Cost-effective monitoring of lakes newly infested with zebra mussels: 16 months in 5 minutes

Jake Ferguson, Michael McCartney, and John Fieberg

Department of Fisheries, Wildlife, and Conservation Biology Minnesota Aquatic Invasive Species Research Center

How do we reliably count zebra mussels at low densities?

- Assess control efficacy
- Determine conditions that promote growth

photo: Naomi Blinick

Distance sampling: an approach for low densities

Distance and detectability

The payoff

X: is the number of zebra mussels detected

A: is the amount of are surveyed

P: is the detection probability of detecting a zebra mussel (P = 0.60)

- ▶ Observed density: $\frac{X}{A} = 0.08$ (SE =0.01)
- Estimated density: $\frac{X}{PA} = 0.25$ (SE =0.09)

What we have learned from season 1

- Zebra mussels are tougher to count than we expected
 - Detection varies between observers
- Spent alot of time searching for candidate lakes
- Double-observer surveys are required

Should we survey fast and reckless or slow and deliberate?

Lake surveys: summer 2018

Time to perform transect setup & search

Impact of the time budget on estimates

What we have learned from season 2

- ▶ At lower densities **distance sampling** is an attractive approach
 - At higher densities quadrat surveys are more efficient
- Still working on exploring how survey area and efficiency trade off more generally

Acknowledgements

Naomi Blinick
Leslie Schroeder
Sarah Baker
Aislyn Keyes
Austin Hilding
Thomas Ostendorf
Kylie Cattoor
Keegan Lund

John Fieberg Michael McCartney Steve McComas Rich Rezanka Tom Jones

Contact me: Jake Ferguson (jakeferg@umn.edu)