Федеральное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»»

Отчет по лабораторной работе 2

Решение систем линейных алгебраических уравнений прямыми методами, теория возмущений.

Вариант 10: задачи 3.1.10, 3.4, 3.6.2

Выполнил:

Студент группы БПМ-211 Ляхов Артём Андреевич

Преподаватель:

Брандышев Петр Евгеньевич

Содержание

1	Зад	дача 3.1.10. Оценка погрешности решения СЛАУ в за-				
	висимости от погрешности правой части					
	1.1	Формулировка задачи	3			
	1.2	Теоретический материал	3			
	1.3	Порядок решения задачи	4			
	1.4	Код программы	4			
	1.5	Результаты вычислительного эксперимента	4			
2	Зад	дача 3.4. Решение СЛАУ с использованием LU -разложен	ия			
	мат	рицы	7			
	2.1	Формулировка задачи	7			
	2.2	Теоретический материал				
	2.3		8			
	2.4		8			
	2.5	_	11			
3	Зад	дача 3.6.2. Исследование зависимости решения системы				
	линейных уравнений от вычислительной погрешности					
	3.1	-	12			
	3.2		12			
	3.3	1 / 1	13			
	3.4	Результаты вычислительного эксперимента	14			

1 Задача 3.1.10. Оценка погрешности решения СЛАУ в зависимости от погрешности правой части

1.1 Формулировка задачи

Дана система линейных алгебраических уравнений Ax = b порядка n. Необходимо исследовать зависимость погрешности решения x от погрешностей правой части системы b.

Значения a_{ij} матрицы A и b_i вектора b задаются следующими соотношениями:

$$a_{ij} = \sin\left(\frac{c_{ij}}{8}\right), \quad c_{ij} = 0.1 \cdot N \cdot i \cdot j, \quad b_i = N$$

где N=10 - номер варианта, n=5 - порядок системы.

1.2 Теоретический материал

Пусть A - квадратная матрица порядка n, тогда будем называть числом обусловленности матрицы A величину:

$$cond(A) = ||A^{-1}|| \cdot ||A||$$

В общем случае в качестве нормы $||\cdot||$ может выступать любая матричная норма. В рамках нашей задачи мы будем использовать ∞ -норму:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |A_{ij}|$$
 (1)

Таким образом, в рамках нашей задачи:

$$cond(A) = ||A^{-1}||_{\infty} \cdot ||A||_{\infty}$$
(2)

Пусть x - точное решение системы линейных алгебраических уравнений n-го порядка, x^* - приближённое решение, тогда относительная погрешность x^* может быть найдена с использование векторной нормы $||\cdot||_{\infty} = \max_{1 \le i \le n} |x_i|$ через соотношение:

$$\delta(x^*) = \frac{||x - x^*||_{\infty}}{||x||_{\infty}} \tag{3}$$

Предположим, что правая часть СЛАУ задана приближённо и мы нашли решение x^* для приближённой правой части b^* . В этом случае для x^* верно следующее неравенство:

$$\delta(x^*) \leqslant cond(A) \cdot \delta(b^*) \tag{4}$$

1.3 Порядок решения задачи

- 1) Задать матрицу системы A и вектор правой части b. Используя встроенную функцию, найти решение системы x системы Ax = b с помощью метода Гаусса.
- 2)С помощью встроенной функции вычислить число обусловленности матрицы A.
- 3) Принимая решение x, полученное в п.1, за точное, вычислить вектор $d = (d_1, \dots d_n)^T$, где

$$d_i = \frac{||x - x^i||_{\infty}}{||x||_{\infty}}$$

 $i=1,\dots,n$, относительных погрешностей решений x^i систем $Ax^i=b^i$, и где компоненты вектора b^i вычисляются по формулам:

$$b^{i} = \begin{cases} b_{k} + \Delta, & k = i, \\ b_{k}, & k \neq i \end{cases}$$

- $(\Delta$ произвольная величина погрешности).
- 4)На основе вычисленного вектора d построить гистрограмму. По гистрограмме определить компоненту b_m , которая оказывает наибольшее влияние на погрешность решения.
- 5) Оценить теоретически погрешность решения x^m с помощью следующего соотношения: $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m .

1.4 Код программы

Код программы для численного эксперимента можно найти в jupyterноутбуке, прикреплённом вместе с этим отчётом.

1.5 Результаты вычислительного эксперимента

d_1	d_2	d_3	d_4	d_5
0.1529	0.1807	0.1075	0.0345	0.0048

Таблица 1: Получившийся вектор d. Все значения было округлены до 4 знаков после запятой. Вычисления проводились для $\Delta=0.5$.

Рис. 1: Гистограмма относительной погрешности решения в зависимости от номера компоненты m.

Вывод: из таблицы 1 и гистрограммы 1 мы наблюдаем, что наибольшее влияние на погрешность решения системы уравнений оказывает компонента b_2 .

m	2
cond(A)	7690516.4277
$\delta(b^m)$	0.05
$d(x^m)$	0.1807
$\delta(x^m) = cond(A) \cdot \delta(b^m)$	384525.8214

Таблица 2: Результаты вычислений погрешностей для компоненты b_2 . Все значения были округлены до 4 знаков после запятой. Неравенство $d(x^m) \leq \delta(x^m)$ принимает вид: $0.1807 \leq 384525.8214$.

Вывод: теоретическая оценка погрешности сверху (обозначенная за $\delta(x^m)$) на несколько порядков больше, чем практическая. Это объясняется тем, что современные численные методы нахождения решений системы уравнений очень точны.

2 Задача 3.4. Решение СЛАУ с использованием LU-разложения матрицы

2.1 Формулировка задачи

Требуется решить систему уравнений Ax = b из задачи 3.1, используя LU-разложение матрицы A.

2.2 Теоретический материал

Пусть A - невырожденная матрица порядка n, сформулируем теорему: **Теорема.** Если все главные миноры A отличны от нуля, то существуют такие нижнетреугольная L с единицами на главной диагонали и верхнетреугольная U квадратные матрицы, что A = LU.

Рассмотрим систему уравнений Ax = b. Предположим, что нам известно LU-разложение матрицы, то есть исходную систему можно переписать в виде:

$$LUx = b$$

Решение задачи в таком виде сводится к двум шагам.

Первый шаг, называемый npямой заменой, состоит в том, чтобы решить вспомогательную систему

$$Ly = b (5)$$

относительно вектора y.

Поскольку L - нижнетреугольная матрица с единицами на главной диагонали, то решение системы 5 может быть выражено в явном виде:

$$y_i = b_i - \sum_{k=1}^{i-1} l_{ik} \cdot y_k \tag{6}$$

Второй шаг, называемый *обратной заменой*, заключается в нахождении искомого вектора x из системы:

$$Ux = y \tag{7}$$

Так как U - верхнетреугольная матрица, то компоненты вектора x могут быть выражены явно через соотношения:

$$x_i = \frac{1}{u_{ii}} \left(y_i - \sum_{k=i+1}^n u_{ik} \cdot x_k \right) \tag{8}$$

В случае если хотя бы один из главных миноров A равен нулю, мы можем воспользоваться утверждением:

Утверждение. Если A - невырожденная матрица, то существует перестановочная матрица P такая, что все главные миноры матрицы PA отличны от нуля.

Таким образом, мы можем домножить обе части системы Ax = b на матрицу P и к получившейся системе применить все рассуждения выше.

2.3 Порядок решения задачи

- 1. Реализуем функцию $\mathbf{lu}(\mathbf{A})$, которая принимает на вход матрицу A и возвращает матрицы $P,\,L,\,U.$
- 2. С помощью формул 6 и 8 для правой части $P \times b$ находим решение системы x.

2.4 Код программы

```
def forward_substitution(L, b):
    """
    Returns a solution y of linear system Ly = b, aka
    performs forward substitution in solution
    of system LUx=b.

    :param np.ndarray L: lower-triangular matrix L
    from LU-decomposition.
    :param np.ndarray b: vector - right part of system Ax=b
    or LUx=b.
    :return np.ndarray: solution of the system Ly=b.
    """
    n = L.shape[0]
    y = np.zeros(n, dtype=float)
    for i in range(n):
        y[i] = (b[i] - L[i, :i] @ y[:i]) / L[i, i]
    return y
```

```
def back_substitution(U, y):
    """

    Returns a solution of linear system Ux = y, aka
    performs back substitution in solution of linear system
```

```
LUx = b.

:param np.ndarray U: upper-triangular matrix U
from LU-decomposition.
:param np.ndarray y: solution of system
Ly=b (see forward_substitution).
:return np.ndarray: solution of the system Ux=y, aka
solution of system LUx=b.
"""

n = U.shape[0]
x = np.zeros(n, dtype=float)
for i in reversed(range(n)):
    x[i] = (y[i] - U[i, i+1:] @ x[i+1:]) / U[i, i]
return x
```

```
def solve_lu(A, b):
    """
    Solves a system of linear equations using
    LU-decomposition.

    :param np.ndarray A: coefficient matrix.
    :param np.ndarray b: ordinate or
    "dependent variable" values.
    :return np.ndarray: solution to the system Ax=b.
    """
    n = A.shape[0]
    P, L, U = lu(A)

    b = P @ b
    y = forward_substitution(L, b)
    return back_substitution(U, y)
```

2.5 Результаты вычислений

Переменная	Значение	
x_1	1732046.00043	
x_2	-2052111.2245	
x_3	1226346.7732	
x_4	-395911.89193	
x_5	55377.4694	

Таблица 3: Решение системы из задачи 3.1.10, найденное с использованием LU-разложения матрицы A. Относительная погрешность найденного решения $\delta \approx 7 \cdot 10^{-11}$.

Вывод: Как мы видим, решения найденные в рамках задачи 3.1.10 и с помощью LU-разложения матрицы A практически совпали.

3 Задача 3.6.2. Исследование зависимости решения системы линейных уравнений от вычислительной погрешности

3.1 Формулировка задачи

Дана система уравнений Ax = b порядка n, где A = A(t), t-параметр. Необходимо исследовать зависимость решения системы Ax = b от вычислительной погрешности при заданных значениях параметра t.

Значения A_{ij} матрицы A задаются соотношением:

$$A_{ij} = \begin{cases} q_M^j, & i \neq j \\ q_M^j + t, & i = j \end{cases}$$

где $q_M = 0.993 + (-1)^M \cdot M \cdot 10^{-4}$, параметр t принимает значения $\{0.0001, 1, 10000\}$. Элементы вектора b вычисляются по формуле $b_j = q_M^{n+1-j}$. Согласно условию варианта M = 2, n = 100, m = 5.

3.2 Порядок решения задачи

- 1) Составить программу, реализующую метод Гаусса (схема частичного выбора) для произвольной системы Ax = b. Используя составленную программу, найти решение заданной системы Ax = b.
- 2) Составить программу округления числа до m знаков после запятой. Вычислить элементы матрицы A и вектора b по формулам, представленным в формулировке задачи, производя округление до m знаков после запятой. Подобным образом будут получены матрицы A_1 и вектор b_1 .
- 3)Решить систему уравнений $A_1x = b_1$ методом, указанным в п.1, обращаясь каждый раз к программе округления. Оценить практически полученную погрешность решения.
- 4) Сравнить результаты, полученные при различных параметра $t. \,$

При этом в качестве абсолютной погрешности будем использовать 1-норму разности:

$$\Delta(x^1) = ||x - x^1||_1 = \sum_{i=1}^n |x_i - x_i^1|,$$

а в качестве относительной погрешности:

$$\varepsilon(x^{1}) = \frac{\Delta(x^{1})}{||x||_{1}} = \frac{\sum_{i=1}^{n} |x_{i} - x_{i}^{1}|}{\sum_{i=1}^{n} |x_{i}|}$$

3.3 Код программы

Ниже представлена программная реализация метода Гаусса для решения системы уравнений на языке программирования Python:

```
def solve_gauss(A, b, m = None):
    Solves a system of equations by the Gauss method.
    :param np.ndarray A: coefficient matrix.
    :param np.ndarray b: ordinate
    or "dependent variable" values.
    :return np.ndarray x: solution to the system Ax=b.
    n = A.shape[0]
    a = np.concatenate((A, b.reshape(-1, 1)), axis=1)
    for i in range(n):
        j = np.argmax(np.abs(a[i, i:-1])) + i
        a[[i, j]] = a[[j, i]]
        if np.isclose(a[i, i], 0):
            continue
        for k in range(i+1, n):
            ratio = a[k, i]/a[i, i]
            a[k] = a[k] - ratio * a[i]
        if m is not None:
            a = np.round(a, m)
```

```
x = np.zeros(n, dtype=float)
for i in reversed(range(n)):
    value = (a[i, -1] - x[i+1:] @ a[i, i+1:-1])/a[i, i]
    x[i] = value if m is None else np.round(value, m)
return x
```

Код для проведения вычислительного эксперимента можно найти в jupyter-ноутбуке, прикреплённом вместе с этим отчётом.

3.4 Результаты вычислительного эксперимента

	t=0.0001	t=1	t=10000
$\Delta(x^1)$	$7.47 \cdot 10^{-4}$	$7.28 \cdot 10^{-4}$	$7.28 \cdot 10^{-4}$
$\varepsilon(x^1)$	$5.3 \cdot 10^{-6}$	$5.21 \cdot 10^{-6}$	$5.24 \cdot 10^{-6}$

Таблица 4: Абсолютная и относительная погрешности решения, полученного с использованием округления до m=5 знаков после запятой, при различных значениях параметра t.

Вывод: как мы видим, практическая погрешность решения системы Ax=b зависит только от вычислительной погрешности и не зависит от параметра t.