${ \begin{array}{c} {\rm UPMC/master/info/4I503~APS} \\ {\rm Formulaire} \end{array} }$

P. Manoury

Janvier 2018

${\bf Contents}$

1	\mathbf{AP}	S0		3
	1.1	Syntax	axe	. 3
		1.1.1	Lexique	. 3
		1.1.2	Grammaire	. 3
	1.2	Typag	ge	. 3
		1.2.1	Contextes de typage	. 3
		1.2.2	Jugements de typages	. 4
		1.2.3	Expressions	. 4
		1.2.4	Instruction	. 4
		1.2.5	Déclarations	. 5
		1.2.6	Suite de commandes	. 5
		1.2.7	Programme	. 5
	1.3	Séman	ntique	. 5
		1.3.1	Domaines	. 5
		1.3.2	Opérations sémantiques	. 5
		1.3.3	Relations sémantiques	. 6
		1.3.4	Expressions	. 6
		1.3.5	Instruction	. 6
		1.3.6	Déclaration	. 7
		1.3.7	Suite de commandes	. 7
		1.3.8	Programme	. 7
_		.		
2	AP			7
	2.1		xe	
		2.1.1	Lexique	
	2.2	2.1.2	Grammaire	
	2.2	Typag		
		2.2.1	Déclarations	
		2.2.2	Instructions	
	2.3		ntique	
		2.3.1	Domaines sémantiques	
		2.3.2	Opérations sémantiques	
		2.3.3	Relations sémantiques	
		2.3.4	Expressions	
		2.3.5	Déclarations	
		2.3.6	Instructions	
		2.3.7	Suite de commandes	. 10

2.3.8	Bloc	10
2.3.9	Programme	1(

1 APS0

1.1 Syntaxe

1.1.1 Lexique

```
Symboles réservés [\ ] ( ) ; , * ->
```

Mots clef

```
CONST FUN REC ECHO bool int true false not and or eq lt add sub mul div
```

Constantes numériques num défini par ('-'?)['0'-'9']+

Identificateurs ident défini par $(['a'-'z''A'-'Z'])(['a'-'z''A'-'Z''0'-'9'])^*$ dont on exclut les mots clef.

- oprim l'ensemble de mots clef: not and or eq lt add sub mul div
- tprim l'ensemble de mots clefs bool int

Séparateurs: l'espace, la tabulation, le passage à la ligne et le retour chariot.

1.1.2 Grammaire

```
Prog
             [ CMDS ]
        ::=
CMDS
             STAT
        ::=
             Dec; Cmds
             \operatorname{STAT} ; \operatorname{CMDS}
Type
        ::=
             tprim
             ( Types -> Type )
         Types
             Type
        ::=
             Type * Types
         Arg
        ::=
             ident : TYPE
ARGS
             Arg
        ::=
         ARG, ARGS
Dec
             CONST ident Type Expr
        ::=
             FUN ident Type [ Args ] Expr
             FUN REC ident Type [ Args ] Expr
Stat
             ECHO EXPR
        ::=
             bool | num | ident
EXPR
              ( if EXPR EXPR EXPR )
              ( oprim EXPRS )
              [ Args ] Expr
             (EXPR EXPRS)
EXPRS
        ::=
             EXPR
             EXPR EXPRS
```

1.2 Typage

1.2.1 Contextes de typage

- $sym = bool \cup oprim \cup ident$

- $G = \operatorname{sym} \to \operatorname{Type}$
- Extension
 - $-\Gamma[x:t](x) = t$
 - $-\Gamma[x:t](y) = \Gamma(y)$ lorsque x et y sont des symboles différents.

Abréviation: $\Gamma[x_1:t_1;\ldots;x_n:t_n]$ pour $\Gamma[x_1:t_1]\ldots[x_n:t_n]$. Contexte initial:

 $\Gamma_0(\mathtt{true})$ bool $\Gamma_0(\mathtt{false})$ =bool $\Gamma_0(\mathtt{not})$ = bool -> bool $\Gamma_0(\text{and})$ = bool * bool -> bool $\Gamma_0(\mathtt{or})$ = bool * bool -> bool $\Gamma_0(\mathsf{eq})$ = int * int -> bool $\Gamma_0(\mathtt{lt})$ = int * int -> bool $\Gamma_0(\text{add})$ = int * int -> int $\Gamma_0(\mathtt{sub})$ = int * int -> int $\Gamma_0(\mathtt{mul})$ = int * int -> int $\Gamma_0(\mathtt{div})$ int * int -> int

1.2.2 Jugements de typages

- Commande vide: ε
- Suites de commandes terminées par la commande vide : $\mathtt{CMDS}_{\varepsilon}$

	Symbole	Domaine	Notation
Programme	-	$PROG \times \{void\}$	$\vdash p : void$
Suite de commande	$\vdash_{\scriptscriptstyle{\mathrm{C}^{\scriptscriptstyle{\mathrm{MDS}}}}}$	$G \times \mathrm{CMDS}_{\varepsilon} \times \{void\}$	$\Gamma \vdash_{Cmds} cs : void$
Déclarations	$\vdash_{ ext{Dec}}$	$G imes \mathrm{Dec} imes G$	$\Gamma \vdash_{\scriptscriptstyle{\mathrm{DEC}}} d : \Gamma'$
Instruction	$\vdash_{\scriptscriptstyle{ ext{STAT}}}$	$G \times \text{Stat} \times \{void\}$	$\Gamma \vdash_{\scriptscriptstyle{\mathtt{STAT}}} s : void$
Expression	$\vdash_{\scriptscriptstyle{\mathrm{Expr}}}$	$G \times \text{Expr} \times \text{Type}$	$\Gamma \vdash_{\scriptscriptstyle{EXPR}} e : t.$

1.2.3 Expression

- (NUM) si $n \in \text{num alors } \Gamma \vdash_{\text{Expr}} n : \text{int}$
- (SYM) si $x \in \text{sym et si } \Gamma(x) = t \text{ alors } \Gamma \vdash_{\text{expr}} x : t$
- (ABS) si $\Gamma[x_1:t_1;\ldots;x_n:t_n] \vdash_{\text{EXPR}} e:t \text{ alors } \Gamma \vdash_{\text{EXPR}} [x_1:t_1,\ldots,x_n:t_n]e:t_1 * \ldots * t_n \rightarrow t$
- (APP) si $\Gamma \vdash_{\text{EXPR}} e_1 : t_1, \ldots$ si $\Gamma \vdash_{\text{EXPR}} e_n : t_n$ et si $\Gamma \vdash_{\text{EXPR}} e : t_1 * \ldots * t_n \rightarrow t$ alors $\Gamma \vdash_{\text{EXPR}} (e \ e_1 \ldots e_n) : t$
- (IF) si $\Gamma \vdash_{\text{EXPR}} e_1$: bool, si $\Gamma \vdash_{\text{EXPR}} e_2 : t \text{ et si } \Gamma \vdash_{\text{EXPR}} e_3 : t$ alors $\Gamma \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$): t

1.2.4 Instruction

(ECHO) si $\Gamma \vdash_{\text{EXPR}} e$: int alors $\Gamma \vdash_{\text{STAT}} (\text{ECHO } e)$: void

1.2.5 Déclaration

```
({\tt CONST}) \ \ {\tt si} \ \ \Gamma \vdash_{\tt Expr} e: t \ \ {\tt alors} \ \ \Gamma \vdash_{\tt Dec} ({\tt CONST} \ x \ t \ e): \Gamma[x:t]
```

$$\begin{array}{c} (\text{FUN}) \ \text{si} \ \Gamma[x_1:t_1;\ldots;x_n:t_n] \vdash_{\text{expr}} e:t \\ \text{alors} \ \Gamma \vdash_{\text{Dec}} (\text{FUN} \ x \ t \ [x_1:t_1\texttt{,}\ldots\texttt{,}x_n:t_n] \ e):\Gamma[x:t_1\texttt{*}\ldots\texttt{*} \ t_n \ -> \ t] \end{array}$$

1.2.6 Suite de commandes

(DECS) si
$$d \in$$
 DEC, si $\Gamma \vdash_{\text{DEC}} d : \Gamma'$ et si $\Gamma' \vdash_{\text{CMDS}} cs : void alors $\Gamma \vdash_{\text{CMDS}} (d; cs) : void.$
(STATS) si $s \in$ STAT, si $\Gamma \vdash_{\text{STAT}} s : void$ et si $\Gamma \vdash_{\text{CMDS}} cs : void$ alors $\Gamma \vdash_{\text{CMDS}} (s; cs) : void.$
(END) $\Gamma \vdash_{\text{CMDS}} \varepsilon : void.$$

1.2.7 Programme

(PROG) si
$$\Gamma_0 \vdash_{\text{CMDS}} (cs; \varepsilon)$$
: void alors $\vdash [cs]$: void

1.3 Sémantique

1.3.1 Domaines sémantiques

- Valeurs: $V = N \oplus F \oplus FR$
- Valeurs immédiates: N (entiers)
- Fermetures: $F = \text{Expr} \times (V^* \to E)$
- Fermetures récursives: $FR = F \rightarrow F$
- Environnements: $E = \mathsf{ident} \to V$
- Flux de sortie: $O = N^*$

1.3.2 Opérations sémantiques

- Extension des environnements: $\rho[x=v](x)=v$ et $\rho[x=v](y)=\rho(y)$ lorsque x et y sont des symboles différents.
- Ajout au flux de sortie: $n \cdot \omega$

Opérateurs primitifs:

```
\pi(not)(0) =
        \pi(\mathtt{not})(1)
    \pi(and)(0,n)
    \pi(\mathtt{and})(1,n)
      \pi(\mathtt{or})(1,n) =
      \pi(\mathtt{or})(0,n)
   \pi(\operatorname{eq})(n_1,n_2)
                                              \sin n_1 = n_2
                                              sinon
   \pi(1t)(n_1, n_2)
                                              \sin n_1 < n_2
                               0
                                              sinon
 \pi(\mathtt{add})(n_1,n_2)
                         =
                               n_1 + n_2
 \pi(\mathtt{sub})(n_1,n_2)
                         =
                               n_1 - n_2
 \pi(\mathtt{mul})(n_1,n_2)
                        = n_1 \cdot n_2
 \pi(\operatorname{div})(n_1, n_2) = n_1 \div n_2
Constantes numériques: \nu : \mathsf{num} \to N
```

1.3.3 Relations sémantiques

	Symbole	Domaine	Notation
Programme		$PROG \times O$	$\vdash p \leadsto \omega$
Suite de commandes	\vdash_{CMDS}	$E \times O \times \mathrm{CMDS}_{\varepsilon} \times O$	$\rho, \omega \vdash_{\text{\tiny CMDS}} cs \leadsto \omega'$
Déclaration	$\vdash_{ ext{Dec}}$	$E \times \mathrm{Dec} \times E$	$ ho dash_{ exttt{ iny Dec}} d : ho'$
Instruction	$\vdash_{\scriptscriptstyle{ ext{STAT}}}$	$E \times O \times \mathrm{Stat} \times O$	$\rho, \omega \vdash_{\text{stat}} s \leadsto \omega'$
Expression	$\vdash_{\scriptscriptstyle{ ext{Expr}}}$	$E imes \mathrm{Expr} imes V$	$\rho \vdash_{\scriptscriptstyle{Expr}} e \leadsto v$

1.3.4 Expression

(TRUE) $\rho \vdash_{\text{EXPR}} \texttt{true} \leadsto inN(1)$

(FALSE) $\rho \vdash_{\text{EXPR}} \text{false} \leadsto inN(0)$

(NUM) si $n \in \text{num alors } \rho \vdash_{\text{Expr}} n \leadsto inN(\nu(n))$

(ID) si $x \in \text{ident et } \rho(x) = v \text{ alors } \rho \vdash_{\text{EXPR}} x \leadsto v$

(PRIM) si $x \in \text{oprim}$, si $\rho \vdash_{\text{expr}} e_1 \leadsto inN(n_1), \ldots$, si $\rho \vdash_{\text{expr}} e_k \leadsto inN(n_k)$ et si $\pi(x)(n_1, \ldots, n_k) = n$ alors $\rho \vdash_{\text{expr}} (x \ e_1 \ldots e_n) \leadsto inN(n)$

(IF1) si $\rho \vdash_{\text{EXPR}} e_1 \leadsto inN(1)$ et si $\rho \vdash_{\text{EXPR}} e_2 \leadsto v$ alors $\rho \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\leadsto v$

(IF0) si $\rho \vdash_{\text{EXPR}} e_1 \leadsto inN(0)$ et si $\rho \vdash_{\text{EXPR}} e_3 \leadsto v$ alors $\rho \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\leadsto v$

(ABS) $\rho \vdash_{\text{EXPR}} [x_1:t_1,\ldots,x_n:t_n] e \leadsto inF(e,\lambda v_1\ldots v_n.\rho[x_1=v_1;\ldots;x_n=v_n])$

(APP) si $\rho \vdash_{\text{EXPR}} e \leadsto inF(e',r)$, si $\rho \vdash_{\text{EXPR}} e_1 \leadsto v_1, \ldots$, si $\rho \vdash_{\text{EXPR}} e_n \leadsto v_n$ et si $r(v_1,\ldots,v_n) \vdash_{\text{EXPR}} e' \leadsto v$ alors $\rho \vdash (e \ e_1 \ldots e_n) \leadsto v$

$$\begin{split} (\text{APPR}) & \text{ si } \rho \vdash_{\text{expr}} e \leadsto inFR(\varphi), \text{ si } \varphi(\varphi) = inF(e',r), \\ & \text{ si } \rho \vdash_{\text{expr}} e_1 \leadsto v_1, \, \ldots, \text{ si } \rho \vdash_{\text{expr}} e_n \leadsto v_n \\ & \text{ et si } r(v_1, \ldots, v_n) \vdash_{\text{expr}} e' \leadsto v \\ & \text{ alors } \rho \vdash (e \ e_1 \ldots e_n) \leadsto v \end{split}$$

1.3.5 Instruction

(ECHO) si $\rho, \omega \vdash_{\text{EXPR}} e \leadsto inN(n)$ alors $\rho, \omega \vdash_{\text{STAT}} \text{ECHO } e \leadsto (n \cdot \omega)$

1.3.6 Déclaration

$$\begin{split} &(\text{CONST}) \text{ si } \rho \vdash_{\text{Expr}} e \leadsto v \text{ alors } \rho \vdash_{\text{Dec}} (\text{CONST } x \text{ } t \text{ } e) \leadsto \rho[x=v] \\ &(\text{FUN}) \text{ } \rho \vdash_{\text{Dec}} (\text{FUN } x \text{ } t \text{ } [x_1\!:\!t_1\text{,}\dots\text{,}x_n\!:\!t_n] \text{ } e) \leadsto \rho[x=inF(e,\lambda v_1\dots v_n.\rho[x_1=v_1;\dots;x_n=v_n]) \\ &(\text{FUNREC}) \text{ } \rho \vdash_{\text{Dec}} (\text{FUN REC } x \text{ } t \text{ } [x_1\!:\!t_1\text{,}\dots\text{,}x_n\!:\!t_n] \text{ } e) \\ & \leadsto \rho[x=inFR(\lambda f.inF(e,\lambda v_1\dots v_n.\rho[x_1=v_1;\dots;x_n=v_n][x=inFR(f)]) \end{split}$$

1.3.7 Suite de commandes

(DECS) si
$$\rho, \omega \vdash_{\text{DEC}} d \leadsto \rho'$$
 et si $\rho', \omega \vdash_{\text{CMDS}} cs \leadsto \omega'$ alors $\rho, \omega \vdash_{\text{CMDS}} (d; cs) \leadsto \omega'$
(STATS) si $\rho, \omega \vdash_{\text{STAT}} s \leadsto \omega'$ et si $\rho, \omega' \vdash_{\text{CMDS}} cs \leadsto \omega''$ alors $\rho, \omega \vdash_{\text{CMDS}} (s; cs) \leadsto \omega''$
(END) $\rho, \omega \vdash_{\text{CMDS}} \varepsilon \leadsto \omega$

1.3.8 Programme

(PROG) si
$$\emptyset$$
, $\emptyset \vdash_{\text{CMDS}} cs$; $\varepsilon \leadsto \omega$ alors $\vdash [cs] \leadsto \omega$

2 APS1

2.1 Syntaxe

2.1.1 Lexique

Mots clef VAR PROC SET IF WHILE CALL

2.1.2 Grammaire

2.2 Typage

2.2.1 Déclaration

```
\begin{split} & (\text{VAR}) \quad \Gamma \vdash_{\text{DEC}} (\text{VAR } x \; t) : \Gamma[x : t] \\ & (\text{PROC}) \; \text{si} \; \Gamma[x_1 : t_1; \ldots; x_n : t_n] \vdash_{\text{CMDS}} (cs ; \varepsilon) : \text{void} \\ & \; \text{alors} \; \Gamma \vdash_{\text{DEC}} (\text{PROC } x \; [x_1 : t_1, \ldots, x_n : t_n] \; [cs]) : \Gamma[x : t_1 \; * \; \ldots \; * \; t_n \; -> \; \text{void}] \\ & (\text{PROCREC}) \; \text{si} \; \Gamma[x_1 : t_1; \ldots; x_n : t_n; x : t_1 \; * \; \ldots \; * \; t_n \; -> \; \text{void}] \vdash_{\text{CMDS}} (cs ; \varepsilon) : \text{void} \\ & \; \text{alors} \; \Gamma \vdash_{\text{DEC}} (\text{PROC REC } x \; [x_1 : t_1, \ldots, x_n : t_n] \; [cs]) : \Gamma[x : t_1 \; * \; \ldots \; * \; t_n \; -> \; \text{void}] \end{split}
```

2.2.2 Instruction

(SET) si
$$\Gamma(x) = t$$
 et si $\Gamma \vdash_{\text{Expr}} e : t$ alors $\Gamma \vdash_{\text{Stat}} (\text{SET } x \ e) : \text{void}$

(IF) si
$$\Gamma \vdash_{\text{EXPR}} e$$
: bool, si $\Gamma \vdash_{\text{CMDS}} (cs_1; \varepsilon)$: void et si $\Gamma \vdash_{\text{CMDS}} (cs_2; \varepsilon)$: void alors $\Gamma \vdash_{\text{STAT}} (\text{IF } e \ [cs_1] \ [cs_2])$: void

(WHILE) si
$$\Gamma \vdash_{\text{Expr}} e$$
: bool et si $\Gamma \vdash_{\text{Cmds}} (cs; \varepsilon)$: void alors $\Gamma \vdash_{\text{Stat}} (\text{WHILE } e \ [cs])$: void

(CALL) si
$$\Gamma(x) = t_1 * \ldots * t_n \rightarrow \text{void}$$
, si $\Gamma \vdash_{\text{Expr}} e_1 : t_1, \ldots$ et si $\Gamma \vdash_{\text{Expr}} e_n : t_n$ alors $\Gamma \vdash_{\text{STAT}} (\text{CALL } x \ e_1 \ldots e_n) : \text{void}$

2.3 Sémantique

2.3.1 Domaines sémantiques

Adresse A

Mémoire $S = A \rightarrow N$ (fonction partielle)

Fermetures procédurales $P = \text{CMDS} \times (V^* \to E)$

Fermetures procédurales récursives $PR = P \rightarrow P$

Valeurs $V \oplus = A \oplus P \oplus PR$

2.3.2 Opérations sémantiques

- Allocation: $alloc(\sigma) = (a, \sigma')$ si et seulement si $a \notin dom(\sigma)$ et $\sigma' = \sigma[a = any]$
- Modification: $\sigma[a=v'][a:=v]=\sigma[a=v]$ et $\sigma[a'=v'][a:=v]=\sigma[a:=v][a'=v']$ lorsque a est différent de a'
- Restriction: $(\sigma/\rho)(a) = \sigma(a)$ si et seulement il existe x (élément de ident) tel que $\rho(x) = inA(a)$.

2.3.3 Relations sémantiques

	Symbole	Domaine	Notation
Programme		$PROG \times S \times O$	$\vdash [cs] \leadsto (\sigma, \omega)$
Bloc	⊢ _{Block}	$E \times S \times O \times \text{Prog} \times S \times O$	$\rho, \sigma, \omega \vdash bk \leadsto (\sigma', \omega')$
Suite de commandes	$\vdash_{C^{MDS}}$	$E \times S \times O \times (\text{CMDS}_{\varepsilon}) \times S \times O.$	$\rho, \sigma, \omega \vdash_{\text{\tiny CMDS}} cs \leadsto (\sigma', \omega')$
Déclaration	$\vdash_{ ext{Dec}}$	$E \times S \times \mathrm{Dec} \times E \times S$	$ ho, \sigma \vdash_{\scriptscriptstyle{\mathrm{DEC}}} d \leadsto (ho', \sigma')$
Instruction	$\vdash_{\scriptscriptstyle{ ext{STAT}}}$	$E \times S \times O \times \text{Stat} \times S \times O$	$\rho, \sigma, \omega \vdash_{\text{\tiny STAT}} s \leadsto (\sigma', \omega')$
Expression	$\vdash_{\scriptscriptstyle{ ext{Expr}}}$	$E \times S \times \text{Expr} \times V$	$\rho, \sigma \vdash_{\text{expr}} e \leadsto v$

2.3.4 Expressions

(ID1) si
$$x \in \text{ident et si } \rho(x) = inA(a) \text{ alors } \rho, \sigma \vdash_{\text{EXPR}} e \leadsto inN(\sigma(a))$$

(ID2) si
$$x \in \mathsf{ident}$$
, si $\rho(x) = v$ et si $v \neq inA(a)$ alors $\rho, \sigma \vdash_{\mathsf{EXPR}} e \leadsto v$

$$(\texttt{TRUE}) \ \rho, \sigma \vdash_{\texttt{EXPR}} \texttt{true} \leadsto inN(1)$$

(FALSE)
$$\rho, \sigma \vdash_{\text{EXPR}} \texttt{false} \leadsto inN(0)$$

(NUM) si $n \in \text{num alors } \rho, \sigma \vdash_{\text{EXPR}} n \leadsto inN(\nu(n))$

```
(PRIM) si x \in \text{oprim}, si \rho, \sigma \vdash_{\text{expr}} e_1 \leadsto inN(n_1), \ldots, si \rho, \sigma \vdash_{\text{expr}} e_k \leadsto inN(n_k) et si \pi(x)(n_1, \ldots, n_k) = n alors \rho, \sigma \vdash_{\text{expr}} (x \in e_1 \ldots e_n) \leadsto inN(n)
```

(IF1) si
$$\rho, \sigma \vdash_{\text{EXPR}} e_1 \leadsto inN(1)$$
 et si $\rho, \sigma \vdash_{\text{EXPR}} e_2 \leadsto v$ alors $\rho, \sigma \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\leadsto v$

(IF0) si
$$\rho, \sigma \vdash_{\text{EXPR}} e_1 \leadsto inN(0)$$
 et si $\rho, \sigma \vdash_{\text{EXPR}} e_3 \leadsto v$ alors $\rho, \sigma \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\leadsto v$

(ABS)
$$\rho, \sigma \vdash_{\text{EXPR}} [x_1:t_1, \ldots, x_n:t_n] e \leadsto inF(e, \lambda v_1 \ldots v_n.\rho[x_1=v_1; \ldots; x_n=v_n])$$

(APP) si
$$\rho, \sigma \vdash_{\text{Expr}} e \leadsto inF(e', r)$$
,
si $\rho, \sigma \vdash_{\text{Expr}} e_1 \leadsto v_1, \ldots, \text{ si } \rho, \sigma \vdash_{\text{Expr}} e_n \leadsto v_n \text{ et si } r(v_1, \ldots, v_n), \sigma \vdash_{\text{Expr}} e' \leadsto v$
alors $\rho, \sigma \vdash (e \ e_1 \ldots e_n) \leadsto v$

(APPR) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto inFR(\varphi)$$
, si $\varphi(\varphi) = inF(e', r)$, si $\rho, \sigma \vdash_{\text{EXPR}} e_1 \leadsto v_1, \ldots$, si $\rho, \sigma \vdash_{\text{EXPR}} e_n \leadsto v_n$ et si $r(v_1, \ldots, v_n), \sigma \vdash_{\text{EXPR}} e' \leadsto v$ alors $\rho, \sigma \vdash (e \ e_1 \ldots e_n) \leadsto v$

2.3.5 Déclarations

(VAR) si
$$alloc(\sigma) = (a, \sigma')$$
 alors $\rho, \sigma \vdash_{\text{DEC}} (\text{VAR } x \ t) \leadsto (\rho[x = inA(a)], \sigma')$

$$(\mathsf{PROC}) \ \rho, \sigma \vdash_{\mathsf{DEC}} (\mathsf{PROC} \ x \ t \ [x_1 \colon t_1 \mathsf{,} \ldots \mathsf{,} x_n \colon t_n] \ bk) \leadsto (\rho[x = inP(bk, \lambda v_1 \ldots v_n . \rho[x_1 = v_1 ; \ldots ; x_n = v_n]), \sigma)$$

$$\begin{array}{l} (\text{PROCREC}) \ \rho, \sigma \vdash_{\text{\tiny DEC}} (\text{PROC REC } x \ t \ [x_1 \colon t_1 \text{, } \dots \text{, } x_n \colon t_n] \ bk) \\ \rightsquigarrow (\rho[x = inPR(\lambda f.inP(bk, \lambda v_1 \dots v_n.\rho[x_1 = v_1; \dots; x_n = v_n][x = inPR(f)]), \sigma) \end{array}$$

(CONST) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto v \text{ alors } \rho, \sigma \vdash_{\text{DEC}} (\text{CONST } x \ t \ e) \leadsto (\rho[x=v], \sigma)$$

(FUN)
$$\rho, \sigma \vdash_{\text{DEC}} (\text{FUN } x \ t \ [x_1:t_1, \ldots, x_n:t_n] \ e) \leadsto (\rho[x = inF(e, \lambda v_1 \ldots v_n.\rho[x_1 = v_1; \ldots; x_n = v_n]), \sigma)$$

(FUNREC)
$$\rho, \sigma \vdash_{\text{Dec}}$$
 (FUN REC x t $[x_1:t_1, \ldots, x_n:t_n]$ $e)$ $\rightsquigarrow (\rho[x = inFR(\lambda f.inF(e, \lambda v_1 \ldots v_n.\rho[x_1 = v_1; \ldots; x_n = v_n][x = inFr(f)]), \sigma)$

2.3.6 Instructions

(SET) si
$$\rho(x) = inA(a)$$
 et si $\rho, \sigma \vdash_{\text{expr}} e \leadsto v$ alors $\rho, \sigma, \omega \vdash_{\text{stat}} (\text{SET } x \ e) \leadsto (\sigma[a := v], \omega)$

(IF1) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto inN(1)$$
 et si $\rho, \sigma, \omega \vdash_{\text{BLOCK}} bk_1 \leadsto (\sigma', \omega')$ alors $\rho, \sigma, \omega \vdash_{\text{STAT}} (\text{IF } e \ bk_1 \ bk_2) \leadsto (\sigma', \omega')$

(IF0) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto inN(0)$$
 et si $\rho, \sigma, \omega \vdash_{\text{BLOCK}} bk_2 \leadsto (\sigma', \omega')$ alors $\rho, \sigma, \omega \vdash_{\text{STAT}} (\text{IF } e \ bk_1 \ bk_2) \leadsto (\sigma', \omega')$

(LOOPO) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto inN(0)$$
 alors $\rho, \sigma, \omega \vdash_{\text{STAT}} (\text{WHILE } e \ bk) \leadsto (\sigma, \omega)$

$$\begin{array}{l} \text{(LOOP1)} \ \, \text{si} \ \, \rho, \sigma \vdash_{\text{expr}} e \leadsto inN(1), \, \text{si} \ \, \rho, \sigma, \omega \vdash_{\text{block}} bk \leadsto (\sigma', \omega') \\ \text{et si } \rho, \sigma', \omega' \vdash_{\text{stat}} (\text{WHILE } e \ bk) \leadsto (\sigma'', \omega'') \\ \text{alors } \rho, \sigma, \omega \vdash_{\text{stat}} (\text{WHILE } e \ bk) \leadsto (\sigma'', \omega'') \end{array}$$

(CALL) si
$$\rho(x) = inP(bk, r)$$
,
si $\rho, \sigma \vdash_{\text{Expr}} e_1 \leadsto v_1, \ldots, \text{ si } \rho, \sigma \vdash_{\text{Expr}} e_n \leadsto v_n$
et si $r(v_1, \ldots, v_n), \sigma, \omega \vdash_{\text{Block}} bk \leadsto (\sigma', \omega')$
alors $\rho, \sigma, \omega \vdash (\text{CALL } x e_1 \ldots e_n) \leadsto (\sigma', \omega')$

(CALLR) si
$$\rho(x) = inPR(\varphi)$$
, si $\varphi(\varphi) = inP(bk, r)$, si $\rho, \sigma \vdash_{\text{expr}} e_1 \leadsto v_1, \ldots$, si $\rho, \sigma \vdash_{\text{expr}} e_n \leadsto v_n$ et si $r(v_1, \ldots, v_n), \sigma, \omega \vdash_{\text{block}} bk \leadsto (\sigma', \omega')$ alors $\rho, \sigma, \omega \vdash (\text{CALL } x \ e_1 \ldots e_n) \leadsto (\sigma', \omega')$

(ECHO) si
$$\rho, \sigma \vdash_{\text{EXPR}} e \leadsto inN(n)$$
 alors $\rho, \sigma \vdash_{\text{STAT}} (\text{ECHO } e) \leadsto (\sigma, (n \cdot \omega))$

2.3.7 Suite de commandes

(DECS) si
$$\rho, \sigma \vdash_{\text{DEC}} d \leadsto (\rho', \sigma')$$
 et si $\rho', \sigma', \omega \vdash_{\text{CMDS}} cs \leadsto (\sigma'', \omega')$ alors $\rho, \omega \vdash_{\text{CMDS}} (d; cs) \leadsto (\sigma'', \omega')$
(STATS) si $\rho, \sigma, \omega \vdash_{\text{STAT}} s \leadsto (\sigma', \omega')$ et si $\rho, \sigma', \omega' \vdash_{\text{CMDS}} cs \leadsto (\sigma'', \omega'')$ alors $\rho, \sigma, \omega \vdash_{\text{CMDS}} (s; cs) \leadsto (\sigma'', \omega'')$
(END) $\rho, \sigma, \omega \vdash_{\text{CMDS}} \varepsilon \leadsto (\sigma, \omega)$

2.3.8 Bloc

(BLOCK) si
$$\rho, \sigma, \omega \vdash_{\text{\tiny CMDS}} (cs; \varepsilon) \leadsto (\sigma', \omega')$$
 alors $\rho, \sigma, \omega \vdash_{\text{\tiny BLOCK}} [cs] \leadsto ((\sigma'/\rho), \omega')$

2.3.9 Programme

(PROG) si
$$\emptyset$$
, \emptyset , \emptyset $\vdash_{\text{CMDS}} (cs; \varepsilon) \leadsto (\sigma, \omega)$ alors $\vdash [cs] \leadsto (\sigma, \omega)$.