Metody Obliczeniowe w Nauce i Technice 16. Szeregi i transformaty Fouriera

Marian Bubak, Katarzyna Rycerz

Department of Computer Science
AGH University of Science and Technology
Krakow, Poland
kzajac@agh.edu.pl
dice.cyfronet.pl

Contributors Maciej Trzebiński Mikołaj Biel Rafał Stachura

Outline

- Wstęp
- Podstawowe własności szeregów i transformat Fouriera
- 3 Interpolacja trygonometryczna
- 4 Szybka transformata Fouriera FFT dla $n = 2^m$
- Transformata Hartley'a
- 6 Transformata Fouriera w internecie

Wstęp

Przykładowe zastosowania transformaty Fouriera:

- metody spektralne:
 - fizyka, chemia: badanie właściwości atomów, cząsteczek, itp.
 - na podstawie widma promieniowania elektromagnetycznego
- algorytmy numeryczne:
 - równania różniczkowe
 - analiza: badanie jakości algorytmów (np. dla MES)
- o cyfrowe przetwarzanie sygnału
 - badanie składowych harmonicznych
 - filtracja obrazów i dźwięku
 - kompresja

Sposoby opisu procesu fizycznego I

- ullet w dziedzinie czasu (time domain) \Longrightarrow A(t) $t-{\sf czas}, \quad A-{\sf pewna}$ wielkość
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

A(t), $\widehat{A}(\omega)$ — dwie różne reprezentacje tego samego zjawiska związane równaniami transformat Fouriera:

$$A(t) = \int\limits_{-\infty}^{\infty} rac{d\omega}{2\pi} \widehat{A}(\omega) \cdot e^{i\omega t} \ \widehat{A}(\omega) = \int\limits_{-\infty}^{\infty} dt \cdot A(t) \cdot e^{-i\omega t} \$$

lub równoważnie:

Sposoby opisu procesu fizycznego II

$$\begin{array}{l} \textit{A}(t) = \int\limits_{-\infty}^{\infty} df \cdot \widehat{\textit{A}}(f) \cdot e^{2\pi i f t} \\ \widehat{\textit{A}}(f) = \int\limits_{-\infty}^{\infty} dt \cdot \textit{A}(t) \cdot e^{-2\pi i f t} \end{array} \right\} \begin{array}{l} \rightarrow \text{ korzystamy z: } \omega = 2\pi f \\ \text{ nie trzeba pamiętać} \\ \text{ o czynniku } \frac{1}{2\pi} \end{array}$$

Trasformować można zarówno w czasie, jak i w przestrzeni, jeśli mamy:

$$t-{\rm czas} \rightleftharpoons \omega-{\rm częstość}$$
 kołowa $x-{\rm położenie} \rightleftharpoons k={2\pi\over\lambda}$ - liczba falowa, $\lambda-{\rm długość}$ fali $A(t), \quad \widehat A(\omega)-{\rm ciągłe}$ f. swych argumentów

$$A(t) \rightleftharpoons \widehat{A}(\omega)$$

Definicje transformat Fouriera I

FT - transformata Fouriera (Fourier Transform)
x - ciągłe
k - ciągłe
A(x), Â(k) - f. ciągłe

$$\widehat{A}(k) = \int_{-\infty}^{\infty} dx A(x) e^{-ikx}$$

$$A(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \widehat{A}(k) e^{ikx}$$
(16.1)

Definicje transformat Fouriera II

- W transformacie odwrotnej stosujemy szereg Fouriera (Fourier Series)
 - x zmienna ciągła
 - B(x) f. okresowa ciągłej zmiennej x; okres: L

(ciągła odcinkami wraz z pochodną: na tych odcinkach - szereg zbieżny do B(x), w punktach nieciągłości - do wartości średniej)

$$\widehat{B}(k) = \int_{L} dx B(x) e^{-ikx}$$

$$B(x) = \frac{1}{L} \sum_{l=-\infty}^{\infty} \widehat{B}(k) e^{ikx}$$
(16.2)

I - liczba całkowita

k - dyskretne

$$k = \underbrace{\frac{2\pi}{L}} \cdot I = k_0 \cdot I$$

Definicje transformat Fouriera III

O Discrete-time Fourier transform

$$x_p$$
 - dyskretne o skoku H $x_p = p \cdot H$

p - liczba całkowita

$$k$$
 - ciągła $\widehat{C}(k)$ - periodyczna okres $k_{\rm F}=\frac{2\pi}{\mu}$

$$\widehat{C}(k) = H \cdot \sum_{p=-\infty}^{\infty} C(x_p) e^{-ikx_p}$$

$$C(x_p) = \int_{k_g} \frac{dk}{2\pi} \widehat{C}(k) e^{ikx_p}$$
(16.3)

Definicje transformat Fouriera IV

fFT - skończona transformata Fouriera (finite FT)

$$x_p$$
 - dyskretne o skoku H

$$x_p = p \cdot H$$

$$D(x_p)$$
 - okresowa; okres: L

N - ilość punktów w okresie $D(x_p)$

$$k$$
 - dyskretna, skok $k_0 = \frac{2\pi}{I}$; $k = I \cdot k_0$

$$\widehat{D}(k)$$
 - okresowa, okres $k_g = \frac{2\pi}{H}$

$$\widehat{D}(k) = H \cdot \sum_{p=0}^{N-1} D(x_p) e^{-ikx_p}$$

$$D(x_p) = \frac{1}{L} \sum_{l=0}^{N-1} \widehat{D}(k) e^{ikx_p}$$
(16.4)

Związki między transformatami Fouriera

Przez przejścia graniczne:

Zestawienie własności transformat I

poza własnościami dotyczącymi pochodnej - obowiązują dla wszystkich 4 transformat

$$Z: f(x) \rightleftharpoons \widehat{f}(k); \quad g(x) \rightleftharpoons \widehat{g}(k)$$

podobieństwo: $f(\frac{x}{a}) \rightleftharpoons |a| \cdot \hat{f}(k \cdot a)$

mnożenie przez stałą: $b \cdot f \rightleftharpoons b \cdot \widehat{f}$

suma: $f+g \rightleftharpoons \widehat{f}+\widehat{g}$

odwrotność: jeżeli: $f(x) \rightleftharpoons \widehat{f}(k) = g(k)$ (16.7)

to: $g(x) \rightleftharpoons \widehat{g}(k) = 2\pi \cdot f(-k)$

przesunięcie: $f(x+a) \rightleftharpoons e^{ika} \cdot \hat{f}(k)$

pochodna: $\frac{df}{dx} \rightleftharpoons ik \cdot \hat{f}(k)$

Zestawienie własności transformat II

Twierdzenie o mocy

$$\int_{-\infty}^{\infty} f(x) \cdot g^*(x) dx = \int_{-\infty}^{\infty} \widehat{f}(k) \cdot \widehat{g}^*(k) \frac{dk}{2\pi}$$
 (16.8)

Transformata zachowuje iloczyn skalarny. Jeśli ta sama funkcja \rightarrow kwadrat modułu \rightarrow moc sygnału Analogicznie dla FS i fFT (wtedy sumy szeregów)

Splot (konwolucja)

$$f(x), g(x)$$
— funkcje ich splot:

$$h(x) = \int_{-\infty}^{\infty} dx' f(x') g(x - x') \equiv f * g$$
 (16.9)

Własności:

f * g = g * f	przemienny
f*(g*h)=(f*g)*h	łączny
f*(g+h) = f*g+f*h	rozdzielny

Przykładowe zastosowanie: splot sygnału z filtrem

Przykład operacji splotu dla dwóch wektorów kolumnowych:

$$a \in IR^{n \times 1} \; ; \; b \in IR^{n \times 1} \; ; \; a = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \end{bmatrix} \; ; \quad b = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{n-1} \end{bmatrix}$$

$$[a * b]_k = \sum_{i=0}^k \alpha_i \cdot \beta_{k-i}; \quad a * b \in IR^{2n \times 1}$$

$$\begin{bmatrix} \beta_{n-1} \\ \vdots \\ \beta_1 \\ \beta_0 \end{bmatrix} \qquad \Rightarrow \quad a * b = \begin{bmatrix} \alpha_0 \beta_0 \\ \alpha_0 \beta_1 + \alpha_1 \beta_0 \\ \alpha_0 \beta_2 + \alpha_1 \beta_1 + \alpha_2 \beta_0 \\ \vdots \\ \alpha_{n-2} \beta_{n-1} + \alpha_{n-1} \beta_{n-2} \\ \alpha_{n-1} \beta_{n-1} \\ 0 \end{bmatrix}$$

Splot i jego transformaty

$$h(x) = f(x) * g(x) \leftrightarrow \widehat{h(k)} = \widehat{f(k)} \cdot \widehat{g(k)}$$
$$h(x) = f(x) \cdot g(x) \leftrightarrow \widehat{h(k)} = \widehat{f(k)} * \widehat{g(k)}$$

	×	k
FT	$\int_{-\infty}^{\infty} dx' \cdot f(x') \cdot g(x - x')$ $f(x) \cdot g(x)$	$ \widehat{f}(k) \cdot \widehat{g}(k) \int_{-\infty}^{\infty} \frac{dk'}{2\pi} \cdot \widehat{f}(k') \cdot \widehat{g}(k-k') $
FS(i)	$\int_{L} dx' \cdot f(x') \cdot g(x - x')$ $f(x) \cdot g(x)$	$ \widehat{f}(k) \cdot \widehat{g}(k) \frac{1}{L} \cdot \sum_{L'=-\infty}^{\infty} \widehat{f}(k') \cdot \widehat{g}(k-k') $
FS(ii)	$H \cdot \sum_{p'=-\infty}^{\infty} f(x'_p) \cdot g(x_p - x'_p)$ $f(x_p) \cdot g(x_p)$	$ \widehat{f}(k) \cdot \widehat{g}(k) \int_{k_g} \frac{dk'}{2\pi} \cdot \widehat{f}(k') \cdot \widehat{g}(k-k') $
fFT	$H \cdot \sum_{p'=0}^{\infty} f(x_p') \cdot g(x_p - x_p')$ $f(x_p) \cdot g(x_p)$	$\widehat{f}(k) \cdot \widehat{g}(k)$ $\frac{1}{l} \cdot \sum_{l'=0}^{N-1} \widehat{f}(k') \cdot \widehat{g}(k-k')$

Transformaty 3-D i . . .

Uogólnienie z 1-D na 3-D (i więcej) - bezpośrednie:

1-D	3-D	
X	$\vec{x}=(x_1,x_2,x_3)$	
k	$\vec{k}=(k_1,k_2,k_3)$	
$k \cdot x$	$\vec{x} = (x_1, x_2, x_3)$ $\vec{k} = (k_1, k_2, k_3)$ $\vec{k} \cdot \vec{x}$	
	, →	(16.11)
$\frac{d\vec{k}}{2\pi}$	dx $\frac{dk}{(2\pi)^3}$ $V_b = L_1 \cdot L_2 \cdot L_3$ $V_c = H_1 \cdot H_2 \cdot H_3$	
L	$V_b = L_1 \cdot L_2 \cdot L_3$	
Н	$V_c = H_1 \cdot H_2 \cdot H_3$	

- Wielomiany algebraiczne nie są dobre do opisu zjawisk okresowych
- Rozwiązanie: interpolacja wielomianami opartymi o funkcje trygonomentyczne

funkcje okresowe o okresie L spełniają zależność g(y+L)=g(y) funkcje trygonometryczne: okresem jest 2π , po przeskalowaniu:

$$x = \frac{2\pi}{L} \cdot y, f(x) = g(\frac{x \cdot L}{2\pi})$$

okresem g(y) jest L, okresem f(x) jest 2π ,

$$f(x+2\pi)=g(\frac{(x+2\pi)\cdot L}{2\pi})=g(\frac{x\cdot L}{2\pi}+L)=g(\frac{x\cdot L}{2\pi})=f(x)$$

szukamy wielomianu trygonometrycznego

$$t_{n-1}(x) = \sum_{j=0}^{n-1} c_j \cdot (e^{ix})^j = \sum_{j=0}^{n-1} c_j \cdot e^{ijx}$$

gdzie (przypomnienie - wzór Eulera)

$$e^{ix} = cos(x) + isin(x)$$

który w n punktach $x_k \in (0,2\pi]$ przyjmuje te same wartości, co interpolowana funkcja

$$t_{n-1}(x_k) = f(x_k), k = 0, 1, \dots, n-1$$

Wielomiany trygonometryczne różnią się od algebraicznych tylko wyborem zmiennej:

Theorem

Zadanie interpolacji trygonometrycznej ma jednoznaczne rozwiązanie.

W praktyce - ważny przypadek szczególny: n węzłów równoodległych, $\underline{x_k = \frac{2\pi}{n} \cdot k}$, k = 0, 1, ..., n - 1 $\underline{\text{funkcje } e^{ijx}}, \ j = 0, \ 1, \ \dots, \ n - 1 \ \text{tworzą} \ \underline{\text{układ ortogonalny}} \ \text{w sensie} \\ \underline{\text{iloczynu skalarnego zdefinowanego:}}$

$$\langle f|g \rangle = \sum_{k=0}^{n-1} f(x_k) \cdot g^*(x_k), x_k = \frac{2\pi}{n} \cdot k, k = 0, 1, \dots, n-1$$

A dokładniej:

$$\langle e^{ijx}|e^{ilx}\rangle = \sum_{k=0}^{n-1} e^{ijx_k} \cdot e^{-ilx_k} = n \cdot \delta_{j,l} = \begin{cases} 0 & j \neq l \\ n & j = l \end{cases}$$

Dla

$$x_k = \frac{2\pi}{n} \cdot k, k = 0, 1, \dots, n-1$$

Gdzie $\delta_{j,l}$ to delta Kroneckera

$$\delta_{j,l} = \left\{ egin{array}{ll} 0, \ j
eq l \ 1, \ j = l \end{array}
ight. \qquad \mathsf{dla} \ j,l \in \{0,1,..,n-1\}$$

Dowód:

$$\langle e^{ijx}|e^{ilx}\rangle = \sum_{k=0}^{n-1} e^{ijx_k} \cdot e^{-ilx_k} = \sum_{k=0}^{n-1} e^{i(j-l)\frac{2\pi k}{n}} (\star)$$

dla j = I

$$(*) = \sum_{k=0}^{n-1} e^0 = n$$

dla $j \neq l$

$$(*) = \sum_{k=0}^{n-1} \underbrace{e^{\frac{i(j-l)2\pi}{n} \cdot k}}_{\text{-n-wyrazów}} = a_0 \frac{1-q^n}{1-q} = \frac{1-\underbrace{e^{\frac{i(j-l)2\pi}{n} \cdot n}}_{\text{-1}-q}}_{\text{-1}-q} = \frac{1-\underbrace{e^{\frac{i(j-l)2\pi}{n} \cdot n}}_{\text{-1}-q}}_{\text{-1}-q} = 0$$

$$a_0 = 1; q = e^{\frac{i(j-l)2\pi}{n}}$$

Jakie powinny być współczynniki wielomianu interpolacyjnego c_j ?

1°

$$\langle t_{n-1}(x)|e^{ilx}\rangle = \left\langle \sum_{j=0}^{n-1} c_j \cdot e^{ijx} \middle| e^{ilx} \right\rangle = \sum_{j=0}^{n-1} c_j \cdot n \cdot \delta_{jl} =$$

$$= c_l \cdot n \implies c_l = \frac{1}{n} \langle t_{n-1}(x)|e^{ilx} \rangle$$

2°

$$\langle t_{n-1}(x)|e^{ilx}\rangle = \sum_{k=0}^{n-1} \underbrace{t_{n-1}(x_k)}_{\text{evartosci}} \cdot e^{-ilx_k} = \sum_{k=0}^{n-1} f(x_k) \cdot e^{-ilx_k}$$

czyli:

$$c_j = \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) \cdot e^{-ijx_k}, j = 0, 1, \dots, n-1$$

Dwa etapy obliczeń:

analiza Fouriera:

dla danych liczb zespolonych $f(x_k), k=0,1,\ldots,n-1$ szukamy $c_j, j=0,1,\ldots,n-1$

synteza Fouriera:

mając liczby $c_j, j=0,1,\ldots,n-1$ szukamy

$$f(x) = \sum_{j=0}^{n-1} c_j \cdot e^{ij\frac{2\pi}{n} \cdot k}, k = 0, 1, \dots, n-1$$

- \implies obie:
 - dyskretne
 - wzajemnie odwrotne

Podsumowanie:

klasyczny algorytm:
$$(f = A \cdot C)$$

$$n^{2} \begin{cases} -\text{zespolonych mnożeń,} \\ -\text{zespolonych dodawań,} \\ -\text{obliczeń } e^{-i\frac{2\pi kj}{n}} \end{cases}$$

Wada → duża złożoność operacji

FFT I

- Danielson, Lanczos (1942)
- R.L.Garwin (IBM Yorktown Heights Researcg Center)
- James William Cooley, John Wilder Tukey (1962)

Table: Złożoność

	obliczeniowa		czasowa
klasyczna FT:	$O(N^2)$	\Longrightarrow	1.5 godziny
FFT:	$O(N \log_2 N)$	\Longrightarrow	0.1 sekundy

Założenia:

rozmiar problemu: $N = 10^6$ CPU ~ 100 MFLOPS

FFT II

Dane:
$$f(x_k), x_k = \frac{2\pi}{n} \cdot k, k = 0, 1, \dots, n-1$$

Szukamy: $c_j = \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) \cdot e^{-i\frac{2\pi k}{n} \cdot j}, j = 0, 1, \dots, n-1$
gdy: $a_k = \frac{1}{n} \cdot f(x_k), \omega = e^{-i\frac{2\pi}{n}}$
to: $c_j = \sum_{k=0}^{n-1} a_k \cdot \omega^{jk}, j = 0, 1, \dots, n-1$
Założenie: ilość punktów: $n = 2^m \implies$ tyleż współczynników Fouriera.

FFT III

```
(k - numer punktu) gdy k parzyste k=2\cdot k_1 gdy k nieparzyste k=2\cdot k_1+1 Dziedzina k: z dołu k_1=0 (parzyste k) z góry: n-1=2^m-1 \implies k - nieparzyste: 2k_1+1=n-1 \implies k_1=\frac{n}{2}-1 Rozdzielamy wyznaczanie współczyników!!!:
```

$$c_{j} = \sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}} \cdot (\omega^{2})^{j \cdot k_{1}} + \sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}+1} \cdot (\omega^{2})^{j \cdot k_{1}} \cdot \omega^{j}$$
 (16.24)

FFT IV

$$\begin{cases} 0 \le k_1 \le \frac{n}{2} - 1 \\ 0 \le j \le n - 1 \end{cases}$$

Dzielimy liczby j na dwa zbiory wg zasady:

$$j=rac{n}{2}\cdot l+j_1$$
 dla (reszta z dzielenia) $0\leq j_1\leq rac{n}{2}-1$

Mniejsze od $\frac{n}{2}$

$$l = 0 \text{ dla } 0 \le j \le \frac{n}{2} - 1$$

Niemniejsze od $\frac{n}{2}$

$$l=1$$
 dla $\frac{n}{2} \leq j \leq n-1$

FFT V

z kolei:

$$\frac{(\omega^2)^{jk_1}}{(bo\ e^{-2\pi i\cdot l\cdot k_1} = 0)^{n\cdot l\cdot k_1 + 2j_1k_1} = (e^{-\frac{2\pi i}{n}})^{(n\cdot l\cdot k_1 + 2j_1k_1)} = (\omega^2)^{j_1k_1}}{(bo\ e^{-2\pi i\cdot l\cdot k_1} = 1)}$$

oraz

$$\omega^j = \omega^{\frac{n}{2} \cdot l + j_1} = (e^{-\frac{2\pi i}{n}})^{\frac{n}{2} \cdot l} \cdot \omega^{j_1} = e^{-i\pi l} \cdot \omega^{j_1}$$

Czyli

$$\begin{cases} \omega^j = \omega^{j_1} \text{ dla } I = 0 \text{ czyli } 0 \leq j \leq \frac{n}{2} - 1 \\ \omega^j = -\omega^{j_1} \text{ dla } I = 1 \text{ czyli } \frac{n}{2} \leq j \leq n - 1 \end{cases}$$

FFT VI

i uzyskujemy: Dla
$$0 \le j \le \frac{n}{2} - 1$$

$$c_{j} = \underbrace{\sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}} \cdot (\omega^{2})^{j_{1}k_{1}}}_{\varphi(j_{1})} + \underbrace{\sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}+1} \cdot (\omega^{2})^{j_{1}k_{1}}}_{\psi(j_{1})} \cdot \omega^{j_{1}}, 0 \leq j_{1} \leq \frac{n}{2} - 1$$

Dla
$$\frac{n}{2} \le j \le n-1$$

$$c_{j} = \underbrace{\sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}} \cdot (\omega^{2})^{j_{1}k_{1}}}_{\varphi(j_{1})} - \underbrace{\sum_{k_{1}=0}^{\frac{n}{2}-1} a_{2k_{1}+1} \cdot (\omega^{2})^{j_{1}k_{1}}}_{\psi(j_{1})} \cdot \omega^{j_{1}}, 0 \leq j_{1} \leq \frac{n}{2} - 1$$

FFT VII

Każdy z 2 członów jest transformatą Fouriera - zamiast pojedynczej transformaty w n punktach \rightarrow suma 2 transformat w $\frac{n}{2}$ punktach wykorzystywanych dwa razy

Dla
$$0 \le j \le \frac{n}{2} - 1$$

$$c_j = \varphi(j_1) + \omega^{j_1} \cdot \psi(j_1); j_1 = 0, 1, \dots, \frac{n}{2} - 1$$

Dla
$$\frac{n}{2} \leq j \leq n-1$$

$$c_j = \varphi(j_1) - \omega^{j_1} \cdot \psi(j_1); j_1 = 0, 1, \dots, \frac{n}{2} - 1$$

itd ... \rightarrow dokonując dalszych podziałów. złożoność obliczeniowa $\leq 2 \cdot Nlog_2N$

FFT VIII

Zasada dziel i zwyciężaj!

Figure: zrodlo: https:

//riptutorial.com/algorithm/example/27088/radix-2-fft

FFT

Figure: źródlo: j.w.

$$W_{N}^{R}=(e^{rac{-2\pi i}{N}})^{R}$$
, W naszych oznaczeniach $N=$ n , $R=j_{1}$, $W=\omega$

FFT

Figure: źródlo: https://riptutorial.com/algorithm/example/27088/radix-2-fft

Rekurencyjny algorytm FFT

```
function FFT(a)
          n \leftarrow length[a]
       if n = 1
            then return a
         \omega_n \leftarrow e^{\frac{2\pi \cdot i}{n}}
          \omega \leftarrow 1
          a_{even} \leftarrow (a_0, a_2, \dots, a_{n-2})
          a_{odd} \leftarrow (a_1, a_3, \ldots, a_{n-1})
          y^{even} \leftarrow FFT(a_{even})
          y^{odd} \leftarrow FFT(a_{odd})
           for j \leftarrow 0 to \frac{n}{2} - 1
y_j \leftarrow y_i^{even} + \omega y_i^{odd}
11
               y_{j+\frac{n}{2}} \leftarrow y_i^{even} - \omega y_i^{odd}
13
               \omega \leftarrow \omega \cdot \omega_n
           end
15
           return y
     end
```

- Mamy dane $P(x) = \sum_{i=0}^{n-1} a_i x^i$ oraz $Q(x) = \sum_{i=0}^{n-1} b_i x^i$
- Jesli potraktować $[a_i]$ oraz $[b_i]$ jak wektory, to $[c_i]$ gdzie $c_i = \sum_{j=0}^i a_j b_{i-j}$ jest ich splotem
- Jednocześnie: $W(x) = P(x) \cdot Q(x) = \sum_{i=0}^{2n-2} c_i x^i$ (aby wzór zadziałał, wyższe niż n-1 współczynniki P(x) oraz Q(x) zastępujemy 0)
- ullet zamiast wyliczać współczynniki wprost: transformata ullet iloczyn ullet odwrotna transformata

Splot współczynników wielomianów

$$(a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}b_{0}) \times (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}b_{0}) \times (b_{3}x^{3} + b_{1}x^{2} + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + b_{1}x + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + a_{1}x^{4} + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{2} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{2} + a_{1}x^{4} + b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{4} + a_{1}x^{4} + a_{0}) \cdot (b_{3}x^{3} + b_{1}x^{4} + a_{0}b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{4} + a_{1}x^{4} + a_{0}b_{0}) \times (b_{1}x^{4} + a_{1}x^{4} + a_{1}b_{0}) =$$

$$= (a_{3}x^{3} + a_{1}x^{4} + a_{1}x^$$

Zastosowanie - szybkie mnożenie wielomianów

Plan (szkic):

- wyliczyć 2n-1 wartości wielomianów $P(x_k)$ oraz $Q(x_k)$ dla $x_k = \omega^k = e^{\frac{2\pi i k}{2n-1}}$ dla k = 0,..,2n-2 używając FFT (synteza) złożoność $O(n \log(n))$
- 2 policzyć wartości $W(x_k) = P(x_k) \cdot Q(x_k)$ złożoność O(n)
- **3** policzyć współczynniki c_i znając wartości $W(x_k)$ FFT (analiza) złożoność $O(n \log(n))$

Transformata Hartley'a I

Tranformata Fouriera

$$F(f) = \int_{-\infty}^{\infty} X(t)e^{-i2\pi ft}dt$$

$$X(t) = \int_{-\infty}^{\infty} F(f)e^{i2\pi ft}df$$

$$c_j = \frac{1}{n} \sum_{k=0}^{n-1} X(t_k)e^{-i2\pi j\frac{k}{n}}$$

$$X(t_k) = \sum_{k=0}^{n-1} c_j e^{i2\pi j\frac{k}{n}}$$

Transformata Hartley'a II

Transformata Hartley'a

$$H(f) = \int_{-\infty}^{\infty} X(t) \cos(2\pi f t) dt$$
$$X(t) = \int_{-\infty}^{\infty} H(f) \cos(2\pi f t) dt$$

gdzie:
$$cas(x) = cos(x) + sin(x)$$

istotna różnica: zamiast $\underbrace{e^{-x \cdot i}}_{zespolone}$ mamy $\underbrace{cas(x)}_{rzeczywiste}$ (\Longrightarrow ilość

operacji arytmetycznych i pamięć)

Transformata Hartley'a III

Wersja dyskretna HT

$$H_j = \frac{1}{n} \sum_{k=0}^{n-1} f(t_k) \cdot \cos\left(\frac{2\pi jk}{n}\right)$$

$$f(t_k) = \sum_{j=0}^{n-1} H_j \cdot \cos\left(\frac{2\pi jk}{n}\right)$$

Bibliografia

- R.V.L. Hartley: A more symetrical Fourier analysis applied to transmission problems, Proc. IRE, 30 (1942) 144,
- R.N. Bracewell: The fast Hartley transform, Proc. IEEE 72 (1984) 1010 (No 8),
- M.A. O'Neill: Faster than fast Fourier, Byte, April 1988, p.293.

FFT - przydatna w:

- analiza spektralna
- projektownie efektywnch algorytmów
 - iloczyn wielomianów → splot 2 wektorów
 - szybki binarny algorytm mnożenia liczb całkowitych (m. Schönhagego - Strassena)
- → A.V. Aho, J.E. Hopcroft, J.D. Ullman: Projektowanie i analiza algorytmów komputerowych. PWN, 1983 (1974)

Biblioteki dla FFT w różnych językach:

- Transformata Fourier'a w ujęciu Matlab'a https://www.mathworks.com/help/matlab/ fourier-analysis-and-filtering.html
- Transformata Fourier'a w języku C (GSL) https: //www.gnu.org/software/gsl/doc/html/fft.html
- FFTPACK5 biblioteka dla języka Fortran: https://people.sc.fsu.edu/~jburkardt/f_src/fftpack5/fftpack5.f90
- NAG Library The Numerical Algorithms Group FFT https://www.nag.co.uk/numeric/fn/manual/pdf/c07/ c07m01_fft_fn03.pdf

Więcej o zastosowaniacj FT:

- Chemia i Medycyna:
 - spektroskopowe badanie właściwości materii: https://bit.ly/2rjpVXI
 - Spektroskopia NMR:
 Bernhard J., Analytische Chemie IV-Structure determination
 by NMR, 1. Practical aspects of pulse Fourier transform NMR
 spectroscopy, 1.1-1.21
 - FTIR (Fourier-transform infrared spectroscopy): https://bit.ly/2RsUEMS

Transformata Fouriera w internecie

Informacje dodatkowe:

- Prosty poradnik wprowadzający do FT
 https://betterexplained.com/articles/
 an-interactive-guide-to-the-fourier-transform/
- Zastosowania Transformaty Fourier'a(Stanford University) https://see.stanford.edu/materials/lsoftaee261/ book-fall-07.pdf