1.a.

The algorithm suggests that T(n) = T(i) + T(n-1-i) + 1. By summing this relationship for all the possible random values $i = 0, 1, \ldots, n-1$, we obtain that in average $nT(n) = 2(T(0) + T(1) + \ldots + T(n-2) + T(n-1)) + n$. Because $(n-1)T(n-1) = 2(T(0) + \ldots + T(n-2)) + (n-1)$, the basic recurrence is as follows: nT(n) - (n-1)T(n-1) = 2T(n-1) + 1, or nT(n) = (n+1)T(n-1) + 1, or $\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{1}{n(n+1)}$. The telescoping results in the following system of expressions:

Because T(0) = 0, the explicit expression for T(n) is:

$$\frac{T(n)}{n+1} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)n} + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

so that T(n) = n.

1.b.

The inner loop has linear complexity cn, but the next called method is of higher complexity $n \log n$. Because the outer loop is linear in n, the overall complexity of this piece of code is $n^2 \log n$.

MARKING: Award full marks to those who have shown the complete tree or substitutions else mark according to the attempt.

We divide the array into equal sub-arrays (left and right half). Solve the problem recursively for the two parts. Two cases happen: (i) In both the parts, there is no majority element: in this case it is easy to see that the original array does not have a majority element, (ii) In either of the two parts, the recursive call returns a majority element: let these be x and y (in case only one the recursive calls returns a majority element, then y will not be defined). Now compare x with all the elements of A to see if it appears more than half the time { if yes, x is the answer. Perform the same steps for y. If neither x nor y turn out to be a present more than n/2 times, then the original array cannot have a majority element. The complexity of algorithm comes to O(n log n) procedure GetMajorityElement(a[1...n])

Assumption Getfrequency is function f mentioned above

Input: Array a of objects Output: Majority element of a

```
if n = 1:     return a[1]
k = floor( n /2 )
elemIsub = GetMajorityElement(a[1...k])
elemrsub = GetMajorityElement(a[k+1...n]
if elemIsub = elemrsub:
     return elemIsub
lcount = GetFrequency(a[1...n],elemIsub)
rcount = GetFrequency(a[1...n],elemrsub)
if lcount > k+1:
     return elemIsub
else if rcount > k+1:
     return elemrsub
else
return NO-MAJORITY-ELEMENT
```

MARKING: It has to be solved using D&C based algorithm. You can refer to the above-mentioned solution for marking. If someone proposed any sorting-based solution award 2 marks.

3.a. Divide: $O(n) \cdot Combine$: $O(n \log n)$ because we sort by $y \cdot However$, we can: – Sort all points by y at the beginning – Divide preserves the y-order of points Then combine takes only $O(n) \cdot We$ get T(n)=2T(n/2)+O(n), so $T(n)=O(n \log n)$

3.b. The same idea can be used as for the 2D problem. Sort the points by x, y, and z, giving three arrays X, Y, Z. Partition the points in X into two sets X_L and X_R based on their sorted X values. Recursively find the closest pair in each of X_L and X_R , and let \ddot{a} be the closest distance of pairs either both in X_L or both in X_R . To deal with the pairs of points where one is in X_R , we need a condition similar to what he had for the closest distance in 2D problem. In the 3D problem, we don't have a middle strip of width $2\ddot{a}$ but rather we have a middle slab of width $2\ddot{a}$ where the slab extends in directions y and z. But the same idea can be used as before. For each point p in the slab, there can be at most some bounded number of points in its neighborhood, since those points in the slab that are in X_L (or X_R) must be spaced at least \ddot{a} apart. For each point p, 15 such points need to be checked. Then finding the closest pair with one point in X_L and the other in X_R can be done in O(n) time. This algorithm gives the same recurrence for time complexity, and hence the 3D problem can be solved in $O(n \log n)$ time too.

MARKING: It is a very straightforward question if in part (b) student has not found the correct number of points then deduct 1 mark for the same. Rest you can refer to the above-mentioned solution.

4.

T[].dist	1	2	3	4	5	6	7
initialize	0	∞	00	00	∞	8	∞
V = 1	0	20	∞	00	∞	10	25
V = 6	0	20	30	35	40	10	25
V = 2	0	20	30	35	40	10	23
V = 7	0	20	25	35	40	10	23
V = 3	0	20	25	28	40	10	23
V = 4	0	20	25	28	32	10	23
T[].path (final value)	0	1	7	3	4	1	2

	Shortest Path from 1	Cost
1	1	0
2	1 -> 2	20 = 20
3	1 > 2 > 7 > 3	20 + 3 + 2 = 25
4	1 > 2 > 7 > 3 > 4	20 + 3 + 2 + 3 = 28
5	$1\rightarrow 2\rightarrow 7\rightarrow 3\rightarrow 4\rightarrow 5$	20 + 3 + 2 + 3 + 4 = 32
6	1→6	10 = 10
7	1 > 2 > 7	20 + 3 = 23

	T[w].dist	T[v].dist + C[v][w]	T[v].dist + C[v][w] < T[w].dist ?
V = 6	W:3 = ∞	10 + 20 = 30	True
	W:4 = ∞	10 + 25 = 35	True
	W:5 = ∞	10 + 30 = 40	True
V =2	W:3 = 30	20 + 15 = 35	False
	W:7 = 25	20 + 3 = 23	True
V = 7	W:3 = 30	23 + 2 = 25	True
V = 3	W:4 = 35	25 + 3 = 28	True
V = 4	W:5 = 40	28 + 4 = 32	True

MARKING: Full marks will be awarded o the student who has shown all the steps for the following graph. Else deduct marks and award according to the attempt
