AI

Application No. 09/090,492, filed June 3, 1998, which is, in turn, a continuation-in-part of International Application No. PCT/US97/22406, filed December 3, 1997, which, in turn, claims priority benefit of U.S. Provisional Application No. 60/033,159, filed December 13, 1996, the disclosures of all of which are incorporated herein by reference.

## IN THE CLAIMS

Please cancel claims 3-5, 7, 13, 15 to 21 and 42, without prejudice.

Please amend claims 1, 2, 8, 11, 12, 22, 23 and 25-29 as follows:



in which W is NR<sub>11</sub>, wherein R<sub>11</sub> is H, alkyl, aralkyl, heteroaralkyl or R<sub>8</sub>(O)CCH<sub>2</sub>-, and A is CH;

Z is alkylenyl,  $-(CH_2)_rC(O)NR"(CH_2)_s-$ ,  $-(CH_2)_sR"NC(O)(CH_2)_r-$  or  $-(CH_2)_sNR"(CH_2)_r-$ ;

 $R_1$  is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl,  $R'O(CH_2)_{X^-}$ ,  $R'O_2C(CH_2)_{X^-}$ ,

$$R'C(O)(CH_2)_{X^-}, Y^1Y^2NC(O)(CH_2)_{X^-} \text{ or } Y^1Y^2N(CH_2)_{X^-};$$

R' and R" are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkenyl, substituted aralkenyl, heteroaralkenyl, substituted heteroaralkenyl, aralkyl, substituted aralkyl, heteroaralkyl or substituted heteroaralkyl;

 $R_2$  is hydrogen, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl, aralkenyl, substituted aralkenyl, heteroaralkenyl, substituted heteroaralkenyl,  $R_3R_4NC(O)(CH_2)x$ -,  $R_3S(O)_p$ - or  $R_3R_4NS(O)_p$ -;

 $R_3$  is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl, aralkenyl, substituted aralkenyl, heteroaralkenyl or substituted heteroaralkenyl, or  $R_1$  and  $R_3$  taken together with the -N-S(O)<sub>p</sub>- moiety or the -N-S(O)<sub>p</sub>-NR<sub>4</sub>- moiety through which  $R_1$  and  $R_3$  are linked form a 5 to 7 membered heterocyclyl or substituted heterocyclyl; and

 $R_4$  is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl or substituted heteroaralkyl, or  $R_3$  and  $R_4$  taken together with the nitrogen to which  $R_3$  and  $R_4$  are attached form a 4 to 7 membered heterocyclyl or substituted heterocyclyl;

 $X_1$  and  $X_{1a}$  are independently selected from H, alkyl, substituted alkyl, aryl, substituted aralkyl, heteroaryl, substituted heteroaryl, heteroaralkyl, substituted heteroaralkyl, or  $X_1$  and  $X_{1a}$  taken together form oxo;

 $X_2$  and  $X_{2a}$  taken together form oxo;

X<sub>3</sub> is H, hydroxy, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted

 $Ar_1$ 

heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl or substituted heteroaralkyl, or  $X_3$  and one of  $X_1$  and  $X_{1a}$  taken together form a 4 to 7 membered cycloalkyl;

 $X_4$  is H\alkyl, substituted alkyl, aralkyl or substituted aralkyl;

 $X_5$ ,  $X_{5a}$  and  $X_{5b}$  are independently selected from H, R<sub>5</sub>R<sub>6</sub>N-, (hydroxy)HN-, (alkoxy)HN-, or (amino)HN-, R<sub>7</sub>O-, R<sub>5</sub>R<sub>6</sub>NCO-, R<sub>5</sub>R<sub>6</sub>NSO<sub>2</sub>-, R<sub>7</sub>CO-, halo, cyano, nitro and R<sub>8</sub>(O)CCH<sub>2</sub>-, and one of  $X_5$ ,  $X_{5a}$  and  $X_{5b}$  is a substituent that is alpha to a nitrogen of the ring of

that is distal to Z and is selected from the group consisting of H, hydroxy, H<sub>2</sub>N-, (lower alkyl and substituted lower alkyl)HN-, (hydroxy)HN-, (alkoxy)HN- and (amino)HN-;

 $Y^1$  and  $Y^2$  are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl or substituted heteroaralkyl, or  $Y^1$  and  $Y^2$  taken together with the N through which  $Y^1$  and  $Y^2$  are linked form a 4 to 7 membered heterocyclyl;

R<sub>5</sub> and R<sub>6</sub> are independently H, lower alkyl or substituted lower alkyl, or one of R<sub>5</sub> and R<sub>6</sub> is H and the other of R<sub>5</sub> and R<sub>6</sub> is R<sub>8</sub>(O)CCH<sub>2</sub>- or lower acyl;

 $R_7$  is H, lower alkyl, substituted lower alkyl, lower acyl or  $R_8(O)CCH_{2-}$ ;

R<sub>8</sub> is H, optionally substituted lower alkyl, alkoxy or hydroxy;

m is 1; p and r are independently 1 or 2; s is 0, 1 or 2; and x is 1, 2, 3, 4, or 5, or a pharmaceutically acceptable salt, N-oxide, hydrate or solvate thereof.

2. (Amended) The compound of claim 1, wherein:

Ziş alkylenyl;

 $R_1$  is hydrogen, alkyl, substituted alkyl, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl,  $R'O(CH_2)_{X^-}$ ,  $R'O_2C(CH_2)_{X^-}$ ,  $Y^1Y^2NC(O)(CH_2)_{X^-}$ , or  $Y^1Y^2N(CH_2)_{X^-}$ ;

R' is hydrogen, alkyl, substituted alkyl, aralkyl, substituted aralkyl, heteroaralkyl, or substituted heteroaralkyl;

 $R_2$  is  $R_3S(O)_{p-}$  or  $R_3R_4NS(O)_{p-}$ ;

 $R_3$  is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl, aralkenyl, substituted aralkenyl, heteroaralkenyl or substituted heteroaralkenyl, or  $R_1$  and  $R_3$  taken together with the -N-S(O)<sub>p</sub>-moiety or the -N-S(O)<sub>p</sub>-NR<sub>4</sub>- moiety through which  $R_1$  and  $R_3$  are linked form a 5 to 7 membered heterocyclyl or substituted heterocyclyl;

 $R_4$  is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl, substituted aralkyl, heteroaralkyl or substituted heteroaralkyl, or  $R_3$  and  $R_4$  taken together with the nitrogen to which  $R_3$  and  $R_4$  are attached form a 4 to 7 membered heterocyclyl or substituted heterocyclyl; and

 $Y^1$  and  $Y^2$  are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, heteroaralkyl or optionally substituted heteroaralkyl, or  $Y^1$  and  $Y^2$  taken together with the N through which  $Y^1$  and  $Y^2$  are linked form a 4 to 7 membered heterocyclyl; or

a pharmaceutically acceptable salt, N-oxide, hydrate or solvate thereof.

A3 Sub

8. (Amended) The compound of claim 1 wherein R<sub>1</sub> is H, heteroaralkyl, substituted heteroaralkyl, aralkyl, substituted aralkyl, alkyl or substituted alkyl.

AX Sub

11. (Amended) The compound of claim 9 wherein R<sub>3</sub> is phenyl, substituted phenyl, naphthyl, substituted naphthyl, thienyl, substituted thienyl, benzothienyl, substituted benzothienyl, thienyopyridyl, substituted thienyopyridyl, quinolinyl, substituted quinolinyl, isoquinolinyl or optionally substituted isoquinolinyl.

- 12. (Amended) The compound of claim 1 wherein Z is methylenyl.
- 22. (Amended) The compound of claim 1, wherein Z is bonded to said moiety through the 5 membered ring.
  - 23. (Amended) The compound of claim 1 wherein one of  $X_5$ ,  $X_{5a}$  and  $X_{5b}$  is a

substituent that is on the

 $Ar^1$ 

 $Ar^1$ 

ring proximal to Z, at a position that is alpha to where Z

is attached to amino.

and is selected from the group consisting of H, hydroxy and

25. (Amended)

 $Ar^1$ 

The compound of claim 1 wherein said one of  $X_5$ ,  $X_{5a}$  and  $X_{5b}$ 

Ale Suly

that substitutes the ring of distal to Z at the position alpha to a nitrogen thereof is H or (H, lower alkyl, substituted lower alkyl, hydroxy or amino)HN-.

26. (Amended) A compound according to claim 1 which is selected from 1-(4-Aminoquinazolin-7-ylmethyl)-3-(S)-[(1H-pyrrolo[2,3-c]pyridin-2-ylmethyl)amino] pyrrolidin-2-one;

F 1.3 1.3 Fm. 6.. 1.3

2-(5-Chlorothiophen-2-yl)ethenesulfonic acid [2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)pyxrol-idin-3-(R)-yl]amide;

{[2-(5-Chlorothiophen-2-yl)ethenesulfonyl]-[2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)pyrrol-idin 3-(R)-yl]amino}acetic acid isopropyl ester;

- 5'Chloro-[2,2']bithiophenyl-5-sulfonic acid [2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)-pyrrol-idin-3(S)-yl]-amide;
- 2-(5-Chloro-thiophen-2-yl)-ethenesulfonic acid [2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)-pyrrolidin-3-(S)-yl]-amide; and
- 2-(5-Chloro-thiophen-2-yl)-ethenesulfonic acid [2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)-pyrrolidin-3-(S)-yl]-amide.
- 27. (Amended) A compound according to claim 1 which is selected from 2-(5-Chloro-thiophen-2-yl)-ethenesulfonic acid [2-oxo-1-(1H-pyrrolo[3,2-c]pyridin-2-yl-methyl)-pyrrolidin-3-(S)-yl]-amide and thieno[3,2-b]pyridin-2-sulfonic acid [2-oxo-1-(1H-pyrrolo[2,3-c]pyridin-2-ylmethyl)-pyrrolidin-3-(S)-yl]-amide ditrifluoroacetate.
- 28. (Amended) A compound according to claim 1 wherein  $X_1$ ,  $X_{1a}$ ,  $X_3$  and  $X_4$  are H; and  $R_2$  is a radical selected from the group consisting of

5 b A magasa sa mana a

## A2513 US DIV 1

10

Sur Roomana assume

OCH3

$$\downarrow 0$$
 $\downarrow 0$ 
 $\downarrow$ 

29. (Amended) A compound according to claim 1 wherein  $R_1$ ,  $X_1$ ,  $X_{1a}$ ,  $X_3$  and

 $X_4$  are H;  $X_{5a}$  is selected from the group consisting of  $X_{5a}$