

EXPLORING WORST-CASE MIXTURE OF COPULAS FOR OPTIMAL MEAN-CVAR PORTFOLIO ALLOCATION

João Ramos Jungblut

Orientador: Prof. Dr. Fernando Augusto Boeira Sabino da Silva

Universidade Federal do Rio Grande do Sul Faculdade de Ciências Econômicas Departamento de Economia e Relações Internacionais

Setembro 2023

João Ramos Jungblut

1 / 33

Conteúdo

- 📵 Introdução
 - Objetivos
 - Motivações
- Teoria
 - CVaR
 - Cópulas
 - Problema de Otimização
- Metodologia
 - Dados
 - Processo de Otimização
 - Estratégia Empírica
- Resultados
- Considerações Finais
- Referências

Introdução

- O velho ditado "não coloque todos os ovos na mesma cesta" é um aviso sobre o perigo de colocar todos os seus recursos em uma única fonte. Isso é especialmente verdadeiro no mercado financeiro, onde decisões são tomadas sob um ambiente de incertezas;
- Então, quantas cestas você precisaria para manter seus ovos seguros?

Introdução

- A resposta a essa pergunta foi fornecida por Harry Markowitz em seu trabalho seminal que estabeleceu Moderna Teoria de Portfólios;
- Ele demonstrou que os investidores devem se preocupar com dois fatores principais ao construir uma carteira de investimentos: retorno e risco;
- Um investidor buscaria, portanto, alocar seu capital de forma a maximizar o retorno e minimizar o risco;
- Isso pode ser alcançado através da diversificação, que é a distribuição do capital em ativos financeiros com características diferentes.

Objetivos

- Construir uma carteira de investimentos que proteja contra condições negativas extremas de mercado e produza retornos positivo;
- Foi empregada uma otimização de portfólio Média-CVaR;
- A dependência estrutural entre os ativos foi modelada usando uma mistura de cópulas (*Clayton-t-Gumbel*) com as marginais ajustada por um modelo AR(1)-GARCH(1,1).

Motivações

- Na fundação da MPT, o desvio-padrão (σ) é usado como medida de risco;
- O seu uso considera tanto as variações positivas no retorno, Upside Risk, quanto as variações negativas, Downside Risk, (BACON, 2008);
- O CVaR foi priorizado por ser uma medida de risco coerente: (i) monotonicidade, (ii) invariância de translação, (iii) homogeneidade positiva e (iv) sub-aditividade.

Motivações

- Na fundação da MPT, a distribuição dos retornos é considerada **Normal** com média μ e variância σ^2 , $r \sim N(\mu, \sigma^2)$;
- Os retornos, contudo, apresentam fatos estilizados diferentes: (i) a distribuição é não Normal, (ii) são próximos de um passeio aleatório e (iii) existe dependência positiva entre retornos absolutos (ou quadráticos), (TAYLOR, 2011);
- Clusters de volatilidade podem fornecer uma explicação generalizada dos fatos estilizados. Isso significa que em períodos de crise ou instabilidade. diferentes ativos financeiros tendem a se movimentar em conjunto, gerando padrões distintos de comportamento de mercado.

Conditional Value at Risk - CVaR

- Enquanto o VaR pergunta: "Até que ponto as coisas podem dar errado?" O CVaR questiona: "Se estamos nos piores cenários, qual é a perda que podemos esperar?";
- O CVaR é uma medida que representa a perda esperada durante um intervalo de tempo T, sob a condição de que a perda seja maior do que o β-percentil da distribuição das perdas.;
- É a média de perdas do VaR até $-\infty$;
- O Conditional Value at Risk (CVaR) é uma medida de risco coerente, conforme demonstrado por (PFLUG, 2000), com propriedades atraentes (importantes), como convexidade, como demonstrado por (ROCKAFELLAR; URYASEV, 2000);
- Convexidade nos leva a uma solução única nos problemas de otimização de carteira.

Definição do CVaR

Seja w um vetor de pesos e r um vetor de retornos. Seja f(w,r) a função de perda da carteira. Assume-se que o vetor r possui uma função de densidade de probabilidade p(r). Dessa forma, definimos $CVaR_{\beta}$ como em Wuertz et al. (2010), da seguinte maneira:

$$CVaR_{\beta} = \frac{1}{1-\beta} \int_{f(w,r) \le VaR_{\beta}(w)} f(w,r) \, p(r) \, dr. \tag{1}$$

É evidente que o CVaR contém o VaR (que não é convexo) em sua definição. Rockafellar e Uryasev (2000) introduziram uma função auxiliar, da seguinte forma:

$$F_{\beta}(w,\alpha) = \alpha + \frac{1}{1-\beta} \int (f(w,r) - \alpha)^+ p(r) dr, \qquad (2)$$

na qual **o CVaR não depende do VaR**. Eles também demonstram que $F_{\beta}(w,\alpha)$ é convexa em relação a α e que min $F=\min CVaR$. Isso implica que a minimização de F leva a minimização do CVaR.

CVaR Discreto

Suponha que não temos a representação analítica para representar a probabilidade dos retornos, para contornar isso podemos usar uma aproximação. Vamos considerar K cenários diferentes, que podem ser retornos históricos ou simulados, e representá-los como r_1 , r_2 , até r_K . A equação (2) pode ser aproximada usando a equação abaixo:

$$F_{\beta}^{d}(w,\alpha) = \alpha + \frac{1}{(1-\beta)K} \sum_{k=1}^{K} (f(w,r_k) - \alpha)^{+}.$$
 (3)

A função (3) ajuda a esimar o CVaR. Essencialmente, consiste em calcular uma média ponderada das discrepâncias entre $f(w, r_k)$ e um valor de referência α para cada um dos cenários, onde k = 1, 2, ..., K representando o conjunto completo de cenários disponíveis.

Função de Cópula

- Para lidar com a distribuição dos retornos dos ativos, podemos recorrer ao uso de cópulas;
- A forma mais simples para modelar a dependência de ativos seria usar a correlação linear;
- No entanto, como Pfaff (2012) afirma, isso está correto apenas se os ativos estiverem distribuídos conjuntamente de forma elíptica;
- Para superar essa limitação e lidar com diferentes padrões de distribuição, as funções de cópula são úteis, permitindo um ajuste mais preciso das relações entre ativos, especialmente quando a distribuição não é elíptica, o que é comum nos mercados financeiros.

Função de Cópula: Definição

Cópulas são funções de distribuição multivariadas cujas marginais são uniformemente distribuídas em [0,1]. O Teorema de Sklar nos ensina que podemos representar a distribuição conjunta de várias variáveis aleatórias usando uma função cópula que depende apenas das distribuições individuais de cada variável, chamadas de marginais.

Theorem (Teorema de Sklar)

Seja F uma função de distribuição n-dimensional com margens $F_1,...F_n$. Então existe uma n-cópula C tal que para todo $x \in R^n$,

$$F(x_1,...,x_n) = C(F_1(x_1),...,F_n(x_n)).$$
 (4)

Além disso, se $F_1, ... F_n$ forem contínuas, então C é única.

Função de Cópula: Definição

Corollary

Seja f a função de densidade de probabilidade multivariada da distribuição de probabilidade F e $f_1, ..., f_n$ as funções de densidade de probabilidade univariadas das marginais $F_1, ..., F_n$. A função de densidade de cópula de uma n-cópula C é a função c: $U[0,1]^n \mapsto [0,\infty)$ tal que

$$c(u_1,...,u_n) = \frac{\partial^n C(u_1,...,u_n)}{\partial u_1,...,\partial u_n} = \frac{f(x_1,...,x_n)}{\prod_{i=1}^n f_i(x_i)}.$$
 (5)

A definição nos permite separar a modelagem das marginais $F_i(x_i)$ da estrutura de dependência multivariada representada pela Cópula C.

Famílias de Cópulas

Foi considerado uma **combinação linear** (média ponderada) de 3 funções cópula:

- Cópula Clayton para modelar a dependência entre variáveis aleatórias, especialmente nas caudas inferiores de suas distribuições;
- **Cópula** *t* é especialmente útil quando se deseja capturar dependência em caudas tanto inferiores quanto superiores das distribuições das variáveis aleatórias;
- Cópula Gumbel . É uma função cópula que descreve a dependência entre variáveis aleatórias, com foco nas caudas superiores das distribuições dessas variáveis.

Essa abordagem permite que exploremos uma ampla gama de estruturas de dependência entre ativos, com o objetivo de capturar de maneira mais precisa como esses ativos individuais se relacionam entre si. A escolha das cópulas e seus pesos é fundamentada em estudos anteriores, como os de Pfaff (2012), Kakouris e Rustem (2014) e Hu (2006),

Cópula-CVaR

Kakouris e Rustem (2014) estabeleceram a estrutura (framework) para usar funções cópula e CVaR. Seja $w \in W$ um vetor de decisão, $u \in U[0,1]^n$ um vetor aleatório que segue uma distribuição contínua com função densidade cópula c(.) e um conjunto de distribuições marginais $F(r) = (F_1(r_1), ..., F_n(x_n))$ onde u = F(r). A equação correspondente incluindo cópula para a equação (3) é

$$G_{\beta}^{d}(w,\alpha) = \alpha + \frac{1}{(1-\beta)J^{i}} \sum_{j=1}^{J} (f(w,u_{j}^{i}) - \alpha)^{+}, \ i = 1,2...I.$$
 (6)

A equação (6) pode então ser avaliada usando simulações de Monte Carlo. Fazemos isso amostrando realizações das cópulas $C_i(.)$ usando as marginais previamente determinadas.

Problema de Otimização CVaR com Cópula

O problema de otimização implica encontrar uma solução que satisfaça restrições e metas, assumindo uma função de perda f(w,u) linear e convexa em relação a w, conforme a aordagem propostapor Rockafellar e Uryasev (2002) de Programação Linear.

$$\min_{\mathbf{w} \in \mathbb{R}^{n}, \mathbf{z} \in \mathbb{R}^{K}, \alpha \in \mathbb{R}} \alpha + \frac{1}{(1-\beta)K} \sum_{i=1}^{K} z_{i},$$
s.a $z_{i} \geq f(\mathbf{w}, \mathbf{u}_{k}) - \alpha, i = 1, ..., K$

$$z_{i} \geq 0, i = 1, ..., d,$$

$$\mathbf{w} \in W,$$

$$\mathbf{w}^{T} \hat{\mu} \geq R,$$

$$\mathbf{w}^{T} \mathbf{1} = 1,$$

$$(7)$$

onde z_i são variáveis auxiliares e R é um dado retorno diário alvo para a carteira, sem vendas a descoberto.

Metodologia: Dados

Foram utilizados dados de **19 ETFs** (Exchange-Traded Funds) que representam índices de diferentes países. Esses dados foram obtidos do *Historical Market Data - Stooq* e cobrem o período de 2 de janeiro de 2013 a 30 de junho de 2023. Isso totaliza 2.692 dias de negociação (L=2692).

- ARGT;
- EWA;
- EWZ;
- EWC;
- FXI;
- EWQ;
- EXS1;

- INDA;
- EIDO;
- EWI;
- EWJ;
- EWW;
- KSA;

- EZA;
- EWY;
- TUR:
- EWU;
- SPY;
- EXSA.

Retorno Logarítmico

Estatísticas Descritivas

ETF	Min.	1st Q.	Median	Mean	3rd Q.	Max.	Skewness	Kurtosis
ARGT	-0.29	-0.0086	0.0006	0.0004	0.0101	0.10	-1.9764	27.6424
EIDO	-0.15	-0.0079	0.0000	-0.0000	0.0082	0.14	-0.5315	9.4203
EWA	-0.18	-0.0064	0.0003	0.0001	0.0071	0.13	-1.1350	22.8411
EWC	-0.14	-0.0052	0.0006	0.0002	0.0058	0.12	-1.1270	24.3630
EWI	-0.17	-0.0069	0.0007	0.0002	0.0083	0.11	-1.4798	15.4850
EWJ	-0.10	-0.0050	0.0004	0.0002	0.0060	0.07	-0.5206	6.3646
EWQ	-0.14	-0.0055	0.0006	0.0003	0.0068	0.09	-1.2070	15.0895
EWU	-0.13	-0.0051	0.0005	0.0001	0.0060	0.11	-1.3594	18.4232
EWW	-0.17	-0.0077	0.0000	0.0000	0.0086	0.08	-1.0387	9.7245
EWY	-0.17	-0.0078	0.0000	0.0001	0.0086	0.12	-0.7468	11.4362

Estatísticas Descritivas

ETF	Min.	1st Q.	Median	Mean	3rd Q.	Max.	Skewness	Kurtosis
EWZ	-0.26	-0.0116	0.0001	-0.0001	0.0123	0.16	-1.0798	13.1711
EXS1	-0.13	-0.0026	0.0000	0.0003	0.0039	0.21	1.8920	63.3013
EXSA	-0.13	-0.0019	0.0000	0.0003	0.0034	0.16	0.5871	56.3795
EZA	-0.16	-0.0109	0.0000	-0.0001	0.0112	0.10	-0.5740	5.4369
FXI	-0.11	-0.0088	0.0000	-0.0001	0.0089	0.19	0.4166	9.6157
INDA	-0.17	-0.0067	0.0003	0.0002	0.0080	0.12	-1.0409	16.2523
KSA	-0.19	-0.0027	0.0000	0.0002	0.0037	0.15	-0.8038	41.9807
SPY	-0.12	-0.0036	0.0005	0.0005	0.0055	0.09	-0.8170	14.4863
TUR	-0.21	-0.0108	0.0000	-0.0002	0.0120	0.19	-0.5261	8.8241

Processo de Otimização

Uma otimização com janelas rolantes de diferentes tamanhos $T=\{252,504,1260\}$, com base no método descrito por Xi (2014), foi aplicada, resultando em $L-T=\{2440,2188,1432\}$ otimizações, respectivamente. Resumo do processo de otimização:

- Otimização 1: Dados do dia 1 ao dia 252 usados para estimar o modelo de Worst-Case Cópula e determinar os pesos da carteira Média-CVaR para o dia 253.
- Otimização 2: Dados do dia 2 ao dia 253 usados para estimar um novo modelo de Worst-Case Cópula e calcular os pesos da carteira Média-CVaR para o dia 254.
- ...
- Última otimização com janela de dados de tamanho T = 252: Dados do dia 2439 ao dia 2691 usados para estimar o modelo de Worst-Case Cópula e calcular os pesos da carteira para o dia 2692.

Esse processo é repetido, adaptando os pesos da carteira Média-CVaR de acordo com as mudanças nas condições de mercado ao longo do tempo.

Estratégia Empírica

Os passos são apresentados abaixo e **repetidos para cada etapa de otimização** previamente demonstrada:

- Primeiro, ajustamos um modelo AR(1)-GARCH(1,1) com distribuição t-assimétrica para cada ativo;
- Usar o modelo paramétrico estimado para construir um vetor de resíduos padronizados;
- Calcular a distribuição pseudo-uniformes [0,1] a partir dos resíduos padronizados usando a distribuição t-assimétrica do processo de erro GARCH;
- Estimar o modelo de mistura das cópulas Clayton-t-Gumbel para os dados que foram transformados em distribuições uniformes [0,1] a partir da combinação linear de cópulas;
- ① Utilizar a estrutura de dependência estimada pela mistura de cópulas para simular K=1000 cenários de variáveis aleatórias para as variáveis pseudo-uniformemente distribuídas acumuladas.

Estratégia Empírica

- Calcular quantis t-assimétricos para essas simulações de Monte Carlo, $z_{j,t}$, para j=1,...,19 e t=1,...,(L-T), onde Q(F(z))=z.
- Para cada ativo j, determinar os cenários K de retornos log-diários simulados para fora da amostra para o dia seguinte previsto,

$$r_{j,t} = X_{j,t} + \epsilon_{j,t},\tag{8}$$

onde $X_{i,t}$ é fornecido pelo modelo AR(1),

$$X_{j,t} = \epsilon_{j,t} + \phi_{j,i} X_{j,t-i} \tag{9}$$

e $\epsilon_{j,i}$ é o termo de erro seguindo um processo GARCH(1,1) dado por

$$\epsilon_{j,t} = \sigma_{j,t} z_{j,t} \sigma_{j,t}^2 = \alpha_{j,0} + \alpha_{j,1} \epsilon_{j,t-1}^2 + \beta_{j,1} \sigma_{j,t-1}^2$$
(10)

Estratégia Empírica

- Utilizar os dados simulados como entradas para minimizar o CVaR para um dado nível de confiança e um retorno mínimo esperado predefinido. Isso é feito usando os trabalhos de Wuertz et al. (2010), nos quais o método de Rockafellar e Uryasev (2002) é aplicado para otimizar o CVaR com programação linear.
 - Para avaliar o desempenho da otimização, rodamos a otimização para meta de retorno diário de 0.0003 ou 0.03%;
 - Passos semelhantes são aplicados para otimizar uma Carteira de cópula Gaussiana para cada período. Também consideramos para fins de comparação uma carteira igualmente ponderada (EWP);
 - Após as otimizações, calculamos os retornos simples da carteira fora da amostra, que são usados para calcular medidas de performance seguindo uma abordagem semelhante à descrita por Bacon (2008).

Resultados

Metrics	MCP 1Y	MCP 2Y	MCP 5Y	GCP 1Y	GCP 2Y	GCP 5Y	EWP
Annualized Return	0.0494	0.0790	0.1206	0.0490	0.0692	0.0648	0.0350
Annualized Std. Dev.	0.1498	0.1578	0.1730	0.1516	0.1630	0.1710	0.1798
Sharpe Ratio	0.3300	0.5005	0.6974	0.3232	0.4245	0.3791	0.1947
Sortino Ratio	0.0337	0.0484	0.0653	0.0329	0.0422	0.0383	0.0239
Omega Sharpe Ratio	0.0774	0.1112	0.1506	0.0755	0.0993	0.0896	0.0539
VaR (97.5%)	-0.0195	-0.0198	-0.0214	-0.0202	-0.0209	-0.0207	-0.0223
CVaR (97.5%)	-0.0294	-0.0307	-0.0338	-0.0308	-0.0331	-0.0349	-0.0348
Semi-Deviation	0.0071	0.0074	0.0080	0.0073	0.0077	0.0082	0.0085
Worst Drawdown	0.3268	0.3215	0.3057	0.3253	0.3372	0.3146	0.4380

Performance

Performance chart

Performance

Performance chart

Performance

Performance chart

Considerações Finais

- A carteira gerada a partir dos retornos simulados com mistura de cópulas apresentou os melhores resultados quando avaliados por medidas de risco-retorno (índice Sharpe, Sortino e Omega Sharpe);
- Essas carteiras tiveram os menores riscos e perdas financeiras durante o período avaliado, enquanto também conseguiram alcançar retornos iguais ou até mesmo superiores em comparação com outras estratégias;
- Descobrimos que usar janelas de tempo mais longas para estimativas resulta em resultados mais precisos;
- Isso acontece porque janelas de tempo maiores fornecem mais dados, o que ajuda a identificar padrões e tendências de forma mais clara;
- Custos de transação foram considerados e tiveram um impacto significativo no desempenho dos portfólios.

Trabalhos Futuros

- Arrumar base de dados;
- Verificar viabilidade do método proposto por (DE LUCA; RIVIECCIO; ZUCCOLOTTO, 2010) para adaptar dentro do mesmo framework para seleção de ativos;
- Incorporar restrições e comparar com outros trabalhos. Por exemplo, restrição de cardinalidade, usada por (RAMOS et al., 2023), que pode limitar o número de ativos no portfólio reduzindo diversificação excessiva;
- Explorar diferentes combinações de mistura de cópulas (pares, trios, quartetos);
- Realizar teste de Robustez e análise de sub-períodos;
- Limitar a frequência de rebalanceamentos;
- Diferentes alvos de retorno;
- Cópulas dinâmicas (AUSIN; LOPES, 2010) e Cópulas Vine (XI, 2014).
- Usar Reality Checks and Data Snooping tests. Um teste usual é o do Diebold e Mariano.

Repositório GitHub

Por transparência e propósito de reprodutibilidade, o código usado para os cálculos presente nesse trabalho podem ser encontrados no repositório do GitHub:

https://github.com/JoaoJungblut/Mean-CVaR_Portfolio_with_ Mixture-Copulas

O repositório contém os scripts e arquivos necessários para gerar os cálculos de otimização de portfólio discutidos nessa pesquisa. Também estão incluídos códigos adicionais para pré-processamento de dados, análises e visualização. Ao acessar o repositório no GitHub, leitores podem revisar, validar e executar o código independentemente para verificar os resultados ou adaptá-lo para suas necessidades específicas.

Por favor, note que o repositório pode estar sujeito a atualizações ou melhorias no decorrer do tempo. Se você encontrar qualquer problema, ou tiver alguma pergunta relacionada, sinta-se a vontade para contatar o dono.

References

- AUSIN, M. Concepcion; LOPES, Hedibert F. Time-varying joint distribution through copulas. Computational Statistics & Data Analysis, v. 54, n. 11, p. 2383-2399, nov. 2010. Disponível em: https://ideas.repec.org/a/eee/csdana/v54y2010i11p2383-2399.html.
- BACON, C.R. Practical Portfolio Performance Measurement and Attribution. [S.I.]: Wiley, 2008. (The Wiley Finance Series). ISBN 9780470778050. Disponível em: https://books.google.com.br/books?id=exITHIfwuyUC>.
- DE LUCA, Giovanni; RIVIECCIO, Giorgia; ZUCCOLOTTO, Paola. Combining random forest and copula functions: a heuristic approach for selecting assets from a financial crisis perspective. **Intelligent Systems in Accounting, Finance & Management**, Wiley Online Library, v. 17, n. 2, p. 91–109, 2010.
- HU, Ling. Dependence patterns across financial markets: a mixed copula approach. Applied Financial Economics, v. 16, n. 10, p. 717–729, 2006. Disponível em: https://EconPapers.repec.org/RePEc:taf:apfiec:v:16:v:2006:i:10:p:717-729.
- KAKOURIS, lakovos; RUSTEM, Berc. Robust Portfolio Optimization with Copulas. European Journal of Operational Research, v. 235, n. 1, p. 28–37, 2014. Disponível em: https://doi.org/10.1016/j.ejor.2013.12.022.
- PFAFF, B. Financial Risk Modelling and Portfolio Optimization with R. [S.l.: s.n.], out. 2012. P. 1–356. DOI: 10.1002/9781118477144.

References

PFLUG, Georg Ch. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. In: Probabilistic Constrained Optimization: Methodology and Applications. Edição: Stanislav P. Uryasev. Boston, MA: Springer US, 2000. P. 272–281. ISBN 978-1-4757-3150-7. DOI: 10.1007/978-1-4757-3150-7_15. Disponível em: https://doi.org/10.1007/978-1-4757-3150-7_15.

RAMOS, Henrique Pinto et al. A comparison of risk measures for portfolio optimization with cardinality constraints. Expert Systems with Applications, Elsevier, v. 228, p. 120412, 2023.

ROCKAFELLAR, R. Tyrrell; URYASEV, Stanislav. Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, p. 1443–1471, 2002.

_____. Optimization of Conditional Value-at-Risk. Journal of Risk, v. 2, p. 21–41, 2000.

TAYLOR, Stephen J. Asset price dynamics, volatility, and prediction. [S.I.]: Princeton university press, 2011.

WUERTZ, Diethelm et al. Portfolio Optimization with R/Rmetrics. Edição: Wuertz. [S.I.]: Rmetrics Association Finance Online, www.rmetrics.org, abr. 2010. R package version 2130.80.

XI, Linda Mon. Portfolio Optimization with PCC-GARCH-CVaR model. 2014. Disponível em: <a href="mailto:chttps://bora.uib.no/handle/1956/8555>.