QUESTION (HD 0504): Is it true that if I is a *-ideal of an integral domain D, for some star operation *, then the radical \sqrt{I} is also a *-ideal?

ANSWER: (Terminology standard as in Gilmer's [Multiplicative Ideal Theory, Marcel Dekker, 1972, sections 32 and 34]).

Not really. For example if D is a rank one nondiscrete valuation domain with maximal ideal M and if x is a nonzero nonunit of D. Then xD is, by definition of star operations, a *-ideal for any star operation *. So, xD is a v-ideal. Now, since D is a rank one valuation domain, $\sqrt{xD} = M$ and M is not principal and has the following nasty property: If for $a,b\in D\backslash\{0\}$, $M\subseteq \frac{a}{b}D$ then $a\mid b$. (For a quick proof, note that D is a valuation domain, so $a\mid b$ or $b\mid a$. Suppose that $a\not\mid b$. Then $b\mid a$ properly i.e. $\frac{a}{b}=c$ is a nonunit of D. This gives $M\subseteq cD$ and since M is the maximal ideal of D we have M=cD contradicting the fact that M is not principal.) Now $D\supseteq M_v=\bigcap_{M\subseteq \frac{a}{b}D}\frac{a}{b}D\supseteq D$, because in each case $a\mid b$ and so

 $\frac{a}{b}D \supseteq D$. So M, the radical of the v-ideal xD, is not a v-ideal.

However, there is a result that is so closely related to this question that it would be unfair not to mention it. Recall that if * is a star operation then the operation $*_f$ defined for each nonzero fractional ideal A by $A^{*_f} = \bigcup \{F^* : \text{where } F \text{ ranges over nonzero finitely generated subideals of } A\}$ is again a star operation and that this operation is of finite character and that each *-ideal is a $*_f$ -ideal.

Theorem 1. If *I* is a * ideal for some star operation *, then \sqrt{I} is a *_f -ideal.

Proof. According to Hedstrom and Houston's [Proposition 1.1(5), J. Pure Appl. Algebra 18(1980) 37-44] if X is a $*_f$ -ideal then every minimal prime ideal of X is a $*_f$ -ideal and as we have mentioned each *-ideal is a $*_f$ -ideal. Now set X = I and recall that $\sqrt{I} = \bigcap P$ where P ranges over minimal prime ideals of I and so each P is a $*_f$ -ideal. Now recall from Gilmer's [Proposition 32.2, Multiplicative Ideal Theory, Marcel Dekker, 1972] that if $\{A_i\}$ is a family of *-ideals, for some star operation *, such that $\bigcap A_i \neq (0)$ then $\bigcap A_i$ is a *-ideal.

Corollary 2. For any star operation * the radical of a *-invertible *-ideal I is a t-ideal and so the radical of an invertible ideal is a t-ideal.

The proof is easy once you realize that $I \in F(D)$ is *-invertible if there is $J \in F(D)$ such that $(IJ)^* = D$ and that J^* can be shown to be I^{-1} . Thus $(II^{-1})^* = D$ and so I^{-1} is *-invertible. This leads to $I = I^* = (I^{-1})^{-1} = I_{\nu}$. Now note that for $I \in F(D)$, $I_t = \bigcup \{F_{\nu} : \text{where } F \text{ ranges over nonzero finitely generated subideals of } A\} = A^{\nu_f}$.