Optimization under Uncertainty using Exponential Cones

CHEN Li

Institute of Operations Research and Analytics National University of Singapore

June 16, 2022

Outline

Introduction

The Key Methodology of The ECP Approach to EV Charging

Robust CARA Optimization

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

- ▶ Uncertainty in problem parameters
 - ▶ Risk: known distribution $\tilde{z} \sim \mathbb{P}$

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

- ▶ Uncertainty in problem parameters
 - ▶ Risk: known distribution $\tilde{z} \sim \mathbb{P}$
 - Example: flip a fair coin

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

- ▶ Uncertainty in problem parameters
 - ▶ Risk: known distribution $\tilde{z} \sim \mathbb{P}$
 - Example: flip a fair coin
 - ▶ Ambiguity: unknown distribution $\tilde{z} \in \mathbb{P} \in \mathcal{F}$

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

- ▶ Uncertainty in problem parameters
 - ▶ Risk: known distribution $\tilde{z} \sim \mathbb{P}$
 - Example: flip a fair coin
 - ▶ Ambiguity: unknown distribution $\tilde{z} \in \mathbb{P} \in \mathcal{F}$
 - Example: we do not know whether the coin is unbiased

▶ Deterministic optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{z})$$

- ▶ Uncertainty in problem parameters
 - ▶ Risk: known distribution $\tilde{z} \sim \mathbb{P}$
 - Example: flip a fair coin
 - ▶ Ambiguity: unknown distribution $\tilde{z} \in \mathbb{P} \in \mathcal{F}$
 - Example: we do not know whether the coin is unbiased
- ▶ How to rank decisions under uncertainty?
 - Decision criteria

Decision-making under uncertainty

► Expected utility theory [VNM47]

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[u(f(\boldsymbol{x}, \tilde{\boldsymbol{z}})) \right]$$

where the utility function $u: \mathbb{R} \to \mathbb{R}$ is increasing.

Decision-making under uncertainty

► Expected utility theory [VNM47]

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[u(f(\boldsymbol{x}, \tilde{\boldsymbol{z}})) \right]$$

where the utility function $u: \mathbb{R} \to \mathbb{R}$ is increasing.

▶ Risk averse: $u(\cdot)$ is concave

Decision-making under uncertainty

► Expected utility theory [VNM47]

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[u(f(\boldsymbol{x}, \tilde{\boldsymbol{z}})) \right]$$

where the utility function $u: \mathbb{R} \to \mathbb{R}$ is increasing.

- ▶ Risk averse: $u(\cdot)$ is concave
- ► Maxmin expected utility [GS89]

$$\max_{\boldsymbol{x} \in \mathcal{X}} \inf_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[u(f(\boldsymbol{x}, \tilde{\boldsymbol{z}})) \right]$$

Many others...

How to solve optimization problems under uncertainty?

► Stochastic Optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

Fact: evaluating $\mathbb{E}_{\mathbb{P}}\left[\max\{\boldsymbol{a}^{\top}\tilde{\boldsymbol{z}}-b,0\}\right]$ is #P-hard for given $\boldsymbol{a}\in\mathbb{R}^n_+$, $b\in\mathbb{R}_+$, \tilde{z}_i 's are independent uniform on [0,1].

How to solve optimization problems under uncertainty?

► Stochastic Optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

▶ Random approximation: Sample Average Approximation (SAA)

$$\max_{\boldsymbol{x}\in\mathcal{X}}\frac{1}{S}\sum_{s\in[S]}f(\boldsymbol{x},\hat{\boldsymbol{z}}^s)$$

- ► General: sampling oracle
- ► Effective: statistics and optimization perspectives
- Disadvantage: curse of dimensionality

How to solve optimization problems under uncertainty?

► Stochastic Optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

▶ Random approximation: Sample Average Approximation (SAA)

$$\max_{\boldsymbol{x} \in \mathcal{X}} \frac{1}{S} \sum_{s \in [S]} f(\boldsymbol{x}, \hat{\boldsymbol{z}}^s)$$

- General: sampling oracle
- ► Effective: statistics and optimization perspectives
- Disadvantage: curse of dimensionality
- lackbox Deterministic approximation: bound $\mathbb{E}_{\mathbb{P}}\left[f(oldsymbol{x}, ilde{oldsymbol{z}})
 ight]$
 - Ad hoc: utilize special structures of f and \mathbb{P} , e.g., moments
 - Advantages: scalability, handle decision-dependent uncertainty
 - Disadvantages: suboptimality

How to solve optimization problems under uncertainty?

► Stochastic Optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

▶ Distributionally Robust Optimization (DRO)

$$\max_{\boldsymbol{x} \in \mathcal{X}} \inf_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

- Tractability depends on underlying problem structures and choices of ambiguity sets
- ▶ Mostly duality-based reformulation techniques: DRO \rightarrow RO \rightarrow convex (conic) optimization

How to solve optimization problems under uncertainty?

Stochastic Optimization

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

▶ Distributionally Robust Optimization (DRO)

$$\max_{\boldsymbol{x} \in \mathcal{X}} \inf_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

Why do we care tractability?

- ... can be treated as actual sources of "immunized against uncertainty" decisions only if these problems are computationally tractable; when that is not the case, these settings become more wishful thinking than actual decision-making tool.
- Robust Optimization by Ben-Tal, El Ghaoui and Nemirovski

Exponential Conic Optimization

► Exponential cone: 3-dimensional closed convex cone

$$\mathcal{K}_{\exp} := \mathsf{cl}\left\{(x_1, x_2, x_3) \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\right\}$$

i.e. closure of epigraph of perspective of exponential function.

Exponential Conic Optimization

► Exponential cone: 3-dimensional closed convex cone

$$\mathcal{K}_{\exp} := \mathsf{cl} \left\{ (x_1, x_2, x_3) \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0 \right\}$$

i.e. closure of epigraph of perspective of exponential function.

► Exponential cone programming (ECP):

$$egin{array}{ll} \min_{m{x}} & m{c}^{ op} m{x} \ \mathrm{s.t.} & m{A}m{x} - m{b} \in \mathcal{K}_{\mathrm{exp}} imes \cdots imes \mathcal{K}_{\mathrm{exp}} \ m{F}m{x} = m{g} \end{array}$$

- ► Generalization of linear programming (LP)
- Great modeling power:
 - Exponential cone ≥ power cone ≥ second-order cone
 - Many convex constraints involving exponential or logarithm functions are \mathcal{K}_{exp} -representable, e.g.

$$t \le -x \log x \iff (1, x, t) \in \mathcal{K}_{\exp}$$

Computational advances: efficient interior point algorithm based solvers such as MOSEK

► Goal: Leverage modeling advantages and computational advances of ECP to solve optimization problems under uncertainty.

- ► Goal: Leverage modeling advantages and computational advances of ECP to solve optimization problems under uncertainty.
- ▶ How does ECP related to optimization under uncertainty?
 - At a high level, we inject information of uncertain parameters into optimization models through moment generating functions (MGFs) and develop the deterministic ECP approximations.

- ▶ Goal: Leverage modeling advantages and computational advances of ECP to solve optimization problems under uncertainty.
- ▶ How does ECP related to optimization under uncertainty?
 - At a high level, we inject information of uncertain parameters into optimization models through moment generating functions (MGFs) and develop the deterministic ECP approximations.
- Motivation of using MGFs:
 - ▶ Decomposability under independence of random variables
 - Close relation to exponential utility function and relative entropy based ambiguity set
 - \blacktriangleright The log-MGFs of many random variables are $\mathcal{K}_{\mathrm{exp}}$ -representable.

- ▶ Goal: Leverage modeling advantages and computational advances of ECP to solve optimization problems under uncertainty.
- ▶ How does ECP related to optimization under uncertainty?
 - At a high level, we inject information of uncertain parameters into optimization models through moment generating functions (MGFs) and develop the deterministic ECP approximations.
- Motivation of using MGFs:
 - Decomposability under independence of random variables
 - Close relation to exponential utility function and relative entropy based ambiguity set
 - ▶ The log-MGFs of many random variables are \mathcal{K}_{\exp} -representable.
- Structure:
 - ▶ An ECP approach to electric vehicle (EV) charging management
 - ► Robust CARA Optimization
 - Extensions and future work

Outline

Introduction

The Key Methodology of The ECP Approach to EV Charging

Robust CARA Optimization

A large-scale stochastic program

The EV charging scheduling problem is

$$\min_{oldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}}\left[c(oldsymbol{x}, \widetilde{oldsymbol{z}})
ight]$$
 (EV-SP)

where

$$c(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \triangleq \sum_{s \in [T]} e_s \sum_{v \in \mathcal{V}_s} x_{v,s} \tilde{z}_v + d \max_{t \in [T]} \left\{ \sum_{v \in \mathcal{V}_t} x_{v,t} \tilde{z}_v \right\}$$

A large-scale stochastic program

The EV charging scheduling problem is

$$\min_{oldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}}\left[c(oldsymbol{x}, ilde{oldsymbol{z}})
ight]$$
 (EV-SP)

where

$$c(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \triangleq \sum_{s \in [T]} e_s \sum_{v \in \mathcal{V}_s} x_{v,s} \tilde{z}_v + d \max_{t \in [T]} \left\{ \sum_{v \in \mathcal{V}_t} x_{v,t} \tilde{z}_v \right\}$$

Computationally challenging for SAA due to large scale of the problem: more than 80,000 random variables and 700,000 decision variables!

In uncapacitated case, $\tilde{z} \sim \mathbb{P}$ are independent Poisson with rate λ .

► Difficulty:

$$\sum_{s \in [T]} e_s f_s(\boldsymbol{x}, \boldsymbol{\lambda}) + d \mathbb{E}_{\mathbb{P}} \left[\max_{t \in [T]} \{ f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \} \right]$$

In uncapacitated case, $\tilde{z} \sim \mathbb{P}$ are independent Poisson with rate λ .

▶ Difficulty:

$$\sum_{s \in [T]} e_s f_s(\boldsymbol{x}, \boldsymbol{\lambda}) + d \mathbb{E}_{\mathbb{P}} \left[\max_{t \in [T]} \{ f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \} \right]$$

- ► Motivation of using MGF
 - ▶ Determines non-negative random variables uniquely
 - $\blacktriangleright \ \, \text{Utilize independence:} \ \, \mathbb{E}_{\mathbb{P}}\left[e^{\sum_v\theta_v\tilde{z}_v}\right] = \prod \mathbb{E}_{\mathbb{P}}\left[e^{\theta_v\tilde{z}_v}\right]$

In uncapacitated case, $\tilde{z} \sim \mathbb{P}$ are independent Poisson with rate λ .

▶ Bound the order statistic:

$$\mathbb{E}_{\mathbb{P}} \left[\max_{t \in [T]} \{ f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \} \right]$$

$$\leq \inf_{\mu > 0} \mu \log \sum_{t \in [T]} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) - f_t(\boldsymbol{x}, \boldsymbol{\lambda})}{\mu} \right) \right] + \max_{t \in [T]} \{ f_t(\boldsymbol{x}, \boldsymbol{\lambda}) \}$$

In uncapacitated case, $\tilde{z} \sim \mathbb{P}$ are independent Poisson with rate λ .

▶ Bound the order statistic:

$$\mathbb{E}_{\mathbb{P}}\left[\max_{t\in[T]}\{f_{t}(\boldsymbol{x},\tilde{\boldsymbol{z}})\}\right] \\ \leq \inf_{\mu>0}\mu\log\sum_{t\in[T]}\mathbb{E}_{\mathbb{P}}\left[\exp\left(\frac{f_{t}(\boldsymbol{x},\tilde{\boldsymbol{z}})-f_{t}(\boldsymbol{x},\boldsymbol{\lambda})}{\mu}\right)\right] + \max_{t\in[T]}\{f_{t}(\boldsymbol{x},\boldsymbol{\lambda})\}$$

Exploit stochastic independence:

$$\mu \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) - f_t(\boldsymbol{x}, \boldsymbol{\lambda})}{\mu} \right) \right]$$

$$= \sum_{\boldsymbol{x} \in \mathcal{Y}} \mu \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{x_{v,t} \tilde{\boldsymbol{z}}_v}{\mu} \right) \right] - f_t(\boldsymbol{x}, \boldsymbol{\lambda})$$

In uncapacitated case, $\tilde{z} \sim \mathbb{P}$ are independent Poisson with rate λ .

▶ Bound the order statistic:

$$\mathbb{E}_{\mathbb{P}} \left[\max_{t \in [T]} \{ f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \} \right]$$

$$\leq \inf_{\mu > 0} \mu \log \sum_{t \in [T]} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) - f_t(\boldsymbol{x}, \boldsymbol{\lambda})}{\mu} \right) \right] + \max_{t \in [T]} \{ f_t(\boldsymbol{x}, \boldsymbol{\lambda}) \}$$

► Exploit stochastic independence:

$$\mu \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{f_t(\boldsymbol{x}, \tilde{\boldsymbol{z}}) - f_t(\boldsymbol{x}, \boldsymbol{\lambda})}{\mu} \right) \right]$$

$$= \sum_{\boldsymbol{x} \in \mathcal{X}} \mu \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{x_{v,t} \tilde{\boldsymbol{z}}_v}{\mu} \right) \right] - f_t(\boldsymbol{x}, \boldsymbol{\lambda})$$

▶ Exponential cone representable log-MGF of Poisson variables:

$$\mu \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{x_{v,t} \tilde{z}_v}{\mu} \right) \right] = \lambda_v (\mu e^{x_{v,t}/\mu} - \mu) \text{ is } \mathcal{K}_{\exp}\text{-representable}$$

▶ Difficulty: No independent Poisson ⇒ No closed-form MGF

- ▶ Difficulty: No independent Poisson ⇒ No closed-form MGF
- ▶ Upper bounds via DRO:

$$\mathbb{P} \in \mathcal{F} \Rightarrow \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right] \leq \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right]$$

- ▶ Difficulty: No independent Poisson ⇒ No closed-form MGF
- ▶ Upper bounds via DRO:

$$\mathbb{P} \in \mathcal{F} \Rightarrow \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right] \leq \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right]$$

▶ Moments: truncated Poisson $\mathbb{P} \in \mathcal{F}^1$

$$\mathcal{F}^1 riangleq \left\{ \mathbb{P} \left| egin{array}{c} ilde{oldsymbol{z}} \sim \mathbb{P} \ \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(oldsymbol{ heta}^ op ilde{oldsymbol{z}}
ight)
ight] \leq \sum_{v \in [V]} \lambda_v \left(e^{ heta_v} - 1
ight) \quad orall oldsymbol{ heta} \geq \mathbf{0} \end{array}
ight\}$$

- ▶ Difficulty: No independent Poisson ⇒ No closed-form MGF
- Upper bounds via DRO:

$$\mathbb{P} \in \mathcal{F} \Rightarrow \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right] \leq \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right]$$

▶ Moments: truncated Poisson $\mathbb{P} \in \mathcal{F}^1$

$$\mathcal{F}^1 \triangleq \left\{ \mathbb{P} \left| \begin{array}{c} \tilde{\boldsymbol{z}} \sim \mathbb{P} \\ \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\boldsymbol{\theta}^\top \tilde{\boldsymbol{z}} \right) \right] \leq \sum_{v \in [V]} \lambda_v \left(e^{\theta_v} - 1 \right) \quad \forall \boldsymbol{\theta} \geq \boldsymbol{0} \end{array} \right\}$$

▶ Support: $\mathbb{P} \in \mathcal{F}^2$

$$\mathcal{F}^2 \triangleq \left\{ \mathbb{P} \left| \begin{array}{c} & \tilde{z} \sim \mathbb{P} \\ & \mathbb{E}_{\mathbb{P}} \left[\tilde{z} \right] \leq \boldsymbol{\lambda} \\ & \mathbb{P} \left[\tilde{z} \in \mathcal{Z} \right] = 1 \end{array} \right. \right\}$$

- ▶ Difficulty: No independent Poisson ⇒ No closed-form MGF
- Upper bounds via DRO:

$$\mathbb{P} \in \mathcal{F} \Rightarrow \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right] \leq \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[c(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right]$$

▶ Moments: truncated Poisson $\mathbb{P} \in \mathcal{F}^1$

$$\mathcal{F}^1 \triangleq \left\{ \mathbb{P} \left| \begin{array}{c} \tilde{\boldsymbol{z}} \sim \mathbb{P} \\ \log \mathbb{E}_{\mathbb{P}} \left[\exp \left(\boldsymbol{\theta}^\top \tilde{\boldsymbol{z}} \right) \right] \leq \sum_{v \in [V]} \lambda_v \left(e^{\theta_v} - 1 \right) \quad \forall \boldsymbol{\theta} \geq \boldsymbol{0} \end{array} \right\}$$

▶ Support: $\mathbb{P} \in \mathcal{F}^2$

$$\mathcal{F}^2 riangleq \left\{ \mathbb{P} \left| egin{array}{c} ilde{z} \sim \mathbb{P} \ \mathbb{E}_{\mathbb{P}}[ilde{z}] \leq oldsymbol{\lambda} \ \mathbb{P}[ilde{z} \in \mathcal{Z}] = 1 \end{array}
ight.
ight.$$

▶ ECP-C using $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2$ via infimal convolution

ECP vs SAA with different sample size

ightharpoonup Expected cost under SAA at different sample size given C=30

- ➤ SAA with 38,000 samples cannot be solved in 36 hours and is far from optimal upon termination
- ▶ ECP-C is near optimal: the optimality gap is at most $(805.00-773.67)/773.67\times100\%\approx4.05\%$, even 0.71% when using the extrapolation results.

ECP vs DRO with mean-covariance information

Compare the upper bounds of $\mathbb{E}_{\mathbb{P}}\left[\max_{v\in[V]}\tilde{z}_v\right]$ where $\tilde{z}_v\sim \mathsf{Poisson}(\lambda_v)$

Summary

- ▶ An ECP approach to a large-scale stochastic program
 - ▶ Bound the order statistic
 - Exploit stochastic independence
 - $\blacktriangleright~\mathcal{K}_{\mathrm{exp}}\text{-representable}$ upper bounds of log-MGF
- ► Scalability, tractability, superior performance.

Outline

Introduction

The Key Methodology of The ECP Approach to EV Charging

Robust CARA Optimization

Motivation

- ▶ Generalize the model of uncertainty and decision criteria
 - ▶ Risk neutral → risk averse
 - ▶ No distribution ambiguity → ambiguity averse
- ► Generalize the objective function

Motivation

- ▶ Generalize the model of uncertainty and decision criteria
 - ▶ Risk neutral → risk averse
 - No distribution ambiguity → ambiguity averse
- ► Generalize the objective function
 - EV-SP is a very special two-stage stochastic linear program with fixed recourse:

$$f(\boldsymbol{x}, \boldsymbol{z}) = \min_{\boldsymbol{y}} \quad \boldsymbol{y}$$
s.t. $\boldsymbol{y} \ge \sum_{s \in [T]} e_s \sum_{v \in \mathcal{V}_s} x_{v,s} z_v + d \sum_{v \in \mathcal{V}_t} x_{v,t} z_v, \quad \forall t \in [T]$

The dimension of recourse variable is one.

▶ Extend to two-stage and multi-stage linear optimization problems

Constant absolute risk aversion (CARA)

- ▶ Exponential utility: $u_E(v) \triangleq 1 e^{-v/\kappa} \rightarrow \text{risk aversion}$
- ▶ CARA: risk tolerance level $-u_E'/u_E'' \equiv \kappa > 0$

Constant absolute risk aversion (CARA)

- ► Exponential utility: $u_E(v) \triangleq 1 e^{-v/\kappa} \rightarrow \text{risk aversion}$
- ▶ CARA: risk tolerance level $-u_E'/u_E'' \equiv \kappa > 0$
- \blacktriangleright Assessment of κ :
 - ▶ Roughly indifferent to accepting or rejecting a gamble involving a
 - ▶ 50-50 chance of winning κ or losing $\kappa/2$
 - ▶ 75-25 chance of winning κ or losing κ

Constant absolute risk aversion (CARA)

- ► Exponential utility: $u_E(v) \triangleq 1 e^{-v/\kappa} \rightarrow \text{risk aversion}$
- ▶ CARA: risk tolerance level $-u_E'/u_E'' \equiv \kappa > 0$
- \blacktriangleright Assessment of κ :
 - Roughly indifferent to accepting or rejecting a gamble involving a
 - ▶ 50-50 chance of winning κ or losing $\kappa/2$
 - ▶ 75-25 chance of winning κ or losing κ
- ► Tractability in economic analysis
- ▶ Popularity: about five times more commonly adopted than all other types of utility functions combined [CC95]

Robust optimization with CARA preference

A robust CARA optimization model:

$$\max_{x \in \mathcal{X}} \inf_{\mathbb{P} \in \mathcal{F}} \mathbb{C}_{\mathbb{P}}^{\kappa} [f(x, \tilde{z})]$$
 (1)

where the CARA certainty equivalent

$$\mathbb{C}_{\mathbb{P}}^{\kappa}\left[\tilde{v}\right] \triangleq u_{E}^{-1}\left(\mathbb{E}_{\mathbb{P}}\left[u_{E}(\tilde{v})\right]\right) = \begin{cases} & \text{ess inf}_{\mathbb{P}}\left[\tilde{v}\right] & \text{if } \kappa = 0 \\ \mathbb{E}_{\mathbb{P}}\left[\tilde{v}\right] & \text{if } \kappa = \infty \end{cases} \\ -\kappa\log\mathbb{E}_{\mathbb{P}}\left[\exp\left(-\frac{\tilde{v}}{\kappa}\right)\right] & \text{if } \kappa \in (0, \infty) \end{cases}$$

Robust optimization with CARA preference

$$\mathbb{C}_{\mathbb{P}}^{\kappa}\left[\tilde{v}\right] \triangleq u_{E}^{-1}\left(\mathbb{E}_{\mathbb{P}}\left[u_{E}(\tilde{v})\right]\right) = \begin{cases} & \text{ess inf}_{\mathbb{P}}\left[\tilde{v}\right] & \text{if } \kappa = 0 \\ & \mathbb{E}_{\mathbb{P}}\left[\tilde{v}\right] & \text{if } \kappa = \infty \end{cases} \\ -\kappa\log\mathbb{E}_{\mathbb{P}}\left[\exp\left(-\frac{\tilde{v}}{\kappa}\right)\right] & \text{if } \kappa \in (0, \infty) \end{cases}$$

Properties of $\mathbb{C}^{\kappa}_{\mathbb{P}}[\tilde{v}]$; Extend to $\mathbb{C}^{\kappa}_{\mathcal{F}}[\tilde{v}] \triangleq \inf_{\mathbb{P} \in \mathcal{F}} \mathbb{C}^{\kappa}_{\mathbb{P}}[\tilde{v}]$

- 1. $\lim_{\kappa \to \infty} \mathbb{C}^{\kappa}_{\mathbb{P}}[\tilde{v}] = \mathbb{E}_{\mathbb{P}}[\tilde{v}], \lim_{\kappa \to 0} \mathbb{C}^{\kappa}_{\mathbb{P}}[\tilde{v}] = \operatorname{ess\,inf}_{\mathbb{P}}[\tilde{v}].$
- 2. $\mathbb{C}_{\mathbb{P}}^{\kappa} [\tilde{v}]$ is increasing in $\kappa > 0$
- 3. $\mathbb{C}_{\mathbb{P}}^{\kappa} [\tilde{v}]$ is jointly concave in \tilde{v} and $\kappa > 0$.
- 4. $\mathbb{C}_{\mathbb{P}}^{\kappa} [\tilde{v} + \tilde{\nu}] = \mathbb{C}_{\mathbb{P}}^{\kappa} [\tilde{v}] + \mathbb{C}_{\mathbb{P}}^{\kappa} [\tilde{\nu}]$ if \tilde{v} , $\tilde{\nu}$ are independent.
- 5. Super-additivity: $\mathbb{C}_{\mathbb{P}}^{\kappa_1+\kappa_2}[\tilde{v}+\tilde{\nu}] \geq \mathbb{C}_{\mathbb{P}}^{\kappa_1}[\tilde{v}] + \mathbb{C}_{\mathbb{P}}^{\kappa_2}[\tilde{\nu}]$ for any $\kappa_1, \kappa_2 \in \mathbb{R}_+$.

Model of uncertainty

Independent factors with ambiguous marginals

- $\check{z} = (\tilde{z}_1, \tilde{z}_2, \cdots, \tilde{z}_{I_z})$ has independent components
- lacksquare $ilde{z}_j \sim \mathbb{P}_j \in \mathcal{F}_j \subseteq \mathcal{P}_0([\underline{z}_j, \bar{z}_j])$ where $\underline{z}_j < \bar{z}_j$
- ▶ So $\tilde{z} \sim \mathbb{P} \in \mathcal{F} \triangleq \times_{j \in [I_z]} \mathcal{F}_j \subseteq \mathcal{P}_0(\mathcal{Z})$ where $\mathcal{Z} \triangleq [\underline{z}, \bar{z}]$

Model of uncertainty

Independent factors with ambiguous marginals

- $m{ ilde{z}}=(ilde{z}_1, ilde{z}_2,\cdots, ilde{z}_{I_z})$ has independent components
- lacksquare $ilde{z}_j \sim \mathbb{P}_j \in \mathcal{F}_j \subseteq \mathcal{P}_0([\underline{z}_i, ar{z}_j])$ where $\underline{z}_i < ar{z}_j$
- ▶ So $\tilde{z} \sim \mathbb{P} \in \mathcal{F} \triangleq \times_{j \in [I_z]} \mathcal{F}_j \subseteq \mathcal{P}_0(\mathcal{Z})$ where $\mathcal{Z} \triangleq [\underline{z}, \bar{z}]$

For an affine function

$$f(\boldsymbol{x}, \boldsymbol{z}) = a^{0}(\boldsymbol{x}) + \sum_{j \in [I_{*}]} a^{j}(\boldsymbol{x}) z_{j},$$

we have

$$\mathbb{C}_{\mathcal{F}}^{\kappa}\left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right] = a^{0}(\boldsymbol{x}) + \sum_{j \in [I_{z}]} \phi_{j}(\kappa, a^{j}(\boldsymbol{x}))$$

where the function $\phi_i:[0,\infty]\times\mathbb{R}\to\mathbb{R}$,

$$\phi_j(\kappa, \lambda) \triangleq \inf_{\mathbb{P}_i \in \mathcal{F}_j} \mathbb{C}_{\mathbb{P}}^{\kappa} \left[\lambda \tilde{z}_j \right].$$

Tractability of CARA under independence

Example 1

Let
$$\tilde{z}_i \sim \text{Unif}([0,1]), a^j(x) \equiv a_i < 0 \text{ and } a^0(x) \equiv a_0 > 0$$
, then

$$\mathbb{C}_{\mathbb{P}}^{\kappa} [f(\boldsymbol{x}, \tilde{\boldsymbol{z}})] = a_0 - \sum_{j \in [I_z]} \kappa \log \int_0^1 \exp\left(-\frac{a_j z_j}{\kappa}\right) dz_j$$
$$= a_0 - \sum_{j \in [I_z]} \kappa \log\left(\frac{\kappa - \kappa e^{-a_j/\kappa}}{a_j}\right).$$

Tractability of CARA under independence

Example 1

Let $\tilde{z}_i \sim \text{Unif}([0,1])$, $a^j(x) \equiv a_i < 0$ and $a^0(x) \equiv a_0 > 0$, then

$$\mathbb{C}_{\mathbb{P}}^{\kappa} [f(\boldsymbol{x}, \tilde{\boldsymbol{z}})] = a_0 - \sum_{j \in [I_z]} \kappa \log \int_0^1 \exp\left(-\frac{a_j z_j}{\kappa}\right) dz_j$$
$$= a_0 - \sum_{j \in [I_z]} \kappa \log\left(\frac{\kappa - \kappa e^{-a_j/\kappa}}{a_j}\right).$$

In contrast, evaluating an expected concave piecewise linear utility such as

$$\mathbb{E}_{\mathbb{P}}\left[\min\left\{a_0 + \sum_{j \in [I_z]} a_j \tilde{z}_j, 0\right\}\right]$$

is known to be #P-hard.

Tractability of CARA under independence

Example 2

Consider a simple mean-support ambiguity set:

$$\mathcal{G} = \left\{ \mathbb{P} \in \mathcal{P}_0(\mathbb{R}^{I_z}) \left| \begin{array}{l} \tilde{\boldsymbol{z}} \sim \mathbb{P} \\ \mathbb{E}_{\mathbb{P}}\left[\tilde{\boldsymbol{z}}\right] = \boldsymbol{\mu} \\ \mathbb{P}\left[\tilde{\boldsymbol{z}} \in \left[\underline{\boldsymbol{z}}, \bar{\boldsymbol{z}}\right]\right] = 1 \end{array} \right\}.$$

Note that evaluating $\mathbb{C}^\kappa_\mathcal{G}\left[m{a}^ op ilde{m{z}}
ight]$ requires

$$\sup_{\mathbb{P} \in \mathcal{G}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(-\frac{\boldsymbol{a}^{\top} \tilde{\boldsymbol{z}}}{\kappa} \right) \right] = \inf_{\alpha, \boldsymbol{\beta}} \quad \alpha + \boldsymbol{\beta}^{\top} \boldsymbol{\mu}$$
s.t. $\alpha \ge \sup_{\boldsymbol{z} \in [\boldsymbol{z}, \tilde{\boldsymbol{z}}]} \exp \left(\frac{-\boldsymbol{a}^{\top} \boldsymbol{z}}{\kappa} \right) - \boldsymbol{\beta}^{\top} \boldsymbol{z},$

which involves a convex maximization problem.

Theorem 1

Let $g(x,\kappa) = -\kappa \log \sum p_i e^{-x_i/\kappa}$ with $\kappa > 0$ and $p_i > 0$ for all $i \in [I]$, then the closure of $\{(\boldsymbol{x}, \kappa, y) : y \leq g(\boldsymbol{x}, \kappa), \kappa > 0\}$ can be represented by

$$\left\{ (\boldsymbol{x}, \kappa, y) \mid \exists \boldsymbol{q} \in \mathbb{R}^{I} : \sum_{i \in [I]} p_{i}q_{i} \leq \kappa, \ (q_{i}, \kappa, y - x_{i}) \in \mathcal{K}_{\exp} \ \forall i \in [I] \right\}.$$

Theorem 1

Let $g(\boldsymbol{x},\kappa) = -\kappa \log \sum_{i \in [I]} p_i e^{-x_i/\kappa}$ with $\kappa > 0$ and $p_i > 0$ for all $i \in [I]$, then the closure of $\{(\boldsymbol{x},\kappa,y): y \leq g(\boldsymbol{x},\kappa), \kappa > 0\}$ can be represented by

$$\left\{ (\boldsymbol{x}, \kappa, y) \mid \exists \boldsymbol{q} \in \mathbb{R}^{I} : \sum_{i \in [I]} p_{i}q_{i} \leq \kappa, \ (q_{i}, \kappa, y - x_{i}) \in \mathcal{K}_{\exp} \ \forall i \in [I] \right\}.$$

Recall that for an affine function,

$$\mathbb{C}^{\kappa}_{\mathcal{F}}\left[f(oldsymbol{x}, ilde{oldsymbol{z}})
ight] = a^0(oldsymbol{x}) + \sum_{j \in [I_z]} \phi_j(\kappa,a^j(oldsymbol{x})).$$

• $\phi(\kappa, \lambda) \triangleq \mathbb{C}_{\mathcal{G}}^{\kappa}[\lambda \tilde{z}]$ is \mathcal{K}_{exp} -representable for many ambiguity sets. [NS07]

Table 1 Equivalent representations of $\phi(\kappa, \lambda)$ Ambiguity set F $\phi(\kappa, \lambda)$ $\{\mathbb{P} [\tilde{z} \in [-1, 1]] = 1\}$ $-|\lambda|$ P is symmetric $-\kappa \log \left(\frac{e^{\lambda/\kappa} + e^{-\lambda/\kappa}}{2}\right)$ $\mathbb{P}[\tilde{z} \in [-1, 1]] = 1$ P is unimodal w.r.t. 0 $-\kappa \log \int_{0}^{1} e^{s|\lambda|/\kappa} ds$ $\mathbb{P}[\tilde{z} \in [-1, 1]] = 1$ P is symmetric, $\lambda - \kappa \log \int_{0}^{1} e^{-2\lambda s/\kappa} ds$ unimodal w.r.t. 0 $\mathbb{P}[\tilde{z} \in [-1,1]] = 1$ $\mathbb{E}_{\mathbb{P}}\left[\tilde{z}\right] \in \left[\mu, \overline{\mu}\right]$ $-\kappa \log$ \min $(1+\overline{\mu})e^{-\lambda/\kappa}+(1-\overline{\mu})e^{\lambda/\kappa}$ $-\kappa\log\left(\frac{\delta}{2(\mu+1)}e^{\lambda/\kappa}+\frac{\delta}{2(1-\mu)}e^{-\lambda/\kappa}+\left(1-\frac{\delta}{2(\mu+1)}-\frac{\delta}{2(1-\mu)}\right)e^{-\mu\lambda/\kappa}\right)$ $\mathbb{P}\left[\tilde{z} \in [-1, 1]\right] = 1$ $-\kappa \log$ \min $\left(\frac{(1+\mu)^2 \exp\left(\frac{-(\mu+\sigma^2)\lambda}{(1-\mu)\kappa}\right) + (\sigma^2-\mu^2) \exp(\lambda/\kappa)}{1+2\mu+\sigma^2}\right)$ $\mathbb P$ is symmetric, $-\kappa \log \left(\frac{\sigma^2(e^{\lambda/\kappa} + e^{-\lambda/\kappa})}{2} + 1 - \sigma^2 \right)$

 $\mathbb{P}[\tilde{z} \in [-1, 1]] = 1$

- $\phi(\kappa, \lambda) \triangleq \mathbb{C}_{\mathcal{G}}^{\kappa} [\lambda \tilde{z}]$ is \mathcal{K}_{exp} -representable for many ambiguity sets. [NS07]
- $\qquad \qquad \mathbb{C}^\kappa_{\mathcal{F}}\left[f(\boldsymbol{x},\tilde{\boldsymbol{z}})\right] = a^0(\boldsymbol{x}) + \sum_{j \in [I_z]} \phi_j(\kappa,a^j(\boldsymbol{x})) \text{ is } \mathcal{K}_{\exp}\text{-representable if } a^0(\boldsymbol{x}), \\ a^j(\boldsymbol{x}) \text{ are affine.}$

Concave piecewise affine functions

▶ However, in practice the payoff functions f(x, z) are usually nonlinear in z.

Concave piecewise affine functions

- ▶ However, in practice the payoff functions f(x, z) are usually nonlinear in z.
- ► Consider a concave piecewise affine payoff function

$$f(oldsymbol{x},oldsymbol{z}) = \min_{i \in \mathcal{I}} \left\{ a_i^0(oldsymbol{x}) + \sum_{j \in [I_z]} a_i^j(oldsymbol{x}) z_j
ight\}.$$

lacktriangledown Recall evaluating $\mathbb{C}^\kappa_{\mathbb{P}}[f(x, ilde{z})]$ under known distribution can be $\# \mathrm{P-hard}.$

Concave piecewise affine functions

- ▶ However, in practice the payoff functions f(x,z) are usually nonlinear in z.
- ► Consider a concave piecewise affine payoff function

$$f(oldsymbol{x},oldsymbol{z}) = \min_{i \in \mathcal{I}} \left\{ a_i^0(oldsymbol{x}) + \sum_{j \in [I_z]} a_i^j(oldsymbol{x}) z_j
ight\}.$$

- ▶ Recall evaluating $\mathbb{C}^{\kappa}_{\mathbb{P}}\left[f(x,\tilde{z})\right]$ under known distribution can be #P-hard.
- ► Tractable approximations are needed.

Let
$$\alpha_i = a_i^0(\boldsymbol{x})$$
, $\beta_i^j = a_i^j(\boldsymbol{x})$,

$$\mathbb{C}_{\mathcal{F}}^{\kappa} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_i + \boldsymbol{\beta}_i^{\top} \tilde{\boldsymbol{z}} \right\} \right]$$
$$= \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} + \min_{i \in \mathcal{I}} \{ \alpha_i + (\boldsymbol{\beta}_i - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} \right]$$

$$\mathbb{C}_{\mathcal{F}}^{\kappa} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + \boldsymbol{\beta}_{i}^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
= \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} + \min_{i \in \mathcal{I}} \left\{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq 0} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] + \mathbb{C}_{\mathcal{F}}^{\kappa_{1}} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
(\text{Super-additivity of } \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\tilde{\boldsymbol{v}} \right] \text{ w.r.t. } (\tilde{\boldsymbol{v}}, \kappa) \text{ with } \kappa \geq 0)$$

$$\mathbb{C}_{\mathcal{F}}^{\kappa} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + \boldsymbol{\beta}_{i}^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
= \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} + \min_{i \in \mathcal{I}} \{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] + \mathbb{C}_{\mathcal{F}}^{\kappa_{1}} \left[\min_{i \in \mathcal{I}} \{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} \right] \\
= \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{\max_{i \in \mathcal{I}} \{ -\alpha_{i} - (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} }{\kappa_{1}} \right) \right]$$

$$\mathbb{C}_{\mathcal{F}}^{\kappa} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + \boldsymbol{\beta}_{i}^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
= \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} + \min_{i \in \mathcal{I}} \{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq 0} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] + \mathbb{C}_{\mathcal{F}}^{\kappa_{1}} \left[\min_{i \in \mathcal{I}} \{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} \right] \\
= \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq 0} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{\max_{i \in \mathcal{I}} \{ -\alpha_{i} - (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \} }{\kappa_{1}} \right) \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq 0} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sum_{i \in \mathcal{I}} \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{-\alpha_{i} + (\boldsymbol{\gamma} - \boldsymbol{\beta}_{i})^{\top} \tilde{\boldsymbol{z}} }{\kappa_{1}} \right) \right] \\
(\text{Bound max by sum})$$

$$\mathbb{C}_{\mathcal{F}}^{\kappa} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + \boldsymbol{\beta}_{i}^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
= \mathbb{C}_{\mathcal{F}}^{\kappa} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} + \min_{i \in \mathcal{I}} \left\{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] + \mathbb{C}_{\mathcal{F}}^{\kappa_{1}} \left[\min_{i \in \mathcal{I}} \left\{ \alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right\} \right] \\
= \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{\max_{i \in \mathcal{I}} \left\{ -\alpha_{i} - (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right\} \right\} \right) \right] \\
\geq \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sum_{i \in \mathcal{I}} \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{-\alpha_{i} + (\boldsymbol{\gamma} - \boldsymbol{\beta}_{i})^{\top} \tilde{\boldsymbol{z}}}{\kappa_{1}} \right) \right] \\
= \sup_{\kappa_{0} + \kappa_{1} = \kappa, \kappa \geq \mathbf{0}} \mathbb{C}_{\mathcal{F}}^{\kappa_{0}} \left[\boldsymbol{\gamma}^{\top} \tilde{\boldsymbol{z}} \right] - \kappa_{1} \log \sum_{i \in \mathcal{I}} \exp \left(-\frac{\mathbb{C}_{\mathcal{F}}^{\kappa_{1}} \left[\alpha_{i} + (\boldsymbol{\beta}_{i} - \boldsymbol{\gamma})^{\top} \tilde{\boldsymbol{z}} \right]}{\kappa_{1}} \right) \\$$

ECP approximations

All in all, $\mathbb{C}^{\kappa}_{\mathcal{F}}\left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}})\right]$ has an ECP lower bound

$$\begin{split} \Lambda(\kappa, \boldsymbol{x}) &\triangleq \max r_0 + \rho \\ \text{s.t.} \quad \kappa_0 + \kappa_1 &= \kappa \\ &\sum_{i \in \mathcal{I}} q_i \leq \kappa_1 \\ &(q_i, \kappa_1, \rho - r_i) \in \mathcal{K}_{\text{exp}} \quad \forall i \in \mathcal{I} \\ &\sum_{j \in [I_z]} \phi_j(\kappa_0, \gamma^j) \geq r_0 \\ &\alpha_i + \sum_{j \in [I_z]} \phi_j(\kappa_1, \beta_i^j - \gamma^j) \geq r_i \quad \forall i \in \mathcal{I} \\ &\boldsymbol{\gamma} \in \mathbb{R}^{I_z}, \boldsymbol{r} \in \mathbb{R}^{1+N}, \boldsymbol{\kappa} \in \mathbb{R}^2_+, \rho \in \mathbb{R}, \boldsymbol{q} \in \mathbb{R}^N \end{split}$$

if $a_i^0(\boldsymbol{x})$ and $a_i^j(\boldsymbol{x})$ are affine.

Properties of the approximation

Theorem 2

For any $x \in \mathcal{X}$, $\Lambda(\kappa, x)$ is nondecreasing in $\kappa \in [0, \infty]$ and satisfies $\Lambda(\kappa, x) \geq \inf_{\mathbf{z} \in \mathcal{Z}} f(\mathbf{x}, \mathbf{z})$. Moreover, $\mathbb{C}^{\kappa}_{\mathcal{F}}[f(\mathbf{x}, \tilde{\mathbf{z}})] = \Lambda(\kappa, x)$ if there exists some $i^* \in \mathcal{I}$ such that

$$a_{i^*}^0(\boldsymbol{x}) + \sum_{j \in [I_z]} a_{i^*}^j(\boldsymbol{x}) z_j \le a_i^0(\boldsymbol{x}) + \sum_{j \in [I_z]} a_i^j(\boldsymbol{x}) z_j \qquad \forall \boldsymbol{z} \in \mathcal{Z}, i \in \mathcal{I}.$$

Cases of good approximation:

- ▶ Low risk tolerance κ
- ▶ Low coefficient of variations among the payoff components

Comparison with Monte-Carlo approximation

Approximate
$$\mathbb{C}^{\kappa}_{\mathbb{P}}\left[\min_{i\in[N]}\left\{oldsymbol{a}_{i}^{ op} ilde{oldsymbol{z}}\right\}
ight]$$
 where $ilde{z}_{j}\sim\mathrm{Unif}([0,1])$

Figure: Comparison of our bound and Monte-Carlo approximation (10^6 samples) for $\kappa \geq 0.25$

Comparison with Monte-Carlo approximation

Approximate
$$\mathbb{C}_{\mathbb{P}}^{\kappa}\left[\min_{i\in[N]}\left\{\boldsymbol{a}_{i}^{\top}\tilde{\boldsymbol{z}}\right\}
ight]$$
 where $\tilde{z}_{j}\sim\mathrm{Unif}([0,1])$

Figure: Ratio of Monte-Carlo approximation to our bound for $\kappa \leq 0.2$ at N=1 where our bound is exact while Monte-Carlo is upward biased

Consider the two-stage problem with fixed recourse

$$\begin{split} f(\boldsymbol{x}, \boldsymbol{z}) = & \max_{\boldsymbol{y}} & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & \text{s.t.} & \boldsymbol{b}_i^{\top} \boldsymbol{y} \leq a_i^0(\boldsymbol{x}) + \boldsymbol{a}_i^{\top}(\boldsymbol{x}) \boldsymbol{z} & \forall i \in \mathcal{I}, \\ & \boldsymbol{y} \in \mathbb{R}^{I_y} \end{split}$$

where y is the recourse decision adaptive to uncertainty realization.

Consider the two-stage problem with fixed recourse

$$\begin{split} f(\boldsymbol{x}, \boldsymbol{z}) = & \max_{\boldsymbol{y}} & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & \text{s.t.} & \boldsymbol{b}_{i}^{\top} \boldsymbol{y} \leq a_{i}^{0}(\boldsymbol{x}) + \boldsymbol{a}_{i}^{\top}(\boldsymbol{x}) \boldsymbol{z} & \forall i \in \mathcal{I}, \\ & \boldsymbol{y} \in \mathbb{R}^{I_{y}} \end{split}$$

where y is the recourse decision adaptive to uncertainty realization.

► Assume no here-and-now variable in objective w.l.o.g.

Consider the two-stage problem with fixed recourse

$$\begin{split} f(\boldsymbol{x}, \boldsymbol{z}) = & \max_{\boldsymbol{y}} & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & \text{s.t.} & \boldsymbol{b}_i^{\top} \boldsymbol{y} \leq a_i^0(\boldsymbol{x}) + \boldsymbol{a}_i^{\top}(\boldsymbol{x}) \boldsymbol{z} & \forall i \in \mathcal{I}, \\ & \boldsymbol{y} \in \mathbb{R}^{I_y} \end{split}$$

where y is the recourse decision adaptive to uncertainty realization.

- Assume no here-and-now variable in objective w.l.o.g.
- ightharpoonup Assume $b_i \neq 0$ w.l.o.g.

Consider the two-stage problem with fixed recourse

$$\begin{split} f(\boldsymbol{x}, \boldsymbol{z}) = & \max_{\boldsymbol{y}} & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & \text{s.t.} & \boldsymbol{b}_{i}^{\top} \boldsymbol{y} \leq a_{i}^{0}(\boldsymbol{x}) + \boldsymbol{a}_{i}^{\top}(\boldsymbol{x}) \boldsymbol{z} & \forall i \in \mathcal{I}, \\ & \boldsymbol{y} \in \mathbb{R}^{I_{y}} \end{split}$$

where y is the recourse decision adaptive to uncertainty realization.

- Assume no here-and-now variable in objective w.l.o.g.
- ightharpoonup Assume $b_i \neq 0$ w.l.o.g.
- Assume inequality constraints only w.l.o.g.

Consider the two-stage problem with fixed recourse

$$\begin{split} f(\boldsymbol{x}, \boldsymbol{z}) = & \max_{\boldsymbol{y}} & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & \text{s.t.} & \boldsymbol{b}_i^{\top} \boldsymbol{y} \leq a_i^0(\boldsymbol{x}) + \boldsymbol{a}_i^{\top}(\boldsymbol{x}) \boldsymbol{z} & \forall i \in \mathcal{I}, \\ & \boldsymbol{y} \in \mathbb{R}^{I_y} \end{split}$$

where y is the recourse decision adaptive to uncertainty realization.

- Assume no here-and-now variable in objective w.l.o.g.
- ightharpoonup Assume $b_i
 eq 0$ w.l.o.g.
- ► Assume inequality constraints only w.l.o.g.

Note: Generalize the concave piecewise affine payoff function where $I_y=1,\ c=1,$ and $b_i=1,\ i\in\mathcal{I}.$

► A multi-deflected linear decision rule (MLDR)

$$\hat{m{y}}(m{z}) riangleq ar{m{y}}(m{z}) + \sum_{\ell \in [m]} m{y}_*^\ell \left(\max_{i \in \mathcal{I}_\ell^o} \left\{ rac{h_i(m{x}, ar{m{y}}(m{z}), m{z})}{\|m{b}_i\|}
ight\}
ight)^+.$$

where

$$egin{aligned} ar{m{y}}(m{z}) & riangleq m{y}^0 + m{Y}m{z} \ h_i(m{x},m{y},m{z}) & riangleq m{b}_i^ op m{y} - a_i^0(m{x}) - m{a}_i^ op(m{x})m{z} & orall i \in \mathcal{I}. \end{aligned}$$

► A multi-deflected linear decision rule (MLDR)

$$\hat{y}(z) riangleq ar{y}(z) + \sum_{\ell \in [m]} oldsymbol{y}_*^\ell \left(\max_{i \in \mathcal{I}_\ell^o} \left\{ rac{h_i(oldsymbol{x}, ar{y}(oldsymbol{z}), oldsymbol{z})}{\|oldsymbol{b}_i\|}
ight\}
ight)^+.$$

where y_*^{ℓ} and \mathcal{I}_{ℓ}^o are chosen as follows:

Solve for each $i \in \mathcal{I}$,

$$\begin{aligned} \max_{\boldsymbol{y} \in \mathbb{R}^{I_{\boldsymbol{y}}}} & & \boldsymbol{c}^{\top} \boldsymbol{y} \\ & & \boldsymbol{b}_{k}^{\top} \boldsymbol{y} \leq 0 \\ & & & \boldsymbol{b}_{i}^{\top} \boldsymbol{y} = -\|\boldsymbol{b}_{i}\| \end{aligned}$$

and denote \boldsymbol{y}_*^i as its optimal solution if feasible.

▶ Partition feasible index set

$$\mathcal{I}^o = \bigcup_{\ell \in [m]} \mathcal{I}^o_\ell$$

such that $m{y}_*^{i_1} = m{y}_*^{i_2}$ if and only if i_1 and i_2 are in the same \mathcal{I}_ℓ^o .

► A multi-deflected linear decision rule (MLDR)

$$\hat{m{y}}(m{z}) riangleq ar{m{y}}(m{z}) + \sum_{\ell \in [m]} m{y}_*^\ell \left(\max_{i \in \mathcal{I}_\ell^o} \left\{ rac{h_i(m{x}, ar{m{y}}(m{z}), m{z})}{\|m{b}_i\|}
ight\}
ight)^+.$$

▶ Better than previous deflected LDR in [CSSZ08]

► A multi-deflected linear decision rule (MLDR)

$$\hat{m{y}}(m{z}) riangleq ar{m{y}}(m{z}) + \sum_{\ell \in [m]} m{y}_*^\ell \left(\max_{i \in \mathcal{I}_\ell^o} \left\{ rac{h_i(m{x}, ar{m{y}}(m{z}), m{z})}{\|m{b}_i\|}
ight\}
ight)^+.$$

- ▶ Better than previous deflected LDR in [CSSZ08]
- \blacktriangleright Can replicate optimal decision rule under complete recourse with $I_y=1$

► A multi-deflected linear decision rule (MLDR)

$$\hat{m{y}}(m{z}) riangleq ar{m{y}}(m{z}) + \sum_{\ell \in [m]} m{y}_*^\ell \left(\max_{i \in \mathcal{I}_\ell^o} \left\{ rac{h_i(m{x}, ar{m{y}}(m{z}), m{z})}{\|m{b}_i\|}
ight\}
ight)^+.$$

- ▶ Better than previous deflected LDR in [CSSZ08]
- \blacktriangleright Can replicate optimal decision rule under complete recourse with $I_y=1$
- ▶ Obtain ECP lower bound based on approximation for concave piecewise affine functions.

A multi-period consumption model

Given $\boldsymbol{\xi}_t \triangleq (\boldsymbol{z}_1,...,\boldsymbol{z}_t)$,

$$\begin{aligned} \max_{\substack{\boldsymbol{x} \in \mathcal{X}, \\ \boldsymbol{y}_1, \dots, \boldsymbol{y}_T}} & \quad \mathbb{C}_{\mathcal{F}}^{\kappa, \boldsymbol{\theta}} \left[\boldsymbol{c}_1^{\top} \boldsymbol{y}_1(\tilde{\boldsymbol{\xi}}_1), \dots, \boldsymbol{c}_T^{\top} \boldsymbol{y}_T(\tilde{\boldsymbol{\xi}}_T) \right] \\ \text{s.t.} & \quad \sum_{\tau \in [t]} \boldsymbol{b}_{t, i, \tau}^{\top} \boldsymbol{y}_{\tau}(\boldsymbol{\xi}_{\tau}) \leq a_{t, i}^{0}(\boldsymbol{x}) + \boldsymbol{a}_{t, i}^{\top}(\boldsymbol{x}) \boldsymbol{\xi}_t & \forall t \in [T], \ i \in \mathcal{I}_t, \ \boldsymbol{z} \in \mathcal{Z} \\ \boldsymbol{y}_t \in \mathcal{R}^{I_{\boldsymbol{\xi}_t}, I_{\boldsymbol{y}_t}} & \forall t \in [T]. \end{aligned}$$

where the multi-period ambiguity-averse CARA certainty equivalent

$$\mathbb{C}_{\mathcal{F}}^{\kappa,\boldsymbol{\theta}}\left[\tilde{\boldsymbol{v}}\right] \triangleq \left\{ \begin{array}{ll} \min\limits_{t \in [T]: \theta_{t} > 0} \left\{ \inf\limits_{\mathbb{P} \in \mathcal{F}} \operatorname{ess\,inf}_{\mathbb{P}}\left[\tilde{v}_{t}\right] \right\} & \text{if } \kappa = 0 \\ \sum\limits_{t \in [T]} \theta_{t} \inf\limits_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[\tilde{v}_{t}\right] & \text{if } \kappa = \infty \\ -\kappa \log \left(\sum\limits_{t \in [T]} \theta_{t} \sup\limits_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[\exp\left(-\frac{\tilde{v}_{t}}{\kappa}\right) \right] \right) & \text{if } \kappa \in (0, \infty). \end{array} \right.$$

A multi-period consumption model

Given $\boldsymbol{\xi}_t \triangleq (\boldsymbol{z}_1,...,\boldsymbol{z}_t)$,

where the multi-period ambiguity-averse CARA certainty equivalent

$$\mathbb{C}_{\mathcal{F}}^{\kappa,\boldsymbol{\theta}}\left[\tilde{\boldsymbol{v}}\right] \triangleq \left\{ \begin{array}{ll} \min\limits_{t \in [T]:\theta_{t}>0} \left\{\inf\limits_{\mathbb{P} \in \mathcal{F}} \operatorname{ess}\inf_{\mathbb{P}}\left[\tilde{v}_{t}\right]\right\} & \text{if } \kappa = 0 \\ \sum\limits_{t \in [T]} \theta_{t}\inf\limits_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[\tilde{v}_{t}\right] & \text{if } \kappa = \infty \\ -\kappa\log\left(\sum\limits_{t \in [T]} \theta_{t}\sup\limits_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}\left[\exp\left(-\frac{\tilde{v}_{t}}{\kappa}\right)\right]\right) & \text{if } \kappa \in (0,\infty). \end{array} \right.$$

➤ Multi-period MLDR ⇒ Tractable ECP approximation

- ▶ Initial inventory x_1 , wealth w_1
- ▶ In each period t = 1, ..., T,

- ▶ Initial inventory x_1 , wealth w_1
- ▶ In each period t = 1, ..., T,
 - ▶ Order up to $y_t \ge x_t$ with ordering cost $c_t(y_t x_t)$

- ▶ Initial inventory x_1 , wealth w_1
- ln each period t = 1, ..., T,
 - ▶ Order up to $y_t \ge x_t$ with ordering cost $c_t(y_t x_t)$
 - ▶ Uncertain demand \tilde{z}_t realizes, obtain profit subtracting holding and backlogging cost $p_t \tilde{z}_t h(y_t \tilde{z}_t)^+ b(\tilde{z}_t y_t)^+$

- ▶ Initial inventory x_1 , wealth w_1
- ln each period t = 1, ..., T,
 - ▶ Order up to $y_t \ge x_t$ with ordering cost $c_t(y_t x_t)$
 - ▶ Uncertain demand \tilde{z}_t realizes, obtain profit subtracting holding and backlogging cost $p_t\tilde{z}_t h(y_t \tilde{z}_t)^+ b(\tilde{z}_t y_t)^+$
 - ▶ Determine consumption level f_t and obtain utility $1 e^{-f_t/\kappa}$

- ▶ Initial inventory x_1 , wealth w_1
- ln each period t = 1, ..., T,
 - ▶ Order up to $y_t \ge x_t$ with ordering cost $c_t(y_t x_t)$
 - ▶ Uncertain demand \tilde{z}_t realizes, obtain profit subtracting holding and backlogging cost $p_t\tilde{z}_t h(y_t \tilde{z}_t)^+ b(\tilde{z}_t y_t)^+$
 - ▶ Determine consumption level f_t and obtain utility $1 e^{-f_t/\kappa}$
 - Inventory update:

$$x_{t+1} = y_t - \tilde{z}_t$$

A consumption model [CSSLS07]:

- ▶ Initial inventory x_1 , wealth w_1
- ln each period t = 1, ..., T,
 - ▶ Order up to $y_t \ge x_t$ with ordering cost $c_t(y_t x_t)$
 - ▶ Uncertain demand \tilde{z}_t realizes, obtain profit subtracting holding and backlogging cost $p_t\tilde{z}_t h(y_t \tilde{z}_t)^+ b(\tilde{z}_t y_t)^+$
 - ▶ Determine consumption level f_t and obtain utility $1 e^{-f_t/\kappa}$
 - Inventory update:

$$x_{t+1} = y_t - \tilde{z}_t$$

Wealth update:

$$w_{t+1} = (w_t + q_t - f_t)(1 + \beta)$$

where the income

$$q_t = p_t \tilde{z}_t - h(y_t - \tilde{z}_t)^+ - b(\tilde{z}_t - y_t)^+ - c_t(y_t - \tilde{z}_t)$$

ightharpoonup Assume $w_{T+1}=0$.

$$\begin{aligned} \max_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{f},\boldsymbol{w},\boldsymbol{q}} \quad \mathbb{E}_{\mathbb{P}} \left[\sum_{t \in [T]} \theta_t (1 - e^{-f_t(\tilde{\boldsymbol{\xi}}_t)/\kappa}) \right] \\ \text{s.t.} \quad f_t(\tilde{\boldsymbol{\xi}}_t) = w_t(\tilde{\boldsymbol{\xi}}_{t-1}) - \frac{w_{t+1}(\boldsymbol{\xi}_t)}{1 + \beta} + q_t(\tilde{\boldsymbol{\xi}}_t) & \forall t \in [T] \\ q_t(\tilde{\boldsymbol{\xi}}_t) \leq p_t \tilde{z}_t - h(y_t(\tilde{\boldsymbol{\xi}}_{t-1}) - \tilde{z}_t) - c_t(y_t(\tilde{\boldsymbol{\xi}}_{t-1}) - x_t(\tilde{\boldsymbol{\xi}}_{t-1})) & \forall t \in [T] \\ q_t(\tilde{\boldsymbol{\xi}}_t) \leq p_t \tilde{z}_t - b(\tilde{z}_t - y_t(\tilde{\boldsymbol{\xi}}_{t-1})) - c_t(y_t(\tilde{\boldsymbol{\xi}}_{t-1}) - x_t(\tilde{\boldsymbol{\xi}}_{t-1})) & \forall t \in [T] \\ y_t(\tilde{\boldsymbol{\xi}}_{t-1}) \geq x_t(\tilde{\boldsymbol{\xi}}_{t-1}) & \forall t \in [T] \\ x_{t+1}(\tilde{\boldsymbol{\xi}}_t) = y_t(\tilde{\boldsymbol{\xi}}_{t-1}) - \tilde{z}_t & \forall t \in [T-1] \\ w_{T+1}(\tilde{\boldsymbol{\xi}}_T) = 0 \end{aligned}$$

- ► Approach 1: dynamic programming (DP)
- ► Approach 2: Fourier-Motzkin elimination + multi-period MLDR

▶ Similar parameter setting as in [CSSLS07]:

$$h = 6$$
, $b = 3$, $c_t = 1$, $p_t = 8$, $\beta = 0.1$ for all $t \in [T]$

- Similar parameter setting as in [CSSLS07]: $h = 6, b = 3, c_t = 1, p_t = 8, \beta = 0.1$ for all $t \in [T]$
- ightharpoonup Risk tolerance $\kappa \in \{0.25, 1, 4, 16, 64, 256\}$

- Similar parameter setting as in [CSSLS07]: $h = 6, b = 3, c_t = 1, p_t = 8, \beta = 0.1$ for all $t \in [T]$
- ightharpoonup Risk tolerance $\kappa \in \{0.25, 1, 4, 16, 64, 256\}$
- ▶ Demand data: $S \in \{20, 200\}$ i.i.d. samples from uniform distribution over $\{0, 1, 2, ..., 20\}$.

- Similar parameter setting as in [CSSLS07]: $h = 6, b = 3, c_t = 1, p_t = 8, \beta = 0.1$ for all $t \in [T]$
- ▶ Risk tolerance $\kappa \in \{0.25, 1, 4, 16, 64, 256\}$
- ▶ Demand data: $S \in \{20, 200\}$ i.i.d. samples from uniform distribution over $\{0, 1, 2, ..., 20\}$.
- ➤ Solving the problem by (i) DP; (ii) MLDR under empirical distribution of S samples, then evaluate the solution (policy) over 10,000 samples generated from the same distribution

- Similar parameter setting as in [CSSLS07]: $h = 6, b = 3, c_t = 1, p_t = 8, \beta = 0.1$ for all $t \in [T]$
- Risk tolerance $\kappa \in \{0.25, 1, 4, 16, 64, 256\}$
- ▶ Demand data: $S \in \{20, 200\}$ i.i.d. samples from uniform distribution over $\{0, 1, 2, ..., 20\}$.
- ➤ Solving the problem by (i) DP; (ii) MLDR under empirical distribution of S samples, then evaluate the solution (policy) over 10,000 samples generated from the same distribution
- ▶ The results are averaged over 50 random instances.

Figure: Multi-peirod CARA certainty equivalent under different risk tolerance parameters

Summary

► A robust decision model with CARA preference

$$\max_{\boldsymbol{x} \in \mathcal{X}} \mathbb{C}^{\kappa}_{\mathcal{F}} \left[f(\boldsymbol{x}, \tilde{\boldsymbol{z}}) \right]$$

- ► Tractable ECP approximations for a hierarchy of payoff functions:
 - ► Affine perturbations
 - Concave piecewise affine perturbations
 - ▶ Two-stage optimization with fixed recourse
- ▶ Extend to a multi-period consumption model
- ▶ Robust performance in data-driven setting when risk tolerance is low.

Extensions and future work

- ▶ Other entropy related decision criteria such as entropic value-at-risk, entropic risk measure.
- ► Faster computation for large-scale ECP (with integer constraints)
- ► Handle correlated uncertain factors in robust CARA optimization
- ► Stronger probability bound of functions of (partially) independent random variables

Dr. Melvyn Sim

Dr. Kim-Chuan Toh

Dr. Zhenyu Hu

Dr. Napat Rujeerapaiboon

▶ Prof. Teo Chung-Piaw

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students
- ► IORA faculty members

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students
- ► IORA faculty members
- ► IORA staff

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students
- ► IORA faculty members
- ► IORA staff
- Research collaborators

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students
- ► IORA faculty members
- ► IORA staff
- Research collaborators
- ► Sun Qinghe

- ▶ Prof. Teo Chung-Piaw
- ► IORA & DAO students
- ► IORA faculty members
- ► IORA staff
- Research collaborators
- ► Sun Qinghe
- My family

References I

- James L Corner and Patricia D Corner, *Characteristics of decisions in decision analysis practice*, Journal of the Operational Research Society **46** (1995), no. 3, 304–314.
- Xin Chen, Melvyn Sim, David Simchi-Levi, and Peng Sun, *Risk aversion in inventory management*, Operations Research **55** (2007), no. 5. 828–842.
- Xin Chen, Melvyn Sim, Peng Sun, and Jiawei Zhang, A linear decision-based approximation approach to stochastic programming, Operations Research **56** (2008), no. 2, 344–357.
- Itzhak Gilboa and David Schmeidler, *Maxmin expected utility with non-unique prior*, Journal of Mathematical Economics **18** (1989), no. 2, 141–153.
- Arkadi Nemirovski and Alexander Shapiro, *Convex approximations of chance constrained programs*, SIAM Journal on Optimization **17** (2007), no. 4, 969–996.

References II

John Von Neumann and Oskar Morgenstern, *Theory of games and economic behavior (commemorative edition)*, Princeton university press, 1947.