

Calcolo Differenziale

Eugenio Montefusco

13. La derivata

Consideriamo una funzione $f: \mathbb{R} \to \mathbb{R}$, due punti distinti $x_0, x_1 \in \mathbb{R}$, e tracciamo il suo grafico e la retta secante il grafico nei punti $(x_0, f(x_0))$ e $(x_1, f(x_1))$

la retta secante ha equazione

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0)$$

Il rapporto incrementale

Chiameremo rapporto incrementale la variazione media di una certa funzione rispetto alla variazione della variabile indipendente,

Il rapporto incrementale

Chiameremo rapporto incrementale la variazione media di una certa funzione rispetto alla variazione della variabile indipendente, cioè la frazione

$$\Delta f(x_0,x) = \frac{f(x) - f(x_0)}{x - x_0}$$

Il rapporto incrementale

Chiameremo rapporto incrementale la variazione media di una certa funzione rispetto alla variazione della variabile indipendente, cioè la frazione

$$\Delta f(x_0,x) = \frac{f(x) - f(x_0)}{x - x_0}$$

ponendo $x = x_0 + h$, cioè $h = x - x_0$, abbiamo anche la seguente scrittura equivalente

$$\Delta f(x_0,h) = \frac{f(x_0+h)-f(x_0)}{h}$$

La derivata

Definizione. Data una funzione $f: A \to \mathbb{R}$, con $A \subseteq \mathbb{R}$ insieme aperto, e un punto $x_0 \in A$, diremo che f è derivabile in x_0 se

La derivata

Definizione. Data una funzione $f: A \to \mathbb{R}$, con $A \subseteq \mathbb{R}$ insieme aperto, e un punto $x_0 \in A$, diremo che f è **derivabile** in x_0 se il limite

$$\lim_{h \to 0} \Delta f(x_0, h) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

esiste finito.

La derivata

Definizione. Data una funzione $f: A \to \mathbb{R}$, con $A \subseteq \mathbb{R}$ insieme aperto, e un punto $x_0 \in A$, diremo che f è **derivabile** in x_0 se il limite

$$\lim_{h \to 0} \Delta f(x_0, h) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

esiste finito. Tale quantità viene chiamata derivata della funzione f nel punto x_0 e indicata con i simboli

$$f'(x_0) = Df(x_0) = \frac{\partial f}{\partial x}(x_0) = \frac{\partial}{\partial x}f(x_0)$$

la retta tangente ha equazione

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Alcuni facili esempi. Consideriamo la funzione costante f(x) = c

Alcuni facili esempi. Consideriamo la funzione costante f(x) = c

$$\frac{d}{dx}c = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Alcuni facili esempi. Consideriamo la funzione costante f(x) = c

$$\frac{d}{dx}c = \lim_{h \to 0} \frac{c - c}{h} = 0$$

poi la funzione f(x) = x

$$\frac{d}{dx}x = \lim_{h \to 0} \frac{x + h - x}{h} = 1$$

Proseguiamo con la funzione quadratica $f(x) = x^2$

Proseguiamo con la funzione quadratica $f(x) = x^2$

$$\frac{\partial}{\partial x}x^2 = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

Proseguiamo con la funzione quadratica $f(x) = x^2$

$$\frac{d}{dx}x^{2} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} = \lim_{h \to 0} \left(\frac{2hx}{h} + \frac{h^{2}}{h}\right) = 2x$$

Proseguiamo con la funzione quadratica $f(x) = x^2$

$$\frac{d}{dx}x^{2} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} = \lim_{h \to 0} \left(\frac{2hx}{h} + \frac{h^{2}}{h}\right) = 2x$$

si può generalizzare con $f(x) = x^k$ e vale

$$\frac{\partial}{\partial x} x^k = k x^{k-1}$$

$$\frac{d}{dx}\cos(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$\frac{d}{dx}\cos(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$
$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(h)}{h}$$

$$\frac{d}{dx}\cos(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(h)}{h}$$

$$= \lim_{h \to 0} \left(\cos(x)\frac{\cos(h) - 1}{h} - \sin(x)\frac{\sin(h)}{h}\right)$$

$$\frac{d}{dx}\cos(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(h)}{h}$$

$$= \lim_{h \to 0} \left(\cos(x)\frac{\cos(h) - 1}{h} - \sin(x)\frac{\sin(h)}{h}\right)$$

$$= -\sin(x)$$

$$\frac{d}{dx}\sin(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$\frac{d}{dx}\sin(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \left(\cos(x)\frac{\sin(h)}{h} + \sin(x)\frac{\cos(h) - 1}{h}\right)$$

$$= \cos(x)$$

Completiamo la lezione considerando la funzione esponenziale

$$\frac{d}{dx}e^{x} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

Completiamo la lezione considerando la funzione esponenziale

$$\frac{d}{dx}e^{x} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x}e^{h} - e^{x}}{h}$$

$$=\lim_{h\to 0}e^x\frac{e^h-1}{h}=e^x$$

ricordando il celeberrimo limite notevole...

Nel seguito diremo che una funzione è derivabile in un insieme aperto $A\subseteq \mathbb{R}$ se esiste

$$f'(x) \quad \forall x \in A$$

Nel seguito diremo che una funzione è derivabile in un insieme aperto $A \subseteq \mathbb{R}$ se esiste

$$f'(x) \quad \forall x \in A$$

Inoltre se la funzione f' risulta essere una funzione continua diremo che $f \in C^1(A)$.

Concludiamo questa lezione osservando che una funzione continua non è necessariamente derivabile, per esempio se f(x) = |x| abbiamo che

Concludiamo questa lezione osservando che una funzione continua non è necessariamente derivabile, per esempio se f(x) = |x| abbiamo che

$$\Delta f(0,h) = \begin{cases} 1 & h > 0 \\ -1 & h < 0 \end{cases}$$

Invece una funzione derivabile è sempre continua

$$\lim_{x \longrightarrow x_0} \left[f(x) - f(x_0) \right] =$$

Invece una funzione derivabile è sempre continua

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

Invece una funzione derivabile è sempre continua

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} (x - x_0)$$

Invece una funzione derivabile è sempre continua

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} (x - x_0) = 0$$

cioè

$$\lim_{x\to x_0}f(x)=f(x_0)$$

Protagonisti

Sir Isaac Newton

1643 - 1727