Robust Regression and Related Methods Readings ISLR Chapter 6 + Papers

STA521 Predictive Models Duke University

Merlise Clyde

March 27, 2017

▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; **X** is matrix of centered and scaled predictors so that $diag(\mathbf{X}^T\mathbf{X}) = \mathbf{I}_p$

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\beta + \epsilon$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- ► Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\beta + \epsilon$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- ► Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- ► Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

• One parameter λ controls shrinkage of β

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\beta + \epsilon$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

- One parameter λ controls shrinkage of β
 - hard thresholding to zero

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\beta + \epsilon$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

- One parameter λ controls shrinkage of β
 - hard thresholding to zero
 - soft thresholding of non-zero coefficients to zero

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\beta + \epsilon$; **X** is matrix of centered and scaled predictors so that diag($\mathbf{X}^T\mathbf{X}$) = \mathbf{I}_p
- Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi) \propto 1/\phi$$

- One parameter λ controls shrinkage of β
 - hard thresholding to zero
 - soft thresholding of non-zero coefficients to zero
- cannot achieve an optimal balance of both

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; \mathbf{X} is matrix of centered and scaled predictors so that $\operatorname{diag}(\mathbf{X}^T\mathbf{X}) = \mathbf{I}_p$
- Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

- One parameter λ controls shrinkage of β
 - ▶ hard thresholding to zero
 - soft thresholding of non-zero coefficients to zero
- cannot achieve an optimal balance of both
- Carvhalo, Polson, Scott proposed the Horseshoe prior to address this problem

- ▶ Model: $\mathbf{Y} = \mathbf{1}\beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; \mathbf{X} is matrix of centered and scaled predictors so that $\operatorname{diag}(\mathbf{X}^T\mathbf{X}) = \mathbf{I}_p$
- Lasso Prior

$$\beta_j \mid \phi \stackrel{\text{iid}}{\sim} DE(\phi^{1/2}\lambda)$$

$$p(\beta_0,\phi)\propto 1/\phi$$

- One parameter λ controls shrinkage of β
 - ▶ hard thresholding to zero
 - soft thresholding of non-zero coefficients to zero
- cannot achieve an optimal balance of both
- Carvhalo, Polson, Scott proposed the Horseshoe prior to address this problem

Robust Shrinkage

Horseshoe Prior Distribution

$$\beta_j \mid \phi, \tau_j \stackrel{\text{iid}}{\sim} \mathsf{N}(\mathsf{0}, \tau_j/\phi)$$

Horseshoe Prior Distribution

$$\beta_j \mid \phi, \tau_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(\mathsf{0}, \tau_j/\phi)$$

 $ightharpoonup au_i^{1/2} \mid \varphi \stackrel{\text{iid}}{\sim} \mathsf{C}^+(0, \varphi^{1/2})$ with density for the half-Cauchy

$$p(au^{1/2}) \propto \left(1 + rac{ au}{arphi}
ight)^{-1} \qquad au > 0$$

Horseshoe Prior Distribution

$$\beta_j \mid \phi, \tau_j \stackrel{\text{iid}}{\sim} \mathsf{N}(\mathsf{0}, \tau_j/\phi)$$

 $ightharpoonup au_i^{1/2} \mid \varphi \stackrel{\text{iid}}{\sim} \mathsf{C}^+(0, \varphi^{1/2})$ with density for the half-Cauchy

$$p(\tau^{1/2}) \propto \left(1 + \frac{\tau}{\varphi}\right)^{-1} \qquad \tau > 0$$

ho $\varphi^{1/2} \sim C^+(0,1)$

Horseshoe Prior Distribution

$$\beta_j \mid \phi, \tau_j \stackrel{\text{iid}}{\sim} \mathsf{N}(\mathsf{0}, \tau_j/\phi)$$

 $ightharpoonup au_i^{1/2} \mid \varphi \stackrel{\text{iid}}{\sim} \mathsf{C}^+(0, \varphi^{1/2})$ with density for the half-Cauchy

$$p(\tau^{1/2}) \propto \left(1 + \frac{\tau}{\varphi}\right)^{-1} \qquad \tau > 0$$

- $\varphi^{1/2} \sim C^+(0,1)$
- $\triangleright p(\beta_0, \phi) \propto 1/\phi$

Horseshoe Prior Distribution

$$\beta_j \mid \phi, \tau_j \stackrel{\text{iid}}{\sim} \mathsf{N}(\mathsf{0}, \tau_j/\phi)$$

 $ightharpoonup au_i^{1/2} \mid \varphi \stackrel{\text{iid}}{\sim} \mathsf{C}^+(0, \varphi^{1/2})$ with density for the half-Cauchy

$$p(\tau^{1/2}) \propto \left(1 + \frac{\tau}{\varphi}\right)^{-1} \qquad \tau > 0$$

- $\varphi^{1/2} \sim C^+(0,1)$
- $\triangleright p(\beta_0, \phi) \propto 1/\phi$

Normal + Generalized Beta:

$$\beta_j \mid \rho_j \sim N(0, 1/\rho_j - 1)$$

Normal + Generalized Beta:

$$\beta_j \mid \rho_j \sim N(0, 1/\rho_j - 1)$$

$$p(\rho_j) \propto \rho^{1/2-1} (1 - \rho_j)^{1/2-1} (1 + \varphi \rho_j)^{-1}$$

Normal + Generalized Beta:

$$\beta_j \mid \rho_j \sim N(0, 1/\rho_j - 1)$$

$$p(\rho_j) \propto \rho^{1/2-1} (1-\rho_j)^{1/2-1} (1+\varphi\rho_j)^{-1}$$

Special Case: $\varphi = 1$ then

$$ho_j \sim \mathsf{Beta}(1/2, 1/2)$$

Normal + Generalized Beta:

$$\beta_j \mid \rho_j \sim N(0, 1/\rho_j - 1)$$

$$p(\rho_j) \propto \rho^{1/2-1} (1-\rho_j)^{1/2-1} (1+\varphi\rho_j)^{-1}$$

Special Case: $\varphi = 1$ then

$$ho_j \sim \mathsf{Beta}(1/2,1/2)$$

Induced Shrinkage:

$$\hat{eta}_j \mid eta_j \sim \mathcal{N}(eta_j, 1)$$
 $eta_j \mid \mathbf{Y},
ho_j \sim \mathcal{N}\left((1 -
ho_j)\hat{eta}_j, 1 -
ho_j\right)$

Horseshoe Prior Shrinkage

Prior

Outliers

Why should we assume that errors are normally distributed?

Outliers

Why should we assume that errors are normally distributed?

Use heavy tailed distributions for errors too! Student t, etc

Model

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \omega_j, \phi \stackrel{\text{ind}}{\sim} \mathsf{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1} \omega^{-1})$$

Model

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \omega_j, \phi \stackrel{\text{ind}}{\sim} \mathsf{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1} \omega^{-1})$$

$$\omega_i \stackrel{\mathrm{iid}}{\sim} \mathsf{Gamma}(\nu/2,\nu/2)$$

Model

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \omega_j, \phi \stackrel{\text{ind}}{\sim} \mathsf{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1} \omega^{-1})$$

$$\omega_i \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(\nu/2, \nu/2)$$

implies that marginally

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \phi \stackrel{\text{ind}}{\sim} \mathsf{St}(\nu, \beta_0 + \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}, \phi^{-1/2})$$

Model

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \omega_j, \phi \stackrel{\text{ind}}{\sim} \mathsf{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1} \omega^{-1})$$

$$\omega_i \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(\nu/2, \nu/2)$$

implies that marginally

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \phi \overset{\text{ind}}{\sim} \mathsf{St}(\nu, \beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1/2})$$

Interpretation of ω as latent weights

$$p(y_i) = (2\pi)^{-1/2} (\phi \omega_i)^{1/2} \exp(-\frac{\phi \omega_j}{2} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2)$$

Model

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \omega_j, \phi \stackrel{\text{ind}}{\sim} \mathsf{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1} \omega^{-1})$$

$$\omega_i \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(\nu/2, \nu/2)$$

implies that marginally

$$Y_i \mid \boldsymbol{\beta}, \beta_0, \phi \stackrel{\mathrm{ind}}{\sim} \mathsf{St}(\nu, \beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \phi^{-1/2})$$

Interpretation of ω as latent weights

$$p(y_i) = (2\pi)^{-1/2} (\phi \omega_i)^{1/2} \exp(-\frac{\phi \omega_j}{2} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2)$$

Small ω down weights errors

Conditional Distribution

Prior \times Likelihood for case *i*

$$p(\omega_i \mid \cdot) \propto \omega_i^{\nu/2-1} \exp(-\frac{\nu}{2}\omega_i)(2\pi)^{-1/2} (\phi\omega_i)^{1/2} \exp\left(-\frac{\phi\omega_j}{2}(y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2\right)$$

Code

```
# library(lars)
# library(monomun)
# data(diabetes)
# yf = diabetes y
# Xf = diabetes£x2
# do not center/scale as doen within blasso
# rbhs = blasso(Xf, yf, case="hs",
#
                 theta = 16, RJ=FALSE,
                 thin=10, T=2000,
#
                 verb=0)
# y.pred = mean(rbhs£mu) +
           Xf %*% apply(rbhsfbeta, 2, mean)
#
```

Simulation Study with Diabetes Data

Range of other scale mixtures used

► Generalized Double Pareto (Armagan, Dunson & Lee)

- ► Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponential-Gamma (Griffen & Brown 2005)

- Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponential-Gamma (Griffen & Brown 2005)
- Relevance Vector Machines (Tipping) (improper!)

- Generalized Double Pareto (Armagan, Dunson & Lee)
- Normal-Exponential-Gamma (Griffen & Brown 2005)
- Relevance Vector Machines (Tipping) (improper!)
- Bridge Power Exponential Priors (Stable mixing density)

Range of other scale mixtures used

- Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponential-Gamma (Griffen & Brown 2005)
- Relevance Vector Machines (Tipping) (improper!)
- Bridge Power Exponential Priors (Stable mixing density)

Some implemented in monomyn, but easy to add in JAGS

Range of other scale mixtures used

- Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponential-Gamma (Griffen & Brown 2005)
- Relevance Vector Machines (Tipping) (improper!)
- Bridge Power Exponential Priors (Stable mixing density)

Some implemented in monomyn, but easy to add in JAGS

Prior on β should have heavier tails than error distribution

Posterior Mode (may set some coefficients to zero)

- ▶ Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

Bayesian Posterior under Shrinkage Priors does not assign any probability to $\beta_i = 0$

Selection solved as a post-analysis decision problem

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- Selection solved as a post-analysis decision problem
- ▶ Selection part of model uncertainty ⇒ add prior

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- Selection solved as a post-analysis decision problem
- ► Selection part of model uncertainty ⇒ add prior probability that $\beta_i = 0$ and combine with decision problem

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- Selection solved as a post-analysis decision problem
- ► Selection part of model uncertainty ⇒ add prior probability that $\beta_i = 0$ and combine with decision problem
- Use 'RJ=TRUE' in blasso