ahmedrahmoune.umbb@gmail.com Umbb/FS/Dépt Maths/Stat/Master MSS1 Année universitaire 2021-2022.

Analyse des Données

Analyse Factorielle des Correspondances (A F C) et Analyse des Correspondances $\mathbf{Multiples}\;(\mathbf{A}\;\mathbf{C}\;\mathbf{M})$

Feuilles de Travaux Dirigés n° 3 et 4

Analyse des Correspondances (A F C)

Exercice 1

Dec2021

Questions de cours.

- (i) L'AFC a un domaine d'application différent de l'ACP, expliquer et donner quelques particularités de l'AFC.
- (ii) Dans l'AFC, donner la définition de $\mathcal{N}(\mathcal{I})$ (Nuage profils lignes), sa masse, son centre de gravité et la distance utilisée.
- (iii) Dans une AFC il est équivalent de faire l'analyse par rapport à l'origine ou par rapport au centre de gravité, expliquer.
 - (iv) compléter le tableau suivant:

la dualité entre les deux nuages $\mathcal{N}(I)$ et $\mathcal{N}(J)$ dans l'AFC.

Caractéristiques/Nuage	$\mathcal{N}(\mathrm{I})$	$\mathcal{N}(\mathrm{J})$
Les points	$X_i =$	$Y_j =$
Le nombre		
L'espace de représentation		
Métrique M		
Critère d'ajustement(Matrice des poids):N		
comparaison entre métriques		

Exercice 2

Soit le tableau de correspondance suivant croisant deux variables I, J.

$I \setminus J$	j ₁	j_2	јз	$n_{i.}$
i_1	34		28	124
i_2		28		75
i ₃	57			
$\mathbf{n}_{.j}$		195	100	n= 413

- (i) Compléter le tableau.
- (ii) Etudier l'indépendance de I et J .
- (iii) Dresser le tableau des effectifs théorique calculés sous l'hypothèse d'indépendance de I et J.
 - (iv) Evaluer la distance du χ^2_c
 - (v) Tester l'hypothèse d'indépendance de I et J (test du $\chi^2)$ avec le risque $\alpha=0.05.$

Exercice 3

Soit le tableau des observations croisant deux variables I, J.

I=i\J=j	1	2	3	$k_{i.}$
1	56		12	139
2		163		248
3	14			
$\mathbf{k}_{.j}$		276	135	k= 528

- (i) Compléter le tableau.
- (ii) I et J sont elle indépendantes? Justifier votre réponse.
- (iii) Dresser le tableau O théorique sous l'hypothèse d'indépendance de I et J.

- (iv) Evaluer la distance du χ_c^2 (On commence par donner la formule théorique)
- (v) Tester l'hypothèse d'indépendance de I et J (test du χ^2) en adoptant le risque $\alpha =$

Exercice 4

Effectuer une AFC au tableau $K=[k_{i,j}]$ (Matrice des effectifs) croisant deux variables qualitatives X(4 modalités) et Y (2 modalités)

$$K_{4\times 2} = \begin{bmatrix} 2 & 0 \\ 2 & 1 \\ 0 & 2 \\ 1 & 2 \end{bmatrix}$$
(i) Détauring la ma

- (i) Déterminer la matrice des fréquences F, la matrice des poids D_n , et la matrice des profils lignes X.
- (ii) Calculerle profil ligne moyen g, la matrice variance covariance V_g et la matrice à diagonaliser $S_g = V_g M$ avec $M = D_p^{-1}$
- (iii) Calculer le spectre (valeurs propres et vecteurs propres correspondants) de \mathbf{S}_g et déduire la trace de S_q .
 - (iv) Calculer S_0 , vérifier le théorème de Hughens et retrouver I_0 et I_g
- (v) Calculer les facteurs: $\psi_{\alpha}=XMu_{\alpha}$ avec u_{α} M-unitaire $\alpha=1,2;$ déduire la norme $\|\psi_1\|_N^2$ et $\|\psi_2\|_N^2$ où N=D_n
 - (vi) Donner le plan principal (ψ_1, ψ_2) avec les inerties de chaque axe et du plan. (vii) calculer $\frac{\chi^2}{k}$ où k= $\sum_i \sum_j k_{i,j}$ conclure.

Exercice 5

Soit le tableau $K_{n\times p}=[k_{ij}]$ des effectifs croisant deux variables qualitatives I et J

1	0	0	1
1	0	1	0
1	0	1	0
0	1	1	0
0	1	0	1
1	0	0	1

Questions

- (i) Donner la matrice des fréquences $F_{n\times p}=[f_{ij}]$, la matrice D_n matrice diagonale des masses (poids) de $\mathcal{N}(\mathcal{I})$
 - (ii) Donner la matrice $X_{n \times p}$ matrice des profils lignes, quelle est sa particularité?
 - (iii) Calculer g le centre de gravité des profils lignes.
- (iv) Calculer la matrice V_g en déduire $S_g = V_g D_p^{-1}$ avec D_p matrice diagonale d'élement $f_{.j}$ j=1,...,p
 - (v) Calculer la matrice V_0 en déduire $S_0 = V_0 D_p^{-1}$
 - (vi)Calculer $tr(S_g)$ et $tr(S_0)$
 - (vii) Déduire la relation entre I_q et I_0 (Rappeler le théorème appliqué)

Indication: On vous donne:

• Le spectre de $S_g = V_g D_p^{-1}$:vecteurs propres $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ de valeur propre $\lambda = 0$.

vecteurs propres $\begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ de valeur propre $\lambda = \frac{1}{2}$

• Le spectre de $S_0 = V_0 D_p^{-1}$:vecteur propre $\begin{bmatrix} -\frac{4}{3} \\ \frac{-2}{3} \\ 1 \\ 1 \end{bmatrix}$ de valeur propre $\lambda = 0$

vecteur propre $\begin{bmatrix} \frac{4}{3} \\ \frac{2}{3} \\ 1 \\ 1 \end{bmatrix}$ de valeur propre $\lambda=1$

vecteurs propres
$$\begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \text{ de valeur propre} \lambda = \frac{1}{2}$$

TableauIII

Exercice6

Pour les tableaux suivants de correspondance entres deux variables qualitatives I et J On effectuera une AFC en détail

On calculera les inerties par rapport aux deux nuages (On vérifiera l'égalité).

On déterminera la matrice à diagonaliser (On vérifiera que l'étude par rapport à l'origine est identique par rapport à celle du centre de gravité)

et on concluera par la représentation graphique et l'interprétations des résultats.

Tabeau I

T\ T	4	D		$I \backslash J$	4	D	C	D	\boldsymbol{E}	\mathbf{r}	C
$I \backslash J$											
a	1	0	0	α	1	0	0	0	1	1	1
b	0	1	0	β	0	1	0	1	0	1	1
c	0	0	1	γ							
L		Ü	•	/	Ü	Ü	-	-	-	Ü	-

Tableau II

Analyse des Correspondances Multiples (A C M)

Exercice 1

Soit le tableau R de codage brut: Réponses de 8 individus à 5 questions.

	2	3	1	1	1
R=	1	2	2	2	1
	3	1	4	1	2
	1	3	1	3	1
	2	4	1	3	1
	1	2	3	2	1
	3	2	3	2	2
	3	1	5	1	3
\sim		•			

Questions:

- (i) pourquoi ce tableau R n'est pas exploitable?
- (ii)Les questions 1, 3 et 5 ont combien de modalités?
- (iii) Donner le tableau Z tableau de codage binaire disjonctif complet.
- (iv) Calculer les inerties de toutes les questions et déduire l'inertie totale
- (v) Présenter le tableau de Burt B.

Exercice 2

Soit le tableau R de codage brut: Réponses de 6 individus à 4 questions.

Questions:

- (i) Quels sont les inconvéniants d'un tel tableau?
- (ii) Les questions 2 et 3 ont combien de modalités?
- (iii) Donner le tableau Z tableau de codage binaire disjonctif complet. Donner quelques propriétés.
 - (iv) Calculer les inerties de la 1ière et la dernière questions
 - (v) Donner le tableau de Burt.