

32-bit Microcontroller Application Note

IAR Project Setting Guide

AN Rev. 1.02

Introduction

This document is intended to help developers develop ABOV 32-bit microcontrollers (Arm Cortex-M0 / M0+ / M3 / M4) in an IAR EWARM integrated development environment.

This document describes how to prepare an IAR project with configuration files, how to set up the environment variables and the debugger, and how to compile and debug so that you can quickly set up an initial development environment.

Table 1 shows the list of microcontrollers to which this document applies.

Table 1. Applicable Devices

Base Product	Part Number	
A31G21x	A31G213CL, A31G213SQ, A31G213KN, A31G213GR, A31G212CL, A31G212SQ, A31G212KN, A31G212GR	
A31G22x	A31G226ML, A31G226MM, A31G226RM, A31G226RL, A31G226RL A31G224ML, A31G224MM, A31G224RM, A31G224RL, A31G224RL	
A31G31x	A31G316MM, A31G316ML, A31G316RM, A31G316RL, A31G314MM, A31G314ML, A31G314RM, A31G314RL, A31G314CL, A31G314CU, A31G314SN, A31G313RM, A31G313RL, A31G313CL, A31G313CU, A31G313SN	
A31G32x	A31G324RL, A31G324CL, A31G324CU, A31G323RL, A31G323CL, A31G323CU	
A33G52x	A33G527VQ, A33G527VL, A33G527MM, A33G527RL, A33G527ML, A33G527RM, A33G526VQ, A33G526VL, A33G526MM, A33G526RL, A33G526ML, A33G526RM, A33G524MM, A33G524RL, A33G524ML, A33G524RM	
A33G53x	A33G539VQ, A33G539VL, A33G539MM, A33G539RL, A33G538VQ, A33G538VL, A33G538MM, A33G538RL	
A31M22x	A31M223CL, A31M223KN	
A33M11x	A33M116RL, A33M116RM, A33M116CL, A33M114RL, A33M114CL	
A34M41x	A34M418YL, A34M418VL, A34M418RL, A34M416VL, A34M416RL, A34M414VL, A34M414RL	
A34M420	A34M420YL, A34M418VL	
A34L716	A34L716VL, A34L716RL	

Reference Document

The following documents are available on www.abovsemi.com.

- Reference software URL in IAR EW IDE Project Management and Building Guide
- User's Manual, Datasheet, Application Note for products in Table 1
- Reference software package for products in Table 1

Contents

Intro	duction	1	1
Refe	rence [Document	1
1.	IAR P	roject Preparation	5
	1.1	IAR Embedded Workbench for Arm Installation Path	5
	1.2	How to Register Product Configuration Files	6
		1.2.1 IAR EARM Configuration Files	7
2.	Create	e New IAR EWARM Project	10
3.	Add Group and Source Code in Workspace11		
4.		o Set Up IAR EWARM	
	4.1	General Options	13
	4.2	C/C++ Compiler	16
	4.3	Linker	
	4.4	Debug	22
	4.5	Debugger: CMSIS DAP	24
5.	5. Build and Debug IAR EWARM Project20		
Revis	sion Hi	story	28

List of Tables

Table 1. Applicable Devices	1
Table 2. Configuration Files for Target Device (ex. A34M420)	7
Table 3. Target Devices and Flashloader Files	
Table 4. Path Argument Variables of IAR IDE on Preprocessor Tab	
Table 5. Reset Type Selection Guide by Device	

List of Figures

Figure 1. IAR EWARM Installation Path	5
Figure 2. Copying Configuration Folders	6
Figure 3. New IAR EWARM Project Menu	10
Figure 4. Add Group… and Add Files… Menus	11
Figure 5. Options Menu	12
Figure 6. Device Selection on the Target Tab of General Options	13
Figure 7. Options on the Output Tab of General Options	13
Figure 8. Options on the Library Configuration Tab of General Options	14
Figure 9. Options on the Library Options Tab of General Options	14
Figure 10. Options on the MISRA-C:2004 Tab of General Options	15
Figure 11. Options on the Preprocessor Tab of C/C++ Compiler	16
Figure 12. Options on the Language 1 Tab of C/C++ Compiler	17
Figure 13. Options on the Language 2 Tab of C/C++ Compiler	17
Figure 14. Options on the Code Tab of C/C++ Compiler	18
Figure 15. Options on the Optimizations Tab of C/C++ Compiler	18
Figure 16. Options on the Output Tab of C/C++ Compiler	19
Figure 17. Options on the List Tab of C/C++ Compiler	19
Figure 18. Linker Configuration File Options for Target Device	20
Figure 19. Options on the Output Tab of Linker	21
Figure 20. Options on the Setup Tab of Debugger	22
Figure 21. Options on the Download Tab of Debugger	23
Figure 22. Options on the Setup Tab of Debugger>CMSIS DAP	
Figure 23. Options on the Interface Tab of Debugger>CMSIS DAP	25
Figure 24. Build, Download, and Debug Commands of the IAR EWARM Project Window	26
Figure 25. IAR Project Debugging Screen	27

1. IAR Project Preparation

1.1 IAR Embedded Workbench for Arm Installation Path

The device's configuration files must be added to the IAR Embedded Workbench for Arm (hereafter called 'EWARM') installation path before using a project in the IAR EWARM environment.

The paths used in the process of copying and pasting configuration files are shown below:

- IAR installation path (Typical): ~\IAR Systems\Embedded Workbench X.Y (X.Y = Version)
 - The IAR EWARM installation path and the version may vary depending on the installed version of the IAR Embedded Workbench.
- The path where the product's configuration files are stored: ~\IAR Systems\Embedded
 Workbench X.Y\config

Figure 1. IAR EWARM Installation Path

1.2 How to Register Product Configuration Files

ABOV 32-bit Reference Software Packages include product configuration files that enable programming and debugging of the firmware in the IAR Embedded Workbench for the Arm environment.

Figure 2 shows the process of copying the folders containing configuration files from the ABOV 32-bit reference software package and pasting them under the 'config' directory in the IAR EWARM installation path.

NOTE:

 Suppose a product configuration file already exists in the 'config' folder. In that case, the existing file remains unchanged, or if you add each configuration file (stored in the debugger, devices, flashloader, and linker directories) to the 'config' directory, the existing configuration file will be overwritten.

Figure 2. Copying Configuration Folders

1.2.1 IAR EARM Configuration Files

IAR configuration files are located in the path below in the Reference Software Package:

/Flashloader/iar/ or /toolchain/iar/

Table 2 and Table 3 show the directory names where the configuration files have to be installed in the IAR installation path and the list of the configuration files for the target device.

Follow the procedure below to complete the copy-and-paste process:

- 1. Copy the folders that contain the configuration files provided by **Reference Software Package**.
- 2. Move into the 'config' folder in your IAR EW for the Arm installation path.
- 3. Paste the copied folders in the 'config' folder.

Table 2. Configuration Files for Target Device (ex. A34M420)

Directory Name	Configuration File
debugger/ABOV	a34m420.svd, a34m420.ddf
devices/ABOV	a34m420.i79, a34m420.menu
flashloader/ABOV	FlashA34M420.board, FlashA34M420.flash, FlashA34M420.out, FlashA34M420.mac ⁽¹⁾
linker/ABOV	a34m420.icf

NOTE:

 Some devices that need to use Core reset require a mac file to reflect changes made after Flash Write in the user code (see Table 3).

Table 3. Target Devices and Flashloader Files

Table 3. Target Devices and Flashloader Files				
Target Device	Configuration File	Code Flash Area for Algorithm	RAM Area for Algorithm	
A31G213	FlashA31G213.board,	0x0000_0000 ~ 0x0000_FFFF	0x2000_0000 ~	
(64 KB)	FlashA31G213.flash, FlashA31G213.out	(64 KB – Size: 0x10000)	0x2000_17FF	
A31G212	FlashA31G212.board,	0x0000_0000 ~ 0x0000_7FFF	(6 KB – Size: 0x1800)	
(32 KB)	FlashA31G212.flash, FlashA31G212.out	(32 KB – Size: 0x8000)		
A31G226	FlashA31G226.board,	0x0000_0000 ~ 0x0003_FFFF	0x2000_0000 ~	
(256 KB)	FlashA31G226.flash, FlashA31G226.out	(256 KB – Size: 0x40000)	0x2000_4FFF	
A31G224	FlashA31G224.board,	0x0000_0000 ~ 0x0001_FFFF	(20 KB – Size: 0x5000)	
(128 KB)	FlashA31G224.flash, FlashA31G224.out	(128 KB – Size: 0x20000)		
A31G316	FlashA31G316.board,	0x0000_0000 ~ 0x0003_FFFF		
(256 KB)	FlashA31G316.flash, FlashA31G316.out	(256 KB – Size: 0x40000)		
A31G314 (128 KB)	FlashA31G314.board, FlashA31G314.flash, FlashA31G314.out	0x0000_0000 ~ 0x0001_FFFF (128 KB – Size: 0x20000)	0x2000_0000 ~ 0x2000_3FFF (16 KB – Size: 0x4000)	
A31G313	FlashA31G313.board,	0x0000_0000 ~ 0x0000_FFFF	,	
(64 KB)	FlashA31G313.flash, FlashA31G313.out	(64 KB – Size: 0x10000)		
A31G324	FlashA31G324.board,	0x0000_0000 ~ 0x0001_FFFF	0x2000_0000 ~	
(128 KB)	FlashA31G324.flash, FlashA31G324.out	(128 KB – Size: 0x20000)	0x2000_3FFF	
A31G323	FlashA31G323.board,	0x0000_0000 ~ 0x0000_FFFF	(16 KB – Size: 0x4000)	
(64 KB)	FlashA31G323.flash, FlashA31G323.out	(64 KB – Size: 0x10000)		
A33G527	FlashA33G527.board,	0x0000_0000 ~ 0x0005_FFFF		
(384 KB)	FlashA33G527.flash, FlashA33G527.out	(384 KB – Size: 0x60000)		
A33G526 (256 KB)	FlashA33G526.board, FlashA33G526.flash, FlashA33G526.out	0x0000_0000 ~ 0x0003_FFFF (256 KB – Size: 0x40000)	0x2000_0000 ~ 0x2000_5FFF (24 KB – Size: 0x6000)	
A33G524	FlashA33G524.board,	0x0000_0000 ~ 0x0001_FFFF	,	
(128 KB)	FlashA33G524.flash, FlashA33G524.out	(128 KB – Size: 0x20000)		
A33G539	FlashA33G539.board,	0x0000_0000 ~ 0x000B_FFFF	0x2000_0000 ~	
(768 KB)	FlashA33G539.flash, FlashA33G539.out	(768 KB – Size: 0xC0000)	0x2000_5FFF	
A33G538	FlashA33G538.board,	0x0000_0000 ~ 0x0007_FFFF	(24 KB – Size: 0x6000)	
(512 KB)	FlashA33G538.flash, FlashA33G538.out	(512 KB – Size: 0x80000)		
A31M223 (64 KB)	FlashA31M223.board, FlashA31M223.flash, FlashA31M223.out	0x0000_0000 ~ 0x0000_FFFF (64 KB – Size: 0x10000)	0x2000_0000 ~ 0x2000_1FFF (8 KB – Size: 0x2000)	
A33M116 (256 KB)	a33m116_flash.board, a33m116_flash.flash, a33m116_flash.out	0x0000_0000 ~ 0x0003_FFFF (256 KB – Size: 0x40000)	0x2000_0000 ~ 0x2000_3FFF	
A33M114 (128 KB)	a33m114_flash.board, a33m114_flash.flash, a33m114_flash.out	0x0000_0000 ~ 0x0001_FFFF (128 KB – Size: 0x20000)	(16 KB – Size: 0x4000)	
A31M418 (512 KB)	FlashA34M418.board, FlashA34M418.flash, FlashA34M418.out, FlashA34M418.mac	0x0000_0000 ~ 0x0007_FFFF (512 KB – Size: 0x80000)	0x2000_0000 ~ 0x2000_FFFF	
A31M416 (256 KB)	FlashA34M416.board, FlashA34M416.flash, FlashA34M416.out, FlashA34M416.mac	0x0000_0000 ~ 0x0003_FFFF (256 KB – Size: 0x40000)	(64 KB – Size: 0x10000)	
A31M414 (128 KB)	FlashA34M414.board, FlashA34M414.flash, FlashA34M414.out, FlashA34M414.mac	0x0000_0000 ~ 0x0001_FFFF (128 KB – Size: 0x20000)	0x2000_0000 ~ 0x2000_7FFF (32 KB – Size: 0x8000)	
A31M420 (1024 KB)	FlashA34M420.board, FlashA34M420.flash, FlashA34M420.out, FlashA34M420.mac	0x0000_0000 ~ 0x000F_FFFF (1024 KB – Size: 0x100000)	0x2000_0000 ~ 0x2000_FFFF (64 KB – Size: 0x10000)	

Table 3. Target Devices and Flashloader Files (continued)

Target Device	Configuration File	Code Flash Area for Algorithm	RAM Area for Algorithm
A34L716 (256 KB)	FlashA34L716.board, FlashA34L716.flash, FlashA34L716.out, FlashA34L716.mac	0x0000_0000 ~ 0x0003_FFFF (256 KB – Size: 0x40000)	0x2000_0000 ~ 0x2000_5FFF (24 KB – Size: 0x6000)

2. Create New IAR EWARM Project

Once you have completed copying and pasting the product configuration files from the ABOV reference software package into the IAR installation path, follow the procedure below to create a new IAR project:

- 1. Select the 'Create New Project...' in the Project menu.
- 2. Select the 'Empty project' in the 'Create New Project' dialog box.
- 3. Press the **OK** button to complete the project creation.

Figure 3. New IAR EWARM Project Menu

3. Add Group and Source Code in Workspace

You can add the source code from each directory of the downloaded software package to the newly created project by following the procedure below:

- 1. Right-click where you want to add a group in the Workspace pane.
- 2. Click the **Add > Add Group...** from the drop-down menu to add directories.
- 3. Create and name each group mapped to the software package's directory structure.
- 4. Click the **Add > Add Files...** from the drop-down menu and select source code files from each software package directory to add the source code files into each group.

Figure 4 shows an example of configuring groups and adding source codes to the IAR project in the Workspace pane.

Figure 4. Add Group... and Add Files... Menus

4. How to Set Up IAR EWARM

Once you have completed the instructions described in the previous chapters, you can set the environment options for building and debugging the IAR project in the Workspace in this chapter.

Right-clicking in the Workspace and selecting the '**Options...**' from the drop-down menu will open the '**Options for node**' window, described in the following sections.

Figure 5. Options... Menu

4.1 General Options

Select the target device in the Device field of the Processor variant section on the Target tab of the General Options. (If you did not add the product configuration files described in Chapter 3, the product name may not appear.)

X Options for node "app" 3 None Category: abov ABOV A34L716 > Static Analysis ActiveSemi ABOV A34M414 Altera ABOV A34M416 MISRA-C:2004 MIS A-C:1998 C/C++ Compiler Library Options 2 4 ABOV A34M418 AmbigMicro Target Output Library Configuration Library Options 1 Output Converter AnalogDevices ABOV A34M420 ARM ABOV A31G313 **Build Actions** Cortex-M4 O Core Axell ABOV A31G314 Debugger ABOV a34m420 O Device **1** (2) Broadcom ABOV A31G316 ABOV A31G323 CADI Cirrus OCMSIS-Pack None CMSTS DAP ABOV A31G324 Cypress GDB Server Floating point settings J-Link/J-Trace O Little TI Stellaris FPU VFPv4 single precision Nu-Link ○ Big D registers 16 PE micro ○ BE32 O BE8 Third-Party Driver TI MSP-FET ☐ TrustZone TI XDS DSP Extension Mode Secure Advanced SIMD (NEON)

Figure 6. Device Selection on the Target Tab of General Options

Figure 8. Options on the Library Configuration Tab of General Options

Figure 9. Options on the Library Options Tab of General Options

X Options for node "app" Category: Static Analysis Runtime Checking Output Library Configuration Library Options 1 C/C++ Compiler Target Assembler Library Options 2 MISRA-C:2004 MISRA-C:1998 Output Converter Custom Build ☐ Enable MISRA-C MISRA-C:2004 **Build Actions** Log MISRA C-Settings MISRA-C:1998 Linker Set Active MISRA-C:2004 Rules Debugger Simulator Required CADI CMSIS DAP ■ 1.1: [required] All code shall conform to ISO 9899:1990 'Programmin' 1.2: [required] No reliance shall be placed on undefined or unspecifiec |
 1.3: [required] Multiple compilers and/or languages shall only be used |
 1.4: [required] The compiler/linker shall be checked to ensure that 31 GDB Server I-jet J-Link/J-Trace TI Stellaris 1.5: [advisory] Floating-point implementations should comply with de 2.1: [required] Assembly language shall be encapsulated and isolated.
 2.2: [required] Source code shall only use ISO9899:1990 'C' style com
 2.3: [required] The character sequence /* shall not be used within a cc Nu-Link PE micro ST-LINK 2.4: [advisory] Sections of code should not be 'commented out'. 2.4: [advisory] Sections of code should not be 'commented out'.
3.1: [advisory] All usage of implementation-defined behaviour shall be Third-Party Driver TI MSP-FET TI XDS Cancel

Figure 10. Options on the MISRA-C:2004 Tab of General Options

4.2 C/C++ Compiler

This section describes how to set the include path for the header files. The header files are required when building the source code added in the Workspace. In addition, this section describes how to set the predefined symbols.

As shown in Figure 11, you can add the reference directories on the **Preprocessor tab**, the **C/C ++ Compiler** submenu. The include directory paths in the Workspace can be defined using the IAR IDE's argument variables shown in Table 4.

Figure 11. Options on the Preprocessor Tab of C/C++ Compiler

Table 4. Path Argument Variables of IAR IDE on Preprocessor Tab

Path	Description
\$TOOLKIT_DIR\$	The path where IAR Embedded Workbench is installed.
\$PROJ_DIR\$	The path where the corresponding IAR EWARM project (*.eww) file is stored.

X Options for node "app" Category: Factory Settings Multi-file Compilation General Options Static Analysis Discard Unused Publics Runtime Checking MISRA-C:1998 Encodings Extra Options List Preprocessor Diagnostics MISRA-C:2004 Output Converter Language 1 Language 2 Output Code Optimizations Custom Build **Build Actions** Language Language conformance Linker O C Standard with IAR extensions Debugger Simulator OC++ ○ Standard CADI O Auto (extension-based) O Strict CMSIS DAP GDB Server C dialect C++ options I-jet ○ C89 Enable exceptions J-Link/J-Trace Standard C _ Enable RTTI TI Stellaris Nu-Link Allow VLA Destroy static objects PE micro C++ inline semantics ST-LINK Require prototypes Third-Party Driver TI MSP-FET TI XDS Cancel

Figure 12. Options on the Language 1 Tab of C/C++ Compiler

Figure 13. Options on the Language 2 Tab of C/C++ Compiler

Figure 14. Options on the Code Tab of C/C++ Compiler

Figure 15. Options on the Optimizations Tab of C/C++ Compiler

Figure 16. Options on the Output Tab of C/C++ Compiler

Figure 17. Options on the List Tab of C/C++ Compiler

4.3 Linker

To add source code to the project, double-click on

You can set the Linker options referred to when building the IAR project by following the procedure below:

- 1. Select the Linker in the Category field, then select the Config tab.
- 2. Check the Override default checkbox in the Linker configuration file field.
 - A. Adding the product configuration file described in Chapter 3 shows that the '*.icf' path is automatically set in this field. The *.icf file configures the target device's Vector Table, Memory Regions, and Stack/Heap Sizes.

B. Memory Regions:

Adjust the size of ROM and RAM according to the microcontroller memory specification⁽¹⁾.

- IROM1: start 0x00000000, size 0x0007FFFF
- IRAM1: start 0x20000000, size 0x2000FFFF

NOTES:

- If the memory setting is incorrect, errors may occur when downloading firmware to the target device. Please refer to Table 3.
- 2. The size of the IROM is generally the same as the size of the Code Flash area of the target device.
- 3. However, in the case of a device that can separate the bank, please use it according to the size of the bank. If banks are not divided and used, all code flash areas can be used. (ex. A34M420 Code Flash size = 0x0010_0000, Bank size = 0x0008_0000, Not used bank function: IROM size: 0x000FFFFF, using the bank function: IROM size: 0x0007FFFF.)

Figure 18. Linker Configuration File Options for Target Device

- 3. Select the **Output** tab, then set the binary file name in the **Output filename** field after the project code is built to match the project name.
 - A. The output binary file with *.out extension is created in the '\Debug\Exe' directory of the IAR project (See Figure 7).

Figure 19. Options on the Output Tab of Linker

4.4 Debug

To debug the target ABOV 32-bit microcontrollers in the IAR project environment, you will need a debugging tool that supports the CMSIS-DAP interface, one of the tools listed below:

- 32-bit Microcontroller Starter Kit Board
- ABOV <u>A-Link / A-LinkPro</u> Debugger(CMSIS-DAP compatible)
- Segger J-Link

When the debugger tool is ready, you can follow the procedure below:

- 1. Select the **Debugger** in the **Category** field, then select the **Setup** tab.
- 2. Select the CMSIS DAP from the drop-down menu in the Driver field.
 - A. If you have set up the **Device Description File** described in Chapter 1.2.1, you can see that the *.ddf file in the '\$TOOLKIT_DIR\$config\debugger\ABOV\' path is automatically set.

Options for node "app" × Category: Factory Settings General Options Static Analysis Runtime Checking C/C++ Compiler Setup Download Images Multicore Extra Options Plugins Assembler Output Converter Driver Run to Custom Build CMSIS DAP **Build Actions** main Linker Setup macros Simulator Use macro file(s) CADI CMSIS DAP GDB Server I-jet J-Link/J-Trace TI Stellaris Device description file Nu-Link Override default PE micro ST-LINK \$TOOLKIT_DIR\$\config\debugger\ABOV\a34m420.ddf Third-Party Driver TI MSP-FET TT XDS OΚ Cancel

Figure 20. Options on the Setup Tab of Debugger

- Select the **Download** tab to set the flashloader file that is required when downloading the compiled binary file to the microcontroller.
 - A. If you have set up the **Device Description File** described in Chapter 1.2.1, you can see that the *.out file in the '\$TOOLKIT_DIR\$config\flashloader\ABOV\' path is automatically set.

Figure 21. Options on the Download Tab of Debugger

4.5 Debugger: CMSIS DAP

If the driver is set to **CMSIS DAP** on the **Setup** tab of the **Debugger**, as shown in Figure 20, you can set up the debugger by following the procedure below:

- 1. Select the CMSIS DAP, a submenu of the Debugger in the Category field.
- In the Setup tab, set the option values appropriately from the Reset drop-down lists. Some devices must use Core, and other devices recommend System (Default) in Reset drop-down lists (see Table 5).

Figure 22. Options on the Setup Tab of Debugger>CMSIS DAP

Table 5. Reset Type Selection Guide by Device

Reset Type	Device
System (Default)	A31G21x, A31G22x, A31G31x, A31G32x, A33G52x, A33G53x, A31M22x A33M11x
Core	A34M41x, A34M420, A34L716

- 3. Select the **SWD** in the **Interface** field on the **Interface** tab.
- 4. Set the options on the **Setup** and **Breakpoint** tabs to their default values.

Figure 23. Options on the Interface Tab of Debugger>CMSIS DAP

5. Build and Debug IAR EWARM Project

This chapter describes how to compile the project, download firmware to the target board, and debug target devices in the IAR EWARM, as follows:

- Select the Make or Rebuild All from the Project menu to build the source code.
- After building the source code, check the results in the Build pane. If warnings or errors occur, locate the point where they occurred, correct the source code, and rebuild it.
- Once the project has been successfully built, select Download and Debug from the Project menu to download the compiled firmware to the target board. When the download is complete, the project automatically enters debugging mode.

File Edit View Project CMSIS-DAP Tools Window Help Add Files... 1 P Add Group... Workspace Import File List... Debug Add Project Connection... Files Edit Configurations... 🗆 🌒 app - Deb I—⊞ 📹 арр × Remove -⊞ **i**core -⊞ **ii** driver Create New Project... —⊞ 📹 library Add Existing Project... U ■ Output Options... Alt+F7 Version Control System Make F7 Compile Ctrl+F7 Rebuild All **₫** Clean Batch build... F8 C-STAT Static Analysis Stop Build Ctrl+Break Download and Debug Debug without Downloading Attach to Running Target Make & Restart Debugger CtrI+R app C Restart Debugger Ctrl+Shift+R Build Download Messages SER Setup debug_seria CMSIS-Pack Manager Linking app.out Open Device Description File Converting Save List of Registers... Total number of errors: 0 Total number of warnings: 0 Build Debug Log Ready

Figure 24. Build, Download, and Debug Commands of the IAR EWARM Project Window

- 4. When the download is complete, you can execute and debug the program from the corresponding debugging screen.
- 5. On the debugging screen, as shown in Figure 25, select the **Go** command from the **Debug** menu to run the program and select the **Break** command to stop the program operation. You can also run the program step by step through the **Step** command option.

Figure 25. IAR Project Debugging Screen

Revision History

Revision	Date	Notes
1.00	Dec. 21, 2023	Initial release.
1.01	May 31, 2024	Added the A34L716 device to Table 1, Table 3, and Table 5.
1.02	Dec 2, 2024	Updated the disclaimer.

Korea

Regional Office, Seoul R&D, Marketing & Sales 8th Fl., 330, Yeongdong-daero, Gangnam-gu, Seoul, 06177, Korea

Tel: +82-2-2193-2200 Fax: +82-2-508-6903 www.abovsemi.com

Domestic Sales Manager

Tel: +82-2-2193-2206 Fax: +82-2-508-6903 Email: <u>sales_kr@abov.co.kr</u> HQ, Ochang

R&D, QA, and Test Center 37, Gangni 1-gil, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do,28126, Korea

Tel: +82-43-219-5200 Fax: +82-43-217-3534 www.abovsemi.com

Global Sales Manager Tel: +82-2-2193-2281 Fax: +82-2-508-6903

Email: sales gl@abov.co.kr

China Sales Manager

Tel: +86-755-8287-2205 Fax: +86-755-8287-2204 Email: <u>sales_cn@abov.co.kr</u>

ABOV Disclaimer

IMPORTANT NOTICE - PLEASE READ CAREFULLY

ABOV Semiconductor ("ABOV") reserves the right to make changes, corrections, enhancements, modifications, and improvements to ABOV products and/or to this document at any time without notice. ABOV DOES NOT GIVE WARRANTIES AS TO THE ACCURACY OR COMPLETENESS OF THE INFORMATION INCLUDED HEREIN. Purchasers should obtain the latest relevant information of ABOV products before placing orders. Purchasers are entirely responsible for the choice, selection, and use of ABOV products and ABOV assumes no liability for application assistance or the design of purchasers' products. NO LICENSE, EXPRESS OR IMPLIED, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY ABOV HEREIN. ABOV DISCLAIMES ALL EXPRESS AND IMPLIED WARRANTIES AND SHALL NOT BE RESPONSIBLE OR LIABLE FOR ANY INJUIRES OR DAMAGES RELATED TO USE OF ABOV PRODUCTS IN SUCH UNAUTHORIZED APPLICATIONS. ABOV and the ABOV logo are trademarks of ABOV. For additional information about ABOV trademarks, please refer to https://www.abov.co.kr/en/about/corporate_identity.php. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces the information previously supplied in any former versions of this document.

© 2023 ABOV Semiconductor – All rights reserved

