Stat 250: Stat Principles and Practices Central Limit Theorem illustration

Professor Richard A. Levine

San Diego State University

Set-up: Binomial(10, p)

Generate 500 data sets of size n Illustration with n = 5, p = 0.1

Sample	1	2	3	4	5	\bar{x}
Data set 1	0	0	1	2	0	0.6
Data set 2	0	0	1	3	0	8.0
Data set 3	0	1	2	2	2	1.4
Data set 4	0	0	0	3	1	8.0
Data set 5	1	2	2	0	0	1.0
:			•			

Binomial(10, p) histogram

CLT illustration

Sample mean of X: Binomial(10, 0.1) Sample mean of X: Binomial(10, 0.1)

4.0 4.5

5.0 5.5 6.0

2.5

3.5 4.0

3.0

CLT illustration: normal probability plot

Foreshadowing: Statistical Inference

- Collect binomial(n, p) random sample: X_1, X_2, \dots, X_n .
- Normal approximation to the binomial
- Another CLT: For "large n and reasonable p,"

$$rac{\sum X_i}{n} \sim AN\left(p, \sqrt{rac{p(1-p)}{n}}
ight).$$

Foreshadowing: Statistical Inference

- Collect binomial(n, p) random sample: X_1, X_2, \dots, X_n .
- Normal approximation to the binomial
- Another CLT: For "large n and reasonable p,"

$$\frac{\sum X_i}{n} \sim AN\left(p, \sqrt{\frac{p(1-p)}{n}}\right).$$

• Use the average to estimate *p* and sampling distribution to assess variability.