Lecture 2

Instructor: Subrahmanyam Kalyanasundaram

1st August 2019

Many thanks to Dr. Karteek Sreenivasaiah for slide templates

Airport with a single busy runway (Mumbai)

- Airport with a single busy runway (Mumbai)
- Reservation requests for future landings
 - ▶ Need to land at time *t*

- Airport with a single busy runway (Mumbai)
- Reservation requests for future landings
 - Need to land at time t
- ► We can approve landing request if no other landing within *k* minutes

- Airport with a single busy runway (Mumbai)
- Reservation requests for future landings
 - Need to land at time t
- We can approve landing request if no other landing within k minutes
- ▶ Once approved, we can add *t* to the set *R* of landing times

- Airport with a single busy runway (Mumbai)
- Reservation requests for future landings
 - Need to land at time t
- We can approve landing request if no other landing within k minutes
- ► Once approved, we can add *t* to the set *R* of landing times
- ► Remove *t* from the set after plane lands

- ▶ Let |R| = n
- ▶ Ideally, all the operations to be done in $O(\log n)$ time

Unsorted List/Array:

- Unsorted List/Array:
- ▶ Almost every operation is O(n), except insertion

- Unsorted List/Array:
- ▶ Almost every operation is O(n), except insertion
- Sorted Array:

- Unsorted List/Array:
- ▶ Almost every operation is O(n), except insertion
- ► Sorted Array:
- ▶ Search is $O(\log n)$, but insertion is O(n)

- Unsorted List/Array:
- ▶ Almost every operation is O(n), except insertion
- Sorted Array:
- ▶ Search is $O(\log n)$, but insertion is O(n)
- ► Sorted List:

- Unsorted List/Array:
- ▶ Almost every operation is O(n), except insertion
- Sorted Array:
- ▶ Search is $O(\log n)$, but insertion is O(n)
- ► Sorted List:
- ▶ Insertion is O(1), but search is O(n)

- ► Hash Tables:
- ► Heaps:

- ► Hash Tables:
- ► Heaps:
- Not good for search in a range

- ▶ Hash Tables:
- ► Heaps:
- Not good for search in a range

Fast insertion into a sorted array

Trees

- ► Root
- ▶ Parent, Child
- ► Ancestor, Descendant
- Sibling
- ► Leaves, Internal Nodes
- ▶ Depth, Height

Trees

- Organization Structure
- ► File System
- ► Family Tree

Binary Trees

A binary tree is an ordered tree in which every node has at most 2 children.

Implementation

Similar to a node in a linked list, each node in a Binary Tree has the following:

- ▶ int *val* holds the data/value of the node.
- ► Left child pointer.
- Right child pointer.
- Parent node pointer.

Data Structure

- 1. What is the maximum height of a Binary Tree with *n* nodes?
- 2. What is the minimum height of a Binary Tree with *n* nodes?

Binary Search Tree

A Binary Search Tree (BST) is a tree that satisfies the following:

► For every node *X* in the BST, we have:

Values in left subtree \leq value(X) \leq Value in right subtree

Example BST

Abstract Data Type - BST

A BST supports the following functions:

- ► INSERT(node, val) Inserts val into the BST rooted at node.
- SEARCH(node, val) Returns True of val exists in the BST rooted at node. False otherwise.
- Succ(val) Returns the smallest element greater than val in the BST.
- ► PRED(val) Returns the largest element lesser than val in the BST.
- ► Deletes *val* from the BST.

Example BST

The order in which elements are inserted makes a difference! Consider two different sequences of values:

- ► **Sequence A**: 23, 11, 20, 21, 2, 56, 40, 41
- ► **Sequence B**: 2, 11, 20, 21, 23, 40, 41

(See whiteboard).

Insert procedure

The Insert(node, x) procedure:

- ▶ If *node* = NULL, create new node with *x* and attach to parent.
- ▶ Else If x < value(node),
 - ▶ INSERT($node \rightarrow left, x$)
- Else If x > value(node) Then,
 - ▶ INSERT($node \rightarrow right, x$)

Binary Search Trees

Recall that a Binary Search Tree (BST) has the following crucial property:

For every node *X* in the BST, we have:

- ► Every node in the left subtree of *X* contains a value smaller than that of *X*.
- ► Every node in the right subtree of *X* contains a value larger than that of *X*.

- Write the SEARCH(node, x) procedure.
- ▶ SEARCH(node, x):

- Write the SEARCH(node, x) procedure.
- \triangleright Search(node, x):
- ▶ If *node* = NULL, then return NULL

- Write the Search(node, x) procedure.
- \triangleright Search(node, x):
- ▶ If *node* = NULL, then return NULL
- ▶ Else If x = value(node), then return node

- Write the SEARCH(node, x) procedure.
- \triangleright Search(node, x):
- ▶ If *node* = NULL, then return NULL
- Else If x = value(node), then return node
- ▶ Else If x < value(node), then
 - ▶ Return Search($node \rightarrow left, x$)

- Write the SEARCH(node, x) procedure.
- \triangleright Search(node, x):
- ▶ If *node* = NULL, then return NULL
- Else If x = value(node), then return node
- ▶ Else If x < value(node), then
 - ▶ Return Search($node \rightarrow left, x$)
- ► Else
 - ▶ Return Search($node \rightarrow right.x$)