

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_
import warnings
warnings.filterwarnings("ignore")
sns.set(style="whitegrid")

In [163... df = pd.read_csv("loan_detection.csv")
df.head()
```

Out[163...

	age	campaign	pdays	previous	no_previous_contact	not_working	job_admi
0	56	1	999	0	1	0	
1	57	1	999	0	1	0	
2	37	1	999	0	1	0	
3	40	1	999	0	1	0	
4	56	1	999	0	1	0	

 $5 \text{ rows} \times 60 \text{ columns}$

```
In [164... print("Shape:", df.shape)
  print("\nMising Values:\n", df.isnull().sum())
  print("\nData Types:\n")
  df.info()
```

Shape: (41188, 60)

Mising Values:

Mising Values:	
age	0
campaign	0
pdays	0
previous	0
no_previous_contact	0
not_working	0
<pre>job_admin.</pre>	0
job_blue-collar	0
job_entrepreneur	0
job_housemaid	0
job_management	0
job_retired	0
job_self-employed	0
job_services	0
job_student	0
job technician	0
job unemployed	0
job_unknown	0
marital_divorced	0
marital_married	0
marital_single	0
marital unknown	0
education basic.4y	0
education basic.6y	0
education basic.9y	0
education_high.school	0
education_illiterate	0
education_professional.course	0
education_university.degree	0
education unknown	0
default no	0
default unknown	0
default_yes	0
housing no	0
housing_unknown	0
housing_yes	0
loan_no	0
loan unknown	0
loan yes	0
contact cellular	0
contact telephone	0
month_apr	0
month_aug	0
month_dec	0
month jul	0
month_jun	0
 -	0
month_mar month may	0
month nov	0
-	0
month_oct	
month_sep	0

```
day_of_week_fri
                                 0
                                 0
day_of_week_mon
day of week thu
                                 0
day_of_week_tue
                                 0
                                 0
day_of_week_wed
poutcome_failure
                                 0
                                 0
poutcome nonexistent
poutcome success
                                 0
Loan_Status_label
                                 0
dtype: int64
```

Data Types:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 60 columns):

# 	Column (total 60 Columns):	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	campaign	41188 non-null	int64
2	pdays	41188 non-null	int64
3	previous	41188 non-null	int64
4	no_previous_contact	41188 non-null	int64
5	not_working	41188 non-null	int64
6	job_admin.	41188 non-null	int64
7	job_blue-collar	41188 non-null	int64
8	job_entrepreneur	41188 non-null	int64
9	job_housemaid	41188 non-null	int64
10	job_management	41188 non-null	int64
11	job_retired	41188 non-null	int64
12	job_self-employed	41188 non-null	int64
13	job_services	41188 non-null	int64
14	job_student	41188 non-null	int64
15	job_technician	41188 non-null	int64
16	job_unemployed	41188 non-null	int64
17	job_unknown	41188 non-null	int64
18	marital_divorced	41188 non-null	int64
19	marital_married	41188 non-null	int64
20	marital_single	41188 non-null	int64
21	marital_unknown	41188 non-null	int64
22	education_basic.4y	41188 non-null	int64
23	education_basic.6y	41188 non-null	int64
24	education_basic.9y	41188 non-null	int64
25	education_high.school	41188 non-null	int64
26	education_illiterate	41188 non-null	int64
27	education_professional.course	41188 non-null	int64
28	education_university.degree	41188 non-null	int64
29	education_unknown	41188 non-null	int64
30	default_no	41188 non-null	int64
31	default_unknown	41188 non-null	int64
32	default_yes	41188 non-null	int64
33	housing_no	41188 non-null	int64
34	housing_unknown	41188 non-null	int64
35	housing_yes	41188 non-null	int64

```
37 loan unknown
        38 loan yes
                                        41188 non-null int64
        39 contact cellular
                                       41188 non-null int64
        40 contact_telephone
                                       41188 non-null int64
        41 month apr
                                       41188 non-null int64
        42 month aug
                                        41188 non-null int64
        43 month dec
                                       41188 non-null int64
                                        41188 non-null int64
        44 month jul
        45 month jun
                                        41188 non-null int64
                                        41188 non-null int64
        46 month mar
        47 month may
                                       41188 non-null int64
        48 month nov
                                       41188 non-null int64
        49 month oct
                                        41188 non-null int64
        50 month sep
                                       41188 non-null int64
        51 day of week fri
                                       41188 non-null int64
       41188 non-null int64
        52 day of week mon
        59 Loan Status label
                                       41188 non-null int64
       dtypes: int64(60)
       memory usage: 18.9 MB
In [165... plt.figure(figsize=(6,4))
        sns.countplot(x='Loan Status label', data=df, palette='viridis')
        plt.title("Loan Status Distributions")
        plt.xlabel("Loan Ststus")
        plt.ylabel("Count")
        plt.tight layout()
        plt.show()
        plt.figure(figsize=(6,4))
        sns.histplot(df['age'], kde=True, color='skyblue')
        plt.title("Age Distribution of Applicant")
        plt.xlabel("Age")
        plt.ylabel("Frequency")
        plt.tight layout()
        plt.show()
        plt.figure(figsize=(6,4))
        sns.boxplot(x='Loan Status label', y='age', data=df, palette='pastel')
        plt.title("Age by loan Status")
        plt.tight layout()
        plt.show()
        plt.figure(figsize=(12, 8))
        sns.heatmap(df.corr(), cmap='coolwarm', annot=False)
        plt.title("Correlation Heatmap")
        plt.tight layout()
        plt.show()
```

41188 non-null int64

41188 non-null int64

36 loan no


```
In [166... target_col = 'Loan_Status_label'
X = df.drop(columns=[target_col])
y = df[target_col]
```

```
X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, random_state=42)
In [167... scaler = StandardScaler()
         X train scaled = scaler.fit transform(X train)
         X test scaled = scaler.transform(X test)
In [168... rf = RandomForestClassifier(random state=42)
         rf.fit(X train scaled, y train)
         y_pred_rf = rf.predict(X_test_scaled)
         lr = LogisticRegression()
         lr.fit(X train scaled, y train)
         y pred lr = lr.predict(X test scaled)
In [169... def evaluate model(name, y test, y pred):
             print(f"\n--- {name} ---")
             print("Accuracy:", accuracy score(y test, y pred))
             print("Classifications Report:\n", classification report(y test, y pred))
             print("Confusion Matrix :\n", confusion_matrix(y_test, y_pred))
         evaluate_model("Random Forest", y_test, y_pred_rf)
         evaluate model("Logistic Regressions", y test, y pred lr)
```

```
--- Random Forest ---
       Accuracy: 0.8868657441126487
       Classifications Report:
                       precision
                                    recall f1-score
                                                       support
                   0
                           0.91
                                     0.97
                                               0.94
                                                         7303
                   1
                           0.50
                                     0.25
                                               0.34
                                                          935
                                               0.89
                                                         8238
            accuracy
                                                         8238
           macro avg
                           0.71
                                     0.61
                                               0.64
                                     0.89
       weighted avg
                           0.86
                                               0.87
                                                         8238
        Confusion Matrix :
         [[7070 233]
        [ 699 236]]
        --- Logistic Regressions ---
       Accuracy: 0.8957271182325808
        Classifications Report:
                       precision
                                    recall f1-score
                                                       support
                   0
                           0.90
                                     0.99
                                               0.94
                                                         7303
                   1
                           0.64
                                     0.19
                                               0.29
                                                          935
                                               0.90
                                                         8238
            accuracy
                                     0.59
                                               0.62
                                                         8238
           macro avg
                           0.77
       weighted avg
                           0.87
                                     0.90
                                               0.87
                                                         8238
        Confusion Matrix :
         [[7203 100]
         [ 759 176]]
In [170... plt.figure(figsize=(5,4))
         sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, fmt='d', cmap='Bl
         plt.title("Confusion Matrix - Random Forest")
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.tight layout()
         plt.show()
```



```
In [171... importances = pd.Series(rf.feature_importances_, index=X.columns)
    plt.figure(figsize=(10,6))
    importances.nlargest(15).plot(kind='barh', color='skyblue')
    plt.title("Top 15 Feature importancess ( Random Forest)")
    plt.xlabel("Importance")
    plt.tight_layout()
    plt.show()
```



```
In [172... y_proba = rf.predict_proba(X_test_scaled)[:, 1]
    fpr, tpr, thresholds = roc_curve(y_test, y_proba)

plt.figure(figsize=(6,4))
    plt.plot(fpr, tpr, label='Random Forest (AUC = {:.2f})'.format(roc_auc_score(y plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve - Random Forest')
    plt.legend()
    plt.grid()
    plt.grid()
    plt.tight_layout()
    plt.show()
```

ROC Curve - Random Forest

In []:	
In []:	
In []:	
In []:	