ECON 634 Homework 6

Ruohao Zhang

November 21, 2017

Question 1

After run the OLS, I get the estimation of $\hat{\beta} = [4.9133, 0.0738, 0.0393, 0.1647, -0.1882, -0.1291]$, and the estimated variance-covariance matrix is

0.003984	-0.000209	-0.000109	-0.000108	-0.000209	-0.000163
-0.000209	0.000012	0.000005	-0.000006	0.000013	0.000004
-0.000109	0.000005	0.000005	0.000001	0.000002	0.000001
-0.000108	-0.000006	0.000001	0.000246	-0.000018	0.000039
-0.000209	0.000013	0.000002	-0.000018	0.000316	-0.000084
-0.000163	0.000004	0.000001	0.000039	-0.000084	0.000232

The estimated variance is $\hat{\sigma}^2=0.1423$, and the estimated variance of $\hat{\sigma}^2$ is 1.3479×10^5 according to $(n-p)\frac{\hat{\sigma}^2}{\sigma^2}\stackrel{\rm d}{\sim}\chi^2_{n-p}$.

Question 2

(a) Flat Prior

Using flat prior, I get the following result for all parameters.

Figure 1: Posterior with Flat Prior

(b) Alternative Prior

Using the alternative prior specified in the question, I get the following result for all parameters.

Figure 2: Posterior with Alternative Prior

Question 3

By comparing the Baysian approach result with the OLS result, I see that the Baysian approach gives the estimated distribution of parameters instead of a point estimation from OLS regression. The similar thing is that the posterior distribution is around the OLS estimation. Comparing with the result from two parts of question 2, I notice that the different priors do not have significant effect on the posterior.