Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis

Week 2

Konstantin Yakovlev ¹

¹MIPT Moscow, Russia

MIPT 2023

Week 2 MIPT 2023

Background¹

Joint Multimodal Variational Autoencoders

$$p_{ heta}(x_1, x_2, z) = p(z)p_{ heta}(x_1|z)p_{ heta}(x_2|z), \ \log p(x_1, x_2) \ge \mathbb{E}_{q_{\phi}(z|x_1, x_2)} \log rac{p(x_1, x_2|z)}{q_{\phi}(z|x_1, x_2)} = \mathcal{L}(x_1, x_2).$$

If we want to generate one modality from the other: $z \sim q_{\phi_j}(z|x_j)$, $x_i \sim p_{\theta}(x_i|z)$. Auxiliary distributaions are optimized using:

$$\mathcal{L}_{\mathsf{JM}}(\mathit{x}_1, \mathit{x}_2) = \sum_{i=1}^2 \mathrm{KL}(q_\phi(\mathit{z}|\mathit{x}_1, \mathit{x}_2)||q_{\phi_i}(\mathit{z}|\mathit{x}_i))
ightarrow \min_{\phi_{1,2}}$$

The final objective: $\mathcal{L}(.,.) - \alpha \mathcal{L}_{JM}(.,.)$.

Week 2 MIPT 2023

¹Senellart A. et. al, Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis, 2023

The proposed model

Challenge 1: α induces a trade-off between the reconstruction and conditional generation.

Solution: Two-stage training: 1) $q_{\phi}(z|x_1,\ldots,x_m)$. 2) $q_{\phi_i}(z|x_i)$.

Challenge 2: the unimodal postriors need a lot of flexibility

Solution: Enrich the unimodal posterior with Normalizng Flows.

Observation 3: A second observation is that to generate a modality from another one we only need the information shared by both and not the entire data.

Solution: Extract the shared information using DCCA (trained with minimizing **the sum of the pairwise CCA** objectives). As a nice bonus, we reduce the dimensionality of the modalities spaces which simplifies the task of modeling the unimodal posteriors. *General*

DCCA embeddigns might be replaced by another data-specific method

Challenge 4: JMVAE is not scalabele to more than 2 modalities, since for each subset of modalities S we need to have its encoder $q_{\phi_i}(z|(x_i)_{i\in S})$.

Solution: Product of experts:

$$q(z|(x_i)_{i\in S})\propto p(z)^{1-|S|}\prod_{i\in S}q_{\phi_i}(z|x_i)\Rightarrow ext{sampling with HMC}$$

Week 2 MIPT 2023