Computation, learning, and typology Class 8: Process interaction

Adam Albright and Eric Baković CreteLing 2023 — July 2023

creteling2023.phonology.party

The classical typology

	Q(P(x))	P(Q(x))	
P causes application of Q	P feeds Q	P counterfeeds Q	– <i>Q</i> underapplies
P prevents application of Q	P bleeds Q	P counterbleeds Q -	– <i>Q</i> overapplies
	transparent	opaque	1

	Q(P(x))	P(Q(x))	
P causes application of Q	P feeds Q	P counterfeeds Q -	– <i>Q</i> underapplies
P prevents application of Q	P bleeds Q	P counterbleeds Q -	– Q overapplies
	transparent	opaque	1

• Kiparsky (1968): Feeding & counterbleeding: 'maximal utilization'

	Q(P(x))	P(Q(x))	
P causes application of Q	P feeds Q	P counterfeeds Q	– <i>Q</i> underapplies
P prevents application of Q	P bleeds Q	P counterbleeds Q -	– Q overapplies
	transparent	opaque	1

- Kiparsky (1968): Feeding & counterbleeding: 'maximal utilization'
- Kiparsky (1971, 1973): opacity is hard to learn

	Q(P(x))	P(Q(x))	
P causes application of Q	P feeds Q	P counterfeeds Q	– Q underapplies
P prevents application of Q	P bleeds Q	P counterbleeds Q -	– Q overapplies
	transparent	opaque	1

- Kiparsky (1968): Feeding & counterbleeding: 'maximal utilization'
- Kiparsky (1971, 1973): opacity is hard to learn
- McCarthy (1999), a.m.o.: classic OT 'can't do opacity'

Transparent feeding

Example based on Russian

$$P: I \longrightarrow \varnothing / C __\#$$
 (deletion)

$$Q: [-son] \longrightarrow [-voi] / __#$$
 (devoicing)

$$\sqrt{Q(P(x))}$$
: /grebl/ $\stackrel{P}{\longrightarrow}$ greb $\stackrel{Q}{\longrightarrow}$ grep 'row (m.pst)' (feeding, transparent)

$$P(Q(x))$$
: /grebl/ $\stackrel{Q}{\longrightarrow}$ grebl $\stackrel{P}{\longrightarrow}$ greb

(counterfeeding, Q underapplies)

Opaque counterfeeding (underapplication)

Example based on Bedouin Arabic

$$P: [-cons] \longrightarrow [+syll] / C __\#$$

$$Q: a \longrightarrow i / __CV$$

$$Q(P(x))$$
: /badw/ $\stackrel{P}{\longrightarrow}$ badu $\stackrel{Q}{\longrightarrow}$ bidu

$$\checkmark P(Q(x))$$
: /badw/ $\stackrel{Q}{\longrightarrow}$ badw $\stackrel{P}{\longrightarrow}$ badu 'Bedouin'

(vocalization)

(raising)

(feeding, transparent)

(counterfeeding, Q underapplies)

Transparent bleeding

Example based on Lamba

$$P: i \longrightarrow e / {iggriup -high -low - lowering}$$
 (lowering)
$$Q: s \longrightarrow \int / \underline{\hspace{1cm}} i$$
 (palatalization)

$$\checkmark Q(P(x))$$
: /kosika/ $\stackrel{P}{\longrightarrow}$ koseka $\stackrel{Q}{\longrightarrow}$ koseka 'be strong (neut.)' (bleeding,

P(Q(x)): /kosika/ $\stackrel{Q}{\longrightarrow}$ koſika $\stackrel{P}{\longrightarrow}$ koſeka

(counterbleeding, Q overapplies)

transparent)

Opaque counterbleeding (overapplication)

Example based on Polish

$$P: [-\mathsf{son}] \longrightarrow [-\mathsf{voi}] / __\#$$

$$Q: O \longrightarrow U / _ \begin{bmatrix} +voi \\ -nas \end{bmatrix} #$$

$$Q(P(x))$$
: /3wob/ $\stackrel{P}{\longrightarrow}$ 3wop $\stackrel{Q}{\longrightarrow}$ 3wop

$$\checkmark P(Q(x)): / \exists wob / \xrightarrow{Q} \exists wub \xrightarrow{P} \exists wup 'crib'$$

(devoicing)

(raising)

(bleeding, transparent)

(counterbleeding, Q overapplies)

-HARD TURN! -

Baković (2005) Pajak & Baković (2010)

Background

dispreference for 'sufficiently identical' adjacent consonants (anti-similarity)

dispreference for *completely* identical adjacent consonants (anti-identity, a.k.a. 'antigemination')

dispreference for feature mismatch between adjacent consonants (anti-disagreement, a.k.a. assimilation)

Background

anti-similarity = anti-identity + anti-disagreement

Empirical consequences:

- 1. Assimilation dependence.
- 2. Contextual predictability.
- 3. Contingent optionality.

(Bonus: factorial typology.)

English past tense

```
-əd / {t, d} ___
weɪt-əd 'waited'; feɪd-əd 'faded'
```

- -t / voiceless sounds ___ terp-t 'taped'; ferk-t 'faked'; rers-t 'raced'
- -d / voiced sounds ___ serv-d 'saved'; gern-d 'gained'; rerz-d 'raised'; ferl-d 'failed'

- =/d/ and /t/ are 'sufficiently identical'
- = voicing assimilation

= elsewhere

gein-d'gained' vs. seint 'saint' feil-d'failed' vs. felt 'felt'

Sufficient identity

/weit+d/	No-XY	AGREE-VOI	Dep-V	IDENT-VOI
weitəd		I I	1	
a. \sim weitd	$_{1}$ W	$\stackrel{ }{1}$ $\stackrel{ }{1}$ $\stackrel{ }{W}$	0 L	
b. \sim weitt	$_{1}$ W	 	0 L	$_{1}$ W
$\sqrt{\text{weit+d}}$	No-XX	AGREE-VOI	Dep-V	IDENT-VOI
weitəd		 	1	
a. \sim weitd		$\stackrel{\mid}{l}_{1}$ W	0 L	
b. ~ weitt	1 W	 	0 L	1 W

Sufficient identity

$/\text{weit}+\mathbf{d}/$	No-XX	AGREE-VOI	Dep-V	IDENT-VOI
weitəd		 	1	
a. ~ weitd		\mathbf{W}	0 L	
b. ~ weitt	1 W		$_{0}$ L	$_{1}$ W
/weit+d/	No-XY	AGREE-VOI	DEP-V	IDENT-VOI
wertəd	assin	nilation	1	
a. ~ weitd	1 vdepe	ndence	0 L	
b. ~ weitt	1 W	1 	0 L	$_{1}$ W

Consequences

1. Assimilation dependence.

Every feature (f) ignored for the purposes of determining sufficient identity of adjacent consonants independently assimilates.

Lithuanian verbal prefixes

ab- / _ G = obstruent voicing assimilation ab-drasikiixii, ab-gautii

ap- / __ R, K ap-ra∫ixtii, ap-taritii, ap-∫aukitii, ap-kalibietii = both assimilations

= elsewhere

Lithuanian verbal prefixes

= palatalization assimilation

= obstruent voicing assimilation

```
ad<sup>j</sup>-/__G<sup>j</sup>
ad<sup>j</sup>-bjekitii, ad<sup>j</sup>-g<sup>j</sup>i:t<sup>j</sup>i
```

= both assimilations

at- / __ R, K at-ra∫iti, at-pra∫iixti, at-∫aukiti, at-koxpitii

= elsewhere

Lithuanian verbal prefixes

Lithuanian verbal prefixes

/ap-b ^j er ^j t ^j i/	No-XX Agr-voi Agr-pal	DEP	ID-VOI ID-PAL
ap ^j i-b ^j er ^j t ^j i		1	
a. $\sim ap-b^j er^j t^j i$	$1 \mathrm{W} \qquad \qquad 1 \mathrm{W}$	0 L	$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$
b. $\sim ap^j-b^jer^jt^ji$	$_{1}$ W	0 L	1 1
c. $\sim ab-b^j er^j t^j i$	$\frac{1}{1}$ W	0 L	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$d. \sim ab^{j}-b^{j}er^{j}t^{j}i$	1 W	0 L	$\begin{bmatrix} 1 & \mathbf{W} & \vdots & 0 & \mathbf{L} \end{bmatrix}$

assimilation dependence

Pajak & Baković (2010)

Polish proclitics

Note: we'll return to this condition shortly.

$$ZE-/_\{S, Z, G, Z, S, Z\}C = s, z, G, Z, S, Z are 'sufficiently identical' ze-skawõ, ze-znakiem, ze-gfitem, ze-zrudwa, ze-şlaxtõ, ze-zviru$$

$$z-/z-/$$
 $\{zV, \widehat{dz}\}/\{zV, \widehat{dz}\}$ $z-\widehat{dz}$ $\{zV, \widehat{dz}\}/\{zV, \widehat{dz}\}$

= coronal place assimilation

$$s-/K$$
 = c s-kfasem, s-pştşəwə, s-sunətç, s-serem

= obstruent voicing assimilation

$$\varsigma$$
-/ ς -/ [ς V, t ς]/{ ς V, t ς }
 ς -t ς i ς +i ς - ς -canem/ ς -t ς kafk $\tilde{\varsigma}$, ς - ς -saz ε t $\tilde{\varsigma}$

= both assimilations

= elsewhere

s, z, G, Z, S, Z are 'sufficiently identical'

assimilation
coronal place assimilation
dependence

obstruent voicing assimilation

Pajak & Baković (2010)

Consequences

2. Contextual predictability.

Adjacent all-but-f identity avoidance is found in all and only the contexts where both adjacent total identity avoidance and f-assimilation are independently found.

Assimilation	before clusters	before singletons
voicing /v-/	f-stşelit¢ f-tşt¢ine	f-pudɛwku f-kav¹arɲi
voicing /z-/	s-kfasem s-pştsowõ	s-pivεm s-kavõ
coronal place /z-/	z-dzviigiem z-dzdzovnitsõ	z-dzupli z-dzungli
both /z-/	ç-tçmõ ş-tşkafkõ	ς-tcisitc ş-tsarodzεjεm

Assimilation	before clusters	before singletons
Total identity avoidance	only before clusters	<i>not</i> before singletons
/v-/	vε-vgw̃b ⁱ ɛɲu vε-vzɛɕɲu	ν-vannε (*νε-vannε)
/z-/	zε-znak ⁱ εm zε-zv ⁱ εzε̃tcitc	z-zamku (*zε-zamku)

Pajak & Baković (2010)

Assimilation	before clusters	before singletons
Total identity avoidance	only before clusters	not before singletons
Sufficient identity avoidance	only before clusters	<i>not</i> before singletons
all but voicing /v-/	νε-frunot͡ɕ	f-fotelu (*ve-fotelu)
all but voicing /z-/	ze-skawõ	s-sunɔ̃t͡ɕ (*zɛ-sunɔ̃t͡ɕ)
all but cor. pl. /z-/	ze-zrudwa	z-zε̃bnɔ̃tç (*zε-
all but cor. pr. /z-/	ze-zviru	z̃ebnɔ̃t͡ɕ)
all but both /z-/	ze-¢fitem	G-Ganεm (*zε-
	ze-slaxtõ	çanem)

Assimilation	before clusters	before singletons
Total identity avoidance	only before clusters	not before singletons
Sufficient identity avoidance	only before clusters	not before singletons

contextual predictability

Consequences

3. Contingent optionality.

In contexts where (f)-assimilation applies optionally, all-but-(f) identity avoidance is also optional.

optional assimilation	singleton fricative	singleton affricate
voiceless alveopalatal	s-ganem ~ g-ganem	s-tcişitc ~ c-tcişitc
voiceless postalveolar	s-şazetç ~ ş-şazetç	s-tşapkő ~ ş-tşapkő
voiced alveopalatal	z-zɛ̃bnɔ̃tç ~ z-zɛ̃bnɔ̃tç	z-dzupli ~ z-dzupli
voiced postalveolar	z-zabɔ̃ ~ z-zabɔ̃	z-dzungli ~ z-dzungli

contingent optionality

voiceless alveopalatal

voiceless postalveolar

voiced alveopalatal

voiced postalveolar affricate in cluster: optional assimilation

fricative in cluster: optional epenthesis

z-d̄zmakⁱεm ~ z-d̄zmakⁱεm z-zviru ~ zε-zviru

Higher-ranked AGREE-COR inactive: no assimilation...

/z-dzupli/	No-XX/C	AGR-COR	DEP	ID-COR	AGR-COR
r z-dzupli					1
a. ~ zε-dzupli			$_{1}$ W		0 L
b. ~ z-dzupli				1 W	

...and no epenthesis.

/z-zrudwa/	No-XX/C	AGR-COR	DEP	ID-COR	AGR-COR
z-zrudwa					1
a. ∼ zε-zrudwa			$_{1}$ W		0 L
b. ~ z-zrudwa	1 W		0 L	1 W	

Higher-ranked AGREE-COR active: assimilation...

/z-dzupli/	No-XX/C	AGR-COR	DEP	ID-COR	AGR-COR
🖙 z-dzupli		 		1	
a. ~ z-dzupli		1 W		0 L	
b. ~ zε-dzupli		 	1 W	0 L	

...and epenthesis.

/z-zrudwa/	No-XX/C	AGR-COR	DEP	ID-COR	AGR-COR
r zε-zrudwa			1		
a. ~ z-zrudwa		1 1 W	$_{1}$ W		
b. ~ z-zrudwa	1 W	 	0 L	1 W	

Baković (2005)

Odden (1988)

Rose (2000)

Reiss (2003)

f = feature(s) ignored for sufficient identity; r = remaining features

Baković (2005)

Odden (1988)

Rose (2000)

Reiss (2003)

...only if flanking consonants are *totally* identical.

e.g. Tondano (within words), Lenakel

(f) = feature(s) ignored for sufficient identity; (r) = remaining features

Baković (2005)

Odden (1988)

Rose (2000)

Reiss (2003)

Insert a vowel...

...blindly.

e.g. Hua

f = feature(s) ignored for sufficient identity; f = remaining features

Baković (2005)

Odden (1988)

Rose (2000)

Reiss (2003)

Insert a vowel...

...unless flanking consonants are totally identical.

e.g. Tondano (between words)

f = feature(s) ignored for sufficient identity; f = remaining features

Baković (2005)

Odden (1988)

Rose (2000)

Reiss (2003)

Insert a vowel...

...unless flanking consonants are *sufficiently* identical.

e.g. Yir Yoront

(f) = feature(s) ignored for sufficient identity; (r) = remaining features

Consequences

1. Assimilation dependence.

Every feature (f) ignored in determining sufficient identity of adjacent consonants independently assimilates.

2. Contextual predictability.

Adjacent all-but-f identity avoidance is found in all and only the contexts where both adjacent total identity avoidance and f assimilation are independently found.

3. Contingent optionality.

In contexts where (f)-assimilation applies optionally, all but-(f) identity avoidance is also optional.

Consequences

1. Assimilation dependence.

3. Contingent optionality.

References

KIPARSKY, PAUL. 1968. Linguistic universals and linguistic change. *Universals in Linguistic Theory*, ed. by Emmon Bach and Robert T. Harms, 170–202. New York: Holt, Reinhart, and Winston. [Reprinted in *Explanation in Phonology*, 13–55. Dordrecht: Foris, 1982.].

KIPARSKY, PAUL. 1971. Historical linguistics. *A Survey of Linguistic Science*, ed. by William O. Dingwall, 576–642. College Park: University of Maryland Linguistics Program. [Reprinted in *Explanation in Phonology*, 57–80. Dordrecht: Foris, 1982.].

References (cont.)

Kiparsky, Paul. 1973. Abstractness, opacity, and global rules. Three Dimensions of Linguistic Theory, ed. by Osamu Fujimura, 57–86. Tokyo: TEC.

McCarthy, John J. 1999. Sympathy and phonological opacity. *Phonology* 16.331–399.