

ISFAHAN UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES

Applied Linear Algebra Assignment #3

Due Date: 3 Bahman 1401

1. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$$
 Find A^{-1} . Then, solve the system of linear equations

$$x-2y = 10,$$

$$2x - y - z = 8,$$

$$-2y + z = 7,$$

using A^{-1} .

2. Consider the system of linear equations:

$$\begin{cases} kx + y + z = 1\\ x + ky + z = 1\\ x + y + kz = 1 \end{cases}$$

For what value(s) of k does this system have:

- (i) a unique solution?
- (ii) no solution?
- (iii) infinitely many solutions?
- 3. If a_1, a_2, a_3, \ldots are in G.P. (Geometric Progression, i.e. $a_{i+1} = a_i.q$), then prove that the determinant of $\begin{vmatrix} a_{r+1} & a_{r+5} & a_{r+9} \\ a_{r+7} & a_{r+11} & a_{r+15} \\ a_{r+11} & a_{r+17} & a_{r+21} \end{vmatrix}$ is independent of r.

1

determinant of
$$\begin{vmatrix} a_{r+7} & a_{r+11} & a_{r+15} \\ a_{r+11} & a_{r+17} & a_{r+21} \end{vmatrix}$$
 is ir

4. In a triangle ABC, if

$$\det\begin{pmatrix}1&1&1\\1+SinA&1+SinB&1+SinC\\SinA+Sin^2A&SinB+Sin^2B&SinC+Sin^2C\end{pmatrix}=0,$$

prove that $\triangle ABC$ is an isosceles triangle.

- 5. a) Prove that $rank(A) = rank(A^T A)$.
 - b) Show that if A is a 3×5 matrix, then $det(A^T A) = 0$. Note: you cannot distribute the det, because A and A^T are not square matrices!
- 6. Suppose $Q^{-1} = Q^T$ (transpose equals inverse, thus $Q^T Q = I$).
 - a) Show that the columns $q_1,...,q_n$ are unit vectors: $||q_i||^2 = 1$.
 - b) Show that every two columns of *Q* are perpendicular: $q_i^T q_j = 0$.
 - c) Without computing the determinant, prove that

$$\det \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix} = 0 \iff a = b = c = d = 0.$$

- 7. Let M be an n by n matrix. Split M into S + A where S is symmetric, i.e. $S = S^T$ and A is anti-symmetric, i.e. $A = -A^T$. Find formulas for S and A involving M and M^T . We want M = S + A.
- 8. Let *A* be an $n \times n$ nonsingular matrix with integer entries. Prove that the inverse matrix A^{-1} contains only integer entries if and only if $det(A) = \pm 1$.
- 9. a) By an example show that det(A + B) = det(A) + det(B) is not necessarily correct.
 - b) Let A, B and be two square matrices with real entries such that $(A+B)^{-1} = A^{-1} + B^{-1}$. Prove that det(A) = det(B). Does the conclusion holds for complex entries?