Differential expression (F2-73, Elite and PI127826 2020 plants)

Marc Galland

10/17/2021

Contents

	a import
1.1	Import scaled counts
	Mapping summary
QC	plots 4
2.1	Plot density counts
	Plot log2ratio F2-73 vs Elite
	Plot log2ratio PI127826 vs Elite
Cor	npute DE genes based on log2ratio Z-score 7
3.1	Calculate log2ratios
	Calculate Z-scores and associated p-values
3.3	
3.4	Write to CSV file
ME	P and MVA pathway gene analysis
4.1	Import MEP and MVA gene identifiers
4.2	Filter for significant DE genes
4.3	
4.4	Plot all MEP and MVA genes
	1.1 1.2 QC 2.1 2.2 2.3 Cor 3.1 3.2 3.3 3.4 ME 4.1 4.2 4.3

1 Data import

1.1 Import scaled counts

```
scaled_counts <- read.delim("../Supplemental_data_RNA-seq/scaled_counts.tsv",</pre>
                         check.names = F,
                         stringsAsFactors = F)
scaled_counts <- read.delim("../Supplemental_data_RNA-seq/scaled_counts.tsv",</pre>
                         check.names = F,
                         stringsAsFactors = F) %>%
  mutate(gene = gsub(pattern = "mRNA:", replacement = "", x = gene)) %>%
  dplyr::select("gene", "F2.73", "Elite_2020", "PI127826_2020")
head(scaled_counts)
##
                              F2.73 Elite_2020 PI127826_2020
## 1 Solyc00g005000.2.1
                           3.494954
                                        0.0000
                                                     0.000000
## 2 Solyc00g005020.1.1
                                         0.0000
                           0.000000
                                                     2.650106
## 3 Solyc00g005040.2.1
                          55.919260
                                        49.2653
                                                    13.250530
## 4 Solyc00g005050.2.1 1382.254220 1383.7123
                                                  1810.022376
## 5 Solyc00g005060.1.1
                           0.000000
                                         0.0000
                                                     0.000000
## 6 Solyc00g005070.1.1
                           0.000000
                                         0.0000
                                                     0.000000
```

1.2 Mapping summary

```
# read.csv("../Supplemental_data_RNA-seq/mapping_summary.csv",
# stringsAsFactors = F,
# check.names = F) %>%
# knitr::kable()
```

2 QC plots

2.1 Plot density counts

```
scaled_counts %>%
pivot_longer(- gene, names_to = "genotype", values_to = "counts") %>%
ggplot(aes(x = log10(counts + 1), fill = genotype)) +
geom_density(alpha = 0.3)
```


The density of genes with low count values (log10 = 0.3) is lower for F2-73 but seems to be comparable for other genes.

2.2 Plot log2ratio F2-73 vs Elite

First, let's extract genes with counts > 0

```
genes_sums <- scaled_counts %>% column_to_rownames("gene") %>% rowSums()
genes_non_null <- genes_sums[genes_sums > 0]
genes_non_null <- names(genes_non_null)

scaled_counts %>%
  filter(gene %in% genes_non_null) %>%
  mutate(log2fc_P73 = log2(`F2.73`/Elite_2020)) %>%
  ggplot(aes(x = log2fc_P73)) +
  geom_density() +
  ggtitle("Distribution of the log2 ratios of F2-73 vs Elite gene counts")
```

Warning: Removed 5110 rows containing non-finite values (stat_density).

The log2ratio distribution looks OK. Compared to to the log2 ratios of F2-28, it is more skewed towards negative log2ratios.

2.3 Plot log2ratio PI127826 vs Elite

```
scaled_counts %>%
  filter(gene %in% genes_non_null) %>%
mutate(log2fc_PI127826 = log2(PI127826_2020/Elite_2020)) %>%
ggplot(aes(x = log2fc_PI127826)) +
geom_density() +
ggtitle("Distribution of the log2 ratios of PI127826 vs Elite gene counts")
```

Warning: Removed 3633 rows containing non-finite values (stat_density).

Distribution of the log2 ratios of PI127826 vs Elite gene counts

3 Compute DE genes based on log2ratio Z-score

3.1 Calculate log2ratios

A positive log2ratio for F2-73 and PI127826 means that the gene is more expressed in F2-28 and PI127826 (relative to the Elite line).

Let's calculate the log2ratio and remove the "Infinite" values.

```
log2ratio <-
scaled_counts %>%
filter(gene %in% genes_non_null) %>%
mutate(log2ratio_P73 = log2(`F2.73`/Elite_2020)) %>%
mutate(log2ratio_PI127826 = log2(PI127826_2020/Elite_2020)) %>%
select(gene, log2ratio_P73, log2ratio_PI127826) %>%
filter(!grepl(pattern = "Inf", x = log2ratio_P73)) %>%
filter(!grepl(pattern = "Inf", x = log2ratio_PI127826))
head(log2ratio)
```

A total of 21054 have a finite log2ratio in both F2-73 vs Elite and PI127826 vs Elite.

3.2 Calculate Z-scores and associated p-values

Let's calculate the Z-score of the log2ratio + its associated p-value

```
log2ratio_zscores_pvals <-
log2ratio %%
mutate(zscore_P73 = scale(log2ratio_P73, center = T, scale = T)) %>%
mutate(zscore_PI127826 = scale(log2ratio_PI127826, center = T, scale = T)) %>%
mutate(pval_P73 = pnorm(q = abs(zscore_P73), mean = 0, sd=1, log.p = FALSE, lower.tail=FALSE)) %>%
mutate(pval_PI127826 = pnorm(q = abs(zscore_PI127826), mean = 0, sd=1, log.p = FALSE, lower.tail=FALSE arrange(desc(log2ratio_P73)) %>%
as_tibble()
head(log2ratio_zscores_pvals)
```

```
## # A tibble: 6 x 7
##
     gene log2ratio_P73 log2ratio_PI127~ zscore_P73[,1] zscore_PI127826~
##
     <chr>>
                   <dbl>
                                     <dbl>
                                                     <dbl>
                                                                       <dbl>
## 1 Soly~
                    8.82
                                      3.63
                                                      4.67
                                                                        2.41
## 2 Soly~
                    8.10
                                      6.21
                                                      4.29
                                                                        4.17
## 3 Soly~
                    7.74
                                      1.63
                                                      4.11
                                                                        1.05
## 4 Soly~
                    7.57
                                      5.70
                                                      4.03
                                                                        3.82
## 5 Soly~
                    7.36
                                      7.17
                                                      3.92
                                                                        4.82
## 6 Soly~
                    7.17
                                      3.63
                                                      3.82
                                                                        2.41
## # ... with 2 more variables: pval_P73[,1] <dbl>, pval_PI127826[,1] <dbl>
```

3.3 Add original counts and annotations

Add back the scaled counts.

```
log2ratio_zscores_pvals_with_counts <- inner_join(scaled_counts, log2ratio_zscores_pvals, by = "gene")
Add descriptions</pre>
```

```
annots <- read.csv("info/ITAG2.4_loci_gene_descriptions.csv", stringsAsFactors = F)

final <-
   log2ratio_zscores_pvals_with_counts %>%
   mutate(locus = substr(gene, start = 1, stop = 14)) %>%
   inner_join(x = ., y = annots, by = "locus") %>%
   as_tibble()
dim(final)
```

[1] 21054 12

3.4 Write to CSV file

[1] 791 12

4 MEP and MVA pathway gene analysis

4.1 Import MEP and MVA gene identifiers

4.2 Filter for significant DE genes

```
Should be significant (p < 0.05) in either PI127826 vs Elite AND F2-28 vs Elite. signif_genes <- filter(final, pval_P73 < 0.05 | pval_PI127826 < 0.05) %>% pull(gene)
```

4.3 Keep only MEP and MVA genes significant

```
mep_mva_genes <- inner_join(final, mep_mva_gene_ids)

## Joining, by = "locus"

mep_mva_gene_signif <-
    mep_mva_genes %>%
    filter(gene %in% signif_genes)

# show table

mep_mva_gene_signif %>%
    select(name, gene, pathway, log2ratio_P73, log2ratio_PI127826, pval_P73, pval_PI127826) %>%
    knitr::kable()
```

name	gene	pathway	$log2ratio_P73$	$\log 2$ ratio_PI127826	pval_P73	pval_PI127826
HMGR	Solyc02g038740.2.1	MVA	5.535523	3.671742	0.001424666	0.007318178
HMGR	Solyc03g032010.2.1	MVA	3.914613	2.923354	0.015629531	0.026619455
HMGR	Solyc03g032020.2.1	MVA	3.315479	2.032462	0.032370075	0.092102361
pMVK	Solyc06g066310.2.1	MVA	2.927697	3.474898	0.049621651	0.010511663
AACT	Solyc07g045350.2.1	MVA	3.651830	2.152733	0.021731436	0.079328502

4.4 Plot all MEP and MVA genes

```
for (i in seq_along(mep_mva_genes$gene)){
   tmp_df <- mep_mva_genes[i,]
   tmp_df$title4plot <- paste(tmp_df$name, tmp_df$gene, sep = "_")

p <-
    tmp_df %>%

# mutate(plot_title = paste(name, gene, sep = "_")) %>%
   select(title4plot, `F2.73`, Elite_2020, PI127826_2020) %>%
   pivot_longer(- title4plot, names_to = "genotype", values_to = "counts") %>%
   ggplot(., aes(x = genotype, y = counts, fill = genotype)) +
   geom_bar(stat = "identity") +
   ggtitle(tmp_df$title4plot)

print(p)
}
```

CMK_Solyc01g009010.2.1

genotype

genotype

F2.73

Elite_2020

PI127826_2020

250 **-**

0 -

Elite_2020

PI127826_2020

F2.73

genotype

0 -

Elite_2020

F2.73 genotype PI127826_2020

