Fast Algorithms and Performance Bounds for Sum Rate Maximization in Wireless Networks

Chee Wei Tan

California Institute of Technology

INFOCOM 2009, Rio de Janeiro, Brazil 22nd Apr 2009

Acknowledgement

- Mung Chiang (Princeton)
- R. Srikant (Uni. of Illinois at Urbana-Champaign)
- Steven Low (Caltech)
- Kevin Tang (Cornell)

Outline

- Motivations
- System Model
- Nonconvex Sum Rate Maximization
- Power Control Algorithms with Performance Guarantees
- Geometry of Rate Region
- On-going Work

Motivation 1

- IEEE 802.11b ad hoc network cross-layer (TCP/IP/MAC)
- TCP/IP and application layers demand data rate
- MAC/Physical layers build variable capacity 'pipes' as supply

Motivation 2

 3G CDMA2000 EV-DO cellular network link adaptation maximizes uplink/downlink rate using power control

System Model

- Interference channel with single-user decoding: Treat interference as additive Gaussian noise
- Control interference and meet objective using power control

Performance Metrics

Signal-to-Interference Ratio:

$$\mathsf{SIR}_l(\mathbf{p}) = rac{G_{ll}p_l}{\displaystyle\sum_{j
eq l} G_{lj}p_j + n_l}$$

with G_{lj} the channel gains from transmitter j to receiver l and n_l the additive white Gaussian noise (AWGN) power at receiver l

- Attainable data rate (nats per channel use) is a function of SIR, e.g., Shannon capacity formula $r_l = \log(1 + \mathsf{SIR}_l)$
- Mean Squared Error (MSE) of received signal, e.g., $(1 + SIR_l)^{-1}$
- Power constraints $\mathbf{p} \leq \bar{\mathbf{p}}$

Interference Parameters

ullet Let ${f F}$ be a nonnegative matrix with entries:

$$F_{ij} = \begin{cases} 0, & \text{if } i = j \\ \frac{G_{ij}}{G_{ii}}, & \text{if } i \neq j \end{cases}$$

and

$$\mathbf{v} = \left(\frac{n_1}{G_{11}}, \frac{n_2}{G_{22}}, \dots, \frac{n_L}{G_{LL}}\right)^{\top}.$$

• F is irreducible (each user has at least one interferer)

System Considerations

- How to solve optimally nonconvex power control problems?
- How many ways to characterize optimality?
- How to design distributed power control algorithms with fast convergence and good performance guarantees?
- How fast is fast?
- Can we leverage existing technology?
- What is the industry impact?

Interplay of Mathematical Tools

Problem: Maximize Sum Shannon Rates

• Find
$$\mathbf{p}^* = \arg\max_{\mathbf{0} \leq \mathbf{p} \leq \overline{\mathbf{p}}} \sum_{l} w_l \log(1 + \mathsf{SIR}_l(\mathbf{p}))$$
 where $\mathbf{1}^{\top} \mathbf{w} = 1$

• Characterize the achievable rate region: $r_l = \log(1 + \mathsf{SIR}_l(\mathbf{p})) \ \forall \ l$

• Two-User case: $\max \ w_1 \log \left(1 + \frac{G_{11}p_1}{G_{12}p_2 + n_1} \right) + w_2 \log \left(1 + \frac{G_{22}p_2}{G_{21}p_1 + n_2} \right)$

subject to: $0 \leq p_1 \leq \bar{p}_1, \ 0 \leq p_2 \leq \bar{p}_2$

Sum Rate Geometry Illustration

```
maximize \sum_{l} w_{l} \log(1 + \mathsf{SIR}_{l}(\mathbf{p})) = \sum_{l} w_{l} r_{l} subject to 0 \leq p_{l} \leq \bar{p}_{l} \ \forall \, l, variables: p_{l} \ \forall \, l.
```


Fast Algorithms with Performance Guarantees

Tan, Chiang and Srikant, Fast Algorithms and Performance Bounds for Sum Rate

Maximization in Wireless Networks, IEEE INFOCOM, 2009

SAPC: New Perspective

• Drop the '1' approach:

```
maximize \sum_{l} w_{l} \log \mathsf{SIR}_{l}(\mathbf{p}) subject to 0 \leq p_{l} \leq \overline{p}_{l} \ \forall \, l, variables: p_{l} \ \forall \, l.
```

- ullet Geometric programming ($ilde p_l = \log p_l$)
 Chiang, Tan, Palomar, O'Neill, Julian, $Power\ Control\ by\ Geometric\ Programming$, IEEE Trans
 Wireless Comms, 2007
- 1) Connection with Weighted max-min SIR
 - 2) New algorithm with faster convergence

SAPC: Algorithm

- Algorithm 1. [SAPC Algorithm]
 - 1. *Update* p(k + 1):

$$p_l(k+1) = \min \left\{ w_l / \left(\sum_{j \neq l} \frac{w_j F_{jl} \mathsf{SIR}_j(\mathbf{p}(k))}{p_j} \right), \bar{p}_l \right\}$$

for all l, where k indexes discrete time slots.

Theorem 1. Starting from any initial point $\mathbf{p}(0)$, $\mathbf{p}(k)$ in Algorithm 1 converges to \mathbf{p}' asymptotically, the optimal solution to SAPC under synchronous and asynchronous updates.

 \bullet Geometrically fast when the initial point is $\overline{\mathbf{p}}$.

SAPC: Examples

• Algorithm SAPC is faster than the gradient algorithm (stepsize α)

Weighted Max-Min SIR

- Consider $\max_{\mathbf{p} \geq \mathbf{0}} \ \min_{l} \frac{\mathsf{SIR}_{l}(\mathbf{p})}{\beta_{l}}$ subject to $p_{l} \leq \overline{p}_{l} \ \ \forall \ l$
- Theorem 2. The optimal solution is such that the value SIR_l/β_l for all users are equal. The optimal weighted max-min SIR is given by

$$\gamma^* = \frac{1}{\rho(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_i)\mathbf{ve}_i^{\top}))},$$

where

$$i = \arg\min_{l} \frac{1}{\rho(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_l)\mathbf{ve}_l^{\top}))}.$$

Further, all links i transmit at peak power \bar{p}_i and the rest do not. Further, the optimal \mathbf{p} , denoted by \mathbf{p}^* , is $t\mathbf{x}(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_l)\mathbf{ve}_l^{\top}))$ for some constant t > 0.

Connecting SAPC & Max-min SIR

- Let \mathbf{x} and \mathbf{y} be the Perron and left eigenvectors of $\mathbf{F} + (1/\bar{p}_i)\mathbf{ve}_i^{\mathsf{T}}$ respectively, where $i = \arg\min_l \frac{1}{\rho(\mathbf{F} + (1/\bar{p}_l)\mathbf{ve}_l^{\mathsf{T}})}$
- Set $\mathbf{w} = \mathbf{x} \circ \mathbf{y}$ in SAPC:

```
maximize \sum_{l} x_{l} y_{l} \log \mathsf{SIR}_{l}(\mathbf{p}) subject to 0 \leq p_{l} \leq \overline{p}_{l} \ \forall \, l, variables: p_{l} \ \forall \, l.
```

 $\mathbf{p}^* = \mathbf{x}$ (unique up to a scaling constant)

Max-min SIR: Primal-Dual Algorithm

- Algorithm 2. [Weighted Max-min SIR Algorithm]
 - 1. Initialize an arbitrarily positive $\mathbf{w}(t)$ and small $\epsilon, \alpha(1)$.
 - 2. Set $\mathbf{p}(0) = \bar{\mathbf{p}}$. Repeat

$$p_l(k+1) = \min \left\{ w_l(t) / \left(\sum_{j \neq l} \frac{w_j(t) F_{jl} \mathsf{SIR}_j(\mathbf{p}(k))}{p_j(k)} \right), \bar{p}_l \right\}$$

until $\|\mathbf{p}(k+1) - \mathbf{p}(k)\| \le \epsilon$.

3. Compute

$$w_l(t+1) = \max\{w_l(t) + \alpha(t)(\sum_j w_j(t)\log(\mathsf{SIR}_j(\mathbf{p}(k+1))/\beta_j) - \log(\mathsf{SIR}_l(\mathbf{p}(k+1))/\beta_l)), 0\}$$

for all l, where t indexes discrete time slots much larger than k.

4. Normalize $\mathbf{w}(t+1)$ so that $\mathbf{1}^{\top}\mathbf{w}(t+1)=1$. Go to Step 2.

Nonlinear Perron-Frobenius Theory

ullet Find $(\check{\lambda},\check{\mathbf{s}})$ in

$$\lambda \mathbf{s} = \mathbf{A}\mathbf{s} + \mathbf{b}, \quad \lambda \in \mathbb{R}, \quad \mathbf{s} \ge \mathbf{0}, \quad \|\mathbf{s}\| = 1,$$

where A and b is a square irreducible nonnegative matrix and nonnegative vector, respectively and $\|\cdot\|$ a monotone vector norm.

• $(\check{\lambda},\check{\bf s})$ is the Perron-Frobenius eigenvalue and vector pair of ${\bf A}+{\bf bc}_*$, where

$$\mathbf{c}_* = \arg\max_{\|\mathbf{c}\|_*=1} \rho(\mathbf{A} + \mathbf{b}\mathbf{c}^{\top}),$$

where $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$, and $\check{\mathbf{s}} = (\mathbf{A}\check{\mathbf{s}} + \mathbf{b})/\|\mathbf{A}\check{\mathbf{s}} + \mathbf{b}\|$.

V. D. Blondel, L. Ninove and P. Van Dooren, An affine eigenvalue problem on the nonnegative orthant, Linear Algebra & its Applications, 2005

Nonlinear Perron-Frobenius Theory: Max-min SIR

• Individual power constraints $(\bar{p}_1 = \bar{p}_2 = \cdots = \bar{p}_L)$:

$$\mathsf{SIR}_{l}(\mathbf{p}^{*}) = \tau^{*}\beta_{l} \ \Rightarrow \ \frac{(p_{l}^{*}/\bar{p}_{i})}{\sum_{j\neq l} F_{lj}(p_{l}^{*}/\bar{p}_{i}) + (v_{l}/\bar{p}_{i})} = \tau^{*}\beta_{l}$$

Let
$$\mathbf{s}^* = (1/\bar{p}_i)\mathbf{p}^*$$
:

$$(1/\tau^*)\mathbf{s}^* = \operatorname{diag}(\boldsymbol{\beta})\mathbf{F}\mathbf{s}^* + (1/\bar{p}_i)\operatorname{diag}(\boldsymbol{\beta})\mathbf{v}, \|\mathbf{s}\|_{\infty} = 1$$

- • $s_l = p_l/\bar{p}_l$, $\mathbf{A} = \operatorname{diag}(\boldsymbol{\beta})\mathbf{F}$, $\mathbf{b} = (1/\bar{p}_i)\operatorname{diag}(\boldsymbol{\beta})\mathbf{v}$ and $\lambda = 1/\tau^*$
 - $\blacksquare \|\cdot\| = \|\cdot\|_{\infty} \longleftrightarrow \|\cdot\|_{*} = \|\cdot\|_{1} \quad \& \quad \mathbf{c}_{*} = \mathbf{e}_{i}$
 - $(\check{\lambda}, \check{\mathbf{s}})$ is the Perron-Frobenius eigenvalue and vector pair of $\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_i)\mathbf{ve_i}^{\top})$

A Faster Max-min SIR Algorithm

- Algorithm 3. [Equal power constrained Max-min SIR]
 - 1. Update power $\mathbf{p}(k+1)$:

$$p_l(k+1) = \frac{\beta_l}{\mathsf{SIR}_l(\mathbf{p}(k))} p_l(k) \ \forall \ l.$$

2. Normalize $\mathbf{p}(k+1)$:

$$p_l(k+1) = p_l(k+1) / \max_j p_j(k+1) \cdot \bar{p}_i \ \forall \ l.$$

• Theorem 3. Starting from any initial point $\mathbf{p}(0)$, $\mathbf{p}(k)$ in Algorithm 3 converges geometrically fast to $\mathbf{x}(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_i)\mathbf{ve}_i^{\mathsf{T}}))$ (unique up to a scaling constant).

Max-min SIR: Examples

 The nonlinear Perron-Frobenius theory based algorithm is much faster than the subgradient algorithm

Goodness of Suboptimality

- \bullet Max-min SIR, SAPC, All- $\bar{\mathbf{p}}$, One-On-Others-Off, . . .
- Good suboptimal solutions may have attractive implementation quality
 - Simplicity, distributed protocol, fairness, backward compatibility
- Strongly NP-hard and Inapproximability [LuoZhang07]

 Z.-Q. Luo and S. Zhang, Dynamic Spectrum Management: Complexity and Duality,

 IEEE J. of Selected Topics in Signal Processing, 2007

 $\mathsf{Objective}(\mathbf{p}_{\scriptscriptstyle{\mathsf{approx}}}) \leq \mathsf{Objective}(\mathbf{p}^{\star}) \leq \eta \cdot \mathsf{Objective}(\mathbf{p}_{\scriptscriptstyle{\mathsf{approx}}})$ where $\eta \geq 1$

Quasi-Inverse of Nonnegative Matrices

- Definition [Wong54]: \mathbf{B} is a quasi-inverse of $\tilde{\mathbf{B}} \geq \mathbf{0}$ if $\mathbf{B} \tilde{\mathbf{B}} = \mathbf{B}\tilde{\mathbf{B}} = \tilde{\mathbf{B}}\mathbf{B} > \mathbf{0}$
- Instrumental property of Minkowski-Leontief (ML) matrices in mathematical economy [Wong54]
- $(I + B)^{-1}B = B(I + B)^{-1} \ge 0$
- $\rho(\tilde{\mathbf{B}}) = \frac{\rho(\mathbf{B})}{1 + \rho(\mathbf{B})}$
- $\mathbf{x}(\tilde{\mathbf{B}}) = \mathbf{x}(\mathbf{B}) \& \mathbf{y}(\tilde{\mathbf{B}}) = \mathbf{y}(\mathbf{B})$

Interference & SNR Regime

Consider the matrix

$$\mathbf{B} = \mathbf{F} + \sum_{l} \frac{1}{\mathbf{1}^{\top} \overline{\mathbf{p}}} \mathbf{v} \mathbf{e}_{l}^{\top}$$

- (High SNR regime) B does not exist
 or any nonnegative matrix with a zero trace & positive off-diagonals
- (Low SNR regime) $\tilde{\mathbf{B}}$ always exists or any nonnegative matrix that is a dyad
- (Low interference/moderate SNR regime) B almost always exists

Tight Upper Bound: Key Theorem

• If $\tilde{\mathbf{B}} \geq \mathbf{0}$, then

$$\sum_{l} w_l \log(1 + \mathsf{SIR}_l(\mathbf{p}^*)) \le \|\mathbf{w}\|_{\infty}^{\mathbf{x} \circ \mathbf{y}} \log(1 + 1/\rho(\mathbf{B})),$$

where x, y are the Perron and left eigenvectors of B respectively.

- Main ideas of proof:
 - Relaxation of nonconvexity
 - Quasi-invertibility of nonnegative matrix [Wong54]
 - Friedland-Karlin Inequalities [FriedlandKarlin75]
- Physical and operational meaning of upper bound

Physical Interpretation of Upper Bound (I)

- $\sum_{l} w_l \log(1 + \mathsf{SIR}_l(\mathbf{p}^*)) \le \|\mathbf{w}\|_{\infty}^{\mathbf{x} \circ \mathbf{y}} \log(1 + \mathbf{1}/\rho(\mathbf{B}))$.
- • $1 \le \|\mathbf{w}\|_{\infty}^{\mathbf{x} \circ \mathbf{y}} \le \frac{1}{\min_l (\mathbf{x} \circ \mathbf{y})_l}$ as an approximation ratio using

maximize
$$\min_{l} SIR_{l}(\mathbf{p})$$
 subject to $\mathbf{1}^{\top}\mathbf{p} \leq \mathbf{1}^{\top}\overline{\mathbf{p}}$ variables: \mathbf{p} .

Closed-form solution (via Nonlinear Perron-Frobenius Theory):

Optimal solution :
$$1/\rho(\mathbf{B}), \ \mathbf{B} = \mathbf{F} + (1/\mathbf{1}^{\mathsf{T}}\mathbf{\bar{p}})\mathbf{v}\mathbf{1}^{\mathsf{T}};$$
Optimizer : $\mathbf{x}(\mathbf{B})$

General Bounds

- A subset of users $C = \{l \mid l = 1, ..., L\}$ with $|C| \leq L$. Users in C transmit with positive power. Users that belong to \overline{C} are removed (delete rows/columns of \mathbf{B})
- L users $\Rightarrow \sum_{l=1}^{L-2} {L \choose l} + 2$ possible configurations
- General upper bound (subject to $\tilde{\mathbf{B}}_{\mathcal{C}} \geq \mathbf{0}$):

$$\sum_{l=1}^{L} w_l \log(1 + \mathsf{SIR}_l(\mathbf{p}^*))$$

$$\leq \max_{l \in \mathcal{C}} \frac{w_l}{(\mathbf{x}(\mathbf{B}_{\mathcal{C}}) \circ \mathbf{y}(\mathbf{B}_{\mathcal{C}}))_l} \log\left(1 + \frac{1}{\rho(\mathbf{B}_{\mathcal{C}})}\right) + \sum_{l \in \bar{\mathcal{C}}} w_l \log(1 + \frac{G_{ll}\bar{p}_l}{n_l})$$

Performance Guarantee: Weighted Max-min SIR

• Theorem 4. Suppose $\tilde{B} \geq 0$. Let

$$\eta = \frac{\sum_{l} w_{l} \log(1 + \frac{w_{l}}{\rho(\operatorname{diag}(\mathbf{w})(\mathbf{F} + (1/\overline{p}_{i})\mathbf{ve}_{i}^{\top})))}}{\|\mathbf{w}\|_{\infty}^{\mathbf{x}(\mathbf{B})\circ\mathbf{y}(\mathbf{B})} \log(1 + 1/\rho(\mathbf{B}))},$$

where

$$i = \arg\min_{l} \frac{1}{\rho(\operatorname{diag}(\mathbf{w})(\mathbf{F} + (1/\overline{p}_{l})\mathbf{v}\mathbf{e}_{l}^{\top}))}.$$

Then, η is an approximation ratio by solving the constrained max-min weighted SIR problem:

$$maximize \quad \min_{l} rac{\mathsf{SIR}_{l}(\mathbf{p})}{w_{l}}$$
 $subject \ to \quad \mathbf{p} \leq \overline{\mathbf{p}}$ $variables: \quad \mathbf{p}.$

Quasi-invertibility in Wireless Network: Examples

Parameter	Avg. %	SAPC	Max-min	On-off
	of $ ilde{\mathbf{B}} \geq 0$	(η)	$SIR\ (\eta)$	sched. (η)
$\bar{p}_l = 33 \text{mW} \forall l$	99	0.97	0.99	0.89
SNR = 7dB		(0.93)	(0.96)	(0.84)
$\bar{p}_l = 1 W \forall l$	65	0.87	0.91	0.87
SNR = 40dB		(0.82)	(0.83)	(0.82)

Table 1: A typical numerical example in a ten-user network with two different maximum power constraint settings.

A Simple & Useful Engineering Indicator

$$\mathbf{F} = \begin{bmatrix} 0 & \rho/1.2 \\ 1.4\rho & 0 \end{bmatrix}, \quad \mathbf{v} = [0.0417, \ 0.15]^T, \quad \bar{\mathbf{p}} = [1, \ 1]^T$$

$$\tilde{\mathbf{B}} \ge \mathbf{0}$$
 \Rightarrow $F_{12}F_{21}(\bar{p}_1 + \bar{p}_2) + F_{12}v_2 + F_{21}v_1 \le \min\{v_1, v_2\}$

As Eigenvalue Problem: SIR Domain

Theorem 5. Consider the following maximization problem:

$$\begin{array}{ll} \textit{maximize} & \sum_{l} w_{l} \log(1 + \gamma_{l}) \\ \textit{subject to} & \rho(\textit{diag}(\boldsymbol{\gamma})(\mathbf{F} + (1/\bar{p}_{l})\mathbf{ve}_{l}^{\top})) \leq 1 \quad \forall \, l, \\ \textit{variables:} & \gamma_{l}, \quad \forall \, l. \end{array}$$

The optimal SIR vector γ^* is related to the optimal power vector \mathbf{p}^* as follows:

$$\mathbf{p}^{\star} = (\mathbf{I} - diag(\boldsymbol{\gamma}^{\star})\mathbf{F})^{-1} diag(\boldsymbol{\gamma}^{\star})\mathbf{v}.$$

Further, there exists a link i such that

$$\rho(\operatorname{diag}(\boldsymbol{\gamma}^{\star})(\mathbf{F} + (1/\bar{p}_l)\mathbf{ve}_l^{\top})) \leq \rho(\operatorname{diag}(\boldsymbol{\gamma}^{\star})(\mathbf{F} + (1/\bar{p}_i)\mathbf{ve}_i^{\top})) = 1$$

for all l. Further, \mathbf{p}^{\star} is the Perron eigenvector of $\operatorname{diag}(\boldsymbol{\gamma}^{\star})(\mathbf{F} + (1/\overline{p}_i)\mathbf{ve}_i^{\top})$ for some i corresponding to Perron eigenvalue of 1.

Power Controlled Achievable Rate Region (I)

 Rate region with power control only as nonnegative matrix eigenvalue constraint set:

$$\mathcal{R}$$
 where
$$\mathcal{R} = r \in \{ \rho(\mathsf{diag}(e^{\mathbf{r}} - \mathbf{1})(\mathbf{F} + (1/\overline{p}_l)\mathbf{ve}_l^\top)) \leq 1 \quad \forall \ l \}$$

Rate region with power control and time sharing:

$$\begin{array}{ll} \textit{co}\mathcal{R} \\ \text{where} & \mathcal{R} = r \in \{\rho(\mathsf{diag}(e^{\mathbf{r}} - \mathbf{1})(\mathbf{F} + (1/\overline{p}_l)\mathbf{ve}_l^\top)) \leq 1 \quad \forall \ l\} \end{array}$$

Low and High SNR regime

On-going Related Work

- Eigenvalue characterization enables efficient global optimization of sum rate maximization
 - Maximizing Sum Rates in Multiuser Communication Systems: Theory and Algorithms, 20th Meeting of the International Symposium for Mathematical Programming
- Realize $\tilde{\mathbf{B}} \geq \mathbf{0}$ by
 - Scheduling by clusters (IEEE 802.11b RTS-CTS)
 - Beamforming
- Connection with Information Theory
- Nonconvex nonnegative cone programming and nonnegative matrix theory

Thank You

http://www.its.caltech.edu/~cheetan

cheetan@caltech.edu