

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Быстрое преобразование Фурье»

Студент 315 группы И.А. Кулешов

Руководитель практикума ассистент Ю. Ю. Минаева

Содержание

1	Постановка задачи	3
2	Элементы теории преобразования Фурье	4
	2.1 Важные напоминания	4
	2.2 Вспомогательные преобразования	5
3	Первая функция	6
	3.1 Вычисление аналитического преобразования	6
	3.2 Результат работы	7
	3.3 Эффект наложения спектра	7
4	Вторая функция	9
	4.1 Вычисление аналитического преобразования	9
	4.2 Результат работы	10
	4.3 Рябь	10
5	Третья функция	13
	5.1 Результат работы. Зависимость ошибки от выбора шага	13
6	Четвертая функция	15
	6.1 Результат работы. Зависимость ошибки от выбора окна	15
7	Описание алгоритма работы функици plotFT	17
8	Заключение	18
9	Библиография	19

1 Постановка задачи

Дан набор функций $f(t): \mathbb{R} \to \mathbb{R}$:

$$f_1(t) = e^{-2|t|} \cos(t);$$

$$f_2(t) = \frac{e^{-|t|} - 1}{t};$$

$$f_3(t) = \frac{\arctan(t^2)}{1 + t^4};$$

$$f_4(t) = t^3 e^{-t^4}.$$

Для каждой функции из набора необходимо:

- Получить численную аппроксимацию прямого преобразования Фурье (далее в тексте $\Pi\Pi\Phi$) $\Phi(\lambda)$. Для этого используется алгоритм быстрого преобразования Фурье (далее в тексте $B\Pi\Phi$) и функция Matlab fft;
- Построить графики $\Phi(\lambda)$.

Кроме того, для $f_1(t)$ и $f_2(t)$ из заданного набора нужно аналитически вывести ППФ $F(\lambda)$ и сравнить график аналитического преобразования с графиком $\Phi(\lambda)$. Также требуется проиллюстрировать эффект наложения спектра и появление ряби при некоторой комбинации входных параметров.

Далее в тексте будут фигурировать обозначения параметров функции plotFT для построния графиков:

- f(t) исходная функция;
- $F(\lambda)$ прямое аналитическое преобразование Фурье для f(t);
- $\Phi(\lambda)$ прямое преобразование, полученное с помощью БПФ, для f(t);
- Δ_t шаг дискретизации, задаваемый пользователем;
- [a, b] начальное окно для t;
- Δ_0 длина начального окна [a, b];
- [c,d] окно для $\Pi\Pi\Phi$.

2 Элементы теории преобразования Фурье

2.1 Важные напоминания

Все используемые в данном подразделе свойства, леммы и тождества были доказаны в [1].

Выпишем формулу для аналитического прямого преобразования Фурье:

$$F(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt.$$
 (1)

Далее 1 будем записывать как:

$$f(t) \to F(\lambda)$$
.

Вспомним несколько свойств:

1. Линейность:

Пусть:

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t), \ u \begin{cases} f_1(t) \to F_1(\lambda) \\ f_2(t) \to F_2(\lambda), \end{cases}$$

тогда:

$$F(\lambda) \to \alpha \cdot F_1(\lambda) + \beta \cdot F_2(\lambda).$$

- 2. У четных функций $\Pi\Pi\Phi$ действительно, у нечетных есть только мнимая часть.
- 3. Произведение исходных функций обращается в свертку ППФ: Пусть:

$$f(t) = f_1(t) \cdot f_2(t), \ u \begin{cases} f_1(t) \to F_1(\lambda) \\ f_2(t) \to F_2(\lambda), \end{cases}$$

тогда:

$$F(\lambda) \to \frac{1}{2\pi} (F_1 * F_2)(\lambda), \quad \text{ide } (F_1 * F_2)(\lambda) = \int\limits_{-\infty}^{+\infty} \left[F_1(\lambda - \tau) \cdot F_2(\tau) \right] d\tau.$$

4. Свертка дельта - функции с произвольной функцией $\phi(t)$:

$$(\delta * \phi)(t_0) = \int_{-\infty}^{+\infty} \left[\delta(t_0 - \tau) \cdot \phi(\tau) \right] d\tau = \phi(t_0).$$

5. Также было доказно, что шаг дискретизации для ППФ равен $\frac{2\pi}{\Delta_0}$, а размер окна $-\frac{2\pi}{\Delta_t}$.

Вспомним несколько преобразований:

$$\delta(t) \to 1;$$
 (2)

$$1 \to 2\pi\delta(\lambda); \tag{3}$$

$$e^{iat} \to 2\pi\delta(\lambda - a).$$
 (4)

2.2 Вспомогательные преобразования

Из 4 очевидно следует, что

$$\cos(t) = \frac{e^{it} + e^{-it}}{2} \to \pi(\delta(\lambda - 1) + \delta(\lambda + 1)). \tag{5}$$

Также найдем преобразование для функции $\frac{1}{t}$:

$$F(\lambda) = \int_{-\infty}^{+\infty} \frac{1}{t} e^{-i\lambda t} dt.$$

Разбив интеграл аналитического продолжения исходной функции в комплексной плоскости на 4 части и, воспользовавшись леммой Жордана, получим 1 :

$$\frac{1}{t} \to -i\pi \operatorname{sgn}(\lambda). \tag{6}$$

Рассмотрим, преобразование для функции $Ae^{-B|t|}$:

$$F(\lambda) = \int_{-\infty}^{+\infty} Ae^{-B|t|-i\lambda t} dt = \int_{-\infty}^{0} Ae^{Bt-i\lambda t} dt + \int_{0}^{+\infty} Ae^{-Bt-i\lambda t} dt = \frac{Ae^{B-i\lambda t}}{B-i\lambda} \bigg|_{-\infty}^{0} - \frac{Ae^{-B-i\lambda t}}{B+i\lambda} \bigg|_{0}^{+\infty} = \frac{Ae^{B-i\lambda t}}{B-i\lambda} \bigg|_{0}^{0} = \frac{Ae^{B-i\lambda t}}{B+i\lambda} \bigg|_{0}^{0} = \frac{Ae^{B-i\lambda t}}{Ae^{B-i\lambda}} \bigg|_{0}^{0} = \frac{Ae^{B-i\lambda t}}{B+i\lambda} \bigg|_{0}^{0} =$$

$$= \frac{A}{B - i\lambda} + \frac{A}{B + i\lambda}.$$

Следовательно,

$$Ae^{-B|t|} \to \frac{2AB}{B^2 + \lambda^2}.\tag{7}$$

 $^{^{1}}$ Подробные выкладки можно посмотреть [2, стр. 137].

3 Первая функция

$$f_1(t) = e^{-2|t|} \cos(t).$$

3.1 Вычисление аналитического преобразования

Заметим, что $f_1(t) = h(t) \cdot g(t)$, где $h(t) = e^{-2|t|} u g(t) = \cos(t)$. Значит, из (7), (5), свойства о перемножении исходных функций и свойства сверки с дельта-функцией, следует:

$$F_1(\lambda) = \int_{-\infty}^{+\infty} e^{-2|t| - i\lambda t} \cos(t) dt,$$

$$h(t) \to \frac{4}{4 + \lambda^2} = H(\lambda),$$

$$g(t) \to \pi(\delta(\lambda - 1) + \delta(\lambda + 1)) = G(\lambda),$$

$$F_1(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{4}{4 + \tau^2} \cdot \pi(\delta(\lambda - \tau - 1) + \delta(\lambda - \tau + 1)) d\tau =$$

3.2 Результат работы

Рассмотрим результат работы функции plotFT:

1.
$$\Delta_t = 0.001$$
; $[a, b] = [-20, 20]$; $[c, d] = [-6, 6]$.

Рис. 1: ППФ Фурье для первой функции для симметричного окна

Полученное преобразование очень близко к аналитическому. Так как исходная функция четная, то мнимая часть ППФ должна быть равна нулю, что можно увидеть на рис. 1. 2

3.3 Эффект наложения спектра

На примере этой функции можно очень наглядно продемонстрировать интересный эффект, связанный с принципом работы БПФ. Мы знаем, что численная приближение $\Phi(\lambda)$ выглядит как поточечная сумма бесконечного числа аналитических преобразований сдвинутых друг относительно друга на $\frac{2\pi}{\Delta t}$. Соответственно, если носители аналитических имеют пересечения между собой то их сумма будет больше достоверного преобразования.

Из [1] известно, что для функций с компактным носителем (т.е. для $F(\lambda)$ существует такое Λ , при котором $F(\lambda)=0$, если $|\lambda|\geqslant \frac{\Lambda}{2}$) можно подобрать такое маленькое Δ_t , что эффект не будет проявляться. Для этого необходимо, чтобы выполнялось соотношение $\frac{\pi}{\Delta_t}\geqslant \frac{\Lambda}{2}$. Частота $\frac{2\pi}{\Lambda}$ называется uacmomot Hatkeucma.

 $^{^2}$ На этом рисунке, как и далее, аналитическое преобразование отмечено красным пунктиром, а численное приближение — сплошной синей линией.

1. $\Delta_t = 1$; [a, b] = [-30, 30]; [c, d] = [-9, 9]

Рис. 2: Эффект наложения спектра для первой функции

Рассматриваемая функция компактного носителя не имеет, но проявление эффекта наложения спектра можно сделать незначительным при достаточно малом шаге.

2.
$$\Delta_t = 0.4$$
; $[a, b] = [-30, 30]$; $[c, d] = [-9, 9]$

Рис. 3: Эффект наложения спектра при уменьшении шага

4 Вторая функция

$$f_2(t) = \frac{e^{-|t|} - 1}{t}.$$

4.1 Вычисление аналитического преобразования

Заметим, что $f_2(t) = h(t) \cdot g(t)$, где $h(t) = e^{-|t|} - 1$ u $g(t) = \frac{1}{t}$. Значит, из (7), (6) и свойств преобразования Фурье, следует:

$$F_2(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt,$$

$$F_2(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\frac{2}{1 + (\lambda - \tau)^2} - 2\pi \delta(\lambda - \tau) \right) \cdot (-i\pi \operatorname{sgn}(\lambda)) d\tau =$$

$$= i\pi \operatorname{sgn}(\lambda) + i \int_{-\infty}^{\lambda} \frac{1}{1+\tau^2} d\tau - i \int_{\lambda}^{\infty} \frac{1}{1+\tau^2} d\tau = i(\pi \operatorname{sgn}(\lambda) - 2 \operatorname{arctg}(\lambda)),$$

$$F_2(\lambda) = i(\pi \operatorname{sgn}(\lambda) - 2 \operatorname{arctg}(\lambda)).$$

Можно увидеть, что исходная функция и ее преобразование имеют разрыв в точке 0.

4.2 Результат работы

Рассмотрим результат работы функции plotFT:

1.
$$\Delta_t = 0.01$$
; $[a, b] = [-30, 30]$; $[c, d] = [-2\pi, 2\pi]$.

Рис. 4: ППФ Фурье для второй функции

Так как исходная функция нечетная, то действительная часть $\Pi\Pi\Phi$ должна быть равна нулю, что можно увидеть на рис. 4.

4.3 Рябь

На рис. 4 заметно, что численное прибижение не совсем точно совпадает с аналитическим преобразованием. Это проявление эффекта Гиббса, также называемого рябью. В [1] была приведена теорема, гласящая, что при определенных Δ_0 , зависящих от преобразуемой функции, рябь в точках непрерывности можно сделать сколь угодно малой. Это видно на рис. 5.

Формула для оценки этого окна приводиться в данном отчете не будет в виду большого объема сопутствующих выкладок.

Избавиться же от ряби в точках разырыва не представляется возможным. Величина ошибки ряби при несимметричном окне:

$$I = \int_{-\infty}^{+\infty} \left[F(\lambda - \mu) e^{-i\mu t_0} - F(\lambda) e^{-i\mu t_0} \right] \frac{\sin \frac{\Delta_0 \mu}{2}}{\pi \mu} d\mu.$$

Неточности в точке разрыва получии название рожек Гиббса.

Также необходимо отметить, что при несимметричности окна рябь может переползать с ненулевой в данном случае мнимой части на действительную. Это связанно со сдвигом оконной функции:

$$h_{\Delta_0}(t) = \begin{cases} 1, & |t| \leqslant \frac{\Delta_0}{2} \\ 0, & |t| > \frac{\Delta_0}{2} \end{cases},$$

$$h_{\Delta_0}^*(t) = h_{\Delta_0}(t - t_0),$$

$$H_{\Delta_0}(\lambda) = \frac{2}{\lambda} \operatorname{sync}(\frac{\Delta_0 \lambda}{2}),$$

$$H_{\Delta_0}^*(\lambda) = e^{-i\lambda t_0} H_{\Delta_0}(\lambda). \tag{8}$$

Здесь $h_{\Delta_0}(t)$ и $H_{\Delta_0}(\lambda)$ — оконная функция и её ППФ, $h_{\Delta_0}^*(t)$, $H_{\Delta_0}^*(\lambda)$ — их сдвинутые аналоги, а t_0 — величина сдвига оконной функции.

Как мы видим из (8), чисто мнимое в нашем случае $\Pi\Pi\Phi$ домножается на $e^{-i\lambda t_0}$, который провоцирцует появление еще и действительной части $\Pi\Pi\Phi$, забирающей часть ошибки на себя.

1. $\Delta_t = 0.001$; [a, b] = [-100, 100]; $[c, d] = [-2\pi, 2\pi]$.

Рис. 5: Эффект ряби для второй функции

При несимметричном окне рябь действительно переползает на действительную часть, что видно на рис. 6.

2. $\Delta_t = 0.001$; [a, b] = [-90, 10]; $[c, d] = [-2\pi, 2\pi]$.

Рис. 6: Эффект ряби для второй функции при несимметричном окне

5 Третья функция

$$f_3(t) = \frac{\arctan(t^2)}{1 + t^4}.$$

5.1 Результат работы. Зависимость ошибки от выбора шага

На примере третьей функции продемострируем, как шаг может влиять на величину ошибки. При некоторых величинах шага, у нас выходит четное и нечетное количество точек в дискретизации исходной функции. В реализации plotFT используются функции Matlab fft, circshift. Для точной работы fft необходимо, чтобы нулевой отсчет находился в нуле, поэтому нужно немного сдвинуть исходное окно. При этом окно будет уже не совсем симметричным и поэтому ошибка будет немного больше, чем при нечетном числе точек дискретизаци.

1.
$$\Delta_t = 0.001$$
; $[a, b] = [-30, 30]$; $[c, d] = [-10, 10]$.

Рис. 7: Демонстрация №1 зависимости ошибки от выбора шага

Как видно на рис. 8 при четном числе точек разбиения, ошибка, вызванная малой несимметричностью окна все равно отличется от ошибки для рис. 7.

2. $\Delta_t = 0.0011$; [a, b] = [-30, 30]; [c, d] = [-10, 10].

Рис. 8: Демонстрация N2 зависимости ошибки от выбора шага

6 Четвертая функция

$$f_4(t) = t^3 e^{-t^4}.$$

6.1 Результат работы. Зависимость ошибки от выбора окна

На примере четвертой функции продемнострируем, как размер окна может влиять на гладкость $\Pi\Pi\Phi$.

1. $\Delta_t = 0.001$; [a, b] = [-5, 1]; [c, d] = [-10, 10].

Рис. 9: Демонстрация №1 зависимости гладкости ППФ от размера окна

Как видно на рис. 10 при увеличении размера окна ППФ становится куда более гладким, чем на рис. 9. Это объясняется частотой дискретизации ППФ, равной $\frac{2\pi}{\Delta_0}$.

2. $\Delta_t = 0.001$; [a, b] = [-50, 100]; [c, d] = [-10, 10].

Рис. 10: Демонстрация №2 зависимости гладкости ППФ от размера окна

7 Описание алгоритма работы функици plotFT

После подготовительной работы, у нас есть сетка \mathbb{N}^1 из точек отрезка [a,b] с шагом Δ_t . Мы знаем, что для корректной работы fft необходимо, чтобы нулевой отсчет находился в нуле. У нас есть два варианта:

- 1. В сетке №1 есть точка 0. Тогда сетка №2 совпадает с сеткой №1.
- 2. Если точка ноль не пренадлежит первой сетке, то мы можем найти самый близкий к нулю элемент и сдвинуть сетку N1 на эту величину. Получим сетку N2.

Вычислим значение исходной функции на сетке №2. Теперь у нас точно есть значение функции в нуле. Из-за вышеуказанных особенностей ft, мы выберем ту периодическую часть исходной функции, которая лежит на отрезке $[0, \Delta_0]$.

Технически мы реализуем это при помощи функции circshift, сдвинув значения функции на сетке N⁰2 влево на величину offset, равную:

- ullet $\frac{|a|}{\Delta_t}$, если в сетке нечетное число точек,
- $\frac{|a|}{\Delta_t}$ -1, если в сетке четное число точек.

Теперь мы можем применить функцию fft к полученным на $[0, \Delta_0]$ значениям функции. Результат работы fft будет приведен на отрезке $\left[0, \frac{2\pi}{\Delta_t}\right]$. Из [1] мы знаем, что ППФ также будет периодическим. Исходную функцию мы домножили на гребенкус шагом Δ_t , поэтому ППФ полученное преобразование будет свернуто с гребенкой, но другим шагом, а значит, что ППФ будут повторяться с периодичностью $\frac{2\pi}{\Delta_t}$. Поэтому мы можем получить ППФ на отрезке $\left[\frac{-\pi}{\Delta_t}, \frac{\pi}{\Delta_t}\right]$ поставив правую половину полученного нами на $\left[0, \frac{2\pi}{\Delta_t}\right]$ преобразования с левой стороны от оставшейся части численной аппроксимации. Для этого мы воспользуемся функцией fftshift.

После этого мы строим графики действительной и мнимой части полученного нами преобразования.

8 Заключение

В ходе работы мы пронаблюдали эффекты наложения спектра и эффект ряби, порождающие ошибки при использовании БПФ. В данном отчете указаны возможные методы борьбы с каждым из этих явлений.

С вычислительной точки зрения алгоритм БПФ очень хорош, поскольку снижает сложность вычислений с $O(N^2)$ до $O(N \log N)$.

9 Библиография

Список литературы

- [1] И. В. Рублев Лекции по преобразованиям Лапласа-Фурье, 2018.
- [2] А. Г. Свешников, А. Н. Тихонов *Теория функций комплексной переменной* из серии «Курс высшей математики и математической физики», выпуск 4.