# Министерство образования Российской Федерации

# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

### ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ

Лабораторная работа №4 на тему: «Исследование устойчивости САУ по критерию Михайлова»

Вариант 4

Преподаватель:

Чернега Е.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-44

Репозиторий работы: <a href="https://github.com/ledibonibell/Module04-BMT">https://github.com/ledibonibell/Module04-BMT</a>

Москва 2024

## Цель работы

Экспериментальное построение областей устойчивости линейных САУ и изучение влияния на устойчивость системы ее параметров.

## Порядок выполнения работы

- 1. Получить передаточную функцию по заданной структурной схеме линейной САУ.
- 2. Построить годограф Михайлова при заданных начальных условиях.
- 3. Подобрать такое значение коэффициента усиления k (изменяя значение T), при котором система будет находиться на границе устойчивости, т.е.  $k = k_{kp}$ .
- 4. Построить границу области устойчивости, реализуя зависимость  $k_{kp} = f(T)$  (количество точек значений T для построения графика не менее 12).
- 5. На графике границы устойчивости взять три точки: выше границы, ниже границы и на границе устойчивости и рассмотреть характеристики полученных систем соответствующих цветов. Построить для каждой из точек: переходную характеристику (с помощью функции step), импульсную (с помощью функции impulse), диаграмму Боде, годограф Найквиста соответствующих цветов.

## Исходные данные

| Исходны | е данные | Начальные условия |   |  |  |  |
|---------|----------|-------------------|---|--|--|--|
| $T_1$   | $k_1$    | T                 | k |  |  |  |
| 0.7     | 1.6      | 0.1               | 0 |  |  |  |

Параметры в точке  $A_1 - T = 1.7$ ; k = 0.1 (красный)

Параметры в точке  $A_2 - T = 1.7$ ; k = 3.0 (синий)

Параметры в точке  $A_3$  — из таблицы построений (зеленый)

## Ход работы



Рис. 1 – Структурная схема линейной САУ

Найдем передаточные функции полной и разомкнутой системы.

$$W_p = k \cdot \frac{k_1}{T_1 s + 1} \cdot \frac{1}{T s + 1} \cdot \frac{1}{s} = \frac{k * k_1}{T_1 T S^3 + (T_1 + T) S^2 + S}$$

$$W = \frac{W_p}{1 + W_p} = \frac{\frac{k * k_1}{T_1 T S^3 + (T_1 + T) S^2 + S}}{1 + \frac{k * k_1}{T_1 T S^3 + (T_1 + T) S^2 + S}} = \frac{k * k_1}{k * k_1 + T_1 T S^3 + (T_1 + T) S^2 + S}$$

Найдём характеристическое уравнение:

$$A(j\omega) = -jT_1T\omega^3 - (T_1 + T)\omega^2 + j\omega + kk_1$$

Выделим действительную и мнимую часть:

$$\begin{cases} Re[A(j\omega)] = -(T_1 + T)\omega^2 + kk_1 \\ Im[A(j\omega)] = -T_1T\omega^3 + j\omega \end{cases}$$

Далее построим два годографа Михайлова. Для максимальной устойчивой системы при k=0 (Рис. 2) и для системы на границе устойчивости (Рис. 3). Коэффициент k для второго случая подберем самостоятельно.

Коэффициент k для границы устойчивости получился равным  $\approx 7.145$ . При этом коэффициенте годограф пересекает начало координат (0;0), что видно по соответствующему рисунку.



Рис. 2 - Годограф Михайлова при k=0



Рис. 3 - Годограф Михайлова при  $k=k_{kp}=7.145$ 

Также построим таблицу, для нахождения области устойчивости (Рис. 4), реализую соотношение:

$$k_{kp} = f(T)$$

|                            | 0,1    |      |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
| $k_{\scriptscriptstyle K}$ | , 7,15 | 2,15 | 1,80 | 1,60 | 1,38 | 1,26 | 1,19 | 1,14 | 1,10 | 1,07 | 1,05 | 1,03 | 1,02 |

Таблица 1 - Точки границы устойчивости системы



Рис. 4 - Область устойчивости системы

Теперь смоделируем системы из 5 графиков (4 графиков, если считать диаграмму Боде как единый график), для трех точек области, представленных на рис. 4:

- 1. Ниже границы устойчивости (красная точка) система устойчива
- 2. Выше границы устойчивости (синяя точка) система неустойчива
- 3. На границе устойчивости (зеленая точка)
- 1. Устойчивая система (Рис. 5, 6):  $A_1 T = 1.7$ ; k = 0.1
- 2. Неустойчивая система (Рис. 7, 8):  $A_2 T = 1.7$ ; k = 3.0
- 3. Неустойчивая система (Рис. 9, 10):  $A_3 T = 1.7$ ; k = 1.28



Рис. 5 - Устойчивая система



Рис. 6 - Годограф Михайлова устойчивой системы (график проходит выше точки (0;0))



Рис. 7 - Неустойчивая система



Рис. 8 - Годограф Михайлова неустойчивой системы (график проходит ниже точки (0;0))



Рис. 9 - Граница устойчивости



Рис. 10 - Годограф Михайлова для системы на границе устойчивости Теперь рассмотрим все три состояния системы на одном графике (Рис. 11):



Рис. 11 - Годограф Михайлова различных состояний

Также рассмотрим его в области начала координат (Рис. 12), проверяя каждый график по критерию Михайлова:

- 1. График начинается с положительной вещественной полуоси
- 2. Граф последовательно обходит n квадрантов в положительном направлении (против часовой стрелки). n порядок системы



Рис. 12 - Приближенный годограф Михайлова различных состояний

По рис. 12 видно, что:

- 1. Зеленый график проходит через точку (0;0) то есть он находится на границе устойчивости
- 2. Синий график не последовательно проходит квадранты то есть он не устойчив
- 3. Красный график не противоречит критерию Михайлова то есть он устойчив Получается, что противоречий с графиком границы устойчивости (Рис. 4) нет.

### Вывод

В ходе выполнения лабораторной работы была исследована устойчивость САУ с помощью построения годографа Михайлова. Сначала были заданы начальные условия, а затем исследован годограф Михайлова на границе устойчивости.

Также был построен аппроксимированный график границы устойчивости, где коэффициенты были подобраны заранее. Таким образом, было установлено, что изменением коэффициента k можно сделать систему устойчивой, неустойчивой или находящейся на границе устойчивости.

Соответственно, проверяя эти значения критерием Михайлова, не было обнаружено противоречий.

Инициализация начальных условий:

```
 \begin{array}{l} \textbf{params.m:} \\ T1 = 0.7; \\ k1 = 1.6; \\ T = 0.1; \\ k\_1 = 0; \\ k\_2 = 7.145; \\ B\_1 = k\_1*k1; \\ B\_2 = k\_2*k1; \\ A\_1 = [T1*T, T1 + T, 1, k\_1*k1]; \\ A\_2 = [T1*T, T1 + T, 1, k\_2*k1]; \\ T\_3 = 1.7; \\ T\_3 = 4; \\ k\_31 = 0.1; \\ k\_32 = 3.0; \\ k\_33 = 1.05; \\ \end{array}
```

## Листинг 2

Построение годографов Михайлова:

```
main.m:
%% Годограф Михайлова k = 0
figure('Name', 'Годограф Михайлова при k = 0');
w=0.001:0.01:10;
GM=freqs(A_1, 1, w);
U=real(GM);
V=imag(GM);
plot(U,V);
hold on
plot(0,0,'r+');
grid on
xlabel('Re, sec^-^1')
ylabel('Im, sec^-^1')
title('Годограф Михайлова при k = 0');
saveas(gcf, 'graphics/Максимальная устойчивость.png');
```

```
%% Годограф Михайлова на границе устойчивости

figure('Name', 'Годограф Михайлова на границе устойчивости');

w=0.001:0.01:10;

GM=freqs(A_2, 1, w);

U=real(GM);

V=imag(GM);

plot(U,V);

hold on

plot(0,0,'r+');

grid on

xlabel('Re, sec^-^1')

ylabel('Im, sec^-^1')

title('Годограф Михайлова на границе устойчивости (k = k_к = 7.145)');

saveas(gcf, 'graphics/Граничная устойчивость.png');
```

Построение области устойчивости системы:

```
маіп.m:

%% Граница области устойчивости

figure('Name', 'Граница области устойчивости');

T=[0.1, 0.5, 0.7, 0.9, 1.3, 1.7, 2.1, 2.5, 3, 3.5, 4, 4.5, 5];

k=[7.15, 2.15, 1.80, 1.60, 1.38, 1.26, 1.19, 1.14, 1.10, 1.07, 1.05, 1.03, 1.02];

plot(T,k);
hold on
plot(0.7,0.1,'r*');
plot(1.7,3.0,'b*');
plot(1.7,1.26,'g*');
grid on
xlabel('T, sec')
ylabel('Ккр')
title('Граница устойчивости системы');
saveas(gef, 'graphics/Граница области.png');
```

Код для построения графиков в точке ниже границы устойчивости:

```
main.m:
%% Ниже границы устойчивости

name = 'Устойчивая система (ниже границы устойчивости)';
road = 'graphics/Устойчивая система.png';
color = 'r-';
road1 = 'graphics/Устойчивая система Михайлов.png';
lab_otu_dynamic_plot(T_3, k_31, T1, k1, name, road, color, road1);
```

### Листинг 5

Код для построения графиков в точке выше границы устойчивости:

```
main.m:
%% Выше границы устойчивости

name = 'Неустойчивая система (выше границы устойчивости)';
road = 'graphics/Неустойчивая система.png';
road1 = 'graphics/Неустойчивая система Михайлов.png';
color = 'b-';
lab_otu_dynamic_plot(T_3, k_32, T1, k1, name, road, color, road1);
```

#### Листинг 6

Код для построения графиков на границе устойчивости:

```
main.m:
%% На границе устойчивости

name = 'Система на границе устойчивости';
road = 'graphics/На границе устойчивости.png';
color = 'g-';
road1 = 'graphics/На границе устойчивости Михайлов.png';
lab otu dynamic plot(T 31, k 33, T1, k1, name, road, color, road1);
```

Построение годографа Михайлова для трех случаев:

```
main:
%% Все вместе
figure('Name', 'Годограф Михайлова с разной устойчивостью');
w = 0.001:0.01:10;
GM1 = freqs([T1*T_3, T1+T_3, 1, k_31*k1], 1, w);
GM2 = freqs([T1*T 3, T1+T 3,1, k 32*k1], 1, w);
GM3 = freqs([T1*T 31, T1+T 31, 1, k 33*k1], 1, w);
U1 = real(GM1);
V1 = imag(GM1);
U2 = real(GM2);
V2 = imag(GM2);
U3 = real(GM3);
V3 = imag(GM3);
plot(U1, V1, 'r', U2, V2, 'b', U3, V3, 'g');
hold on
plot(0,0,r+');
grid on
legend('Устойчивая система', 'Неустойчивая система', 'Система на границе
устойчивости')
xlabel('Re, sec^-^1')
ylabel('Im, sec^{-1}')
title('Годограф Михайлова с разной устойчивостью');
saveas(gcf, 'graphics/Разная устойчивость.png');
```

```
lab out dynamic plot.m:
function lab otu dynamic plot(T, k, T1, k1, graph, road, color, biba)
B = k*k1:
A = [T1*T, T1+T, 1, k*k1];
W = tf(B, A);
if ~iscell(W)
W = \{W\};
end
figure('Position', [400, 200, 900, 750]);
title(graph)
subplot(3,2,1)
for k = 1 : 1 : length(W)
if isproper(W{k})
[x,t]=step(W\{k\}, 0:0.1:30);
plot(t, x, color);
hold on;
end
end
hold off
grid minor
grid on;
title('Step Response')
xlabel('time, sec')
ylabel('Magnitude, dB')
subplot(3,2,2)
for k = 1 : 1 : length(W)
if isproper(W\{k\})
[x,t]=impulse(W\{k\}, 0:0.1:30);
plot(t, x, color);
hold on;
end
end
hold off
grid minor
grid on;
title('Impulse Response')
```

```
xlabel('time, sec')
ylabel('Magnitude, dB')
subplot(3,2,[3,5])
for k = 1 : 1 : length(W)
if isproper(W{k})
hold on;
bode(W{k}, color);
grid on;
end
end
hold off;
subplot(3,2,4)
for k = 1 : 1 : length(W)
if isproper(W\{k\})
hold on;
nyquist(W{k}, color);
end
end
hold off
grid minor
grid on;
title('Nyquist Diagram')
xlabel('Real Axis, sec^-^1')
ylabel('Imaginary Axis, sec^-^1')
hold off;
subplot(3,2,6)
for k = 1 : 1 : length(W)
if isproper(W{k})
pzmap(W\{k\}, color);
title('Pole-Zero Map');
axis([-3 2 -2 2]);
end
end
saveas(gcf, road);
figure('Name', 'Годограф Михайлова');
w=0.001:0.01:10;
GM = freqs(A, 1, w);
U=real(GM);
```

```
V=imag(GM);
plot(U,V, color);
hold on
plot(0,0, 'r+');
grid on
xlabel('Re, sec^-^1')
ylabel('Im, sec^-^1')
title(graph);
saveas(gcf, biba);
end
```