

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE ● BALTIMORE, MARYLAND 21230-3432 ● PHONE (410) 354-3300 ● FAX (410) 354-3313 33439 WESTERN AVENUE ● UNION CITY, CALIFORNIA 94587 ● PHONE (510) 489-6300 ● FAX (510) 489-6372 3162 BELICK STREET ● SANTA CLARA, CALIFORNIA 95054 ● PHONE (408) 748-3585 ● FAX (510) 489-6372 13501 MCCALLEN PASS ● AUSTIN, TX 78753 ● PHONE (512) 287-2500 ● FAX (512) 287-2513

June 12, 2015

Arris Group Inc. 3871 Lakefield Drive, Suite 300 Suwanee, GA 30024

Dear Tony Figueiredo,

Enclosed is the EMC Wireless test report for Class II Permissive Change compliance testing of the Arris Group Inc., TG1682G as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15.407, Subpart E for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Arris Group Inc.\EMC41689-FCC407 UNII 2 Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13501 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

Arris Group Inc. Model TG1682G

Tested under

the Certification Rules contained in Title 47 of the CFR, Part 15.407 Subpart E for Intentional Radiators

MET Report: EMC41689-FCC407 UNII 2 Rev. 2

June 12, 2015

Prepared For:

Arris Group Inc. 3871 Lakefield Drive, Suite 300 Suwanee, GA 30024

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

Arris Group Inc. Model TG1682G

Tested under

the Certification Rules contained in Title 47 of the CFR, Part 15.407 Subpart E for Intentional Radiators

Surinder Singh, Project Engineer Electromagnetic Compatibility Lab

Junieben Lingh

Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 15.407 of the FCC Rules under normal use and maintenance.

Asad Bajwa,

Director, Electromagnetic Compatibility Lab

a Bajiva.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	May 21, 2015	Initial Issue.
1	June 9, 2015	Engineer corrections.
2	June 12, 2015	Editorial corrections.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. Executive Summary	
II.	Equipment Configuration	3
	A. Overview	
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	5
	E. Equipment Configuration	
	F. Support Equipment	
	G. Ports and Cabling Information	
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	
	J. Modifications	
	a) Modifications to EUT	
	b) Modifications to Test Standard	
	K. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.207 Conducted Emissions Limits	
	§ 15.403(c) 26dB Bandwidth	
	§ 15.407(a)(3) RF Power Output	
	§ 15.407(a)(3) Peak Power Spectral Density	
	§ 15.407(a)(5) Teak Tower Spectral Bensky	
	§ 15.407(b) Clidestrable Ellissions § 15.407(f) RF Exposure	
	§ 15.407(h)(1) TPC	
IV.	DFS Requirements and Radar Waveform Description & Calibration	
. .	A. DFS Requirements	
	B. Radar Test Waveforms	
	C. Radar Waveform Calibration	
V.	DFS Test Procedure and Test Results	
٠.	A. DFS Test Setup	
	B. Description of Master Device	
	C. UNII Detection Bandwidth	
	D. Initial Channel Availability Check Time	
	E. Radar Burst at the Beginning of Channel Availability Check Time	
	F. Radar Burst at the End of Channel Availability Check Time	
	G. In-Service Monitoring for Channel Move Time, Channel Closing Time, and Non-Occupancy	120
	H. Statistical Performance Check	120
VI.		
	Test Equipment Certification & User's Manual Information	
VII.	A. Certification Information	
X7TTT	B. Label and User's Manual Information	
VIII.	Appendix	101

List of Tables

	Executive Summary of EMC Part 15.407 Compliance Testing	
Table 2.	EUT Summary	4
Table 3.	References	5
Table 4.	Equipment Configuration	6
	Support Equipment	
Table 6.	Ports and Cabling Information	7
Table 7.	Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	10
Table 8.	26 dB Occupied Bandwidth, Test Results	15
Table 9.	RF Output Power, Test Results, 40 MHz	30
Table 10.	RF Output Power, Test Results, 80 MHz	30
Table 11.	Peak Spectral Density, Test Results, 20 MHz	44
Table 12.	Peak Spectral Density, Test Results, 40 MHz	44
Table 13.	Peak Spectral Density, Test Results, 80 MHz	45
Table 14.	TPC, 20 MHz	105
Table 15.	TPC, 40 MHz	106
Table 16.	TPC, 80 MHz	106
Table 17.	Applicability of DFS Requirements Prior to Use of a Channel	108
Table 18.	Applicability of DFS Requirements During Normal Operation	108
	DFS Detection Thresholds for Master or Client Devices Incorporating DFS	
	DFS Response Requirement Values	
	Pulse Repetition Intervals Values for Test A	
Table 22.	UNII Detection Bandwidth, Test Results, 20 MHz	123
Table 23.	UNII Detection Bandwidth, Test Results, 40 MHz	123
	UNII Detection Bandwidth, Test Results, 80 MHz	
	Statistical Performance Check – Radar Type 0, 20 MHz	
	Statistical Performance Check – Radar Type 1, 20 MHz	
	Statistical Performance Check – Radar Type 2, 20 MHz	
	Statistical Performance Check – Radar Type 3, 20 MHz	
	Statistical Performance Check – Radar Type 4, 20 MHz	
	Statistical Performance Check – Radar Type 5, 20 MHz	
	Statistical Performance Check – Radar Type 6, 20 MHz	
	Statistical Performance Check – Radar Type 0, 40 MHz	
	Statistical Performance Check – Radar Type 1, 40 MHz	
	Statistical Performance Check – Radar Type 2, 40 MHz	
	Statistical Performance Check – Radar Type 3, 40 MHz	
	Statistical Performance Check – Radar Type 4, 40 MHz	
	Statistical Performance Check – Radar Type 5, 40 MHz	
	Statistical Performance Check – Radar Type 6, 40 MHz	
	Statistical Performance Check – Radar Type 0, 80 MHz	
	Statistical Performance Check – Radar Type 1, 80 MHz	
	Statistical Performance Check – Radar Type 2, 80 MHz	
	Statistical Performance Check – Radar Type 3, 80 MHz	
	Statistical Performance Check – Radar Type 4, 80 MHz	
	Statistical Performance Check – Radar Type 5, 80 MHz	
	Statistical Performance Check – Radar Type 6, 80 MHz	
	Test Equipment List	
Table 47.	DFS Test Equipment List	153

List of Figures

Figure 1. Block Diagram of Equipment Configuration	6
Figure 2. Occupied Bandwidth, Test Setup	
Figure 3. Power Output Test Setup	
Figure 4. Power Spectral Density Test Setup	
Figure 5. Long Pulse Radar Test Signal Waveform	114
List of Photographs	
Photograph 1. Conducted Emissions, 15.207(a), Test Setup	
Photograph 2. Radiated Spurious Emissions, Test Setup	
Photograph 3. DFS Radar Test Signal Generator	
Photograph 4. DFS Test Setup	120
List of Plots	
Plot 1. 26 dB Occupied Bandwidth, Channel 52, 802.11a 20 MHz, 5260 MHz	16
Plot 2. 26 dB Occupied Bandwidth, Channel 60, 802.11a 20 MHz, 5300 MHz	
Plot 3. 26 dB Occupied Bandwidth, Channel 64, 802.11a 20 MHz, 5320 MHz	
Plot 4. 26 dB Occupied Bandwidth, Channel 100, 802.11a 20 MHz, 5500 MHz	
Plot 5. 26 dB Occupied Bandwidth, Channel 116, 802.11a 20 MHz, 5580 MHz	
Plot 6. 26 dB Occupied Bandwidth, Channel 140, 802.11a 20 MHz, 5700 MHz	
Plot 7. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 20 MHz, 5260 MHz	18
Plot 8. 26 dB Occupied Bandwidth, Channel 60, 802.11ac 20 MHz, 5300 MHz	18
Plot 9. 26 dB Occupied Bandwidth, Channel 64, 802.11ac 20 MHz, 5320 MHz	
Plot 10. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 20 MHz, 5500 MHz	
Plot 11. 26 dB Occupied Bandwidth, Channel 116, 802.11ac 20 MHz, 5580 MHz	
Plot 12. 26 dB Occupied Bandwidth, Channel 140, 802.11ac 20 MHz, 5700 MHz	
Plot 13. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 40 MHz, 5270 MHz	
Plot 14. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 40 MHz, 5310 MHz	
Plot 15. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 40 MHz, 5510 MHz	
Plot 17. 26 dB Occupied Bandwidth, Channel 136, 802.11ac 40 MHz, 5690 MHz	
Plot 18. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 40 MHz, 5090 MHz	
Plot 19. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 80 MHz, 5530 MHz	
Plot 20. 26 dB Occupied Bandwidth, Channel 116, 802.11ac 80 MHz, 5610 MHz	
Plot 21. 26 dB Occupied Bandwidth, Channel 128, 802.11ac 80 MHz, 5690MHz	
Plot 22. 26 dB Occupied Bandwidth, Channel 52, 802.11n 20 MHz, 5260 MHz	
Plot 23. 26 dB Occupied Bandwidth, Channel 60, 802.11n 20 MHz, 5300 MHz	
Plot 24. 26 dB Occupied Bandwidth, Channel 64, 802.11n 20 MHz, 5320 MHz	24
Plot 25. 26 dB Occupied Bandwidth, Channel 100, 802.11n 20 MHz, 5500 MHz	25
Plot 26. 26 dB Occupied Bandwidth, Channel 116, 802.11n 20 MHz, 5580 MHz	
Plot 27. 26 dB Occupied Bandwidth, Channel 140, 802.11n 20 MHz, 5700 MHz	
Plot 28. 26 dB Occupied Bandwidth, Channel 52, 802.11n 40 MHz, 5270 MHz	
Plot 29. 26 dB Occupied Bandwidth, Channel 60, 802.11n 40 MHz, 5310 MHz	
Plot 30. 26 dB Occupied Bandwidth, Channel 100, 802.11n 40 MHz, 5510 MHz	
Plot 31. 26 dB Occupied Bandwidth, Channel 116, 802.11n 40 MHz, 5590 MHz	
Plot 32. 26 dB Occupied Bandwidth, Channel 136, 802.11n 40 MHz, 5690 MHz	
Plot 33. RF Output Power, Channel 52, 802.11a 20 MHz, 5260 MHz	
Plot 34. RF Output Power, Channel 60, 802.11a 20 MHz, 5300 MHz	
1 10t 33. Ki Output I Ower, Chainlei 04, 002.11a 20 WHZ, 3320 WHZ	

	RF Output Power, Channel 100, 802.11a 20 MHz, 5500 MHz	
	RF Output Power, Channel 116, 802.11a 20 MHz, 5580 MHz	
	RF Output Power, Channel 140, 802.11a 20 MHz, 5700 MHz	
Plot 39.	RF Output Power, Channel 52, 802.11ac 20 MHz, 5260 MHz	33
	RF Output Power, Channel 60, 802.11ac 20 MHz, 5300 MHz	
	RF Output Power, Channel 64, 802.11ac 20 MHz, 5320 MHz	
Plot 42.	RF Output Power, Channel 100, 802.11ac 20 MHz, 5500 MHz	34
	RF Output Power, Channel 116, 802.11ac 20 MHz, 5580 MHz	
Plot 44.	RF Output Power, Channel 140, 802.11ac 20 MHz, 5700 MHz	34
Plot 45.	RF Output Power, Channel 52, 802.11ac 40 MHz, 5270 MHz	35
Plot 46.	RF Output Power, Channel 60, 802.11ac 40 MHz, 5310 MHz	35
Plot 47.	RF Output Power, Channel 100, 802.11ac 40 MHz, 5510 MHz	35
Plot 48.	RF Output Power, Channel 116, 802.11ac 40 MHz, 5590 MHz	36
Plot 49.	RF Output Power, Channel 136, 802.11ac 40 MHz, 5690 MHz	36
Plot 50.	RF Output Power, Channel 52, 802.11ac 80 MHz, 5290 MHz	37
Plot 51.	RF Output Power, Channel 100, 802.11ac 80 MHz, 5530 MHz	37
Plot 52.	RF Output Power, Channel 116, 802.11ac 80 MHz, 5610 MHz	37
Plot 53.	RF Output Power, Channel 128, 802.11ac 80 MHz, 5610 MHz	38
	RF Output Power, Channel 52, 802.11n 20 MHz, 5260 MHz	
	RF Output Power, Channel 60, 802.11n 20 MHz, 5300 MHz	
	RF Output Power, Channel 64, 802.11n 20 MHz, 5320 MHz	
Plot 57.	RF Output Power, Channel 100, 802.11n 20 MHz, 5500 MHz	40
	RF Output Power, Channel 116, 802.11n 20 MHz, 5580 MHz	
	RF Output Power, Channel 140, 802.11n 20 MHz, 5700 MHz	
	RF Output Power, Channel 52, 802.11n 40 MHz, 5270 MHz	
	RF Output Power, Channel 60, 802.11n 40 MHz, 5310 MHz	
	RF Output Power, Channel 100, 802.11n 40 MHz, 5510 MHz	
	RF Output Power, Channel 116, 802.11n 40 MHz, 5590 MHz	
	RF Output Power, Channel 136, 802.11n 40 MHz, 5710 MHz.	
	Peak Power Spectral Density, Channel 52, 802.11a 20 MHz, 5260 MHz	
	Peak Power Spectral Density, Channel 60, 802.11a 20 MHz, 5300 MHz	
	Peak Power Spectral Density, Channel 64, 802.11a 20 MHz, 5320 MHz	
	Peak Power Spectral Density, Channel 100, 802.11a 20 MHz, 5500 MHz	
	Peak Power Spectral Density, Channel 116, 802.11a 20 MHz, 5580 MHz	
	Peak Power Spectral Density, Channel 140, 802.11a 20 MHz, 5700 MHz	
	Peak Power Spectral Density, Channel 52, 802.11ac 20 MHz, 5260 MHz	
	Peak Power Spectral Density, Channel 60, 802.11ac 20 MHz, 5300 MHz	
	Peak Power Spectral Density, Channel 64, 802.11ac 20 MHz, 5320 MHz	
	Peak Power Spectral Density, Channel 100, 802.11ac 20 MHz, 5500 MHz	
	Peak Power Spectral Density, Channel 116, 802.11ac 20 MHz, 5580 MHz	
	Peak Power Spectral Density, Channel 140, 802.11ac 20 MHz, 5700 MHz	
	Peak Power Spectral Density, Channel 52, 802.11ac 40 MHz, 5270 MHz	
	Peak Power Spectral Density, Channel 60, 802.11ac 40 MHz, 5310 MHz	
	Peak Power Spectral Density, Channel 100, 802.11ac 40 MHz, 5510 MHz	
	Peak Power Spectral Density, Channel 116, 802.11ac 40 MHz, 5590 MHz	
	Peak Power Spectral Density, Channel 140, 802.11ac 40 MHz, 5690 MHz	
	Peak Power Spectral Density, Channel 52, 802.11ac 40 MHz, 5290 MHz	
	Peak Power Spectral Density, Channel 100, 802.11ac 80 MHz, 5530 MHz	
	Peak Power Spectral Density, Channel 116, 802.11ac 80 MHz, 5610 MHz	
	Peak Power Spectral Density, Channel 128, 802.11ac 80 MHz, 5690 MHz	
	Peak Power Spectral Density, Channel 52, 802.11ac 80 MHz, 5260 MHz	
	Peak Power Spectral Density, Channel 60, 802.11n 20 MHz, 5300 MHz	
	Peak Power Spectral Density, Channel 64, 802.11n 20 MHz, 5320 MHz	
	Peak Power Spectral Density, Channel 104, 802.11n 20 MHz, 5520 MHz	
	Peak Power Spectral Density, Channel 110, 802.11n 20 MHz, 5500 MHz	
P10t 91.	Peak Power Spectral Density, Channel 140, 802.11n 20 MHz, 5700 MHz	33

	Peak Power Spectral Density, Channel 52, 802.11n 40 MHz, 5270 MHz	
	Peak Power Spectral Density, Channel 60, 802.11n 40 MHz, 5310 MHz	
Plot 94. 1	Peak Power Spectral Density, Channel 100, 802.11n 40 MHz, 5510 MHz	56
Plot 95. 1	Peak Power Spectral Density, Channel 116, 802.11n 40 MHz, 5590 MHz	57
Plot 96. 1	Peak Power Spectral Density, Channel 140, 802.11n 40 MHz, 5697 MHz	57
Plot 97. 1	Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 30 MHz – 1 GHz	59
	Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 7 GHz – 18 GHz	
Plot 100.	Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 30 MHz – 1 GHz	60
	Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 7 GHz – 18 GHz.	
	Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 7 GHz = 16 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 7 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 7 GHz – 16 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 7 GHz – 7 GHz	
PIOU 112.	Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 30 MHz – 1 GHz	04
	Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 30 MHz – 1 GHz	
Plot 131.	Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 1 GHz – 7 GHz	70
Plot 132.	Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 7 GHz – 18 GHz	70
	Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 30 MHz – 1 GHz	
Plot 134.	Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 1 GHz – 7 GHz	71
Plot 135.	Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 7 GHz – 18 GHz	71
Plot 136.	Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 30 MHz – 1 GHz	72
Plot 137.	Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 1 GHz – 7 GHz	72
Plot 138.	Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 7 GHz – 18 GHz	72
	Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 30 MHz – 1 GHz	
Plot 140.	Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 1 GHz – 7 GHz	73
	Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 7 GHz – 18 GHz	

	Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 7 GHz – 18 GHz	
	Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 30 MHz – 1 GHz	
Plot 152.	Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 1 GHz – 7 GHz	77
Plot 153.	Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 7 GHz – 18 GHz	77
Plot 154.	Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 30 MHz – 1 GHz	78
	Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 1 GHz – 7 GHz	
Plot 156.	Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 7 GHz – 18 GHz	78
	Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 7 GHz – 18 GHz	
Plot 160.	Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 30 MHz – 1 GHz	80
Plot 161.	Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 1 GHz – 7 GHz	80
	Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 7 GHz – 18 GHz	
Plot 163.	Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 30 MHz – 1 GHz	81
	Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 1 GHz – 7 GHz	
Plot 165.	Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 7 GHz – 18 GHz	81
Plot 166.	Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 30 MHz – 1 GHz	82
	Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 1 GHz – 7 GHz	
Plot 168.	Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 7 GHz – 18 GHz	82
Plot 169.	Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 30 MHz – 1 GHz	83
Plot 170.	Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 1 GHz – 7 GHz	83
	Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 7 GHz – 18 GHz	
Plot 172.	Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 30 MHz – 1 GHz	84
Plot 173.	Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 1 GHz – 7 GHz	84
Plot 174.	Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 7 GHz – 18 GHz	84
Plot 175.	Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 30 MHz – 1 GHz	85
Plot 176.	Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 1 GHz – 7 GHz	85
Plot 177.	Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 7 GHz – 18 GHz	85
Plot 178.	Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 30 MHz – 1 GHz	86
	Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 1 GHz – 7 GHz	
Plot 180.	Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 7 GHz – 18 GHz	86
Plot 181.	Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 30 MHz – 1 GHz	87
Plot 182.	Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 1 GHz – 7 GHz	87
Plot 183.	Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 7 GHz – 18 GHz	87
Plot 184.	Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 30 MHz – 1 GHz	88
Plot 185.	Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 1 GHz – 7 GHz	88
	Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 7 GHz – 18 GHz	
Plot 187.	Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 30 MHz – 1 GHz	89
	Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 1 GHz – 7 GHz	
Plot 189.	Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 7 GHz – 18 GHz	89
Plot 190.	Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 30 MHz – 1 GHz	90
Plot 191.	Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 1 GHz – 7 GHz	90
Plot 192.	Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 7 GHz – 18 GHz	90
Plot 193.	Radiated Band Edge, 802.11a 20 MHz, Channel 64, Average	91
Plot 194.	Radiated Band Edge, 802.11a 20 MHz, Channel 64, Peak	91
	Radiated Band Edge, 802.11a 20 MHz, Channel 100, Average	
	Radiated Band Edge, 802.11a 20 MHz, Channel 100, Peak	
	Radiated Band Edge, 802.11ac 20 MHz, Channel 64, Average	
	Radiated Band Edge, 802.11ac 20 MHz, Channel 64, Peak	
	Radiated Band Edge, 802.11ac 20 MHz, Channel 100, Average	
	Radiated Band Edge, 802.11ac 20 MHz, Channel 100, Peak	
	Radiated Band Edge, 802.11ac 40 MHz, Channel 60, Average	
	Radiated Band Edge, 802.11ac 40 MHz, Channel 60, Peak	
	Radiated Band Edge, 802.11ac 40 MHz, Channel 100, Average	

Plot 204.	Radiated Band Edge, 802.11ac 40 MHz, Channel 100, Peak	96
Plot 205.	Radiated Band Edge, 802.11ac 80 MHz, Channel 52, Average	97
Plot 206.	Radiated Band Edge, 802.11ac 80 MHz, Channel 52, Peak	97
Plot 207.	Radiated Band Edge, 802.11ac 80 MHz, Channel 100, Average	97
Plot 208.	Radiated Band Edge, 802.11ac 80 MHz, Channel 100, Peak	98
Plot 209.	Radiated Band Edge, 802.11n 20 MHz, Channel 64, Average	99
Plot 210.	Radiated Band Edge, 802.11n 20 MHz, Channel 64, Peak	99
Plot 211.	Radiated Band Edge, 802.11n 20 MHz, Channel 100, Average	99
Plot 212.	Radiated Band Edge, 802.11n 20 MHz, Channel 100, Peak	100
Plot 213.	Radiated Band Edge, 802.11n 40 MHz, Channel 60, Average	101
Plot 214.	Radiated Band Edge, 802.11n 40 MHz, Channel 60, Peak	101
Plot 215.	Radiated Band Edge, 802.11n 40 MHz, Channel 100, Average	101
Plot 216.	Radiated Band Edge, 802.11n 40 MHz, Channel 100, Peak	102
	Radar Type 0 Calibration	
	Radar Type 1 Calibration	
Plot 219.	Radar Type 2 Calibration	116
Plot 220.	Radar Type 3 Calibration	117
Plot 221.	Radar Type 4 Calibration	117
Plot 222.	Radar Type 5 Calibration	117
Plot 223.	Radar Type 6 Calibration	118
	Initial Channel Availability Check Time, 60s	
	Radar Burst at the Beginning of CACT	
	Radar Burst at the End of CACT	
	Channel Move Time	
Plot 228.	Channel Closing Transmission Time	129
Plot 229.	Non-Occupancy Period	129

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
	Calibration
Cal	
d	Measurement Distance
dB	D ecibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	H ert z
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry
μ	microfarad
μs	microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane
, 01	, states cooping & mile

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Arris Group Inc. TG1682G, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the TG1682G. Arris Group Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the TG1682G, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with Arris Group Inc., purchase order number 8075549. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference	Description	Results
§15.203	Antenna Requirements	Compliant
§15.207(a)	AC Conducted Emissions 150KHz – 30MHz	Compliant
§15.403(i)(e)	26dB Occupied Bandwidth	Compliant
§15.407 (a)(1)(i) & §15.407 (a)(3)	Conducted Transmitter Output Power	Compliant
§15.407 (a)(1)(i) & §15.407 (a)(3)	Power Spectral Density	Compliant
§15.407 (b)(1), (4), (6), (7)	Undesirable Emissions (15.205/15.209 - General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Compliant
§15.407(f)	RF Exposure	Compliant
15.407 (h)(1)	TPC	Compliant
15.407 (h)(2)(ii)	Initial Channel Availability Check Time	Compliant
15.407 (h)(2)	DFS Detection Bandwidth	Compliant
15.407 (h)(2)(ii)	Radar Burst at the Beginning of Channel Availability Check Time	Compliant
15.407 (h)(2)(ii)	Radar Burst at the End of Channel Availability Check Time	Compliant
15.407 (h)(2)(iii)	Channel Move Time and Channel Closing Time	Compliant
15.407 (h)(2)(iv)	Non-Occupancy Period	Compliant
15.407 (h)(2)	Statistical Performance Check	Compliant

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Arris Group Inc. to perform testing on the TG1682G, under Arris Group Inc.'s purchase order number 8075549.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Arris Group Inc. TG1682G.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	TG1682G	
Model(s) Covered:	TG1682G	
	Primary Power: 120 VAC, 60 Hz	
	Class II Permissive Change FCC ID: UIDTG1682	
EUT	Type of Modulations:	OFDM
Specifications:	Equipment Code:	NII
	Peak RF Output Power:	21.79dBm, 22.78dBm
	EUT Frequency Ranges:	5260-5320MHz, 5500-5700MHz
Analysis:	The results obtained relate only to the item(s) tested.	
Temperature: 15-35		
Environmental Test Conditions:	Relative Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Evaluated by:	Surinder Singh	
Report Date(s):	June 12, 2015	

Table 2. EUT Summary

B. References

CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
FCC Knowledge database	FCC Publication 789033
FCC Knowledge database	FCC Publication 905462 D02 UNII DFS Compliance Procedures

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The Arris Group Inc. TG1682G, Equipment Under Test (EUT), is a residential gateway incorporating two analog voice lines, DECT 6.0 wireless voice, a 4-port Gigabit Router, MoCA 2.0 and a Dual Band 802.11ac wireless access point.

Figure 1. Block Diagram of Equipment Configuration

E. Equipment Configuration

Ref. ID	Name / Description	Model Number	Serial Number	Rev. #
4	UUT	TG1682G		

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number		
1s	ARRIS CMTS C4	Arris	N/A		
2s	Laptops	Assorted	N/A		
3s	Telephones	AT&T	N/A		

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
1C	RF	RG6 Coax	1	10	10	Yes	
2C	Ethernet	5e Modular 8 pin	1	1	1	No	
3C	AC Input	2 conductor, 18 AWG	1	2	2	No	(115v/60hz)
4C	Telephone 1	RJ-11	1	1	1	No	
5C	Telephone 2	RJ-11	1	1	1	No	
6C	Ethernet	5e Modular 8 pin	3	6	6	No	

Table 6. Ports and Cabling Information

H. Mode of Operation

Normal operation is the modem ranged and registered over the RF coax on a headend system CMTS. Traffic is passed through the Ethernet port and calls are made on each line.

I. Method of Monitoring EUT Operation

All indicator lights are active on the modem front and no loss of telephony connection and no loss of data packets.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Arris Group Inc. upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is Compliant to the criteria of §15.203. EUT has an internal antenna.

Test Engineer(s): Surinder Pal Singh

Test Date(s): 04/11/15

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207 Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Σ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
* 0.15- 0.45	66 – 56	56 - 46			
0.45 - 0.5	56	46			
0.5 - 30	60	50			

Table 7. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2003 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT as tested is Compliant to the criteria of §15.207.

Test Engineer(s): Surinder Singh

Test Date(s): 4/23/2015

15.207(a) Conducted Emissions Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.16	53.29	0	53.29	65.46	-12.17	44.91	0	44.91	55.46	-10.55
0.25	48.65	0	48.65	61.76	-13.11	35.49	0	35.49	51.76	-16.27
21.49	38.75	0	38.75	60	-21.25	30.18	0	30.18	50	-19.82

Table 8. Conducted Emissions, 15.207(a), Phase Line, Test Results

Plot 1. Conducted Emissions, 15.207(a), Phase Line

15.207(a) Conducted Emissions Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.16	51.49	0	51.49	65.46	-13.97	39.28	0	39.28	55.46	-16.18
0.26	49.19	0	49.19	61.43	-12.24	34.62	0	34.62	51.43	-16.81
21.37	38.66	0	38.66	60	-21.34	28.75	0	28.75	50	-21.25

Table 9. Conducted Emissions, 15.207(a), Neutral Line, Test Results

Plot 4. Conducted Emissions, 15.207(a), Neutral Line

15.207(a) Conducted Emissions Test Setup Photo

Photograph 1. Conducted Emissions, 15.207(a), Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 403(i) 26dB Bandwidth

Test Requirements:

§ 15.403 (i): For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test Procedure:

The transmitter was set to both operating frequencies at the highest output power and connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, VBW > RBW. The 26 dB Bandwidth was measured and recorded.

Test Results

The 26 dB Bandwidth was compliant with the requirements of this section and was determined from the plots on the following pages.

Test Engineer(s):

Surinder Singh

Test Date(s):

04/21/15

Figure 2. Occupied Bandwidth, Test Setup

Occupied Bandwidth Test Results

26dB Occupied Bandwidth							
	Carrier		Occupied Bandwidth				
	Channel	(MHz)	(MHz)				
	Channel 52	5260	21.239				
	Channel 60	5300	21.044				
802.11a 20 MHz	Channel 64	5320	20.948				
802.11a 20 MHZ	Channel 100	5500	20.208				
	Channel 116	5580	21.286				
	Channel 140	5700	20.275				
	Channel 52	5260	22.206				
	Channel 60	5300	21.808				
902 11aa 20 MH-	Channel 64	5320	21.694				
802.11ac 20 MHz	Channel 100	rier Frequency (MHz) iel 52 5260 iel 60 5300 iel 64 5320 iel 100 5500 iel 116 5580 iel 140 5700 iel 52 5260 iel 60 5300 iel 64 5320 iel 100 5500 iel 116 5580 iel 140 5700 iel 52 5270 iel 60 5310 iel 100 5510 iel 136 5690 iel 64 5320 iel 60 5300 iel 64 5320 iel 60 5300 iel 52 5260 iel 60 5300 iel 61 5580 iel 100 5500 iel 116 5580 iel 12 5270 iel 60 5310 iel 16 5590 iel 16 5590 iel 16 5590	21.613				
	Channel 116	5580	22.268				
	Channel 140	5700	21.548				
	Channel 52	5270	43.433				
	Channel 60	5310	42.859				
802.11ac 40 MHz	Channel 100	5510	42.224				
	Channel 116	5590	42.274				
	Channel 136	5690	42.189				
	Channel 52	5260	21.762				
	Channel 60		22.087				
902 11 20 MH	Channel 64	5320	21.711				
802.11n 20 MHz	Channel 100	(MHz) 5260 5300 5320 5500 5580 5700 5260 5300 5320 5500 5580 5700 5270 5310 5590 5690 5320 5500 5580 5700 5580 5700 5580 5700 5570 5510 5590 5690 5590 5690 5530 5530 5610	21.830				
	Channel 116		21.261				
	Channel 140	5700	22.027				
	Channel 52	5270	43.069				
	Channel 60	5310	42.101				
802.11n 40 MHz	Channel 100	5510	43.220				
	Channel 116	Channel 140 5700 Channel 52 5270 Channel 60 5310 Channel 100 5510 Channel 116 5590 Channel 136 5690 Channel 52 5260 Channel 60 5300 Channel 100 5500 Channel 140 5700 Channel 140 5700 Channel 52 5270 Channel 60 5310 Channel 116 5590 Channel 136 5690 Channel 52 5290	42.318				
	Channel 136	5690	42.005				
	Channel 52	5290	86.217				
002 11 00 3 44	Channel 100		85.645				
802.11ac 80 MHz	Channel 116		85.810				
	Channel 128		84.807				

Table 8. 26 dB Occupied Bandwidth, Test Results

26 dB Occupied Bandwidth, 802.11a 20 MHz

Plot 1. 26 dB Occupied Bandwidth, Channel 52, 802.11a 20 MHz, 5260 MHz

Plot 2. 26 dB Occupied Bandwidth, Channel 60, 802.11a 20 MHz, 5300 MHz

Plot 3. 26 dB Occupied Bandwidth, Channel 64, 802.11a 20 MHz, 5320 MHz

Plot 4. 26 dB Occupied Bandwidth, Channel 100, 802.11a 20 MHz, 5500 MHz

Plot 5. 26 dB Occupied Bandwidth, Channel 116, 802.11a 20 MHz, 5580 MHz

Plot 6. 26 dB Occupied Bandwidth, Channel 140, 802.11a 20 MHz, 5700 MHz

26 dB Occupied Bandwidth, 802.11ac 20 MHz

Plot 7. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 20 MHz, 5260 MHz

Plot 8. 26 dB Occupied Bandwidth, Channel 60, 802.11ac 20 MHz, 5300 MHz

Plot 9. 26 dB Occupied Bandwidth, Channel 64, 802.11ac 20 MHz, 5320 MHz

Plot 10. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 20 MHz, 5500 MHz

Plot 11. 26 dB Occupied Bandwidth, Channel 116, 802.11ac 20 MHz, 5580 MHz

Plot 12. 26 dB Occupied Bandwidth, Channel 140, 802.11ac 20 MHz, 5700 MHz

26 dB Occupied Bandwidth, 802.11ac 40 MHz

Plot 13. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 40 MHz, 5270 MHz

Plot 14. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 40 MHz, 5310 MHz

Plot 15. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 40 MHz, 5510 MHz

Plot 16. 26 dB Occupied Bandwidth, Channel 116, 802.11ac 40 MHz, 5590 MHz

Plot 17. 26 dB Occupied Bandwidth, Channel 136, 802.11ac 40 MHz, 5690 MHz

26 dB Occupied Bandwidth, 802.11ac 80 MHz

Plot 18. 26 dB Occupied Bandwidth, Channel 52, 802.11ac 80 MHz, 5290 MHz

Plot 19. 26 dB Occupied Bandwidth, Channel 100, 802.11ac 80 MHz, 5530 MHz

Plot 20. 26 dB Occupied Bandwidth, Channel 116, 802.11ac 80 MHz, 5610 MHz

Plot 21. 26 dB Occupied Bandwidth, Channel 128, 802.11ac 80 MHz, 5690MHz

26 dB Occupied Bandwidth, 802.11n 20 MHz

Plot 22. 26 dB Occupied Bandwidth, Channel 52, 802.11n 20 MHz, 5260 MHz

Plot 23. 26 dB Occupied Bandwidth, Channel 60, 802.11n 20 MHz, 5300 MHz

Plot 24. 26 dB Occupied Bandwidth, Channel 64, 802.11n 20 MHz, 5320 MHz

Plot 25. 26 dB Occupied Bandwidth, Channel 100, 802.11n 20 MHz, 5500 MHz

Plot 26. 26 dB Occupied Bandwidth, Channel 116, 802.11n 20 MHz, 5580 MHz

Plot 27. 26 dB Occupied Bandwidth, Channel 140, 802.11n 20 MHz, 5700 MHz

26 dB Occupied Bandwidth, 802.11n 40 MHz

Plot 28. 26 dB Occupied Bandwidth, Channel 52, 802.11n 40 MHz, 5270 MHz

Plot 29. 26 dB Occupied Bandwidth, Channel 60, 802.11n 40 MHz, 5310 MHz

Plot 30. 26 dB Occupied Bandwidth, Channel 100, 802.11n 40 MHz, 5510 MHz

Plot 31. 26 dB Occupied Bandwidth, Channel 116, 802.11n 40 MHz, 5590 MHz

Plot 32. 26 dB Occupied Bandwidth, Channel 136, 802.11n 40 MHz, 5690 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 407(a)(2) RF Power Output

Test Requirements: §15.407(a)(2): For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted

output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11

dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

Test Procedure: The EUT was connected to a spectrum analyzer through an attenuator and set to transmit

continuously on the low, mid, and high channels in all modes that device is capable of operating. Its power was measured according to measurement method SA-1, as described in 789033 D02 General UNII Test Procedures New Rule v01. Plots were corrected for attenuator and cable loss. Only worst case measurements were recorded from one of the EUT antenna port and corresponding plots were reported in test report. However all three antenna ports

measurement were recorded in tabular form.

Where applicable total array gain of MIMO system was calculated as:

Total Gain of MIMO antenna system (dBi) = Highest Gain of individual antenna (dBi) + 10*log

(Number of antenna)

Test Results: Equipment was compliant with the Peak Power Output limits of § 15.407(a)(2).

Test Engineer(s): Surinder Singh

Test Date(s): 04/11/15

Figure 3. Power Output Test Setup

	Maximum Conducted Output Power 20MHz Band 802.11a/n/ac Mode MIMO											
Channel	Frequency MHz	Measured Maximum Output Power (dBm)/20MHz Ant 0	Measured Maximum Output Power (dBm)/20MHz Ant 1	Measured Maximum Output Power (dBm)/20MHz Ant 2	Mode	Total power dBm	Power Limit (dBm)	Antenna Gain dBi	Margin			
52	5260	11.05	11.69	12.52	a	16.57	20.53	9.47	-3.96			
52	5260	15.46	15.91	16.31	n	20.68	24	4.7	-3.32			
52	5260	15.75	16.18	16.75	ac	21.02	24	4.7	-2.98			
60	5300	11.06	11.29	11.99	a	16.24	20.53	9.47	-4.29			
60	5300	16.49	17.05	17.45	n	21.79	24	4.7	-2.21			
60	5300	16.08	16.44	17.42	ac	21.46	24	4.7	-2.54			
64	5320	11.15	11.41	12.28	a	16.42	20.53	9.47	-4.11			
64	5320	15.94	16.37	16.95	n	21.22	24	4.7	-2.78			
64	5320	15.62	16.05	16.43	ac	20.82	24	4.7	-3.18			
100	5500	11.13	11.84	12.45	a	16.62	20.13	9.87	-3.51			
100	5500	15.02	15.47	16.27	n	20.39	24	5.1	-3.61			
100	5500	15.34	15.84	16.43	ac	20.67	24	5.1	-3.33			
116	5580	11.04	11.19	12.12	a	16.25	20.13	9.87	-3.88			
116	5580	15.09	15.64	16.62	n	20.61	24	5.1	-3.39			
116	5580	14.88	15.36	16.12	ac	20.26	24	5.1	-3.74			
140	5700	10.49	10.94	11.2	a	15.66	20.13	9.87	-4.47			
140	5700	14.67	15.18	15.96	n	20.08	24	5.1	-3.92			
140	5700	14.59	15.24	16.01	ac	20.1	24	5.1	-3.9			

Table8. RF Output Power, Test Results, 20 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11n and ac MIMO mode, therefore it did not contribute to array gain in power measurement.

	Maximum Conducted Output Power 40MHz Band n and ac Mode MIMO (3*3)											
Chanel Carrier	Frequency MHz	Measured Maximum Output Power (dBm)/40MHz Ant 0	Measured Maximum Output Power (dBm)/40MHz Ant 1	Measured Maximum Output Power (dBm)/40MHz Ant 2	mode	Total Output Power	Antenna Gain dBi	Power Limit (dBm)	Margin			
52	5270	15.85	16.34	17.27	n	21.3	4.7	24	-2.7			
52	5270	15.96	16.55	17.71	ac	21.58	4.7	24	-2.42			
60	5310	14.44	15.13	15.99	n	20.01	4.7	24	-3.99			
60	5310	14.75	15.46	16.12	ac	20.26	4.7	24	-3.74			
100	5510	14.63	15.37	16.6	n	20.39	5.1	24	-3.61			
100	5510	14.85	15.74	16.8	ac	20.65	5.1	24	-3.35			
116	5590	17.12	17.46	18.28	n	22.42	5.1	24	-1.58			
116	5590	17.46	18.05	18.44	ac	22.78	5.1	24	-1.22			
140	5710	17.11	17.68	18.27	n	22.49	5.1	24	-1.51			
140	5710	17.08	17.45	18.18	ac	22.37	5.1	24	-1.63			

Table 9. RF Output Power, Test Results, 40 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11n and ac MIMO mode, therefore it did not contribute to array gain in power measurement.

	Maximum Conducted Output Power 80MHz Band ac Mode MIMO (3*3)											
Chanel Carrier	Frequency MHz	Measured Maximum Output Power (dBm)/80MHz Ant 0	Measured Maximum Output Power (dBm)/80MHz Ant 1	Measured Maximum Output Power (dBm)/80MHz Ant 2	mode	Total Output Power	Antenna Gain dBi	Power Limit (dBm)	Margin			
52	5290	11.08	11.46	12.38	ac	16.45	4.7	24	-7.55			
100	5530	11.28	11.59	12.46	ac	16.58	5.1	24	-7.42			
116	5610	16.15	16.85	17.6	ac	21.68	5.1	24	-2.32			
132	5690	16.48	17.14	17.95	ac	22.01	5.1	24	-1.99			

Table 10. RF Output Power, Test Results, 80 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11ac MIMO mode, therefore it did not contribute to array gain in power measurement.

RF Output Power, 802.11a 20 MHz

Plot 33. RF Output Power, Channel 52, 802.11a 20 MHz, 5260 MHz

Plot 34. RF Output Power, Channel 60, 802.11a 20 MHz, 5300 MHz

Plot 35. RF Output Power, Channel 64, 802.11a 20 MHz, 5320 MHz

Plot 36. RF Output Power, Channel 100, 802.11a 20 MHz, 5500 MHz

Plot 37. RF Output Power, Channel 116, 802.11a 20 MHz, 5580 MHz

Plot 38. RF Output Power, Channel 140, 802.11a 20 MHz, 5700 MHz

RF Output Power, 802.11ac 20 MHz

Plot 39. RF Output Power, Channel 52, 802.11ac 20 MHz, 5260 MHz

Plot 40. RF Output Power, Channel 60, 802.11ac 20 MHz, 5300 MHz

Plot 41. RF Output Power, Channel 64, 802.11ac 20 MHz, 5320 MHz

Plot 42. RF Output Power, Channel 100, 802.11ac 20 MHz, 5500 MHz

Plot 43. RF Output Power, Channel 116, 802.11ac 20 MHz, 5580 MHz

Plot 44. RF Output Power, Channel 140, 802.11ac 20 MHz, 5700 MHz

RF Output Power, 802.11ac 40 MHz

Plot 45. RF Output Power, Channel 52, 802.11ac 40 MHz, 5270 MHz

Plot 46. RF Output Power, Channel 60, 802.11ac 40 MHz, 5310 MHz

Plot 47. RF Output Power, Channel 100, 802.11ac 40 MHz, 5510 MHz

Plot 48. RF Output Power, Channel 116, 802.11ac 40 MHz, 5590 MHz

Plot 49. RF Output Power, Channel 136, 802.11ac 40 MHz, 5690 MHz

RF Output Power, 802.11ac 80 MHz

Plot 50. RF Output Power, Channel 52, 802.11ac 80 MHz, 5290 MHz

Plot 51. RF Output Power, Channel 100, 802.11ac 80 MHz, 5530 MHz

Plot 52. RF Output Power, Channel 116, 802.11ac 80 MHz, 5610 MHz

Plot 53. RF Output Power, Channel 128, 802.11ac 80 MHz, 5610 MHz

RF Output Power, 802.11n 20 MHz

Plot 54. RF Output Power, Channel 52, 802.11n 20 MHz, 5260 MHz

Plot 55. RF Output Power, Channel 60, 802.11n 20 MHz, 5300 MHz

Plot 56. RF Output Power, Channel 64, 802.11n 20 MHz, 5320 MHz

Plot 57. RF Output Power, Channel 100, 802.11n 20 MHz, 5500 MHz

Plot 58. RF Output Power, Channel 116, 802.11n 20 MHz, 5580 MHz

Plot 59. RF Output Power, Channel 140, 802.11n 20 MHz, 5700 MHz

RF Output Power, 802.11n 40 MHz

Plot 60. RF Output Power, Channel 52, 802.11n 40 MHz, 5270 MHz

Plot 61. RF Output Power, Channel 60, 802.11n 40 MHz, 5310 MHz

Plot 62. RF Output Power, Channel 100, 802.11n 40 MHz, 5510 MHz

Plot 63. RF Output Power, Channel 116, 802.11n 40 MHz, 5590 MHz

Plot 64. RF Output Power, Channel 136, 802.11n 40 MHz, 5710 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(a)(2) Peak Power Spectral Density

Test Requirements: § 15.407(a)(2): In addition, the maximum power spectral density shall not exceed 11 dBm in

any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be

reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator at low,

mid, and high channels in all modes that device is capable of operating. The power level was set to the maximum level on the EUT. The RBW was set to 1MHz and the VBW was set to 3MHz. The method of measurement used was method SA-1 from 789033 D02 General UNII Test Procedures New Rule v01. Plots are correct for attenuator and cable loss. Only worst case measurements were recorded from one of the EUT antenna port and corresponding plots were reported in test report. However all three antenna ports measurement were recorded in tabular

form.

Where applicable total array gain of MIMO system was calculated as:

Total Gain of MIMO antenna system (dBi) = Highest Gain of individual antenna (dBi) + 10*log

(Number of antenna)

Test Results: Equipment was compliant with the peak power spectral density limits of § 15.407 (a)(2). The

peak power spectral density was determined from plots on the following page(s).

Test Engineer(s): Surinder Singh

Test Date(s): 04/17/15

Figure 4. Power Spectral Density Test Setup

	Maximum Conducted Output Power 20MHz Band 802.11a/n/ac Mode MIMO											
Channel	Frequency MHz	Measured PSD (dBm)/1MHz Ant 0	Measured PSD (dBm)/1MHz Ant 1	Measured PSD (dBm)/1MHz Ant 2	Mode	Total PSD dBm	Power Limit (dBm)	Antenna Gain dBi	Margin			
52	5260	1.87	1.98	2.22	a	6.8	7.53	9.47	-0.73			
52	5260	5.56	5.97	6.18	n	10.69	11	4.7	-0.31			
52	5260	5.78	6.04	6.7	ac	10.97	11	4.7	-0.03			
60	5300	2.25	2.47	2.74	a	7.27	7.53	9.47	-0.26			
60	5300	5.78	5.93	6.18	n	10.74	11	4.7	-0.26			
60	5300	5.81	5.98	6.25	ac	10.79	11	4.7	-0.21			
64	5320	2.14	2.47	2.69	a	7.22	7.53	9.47	-0.31			
64	5320	5.92	6.21	6.46	n	10.98	11	4.7	-0.02			
64	5320	5.77	6.03	6.39	ac	10.85	11	4.7	-0.15			
100	5500	1.71	1.92	2.11	a	6.69	7.13	9.87	-0.44			
100	5500	5.41	5.55	5.72	n	10.34	11	5.1	-0.66			
100	5500	4.98	5.29	5.41	ac	10.01	11	5.1	-0.99			
116	5580	1.98	2.02	2.35	a	6.9	7.13	9.87	-0.23			
116	5580	5.91	6.14	6.29	n	10.89	11	5.1	-0.11			
116	5580	5.68	6.03	6.14	ac	10.73	11	5.1	-0.27			
140	5700	1.67	1.82	2.06	a	6.63	7.13	9.87	-0.23			
140	5700	5.65	5.82	6.08	n	10.63	11	5.1	-0.37			
140	5700	5.37	5.74	6.17	ac	10.55	11	5.1	-0.45			

Table 11. Peak Spectral Density, Test Results, 20 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11n and ac MIMO mode, therefore it did not contribute to array gain in power measurement.

	Maximum Conducted Output Power 40MHz Band n and ac Mode MIMO (3*3)											
Chanel Carrier	Frequency MHz	Measured PSD (dBm)/1MHz Ant 0	Measured PSD (dBm)/1MHz Ant 1	Measured PSD (dBm)/1MHz Ant 2	mode	Total PSD	Antenna Gain dBi	Power Limit (dBm)	Margin			
52	5270	2	2.04	2.24	n	6.87	4.7	11	-4.13			
52	5270	2.11	2.34	2.56	ac	7.12	4.7	11	-3.88			
60	5310	0.84	0.97	1.1	n	5.75	4.7	11	-5.25			
60	5310	0.88	1.1	1.28	ac	5.87	4.7	11	-5.13			
100	5510	1.29	1.48	1.85	n	6.32	5.1	11	-4.68			
100	5510	1.05	1.34	1.68	ac	6.14	5.1	11	-4.86			
116	5590	3.04	3.27	3.64	n	8.1	5.1	11	-2.9			
116	5590	3.22	3.42	3.98	ac	8.33	5.1	11	-2.67			
140	5710	2.42	2.5	2.85	n	7.37	5.1	11	-3.63			
140	5710	2.86	2.98	3.11	ac	7.76	5.1	11	-3.24			

Table 12. Peak Spectral Density, Test Results, 40 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11n and ac MIMO mode, therefore it did not contribute to array gain in power measurement.

Maximum Conducted Output Power 80MHz Band ac Mode MIMO (3*3)											
Chanel Carrier	Frequency MHz	Measured Maximum Output Power (dBm)/80MHz Ant 0	Measured Maximum Output Power (dBm)/80MHz Ant 1	Measured Maximum Output Power (dBm)/80MHz Ant 2	mode	Total Output Power	Antenna Gain dBi	Power Limit (dBm)	Margin		
52	5290	-7.23	-6.98	-6.6	ac	-2.15	4.7	11	-13.15		
100	5530	-7.46	-7.42	-6.92	ac	-2.48	5.1	11	-13.48		
116	5610	-1.45	-1.32	-0.96	ac	3.54	5.1	11	-7.46		
132	5690	-1.23	-1.1	-0.73	ac	3.76	5.1	11	-7.24		

Table 13. Peak Spectral Density, Test Results, 80 MHz

Note: Transmitter employed uncorrelated data stream signal in 802.11ac MIMO mode, therefore it did not contribute to array gain in power measurement.

Peak Power Spectral Density, 802.11a 20 MHz

Plot 65. Peak Power Spectral Density, Channel 52, 802.11a 20 MHz, 5260 MHz

Plot 66. Peak Power Spectral Density, Channel 60, 802.11a 20 MHz, 5300 MHz

Plot 67. Peak Power Spectral Density, Channel 64, 802.11a 20 MHz, 5320 MHz

Plot 68. Peak Power Spectral Density, Channel 100, 802.11a 20 MHz, 5500 MHz

Plot 69. Peak Power Spectral Density, Channel 116, 802.11a 20 MHz, 5580 MHz

Plot 70. Peak Power Spectral Density, Channel 140, 802.11a 20 MHz, 5700 MHz

Peak Power Spectral Density, 802.11ac 20 MHz

Plot 71. Peak Power Spectral Density, Channel 52, 802.11ac 20 MHz, 5260 MHz

Plot 72. Peak Power Spectral Density, Channel 60, 802.11ac 20 MHz, 5300 MHz

Plot 73. Peak Power Spectral Density, Channel 64, 802.11ac 20 MHz, 5320 MHz

Plot 74. Peak Power Spectral Density, Channel 100, 802.11ac 20 MHz, 5500 MHz

Plot 75. Peak Power Spectral Density, Channel 116, 802.11ac 20 MHz, 5580 MHz

Plot 76. Peak Power Spectral Density, Channel 140, 802.11ac 20 MHz, 5700 MHz

Peak Power Spectral Density, 802.11ac 40 MHz

Plot 77. Peak Power Spectral Density, Channel 52, 802.11ac 40 MHz, 5270 MHz

Plot 78. Peak Power Spectral Density, Channel 60, 802.11ac 40 MHz, 5310 MHz

Plot 79. Peak Power Spectral Density, Channel 100, 802.11ac 40 MHz, 5510 MHz

Plot 80. Peak Power Spectral Density, Channel 116, 802.11ac 40 MHz, 5590 MHz

Plot 81. Peak Power Spectral Density, Channel 140, 802.11ac 40 MHz, 5690 MHz

Peak Power Spectral Density, 802.11ac 80 MHz

Plot 82. Peak Power Spectral Density, Channel 52, 802.11ac 80 MHz, 5290 MHz

Plot 83. Peak Power Spectral Density, Channel 100, 802.11ac 80 MHz, 5530 MHz

Plot 84. Peak Power Spectral Density, Channel 116, 802.11ac 80 MHz, 5610 MHz

Plot 85. Peak Power Spectral Density, Channel 128, 802.11ac 80 MHz, 5690 MHz

Peak Power Spectral Density, 802.11n 20 MHz

Plot 86. Peak Power Spectral Density, Channel 52, 802.11n 20 MHz, 5260 MHz

Plot 87. Peak Power Spectral Density, Channel 60, 802.11n 20 MHz, 5300 MHz

Plot 88. Peak Power Spectral Density, Channel 64, 802.11n 20 MHz, 5320 MHz

Plot 89. Peak Power Spectral Density, Channel 100, 802.11n 20 MHz, 5500 MHz

Plot 90. Peak Power Spectral Density, Channel 116, 802.11n 20 MHz, 5580 MHz

Plot 91. Peak Power Spectral Density, Channel 140, 802.11n 20 MHz, 5700 MHz

Peak Power Spectral Density, 802.11n 40 MHz

Plot 92. Peak Power Spectral Density, Channel 52, 802.11n 40 MHz, 5270 MHz

Plot 93. Peak Power Spectral Density, Channel 60, 802.11n 40 MHz, 5310 MHz

Plot 94. Peak Power Spectral Density, Channel 100, 802.11n 40 MHz, 5510 MHz

Plot 95. Peak Power Spectral Density, Channel 116, 802.11n 40 MHz, 5590 MHz

Plot 96. Peak Power Spectral Density, Channel 140, 802.11n 40 MHz, 5697 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(b)(4), (6), (7) Undesirable Emissions

Test Requirements: $\S 15.407(b)(2)(3)$:

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35

GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band

shall not exceed an e.i.r.p. of -27 dBm/MHz.

§ 15.407(b)(6): Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. § 15.407(b)(7): The provisions of Section 15.205 of this part

apply to intentional radiators operating under this section.

Test Procedure: The transmitter was placed on an 80cm wooden table inside in a semi-anechoic chamber.

Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast height to determine worst case orientation for maximum emissions. A preamp was used in the range from 7-18GHz to improve noise floor with high pass filter (7-18GHz) to protect the measurement instrument. Plots were corrected for cable loss, antenna, and preamp

gain.

For measurements above 1 GHz, measurements were made with a Peak detector with 1 MHz resolution bandwidth. Where the spurious emissions fell into a restricted band, measurements

were also made with an average detector to make sure they complied with 15.209 limits. Only

noise floor was seen above 18 GHz. Worst case emissions shown by antenna.

Test Results: The EUT was compliant with the Radiated Emission limits for Intentional Radiators. See

following pages for detailed test results. All emissions above 18 GHz were at the noise floor of

the receiver.

*Note: Below 1GHz there were certain frequencies where peak emission was over FCC15.209

quasi peak limit. These failing frequencies were the result of digital emission (These emission were present even with radio unit turned off) and EUT has conformity with class B radiated

emission digital requirement.

Test Engineer(s): Surinder Singh

Test Date(s): 04/21/15

Radiated Spurious Emissions, 802.11a 20 MHz

Plot 97. Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 98. Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 1 GHz – 7 GHz

Plot 99. Radiated Spurious Emissions, Channel 52, 802.11a 20 MHz, 7 GHz - 18 GHz

Plot 100. Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 101. Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 1 GHz - 7 GHz

Plot 102. Radiated Spurious Emissions, Channel 60, 802.11a 20 MHz, 7 GHz – 18 GHz

Plot 103. Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 104. Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 1 GHz - 7 GHz

Plot 105. Radiated Spurious Emissions, Channel 64, 802.11a 20 MHz, 7 GHz – 18 GHz

Plot 106. Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 107. Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 1 GHz – 7 GHz

Plot 108. Radiated Spurious Emissions, Channel 100, 802.11a 20 MHz, 7 GHz – 18 GHz

Plot 109. Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 110. Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 1 GHz – 7 GHz

Plot 111. Radiated Spurious Emissions, Channel 116, 802.11a 20 MHz, 7 GHz – 18 GHz

Plot 112. Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 30 MHz - 1 GHz

Plot 113. Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 1 GHz – 7 GHz

Plot 114. Radiated Spurious Emissions, Channel 140, 802.11a 20 MHz, 7 GHz – 18 GHz

Radiated Spurious Emissions, 802.11ac 20 MHz

Plot 115. Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 30 MHz - 1 GHz

Plot 116. Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 1 GHz - 7 GHz

Plot 117. Radiated Spurious Emissions, Channel 52, 802.11ac 20 MHz, 7 GHz – 18 GHz

Plot 118. Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 30 MHz - 1 GHz

Plot 119. Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 1 GHz - 7 GHz

Plot 120. Radiated Spurious Emissions, Channel 60, 802.11ac 20 MHz, 7 GHz – 18 GHz

Plot 121. Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 30 MHz – 1 GHz

Plot 122. Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 1 GHz - 7 GHz

Plot 123. Radiated Spurious Emissions, Channel 64, 802.11ac 20 MHz, 7 GHz – 18 GHz

Plot 124. Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 30 MHz - 1 GHz

Plot 125. Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 1 GHz – 7 GHz

Plot 126. Radiated Spurious Emissions, Channel 100, 802.11ac 20 MHz, 7 GHz – 18 GHz

Plot 127. Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 30 MHz - 1 GHz

Plot 128. Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 1 GHz – 7 GHz

Plot 129. Radiated Spurious Emissions, Channel 116, 802.11ac 20 MHz, 7 GHz – 18 GHz

Plot 130. Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 30 MHz - 1 GHz

Plot 131. Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 1 GHz - 7 GHz

Plot 132. Radiated Spurious Emissions, Channel 140, 802.11ac 20 MHz, 7 GHz – 18 GHz

Radiated Spurious Emissions, 802.11ac 40 MHz

Plot 133. Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 30 MHz - 1 GHz

Plot 134. Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 1 GHz - 7 GHz

Plot 135. Radiated Spurious Emissions, Channel 52, 802.11ac 40 MHz, 7 GHz – 18 GHz

Plot 136. Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 30 MHz – 1 GHz

Plot 137. Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 1 GHz - 7 GHz

Plot 138. Radiated Spurious Emissions, Channel 60, 802.11ac 40 MHz, 7 GHz – 18 GHz

Plot 139. Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 30 MHz - 1 GHz

Plot 140. Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 1 GHz - 7 GHz

Plot 141. Radiated Spurious Emissions, Channel 100, 802.11ac 40 MHz, 7 GHz – 18 GHz

Plot 142. Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 30 MHz - 1 GHz

Plot 143. Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 1 GHz – 7 GHz

Plot 144. Radiated Spurious Emissions, Channel 116, 802.11ac 40 MHz, 7 GHz – 18 GHz

Plot 145. Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 30 MHz – 1 GHz

Plot 146. Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 1 GHz - 7 GHz

Plot 147. Radiated Spurious Emissions, Channel 132, 802.11ac 40 MHz, 7 GHz – 18 GHz

Radiated Spurious Emissions, 802.11ac 80 MHz

Plot 148. Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 30 MHz - 1 GHz

Plot 149. Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 1 GHz - 7 GHz

Plot 150. Radiated Spurious Emissions, Channel 52, 802.11ac 80 MHz, 7 GHz – 18 GHz

Plot 151. Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 30 MHz - 1 GHz

Plot 152. Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 1 GHz - 7 GHz

Plot 153. Radiated Spurious Emissions, Channel 100, 802.11ac 80 MHz, 7 GHz – 18 GHz

Plot 154. Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 30 MHz - 1 GHz

Plot 155. Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 1 GHz - 7 GHz

Plot 156. Radiated Spurious Emissions, Channel 116, 802.11ac 80 MHz, 7 GHz – 18 GHz

Plot 157. Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 30 MHz - 1 GHz

Plot 158. Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 1 GHz - 7 GHz

Plot 159. Radiated Spurious Emissions, Channel 128, 802.11ac 80 MHz, 7 GHz – 18 GHz

Radiated Spurious Emissions, 802.11n 20 MHz

Plot 160. Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 161. Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 162. Radiated Spurious Emissions, Channel 52, 802.11n 20 MHz, 7 GHz - 18 GHz

Plot 163. Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 164. Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 165. Radiated Spurious Emissions, Channel 60, 802.11n 20 MHz, 7 GHz – 18 GHz

Plot 166. Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 167. Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 168. Radiated Spurious Emissions, Channel 64, 802.11n 20 MHz, 7 GHz – 18 GHz

Plot 169. Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 170. Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 1 GHz – 7 GHz

Plot 171. Radiated Spurious Emissions, Channel 100, 802.11n 20 MHz, 7 GHz – 18 GHz

Plot 172. Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 173. Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 1 GHz – 7 GHz

Plot 174. Radiated Spurious Emissions, Channel 116, 802.11n 20 MHz, 7 GHz – 18 GHz

Plot 175. Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 30 MHz - 1 GHz

Plot 176. Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 177. Radiated Spurious Emissions, Channel 140, 802.11n 20 MHz, 7 GHz – 18 GHz

Radiated Spurious Emissions, 802.11n 40 MHz

Plot 178. Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 30 MHz - 1 GHz

Plot 179. Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 1 GHz – 7 GHz

Plot 180. Radiated Spurious Emissions, Channel 52, 802.11n 40 MHz, 7 GHz - 18 GHz

Plot 181. Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 30 MHz - 1 GHz

Plot 182. Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 1 GHz - 7 GHz

Plot 183. Radiated Spurious Emissions, Channel 60, 802.11n 40 MHz, 7 GHz - 18 GHz

Plot 184. Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 30 MHz – 1 GHz

Plot 185. Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 1 GHz – 7 GHz

Plot 186. Radiated Spurious Emissions, Channel 100, 802.11n 40 MHz, 7 GHz – 18 GHz

Plot 187. Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 30 MHz - 1 GHz

Plot 188. Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 1 GHz – 7 GHz

Plot 189. Radiated Spurious Emissions, Channel 116, 802.11n 40 MHz, 7 GHz – 18 GHz

Plot 190. Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 30 MHz - 1 GHz

Plot 191. Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 1 GHz - 7 GHz

Plot 192. Radiated Spurious Emissions, Channel 132, 802.11n 40 MHz, 7 GHz - 18 GHz

Radiated Band Edge, 802.11a 20 MHz

Following formula was used from KDB Publication 789033 section G.2.a.(3) to convert 54dBuV/m @ 3m FCC15.209 limit to convert into EIRP value for average Band edge plots:

```
\begin{split} EIRP[dBm] &= E[dB\mu V/m] - 95.2[dB] \\ &= 54[dB\mu V/m] - 95.2[dB] \\ &= -41.2[dBm] \end{split}
```


Plot 193. Radiated Band Edge, 802.11a 20 MHz, Channel 64, Average

Plot 194. Radiated Band Edge, 802.11a 20 MHz, Channel 64, Peak

Plot 195. Radiated Band Edge, 802.11a 20 MHz, Channel 100, Average

Plot 196. Radiated Band Edge, 802.11a 20 MHz, Channel 100, Peak

Radiated Band Edge, 802.11ac 20 MHz

Plot 197. Radiated Band Edge, 802.11ac 20 MHz, Channel 64, Average

Plot 198. Radiated Band Edge, 802.11ac 20 MHz, Channel 64, Peak

Plot 199. Radiated Band Edge, 802.11ac 20 MHz, Channel 100, Average

Plot 200. Radiated Band Edge, 802.11ac 20 MHz, Channel 100, Peak

Radiated Band Edge, 802.11ac 40 MHz

Plot 201. Radiated Band Edge, 802.11ac 40 MHz, Channel 60, Average

Plot 202. Radiated Band Edge, 802.11ac 40 MHz, Channel 60, Peak

Plot 203. Radiated Band Edge, 802.11ac 40 MHz, Channel 100, Average

Plot 204. Radiated Band Edge, 802.11ac 40 MHz, Channel 100, Peak

Radiated Band Edge, 802.11ac 80 MHz

Plot 205. Radiated Band Edge, 802.11ac 80 MHz, Channel 52, Average

Plot 206. Radiated Band Edge, 802.11ac 80 MHz, Channel 52, Peak

Plot 207. Radiated Band Edge, 802.11ac 80 MHz, Channel 100, Average

Plot 208. Radiated Band Edge, 802.11ac 80 MHz, Channel 100, Peak

Radiated Band Edge, 802.11n 20 MHz

Plot 209. Radiated Band Edge, 802.11n 20 MHz, Channel 64, Average

Plot 210. Radiated Band Edge, 802.11n 20 MHz, Channel 64, Peak

Plot 211. Radiated Band Edge, 802.11n 20 MHz, Channel 100, Average

Plot 212. Radiated Band Edge, 802.11n 20 MHz, Channel 100, Peak

Radiated Band Edge, 802.11n 40 MHz

Plot 213. Radiated Band Edge, 802.11n 40 MHz, Channel 60, Average

Plot 214. Radiated Band Edge, 802.11n 40 MHz, Channel 60, Peak

Plot 215. Radiated Band Edge, 802.11n 40 MHz, Channel 100, Average