CMPT 210: Probability and Computing

Lecture 11

Sharan Vaswani

February 9, 2023

Recap - (Basic) Frievald's Algorithm

Q: For $n \times n$ matrices A, B and D, is D = AB?

Algorithm:

- 1. Generate a random n-bit vector x, by making each bit x_i either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for n=2, toss a fair coin independently twice with the scheme H is 0 and T is 1). If we get HT, then set $x=[0\,;\,1]$.
- 2. Compute t = Bx and y = At = A(Bx) and z = Dx.
- 3. Output "yes" if y = z (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector multiplications and can be done in $O(n^2)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in O(n) time. Hence, the total computational complexity is $O(n^2)$.

1

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output "yes"? Yes! Since D = AB, for any vector x, Dx = ABx.

Case (ii) If $D \neq AB$, does the algorithm always output "no"?

Claim: For any input matrices A, B, D if $D \neq AB$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

Table 1: Probabilities for Basic Frievalds Algorithm

Proof: If $D \neq AB$, we wish to compute the probability that algorithm outputs "yes" and prove that it less than $\frac{1}{2}$.

Define
$$E:=(AB-D)$$
 and $r:=Ex=(AB-D)x=y-z$. If $D\neq AB$, then $\exists (i,j)$ s.t. $E_{i,j}\neq 0$.

Pr[Algorithm outputs "yes"] = Pr[
$$y = z$$
] = Pr[$r = \mathbf{0}$]
= Pr[$(r_1 = 0) \cap (r_2 = 0) \cap \ldots \cap (r_i = 0) \cap \ldots$]
= Pr[$(r_i = 0)$] Pr[$(r_1 = 0) \cap (r_2 = 0) \cap \ldots \cap (r_n = 0) | r_i = 0$]
(By def. of conditional probability)

$$\implies$$
 $\Pr[\mathsf{Algorithm\ outputs\ "yes"}] \leq \Pr[r_i = 0]$ (Probabilities are in $[0,1]$)

To complete the proof, on the next slide, we will prove that $\Pr[r_i = 0] \leq \frac{1}{2}$.

$$r_{i} = \sum_{k=1}^{n} E_{i,k} x_{k} = E_{i,j} x_{j} + \sum_{k \neq j} E_{i,k} x_{k} = E_{i,j} x_{j} + \omega \qquad (\omega := \sum_{k \neq j} E_{i,k} x_{k})$$

$$\Pr[r_{i} = 0] = \Pr[r_{i} = 0 | \omega = 0] \Pr[\omega = 0] + \Pr[r_{i} = 0 | \omega \neq 0] \Pr[\omega \neq 0]$$

$$(\text{By the law of total probability})$$

$$\Pr[r_{i} = 0 | \omega = 0] = \Pr[x_{j} = 0] = \frac{1}{2} \qquad (\text{Since } E_{i,j} \neq 0 \text{ and } \Pr[x_{j} = 1] = \frac{1}{2})$$

$$\Pr[r_{i} = 0 | \omega \neq 0] = \Pr[(x_{j} = 1) \cap E_{i,j} = -\omega] = \Pr[(x_{j} = 1)] \Pr[E_{i,j} = -\omega | x_{j} = 1]$$

$$(\text{By def. of conditional probability})$$

$$\implies \Pr[r_{i} = 0 | \omega \neq 0] \leq \Pr[(x_{j} = 1)] = \frac{1}{2} \qquad (\text{Probabilities are in } [0, 1], \Pr[x_{j} = 1] = \frac{1}{2})$$

$$\implies \Pr[r_{i} = 0] \leq \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} \Pr[\omega \neq 0] = \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} [1 - \Pr[\omega = 0]] = \frac{1}{2}$$

$$(\Pr[E^{c}] = 1 - \Pr[E])$$

 \implies Pr[Algorithm outputs "yes"] \leq Pr[$r_i = 0$] $\leq \frac{1}{2}$.

4

Hence, if $D \neq AB$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \implies$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1.

A common trick in randomized algorithms is to have *m* independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus *amplifying the* probability of success.

5

Frievald's Algorithm

By repeating the *Basic Frievald's Algorithm m* times, we will amplify the probability of success. The resulting complete Frievald's Algorithm is given by:

- 1 Run the Basic Frievald's Algorithm for *m* independent runs.
- 2 If any run of the Basic Frievald's Algorithm outputs "no", output "no".
- 3 If all runs of the Basic Frievald's Algorithm output "yes", output "yes".

Table 2: Probabilities for Frievald's Algorithm

If m=20, then Frievald's algorithm will make mistake with probability $1/2^{20}\approx 10^{-6}$.

Computational Complexity: $O(mn^2)$

Probability Amplification

Consider a randomized algorithm $\mathcal A$ that is supposed to solve a binary decision problem i.e. it is supposed to answer either Yes or No. It has a one-sided error – (i) if the true answer is Yes, then the algorithm $\mathcal A$ correctly outputs Yes with probability 1, but (ii) if the true answer is No, the algorithm $\mathcal A$ incorrectly outputs Yes with probability $\leq \frac{1}{2}$.

Let us define a new algorithm $\mathcal B$ that runs algorithm $\mathcal A$ m times, and if any run of $\mathcal A$ outputs No, algorithm $\mathcal B$ outputs No. If all runs of $\mathcal A$ output Yes, algorithm $\mathcal B$ outputs Yes.

 ${f Q}:$ What is the probability that algorithm ${\cal B}$ correctly outputs Yes if the true answer is Yes, and correctly outputs No if the true answer is No?

Probability Amplification - Analysis

```
Pr[\mathcal{B} \text{ outputs Yes} \mid \text{true answer is Yes}]
= \Pr[A_1 \text{ outputs Yes } \cap A_2 \text{ outputs Yes } \cap \ldots \cap A_m \text{ outputs Yes } | \text{ true answer is Yes }]
=\prod \mathsf{Pr}[\mathcal{A}_i \;\mathsf{outputs}\;\mathsf{Yes}\;|\;\mathsf{true}\;\mathsf{answer}\;\mathsf{is}\;\mathsf{Yes}\;]=1
                                                                                                                          (Independence of runs)
Pr[\mathcal{B} \text{ outputs No} \mid \text{true answer is No}]
= 1 - \Pr[\mathcal{B} \text{ outputs Yes} \mid \text{true answer is No}]
=1-\mathsf{Pr}[\mathcal{A}_1 \text{ outputs Yes } \cap \mathcal{A}_2 \text{ outputs Yes } \cap \ldots \cap \mathcal{A}_m \text{ outputs Yes } | \text{ true answer is No }]
I=1-\prod \Pr[\mathcal{A}_i \text{ outputs Yes } | \text{ true answer is No }] \geq 1-rac{1}{2m}.
```

When the true answer is Yes, both $\mathcal B$ and $\mathcal A$ correctly output Yes. When the true answer is No, $\mathcal A$ incorrectly outputs Yes with probability $<\frac{1}{2}$, but $\mathcal B$ incorrectly outputs Yes with probability $<\frac{1}{2^m}<<\frac{1}{2}$. By repeating the experiment, we have "amplified" the probability of success.

Random Variables

Definition: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is usually a subset of the real numbers.

Example: Suppose we toss three independent, unbiased coins. Let C be the number of heads that appear.

$$\mathcal{S} = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

C is a total function that maps each outcome in S to a number as follows: C(HHH) = 3, C(HHT) = C(HTH) = C(THH) = 2, C(HTT) = C(THT) = C(TTH) = 1, C(TTT) = 0.

C is a random variable that counts the number of heads in 3 tosses of the coin.

Example: I toss a coin, and define the random variable R which is equal to 1 when I get a heads, and equal to 0 when I get a tails.

Bernoulli random variables: Random variables with the codomain $\{0,1\}$ are called Bernoulli random variables. E.g. R is a Bernoulli r.v.

Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What is the domain, range of R?

Q: Three balls are randomly selected from an urn containing 20 balls numbered 1 through 20. The random variable M is the maximal value on the selected balls. What is the domain, range of M?

Q: In the above example, what is $2 \times M((1,4,6))$? Is M an invertible function?

Random Variables and Events

Indicator Random Variable: An indicator random variable maps every outcome to either 0 or 1.

Example: Suppose we throw two standard dice, and define M to be the random variable that is 1 iff both throws of the dice produce a prime number, else it is 0.

$$M: \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\} \rightarrow \{0,1\}.$$
 $M((2,3)) = 1,$ $M((3,6)) = 0.$

An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0.

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then random variable M=1 iff event E happens, else M=0.

The indicator random variable corresponding to an event E is denoted as \mathcal{I}_E , meaning that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$. In the above example, $M = \mathcal{I}_E$ and since $(2,4) \notin E$, M((2,4)) = 0 and since $(3,5) \in E$, M((3,5)) = 1.

Random Variables and Events

In general, a random variable that takes on several values partitions ${\cal S}$ into several blocks.

Example: When we toss a coin three times, and define C to be the r.v. that counts the number of heads, C partitions S as follows: $S = \{\underbrace{HHH}_{C=3}, \underbrace{HHT}, \underbrace{HHT}, \underbrace{HTT}, \underbrace{THT}, \underbrace{TTT}, \underbrace{TTT}\}$.

Each block is a subset of the sample space and is therefore an event. For example, [C = 2] is the event that the number of heads is two and consists of the outcomes $\{HHT, HTH, THH\}$.

Since it is an event, we can compute its probability i.e.

 $\Pr[C=2] = \Pr[\{HHT, HTH, THH\}] = \Pr[\{HHT\}] + \Pr[\{HTH\}] + \Pr[\{THH\}].$ Since this is a uniform probability space, $\Pr[\omega] = \frac{1}{8}$ for $\omega \in \mathcal{S}$ and hence $\Pr[C=2] = \frac{3}{8}$.

Q: What is Pr[C = 0], Pr[C = 1] and Pr[C = 3]?

Q: What is $\sum_{i=0}^{3} \Pr[C = i]$?

Since a random variable R is a total function that maps every outcome in S to some value in the codomain, $\sum_{i \in \text{Range of R}} \Pr[R = i] = \sum_{i \in \text{Range of R}} \sum_{\omega \text{ s.t. } R(\omega) = i} \Pr[\omega] = \sum_{\omega \in S} \Pr[\omega] = 1$.

Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What are the outcomes in the event [R=2]?

Q: What is Pr[R = 4], Pr[R = 9]?

Q: If M is the indicator random variable equal to 1 iff both throws of the dice produces a prime number, what is Pr[M=1]?

Random Variables - Example

Q: Suppose that an individual purchases two electronic components, each of which may be either defective or acceptable. In addition, suppose that the four possible results — (d, d), (d, a), (a, d), (a, a) — have respective probabilities 0.09, 0.21, 0.21, 0.49 [where (d, d) means that both components are defective, (d, a) that the first component is defective and the second acceptable, and so on]. If we let X be a random variable that denotes the number of acceptable components obtained in the purchase and E be the event that there was at least one acceptable component in the purchase,

- What is the domain, codomain of X?
- For every i in the codomain of X, compute Pr[X = i]?
- What is the domain, codomain of \mathcal{I}_E ?
- For every i in the codomain of \mathcal{I}_E , compute $\Pr[\mathcal{I}_E = i]$?
- How does X relate to \mathcal{I}_E ?

Distribution Functions

Probability density function (PDF): Let R be a random variable with codomain V. The probability density function of R is the function $PDF_R: V \to [0,1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.

$$\textstyle \sum_{x \in V} \mathsf{PDF}_R[x] = \textstyle \sum_{x \in \mathsf{Range}(\mathsf{R})} \mathsf{Pr}[R = x] = 1.$$

Cumulative distribution function (CDF): If the codomain is a subset of the real numbers, then the cumulative distribution function is the function $CDF_R : \mathbb{R} \to [0,1]$, such that $CDF_R[x] = Pr[R \le x]$.

Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then $PDF_C[0] = Pr[C=0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C=0] + Pr[C=1] + Pr[C=2] = \frac{7}{8}$.

Q: What is $CDF_C[5.8]$?.

For a general random variable R, as $x \to \infty$, $\mathsf{CDF}_R[x] \to 1$ and $x \to -\infty$, $\mathsf{CDF}_R[x] \to 0$.

Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define T to be the random variable equal to the sum of the dice. Plot PDF_T and CDF_T

Recall that $T: \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \rightarrow V$ where $V = \{2, 3, 4, \dots 12\}$.

 $\mathsf{PDF}_{\mathcal{T}}: V \to [0,1] \text{ and } \mathsf{CDF}_{\mathcal{T}}: \mathbb{R} \to [0,1].$

For example, $PDF_{\mathcal{T}}[4] = Pr[\mathcal{T}=4] = \frac{3}{36}$ and $PDF_{\mathcal{T}}[12] = Pr[\mathcal{T}=12] = \frac{1}{36}$.

Distribution Functions - Examples

Q: Suppose we toss three independent, unbiased coins. Let C be the number of heads that appear. What is PDF_C and CDF_C ?

Q: What is $Pr[1 \le C \le 3]$?

Q: If E is the event that three tosses have the same result, $PDF_{\mathcal{I}_E}$ and $CDF_{\mathcal{I}_E}$?

