가상현실을 활용한 정신장애인 직무교육 시스템 모바일 어플리케이션 최적화

박영찬, 손병훈, 신지현, 황성수 한동대학교 전산전자공학부 e-mail: 21400314@handong.edu

Mobile Application Optimization of Job Education System for the Mentally Disabled Using Virtual Reality

Young-Chan Park, Byeong-Hun Son, Ji-Hyun Shin, Sung-Soo Hwang School of Computer Science, Electrical Engineering Handong Global University

요 약

정신장애인의 직업 재활 훈련을 목적으로 만들어진 가상현실 교육 시스템은 모바일 어플리케이션의 형태로 사용자에게 제공된다. 하지만 이전 시스템이 실제 교육자료로 사용되기에는 영상 재생의 딜레이가 발생하거나 싱크 관련해서 여러 문제가 있었다. 본 연구는 시스템의 최적화 작업을 수행하고 구조를 개선하여 실질적인 교육자료로서 사용될 수 있도록 하고자 하였다.

1. 서론

선행 연구에서 개발되었던 "가상현실을 활용한 정신장애인 바리스타 직무교육 시스템"은 프로그램의 구현에 집중한 반면, 사용자의 실제적인 사용이나 모바일 환경이라는 제약조건을 고려하지 않아 실제 모바일 어플리케이션으로 제공되기에는 여러가지 문제가 있었다.[1] 가상현실은 타 시스템과 다르게 약간의 변화라도 사용자에겐 크게 느껴지기 때문에, 교육자료로서 사용되기 위해서는 안정성 있는 환경의 구현이 우선 되어야한다. 본 연구에서는 스크립트의 최적화 작업과 시스템 구조 개선을 통해 사용자가 안정적으로 직무내용을 학습할 수 있도록 하였다.

2. 스크립트 최적화

2.1 병목 지점 파악

기존 시스템은 내부의 비효율적인 연산으로 인해서 특정 부분에서 재생되던 영상의 프레임이 끊겨 컨텐 츠와 싱크가 일치하지 않는 문제가 있었다. 이 문제 가 프로그램 수행 중 특정 부분에서 연산량이 급증하 기 때문이라는 가정을 하고 해당 부분을 개선해 문제 를 해결하였다.

병목 지점을 찾기 위해서 Unity 내에서 제공하는 Profiler 를 통해서 프로그램을 모니터링 하였고, 실질적인 문제를 발생시킬 것이라고 생각되는 Garbage Collector 와 Script 의 CPU 사용량의 변화를 중점에 두고 관찰하였다. Unity3D Engine 은 메모리 관리의한 부분으로 Garbage Collector 를 사용하는데, Garbage Collector 가 작동할 때 임의의 순간에 프로그램의 수행을 정지시킬 수 있다. 이로 인해 일관된 프레임 속도를 유지할 수 없고, 프레임에 예민한 기

존 시스템의 경우 문제가 될 수 있다.[2]

그림 1. Garbage Collector 의 CPU 사용량

그림 2. Garbage Collector 와 Script 의 CPU 사용량

그림 1 처럼 Garbage Collector 만을 관찰했을 때 특정 부분에서 사용량이 급격히 증가하는 Garbage Collector 스파이크를 확인할 수 있다. 해당 부분이 병목지점이라 가정하고 Script 사용량을 포함해 관찰한 결과 그림 2 처럼 Script 의 CPU 사용량과 Garbage Collector 의 CPU 사용량이 동시에 급격히 증가하는 사실을 확인 할 수 있다.

CPU:30.81ms GPU:0.00ms					
Total	Self	Calls	GC Alloc	Time ms	• Self ms
46.9%	46.9%	2	0 B	14.46	14.46
24.0%	0.0%	1	17.3 KB	7.42	0.00
15.0%	0.3%	1	0 B	4.64	0.10
4.0%	0.0%	1	16.7 KB	1.23	0.00
3.5%	0.0%	1	15.8 KB	1.08	0.00
	Total 46.9% 24.0% 15.0% 4.0%	Total Self 46.9% 46.9% 24.0% 0.0% 15.0% 0.3% 4.0% 0.0%	Total Self Calls 46.9% 46.9% 2 24.0% 0.0% 1 15.0% 0.3% 1 4.0% 0.0% 1	Total Self Calls GC Alloc 46.9% 46.9% 2 0 B 24.0% 0.0% 1 17.3 KB 15.0% 0.3% 1 0 B 4.0% 0.0% 1 16.7 KB	Total Self Calls GC Alloc Time ms 46.9% 46.9% 2 0 B 14.46 24.0% 0.0% 1 17.3 KB 7.42 15.0% 0.3% 1 0 B 4.64 4.0% 0.0% 1 16.7 KB 1.23

그림 3. Garbage Collection 의 발생이 잦은 함수

해당 부분을 병목 지점이라고 판단하고 Profiler 를 통해 확인한 결과 Unity 에디터 자체를 제외하면 주로 Garbage Collector 의 발생이 그림 3 에서 보이는 것처럼 특정 스크립트의 프레임을 업데이트 해주는 Update 함수들에 치중되어 있다.

2.2 Object Caching

기존 Script 에서는 사전에 변수에 대상을 할당하기 보다는 프로그램 실행 중 Update 함수 내에서 객체를 find 해서 할당하는 함수를 사용했다. 프레임마다 많은 연산을 요구하는 Find 함수를 호출하여 많은 연산을 요구했고, 매 프레임마다 변수를 찾아 새로 할당했기 때문에 잦은 Garbage Collection을 발생시켰다. 매 프레임마다 Update 내에서 Find 함수를통해 객체에 접근하기보다는 클래스 내에 멤버 변수에 할당하여 따로 관리하는 Object Caching을 통해프로그램의 연산 량과 Garbage Collection의 호출을줄였다.

3. 스크립트 최적화 결과

3.1 Garbage Collector 호출 빈도 감소

그림 4. 개선 전 Garbage Collector 호출 빈도

그림 5. 개선 후 Garbage Collector 호출 빈도

기존의 Script 에서는 Garbage Collector 가 그림 4의 빈도를 가지고 사용되었지만, Script 최적화 후에는 그림 5에서는 기존보다 적은 빈도로 분산된 프레임에서 호출되는 사실을 확인 할 수 있었다.

4. 시스템 구조 개선

4.1 스크립트 최적화의 한계

Script 개선을 통해 프로그램의 수행능력 향상이 있었지만 문제점들이 해결되지는 못했다. 기존 시스템이 실시간 스트리밍을 통해 사용자에게 컨텐츠를 제공하기 때문에 네트워크 상황에 민감했고, 이 때문에 스크립트의 최적화로 내부적으로 최적화 되었어도 외부적 요인으로 인해 시스템의 안정성이 확보되지 못했다.

4.2 프로그램 구조 개선

가상현실의 영상은 기존 영상 스트리밍과 다르게 360 도 영상을 사용하기 때문에 큰 용량을 가진다. 실시간으로 큰 데이터를 전송하고 처리하는 이전 프로그램을 개선하기 위해 네트워크적인 측면에서 최적화 하기보다는 영상을 온라인 저장소에서 직접 사용자의 기기에 내장에 사용하도록 개선하였다.

네트워크를 최적화를 통해 개선한다면 기존의 시스템을 유지할 수 있고, 사용자 기기의 용량을 고려하지 않아도 된다는 장점이 있지만 여전히 불안하다는 단점이 있었다. 하지만 영상을 내장함으로서 안정적인 서비스를 제공할 수 있고, 오프라인에서도 학습할 수 있다는 장점이 있다. 또한 영상의 개수를 조절하는 알고리즘을 구현함으로서 사용자 기기의 성능을 저하시키지 않도록 했다.

5. 결론

5.1 주요 결과

선행연구에서 구현한 프로그램이 실질적인 교육자료로 사용될 수 있도록 개선하기 위해 스크립트 최적화와 전체 시스템의 개선을 수행했고, 보다 안정적인 서비스를 제공할 수 있게 되었다.

5.2 기대효과

연구단계에 있었던 교육 프로그램을 개선함으로서 실제 교육자료로 활용될 수 있게 되었고, 이로 인해서 선행 연구에서 목표했던 정신장애인의 교육 기회의 확장과 취업률의 상승에 기여할 수 있을 것이다.

5.3 개선 방향

현재 시스템은 360 도 교육 영상을 제외한 여러이미지 및 음성파일을 앱 내부에 내장한 형태이다. 메뉴가 추가될 수록 이러한 자료들이 많아지면기기의 성능을 저하시킬 수 있기 때문에 온라인 저장소에서 가져오는 형태로 구조를 변경하여최적화된 시스템을 구성할 것이다. 또한 학습컨텐츠를 진행하는 알고리즘을 하나로 정형화하여다른 학습 컨텐츠의 추가 과정을 간단히 하여 타분야의 교육에도 적용될 수 있게 할 것이다.

사사의 글

이 논문은 과학기술정보통신부의 소프트웨어중심대학 지원사업 (2017-0-00130)의 지원을 받아 수행하였음.

참고문헌

[1]강현우, 김세인, 문세미, 최민우, 황성수, "가상현실을 활용한 정신장애인 직무교육 시스템," 한국 HCI 학회 학술대회, pp. 764-767, 2018.

[2] Anonymous, UnityDoc,

https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html, 2018.

[3]임다미, 김상연, "가상현실 기반 토탈스테이션 훈련 콘텐츠 개발," 디지털콘텐츠학회논문지, pp. 631-639, 2017.