

UNIVERSIDADE FEDERAL DE PELOTAS – UFPEL CENTRO DE DESENVOLVIMENTO TECNOLÓGICO (CDTec) CURSOS DE CIÊNCIA DA COMPUTAÇÃO E ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE PROGRAMAÇÃO DE SISTEMAS

PROFs.: Me. ANDERSON PRIEBE FERRUGEM

PRIMEIRO TRABALHO TÓPICO: SIMULADOR DE MÁQUINA.

> O TRABALHO SERÁ UMA APRESENTAÇÃO EM VÍDEO DO GRUPO COM TODOS PARTICIPANTES COM CÓDIGO DISPONIBILIZADO VIA GITHUB; O ENVIO É FEITO APENAS POR COMPONENTE DO GRUPO; A DURAÇÃO MÁXIMA DO VÍDEO DEVERÁ SER DE **20 MIN** COM **TOLERÂNCIA** DE <mark>5 MIN. (15-25)</mark> ;

A APRESENTAÇÃO DEVERÁ MOSTRAR:

1) INTERAÇÃO ENTRE OS COMPONENTES;

2)ARGUIÇÃO DO FUNCIONAMENTO E DAS TÉCNICAS USADAS.

A APRESENTAÇÃO NÃO DEVERÁ SER APENAS:

1) APRESENTAÇÃO DE SLIDES;

2) APRESENTAÇÕES INDIVIDUAIS DOS COMPONENTES DO GRUPO.

EM CASO DE DÚVIDAS SOBRE A APRESENTAÇÃO PROCUREM POSTAR NO E-AULAS (DESTA FORMA A RESPOSTA FICA DISPONÍVEL A TODOS).

FERRAMENTAS:

SOFTWARE:

JAVA

Apresentação gráfica da execução !!!

Projeto de um simulador de sistema computacional hipotético

Parte I

Projeto de um simulador SIC/XE, computador hipotético baseado na arquitetura do livro :Sytems Software: An Introduction to System Programming; Leland L. Beck

Introdução

O trabalho descrito a seguir consiste em implementar um **simulador** para um Computador Hipotético (**SIC/XE**), conforme apresentado no livro **Sytems Software: An Introduction to System Programming** de **Leland L. Beck**, com alterações e complementos de algumas funções. Tal sistema será composto de **dois** módulos que deverão operar de forma integrada: o **executor** (**simulador** propriamente dito) e uma **interface visual**.

O resultado do trabalho deverá ser entregue com toda a documentação (programas fontes, programa executável, documentação formal sucinta das estruturas de dados definidas, das funções desenvolvidas e estratégias adotadas) pelo Github e

A avaliação do trabalho será realizada com base nos seguintes aspectos:

- correção do programa,
- adequação das definições adotadas,
- uso das técnicas básicas de programação,
- autenticidade e domínio sobre o produto gerado,

Descrição Geral

1. Memória

A memória do computador é definida pelos seguintes atributos:

Tamanho da memória	Indefinido (não menor que 1 KB)					
Palavra de memória	24 bits (3 bytes – cada byte com 8 bits)					
Unidade de endereçamento	Palavra					
Bit de paridade	<na></na>					
Cache	<na></na>					
Observações adicionais: <na> significa "Não se aplica".</na>						

2. Registradores

Esta arquitetura apresenta um conjunto reduzido de 7 registradores, cujos tamanhos são de 24 bits e 48 bits, conforme especificado a seguir.

Registradores Básicos:

Os registradores de propósito pré-definido, que dão suporte às funcionalidades da arquitetura e são acessados apenas pela unidade de controle, estão listados a seguir em tabela de registradores básicos (primários).

Ident.	Registrador	Número		Descrição
			(bits)	
Α	Acumulador	0	24	Armazena os dados (carregados e
				resultantes) das operações da Unid. de
				Lógica e Aritmética
X	Registrador de índice	1	24	Usado para endereçamento.
_	Registrador de	2	24	A instrução Jump to Subrotine (JSUB)
L	ligação			armazena o endereço de retorno nesse
	-0-3			registrador.
В	Registrador Base	3	24	Usado para endereçamento.
S	Registrador de uso geral	4	24	<na></na>
T	Registrador de uso geral	5	24	<na></na>
_	Acumulador de ponto	6	48	Armazena os dados (carregados e
F	flutuante			resultantes) das operações da Unid. de
				Lógica e Áritmética em ponto flutuante.
PC	Contador de	8	24	Mantém o endereço da próxima instrução
	Instruções	_		a ser executada
	(Program Counter)			
	Palavra de <i>status</i>	9	24	Contém várias informações, incluindo
SW	i diavia de status	, ,		código condicional (CC)

3. Modos de Endereçamento

direto	o valor do operando está no endereço de destino determinado diretamente usando as informações de deslocamento / endereço
indireto	o valor do operando está no endereço de destino armazenado no endereço fornecido pelo cálculo do endereço direto
● imediato	Valor do operando é o valor do cálculo do endereço direto (o endereço de destino é o registro de instrução na CPU)

Instruções de 4-byte estão em azul (e=1)

Instruções simples do SIC estão em verde (n =0, i =0)

Modo	Flag bits n i x b p e	Descrição
Direto		
	1 1 0 0 0 0	Deslocamento de 12 bit é o endereço destino.
	1 1 0 0 0 1	Endereço de 20 bit é o endereço destino.
	1 1 0 0 1 0	Deslocamento de 12 bit complemento de 2 apartir do PC.
	1 1 0 1 0 0	Deslocamento de 12 bit base sem sinal a frente de B
		(deslocamento base)
	1 1 1 0 0 0	Registrador de índice X somado ao endereço direto para apontar
		o endereço destino.
	1 1 1 0 0 1	Registrador de índice X somado ao endereço direto para apontar
		o endereço destino.
	1 1 1 0 1 0	Registrador de índice X somado ao PC para apontar o endereço
		destino.
	1 1 1 1 0 0	Registrador de índice X somado ao deslocomanto base computado
		aponta o endereça destino.
	0 0 0	Instrução do SIC. Últimos 15 bits são o endereço
	0 0 1	Registrador de índice X somado ao endereço direto para apontar
		o endereço destino.
Indireto		
	100000	Endereço de memória computado contém o endereço de destino.
	100001	Endereço de memória computado contém o endereço de destino.
	100010	Endereço de memória computado contém o endereço de destino.
	100100	Endereço de memória computado contém o endereço de destino.
Imediato		
	010000	Endereço de memória computado é o operando.(endereço destino
		está na instrução)
	0 1 0 0 0 1	Endereço de memória computado é o operando.(endereço destino
		está na instrução)
	0 1 0 0 1 0	Endereço de memória computado é o operando.(endereço destino
		está na instrução)
	$0\ 1\ 0\ 1\ 0\ 0$	Endereço de memória computado é o operando.(endereço destino
		está na instrução)

4. Formato de instruções **SIC/XE** 1 byte format

op (8 bits)

2 byte format

r1 (8 bits)	r2 (8 bits)
-------------	-------------

3 byte format

4 byte format

	op (6 bits)	n i z	x b p	e	address (20 bits)
--	----------------	-------	-------	---	-------------------

5. Conjunto de Instruções

A seguir está definido o conjunto de instruções reconhecido pelo computador, acompanhado de todas as informações necessárias para sua implementação.

Cada código de instrução (*opcode*) e operando (opd1 ou opd2) ocupa o espaço associado ao formato da instrução. As ações dizem respeito aos registradores, conforme identificação definida na tabela de registradores e endereços de memória referenciados.

As instruções em vermelho não devem ser implementadas.

P = privilegiado, C = conjunto CC (<, =,>), F = ponto flutuante

Consulte o Apêndice A do livro para obter informações sobre formatos de instrução e modos de endereçamento.

Mnemônico	Operandos	Formato	Cód. de Máq. (opcode)	Ação	Observações	Tipo
	•				Observações	Про
ADDF	m	3/ ₄	18 58	A ← (A) + (mm+2) F ← (F) + (mm+5)		F
ADDR	m r1 r2	2	90	r2 ← (r2) + (r1)		F
AND	r1,r2	3/4	40	$A \leftarrow (A) \& (mm+2)$		
CLEAR	m r1	2	40			
		3/4	28	r1 ← 0		С
COMP	m			A: (mm+2)		
COMPE	m "1 "2	3/4	88	F: (mm+5)		CF
COMPR	r1,r2	2 3⁄4	A0	(r1): (r2)		С
DIV	m		24	A: (A) / (mm+2)		
DIVF	m 12	3/4	64	F: (F) / (mm+5)		F
DIVR	r1,r2	2	9C	(r2) ← (r2) / (r1)		
FIX		1	C4	A ← (F)	converte para inteiro	
FLOAT		1	C0	F ← (A) [convert to floating]	converte para flutuante	F
HIO		1	F4	Halt I/O	canal número (A)	Р
J	m	3/4	3C	PC ← m		
JEQ	m	3/4	30	PC ← m if CC set to =		
JGT	m	3/4	34	PC ← m if CC set to >		
JLT	m	3/4	38	PC ← m if CC set to <		
JSUB	m	3/4	48	L ← (PC); PC ← m<		
LDA	m	3/4	0	A ← (mm+2)		
LDB	m	3/4	68	B ← (mm+2)		
LDCH	m	3/4	50	A [byte mais a direita] ← (m)		
LDF	m	3/4	70	F ← (mm+5)		F
LDL	m	3/4	8	L ← (mm+2)		
LDS	m	3/4	6C	S ← (mm+2)		
LDT	m	3/4	74	T ← (mm+2)		
LDX	m	3/4	4	X ← (mm+2)		
					Carrega o status do processador a partir das	
LPS	m	3/4	D0		informação no endereço m	Р
MUL	m	3/4	20	A ← (A) * (mm+2)		
MULF	m	3/4	60	F ← (F) * (mm+5)		
MULR	r1,r2	2	98	r2 ← (r2) * (r1)		
NORM	,	1	C8	F ← (F)	normalizado	
OR	m	3/4	44	A ← (A) (mm+2)		
RD	m	3/4	D8	A [byte mais a direita] ← dad	o de dispositivo especi	Р
RMO	r1,r2	2	AC	r2 ← (r1)		
RSUB	,	3/4	4C	PC ← (Ĺ)		
	_	_			Deslocamento a esquerda	
SHIFTL	r1,n	2	A4	r1 ← (r1)	de n bit	
SHIFTR		2	A8	r1 ← (r1)	Deslocamento a direita de n bit	
Orm TIX		_	710	11 - (11)	address of channel	
SIO		1	F0	Start I/O channel number (A)	program is given by (S)	Р
SSK	m	3/4	EC	Protection key for address m		Р
STA	m	3/4	0C	mm+2 ← (A)		
STB	m	3/4	78	mm+2 ← (B)		
STCH	m	3/4	54	m ← (A)	byte mais a direita	
STF	m	3/4	80	mm+5 ← (F)		F
STI	m	3/4	D4	Interval timer value ← (mm+	2)	Р
STL	m	3/4	14	mm+2 ← (L)		
STS	m	3/4	7C	mm+2 ← (S)		
STSW	m	3/4	E8	mm+2 ← (SW)		Р
STT	m	3/4	84	mm+2 ← (T)		
STX	m	3/4	10	mm+2 ← (X)		
SUB	m	3/4	1C	A ← (A) - (mm+2)		
SUBF	m	3/4	5C	F ← (F) - (mm+5)		F
SUBR	r1,r2	2	94	r2 ← (r2) - (r1)		
SVC	n	2	В0	Generate SVC interrupt. [for a	asse	
TD	m	3/4	E0	Test device specified by (m)		PC
TIO		1	F8	Test I/O channel number (A)		PC
TIX	m	3/4	2C	X ← (X) + 1; (X) : (mm+2)		С
TIXR	r1	2	B8	$X \leftarrow (X) + 1; (X) : (r1)$		С
WD		3/	50		byte mais a direita	5
WD	m	3/4	DC	Dispositivo (m) ← (A)	especificado por m	Р

Bibliografia

BECK, Leland. **System Software: An Introduction to Systems Programming.** Addison-Wesley, 1997

CALINGAERT, Peter. **Assemblers, Compilers, and Program Translation.** Potomac: Computer Science Press, Inc, 1979.

STALLINGS, Willian. **Computer Organization and Architecture**. 5.ed. New Jersey: Prentice Hall, 1999.

TANENBAUM, Andrew. **Structured Computer Organization.** 4.ed. New Jersey: Prentice Hall, 1999.