Semantic Role Labeling Tutorial: Part 2 Supervised Machine Learning methods

Shumin Wu

SRL on Constituent Parse

SRL on Dependency Parse

SRL Supervised ML Pipeline

Pruning Algorithm [Xue, Palmer 2004]

- For the predicate and each of its ancestors, collect their sisters unless the sister is *coordinated* with the predicate
- If a sister is a PP also collect its immediate children

ML for Argument Identification/Labeling

- I. Extract features from sentence, syntactic parse, and other sources for each candidate constituent
- 2. Train statistical ML classifier to identify arguments
- 3. Extract features same as or similar to those in step I
- 4. Train statistical ML classifier to select appropriate label for arguments
 - SVM, Linear (MaxEnt, LibLinear, etc), structured (CRF) classifiers
 - All vs one, pairwise, structured multi-label classification

Commonly Used Features: Phrase Type

- Intuition: different roles tend to be realized by different syntactic categories
- For dependency parse, the dependency label can serve similar function
- Phrase Type indicates the syntactic category of the phrase expressing the semantic roles
- Syntactic categories from the Penn Treebank
- FrameNet distributions:
 - ▶ NP (47%) noun phrase
 - ▶ PP (22%) prepositional phrase
 - ▶ ADVP (4%) adverbial phrase
 - ▶ PRT (2%) particles (e.g. make something *up*)
 - ▶ SBAR (2%), S (2%) clauses

Commonly Used Features: Phrase Type

Features: Governing Category

- Intuition: There is often a link between semantic roles and their syntactic realization as subject or direct object
- He drove the car over the cliff
 - Subject NP more likely to fill the agent role
- Approximating grammatical function from parse
 - Function tags in constituent parses (typically not recovered in automatic parses)
 - Dependency labels in dependency parses

Features: Governing Category

Features: Parse Tree Path

- Intuition: need a feature that factors in relation to the target word.
- Feature representation: string of symbols indicating the up and down traversal to go from the target word to the constituent of interest
- ▶ For dependency parses, use dependency path

Features: Parse Tree Path

Frequency	Path	Description	
14.2%	VB↑VP↓PP	PP argument/adjunct	
11.8	VB↑VP↑S↓NP	subject	
10.1	VB↑VP↓NP	object	
7.9	VB↑VP↑VP↑S↓NP	subject (embedded VP)	
4.1	VB↑VP↓ADVP	adverbial adjunct	
3.0	NN↑NP↑NP↓PP	prepositional complement of noun	
1.7	VB↑VP↓PRT	adverbial particle	
1.6	VB↑VP↑VP↑S↓NP	subject (embedded VP)	
14.2		no matching parse constituent	
31.4	Other	none	

Features: Parse Tree Path

Issues:

- Parser quality (error rate)
- Data sparseness
 - ▶ 2978 possible values excluding frame elements with no matching parse constituent
 - □ Compress path by removing consecutive phrases of the same type, retain only clauses in path, etc
 - ▶ 4086 possible values including total of 35,138 frame elements identifies as NP, only 4% have path feature without VP or S ancestor [Gildea and Jurafsky, 2002]

Features: Subcategorization

- List of child phrase types of the VP
 - highlight the constituent in consideration
- Intuition: Knowing the number of arguments to the verb constrains the possible set of semantic roles
- For dependency parse, collect dependents of predicate

Features: Position

- Intuition: grammatical function is highly correlated with position in the sentence
 - Subjects appear before a verb
 - Objects appear after a verb
- Representation:
 - ▶ Binary value does node appear before or after the predicate

Features: Voice

- Intuition: Grammatical function varies with voice
 - Direct objects in active ⇔ Subject in passive
 He slammed the door.
 The door was slammed by him.
- Approach:
 - Use passive identifying patterns / templates (language dependent)
 - ▶ Passive auxiliary (to be, to get), past participle
 - bei construction in Chinese

Features: Tree kernel

 Compute sub-trees and partial-trees similarities between training parses and decoding parse

Features: Tree kernel

- Does not require exact feature match
 - Advantage when training data is small (less likely to have exact feature match)
- Well suited for kernel space classifiers (SVM)
 - All possible sub-trees and partial trees do not have to be enumerated as individual features
 - Tree comparison can be made in polynomial time even when the number of possible sub/partial trees are exponential

More Features

- Head word
 - Head of constituent
- Name entities
- Verb cluster
 - Similar verbs share similar argument sets
- First/last word of constituent
- Constituent order/distance
 - Whether certain phrase types appear before the argument
- Argument set
 - Possible arguments in frame file
- Previous role
 - Last found argument type
- Argument order
 - Order of arguments from left to right

Nominal Predicates

Verb predicate annotation doesn't always capture fine semantic details:

Arguments of Nominal Predicates

 Can be harder to classify because arguments are not as well constrained by syntax

- Find the "supporting" verb predicate and its argument candidates
 - Usually under the VP headed by the verb predicate and is part of an argument to the verb

Structural Inference

- ▶ Take advantage of predicate-argument structures to re-rank argument label set
 - Arguments should not overlap

Numbered arguments (arg0-5) should not repeat

R-arg[type] and C-arg[type] should have an associated arg[type]

Structural Inference Methods

- Optimize log probability of label set $(\sum_{i=1}^{n} \log(p(A_i))/n)$
 - Beam search
 - Formulate into integer linear programming (ILP) problem
- Re-rank top label sets that conform to constraints
 - Choose n-best label sets
 - Train structural classifier (CRF, etc)

SRL ML Notes

- Syntactic parse input
 - Training parse accuracy needs to match decoding parse accuracy
 - ▶ Generate parses via cross-validation
 - Cross-validation folds needs to be selected with low correlation.
 - Training data from the same document source needs to be in the same fold
- Separate stages of constituent pruning, argument identification and argument labeling
 - Constituent pruning and argument identification reduce training/decoding complexity, but usually incurs a slight accuracy penalty

Linear Classifier Notes

- Popular choices: LibLinear, MaxEnt, RRM
- Perceptron model in feature space
 - each feature; contributes positively or negatively to a label;

$$L_i = sign(w_{i,0} + \sum_{i} f_j w_{i,j})$$

How about position and voice features for classifying the agent?

He slammed the door.

The door was slammed by **him**.

- Position (left): positive indicator since active construction is more frequent
- Voice (active): weak positive indicator by itself (agent can be omitted in passive construction)
- Combine the 2 features as a single feature
 - left-active and right-passive are strong positive indicators
 - left-passive and right-active are strong negative indicators

Support Vector Machine Notes

- Popular choices: LibSVM, SVM^{light}
- Kernel space classification (linear kernel example)
 - The correlation (c_j) of the features of the input sample with each training $sample_j$ contributes positively or negatively to a $label_j$

$$L_i = sign(w_{i,0} + \sum_j c_j w_{i,j})$$

- Creates $n \times n$ dense correlation matrix during training (n is the size of training samples)
 - Requires a lot of memory during training for large corpus
 - ▶ Use a linear classifier for argument identification
 - Train base model with a small subset of samples, iteratively add a portion of incorrectly classified training samples and retrain
 - Decoding speed not as adversely affected
 - Trained model typically only has a small number of "support vectors"
- Tend to perform better when training data is limited

Evaluation

- Precision percentage of labels output by the system which are correct
- Recall recall percentage of true labels correctly identified by the system
- F-measure, F_beta harmonic mean of precision and recall

$$F = \frac{2PR}{P+R}$$

$$F_{\beta} = \frac{(1+\beta^2)PR}{\beta^2 P + R}$$

Evaluation

- ▶ Lots of choices when evaluating in SRL:
 - Arguments
 - ► Full span (CoNLL-2005)
 - ► Headword only (CoNLL-2008)
 - Predicates
 - ► Given (CoNLL-2005)
 - System Identifies (CoNLL-2008)
 - Verb and nominal predicates (CoNLL-2008)

Evaluation

Gold Standard Labels	SRL Output	Full	Head
Arg0: John	Arg0: John	+	+
Rel: mopped	Rel: mopped	+	+
Argl: the floor	Argl: the floor	+	+
Arg2: with the dress Thailand	Arg2: with the dress	-	+
Arg0: Mary	Arg0: Mary	+	+
Rel: bought	Rel: bought	+	+
Argl: the dress	Argl: the dress	+	+
Arg0: Mary		-	-
rel: studying		-	-
Argm-LOC: in Thailand		-	-
Arg0: Mary	Arg0: Mary	+	+
Rel: traveling	Rel: traveling	+	+
Argm-LOC: in Thailand		-	-

John mopped the floor with the dress Mary bought while studying and traveling in Thailand.

Evaluated on Full Arg Span

Precision

P = 8 correct / 10 labeled = 80.0%

Recall

R = 8 correct / 13 possible = 61.5%

F-Measure

 $F = P \times R = 49.2\%$

Evaluated on Head word Arg

Precision

P = 9 correct / 10 labeled = 90.0%

Recall

R = 9 correct / 13 possible = 69.2%

F-Measure

 $F = P \times R = 62.3\%$

Applications

Question & answer systems

Multilingual Applications

sentence

Machine translation generation/evaluation ARG0 ARG2 ARG1 批 布希 指 他 创造了新 邪恶 src: 民主党 Democratic party Bush point shaft blame evil create new ARG1 ARG0 ARG0 ARG1 ARG1 ARG2 ARG0 ref: democrats criticized bush for creating a new axis of evil Much ARG1 ARG0 better ref 0.0 **4-tuple** SRL match **BLEU** score ARG2 ARG1 ARG0 MT1: the democratic party criticized bush that he created a new evil axis ARG1 ARG0 Good src 0.32 4-tuple SRL match **BLEU** score MT2: the democratic party group george w. bush that he created a new axis of evil Missing verb, ARG1 ARG0 V ungrammatical

31

Multilingual Applications

- Identifying/recovering implicit arguments across language
 - Chinese dropped pronoun

SRL Training Data, Parsers

Training Data (Treebank and PropBank):

LDC

http://www.ldc.upenn.edu/

Parsers:

Collins Parser

http://people.csail.mit.edu/mcollins/code.html

Charniak Parser

http://cs.brown.edu/people/ec/#software

Berkeley Parser

http://code.google.com/p/berkeleyparser/

Stanford Parser (includes dependency conversion tools)

http://nlp.stanford.edu/downloads/lex-parser.shtml

ClearNLP (dependency parser and labeler, Apache license)

https://code.google.com/p/clearnlp/

Some SRL systems on the Web

Constituent Based SRL:

- ASSERT
 - one of the top CoNLL-2005 system, extended to C-ASSERT for Chinese SRL)

http://cemantix.org/software/assert.html

- Senna (GPL license)
 - fast implementation in C

http://ml.nec-labs.com/senna/

- SwiRL
 - one of the top CoNLL-2005 system

http://www.surdeanu.info/mihai/swirl/

- UIUC SRL Demo
 - based on the top CoNLL-2005 system w/ ILP argument set inference

http://cogcomp.cs.illinois.edu/demo/srl/

Dependency Based SRL:

- ClearNLP (dependency parser and labeler, Apache license)
 - state-of-the-art dependency based SRL (comparable to top CoNLL-2008 system)
 - models for OntoNotes and medical data, actively maintained

https://code.google.com/p/clearnlp/

References

- A. Berger, S. Della Pietra and V. Della Pietra, A Maximum Entropy approach to Natural Language Processing. Computational Linguistics, 1996
- X. Carreras and Lluis Marquez, Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling. http://www.lsi.upc.edu/~srlconll/st05/st05.html, 2005
- C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011
- J. D. Choi, M. Palmer, and Ni Xue. Using parallel propbanks to enhance word-alignments. ACL-LAW, 2009
- J. D. Choi, Optimization of Natural Language Processing Components for Robustness and Scalability, Ph.D. Thesis, CU Boulder, 2012.
- R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. Journal of Machine Learning Research, 2008
- P. Fung, Z. Wu, Y. Yang, and D.Wu. Automatic learning of chinese-english semantic structure mapping. ACL-SLT, 2006.
- P. Fung, Z. Wu, Y. Yang, and D.Wu. Learning bilingual semantic frames: Shallow semantic parsing vs. semantic role projection. TMI, 2007
- D Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational Linguistics, 2002
- R. Johansson and P. Nugues. Extended Constituent-to-dependency Conversion for English. NODALIDA 2007, 2007.
- C. Lo and D.Wu. Meant: An inexpensive, high-accuracy, semi-automatic metric for evaluating translation utility via semantic frames. ACL-HLT, 2011
- A. Moschitti, D. Pighin, and R. Basili. Tree kernels for semantic role labeling. Computational Linguistics, 2008
- V. Punyakanok, D. Roth and Wen-tau Yih. The Importance of Syntactic Parsing and Inference in Semantic Role Labeling. Computational Linguistics, 2008
- S. Pradhan, W. Ward and J. H. Martin. Towards Robust Semantic Role Labeling. Computational Linguistics, 2008
- M. Surdeanu and J. Turmo. 2005. Semantic role labeling using complete syntactic analysis. CoNLL-2005 shared task, 2005.
- K. Toutanova, A. Haghighi and C. Manning. A Global Joint Model for Semantic Role Labeling. Computational Linguistics, 2008
- Joint Parsing of Syntactic and Semantic Dependencies. http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:description, 2008
- Dekai Wu and Pascale Fung. Semantic roles for smt: A hybrid two-pass model. NAACL-HLT, 2009
- S. Wu, J. D. Choi and M. Palmer. Detecting cross-lingual semantic similarity using parallel propbanks. AMTA, 2010.
- S. Wu and M. Palmer. Semantic Mapping Using Automatic Word Alignment and Semantic Role Labeling. ACL-SSST5, 2011