第 1 章

線形写像の単射性と全射性

線形写像とベクトルの線型独立性

ref: 行列と行列式の基 礎 p65~66

- $oldsymbol{\$}$ 線形写像とベクトルの線形独立性 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像、 $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_n \in \mathbb{R}^n$ とする
 - i. $\{f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n)\}$ が線型独立ならば、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ は線型独立
 - ii. $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ が線形従属ならば、 $\{f(oldsymbol{v}_1),\ldots,f(oldsymbol{v}_n)\}$ は線形従属

≥ 証明

[Todo 1: ref: 行列と行列式の基礎 p65 問 2.11]

ii は、平行なベクトルを線型写像で写した結果、平行でなくなったりはしないということを述べている

- - i. $\boldsymbol{v} \neq \boldsymbol{0}$ ならば、 $f(\boldsymbol{v}) \neq \boldsymbol{0}$
 - ii. $\{oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_n\}$ が線型独立ならば、 $\{f(oldsymbol{v}_1),f(oldsymbol{v}_2),\ldots,f(oldsymbol{v}_n)\}$ も線型独立

☎ 証明

「Todo 2: ref: 行列と行列式の基礎 p66 命題 2.3.2]

i は、零写像と射影を除けば、f によってベクトルが「つぶれない」という 性質を表している

「Todo 3: ref: 行列と行列式の基礎 p55 例 2.1.15]

ii は、たとえば平行四辺形の像が線分や 1 点になったりしないことなどを 意味している

$$f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$$

証明

[Todo 4: ref: 行列と行列式の基礎 p66 命題 2.3.3]

線形写像の単射性と全射性

線形写像 f の単射性を表現行列 A の言葉で述べる

ref: 行列と行列式の基

礎 p67~

[Todo 5: ref: 行列と行列式の基礎 p67~69]

.....

Zebra Notes

Туре	Number
todo	5