計量経済 I: 宿題 10

村澤 康友

提出期限: 2025年7月22日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例の結果を正確に再現すること (乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペした場合は提出点を 0 点 とし,再提出も認めない.すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可), 2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. データセット「10_1_income.dta」を gretl に読み込み、以下の分析を行いなさい.
 - (a) 教科書 p. 244 の「本人の学歴」(大卒ダミー)を「父親の学歴」と「兄弟姉妹数」で説明する線形 確率モデルの推定結果を再現し、回帰予測値(傾向スコア)を保存しなさい.※推定結果の画面の メニューの「保存」→「理論値」で保存.
 - (b) 教科書 p. 245, 図 10.1 の傾向スコアのヒストグラムを再現しなさい (階級幅は適当でよい).
 - (c) 傾向スコアの範囲を [0,0.24), [0.24,0.29), [0.29,0.4), [0.4,1] の 4 つの区間に分け,区間ごとに対数年収を大卒ダミーに単回帰して,教科書 p.245,表 10.1 の大卒プレミアムの推定結果を再現しなさい.
- 2. (教科書 p. 251, 実証分析問題 10-A) 母親の就業が既婚女性の就業確率に与える平均処置効果(ATE)をマッチング法で推定したい。データセット「 10_2 _work.dta」を gretl に読み込み,以下の分析を行いなさい。
 - (a) 「15 歳時の母親の就業」を「母親の学歴」「父親の学歴」「15 歳時の暮らし向き」「15 歳時の学業成績」「15 歳時の家庭の蔵書数」で説明する線形確率モデルを推定しなさい.また回帰予測値(傾向スコア)を保存しなさい.
 - (b) 前間で求めた傾向スコアのヒストグラムを描きなさい(階級幅は適当でよい).
 - (c) 傾向スコアの範囲を (0,0.65), (0.65,0.7), (0.7,0.74), (0.74,0.78), (0.78,0.82), (0.82,1) の 6 つの 区間に分け,区間ごとに「本人の就業」を「15 歳時の母親の就業」に単回帰して,母親の就業が既 婚女性の就業確率に与える ATE を推定しなさい.
- 3. (教科書 p. 251, 実証分析問題 10-A の続き)傾向スコアは回帰分析でも利用できる. 母親の就業が既婚女性の就業確率に与える ATE を以下の 3 つの方法で推定し、結果を比較しなさい.
 - (a)「本人の就業」を「15歳時の母親の就業」で説明する単回帰モデル
 - (b) 前問 (a) の説明変数で共変量調整した重回帰モデル
 - (c) 前間 (a) で求めた傾向スコアで共変量調整した重回帰モデル

解答例

1. (a) 傾向スコアの推定

モデル 1: 最小二乗法 (OLS), 観測: 1–4371 従属変数: cograd

	係数	標	準誤差	$t\operatorname{-ratio}$	р値
const	0.323455	0.0	147169	21.98	0.0000
pacograd	0.130521	0.0	142720	9.145	0.0000
sibs	-0.0421442	0.0	0831074	-5.071	0.0000
Mean dependent	var 0.312	972	S.D. de	pendent v	ar 0.463756
Sum squared res	sid 917.2	302	回帰の標	標準誤差	0.458245
R^2	0.024	072	Adjuste	ed \mathbb{R}^2	0.023625
F(2, 4368)	53.87	030	P-value	(F)	7.73e-24
Log-likelihood	-2789	765	Akaike	criterion	5585.531
Schwarz criterion	n 5604.	679	Hannar	-Quinn	5592.288

(b) 傾向スコアのヒストグラム

(c) 傾向スコア [0,0.24) の大卒プレミアム

モデル 1: 最小二乗法 (OLS), 観測: 1–1096 従属変数: lincome

	係数	標準誤差	t-ratio	p値
const	5.14115	0.0276486	185.9	0.0000
cograd	0.626779	0.0602243	10.41	0.0000

Mean dependent var	5.273249	S.D. dependent var	0.852084
Sum squared resid	723.3995	回帰の標準誤差	0.813168
\mathbb{R}^2	0.090088	Adjusted \mathbb{R}^2	0.089257
F(1,1094)	108.3144	P-value (F)	2.98e-24
Log-likelihood	-1327.484	Akaike criterion	2658.968
Schwarz criterion	2668.967	Hannan-Quinn	2662.752

傾向スコア [0.24, 0.29] の大卒プレミアム

モデル 2: 最小二乗法 (OLS), 観測: 1–1458 従属変数: lincome

	係数	標準誤差	t-ratio	p値
const	5.25257	0.0226046	232.4	0.0000
cograd	0.553499	0.0412419	13 42	0.0000

Mean dependent var	5.418844	S.D. dependent var	0.765024
Sum squared resid	758.8504	回帰の標準誤差	0.721934
R^2	0.110088	Adjusted \mathbb{R}^2	0.109477
F(1, 1456)	180.1176	P-value (F)	8.35e-39
Log-likelihood	-1592.764	Akaike criterion	3189.527
Schwarz criterion	3200.097	Hannan-Quinn	3193.470

傾向スコア [0.29, 0.4) の大卒プレミアム

モデル 3: 最小二乗法 (OLS), 観測: 1–818 従属変数: lincome

	係数	標準誤差	t-ratio	p値
const	5.07989	0.0361309	140.6	0.0000
cograd	0.507759	0.0606815	8.368	0.0000

Mean dependent var	5.259902	S.D. dependent var	0.864581
Sum squared resid	562.4470	回帰の標準誤差	0.830225
\mathbb{R}^2	0.079024	Adjusted \mathbb{R}^2	0.077896
F(1,816)	70.01695	P-value (F)	$2.54e{-}16$
Log-likelihood	-1007.494	Akaike criterion	2018.989
Schwarz criterion	2028.403	Hannan-Quinn	2022.601

傾向スコア [0.4,1] の大卒プレミアム

モデル 4: 最小二乗法 (OLS), 観測: 1–999 従属変数: lincome

	係数	標準誤差	t-ratio	p値
const	4.91384	0.0356502	137.8	0.0000
cograd	0.803062	0.0557163	14.41	0.0000

Mean dependent var	5.242624	S.D. dependent var	0.951415
Sum squared resid	747.6012	回帰の標準誤差	0.865939
R^2	0.172440	Adjusted \mathbb{R}^2	0.171610
F(1,997)	207.7464	P-value (F)	$6.38\mathrm{e}{-43}$
Log-likelihood	-1272.722	Akaike criterion	2549.444
Schwarz criterion	2559.258	Hannan-Quinn	2553.174

2. (a) 傾向スコアの推定

モデル 1: 最小二乗法 (OLS), 観測: 1–1132 従属変数: mowork15

	係数	Std. Error	t-ratio	P 値
const	0.905716	0.0468994	19.31	0.0000
mocograd	0.0737983	0.0701761	1.052	0.2932
pacograd	-0.105651	0.0357027	-2.959	0.0031
life 15	-0.0284479	0.0170811	-1.665	0.0961
academic 15	-0.00221650	0.0120106	-0.1845	0.8536
books15	-0.0214158	0.00594938	-3.600	0.0003
Mean dependen	t var 0.7429	933 S.D. dep	endent var	0.437210
Sum squared res	sid 210.20	670 S.E. of re	egression	0.432132
R^2	0.027	413 Adjusted	R^2	0.023094
F(5, 1126)	6.347	301 P-value(F)	8.03e-06
Log-likelihood	-653.4	550 Akaike c	riterion	1318.910
Schwarz criterio	n 1349.	101 Hannan-	-Quinn	1330.315

(b) 傾向スコアのヒストグラム

(c) 傾向スコア (0,0.65) の ATE

モデル 1: 最小二乗法 (OLS), 観測: 1–131 従属変数: work

	係数	標準誤差	t-ratio	p値
const	0.509091	0.0670567	7.592	0.0000
mowork15	0.0961722	0.0880381	1.092	0.2767
Mean dependent v	ar 0.5648	885 S.D. d	lependent	var 0.497675
Sum squared resid	31.903	335 回帰の	標準誤差	0.497306
R^2	0.0091	166 Adjus	ted \mathbb{R}^2	0.001485
F(1, 129)	1.1933	323 P-valu	$\operatorname{ie}(F)$	0.276696
Log-likelihood	-93.363	309 Akaik	e criterion	190.7262
Schwarz criterion	196.47	766 Hanna	an–Quinn	193.0628
(0.65, 0.7) の ATE				

傾向スコア (0.65, 0.7) の ATE

モデル 2: 最小二乗法 (OLS), 観測: 1–201 従属変数: work

標準誤差 t-ratio p值

係数

${ m const} \\ { m mowork} 15$			0.0000 0.0609
Mean dependent va	r 0.492537	S.D. dependent	var 0.501193
Sum squared resid	49.35784	回帰の標準誤差	0.498025
R^2	0.017536	Adjusted \mathbb{R}^2	0.012599
F(1, 199)	3.551854	P-value (F)	0.060937
Log-likelihood	-144.0837	Akaike criterion	292.1674
Schwarz criterion	298.7740	Hannan-Quinn	294.8408
傾向スコア (0.7, 0.74) の ATE			

モデル 3: 最小二乗法 (OLS), 観測: 1–129 従属変数: work

	係数	標準誤差	t-ratio	p 値
const	0.545455	0.0754410	7.230	0.0000
mowork15	0.0192513	0.0929379	0.2071	0.8362
Mean dependent va	ar 0.5581	40 S.D. de	ependent	var 0.498544
Sum squared resid	31.803	21 回帰の	標準誤差	0.500419
R^2	0.0003	38 Adjust	$ed R^2$	-0.007534
F(1, 127)	0.0429	08 P-value	e(F)	0.836231
Log-likelihood	-92.727	25 Akaike	$\operatorname{criterion}$	189.4545
Schwarz criterion	195.17	41 Hanna	n–Quinn	191.7785

傾向スコア (0.74, 0.78) の ATE

モデル 4: 最小二乗法 (OLS), 観測: 1–232 従属変数: work

		係数	標準誤差	t-ratio	p 値
	const	0.407407	0.0676600	6.021	0.0000
	mowork15	0.154390	0.0772443	1.999	0.0468
	Mean dependent va	0.5258	862 S.D.	dependent	var 0.500410
	Sum squared resid	56.85'	726 回帰の	D標準誤差	0.497198
	R^2	0.017	073 Adju	sted \mathbb{R}^2	0.012799
	F(1, 230)	3.9949	919 P-val	ue(F)	0.046815
	Log-likelihood	-166.0'	753 Akail	ke criterion	336.1506
	Schwarz criterion	343.04	441 Hann	an-Quinn	338.9307
傾向スコア ((0.78, 0.82) O ATE				
	100000000000000000000000000000000000000				

モデル 5: 最小二乗法 (OLS), 観測: 1–265 従属変数: work

	係数	標準誤差	t-ratio	p値
const	0.627907	0.0756167	8.304	0.0000
mowork15	-0.0648439	0.0826160	-0.7849	0.4332
Mean dependent	var 0.5735	85 S.D. de	pendent va	r 0.495491
Sum squared resid	d 64.663	63 回帰の材	票準誤差	0.495852
R^2	0.0023	37 Adjuste	$\mathrm{ed}\ R^2$	-0.001457
F(1, 263)	0.6160	41 P-value	(F)	0.433229
Log-likelihood	-189.12	34 Akaike	criterion	382.2467
Schwarz criterion	389.40	62 Hannar	–Quinn	385.1233
傾向スコア (0.82,1) の ATE				

モデル 6: 最小二乗法 (OLS), 観測: 1–174 従属変数: work

	係数	標準	售誤差	t-ratio	р値	[
const	0.527778	0.08	14956	6.476	0.000	00
mowork15	0.102657	0.09	15102	1.122	0.263	35
Mean dependent va	ur 0.609	195	S.D. d	ependent	var	0.489339
Sum squared resid	41.12	440	回帰の	標準誤差		0.488974
R^2	0.007	263	Adjust	$ted R^2$		0.001492
F(1, 172)	1.258	457	P-valu	e(F)		0.263507
Log-likelihood	-121.4	018	Akaike	criterion	ı	246.8037
Schwarz criterion	253.1	218	Hanna	n-Quinn		249.3667

3. (a) 単回帰モデル

モデル 1: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

	係数	標準誤差	t-ratio	р値	I
const	0.491409	0.0291013	16.89	0.000	00
mowork15	0.0817183	0.0337627	2.420	0.015	57
Mean dependent v	var 0.5521	120 S.D. d	ependent	var (0.497496
Sum squared resid	278.48	812 回帰の	標準誤差	(0.496431
R^2	0.005	158 Adjust	ted R^2	(0.004277
F(1, 1130)	5.858	194 P-valu	e(F)	(0.015662
Log-likelihood	-812.48	853 Akaike	criterion		1628.971
Schwarz criterion	1639.0	034 Hanna	n–Quinn		1632.772

(b) 重回帰モデル

モデル 2: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

	係	数	楞	準誤差	t-ratio	p 値
const	0.543	209	0.0	622282	8.729	0.0000
mowork15	0.075	6426	0.0	342710	2.207	0.0275
mocograd	0.100	619	0.0	807418	1.246	0.2130
pacograd	-0.032	4454	0.0	412173	-0.7872	0.4313
life15	-0.004	76616	0.0	196673	-0.2423	0.8086
academic 15	-0.009	53486	0.0	138124	-0.6903	0.4901
books15	-0.003	72802	0.0	0688101	-0.5418	0.5881
Mean dependent	var	0.55212	0.	S.D. depe	endent var	0.497496
Sum squared res	id	277.828	39	回帰の標準	準誤差	0.496950
\mathbb{R}^2		0.00748	88	Adjusted	\mathbb{R}^2	0.002194
F(6, 1125)		1.41456	51	P-value(I	7)	0.205617
Log-likelihood	20	-811.157	9	Akaike cr	iterion	1636.316
Schwarz criterion	i	1671.53	8	Hannan-	Quinn	1649.622

(c) 傾向スコアで共変量調整した重回帰モデル

モデル 3: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

	係数	標準誤差	t-ratio	p値
const	0.331259	0.152207	2.176	0.0297
mowork15	0.0756426	0.0342330	2.210	0.0273
yhat1	0.221641	0.206762	1.072	0.2840
Mean dependent v	ar 0.552	120 S.D. d	ependent	var 0.497496
Sum squared resid	278.19	980 回帰の	標準誤差	0.496398
\mathbb{R}^2	0.006	169 Adjust	$\operatorname{red} R^2$	0.004408
F(2, 1129)	3.5040	036 P-valu	e(F)	0.030403
Log-likelihood	-811.90	095 Akaike	criterion	1629.819
Schwarz criterion	1644.9	914 Hanna	n-Quinn	1635.522