Ciência das Redes Centralidades

Ricardo Luders Thiago H Silva

Centralidades

Descobrir qual é o nó mais central é importante:

- Pode ajudar a disseminar informações na rede mais rapidamente
- Pode ajudar a parar epidemias
- Pode ajudar a proteger a rede contra quebras

Centralidades

Centralidade pode ter vários significados:

Centralidade de grau

Quando o número de conexões é a melhor medida de centralidade?

- pessoas que farão favores a você

- pessoas com quem você pode conversar / tomar uma cerveja

Normalização

Dividir pelo número máximo de nós (N-1)

Centralidade de grau

Rede de interação de atores

Matriz

moviegalaxies.com

Centralidade de grau

Grau de entrada

Grau de entrada

Grau de entrada

Largura da aresta representa \$

Cor do nó representa a razão de exportação/importação: mais azul = maior

Qual país tem um grau de saída baixo mas exporta uma quantidade significante?

- Arábia saudita
- Japão
- Iraq
- USA
- Venezuela

Qual país tem um grau de saída baixo mas exporta uma quantidade significante?

- Arábia saudita **→**
- Japão
- Iraq
- USA
- Venezuela

Rede de exportação considerando somente o material bruto

Singapura agora é primariamente um importador

Quando a Centralidade de Graus não é tão boa?

- Capacidade de intermediar entre grupos
- Probabilidade de que as informações originadas em qualquer lugar da rede cheguem até você ...

Intuição: quantos pares de indivíduos teriam que passar por você para se atingirem com um número mínimo de saltos?

Quem tem intermediação mais alta, X ou Y?

$$g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

 σ_{st} é o número total de menores caminhos do nó s para o nó t

 $\sigma_{st}(v)$ é o número de menores caminhos que passam por v

Quem tem o maior valor de intermediação x ou y?

Quem tem o maior valor de intermediação x ou y?

A não fica entre nenhum outro par B fica entre (A-X), (A-Y), (A-Z) X fica entre (A-Y), (A-Z), (B-Y), (B-Z)

Note que não há caminhos alternativos para esses pares tomarem, então x recebe todo o crédito

Sem normalização

C e D possuem betweenness 1 porque ambos são caminhos mais curtos para (A,E) e (B,E), assim compartilham o crédito:

$$\frac{1}{2} + \frac{1}{2} = 1$$

Qual é o betweenness para E?

Intermediação / Betweenness centrality

Exemplo do Facebook (acadêmico – um usuário específico)

Intermediação / Betweenness centrality

Encontre um nó que tenha alta intermediação, mas baixo grau Encontre um nó que tenha baixa intermediação, mas alto grau

Proximidade / Closeness centrality

- E se não for tão importante ter muitos amigos diretos?
- Ou estar "entre" outros

Mas ainda querer estar no "meio" das coisas, não muito longe do centro

Proximidade / Closeness centrality

A centralidade de proximidade de um nó **u** é o recíproco da distância média do caminho mais curto para **u** em todos os **n-1** nós alcançáveis.

$$C(u) = rac{n-1}{\sum_{v=1}^{n-1} d(v,u)}$$

onde d (v, u) é a distância do caminho mais curto entre v e u, e n é o número de nós que podem alcançar u.

Proximidade / Closeness centrality - Exemplo

$$C(A) = 4 / (1+2+3+4) = 0,4$$

Proximidade / Closeness centrality - Exemplo

$$C(A) = 6 / (1+1+2+3+4+4) = 0,4$$

Exemplo - Facebook

Exemplo - Facebook

Qual nó tem grau relativamente alto, mas baixa proximidade?

Centralidade de autovetor (eigenvector) e variantes

Eigenvector centrality:

$$x_i = \sum_j A_{ij} x_j$$

Katz centrality:

$$x_i = lpha \sum_j A_{ij} x_j + eta$$

Page Rank centrality:

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{out}} + \beta$$

Autovetor / Eigenvector centrality

A centralidade de grau depende de haver muitas conexões: mas e se essas conexões estiverem bem isoladas?

Um nó central deve ser aquele conectado a nós poderosos

A centralidade de autovetor para o nó i é o i-ésimo elemento do autovetor x do maior autovalor λ , definido pela equação:

$$Ax = \lambda x$$

onde $\bf A$ é a matriz de adjacência do grafo $\bf G$ com autovalor $\bf \lambda$

Em virtude do teorema de Perron-Frobenius, há uma solução única, cujas entradas são todas positivas, se λ for o maior autovalor da matriz de adjacência A

Autovetor / Eigenvector centrality

Suponha que x_i é a centralidade de autovetor do nó i. A equação abaixo traduz a ideia de que o nó i tem maior centralidade se está conectado (vizinhos) a nós de maior centralidade de autovetor:

$$x_i' = \sum_j A_{ij} x_j$$
, ou na forma matricial: $\mathbf{x'} = \mathbf{A} \mathbf{x}$,

Suponha um procedimento iterativo x(t)=A A ... (Ax); t vezes: $\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0)$.

Escrevendo x(0) como combinação linear dos autovetores:

$$\mathbf{x}(t) = \mathbf{A}^t \sum_i c_i \mathbf{v}_i = \sum_i c_i \kappa_i^t \mathbf{v}_i = \kappa_1^t \sum_i c_i \left[\frac{\kappa_i}{\kappa_1} \right]^t \mathbf{v}_i$$
 autovetor i

Pergunta: x(t) converge para $t \to \infty$?

Sim, sobra apenas o autovetor do maior autovalor: $\mathbf{x}(t)
ightarrow c_1 \kappa_1^t \mathbf{v}_1$

Logo, a centralidade de autovetor do nó i é proporcional ao autovetor do maior autovalor

$$\mathbf{A}\mathbf{x} = \kappa_1\mathbf{x}.$$

major autovalor

Autovetor / Eigenvector centrality

O quão central você é depende do quão central os seus vizinhos são

A ideia é repetir esse processo várias vezes até que não tenha alteração significativa

Autovetor / Eigenvector centrality - Exemplo

Autovetor / Eigenvector centrality

Devemos ter cautela com o uso em grafos direcionados

Funciona para grafos fortemente conectados

Problema para grafos fracamente conectados

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Power leak

Calcular:

Novo poder = soma do poder dos meus vizinhos.

	Iterações							
nó	0	1	2	3	4	5	6	
a	1							
b	1							
С	1							
d	1							
е	1							
f	1							

Power leak

Calcular:

Novo poder = soma do poder dos meus vizinhos.

	Iterações							
nó	0	1	2	3	4	5	6	
a	1	0	0	0	0	0	0	
b	1	1	0	0	0	0	0	
С	1	2	3	2	2	1	0	
d	1	1	1	0	0	0	0	
е	1	1	1	1	0	0	0	
f	1	2	2	2	1	0	0	

Power leak

Calcular:

Novo poder = soma do poder dos meus vizinhos.

		Iterações						a
nó	0	1	2	3	4	5	6	b
a	1	0	0	0	0	0	0	
	Vá	rias r	edes	reais	pos	suem	essa	a característica,
b								itações
								3
С	1	2	3	2	2	1	0	
d	1	1	1	0	0	0	0	- C
C.	_	_	_					
е	1	1	1	1	0	0	0	T
f	1	2	2	2	1	0	0	Grafo acíclico
								Graio aciciico

Adaptações para o Power leak – Katz centrality

Dar a cada vértice um pequeno valor "grátis". Precisamos escolher constantes de α e β

A katz centrality do nó i é:

$$x_i = lpha \sum_j A_{ij} x_j + eta$$
 Garante centralidade não zero

Termo de atualização do Eigenvector

Por conveniência $\beta=1$

$$lpha < rac{1}{\lambda_{ ext{max}}}$$

para que a centralidade de Katz seja calculada corretamente

Katz centrality - exemplo

0,31 0,47 1 0,55 0,59

Análise de link: PageRank centrality

Antes de falar de Pagerank, vamos dar um passo para trás no tempo

Como organizar a WWW?

A Web indexada contém pelo menos 3,82 bilhões de páginas (setembro de 2021)

Grande desafio é achar a informação que queremos (e a sua reputação!)

https://www.worldwidewebsize.com/

Na década de 1990

As pessoas estavam se acostumando com o novo mundo da Web

Primeira tentativa de organizar a Web

Vai de acordo com a vida antes da web

Catálogos telefônicos

Propaganda no Cadê? | Centro de Informações | Política de Privacidade

Informação organizada por humanos manualmente em diretórios Não escala! Uso de diretórios não é eficiente de usar.

Segunda tentativa de organizar a Web

Recuperação de informação

Similar ao modelo usado por bibliotecas

Existem problemas.

Em um livro, se tem muitas menções a Chico Buarque, então é provavelmente de interesse de pessoas interessadas em Chico Buarque.

Web é competitiva por atenção!

Na Web, indivíduos podem fazer "mutretas" para gerar atenção para seus sites, como introduzir conteúdo escondido, etc.

Terceira tentativa de organizar a Web

Como determinar se uma página Web é de boa reputação?

Um link é implicitamente um atestado de qualidade para a página alvo

Ranquear as páginas usando a estrutura de links no grafo da Web

Links de páginas "importantes" devem contar mais

PageRank Centrality

Copyright @1998 Google Inc.

Fruto de uma tese de doutorado

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.

PageRank Centrality

Simples modelo de votação:

- Uma página Web é a soma dos votos dos seus links de entrada
- Cada voto por um link é proporcional à importância de sua página
- A importância da fonte é dividida igualmente entre as suas páginas alvo

Problemas

Sink vértices (votos vazam)

Armadilhas (previnem convergência)

PageRank Centrality

Em vez de assumir apenas um sistema de votação simples

PageRank assume a existência de um surfista aleatório

Que clica em links aleatoriamente

As vezes fica entediado e vai para outra página aleatória (teleportação)

A probabilidade de que o surfista aleatório visite uma página é o seu PageRank

PageRank Centrality - Exemplo

Situação provável no tempo 1

Probabilidade de teletransporte = 0,2

0,8 de probabilidade vai ser distribuída entre 8 e 7, o resto vai para os outros.

PageRank Centrality - Exemplo

Situação provável no tempo 1

Probabilidade de teleporte = 0,2

0,8 de probabilidade vai ser distribuída entre 8 e 7, o resto vai para os outros.

PageRank Centrality - Exemplo

Situação provável no tempo 1

Probabilidade de teleporte = 0,2

t=0

t=1

t = 10

0,8 de probabilidade vai ser distribuída entre 8 e 7, o resto vai para os outros.

Faz sentido o 7 ser mais importante?

PageRank intuição

Google aponta para milhões de páginas. Isso faz com que todas as páginas sejam importantes?

Solução:

Uma página deve compartilhar uma fração de sua importância para cada vizinho.

Dividir pelo grau de saída durante a atualização

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{out}} + \beta$$

PageRank intuição

Google aponta para milhões de páginas. Isso faz com que todas as páginas sejam importantes?

Solução:

Uma página deve compartilhar uma fração de sua importância para cada vizinho.

Dividir pelo grau de saída durante a atualização

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{out}} + \beta$$

PageRank intuição

Google aponta para milhões de páginas. Isso faz com que todas as páginas sejam importantes?

Solução:

Uma página deve compartilhar uma fração de sua importância para cada vizinho.

Dividir pelo grau de saída durante a atualização

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{out}} + \beta$$

$$(1 - \alpha) \frac{1}{\tau}$$
 Ideia do teletransporte

Exemplo geral

As pessoas "tweetam" enquanto assistem

The second second	
re you doing?	140
ac mini = :-) – boxee about 18 hours ago	update
Raratequila @BigRed561 oh nah, where is dat? less than 20 seconds ago from web in reply to BigRed561	
tabligherooz VPS از 12.000توبان/اکیک هاست 12.000 از 12.000 انوبان/اکیک هاست less than 20 seconds ago from FriendFeed	ff.im/GahAB
jon_cohen @henryb35 no thanks less than 20 seconds ago from web in reply to henryb35	
AndreJayP @HASstyle420 @duecebigz26 @andre @gogoquedawg @jrdafuture7 @silkybutmilky @cl #4thqtr- aint nuffin star @magicdoom04 ?? less than 20 seconds ago from UberTwitter	
lauramdempsey don't forget, kids; throw your si	upport behind
	tabligherooz VPS از 12.000 توبان/اکیک هاست 12.000 الوجان/اکیک هاست 12.000 الوک الوک الوک الوک الوک الوک الوک الوک

Anatomia de um tweet

Três hashtags: #current # debate08 #tweetdebate

97 minutos de debate + 53 minutos a seguir = 2,5 horas no total.

3.238 tweets de 1.160 pessoas.

- 1.824 tweets de 647 pessoas durante o debate.
- 1.414 tweets de 738 pessoas postam debate.

577 @ menções (reciprocidade!)

- 266 menções durante o debate
- 311 depois.

RT baixo: 24 retuítes no total

- 6 durante
- 18 depois.

Clusters de usuários e tags

Menções no Twitter

Descoberta automática através da centralidade

High Eigenvector Centrality Figures on Twitter from the First US Presidential Debate of 2008.

Twitter User	Eigenvector Centrality	In Degree	Out Degree
@barackobama	0.472	15	0
@newshour	0.427	11	5
@johnmccain	0.277	6	0
@charleswinters	0.223	0	3
@jeremyfranklin	0.223	0	3
@saleemkhan	0.223	0	3
@srubenfeld	0.223	0	3
@msblog	0.221	5	6
@frijole	0.175	0	7

Pontos finais

Várias métricas de centralidade (outras também não mencionadas)

O que o certa métrica traz de informação útil em uma determinada rede?

Em redes direcionadas: grau de entrada, grau de saída, page rank

Pontos finais

Várias métricas de centralidade (outras não mencionadas)

Uma análise é importante: o que o certa métrica representa no seu problema?

Agradecimentos/referências

Kleinberg's book: Chapter 3.

Agradecimentos L. Adamic

M. Newmann. Networks. Oxford University Press. April 2010

Shamma, D. A., Kennedy, L., & Churchill, E. F. (2009, October). Tweet the debates: understanding community annotation of uncollected sources. In Proceedings of the first SIGMM workshop on Social media (pp. 3-10).