# PLSC 503 – Spring 2021 Variances and Collinearity

February 17, 2021

## Variances: Why We Care

2016 ANES pilot study "feeling thermometer" toward gays and lesbians (N = 1200):

#### > summary(ANES\$ftgay)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 40.50 54.00 57.45 88.50 100.00 1
```

Suppose we wanted to create aggregate measures, by state (N = 51). We would get:

#### > summary(StateFT)

| State            | Nresp          | ${\tt meantherm}$ |
|------------------|----------------|-------------------|
| Length:50        | Min. : 1.00    | Min. :17.62       |
| Class :character | 1st Qu.: 8.00  | 1st Qu.:51.33     |
| Mode :character  | Median : 18.00 | Median :57.11     |
|                  | Mean : 24.00   | Mean :58.33       |
|                  | 3rd Qu.: 30.75 | 3rd Qu.:62.55     |
|                  | Max. :116.00   | Max. :89.00       |

# Variances: Why We Care



## Variances: A Generalization

Start with:

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

with:

$$Var(u_i) = \sigma^2/w_i$$

with  $w_{iu}$  known.

## Weighted Least Squares

WLS now minimizes:

$$\mathsf{RSS} = \sum_{i=1}^N w_i (Y_i - \mathbf{X}_i \boldsymbol{\beta}).$$

which gives:

$$\hat{\boldsymbol{\beta}}_{WLS} = [\mathbf{X}'(\sigma^2\Omega)^{-1}\mathbf{X}]^{-1}\mathbf{X}'(\sigma^2\Omega)^{-1}\mathbf{Y} 
= [\mathbf{X}'\mathbf{W}^{-1}\mathbf{X}]^{-1}\mathbf{X}'\mathbf{W}^{-1}\mathbf{Y}$$

where:

$$\mathbf{W} = egin{bmatrix} rac{\sigma^2}{w_1} & 0 & \cdots & 0 \\ 0 & rac{\sigma^2}{w_2} & \cdots & dots \\ dots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & rac{\sigma^2}{w_N} \end{bmatrix}$$

## Getting to Know WLS

The variance-covariance matrix is:

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}_{WLS}) = \sigma^2 (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} 
\equiv (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where  $N_i$  is the number of observations upon which (aggregate) observation i is based.

## "Robust" Variance Estimators

Recall that, if  $\sigma_i^2 \neq \sigma_i^2 \forall i \neq j$ ,

$$\begin{array}{rcl} \mathsf{Var}(\beta_{\mathsf{Het.}}) & = & (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\ & = & (\mathbf{X}'\mathbf{X})^{-1}\,\mathbf{Q}\,(\mathbf{X}'\mathbf{X})^{-1} \end{array}$$

where  $\mathbf{Q}=(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$  and  $\mathbf{W}=\sigma^2\Omega$ .

We can rewrite  $\mathbf{Q}$  as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

# Huber's Insight

Estimate **Q** as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[ \mathbf{X}' \left( \sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

# Practical Things

#### "Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when  $Var(u) = \sigma^2 \mathbf{I}$ .

# "Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

## "Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2.$$

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[ \sum_{i=1}^{N} \left( \sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

## Robust / Clustered SEs: A Simulation

```
url robust <- "https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust summary.R"
eval(parse(text = getURL(url_robust, ssl.verifypeer = FALSE)),
     envir=.GlobalEnv)
> set.seed(7222009)
> X <- rnorm(10)
> Y < -1 + X + rnorm(10)
> df10 <- data.frame(ID=seg(1:10),X=X,Y=Y)</pre>
> fit10 <- lm(Y~X,data=df10)
> summary(fit10)
Residuals:
    Min
               10 Median
                                        Max
-1.12328 -0.65321 -0.05073 0.43937 1.81661
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8438
                       0.3020 2.794 0.0234 *
             0.3834 0.3938 0.974 0.3588
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.9313 on 8 degrees of freedom
Multiple R-squared: 0.1059, Adjusted R-squared: -0.005832
F-statistic: 0.9478 on 1 and 8 DF, p-value: 0.3588
> rob10 <- vcovHC(fit10,type="HC1")
> sqrt(diag(rob10))
(Intercept)
```

0 2932735 0 2859552

# Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times
> df1K <- df10[rep(seg len(nrow(df10)), each=100),]</pre>
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X,data=df1K)</pre>
> summarv(fit1K)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.84383 0.02704 31.20 <2e-16 ***
            0.38341 0.03526 10.87 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8338 on 998 degrees of freedom
Multiple R-squared: 0.1059.Adjusted R-squared: 0.105
F-statistic: 118.2 on 1 and 998 DF, p-value: < 2.2e-16
> summarv(fit1K, cluster="ID")
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8438
                        0.2766 3.050 0.00235 **
            0.3834
                        0.2697 1.421 0.15551
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8338 on 998 degrees of freedom
Multiple R-squared: 0.1059.Adjusted R-squared: 0.105
F-statistic: 2.02 on 1 and 9 DF, p-value: 0.1889
```

# $\hbox{``Real-Data''} \ \ \mathsf{Example}$

#### > summary(Justices)

| name             | score           | civrts         | econs          |
|------------------|-----------------|----------------|----------------|
| Length:31        | Min. :-1.0000   | Min. :19.80    | Min. :34.60    |
| Class :character | 1st Qu.:-0.4700 | 1st Qu.:35.90  | 1st Qu.:43.85  |
| Mode :character  | Median : 0.3300 | Median :43.70  | Median :50.20  |
|                  | Mean : 0.1210   | Mean :51.42    | Mean :55.75    |
|                  | 3rd Qu.: 0.6250 | 3rd Qu.:75.55  | 3rd Qu.:66.65  |
|                  | Max. : 1.0000   | Max. :88.90    | Max. :81.70    |
|                  |                 |                |                |
| Neditorials      | eratio          | scoresq        | lnNedit        |
| Min. : 2.000     | Min. : 0.5000   | Min. :0.0000   | Min. :0.6931   |
| 1st Qu.: 4.000   | 1st Qu.: 0.7083 | 1st Qu.:0.1936 | 1st Qu.:1.3863 |
| Median : 6.000   | Median : 1.0000 | Median :0.2500 | Median :1.7918 |
| Mean : 8.742     | Mean : 2.0242   | Mean :0.4599   | Mean :1.8442   |
| 3rd Qu.:11.500   | 3rd Qu.: 2.5000 | 3rd Qu.:0.8281 | 3rd Qu.:2.4414 |
| Max. :47.000     | Max. :11.7500   | Max. :1.0000   | Max. :3.8501   |

```
> OLSfit<-with(Justices, lm(civrts~score))
> summary(OLSfit)
Call:
lm(formula = civrts ~ score)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.810 2.852 17.113 < 2e-16 ***
             21.544 4.206 5.122 1.81e-05 ***
score
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 15.63 on 29 degrees of freedom
Multiple R-squared: 0.475, Adjusted R-squared: 0.4569
F-statistic: 26.24 on 1 and 29 DF, p-value: 1.806e-05
```

# WLS, Weighting by ln(N of Editorials)

```
> WLSfit<-with(Justices, lm(civrts~score,weights=lnNedit))
> summarv(WLSfit)
Call:
lm(formula = civrts ~ score, weights = lnNedit)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.936 2.600 18.439 < 2e-16 ***
             21.158 3.797 5.572 5.18e-06 ***
score
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 19.59 on 29 degrees of freedom
Multiple R-squared: 0.5171, Adjusted R-squared: 0.5004
F-statistic: 31.05 on 1 and 29 DF, p-value: 5.179e-06
```

Figure: Plot of civrts Against score, Weighted by Neditorials



## "Robust" Standard Errors

```
> library(car)
> hccm(OLSfit, type="hc1")
          (Intercept)
                         score
(Intercept) 6.963921 2.929622
score
             2 929622 13 931212
> library(rms)
> OLSfit2<-ols(civrts~score, x=TRUE, v=TRUE)
> RobSEs<-robcov(OLSfit2)
> RobSEs
Linear Regression Model
ols(formula = civrts ~ score, x = TRUE, y = TRUE)
       n Model L.R. d.f. R2
                                            Sigma
                         1 0.475
       31 19.97
                                           15.63
Residuals:
   Min
          1Q Median
                                Max
-29 954 -8 088 -2 120 9 396 29 680
Coefficients:
        Value Std. Error t Pr(>|t|)
Intercept 48.81
                  2.552 19.123 0.000e+00
score 21.54
                  3.610 5.968 1.739e-06
Residual standard error: 15.63 on 29 degrees of freedom
Adjusted R-Squared: 0.4569
```

# Cases, Variables, and Collinearity

## Under the Hood of X

OLS (and regression methods more generally) requires:

- X is full column rank.
- N > K.
- "Sufficient" variability in X.

# "Perfect" Multicollinearity

Formally: There cannot be any set of  $\lambda$ s such that:

$$\lambda_0 \mathbf{1} + \lambda_1 \mathbf{X}_1 + ... + \lambda_K \mathbf{X}_K = \mathbf{0}$$

If there was, it would imply

$$\mathbf{X}_j = \frac{-\lambda_0}{\lambda_j} \mathbf{1} + \frac{-\lambda_1}{\lambda_j} \mathbf{X}_1 + \ldots + \frac{-\lambda_K}{\lambda_j} \mathbf{X}_K$$

which means

$$\begin{aligned} \mathbf{Y} &= \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \dots + \beta_j \mathbf{X}_j + \dots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \dots + \beta_j \left( \frac{-\lambda_0}{\lambda_j} \mathbf{1} + \frac{-\lambda_1}{\lambda_j} \mathbf{X}_1 + \dots + \frac{-\lambda_K}{\lambda_j} \mathbf{X}_K \right) + \dots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= \left[ \beta_0 + \beta_j \left( \frac{-\lambda_0}{\lambda_j} \right) \right] \mathbf{1} + \left[ \beta_1 + \beta_j \left( \frac{-\lambda_1}{\lambda_j} \right) \right] \mathbf{X}_1 + \dots + \left[ \beta_K + \beta_j \left( \frac{-\lambda_K}{\lambda_j} \right) \right] \mathbf{X}_K + \mathbf{u} \\ &= \left( \beta_0 + \frac{\gamma_0}{\lambda_j} \right) \mathbf{1} + \left( \beta_1 + \frac{\gamma_1}{\lambda_j} \right) \mathbf{X}_1 + \dots + \left( \beta_K + \frac{\gamma_K}{\lambda_j} \right) \mathbf{X}_K + \mathbf{u} \end{aligned}$$

### In Practice

```
> Africa$newgdp<-(Africa$gdppppd-mean(Africa$gdppppd))*1000
> fit<-with(Africa, lm(adrate~gdppppd+newgdp+healthexp+subsaharan+
                       muslperc+literacv))
> summary(fit)
Call:
lm(formula = adrate ~ gdppppd + newgdp + healthexp + subsaharan +
    muslperc + literacy)
Residuals:
            10 Median
    Min
                                  Max
-15 291 -4 329 -1 412 2 723 20 682
Coefficients: (1 not defined because of singularities)
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     -7.78020 10.33872 -0.753 0.4565
                     0.36142
                              0.58214 0.621 0.5385
gdppppd
                                            NA
newgdp
                          NΑ
                                     NA
                                                     NA
healthexp
                     1.87001 0.75667 2.471 0.0182 *
subsaharanSub-Saharan 3.64354 4.54163 0.802
                                                 0.4275
muslperc
                     -0.07908 0.05967 -1.325
                                                 0.1932
literacy
                     0.12445
                                0.09867
                                        1.261
                                                 0.2151
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 7.665 on 37 degrees of freedom
Multiple R-squared: 0.4782, Adjusted R-squared: 0.4077
F-statistic: 6.782 on 5 and 37 DF, p-value: 0.0001407
```

So...

• Perfect multicollinearity is terrible, but

 Perfect multicollinearity not a problem at all.

#### Statistically,

- we lack sufficient degrees of freedom to identify  $\hat{\beta}$ .
- $\hat{\boldsymbol{\beta}}$  is "overdetermined."

#### Conceptually:

- Variables > Cases means
- ...no unique conclusion about explanatory / causal factors.

## N = K in Practice

NaN

```
> smallAfrica<-subset(Africa, subsaharan=="Not Sub-Saharan")
> fit2<-with(smallAfrica,lm(adrate~gdppppd+healthexp+muslperc+
                             literacy+war))
+
> summarv(fit2)
Call:
lm(formula = adrate ~ gdppppd + healthexp + muslperc + literacy +
   war)
Residuals:
ALL 6 residuals are 0: no residual degrees of freedom!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.12430
                            NΑ
                                    NΑ
                                             NΑ
gdppppd
           -0.97906
                            NΑ
                                    NA
                                             NΔ
healthexp -0.45166
                            NΑ
                                    NΑ
                                             NΑ
muslperc 0.01413
                            NΑ
                                    NΙΔ
                                             NΑ
literacy 0.09512
                            NΑ
                                    NA
                                             NΑ
war
           -0.96429
                            NΑ
                                    NΑ
                                             NΑ
```

Residual standard error: NaN on O degrees of freedom Multiple R-squared: 1, Adjusted R-squared:

F-statistic: NaN on 5 and 0 DF, p-value: NA

25 / 40

# High (Non-Perfect) Multicollinearity

Recall that

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

We can write the kth diagonal element of  $(\mathbf{X}'\mathbf{X})^{-1}$  as:

$$rac{1}{(\mathsf{X}_k'\mathsf{X}_k)(1-\hat{R}_k^2)}$$

where  $\hat{R}_k^2$  is the  $R^2$  from the regression of  $\mathbf{X}_k$  on all the other variables in  $\mathbf{X}$ .

# The Obligatory Venn Diagram



# High (Non-Perfect) Multicollinearity

## Things to understand:

- 1. Multicollinearity is a sample problem.
- 2. Multicollinearity is a matter of degree.

# Near-Perfect Collinearity: An Example

$$HIV_i = \beta_0 + \beta_1(Civil War_i) + \beta_2(Intensity_i) + u_i$$

```
> with(Africa, table(internalwar,intensity))
```

```
internal war 0 1 2 3 0 30 0 0 0 1 0 1 0 6 2 5
```

Table: Three Models

|                         | Dependent variable:         |                     |                    |  |
|-------------------------|-----------------------------|---------------------|--------------------|--|
|                         | adrate                      |                     |                    |  |
|                         | (1)                         | (2)                 | (3)                |  |
| internalwar             | -4.459                      |                     | -2.849             |  |
|                         | (3.274)                     |                     | (6.682)            |  |
| intensity               |                             | -1.955              | -0.837             |  |
| •                       |                             | (1.481)             | (3.018)            |  |
| Constant                | 10.713***                   | 10.502***           | 10.713***          |  |
|                         | (1.800)                     | (1.734)             | (1.821)            |  |
| Observations            | 43                          | 43                  | 43                 |  |
| $R^2$                   | 0.043                       | 0.041               | 0.045              |  |
| Adjusted R <sup>2</sup> | 0.020                       | 0.017               | -0.003             |  |
| Residual Std. Error     | 9.860 (df = 41)             | 9.873 (df = 41)     | 9.973 (df = 40)    |  |
| F Statistic             | 1.855 (df = 1; 41)          | 1.743  (df = 1; 41) | 0.945 (df = 2; 40) |  |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01 |                     |                    |  |

30 / 40

# (Near-Perfect) Multicollinearity: Detection

- 1. High  $R^2$ , but nonsignificant coefficients.
- 2. High pairwise correlations among independent variables.
- 3. High partial correlations among the Xs.
- 4. VIF and Tolerance.

# VIF / Tolerance

If  $\hat{R}_{k}^{2}=0$ , then

$$\widehat{\mathsf{Var}(\hat{\beta}_k)} = \frac{\hat{\sigma}^2}{\mathsf{X}_k' \mathsf{X}_k};$$

So:

$$\mathsf{VIF}_k = rac{1}{1 - \hat{R}_k^2}$$

$$\mathsf{Tolerance} = \frac{1}{\mathsf{VIF}_k}$$

Rule of Thumb: VIF > 10 is a problem...

## What To Do?

#### Don't:

- Blindly drop covariates!!!
- Restrict βs...

#### Do:

- Add data.
- Transform the covariates
  - · Data reduction
  - · First differences
  - · Orthogonalize

## What To Do? Shrinkage Methods

OLS is:

MSE = 
$$E\{[\mathbf{Y} - E(\mathbf{Y})]^2\}$$
  
=  $E[(Y_i - \mathbf{X}_i\hat{\boldsymbol{\beta}})^2]$   
=  $[Y_i - E(\mathbf{X}_i\hat{\boldsymbol{\beta}})]^2 + \{E[(\mathbf{X}_i\hat{\boldsymbol{\beta}}) - E(\mathbf{X}_i\hat{\boldsymbol{\beta}})]\}^2$   
=  $(Bias)^2 + Variance$ 

"Ridge regression":

$$\hat{\boldsymbol{\beta}}^R = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{Y}$$

- Biases  $\hat{\beta}$ , but
- Increases the (perceived) independent variability in X
- Yields:

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}}_{\ell}^R)} = rac{\hat{\sigma}^2}{(\mathbf{X}_{\ell}'\mathbf{X}_{\ell} + \lambda)(1-R_{\ell}^2)}$$

## What To Do? Lasso, Etc.

"LASSO" = "Least Absolute Shrinkage and Selection Operator."

• Formally:

$$\min_{\boldsymbol{\beta}} \left\{ \frac{1}{N} \sum_{i=1}^{N} (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2 \right\} \text{ subject to } \sum_{j=1}^{p} |\beta_j| \leq t.$$

- Combines variable selection and shrinkage...
- Think ridge regression, but with some  $\hat{\beta}$ s set to zero
- Reduces overfitting + makes the model more interpretable

## Example: Impeachment

```
> summary(impeachment)
    name
                     state
                                        district
                                                    votesum
 Length:433
                  Length: 433
                                     Min. : 1
                                                 Min.
                                                        :0.00
 Class :character
                  Class : character
                                     1st Qu.: 3 1st Qu.:0.00
                 Mode :character
                                     Median: 6 Median: 2.00
Mode :character
                                     Mean
                                           :10 Mean
                                                        :1.85
                                     3rd Qu.:13
                                                 3rd Qu.:4.00
                                           :52
                                                 Max.
                                                      :4.00
                                     Max.
   pctbl96
                                  clint96
                                               GOPmember
                                                                ADA98
                  unionpct
Min.
       : 0.0
                      :0.0257
                                      :26.0
                                             Min.
                                                            Min.
               Min.
                               Min.
                                                    :0.000
                                                                      0.0
 1st Qu.: 2.0
               1st Qu.:0.0930
                               1st Qu.:42.0
                                             1st Qu.:0.000
                                                            1st Qu.:
                                                                      5.0
 Median: 5.4
               Median :0.1690
                               Median:48.0
                                             Median :1.000
                                                            Median: 30.0
 Mean
       :11.9
               Mean
                     :0.1636
                               Mean :50.3
                                             Mean
                                                    :0.527
                                                            Mean
                                                                   : 46.3
 3rd Qu.:14.0
               3rd Qu.:0.2150
                               3rd Qu.:57.0
                                             3rd Qu.:1.000
                                                            3rd Qu.: 90.0
Max. :74.0
                               Max. :94.0
               Max.
                     :0.3733
                                             Max.
                                                    :1.000
                                                            Max.
                                                                   :100.0
```

## Regression!

```
> fit<-with(impeachment,
         lm(votesum~ADA98+GOPmember+clint96+pctbl96+unionpct))
> summarv(fit)
Call:
lm(formula = votesum ~ ADA98 + GOPmember + clint96 + pctbl96 +
   unionpct)
Residuals:
  Min
         10 Median
                      30 Max
-3.271 -0.259 0.133 0.337 2.731
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.51785 0.23246 10.83 <2e-16 ***
       -0.02144 0.00238 -9.00 <2e-16 ***
ADA98
GOPmember 1.59981 0.18043 8.87 <2e-16 ***
clint96 -0.00935 0.00433 -2.16 0.031 *
pctb196 0.00347 0.00270 1.29 0.199
unionpct
         -0.52544 0.48065 -1.09 0.275
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.629 on 427 degrees of freedom
Multiple R-Squared: 0.883.Adjusted R-squared: 0.882
F-statistic: 647 on 5 and 427 DF, p-value: <2e-16
```

# Assessing Collinearity

```
> idata=impeachment[c(-1,-2)]
> cor(idata)
         district votesum pctbl96 unionpct clint96 GOPmember
                                                                 ADA98
          1.00000 -0.03496 -0.06759 0.09155
                                             0.1044
                                                     -0.02881
                                                               0.04988
district
                   1.00000 -0.28765 -0.26199 -0.6408
                                                      0.91977 - 0.92795
votesum
         -0.03496
pctb196
         -0.06759 -0.28765 1.00000 -0.09394 0.6165
                                                     -0.30911
                                                               0.30288
unionpct 0.09155 -0.26199 -0.09394 1.00000 0.3331
                                                     -0.19406 0.27563
clint96
          0.10437 -0.64084
                            0.61651
                                    0.33305
                                            1.0000
                                                     -0.61196
                                                               0.67033
GOPmember -0.02881 0.91977 -0.30911 -0.19406 -0.6120
                                                      1.00000 -0.93918
ADA98
          0.04988 -0.92795 0.30288 0.27563 0.6703
                                                     -0.93918
                                                               1.00000
```

pctb196

1.998

unionpct

1.371

> vif(fit)

10.292

ADA98 GOPmember

8.878

clint96

3.313

```
38 / 40
```

## Regression, again!

```
> fit2<-lm(votesum~ADA98+clint96+pctbl96+unionpct)
> summary(fit2)
Call:
lm(formula = votesum ~ ADA98 + clint96 + pctbl96 + unionpct)
Residuals:
  Min
          10 Median
                            Max
                       30
-3.300 -0.300 0.179 0.383 2.913
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.02775 0.17198 23.42 <2e-16 ***
ADA98
           -0.04052 0.00111 -36.60 <2e-16 ***
clint96 -0.00658 0.00469 -1.40 0.16
pctbl96 0.00165 0.00293 0.56 0.57
           0.08300 0.51706 0.16 0.87
unionpct
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.684 on 428 degrees of freedom
Multiple R-Squared: 0.862, Adjusted R-squared: 0.861
F-statistic: 667 on 4 and 428 DF, p-value: <2e-16
> vif(fit2)
  ADA98 clint96 pctb196 unionpct
  1.883
           3.296
                 1.986
                           1.343
```

# Ridge Regression...

- > ridge.vote<-lm.ridge(votesum~ADA98+GOPmember+clint96+pctb196+unionpct, lambda=seq(0,5000,10))
- > select(ridge.vote)
  modified HKB estimator is 0.8365
  modified L-W estimator is 0.4018
  smallest value of GCV at 10

## Values of $\hat{\beta}_k^R$ , by $\lambda$

