M.Sioli's Thermodynamics

Pocket reference for 1st year course - BSc Physics, Unibo

2023

Contents

1	Fluidostatica e fluidodinamica	1
2	Sistemi termodinamici	1
3	Teoria Cinetica	3
4	Primo principio	3
5	Trasmissione del calore	6
6	II Principio	8
7	Entropia	8
8	Potenziali termodinamici	11
9	Terzo principio	12
10	Termodinamica statistica	12
11	Differenziali esatti	12
12	Costanti fisiche, u.m. e proprietà termodinamiche	13

1 Fluidostatica e fluidodinamica

Sforzo di Taglio
$$ec{T} = rac{\mathrm{d} ec{F_t}}{\mathrm{d} S}$$

Equazione della statica (1D) $\frac{\mathrm{d}p}{\mathrm{d}z} = -\rho(z)g$

Equazione generalizzata della statica $\nabla p=\rho \vec{H}=-\rho \nabla \Phi$ ove \vec{H} indica forza di volume (f. che agisce tramite il v. del corpo)

Legge di Stevino $p = p_0 + \rho g h$

Tensione superficiale $\tau = \frac{\mathrm{d}F}{\mathrm{d}l} = \frac{\mathrm{d}L}{\mathrm{d}S}$ (alternativamente indicata con γ)

Equazione di continuità $\rho Av = cost$

Resistenza del mezzo (per corpo sferico) $F=6\pi R\eta v$ a piccole velocità, $F=\frac{1}{2}\rho v^2\cdot S\cdot C$ a grandi v.

2 Sistemi termodinamici

Regola delle Fasi di Gibbs $\nu=C+2-F$ ove ν sono i d.o.f. termodinamici (var. intensive indipendenti), C le componenti e F le fasi

Scala Celsius
$$\, \theta(x) = 100 \frac{x-x_0}{x_{100}-x_0} \mathrm{C}$$

Coefficiente di dilatazione termica lineare $\alpha_L=\frac{1}{l}\bigg(\frac{\partial l}{\partial T}\bigg)_p$ indicato anche con α (per un filo è a τ , tensione ai capi, costante) $\boxed{\Delta l \approx l \cdot (1+\alpha_L \Delta T)}$

Coefficiente di dilatazione termica volumetrico $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$ indicato anche con β

 $\boxed{\Delta V \approx V \cdot (1 + \alpha \Delta T)} \ \text{Per } \Delta T \rightarrow 0 \ \beta \approx 3\alpha_l$

Coefficiente di comprimibilità isoterma $\frac{1}{k} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

Pendolo dilatato anticipa in un giorno di Δau_1 a $heta_1$ e Δau_2 a $heta_2$

$$\alpha_L = \frac{2(\Delta \tau_1 - \Delta \tau_2)}{\tau_0 (T_1 - T_2)}$$

Potenziale di Lennard-Jones $U(r) = \varepsilon \bigg[\bigg(\frac{r_{min}}{r} \bigg)^{12} - 2 \bigg(\frac{r_{min}}{r} \bigg)^{6} \bigg]$

Termometro a GP $\; \theta(p) = 273.16 \frac{p}{p_3} \; {\rm ove} \; p_3 = {\rm punto} \; {\rm triplo}$

LEGGI DEI GAS PERFETTI

I Legge di Gay-Lussac a p cost $V = V_0 \beta \theta$ ($V \propto \theta$)

II Legge di Gay-Lussac a $V \cos p = p_0 \beta \theta \ (p \propto \theta)$

Legge di Boyle a n, θ cost $V = \frac{cost}{p} \left(V \propto \frac{1}{p} \right)$

Legge di Avogadro a p, θ cost $V = cost' \cdot n$ ($V \propto n$)

Equazione di stato dei GP $\boxed{pV=nR\theta}$

Dilatazione volumica e comprimibilità per GP $\, \alpha = \frac{1}{\theta} \, \left| \, \, k = p \, \right|$

Dipendenza pressione dalla quota (θ cost) $p(z)=p_0\,e^{-z/h_0}$ con $h_0=\frac{R\theta}{g{
m M}}$ (massa molecolare media)

Sviluppo del viriale $z=\frac{pV}{nR\theta}$ fattore di compressione

$$z(p)\approx 1+Ap+Bp^2+Cp^3+\dots$$

Equazione di stato di Van der Waals $\boxed{ \left(p + a \frac{n^2}{V^2} \right) (V - bn) = nR\theta}$

oppure $(p + \frac{a}{v^2})(v - b) = R\theta$ con volume molare v

 $\text{Pressione per GR } p(\theta,V) = \frac{nR\theta}{V-bn} - \frac{an^2}{V^2} = \frac{R\theta}{{\rm v}-b} - \frac{a}{{\rm v}^2} = p(\theta,{\rm v})$

Temperatura e volume molare critici (flesso orizzontale isoterma piano pv) con coeff. compressione

$$\mathbf{v}_C = 3b \quad \theta_C = \frac{8a}{27Rb} \quad z_C = \frac{p_C \mathbf{v}_C}{R\theta_C} = \frac{3}{8} = 0.375$$

Vapore saturo $\frac{n_L}{n_G} = \frac{\mathbf{v}_G - \mathbf{v}}{\mathbf{v} - \mathbf{v}_L}$

Recipienti comunicanti: si scalda 2 $p_f = \frac{V_1 + V_2}{V_1 + \frac{\theta_0}{\theta_f} V_2}$

3 Teoria Cinetica

Pressione
$$p = \frac{1}{3}(p_x + p_y + p_z) = \frac{m}{3V} \sum_{i=1}^{N} (v_{ix}^2 + v_{iy}^2 + v_{iz}^2) = \frac{m}{3V} \sum_{i=1}^{N} v_i^2$$

Energia cinetica media $\boxed{\langle \varepsilon \rangle = \frac{3}{2} k_B \theta}$

Teorema di equipartizione dell'energia definizione Kelvin $\theta=\frac{2\langle \varepsilon \rangle}{k_B \nu}$ con $\nu=n\,d.o.f.$ e cost. di Boltzmann definita come valore esatto

Legge di Dalton (pressioni parziali) $[(p_1+p_2)V=(n_1+n_2)R\theta]$ ove $p_1,\ p_2$ sono pressioni esercitate in assenza dell'altro gas

Gas sulla bilancia $|\Delta v_{iy}| = \frac{gL}{|\vec{v}_{iy}|}$ da cui $\Delta p = \frac{Mg}{S}$

Moda $\frac{\mathrm{d} \rho}{\mathrm{d} v} = 0 o \sqrt{\frac{2R\theta}{M}} = \sqrt{\frac{2k_B\theta}{m}}$

 $\mbox{Velocità media } \langle v \rangle = \int_0^{+\infty} v \, \rho(v) \mathrm{d}v = \sqrt{\frac{8R\theta}{\pi M}} = \sqrt{\frac{8k_B\theta}{\pi m}}$

 $\text{Velocità quadratica media} \qquad \langle v^2 \rangle = \int_0^{+\infty} v^2 \, \rho(v) \mathrm{d}v = \frac{3R\theta}{M} = \frac{3k_B\theta}{m} \qquad \bigg\rangle \qquad \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3k_B\theta}{m}} = \sqrt{\frac{3\pi}{8}} \langle v \rangle$

Selettore di velocità $\Delta l(v) = \frac{2R^2\omega}{v}$

Atmosfere planetarie raggio limite (posta $v_f=\sqrt{\langle v^2\rangle}$) $r=\sqrt{\frac{9R\theta}{8G\pi M\rho_{pianeta}}}$ a θ,ρ uniform

Libero cammino medio - Mean free path $\lambda=\frac{k_B\theta}{\sigma p\sqrt{2}}$ con σ cross section molecole

Frequenza urti $f=rac{\overline{v}}{\lambda}=\sqrt{rac{6\sigma p}{mkT}}$ N° urti in unità di volume e tempo $\mathcal{U}(V,\Delta t)=f\cdot rac{N}{V}\cdot \Delta t=f\cdot rac{p}{kT}\cdot \Delta t$

4 Primo principio

Lavoro $L_{term} = \sum F_{GEN} \cdot \Delta S_{GEN}$ (tra sistema e ambiente, esterno)

pV per quasistatiche $\delta L = p \mathrm{d} V o L = \int_{V_i}^{V_f} p(V) \mathrm{d} V$

Altri tipi di lavori termodinamici $L = \int_i^f p \mathrm{d}V + \int_i^f T \mathrm{d}l + \int_i^f \tau \mathrm{d}S + \int_i^f \varepsilon \mathrm{d}q + \int_i^f \mu_i \mathrm{d}n_i$

LAVORO IN QUASISTATICHE

Isocora L=0

Isobara $L = p(V_f - V_i) = p\Delta V$

 $\textbf{Isoterma} \ \ \mathsf{per} \ \ \mathbf{GP} \ L = nR\theta \ln \left(\frac{V_f}{V_i}\right) \ \ \mathsf{per} \ \ \mathbf{GR} \ L = nR\theta \ln \left(\frac{V_f - nb}{V_i - nb}\right) + an^2 \left(\frac{1}{V_f} - \frac{1}{V_i}\right)$

 $\textbf{Per stati condensati con dilatazione termica trasc: quasistatica } L = \frac{V}{k}[p_i^2 - p_f^2] \text{ brusca } L = -\frac{V}{k}p_f(p_f - p_i)$

3

Bolla di sapone differenza di pressione int-est $\Delta p = \frac{4\tau}{r}$

ENERGIA INTERNA E CALORE

En. interna e adiabatiche $\Delta U_{A o B} = L_{A o B}^{(ad)}$

PRIMO PRINCIPIO integrale $Q = \Delta U + L$ locale $\delta Q = \mathrm{d} U + \delta L$ Convenzione segni:

$$\begin{array}{c} L>0 \\ \hline \\ L<0 \end{array} \qquad \begin{array}{c} Q<0 \\ \hline \\ Q>0 \end{array}$$

Sistemi idrostatici semplici $\delta Q=p\mathrm{d}V+\mathrm{d}U$ non semplici $\delta Q=\sum p_i\mathrm{d}V_i+\mathrm{d}U$

Altre forme di energia sistema nella sua totalità non in quiete $\boxed{+\Delta K}$ e/o sottoposto a campo di forze, potenziale conservativo $\boxed{+\Delta V}$

 $\textbf{Ciclo} \ \Delta U = 0 \implies Q = L$

CAPACITÁ TERMICA

C.t. media
$$\overline{C} = \frac{Q}{\Delta T}$$

Calore specifico
$$c_m = \frac{C}{m} = \frac{1}{m} \frac{\delta Q}{\mathrm{d}\theta} \ \bigg| \ [c_m] = \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{kg}^{-1}$$

Calore molare
$$c_n = c = \frac{C}{n} \mid [c] = J K^{-1} \operatorname{mol}^{-1}$$

A pressione costante
$$c_p = \frac{1}{n} \left(\frac{\delta Q}{\mathrm{d}\theta} \right)_n$$
, a volume costante $c_V = \frac{1}{n} \left(\frac{\delta Q}{\mathrm{d}\theta} \right)_V$

 $\textbf{Calore latente} \ \ \text{locale} \ \lambda = \frac{\delta Q}{\mathrm{d}m} \text{, integrale } \lambda = \frac{Q}{m} \ \text{con } m \ \text{massa che transisce di fase e } Q \ \text{assorbito o ceduto}.$ Anche molare $\lambda_n = \frac{Q}{n}$

Lungo politropica per GP $pV^{\alpha}=cost \implies c_{\alpha}=c_{V}+\frac{R}{1-\alpha}$ (si riduce a c_{p} se $\alpha=0$)

Lavoro in transizione e.g. liquido-vapore $L = p(\mathbf{v}_G - \mathbf{v}_L)$

Dulong-Petit e Debye
$$c \approx c_V(\theta) = 3R \left(\frac{\theta}{\theta_D}\right)^3 \int_0^{\theta_D/\theta} \frac{x^4 e^x}{(e^x - 1)^2} dx$$
 per $\theta \gg \theta_D \longrightarrow c \approx 3R$ cost per $\theta \ll \theta_D \longrightarrow c \propto \left(\frac{\theta}{\theta_D}\right)^3$

GP Monoatomici
$$c_V=\frac{3}{2}R$$
 $\left| \ c_p=\frac{5}{2}R \ \right| \ \gamma=\frac{5}{3}$ Biatomici $c_V=\frac{5}{2}R$ $\left| \ c_p=\frac{7}{2}R \ \right| \ \gamma=\frac{7}{5}$

Calorimetro di Bunsen $c_m=\frac{\lambda_f}{m_c\Delta\theta}\frac{\Delta V}{\Delta V_{LS}}=\frac{\lambda_f m_G}{m_c\Delta\theta}$ ove ΔV_{LS} è la variazione di vol. per unità di massa sciolta

Calorimetro delle mescolanze (di Regnault) $c = c_{H_2O} \frac{m_{H_2O}}{m} \left[\frac{\theta_e - \theta_{H_2O}}{\theta - \theta_e} \right]$ con $m_{H_2O} = m_{H_2O}^0 + m_{H_2O}^{(equiv)}$

Calori molari per sistemi idrostatici
$$c_V = \frac{1}{n} \left(\frac{\partial U}{\partial \theta} \right)_V$$
 $\left[c_p = \frac{1}{n} \left[\left(\frac{\partial U}{\partial \theta} \right)_p + p \left(\frac{\partial V}{\partial \theta} \right)_p \right] = \frac{1}{n} \left(\frac{\partial H}{\partial \theta} \right)_p$ (vd. potenziali)

Energia interna GP $dU = nc_V d\theta$ da cui assunto calore molare costante $U(\theta) = nc_V \theta + cost$

Seconda equazione dell'energia $\left(\frac{\partial U}{\partial V}\right)_{a} = \theta \left(\frac{\partial p}{\partial \theta}\right)_{V} - p$

Energia interna GR $U(\theta, V) = nc_v\theta - \frac{an^2}{V} + cost$

TEOREMA DI EQUIPARTIZIONE (bis) $c_V = \frac{f}{2}R \cos f$ d.o.f.

Contributi cinetici (König) $\varepsilon = \varepsilon_{TRASL} + \varepsilon_{ROT} + \varepsilon_{VIBR}$ per quest'ultima 2 termini per ogni modo vibrazionale **Biatomici** f = 3 trasl + 2 rot (terzo asse princ d'inerzia trasc) + 2 vib (attivi solo sopra alta soglia quantica)

Relazione di Meyer (per GP) $c_p = c_V + R$

$$\gamma$$
 per poliatomici $\gamma_{LIN}=1+rac{2}{6N-5}$ $\bigg|$ $\gamma_{ANG}=1+rac{1}{3N-3}$

(ma nel limite di N elevato correzioni quantistiche non trascurabili!)

Lavoro in QS per GP $L = \frac{p_i V_i - p_f V_f}{\gamma - 1} = \delta U$

$$\textbf{Curve } \left(\frac{\partial p}{\partial V} \right)_T = -\frac{p}{V} > \left(\frac{\partial p}{\partial V} \right)_{ad} = -\gamma \frac{p}{V} \implies \left| \left(\frac{\partial p}{\partial V} \right)_T \right| < \left| \left(\frac{\partial p}{\partial V} \right)_{ad} \right| \text{ (adiabatica più 'ripida')}$$

Spiegazione meccanica per esp adiabatica
$$r \equiv \frac{m}{M}$$

$$V' = \frac{2mv + (M-m)V}{m+M} \xrightarrow[r \to 0]{} V \text{ (immutato)}$$

$$v' = \frac{2MV + (m-M)v}{m+M} \xrightarrow[r \to 0]{} 2V - v \text{ (varia modulo: si ha mediamente diminuzione } \varepsilon \text{ e dunque } \Delta U, \Delta \theta < 0)$$
 Prima equazione di Friedmann - espansione adiabatica dell'universo

$$\dot{\rho} = -3(p+\rho)H$$

con
$$H = \frac{\dot{a}}{a}$$
 costante di Hubble

Dipendenza temperatura dalla quota $L\equiv \frac{\gamma-1}{\gamma}\frac{Mg}{R}$ Lapse rate (gradiente adiabatico secco) $\frac{\mathrm{d}\theta}{\mathrm{d}z}=-L\implies$ $\theta(z) = \theta_0 - Lz$ (in realtà si usa lapse rate umido - o saturo)

Dipendenza pressione
$$\frac{\mathrm{d}p}{p} = \frac{mg}{RL} \frac{L\mathrm{d}z}{\theta_0 - Lz} \implies p(z) = p_0 \left(1 - \frac{Lz}{\theta_0}\right)^{\frac{mg}{RL}}$$

Esperienza di Rüchardt $\,\gamma=\frac{4\pi^2 mV}{A^2p\tau}$ ove $\,\tau=$ periodo di oscillazione, A sezione tubo

$$\mbox{Velocità del suono} \ \ v = \sqrt{\frac{k_s}{\rho}} \ \mbox{con} \ \ k_S = \left[-\frac{1}{V} \bigg(\frac{\partial V}{\partial p} \bigg)_S \right]^{-1} \ \mbox{coeff. di comprimibilità adiabatico}$$
 si ottiene
$$\boxed{ \gamma = \frac{v^2 \rho}{p} }$$

Curva generica nel piano pV Massimizz T o si ricava p(V) e sostituisce in eq. di stato $\left\langle \left(\frac{\partial T}{\partial V} \right) \right\rangle = 0$ per V_{max}

Radiazione elettromagnetica \approx gas di fotoni $\qquad U = bVT^4 \qquad | \qquad p = \frac{1}{3}bT^4 \qquad \langle \quad b = 7.56 \times 10^{-16} \rm J \, K^{-4} \, m^{-3}$ Espansione adiabatica dell'universo osservabile: $R_0T_0=R_fT_f$

Pistone adiabatico con molla elongazione quando accelerazione pistone eguaglia quella del contenitore:

$$\Delta l = \frac{m_{pist} \cdot a_{cont}}{k + \frac{8\gamma V_0 p_0}{l^2}}$$

Velocità massima setto mobile adiabatico che divide due gas con stesso γ in contenitore isolato

$$v_{max} = \sqrt{\frac{2}{m(1-\gamma)}} \left[p_{eq}(V_{TOT}) - p_1^0 V_1^0 - p_2^0 V_2^0 \right]$$

Capacità termica contenitore con pistone e molla $C = \frac{Q}{\Delta T} = \frac{\Delta U}{\Delta T} = 2R$

 $\text{Adiabatico con aggiunta massa} \ \ T_f = \frac{2}{5nR} \bigg(p_0 A + Mg \bigg) (h_0 - h_f) + T_0 \ \ \bigg/ \ \ h_f = \bigg[1 - \frac{x}{\gamma(1+x)} \bigg] h_0 \ \text{con} \ x \equiv \frac{Mg}{n_0 \ A} \bigg]$

Vapor d'acqua e ghiaccio a 0°C con vapore estratto: rimane solo ghiaccio $\Rightarrow m_G = \frac{\lambda_V}{\lambda_V + \lambda_F} V_0 \rho_{H_2O}$

5 Trasmissione del calore

Conduzione: Legge di Fourier

$$\boxed{\frac{\delta Q}{\mathrm{d}t} = -k \, \mathrm{d}A \left(\frac{\mathrm{d}\theta}{\mathrm{d}x}\right)}$$

ove l'ultimo termine indica il gradiente termico, $[k] = Wm^{-1}K^{-1}$ la conducibilità termica (segno negativo in quanto fluisce da più caldo a più freddo)

$$\underbrace{\vec{\Phi}_Q}_{\text{flusso di }Q} = -k\vec{\nabla}\theta$$

Trattazione generale: equazione del trasporto $\frac{\partial u}{\partial t} + \mathbf{b} \cdot \nabla u = f \text{ con } u : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}, \ \mathbf{b} \in \mathbb{R}^n$

Geometria planare $P=rac{\delta Q}{\mathrm{d}t}=k\cdot A\cdotrac{ heta_1- heta_2}{d}=-AH\Delta heta$ con conduttanza $H\equivrac{k}{d}$

Conduttanza di strati in serie $\frac{1}{H_{tot}} = \sum_i \frac{1}{H_i}$

Caso non stazionario: equazione del calore $\nabla^2\theta=rac{
ho c}{k}rac{\partial \theta}{\partial t}$ con $\alpha\equivrac{
ho c}{k}$ diffusività termica

Geometria cilindrica $\frac{\delta Q}{\mathrm{d}t}=2\pi\cdot l\cdot k\frac{\theta_1-\theta_2}{\ln\frac{r_2}{r_1}}$ con 1 int, 2 est

Geometria sferica $\frac{\delta Q}{\mathrm{d}t} = 4\pi k \bigg(\frac{r_2 r_1}{r_1 - r_2}\bigg)(\theta_1 - \theta_2)$

Superficie ghiacciata del lago / nel contenitore spessore $z(t) = \sqrt{2\bigg(\frac{k\,\mathrm{d}T}{\lambda_f\rho_G}\bigg)t + z_0^2}$

Convezione: legge del raffreddamento di Newton

$$\frac{\delta Q}{\mathrm{d}t} = h \, \mathrm{d}A \left(\theta_0 - \theta_\infty\right)$$

con h coefficiente di trasferimento termico (o di convezione)

Raffreddamento del tè $\theta(t) = (\theta_0 - \theta_\infty) \, e^{-\dfrac{hA}{C}t} + \theta_\infty$

 $\textbf{Tempo di raffreddamento} \ \, \frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{hA}{V\rho c}(T-T_{\infty}) \ \, \mathrm{da \ cui} \ \, t_f = \frac{V\rho c}{hA} \ln\left(\frac{T_i-T_{\infty}}{T_f-T_{\infty}}\right)$

Irraggiamento: legge di Stefan-Boltzmann

$$\boxed{\frac{\delta Q}{\mathrm{d}t} = \varepsilon \,\sigma \,A \,\theta^4}$$

con $0<\varepsilon<1$ approssimabilità a corpo nero, σ cost. di S-B

Corpi irradiati $\underbrace{r(\alpha,\lambda)}_{riflettanza} + \underbrace{a(\alpha,\lambda)}_{assorbanza} + \underbrace{t(\alpha,\lambda)}_{trasmittanza} = 1$ con α angolo di incidenza. Dopo assorbimento si ha emissione:

Legge di Kirchhoff emittanza $\epsilon(\lambda) = \int a(\lambda)$ sull'angolo solido (tutta riemessa)

Radiazione elettromagnetica $\lambda \nu = c$ $E = h \nu$ con h costante di Planck

Spettro di Corpo Nero: Legge di Planck (curva planckiana)

$$f_{CN}(\lambda; \theta) = \frac{c_1}{\lambda^5 (e^{c_2/\lambda \theta} - 1)}$$

 $\int_0^\infty f_{CN}(\lambda) \mathrm{d}\lambda = \sigma \theta^4 \ \text{(energia totale per unità di tempo e superficie - flusso irradiato)}$

Legge di Wien $\theta \lambda_{max} = cost = b$ costante dello spostamento di Wien (massimo si ottiene annullando derivata)

Emittanza monocromatica: $\epsilon^{(\lambda)} = \frac{f(\lambda)}{f_{CN}(\lambda)}$ (tra corpo in esame e CN). Parametro della legge si ottiene secondo:

$$\varepsilon = \frac{\int f(\lambda) \, \mathrm{d}\lambda}{\int f_{CN}(\lambda) \, \mathrm{d}\lambda}$$

II Principio

Kelvin-Planck per cicli monotermi $Q = L \le 0$

ove Q_{ass} e Q_{ced} sono la somma dei calori ceduti ai ed assorbiti dai vari serbatoi (anche più di 2)

Ciclo di Stirling (combustione esterna)

$$\eta = \frac{R \ln \left(\frac{V_B}{V_A}\right) (\theta_1 - \theta_2)}{\theta_1 R \ln \left(\frac{V_B}{V_A}\right) + c_V (\theta_1 - \theta_2)}$$

Ciclo Otto (comb. interna) $\eta=1-\frac{1}{\left(\frac{V_1}{V_2}\right)^{\gamma-1}}=1-\left(\frac{V_2}{V_1}\right)^{\gamma-1}$

Ciclo Diesel
$$\,\eta=1-\frac{c_V}{c_p}\frac{\theta_C-\theta_D}{\theta_B-\theta_A}$$

Coefficiente di prestazione (macchina frigorifera)

$$\varepsilon(\omega) = \frac{Q_f}{|L|} = \frac{|Q_f|}{|Q_c| - |Q_f|}$$

Teorema di Carnot $\eta_M \leq \eta_C$ per MdC operante con i medesimi serbatoi tra o con cui opera M. Uguaglianza se M di Carnot

Rendimento MdC
$$\boxed{\eta_C = 1 - \frac{T_f}{T_c}}$$

Coeff di prestazione frigo di Carnot $\omega_C = \frac{T_f}{T_c - T_f}$

Temperatura termodinamica assoluta $T_x = T_3 \frac{|Q_x|}{|Q_2|}$ definita da rapporto calori scambiati da MdC che opera tra essa e il punto triplo.

Massimo lavoro sistema con 2 serbatoi, con $\Delta S_S=0$ $L=Q_c\Big(1-rac{T_f}{T_c}\Big)-\Delta U$ (si riduce a TdC se ciclo)

Massimo lavoro estraibile: Serbatoio caldo a $C<\infty$: $L_{max}=C\left|T_c-T_f+T_f\ln\frac{T_f}{T_c}\right|$

Freddo a $C<\infty$: $L_{max}=C\left[T_f-T_c+T_c\ln\frac{T_c}{T_s}\right]$

MdC tra serbatoi a C finita e costante $C_c=C_f$ \rangle $T_e=\sqrt{T_c\cdot T_f}$ | $L=C(T_c+T_f-2T_e)$

Corpo freddo con ghiaccio $L_{tot} = L_{fusione} + L_{dopo\,f} = \left(\frac{T_c}{T_0} - 1\right) \lambda_f M_G + c_{H_2O} M_G \left[T_1 \ln \frac{T_2}{T_0} + T_0 - T_2\right]$ con $T_0 = 0 \, ^{\circ}\mathrm{C}$ e T_2 finale freddo

 $\mbox{M irr tra serbatoi accoppiata con $\overline{\bf C}$ definito $\epsilon = \frac{Q_c^M}{Q_c^{\overline{C}}}$ si ha $\eta_M = \frac{1}{\epsilon} \eta_C \ | \ \Delta S_{ciclo} = \frac{Q_f^M}{T_f} \bigg[\bigg(\frac{T_c}{T_f} - 1 \bigg) (\epsilon - 1) \bigg] \bigg]$

7 **Entropia**

Teorema (o disuguaglianza) di Clausius caso discreto $\left|\sum_{i=1}^{n} \frac{Q_i}{T_i} \le 0\right|$ al continuo $\left|\oint \frac{\delta Q}{T} \le 0\right|$ ove T è

la temperatura del termostato con cui avviene scambio infinitesimo

Definizione entropia $S: \Delta S_{AB} = S(B) - S(A) = \int_{B}^{B} \frac{\delta Q}{T} \ \forall R \text{ trasf rev. tra i due stati: } \Delta S \text{ per irrev. si calcola}$ da rev. tra medesimi stati. $\mathrm{d}S = \frac{\delta Q_R}{T} \implies$ Piano T-S $\int_{-T}^{T} T \mathrm{d}S = Q_R$

Estensiva e additiva

Sistemi isolati: Principio di aumento dell'entropia ogni $\delta Q=0 \implies \Delta S \geq 0$ per universo termodinamico (isolato per def) $\Delta S_U \geq 0$

Espansione libera (irr.) $\Delta S = nR \ln \frac{V_f}{V_i}$ per due gas con stesso volume iniziale (processi indipendenti sovrapposti)

Scambio di calore $\Delta S_U = C_1 \ln \frac{T_e}{T_e} + C_2 \ln \frac{T_e}{T_e}$

$$\square$$
 Se $C_1 = C_2 \ \Delta S_U = C \ln \left(1 + \frac{(T_1 - T_2)^2}{4T_1 T_2} \right)$. Per $T_1 - T_2 = \mathrm{d}T$ si ha $\Delta S_U \approx 0$ (q.s. = rev!)

$$\square$$
 Se $C_1\gg C_2$, ovvero $r\equiv \frac{\dot{C}_2}{C_1}\to 0$ si ha $T_e\to T_1$ e $\Delta S_U=C_2\big[R-1-\ln R\big]$ con $R\equiv \frac{T_2}{T_1}$ da:

Variazione entropia termostato $\Delta S_{term} = -\frac{Q}{T_{term}}$ ove Q è il calore scambiato con il termostato (a T_{term} cost) dal sistema (con segno opportuno).

Scambio tra termostati con corpo conduttore in stato stazionario $\Delta S_U = |Q| \left| \frac{1}{T_2} - \frac{1}{T_1} \right|$ con $T_1 > T_2$ $\Delta S_U \approx 0$ se differenza di temp. infinitesima (\rightarrow reversibilità quasistatiche di politermiche)

CICLI
$$\Delta S_S = 0$$
 (f. di stato) $\implies \Delta S_U = \Delta S_A$

$$\oint rac{\delta Q}{T} = -\Delta S_U = {\sf traccia}$$

 $\textbf{Reversibili} \colon \text{vale uguaglianza in Clausius} \Leftrightarrow \Delta S_U = 0$

$$\oint rac{dQ}{T} = -\Delta S_U = {
m traccia}$$
 possibile calcolare $L = \oint p\,{
m d}V = \oint T\,{
m d}S$

ENTROPIA PER GP per qualsiasi trasformazione

$$\Delta S = n \int_i^f c_V(T) \, \frac{\mathrm{d}T}{T} + nR \ln \frac{V_f}{V_i} \quad \text{assunto calore molare costante:}$$

$$\Delta S = nc_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i} = nc_V \ln \left(\frac{T_f V_f^{\gamma - 1}}{T_i V_i^{\gamma - 1}}\right) = nc_V \ln \left(\frac{p_f V_f^{\gamma}}{p_i V_i^{\gamma}}\right) = nc_p \ln \left(\frac{T_f p_f^{\frac{1 - \gamma}{\gamma}}}{T_i p_i^{\frac{1 - \gamma}{\gamma}}}\right)$$

Entropia GR $\Delta S=nc_V\ln\frac{T_f}{T_i}+nR\ln\frac{V_f-b}{V_i-b}$ (no dipendenza da a!) Esp. libera: $\Delta S_{GP}>\Delta S_{GR}$

En. sistemi condensati incomprimibili $\Delta S = \int_{i}^{f} C(T) \frac{dT}{T}$ per intervallo di validità Dulong-Petit $\Delta S = C \ln \frac{T_f}{T_i} =$ $mc_m \ln rac{T_f}{T_c}$ nel limite di T o 0 applicando Debye $\Delta S \propto rac{1}{3} (T_f^3 - T_i^3)$

Coefficiente di dilatazione volumico isoentropico per GR e GP $\alpha_S \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_S = -\frac{c_V}{RT}$

Acqua versata nel bicchiere $\Delta S = mc_a \ln \left(1 + \frac{gh}{c_a T_i}\right)$ ove h altezza di caduta

Transizioni di fase $\Delta S = \pm \frac{m\lambda}{T}$

 $\textbf{Degradazione dell'energia} \ \times \ \text{bitermica irr.} \ \eta_{CLAUSIUS} \equiv \frac{\Delta S_U T_f}{Q_c} \rightarrow \boxed{\eta_M = \eta_C - \eta_{CLAUSIUS}}$

(MdC operante con stessi serb)

Politermica irreversibile $\eta_M = \eta_R - \eta_{CLAUSIUS} < \eta_C - \eta_{CLAUSIUS}$ con R operante con medesimi serb. e C con i due estremi

PRINCIPIO DI DEGRADAZIONE DELL'ENERGIA in processo irreversibile $L_{lost} = T_0 \cdot \Delta S_U$ con T_0 temperatura termostato più freddo con cui sist, a contatto

Rev $\Delta S_U = 0 \implies$ massimo lavoro ottenibile

Calore irrecuperabile accoppiando irreversibile con frigo di Carnot \overline{C} (max efficienza-rendimento):

recuperabile
$$Q_c^{\overline{C}} = Q_c^M - \frac{T_c\,T_f}{T_c-T_f} \Delta S_U < Q_c^M$$

RELAZIONE FONDAMENTALE DELLA TERMODINAMICA per qualsiasi trasformazione (U,S,V) funzioni di stato — e lavoro qs rev)

$$dU = TdS - pdV + \sum x_i dX_i$$

con la sommatoria dei lavori termodinamici delle altre forze generalizzate. ightarrow S, V variabili naturali per U

GP con pistone a contatto termico con acqua $T_f = T_0 \cdot 3^{\frac{1}{C_V} + C/n}$ con C capacità di acqua+contenitori

$$L_{est} = \frac{T_0}{nc_V + C} \left(1 - 3^{\frac{R}{c_V + C/n}} \right) \quad \Delta S_G = \frac{(1 - \gamma)C \ln 3}{1 + C/(nc_V)} \quad \Delta S_U = 0$$

 $\begin{aligned} \textbf{GP + vapor d'acqua saturo} & \text{ compr isot rev. } p_f = p_0 \frac{V_0}{V_f} + p^* \bigg(1 - \frac{V_0}{V_f}\bigg) \ \bigg| \ L = p^* (V_f - V_0) + (p_0 - p^*) V_0 \ln \frac{V_f}{V_0} \\ & \text{con } p^* \text{ press di vap saturo. } m_{cond} = m \Delta n_v = -\frac{m p^*}{RT} (V_f - V_0) \end{aligned}$

2 S a contatto termico con capacità $C(T)=\beta T$ $\qquad > \qquad T_e=\sqrt{\frac{T_A^2+T_B^2}{2}} \qquad \qquad \Delta S=\beta(2T_e-T_A-T_B)$

Massima temperatura con corpi in bagno termico T_0 corpi, T_B bagno. Usando MdC invertita $T_{max}=T_B+\sqrt{2}|T_0-T_B|$ (analogo sia per $T_0>T_B$ che viceversa)

Ciclo circolare
$$\Delta U_{AC} = \frac{5}{2} V_A (p_C - p_A) \bigg| L_{tot} = \pi \cdot (p_A - p_O) \cdot (V_B - V_O) \bigg|$$

Imponendo $\mathrm{d}T=0$ si ha $\frac{p}{V}=\frac{p_O}{V_O}$ (giacciono su retta)

$$Q_{ass} = \Delta U_{DB} + L_{DB} = \frac{L_{tot}}{2} + \frac{\gamma}{\gamma - 1} p_O(V_B - V_D) \qquad \rangle \qquad \eta = \frac{L_{tot}}{Q_{ass}}$$

Ciclo peculiare GP per V_A, V_B si impone $p(V) = 2p_0$

$$T_B = 3T_0 \quad | \quad T_A = T_0$$

$$Q_{AB} = \frac{2\gamma}{\gamma - 1} p_0 V_0 \quad \rangle \quad \text{per mono:} \quad Q_{AB} = 5p_0 V_0$$

$$L_{tot} = p_A (V_B - V_A) - \int_A^B p(V) \mathrm{d}V = \frac{2}{3} p_0 V_0 \quad \rangle$$

$$\rangle \quad Q_{BCA} = -\frac{13}{3} p_0 V_0 \quad | \quad \Delta S_{B \to C} = nR \ln \left(\frac{2}{\sqrt{243}} \right)$$

8 Potenziali termodinamici

Entalpia $H\equiv U+pV$ dH=TdS+Vdp (S,p var nat) A p costante $dH=(\delta Q_R)_p$

Energia libera di Helmholtz $F\equiv U-TS$ dH=dU-TdS-sdT $(T,\,V\,$ var nat)

A T cost $\mathrm{d}F=\mathrm{d}U-T\mathrm{d}S\leq -\delta L$. In assenza di lavoro di volume $\mathrm{d}F\leq -\delta L^{(non-pV)}$

Potenziali chimici $\mu_i \equiv \left(\frac{\partial F}{\partial n_i}\right)_{T,V}$

Equilibrio liquido-vapore $dF=0,\ dn_L=-dn_G \implies \mu_L=\mu_G$

Energia libera di Gibbs $G \equiv H - TS = U - TS + pV$ dG = Vdp - SdT (p, T var nat)

A T, $p \cos dG \leq -\delta L^{(non-pV)}$

In transizioni di fase (sola specie!!) all'eq. $\frac{\partial G}{\partial n_i}=\mu_i=g_i\equiv\frac{G_i}{n_i}$ per ogni fase

Gibbs per GP $G(T,p)=RT\big[\Phi(T)+\ln\,p\big]$ con $\Phi(T)=(H_0-TS_0+c_pT-c_pT\,\ln T)/RT$ Per isoterme $\Delta G=\ln\frac{p_f}{p_i}$

Gibbs per miscele di GP $\mu_i(T,p) = g_i(T,p) + RT \ln x_i$ ove $x_i = \text{fraz.}$ molare (unica specie \to caso prec)

RELAZIONI DI MAXWELL

$$\mathbf{I} \; \rangle \; \left(\frac{\partial T}{\partial V} \right)_S = - \left(\frac{\partial p}{\partial S} \right)_V \quad \quad \mathbf{II} \; \rangle \; \left(\frac{\partial p}{\partial T} \right)_V = \left(\frac{\partial S}{\partial V} \right)_T \quad \quad \mathbf{III} \; \rangle \; \left(\frac{\partial T}{\partial p} \right)_S = \left(\frac{\partial V}{\partial S} \right)_p \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_p = - \left(\frac{\partial S}{\partial p} \right)_T \quad \quad \mathbf{III} \; \rangle \; \left(\frac{\partial T}{\partial P} \right)_S = \left(\frac{\partial V}{\partial S} \right)_P \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{III} \; \rangle \; \left(\frac{\partial T}{\partial P} \right)_S = \left(\frac{\partial V}{\partial S} \right)_P \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{III} \; \rangle \; \left(\frac{\partial T}{\partial P} \right)_S = \left(\frac{\partial V}{\partial S} \right)_P \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{III} \; \rangle \; \left(\frac{\partial V}{\partial P} \right)_S = \left(\frac{\partial V}{\partial S} \right)_P \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial S}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \; \left(\frac{\partial V}{\partial T} \right)_P = - \left(\frac{\partial V}{\partial P} \right)_T \quad \quad \mathbf{IV} \; \rangle \;$$

EQUAZIONI DELL'ENERGIA

$$\mathbf{I} \; \rangle \; \left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_V - p \qquad \qquad \mathbf{II} \; \rangle \; \left(\frac{\partial U}{\partial p} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_p - p \left(\frac{\partial V}{\partial p} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial p} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial p} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_T - p \left(\frac{\partial V}{\partial T} \right$$

Equazioni di Clapeyron $\frac{\mathrm{d}p}{\mathrm{d}T}=\frac{\Delta\mathrm{v}}{\Delta\mathrm{v}}=\frac{\lambda}{T\Delta\mathrm{v}}$ per passaggi di stato

Per temperature lontane da T_c , dunque $\mathbf{v}_G\gg\mathbf{v}_L\to\Delta\mathbf{v}\approx\mathbf{v}_G$ si ha $p(T)=p_0\,e^{-\displaystyle\frac{\lambda}{R}}\big(\frac{1}{T}-\frac{1}{T_0}\big)$

9 Terzo principio

Principio di Nernst $\lim_{T \to 0} S(T,x_i) - S(T,x_f) = \Delta S = 0$ isoterma con x coord term generical

Enunciato di Planck $S_0 = S(0) = 0$ per cristallo perfetto

10 Termodinamica statistica

Molteplicità di un macrostato con N particelle e μ cellette fisiche

$$W = \frac{N!}{\prod_{i=1}^{\mu} N_i!}$$

Sommando sui macrostati $\sum W = \mu^N$ e ovviamente $\sum_{i=1}^{\mu} N_i = N$

Volume in emispazio dello SdF $au=W\Delta au$ con $\Delta au=(\Delta V)^N$ celletta in SdF e $\Delta V=\frac{V_{sist}}{\mu}$

Quantizzazione SdF $d\vec{p} d\vec{x} = \left(\frac{h}{4\pi}\right)^{3N}$

ENTROPIA DI BOLTZMANN

$$S = k_B \ln W$$

Funzione di partizione $Z=\sum e^{-\beta arepsilon_i}$ con $\beta=rac{1}{k_BT}$

Distribuzione di Boltzmann $p_i(\varepsilon_i) = \frac{e^{-\varepsilon_i/k_BT}}{Z}$

Ricavare funz termodinamiche $U=-N\frac{\partial \ln Z}{\partial \beta} \ \Big| \ \langle \varepsilon \rangle = -\frac{\partial \ln Z}{\partial \beta}$

Informazione $I_i = I(x_i) = -\log_b p_i$ con x_i possibile outcome di variabile aleatoria discreta con probabilità p_i .

ENTROPIA DI SHANNON $S_I \equiv \sum p_i I(x_i) = -\sum p_i \, \log_b p_i = -k_I \sum p_i \, \ln p_i \, \operatorname{con} \, k_I \equiv \frac{1}{\ln b}$

11 Differenziali esatti

Funzionale (1-forma su spazio vettoriale) in due coordinate generiche:

$$\alpha = a(x, y)dx + b(x, y)dy$$

Se $\exists\,Q:\,a=rac{\partial Q}{\partial x}$ e $b=rac{\partial Q}{\partial y}$ allora $lpha=\mathrm{d}Q$ differenziale esatto, dunque integrabile con $Q=\intlpha=\int(\vec{\nabla}Q)\cdot\mathrm{d}\vec{x}$

Ciò è verificato se e solo se a,b definite su insieme semplicemente connesso e vale il **Teorema di Schwarz**, ovvero:

$$\frac{\partial^2 Q}{\partial x \partial y} = \frac{\partial a}{\partial y} = \frac{\partial^2 Q}{\partial y \partial x} = \frac{\partial b}{\partial x}$$

12 Costanti fisiche, u.m. e proprietà termodinamiche

Costanti e u.m.

Costanti

Velocità della luce nel vuoto $c=299792458\,\mathrm{m\,s^{-1}}$

Costante di Gravitazione universale $G = 6.67428 \times 10^{-11} \, \mathrm{N \, m^2 \, kg^{-2}}$

Accelerazione di gravità (in prossimità del suolo) $g \approx 9.81 \,\mathrm{m\,s}^{-2}$

Costante dei Gas $R = 8.314472 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$

Numero di Avogadro $N_A \approx 6.02214179 \times 10^{23} \, \mathrm{mol}^{-1}$

Costante di Boltzmann $k_B \equiv \frac{R}{N_A} \approx 1.3806504 \times 10^{23} \, \mathrm{J \, K^{-1}}$

Costante di Planck $h \approx 6.62606896 \times 10^{-34} \, \mathrm{J \, s}$

Costante di Stefan-Boltzmann $\sigma \approx 5.670367 \times 10^{-8} \, \mathrm{W \, m^{-2} \, K^{-4}}$

Costante dello spostamento di Wien $b = 2.9 \times 10^{-3} \, \mathrm{m \, K}$

Unità di misura

$$1 \, \mathrm{eV} = 1.6 \times 10^{-19} \, \mathrm{J} = 1.16 \times 10^4 \, \mathrm{K}$$
 $1 \, \mathrm{\mathring{A}} = 10^{-10} \, \mathrm{m}$
 $1 \, \mathrm{atm} = 1.01325 \times 10^5 \, \mathrm{Pa}$
 $1 \, \mathrm{bar} = 10^5 \, \mathrm{Pa}$
 $1 \, \mathrm{mmHg} = 133.3 \, \mathrm{Pa}$
 $1 \, \mathrm{cal} = 4.18 \, \mathrm{J}$

Condizioni peculiari

Proprietà termodinamiche

Densità

Temperatura di punto triplo (T_3)

- Idrogeno $13.80\,\mathrm{K}\,/\,-259.35\,^{\circ}\mathrm{C}$
- Mercurio $234.32\,\mathrm{K}\,/\,-38.83\,^{\circ}\mathrm{C}$

Punto di solidificazione / fusione

Calori latenti per acqua Calore specifico (per unità di massa) • Ghiaccio $2.05\,\mathrm{J}\,\mathrm{g}^{-1}\mathrm{K}^{-1}$ • Alluminio $0.88 \,\mathrm{J}\,\mathrm{g}^{-1}\mathrm{K}^{-1}$ Coefficiente di dilatazione lineare (α_L) Coefficiente di dilatazione volumetrico (α) • Ghiaccio $1.5 \times 10^{-4} \, \mathrm{K}^{-1}$ • Vetro $-3 \times 10^{-5} \, \mathrm{K}^{-1}$ • Mercurio $1.8 \times 10^{-4} \, \mathrm{K}^{-1}$ Coefficiente di comprimibilità isoterma (k)Costanti di Van der Waals $\bullet \ \ \mathsf{Vapore} \ \mathsf{acqueo} \ \ \ldots \ \ a = 553 \, \mathrm{L}^2 \, \mathrm{kPa} \, \mathrm{mol}^{-2} \quad / \quad b = 0.030 \, \mathrm{L} \, \mathrm{mol}^{-1}$ Diametro molecolare Massa molecolare

Energie molecolari per l'acqua		
ullet Legame a idrogeno		
ullet Energia cinetica media		
ullet Minimo potenziale LJ		
Velocità medie molecolari a 300 K $$ come $\sqrt{\langle v^2 angle}$		
$ullet$ Idrogeno (H_2)		
• Azoto (N_2)		
Libero cammino medio a 300 K e 1 atm		
$ullet$ Ossigeno, azoto (O_2,N_2)		
Conducibilità termica		
\bullet Argento, Rame $\dots \dots \dots$		
$ullet$ Ghiaccio $2\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}$		
\bullet Vetro $\rm 1Wm^{-1}K^{-1}$		
$\bullet \ Aria \ \ldots \ \ldots \ 0.02 \mathrm{W} \mathrm{m}^{-1} \mathrm{K}^{-1}$		
Irraggiamento solare		
$ullet$ Costante solare (in cima all'atmosfera) k_s		
\bullet Costante solare (al suolo) k_s'		
• λ_{max} spettro solare		
ullet Albedo medio (frazione luce riflessa) terrestre a		
Bilancio termico corpo umano		
ullet Superficie media		
$ullet$ Coefficiente di trasferimento termico ($h=h_{conv}+h_{rad}$)		
ullet Valore ottimale temperatura esterna		
Dulong Petit		
$\bullet \ \ {\sf Costante} \ \ {\sf di} \ \ {\sf proporzionalit\`a} \ \ A \ \ {\sf per} \ \ C(T) = AT^3 \ \ {\sf nel} \ \ {\sf limite} \ \ T \to 0 \dots \dots 1.25 \times 10^{-3} \ {\sf J} \ {\sf kg}^{-1} {\sf K}^{-4}$		
Respirazione cellulare		
• Δg molare		
Volumi molari per acqua a 300 K e 1 atm		
• Gassoso (${ m v}_G$)		
$ullet$ Liquido (v_L)		