Mean and Coveriance

For r. v.s X and X with j.d.f. f(x,x) and g: R2 -> R les any continuous Function $E(g(\alpha, \gamma)) = \sum_{\gamma} \overline{g}(\alpha, \gamma) f(\alpha, \gamma)$ The coroniance, denoted by cor (x, x) is defined by 0xx = E((x-M)(Y-My)) where $\mu_{xz}E(x)=\sum_{x}p(x)$, $\mu_{y}=E(x)=\sum_{y}p(x)$

marginal dishibuta

Theorem for random various le X and Y $C_{XY} = E(XY) - E(X)E(Y)$

proof Let f(x, x) be the joint distribution of X and), Then $f_{XY} = E(XY) - E(X)E(Y)$ = ZZ (2-Mx)(4-My)f(2,8) = ZZ(27-My7-Mi)+MiMy)f(2) $=\sum_{x}\sum_{y}nyf(x,y)-\mu_{x}\sum_{y}\sum_{z}nf(x,y)$ 一人 えらかけれかりナルルタンとりいかり = E(xy) - My \(\tau \) P(x) - Mx \(\tay \) P(x) + Ma My

manginal dishibution > mids

further MX = E(xx) - My Mx - Mx My + Mxy = E(XX) - MxNY

= E(XY) - EX)E(Y)

the random variables x and y
For two random variables X and Y (For two random variables X and Y Correlation co-efficient $f_{xy} = \frac{f_{xy}}{f_{x}f_{y}} = \frac{f_{xy}}{f_{x}f_{y}}$ equivolently for discrete r.v. X and Y Levahors
Standard Standard
$\int_{XY} = \frac{n(\Xi x_i y_i) - (\Xi x_i)^2 / (\Xi y_i^2 + (\Xi x_i)^2)}{\sqrt{n \Xi x_i^2 - (\Xi x_i)^2 / (n \Xi y_i^2 + (\Xi x_i)^2)}}$
JXX V(NZxi - (Zxi)2)(nZxi (Zxi)2)
Two r. U.S X and Y are sound to be
Two r. u. s X and Y are said to be uncorrelated if $f_{xy} = 0$
Steps to compute covariance and correlation coefficient
D marginal distributions of X and Y
2) Expected value of XY
Example X , Y are $5.7.8$ with $j.d.f.$ given $\frac{1}{2}$ $\frac{1}{$

Sol steps marginal distribution if
$$x$$
 and y

$$\frac{x -1}{pay} = 0.5 = 0.5$$

$$\frac{x -1}{pay} = 0.5 = 0.5$$

$$\frac{x -1}{pay} = 0.5$$

$$\frac{x -1}{pay} = 0.4$$

$$\frac{5+e^{2}}{E(x)} = \sum_{x} \chi(x) = \sum_{y} \chi(x) = \sum_{y} \chi(y) = \sum_{y} \chi(y$$

$$E(XY) = \sum \sum \chi \gamma P(\gamma, \gamma)$$

$$= (-1) (-1) (0) + (-1) (0) (0.4) +$$

$$= (-1) (-1) (0) + (-1) (0) (0.4)$$

$$= (-1) (-1) (0) + (-1) (0) (0.4)$$

$$= (-1) (-1) (0) + (-1) (0) (0.4)$$

thus
$$cov(x,y)=\ell(xy)-E(x)E(y)$$

 $= 0-0.(0.2)$
 $= 0$
and $\rho = cov(x,y)=0$

Hence X and X are uncorrelated.