A2018

A2018

- a. Gegeben Sie in jeder Teilaufgabe ein Beispiel an für Folgen, die die angegebenen Aussagen erfüllen:
- a1. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist divergent
- a2. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- a
3. (a_n) ist divergent und (b_n) ist divergent und
 $(a_n\ast b_n)$ ist divergent
- a4. (a_n) ist divergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- b. Es seinen $(a_n),(b_n)$ konvergente reelle Folgen mit $a=\lim_{x\to\infty}a_n$ und $b=\lim_{x\to\infty}b_n$. Was kann man über die Folge (a_n*b_n) aussagen? (Ohne Beweis!)
- c. Es seinen (a_n) eine gegen a konvergente Folge. Beweisen Sie durch Induktion bezüglich m, dass für alle $m \in \mathbb{N}$ gilt: Die Folgen (a_n^m) konvergiert gegen a^m . Hinweis: Verwenden Sie die Aussage aus Teil b.
- a)
- a1. $a_n = \frac{a_n}{h}$ $b_n = h^2$
- $a2. a_n = 0 b_n = n$
- $a3. a_n = b_n = n$
- a_1 . $a_n = h$ $b_n = \frac{4}{h}$
- b) (a, · b,) konveglert gegen a. b
- c) I.A.: m=1 an konveziert gezen a mark Voranssetz
- I.S.: $\lim_{n\to\infty} a_n^{m+1} = \lim_{n\to\infty} a_n^m \cdot \lim_{n\to\infty} a_n = a_n \cdot a_n = a_n^{m+1}$