

Swiss TPH

Créer des cartes en R

Une introduction pratique

Billy Bauzile et Jeanne Lemant

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

L'importance de l'épidémiologie spatiale

- L'épidémiologie spatiale consiste à décrire, quantifier et expliquer les variations géographiques des maladies
- Pour y parvenir, nous utilisons les systèmes d'information géographique, applicables dans quatre domaines

Données de base

Frontières à différents niveaux

- Niveau 0: national/international
- Niveau 1: province/municipalité
- Niveau 2: commune/département etc.

Données épidémiologiques (cas)

Objectifs

Carte statique

Carte dynamique

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

Raconte-moi une histoire!

- «Demander une carte, c'est dire : Raconte-moi une histoire.» Peter Turchi
- «Aucune carte ne peut tout montrer. Si elle le pouvait, elle ne ferait que reproduire le monde, et nous l'avons déjà.» Dennis Wood

- Quel message voulez-vous faire passer ?
- Une carte est une information qui est plus facile à présenter visuellement que par d'autres moyens (tableau, texte, son, ...)
- Nous cherchons à rester neutres, mais chaque figure raconte une histoire.

Quelle histoire voulons-nous raconter?

La figure raconte-t-elle l'histoire que nous voulions raconter ?

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

Choisir le bon type de palette selon le type de données

Catégoriques → palette qualitative

- Quantitatives (valeurs ordonnées):
- → Palette séquentielle monochromatique ou non

→ Palette divergente (milieu logique)

Les couleurs ont un sens

Choisissez des couleurs intuitives

 Mais soyez conscients de l'origine de ces conventions, comme le rose pour les filles et le bleu pour les garçons (https://blog.datawrapper.de/gendercolor/)

Les couleurs ont un sens

Choisissez des couleurs intuitives

Accessibilité

 Votre figure est-elle lisible par des personnes daltoniennes ?

Environ 8% des hommes et 0.5% des femmes sont daltoniennes!

Original image with red and green color coding

Natural color

Source: Wong, B. Points of view: Color blindness. *Nat Methods* **8**, 441 (2011). https://doi.org/10.1038/nmeth.1618

Evitez le rouge avec du vert ou du noir

Peut-elle être imprimée en noir et blanc?

Source:

https://www.reddit.com/r/dataisugly/comments/xjicqe/gray_is_for_states_won_by_obama_grey_is_for/

Accessibilité

Accessibilité : choisir la bonne palette

Adaptées aux personnes daltoniennes

- https://colorbrewer2.org/
- Directement sur R:

library(RColorBrewer)
display.brewer.all(colorblindFr
iendly = T)

Autres palettes

- https://www.learnui.design/tools/dat a-color-picker.html
- https://coolors.co/ca054d-3b1c32a4d4b4-ffcf9c-b96d40
- https://coolors.co/palettes/trending

Vérifiez si votre figure est lisible sur https://www.color-blindness.com/coblis-color-blindness-simulator

Accessibilité : il n'y a pas que les couleurs !

 Pensez à changer le degré de couleur

12 ⊞

Utilisez des symboles ou des traits différents

19

23

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

Préférez les diagrammes en bâtons aux graphiques circulaires

L'oeil humain distingue mal les angles

Montrez vos données individuelles si possible

Les boîtes à moustaches peuvent cacher des différences de distribution
 #showyourdata

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

L'échelle des diagrammes en bâtons doit débuter à zéro si elle est linéaire

Utilisez les polices sans empattement (Sérif) pour vos annotations (si possible)

- Plus faciles à lire sur un écran
- Plus faciles à lire pour les personnes malvoyantes ou dyslexiques

Faites en sorte que les lecteurs n'aient pas besoin de tourner la tête

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations

2) b.a.-ba des cartes

- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

b.a.-ba des cartes

- Pour faire une carte, il faut deux choses
 - Les coordonnées
 - Système de référence qui définit les coordonnées
- Deux types de systèmes de coordonnées
 - Géographique
 - Projetée

Système de coordonnées

Système de coordonnées géographiques

- Basé sur la mesure sphérique (mesures en degrés de latitude et de longitude)
- Exemple : WGS84, le système utilisé dans le GPS

Système de coordonnées projetées

- Basé sur la mesure plane (sphère 3D → 2D)
- Mesures en unités linéaires (mètres, pieds, etc.)
- Exemple : UTM

Coordonnées de projections

- EPSG: European Petroleum Survey Group
 - https://epsg.io/
 - Registre de base de données accessible au public
 - Datum géodésique: constitue la base du calcul des positions à la surface de la Terre
- Systèmes de référence spatiale
 - Ellipsoïdes terrestres (NAD83 ou GDA94, etc.)
 - Unités de mesure
 - Pour coordonner les transformations, etc.
- Numéros d'identification uniques 1024 32767
 - Peut être utilisé pour spécifier la projection souhaitée dans R

Comparaison de différentes projections

Système de coordonnées géographiques

Système de coordonnées projetées

Gall-Peters: ESRI:53016

Covid-19 related death (jan 2020- Nov 2021

Mercato EPSG:3395

Robinson projection: ESRI:54030

29

Exemples

• EPSG: 4326

• Type : géographique

Unité : degrée (latitude and longitude

Ellipsoïde : WGS84

Zone d'utilisation : partout

• EPSG: 32632

• Type : projetée

Unité : mètre

Ellipsoïde : WGS84

• Projection : UTM, zone 32N

Zone d'utilisation : entre 6°E et 12°E

- Les données téléchargées sont souvent dans des projections de coordonnées différentes de celles qui nous intéressent
- Il faut donc souvent transformer les projections, sans perdre de données

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

Types de données spatiales

Types de fichiers de données spatiales

- Il en existe plusieurs types :
 - ESRI shapefile, geopackage, KMZ, etc...
- Ici nous parlerons de l'ESRI shapefile
 - Type de fichier développé par les créateurs d'ArcGIS
 - Commun à (presque) tous les logiciels Système d'Information Géographique (SIG)
 - Mais il ne s'agit pas d'un seul fichier...

ESRI shapefile

- *.shp : fichier principal, décrit les GRL_adm1.shp.xml
- *.shx : fichier d'index, contient d∈ □ □ GRLadm1.shx ☐ GRL_Admin1.dbf fichier principal
- *.csv : contient les attributs de l'élément (données)
- *.prj : décrit les projections pour les représentations géographiques
- *.cpg : spécifie l'encodage des caractères pour les fichiers *.dbf au lieu de *.csv

GRL_adm1-fgdc.xml

GRL_adm1.cpg

GRL_adm1.csv

GRL_adm1.dbf

GRL_adm1.shp

☐ GRL_adm1.prj

GRL_adm1-iso19110.xml

GRL_adm1-iso19139.xml

Plots Connections

Packages Help

- Ils sont importants pour les opérations spatiales

Modified

Apr 2, 2024, 10:33 AM

Size

5.7 KB

11.7 KB

21.4 KB

5 B

720 B

4.1 KB

145 B

=

ESRI shapefile

Vous n'interagissez pas avec ces fichiers individuellement
 GRL_data = sf::st_read(file.path(homedir, "Data/Shapefiles/GRL/GRL_adm1.shp"), quiet=TRUE)

- A retenir des fichiers de forme ESRI :
 - Vous n'interagissez pas avec ces fichiers individuellement
 - Il ne s'agit pas d'un seul fichier, mais de plusieurs
 - Ils doivent tous occuper le même répertoire
 - Vous ne pouvez pas en renommer un sans faire de même avec les autres.

Plan de la présentation

Objectifs de la formation

- 1) Fondamentaux de la visualisation de données
- Raconte-moi une histoire!
- Choix des couleurs
- Formats à éviter
- Quelques recommandations
- 2) b.a.-ba des cartes
- Sytèmes de coordonnées et projections
- Types de fichiers de données spatiales
- Où trouver des shapefiles

Sources de données

- Les données sont partout, et leurs sources sont souvent au même endroit
- Il **faut toujours chercher** pour trouver les ensembles de données les plus récents, en particulier pour les données qui changent fréquemment :
 - Données climatiques, limites de régions et districts, etc.

GADM

- Base de données des régions administratives mondiales
 - https://gadm.org/
- Cartes et données spatiales de « tous les pays » et de leurs subdivisions
- Plusieurs types de fichiers
 - Base de données publique et gratuites
 - Résolution spatiale très élevée

DIVA-GIS

- https://www.diva-gis.org/Data
- Catalogue facile à comprendre
- Liens externes vers de multiples ensembles de données
 - Données administratives nationales et multinationales : frontières, démographie, etc.
 - Données sur la présence d'espèces
 - > Types de cultures, altitude et climat, etc.
- Mais les données sont toutes issues de liens externes et peuvent donc être obsolètes
 - Recommandation : Toujours aller sur le site d'hébergement pour télécharger

Swiss TPH

Résumé de vos nouveaux superpouvoirs!

- Connaître les fondamentaux de la visualisation de données
- Savoir reconnaîre les types de fichiers de données spatiales
- Interagir avec les objets spatiaux en R avec sf
- Joindre des données à un shapefile avec tidyverse
- Créer des belles cartes statiques et dynamiques

TOP 20 USELESS SUPERPOWERS

ACID TEARS

INVISIBILITY IN THE DAR

CONTROL REMOTE CONT

OMMUNICATE WITH FRUIT

P

Remerciements

- Fabienne Fischer
- Brandon Hayes et ses collègues de l'ENVT

Evaluation

• Des commentaires ? Des suggestions ? Aidez-nous à nous améliorer !

