```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
   /usr/local/lib/python3.6/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning: pandas.util.testing is deprecat
       import pandas.util.testing as tm
from google.colab import drive
drive.mount('/content/drive')
    Go to this URL in a browser: <a href="https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491h">https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491h</a>
     Enter your authorization code:
     Mounted at /content/drive
insurance = pd.read csv('/content/drive/My Drive/Python DataScience/Visualization/Seabo
insurance.head(10)
 С→
```

charges	region	smoker	children	bmi	sex	age	
16884.92400	southwest	yes	0	27.900	female	19	0
1725.55230	southeast	no	1	33.770	male	18	1
4449.46200	southeast	no	3	33.000	male	28	2
21984.47061	northwest	no	0	22.705	male	33	3

→ Box Plot

The box plot is a standardized way of displaying the distribution of data based on the five number summary: minimum, first quartile, median, third quartile, and maximum.

```
# Recover default matplotlib settings
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline
sns.set_style("white")
```

insurance.head()

_>		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

```
# Simple boxplot
plt.figure(figsize=(8,6))
sns.boxplot(insurance.bmi)
```

C→ <matplotlib.axes._subplots.AxesSubplot at 0x7f2b6f765240>


```
# Vertical boxplot
sns.set_style("darkgrid")
plt.figure(figsize=(8,6))
sns.boxplot(x= insurance.smoker , y= insurance.charges )

□
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f2b6f6d8c88>


```
#Explicit ordering using "order" parameter
plt.figure(figsize=(8,6))
sns.boxplot(x= insurance.smoker , y= insurance.charges , order = ['no' , 'yes'])

D
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f2b6f1f3fd0>

60000

helpdesk = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor
#helpdesk.head(10)

helpdesk.head(5)

₽		ticket	requestor	RequestorSeniority	ITOwner	FiledAgainst	TicketType	Severity	Priority	days0pen	Satisfacti
	0	1	1929	1 - Junior	50	Systems	Issue	2 - Normal	0 - Unassigned	3	1 - Unsatisfi
	1	2	1587	2 - Regular	15	Software	Request	1 - Minor	1 - Low	5	1 - Unsatisfic
	2	3	925	2 - Regular	15	Access/Login	Request	2 - Normal	0 - Unassigned	0	0 - Unknov
	3	4	413	4 - Management	22	Systems	Request	2 - Normal	0 - Unassigned	20	0 - Unknov

plt.figure(figsize=(7,6))
sns.boxplot(helpdesk.daysOpen)
plt.show()

 \Box

plt.figure(figsize=(8,6))
sns.boxplot(x= helpdesk.FiledAgainst , y= helpdesk.daysOpen)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2b6f0e3c50>

fish= pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn/Dat

plt.figure(figsize=(8,6))

sns.boxplot(x= fish.Species , y= fish.Weight)

stdperf = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn

#stdperf = pd.read_csv("studentp.csv")
stdperf.head(10)

С→

test

₽

		gender	race/ethnicity	level of education	lunch	preparation course	math score	reading score	writing score			
	0	female	group B	bachelor's degree	standard	none	72	72	74			
	1	female	group C	some college	standard	completed	69	90	88			
	2	female	group B	master's degree	standard	none	90	95	93			
plt	.su	bplot	dth of boxe s(figsize = (3,1,1)									
sns	.bo	xplot	(x= stdperf	['parental	level	of educa	tion'] , y=	stdperf	['math sco	ore'],	wid
•		•	(3,1,2) (x= stdperf	['parental	level	of educa	tion'] , y=	stdperf	['reading	score']	,
•		•	(3,1,3) (x= stdperf	['parental	level	of educa	tion'] , y=	stdperf	['writing	score']	,
plt	.sh	iow()										
_												

parental

exercise = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor

```
plt.figure(figsize = (6,7))
sns.boxplot(x= exercise.kind , y= exercise.pulse)
plt.show()
```

С→

 \Box


```
# Show groups with different colors using "hue"
plt.figure(figsize = (6,7))
sns.boxplot(x= exercise.kind , y= exercise.pulse , hue=exercise.diet)
plt.show()
```


plt.figure(figsize = (14,6))

plt.figure(figsize = (14,6))

```
SIIS.DOXPIOL(X= StuperT[ parental level of education ], y= StuperT[ math score ], width=.7 , hue=stdperf['test preparation course'], palette= {"none":'#FFB74D' , "completed":'#9CCC65'})
plt.show()
```



```
# Change the size of outlier markers
plt.figure(figsize = (16,8))
```


mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline

C→

16 to 19 years 20 to 24 years 25 to 34 years 35 to 44 years 45 to 54 years 55 to 64 years 55 years and over Age

mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline
sns.set_style("darkgrid")

exercise = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor
exercise.head()

С→

diet pulse time kind id low fat 85 1 min rest low fat 85 15 min rest low fat 30 min rest low fat 1 min rest low fat 15 min rest

plt.figure(figsize=(18,16)) sns.catplot(x="kind", y="pulse",col="diet",data=exercise, kind="box"); plt.show()

<Figure size 1296x1152 with 0 Axes>

iris = sns.load_dataset("iris")

```
# DISPLAYING MULLIPLE VIOLIN PLOTS USING SUDPLOT FUNCTION.
fig1 , axes = plt.subplots(nrows=2,ncols=2 , figsize = (20,24))
sns.swarmplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris , color=".10"
sns.boxplot(x="species" , y = "petal_length" ,ax = axes[0,0] ,data=iris )
sns.swarmplot(x="species" , y = "petal_length" ,ax = axes[0,1] , data=iris , color=".sns.boxplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris , color=".1sns.boxplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris )
sns.swarmplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris , color=".sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris )
plt.show()
```

C→


```
fig1 , axes = plt.subplots(nrows=2,ncols=2 , figsize = (20,24))
sns.swarmplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris ,size=8,)
sns.boxplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris ,boxprops={'fac sns.swarmplot(x="species" , y = "petal_length" ,ax = axes[0,1] , data=iris ,size=8)
sns.boxplot(x="species" , y = "petal_length" ,ax = axes[0,1] , data=iris ,boxprops={'fac sns.swarmplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris ,size=8)
sns.boxplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris ,boxprops={'fac sns.swarmplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,size=8)
sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris ,boxprops={'fac sns.boxplot(x="species"
```

С⇒


```
fig1 , axes = plt.subplots(nrows=2,ncols=2 , figsize = (20,24))
sns.swarmplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris , size=8)
sns.boxplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris , showfliers=Fa
sns.swarmplot(x="species" , y = "petal_length" ,ax = axes[0,1] , data=iris , showfliers=F
sns.swarmplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris , showfliers=F
sns.swarmplot(x="species" , y = "sepal_width" , ax = axes[1,0] , data=iris , showfliers=F
sns.swarmplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris , size=8)
sns.boxplot(x="species" , y = "sepal_length" , ax = axes[1,1] , data=iris , showfliers=
plt.show()
```

 \Box

