

Combining XML querying with ontology reasoning: Xcerpt and DIG

Wlodek Drabent

Artur Wilk

Ontology and Rule Integration
Workshop

Athens, GA

November 2006

The problem

- Combining XML queries with ontology queries
- Example
 - XML document containing recipes
 - Ontology
 - classifies ingredients
 - relates ingredients with vitamins
 - Queries
 - Find gluten free recipes (answer filtering)
 - List recipes together with vitamins they contain (data enhancement)
- Goal: a hybrid system answering combined queries

The approach

- XML query language
- Ontology reasoner

- The approach (cont.)
- ordinary XML query programs

- extended XML query programs
 - handled by a control system which
 - communicates with reasoner
 - calls XML query engine to execute (parts of) programs

- XML query language
 - Xcerpt
 - simple structure of programs: rules
 - simple (fixpoint) semantics
- Ontology reasoner
 - any supporting DIG e.g. Racer
- Control system
 - Extended Xcerpt

- Preliminaries
 - Xcerpt
 - DIG interface
- Extended Xcerpt
 - syntax and semantics
 - program examples
- Conclusions

Xcerpt – query and transformation language for XML [Schaffert *et al.*, 2004]

- inspired by logic programming
- uses pattern matching instead of path navigation

data terms

model XML documents

```
<CD> <title> Stop </title> </CD> CD[ title[ "Stop" ] ]
```

query terms

- patterns used to match data terms
 - successful matching results in variable bindings (answer substitutions)

construct terms

used to build data terms (by applying answer substitutions)

Xcerpt programs

- consist of query rules c ← Q
 - the body Q
 - used to extract XML data
 - consists of query terms
 - connected by and, or ...
 - possibly associated with external resources
 - the head c
 - a construct term
 - used to build new XML data
 - Xcerpt syntax CONSTRUCT GOAL
 C C
 FROM FROM
 Q

Xcerpt query rules - example

Data term:

```
catalogue[cd[title["Empire Burlesque"], artist["Bob Dylan"], year["1985"]], cd[title["Hide your heart"], artist["Bonnie Tyler"], year["1988"]], cd[title["Stop"], artist["Sam Brown"], year["1988"]]]
```

```
title [ TITLE ] ← desc cd[[ title[ TITLE ], year[ "1988" ] ]]
```

Answers: { TITLE / "Hide your heart" }, { TITLE / "Stop" }

Result: title ["Hide your heart"] title ["Stop"]

DIG interface

- an XML interface to Description Logics systems
 - by the DL Implementation Group [S. Bechhofer]
- XML encoded messages (statements)
 - Tell: managing the knowledge base
 - Ask: querying the knowledge base
 - Response: replying to the queries

Ask

Response

- Xcerpt + ontology reasoner interface
- communication with a reasoner by DIG

Extended Xcerpt programs

- adding to Xcerpt
 - DIG ask rules
 - produce intermediate results (ontology queries) to be sent to reasoner
 - DIG response rules
 - query reasoner responses

Extended Xcerpt: syntax

- the same as Xcerpt syntax
- some Xcerpt rules distinguished as DIG rules
 - DIG ask rules # $l[a,c] \leftarrow ...$
 - produce data terms $\#l[a_i, c_i]$
 - a; DIG ask statement
 - **c**_i a context (to pass data associated with the ask statement)
 - DIG response rules $\dots \leftarrow \dots \#l \left[q_a,q_c\right]\dots$
 - **q**_a query term matching DIG responses
 - q_c query term matching the context
- rule chaining based on ordinary rule dependence
 - restriction: no DIG rule depends on itself

Extended Xcerpt: operational semantics

Evaluate successively the rules of a program:

To obtain results of

•	а	DIG ask rule	#l [a,c] ←
	•	evaluate it in the standard way to obtain data terms	$ \downarrow \downarrow $ $#l [a1,c1] #l [an,cn]$
	•	send DIG ask statements	a_1, \ldots, a_n
		to the reasoner	Ontology reasoner
		to obtain replies	r_1, \ldots, r_n
	•	build facts	$\#l [r_1,c_1] \dots \#l [r_n,c_n]$

- any other Xcerpt rule (including a DIG response rule)
 - use the standard Xcerpt evaluation method

Answer filtering – example

name["Recipe2"]

Query: Find recipes with ingredients containing gluten

```
GOAL
 bad-recipes[all var R]
                                      DIG
FROM
 #gluten[
                                   response
  true[[ ]],
                                      rule
   name[ var R ]]
END
CONSTRUCT
 #gluten[
  subsumes[
    catom[ attr{ name["gluten-containing"] } ]
    catom[ attr{ name[ var N ] } ] ],
                                                 DIG
  name[var R]]
                                                 ask
FROM
                                                 rule
 in[resource["file:recipes.xml"],
    desc recipe[
      name[var R],
      desc ingr[ name[ var N ] ] ] ]
END
```

```
recipes.xml:
 recipes[
    recipe[
     name[ "Recipe1" ],
     ingredients[ ingr[ name[ "sugar" ] ],
                   ingr[ name[ "orange" ] ] ],
    recipe[
      name[ "Recipe2" ],
        entents and men contexts
                            |name[ "Recipe1" ] ]
                         name[paRebijBezipp2"]
calappliattraid["giuten-containing" Recipe2"]
catom[ attr{ name[ "salt" ] } ] ]
```

Ontology information retrieval - example

Query: Which vitamins are in each recipe?

```
GOAL
 vit-recipes[ all recipe[ var R, all var V ] ]
FROM
 #vitamins[
  conceptSet [[
     synonyms[[ catom[attr{ name [ var V ] } ] ]] ]],
  name[var R]]
END
CONSTRUCT
#vitamins[ conceptSet [attr{ id["1"] }], name[ "Recipe1"]
EXMINISTRUCT
# WINDTIRUS T
#vitardina conceptSet [attr{ id["2"]}, synonyms[
  estione[attr{ name [ "B" ] } ] ] , synonyms[
  catente atta (nea[meci"]containe et ein "Reque 1"]]
END catom[ attr{ name[ var N ] } ] ] ],
#witamins[ conceptSet [attr{ id["3"]}, synonyms[
  inpleson the manage of Bes. km/j, name["Recipe2"]]
```

```
As taltequents and their contexts:
                        intalined "In ("B" offlour")
                                                                                                                                                      name[ "Recipe1" ]
            ratom attr name ["contained in"] } ], call a large and a large and
childontained recipe 1" ]
                     ratom[ attr{ name["contained in"] } ],
                        name[ "Recipe2" ]
                                      m[.attr{ name["contained in"] } ],
                                                         #vitamins conceptSe attra id 2 synonyms
          catom[attr{ name [ "B" ] } ] ] , synonyms[
          catom[attr{ name [ "C" ] } ] ] ], name[ "Recipe1" ] ]
#vitamins[ conceptSet [attr{ id["3"], synonyms[
          catom[ attr{ name [ "B" ] } ] ] ], name[ "Recipe2" ] ]
#vitamins[ conceptSet [attr{ id["4"]}], name[ "Recipe2" ]
```

Conclusions

- Extension of Xcerpt allowing to query an ontology
 - communication with a reasoner with DIG interface
 - no restrictions on Xcerpt queries and DIG ask statements
 - hybrid approach
 - reusing existing systems: Xcerpt, an ontology reasoner
 - no modification of Xcerpt needed
 - a prototype implementation http://www.ida.liu.se/digxcerpt/
- Future work
 - higher level language
 - query rules c ← O,Q compiled into Extended Xcerpt queries
 O ontology query
 - Q XML query

- Datalog + DL with logical semantics
 - not applicable to Xcerpt + OWL
- Hybrid framework with fixpoint semantics (Assmann et al, 2006)
 - ontology reasoning after rule reasoning
 - Boolean ontology queries
 - treated like constraints
- Our approach
 - ontology reasoning interleaved with rule reasoning
 - arbitrary ontology queries

Thank you!