Ejemplo completo:

• Datos a transmitir: 101110

• Polinomio generador: $x^3 + 1$

Patrón generador: 1001

- El CRC tendrá 3 bits ya que el polinomio generador tiene 4 bits
- Para calcular el CRC haremos la división en aritmética módulo 2 de: 101110000 entre 1001.

Puesto que el CRC tendrá 3 bits hemos añadido 3 ceros a los datos a transmitir.

1 0 1 1 1 0 0 0 0 1

Avanzamos 2 bits por lo que añadimos dos bits al resultado.

• Usando la implementación hardware G = $x^3 + 1$

¿Cómo obtener el circuito para calcular el CRC?

El cálculo del circuito es muy sencillo:

- 1) Se escribe el polinomio (patrón generador, G) en binario Ejemplo: el polinomio de grado 3, x³ + 1, en binario sería 1001
- 2) Se necesitarán tantos registros como grado tenga el polinomio
- 3) Situación de las puertas XOR: una a la entrada de datos, y una a la derecha de cada 1 del polinomio escrito en binario, excepto en el uno de mayor grado donde en lugar de una XOR se añade una realimentación al inicio:

Ejemplo:
$$x + x + x + 1 -> 10001 0000001 000001$$
 sería: RRRXRRRRRRRXRRRRX

donde: R: Registro X: puerta XOR

Luego el circuito será el siguiente:

