```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]: df = pd.read_csv('C:\\Users\\Sammed\\Desktop\\Sammed\\Machine Learning\\Data-cleaning-for-beginners-using-pa

In [3]: df.head()

Out[3]:

	Index	Age	Salary	Rating	Location	Established	Easy Apply
0	0	44.0	44 <i>k</i> -99k	5.4	India,In	1999	TRUE
1	1	66.0	55 <i>k</i> -66k	3.5	New York,Ny	2002	TRUE
2	2	NaN	77k - 89k	-1.0	New York,Ny	-1	-1
3	3	64.0	44 <i>k</i> -99k	4.4	India In	1988	-1
4	4	25.0	44 <i>k</i> -99k	6.4	Australia Aus	2002	-1

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29 entries, 0 to 28
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Index	29 non-null	int64
1	Age	22 non-null	float64
2	Salary	29 non-null	object
3	Rating	28 non-null	float64
4	Location	29 non-null	object
5	Established	29 non-null	int64
6	Easy Apply	29 non-null	object
d+vn	oc. float64/2	$\frac{1}{1}$ in $+64(2)$ ob-	ioc+/2\

dtypes: float64(2), int64(2), object(3)

memory usage: 1.7+ KB

```
In [5]: df.isna().sum()
Out[5]: Index
                       0
                       7
        Age
        Salary
        Rating
                       1
        Location
        Established
        Easy Apply
        dtype: int64
In [6]: count of minus 1 = (df == -1).sum()
        print(count of minus 1)
        Index
                       0
        Age
        Salary
        Rating
        Location
        Established
        Easy Apply
        dtype: int64
In [7]: df.duplicated().sum()
Out[7]: 0
        Q1
In [8]: df.replace('-1', float('nan'), inplace=True)
        df.replace(-1.0, float('nan'), inplace=True)
In [9]: from sklearn.impute import SimpleImputer
```

In [12]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29 entries, 0 to 28
Data columns (total 7 columns):
    Column
                 Non-Null Count Dtype
    Index
                 29 non-null
                                int64
 0
                 29 non-null
                                float64
    Age
                 29 non-null
                                object
    Salary
    Rating
                29 non-null
                             float64
                 29 non-null
    Location
                                obiect
    Established 29 non-null
                             float64
    Easy Apply 29 non-null
                                object
dtypes: float64(3), int64(1), object(3)
memory usage: 1.7+ KB
```

Q3 Adjusted, as it does not cause loss of data

```
In [13]: from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    df['Salary'] = le.fit_transform(df[['Salary']])

        C:\Users\ayush\anaconda3\envs\Ayush_Walekar_MIT\lib\site-packages\sklearn\preprocessing\_label.py:116: DataConversion
        Warning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), fo
        r example using ravel().
        y = column_or_1d(y, warn=True)

In [14]: import seaborn as sns

In [16]: selected_target_cols = ['Age','Salary','Rating']
```

```
In [17]: fig, axes = plt.subplots(nrows=1, ncols=len(df.columns), figsize=(15, 5))

for i, col in enumerate(selected_target_cols):
    if pd.api.types.is_numeric_dtype(df[col]):
        sns.histplot(df[col], kde=True, ax=axes[i])
        axes[i].set_title(f'{col}')
plt.show()
```


In []:

```
In [18]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df['Salary'] = scaler.fit_transform(df['Salary'].values.reshape(-1, 1))
```

In [19]: df

Out[19]:

	Index	Age	Salary	Rating	Location	Established	Easy Apply
0	0	44.0	-0.028330	5.4	India,In	1999.0	TRUE
1	1	66.0	0.793230	3.5	New York,Ny	2002.0	TRUE
2	2	44.0	1.614789	5.4	New York,Ny	1999.0	TRUE
3	3	64.0	-0.028330	4.4	India In	1988.0	TRUE
4	4	25.0	-0.028330	6.4	Australia Aus	2002.0	TRUE
5	5	44.0	1.614789	1.4	India,In	1999.0	TRUE
6	6	21.0	-0.028330	0.0	New York,Ny	1999.0	TRUE
7	7	44.0	-0.028330	5.4	Australia Aus	1999.0	TRUE
8	8	35.0	-0.028330	5.4	New York,Ny	1999.0	TRUE
9	9	22.0	-0.028330	7.7	India,In	1999.0	TRUE
10	10	55.0	-2.493008	5.4	India,In	2008.0	TRUE
11	11	44.0	-2.493008	6.7	India,In	2009.0	TRUE
12	12	44.0	-0.028330	0.0	India,In	1999.0	TRUE
13	13	25.0	-0.028330	5.4	Australia Aus	2019.0	TRUE
14	14	66.0	-0.028330	4.0	Australia Aus	2020.0	TRUE
15	15	44.0	2.436349	3.0	Australia Aus	1999.0	TRUE
16	16	19.0	-1.671448	4.5	India,In	1984.0	TRUE
17	17	44.0	-0.028330	5.3	New York,Ny	1943.0	TRUE
18	18	35.0	-0.028330	6.7	New York,Ny	1954.0	TRUE
19	19	32.0	-0.028330	3.3	New York,Ny	1955.0	TRUE
20	20	44.0	-0.028330	5.7	New York,Ny	1944.0	TRUE
21	21	35.0	-0.028330	5.0	New York,Ny	1946.0	TRUE
22	22	19.0	0.793230	7.8	New York,Ny	1988.0	TRUE
23	23	44.0	-0.028330	2.4	New York,Ny	1999.0	TRUE
24	24	13.0	-0.028330	5.4	New York,Ny	1987.0	TRUE

	Index	Age	Salary	Rating	Location	Established	Easy Apply
25	25	55.0	-0.028330	0.0	Australia Aus	1980.0	TRUE
26	26	44.0	0.793230	5.4	India,In	1934.0	TRUE
27	27	52.0	-0.028330	5.4	India,In	1935.0	TRUE
28	28	44.0	-0.849889	3.4	Australia Aus	1932.0	TRUE

Q5, Q10, Q13

In [33]: df

Out[33]:

	Index	Age	Salary	Rating	Location	Established	Easy Apply
0	0	44.0	-0.028330	5.4	In	1999.0	1
1	1	66.0	0.793230	3.5	Ny	2002.0	1
2	2	44.0	1.614789	5.4	Ny	1999.0	1
3	3	64.0	-0.028330	4.4	In	1988.0	1
4	4	25.0	-0.028330	6.4	Aus	2002.0	1
5	5	44.0	1.614789	1.4	In	1999.0	1
6	6	21.0	-0.028330	0.0	Ny	1999.0	1
7	7	44.0	-0.028330	5.4	Aus	1999.0	1
8	8	35.0	-0.028330	5.4	Ny	1999.0	1
9	9	22.0	-0.028330	7.7	In	1999.0	1
10	10	55.0	-2.493008	5.4	In	2008.0	1
11	11	44.0	-2.493008	6.7	In	2009.0	1
12	12	44.0	-0.028330	0.0	In	1999.0	1
13	13	25.0	-0.028330	5.4	Aus	2019.0	1
14	14	66.0	-0.028330	4.0	Aus	2020.0	1
15	15	44.0	2.436349	3.0	Aus	1999.0	1
16	16	19.0	-1.671448	4.5	In	1984.0	1
17	17	44.0	-0.028330	5.3	Ny	1943.0	1
18	18	35.0	-0.028330	6.7	Ny	1954.0	1
19	19	32.0	-0.028330	3.3	Ny	1955.0	1
20	20	44.0	-0.028330	5.7	Ny	1944.0	1
21	21	35.0	-0.028330	5.0	Ny	1946.0	1
22	22	19.0	0.793230	7.8	Ny	1988.0	1
23	23	44.0	-0.028330	2.4	Ny	1999.0	1
24	24	13.0	-0.028330	5.4	Ny	1987.0	1

	Index	Age	Salary	Rating	Location	Established	Easy Apply
25	25	55.0	-0.028330	0.0	Aus	1980.0	1
26	26	44.0	0.793230	5.4	In	1934.0	1
27	27	52.0	-0.028330	5.4	In	1935.0	1
28	28	44.0	-0.849889	3.4	Aus	1932.0	1

Q6 No

Q7 Q12 #### it contains boolean but we can encode them for better understanding

```
In [30]: df['Easy Apply'].unique()
Out[30]: array(['TRUE'], dtype=object)
In [32]: df['Easy Apply'].replace('TRUE',1,inplace=True)
```

```
In [36]: plt.figure(figsize=(6, 6))
    plt.hist(df['Age'], bins=10, edgecolor='black')
    plt.title('Distribution of Age')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [37]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 29 entries, 0 to 28
         Data columns (total 7 columns):
                           Non-Null Count Dtype
              Column
              Index
                           29 non-null
                                           int64
                           29 non-null
                                           float64
          1
              Age
          2
              Salarv
                           29 non-null
                                           float64
              Rating
                           29 non-null
                                           float64
                           29 non-null
                                           object
             Location
              Established 29 non-null
                                           float64
              Easy Apply 29 non-null
                                           int64
         dtypes: float64(4), int64(2), object(1)
         memory usage: 1.7+ KB
```

```
In [38]: df['Location'] = le.fit_transform(df[['Location']])
```

C:\Users\ayush\anaconda3\envs\Ayush_Walekar_MIT\lib\site-packages\sklearn\preprocessing_label.py:116: DataConversion Warning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), fo r example using ravel().

```
y = column_or_1d(y, warn=True)
```

Q15

```
In [41]:
    df['Rating'] = scaler.fit_transform(df['Rating'].values.reshape(-1, 1))
```

In [42]: df

Out[42]:

	Index	Age	Salary	Rating	Location	Established	Easy Apply
0	0	44.0	-0.028330	0.445207	1	1999.0	1
1	1	66.0	0.793230	-0.470126	2	2002.0	1
2	2	44.0	1.614789	0.445207	2	1999.0	1
3	3	64.0	-0.028330	-0.036547	1	1988.0	1
4	4	25.0	-0.028330	0.926961	0	2002.0	1
5	5	44.0	1.614789	-1.481809	1	1999.0	1
6	6	21.0	-0.028330	-2.156265	2	1999.0	1
7	7	44.0	-0.028330	0.445207	0	1999.0	1
8	8	35.0	-0.028330	0.445207	2	1999.0	1
9	9	22.0	-0.028330	1.553242	1	1999.0	1
10	10	55.0	-2.493008	0.445207	1	2008.0	1
11	11	44.0	-2.493008	1.071488	1	2009.0	1
12	12	44.0	-0.028330	-2.156265	1	1999.0	1
13	13	25.0	-0.028330	0.445207	0	2019.0	1
14	14	66.0	-0.028330	-0.229249	0	2020.0	1
15	15	44.0	2.436349	-0.711003	0	1999.0	1
16	16	19.0	-1.671448	0.011629	1	1984.0	1
17	17	44.0	-0.028330	0.397032	2	1943.0	1
18	18	35.0	-0.028330	1.071488	2	1954.0	1
19	19	32.0	-0.028330	-0.566476	2	1955.0	1
20	20	44.0	-0.028330	0.589734	2	1944.0	1
21	21	35.0	-0.028330	0.252506	2	1946.0	1
22	22	19.0	0.793230	1.601417	2	1988.0	1
23	23	44.0	-0.028330	-1.000055	2	1999.0	1
24	24	13.0	-0.028330	0.445207	2	1987.0	1

	Index	Age	Salary	Rating	Location	Established	Easy Apply
25	25	55.0	-0.028330	-2.156265	0	1980.0	1
26	26	44.0	0.793230	0.445207	1	1934.0	1
27	27	52.0	-0.028330	0.445207	1	1935.0	1
28	28	44.0	-0.849889	-0.518301	0	1932.0	1

In []: