Score-based Continuous-time Diffusion Models

Lecture 9

18-789

Logistics

- Wednesday: Project proposal presentation
- Also Wednesday: HW2 due!
- Next week: spring break (no class)

Logistics

- Next next Wednesday
 - Student Presentation III: **Hybrid** Deep Generative Models
 - Special instruction: try to cover the following key questions
 - Significance: **How** do they **combine** different generative models?
 - Significance: Why do they need to combine them? Why can't they just use one of them?
 - Limitation: Are we **losing something** when combining multiple types of models?
 - Limitation: Are there **better ways to combine**?
 - Task, data, evaluation, etc. are secondary (mention them very briefly unless they are related to the key questions!)
 - Related work (cover only 1-2)

Training: Denoising objective

• Inference: Starting from pure noise, iteratively remove noise

- Training: Denoising objective
- Inference: Starting from pure noise, iteratively remove noise

- Training: Denoising objective
- Inference: Starting from pure noise, iteratively remove noise
- Three equivalent prediction targets
 - \tilde{x}_{t-1} , x_0 , ϵ
 - Mathematically equivalent, but empirically not the same (as training targets)

- Training: Denoising objective
- Inference: Starting from pure noise, iteratively remove noise
- Three equivalent prediction targets
 - \tilde{x}_{t-1} , x_0 , ϵ
- Connection to VAE

Why doesn't Diffusion generate blurry images (like VAE)?

 VAE samples are blurry because the decoder must "average" over all plausible outputs compatible with the latent code.

Why doesn't Diffusion generate blurry images (like VAE)?

- In Diffusion Models, the x_0 prediction is also blurry (for the same reason)!
- BUT: we do not use intermediate x_0 predictions as the final outputs.
 - When each step is small enough, $q(x_{t-1}|x_t)$ is almost deterministic
 - Only a single possible x_{t-1} that can produce x_t

"Deep Unsupervised Learning using Nonequilibrium Thermodynamics" 2015 "Denoising Diffusion Probabilistic Models" 2020 "Score-Based Generative Modeling through Stochastic Differential Equations" 2021

What is "score"?

• Score: gradient of log-likelihood $s(x) = \nabla_x \log p(x)$

Figure source: "A Pedagogical Introduction to Score Models", Eric Ma

What is "score"?

• Score: gradient of log-likelihood $s(x) = \nabla_x \log p(x)$

Why is score useful?

- If we know the score, we also know the distribution (implicitly)
- We can also draw samples from the implicit distribution

Langevin dynamics: $x_{i+1} = x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} z_i$, ϵ is small scalar, $z_i \sim N(0, I)$ has same dimension as x

Why is score useful?

Q: Why estimating the score, instead of the probability density directly?

How to estimate the score?

•
$$\mathbb{E}_{x \sim p(x)} \| s_{\theta}(x) - \nabla_x \log p(x) \|^2$$

 \otimes We don't know

- Denoising Score Matching
 - Add Gaussian noise to data: $\tilde{x} = x + \sigma \cdot \epsilon, \epsilon \sim N(0, I)$
 - We can estimate the score of the noised distribution $p(\tilde{x})$

$$\mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x})\|^{2}$$

$$= \mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x}|x)\|^{2} + \text{Constant}$$

Remember in Diffusion VAE derivation: $\log \frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})} \Rightarrow \log \frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1},x_0)}$

Score-based Image Generation

$$dx = f(x, t)dt + g(t)dw$$

infinitesimal change in x infinitesimal change in t infinitesimal Gaussian noise dw = N(0, dtI)

Drift diffusion coefficient coefficient dx = f(x, t)dt + g(t)dw

infinitesimal change in x

infinitesimal change in t

infinitesimal Gaussian noise dw = N(0, dtI)

Brownian motion/ Wiener process

$$d\mathbf{x} = f(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Euler method: $\Delta x = f(x, t) \Delta t + g(t) \sqrt{\Delta t} \epsilon$

Diffusion Models with Infinite Steps

•
$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon, \epsilon \sim N(0, I)$$

- T is usually very large (e.g., 1000)
- What if $T \to \infty$?

Diffusion Models with Infinite Steps

•
$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon, \epsilon \sim N(0, I)$$

•
$$x_t = \sqrt{1 - \beta(t)\Delta t} x_{t-\Delta t} + \sqrt{\beta(t)\Delta t} \epsilon, \epsilon \sim N(0, I)$$

$$d\mathbf{x} = f(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Euler method: $\Delta x = f(x, t)\Delta t + g(t)\sqrt{\Delta t}\epsilon$

Diffusion Model with Infinite Forward Steps: $\Delta x = -\frac{1}{2}\beta(t)\Delta t + \sqrt{\beta(t)\Delta t} \ \epsilon$

Diffusion Model is an SDE!

$$f(x,t) = -\frac{1}{2}\beta(t), g(t) = \sqrt{\beta(t)}$$

Any SDE has a corresponding reverse SDE

Any SDE has a corresponding reverse SDE

This seems easy

Any SDE has a corresponding reverse SDE

This seems easy

This seems hard

Second law of thermodynamics

Any SDE has a corresponding reverse SDE

Forward: dx = f(x, t)dt + g(t)dw

Reverse: $d\mathbf{x} = (f(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})) dt + g(t) d\overline{\mathbf{w}}$

Score of the noisy distribution

Learning the reverse SDE = Learning the score = Learning to denoise

Sampling an image = solve the reverse SDE

Reverse SDE:
$$d\mathbf{x} = (f(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})) dt + g(t) d\overline{\mathbf{w}}$$

 $\approx s_{\theta}(\mathbf{x})$

- Numerical, discretized SDE solvers
- Sample $x \sim p_T(x)$, set t = T, $\Delta t = -T/N$ (N is the number of steps)
- While t > 0:
 - $\Delta x = (f(\mathbf{x}, t) g(t)^2 s_{\theta}(\mathbf{x})) \Delta t + g(t) \sqrt{\Delta t} \epsilon, \epsilon \sim N(0, I)$
 - $x = x + \Delta x$
 - $t = t + \Delta t$

Compare SDE vs. VAE interpretation. What advantages did we get?

- Generalize to arbitrary SDEs dx = f(x, t)dt + g(t)dw
 - Variance preserving (VP) and variance exploding (VE) SDE

VPSDE: Add noise while attenuating data

Example: $f(x,t) = -\frac{1}{2}\beta(t), g(t) = \sqrt{\beta(t)}$

VPSDE: Add noise without attenuating data

$$f(x,t) = 0, g(t) = \sqrt{\beta(t)}$$

Benefits of SDE interpretation (vs. VAE)

- Generalize to arbitrary SDEs dx = f(x, t)dt + g(t)dw
 - Variance preserving (VP) and variance exploding (VE) SDE
- Decoupled training and inference
 - Training: estimate the score at various noise levels $\nabla_x \log p_{\sigma}(x)$
 - Don't care about SDE, discretization, etc..
 - Don't even care about "time"
 - Sample a noise level (σ) from some continuous distribution, add noise, denoise

Benefits of SDE interpretation (vs. VAE)

- Generalize to arbitrary SDEs dx = f(x, t)dt + g(t)dw
 - Variance preserving (VP) and variance exploding (VE) SDE
- Decoupled training and inference
 - Training: estimate the score at various noise levels $\nabla_x \log p_{\sigma}(x)$
 - Inference: solve an SDE
 - Flexible number of function evaluation (NFE)
 - More advanced solvers

Diffusion Models (continue...)

Diffusion Models (continue...)

Diffusion Models (continue...)

5 Minute Quiz

• On Canvas

• Passcode: elephant

