RC 2: 26th May

Presented by: Minjie Mao

Email: jerry-mmj@sjtu.edu.cn

Table of Content

Quiz

Vector Analysis

■ Two fundamental postulates of electrostatics in free space

Quiz

Four-point charges -Q, -q, 2q, and 2Q are placed at each corner of a square. The relation between Q and q for which the potential at the center of the square is zero is \leftarrow

- a) $Q = -q \leftarrow$
- b) $Q = -1/q \leftarrow$
- c) $Q = q \leftarrow$
- d) $Q = 1/q \leftarrow$

Answer a): ←

Quiz

The figure below shows some of the electric field lines corresponding to an electric field. The figure suggests that,

- \bigcirc E_A = E_C > E_B
- \bigcirc E_A > E_B > E_C
- \bigcirc E_A = E_C < E_B
- \bigcirc E_A = E_B = E_C

Quiz

A point charge q is kept at the center of the circle formed by cutting a spherical shell by a plane as shown in the figure below. The electric flux ϕ linked with the remaining surface of the shell is then \leftarrow

- $\bigcirc \Phi = rac{q}{arepsilon_0}$
- $\bigcirc \Phi = rac{q}{2arepsilon_0}$
- $\bigcirc \Phi < rac{q}{2arepsilon_0}$
- $\bigcirc \Phi > rac{q}{2arepsilon_0}$

Consider a region in free space bounded by the surface of an imaginary cube having sides of length a as shown in the figure below. A charge +Q is placed at the center of the cube. P is a point outside the cube the line OP perpendicularly intersects the surface ABCD at R and OR = RP = a/2. Charge +Q is also placed at point P. \leftarrow

What is the flux through the five faces of the cube (taken together) other than ABCD?

The figure below shows two point charges +q and +q and a metal rod of length L carrying a uniform charge -q with L/3 of its length inside the box. The electric flux through the box is \leftarrow

Vector Analysis

$$\vec{A} = \hat{a}_A A$$

- Magnitude: $A = |\vec{A}|$
- Addition: $\vec{C} = \vec{A} + \vec{B}$

- $\mathbf{a}_{n} = \mathbf{A} \times \mathbf{B}$ $\mathbf{B} = \mathbf{B}$ $\mathbf{B} = \mathbf{B}$ $\mathbf{B} = \mathbf{B}$ $\mathbf{A} \times \mathbf{B}$
 - (a) $\mathbf{A} \times \mathbf{B} = \mathbf{a}_n |AB \sin \theta_{AB}|$.

(b) The right-hand rule.

- Dot Product: $\vec{A} \cdot \vec{B} = AB \cos \theta_{AB}$
- Cross Product: $\vec{A} \times \vec{B} = \hat{a}_n |AB \sin \theta_{AB}|$

(b) Parallelogram rule.

(c) Head-to-tail rule.

Cross Product (Vector Product)

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Quiz Choose the vector product of $\mathbf{a} = (1, 2, 3)$ and $\mathbf{b} = (3, -2, 1)$.

(a)
$$8i - 8j - 8k$$

(a)
$$8i - 8j - 8k$$
, (b) $-4i - 10j + 4k$,

(c)
$$8i + 8j - 8k$$

(c)
$$8i + 8j - 8k$$
, (d) $8i - 10j - 8k$.

Vector Analysis

Scalar triple product:

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$

Vector triple product:

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{C} \cdot \vec{A}) - \vec{C} (\vec{A} \cdot \vec{B})$$

Orthogonal Coordinate System

■ Three surfaces are mutually perpendicular to one another

$$\mathbf{A} = \mathbf{a}_{u_1} A_{u_1} + \mathbf{a}_{u_2} A_{u_2} + \mathbf{a}_{u_3} A_{u_3}$$

Cartesian Coordinates

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$(u_1,u_2,u_3)=(x,y,z)$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\mathbf{A} = \mathbf{a}_x A_x + \mathbf{a}_y A_y + \mathbf{a}_z A_z$$

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

Cylindrical Coordinates

$$(u_1,u_2,u_3)=(r,\phi,z)$$

$$\mathbf{A} = \mathbf{a}_{r} A_{r} + \mathbf{a}_{\phi} A_{\phi} + \mathbf{a}_{z} A_{z}$$

$$r = \sqrt{(x^2 + y^2)}$$
 $x = r * cos(\phi)$
 $\phi = \arctan(y / x)$ $y = r * \sin(\phi)$
 $z = z$ $z = z$

Cartesian and Cylindrical Coordinates

$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_r \\ A_\phi \\ A_z \end{bmatrix}$$

Spherical Coordinates

$$(u_1,u_2,u_3)=(R, heta,\phi)$$

$$\mathbf{A} = \mathbf{a}_{R}A_{R} + \mathbf{a}_{ heta}A_{ heta} + \mathbf{a}_{\phi}A_{\phi}$$

$$R = \sqrt{(x^2 + y^2 + z^2)} \quad x = R * \sin(\theta) * \cos(\phi)$$

$$\phi = \arctan(y / x) \quad y = R * \sin(\theta) * \sin(\phi)$$

$$\theta = \arccos(z / R) \quad z = R * \cos(\theta)$$

Summary

Matric Coefficients:

	h_1	h_2	h_3
Cartesian Coordinates	1	1	1
Cylindrical Coordinates	1	r	1
Spherical Coordinates	1	R	$R\sin\theta$

■ Differential Elements:

$$dec{\ell} = \mathbf{a}_{u_1} \left(h_1 du_1
ight) + \mathbf{a}_{u_2} \left(h_2 du_2
ight) + \mathbf{a}_{u3} \left(h_3 du_3
ight) \ ds_1 = h_2 h_3 du_2 du_3 \ dv = h_1 h_2 h_3 du_1 du_2 du_3$$

Gradient of a Scalar Field

 Definition: The vector that represents both the magnitude and the direction of the maximum space rate of increase of a scalar.

$$abla V riangleq \mathbf{a}_n rac{dV}{dn}$$

$$abla V = \mathbf{a}_{u_1} rac{\partial V}{h_1 \partial u_1} + \mathbf{a}_{u_2} rac{\partial V}{h_2 \partial u_2} + \mathbf{a}_{u_3} rac{\partial V}{h_3 \partial u_3}$$

Divergence of a Vector Field

 Definition: The divergence of a vector field A at a point is the net outward flux of A per unit volume as the volume about the point tends to zero

$$\operatorname{div} \mathbf{A} riangleq \lim_{\Delta v o 0} rac{\oint_s \mathbf{A} \cdot d\mathbf{s}}{\Delta v}$$

$$\nabla \cdot \mathbf{A} \equiv \operatorname{div} \mathbf{A}$$

$$abla \cdot \mathbf{A} = rac{1}{h_1 h_2 h_3} \left[rac{\partial}{\partial u_1} \left(h_2 h_3 A_1
ight) + rac{\partial}{\partial u_2} \left(h_1 h_3 A_2
ight) + rac{\partial}{\partial u_3} \left(h_1 h_2 A_3
ight)
ight]$$

Divergence Theorem

• Interpretation: The volume integral of the divergence of a vector field equals the total outward flux of the vector through the surface that bounds the volume.

$$\int_V \mathbf{\nabla} \cdot \mathbf{A} dv = \oint_S \mathbf{A} \cdot d\mathbf{s}$$

Curl of a Vector Field

- Definition:
- The curl of a vector field is a vector whose magnitude is the maximum net circulation of A per unit area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the net circulation maximum.

$$abla imes \mathbf{A} = rac{1}{h_1 h_2 h_3} \left| egin{array}{cccc} \mathbf{a}_{u_1} h_1 & \mathbf{a}_{u_2} h_2 & \mathbf{a}_{u_3} h_3 \ rac{\partial}{\partial u_1} & rac{\partial}{\partial u_2} & rac{\partial}{\partial u_3} \ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{array}
ight|$$

The curl of
$$\mathbf{F}(x, y, z) = 3x^2\mathbf{i} + 2z\mathbf{j} - x\mathbf{k}$$

Stoke's Theorem

 Interpretation: Surface integral of the curl of a vector field over an open surface is equal to the closed line integral of the vector along the contour bounding the surface.

$$\int_s (
abla imes \mathbf{A}) \cdot d\mathbf{s} = \oint_C \mathbf{A} \cdot d\ell$$

For constants a, b, c, m, consider the vector field

$$\vec{F} = (ax + by + 5z)\vec{i} + (x + cz)\vec{j} + (3y + mx)\vec{k}.$$

- (a) Suppose that the flux of \vec{F} through any closed surface is 0. What does this tell you about the value of the constants a, b, c and m?
- (b) Suppose instead that the line integral of \vec{F} around any closed curve is 0. What does this tell you about the values of the constants a, b, c and m?

EXERCISE 3. Let f be a scalar field and $\mathbf{F}(x, y, z)$ and $\mathbf{G}(x, y, z)$ be vector fields. What, if anything, is wrong with each of the following expressions

(a)
$$\nabla f = x^3 - 4y$$
,

(b)
$$\nabla \cdot \mathbf{F} = \mathbf{i} - x^2 y \mathbf{j} - z \mathbf{k}$$
,

(c)
$$\nabla \times \mathbf{G} = \nabla \cdot \mathbf{F}$$
.

Find the flux of $\vec{F} = (x^2 + y^2)\vec{k}$ through the disk of radius 3 centred at the origin in the xy plane and oriented upward.

Find the gradient of $V=e^{-(x^2+y^2)}$ in cylindrical (polar) coordinates.

Given a vector function $\mathbf{F} = \mathbf{a}_x(x + c_1 z) + \mathbf{a}_y(c_2 x - 3z) + \mathbf{a}_z(x + c_3 y + c_4 z)$.

- a) Determine the constants c_1 , c_2 , and c_3 if \mathbf{F} is irrotational.
- b) Determine the constant c_4 if \mathbf{F} is also solenoidal.
- c) Determine the scalar potential function V whose negative gradient equals \boldsymbol{F} .

For vector function $\mathbf{A} = \mathbf{a}_r r^2 + \mathbf{a}_z 2z$, verify the divergence theorem for the circular cylindrical region enclosed by r = 5, z = 0 and z = 4.

Two fundamental postulates of electrostatics in free space

Postulates of Electrostatics in Free Space	
Differential Form	Integral Form
$oldsymbol{ abla} \cdot \mathbf{E} = rac{ ho}{\epsilon_0}$	$\oint_S \mathbf{E} \cdot d\mathbf{s} = rac{Q}{\epsilon_0}$
$ abla imes \mathbf{E} = 0$	$\oint_C \mathbf{E} \cdot d\ell = 0$

Thank You

Presented by Minjie