



# Enhanced Template-Free Reaction Prediction with Molecular Graphs and Sequence-based Data Augmentation

Haozhe Hu<sup>1</sup>, Yongquan Jiang\*<sup>1</sup>, Yan Yang<sup>1</sup>, Jim X. Chen<sup>2</sup>

<sup>1</sup>Southwest Jiaotong University <sup>2</sup>George Mason University

nesenter: Haozhe Hu

2017115054@my.swjtu.edu.cn

# Introduction: Retrosynthesis & Forward Synthesis







# Introduction: Deep Learning in Retrosynthesis



1) Template-Based



Autoregressive
Next Token Prediction

2) Template-Free

**Reaction Center Synthon Completion** Identification & Editing (Leaving Group Matching) ± a Autoregressive

Autoregressive
Atom & Bond Editing

3) Semi-Template











# Related Work 1: Two Types of Template-Free Methods

- 1) Sequence-to-Sequence
  - ◆ SMILES (or SMILES with Graph Features, e.g., Bonds) as Input, SMILES as Output
  - ◆ Enable to Use SMILES Data Augmentation (i.e., Sequence-based Data Augmentation)



- 2) Graph-to-Sequence
  - ◆ Graph as Input, SMILES as Output
  - ◆ Unable to Use SMILES Data Augmentation (Due to Permutation Invariance of Graph)





# Sequence-based Data Augmentation in Graph-to-Sequence Methods







## Implementation: Off-the-shelf and Its Cases



| SMILES Notation           | Root Atom<br>Index | Shuffle<br>Index |
|---------------------------|--------------------|------------------|
| 1 Brc1cccc(-c2ccccn2)c1   | 0                  | 0                |
| 2 c1(-c2ccccn2)cccc(Br)c1 | 5                  | 0                |
| c1ccc(Br)cc1-c1ccccn1     | 4                  | 0                |
| c1cc(Br)cc(-c2ccccn2)c1   | 3                  | 0                |
| c1(-c2cccc(Br)c2)ccccn1   | 6                  | 0                |

| SMILES Notation                 | Root Atom<br>Index | Shuffle<br>Index |
|---------------------------------|--------------------|------------------|
| 1 Brc1ccccn1.OB(O)c1cccc(Br)c1  | 0                  | 0                |
| 2B(O)(O)c1cccc(Br)c1.Brc1ccccn1 | 1                  | 1                |
| Brc1ccccn1.c1ccc(Br)cc1B(O)O    | 4                  | 0                |
| Brc1ccccn1.c1ccc(B(O)O)cc1Br    | 6                  | 0                |
| c1(B(O)O)cccc(Br)c1.Brc1ccccn1  | 3                  | 1                |







# Ablation Study for Sequence-based Data Augmentation

| Methods                                  | Best T in<br>Softmax | Top-k accuracy(%)↑ |      |
|------------------------------------------|----------------------|--------------------|------|
|                                          |                      | 1                  | 10   |
| (1x) Baseline                            | 0.9                  | 52.5               | 78.1 |
| 5x Baseline                              | 0.9                  | 54.6               | 68.9 |
| 5x Baseline + Enc<br>Labels              | 0.9                  | 55.0               | 79.8 |
| 5x Baseline + Enc<br>Labels + Dec Labels | 0.8                  | 54.6               | 80.3 |





# Related Work 2: Graph Transformer with Graph Padding





# Apply Graph Transformer Without Graph Padding



♦ Graph Batch (N, H) → Attention Matrix  $(N_1^2 + N_2^2 + ..., 1)$  → Graph Batch (N, H)



# Aggregation-based Graph Transformer: A Simple Example





# Forward and Backward Speed: Vanilla & Aggregation

#### Data Composition in a USPTO-50k Batch

Avg 27.13 Atoms

Avg 28.67 Paddings

| Methods            | Global Attention↑ | Normalization &<br>Feed Forward↑ | Backward↑ |
|--------------------|-------------------|----------------------------------|-----------|
| Vanilla (Baseline) | <b>1.00</b> x     | 1.00x                            | 1.00x     |
| Naive Aggregation  | 0.32x             | 2.85x                            | 0.55x     |
| Aggregation        | 0.41x             | 2.85x                            | 0.94x     |

#### Test Settings: Separated Single-layer Encoder & Pytorch Profiler

- ♦ Vanilla: Matmul(Q,  $K^T$ ) → Softmax(QK) → Matmul(QK, V)
- Naive Aggregation: Element-wise(Index Select(Q), Index Select(K)) →
   Scatter Softmax(QK) → Element-wise(QK, Index Select(V)) → Scatter Sum(QKV)
- Aggregation: Coalesced Element-wise(Q, K) → Scatter Softmax(QK) →
   Coalesced Element-wise(QK, V) → Scatter Sum(QKV)



# Retrosynthesis Benchmark Results (USPTO-50k, USPTO-full)

:

: Template-Free



: Semi-Template

| Mothods                     | <b>USPTO-50k</b> Top-k accuracy(%)↑ |                 |  |
|-----------------------------|-------------------------------------|-----------------|--|
| Methods ——                  | 1                                   | 10              |  |
| Graph2SMILES <sup>[1]</sup> | 53.1                                | 74.3            |  |
| RetroDCVAE <sup>[2]</sup>   | 53.2                                | 82.1            |  |
| G2GT <sup>[3]</sup>         | 54.1                                | 77.7            |  |
| SeqAGraph (Ours, 5x)        | 55.7                                | 82.7            |  |
| Graph2Edit <sup>[4]</sup>   | 55.1                                | 89.4            |  |
| Mothods                     | <b>USPTO-full</b> Top               | -k accuracy(%)↑ |  |
| Methods ———                 | 1                                   | 10              |  |
| Graph2SMILES <sup>[1]</sup> | 45.7                                | 63.4            |  |
| G2GT <sup>[3]</sup>         | 49.3                                | 72.7            |  |
| SeqAGraph (Ours, 2x)        | 44.6                                | 69.9            |  |

<sup>[1]</sup> Tu, Z. et al., Permutation Invariant Graph-to-sequence Model for Template-free Retrosynthesis and Reaction Prediction, J. Chem. Inf. Model, 2022

<sup>[4]</sup> Zhong, W. et al., Retrosynthesis Prediction Using an End-to-end Graph Generative Architecture for Molecular Graph Editing, Nat. Commun., 2023



<sup>[2]</sup> He, H. et al., Modeling Diverse Chemical Reactions for Single-Step Retrosynthesis via Discrete Latent Variables, CIKM'22

<sup>[3]</sup> Lin, Z. et al., G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training, J. Chem. Inf. Model, 2023

# Summary

### 1) Graph-to-Sequence Methods Struggle in Applying Existing Sequence-based Data Augmentation

- ◆ In order to differentiate between various augmented SMILES notations with the same graph representation, we directly introduced the index of the first atom in SMILES (i.e., root atom index) and the shuffle index as additional input features.
- ☐ The existing off-the-shelf implementation of sequence-based data augmentation faces challenges in storage and preprocessing time, a more efficient approach is needed for faster and larger-scale (e.g., 20x) data augmentation.

### 2) Implementation of Existing Graph Transformer is Not Compatible with MPNN Framework

- ◆ Based on the pattern of Query, Key, Value, and the lower-dimensional attention matrix, we equivalently implement the attention layer by indexing, element-wise operations, and aggregation operations without graph padding.
- ☐ The advantage of padding-free attention computation is offset by under-optimized indexing and element-wise operations, further optimization of the aggregation-based Graph Transformer is needed.







nresenter: Haozhe Hu

2017115054@my.swjtu.edu.cn

https://github.com/AILBC/SeqAGraph