

项目背景 01

BACKGROUND

项目方案 ()2

Project PLAN

项目实施进展 03

Project Progress

项目特色与创新 04

Project features and innovation

项目收获 05

Project gains

目录 Catalogue

简介 BRIEF INTRODUCTION

人口老龄化问题日益严重:根据最新的统计数据,65岁及以上的老年人口数量已经超过1.8亿,占总人口的比例达到12.6%。随着劳动力人口的减少,劳动力成本不断上升,这不仅对传统的经济发展模式提出了新的挑战,也对现有的社会保障体系带来了前所未有的压力。

人形机器人具有独特的优势和潜力:双足机器人相较于其他类型的机器人,不仅能够提高生产效率,保障人员安全,还能够在服务领域发挥重要作用,推动人机交互和人机协同技术的发展。

研究现状 Research Status

国外研究现状:美国波士顿动力公司的Atlas机器人和日本本田公司的ASIMO机器人就是近十年来在学术界引起广泛关注的两大"网红"机器人。这些机器人不仅在技术上取得了飞速的发展,而且在运动规划和稳定性控制方面也取得了显著的成就。

国内研究现状:中国在人形机器人产业的发展过程中,经历了从追赶到领先的转变,其中创业企业典型代表包括优必选科技、宇树、傅利叶等;高校领域则以哈尔滨工业大学研制的GoRoBoT机器人、清华大学研制的Stepper-2D机器人为代表。

01

设计一套大型伺服双足机器人以供算法研 究使用

02

研究基于二维线性倒立摆的步态规划器

03

应用基于质心期望力的线性倒立摆所得到 的规划步态形成参考轨迹,使用强化学习 算法,在虚拟环境中迭代训练

04

将网络模型迁移到现实机器人身上,进行 Sim to Real的行走实验

整体架构

软件&算法层

机械&硬件层

机械结构——机械总论

关节	自由度	角度 (rad)				
髋关节	横滚	-0.345~1.222				
	俯仰	-1.222~1.222				
髋关节	横滚	-1.047~1.047				
膝关节	俯仰	0~1.571				
踝关节	俯仰	-1.047~1.047				

$A_1 = \begin{bmatrix} C_1 & 0 & S_1 & 0 \\ S_1 & 0 & -C_1 & 0 \\ 0 & 1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_2 = \begin{bmatrix} C_2 & -S_2 & 0 & a_2C_2 \\ S_2 & C_2 & 0 & a_2S_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$A_3 = \begin{bmatrix} C_3 & -S_3 & 0 & a_3C_3 \\ S_3 & C_3 & 0 & a_3S_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_4 = \begin{bmatrix} C_4 & 0 & S_4 & 0 \\ S_4 & 0 & -C_4 & 0 \\ 0 & 1 & 0 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$A_5 = \begin{bmatrix} C_5 & 0 & -S_5 & 0 \\ S_5 & 0 & C_5 & 0 \\ 0 & -1 & 0 & d_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_6 = \begin{bmatrix} C_6 & -S_1 & 0 & 0 \\ S_6 & C_6 & 0 & 0 \\ 0 & 0 & 1 & d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

		41-	T = A	₂ A ₃ A ₄ A	$A_5 A_6$		
$\lceil C_1$	S_1	0	0]	$\times \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix}$	o_x	a_x	p_{x_1}
0	0	1	$-d_1$	$\sqrt{n_y}$	o_y	a_y	p_y
S_1	$-C_1$	0	0	n_z	o_z	a_z	p_z
0	0	0	1	Lo	0	0	1]

机械结构——腿部结构仿生设计-

人体腿部整体外形曲线呈上粗下细的倒三角

人体膝关节解剖图与机器人对应体

机械结构——轻量化设计

使用Altair Inspire进行二维拓扑优化

使用Altair Inspire进行三维拓扑优化

机械结构——实物展示

五轴铝CNC加工

金属阳极氧化

金属零件

硬件设计——整体框架

整体框架

核心板原理图

核心板

核心板PCB图

核心板调试图

硬件设计——驱动部分

控制框图

速度环控制

速度控制CAN协议代码与引脚配置

九轴加速度计代码

关节控制代码

关节实物演示

神经网络框图

训练Reward

神经网络环境搭建

宇树模型强化学习训练

	宝贝	宝贝属性	状态	服务	单价	数量
0	MIT驱动光射伺服械臂机器人达妙科 技关节电机减速双编码器DM8006 中華地 发货时间: 03月26日 10:41前发货	颜色分类; 电机 (含驱动)	己确认收货		¥1499.00	6
6	MIT驱动无耐间服械臂机器人达妙科 技关节电机减速双编码器DM8009 查查查 发货时间: 03月26日 10:41前发货	颜色分类:电机(含 驱动)	己确认收货		¥2399.00	2
0	MIT驱动无副何服械臂机器人达妙科 技关节电机减速双编码器DM6006 中醫療制 发货时间: 03月26日 10:41前发货	颜色分类; 电机 (含驱动)	己确认收货		¥899.00	2

商品总价, ¥15590.00 运费; ¥0.00 官方立城; -¥900.00 店铺优温, -¥1590.00 赛收价; ¥13000.00 元

01

极低的成本实现较强的运动性能

02

开源属性增加社群影响力

03

腿部关节以及计划足式仿生学设计

上万浏览量, 近百硕博交流

https://zhuanlan.zhihu.com/p/692264591

01

极低的成本实现较强的运动性能

02

开源属性增加社群影响力

目前共知道三人开始复刻,有近10套意向,但是可能不一定有空做

03

腿部关节以及计划足式仿生学设计

