5.23

1) Le produit scalaire
$$\overrightarrow{AC} \cdot \overrightarrow{BC} = \begin{pmatrix} 7 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 7 \end{pmatrix} = 7 \cdot 1 + (-1) \cdot 7 = 0$$

prouve que les vecteurs \overrightarrow{AC} et \overrightarrow{BC} sont perpendiculaires, c'est-à-dire que le triangle ABC est rectangle en C.

Par conséquent, le cercle Γ_1 circonscrit au triangle ABC n'est autre que le cercle de Thalès de diamètre AB :

son centre est $M(\frac{0+6}{2}\,;\frac{5+(-3)}{2})=M(3\,;1)$

et son rayon
$$r = \|\overrightarrow{\text{MA}}\| = \left\| \begin{pmatrix} -3 \\ 4 \end{pmatrix} \right\| = \sqrt{(-3)^2 + 4^2} = 5$$
.

L'équation du cercle Γ_1 est ainsi $\Gamma_1 : (x-3)^2 + (y-1)^2 = 25$.

Géométrie : le cercle Corrigé 5.23

2) Calcul du point E

Le point E doit se situer d'une part sur le cercle de centre A et de rayon 2, $5 = \frac{5}{2}$, d'autre part sur la droite d'équation 4x - 2y + 5 = 0:

$$\begin{cases} x^2 + (y-5)^2 = \frac{25}{4} \\ 4x - 2y + 5 = 0 \end{cases}$$

L'équation de la droite donne $y = \frac{4x+5}{2}$ que l'on remplace dans l'équation du cercle :

$$x^2 + \left(\frac{4x+5}{2} - 5\right)^2 = \frac{25}{4}$$

$$x^2 + \left(\frac{4x-5}{2}\right)^2 - \frac{25}{4} = 0$$

$$x^2 + \frac{16x^2 - 40x + 25}{4} - \frac{25}{4} = 0$$

$$x^{2} + \frac{16x^{2} - 40x + 25}{4} - \frac{25}{4} = 0$$
$$4x^{2} + 16x^{2} - 40x + 25 - 25 = 0$$

$$20\,x^2 - 40\,x = 0$$

$$x^2 - 2x = 0$$

$$x\left(x-2\right) = 0$$

On obtient ainsi deux solutions:

(a)
$$x = 0$$

Comme l'abscisse du point E doit être strictement positive, il s'agit de l'abscisse du point D. On calcule $y = \frac{4\cdot 0+5}{2} = \frac{5}{2}$, d'où découle $D(0; \frac{5}{2})$

(b)
$$x = 2$$

On obtient alors $y = \frac{4\cdot 2+5}{2} = \frac{13}{2}$ et donc $E(2;\frac{13}{2})$.

Équation du cercle
$$\Gamma_2$$
 $\Gamma_2 = \frac{(\Gamma_2) \cdot (x-2)^2 + (y-\frac{13}{2})^2 = \frac{25}{4}}{2}$

3) Tangente au cercle Γ_1 en A

Par définition du cercle Γ_1 , on a $A \in \Gamma_1$.

L'équation de la tangente au cercle Γ_1 en A est ainsi donnée par :

$$(0-3)(x-3) + (5-1)(y-1) = 25$$

$$-3(x-3) + 4(y-1) = 25$$

$$-3x + 9 + 4y - 4 - 25 = 0$$

$$-3x + 4y - 20 = 0$$

$$-3x + 4y - 20 = 0$$
$$(t_1): 3x - 4y + 20 = 0$$

Tangente au cercle Γ_2 en A

On sait que $A \in \Gamma_2$ par définition du cercle Γ_2 .

L'équation de la tangente au cercle Γ_2 en A est par conséquent :

$$(0-2)(x-2) + (5-\frac{13}{2})(y-\frac{13}{2}) = \frac{25}{4}$$

$$-2(x-2) - \frac{3}{2}(y - \frac{13}{2}) = \frac{25}{4}$$

$$-2x + 4 - \frac{3}{2}y + \frac{39}{4} - \frac{25}{4} = 0$$
$$-2x - \frac{3}{2}y + \frac{15}{2} = 0$$
$$(t_2): 4x + 3y - 15 = 0$$

On remarque que B $\in t_2: 4\cdot 6+3\cdot (-3)-15=0$. La tangente t_2 coïncide ainsi avec la droite AB.

Les tangentes t_1 et t_2 sont perpendiculaires

La tangente (t_1) : 3x - 4y + 20 = 0 admet pour vecteur directeur $\vec{t_1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ et pour pente $m_1 = \frac{3}{4}$.

La tangente (t_2) : 4x + 3y - 15 = 0 admet pour vecteur directeur $\vec{t_2} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ et pour pente $m_2 = -\frac{4}{3}$.

Deux calculs suffisent l'un et l'autre à prouver l'orthogonalité des tangentes t_1 et t_2 :

(a)
$$\vec{t_1} \cdot \vec{t_2} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \end{pmatrix} = 4 \cdot 3 + 3 \cdot (-4) = 0$$

(b)
$$m_1 \cdot m_2 = \frac{3}{4} \cdot \left(-\frac{4}{3}\right) = -1$$

Géométrie : le cercle Corrigé 5.23