CALIFORNIA STATE UNIVERSITY, LONG BEACH

EE 381 – Probability and Statistics with Applications to Computing

Laboratory Projects

Project on

Random Numbers and Stochastic Experiments

0. Introduction and Background Material

0.1. Simulating Coin Toss Experiments

As mentioned in class, there are many ways to model stochastic experiments. The following two programs simulate the toss of a fair coin N times, and calculate the experimental probability of getting heads (p_heads) or tails (p_heads). Both programs provide the same results, but they differ in the way the models are coded.

- The first model is programmed in Python using "for loops".
- The second model makes use of the arrays, and it is computationally very efficient.

```
MODEL 1
   import numpy as np
   def coin():
           coin=np.random.randint(0,2)
           return coin
  def CoinToss(N):
       heads, tails = 0, 0
       for k in range (0, N):
           toss=coin()
           if toss==1:
               heads=heads+1
               tails=tails+1
       p heads=heads/N
       p tails=tails/N
       print('probability of heads = ', p heads)
       print('probability of tails = ', p tails)
```

MODEL 2 – MORE EFFICIENT CODE

```
import numpy as np
def MultCoinToss(N):
    coin=np.random.randint(0,2,N)
    heads=sum(coin)
    tails=N-heads
    #
    p_heads=heads/N
    p_tails=tails/N
    print('probability of heads = ', p_heads)
    print('probability of tails = ', p_tails)
```