3. Review 3:

The study investigated effects of additive antimicrobial peptides on broiler chicken performance, nutrient digestibility, and serum metabolites using a meta-analysis on. The study is very interesting, but there are the following comment and concern.

- (1) Please re-analyze the effectiveness of AMPs in terms of i) each feeding stage, such as, starter, grower, and finisher, ii) with or without synthetic AGPs, or iii) sex, if theoretically possible.
 - control 0 mg Kg⁻¹ of feed
 - antibiotic 40.9 mg Kg⁻¹ of feed
 - antimicrobial peptide 145 mg Kg⁻¹ of feed
- (2) Is it possible to suggest optimal dose of AMPs although the titer and MIC?
- (3) Introduction
 - Add what meta-analysis is and introduce the previous investigation using this method.
- (4) Methods
 - Line 62-65; Add "peer-reviewed publications" somewhere in terms of scientific/academic reliability and accuracy.

B. Rivewer response:

3. Response of reviewer 3:

Thank you for the suggestions given by reviewer 3. Here we attach the improvements according to the suggestions from reviewer 3.

(1) We have done a re-analysis by adding the ratio of AGPs and AMPs in each growth phase according to points one (i) and two (ii) (Table 5). Meanwhile, the third point (iii) cannot be done because of the sufficiency of the data that does not fulfill the analysis.

Table 5. Effect of antibiotic growth promoters and antimicrobial peptides on growth performance, digestibility and metabolizable energy, blood serum, and small intestine morphology of broilers

Response variables	Unit	Antibiotic vs AMP			p-value	
		Control	AGPs	AMPs		
Average dosage	mg Kg ⁻¹ of diet	0	40.9	145		
Growth performance in starter p	ohases					
Body weight	gram	905ª	1,069 ^b	895 ^{ab}	0.005	
Average daily gain	gh ⁻¹ d ⁻¹	38.2ª	44.5 ^b	37.3ª	0.003	
Daily feed intake	gh ⁻¹ d ⁻¹	57.7 ^a	65.7 ^b	54.9 ^a	0.011	
Feed conversion ratio	no unit	1.55 ^b	1.55 ^{ab}	1.5ª	0.000	
Digestibility and metabolizable	energy in starter j	phases				
Dry matter	%	76.5ª	79.4 ^b	77.7ª	0.002	
Crude protein	%	64.7	72.2	63.8	0.061	
Apparent metabolizable energy	kcal kg ⁻¹	2,741	2,776	2,919	0.180	
Blood serum in starter phases						
Total protein	g dL ⁻¹	4.54	_	4.53	0.705	
Albumin	g dL ⁻¹	3.4	_	3.09	0.062	

Response variables	Unit	Antibiotic	Antibiotic vs AMP		p-value	
		Control	AGPs	AMPs		
Globulin	g dL ⁻¹	1.69	-	1.95	0.283	
AGR	no unit	2.65	-	1.73	0.047	
Cholesterol	mg dL ⁻¹	124	-	112	0.132	
Triacylglycerol	mg dL ⁻¹	88	_	74.6	0.224	
Growth performance in fin	isher phases					
Body weight	gram	2,092ª	$2,076^{ab}$	$2,096^{b}$	< 0.001	
Average daily gain	$gh^{-1}d^{-1}$	70ª	71.5 ^b	72.4 ^b	< 0.001	
Daily feed intake	$gh^{-1}d^{-1}$	150	146	148	0.99	
Feed conversion ratio	no unit	2.18 ^b	2.07ª	2.05ª	< 0.001	
Digestibility and metaboliz	zable energy in fini	sher phases				
Dry matter	%	73.9	76.6	74.5	0.312	
Crude fat	%	79.2	-	80.4	0.737	
Blood serum in finisher ph	ases					
Total protein	g dL ⁻¹	21.4	_	18.6	0.677	
Albumin	$g dL^{-1}$	8.13	-	7.04	0.114	
Globulin	$g dL^{-1}$	2.95	-	2.90	0.62	
AGR	no unit	2.15	_	1.81	0.153	
Cholesterol	mg dL ⁻¹	106	-	97.1	0.187	
Triacylglycerol	mg dL ⁻¹	87.6	-	81.4	0.555	
Creatinine	mg dL ⁻¹	0.37^{b}	-	0.33^{a}	0.016	
Uric acid	mg dL ⁻¹	7.34 ^b	_	6.19 ^a	0.02	
Growth performance in all	phases					
Body weight	gram	1,738 ^a	1,802 ^b	1,913 ^b	< 0.001	
Average daily gain	$gh^{-1}d^{-1}$	53.9a	49.7^{b}	57.2 ^b	< 0.001	
Daily feed intake	$gh^{-1}d^{-1}$	102	85. ³	103	0.638	
Feed conversion ratio	no unit	1.92 ^b	1.81 ^a	1.82a	< 0.001	
Mortality rate	%	16.6 ^b	9.40 ^a	5.07 ^a	0.001	
Small intestine morphology	y in duodenum					
Mucosa thickness	μm	620 ^a	-	$780^{\rm b}$	0.003	
Villus height	μm	1,000a	1,425 ^{ab}	$1,107^{b}$	< 0.001	
Crypt depth	μm	234	345	212	0.074	

Response variables	Unit	Antibiotic	Antibiotic vs AMP		
		Control	AGPs	AMPs	
RVCD	no unit	5.58ª	4.93 ^{ab}	6.30 ^{ab}	0.003
Small intestine morpholog	y in jejunum				
Villus height	μm	804	1,138	1,406	0.508
Crypt depth	μm	210	282	209	0.09
RVCD	no unit	4.71	4.13	8.06	0.492
Small intestine morpholog	y in ileum				
Villus height	μm	643	665	780	0.054
Crypt depth	μm	159	210	143	0.386
RVCD	no unit	4.12	3.05	5.37	0.116

Note: AGPs = antibiotic growth promoters; AGR = albumin-globulin ratio; AMPs = antimicrobial peptides; RVCD = ratio of villus height to crypt depth.

(2) Dosage recommendations of AMPs can be assessed from antibody titers and MIC (minimal inhibitory concentration), but this meta-analysis focuses on the findings from in vivo trials. Therefore, the appropriate recommendation is the growth performance parameter. Despite that, based on literature compilation, we found no MIC-related data and restricted data of antibody titer in broilers.

(3) Introduction

• "Meta-analysis is a statistical analysis by combining results from scientific reports. Meta-analysis produces a weighted average of the output, and the uncertainty value of the estimated equation can also be calculated (St-Pierre, 2001; Sauvant et al., 2008). Meta-analyzes can compare differences in research results and identify patterns between them, sources of differences among these results, or other interesting relationships. A recent meta-analysis of antimicrobial additives has been reported by (Vanrolleghem et al., 2019; Xu et al., 2021) in swine feed. However, studies of AMPs in broilers are still not available".

(4) Methods

• Searching and collection of literature were carried out on Google Scholar (https://scholar.google.com/) and Science Direct (https://www.sciencedirect.com/), by using various keywords such as "antimicrobial peptide," "digestibility," "growth performance," "small intestine morphology," "blood serum," and or "broiler.". Literature search based on Hidayat et al., (2020) and Prihambodo et al., (2021) work flow.

4. References

Hidayat, C., A. Jayanegara, and E. Wina. 2020. Effect of zinc on the immune response and production performance of broilers: a meta-analysis. Asian-Australasian Journal of Animal Sciences. 33(3): 465–479. doi: 10.5713/ajas.19.0146.

Prihambodo, T. R., M. M. Sholikin, N. Qomariyah, A. Jayanegara, I. Batubara, D. B. Utomo, and N. Nahrowi. 2021. Effects of dietary flavonoids on performance, blood constituents, carcass composition and small intestinal morphology of broilers: a meta-analysis. Animal Bioscience. 34(3): 434–442. doi: 10.5713/ajas.20.0379.

a,b Different superscript letters in the same row are significantly different with a level of p < 0.05.

- Sauvant, D., P. Schmidely, J. Daudin, and N. St-Pierre. 2008. Meta-analyses of experimental data in animal nutrition. Animal. 2(8): 1203–1214. doi: 10.1017/S1751731108002280.
- St-Pierre, N. 2001. Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science. 84(4): 741–755. doi: 10.3168/jds.S0022-0302(01)74530-4.
- Vanrolleghem, W., S. Tanghe, S. Verstringe, G. Bruggeman, D. Papadopoulos, P. Trevisi, J. Zentek, S. Sarrazin, and J. Dewulf. 2019. Potential dietary feed additives with antibacterial effects and their impact on performance of weaned piglets: A meta-analysis. The Veterinary Journal. 249: 24–32. doi: 10.1016/j.tvjl.2019.04.017.
- Xu, B., J. Fu, L. Zhu, Z. Li, M. Jin, and Y. Wang. 2021. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. Journal of Animal Science and Biotechnology. 12(1): 11–15. doi: 10.1186/s40104-020-00534-2.

C. Other response:

1. Change of contract number:

This study was fully-funded by the Ministry of Education and Culture, the Republic of Indonesia, through the scholarship research scheme, namely "Master Education Towards Doctor for Excellent Bachelor (PMDSU)" grand number 2136/IT3.L1/PN/2021 in the 2021 fiscal year. This paper was also a part of the sandwich-like program (PKPI) grand number T/2134/D3.2/Kd.02.00/2019 at Chiba University, Japan in 2019.