DRAWINGS

Figure 1

2 liter Fernbach Flask

Oxygen transfer is limited by the small surface area on the top, and the foam that forms.

Figure 2

Time During Fermentation	Yield	Ammonia Needed	Water Produced	CO. Produced	Yeast Produced (C-H -O-N)	Ethanol Produced (C-H-O)
	(g cells/ g sugar)	(grams)	(grams)	(liters)	(grams dry wt.)	(grams)*
1st 3rd	.15	18.70	5.1	22.51	15.04	41.19
2nd 3rd	.052	.65	1.79	25.54	5.20	47.68
3rd 3rd	.023	.29	.79	26.44	2.30	49.61
Overall	.05	.626	1.72	25.60	5.00	48.52

^{*} For ethanol volume, divide weight (in grams) by its' density (0.789 grams/ml)

Table 1

EQXchrgd Xchrgd = $0.504076447609 \times EXP(-0.0816252748703 \times Ratio)$

Figure 3 / Equation 10

Sample Name	Time (hours)	X weight (grams)	S.G. Reading (g S/I. see EQSG)	Measured CO2 Flow (ml / min)
to	0	1.415	183.59	0
t;	15.75	2.73	178.11	3.944
t_2	21.03	5.1	158.94	12.344
t₃	24.5	6.18	147.99	15.074
ta	44.08	8.38	95.965	7.234

Table 2

Comparison of the four data points with the yield curve (EQ%used) $Y = -6.67814305038 \times 10^2 \times [ln(\%used)] + 0.284841059276$ log fit; r^2 : -.9924

Figure 4

	 w mass b?					
	G Charge what new mass b?	(EQXchrgd)	0.471	0.475	0.5	0.493
on Data	F Ratio new X/Start X	(Starting X + E) / Starting X	1.9923	1.88925	1.22457	1.434307
Fest Fermentation Data	Sub-total new	(B + D)	1.404145	2.4276576	1.14528	2.6840176
Test F	D 's of Mass lost from	starting X decay	0.089145	0.0576576	0.06528	0.4840176
	C Total hours of	interval	15.75	5.28	3.2	19.58
	B Observed New X		1.315	2.37	1.08	2.2
b=.004/hr	A interval		to - t1	t ₁ - t ₂	t2 - t3	t3 - t4

Г						
Σ	% of actual Yield		97.83%	112.80%	93.10%	93.72%
	Yield (fm curve)	g X / g S	0.258098264	0.144275124	0.097997972	0.05021553
¥	Yield	g X / g S	0.263833977	0.127908809	0.105261168	0.053582936
ſ	Average % S consumed		1.4925	8.206	16.409	33.56
	Amount of sugar used	(g/l)	5.48	19.17	10.95	52.025
-	Total new mass yield	(E + H)	1.4458102	2.45201186	1.152609792	2.7876522
I	Decay of new mass	$(E \times G \times C \times .004)$	0.0416652	0.024354261	0.007329792	0.103634643
A	Interval		to - t ₁	t ₁ - t ₂	t2 - t3	ta - ta

Table 3

Evaluation of Test Fermentation

1			1
	Total new X	(grams)	
Control of the Contro	Ratio fm EQYId	(I CO ₂ /g X)	
	Yield fm EQ%used		
	% fraction of S		
	Interval		

0.79324921	1.52663404 2.452006	2.3594534 1.1526299	5.00801093 2.787623
0.2580973 0.	0.14427497	0.097998	0.0502161 5.0
1.4925	8.206	16.409	33.56
to - t ₁	t ₁ - t ₂	t2 - t3	t3 - t4

iters CO ₂ predicted	liters CO ₂ predicted	Average measured CO ₂	liters CO ₂ predicted fm avg of measured	
fm model (g X x Ratio)	by actual Yield	(ml / min)	CO ₂ flow rate at this interval	

į

to - t1	1.1469	1.1192	1.972	1.8635
t ₁ - t ₂	3.7433	4.2872	8.144	2.58
t2 - t3	2.71968	2.5095	13.709	2.6321
ta-ta	13.9604	12.9849	11.154	13.1037

Table 4