Ontologies

6.871: Lecture 22

What is an Ontology?

- A formal, explicit specification of a shared conceptualization.
- A shared vocabulary that can be used to model a domain, i.e., the objects and/or concepts that exist, their properties and relations
- Imposition of specific set of conceptualizations on a domain of interest
 - Tell me about analog electronics
 - Tell me about digital electronics
- Definitions of terminology
 - and constraints between terms
- Domain mini-theories

Ontology vs KB?

- Can think of an ontology as a kind of KB, but:
- Ontology serves different purpose:
 - Only needs to describe vocabulary, axioms
 - E.g. database schema is an ontology
- KB includes:
 - Specific knowledge needed for problem-solving

Motivations

Engineering motivation:

- Every knowledge-based system is based on an ontology of its domain
- Explication of the ontology is a time-consuming component of the development process
- Why not amortize the effort and share ontologies?
 - E.g. "core ontologies" such as space, time, quantities

Scientific motivation:

-Understand fundamental issues about human conceptualizations

Pragmatic Motivations

- Responding to the unexpected
- Distributed Databases
- Distributed Applications
- Communicating Agents
- Semantic Web

Key Question: What does he mean when he says <...>?

- Content
- Form
- Purpose
- Development

Content

- types of objects, relationships
- e.g. the blocks world conceptualization includes:
 - Object Classes: Blocks, Robot Hands
 - Properties: shapes of blocks, color of blocks
 - Relationships: On, Above, Below, Grasp
 - Processes: stacking plan for a tower
- Form
- Purpose
- Development

- Content
- Form
 - Is the taxonomic relationship (instance-of, subclass) primary?
 - Are definitions of, or constraints on, terms provided?
 - Is the definitional language as rich as a full logic?
 - Is it process-centric or object-centric?
- Purpose
- Development

- Content
- Form
- Purpose
 - Knowledge sharing
 - E.g. Between people, software systems, agents
 - Knowledge reuse
 - E.g. When models or systems change
 - General (common sense) or domain specific
- Development

- Content
- Form
- Purpose
- Development
 - Is it acquired or engineered?
 - If acquired, what about:
 - Quality of knowledge
 - Diversity of content
 - Trust in knowledge
 - Unpredictable use

Building an Ontology

- Planning
- Specification consider scope and purpose
- Knowledge Acquisition
- Conceptualization glossary of terms, topdown, bottom-up, middle-out
- Integration of existing relevant ontologies
- Implementation
- Evaluation Clarity, Coherence, Extensibility, Minimal Encoding Bias, Minimal Ontological Commitment

Example Ontologies

see http://www.cs.utexas.edu/users/mfkb/related.html

- * ARPI Planning and Scheduling onto logies
- * Aviation Onto logy
- * BPMO The Business Process Management Onto logy
- * CYC (and the derivative PDKB)
- * DOLCE a Descript ive Onto logy for Linguistic and Cognitive Engineering.
- * Dublin Core (bib liograph ic organization)
- * The Enterprise Onto logy (for businessenterprises)
- * Onto logies f or e tho logy (anim al be havior), e.g. Loggerhead T urt le
- * FrameNet (lexical reference)
- * Generalized Up per Model (for NLP)
- * Mikroko sm os (for NLP)
- * ON9 (the CNR-ITBM Onto logy Libra ry)
- * OWL-S- The OWL (form erly DAML) Services on to log y.
- * Onto lingua Onto logy Libra ry
- * Op en Min d datab as e and OM CSNet S em ant ic N et wor k
- * PharmGKB Pharmacogenetics and Pharmacogeno mics Kno wledge Base
- * PSL (process spe cification)
- * QoS (computers and net works)
- * SENSUS (for NLP)
- * STEP (for product data ex ch an ge)
- * SUMO (the Suggested Upper Merged Onto logy)
- * the Twente Onto logy Collection
- * UMLS (b iome dicine)
- * Wilkins' on to log y (17t h century!)
- * Word Net (lex ical reference)

Example Tools for Ontologies

see http://www.cs.utexas.edu/users/mfkb/related.html,

http://www.xml.com/pub/a/2002/11/06/ontologies.html

- * Chimaera
- * CODE4
- * Generic Knowled ge-Base Editor
- * Ika rus
- * JOE (Java Onto logy Editor)
- * KAON
- * KACTUS
- * OilEd
- * On to E dit
- * Ontos aurus
- * Prote ge
- * Snoba se
- * Stan ford Onto logy Editor
- * Sym Ont os
- * Word Map

Protégé

http://protege.stanford.edu/

Some Large Ontologies

CYC common sense	10 ⁵ concept types, 10 ⁶ axioms	CYCL	Partially Online: 6000 Top Concepts
SUMO upper ontology	1000 terms, 4200 assertions	KIF Also LOOM, OWL,Protege	Published Online
WordNet lexical memory	152,059 word forms in 115,424 synsets	Semantic Network	Published Online
Sensus text understanding	70,000 terms extension of WordNet	Semantic Network	Published Online
UMLS biomedicine	135 Semantic Types, 54 semantic relations, 975,354 concepts	Semantic Network	Published Online

UMLS

CYC

- Goal: Encode all of human common sense knowledge
- Mechanization: human-entered axioms
- Periodic review, reorganization, compaction, separation into distinct mini-theories, not mutually consistent
- Driven by application domains
- Often seems ad-hoc

CYC Top Level Categories

CYC Ontology

- Alphabetized List of CYC® Constants
- Search for Constants by Name
- The Entries for the CYC@ Constants (divided up among 43 pages)
 - o Fundamentals
 - o Top Level
 - Time and Dates
 - o Types of Predicates
 - o Spatial Relations
 - Quantities
 - Mathematics
 - Contexts
 - o Groups
 - o "Doing"
 - o Transformations
 - o Changes Of State
 - o Transfer Of Possession
 - Movement
 - Parts of Objects
 - o Composition of Substances
 - o Agents
 - Organizations
 - Actors
 - o Roles
 - Professions
 - Emotion
 - o Propositional Attitudes
 - o Social
 - o Biology
 - o Chemistry
 - o Physiology
 - General Medicine
 - Materials
 - o Waves

CYC Examples

#\$Professional

A set of agents. Elements of #\$Professional are agents who spend a significant part of their waking hours doing activities that are characteristic of some occupation, skilled or unskilled. However, elements of #\$Professional need not be working the entire duration of when they are a professional, such as a #\$Professor on summer break, or someone who is temporarily unemployed. The elements of #\$Professional are persons, most of whom belong to at least one such collection during some portion of their lives. Typically their actions are performed for pay, but not always (e.g., #\$Artist-Visual). What are colloquially considered professions or occupations are subsets of #\$Professional; for example, #\$LumberJack, #\$Scientist, #\$Lifeguard, #\$StockBroker, #\$Technician, #\$CraftWorker, #\$Housekeeper, #\$S portsCoach, #\$Athlete, #\$LegalProfessional, #\$Publicist, #\$CrewMemberOnShip, #\$SelfEmployedWorker (and many more). Additionally, other subsets of #\$Professional classify workers according to other features of their working life besides skills; e.g., #\$SelfEmployedWorker, #\$DeskWorker. Subsets may be general (e.g., #\$DeskWorker, #\$Doctor-Medical) or specialized (e.g., #\$ContinuingEdProgramCoordinator, #\$PediatricNeuroSurgeon). Elements of #\$Professional are people: #\$MaryShepherd (#\$HumanCyclist), #\$MichaelJordan (#\$Athlete), #\$AlfredNorthWhitehead (#\$Philosopher), #\$Michaelgelo (#\$Sculptor, #\$PainterFineArtist), #\$BillClinton (#\$UnitedStatesPresident), etc.

isa: #\$ExistingObjectType

genls: #\$Person

some subsets: #\$Researcher #\$Athlete #\$Executive #\$MilitaryPerson #\$Employee #\$DeskWorker #\$PublicSectorEmployee #\$Consultant #\$AcademicProfessional #\$NonProfitEmployee #\$SalesPerson #\$EntertainmentOrArtsProfessional #\$PrivateSectorEmployee #\$Farmer #\$SelfEmployedWorker (plus 31 more public subsets, 596 unpublished subsets)

#\$OccupationType

A collection of collections. Each element of #\$OccupationType is a collection of workers, based on their kinds of work; each of those workers is an element of (#\$isa) #\$Professional. Elements of #\$OccupationType represent all kinds of jobs, not just the kinds of occupations colloquially considered professional. Elements of #\$OccupationType include the collections #\$ComputerProgrammerProfessional, #\$FoodServiceEmployee, #\$MedicalCareProfessional, #\$BaseballUmpire, #\$SalesRepresentative, #\$Brewer, #\$Gymnast, and many others. Also see #\$Professional, #\$PositionType.

isa: #\$SiblingDisjointCollection #\$Collection
genls: #\$PositionType #\$PersonByActivityType

some subsets: #\$MedicalSpecialtyType

CYC Examples (cont'd)

#\$employees : <<u>#\$Agent</u>> <<u>#\$Agent</u>>

The predicate #\$employees relates a particular employer to one of its paid employees. (#\$employees EMPLOYER WORKER) means WORKER regularly performs work for EMPLOYER, and EMPLOYER pays WORKER for that activity (often by paycheck). EMPLOYER directs the manner in which WORKER performs the work and may provide the workplace, tools, capital, and other assistance for the work. EMPLOYER is commonly an organization but may be a person. E.g., (#\$employees PerryMason PaulDrake); (#\$employees #\$Cycorp #\$Lenat). This predicate is true during all or any part of the period that the employment continues; e.g., (#\$holdsIn (#\$YearFn 1995) (#\$employees #\$CarnegieMellonUniversity #\$Derthick)).

isa: #\$AsymmetricBinaryPredicate #\$CotemporalObjectsSlot genIPreds: #\$hasWorkers #\$affiliatedWith #\$cotemporal

#\$hasTitle: <<u>#\$Person</u>> <<u>#\$Title</u>> <<u>#\$Organization</u>>

The predicate #\$hasTitle relates a person to a title that s/he holds in an organization. (#\$hasTitle PER TITLE ORG) means that the #\$Person PER has the #\$Title TITLE in the #\$Organization ORG. Elements of #\$Title are linguistic objects usually related to positions or other qualifications that a person has. A person generally has a title only while actually holding the related position; e.g., (#\$hasTitle #\$Lenat #\$PrincipalScientist-Title #\$CycGroup) tells us Doug Lenat's title at the Cyc Project while under MCC's organizational structure. A noteworthy class of exceptions is #\$CourtesyTitle (q.v.), which include forms of address such as "Mr.' and "Ms.', plus some titles which by courtesy the holders retain for life, such as (in the U.S.) "President and military rank designations (e.g., officers retired from the armed services).

Note: Elements of #\$Title belong to the set #\$LinguisticObject, while positions themselves are represented by persons (cf. #\$PositionType). Cf. #\$hasPositionIn.

isa: #\$TernaryPredicate

#\$insIs JobOf: <#\$ScriptType> <#\$Professional>

The predicate #\$insIsJobOf indicates a type of work done by a particular individual. (#\$insIsJobOf SCRIPT-TYPE PER) means that the person PER performs instances of SCRIPT-TYPE as part of his or her job. E.g., #\$KeithRichards performs instances of #\$WritingMusic as part of his work; #\$Goolsbey performs instances of #\$ProgrammingAComputer in his job at Cycorp; a #\$SecurityGuard performs instances of #\$ProtectingSomething. Note that assertions using #\$insIsJobOf are true for some specific period of time, which may be indicated with #\$holdsIn.

isa: #\$TypePredicate #\$BinaryPredicate

- Philosophy
- Library and Information Science
- Natural Language Processing
- Artificial Intelligence
- Semantic Web

- Philosophy
 - Objectives: Classify and categorize the world
 - E.g.: Aristotle ...
- Library and Information Science
- Natural Language Processing
- Artificial Intelligence
- Semantic Web

- Philosophy
- Library and Information Science
 - Objectives: organize bibliographic world, model universal and domain knowledge
 - Usage: provide access points to bibliographic entities
 - E.g., MARC; LCC, UDC, SAB
- Natural Language Processing
- Artificial Intelligence
- Semantic Web

- Philosophy
- Library and Information Science
- Natural Language Processing
 - Objectives: Model lexical and domain knowledge
 - Usage: Machine Translation, Information Extraction,
 Q/A
 - E.g.: Wordnet, Sensus, Generalised Upper Model
- Artificial Intelligence
- Semantic Web

- Philosophy
- Library and Information Science
- Natural Language Processing
- Artificial Intelligence
 - Objectives: Model common sense and domain knowledge
 - Usage: Knowledge representation and reasoning
 - E.g.: OpenMind, CYC; UMLS, ...
- Semantic Web

- Philosophy
- Library and Information Science
- Natural Language Processing
- Artificial Intelligence
- Semantic Web
 - Objectives: Provide semantics for web resources
 - Usage: Describe resources and their contents

Application Example

Document comparison (Xerox; Everett, et al. CACM, Feb 02)

- Goal: Identify similar documents
- Have: 40,000 technician-authored tips for copier repair

EXAMPLE OF EUREKA TIPS

	PROBLEM	CAUSE	SOLUTION
TIP 27057	Left cover damage	The left cover safety cable is breaking, allowing the left cover to pivot too far, breaking the cover.	Remove the plastic sleeve from around the cable. Cutting the plastic off of the cable makes the cable more flexible, which prevents cable breakage. Cable breakage is a major source of damage to the left cover.
TIP 27118	The current safety cable used in the 5100 Document Handler fails prematurely, causing the Left Document Handler Cover to break.	The plastic jacket made the cable too stiff. This causes stress to be concentrated on the cable ends, where it eventually snaps.	When the old safety cable fails, replace it with the new one, which has the plastic jacket shortened.

EXAMPLE OF EUREKA TIPS

	PROBLEM	CAUSE	SOLUTION
TIP 27057	Left cover damage	The left cover safety cable is breaking, allowing the left cover to pivot too far, breaking the cover.	Remove the plastic sleeve from around the cable. Cutting the plastic off of the cable makes the cable more flexible, which prevents cable breakage. Cable breakage is a major source of damage to the left cover.
TIP 27118	The current safety cable used in the 5100 Document Handler fails prematurely, causing the Left Document Handler Cover to break.	The plastic jacket made the cable too stiff. This causes stress to be concentrated on the cable ends, where it eventually snaps.	When the old safety cable fails, replace it with the new one, which has the plastic jacket shortened.

Natural language requires a huge ontology...

- (1) The left cover broke in half.
- (2) The sheet of paper breaks the light beam.
- (3) Before doing step 3, you might want to break for coffee.

Natural language requires a huge ontology...

- (1) The left cover broke in half.

 BreakDamage
- (2) The sheet of paper breaks the light beam. BreakInterrupt
- (3) Before doing step 3, you might want to break for coffee.

BreakRecuperate

Natural language requires a more abstract one.

- (1) The left cover broke in half.

 BreakDamage
- (2) The sheet of paper breaks the light beam. BreakInterrupt
- (3) Before doing step 3, you might want to break for coffee.

BreakRecuperate

Map to concepts instead.

Figure by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW.

Document Comparison Summary

- Different ways to represent the same knowledge
- Use determines representation
- Represent only knowledge that is needed
- c.f.: Common sense reasoning, don't know use or what knowledge is needed.

Success Using Ontologies?

- Domain-specific successes
 - E.g. biomedicine
- More general use shows promise
 - New languages
 - New tools
 - New applications
 - Very active research community

Taxonomic Hierarchies

- Not always obvious what is class, instance, role, etc.
- E.g., what is the relationship between:
 - time duration (instances e.g. 1 hr) and time interval (e.g. 1pm to 2pm today)?
 - water and ocean?
 - mammal and human and a particular human?
 - human and species?
 - book that is a bound volume, book that is abstract concept?

Other Examples

- Enterprise Ontology (Edinburgh; Uschold, et al.)
- Document comparison (Xerox; Everett, et al.)

Other Examples

- Enterprise Ontology (Edinburgh; Uschold, et al.)
 - Goal: improve planning via shared enterprise model
 - Meta-ontology: entities, relationships, states of affairs
 - Examples

$ACTIVITY$ $\epsilon tc.$	ORGANISATION	STRATEGY	MARKETING	TIME
Activity	Person	Purpose	Sale	Time Line
Activity	Machine	Hold Purpose	Potential Sale	Time
Specification	244 125 Tale Laborers	PROFESSION OF THE PARK	55.5 10.5 10.4 10.4 10.4	Interval
Execute	Corporation	Intended	For Sale	Time
		Purpose		Point
Executed Activity	Partnership	Purpose-Holder	Sale Offer	
Specification				
Γ- B egin	Partner	Strategic Purpose	Vendor	
F-End	Legal Entity	Objective	Actual	
	.8.07 (3.2.1		Customer	
Pre-Condition	Organisational	Vision	Potential	
	Unit		Customer	
Effect	Manage	Mission	Customer	
Doer	Delegate	Goal	Reseller	
Sub-Activity	Management	Help Achieve	Product	
,	Link	'		
Authority	Legal	Strategy	Asking	
•	Ownership		Price	
Activity	Non-Legal	Strategic	Sale	
Owner	Ownership	Planning	Price	
Event	Ownership	Strategic	Market	
	CHANGE OF THE SERVICES	Action	5)	
Plan	Öwner	Decision	Segmentation	
			Variable	
Sub-Plan	Asset	Assumption	Market	
			Segment	
lanning	Stakeholder	Critical	Market	
-	L	Assumption	Research	
rocess	Employment	Non-Critical	Brand	
Specification	Contract	Assumption		
Capability	Share	Influence Factor	lmage	
Skill	Shareholder	Critical	Feature	
		Influence Factor		
Resource		Non-Critical Influence Factor	Need	
Resource	 	Critical Success	Market Need	
Allocation		Factor	WATER BOOK TANDERT	
Resource		Risk	Promotion	
Substitute	I	l		l

Other Examples

- Enterprise Ontology (Edinburgh; Uschold, et al. AIAI, 1998)
- Document comparison (Xerox; Everett, et al. CACM, Feb 02)
 - Goal: Identify similar documents
 - Have: 40,000 technician-authored tips for copier repair
 - Current system: analyzes 15 pairs of similar tips
 - Examples

Figure by MIT OCW.

Instead of traversing subsumption relations, logic representation supports arbitrary binary relations between concepts. Matching starts with MidLevel concepts, e.g. Damage.