Случайные графы и интернет

Подготовили студенты гр. 1308:

- Даниил Мельник
- Алексей Лепов

Задание

- Прочитать и разобрать статью в журнале "Квант": Математические модели интернета
- По книге А. М. Райгородского "Случайные графы" разобрать модели случайных графов и построить их программные реализации;
- Проиллюстрировать выведенные в книге теоретические формулы экспериментальными статистическими оценками на случайных графах;
- Найти визуализатор больших графов и дополнить созданные модели программой-калькулятором для вычисления характеристик случайных графов с визуализацией этих графов.

Граф в контексте проекта

То есть, мы имеем самый простой вариант графа: неориентированный, без петель и кратных рёбер. Напомним, что:

- граф с петлями называется "псевдограф",
- граф с кратными рёбрами называется "мультиграф",
- граф с ориентацией называется "орграф".

Представление интернета графом

Представление сети «интернет» в виде графа: всё вполне логично, вершина — сайт, ребро — связь. При этом для некоторых моделей могут существовать петли (=> псевдографы, сайт ссылается на свои же страницы), кратные рёбра (=> мультиграф, сайт даёт несколько ссылок на предшественника).

Будут рассмотрены модели

СЛУЧАЙНЫЙ ГРАТ МОДЕЛИ ЭРДЁША-РЕНЬИ СЛУЧАЙНЫЙ ГРАТ СООБРАЖЕНИЯ БАРАБАШИ-АЛЬБЕРТ СЛУЧАЙНЫЙ ГРАТ МОДЕЛИ БАЛЛОБАША-РИОРДАНА

HI HAHMU HUPATI I

HUILONHIIH I LIOI THE

Использованные технологии

- Язык программирования: Python3
- Визуализатор и конструктор графов: networx
- Графический интерфейс GUI: tkinter, customtkinter
- IDE: VS Code

Следует отметить, что библиотека networx включает в себя генераторы случайных графов, но их использование противоречит заданию на разработку, а также противоречит детальному изучению темы.

Модель Эрдёша-Реньи

Модель Эрдёша-Реньи

Случайный граф модели Эрдёша-Реньи можно получить из любого полного графа на п вершинах, «выкидыванием» некоторых рёбер из этого полного графа.

Основные недостатки: отсутствие петель и кратных рёбер. Из-за их отсутствия, случайный граф не отражает внутренних ссылок в сайтах, а так же нескольких ссылок с одного сайта на другой (то есть, социальные сети, например, реализовать не получится).

Генератор графа

Работа генератора построена на формировании числа вероятности р возникновения ребра в графе. Далее формируется множество вершин графа, состоящее из n элементов.

Далее выполняется перебор всех рёбер, для каждого ребра датчик случайных чисел выдаёт число, оно сравнивается с числом р. При положительном исходе ребро добавится в граф, иначе – нет.

После перебора всех рёбер полного графа мы получим граф с известным набором вершин и случайным набором рёбер.

Программная реализация

Калькулятор

В данном калькуляторе пользователю представляется возможность выполнять генерацию случайного графа в разных режимах:

- Ручное задание вероятности (ввести число от 0 до 1 в поле «вероятность»)
- Генерировать гарантировано связный/несвязный граф для иллюстрации теоремы 13 (для этого следует задать константу с в поле «с:»)
- Генерировать гарантированно планарный/непланарный граф для иллюстрации теоремы 26 (для этого следует задать константу с в поле «с:»)
- Генерировать граф с/без треугольников (иллюстрация теорем 10, 12)
- Вывод интересных свойств графов: т.н. «феодальную раздробленность» и «империю»
- Показать гигантскую компоненту связности.

Модель Барабаши-Альберт

Модель Барабаши-Альберт

Главным отличием модели Барабаши-Альберт от модели Эрдёша-Реньи является идея предпочтительного присоединения новых вершин к уже существующему графу.

Идея предпочтительного присоединения заключается в следующем: каждая новая вершина «стремится» связаться с уже существующими вершинами, причём наиболее «востребованными».

Модель графа Барабаши – Альберт (граф БА) представляет собой алгоритм генерации случайных масштабно-инвариантных (безмасштабных) сетей с использованием правила предпочтительного связывания (ПС).

Правило предпочтительного присоединения

Правило предпочтительного связывания говорит, что чем большую степень связности имеет вершина, тем выше вероятность присоединения к ней новых вершин.

Если для присоединения выбирать вершину случайным образом, то вероятность выбора определённой вершины будет пропорциональна её степени связности.

Данное правило соответствует принципу «богатый становится богаче».

Генератор графов

Случайный граф данной модели выращивается из графа-затравки. Граф-затравку можно интерпретировать как некий «базовый» интернет. Возникает новый сайт и присоединяется к этому «базовому» интернету.

Для генерации необходимо иметь следующую информацию: количество рёбер в графе, степень каждой вершины с учётом кратных рёбер и петель для каждой вершины.

На основании этих данных вычисляются наиболее «богатые» вершины, к которым и «отбрасываются связи» от нового сайта к интернету.

В программной реализации учтены возможности построения графа от разных «затравок» (название затравки – последовательность степеней её вершин), а также наличие кратных рёбер и петель.

Программная реализация

Описание пользовательского опыта

Для работы в калькуляторе сперва необходимо выбрать вариант затравки и нажать на кнопку «построить граф заново». Далее выбрать режим добавления ребра («граф», «псевдограф», «мультиграф», «псевдомультиграф»), согласно которому будут добавляться рёбра.

Количество «ссылок» (рёбер) отбрасываемых «сайтом» (новой вершиной) пользователь задаёт в специальном поле.

Для удобства предсказания ссылок выведены поля со степенями каждой вершины: фактические и логические (логические – исходя из логики предпочтительного соединения – ссылка «сам на себя» не может дать предпочтительности сайту).

Затравки

Примеры генерации графа

Модель Боллобаша-Риордана

Модель Эрдёша-Реньи

Модель Боллобаша-Риордана является дальнейшим развитием модели Барабаши-Альберт, с одним условием: модель Боллобаша-Риордана – модель Барабаши-Альберт, в которой на каждую из n вершин приходится k pëбер

Таким образом, случайный граф Боллобаша-Реньи содержит n вершин и kn рёбер.

Для создания такого графа мы можем построить граф модели Барабаши-Альберт, в котором каждая новая вершина отбрасывает только одно ребро. Построить такой граф на kn вершинах.

Множество kn вершин делим на n частей по k штук. Каждое подмножество объявляется вершиной в новом графе. Получено новое множество из n вершин. Все рёбра старого графа внутри новых вершин становятся петлями новой вершины, рёбра между подмножествами – рёбрами между новыми вершинами. Таким образом пулучен граф на n вершинах при kn рёбрах.

Генератор

Для генерации начального графа применяется генератор Барабаши-Альберт с количеством добавляемых рёбер равным единице. Так получим граф с kn вершинами и kn рёбрами.

Далее множество вершин разбивается на n подмножеств размером k (двумерный массив).

Далее оцениваются связи между подмножествами: внутренние связи превращаются в петли, связи между подмножествами — в кратные рёбра между новыми вершинами-подмножествами.

Программная реализация

Описание пользовательского опыта

- Для начала работы в калькуляторе пользователю необходимо создать базовый граф: нажать кнопку «построить граф заново» и далее добавлять вершины (кнопка «добавить вершину»).
- Далее пользователю необходимо ввести число k (размер подмножества) и нажать на кнопку «разбить граф»
- Пользователь смотрит компоненты, на которые разбивается начальный граф и в конце он наблюдает граф на n вершинах и kn рёбрах

Построить граф заново Добавить вершину Разбить граф

Примеры генерации графа

Экспериментальные статистические оценки

Связность

Теорема 13. Пусть $p = \frac{c \ln n}{n}$. Если c > 1, то почти наверное случайный граф связен. Если c < 1, то почти наверное случайный граф связным не является.

Планарность

Теорема 26. Пусть $p=\frac{c}{n}$. Тогда при c<1 почти наверное случайный граф планарен, а при c>1 почти наверное планарности нет.

Наличие треугольников

Теорема 12. Пусть ω —любая функция натурального аргумента n, стремящаяся κ бесконечности при $n \to \infty$. Предположим, $p(n) = \frac{\omega(n)}{n}$ для каждого $n \in \mathbb{N}$. Тогда почти наверное $T_{3,n} \geqslant 1$ (т. е. граф содержит треугольники).

Отсутствие треугольников

Теорема 10. Пусть α —любая функция натурального аргумента n, стремящаяся κ нулю при $n \to \infty$. Предположим, $p(n) = \frac{\alpha(n)}{n}$ для κ аждого $n \in \mathbb{N}$. Тогда почти наверное $T_{3,n} = 0$ (m. e. граф не содержит треугольников).

Гигантская компонента связанности

Теорема 16. Пусть $p = \frac{c}{n}$. Тогда при любом c < 1 существует такая константа $\beta = \beta(c) > 0$, что почти наверное каждая компонента случайного графа имеет не более $\beta \ln n$ вершин. При любом c > 1 существует такая константа $\gamma = \gamma(c) \in (0,1)$, что почти наверное среди компонент случайного графа есть одна, число вершин которой не меньше γn .

Благодарим за внимание!