

UNIVERSITY OF GHANA

(All rights reserved)

BSc/BA, FIRST SEMESTER EXAMINATIONS: 2017/2018 SCHOOL OF ENGINEERING DEPARTMENT OF BIOMEDICAL ENGINEERING

FAEN 201: CALCULUS II (4 credits)

INSTRUCTION:

ANSWER ANY 4 OUT OF THE FOLLOWING 6 QUESTIONS TIME ALLOWED:

TWO HOURS AND THIRTY MINUTES $\left(2\frac{1}{2} \text{ hours}\right)$

- 1. (a) Let $\sum_{n=1}^{\infty} a_n$ be an infinite series. When do we say that the series converge? Write down an expression for the sum of the series. [10 Marks]
 - (b) Consider the infinite series: $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
 - (i) write down S_n , the n^{th} partial sum of the seires
 - (ii) Find the sum of the series.

[25 Marks]

$$(\int (c) \text{ Evaluate } \sum_{n=1}^{\infty} \frac{3^n + 2^{n+1}}{5^n}.$$

[15 Marks]

2. (a) Let $f(x,y) = x^2 \sin(x+y)$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

- [15 Marks]
- (b) Given that $f(x, y) = x^3 + y^3 6xy$ where $x = \cos t$ and $y = \sin t$, find
 - (i) the value of $\frac{df}{dt}$ when $t = \frac{\pi}{2}$.
 - (ii) find the critical point(s) of f(x, y)
 - (iii) determine the nature of the critical point(s) of f(x, y).

[35 Marks]

3. (a) Let $\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt$ and $B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt$ be Gamma and Beta functions respectively. Use the above definitions to evaluate

(i)
$$\int_0^\infty \sqrt{y}e^{-y^2}dy$$
 (ii) $B(2,3)$.

[20 Marks]

(b) By substituting $t = \sin^2 \theta$ in the Beta function, show that

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} (\sin \theta)^{(2x-1)} (\cos \theta)^{(2y-1)} d\theta.$$

Hence or otherwise, evaluate the integral $\int_{0}^{\frac{\pi}{2}} \sin^4 \theta \cos^5 \theta d\theta$.

[30 Marks]

(a) Let $F(x, y, z) = (2xz^2)\mathbf{i} + \mathbf{j} + (y^3xz)\mathbf{k}$ be a vector function. Given that $\phi(x, y) = x^2y$ is a scalar function, compute

(ii)
$$F \times \nabla \phi$$

(iii)
$$F \cdot (\nabla \phi)$$

(iv)
$$Curl(F)$$

[30 Marks]

(b) Evaluate each of the following integrals

(i)
$$\iint\limits_{R} \sin(x+y) dx dy \text{ where } R = [0,1] \times [0,1]$$

(ii)
$$\iint\limits_{D}e^{\frac{x}{y}}dA \text{ where } D=\{(x,y): 1\leq y\leq 2,\, y\leq x\leq y^3\}$$

[20 Marks]

(a) Evaluate the improper integrals:

(i)
$$\int_0^2 (2-x)^{-\frac{1}{2}} dx$$
 (ii) $\int_{-\infty}^\infty x e^{-x^2} dx$.

(ii)
$$\int_{-\infty}^{\infty} x e^{-x^2} dx.$$

(b) For what interval of x does the power series $\sum_{n=1}^{\infty} \left(\frac{x^n}{3^{(n-1)}n^3} \right)$ converge absolutely?

[20 Marks]

(c) Test for convegence for the following:

(i)
$$\int_3^4 \frac{\ln x}{(x-3)^4} dx$$
 (ii) $\sum_{n=1}^\infty \frac{n}{n^4 - 3}$.

(ii)
$$\sum_{1}^{\infty} \frac{n}{n^4 - 3}$$

[15 Marks]

[Hint: Use the comparison test].

(a) Use Green's theorem to evaluate $\oint xydx + x^3y^3dy$ where C is a triangle with vertices (0,0), (1,0) and (1,2) with positive orientation. [30 Marks]

(b) Compute the directional derivative of the function

$$f(x, y, z) = xy^2 + y^2z^3 + z^3x$$

at the point P(4,-2,-1) in the direction of Q(1,3,2)

[20 Marks]

EXAMINERS: Mr. E. Djabang and Mr. J. Bioquaye

Page 2 of 2