Низкотемпературные электрические свойства CVD графена на LiNbO₃: акустические исследования

© И.Л. Дричко¹, И.Ю. Смирнов^{1,¶}, Ю.М. Гальперин^{1,2}, П.А. Дементьев¹, М.Г. Рыбин³

Поступила в Редакцию 30 августа 2021 г. В окончательной редакции 8 сентября 2021 г. Принята к публикации 8 сентября 2021 г.

Акустические бесконтактные методы были использованы для определения электрических параметров — электропроводности, подвижности носителей тока и их концентрации в однослойном графене — высаженном на поверхность ниобата лития.

Ключевые слова: графен, акустоэлектронные эффекты, низкие температуры, высокочастотный магнетотранспорт.

DOI: 10.21883/FTP.2022.01.51822.9733

1. Введение

Графен — уникальный двумерный материал XXI века. Основным его преимуществом является рекордная подвижность зарядов, обусловленная наличием свободного электрона на р-орбитали, который делокализован по всему графеновому монослою и может двигаться с большой скоростью как безмассовый фермион. Именно благодаря этому уникальному свойству графена ему предрекали большое будущее для применений в наноэлектронике. Однако на практике оказалось, что достичь рекордно высоких значений подвижности зарядов в графене достаточно сложно, а тем более сделать образцы, воспроизводимые в промышленном масштабе. Качество графена и его возможность использования в наноэлектронике зачастую характеризуется подвижностью носителей тока в этом материале. Таким образом, задача контроля качества посредством анализа подвижности зарядов в графене весьма актуальна. Самые высокие значения подвижности носителей зарядов, до $10^6 \, \text{cm}^2/\text{B} \cdot \text{c}$, были достигнуты в свободно подвешенном квазинейтральном графене, полученным методом эпитаксиального роста на карбиде кремния в вакууме при низких температурах [1]. Однако данный метод получения графена плохо масштабируем и является дорогостоящим. Для массового коммерческого синтеза графена используется метод химического газофазного осаждения графена на поверхности медной фольги (Chemical Vapor Deposition, CVD). Этот метод проще в реализации и экономичнее эпитаксиального роста. Подвижность зарядов в графене, полученном CVD-методом, ниже, но тоже может быть высокой при определенных условиях и доходить до $3.5 \cdot 10^5 \text{ cm}^2/\text{B} \cdot \text{c}$ [2].

Для оптимизации материала очень важно иметь достоверную методику измерения подвижности. Наиболее популярный подход для измерения подвижности зарядов — это изготовление полевого транзистора с графеновым каналом [3]. Этот метод позволяет провести измерения с высокой точностью, но подготовка к измерениям требует больших усилий, а именно литографии и травления графена, а также напыления металлических контактов на графен. Другой метод — 4-контактный, по Ван дер Пау в магнитном поле [4] — является альтернативным вариантом измерения подвижности. Однако приведение зондов в контакт к образцу может привести к повреждению последнего.

Третьим методом измерения подвижности является терагерцовая спектроскопия [5]. Это — бесконтактный метод, позволяющий определить подвижность зарядов в графене. Метод интересен тем, что позволяет исследовать распределение проводимости и подвижности по поверхности образца. Однако чувствительность метода относительно невелика ($\sigma < 0.1\,\mathrm{MCm}$).

В настоящей работе мы используем бесконтактный метод измерения подвижности зарядов в графене при низких температурах с помощью анализа распространения поверхностных акустических волн (ПАВ) вдоль границы раздела пьезодиэлектрика (LiNbO₃) и графена. Одновременное измерение скорости и затухания ПАВ позволяет определить комплексный кондактанс графена на частоте ПАВ (см., например, обзор [6]).

В данной работе демонстрируются результаты измерения двух образцов графена, полученных методом химического газофазного осаждения на поверхности медной фольги, и перенесенного на пьезодиэлектрик LiNbO₃. С помощью указанной выше методики [6]

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

¹⁹⁴⁰²¹ Санкт-Петербург, Россия

² Department of Physics, University of Oslo,

P.O. Box 1048 Blindern, 0316 Oslo, Norway

³ Институт общей физики им. А.М. Прохорова Российской академии наук,

¹¹⁹⁹⁹¹ Москва, Россия

[¶] E-mail: ivan.smirnov@mail.ioffe.ru

были изучены электрофизические свойства графена и вычислена подвижность носителей заряда в нем. В работе использовались образцы графена, отличающиеся морфологией поверхности, которая обусловлена особенностями синтеза графена и возможностью контролировать процесс с большой точностью. Образцы отличаются температурой медной фольги во время синтеза, а именно, различия в температуре на 10—20°С между образцами приводят к возникновению различного количества зерен в поликристаллическом образце графена и, как следствие, различному рассеянию зарядов на их границах. В работе подробно описана методика проведения измерений и описаны различия в электрофизических параметрах образцов с различной морфологией поверхности.

2. Образцы и методика эксперимента

В данной работе исследовались два образца графена, полученные методом химического газофазного осаждения на поверхность медной фольги из смеси газов аргона, водорода и метана при температуре 850°C и пониженном давлении 100 мбар. Основной отличительной особенностью метода синтеза графена является способ нагрева медной фольги прямым пропусканием тока через нее. Таким способом можно контролировать скорость нагрева и охлаждения с большой точностью, а температура измеряется пирометром через смотровое окно в вакуумной камере. Подробнее о методе синтеза написано в работах [7,8]. К минусам данного метода можно отнести возникновение небольшого градиента температуры медной фольги в 10-20°C на расстоянии 10 мм (в образце размером 20×20 мм температура колеблется от 850°C в центре образца до 830°C на краях образца). В работе использовался один синтезированный образец размером 20×20 мм, поделенный на несколько частей с размером $7 \times 10 \, \text{мм}$, две из которых были перенесены на пьезоэлектрик (ниобат лития). В данной работе образец 1 имел пониженную температуру во время синтеза, равную 830°C, а образец 2 при синтезе имел температуру 850°C. Оба образца графена с медной фольги были перенесены на поверхность ниобата лития стандартным методом "мокрого" переноса с использованием полиметилметакрилата в качестве поддерживающего полимера и аммония персульфата в качестве травителя для меди.

Пьезоэлектрические свойства и высокое качество кристаллов $LiNbO_3$ дают существенные преимущества для исследования двумерных и квазидвумерных материалов. А именно, сильный пьезоэлектрический эффект $LiNbO_3$ позволяет использовать переменные электрические поля, генерируемые поверхностной акустической волной (ПАВ) при ее распространении по пьезокристаллу и проникающие в низкоразмерную систему, помещенную на его поверхности [9]. В результате поглощение, Γ , и скорость, v, Π AB зависят от электрических характери-

Рис. 1. Схема акустического эксперимента. $U_{\rm in}$ и $U_{\rm out}$ — входной и выходной сигналы, **B** — магнитное поле.

стик поверхностного слоя и могут быть использованы для количественного определения последних. В этом и состоит главная идея акустического метода анализа низкоразмерных материалов, используемого нами применительно к различным системам (для обзора см., например, [6]).

Три кардинальных преимущества делают указанную методику весьма перспективной.

- (1) Метод не требует электрических контактов, и поэтому результаты от них не зависят.
- (2) Электронные вклады в поглощение и скорость ПАВ зависят от магнитного поля, и эти зависимости позволяют отделить электронные вклады от решеточных вкладов.
- (3) Связь между динамической высокочастотной (ВЧ) проводимостью, поглощением и скоростью звука содержит величины, непосредственно измеряемые экспериментально.

Для данного эксперимента однослойная пленка графена была высажена на полированную поверхность ниобата лития, на которой предварительно были сформированы преобразователи IDT 1 и IDT 2 (из золота) для генерации и приема поверхностных акустических волн. Рис. 1 демонстрирует схему эксперимента. Частоты ПАВ были 28, 85, 140, 197 и 252 МГц (нечетные гармоники основной частоты преобразователя 28 МГц). Держатель с образцом помещался в криостат со сверхпроводящим магнитом и охлаждался до температур 1.7—4.2 К. В эксперименте измерялись поглощение и изменение скорости ПАВ разных частот в зависимости от магнитного поля до 8 Тл.

Поглощение и изменение скорости распространения ПАВ определяются суммой двух вкладов, обусловленных кристаллической решеткой и носителями заряда. Поскольку решеточные вклады в немагнитных материалах не зависят от магнитного поля, для разделения этих вкладов естественно использовать зависимости акустических характеристик от магнитного поля.

В линейном по амплитуде ПАВ приближении вклады носителей заряда определяются комплексным динамическим кондактансом, $\sigma(\omega, \mathbf{k}) \equiv \sigma_1(\omega, \mathbf{k}) - i\sigma_2(\omega, \mathbf{k})$, который в общем случае зависит от частоты ПАВ ω , и его волнового вектора \mathbf{k} . Связь между характеристиками распространения ПАВ и кондактансом имеет вид (см., например, [6]):

$$\Gamma = k \cdot (K^2/2) \cdot (\sigma_1/\sigma_M) / [(1 + \sigma_2/\sigma_M)^2 + (\sigma_1/\sigma_M)^2], (1)$$

$$\Delta v/v = (K^2/2)((1 + \sigma_2/\sigma_M)/[(1 + \sigma_2/\sigma_M)^2 + (\sigma_1/\sigma_M)^2].$$

Здесь $k\equiv |\mathbf{k}|,~K^2/2=2.25\cdot 10^{-2}$ — электромеханическая константа ниобата лития, $\sigma_{1,2}$ — вещественная и мнимая части динамической проводимости $\sigma(\omega)$ на квадрат (кондактанса); $\sigma_{\mathrm{M}}=v_0\cdot(\varepsilon_1+\varepsilon_{\mathrm{gr}}),~v_0$ — скорость ПАВ при B=0; $\varepsilon_1,\varepsilon_{\mathrm{gr}}$ — диэлектрические постоянные ниобата лития и графена соответственно. При расчетах мы использовали величины $\varepsilon_1=50,~\varepsilon_{\mathrm{gr}}=6.9$ [10].

Из измеренных одновременно поглощения и изменения скорости ПАВ можно вычислить комплексный кондактанс графена, $\sigma(\omega) = \sigma_1(\omega) - i\sigma_2(\omega)$. Из анализа этих величин следует, что σ_1 и σ_2 слабо зависят от частоты во всей изученной области частот, причем $\sigma_2(\omega) \ll \sigma_1(\omega)$. Такое соотношение свидетельствует в пользу металлического характера проводимости слоя графена, причем динамический кондактанс $\sigma_1(\omega)$ близок к статическому кондактансу $\sigma(B) \equiv \sigma_{xx}(\omega = 0, B)$.

Следует отметить, что в изученной системе графеновый слой является поликристаллическим материалом с заметным рассеянием электронов на границах зерен. Об этом свидетельствует, в частности, измеренная величина проводимости. Мы предполагаем, что такой материал уже не характеризуется дираковскими конусами, а скорее может быть охарактеризован как система электронов проводимости с концентрацией n и квадратичным спектром при эффективной массе m^* и временем релаксации импульса τ .

В неквантующем магнитном поле проводимость такого поверхностного слоя определяется формулой

$$\sigma(B) = \sigma_0/[1 + (\omega_c \tau)^2], \tag{2}$$

где σ_0 — проводимость в отсутствие магнитного поля, ω_c — циклотронная частота. Если воспользоваться формулой Друде для электронов с изотропным квадратичным спектром, то $\omega_c = eB/m^*c$, где c — скорость света. В сильном магнитном поле, когда выполняется условие

$$(\omega_c \tau)^2 = (\mu B/c)^2 \gg 1,\tag{3}$$

где μ — подвижность носителей заряда, $\sigma(B) \sim B^{-2}$. Если построить зависимость экспериментально определенной проводимости от $1/B^2$, и она окажется линейной, то из этой линейной зависимости можно определить наклон A и отношение

$$\mu^2/c^2 = \sigma_0/A. \tag{4}$$

Если взять точку на экспериментальной кривой $\sigma(B)$, где не выполняется условие сильного поля (3), то после несложных вычислений получим

$$\sigma(0) = \sigma(B)/[1 - \sigma(B) \cdot B^2/A]. \tag{5}$$

Таким образом, нахождение электронных характеристик акустическими методами сводится к следующему:

- 1) построение экспериментальной зависимости $\sigma(1/B^2)$ в области сильных магнитных полей, вычисление наклона A линейной зависимости $\sigma = A/B^2$;
 - 2) определение $\sigma(0)$ по формуле (5);
- 3) определение подвижности по формуле (4) и концентрации тока по формуле

$$n = \sigma(0)/e\mu. \tag{6}$$

Этот способ определения характеристик графена является весьма приближенным, так как длину пленки графена ($\sim 7\,\mathrm{MM}$) мы знаем лишь приблизительно. Кроме того, на точность влияет ограниченная воспроизводимость результатов разных экспериментов на одном и том же образце.

3. Экспериментальные результаты

В работе были изучены 2 образца, с однослойным CVD графеном, высаженным на поверхность ниобата лития одним и тем же способом, описанным выше. Однако характеристики образцов заметно различаются. Измерения поглощения Γ и $\Delta v/v$ проводились в интервале температур (1.7-4.2) K, в частотном диапазоне (28-300) М Γ ц в магнитных полях до 8 Тл. Температурное изменение Γ и $\Delta v/v$ в нулевом магнитном поле было исследовано для образца 2 на частотах 30 и 140 М Γ ц.

3.1. Поглощение ПАВ при B=0

В образце 1 уже при комнатной температуре наблюдается большое поглощение ПАВ, $\sim 30\,\mathrm{д Б/cm}$, которое растет с понижением температуры.

В образце 2 при комнатной температуре коэффициент поглощения Γ , составляет $\sim 15\,\mathrm{дБ/cm}$, и также возрастает с уменьшением температуры. На рис. 2 представлены зависимости поглощения и изменения скорости ПАВ в отсутствие магнитного поля в образце 2.

На рис. 3 представлены зависимости $\Delta\Gamma = \Gamma(4.2\,\mathrm{K}) - \Gamma(300\,\mathrm{K})$ и $\Delta v/v$ от B для образца 1.

Как видно из рисунка, величина электронного поглощения ПАВ для образца 1 в магнитном поле 8 Тл очень

Рис. 2. Зависимость (*a*) коэффициента поглощения $\Delta\Gamma$ и (*b*) $\Delta v/v$ от температуры T; $f=30\,{\rm M}\Gamma$ ц, $B=0\,{\rm T}$ л.

мала и не превышает величины 1.2 дБ/см, а скорость ПАВ практически не зависит от B. Значения Γ и $\Delta v/v$ для образца 2 значительно больше по величине, чем для образца 1.

Для определения электрических характеристик применяем методику обработки экспериментальных результатов, описанную выше.

Образец 1

На рис. 4, a представлена зависимость экспериментально определенной σ_1 от $1/B^2$. В области магнитных полей 8-5 Тл эта зависимость является линейной с наклоном $d\sigma/d(1/B^2)=4\cdot 10^{18}~(\sigma$ — в единицах СГС, а B — в Гс).

Для образца 1 с использованием формул (4)-(6) были получены следующие характеристики: $\sigma(B=0)=0.013~\mathrm{Om^{-1}},\,\mu=5.4\cdot10^3~\mathrm{cm^2/B\cdot c},\,n=1.5\cdot10^{13}~\mathrm{cm^{-2}}.$

На рис. 4, b представлены зависимости экспериментально определенной проводимости от магнитного поля (черная) и вычисленной по формуле (2) (красная) с величинами, указанными выше. Видно, что красная кривая хорошо описывает эксперимент.

Образец 2

На рис. 5, a представлена экспериментальная зависимость σ_1 от $1/B^2$. В области магнитных полей 8-2 Тл зависимость линейная с наклоном в $d\sigma/d(1/B^2)=4.9\cdot 10^{17}$ (σ — в единицах СГС, а B — в Гс).

Рис. 3. a — зависимость Γ и $\Delta v/v$ от магнитного поля B; $f=140\,\mathrm{M}\Gamma$ ц, $T=1.7\,\mathrm{K}$; образец 1. b — зависимость Γ и $\Delta v/v$ от магнитного поля B; $f=85\,\mathrm{M}\Gamma$ ц, $T=1.7\,\mathrm{K}$; образец 2.

Рис. 4. a — зависимость σ_1 (СГС) от $1/B^2$ ($\Gamma \cdot c^{-2}$); b — зависимость σ_1 (Ом $^{-1}$) от B (Тл) для образца 1, f = 140 МГц, T = 1.7 К.

Рис. 5. a — зависимость σ_1 (СГС) от $1/B^2$ (Гс $^{-2}$); b — зависимость σ_1 (Ом $^{-1}$) от B (Тл) для образца 2, $f=85\,\mathrm{MFu}$, $T=1.7\,\mathrm{K}$.

Рис. 6. a — зависимость σ_1 от магнитного поля B при разных температурах, $f=140\,\mathrm{M}\Gamma$ ц; b — зависимость σ_1 от B для разных частот ПАВ при $T=1.7\,\mathrm{K}$. (Цветной вариант рисунка представлен в электронной версии статьи).

Для образца 2 с использованием формул (4)-(6) были получены следующие характеристики $(1.7 \text{ K}, 85 \text{ M}\Gamma \text{ц})$:

$$\sigma(B=0) = 0.043 \,\mathrm{Om}^{-1}, \quad \mu = 2.8 \cdot 10^4 \,\mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c},$$

$$n = 1 \cdot 10^{13} \,\mathrm{cm}^{-2}.$$

На рис. 5,b представлены экспериментальная зависимость проводимости от магнитного поля (черная) и вычисленная (красная) по формуле (2) с величинами, определенными описанным выше методом. Видно, что красная кривая с этими параметрами хорошо описывает эксперимент.

Рис. 7. Зависимость Γ и $\Delta v/v$ от магнитного поля B; $f=140\,{\rm M}\Gamma$ ц, $T=1.7\,{\rm K}$ в разных циклах охлаждения.

Рис. 6 иллюстрирует экспериментальные зависимости проводимости σ_1 от магнитного поля B при разных температурах, измеренные на частоте $f=140\,\mathrm{MFu}$ (a), и зависимости σ_1 от B для разных частот ПАВ при $T=1.7\,\mathrm{K}$ (b).

Из рисунков видно, что проводимость слабо зависит от T и f, причем средние величины для температурной зависимости в магнитном поле $7\,\mathrm{Tn}$ равны $\sigma_1 = (4.0 \pm 0.3) \cdot 10^{-5}\,\mathrm{Om^{-1}}$, а для частотной зависимости $\sigma_1 = (7.6 \pm 1.0) \cdot 10^{-5}\,\mathrm{Om^{-1}}$ в пределах погрешности измерений. Однако видно, что средние величины отличаются почти в 2 раза. Дело в том, что измерения температурной зависимости проводились в один день (в одном цикле охлаждения), а частотные зависимости — в разные дни (в разных циклах охлаждения).

Нами было установлено, что при каждом новом цикле охлаждения образца графена, высаженного на ниобат лития, зависимости величин поглощения и изменения скорости звука от магнитного поля не воспроизводились. Это показано на рис. 7 для $f=140\,\mathrm{MF}$ ц и $T=1.7\,\mathrm{K}$.

Расчет по формулам (3)—(5) показал, что проводимость $\sigma(0)$, определенная из этих кривых, находится в пределах от $4\cdot 10^{-3}$ до $1.3\cdot 10^{-2}$ Ом⁻¹, подвижность μ в пределах $9.4\cdot 10^3$ до $1.8\cdot 10^4$ см²/В · с, а концентрация n от $2\cdot 10^{12}$ до $4.5\cdot 10^{12}$ см⁻².

3.2. Атомно-силовая микроскопия (АСМ)

Образцы были исследованы методами атомно-силовой и кельвин-зонд микроскопии. Основное внимание было обращено на области относительно большого $(30 \times 30 \, \text{мкм})$ размера. Типичные изображения для образцов 1 и 2 приведены на рис. 8.

Хорошо заметно, что образец 1 покрыт большим количеством линейных дефектов, которые, вероятнее всего, представляют собой складки графена, возникшие после циклов охлаждения и нагревания образца. На образце 2 такие особенности также присутствуют, однако в заметно меньшем количестве. Указанное различие между

Рис. 8. Топография областей 30×30 мкм для образца 1 (a) и образца 2 (b).

Рис. 9. Распределение поверхностного потенциала областей 30×30 мкм для образца 1 (a) и образца 2 (b). Более темным оттенкам цвета соответствуют более низкие значения поверхностного потенциала.

образцами еще более заметно в картинах распределения потенциала (рис. 9).

Видно, что на образце 1 наблюдаются два типа дефектов. Протяженные, связанные в единую сеть особенности, вероятно, соответствуют границам зерен поликристаллического графена. Кроме того, наблюдаются округлые особенности, которые мы ассоциируем с островками второго слоя графена. Отметим, что большая часть линейных объектов, наблюдаемых на изображении топографии, не отображается в распределении поверхностного потенциала.

Распределение потенциала на образце 2 гораздо более равномерно. Наблюдаются несколько областей с пониженным потенциалом, которые мы также связываем с островками второго слоя графена. Наблюдаемый в верхней части каплевидный дефект соответствует разрыву в графеновой пленке.

4. Обсуждение результатов

Начнем обсуждение результатов с зависимости коэффициента поглощения ПАВ Γ от температуры при B=0. В работе [8] указывалось, что для однослойного нелегированного графена, высаженного на SiO_2/Si , сопротивление при комнатной температуре в отсутствие магнитного поля было порядка 300-1000 Ом на квадрат. При таком сопротивлении поглощение ПАВ носителями тока очень мало, $\Gamma<1$ дБ/см, поэтому наблюдаемое в эксперименте большое поглощение ПАВ и его слабая зависимость от температуры указывают, скорее всего, на поглощение (рассеяние) ПАВ структурными дефектами в поликристаллической пленке графена. Поглощение в образце 1 было гораздо больше, чем в образце 2, что,

по-видимому, связано с тем, что дефектов в образце 1 гораздо больше, чем во втором. Это подтверждается результатами по исследованию образцов методами атомносиловой и кельвин-зонд микроскопии при комнатной температуре.

Как видно из рис. 8 и 9, на образце 1 хорошо визуализируются отдельные зерна графена в составе поликристаллической пленки. Кроме того, на поверхности наблюдаются складки, возникшие в процессе последовательных процессов охлаждения и нагрева образца. Несмотря на такую же поликристаллическую природу образца 2, на нем границ зерен не наблюдается.

Мы полагаем, что рост поглощения (рассеяния) ПАВ при охлаждении образца связан с увеличением количества дефектов, например, появления разрывов в пленке, которые "залечиваются" при нагревании образца после измерений. Рост же концентрации дефектов при охлаждении образцов происходит случайным образом, о чем свидетельствует рис. 7.

Зависимости σ_1 от магнитного поля, температуры и частоты свидетельствует о металлическом характере проводимости при низких температурах, причем в образце 1 с большим количеством дефектов подвижность носителей оказывается меньше, чем в образце 2. О металлическом характере проводимости свидетельствует также и соотношение $\sigma_1 > \sigma_2$.

Оказалось, что величины подвижности носителей заряда в графене (5400 и $28000\,\mathrm{cm^2/B\cdot c}$), полученные бесконтактным акустическим методом, гораздо больше величин подвижности ($1100-1500\,\mathrm{cm^2/B\cdot c}$), полученных с помощью измерений вольт-амперных характеристик (BAX) графенового полевого транзистора (ГПТ), изготовленного из аналогичных образцов [11,12]. По-

видимому, это объясняется несколькими факторами. Во-первых, измерения вольт-амперных характеристик в ГПТ проводились при комнатной температуре. Вовторых, подготовка этих измерений подразумевает многократную литографию и нанесение полимера, а также другие технологические манипуляции с образцами, что приводит к их деградации. В-третьих, при измерениях ВАХ в ГПТ происходит контакт графена с металлом, который может существенно изменить электронную структуру графена и внести вклад в подвижность его носителей заряда.

5. Заключение

Использование бесконтактных акустических методов при исследовании низкотемпературных электрических свойств однослойного CVD-графена, высаженного на поверхность ниобата лития, позволило определить его новые характеристики. Такими характеристиками являются изменение (увеличение) числа дефектов при охлаждении образцов от комнатной температуры до 4.2 К и случайность в образовании этих дефектов при разных циклах охлаждения. Последнее свойство выражалось в ограниченной воспроизводимости измеряемых поглощения и изменения скорости ПАВ. Наряду с определением электрических характеристик материала был установлен механизм низкотемпературной проводимости.

Финансирование работы

Работа поддержана грантом Российского фонда фундаментальных исследований № 19-02-00124.

Образцы графена были подготовлены в ИОФ РАН в рамках выполнения работ по гранту и за счет гранта Российского научного фонда № 21-72-10164.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski, C. Berger, W.A. de Heer, G. Martinez, M. Potemski. Phys. Rev. Lett., 107, 216603 (2011).
- [2] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, Takashi Taniguchi, Bern Beschoten, C. Stampfer. Sci. Adv., 1, e1500222 (2015).
- [3] Nianduan Lu, Lingfei Wang, Ling Li, Ming Liu. Chinese Phys. B, 26, 036804 (2017).
- [4] Rui-Song Ma, Qing Huan, Liang-Mei Wu, Jia-Hao Yan, Yu-Yang Zhang, Li-Hong Bao, Yun-Qi Liu, Shi-Xuan Du, Hong-Jun Gao. Chinese Phys. B, 26, 066801 (2017).
- [5] J.D. Buron, F. Pizzocchero, P.U. Jepsen, D.H. Petersen, J.M. Caridad, B.S. Jessen, T.J. Booth, P. Boggild. Sci. Rep., 5, 12305 (2015).

- [6] I.L. Drichko, I.Yu. Smirnov, A.V. Suslov, Y.M. Galperin,
 L.N. Pfeiffer, K.W. West. Low Temperature Phys., 43, 86 (2017); doi: 10.1063/1.4975107
- [7] M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, E. Obraztsova. Carbon, 96, 196 (2016).
- [8] M.G. Rybin, V.R. Islamova, E.A. Obraztsova, E.D. Obraztsova. Appl. Phys. Lett., 112, 033107 (2018).
- [9] A. Wixforth, J.P. Kotthaus, G. Weinmann. Phys. Rev. Lett., 56, 2104 (1986).
- [10] J. Fang, W.G. Vandenberghe, M.V. Fischetti. Phys. Rev. B, 94, 045318 (2016).
- [11] Y. Matyushkin, S. Danilov, M. Moskotin, V. Belosevich, N. Kaurova, M. Rybin, E.D. Obraztsova, G. Fedorov, I. Gorbenko, V. Kachorovskii, S. Ganichev. Nano Lett., 20, 7296 (2020).
- [12] A. Gayduchenko, G.E. Fedorov, M.V. Moskotin, D.I. Yagod-kin, S.V. Seliverstov, G.N. Goltsman, A.Yu. Kuntsevich, M.G. Rybin, E.D. Obraztsova, V.G. Leiman, M.S. Shur, T. Otsuji, V.I. Ryzhii. Nanotechnology, 29, 245204 (2018).

Редактор Г.А. Оганесян

Low Temperature Electrical Properties of CVD Graphene on LiNbO₃: Acoustic Studies

I.L. Drichko¹, I.Yu. Smirnov¹, Yu.M. Galperin^{1,2}, P.A. Dementev¹, M.G. Rybin³

¹ loffe Institute,

194021 St. Petersburg, Russia

² Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway

³ Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia

Abstract Contactless acoustic methods were used to determine electrical parameters — electrical conductivity, carrier mobility and their concentration — in single-layer graphene deposited on the surface of lithium niobate.