Mis-Classified, Binary, Endogenous Regressors: Identification and Inference

Francis J. DiTraglia Camilo García-Jimeno

University of Pennsylvania

October 11th, 2018

What is the effect of T^* ?

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$

- ▶ y − Outcome of interest
- ▶ T* Unobserved, endogenous binary regressor
- ➤ T Observed, mis-measured binary surrogate for T*
- ▶ x − Exogenous covariates
- ► z Discrete (typically binary) instrumental variable

(Additively Separable ε and binary $T^* \Rightarrow$ linear model given \mathbf{x})

Using a discrete IV to learn about $\beta(\mathbf{x})$

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$

Constributions of This Paper

- Show that only existing point identification result for mis-classified, endogenous T* is incorrect.
- 2. Sharp identified set for β under standard assumptions.
- 3. Point identification of β under slightly stronger assumptions.
- 4. Point out problem of weak identification in mis-classification models, develop identification-robust inference for β .

Example: Schooling and Test Scores

Burde & Linden (2013, AEJ Applied)

RCT in Afghanistan: schools built in randomly selected villages. In treatment villages only some girls attend school; in control villages some girls attend school elsewhere.

- ▶ y Girl's score on math and language test
- ▶ T* Girl's true school attendance
- ► T Parent's report of child's school attendance
- x Child and household characteristics
- ▶ z School built in village

"Baseline" Assumptions I – Model & Instrument

Additively Separable Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon, \quad \mathbb{E}[\varepsilon] = 0$$

Valid & Relevant Instrument: $z \in \{0, 1\}$

- $ightharpoonup \mathbb{P}(T^* = 1 | \mathbf{x}, z = 1) \neq \mathbb{P}(T^* = 1 | \mathbf{x}, z = 0)$
- $\qquad \mathbb{E}[\varepsilon|\mathbf{x},z] = 0$
- ▶ $0 < \mathbb{P}(z = 1 | \mathbf{x}) < 1$

If T^* were observed, these conditions would identify β .

"Baseline" Assumptions II – Measurement Error

Notation: Mis-classification Rates

"\tau"
$$\alpha_0(\mathbf{x}, z) \equiv \mathbb{P}(T = 1 | T^* = 0, \mathbf{x}, z)$$

"
$$\downarrow$$
" $\alpha_1(\mathbf{x}, z) \equiv \mathbb{P}(T = 0 | T^* = 1, \mathbf{x}, z)$

Mis-classification unaffected by z

$$\alpha_0(\mathbf{x}, z) = \alpha_0(\mathbf{x}), \quad \alpha_1(\mathbf{x}, z) = \alpha_1(\mathbf{x})$$

Extent of Mis-classification

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$
 (T is positively correlated with T^*)

Non-differential Mis-classification

$$\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon|\mathbf{x}, z, T^*]$$

Existing Results

Correct Result – Exogenous T*

- ▶ Mahajan (2006) Theorem 1, Frazis & Loewenstein (2003),...
- ▶ $\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*] = 0 + \text{"Baseline"} \Rightarrow \beta(\mathbf{x}) \text{ identified.}$

Incorrect Result – Endogenous T*

- Mahajan (2006) A.2
- ightharpoons $\mathbb{E}[\varepsilon|\mathbf{x},z,T^*,T]=\mathbb{E}[\varepsilon|\mathbf{x},T^*]+$ "Baseline" $\Rightarrow \beta(\mathbf{x})$ identified.

We show: Mahajan's assumptions imply that the instrument z is uncorrelated with T^* unless T^* is in fact exogenous.

Simple Bounds for Mis-classification from First-stage

Relationship

$$\rho_k^*(\mathbf{x}) = \frac{\rho_k(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}, \quad k = 0, 1$$

z does not affect (α_0, α_1) ; denominator $\neq 0$

Bounds for Mis-classification

$$\alpha_0(\mathbf{x}) \le p_k(\mathbf{x}) \le 1 - \alpha_1(\mathbf{x}), \quad k = 0, 1$$

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$

 $\alpha_0 \leq \min_k \{p_k\}, \quad \alpha_1 \leq \min_k \{1 - p_k\}$

What does IV estimate under mis-classification?

Unobserved

$$\beta(\mathbf{x}) = \frac{\mathbb{E}[y|\mathbf{x}, z = 1] - \mathbb{E}[y|\mathbf{x}, z = 0]}{\rho_1^*(\mathbf{x}) - \rho_0^*(\mathbf{x})}$$

Wald (Observed)

$$\frac{\mathbb{E}[y|\mathbf{x},z=1] - \mathbb{E}[y|\mathbf{x},z=0]}{p_1(\mathbf{x}) - p_0(\mathbf{x})} = \beta(\mathbf{x}) \left[\frac{p_1^*(\mathbf{x}) - p_0^*(\mathbf{x})}{p_1(\mathbf{x}) - p_0(\mathbf{x})} \right] = \frac{\beta(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

$$| p_1^*(\mathbf{x}) - p_0^*(\mathbf{x}) = \frac{p_1(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} - \frac{p_0(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} = \frac{p_1(\mathbf{x}) - p_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

Partial Identification Bounds for $\beta(\mathbf{x})$

"Weak Bounds"

- $\triangleright \beta(\mathbf{x})$ is between Wald and Reduced form; same sign as Wald.
- Doesn't rely on non-differential assumption or additive sep.
- ► Frazis & Loewenstein (2003), Ura (2016), . . .

Non-differential Assumption

- $\mathbb{E}[\varepsilon|\mathbf{x}, T^*, T, z] = \mathbb{E}[\varepsilon|\mathbf{x}, T^*, z]$
- ▶ Used in literature to identify $\beta(\mathbf{x})$ when T^* is exogenous.
- ▶ Does it restrict the identified set when *T** is endogenous?

(Suppress x for simplicity)

Notation

- $ightharpoonup r_{tk} \equiv \mathbb{P}(T^* = 1 | T = t, z = k)$, function of (α_0, α_1) and observables only
- $ightharpoonup z_k$ is shorthand for z = k

Iterated Expectations over T^*

$$\mathbb{E}(y|T=0,z_k) = (1-r_{0k})\mathbb{E}(y|T^*=0,T=0,z_k) + r_{0k}\mathbb{E}(y|T^*=1,T=0,z_k)$$

$$\mathbb{E}(y|T=1,z_k) = (1-r_{1k})\mathbb{E}(y|T^*=0,T=1,z_k) + r_{1k}\mathbb{E}(y|T^*=1,T=1,z_k)$$

(Suppress x for simplicity)

Notation

- $ightharpoonup r_{tk} \equiv \mathbb{P}(T^* = 1 | T = t, z = k)$, function of (α_0, α_1) and observables only
- \triangleright z_k is shorthand for z = k

Adding Non-differential Assumption

$$\mathbb{E}(y|T = 0, z_k) = (1 - r_{0k})\mathbb{E}(y|T^* = 0, z_k) + r_{0k}\mathbb{E}(y|T^* = 1, z_k)$$

$$\mathbb{E}(y|T = 1, z_k) = (1 - r_{1k})\mathbb{E}(y|T^* = 0, z_k) + r_{1k}\mathbb{E}(y|T^* = 1, z_k)$$

2 equations in 2 unknowns \Rightarrow solve for $\mathbb{E}(y|T^*=t^*,z=k)$ given (α_0,α_1) .

Law of Total Probability

$$F_{tk} = (1 - r_{tk})F_{tk}^0 + r_{tk}F_{tk}^1$$

$$F_{tk} \equiv \text{Observed CDF: } y | (T = t, z = k)$$
 $F_{tk}^{t^*} \equiv \text{Unobserved CDF: } y | (T^* = t^*, T = t, z = k)$

Previous Slide

- $ightharpoonup r_{tk}$ observable given (α_0, α_1)
- $ightharpoonup \mathbb{E}(y|T^*,T,z)=\mathbb{E}(y|T^*,z)$ observable given (α_0,α_1)

Key Question

Given (α_0, α_1) can we always find (F_{tk}^0, F_{tk}^1) to satisfy the mixture model?

Equivalent Problem

Given a specified CDF F, for what values of p and μ do there exist valid CDFs (G, H) with F = (1 - p)G + pH and $\mu = \text{mean}(H)$?

Necessary and Sufficient Condition if F is Continuous

$$\underline{\mu}(F,p) \leq \mu \leq \overline{\mu}(F,p)$$

$$\underline{\mu}(F,p) \equiv \int_{-\infty}^{F^{-1}(p)} \frac{x}{p} f(x) dx$$

$$\overline{\mu}(F,p) \equiv \int_{F^{-1}(1-p)}^{+\infty} \frac{x}{p} f(x) dx$$

Back to Our Original Problem

- ▶ Observe F_{tk} for all (t, k)
- $ightharpoonup r_{tk}$ pinned down by (α_0, α_1)
- ► Can we find $F_{tk}^{t^*}$ so that $F_{tk} = (1 r_{tk})F_{tk}^0 + r_{tk}F_{tk}^1$?
- ▶ Non-diff. assumption \Rightarrow mean of F_{tk}^1 pinned down by (α_0, α_1) .
- ▶ Implies joint restrictions on (α_0, α_1) , hence β .

Sharp Identified Set under Baseline Assumptions

Theorem

Under baseline assumptions, sharp identified set for $\beta(\mathbf{x})$ is never a singleton, regardless of how many (discrete) values z takes on.

Intuition

No mis-classification $\Rightarrow r_{tk} = 0$ or 1 and we can always form a valid mixture in this case. Show that Wald estimand always lies within the sharp identified set for β .

Point Identification: 1st Ingredient

Reparameterization

$$\theta_{1}(\mathbf{x}) = \beta(\mathbf{x})/\left[1 - \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right]$$

$$\theta_{2}(\mathbf{x}) = \left[\theta_{1}(\mathbf{x})\right]^{2} \left[1 + \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right]$$

$$\theta_{3}(\mathbf{x}) = \left[\theta_{1}(\mathbf{x})\right]^{3} \left[\left\{1 - \alpha_{0}(\mathbf{x}) - \alpha_{1}(\mathbf{x})\right\}^{2} + 6\alpha_{0}(\mathbf{x})\left\{1 - \alpha_{1}(\mathbf{x})\right\}\right]$$

$$\beta(\mathbf{x}) = 0 \iff \theta_{1}(\mathbf{x}) = \theta_{2}(\mathbf{x}) = \theta_{3}(\mathbf{x}) = 0$$

Lemma

Baseline Assumptions $\implies Cov(y, z|\mathbf{x}) = \theta_1(\mathbf{x})Cov(z, T|\mathbf{x}).$

Point Identification: 2nd Ingredient

Assumption (II)

$$\mathbb{E}[\varepsilon^2|\mathbf{x},z] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$$

Lemma

(Baseline) + (II)
$$\Longrightarrow$$
 $Cov(y^2, z|\mathbf{x}) = 2Cov(yT, z|\mathbf{x})\theta_1(\mathbf{x}) - Cov(T, z|\mathbf{x})\theta_2(\mathbf{x})$

Corollary

(Baseline) + (II) + $[\beta(\mathbf{x}) \neq 0] \implies [\alpha_1(\mathbf{x}) - \alpha_0(\mathbf{x})]$ is identified.

Hence, $\beta(\mathbf{x})$ is identified if mis-classification is one-sided.

Point Identification: 3rd Ingredient

Assumption (III)

- (i) $\mathbb{E}[\varepsilon^2|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon^2|\mathbf{x},z,T^*]$
- (ii) $\mathbb{E}[\varepsilon^3|\mathbf{x},z] = \mathbb{E}[\varepsilon^3|\mathbf{x}]$

Lemma

$$(Baseline) + (II) + (III) \implies$$

$$Cov(y^3, z|\mathbf{x}) = 3Cov(y^2T, z|\mathbf{x})\theta_1(\mathbf{x}) - 3Cov(yT, z|\mathbf{x})\theta_2(\mathbf{x}) + Cov(T, z|\mathbf{x})\theta_3(\mathbf{x})$$

Point Identification Result

Theorem

(Baseline) + (II) + (III) $\implies \beta(\mathbf{x})$ is point identified. If $\beta(\mathbf{x}) \neq 0$, then $\alpha_0(\mathbf{x})$ and $\alpha_1(\mathbf{x})$ are likewise point identified.

Sufficient Conditions for (II) and (III)

- (i) T is conditionally independent of (ε, z) given (T^*, \mathbf{x})
- (ii) z is conditionally independent of ε given ${\bf x}$

Just-Identified System of Moment Equalities

Suppress dependence on x...

$$\mathbb{E}\left[\left\{\Psi(\boldsymbol{\theta})\mathbf{w}_{i}-\boldsymbol{\kappa}\right\}\otimes\left(\begin{array}{c}1\\z\end{array}\right)\right]=\mathbf{0}$$

$$m{\Psi}(m{ heta}) \equiv \left[egin{array}{cccccc} - heta_1 & 1 & 0 & 0 & 0 & 0 \ heta_2 & 0 & -2 heta_1 & 1 & 0 & 0 \ - heta_3 & 0 & 3 heta_2 & 0 & -3 heta_1 & 1 \end{array}
ight]$$

$$\begin{split} \theta_1 &= \beta/(1-\alpha_0-\alpha_1) \\ \theta_2 &= \theta_1^2(1+\alpha_0-\alpha_1) \\ \theta_3 &= \theta_1^3 \left[(1-\alpha_0-\alpha_1)^2 + 6\alpha_0(1-\alpha_1) \right] \\ \mathbf{w}_i &= (T_i,y_i,y_iT_i,y_i^2,y_i^2T_i,y_i^3)' \\ \kappa &= (\kappa_1,\kappa_2,\kappa_3)' \equiv \text{Intercepts} \end{split}$$

Inference for a Mis-classified Regressor

The Problem

- ▶ β small \Rightarrow moment equalities uninformative about (α_0, α_1)
- (α_0, α_1) could be on the boundary of the parameter space
- ▶ Also true of existing estimators that assume *T** exogenous

Our Solution

- Sharp identified set result implies a number of *inequality* moment restrictions that remain informative even if β is small or zero. more
- Identification-robust inference combining equality and inequality moment conditions based on generalized moment selection (GMS).

Inference with Moment Equalities and Inequalities

Moment Conditions

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] \ge 0, \quad j = 1, \cdots, J$$

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] = 0, \quad j = J + 1, \cdots, J + K$$

Test Statistic

$$T_{n}(\vartheta) = \sum_{j=1}^{J} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]_{-}^{2} + \sum_{j=J+1}^{J+K} \left[\frac{\sqrt{n} \ \bar{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]^{2}$$

Critical Value

- $ightharpoonup \sqrt{n}\,\bar{m}_n(\vartheta_0) \to_d$ normal limit with covariance matrix $\Sigma(\vartheta_0)$
- ▶ Use this to bootstrap the limit dist. of $T_n(\vartheta)$ under $H_0: \vartheta = \vartheta_0$

Inference with Moment Equalities and Inequalities

Generalized Moment Selection - Andrews & Soares (2010)

- Inequalities that don't bind reduce power of test, so eliminate those that are "far from binding" before calculating critical value.
- ▶ Drop inequality j if $\frac{\sqrt{n}\,\bar{m}_{n,j}(\vartheta_0)}{\widehat{\sigma}_{n,j}(\vartheta_0)} > \sqrt{\log n}$
- ▶ Uniformly valid test of H_0 : $\theta = \theta_0$ even if θ_0 is not point identified.
- Not asymptotically conservative.

Problem

Joint test for the whole parameter vector but we're only interested in β . Projection is conservative and computationally intensive.

Our Solution: Bonferroni-Based Inference

Leverage Special Structure of Model

- β only enters MCs through $\theta_1 = \beta/(1 \alpha_0 \alpha_1)$
- ▶ If z is a strong instrument, inference for θ_1 is standard.
- (κ, \mathbf{q}) strongly identified under null for (α_0, α_1)

Procedure

- 1. Concentrate out $(\theta_1, \kappa, \mathbf{q}) \Rightarrow \text{ joint GMS test for } (\alpha_0, \alpha_1)$
- 2. Invert test \Rightarrow $(1 \delta_1) \times 100\%$ confidence set for (α_0, α_1)
- 3. Project \Rightarrow CI for $(1 \alpha_0 \alpha_1)$
- 4. Construct standard $(1-\delta_2) \times 100\%$ IV CI for θ_1
- 5. Bonferroni \Rightarrow $(1 \delta \delta_2) \times 100\%$ CI for β

Example

(sim data:
$$\beta = 1, \alpha_0 = 0.1, \alpha_1 = 0.2, n = 5000$$
)

Results if T^* were observed

$$\hat{\beta}_{IV} = 0.96, \quad 95\% \text{ CI } = (0.88, 1.04)$$

Example

(sim data:
$$\beta = 1, \alpha_0 = 0.1, \alpha_1 = 0.2, n = 5000$$
)

Results using T instead of T^*

$$\widehat{\beta}_{IV} = 1.34$$
, 95% CI = (1.22, 1.45)

Example

(sim data:
$$\beta = 1, \alpha_0 = 0.1, \alpha_1 = 0.2, n = 5000$$
)

97.5% GMS Confidence Region for (α_0, α_1)

Bonferroni Interval

- 1. 97.5% CI for $(1 \alpha_0 \alpha_1) = (0.64, 0.82)$
- 2. 97.5% CI for $\theta_1 = (1.20, 1.47)$
- 3. > 95% CI for β : $(0.64 \times 1.20, 0.82 \times 1.47) = (0.77, 1.21)$

Comparisons

- \triangleright (0.88, 1.04) for IV if T^* were observed
- ▶ (1.22,1.45) for naive IV interval using T

Conclusion

- Identification and inference for effect of binary, mis-classified, endogenous regressor.
- Only existing point identification result is incorrect.
- ▶ Sharp identified set for $\beta(\mathbf{x})$ under standard assumptions.
- ▶ Point identification of $\beta(\mathbf{x})$ under slightly stronger assumptions.
- Point out weak identification problem in mis-classification models, develop identification-robust inference for $\beta(\mathbf{x})$.

Moment Inequalities I – First-stage Probabilities

$$\alpha_0 \le p_k \le 1 - \alpha_1$$
 becomes $\mathbb{E}[m(\mathbf{w}_i, \boldsymbol{\vartheta})] \ge \mathbf{0}$ for all k where

$$m(\mathbf{w}_i, \vartheta) \equiv \left[\begin{array}{c} \mathbf{1}(z_i = k)(T - \alpha_0) \\ \mathbf{1}(z_i = k)(1 - T_i - \alpha_1) \end{array} \right]$$

Moment Inequalities II – Non-differential Assumption

For all k, we have $\mathbb{E}[m(\mathbf{w}_i, \boldsymbol{\vartheta}, \mathbf{q}_k)] \geq 0$ where

$$m(\mathbf{w}_i, \boldsymbol{\vartheta}, \mathbf{q}_k) \equiv \begin{bmatrix} y_i \mathbf{1} \left(z_i = k \right) \left\{ \left(T_i - \alpha_0 \right) - \mathbf{1} \left(y_i \le \underline{q}_{0k} \right) \left(1 - T_i \right) \left(\frac{1 - \alpha_0 - \alpha_1}{\alpha_1} \right) \right\} \\ -y_i \mathbf{1} \left(z_i = k \right) \left\{ \left(T_i - \alpha_0 \right) - \mathbf{1} \left(y_i > \overline{q}_{0k} \right) \left(1 - T_i \right) \left(\frac{1 - \alpha_0 - \alpha_1}{\alpha_1} \right) \right\} \\ y_i \mathbf{1} \left(z_i = k \right) \left\{ \left(T_i - \alpha_0 \right) - \mathbf{1} \left(y_i \le \underline{q}_{1k} \right) T_i \left(\frac{1 - \alpha_0 - \alpha_1}{1 - \alpha_1} \right) \right\} \\ -y_i \mathbf{1} \left(z_i = k \right) \left\{ \left(T_i - \alpha_0 \right) - \mathbf{1} \left(y_i > \overline{q}_{1k} \right) T_i \left(\frac{1 - \alpha_0 - \alpha_1}{1 - \alpha_1} \right) \right\} \end{bmatrix}$$

and $\mathbf{q}_k \equiv (\underline{q}_{0k},\,\overline{q}_{0k},\,\underline{q}_{1k},\,\overline{q}_{1k})'$ defined by $\mathbb{E}[h(\mathbf{w}_i,\vartheta,\mathbf{q}_k)]=0$ with

$$h(\mathbf{w}_{i}, \vartheta, \mathbf{q}_{k}) = \begin{bmatrix} \mathbf{1}(y_{i} \leq \underline{q}_{0k})\mathbf{1}(z_{i} = k)(1 - T_{i}) - \left(\frac{\alpha_{1}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(T_{i} - \alpha_{0}) \\ \mathbf{1}(y_{i} \leq \overline{q}_{0k})\mathbf{1}(z_{i} = k)(1 - T_{i}) - \left(\frac{1 - \alpha_{1}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(1 - T_{i} - \alpha_{1}) \\ \mathbf{1}(y_{i} \leq \underline{q}_{1k})\mathbf{1}(z_{i} = k)T_{i} - \left(\frac{1 - \alpha_{1}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(T_{i} - \alpha_{0}) \\ \mathbf{1}(y_{i} \leq \overline{q}_{1k})\mathbf{1}(z_{i} = k)T_{i} - \left(\frac{\alpha_{0}}{1 - \alpha_{0} - \alpha_{1}}\right)\mathbf{1}(z_{i} = k)(1 - T_{i} - \alpha_{1}) \end{bmatrix}$$

▶ hack