LTE лемма

- 1. Дано простое число p, целые числа x, y и натуральное число n. Докажите, что если
- а) (x-y) : p, но $p \nmid x$, $p \nmid y$ и $p \nmid n$, то $v_p(x^n-y^n)=v_p(x-y)$;
- b) p нечётное, (x-y) : p, но $p \nmid x$ и $p \nmid y$, то $v_p(x^n-y^n) = v_p(x-y) + v_p(n)$;
- b') p и n нечётные, (x+y) \vdots p, но $p \nmid x$ и $p \nmid y$, то $v_p(x^n+y^n) = v_p(x+y) + v_p(n);$
- c) x и y нечётные, а n чётное, то $v_2(x^n-y^n)=v_2(x-y)+v_2(x+y)+v_2(n)-1.$
- **2.** Найдите все натуральные числа n такие, что
- a) $2^n \mid 3^n 1$; b) $3^n \mid 5^n + 1$.
- 3. Найдите степень вхождения 1991 в число $1990^{1991^{1992}} + 1992^{1991^{1990}}.$
- **4.** Существую ли натуральные числа x, y, z такие, что $x^{2023} + y^{2023} = 7^z?$
- **5.** При каких натуральных n существуют натуральное a и простое p, для которых $2^p + 3^p = a^n$.
- **6.** Даны положительные действительные числа a и b такие, что числа $a-b,\,a^2-b^2,\,a^3-b^3,\ldots$ натуральные. Докажите, что a и b натуральные числа.
- 7. Задано целое число k > 1. Докажите, что существует бесконечно много натуральных чисел n, таких что $n \mid 1^n + 2^n + \ldots + k^n$.
- 8. Существует ли натуральное число n, которое делится ровно на 2000 различных простых чисел и такое, что 2^n+1 делится на n? (Указание: докажите, что $3^n \mid 2^{3^n}+1$ для любого натурального n.)