

Signals and Systems

Lecturer: Dr. Lin Xu (徐林)

Office: 2-302 I 或 3-430, SIST

Email: xulin1@shanghaitech.edu.cn

Tel: 20684449

- ☐ Global content
- ☐ Motivation
- ☐ Exams and grades
- ☐ Text book and materials
- **☐** Organization
- ☐ Pre-knowledge

Global content	Signal (input)	System	Signal (output)
☐ Overview of Signa	als and Systems		
☐ Linear-Time-Invar	riant Systems		
☐ Fourier Series Rep	oresentation of Peri	odic Signals	
☐ The Continues-Tir	me Fourier Transfor	m	
☐ The Discrete-Time	e Fourier Transform		
☐ Time and Frequer	ncy Characterization	n of Signals	and Systems
■ Sampling			
☐ The Laplace Trans	form		
☐ The Z-Transform			

Motivation

- ☐ Importance
- ☐ Confidence
- ☐ Math is a important but not everything
- ☐ Focus on big pictures
- ☐ GPA and real knowledge

Rik Vullings

9-year old Laurent Simons got an A after one week study

Exams and Grades

- ☐ Homework: 20% (Delay <=2 days, *0.8; >2 days, *0)
- ☐ Mid-term (written, close-book): 30%
- ☐ Final Exam (written, close-book): 50%
- ☐ All in English, otherwise *0.8
- ☐ Sign in every lecture, -2 /absence
- ☐ Plagiarism: zero

Text book and materials

- ☐ Book
- ➤ Signals and Systems (2nd Edition), by A. V. Oppenheim, A. S. Willsky, and S. Hamid. ISBN: 978-0138147570.
- ➤ Signals and Systems using Matlab (2nd Edition), by Luis Chaparro. ISBN: 978-0123948120.
- ☐ These slides
- ☐ All materials bill be available in the BB system

Organization

- Lecture: week 1-16; teaching center 301; Tue. and Thu. 08:15-9:55
- ☐ Exercise: once per week, time and location TBD
- ☐ Office hour: SIST 2-302I or 3-430, 16:30-18:00
- ☐ Experiment: by Dr. Linyan Lu, start from the 2nd week
- ☐ BB system: Slides and text book
- ☐ Gradescope: homework release and submission, entry code: KYGW3Z

Pre-knowledge: Complex numbers

Polar notation:

$$z = |z|e^{\mathbf{j}\theta}$$

Cartesian notation:

$$z = Re\{z\} + j \cdot Im\{z\}$$

Complex conjugation: $j \Rightarrow -j$

Euler:

$$Im\{z\}$$

$$z = |z|e^{j\theta} = Re\{z\} + jIm\{z\}$$

$$|z|$$

$$\theta \quad Re\{z\}$$

$$Re$$

$$|z|$$

$$|z|$$

$$z^* = |z|e^{j-\theta} = Re\{z\} - jIm\{z\}$$

$$\mathbf{e}^{\mathbf{j}\theta} = \cos(\theta) + \mathbf{j}\sin(\theta)$$

$$\cos(\theta) = \frac{\mathbf{e}^{\mathbf{j}\theta} + \mathbf{e}^{-\mathbf{j}\theta}}{2}$$

$$\sin(\theta) = \frac{\mathbf{e}^{\mathbf{j}\theta} - \mathbf{e}^{-\mathbf{j}\theta}}{2\mathbf{i}}$$

Pre-knowledge: Important geometric series

With z_0 some (possibly complex) number:

$$\sum_{n=0}^{\infty} (z_0)^n = \frac{1}{1 - z_0} \quad \text{iff} \quad |z_0| < 1$$

'Proof' via long tail division:

$$\frac{1}{1-z_0} = 1 + z_0 + (z_0)^2 + (z_0)^3 + \dots = \sum_{n=0}^{\infty} (z_0)^n$$

$$\sum_{n=0}^{M-1} (z_0)^n = \frac{1 - z_0^M}{1 - z_0}$$

Let n = M + p

Proof:
$$\sum_{n=0}^{M-1} (z_0)^n = \sum_{n=0}^{\infty} (z_0)^n - \sum_{n=M}^{\infty} (z_0)^n = \frac{1}{1-z_0} - (z_0)^M \sum_{p=0}^{\infty} (z_0)^p$$

Pre-knowledge: Zeros of a complex equation

With a some (complex) number, find zeros of:

$$z^N - a = 0$$

$$z^N = a = a \mathbf{e}^{\mathbf{j}_{k \cdot 2\pi}} \quad \Rightarrow \quad \left| z_k = a^{\frac{1}{N}} \cdot \mathbf{e}^{\mathbf{j}_{k \cdot \frac{2\pi}{N}}} \right| \text{for } k = 0, 1, \cdots, N-1$$

$$z_k = a^{rac{1}{N}} \cdot \mathsf{e}^{\mathsf{j} k \cdot rac{2\pi}{N}}$$

for
$$k = 0, 1, \dots, N - 1$$

Example: a=1, N=4

$$\Rightarrow z_k = e^{\mathbf{j}k \cdot \frac{\pi}{2}}$$

Example: a = -1, N = 3

$$\Rightarrow z_k = (-1)^{\frac{1}{3}} \cdot e^{\mathbf{j}k \cdot \frac{2\pi}{3}}$$
$$= (e^{\mathbf{j}\pi})^{\frac{1}{3}} \cdot e^{\mathbf{j}k \cdot \frac{2\pi}{3}}$$
$$= e^{\mathbf{j}\frac{\pi}{3} + k \cdot \frac{2\pi}{3}}$$

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- ☐ Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- ☐ Basic System Properties

Signals describe a wide variety of physical phenomena

The voltage v_s and v_c are examples of signals.

The force f and velocity v are signals.

- Mathematically, signals are represented as functions of one or more independent variables.
- ☐ Example of typical signals
 - > Sound
 - Image
 - > Video

Sound: represents acoustic pressure as a function of time

<u>Picture:</u> represents brightness as a function of two spatial variables

<u>Video:</u> consists of a sequence of images, called frames, and is a function of
 3 variables: 2 spatial coordinates and time

f(x, y, t)

- ☐ Independent variables can be one or more
- ☐ Focus on signals involving a single independent variable
- ☐ Generally refer to the independent variable as time, although it may not in fact represent time in specific applications
- ☐ Continues-time and discrete-time signal

Continues-time signals: the independent variable is continuous, and signals are defined for a continuum of values

Discrete-time signals: defined only at discrete times, and the independent variable takes on only a discrete set of values

An example of a discrete-time signal: The weekly Dow-Jones stock market index from January 5, 1929, to January 4, 1930.

- \square <u>Continuous-time signals:</u> t denote the independent variable, enclosed in (\cdot)
- lacktriangle Discrete-time signals: n denote the independent variable, enclosed in $[\cdot]$
- $\square x[n]$
 - discrete in nature; or sampling of continuous-time signal
 - \triangleright Focus mainly on the second case, defined only for integer values of n

Signal energy and power

 \square v(t) and i(t) are voltage and current across a resistor R, the instantaneous power is

$$p(t) = v(t)i(t) = \frac{1}{R}v^2(t)$$

 \Box The total energy over the time interval $t_1 \le t \le t_2$ is

$$E_R = \int_{t_1}^{t_2} p(t) dt = \int_{t_1}^{t_2} \frac{1}{R} v^2(t) dt$$

 \Box The average power over the time interval $t_1 \leq t \leq t_2$ is

$$P_R = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{1}{R} v^2(t) dt$$

Signal energy and power

 \square Similarly, for any signal x(t) or x[n], the total energy is defined as

$$E=\int_{t_1}^{t_2}|x(t)|^2\,dt$$
 $t_1\leq t\leq t_2$ Continuous-time signal $E=\sum_{n=n_1}^{n_2}|x[n]|^2$ $n_1\leq n\leq n_2$ Discrete-time signal

☐ The average power is defined as

$$P = \frac{E}{t_2 - t_1}$$
 Continuous $P = \frac{E}{n_2 - n_1 + 1}$ Discrete

Signal energy and power

 \square Over infinite time interval $-\infty \le t \le \infty$ or $-\infty \le n \le \infty$

$$E_{\infty} \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Continuous

$$E_{\infty} \triangleq \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

Discrete

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \qquad P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Continuous

Discrete

Signal energy and power

 \square Finite-energy signal: $E_{\infty} < \infty$

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$$

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N + 1} = 0$$

- \square Finite-power signal: $P_{\infty} < \infty$, $E_{\infty} = \infty$
- \square Infinite energy & power signal $P_{\infty} \to \infty$, $E_{\infty} \to \infty$

Signal energy and power

☐ Examples:

(1)
$$x(t) = \begin{cases} 0, & t < 0 \\ 1, & 0 \le t \le 1 \\ 0, & t > 1 \end{cases}$$
 $E_{\infty} < \infty, P_{\infty} = 0$

(2)
$$x[n] = 4$$
 $P_{\infty} < \infty$, $E_{\infty} = \infty$

(3)
$$x(t) = t$$
 $P_{\infty} \to \infty$, $E_{\infty} \to \infty$

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- Basic System Properties

Time shift

$$x(t) \longrightarrow x(t-t_0) = y(t)$$

$$y(t)\Big|_{t=t_1} = x(t-t_0)\Big|_{t=t_1} = x(t_1-t_0) = x(t)\Big|_{t=t_1-t_0}$$

$$x[n] \longrightarrow x[n-n_0]$$

Time reversal

$$x[n] \longrightarrow x[-n]$$

Time scaling

$$x(t) \longrightarrow x(2t)$$
 Compressed

$$x(t) \longrightarrow x(t/2)$$
 Stretched

General: Let
$$x(t) \rightarrow x(\alpha t + \beta)$$

- \triangleright if $|\alpha| > 1$, compressed
- \triangleright if $|\alpha| < 1$, stretched
- \geq if α < 0, reversed
- \triangleright if $\beta \neq 0$, shifted

Example 1: Given the signal x(t), to illustrate

$$> x(t+1)$$

$$> x(-t+1)$$

$$> x(\frac{3t}{2}+1)$$

>
$$x(t+1)$$
 $x(-t+1)$ $x(3t/2)$ $x(\frac{3t}{2}+1)$

- \square **Example2**: A discrete signal x[n] is shown below, sketch and label following signals:
 - $\rightarrow x[2n]$
 - $\rightarrow x[2n+1]$

Periodic Signals

- \square Continuous-time: x(t) = x(t+T) for all t
- ☐ Fundamental period
 - The smallest positive value of T for which x(t) = x(t+T) holds

Periodic Signals

- \square Discrete-time: x[n] = x[n+N] for all n
- Fundamental period
 - The smallest positive value of N for which x[n] = x[n+N] holds

Periodic Signals

☐ Example:

$$x(t) = \begin{cases} \cos(t) & \text{if } t < 0\\ \sin(t) & \text{if } t \ge 0 \end{cases}$$

- ☐ Even signal
 - x(t) = x(-t) x[n] = x[-n]

- ☐ Odd signal
 - x(t) = -x(-t) x[n] = -x[-n]

- ☐ Any signal can be broken into a sum of two signals
 - One even and one odd

$$x(t) = x_e(t) + x_o(t)$$

$$x_e(t) = E_v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

$$x_o(t) = O_d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

$$x_e(t) = E_v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$
$$x_o(t) = O_d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

$$x[n] = x_e[n] + x_o[n]$$

 $x_e[n] = (x[n] + x[-n])/2$
 $x_o[n] = (x[n] - x[-n])/2$

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- ☐ Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- Basic System Properties

Continuous-Time Complex Exponential and Sinusoidal Signals

☐ General case

$$x(t) = ce^{at}$$

☐ Real exponential signal

- \triangleright C and a are real
- $\geqslant a>0$, as $t\uparrow$, $|x(t)|\uparrow$
- \triangleright a<0, as $t\uparrow$, $|x(t)| \downarrow$
- > a=0, |x(t)| is constant

C and a are complex number

Continuous-Time Complex Exponential and Sinusoidal Signals

- **☐** Periodic exponential signals
 - \triangleright c is real, specifically 1
 - $\triangleright a$ is purely imaginary

$$x(t) = e^{j\omega_0 t}$$

 \triangleright Fundamental period T_0 ?

$$x(t) = e^{j\omega_0 t} = e^{j\omega_0 (t+T)} = e^{j\omega_0 t} e^{j\omega_0 T} \longrightarrow e^{j\omega_0 T} = 1$$

$$\longrightarrow \omega_0 T = 2k\pi, k = \pm 1, \pm 2, \dots \longrightarrow T = \frac{2k\pi}{\omega_0} \longrightarrow T_o = \frac{2\pi}{|\omega_0|}$$

 $ightharpoonup T_0$ is undefined for $\omega_0 = 0$

Continuous-Time Complex Exponential and Sinusoidal Signals

☐ Sinusoidal Signals

$$x(t) = A\cos(\omega_0 t + \emptyset)$$

Closely related to complex exponential signals

$$e^{j(\omega_0 t + \emptyset)} = \cos(\omega_0 t + \emptyset) + j\sin(\omega_0 t + \emptyset)$$

$$A\cos(\omega_0 t + \emptyset) = A \cdot Re\{e^{j(\omega_0 t + \emptyset)}\}$$

$$A\sin(\omega_0 t + \emptyset) = A \cdot Im\{e^{j(\omega_0 t + \emptyset)}\}$$

 \succ Fundamental frequency ω_0

Continuous-Time Complex Exponential and Sinusoidal Signals

☐ Sinusoidal Signals

$$x(t) = A\cos(\omega_0 t + \emptyset)$$

Fundamental frequency ω_0

Continuous-Time Complex Exponential and Sinusoidal Signals

 $\Box e^{j\omega_0 t}$ and $A\cos(\omega_0 t + \emptyset)$ examples of signals with infinite total energy but finite average power

$$E_{period} = \int_0^{T_0} \left| e^{j\omega_0 t} \right|^2 dt = \int_0^{T_0} 1 dt = T_0$$

$$p_{period} = \frac{1}{T_0} E_{period} = 1$$

> Total energy: infinite

> Average power: finite

Continuous-Time Complex Exponential and Sinusoidal Signals

- ☐ Harmonically related complex exponentials
- \succ Sets of periodic exponentials (with different frequencies), all of which are periodic with a common period T_0

$$e^{j\omega t}=e^{j\omega(t+T_0)}=e^{j\omega t}e^{j\omega T_0}$$

$$\omega T_0=2k\pi,\,k=0,\pm 1,\pm 2,\ldots$$

$$\omega=2k\pi/T_0=k\omega_0,\,\text{with}\,\,\omega_0=2\pi/T_0$$

- $\triangleright \phi_k(t) = e^{jk\omega_0 t}$, $k = 0, \pm 1, \pm 2, ...$ is a harmonically related set.
- For any $k \neq 0$, fundamental frequency $|k|\omega_0$; fundamental period

$$\frac{2\pi}{|k|\omega_0} = \frac{T_0}{|k|}$$

Continuous-Time Complex Exponential and Sinusoidal Signals

■ Examples – Periodic or not?

(1)
$$x_1(t) = je^{j10t}$$

$$\omega_0 = 10, T_0 = \frac{2\pi}{10} = \frac{\pi}{5}$$

(2)
$$x_2(t) = e^{(-1+j)t}$$

Aperiodic

(3)
$$x_3(t) = 2\cos(3t + \frac{\pi}{4})$$
 $\omega_0 = 3$, $T_0 = \frac{2\pi}{3}$

$$\omega_0 = 3, T_0 = \frac{2\pi}{3}$$

(4)
$$x(t) = 2\cos(3t + \frac{\pi}{4}) + 3\cos(2t - \frac{\pi}{6})$$

$$T_{01} = \frac{2\pi}{3}, \quad T_{02} = \pi$$

$$T_{01} = \frac{2\pi}{2}$$
, $T_{02} = \pi$ $T_0 = SCM(T_{01}, T_{02}) = 2\pi$

Continuous-Time Complex Exponential and Sinusoidal Signals

☐ General case

$$x(t) = Ce^{at}$$

C and a are complex numbers

$$C = |C|e^{j\theta}$$
, $a = r + j\omega_0$

$$Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$$

$$Ce^{at} = |C|e^{rt}\cos(\omega_0 t + \theta) + j|C|e^{rt}\sin(\omega_0 t + \theta)$$

$$Re\{x(t)\} = |C|e^{rt}\cos(\omega_0 t + \theta), r < 0$$

Discrete-Time Complex Exponential and Sinusoidal Signals

☐ General case

$$x[n] = C\alpha^n$$

c and α are complex numbers

$$x[n] = Ce^{\beta n}$$

$$\alpha = e^{\beta}$$

☐ Real Exponential Signals

C and α are real numbers

Discrete-Time Complex Exponential and Sinusoidal Signals

- ☐ Sinusoidal signals
 - \triangleright c is real, specifically 1; β is purely imaginary

$$x[n] = e^{j\omega_0 n}$$

Closely related

$$A\cos(\omega_0 n + \emptyset)$$

$$e^{j\omega_0 n} = \cos \omega_0 n + j \sin \omega_0 n$$

$$A\cos(\omega_0 n + \emptyset) = A/2 \cdot e^{j\emptyset} e^{j\omega_0 n} + A/2 \cdot e^{-j\emptyset} e^{-j\omega_0 n}$$

➤ Infinite total energy but finite average power

$$|e^{j\omega_0 n}|^2 = 1$$

Discrete-Time Complex Exponential and Sinusoidal Signals

☐ General Signals

$$x[n] = C\alpha^n$$

$$C = |C|e^{j\theta}$$
, $\alpha = |\alpha|e^{j\omega_0}$

$$x[n] = |C||\alpha|^n \cos(\omega_0 n + \theta)$$
$$+j |C||\alpha|^n \sin \omega_0 n + \theta$$

Discrete-Time Complex Exponential and Sinusoidal Signals

Periodicity properties

$$x[n] = e^{j\omega_0 n}$$

Focusing on ω_0

 $\triangleright \omega_0$, same value at ω_0 and $\omega_0 + 2k\pi$

$$e^{j(\omega_0+2k\pi)n} = e^{j2k\pi n}e^{j\omega_0n} = e^{j\omega_0n}$$

- \blacktriangleright Only consider interval $0 \le \omega_0 \le 2\pi$ or $-\pi \le \omega_0 \le \pi$
- From 0 to π : $\omega_0 \uparrow$, oscillation rate of $e^{j\omega_0 n} \uparrow$
- From π to 2π : $\omega_0 \uparrow$, oscillation rate of $e^{j\omega_0 n} \downarrow$
- Maximum oscillation rate at $\omega_0=\pi$

$$e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

Discrete-Time Complex Exponential and Sinusoidal Signals

- Periodicity properties
 - Q: Which one is a higher frequency signal?

$$\omega_0 = \pi$$
 $\omega_0 = 3\pi/2$

Discrete-Time Complex Exponential and Sinusoidal Signals

Periodicity properties

 $\cos(\omega_0 n)$

Discrete-Time Complex Exponential and Sinusoidal Signals

Periodicity properties

 $\cos(\omega_0 n)$

Discrete-Time Complex Exponential and Sinusoidal Signals

Periodicity properties

$$x[n] = e^{j\omega_0 n}$$

Focusing on n

• In order for $e^{j\omega_0 n}$ to be periodic with N>0, must

$$e^{j\omega_0(n+N)} = e^{j\omega_0N}e^{j\omega_0n} = e^{j\omega_0n}$$

$$\omega_0 N = 2\pi m$$
, m integer number
$$\frac{\omega_0}{2\pi} = \frac{m}{N}$$

- $\omega_0/2\pi$: rational number
- Fundamental frequency: $2\pi/N = \omega_0/m$
- Fundamental period: $N=m(2\pi/\omega_0)$

Discrete-Time Complex Exponential and Sinusoidal Signals

Periodicity properties

$$x[n] = \cos(2\pi n/12)$$
 periodic $N=12$

periodic
$$N=12$$

$$x[n] = \cos(8\pi n/31)$$

$$x[n] = \cos(n/6)$$

$$x[n] = e^{j\left(\frac{2\pi n}{3}\right)} + e^{j\left(\frac{3\pi n}{4}\right)}$$

Periodicity properties: discrete-time vs. continuous-time

$e^{j\omega_0 t}$	$e^{j\omega_0 n}$
Distinct signals for distinct ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any ω_0	Only if $\omega_0=2\pi m/N$ for some integers N>0 and m
Fundamental frequency ω_0	ω_0/m
Fundamental period $2\pi/\omega_0$	$N=m(2\pi/\omega_0)$

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- Basic System Properties

Discrete-time unit impulse and unit step sequences

☐ Unit impulse (unit sample) is defined as

$$\delta[n] = \begin{cases} 0, n \neq 0 \\ 1, n = 0 \end{cases}$$

☐ Unit step is defined as

$$u[n] = \begin{cases} 0, n < 0 \\ 1, n \ge 0 \end{cases}$$

Discrete-time unit impulse and unit step sequences

☐ The impulse is the first difference of the step

$$\delta[n] = u[n] - u[n-1]$$

☐ Conversely, the step is the running sum of unit sample

$$u[n] = \sum_{m=-\infty}^{n} \delta [m]$$

Discrete-time unit impulse and unit step sequences

 \square Let m=n-k,

$$u[n] = \sum_{k=\infty}^{0} \delta[n-k],$$

or
$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

Discrete-time unit impulse and unit step sequences

☐ Sampling property

$$x[n]\delta[n] = x[0]\delta[n]$$

☐ More generally

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

Continuous-time unit impulse and unit step sequences

☐ Unit step

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

 \Box The continuous unit step u(t) is the running integral of unit impulse $\delta(t)$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

 \square $\delta(t)$ the first derivative of u(t)

$$\delta(t) = \frac{du(t)}{dt}$$

Continuous-time unit impulse and unit step sequences

- $\square u(t)$ is discontinuous at t=0, How we get $\delta(t)$?
 - \triangleright Consider $u_{\Lambda}(t)$

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$
 $\delta_{\Delta}(t) = \frac{d u_{\Delta}(t)}{dt}$ $\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

- \triangleright arrow at t=0: area of the pulse is concentrated at t=0
- rrow height and "1": area of the impulse

Continuous-time unit impulse and unit step sequences

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Let
$$\sigma = t - \tau$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$
 Let $\sigma = t - \tau$ $u(t) = \int_{0}^{\infty} \delta(t - \sigma) d\sigma$

Continuous-time unit impulse and unit step sequences

☐ Sampling property

$$x_1(t) = x(t)\delta_{\Delta}(t)$$

$$x(t)\delta_{\Delta}(t) \approx x(0)\delta_{\Delta}(t)$$

$$x(t)\delta(t) = \lim_{\Delta \to 0} x(t)\delta_{\Delta}(t) = x(0)\delta(t)$$

☐ More generally

$$x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$$

Continuous-time unit impulse and unit step sequences

- ☐ Example:
 - (1) Calculate and sketch the x'(t);
 - (2) Recover x(t) from x'(t).

☐ Solutions:

(1)
$$x(t) = 2u(t-1) - 3u(t-2) + 2u(t-4)$$

$$\therefore x'(t) = 2\delta(t-1) - 3\delta(t-2) + 2\delta(t-4)$$

$$(2) \quad x(t) = \int_0^\infty x'(t) dt$$

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- Basic System Properties

Continuous-Time and Discrete-Time Systems

☐ Continuous-Time Systems: Input and output are continuous

☐ Discrete-Time Systems: Input and output are discrete

Continuous-Time and Discrete-Time Systems

Examples of systems

□ RC circuit

$$i(t) = \frac{v_s(t) - v_c(t)}{R}$$

$$i(t) = C \frac{dv_c(t)}{dt}$$

$$\frac{dv_c(t)}{dt} + \frac{1}{RC}v_c(t) = \frac{1}{RC}v_s(t).$$

Examples of systems

☐ Moving car

$$\frac{dv(t)}{dt} = \frac{1}{m} [f(t) - \rho v(t)]$$

$$\frac{dv(t)}{dt} + \frac{\rho}{m}v(t) = \frac{1}{m}f(t)$$

In general:
$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

Examples of systems

■ Balance in a bank account:

$$y[n] = 1.01y[n-1] + x[n]$$

y[n]: balance at the end of the nth month; x[n]: net deposit; Interest rate: 1%

$$y[n] - 1.01y[n-1] = x[n]$$

Examples of systems

$$\frac{dv(t)}{dt} + \frac{\rho}{m}v(t) = \frac{1}{m}f(t)$$

• Approximate dv(t)/dt at $t = n\Delta$ by $\frac{v(n\Delta)-v((n-1)\Delta)}{\Delta}$

$$\frac{v(n\Delta) - v((n-1)\Delta)}{\Delta} + \frac{\rho}{m}v(n\Delta) = \frac{1}{m}f(n\Delta)$$

- Let $v[n] = v(n\Delta)$ $v[n] \frac{m}{m + \rho\Delta}v[n-1] = \frac{\Delta}{m + \rho\Delta}f[n]$
- y[n] + ay[n-1] = bx[n]In general

Interconnections of systems

> Series (or cascade)

Signals and Systems: An overview (ch.1)

- ☐ Continuous-Time and Discrete-Time Signals
- ☐ Transformations of the Independent Variable
- Exponential and Sinusoidal Signals
- ☐ The Unit Impulse and Unit Step Functions
- ☐ Continuous-Time and Discrete-Time Systems
- Basic System Properties

System with and without memory

- ☐ System without memory:
 - Output is dependent only on the current input
 - > Examples:

$$y[n] = (2x[n] - x^{2}[n])^{2}$$

$$y(t) = Rx(t)$$

$$y(t) = x(t)$$

$$y[n] = x[n]$$

System with and without memory

- ☐ System with memory:
 - Output is dependent on the current and previous inputs
 - > Examples:

$$y[n] = \sum_{k=-\infty}^{n} x[k], \qquad y[n] = x[n-1] \qquad y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$

- > Memory: retaining or storing information about input values at times
- > Physical systems, memory is associated with the storage of energy

Invertibility and inverse system

- Invertible
 - > Distinct inputs lead to distinct outputs.

Invertibility and inverse system

- Invertible
 - Examples: Accumulator $y[n] = \sum_{k=-\infty}^{n} x[k]$
 - The difference between two successive outputs is precisely the inputs y[n] y[n-1] = x[n]

$$x[n] \longrightarrow y[n] = \sum_{k=-\infty}^{n} x[k] \qquad y[n] \longrightarrow w[n] = y[n] - y[n-1] \longrightarrow w[n] = x[n]$$

Invertibility and inverse system

■ Noninvertible

$$y[n] = 0$$

All x[n] leads to the same y[n]

$$y(t) = x^2(t)$$

Cannot determine the sign of the inputs

Causality

Causal: the output at any time depends only on the inputs at the present time and in the past

$$y(t) = Rx(t)$$
 Causal

$$y[n] = \sum_{k=-\infty}^{n} x[k],$$
 Causal

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$
 Causal

$$y[n] = x[n] - x[n+1]$$
 Non-causal

$$y(t) = x(t+1)$$
 Non-causal

Causality

☐ Examples

$$y[n] = x[-n]$$

Non-causal

$$y(t) = x(t)\cos(t+1)$$
 Causal

Stability

☐ Informally: small inputs lead to responses that do not diverge.

A bank account balance

$$y[n] = x[n] + (1 + \alpha) \times y[n - 1]$$
Unstable

Stability

- ☐ Formally: bounded input leads to bounded output
 - \triangleright Bounded: |y(t)| < B

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{+M} x[n-k]$$
 Stable

$$y[n] = \sum_{k=-\infty}^{n} u[k] = (n+1)u[n]$$
 Unstable

Stability

Examples

$$S_1$$
: $y(t) = tx(t)$ Unstable

$$S_2$$
: $y(t) = e^{x(t)}$ Stable

$$|x(t)| < B \rightarrow -B < x(t) < B \rightarrow e^{-B} < y(t) < e^{B}$$

Time Invariance

If
$$x[n] \rightarrow y[n]$$

Then
$$x[n-n_0] \rightarrow y[n-n_0]$$

If
$$x(t) \rightarrow y(t)$$

Then
$$x(t-t_0) \rightarrow y(t-t_0)$$

$$x_1(t)$$
 System $y_1(t)$

$$x_2(t)$$
 System $y_2(t)$

If
$$x_2(t) = x_1(t - t_0)$$

 $y_2(t) = f\{x_2(t)\}$

$$y_2'(t) = y_1 (t - t_0)$$

$$y_2(t) = y_2'(t)$$
 ?

Time Invariance

$$\square$$
 Examples: $y(t) = \sin[x(t)]$

$$x_1(t) \longrightarrow \sin[x(t)] \longrightarrow y_1(t)$$

$$x_2(t) \longrightarrow \sin[x(t)] \longrightarrow y_2(t)$$

If
$$x_2(t) = x_1(t - t_0)$$

 $y_2(t) = f\{x_2(t)\}$
 $f\{\cdot\} = \sin\{\cdot\}$
 $y_2(t) = \sin[x_1(t - t_0)]$

$$y'_2(t) = y_1 (t - t_0)$$

 $y_1 (t) = \sin[x_1(t)]$
 $y'_2(t) = \sin[x_1 (t - t_0)]$
 $\therefore y_2 (t) = y'_2(t)$

<u>Time Invariance</u>

$$\square$$
 Examples: $y[n] = nx[n]$

$$x_1[n] \longrightarrow nx[n] \longrightarrow y_1[n]$$

$$x_2[n] \longrightarrow nx[n] \longrightarrow y_2[n]$$

If
$$x_2[n] = x_1[n - n_0]$$

 $y_2[n] = f\{x_2[n]\}$
 $= n \cdot x_1[n - n_0]$
 $y_2'[n] = y_1[n - n_0]$
 $y_1[n] = n \cdot x_1[n]$
 $y_2'[n] = (n - n_0) \cdot x_1[n - n_0]$
 $\therefore y_2[n] \neq y_2'[n]$

Time Invariance

$$\square$$
 Examples: $y(t) = x(2t)$

$$x_1(t) \longrightarrow x(2t) \longrightarrow y_1(t)$$

$$x_2(t) \longrightarrow x(2t) \longrightarrow y_2(t)$$

$$If x_2(t) = x_1(t - t_0)$$

$$y_2(t) = f\{x_2(t)\}$$

$$= x_1(2t - t_0)$$

$$y'_{2}(t) = y_{1} (t - t_{0})$$

$$y_{1} (t) = x_{1}(2t)$$

$$y'_{2}(t) = x_{1}[2(t - t_{0})]$$

$$\therefore y_{2} (t) \neq y'_{2}(t)$$

Linearity

□ Linear
$$x_1(t) \rightarrow y_1(t)$$
, $x_2(t) \rightarrow y_2(t)$
$$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$$

Superposition property (additivity and homogeneity)

$$x_1(t)$$
 System $y_1(t)$
 $x_2(t)$ System $y_2(t)$
 $x_3(t)$ System $y_3(t)$

If
$$x_3(t) = ax_1(t) + bx_2(t)$$

 $y_3(t) = f\{x_3(t)\}$
 $y_3'(t) = ay_1(t) + by_2(t)$
 $y_3(t) = y_3'(t)$?

Linearity

 \Box Examples y(t) = tx(t)

$$x_2(t) \qquad y_2(t) = tx_2(t)$$

$$x_3(t) \qquad y_3(t) = tx_3(t)$$

If
$$x_3(t) = ax_1(t) + bx_2(t)$$

 $y_3(t) = f\{x_3(t)\}$
 $= t[ax_1(t) + bx_2(t)]$

$$y_3'(t) = ay_1(t) + by_2(t)$$
$$y_3'(t) = atx_1(t) + btx_1(t)$$
$$y_3(t) = y_3'(t)$$

Linearity

$$\Box$$
 Examples $y(t) = x^2(t)$

$$x_1(t)$$
 $y_1(t) = x_1^2(t)$

$$x_{2}(t)$$
 $y_{2}(t) = x_{2}^{2}(t)$

$$x_3(t) \qquad y_3(t) = x_3^2(t)$$

$$If x_3(t) = ax_1(t) + bx_2(t)$$

$$y_3(t) = f\{x_3(t)\}\$$

= $[ax_1(t) + bx_2(t)]^2$

$$y_3'(t) = ay_1(t) + by_2(t)$$

= $ax_1^2(t) + bx_2^2(t)$

$$y_3(t) \neq y_3'(t)$$

Linearity

Examples
$$y[n] = Re\{x[n]\}$$

$$x_1[n] \qquad y_1[n] = Re\{x_1[n]\}$$

$$x_2[n] \qquad y_2[n] = Re\{x_2[n]\}$$

$$x_3[n] \qquad Re\{x[n]\} \qquad y_3[n] = Re\{x_3[n]\}$$

If
$$x_3[n] = ax_1[n] + bx_2[n]$$

 $y_3[n] = f\{x_3[n]\}$
 $= Re\{ax_1[n] + bx_2[n]\}$
 $y_3'[n] = ay_1[n] + by_2[n]$
 $= aRe\{x_1[n]\} + bRe\{x_2[n]\}$

If a and b are complex numbers

$$y_3[n] \neq y_3'[n]$$

Linearity

$$\square$$
 Examples $y[n] = 2x[n] + 3$

$$x_1[n] \longrightarrow 2x[n] + 3 \qquad y_1[n] = 2x_1[n] + 3 \qquad y_3[n] = f\{x_3[n]\}$$

$$= 2(ax_1[n] + 3) \qquad y_3[n] = f\{x_3[n]\}$$

$$x_2[n]$$
 $y_2[n] = 2x_2[n] + 3$ $2x[n] + 3$

$$x_3[n]$$
 $y_3[n] = 2x_3[n] + 3$ $y_3[n] = 2x_3[n] + 3$

If
$$x_3[n] = ax_1[n] + bx_2[n]$$

 $y_3[n] = f\{x_3[n]\}$
 $= 2(ax_1[n] + bx_2[n]) + 3$

$$y_3'[n] = ay_1[n] + by_2[n]$$

= $a(2x_1[n] + 3) + b(2x_1[n] + 3)$

$$y_3[n] \neq y_3'[n]$$