Rapport Hebdo

Viet Anh Quach

3SR

4 septembre 2025

Changer le modèle

Figure 1 – Boîte rentangulaire

Étude sur le nombre d'inertie

Symboles	Paramètres	Valeurs	Unité
Nombre de particules	N	$15 \times 30 \times 15 = 6750$	-
Le rayon des particules	R	$0.003 \div 0.005$	m
Masse volumique	ρ	2500	kg/m ³
Raideur normale et tangentielle	k _n & k _t	3×10^6	N/m
Niveau de raideur	κ	>1000	-
Coefficient de frottement	μ	$\mu_{\mathit{iso}} = 0.1, \mu_{\mathit{triax}} = 0.5$	-
Coefficient d'amortissement	α	0.0	-

Table 1 – Valeurs gardé

Étude sur le nombre d'inertie

ν(m/s)	$\sigma_3=3 imes10^2~ ext{(kPa)}$
4.542×10^{-3}	$I = 10^{-5}$
4.542×10^{-2}	$I = 10^{-4}$
4.542×10^{-1}	$I = 10^{-3}$
4.542×10^{0}	$I = 10^{-2}$
4.542×10^{1}	$I = 10^{-1}$
4.542×10^{2}	l = 1

Table 2 - Changer la vitess

$\sigma_3(kPa)$	$v = 4.542 \times 10^{-2} \; (m/s)$
3×10^4	$I = 10^{-5}$
3×10^2	$I = 10^{-4}$
3×10^{0}	$I = 10^{-3}$
3×10^{-2}	$I = 10^{-2}$
3×10^{-4}	$I = 10^{-1}$
3×10^{-7}	l = 1

Table 3 – Changer la contrainte de confinement

Changer la contrainte

Figure 2 – Contrainte - Déformation DEM (changer la vitess)

$\sigma_3(kPa)$	$v = 4.542 \times 10^{-2} \text{ (m/s)}$
3 × 10 ⁴	$\kappa > 1000$
3×10^2	$I = 10^{-4}$
3×10^{0}	tan $arphipprox 90^\circ$
3×10^{-2}	
4.542×10^{1}	- IsoComp stabilise pas
4.542×10^{2}	

Table 4 – Changer la contrainte de confinement

Changer la vitess

v(m/s)	$\sigma_3 = 3 \times 10^2 \text{ (kPa)}$
4.542×10^{-3}	$I = 10^{-5}$
4.542×10^{-2}	$I = 10^{-4}$
4.542×10^{-1}	$I = 10^{-3}$
4.542×10^{0}	$I = 10^{-2}$
4.542×10^{1}	$I = 10^{-1}$
4.542×10^{2}	l = 1

Table 5 – Changer la vitess

Figure 3 – Contrainte - Déformation DEM (changer la vitess)

Changer la vitess

500
400
200
100
0 0.5 1 $\epsilon_{M}(\theta)$ 2 2.5

Figure 4 – Contrainte - Déformation DEM (changer la vitess)

Figure 5 – Bruyant concernant pas de temps MPM (avant)

$$\dot{x}(t) = \frac{x(t+\varepsilon) - x(t-\varepsilon)}{2\varepsilon}$$

Problème de arrondir?

Comparer entre les formes de boite

Figure 6 - Rectangulaire

Figure 7 – Cube (précédent)

En compression quasi-statique, la contrainte déviatorique au pic ou à l'état critique (donc μ) ne présente aucune différence entre les deux formes.

Comparer entre les formes de boite

Figure 8 – Courbe Contrainte ($\sigma_3 = 300kPa$)

Problème d'arrondir (Standard IEEE 754)

- Un type flottant ne représente qu'un nombre limité de chiffres significatifs ; au-delà, la valeur devient inexacte.
- Manipulation délicate à cause des différences entre binaire et décimal.
- Les opérations mathématiques amplifient les erreurs d'arrondi (e.g : + et \times).

Problème d'arrondir (Standard IEEE 754)

- La comparaison de valeurs flottantes peut poser problème.
- Si les opérandes sont très proches, les opérateurs (surtout = et ! =) deviennent peu fiables.

Problème d'arrondir (Standard IEEE 754)

- The Art of Computer Programming, Volume II: Seminumerical Algorithms (Addison-Wesley, 1969)"
- ullet Si elles sont « assez proches » à ϵ , on les considère comme égales.

