Д.В.Карпов

Теория графов. Глава 7. Орграфы.

Д.В.Карпов

Определение

- 1) Мы будем называть рёбра орграфа *стрелками*, а множество всех стрелок ориентированного графа D будем обозначать через A(D). Будем использовать обозначение a(D) = |A(D)|.
- 2) Через E(D) мы будем обозначать множество ребер орграфа D без ориентации (каждую стрелку заменим обычным неориентированным ребром).
- 3) Для непересекающихся множеств $X,Y\subset V(D)$ через $A_D(X,Y)$ мы будем обозначать множества всех стрелок орграфа D с началом в X и концом в Y. Будем использовать обозначение $a_D(X,Y)=|A_D(X,Y)|$.
- 4) Запись $e = xy \in A(D)$ будет обозначать, что e стрелка с началом x и концом y. В случае, когда допускаются кратные стрелки, эта запись не утверждает, что e единственная стрелка с началом x и концом y.
- Если не оговорено обратное, мы будем считать, что в орграфе нет петель и сонаправленных кратных стрелок (у которых совпадают и начала, и концы).
- Пары *встречных* стрелок (вида *uv* и *vu*), как правило, допускаются.

Теория графов. Глава 7.

- Для любой вершины v орграфа D мы через $\mathrm{N}_D^+(v)$ обозначим множество вершин орграфа D, в которые выходят стрелки из v, а через $\mathrm{N}_D^-(v)$ обозначим множество вершин орграфа D, из которых выходят стрелки в v.
- $N_D(v) = N_D^+(v) \cup N_D^-(v)$ окрестность вершины v.
- ullet Степень вершины $x \in V(D)$ это количество инцидентных ей рёбер из E(D).
- Для вершины $x \in V(D)$ через $d_D^+(x)$ мы будем обозначать исходящую степень вершины v, то есть, количество стрелок орграфа D, выходящих из вершины x, а через $d_D^-(x)$ мы будем обозначать входящую степень вершины v количество стрелок орграфа D, входящих в вершину x.
- $\delta(D)$, $\delta^+(D)$ и $\delta^-(D)$ минимальные степень, исходящую степень и входящую степень вершин D соответственно. Аналогично, $\Delta(D)$, $\Delta^+(D)$ и $\Delta^-(D)$ это максимальные степень, исходящая степень и входящая степень орграфа D.

- ullet Нетрудно понять, что для орграфа D и вершины $v \in V(D)$ выполнено $d_D(x) = d_D^+(x) + d_D^-(x)$.
- ullet Если в орграфе нет кратных стрелок, то $d_D^+(v)=|\mathrm{N}_D^+(v)|, \quad d_D^-(v)=|\mathrm{N}_D^-(v)|, \quad d_D(v)=|\mathrm{N}_D(v)|.$
- Пути и циклы в ориентированном графе отличаются от обычного графа тем, что каждая стрелка может быть пройдена только в соответствии с направлением от начала к концу. Таким образом, у каждого пути в орграфе есть начало и конец, а у каждого цикла фиксированное направление обхода.
- Расстояние $\operatorname{dist}_D(x,y)$ от вершины x до вершины y в орграфе D есть длина кратчайшего xy-пути. В орграфе D возможно, что $\operatorname{dist}_D(x,y) \neq \operatorname{dist}_D(y,x)$.
- Удаление вершин и стрелок из орграфа мы определим и будем обозначать так же, как удаление вершин и рёбер из неориентированного графа.
- Аналогично неориентированному графу определяется стягивание стрелки.

- Для неориентированного графа H его *ориентацией* является любой орграф \vec{H} с $V(\vec{H}) = V(H)$, стрелки которого это ориентированные каким-либо способом рёбра из E(H). Таким образом, у графа H есть $2^{e(H)}$ ориентаций.
- Для орграфа D определим неориентированный граф \underline{D} с множеством вершин V(D) и множеством рёбер E(D).
- Иногда допускается *частичная ориентация* рёбер графа G, когда часть рёбер остается неориентированными, по ним разрешен проход в обе стороны.

Определение

Вершины a и b ориентированного графа G назовем c в a назовем b и из b в a.

Ориентированный граф G называется *сильно связным*, если любые две его вершины связаны.

- ullet Отношение связанности вершин ориентированного графа G является отношением эквивалентности (рефлексивно, симметрично, транзитивно).
- Множество вершин V(G) разбивается на классы попарно связанных вершин, которые мы будем называть компонентами сильной связности.
- Для краткости, вместо "компонента сильной связности" будем писать КСС.
- Построим для орграфа G орграф компонент сильной связности C(G), вершины которого КСС G. Проведем в орграфе C(G) стрелку $V_i \to V_j$ тогда и только тогда, когда в орграфе G есть хотя бы одна стрелка, направленная от КСС V_i к V_j .

Д. В. Карпов

Лемма 1

Для любого ориентированного графа G выполняются следующие утверждения.

- C(G) ациклический орграф.
- Для любой компоненты сильной связности V_i индуцированный подграф $G(V_i)$ сильно связен.

Доказательство. 1) Предположим противное, пусть в C(G)есть цикл $V_1 V_2 \dots V_k$. Тогда в орграфе G все вершины из $\mathop{\ddot{\cup}}_{i=1}^{}V_i$ попарно связаны и, следовательно, входят в одну КСС. Противоречие.

- 2) Пусть $w_1, w_2 \in V_i$. Тогда существует $w_1 w_2$ -путь S и w_2w_1 -путь T в орграфе G.
- Понятно, что все вершины из $V(S) \cup V(T) \ni w_1, w_2$ связаны в орграфе G, следовательно, $V(S) \cup V(T) \subset V_i$, то есть, вершины w_1 и w_2 связаны в $G(V_i)$. Таким образом, орграф $G(V_i)$ сильно связен. 4 D > 4 P > 4 E > 4 E > E 9 Q Q

Определение

Пусть V_i — компонента сильной связности ориентированного графа G.

- Назовем эту компоненту *промежуточной*, если в графе C(G) существует стрелка, входящая в V_i , и существует стрелка, выходящая из V_i .
- ullet В противном случае назовем компоненту V_i крайней.
- Так как в C(G) нет циклов, любой максимальный путь в этом графе начинается в вершине, из которой все ребра выходят, и заканчивается в вершине, в которую все ребра входят. Такие вершины соответствуют крайним компонентам сильной связности.
- Таким образом, любая промежуточная компонента сильной связности орграфа G лежит в C(G) на пути между какими-то двумя крайними компонентами.

Лемма 2

Орграф D сильно связен, если и только если для любого множества $W \subsetneq V(D)$ существует стрелка из W в $V(D) \setminus W$.

Доказательство. \Rightarrow . Если из некоторого множества $W \subset V(D)$ нет стрелки в $V(D) \setminus W$, то невозможно попасть из W в $V(D) \setminus W$, что противоречит сильной связности D.

 \Leftarrow . Если орграф не является сильно связным, то он имеет крайнюю компоненту сильной связности W, из которой не выходит ни одной стрелки в $V(D)\setminus W$, что противоречит условию.

Лемма 3

Орграф D является ациклическим, если и только если его вершины можно занумеровать так, что любая стрелка ведет из вершины с меньшим номером к вершине с большим номером.

Доказательство. ←. Если такая нумерация существует, отсутствие циклов очевидно: ни из какой вершины нельзя попасть в вершину с меньшим номером.

- ⇒. Существование нумерации для орграфа, не являющегося сильно связным, докажем по индукции.
- База для одновершинного орграфа очевидна.
- Понятно, что в ациклическом орграфе есть вершина a, из которой не выходит ни одной стрелки. По индукционному предположению построим нумерацию для (очевидно, ациклического) орграфа D-a, после чего присвоим вершине a последний, самый большой номер. \square

Входящее и исходящее дерево

Определение

Пусть T — такой орграф, что неориентированный граф \underline{T} — дерево, $a \in V(T)$.

- 1) Если из каждой вершины орграфа T, кроме a, выходит ровно одно ребро, то T называется входящим деревом вершины a.
- 2) Если в каждую вершину орграфа T, кроме a, входит ровно одно ребро, то T называется *исходящим деревом* вершины a.

Лемма 4

- 1) Если D входящее дерево вершины a, то из каждой вершины D существует путь до a.
- 2) Если D исходящее дерево вершины a, то из a существует путь до каждой вершины D.

Доказательство. 1) Пусть $x \in V(D)$. Построим максимальный путь P с началом в x. Так как D — ациклический орграф, из конца пути P не выходит ни одной стрелки, значит, этот конец — вершина a.

2) Аналогично.

Теорема 1

Пусть G — орграф, $a \in V(G)$, V_a^- — множество всех вершин G, из которых можно дойти до a, а V_a^+ — множество всех вершин G, до которых можно дойти из а (мы считаем, что $a \in V_a^-$ и $a \in V_a^+$). Тогда существует входящее дерево вершины a с множеством вершин V_a^- и исходящее дерево вершины a с множеством вершин V_a^+ . Доказательство. Построим входящее дерево, исходящее

<u>Доказательство</u>. Построим входящее дерево, исходящее строится аналогично.

- Положим $L_0 = \{a\}$, пусть $L_k = \{x : \operatorname{dist}_G(x,a) = k\}$. Если m наибольшее расстояние от вершины множества V_a^- до a, то $\bigcup_{k=0}^m L_k = V_a^-$.
- Для всех k>0 проведем от каждой вершины $x\in L_k$ ровно одну стрелку, выходящую из x к вершине уровня L_{k-1} предку x (такая стрелка, очевидно, есть). Обозначим через D орграф с построенным множеством стрелок. В D из каждой вершины, кроме a, выходит ровно одна стрелка.

- Предположим, что в \underline{D} есть цикл Z. Пусть v вершина наибольшего уровня L_m в Z.
- Тогда оба соседа v в Z должны лежать в уровнях не более m. Но по построению v смежна в \underline{D} только с одной вершиной уровня не более m со своим предком. Противоречие.
- \bullet Значит, \underline{D} ацикличен, тогда D входящее дерево вершины a.

Следствие 1

В сильно связном орграфе G для любой вершины а существует исходящее и входящее деревья вершины а с множеством вершин V(G).

Доказательство. Так как орграф
$$G$$
 сильно связен, $V_{-}^{-} = V_{+}^{+} = V(G)$.

Теорема 2

Для сильно связного орграфа G на п вершинах выполняются следующие утверждения.

- 1) Существует сильно связный остовный подграф орграфа G, в котором не более 2n 2 стрелок.
- 2) Пусть k длина наибольшего простого цикла в орграфе G. Тогда существует сильно связный остовный подграф орграфа G, в котором не более 2n k стрелок.

Доказательство. 1) Пусть $v \in V(G)$, а T_v^+ и T_v^- — это исходящее и входящее деревья вершины v, соответственно (они сущестувуют по Следствию 1).

• Понятно, что остовный подграф орграфа G, полученный объединением этих двух деревьев, будет сильно связным и содержит не более 2n-2 стрелок.

- 2) Пусть Z простой цикл длины k в G.
- Построим новый орграф G', объединив все вершины цикла Z в одну новую вершину z. (Все стрелки, соединяющие остальные вершины орграфа G с вершинами цикла Z, в новом графе будут соединять эти же вершины с z. Возможно, в орграфе G' появятся кратные стрелки.)
- ullet Орграф G' на n-k+1 вершинах также будет сильно связным.
- По пункту 1 в нем можно оставить не более 2(n-k) стрелок, обеспечивающих его сильную связность. В орграфе G к соответствующим стрелкам мы добавим k стрелок цикла Z и получим сильно связный остов, в котором не более 2(n-k)+k=2n-k стрелок.

Следствие

Если в сильно связном орграфе G между любыми двумя вершинами проведено не более одной стрелки, то существует сильно связный остовный подграф орграфа G, в котором не более 2n — 3 стрелок.

Доказательство.

- ullet Очевидно, в сильно связном орграфе есть простой цикл. Пусть k длина наибольшего простого цикла в G. Из условия следует, что $k \geq 3$.
- По пункту 2 Теоремы 2 у G существует сильно связный остовный подграф, в котором не более чем $2(n-k)+k \le 2n-3$ стрелок.

Гамильтоновы циклы в орграфе

- *Гамильтонов цикл* в орграфе это простой ориентированный цикл, проходящий по всем вершинам.
- Можно обобщить на орграфы и один из классических критериев гамильтоновости критерий Дирака. С критерием Оре это сделать не получается.

Лемма 5

Пусть орграф G таков, что $\max(\delta^+(G), \delta^-(G)) = k$. Тогда G имеет простой путь длины хотя бы k и простой цикл длины хотя бы k+1.

Доказательство. • НУО $\delta^+(G) \geq k$.

- Рассмотрим путь максимальной длины $P=a_1a_2\dots a_n$ в орграфе G. Из его последней вершины a_n выходит хотя бы k стрелок. Так как путь P нельзя продлить, все эти стрелки выходят в a_1,\dots,a_{n-1} .
- Пусть a_m вершина наименьшего номера, для которой $a_n a_m \in A(G)$. Тогда в множестве $\{a_m, \dots, a_{n-1}\}$ лежат не менее k концов выходящих из a_n стрелок, следовательно, в этом множестве хотя бы k вершин. Значит, путь и цикл $a_m \dots a_{n-1} a_n$ нам подходят.

(A. Ghouila-Houri, 1960.) Пусть орграф G таков, что $\min(\delta^+(G), \delta^-(G)) \geq \frac{v(G)}{2}$. Тогда G имеет гамильтонов цикл.

Доказательство.

• Рассмотрим максимальный цикл $C = v_1 \dots v_m$. Тогда $m \geq \frac{v(G)}{2} + 1$ по Лемме 5. Нумерацию вершин считаем циклической по модулю m.

- Предположим, что цикл C не является гамильтоновым и рассмотрим орграф H=G-V(C). Пусть $P=u_1\dots u_k$ максимальный путь в H.
- ullet Тогда $m+k \leq v(G)$ и $k \leq rac{v(G)}{2}-1$.
- Положим $S = \{i : v_i u_1 \in A(G)\}$ и $T = \{i : u_k v_{i+1} \in A(G)\}.$
- Если $S \cap T \ni i$, то мы увеличим цикл C, заменив стрелку $v_i v_{i+1}$ на путь $v_i u_1 P u_n v_{i+1}$ (см. рис. а), что противоречит максимальности цикла C. Следовательно, $S \cap T = \emptyset$.

- В силу максимальности пути P мы имеем $N_{C}^{+}(u_{k}) \subset V(C) \cup V(P)$ и $N_{C}^{-}(u_{1}) \subset V(C) \cup V(P)$.
- ullet Следовательно, $rac{v(G)}{2} \leq d_G^+(u_k) \leq k-1+|T|$ и $rac{v(G)}{2} \leq d_G^-(u_1) \leq k-1+|S|$.
- ullet Так как $S\cap T=arnothing$ и $k\leq rac{v(G)}{2}-1$, получим $|S|\geq 1$, $|T|\geq 1$ и $|S\cup T|=|S|+|T|\geq v(G)-2k+2\geq m-k+2$.
- ullet Существуют такие индексы i и j, что $i \in S$, $i+1,\dots,i+j-1 \notin S \cup T$ и $i+j \in T$. По доказанному выше j-1 < k-2.
- Тогда $v_i u_1, u_k v_{i+j+1} \in A(G)$ и мы получаем цикл $v_{i+j+1} C v_i u_1 P u_k$ (см. рис. b), в котором хотя бы на одну вершину больше чем в C. Противоречие.

Турниры

Определение

Турниром, называется орграф, в котором любые две вершины соединены ровно одной стрелкой.

• Такие орграфы называют турнирами, так как с их помощью удобно изображать однокруговые турниры без ничьих.

Лемма 6

В турнире существует гамильтонов путь.

Доказательство. • Рассмотрим самый длинный простой путь $P=a_1\dots a_k$ в турнире T.

- Предположим, что он не гамильтонов и рассмотрим не вошедшую в P вершину $b \in V(T)$.
- ullet Если $ba_1\in A(T)$, то добавим b в начало пути. Если $a_nb\in A(T)$, то добавим b в конец пути. Так как это противоречит максимальности $P,\ a_1b\in A(T)$ и $ba_n\in A(T)$
- Тогда существует такое $i \leq k-1$, что $a_ib \in A(T)$ и $ba_{i+1} \in A(T)$. В этом случае можно вставить b между a_i и a_{i+1} и увеличить путь. Противоречие с максимальностью P.
- Значит, наше предположение неверно и P гамильтонов путь.

Следствие 2

Структура компонент сильной связности турнирного графа представляет собой простой путь $V_1V_2\dots V_m$, в котором для любых двух различных компонент V_i и V_j , где i < j, все ребра графа ориентированы от V_i к V_j .

Доказательство. • Между любыми двумя компонентами турнира T есть стрелка. Следовательно, орграф КСС C(T) — турнир.

- ullet Пусть V_1,\ldots,V_m все КСС турнира T. По Лемме 6 в C(T) есть гамильтонов путь $V_1V_2\ldots V_m$.
- ullet Так как турнир C(T) ацикличен, $V_i V_j \in A(C(T))$ при i < j.

(P. Camion, 1959.) В сильно связном турнире существует гамильтонов цикл.

Доказательство. • В сильно связном турнире T есть циклы. Рассмотрим максимальный простой цикл $C = a_1 a_2 \dots a_k$. Предположим, что он не гамильтонов, пусть вершина b не вошла в этот цикл.

• Пусть не все стрелки между b и циклом C ориентированы одинаково. Тогда существуют последовательные вершины цикла a_i и a_{i+1} такие, что $a_ib, ba_{i+1} \in A(T)$ (см. рис. а). В этом случае можно удлинить максимальный цикл C, вставив вершину b между a_i и a_{i+1} , противоречие.

• Пусть из всех вершин цикла C стрелки входят в b (если стрелки выходят из b к C — аналогично). Ввиду сильной связности турнира T существует путь S от b до цикла C.

• Пусть S впервые пересекает цикл C в вершине a_{i+1} (см. рис. b). Тогда можно удлинить C, заменив стрелку $a_i a_{i+1}$ на путь $a_i b S a_{i+1}$. Противоречие.

Теорема 5

В сильно связном турнире G с четырьмя и более вершинами существуют две такие вершины $a,b\in V(G)$, что турниры G-a и G-b сильно связны.

Доказательство. • По Теореме 4 в турнире G есть $\Gamma \sqcup a_1 a_2 \ldots a_k$ (нумерация вершин — циклическая).

- ullet Если $a_i a_{i+2} \in A(G)$, то турнир $G a_{i+1}$ сильно связен. Если таких i хотя бы два, то теорема доказана.
- Пусть в A(G) существует не более чем одна стрелка вида $a_i a_{i+2}$. Тогда можно предположить, что $a_{i+2} a_i \in A(G)$ при $i \neq k$, а ориентация ребра $a_k a_{k+2} = a_k a_2$ может быть произвольной.

- Докажем, что в таком случае орграф $G-a_k$ сильно связен. Для этого достаточно показать, что существует путь из a_{k-1} в a_1 . Это несложно: по стрелкам-диагоналям ГЦ существует путь $a_{k-1}a_{k-3}\dots$, приходящий, в зависимости от четности k-1, в a_1 (рис. a) или в a_2 (рис. b). Во втором случае дополним этот путь участком $a_2a_3a_1$.
- Таким образом, турнир $G-a_k$ сильно связен. Отметим, что мы не пользовались при этом рёбрами $a_k a_2$ и $a_k a_{k-2}$, их ориентация не имеет для нас значения. Поэтому аналогично доказывается, что турнир $G-a_2$ сильно связен.

Теорема 6

- **(J. W. Moon, 1966.)** Пусть G сильно связный турнир, а $k \in \mathbb{N}$, $3 \le k \le v(G)$. Тогда выполнены следующие утверждения.
- 1) Для любой вершины $v \in V(G)$ существует простой цикл длины k, проходящий через v.
- 2) В турнире G существует хотя бы v(G) + 1 k простых циклов длины k.

Доказательство. • Зафиксируем k и будем доказывать оба утверждения индукцией по количеству вершин турнира G. При v(G)=k оба утверждения следуют из Теоремы 4: в сильно связном турнире G есть гамильтонов цикл.

- 1) Пусть v(G) > k. Тогда по Теореме 5 существует такая вершина $w \neq v$, что турнир G w сильно связен.
- Так как $3 \le k \le v(G) 1 = v(G w)$, по индукционному предположению в турнире G w есть простой цикл длины k, проходящий через v. Этот же цикл есть и в турнире G.

Д. В. Карпов

- 2) Пусть v(G) > k. Тогда по Теореме 5 существует такая вершина w, что турнир G w сильно связен.
- ullet В турнире G-w существует не менее v(G-w)+1-k=v(G)-k простых циклов длины k.
- По пункту 1 в турнире G существует простой цикл длины k, проходящий через вершину w, следовательно, в турнире G не менее чем v(G)-k+1 простых циклов длины k.

• Пусть G — орграф. Как и в неориентированном случае, $\alpha(G)$ — количество вершин в максимальном независимом множестве вершин орграфа G (то есть, максимальном множестве вершин, никакие две из которых не соединены стрелкой).

Теорема 7

(V. Chvatal; L. Lovasz, 1974.) В любом орграфе G существует такое независимое множество $S \subset V(G)$, что для любой вершины $v \in V(G) \setminus S$ существует путь длины не более 2 с началом в S и концом V.

Доказательство. Доказательство будет индукцией по количеству вершин в орграфе. База при v(G)=1 очевидна.

• Индукционный переход. Пусть для меньших орграфов утверждение доказано. Рассмотрим любую вершину $v \in V(G)$. Если $V(G) = \{v\} \cup \mathrm{N}_G^+(v)$, то утверждение теоремы очевидно, нам подходит $S = \{v\}$.

Д.В.Карпов

- Пусть $V(G) \neq \{v\} \cup \mathrm{N}^+_G(v)$. Для орграфа $G' = G (\{v\} \cup \mathrm{N}^+_G(v))$ утверждение доказано, возьмем соответствующее этому графу независимое множество S'.
- Если существует такая вершина $w \in S'$, что $v \in N_G^+(w)$, то множество S' подходит и для графа G (см. рис. a).
- Если такой вершины w нет, положим $S = S' \cup \{v\}$. Так как $S' \cap \mathrm{N}_G^+(v) = \varnothing$, в этом случае множество S независимо, и любая вершина $x \in V(G) \setminus S$ достижима из S по пути длины не более 2 (см. рис. b).

Следствие 3

В любом турнире G существует такая вершина v, что для любой вершины $w \in V(G)$ существует vw-путь длины не более 2.

Теорема 8

(B. Roy, 1967; T. Gallai, 1968) Пусть G — неориентированный граф, \vec{G} — его ориентация. Тогда орграф \vec{G} содержит путь длины не менее $\chi(G)-1$.

Доказательство. • Пусть $A\subset A(\vec{G})$ — минимальное по включению такое множество стрелок, что орграф $G'=\vec{G}-A$ — ациклический.

• Для любой вершины $v \in V(G)$ положим $\rho(v)$ равным длине наибольшего простого пути в орграфе G' с началом в v. Покажем, что ρ — правильная раскраска вершин графа G.

Утверждение

Пусть вершины $a,b\in V(G)$ соединены простым путём P в орграфе G'. Тогда $\rho(a)>\rho(b)$.

Доказательство. Рассмотрим путь P_b длины $\rho(b)$ в орграфе G'. Так как G' — ациклический, то любой путь в орграфе G' — простой. В частности, равный объединению P и P_b путь P_a с началом в a — простой. Так как $|P_a| > |P_b|$, то $\rho(a) > \rho(b)$. \square

- Вернемся к доказательству теоремы 8.
- Пусть $x,y\in V(G)$ и $xy\in E(G)$. НУО $xy\in A(G)$. Если $xy\in A(G')$, то, как доказано выше, $\rho(x)\neq \rho(y)$.
- Если $xy \not\in A(G')$, то $xy \in A$. Из минимальности A следует, что в орграфе G' + xy есть цикл, но тогда в орграфе G' есть yx-путь, а следовательно, $\rho(x) \neq \rho(y)$.
- Мы доказали правильность раскраски ρ . Пусть k номер наибольшего цвета в ρ . Тогда в орграфе G' (а значит, и в \vec{G}) есть простой путь длины k. Поскольку раскраска ρ красит вершины в цвета $0,1,\ldots,k$, то $\chi(G) \leq k+1$.

Ядро орграфа и списочные раскраски рёбер

Определение

Пусть H — орграф. Независимое множество вершин $U\subset V(H)$ называется *ядром*, если для любой вершины $v\in V(H)\setminus U$ существует хотя бы одна стрелка $vu\in A(H)$, где $u\in U$.

Лемма 7

Пусть H — орграф, каждой вершине $v \in V(H)$ соответствует список цветов L(v), причём $d_H^+(v) < \ell(v)$. Предположим, что каждый индуцированный подграф орграфа H имеет ядро. Тогда существует правильная раскраска вершин H в соответствии c данными списками.

Доказательство. ullet Индукция по v(H), база для пустого орграфа очевидна.

• Предположим, что для меньших орграфов лемма доказана. Пусть i — цвет, присутствующий в списках, $V_i \subset V(H)$ — множество из всех вершин, чьи списки содержат цвет i, $H_i = H(V_i)$.

• По условию, орграф H_i имеет ядро U_i . Покрасим все вершины из U_i в цвет i (это не нарушит правильности раскраски, так как ядро является независимым множеством), после чего исключим цвет i из списков всех вершин $v \in V_i \setminus U_i$ и получим новые списки L'(v).

- Пусть $H' = H U_i$. Поскольку U_i ядро орграфа $H_i = H(V_i)$, то для любой вершины $v \in V_i \setminus U_i$ выполняется $d_{H'}^+(v) \le d_H^+(v) 1 < \ell(v) 1 = \ell'(v)$.
- По индукционному предположению, вершины орграфа H' можно покрасить правильным образом по новым спискам, в которых нет цвета i. В результате получится правильная раскраска всех вершин орграфа H по спискам.

(F. Galvin, 1995.) Для любого двудольного графа G выполняется $\operatorname{ch}'(G) = \chi'(G) = \Delta(G)$.

Доказательство. • Пусть $G = (V_1, V_2, E), k = \Delta(G)$. По теореме 4.8 мы имеем $\chi'(G) = k$, то есть, существует правильная раскраска ρ рёбер графа G в k цветов (пусть это цвета $1, \ldots, k$).

- Обозначим через G' рёберный граф двудольного графа G. (Вершины G' соответствуют рёбрам G. Две вершины G'смежны, если и только если смежны соответствующие рёбра.)
- \bullet Пусть каждому ребру e графа G (а значит, и каждой вершине графа G') соответствует список L(e) из k цветов. Наша цель — построить правильную раскраску вершин графа G' по данным спискам. Для этого мы хотим применить к рёберному графу G' Лемму 7.
- Введём множество предпочтений для вершин исходного графа G. Для вершины $a \in V_1$ предпочтение $<_a$ строго упорядочивает инцидентные а рёбра по возрастанию их цветов в раскраске ρ , а для вершины $b \in V_2$, предпочтение $<_b$ строго упорядочивает инцидентные b рёбра по убыванию их цветов в раскраске ρ .

цветов 1, ..., i-1, всего не более k-1 стрелки, см. рис.)

• Остаётся доказать, что у любого индуцированного подграфа $\vec{H'}$ орграфа $\vec{G'}$ есть ядро. Для этого мы воспользуемся теоремой Гэйла-Шепли (Stable Marriage Theorem).

Теория графов. Глава 7. Орграфы.

Д.В.Карпов

• Пусть F — множество всех рёбер графа G, соответствующих вершинам из $\vec{H'}$, а H = G(F). Для введённого выше множества предпочтений существует стабильное паросочетание M графа H. Рёбра из M образуют независимое множество вершин орграфа $\vec{H'}$.

- По определению стабильного паросочетания и по построению ориентации $\vec{H'}$, для любого ребра $f \in F \setminus M$ существует такое ребро $e \in M$ и общая вершина v рёбер e и f, что $f <_v e$, то есть, $fe \in A(\vec{H'})$. Таким образом, M ядро $\vec{H'}$.
- Теперь воспользуемся Леммой 7 и получим, что существует правильная раскраска вершин графа G' (и, соответственно, рёбер графа G) по заданным спискам. Таким образом, $\mathrm{ch}'(G)=k$.

Теорема 10

(T. Gallai; A. Milgram, 1960.) Вершины орграфа G можно покрыть не более, чем $\alpha(G)$ попарно непересекающимися простыми путями.

Доказательство. • Для каждого простого пути P обозначим его конец через t(P).

- \bullet Будем называть *покрытием* орграфа G множество из нескольких попарно непересекающихся простых путей в G, покрывающих все его вершины. Для каждого покрытия ${\mathcal P}$ обозначим через $T(\mathcal{P})$ множество концов всех путей из \mathcal{P} .
- \bullet На множестве покрытий орграфа G мы введём отношение порядка: будем считать, что $\mathcal{P}_1 < \mathcal{P}_2$, если $|\mathcal{P}_1| < |\mathcal{P}_2|$ и $T(\mathcal{P}_1) \subset T(\mathcal{P}_2)$.

Утверждение

Пусть \mathcal{P} — минимальное по введённому отношению порядка покрытие орграфа G. Тогда на каждом пути из $\mathcal P$ можно выбрать по вершине так, чтобы множество выбранных вершин было независимым.

- Пусть $\mathcal{P} = \{P_1, \dots, P_n\}$, $u_i = t(P_i)$. Если множество $\{u_1, \dots, u_n\}$ независимое, то утверждение доказано.
- Предположим, что $u_i u_j \in A(G)$. Пусть путь Q_i получен из P_i добавлением стрелки $u_i u_j$.
- Если $V(P_j) = \{u_j\}$, то заменой P_i и P_j на Q_i получаем строго меньшее в нашем порядке чем \mathcal{P} , покрытие, что невозможно.
- ullet Значит, $V(P_j)
 eq \{u_j\}$. Тогда рассмотрим орграф $G' = G u_j$ и его покрытие \mathcal{P}' , полученное заменой пути P_j на $P_i' = P_j u_j$.
- ullet Докажем, что \mathcal{P}' минимальное покрытие орграфа G'.
- ullet Если это не так, рассмотрим строго меньшее в нашем порядке покрытие \mathcal{Q}' орграфа G'.
- Пусть $u'_j = t(P'_j)$, ясно, что $u'_j u_j \in A(G)$. Отметим, что единственная вершина, которая может входить в $T(\mathcal{Q}')$ и не входит в $T(\mathcal{P})$ это u'_j . Рассмотрим три случая.

- ullet Пусть $Q=Q'u'_iu_j$, тогда $t(Q)=u_j$.
- Рассмотрим покрытие $\mathcal Q$ орграфа $\mathcal G$, полученное из $\mathcal Q'$ заменой пути $\mathcal Q'$ на $\mathcal Q$. Очевидно $\mathcal Q<\mathcal P$: мы имеем $\mathcal T(\mathcal Q)\subset\mathcal T(\mathcal P)$ и $|\mathcal Q|=|\mathcal Q'|<|\mathcal P'|=|\mathcal P|$. Противоречие с выбором $\mathcal P$.

Случай 2: В \mathcal{Q}' нет пути с концом в u_j' , но существует путь $\mathcal{Q}' \in \mathcal{Q}'$ с $t(\mathcal{Q}') = u_i$.

- ullet Пусть путь Q получен из Q' добавлением ребра u_iu_j , тогда $t(Q)=u_j$.
- Рассмотрим покрытие $\mathcal Q$ орграфа $\mathcal G$, полученное из $\mathcal Q'$ заменой пути $\mathcal Q'$ на $\mathcal Q$. Очевидно $\mathcal Q<\mathcal P$: мы имеем $T(\mathcal Q)\subset T(\mathcal P)$ и $|\mathcal Q|=|\mathcal Q'|<|\mathcal P'|=|\mathcal P|$. Противоречие с выбором $\mathcal P$.

Случай 3: В покрытии \mathcal{Q}' нет ни пути с концом в u_j' , ни пути с концом в u_i .

- ullet Тогда $|T(\mathcal{Q}')| \leq |T(\mathcal{P})| 2$, следовательно, $|\mathcal{Q}'| \leq |\mathcal{P}| 2$.
- ullet Дополним \mathcal{Q}' до покрытия \mathcal{Q} орграфа G, добавив путь $\{u_j\}$. И на этот раз оказывается, что $\mathcal{Q}<\mathcal{P}$, противоречие.

- ullet Таким образом, \mathcal{P}' минимальное покрытие орграфа G'.
- Так как v(G') < v(G), по индукционному предположению на путях покрытия \mathcal{P}' можно выбрать по вершине так, чтобы множество выбранных вершин было независимым. По построению покрытия \mathcal{P}' , выбранные вершины подходят и для покрытия \mathcal{P} орграфа G.
- Теперь легко доказать теорему. Рассмотрим любое минимальное покрытие $\mathcal P$ орграфа G. На путях покрытия $\mathcal P$ можно выбрать по вершине так, чтобы эти вершины образовывали независимое множество, следовательно, $|\mathcal P| \leq \alpha(G)$.
- В качестве следствия из Теоремы 9 мы выведем классическую теорему Дилворса.

Определение

Пусть V — частично упорядоченное множество с порядком <. Подмножество $U \subset V$ — цепь, если любые два его элемента сравнимы и *антицепь*, если никакие два его элемента несравнимы.

Следствие 4

(R. P. Dilworth, 1950.) Пусть V — конечное частично упорядоченное множество. Тогда минимальное количество цепей, покрывающих V, равно количеству вершин в максимальной антицепи множества V.

Доказательство. • Построим орграф G на элементах множества V, как на вершинах: для любых $x,y\in V$ мы положим $xy\in A(G)$, если и только если x< y.

- Очевидно, $\alpha(G)$ равно количеству вершин в максимальной антицепи множества V, а путь в орграфе G проходит по вершинам цепи множества V.
- По Теореме 10 вершины орграфа G можно покрыть не более, чем $\alpha(G)$ путями, то есть, множество V можно покрыть не более, чем $\alpha(G)$ цепями.
- Остаётся лишь добавить, что две вершины антицепи не могут оказаться в одной цепи, поэтому покрывающих множество V цепей будет ровно $\alpha(G)$.