COSC 411: Artificial Intelligence

Informed and Local Search

Dr. Shuangquan (Peter) Wang (spwang@salisbury.edu)

Department of Computer Science
Salisbury University

About this note

- Most slides of this note are from:
 - "CS 188 Introduction to Artificial Intelligence" teaching material, UC Berkeley, Summer 2020 (instructor: Nikita Kitaev)
 - https://inst.eecs.berkeley.edu/~cs188/su20/
 - "CS 188 Introduction to Artificial Intelligence" teaching material, UC Berkeley, Spring 2019 (instructor: Sergey Levine and Stuart Russell)
 - https://inst.eecs.berkeley.edu/~cs188/sp19/
 - "CSE 480/580 Introduction to Artificial Intelligence" teaching material, Old Dominion University, Spring 2023 (instructor: Vikas Ashok)
 - https://www.cs.odu.edu/~vashok/cs480.html

Dissemination or sale of any part of this note is NOT permitted!

Contents

- Informed Search
 - > Heuristics
 - Greedy Search
 - ➤ A* Search
- Local Search

1. Informed Search

Search Heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance,
 Euclidean distance for pathing

Greedy Search

Example: Heuristic Function

Straight-line distance to Bucharest		
Arad	366	
Bucharest	0	
Craiova	160	
Dobreta	242	
Eforie	161	
Fagaras	178	
Giurgiu	77	
Hirsova	151	
Iasi	226	
Lugoj	244	
Mehadia	241	
Neamt	234	
Oradea	380	
Pitesti	98	
Rimnicu Vilcea	193	
Sibiu	253	
Timisoara	329	
Urziceni	80	
Vaslui	199	
Zerind	374	

h(x)

Greedy Search

Expand the node that seems closest...

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS

Greedy

A*

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: f(n) = g(n) + h(n)
 - g(n): cost paid so far from the start node to this node
 - h(n): estimated min cost from this node to the destination node

Example: Route Finding A* Search

- Heuristic Function
 - Using the straight-line distance
- Path Cost Function
 - Using the path cost from the graph

Progress in A* Search

Progress in A* Search (Continue)

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Properties of A*

Uniform-Cost

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly towards the goal, but does hedge its bets to ensure optimality

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

State-space tree

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?

Start State

Goal State

h(start) =	3 (tile 1) + 1 (tile 2) + 2 (tile 3) +
=	18

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

2. Local Search

- Objective (Fitness) Function f(x)
 - Local search problems have an objective function to specify how "good" a state is

Strategy

- Keep only a single (complete) state in memory
- Generate only the neighbours of that state
- Keep one of the neighbours and discard others

Two key advantages

- Very little memory required
- Often find reasonable solutions in large or infinite state spaces

Usage

- Pure optimization problem
- Find the best state according to an objective function

State Space Landscape

- Global minimum
 - ➤ The lowest valley
- Global maximum
 - The highest peak

2-D State Space

Hill Climbing Algorithm

- Moves
 - ➤Only permit to move to neighbors that improve $f(x_{now})$
- Choice
 - Choose $x_{next} \in \text{Neighbor}(x_{now})$ that $f(x_{now}) < f(x_{next})$
- Termination
 - \triangleright If no x_{next} can be found

Hill-Climbing

- continually moves uphill
 - > increasing value of the evaluation function
 - gradient descent search is a variation that moves downhill
- very simple strategy with low space requirements
 - > stores only the state and its evaluation, no search tree
- problems
 - local maxima
 - the peak is higher than all its neighbors, but not the global maximum
 - algorithm can't go higher, but is not at a satisfactory solution
 - plateau
 - area where the evaluation function is flat
 - ridges
 - search may oscillate slowly
 - almost like a plateau

Further Variants of Hill Climbing

- A problem
 - Success rate may be a little low
- Solutions
 - ➤ Stochastic hill-climbing:
 - Choose at random among uphill moves
 - First-choice hill-climbing:
 - Generate neighbourhood in random order
 - Move to first generated that represents an uphill move

Thanks