Package 'rticulate'

February 8, 2025

Type Package

Title Ultrasound Tongue Imaging

Version 2.0.0

Date 2025-02-08

Maintainer Stefano Coretta < stefano.coretta@gmail.com>

Description A tool for processing Articulate

Assistant Advanced $^{\text{TM}}$ (AAA) export files and plot tongue contour data from any system.

URL https://github.com/stefanocoretta/rticulate

BugReports https://github.com/stefanocoretta/rticulate/issues

Depends R (>= 4.1.0)

Encoding UTF-8

LazyData true

Imports cli, dplyr, ggplot2, glue, gsignal, magrittr, mgcv, pracma, purrr, readr, rlang, stats, tibble, tidyr, tidyselect

RoxygenNote 7.3.2

Suggests knitr, reartocolor, rmarkdown, stringr, tidyverse

VignetteBuilder knitr

Language en-US

License MIT + file LICENSE

NeedsCompilation no

Author Stefano Coretta [aut, cre]

Repository CRAN

Date/Publication 2025-02-08 16:20:08 UTC

2 filter_signal

Contents

```
4
 5
6
10
Index
 15
```

filter_signal

Filter a signal

Description

Filter a signal

Usage

```
filter_signal(
    signal,
    filter = "sgolay",
    order = 2,
    window_length = NULL,
    cutoff_freq = NULL,
    sampling_freq = NULL,
    type = "low",
    apply = 1
)
```

Arguments

```
signal Signal to filter.

filter Type of filter (default is "sgolay", or "butter").

order Order of the filter.

window_length Window length of the Savitzky-Golay filter.

cutoff_freq Cut-off frequency of the Butterworth filter.
```

get_acceleration 3

sampling_freq Sampling frequency of the signal.

type Butterworth band type (default is "low").

apply Apply the filter N times (default is 1).

Value

The filtered signal.

get_acceleration

Get acceleration of displacement

Description

Get acceleration of displacement

Usage

```
get_acceleration(signal)
```

Arguments

signal

The signal to get the acceleration of.

Value

A vector with the second derivative of the signal.

get_landmarks

Get gestural landmarks

Description

Get gestural landmarks

Usage

```
get_landmarks(signal_vel, time, start, end, threshold = 0.2)
```

Arguments

signal_vel The velocity of the displacement signal.

time The time of the signal.

start Start time of interval in which to search for maximum displacement.

End time of interval in which to search for maximum displacement.

threshold The velocity threshold (default is 0.2, corresponding to 20 percent velocity.)

get_origin

Value

A tibble with one row and a column for each gestural landmark.

get_origin

Get the origin of spline data

Description

It returns the Cartesian x, y coordinates of the virtual origin of the ultrasonic waves/probe surface (see Details).

Usage

```
get_origin(data, fan_lines = c(10, 25))
```

Arguments

data

The spline data (the cartesian coordinates must be in two columns named X and

Y).

fan_lines

A numeric vector with two fan lines (the default is c(10, 25)).

Details

The function estimates the origin of the ultrasound waves from the probe using the spline data and the provided fan lines. The estimation method is based on Heyne, Matthias & Donald Derrick (2015) Using a radial ultrasound probe's virtual origin to compute midsagittal smoothing splines in polar coordinates. *The Journal of the Acoustical Society of America* 138(6), EL509–EL514, DOI:10.1121/1.4937168.

Value

A numeric vector with the Cartesian (x, y) coordinates of the virtual origin of the ultrasonic waves/probe surface.

Origin estimation

The equations of the two fan lines (10 and 25 by default) are set equal to find their intersection. The intersection is the origin. In some cases, the linear estimation of the equation fails, and an error related to fit is returned. In these cases, try different fan lines by increasing the minimum fan line and/or changing the maximum fan line (for example, if c(10, 25) returns an error, try c(15, 30)).

get_velocity 5

get_velocity

Get velocity of displacement

Description

Get velocity of displacement

Usage

```
get_velocity(signal)
```

Arguments

signal

The signal to get the velocity of.

Value

A vector with the first derivative of the signal.

palate

Palate profile dataset.

Description

A dataset containing the palate profile of a single speaker.

Usage

palate

Format

A data frame with 42 rows and 14 variables.

speaker speaker ID

seconds time of coordinate, in seconds

rec_date date and time of recording

prompt prompt string

label label of annotation

TT_displacement smoothed displacement of tongue tip

TT_velocity velocity of tongue tip displacement

TT_abs_velocity absolute velocity of tongue tip displacement

TD_displacement smoothed displacement of tongue dorsum

plot_tongue

TD_velocity velocity of tongue dorsum displacement

TD_abs_velocity absolute velocity of tongue dorsum displacement

fan_line fan line number

X horizontal coordinate at time seconds

Y vertical coordinate at time seconds

plot_tongue

Plot tongue contours from spline data.

Description

It plots tongue contours from data imported from AAA.

Usage

```
plot_tongue(data, geom = "line", ..., palate = NULL, palate_col = "green")
```

Arguments

data A data frame with splines data.

geom Type of geom to plot. Possible values are: line (the default), point, path.

... List of arguments to be passed to geom.

palate An optional data frame with the palate spline. If provided, the palate is plotted.

palate_col The colour of the palate spline (the default is green).

Value

An object of class ggplot.

Examples

```
plot_tongue(tongue, geom = "point")
```

polar_gam 7

polar_gam

Polar generalised additive model (polar GAM)

Description

It fits a generalised additive model (GAM) to transformed polar tongue data and it returns a model in polar coordinates. Use plot_polar_smooths() for plotting.

Usage

```
polar_gam(
  formula,
  data,
  origin = NULL,
  fan_lines = c(10, 25),
  AR_start = NULL,
  ...
)
```

Arguments

formula	A GAM formula.
data	A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with read_aaa()).
origin	The coordinates of the origin as a vector of $c(x, y)$ coordinates.
fan_lines	A numeric vector with two fan lines (the default is c(10, 25)).
AR_start	The AR.start argument to be passed to mgcv::bam().
• • •	Arguments to be passed to mgcv::bam().

Details

It is advised to fit a separate model per speaker, unless you have a working method for inter-speaker normalisation of the coordinates.

Value

An object of class "gam" as described in gamObject.

Examples

```
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
pgam <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
data = tongue_it01)</pre>
```

8 predict_polar_gam

predict_polar_gam

Get all predictions from a polar GAM model

Description

It returns a tibble with the predictions from all the terms in a polar_gam model.

Usage

```
predict_polar_gam(
  model,
  origin = NULL,
  exclude_terms = NULL,
  length_out = 50,
  values = NULL,
  return_ci = FALSE,
  ci_z = 1.96
)
```

Arguments

model A polar_gam model object.

origin The coordinates of the origin as a vector of c(x, y) coordinates.

exclude_terms Terms to be excluded from the prediction. Term names should be given as they

appear in the model summary (for example, "s(x0,x1)").

length_out An integer indicating how many values along the numeric predictors to use for

predicting the outcome term (the default is 50).

values User supplied values for numeric terms as a named list.

return_ci Whether to return a tibble with cartesian confidence intervals (for use with

geom_polar_ci).

ci_z The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).

Details

The function converts the coordinates from polar to cartesian automatically.

To see an example of plotting, see the examples in geom_polar_ci.

Value

A tibble with predictions from a polar_gam model.

read_aaa 9

Examples

```
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
it01_pol <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
data = tongue_it01)

# get predictions
it01_pred <- predict_polar_gam(it01_pol)

# get predictions excluding the random smooth for word (the coefficient for # the random smooth is set to 0)
it01_excl_rand <- predict_polar_gam(it01_pol, exclude_terms = "s(X,word)")</pre>
```

read_aaa

Read tab separated files with AAA spline data.

Description

It reads a file or a list of files with data exported from AAA. The data are automatically transformed from a wide to a long format (each row has values of X or Y axes for each fan line). The imported tibble can then be used for plotting and statistical analysis.

Usage

```
read_aaa(
   file,
   coordinates = "cartesian",
   format = "long",
   na_rm = FALSE,
   knots = NULL,
   column_names = NULL
)
```

Arguments

file	The path of the file with AAA data. It can also be a character vector with multiple paths as separate strings
coordinates	A string specifying the coordinate system. Possible values are "cartesian" (the default) and "polar".
format	A string specifying the data format. Possible values are "long" and "wide" (the default is "long").
na_rm	Remove NAs (the default is FALSE).
knots	The number of spline knots or fan lines.
column_names	The names of the columns without including the splines columns.

read_ag500_pos

Value

A tibble.

Examples

```
columns <- c("speaker", "seconds", "rec_date", "prompt", "label",
"TT_displacement", "TT_velocity", "TT_abs_velocity", "TD_displacement",
"TD_velocity", "TD_abs_velocity")
file_path <- system.file("extdata", "it01.tsv", package = "rticulate")
tongue <- read_aaa(file_path, knots = 42, column_names = columns)</pre>
```

read_ag500_pos

Read EMA data from AG500 pos files

Description

Read EMA data from AG500 pos files

Usage

```
read_ag500_pos(path, channels = 12, ch_values = 7, bytes = 4, fs = 200)
```

Arguments

path Path to the .pos file.

channels Number of channels (default 12).

ch_values Number of values per channel (default 7).

bytes Number of bytes per value (default 4).

fs Sampling frequency (default 200 Hz).

Value

A tibble.

resample_signal 11

resample_signal

Resample (up or down) a signal

Description

Resample (up or down) a signal

Usage

```
resample_signal(
   signal,
   time,
   by = 2,
   to = NULL,
   from = NULL,
   method = "interpolation"
)
```

Arguments

signal The signal to resample.

time The time vector of the signal to resample.

by The factor by which to resample the signal (default is 2).

to The frequency to resample to.
from The original sampling frequency.

method Resampling method (default is interpolate which uses approx).

Value

A list with the resampled signal and time if methdo = "interpolate".

stimuli

Stimuli dataset.

Description

A dataset with linguistic information on the stimuli.

Usage

stimuli

12 tongue

Format

A data frame with 12 rows and 11 variables.

item item ID

word words of the form CVCV

ipa IPA transcription of the words

c1 first consonant

c1_phonation phonation of the first consonant, voiceless

vowel first and second vowel

anteropost backness of the vowel, back or central

height height of the vowel, high, mid or low

c2 second consonant

c2_phonation phonation of the second consonant, voiceless or voiced

c2_place place of the second consonant, coronal or velar

tongue

Tongue contours dataset.

Description

A dataset containing tongue contour coordinates of a single speaker.

Usage

tongue

Format

A data frame with 3612 rows and 28 variables.

speaker speaker ID

seconds time of coordinate, in seconds

rec_date date and time of recording

prompt prompt string

label label of annotation

TT_displacement smoothed displacement of tongue tip

TT_velocity velocity of tongue tip displacement

TT_abs_velocity absolute velocity of tongue tip displacement

TD_displacement smoothed displacement of tongue dorsum

TD_velocity velocity of tongue dorsum displacement

TD_abs_velocity absolute velocity of tongue dorsum displacement

transform_coord 13

TR_displacement smoothed displacement of tongue root

TR_velocity velocity of tongue root displacement

TR_abs_velocity absolute velocity of tongue root displacement

fan_line fan line number

X horizontal coordinate at time seconds

Y vertical coordinate at time seconds

word words of the form CVCV

item item ID

ipa IPA transcription of the words

c1 first consonant

c1_phonation phonation of the first consonant, voiceless

vowel first and second vowel

anteropost backness of the vowel, back or central

height height of the vowel, high, mid or low

c2 second consonant

c2_phonation phonation of the second consonant, voiceless or voiced

c2_place place of the second consonant, coronal or velar

transform_coord

Transform the coordinates of spline data

Description

This function transforms the coordinates of spline data between Cartesian and polar coordinate systems. The origin x and y coordinates can be supplied by the user, or calculated automatically (see Details).

Usage

```
transform_coord(
  data,
  to = "polar",
  origin = NULL,
  fan_lines = c(10, 25),
  use_XY = FALSE
)
```

14 transform_coord

Arguments

data	A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with read_aaa()).
to	Which system to convert to, as a string, either "polar" or "cartesian" (the default is "polar").
origin	The coordinates of the origin as a vector of $c(x, y)$ coordinates.
fan_lines	A numeric vector with two fan lines (the default is c(10, 25)).
use_XY	Whether to use the column names X and Y when converting to and from polar coordinates, rather than the default angle and radius (the default is FALSE. If TRUE, the columns X and Y are overwritten with the converted values. If converting to polar, X is the angle and Y the radius.

Details

The transformation between the coordinate systems require the selection of an origin in Cartesian coordinates (x and y). The origin ideally corresponds to the virtual origin of the ultrasound waves from the probe. The origin coordinates can be supplied by the user as a vector with the origin argument, or they can be estimated automatically if origin = NULL (the default). The estimation is performed by get_origin (see that function documentation for details).

Value

An object of class tbl_df-class (a tibble).

Index

```
\ast datasets
     palate, 5
     \mathsf{stimuli}, \textcolor{red}{11}
     tongue, 12
filter_signal, 2
gamObject, 7
{\tt geom\_polar\_ci, 8}
get_acceleration, 3
get_landmarks, 3
get_origin, 4, 14
get_velocity, 5
ggplot, 6
palate, 5
plot_tongue, 6
polar_gam, 7, 8
predict_polar_gam, 8
read_aaa, 9
read_ag500_pos, 10
resample\_signal, 11
\mathsf{stimuli}, \textcolor{red}{11}
tongue, 12
transform_coord, 13
```