Assignment -8 $\Upsilon = a(1 + \cos \theta)$, $\Upsilon = a(1 - \cos \theta)$ The orequired oregion is divided into four equal oregions Agrea = 4 × area of gragion I 7= a (1-coso =4 (rdrdo $=4\int_{0}^{\pi_{2}}\frac{a^{2}(1-\cos\theta)^{2}d\theta}{a^{2}}=2a^{2}\int_{0}^{\pi_{2}}(1+\cos^{2}\theta-2\cos\theta)d\theta$ $= 2a^{2} \left[\frac{\pi}{2} + \frac{\pi}{4} - 2 \right] = \frac{a^{2}}{2} (3\pi - 8)$ r=lacoso, r=a Region is symmetric about x-axis Required area = 2 x area of origion I

(4). If $z(x^2+y^2)^{-1/2} dx dy dz$ Using Cylindrical Coordinate $x = r\cos\theta$, $y = r\sin\theta$, z = z $dx dy dz = r dr d\theta dz$ $z = r\cos\theta$ $z = r\cos\theta$

$$Z = 0 = 0$$

$$Z = \int_{Z=0}^{2\pi} \int_{Z=0}^{2\pi} Z \int_{Y}^{2\pi} dr d\theta dz$$

$$Z = \int_{Z=0}^{2\pi} \int_{Z=0}^{2\pi} Z \int_{Y}^{2\pi} dr d\theta dz$$

$$= \int_{Z=0}^{2} \int_{R}^{2\pi} \left[\sqrt{2} \right] d\theta dz$$

$$= 2\pi \sqrt{2} \int_{0}^{2} z^{3/2} dz = 2\sqrt{2}\pi \left[\frac{2z^{5/2}}{5}\right]_{0}^{2}$$

$$=2\sqrt{2} \times \left[\frac{2 \cdot 2^{5/2}}{5}\right] = 2 \cdot 2 \cdot 2^{3} \cdot \frac{\pi}{5} = \frac{32\pi}{5}$$

5)
$$f(x,y,z)$$
 and value. = $\frac{1}{\text{vol. of }D} \iiint_D f(x,y,z) dv$
 $f(x,y,z) = x + y + z$ over $x^2 + y^2 + z' = 4$.

D: z=2 $2z=x^2+y^2$ Bounded above by the plane z=2and below by $2z=x^2+y^2$

Not bdd above by the sphere $2c^2+y^2+z^2=32$ and below the paraboloid $2c^2+y^2=4z$. The plane of intersection of the two Surfaces z2+82-42-32=0 Z(Z+B)-4(Z+B)=0 (7-4)(7+8)=0Now the region is divided into two half. Region I & I $Vol. = \iiint dv + \iiint dv$ paraboloid Using aglindrical coordinates in both segion rdrdodz + [f $=2\pi \left[\frac{32-z^2}{2}\right]dz + 2\pi \int_{0}^{\infty} \left[\frac{4z}{2}\right]dz$ $= \pi \left[32z - \frac{z^3}{3} \right]^{\sqrt{32}} + \pi \left[2z^2 \right]^{\frac{4}{3}}$ $= \pi \left[32\sqrt{32} - \frac{32\sqrt{32}}{3} \right] - \left[32.4 - \frac{8}{3} \right] + 32\pi$ $\pi \left[256 \sqrt{2} \right] - \frac{376}{7} +$ 8× [128/2-35]

(i) C.G. of the one bdd by possible
$$y^2 = x$$
 and $x+y=2$

density = constant

C.G. $\overline{x} = \frac{\int x \, dm}{\int dm}$
 $\overline{y} = \frac{\int y \, dm}{\int dm}$

Now

 $dm = f \cdot dA = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int f \, dA} = \int \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int dA} = \int \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int dA} = \int \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int dA} = \int \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int dA} = \int \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int x \, dx \, dy} = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int x \, dx \, dy} = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int \int x \, dx \, dy} = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \, dx \, dy} = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \, dx \, dy} = \int \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx \, dy$
 $= \frac{\int x \cdot f \, dA}{\int x \cdot f \cdot f \, dx} = \int x \, dx$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f \cdot f$
 $= \frac{1}{2} \left[\frac{7 \cdot f \cdot f \, dx}{\int x \cdot f \, dx} - \frac{1}{2} \cdot f \cdot f} - \frac{1}{2} \cdot f \cdot f$
 $= \frac{1}{2} \left$

Scanned by CamScanner

II)
$$\left(\frac{x}{a}\right)^{1/3} + \left(\frac{y}{b}\right)^{2/3} = 1$$
 density $f = yxy$

Density = $yxy \Rightarrow \text{Symmtric}$

So the density of the sight half

is some as that of left half

So Mass = 2 . area xolonsity

$$= 2 \cdot \int_{x=0}^{a} x y^2 dx \qquad y = b \left[1 - \left(\frac{x}{a}\right)^{3/3}\right]^{\frac{3}{2}} dx$$

let $x = a \sin^3 \theta$ $dx = 3 a \sin^3 \theta$ (as sinder) (as o do

$$= 2 \cdot yb^2 \int_{x=0}^{\pi/2} \left[1 - \left(\frac{x}{a}\right)^{3/3}\right]^{\frac{3}{2}} dx$$

let $x = a \sin^3 \theta$ $dx = 3 a \sin^3 \theta$ (as sinder) (as o do

$$= 2 \cdot yb^2 \int_{x=0}^{\pi/2} \left[1 - \sin^2 \theta\right]^{\frac{3}{2}} (3 a \sin^2 \theta) (650 d\theta)$$

$$= 2 \cdot yb^2 \int_{x=0}^{\pi/2} \left[\frac{3 \sin^3 \theta}{2}\right] \left[1 - \sin^2 \theta\right]^{\frac{3}{2}} (3 a \sin^3 \theta) (650 d\theta)$$

$$= 6 \cdot ya^2 b^2 \int_{x=0}^{\pi/2} \frac{3 \sin^3 \theta}{2} d\theta$$

$$= 6 \cdot ya^2 b^2 \cdot \frac{3 \sin^3 \theta}{2} \left[\frac{3 \sin^3 \theta}{2}\right] = 6 \cdot ya^2 b^2 \cdot \frac{3 \sin^3 \theta}{2}$$

$$= 6 \cdot ya^2 b^2 \cdot \frac{3 \cos^3 \theta}{2} = 6 \cdot ya^2 b^2 \cdot \frac{3 \cos^3 \theta}{2}$$

$$= 4 \cdot ya^2 b^2 \cdot \frac{3 \cos^3 \theta}{2} = 6 \cdot$$