例 1

置换矩阵 (permutation matrix) 是将单位矩阵的各列重新排列得到的矩阵, 即形如 (e_i, e_i, \dots, e_i) 的矩阵, 其中列向量 e_1, e_2, \dots, e_n 为 \mathbb{R}^n 的自然基, 而

 $\sigma = (i_1 \ i_2 \ \cdots \ i_n) \in S_n$ 是一个置换 (也称作排列).

① 置换矩阵的列向量组仍然构成标准正交基, 从而该矩阵是正交矩阵.

- ② 这样的矩阵是一个第一类正交矩阵的充要条件是其对应的置换 σ 为一个偶置 换
- 置换矩阵也可以视为由单位矩阵的各行重新排列得到的矩阵.

事实上, 若 $V = F^n$ 是数组空间, e_1, \ldots, e_n 是自然基, $x \in V$ 写成列向量形式, 则 $\mathscr{A}: x \mapsto Ax$, $\mathscr{B}: x \mapsto Bx$. 通过直接验证, 我们看到 $\mathscr{A} \circ \mathscr{B}: x \rightsquigarrow Bx \rightsquigarrow ABx$. 这间接表明了 $\mathscr{A} \circ \mathscr{B}$ 对应的矩阵应当为 AB.

进一步地, 若 V 是欧氏空间, $\mathscr A$ 与 $\mathscr B$ 都是正交变换, 则对于任意的 $x,y\in V$,

$$(\mathscr{A}(\mathscr{B}(\mathbf{x})),\mathscr{A}(\mathscr{B}(\mathbf{y}))) = (\mathscr{B}(\mathbf{x}),\mathscr{B}(\mathbf{y})) = (\mathbf{x},\mathbf{y}).$$

这说明正交变换的复合仍然是正交变换, 这对应于前面提到的事实: 同阶正交矩阵的乘积仍然是正交矩阵,

设线性变换 \mathscr{A} 是有限维线性空间 V上的一一的满射 (也称为自同构), 即, V中的任何元素在 \mathscr{A} 下都存在唯一一个原像. 此时, 不难看出, \mathscr{A} 存在逆映射 $\mathscr{A}^{-1}:V\to V$, 将 V中的元素映射成为其在 \mathscr{A} 下的原像. \mathscr{A}^{-1} 仍然是线性映射, 从而是 V上的线性变换, 称为 \mathscr{A} 的逆变换. 进一步地, \mathscr{A}^{-1} 仍然是一一的满射, 满足 $(\mathscr{A}^{-1})^{-1}=\mathscr{A}$.

设 V是有限维的, 而 \mathcal{A}^{-1} 与 \mathcal{A} 在 V 的基 $\mathbf{a}_1, \ldots, \mathbf{a}_n$ 下的矩阵为 \mathbf{B} 和 \mathbf{A} . 由于 $\mathcal{A}^{-1} \circ \mathcal{A} = \mathrm{id}_V$. 这说明 $\mathbf{B}\mathbf{A} = \mathbf{I}_n$. 从而 \mathcal{A}^{-1} 对应的矩阵 \mathbf{B} 恰为 \mathbf{A}^{-1} .

设 \mathscr{A} 是有限维欧氏空间 V上的正交变换, 不难验证 \mathscr{A} 存在逆变换 (留作习题). 对于任意的 $x, y \in V$, 由于 $\mathscr{A}^{-1} \circ \mathscr{A} = \mathrm{id}_V = \mathscr{A} \circ \mathscr{A}^{-1}$.

$$(\mathscr{A}^{-1}(\mathbf{x}), \mathscr{A}^{-1}(\mathbf{y})) \xrightarrow{\mathscr{A} \to \mathbf{L} \circ \mathbf{y} \circ \underline{\psi}} (\mathscr{A}(\mathscr{A}^{-1}(\mathbf{x})), \mathscr{A}(\mathscr{A}^{-1}(\mathbf{y}))) = (\mathbf{x}, \mathbf{y}),$$

这说明 ω^{-1} 仍然是正交变换. 这对应于前面提到的事实: 正交方阵的逆仍然是正交方阵.

由于我们现在是在实数域上考虑,线性变换一般不一定有(实)特征值.

命题 4

设 A 是 n 维欧氏空间 V 上的正交变换.

- ① 若 $\lambda \in \mathbb{R}$ 是 \mathscr{A} 的特征值. 则 $\lambda = \pm 1$.
- ② 若 V 是 n 维欧氏空间, 其中 n 为奇数, 而 Ø 为第一类正交变换, 则 Ø 一定存
- ③ 若 V 是 n 维欧氏空间, 而 \mathscr{A} 为第二类正交变换, 则 \mathscr{A} 一定存在值为 -1 的特征值.

设 \mathscr{A} 是 n 维欧氏空间 V 上的正交变换, 那么 V 中存在一个标准正交基, 使得 \mathscr{A} 在此基下的矩阵为正交矩阵. 而我们之前的讨论说明了正交矩阵的特征值 λ 的模长必为 1, 这意味着 $|\operatorname{tr}(\mathscr{A})| < n$.

注 6

如果欧氏空间 V 上的正交变换 \mathscr{A} 有两个不同的 (实) 特征值, 那么 \mathscr{A} 的属于不同特征值的特征向量一定正交. 这是因为这两个特征值只能为 $\lambda_1=1$ 和 $\lambda_2=-1$. 若假定 \mathbf{x}_1 与 \mathbf{x}_2 分别是它们的特征向量, 那么

$$(\mathbf{x}_1, \mathbf{x}_2) = (\mathscr{A}\mathbf{x}_1, \mathscr{A}\mathbf{x}_2) = (\mathbf{x}_1, -\mathbf{x}_2) = -(\mathbf{x}_1, \mathbf{x}_2).$$

因此, 只能有 $(\mathbf{x}_1, \mathbf{x}_2) = 0$, 即 \mathbf{x}_1 与 \mathbf{x}_2 正交.

上周的作业里我们 (本质上) 证明了任何二阶正交矩阵必取下面两种形式之一:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \qquad \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}, \qquad 0 \le \theta < 2\pi,$$

其中第一个是旋转变换 🚜 在自然基下的矩阵.

注 8

上面命题的一个几何意义: 三维欧氏空间的第一类正交变换, 其必保持一个对称轴不变; 进一步的讨论可以表明, 它是绕该对称轴的旋转变换.

设 \mathscr{A} 是这样的一个第一类正交变换,则 $\lambda=1$ 是它的一个特征值. 设单位向量 ϵ_1 是 $\lambda=1$ 的一个特征向量,则对任意 $k\in\mathbb{R}$, $\mathscr{A}(k\epsilon_1)=k\mathscr{A}(\epsilon_1)=k\epsilon_1$. 这说明 \mathscr{A} 保持直线 $\mathbb{R}\epsilon_1=\{k\epsilon_1\mid k\in\mathbb{R}\}$ 上的向量不变. 利用正交化的方法, 我们可以找到 $\epsilon_2,\epsilon_3\in\mathbb{R}^3$ 使得 $\epsilon_1,\epsilon_2,\epsilon_3$ 为一组标准正交基.

任取 $\alpha \in \mathbb{R}^3$, 假设它在这组基下的坐标为 $(x,y,z)^T$, 它在 $\varepsilon_2\varepsilon_3$ 平面上的投影 $\alpha' = y\varepsilon_2 + z\varepsilon_3$ 与 ε_1 垂直, 从而 $\mathscr{A}(\alpha')$ 与 $\mathscr{A}(\varepsilon_1) = \varepsilon_1$ 垂直. 这说明 \mathscr{A} 将 $\varepsilon_2\varepsilon_3$ 平面上的点仍然映射到该平面上, 从而 \mathscr{A} 局限在该平面上后成为该平面的线性变换, 记作 $\mathscr{A}|_{\varepsilon_2\varepsilon_3}$.

另外需要指出的是, \mathbb{R}^3 的标准内积局限在 $\epsilon_2\epsilon_3$ 平面后成为该平面的一个内积, 而 ϵ_2 , ϵ_3 在该内积下是一组标准正交基.

设 $\mathscr{A}|_{\varepsilon_{2}\varepsilon_{2}}$ 在基 $\varepsilon_{2},\varepsilon_{3}$ 下的矩阵为 \mathscr{A}' , 则 \mathscr{A} 在 $\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}$ 下的矩阵为

$$\mathbf{A} = \begin{pmatrix} 1 & \\ & \mathbf{A}' \end{pmatrix}$$
.

由于 A 是行列式为 1 的正交矩阵, 这迫使 A' 是行列式为 1 的正交矩阵, 从而 $\mathscr{A}|_{\varepsilon_2\varepsilon_3}$ 是 $\varepsilon_2\varepsilon_3$ 平面上的第一类正交变换, 即旋转变换. 因此, \mathscr{A} 是 \mathbb{R}^3 的绕 ε_1 轴 的旋转.

例 9

设 足二维欧氏空间 Ⅴ上的正交变换

● 如果 Ø 是第一类正交变换,那么 V 中存在一个标准正交基,使得 Ø 在此基下 的矩阵为

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \qquad 0 \le \theta \le \pi.$$

$$\phi$$
 如来 ϕ 定第一类正文变换, 那么 ϕ 中存在一个标准正文基, 使待 ϕ 在此基的矩阵为
$$\begin{pmatrix} -1 & 1 \\ & 1 \end{pmatrix}.$$

更一般地, 我们有如下的结果,

● 设 Ø 是 n 维欧氏空间 V 上的正交变换,那么 V 中存在一个标准正交基. 使得

① 设
$$\mathcal{A}$$
 定 n 维欧氏空间 V 上的正文变换,那么 V 甲存在一个标准正交基,使得 \mathcal{A} 在此基下的矩阵为
$$\operatorname{diag}\left\{\lambda_{1},\ldots,\lambda_{r},\begin{pmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) \\ \sin(\theta_{1}) & \cos(\theta_{1}) \end{pmatrix},\ldots,\begin{pmatrix} \cos(\theta_{m}) & -\sin(\theta_{m}) \\ \sin(\theta_{m}) & \cos(\theta_{m}) \end{pmatrix}\right\}, \quad (1)$$

其中 $\lambda_i = \pm 1$ (1 < i < r, 0 < r < n), 0 < θ_i < π (1 < j < m, 0 < m < $\frac{n}{2}$). ② n 阶正交矩阵 A 一定正交相似于形如 (1) 的分块对角矩阵. (正交相似是指存在

正交矩阵 T 使得 $T^{-1}AT$ 形如给定的矩阵)

对称变换与对称矩阵

定义 11

设 \mathscr{A} 是欧氏空间 V 上的线性变换. 若对于任意的 $a, b \in V$ 有 $(\mathscr{A}(a), b) = (a, \mathscr{A}(b))$, 则称 \mathscr{A} 是 V 上的对称变换 (symmetric transformation).

例 12

- 零变换和恒等变换都是对称变换.
- $oldsymbol{eta}$ 在平面 \mathbb{R}^2 上的旋转变换 $\mathscr{A}_ heta$ 一般不为对称变换.

下面我们讨论对称变换与对称矩阵的关系.

定理 13

设 A 是 n 维欧氏空间 V 上的线性变换, 则以下几条等价:

- A 是 V 上的对称变换;
- ② 《在任何一组标准正交基下的矩阵都是实对称方阵;
- ③ ☑ 在给定的一组标准正交基下的矩阵是实对称方阵.

接着上面的定理的证明, 设 $\alpha_1, \ldots, \alpha_n$ 是 V 的另外一组基, $\epsilon_1, \ldots, \epsilon_n$ 到 $\alpha_1, \ldots, \alpha_n$ 的过渡矩阵为 P.则 \varnothing 在 $\alpha_1, \ldots, \alpha_n$ 下的矩阵为 $P^{-1}AP$. 在一般情形下, $P^{-1}AP$ 不再是对称方阵,另一方面,若 α_1,\ldots,α_n 仍然是V的一组标准正交基,则由定理

13 知 $P^{-1}AP$ 必为对称方阵. 事实上. 我们知此时的过渡矩阵 P 为实正交方阵. 故由 **A** 为对称方阵, 我们可以直接验证 $P^{-1}AP = P^{T}AP$ 为对称方阵

实对称阵的对角化

一般而言, 实方阵的特征多项式可能有虚根, 从而不能实相似对角化. 但是实对称的矩阵的特征值都是实数.

命题 15

设 A 为 n 阶实对称方阵,则 A 所有的复特征值其实都是实数,而 A 的属于不同特征值的实特征向量在 \mathbb{R}^n 的标准内积下必然正交.

对称变换也有相应的性质.

定理 16

设 \mathscr{A} 是有限维欧氏空间 V上的对称变换,则 \mathscr{A} 的特征值都是实数,且 \mathscr{A} 在不同特征值下的特征向量相互正交.

引理 17

如果 n 阶实矩阵 A 的特征多项式的复根都是实数, 那么 A 一定可以正交相似上三角化, 即存在正交矩阵 Q 使得 $Q^{-1}AQ$ 为上三角阵.