Weakest Preconditions 1 & 2; Domain Predicates

Draft Solution

Class 10: Weakest Preconditions part 1

- 1. If $B_1 \wedge B_2$, then $p = (B_1 \rightarrow w_1) \wedge (B_2 \rightarrow w_2)$ implies $w_1 \wedge w_2$, so we execute whichever arm is selected with its wp true. On the other hand, q implies $B_1 \wedge B_2 \wedge (w_1 \vee w_2)$, which leaves open the possibility of executing S_1 when w_1 doesn't hold and of executing S_2 when w_2 doesn't hold.
- 2. $wp(S, p \lor q) \rightarrow wp(S, p) \lor wp(S, q)$ holds if S is deterministic but might not hold if S is nondeterministic. The other three statements (below) hold for both deterministic and nondeterministic programs.
 - $wp(S, p) \lor wp(S, q) \rightarrow wp(S, p \lor q)$
 - $wp(S, p \land q) \rightarrow wp(S, p) \land wp(S, q)$
 - $wp(S, p) \land wp(S, q) \rightarrow wp(S, p \land q)$

(For Problem 3) Reference 1: If $w \Leftrightarrow wp(S, q)$, then $\vDash_{tot} \{w\} S \{q\}$ and $\not\vDash_{tot} \{\neg w\} S \{q\}$ so for some σ , $\sigma \vDash \{\neg w\} S \{\neg q\}$). If S is deterministic, $\not\vDash_{tot} \{\neg w\} S \{q\}$ also implies $\vDash \{\neg w\} S \{\neg q\}$. Reference 2: $p \rightarrow q$ is strict iff $q \land \neg p$ is satisfiable.

- 3. (Correctness properties related to wp(S, q)) We're given $w \Leftrightarrow wp(S, q)$ and strict $b \to w$ and $w \to c$. Are the below statements: Always true? / Always false? / Might be true = Might be false?
- 3a. If *S* is deterministic then $\models_{tot} \{b\} S \{q\}$.

Always true. From $\vDash_{tot} \{w\} \ S \{q\}$ we get $\vDash_{tot} \{b\} \ S \{q\}$ by precond. strengthening, since $b \rightarrow w$.

3b. If *S* is nondeterministic there exists σ such that $\sigma \vDash \{\neg c\}$ S $\{\neg q\}$.

Might be true. We know $\not\models_{tot} \{\neg w\} \ S \ \{q\} \ \text{i.e., for some } \sigma, M(S, \sigma) \not\models q. \ \text{Let } M(S, \sigma) = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ where $\Sigma_1 \models q$, $\Sigma_2 \models \neg q$, and $\Sigma_3 \subseteq \{\bot\}$. $M(S, \sigma) \not\models q$ implies that $\Sigma_2 \cup \Sigma_3 \neq \emptyset$. It's possible (but not guaranteed) that $\Sigma_1 = \Sigma_3 = \emptyset$, in which case $M(S, \sigma) = \Sigma_2 \models \neg q$.

3c. If *S* is nondeterministic, then there exist $\sigma \models \neg c$ and $\tau \in M(S, \sigma)$ such that $\tau \models q$.

Might be true. Since S is nondeterministic, $\vDash_{\mathsf{tot}} \{w\} \ S \{q\}$ implies that for every $\sigma \vDash \neg w$, we have $\sigma \not\vDash_{\mathsf{tot}} \{w\} \ S \{q\}$. Since $w \to c$, we know $\neg c \to \neg w$, so we can restrict ourselves to $\sigma \vDash \neg c$ and still know $\sigma \not\vDash_{\mathsf{tot}} \{w\} \ S \{q\}$, which in turn implies $M(S, \sigma) \not\vDash q$. But this only implies that there is some $\tau \in M(S, \sigma)$ that $\not\vDash q$. There can also be some $\tau \in M(S, \sigma)$ that $\not\vDash q$, which is what we wanted.

Class 11: Weakest Preconditions part 2

- **4.** wlp(u := u * k; k := u, u > h(k)) = wlp(u := u * k, wlp(k := u, u > h(k))) = wlp(u := u * k, u > h(u)) = $u^*k > h(u^*k)$).
- 5. $wlp(if \times < 0 \text{ then } x := -x \text{ fi, } x^2 \ge x) = (x < 0 \rightarrow wlp(x := -x, x^2 \ge x)) \land (x \ge 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) = (x < 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) = (x < 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) = (x < 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) \land (x \ge 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) = (x < 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) \land (x \ge 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) = (x < 0 \rightarrow wlp(\text{skip, } x^2 \ge x)) \land (x \ge 0 \rightarrow wlp(\text{skip, } x^2 \ge x)$ $(x < 0 \rightarrow (-x)^2 \ge -x) \land (x \ge 0 \rightarrow x^2 \ge x)$. You were asked to not logically simplify, so that's the answer, along with the acceptable alternative $(x < 0 \land (-x)^2 \ge -x) \lor (x \ge 0 \land x^2 \ge x)$.

Class 11: Domain Predicates [18 points]

- 6. (Calculate wp(y := y/x, sqrt(y) < x))
 - We want $D(y := y/x) \land D(w) \land w$ where w = w/p(y := y/x), sqrt(y) < x. Calculating,
 - W = Sqrt(y/x) < x
 - $D(w) = D(sqrt(y/x)) = D(y/x) \land y/x \ge 0 = x \ne 0 \land y/x \ge 0$
 - $D(y:=y/x) \equiv D(y/x) \equiv x \neq 0$
 - So wp(y := y/x, sqrt(y) < x)
 - $\equiv D(y := y/x) \wedge D(w) \wedge w$
 - $\equiv (x \neq 0) \land (x \neq 0 \land y/x \geq 0) \land (sqrt(y/x) < x)$
 - $\Leftrightarrow x \neq 0 \land y/x \geq 0 \land sqrt(y/x) < x$ (After some simplification)

- 7. (Calculate $wp(if y \ge 0 then x := y / x else x := -x / y fi, r < x \le y))$
 - Let $S = if y \ge 0$ then x := y / x else x := -x / y fi and $q = r < x \le y$.
 - We want $D(S) \wedge D(w) \wedge w$ where w = w/p(S, q). We can calculate
 - $W = W \mid p(S, q) = W \mid p(if y \ge 0 \text{ then } x := y / x \text{ else } x := -x / y \text{ fi}, q)$ $\equiv (y \ge 0 \rightarrow w | p(x := y / x, q)) \land (y < 0 \rightarrow w | p(x := -x / y, q))$ $\equiv (y \ge 0 \rightarrow w/p(x := y/x, r < x \le y)) \land (y < 0 \rightarrow w/p(x := -x/y, r < x \le y))$

 - $\equiv (y \ge 0 \rightarrow r < y / x \le y) \land (y < 0 \rightarrow r < -x / y \le y)$
 - $D(w) = D((y \ge 0 \rightarrow r < y/x \le y) \land (y < 0 \rightarrow r < -x/y \le y)$
 - $\equiv D(y \ge 0 \to r < y / x \le y) \land D(y < 0 \to r < -x / y \le y)$
 - $\equiv T \wedge D(r < y / x \le y) \wedge T \wedge D(r < -x / y \le y)$
 - $\equiv D(r < y/x \land y/x \le y) \land D(r < -x/y \land -x/y \le y)$
 - $\equiv D(y/x) \wedge D(-x/y)$ (After some quick simplification of $T \wedge D(y/x) \wedge T$, etc.)
 - $\equiv x \neq 0 \land y \neq 0$
 - $D(S) = D(w|p(if y \ge 0 then x := y/x else x := -x/y fi)$
 - $\equiv D(y \ge 0) \land (y \ge 0 \rightarrow D(x := y / x)) \land (y < 0 \rightarrow D(x := -x / y))$
 - $\equiv (y \ge 0 \to D(y/x)) \land (y < 0 \to D(-x/y))$ (Since $D(y \ge 0) \equiv T$ and $D(var := exp) \equiv D(exp)$.)
 - $\equiv (y \ge 0 \to x \ne 0) \land (y < 0 \to y \ne 0)$

• So
$$wp(S, q) = D(S) \land D(w) \land w$$

$$= ((y \ge 0 \to x \ne 0) \land (y < 0 \to y \ne 0))$$

$$\land (x \ne 0 \land y \ne 0)$$

$$\land ((y \ge 0 \to r < y/x \le y) \land (y < 0 \to r < -x/y \le y)).$$

• We can do some simplification to get

$$wp(S, q) \Leftrightarrow x \neq 0 \land y \neq 0$$

$$\land ((y > 0 \rightarrow r < y / x \le y) \land (y < 0 \rightarrow r < -x / y \le y)).$$