Physics Formula Sheet

Your Name

2023/ 2024

Constants

Constant	Symbol	Value
Speed of light	c	$3.00 \times 10^{8} \text{ m/s}$
Gravitational constant	G	$6.674 \times 10^{-11} \text{ N(m/kg)}^2$
Planck's constant	h	$6.626 \times 10^{-34} \text{ J.s}$
Mass of the electron	m_e	$9.10939 \times 10^{-31} \text{ kg}$
Mass of the proton	m_p	$1.67262 \times 10^{-27} \text{ kg}$
Charge of the electron	-e	$-1.60218 \times 10^{-19} \text{ C}$
Permittivity of free space	ϵ_0	$8.85419 \times 10^{-12} \text{ C}^2/\text{J m}$
Boltzmann constant	k_B	$1.38066 \times 10^{-23} \text{ J/ K}$
Avogadro's constant	N_A	$6.022 \times 10^{23} \text{ 1/mol}$

Classical Physics

Title	Equation
Bragg's Reflection	$n\lambda = 2d \sin(\theta)$
Diffraction (Single Slit)	$\lambda = d \sin(\theta)$
Young's Double Slit	$\frac{\Delta x}{L} = \frac{\lambda}{d} \approx \sin \theta$
Heat Transfer (Fourier's Law)	$\ddot{Q} = mC_v\Delta T$
Continuity Equation	$\nabla \cdot J = -\frac{d\rho}{dt}$
Force of Gravity	$F = G \frac{m_1 m_2}{2}$
Coulomb Force	$F = \frac{q_1q_2'}{4\pi\epsilon_0r^2}$
Special Relativity (Time Dilation)	$E^2 = (pc)^2 + (m_0c^2)^2$

Nuclear and magnetic physics

$$\begin{array}{lll} \text{Magnetic Field} & : E_B = -\mu B, \\ & \mu = \frac{e}{2m} \frac{Dl}{Dl}, \\ & F_z = \frac{-a}{m} \frac{Dl}{\partial z} = \mu \frac{\partial B}{\partial z} \\ \text{Rigid rotator} & : E_{\text{rot}} = \frac{1}{12} \\ & I = \frac{m_{\text{tot}}}{m_{\text{tot}}} R^2 \\ \text{Radioactive deeay} & N(l) = N(0) \exp^{-M} = N(0)(\frac{1}{2})^{l/\tau_{1/2}} \\ & \tau_{1/2} = \ln(2)/\lambda \end{array}$$

Thermodynamics

Black body:

$$Insert or link to a detailed periodic table here. D(k) dk = \frac{\partial N(k)}{\partial k} \frac{dk}{V} = \frac{k^2}{\pi^2} dk$$

$$D(\omega) d\omega = \frac{\omega^2}{\pi^2 c^3} d\omega$$

$$\begin{split} u(\omega)d\omega &= \frac{\omega^2}{\pi^2c^3}k_BTd\omega \text{ classical limit} \\ u(\omega)d\omega &= \frac{\hbar\omega^3}{\pi^2c^3}\frac{1}{\exp(\frac{\hbar\omega}{k_BT})-1}d\omega \\ I(\omega) &= cu(\omega)d\omega \end{split}$$

Quantum Mechanics

$$\label{eq:Time-dependent Schrodinger's Equation: } \begin{split} \text{Time-dependent Schrodinger's Equation: } ih \frac{\partial}{\partial t} \Psi(\vec{x},t) &= [-\frac{\hbar^2}{2m} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) + V(x)] \\ \text{Energy of a photon: } E = hf \end{split}$$

Time-independent Schrodinger's Equation : $E\phi=\hat{H}\phi=\left(-\frac{\hbar^2}{2m}\nabla^2+V(x)\right)\cdot\phi$ Energy of a photon : E=hf

$$\text{Infinite potential well}: E_n = \frac{h^2}{2m} k_n^2 = \frac{\hbar^2 \pi^2 n^2}{2mL^2} = n^2 E_0, \ \ \psi_n(x) = \sqrt{\frac{2}{L}} \sin(\frac{n\pi x}{L}), \ \ E_0 = \frac{\hbar^2 \pi^2}{2mL^2}$$

Transmission through a barrier :
$$T=\frac{4E(V_0-E)}{4E(V_0-E)+V_0^2\sinh^2[\sqrt{2m(V_0-E)\frac{t}{h}}]}$$

$$T \approx \frac{16 E(V_0 - E)}{V_0^2} e^{-2\rho_2 l}, \ \ {\rm with} \\ \rho_2 = \sqrt{\frac{2 m(V_0 - E)}{\hbar^2}}, \ \ \rho_2 \cdot l >> 1$$

De Broglie wavelength :
$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$

Photoelectric effect :
$$h\nu - \phi_0 = \frac{1}{2}mv^2 = eV$$

Bohr-Sommerfeldt condition : $\oint_C \mathbf{p} \cdot d\mathbf{s} = nh, \ 2\pi r = nh \text{(circular orbit)}$

$$\text{Probability current}: j = \frac{\hbar}{2mi}(\psi^*\frac{\partial\Psi}{\partial x} - \Psi\frac{\partial\Psi^*}{\partial x})$$

Compton scattering :
$$\lambda_2 - \lambda_1 = \frac{h}{m_0 c} (1 - \cos \theta)$$

$$\mathbf{p}_{h\nu 1} = \mathbf{p}_{h\nu 2} + \mathbf{p}_e$$

$$hv_1 + m_0c^2 = h\nu_2 + \sqrt{m_0^2c^4 + p_e^2c^2}$$

2

Mathematical equations

Trigonometric functions:

$$\int \sin^n ax dx = -\frac{1}{a} \cos ax \, {}_2F_1 \left[\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax \right]$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax + C \qquad (1)$$

$$\int x \sin^2 ax dx = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax + C \qquad (2)$$

$$\int x^2 \sin^2 xax dx = \frac{x^3}{6} - \left(\frac{x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax + C \qquad (3)$$

$$\int \tan ax dx = -\frac{1}{a} \ln |\cos ax| + C = \frac{1}{a} \ln |\sec ax| + C \qquad (4)$$

$$\int \frac{\cos ax}{x} dx = \ln |ax| + \sum_{1}^{\infty} (-)^k \frac{(ax)^{2k}}{2k(2k)!} + C$$
(5)

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \sin 2ax + C$$

$$\int \sin^3 ax dx = \frac{\cos 3ax}{12a} - \frac{3\cos ax}{4a} + C$$
(6)

$$\int \tan^2 x dx = \tan x - x + C \tag{8}$$

$$\int \sin ax \cos ax dx = -\frac{\cos^2 ax}{2a} + C$$

$$\int x \cos ax dx = \frac{\cos ax}{a^2} + \frac{x \sin ax}{a} + C$$
(9)
(10)

$$\int x \cos ax dx = \frac{\cos ax}{a^2} + \frac{x \sin ax}{a} + C \tag{10}$$

$$\int \cos ax dx = -\frac{1}{a} \sin ax + C \tag{11}$$

$$\sin ax = x \cos ax$$

$$\int x \sin ax dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a} + C$$

$$\int (\sin ax)(\cos^n ax) dx = -\frac{1}{a(n+1)} \cos^{n+1} ax + C$$
(13)

Exponential functions:

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{\sqrt{a}} (a > 0)$$
(14)

$$\int_{-\infty}^{\infty} xe^{-ax^2+bx} dx = \frac{\sqrt{\pi}b}{2a^{3/2}}e^{\frac{b^2}{4a}} (\Re(a) > 0)$$
(15)

$$\int_{-\infty}^{\infty} \frac{\sqrt{a}}{xe^{-ax^2+bx}} \frac{\sqrt{a}}{dx} = \frac{\sqrt{\pi b}}{2\pi^3 2^2} \frac{b^2}{\epsilon^2} (\Re(a) > 0)$$

$$\int_{-\infty}^{\infty} x^n e^{-ax} dx = \begin{cases} \frac{\Gamma(n+1)}{a^{n+1}} (n > -1, a > 0) \\ \frac{n!}{a^{n+1}} (n = 0, 1, 2, ..., a > 0) \end{cases}$$
(15)

$$\int_{-\infty}^{\infty} x^{2}e^{-ax^{2}} dx = \frac{1}{2}\sqrt{\frac{\pi}{a^{3}}} (a > 0)$$
(17)

$$\int xe^{cx}dx = \left(\frac{x}{c} - \frac{1}{c^2}\right)e^{cx} \tag{18}$$

$$\int x^2 e^{cx} dx = \left(\frac{x^2}{c} - \frac{2x}{c^2} + \frac{2}{c^3}\right) e^{cx}$$
(19)

$$\int x^4 e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \frac{3}{4a^2} \tag{20}$$

Spherical coordinates

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \phi$$

Volume fraction:

$$dV = r^2 \sin \theta dr d\theta d\phi$$

Solid angle:

$$d\Omega = \frac{dS_r}{r^2} = \sin\theta d\theta d\phi$$

Surface element:

$$dS_r = r^2 \sin \theta d\theta d\phi$$

$$\nabla f = \frac{\partial f}{\partial r} \vec{r} + \frac{1}{r} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \vec{\phi} \qquad (21)$$

(22)

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial F_{\varphi}}{\partial \varphi}.$$

$$\Gamma = \frac{1}{r^2} \frac{\partial r}{\partial r} (r^2) + r \sin \theta \frac{\partial \theta}{\partial \theta} (\sin \theta) + r \sin \theta \frac{\partial \varphi}{\partial \varphi}. \tag{22}$$

$$\nabla \times \mathbf{F} = \frac{1}{r \sin \theta} (\frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\theta}}{\partial \phi}) \vec{r}$$

$$+ \frac{1}{r} (\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi})) \vec{\theta}$$

$$+ \frac{1}{r} (\frac{\partial}{\partial r} (r A_{\phi}) - \frac{\partial A_r}{\partial \phi}) \vec{\phi}$$

$$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}} = \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} \right) f + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) f + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} f$$
(24)

Harmonic oscillator:

First four harmonic oscillator wavefunction Hermite polynomials $\psi_0(\xi) = \left(\frac{m\omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{1}{2}\xi^2}$ $\frac{1}{2}\hbar\omega$

$$\psi_1(\xi) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}\sqrt{2}\xi e^{-\frac{1}{2}\xi^2} \qquad 2y \qquad \frac{3}{2}\hbar\omega$$

$$\psi_2(\xi) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} (2\xi^2 - 1) e^{-\frac{1}{2}\xi^2}$$
 $4y^2 - 2$
 $\frac{5}{2}\hbar\omega$

$$\psi_2(\xi) = \left(\frac{\pi}{\pi \hbar}\right)^4 \cdot \frac{\sqrt{2}}{\sqrt{2}} (2\xi - 1)e^{-2\xi}$$
 $4y - 2 = \frac{\pi}{2}\hbar\omega$
 $\psi_3(\xi) = \left(\frac{m\omega}{\pi \hbar}\right)^{\frac{1}{2}} \frac{1}{\sqrt{2}} (2\xi^3 - 3\xi) e^{-\frac{1}{2}\xi^2}$ $8y^3 - 12y = \frac{7}{2}\hbar\omega$

Harmonic oscillator
$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi \hbar}\right)^{\frac{1}{4}} (a^{\dagger})^n e^{-\frac{1}{2} \frac{m\omega}{\hbar} x^2} \psi_0(x)$$

Raising operator

 $a^{\dagger} = \frac{1}{\sqrt{2\hbar m \omega}} (m \omega x - ip)$ Lowering operator $a = \frac{1}{\sqrt{2\hbar m \omega}} (m\omega x + ip)$

 $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ $a|n\rangle = \sqrt{n}|n-1\rangle$

 $\hat{N} = a^{\dagger} a \hat{N} |n\rangle = n |n\rangle$ Number operator

 $[a, a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1$ Commutation relation

 $\hat{H} = \hbar \omega \left(\hat{N} + \frac{1}{2} \right)$ Hamiltonian

Inner product and expectation

 ${\bf Expectation\ value\ (discrete)}$

$$\langle f_i \rangle = \sum_i P_i f_i$$

Expectation value (continuous)

$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x)P(x) dx$$

$$\langle \hat{O} \rangle = \int \psi^*(\mathbf{r}) \hat{O} \psi(\mathbf{r}) d^3r$$

Inner product

$$\langle \psi | \phi \rangle = \int \psi^*(x) \phi(x) dx$$

Variance

$$\sigma_f^2 = \langle f^2 \rangle - \langle f \rangle^2$$

Commutation relations

$$\begin{aligned} [A,B] &= AB - BA \\ [AB,C] &= A[B,C] - [A,C]B \\ [x,y_x] &= i\hbar \\ [y,p_y] &= i\hbar \\ [x,y] &= [x,p_y] = [y,p_x] = 0 \end{aligned}$$

Hydrogen atom

Fine structure constant:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$$

Bohr radius:

$$a_0 = \frac{\hbar}{m_e c \alpha} \approx 0.529 \times 10^{-10} \text{m}$$

Bohr energy:

$$E_n = -\frac{2\pi^2 k^2 e^4 m_e}{h^2 n^2}$$

Ground state energy:

$$E_1 = -13.6 \text{eV}$$

Wave function:

$$\psi_{n\ell m}(r, \theta, \phi) = R_{n\ell}(r)Y_{\ell m}(\theta, \phi)$$

Rydberg formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Rydberg constant:

 $R_H \approx 1.097 \times 10^7 {\rm m}^{-1}$

Radial wavefunctions:

5

$$R_{n\ell}(r) = N_{n\ell}r^{\ell}e^{-\rho/2}L_{n-\ell-1}^{2\ell+1}(\rho)$$

Legendre polynomials

Angular momentum

$$\begin{split} L_{+} &= L_{x} + iL_{y} \\ L_{-} &= L_{x} - iL_{y} \\ L^{2} &= L_{z}^{2} + \frac{1}{2}(L_{+}L_{-} + L_{-}L_{+}) \\ &[L_{x}, L_{y}] = i\hbar L_{z} \\ &[L^{2}, L_{i}] = 0 \quad \text{where } i = x, y, \text{or } z \\ L_{x} &= -i\hbar \left(\sin\phi\frac{\partial}{\partial\theta} + \cot\theta\cos\phi\frac{\partial}{\partial\phi}\right), L_{y} = i\hbar \left(\cos\phi\frac{\partial}{\partial\theta} - \cot\theta\sin\phi\frac{\partial}{\partial\phi}\right), L_{z} = -i\hbar\frac{\partial}{\partial\phi} \\ L_{+} &= \hbar e^{i\phi} \left(\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right), L_{-} = \hbar e^{-i\phi} \left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \\ L^{2} &= -\hbar^{2} \left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta} \left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right) \end{split}$$

Hund's rule

- 1: All other thing being equal, the state with the highest total spin (S), will have the lowest.
 2: For a given spin, the state the highest total orbital angular momentum (L), consistent with overall antisymmetrization, will have the lowest energy.
 3: If a subshell (n,l) is no more than half filled, then the lowest energy level has J = |L S|: if it is more than |L S| is the subshell |L S|.
- half filled, then J = L + S has the lowest energy.

Spin

Two particle spin states

Two particle spin states
$$|0,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \text{ s} = 0 \text{ singlet} \quad \begin{aligned} &|1,1\rangle = |\uparrow\uparrow\rangle \\ &|1,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \text{ s} = 1 \text{ triplet} \\ &|1,-1\rangle = |\downarrow\downarrow\downarrow\rangle \\ &S_z = \frac{h}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad S_x = \frac{h}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_y = \frac{h}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad S^2 = \frac{3}{4} h^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad S_+ = h \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad S_- = h \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 Two particle Hamiltonian:

$$\hat{H} = -\frac{\hbar^2}{2m_1}\nabla_1^2 - \frac{\hbar^2}{2m_2}\nabla_2^2 + V(\mathbf{r}_1, \mathbf{r}_2)$$

Hamiltonian with an atom with atomic number Z:

$$\hat{H} = -\frac{\hbar^2}{2m_e}\nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 r}$$

Clebsch-Gordan coefficients

Condensed Matter

Free electron gas:

Figure 1: Clebsch-Gordan coefficients. A square root is understood on each coefficient, that is, -1/3 means $-\sqrt{1/3}$.

$$\psi_{n_{x},n_{y},n_{z}}(\mathbf{r}) = \sqrt{\frac{8}{V}} \sin\left(\frac{n_{y}\pi x}{L_{x}}\right) \sin\left(\frac{n_{y}\pi x}{L_{y}}\right) \sin\left(\frac{n_{z}\pi z}{L_{z}}\right), \quad E(\mathbf{k}) = \frac{\hbar^{2}k^{2}}{2m}$$

Fermi energy of a metal:

 $E_F = \frac{p_c^2 k_L^2}{2m}, \rho \equiv \frac{N_c}{V}, N_q = \text{number of electrons in volume V}, n_c = n_t \exp(\frac{E_F - E_t}{k_B T})$

3D: $g(E) = \frac{V_m}{2\pi^2 h^3} \sqrt{2mE}$, 2D: $g(E) = \frac{m}{\pi h^2}$

Distribution functions: Maxwell-Boltzmann Fermi-Dirac Bose-Einstein $f(E) = e^{-\frac{1}{4\sigma^2}} \qquad f(E) = \frac{1}{e^{\frac{1}{4\sigma^2}}+1} \qquad f(E) = \frac{1}{e^{\frac{1}{4\sigma^2}-1}}$

First order perturbation theory: $\Delta E_n^{(1)} = \langle \psi_n^0 | \hat{H}' | \psi_n^0 \rangle, \; \psi_n^{(1)} = \sum_{m \neq n} \frac{\langle \psi_n^0 | \hat{H}' | \psi_n^0 \rangle}{E_n^{(0)} - E_n^{(0)}} \psi_n^{(0)}$

Periodic Table

	1 IA																
. 1	1 1.0079			(•	:		•	(•	1						
П	I			<u>1</u>	erio		r	<u>م</u>		eriodic Table of Elements	lent	G					
	Hydrogen	2 IIA		•) :	;))	;))	13 IIIA	14 IVA	15 VA	16 VIA	17 V
***	3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 1
2	=	Be											В	U	z	0	ш
	Lithium 11 22.990	Beryllium 12 24.305											Boron 13 26.982	Carbon 14 28.086	Nitrogen 15 30.974	Oxygen 16 32.065	Fluor 17 3
က	Na	M											₹	Si	۵	S	O
	Sodium 19 39.098	Magnesium 20 40.078	3 IIIA 21 44.956	4 IVB 22 47.867	5 VB 23 50.942	6 VIB 24 51.996	7 VIIB 25 54.938	8 VIIIB 26 55.845		9 VIIIB 10 VIIIB 27 58.933 28 58.693 2	11 IB 29 63.546	12 IIB 30 65.39	Aluminium 31 69.723	Silicon 32 72.64	Phosphorus 33 74.922	Sulphur 34 78.96	Chlor 35 7
4	¥	Ca	Sc	F	>	ڻ	Ξ	Pe	ပိ	Ë	J	Zn	Ca	ge Ge	As	Se	В
	Potassium 37 85.468	Calcium 38 87.62	Scandium 39 88.906	Titanium 40 91.224	Vanadium 41 92.906	Chromium 42 95.94	Manganese 43 96	Iron 44 101.07	Cobalt 45 102.91	Nickel 46 106.42	Copper 47 107.87	Zinc 48 112.41	Gallium 49 114.82	Germanium 50 118.71	Arsenic 51 121.76	Selenium 52 127.6	Brom 53
2	Rb	Ş	>	Zr	S P	Š	T c	Ru	묎	Pd	Ag	5	드	Sn	Sb	Te	-
u,	Rubidium 55 132.91	Strontium 56 137.33	12-22	Zirconium 72 178.49	Niobium 73 180.95	Molybdenum 74 183.84	Technetium 75 186.21	Ruthenium 76 190.23	Rhodium 77 192.22	Palladium 78 195.08	Silver 79 196.97	Cadmium 80 200.59	Indium 81 204.38	Tin 82 207.2	Antimony 83 208.98	Tellurium 84 209	lodii 85
9	CS	Ва	ra La	Ŧ	Ца	>	Re	0s	<u>_</u>	£	Αn	Ξ	F	Pb	<u>.</u>	Ьо	Ā
	Caesium 87 223	Barium 88 226	89-103	Hafnium 104 261	Tantalum 105 262	Tungsten 106 266	Rhenium 107 264	Osmium 108 277	Iridium 109 268	Platinum 110 281	Gold 111 280	Mercury 112 285	Thallium 113 284	Lead 114 289	Bismuth 115 288	Polonium 116 293	Astat 117
7	Ŧ	Ra	۲۵	Rf	Db	S	Bh	Hs	Mt	Ds	М	Uub	Unt	Uuq	Uup	Uuh	U
	Francium	Radium	Actinide	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium Roentgenium Ununbium	Roentgenium	Ununbium	Ununtrium	Ununquadium	Ununquadium Ununpentium	Ununhexium	Ununse
	Alkali Metal		And the second														