SEQUENCE LISTING

	Blumberg, Richard S. Lencer, Wayne I. Simister, Neil E. Bitonti, Alan J.	
<120>	CENTRAL AIRWAY ADMINISTRATION FOR SYSTEMIC DELIVERY OF THERAP	EUTICS
<130>	S01383.70011.US	
<150> <151>	•	
<150> <151>	PCT/US02/21355 2002-07-03	
<150> <151>	US 60/364,482 2002-03-15	
<160>	40	
<170>	PatentIn version 3.1	
<210><211><211><212><213>	1 681 DNA Homo sapiens	
<400>	1	
gacaaa	actc acacatgtcc accttgtcca gctccggaac tcctgggggg accgtcagtc	60
ttcctc	ttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca	120
tgcgtg	gtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac	180
ggcgtg	gagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac	240
cgtgtg	gtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag	300
tgcaag	gtet ccaacaaage ceteccagee eccategaga aaaccatete caaagecaaa	360
gggcag	cccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag	420
aaccag	gtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag	480
tgggag	agca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc	540
gacggc	teet tetteeteta cagcaagete acegtggaca agagcaggtg gcagcagggg	600
aacgtc	ttet catgeteegt gatgeatgag getetgeaca accaetacae geagaagage	660
ctctcc	ctgt ctccgggtaa a	681
<210><211><211><212><213>	2 227 PRT Homo sapiens	

<400> 2

- Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
 1 5 10 15
- Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30
- Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45
- Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60
- His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80
- Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95
- Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110
- Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125
- Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140
- Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175
- Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190
- Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205
- His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 220

<210>	3	
<211>	579	
<212>	DNA	
010	TT	

<213> Homo sapiens

<400> atgggggtgc acgaatgtcc tgcctggctg tggcttctcc tgtccctgct gtcqctccct 60 etgggeetee cagteetggg egeeceacea egeeteatet gtgacageeg agteetgeag 120 aggtacetet tggaggeeaa ggaggeegag aatateaega egggetgtge tgaacaetge 180 agettgaatg agaatateae tgteecagae accaaagtta atttetatge etggaaqagq 240 atggaggtcg ggcagcaggc cgtagaagtc tggcagggcc tggccctgct gtcggaagct 300 gtcctgcggg gccaggccct gttggtcaac tcttcccagc cgtgggagcc cctgcagctg 360 catgtggata aagccgtcag tggccttcgc agcctcacca ctctgcttcg ggctctggga 420 gcccagaagg aagccatctc ccctccagat gcggcctcag ctgctccact ccgaacaatc 480 actgctgaca ctttccgcaa actcttccga gtctactcca atttcctccg gggaaagctg 540

579

<210> 4 <211> 193 <212> PRT <213> Homo sapiens

aagctgtaca caggggaggc ctgcaggaca ggggacaga

<400> 4

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30

Ile Cys Asp Ser Arg Val Leu Gln Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu

85 90 95

Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115

Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 130

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 155

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 185

Arq

<210> 5

<211> 798

<212> DNA

<213> Homo sapiens

<400>

ctgcagacca ccatggtacc gtgcacgctg ctcctgctgt tggcggccgc cctggctccg actcagacco gogooggoto tagaccoggg gaattogoog gogoogotgo ggtogacaaa 120 actcacacat gcccaccgtg cccagcacct gaactcctgg ggggaccgtc agtcttcctc 180 ttccccccaa aacccaagga caccctcatg atctcccgga cccctgaggt cacatgcgtg 240 gtggtggacg tgagccacga agaccctgag gtcaagttca actggtacgt ggacggcgtg 300 gaggtgcata atgccaagac aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg 360 gtcagcgtcc tcaccgtcct gcaccaggac tggctgaatg gcaaggagta caagtgcaag 420 gtctccaaca aagccctccc agcccccatc gagaaaacca tctccaaagc caaagggcag 480 ccccgagaac cacaggtgta caccctgccc ccatcccggg atgagctgac caagaaccag 540 gtcagcctga cctgcctggt caaaggcttc tatcccagcg acatcgccgt ggagtgggag 600 agcaatgggc agccggagaa caactacaag accacgcctc ccgtgttgga ctccgacggc 660

60

tccttcttcc	tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	ggggaacgtc	720
ttctcatgct	ccgtgatgca	tgaggctctg	cacaaccact	acacgcagaa	gagcctctcc	780
ctgtctccgg	gtaaatga					798

- <210> 6
- <211> 261 <212> PRT
- <213> Homo sapiens
- <400> 6
- Met Val Pro Cys Thr Leu Leu Leu Leu Leu Ala Ala Leu Ala Pro
- Thr Gln Thr Arg Ala Gly Ser Arg Pro Gly Glu Phe Ala Gly Ala Ala 25
- Ala Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 35 40
- Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 50
- Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 70 75
- Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 85 95
- Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 100
- Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 115
- Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 130
- Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 145
- Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 165 170
- Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala

180 185 190

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 195 200 205

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 210 215 220

Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 225 230 235 240

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 245 250 255

Leu Ser Pro Gly Lys 260

<210> 7

<211> 1290

<212> DNA

<213> Homo sapiens

<400> 7

ctgcagacca ccatggtacc gtgcacgctg ctcctgctgt tqqcqqccqc cctqqctccq 60 actcagaccc gcgccggctc tagagcccca ccacgcctca tctqtqacaq ccqaqtcctq 120 cagaggtacc tcttggaggc caaggaggcc gagaatatca cgacgggctg tgctgaacac 180 tgcagcttga atgagaatat cactgtccca gacaccaaag ttaatttcta tgcctggaag 240 aggatggagg tegggeagea ggeegtagaa gtetggeagg geetggeeet getgteggaa 300 gctgtcctgc ggggccaggc cctgttggtc aactcttccc agccgtggga gcccctgcag 360 ctgcatgtgg ataaagccgt cagtggcctt cgcagcctca ccactctgct tcgggctctg 420 ggagcccaga aggaagccat ctcccctcca gatgcggcct cagctgctcc actccgaaca 480 atcactgctg acactttccg caaactcttc cgagtctact ccaatttcct ccggggaaag 540 ctgaagctgt acacagggga ggcctgcagg acaggggaca gagaattcgc cggcgccgct 600 geggtegaca aaacteacac atgeecaceg tgeecageac etgaacteet ggggggaceg 660 teagtettee tetteecece aaaacccaag gacaccetea tgateteeeg gacccetgag 720 gtcacatgcg tggtggtgga cgtgagccac gaagaccctg aggtcaagtt caactggtac 780 gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc 840 acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaqqaq 900

tacaagtgca	aggtctccaa	caaagccctc	ccagccccca	tcgagaaaac	catctccaaa	960
gccaaagggc	agccccgaga	accacaggtg	tacaccctgc	ccccatcccg	ggatgagctg	1020
accaagaacc	aggtcagcct	gacctgcctg	gtcaaaggct	tctatcccag	cgacatcgcc	1080
gtggagtggg	agagcaatgg	gcagccggag	aacaactaca	agaccacgcc	tcccgtgttg	1140
gactccgacg	gctccttctt	cctctacagc	aagctcaccg	tggacaagag	caggtggcag	1200
caggggaacg	tcttctcatg	ctccgtgatg	catgaggctc	tgcacaacca	ctacacgcag	1260
aagagcctct	ccctgtctcc	gggtaaatga				1290

<210> 8

<211> 425

<212> PRT

<213> Homo sapiens

<400> 8

Met Val Pro Cys Thr Leu Leu Leu Leu Leu Ala Ala Leu Ala Pro 1 5 10 15

Thr Gln Thr Arg Ala Gly Ser Arg Ala Pro Pro Arg Leu Ile Cys Asp 20 25 30

Ser Arg Val Leu Gln Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn 35 40 45

Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr 50 55 60

Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val 65 70 75 80

Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu 85 90 95

Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp 100 105 110

Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser 115 120 125

Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser 130 135 140

Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp

Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys
165 170 175

Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Glu Phe
180 185 190

Ala Gly Ala Ala Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro 195 200 205

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 210 215 220

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 225 230 235 240

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 245 250 255

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 260 265 270

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 275 280 285

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 290 295 300

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 305 310 315 320

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 325 330 335

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 340 345 350

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 355 360 365

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 370 375 380

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 385 390 395 400

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 405 410 415

Lys Ser Leu Ser Leu Ser Pro Gly Lys 420 425

<210> 9

<211> 1299

<212> DNA

<213> Homo sapiens

<400> 9

ctgcaggcgg agatgggggt gcacgaatgt cctgcctggc tgtggcttct cctgtccctg 60 ctgtcgctcc ctctgggcct cccagtcctg ggcgccccac cacgcctcat ctgtqacaqc 120 cgagtcctgg agaggtacct cttggaggcc aaggaggccg agaatatcac gacgggctgt 180 gctgaacact gcagcttgaa tgagaatatc actgtcccag acaccaaagt taatttctat 240 gcctggaaga ggatggaggt cgggcagcag gccgtagaag tctggcaggg cctggccctg 300 ctgtcggaag ctgtcctgcg gggccaggcc ctgttggtca actcttccca gccqtqqqaq 360 cccctgcagc tgcatgtgga taaagccgtc agtggccttc gcaqcctcac cactctgctt 420 cgggctctgg gagcccagaa ggaaqccatc tecectccaq atqcqqcctc aqctqctcca 480 ctccgaacaa tcactgctga cactttccgc aaactcttcc gagtctactc caatttcctc 540 cggggaaagc tgaagctgta cacaggggag gcctgcagga caggggacag agaattcgcc 600 ggcgccgctg cggtcgacaa aactcacaca tgcccaccgt gcccaqcacc tqaactcctq 660 gggggaccgt cagtetteet ettececcca aaacccaagg acacceteat gateteeegg 720 acccetgagg teacatgegt ggtggtggae gtgageeaeg aagaceetga ggteaagtte 780 aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcq ggaggagcaq 840 tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaat 900 ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagcccccat cgagaaaacc 960 atetecaaag ccaaagggca geeegagaa ccacaggtgt acaceetgee eccateeegg 1020 gatgagctga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc 1080 gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct 1140 cccgtgttgg actccgacgg ctccttcttc ctctacagca agctcaccgt ggacaagagc 1200 aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac 1260

<210> 10

<211> 428

<212> PRT

<213> Homo sapiens

<400> 10

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30

Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95

Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115 120 125

Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
130 140

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180 185 190

Arg	Glu	Phe 195	Ala	Gly	Ala	Ala	Ala 200	Val	Asp	Lys	Thr	His 205	Thr	Cys	Pro
Pro	Cys 210	Pro	Ala	Pro	Glu	Leu 215	Leu	Gly	Gly	Pro	Ser 220	Val	Phe	Leu	Phe
Pro 225	Pro	Lys	Pro	Lys	Asp 230	Thr	Leu	Met	Ile	Ser 235	Arg	Thr	Pro	Glu	Val 240
Thr	Cys	Val	Val	Val 245	Asp	Val	Ser	His	Glu 250	Asp	Pro	Glu	Val	Lys 255	Phe
Asn	Trp	Tyr	Val 260	Asp	Gly	Val	Glu	Val 265	His	Asn	Ala	Lys	Thr 270	Lys	Pro
Arg	Glu	Glu 275	Gln	Tyr	Asn	Ser	Thr 280	Tyr	Arg	Val	Val	Ser 285	Val	Leu	Thr
Val	Leu 290	His	Gln	Asp	Trp	Leu 295	Asn	Gly	Lys	Glu	Tyr 300	Lys	Cys	Lys	Val
Ser 305	Asn	Lys	Ala	Leu	Pro 310	Ala	Pro	Ile	Glu	Lys 315	Thr	Ile	Ser	Lys	Ala 320
Lys	Gly	Gln	Pro	Arg 325	Glu	Pro	Gln	Val	Tyr 330	Thr	Leu	Pro	Pro	Ser 335	Arg
Asp	Glu	Leu	Thr 340	Lys	Asn	Gln	Val	Ser 345	Leu	Thr	Cys	Leu	Val 350	Lys	Gly
Phe	Tyr	Pro 355	Ser	Asp	Ile	Ala	Val 360	Glu	Trp	Glu	Ser	Asn 365	Gly	Gln	Pro
Glu	Asn 370	Asn	Tyr	Lys	Thr	Thr 375	Pro	Pro	Val	Leu	Asp 380	Ser	Asp	Gly	Ser
Phe 385	Phe	Leu	Tyr	Ser	Lys 390	Leu	Thr	Val	Asp	Lys 395	Ser	Arg	Trp	Gln	Gln 400
Gly	Asn	Val	Phe	Ser 405	Cys	Ser	Val	Met	His 410	Glu	Ala	Leu	His	Asn 415	His
Tyr	Thr	Gln	Lys 420	Ser	Leu	Ser	Leu	Ser 425	Pro	Gly	Lys				

```
<210> 11
<211> 11
<212> PRT
<213> Homo sapiens
<400> 11
Pro Lys Asn Ser Ser Met Ile Ser Asn Thr Pro
<210> 12
<211> 7
<212> PRT
<213> Homo sapiens
<400> 12
His Gln Ser Leu Gly Thr Gln
<210> 13
<211> 8
<212> PRT
<213> Homo sapiens
<400> 13
His Gln Asn Leu Ser Asp Gly Lys
<210> 14
<211> 8
<212> PRT
<213> Homo sapiens
<400> 14
His Gln Asn Ile Ser Asp Gly Lys
<210> 15
<211> 8
<212> PRT
<213> Homo sapiens
<400> 15
Val Ile Ser Ser His Leu Gly Gln
1 5
<210> 16
<211> 11
<212> PRT
```

```
<213> Homo sapiens
<400> 16
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
<210> 17
<211> 16
<212> PRT
<213> Homo sapiens
<400> 17
Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser
<210> 18
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 18
aaaactgcag accaccatgg taccgtgcac g
                                                                     31
<210> 19
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 19
cgtctagagc cggcgcgggt ctgagtcgg
                                                                     29
<210> 20
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 20
aagaattcgc cggcgccgct gcggtcgaca aaactc
                                                                     36
<210> 21
<211> 28
<212> DNA
```

<213> Artificial sequence

<220> <223>	Synthetic oligonucleotide	
<400>	21	
ttcaat	tgtc atttacccgg agacaggg	28
<210>	22	
	32	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	22	
	gagc cccaccacgc ctcatctgtg ac	32
<210>	23	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	23	
		30
_		
<210>	24	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	24	
		27
J	3-33-33-33-33-33-4	
-210-	25	
<210> <211>	25 22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	25	22
cciggi	cate tgteeectgt ee	<i>44</i>
<210>	26	
<211> <212>	13 PRT	

```
<213> Artificial sequence
<220>
<223> Synthetic oligopeptide
<400> 26
Gly Ser Arg Pro Gly Glu Phe Ala Gly Ala Ala Val
<210> 27
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic oligopeptide
<400> 27
Glu Phe Ala Gly Ala Ala Val
<210> 28
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic oligopeptide
<400> 28
Gly Gly Gly Ser Gly Gly Gly Ser
<210> 29
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic oligopeptide
<400> 29
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                                  10
<210> 30
<211> 20
<212> PRT
<213> Artificial sequence
```

<220>

```
<223> Synthetic oligopeptide
<400> 30
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
Gly Gly Gly Ser
<210> 31
<211> 37
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 31
gctactgcag ccaccatggc cttgaccttt gctttac
                                                                     37
<210> 32
<211> 35
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 32
cgttgaattc ttccttactt cttaaacttt cttgc
                                                                     35
<210> 33
<211> 74
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 33
cagttccgga gctgggcacg gcgggcacgt gtgagttttg tcttccttac ttcttaaact
                                                                     60
ttcttgcaag tttg
                                                                     74
<210> 34
<211> 45
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
```

<400> 34

gtcagga	atcc ggcggtggag ggagcgacaa	aactcacacg	tgccc	45
<210>	35			
<211>	32			
<212>				
	Artificial sequence			
<220>				
<223>	Synthetic oligonucleotide			
<400>	35			
tgacgc	ggcc gctcatttac ccggagacag	aa		32
<210>	36			
<211>	32			
<212>				
<213>	Artificial sequence			
<220>				
<223>	Synthetic oligonucleotide			
<400>	36			
ccgctag	geet geaggeeace atggeettga	CC		32
<210>	37			
<211>	34			
<212>	DNA			
<213>	Artificial sequence			
<220>				
<223>	Synthetic oligonucleotide			
<400>	37			
ccggato	ccgc cgccaccttc cttactacgt	aaac		34
<210>	38			
<211>	60			
<212>	DNA			
<213>	Artificial sequence			
<220>				
<223>	Synthetic oligonucleotide			
<400>	38			
gtcagga	atcc ggtggaggcg ggtccggcgg	tggagggagc	gacaaaactc acacgtgccc	60
<210>	39			
<211>	75			
<212>				
<213>	Artificial sequence			
<220>				
-2235	Synthetic oligonucleotide			

<400>	39				
gtcagg	atcc ggcggaggag gct	caggtgg aggcg	gggtcc ggcggtgga	g ggagcgacaa	60
aactca	cacg tgccc				75
<210>	40				
<211>	20				
<212>	DNA				
<213>	Artificial sequenc	e			
<220>					
<223>	Synthetic oligonuc	leotide			
<400>	40				
atagaa	geet ttgaecagge				20