E. DZY Loves Planting

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

DZY loves planting, and he enjoys solving tree problems.

DZY has a weighted tree (connected undirected graph without cycles) containing n nodes (they are numbered from 1 to n). He defines the function g(x,y) ($1 \le x,y \le n$) as the longest edge in the shortest path between nodes x and y. Specially g(z,z)=0 for every z.

For every integer sequence $p_1, p_2, ..., p_n$ $(1 \le p_i \le n)$, DZY defines f(p) as .

DZY wants to find such a sequence p that f(p) has maximum possible value. But there is one more restriction: the element j can appear in p at most x_j times.

Please, find the maximum possible f(p) under the described restrictions.

Input

The first line contains an integer n ($1 \le n \le 3000$).

Each of the next n - 1 lines contains three integers a_i , b_i , c_i ($1 \le a_i$, $b_i \le n$; $1 \le c_i \le 10000$), denoting an edge between a_i and b_i with length c_i . It is guaranteed that these edges form a tree.

Each of the next n lines describes an element of sequence x. The j-th line contains an integer x_i $(1 \le x_i \le n)$.

Output

Print a single integer representing the answer.

Examples

```
input

4
1 2 1
2 3 2
3 4 3
1
1
1
1
1
1
2
0utput
2
```

```
input

4
1 2 1
2 3 2
3 4 3
4
4
4
4
Output

3
```

Note

