TP n°1

Cinématiques directe et inverse

1 Introduction

On propose d'étudier la modélisation géométrique et cinématique d'un bras manipulateur développé par le Laboratoire de Robotique Interactive du $CEA\ List\ (Fig.\ 1)$. Ce robot, dont la chaîne cinématique est de type série, comporte 6 articulations rotoïdes $(j_i\ avec\ i=1,\ldots,6)$.

FIGURE 1 – Prototype de bras robotique poly-articulé du CEA-LIST.

Les valeurs numériques des paramètres du robot, nécessaires à la réalisation de ce TP, sont renseignées dans le tableau 1.

Il est nécessaire de disposer de l'outil logiciel $Matlab^{TM}$ pour pouvoir traiter ce sujet.

2 Modèle géométrique direct

 ${\it Q}1$ Compléter la figure 2 donnant les repères attachés aux corps successifs du robot selon la convention DHM.

Q2 Compléter le tableau donnant les paramètres géométriques du robot.

i	α_i	d_i	θ_i	r_i
1	?	?	?	?
2	?	?	?	?
3	?	?	?	?
4	?	?	?	?
5	?	?	?	?
6	?	?	?	?

FIGURE 2 – Description de la géométrie du robot.

Q3 Programmation de la fonction calculant le MGD du robot :

- 1. Écrire une fonction générique $CalculTransformationElem(\alpha_i, d_i, \theta_i, r_i)$ retournant la matrice de transformation homogène \overline{g} entre deux repères consécutifs;
- 2. Écrire une fonction $CalculMGD(\alpha, d, \theta, r)$ qui calcule le MGD d'un robot quelconque en chaîne ouverte simple prenant comme argument d'entrée les vecteurs de paramètres géométriques du robot (α, d, θ, r) ;
- 3. A partir des résultats de la question Q2, calculer la matrice de transformation homogène \overline{g}_{0E} donnant la position et l'orientation du repère terminal \mathcal{R}_E attaché à l'organe terminal du robot dans le repère de base \mathcal{R}_0 (\mathcal{R}_E est défini par une translation du repère \mathcal{R}_6 d'une distance r_E selon l'axe z_6).

Q4 Que valent les positions P_x, P_y, P_z et les paramètres liés à l'orientation $R_{n,q}$ (n vecteur directeur et $q \in [0,\pi]$ l'angle de rotation tels que $R_{n,q} = R_{0E}$) du repère terminal lorsque les configurations articulaires $q = [q_1, \dots, q_6]^t$ valent $q_i = \left[-\frac{\pi}{2}, 0, -\frac{\pi}{2}, -\frac{\pi}{2}, -\frac{\pi}{2}, -\frac{\pi}{2}\right]^t$ et $q_f = \left[0, \frac{\pi}{4}, 0, \frac{\pi}{2}, \frac{\pi}{2}, 0\right]^t$?

Q5 Proposer une fonction VisualisationRepere(q) qui retourne une visualisation des position et orientation du repère terminal \mathcal{R}_E par rapport au repère de base \mathcal{R}_0 pour les configurations q_0 et q_f ?

3 Modèle cinématique direct

Q6 Écrire une fonction CalculJacobienne (alpha, d, theta, r) retournant la matrice jacobienne 0J (calculée par la méthode des compositions de vitesse).

Pour rappel, la matrice jacobienne exprime les vitesses des coordonnées opérationnelles du repère terminal dans \mathcal{R}_0 pour une configuration q donnée

en fonction des vitesses articulaires :

$${}^{0}\mathcal{V}_{0,E}\left(0_{E}\right)=\left[\begin{array}{c}{}^{0}V_{0,E}\left(O_{E}\right)\\{}^{0}\omega_{0,E}\end{array}\right]=\left[\begin{array}{c}{}^{0}J_{v}\left(q\right)\\{}^{0}J_{\omega}\left(q\right)\end{array}\right]\dot{q}={}^{0}J\left(q\right)\dot{q}$$

Que valent les torseurs cinématiques en O_E évalués en $q = q_i$ et $q = q_f$ à la vitesse articulaire $\dot{q} = [0.5, 1.0, -0.5, 0.5, 1.0, -0.5]^t$?

 $m{Q}7$ Dans la suite de l'étude, on restreint l'étude des vitesses opérationnelles du repère terminal aux seules vitesses de translation via $^0J_v\left(q\right)$. Qualifier la transmission des vitesses entre les espaces articulaire et opérationnel pour les configurations q_i et q_f correspondantes : quelle est la direction privilégiée pour transmettre une vitesse dans l'espace opérationnelle lorsque la configuration du bras manipulateur vaut q_i ? Idem pour q_f ? Que valent les manipulabilités en vitesse correspondantes?

Sur la figure obtenue à la question Q5 montrant les repères dans l'espace opérationnel, tracer les ellipsoïdes ¹ de vitesse correspondantes aux configurations q_i et q_f .

4 Modèle géométrique inverse

Q8 Dans cette étude, la résolution du MGI est envisagée numériquement en exploitant le modèle différentiel inverse. Par ailleurs, on restreint l'étude à la seule position du repère terminal du robot dans l'espace opérationnel (pas de contrainte sur l'orientation du repère terminal).

En utilisant une procédure itérative exploitant la pseudo-inverse de la matrice jacobienne, programmer une fonction $q^* = MGI(X_d, q_0, k_{max}, \epsilon_x, \alpha_{step})$ ayant comme argument d'entrée la position opérationnelle X_d désirée, la condition initiale q_0 et la taille du pas α_{step} . le nombre maximal d'itérations k_{max} de l'algorithme, ainsi que la norme de l'erreur cartésienne tolérée $||X_d - f(q_k)|| < \epsilon_x$, définissent les critères d'arrêt de l'algorithme.

Calculer q^* lorsque la fonction est appelée avec les arguments suivant :

- 1. $X_d = X_{d_i} = (-0.1, -0.7, 0.3)^t$, $q_0 = [-1.57, 0.00, -1.47, -1.47, -1.47, -1.47]$, $k_{max} = 100$, $\alpha_{step} = 0.005$, $\epsilon_x = 1 \text{mm}$?
- 2. $X_d = X_{d_f} = (0.64, -0.10, 1.14)^t$, $q_0 = [0, 0.80, 0.00, 1.00, 2.00, 0.00]$, $k_{max} = 100$, $\alpha_{step} = 0.005$, $\epsilon_x = 1 \text{mm}$?

Vérifier l'exactitude du résultat en vous aidant de la fonction calculée en ${\bf \it Q}3$.

5 Modèle cinématique inverse

 ${m Q}9$ Dans cette question, la trajectoire de l'organe terminal à suivre dans l'espace opérationnel doit permettre d'atteindre, de manière rectiligne dans

^{1.} On pourra utiliser les fonctions *ellipsoid* et rotate fournies par $Matlab^{TM}$.

l'espace opérationnel, la position finale désirée X_{d_f} à partir de la position initiale X_{d_i} . Ce mouvement rectiligne est effectué à vitesse constante $V = 1m.s^{-1}$ et est échantillonné à une période $T_e = 1ms$. La position de l'organe terminal à l'instant kT_e est noté X_{d_k} . La configuration initiale du robot est donnée par q_i (figurant à la question $\mathbf{Q}4$).

A partir du modèle cinématique différentiel inverse, proposer une fonction $MCI(X_{d_i}, X_{d_f}, V, T_e, q_i)$ capable de réaliser le transformateur de coordonnées nécessaire pour fournir aux asservissements des axes la série de valeurs de consignes q_{d_k} correspondant aux X_{d_k} . Pour cela, après avoir programmé la loi horaire correspondante au mouvement demandé, vous pourrez faire appel à la fonction développée à la question Q8 capable de calcul le MGI itératif à partir de la pseudo-inverse de la matrice jacobienne.

Sur la figure obtenue à la question Q4, superposer la trajectoire de consigne constituée de la suite des positions X_{d_k} à faire suivre à l'organe terminal. A l'aide de la fonction $VisualisationRepere(q_{d_k})$, afficher sur la même figure la suite des repères \mathcal{R}_E pour quelques configurations q_{d_k} . Commenter la trajectoire réellement suivie par l'organe terminal.

Q10 Tracer l'évolution temporelle des variables articulaires q_1 à q_6 calculées à la question précédente. Pour chaque variable articulaire, superposer graphiquement les valeurs extrémales admissibles qui correspondent aux butées articulaires :

$$q_{min} = \left[-\pi, -\frac{\pi}{2}, -\pi, -\pi, -\frac{\pi}{2}, -\pi \right]$$

et

$$q_{max} = \left[0, \frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \right]$$

Commenter les évolutions des variables articulaires obtenues à la question précédente.

 $m{Q}11$ Dans cette question, nous modifions l'algorithme développé à la question $m{Q}9$. Nous souhaitons prendre en compte l'éloignement des valeurs prises par les variables articulaires par rapport à leurs butées dans le calcul du modèle cinématique inverse. Pour cela, développer une nouvelle fonction $m{MCIbutees}(X_{d_i}, X_{d_f}, V, T_e, q_i, q_{min}, q_{max})$ qui considère une tâche secondaire visant l'éloignement des butées articulaires q_{min} et q_{max} . Par la technique du gradient projeté dans le noyau de ${}^0J_v\left(q\right)$, vous considérerez la minimisation de la fonction potentielle suivante :

$$H_{but.}\left(q\right) = \sum_{i=1}^{n} \left(\frac{q_i - \overline{q}_i}{q_{max} - q_{min}}\right)^2 \text{ où } \overline{q}_i = \frac{q_{max} - q_{min}}{2}$$

Tracer la nouvelle évolution temporelle des variables articulaires q_1 à q_6 pour la trajectoire de consigne donnée à la question $\mathbf{Q}9$. Commentez les valeurs prises par les variables articulaires.

Annexe

Paramètres	Valeurs numériques	Grandeurs
d_3	0.7m	Paramètre géométrique
r_1	0.5m	Paramètre géométrique
r_4	0.2m	Paramètre géométrique
r_E	0.1m	Paramètre géométrique

 $Table\ 1-Donn\'es\ num\'eriques\ du\ robot.$