Diferenciabilidade de funções com duas variáveis

Seja f: R²->R. Dizemos que f é diferenciável em (x_0,y_0) , se $\partial f/\partial x$ e $\partial f/\partial y$ existir em (x_0,y_0) e se:

$$\frac{f(x,y) - f(x_0, y_0) - \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) - \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)}{\|(x,y) - (x_0, y_0)\|} \to 0 \ com(x,y) \to (x_0, y_0)$$

Plano tangente

Seja f: R^2 ->R diferenciável em x_0 =(x_0 , y_0). O plano definido pela equação:

$$z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)$$

É chamado de plano tangente ao gráfico de f no ponto (x_0,y_0) .

Matriz das derivadas parciais de f em x₀:

$$\mathbf{D}f(\mathbf{x_0}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Gradiente

 ∇f é o vetor formado pelas derivadas parciais da função. Só é possível calcular o gradiente de uma função de contradomínio R.

Teorema 8

Se houver uma função ${\bf f}$ derivável no ponto ${\bf x}$, o qual pertence ao domínio da função, então ${\bf f}$ é continua no ponto ${\bf x}$.

Teorema 9

Se as derivadas parciais de uma função existem e são continuas numa vizinhança de um ponto \mathbf{x} , pertencente ao domínio, então \mathbf{f} é diferenciável em \mathbf{x} .

Vetor Tangente

A velocidade c'(t) é um vetor tangente ao "caminho" c(t) no tempo t. Se C é uma curva traçada por c e se c'(t) é diferente de 0, então c'(t) é um vetor tangente à curva C no ponto c(t).

Linha tangente a um "caminho"

Se **c(t)** é um "caminho" e **c'(t₀)**≠0, a equação da linha tangente ao ponto **c(t₀)** é

$$l(t) = c(t_0) + (t - t_0)c'(t_0)$$

Se ${\bf C}$ é a curva traçada por ${\bf c}$, então a linha traçada por ${\bf l}$ é a linha tangente à curva ${\bf C}$ no ponto ${\bf c}({\bf t_0})$.

Teorema 10

- (i) Seja f uma função diferenciável num ponto x_0 e c um numero real. h(x) = cf(x) é diferenciável em x_0 e $Dh(x_0) = cDf(x_0)$ (igualdade de matrizes).
- (ii) Sejam \mathbf{f} e \mathbf{g} diferenciáveis em $\mathbf{x_0}$. $h(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ é diferenciável em $\mathbf{x_0}$ e $Dh(\mathbf{x_0}) = Df(\mathbf{x_0}) + Dg(\mathbf{x_0})$ (soma de matrizes).
- (iii) Sejam f e g diferenciáveis em $\mathbf{x_0}$ e seja $h(\mathbf{x}) = g(\mathbf{x})f(\mathbf{x})$. Seja h diferenciávei em $\mathbf{x_0}$ e $Dh(\mathbf{x_0}) = g(\mathbf{x_0})Df(\mathbf{x_0}) + f(\mathbf{x_0})Dg(\mathbf{x_0})$.
- (iv) Com as mesmas condições que acima e sendo desta vez $h(\mathbf{x}) = f(\mathbf{x})/g(\mathbf{x})$ e supondo que $g(\mathbf{x})$ nunca é 0 no seu domínio, então h é diferenciável em $\mathbf{x_0}$ e $\mathbf{D}h(\mathbf{x_0}) = \frac{g(x_0)\mathbf{D}f(x_0) f(x_0)}{[g(x_0)]^2}$

Regra da Cadeia

Supondo que g é diferenciável em x_0 e f diferenciável em $y_0 = g(x_0)$. Entao fog é diferenciável em x_0 e $D(f \circ g)(x_0) = Df(y_0)Dg(x_0)$ (produto da matriz $Df(y_0)$ por $Dg(x_0)$).

Gradientes em R3

Sendo f: R³->R diferenciável, o gradiente de f em (x,y,z) é o vetor no espaço dado por $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \nabla f(x,y,z)$. ∇f é a matriz da derivada **D**f, escrito como um vetor.

Derivadas direcionais

f: R³->R. A derivada direcional de f em **x** na direção do vetor **v** é dada por:

$$\frac{d}{dx}f(x+tv)\Big|_{t=0} = \nabla f(x) \cdot v$$

se existir. Normalmente usa-se v como um vetor unitário (norma igual a 1).

Teorema 12

Se $f:R^3->R$ é diferenciável então todas as derivadas direcionais existem. A derivada direcional em \mathbf{x} na direção do vetor \mathbf{v} é dada por:

$$\mathbf{D}f(\mathbf{x})\mathbf{v} = \mathbf{\nabla}f(\mathbf{x}) \cdot \mathbf{v} = \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right]v_1 + \left[\frac{\partial f}{\partial \mathbf{v}}(\mathbf{x})\right]v_2 + \left[\frac{\partial f}{\partial \mathbf{z}}(\mathbf{x})\right]v_3$$

em que $\mathbf{v} = (v_1, v_2, v_3)$.

Teorema 13

Assumindo $\nabla f(\mathbf{x}) \neq 0$. Entao $\nabla f(\mathbf{x})$ aponta na direção em que f aumenta mais rapidamente.

Teorema 14

f: R^3 ->R é um mapa C^1 .

 (x_0,y_0,z_0) está sob a superfície S definida por f(x,y,z)=k, com k constante.

 $\nabla f(x_0,y_0,z_0)$ é normal à superfície de nível no seguinte sentido: Se \mathbf{v} é o vetor tangente em $\mathbf{t}=0$ no caminho $\mathbf{c}(\mathbf{t})$ em S com $\mathbf{c}(0)=(x_0,y_0,z_0)$, então $\nabla f(x_0,y_0,z_0) \cdot \mathbf{v} = 0$.

Planos tangentes a Superfícies de Nível

Seja S uma superfície de (x,y,z) tal que f(x,y,z)=k, com k constante. O plano tangente a S no ponto (x_0,y_0,z_0) de S é definido por:

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

se $\nabla f(x_0,y_0,z_0)\neq 0$.

Derivadas de segunda ordem

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Teorema 1

Se f(x,y) é de classe C^2 (ou seja, duas vezes continuamente diferenciável), então as derivadas parciais misturadas são iguais, isto é:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Extremos

Numa dada função escalar, um ponto $\mathbf{x_0}$ é um ponto crítico se f não é diferenciável em $\mathbf{x_0}$, ou se o é, $\mathbf{Df}(\mathbf{x_0}) = 0$. Um ponto crítico que não é um extremo é chamado de ponto cela.

Procedimento para encontrar extremos livres

- (i) Fazer um sistema com as derivadas parciais de figualadas a 0.
- (ii) Resolvendo o sistema obtém-se as coordenadas dos pontos críticos.

(em R², num domínio fechado e condicionado, comparando os valores obtidos a partir das coordenadas calculadas, consegue-se encontrar o máximo (maior valor) e o mínimo (menor valor), teorema 7).

Teste da segunda derivada para classificar extremos livres

$$Hf(\mathbf{x_0}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

teorema 5

Se $Hf(\mathbf{x_0})$ é definida positiva, isto é, os determinantes são todos positivos, então $\mathbf{x_0}$ é um mínimo de f. Se $Hf(\mathbf{x_0})$ for definida negativa, ou seja, os determinantes forem alternadamente positivos e negativos, então $\mathbf{x_0}$ é um máximo.

Teorema 6 - teste da segunda derivada para funções com duas variáveis

Seja f(x,y) de classe C^3 num domínio aberto em R^2 . Um ponto (x_0,y_0) é mínimo de f se:

(i)
$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

(ii)
$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$$

(iii)
$$D = \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0 \ em \ (x_0, y_0)$$

(D é chamado de descriminante da hessiana). Se em (ii) for <0 em vez de >0 e a condição (iii) não mudar, então em vez de um mínimo teremos um máximo.

Teorema 7

Seja D fechado e condicionado em R^n e seja f: D -> R contínua. Então f assume o seu mínimo e máximo absoluto em algum ponto $\mathbf{x_0}$ e $\mathbf{x_1}$ de D.

Teorema 8 - método de lagrange

Suppose that $f: U \subset R^n -> R$ and $g: U \subset R^n -> R$ are given C^1 real-valued functions. Let $\mathbf{x}_0 \in U$ and $g(\mathbf{x}_0) = c$, and let S be the level set for g with value c (recall that this is the set of points $\mathbf{x} \in R^n$ satisfying $g(\mathbf{x}) = c$). Assume $\nabla g(\mathbf{x}_0) \neq 0$.

If f|S, which denotes "f restricted to S", has a local maximum or minimum on S at \mathbf{x}_0 , then there is a real number λ such that $\nabla f(\mathbf{x}_0) = \lambda \nabla g(\mathbf{x}_0)$.

Teorema 9

Se f, quando restrita a uma superfície S, tem um máximo ou um mínimo em \mathbf{x}_0 , então $\nabla f(\mathbf{x}_0)$ é perpendicular a S em \mathbf{x}_0 .

Procedimento para encontrar extremos condicionados

- (i) Seja uma função g, a condição como uma superfície de nível de uma função.
- (ii) Usar o método de lagrange, isto é, sistema com derivadas parciais de f igualadas às derivadas parciais de g multiplicadas por λ .
- (iii)Resolvendo o sistema obtem-se as coordenadas dos pontos críticos.

Teorema 10 - classificar extremos condicionados

Let $f: U \subset R^2 \to R$ and $g: U \subset R^2 \to R$ be smooth (at least C^2) functions. Let $\mathbf{v}_0 \in U$, $g(\mathbf{v}_0) \neq c$, and S be the level curve g with value c. Assume that $\nabla g(\mathbf{v}_0) \neq 0$ and that there is a real number λ such that $\nabla f(\mathbf{v}_0) = \lambda \nabla g(\mathbf{v}_0)$. Form the auxiliary function $h = f - \lambda g$ and the **bordered Hessian** determinant

$$|H| = \begin{vmatrix} 0 & -\frac{\partial g}{\partial x} & -\frac{\partial g}{\partial y} \\ -\frac{\partial g}{\partial x} & \frac{\partial^2 h}{\partial x^2} & \frac{\partial^2 h}{\partial x \partial y} \\ -\frac{\partial g}{\partial y} & \frac{\partial^2 h}{\partial x \partial y} & \frac{\partial^2 h}{\partial y^2} \end{vmatrix} evaluated at \mathbf{v}_0$$

- (i) if |H| > 0, then \mathbf{v}_0 is a local maximum point for f|S
- (ii) if |H| < 0, then \mathbf{v}_0 is a local minimum point for f|S.
- (iii) if |H| = 0, the test is inconclusive and \mathbf{v}_0 may be a minimum, a maximum, or neither.

$$\frac{\partial^2 h}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} - \lambda \frac{\partial^2 g}{\partial x^2}$$

Teorema 11 - implicit function

Suppose that F: $R^{n+1} -> R$ has continuous partial derivatives. Denoting points in R^{n+1} by (\mathbf{x}, z) , where $\mathbf{x} \in R^n$ and $z \in R$, assume that (\mathbf{x}_0, z_0) satisfies

$$F(\mathbf{x}_0, z_0) = 0$$
 and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$

Then there is a ball U containing x_0 in R^n and a neighborhood V of z_0 in R such that there is a unique function $z = g(\mathbf{x})$ defined for \mathbf{x} in U and z in V that satisfies

$$F(\mathbf{x},g(\mathbf{x}))=0.$$

Moreover, if \mathbf{x} in U and z in V satisfy $F(\mathbf{x},z)=0$, then $z=g(\mathbf{x})$. Finally, $z=g(\mathbf{x})$ is continuously differentiable, with the derivative given by

$$Dg(x) = -\frac{1}{\frac{\partial F}{\partial z}(x,z)}D_xF(x,z)\bigg|_{z=g(x)},$$

Where $\mathbf{D_x}F$ denotes the (partial) derivative of F with respect to the variable \mathbf{x} , that is, we have $\mathbf{D_x}F = [\partial F/\partial x_1,...,\partial F/\partial x_n]$; in other words,

$$\frac{\partial g}{\partial x_1} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}, \quad i = 1, \dots, n.$$
 (1)

Once it is known that $z=g(\boldsymbol{x})$ exists and is differentiable, formula (1) may be checked by implicit differentiation; to see this, note the chain rule applied to $F(\boldsymbol{x},g(\boldsymbol{x}))=0$ gives

$$\mathbf{D}_{x}F(\mathbf{x},g(\mathbf{x})) + \left[\frac{\partial F}{\partial z}(\mathbf{x},g(\mathbf{x}))\right][\mathbf{D}g(\mathbf{x})] = 0,$$

Which is equivalent to formula (1).