Анализ схемы

После определения сопротивлений резисторов каскада можно начать проверку работы схемы. Забываем про предварительный расчет и считаем, что надо исследовать заданный каскад (ОЭ или ОК), имеющий рассчитанный в процессе синтеза набор параметров (каскад нарисован в конце предыдущего пункта). Проверка состоит из ручной и компьютерной (с помощью программы OrCad) частей. Ручная часть включает:

- расчет по постоянному току (определение рабочего режима аналитическим и графическим способом, а также определение возможного ухода р.т. из-за влияния температуры и технологического разброса параметра β),
- расчет по переменному току (определение основных параметров каскада, расчет на низкой и высокой частоте).

7. Расчет рабочего режима каскада.

Перед расчетом рабочего режима (т.е. определения координат рабочей точки) надо **нарисовать схему каскада по постоянному току** с учетом типа транзистора и знака E_{π} , **обозначить токи I_{6}, I_{\kappa}, I_{3} и напряжения U_{63} и U_{\kappa 3}.** Источник E_{π} должен быть в этой схеме нарисован в явном виде. Схема не должна содержать конденсаторов (сопротивление конденсатора постоянному току бесконечно). Токи и напряжение $U_{\kappa 3}$ определяются из системы уравнений, составленных на основе законов Кирхгофа и с учетом того, что при аналитическом расчете можно принять U_{63} =0.7B (см. лекции). Отмечу, что для p-n-p транзистора при расчете рабочей точки считается, что U_{63} = – 0.7B (напряжение $U_{\kappa 3}$ также должно получиться меньше нуля: $U_{\kappa 3}$ <0).

Результат расчета — рабочие точки (I_{6A} , U_{69A}) и ($I_{\kappa A}$, $U_{\kappa 9A}$), которые надо нанести на соответственно входную и выходные характеристики транзистора. Точка на выходных характеристиках (обозначим ее A_7) должна лежать близко от построенной на этапе предварительного расчета точки A_3 . Если расхождение велико, продолжать бесполезно и имеет смысл искать ошибку в расчетах.

Сразу после выполнения аналитического расчета по постоянному току вручную рекомендую определить рабочий режим с помощью программы OrCad (см. в конце файла «Как графически рассчитать рабочий режим схемы» или методические указания к ЛР4). Затем нужно сравнить результаты ручного и машинного расчета, и в случае значительных расхождений искать ошибку в расчетах. Результаты компьютерного расчета в этом п. представлять не нужно.

8. Расчет возможного ухода рабочего тока.

В пункте требуется определить максимально возможную величину ухода рабочего тока $\Delta I_{\kappa} = \Delta I_{\kappa 1} + \Delta I_{\kappa 2}$, все необходимые для расчета формулы приведены в п. 5a в Приложении, ограниченном знаками ***.

Для всех изменяющихся параметров (которые могут принимать несколько различных значений) следует **брать их наибольшие величины**, чтобы и в наихудшем случае (когда параметры отклоняются от расчетных значений больше всего) усилитель работал в линейном режиме (транзистор не вышел на участки работы в режиме насыщения и/или отсечки).

После определения ΔI_{κ} , надо посчитать величину $\Delta U_{T} = \Delta I_{\kappa} R_{=}$ и сравнить с величиной ΔU_{T} , выбранной в п. 3 при расчете рабочей точки. Если полученное в этом пункте значение ΔU_{T} меньше выбранной в п. 3 величины — все в порядке, и можно продолжить расчет, если больше — надо искать ошибку или начинать расчет заново с п. 3.

9. Графический расчет рабочего режима.

Для графического расчета желательно сделать отдельный «чистый» экземпляр характеристик транзистора (без всяких построений (гиперболы и прямых) и всевозможных точек; оси и режимы наносятся на графики с помощью любого графического редактора уже после окончания расчета). При выполнении графического расчета следует руководствоваться файлом «Как графически рассчитать рабочий режим схемы» или методическими указаниями к ЛР4. Перед началом расчета надо написать вобщем виде и в числах уравнения линий нагрузки для входной и выходных характеристик сначала в классическом виде, а потом в том виде, в котором эти уравнения будут введены в OrCad.

- С помощью программы OrCad построить на входных характеристиках нагрузочную прямую $U_{69}(I_6) = E_{\rm cm} I_6 R_{\rm cm}$ (как это делали при выполнении ЛР4) или $U_{69}(I_6) = E_{\rm cm} I_6 R_6 I_9 R_9$ (как рекомендуется в методических указаниях), точку пересечения входной характеристики и нагрузочной прямой отметить маркером курсора и обозначить A_9 это и есть р.т. (U_{69A} и I_{6A}), найденная графическим методом. После построения нагрузочной прямой характеристику надо «обрезать» так, чтобы р.т. лежала примерно в середине графика.
- На выходных характеристиках с помощью программы OrCad построить нагрузочную прямую $U_{\kappa_3}(I_{\kappa}) = E_n I_{\kappa}R_{\kappa}$ (как это делали при выполнении ЛР4) или $U_{\kappa_3}(I_{\kappa}) = E_n I_{\kappa}R_{\kappa} I_{\mathfrak{g}}R_{\mathfrak{g}}$ (она может отличаться от прямой, построенной в п. 3 на этапе предварительного расчета) и фрагмент дополнительной выходной характеристики, соответствующей найденному графическим методом в этом пункте значению тока $I_{\mathfrak{g}A}$. Или (как мы это делали при выполнении ЛР4) можно грамотно выбрать начальное ($I_{\mathfrak{g}A}/4$) и конечное (2 $I_{\mathfrak{g}A}$) значения и приращение ($I_{\mathfrak{g}A}/4$) тока базы при задании анализа, тогда дополнительную характеристику строить не надо (берется то значение $I_{\mathfrak{g}A}$, что получено в этом пункте). Точку пересечения выходной характеристики, соответствующей рабочему току базы, и нагрузочной прямой надо отметить маркером курсора и обозначить A_9 это и есть р.т. (U_{κ_3A} и $I_{\kappa A}$), найденная графическим методом. После построения нагрузочной прямой характеристику надо «обрезать» так, чтобы р.т. лежала примерно в середине графика.

Далее на выходные характеристики надо нанести нагрузочную прямую по переменному току и определить отрезок, который эта прямая отсечет на горизонтальной оси (на рис. 2 этот отрезок обозначен $U_{\rm II}$).

Из полученной величины надо отнять значение ΔU_{T} , полученное в п. 8, тогда:

$$U_{ ext{h make}} = U_{ ext{f}} - \Delta U_{ ext{T}}$$
.

Если $U_{\rm H~Makc}$ получится меньше $U_{\rm H~T3}$, то надо или менять положение р.т., или брать другие значения сопротивлений $R_{\rm 9}$ и/или $R_{\rm K}$, т.е. начинать расчет заново с п. 3.

10, 11. Определение основных параметров каскада.

Перед расчетом основных параметров каскада надо **нарисовать схему замещения каскада по переменному току** на основе схемы замещения транзистора в h-параметрах (при этом можно принять $h_{22} = 0$). В схеме <u>обозначить все элементы</u>, а также $u_{\text{вх}}$ и $u_{\text{вых}}$. Источник $u_{\text{вх}}$ надо нарисовать в явном виде.

Для **каскада ОК** рассчитать параметры каскада $R_{\text{вх}}$, $R_{\text{вых}}$ и $K_{e\,0}$ (сначала надо найти $K_{u\,\text{хx}}$, $\xi_{\text{вх}}$, $\xi_{\text{вых}}$) можно по формулам, приведенным в лекциях.

Для каскада ОК надо проверить выполнение соотношения: $K_{e^0} \ge K_{e^0}$ тз, если неравенство не выполняется, надо вернуться к синтезу схемы и попробовать увеличить сопротивление R_6 .

Для **каскада ОЭ** надо сначала разделить R_9 на два сопротивления: R_{91} и R_{92} . Это можно сделать, записав известные формулы определения основных параметров каскада ОЭ:

 $K_{e0} = K_{u \text{ xx}} \ \xi_{\text{вх}} \cdot \xi_{\text{вых}}$, далее надо написать выражения для $K_{u \text{ xx}}, \ \xi_{\text{вх}}, \cdot \xi_{\text{вых}}, \ R_{\text{вх}}, R_{\text{вых}}$ (см. лекции) и подставить в формулу для K_{e0} .

Приравняв это выражение к значению K_{eT3} (лучше взять чуть большую величину, с небольшим запасом), можно найти величину R_{91} , R_{91} надо округлить до числа из ряда E24, причем R_{91} лучше округлять в меньшую сторону (иначе может не пройти коэффициент усиления каскада), потом нужно определить $R_{92} = R_9 - R_{91}$; R_{92} надо тоже округлить до числа из ряда E24.

После этого надо пересчитать K_{e0} и $R_{вх}$, с учетом округленного значения $R_{э1}$. Модуль коэффициента усиления K_{e0} не должен превышать заданную в ТЗ величину более, чем на 10%: 1.1 $|K_{e0}|_{T3}| \ge |K_{e0}| \ge 0.9$ $|K_{e0}|_{T3}|$. Если значение модуля K_{e0} получилось больше требуемого, надо увеличивать значение $R_{э1}$ (потом заново определять $R_{э2}$, чтобы значение $R_{э}$ оставалось неизменным, иначе придется

пересчитывать пп. 5-8). Если модуль коэффициента усиления K_{e0} получится значительно меньше заданного в Т3, то R_{21} надо уменьшать.

12.Расчет емкостей конденсаторов. (Расчёт на НЧ).

Постоянную времени усилителя для диапазона низких частот τ_{H} можно определить по формуле:

для каскада ОК

$$au_{_{\mathrm{H}}} = \left(\frac{1}{ au_{_{\mathrm{H}1}}} + \frac{1}{ au_{_{\mathrm{H}2}}}\right)^{-1},$$
 где $au_{_{\mathrm{H}1}} = C_{_{\mathrm{p}1}}(R_{_{\Gamma}} + R_{_{\mathrm{BX}}}), \, au_{_{\mathrm{H}2}} = C_{_{\mathrm{p}2}}(R_{_{\mathrm{BMX}}} + R_{_{\mathrm{H}}}),$

для каскада ОЭ

$$\begin{split} \tau_{_{\mathrm{H}}} = & \left(\frac{1}{\tau_{_{\mathrm{H}1}}} + \frac{1}{\tau_{_{\mathrm{H}2}}} + \frac{1}{\tau_{_{C9}}}\right)^{_{-1}}, \, \mathrm{где} \qquad \tau_{_{\mathrm{H}1}} = C_{_{\mathrm{p}1}}(R_{_{\mathrm{\Gamma}}} + R_{_{\mathrm{BX}}}) \,, \, \tau_{_{\mathrm{H}2}} = C_{_{\mathrm{p}2}}(R_{_{\mathrm{BMX}}} + R_{_{\mathrm{H}}}) \,, \\ \tau_{_{C9}} = & C_{_{9}}(R_{_{92}} \parallel r_{_{\mathrm{TP.9}}}); \quad r_{_{\mathrm{TP.9}}} = \frac{h_{_{119}} + (R_{_{6}} \parallel R_{_{\Gamma}})}{1 + h_{_{219}}} + R_{_{91}} \,, \end{split}$$

Учитывая, что

$$au_{_{\mathrm{H}}} = \frac{1}{\omega_{_{_{\mathrm{H}}}}} = \frac{1}{2\pi f_{_{_{\mathrm{H}}}}}$$
, где $f_{_{\mathrm{H}}}$ – частота, заданная в ТЗ, можно принять:

для каскада ОК

$$\tau_{_{\mathrm{H}1}}=\tau_{_{\mathrm{H}2}}=2\tau_{_{\mathrm{H}}}\,,$$

а для каскада ОЭ

$$\tau_{_{\rm H1}} = \tau_{_{\rm H2}} = \tau_{_{C9}} = 3\tau_{_{\rm H}}$$
.

Емкости конденсаторов можно определить из написанных выше соотношений.

Емкости всех конденсаторов надо округлить (лучше в большую сторону) до чисел из ряда E12 (для C < 1мк Φ) или E6 (для C > 1мк Φ). Если при компьютерном расчете каскад не пройдет по нижней частоте, надо просто увеличить рассчитанные в этом пункте емкости всех конденсаторов.

13. Определение верхней границы полосы пропускания каскада. (Расчёт на ВЧ).

Постоянную времени усилителя для диапазона высоких частот $\tau_{\rm B}$ можно определить по формуле:

$$\tau_{_{B}}$$
= $\sqrt{ au_{_{BX}}^2+ au_{_{BMX}}^2+ au_{_{T}}^2}$, где

 $\tau_{\text{вх}} = C_{\text{вх}}(R_{\text{вх}} \| R_{\text{г}}),$ где $C_{\text{вх}} = C_{\text{эп}} + C_{\text{кп}} | K_u |$, $C_{\text{эп}}$ и $C_{\text{кп}}$ – емкости эмиттерного и коллекторного переходов транзистора (если в справочнике есть емкость только одного перехода, то емкость второго перехода надо взять равной той, что дана), $K_{\text{u}} = K_{\text{e0}}$ – коэффициент усиления каскада (см. п. 11),

$$au_{\text{вых}} = C_{\text{н экв}}(R_{\text{н}}||R_{\text{вых}}), \ \text{где } C_{\text{н экв}} = C_{\text{н}} + C_{\text{кп}} \ \beta, \ au_{\text{т}} = \beta/(2\pi f_{\text{T}} (1+\gamma_{6} \ \beta)),$$

где $\gamma_6 = \frac{R_9}{R_9 + R_6}$, $f_{\rm T}$ – частота единичного усиления (см. ниже справочный материал).

Таким образом надо сначала найти $\tau_{\text{в}}$, а затем определить $f_{\text{\tiny B}} = \frac{1}{2\pi\tau_{_{\text{\tiny B}}}}$, полученную

величину надо сравнить с $f_{\text{в T3}}$. Эта частота получается существенно больше заданной в ТЗ, пугаться этого не нужно. При компьютерном расчете верхняя частота обычно получается еще больше (особенно для каскада ОК). Это тоже не повод для волнений. Так и должно быть.

Справочный материал. Частотные параметры транзисторов.

Справочники могут содержать следующие частотные параметры транзисторов (можно принять $|h_{21}|_0 = \beta$):

- 1) $f_{\rm гp} = f_{h21} = f_{\beta}$ граничная частота;
- 2) $f_{\rm T} = f_{\rm 1} -$ частота единичного усиления $f_{\rm T} = |h_{\rm 21}|_{\rm 0} f_{\rm h21};$
- 3) модуль коэффициента передачи тока $\left|h_{21}\right|_{\mathrm{BY}}$ на заданной высокой частоте f_{BY}

$$f_{h21} = f_{BY} \frac{\left| h_{21} \right|_{BY}}{\left| h_{21} \right|_{0}}$$

