Cryptographie postquantique basée de les réseaux

Léo Gagnon - Juillet 2019

Pourquoi?

$$329317 \times 988061 = 325385284337$$

$$17 = 5^{13} \mod 19$$

Réseaux euclidiens

Un réseau Λ de dimension n est un sous-groupe discret additif de \mathbb{R}^n . Autrement dit,

- 1. $\mathbf{0} \in \Lambda \text{ et } -x, x+y \in \Lambda \ \forall x, y \in \Lambda$
- 2. Chaque $x \in \Lambda$ possède un voisinage dans \mathbb{R}^n dans lequel il est le seul élément de Λ

L'exemple typique de réseau est \mathbb{Z}^n .

Pour spécifier explicitement un réseau de dimension n, il suffit de donner n vecteurs indépendants $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ tel que $\Lambda = \{\sum_{i=1}^n z_i \mathbf{b}_i : z_i \in \mathbb{Z}\}$ (on appelle ces vecteurs la base de Λ).

Réseaux euclidiens

Réseaux euclidiens

On défini la loi normale discrète sur Λ comme la loi normale de moyenne 0 et variance r sur \mathbb{R}^n discrétisé aux points de Λ .

Problèmes calculatoires classiques sur les réseaux

Shortest vector problem: (Gap)SVP

Soit un réseau Λ , SVP demande de trouver le plus petit vecteur \mathbf{v} de Λ tant dis que GapSVP demande de distinguer entre les cas $\mathbf{v} \leq d$ et $\mathbf{v} > d\gamma$. Les deux problèmes sont équivalents. Aussi, il est à noter que GapSVP est facile pour des valeurs exponentielles de γ et NP-difficile pour des petites valeurs de γ , la cryptographie s'intéresse à des $\gamma = poly(n)$. Ce problème est conjecturé difficile (jusqu'à maintenant) même pour les ordinateurs quantique et les meilleurs algorithmes connus fonctionnent en temps $2^{O(n)}$ pour des facteurs d'approximation polynomiaux.

Shortest vector problem: (Gap)SVP

Shortest vector problem: (Gap)SVP

Bounded distance decoding: BDD

Soit un réseaux Λ et un point \mathbf{x} à une distance maximale d > 0 de Λ (le plus court vecteur reliant \mathbf{x} à un point $\mathbf{y} \in \Lambda$ a une norme inférieure à d). L'objectif est de trouver le point $\mathbf{y} \in \Lambda$ le plus près (distance euclidienne) de \mathbf{x} . Remarquons la réponse est unique si et seulement si $d < \lambda_1(\Lambda)/2$. Le meilleur algorithme connu pour BDD fonctionne en temps exponentiel.

Bounded distance decoding: BDD

Bounded distance decoding: BDD

On peut montrer que si on était capable de résoudre BDD pour de petites valeurs de d, alors on serait capable de résoudre GapSVP pour $\gamma = poly(n)$. Ainsi GapSVP $\leq BDD$.

Problèmes calculatoires utiles à la cryptographie

Learning with errors: LWE

Soient $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \chi^m$ (une distribtuion normale $(0, \alpha q)$) et $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. Étant donné $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$ trouver \mathbf{s} . Une version décisionnelle (souvent utilisée pour la cryptographie) demande de distringuer $(\mathbf{A}, \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q)$ de $(\mathbf{A}, \mathbf{b}^t)$ uniforme.

$$\mathbf{A} = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & | \end{pmatrix}, \ \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$

Learning with errors: LWE

Il est facile de voir que résoudre LWE avec la matrice \mathbf{A} équivaut à résoudre BDD sur $\Lambda = \{\mathbf{z} = \mathbf{s}^t \mathbf{A} \bmod q \mid \mathbf{s} \in \mathbb{Z}_q^n\}$. Donc GapSVP $\leq BDD \leq LWE$.

Learning with errors: LWE

À propos de l'erreur, elle provient d'une loi normale de moyenne 0 et de variance αq où $\alpha \in (0,1)$ est choisi en fonction de la sécurité désirée. La réduction montre que avec un oracle pour LWE_{α} , on peut résoudre GapSVP avec un facteur d'approximation de $O(n/\alpha)$. On choisi donc en général $\alpha \geq 1/poly(n)$.

Shorter integer solution: SIS

Soit $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ une matrice $n \times m$ constituée de m vecteurs aléatoires choisis uniformément dans . L'objectif est de trouver $\mathbf{z} \in \mathbb{Z}^m$ non-nul tel que $||\mathbf{z}|| \leq \beta$ et $f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} \mod q = \mathbf{0}$.

$$\left(\begin{array}{ccc} & \mathbf{A} & \cdots \\ & \end{array}\right) \left(\mathbf{z}\right) = \mathbf{0} \in \mathbb{Z}_q^n$$

Shorter integer solution: SIS

L'ensemble $\Lambda = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{Az} = 0 \mod q \}$ (le noyeau de \mathbf{A}) forme un réseau, donc résoudre SIS avec la matrice \mathbf{A} revient à trouver un petit vecteur de Λ (SVP/GapSVP). Ainsi, GapSVP \leq SIS avec un facteur d'approximation $\beta \cdot poly(n)$.

Applications cryptographiques!

Applications cryptographiques!

SIS:

- Trouver $\mathbf{z} \neq 0$ court tel que $\mathbf{Az} \mod q = \mathbf{0}$
- Problème calculatoire
- Applications : fonction à sens unique, fonction de hachage résistante aux collisions et autres "outils" cryptographiques.

LWE:

- Distinguer $(\mathbf{A}, \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q)$ de $(\mathbf{A}, \mathbf{b}^t)$ uniforme.
- Problème de décision
- Applications : encryption à clée privée, encryption à clée publique et beaucoup plus.

Fonction de hachage résistante au collisions

Résistance au collisions : étant donné une fonction de hachage f(x), il est impossible pour un adversaire efficace de trouver x et x' tels que f(x) = f(x') sauf avec probabitlié négligeable.

Fonction de hachage résistante aux collisions

Soit $h_{\mathbf{A}}: \{0, \dots, \beta\}^m \to \text{tel que:}$

$$h_{\mathbf{A}}(\mathbf{z}) = \mathbf{A}\mathbf{z} \bmod q$$

où $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. Une collision dans $h_{\mathbf{A}}$ donne $\mathbf{z}, \mathbf{z}' \in \{0, \dots, \beta\}^m$ tels que $\mathbf{A}(\mathbf{z} - \mathbf{z}') = 0 \mod q$. On a donc que $\mathbf{z} - \mathbf{z}' \in \{-\beta, \dots, \beta\}^m$ est une solution pour SIS_{β} .

Avec une fonction de hachage pour un input de taille fixe on peut créer une fonction de hachage pour un input de taille variable

Cryptographie à clée privée

(Gen, Enc, Dec)

Cryptographie à clée privée

L'espace de message est $\mathcal{M} := \{0, 1\}.$

• Choissir la clée privée

$$k := \mathbf{s} \in \mathbb{Z}_q^n$$

aléatoirement de façon uniforme.

• Générer le cryptogramme

$$c := (\mathbf{a}, b) := (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e + m \lfloor q/2 \rceil \mod q)$$

où $\mathbf{a} \in \mathbb{Z}_q^n$ et $e \in \chi$ (et |e| < q/4) son choisis aléatoirement de façon uniforme.

• Retourner m = 0 si

$$|b - \langle \mathbf{a}, \mathbf{s} \rangle \mod q| = |e + m|q/2 \pmod q| < q/4$$

et 1 sinon.

Inefficacité des constructions

Les constructions cryptographiques de base basées sur les problèmes de réseaux sont très peu efficaces pour les raisons suivantes :

- 1. Grandes clées et beaucoup d'aléat. (ex. cryptogramme O(n) fois plus long que le message pour le système à clée privée et matrice $n \times m$ pour la fonction de hachage).
- 2. Les vecteurs et matrices de grande taille utilisés dans LWE et SIS prennent beaucoup de mémoire.
- 3. Les multiplications de ces vecteurs/matrices sont peu efficaces.

Il faut donc revoir les constructions si on veux pouvoir les appliquer dans la "vraie vie".

Solution: Redéfinition sur des anneaux

Pour régler ce problème, nous utiliserons l'anneau $\mathbb{Z}_q[x]/\langle x^n+1\rangle$: l'ensemble polynômes résidus modulo (x^n+1) et q (pour les coefficients).

La multiplication dans $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ peut être interpreté comme un produit de convolution discret et celui-ci peut être calculé très efficacement $O(n \log n)$ avec la transformation de Fourirer rapide (vs $O(n^2)$ pour \mathbb{Z}_q^n).

Solution: Redéfinition sur des anneaux

En utilisant $R_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ au lieu de \mathbb{Z}_q^n on obtient donc les résultats suivants.

- 1. Beaucoup moins d'aléat est nécéssaire.
- 2. On a besoins de moins gros objets mathématiques pour générer la même quantité de nombres pseudo-aléatoires.
- 3. Opération dans $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ très efficace.
- 4. Et surtout LWE et SIS restent difficile même définis sur R_q (ring-LWE et ring-SIS).

Youpi!

Redéfinition des problèmes

ring-SIS

Étant donné $a_1, \ldots, a_l \in R_q$ tous choisis aléatoirement de façon uniforme, le but est de trouver $e_1, \ldots, e_l \in R$ non tous-nuls tels que $a_1e_1 + \ldots + a_le_l = 0 \mod qR$ et les e_i sont "petits".

ring-LWE

Étant donné des échantillions $(a, b = a \cdot s + e) \in R_q \times R_q$, où $s \in R_q$ est le secret, $a \in R_q$ est choisi uniformément et e est un terme d'erreur choisi selon χ (une loi normale), le but est de retrouver s. La version décisionnelle demande de distinguer $(a, b = a \cdot s + e)$ de (a, b) tiré d'une distribution uniforme sur $R_q \times R_q$.

Fonction de hachage efficace

$$h_{a_1,...,a_l}(e_1,...,e_l) = a_1e_1 + ... + a_le_l \mod qR$$
 où $l = m/n$.

Clée de taille m au lieu de $m \times n$ et plus efficace !

SWIFFT: A Modest Proposal for FFT Hashing*

Vadim Lyubashevsky¹, Daniele Micciancio¹, Chris Peikert^{2,⋆⋆}, and Alon Rosen³

¹ University of California at San Diego
² SRI International
³ IDC Herzliya

Encryption à clée privée efficace

L'espace de message est $\mathcal{M} := R_2$ (éléments de R avec coefficients 0,1).

• Choissir la clée privée

$$k := s \in R_q$$

aléatoirement de façon uniforme.

• Générer le cryptogramme

$$c := (a, b) := (a, a \cdot s + e + m \lfloor q/2 \rfloor \mod qR)$$

où $a \in R_q$ et $e \in \chi$ (|e| < q/4) son choisis aléatoirement de façon uniforme.

• Calculer

$$\hat{m} = b - a \cdot s \mod qR = m \lfloor q/2 \rfloor + e$$

Arrondir chaque coefficient de \hat{m} à 0 ou q/2. Interpréter 0 comme 0 et q/2 comme 1.

Encryption à clée privée efficace

Encryption de O(n) bits avec O(n) bits d'aléat et plus efficace!

Autres applications

- Encryption à clée publique
- Fonction pseudo-aléatoire
- Encryption complètement homomorphe
- Schéma de signature numérique
- Encryption basée sur l'identitée
- Échange de clées

• . . .

Applications concrètes

SPRING: Fast Pseudorandom Functions from Rounded Ring Products

Abhishek Banerjee^{1*}, Hai Brenner^{2**}, Gaëtan Leurent³, Chris Peikert^{1**}, and
Alon Rosen^{2†}

Georgia Institute of Technology

1 Georgia Institute of Technology
2 IDC Herzliya
3 INRIA Team SECRET

FALCON: Fast-Fourier Lattice-based Compact Signatures over NTRU Specifications v1.0

Pierre-Alain Fouque Jeffrey Hoffstein Paul Kirchner Vadim Lyubashevsky Thomas Pornin Thomas Prest Thomas Ricosset Gregor Seiler William Whyte Zhenfei Zhang

CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM

Joppe Bos*, Léo Ducas[†], Eike Kiltz[‡], Tancrède Lepoint[§], Vadim Lyubashevsky¶, John M. Schanck[∥], Peter Schwabe**, Gregor Seiler^{††}, Damien Stehlé^{‡‡},

SWIFFT: A Modest Proposal for FFT Hashing *

Vadim Lyubashevsky 1 , Daniele Micciancio 1 , Chris Peikert 2,** , and Alon Rosen 3

University of California at San Diego SRI International IDC Herzliya

Competition du NIST : 2e tour

Cryptographie à clée publique : 18 propositions

- 1. 7 basées sur la théorie des codes
- 2. 9 basées sur les réseaux
- 3. 1 basée sur des courbes elliptiques super-singulière (?)

Systèmes de signature numérique : 11 propositions

- 1. 3 basées sur les réseaux
- 2. 4 basées sur des polynômes multivariée (?)
- 3. 2 basées sur (?)

Conclusion

Encore BEACOUP de questions ouvertes (meilleures réductions, généralisation à plus d'anneaux, attaques).

Lectures intéressantes:

- Chris Peikert: A decade of lattice cryptography
- Chris Peikert: To cyclicity and beyond (https://bit.ly/2Jm3jye)
- Page de la compétition du NIST (https://csrc.nist.gov/Projects/Post-Quantum-Cryptography)

Questions?