МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация систем и ЭВМ» Тема «Представление и обработка целых чисел. Организация ветвящихся процессов»

Студентка гр. 1303	Сырцева Д.Д
Преподаватель	Ефремов М.А

Санкт-Петербург

2022

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров вычисляет значения функций.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res a = a

f1:
$$f4 = < \begin{cases} /-(6*i-4), \text{ при a} > b \\ 3*(i+2), \text{ при a} <= b \end{cases}$$
f2:
$$f8 = < \begin{cases} /-(6*i+8), \text{ при a} > b \\ 9-3*(i-1), \text{ при a} <= b \end{cases}$$
f3:
$$f3 = < \begin{cases} /\text{ i} 1+i2|, \text{ при k} = 0 \\ /\text{ min}(i1,i2), \text{ при k} \neq= 0 \end{cases}$$

Выполнение работы. Протокол работы на компьютере.

Ход работы:

- 1. Получен вариант набора функций из таблиц 2 и 3, которые необходимо реализовать.
- 2. Реализованная программа протранлирована с различными исходными данными(рис1). Результат выполнения работы зафиксирован в таблице 1.
- 3. Используемые команды:

- . MOV Пересылка данных
- . PUSH Засылка операнда в стек
- . NEG Получение дополнительного кода (изменение знака)
- . SUB Вычитание
- . СМР Сравнение двух операндов
- . ADD Сложение
- . SAL Сдвиг влево (умножение на 2)
- . ЈМР Команда безусловного перехода
- ЈС выполняет короткий переход, если первый операнд больше второго операнда при выполнении операции сравнения с помощью команды СМР
- . JNE Переход если не равно
- . JGE Переход если больше или равно
- . JG Переход если больше
- . INT Вызов программного прерывания

Трансляция программы:

Рисунок1

Таблица 1 – Результаты тестирования

Тест	Тестируемый случай и	Входные	Выходные
	используемые функции	данные	данные
1	a <b, k="0</td"><td>a= -5</td><td>i1 = 0006</td></b,>	a= -5	i1 = 0006
	f1: ^{3*(i+2)} , при a<=b	b=5	i2 = 000C
	f2: 9 -3*(i-1), при a<=b	i=0	res = 0012
	f3: i1 + i2 , при k=0	k=0	
2	a>b, k!=0	a=2	i1 = 0022
	f1: -(6*i - 4), при a>b	b=0	i2 = 0016
	f2: - (6*i+8) , при a>b	i=-5	res = 0016
	f3: min(i1,i2), при k/=0	k=5	
3	a>b, k=0	a=8	i1 = FFDA
	f1: -(6*i - 4), при a>b	b=1	i2 = FFCE
	f2: - (6*i+8) , при a>b	i=7	res = 0058
	f3: i1 + i2 , при k=0	k=0	

Вывод.

В ходе выполнения лабораторной работы были получены навыки разработки программы с заданными целочисленными значениями на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А

Текст исходного файла программы lab3.

```
ASSUME CS:CODE, SS:AStack, DS:DATA
AStack
          SEGMENT STACK
         DW 12 DUP(0)
AStack
         ENDS
DATA
        SEGMENT
     i
          DW
                0
     а
          DW
                0
          DW
              0
     b
          DW
              0
     i1
          DW
              0
          DW
     i2
                0
     res DW
                0
DATA
         ENDS
CODE SEGMENT
Main
        PROC FAR
   push ds
    sub ax,ax
   push ax
     mov ax, DATA
     mov ds,ax
     mov ax,a; a \rightarrow ax
     mov cx, i; i \rightarrow cx
     стр ax,b ;Сравнение значений а и b
     jg STEP1
               ;при a>b переход на STEP1
     ;if a<=b
     add cx, i; i+i = 2i
     add cx, i ;2i+i = 3i
     add cx, 6; 3i+6
     то і1, сх ; перемещаем результат в і1
                     ;-(3i+6) = -3i-6
     neg cx
     add cx, 18; -3i-6+18 = -3i+12
     точ і2,сх ;перемещаем результат в і2
     jmp STEP2 ;переход на STEP2
STEP1:
     ;if a>b
     mov cx, i ; cx = i
     add cx, i; i+i = 2i
```

```
add cx, i ;2i+i = 3i
          sal cx, 1 ;3i<<1 = 3i*2 = 6i
          sub cx, 4 ;6i-4
          neg cx ; -(6i-4)
          точ і1,сх ;перемещаем результат в і1
          sub cx, 12;-6i+4-12 = -6i-8 = -(6i+8)
          тоу і2,сх ;перемещаем результат в і2
     ;Вычисление f3
     STEP2:
          mov ax, k
          cmp ax, 0
                    ;сравнение к и 0
          JNe STEP3 ;если k не равно 0 то переход на STEP3
          ; \kappa = 0
          mov dx,i1; dx = i1
          add dx,i2; dx = i1 + i2
          cmp dx, 0 ; cpaвнение i1+i2 и 0
          JGe STEP5 ;если i1+ i2 >= 0 то перейти на STEP5
                          ;ecли i1 + i2 < 0 то меняем знак на
          neg dx
противоположный
          mov res, dx ; res = dx
          jmp STEP6
     STEP5:
          mov res, dx
          jmp STEP6
     STEP3:
          mov ax,i1 ;если k не равно 0
          mov bx, i2
          стр ах, bх ; сравнение i1 и i2
          JGe STEP4 ;если i1 >= i2 то перейти на STEP4
          mov res,ax
          jmp STEP6
     STEP4:
          mov res,bx; если i1 >= i2, то в res перемещаем значение i2
     STEP6:
          int 20h
     Main
              ENDP
     CODE
              ENDS
               END Main
```