Hunter Lybbert Student ID: 2426454 11-13-24 AMATH 561

## PROBLEM SET 6

**1.** Let  $X \sim Binomial(n, U)$ , where  $U \sim Uniform((0, 1))$ . What is the probability generating function  $G_X(s)$  of X? What is P(X = k) for  $k \in \{0, 1, 2, ..., n\}$ ?

Solution: This is it

2. Consider a branching process with immigration

$$Z_0 = 1$$
,  $Z_{n+1} = \sum_{i=1}^{Z_n} \xi_i^{n+1} + Y_{n+1}$ ,

where the  $(\xi_i^{n+1})$  are iid with common distribution  $\xi$ , the  $(Y_n)$  are iid with common distribution Y and the  $(\xi_i^{n+1})$  and  $(Y_{n+1})$  are independent. What is  $G_{Z_{n+1}}(s)$  in terms of  $G_{Z_n}(s)$ ,  $G_{\xi}(s)$  and  $G_Y(s)$ ? Write  $G_{Z_2}(s)$  explicitly in terms of  $G_{\xi}(s)$  and  $G_Y(s)$ .

Solution:

**3.** (a) Let X be exponentially distributed with parameter  $\lambda$ . Show by elementary integration (not complex integration) that  $E(e^{itX}) = \lambda/(\lambda-it)$ . (b) Find the characteristic function of the density function  $f(x) = \frac{1}{2}e^{-|x|}$  for  $x \in \mathbb{R}$ .

Solution:

**4.** A coin is tossed repeatedly, with heads turning up with probability p on each toss. Let N be the minimum number of tosses required to obtain k heads. Show that, as  $p \to 0$ , the distribution function of 2Np converges to that of a gamma distribution. Note that, if  $X \sim \Gamma(\lambda, r)$  then

$$f_X(x) = \frac{1}{\Gamma(r)} \lambda^r x^{r-1} e^{-\lambda x} \, \mathbf{1}_{x \ge 0}.$$

Solution: