PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-075024

(43)Date of publication of application: 12.03.2003

(51)Int.CI.

F25B 39/02 B21D 53/08 B60H 1/32 F25B 1/00 F28D 9/02 F28F 9/02 F28F 9/18 F28F 9/22

(21)Application number: 2002-165553

(71)Applicant: SHOWA DENKO KK

(22)Date of filing:

06.06.2002

(72)Inventor: HORIUCHI HIROBUMI

(30)Priority

Priority number : 2001183062

Priority date: 18.06.2001

Priority country: JP

(54) EVAPORATOR, ITS MANUFACTURING METHOD, HEADER MEMBER FOR THE VAPORIZER AND REFRIGERATING SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an evaporator to improve heat exchanger performance and be capable of reducing thickness. SOLUTION: An evaporator is provided with a core 1 at which heat exchange tube groups P1 and P2 on the upper stream side and the downstream side are longitudinally juxtaposed, and upper side and lower side header members 10 and 50 situated at the upper and lower ends of the core 1. The interior of the upper side header member is longitudinally partitioned to form tanks 11 and 12 on the inlet side and the outlet side. One end of each tube 6 of a tube group P1 on the upper stream side is coupled to a tank 11 on the inlet side, and the other end is coupled to the header member 50 on the lower side. One end of each tube 7 of each tube 7 of a tube group 7 of a tube group P2 on the downstream side is coupled to the header member 50 on the lower side. A refrigerant flowing in the tank 11 on the inlet side flows through the tube group P1 on the upper stream side and is introduced to the tank 12 on the outlet side. Meanwhile, a refrigerant flowing through the two heat exchange tube groups P1 and P2 is heat-exchanged with outside air A and evaporated.

LEGAL STATUS

[Date of request for examination]

06.04.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Searching PAJ 2/2 ページ

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

http://www19.ipdl.ncipi.go.jp/PA1/result/detail/main/wAAAYka4XuDA415075024... 2006/06/05

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(II)特許出銀公開發号 特開2003-75024

(P2003-75024A)

(43)公開日 平成15年3月12日(2003.3.12)

(51) Int.CL'	裁別記号	FI	テーマユード(参考)
F25B 39/02		F 2 5 B 39/02	D 3L065
B 2 1 D 53/08		B21D 53/08	C 3L103
B60H 1/32	613	B60H 1/32	613C
F 2 5 B 1/00	383	F25B 1/00	383
F 2 8 D 9/02		F28D 9/02	
	審查語录	未該求 請求項の数59 OL	(全 25 頁) 最終頁に続く
(21)出顧書号	特報2 002-165553(P2002-165553)	(71)出廢人 000002004 昭和第二株式:	
(22)出顧日	平成14年6月6日(2002.6.6)	1	大門1丁目13番9号
(31)優先権主張書号	特額2001-183082 (P2001-189082)	杨木県小山市:	大家 1 丁月480番池 昭和電
(32)優先日	平成13年6月18日(2001.6.18)	工株式会社小	
(33)優先權主張国	日本 (JP)	(74)代謝人 100071158	
		非理士 清水	久蔵 (外3名)
		Fターム(参考) 3L085 CA	18 IM13
		SLJ03 AM	DI AA05 AA35 BB38 CC18
		CC	23 DD15 DD17 DD18 DD34
		DD	43 1644 DD54 DD55
	·	<u> </u>	

(64) 【発明の名称】 蒸発器、その製造方法、蒸発器用ヘッダー部材及び冷凍システム

(57)【要約】

【課題】 熱交換性能の向上及び薄型化を図り得る蒸発 器を提供する。

【解決手段】 本発明の蒸発器は、上流側及び下流側熱交換チューブ群P1、P2が前後に併設されたコア1と、コア1の上下両端に配置される上側及び下側ヘッダー部村10、50とを備える。上側ヘッダー部村内が前後に住切られて、入口側及び出口側タンク11、12が形成される。上流側チューブ群P1に起ける各チューブ6の一端が入口側タンク11に連結され、他端が下側ヘッダー部村50に連結される。下流側チューブ群P2における各チューブ7の一端が出口側タンク12に連結される。入口側タンク11に流入された冷媒が、上流側チューブ群P1、下側ヘッダー部村50、及び下流側チューブ群P1、下側ヘッダー部村50、及び下流側チューブ群P2を流通して出口側タンク12に導入される一方。両熱交換チューブ群P1、P2を流通する冷媒が、外気Aと熱交換されて蒸発される。

【特許請求の範囲】

【語求項1】 所定の間隔おきに複数の熱交換チューブ が並列に配置された上流側熱交換チューブ群及び下流側 熱交換チューブ群が、前後方向に並んで配置されたコア

前記上流側熱交換チューブ群の一端側に沿って配置され る入口側タンクと、

前記下強側熱交換チューブ群の一端側に沿って配置され る出口側タンクと、

両熱交換チューブ群の他端側に沿って配置される冷媒タ 10 ーン用部材とを具備し、

前記上流側熱交換チューブ群における呂熱交換チューブ の一端が前記入口側タンクに連結されるとともに、他鑑 が前記冷様ターン用部材に迫通接続され、

前記下漆側熱交換チューブ群における各熱交換チューブ の一端が薛記出口側タンクに連結されるとともに、他鑑 が前記冷様ターン用部材に追通接続され、

前記入口側タンクに強入された冷媒が、前記上流側熱交 換チューブ群、前記冷媒ターン用部村、及び前記下添側 熱交換チューブ群を掩通して前記出口側タンクに導入さ 20 れる一方、両熱交換チューブ群を流通する冷峻が、外気 と熱交換されて蒸発されるよう構成されてなることを特 徴とする蓬発器。

【語求項2】 前記入口側タンクに、冷媒をタンク長さ 方向に分流するための分流用抵抗手段が設けられてなる 請求項1記載の蒸発器。

【語求項3】 前記出口側タンクに、冷媒の偏流を防止 するための偏流防止用抵抗手段が設けられてなる諸求項 1又は2記載の蒸発器。

【詰求項4】 所定の間隔おきに複数の熱交換チューブ 30 形成されてなる詰求項9記載の蒸発器。 が並列に配置された上海側熱交換チューブ群及び下流側 熱交換チューブ群が、前後方向に並んで配置されたコア Ł.

両熱交換チューブ群の一端側に沿って配置される出入側 ヘッダー部材と.

両熱交換チューブ群の他端側に沿って配置される冷様を ーン側へッダー部材とを具備し、

前記出入側へッダー部材の内部が仕切部材により前待に 仕切られて、一方側が入口側タンクとして構成されると ともに、他方側が出口側タンクとして構成され、

前記上漆側熱交換チューブ群における各熱交換チューブ の一端が前記出入側へッダーの入口側タンクに連結され るとともに、他端が前記冷媒ターン側へッダー部材に連 結され、

前記下漆側熱交換チューブ群の各熱交換チューブの一端 が前記出入側へッダーの出口側タンクに連結されるとと もに、他端が前記冷様ターン側へッダー部材に直結さ

前記入口側タンクに強入された冷線が、前記上流側熱交

記下流側熱交換チューブ群を適運して前記出口側タンク に導入される一方、両熱交換チューブ群を撤通する冷峻 が、外気と熱交換されて蒸発されるよう構成されてなる ことを特徴とする蒸発器。

【請求項5】 前記出入側ヘッダー部村は、各数交換チ ューブの一端が貫通固定される出入側へっダーブレート と、そのプレートの一面側を窺うように取り付けられる 出入側へっダーカバーとを有する請求項4記載の蒸発 뫤.

【語求項6】 前記冷機ターン側へッダー部材は、各熱 交換チューブの他線が貫通固定される冷塊ターン側へっ ダープレートと、そのプレートの他面側を覆うように取 り付けられる冷媒ターン側へっダーカバーとを有する論 求項4又は5記載の蒸発器。

【語求項7】 前記出入劃へっダー部村における前記入 口側タンクの内部に、冷媒をタンク長さ方向に分流させ るための分流用抵抗手段が設けられてなる請求項4ない し6のいずれかに記載の蒸発器。

【語求項8】 前記分娩用抵抗手段が 前記入口側タン クを上下に仕切り、かつタンク長さ方向に沿って間隔を おいて複数の冷媒通過孔が形成された分泌用抵抗板をも って構成されてなる請求項?記載の蒸発器。

【語求項9】 前記分後用抵抗板における複数の冷媒通 過孔が、その孔径を異ならせるように形成されてなる請 求項8記載の蒸発器。

【請求項10】 前記出入側へっダー部材が、その入口 側タンクに冷媒を導入するための冷媒入口を有し、

前記分離用抵抗板における複数の冷媒通過孔が、前記冷 媒入口から遠ざかるに従って、孔径が大きくなるように

【請求項11】 前記冷媒入口が、前記入口側タンクに おける長さ方向中間位置に設けられ、

前記分淺用抵抗板における複数の冷媒通過孔のうち、タ ンク長さ方向中間位置の冷媒連過孔に対し、端部位置の 冷媒通過孔の孔径が大きくなるよう形成されてなる請求 項10記載の蒸発器。

【龍求項12】 前記冷媒入口が、前記入口側タンクに おける長さ方向端部位置に設けられてなる諸求項10記 載の蒸発器。

【語求項13】 前記出入側ヘッダー部材における前記 出口側タンクの内部に、冷媒の保護を防止するための係 適防止用抵抗手段が設けられてなる詰求項4ないし7の いずれかに記載の蒸発器。

【語求項14】 前記儒流防止用抵抗手段が、前記出口 側タンクを上下に仕切り、かつタンク長さ方向に沿って 間隔をおいて複数の冷媒道過孔が形成された偏流防止用 抵抗板をもって構成されてなる請求項13記載の蒸発

【語求項15】 前記儒流防止用抵抗板における隣り台 換チューブ群、前記冷媒ターン側へッダー部材、及び前 50 う前記冷媒通過孔の間隔を、瞬り合う前記熱交換チュー

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401... 2006/06/05

ブの間隔に対し、1~4倍の範圍に設定されてなる請求 項14記載の蒸発器。

【記求項16】 前記偏流防止用抵抗板における前記冷 媒道過孔が、前記熱交換チューブの帽方向中心位置より も、蒸発器のエアー取り込み方向に対し風上側に配置さ れてなる請求項14記載の蒸発器。

【韻求項17】 前起出入側へっダー部材が、その出口 側タンクから冷燥を導出させるための冷燥出口を有し、 前記偏淺防止用抵抗板における前記冷媒通過孔のうち、 冷媒出口から最も遠い位置に配置される孔の断面積が、 7mm゚以下に設定されてなる請求項14記載の蒸発

【論求項18】 前記前記冷媒出口が、前記出口側タン クにおける長さ方向中間位置に設けられてなる論求項1 7記載の蒸発器。

【語求項19】 前記冷媒出口が、前記出口側タンクに おける長さ方向端部位置に設けられてなる請求項 17記 載の蒸発器。

【請求項20】 前記出口側タンク内における前記傳流 締が、前記熱交換チューブの通路断面積に対し、1~5 倍の範囲に設定されてなる語求項14記載の蒸発器。

【詰求項21】 前記偏流防止用抵抗板における前配冷 媒道過孔の衡面積の絵和が、前記下流側熱交換チューブ 群における熱交換チューブの通路断面積の総和よりも大 きく設定されてなる請求項14記載の蒸発器。

【請求項22】 前記偏流防止用抵抗板における前記冷 媒通過孔の形状が、円形に形成されてなる請求項 1 4 記 並の基発器。

【語求項23】 前記偏流防止用抵抗板における前記冷 30 発器。 旗道過孔の形状が、熱交換チューブの帽方向を長軸とす る長円形又は長方形に設定されてなる請求項14記載の 茶発器。

【語求項24】 前記両熱交換チューブ群間において対 応し合う熱交換チューブ同士が一体化されてなる註彙4 ないし7のいずれかに記載の蒸発器。

【詰求項25】 前記熱交換チューブが、押出成形によ り得られる押出チューブをもって構成されてなる諸求項 4ないし7のいずれかに記載の蒸発器。

【語求項26】 前記熱交換チューブのチューブ高さ が、0.75~1.5mmに設定されてなる請求項4な いし?のいずれかに記載の蒸発器。

【語求項27】 所定の間隔おきに複数の熱交換チュー ブが並列に配置された上流側熱交換チューブ群及び下流 側熱交換チューブ群が、前後方向に並んで配置されたコ 76.

両熱交換チューブ群の一端側に沿って配置される出入側 ヘッダー部材と、

両熱交換チューブ群の他端側に沿って配置される冷塊を ーン側へッダー部材とを具備し、

前記出入側へッダー部材の内部が、出入側仕切部材によ って入口側タンク及び出口側タンクに仕切られ、

前記冷媒ターン側へッダー部材が、プレス成形された少 なくとも2つ以上の金属板村からなり、前記冷媒ターン 側へッダー部科の内部が冷媒ターン側仕切部材によって 強入側タンク及び強出側タンクに仕切られるとともに、 その仕切部材に設けられた連通孔によって両タンクが連 誦され.

前記上流側熱交換チューブ群における各熱交換チューブ 10 の一端が前記出入側へッダーの入口側タンクに連結され るとともに、他端が前記冷媒ターン側へッダー部材の流 入側タンクに連結され、

前記下漆側熱交換チューブ群における各熱交換チューブ の一端が前記出入側へっダー部材の出口側タンクに連結 されるとともに、他端が前記冷様ターン側へッダー部材 の流出側タンクに連結され、

前記入口側タンクに強入された冷媒が、前記上流側熱交 **換チューブ群。前記権入嗣タンク、前記連通孔。前記権** 出側タンク、及び前記下流側熱交換チューブ群を流通し 防止用抵抗板と前記熱交換チューブの端部との間の衝面 20 て前記出口側タンクに導入される一方。両熱交換チュー ブ群を流通する冷線が、外気と熱交換されて蒸発される よう構成されてなることを特徴とする蒸発器。

> 【請求項28】 前記冷媒ターン側へッダー部村は、各 熱交換チューブの総部が貫通固定されるヘッダープレー トと、そのプレートの一面側を覆うように取り付けられ るヘッダーカバーとを有し、

> 前記冷媒ターン側仕切部付が、前記へっダーカバーを構 成する金属板材の中間領域が長さ方向に沿って折り重ね られることによって形成されてなる語求項27記載の蒸

【請求項29】 前記冷媒ターン側仕切部材の先端に、 長さ方向に沿って所定の間隔おきに係合突起が設けら

前記ヘッダーブレートの中間に、前記係合突起に対応し て、長さ方向に沿って所定の間隔おきに係合孔が設けら

前記係合案起が、前記係合孔に挿入された状態で、加締 め処理によって固定されてなる請求項23配載の蒸発 蹇.

【語求項30】 前記冷媒ターン側へッダー部村を構成 40 する金属板材が、少なくとも片面にろう材が綺層された アルミニウムブレージングシートによって形成されてな る語水項27記載の蒸発器。

【請求項31】 前記プレージングシートの外面側にろ う村が積層されるとともに、そのろう村層に亜鉛が含有 されてなる請求項30記載の蒸発器。

【語求項32】 前記ヘッダーカバーの板厚が、前記へ ッダープレートの板厚よりも薄く設定されてなる誰求項 28記載の褒楽器。

50 【語求項33】 前記出入鍋ヘッダー部材が、プレス成

形された少なくとも2つ以上の金層板衬からなる語文項 27記載の蒸発器。

【語求項34】 前記出入側ッダー部付は、各熱交換チ ューブの端部が貫通固定されるヘッダーブレートと、そ のプレートの一面側を覆うように取り付けられるヘッダ ーカバーとを有し、

前記出入側仕切部材が、前記ヘッダーカバーを構成する 金属板材の中間領域が長さ方向に沿って折り重ねられる ことによって形成されてなる請求項33記載の蒸発器。

【語求項35】 前記出入側仕切部村の先端に、長さ方 10 が、外気と終交換されて蒸発されるよう機成されてなる 向に沿って所定の間隔おきに係合案起が設けられ、

前記ヘッダーブレートの中間に、前記係合笑起に対応し て、長さ方向に沿って所定の間隔あきに係合孔が設ける

前記係合突起が、前記係合孔に挿入された状態で、加締 め処理によって固定されてなる請求項34記載の蒸発

【詰求項36】 前記出入側へっダー部材を構成する金 属板衬が、少なくとも片面にろう材が積層されたアルミ ニウムブレージングシートによって形成されてなる請求 20 項33記載の蒸発器。

【語求項37】 前記プレージングシートの外面側にろ う村が積層されるとともに、そのろう村屋に亜鉛が含有 されてなる請求項36記載の蒸発器。

【語求項38】 前記ヘッダーカバーの板厚が、前記へ ッダープレートの板厚よりも薄く設定されてなる語文項 34記載の蒸発器。

【詰求項39】 所定の間隔おきに複数の熱交換チュー ブが並列に配置された上流側熱交換チューブ群及び下流 76.

両熱交換チューブ群の一端側に沿って配置される出入側 ヘッダー部材と

両熱交換チューブ群の他端側に沿って配置される冷媒を ーン側へッダー部材とを具備し、

前記出入側へッダー部材は、出入側へッダープレート と、そのプレートの一面側を覆うように取り付けられる 出入側へッダーカバーと、前記出入側へッダー部村の内 部を入口側タンク及び出口側タンクに仕切るための仕切 部村とを有し.

前記冷媒ターン側へッダー部材は、冷媒ターン側へッダ ープレートと、そのプレートの一面側を覆うように取り 付けられる冷媒ターン側へッダーカバーを有し、前記冷 媒ターン側へッダーブレート及び前記冷様ターン側へっ ダーカバーのうち一方が、プレス成形された金属板材に より形成されるとともに、残り一方が、押出成形品によ り形成され、

前記上権側熱交換チューブ群における各熱交換チューブ の一端が前記出入側へっダーブレートに貫通置定され

記冷媒ターン側へッダーブレートに貫通固定され、 前記下漆側熱交換チューブ群における各熱交換チューブ の一端が前記出入側へっダーブレートに貫通固定され て、前記出口側タンクに連結されるとともに、他端が前 記冷媒ターン側へッダーブレートに貫通固定され、

前記入口側タンクに流入された冷媒が、前記上流側熱交 換チューブ群、前配冷媒ターン側へッダー部材、及び前 記下流側熱交換チューブ群を掩通して前記出口側タンク に導入される一方、両熱交換チューブ群を流通する冷線 ことを特徴とする蒸発器。

【語求項40】 前記出入側へっダー部材における前記 出入側へッダープレート及び前記出入側へッダーカバー のうち一方が、プレス成形された金属板材により形成さ れるとともに、矮り一方が、押出成形品により形成され てなる請求項39記載の蒸発器。

【語求項41】 前後方向に並んで配置される上流倒熱 交換チューブ群及び下流側熱交換チューブ群を構成する 複数の熱交換チューブを準備する工程と、

前記上権側熱交換チューブ群の一端側に沿って配置され る入□側タンクを準備する工程と、

前記下流側熱交換チューブ群の一端側に沿って配置され る出口側タンクを準備する工程と、

両熱交換チューブ書の他端側に沿って配置される冷様を ーン用部材を準備する工程と、

前記上権側熱交換チューブ群における各熱交換チューブ の一端を前記入口側タンクにろう付け固定するろう付け 工程と、

前記上流側熱交換チューブ群における各熱交換チューブ 側熱交換チューブ群が、前後方向に並んで配置されたコ 30 の他端を前記冷媒ターン用部材にろう付け固定するろう 付け工程と、

> 前記下撤倒熱交換チューブ群における各熱交換チューブ の一端を前記出口側タンクにろう付け固定するろう付け

> 前記下撤側熱交換チューブ群における各熱交換チューブ の低端を前記冷媒ターン用部材にろう付け固定するろう 付け工程を含み、

前記入口側タンクに強入された冷堤が、前記上流側熱交 換チューブ群、前記冷媒ターン用部村、及び前記下流側 40 熱交換チューブ群を掩通して前記出口側タンクに導入さ れる一方、両数交換チューブ製を流道する冷媒が、外気 と熱交換されて蒸発される冷媒回路を形成するものとし た蒸発器の製造方法。

【韻求項42】 前記複数のろう付け工程を、炉中ろう 付け処理によって一括して行うものとした請求項41記 献の蒸発器の製造方法。

【語求項43】 前後方向に並んで配置される上流側熱 交換チューブ群及び下流側熱交換チューブ群を構成する 熱交換チューブを準備する工程と、

て、前記入口側タンクに連結されるとともに、他端が前 50 両熱交換チューブ群の一端側に沿って配置され、内部が

仕切部材により前後に仕切られて、一方側が入口側タン クとして構成されるとともに、他方側が出口側タンクと して構成される出入側へッダー部材を準備する工程と、 両熱交換チューブ群の他端側に沿って配置される冷媒タ ーン個へッダー部材を準備する工程と.

前記上流側熱交換チューブ群における各熱交換チューブ の一端を前記出入側へッダーの入口側タンクにろう付け 固定するろう付け工程と、

前記上漆側熱交換チューブ群における呂熱交換チューブ の他端を前記冷媒ターン側ヘッダー部村にろう付け固定 10 するろう付け工程と、

前記下流側熱交換チューブ群の各熱交換チューブの一端 を前記出入側へッダーの出口側タンクにろう付け固定す るろう付け工程と、

前記下漆側熱交換チューブ群の各熱交換チューブの他鑑 を飼記冷媒ターン側ヘッダー部材にろう付け固定するろ う付け工程とを含み、

前記入口側タンクに強入された冷塊が、前記上流側熱交 換チューブ群、前記冷媒ターン側へッダー部材、及び前 に導入される一方、両熱交換チューブ群を強通する冷雄 が、外気と熱交換されて蒸発される冷媒回路を形成する ものとした蒸発器の製造方法。

【請求項44】 前記複数のろう付け工程を、炉中ろう 付け処理によって一括して行うものとした請求項43記 載の蒸発器の製造方法。

【請求項45】 前後方向に並んで配置される上流側熱 交換チューブ群及び下流側熱交換チューブ群を構成する 熱交換チューブを準備する工程と、

出入側仕切部村によって内部が入口側タンク及び出口側 30 付け工程と、 タンクに仕切られ、両熱交換チューブ群の一端側に沿っ て配置される出入側へッダー部材を準備する工程と、

プレス成形された少なくとも2つ以上の金属板付からな り、冷媒ターン側仕切部村によって内部が添入側タンク 及び流出側タングに仕切られるとともに、その仕切部材 に設けられた連通孔によって両タンクが連通され、両熱 交換チューブ群の他端側に沿って配置される冷媒ターン 側へッダー部村を準備する工程と、

前記上権側熱交換チューブ群における各熱交換チューブ の一端を前記出入側へッダーの入口側タンクにろう付け 45 プレートにろう付け固定するろう付け工程ととを含み、 固定するろう付け工程と

前記上撤側熱交換チューブ群における各熱交換チューブ の他端を前記冷媒ターン側へッダー部村の強入側タンク にろう付け工程するろう付け工程と、

前記下撤側熱交換チューブ群における各熱交換チューブ の一端を前記出入側へッダー部材の出口側をンクにろう 付け固定するろう付け工程と、

前記下流側熱交換チューブ群における各熱交換チューブ の他端を前記冷媒ターン側へッダー部村の流出側タンク にろう付け工程するろう付け工程とを含み、

前記入口側タンクに流入された冷媒が、前記上流側熱交 換チューブ群、前記豫入側タンク、前記連通孔、前記豫 出側タンク、及び前記下流側熱交換チューブ群を流通し で前記出口側タンクに導入される一方。両熱交換チュー ブ群を確通する冷媒が、外気と熱交換されて蒸発される 冷媒回路を形成するものとした蒸発器の製造方法。

【請求項46】 前記複数のろう付け工程を、炉中ろう 付け処理によって一括して行うものとした請求項45記 載の蒸発器の製造方法。

【請求項47】 前後方向に並んで配置される上流側熱 交換チューブ群及び下流側熱交換チューブ群を構成する 熱交換チューブを準備する工程と、

出入側へッダープレートと、そのプレートの一面網を覆 うように取り付けられる出入側へっダーカバーと、前記 出入側へッダー部材の内部を入口側タンク及び出口側タ ンクに仕切るための仕切部村とを有し、両熱交換チュー ブ群の一端側に沿って配置される出入側へッダー部材

冷媒ターン側へッダープレートと、そのプレートの一面 記下流側熱交換チューブ群を掩通して的記出口側タンク 20 側を覆うように取り付けられる冷媒ターン側へッダーカ バーを有し、前記冷媒ターン側へっダープレート及び前 記冷媒ターン側へッダーカバーのうち一方が、プレス成 形された金属板材により形成されるとともに、残り一方 が、押出成形品により形成され、両熱交換チューブ群の 他端側に沿って配置される冷媒ターン側へっダー部材と を準備する工程と、

> 前記上強倒熱交換チューブ群における各熱交換チューブ の一端を前記出入側へッダー部材の前記へッダーブレー トにろう付け固定して前記入口側タンクに連結するろう

> 前記上流側熱交換チューブ群における各熱交換チューブ の他端を前記冷媒ターン側へっダー部村の前記へっダー プレートにろう付け固定するろう付け工程と、

> 前記下海側熱交換チューブ群における各熱交換チューブ の一端を前記出入側へッダー部材の前記へッダーブレー トにろう付け固定して、前記出口側タンクに連結するろ う付け工程と

前記下撤側熱交換チューブ群における呂熱交換チューブ の他端を前記冷媒ターン側へっダー部村の前記へっダー 前記入口側タンクに強入された冷媒が、前記上流側放交 換チューブ群、前記冷媒ターン側へッダー部材、及び前 記下流側熱交換チューブ群を流通して前記出口側タンク に導入される一方、西熱交換チューブ群を強通する冷塊 が、外気と熱交換されて蒸発される冷媒回路を形成する ものとした蒸発器の製造方法。

【語求項48】 前記複数のろう付け工程を、炉中ろう 付け処理によって一括して行うものとした請求項47記 献の蒸発器の製造方法。

50 【語求項49】 前記炉中ろう付け処理を行う前に、前

記へッダー部村の表面に亜鉛を含むフラックスを塗布し ておき、その表面に亜鉛鉱散圏を形成するものとした請 求項48記載の蒸発器の製造方法。

【請求項50】 所定の間隔おきに複数の熱交換チュー ブが並列に配置された上流側熱交換チューブ群及び下流 側熱交換チューブ群が、前後方向に並んで配置されるコ アを有する蒸発器の出入側へっダー部材であって、

ダープレートと

顔記へッダーブレートの一面側を覆うように取り付けら 10 顔記仕切部材が、顔記へッダーカバーを構成する金属板 れるヘッダーカバーと、

前記ヘッダープレート及び前記ヘッダーカバーによって 聞まれる中空部を前後に仕切って、入口側タンク及び出 口側タンクを形成するための仕切部付とを備え、

前記ヘッダーブレート及び前記ヘッダーカバーのうち少 なくともいずれか一方が、ブレス成形された金属板材に より形成されてなり、

前記入口側タンクに強入された冷塊が、前記上流側熱交 換チューブ群に導入されるとともに、前記下流側熱交換 されるよう構成されてなることを特徴とする蒸発器の出 入側ヘッダー部村。

【龍水項51】 前記ヘッダーブレート及び前記ヘッダ ーカバーの双方が、プレス成形された金属板材により形 成されるとともに、

前記仕切部材が、前記ヘッダーカバーを構成する金属板 材の中間領域が長さ方向に沿って折り重ねられることに よって、前記ヘッダーカバーに一体に形成されてなる詩 求項50記載の蒸発器の出入側へッダー部材。

【語求項52】 前記ヘッダープレート及び前記ヘッダ 30 る出口側タンクと、 ーカバーのうちいずれか一方が、プレス成形された金属 板材により形成されるとともに、残り一方が押出成形品 により形成されてなる請求項5 ()記載の蒸発器の出入側 ヘッダー部材。

【語求項53】 所定の間隔おきに複数の熱交換チュー ブが並列に配置された上流側熱交換チューブ群及び下流 側熱交換チューブ群が、前後方向に並んで配置されるコ アを有する蒸発器の冷凍ターン側へッダー部材であっ

ダーブレートと.

前記へッダーブレートの一面側を覆うように取り付ける れるヘッダーカバーと、

前記へッダーブレート及び前記へッダーカバーによって 聞まれる中空部を前後に仕切って、流入側タンク及び流 出側タンクを形成し、両タンク間を迫迫するための連通 孔を有する仕切部材とを備え、

前記へッダーブレート及び前記へッダーカバーのうち少 なくともいずれか一方が、プレス成形された金属板材に より形成されてなり、

前記上強側熱交換チューブ群を流通する冷媒が、前記流 入側タンクに導入されて、前記連通孔を通って前記旅出 側タンクに導入されるとともに、前記流出側タンクの冷 媒が、前記下流側熱交換チューブ群に導入されるよう機 成されてなることを特徴とする蒸発器の冷媒ターン側へ ッダー部材。

【詰求項54】 前記ヘッダープレート及び前記ヘッダ ーカバーの双方が、プレス成形された金属板材により形 成されるとともに、

材の中間鎖域が長さ方向に沿って折り重ねられることに よって、前記ペッダーカバーに一体に形成されてなる請 求項53記載の蒸発器の冷媒ターン側へッダー部村。

【請求項55】 前記ヘッダープレート及び前記ヘッダ ーカバーのうちいずれか一方が、プレス成形された金層 板材により形成されるとともに、残り一方が押出成形品 により形成されてなる請求項53記載の蒸発器の冷媒タ -ン側へっダー部材。

【語求項56】 圧縮級により圧縮された冷媒を凝縮器 チューブ群を流通する冷媒が、前記出口側タンクに導入 20 により契縮し、その契縮冷媒を採圧器に通過させて採圧 し、その減圧冷媒を蒸発器により蒸発させて前記圧縮機 に戻すようにした冷凍システムであって、

前記基条器は

所定の間隔おきに複数の熱交換チューブが並列に配置さ れた上陸側熱交換チューブ群及び下流側熱交換チューブ 群が、前後方向に並んで配置されたコアと、

前記上機側熱交換チューブ群の一端側に沿って配置され る入口側タンクと、

前記下漆側熱交換チューブ群の一端側に沿って配置され

両熱交換チューブ群の他端側に沿って配置される冷様を ーン用部材とを具備し、

前記上機側熱交換チューブ群における各熱交換チューブ の一端が前記入口側タンクに連結されるとともに 砂端 が前記冷媒ターン用部材に追通接続され、

前記下流側熱交換チューブ群における各熱交換チューブ の一端が前記出口側タンクに連縮されるとともに、他端 が前記冷様ターン用部材に追通接続され、

前記入口側タンクに強入された冷線が、前記上流側熱交 前記各熱交換チェーブの端部を貢通固定するためのヘッ 40 換チェーブ群、前記冷媒ターン用部村、及び前記下途側 熱交換チューブ群を撤運して前記出口側タンクに導入さ れる一方、両熱交換チューブ群を施通する冷媒が、外気 と熱交換されて蒸発されるよう構成されてなることを特 徴とする冷凍システム。

> 【請求項57】 圧縮級により圧縮された冷模を疑縮器 により経縮し、その経縮冷媒を減圧器に通過させて減圧 し、その減圧冷媒を蒸発器により蒸発させて前記圧縮機 に戻すようにした冷凍システムであって、

前記蒸発器は、

50 所定の間隔おきに複数の熱交換チューブが並列に配置さ

特闘2003-75024

11

れた上海側熱交換チューブ群及び下流側熱交換チューブ 群が、前後方向に並んで配置されたコアと、

両熱交換チューブ群の一端側に沿って配置される出入側 ヘッダー部材と、

両数交換チューブ群の他機関に沿って配置される冷媒タ ーン側へッダー部材とを具備し、

前記出入側へッダー部材の内部が仕切部材により前後に 仕切られて、一方側が入□側タンクとして構成されると ともに、他方側が出口側タンクとして構成され、

前記上流側熱交換チューブ群における沓熱交換チューブ 10 に戻すようにした冷凍システムであって、 の一端が前記出入側へッダーの入口側タンクに連結され るとともに、他端が前記冷媒ターン側へっダー部材に連

前記下漆側熱交換チューブ群の各熱交換チューブの一端 が前記出入側へッダーの出口側タンクに連結されるとと もに、他端が前記冷様ターン側へッダー部材に連結さ n

前記入口側タンクに強入された冷媒が、前記上流側熱交 換チューブ群、前記冷媒ターン側へッダー部材、及び前 に導入される一方、両熱交換チューブ群を流通する冷線 が、外気と熱交換されて蒸発されるよう機成されてなる ことを特徴とする冷凍システム。

【語求項58】 圧縮機により圧縮された冷媒を凝縮器 により経縮し、その経縮冷媒を減圧器に通過させて減圧 し、その減圧冷媒を蒸発器により蒸発させて前記圧縮緩 に戻すようにした冷凍システムであって、

前記慈桑塞は前

所定の間隔おきに複数の熱交換チューブが並列に配置さ れた上流側熱交換チューブ群及び下流側熱交換チューブ 30 群が、前後方向に並んで配置されたコアと、

両熱交換チューブ群の一端側に沿って配置される出入側 ヘッダー部材と、

両熱交換チューブ群の他端側に沿って配置される冷塵を - ン側ヘッダー部材とを具備し、

前記出入側へッダー部材の内部が出入側仕切部材によっ て内部が入口側タンク及び出口側タンクに仕切られ、

前記冷媒ターン側へッダー部材が、プレス成形された少 なくとも2つ以上の金属板材からなり、冷様ターン側仕 仕切られるとともに、その仕切部材に設けられた追通孔 によって両タンクが連通され、

前記上権側熱交換チューブ群における各熱交換チューブ の一端が前記出入側へっダーの入口側タンクに連結され るとともに、他端が前記冷媒ターン側へっダー部材の途 入倒タンクに連結され、

前記下流側熱交換チューブ群における呂熱交換チューブ の一端が前記出入側へっダー部材の出口側タンクに連結 されるとともに、他端が前記冷媒ターン側へッダー部材 の流出側タンクに連結され、

前記入口側タンクに強入された冷媒が、前記上流側熱交 換チューブ群、前記権入側タンク、前記連通孔。前記権 出側タンク、及び前記下流側熱交換チューブ群を流通し て前記出回側タンクに導入される一方。両熱交換チュー ブ群を撤還する冷媒が、外気と熱交換されて蒸発される よう構成されてなることを特徴とする冷凍システム。

【請求項59】 圧縮機により圧縮された冷峻を疑縮器 により凝縮し、その経縮冷媒を減圧器に通過させて減圧 し、その減圧冷媒を蒸発器により蒸発させて前記圧縮機

前記蒸発器は、

所定の間隔おきに複数の熱交換チューブが並列に配置さ れた上海側熱交換チューブ群及び下流側熱交換チューブ 群が、前後方向に並んで配置されたコアと、

両熱交換チューブ群の一端側に沿って配置される出入側 へっダー部材と、

両熱交換チューブ群の他端側に沿って配置される冷媒タ ーン側へっダー部材とを具備し、

前記出入側へッダー部材は、出入側へッダープレート 起下流側熱交換チューブ群を掩通して前起出口側タンク 20 と そのプレートの一面側を纏うように取り付けられる 出入側へッダーカバーと、前記出入側へッダー部村の内 部を入口側タンク及び出口側タンクに仕切るための仕切 部付とを有し、

> 前記冷嬢ターン側へッダー部材は、冷嬢ターン側へッダ ープレートと、そのプレートの一面側を覆うように取り 付けられる冷媒ターン側へッダーカバーを有し、前記冷 様ターン側へッダーブレート及び前記冷様ターン側へっ ダーカバーのうち一方が、プレス成形された金属板材に より形成されるとともに、残り一方が、押出成形品によ り形成され、

前記上流側熱交換チューブ群における呂熱交換チューブ の一端が前記出入側へッダープレートに貫通間定され て、前記入口側タンクに連結されるとともに、他端が前 記冷媒ターン側へッダーブレートに貫通固定され、 前記下流側熱交換チューブ群における呂熱交換チューブ の一端が前記出入側へっダーブレートに貫通固定され て、前記出口側タンクに連絡されるとともに、他端が前

記冷媒ターン側へッダーブレートに普通固定され、 前記入口側タンクに強入された冷媒が、前記上流側熱交 切部村によって内部が淹入側タンク及び淹出側タンクに 40 幾チェーブ群。前記冷媒ターン側へッダー部材。及び前 記下流側熱交換チューブ群を流通して前記出口側タンク に導入される一方、両熱交換チューブ群を撤運する冷線 が、外気と熱交換されて蒸発されるよう機成されてなる

【発明の詳細な説明】

ことを特徴とする冷凍システム。

[0001]

【発明の属する技術分野】この発明は、例えばカーエア コンやルームケーラ用の蒸発器、その製造方法、蒸発器 用へッダー部村及び冷凍ンステムに関する。

59 [0002]

13

【従来の技術とその課題】カーエアコン用冷凍システム は、圧縮緩から吐出された高温高圧のガス冷峻を、軽縮 器により契縮し、更に膨張弁等の減圧手段により気液混 相の器状冷媒とし、その冷媒を蒸発器に通過させて蒸発 気化させた後、上記圧縮機に戻るというサイクルを有し

【0003】従来、上記の冷凍システムに採用される蒸 発器としては、一対の皿状成形プレートを対向合致させ たチューブエレメントを、各チューブエレメント間にフ ィンを介在させつつ、厚さ方向に多数枚輪磨して形成さ 16 【0012】 れたラミネート型のものが主流となっている。

【0004】このようなラミネート型蒸発器は、交換熱 量が多く、また、通気抵抗も低いため、優れた特性を得 ることができる。

【0005】一方近年になって、例えば、車室内の臭気 問題の観点等から、蒸発器の前面に、脱臭フィルターが 装着される場合があり、フィルターの取付スペースを確 保するために、嘉発器の薄型化を要求する傾向が高くな りつつある。

ミネート型蒸発器では、以下の欠点が明らかとなってき た。

【0007】まず第1に、ラミネート型蒸発器において は、プレスによる絞り加工によって成形された一対の皿 状成形プレートを対向合致させて、熱交換路を有するチ ューブエレメントを形成するものであるため、一対の成 形プレートが直接接触し合う部分、つまり熱交換路以外 の部分が多くなり、その結果、冷媒の追路断面積が減少 して、運路抵抗が増加し、性能の低下を来す恐れがあ る。この対応策としては、成形プレートの絞り量を多く して冷媒通路高さを高くし、通路断面積を大きくする案 が考えられるが、その寒では、チューブエレメントの厚 みが厚くなり、その分、チューブエレメント間の追風路 が小さくなり、道風路内に配置されるフィンのサイズが 小さくなる。その結果、道原抵抗が増大するとともに、 フィンの伝熱面積が減少して性能の低下を来す恐れがあ る。

【0008】第2に、上記ラミネート型蒸発器において は、一対の成形プレートが直接接触し合う部分には、フ ィンが接触しておらず、伝熱効率の低下を来すこととな 46 【0014】との発明においては、前記入口側タンク るが、薄型化に伴い、フィンの非接触部分の割合が増加 し. 冷却性能の低下を来す恐れがある。

【0009】第3に、上記ラミネート型蒸発器は、タン ク部とチューブ部 (熱交換路部分) とが皿状成形プレー トに一体に形成されるものであるため、耐圧力が最も要 求されるタンク部も絞り加工により形成されている。こ のため、このタンク部の内厚が、チューブ部(熱交換路 部分)の肉厚よりも薄くなる傾向にある。従って、タン ク部を基準に内厚を設計する必要があり、チューブ部に ず、軽量化を阻害する恐れがある。

【0010】とのようにラミネート型蒸発器では、十分 な性能を維持しつつ、今以上の薄型化を図ることが困難 であるという状況下にある。

【0011】との発明は、上記の実情に鑑みてなされた もので、十分な熱交換性能を維持しつつ、小型軽量化及 び蘇型化を図ることができる蒸発器、その製造方法、蒸 発器用へっダー部材及び冷凝システムを提供することを 目的とする。

【課題を解決するための手段】上記目的を達成するた め、本第1発明の蒸発器は、所定の間隔おきに複数の熱 交換チューブが並列に配置された上流側熱交換チューブ 群及び下撤側熱交換チューブ群が、前後に重なり合うよ うに並んで配置されたコアと、前記上流側熱交換チュー ブ群の一端側に沿って配置される入口側タンクと、前記 下流側熱交換チューブ群の一端側に沿って配置される出 口側タンクと、西熱交換チューブ群の他端側に沿って配 置される冷様ターン用部村とを具備し、前記上流側熱交 【0006】このような薄型化の要求に対して、上記ラ 26 幾チューブ群における各数交換チューブの一端が前記入 口側タンクに連結されるとともに、他端が前記冷媒ター ン用部材に連通接続され、前記下流側数交換チューブ群 における各熱交換チューブの一端が前記出口側タンクに 連結されるとともに、他端が前記冷嬢ターン用部材に連 通接続され、前記入口側タンクに施入された冷媒が、前 記上流側熱交換チューブ群。前記冷媒ターン用部村、及 び前記下途側熱交換チューブ群を流道して前記出口側タ ングに導入される一方、両熱交換チューブ群を流通する 冷媒が、外気と数交換されて蒸発されるよう模成されて 30 なるものを要旨とするものである。

> 【0013】との発明の蒸発器においては、冷燥経路 を、上海側及び下線側熱交換チューブ群によって、シン プルなU字状に形成するものであるため、冷礙の流路抵 抗を減少させることができる。このため、冷礁の通路断 面積を小さくできて、熱交換チューブのチューブ高さを 小さくすることができる。更にチューブ高さを小さくす ることができるため、コア寸法を増大させずに、チュー ブ設置本数を増加させることができ、冷凍の分散性を向 上させることができる。

に、冷媒をタンク長さ方向に分流するための分流用抵抗 手段が設けられてなる機成。又は前記出口側タンクに、 冷媒の偏遠を防止するための偏遠防止用抵抗手段が設け ちれてなる機械を採用するのが好ましい。

【0015】すなわちこれらの構成の採用する場合に は、熱交換チューブ群を通過する冷媒が、コア全域に均 等に分散されて、コア全域で効率良く熱交換することが

【0016】一方、上記目的を達成するため、本第2発 耐圧的に余裕があるにもかかわらず、萬肉化を実能でき 50 明の蒸発器は、所定の間隔おきに複数の熱交換チューブ

が並列に配置された上流側熱交換チューブ群及び下流側 熱交換チューブ群が、前後に重なり合うように並んで配 置されたコアと、両熱交換チューブ群の一端側に沿って 配置される出入側へッダー部材と、両熱交換チューブ群 の他端側に沿って配置される冷媒ターン側へッダー部材 とを具備し、前記出入側へっダー部村の内部が仕切部材 により前後に仕切られて、一方側が入口側タンクとして 構成されるとともに、他方側が出口側タンクとして構成 され、前記上流側熱交換チューブ群における各熱交換チ 結されるとともに、他雄が前記冷様ターン側へっダー部 材に連結され、前記下強調熱交換チューブ群の各熱交換 チューブの一端が前記出入側へッダーの出口側タンクに 連結されるとともに、他端が前記冷媒ターン側へッダー 部村に連結され、前記入口側タンクに流入された冷線 が、前記上流側熱交換チューブ群、前記冷線ターン側へ ッダー部材、及び前記下流側熱交換チューブ群を流通し て前記出口側タンクに導入される一方。両熱交換チュー ブ群を施運する冷媒が、外気と熱交換されて蒸発される よう構成されてなるものを要旨としている。

【0017】との発明の蒸発器においては、上記と同 様、冷媒経路を、シンプルなU字状に形成するものであ るため、冷媒の流路抵抗を低減できるとともに、冷媒の 分散性を向上させることができる。

【0018】本発明において、前記出入側へッダー部材 ッダープレートと、そのプレートの一面側を覆うように 取り付けられる出入側へッダーカバーとを有する構成を 採用するのが好ましい。

【0019】更に本発明において、前記冷媒ターン側へ 30 ッダー部材は、各熱交換チューブの他端が貫通固定され る冷媒ターン側へッダープレートと、そのプレートの他 面側を窺うように取り付けられる冷媒ターン側へッダー カバーとを有する構成を採用するのが良い。

【0020】本発明においては、冷媒の分散性を高める ために、以下の構成を採用するのが望ましい。

【0021】すなわち、本発明においては、前記出入側 ヘッダー部材における前記入口側タンクの内部に、冷熄 をタンク長さ方向に分逢させるための分後用抵抗手段が 設けられてなる構成を採用するのが望ましい。

【0022】また上記分流用抵抗手段としては、前記入 口側タンクを上下に仕切り、かつタンク長さ方向に沿っ て間隔をおいて複数の冷媒道過孔が形成された分流用抵 抗板からなるものを採用することができる。

【0023】更に、前記分流用抵抗板における複数の冷 媒道過孔が、その孔径を異ならせるように形成されてな る構成も採用するのが良い。

【0024】更に、本発明においては、前記出入側へっ ダー部材が、その入口側タンクに冷媒を導入するための 運過孔が、前記冷凍入口から遠ざかるに従って、孔径が 大きくなるように形成されてなる構成。又は前記冷模人 口が、前記入口側タンクにおける長さ方向中間位置に設 けられ、前記分流用抵抗板における複数の冷模道過孔の うち、タンク長さ方向中間位置の冷媒通過孔に対し、蜷 部位置の冷媒道過孔の孔径が大きくなるよう形成されて なる構成を採用するのが、より好ましい。

【0025】また本発明においては、入口側タンクへの 冷媒の導入をスムーズに行えるように、前記冷媒入口 ューブの一端が前記出入側へッダーの入口側タンクに連 10 が、前記入口側タンクにおける長さ方向端部位置に設け ちれてなる機成を採用することも可能である。

> 【0026】また本発明においては、冷燥の分散性を、 より一層高めるために、以下の構成を採用するのが、よ り一層好ましい。

> 【0027】すなわち、本発明においては、前記出入側 ヘッダー部材における前記出口側タンクの内部に、冷熄 の偏流を防止するための偏流防止用抵抗手段が設けられ てなる構成を採用するのが良い。

【0028】この偏端防止用抵抗手段としては、前記出 20 日側タンクを上下に仕切り、かつタンク長さ方向に沿っ て間隔をおいて複数の冷媒通過孔が形成された偏流防止 用抵抗板からなるものを採用するのが良い。

【0029】更に本発明においては、前記偏流防止用抵 抗仮における隣り合う前記冷媒通過孔の間隔を、隣り合 う前記熱交換チューブの間隔に対し、1~4倍の範囲に 設定されてなる構成を採用するのが望ましい。

【0030】すなわちこの構成を採用する場合には、冷 旗をコア全域に均等に確迫させることができ、冷房性能 をより向上させることができる。

【0031】更に本発明においては、前記偏流防止用抵 抗板における前記冷媒通過孔が、前記熱交換チェーブの 幅方向中心位置よりも、蒸発器のエアー取り込み方向に 対し原上側に配置されてなる構成を採用するのが好まし

【0032】すなわちこの構成を採用する場合。出入側 ヘッダー部材から、液冷媒の流出を防止することがで き、膨張弁の制御を安定して行うことができる。

【10033】また本発明においては、前記出入側ヘッダ 一部対が、その出口側タンクから冷媒を導出させるため 40 の冷媒出口を有し、前記偏流防止用抵抗板における前記 冷媒道過孔のうち、冷媒出口から最も違い位置に配置さ れる孔の断面積が、7mm'以下に設定されてなる構成 を採用するのが、より望ましい。

【0034】すなわちこの構成を採用する場合には、冷 娘の分散性をより一層向上させることができる。

【0035】更に本発明においては、冷礁の途出をスム ーズに行えるように、例えば前記冷媒出口が、前記出口 倒タンクにおける長さ方向中間位置に設けられてなる格 成、又は前記前記冷線出口が、前記出口側タンクにおけ 冷媒入口を有し、前記分选用抵抗板における複数の冷媒 50 る長さ方向端部位置に設けられてなる構成を採用するこ

とが可能である。

【0036】また本発明においては、前記出口側タンク 内における前記個達防止用抵抗板と前記熱交換チューブ の端部との間の断面論が、前記熱交換チューブの道路断 面債に対し、1~5倍の範囲に設定されてなる構成を採 用するのが良い。

【0037】すなわちこの構成を採用することにより、 偏流防止用抵抗板とチューブ端部間における流路抵抗の 増大を防止できるとともに、ヘッダー部材内部に適当な 芝間を確保することができる。

【0038】また本発明においては、前記偏流防止用抵 抗仮における前記冷線通過孔の断面積の絵和が、前記下 撤側熱交換チューブ群における熱交換チューブの道路断 面債の総和よりも大きく設定されてなる構成を採用する のが望ましい。

【0039】すなわちこの構成を採用する場合には、通 路抵抗の増大を抑制することができるとともに、冷凍の 分散性をより一層向上させることができる。

【0040】更に本発明においては、通路抵抗の減少及 び冷媒の分散性向上を図るために、前記帰滅防止用抵抗 20 板における前記冷媒通過孔の形状が、円形に形成されて なる構成、又は前記儒論防止用抵抗板における前記冷媒 通過孔の形状が、熱交換チューブの帽方向を長軸とする 長円形又は長方形に設定されてなる構成を好適に採用す ることができる。

【0041】また、本発明においては、前記両熱交換チ ューブ群闘において対応し合う熱交換チューブ同士が-体化されてなる構成、又は前記熱交換チューブが、押出 成形により得られる押出チューブをもって機成されてな るものを、好適に採用することができる。

【0042】更に本発明においては、熱交換チューブの チューブ高さを小さく設定することが可能であり、例え は、前記熱交換チューブのチューブ高さが、0.75~ 1. 5 mmに設定されてなる機成を採用することが可能 である。

【0043】本第3発明の蒸発器は、所定の間隔おきに 複数の熱交換チューブが並列に配置された上流側熱交換 チューブ群及び下漆側熱交換チューブ群が、前後方向に 並んで配置されたコアと、両熱交換チューブ群の一端側 に沿って配置される出入側ヘッダー郎村と、両熱交換チ 40 ューブ群の他端側に沿って配置される冷様ターン側へっ ダー部材とを具備し、前記出入側へッダー部材の内部 が、出入側仕切部材によって入口側タンク及び出口側タ ンクに仕切られ、前記冷媒ターン側へッダー部行が、ブ レス成形された少なくとも2つ以上の金属板材からな り、前記冷媒ターン側へッダー部材の内部が冷媒ターン 側仕切部材によって流入側タンク及び流出側タンクに仕 切られるとともに、その仕切部材に設けられた連通孔に よって両タンクが連通され、前記上流側熱交換チューブ 鬱における各熱交換チューブの一端が前記出入鍋ヘッダ 50 を、より的確に行うことができる。

一の入口側タングに連結されるとともに、他端が前記冷 **媒ターン側ヘッダー部材の流入側タンクに連結され、前** 記下流側熱交換チューブ群における各熱交換チューブの 一端が前記出入側へッダー部材の出口側タンクに連結さ れるとともに、他継が前記冷様ターン側へッダー部材の **流出側タンクに連結され、前記入口側タンクに流入され** た冷媒が、前記上達側熱交換チューブ群、前記流入側タ ンク、前記連通孔、前記流出側タンク、及び前記下流側 熱交換チューブ群を掩通して前記出口網タンクに導入さ 16 れる一方、両熱交換チューブ群を施通する冷塊が、外気 と熱交換されて蒸発されるよう構成されてなるものを要 旨としている。

【0044】との第3発明においては、上記第1及び第 2 発明と同様、冷燥経路を、シンプルなU字状に形成す るものであるため、冷媒の流路抵抗を低減できるととも に、冷媒の分散性を向上させることができる。

【0045】その上更に、出入側へっダー部材として、 金属板材のプレス成形品を用いるものであるため、例え ばコイル状に巻回された金属原板から連続して、ヘッダ 一備成部材を生産することができ、生産効率を向上させ ることができる。

【0046】しかも、ヘッダー機成部村を板材により機 成するものであるため、この構成部付として、少なくと も片面にろう村や犠牲材等のクラッド村が綺麗されたブ レージングシートを用いることができるので、ろう付け 性及び耐食性を向上させることができる。

【0047】更に本発明においては、前記冷線ターン側 ヘッダー部材は、各熱交換チューブの機部が貫通固定さ れるヘッダーブレートと、そのプレートの一面側を覆う 30 ように取り付けられるヘッダーカバーとを有し、前記冷 娘ターン側仕切部材が、前記ヘッダーカバーを構成する 金属板材の中間領域が長さ方向に沿って折り重ねられる ことによって形成されてなる構成を採用するのが好まし

【0048】すなわちこの構成を採用する場合。プレス 成形により仕切部材を一体に形成することができるた め、より一磨生産性の向上を図ることができる。更に仕 切部符が重ね合わされた板部分により構成されるため、 仕切部材として十分な強度を得ることができ、ヘッダー 部村の耐圧性を、より一層向上させることができる。

【10049】更に本発明においては、前記冷媒ターン側 仕切部材の先端に、長さ方向に沿って所定の間隔おきに 係合突起が設けられ、前記ヘッダーブレートの中間に、 前記係合突起に対応して、長さ方向に沿って所定の間隔 おきに係合孔が設けられ、前記係合変起が、前記係合孔 に挿入された状態で、加締め処理によって固定されてな る構成を採用するのが望ましい。

【0050】すなわちこの構成を採用する場合には、ヘ ッダープレートに対するヘッダーカバーの位置疾め固定

特闘2003-75024

【りり51】また本発明においては、前記冷嬢ターン側 ヘッダー部材を構成する金属板材が、少なくとも片面に ろう衬が箱磨されたアルミニウムブレージングシートに よって形成されてなる構成を採用するのが、より一層好 ましい。

【0052】すなわちこの構成を採用する場合には、蒸 発器全体のろう付け性をより一層向上させることができ る。

【0053】更に本発明においては、前記プレージング う付層に亜鉛が含有されてなる機成を採用するのが、よ り望ましい。

【0054】すなわちこの構成を採用する場合には、冷 媒ターン側へッダー部材の外表面に、犠牲屋を確実に形 成することができ、耐食性を向上させることができる。

【0055】更に本発明においては、前記ヘッダーカバ ーの板厚が、前記ヘッダーブレートの板厚よりも薄く設 定されてなる構成を採用するのが良い。

【0056】すなわちこの権威を採用する場合には、十 分な耐圧性を確保しつつ、ヘッダー部科の小型軽量化、 ひいては蒸発器自体の小型軽量化を図ることができる。 【0057】また本第3発明においては、前記出入側へ ッダー部材が、プレス成形された少なくとも2つ以上の

【0058】すなわちこの構成を採用する場合。出入側 ヘッダー部材の生産効率及びろう付け性等を一層向上さ せることができる。

金属板材からなる構成を採用するのが好ましい。

【0059】また本第3発明においては、出入網ヘッダ 一部村を、上記冷媒ターン側へッダー部材と同様に、以 下のように構成するのが良い。

【0060】すなわち、本第3発明においては、前配出 入側ッダー部特は、各熱交換チューブの端部が貫通固定 されるヘッダーブレートと、そのフレートの一面側を覆 うように取り付けられるヘッダーカバーとを有し、前記 出入側仕切部材が、前記ペッダーカバーを構成する金属 板材の中間領域が長さ方向に沿って折り重ねられること によって形成されてなる構成を採用するのが良い。

【0061】更に本第3発明においては、前記出入側仕 切部村の先繼に、長さ方向に沿って所定の間隔おきに係 台突起が設けられ、前記ヘッダーブレートの中間に、前 40 記係合奕起に対応して、長さ方向に沿って所定の間隔お きに係合孔が設けられ、前記係合奏起が、前記係合孔に 挿入された状態で、加締め処理によって固定されてなる 格成を採用するのが良い。

【0062】更に本第3発明においては、前記出入側へ ッダー部材を構成する金属板材が、少なくとも片面にろ う村が綺麗されたアルミニウムブレージングシートによ って形成されてなる構成を採用するのが良い。

【0063】更に本第3発明においては、前記出入側へ

材が積層されるとともに、そのろう村層に亜鉛が含有さ れてなる構成を採用するのが良い。

【0064】更に本第3発明においては、前記出入側へ ッダー部材におけるヘッダーカバーの板厚が、前記ヘッ ダープレートの板厚よりも薄く設定されてなる構成を採 用するのが良い。

【0065】本第4発明の蒸発器は、所定の間隔ねきに 複数の熱交換チューブが並列に配置された上強側熱交換 チューブ群及び下流側熱交換チューブ群が、前後方向に シートの外面側にろう材が積層されるとともに、そのろ、10、並んで配置されたコアと、両熱交換チューブ群の一端側 に沿って配置される出入側へッダー部村と、両熱交換チ ューブ群の他端側に沿って配置される冷様ターン側へっ ダー部材とを具備し、前記出入側へッダー部材は、出入 側へッダープレートと、そのプレートの一面側を覆うよ うに取り付けられる出入側へっダーカバーと、前記出入 側へッダー部村の内部を入口側タンク及び出口側タンク に仕切るための仕切部材とを有し、前記冷媒ターン側へ ッダー部材は、冷媒ターン側へッダーブレートと、その プレートの一面側を覆うように取り付けられる冷媒ター 20 ン側ヘッダーカバーを有し、前記冷媒ターン側ヘッダー プレート及び前記冷様ターン側へっダーカバーのうちー 方が、プレス成形された金属板材により形成されるとと もに、残り一方が、押出成形品により形成され、前記上 施側熱交換チューブ群における各熱交換チューブの一端 が前記出入側へッダープレートに貫通固定されて、前記 入口側タンクに迫結されるとともに、他端が前記冷様タ ーン側へッダーブレートに貫通固定され、前記下流側熱 交換チューブ群における各熱交換チェーブの一端が前記 出入側へッダーブレートに普通固定されて、前記出口側 タンクに連結されるとともに、他継が前記冷媒ターン側 へっダーブレートに貫通固定され、前記入口側タンクに **添入された冷媒が、前記上流側熱交換チューブ群。前記** 冷媒ターン側へッダー部村、及び前記下流側熱交換チュ ープ群を流通して前記出口側タンクに導入される一方、 両熱交換チューブ群を撤過する冷媒が、外気と熱交換さ れて蒸発されるよう機成されてなるものを要旨とする。 【0066】この第4発明においては、上記第3発明と 同様、冷様経路を、シンプルなU字状に形成するもので あるため、冷媒の強路抵抗を低減できるとともに、冷媒 の分散性を向上させることができる上更に、冷媒ターン 側へッダー部特において、生産性、ろう付け性及び耐食

性の向上を図ることができる。 【0067】また第4発明においては、前記出入側へっ ダー部材における前記出入側へっダープレート及び前記 出入側へっダーカバーのうち一方が、プレス成形された 金属板材により形成されるとともに、残り一方が、押出 成形品により形成されてなる構成を採用するのが好まし La.

【0068】すなわちこの構成を採用する場合には、出 ッダー部材におけるブレージングシートの外面側にろう 50 入側へッダー部材においても、生産性及びろう付け性等

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401... 2006/06/05

特闘2003-75024

の向上を図ることができる。

【0069】本第5発明は、上記第1発明の蒸発器の製 造プロセスの一熟様を特定するものである。

【0070】すなわち本第5発明は、前後方向に並んで 配置される上流側熱交換チューブ群及び下流側熱交換チ ューブ音を構成する熱交換チューブを準備する工程と、 前記上漆側熱交換チューブ群の一端側に沿って配置され る人口側タンクを準備する工程と、前記下流側熱交換チ ューブ群の一端側に沿って配置される出口側タンクを進 置される冷様ターン用部材を準備する工程と、前記上流 側熱交換チューブ群における各熱交換チューブの一端を 前記入口側タングにろう付け固定するろう付け工程と、 前記上流側熱交換チューブ群における各熱交換チューブ の他端を前記冷媒ターン用部材にろう付け固定するろう 付け工程と、前記下流側数交換チューブ群における各熱 交換チューブの一端を前記出口側タンクにろう付け固定 するろう付け工程と、前記下流側熱交換チューブ群にお ける各級交換チューブの他端を前記冷媒ターン用部材に ろう付け固定するろう付け工程を含み、前記入口側タン 20 クに流入された冷線が、前記上流側熱交換チュープ群、 前記論媒ターン用部材、及び前記下流側熱交換チューブ 群を流通して前記出口側タンクに導入される一方。両熱 交換チューブ群を掩通する冷媒が、外気と熱交換されて 蒸発される冷媒回路を形成するものを妄旨としている。 【0071】この第5発明においては、上記第1発明の

蒸発器を確実に製造するができる。 【0072】また第5発明においては、生産性の向上を 図るために、前記複数のろう付け工程を、炉中ろう付け

処理によって一括して行うものを採用するのが良い。

【0073】本第6発明は、上記第2発明の蒸発器の製 造プロセスの一感機を特定するものである。

【0074】すなわち本第6発明は、前後方向に並んで 配置される上流側熱交換チューブ群及び下流側熱交換チ ューブ群を構成する熱交換チューブを準備する工程と、 両熱交換チューブ群の一端側に沿って配置され、内部が 仕切部材により前後に仕切られて、一方側が入口側タン クとして構成されるとともに、他方側が出口側タンクと して構成される出入側へッダー部材を準備する工程と、 阿熱交換チューブ群の他端側に沿って配置される冷媒を - ン側ヘッダー部材を準備する工程と、前記上流側熱交 換チューブ群における各熱交換チューブの一端を前記出 入側へッダーの入口側タンクにろう付け固定するろう付 け工程と、前記上強側熱交換チューブ群における各熱交 換チューブの価端を前記冷媒ターン側へッダー部村にろ う付け固定するろう付け工程と、前記下流側熱交換チュ ープ群の各熱交換チューブの一端を前記出入側へッダー の出口側タンクにろう付け固定するろう付け工程と、前 記下流側熱交換チューブ群の各熱交換チューブの他端を 付け工程とを含み、前記入口側タングに強入された冷塊 が、前記上強側数交換チェーブ群、前記冷線ターン側へ ッダー部材、及び前記下流側熱交換チューブ群を流通し て前記出口側タンクに導入される一方。両熱交換チュー ブ群を流通する冷媒が、外気と熱交換されて蒸発される 冷媒回路を形成するものを要旨としている。

【0075】この第6発明においては、上記第2発明の 蒸発器を確実に製造することができる。

【0076】また第6発明においては、生産性の向上を 借する工程と、両熱交換チューブ群の他端側に沿って配 10 図るために、前記復数のろう付け工程を、炉中ろう付け 処理によって一括して行うものを採用するのが良い。

> 【0077】本第7発明は、上記第3発明の蒸発器の製 造プロセスの一感様を特定するものである。

【0078】すなわち本第7発明は、前後方向に並んで 配置される上流側熱交換チューブ群及び下流側熱交換チ ューブ群を構成する熱交換チューブを準備する工程と、 出入側仕切部村によって内部が入口側タンク及び出口側 タンクに仕切られ、両熱交換チューブ群の一端側に沿っ て配置される出入側へッダー部材を準備する工程と、プ レス成形された少なくとも2つ以上の金属板材からな り、冷媒ターン側仕切部材によって内部が強入網タンク 及び流出側タンクに仕切られるとともに、その仕切部材 に設けられた返通孔によって両タンクが連通され 両熱 交換チューブ群の他端側に沿って配置される冷媒ターン 側へッダー部村を準備する工程と、前記上流側熱交換チ ューブ祭における各熱交換チューブの一端を前記出入側 ヘッダーの入口側タンクにろう付け固定するろう付け工 程と、前記上流側熱交換チューブ群における各熱交換チ ューブの他端を前記冷媒ターン側へッダー部材の流入側 - タンクにろう付け工程するろう付け工程と、前記下途側 熱交換チューブ群における基熱交換チューブの一端を前 記出入側へッダー部材の出口側タンクにろう付け固定す るろう付け工程と、前記下流側熱交換チューブ群におけ る各熱交換チューブの他端を前記冷媒ターン側へッダー 部村の流出側タンクにろう付け工程するろう付け工程と を含み、前記入口側タンクに流入された冷媒が、前記上 権側熱交換チューブ群、前記権入側タンク、前記連通 孔。前記豫出側タンク、及び前記下流側熱交換チューブ 群を流通して前記出口側タンクに導入される一方。両熱 交換チューブ群を流通する冷線が、外気と熱交換されて 蒸発される冷媒回路を形成するものを要旨としている。 【0079】この第7発明においては、上記第3発明の

蒸発器を確実に製造することができる。 【りり80】また本第7発明においては、生産性の向上 を図るために、前記複数のろう付け工程を、炉中ろう付 け処理によって一括して行うものを採用するのが良い。 【0081】本第8発明は、上記第4発明の蒸発器の製 造プロセスの一感様を特定するものである。

【0082】すなわち本第8発明は、前後方向に並んで 前記冷媒ターン側へッダー部材にろう付け固定するろう 50 配置される上流側熱交換チューブ群及び下流側熱交換チ

http://www4.ipdl.ncipi.go,jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401... 2006/06/05

30

ューブ群を構成する熱交換チューブを準備する工程と、 出入側へっダーブレートと、そのプレートの一面側を覆 うように取り付けられる出入側へっダーカバーと 前記 出入側へッダー部材の内部を入口側タンク及び出口側タ ングに仕切るための仕切部村とを有し、両熱交換チュー ブ群の一端側に沿って配置される出入側へっダー部材 と、冷媒ターン側へッダープレートと、そのプレートの 一面側を窺うように取り付けられる冷媒ターン側へっダ ーカバーを有し、前記冷媒ターン側へッダープレート及 び前記冷様ターン側へッダーカバーのうち一方が、プレ 10 が、前記上流刷数交換チューブ群に導入されるととも ス成形された金属板材により形成されるとともに、残り 一方が、押出成形品により形成され、両熱交換チューブ 群の他婦側に沿って配置される冷嬢ターン側へッダー部 材とを準備する工程と、前記上後側熱交換チュープ群に おける各熱交換チューブの一端を前記出入側へっダー部 材の前記ヘッダープレートにろう付け固定して前記入口 側タンクに連結するろう付け工程と、前記上流側熱交換 チューブ群における各熱交換チューブの他端を前記冷媒 ターン側へッダー部材の前記へッダーブレートにろう付 群における各熱交換チューブの一端を前記出入側ヘッダ 一部村の前記へッダープレートにろう付け固定して、前 記出口側タンクに連結するろう付け工程と、前記下流側 熱交換チューブ群における各熱交換チューブの他端を前 記冷媒ターン側へっダー部村の前記へっダープレートに ろう付け固定するろう付け工程ととを含み、前記入口側 タンクに強入された冷線が 前記上流側熱交換チューブ 群、前記冷媒ターン側へッダー部材、及び前記下流側熱 交換チューブ群を掩通して前記出口側タンクに導入され 熱交換されて蒸発される冷媒回路を形成するものを要旨 としている。

【0083】との第8発明においては、上記第4発明の 蒸発器を確実に製造するととができる。

【10084】また本第8発明においては、生産性の向上 を図るために、前記複数のろう付け工程を、炉中ろう付 け処理によって一括して行うものを採用するのが良い。

【0085】更に第8発明においては、前記炉中ろう付 け処理を行う前に、前記ヘッダー部計の表面に亜鉛を含 むブラックスを塗布しておき、その表面に亜鉛拡散層を 40 てなり、前記上流側熱交換チューブ群を流通する冷噤 形成するものを採用するのが好ましい。

【0086】すなわちこの場合には、ヘッダー部村の外 表面に犠牲層を確実に形成することができ、耐食性を向 上させることができる。

【0087】本第9発明は、上記第3又は第4発明に適 用可能な出入側へッダー部材を特定するものである。

【0088】すなわち本第9発明は、所定の間隔おきに 複数の熱交換チューブが並列に配置された上流網熱交換 チューブ群及び下流側熱交換チューブ群が、前後方向に 部材であって、前記各熱交換チューブの鑑部を貫通固定 するためのヘッダープレートと、前記ヘッダープレート の一面側を覆うように取り付けられるヘッダーカバー と、前記ヘッダープレート及び前記ヘッダーカバーによ って囲まれる中空部を前後に仕切って、入口側タンク及 び出口側タンクを形成するための仕切部材とを備え、前 記へッダープレート及び前記へッダーカバーのうち少な くともいずれか一方が、プレス成形された金属板付によ り形成されてなり、前記入口側タングに確入された冷雄 に、前記下流側熱交換チューブ群を流通する冷媒が、前 記出口側タンクに導入されるよう構成されてなるものを 要旨としている。

【0089】との第9発明においては、前記ヘッダーブ レート及び前記ヘッダーカバーの双方が、プレス成形さ れた金属板材により形成されるとともに、前記仕切部材 が、前記ヘッダーカバーを構成する金蔑板材の中間領域 が長さ方向に沿って折り重ねられることによって、前記 ヘッダーカバーに一体に形成されてなる構成、又は前記 け固定するろう付け工程と、前記下流側熱交換チューブ 2G ヘッダーフレート及び前記ヘッダーカバーのうちいずれ か一方が、プレス成形された金属板材により形成される とともに、残り一方が押出成形品により形成されてなる 構成を好適に採用することが可能である。

> 【0090】本第10発明は、上記第3又は第4発明に 適用可能な冷媒ターン側へッダー部村を特定するもので ある。

【0091】すなわち本第10発明は、所定の間隔おき に複数の熱交換チューブが並列に配置された上流側熱交 換チューブ群及び下流側熱交換チューブ群が、前後方向 る一方、両熱交換チューブ群を掩通する冷媒が、外気と 30 に並んで配置されるコアを有する蒸発器の冷媒ターン側 ヘッダー部材であって、前記各熱交換チューブの端部を 貫通固定するためのヘッダーブレートと、前記ヘッダー プレートの一面側を窺うように取り付けられるヘッダー カバーと、前記ヘッダープレート及び前記ヘッダーカバ ーによって聞まれる中空部を前後に仕切って、遠入側タ ンク及び適出側タンクを形成し、両タンク間を追通する ための連通孔を有する仕切部材とを備え、前匙ヘッダー プレート及び前記ヘッダーカバーのうち少なくともいず れか一方が、プレス成形された金属板村により形成され が、前記流入側タンクに導入されて、前記連通孔を通っ で前記流出側タンクに導入されるとともに、前記流出側 タンクの冷媒が、前記下流側熱交換チューブ群に導入さ れるよう構成されてなるものを要旨としている。

【0092】との第10発明においては、前記ヘッダー プレート及び前記ペッダーカバーの双方が、プレス成形 された金属板村により形成されるとともに、前記仕切部 材が、前記ヘッダーカバーを構成する金属板材の中間領 域が長さ方向に沿って折り重ねられることによって、前 並んで配置されるコアを有する蒸発器の出入側へっダー 50 記へっダーカバーに一体に形成されてなる構成。又は前

記ヘッダープレート及び前記ヘッダーカバーのうちいず れか一方が、プレス成形された金属板材により形成され るとともに、残り一方が押出成形品により形成されてな る構成を好適に採用することが可能である。

【0093】本第11発明は、上記第1発明の蒸発器を 利用した冷凍システムを特定するものである。

【10094】すなわち本第11発明は、圧縮機により圧 縮された冷嬢を凝縮器により契縮し、その契縮冷嬢を減 圧器に通過させて減圧し、その減圧冷媒を蒸発器により あって、前記蒸発器は、所定の間隔おきに複数の熱交換 チューブが並列に配置された上流側熱交換チューブ群及 び下流側熱交換チューブ群が、前後方向に並んで配置さ れたコアと、前記上流側熱交換チューブ群の一端側に沿 って配置される入口側タンクと、前記下流側熱交換チュ ープ群の一端側に沿って配置される出口側タンクと、両 熱交換チューブ群の他幾側に沿って配置される冷媒ター ン用部材とを具備し、前記上流側熱交換チューブ群にお ける

各

熱

交換

チューブの

一端が前記

入口側

タンクに

連結 続され、前記下流側熱交換チューブ群における各熱交換 チェーブの一端が前記出口側タンクに連結されるととも に、他達が前記冷媒ターン用部材に迫通接続され、前記 入口側タンクに流入された冷媒が、前記上流側熱交換チ ュープ群、前記冷媒ターン用部材、及び前記下流側熱交 換チューブ群を流通して前記出口側タンクに導入される 一方、両熱交換チューブ群を強通する冷堤が、外気と熱 交換されて蒸発されるよう構成されてなるものを要旨と している。

【0095】本第12発明は、上記第2発明の蒸発器を 30 利用した冷凍ンステムを特定するものである。

【0096】すなわち本第12発明は、圧縮機により圧 縮された冷媒を凝縮器により裂縮し、その裂縮冷媒を減 圧器に通過させて減圧し、その減圧冷媒を蒸発器により 蒸発させて前記圧縮級に戻すようにした冷凍システムで あって、前記蒸発器は、所定の間隔おきに複数の熱交換 チューブが並列に配置された上流側熱交換チューブ群及 び下流側熱交換チューブ群が、前後方向に並んで配置さ れたコアと、両熱交換チューブ群の一端側に沿って配置 される出入側へッダー部村と、両熱交換チューブ群の他 40 利用した冷凍ンステムを特定するものである。 **端側に沿って配置される冷媒ターン側へッダー部村とを** 具備し、前記出入側へっダー部材の内部が仕切部材によ り前後に仕切られて、一方側が入口側タンクとして構成 されるとともに、他方側が出口側タンクとして構成さ れ、前記上強調熱交換チューブ群における各熱交換チュ ープの一端が前記出入側へッダーの入口側タンクに連結 されるとともに、他端が前記冷媒ターン側へッダー部材 に連結され、前記下流側熱交換チューブ群の各熱交換チ ューブの一端が前記出入劃へッダーの出口側タンクに連

材に連結され、前記入口側タンクに流入された冷媒が、 前記上強側熱交換チューブ群、前記冷媒ターン側へっダ 一部村、及び前記下流側熱交換チューブ群を流通して前 記出口側タンクに導入される一方、両熱交換チェーブ群 を流道する冷媒が、外気と熱交換されて蒸発されるよう **構成されてなるものを要旨としている。**

【0097】本第13発明は、上記第3発明の蒸発器を 利用した冷凍システムを特定するものである。

【0098】すなわち本第13発明は、圧縮機により圧 蒸発させて前記圧縮機に戻すようにした冷凍システムで 10 縮された冷礁を凝縮器により軽縮し、その軽縮冷媒を減 圧器に通過させて減圧し、その減圧冷媒を蒸発器により 蒸発させて前記圧縮機に戻すようにした冷凍システムで あって、前記蒸発器は、所定の間隔おきに複数の熱交換 チューブが並列に配置された上途側熱交換チューブ群及 び下流側熱交換チューブ群が、前後方向に並んで配置さ れたコアと、両数交換チェーブ群の一端側に沿って配置 される出入側へッダー部村と、両熱交換チューブ群の他 嵯側に沿って配置される冷媒ターン側へッダー部材とを 具備し、前記出入側へッダー部材の内部が出入側仕切部 されるとともに、他端が前記冷媒ターン用部材に迫通接 20 材によって内部が入口側タンク及び出口側タンクに仕切 られ、前記冷媒ターン側へッダー部村が、プレス成彩さ れた少なくとも2つ以上の金属板材からなり、冷媒ター ン側仕切部材によって内部が流入側タンク及び流出側タ ングに仕切られるとともに、その仕切部材に設けられた **連通孔によって両タンクが迫通され、前記上強制熱交換** チューブ群における各熱交換チューブの一端が前記出入 側へッダーの入口側タングに連結されるとともに、他端 が簡記冷様ターン側へッダー部材の強入側タンクに連結 され、前記下流側熱交換チューブ群における各熱交換チ ューブの一端が前記出入側へっダー部村の出口側タンク に連結されるとともに、他端が前記冷媒ターン側へッダ 一部村の漆出側タンクに連結され、前記入口側タンクに 後入された冷媒が、前記上流側熱交換チューブ群 前記 **渝入側タンク、前記連通孔、前記渝出側タンク、及び前** 記下流側熱交換チューブ群を流通して前記出口側タンク に導入される一方、両熱交換チューブ群を撤退する冷媒 が、外気と熱交換されて蒸発されるよう構成されてなる ものを要旨としている。

【0099】本第14発明は、上記第4発明の蒸発器を

【0100】すなわち本第14発明は、圧縮機により圧 縮された冷媒を凝縮器により経縮し、その経縮冷媒を減 圧器に通過させて減圧し、その減圧冷媒を蒸発器により 蒸発させて前記圧縮機に戻すようにした冷凍システムで あって、前記蒸発器は、所定の間隔おきに複数の熱交換 チューブが並列に配置された上流機熱交換チューブ群及 び下流側熱交換チューブ群が、前後方向に並んで配置さ れたコアと、両熱交換チューブ群の一端側に沿って配置 される出入側へッダー部村と、両熱交換チューブ群の他 結されるとともに、他端が前記冷礁ターン側へッダー部 50 端側に沿って配置される冷媒ターン側へッダー部村とを

具備し、前記出入側へっダー部材は、出入側へっダーブ レートと、そのプレートの一面側を覆うように取り付け ちれる出入側へッダーカバーと、前記出入側へッダー部 材の内部を入口側タンク及び出口側タンクに仕切るため の仕切部材とを有し、前記冷様ターン側へッダー部材 は、冷媒ターン側へっダーブレートと、そのプレートの 一面側を覆うように取り付けられる冷媒ターン側へッダ ーカバーを有し、前記冷媒ターン側へッダープレート及 び前記冷様ターン側へッダーカバーのうち一方が、プレ ス成形された金属板材により形成されるとともに、残り 16 一方が、押出成形品により形成され、前記上流劇熱交換 チューブ群における各熱交換チューブの一端が前記出入 側へッダーブレートに貫道固定されて、前記入口側タン クに連結されるとともに、他變が前記冷様ターン側へっ ダープレートに貫通固定され、前記下流側熱交換チュー ブ群における各熱交換チューブの一端が前記出入側へっ ダープレートに普通固定されて、前記出口側タンクに連 結されるとともに、他端が前記冷媒ターン側へッダーブ レートに貫通固定され、前記入口側タンクに流入された 冷媒が、前記上流側熱交換チューブ群 前記冷媒ターン 20 側へッダー部村、及び前記下流側熱交換チューブ群を流 通して前記出口側タンクに導入される一方、両熱交換チ ユーブ群を流通する冷媒が、外気と熱交換されて蒸発さ れるよう構成されてなるものを要旨としている。 [0101]

【発明の実施の形態】<第1実施形態>図1ないし図6はとの発明の第1実施形態である蒸発器を示す図である。とれちの図に示すように、この蒸発器は、カーエアコン用冷凍システムの蒸発器として用いられるものであり、数交換部を構成するコア(1)と、コア(1)の上 30 端に沿って配置される出入側へッダー部材としての上側へッダー部材(10)と、コア(1)の下端に沿って配置される冷礁ターン側へッダー部材としての下側へッダー部材(50)とを基本的な構成として増えている。

【0102】コア(1)は、復数の扁平形状のチューブ 部材(5)と、複数のコルゲートフィン(2)とを具備 している。

【0103】チューブ部村(5)は、図7及び図8に示すように、コア(1)の前列側に配置される扁平な下流側熱交換チューブ(7)と、下流側熱交換チューブ(7)に対し併設され、コア(1)の後列側に配置される扁平な上流側熱交換チューブ(6)と、これらの両チューブ(6)(7)を連結する連結片(8)とを一体に有するアルミニウム又はその合金の押出成形品をもって機成されている。

【0104】各熱交換チェーブ(6)(7)には、長さ方向(押出方向)に沿って、複数の熱交換器(6a)(7a)が並列状に形成されるとともに、各熱交換器(6a)(7a)の内園壁面には、内方突出状にインナーフィン(6b)(7b)が一体に形成されている。

【0105】上記構成のチューブ部村(5)とコルゲートフィン(2)とがコア帽方向に交互に積層配置されるとともに、両側端部のコルゲートフィン(2)の外側にサイドプレート(3)が慎層配置されて、コア(1)が形成されている。これにより、複数のチューブ部村(5)における上流側の各熱交換チューブ(6)によって、第1パスとしての上流側熱交換チューブ群(P1)が形成されるとともに、下流側の各熱交換チューブ(7)によって、第2パスとしての下流側熱交換チューブ(7)によって、第2パスとしての下流側熱交換チューブ群(P2)が形成されている。

【0106】ことで、本実勉形態においては、チューブ 高さ(H)は、0.75~1.5mm、好ましくは下腹 値が1.0mm以上に設定するのが望ましい。

【0107】また、熱交換チューブ(6) (7) の各幅は、12~18 mm、チェーブ(6) (7) が一体化されたチューブ部材(5) の幅は、32~38 mmに設定するのが良い。更にチューブ(6) (7) における外園壁の内厚は、0.175~0.275 mmに設定するのが良い。またチェーブ(6) (7) における熱交換路(6a) (7a) を仕切る仕切壁の内厚は、0.175~0.275 mmに設定するのが良く。その仕切壁のピッチは、0.5~3.0 mmに設定するのが良い。更に熱交換チューブ(6) (7) の両側部における外面側の曲率半径(外R)は、0.35~0.75 mmに設定するのが良い。

【0108】また、コルゲートフィン(2)の高さ(フィン高さ)は、7.0~10mmに設定するのが良く、フィン(2)のビッチ(フィンピッチ)は、1.3~1.8mmに設定するのが良い。

50 【0109】すなわち、これちの数値範囲内の構成を採用する場合には、良好な熱交換性能を得ることができる。

【①110】なお、本実施形態において、熱交換チューブ(6)(7)は、互いに一体に形成されているが、それだけに限られず、本発明においては、両チューブ(6)(7)をそれぞれ別体に形成しても良い。更に熱交換チューブ(6)(7)は、押出成形品に限られず、例えば板材を曲げ加工して、インナーフィンを内続するようにした曲げ加工品や、板材をロール成形して、熱交の路を形成するようにしたロール成形品によって構成するようにしても良い。

【0111】 更に本発明においては、コルゲートフィン (2) に代えて、プレートフィンを用いるようにしても 良い。

【り112】図1ないし図6に示すように、上側ヘッダー部村(10)は、コア(1)の上端部にコア幅方向に沿って配置されるものであって、ヘッダープレート(20)と、ヘッダーカバー(30)と、分流用抵抗板(41)と、帰流防止用抵抗板(42)とを有している。

50 【0113】ヘッダープレート (20)には、前半領域

?9

及び後半領域のそれぞれに、長さ方向に沿って所定の間 陽おきに、彼敷のチューブ取付孔(21)が形成されて いる。

【0114】ヘッダーカバー(30)は、ヘッダープレート(20)の上面側を上方から覆うように配置され、下面側における前後方向中間位置には、長さ方向(コア幅方向)に連続して延びる仕切壁(31)が一体に形成されている。

【 0 1 1 5 】 そして、これらのヘッダーブレート (2 7 0) 及びヘッダーカバー (3 0) により聞まれて、仕切 16 る。 整 (3 1) の前方位置に、コア幅方向に沿って延びるチューブ形状の出口側タンク (1 2) が形成されるととも に、仕切整 (3 1) の徒方位置に、コア幅方向に沿って 向に延びるチューブ形状の入口側タンク (1 1) が形成され (6 3 .

【0116】更にヘッダーカバー(30)には、長さ方向中間位置における入口側タンク(11)に対応する位置に、冷媒入口(11a)が形成されるとともに、出口側タンク(12)に対応する位置に冷媒出口(12a)が形成されている。

【り117】また、入口側タンク(11)内には、その内部を上下に仕切る應標に、分逢用抵抗板(41)が取り付けられている。この分添用抵抗板(41)には、長さ方向に沿って所定の間隔おきに、複数の冷媒道過孔

(41a)が形成されている。この冷媒通過孔(41a)において、冷媒入口(11a)の近傍に位置する通過孔(41a)の孔径、換言すれば長さ方向中間に位置する通過孔(41a)の孔径が最も小さく形成され、その中間位置から端部位置に向かうに従って、孔径が次算に大きくなるように形成されている。

【9118】出口側タンク(12)内には、その内部を上下に仕切る陰様に、偏流防止用抵抗板(42)が取り付けられている。この偏流防止用抵抗板(42)には、長さ方向に沿って所定の間隔おきに、孔径が全て等しい複数の冷媒連過孔(42a)が形成されている。

【①119】また図1に示すように、上側ヘッダー部材(10)の両側開口部には、ヘッダーキャップ(15)が取り付けられて、両端開口部がそれぞれ気密状に閉塞されている。

【0120】更に上側へッダー部材(10)の冷媒入口 40 (11a)及び冷壊出口(12a)には、これらの出入 口(11a)(12a)に迫通するジョイント管(11 b)(12b)が連結固定されている。

【0121】なお、本真館形態においては、分流用抵抗 板(41)や偏流防止用抵抗板(42)をヘッダーブレート(20)やヘッダーカバー(30)に対し、別体に 形成しているが、本発明においては、これらの抵抗板 (41)(42)をヘッダーブレート(20)やヘッダーカバー(30)に一体に形成したり、あるいは仕切整 (31)をヘッダーブレート(20)側に一体に形成し 50 に追通接続される。

たり、長には住切盤 (31) を別体で設けるようにして も良い。

【0122】以上の巻成の上側ヘッダー部材(10)におけるヘッダープレート(20)の各チューブ取付孔(21)に、上記コア(1)の熱交換チューブ(6)(7)の上端が挿通された状態に固定される。このとき、上流側熱交換チューブ(6)は、入口側タンク(11)内に連通接続されるとともに、下流側熱交換チューブ(7)は、出口側タンク(12)内に連通接続され

【0123】一方、図4及び図6に示すように、下側ヘッダー部材(50)は、コア(1)の下端部にコア幅方向に沿って配置されるものであって、ヘッダーブレート(60)と、ヘッダーカバー(70)とを有している。【0124】ヘッダーブレート(60)には、前半領域及び後半領域のそれぞれに、長さ方向に沿って所定の間隔おきに、複数のチューブ取付孔(61)が形成されている。

【り125】ヘッダーカバー(70)は、ヘッダーブレート(60)の下面側を下方から扱うように配置され、上面側における前後方向中間位置には、長さ方向(コア幅方向)に連続して延びる仕切壁(71)が形成されている。更にこの仕切壁(71)には、長さ方向に所定の間隔おきに、複数の切欠状連連孔(71a)が形成されている。

[0126] そして、ヘッダープレート(60)及びヘッダーカバー(70)によって囲まれて、仕切壁(71)の後方位置に、コア幅方向に沿って連続して延びるチューブ形状の流入側タンク(51)が形成されるとともに、仕切壁(71)の前方位置にコア幅方向に連続して延びるチューブ形状の流出側タンク(52)が形成される。この場合。後入側タンク(51)及び流出側タンク(52)間は、仕切壁(71)に形成された切欠状連通孔(71a)によって連過されている。

【0127】また図1に示すように、下側ヘッダー部材(50)の両側開口部には、ヘッダーキャップ(55)が取り付けられて、両端開口部がそれぞれ気密状に閉塞されている。

【0128】なお、本発明においては、下側ヘッダー部 切 材(50)の仕切壁(71)を、ヘッダープレート(6 の)側に一体に形成したり、別体で設けるようにしても 良い。

【0129】上記構成の下側ヘッダー部材(50)におけるヘッダープレート(60)の各チューブ取付孔(61)に、上記コア(1)の熱交換チューブ(6)(7)の下端が挿通された状態に固定される。このとき、上流側熱交換チューブ(6)は、下側ヘッダー部材(50)内の流入側タンク(51)に連通接続されるとともに、下流側熱交換チューブ(7)は、流出側タンク(52)に通過接続される。

特闘2003-75024

32

【0130】以上のように構成された本第1実能形態の 蒸発器は、その各構成部材が、アルミニウム又はその合 金、更には少なくとも片面にろう材が積層されたアルミ ニウムブレージングシート等からなり、これらの構成部 品を、必要に応じてろう村を介して所定の蒸発器形状に 組み付けて仮固定する。こうして仮固定した仮想製品 を、炉中にて一括ろう付けすることにより、全体を連結 一体化するものである。

31

【①131】もっとも、本発明においては、各様成部材 の連結方法は特に限定されるものではなく、どのような 10 季順で組付を行っても良い。

【0132】以上の韓成の蒸発器は、その前面側(下流 側熱交換チューブ群P2側)を空気取込側、裏面側(上 強側熱交換チュープP1側) を空気導出側とし、圧縮。 級、疑縮塞及び源圧手段と共に、自動車の冷凍サイクル として搭載されるものである。そして、圧縮機、凝縮器 及び減圧手段を通過した器化状態の気液浸相の2相冷媒 が、上記蒸発器の冷媒入口(11a)を通って上側へっ ダー部材(10)の入口側タンク(11)内に導入され

【り133】入口側タンク(11)内に導入された冷線 は、分淹用抵抗板 (41) によって、タンク (11) の 長さ方向に分散されて、抵抗板 (41)の各冷媒造過孔 (4 la) を通過する。このとき、冷媒は、惰性によっ て、冷媒入口(11a)の近傍の冷媒通過孔(41 a). つまり長さ方向中間位置の冷媒通過孔(41a) を多くの割台で通過しようとするが、本実施形態におい ては、抵抗板(41)によって、冷媒の流速が低下する ため、冷媒が長さ方向にスムーズに分散して、各冷媒連 過孔(418)を運過する。しかも、本実施形態におい。 30 分散されて運過するものであるため、冷媒を、チューブ ては、抵抗板(41)における中間位置の冷媒通過孔 (41a)の孔径を小さくし、端部位置に向かうに従っ て孔径を大きく形成しているため、各冷線通過孔(4) a) における冷媒の通過室がそれぞれ適度に制限され、 冷媒が、各冷媒通過孔(4 1 a) を均等に通過するの で、この点においても、冷媒を長さ方向に効率良く分散 させることができる。

【り134】とうして抵抗板(41)によって均等に分 遠された冷媒が、上流側熱交換チューブ群(P 1)の各 チューブ(6)に均等に分散されて導入される。

【0135】上流側熱交換チューブ群(P1)に導入さ れた冷媒は、各チューブ(6)を通って下側へっダー部 材(50)の流入側タンク(51)に導入された後、仕 切壁 (71)の切欠状連通孔 (71a)を通過して、施 出側タンク (52) に導入される。

【0136】 ここで、上流側熱交換チューブ群 (P1) を通過する冷媒は、各熱交換チューブ(6)に均等に分 飲されているため、その均等分散状態が良好に維持され たまま、下側へッダー部村(50)の流入側及び流出側 ダンク(51)(52)を通過して、下流側熱交換チュ 50 壁間に配置される仕切壁(71)を、長さ方向に拾って

ープ群 (P2) の各チューブ (7) に均等に分散されて 導入される。

【0137】下流側の各熱交換チューブ(7)を通過し た冷媒は、上側ヘッダー部村(10)の出口側タンク (12)に導入されて、偏流防止用抵抗板(42)によ って適度な抵抗が付与されることにより、タンク(1) 2) の長さ方向全域にわたって均等な圧力バランス得ら れ、確実に偏流が防止されて、冷礁が抵抗板(42)の 各冷媒通過孔(42a)を通過して、冷媒出口(12 a)から流出される。

【0138】 ことで、冷媒は、出口側タンク (12) 内 において、偏流防止用抵抗板(42)によって個流が筋 止されるため、下途側熱交換チューブ群(P2)におい ても冷様の偏流が有効に防止され、冷媒は、下流側の各 熱交換チューブ(7)に、より確実に均等に分散されて 通過するものとなる。

【0139】上側ヘッダー部材(10)の冷媒出口(1 2a)から流出された冷媒は、上記冷凍サイクルにおけ る圧縮級へと戻される。

【0140】一方、上後側及び下流側熱交換チューブ群 (P1) (P2) を通過する冷媒は、コア(1) をその 前面側から取り込まれるエアー(A)と熱交換すること により、エアー (A) から熱を吸収して蒸発気化する。 また熱の吸収により冷却されたエアー(A)は、コア (1) の背面側から流出されて、草室内へと送り込まれ

【0141】以上のように、本実施形態の蒸発器によれ ば、冷媒が、上流側及び下流側熱交換チューブ群 (P 1) (P2) の各熱交換チューブ (6) (7) に均等に 群(P1)(P2)の全域、つまりコア(1)の全域で 効率良く熱交換することができ、熱交換性能を向上させ るととができる。

【0142】更に本実施形態においては、冷線を2つの チューブ群(P1)(P2)に通過させるだけのシンプ ルなU字状の冷媒経路を形成するものであるため、冷媒 の流路抵抗を減少させることができる。このため、冷線 の通路衡面積を小さくすることができ、各熱交換チュー ブ(6)(7)のチューブ高さを小さくすることがで き、より一層小型軽量化及び薄型化を図ることができ る。しかも、チューブ高さを小さくすることにより、蒸 発器サイズを変化させずに、熱交換チューブ (6) (?)の設置本数を増加させることができ、冷媒の分散 性をより一層向上させることができ、一段と熱変換性能

【0143】また本実施形態においては、上側ヘッダー 部村(10)に、その上監及び下壁間に配置される仕切 壁(31)が、長さ方向に沿って連続して形成されると ともに、下側ヘッダー部村(50)に、その上壁及び下

を向上させることができる。

33

連続して形成されているため、これらの仕切壁(31) (71)によって、各ヘッダー部材(10)(50)が 結踏されることにより、両ヘッダー部材(10)(5 0)の耐圧性を向上させることができる。

【①144】更に本実施形態においては、上漁網及び下 権側熱交換チェーブ群(P1)(P2)間において対応 する熱交換チェーブ(6)(7)同士を一体形成したチ ューブ部材(5)を採用するものであるため、とのチュ 一づ部材(5)を積層配置するだけで、上漁側及び下漁 側の熱交換チェーブ(6)(7)を組み付けるととができる。 き、蒸発器組立作業を簡単に行うことができる。更に両 チェーブ群(P1)(P2)間において熱交換チューブ (6)(7)が迫結されることにより、組付強度を向上 させることができる。

【0145】とこで、本実総形態に準拠した蒸発器において、熱交換チューブのチューブ高さ(日)と交換熱量比(%)との関係を、図10のグラフに示す。同グラフから明らかなように、本発明の蒸発器においては、チューブ高さ(日)が0.75~1.5mmの場合に換熱量比が高く、そのチューブ高さの熱交換チューブを好適に 20 採用することができる。

【①146】参考までに、一般のヘッダータイプの熱交 換器に用いられる熱交換チューブのチューブ高さは、

1. 5~3. 0 mm程度のものが好適とされており、これは本実施形態の葉発器に比べて2倍近い高さを有している。

【①147】なお、上記実施形態においては、上側ヘッダー部材(10)における入口側タンク(11)及び借口側タンク(12)に、分添用抵抗板(41)及び偏流防止用抵抗板(42)が設けられているが、本発明は、それだけに限られず、例えば図11及び図12に示すように、偏強防止用抵抗板(42)を省略したり、あるいは図13及び図14に示すように、分流用抵抗板(41)及び偏流防止用抵抗板(42)を共に省略するようにしても良い。

【9148】また、上記実施形態においては、上側ヘッダー部材(10)の中間部上面に、冷蟆入口(11a)及び冷壊出口(12a)を形成しているが、本発明は、それだけに限られず、図15に示すように、ヘッダー部 40材(10)の一端部に、冷蟆入口(11a)(12a)を形成して、ヘッダー鑑部位置かち冷蟆の導入及び導出を行うように構成しても良い。

【9149】また上記実施形態においては、図16に示すように、伝流防止用抵抗板(42)の冷雄通過孔(42a)を、チューブ幅方向中心位置よりも、蒸発器のエアー取込方向に対し風上側に配置するようにしても良い。 更にこの冷媒通過孔(42a)は、円形に形成しても良いし、熱交換チューブの幅方向を長端とする長円形又は長方形に形成するようにしても良い。

【9150】また上記哀館形態においては、図17に示すように、上側ヘッダー部村(10)の漁出側タンク(12)内における抵抗板(42)と熱交換チェーブ(7)の端部との間の隙間(S)の断面積(図17において斜線によるハッチングで示す)を、熱交換チェーブ(7)の連路断面積に対し1~5倍に設定するのが良い。すなわちこの構成を採用する場合、信漁防止用抵抗板(42)とチェーブ端部間における流路抵抗の増大を防止できるとともに、ヘッダー部材内部に適当な空間を確保オスニントができる。

【0151】また、上記実験形態の蒸発器では、下漆側 熱交換チューブ群(P2)側を正面として、下漆側熱交 換チューブ群(P2)側からエアー(A)を取り込むよ うにしているが、本発明はそれに限られず、上漆側熱交 換チューブ群(P1)側を蒸発器正面として、上流側熱 交換チューブ群(P1)側からエアー(A)を取り込む ようにしても良い。

【0152】更に本実施形態において、蒸発器の設置方向は特に限定されるものではなく、どのような向きに設置するようにしても良い。

【0153】<第2実施形態>図18及び図19はとの発明の第2実施形態である蒸発器を示す図である。これちの図に示すように、この実施形態の蒸発器は、出入側(上側)へッダー部材(10)及び冷燥ターン側(下側)のヘッダー部材(50)を構成するヘッダーブレート(20)(60)及びヘッダーカバー(30)(70)が、プレス成形されたアルミニウム(その合金を含む)設板材により形成されている。

【0154】すなわち図18ないし図20に示すよう に、上側ヘッダー部材(10)のヘッダープレート(2 ()は、アルミニウム製板材に対し、所定の孔開け加工 が絡された後、曲げ加工が絡されて形成されている。こ のプレス成形によって、ヘッダープレート(20)に は、前後2列で長さ方向に沿って所定の間隔おきに、彼 数のチュープ取付孔(21)が形成されるとともに、前 後2列のチュープ取付孔(21)間に、長さ方向に沿っ て所定の間隔おきに、複数の係合孔(22)が形成される。

【0155】図21に示すように上側ヘッダーカバー (30)は、上記ヘッダープレート(20)を構成する 板材よりも板厚が薄いアルミニウム製板材からなり、そ の板材に対し所定の孔閣け加工が施された後、曲げ加工 が絡されて形成されている。このプレス成形によって、 ヘッダーカバー(30)には、中間領域が折り重ねられ て、下方に突出するように仕切壁(31)が形成される とともに、各仕切壁(31)の先端に、上記ヘッダープ レート(20)の係合孔(22)に対応して、下方突出 状に係合突起(32)が形成される。

【0156】このヘッダーカバー(30)が、上記ヘッ 50 ダープレート(20)の上面側を上方から覆うように配 置された状態で、仕切壁(31)の先端の係合突起(3 2) が、ヘッダープレート (20) の係合孔 (22) に **挿入されて加締められるととによって固定される。この** とき、ヘッダーブレート(20)及びヘッダーカバー (30) により囲まれて、仕切墅 (31) の前方位置 に、コア幅方向に沿って延びるチューブ形状の出口側タ ング(12)が形成されるとともに、仕切壁(31)の 後方位置に、コア幅方向に沿って延びるチュープ形状の 入口側タンク(11)が形成される。

【0157】図22に示すように、下側ヘッダー部材 (60)のヘッダープレート(60)は、上記のヘッダ ープレート(10)と同様、アルミニウム製板材に対 し、孔関け加工及び曲げ加工が施されて形成される。こ のプレス成形によって、ヘッダープレート (60)に は、前後2列で長さ方向に沿って所定の間隔おきに、彼 数のチューブ取付孔(61)が形成されるとともに、前 後2列のチューブ取付孔(61)間に、長さ方向に沿っ て所定の閻陽おきに、複數の係合孔(62)が形成され

【0158】また図23に示すように、下側ヘッダーカ 20 バー(70)は、上記のヘッダーカバー(30)と同 機、藥肉のアルミニウム製板材に対し、孔欝け加工及び 曲げ加工が施されて形成される。このプレス成形によっ て、ヘッダーカバー(70)には、中間領域が折り重ね られて、下方に突出するように仕切壁(71)が形成さ れるとともに、各仕切壁(71)の先端に、上記ヘッダ ープレート (60) の係合孔 (62) に対応して、下方 突出状に係合突起 (72) が形成される。 更に仕切壁 (71)には、長さ方向に沿って所定の間隔おきに、切 欠款に連通孔 (?1 a) が形成される。

【0159】このヘッダーカバー (70) がヘッダーブ レート(60)の上面側を上方から覆うように配置され た状態で、仕切壁 (71) の先端の係合突起 (72) が、ヘッダーブレート(60)の係合乳(62)に挿入 されて加締められることによって固定される。このと き、ヘッダープレート(60)及びヘッダーカバー(7 (1) によって囲まれて、仕切壁(71)の後方位置に、 コア幅方向に沿って連続して延びるチューブ形状の施入 側タンク (51) が形成されるとともに、仕切壁 (7 1)の前方位置にコア幅方向に連続して延びるチューブ 40 形状の強出側タンク (52) が形成される。 更に流入側 タンク (51) 及び流出側タンク (52) 間は、仕切壁 (? 1) に形成された連通孔 (? 1a) を介して連通さ れている。

【0160】そして図18及び図19に示すように、上 倒ヘッダー部村(10)におけるヘッダープレート(2 0) の各チューブ取付孔(21)に、上記第1実施形態 と同様のコア(1)の熱交換チューブ(6)(7)の上 蝶が挿通された状態に固定されるとともに、下側ヘッダ 一部村(50)におけるヘッダープレート(60)の各 50 品を亜鉛を含むフラックスに塗布することにより、外表

チューブ取付孔(61)に、コア(1)の熱交換チュー ブ(6)(7)の下端が挿道された状態に固定される。 【() 16]】その他の構成は、上記第1実施形態と実質 的に同様であるため、同一又は相当部分に同一符号を付 して、重復説明は省略する。

【0162】この第2実施形態の蒸発器においても、上 記と同様に、蒸発器構成部符を、所定の蒸発器形状に組 み付けて仮固定し、この仮組製品を、炉中にて一括ろう 付けすることにより、全体を連結一体化するものであ 10 చి.

【0163】との第2実施形態の蒸発器においても、上 記と同様に、同様の効果を得ることができる。 【0164】その上、両ヘッダー部村(10)(50) の構成部材(20)(30)(60)(70)として、 アルミ板材のプレス成形品を用いるものであるため、コ イル状に巻回されたアルミニウム原板から連続して、ヘ ッダー構成部科(20)(30)(60)(70)を生 産することができ、生産効率を向上させることができ る.

【0165】更にヘッダー構成部材(20)(30) (60) (70) を板材により構成するものであるた め、この機成部村(20)(30)(60)(70)と して、少なくとも片面にろう材や犠牲村等のクラッド材 が積層されたブレージングシートを用いることができる ので、ろう付け性を向上させることができる。特に、外 表面側にクラッド材が綺層される場合には、そのクラッ 下村に亜鉛(2m)を含得させて、繊維材層として構成 することにより、防食性を向上させることができる。 【0166】また両ヘッダー部材(10)(50)の仕 30 切壁 (31) (71) が補強壁として機能するものであ るため、ヘッダー高さを小さく、かつ板厚を薄くしつ つ。十分な強度を確保することができるので、小型軽量 化を図ることができる。特に仕切壁(31)(71) は、板材を2重に折り返して形成するものであるため、 板厚が薄くとも、十分な強度を確保することができ、よ り一層、小型軽量化を図ることができる。 【①167】なお、本第2実施形態において、ヘッダー 部村(10)(50)の内部に、上記第1実施形態と同 標に、分譲用抵抗板(4.1)や偏適防止用抵抗板(4. 2) を設けるようにしても良い。

【0168】また、本実施形態においては、ヘッダー部 材(10)(50)を構成するヘッダープレート(2) 0) (60) 及びヘッダーカバー (30) (70) を全 てアルミニウム製板材により形成するものであるが、本 発明においては、これらの一部をアルミニウムの押出成 形品により形成するようにしても良い。

【0169】またヘッダー構成部材の一部に、押出成形 品を用いる場合には、それ自体で、観性層を形成するこ とは困難であるため、一括ろう付けする前に、押出成形

面に亜鉛拡散層(犠牲層)を形成することができ、防食 性を向上させることができる。

【0170】また、本第2実施形態においても、上記第 1 実施形態と同様、冷媒入口及び冷媒出口の形成位置 や、エアーの取込方向、蒸発器の設置方向は、特に限定 されるものではない。

[0171]

【発明の効果】以上のように、本第1ないし第4発明の 蒸発器によれば、冷燥経路を、シンプルなり字状に形成 するものであるため、冷媒の確路抵抗を減少させること 10 【図13】この発明の第2変形例である蕉発器の上側部 ができる。このため、冷媒の通路断面積を小さくでき て、熱交換チューブのチューブ高さを小さくすることが でき、小型軽量化及び薄型化を図ることができる。更 に、チューブ高さを小さくすることにより、コア寸法を 増大させずに、チューブ設置本数を増加させることがで きるため、冷媒の分散性を向上させることができ、熱交 換性能を向上させることができる。特に第3又は第4発 明の蒸発器においては、ヘッダー部村として、金属製板 材のプレス成形品を用いるものであるため、生産性の向 上を図ることができるとともに、ブレージングシートの 29 【図18】この発明の第2実施形態である蒸発器の上側 使用により、ろう付け性の向上及び耐食性の向上を図る ことができるという効果がある。

【0172】本第5ないし第8発明は、上記第1ないし 第4 発明の蒸発器の製造プロセスを特定するものである ため、上記の蒸発器をより確実に製造することができ る.

【0173】本第9又は第10発明は、上記第3又は第 4.発明の蒸発器に適用可能なヘッダー部材を特定するも のであるため、上記の蒸発器をより一層確実に製造する ことができる。

【0174】本第11ないし第14発明は、上記第1な いし第4発明の蒸発器を用いた冷凍システムを特定する ものであるため、上記の効果をより確実に得ることがで きる。

【図面の簡単な説明】

【図1】この発明の第1実総形態である蒸発器を示す図 であって、同図(8)は正面図、同図(り)は側面図で

【図2】第1実能形態の蒸発器を示す斜視図である。

【図3】第1実態形態の蒸発器の上側部を分解して示す 46 11…入口側タンク 斜視図である。

【図4】第1実施彩度の蒸発器の下側部を分解して示す 斜視図である。

【図5】第1実施彩底の蒸発器の上側へッダー部村周辺 を拡大して示す側面断面図である。

【図6】第1実施形態の蒸発器の下側ヘッダー部村周辺 を拡大して示す側面断面図である。

【図?】第1寅能形態の蒸発器に適用された熱交換チュ ープを拡大して示す断面図である。

【図8】第1寅旋形態の蒸発器に適用されたチューブ部 50 42…偏瘫防止用抵抗板

材を示す斜視図である。

【図9】第1実施形態の蒸発器における冷媒の流れを示 す斜視図である。

【図10】第1実施形態の蒸発器においてチューブ高さ と交換熱量比との関係を示すグラフである。

【図11】この発明の第1変形例である蒸発器の上側部 を分解して示す斜視図である。

【図12】第1変形例の蒸発器の上側へっダー部村周辺 を拡大して示す側面断面図である。

を分解して示す斜視図である。

【図14】第2変形例である蒸発器の上側へっダー部材 園辺を拡大して示す側面断面図である。

【図15】第3変形例である蒸発器を示す図であって、

同図(a)は正面図、同図(b)は平面図である。

【図16】第4変形例である蒸発器の偏流防止用抵抗板 を示す平面図である。

【図17】上記第1実施形態の蒸発器における上側へっ ダー部材の出口側タンク周辺を示す側面筋面図である。

ヘッダー部材層辺を拡大して示す側面断面図である。

【図19】第2実施形態である蕉発器の下側へッダー部 材周辺を拡大して示す側面断面図である。

【図20】第2実施形態の上側ヘッダー部材におけるへ ッダープレートを示す図であって、同図(a)は側面断 面図、同図(b)は平面図である。

【図21】第2実施形態の上側ヘッダー部材におけるへ ッダーカバーを示す図であって、同図(a)は側面断面 図 同図(り)は正面断面図である。

【図22】第2実施形態の下側ヘッダー部材におけるへ ッダープレートを示す図であって、同図(a)は側面断 面図 (b) は平面図である。

【図23】第2実施影麼の下側ヘッダー部材におけるへ ッダーカバーを示す図であって、同図(a)は側面断面 図、同図(り)は平面図である。

【符号の説明】

1…コア

6. ?…熱交換チューブ

10…上側ヘッダー部材(出入側ヘッダー部材)

1 1 a …冷媒入□

12…出口倒タンク

20…ヘッダープレート

22…係合孔

30…ヘッダーカバー

31…仕切壁(仕切部材)

32…係台突起

4.1…分流用抵抗板

4.1a…冷媒通過孔

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401... 2006/06/05

特闘2003-75024 (21) *71…仕切壁 42 a …冷媒通過孔 50…下側へッダー部材(冷媒ターン側へッダー部材) 7 la…连通孔 51…権入側タンク 72…係台突起 52…徳出側タンク A…エアー 60…ヘッダーブレート H…チューブ高さ 62…係合孔 P1…上流側数交換チューブ群 70…ヘッダーカバー P2…下掩側熱交換チューブ群 [図1] [图2] 6~ (P1) 1 / 70 55 (P) (a) [四4] [図5] 12a

(24)

(b)

(b)

【図23】

(26) 特闘2003-75024

フロントページの続き

(51) Int .Cl .'		識別記号	F i		テーマコード(参考)	
F 2 8 F	9/02	301	F28F	9/02	301A	
					301E	
	9/18			9/18		
	9/22			9/22		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ GRAY SCALE DOCUMENTS
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.