What is claimed is:

- 1. A method of depositing a film containing germanium on a substrate comprising the steps of:
- a) conveying two or more germanium compounds in a gaseous phase to a deposition chamber containing the substrate, wherein a first germanium compound is a halogermanium compound of the formula $X^{1}_{4-a}GeR_{a}$, wherein a=0-3, each X^{1} is independently a halogen, and each R is independently chosen from H, alkyl, alkenyl, alkynyl, aryl, and $NR^{3}R^{4}$, wherein each R^{3} and R^{4} are independently chosen from H, alkyl, alkenyl, alkynyl and aryl, and wherein a second germanium compound has the formula

$$R^3_{d'}$$
 $(NR^1R^2)_{c'}$
 Ge
 $X_{a'}$ $H_{b'}$

wherein each R^1 and R^2 are independently chosen from H, alkyl, alkenyl, alkynyl and aryl; each R^3 is independently chosen from alkyl, alkenyl, alkynyl and aryl; X is halogen; a' = 0-4; b' = 0-4; c' = 0-3; d' = 0-4 and a' + b' + c' + d' = 4; provided that $a' + b' \le 3$ when $X^1 = Cl$, R = H, and X = Cl;

- b) decomposing the two or more germanium compounds in the deposition chamber; and
- c) depositing the film comprising germanium on the substrate.
- 2. The method of claim 1 wherein the two or more germanium compounds are provided from a single vapor delivery device.
- 3. The method of claim 1 wherein the first germanium compound is provided from a first vapor delivery device and the second germanium compound is provided from a second vapor delivery device.
- 4. The method of claim 3 wherein the first germanium compound is chosen from germanium tetrachloride and germanium tetrabromide.
- 5. The method of claim 1 wherein c' = 1-3.
- 6. The method of claim 1 wherein a' = c' = 0, b' = 1-2 and d' = 2-3.

A vapor delivery device comprising a vessel having an elongated cylindrical shaped portion having an inner surface having a cross-section, a top closure portion and a bottom closure portion, the top closure portion having an inlet opening for the introduction of a carrier gas and an outlet opening, the elongated cylindrical shaped portion having a chamber containing two or more germanium compounds; the inlet opening being in fluid communication with the chamber and the chamber being in fluid communication with the outlet opening; wherein a first germanium compound is a halogermanium compound of the formula $X^{1}_{4-a}GeR_{a}$, wherein a = 0-3, each X^{1} is independently a halogen, and each R is independently chosen from H, alkyl, alkenyl, alkynyl, aryl, and $NR^{3}R^{4}$, wherein each R^{3} and R^{4} are independently chosen from H, alkyl, alkenyl, alkenyl, alkynyl and aryl, and wherein a second germanium compound has the formula

$$R^3_{d'}$$
 $(NR^1R^2)_{c'}$
 $K_{a'}$
 $H_{b'}$

wherein each R^1 and R^2 are independently chosen from H, alkyl, alkenyl, alkynyl and aryl; each R^3 is independently chosen from alkyl, alkenyl, alkynyl and aryl; X is halogen; a' = 0-4; b' = 0-4; c' = 0-3; d' = 0-4 and a' + b' + c' + d' = 4; provided that $a' + b' \le 3$ when $X^1 = Cl$, R = H, and X = Cl.

- 8. The delivery device of claim 7 wherein c' = 1-3.
- 9. The delivery device of claim 7 wherein a' = c' = 0, b' = 1-2 and d' = 2-3.
- 10. An apparatus for vapor deposition of metal films comprising the vapor delivery device of claim 7.
- 11. An apparatus comprising a first vapor delivery device comprising a first germanium compound and a second vapor delivery device comprising a second germanium compound, the first and second vapor delivery devices capable of providing the first and second germanium compounds in the vapor phase to a deposition chamber, wherein the first germanium compound is a halogermanium compound of the formula $X^1_{4-a}GeR_a$, wherein a = 0-3, each X^1 is independently a halogen, and each R is independently chosen from H, alkyl, alkenyl, aryl, and NR^3R^4 , wherein each R^3 and R^4 are independently chosen from H, alkyl, alkenyl, alkynyl and aryl, and wherein the second germanium compound has the formula

$$R^3_{d'}$$
 $(NR^1R^2)_{c'}$
 $X_{a'}$
 $H_{b'}$

wherein each R^1 and R^2 are independently chosen from H, alkyl, alkenyl, alkynyl and aryl; each R^3 is independently chosen from alkyl, alkenyl, alkynyl and aryl; X is halogen; a' = 0-4; b' = 0-4; c' = 0-3; d' = 0-4 and a' + b' + c' + d' = 4; provided that $a' + b' \le 3$ when $X^1 = Cl$, R = H, and X = Cl.