```
from sklearn.linear_model import LinearRegression
LR=LinearRegression()
t=[[5],[7],[12],[16],[20]]
m=[40,120,180,210,240]
LR.fit(t,m)
print(LR.predict([[5.5]]))
print(LR.predict([[25]]))
     [78.64935065]
     [316.7012987]
import matplotlib.pyplot as plt
plt.scatter(t,m,color='black')
y_pred=LR.predict(t)
plt.plot(t,y_pred,color="blue",linewidth=3)
plt.xlabel("Time")
plt.ylabel("Mass")
plt.title("Linear Regression")
plt.show()
```



```
# Distance and corresponding probability data
import numpy as np
from sklearn.linear_model import LogisticRegression
distances = np.array([1,2,5,10,15,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,35,40,41,47,50]).reshape(-1, 1)
probabilities = np.array([1,1,1,1,1,1,0.9,\ 0.85,\ 0.73,\ 0.67,\ 0.5,\ 0.47,\ 0.39,\ 0.31,\ 0.25,\ 0.15,0,0,0,0,0])
threshold=0.5
\verb|binary_labels=(probabilities>threshold)|\\
logr=LogisticRegression()
logr.fit(distances,binary_labels)
p=logr.predict([[25]])
print(p)
     [False]
dist=np.linspace(1,50,100).reshape(-1,1)
print(dist)
prob=logr.predict_proba(dist)
print(prob)
plt.plot(dist,prob,color="blue",label="Logistic Regression")
plt.title("Distance vs probability of scoring a Goal")
plt.xlabel("Distance")
plt.ylabel("Probability")
plt.legend()
plt.grid()
plt.show()
```

df

```
[[ 1. ]
[ 1.49494949]
        1.98989899]
        2.48484848]
      [ 2.97979798]
       3.47474747]
      [ 3.96969697]
      [ 4.46464646]
      [ 4.95959596]
      [ 5.45454545]
       5.94949495]
        6.4444444]
      [ 6.93939394]
      [ 7.43434343]
        7.92929293]
      [ 8.42424242]
        8.91919192
      9.41414141
      [ 9.90909091]
      [10.4040404]
      [10.8989899]
      [11.39393939]
      [11.8888889]
      [12.38383838]
      [12.87878788]
      [13.37373737]
      [13.86868687]
      [14.36363636]
      [14.85858586]
      [15.35353535]
      [15.84848485]
      [16.34343434]
      [16.83838384]
      [17.33333333]
      [17.82828283]
      [18.32323232]
      [18.81818182]
      [19.31313131]
      [19.80808081]
      [20.3030303]
      [20.7979798]
      [21.29292929]
      [21.78787879]
      [22.28282828]
      [22.77777778]
      [23.27272727]
      [23.76767677]
      [24.26262626]
      [24.75757576]
      [25.25252525]
      [25.74747475]
      [26.24242424]
      [26.73737374]
      [27.23232323]
      [27.72727273]
      [28.2222222]
      [28.71717172]
import pandas as pd
df=pd.read_csv("/content/demodt.txt",sep=",")
```

	State	Literacy	Cleanliness	Crime_Rate	Good
0	Α	92	90	54	0
1	В	56	67	50	1
2	С	78	85	62	0
3	D	63	72	48	1
4	Е	85	79	55	0
5	F	71	68	58	0
6	G	80	83	51	0
7	Н	67	74	47	1
8	1	89	88	53	0
9	J	58	65	49	1
10	K	82	81	60	0
11	L	75	78	57	0
12	М	69	70	46	1
13	N	87	86	52	0
14	0	61	63	45	1
15	Р	93	91	56	0
16	Q	55	66	61	0
17	R	76	77	59	0
18	S	84	82	44	1
19	Т	70	69	50	1
20	U	94	92	57	0
21	V	59	64	52	0
22	W	83	80	43	1
23	Х	74	76	63	0
24	Υ	68	73	41	1
25	Z	88	84	47	1

 $\bar{1}$ 11220772 \underline{a} 02 0 27266022 \underline{a} 01 $\bar{1}$

 $\label{lem:cr=np:array} $$ $$ cr=np.array(df['Crime_Rate']).reshape(-1,1)$$ is independent variable so convert it to 2D array print(cr)$

y=np.array(df["Good"])

[[54] [50] [62] [48]

[48] [55] [58]

[51] [47] [53] [49] [60]

[49] [60] [57] [46] [52]

[52] [45] [56] [61] [59]

[59] [44] [50] [57] [52]

[52] [43] [63] [41] [47]] [[54]

[54] [50] [62] [48] [55] [58]

[51] [47] [53]

```
[49]
       [60]
       [57]
       [46]
       [52]
       [45]
       [56]
       [61]
       [59]
       [44]
       [50]
[57]
       [52]
       [43]
       [63]
       [41]
      [47]]
      [1.00000000e+00 1.22627861e-13]
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(cr,y)
n=int(input("Enter crime rate:"))
p=model.predict([[n]])
if(p==1):
```

print("Good")

else:

print("Bad")

Enter crime rate:20

Ď Logistic Regression -1

import pandas as pd

df=pd.read_csv("/content/demodt.txt",sep=",")

df

	State	Literacy	Cleanliness	Crime_Rate	Good
0	А	92	90	54	0
1	В	56	67	50	1
2	С	78	85	62	0
3	D	63	72	48	1
4	Е	85	79	55	0
5	F	71	68	58	0
6	G	80	83	51	0
7	Н	67	74	47	1
8	1	89	88	53	0
9	J	58	65	49	1
10	K	82	81	60	0
11	L	75	78	57	0
12	М	69	70	46	1
13	N	87	86	52	0
14	0	61	63	45	1
15	Р	93	91	56	0
16	Q	55	66	61	0
17	R	76	77	59	0
18	S	84	82	44	1
40	т	70	60	EO	1