

AccHASHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks

Nojan Sheybani¹, Jung-Woo Chang¹, Mojan Javaheripi¹, and Farinaz Koushanfar¹ {nsheyban, juc023, mojavahe, farinaz}@ucsd.edu

¹University of California San Diego

Abstract

- Presenting AccHASHTAG, a highly-accurate <u>real time</u> fault detection methodology for DNNs deployed in embedded applications
- Leveraging Algorithm/Software/Hardware co-design approach to develop AccHASHTAG. AccHASHTAG incorporates a lightweight methodology that ensures low-overhead fault detection
- ❖ Delivers <u>0% false positive</u> and has <u>no effect on inference accuracy</u>
- Presenting AccHASHTAG's <u>effectiveness</u>, <u>reliability</u>, and <u>efficiency</u> on various DNN benchmarks

Motivation

- ❖ Changing <u>a few bits</u> of the victim DNN's weights can: (1) Reduce the classification accuracy below a random guess or (2) Cause misprediction to attacker's desired output class
- There are many defenses of bitflip attacks, but no prior works with 0% false positive rate and provable performance bounds

Methodology

- **❖** AccHASHTAG consists of two phases:
- Pre-Processing: One-time process where mechanism is calibrate for victim's DNN. Sensitivity analysis is performed to find top-k most vulnerable layers, called checkpoint layers. Parameter sensitivity is defined as the effect of per-layer weight change (P) on DNN loss (\mathcal{L}) :

$$S(p_n) = (\mathcal{L}(P) - \mathcal{L}(\tilde{P}|\tilde{p_n} = -p_n))^2 \approx 2p_n \frac{\partial \mathcal{L}}{\partial p_n} Taylor$$

$$S(p_n) = p_n \frac{\partial \mathcal{L}}{\partial p_n}$$

<u>Layer sensitivity</u> is defined as the average top-5 sensitivity of the enclosed parameters.

Online Execution: New <u>Pearson hashes</u> are extracted from checkpoint layers <u>in parallel</u> to each DNN inference. Hashes are <u>validated against ground-truth hashes</u> gathered in pre-processing phase. Upon hash-mismatch, an alarm is raised and ground-truth weights are reloaded. Operations in this phase are <u>done on a customized FPGA.</u>

Hardware Optimization

To increase throughput of the online execution phase, we (1) **parallelize** Pearson Hash module with **deep pipelining** (2) implement hash tables entirely using **8-bit FF registers** and (3) optimize AXI reads.

AccHASHTAG's Global Flow

❖ Threat Model

- The attacker has access to (1) victim DNN architecture and parameters (2) physical address of model parameters and (3) subset of data used for training DNN
- The attacker performs a Row-Hammer Attack on DRAM locations corresponding to vulnerable parameters, to ensure stealthiness and reduce RHA overhead
- AccHASHTAG computes ground-truth hashes and detects fault-injection attacks in <u>real-time</u> using hashes computed on an FPGA in communication with the host CPU.

Experimental Results

- ❖ We evaluate AccHASHTAG on various benchmarks to corroborate its properties:
 - Attack Analysis: We show that oftentimes the attacks are focused on the <u>sign bits</u> of the weights, and layers are not targeted <u>more than around 5 times</u> by an attacker.

Detection Performance: AccHASHTAG achieves <u>100% detection rate</u> with very few checkpoints.
 <u>2 checkpoint layers</u> for CIFAR10 and <u>5 checkpoint layers</u> for ImageNet.

Overhead Analysis: AccHASHTAG delivers perfect detection performance while incurring a negligible storage and computation cost, making it suitable for <u>embedded DNN applications</u>. The FPGA modules enable <u>1.5-2.6x faster hash generation</u> compared to CPU execution

Dataset	Model	Layers	Top-1 Acc (%)	Bit Flips	Benchmark	#	DN C
CIFAR10	VGG11	8 CONV, 3 FC	89.3	90	VGG11	1	16
CITAKIU	ResNet20	19 CONV, 1 FC	91.9	18	ResNet20	2	65
	AlexNet	5 CONV, 3 FC	55.5	25	AlexNet	1	79
ImageNet	ResNet18	20 CONV, 1 FC	68.8	8	ResNet18	2	209
	ResNet34	36 CONV, 1FC	72.8	9	ResNet34	3	408

MobileNet 52 CONV, 1 FC

S	Benchmark	# -	DNN Inference (ms)		CPU Detection		FPGA Detection	
<u> </u>	Deneminark		CPU	GPU	Storage (%)	Time (ms)	Time (ms)	
	VGG11	1	1698.4	110.7	3e-3	0.009	0.003	
	ResNet20	2	654.8	59.4	2e-2	0.012	0.005	
	AlexNet	1	7957.9	240.7	4e-4	0.928	0.614	
	ResNet18	2	20938.8	198.5	4e-3	0.066	0.035	
	ResNet34	3	40870.6	229.7	3e-3	1.889	1.059	
	MobileNet	5	2313.6	182.2	4e-2	0.020	0.007	

Conclusion

- ❖ Presenting AccHASHTAG, a fault-injection detection methodology that incurs negligible storage and runtime overhead on resource-constrained embedded devices.
- ❖ Leveraging Algorithm/Software/Hardware <u>co-design</u> principle to achieve <u>100% detection rate</u> with <u>0% false alarms</u> and guaranteed detection performance with <u>provable statistical bounds</u>