Examen, 21 avril 2008, 8h30 – 11h30 Durée 3 heures. Documents interdits, calculettes autorisées.

project controllement indépendents (à part II 2 et III 5). Coit N > 1

Les exercices sont essentiellement indépendants (à part II.2 et III.5). Soit N>1, on rappelle que :

- Si a, b sont deux entiers de valeur absolue $\leq N$, la complexité binaire des opérations suivantes est $\widetilde{O}(\log N)$: $a \pm b$, $a \times b$, division euclidienne de a par b, calcul de $\operatorname{pgcd}(a, b)$.
- le calcul de x^N dans un groupe G nécessite $O(\log N)$ multiplications.

Exercice I – Soit N=pq, produit de deux nombres premiers impairs distincts et soit $P\in\mathbb{Z}/N\mathbb{Z}$ un « message ». Le protocole cryptographique RSA repose sur le principe suivant :

- un expéditeur connaissant les paramètres publics N et $c \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^*$ peut calculer et transmettre un message chiffré $Q = P^c \in \mathbb{Z}/N\mathbb{Z}$, sous la forme de son représentant dans [0, N-1].
- si le récepteur connaît la factorisation de N, il peut déchiffrer Q, en calculant successivement $\varphi(N) = (p-1)(q-1)$, un inverse d de c dans $(\mathbb{Z}/\varphi(N)\mathbb{Z})^*$ et $Q^d = P^{cd} = P$ dans $\mathbb{Z}/N\mathbb{Z}$.

[On ne demande pas de justifier ou détailler les assertions ci-dessus.] Connaître la factorisation de N permet manifestement de déchiffrer. On veut réciproquement montrer que la connaissance d'un d tel que $cd \equiv 1 \pmod{\varphi(N)}$ permet de factoriser N facilement.

- 1) Soit ℓ un nombre premier et t > 0 un entier.
- a) Montrer que l'équation $a^t \equiv 1 \pmod{\ell}$ a exactement $\operatorname{pgcd}(t, \ell 1)$ solutions $a \in \mathbb{Z}/\ell\mathbb{Z}$.
- b) En déduire que le nombre de $a \in \mathbb{Z}/N\mathbb{Z}$, qui sont solutions de $a^t \equiv 1 \pmod{N}$ est $\operatorname{pgcd}(t, p-1) \operatorname{pgcd}(t, q-1)$.
- 2) On suppose dorénavant que t est impair.
 - a) Montrer qu'au plus 1/4 des (p-1)(q-1) éléments de $(\mathbb{Z}/N\mathbb{Z})^*$ vérifient $a^t=1$.
- b) Plus généralement, montrer que pour tout $b \in (\mathbb{Z}/N\mathbb{Z})^*$ fixé, au plus 1/4 des éléments de $(\mathbb{Z}/N\mathbb{Z})^*$ vérifient $a^t = b$.
- 3) On suppose donc c, d, N connus comme dans l'introduction et on écrit $cd 1 = 2^e t$, avec t impair.
- a) Montrer que pour tout $a \in (\mathbb{Z}/N\mathbb{Z})^*$ on a $a^{t2^e} = 1$, puis que pour au moins la moitié d'entre eux il existe $0 < i \le e$ tel que $x := a^{t2^{i-1}} \ne \pm 1$ et $x^2 = a^{t2^i} = 1$.
 - b) Comment déduire la factorisation de N de l'équation $(x-1)(x+1) \equiv 0 \pmod{N}$?
- 4) Écrire un algorithme probabiliste complet de factorisation de N, sous l'hypothèse que l'on connaît une clé de décodage RSA d et les paramètres publics c, N.

1

5) Peut-on en déduire qu'il est essentiellement aussi difficile de factoriser un entier N et de casser un système RSA reposant sur N?

Exercice II – Soit (G, \times) un groupe. On suppose connue la factorisation de $n := |G| = \prod p_i^{e_i}$, où les p_i sont premiers et 2 à 2 distincts.

- 1)a) Quelles sont les valeurs possibles pour l'ordre d'un élément x de G?
- b) On pose $q_1 := n/p_1^{e_1}$, puis $x_1 := x^{q_1}$. Quelles sont les valeurs possibles pour l'ordre de x_1 ? Comment le déterminer efficacement?
- c) Si q est un entier non nul et p un nombre premier, on note $v_p(q)$ le plus grand entier k tel que $p^k \mid q$. Montrer que $v_{p_1}(\operatorname{ordre}(x_1)) = v_{p_1}(\operatorname{ordre}(x))$.
- 2) En déduire un algorithme pour calculer l'ordre de x par le biais de sa factorisation. Estimer la complexité algébrique de votre algorithme (en nombre de multiplications dans G).

Exercice III – Soit $a/b \in \mathbb{Q}$ une fraction irréductible avec $\operatorname{pgcd}(b, 10) = 1$. On définit une suite r_i d'entiers modulo b par divisions euclidiennes successives :

$$a = q_0b + r_0$$

$$10r_0 = q_1b + r_1$$

$$\dots$$

$$10r_{i-1} = q_ib + r_i$$

- 1) Trouver une formule simple pour r_i (dans $\mathbb{Z}/b\mathbb{Z}$). À quelle condition a-t-on $r_i = r_j$?
- 2) Montrer qu'il existe i_0 et k>0 tel que $r_{i_0}=r_{i_0+k}$
- 3) Montrer que le développement décimal de a/b est ultimement périodique, et que la période est égale à l'ordre de 10 dans $(\mathbb{Z}/b\mathbb{Z})^*$.
- 4) Écrire une fonction Maple calculant la période du développement décimal d'une fraction de dénominateur premier à 10, utilisant un Euclide modifié comme ci-dessus.
- 5) Estimer sa complexité binaire en supposant que 0 < b < a < N et $\operatorname{pgcd}(a, b) = 1$. Comparer avec ce que donnerait la méthode de l'exercice II. [On ne suppose pas la factorisation de b connue.]