Code-Switched Modeling

Brian Yan, Matthew Wiesner, Ondrej Klejch, Preethi Jyothi, Shinji Watanabe

Code-switching (CS) ⊂ Bilingualism

Our objective is to model the **entire bilingual task**:

•

$$p(Y|X) pprox \underbrace{p(Y)}_{ riangleq_{ ext{Bi.LM}}(Y)} \underbrace{\sum_{\mathcal{Z}} p(Z|X)}_{ riangleq_{ ext{Bi.CTC}}(Y|X)}$$

Bilingual Modules:

handle speech/text which may be Mandarin-only, English-only, or code-switched

Direct

Direct

 $p(Y|X) \approx \underbrace{p(Y)}_{\triangleq p_{\text{Bi.LM}}(Y)} \underbrace{\sum_{\mathcal{Z}} p(Z|Z^{M}, Z^{E})}_{\triangleq p_{\text{Bi.CTC}}(Y|Z^{M}, Z^{E})} \underbrace{\sum_{\mathcal{Z}^{M}} p(Z^{M}|X)}_{\triangleq p_{\text{M.CTC}}(Y^{M}|X)} \underbrace{\sum_{\mathcal{Z}^{E}} p(Z^{E}|X)}_{\neq p_{\text{E.CTC}}(Y^{E}|X)}$

- □ Dedicated monolingual sub-components→ data efficient training
- Re-framed the bilingual task → choosing the language per z_i given monolingual information

Direct

Conditionally Factorized

Training Scheme

$$Y|X^E=$$
 _account _ing $Y|X^M=$ 还 有 $Y^M|X^E=$ [null] [null] $Y^M|X^M=$ 还 有 $Y^E|X^E=$ _account _ing $Y^E|X^M=$ [null] [null] $\mathcal{L}_{LS}=\lambda\mathcal{L}_{Bi,CTC}+(1-\lambda)(\mathcal{L}_{M,CTC}+\mathcal{L}_{E,CTC})$

Training Scheme

$$Y|X^{CS}=$$
 _account _ing 还有 $Y^M|X^{CS}=$ [null] [null] 还有 $Y^E|X^{CS}=$ _account _ing [null] [null] $\mathcal{L}_{LS}=\lambda\mathcal{L}_{Bi_CTC}+(1-\lambda)(\mathcal{L}_{M_CTC}+\mathcal{L}_{E_CTC})$

Training Scheme

$$Y|X^{CS}=$$
 _account _ing 还有 $Y^M|X^{CS}=$ [null] [null] 还有 $Y^E|X^{CS}=$ _account _ing [null] [null] $\mathcal{L}_{LS}=\lambda\mathcal{L}_{Bi_CTC}+(1-\lambda)(\mathcal{L}_{M_CTC}+\mathcal{L}_{E_CTC})$

Inference Procedure

- 1. Monolingual CTC modules transcribe their respective parts
- 2. Bilingual CTC module transcribes whole, conditioned on monolingual info.
- 3. Mono/bilingual CTC modules + bilingual LM jointly decode the final output sequence (e.g. via time sync beam search)

Training Scheme

$$Y|X^{CS}=$$
 _account _ing 还有 $Y^M|X^{CS}=$ [null] [null] 还有 $Y^E|X^{CS}=$ _account _ing [null] [null] $\mathcal{L}_{ ext{LS}}=\lambda\mathcal{L}_{ ext{Bi.CTC}}+(1-\lambda)(\mathcal{L}_{ ext{M.CTC}}+\mathcal{L}_{ ext{E.CTC}})$

Inference Procedure

Making a language segmentation decision

- 1. Monolingual CTC modules transcribe their respective parts
- Bilingual CTC module transcribes whole, conditioned on monolingual info.
- 3. Mono/bilingual CTC modules + bilingual LM jointly decode the final output sequence (e.g. via time sync beam search)

Can we make the language segmentation decision later?

Inference Procedure

Making a language segmentation decision

- 1. Monolingual CTC modules transcribe their respective parts
- Bilingual CTC module transcribes whole, conditioned on monolingual info.
- 3. Mono/bilingual CTC modules + bilingual LM jointly decode the final output sequence (e.g. via time sync beam search)

■ Encourage monolingual modules to transcribe the opposite language → leave language segmentation decision to bilingual modules (CTC, LM)

■ Encourage monolingual modules to transcribe the opposite language → leave language segmentation decision to bilingual modules (CTC, LM)

Qualitative Example: Conditional CTC Posteriors

Given CS ASR training data, early language segmentation works well

Qualitative Example: Conditional CTC Posteriors

Without CS ASR training data, early language segmentation is unreliable

Qualitative Example: Conditional CTC Posteriors

- Monolingual modules produce smooth likelihoods for opposite lang. instead of [null]
- Language separation information is soft; LM can help decide → late decision

Results

Model	Language	ASR	LM	devman
	Segmentation	Data	Data	MER(↓)
Conditional CTC Conditional CTC + LM	Early	CS + M	-	17.5
	Early	CS + M	CS + M	16.8 \(\sigma_{+1}\)
Conditional CTC Conditional CTC + LM Conditional CTC Conditional CTC + LM	Early Early Late Late	CS CS CS	- CS + M - CS + M	32.3 30.1 27.9 25.2

Takeaways

 Language segmentation of code-switched speech is hard, especially if we don't have code-switched supervision

Making later decisions about language segmentation is better, allowing us to consider more information (e.g. external LM)