PySpark

Duration: 20hrs

Module 1: Introduction to Big Data and Apache Spark

- Overview of Big Data
 - o Understanding Big Data and its challenges
 - Big Data technologies landscape
- Introduction to Apache Spark
 - Spark vs. Hadoop: Understanding the differences.
 - Spark's ecosystem and components (Spark SQL, Spark Streaming, MLlib, GraphX)
- Getting Started with PySpark
 - Installing and setting up PySpark
 - Basic PySpark operations: Initializing SparkContext and SparkSession

Module 2: Core Concepts of PySpark

- Resilient Distributed Datasets (RDDs)
 - Fundamentals of RDDs
 - Creating RDDs and understanding partitioning
 - RDD operations: Transformations and Actions
- DataFrames and Datasets
 - Introduction to DataFrames and Datasets
 - Operations on DataFrames and Datasets
 - Interoperability between RDDs and DataFrames

Module 3: Data Processing with PySpark

- Basic Data Manipulation
 - Reading and writing data from various sources
 - o Data selection, filtering, and aggregation
 - Handling missing data and data types
- Advanced Data Processing
 - Joins and complex operations
 - Window functions and group operations
 - UDFs (User Defined Functions) and their performance impact

Module 4: Structured Streaming

Introduction to Spark Streaming

- Understanding streaming data and Spark's streaming capabilities
- Developing streaming applications
- **Structured Streaming Concepts**
 - Working with streaming DataFrames and Datasets
 - Stateful and stateless operations

Module 5: Machine Learning with PySpark

- Introduction to MLlib
 - Machine learning concepts
 - MLlib's data types and basic statistics
- **Building Machine Learning Models**
 - Supervised vs. unsupervised learning
 - Model evaluation and tuning
- Advanced Machine Learning
- vanced Machine Learning

 Pipelines and feature engineering
 - Scaling and deploying ML models

Module 6: Performance Tuning and Best Practices

- **Performance Optimization**
 - Understanding Spark's execution model
 - Tuning Spark jobs for performance
- **Best Practices in PySpark**
 - Writing efficient Spark code
 - Debugging and monitoring Spark applications

Module 7: Real-World PySpark Applications

- Case Studies
 - Analyzing real-world datasets
 - Building end-to-end Spark applications
- **Project Work**
 - Students will apply the concepts learned to a real-world data problem

ICCEED | EXCEL

Module 8: Conclusion

Review of Key Concepts

Each module would be complete with lectures, hands-on labs, quizzes, and assignments to reinforce the concepts taught. The progression from basic to advanced topics ensures that learners build a solid foundation before tackling more complex problems, making this structure ideal for both beginners and those looking to deepen their understanding of PySpark.