- उत्तर हीरा का रवा कार्बन परमाणुओं का बना होता है। जो मजबूती के साथ सह संयोजी बंधनों के जालक के रूप में परस्पर बंधे रहते हैं। अत: प्राकृतिक पदार्थों में हीरा सर्वाधिक कठोर होता है। इसी कठोरता के कारण ही इसका उपयोग पथ्वी के अंदर छेद करने वाले यंत्रों तथा काँच काटने में किया जाता है।
- 11. प्रश्नः अपने किस गुण के कारण ग्रेफाइट का उपयोग स्नेहक के रूप में किया जाता है?
- उत्तर ग्रेफाइट के आसन्न परतों के बीच का आकर्षण बल कमजोर होता है। अतः ढीली परतदार सरंचना के कारण ग्रेफाइट मुलायम होता है। इसी कारण इसका उपयोग मशीन के पार्ट्स – पूर्जी में शुष्क स्नेहक के रूप में किया जाता है।

- 12. प्रश्नः कार्बनिक यौगिक से आप क्या समझते है?
- उत्तर कार्बन तथा उससे उत्पन्न होने वाले यौगिको को कार्बनिक यौगिक कहते हैं। जैसे CN, CO2, CO3, H2CO3 इत्यादि।
- 13. प्रश्नः कार्बनिक रसायन से आप क्या समझते हैं?
- उत्तर रसायन शास्त्र की वह शाखा जिसके अन्तर्गत कार्बनिक यौगिकों का अध्ययन किया जाता है।। उसे कार्बनिक रसायन कहते हैं।
- 14. प्रश्नः जैव शक्ति सिद्धान्त से आप क्या समझते हैं?
- उत्तर प्रारंभ में ऐसी मान्यता थी कि कार्बनिक यौगिक सिर्फ जीवों द्वारा प्राप्त किये जा सकते हैं। उन्हें प्रयोगशाला में तैयार करना संभव नहीं है।

अतः बर्जीलियस ने 1815 ई० में जीवन शक्ति का सिद्धान्त दिया, जिसके अनुसार सजीव पदार्थी में कार्बनिक यौगिक का निर्माण एक अदृश्य जीवन शक्ति द्वारा होता है।

- 15. प्रश्नः प्रयोगशाला में सबसे पहले किस यौगिक का निर्माण किया गया? इसका रसायनिक समीकरण लिखें तथा वर्णन करें।
- उत्तर जर्मन रसायन शास्त्री Wholer ने 1828 ई० में पोटैशियम साइनेट (KCNO) एवं अमोनियम सल्फेट $(NH_4)_2$ SO_4 को गर्म करके तथा इसके पुनर्विन्यास अभिक्रिया

के फलस्वरूप यूरिया यौगिक का निर्माण किया। $2KCNO + (NH_4)_2SO_4 - K_2SO_4 + 2NH_4CNO$ $NH_4CNO - NH_2 \cdot CO \cdot NH_2$

इससे जैव शक्ति सिद्धान्त का अन्त हो गया। बाद में कोल्वे ने 1844 ई० में एसीटिक अम्ल तथा 1856 ई० में बर्तेलों ने मिथेन का निर्माण किया।

16. प्रश्नः – कार्बनिक यौगिकों के महत्व को लिखें।

उत्तर – हम अपने दैनिक जीवन में जिन वस्तुओं का इस्तेमाल करते हैं। वे कार्बनिक यौगिक के बने होते हैं। हमारे भोजन में कार्बोहाइड्रेट, साबुन, रंग, प्लास्टिक की वस्तु, बच्चों का खिलौना इत्यादि कार्बनिक यौगिक के बने होते हैं। कार्बनिक यौगिकों का उपयोग कृत्रिम वस्तु रेयॉन, नाइलॉन, डेक्रॉन, टेरीलिन इत्यादि बनाने में होता है। कार्बनिक यौगिकों का उपयोग कीटनाशक, डी.डी.टी, गैमेक्सीन, आदि के रूप में होता है। रोग से मुक्त होने के लिए कार्बनिक यौगिकों का उपयोग दवा के रूप में किया जाता है। सल्फा ड्रग्स, पेनिसिलीन, क्लोरोमाइसेटीन, टेरामाइसिन, ऐस्पिरीन इत्यादि। कार्बनिक विस्फोटक जैसे डाइनामाइट, ट्राइनाइट्रो टॉलुइन (TNT) ट्राइनाइट्रो वेंजिन (TNB) का उपयोग युद्ध काल से होता आ रहा है।

हम कार्बनिक यौगिकों से घिर गये हैं। अगर इस धरती से कार्बन तथा उसके यौगिकों को हटा दिया जाए तो पृथ्वी भी चन्द्रमा की तरह जीवन विहीन हो जाएगी।

- 17. प्रश्नः कार्बनिक यौगिकों के मुख्य स्त्रोतों को लिखें। उत्तर कार्बनिक यौगिकों के मुख्य स्त्रोत निम्नलिखित है
 - (i) प्राणी जगत-प्राणी जगत में वसा, प्रोटीन, खनिज लवण, हार्मोन्स, यूरिक अम्ल, वसा अम्ल इत्यादि से प्राप्त होते हैं।
 - (ii) वनस्पति जगत-वनस्पति जगत से कार्बोहाइट्रेट अल्कोहल, ईत्र, गोंद इत्यादि प्राप्त होते हैं।
 - (iii) कोल-कोल से बेंजिन, टॉलुइन, फिनॉल, नेफ्थलीन इत्यादि प्राप्त होता है।
 - (iv) पेट्रोलियम-पेट्रोल, डीजल, किरोसिन, मोम इत्यादि प्राप्त होता है।
- 18. प्रश्नः कार्बनिक तथा अकार्बनिक यौगिक में अंतर स्पष्ट करें। उत्तर कार्बनिक तथा अकार्बनिक यौगिक में निम्नलिखित अंतर हैं –

- 1 कार्बनिक यौगिक में मुख्य अव्ययी तत्व कार्बन होता है। इसके अलावा इसमें H, O, P, S, N, CI, Br,I उपस्थित रहते हैं।
- 1 अकार्बनिक यौगिक में कोई तत्व मुख्य नहीं होता। ये कुल 108 तत्व से निर्मित होते हैं।
- अब तक ज्ञात यौगिकों में कार्बनिक यौगिकों की संख्या 50 लाख से उपर है।
- 2 जबिक अकार्बिनक यौगिकों की संख्या 50,000 तक ही सीमित है।
- 3 कार्बनिक यौगिक का अध्ययन संरचना समूह या क्रियाशील समूह के आधार पर किया जाता है।
- 3 अकार्बनिक यौगिकों का अध्ययन अम्ल, क्षार तथा लवण के आधार पर किया जाता है।
- 4 कार्बनिक यौगिकों में मुख्यतः सह संयोजक बंधन उपस्थित रहता है।
- 4 अकार्बनिक यौगिकों में आयनिक बंधन उपस्थित रहता है।
- 5 ये प्रायः विद्युत के कुचालक होते हैं।
- 5 ये विद्युत के सुचालक होते हैं।
- 6 इनका द्रवणांक तथा क्वथनांक काफी निम्न होता है।
- 6 इनका द्रवणांक तथा क्वथनांक उच्च होता है।
- 7 इनकी संरचना जटिल होती है।
- 7 इनकी सरंचना सरल होती है।
- 8 इनकी प्रतिक्रियायें धीरे-धीरे होती हैं। 8 इनकी प्रतिक्रियायें तेजी से होती हैं।
- 19. प्रश्नः कार्बनिक यौगिकों के सूत्रों को कितने भागों में व्यक्त किया जाता है? वर्णन करें।

उत्तर - कार्बनिक यौगिकों के सूत्र तीन प्रकार में व्यक्त किये जाते हैं -

1. लुइस इलेक्ट्रॉन बिंदु संरचना - यह संरचना प्रत्येक परमाणु से जुड़े परमाणुओं तथा संयोजन इलेक्ट्रॉन की व्यवस्था दर्शाता है।

2. संरचना सूत्र (Structral Formule)-किसी यौगिक के अणु में उपस्थित परमाणुओं की सजावट दिखाने वाले सूत्र को यौगिक का सरंचना सूत्र कहते हैं। जैसे-CH

H-C-H H

3. त्रिविम सूत्र - संरचना सूत्र को त्रिविम आकृति से भी निर्देशित किया जाता है।

हाइड्रोकार्बन (Hydro carbon)

- 1. संतृप्त हाइड्रो कार्बन (Saturated Hydrocarbon)-वैसे कार्बनिक यौगिक जिसमें कार्बन की चारों संयोजकतायें एकल बंधन द्वारा संतृप्त रहती हैं। उसे संतृप्त हाइड्रोकार्बन कहते हैं।
 - **a.** एल्केन (Alkane)-वैसे संतृप्त हाइड्रोकार्बन, जिसमें सिर्फ एकल बंधन (-) उपस्थित रहता है एवं यौगिक में सिर्फ कार्बन एवं हाइड्रोजन परमाणु ही पाया जाता है। उसे एल्केन कहते हैं। इसका सामान्य सूत्र ($C_n H_{2n+2}$) होता है।
- 2. असंतृप्त हाइड्रोकार्बन (Unsaturated Hydrocarbon)-वैसे यौगिक जिसमें कार्बन परमाणु के बीच द्विबंधन (=)या त्रिबंधन (<u>=</u>) उपस्थित रहता है। उसे असंतृप्त हाइड्रोकार्बन कहते हैं।
 - **a.** एल्कीन (Alkene)-वैसे संतृप्त हाइब्रेकार्बन, जिसमें सिर्फ द्वि बंधन (=) उपस्थित रहता है एवं यौगिक में सिर्फ कार्बन एवं हाइड्रोजन परमाणु ही पाया जाता है। उसे एल्कीन कहते हैं। इसका सामान्य सूत्र $(C_n H_{2n})$ होता है।
 - **b.** एल्काइन (Alkyne)-वैसे असंतृप्त हाइड्रोकार्बन जिसमें कार्बन परमाणु के बीच त्रिबंधन (\equiv) उपस्थित रहता है एवं यौगिक में सिर्फ कार्बन एवं हाइड्रोजन परमाणु पाया जाता है। उसे एल्काइन कहते हैं। इसका सामान्य सूत्र ($C_n H_{2n-2}$) होता है।

	Alkane	Alkene	Alkyne
	$C_n H_{2n+2}$	$C_n H_{2n}$	$C_n H_{2n-2}$
	(-)	(=)	(\equiv)
	(+ ane)	(+ ene)	(+ yne)
(Meth)	(Methane)		
n = 1	CH_4	X	X
n = 2	C_2H_6	C_2H_4	C_2H_2
(Eth)	(Ethane)	(Ehene)	(Ethyne)

		इथिलीन	एसीटिलीन
n = 3 (Prop)	C ₃ H ₈ (Propane)	C ₃ H ₆ (Propene) (Propelene)	C ₃ H ₄ (Propyne)
n = 4 (But)	C₄H₁₀ (Butane)	C₄H ₈ (Butene) (Butelene)	C₄H ₆ (Butyne)
n = 5 (Pent)	C ₅ H ₁₂ (Petane)	C ₅ H ₁₀ (Pentene) (Pentylene)	C ₅ H ₈ (Pentyne) ^{पेंटाइन}

- 20. प्रश्नः बंद श्रृंखला वाले यौगिक कितने प्रकार के होते हैं? परिभाषित करें। उत्तर बंद श्रृंखला वाले यौगिक दो प्रकार के होते हैं।
 - **1.** समचक्रीय यौगिक इसमें वलय सिर्फ कार्बन परमाणुओं अर्थात् एक ही तरह के परमाणुओं का बना होता है। उसे सम चक्रीय यौगिक कहते हैं।
 - **a.** एरोमेटिक यौगिक (Aromatic Compound) ऐसे कार्बनिक यौगिक जिसमें वलय बेंजिन के समान छह कार्बन परमाणुओं का बना होता है। इसमें एकान्तर द्विबंधन पाये जाते हैं। जैसे बेंजिन (C_6H_6)