Algèbre commutative et effectivité

Alexandre Guillemot

10 octobre 2022

Table des matières

1	\mathbf{Bas}	Bases de Gröbner			
	1.1	Préliminaires	3		
	1.2	Division multivariée	4		
		1.2.1 Ordres monomiaux	4		
		1.2.2 Algorithme de division multivariée	6		
	1.3	Bases de Gröbner	8		
	1.4	Algorithme de Buchberger	10		
	1.5	Bases de Gröbner réduites, unicité	13		
2	Théorie de l'élimination				
	2.1	Application 1 : Intersection d'idéaux	15		
	2.2	Application 2 : extension	16		
		2.2.1 Résultants	17		
		2.2.2 Théorème d'extension	18		
	2.3	Application 3 : variétés paramétrées	21		
3	Cha	angements de bases de Grobner	23		
	0110	angements de suses de Grosner	_0		

Introduction

L'objectif de ce cours est de "résoudre" des systèmes d'équations polynômiales. Formellement, si $f \in k[x_1, \dots, x_n]$, $I = (f_1, \dots, f_r)$, alors

$$f \in I \iff \exists g_1, \dots, g_r \in k[x_1, \dots, x_n] \mid f = f_1g_1 + \dots + f_rg_r$$

On voudrait ainsi déterminer si $f \in I$. Références : 2 livres de Cox, Little, O'Shea

Chapitre 1

Bases de Gröbner

Dans ce chapitre, tous les anneaux seront commutatifs. Fixons dès à présent un $k \in \mathbf{Fld}$ (on supposera toujours qu'on dispose d'algorithmes pour les opérations du corps).

1.1 Préliminaires

Définition 1.1.1. (Anneau noéthérien) Un anneau est noéthérien si toute suite croissante d'idéaux $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$ est stationnaire i.e.

$$\exists N \in \mathbb{N} \mid \forall m \geq N, I_m = I_N$$

Proposition 1.1.1. Un anneau est noéthérien si et seulement si tout idéal de A est finiment engendré.

Ex 1.1.1. Voici des exemples d'anneaux noéthériens/non noéthériens

Anneaux noéthériens	Anneaux non noéthériens
Q	$k[\mathbb{N}]$
Plus généralement, tout corps k	
$\mathbb{R}[x]$	
Plus généralement, tout PID	
${\mathbb Z}$	
$k[x_1,\cdots,x_n]$ (conséquence de 1.1.1)	
Anneaux finis	
Anneaux artiniens	

Théorème 1.1.1. (Théorème de la base de Hilbert) Soit A un anneau noéthérien. Alors A[x] est un anneau noéthérien.

Corollaire 1.1.1. Si k est un corps, alors $k[x_1, \dots, x_n]$ est noeth pour $n \in \mathbb{N}$.

 $D\'{e}monstration$. On veut montrer que tout idéal $I \overset{\mathrm{id}}{\subseteq} A[x]$ est finiment engendré. Soit $I \overset{\mathrm{id}}{\subseteq} A[x]$, montrons qu'il est finiment engendré. Pour chaque $n \in \mathbb{N}$, soit

$$I_n := \{ a_n \in A \mid \exists a_0 + a_1 x + \dots + a_n x^n \in I \}$$

Il est facile de voir que $I_n \overset{\mathrm{id}}{\subseteq} A$. Ensuite (I_i) est croissante, car si $a_i \in I_i$ pour un $i \in \mathbb{N}$, alors $\exists f \in I$ tq le coefficient directeur de f soit a_i . Mais alors $xf(x) \in I$ est de degré i+1 et son coefficient directeur est encore a_i , d'où $a_i \in I_{i+1}$. Ainsi cette suite d'idéaux est stationnaire (A noeth). Notons $N \in \mathbb{N}$ tq $m \geq N \Rightarrow I_m = I_N$. Les idéaux I_0, \dots, I_N sont finiment engendrés, notons $\{a_{i,j}\}_{1 \leq j \leq r_i}$ des familles génératrices pour I_i , pour tout $i \in [0, N]$. Pour chaque $a_{i,j}, \exists f_{ij} \in I$ tq $\deg(f_{ij}) \leq i$ et le terme de degré i de $f_{i,j}$ est $a_{i,j}$ (par définition de I_i). Montrons que $I = (\{f_{i,j}\}_{0,1 \leq i,j \leq N, r_i})$: soit $f \in I$,

- 1. si $\deg(f) = 0$, alors posons $a \in A$ to $f = ax^0$. Ainsi $a \in I_0$, ainsi $\exists b_1, \dots, b_{r_0}$ to $a = \sum_{i=1}^{r_0} b_i a_{0,i}$. Or $f_{0,i} = a_{0,i}x^0$, ainsi $f = \sum_{i=1}^{r_0} b_i f_{0,i}$.
- 2. Si $d = \deg f > 0$, notons b le coeff directeur de f. Ainsi $b \in I_d$ Cas où $d \leq N$: On peut écrire $b = \sum_{i=1}^{r_d} \lambda_i a_{d,i}$ avec $\lambda_i \in A$. Posons $S = \sum_{i=1}^{r_d} \lambda_i f_{d,i}$, alors le coefficient directeur de S est précisément b (et $\deg S \leq d$). Ainsi $\deg(f-S) < d$, et $f S \in I$. Par hypothèse de récurrence, $f S \in (\{f_{i,j}\})$ et $S \in (\{f_{i,j}\})$, donc finalement $f \in (\{f_{i,j}\})$.

Cas où d > N: Notons b le coeff directeur de f, $b \in I_d = I_N \Rightarrow b = \sum \lambda_i a_{N,i}$. Posons $T := \sum \lambda_i f_{N,i} X^{d-N}$ est de degré d et de coeff directeur b, puis on conclut comme précedemment en regardant le polynômes f - T.

Ainsi les idéaux de A[x] sont finiment engendrés, donc A[x] est noeth.

1.2 Division multivariée

1.2.1 Ordres monomiaux

Fixons $k \in \mathbf{Fld}$. Rappelons que si $I \subseteq k[x]$ non nul, alors $\exists g \in k[x]$ t.q. I = (g) (car k[x] est principal, euclidien). Soit $f \in k[x]$, alors $f \in (g) \iff g \mid f \iff$ le reste de la division euclidienne de f par g est nul (et on dispose d'un algorithme pour réaliser la division euclidienne). Question : peut-on généraliser à $k[x_1, \dots, x_n]$?

Rq 1.2.1. Soit
$$I \subseteq k[x]$$
, $I = (f_1, \dots, f_r)$. Alors $I = (\operatorname{pgcd}(f_1, \dots, f_r))$

Définition 1.2.1. (Ordre monomial) Un ordre monomial sur $k[x_1, \dots, x_n]$ est une relation d'ordre \leq sur l'ensemble des $\{x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha \in \mathbb{N}^n\}$ tq

- 1. \leq est un ordre total (pour tout $x^{\alpha}, x^{\beta} \in k[x_1, \cdots, x_n], (x^{\alpha} \leq x^{\beta}) \vee (x^{\beta} \leq x^{\alpha})$).
- 2. $x^{\alpha} \leq x^{\beta} \Rightarrow \forall \gamma \in \mathbb{N}^n, x^{\alpha+\gamma} \leq x^{\beta+\gamma}$
- 3. $1 \le x^{\alpha}$ pour tout $\alpha \in \mathbb{N}^n$.

Notation. On écrira $\alpha \leq \beta$ au lieu de $x^{\alpha} \leq x^{\beta}$.

- **Ex 1.2.1.** 1. Dans k[x], il est facile de vérifier qu'il n'existe qu'un seul ordre monomial $\leq x^n \leq x^m \iff n \leq m$.
 - 2. Ordre lexicographique \leq_{lex} : soient $\alpha, \beta \in \mathbb{N}^n$ tq $\alpha \neq \beta$,

$$\alpha <_{lex} \beta \iff \exists 1 \leq r \leq n \mid \alpha_i = \beta_i \text{ pour } i < r \text{ et } \alpha_r < \beta_r$$

(i.e. le premier coeff non nul d $\beta - \alpha$ est positif). Par exemple, dans $k[x_1, x_2, x_3]$, $x_1^2 >_{lex} x_1 x_2 >_{lex} x_2^2 >_{lex} x_3^{2097434}$

3. Ordre lexicographique gradué \leq_{deglex} : Pour $\alpha \in \mathbb{N}^n$, notons $|\alpha| = \sum \alpha_i$. Alors soient $\alpha \neq \beta$ dans \mathbb{N}^n ,

$$\alpha <_{deglex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land \alpha <_{lex} \beta)$$

4. Ordre lexicographique renversé gradué $<_{degrevlex}$:

$$\alpha <_{degrevlex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land (\exists r \in [1, n]] \mid \forall i \in [r + 1, n], \alpha_i = \beta_i \text{ et } \alpha_r > \beta_r))$$

(la deuxième condition reviens a vérifier que le dernier coeff non nul de $\beta - \alpha$ est négatif dans le cas où $|\alpha| = |\beta|$)

Exercice. Vérifier que ces ordres sont des ordres monomiaux.

Dans sage, on appelle "term orders" de tels ordres.

Proposition 1.2.1. Soit \leq un ordre sur \mathbb{N}^n satisfaisant les propriétés 1 et 2 de la def 1.2.1. Alors tfae

- 3. $0_{\mathbb{N}^n} \leq \alpha, \forall \alpha \in \mathbb{N}^n$
- $4. \leq est \ un \ bon \ ordre: \forall E \subseteq \mathbb{N}^n \ non \ vide, \ E \ contient \ un \ élément \ minimal \ pour < .$

 $D\'{e}monstration$. $4 \Rightarrow 3$: Supposons qu'il existe $\alpha \in \mathbb{N}^n$ tq $\alpha < 0$, alors $2\alpha < \alpha$, $3\alpha < 2\alpha$ et ainsi de suite, donc $\cdots < 2\alpha < \alpha < 0$, mais alors $\{m\alpha \mid m \in \mathbb{N}\}$ n'a pas d'élément minimal, donc \leq n'est pas un bon ordre.

 $3\Rightarrow 4$: Supposons qu'il existe $F\subseteq\mathbb{N}^n$ non vide et sans élément minimal. Alors considérons l'idéal $I=(x^\alpha\mid\alpha\in F)$, d'après le théorème de la base de Hilbert, il existe un sous-ensemble fini de F, noté $\{\alpha_1,\cdots,\alpha_r\}$ tel que $I=(x^{\alpha_1},\cdots,x^{\alpha_r})$. Alors considérons $m=\min\{\alpha_1,\cdots,\alpha_r\}$, c'est un élément de F. Mais par hypothèse, il existe $\beta\in F$ tel que $\beta< s$. Mais comme $x^\beta\in I$, il existe $1\leq i\leq r$ tel que $x^{\alpha_i}\mid x^\beta$, et ainsi $\beta-\alpha_i\in\mathbb{N}^n$. Mais $\beta-\alpha_i<0$ car sinon on aurait $\beta\geq\alpha_i\geq m$.

1.2.2 Algorithme de division multivariée

Fixons maintenant un ordre monomial $\leq \sup k[x_1, \cdots, x_n]$.

Définition 1.2.2. Soit $f = \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha} x^{\alpha} \in k[x_1, \dots, x_n] \setminus \{0\},$

- 1. Le multidegré de f est $mdeg(f) = max\{\alpha \in \mathbb{N}^n \mid \lambda_\alpha \neq 0\}$
- 2. Le coefficient dominant de f LC $(f) = \lambda_{\text{mdeg}(f)}$
- 3. Le mo,ome dominant de f est $LM(f) = x^{mdeg(f)}$
- 4. Le terme dominant de f est $LT(f) = \lambda_{mdeg(f)} x^{mdeg(f)}$

Soit (f_1, \dots, f_r) un r-tuple de polynômes non nuls de $k[x_1, \dots, x_n]$. Soit $f \in k[x_1, \dots, x_n]$, on cherche $Q_1, \dots, Q_r, R \in k[x_1, \dots, x_n]$ tq

- 1. $f = Q_1 f_1 + \cdots + Q_r f_r + R$
- 2. R=0 ou aucun des termes de R n'est divisible par $LT(f_1), \dots, LT(f_r)$.

```
Algorithm 1 Réalise la division multivariée de f par f_1, \dots, f_r
    function Division multivariée(f, f_1, \cdots, f_r \in k[x_1, \cdots, x_n])
          g \leftarrow f
          Q_1, \cdots, Q_r \leftarrow 0
          R \leftarrow 0
          while g \neq 0 do
                b \leftarrow True
                i \leftarrow 1
                while b and i \leq r do
                      if \operatorname{LT}(f_i) \mid \operatorname{LT}(g) then g \leftarrow g - \frac{\operatorname{LT}(g)}{\operatorname{LT}(f_i)} f_i Q_i \leftarrow Q_i + \frac{\operatorname{LT}(g)}{\operatorname{LT}(f_i)} b \leftarrow False
                      end if
                      i \leftarrow i+1
                end while
                \mathbf{if}\ b\ \mathbf{then}
                      h \leftarrow LT(g)
                      g \leftarrow g - h
                      R \leftarrow R + h
                end if
          end while
          return R, Q_1, \cdots, Q_r
    end function
```

Rq 1.2.2. Après chaque tour de boucle while principale, on a toujours

$$f = g + \sum Q_i f_i + R$$

au vu des calculs réalisés dans la boucle. Et comme l'algorithme se termine lorsque g=0, on obtiens finalement

$$f = \sum Q_i f_i + R$$

et aucun des termes de R n'est divisible par $\mathrm{LT}(f_i)$ vu que l'on ajoute que des termes divisibles par aucun des $\mathrm{LT}(f_i)$ dans l'algorithme. Finalement, l'algorithme termine puisque à chaque étape de la boucle while principale, le multidegré de g diminue strictement au vu des calculs effectués et du fait que \leq est une relation d'ordre monomiale.

Notation. Le reste obtenu s'écrira \bar{f}^{f_1,\dots,f_t} . Si $F = \{f_1,\dots,f_r\}$, on écrira \bar{f}^F .

Rq 1.2.3. L'algo donne l'exitence de Q_i et R tq $f = \sum Q_i f_i + R$ satisfaisant les conditions imposées précédemment. Ces Q_i et R ne sont pas uniques.

Ex 1.2.2.
$$k[x_1, x_2]$$
, $<_{lex} = :<$, $f = x_1^2 + x_1x_2 + x_2^2$, $f_1 = x_1$, $f_2 = x_1 + x_2$. Alors $f = (x_1 + x_2)f_1 + x_2^2$

(Résultat obtenu en appliquant l'algorithme de division multivariée)

$$= x_1 f_2 + x_2^2$$

= $x_1 f_1 + x_2 f_2 + 0$

donc $f \in (f_1, f_2)$ mais $\bar{f}^{f_1, f_2} \neq 0$!

1.3 Bases de Gröbner

Définition 1.3.1. (Base de Gröbner, 1) Soit $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \cdots, x_n]$ non nul. Une base de Gröbner de I est un ensemble fini $G \subseteq I$ tq

- 1. I = (G),
- 2. $f \in I \iff \bar{f}^G = 0$

Par convention, ∅ est une base de Gröbner de l'idéal nul.

Ex 1.3.1. 1. Si $0 \neq g \in k[x]$, alors $\{g\}$ est une BDG (base de Gröbner) de (g).

2. Si $0 \neq g \in k[x_1, \dots, x_n]$, alors $\{g\}$ est une BDG de (g).

Comment peut-on avoir $f \in (f_1, \dots, f_r)$ mais $\bar{f}^{f_1, \dots, f_r} \neq 0$? Il faut qu'à une étape de la division, LT(f) ne soit pas divisible par aucun des $LT(f_i)$.

Définition 1.3.2. (Idéal monomial) Un idéal $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$ est monomial s'il existe des monômes m_1, \dots, m_r tq $I = (m_1, \dots, m_r)$ (par convention $\{0\}$ est monomial).

Proposition 1.3.1. Soient $m_1, \dots, m_r \in k[x_1, \dots, x_n]$ des monömes, alors

$$m \in (m_1, \cdots, m_r) \iff m \text{ est divisible par l'un des } m_i$$

Démonstration. Si m est divisible par l'un des m_i , il est clair que $m \in (m_1, \dots, m_r)$. Pour prouver l'implication réciproque, supposons que $m \in (m_1, \dots, m_r)$. Alors on peut écrire

$$m = \sum_{i=1}^{r} a_i m_i$$

avec $a_i \in k[x_1, \dots, x_n]$. Maintenant écrivons chaque a_i comme

$$a_i(x) = \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha}^i x^{\alpha}$$

Alors

$$m = \sum_{i=1}^{r} \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha}^{i} x^{\alpha} m_{i}$$

Maintenant comme m est un monome, il va exister i, α tels que $m = \lambda x^{\alpha} m_i$, donc $m_i \mid m$. \square

Soient $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. LT(f) divisible par l'un des LT $(f_1), \dots, \text{LT}(f_r)$ si et seulement si LT $(f) \in (\{\text{LT}(f_i)\})$ d'après la proposition précédente.

Notation. Soit $E \subseteq k[x_1, \dots, x_n]$, on note

$$LT(E) := \{LT(f) \mid f \in E\}$$

Définition 1.3.3. (Base de Gröbner, 2) Une base de Gröbner d'un idéal $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ est un ensemble (fini) $G \subseteq I$ tq (LT(I)) = (LT(G))

Théorème 1.3.1. Les deux définitions de bases de Gröbner sont équivalentes.

Démonstration. def $1 \Rightarrow \text{def } 2$: Soit $f \in I$ si $LT(f) \notin (LT(G))$, alors LT(f) n'est divisible par aucun des LT(g), $g \in G$ donc $\bar{f}^G \neq 0$.

def $2 \Rightarrow$ def 1: Notons $G = \{g_1, \dots, g_r\}$. Soit $f \in I$, on veut que $\bar{f}^G = 0$. Il suffit de montrer que le reste est nul à chaque étape de l'algo de division. Or à l'étape 0 il l'est, puis en supposant qu'il l'est à l'étape m, on a

$$f = g + \sum Q_i g_i \in I$$

et donc $g \in I$. Ainsi $LT(g) \in (LT(I)) = (LT(G))$ et donc il existe un g_i tel que $LT(g_i) \mid LT(g)$ daprès 1.3.1, et ainsi le reste est inchangé à cette étape.

Théorème 1.3.2. Tout $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ admet une base de Gröbner.

Démonstration. On cherche $G \subseteq I$ tq (LT(G)) = (LT(I)). D'après 1.1.1, $\exists H \subseteq LT(I)$ tq (H) = (LT(I)). Notons h_1, \dots, h_r des polynômes de I dont les termes dominants sont les éléments de H. Alors $\{h_1, \dots, h_r\}$ est une BDG de I.

1.4 Algorithme de Buchberger

Définition 1.4.1. $f, g \in k[x_1, \dots, x_n]$, alors

$$S(f,g) := \frac{\operatorname{ppcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(f)} f - \frac{\operatorname{ppcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(g)} g$$

Théorème 1.4.1. (Critère de Buchberger) Soit $G = \{g_1, \dots, g_r\} \subseteq k[x_1, \dots, x_r]$. Alors G est une BDG de (G) si et seulement si $\forall g, h \in G$, $\overline{S(g,h)}^G = 0$

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \Rightarrow : G \ \text{BDF}, \ f,g \in G. \ \text{Comme} \ S(f,g) \in I, \ \text{alors} \ \overline{S(f,g)}^G = 0. \\ \Leftarrow : \ \text{Supposons} \ \text{que} \ \text{pour tout} \ g,h \in G, \ \text{alors} \ \overline{S(g,h)}^G = 0. \ \text{Soit} \ f \in I, \ \text{on veut mq} \\ LT(f) \in (LT(G)). \ \text{Or} \ I = (g_1,\cdots,g_r). \ \text{Donc il existe} \ q_1,\cdots,q_r \in k[x_1,\cdots,x_n] \ \text{tq} \end{array}$

$$f = \sum_{i=1}^{r} q_i g_i$$

Alors $LM(f) \le \max_i \{LM(q_i g_i)\} = M$.

1. Si $LM(f) = \mathbb{M}$: Alors $LM(f) = LT(q_ig_i)$ pour un certain i. Mais $LM(q_ig_i) = LM(q_i)LM(g_i)$ et donc $LM(f) \in (LT(G))$.

2. Si $LM(f) < \mathbb{M}$: Soit $1 \le i_1 < i_2 < \cdots < i_s \le r$ les indices tels que $LM(q_{i_j}g_{i_j}) = \mathbb{M}$. Alors on peut réécrire f comme

$$f = \sum_{j=1}^{s} LT(q_{i_j})g_{i_j} + \sum_{i=1}^{r} q'_i g_i$$

(et donc $LM(q_i'g_i) < \mathbb{M}$). Considérons $\sum_j LT(q_{i_j})g_{i_j}$, on peut l'exprimer en fonction des $S(g_{i_j},g_{i_{j+1}})$. Pour le voir, notons $h_j = LT(q_{i_j})g_{i_j}$, alors

$$\sum_{j} h_{j} = LC(h_{1}) \left(\frac{h_{1}}{LC(h_{1})} - \frac{h_{2}}{LC(h_{2})} \right)$$

$$+ (LC(h_{1}) + LC(h_{2})) \left(\frac{h_{2}}{LC(h_{2})} - \frac{h_{3}}{LC(h_{3})} \right)$$

$$+ (LC(h_{1}) + LC(h_{2}) + LC(h_{3})) \left(\frac{h_{3}}{LC(h_{3})} - \frac{h_{4}}{LC(h_{4})} \right)$$

$$+ \cdots$$

$$+ (LC(h_{1}) + \cdots + LC(h_{s-1})) \left(\frac{h_{s-1}}{LC(h_{s-1})} - \frac{h_{s}}{LC(h_{s})} \right)$$

$$+ (LC(h_{1}) + \cdots + LC(h_{s})) \frac{h_{s}}{LC(h_{s})}$$

Or $\sum_{j} LC(h_j) = 0$ car LM(f) < M, donc le dernier terme s'annule et donc on a bien

$$\sum_{j} h_{j} = \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_{k}) \right) S(h_{j}, h_{j+1})$$

Rq 1.4.1. Si f et g sont de même multidegré,

$$S(f,g) := \frac{1}{\mathrm{LC}(f)} f - \frac{1}{\mathrm{LC}(g)} g$$

Ainsi,

$$S(h_j, h_{j+1}) = \frac{1}{LC(h_j)} h_j - \frac{1}{LC(h_{j+1})} h_{j+1}$$

De plus,

$$\begin{split} S(h_j,h_{j+1}) &= \frac{1}{LC(h_j)}h_j - \frac{1}{LC(h_{j+1})}h_{j+1} \\ &= \frac{LT(q_{i_j})}{LC(q_{i_j}g_{i_j})}g_{i_j} - \frac{LT(q_{i_{j+1}})}{LC(q_{i_{j+1}}g_{i_{j+1}})}g_{i_{j+1}} \\ &= \frac{LM(q_{i_j})}{LC(g_{i_j})}g_{i_j} - \frac{LM(q_{i_{j+1}})}{LC(g_{i_{j+1}})}g_{i_{j+1}} \\ &= \frac{LM(g_{i_j}q_{i_j})}{LT(g_{i_j})}g_{i_j} - \frac{LM(g_{i_{j+1}}q_{i_{j+1}})}{LT(g_{i_{j+1}})}g_{i_{j+1}} \\ &= m_jS(g_{i_j},g_{i_{j+1}}) \end{split}$$

pour un certain monôme m_i . Donc

$$\begin{split} f &= \sum_{j} LT(g_{i_{j}})g_{i_{j}} + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j} h_{j} + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_{k})\right) S(h_{j}, h_{j+1}) + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j=1}^{s-1} m_{j} \left(\sum_{k=1}^{j} LC(h_{k})\right) S(g_{i_{j}}, g_{i_{j+1}}) + \sum_{i} q'_{i}g_{i} \end{split}$$

et $\max(LM(q_i'g_i)) < \mathbb{M}$. Par hypothèse, $\overline{S(g_{i_j},g_{i_{j+1}})}^G = 0$. Donc l'algorithme de division multivariée donne

$$S(g_{i_j}, g_{i_{j+1}}) = \sum_{i=1}^r b_i^j g_i$$

Par définition de l'algorithme, chaque $b_i^j q_i$ est de multidegré au plus $mdeg(S(g_{i_j}, g_{i_{j+1}}))$. Mais alors

$$\operatorname{mdeg}(m_jS(g_{i_j},g_{i_{j+1}})) = \operatorname{mdeg}(S(h_j,h_{j+1})) < \mathbb{M}$$

 Donc

$$f = \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_k) \right) m_j S(g_{i_j}, g_{i_{j+1}}) + \sum_i q_i' g_i$$

= $\sum_i c_i g_i$

avec $LM(c_ig_i) < M$. Par récurrence sur la différence entre LM(f) - M, on peut conclure.

Corollaire 1.4.1. (Algorithme de Buchberger) Soit $I = (f_1, \dots, f_r) \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. Posons $G^0 = \{f_1, \dots, f_r\}$ et pour $n \ge 1$, on définit

$$G^{n} = G^{n-1} \cup \left\{ \overline{S(f,g)}^{G^{n-1}} \mid f,g \in G^{n-1}, \, \overline{S(f,g)}^{G^{n-1}} \neq 0 \right\}$$

Alors il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow G^n = G^N$. Dans ce cas, G^N est une bdg de I.

Démonstration. Si $G^n = G^{n+1}$, alors par le critère de Buchberger G^n est une bdg. Il faut donc montrer que la suite (G^n) est stationnaire. Supposons le contraire, alors pour tout $n \geq 0, \exists f, g \in G^n$ tq $\overline{S(f,g)}^{G^n} \neq 0$. Par définition de l'algorithme de division multivariée, aucun des termes de $\overline{S(f,g)}^{G^n}$ n'est dans $(LT(G^n))$. En particulier, $LT(\overline{S(f,g)}^{G^n}) \notin (LT(G^n))$. On a donc $(LT(G^n)) \nsubseteq (LT(G^{n+1}))$ et donc on obtiens une suite d'idéaux strictement croissante dans $k[x_1, \dots, x_n]$, contradiction.

Rq 1.4.2. L'algorithme de Buchberger n'est pas optimal. Pour des versions optimisées, voir les algorithmes F4 et F5 (Faugère)

1.5 Bases de Gröbner réduites, unicité

Ex 1.5.1. (x-y,y-z)=(x-z,y-z). Les deux couples de générateurs sont des bdg pour l'ordre lex.

Définition 1.5.1. (bdg réduite) Soit G une bdg de $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \dots, x_n]$. Cette base est réduite si

- 1. Pour tout $g \in G$, LC(g) = 1
- 2. Pour tout $g, h \in G$ distincts, aucun monôme de g n'est divisible par LT(h).

Théorème 1.5.1. Tout idéal $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ admet une unique bdg réduite.

Rq 1.5.1. La bdg réduite dépend de l'ordre monomial!

On aura besoin d'outils de réduction.

Lemme 1.5.1. Soit $G = \{g_1, \dots, g_r\}$ une bdg de I idéal.

- 1. Si $1 \le i, j \le r$ distincts sont $tq \ LT(g_i) \mid LT(g_j)$, alors $G \setminus \{g_j\}$ est une $bdg \ de \ I$
- 2. Si $h_1, \dots, h_r \in I$ sont $tq \operatorname{mdeg}(h_i) = \operatorname{mdeg}(g_i)$, alors $H = (h_1, \dots, h_r)$ est une $bdg \ de \ I$.

Démonstration. 1. Comme G est une bdg, (LT(G)) = (LT(I)). Maintenant si $LT(g_i) \mid LT(g_j)$, alors $(LT(G \setminus \{g_j\})) = (LT(G))$ et donc $G \setminus \{g_j\}$ est une bdg.

2. (LT(G)) = (LT(H)) vu que LM(G) = LM(H).

Démonstration. (1.5.1) Soit $G = (g_1, \dots, g_r)$ une bdg de I.

- 1. Divisons chaque g_i par $LC(g_i)$. On peut donc supposer que $LC(g_i) = 1$.
- 2. Chaque fois que $LT(g_i) \mid LT(g_j)$, on peut toujours retirer g_j et toujours avoir une bdg. On peut donc supposer que $\forall i \neq j, LT(g_i) \nmid LT(g_j)$.
- 3. Enfin, pour chaque i, considérons $\bar{g}_i^{G\setminus\{g_i\}} \in I$, et par définition aucun monôme de $\bar{g}_i^{G\setminus\{g_i\}}$ n'est divisible par un des $LT(g_j)$, et $LT\left(\bar{g}_i^{G\setminus\{g_i\}}\right) = LT(g_i)$. Par le 2 du lemme, alors $\left(\bar{g}_1^{G\setminus\{g_1\}}, \cdots, \bar{g}_r^{G\setminus\{g_r\}}\right)$ est une bdg, qui de plus est réduite.

Ceci prouve l'existence d'une bdg réduite pour I. Reste à montrer l'unicité : soient G, G' deus bdg réduites de I. Soit $g \in G$, il existe $g' \in G'$ tel que $LT(g') \mid LT(g)$. De même, il existe $g'' \in G$ tel que $LT(g'') \mid LT(g')$, et ainsi $LT(g'') \mid LT(g)$, donc g'' = g, et donc LT(g') = LT(g). Ainsi on a montré que LT(G) = LT(G'). Considérons maintenant $g - g' \in I$, en particulier $\overline{g - g'}^G = 0$. Notons que si $h \in G \setminus \{g\}$, alors aucun des termes de g n'est divisible par LT(h). De même pour g', car LT(G) = LT(G'). De même aucun monôme de g - g' n'est divisible par LT(g) car LT(g) = LT(g') donc LT(g - g') < LT(g). D'où $\overline{g - g'}^G = g - g' = 0$ donc g = g'.

Chapitre 2

Théorie de l'élimination

Définition 2.0.1. (Idéaux d'élimination) Soit $E \subseteq k[x_1, \dots, x_n]$. On pose

1.
$$E_1 = E \cap k[x_2, \cdots, x_n]$$

2.
$$E_2 = E \cap k[x_3, \dots, x_n]$$

 $3. \cdots$

$$4. E_{n-1} = E \cap k[x_n]$$

5.
$$E_n = E \cap k$$

Si E = I est un idéal, les I_i sont appelés idéaux d'élimination de I.

Ex 2.0.1.
$$I = (x - y + 1, x + y)$$
. Alors $I_1 = (2y - 1)$. $I_2 = \{0\}$.

Théorème 2.0.1. (Théorème d'élimination) Soit $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \dots, x_n]$, soit < l'ordre lex avec $x_1 > \dots > x_n$. Soit G une bdg de I. Pour chaque $l \in [\![1, n]\!]$, une base de Gröbner de I_l est G_l .

Démonstration. Clairement, $G_l \subseteq I_l$ donc $(LT(G_l)) \subseteq (LT(I_l))$. Il faut montrer \supseteq . Soit $f \in I_l$. Alors $f \in I$, d'où $LT(f) \in (LT(G))$. On sait que $f \in k[x_{l+1}, \dots, x_n]$. Soit $g \in G$ tq $LT(g) \mid LT(f)$. D'où $LT(g) \in k[x_{l+1}, \dots, x_n]$. Comme < est l'ordre lex, on en déduite que $g \in k[x_{l+1}, \dots, x_n]$. Donc $g \in G_l$ et $LT(f) \in (LT(G_l))$.

Par conséquent, une bdg pour l'ordre lex contient des éléments qui font intervenir de moins en moins de variables.

2.1 Application 1 : Intersection d'idéaux

Problème : $I=(f_1,\cdots,f_r),\ J=(g_1,\cdots,g_s)$. Calculer des générateurs de $I\cap J$. Pour cela, on ajoute une variable t.

Notation. SI $I \subseteq k[x_1, \dots, x_n]$ et $f \in k[t]$, on pose

$$fI = (fp \mid p \in I) \stackrel{\text{id}}{\subseteq} k[t, x_1, \cdots, x_n]$$

Théorème 2.1.1. Avec les notations ci-dessus,

$$I \cap J = (tI + (1-t)J) \cap k[x_1, \cdots, x_n]$$

Démonstration. \subseteq : Soit $f \in I \cap J$, alors $f = tf + (1-t)f \in (tI + (1-t)J)$, puis $f \in k[x_1, \dots, x_n]$.

 \supseteq : Soit $f \in (tI + (1-t)J) \cap k[x_1, \dots, x_n]$. Posons

$$\varepsilon_{\lambda}: k[t, x_1, \cdots, x_n] \rightarrow k[x_1, \cdots, x_n]$$

$$h \mapsto h(\lambda, x_1, \cdots, x_n)$$

Remarquons alors que $\varepsilon_0(tI) = \{0\}$, $\varepsilon_1(tI) = I$. De même, $\varepsilon_0((1-t)J) = J$, $\varepsilon_1((1-t)J) = \{0\}$. Ecrivons f = f' + f'' avec $f' \in tI$, $f'' \in (1-t)J$. Alors $\varepsilon_0(f) = \varepsilon_0(f'') \in J$. $\varepsilon_1(f) = \varepsilon_1(f') \in I$. Et $\varepsilon_0(f) = \varepsilon_1(f) = f$ vu que $f \in k[x_1, \dots, x_n]$.

Corollaire 2.1.1. Si $I=(f_1,\cdots,f_r),\ J=(g_1,\cdots,g_s)$. Alors une bdf de $I\cap J$ pour l'ordre lex est obtenue en calculant une bdg de $(tI+(1-t)J)\stackrel{\mathrm{id}}{\subseteq} k[t,x_1,\cdots,x_n]$ et en élimnant t (i.e. en prenant l'intersection avec $k[x_1,\cdots,x_n]$).

2.2 Application 2: extension

Soit k un corps algébriquement clos. On veut montrer le théorème suivant :

Théorème 2.2.1. (Théorème d'extension) Soit $I=(f_1,\cdots,f_r)\stackrel{\mathrm{id}}{\subseteq} k[x_1,\cdots,x_n]$. Notons

$$f_i(x_1, \dots, x_n) = g_i(x_2, \dots, x_n)x_1^{N_1} + h_i$$

où $\deg_{x_1} h_i < N_i$. Alors soit $(a_2, \dots, a_n) \in V(I_1)$ tel que $(a_2, \dots, a_n) \notin V(g_1, \dots, g_r)$, il existe $a_1 \in k$ tel que $(a_1, \dots, a_n) \in V(I)$.

Pour cela, nous aurons besoin des résultants.

2.2.1 Résultants

On veut une façon de déterminer si deux polynômes ont un facteur non trivial en commun. **Idée**: soient $f, g \in k[x]$ de degré d, e > 0 respectivement. Alors f et g ont un facteur commun non constant ssi $\exists \alpha, \beta \in k[x]$ tq

- 1. $\alpha, \beta \neq 0$
- $2. \alpha f + \beta g = 0$
- 3. $\deg \alpha < e, \deg \beta < d$.

$$f = \sum_{i=0}^{d} a_i x^i, \ g = \sum_{i=0}^{e} b_i x^i, \ \alpha = \sum_{i=0}^{e-1} \alpha_i x^i, \ \beta = \sum_{i=0}^{d-1} \beta_i x^i. \text{ Il suffit de vérifier si}$$
$$(\alpha_0 + \alpha_1 x + \dots + \alpha_{e-1} x^{e-1}) f + (\beta_0 + \beta_1 x + \dots + \beta_{d-1} x^{d-1}) g = 0$$

$$(\omega_0 + \omega_1\omega + \omega_{\ell-1}\omega + \gamma_f + \omega_{\ell-1}\omega +$$

admet une solution non nulle en les α_i, β_i . Ce système est donné par la matrice de Sylvester

$$Syl(f,g,x) = \begin{bmatrix} a_0 & 0 & \cdots & 0 & b_0 & 0 & \cdots & 0 \\ a_1 & a_0 & \ddots & \vdots & b_1 & b_0 & \ddots & \vdots \\ \vdots & a_1 & \ddots & 0 & \vdots & b_1 & \ddots & 0 \\ a_{d-1} & \vdots & \ddots & a_0 & b_{e-1} & \vdots & \ddots & b_0 \\ a_d & a_{d-1} & & a_1 & b_e & b_{e-1} & & b_1 \\ 0 & a_d & \ddots & \vdots & 0 & b_e & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{d-1} & \vdots & \ddots & \ddots & b_{e-1} \\ 0 & \cdots & 0 & a_d & 0 & \cdots & 0 & b_e \end{bmatrix} \in \mathcal{M}_{d+e}(k)$$

Définition 2.2.1. Le résultant de f et g est $Res(f,g,x) := \det Syl(f,g,x)$

Proposition 2.2.1. $Res(f, g, x) = 0 \iff f \text{ et } g \text{ ont } un \text{ facteur } non \text{ constant } en \text{ commun.}$

Proposition 2.2.2. Fixons $d, e \ge 1$. Il existe $A, B \in \mathbb{Z}[X_0, \dots, X_d, Y_0, \dots, Y_e, x]$ to $f, g \in k[x]$ avec $\deg f, \deg g = d, e$, on a

$$Res(f, g, x) = A(a_0, \dots, a_d, b_0, \dots, b_e, x) f + B(a_0, \dots, a_d, b_0, \dots, b_e, x) g$$

 $D\'{e}monstration.$ Syl(f, g, x) est la matrice de l'application linéaire

$$\varphi: k[x]_{\leq e} \times k[x]_{\leq d} \to k[x]_{\leq e+d}$$
$$(\alpha, \beta) \mapsto \alpha f + \beta g$$

dans les bases canoniques de $k[x]_{\leq e}$, $k[x]_{\leq d}$. Soit M la transposée de la comatrice de Syl(f, g, x). Alors par définition,

$$Syl(f, g, x)M = Res(f, g, x)I_{d+e}$$

donc

$$Syl(f,g,x)M\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix} = \begin{bmatrix}Res(f,g,x)\\0\\\vdots\\0\end{bmatrix}$$

Maintenant M times vecteur est un vecteur dont les coord sont des polynômes évalués en les a_i et b_j . Ainsi

$$\varphi(P_0 + P_1X + \dots + P_{e-1}X^{e-1}, Q_0 + Q_1X + \dots + Q_{d-1}X^{d-1}) = Res(f, g, x)$$

où $P_i, Q_j \in \mathbb{Z}[a_i, b_j]$.

$$\Rightarrow (P_0 + P_1X + \dots + P_{e-1}X^{e-1})f + (Q_0 + Q_1X + \dots + Q_{d-1}X^{d-1})g = Res(f, g, x)$$

Ainsi on pose
$$A = P_0 + P_1 X + \dots + P_{e-1} X^{e-1}$$
, $B = Q_0 + Q_1 X + \dots + Q_{d-1} X^{d-1}$.

 \mathbf{Rq} 2.2.1. La proposition et sa preuve restent vraies si on remplace k par un anneau commutatif.

2.2.2 Théorème d'extension

 $f,g \in k[x_1,\cdots,x_n]$, alors $Res(f,g,x_1) \in k[x_2,\cdots,x_n]$. Notons $I=(f_1,\cdots,f_r) \stackrel{\mathrm{id}}{\subseteq} k[x_1,\cdots,x_n]$, pour tout i

$$f_i = g_i(x_2, \dots, x_n)x_1^{N_1} + \text{ termes de } \deg_{x_1} < N_1$$

Lemme 2.2.1. Le théorème d'extension est vrai pour n=2.

Démonstration. Notons deg $f_1=d$, deg $f_2=e$. Alors il existe $A,B\in\mathbb{Z}[X_0,\cdots,X_d,Y_0,\cdots,Y_e,x_1,\cdots,x_n]$. Alors

$$Res(f_1, f_2, x_1) = A(a_0, \dots, a_d, b_0, \dots, b_e, x_2, \dots, x_n, x_1) f_1 + B(a_0, \dots, a_d, b_0, \dots, b_e, x_2, \dots, x_n, x_1) f_2$$

Le membre de droite de cette égalité est dans I, et $Res(f_1, f_2, x_1) \in k[x_1, \dots, x_n]$. Ainsi $Res(f_1, f_2, x_1) \in I \cap k[x_2, \dots, x_n] = I_1$. Soit $(c_2, \dots, c_b) \in V(I_1)$. En particulier, $Res(f_1, f_2, x_1)(c_2, \dots, c_n) = 0$

On cherche $c_1 \in k$ solution commune de $f_1(x_1, c_2, \dots, c_n) = 0$ et $f_2(x_1, c_2, \dots, c_n)$. Comme k est algébriquement clos, $f_1(x_1, c_2, \dots, c_n)$ et $f_2(x_1, c_2, \dots, c_n)$ ont un zéro commun si et seulement si leur pgcd est non trivial ssi leur résultat s'annule. Maintenant

$$Res(f_1(x_1, c_2, \cdots, c_n), f_2(x_1, c_2, \cdots, c_n), x_1) = Res(f_1(x_1, \cdots, x_n), f_1(x_1, \cdots, x_n), x_1)(c_2, \cdots, c_n)$$

En effet, on a supposé que $(c_2, \dots, c_n) \notin V(g_1, g_2)$, et alors deux cas se présentent :

1. aucun des g_i ne s'annule en (c_2, \dots, c_n) , dans ce cas

$$\deg_{x_1} f_i(x_1, c_2, \cdots, c_n) = \deg_{x_1} f(x_1, \cdots, x_n)$$

et donc l'égalité précédente est vraie.

2. l'un des g_i s'annule en (c_2, \dots, c_n) . Sans perte de généralité, supposons que g_2 s'annule (et donc g_1 ne s'annule pas) en (c_2, \dots, c_n) . En remplaçant f_2 par $f'_2 = f_2 + x_1^N f_1$, avec N >> 0 ($N \ge \deg_{x_1} f_2$), on se ramène au cas 1 en remarquant que f_1, f_2 one une solution commune en c_1 si et seulement si f_1, f'_2 ont une solution commune en c_1 .

d'où
$$f_1(x_1, c_2, \dots, c_n)$$
 et $f_2(x_1, c_2, \dots, c_n)$ ont un zéro communt c_1 .

Définition 2.2.2. Soient $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. Considérons

$$u_2 f_2 + \dots + u_r f_r \in k[x_1, \dots, x_n, u_2, \dots, u_r]$$

Alors

$$Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n) u^{\alpha} \in k[x_2, \dots, x_n, u_2, \dots, u_r]$$

et les $h_{\alpha} \in k[x_1, \cdots, x_n]$ sont les résultants généralisés de f_1, \cdots, f_r par rapport à x_1 .

Démonstration. (Théorème d'extension) On cherche une racine commune aux $f_i(x_1, c_2, \dots, c_n)$. Le cas r=2 a été fait dans le lemme 2.2.1. Ainsi supposons que $r\geq 3$, et supposons sans perte de généralité que $g_1(c_2, \dots, c_n) \neq 0$. On a

$$Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n) u^{\alpha}$$

Montrons que $h_{\alpha} \in I_1$, pour tout $\alpha \in \mathbb{N}^{r-1}$. Par la proposition, il existe

$$\tilde{A}, \tilde{B} \in \mathbb{Z}[u_2, \cdots, u_r, x_1, \cdots, x_n, X_0, \cdots, X_d, Y_0, \cdots, Y_e]$$

tq

$$Af_A + B(u_2f_2 + \dots + u_rf_r) = Res(f_1, u_2f_2 + \dots + u_rf_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n)u^{\alpha}$$

où A, B sont des évaluations de \tilde{A} et \tilde{B} . Ecrivons

$$A = \sum_{\alpha} A_{\alpha} u^{\alpha}$$
$$B = \sum_{\alpha} B_{\alpha} u^{\alpha}$$

$$B = \sum_{\alpha} B_{\alpha} u^{\alpha}$$

Alors

$$\sum_{\alpha} h_{\alpha} u^{\alpha} = \sum_{\alpha} (\underbrace{A_{\alpha} f_{1}}_{\in I}) u^{\alpha} + \sum_{i=2}^{r} \sum_{\beta} (\underbrace{B_{\beta} f_{i}}_{\in I}) u^{\beta + e_{i}}$$

où $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (le 1 est à la *i*-ème position). Par comparaison des coeffs devant chaque u^{α} , on obtient que $h_{\alpha} \in I$ pour tout $\alpha \in \mathbb{N}^{r-1}$. Par définition, $h_{\alpha} \in k[x_2, \cdots, x_n]$ donc $h_{\alpha} \in I_1$. En particulier, $h_{\alpha}(c_2, \dots, c_n) = 0$ pour tout $\alpha \in \mathbb{N}^{r-1}$.

1. Supposons que $g_2(c_2, \dots, x_n) \neq 0$ et $\deg_{x_1} f_2 > \max(\deg_{x_1} (f_i))_{3 \leq i \leq r}$. Alors

$$\deg_{x_1}(u_2f_2 + \dots + u_rf_r) = \deg_{x_1}((u_2f_2 + \dots + u_rf_r)(c_2, \dots, c_n))$$

Alors

$$0 = Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1)(c_2, \dots, c_n) = Res(f_1(c_2, \dots, c_n), u_2 f_2(c_2, \dots, c_n) + \dots + u_r f_r(c_2, \dots, c_n), x_1)$$

Alors $f_1(x_1, c_2, \dots, c_n)$ et $\sum_{i=2}^r u_i f_i(x_1, c_2, \dots, c_n)$ ont un facteur en commun non constant dans $k[u_2, \dots, u_r][x_1]$. Comme $f_1(x_1, c_2, \dots, c_n) \in k[x_1]$, ce facteur commun $D(x_1)$ est dans $k[x_1]$. En évaluant u_j en 1 et u_k en 0 pour $k \neq j$, on obtient que $D(x_1) \mid f_i(x_2, c_2, \dots, c_n)$ pour chaque j. Ainsi il existe $c_1 \in k$ tq $f_i(c_1, \dots, c_n) = 0$ pour tout i (on prend une racine de D, qui existe car $k = \bar{k}$).

2. On se ramène au cas 1 en remplaçant f_2 par $x_1^N f_1 + f_2$ avec N suffisament grand.

2.3 Application 3 : variétés paramétrées

Une variété est V(I), $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \cdots, x_n]$. Paramètres? x = t, y = 2t est une paramtrisation d'une variété V(y-2x). Donnons un autre exemple : $x=t^2,\,y=t^3$ est la paramétrisation de $V(y^2-x^3)$. Un dernier exemple : $x=s^2+t^2$, $y=s^2-t^2$, z=st. Il est difficile de savoir directement si c'est une variété. Formalisme : on a des équations polynomiales

$$\begin{cases} x_1 = f_1(t_1, \dots, t_m) \\ \vdots \\ x_n = f_n(t_1, \dots, t_m) \end{cases}$$

De façon équivalente, on a un morphisme de variétés

$$F: \quad \mathbb{A}^m \quad \to \quad \mathbb{A}^n \\ (t_1, \cdots, t_m) \quad \mapsto \quad (f_1(t_1, \cdots, t_m), \cdots, f_n(t_1, \cdots, t_m))$$

Quetion : quelle est la plus petite variété contenant $F(\mathbb{A}^m)$? Idée : considérer le graphe de $F: \{(\underline{t}, F(\underline{t})) \in \mathbb{A}^m \times \mathbb{A}^n\}$. C'est l'ensemble $V(x_1 - f_1, \dots, x_n - f_n) \subseteq \mathbb{A}^m \times \mathbb{A}^n$. Considérons le diagramme commutatif

où i est l'inclusion

$$i: \mathbb{A}^m \to \mathbb{A}^m \times \mathbb{A}^n$$

 $t \mapsto (t, f(t))$

et p la projection sur la deuxième coordonnée.

2.3.1. (Implicitisation) Soit k un corps infini, notons $I=(x_i-f_i\mid 1\leq i\leq n)\overset{\mathrm{id}}{\subseteq} k[t_1,\cdots,t_m,x_1,\cdots,x_n].$ Alors $\overline{F(\mathbb{A}^m)}=V(I_m)$ où I_m est l'idéal d'élimination $I\cap k[x_1,\cdots,x_n].$

On montre d'abord le cas où $k = \bar{k}$.

 $I = (f_1, \cdots, f_r) \overset{\text{id}}{\subseteq} k[x_1, \cdots, x_n]. \ \ Soit \ 1 \leq l \leq n \ \ un \ \ entirer \ \ et \ \ considérons \ I_l. \ \ Enfin \ soit$ $\pi_l: \qquad \mathbb{A}^n \qquad \to \qquad \mathbb{A}^{n-l}$ Théorème 2.3.2. (Théorème de cloture) Supposons que k est algébriquement clos. Soit

$$\pi_l: \quad \mathbb{A}^n \quad \to \quad \mathbb{A}^{n-l}$$

$$(x_1, \dots, x_n) \quad \mapsto \quad (x_{l+1}, \dots, x_n)$$

$$(2.1)$$

Alors $\overline{\pi_l(V(I))} = V(I_l)$.

Démonstration. Découle du nullstellensatz : déja, $\pi_l(V(I)) \subseteq (I_l)$. En effet, si $(a_1, \dots, a_n) \in V(I)$, alors $\pi_l(a_1, \dots, a_n) = (a_{l+1}, \dots, a_n)$. Mais si $g \in I_l$, alors $g \in I$ donc $g(a_1, \dots, a_n) = 0$ puis g ne fait pas intervenir les l premières variables. Ainsi $(a_{l+1}, \dots, a_n) \in V(I_l)$. Soit $f \in I(\pi_l(V(I))) \subseteq k[x_{l+1}, \dots, x_n]$, puis considérons f comme élément de $k[x_1, \dots, x_n]$. Alors $f \in I(V(I))$ puisque f ne fait pas intervenir les l première variables. Ainsi $\exists N > 0$ tel que $f^N \in I$. Mais f ne fait pas intervenir les l premières variables, donc $f^N \in I_l$ et ainsi $f \in \sqrt{I_l} = I(V(I_l))$. Donc $I(\pi_l(V(I))) \subseteq I(V(I_l))$. On applique V:

$$V(I_l) \supseteq V(I(\pi_l(V(I)))) \supseteq V(I(V(I_l))) \supseteq V(\sqrt{I_l}) = V(I_l)$$

donc toutes ces inclusions sont des égalités.

 $D\'{e}monstration.$ (2.3.1)

Cas 1 : k algébriquement clos On veut montrer que $\overline{F(\mathbb{A}^n)} = V(I_m)$ où $I = (x_i - f_i)$. Le théorème de cloture appliqué à p et V(I) : $\overline{p(V(I))} = V(I_m)$. Mais $p(V(I)) = F(\mathbb{A}^n)$.

Cas 2:k n'est pas algébriquement clos Soit \bar{k} sa clôture algébrique. Le morphisme $F:\mathbb{A}^m_k\to\mathbb{A}^n_k$ s'étend naturellement en un morphisme $\bar{F}:\mathbb{A}^n_{\bar{k}}\to\mathbb{A}^m_{\bar{k}}$ qui envoie \underline{t} sur $\underline{f}(\underline{t})$. Notons $\bar{I}=(x_i-f_i)\stackrel{\mathrm{id}}{\subseteq}\bar{k}[x_1,\cdots,x_n]$. Par ce qui précède, $\overline{F}(\mathbb{A}^n_{\bar{k}})=V((\bar{I})_m)$. Or les générateurs de $(\bar{I})_m$ dans une BDG pour l'odre lex sont dans $k[x_1,\cdots,x_n]$, et ainsi $(\bar{I})_m=\overline{I_m}$. Finalement, on a (comme précédemment) que $F(\mathbb{A}^m_k)\subseteq V(I_m)$. Supposons que V(J) est une autre variété tq $F(\mathbb{A}^m_k)\subseteq V(J)\subseteq V(I_m)$ où $J\subseteq k[x_1,\cdots,x_n]$. Prenons $g\in J$, alors $g\circ F\in k[t_1,\cdots,t_m]$. Alors $g\circ F$ s'annule sur \mathbb{A}^m (car $F(\mathbb{A}^m_k)\subseteq V(J)$). Comme le corps est ifini, $g\circ F=0$. En particulier, $g\circ F$, vu comme élément de $\bar{K}[t_1,\cdots,t_n]$ s'annule sur \mathbb{A}^m_k et est donc nul. Donc

$$\bar{F}(\mathbb{A}^m_{\bar{k}}) \subseteq V(\bar{J})$$

Or
$$\overline{\bar{F}}(\mathbb{A}^n_{\bar{k}}) = V(\bar{I}_m)$$
. Ainsi $V(\bar{I}_m) \subseteq V(\bar{J})$, donc $V(I_m) \subseteq V(J)$.

Chapitre 3

Changements de bases de Grobner

3.1 Ordres matriciels

Définition 3.1.1. Soit $M \in M_{m,n}(\mathbb{R})$. On définit une relation $<_M$ sur \mathbb{N}^n de la façon suivante :

$$\alpha <_M \beta \iff M\alpha <_{lex} M\beta$$

Ex 3.1.1. Sur $k[x_1, x_2, x_3]$, I_3 convient pour $<_{lex}$,

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

convient pour $<_{deglex}$,

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

convient pour $<_{degrevlex}$.

Rq 3.1.1.

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

convient aussi pour lex.

Définition 3.1.2. (Noyau à droite) Le noyau à droite de $M \in M_{m,n}(\mathbb{R})$ est

$$\ker M := \{ v \in \mathbb{R}^n \mid Mv = 0 \}$$

Proposition 3.1.1. Soit $M \in M_{m,n}(\mathbb{R})$, alors

1. $\forall \alpha, \beta, \gamma \in \mathbb{N}^n$,

$$\alpha <_M \beta \iff \alpha + \gamma <_M \beta + \gamma$$

- 2. Si ker $M \cap \mathbb{Z} = \{0\}$, alors $\forall \alpha \neq \beta \in \mathbb{N}^n$, $(\alpha <_M \beta) \vee (\beta <_M \alpha)$.
- 3. S'il existe une matrice $T \in M_{m,m}(\mathbb{R})$ triangulaire inférieure dont les coefficients diagonaux sont strictements positifs et t.q. $TM \in M_{m,n}(\mathbb{R}_{\geq 0})$, alors $\forall \alpha \in \mathbb{N}^n$, $0 \leq_M \alpha$.

 $D\'{e}monstration.$ 1.

$$\alpha <_M \beta \iff M\alpha <_{lex} M\beta$$

$$\iff M\alpha + M\gamma <_{lex} M\beta + M\gamma$$

$$\iff M(\alpha + \gamma) <_{lex} M(\beta + \gamma)$$

$$\iff \alpha + \gamma <_M \beta + \gamma$$

2. Soient $\alpha \neq \beta \in \mathbb{N}^n$, alors

$$\alpha <_M \beta \lor \beta <_M \alpha \iff M\alpha <_{lex} M\beta \lor M\beta <_{lex} M\alpha$$
$$\iff M\alpha \neq M\beta \iff \alpha - \beta \notin \ker M$$

et comme $\ker M \cap \mathbb{Z}^n = 0$ et $\alpha \neq \beta$, alors $\alpha - \beta \notin \ker M$ est toujours vraie.

- 3. Notons w_i les lignes de M. TM est obtenue en effectuant les opérations suivantes :
 - Remplacer w_1 par un multiple strictement positif de w_1 .
 - Remplacer w_2 par un multiple strictement positif de w_2 plus une combinaison linéaire de W_1 .
 - Remplacer w_3 par un multiple strictement positif de w_3 plus une combinaison linéaire de w_1, w_2 .

___:

Pour comparer $\alpha, \beta \in \mathbb{N}^n$ pour $<_M$ on calcule

$$M\alpha = \begin{bmatrix} w_1 \cdot \alpha \\ \vdots \\ w_b \cdot \alpha \end{bmatrix}, M\beta = \begin{bmatrix} w_1 \cdot \beta \\ \vdots \\ w_b \cdot \beta \end{bmatrix}$$

Montrons que $<_M = <_{TM}$. Notons $T = (T_{ij})_{1 \le i,j \le m}$. Alors

$$TM = \begin{bmatrix} t_{11}w_1 \\ t_{21}w_1 + t_{22}w_2 \\ t_{31}w_1 + t_{32}w_2 + t_{33}w_3 \\ \vdots \end{bmatrix}$$

Maintenant

$$\alpha <_M \beta \iff \begin{cases} w_1 \alpha < w_2 \beta \\ \text{ou alors } w_1 \alpha = w_1 \beta \text{ et } w_2 \alpha < w_2 \beta \\ \text{ou alors } w_1 \alpha = w_1 \beta \text{ et } w_2 \alpha = w_2 \beta \text{ et } w_3 \alpha < w_3 \beta \\ \vdots \\ \begin{cases} t_{11} w_1 \alpha < t_{11} w_1 \beta \\ \text{ou alors } t_{11} w_1 \alpha = t_{11} w_1 \beta \text{ et } t_{22} w_2 \alpha + t_{21} w_1 \alpha < t_{22} w_2 \beta + t_{21} w_1 \beta \\ \vdots \\ \Leftrightarrow TM\alpha <_{lex} TM\beta \iff \alpha <_{TM} \beta \end{cases}$$

et aini $\leq_M = \leq_{TM}$. Maintenant comme $TM \in M_{m,n}(\mathbb{R}_{\geq 0})$, pour tout $\alpha \in \mathbb{N}^n$, $TM\alpha \in \mathbb{R}^n_{\geq 0}$ et donc $0 \leq_{TM} \alpha$, d'où $0 \leq_M \alpha$.

Corollaire 3.1.1. Pour tout T triangulaire inférieure avec coefficients diagonaux strictement positifs, alors $<_{TM} = <_{M}$.

Corollaire 3.1.2. Si une ligne de M est combinaison linéaire des lignes au dessus, alors la retirer ne change pas l'ordre matriciel.

Corollaire 3.1.3. Tout ordre matriciel est égal à un ordre matriciel $<_M$, où M a au plus n lignes.

Ex 3.1.2. $M = \begin{bmatrix} 1 & \sqrt{2} \end{bmatrix}$ définit un ordre monomial.

Corollaire 3.1.4. Tout ordre monomial matriciel est égal à $<_M$ où M a exactement n lignes.

 $D\acute{e}monstration$. D'après le corolaire précédent, on peut prendre M avec moins de n lignes. Mais alors rajouter des lignes de zéros ne change pas l'ordre.

Rq 3.1.2. Si $n \geq 2$, alors $k[x_1, \dots, x_n]$ admet une infinité d'ordres monomiaux. Par exemple, pour n = 2, pour tout $a \in \mathbb{N}$, on définit

$$M_a = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

Alors $y >_{M_a} x^a$ et $y <_{M_a} x^{a+1}$, donc les $<_{M_a}$ définissent une infinité d'ordre monomiaux différents.

Théorème 3.1.1. (Robbiano, 1985) Tout ordre monomial est un ordre matriciel.

Démonstration. Soit < un ordre monomial sur \mathbb{N}^n .

Etape 1: < s'étend en un unique ordre total additif sur \mathbb{Z}^n : si $\alpha, \beta \in \mathbb{Z}^n$, alors $\exists \gamma \in \mathbb{Z}^n$ tel que $\alpha + \gamma, \beta + \gamma \in \mathbb{N}^n$. On pose ainsi

$$\alpha < \beta \iff \alpha + \gamma < \beta + \gamma$$

Clairement, cette définition ne dépend pas du choix de γ . Donc < est étendu en un ordre total à \mathbb{Z}^n .

Etape 2 : L'ordre total additif $< \sup \mathbb{Z}^n$ s'étend en un unique ordre total additif $\sup \mathbb{Q}^n$: $\sin \alpha, \beta \in \mathbb{Q}^n$, alors $\exists \lambda \in \mathbb{N}^n$ tq $\lambda \alpha, \lambda \beta \in \mathbb{Z}^n$. Ainsi on pose

$$\alpha < \beta \iff \lambda \alpha < \lambda \beta$$

Ceci ne dépend pas de λ , et on a ainsi étendu < à un ordre total additif sur \mathbb{Q}^n .

Etape 3: Soient

$$H_{-} = \{ v \in \mathbb{Q}^{n} \mid v < 0 \}$$

$$H_{+} = \{ v \in \mathbb{Q}^{n} \mid v > 0 \}$$

Ainsi $\mathbb{Q}^n = H_- \sqcup \{0\} \sqcup H_+$. Alors considérons les adhérences H_- , H_+ , puis $I_0 = H_- \cap H_+$. Montrons que I_0 est un sev de \mathbb{R}^n de codimension 1.

- H_+, H_- sont stables pas somme.
- H_+, H_- sont stables par produit par des éléments de $\mathbb{Q}_{>0}$.
- L'opération $\sigma: v \mapsto -v$ est une bijection de H_+ dans H_- .

Ainsi

- \bar{H}_+, \bar{H}_- sont stables par somme.
- \bar{H}_+, \bar{H}_- sont stables par produits par des éléments de $\mathbb{R}_{\geq 0}$.
- $\sigma: v \mapsto -v$ induit une bijection entre H_+ et H_- .

Par conséquent, I_0 est stable par somme et produit par un réél quelconque. Comme $I_0 \neq \emptyset$, car $0 \in I_0$, ceci donne que I_0 est un sev de \mathbb{R}^n . Montrons que dim $I_0 = n-1$ en montrant que $I_0 \neq \mathbb{R}^n$, et que $\mathbb{R}^n \setminus I_0$ n'est pas connexe. Puisque $\mathbb{Q}^n_{>0} \cap H_- = \emptyset$, on obtiens que $I_0 \neq \mathbb{R}^n$. De plus, $\mathbb{R}^n \setminus I_0 = (\bar{H}_+ \setminus I_0) \sqcup (\bar{H}_- \setminus I_0)$, et ces deux composantes sont des fermés, donc $\mathbb{R}^n \setminus I_0$ n'est pas connexe.

Etape 4: Soit w_1 un vecteur non nul, orthogonal à I_0 tel que pour tout $h \in H_+$, alors $\langle w_1, h \rangle \geq 0$ (w_1 existe quitte à le multiplier par -1, et est unique à produit par $\mathbb{R}_{>0}$ près). Alors pour tout $v \in \mathbb{R}^n$,

$$-v \in \bar{H}_+ \iff \langle w_1, v \rangle \ge 0$$

$$-v \in \bar{H}_- \iff \langle w_1, v \rangle \le 0$$

$$- v \in I_0 \iff \langle w_1, v \rangle = 0$$

Si $v, v' \in \mathbb{Q}^n$, alors $v < v' \iff v - v' < 0 \iff v - v' \in H_- \iff \langle w_1, v - v' \rangle < 0$. Le vecteur w_1 sera la première ligne d'une matrice M telle que $<_M = < \sup \mathbb{N}^n$.

Etape 5 : Si $\langle v - v', w_1 \rangle = 0$, alors $v - v' \in I_0$. Soit $G_1 = I_0 \cap \mathbb{Q}^n$, alors G_1 est une \mathbb{Q} -ev de dimension au plus n - 1. Posons

$$H_{1,+} = \{ v \in G_1 \mid v > 0 \}$$

$$H_{1,-} = \{ v \in G_1 \mid v < 0 \}$$

 $I_1 = \bar{H}_{1,+} \cap \bar{H}_{1,-}$. Comme pour I_0 , on montre que I_1 est un sev de codim 1 dans \bar{G}_1 . Soit w_2 un vecteur orthogonal à I_1 dans \bar{G}_1 tq $\forall h \in \bar{H}_{1,r}$, $\langle w_2, h \rangle \geq 0$. On a donc

$$\alpha < \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \beta \Rightarrow \begin{cases} w_1 \alpha < w_1 \beta \\ \text{ou } w_1 \alpha = w_1 \beta \text{ et } w_2 \alpha < w_2 \beta \\ \text{ou } w_1 \alpha = w_1 \beta \text{ et } w_2 \alpha = w_2 \beta \end{cases}$$

Etape 6 : On pose $G_2 = \mathbb{Q}^n \cap I_1$. et ainsi de suite. On construit au plus n vecteur w_1, \dots, w_m tq

$$\alpha < \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} \beta \iff \alpha < \beta$$

Notation. — < ordre monomial, $E \subseteq k[x_1, \dots, x_n]$. Alors

$$LT_<(E):=\{LT_<(f)\mid f\in E\}$$

$$Mon(E) = \{(LT_{<}(E)) \mid < \text{ ordre monomial}\}\$$

Théorème 3.1.2. Soit $I \subseteq k[x_1, \dots, x_n]$. Alors Mon(I) est fini.

Démonstration. Supposons le contraire, pour chaque $J \in Mon(I)$, soit $<^J$ un ordre monomial tel que $J = (LT_{< J}(I))$. Soit

$$\Sigma = \{ <^J | \ J \in Mon(I) \}$$

Par le théorème de la base de Hilbert il existe $f_1, \dots, f_r \in I$ tq $I = (f_1, \dots, f_r)$. Chaque f_i n'a qu'un nombre fini de termes, puisque Σ est infini, $\exists \Sigma_1 \subseteq \Sigma$ infini tel que $\forall i \in [1, r]$, $LT_{<}(f_i)$ prend la même valeur pour tout $<\in \Sigma_1$. Posons

$$J:=(LT_{<}(f_1),\cdots,LT_{<}(f_r))$$

pour $<\in \Sigma_1$. Montrons que $\{f_1, \dots, f_r\}$ n'est pas une bdg de I, pour $<\in \Sigma_1$. Si c'était le cas, alors ce serait une bdg pour tout $<'\in \Sigma_1$:

$$(LT_{<}(I)) = (LT_{<}(f_i)) = (LT_{<'}(f_i)) \subseteq (LT_{<'}(I))$$

puis si un monôme m est dans $(LT_{<'}(I))$ mais pas dans $(LT_{<}(I))$, alors la division de m par f_1, \dots, f_r donne un reste non nul, pour < comme pour <'. Mais si $m = LT_{<'}(f), f \in I$, alors le reste de la dibision de f par f_1, \dots, f_r pour < est nul. Ce reste contient pourtant le terme m, contradiction. Donc $\{f_1, \dots, f_r\}$ est une bdg pour tout $<' \in \Sigma_1$, donc pour tout $<, <' \in \Sigma_1$,

$$(LT_{<}(I)) = (LT_{<'}(I))$$

mais par définition de Σ_1 , si $<\neq<'$, alors $(LT_<(I))\neq (LT_<(I))$, contradiction. Ainsi $\{f_1,\cdots,f_r\}$ n'est pas une bdg pour I et pour $<\in\Sigma_I$. Il existe donc $f_{r+1}\in I$ tq $LT_<(f_{r+1})\notin (LT_<(f_i))$. Alors $\exists \Sigma_2\subseteq\Sigma_1$ infini tel que les valeurs de $LT_<(f_i)$, $i\in [\![1,r+1]\!]$, sont les mêmes pour tout $<\in\Sigma_2$. Comme plus haut, on mq (f_1,\cdots,f_{r+1}) n'est pas une bdg de I pour $<\in\Sigma_2$. Donc $\exists f_{r+2}\in I$ tel que $LT_<(f_{r+2})\notin (LT_<(f_1),\cdots,LT_<(f_{r+1}))$ pour $<\in\Sigma_2$. Ainsi on construit par récurrence une famille d'ensembles infinis $\Sigma\supseteq\Sigma_1\supseteq\Sigma_2\supseteq\cdots$ et des éléments f_1,f_2,\cdots pour $<_i\in\Sigma_i$ tels que

$$(LT_{<_1}(f_1), \cdots, LT_{<_1}(f_{r+1})) \nsubseteq (LT_{<_2}(f_1), \cdots, LT_{<_1}(f_{r+2})) \supseteq \cdots$$

ce qui contredit la noethérianité de $k[x_1,\cdots,x_n]$.

Définition 3.1.3. (Base de grobner marquée) Soit $I \subseteq k[x_1, \dots, x_n]$. Une base de grobner marquée pour I est un ensemble de polynômes $\{g_1, \dots, g_r\} \subseteq I$ et un choix de monôme m_i de g_i tel qu'il existe un ordre monomial < pour lequel $\{g_1, \dots, g_r\}$ est la base de grobner réduite et $m_i = LT_{<}(g_i)$.

Corollaire 3.1.5. L'ensemble des bdg marquée de I est en bijection avec Mon(I), et est donc fini.

Démonstration. Soit $\{(g_1, m_1), \dots, (g_r, m_r)\}$ une badg marquée de I. Supposons que <, <' sont deux ordres monomiaux pour lesquels $\{(g_1, m_1), \dots, (g_r, m_r)\}$ est la base de grobner marquée. Alors

$$(LT_{<}(I)) = (LT_{<'}(I))$$

En effet, $(LT_{\leq}(I)) = (LT_{\leq}(g_i)) = (LT_{\leq}(g_i)) = (LT_{\leq}(I))$. On a donc défini une application

$$\phi: \ \{\text{bdg marqu\'ees}\} \ \to \ Mon(I) \\ \{(g_i, m_i)\} \ \mapsto \ (LT_<(I))$$

où < est un ordre pour lequel $\{(g_i, m_i)\}$ est une bdg marquée. On définit une inverse ψ à ϕ : Soit $J \in Mon(I)$, puis soient <, <' tq $J = (LT_{<}(I)) = (LT_{<'}(I))$. Alors < et <' définissent la même bdg marquée de I. Soit $\{(g_i, m_i)\}$ la base de groebner marquée pour <. Ainsi

$$(LT_{<}(g_i)) = (LT_{<}(I))$$

= $(LT_{<'}(I)) \supseteq (LT_{<'}(g_i))$

Pour chaque i, $LT_{<'}(g_i)$ est divisible par l'un des $LT_{<}(g_j)$, mais comme (g_i) est une bdg réduite, ceci entraine que $LT_{<'}(g_i) = LT_{<}(g_i)$. En particulier (g_i, m_i) est une bdg, réduite et marquée pour l'ordre <'. On a donc défini

$$\begin{array}{ccc} \psi: & Mon(I) & \to & \{\text{bdg marqu\'ees}\} \\ & J & \mapsto & \{(g_i, m_i)\} \end{array}$$

et il est clair que ϕ et ψ sont mutuellement inverses.

Corollaire 3.1.6. Il existe un ensemble fini $\mathcal{U} \subseteq I$ tel que \mathcal{U} est une bdg de I, quelque soit l'ordre monomial.

Définition 3.1.4. Ce \mathcal{U} est appelé base de grobner universelle.

Définition 3.1.5. 1. Un cône dans \mathbb{R}^n est un ensemble ayant la forme

$$C(v_1, \cdots, v_r) := \left\{ \sum_{finie} \lambda_i v_i \mid \lambda_i \ge 0 \right\}$$

De façon équivalente, un cône est une intersection de demi espaces fermés.

2. Un hyperplan de définition d'un cône C est hyperplan $H=v^{\perp}$ tel que $v\cdot C\geq 0$.

CHAPITRE 3. CHANGEMENTS DE BASES DE GROBNER

- 3. Une face d'un cône C est une intersection de C avec l'un de ses hyperplans de définition. Remarquons que les faces d'un cône sont des cônes.
- 4. La dimension d'un cône est la dimension du sous-espace de \mathbb{R}^n qu'il engendre.
- 5. Les faces de dimension 1 de C sont les rayons de C.
- 6. Les faces de codimension 1 de C sont les facettes de C.
- 7. Un éventail est un ensemble \mathcal{F} de cônes tels que
 - $C \in \mathcal{F} \Rightarrow$ toute face de C est dans \mathcal{F} .
 - $-C, C' \in \mathcal{F} \Rightarrow C \cap C' \in \mathcal{F}$ et est une face de C et C'.