

Lotus Baumgarner Data Scientist **GOALS**: build a predictive model to determine if someone would seek treatment for a mental illness or not. I geared this project towards everyday friends and family members who feel someone close to them may be struggling with a mental illness.

DATASET: Mental Health Dataset from Kaggle

The features are all clear and defined and the overall data looks clean. The data is in a CSV format. It consists of just under 300,000 rows and 17 columns. The data types are all objects and are mostly strings or booleans.

EDAs and Feature Selection:

- Dropped Timestamps column
- Kept only cases from USA, dropped Country column
- Dropped Null Values from the Self-Employed column
- Downsized dataset to balance
 Treatment column
 - 50,000 Yes values
 - 50,000 No values

Dataset = entirely categorical values.

Created Chi-Squared test For Loop to determine which features correlate the most with my target variable.

Variable: Gender

Chi-Squared Statistic: 2399.6832634032644

P-value: 0.00000

Degrees of Freedom: 1

Decision: Reject the null hypothesis - There is a significant

association between the variables.

Variable: Social_Weakness

Chi-Squared Statistic: 0.6468916752472398

P-value: 0.72365

Degrees of Freedom: 2

Decision: Fail to reject the null hypothesis - There is no

significant association between the variables.

Left with 100,000 rows and 8 columns

CONFUSION MATRIX COMPONENTS:

- <u>True Positives</u>: The number of individuals who
 were correctly predicted to seek treatment for a
 mental illness (i.e., the model predicted "Yes" for
 treatment, and the actual value was also "Yes").
- <u>True Negatives</u>: The number of individuals who
 were correctly predicted not to seek treatment for
 a mental illness (i.e., the model predicted "No" for
 treatment, and the actual value was also "No").
- <u>False Positives</u>: The number of individuals who
 were incorrectly predicted to seek treatment for a
 mental illness (i.e., the model predicted "Yes" for
 treatment, but the actual value was "No").
- <u>False Negatives</u>: The number of individuals who
 were incorrectly predicted not to seek treatment
 for a mental illness (i.e., the model predicted "No"
 for treatment, but the actual value was "Yes").

TARGET VARIABLE: Treatment Column (Mapped to Yes = 1 and No = 0)

METRIC: Accuracy and ROC (Balanced Dataset)

ONE HOT ENCODER: Used as only preprocessor. (18 columns including Treatment after OHE)

PIPELINE: Set up Basic Pipeline with Column Transformer, One Hot Encoder and empty Model slot.

Baseline Model – Logistic Regression

Accuracy Score: 70.26% on Test Set

AUC-ROC Score: 76.9%

The Accuracy so				55
Classificación	precision		f1-score	support
0	0.73	0.64	0.69	10078
1	0.68	0.76	0.72	9922
accuracy			0.70	20000
macro avg	0.71	0.70	0.70	20000
weighted avg	0.71	0.70	0.70	20000

FN: Original Test Set: 1,916 ----- HyperTuned Test Set: 1,876

Yes

Predicted

- 2000

No

ORIGINAL - XGBoost

XGBoost Classifier

Original Train Set: 72.76% --- **HyperTuned Train Set:** 72.73%

Original Test Set: 71.915% --- **HyperTuned Test Set:** 71.885%

ROC Curve Original Test Set: 79.534%

TP: Original Test Set: 8,046 ----- HyperTuned Test Set: 7,997

TN: Original Test Set: 6,337 ----- HyperTuned Test Set: 6,380

FP: Original Test Set: 3,741 ----- HyperTuned Test Set: 3,698

FN: Original Test Set: 1,876 ----- HyperTuned Test Set: 1,925

MODEL STACKING

STEPS TO MODEL STACKING:

- 1. Defined Base Models as the Logistic Regression model and the HyperTuned Random Forest and XGBoost model.
- 2. Created a Meta-Model as my final estimator.
- 3. Stacked the base models and final estimator using Stacking Classifier.
- 4. Established and Fit the Final Pipeline
- 5. Calculated the Accuracy and Classification Report.
- 6. Rinse and Repeat steps 2 through 5 to experiment with different models and parameters to use as the Meta-Model.
- 7. Optional: Create Confusion Matrix

```
# Defined base models with the respective Best Model Parameters
base models = [
      ('log_reg', LogisticRegression(max_iter=1000, random_state=42)),
      ('random forest', RandomForestClassifier()),
      ('xgboost', XGBClassifier())
# Created the Meta-model and experimented using several different model types such as RandomFore
meta model = KNeighborsClassifier(n neighbors=10)
# Created the stacking ensemble using Stacking Classifier
stacking ensemble = StackingClassifier(estimators=base models, final estimator=meta model, cv=5)
# Final pipeline including preprocessing and stacking ensemble
final pipeline = Pipeline([
   ('preprocessor', preprocessor),
   ('stacked_models', stacking_ensemble)
# Fited the pipeline on the Training Set
final_pipeline.fit(X_train, y_train)
# Made predictions on the Test Set using the final pipeline
y pred stack = final pipeline.predict(X test)
y pred proba = final pipeline.predict proba(X test)[:, 1]
# Calculated the Accuracy and Classification Reports
accuracy stackTest = accuracy score(y test, y pred stack)
classification report stackTest = classification report(y test, y pred stack)
print(f'Accuracy on Test Data: {accuracy stackTest}')
print('Classification Report on Test Data:\n', classification_report_stackTest)
```


FINAL MODEL SELECTION

- Ran GridSearchCV to find the best Number of Neighbors for my KNN model
- Ran Experiments with various Number of Neighbors in the Stacked Model
- KNN w. 10 Neighbors was still the best model for the results I was looking for.

- Was able to slightly raise overall Accuracy score.
- Chose KNN w. 10 Neighbors.
 - Most True Negatives
 - Least False Positives

KNN

- 1. Rerun my models and focus on Feature Importance to try to improve my overall scores.
- 2. Try using with all columns instead of just pre-selected columns.
- 3. Add in an interactive Visualization that shows feature correlation

Deploy the model with appropriate warnings and resources available

THANK YOU

Lotus Baumgarner

LotusBaumgarner@gmail.com

https://www.linkedin.com/in/lotus-baumgarner/

https://github.com/Lotus-baumgarner/Will-They-Seek-Treatment

