Agrégation Interne 2016/2017

Dénombrements

- I - Fonctions indicatrices d'ensembles

 Ω est un ensemble non vide et $\mathcal{P}(\Omega)$ est l'ensemble de toutes les parties de Ω .

À toute partie A de Ω , on associe sa fonction indicatrice définie par :

$$\mathbf{1}_A: \ \Omega \to \left\{ \begin{array}{l} \{0,1\} \\ x \mapsto \left\{ \begin{array}{l} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{array} \right. \end{array} \right.$$

Les fonctions indicatrices permettent de transformer des opérations ensemblistes en opérations algébriques sur des fonctions.

On note $\{0,1\}^{\Omega}$ l'ensemble des applications de Ω dans $\{0,1\}$.

- 1. Montrer que l'application qui associe à une partie A de Ω sa fonction indicatrice $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(\Omega)$ sur $\{0,1\}^{\Omega}$.
- 2. Montrer qu'il n'existe pas de bijection de Ω sur $\mathcal{P}(\Omega)$ (théorème de Cantor). Indication : on peut raisonner par l'absurde en considérant, pour φ bijective de Ω sur $P(\Omega)$, l'ensemble $A = \{x \in \Omega \mid x \notin \varphi(x)\}$. On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.
- 3. Pour tout entier naturel non nul n, on définit les fonctions symétriques élémentaires $\sigma_{n,k} : \mathbb{R}^n \to \mathbb{R}$, l'entier k étant compris entre 0 et n, par :

$$\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n, \ \sigma_{n,k}(\alpha) = \begin{cases} 1 \text{ si } k = 0 \\ \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} \text{ si } k \in \{1, \dots, n\} \end{cases}$$

Ces expressions sont qualifiées de symétriques, car pour toute permutation τ de $\{1,\cdots,n\}$, on a :

$$\sigma_{n,k}\left(\alpha_{\tau(1)},\cdots,\alpha_{\tau(n)}\right)=\sigma_{n,k}\left(\alpha_{1},\cdots,\alpha_{n}\right)$$

(a) Soient $n \geq 2$ un entier et $\alpha = (\alpha_1, \dots, \alpha_n) = (\alpha', \alpha_n) \in \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}$, où on a noté $\alpha' = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$. Montrer que :

$$\begin{cases}
\sigma_{n,0}(\alpha) = \sigma_{n-1,0}(\alpha') = 1 \\
\sigma_{n,k}(\alpha) = \sigma_{n-1,k}(\alpha') + \alpha_n \sigma_{n-1,k-1}(\alpha') & (1 \le k \le n-1) \\
\sigma_{n,n}(\alpha) = \alpha_n \sigma_{n-1,n-1}(\alpha')
\end{cases}$$

(b) Soit $P(X) = \prod_{k=1}^{n} (X - \alpha_k)$ un polynôme scindé unitaire de degré $n \ge 1$ dans $\mathbb{R}[X]$.

1

Montrer que l'on a $P(X) = \sum_{k=0}^{n} a_k X^{n-k}$ avec :

$$\forall k \in \{0, 1, \dots, n\}, \ a_k = (-1)^k \sigma_{n,k} (\alpha_1, \dots, \alpha_n)$$

4. Soit $(A_k)_{1 \le k \le n}$ une suite finie de parties de Ω . Montrer que :

(a)
$$\mathbf{1}_{\bigcap_{k=1}^{n} A_k}^{n} = \prod_{k=1}^{n} \mathbf{1}_{A_k};$$

(b)
$$\mathbf{1}_{\bigcup_{k=1}^{n} A_k} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mathbf{1}_{A_{i_1} \cap A_{i_2} \dots A_{i_k}}$$
 (formule de Poincaré);

(c) pour
$$A \in \mathcal{P}(\Omega)$$
, on a la partition $A = \bigcup_{k=1}^{n} A_k$ si, et seulement si $\mathbf{1}_A = \sum_{k=1}^{n} \mathbf{1}_{A_k}$;

(d)
$$\mathbf{1}_{\sum_{k=1}^{n} A_k} \leq \sum_{k=1}^{n} \mathbf{1}_{A_k} \leq \mathbf{1}_{\sum_{k=1}^{n} A_k} + (n-1)$$
.

- 5. Soit $(\Omega, \mathcal{B}, \mathbb{P})$ un espace probabilisé.
 - (a) Montrer que, pour tous A, B dans \mathcal{B} , on a :

$$\mathbb{E}(\mathbf{1}_A) = \mathbb{P}(A)$$
, $\operatorname{cov}(\mathbf{1}_A, \mathbf{1}_B) = \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)$, $\mathbb{V}(\mathbf{1}_A) = \mathbb{P}(A)(1 - \mathbb{P}(A))$

(b) Montrer que, pour tous A, B dans \mathcal{B} , on a :

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \le \frac{1}{4}$$

et:

$$|\mathbb{P}(B) - \mathbb{P}(A)| \le \mathbb{P}(A \triangle B)$$

(c) Soit $(A_k)_{1 \leq k \leq n}$ une suite d'éléments de \mathcal{B} . En utilisant la formule de Poincaré pour les fonctions indicatrices, montrer que :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mathbb{P}\left(A_{i_{1}} \cap \dots \cap A_{i_{k}}\right)$$

(formule de Poincaré).

(d) Soit $(A_k)_{1 \le k \le n}$ une suite d'éléments de \mathcal{B} . Montrer que :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right) \leq \mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) + (n-1)$$

- II - Quelques classiques et moins classiques dénombrements

- 1. Soient E, F deux ensembles finis non vides et φ une application de E dans F. Montrer que s'il existe un entier naturel non nul p tel que pour tout $y \in F$, $\varphi^{-1}\{y\}$ est de cardinal p, alors φ est surjective et card $(E) = p \operatorname{card}(F)$ (principe des bergers).
- 2. On note, pour tout entier $n \geq 2$, $I_n = \{1, 2, \dots, n\}$ et on appelle dérangement de I_n toute permutation σ de I_n n'ayant aucun point fixe (i. e. telle que σ (i) \neq i pour tout $i \in I_n$). Pour $p \in \mathbb{N}$, on note δ_p le nombre de dérangements de I_p . On a $\delta_1 = 0$ et, par convention, on pose $\delta_0 = 1$.
 - (a) Montrer que si $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ sont deux suites de réels telles que :

$$\forall n \in \mathbb{N}, \ f_n = \sum_{k=0}^n \binom{n}{k} g_k$$

on a alors:

$$\forall n \in \mathbb{N}, \ g_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f_k$$

(formule d'inversion de Pascal).

Indication : on peut utiliser la matrice de passage de la base canonique $(X^k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$ à la base $((1+X)^k)_{0 \le k \le n}$ ou raisonner par récurrence sur $n \ge 0$.

(b) Montrer que:

$$\forall n \in \mathbb{N}, \ n! = \sum_{k=0}^{n} \binom{n}{k} \delta_k \tag{1}$$

(c) Montrer que:

$$\forall n \in \mathbb{N}, \ \delta_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$
 (2)

Indication: on peut utiliser ou pas la formule d'inversion de Pascal.

- (d) On considère n couples qui se présentent à un concours de danse, chaque danseur choisissant une partenaire au hasard (on suppose qu'on est dans le cadre de l'équiprobabilité).
 - i. Quelle est la probabilité p_n pour que personne ne danse avec son conjoint?
 - ii. Calculer la limite de p_n quand n tend vers l'infini.
- 3. On se propose de montrer la formule (2) en utilisant la série génératrice $\sum \frac{\delta_n}{n!} z^n$ de la suite $\left(\frac{\delta_n}{n!}\right)_{n\in\mathbb{N}}$.
 - (a) Montrer que la série entière $\sum \frac{\delta_n}{n!} z^n$ est convergente pour |z| < 1. On note f(z) sa somme.
 - (b) En utilisant (1), montrer que, pour |z| < 1, on a :

$$f\left(z\right) = \frac{e^{-z}}{1 - z}$$

- (c) En déduire que $\delta_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.
- (d) Montrer que $\delta_n = E\left(\frac{n!}{e} + \frac{1}{2}\right)$ pour tout $n \ge 1$, où E est la fonction partie entière.
- 4. Pour tout couple (p, n) d'entiers naturels non nuls, on désigne par $u_{p,n}$ le nombre d'applications surjectives de l'ensemble $I_p = \{1, \dots, p\}$ sur l'ensemble $I_n = \{1, \dots, n\}$ (ou plus généralement d'un ensemble à p éléments sur un ensemble à n éléments) en convenant que $u_{p,0} = 0$ pour tout entier naturel non nul p.
 - (a) Montrer que :

$$\forall p \ge n \ge 1, \ n^p = \sum_{k=0}^n \binom{n}{k} u_{p,k}$$

(b) En utilisant la formule d'inversion de Pascal, en déduire que :

$$\forall p \ge n \ge 0, \ u_{p,n} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^p$$

(c) Montrer que la série entière $\sum \frac{u_{p,n}}{n!} z^n$ (série génératrice de la suite $\left(\frac{u_{p,n}}{n!}\right)_{n\in\mathbb{N}}$) a un rayon de convergence infini.

On note $f_p(z)$ sa somme pour $p \ge 1$ fixé.

(d) Montrer que $f_p(z)e^z=\sum_{n\in\mathbb{N}}\frac{n^p}{n!}z^n$ pour tout nombre complexe z, puis en déduire que :

$$\forall p \ge n \ge 1, \ u_{p,n} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^p$$

(e) Montrer que:

$$\forall n \ge 1, \ \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^n = n!$$

(f) Montrer que:

$$\forall p \ge n \ge 2, \ u_{p,n} = n \left(u_{p-1,n-1} + u_{p-1,n} \right)$$

En déduire les valeurs de $u_{n+1,n}$ et $u_{n+2,n}$.

- 5. On note, pour $n \geq 1$, $I_n = \{1, 2, \dots, n\}$ et on désigne par β_n le nombre de partitions de I_n (nombres de Bell). On convient que $\beta_0 = 1$.
 - (a) Calculer $\beta_1, \beta_2, \beta_3$.
 - (b) Montrer que:

$$\forall n \in \mathbb{N}, \ \beta_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \beta_k$$

(c) Montrer que:

$$\forall n \in \mathbb{N}^*, \ \sqrt{(n-1)!} \le \beta_n \le n!$$

- (d) Montrer que la série entière $\sum \frac{\beta_n}{n!} z^n$ a un rayon de convergence infini. On note f(z) sa somme.
- (e) Montrer que, pour tout réel x, on a $f'(x) = e^x f(x)$, puis que $f(x) = e^{e^x 1}$.
- (f) En déduire que :

$$\forall n \in \mathbb{N}, \ \beta_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!}$$

6. On se propose de calculer, pour tout entier $n \geq 2$, la probabilité r_n pour que deux entiers a, b compris entre 1 et n soient premiers entre eux.

Pour tout entier $n \geq 2$, on note :

$$A_n = \left\{ (a, b) \in I_n^2 \mid a \land b = 1 \right\}$$

 φ désigne la fonction indicatrice d'Euler.

(a) En notant $A_n^+ = \{(a,b) \in A_n \mid a < b\}$, montrer que :

$$\operatorname{card}\left(A_{n}^{+}\right) = \sum_{k=2}^{n} \varphi\left(k\right)$$

(b) En déduire que :

$$\operatorname{card}\left(A_{n}\right) = 2\sum_{k=1}^{n} \varphi\left(k\right) - 1$$

puis que la probabilité cherchée est :

$$r_n = \frac{1}{n^2} \left(2 \sum_{k=1}^{n} \varphi(k) - 1 \right)$$

4

On peut montrer (ce qui est un peu délicat) que $\lim_{n\to+\infty} r_n = \frac{6}{\pi^2}$.

7. On utilise ici le théorème de Lagrange sur les sous-groupes d'un groupe fini pour dénombrer les racines n-èmes de l'unité dans un corps fini.

 \mathbb{F}_q est un corps fini à q éléments $(q=p^r, \text{ où } p \geq 2 \text{ est un nombre premier et } r \text{ est un entier naturel non nul}) et, pour tout entier <math>n \geq 1$:

$$\mu_n\left(\mathbb{F}_q\right) = \{z \in \mathbb{F}_q \mid z^n = 1\}$$

est l'ensemble des racines n-èmes de l'unité dans \mathbb{F}_q .

- (a) Montrer que $\mu_n(\mathbb{F}_q)$ est un sous-groupe du groupe multiplicatif (\mathbb{F}_q^*,\cdot) .
- (b) En désignant par δ le pgcd de n et q-1, montrer que $\mu_n\left(\mathbb{F}_q\right)=\mu_\delta\left(\mathbb{F}_q\right)$.
- (c) Montrer que :

$$\operatorname{card}\left(\mu_{n}\left(\mathbb{F}_{q}\right)\right)=n\wedge\left(q-1\right)$$

8. \mathbb{F}_q est un corps fini à q éléments.

Pour tout entier $m \geq 2$, on note :

$$P_m = \left\{ x^m \mid x \in \mathbb{F}_q^* \right\}$$

l'ensemble des puissances m-èmes dans \mathbb{F}_q^* .

(a) Montrer que P_m est un sous-groupe de cardinal $\frac{q-1}{m \wedge (q-1)}$ du groupe multiplicatif (\mathbb{F}_q^*, \cdot) et que :

$$P_m = \left\{ x \in \mathbb{F}_q^* \mid x^{\frac{q-1}{m \wedge (q-1)}} = 1 \right\}$$

(b) Pour $q = 2^r$ et m = 2, montrer que $P_2 = \mathbb{F}_{2^r}^*$ (tout élément d'un corps à 2^r éléments est un carré).

Pour la suite de cet exercice, on suppose que $q=p^r$ avec $p \geq 3$ et m=2, c'est-à-dire qu'on s'intéresse aux carrés dans \mathbb{F}_q pour q impair.

- (c) Montrer que:
 - i. il y a $\frac{q-1}{2}$ carrés et $\frac{q-1}{2}$ non carrés dans \mathbb{F}_q^* ;
 - ii. $P_2 = \left\{ x \in \mathbb{F}_q^* \mid x^{\frac{q-1}{2}} = 1 \right\}$ et $\mathbb{F}_q^* \setminus P_2 = \left\{ x \in \mathbb{F}_q^* \mid x^{\frac{q-1}{2}} = -1 \right\}$ (les carrés de \mathbb{F}_q^* sont les racines de $X^{\frac{q-1}{2}} 1$ et les non carrés sont les racines de $X^{\frac{q-1}{2}} + 1$);
 - iii. -1 est un carré dans \mathbb{F}_q^* si, et seulement si, q est congru à 1 modulo 4;
 - iv. le produit de deux non carrés de \mathbb{F}_q^* est un carré, le produit d'un carré et d'un non carré est un non carré.
- (d) Soient a, b dans \mathbb{F}_q^* . Montrer que pour tout $c \in \mathbb{F}_q$, il existe x, y dans \mathbb{F}_q tels que $c = ax^2 + by^2$ (prenant a = b = 1, on en déduit que tout élément de \mathbb{F}_q est somme de deux carrés).
- (e) Déduire de 8(c)iii qu'il existe une infinité de nombres premiers de la forme 4n + 1.
- 9. \mathbb{F}_p est un corps fini à p éléments pour $p \geq 2$ premier.
 - (a) Déterminer le nombre de polynômes unitaires de degré 2 irréductibles dans $\mathbb{F}_p\left[X\right]$.
 - (b) Donner tous les polynômes unitaires de degré 2 irréductibles dans $\mathbb{F}_2[X]$ et dans $\mathbb{F}_3[X]$.
 - (c) À quelles conditions, portant sur les coefficients a, b dans \mathbb{F}_p , l'anneau $\frac{\mathbb{F}_p[X]}{(X^2 + 2aX + b)}$ est-il un corps?

- (d) Retrouver le résultat de la question a. en utilisant celui de la question c.
- (e) Construire deux corps à 8 et 16 éléments respectivement.
- 10. \mathbb{F}_q est un corps fini à q éléments et $GL_n(\mathbb{F}_q)$ est le groupe multiplicatif des matrices carrées inversibles d'ordre $n \geq 1$ à coefficients dans \mathbb{F}_q .

 $SL_n(\mathbb{F}_q)$ est le sous-groupe de $GL_n(\mathbb{F}_q)$ formé des matrices de déterminant égal à 1.

Si E est un \mathbb{F}_q -espaces vectoriels de dimension $n \geq 1$, GL(E) est le groupe des automorphismes de E.

(a) Montrer que l'on a :

$$\operatorname{card}(GL_{n}(\mathbb{F}_{q})) = \prod_{k=1}^{n} (q^{n} - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=1}^{n} (q^{j} - 1)$$

et:

$$\operatorname{card}\left(SL_{n}\left(\mathbb{F}_{q}\right)\right) = q^{n-1} \prod_{k=1}^{n-1} \left(q^{n} - q^{k-1}\right) = q^{\frac{n(n-1)}{2}} \prod_{j=2}^{n} \left(q^{j} - 1\right)$$

- (b) Soient E, F deux \mathbb{F}_q -espaces vectoriels de dimensions respectives $n \geq 1$ et $m \geq 1$. Montrer que les espaces vectoriels E et F sont isomorphes si, et seulement si, les groupes GL(E) et GL(F) sont isomorphes.
- (c) Quel est le cardinal du centre de $GL_n(\mathbb{F}_q)$, de $SL_n(\mathbb{F}_q)$?
- 11. Soit E un \mathbb{F}_q -espace vectoriel de dimension $n \geq 1$.

On se propose de dénombrer l'ensemble $DL\left(E\right)$ des automorphismes de E qui sont diagonalisables.

GL(E) est le groupe des automorphismes de E.

(a) Montrer que:

$$DL(E) = \left\{ u \in GL(E) \mid u^{q-1} = Id \right\}$$

(b) En notant $\mathbb{F}_q^* = \{\lambda_1, \cdots, \lambda_{q-1}\}$, montrer que :

$$\forall u \in DL(E), E = \bigoplus_{k=1}^{q-1} \ker(u - \lambda_k Id)$$

(c) En désignant par \mathcal{F} l'ensemble des familles (E_1, \dots, E_{q-1}) de sous-espaces vectoriels de E tels que $E = \bigoplus_{k=1}^{q-1} E_k$, montrer que l'application :

$$\varphi: DL(E) \rightarrow \mathcal{F}$$

 $u \mapsto (\ker(u - \lambda_1 Id), \cdots, \ker(u - \lambda_{q-1} Id))$

est bijective.

Il s'agit alors de dénombrer \mathcal{F} .

(d) Pour $(n_1, \dots, n_{q-1}) \in \mathbb{N}^{q-1}$ tel que $\sum_{k=1}^{q-1} n_k = n$, on note :

$$\mathcal{F}_{(n_1,\dots,n_{q-1})} = \{(E_1,\dots,E_{q-1}) \in \mathcal{F} \mid \dim(E_k) = n_k, \ 1 \le k \le q-1\}$$

Montrer que pour tous (E_1, \dots, E_{q-1}) et (F_1, \dots, F_{q-1}) dans $\mathcal{F}_{(n_1, \dots, n_{q-1})}$, il existe $u \in GL(E)$ telle que $u(E_k) = F_k$ pour tout k compris entre 1 et q-1.

6

(e) En notant, pour $(n_1,\cdots,n_{q-1})\in\mathbb{N}^{q-1}$ tel que $\sum_{k=1}^{q-1}n_k=n$ et (E_1,\cdots,E_{q-1}) fixé dans $\mathcal{F}_{(n_1,\cdots,n_{q-1})}$:

Stab
$$(E_1, \dots, E_{q-1}) = \{ u \in GL(E) \mid u(E_k) = E_k \ 1 \le k \le q-1 \}$$

montrer que:

$$\operatorname{card} \left(\operatorname{Stab} \left(E_1, \cdots, E_{q-1} \right) \right) = \prod_{k=1}^{q-1} \operatorname{card} \left(\operatorname{GL} \left(E_k \right) \right)$$

et:

$$\operatorname{card}\left(\mathcal{F}_{(n_{1},\cdots,n_{q-1})}\right) = \frac{\operatorname{card}\left(GL\left(E\right)\right)}{\prod\limits_{k=1}^{q-1}\operatorname{card}\left(GL\left(E_{k}\right)\right)}$$

(f) Déduire de ce qui précède que :

$$\operatorname{card}\left(DL\left(E\right)\right) = \sum_{\substack{(n_{1}, \cdots, n_{q-1}) \in \mathbb{N}^{q-1} \\ n_{1}+\cdots+n_{q-1}=n}} \frac{\operatorname{card}\left(GL_{n_{1}}\left(\mathbb{F}_{q}\right)\right) \cdots \operatorname{card}\left(GL_{n_{q-1}}\left(\mathbb{F}_{q}\right)\right)}{\operatorname{card}\left(GL_{n_{1}}\left(\mathbb{F}_{q}\right)\right) \cdots \operatorname{card}\left(GL_{n_{q-1}}\left(\mathbb{F}_{q}\right)\right)}$$

avec la convention card $(GL_0(\mathbb{F}_q)) = 1$.