Math Logic: Assignment 3

Oct 18, 2022

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only present the final results.

1. (5pt) Let $A_0, A_1, \ldots, A_n, \ldots$ be a listing of *all* the effectively decidable subset of \mathbb{N} . Let B be the binary relation on \mathbb{N} defined by

$$(m,n) \in B \iff m \in A_n.$$

Prove that B is *not* effectively decidable (Hint: Use a diagonal argument).

- 2. (5pt) For any wff α , prove that the number of occurrences of sentences symbols in α (denoted by $s(\alpha)$) is 1 greater than the number of binary connectives $(\wedge, \vee, \rightarrow, \leftrightarrow)$ in α (denoted by $c(\alpha)$). For example, if $\alpha = ((\neg A_3) \lor (A_8 \leftrightarrow A_3))$, then $s(\alpha) = 3, c(\alpha) = 2$ and $s(\alpha) = c(\alpha) + 1$. (Hint: use the induction principle for wffs.)
- 3. (4pt) Apply the parsing alogrithm to construct the parse tree of

$$((A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C)))$$

You need to draw the resulting parse tree and explain how is it constructed by the algorithm.

- 4. (5pt) Determine whether or not
 - (2pt) $(P \land Q) \rightarrow R$ tautologically implies $(P \rightarrow R) \lor (Q \rightarrow R)$;
 - (3pt) $(P \land Q) \rightarrow R$ is tautologically equivalent to $(P \rightarrow R) \lor (Q \rightarrow R)$.
- 5. (5pt) Determine whether or not the following wffs are tautologies:
 - (2pt) $((P \rightarrow Q) \rightarrow P) \rightarrow P$;
 - (3pt) $(A \leftrightarrow B) \rightarrow \neg ((A \rightarrow B) \rightarrow \neg (B \rightarrow A))$.
- 6. (6pt) Prove the following holds:
 - (3pt) If $\Sigma \vDash \alpha$ then for any β , $\Sigma \vDash \beta \rightarrow \alpha$;
 - (3pt) Σ , $\beta \vDash \alpha$ iff $\Sigma \vDash \beta \rightarrow \alpha$.