			A172022/01/8/1
සියලුම නිමිකම ඇවිරිණි All Rights Reserved			
	සබරුගුමුව පළාත් අධාරාපත ශ vvicial Department of Educan	(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	a,
අධාන	යන පොදු සහතික පතු (උසස්	පෙළ) විභාගය	
	ertificate of Education (Adv. 1		n
	<u> </u>		
	12 ශ්ලේණිය		
භෞතික විදහාව I	01 S I		පැය එකයි
Physics I	<u> </u>)	
සැලකිය යුතුයි : ❖ මෙම පුශ්න පතුය පිටු 06 කින ❖ සියලුම පුශ්නවලට පිළිතුරු ස		අඩංගු වේ.	කාලය : පැය 1 යි
g	ාණක යන්තු භාවිතයට ඉඩ දෙනු ෙ	නාලැබේ.	
	$(g = 10 \text{ N kg}^{-1})$	•	
	(8)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
01. පහත සඳහන් ඒකකවලින් ව (1) mm (2) KHz	ැරදියට ලියා ඇති ඒකකය වන් (3) GHz	නේ, (4) Nm	(5) kJ
B. භෞතික රාශියටC. ඒකක නොමැතිමේවායින් සතා පුකාශ දෙන	ඒකක නොමැති නම් අනිවාර්ය ඒකක තිබේ නම්, අනිවාර්යයෙ එහෙත් මාන ඇති භෞතික රා මොනවා ද? ණී (3) C පමණී (4)	න්ම එයට මාන ද දි ශි ඇත.	බිබිය යුතුය.
 නිශ්චලතාවයේ සිට ගුරුත්වං දුර වන්නේ, 	ය යටතේ පහලට වැටෙන වස්ඃ	බුවක් 8 වන තත්පර	ය තුලදී ගමන් කරන
(1) 8 m (2) 16 s	m (3) 35 m	(4) 65 m	(5) 75 m
04. ස්කන්ධය m වූ වස්තුවක් v වස්තුවේ ගමාතා වෙනස ෙ	1 	බකව වැදී එම වේශ	ායෙන්ම පොලා පනී.
(1) 0 (2) $\frac{1}{2}$ m	nv (3) mv	(4) 2 mv	$(5) mv^2$
05. බලය x කාලය යන ගුණිතම	ය් මානවලට සමාන මාන ඇති	භෞතික රාශිය/රාශි	වන්නේ,
A. ආවේගය B. සුමතාව C. ගමාතාව		[pap	
D. කාර්යය	(2) A B 2	(2)	.
(1) A පමණි.	(2) A සහ B පමණි.	(3) A සහ (උ පමණි.
(4) A සහ D පමණි.	(5) B සහ D පමණි.		

- 06. වස්තු දෙකක් එක සමාන පුවේගවලින් පුකෙෂ්පනය කරනුයේ ඒවායේ ති්රස් පරාස එක සමාන වන පරිදි වූවද, ඒවායේ පුසෝපන කෝණ වෙනස්වන පරිදිය. එක් වස්තුවක පුසෝපන කෝණය 60° නම් හා උපරිම සිරස් උස y_1 නම්, අනෙක් වස්තුවේ උපරිම සිරස් උස වන්නේ,
- (2) $\frac{y_1}{2}$ (3) $\frac{2y_1}{3}$
- $(4) \quad 2y_1 \qquad (5) \quad 3y_1$

රූපයේ දැක්වෙන මිනුම් උපකරණයේ තිරස් සියුම් සීරුමාරු ඇණය, සිරස් සියුම් සීරුමාරු ඇණය සහ ස්පීතු ලෙවලය පිළිවෙලින් දැක්වෙන්නේ,

- (1) A, B සහ F මගිනි.
- (2) A, B සහ D මගිනි.
- (3) A, E සහ F මගිනි.
- (4) E, A සහ F මගිනි.
- (5) E, A සහ D මගිනි.

- 08. සම්මුඛ මුහුණත් දෙකක් අතර පරතරය 3.5 cm ක් වන අචල ඝණකාකාර ලී කුට්ටියක එක් මුහුණතකට ලම්බකව වදින උණ්ඩයක් පුතිවිරුද්ධ මුහුණතෙන් පිට වී යයි. එහිදී උණ්ඩයේ ගමාතාවෙන් 25% ක් හානි වේ නම්, උණ්ඩය ලී කුට්ටිය තුළම නැවැත්වීමට ලී කුට්ටියේ සම්මුඛ මුහුණත් දෙකක් අතර තිබිය යුතු අවම පරතරය වන්නේ,
 - (1) 8 cm
- (2) 10 cm
- (3) 12 cm
- (4)14 cm
- (5) 16 cm

- 09. නිව්ටන්ගේ තුන්වන නියමයට අනුව අසතා වන කරුණ වන්නේ,
 - (1) කියා බලය සහ පුතිකියා බලය එකවර කියාත්මක වේ.
 - (2) කියා බලය සහ පුතිකියා බලය වස්තු දෙකක් මත කියා කරයි.
 - (3) කියා බලය සහ පුතිකියා බලය දිශාවෙන් පුතිවිරුද්ධ වේ.
 - (4) කියා බලයේ සහ පුතිකියා බලයේ කියා රේඛා පොදු ලක්ෂායක් හරහා කියා කරයි.
 - (5) කියා බලය සහ පුතිකියා බලය ඒක රේඛීය වේ.

10.

1 රූපය 2 රූපය

චල අන්වීඎයක් තුළින් කේෂික නලයක අභාන්තර සිදුරේ විශ්කම්භය නිරීකුණය කළ විට පෙනෙන ආකාරය 1 සහ 2 රූපවල පෙන්වා ඇත. 2 අවස්ථාවෙන් 1 අවස්ථාව ලබාගැනීමට අන්වීසාය විස්ථාපනය කළයුතු දිශා නිවැරදිව දැක්වෙන්නේ,

සියලුම නිම්කම ඇවිරිණි All Rights Reserved

- 11. නිශ්චලතාවයෙන් ගමන් ආරම්භ කරන බස් රථයක් $1~{
 m m~s}^2$ ක ත්වරණයකින් ගමන් කරයි. ළමයෙක් $10~{
 m m~s}^{-1}$ ක නියත පුවේගයකින් බසය ගමන් කරන දිශාවටම දිව යයි. බසය ගමන් ආරම්භ කරන මොහොතේදී ළමයා බසයේ ආරම්භක ස්ථානයට 48 m ක් පිටුපසින් දුවමින් සිටී. ළමයාට බසය අල්ලා ගැනීමට හැකි වන්නේ,
 - (1) ආරම්භයේ සිට 8 s ක දී එක් වතාවක් පමණි.
 - (2) ආරම්භයේ සිට 10 s ක දී එක් වතාවක් පමණි.
 - (3) ආරම්භයේ සිට 12 s ක දී එක් වතාවක් පමණි.
 - (4) ආරම්භයේ සිට 12 s ක දී දෙවතාවක් පමණි.
 - (5) කිසිවිටෙක නොහැක.
- 12. ඇණයක තද වී ඇති මුරිච්ච්යක් ගැලවීම සඳහා දිග බාහුවක් සහිත අඬුවක් කෙටි බාහුවක් සහිත අඬුවකට වඩා සුදුසු වන්නේ,
 - A. එමගින් මුරිච්චියක් ගැලවීම සඳහා අවශා වාවර්තය අඩුකරගත හැකි බැවිනි.
 - B. එමගින් මුරිච්චියේ අකුෂය වටා විශාල වාවර්තයක් යෙදිය හැකි බැවිනි.
 - C. එමගින් ඇණය ගැලවීමේ දී කෙරෙන කාර්යය අඩුකර ගතහැකි බැවිනි. මේවායින් සතා වන්නේ,
 - (1) A පමණි.
- (2) B පමණි.
- (3) C පමණි.

- (4) A සහ B පමණි.
- (5) A සහ C පමණි.
- 13. ති්රසට ආනතව පුකෙෂ්පනය කරන ලද බෝලයක් කාලය $2~\mathrm{s}$ ක් ගත වූ මොහොතේ දී ති්රසට 30° ක් ආනතව ඉහලට ගමන් කළ අතර තවත් 1 s ක් ගත වූ මොහොතේ දී හරියටම තිරස්ව ගමන් කරන ලදී. බෝලයේ ආරම්භක පුවේගයේ සහ පුකෙෂ්පන කෝණයේ අගයයන් වන්නේ,
 - (1) 10 m s^{-1} , 30°

- (2) 10 m s^{-1} , 60° (3) $10\sqrt{3} \text{ m s}^{-1}$, 60° (4) $20\sqrt{3} \text{ m s}^{-1}$, 30°
- (5) $20\sqrt{3} \text{ m s}^{-1}$, 60°
- 14. රූපයේ දැක්වෙන්නේ ඒකාකාර ඝනකමැති තහඩුවකි. එහි සියලුම කෝණ සෘජු කෝණ වේ. තහඩුව A ලකුෂායෙන් එල්ලු විට AB රේඛාව සිරස සමග සාදන කෝණයේ tan අනුපාතයෙහි ආසන්න අගය වන්නේ,

- $\frac{10}{13}$ (2) $\frac{11}{13}$ (3) $\frac{13}{10}$

20 cm

15. මයිකෝමීටර ඉස්කුරුප්පු ආමානයකින් මිනුමක් ලබාගැනීමට අදාල අවස්ථා දෙකක් පහත රූපවල දැක් වේ.

ආරම්භක පිහිටුම

මිනුමට අදාල පිහිටුම

උපකරණයේ කුඩාම මිනුම 0.01 mm නම්, ලබාගත් මිනුමේ භාගික දෝෂය වන්නේ,

- (2) <u>0.1</u> (3)
- (4) 0.1 (5)

සියලම හිමිකම ඇවිරිණි All Rights Reserved

- 16. A සහ B යන මෝටර් රථ දෙක සෘජු මාර්ගයක ගමන් කරයි. A හි පුවේගය $15~{
 m m~s}^{-1}$ ද A ට සාපේඎව ${f B}$ හි පුවේගය ${f 27.5~m~s}^{-1}$ ද නම්, ${f B}$
 - $(1)\ 12.5\ m\ s^{-1}$ ක පුවේගයෙන් $\ A\ s$ ි දිශාවටම ගමන් කරයි.
 - (2) 12.5 m s^{-1} ක පුවේගයෙන් A හි දිශාවට විරුද්ධ දිශාවට ගමන් කරයි.
 - (3) 15 m s^{-1} ක පුවේගයෙන් A හි දිශාවටම ගමන් කරයි.
 - (4) 27.5 m s^{-1} ක පුවේගයෙන් A හි දිශාවටම ගමන් කරයි.
 - (5) 27.5 m s^{-1} ක පුවේගයෙන් A හි දිශාවට විරුද්ධ දිශාවට ගමන් කරයි.
- 17. සමාන බල දෙකක සම්පුයුක්තය එක් බලයක විශාලත්වයට සමාන වේ. මෙම සම්පුයුක්තය එක් බලයක් සමග සාදන කෝණයේ අගය වන්නේ,
 - $(1) 30^{\circ}$
- (2) 45°
- (3) 50°
- (4) 60°
- (5) 120°
- 18. රූපයේ පෙන්වා ඇති රථයෙහි (Tractor) විශාලම රෝදය එහි එලවුම් රෝදය වේ. රථය රඑ මාර්ගයක ඉදිරියට ගමන් කරන විට එහි රෝද මත ඝර්ෂණ බල කිුිියාත්මක වන දිශාවන් නිවැරදිව දැක්වෙන්නේ,

- 19. බල දෙකක සම්පුයුක්තයට තිබිය හැකි උපරිම සහ අවම අගයයන් පිළිවෙලින් 35 N හා 1 N වේ. බල දෙක වන්නේ,
 - (1)8 N, 9 N

- (2) 8 N, 10 N (3) 12 N, 13 N (4) 17 N, 18 N
- (5) 15 N, 20 N
- 20. තුලාවක බාහු දිගින් සමාන වන නමුත් තුලා තැටිවල බර අසමාන වේ. වස්තුවක් වම්පස තැටියේ තැබූ විට \mathbf{W}_1 බරක් පෙන් වූ අතර වස්තුව දකුණුපස තැටියේ තැබූ විට \mathbf{W}_2 බරක් පෙන්වූයේ නම්, එම වස්තුවේ බර (W) වන්නේ,
 - (1)
- $W = W_1 W_2$ (2) $W = W_2 W_1$ (3) $W = \frac{W_1 + W_2}{2}$ (4) $W = W_2 + W_1$

(5) $W = W_1 W_2$

පි [papers grp

21. සැහැල්ලු සුමට කප්පියක් දුනු තරාදියක එල්ලා කප්පිය මතින් යවත ලද සැහැල්ලු අවිතතා තත්තුවක දෙකෙළවරට රූපයේ දැක්වෙන පරිදි 2 kg හා 6 kg හාර දෙකක් සම්බන්ධ කර පද්ධතිය නිදහස් කරන ලදී. ස්කන්ධ ත්වරණය වන කාලය තුළදී දුනු තරාදියේ පාඨාංකය වන්නේ,

- (1) 2 kg
- (2) 3 kg
- (3) 4 kg

- (4) 6 kg
- (5) 8 kg
- 22. තිරසට θ ආනතියකින් යුක්තව u ක පුවේගයෙන් පුක්ෂේපනය කර ලද වස්තුවක චලිතය රූපයේ දැක් වේ. මෙම චලිතය පිළිබඳ **සාවදා** පුකාශය වන්නේ,

2kg

- (1) පුක්ෂිප්තයේ තිරස් පරාසය $rac{u^2\sin 2 heta}{g}$ මගින් දෙනු ලැබේ.
- (2) θ සඳහා කෝණ දෙකක් පවතින අතර ඒවා θ සහ $180-\theta$ වේ.
- (3) පුක්ෂිප්තයේ පුවේගයේ තිරස් සංරචකය නියත වේ.
- (4) වස්තුව එහි උපරිම උස දක්වා ගමන් කිරීමට ගන්නා කාලය $\frac{u\sin heta}{g}$ මගින් දෙනු ලැබේ.
- (5) පුක්ෂිප්තයේ උපරිම තිරස් පරාසය සඳහා θ හි අගය 45° විය යුතුයි.

සියලම හිමිකම් ඇවිරිණි All Rights Reserved

24. තත්පර 6 ක් තුළ මෝටර් රථයක සිදු වූ චලිතය මෙම පුස්ථාරයෙන් දක්වා ඇත. චලිතය පිළිබඳව කර ඇති **නිවැරදි** පුකාශය දැක්වෙන පිළිතුර වන්නේ,

- (1) 1 s දී මෝටර් රථය එහි ගමන් දිශාව වෙනස් කරයි.
- (2) 5 s දී මෝටර් රථය නිශ්චලතාවයේ පවතී.
- (3) 6 s දී මෝටර් රථය නිශ්චලතාවයට පත් වේ.
- (4) $0 \ {
 m s} 1 \ {
 m s}$ අතර දී මෝටර් රථයේ විස්ථාපනය, $5 \ {
 m s} 6$ s අතර දී මෝටර් රථයේ විස්ථාපනයට වඩා වැඩි වේ.
- (5) $1 \, \mathrm{s} 2 \, \mathrm{s}$ අතර දී මෝටර් රථයේ පුවේගය උපරිම වේ.
- 25. ඝණත්වය \mathbf{d}_1 වන දුවායකින් තැනූ වස්තුවක් ඝණත්වය \mathbf{d}_2 වන ($\mathbf{d}_1 > \mathbf{d}_2$) නිශ්චල දුවයක පෘෂ්ධය මතට එහි සිට සිරස්ව h උසකින් පිහිටි ලක්ෂායක සිට අතහරිනු ලැබේ. දුවය දුස්සුාවී නොවන දුවයක් ලෙසද චලිතයේදී වස්තුවේ ශක්ති හානියක් සිදු නොවන්නේ යයි ද උපකල්පනය කළ විට, වස්තුව දුවය තුළ පහලට ගමන් කරන කාලය වන්නේ,

$$(1) \quad \frac{d_1}{d_2} \sqrt{\frac{2h}{g}}$$

(2)
$$\frac{d_2}{d_1}\sqrt{\frac{2h}{g}}$$

$$(3) \quad \frac{d_1}{d_1 - d_2} \sqrt{\frac{2h}{g}}$$

$$(1) \quad \frac{d_1}{d_2} \sqrt{\frac{2h}{g}} \qquad (2) \quad \frac{d_2}{d_1} \sqrt{\frac{2h}{g}} \qquad (3) \quad \frac{d_1}{d_1 - d_2} \sqrt{\frac{2h}{g}} \qquad (4) \quad \frac{d_2 - d_1}{d_2} \sqrt{\frac{2h}{g}}$$

$$(5) \ \, \frac{d_{1}}{d_{2}-d_{1}}\sqrt{\frac{2h}{g}}$$

සැකසුම:- භෞතික විදාහ අංශය **ෆර්ගසන්** උසස් විදාහලය රත්නපුර.

.22 A/L අපි [papers grp]

Physics MCQ Marking scheme

1	2	11	4	21	4	31	41	
2	1	12	2	22	2	32	42	
3	5	13	5	23	1	33	43	
4	4	14	4	24	2	34	44	
5	3	15	2	25	1	35	45	
6	1	16	2	26		36	46	
7	5	17	4	27		37	47	
8	4	18	5	28		38	48	
9	1	19	4	29		39	49	
10	3	20	3	30		40	50	

	့် ခုံရပြစ်၍ပုံ ဖြစ်ျှာရုံ ရုံယုံတုံခဲ့တဲ့ ဖြင့်ချစ်တုံတုံစာရုံရာပြ Provicial Department of Education - Sabaragamuwa
	අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය
	12 ලේණිය
භෞතික විද¤ාව	01 S I පැය දෙකයි

පුශ්න සියල්ලටම පිළිතුරු මෙම පතුයේම සපයන්න

1) පරිතපාගාරයේ දී භෘවිතා වන මයිකොමීටර ඉස්කුරුප්පු ආමානයක දළ රූපයක් පහත දැක්වේ.

i.	A, B, C කොටස් නම් කරන්න.
	A
	B
	c.22 A/L des papers gr
ii.	D හා E කොටස් වලින් කෙරෙන කාර්යය සඳහන් කරන්න.
	D
	E
iii.	මයිකොමීටර ඉස්කුරුප්පු ආමානයක භාවිතා වන මූලධර්මය කුමක් ද?
iv.	මයිකොමීටර ඉස්කුරුප්පු ආමානයක වෘත්ත පරිමාණය සමාන කොටස් 50 කට බෙදා ඇත. දිදාලය එක්
	වටයක් භුමණය කළ විට ඉද්ද $0.5mm$ දුරක් රේඛීයව ගමන් කරයි.
	a) මෙහි ඉස්කුරුප්පු අන්තරාලය කොපමණ ද?
	b) මෙහි කුඩා මිනුම කොපමණ ද?

මයිකොමිටර ඉස්කුරුප්පු ආමානයක මූලාංක දෝෂයක් පවතින බව ඔබ හඳුනා ගන්නේ කෙසේ ද?
ඒකාකාර ඝනකමක් (t) ඇති තහඩුවකින් වැහි පීල්ලක් සාදා ඇත. පීල්ලක $10\ cm$ ක් පමණ දිග කොටසක් ඔබට සකසා ඇත.
H W හරස්කඩ පෙනුම
පීල්ල සාදා ඇති දුවායේ ඝනත්වය $(d=m/_{\mathcal{V}})$ සෙවීමට සිසුවකුට පවරා ඇත. ඒ සඳහා පීලි කොටසේ ස්කන්ධය m හා පරිමාව (V) සොයාගත යුතු බව සිසුවා පවසයි. a) පීලි කොටසේ ස්කන්ධය සොයා ගැනීමට භාවිතා කරන පරීක්ෂණාගාර උපකරණය කුමක් ද?
b) පෙන්වා ඇති පීලි කොටසේ තහඩු පරිමාව V සඳහා පුකාශනයක් පෙන්වා ඇති සංකේත H,W,L හා t ඇසුරෙන් ලියන්න.
22 A/L &8 [papers grp]
c) තහඩුව සාදා ඇති දුවායේ ඝනත්වය d සඳහා පුකාශනයක් H,W,L හා t ඇසුරෙන් ලියන්න.
 d) ඔබ H, W, L හා t මැනීමට භාවිතා කරන උපකරණ සඳහන් කරන්න. H L t

2) පහත රූපයේ පෙන්වා ඇත්තේ පරික්ෂකාගාරයේ දී භාවිතා වන චල අන්වීක්ෂයක දළ රූපසටහනකි.

b) කුඩා රබර් නලයක අභාන්තර හා බාහිර විෂ්කම්භය සෙවීමට ව'නියර් කැලිපරය යොදා ගත

නොහැක්කේ ඇයි?

iii.	කේෂික නලයක අභාාන්තර විෂ්කම්භය සෙවීමට චල අන්වීක්ෂය භාවිතා කරන විට පුථමයෙන් එය තිරස් කරගත යුතුය. ඒ සඳහා චල අන්වීක්ෂයේ භාවිතා කරන කොටස් මොනවා ද?
iv.	කේෂික නලයක අභාගන්තර විෂ්කම්භය සෙවීමට නලය අන්වීක්ෂයෙන් නිරීක්ෂණය කරනු ලැබේ. නලයේ හරස්කඩ හා එහි පුතිබිම්භය පහත දැක්වේ.
	$\left(\begin{array}{c}A\\B\end{array}\right)$
	නලය පුතිබිම්භය පුතිබිම්බයේ A හා B ට අනුරූප ස්ථාන A' හා B' ලෙස ලකුණු කරන්න.
v.	මෙම චල අන්වීක්ෂයේ ව'නියර් පරිමාණය සමාන කොටස් 50 න් සමන්විත වේ. පුධාන පරිමාණය $0.5\ mm$ කොටස් වලින් කුමාකංය කර ඇත. ව'නියර් කොටස් 50 න් පුධාන පරිමාණයේ කොටස් 49 කට බේදීමෙන්
. 2	පරිමාණ සකසා ඇත. උපකරණයේ කුඩා මිනුම සොයන්න.
vi.	කේෂික නලයේ අභාහන්තර විෂ්කම්භය සෙවීමට පාඨාංක ලබාගැනිමේ දී හරස්කඩේ ස්ථානගත කර ඇති
	ආකාරය රූපවල දැක්වේ. (1) (2) (3) (4)
	$(1) \qquad (2) \qquad (3) \qquad (4)$
	102.41 mm 103.43 mm 85.65 mm
	a) 4 පිහිටුමේ දී පාඨාංක කියවීමේ දී ප්‍රධාන පරිමාණයෙන් කියවිය හැකි පාඨාංකය 8.45 cm ලෙසත් ඒක රේඛීය වූ ව'නියර් කොටස් ගණන 11 ලෙසත් ප්‍රකාශ කර ඇත. මෙම අවස්ථාවේ පාඨාංකය සොයන්න.
	b) සිසුවා ඉහත 1 අවස්ථාව ලබා ගැනීම සඳහා උපකරණයේ භාවිතා කරන කොටස් (ඇත) සඳහන් කරන්න.

c)	ඉහත පාඨාංක යොදා ගෙන වල අන්වීක්ෂයේ අභාාන්තර විෂ්කම්භය සොයන්න.

3) බල සමාන්තරාසු මූලධර්මය මඟින් නොදන්නා ස්කන්ධයක අගය (M) සෙවීමට ශිෂායෙකු උපකරණ අටවා ඇති ආකාරය පහත රූපයේ දැක්වේ.

i. A, B හා C හඳුන්වන්න.

- ii. X හා Y යනු මොනවාද ?
- iii. ඉහත පද්ධතිය නිසල වූ විට 0 හි පිහිටීම ලකුණු කර M පහළට ඇද මුදා හරිනු ලදී. මින් බලාපොරොත්තු වන්නේ කුමක් ද?
- iv. පරීක්ෂණය මඟින් සාර්ථක පුතිඵල ලබා ගැනීමට B වල තිබිය යුතු ගුණාංග දෙකක් ලියන්න.

v. M පහළට ඇද මුදා හැර පද්ධතිය නිසල වූ පසු සිසුවා විසින් OP හා OQ පිහිටීම ලකුණු කර සුදු කඩදාසිය ඉවතට ගෙන අඳින ලද පරිමාණ රූපය පහත දැක්වේ.

පරිමාණය
$$1 \, cm = 1 \, N$$

$$IJ = 2 cm$$

$$IL = 3 cm$$

$$IK = 4.36 cm$$

	a)	පිටමාණ රූපිය ඇඳම සිඳිහා සසුවා භාවතා කරන ලද උපකරණ මොනවා ද?
	b)	X හි අගය ගුෑම් වලින් කොපමණ ද?
	c)	Y හි අගය ගුෑම් වලින් කොපමණ ද?
	d)	නොදන්නා ස්කන්ධයේ M හි අගය ගුෑම් වලින් කොපමණ ද?
vi.	ඉහ:	ත පරිමාණ රූපයේ බල දෙක අතර කෝණය $(J\hat{I}L)$ සොයන්න. $(\sqrt{19}=~4.36^2)$
.2		A/L q8 [papers grp]
vii.		ඉවත් කර පද්ධතිය පහත පරිදි තබා මුදා හරින ලදී. මෙවිට X හා Y නිසලව පවතී ද? ඒකාකාර පුවේගයෙන් චලිත වේ ද? නැති නම් ත්වරණය වේ ද? යන්න සඳහන් කරන්න.
	b)	ඕබේ පිලිතුරට හේතු දක්වන්න.

(4) A)

මෝටර් රථ සන්දර්ශනයක දී එක් පුද්ගලයෙක් තම මෝටර් රථය ඉහත රූපයේ දැක්වෙන ආකාරයට සකස් කරන ලද PQ,QR සහ RS පිළිවෙළින් 6m,16m,6m වූ වේදිකාවක් ඔස්සේ උපරිම ලෙස ත්වරණය කර s සිට d දුරක් ඇතින් පොළොව මට්ටමේ පිහිටා ඇති වේදිකාවට පැනීමට සැලසුම් කරයි. වේදිකාවේ PQ කොටස තිරස සමඟ 30° ක කෝණයක් සාදන පරිදි සකස් කර ඇති අතර QR කොටස තිරස්වද සකසා ඇත. RS කොටස සකසා ඇත්තේ එම කොටසේ ආනතිය අවශා පරිදි වෙනස් කළ හැකි වන සේය. ආනතිය කෙතරම් වෙනස් වුවත් එම කොටස තුළ මෝටර් රථයට $20\ ms^{-2}$ ක උපරිම ත්වරණයක් පවත්වා ගත හැක. PQ සහ QR කොටස් වලදී මෝටර් රථයට පිළිවෙළින් $12\ ms^{-2}$ සහ $20\ ms^{-2}$ ක ඒකාකාර ත්වරණ පවත්වා ගනී.

P හිදී නිශ්චලතාවයෙන් ගමන් ආරම්භ කරන මෝටර් රථය P සිට S දක්වාම වේදිකාව සමඟ ස්පර්ශව පවතින බව සලකන්න.

- a) i) පොළව මට්ටමේ සිට Q ට ඇති සිරස් උස සොයන්න.
 - ii) Q හිදී මෝටර් රථයේ වේගය ගණනය කරන්න.
 - PQ වේදිකා කොටස මතින් පැමිණි මෝටර් රථයේ පුවේගය වෙනස් වීමකින් තොරව Q හිදී QR වේදිකා කොටසට ඇතුලු වේ නම් S හිදී මෝටර් රථයේ පුවේගය ගණනය කරන්න.
 - S හිදී ලබා ගත් තිරස් පුවේගයෙන්ම මෝටර් රථය වේදිකාවෙන් ඉවත් වේ නම් මෝටර් රථය අවකාශය තුළ පවතින කාලය සොයන්න. ($\sqrt{6.6=0.75}$ ලෙස ගන්න)
 - v) මෙවිට d සඳහා පැවතිය යුතු අවම දුර කොපමණ ද?
- b) දෙවන වර පැනීම සඳහා RS වේදිකා කොටස තිරසට 30° කින් ආනත කරයි.

- i) පොළව මට්ටමේ සිට S කෙළවරට ඇති සිරස් උස ගණනය කරන්න.
- R = 1 හිදී R = 1 හිදී මෝටර් රථයේ පුවේගය වෙනස් වීමකින් තොරව R = 1 හිදී R = 1 හිදී R = 1 කොටසට ඇතුලු වේ නම් R = 1 හිදී මෝටර් රථය වේදිකාවෙන් ඉවත් වන පුවේගය කොපමණ ද?
- iii) S හිදී මෝටර් රථයේ පුවේගය තිරසට කොපමණ ආනත වේද?
- iv) d සඳහා වැඩි අගයක් ලැබෙන්නේ RS තිරස්ව පවතින විට ද RS තිරසට 30° කින් ආනතව පවතින විට දී RS තිරසට RS තිරසට
- B) පහත පුස්තාරයෙන් දක්වා ඇත්තේ A නම් ලක්ෂයක සිට උතුරු දිශාවේ ඇති F නම් ලක්ෂයක් වෙත සරල රේඛීය මගක ගමන් කරන බයිසිකල්කරුවකුගේ චලිතය දැක්වෙන පුවේග- කාල පුස්තාරයකි. ($\pi=3$ ලෙස සලකන්න)

- i) පුස්තාරයේ AB,BC,CD,DE,EF යන අවස්ථා අතුරින් ඒකාකාර පුවේගය, ඒකාකාර ත්වරණය හා ඒකාකාර මන්දනය යන චලිතයන් දක්වන අවස්ථා සඳහන් කරන්න.
- EF යන අවස්ථාවන් දෙක තුළ දී චලිත ස්වභාවයන් නම් කර එම අවස්ථා දෙකෙහි පවතින වෙනස්කමක් ලියන්න. කිසිදු වෙනස්කමක් නැතිනම් එයද සඳහන් කරන්න.
- iii) තත්පර 70 අවසානයේ බයිසිකල්කරුගේ විස්ථාපනය කොපමණ ද?
- iv) තත්පර 70 අවසානයේ බයිසිකල්කරු ගමන් කළ දුර කොපමණ ද?
- v) බයිසිකල්කරු ගමන් කළ තත්පර 70 සඳහා වන විස්ථාපන කාල පුස්තාරය අඳින්න.
- vi) බයිසිකල්කරු මත බලය ශූනාව පවතින චලිත කොටස කුමක් ද?
- vii) බයිසිකල්කරුගේ චලිත දිශාව ක්ෂණිකව පුතිවිරුද්ධ වන අවස්ථාව සඳහන් කරන්න.
- viii)A සිට F දක්වා යාමට අවම කාලයක් ගත කිරීමට බලාපොරොත්තු වන බයිසිකල්කරු ගමන් කළ යුතු ආකාරය සඳහන් කරන්න.
- ix) බයිසිකල්කරු $50 \ s$ ක් තුළ A සිට F දක්වා යාමට ගත කිරීමට බලාපොරොත්තු වේ නම් ඔහුට ලබාගත හැකි උපරිම පුවේගය ගණනය කරන්න.

(5) a) චලිතය පිළිබඳ නිව්ටන්ගේ නියම සඳහන් කරන්න. පහත පද්ධතියේ තන්තු සැහැල්ලු අවිතනා ඒවා වන අතර කප්පිය සුමට වේ. A,B,C ලී කුට්ටිවල ස්කන්ධ පිළිවෙළින් $6\ kg,4\ kg,5\ kg$ වේ. A හා B අතර ද B හා මේසය අතර ද ගතික ඝර්ෂණ සංගුණකය 0.2 ක් වේ. මේසයට සවි කර ඇති දණ්ඩ අවලව පවතී.

- i) පද්ධතිය නිදහස් කළ විට A ට සම්බන්ධ තන්තුවේ ආතතිය සොයන්න.
- ii) B ගේ ආරම්භක ත්වරණය හා B ට සම්බන්ධ තන්තුවේ ආතතිය සොයන්න.
- iii) A ගෙන් ඉවත් වූ පසු B ගේ ත්වරණය හා B ට සම්බන්ධ තන්තුවේ ආතතිය සොයන්න.
- b) $5 \, m$ උසක සිට නිශ්වලතාවයෙන් අතහරින $400 \, g$ ස්කන්ධයක් සහිත බෝලයක් පොළවේ වැදී පොලා පනිනුයේ වැදුණු පුවේගයෙන් 0.25 කින් නම් පොළව මත ඇතිවන ආවේගය සොයන්න. දෙවන වර බිම වදින මොහොත දක්වා චලිතයට අදාළ පුවේග කාල පුස්ථාරය අඳින්න.
- (6) a) බල 3 ක කියාව යටතේ වස්තුවක් සමතුලිතව පවතී. පහත එක් එක් අවස්ථාවේ දී බලවල ලක්ෂණ 3 බැගින් සඳහන් කරන්න.
 - i) බල 3 සමාන්තර වන විට
 - ii) බල 3 සමාන්තර නොවන විට
 - b) සැහැල්ලු අවිතන‍ය තන්තු 2 ක් මගින් එල්ලා තිරස් ව සමතුලිතව තබා ඇති 6.5 kg ස්කන්ධයක් සහිත 130 cm දිග ඒකාකාර නොවන AB දණ්ඩක් පහතින් දැක්වේ. තන්තුවල දිග 120 cm හා 50 cm බැගින් වේ නම් දණ්ඩේ ගුරුත්ව කේන්දයට A සිට ඇති දුර හා තන්තුවල ආතති සොයන්න.

c) තන්තු 2 ගලවා ඉවත් කරන ලද ඉහත AB දණ්ඩ A කෙළවර රඑ තිරස් බිමක ද B කෙළවර සුමට සිරස් බිත්තියක ද පවතින සේ සමතුලිතව තබා ඇත්තේ A කෙළවර බිත්තිය පාමුල සිට 50 cm දුරින් සිටින ලෙසයි. දණ්ඩ ලිස්සා යාමට ඉතා ආසන්න අවස්ථාවේ පවතී නම් පොළව හා දණ්ඩ අතර ස්ථිතික සර්ෂණ සංගුණකය සොයන්න.

(7) a) රේඛීය ගමාතා සංස්ථිති නියමය සඳහන් කරන්න. 2 m දිග සැහැල්ලු අවිතනා තන්තුවකින් $4.8 \, kg$ ස්කන්ධයක් සහිත ලී කුට්ටියක් එල්ලා ඇත. $100 \, ms^{-1}$ පුවේගයෙන් පැමිණෙන $200 \, g$ ස්කන්ධයක් සහිත උෂ්ණත්වයක් තිරස් ව පැමිණ ඉහත ලී කුට්ටියේ වැදී එතුළ නතර වේ නම් තන්තුව සිරස සමඟ සාදන උපරිම කෝණය සොයන්න.

22 A/L අප [papers grp

- b) වතුර මෝටරයක් යොදා ගනිමින් ජලය ඉවතට ඇද $35~ms^{-1}$ පුවේගයෙන් තිරස්ව පිටකරනු ලබයි. මෙහි දී භාවිතා කරන නළවල විෂ්කම්භය 2~cm වේ. වතුර මෝටරයේ ක්ෂමතාවයෙන් 20~% ක් තාපය හා ශබ්දය ලෙස හානි වේ.
 - ජලය 2 m උසකට එසවීම සඳහා වැයවන ක්ෂමතාවය සොයන්න.
 - ii) ජලය පිටකිරීම සඳහා වැයවන ක්ෂමතාවය සොයන්න.
 - iii) ජලය ඔසවා පිට කිරීම සඳහා වැයවන මුළු ක්ෂමතාවය කොපමණ ද?
 - iv) වතුර මෝටරයේ ක්ෂමතාවය ගණනය කරන්න.

v) නළයෙන් පිටවන ජල පහර සිරස් බිත්තියක වැදී පොලා පැනීමෙන් තොරව බිත්තිය දිගේ රූටා වැටේ නම් ජලය වැදීම නිසා බිත්තිය මත ඇතිවන බලය ගණනය කරන්න.