Representation Learning

Topics in Representation Learning

- Overview
- 1. Greedy Layer-Wise Unsupervised Pretraining
- 2. Transfer Learning and Domain Adaptation
- Semi-supervised Disentangling of Causal Factors
- 4. Distributed Representation
- 5. Exponential Gains from depth
- Providing Clues to Discover Underlying Causes

Overview of Representation Learning

- 1. We first discuss what it means to learn representations
 - How notion of representation is useful in deep architecture design
- 2. How learning algorithms share statistical strength across different tasks
 - Including using information from unsupervised tasks to perform supervised tasks
 - Shared representations are useful to handle multiple modalities or domains
 - Or to transfer learned knowledge to tasks for which few or no examples are given but a task representation exists

Overview of Representation Learning (Contd.)

3. Reasons for success of representation learning

- Starting with: Theoretical advantages of distributed representations and deep representations
- Ending with: More general idea of underlying assumptions about the data generation process
 - In particular about underlying causes of the observed data

Importance of Representation

- Information Processing Tasks
 - Easy/difficult: depends on representation
 - · Applicable to daily life, CS in general or ML
 - Arabic or Roman numeral
 - Task of 210/6 versus CCX/VI using long division
 - Most modern people convert from Roman to Arabic
 - Can quantify run times for representations
 - Inserting a no. in a sorted list is O(n)
 - But only $O(\log n)$ if list represented as a red-black tree

What is a good representation for ML?

- Answer:
 - Representation makes subsequent learning easier
- Choice usually depends on subsequent learning task
- A feed-forward network $f(\mathbf{x}) = f^{(3)} [f^{(2)} [f^{(1)}(\mathbf{x})]]$ trained by supervised learning performs representation learning

Supervised Feedforward Learning

- Last layer of network is a linear classifier such as softmax regression classifier
 - Rest of network learns representation for classifier
 - Every hidden layer makes the classification easier
 - Ex: classes not linearly separable in input features may become linearly separable in the last layer
 - Last layer could also be another model:
 - Such as a nearest neighbor classifier

How do we specify representation?

- 1. Supervised learning of feed-forward networks:
 - No imposition of any conditions on learned features
- 2. Other representation learning algorithms do so
 - Ex: In density estimation, encourage h_i to be independent
- 3. Unsupervised deep learning algorithms
 - have a main training objective, but like supervised learning they learn a representation as a side effect
- Regardless of how representation was obtained, it can be used for another task
 - Multiple tasks (supervised/unsupervised) can share representation

Trade-off in representation

- Representation learning involves a trade-off between:
 - 1. Preserving as much information about the input as possible
 - 2. Attaining nice properties (such as independence)

Semi-supervised Learning

- Representation learning is a way of performing unsupervised and semi-supervised learning
 - Often we have very little labeled data and very large amounts of unlabeled data
 - Training on labeled data results in severe overfitting
 - Semi-supervised learning offers a solution

Human/Animal Learning

- Humans learn with few labeled samples
- We do not yet know how this is possible
- Many factors could explain this:
 - The brain may use very large ensembles of classifiers or Bayesian inference techniques
- One hypothesis is that the brain leverages unsupervised or semi-supervised learning
 - There are many ways to leverage unlabeled data
 - We focus on hypothesis that unlabeled data can be used to learn a good representation

Unsupervised Learning and Deep Learning

- Unsupervised learning revived deep neural networks
 - Enabling training a deep supervised network without specializations such as convolution or recurrence
- Canonical example of a representation learned for one task can be useful for another task
 - First task: unsupervised learning (trying to capture the shape of a distribution)
 - Other task: supervised learning with the same input domain