Lecture 8: Sorting in Linear Time

Running time of sorting algorithms

Do you still remember what these statements mean?

- Sorting algorithm $\mathcal A$ runs in $O(n \log n)$ time.
- Sorting algorithm $\mathcal A$ runs in $\Omega(n\log n)$ time.

So far, all algorithms have running time $\Omega(n \log n)$

We didn't show this for heap sort, though it is true.

Q: Is it possible to design an algorithm that runs faster than $\Omega(n \log n)$?

A: No, if the algorithm is comparison-based.

Remark: A comparison-based sorting algorithm is more general, e.g., the sorting algorithm implemented in C++ STL.

Corollary: Heap sort has running time $\Theta(n \log n)$.

Lower bounds for problems

What does each of the following statements mean?

- Sorting can be done in $O(n \log n)$ time.
 - There is a sorting algorithm that runs in $O(n \log n)$ time.
- Sorting requires $\Omega(n \log n)$ time.
 - Any sorting algorithm must run in $\Omega(n \log n)$ time.

This is a very strong statement, which we unfortunately cannot prove.

• In fact, we have no lower bound higher than $\Omega(n)$ for sorting.

But we can show an $\Omega(n\log n)$ lower bound for comparison-based sorting algorithms

More generally, in the decision-tree model of computation.

The decision-tree model

A decision tree to choose one of six animals.

An algorithm in the decision-tree model

- Solves the problem by asking questions with binary answers
- Cannot ask questions like "how many legs does it have?"
- The worst-case running time is the height of the decision tree.

The decision-tree for binary search

Theorem: Any algorithm for finding a given element in a sorted array of size n must have running time $\Omega(\log n)$ in the decision-tree model.

Proof:

- The algorithm must have at least n different outputs.
- The decision-tree has at least n leaves.
- Any binary tree with n leaves must have height $\Omega(\log n)$.

The decision-tree for sorting

Theorem: Any algorithm for sorting n elements must have running time $\Omega(n \log n)$ in the decision-tree model.

Pf:

- The algorithm must have at least n! different outputs (there are so many different permutations).
- The decision-tree has at least n! leaves.
- Any binary tree with n leaves must have height $\Omega(\log(n!)) = \Omega(n \log n)$.

Can we do better?

Implication of the lower bound

- Have to use non-comparison based algorithms.
- Don't use worse-case analysis

Integer sorting

- We will assume that the elements are integers from 0 to k.
- We will use both n and k to express the running time.
- Both n < k are n > k possible.

Exercise. Compare the following functions asymptotically: $n, \log k, n + 1000, n + k, n \log k, \max(n, k), \min(n, k)$

Counting sort

A: input array

B: output array

C: counting array, then position array

Counting sort

```
Counting-Sort (A, B):
let C[0..k] be a new array
for i \leftarrow 0 to k
      C[i] \leftarrow 0
for j \leftarrow 1 to n
      C[A[j]] \leftarrow C[A[j]] + 1
      // C[i] now contains the number of i' s
for i \leftarrow 1 to k
      C[i] \leftarrow C[i] + C[i-1]
      // C[i] now contains the number of elements \leq i
for j \leftarrow n downto 1
     B\left[C[A[j]]\right] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
```

Running time: $\Theta(n+k)$ Working space: $\Theta(n+k)$

It is a stable sorting algorithm.

Radix sort

$2\ 3\ 2\ 9$	$2\ 7\ 2$	0	272	2	$0 \qquad 2$	3	2	9	2	3 2 9
$5\ 4\ 5\ 7$	$5\ 3\ 5$	5	232	2	9 5	3	5	5	2	7 2 0
$3\ 6\ 5\ 7$	$3\ 4\ 3$	6	343	3	6 3	4	3	6	3	436
5839 -	→ 5 4 5	7	5 8 5	3	9 5	4	5	7	3	657
$3\ 4\ 3\ 6$	365	7	535	5	5 3	6	5	7	5	3 5 5
2720	$2\ 3\ 2$	9	545	5	7 2	7	2	0	5	457
$5\ 3\ 5\ 5$	583	9	368	5	7 5	8	3	9	5	8 3 9

Radix-Sort(A, d):

for $i \leftarrow 1$ to d

use counting sort to sort array A on digit i

Radix sort: Correctness

Proof: (induction on digit position)

- Assume that the numbers are sorted by their low-order i-1 digits
- Sort on digit i
 - Two numbers that differ on digit i
 are correctly sorted by their
 low-order i digits
 - Two numbers equal on digit i are put in the same order as the input ⇒ correctly sorted by their low-order i digits

Radix sort: Running time analysis

Q: How large should the "digits" be?

Analysis: Let each "digit" take values from 0 to b-1.

- Counting sort takes $\Theta(n+b)$ time.
- An integer $\leq k$ has $d = \log k / \log b$ such "digits".
- So the running time of radix sort is $\Theta\left(\frac{\log k}{\log b} \cdot (n+b)\right)$
- This is minimized when $b = \Theta(n)$.
- The running time is $\Theta(n \log_n k)$, which is O(n) when $\log k = O(\log n)$

Q: When is this faster than $\Theta(n \log n)$?

A: When $\log_n k < \log n \Leftrightarrow \log k < \log^2 n$

Implementation:

- Choose $n \le b < 2n$ such that b is a power of 2.
- Use bit-wise operation for more efficient implementation.

Summary of sorting algorithms

	Insertion sort	Merge sort	Quicksort	Heapsort	Radix sort
Running time	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n\log_n k)$
Working space	Θ(1)	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(n)$
Randomized	No	No	Yes	No	No
Cache performance	Good	Good	Good	Bad	Bad
Parallelization	No	Excellent	Good	No	No
Stable	Yes	Yes	No	No	Yes
Comparison- based	Yes	Yes	Yes	Yes	No

Bucket sort

Average-case analysis

- Bucket sort is the only algorithm for which we do an average-case analysis in this course.
- We will assume that the elements are drawn uniformly and independently from a range.
 - We can assume the range is [0,1) without loss of generality.
 - They can be real numbers; while radix sort only works on integers

Non-comparison based

- Bucket sort is non-comparison based
- It breaks the lower bound by breaking both conditions.
- Q: Is it possible to design a comparison-based sorting algorithm with expected or average running time better than $\Theta(n \log n)$?
- A: No. (Proof omitted)

Average-case analysis of bucket sort

$$T(n) = n + \sum_{i=0}^{n-1} n_i^2$$

$$E[T(n)] = E[n] + E\left[\sum_{i=0}^{n-1} n_i^2\right]$$

$$= n + \sum_{i=0}^{n-1} E[n_i^2]$$

Claim:
$$E[n_i^2] = 2 - \frac{1}{n}$$

Pf: Let $X_{ij} = 1$ if A[j] falls into bucket i.

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n \sum_{k=1}^n X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + \sum_{\substack{1 \le j \le n \\ k \ne j}} \sum_{\substack{1 \le k \le n \\ k \ne j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + \sum_{\substack{1 \le j \le n \\ k \ne j}} E[X_{ij} X_{ik}],$$

Average-case analysis of bucket sort

$$\begin{split} \operatorname{E}\left[X_{ij}^2\right] &= 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right) & \operatorname{E}\left[X_{ij}X_{ik}\right] &= \operatorname{E}\left[X_{ij}\right]\operatorname{E}\left[X_{ik}\right] \\ &= \frac{1}{n} \cdot \dots &= \frac{1}{n} \cdot \frac{1}{n} \\ \operatorname{E}\left[n_i^2\right] &= \sum_{j=1}^n \frac{1}{n} + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} \frac{1}{n^2} & \\ &= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2} & \text{Theorem: When the inputs are drawn from a range uniformly and independently, bucket sort runs in expected } 0(n) \text{ time.} \end{split}$$