INTÉGRALE STOCHASTIQUE

Exercice 1 (Martingales locales).

- 1. La somme de deux martingales locales est-elle encore une martingale locale?
- 2. Soit $(M_t)_{t\geq 0}$ une martingale locale continue. On suppose que pour tout $t\geq 0$,

$$\mathbb{E}\left[\sup_{0 \le s \le t} |M_s|\right] < \infty.$$

Montrer que $(M_t)_{t\geq 0}$ est en réalité une vraie martingale.

- 3. Aurait-t-on pu conclure en supposant seulement que $\mathbb{E}[|M_t|] < \infty$ pour tout t (donner une preuve ou un contre exemple)?
- 4. On suppose maintenant que M est une martingale locale telle que pour tout $t \geq 0$, $\mathbb{E}[\langle M \rangle_t] < \infty$. Montrer que M est une vraie martingale.
- 5. Soit $(M_t)_{t\geq 0}$ une martingale locale positive telle que $\mathbb{E}[M_0] < \infty$. Montrer que c'est une surmartingale, et que c'est une martingale si et seulement si $\forall t \geq 0, \mathbb{E}[M_t] = \mathbb{E}[M_0]$.

Exercice 2 (Formule d'Itô). Dans chacun des cas suivants, montrer que $(Z_t)_{t\geq 0}$ est un processus d'Itô, calculer sa différentielle stochastique, et déterminer si $(Z_t)_{t\geq 0}$ est une martingale.

1.
$$Z_t = B_t + 4t$$

2.
$$Z_t = B_t^2 - t$$

3.
$$Z_t = t^2 B_t - 2 \int_0^t s B_s \, \mathrm{d}s$$

4.
$$Z_t = B_t^3 - 3tB_t$$

5.
$$Z_t = B_t^2(B_t^2 - 6t)$$

6.
$$Z_t = B_t \left(B_t^4 - 10tB_t^2 + 15t^2 \right)$$

7.
$$Z_t = \exp(\mu t + \sigma B_t)$$
, avec $(\mu, \sigma) \in \mathbb{R}^2$.

8.
$$Z_t = (\cos B_t, \sin B_t)$$

Exercice 3 Soit $H=(H_t)_{t\in[0,T]}$ un processus $\mathscr{H}^2_{\mathrm{loc}}$ strictement positif. Est-ce que $\int_0^t H_s \mathrm{d}B_s$ est positif?

Exercice 4 Le processus $X_t = \int_0^t e^{B_s^2} dB_s$ est-il une martingale?

Exercice 5 On pose $X_{\varepsilon} = \int_{0}^{1} \varepsilon^{-\lambda} e^{-B_{s}^{2}/2\varepsilon} dB_{s}$. Montrer que $X_{\varepsilon} \xrightarrow[\varepsilon \to 0]{L^{2}} 0$ si et seulement si $\lambda \in]0, 1/4[$.

Exercice 6 (Unicité de l'écriture d'un processus d'Itô). Soit ψ un processus progressivement mesurable et localement borné. On pose

$$Z_t := \int_0^t \psi(s) \mathrm{d}s \qquad (t \ge 0).$$

- 1. Vérifier que $(Z_t)_{t>0}$ est un processus à variations finies.
- 2. Montrer que si $(Z_t)_{t\geq 0}$ est une martingale locale, alors \mathbb{P} -ps, ψ est nul presque partout.
- 3. En déduire que si $(X_t)_{t\geq 0}$ est un processus d'Itô qui s'écrit sous la forme

$$X_t = X_0 + \int_0^t \phi(s) dB_s + \int_0^t \psi(s) ds,$$

avec $\phi \in \mathscr{H}^2_{loc}$ et ψ localement borné, alors cette écriture est unique.

Exercice 7 (Fonction du brownien). Soit $B = (B_t)_{t \ge 0}$ un mouvement brownien d-dimensionnel et soit $f \in \mathscr{C}^2(\mathbb{R}^d, \mathbb{R})$. On suppose que pour tout $t \ge 0$,

$$\mathbb{E}\left[\int_0^t |\nabla f(B_s)|^2 \, \mathrm{d}s\right] < \infty \qquad \text{et} \qquad \mathbb{E}\left[\int_0^t |\Delta f(B_s)| \, \mathrm{d}s\right] < \infty.$$

1. Établir l'identité suivante, valable pour tout $t \ge 0$:

$$\mathbb{E}[f(B_t)] = f(0) + \frac{1}{2} \mathbb{E} \left[\int_0^t \Delta f(B_s) \, \mathrm{d}s \right].$$

- 2. Montrer qu'en fait, la formule précédente est valable lorsque t est remplacé par n'importe quel temps d'arrêt τ borné (formule de Dynkin).
- 3. Retrouver la formule donnant les moments de la loi gaussienne.

Exercice 8 (EDP). Soit $(t,x) \mapsto f(t,x)$ une fonction deux fois dérivable, solution de l'EDP

$$\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0.$$

- 1. Montrer que le processus $(f(t, B_t))_{t\geq 0}$ est une martingale locale, et donner une condition suffisante sur f pour que ce soit une vraie martingale.
- 2. Que dire de $(B_t^3 3tB_t)_{t \ge 0}$, $(B_t^4 6tB_t^2 + 3t^2)_{t \ge 0}$ et $(B_t^5 10tB_t^3 + 15t^2B_t)_{t \ge 0}$?

Exercice 9 (Pont brownien). Soit $(a, b) \in \mathbb{R}^2$. On considère le processus $(Z_t)_{0 \le t \le 1}$ défini par

$$Z_t = a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s.$$

Montrer que $(Z_t)_{0 \le t \le 1}$ est solution de l'équation différentielle stochastique suivante :

$$\mathrm{d}Z_t = \frac{b - Z_t}{1 - t} \,\mathrm{d}t + \mathrm{d}B_t.$$

Exercice 10 (Cas vectoriel). Soit $(B_t^1, B_t^2)_{t\geq 0}$ un mouvement brownien planaire. Pour $t\geq 0$ on pose :

$$X_t := \exp(B_t^1)\cos(B_t^2) \qquad \text{ et } \qquad Y_t := \exp(B_t^1)\sin(B_t^2).$$

- 1. Montrer que $(X_t)_{t\geq 0}$ et $(Y_t)_{t\geq 0}$ sont des martingales de carré intégrable.
- 2. Le produit $(X_tY_t)_{t\geq 0}$ est-il une martingale?
- 3. Calculer la différentielle stochastique du processus $(Z_t)_{t\geq 0}$ défini par

$$Z_t := (X_t - 1)^2 + (Y_t)^2.$$

Exercice 11 (Carré de Bessel). Soit $(B_t)_{t\geq 0}$ un mouvement brownien d-dimensionnel.

- 1. Montrer que $(|B_t|^2)_{t\geq 0}$ est un processus d'Itô et calculer sa différentielle stochastique.
- 2. On considère d=3 à partir de maintenant. Déterminer la loi de $|B_t|$ et calculer $\mathbb{E}[1/|B_t|]$ et $\mathbb{E}[1/|B_t|^2]$ pour tout t.
- 3. On admet qu'on peut appliquer la formule d'Itô au processus $M_t = 1/|B_t|$ même s'il n'est pas défini quand $|B_t| = 0$; montrer que c'est une martingale locale. Elle est ainsi bornée dans L^2 mais n'est pas une vraie martingale.