

Chapter 1

Approximate learning of k-step invariant

1.1

Definition 1.1.1. k-step invariant of a probabilistic program P: Given a probabilistic program P and a set S of initial states, the k-step invariant or the k-iterative closure of P with respect to S is given by the set $cl_k(S) = \{\sigma \in \{0,1\}^{|V|} \mid \sigma \text{ is reachable from } S \text{ in at most } k \text{ iterations of } P\}$. Note that $cl_k(S) = \bigcup_{i=0}^k \psi^i(S) = \{\sigma \in \{0,1\}^{|V|} \mid \sigma \text{ is reachable in at most } k \text{ steps from } S\}$, where ψ denotes the single-iteration input-output function for the program P.

Definition 1.1.2. Distance between a candidate and the k-step invariant: Given a probabilistic program P and a set S of initial states, the distance between a given candidate T and the k-step invariant $cl_k(S)$ is given by $d(T, cl_k(S)) = \sum_{y \in (cl_k(S) \setminus T)} \Pr_{x \sim_U S}[y \text{ is reachable from } x \text{ in at most } k \text{ iterations }] = \Pr_{x \sim_U S}[(cl_k(S) \setminus T) \text{ is reachable from } x \text{ in at most } k \text{ iterations }].$

Assumption 1.1.1. Succint description of the true k-step invariant: We have assumed that the true k-step invariant for a given probabilistic program P with respect to a set S of initial states can be expressed in the form of a CNF of bounded size (polynomial) in the number of variables.

Assumption 1.1.2. Sampling access to internal random variables of P: We have assumed that the probabilistic program can be allowed to run in a deterministic manner by fixing a random seed, given sampling access to the internal random variables R.

Note. Monotonicity of candidates with respect to violating transitions: An important thing to note here is that for the ease of analysis, we are only interested in the family Γ of candidates such that given any candidate $T \in \Gamma$, any k-length transition starting from S does not return back to T once it goes out of it.

<u>Problem</u> 1.1.3. (Additive approximation of the distance of a candidate T from k-step invariant $cl_k(S)$): Given a probabilistic program P, a set S of initial states, the number of iterations k and a candidate T, parameters $\epsilon, \delta \in (0,1]$ output an ϵ -additive approximation of the distance $d(T, cl_k(S))$ with probability at least $1 - \delta$.

Theorem 1.1.4 (Correctness of DistEstimate). Given a probabilistic program P, a set S of initial states, the number of iterations k, a candidate T expressed as a CNF, parameters $\epsilon, \delta \in (0,1]$, DistEstimate outputs an ϵ -additive estimate of the $d(T, cl_k(S))$ with probability at least $1 - \delta$. Also, DistEstimate requires at most $\lceil \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}) \rceil$ samples from $\mathrm{Unif}(S \times \mathcal{P}(R))$.

Algorithm 1 IsNotWitness(T, w)

```
1: Initialize \tau \leftarrow 0.
2: \tau \leftarrow T(w)
3: Output \neg \tau.
```

Algorithm 2 DistEstimate($P(V, R), S, T, \epsilon, \delta, k$)

```
1: Initialize m \leftarrow \lceil \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}) \rceil, S_U \leftarrow \emptyset, \hat{d}_{S_U} \leftarrow 0, \tau \leftarrow 0.

2: S_U \leftarrow m iid samples from \mathrm{Unif}(S \times \mathcal{P}(R)).

3: for i \in [m] do

4: With (x_i, R_i) \in S_U as initial state, run the program P for k iterations to obtain an output state y_i.

5: \tau \leftarrow \mathrm{IsNotWitness}(T, y_i)

6: \hat{d}_{S_U} \leftarrow \hat{d}_{S_U} + \frac{\tau}{m}

7: end for

8: Output \hat{d}_{S_U}.
```

For a given candidate T, we can write the distance of T from the k-step invariant $cl_k(S)$ as follows: $d(T, cl_k(S)) = \Pr_{x \sim_U S}[(cl_k(S) \setminus T) \text{ is reachable from } x \text{ in at most } k \text{ iterations}].$

Proof of correctness of DistEstimate:

Claim: Given a probabilistic program P, a set S of initial states, the number of iterations k, a candidate T expressed in CNF, parameters $\epsilon, \delta \in (0, 1]$, DistEstimate outputs an estimate \hat{d}_{S_U} of the distance $d(T, cl_k(S))$ with the following guarantees:

$$\Pr[|\hat{d}_{S_U} - d(T, cl_k(S))| \le \epsilon] \ge (1 - \delta)$$

Moreover, the objective of DistEstimate is to generate a set of positive counterexamples, i.e., those states which have not been learnt by the candidate but they do actually belong to the true k-step invariant $cl_k(S)$.

Proof. Description of IsNotWitness: IsNotWitness takes in a CNF formula T and a given assignment w of the variables $V \in \text{supp}(T)$ and returns 1 if w is not a witness for T, and 0 otherwise.

Description of DistEstimate: Line 2 samples m states from $(S \times \mathcal{P}(R))$ uniformly at random so as to obtain a sample set $S_U = \{(x_1, R_1), (x_2, R_2), ..., (x_m, R_m)\}$, where for each $i \in [m]$, x_i is the initial state and R_i is the fixed initial seed for the internal random bits of P.

Starting from each state defined by (x_i, R_i) ; $i \in [m]$, the program P is executed for exactly k iterations in Line 4. According to assumption , if for a given initial state (x_i, R_i) , the k-length transition to output state y_i goes out of the set represented by T at some j-th iteration $(j \in [k])$, y_i is guaranteed not to be a witness for the candidate T. Hence, it is sufficient to just check the output state y_i reached after k iterations.

Now, let's define the following event for each state $(x_i, R_i) \in S_U$; $i \in [m]$:

 E_i : With (x_i, R_i) as initial state, the output state y_i reached after k iterations is not a witness for T.

Note that the collection of events $\{E_i\}_{i=1}^m$ are mutually independent. Next, we define indicator random variables for these events as $\mathbf{1}_{E_i}$. Define the statistic $\hat{d}_{SU} = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{E_i}$. Line 6 updates the estimate \hat{d}_{SU} based on the check for non-witness of output state y_i for the candidate T in line 5 via the subroutine IsNotWitness.

We observe that $\mathbb{E}[\hat{d}_{S_U}] = \Pr_{x \sim_U S}[(cl_k(S) \setminus T) \text{ is reachable from } x] = d(T, cl_k(S))$ and thus, \hat{d}_{S_U} is an unbiased estimator of the quantity $d(T, cl_k(S))$. Applying additive Chernoff bound given an error parameter $\epsilon \in (0, 1]$, we get

$$\Pr[|\hat{d}_{S_U} - \mathbb{E}[\hat{d}_{S_U}]| \ge \epsilon] = \Pr[|\hat{d}_{S_U} - d(T, cl_k(S))| \ge \epsilon] \le 2e^{-2m\epsilon^2}$$

We want to make this probability go below a certain threshold, given by δ . Thus,

$$2e^{-2m\epsilon^2} \le \delta \implies m \ge \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}).$$

This gives us a sample complexity of $O(\frac{1}{\epsilon^2}\log(\frac{2}{\delta}))$. Thus, we can conclude that if we take at least $\lceil \frac{1}{2\epsilon^2}\log(\frac{2}{\delta}) \rceil$ iid samples from $\mathrm{Unif}(S \times \mathcal{P}(R))$, DistEstimate outputs an ϵ -additive estimate \hat{d}_{SU} of $d(T, cl_k(S))$ with probability at least $1 - \delta$.

Algorithm 3 UnreachSAT(Υ)

```
1: Initialize \tau \leftarrow 0.
2: \tau \leftarrow \texttt{CryptoMiniSat}(\Upsilon).
3: Output \neg \tau.
```

Algorithm 4 Validifier $(P(V,R),S,T,F,\epsilon,\delta,k)$

```
1: Initialize l \leftarrow \lceil \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}) \rceil, \Upsilon \leftarrow \{\}, i, j \leftarrow 0, D_T \leftarrow \emptyset, \tau, d_v \leftarrow 0.
 2: D_T \leftarrow l iid samples from T.
 3: for \sigma_i \in D_T do
            for j \in [k] do
 4:
                   Construct the formula \Upsilon = S \wedge F^j \wedge \sigma_i.
 5:
                   \tau \leftarrow \tau \vee \mathtt{UnreachSAT}(\Upsilon).
 6:
 7:
             end for
            d_v \leftarrow (d_v + \frac{\tau}{I}).
 8:
             \tau \leftarrow 0.
9:
10: end for
11: Output d_v.
```

1.1.1 Analysis of Validifier

Motivation: The candidate T generated by the decision tree learner TreeLearner might contain some program states which are actually not reachable from S in k iterations of the program P, i.e., those states which do not belong to the true k-step invariant $cl_k(S)$. These program states which are not in the true k-step invariant but have been learnt by TreeLearner need to be penalised. Hence, we introduce a new weight function in order to quantify how good or bad our candidate T overapproximates the true k-step invariant $cl_k(S)$. This weight function can be formally defined as follows:-

Definition 1.1.3. Over-approximating weight of a given candidate T: Given a probabilistic program P and a set S of initial states, the k-step invariant or the k-iterative closure of P with respect to S is given by the set $cl_k(S) = \{\sigma \in \{0,1\}^{|V|} \mid \sigma \text{ is reachable from } S \text{ in at most } k \text{ iterations of } P\}$. Given a candidate T, the overapproximating weight function for T can be defined as:

$$w(T) = \Pr_{\sigma \sim T} [\sigma \notin cl_k(S)]$$

Claim: Given a probabilistic program P, a set S of initial states, the number of iterations k, a candidate T expressed in CNF, parameters $\epsilon, \delta \in (0,1]$, Validifier outputs an estimate $\hat{w}(T)$ of the weight function w(T) with the following guarantees:

$$\Pr[|\hat{w}(T) - w(T)| \le \epsilon] \ge (1 - \delta)$$

Moreover, the objective of Validifier is to generate a set of negative counterexamples, i.e., those states which have been learnt by the candidate but they do not actually belong to the true k-step invariant $cl_k(S)$. The over-approximating weight function precisely penalises these kind of states for a given candidate T.

Proof. Description of UnreachSAT: UnreachSAT takes in a CNF formula Υ and returns 1 if Υ is unsatisfiable and 0 otherwise.

Description of Validifier:

Line 2 samples l states from the candidate T almost uniformly at random (using an almost-uniform sampler CMSGen) from the witnesses of T to obtain a sample set $D_T = \{y_1, y_2, ..., y_l\}$, where for each $i \in [l]$, y_i is the output state whose reachability needs to be checked for any $j \in [k]$ iterations of the program P starting from S.

Line 5 constructs for every $j \in [k]$, the j-step reachability formula from S for the sampled output state y_i , denoted by $\Upsilon = S \wedge F^j \wedge y_i$, where F^j is the CNF formula which is satisfiable by all the valid j-length runs of the program S.

Thus, the CNF formula Υ is satisfiable if and only if there exists a valid j-length transition of the program P starting from some state in S and ending up in the final state y_i , i.e., if y_i is reachable in exactly j iterations of P from S. Hence, given a final state y_i , if the collection of CNF formulas $\{S \wedge F^j \wedge y_i\}_{j=1}^k$ is unsatisfiable, then we can conclude that $y_i \notin cl_k(S)$.

Now, let's define the following event for each state $y_i \in D_T$; $i \in [l]$ and $j \in [k]$:

 E_i : The collection of reachability formulas $\{S \wedge F^j \wedge y_i\}_{i=1}^k$ is unsatisfiable.

Thus, the event E_i holds if the sampled final state y_i is reachable in some $j \in [k]$ iterations of P, starting from S. Note that the collection of events $\{E_i\}_{i=1}^l$ are mutually independent. Next, we define indicator random variables for these events as $\mathbf{1}_{E_i}$. Define the statistic $\hat{w}(T) = \frac{1}{l} \sum_{i=1}^{l} \mathbf{1}_{E_i}$. Line 8 updates the estimate $\hat{w}(T)$ based on the check for non-witness (Line 6) of the collection of formulas $\{S \wedge F^j \wedge y_i\}_{j=1}^k$ generated by the inner loop (Line 5).

We observe that $\mathbb{E}[\hat{w}(T)] = \Pr_{y \sim_U T}[y \text{ is reachable from } S] = w(T)$ and thus, $\hat{w}(T)$ is an unbiased estimator of the quantity w(T). Applying additive Chernoff bound given an error parameter $\epsilon \in (0, 1]$, we get

$$\Pr[|\hat{w}(T) - \mathbb{E}[\hat{w}(T)]| \ge \epsilon] = \Pr[|\hat{w}(T) - w(T)| \ge \epsilon] \le 2e^{-2l\epsilon^2}$$

We want to make this probability go below a certain threshold, given by δ . Thus,

$$2e^{-2l\epsilon^2} \le \delta \implies l \ge \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}).$$

This gives us a sample complexity of $O(\frac{1}{\epsilon^2}\log(\frac{2}{\delta}))$. Thus, we can conclude that if we take at least $\lceil \frac{1}{2\epsilon^2}\log(\frac{2}{\delta}) \rceil$ iid samples from the CNF formula T, Validifier outputs an ϵ -additive estimate $\hat{w}(T)$ of the weight function w(T) with probability at least $1-\delta$. Also, the number of SAT calls required by Validifier in order to verify reachability of the sampled final states $= \lceil \frac{k}{2\epsilon^2}\log(\frac{2}{\delta}) \rceil$.

Problem definition:

Problem 1.1.5. (Approximate learning of the k-step invariant $cl_k(S)$): Given a program probabilistic P defined on program variables V, a set S of initial states and parameters $k \in \mathbb{N}$ for the number of program iterations, $\epsilon, \delta \in (0, 1]$, output a candidate \hat{S}_k for the k-step invariant $cl_k(S)$ such that $d(\hat{S}_k, cl_k(S)) \leq \epsilon$ with probability at least $1 - \delta$.

High-level overview of the algorithm:

Ideally, the objective is to learn the k-step invariant $cl_k(S)$. However, it is extremely hard. In this context, can we atleast approximate $cl_k(S)$? That is, we want to output some \hat{S}_k such that $d(\hat{S}_k, cl_k(S))$ is as small as possible. An informal sketch of the algorithm to approximately learn $cl_k(S)$ via \hat{S}_k is given below. The algorithm runs in k phases and tries to learn $cl_k(S)$ in a BFS manner, i.e., it starts off with S and learns $cl_1(S), cl_2(S), ..., cl_k(S)$ via the sequence $\hat{S}_1, \hat{S}_2, ..., \hat{S}_k$.

- 1. Phase 1:- Objective is to learn $cl_1(S)$ starting from S.
 - ullet Sample *enough* states from S and run the program P for one iteration to obtain a set of output states.
 - ullet Build a labeled dataset D using these output states such that the states which are in S are labeled 0 and 1 otherwise.
 - Learn a binary decision tree with bounded size (according to the size of the formula we want) on D to output a formula φ .
 - If $d(S \vee \varphi, cl_1(S)) \geq \epsilon$, perform weighted secondary sampling (counterexample-guided sampling). Extend the dataset D by labeling these newly sampled instances.
 - Output $\hat{S}_1 = S \vee \varphi$.
 - Theoretical guarantees on how close \hat{S}_1 is to the actual one-step invariant $cl_1(S)$ depends on the number of samples taken and the restriction on the size of φ , which is actually dictated by the size of the decision tree learnt.
- 2. Phase $i : i \in \{2, 3, ..., k\}$:- Objective is to learn \bar{S}_i starting from \hat{S}_{i-1} .
 - ullet Sample enough states from S and run the program P for i iterations to obtain a set of output states.
 - Build a labeled dataset D using these output states such that the states which are in \hat{S}_{i-1} are labeled 0 and 1 otherwise.
 - Learn a binary decision tree with bounded size (according to the size of the formula we want) on D. This decision tree would then correspond to the formula φ such that $d(\hat{S}_{i-1} \vee \varphi, \bar{S}_i)$ is minimized.
 - Output $\hat{S}_i = \hat{S}_{i-1} \vee \varphi$.
 - Once again, theoretical guarantees on how close \hat{S}_i is to the actual *i*-step invariant \bar{S}_i depends on the number of samples taken and the restriction on the size of φ , which is actually dictated by the size of the decision tree learnt.

Algorithm 5 ApproxInv $(P(V,R),S,\epsilon,\eta,\delta,k)$

```
1: Initialize t \leftarrow \lceil something \rceil, D_t \leftarrow \emptyset, D \leftarrow \emptyset, \hat{d} \leftarrow \infty, T \leftarrow \{\}, W \leftarrow S.
 2: for j \in [k] do
           D_t \leftarrow t \text{ iid samples from Unif}(S \times \mathcal{P}(R)).
           D \leftarrow \mathtt{BuildDataset}(P(V,R),D_t,W,j).
           T \leftarrow \mathtt{TreeLearner}(D).
 5:
           T \leftarrow \mathtt{Validifier}(P(V,R),W,T).
 6:
           \hat{d} \leftarrow \mathtt{DistEstimate}(P(V,R),S,T,\frac{\epsilon}{k},\delta,j)
 7:
           while \hat{d} \leq \frac{\eta}{k} do
 8:
                 D \leftarrow D \cup SecondarySampler(P(V, R), S, T)
9:
                 T \leftarrow \mathtt{TreeLearner}(D).
10:
                 T \leftarrow \mathtt{Validifier}(P(V,R),W,T).
11:
                 \hat{d} \leftarrow \mathtt{DistEstimate}(P(V,R),S,T,\epsilon,\delta,j)
12:
           end while
13:
           W \leftarrow T.
14:
           D_t \leftarrow \emptyset.
15:
           D \leftarrow \emptyset.
16:
17: end for
18: Output W.
```

Algorithm 6 BuildDataset $(P(V,R), D_t, W, j)$

```
1: Initialize t \leftarrow |D_t|, D \leftarrow \emptyset, \tau \leftarrow 0.

2: for i \in [t] do

3: With (x_i, R_i) \in D_t as initial state, run the program P for j iterations to obtain an output state y_i.

4: \tau \leftarrow \mathtt{IsNotWitness}(W, y_i)

5: D \leftarrow D \cup (y_i, \tau)

6: end for

7: Output D.
```

Algorithm 7 TreeLearner(D)

```
    Initialization.
    Split-n-Build
    Prune
    Output-
```

Algorithm 8 SecondarySampler(P(V,R),S,T)

```
1: Initialization.
2:
3: Output-
```

Figure 1.1: Sketch of ApproxInv

1.1.2 Notes on ApproxInv:

- BuildDataset: This subroutine is used for building a labeled dataset for the decision tree learner TreeLearner.
- IsNotWitness: This subroutine takes in a CNF formula T and an assignment w of its variables and returns 1 if w is not a witness for T and vice-versa.
- TreeLearner: This subroutine is used to learn a candidate invariant based on the labeled dataset returned by BuildDataset.
- Validifier: This subroutine takes in a candidate formula T and a set W of states and trims T by deleting all those states in T which are not reachable in one step from W.
- ProgCNF: It takes in a program P and generates a CNF formula F^P corresponding to the valid runs of the program P.
- DistEstimate: Description given in Theorem 1.1.4.
- SecondarySampler: This subroutine is meant for counterexample-guided sampling in the CEGIS loop.

#samples	100	500	1000	10000
#times test performed	50	50	50	50
d_{\min}	0.11	0.134	0.163	0.1829
d_{max}	0.25	0.20	0.206	0.1962
d_{mean}	0.1731	0.17296	0.18312	0.1896
d_{std}	0.0284	0.01472	0.01042	0.00313

Table 1.1: Performance of DistEstimate on a toy program (Ex9: 5 program variables, 4 internal random variables)

1.1.3 Problems in ApproxInv:

• TreeLearner might learn a small-sized formula T such that there exists some state $s \notin cl_k(S)$ but s is a witness for T. In that case $d(T, cl_k(S)) \to \infty$. This depends on the pruning scheme of the full decision tree.

Arnab: Validifier can probably be used to trim these spurious states.

• We can do the reachability check while sampling.

1.2 Experimental evaluations on DistEstimate: