Linear Algebra: Map of theorems

Tan Wee Han

December 10, 2020

Contents

1	Bili	near Forms and Inner Product	1
	1.1	Vector inequalities	1
	1.2	Orthogonal and Orthonormal basis	1
	1.3	Orthogonal complement and projection	1
	1.4	Adjoint of linear operator	2
	1.5	Self-adjoint and Normal Operator	2
	1.6	Unitary Operator	3

1 Bilinear Forms and Inner Product

1.1 Vector inequalities

Cauchy-Schwarz Inequality: $\|\langle u, v \rangle\| \le \|u\| \|v\|$ Triangle Inequality: $\|u + v\| \le \|u\| + \|v\|$ Pythagoras Theorem: $\|u + v\|^2 = \|u\|^2 + \|v\|^2$

1.2 Orthogonal and Orthonormal basis

Theorem 1.2.1 An orthogonal set of nonzero vectors is linearly independent.

Corollary 1.2.1.1 If V is a finite dimensional inner product space and $n = \dim V$, then any orthogonal set of nonzero vectors in V is finite and contains at most n vectors.

Lemma 1.2.2 Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthonormal basis of V. Then for any $v \in V$,

$$V = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$$

Corollary 1.2.2.1 Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthonormal basis of $V, T : V \to V$ a linear operator and $[T]_{\mathcal{B}} = (a_{ij})$ Then for all i, j

$$a_{ij} = \langle T(v_i), v_i \rangle$$

Theorem 1.2.3 Every finite dimensional inner product space has an orthonormal basis.

1.3 Orthogonal complement and projection

Theorem 1.3.1 If W is a subspace of an inner product space V, then its orthogonal complement W^{\perp} is a subspace of V. In addition, we have

$$W \cap W^{\perp} = \{\mathbf{0}\}$$

Theorem 1.3.2 If W is a finite dimensional subspace of an inner product space V, then

$$V = W \oplus W^{\perp}$$

Theorem 1.3.3 If $\{w_1,...,w_k\}$ is an orthonormal basis of W then

$$\mathbf{proj}_W(v) = \sum_{j=1}^k \langle v, w_j \rangle w_j$$

Theorem 1.3.4 Best Approximation: If W a finite dimensional subspace of an inner product space V and $v \in V$, then

$$||v - \mathbf{proj}_W(v)|| < ||v - w||$$

for every vector w in W different from $\mathbf{proj}_W(v)$.

Theorem 1.3.5 Least Square Solution: For any real linear system $A\mathbf{x} = \mathbf{b}$ the associated normal system

$$(A^t A)\mathbf{x} = A^t \mathbf{b}$$

is consistent, and all its solutions are least square solutions of $A\mathbf{x} = \mathbf{b}$

1.4 Adjoint of linear operator

Theorem 1.4.1 Let V be a finite dimensional inner product space over \mathbb{F} . If $f:V\to\mathbb{F}$ is a linear functional, then there exists a unique vector $u\in V$ such that.

$$f(v) = \langle v, u \rangle$$
 for all $v \in V$

Theorem 1.4.2 Let $T: V \to V$ be a linear operator on a finite dimensional inner product space V. Then there exists a unique linear operator $T^*: V \to V$ such that

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle$$

 T^* is called the adjoint of T.

Theorem 1.4.3 Let $T: V \to V$ a linear operator on a finite dimensional inner product space V and B be an orthonormal basis of V. Then

$$[T^*]_{\mathcal{B}} = ([T]_{\mathcal{B}})^*$$

is the conjugate transpose of the matrix $[T]_{\mathcal{B}}$

Theorem 1.4.4 Let T, T_1 and T_2 be linear operators on a finite dimensional inner product space V. Then:

- (i) $(T_1 + T_2)^* = T_1^* + T_2^*$
- (ii) $c(T)^* = \overline{c}T^*$
- (iii) $(T_1T_2)^* = T_2^*T_1^*$
- $(iv) (T^*)^* = T$

1.5 Self-adjoint and Normal Operator

Main motivation for this section is to find out under what conditions does V have an orthonomal basis of eigenvectors for T.

Definition 1.5.1 A linear operator T on a finite dimensional inner product space V is called **self-adjoint** if $T = T^*$, i.e. it satisfies the equation:

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$

Theorem 1.5.1 (p. 312) A self-adjoint linear operator T on a finite dimensional inner product space V. Then all eigenvalues of T is real. And the eigenvectors associated with the distinct eigenvalues are orthogonal.

Theorem 1.5.2 (p. 313) On a finite dimensional inner product space of positive dimension, every self-adjoint operator has at least one eigenvalue which also means it has at least one eigenvector.

(note proof of this in complex vector space do not require T to be self-adjoint, but in real vector space it does)

Lemma 1.5.3 Let V be a finite dimensional inner product space. Let $T:V\to V$ be any linear operator. Suppose W is a subspace of V which is invariant under T. Then W^{\perp} is invariant under T^*

Theorem 1.5.4 Let V be a finite dimensional inner product space (complex or real). Let $T: V \to V$ be a self adjoint linear operator. T is orthogonally diagonalizable if and only if it is self-adjoint. (proof uses Lemma 1.5.3)

Corollary 1.5.4.1 Let A be an $n \times n$ Hermitian matrix. Then there is a unitary matrix P such that $P^{-1}AP$ is diagonal. (i.e. A is unitarily equivalent to a diagonal matrix). If A is a real symmetric matrix, there is a real orthogonal matrix P such that $P^{-1}AP$ is diagonal.

Definition 1.5.2 Let V be a finite dimensional inner product space. Let $T: V \to V$ be a linear operator on V. We say that T is normal if it commutes with its adjoint:

$$TT^* = T^*T$$

Lemma 1.5.5 Let V be a finite dimensional complex inner product space and $T: V \to V$ a normal linear operator. Then if $v \in V$ is an eigenvector of T corresponding to the eigenvalue λ , then it is also an eigenvector of T^* corresponding to the eigenvalue $\overline{\lambda}$. That is for $v \in V$,

$$T(v) = \lambda v \Rightarrow T^*(v) = \overline{\lambda}v$$

Lemma 1.5.6 Let V be a finite dimensional complex inner product space and $T: V \to V$ any linear operator. Then V has an orthonormal basis \mathcal{B} such that matrix $[T]_{\mathcal{B}}$ is upper triangular.

Theorem 1.5.7 A linear operator on a finite dimensional complex inner product space is orthogonally diagonalizable if and only if it is normal. (proof uses lemma 1.5.5 and 1.5.6)

1.6 Unitary Operator

Theorem 1.6.1 Let V and W be a finite dimensional inner product spaces over the same field. If $f: V \to W$ is a linear transformation, the following are equivalent:

- 1. $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$. i.e. T preserves inner product spaces
- 2. T is an inner product space isomorphism
- 3. T carries every orthonormal basis for V onto an orthonormal basis for W
- 4. $||T(v)|| = ||v|| \text{ for all } v \in V.$

Definition 1.6.1 A unitary operator on an inner product space is an isomorphism of the space onto itself.

Theorem 1.6.2 Let T be a linear operator on an inner product space V. Then T is unitary if and only if the adjoint T^* of T exists and $TT^* = T^*T = I$

Theorem 1.6.3 Let V be a finite dimensional inner product space and let $T: V \to V$ be a linear operator. Then T is unitary if and only if the matrix of T in some (or every) ordered basis is a unitary matrix.

Theorem 1.6.4 (p.305) For every invertible complex $n \times n$ matrix B, there exists a unique lower-triangular matrix M with positive entries on the main diagonal such that MB is unitary.

Corollary 1.6.4.1 (p.307) Let $T^+(n)$ be the set of all complex $n \times n$ lower triangular matrices with positive entries on the main diagonal. Let U(n) be a group of unitary matrices. For each B in GL(n) there exists unique matrices N and U such that $N \in T^+(n)$ and $U \in U(n)$.