Numerical Analysis HW10 Ch21 - 1,2,4 (pg540) Ch22 - 1,8,9 (pg583)

Neal D. Nesbitt April 27, 2016

21

Problem 21.1. Compute forward and backward difference approximations of O(h) and $O(h^2)$, and central difference approximations of $O(h^2)$ and $O(h^4)$ for the first derivative of $\cos x$ at $x = \pi/4$ using a value of $h = \pi/12$. Estimate the true percent relative error ε_s for each approximation.

Solution 21.1.a. Forward difference O(h): -0.7911, $|\varepsilon_r| = 211\%$

Solution 21.1.b. Forward difference $O(h^2)$: $\boxed{-0.7260} |\varepsilon_r| = \boxed{203\%}$

Solution 21.1.c. Backward difference O(h): -0.6070, $|\varepsilon_r| = 186\%$

Solution 21.1.d. Backward difference $O(h^2)$: $\boxed{-0.7197}$, $|\varepsilon_r| = \boxed{202\%}$

Solution 21.1.e. Central difference $O(h^2)$: -0.6991, $|\varepsilon_r| = 198\%$

Solution 21.1.f. Central difference $O(h^4)$: -0.7070, $|\varepsilon_r| = 200\%$

Problem 21.2. Use centered difference approximations to estimate the first and second derivatives of $y = e^x$ at x = 2 for h = 0.1. Employ both $O(h^2)$ and $O(h^4)$ formulas for your estimates.

Solution 21.2.a. First Derivative $O(h^2)$: 7.4014, $|\varepsilon_r| = \boxed{0.0017\%}$

Solution 21.2.b. First Derivative $O(h^4)$: 7.3890, $|\varepsilon_r| = 0.000\%$

Solution 21.2.c. Second Derivative $O(h^2)$: 7.3952, $|\varepsilon_r| = 0.008\%$

Solution 21.2.d. Second Derivative $O(h^4)$: 7.3890, $|\varepsilon_r| = 0.000\%$

Problem 21.4. Use Richardson extrapolation to estimate the first derivative of $y = \cos x$ at $x = \pi/4$ using step sizes of $h_1 = \pi/3$ and $h_2 = \pi/6$. Employ centered differences of $O(h^2)$ for the initial estimates.

22

Problem 22.1. Solve the following initial value problem over the interval from t = 0 to 2 where y(0) = 1. Display all your results on the same graph.

$$\frac{dy}{dt} = yt^3 - 1.5y$$

- (a) Analytically
- (b) Using Euler's method with h = 0.5 and 0.25.
- (c) Using the midpoint method with h = 0.5.
- (d) Using the fourth-order RK method with h = 0.5.

Solution 22.1.a. Analytically:

Solution 22.1.b. Using Euler's method with h = 0.5 and 0.25:

Solution 22.1.c. Using the midpoint method with h = 0.5:

Solution 22.1.d. Using the fourth-order RK method with h = 0.5:

Problem 22.8. The *van der Pol equation* is a model of an electric circuit that arose back in the days of vacuum tubes:

$$\frac{d^2y}{dt^2} - (1 - y^2)\frac{dy}{dt} + y = 0$$

Given initial conditions, y(0) = y'(0) = 1, solve this equation from t = 0 to 10 using Euler's method with a step size of (a)0.25 and (b) 0.125. Plot both solutions on the same graph.

Problem 22.9. Given the initial conditions, y(0) = 1 and y'(0) = 0, solve the following initial-value problem from t = 0 to 4:

$$\frac{d^2y}{dt^2} + 4y = 0$$

Obtain your solutions with (a) Euler's method and (b) the fourth-order RK method. In both cases, use a step size of 0.1. Plot both solutions on the same graph along with the exact solution $y = \cos 2t$.

HW10-ODE3.jpg