Author: Benjamin Smidt Created: September 7, 2022

Last Updated: September 9, 2022

Assignment 2: Softmax Classifier

Loss

0.0.1 Mathematics

The equation for the loss function of a single example of Multinomial Logistic Regression is:

$$L_{i} = -log(\frac{e^{f_{y_{i}}}}{\sum_{j=1}^{C} e^{f_{j}}}) = -f_{y_{i}} + log(\sum_{j} e^{f_{j}})$$
(1)

$$f_j = f(x_i, W)_j = (Wx_i)_j \tag{2}$$

Thus, to find the loss for the training data, we simply need to average the loss L_i for each example. For SVM's, the loss was called *hinge loss*. The loss for a Softmax Classifier is known as *cross-entropy loss*.

0.0.2 Code

In our implementation of finding the loss, we first matrix multiply XW and raise every value in the resulting matrix to e giving us matrix e^f which has shape NxC since X and W have shapes NxD and DxC. (N = examples, D = feature dimensions, C = classes). ADD VECTORIZES IMPLEMENTATION HERE.

To check our implementation, we do a quick sanity check. Since we initialized all our weights w_i to be very close to 0, we expect $e^{f_{y_i}}$ to be one-tenth of $\sum_j e^{f_j}$ since $e^0 = 1$. Since -log(1/10) = log(10), log(10) is approximately our expected loss value.

0.1 Gradient

0.1.1 Mathematics

To find the gradient with respect to our weight matrix W, let's again focus on one example. We can rewrite our loss function as:

$$L_i = -log(\frac{e^{W_{y_i}x_i}}{\sum_j e^{W_jx_i}}) \tag{3}$$

where W_{y_i} represents the weights for the correct label for example i and W_j is the weights for any given class (including W_{y_i}) for example i. Note that since the shape of W is DxC, each W_j is a column of W.

Let's start by reformulating our loss function a bit.

$$L_{i} = -log(\frac{e^{W_{y_{i}}x_{i}}}{\sum_{j=1}^{C} e^{W_{j}x_{i}}})$$
(4)

$$L_{i} = log(\frac{\sum_{j=1}^{C} e^{W_{j}x_{i}}}{e^{W_{y_{i}}x_{i}}})$$
 (5)

$$L_{i} = log(\sum_{i=1}^{C} e^{W_{j}x_{i}}) - W_{y_{i}}x_{i}$$
(6)

Then we find the gradient with respect to W_{y_i}

$$\frac{\partial L_i}{\partial W_{y_i}} = \frac{\partial}{\partial W_{y_i}} log(\sum_{j=1}^C e^{W_j x_i}) - \frac{\partial}{\partial W_{y_i}} W_{y_i} x_i$$
 (7)

$$\frac{\partial L_i}{\partial W_{y_i}} = \frac{\partial}{\partial W_{y_i}} log(\sum_{j=1}^C e^{W_j x_i}) - x_i$$
 (8)

$$\frac{\partial L_i}{\partial W_{y_i}} = \frac{1}{\sum_{i=1}^C e^{W_j x_i}} \frac{\partial}{\partial W_{y_i}} (e^{W_1 x_i} + \dots + e^{W_{y_i} x_i} + \dots + e^{W_C x_i}) - x_i$$
 (9)

$$\frac{\partial L_i}{\partial W_{u_i}} = \frac{x_i e^{W_{y_i} x_i}}{\sum_{i=1}^C e^{W_j x_i}} - x_i \tag{10}$$

$$\frac{\partial L_i}{\partial W_{y_i}} = x_i \left(\frac{e^{W_{y_i} x_i}}{\sum_{j=1}^C e^{W_j x_i}} - 1\right) \tag{11}$$

The math works out similarly for the gradient with respect to W_j

$$\frac{\partial L_i}{\partial W_j} = \frac{\partial}{\partial W_j} log(\sum_{j=1}^C e^{W_j x_i}) - W_{y_i} x_i$$
 (12)

$$\frac{\partial L_i}{\partial W_j} = \frac{\partial}{\partial W_j} log(\sum_{i=1}^C e^{W_j x_i})$$
(13)

$$\frac{\partial L_i}{\partial W_j} = \frac{1}{\sum_{j=1}^C e^{W_j x_i}} \frac{\partial}{\partial W_j} (e^{W_1 x_i} + \dots + e^{W_j x_i} + \dots + e^{W_C x_i})$$
(14)

$$\frac{\partial L_i}{\partial W_j} = \frac{x_i e^{W_j x_i}}{\sum_{j=1}^C e^{W_j x_i}} \tag{15}$$

0.1.2 Code

As before, we implement the loss and the gradient in the same function to save computation.

1 References