BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement Spécifique

Durée de l'épreuve : 4 heures

Coefficient: 7

Ce sujet comporte 6 pages numérotées de 1 à 6

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (4 points)

(Commun à tous les candidats)

Sofia souhaite se rendre au cinéma. Elle peut y aller à vélo ou en bus.

Partie A: en utilisant le bus

On suppose dans cette partie que Sofia utilise le bus pour se rendre au cinéma. La durée du trajet entre son domicile et le cinéma (exprimée en minutes) est modélisée par la variable aléatoire T_B qui suit la loi uniforme sur [12; 15].

- 1) Démontrer que la probabilité que Sofia mette entre 12 et 14 minutes est de $\frac{2}{3}$.
- 2) Donner la durée moyenne du trajet.

Partie B: en utilisant son vélo

On suppose à présent que Sofia choisit d'utiliser son vélo.

La durée du parcours (exprimée en minutes) est modélisée par la variable aléatoire T_V qui suit la loi normale d'espérance $\mu = 14$ et d'écart-type $\sigma = 1, 5$.

- 1) Quelle est la probabilité que Sofia mette moins de 14 minutes pour se rendre au cinéma?
- 2) Quelle est la probabilité que Sofia mette entre 12 et 14 minutes pour se rendre au cinéma? On arrondira le résultat à 10^{-3} .

Partie C: en jouant aux dés

Sofia hésite entre le bus et le vélo. Elle décide de lancer un dé équilibré à 6 faces. Si elle obtient 1 ou 2, elle prend le bus, sinon elle prend son vélo. On note :

- B l'événement « Sofia prend le bus » ;
- V l'événement « Sofia prend son vélo » ;
- C l'événement « Sofia met entre 12 et 14 minutes pour se rendre au cinéma ».
- 1) Démontrer que la probabilité, arrondie à 10^{-2} , que Sofia mette entre 12 et 14 minutes est de 0, 49.
- 2) Sachant que Sofia a mis entre 12 et 14 minutes pour se rendre au cinéma, quelle est la probabilité, arrondie à 10^{-2} , qu'elle ait emprunté le bus?

EXERCICE 2 (5 points)

(commun à tous les candidats)

On considère la fonction f définie sur]0; $+\infty[$ par

$$f(x) = \frac{(\ln x)^2}{x}.$$

On note $\mathscr C$ la courbe représentative de f dans un repère orthonormé.

- 1) Déterminer la limite en 0 de la fonction f et interpréter graphiquement le résultat.
- 2) a) Démontrer que, pour tout x appartenant à]0; $+\infty[$,

$$f(x) = 4\left(\frac{\ln(\sqrt{x})}{\sqrt{x}}\right)^2.$$

- **b)** En déduire que l'axe des abscisses est une asymptote à la courbe représentative de la fonction f au voisinage de $+\infty$.
- 3) On admet que f est dérivable sur]0; $+\infty[$ et on note f' sa fonction dérivée.
 - a) Démontrer que, pour tout x appartenant à $]0\ ;\ +\infty[$,

$$f'(x) = \frac{\ln(x)(2 - \ln(x))}{x^2}.$$

- **b**) Etudier le signe de f'(x) selon les valeurs du nombre réel x strictement positif.
- c) Calculer f(1) et $f(e^2)$.

On obtient alors le tableau de variations ci-dessous.

4) Démontrer que l'équation f(x)=1 admet une unique solution α sur]0; $+\infty[$ et donner un encadrement de α d'amplitude 10^{-2} .

EXERCICE 3 (3 points)

(Commun à tous les candidats)

Les deux parties de cet exercice sont indépendantes.

Partie A:

Soit la fonction f définie sur l'ensemble des nombres réels par

$$f(x) = 2e^x - e^{2x}$$

et ${\mathscr C}$ sa représentation graphique dans un repère orthonormé.

On admet que, pour tout x appartenant à $[0 ; \ln(2)]$, f(x) est positif.

Indiquer si la proposition suivante est vraie ou fausse en justifiant votre réponse.

Proposition A:

L'aire du domaine délimité par les droites d'équations x=0 et $x=\ln(2)$, l'axe des abscisses et la courbe $\mathscr C$ est égale à 1 unité d'aire.

Partie B:

Soit n un entier strictement positif.

Soit la fonction f_n définie sur l'ensemble des nombres réels par

$$f_n(x) = 2ne^x - e^{2x}$$

et \mathscr{C}_n sa représentation graphique dans un repère orthonormé.

On admet que f_n est dérivable et que \mathscr{C}_n admet une tangente horizontale en un unique point S_n . Indiquer si la proposition suivante est vraie ou fausse en justifiant votre réponse.

Proposition B:

Pour tout entier strictement positif n, l'ordonnée du point S_n est n^2 .

EXERCICE 4 (3 points)

(Commun à tous les candidats)

Les questions 1. et 2. de cet exercice pourront être traitées de manière indépendante.

On considère la suite des nombres complexes (z_n) définie pour tout entier naturel n par

$$z_n = \frac{1+i}{(1-i)^n}.$$

On se place dans le plan complexe d'origine O.

- 1) Pour tout entier naturel n, on note A_n le point d'affixe z_n .
 - a) Démontrer que, pour tout entier naturel $n, \frac{z_{n+4}}{z_n}$ est réel.
 - **b**) Démontrer alors que, pour tout entier naturel n, les points O, A_n et A_{n+4} sont alignés.
- 2) Pour quelles valeurs de n le nombre z_n est-il réel?

EXERCICE 5 (5 points)

(Candidats n'ayant pas suivi l'enseignement de spécialité)

Soit (u_n) la suite définie par $u_0 = 3$, $u_1 = 6$ et, pour tout entier naturel n:

$$u_{n+2} = \frac{5}{4}u_{n+1} - \frac{1}{4}u_n.$$

Le but de cet exercice est d'étudier la limite éventuelle de la suite (u_n) .

Partie A:

On souhaite calculer les valeurs des premiers termes de la suite (u_n) à l'aide d'un tableur. On a reproduit ci-dessous une partie d'une feuille de calcul, où figurent les valeurs de u_0 et de u_1 .

	A	В
1	n	u_n
2	0	3
3	1	6
4	2	
5	3	
6	4	
7	5	

- 1) Donner une formule qui, saisie dans la cellule B4, puis recopiée vers le bas, permet d'obtenir des valeurs de la suite (u_n) dans la colonne B.
- 2) Recopier et compléter le tableau ci-dessus. On donnera des valeurs approchées à 10^{-3} près de u_n pour n allant de 2 à 5.
- 3) Que peut-on conjecturer à propos de la convergence de la suite (u_n) ?

Partie B : étude de la suite

On considère les suites (v_n) et (w_n) définies pour tout entier naturel n par :

$$v_n = u_{n+1} - \frac{1}{4}u_n$$
 et $w_n = u_n - 7$.

- 1) a) Démontrer que (v_n) est une suite constante.
 - **b**) En déduire que, pour tout entier naturel n, $u_{n+1} = \frac{1}{4}u_n + \frac{21}{4}$.
- 2) a) En utilisant le résultat de la question 1. b., montrer par récurrence que, pour tout entier naturel $n, u_n < u_{n+1} < 7$.
 - **b)** En déduire que la suite (u_n) est convergente.
- 3) a) Démontrer que (w_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - **b)** En déduire que, pour tout entier naturel n, $u_n = 7 \left(\frac{1}{4}\right)^{n-1}$.
 - c) Calculer la limite de la suite (u_n) .