Tutorial given at 4th Workshop Formal Topology, Ljubljana, June 2012

FORMAL TOPOLOGY and

GEOMETRIC LOGIC
School of Computer Science
Steve Vickers University of Birmingham I Space = geometric theory

I Map = geometric transformation of
points to points

TI Bundle = geometric transformation of
points to spaces Definition: For simplicity: work with tocales A bundle is a map (all theories propositional) over X) (with codomain X) mought of as space (fibre) parametrized by base point - get fibrewise topology of bundles fibre = pullback of bundle along point x

p: 7 -> X X is given Bundle = space-valued map Let x be a point of X
Then p* n = (i) _geometric construction is a space Y = space of pairs (x,y), y a point of A*x Goal. Justify this . What is a acometric construction of a space.

Discrete case: set-valued map

Let x be a point of X
Then p* n = (i)
is a set

_geometric construction

Sheaf over Xmap $S: X \rightarrow [set]$ sort characterized geometrically over T, $[T,] \simeq [T, S] \simeq [T, S, x \in S]$ $Y = [T_2] = [T, S, x \in S]$ $[T, S] \simeq X$

Y as pullback discrete space for SGC) [set, elt]

Geometric constructions on sets

Characterizable geometrically
Constructible using known geometric primitives
finite limits, finite colimits
List types
Set-indexed colimits

Preserved by inverse image functors

As constructions on bundles (local homeomorphisms)

- preserved by pullback
- hence work fibrewise

Space-ratued maps Constructing space directly e.g. spare = GRD-system GRD-set-valued maps 3r = finite powerset - geometric $\lambda_{,R}$, π - set-valued functions $X = [T,] \simeq [T,,\Gamma]$ { Yge h(r). F(g) tr:R Y = [T,,T,pt of [] Ed:D. (TT (d) = 1 149EP(d). F(g)) MIT ~ X

Construction T +> bundle preserved by pulls
- because défined by puling back generic construction
- works fibrewise Fibre p*x constructed as desarthed from
960) Told () () () () () () () () () (

Think: everything is a bundle Geometricity = preservation under pullback e.g. - for sets fibrewise discrete, local homeomorphisms
- finde limit, colimits etc. e.g. The bundle e.g. Anything else?

(lower - PL) e.g. powerlocale Impredicatively: SIP_X = frame freely generated by SIX

qua suplattice Map W->PLX = function DW - DX

Preserving all joins

Point of PLX = overt, weakly closed subboale of PLX. localic hyperspace Impredicatively

Localic bundle theorem:

Joyal & Tierney

Fourman & Scott Internal frames in 8x = localic bundle over X topos-valid : translates to construction on bundles It's geometric!

overt - positivity predicate on opens Predicative results · Point of PLY = overt, weakly closed subspace of Y · Yovert >> 1 ->> PLY with !-IT As subspace: T must be Y . Bundle p fibrewise overt J---PLY with q.T = ldx PULLAT

Fibrewise overt \Leftrightarrow open Impredicatively:

Vopen

Very

•

Exercise

X discrete \Leftrightarrow 1 $\stackrel{!}{\leftarrow}$ X $\stackrel{\triangle}{\rightarrow}$ XxX both open Hence fibrewise discreteness for PL: P and $\Delta: \Upsilon \longrightarrow \Upsilon \times \Upsilon$ both open

Other geometric constructions on spaces Upper powerlocale Pu: point = compact filled subspace - used to characterize compactness Double powerlocale P=PuPL=PLPu

PX= \$\$ Johnstone, Vickers, Torsusend Valuation locale V: point = regular measure - localic shears of integration vicker - central role in topos approach to quantum foundations Coquand spitters

Isham Budkefield Döring Heunen Landsman Spitters Quantum foundations Spectral bundle & - contexts cross-sections

got from quantum

states no cross-sections
(Kochen Specker)

qbit ...

Fibrewise topology	of bundles
Topology parametrized	by point of X"
min box	Letx be a point of X
Si.e. in 8X	
· Must be topos-valid	•
. For good topology m	ust be point-free
· To work fibreusse want geometricity space = geometric sheary	
map = geometri	alued map
burdle = space-	valued map

Selected bibliography Geom. Logic, cat. semantics Johnstone: Sketches of an elephant vol 2 Joyale Tierney: An extension of the Galows theory of Grothendireck Bundles Coquand & Spiters: Integrals and valuations Vickers: Locales e toposes as spaces, geom. (chapter in Handbook of Spatial Logics) types Topical categories of domains geometricity = contin-The double powerlocale and exponentiation burdles etc. etc. - with Maietti: An induction principle for consequence in anithmetic aniverses