V, W - przestrzenie nad \mathbb{C} .

 $\langle .|.\rangle_V$ - iloczyn skalarny na V

 $\langle .|.\rangle_W$ - iloczyn skalarny na W,

$$A \in L(V,W) \to A^* \in L(W,V) \to \langle w|Av\rangle_W = \langle A^*w|v\rangle_V.$$

W dalszych rozważaniach $V=W\&A\in L(V).$ A - normalny, jeśli $A^*A=AA^*.$

Przykład 1 np.

 $i) A^* = A - samosprzężoność.$

ii) $A^* = A^{-1}$ - unitarność.

Jeżeli \mathcal{E} - baza ortnonormalna V, $[a_{ij}] = [A]_{\mathcal{E}}^{\mathcal{E}}$, $[b_{ij}] = [A^*]_{\mathcal{E}}$. $b_{ij} = \overline{a_{ji}}$ Przypomnienie: jak mamy $X \subset V$ to zapisujemy to $V = X \bigoplus X^{\perp}$, $P: V \to V$ - nazywamy rzutem X wzdłuż X^{\perp} , czyli rzutem ortogonalnym na X. $\{e_1,\ldots,e_k\}$ - baza ortonormalna $X,\,P=\sum_{i=1}^k|e_i>< e_i|$

Stwierdzenie 1 Niech $V = X \bigoplus Y$. Wówczas rzut $P: V \to V$ na X wzdłuż Y jest ortogonalny

Dowód 1 \Longrightarrow

 $Y = X^{\perp}$. Weźmy $v = v_1 + v_2, u = u_1 + u_2, v_1, u_1 \in X, v_2, u_2 \in Y$.

$$\langle u|Pv\rangle = \langle u_1 + u_2|v_1\rangle = \langle u_1|v_1\rangle.$$

$$\langle Pu|v\rangle = \langle u_1|v_1+v_2\rangle = \langle u_1|v_1\rangle.$$

$$\langle u|Pv\rangle = \langle Pu|v\rangle \implies P = P^*.$$

$$\langle y|x\rangle = \langle y|Px\rangle = \langle Py|x\rangle = 0$$

Stwierdzenie 2 Niech $A \in L(V)$. Następujące warunki są równoważne: (1) A jest normalne (2) $\forall ||Av|| = ||A^*v||$

W szczególności jeśli A - normalny, to

$$ker(A - \lambda \mathbb{I}) = ker(A^* - \overline{\lambda}\mathbb{I}).$$

Ponadto, jeśli $\lambda \neq \mu$, to $ker(A - \lambda \mathbb{I}) \perp ker(A - \mu \mathbb{I})$.

Dowód 2 $(1) \Longrightarrow (2)$.

$$\bigvee_{v \in V} \langle v | A^* A v \rangle = \langle v | A A^* v \rangle \implies \|Av\|^2 = \|A^* v\|^2.$$

 $(2) \Longrightarrow (1).$

$$||Av|| = ||A^*v|| \implies \langle v|(A^*A - AA^*)v\rangle = 0 \forall v \in V$$

 $Z \ to \dot{z} samo \acute{s} ci \ polaryz a cyjnej \ A^*A - AA^* = 0. \ W \ sz czeg \acute{o} lno \acute{s} ci \ v \in ker(A - \lambda \mathbb{I}) \iff \|(A - \lambda \mathbb{I})v\| = 0$ $0 \iff \|(A - \lambda \mathbb{I})^* v\| = 0 = \|(A^* - \overline{\lambda} \mathbb{I})v\| \iff v \in \ker(A^* - \overline{\lambda} \mathbb{I}). \ \lambda \langle u|v \rangle = \langle u|Av \rangle = \langle A^* u|v \rangle$ $\langle \overline{\mu}u|v\rangle = \mu \langle u|v\rangle, \ czyli \ \langle u|v\rangle = 0 \quad \Box$

0.1Twierdzenie spektralne

Twierdzenie 1 Niech $(V, \langle .|.\rangle)$ będzie przestrzenią unitarną oraz $A \in L(V)$ będzie operatorem normalnym. Wówczas A posiada diagonalizującą, ortonormalną bazę złożoną z wektorów własnych A.

Dowód 3 (indukcja ze względu na wymiar przestrzeni V).

Pierwszy krok indukcji $\dim V = 1$ - oczywiste. (Każdy operator w przestrzeni jednowymiarowej jest diagonalny bo to mnożenie przez skalar).

 $n \implies n+1$. Zakladamy, że twierdzenie jest prawdziwe dla $\dim W = n$ i dla wszystkich operatorów normalnych na W. Niech $A \in L(V)$, $\dim V = n+1$, A - normalny. Skoro V jest nad \mathbb{C} , to w_A ma pierwiastek $\lambda_0 \in \mathbb{C}$.

Niech $e_0 \in V$ będzie wektorem własnym A o wartości własnej λ_0 taki, że $||e_0|| = 1$.

Niech $X = \langle e_0 \rangle^{\perp}$. Wtedy dim X = n.

 $\textit{Uwaga:} \ \forall Ax \in X \ \textit{oraz} \ A^*x \in X.$

LHS:
$$\langle e_0|a_x\rangle = \langle A^*e_0|x\rangle = \langle \overline{\lambda_0}e_0|x\rangle = \lambda_0 \langle e_0|x\rangle = 0$$

RHS: $\langle e_0|A^*x\rangle = \langle Ae_0|x\rangle = \overline{\lambda_0} \langle e_0|v\rangle = 0.$

Niech $\tilde{A} = A|_X \in L(X)$. Jeżeli \tilde{A} jest operatorem normalnym na X (dim X = n), Normalność \tilde{A} . udowodnimy, że $\tilde{A}^* = A^*|_x$.

$$\forall x_{1}, x_{2} \in X : \left\langle x_{1} | \tilde{A}x_{2} \right\rangle = \left\langle x_{1} | Ax_{2} \right\rangle = \left\langle A^{*}x_{1} | x_{2} \right\rangle =$$

$$= \left\langle A^{*} | x_{1} | x_{2} \right\rangle \implies \tilde{A}^{*} = A^{*} | x.$$

 $i \ w \ końcu \ \tilde{A}^*\tilde{A} = A^*|_x A|_x = A^*A|_x = AA^*|_x = A|_x A^*|_x = \tilde{A}\tilde{A}^* \quad \Box$

0.2 A teraz coś z zupełnie innej beczki

Ustalmy $u \in V$ i $X \subset V$ (podprzestrzeń wektorowa). Zdefiniujmy $\inf_{x \in X} \|u - x\| = dist(u, X)$

Stwierdzenie 3 Niech $P:V\to V$ będzie rzutem ortogonalnym na X. Wówczas $dist(u,X)=\|u-Pu\|$

Dowód 4 $dist(u, X) \leq ||u - Pu||$, $gdyż Pu \in X$. Z drugiej strony,

$$\bigvee_{x \in X} \|u - x\|^2 = \|\underbrace{u - Pu}_{\in X^{\perp}} + \underbrace{Pu - x}_{\in X}\|^2 = \|u - Pu\|^2 + \|Pu - x\|^2 \geqslant \|u - Pu\|^2 \quad \Box$$

Odległość przestrzeni afinicznych

$$X_1 \subset V, X_2 \subset V, \ v_1, v_2 \in V \text{ - } dist(v_1 + X_1, v_2 + X_2) = \inf_{\substack{x_1 \in X_1 \\ x_2 \in X_2}} \|v_1 + x_1 - (v_2 + x_2)\| = \inf_{\substack{x_1 \in X_1 \\ x_2 \in X_2}} \|v_1 - v_2 - v_2\| = \|v_1 - v_2 - P_{X_1 + X_2}(v_1 - v_2)\|, \text{ gdzie } P_{X_1 + X_2} \text{ - rzut ortogonalny na } X_1 + X_2.$$