Shortest Path Problem

Dr Truong Dinh Huy

Outline

Today we try to solve two famous problems:

- s-t Path: Is there a path between vertices s and t?
 - Traversal
- Shortest s-t Path: How to find the shortest path between vertices s and t?
 - Unweighted graph
 - Weighted graph

s-t Path

- Given source vertex s and a target vertex t, is there a path between s and t?
- Requires us to traverse the graph somehow.
 - Start from s and apply traversal until we reach t

Tree Traversal

Level Order (Breadth First Traversals)

- Visit top-to-bottom, left-to-right (like reading in English): DBFACEG Depth First Traversals
 - 3 types: Preorder, Post-order, In-order (only for binary tree)
 - Basic (rough) idea: Traverse "deep nodes" (e.g. A) before shallow ones (e.g. F).
 - Note: Traversing a node is different than "visiting" a node

Preorder: DBACFEGPostorder: ACBEGFDInorder: ABCDEFGBFS: DBFACEG

Graph Traversals

- We can consider a graph as a tree and use the same methods with a modification:
 - Mark some vertices visited. Why?

DFS: Preorder

Recursive DFS traversal

dfs(v)

mark v as visited

for (each unvisited vertex u adjacent to v) dfs(u)

Ordering traversal: 012543678

• We don't use Post-order and In-order for graphs

How to determine the route from s to t?

Create a following table and update the table when we traverse dfs(v):

mark v.

for each unmarked adjacent vertex u:
 set edgeTo[u] = v
 dfs(u)

#	marked	edgeTo
0	F	-
1	F	-
2	F	-
3	F	-
4	F	-
2 3 4 5 6	F	-
6	F	-
7	F	-
8	F	-

Breadth First Search

Order: 0 1 24 53 68 7

BFS pseudo code

```
• Iterative BFS traversal
    bfs(v)
                                                                                 marked
                                                                                             edgeTo
      Queue q
                                                                                     F
      enqueue(q, v)
      mark v as visited
                                                                          1
                                                                           2
      while (!isEmpty(q)) {
        w = dequeue(q)
        for (each unvisited vertex u adjacent to w) {
                                                                          5
                 mark u as visited
                                                                          6
                 enqueue(q, u)
                                                                          7
                 set edgeTo[u] = v
```

Quiz

Find the route from A to G by using DFS, BFS. We assume that with the nodes at the same level, we should expand the successor according to the **alphabetical order**.

Shortest path problem

- Given: a graph G and vertices s and t
- Find: the path which has the shortest length from s to t.
- The length of a path is:
 - the number of edges on that path in unweighted graph
 - the sum of the edge weights on that path in weighted graph
 - Finding the path whose $f(t) = w_1 + w_2 + ... + w_n$ is minimum with n is the number of edges from s to t

Unweighted directed graph: shortest paths

• If the graph is unweighted, how do we find a shortest path?

- What's the shortest path from s to s?
 - · Well....we're already there.
- What's the shortest path from s to u or v?
 - Just go on the edge from s
- From s to t?
 - We need to find a path with minimum number of edges => we already know the algorithm the
 does something like this.

Unweighted directed graph: shortest paths

• Use BFS to find shortest paths in this graph

```
bfsShortestPaths(graph G, vertex source)
Queue Visited;
enqueue(Visited, source)
mark source as visited
while(!isEmpty(Visited)) {
    current = dequeue(Visited)
    for (each unvisited vertex NB adjacent to current)
    {
        mark NB as visited
        enqueue(Visited, NB)
        set edgeTo[NB] = current
    }
}
```

Comments

- BFS didn't mention a target vertex, we can stop when we visit target vertex.
- It actually finds the shortest path from s to every vertex.
- Note: BFS can be applied to unweight directed graph to find the shortest path.

Quiz

• Find the shortest path from A to other vertices

Weighted Graphs

We will make the assumption that the weights on all edges is a positive number

- Clearly, if we have negative vertices, it may be possible to end up in a cycle whereby each pass through the cycle decreases the total *length*
- Thus, a shortest length would be undefined for such a graph
- Consider the shortest path from vertex 1 to 4...
 - First circle is -1, second circle is -2,....

- BFS is not applied to weighted graphs
- Dijkstra's algorithm is a good choice for this case.

Suppose you start at vertex A and A only have three neighbours B, C, and D (the following is a part of weighted graph)

- You are aware of all vertices adjacent to it
- This information is either in an adjacency list or adjacency matrix

Strategy

Is 5 the shortest distance to B via the edge (A, B)?

• Why or why not?

At this time:

f(B) = 5

f(C) = 15

f(D) = 9

Are you guaranteed that the shortest path to C is (A, C), or that (A, D) is the shortest path to vertex D?

At this time:

- f(B) = 5
- f(C) = 15
- f(D) = 9

Strategy

We accept that (A, B) is the shortest path to vertex B from A

• Let's see where we can go from B

At this time:

- f(B) = 5
- f(C) = 15
- f(D) = 9

By some simple arithmetic, we can determine that

- There is a path (A, B, E) of length 5 + 7 = 12 => new node => update table
- There is a path (A, B, F) of length 5 + 3 = 8 => new node => update table

Previous time:

f(B) = 5

f(C) = 15

f(D) = 9

At this time:

f(B) = 5

f(C) = 15

f(D) = 9

f(E) = 12

f(F) = 8

Strategy

Is (A, B, F) is the shortest path from vertex A to F?

• Why or why not?

At this time:

f(B) = 5

f(C) = 15

f(D) = 9

f(E) = 12

f(F) = 8

Are we guaranteed that any other path we are currently aware of is also going to be the shortest path?

At this time:

- f(B) = 5
- f(C) = 15
- f(D) = 9
- f(E) = 12
- f(F) = 8

Strategy

Okay, let's visit vertex F

• We know the shortest path is (A, B, F) and it's of length 8

At this time:

There are three edges exiting vertex F, so we have paths:

- (A, B, F, E) of length 8 + 6 = 14. Do we need to remember this path? No
- (A, B, F, G) of length 8 + 4 = 12. => new node => update table
- (A, B, F, C) of length 8 + 2 = 10. => this cost is better => update table

Previous time: At this time:

f(B) = 5 f(B) = 5

f(C) = 15 f(C) = 10 (updated)

f(D) = 9 f(D) = 9

f(E) = 12 f(E) = 12 (no updated)

f(F) = 8 f(F) = 8

f(G) = 12

Strategy

At this point, we've discovered the shortest paths to:

- Vertex B: (A, B) of length 5
- Vertex F: (A, B, F) of length 8

At this time:

f(B) = 5

f(C) = 10

f(D) = 9

f(E) = 12

f(F) = 8

f(G) = 12

At this point, we have the shortest distances to B and F

 Which remaining vertex are we currently guaranteed to have the shortest distance to?

Dijkstra's algorithm

We initially don't know the distance to any vertex except the initial vertex

- We require an array of distances, all initialized to infinity except for the source vertex, which is initialized to 0
- Each time we visit a vertex, we will examine all adjacent vertices
 - We need to track visited vertices—a Boolean table of size $\left|V\right|$
- Do we need to track the shortest path to each vertex?
 - That is, do I have to store (A, B, F) as the shortest path to vertex F? No
- We really only have to record that the shortest path to vertex F came from vertex B
 - We would then determine that the shortest path to vertex B came from vertex A
 - Thus, we need an array of previous vertices, all initialized to null

Dijkstra's algorithm

Thus, we will iterate $\left|V\right|$ times:

- Find that unvisited vertex v that has a minimum distance to it
- · Mark it as having been visited
- Consider every adjacent vertex w that is unvisited:
 - Is the distance to v plus the weight of the edge (v,w) less than our currently known shortest distance to w
 - If so, update the shortest distance to w and record v as the previous pointer
- Continue iterating until all vertices are visited or all remaining vertices have a distance to them of infinity

Example

Let us give a weighted graph

Find the shortest distance from K to every vertex.

Example

We set up our table

Vertex	Visited	Distance (or f())	Previous
Α	F	∞	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	00	Ø
F	F	∞	Ø
G	F	œ	Ø
Н	F	00	Ø
ı	F	∞	Ø
J	F	œ	Ø
K	F	0	Ø
			α

We visit vertex K

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
I	F	∞	Ø
J	F	∞	Ø
K	T	0	Ø
L	F	∞	Ø

Example

Vertex K has four neighbors: H, I, J and L

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Н	F	∞	Ø
	F	00	Ø
J	F	∞	Ø
K	T	0	Ø
L	F	∞	Ø

We have now found at least one path to each of these vertices

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Н	F	8	K
I	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

Example

We're finished with vertex K

• To which vertex are we now guaranteed we have the shortest path?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	8	K
I	F	12	K
J	F	17	K
K	Т		Ø
L	F	16	K

We visit vertex H: the shortest path is (K, H) of length 8

• Vertex H has four unvisited neighbors: E, G, I, L

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
H	T	8	K
I	F	12	K
J	F	17	K
K	T		Ø
L	F	16	K

Example

Consider these paths:

(K, H, E) of length 8 + 6 = 14

(K, H, I) of length 8 + 2 = 10

 Which of these are shorter than any known path?

(K, H, G) of length $\frac{8}{8} + 11 = 19$ (K, H, L) of length $\frac{8}{8} + 9 = 17$

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	∞	Ø
F	F	00	Ø
G	F	∞	Ø
Н	T	8	K
	F	12	K
J	F	17	K
K	Т		Ø
L	F	16	K

We already have a shorter path (K, L), but we update the other three

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	H
F	F	00	Ø
G	F	19	Н
Н	Т	8	K
I	F	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Example

We are finished with vertex H

• Which vertex do we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т		K
I	F	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

The path (K, H, I) is the shortest path from K to I of length $10\,$

• Vertex I has two unvisited neighbors: G and J

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т		K
I	T	10	Н
J	F	17	K
K	T		Ø
L	F	16	K

Example

Consider these paths:

(K, H, I, G) of length 10 + 3 = 13 (K, H, I, J) of length 10 + 18 = 28

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	00	Ø
G	F	19	Н
Н	Т		K
I	T	10	Н
J	F	17	K
K	Т		Ø
Ĺ	F	16	K

We have discovered a shorter path to vertex G, but (K, J) is still the shortest known path to vertex J

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	00	Ø
G	F	13	I
Н	Т		K
I	T	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Example

Which vertex can we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	13	I
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

The path (K, H, I, G) is the shortest path from K to G of length 13

• Vertex G has three unvisited neighbors: E, F and J

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	T	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	T		Ø
L	F	16	K

Example

Consider these paths:

(K, H, I, G, E) of length 13 + 15 = 28 (K, H, I, G, F) of length 13 + 4 = 17

(K, H, I, G, J) of length 13 + 19 = 32

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	T	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
Ĺ	F	16	K

We have now found a path to vertex F

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	17	G
G	T	13	I
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Example

Where do we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

The path (K, H, E) is the shortest path from K to E of length 14

• Vertex-G-has four unvisited neighbors: B, C, D and F

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	T	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	T		Ø
L	F	16	K

Example

The path (K, H, E) is the shortest path from K to E of length 14

• Vertex-G-has four unvisited neighbors: B, C, D and F Vertex E

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	T	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
Ĺ	F	16	K

Consider these paths:

(K, H, E, B) of length 14 + 5 = 19 (K, H, E, C) of length 14 + 1 = 15(K, H, E, D) of length 14 + 10 = 24 (K, H, E, F) of length 14 + 22 = 36

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	∞	Ø
С	F	00	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Example

We've discovered paths to vertices B, C, D

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	19	E
С	F	15	Е
D	F	24	E
Е	T	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Which vertex is next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	Е
С	F	15	E
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	T		Ø
L	F	16	K

Example

We've found that the path (K, H, E, C) of length 15 is the shortest path from K to C $\,$

• Vertex C has one unvisited neighbor, B

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	T	15	Е
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
Ĺ	F	16	K

The path (K, H, E, C, B) is of length 15 + 7 = 22

• We have already discovered a shorter path through vertex E

10_6	
13 5 1	
0-(B)-7-(C)	

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	19	Е
С	T	15	Е
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	F	16	K

Example

Where to next?

Visited	Distance	Previous
F	∞	Ø
F	19	E
Т	15	Е
F	24	E
Т	14	Н
F	17	G
Т	13	
Т		K
Т	10	Н
F	17	K
Т		Ø
F	16	K
	F F T F T T	F

We now know that (K, L) is the shortest path between these two points

• Vertex L has no unvisited neighbors

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	T		Ø
L	T	16	K

Example

Where to next?

• Does it matter if we visit vertex F first or vertex J first?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
Ĺ	Т	16	K

Let's visit vertex F first

• It has one unvisited neighbor, vertex D

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	T	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	Т		Ø
L	Т	16	K

Example

The path (K, H, I, G, F, D) is of length 17 + 14 = 31

• This is longer than the path we've already discovered

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	T	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	F	17	K
K	T		Ø
L	Т	16	K

Now we visit vertex J

• It has no unvisited neighbors

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	T	17	K
K	T		Ø
L	Т	16	K

Example

Next we visit vertex B, which has two unvisited neighbors:

(K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of length 19 + 13 = 32

• We update the path length to A

Vertex	Visited	Distance	Previous
Α	F	39	В
В	T	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	Т	17	K
K	Т		Ø
Ĺ	Т	16	K

Next we visit vertex D

• The path (K, H, E, D, A) is of length 24 + 21 = 45

• We don't update A

Vertex	Visited	Distance	Previous
Α	F	39	В
В	Т	19	Е
С	Т	15	Е
D	T	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	Т	17	K
K	Т		Ø
L	Т	16	K

Example

Finally, we visit vertex A

• It has no unvisited neighbors and there are no unvisited vertices left

• We are done

Vertex	Visited	Distance	Previous
Α	T	39	В
В	Т	19	Е
С	Т	15	Е
D	Т	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т		K
	Т	10	Н
J	Т	17	K
K	Т		Ø
Ĺ	Т	16	K

Thus, we have found the shortest path from vertex K to each of the other vertices

Vertex	Visited	Distance	Previous
Α	Т	39	В
В	Т	19	E
С	T	15	E
D	Т	24	E
E	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	T	16	K

Example

Using the *previous* pointers, we can reconstruct the paths

Visited	Distance	Previous
T	39	В
T	19	E
Т	15	E
T	24	E
Т	14	Н
Т	17	G
Т	13	I
Т	8	K
Т	10	Н
Т	17	K
Т	0	Ø
Т	16	K
	T T T T T T T T T T T T T T T T T T T	T 39 T 19 T 15 T 24 T 14 T 17 T 13 T 8 T 10 T 17 T 0

Note that this table defines a rooted parental tree

- The source vertex K is at the root
- The previous pointer is the *parent* of the vertex in the tree

Vertex	Previous	
Α	В	
В	E	
С	E	
D	E	
Е	Н	
F	G	
G		
Н	K	
I	Н	
J	K	
K	Ø	
L	K	

Comments on Dijkstra's algorithm

Questions:

- What if at some points, all unvisited vertices have a distance ∞?
 - · This means that the graph is unconnected
 - We have found the shortest paths to all vertices in the connected subgraph containing the source vertex
- What if we just want to find the shortest path between vertices v_i and v_k ?
 - Apply the same algorithm, but stop when we are <u>visiting</u> vertex v_k (or visited status is turned on **T**)
- Does the algorithm change if we have a directed graph?
 - No

Quiz

Find the shortest path from A to other vertices using Dijkstra's algorithm

Implementation and analysis

The initialization requires $\Theta(|V|)$ memory and run time

We iterate |V| - 1 times, each time finding next closest vertex to the source

- Iterating through the table requires is $\Theta(|V|)$ time
- · Each time we find a vertex, we must check all of its neighbors
- With an adjacency matrix, the run time is $\Theta(|V|(|V|+|V|)) = \Theta(|V|^2)$
- With an adjacency list, the run time is $\Theta(|V|^2 + |E|) = \Theta(|V|^2)$ as $|E| = O(|V|^2)$

Can we do better?

- Recall, we only need the closest vertex
- How about a priority queue?
 - · Assume we are using a binary heap
 - · We will have to update the heap structure—this requires additional work

Implementation and analysis

The initialization still requires $\Theta(|V|)$ memory and run time

- The priority queue will also requires O(|V|) memory
- · We must use an adjacency list, not an adjacency matrix

We iterate |V| times, each time finding the *closest* vertex to the source

- Place the distances into a priority queue
- The size of the priority queue is O(|V|)
- Thus, the work required for this is $O(|V| \ln(|V|))$

Is this all the work that is necessary?

- Recall that each edge visited may result in a new edge being pushed to the very top of the heap
- Thus, the work required for this is $O(|E| \ln(|V|))$

Thus, the total run time is $O(|V| \ln(|V|) + |E| \ln(|V|)) = O(|E| \ln(|V|))$

Implementation and analysis

Here is an example of a worst-case scenario:

- Immediately, all of the vertices are placed into the queue
- Each time a vertex is visited, all the remaining vertices are checked, and in succession, each is pushed to the top of the binary heap

Negative Weights

If some of the edges have negative weight, so long as there are no cycles with negative weight, the Bellman-Ford algorithm will find the minimum distance

• It is slower than Dijkstra's algorithm

Summary

We have seen an algorithm for finding single-source shortest paths

- Start with the initial vertex
- Continue finding the next vertex that is closest

Dijkstra's algorithm always finds the next closest vertex

• It solves the problem in $O(|E| + |V| \ln(|V|))$ time

Disadvantages of Dijkstra's algorithm

- Single target:
 - Is this a good algorithm for a navigation application? Dijkstra will explore every place within nearly two thousand miles of Denver before it locates NYC.
 - We have only a **single target** in mind, so we need a different algorithm. How can we do better?

How can we do Better?

• Explore eastwards first?

• f(A) = W(s, A) + h(A, dest)

Where:

- W(s, A): the sum of weights from source s to A (as Dijkstra's Algorithms)
- h(A, dest): the estimated weights (or cost) from A to destination
 - h(A) is a heuristic function collected from experience or from other sources.
 - We need to know this information before finding the shortest path => informed search

A* Algorithm

Insert all vertices into Priority Queue (PQ), storing the vertices in order of [W(s, A) + h(A, dest)].

Repeat: Visit and remove best vertex A (or **f(A)** is **minimum**) from PQ, and relax all edges pointing from A.

=>We choose to visit a vertex A if f(A) is minimum => We take care both: cost from source to A and cost from A to destination.

• Given the directed graph with the following heuristic function. Find the shortest path from A to G

h(v,	G)
18	
3	
15	
1	
1	
∞	
0	
	3 15 1

PQ: [(A: 18), (B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

Of course, we are at A and remove (A: 18)

Example

PQ: $[(B: \infty), (C: \infty), (D: \infty), (E: \infty), (F: \infty), (G: \infty)]$

Explore A's neighbors:

- 1. $B \Rightarrow f(B) = 2 + 3 \text{ (update)}$
- 2. $C \Rightarrow f(C) = 1 + 15$ (update)

Vertex	f= w+h	Path
Α	18	Ø
В	2+3	AB
С	1+15	AC
D	∞	Ø
Е	∞	Ø
F	∞	Ø
G	∞	Ø

Node

В

D

Ε

h(v, G)

18

3 15

PQ: [(B: 5), (C: 16), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

• Given the graph, finding the shortest path from S to G with admissible heuristic function of each node to G is red number (ex. h(A,G)=10)

Comments

- Not every vertex got visited.
- Result is not a shortest paths tree for vertex A (path to D is suboptimal!), but that's OK because we only care about path to G.
- Does A* always give us the optimal solution? Depending on heuristic function
 - heuristic: "using experience to learn and improve"
 - Doesn't have to be perfect!
 - If you choose a bad heuristic function, A* can give the wrong answer
- A* only returns a optimal solution if h(A) is a Admissible Heuristics
- If we don't care h(A) or h(A) = 0 => f(A) = distance(s, A) => A* is just the Dijkstra's Algorithm

Admissible Heuristics

Admissible heuristics h must always be optimistic:

- Let w(u, v) represent the actual shortest distance from u to v
- A heuristic h(u, v) is admissible if $h(u, v) \le w(u, v)$
- For example, about distance of two points on a map, Straight-line distance is admissible heuristic.

How to choose a good admissible heuristic? This is an artificial intelligence topic, and is beyond the scope of our course In the exam, admissiable heuristic function will be given.

Graph Problem summary

Problem	Problem Description	Solution	Efficiency
paths	Find a path from s to every reachable vertex.	DFS	O(V+E) time Θ(V) space
shortest paths	Find the shortest path from s to every reachable vertex.	BFS	O(V+E) time Θ(V) space
shortest weighted paths	Find the shortest path, considering weights, from s to every reachable vertex.	Dijkstra	O(E In V) time Θ(V) space
shortest weighted path	Find the shortest path, consider weights, from s to some target vertices	A*: Same as Dijkstra's but with h(v, goal) added to priority of each vertex.	Time depends on heuristic. Θ(V) space

Summary

- Path Finding
 - DFS, BFS
- Shortest path of graphs
 - Unweighted graphs
 - BFS
 - Weighted graphs
 - Dijkstra's Algorithm (uninformed search)
 - A* Algorithm (informed search)
- Next week: minimum spanning tree
- Please do your homework