## COMP-2650-01 Assignment #2

- 1. (a) (5 pts) Prove by algebraic method whether  $\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} = \overline{a} + \overline{b} + \overline{c}$ .
  - (b) (5 pts) Find the CPOS of  $f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x + y} + \overline{y}(\overline{x + z})$ .

Solution:

(a) 
$$\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} = \overline{a} + \overline{b} + \overline{c}$$
  
LHS =  $\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c}$   
=  $\overline{a} + a(b + \overline{c} + \overline{b}\overline{c})$  distributivity  
=  $\overline{a} + a(b + \overline{b}\overline{c} + \overline{c})$  commutativity  
=  $\overline{a} + a(b + \overline{c} + \overline{c})$  no name  
=  $\overline{a} + a(b + \overline{c})$  idempotency  
=  $\overline{a} + b + \overline{c}$  no name

 $\therefore LHS \neq RHS$ 

$$\therefore \overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} \neq \overline{a} + \overline{b} + \overline{c}$$

(b) CPOS of 
$$f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x} + y + \overline{y}(\overline{x} + z)$$
  
 $f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x} + y + \overline{y}(\overline{x} + z)$   
 $= (x + \overline{y})y + \overline{x}z + \overline{x} \overline{y} + \overline{y}(\overline{x}\overline{z})$  DeMorgan's Law  
 $= xy + \overline{y}y + \overline{x}z + \overline{x} \overline{y} + \overline{y}x\overline{z}$  Distributivity  
 $= xy + 0 + \overline{x}z + \overline{x} \overline{y} + \overline{y}x\overline{z}$  Complementation  
 $= xy + \overline{x}z + \overline{x} \overline{y} + \overline{y}x\overline{z}$  Identity element  
 $= xy(z + \overline{z}) + \overline{x}z(y + \overline{y}) + \overline{x} \overline{y}(z + \overline{z}) + \overline{y}x\overline{z}$  Complementation  
 $= xyz + xy\overline{z} + \overline{x}yz + \overline{x} \overline{y}z + \overline{x} \overline{y}z + \overline{x} \overline{y} \overline{z} + \overline{x} \overline{y} \overline{z}$  Distributivity/Commutativity  
 $= m_7 + m_6 + m_3 + m_1 + m_1 + m_0 + m_0$   
 $= \Sigma m(0, 1, 3, 6, 7)$   
 $= \overline{IT}M(2, 4, 5)$ 

2. Let  $f(w, x, y, z) = \sum m(1, 3, 8, 11, 12, 13, 15)$  and  $d(w, x, y, z) = \sum m(7, 9)$ .

 $\{d(w, x, y, z) \text{ defines the don't care conditions of } f\}.$ 

- (a) (5 pts) Find the minimal SOP of f.
- (b) (5 pts) Find the minimal POS of f.
- (c) (5+5 pts) Design a circuit from the minimal POS of f. The circuit should contain only NOR gates.

## Solution:

(a) K-MAP (SOP)

| WX\YZ | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    |    | 1  | 1  |    |
| 01    |    |    | X  |    |
| 11    | 1  | 1  | 1  |    |
| 10    | 1  | X  | 1  |    |

Group 1 Group 2 Group 3

| <u>C</u> | iroup              | 1     |   |    |
|----------|--------------------|-------|---|----|
| W        | X                  | y     |   | Z  |
| 0        | 0                  | 0     |   | 1  |
| 0        | 0                  | 1     |   | 1  |
| 1        | 0                  | 0     |   | 1  |
| 1        | 0                  | 1     |   | 1  |
|          | $\overline{x}$     | Z     |   |    |
| ·        | . <mark>Min</mark> | imal  | S | O. |
| _        |                    |       |   |    |
| K        | K-MA               | AP (P | C | S  |
|          | WX                 | \ YZ  | , | 0  |
|          |                    |       |   |    |

| Group 2                    |   |   |   |
|----------------------------|---|---|---|
| W                          | X | y | Z |
| 1                          | 1 | 0 | 0 |
| 1                          | 1 | 0 | 1 |
| 1                          | 0 | 0 | 0 |
| 1                          | 0 | 0 | 1 |
| $\overline{w}\overline{y}$ |   |   |   |

| Group 3 |    |   |   |  |
|---------|----|---|---|--|
| W       | X  | y | Z |  |
| 0       | 0  | 1 | 1 |  |
| 0       | 1  | 1 | 1 |  |
| 1       | 1  | 1 | 1 |  |
| 1       | 0  | 1 | 1 |  |
|         | yz |   |   |  |

| (b) | K-MAP | (POS) |
|-----|-------|-------|
| (-) |       | ( )   |

| WX\YZ | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    | 0  |    |    | 0  |
| 01    | 0  | 0  | X  | 0  |
| 11    |    |    |    | 0  |
| 10    |    | X  |    | 0  |

Group 1 Group 2 Group 3

| Group | 1 |
|-------|---|
|       |   |

| W | X | У | Z |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |

| Group | 2 |
|-------|---|
|       |   |

| W | X | y | Z   |
|---|---|---|-----|
| 0 | 1 | 0 | 0xs |
| 0 | 1 | 0 | 1   |
| 0 | 1 | 1 | 1   |
| 0 | 1 | 1 | 0   |

 $w+\overline{x}$ 

Group 3

| W | X | y | Z |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |

 $\overline{y}+z$ 

: Minimal POS:  $(w+z)(w+\overline{x})(\overline{y}+z)$ 

(c) POS of 
$$f(w, x, y, z) = (\underline{w+z)(w+\overline{x})(\overline{y}+z)}$$
  
=  $\underline{(w+z)(w+\overline{x})(\overline{y}+z)}$ 

$$= \overline{\left(\overline{w+z}\right) + \left(\overline{w+\overline{x}}\right) + \left(\overline{\overline{y}+z}\right)}$$

$$= (\overline{w+z}) \downarrow (\overline{w+\overline{x}}) \checkmark (\overline{\overline{y}+z})$$

$$= (\mathbf{w} \downarrow \mathbf{z}) \downarrow (\mathbf{w} \downarrow \overline{\mathbf{x}}) \downarrow (\overline{\mathbf{y}} \downarrow \mathbf{z})$$

$$= (\mathbf{w} \downarrow \mathbf{z}) \downarrow (\mathbf{w} \downarrow \overline{\mathbf{x}}) \downarrow (\overline{\mathbf{y}} \downarrow \mathbf{z})$$
$$= (\mathbf{w} \downarrow \mathbf{z}) \downarrow (\mathbf{w} \downarrow (\mathbf{x} \downarrow \mathbf{0})) \downarrow ((\mathbf{y} \downarrow \mathbf{0}) \downarrow \mathbf{z})$$



3. Let  $f(w, x, y, z) = \prod M(4, 9, 12, 13, 14)$  and  $d(w, x, y, z) = \sum m(5, 6, 11, 15)$ .

 $\{[d(w, x, y, z) \text{ defines the don't care conditions of f}\}.$ 

- (a) (5 pts) Find the minimal SOP of f.
- (b) (5 pts) Find the minimal POS of f.
- (c) (5+5 pts) Design a circuit from the minimal SOP of f. The circuit should contain only NAND gates.

## Solution:

## (a) K-MAP (SOP)

| WX\YZ | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    | 1  | 1  | 1  | 1  |
| 01    |    | X  | 1  | X  |
| 11    |    |    | X  |    |
| 10    | 1  |    | X  | 1  |

Group 1
Group 2

Group 1

| W           | X | y | Z |
|-------------|---|---|---|
| 0           | 0 | 0 | 0 |
| 0           | 0 | 1 | 0 |
| 1           | 0 | 0 | 0 |
| 1           | 0 | 1 | 0 |
| <del></del> |   |   |   |

Group 2

| W | X | у | Z |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |

 $\overline{w}z$ 

 $\overline{\chi} \overline{Z}$ 

∴ Minimal SOP:  $\overline{x} \overline{z} + \overline{w}z$ 

(b) K-MAP (POS)

| WX\YZ | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    |    |    |    |    |
| 01    | 0  | X  |    | X  |
| 11    | 0  | 0  | X  | 0  |
| 10    |    | 0  | X  |    |

Group 1 Group 2

Group 1

| W | X | y | Z |
|---|---|---|---|
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |
|   | • | • | • |

Group 2

| W | X | у | Z |
|---|---|---|---|
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |

 $\overline{x} + z$ 

 $\overline{w} + \overline{z}$ 

 $\therefore$  Minimal POS:  $(\overline{x} + z)(\overline{w} + \overline{z})$ 

(c) SOP of 
$$f(w, x, y, z) = \overline{x} \overline{z} + \overline{w}z$$
  

$$= \overline{\overline{x}} \overline{\overline{z} + \overline{w}z}$$

$$= \overline{x} \overline{z} \bullet \overline{w}z$$

$$= \overline{x} \overline{z} \uparrow \overline{w}z$$

$$= (x \uparrow \overline{z}) \uparrow (\overline{w} \uparrow z)$$

$$= ((x \uparrow 1) \uparrow (z \uparrow 1)) \uparrow ((w \uparrow 1) \uparrow z)$$

