Tarea introducción al C++

Descripción.

A continuación, se presentan problemas sencillos que te permitirán poner en práctica conceptos de programación muy importantes.

Diseña e implementa utilizando <u>estándares seguros de programación (consulta el documento en recursos de aprendizaje)</u>, un **programa en lenguaje C++** que resuelva los problemas que se plantean a continuación.

1. Se usa una cantidad conocida como índice de masa corporal (*IMC*) para calcular el riesgo de tener problemas de salud relacionadas con el peso. El *IMC* se calcula con la fórmula siguiente:

$$IMC = \frac{w}{h^2}$$

Donde w es el peso en kilogramos y h es la altura en metros. Escribe una aplicación que acepte el peso y la altura (ambos enteros) y **calcule y muestre el** *IMC*.

- 2. Según los estándares internacionales, se manejan diferentes unidades de medición para manejo de temperaturas. Familiarízate con las más comunes y soluciona el siguiente problema. Se requiere convertir grados Celsius a grados Farenheit. El programa deberá solicitar al usuario un valor inicial en grados Celsius y calcular e imprimir su conversión en grados Farenheit. Utiliza un mensaje de salida "X grados Celsius equivalen a Y grados Farenheit". Asegura que los datos numéricos desplieguen un máximo de 2 dígitos decimales.
- 3. Cuando dices que tienes 18 años, estás diciendo que la Tierra ha dado 18 vueltas al Sol. Puesto que a otros planetas les cuesta más o menos días que a la Tierra dar una vuelta alrededor del Sol, tu edad sería distinta en otro planeta. Puedes calcular tu edad en otros planetas mediante la fórmula:

$$y = \frac{x \times 365}{d}$$

Donde x es la edad que tendrías en la Tierra, y sería tu edad en otro planeta y d es el número de días de la Tierra que el planeta Y viaja alrededor del Sol. Escribe una aplicación que reciba como entrada una edad del usuario en la Tierra e imprima su edad en Mercurio, Venus, Júpiter y Saturno. Los valores para d aparecen en la siguiente tabla:

Planeta	d = número aproximado de días que la Tierra que tarda este planeta en viajas alrededor del sol
Mercurio	88
Venus	225
Júpiter	4380
Saturno	10767

4. Escribe una aplicación para resolver ecuaciones cuadráticas de la forma:

$$Ax^2 + Bx + C = 0$$

Tarea introducción al C++

Donde los coeficientes A, B, y C son números reales proporcionados por el usuario. Las soluciones para estas ecuaciones se derivan de la fórmula:

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Para este ejercicio, puedes asumir que A $\neq 0$ y que la relación $B^2 \geq 4AC$ por lo que habrá soluciones con números reales para x.

5. Si inviertes *P* euros con una tasa de interés de *R* por 100 compuesto anual, en *N* años tu interés debería crecer con la fórmula:

$$\frac{P\left(1-\left(\frac{R}{100}\right)^{N+1}\right)}{1-\left(\frac{R}{100}\right)} \text{ euros}$$

Escribe una aplicación que acepte *P*, *R* y *N* y calcule y muestre la cantidad de dinero ganada después de *N* años.