Tutoría 2: Números complejos

Ejercicio 1. Calcular la magnitud, argumento, parte real y parte imaginaria de los siguientes números complejos:

- 1. $(1+i)^{1-j}$
- 2. j^{-j}

Ejercicio 2. Sean $z, w \in \mathbb{C}$. Se sabe que z+w=2, |z|=2 y Im $\{w\}=-1$. Encuentre gráficamente z y w.

Ejercicio 3. Indique qué figura geométrica describen las siguientes ecuaciones con $z \in \mathbb{C}$:

- $|j + z^*| = 3$
- $\angle(z+2) = -\frac{3\pi}{4}$

Ejercicio 4. Determine todas las raíces de $(-16)^{1/4}$.

Ejercicio 5. Calcule las soluciones de la ecuación $z^4 + (1-j)z^2 + \frac{3}{2}j = 0$.

Ejercicio 6. El circuito de la figura 1 se utiliza para calcular el valor de R_C , la cual modela las pérdidas en el dieléctrico del condensador.

Con un voltímetro digital, se ha determinado que la tensión RMS en la fuente es $V_S = 1$ V, la tensión RMS en la resistencia de medición R_m es $V_{R_m} = 0.3$ V y la tensión RMS en el condensador real (la región demarcada) es $V_c = 0.8$ V.

Determine gráficamente cuál es el valor de C y R_C si se sabe que la fuente utiliza una frecuencia de $100\,\mathrm{Hz}$ y $R_m=1\,\mathrm{M}\Omega$.

Figura 1: Circuito de referencia del ejercicio 6.

Ejercicio 7. Encuentre las ecuaciones de las siguientes rectas en el plano z para la forma cartesiana y = mx + b:

1.
$$|z-2+j| = |z-j+3|$$

2.
$$|z + z^* + 4j(z - z^*)| = 6$$

Ejercicio 8. Encuentre el punto de intersección y el ángulo de intersección de las rectas:

$$|z-1-j| = |z-3+j|$$

$$|z-1+j| = |z-3-j|$$

Ejercicio 9. Indique qué mapeos elementales (rotación, escalado y traslación) realiza el siguiente mapeo:

$$w = (\sqrt{3} + j)z - j$$