

Analog Integrated Circuit Design and Applications Spring 2024

Bandgap References

Yung-Hui Chung

MSIC Lab

DECE, NTUST

Outline

- Supply-Independent Biasing
- Temperature-Independent References
- PTAT Current Generation
- Constant-Gm Biasing
- Speed and Noise Issues
- Low-Voltage Bandgap References
- Case Study

電流鏡偏壓

(a)理想電流源

如果 I_{REF} 不會隨著 V_{DD} 而改變且 M_2 和 M_3 之通道長度調變可忽略 $\Delta I_{out} = \frac{\Delta V_{DD}}{R_1 + 1/g} \cdot \frac{(W/L)_2}{(W/L)_1}$ 時,則 I_{D2} 和 I_{D3} 和供應電壓無關。

(b)電阻之電流鏡偏壓

$$\Delta I_{out} = \frac{\Delta V_{DD}}{R_1 + 1/g_{m1}} \cdot \frac{(W/L)_2}{(W/L)_1}$$

Supply-Independent Biasing

建立和供應電源無關之電流的簡單電路

如果通道長度調變可忽略時

$$I_{out} = KI_{REF}$$

I_{REF} is still process-dependent, not well-controlled

Is there any problem for this circuit?

• It needs a start-up circuit to make it alive (I_{out}=0 or ?)

Supply-Independent Biasing

(a)加入 R_S 以定義電流

$$V_{GS1} = V_{GS2} + I_{D2}R_{S}$$

$$\sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}(W/L)_{N}}} + V_{TH1} = \sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}K(W/L)_{N}}} + V_{TH2} + I_{out}R_{S}$$

Supply-Independent Biasing

忽略基板效應

$$\sqrt{\frac{2I_{out}}{\mu_n C_{ox}(W/L)_N}} \left(1 - \frac{1}{\sqrt{K}}\right) = I_{out} R_S$$

$$I_{out} = \frac{2}{\mu_n C_{ox} (W/L)_N} \cdot \frac{1}{R_S^2} \left(1 - \frac{1}{\sqrt{K}} \right)^2$$

 I_{out} 與 V_{DD} 無關!!

If more non-ideal effects, ...

例題 12.1

假設在圖12.3(a)中 $\lambda \neq 0$,當供應電壓改變 ΔV_{DD} 時,計算 I_{out} 之變化為何?

R_1 R_3 R_3 R_3 R_4 R_3 R_4 R_5

答:

將電路簡化為圖12.4所示之電路,其中 $R_1 = r_{O1} \| (1/g_{m1})$ 且 $R_3 = r_{O3} \| (1/g_{m3})$,

我們計算由 V_{DD} 至 I_{out} 的增益, M_4 之小信號閘極-源極電壓為 $-I_{out}R_3$ 且

流經
$$r_{O4}$$
之電流為 $(V_{DD}-V_X)/r_{O4}$ 。因此, $\frac{V_{DD}-V_X}{r_{O4}}+I_{out}R_3g_{m4}=\frac{V_X}{R_1}$

如果我們以 $G_m = I_{out}/V_X$ 來象徵 M_2 的

等效轉導時,則
$$\frac{I_{out}}{V_{DD}} = \frac{1}{r_{O4}} \left[\frac{1}{G_{m2}(r_{O4} \parallel R_1)} - g_{m4}R_3 \right]^{-1}$$

注意從第三章中得知
$$G_{m2} = \frac{g_{m2}}{1 + (g_{m2} + g_{mb2})R_S}$$

有趣地是,如果 r_{04} =∞,靈敏度將會消失(Ideal case!!)。

起始問題

Major considerations for a feedback circuit:

- 加入一個驅動電路離開退化偏壓點之機制來解決起始問題
- •驅動電路本身不應在偏壓正常後繼續動作(*)

與溫度無關的參考電壓

- 如何產生一個與溫度無關的參考電壓,供晶片做為電壓基準使用?
- 為什麼我們在意:參考電壓要與溫度無關?

- 與溫度有關之物理量(幾乎所有材料)
 - V_T: kT/q (positive TC)
 - V_{BE} : ∂V_{BE} / ∂T ~ -2mV/°C (negative TC)
 - ΔV_{BE}: ∞T (positive TC)
 - Resistors (positive or negative TC)
 - MOSFETs in Subthreshold region

負溫度係數電壓 (Negative-TC)

對一個雙載子元件而言, $I_C=I_S \exp(V_{BE}/V_T)$ 。其中 $V_T=kT/q$,

$$I_S = bT^{4+m} \exp{\frac{-E_g}{kT}}$$
 (課本有推導!!) $E_g \sim 1.12 \ eV$

$$V_{BE} = V_T ln(I_C/I_S)$$
, $\frac{\partial V_{BE}}{\partial T} = \frac{\partial V_T}{\partial T} ln \frac{I_C}{I_S} - \frac{V_T}{I_S} \frac{\partial I_S}{\partial T}$ (Assume I_C is constant?)

$$\frac{\partial I_S}{\partial T} = b(4+m)T^{3+m} \exp \frac{-E_g}{kT} + bT^{4+m} \left(\exp \frac{-E_g}{kT} \right) \left(\frac{E_g}{kT^2} \right)$$

$$\frac{V_T}{I_S} \frac{\partial I_S}{\partial T} = (4+m) \frac{V_T}{T} + \frac{E_g}{kT^2} V_T$$

$$\frac{\partial V_{BE}}{\partial T} = \frac{V_T}{T} ln \frac{I_C}{I_S} - (4+m) \frac{V_T}{T} - \frac{E_g}{kT^2} V_T = \frac{V_{BE} - (4+m)V_T - E_g / q}{T}$$

假設 V_{BE} = 750 m V 且在 T = 300 ° K 時, $\partial V_{BE}/\partial T \approx -1.5$ m V / K

正溫度係數電壓 (Positive-TC)

PTAT電壓的產生

$$\Delta V_{BE} = V_{BE1} - V_{BE2} = V_T \ln \frac{nI_0}{I_{S1}} - V_T \ln \frac{I_0}{I_{S2}} = V_T \ln n$$

$$\frac{\partial \Delta V_{BE}}{\partial T} = \frac{k}{q} \ln n$$
Too small!!

例題 12.3

計算圖11.7電路之 ΔV_{BE} 。

答:

忽略基極電流,我們寫成

$$\Delta V_{BE} = V_T \ln \frac{nI_0}{I_S} - V_T \ln \frac{I_0}{mI_S} = V_T \ln(nm)$$

因此溫度係數為 $(k/q)\ln(nm)$ 。

Larger than that on the last page

與溫度無關之電壓概念生成圖

$$V_{REF} = \alpha_1 V_{BE} + \alpha_2 (V_T \ln n)$$
 \Rightarrow To meet $\partial V_{REF} / \partial T = 0$

因為 $\alpha_1 = \alpha_2 = 1$,選擇 $\ln(n)$ 使得 $(\alpha_2 \ln n)(0.087 mV/K) = 1.5 mV/K$ 。

 $n=3\times10^7$ (quite large!!) \rightarrow We need a smaller ln(n)

$$V_{REF} = V_{BE} + 17.2V_T \approx 1.25V$$

與溫度無關電壓觀念電路的實現

A conventional Bandgap reference circuit

If $V_{01} \sim V_{02} => using opamp!!$

$$V_{out} = V_{BE2} + \frac{V_T \ln n}{R_3} (R_3 + R_2) = V_{BE2} + (V_T \ln n) \left(1 + \frac{R_2}{R_3} \right)$$

To achieve a smaller *n*!!

與溫度無關電壓觀念電路的實現

$$V_{BE} = V_T \ln(I_C/I_S) \implies \frac{\partial V_{BE}}{\partial T} = \frac{\partial V_T}{\partial T} \ln \frac{I_C}{I_S} - \frac{V_T}{I_S} \frac{\partial I_S}{\partial T}$$

假設 $I_{C1} = I_{C2} \approx (V_T \ln(n)) / R_3$ (I_C is not constant, we need to modify)

$$\frac{\partial V_{BE}}{\partial T} = \frac{\partial V_T}{\partial T} \ln \frac{I_C}{I_S} + V_T \left(\frac{1}{I_C} \frac{\partial I_C}{\partial T} - \frac{1}{I_S} \frac{\partial I_S}{\partial T} \right) \qquad \mathbf{R_1} = \mathbf{R_1}$$

因為 $\partial I_C/\partial T \approx (V_T \ln n)/(R_3 T) = I_C/T$

$$\frac{\partial V_{BE}}{\partial T} = \frac{\partial V_T}{\partial T} \ln \frac{I_C}{I_S} + \frac{V_T}{T} - \frac{1}{I_S} \frac{\partial I_S}{\partial T}$$

$$\frac{\partial V_{BE}}{\partial T} = \frac{V_{BE} - (3+m)V_T - E_g/q}{T}$$

 R_1 R_2 Y A_1 A_2 A_3 A_4 A_4

顯示出 TC 比 −1.5mV/°K 略小。

BJT與CMOS技術之相容性

在CMOS技術中實現一pnp 雙載子電晶體(from PDK)

PDK: Process Design Kit

運算放大器偏移和輸出阻抗

運算放大器偏移對參考電壓的影響。

$$\begin{split} V_{BE1} - V_{OS} &\approx V_{BE2} + R_3 I_{C2} \quad \text{In} \quad V_{out} = V_{BE2} + (R_3 + R_2) I_{C2} \\ V_{out} &= V_{BE2} + (R_3 + R_2) \frac{V_{BE1} - V_{BE2} - V_{OS}}{R_3} = V_{BE2} + \left(1 + \frac{R_2}{R_3}\right) (V_T \ln n - V_{OS}) \end{split}$$

運算放大器偏移效應的降低

- V_{out} will be 2.5V, not a good solution
- A better solution is using the offset-compensated opamp (using auto-zero, chopper or else)

運算放大器偏移和輸出阻抗

- (a) 串聯二極體轉換為一集極接地之組態;
- (b)以PMOS電流源偏壓(a)中的電路。

運算放大器偏移和輸出阻抗

利用二個串聯基極-射極電壓之參考電路產生器

回授極性

Q: We have both positive and negative loops. What is the stability? Is it stable or not?

A: Of course, it must be stable

回授極性

運算放大器所產生之回授信號將會回傳至其輸入端,

負回授因子給定為
$$\beta_N = \frac{1/g_{m2} + R_3}{1/g_{m2} + R_3 + R_2}$$

而正回授因子為
$$\beta_P = \frac{1/g_{m1}}{1/g_{m1} + R_1}$$

為確保整體回授為負, β_P 必須小於 β_N 。

帶差參考電壓 (Bandgap Voltage)

$$V_{REF} = V_{BE} + V_{T} \ln n$$

$$I_{S} = bT^{4+m} \exp \frac{-E_{g}}{kT}$$

$$\frac{\partial V_{REF}}{\partial T} = \frac{\partial V_{BE}}{\partial T} + \frac{V_{T}}{T} \ln n$$

$$\frac{\partial V_{BE}}{\partial T} = \frac{V_{BE} - (4+m)V_{T} - E_{g}/q}{T}$$

$$\frac{V_{BE} - (4+m)V_{T} - E_{g}/q}{T} = -\frac{V_{T}}{T} \ln n$$

$$\rightarrow V_{REF} = \frac{E_{g}}{q} + (4+m)V_{T}$$

 $T \to 0 \Longrightarrow V_{REF} \to E_{\sigma}/q$

 E_{g} ~ 1.12eV, called the bandgap energy of *Silicon*

带差参考電壓:曲率校正

带差電壓對於溫度相關性之曲率

單點校正

or 多點校正

對不同範例而言,零 TC 温度的變化

带差參考電壓:曲率校正

單點校正 or 多點校正

對一般產品來說,最好Vref是可以被調整到一個固定值!!即便在溫度範圍內有些微變化,其絕對值是最重要的!!

PTAT 電流生成

PTAT 電流之生成 (溫度感測)

利用一簡單放大器產生 PTAT 電流

Q: How about R1?

與溫度無關電壓的另一實現

產生與溫度無關之電壓。

$$V_{REF} = V_{BE3} + \frac{R_2}{R_1} V_T \ln n$$

速度和雜訊問題

電路的暫態行為對參考電壓和電流的影響

速度和雜訊問題

增加旁路電容對參考產生器響應的影響

測試參考產生器暫態響應的機制 (Test bench)

例題 12.7

決定圖12.23所示之帶差參考電路的小信號輸出阻抗並檢查其隨著頻率變

化的特性。

答:

圖12.26顯示其等效電路,並以一單極點轉移函數 $A(s)=A_0/(1+s/\omega_0)$ 和輸出電阻 R_{out} 建立開路迴路運算放大器之模型,以及以電阻 $1/g_{mN}$ 建立每個BJT的模型。如果 M_1 和 M_2 相同,其轉導皆為 g_{mP} ,則其汲極電流為 $g_{mP}V_X$,在運算放大器之輸入端產生一差動電壓為

$$V_{AB} = -g_{mP}V_{X}\frac{1}{g_{mN}} + g_{mP}V_{X}\left(\frac{1}{g_{mN}} + R_{1}\right) = g_{mP}V_{X}R_{1}$$

例題 12.7〈續〉

產生

流經
$$R_{out}$$
 之電流為
$$I_X = \frac{V_X + g_{mP} V_X R_1 A(s)}{R_{out}}$$
 產 P

$$\frac{V_X}{I_X} = \frac{R_{out}}{1 + g_{mP}R_1A(s)} = \frac{R_{out}}{1 + g_{mP}R_1\frac{A_0}{1 + s/\omega_0}}$$

$$= \frac{R_{out}}{1 + g_{mP}R_{1}A_{0}} \cdot \frac{1 + \frac{s}{\omega_{0}}}{1 + \frac{s}{(1 + g_{mP}R_{1}A_{0})\omega_{0}}}$$

因此,輸出阻抗顯示了一位於 ω_0 之零點和一極點位於 $(1+g_{mP}R_1A_0)\omega_0$ 。 注意對 $\omega \ll \omega_0$ 而言, $|Z_{out}|$ 相當低,但是當頻率接近極點頻率時將會上

升至一很高的值。事實上,設定 $\omega=(1+g_{mp}R_1A_0)\omega_0$ 並假設 $g_{mp}R_1A_0>>1$,

我們得到

$$|Z_{out}| = \frac{R_{out}}{1 + g_{mP}R_1A_0} \left| \frac{1 + j(1 + g_{mP}R_1A_0)}{1 + j} \right| = \frac{R_{out}}{\sqrt{2}}$$

只比開路迴路值低30%。

例題 12.7〈續〉

使用參考產生器之A/D轉換器

如果高精確 A/D 轉換器使用一帶差電壓作為與 類比電路相比較之參考電壓,則在參考電路之 雜訊將直接加入輸入端。

- ⇒ Output referred noise!!
- ⇒ A reference buffer is necessary

計算參考產生器中雜訊的電路

Firstly, we consider the opamp noise

Then, we consider other components in the circuit

Appendix

- Low-Voltage Bandgap Reference
- High-Precision Bandgap Reference

$$I_{C1} + \frac{|V_{BE1}|}{R_3} = I_{C2} + \frac{|V_{BE1}|}{R_2}$$

$$|I_{D4}| = \frac{V_T \ln n}{R_1} + \frac{|V_{BE1}|}{R_2}$$

$$= \frac{1}{R_2} \left(|V_{BE1}| + \frac{R_2}{R_1} V_T \ln n \right)$$

$$V_{BG} = \frac{R_4}{R_2} \left(|V_{BE1}| + \frac{R_2}{R_1} V_T \ln n \right)$$

$$V_X \approx V_Y + V_{OS} \approx |V_{BE1}|$$

$$I_{C1} + \frac{|V_{BE1}|}{R_3} = I_{C2} + \frac{|V_{BE1}| - V_{OS}}{R_2}$$

$$|V_{BE1}| = |V_{BE2}| + R_1 I_{C2} + V_{OS}$$

$$I_{C2} = V_T \ln n / R_1 - V_{OS} / R_1$$

$$|I_{D4}| = \frac{V_T \ln n - V_{OS}}{R_1} + \frac{|V_{BE1}| - V_{OS}}{R_2}$$

$$V_{BG} = \frac{R_4}{R_2} \left(|V_{BE1}| + \frac{R_2}{R_1} V_T \ln n \right) - \frac{R_4}{R_1 ||R_2|} V_{OS}$$

$$V_{BG} = \frac{R_4}{R_2} \left[|V_{BE1}| + \frac{R_2}{R_1} V_T \ln n - \left(1 + \frac{R_2}{R_1} \right) V_{OS} \right]$$

Larger n is used to reduce V_{OS} But, ...

- (1) Large transistor dimensions are chosen so as to minimize their flicker noise and offset
- (2) The gate-source voltage of M_a and M_b plus the headroom required by I_{SS} must not exceed $|V_{BEI}|$
- (3) The transistors are chosen long enough to yield a reasonable loop gain (a smaller loop gain gets more error)
- (4) It needs a start-up circuit

What do we get, if ...

=> Using resistance ratio is better

帶差電路之簡化核心部份 => How to get more precise?

- (a) 加入疊接元件以改善供應電源排斥現象;
- (b) 使用自我偏壓疊接組態以消除 V_{b1} 和 V_{b2} 。

T. Brooks and A. L. Westwisk, "A Low-Power Differential CMOS Bandgap Reference," *ISSCC Dig. of Tech. Papers*, pp. 248–249, February 1994.

限制運算放大器及核心的供應電壓以改善PSRR

• Be careful, the startup circuit is necessary or not?

產生 V_{R1} 之電路

帶差電壓產生器的整體電路圖

SC Constant-Gm Biasing

利用交換電容式電阻以達到常數 G_m 偏壓

SC Constant-Gm Biasing

利用交換電容式電阻以達到電壓-電流轉換