修复

step4 打印参数

- 1. Raise 3DRaise pro3 plus 这款打印机有两个喷嘴,可以配两种材料打印时要选择使用哪个喷嘴打印。 选中模型 → 鼠标右键点击 → 选择【左侧喷嘴】或者【右侧喷嘴】
- 2. 同一个模型也使用可以用两个喷嘴打印出两种不同的颜色组合(根据需求使用该功能,非必要不使用)使用【模型切割】命令,通过【平移】【旋转】控制你想要切割的位置,就可以将模型一分为多。(只能做简

单的分割,无法实现复杂的多色组合,喷嘴数量只有两个,只能实现2色组合),分割后①选择一个喷嘴打印②选择另外一个喷嘴打印。设备在打印完①时自动切换另外一个喷嘴打印②。

2.1 使用2色拼打时的注意事项:

a. 底层①的模型和支撑选用同一喷嘴打印,顶层②的模型和支撑选用同一喷嘴打印原则是让一个喷嘴持续工作,避免两个喷嘴频繁交替工作,容易出现漏料情况。喷嘴在不打印时需要冷却防止漏料,如果两个喷嘴频繁交替打印,就要频繁加热冷却,很容易出现冷却不好漏料的情况。

b. 双色打印时尽量在Z轴方向进行分割,这样的话两个喷嘴可以一个先打印完,另一个喷嘴再打印如果在X轴或者Y轴进行分割,那么两个喷嘴必须频繁交替打印,每一层都需要交换一次,打印质量会很差。

3.添加支撑材料

类似于下图的孔位,后者其他位置存在悬空状态,则需要给模型添加支撑。

添加支撑的方式:点选模型并点击菜单栏中的【支撑结构】,然后点击【自动生成支撑】即可为模型添加支撑你也可以根据自己的需求,修改支撑的参数。

其实你也可以不做这一步,在切片的时候,软件会自动判断模型是否需要添加支撑,自动添加支撑。

4.修改器的应用

通常情况下,单个模型你只能设置一种打印参数,比如一个模型我设置15%的填充率,那整个模型都是15%的填充率,如果我想这个模型在某个局部地方设置100%填充,增加结构强度,其余地方不受力只需要15%填充。这时候就需要用到修改器去修改局部打印密度

修改器的原理是通过创建一个新的模型,与你需要打印的模型进行交叉布尔运算,设定交叉部位的打印

密度。软件自带的模型都只是基本几何体,如果你的设定较为复杂,请通过3D建模软件进行建模,然后通过本地文件导入切片软件中进行定位

如下图所示,我想把红圈处的孔位周边材料打印成100%填充,增加强度,其他部分只需要15%填充。这个时候我通过软件自带模型,创建了一个大小合适的圆柱几何体,并将几何体摆放到想要的位置点击修改器,选中你创建的修改器,下拉选择【修改与父模型重叠部分的切片设置】,随后点击③"+",勾选你想要修改的参数,这里我将填充率修改成100%

如左边的图所示,红圈处是经过修改器100%填充的区域

其余部分是没有修改的区域,设置为15%填充。

经过修改器修改后就可以实现模型局部打印参数修改

打印参数不止填充率,同时包括模型壁厚,打印速度,支撑形状。。。

5.切片参数设置

经过以上步骤处理后,你的模型基本已经具备切片条件,可以进行下一步切片操作了 点击窗口视图上方的【开始切片】→选择打印材料 →选择打印模板(或者自己创建模板,修改现有模板)

模板的修改:

选现有的模板,或者创建一个模板(不建议),通常是复制现有的模板,然后在现有模板基础上修改参数选中模板后点击右侧的【编辑】,进入模板参数修改页面(简易版)

在简易版的编辑页面中,主要有【填充率】、【模型壁厚】、【底板附加】、【支撑结构】四个参数

【填充率】、【模型壁厚】、【支撑结构】即字面意思,这里不做介绍

底板附加是打印机的预挤出类型,打印机刚开始挤出打印的时候质量较差,会预先挤出一部分材料

无 不建议使用"无",可能会影响打印质量

Skirt 强烈建议使用Skirt,形式简单,节约材料,最重要的是方便打印完后的清理

Brim 不建议使用,打印完后不好清理,清理完模型上容易残留材料,需要用小刀清理刮边

Raft 一般不使用,这个模式是在底板先打印一定厚度的底板,在这个底板的基础上继续打印你的模型

点击编辑页面中的【高级设置】即可进入详细设置界面,在这个页面可以进行更高级的参数设置。

在这个页面,将【填充】选项卡中的【填充使用喷嘴】和【支撑结构】选项卡下的【打印支撑使用喷嘴】 设置为相同喷嘴,否则左右喷嘴要频繁切替打印,影响打印质量

【主体结构】选项卡参数介绍:

【单层层厚】: 0.3mm→0.1mm (目前使用喷嘴支持0~0.25mm), 0.1层厚比0.2层厚打印时间多一半

【壁厚】 壁厚设置成6时的效果

【模型壁之间最大允许重叠百分比】

一块 1.4 毫米宽的块将打印 2 个外壳。一层壳层占 0.8mm。显然,该块不能打印 2 个每侧没有 0.1 毫米重叠的完整外壳。最大壳体重叠度为挤出宽度的 50%,即 0.2mm,因此它将打印重叠 0.1 毫米的 2 个壳体,而

一块 1.0 毫米宽的块将打印 1 个外壳和固体填充物。打印此宽度的两个外壳所需的重叠度为 0.3 毫米,大于 0.2 毫米的最大值。因此,内壳将被更换为固体填充物。

【底层层厚】: 🛭

底层层厚是第一层的层高,建议将第一层高度设置为略大于整体层高,以增加床的附着力。

【底层流量率】

这决定了第一层挤出多少长丝、并与长丝流速复合。

【底层线宽百分比】

这将设置第一层的拉伸宽度。该百分比是用拉伸宽度计算的。 稍微增加第一层挤出宽度百分比有助于增强床的附着力。

【每层开始点】:每层打印的起始点,实物会在此处形成疙瘩,需要手动清理

通过这些设置,可以更好地控制确定每个图层上起始点的位置。

最近:通过从距离最后一个位置最近的位置开始优化打印时间。

已修复: 将起始点放置在指定图层起始点 X/Y 处,构建平台的左下角为 (0,0)。

随机: 每层上的随机位置, 不考虑任何优化。

自动: 此选项使用接缝隐藏选项将起始点放置在反射角或凸角上。如果未指定接缝隐藏或未找到此类拐角,则使用固定起始

点。

接缝隐藏:将起点和终点放置在模型的反射角或凸角中。对于某些模型,利用几何形状来提高接缝的可见性可能会有所帮

【模型尺寸补偿】:为什么要进行模型尺寸补偿,后续会介绍

这是指对轮廓测量误差的补偿,特别是对于膨胀或收缩的物体。□

注意:正值将增加模型的轮廓,负值将减少模型的轮廓。 🛭

【喷嘴】选项卡参数介绍:

喷嘴选项卡下最主要的参数是【挤出线宽】

该参数取决于你使用的喷嘴直径

目前使用的喷嘴直径是0.4mm

【填充】选项卡介绍

【填充使用喷嘴】: 打印填充材料时使用哪个喷嘴

【填充率】:

这将设置模型的填充百分比,从而影响打印零件的密度。

更高的填充密度会导致打印更重、更坚固,但会增加总打印时间。

大约15%-20%的填充密度更常用于一般印刷目的,因为它在印刷时间和耐用性之间提供了良好的平衡。0%的填充密度导致打印零件只有外壳、顶层和底层,使零

【填充重叠率】:这决定了填充物和最内层壳的重叠程度。它有助于防止它们在相遇的地方出现差距。

但是,如果该值设置得太高,则顶面边界周围会出现粗糙度。

【填充流量率】: 这是指打印填充结构的流速。这决定了在打印填充结构时挤出多少塑料。默认金额设置为 100%。该值与细丝流速相加。

【填充形状】:模型内部选择填充图案。选项包括:网格、矩形、蜂窝、三角形、立方体、同心、环形、线1

【高密度网格填充时使用Lines填充形状】:密度大于25%时,使用线型填充

【填充线宽百分比】:这是指填充结构的填充挤出宽度的百分比。将宽度百分比设置为较高的值可以产生更

强的填充结构。例如:如果挤出宽度为 0.4mm,并将此值设置为 120%,则填充挤出宽度为 0.48mm。

【填充边框厚度】:这在填充结构周围增加了轮廓壳,以提高填充物的附着力。

【实心填充】选项卡介绍

【底部实心填充层数】:即使你设置填充率15%,底层开始打印的时候也是实心层,打印多少层的实心层取;于这个参数。设置5,则是开始打印5层实心层,然后才是打印填充物。

【顶层实心填充层数】:于底部实心填充层数一样的道理,一个是底部一个顶层。

【底部填充流量率】: 这决定了底部固体填充层的挤出量,并与细丝流速混合。它会影响底层的外观。如果底层打印结果看起来粗糙而粘稠,则可能是此流速过高。如果底层刚开始打印,材料粘贴不上底板,可能是这个参数设置的太小。或者速度设置的太快(速度后面有介绍)

【顶部填充流量率】:与底部填充流量率一样的道理。

【底部/顶部实心填充形状】:线、直线、同心

【底部/顶部实心填充线宽百分比】: 如果挤出宽度为 0.4 毫米,并将此值设置为 120%,则底部固体填充挤出宽度为 0.48 毫米。

【实心填充边框厚度】: 这将设置实体填充层的轮廓壳数。这有助于避免固体填充层坍

【固体填充最小宽度】:这是指要打印的固体填充结构的最小挤出宽度。设置此值后,

可以避免一些锯齿状实线。

【熨烫】

受限于FDM 3D打印的成型原理,我们在仔细观察打印的模型顶面可以看到它是由密集的线条组成的 而熨烫功能,顾名思义,就像熨平衣服上的褶皱一样,可以消除模型顶面的线条,让顶面看起来更平滑。 它的工作原理是,在打印完模型的顶面后,在同一Z高度上喷嘴继续使用小流量在模型表面打印,让少量 的挤出材料渗透进线条之间并填平缝隙。在熨烫过程中,由于Z高度没有抬升(喷嘴仍保持在打印顶层时的高度),喷嘴抹过顶层的热量会使顶层的线条变软,挤出的少量材料也能够轻松填充和抹平顶层。熨烫过程如下图所示:

备注: 熨烫只能对打印后的模型的最顶层的平面进行处理,无法对侧面,或者斜面进行熨烫

慰烫可以使得顶面层更加光滑,但也有以下注意点需要提前考虑:

- 1. 熨烫层需要额外的打印时间来完成,而且熨烫的速度通常较慢,如果您打印零件的顶面面积较大,可能会增加不少打印时间。
- 2. 由于熨烫过程仅用少量的挤出流量和较慢的打印速度,所以有一定概率发生热蠕变,从而导致热端堵塞,尤其是对PLA、PETG和TPU等软化温度较低的材料。
- 3. 熨烫是依靠喷嘴抹过顶层实现的,所以熨烫过程模型受到喷嘴的作用力相比正常打印时更大,如果模型在构建板上粘接不够牢固,很可能从构建板上脱落导致打印失败。
- 4. 选择合适的熨烫设置才能获得一个平滑的表面,否则可能效果会更差,例如过度挤出表面堆料,表面平滑度不一致等。
- 5. 熨烫仅限于在顶面是平面的时候能有较好的效果。在带有弧度弯曲的顶面上,熨烫将无法抹平图层之间线条,所以未必能得到比不熨烫更好的效果,反而徒增打印时间。

总而言之,非必要,不建议使用熨烫功能

【支撑结构】选项卡介绍

【生成支撑结构】: "所有" "仅添加接触底板的支撑" "无"

仅限触摸平台:添加从模型的悬垂表面延伸到构建板的支撑,如果使用,则忽略筏板。

全部: 为在模型上检测到的所有悬垂添加支持,包括延伸到平台和模型上另一个表面的悬垂。

【支撑结构】

【打印支撑使用喷嘴】: 这将选择使用哪个挤出机打印支撑材料。可以通过选择"挤出机颜色"视图确认支撑材料已在打印预览中设置为正确的挤出机。尽量保证打印物体和支撑物体使用同一个喷嘴,确保打印质量

【支撑形状】: 这是指支撑结构的形状

【支撑填充类型】:这将设置支撑结构的填充模式。选项包括 Gird、Lines、Rectilinear、Concentric、 Triangle 和 Gyroid。 D

【支撑边框厚度】: 支撑填充轮廓是使用时在支撑结构周围打印的壳体。在支撑物的外部添加

壳体有助于粘附力,提高可靠性,并确保坚固性 设置为4mm

【支撑边框使用喷嘴】

【支撑填充率】:设置支撑的密度

【支撑结构角度】:这定义了模型的哪些部分将添加支持。□ 当模型上的悬垂角大于此设定值时,将生成支撑结构。悬垂角度是指悬垂 表面与Z轴之间的夹角如果设置为 0,则模型的所有悬垂部分都将生成支撑。 如果设置为 90,则不会向模型添加任何支持。

【支撑层厚】

【支撑层厚层数】:密集支撑层被添加到支撑结构的最顶层支撑层中,这些支撑层与模型上的支撑表面接触。

这些由"密集支撑层"指定的层具有调整填充密度和图案的选项,从而可以更好地控制支撑表面结果。他的参数控制着打印完支撑后是否需要打印一层平面

【支撑层厚底部层数】: 启用此功能后, 您可以定义密集支撑底层的数量。注意: 如

果禁用此功能,则该数字将与顶部密集的支持层匹配。

【支撑层厚填充密度】:这是指致密支撑层的填充密度。

【支撑层厚边厚度】:将在密集支持周围添加 shell。

【支撑层厚填充类型】: Grid, Lines, Concentric, Rectilinear

【底板附加】选项卡

前面的简易模式有详细介绍底板附加,底板附加尽量与你打印模型使用的喷嘴一致

【冷却】选项卡 (打印极小模型时需要关注这个选项卡)

【单层最少打印时间】

如果单层的总打印时间小于此量,则打印速度将降低,冷却风扇速度将增加。这些调整是根据口"最小打印速度"和"最大风扇速度"进行的。这有利于具有容易翘曲和过热的小特征的模型。

【最小打印速度】:最小打印速度是指当图层打印时间小于最小图层打印时间时,我们需要降低打印速度 (不低于最小打印速度)以增加打印时间。

【温度】选项卡

【加热板温度】:使用加热床可以提高床的附着力,但并不总是必要的,具体取决于线材类型。

ABS:100°C-110 °C PLA/PETG/TPU: 50°C-70 °C

【左侧喷嘴】:打印温度因所用耗材类型而异。耗材的推荐打印温度范围通常可以在耗材盒、产品页面找到

【右侧喷嘴】:打印温度因所用耗材类型而异。耗材的推荐打印温度范围通常可以在耗材盒、产品页面找到

【速度】选项卡介绍

这个选项卡设置打印速度相关的 参数,不建议修改,默认参数即可 推荐关注一个参数,【底层打印速度】 如果你的第一层沾不上底板,可以考

虑适当的增加底层打印速度。

【高级】选项卡

该选项卡主要是【加速度】和

【覆盖材料设置】包括左侧喷嘴材料

流量和右侧材料喷嘴流量

以上参数保持默认即可,不需要修改

【防渗出】选项卡

防渗出的作用: 当你的模型需要用到两个喷嘴打印的时候,先是一个喷嘴在工作,在切替到另一个喷嘴前,另一个喷嘴会在模型以外的其他地方先进行试打印。主要有2个目的,1是让未打印的那个喷嘴预先挤出一部,材料,保证打印顺畅,确保打印质量。2是让刚才在工作的那个喷嘴有冷却的时间,喷嘴只有在冷却后才不会漏材料

这个选项卡主要了解Wipe Wall 和wipe Tower 两个模式。其他参数不需要了解,默认即可。

如上图所示, tower是在旁边一个地方画圆, wall是沿着模型的轮廓往外偏移一定距离画圈

【wipe wall】模式:交错、嵌套

交错:由不同挤出机打印的 Wipe Wall 环是以交错层的形式打印的。这样可以节省用于擦拭墙的耗材量,但可能会导致不同细丝的附着力差。

嵌套:不同挤出机打印的Wipe Wall环在同一层的不同环中打印,同一挤出机打印的环将在垂直方向上放置在相同的环索引中。这意味着将打印 2 个壳,每个挤出机长丝一个。

【wipe wall 和模型距离】:距离模型多远距离打印wall,如上图3mm和10mm所示。

【wipe wall 结构圈数】:在喷嘴切题前打印wall的圈数,如下图所示,设置3则会打印3圈wall

【wipe wall 角度】:可以设定wall打印的角度,0-90°,0°只能打印一个圆柱型,90°可以更接近模型本身和

【wipe wall 类型】

这将设置擦拭墙壳的形状。主要区别在于模型和擦拭墙的距离。

contoured:擦拭墙壳根据模型形状打印。

water:擦拭墙壳将遵循模型的原始形状,但如果下部结构比上部结构窄,则将使用垂直下降。

vertical: 使用模型的最宽部分并生成垂直擦拭墙。

【使用单喷嘴的打印任务强制打印wipe wall】:这个选项不勾选,没有意义。

[wipe tower]

这将设置 Wipe Tower 的打印模式。

交错:由不同挤出机挤出的擦拭塔是以交错层的形式打印的。这样可以节省擦拭塔浪费的细丝量,但可能会导致不同细丝的粘合力差。

嵌套:由不同挤出机挤出的擦拭塔在同一层中以不同的循环打印,由同一挤出机打印的环将在垂直方向上放置在相同的循环索引中。

多重:由不同挤出机打印的擦拭塔在多个塔中打印。它允许对不同的细丝有更好的粘合力,但消耗更多的细红

【wipe tower 形状】: 圆型、矩形, 如上图所示

【wipe tower 填充率】

这样就设置了擦拭塔结构的密度。

注意: 仅当"擦除塔模式"为"隔行扫描"或"多个"时,才能更改此选项

tower的位置由下面这个参数设置:

【其他】选项卡介绍

【薄壁结构最小允许线宽百分比】:

启用"检查薄壁"(Check Thin Wall)后,此百分比将设置单个拉伸的最小宽度。如果检测到的模型零件的宽度低于此值,将不会打印。

【薄壁结构最小允许线宽百分比】:

启用"检查薄壁"(Check Thin Wall)时,此百分比将设置单个拉伸的最大宽度。检测到高于此值的模型零件的宽度将不会作为单次拉伸打印。

【指定高度暂停打印】:设置该参数可以让机器打印到特定高度的时候暂停打印,然后接着打印。

【特殊】、【Gcode】三个选项卡的参数保持默认,不需要了解

四.误差补偿

3D打印机存在打印精度误差,大概在±0.1-±0.3mm之间波动,如果对这个精度可以接受,则可已直接将模型导入并打印,若需要对某个特征有更高的精度要求,则需要在建模时给出相应的尺寸补偿,或者对打印的模型进行二次精加工。

下面以圆孔为例进行介绍,通过solidworks绘制了两块板,板1圆孔从φ1.0~4.9,间隔0.1 长90,宽40,板2从φ6.0~9.9,间隔0.1,长130,宽60。

如果你需要打印出一个φ5的孔,那么你在画图时不能画成φ5,如果直接画成φ5,打印出来的实际尺寸在φ4.82左右。

首先在表中找到AVE值最接近φ5的值,该值对应的SW值就是你在模型中绘制的值。 把实际打印的尺寸和CAD模型进行比对,得出各尺寸相对应的误差,以下是测量结果:

	*****		• • • • •			• - • • • • • • • • • • • • • • • • • •		-				
φ1	SW	ı	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90
		Χ	0.71	0.65	0.83	0.99	1.05	1.21	1.25	1.32	1.47	1.55
	3D打印	Υ	0.61	0.61	0.73	0.85	1.00	1.01	1.15	1.27	1.36	1.45
		AVE	0.66	0.63	0.78	0.92	1.03	1.11	1.20	1.30	1.42	1.50
	差值		-0.34	-0.47	-0.42	-0.38	-0.38	-0.39	-0.40	-0.41	-0.39	-0.40
	SW	1	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90
		Χ	1.75	1.75	1.86	1.99	2.08	2.28	2.34	2.48	2.53	2.71
φ2	3D打印	Υ	1.69	1.70	1.80	1.88	2.11	2.22	2.31	2.43	2.44	2.58
		AVE	1.72	1.73	1.83	1.94	2.10	2.25	2.33	2.46	2.49	2.65
	差	值	-0.28	-0.38	-0.37	-0.37	-0.31	-0.25	-0.28	-0.25	-0.32	-0.26
	SW	-	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90
	3D打印	Χ	2.71	2.87	3.00	3.16	3.23	3.39	3.44	3.58	3.63	3.76
φ3		Υ	2.61	2.74	2.89	3.00	3.13	3.18	3.31	3.39	3.54	3.64
		AVE	2.66	2.81	2.95	3.08	3.18	3.29	3.38	3.49	3.59	3.70
	差值		-0.34	-0.30	-0.26	-0.22	-0.22	-0.22	-0.23	-0.22	-0.22	-0.20
	SW	-	4.00	4.10	4.20	4.30	4.40	4.50	4.60	4.70	4.80	4.90
	3D打印	Χ	3.85	3.96	4.06	4.22	4.34	4.43	4.54	4.58	4.75	4.81
φ4		Υ	3.72	3.84	4.00	4.11	4.22	4.30	4.42	4.53	4.61	4.73
		AVE	3.79	3.90	4.03	4.17	4.28	4.37	4.48	4.56	4.68	4.77
	差值		-0.22	-0.20	-0.17	-0.14	-0.12	-0.14	-0.12	-0.15	-0.12	-0.13
	SW	ı	5.00	5.10	5.20	5.30	5.40	5.50	5.60	5.70	5.80	5.90
		Χ	4.88	4.98	5.12	5.22	5.37	5.42	5.55	5.56	5.70	5.84
φ5	3D打印	Υ	4.76	4.91	5.05	5.15	5.26	5.36	5.48	5.56	5.65	5.76
		AVE	4.82	4.95	5.09	5.19	5.32	5.39	5.52	5.56	5.68	5.80
	差值		-0.18	-0.15	-0.12	-0.11	-0.09	-0.11	-0.08	-0.14	-0.12	-0.10
φ6	SW	-	6.00	6.10	6.20	6.30	6.40	6.50	6.60	6.70	6.80	6.90
	3D打印	Х	5.95	6.07	6.16	6.27	6.36	6.45	6.46	6.66	6.72	6.82
		Υ	5.75	5.90	6.05	6.14	6.24	6.34	6.43	6.53	6.63	6.67
		AVE	5.85	5.99	6.11	6.21	6.30	6.40	6.45	6.60	6.68	6.75
	差	值	-0.15	-0.11	-0.09	-0.09	-0.10	-0.11	-0.15	-0.11	-0.13	-0.16
	SW	-	7.00	7.10	7.20	7.30	7.40	7.50	7.60	7.70	7.80	7.90
-												

φ7		Х	6.84	7.00	7.11	7.21	7.35	7.49	7.49	7.66	7.72	7.77
	3D打印	Υ	6.87	6.98	7.06	7.19	7.22	7.39	7.49	7.59	7.68	7.76
		AVE	6.86	6.99	7.09	7.20	7.29	7.44	7.49	7.63	7.70	7.77
	差	值	-0.15	-0.11	-0.12	-0.10	-0.12	-0.06	-0.11	-0.08	-0.10	-0.14
	SW	-	8.00	8.10	8.20	8.30	8.40	8.50	8.60	8.70	8.80	8.90
		Χ	7.85	7.97	8.09	8.24	8.30	8.44	8.53	8.68	8.72	8.73
φ8	3D打印	Υ	7.84	7.97	8.09	8.19	8.28	8.41	8.50	8.57	8.67	8.75
		AVE	7.85	7.97	8.09	8.22	8.29	8.43	8.52	8.63	8.70	8.74
	差值		-0.16	-0.13	-0.11	-0.09	-0.11	-0.07	-0.08	-0.07	-0.11	-0.16
	SW	-	9.00	9.10	9.20	9.30	9.40	9.50	9.60	9.70	9.80	9.90
	3D打印	Χ	8.88	9.02	9.17	9.23	9.36	9.46	9.47	9.63	9.70	9.78
φ9		Υ	8.83	8.98	9.11	9.18	9.28	9.40	9.50	9.60	9.71	9.80
		AVE	8.86	9.00	9.14	9.21	9.32	9.43	9.49	9.62	9.71	9.79
	差值		-0.15	-0.10	-0.06	-0.10	-0.08	-0.07	-0.12	-0.08	-0.10	-0.11
	SW	-	10.00	10.10	10.20	10.30	10.40	10.50	10.60	10.70	10.80	10.90
φ10	3D打印	Χ	9.80	9.96	10.12	10.19	10.33	10.33	10.52	10.62	10.73	10.80
		Υ	9.86	9.87	10.06	10.18	10.25	10.40	10.50	10.59	10.70	10.77
		AVE	9.83	9.92	10.09	10.19	10.29	10.37	10.51	10.61	10.72	10.79
	差值		-0.17	-0.19	-0.11	-0.12	-0.11	-0.14	-0.09	-0.09	-0.09	-0.12

两侧边缘扩张0.1-0.2 中间内凹0.1-0.2

section A-A

3D打印机在打印平板,外轮廓 XYZ向外扩张 → 实际 尺寸+0.1~0.2 左右□ 打印内孔时边缘向内扩张,实际孔径要比理论孔径小,具体 参照上表□ 打印轴时边缘向外扩张,具体扩张尺寸还没测量(预估0.1~0.2) 若对打印精度有要求,请在画图时给出补偿尺寸

其实打印机里面也可以进行尺寸补偿,但是随着打印机的使用,喷嘴的磨损,这个补偿值可能会变,所以如果你想要较为精密的配合,打印前可以选择一个小模型先打印测试尺寸,确定好建模时给出的补偿值如果你的精度在±0.2左右,可以接受,那就不需要给出补偿值,直接打印

除了以上的手动补偿尺寸的方法,其实也可以在打印机上直接设置补偿尺寸

打开【主体结构】选项卡,找到【模型尺寸补偿】,你可以根据你的实测结果设置补偿参数例如你模型绘制孔φ5mm,实际打印出来是φ5.1mm 那你就可以在参数设置里面设置内部孔-0.1mm

模型尺寸补偿————————————————————————————————————		
外轮廓XY尺寸补偿	0. 00	mm
内部孔XY尺寸补偿	0.00	▲ mm

五.打印机的维护保养与校正

在打印机屏幕中点击【开始打印】,点击右上角的齿轮(设置),按照系统的提示操作

六.3D打印件之间的装配方式

1.适合3D打印件装配的方式有: ① 螺纹嵌件、②使用自攻螺丝、③本体攻丝、④螺纹设计在本体、

⑤胶水粘接、⑥过盈装配、⑦卡扣连接、⑧榫卯结构

以上装配方式需要结合实际情况选择,强烈推荐热熔螺母式的装配工艺。

常用的热熔螺母会做库存, (M3-M4-M5-M6-M8)。不常用的没有购买,可以用六角螺母镶嵌替代

连接方式	优点	缺点	推荐
热熔螺母嵌套	快速、承受拉力大	几乎没有缺点 (需要买材料)	5
六角螺母嵌套	不用购买特殊材料	设计较麻烦	4
使用自攻螺丝	简易安装; 最低设计要求	有限组装/拆卸,不受力	2
本体攻丝	绘图方便,机加工件常用的方式	螺纹容易磨损,不耐用	2
攻丝镶嵌牙套	相比本体攻丝要耐用	装配过程繁琐, 费时	3
螺纹设计在本体	适合大螺纹,M20以上的螺纹	M20以下小螺纹不适用	1
胶水粘接	方便	易脱落	2
过盈装配	简单	不易拆装	2
卡扣连接	简洁,适合空间小的地方	需要卡扣结构设计的经验	2
榫卯结构	简洁	需要榫卯结构设计的经验	2

2.热熔螺母工艺介绍

热熔螺母工艺是将铜螺母加热到一定温度后,使塑料软化,再将其压入塑胶件中,待冷却后,螺母与塑胶件融为一体。热熔螺母的埋入方式通常有热熔埋置和注塑螺母两种。其中,热熔埋置一般以热熔机及手工电烙铁埋钉,是最常见的埋入方式。注塑螺母则是在注塑成型时,将螺母放入模具中,随着塑胶的注入,螺母自然地与塑胶一体成型。

3.热熔螺母常用的规格

热熔螺母选型通常以内径*高度*外径进行描述,例如M3*3*4.5,表示使用M3的螺丝,热熔螺母高度3mm,

外径4.5,外径的作用是让你预留合适的孔大小来压入螺母 通常预留孔位的大小是要比热熔螺母的外径小0.5mm左右 M3*3.5*4.5规格的热熔螺母,需要预留4.5-0.5=4mm的孔位 我们暂且把这0.5mm定义为干涉量

注意,如果你孔位的薄壁太小,压入时干涉量又较大压入螺母时可能会导致本体变大

这种现象在壁厚较厚的特征里没有见到,所以如果你用这种方式 压入螺母,请考虑你孔位所处的位置壁厚

4.常见螺纹孔位预留参照表

备注:以下尺寸是SW模型中的尺寸

	螺母型号		预留孔大小φ (mm)								
M1	-										
M2	-										
M3	M3*6*4.2	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9
M4	M4*6*6.5	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
M5	M5*6*7										
M6	M6*6*7.5	7	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
M8	M8*6*10	9	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9

上表中,红色表示孔位预留太小,蓝色表示孔位预留太大,浅绿色表示可以压压入区域,深绿色表示最合适上表测试的孔位最小的壁厚在2.0以上