2.5. Acción de un grupo sobre un conjunto

Una **acción de un grupo** (G, *) sobre un conjunto X es una aplicación $\rho: G \to S_X$, de (G, *) sobre X, que verifica las siguientes condiciones:

- 1. $e_G \cdot x = x$ para todo $x \in X$
- 2. $(g_1 * g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$ para todos $g_1, g_2 \in G, x \in X$

Relación de G-equivalencia

Sea (G,*) grupo actuando sobre el conjunto $X \Rightarrow$ la siguiente relación es de equivalencia, y se denomina **relación de** G-**equivalencia en** X

$$\forall x, y \in X, \ x \sim_G y \Leftrightarrow \exists g \in G \ \text{tal que } g \cdot x = y$$

Para cada $x \in X$ se llama **órbita de** x a la clase de equivalencia del elemento x:

$$O_x = \{ y \in X : x \sim_G y \}$$

Subgrupo estabilizador de un elemento

Sea (G,*) grupo actuando sobre el conjunto X. Para cada $x \in X$ se llama **estabilizador de** x a

$$G_x = \{ g \in G : g \cdot x = x \}$$

y se verifica que $G_x \leq G$ para todo $x \in X$

El tamaño de una órbita

Si (G,*) es un grupo que actúa sobre el conjunto X, para todo $x \in X$ es

$$|O_r| = [G:G_r]$$

Orden de subgrupos estabilizadores

Si (G,*) es un grupo que actúa sobre el conjunto X entonces

$$\forall x, y \in X$$
 tales que $x \sim_G y$ se verifica que $|G_x| = |G_y|$

Teorema de Burnside. El número de órbitas

Sea (G,*) un grupo finito que actúa sobre el conjunto X.

Para cada $g \in G$ el **conjunto de puntos fijos por** g se nota por

$$X_q = \{x \in X : g \cdot x = x\} \subseteq X$$

Sea $N = |X/\sim_G|$ el número total de órbitas de X, entonces

$$N = \frac{1}{|G|} \cdot \sum_{g \in G} |X_g|$$

2.5. Problemas

- 1. Se considera cada uno de los siguientes grupos de permutaciones actuando sobre el conjunto X indicado. Calcular los conjuntos X_q y los subgrupos G_x :
 - a) Grupo $S_3 = \{e = (1), \rho = (1, 2, 3), \rho^2 = (1, 3, 2), \mu = (1, 2), \rho\mu = (1, 3), \rho^2\mu = (2, 3)\}$ sobre $X = \{1, 2, 3\}$
 - b) Grupo $G=\{e=(1), \mu=(1,2), \sigma=(3,4,5), \sigma^2=(3,5,4), \mu\sigma=(1,2)(3,4,5), \mu\sigma^2=(1,2)(3,5,4)\}$ sobre $X=\{1,2,3,4,5,6\}$
- 2. Obtener las clases de G-equivalencia para cada uno de los casos del ejercicio anterior y verificar que $|G| = |O_x||G_x|$
- 3. Considerando la acción del grupo (\mathbb{R}^*, \cdot) sobre el conjunto \mathbb{R}^n como el producto escalar usual, calcular las órbitas, los subgrupos estabilizadores y los puntos fijos por cada elemento del grupo.
- 4. Se pretende fabricar tarjetas identificadoras sobre la base de un triángulo equilátero con idénticos anverso y reverso, para ello se elegirá perforar o no cada uno de los vértices de dicho triángulo. Determinar el número de tarjetas distintas que pueden obtenerse.
- 5. Responder a las preguntas del ejercicio anterior para tarjetas identificadoras sobre la base de un pentágono regular.
- 6. a) ¿De cuántas formas se pueden pintar las casillas de un tablero de ajedrez 3×3 usando pintura azul y roja? (el dorso del tablero es de color negro)
 - b) ¿De cuántas formas se puede construir un tablero 3×3 uniendo cuadros de plástico transparente de tamaño 1×1 , de colores rojo y azul, si hay un mínimo de 9 cuadros de cada color?
- 7. Encontrar el número de 4-coloraciones no equivalentes de los vértices de las figuras siguientes, suponiendo que dichas figuras no pueden voltearse.

8. Repetir el ejercicio anterior, si las figuras son transparentes y pueden moverse libremente en el espacio