

Our dataset

For our project, we wanted to use data from the English Premier League

We obtained data from 8 seasons, so our dataset should contain 380 * 8 = 3040 rows

MAT	CHES	NEWS	TABLE				ST	ATS			PLAYERS
Season 2016-17	′ •										
Club			MP	W	D	L	GF	GA	GD	Pts	Last 5
1	Chelsea		38	30	3	5	85	33	52	93	00000
2	Tottenham		38	26	8	4	86	26	60	86	0000
3	Man City		38	23	9	6	80	39	41	78	00000
4	Liverpool		38	22	10	6	78	42	36	76	⊘⊘ ⊙ ⊗ ⊗
5 🧺	Arsenal		38	23	6	9	77	44	33	75	00000
6 💮	Man United		38	18	15	5	54	29	25	69	0000
7	Everton		38	17	10	11	62	44	18	61	⊗⊘⊗⊙
8	Southampton		38	12	10	16	41	48	-7	46	80080

Our dataset

- We got our initial dataset from Tara Nguyen's Premier League dataset from Kaggle
- We scraped remaining data from the Premier League's official website using Python Selenium Webscraper and Chrome Webdriver, then merged the two datasets together
- We obtained 35 columns in the final data set

```
Now, for every match number
for match_number in range(SEASON_FIRST_MATCHES[season], SEASON_FIRST_MATCHES[season]+380):
  # open the webpage dedicated to that match
  url = f'https://www.premierleague.com/match/{match number}
  driver.get(url)
   # This is the stats button XPATH
  stats button xpath = "//li[@data-tab-index='2']"
  # wait for the stats button to appear
  wait till element_appears(By.XPATH, stats_button_xpath, time=4)
   # click on the stats button
   try:
      stats button = driver.find element by xpath(stats button xpath)
      stats button.click()
   except NoSuchElementException:
       print(
           "The element you were looking for could not be found. Check your XPATH")
```

The final dataset — after deaning

		Season_x	HomeTeam_x	AwayTeam_x	HomePossession	AwayPossession	HomeTouches	AwayTouches	HomePasses	AwayPasses	HomeTackles	
	0	2010/11	Aston Villa	West Ham United	56.8	43.2	636	529	395	313	27	
	1	2010/11	Blackburn Rovers	Everton	30.4	69.6	450	729	208	469	15	
	2	2010/11	Bolton Wanderers	Fulham	46.5	53.5	592	636	336	394	26	
	3	2010/11	Chelsea	West Bromwich Albion	59.5	40.5	782	571	592	394	16	
	4	2010/11	Sunderland	Birmingham City	44.1	55.9	514	581	304	386	9	
3	035	2017/18	Newcastle United	Chelsea	41.9	58.1	585	764	406	569	19	
3	036	2017/18	Southampton	Manchester City	30.3	69.7	441	782	259	583	24	
3	037	2017/18	Swansea City	Stoke City	57.6	42.4	744	612	544	414	16	
3	038	2017/18	Tottenham Hotspur	Leicester City	64.0	36.0	672	453	480	265	20	
3	039	2017/18	West Ham United	Everton	56.6	43.4	652	528	479	365	11	
30	3040 rows × 35 columns											

final_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3040 entries, 0 to 3039
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype				
0	Season_x	3040 non-null	object				
1	HomeTeam_x	3040 non-null	object				
2	AwayTeam_x	3040 non-null	object				
3	HomePossession	3040 non-null	float64				
4	AwayPossession	3040 non-null	float64				
5	HomeTouches	3040 non-null	int64				
6	AwayTouches	3040 non-null	int64				
7	HomePasses	3040 non-null	int64				
8	AwayPasses	3040 non-null	int64				
9	HomeTackles	3040 non-null	int64				
10	AwayTackles	3040 non-null	int64				
11	HomeClearances	3040 non-null	int64				
12	AwayClearances	3040 non-null	int64				
13	HomeOffsides	3040 non-null	int64				
14	AwayOffsides	3040 non-null	int64				
15	Date	3040 non-null	object				
16	Referee	3040 non-null	object				
17	FullTime	3040 non-null	object				
18	Halftime	3040 non-null	object				
19	HomeGoals	3040 non-null	int64				
20	HomeGoalsHalftime	3040 non-null	int64				
21	HomeShots	3040 non-null	int64				
22	HomeShotsOnTarget	3040 non-null	int64				
23	HomeCorners	3040 non-null	int64				
24	HomeFouls	3040 non-null	int64				
25	HomeYellowCards	3040 non-null	int64				
26	HomeRedCards	3040 non-null	int64				
27	AwayGoals	3040 non-null	int64				
28	AwayGoalsHalftime	3040 non-null	int64				
29	AwayShots	3040 non-null	int64				
30	AwayShotsOnTarget	3040 non-null	int64				
31	AwayCorners	3040 non-null	int64				
32	AwayFouls	3040 non-null	int64				
33	AwayYellowCards	3040 non-null	int64				
34	AwayRedCards	3040 non-null	int64				
dtypes: float64(2), int64(26), object(7)							

The Game Plan

Project aim:

Generate actionable recommendations for Premier League teams to score more goals and win more football matches!

Problem formulation

The classic problem of football: How do we score more goals?

Data Science problems:

- Can we predict the number of goals scored (response) using the other relevant variables in the dataset (predictors)?
- 2. Can we use **feature importance** to determine which of these predictor variables is the most important to **maximise/minimise** for a team?

Data cleaning and preparation

- During the scraping, each season's data was put into 8 individual .csv files
- We combined the 8 .csv files and the Tara Nguyen data for the final dataset
- To clean the data for machine learning, we removed metadata such as the referee name, date of the match, season, etc.

Data cleaning and preparation

- We also removed some data that is incidental
- This means that the teams playing the match are not actively incorporating maximising/minimising these variables into their playstyles.
- These variables include cards, corners, number of fouls, etc.
- Notice how every team wants to minimise fouls and maximise corners, because they are clearly optimal
- Finally, we limited the data to just the home team as it would be easier to perform exploratory analysis and recognize patterns in the data by eye

final_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3040 entries, 0 to 3039 Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype			
0	Season_x	3040 non-null	object			
1	HomeTeam_x	3040 non-null	object			
2	AwayTeam_x	3040 non-null	object			
3	HomePossession	3040 non-null	float64			
4	AwayPossession	3040 non-null	float64			
5	HomeTouches	3040 non-null	int64			
6	AwayTouches	3040 non-null	int64			
7	HomePasses	3040 non-null	int64			
8	AwayPasses	3040 non-null	int64			
9	HomeTackles	3040 non-null	int64			
10	AwayTackles	3040 non-null	int64			
11	HomeClearances	3040 non-null	int64			
12	AwayClearances	3040 non-null	int64			
13	HomeOffsides	3040 non-null	int64			
14	AwayOffsides	3040 non-null	int64			
15	Date	3040 non-null	object			
16	Referee	3040 non-null	object			
17	FullTime	3040 non-null	object			
18	Halftime	3040 non-null	object			
19	HomeGoals	3040 non-null	int64			
20	HomeGoalsHalftime	3040 non-null	int64			
21	HomeShots	3040 non-null	int64			
22	HomeShotsOnTarget	3040 non-null	int64			
23	HomeCorners	3040 non-null	int64			
24	HomeFouls	3040 non-null	int64			
25	HomeYellowCards	3040 non-null	int64			
26	HomeRedCards	3040 non-null	int64			
27	AwayGoals	3040 non-null	int64			
28	AwayGoalsHalftime	3040 non-null	int64			
29	AwayShots	3040 non-null	int64			
30	AwayShotsOnTarget	3040 non-null	int64			
31	AwayCorners	3040 non-null	int64			
32	AwayFouls	3040 non-null	int64			
33	AwayYellowCards	3040 non-null	int64			
34	AwayRedCards	3040 non-null	int64			
<pre>dtypes: float64(2), int64(26), object(7)</pre>						

#	Column	Non-Null Count	Dtype
0	HomePossession	3040 non-null	float64
1	HomeTouches	3040 non-null	int64
2	HomePasses	3040 non-null	int64
3	HomeTackles	3040 non-null	int64
4	HomeClearances	3040 non-null	int64
5	HomeOffsides	3040 non-null	int64
6	HomeShots	3040 non-null	int64
7	HomeShotsOnTarget	3040 non-null	int64
8	HomeGoals	3040 non-null	int64
dtyp			

Further exploratory analysis

Our data at a glance

Further exploratory analysis

Correlation with HomeGoals

Further exploratory analysis

MODEL 1: PREDICTING NUMBER OF GOALS SCORED

Model used: Multivariate Linear Regression

Response: HomeGoals

Predictors: HomePasses, HomePossession, HomeTouches, HomeClearances, HomeTackles, HomeOffsides, HomeShots, HomeShotsOnTarget

Goodness of Fit of Model Train Dataset Explained Variance (R^2) : 0.24585267882156603 Mean Squared Error (MSE) : 1.3240264390971843

Goodness of Fit of Model Test Dataset Explained Variance (R^2) · : 0.18300473277553309 Mean Squared Error (MSE) : 1.250544499136237

- The accuracy of the model seems quite low
- We will try another model next in order to better predict goals

```
Intercept of Regression : b = 1.6562849791701781

Coefficient of HomePossession (times 1000): : -14.692344924709069
Coefficient of HomeTouches (times 1000): : -9.648298296960684
Coefficient of HomePasses (times 1000): : 11.717850497555034
Coefficient of HomeTackles (times 1000): : 14.521979100089407
Coefficient of HomeClearances (times 1000): : 11.741204486041056
Coefficient of HomeOffsides (times 1000): : 15.137778678294772
Coefficient of HomeShots (times 1000): : 5.822368316389428
Coefficient of HomeShotsOnTarget (times 1000): : 175.72291998552026
```

- The coefficient of HomeShotsOnTarget is 0.175, much higher than the coefficient of all other variables
- Thus, to maximise goals scored, teams need to maximise shots on target

MODEL 2: PREDICTING NUMBER OF GOALS SCORED

Model used: Random Forest Classifier (using Grid Search Cross-Validation)

Response: HomeGoals (Same as Model 1)

Predictors: HomePasses, HomePossession, HomeTouches, HomeClearances, HomeTackles, HomeOffsides, HomeShots, HomeShotsOnTarget (Same as Model 1)

Goodness of Fit of Model Classification Accuracy

Goodness of Fit of Model Classification Accuracy Train Dataset

: 0.4114035087719298

Test Dataset

: 0.3526315789473684

- R^2 value is not the best at 0.35 for the testing set, but it is better than the linear regression

feature importance of HomeShotsOnTarget again dwarfs all other variables

Overall insights

- We were definitely able to predict number of goals with a greater accuracy with Model 2
- Our feature importance calculations show that HomeShotsOnTarget was the most important feature for both models
- It is quite obvious that taking more shots on target will lead to more goals.
- So maybe we need to re-formulate our problem.
 Let's try that

Problem (re-)formulation

- Given that it is quite obvious that taking more shots leads to more goals, we are more interested in the other non-shot variables and how they may relate to goals scored.
- How teams maximise and minimise other variables can be considered their 'style of play'
- Our ultimate objective is to relate style of play to number of goals scored, and then recommend that teams follow a certain style of play.
- So now, our Data Science problem is:
 - Is there a pattern to any of the remaining variables, from which we can derive style of play? Which style of play relates most to goals scored?

MODEL 3: CLUSTERING

Model used: K-means clustering

Variables: HomePasses, HomePossession, HomeTouches, HomeClearances, HomeTackles, HomeOffsides

(NO HomeGoals, HomeShots, HomeShotsOnTarget!)

Finding optimum cluster number

 In order to find the optimum cluster number, we used the cluster sum of squares and silhouette score

• We found that 4 is the ideal number to perform our clustering

Cluster rankings, by most passes, possession and touches:

- 1. Cluster 2
- 2. Cluster 0
- 3. Cluster 1
- 4. Cluster 3

Average number of goals scored by each cluster

```
Cluster 0 has scored 1.434637801831807 per game
Cluster 1 has scored 1.7238219895287958 per game
Cluster 2 has scored 2.0398671096345513 per game
Cluster 3 has scored 1.3863049095607236 per game
```

Cluster rankings,

by average goals per game:

Cluster rankings,

by possession, passes and touches:

- 1. Cluster 2
- 2. Cluster 0
- 3. Cluster 1
- 4. Cluster 3

- 1. Cluster 2
- 2. Cluster 0
- 3. Cluster 1
- 4. Cluster 3

Insights

 From this analysis, we can clearly see that teams should choose to maximise possession, passing and touches in order to likely score more goals throughout the game

Is this always the case?

Limitations

- There have clearly been many famous wins where the winning team had much lower possession. We know that some teams, like Mourinho's Chelsea in 2013/14, willingly chose to give up possession to the opposition as a playstyle.
- Further data analysis is needed to check our recommendation

Feature Engineering

- The reason why Chelsea willingly gave up possession was so that they can play more "counter-attacks"
- Counter-attacks are when the opposition team has possession and suddenly lose it, and their goal is not well-defended because all their players were trying to attack
- This results in shots that have a higher probability of being a goal, which we shall call "shot quality"

Feature Engineering

The shot taken here by the Chelsea player will have a higher chance of being a goal, as he is 1v1 with the goalie

This shot will have higher "shot quality"

Feature engineering

"Shot quality" =
(goals actually scored) – (goals predicted to be scored, by bi-variate linear regression based on shots taken)

(For bi-variate linreg:

Predictor: HomeShotsOnTarget,

Response: HomeGoals)

Feature engineering

- We expect shot quality to increase as teams play with less possession, passes and touches
- Thus, the reverse rankings for average shot quality of the clusters should be the same as those ranked by possession, passes and touches!

Average shot quality by each cluster

```
Shot quality of cluster 0 (times 100) : 6.778059441242723
Shot quality of cluster 1 (times 100) : -11.009877979600349
Shot quality of cluster 2 (times 100) : 28.919301389227574
Shot quality of cluster 3 (times 100) : -0.8784884730264999
```

Cluster REVERSED rankings, by average "shot quality" per game:

Cluster rankings, by possession, passes and touches:

- 4. Cluster 1
- 3. Cluster 3
- 2. Cluster 0
- 1. Cluster 2

- 1. Cluster 2
- 2. Cluster 0
- 3. Cluster 1
- 4. Cluster 3

Conclusion

In conclusion, Premier League teams will be more successful in scoring goals if they:

- 1. Take more shots on target;
- 2. Maximise possession, passes and touches

Thank you!

