МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Вычислительный центр Г. А. ФУРМАН

ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙСТВИЙ С КОМПЛЕКСНЫМИ ЧИСЛАМИ (ИП-4)

Серия:

Математическое обслуживание машины «Сетунь»

Под обшей редакцией Е. А. Жоголева Выпуск 2

Москва — 1964 г.

Содержание

§1. Введение
§2. Интерпретирующая программа ИП-44
§3. Общая характеристика стандартных подпрограмм в си-
стеме ИП-424
§4. Подпрограмма выполнения действия типа сложения32
§5. Подпрограмма для выполнения умножения и деления 35
§6. Подпрограмма извлечения квадратного корня и норма-
лизация41
$\S7$. Подпрограмма для вычисления функций $\sin u$, $\cos u$,
sh <i>u</i> , ch <i>u</i> , e ^{<i>u</i>}
§8. Подпрограмма для вычисления функций $\ln u$, $ u $,
1/ u 61
Литература72
Приложение

§1. Введение.

Настоящая работа выполнена как часть системы математического обслуживания для машины «СЕТУНЬ» в 1961-62 годах. В работе, кроме автора, принимала участие Ю.Н.Черепенникова. В частности, ей разработаны подпрограммы «Нормализация» и извлечение квадратного корня.

Данная интерпретирующая система состоит из интерпретирующей программы ИП-4 и набора стандартных подпрограмм для выполнения основных действий и вычисления элементарных функций в комплексной плоскости. ИП-4 (также как и ИП-2) работает в режиме частичной интерпретации, основные идеи которой изложены в [1].

Каждое из комплексных чисел, с которыми оперирует данная система, имеет вид:

$$Z = (X + iY) \cdot 3^p, \tag{1}$$

где X (мантисса действительной части) и Y — (мантисса мнимой части) восемнадцатиразрядные числа, расположенные в указанном порядке в двух соседних длинных ячейках, а р — общий порядок числа Z, расположенный в пяти старших разрядах следующей короткой ячейки. Комплексное число (1) считается нормализованным, если X, Y и р удовлетворяют следующим условиям:

$$0.5 < max(|X|, |Y|) < 1.5, |p| \le 40, npu z \ne 40$$

 $X = 0, Y = 0, p = -40, npu z = 0$

Кроме того, ИП-4 накладывает следующее ограничение на размещение в памяти комплексных чисел: величины X, Y и р, относящиеся к одному и тому же комплексному числу, должны обязательно располагаться в одной и той же зоне.

§2. Интерпретирующая программа ИП-4

Для облегчения процесса программирования задач, имеющих дело с комплексными числами, разработана интерпретирующая программа ИП-4. В рамках данной системы магнитный барабан рассматривается фактически в качестве оперативной памяти. Для указания месторасположения кодов на магнитном барабане вводятся обобщенные адреса A_j , являющиеся троичными кодами. Обобщенный адрес является коротким кодом и имеет следующую структуру:

$$A_{j} = \Pi_{\phi j} M_{j} \Delta_{J}$$
 ,

где Δ_j — номер строки зоны M_j при $\Pi\Phi_j=0$ и $M_j\neq0$. Если $\Pi\Phi_j\neq0$ и $M_j=0$, то соответствующий обобщенный адрес относится к оперативной памяти. Если обобщенный адрес относится к какому-либо комплекс-

ному числу, то он должен быть равен обобщенному адресу мантиссы действительной части Х этого числа (Ү и р располагаются в следующих ячейках памяти). При работе с ИП-4 зоны оперативной памяти выполняют следующие функции: зона Фо служит местом, на которое считывается зона информации, требующаяся в процессе выполнения программы, а также местом для выполнения ряда стандартных подпрограмм; кроме того, в Ф₀ считывается дополнительная зона ИП-4; зона Ф, СЛУЖИТ местом выполнения очередной ДЛЯ 30HP основной программы;

зона Ф₋₁ служит местом для размещения ИП-4, в ней постоянно хранится основная зона ИП-4. Поэтому все стандартные подпрограммы, основная программа и информация, необходимая для ее выполнения, хранятся полностью на магнитном барабане и вызываются в оперативную память по мере надобности.

ИП-4 выполняет следующие функции:

- 1) реализует обращение к стандартным подпрограммам и, как частный случай этого, производит пересылку информации с одного места памяти на другое;
- 2) производит передачу управления по обобщенному адресу (обобщенный переход);
- 3) производит выполнение линейных (без передач управления) кусков программы при переходе от одной зоны программы к следующей.

При обращении к стандартным подпрограммам задаются обобщенные адреса аргумента и результата, а также обобщенный адрес начала подпрограммы. Результат выполнения какой-либо подпрограммы представляется в нормализованном виде. При обобщенном переходе задается обобщенный адрес A_j того места основной программы, в которое требуется передать управление. Обобщенные адреса начала подпрограммы и A_j при обобщенном переходе относятся к коротким кодам.

Для продолжения выполнения линейных кусков программы никакой информации не требуется, так как после выполнения последней команды зоны Ф1 (последней команды зоны Ф1 (последней команды зоны основной программы, расположенной в оперативной памяти) управление автоматически перейдет к первой команде зоны Ф-1 (первой команде основной зоны ИП-4). В результате этого ИП-4 произведет считывание следующей зоны основной программы (информация об этом имеется внутри зоны переходов) в зону Ф1, оперативной памяти и передаст управление на начало этой зоны.

ИП-4 каждый раз запоминает номера зон магнитного барабана M_0 и M_1 , содержимое которых в данный момент вызвано в оперативную память соответственно в зоны Φ_0 и Φ_1 . Поэтому при каждом считывании зоны магнитного барабана содержимое соответствующей зоны оперативной памяти в случае необходимости запоминается на магнитном барабане.

ИП-4 занимает три зоны магнитного барабана ($1\,\bar{4}\,,\,1\,\bar{3}\,,\,1\,\bar{2}$). Часть ИП-4, реализующая обращение к

стандартным подпрограммам и вызов в оперативную память информации требующейся в процессе счета, состоит из двух зон: основной и дополнительной. Основная зона (зона МБ $1\,\bar{3}$) всегда находится в $\Phi_{\text{-}1}$, а дополнительная зона $(1\,\bar{2})$ считывается в Φ_{0} для расшифровки каждого обобщенного адреса.

В основной зоне имеются рабочие ячейки для величин X_1 , X_2 , P_x , Y_1 , Y_2 , P_y , в которых может храниться два комплексных числа и $u=(X_{1,}+iX_2)\cdot 3^{Px}$ и $v=(Y_{1,}+iY_2)\cdot 3^{Py}$ и ячейка для величины M_0 (ее адрес $1\,\overline{4}\,\overline{4}$), которая обозначает номер зоны магнитного барабана, вызванной в зону Φ_0 .

Обобщенными адресами величин и и v являются:

$$Au = \overline{1}003\overline{4}$$
 u $Av = \overline{1}004\overline{4}$

В дополнительной зоне находится еще подпрограмма «Нормализация», о назначении которой будет сказано несколько позже.

Обращение к стандартной подпрограмме в общем случае имеет следующий вид:

Здесь A_z — обобщенный адрес аргумента z, A_f — обобщенный адрес подпрограммы, реализующей вычисление функции f, A_w — обобщенный адрес результата w. Отсюда видно, что при обращении κ подпрограмме может задаваться только один аргумент. Второй аргумент в случае необходимости может быть помещен на место величины v.

При обращении к стандартной подпрограмме ИП-4 выполняет следующие действия:

1. Расшифровывает обобщенный адрес аргумента A_z ; зону M_z в которой находится аргумент $z = (Z_{1,} + iZ_2) \cdot 3^{Pz}$, считывает в Φ_0 и засылает z на место величины:

$$u = (X_1 + iX_2) \cdot 3^{Px} \quad (z \Rightarrow u)$$

2. Расшифровывает обобщенный адрес начала подпрограммы A_f , зону M_f считывает в Φ_0 и передает управление на начало подпрограммы 0 Δ_f . Первым аргументом каждой стандартной подрограммы является u, вто-

рым аргументом (в случае необходимости) является v, результат засылается на место u. Таким образом каждая подпрограмма выполняет действие:

$$f(u, v) \Rightarrow u$$

3. Расшифровывает обобщенный адрес результата A_w ; зону M_w считывает в Φ_0 и пересылает и на место w $(u \Rightarrow w)$. Зона с результатом обратно на магнитный барабан не записывается, но номер M_w хранится на место M_0 . Поэтому при следующем обращении к стандартной подпрограмме нужно, чтобы вторая команда обращения имела вид: БП $^{\circ}$ 1 Вх.І ИП-4 (см. выше).

При обращении к другим входам ИП-4 (см. ниже) запоминание состояния зоны Φ_0 не происходит. В частности, при обращении ко входу П (БП Вх.II) ИП-4 выполняются все те же действия, что и при обращении ко входу I, кроме запоминания состояния Φ_0 . Если нужно обратиться к вычислению функции от двух аргументов (т.е. выполнить действие $f(z,\tilde{z}) \Rightarrow w$), то сначала один аргумент засылается на место величины $v = (Y_1 + i \cdot Y_2) \cdot 3^{Py}$, а потом записываются команды обращения к стандартной подпрограмме, где указывается обобщенный адрес другого аргумента. Это обращение имеет вид:

Смысл обобщенного адреса Авх. ІV будет пояснен ниже.

Если обращения к стандартным подпрограммам происходят подряд (без промежуточных команд), то команда вида $(c) \Rightarrow (\alpha)$ из этой группы задается только при первом обращении, а при следующих обращениях внутри данной зоны — опускается.

В обращении к подпрограммам вычисления функций от двух аргументов уже встречался частный случай пересылки информации, а именно, $\tilde{z} \Rightarrow v$. Пересылка общего вида осуществляется следующим образом:

Если известно, что аргумент z уже находится на месте u, то можно избежать обращения к входу I или входу П ИП-4, а обращаться сразу ко входу III. В этом случае обращение к стандартным подпрограммам имеет вид:

Если нужно запомнить и на магнитном барабане $(u \Rightarrow w)$ или переслать и на место v $(u \Rightarrow v)$, тогда обращение имеет вид:

$$\begin{array}{cccc} (x_0) \colon & \overline{1}\,3403 & (c) \Rightarrow (\alpha) \\ (x_1) \colon & \overline{1}\,\overline{4}\,100 & B\Pi & Bx.IV \\ (x_2) \colon & \Pi_{\phi w} M_w \Delta_w & A_w \end{array} \right\} u \Rightarrow w \, ;$$

или

$$\begin{array}{cccc} (x_0) \colon & \overline{1} \, 3403 & (c) \Rightarrow (\alpha) \\ (x_1) \colon & \overline{1} \, \overline{4} \, 100 & BH & Bx.IV \\ (x_2) \colon & \overline{1} \, 004 \, \overline{4} & A_v \end{array} \right\} u \Rightarrow w \, ;$$

Работа интерпретирующей программы при обращении к стандартной подпрограмме описывается следующей схемой:

Из этой схемы видно, что при обращении к стандартной подпрограмме в общем случае требуется восемь обращений к магнитному барабану (Вход I), и семь обращений, если не нужно запоминать предыдущего состояния Φ_0 (Вход II). При обращении ко входу III происходит пять обращений к магнитному барабану. Для простой пересылки информации $(u\Rightarrow w)$ требуется два обращения к магнитному барабану (Вход IV). Число обращений к магнитному барабану сокращается, если обобщенные адреса A_z и A_w относятся к оперативной памяти. Ниже приводится таблица 1 характеристик работы блоков ИП-4 для точных оценок времени при самых различных способах обращения к ней.

Таблица 1.

	Число об-	Время р	аботы, мкс	
Этап работы	ращений к	в общем	при обходе	
Statt paggra	МБ в общем	случае	обращений к	
	случае	Случае	МБ	
Обращение [*] к		280	280	
ИП-4	_	200	280	
Блок Вх.І	1	360 + N _o	280	
Блок Вх.ІІ	2	180+N _g +404	180+N₀+5860	
DIOK BX.11		5+N _z +1495	100 / Ng / 3000	

^{*}В случае отсутствия при обращении к ИП-4 строки вида $(c) \Rightarrow (lpha)$; это время будет на 180 мксек меньше.

Этап работы	Число об- ращений к МБ в общем случае	Время р в общем случае	аботы, мкс при обходе обращений к МБ
Блок Bx.III	2**	280+Ng+40 45+N _f +280+ T	280+N _g +4145+ T
Блок ^{***} Вх.VIII и «нормализация»	1	N _g +5490	N _g +5490
Блок Bx.IV	2	280+N _g +404 5+N _w +2720	280+N _g +6585

Здесь N_0 , N_g , N_z , N_f , N_w — фактическое время обращения к магнитному барабану для записи зоны Φ_0 оперативной памяти в зону МО и для вызова в Φ_0 зон M_g (номер дополнительной зоны ИП-4), M_z , M_f и M_w соответственно; T — время работы соответствующей подпрограммы (см. §3). Для реализации обобщенного перехода или продолжения линейных кусков программы в основной зоне ИП-4 имеется лишь несколько команд, которые производят запоминание основной зоны ИП-4 (вместе с содержимым рабочих ячеек) из Φ_{-1} в зону $1\bar{3}$ магнитного барабана, а на ее место вызывают

^{**} Здесь не учитываются дополнительные обращения к барабану внутри подпрограммы.

^{***}Использование этого блока см.в следующем пара-графе.

другую зону ИП-4 $(1\overline{4})$ — зону переходов. В зоне переходов имеется рабочая ячейка для величины М1 (ее адрес $\bar{1}44$), которая обозначает номер зоны основной программы, находящейся в зоне Ф₁, оперативной памяти. Зона переходов запоминает зону Ф1, на магнитном барабане в зоне М₁ затем расшифровывает обобщенный адрес команды, которой нужно передать управление ($A_i = 0 M_i \Delta_i$), засылает M_i на место M_1 ; считывает в Ф₁, зону М₁ магнитного барабана, запоминает «себя» на магнитном барабане (в зоне 14), засылает в регистр F величину (I Δ_{i} — $3e_{A}$) и считывает в Ф.1 основную зону ИП-4. В основной зоне после этого выполняется только одна команда 0 0 3 0 1, т.е. происходит безусловная передача управления на ячейку І Δ_i , и начинает выполняться основная программа.

Для выполнения обобщенного перехода требуется написать следующие три строки:

$$(x_0)$$
: $\overline{1}\overline{2}\overline{4}\overline{1}3$ $(c)+3e_A \Rightarrow (F)$

$$(x_1)$$
: $\overline{1}\overline{4}\overline{2}00$ $B\Pi \rightarrow Bx.VI U\Pi - 4$

$$(x_2)$$
: $0 M_j \Delta_j A_j$

Здесь A_j — обобщенный адрес команды, с которой нужно продолжить дальнейшее выполнение программы.

Обобщенный переход может использоваться и для обращения к стандартным подпрограммам. В этом случае в строках (x_3) , (x_4) и т.д., следующих за обобщенным переходом, может задаваться информация, необходимая для работы соответствующей подпрограммы. Для «извлечения» этой информации имеется стандартная подпрограмма, расположенная в зоне переходов ИП-4, обращение к которой в общем случае производится следующим образом:

$$(v_0)$$
: $\overline{1}3403$ $(c) \Rightarrow (\alpha)$

$$(v_1)$$
: $\overline{1}\overline{1}300$ $E\Pi^{r}Bx.I \ U\Pi - 4$

$$(v_2)$$
: $\Pi_{\phi z} M_z \Delta_z A_z$
 (v_3) : $01\overline{4}33 A_{\alpha \alpha \beta}$

Здесь A_z — по-прежнему обобщенный адрес аргумента, однако в подпрограмме он не используется, поэтому этот адрес может быть произвольным (например, $A_z = A_u$).

Данная подпрограмма производит засылку в регистр S очередной «извлекаемой» строки (A_{xi}) , где $A_{xi}=0$ M_{xi} Δ_{xi} , а на место величины A_{xi} — обобщенный адрес следующей строки $(0M_{xi+1}\Delta_{xi+1}\Rightarrow A_{xi})$. Последующие обращения к данной подпрограмме, если они не разделяются другими обращениями к ИП-4, можно производить с помощью двух следующих строк:

$$(v_0)$$
: $\overline{1}3403$ $(c) \Rightarrow (\alpha)$
 (v_1) : 00330 $B\Pi^{r}Bx.VII$

После «извлечения» всех строк информации величина A_{xi} , хранящаяся в ячейке 004 (с обобщенным адресом $01\,\bar{4}\,04$) по-прежнему будет обозначать обобщенный адрес команды основной программы, к которой нужно вернуться по окончании работы подпрограммы, указанной при обобщенном переходе.

Проиллюстрируем обращение к такой стандартной подпрограмме на примере: напишем обращение к подпрограмме «Перевод 3 → 10». Пусть надо перевести п чисел, расположенных на магнитном барабане. В командах обращения к этой подпрограмме нужно указать не только обобщенный адрес начала этой подпрограммы, но и обобщенный адрес первого числа из массива переводимых чисел, а также число п этих чисел. Это обращение запишется так:

$$(x_0)$$
: $(c) \Rightarrow (\alpha)$
 (x_1) : $B\Pi \cap Bx.VI$
 (x_2) : $A_{3\to 10}$
 (x_3) : A_{hay}
 (x_4) : n
 (x_5) : A_{x_5}

Здесь $A_{\text{«}3 \rightarrow \text{IO}\text{»}}$ — обобщенный адрес подпрограммы «Перевод 3 \rightarrow IO», $A_{\text{н}a\text{ч}}$ — обобщенный адрес первого числа из массива переводимых чисел, а n — число этих чисел, задаваемое в виде короткого кода.

Данная стандартная подпрограмма должна сразу же выбрать информации из ячеек (x₃) и (x₄) и запомнить ее в своих рабочих ячейках. Поэтому в этой подпрограмме нужно дважды обратится к подпрограмме, находящейся в зоне переходов ИП-4, которая извлечет эту информацию. Эти обращения к подпрограмме извлечения информации будут иметь вид:

При помощи команд $(v_0) + (v_7)$ мы извлекаем и запоминаем содержимое ячеек (x_3) и (x_4) (б и λ — рабочие ячейки подпрограммы «перевод $3 \to 10$ »). При помощи команд (v_8) , (v_9) формируется возврат в основную программу к команде (A_{x5}) . Команды (v_1) , (v_{1+1}) , (v_{1+2}) реализуют выход из подпрограммы — возврат в основную программу. Эти команды образуют обобщенный переход по обобщенному адресу, хранящемуся в ячейке v_{1+2} . Этот адрес является переменным и в данном случае будет равен A_{x5} . Схема работы ИП-4 при реализации обобщенного перехода, а также соответствующее время совпадает с аналогичной схемой ИП-2 [I, 2].

 $\Pi_{\Phi} = 1$

Зона МБ $1\overline{3}$

	Αд	ре	C		Команда*		A,	др	ec		Команда	
**	WX	Z	03	20	0 → (F) ← Bx.V	02	60	0	00	31	∑'⇒(2)	
	WY	Z	1X	XЗ	[Φ']⇒[12]ησκΝΙ		04	Z	WE	ΥЗ	(S) ⇒ X.	
wz	WO	Z	1W	XX	[14]⇒[φ.]	17	1X	0	03	31	Z ₂ ⇒(S)	
	W1	Z	XO	Z3	(C)+3ex+(F)+18x7V		1Y	Z	32	EY	(\$) ⇒ X ₂	
₩2					PU1+1	1 Z	10	0	14	31	ρ _≥ ⇒(\$)	
	₩Y	Z	31	30	X,⇒(S)		11	2	33	ΥЗ	(\$)⇒P _x	
XW	XX	0	00	Y 4	(S)→W ₁	12	13	Z	1 X	ZЗ	$(c)+3c_A\Rightarrow (F)_{\leftarrow}1$ Bx.III	
	¥	Z	3Z	30	$X_2 \Rightarrow (S)$ $(S) \Rightarrow W_2$		14	Z	00	00	₽U1→7	
XZ					$(S) \Rightarrow W_2$	5 4	5X	0	00	00	(ß)	
					P _× ⇒(\$)		2Y	0	00	00	(8) $[M_j] \Rightarrow [\Phi_0] \downarrow^{04}$ $(\beta) \Rightarrow (F) \downarrow^{03}$ λ	
1 2					$(s) \Rightarrow P_w$	2Z	20	O	00	ΧY	[M;]⇒[Φ,]+1 ⁰⁴	
					(a) ⇒ (£)		21	Z	5X	20	$(5) \Rightarrow (4) \leftarrow (6)$	
					$0.017_{0.00} \Rightarrow (s)$		24	0	XO	00	-i	
YZ	YO	Z	34	33	(s)+(a) ⇒(s)	3₩	3 X	0	00	QQ.	$\begin{cases} X_{i} \\ X_{2} \\ P_{x} \end{cases} u$	
	T1	Z	Z1	33	$(s)+e_{A} \Rightarrow (s)$		ЗΥ	Œ	00	00	7 1	
12		Z	94	13	(S)+(a)	ЗZ	30	Q	00	00	$\chi \chi > u$	
	T 4				BOSBPAT		31	0	00	00) 2-2	
ZW	ZX	0	21	28	} 1/2	32		Q:	00	00	Px)	
							34	0.	00	00	(d)	
ZZ					[12]⇒[Φ] JB×VIII	41	ЧХ Ч Ү	0	00	00	} Y, }	
	Z1	0	01	00	BTIE "Hope " ; ex		чұ	0	00	00	Y_{2}	
22					M. → (F) -1 Bx. I.	42	40	0	00	00	} Y, > V	
	24	Z	OT	10	UN-OITBX.II		41	0	00	00	7 - 1	
UW	OI.	0	00	14	[ф]⇒[M°]	42					• /	
~~	OI.	Z	**	Z/J	103 ⇒(F) → Bx.11	***	44		00		Lul ^o	
uz	00	Q	14	11	[12]→[Φ]+11	НС			00			
	61	0	80	00	מלו ווש			0	43	41		

^{*}Отрицательные цифры $\overline{4},\overline{3},\overline{2},\overline{1}$ изображаются здесь буквами W, X, Y, Z соответственно

Допольнитеьная зона ИП-4

 $\Pi_{\Phi} = 0$

Зона МБ $1\,\bar{2}$

	Адр	ec	Команда	Ад	pec	Команда
WW	WΧ	1 44 00		02 03	Z 00 44	
	₩Y	Z 03 Z0	0 ⇒ (F) 📲	1'0	0 03 %1	((d)+3e/>(E)→2
17 Z	WO	Z 3Z 30	$X_2 \Rightarrow (S)$	177 1X	2 2Y 3X	$(F)+(y)\Rightarrow(F)$
	W 1		AU-01+2	1Y	Z 39 00	(d)⇒(S)
W2	ŊЗ		$X_1 \Rightarrow (\varsigma)$	1 2 1 0		00π ₄ 00⇒(S)
	7/4	6 X4 10	AU-01+e	11	Z 34 33	(S)+(d)⇒(S)
ХW	XX	Z 33 30	Px, ⇒ (5)	12 13	2 21 33	(s)+EA -> (s)
	XΥ	2 4X 3X	$(s) - p_{x_2} \Rightarrow (s)$	14	Z 34 Y3	(S) ⇒ (×)
XZ	ХO	0 X4 1X	AU-I 1+e	5ā 5X	XO PP 3	(F) → M _o
	X 1		-(s) ⇒(s)	2 Y	Z 21 10	AU-01-03
X 2	ХЭ	Z Y4 Z0	36x ⇒(F)+10	2Z 20		517.704
	ХЧ	Z 2Y Y3	(s)⇒(8)+1e	21	Z 3W 30	$X_{\bullet} \Rightarrow (s)_{\bullet} \downarrow s$
YW	ΥX	Z 3W 31	$(\varsigma) \Rightarrow (\varsigma)$ $X_{\bullet}^{\bullet} \Rightarrow (\varsigma)$	22 23	0 9 \ 1 0	AU-01-8
	ΥY	Z 2Y YO	$Cgb(S) + a(y) \Rightarrow (S)$	24		₽U1, 10
Ϋ́Z	YO	Z 3W Y4	Cob(s) +a(x) \Rightarrow (s) (s) $\Rightarrow X_1^{\oplus}$ Px2 \Rightarrow (s)	Зи ЗХ		55° +13
	Y 1	Z 4X 3Z	P×2 → (S)	3 1		5ητ⁺βx.τV
Y 2	¥З	O MX 50	(\$)⊗144 00 → (\$)	32 30		(F) ⇒ A →1 ^D
	۲Y		$(s) \Rightarrow P_x$	31	Z 34 Z0	(α) ⇒ (F)
277	ZX		(s)@ I 00 00 →(s)	32 33	0 03 31	$\frac{((\alpha)+3\ell_A)\Rightarrow(s)}{\overline{\pi}_{\Phi_i}\circ\circ\Delta_i\Rightarrow(s)}$
	ZY		41-01 Bx.TV	34	0 03 20	$\overline{\pi}_{\Phi_j} \circ \circ \Delta_j \Rightarrow (s)$
ZZ			AU-IL-1	AM AX	Z 2Y Y	(2) >> (8)
	Z 1		0 → (\$)	٩Y		Cab (5) He 4 -> (5)
7.2	Z3		(s)⇒X'	4Z 40		(s) - (x) \Rightarrow (s)
	24		(S)⇒X ₂	41	0 AM 50	(S)⊗14400⇒(S)
OW			011 ⇒(E)+8	42 43		$(S) \Rightarrow (B)$
			$(F) \Rightarrow P_{x}$	44		EU1+5
OZ		Z W1 00	BUL Bx.IA	ľζC	0 00 22	
	01	0 MA 00	PLILE 3 1"HOON"		0 03 01	

Зона переходов ИП-4

 $\Pi_{\Phi} = \overline{1} ; 0$

Зона МБ $1\, \bar{2}$

	Адр	эе	С		Команда		Αд	цре	ес		Команда
T T	WX	0	04	¥3	$(S) \Rightarrow A_{2} \rightarrow S$ $(\Delta_{2}) \Rightarrow (S)$	02	03 04	0	00	00	(δ) Α _{λε}
wZ	#O	0	¥З	00	eut.	177	1 X	z	0.1	30	$A_{>e} \Rightarrow (s) \rightarrow 1^2$
₩2	W1 W3	2	44	20	$(F) \rightarrow A_{30}$ $M_{1} \Rightarrow (F)$	12	1Y 10	2	04	20	Aπ⇒(E)
ΧW	ХX	1 2	00 41	YX	[Φ ₁] → [M ₁]	12	11 13	Z Z	41 23	20 33	$00\pi_{A}00\Rightarrow(S)$ $(S)+10120\Rightarrow(S)$
ХZ	XΥ	2	1X 0Y	00 30	(F)+4=>(F) 57300=(S)+12 07300=(S)+12		14 2X	Z	04	33	(s)+Aze>(s) Cg6(s) Ha-4>(s)
	X1	Z	зх	31	(S)~10320⇒(S)43 (S)⇒(S)		2Y	Z	44	33	$(S)+M_1\Rightarrow(S)$ $(S)\Rightarrow A_{3c}$
	XЧ	2	04	3С	Aze > (s)		21	٥	00	31	(A>e)⇒(S)
YW	ΥΧ ΥΥ	Z	44	ΟX	$ \begin{array}{c} [M_j] \Rightarrow [\Phi_i] \\ (F) \Rightarrow M_i \end{array} $	22	23 24	Z	03	ìЗ	ο M; Δ; =>(S) (S)=>(δ)
ΥZ	Y0 Y1	Z Z	03 1W	Z0 X3	(δ)⇒(F) [Φ,]⇒[14]	317	ЗХ	7. Z	03 0X	ZO YO	(δ) ⇒(F) Cg6(S) Ha4 ⇒(S)
¥2	Y3 !'Y	Z	1 X	XX	$[13] \Rightarrow [\Phi_1] \downarrow 16$ $(\alpha) \Rightarrow (F)$	32	30 31	Z Z	01 X1	20 00	0 Δ; 00 ⇒ (S) BN 1+3
ZIT	ZX ZY	0	03	01	βыхοд (S)⇒(δ), 14	32	33	2	1%	Х3	[Q ₁]⇒[13] d8x.VII Ax ⇒ (F)
ZZ	ZQ	0	03	20	$(\delta) \Rightarrow (F)$	ЧV	чх	Z	ac	XY	[M _≫] → [Φ ₋₁]
Z 2		0	00	20	$A_{3e} \Rightarrow (s)$ $0000\pi_{F} \Rightarrow (s)$	4 Z	чo	Ģ	07.7	YO	Aze ⇒(S) Cgb(S) He 4 →(S)
01/	Z4 OX	0	00 04	33 33	$(s)+e_{r}\Rightarrow(s)$ $(s)+A_{>e}\Rightarrow(s)$	42	41 43				(S) & K, → (S); eA 675 4
	0Y 00	Q	ИX	00 01	BULL s	КC	44		1W 00		Mı
	01			-	K ₁			2	22	X 2	

§3. Общая характеристика стандартных подпрограмм в системе ИП-4.

Все подпрограммы рассчитаны на работу с плавающей запятой. Основным аргументом стандартной подпрограммы является нормализованная величина $u=(X_1+iX_2)\cdot 3^{P_x}$, хранящаяся внутри ИП-4. Окончательный результат тоже засылается на место и в нормализованном виде, но это осуществляет подпрограмма «Нормализация», которая расположена в дополнительной зоне и обращение к которой производится через вход VIII ИП-4. Стандартные же подпрограммы выдают результат в виде:

$$\tilde{u} = X_1 \cdot 3^{P_{x_1}} + iX_2 3^{P_{x_2}}$$

где X1 и X2 — нормализованные величины, расположенные в основной зоне ИП-4, а P_{x1} и P_{x2} их порядки, причем P_{x1} записывается на место P_{x} , а P_{x2} записывается в первую половину ячейки, отведенной для величины Y_{1} . По окончании работы каждая подпрограммапередает управление входу VIII ИП-4, в результате чего вызывается в Φ_{0} и выполняется подпрограмма «Нормализация».

Подпрограмма «Нормализация» из двух порядков P_{x1} и P_{x2} выбирает наибольший и записывает его на место Px. Величина X_i (i=I или i=2), имеющая

меньший порядок, сдвигается вправо на разность ПО-РЯДКОВ. Если одна из величин X_1 , X_2 равна нулю, а другая отлична от нуля, то в ячейку $P_{\rm x}$ засылается порядок величины, отличной от нуля.

Примечание. Как было сказано выше, величина V (точнее Y_1) затирается после выполнения подпрограммы, поэтому использовать повторно эту величину без присвоения ей нового значения нельзя. Если X1-Y1=0, то на место P_x засылается минимальный порядок $P_x=-40$.

В конце подпрограммы «Нормализация» исследуется порядок P_x . Если Px>40, то происходит предупредительный останов Ω_0 по команде $\overline{1}\,442\,\overline{3}$, хранящейся в ячейке $00\,\overline{3}$. Этот останов предупреждает о том, что при дальнейших вычислениях возможно переполнение, но этот останов можно игнорировать и продолжать вычисления нажатием кнопки «пуск». Если P_x <-40, то в ячейки для X_1 и X_2 засылаются нули, и полагается Px=-40.

После этой проверки данная подпрограмма передает управление на вход IV ИП-4. Итак, подпрограмма «Нормализация» формирует на месте величины и результат в стандартном нормализованном виде.

Для того, чтобы нормализовать какое-нибудь комплексное число Z, находящееся на магнитном барабане, и записать его снова на магнитный барабан (на место W), нужно обратиться ко второй части подпро-

граммы «Нормализация», расположенной в зоне II магнитного барабана. Это обращение в общем случае имеет вид:

В некоторых стандартных подпрограммах имеются аварийные остановы для случаев, когда операцию нельзя выполнить:

останов Ω_1 , (по команде $\bar{1}\,442\,\bar{3}$) означает, что требуется выполнить деление на нуль;

остановы Ω_2 (по команде $00\overline{3}2\overline{3}$) и Ω_3 (по команде $\overline{1}232\overline{3}$) означают переполнение при вычислении функций $\sin u$, $\cos u$, e^u , shu, chu;

останов Ω_4 (по команде $000\,2\,\bar{3}$) означает, что требуется вычислить ln0 или 1/0

Библиотека подпрограммы для действий с комплексными числами занимает 12 зон магнитного барабана (с $1\,\overline{1}$ по $2\,\overline{1}$) без ИП-4 и характеризуется таблицей 2:

Таблица 2

Номер по по- рядку	Операция, реа- лизуемая под- программой	Обоб- щенный адрес начала	Действия, выполня- емые подпрограммой
1.	Сложение	01112	$u+v \Rightarrow u$
2.	Сложение с со-	01123	$u + \overline{v} \Rightarrow u$
3.	Вычитание	01122	$u-v \Rightarrow u$
4.	Вычитание из сопряженного	01133	$\bar{u} - v \Rightarrow u$
5.	Обратное сложе- ние	01132	$-u-v \Rightarrow u$
6.	Прибавление к сопряженному	01141	$\bar{u} + v \Rightarrow u$
7.	Обратное вычи- тание	01143	$-u+v \Rightarrow u$
8.	Умножение	01010	$u \times v \Rightarrow u$
9.	Деление	01043	$u/v \Rightarrow u$
10.	Номализация	01103	$Hop_M(u) \Rightarrow u$
11.	Извлечение ква- дратного корня	01130	$1/\sqrt{u} \Rightarrow v ; \sqrt{u} \Rightarrow u$
12.	Вычисление си- нуса	01343	$\sin u \Rightarrow u$
13.	Вычисление ко- синуса	01343	$\cos u \Rightarrow u$

Номер	Операция, реа-	0боб-	
по по-	лизуемая под-	щенный	Действия, выполня-
рядку	программой	адрес	емые подпрограммой
Pridicy	TIPOT PANIMOVI	начала	
14.	Вычисление экс-	$02\overline{3}\overline{2}\overline{3}$	<i>u</i> .
14.	поненты	02323	$e^u \Rightarrow u$
	Вычисление ги-		
15.	перболического	02343	$sh u \Rightarrow u$
	синуса		
	Вычисление ги-		
16.	перболического	02343	$chu \Rightarrow u$
	косинуса		
	Вычисление		
17.	натурального	$02\bar{2}\bar{4}\bar{3}$	$\ln u \Rightarrow u$
	логарифма		
18*.	Вычисление мо-	$02\bar{2}\bar{4}3$	1.1
18".	дуля	02243	$ u \Rightarrow u$
	Вычисление		
19 [*] .	обратной ве-	02233	$\frac{1}{ u } \Rightarrow u$
	личины модуля		<i>u</i>

При составлении основной программы можно пользоваться константами, находящимися в основной зоне ИП-4 и перечисленными в следующей таблице:

^{*}Результаты этих операций представляются также в виде комплексных чисел.

Адрес	Содержимое	Примечание
ячейки	ячейки	
<u>1</u> 24	00301	Зе₄ для операций
		с регистром F
$\overline{1}\overline{1}\overline{4}$	$02\bar{4}\bar{4}\bar{4}$	1/2
Ī Ī 1	$\overline{1}$ $\overline{4}$ $\overline{4}$ $\overline{4}$	e _A
Ī 0 1	03000	1
Ī14	$\bar{1} 0000$	-3
Ī 2 4	03000	1

Кроме того, в зоне $2\overline{3}$ и 11 имеются константы, задающие действительные числа в комплексном виде (мнимая часть равна нулю). Над этими константами можно производить все операции в режиме ИП-4, задавая их обобщенные адреса. Эти константы указаны в следующей таблице:

Обобщен-	Константа
ный адрес	
02321	$4 = (\frac{4}{3} + 0 \cdot i) \cdot 3^{1}$
02311	$-1 = (\frac{-1}{3} + 0 \cdot i) \cdot 3^0$
02324	$-2 = \left(\frac{-2}{3} + 0 \cdot i\right) \cdot 3^{1}$
02334	$1 = (1 + 0 \cdot i) \cdot 3^0$

Обобщен-	Константа
ный адрес	
02344	$\frac{1}{2} = \left(\frac{1}{3} + 0 \cdot i\right) \cdot 3^0$
01112	$0 = (0 + 0 \cdot i) \cdot 3^{-40}$

Если стандартная подпрограмма занимает больше одной зоны, то происходят дополнительные обращения к магнитному барабану. Ниже приводится таблица 3, содержащая выполнения каждой время подпрограммы (псевдооперации). Так как это время зависит только от числа тактов работы машины, но и от времени ожидания нужной зоны магнитного барабана при обращении к нему, (а в данном случае это время может быть точно учтено), то за время Т* выполнения псевдооперации принимается отрезок от момента вызова данной подпрограммы в Фо (исключительно) до момента передачи управления входу 1V ИП-4, т.е.:

$$T *= 280 + T + (N_o + t_H) \cdot \rho$$
, (B MKCeK),

где Т и N_g имеют тот же смысл, что и в таблице I, $t_{\scriptscriptstyle H} = 5490$ является временем выполнения подпрограммы «Нормализация» (включая передачу ей управления) после вызова зоны M_g в оперативную память, а $\rho = 1$, если соответствующая подпрограмма по окончании ра-

боты обращается к «Нормализации», в противном случае (при обращении сразу к входу IV) $\rho=0$. В таблице 3 время Т* будет указываться при $\rho=1$ в виде явной суммы $T*=\Delta+t_H$, где Δ Т будет кратно 2500 мксек.

Таблица 3

NoNo		Число дополни-	
П/П	Псевдооперации	тельных об-	Т*, мксек
11711		ращений к МБ	
1.	Сложение	-	10000 + t _н
2.	Сложение с сопря-	_	10000 + t _H
۷.	женным	_	10000 1 24
3.	Вычитание	-	10000 + t _н
4.	Вычитание из со-	_	10000 + t _H
4.	пряженного	_	10000 1 24
5.	Обратное сложение	-	10000 + t _н
6.	Прибавление к со-	_	10000 + t _H
0.	пряженному		10000 . 54
7.	Обратное вычитание	-	10000 + t _н
8.	Умножение	-	10000 + t _н
9.	Деление	-	20000 + t _н
10.	Номализация	-	10000 + t _н
11.	Извлечение квад-	2	70000 + t _H
11.	ратного корня	_	7 0000 1 C _H
12.	Вычисление синуса	3	70000 + t _н

NoNo		Число дополни-	
п/п	Псевдооперации	тельных об-	Т*, мксек
117 11		ращений к МБ	
13.	Вычисление косину-	3	70000 + t _н
	ca		
14.	Вычисление экспо-	4	57500 + t _н
	ненты		
15.	Вычисление гипер-	4	77500 + t _н
	болического синуса		
	Вычисление гипер-		
16.	болического коси-	4	77500 + t _н
	нуса		
	Вычисление нату-		
17.	рального	3	67500 + t _н
	логарифма		
18.	Вычисление модуля	1	22445
	Вычисление обрат-		
19.	ной величины моду-	1	21840
	ля		

§4. Подпрограмма выполнения действия типа сложения.

Алгоритм сложения двух чисел

$$u = (X_1 + iX_2) \cdot 3^{P_x}$$
 u $v = (Y_1 + iY_2) \cdot 3^{P_y}$

использует соотношение:

$$u+v = \begin{cases} [(X_1 + Y_1 \cdot 3^{P_y - P_x}) + i \cdot (X_2 + Y_2 \cdot 3^{P_y - P_x})] \cdot 3^{P_x}, \\ npu P_x > P_y \\ [(X_1 \cdot 3^{P_x - P_y} + Y_1) + i \cdot (X_2 \cdot 3P_x - P_y + Y_2)] \cdot 3^{P_y}, \\ npu P_x \le P_y \end{cases}$$

Подпрограмма для реализации действий типа сложения (включая и само сложение) размещена в одной зоне МБ и описывается следующей схемой:

Подпрограмма выполнения действий типа сложения

Зона MБ 1 <u>1</u>

 $\Pi_{\Phi} = 0$

Адрес Команда Адрес Команда WW WX 0 10 YO 0→(S) → Bby. 02 03 2 4W 32 (S)+Y, ->(S) 04 % 3W 11. HopM(3) >X. $VY \quad Z \quad \exists V \quad \exists X \quad (S) - X_1 \Rightarrow (S)$ WZ WO Z 37 Y3 (S) $\Rightarrow X_1$ W1 O 10 Y0 $0 \Rightarrow (S) \leftarrow \frac{\text{TIPMB}}{\text{N CORP}}$ 18 1X 2 1 3 (5)+P3 →(S) 17 2 C. 73 (S) → (X) 12 10 $\mathbb{Z} \cap \mathbb{R} \to \mathbb{R}$ $\forall 2 \forall 3 \quad \mathbb{Z} \exists \mathbb{Z} \exists \mathbb{Z} \ (S) - \mathbb{X}_2 \Rightarrow (S)$ 11 8 2 ... 11 ×46 (S) 11 . (3) →(S) W4 Z 3Z Y3 (S) \Rightarrow X2 12 13 2 11 10 (S)+ $Y_2^{\infty} \Rightarrow$ (S) XW XX 0 ZY 00 5 17 1 XY 0 10 Y0 0 → (S) 05P. 14 % 3% YX HOPM(\$ >X) xz xo z ov ox (s)-X,⇒(s) 2₩ 2X - Z 43 52 (S)+P(P, → S) X1 Z 3W Y3 (S) $\Rightarrow X_1$ ४ чх үз (\$) ⇒°ρ_x, 2**Y** X2 X3 0 10 Y0 0 ⇒(S) - BHY. 2Z 2O Z 2Y 3O (⟨) ⇒(S) X4 2 32 3X (S)-X₂⇒(S) 21 2 33 Y3 $(5) \Rightarrow P_{\mathbf{x}_i}$ 22 23 / 20 00 BN \$ Bx. VIII NAY YW YX Z 3Z Y3 (S)⇒X₂ YY 0 10 YO 0 → (S) ~ B HY. 24 U 00 40 YZ YO Z 4W 3X (S)-Y, > (S) 20 60 0 XE WE Y1 2 4W Y3 (S)⇒>Y, 3 Y 0 00 00 Y2 Y3 0 10 Y0 0 → (\$) +1 500 P 32 30 0 03 00 YH Z HZ 3X (S)- $Y_1 \Rightarrow \overline{(S)}$ 31 0 01 00 CBUSOQHBIE ZW ZX Z 4Z Y3 (\$)⇒Y, 32 33 0 00 00 ZY Z OX ZO O → (F) 11 CA. -34 U 00 00 zz zo z 33 30 P_x → (S) 477 4X 0 00 00 ячейки 21 Z 43 3X (S) $-P_y \Rightarrow$ (S) ЧY 0 00 00 42 40 C 00 00 22 23 0 0Y 1X YN-I. Z 24 40 -(S)⇒(S) 0 00 00 41 ow ox o wx zo geA⇒(F) 42 43 0 00 00 Z 2X Y3 (S)⇒(B) ◄ 0 00 00 0Y 411 € 90 32 0Z 00 Z 3W 31 KC. Z 2X YC Cg6(S) Ha (B)=>(S) L YO 61

§5. Подпрограмма для выполнения умножения и деления.

В данной подпрограмме деление сводится к умножению делимого на обратную величину делителя. Алгоритм умножения двух чисел:

$$u = (X_1 + iX_2) \cdot 3^{P_x}$$
 u $v = (Y_1 + iY_2) \cdot 3^{P_y}$

использует соотношение:

$$u \cdot v = [(X_1 Y_1 - X_2 Y_2) + i(X_1 Y_2 + X_2 Y_1)] \cdot 3^{P_x + P_y} = (\tilde{X}_1 + \tilde{X}_2) \cdot 3^{\tilde{P}_x}$$

Абсолютная погрешность вычисления мантисс действительной и мнимой частей произведения $u \cdot v$ не превосходит $3^{\text{-16}}$.

Обратная величина 1/v определяется при:

$$r = Y_1^2 + Y_2^2 \neq 0$$

При r=0 происходит аварийный останов Ω_2 по команде $\overline{1}\,44\,2\,\overline{3}$ (адрес команды 041). При этом используется соотношения:

$$\frac{1}{v} = \frac{1}{(Y_1 + iY_2)} \cdot 3^{-P_y} = \frac{(Y_1 - iY_2)}{(Y_1^2 + Y_2^2)} \cdot 3^{-P_y} = \frac{(Y_1 - iY_2)}{r} \cdot 3^{-P_y}.$$

Если положить $r = r_{\scriptscriptstyle H} \cdot 3^{P_{\scriptscriptstyle r}}$, где $r_{\scriptscriptstyle H}$ — величина, получаемая в результате нормализации r, то получим:

$$\frac{1}{v} = \frac{(Y_1 - iY_2)}{(r_H \cdot 3^{P_r})} \cdot 3^{-P_y} = (\frac{Y_1 \cdot 1}{r_H} + \frac{iY_2 \cdot 1}{r_H}) \cdot 3^{-P_y - P_r}$$

или

$$\frac{1}{v} = (\overline{Y}_1 + i\overline{Y}_2) \cdot 3^{\overline{P}_y},$$

где
$$\bar{Y}_1 = Y_1 \cdot \frac{1}{r_{_H}}$$
, $\bar{Y}_2 = Y_2 \cdot \frac{1}{r_{_H}}$, $\bar{P}_y = -P_y - P_r$.

Величина $t=\frac{1}{r_{_{\scriptscriptstyle H}}}$ вычисляется по итерационной формуле:

$$t = \lim_{n \to \infty} t_n$$
 , где $t_{n+1} = t_n \cdot (2 - t_n \cdot r_n)$ (5.1)

При этом нулевое приближение t₀, получается из соотношения:

$$\frac{1}{(1+h)} = (1-h)\cdot (1+h2+h4+...),$$

если положить $r_{\scriptscriptstyle H} = 1 + h \, , |h| < \frac{1}{2} \, .$

С погрешностью $|\varepsilon| < 0.00782$ можно определить t по формуле (примем это значение за t_0):

$$t_0 = (1-h) \cdot (1+h^2+h^4+h^6)$$

Тогда достаточно сделать две итерации по формуле (5.1), чтобы получить $t=t_2$ с требуемой точностью. Действительно, если $t_n=t+\varepsilon_n$, то погрешность (n+1)- ой итерации ε_{n+1} с учетом погрешности выполнения умножения определяется по формуле:

$$\varepsilon_{n+1} = -\varepsilon_n^2 \cdot r_H - \Delta'_{vMH} \cdot t + \Delta'_{vMH}$$
,

где

$$|\Delta_{ymh}| < \frac{1}{2} \cdot 3^{-16}, |\Delta'_{ymh}| < \frac{1}{2} \cdot 3^{-16},$$

Отсюда

$$|\varepsilon_1| < 0.92 \cdot 10^{-4} < 2 \cdot 3^{-9}$$
, $|\varepsilon_2| < 2 \cdot 3^{-16}$

кроме того, величина r, а значит и величина $r_{\text{н}}$, была вычислена о погрешностью Δ_{r} , $|\Delta_{\text{r}}| < 3^{-16}$, которая внесет в вычисление величины t дополнительную погрешность:

$$\delta = -\frac{1}{r_n^2} \cdot \Delta_r + 0 \left(\Delta r \right)$$
, t.e. $|\delta| < 3^{-16} \cdot \frac{1}{r_n^2}$

Итак, полная погрешность ϵ_t вычисления $t=1/r_{\scriptscriptstyle H}$ удовлетворяет неравенству:

$$|\varepsilon| < (2 + \frac{1}{r_{_{_{\mathit{H}}}}^{2}}) \cdot 3^{-16}$$

Погрешности $\mathcal{E}_{\bar{Y_1}}$, $\mathcal{E}_{\bar{Y_2}}$ вычисления величин Y_1 и Y_2 определяются по формулам:

$$\begin{split} & \varepsilon_{\bar{Y}_1} \!\! = \!\! \varepsilon_t \!\! \cdot \! Y_1 \!\! + \! \varDelta_{\scriptscriptstyle \mathcal{Y}\!M\!H} \, , \\ & \varepsilon_{\bar{Y}_2} \!\! = \!\! \varepsilon_t \!\! \cdot \! Y_2 \!\! + \! \varDelta_{\scriptscriptstyle \mathcal{Y}\!M\!H} \, , \quad \tau.e. \end{split}$$

$$|\varepsilon_{\bar{Y}_i}| < (2 \cdot Y_i + \frac{Y_i}{r_{...}^2}) \cdot 3^{-16} + \frac{1}{2} \cdot 3^{-16}, i = 1, 2.$$

Максимальное значение правой части этого неравен-

ства достигается при
$$Y_i = \sqrt{\frac{3}{2}}$$
 , $r_{_{\!\mathit{H}}} = \frac{1}{2}$, а именно:
$$|\varepsilon_{_{\,\bar{\!Y}}}| < 8 \cdot 3^{-16}$$

Так как для вычисления и/v используется формула:

$$\frac{u}{v} = [(X_1 \cdot \bar{Y}_1 - X_2 \cdot \bar{Y}_2) + i(X_1 \bar{Y}_2 - X_2 \bar{Y}_1)] \cdot 3^{P_x + P_y} =$$

$$= (\bar{X}_1 + i \bar{X}_2) \cdot 3^{Px}$$

то погрешность вычисления мантисс действительной и мнимой частей результата не превосходит $25 \cdot 3^{-16}$.

Подпрограмма умножения и деления размещается в одной зоне МБ и описывается следующей схемой:

Программа выполнения умножения и деления.

 $\Pi_{\Phi} = 0$ Зона МБ 10 Адрес Команда Адрес Команда Z 4 30 Y, ->(5) JAPA.) 02 03 0 WW 30 L+>(S) Z 4W 40 (S)-Y, ->(S) 04 2 24 40 -(S) -(S) Z 4 # 40 (5).Y. ->(5) WZ WO Z 4Z 23 Y, →(R) 1W 1X 2 42 43 $(s) + (R) \cdot Y_2 \Rightarrow (s)$ W1 Z 4W Y3 (S) - Y. 17 W2 W3 0 41 10 90-01-1 12 10 Z 43 30 Py -> (S) 1 YMH. MA O MA AX Hopu(S) >L 11 Z 33 33 $(s)+\rho_{\star}\Rightarrow(s)$ XW XX Z 43 33 $(S)+P_{s}\rightarrow (S)$ Z 2X Y3 (S) ⇒ (B) 12 13 XY Z 24 40 ~(s)**→**(s) 0 44 30 0 => (\$) 14 (s) ⇒ P_y IZ XO Z 43 Y3 $z \ni z \ni x (s) - X_2 \Rightarrow (s)$ 2W 2X X1 Q WW 30 ム ❤>(S) ̈́ 2Y Z 4Z 40 $(s)Y_2 \Rightarrow (s)$ X2 X3 Z ZW 20 1-h -> (s) 2Z 20 Z 3W 23 $X_1 \Rightarrow (R)$ I4 Z 2W Y3 (S) → (β,γ) 21 2 477 43 $(s)+(R)\cdot Y_i \Rightarrow (s)$ OF MR O XX ML 22 23 Hope (S) >X, (S)· L ⇒ (S) Z 3W YX Z 01 3X YY $-h^2 \Rightarrow (s)$ 24 Z 2X 33 (S)+(B)=>(S) YZ YO Z 24 40 $h^2 \Rightarrow (S); -h^2 \Rightarrow (R)$ SW 3X Z 33 Y3 $(s) \Rightarrow P_x$ Y1 Z 01 33 h²+<u>1</u>→(5) 37 Z 4Z 30 Y,⇒(s) Y2 Y3 Z 24 4¥ (\$)(R)+(-1)⇒(\$) 3Z 30 0 44 4X 0+(s)(R)=>(s) TY Z 01 4X (S)(R)+1-(S) 31 2 32 23 $X_2 \Rightarrow (R)$ ZW ZX Z ZW 40 (S) (β, χ) -> (S) 32 33 Z 4W 43 (S)+(R)·Y, →(S) ZY Q WW 40 (S). L > (S); U. > (R) Hopm(s) > X. 34 2 32 YX 22 20 0 43 33 (S)+(-2) ->(S) $(s)+(b)\rightarrow(s)$ HW HX Z 2X 33 ~ 21 0 44 4X (S)(R)+0 ->(S) ЧΥ Z 4X Y3 $(S) \Rightarrow P_{x_2}$ 22 23 0 WW 40 (S). L. ->(S); -14, ->(R) 4Z 40 BULLBX'AIII Z ZO OO 0 43 3X (S)-(-2) \$\sigma(S) 41 Z 44 2X 25 47 7 ON OX O 44 4X (S)(R)+O →(S) 42 45 Z 30 00 - 2 O WW T3 (S) → L 0 00 00 44 0

КC

0 00 20

O YZ WX

 $(s)\cdot Y_2 \Rightarrow (s)$

(s) ⇒Y,

02 00 2 42 40

01. THE TS

§6. Подпрограмма извлечения квадратного корня и нормализация.

Квадратный корень из комплексного числа $u = (X_1 + iX_2) \cdot 3^{P_x}$ вычисляется по следующим формулам:

$$\sqrt{u} = \sqrt{(X_1 + iX_2) \cdot 3^{P_x}} = \omega_1 + i \omega_2$$

где

$$\omega_{1} = \sqrt{\frac{r + X_{1}}{2} \cdot 3^{P_{x}}},$$

$$\omega_{2} = \sqrt{\frac{r - X_{1}}{2} \cdot 3^{P_{x}}} \cdot \sin X_{2},$$

$$r = \sqrt{X_{1}^{2} + X_{2}^{2}}.$$

Так как величина r не меньше компонент X_1 и X_2 , то $\frac{r\pm X_1}{2}\!\geqslant\!0$. Однако за счет неточного представления чисел в машине и неточности выполнения операций для малой величины X выражение $\frac{r\pm X_1}{2}$ мо-

жет быть равно $-\epsilon_1$ ($\epsilon_1 > 0$), тогда программа приравни-

вает значение
$$\sqrt{\frac{r\pm X_1}{2}}$$
 нулю.

Алгоритмы извлечения квадратного корня из действительного числа $l = L \cdot 3^{P_l}$ следующие:

а) При $l = r^2 \cdot 3^{2P_x}$:

$$L \cdot 3^{P_l} = L \cdot 3^{P_l}$$
, где $L = Hop_M(X_1^2 + X_2^2)$, $P_l = N + 2P_x$,

N — число сдвигов при нормализации r²,

$$\bar{P}_{l} = P_{x}, \quad \bar{L} = t \cdot L \cdot \beta,$$

$$t = \begin{cases} \frac{1}{\sqrt{L}}, ecnu N = 0 \\ \frac{1}{\sqrt{L}} \cdot \sqrt{3}, ecnu N \neq 0, \end{cases} \beta = \begin{cases} 1, ecnu N = -1 \\ \frac{1}{3}, ecnu N = -1. \end{cases}$$

б) При
$$l = \frac{r \pm X_1}{2} \cdot 3^{P_x}$$
:

$$\sqrt{L\cdot 3^{p_i}} = \overline{L}\cdot 3^{P_i}$$
, где $L = Hop_M\left(\frac{r\pm X_1}{2}\right)$,

$$P_l = N + P_x$$

N — число сдвигов при нормализации $\left(\frac{r\pm X_1}{2}\right)$,

$$\bar{P}_l = \left[\frac{1}{2}P_l - \frac{1}{3}\right]_{6\pi}, \quad \bar{L} = t \cdot t$$

$$t = \begin{cases} \frac{1}{\sqrt{L}}, ecлu \, 2 \, P_l - P_l = 0 \\ \frac{1}{\sqrt{L}} \cdot \sqrt{3}, ecлu \, 2 \, \bar{P}_l - P_l = -1 \, . \end{cases}$$

При L=0 полагается $\bar{L}=0$, порядок не вычисляется.

При $X_2^2 = 0$ полагается $r = |X_1|$.

При $X_1^2 = 0$ полагается $r = |X_2|$.

При $X_1 = 0$ и $X_2^2 = 0$ полагается $W_1 = 0$ и $W_2 = 0$.

Величина t в подпрограмме не нормализуется и поэтому удовлетворяет неравенствам:

$$\sqrt{\frac{2}{3}} < t < \sqrt{6} .$$

Величина t вычисляется с помощью трех последовательных приближений t_0 , t_1 , t_2 , причем, нулевое и первое приближения вычисляются в качестве коротких слов. Для вычисления нулевого приближения используется два первых члена разложения:

$$L^{-\frac{1}{2}} = 1 - \frac{1}{2}(L-1) + \frac{1 \cdot 3}{2 \cdot 4}(L-1)^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}(L-1)^3 + \dots,$$

т.е.
$$\frac{1}{\sqrt{L}} = \frac{1}{2}(3-L) + \delta_0$$
, где $\delta_0 < \frac{1\cdot 3}{2\cdot 4} \cdot \left(\frac{1}{2}\right)^2 < 0.0938$,

так как $L \neq 0$ и 0.5 < |L| < 1.5. Таким образом,

$$t_0 = t - \varepsilon_0 = (3 - \mathcal{I}) \cdot \alpha$$
, $\alpha = \begin{cases} 1/2 \\ \sqrt{3}/2 \end{cases}$, $\varepsilon_0 \approx 2\delta_0 \alpha$, $|\varepsilon_0| < 0.162$.

Второе и третье приближения используют преобразованную итерационную формулу (см. [3]), которая иза погрешности выполнения операции умножения и представления коэффициентов в машине записывается следующим образом:

$$t_{n+1} = (((b_3 \times \tilde{H}_n + b_2) \times \tilde{H}_n + b_1) \times t_n) \times \tilde{H}_n + t_n$$

где
$$\tilde{H}_n = t_n^2 \times \tilde{L} - 1 = H_n + \Delta_H$$
, $|\Delta| < 0.5 \cdot 3^{-16}$, $\tilde{L} = \frac{L}{(2\,\alpha)^2}$, $b_1 = 1/2 + \Delta_{b_1}$, $b_2 = 3/8 + \Delta_{b_2}$, $b_3 = 5/16 + \Delta_{b_3}$, где $\Delta_{b_i} < 0.5 \cdot 3^{-16}$. Отсюда $\varepsilon_{n+1} = t_{n+1} - t = \delta_{n+1} + 1/2 \, \Delta_H \cdot t_n + \Delta_{yMH} + \delta\left(H_n\right)$, где $\delta_{n+1} = \frac{35}{8} \cdot t_n^{-3} \cdot \varepsilon_n^4$ — погрешность итерационной формулы, $|\Delta_{yMH}| < 1/2 \cdot 3^{-16}$ — погрешность последнего умножения, $H_n \approx 2 \cdot \varepsilon_n \cdot t^{-1}$, $\delta\left(H_n\right)$ — погрешность, включающая все погрешности, содержащие в качестве множителя H_n в какой-либо целой положительной $|\delta\left(H_0\right)| < 1/2 \cdot 3^{-16}$.

Для первого приближения:

$$\begin{split} |\delta_1| \!<\! 0,\!000629 \;, & \text{при} \quad \alpha \!=\! 1/2 \;, \\ |\delta_1| \!<\! 0,\!001075 \;, & \text{при} \quad \alpha \!=\! \sqrt{3}/2 \;, \\ |1/2 \Delta_H t_0 \!+\! \Delta_{\mathit{yun}} \!+\! \delta(H_0)| \!<\! 3 \!\cdot\! 3^{-16} \;. \end{split}$$

Отсюда

$$|\varepsilon_1| < 0.00108(|\varepsilon_1| > 3^{-7})$$
.

Для второго приближения погрешность $\delta(H_n)$ практически равна нулю $(|\delta(H_1)| < 0.01 \cdot 3^{-16})$, $|\delta_2| < 10^{10}$.

Следовательно,

$$|\varepsilon_2| < 1,12 \cdot 3^{-16}$$
.

Величина $ar{L}$ вычисляется фактически по формуле:

$$\bar{L_{np}} = (t + \varepsilon_2) \times L = \bar{L} + \varepsilon$$
 ,

где
$$\varepsilon = \varepsilon_2 \cdot L + \Delta_{_{VMH}}$$
, т.е. $|\varepsilon| < 2,18 \cdot 3^{-16}$.

Однако, в сумарную погрешность $\varepsilon_{\bar{L}}$ вычисления \bar{L} будет выходить еще погрешность σ , вносимая погрешность $\Delta_{\bar{L}}$ вычисления величины L:

$$\sigma = 1/2 L^{-1} \cdot \Delta_L + 0(\Delta_L) .$$

Так как в случае а) $|\Delta_L| < 3^{-16}$, то σ в этом случае будет удовлетворять неравенству:

$$|\sigma| < 3^{-16}$$
,

и, следовательно

$$|\varepsilon_{\bar{L}}| < 3.18 \cdot 3^{-16}$$
.

Тогда в случае б) $|\Delta_I| < 1.59 \cdot 3^{-16}$.

Отсюда

$$|\sigma| < 1.59 \cdot 3^{-16}$$

 $|\varepsilon_{\bar{L}}| < 4 \cdot 3^{-16}$,

$$|\varepsilon_{\bar{L}}| < 4 \cdot 3^{-16}$$
,

т.е. абсолютная погрешность мантисс W_1 и W_2 не превосходит 4.3^{-16} .

Данная подпрограмма размещается в двух зонах МБ: 11 и 12. Вычисление величины \bar{L} расположено в зоне 12. Анализ аргумента и переход к Bx.VIII ИП-4 находятся в зонее II. В зоне II расположено также начало подпрограммы, реализующей певдооперацию нормализации комплексного числа и переход в Bx.VIII ИП-4 для завершения нормализации (точнее: в зоне II производится отдельно нормализация и действительной части, а в подпрограмме «нормализация» эти части приводятся к одному порядку).

Подпрограмма извлечения квадратного корня и нормализации описывается логической схемой:

В этой схеме y_1 — рабочая ячейка для $sign X_2$, y_2 — рабочая ячейка для X_2^2 и r^2 , причем эти величины отстоят в памяти от величины X на $12\,l_A$, т.е. запись X_1^\ominus , при $(F) = -12\,l_A$ означает (y_2) .

Содержимое ячейки Y_3 используется при вычислении t_{n+1} . В качестве величины D испльзуется одна из команд программы, причем, первоначально D>0. Величина P_{x_2} храниться в старших разрядах Y_1 , т.е. состоит в памяти от величины P_x на $3l_A$. Величина t помещается на место λ основной зоны ИП-4.

Два оператора $(S)-X_1\Rightarrow(S)$, следующие за стрелкой \lnot , реализуются в программе одной командой за счет того, что управление по этой стрелке передается длиннйо ячей-ке. Последние два оператора относятся к подпрограмме, реализующей псевдооперацию нормализации комплексного числа.

Подпрограмма извлечения квадратного корня и нормализации, I.

```
\Pi_{\phi} = 0
                                  Зона МБ 11
Адрес Команда
                                  Адрес Команда
                                                    151 ⇒ X, -12
 ₩₩ ₩X 2 43 Y3 (S) → 7 -14
                                    02 03
                                           Z 3Z Y3
    WY 0 XY 00 BULL 9
                                                     X_s \Rightarrow (s)
                                       04
                                           Z 3W 30
                                                     411-01-BX.VIII H11-4
 WZ WO Z 4Z 33 (S)+(82) →(S)-13 1W 1X
                                           Z ZO 10
                                                     411-1 1-7 ws
                                       1 Y
                                           0 11 13
    W1 Z ZW 23
                  1/2 = R
 W2 W3 Z 4Z YX Hopm(S) ⇒(82); Na(S)1Z 10 Z 24 40
                                                     -(s) \Rightarrow (s)
                                                     [12] = [P.] J7
    W4 0 WX 1X YM-T/+4
                                       11 0 12 XX
 XW XX Z OY 20 -(S) ⇒(S)
                                    12 13 0 00 00
    XY 0 12 XX [12] → [Po] J6
                                       14
                                           0 00 00
                                                       (0+0·L)·3-40
 XZ XO O ZX YO O → (S) 1 436A.
                                    2W 2X 0 00 00
                                       2Y
                                           0 00 00
    X1 Z 43 Y3
                  (S)=7
 #2 X9 Z 24 Z0 -1 ⇒(F)
                                    27 20
                                           0 WW 00
    X4 Z 3Z 30 X, ⇒ (S)
                                       21
                                           0 00 00
                                                        вободные
 TW YX O YO 1X 471-TT-1
                                    22 23
                                           0 00 00
                                                        gyeüKU
    YY Z 01 Z0
                  1 - (F)
                                           0 00 00
                                       24
                                    3W 3X Z 3Z 30
 YZ YO Z 4Y OX (F) ⇒ (X,) → '
                                                     X_{\bullet} \Rightarrow (s)
    Y1 0 X0 20 =-12 € => (F)
                                                     (S) \cdot Sign X_2 \Rightarrow (S)
                                       3Y
                                           Z 4Y 40
 Y2 Y8 7 52 40 (S) X 2 ⇒ (S)
                                    3Z 30 Z 3Z YX
                                                     HOPM (S)=X2
    14 0 03 10 411-0 T-2
                                       31
                                           Z 4X 33
                                                     (S) + P_X, \Rightarrow (S)
 ZW ZX Z 42 Y3 (S) \Rightarrow (\delta_2)
                                    32 33
                                                     (S) \Rightarrow P_X, \rightarrow 14
                                           Z 4X Y3
    ZY Z 3W 30 X_1 \Rightarrow (S)
                                           2 3W 30
                                                      X, ⇒ (si
                                       34
 22 20 2 3₩ 40 (S)·X, ⇒(S)
                                    YF YX
                                           Z 3W YX
                                                      HOPM (S) ⇒ X.
    Z1 0 WO 13 YM-11-3
                                           Z 33 33
                                                     (S) + P_x \Rightarrow (S)
                                       41
                                                     (S) @ 14400 $15)
 22 Z3 Z 3Z 30 X, ⇒ (S)
                                    4Z 40
                                           0 44 20
    Z4 0 1Y 00 57 1 5
                                                     (S) \Rightarrow Px
                                       41
                                           Z 33 Y3
 ON OX 2 32 30 X, = (5) 4 HOPM. 42 43
                                                      517 F BX.VIII UN-4
                                           Z ZO 00
    OT Z 3Z YX Hop4(S) → X,
                                       44
                                           1 44 00
 0Z 00 Z 33 33 (S)+P<sub>x</sub> ⇒(S)
                                    КC
                                           0 00 Z2
    01 0 33 00 BUL-14
                                           Z W9 43
```

```
\Pi_{\phi} = 0
                                      Зона МБ 12
Адрес Команда
                                     Адрес Команда
         Z 3W YW HOPM(S) X 213 02 03
                                                2 23 40
                                                            (s) \cdot t \Rightarrow (s)
     WY Z 33 33 (S)+Px+(S)
                                           04
                                                Z 2W 40
                                                            (s) \cdot H \Rightarrow (s)
  WZ WO Z ZW 23
                     1/2 => (R)
                                        1W 1X
                                                Z 23 3X
                                                            (s)-t\Rightarrow (s)
                    (R).(S)-1/3 en+(S)
     W1 Z 20 4X
                                           1 Y
                                                0 24 23
                                                            \mathcal{D} \Rightarrow (R)
  W2 W3 Z 33 Y2
                    (S) \Rightarrow P_* \Theta
                                                            4π-T T-9
                                        1Z 10
                                                0 Y1 1X
                                                            (S) \cdot X \cdot \Theta \Rightarrow (S)
     W4 O X4 YO
                    Ca6 (S) Ha 2 ⇒ (S)
                                                Z 3W 4Z
                                           11
  XW XX Z ZY 20
                    (S) ® 7444 + (S) 12 13
                                                Z 3W Y2
                                                            (S) = X @ 410 418
     XY Z Z1 20
                     (S) @ 00100 $(S)
                                           14
                                                Z 4Z 30
                                                            (82) = (S)
  XZ X0 0 X3 10
                    471-05-8
                                        2W 2X
                                                Z 43 YO
                                                            Cab(S)Ha 7 =>(S)
     X1 0 4Y 23
                    13/2 ⇒ (R)
                                           2Y
                                                Z 3W 39
                                                            (s) + X_i \Rightarrow (s)
  X2 X3 0 4X Y3
                                        2Z 20
                                                Z Y4 ZX
                    (S) = (K) -13
                                                            (F) + 3C_p \Rightarrow (F)
                                                             Y 17 - T 1 ←"
     0Y 20 C PX
                    0 + (S); 200
                                                0 3W 1X
                                           21
YW YX Z 14 43 (S)+(R)-(-3) +(S)
                                                0 30 10
                                                             411-0 F-12
                                        22 23
     YY 2 3W 42
                    (S)+(R)·X, +(S)
                                           24
                                                0 11 XX
                                                            [11] ⇒ [Φ.]; D
  YZ YO Z 24 40
                     -(S) = (S)
                                        3W 3X
                                                Z 3W 3X
                                                            (S)-X, +(S) -1"
     Y1 Z 23 Y3
                                                0 33 Z0
                     (S) > t +19
                                           ЗҮ
                                                            - 3 en = (F)
  Y2 Y3 0 24 30
                     D \Rightarrow (S)
                                                            (S)·1/2 =>(S) +12
                                        3Z 30
                                                Z ZW 40
     Y4 2 24 40
                                                            477-15-13
                     -(S) \Rightarrow (S)
                                           31
                                                0 WX 13
  ZW ZX 0 24 Y3
                     (S) =D
                                        32 33
                                                O OX YO
                                                             0 \Rightarrow (5)
     ZY
         Z 23 30
                                                            БП € 10
                                                0 13 00
                     t. => (S)
                                           34
  22 ZO O 4X YO
                     Ca6(5) Ha (83)
                                        YW YX
                                                0 00 00
                                                             (83)
                     (s) \cdot X \Rightarrow (s)
     Z.1
        Z 3W 4Z
                                           ЧY
                                                0 3W 34
                                                             13/2
  Z2 Z3 Z 29 40
                                        4Z 40
                                                0 ZZ ZZ
                     (S).t \Rightarrow (S)
     Z4 Z 24 33
                     (S)+(-1)+(S)
                                                O XX XX
                                           41
 OW OX Z 2W Y3 \ (5) > H
                                        42 43
                                                0 1Z 4Z
     OF 0 42 40
                     (S). 5/16 => (S); H=(R)
                                           44
                                                1 3Y 3Y
 0Z 00 0 4Z 33
                     (s) \leftarrow 3/s \Rightarrow (s)
                                        КC
                                                0 00 Z3
```

Z Y3 03

(S)-(R)+ 2=(S)

01 Z ZW 4X

 $\S7$. Подпрограмма для вычисления функций sinu, cosu, shu, chu, e u .

Данная подпрограмма занимает 4 зоны на МБ. Функции вычисляются по следующим формулам:

$$\sin(x_{1}+ix_{2}) = \sin x_{1} \cdot ch \, x_{2} + i \cdot \cos x_{1} \cdot sh \, x_{2}$$

$$\cos(x_{1}+ix_{2}) = \cos x_{1} \cdot ch \, x_{2} - i \cdot \sin x_{1} \cdot sh \, x_{2}$$

$$sh(x_{1}+ix_{2}) = \cos x_{2} \cdot sh \, x_{1} - i \cdot \sin x_{2} \cdot sh \, x_{1}$$

$$ch(x_{1}+ix_{2}) = \cos x_{2} \cdot ch \, x_{1} - i \cdot \sin x_{2} \cdot sh \, x_{1}$$

$$e^{(x_{1}+ix_{2})} = e^{x_{1}} \cdot (\cos x_{2} + i \cdot \sin x_{2})$$
(*)

Алгоритмы для вычисления $\sin x$, $\cos x$, e^x (x — действительное число) взяты из работы [3]. Абсолютная погрешность вычисляется каждой из величин $3\sin X$, $3\cos X$, мантиссы e^x не превосходит $5/2\cdot 3^{-16}$ при |X|<3/2. Так как:

$$shx = \frac{e^x - e^{-x}}{2}$$
, $chx = \frac{e^x + e^{-x}}{2}$,

то абсолютная погрешность $\varepsilon_{\mathit{shx}}$ можно оценить сверху следующим образом:

$$|\varepsilon_{sh} x| \le 1/2 \cdot |\varepsilon_{M(e^x - e^{-x})}| + |M(e^x - e^{-x})| \cdot \varepsilon_{1/2} + 1/2 \cdot 3^{-16}$$

где
$$M\left(e^{x}-e^{-x}\right)$$
 — мантисса $\left(e^{x}-e^{-x}\right)$,

$$\varepsilon_{1/2} = 1/2 \cdot 3^{-16}$$
,
 $\varepsilon_m(e^x - e^{-x}) \le 2\varepsilon_{x} = 5 \cdot 3^{-16}$

Отсюда получаем (при |x| < 3/2):

$$|\varepsilon_{sh} x| \le \frac{1}{2} \cdot 5 \cdot 3^{-16} + \frac{3}{4} \cdot 3^{-16} + \frac{1}{2} \cdot 3^{-16} = \frac{15}{4} \cdot 3^{-16}$$
.

Аналогично:

$$|\varepsilon_{sh}x| \leq \frac{15}{4} \cdot 3^{-16}$$
.

Абсолютные погрешности вычисления мантисс действительной и мнимой частей в каждой формуле (*) состоят из погрешности, которая получается в результате перемножения указанных там величин, и погрешности выполнения умножения, которая не превосходит $1/2 \cdot 3^{-16}$. Эти погрешности не превосходят:

$$10.3^{-16}$$
,

а абсолютная погрешность вычисления мантисс действительной и мнимой частей $e^{x_1+iX_2}$ не превосходит:

$$4 \cdot 3^{-16}$$
 .

Подпрограмма вычисления функций $\sin u$, $\cos u$, $\sinh u$, $\cosh u$, e^u , описывается следующей схемой:

$$\frac{e^{\omega}}{[-3\ell_{n} \Rightarrow (F)]} A_{n}[[13] \Rightarrow [\infty,]] B \Pi^{-1} F_{[0 \Rightarrow (\beta)]} A_{n}$$

$$[[13] \Rightarrow [\Phi_{0}]] B \Pi^{-1} F_{[0 & (\alpha)]} A_{n}[[13] \Rightarrow [\Phi_{0}]]$$

$$B \Pi^{-1} F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} A_{n}[[13] \Rightarrow [\Phi_{0}]]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} A_{n} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} A_{n} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} A_{n} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} A_{n} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)]$$

$$F_{[0 & (\beta)]} A_{n} \Rightarrow (F)[[\Pi] F_{[0 & (\beta)]} \Rightarrow (F)[[\Pi] F$$

Здесь A_{i-} арифметические операторы, B_{i-} обобщенные операторы, имеющие нижеследующее содержание:

$$A_{1}: [X_{1} \Rightarrow Y_{1}; X_{2} \Rightarrow X_{1}; Y_{1} \Rightarrow X_{2}].$$

$$B_{1} = \text{обобщенный оператор, вычисляющий } \text{Sin } X_{1} \text{ u cos } X_{2}.$$

$$B_{1}: [Cgl(X_{1}, 9/2\pi) \text{ u a } P_{X} \Rightarrow (S); (S) \cdot 2/3 + L \xrightarrow{\oplus} (S); (S) \Rightarrow Y_{2} \xrightarrow{\ominus};$$

$$(S) \otimes B \Rightarrow (Y); (S) + Y_{2} \xrightarrow{\ominus} (S); (Y) \Rightarrow (F)]$$

$$P(w \neq 0)[C-(S) \Rightarrow (S)]^{\dagger}[P_{y} \Rightarrow (F); (S) \Rightarrow Y_{2} \xrightarrow{\ominus}; (S) \cdot Y_{2} \Rightarrow (S);$$

$$Cgl(S) \text{ u a } -1 \Rightarrow (S); (S) \Rightarrow (R); \theta_{1} \cdot (S) \Rightarrow (S);$$

$$\theta_{3} + (S) \Rightarrow (S); \theta_{2} + (S) \cdot (R) \Rightarrow (S); \theta_{1} + (S) \cdot (R) \Rightarrow (S);$$

$$\theta_{3} + (S) \cdot (R) \Rightarrow (S); (S) \cdot Y_{2} \xrightarrow{\ominus} (S); Cgl(S) \text{ u a } -1 \Rightarrow Y_{2} \xrightarrow{\ominus}].$$

 A_2 и A_3 — арифметические операторы, вычисляющие e^x .

$$A_{2}: \left[X_{2} \left(-\frac{3}{6}n_{3}\right)^{\oplus} \Rightarrow (S); (S) \Rightarrow X_{2} ; Cg6(S) + \alpha (Y) \Rightarrow (S);$$

$$(S) \otimes K \Rightarrow P_{y} ; Cg6 X_{2} + \alpha P_{x} \Rightarrow (S); Cg6(S) + \alpha 1 \Rightarrow (S);$$

$$(g6(S) + \alpha - 2 \Rightarrow (S); (S) \Rightarrow (R); \alpha_{2} \cdot (S) \Rightarrow (S); \alpha_{6} + (S) \Rightarrow (S);$$

$$\alpha_{5} + (S) \cdot (R) \Rightarrow (S); \alpha_{4} + (S) \cdot (R) \Rightarrow (S); \alpha_{5} + (S) \cdot (R) \Rightarrow (S);$$

$$\alpha_{2} + (S) \cdot (R) \Rightarrow (S); \alpha_{4} + (S) \cdot (R) \Rightarrow (S)].$$

$$A_3: [1+(S)\cdot(R) \Rightarrow X_2^{\odot}; \lambda \Rightarrow (R)].$$

 B_2 — обобщенный оператор, вычисляющий shx_2 chx_2 .

$$\beta_{2}: [P_{y} \Rightarrow (S)] P(\omega \neq 0)^{\frac{1}{4}} [-(S) \Rightarrow (S); 0 \Rightarrow (F)]$$

$$\stackrel{14}{\vdash} [(S) \Rightarrow P_{y}; (S) + P_{y} \Rightarrow \lambda; Cgb(X, \overset{\Theta}{\vdash}_{Ha} \lambda) \Rightarrow X, \overset{\Theta}{\vdash};$$

$$-P_{y} \Rightarrow P_{y}; X_{\downarrow} \Rightarrow (S); (\beta) \Rightarrow (F); (S) \Rightarrow (\beta, \chi); ((S) - X_{2}) \frac{1}{2} \Rightarrow X_{3};$$

$$((\beta, \chi) + X_{\downarrow}) \cdot \frac{1}{2} \Rightarrow X_{2}].$$

$$A_{i}: [-Y_{i} \Rightarrow Y_{i}].$$

$$A_s: \text{ [Hopm (Y_2 · X, Θ) $\Rightarrow (\beta, Y); $N + P_y$ $\Rightarrow P_{s_i}$; Y_i · X_2 $\Rightarrow (S)].}$$

$$A_{\zeta}: [Hopm(S) \Rightarrow X_{2}; N + P_{y} \Rightarrow P_{X_{\zeta}}; (\beta, X) \Rightarrow X,].$$

$$A_{2}: [Hopm(X_{2}, Y_{i}) \Rightarrow (\beta, Y); N + P_{y} \Rightarrow P_{x_{i}}; X_{i}, Y_{2} \Rightarrow (S)].$$

$$A_8: [o \Rightarrow (s); (s) \Rightarrow X,].$$

$$A_g: [(S) \Rightarrow X_2; 0 \Rightarrow (F)].$$

Подпрограмма вычисления функций $\sin u$, $\cos u$, $\sin u$, $\cot u$, e^u . I.

```
\Pi_{\phi} = 0
                                     Зона МБ 13
Адрес Команда
                                     Адрес Команда
## #X 0 Z1 Z0 -3eA ⇒(F) - 1 cosu
                                       02 03 0 00 00
                    (F) ⇒(B) →1
         2 2X 0X
                                                0 00 00
    WY
                                           Р0
                    300 = (F)
WZ WO Z Y4 ZO
                                        1W 1X
                                                1 04 14
                    (F)=) 12
    W1 Z 23 OX
                                           1 Y
                                                2 02 12
                    360 = (F)
W2 W3 Z X0 Z0
                                                Z 4Y 44
                                        12 10
                    (F) ⇒ Py 43
    W4 2 43 0X
                                                Z 20 21
                                           11
XW XX Z 3W 30
                    X . + (S)
                                        12 13
                                                0 17 XZ
    XY 0 4Z 40
                   (5).9/_{27} \Rightarrow (5)
                                           14
                                                Z OY Y1
XZ XO Z 33 YO
                   Cab (S) HO Px =>(S)
                                        2M 2X
                                                0 00 02
                   (S). 2/3 ⇒(S)
    X1 0 Z4 40
                                           2Y
                                                0 23 XX
                    (S) + L^{\oplus} \Rightarrow (S)
                                                           B3+(S)→(S) →0
X2 X3 0 0Z 34
                                        22 20
                                                0 OW 33
                    (S) \Rightarrow Y_2 \Theta
                                                           B, +(S).(R) ⇒(S)
    X4 2 42 Y2
                                           21
                                                0 12 4X
YW YX Z W3 20
                    (S)@ B ⇒ (S)
                                        22 23
                                                0 1Z 4X
                                                           6, + (s) \cdot (R) \Rightarrow (s)
    YY
         Z 2Y Y3
                    (S) \Rightarrow (Y)
                                           24
                                                0 1W 4X
                                                           B_n + (S) \cdot (R) \Rightarrow (S)
YZ YO Z YZ 32
                    (S)+Y2 =>(S)
                                       3W 3X
                                               2 42 42
                                                           (s) \cdot Y_{\Theta} \Rightarrow (s)
    Y1 Z 2Y ZO
                                                0 0X YO
                                           YC
                    (X) ⇒ (F)
                                                           (gb (s) 40 -1 => (S)
Y2 Y3 0 ZX 10
                                        32 30 2 47 Y2
                    yη-0 --
                                                            (s) \Rightarrow Y, \Theta
    Y4 Z 24 40
                    -(S) = (S)
                                                0 Z1 ZX
                                           31
                                                            (F) - 3e_n \Rightarrow (F)
                     Py => (F) -
                                                            Y11-0 5 € 3
ZW ZX Z 43 Z0
                                       32 33
                                               0 #4 10
                    (s) \Rightarrow Y_{\lambda}
    ZY
         2 42 Y2
                                           34
                                                Z 33 Z0
                                                            P_x \Rightarrow (F)
Z2 Z0 Z 4Z 4Z
                    (s). Y, =>(s)
                                       YF WF
                                                0 20 ZX
                                                            (F)-4en ⇒(F)
    Z1 0 0X Y0
                                           44
                                                0 14 XX
                                                           [14] > [P.]
                    Cg6 (5) na -1 = (5)
                    (S) +(R); 8:(S) =(S) 42 40 0 43 X1
22 23 0 2W 40
                                                             ^{9}/_{2\pi}
                    5710; 2/3
         0 20 00
    24
                                           41
                                                2 24 14
                                                            3en ⇒ (F) - Sin U
OW OX O OZ 4X
                                       42 43
                                                Z Y4 Z0
    OY
         Z X1 X2
                                           44
                                                0 WY 00
                                                            EUL+1
02 00
         1 WW WW
                                       КC
                                                0 00 22
    01
                                                1 Y4 41
```

Подпрограмма вычисления функций $\sin u$, $\cos u$, $\sinh u$, $\cosh u$, $\cot u$, e^u . II.

```
\Pi_{\phi} = 0
                                     Зона МБ 14
Адрес Команда
                                    Адрес Команда
         0 2W XX [24] →[P.] 15
                                        02 03
                                                0 2Y 3X
                   X_i \Rightarrow (s) \rightarrow 6 04

(s) \cdot (-3/c_{n3}) \Rightarrow (s) 1W 1X
    WΥ
         Z 3Z 30
                                                Z 4W 11
 WZ WO
         0 22 41
                                                OIXOX
         Z 3Z Y2
                   (S) ⇒ X, €
                                                1 OW YO
    W1
                                            1 Y
                    Ca6(S) na(8) = (S) 12 10
 ₩2 ₩3
         Z 2Y YO
                                                0 02 XX
         0 OY 20
                    (S) @ K => 1S)
                                            11
                                                2 22 4X
                    (SI > Py
 XX WX
         Z 43 Y3
                                        12 13
                                                0 00 32
                    X, S ⇒isi
                                            14
                                                0 44 24
    XΥ
         Z 3Z 3Z
 XZ XO
                    Ca6(5) Ha Px =>(5)
                                        2W 2X
                                                0 00 1%
        Z 3: YO
         Z Z1 Y0
                     Cab (S) Ha 1=(S)
                                           2Y
                                                1 28 88
    X1
                    CgB (S) Ha-2=(S)
 ★2 X3
        O WY YO
                                        27 50
                                                Z 1Y 24
    ХЧ
         0 3W 40
                     a_2 \cdot (s) \Rightarrow (s)
                                            21
                                                0 YZ X0
 XY WY
         0 2W 3P
                     9, + (S) = (S)
                                        22 23
                                                1 Z2 YW
    YY
         0 12 4X
                     95 +(S)-(R)=1S)
                                            24
                                                0 21 30
 YZ YO
         0 1Z 4X
                                        3# 3X
                                                0 00 01
                     a_+(5).(R) =(S)
         0 1W 4X
                                           ЗΥ
                                                C WY YX
     Y 1
                     a3+(S)·(R) ⇒(S)
                     92 + (S).(R) = (S) 32 30
 Y2 Y3
         0 02 4X
                                                2 27 30
                                                            X, => 15) -14
    Y4 '0 0Z 4X
                                           31
                                                9 ZX 10
                                                            411-0 F- 10
                     a, + (S1.(R) = (S)
                     1 + (5)·(R) ⇒(S) $30
                                           333
                                                             Y17-7 1="
 ZV ZX
         2 01 4X
                                                3 4X 1X
                     (s) \Rightarrow \chi_{s} \otimes
     ZΥ
         Z 3Z Y2
                                            24
                                                0 0X 2X
                                                             52, ; - 364
 22 20
         Z 23 23
                      \lambda \Rightarrow (R)
                                        чж чх
                                                2 22 20
                                                            1 → (F) 1!!
                      417-T-5
         O WX 1X
     21
                                           41
                                                C V W XX
                                                            [24] >[P.]
 22 23
         0 34 ZX
                                        42 40
                                                0 30 12
                      (F)+ (-3eo)=>(F)
                                                             Y11-15-4
     24
         0 WY 10
                      417-01-6
                                            41
                                                2 . Y 0X
                                                            (F) => (V)
 OW OX
                                        40.40
         0 2W XX
                     [24] \Rightarrow [9.]
                                                2 X0 20 - 3e, → (F)
    OY
          1 44 00
                                            1711
                                                n wy
                                                            BD5+6
 07.00
                                        КC
         ○ 33 XC
                       a,
    01
          Z. 00 XW
                                                   4. 47
```

Подпрограмма вычисления функций $\sin u$, $\cos u$, $\sin u$, $\cot u$, $\cot u$, $\cot u$, $\cot u$

$\Pi_{\varphi} = 0$		Зона МБ $2\bar{4}$
Адрес	Команда	Адрес Команда
WW WX WY WZ WO W1	2 3W Y3 (S) $\Rightarrow X_1 \rightarrow 16$ 2 3Z Y3 (S) $\Rightarrow X_2$ 2 XX Z0 $0 \Rightarrow (F)$ 0 Y4 00 $6 \cap 16$	02 03 Z XX Z0 $0 \Rightarrow (F)$ 04 Z 43 Y3 $(S) \Rightarrow P_y \rightarrow {}^{14}$ 17 1X Z 43 33 $(S) + P_y \Rightarrow (S)$ 17 Z 23 Y3 $(S) \Rightarrow (A)$
XX XX A4 A5 A3	2.92 30 $X_2 \Rightarrow (S) \rightarrow Y$ 2.82 41 $(S) \cdot Y \oplus \Rightarrow (S)$ 2.24 YX $Hoph(S) \Rightarrow (A \land B)$ 2.43 33 $(S) + P_4 \Rightarrow (S)$	12 10 2 3₩ 32
XZ X0 X1	Z 33 Y3 $(S) \Rightarrow P_k$ Z 3W 30 $X_s \Rightarrow (S)$	2W 2X Z 24 40 -(S) \Rightarrow (S) 2Y Z 43 Y3 (S) \Rightarrow Py
YY XY	2 42 42 (S). Y2 =>(S) 0 00 00 50 => 0 #3 18 90-1 => 0 74 10 90-0 ==	27 20 Z 3W 30 $X, \Rightarrow (S)$ 21 Z 2X 20 $(\beta) \Rightarrow (F)$ 22 23 Z 2W Y3 $(S) \Rightarrow (\beta, \delta)$
YY YZ YO Y1	Z 4¥ 30 Y, ⇒(S) Z 24 40 -(S)⇒(S)	24 Z 3Z 3X $(S)-X_2\Rightarrow(S)$ SW 3X Z ZW 40 $(S)\cdot \frac{1}{2}\Rightarrow(S)$ 3Y Z 3W Y3 $(S)\Rightarrow X$,
72 Y3	Z 4W Y8 (S) = Y, Z 4Z 30 Y ₂ = (S) = 18 Z 3W 4Z (S) - X ₂ = (S)	3Z 30 Z 2W 30 (β_1) \Rightarrow (S) 31 Z 3Z 33 (S) + X_z \Rightarrow (S) 32 33 Z ZW 40 (S) - (A_z) \Rightarrow (S)
ZY ZZ ZO Z1	Z 2W YX Hopm (S) = (B, V) Z 48 38 (S) + Py = (S) Z 33 Y8 (S) = Px	34 Z 3Z Y3 (S) ⇒ X ₂ 4W 4X Z 2X 0X (F) ⇒ (β) 4Y 0 YX 00 5 Π Γ 15
22 · 28 24 0¥ 0x	Z 4₩ 30 Y, ⇒(5) Z 8Z 41 (5)·X, ⊕⇒(5) 0 2X XX [23]⇒[9] 13	42 43 0 WX YO 0 => (S) -1 12 41 2 23 2X 52 5 42 43 0 WX YO 0 => (S) -1 12
07 02 00 01	Z 43 80 Py ⇒ (5) 0 04 1X Y∏-7 F 14 2 24 40 -(5) ⇒ (5)	44 0 WX 00 € 17 5 16 KC 0 00 ZY 0 ZW YY

Подпрограмма вычисления функций $\sin u$, $\cos u$, $\sin u$, $\cot u$, e^u . IV.

```
Зона МБ2\bar{3}
\Pi_{\phi} = 0
                                Адрес Команда
Адрес Команда
WW WX 2 XX 20 0 → (F) -1 5h4
                                                  (\beta, 8) = (5)
                                  02 03
                                         Z 2W 30
                611 F 13
   WY 0 W3 00
                                     94
                                         Z 3W Y3
                                                   (s) \Rightarrow X.
WZ WO 0 13 XX
                [13] = [Po] = 13
                                                  511 6x. 711 47-4
                                  1W 1X
                                         Z ZO 00
       O ZY ZO
                 6 en ⇒ (F) schu
   W 1
                                     1 Y
                                         0 00 00
                                                     $0500MHE
W2 W3 Z 2X OX (F) ⇒ (B) 12
                                  12 10 0 00 00
                                                     A YEUKU
                 X ,= (S) 14
   W4 Z 3W 30
                                     11
                                         0 00 00
XW XX Z 4W Y3
                 (S) \Rightarrow Y_i
                                  12 13
                                         0 00 00
                 X 2 ⇒ (S)
   XY 2 3Z 30
                                     14 0 00 00
XZ XO Z 3W Y3
                                  2W 2X
                                        0 YO OO )
                 (s) \Rightarrow X
   X1 Z 4W 30
                 Y. - (S)
                                     2Y
                                         0 00 00
                 (S) ⇒X,
                                                     - 2
X2 X3 Z 3Z Y3
                                  22 20 0 00 00
 * X4 0 W0 00
                                         0 00 00
                 B115-13
                                     21
                 -30, = (F) -18"
YW YX 0 24 Z0
                                  22 23
                                         0 01 00
                  B П Г+ 14
   YY 0 W4 00
                                     24
                                        0 0X 00
                                                    - 3ea
YZ YO 0 40 00
                                  3W 3X
                                         0 30 00
   ¥1 0 00 00
                                     ЗY
                                         0 00 00
                                                      1
Y2 Y9 0 00 00
                                 3Z 30 0 00 00
   74
      0 00 00
                                         0 00 00
                                     31
ZW ZX 0 01 00
                                 32 33
                                         0 00 00
                  6 e R
   ZY
      0 1X 00
                                     34
                                         0 00 00
ZZ ZO O XO OO
                                 4W 4X
                                         0 2W WW
   21
      0 00 00
                                     ЧY
                                         Z WW WW
Z2 Z3 0 00 00
                                 4Z 40
                                         0 00 00
   24
      0 00 00
                                     41
                                         0 00 00
OW OX 0 00 00
                                 42 43
                                         0 00 00
                HOPMIS) ⇒ X.
      Z 3Z YX
                                    44
                                         0 00 00
                 (S)+ Py =15)
0Z 00
       Z 43 33
                                 КC
                                         0 00 OW
                 (S) = Px.
   01
       Z 4X Y3
                                         Z 32 Y1
```

§8. Подпрограмма для вычисления функций $\ln u$, $|u| \ , \ \ \frac{1}{|u|} \ .$

Подпрограмма занимает 4 зоны на магнитном барабане. Функции вычисляются по формулам:

$$|u| = (\sqrt{X_1^2 + X_2^2} + 0 \cdot i) \cdot 3^{P_x}$$

$$\frac{1}{|u|} = \left(\frac{1}{\sqrt{X_1^2 + X_2^2}} + 0 \cdot i\right) \cdot 3^{-P_x}$$

$$\ln u = \ln |u| + i \cdot \varphi$$

где $\varphi = arctg \frac{X_2}{X_1} + 2k \pi$,

но в подпрограмме вычисляется главное значение ар-

гумента $\varphi=arctg\frac{X_2}{X_1}+2k\pi$ (k=0). Кроме того, полученные значения нормализуются.

Для извлечения квадратного корня из $X_1^2 + X_2^2$

$$r = \sqrt{T}$$
, $T = X_1^2 + X_2^2$

используется алгоритм из [3], но в связи с тем, что аргумент T вычисляется с погрешностью ε_T , $\varepsilon_T < 3^{-16}$, то погрешность вычислений будет больше, чем в [3].

Величина $g=\frac{1}{\sqrt{T}}$ при точном аргументе Т вычисляется с погрешностью ε_g , $|\varepsilon_g| < 3^{-16}$. Следовательно, абсолютная погрешность $\frac{\varepsilon_1}{|u|}$ вычисления мантиссы действительной части величины $\frac{1}{|u|}$ удовлетворяет неравенству:

$$|\varepsilon_{\frac{1}{|u|}}| < 3^{-16} + \frac{1}{2} \cdot \frac{1}{\sqrt{T^3}} \cdot |\varepsilon_t| < (1+4) \cdot 3^{-16} \le 5 \cdot 3^{-16}$$

Так как величина г вычисляется по формуле:

$$r = T \cdot g$$
,

то погрешность ε_r ее вычисления удовлетворяет соотношению:

$$|\varepsilon_r| < 3^{-16} \cdot T + |\Delta_{ymh}| + \frac{1}{2} \cdot \frac{1}{\sqrt{T}} |\varepsilon_T| , \quad |\Delta_{ymh}| < \frac{1}{2} \cdot 3^{-16} .$$

0тсюда

$$|\varepsilon_{|u|}|=|\varepsilon_r|<6.5\cdot3^{-16}$$

Функции $\ln x$ при точном аргументе X вычисляются в [3] с погрешностью ε_{\ln} ,

$$|\varepsilon_{\rm ln}| < \frac{5}{2} \cdot 3^{-16}$$
.

Поэтому абсолютная погрешность $\varepsilon_{\ln r}$ вычисления мантиссы действительной части величины $\ln u$ удовлетворяет соотношению:

$$|\varepsilon_{\ln r}| = \frac{\varepsilon_r \cdot 1}{r} + \varepsilon_{\ln} + O(\varepsilon_r)$$
, $\tau.e.$ $|\varepsilon_{\ln r}| = 15.5 \cdot 3^{-16}$.

Величина $\varphi=arctg \frac{X_2}{X_1}+2 {\rm k}\,\pi$ вычисляется согласно следующих соотношений:

$$arctg \frac{X_{2}}{X_{1}} = \begin{cases} sign \frac{X_{2}}{X_{1}} \cdot arctg \left| \frac{X_{2}}{X_{1}} \right|, ecnu \left| X_{2} \right| < \left| X_{1} \right| \\ sign \frac{X_{2}}{X_{1}} \cdot \left(\frac{\pi}{2} - arctg \left| \frac{X_{2}}{X_{1}} \right| \right), ecnu \left| X_{2} \right| \ge \left| X_{1} \right| \end{cases}$$

для вычисления отношений $t=\frac{X_2}{X_1}$ или $t=\frac{X_1}{X_2}$ используется алгоритм деления из [3]. Это отношение вычисляется с погрешностью ε_t , $|\varepsilon_t|<2\cdot3^{-16}$.

Значение arctgt вычисляется с помощью полинома 15-ой степени:

$$arctg\ t \approx \sum_{i=1}^{8} B_{2i-1} \cdot t^{2i-1}$$
.

Этот полином получен из разложения arctgt по полиномам Чебышева,

$$arctg\ t \approx \sum_{n=0}^{\infty} A_{2n+1} \cdot T_{2n+1}(t) , \quad -1 \le t \le 1 ,$$

в котором взято восемь членов, что вносит в вычисления погрешность ε ,

$$|\varepsilon| \le |A_{17} \cdot T_{17}(t)| \le 0.466 \cdot 10^{-7} \le 2 \cdot 3^{-16}$$

Коэффициенты $B_{2\mathrm{i}-1}$ полинома имеют следующие значения:

$$B_1 = 0.9999999249$$

$$B_3 = 0.333 \ 295 \ 379$$

$$B_5 = 0.199430787$$

$$B_7 = 0.138920282$$

$$B_9 = 0,096 \ 016 \ 236$$

 $B_{11} = 0,055 \ 381 \ 258$
 $B_{13} = 0,021 \ 508 \ 956$
 $B_{15} = 0,003 \ 960 \ 177$.

Полная абсолютная погрешность ε_{φ} вычисления $\mathrm{arctg}t$ с учетом погрешности аргумента t удовлетворяет неравенству:

$$|\varepsilon_{\varphi}| < 13.5 \cdot 3^{-16}$$
.

Логическая схема данной подпрограммы имеет следующий вид:

Здесь λ используется в качестве признака того, какую из трех функций нужно вычислять. Первоначально ИП-4 всегда формирует λ <0 (это соответствует тому, что нужно вычислять 1/|u|). Остальные операторы имеют следующий смысл.

$$A_1: [X_2 \Rightarrow V_2; X_1^2 + X_2^2 \Rightarrow (S)].$$
 B_1, A_3^- операторы, вычисляющие обратную величину квадратного корня, из $X_1^2 + X_2^2$, т.е. $\frac{1}{2} = \frac{1}{\sqrt{T}}$.

 $B_1: [Hopm(S) \Rightarrow X_2; N \Rightarrow (\beta); X_2 \Rightarrow (R); X_2 \Rightarrow (S);$
 $(S) + \alpha_2 \Rightarrow (S); (S) \cdot (R) + \alpha_1 \Rightarrow (S); (S) \cdot (R) + \alpha_0 \Rightarrow (S);$
 $(\beta) \Rightarrow (F)] P(w \neq 0) \stackrel{10}{\vdash} P(w \neq -1) \stackrel{11}{\vdash} [(S) \cdot \frac{1}{\sqrt{3}} \Rightarrow (S)]$
 $E\Pi \stackrel{10}{\vdash} \stackrel{11}{\vdash} [(S) \cdot \sqrt{3} \Rightarrow (S)] \stackrel{10}{\vdash} [(S) \Rightarrow X_1; (Q_1 E(S) \mu \sigma(B) \Rightarrow (S);$
 $(S) \cdot X_2 \Rightarrow (S); (S) \cdot X_1 \Rightarrow (S); (S) - 1 \Rightarrow (S); (S) \Rightarrow (R);$
 $S_{16} \cdot (S) \Rightarrow (S); (S) \cdot X_1 \Rightarrow (S); (S) \cdot (R) + \frac{1}{2} \Rightarrow (S);$
 $(S) \cdot (R) - 1 \Rightarrow (S); (S) \cdot X_1 \Rightarrow (S); (S) \cdot (R) + \frac{1}{2} \Rightarrow (S)].$
 $A_2: [Hopm(S) \Rightarrow X_1; N + P_X + (B) \Rightarrow (S)].$
 $A_3: [Hopm(S) \Rightarrow X_1; N - P_X \Rightarrow (S)].$
 $A_4: [(S) \Rightarrow P_X; 0 \Rightarrow X_2].$

 B_2 — обобщенный оператор, вычисляющий логарифмы и запоминающий знаки X_2 и X_1 .

```
B_2 - обобщенный оператор, вычисляющий логарифы и запоминающий знаки X_2 и X_1 .
```

B₂:
$$[P_{K} \Rightarrow (S); (S) \Rightarrow (B)] P(\omega \neq 0) \stackrel{12}{\Gamma} EHoph(S) \Rightarrow (B); N \Rightarrow (S);$$

$$(S) + 3\ell_{R} \Rightarrow (S); -(S) \Rightarrow (S)] \stackrel{12}{\Gamma} [(S) \Rightarrow P_{K}; X, -\frac{17}{2} \Rightarrow (S)]$$

$$P(\omega \neq 1) \stackrel{13}{\Gamma} [(F) + 3\ell_{R} \Rightarrow (F)] \stackrel{13}{\Gamma} [X, \Rightarrow (S); (S) \cdot \lambda^{\Theta} \Rightarrow (S);$$

$$(S) - 1 \Rightarrow (S); (S) \Rightarrow (R); \alpha_{8} \cdot (S) \Rightarrow (S); \alpha_{7} + (S) \Rightarrow (S);$$

$$\alpha_{6} + (S) \cdot (R) \Rightarrow (S); \alpha_{5} + (S) \cdot (R) \Rightarrow (S); \alpha_{4} + (S) \cdot (R) \Rightarrow (S);$$

$$\alpha_{3} + (S) \cdot (R) \Rightarrow (S); [20] \Rightarrow [P_{0}]; \alpha_{2} + (S) \cdot (R) \Rightarrow (S);$$

$$\alpha_{1} + (S) \cdot (R) \Rightarrow (S); (-3\ell_{R} \chi_{1}^{\Theta} + (S) \cdot (R) \Rightarrow (S);$$

$$(g_{1} + (S) \cdot (R) \Rightarrow (S); (-3\ell_{R} \chi_{1}^{\Theta} + (S) \cdot (R) \Rightarrow (S);$$

$$(g_{2} + (S) \cdot (R) \Rightarrow (S); (-3\ell_{R} \chi_{1}^{\Theta} + (S) \cdot (R) \Rightarrow (S);$$

$$(S) + (\beta) \cdot (R) \Rightarrow (S); Hoph(S) \Rightarrow \chi_{1}; (S) - P_{K}; \Rightarrow P_{K};$$

$$(S) + (\beta) \cdot (R) \Rightarrow (S); Hoph(S) \Rightarrow \chi_{1}; (S) - P_{K}; \Rightarrow P_{K};$$

$$(S) + (\beta) \cdot (R) \Rightarrow (S); (S) \Rightarrow (B); (S) \Rightarrow \lambda_{1}.$$

$$A_5: L^{-1} \Rightarrow (\beta); -Y_i \Rightarrow Y_i$$
].

$$A_{L}: [-1 \Rightarrow (8); -Y_{2} \Rightarrow Y_{2}].$$

$$A_{2}: [Y_{2} \Rightarrow X_{2}; Y_{i} \Rightarrow Y_{2}; X_{2} \Rightarrow Y_{i}; -1 \Rightarrow \lambda].$$

$$A(L): [(S)\cdot(R) + B_{15-2L} \Rightarrow (S)].$$

$$A_{10}$$
: $[T_2 - (s) \Rightarrow (s)]$.

$$A_{ii}$$
: $[(S) \cdot (\beta) \cdot (X) \Rightarrow (S); Hopm(S) \Rightarrow X_i, N \Rightarrow P_X, T_i$

Подпрограмма вычисления функций $\ln u$, |u| , $\frac{1}{|u|}$, I.

```
Зона МБ 2 <u>2</u>
\Pi_{\Phi}=0
Адрес Команда
                                                  Команда
                                       Адрес
                     X, +(s) - By
                                                             (S). X = (S)
                                                 Z 3W 40
                                         02 03
  WW WX .Z 3W 30
                                                 Z 24 33
                                                             (S) - 1 \Rightarrow (S)
                     (S) = Y.
                                            υ4
     WY
          Z 4W Y3
  WZ WO
          Z XX ZO
                      0 - (F)
                                         1W 1X
                                                 0 32 40
                                                             (S) \Rightarrow (R); \frac{5}{10}(S) \Rightarrow (S)
                                                 0 3Z 33
          0 W4 00
                      Bnr
                                             1 Y
                                                             (S) - 3/8 \Rightarrow (S)
     W1
                      1 = (F) - 141
                                                 Z ZW 4X
                                                             (S)·(R)+1/2 ⇒(S)
  W2 W3 Z 01 Z0
                                         1Z 10
                                                  Z 24 4X
                                                             15) (R)-1 = (S)
     WY
         Z 23 0X
                      (F) コンゴ!
                                             11
                      X = +(s) 2 Yiui
                                         12 13
                                                 Z 3W 40
                                                              (S) \cdot X_i \Rightarrow (S)
         Z 3Z 30
  XX AX
                                             14
                                                  Z 24 40
                                                              -(S) \Rightarrow (S)
          Z 42 Y3
     XΥ
                      (s) \Rightarrow Y_{s}
          Z 3Z 40
                                         2W 2X
                                                 Z 23 Z0
                                                              \lambda \Rightarrow (F)
  XZ XO
                      (s).X, ⇒(s)
                                                              [ 27] ⇒ [ P.]
                                             2Y
                                                  0 2Z XX
     X1 Z 3W 23
                      X, => (R)
                                                 O ZY OX
                                         22 20
                                                              a,
  X24X3 Z 3W 43
                      (S)+(R)·X,⇒(S)
                                                  1 W1 WO
     X4 0 40 10
                                             21
                                                              a 2
                      911-01-2
                     Hopm(S)→X2; N+(S) 22 23
                                                 0 2Y W3
  YW YX Z 3Z YX
                                                 Z 00 X3
                                             24
      YY Z ZX Y3
                      (S) \Rightarrow (B)
                                                  1 W2 YZ
  YZ YO Z 3Z 30
                                         3W 3X
                      X_2 \Rightarrow (s)
                                                  0 OZ 11
      Y1
          0 20 40
                      (S) . a = (S)
                                             ЗY
                                         3Z 30
                                                  0 22 22
  Y2 Y3 0 21 33
                      (S) + \alpha_2 \Rightarrow (S)
                                                  O XX XX
      Y4
          о чх чх
                                             31
                      (S) \cdot (R) + \alpha, \Rightarrow (S)
                                                  0 12 42
  ZW ZX
          0 44 48
                      (S).(R)+a;+(S)
                                         32 33
                                                  1 3Y 3Y
                                             34
      ZY
          Z 2X Z0
                      (\beta)\Rightarrow (F)
                      47-05-10
                                         HW HX
                                                  Z 11 YX
                                                              a,
  ZZ ZO 0 0Y 10
                                                  1 Y1 X3
      Z1
           0 OX 1X
                      Yn-7 1+11
                                             4Y
                                                 Z 23 Z0
           0 22 40
                                         4Z 40
                                                              λ ⇒ (F) 42
  Z2 Z3
                      15). 1/1 → (S)
                                                              УП-1 5 Вх. 201 ИП-4
                                             41
                                                  Z ZO 13
      Z4
           0 OY 00
                      5 FT 10
                                          42 43
                                                  0 00 SX
  OW OX
           0 BW 40
                      (S).V3 = (S) 411
                                                              524 ~7
                                                  0 43 00
                                                              БП --
           Z 3W Y3
                                             44
      OY
                      (S) ⇒ X, 110
                                                  0 00 24
                      Cgs (S) Halp + ISI KC
  (Z 00
           Z 2X Y0
```

Z ZO 3Z

Z 3Z 40

(S)·X, ⇒(S)

Подпрограмма вычисления функций $\ln u$, |u| , $\frac{1}{|u|}$, II.

```
\Pi_{\Phi}=0
                                         Зона MБ 2<u>1</u>
                                         Адрес Команда
Адрес Команда
  MA MX
          Z 3W YX
                      HOPM(S) = X . 23
                                           02 03
                                                    0 20 XX
                                                               [20] -[P.]
     WY
          Z 33 3X
                                              04
                                                    0 3W 34
                      (S)-P_X \Rightarrow (S)
                                                                 V3/2
          Z 33 Y3
                                                    0 30 00
  WZ WO
                       (S) => Px + 4
                                           1W 1X
     W1
          O WX YO
                                               1 Y
                                                    0 1Z Z3
                        0 => (S)
                        (S) \Rightarrow \chi
  W2 W3
          Z 32 Y3
                                           12 10
                                                    O YY YY
     W4
          Z 23 Z0
                                               11
                                                    Z YO 24
                        λ →(F)
                        417-01-5
  XW XX 0 X0 10
                                           12 13
                                                    0 2Y 14
                       BIT I BX.VAI HIT-4
     XY
          Z Z0 00
                                               14
                                                    Z YY WO
  XZ XO Z 33 30
                                                                 \alpha_6
                       Px = (S) = 5
                                           2W 2X
                                                    0 ZW W2
      X1
          Z 2X Y3
                                               2Y
                                                    Q 14 Y1
                                                                 az
                       (S) \Rightarrow (B)
                                                                 Y 17-7 5-3
  X2 X3 0 Y0 10
                       411-05-12
                                           2Z 20
                                                    O WX 1X
      XЧ
          2 2X YX
                                               21
                                                    Z 3Z 40
                                                                 (s) \cdot X_2 \Rightarrow (s)
                       HOPH(S) => (A)
  YW YX Z Y4 33
                                           22 23
                                                    Z 3W YX
                       (s) + 3en +(s)
                                                                 Hop_{\mathcal{H}}(S) \Rightarrow X_{i}N \Rightarrow (S)
      YY
          Z 24 40
                                               24
                                                    Z 33 33
                       -(S) \Rightarrow (S)
                                                                 (S) + P_x \Rightarrow (S)
  YZ YO
          Z 33 Y3
                       (S) => Px -112
                                           3W 3X
                                                    Z 2X 33
                                                                 (S) + (B) = (S)
      Y1
          Z 3W 30
                       X. \Rightarrow (s)
                                               ЗΥ
                                                    0 W0 00
                                                                 57 F 4
                       (S) - 13/2 = (S)
  Y2 Y3
          0 04 3X
                                           3Z 30
                                                    O 44 WY
                                                                 ¥2
          0 ZY 13
      YЧ
                        417-17-13
                                               31
                                                    0 ZX 43
                                                                 az
                                                                 \tilde{\lambda},
  ZW ZX
         Z 1X ZX
                       (F) + 3en = (F)
                                           32 33
                                                    0 3W Y4
                                                    0 00 00
      ZY
          Z 3W 30
                                               34
                        X_i \Rightarrow (s) \rightarrow is
                       (S) . A . = (S)
  ZZ ZO 0 33 4Z
                                           4W 4X
                                                    0 00 00
                                                                     CBOSOBH NE
      Z1
          Z 01 3X
                        (S)-1 = (S)
                                               4 Y
                                                    0 00 00
                                                                     A4eû KU
  Z2 Z3
         0 31 40
                        (S) ⇒ (R); q,·(S)+(S)42 40
                                                    0 00 00
      24
          0 2Y 33
                                                    0 00 00
                       q_* + (S) \Rightarrow (S)
  OW OX 0 2X 4X
                                           42 43
                                                    0 00 00
                       Q_b + (S) \cdot (R) \Rightarrow (S)
      OΥ
           0 12 4X
                       a_s + (s) \cdot (R) \Rightarrow (s)
                                                    0 00 00
  02 00
         0 1Z 4X
                       a, +(s).(R) =(s) KC
                                                    0 00 Z3
      01
           0 1W 4X
                                                    1 OX 1Z
                       a_2 + (s) \cdot (R) \Rightarrow (s)
```

Подпрограмма вычисления функций $\ln u$, |u| , $\frac{1}{|u|}$, III.

$\Pi_{\phi}=0$		Зона М	1Б 20	
Адрес Команд	ļа	Адрес	Команд	ца
WW WX 0 33 X0	{ ln 3	02 03	0 00 00	chododhar avenka
WY Z OO XW	y un s	04	0 0Z 4X	a2 + (5) · (R) + (S)
WZ WO 1 00 00	a, = 3	1W 1X	0 WO 4X	$a_1 + (s) \cdot (R) \Rightarrow (s)$
₩1 0 00 00	L CROBODHULE	1 Y	O OW YW	-3en); +(s)·(R)=(s)
W2 W3 0 00 00	J A Veůku	1Z 10	0 04 YO	Cgb(S) 40-1=(S)
W4 Z 24 30	-1 + (S) -2	11	Z 33 YO	Cg6 (S) HO Px = (S)
XW XX Z 2Y Y3	$(s) \Rightarrow (s)$	12 13	0 WW 23	$ln 3 \Rightarrow (R)$
XY Z 4Z 40	$(s)\cdot Y_2 \Rightarrow (s)$	14	Z 2X 43	$(S)+(\beta)\cdot(R)\Rightarrow(S)$
XZ XO Z 4Z Y3	$(S) \Rightarrow Y_2$	2# 2X	Z 3W YX	$Hop_{\mathcal{H}}(S) \Rightarrow X_1$
X1 Z 4W 3X	(s)-Y, ⇒ (s) 43	2 Y	Z 33 3X	$(S) - P_X \Rightarrow (S)$
X2 X3 0 Z0 10	411-0 r-8	22 20	Z 33 Y3	
X4 0 Z0 1X	Y∏-T 1 **	21	Z 01 30	
YW YX Z 4Z 30	$Y_2 \Rightarrow (s)$	22 23	Z 2X Y3	$(S) \Rightarrow I,B$
YY Z 3Z Y3	$(s)\Rightarrow X_{\mathbf{z}}$	24	Z 2Y Y3	(s) → Y
YZ YO Z 4W 30	$Y_i \Rightarrow (s)$	3W 3X	Z 23 Y3	$(S) \Rightarrow \lambda$
Y1 Z 4Z Y3	$(s) \Rightarrow Y_2$	34	Z 4W 30	Y , ⇒ (S)
Y2 Y3 Z 3Z 30	$\chi_z \Rightarrow (s)$	3Z 30	0 40 13	40-10-6
EY WP S PY	(S) ⇔ \	31	0 40 10	711-01-6
ZW ZX Z 24 30	-1 = (S)	32 33	2 24 30	$-1 \Rightarrow (S)$
ZY Z 23 Y3	(s) + A	34	Z 2X Y3	$(S) \Rightarrow (A)$
ZZ ZO Z 4W 30	Y, = (5) -18	YW YX	Z 4W 40	$(S)\cdot Y_i \Rightarrow (S)$
Z1 0 21 XX	[21] =[Po]	4 Y	2 4W Y3	(S)⇒Y,
22 23 0 XW 11	2-20 ~	4Z 40	Z 4Z 30	$Y_2 \Rightarrow (s) \downarrow 6$
Z4 Z OX WY	J = 3 cm 1/2	41	0 X1 13	yπ-1 (** ₹
OW 0X 0 2W W3	$f-3\ln \tilde{\lambda}_2$ $\left\{-3\ln \tilde{\lambda}_1\right\}$	42 43	0 X1 10	711-01- x
0Y 1 44 2W	, , , , , , ,	44	0 W4 00	571+2
OZ OO O WW WW	} 92	КC	0 00 22	
01 Z WW Y3	, .2		Z Y4 2Y	

Подпрограмма вычисления функций $\ln u$, |u| , $\frac{1}{|u|}$, IV.

Π_{ϕ} =0	Зона М	1 Б 21	
Адрес Команда	Адрес	Команд	a
WW WX 0 01 W2 } B13	02 03 04	0 ZX 4X 0 YX 4X	$-\beta_1 + (S) \cdot (R) \Rightarrow (S)$ $2 + (S) \cdot (R) \Rightarrow (S)$
WZ WO O OZ WW } B,,	1W 1X	Z 24 4X Z 3Z 40	$-1 + (S) \cdot (R) \Rightarrow (S)$ $(S) \cdot X_2 \Rightarrow (S)$
W2 W3 0 03 W3 } B9	1Z 10 11	Z 4W 40 Z 2W 20	$(S) \cdot Y_i \Rightarrow (S)$ -2-(S) \((S)
XW XX 0 0W 22 } B;	12 13 14	0 Z1 4X Z 4Z 40	$0 + (S) \cdot (R) \Rightarrow (S)$ $(S) \cdot \forall_2 \Rightarrow (S)$
XZ XO 0 1W 34 } B5	2W 2X 2Y	Z 3Z Y3 Z 3Z 40	$(s) \Rightarrow \chi_{2}$ $(s) \cdot \chi_{2} \Rightarrow (s)$
X2 X3 0 Z0.00 } B3 X4 0 22 2W } B3 YW YX 0 30 00 } B	2½ 20 21 22 23	0 YX 40 0 YZ 30 0 20 Z0	$\begin{array}{l} (\$).4 \Rightarrow (\$); (\$) \Rightarrow (\aleph) \\ B_{1\$} \Rightarrow (\$) \\ -21e_{\aleph} \Rightarrow (\$) \end{array}$
YY 0 00 W4 J D1	24 3¥ 3X	0 YZ YY Z YY X X	$(S)\cdot(R)+B_{13} \xrightarrow{\oplus} (S) \xrightarrow{\bullet} (F) + 3C_{A} \xrightarrow{\bullet} (F)$
12 10 0 00 20 / B ₁ s 12 13 1 WX 4X } 17/2	3Y 3Z 30	0 24 1X Z 3Z 40	$\begin{array}{c} 9\pi - \overline{i} & \xrightarrow{\pi} \\ (s) \cdot X_2 \Rightarrow (s) \end{array}$
Y4 1 00 W1 J ZW ZX 0 X0 0Y -6,	31 32 33	Z 23 Z0 0 4Y 13	λ ⇒ (F) 4Π-1Γ+9
ZY 0 3Z X0 62 ZZ ZO Z 44 14 -63 Z1 0 00 00	94 X¥ 4X 4Y	Z 24 40 0 Y2 33 Z 2 X 40	-(S) ⇒(S) (S) + ∏ ⇒ (S) (S) ·(β) ⇒(S) → 3
22 23 $\overline{2}$ \overline	42 40 41	Z 2Y 40 Z 3Z YX	(S)·(Y)⇒(S) Hopn (S)⇒X2
OW OX Z 4W 40 1-h2 -(5) OY Z 24 33 -h2 -(5)	42 43 44	Z ZO 00	(S)=> PX2 BIT I BX. VNI NII-4
02 00 0 20 40 $-h^2 \Rightarrow (R); g:(R)$ 01 0 2Y 33 $g_2 + (S) \Rightarrow (S)$	•(s) KC	0 00 OW Z 00 W3	•

Литература.

- 1. Е.А.Жоголев. Система команд и интерпретирующая система для машины «Сетунь». Ж.вычисл. матем. и матем. физ., 1961, I, №3, 499-512.
- 2. Е.А.Жоголев, 0 логических структурах и математическом обслуживании малых цифровых автоматических машин. Диссертация на соискание ученой степени кандидата физико-математических наук, МГУ, 1963 г.
- 3. Е.А.Жоголев. Математическое обслуживание машины «Сетунь». Отчет ВЦ МГУ, 1961 г.

Приложение.

Ввод системы ИП-4.

$\Pi_{\varphi} = 0$

Адрес	Команда	Адрес	Команда	
AM AX	0 Z4 ZX (F)+3ℓA ⇒(F) 4 2 02 03	0 00 20 -45e _A ⇒(F)	
WY	0 Z1 OX (F)→ 6,	04	0 21 0x (F) ⇒ 6.	
WZ WO	0 Z3 Z0 & =>(F)	1W 1X	0 0Y 20 -15 en +(F)	
W1	0 33 ZX (F)+ ln => (F)) 1Y	0 Z3 0X (F) = 82 -13	
W2 W3	0 17 1X 97-FF3	1Z 10	0 23 20 6 ⇒ (F) → 1	
₩Ч	Z 1X XX [13] +[4-1]] 11	1 01 X0 [Blod] →[P,]	
XA XX	1 44 2X 52 5	12 13	1 22 X4 [P] = [N D]	
XY	0 00 00	14	1 22 XY [HΦ]⇒[P,]	
XZ XO	0 00 00	2W 2X	0 11 YO 0 - (S)	
X 1	0 00 00	2 Y	0 ZW Y3 (S) → «	
X2 X3	0 00 00	2Z 20	0 0x 20 _ 8/e, ⇒(F)	
XЧ	0 00 00	21	Z WX 31 0 0 0 13 14	
XA AX	0 00 00 .	22 23	0 20 40 Cg & (S) Hq -9 + (S))
YY	0 00 00	24	0 Z₩ 33 (Ś)+d⇒(S)	
YZ YO	0 00 00	3W 3X	0 Z₩ Y3 (S)⇒ «	
Y1	0 00 00	ЗY	$0 \text{ Z4 ZX} \qquad (F) + 3\ell_R \Rightarrow (F)$	
¥2 ¥3	0 00 00	3Z 30		
74	0 00 00	31	0 4X 13	
ZW ZX	0 00 00 } a	32 33	$0 01 20 - 80e_{\bullet} \Rightarrow (F)$	
ZY	0 00 00)	34	0 21 00 BNF4	
ZZ Z0	0 20 00 - 9 cg	AM AX	V	
Z1	0 00 00 8.	чү		
Z2 Z3	0 00 00 42	4Z 40	0 WX 10 47-0 12	
24	0 03 00 3en	41	0 00 5x 25.	
OM OX	2 00 00 - 81en	42 43	0 10 00 5n /-'	
OX	0 Y3 00 -15em	44	0 00 00	
0Z 00	2 40 00 -45 ep	кс	0 00 00	
01	2 01 X0 [B803] ⇒[4.	-1]	Z XX OY	

Контрольные суммы.

п	_		1
ш	Φ-	-	_

Адрес	Команда	Адрес	Команда
WW WX WY WZ WO	0 00 Z1 } KC [14] 0 00 Z2 } KC [14]		
#2 #9 #4	0 00 ZZ } KC [/2]	1Z 10 11	0 00 00 0 00 00
XV XX XY XZ XO	0 00 Z2 } KC [1] 0 00 Z0 } KC [10] 0 YZ WX	12 19 14 2 W 2 X	0 00 00 0 00 00 0 00 00
4X1 X2 X3 X4	0 00 Z2 } KC [1]	2 z 20 21	0 00 00 0 00 00
TW TX	z 13 03 } KC [12]	22 29 24	0 00 00
¥1 ¥2 ¥9 ¥4	1 14 41 } 0 00 0X } KC [14]	3Z 30	0 00 00
ZW ZX ZY ZZ ZO	0 00 ZY } KC[24]	32 33 34	0 00 00 0 00 00 0 00 00
Z 1	2 32 Y1) KC [22]	47	0 00 00 0 00 00
XO WO	0 00 23 } KC [27]	42 4 3 44	0 00 00
02 00	0 00 22 } KC [20]	КС	0 00 0Y

Издано:

выпуск і.

ЖОГОЛЕВ Е.А. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ И МАТЕМАТИЧЕСКОЕ ОБСЛУЖИВАНИЕ ДЛЯ МАШИНЫ «СЕТУНЬ».

Готовится выпуск 3. Франк Л.С, Рамиль Альварес X. ПОДПРОГРАММА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ ДЛЯ ИП-2.