## Project Development Phase Model Performance Test

| Date          | 19 September 2022                |
|---------------|----------------------------------|
| Team ID       | PNT2022TMID49306                 |
| Project Name  | Project – Web Phishing Detection |
| Maximum Marks | 10 Marks                         |

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter      | Values                                                                            | Screenshot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-------|----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.    | Metrics        | Classification Model:<br>Gradient Boosting Classification<br>Accuray Score- 97.4% | To [43] Accepting the close(Piction regard of the mode) print(merries allow)(feeting-regard(p,tent, p,tent,gho)) precision recall filtering 1 8.08 8.66 8.67 8.97 8.97 1 8.00 8.68 8.97 2021 page ong 8.00 8.97 8.77 2021 paginted ong 6.55 8.97 8.77 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 2.    | Tune the Model | Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method   | Wilcoxon signed sen's test  in [85] which and loves applicate mean  from sign of loves applicate mean  from sign of the mean subtrain  the sign of the mean subtrained or mean subtrain |  |  |  |

#### 1. METRICS:

#### **CLASSIFICATION REPORT:**

In [52]: #computing the classification report of the model print(metrics.classification\_report(y\_test, y\_test\_gbc)) precision recall f1-score support 0.99 0.96 0.97 976 -1 0.97 1 0.99 0.98 1235 accuracy 0.97 2211 macro avg 0.98 0.97 0.97 2211 weighted avg 0.97 0.97 0.97 2211

# PERFORMANCE:



| Out[83]: |   | ML Model                     | Accuracy | f1_score | Recall | Precision |
|----------|---|------------------------------|----------|----------|--------|-----------|
|          | 0 | Gradient Boosting Classifier | 0.974    | 0.977    | 0.994  | 0.986     |
|          | 1 | CatBoost Classifier          | 0.972    | 0.975    | 0.994  | 0.989     |
|          | 2 | Random Forest                | 0.969    | 0.972    | 0.992  | 0.991     |
|          | 3 | Support Vector Machine       | 0.964    | 0.968    | 0.980  | 0.965     |
|          | 4 | Decision Tree                | 0.958    | 0.962    | 0.991  | 0.993     |
|          | 5 | K-Nearest Neighbors          | 0.956    | 0.961    | 0.991  | 0.989     |
|          | 6 | Logistic Regression          | 0.934    | 0.941    | 0.943  | 0.927     |
|          | 7 | Naive Bayes Classifier       | 0.605    | 0.454    | 0.292  | 0.997     |
|          | 8 | XGBoost Classifier           | 0.548    | 0.548    | 0,993  | 0.984     |
|          | 9 | Multi-layer Perceptron       | 0.543    | 0.543    | 0.989  | 0.983     |

## 2. TUNE THE MODEL - HYPERPARAMETER TUNING



## VALIDATION METHODS: KFOLD & Cross Folding

### Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model_selection import cross_val_score, KFold
         # Load the dataset
         X = load iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n_estimators=100)
         model2 = XGBClassifier(n estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
Out[78]: 95.0
```

#### 5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined ftest 5x2cv
          from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
          from sklearn.ensemble import GradientBoostingClassifier
          from mlxtend.data import iris_data
          # Prepare data and clfs
         X, y = iris_data()
clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                    estimator2=clf2,
                                    X=X, y=y,
                                    random_seed=1)
         print('f-value:', f)
         print('p-value:', p)
          f-value: 1.727272727272733
          p-value: 0.2840135734291782
```