Logik

Junktoren

Zeichen	Prädikat	Bezeichnung
_	$\neg A$	NICHT A
٨	$A \wedge B$	A UND B
V	$A \vee B$	A ODER B
\Rightarrow	$A \Rightarrow B$	WENN A DANN B
\Leftrightarrow	$A \Leftrightarrow B$	A GLEICH B

Negation: $\neg A => \text{kehrt den Wahrheitswert um} => \text{«Es trifft nicht zu, dass ... »}$

Konjunktion: $A \wedge B$ Disjunktion: A V B

<u>Äquivalenz</u>: $A \leftrightarrow B \Rightarrow$ gleicher Wahrheitswert = $A \rightarrow B \land B \rightarrow A$

Implikation

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	<u>0</u>
1	1	1

In jedem Fall, wo A wahr ist, muss auch B wahr sein.

- 1) Wenn A falsch ist, kann B wahr oder falsch sein.
- 2) Wenn A wahr ist, muss B auch wahr sein.

Junktorenregeln

Doppelte Negation	$\neg \neg A$	Α
Assoziativität	$(A \land B) \land C$	$A \wedge (B \wedge C)$
	$(A \lor B) \lor C$	$A \lor (B \lor C)$
Distributivität	$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$
	$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$
De Morgan	$\neg (A \land B)$	$\neg A \lor \neg B$
_	$\neg (A \lor B)$	$\neg A \land \neg B$
Implikation	$A \Rightarrow B$	$\neg A \lor B$
(Kontraposition)	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
Äquivalenz	$A \leftrightarrow B$	$((A \Rightarrow B) \land (B \Rightarrow A))$
·		$(\neg A \lor B) \land (\neg B \lor A)$

<u>Tautologie</u>: immer wahr $A \lor A = T$ Widerspruch: immer falsch $A \land \neg A = W$

Quantoren

⇒ Quantoren binden Variablen

All-Ouantor: $\forall x$ «für alle ... »

Existenz-Quantor: 3 «es gibt mindestens ein ... »

Quantor-Regeln

- 1. keine Distributivität
- 2. Quantoren binden stärker als Junktoren

Vertauschungsregel	$\exists x A(x)$	$\neg \forall x \neg A(x)$
Negation	$\neg \exists x \in MA(x)$	$\forall x \in M \neg A(x)$
	$\neg \forall x \in MA(x)$	$\exists x \in M \neg A(x)$

Beispiele

▼ Es gibt genau ein x mit P(X)

$$\exists x P(x) \land \forall y, z \quad P(y) \land P(z) \Rightarrow y = z$$

- ▼ Es gibt mindestens zwei Dinge mit der Eigenschaft P(x) $\exists xy(p(x) \land p(y) \land x \neq y)$
- ▼ Es gibt höchstens ein x mit P(x)

$$\neg(\exists x, y(P(x) \land P(y) \land x \neq y))$$

▼ Wenn P(x) und P(y) gilt, dann gilt stets auch Q(x,y).

$$\forall x, y (P(x) \land P(y) \Rightarrow Q(x, y))$$

▼ Für kein x gilt Q(x, x)

$$(\neg \exists x Q(x, x)) \Leftrightarrow (\forall x (\neg Q(x, x)))$$

Sei P die Menge aller Fachhochschul-Prüfungen und E(x) das Prädikat "x ist einfach". Formalisieren Sie:

- a) Alle Prüfungen sind einfach. b) Eine Prüfung ist einfach.
- c) Keine Prüfung ist einfach.
- d) Alle Prüfungen sind nicht einfach.
- e) Nur eine Prüfung ist einfach.
- f) Nur eine Prüfung ist nicht einfach.
- g) Nicht alle Prüfungen sind einfach.
- h) Eine Prüfung ist nicht einfach.

Welche der Aussagen sagen dasselbe aus?

- a) $\forall x \in P \in E(x)$
- 6) 3xeP E(x)
- c)]xeP E(x) d) YxeP > E(x)

c) & d) aquivalent

- e)($\exists x \in P E(x)$) $\land (\forall y_1 \neq \in P (E(y) \land E(z) \Rightarrow y = z))$
- $f) \left(\exists \times \in \mathbb{P} \neg E(X) \land (\forall Y, \xi \in \mathbb{P} \left(\neg E(Y) \land \neg E(\xi) \Rightarrow Y = \mathcal{Z} \right) \right)$
- a) TXEP E(x)
- h) FXEP TE(X)

Semantik

 $\hat{B}(F \wedge G) = \text{and } (\hat{B}(F), \hat{B}(G))$

 $\hat{B}(F \vee G) = \text{or } (\hat{B}(F), \hat{B}(G))$

 $\hat{B}(\neg F) = \text{not}(\hat{B}(F))$

Wahrheitstabellen: jede Teilformel = eine Spalte in der Wahrheitstabelle

Semantische Eigenschafte

Konsequenz

Eine aussagenlogische Formel A heisst

• Allgemeingültig Alle Belegungen $\forall \hat{B}(A) = true$ • Unerfüllbar Alle Belegungen $\forall \hat{B}(A) = false$

• Erfüllbar Min. Eine Belegung $\exists \hat{B}(A) = true$ • Widerlegbar Min. Eine Belegung $\exists \hat{B}(A) = false$ F ist eine Konsequenz von G, falls F unter jeder Belegung wahr ist unter der G wahr ist.

⇒ Implikation "F folgt aus G"

Beweistechniken

Methode	Vorgehensweise	Beispiel
Direkter Beweis	Basierend auf der Annahme, dass A wahr ist, gibt man zwingende Argumente für die Richtigkeit von B.	
Beweis durch Widerspruch	Man geht davon aus das die initiale Aussage falsch ist und findet dann einen Wiederspruch.	«Es gibt keine grösste natürliche Zahl». => Annahme es gibt eine grösste natürliche Zahl. Jedoch (Widerspruch) gilt für alle natürliche Zahlen es gibt «n + 1» und «n < n + 1». Das steht also im Widerspruch
Beweis durch Kontraposition	Statt «A ⇒ B» beweist man «¬B ⇒ ¬A»	Im Halbfinale gewinnen => Finale Nicht im Finale sein => Halbfinale nicht gewonnen
Beweis einer Äquivalenz (A ⇔ B	Beweis von $A \Rightarrow B$ und $B \Rightarrow A$	

- ⇒ Lange Verkettung von Junktoren als Aussage extrahieren
- ⇒ Aussage «verdeutschen»

Benötigte Beweistechnik

Aussag	ge	Beweis
	wahr falsch	Für alle aus der Grundmenge zeigen => Variablen verwenden! Gegenbeispiel => 1 konkreter Wert, für den es nicht zustimmt!
	wahr	Beispiel => 1 konkreter Wert
•	falsch	Für alle aus der Grundmenge zeigen

Kleinster Verbrecher

Will man zeigen, dass alle natürlichen Zahlen eine Eigenschaft E haben, dann geht man davon aus, dass wenn dies nicht der Fall wäre, es eine kleinste natürliche Zahl n0 (den kleinsten Verbrecher) gäbe, die nicht die Eigenschaft E hat. Führt man diese Annahme zu einem Widerspruch, so hat man die ursprüngliche Behauptung bewiesen. => Widerspruchsbeweis (Eigenschaft gilt auch für den kleinsten Verbrecher)

Aufgabe 10. Beweisen Sie mit der Methode des "kleinsten Verbrechers" die folgende Aussage: $\forall n \in \mathbb{N} : n^3 + 2n$ ist durch 3 teilbar.

Annahm: no kleinsk nat. Zahl für die not annahm: no kleinske nat. Zahl für die not a teilbar existiente no sicher Nachfolger einer nat. Zahl no = k+1

Da kcho, muss gelke k3+2k = 3j, je/N

> no3+2no = (k+1)3+2(k+1) = k3+3k2+3k+2k+3

= k3+2k+3(k2+k+1) = 3l, le/N

durels durels

+ ilbar teilbar

> no ist nicht kleinster Verbrecher

> es gibt beinen bleinster Verbrecher

Eigenschaft gilt für alle nat. Zahlen

Normalformen (NNF, KNF, DNF)

⇒ Syntaktisch, einfache Formeln: Λ,V,¬

NNF

alle Negationen in Literalen und keine Implikationen →

DNF

$$(L_{1,1} \wedge L_{1,2} \wedge \ldots) \vee (L_{2,1} \wedge L_{2,2} \wedge \ldots) \vee (L_{3,1} \wedge L_{3,2} \wedge \ldots) \ldots$$

KNF

$$(L_{1,1} \lor L_{1,2} \lor \dots) \land (L_{2,1} \lor L_{2,2} \lor \dots) \land (L_{3,1} \lor L_{3,2} \lor \dots) \dots$$

In Normalformen umformen

NNF:

- 1. Implikationen eliminieren mit $F \rightarrow G = \neg F \lor G$
- 2. Negationen, die nicht zu einem Literal gehören werden <u>sukzessive durch Anwenden der De Morganschen Regeln</u> <u>und der Regel der doppelten Negation</u> eliminiert.

KNF/DNF:

1. Jede Formel in NNF kann durch <u>sukzessives Anwenden der Distributivgesetze</u> wahlweise in KNF oder DNF gebracht werden.

Beispiel

Wir eliminieren zuerst alle Implikationen und doppelten Negationen:

$$(\neg p \to q) \to ((p \land p_1) \lor (p_2 \land p_3)) \equiv \neg(\neg p \to q) \lor ((p \land p_1) \lor (p_2 \land p_3))$$
$$\equiv \neg(\neg \neg p \lor q) \lor ((p \land p_1) \lor (p_2 \land p_3))$$
$$\equiv \neg(p \lor q) \lor ((p \land p_1) \lor (p_2 \land p_3)).$$

Als Nächstes eliminieren wir alle Negationen, die nicht in Literalen vorkommen (De Morgan):

$$\neg (p \lor q) \lor ((p \land p_1) \lor (p_2 \land p_3)) \equiv (\neg p \land \neg q) \lor ((p \land p_1) \lor (p_2 \land p_3)).$$

Diese Formel ist nun in NNF und DNF. Mit der Distributivität («Ausmultiplizierung» der verknüpfenden V) erhält man dann noch die KNF.

Wahrheitstabellen

DNF V: Bildung einer Konjunktion aus jeder Zeile die <u>true</u> liefert = <u>Minterm</u> $(a \land b \land c) \lor ...$ **KNF** \land : Bildung einer Disjunktion \lor aus jeder Zeile die <u>false</u> liefert = <u>Maxterm</u> $(a \lor b \lor c) \land ...$

Mengen

Menge = Zusammenfassung unterscheidbarer Objekte ohne innere Ordnung

Teilmenge

 $X \subseteq Y$ bedeutet, dass X eine Teilmenge von Y ist \Rightarrow jedes Element von X ist auch ein Element von Y $X \subsetneq Y$ = echte Teilmenge, falls X eine von Y verschiedene Teilmenge von Y ist =

Identische Mengen

Zwei Mengen X und Y sind gleich, wenn $X \subset Y$ und $Y \subset X$ gilt.

Schnittmenge

Schnittmenge mehrerer Mengen: $\bigcap_{j=1}^{n} A_j = A_1 \cap ... \cap A_n$

Vereinigung

Definition 1.29 Die Menge

$$A \cup B = \{x \mid x \in A \text{ oder } x \in B\}$$

nennt man **Vereinigung** von A und B.

Vereinigung mehrerer Mengen: $\bigcup_{j=1}^{n} A_j = A_1 \cup ... \cup A_n$

Symmetrische Differenz

$$A \triangle B := (A \setminus B) \cup (B \setminus A)$$

$$= \{x \in A \cup B \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$

$$= \{ x \in A \cup B \mid x \in A \lor x \in B \}$$

Disjunkt

 $X \cap Y = \emptyset$ bedeutet, dass die Mengen keine gemeinsamen Elemente haben = disjunkt

Disjunkt $(A \cap B \cap C = \emptyset)$,

Paarweise disjunkt

nicht paarweise disjunkt

Differenz und Komplement

$$A \setminus B = A \cap \bar{B}$$

=> «nicht» = ausserhalb von B z.B.

$$A = (A \setminus B) \cup B$$

Mächtigkeit

Vereinigung	$ A \cup B $	$ A + B - A\cap B $
Disjunkte Mengen	$ A \cup B $	A + B
3 Mengen	$ A \cup B \cup C $	$ A + B + C - A \cap B - B \cap C - A \cap C $
		$+ A\cap B\cap C $

Rechenregeln

De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B} \overline{A \cap B} = \overline{A} \cup \overline{B}$
Komplement	$A \cup \bar{A} = G A \cap \bar{A} = \emptyset$
	$\bar{G} = \emptyset \overline{\emptyset} = G$

<u>Potenzmenge</u>

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset\} \neq \emptyset \ \mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\} \ \mathcal{P}(\{a, \{c\}\}) = \{\phi, \{a\}, \{\{c\}\}, \{a_1\{c\}\}\}\}$$

Mächtigkeit: $|P(A)| = 2^{|A|}$

Partition

- ⇒ Zerlegung einer Menge in Teilmengen der Potenzmenge
- ⇒ Nichtleer & paarweise disjunkt
- ⇒ Vereinigung der Teilmengen ergibt die Menge

Kartesisches Produkt

Wichtig: $A \times B \neq B \times A$

=> Tupel haben eine innere Ordnung!

$$|A \times B| = |A| \cdot |B|$$

$$\{1,3\} \times \{0,2\} = \{(1,0),(1,2),(3,0),(3,2)\}$$

$$\emptyset \times \{\emptyset\} = \{\emptyset\} \quad \{\emptyset\} \times \emptyset = \emptyset$$

Grössenvergleich

Abzählbar unendlich	gleichmächtig wie N (bijektive Funktion « Zuordnung existiert »)	N, Z, Q, N x N, Z x Z, Z x N
Überabzählbar unendlich	grösser als die Mächtigkeit von N	(0, 1) = alle unendlichen Binärsequenzen (2. Cantor) R, P(N), R x N, R \ N

Vereinigung von abzählbaren Mengen: abzählbar

Schubfachprinzip: keine injektive Zuordnung = überabzählbar unendlich

Relationen

⇒ Menge von Tupeln aus dem Kreuzprodukt

Graphen

Komposition

=> Hintereinanderausführung

Inverses Element: $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Äquivalenzrelationen

- Ähnliche Objekte miteinander zu identifizieren
- Reflexiv, symmetrisch, transitiv

homogene	. Walion: RS	XχX	
reflexiv	A XEX (XXX)	R-2	$\{(A_1A)_1(2_1^2)_1(3_1^3)_1(4_1^4)_1\}$
		3 4	
symmhisd	.∀x,y∈X (xRy⇒yRx)	1 1 ² 4	{(2,3) ₁ (3,2) ₁ }
anti- symmulmised	$\forall x_i y \in X (x R_{y, \lambda} y R x \Rightarrow x = y)$	32 4,	{(2,2,(2,3),(×),}
transitiv	∀xy1z € X (xRyxyRz⇒xRz)	1-32	{(1,2), (2,3), (1,3),}

x y	C_x y		
	$C_{x \longrightarrow y}$		$C_x \longrightarrow_y \Sigma$
<i>x</i> ← <i>y</i>	$C_x \longrightarrow_y$	x y⊃	$C_x \longrightarrow y^{\sum_{y}}$
$x \longleftrightarrow y$	$C_x \longrightarrow y$	$x \longrightarrow y$	$C_x \longrightarrow y$

	SAIT	311	311	Kall
	AITK	ITK	ITK	RITK
	AITK	ITK	ITK	RITK
	sĸ	sĸ	sĸ	RSTK
$\begin{pmatrix} 1 \ 2 \end{pmatrix}$				
17				
//				

Äquivalenzklassen

paarweise disjunkt, nichtleer & Vereinigung ergibt A

Faktormenge: Menge der Äquivalenzklassen (Beispiel: { [0]R, [1]R, [3]R } für den obigen Graph einer Äquivalenzrelation)

Ordnungsrelationen

Minimale Elemente: kein Pfeil auf das Element Maximale Elemente: kein Pfeil weg vom Element

Ordnungstypen

Es sei R eine binäre Relation auf der Menge M.

- Totale Ordnung Kein unvergleichbares Element (+ Halbordnung)
- Wohlordnung mind. 1 min. Element pro Teilmenge (+ Totale Ordnung)

	Reflexiv	Symmetrisch	Antisymmetrisch	Transitiv
Äquivalenzrelation	X	X		Χ
Prä-Ordnung	Χ			Χ
Halb-Ordnung	Χ		X	Χ
Totale Ordnung	Χ		X	Χ
Wohl-Ordnung	Χ		X	Χ

Notationen:

 R^+ : transitiver Abschluss = {(1,1), (1,2), (2,3), (1,3)}

 R^* : reflexiv-transitiver Abschluss

DAG:

- gerichteter, zyklenfreier Graph => z.B. Hasse Diagramm
- topologische Sortierungen = alle möglichen Pfade

Hasse-Diagramm zur Darstellung von Halbordnungen

	4-2	min. Elemente: 1,3 max. Elemente: 4,3
3	\ Λ	'

Funktionen

- ⇒ <u>Jedem</u> Wert aus der Definitionsmenge wird genau ein Element aus der Bildmenge zugeordnet.
- ⇒ Rechtseindeutig + linkstotal

Linkseindeutig (injektiv)	zu jedem y gibt es höchstens ein x	
Linkstotal	jedes x hat mindestens ein y Wert	
Rechtstotal (surjektiv)	zu jedem y gibt es mindestens ein x	
Rechtseindeutig	es gibt zu jedem x maximal ein y Wert	

Rekursion

Rekursive Darstellung

2.3. relaurier

$$T(0) = 0$$
 $T(n+1) = T(n) + (n+1)$
 $T(n) = \sum_{k=0}^{\infty} k = \frac{n(n+1)}{2}$
 $T(n) = \sum_{k=0}^{\infty} k = \frac{n(n+1)}{2}$
 $T(n) = \sum_{k=0}^{\infty} k = \frac{n(n+1)}{2}$

Beweis einer rekursiven Funktion

1. IV:
$$E(0)$$
: Dahr?

 $F(0) = \frac{0.(0+\Lambda)}{2} = 0$ explitif

 $F(0) = 0$ returnsiv

2. 1. IA: $E(n)$: Dahr

 $F(n) = \frac{n.(n+\Lambda)}{2}$

2. 2. IB: $E(n+\Lambda)$: Dahr?

 $F(n+\Lambda) = \frac{(n+\Lambda)(n+2)}{2}$

2. 3. ISL: $E(n) \Rightarrow E(n+\Lambda)$: Dahr?

 $F(n+\Lambda) = \frac{n.(n+\Lambda)}{2} + n+\Lambda$
 $= \frac{n.(n+\Lambda)}{2} + n+\Lambda$
 $= \frac{n.(n+\Lambda)}{2} + \frac{2(n+\Lambda)}{2}$
 $= \frac{(n+\Lambda)(n+2)}{2} + \frac{3(n+\Lambda)}{2}$
 $= \frac{(n+\Lambda)(n+2)}{2} + \frac{3(n+\Lambda)}{2}$
 $= \frac{(n+\Lambda)(n+2)}{2} + \frac{3(n+\Lambda)}{2}$

Induktion

Vollständige Induktion (Induktionsprinzip)

Sei A(n) eine Aussage für beliebiges $n \in \mathbb{N}$, sodass gilt:

- 1. **Induktionsanfang** (Induktionsverankerung):
 - A(1) ist richtig bzw. A(0) ist richtig. (Muss nicht bei 1 oder 0 beginnen, je nach Vorgabe.)
- 2. Induktionsvoraussetzung (Induktionsannahme):
 - 2.1 Induktionsannahme A(n): wahr
 - 2.2 Induktionsbehauptung A(n+1): wahr
 - 2.3 Induktionsschluss A(n) => A(n+1): wahr

Dann ist A(n) für alle $n \in \mathbb{N}$ richtig.

Beispiel Induktionsbeweis:

Wir betrachten die Eigenschaft A(n), die besagt, dass die Summe aller natürlichen bis n halb so gross wie die Zahl n(n + 1) ist.

$$\sum_{i=0}^{n} i = 0 + 1 + \dots + n = \frac{n(n+1)}{2}.$$

1. IV
$$A(0): Uahr$$
 $N=0$

$$0 = \frac{0 \cdot (0+1)}{2} = 0$$

2. IS
$$A(n) \Rightarrow A(n+1) : \omega h$$

21. Indulations annulum:
$$A(n)$$
: white $A(n)$: $A(n)$

2.2 In dultions behave then
$$2$$
: $A(n+1): bahr$ (I3)
$$E i = 0 + 1 + ... + n + n + 1 = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+1)}{2}$$

$$A(n+1): bahr$$

2.3 Indultions schluss:
$$A(n) \Rightarrow A(n+1) : vahr$$
 (ISL)
$$0 + A + ... + n + n + A = \frac{n(n+1)}{2} + n + A$$

$$= \frac{n(n+1) + \lambda(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$
aus der Annahme $A(n) : vahr$ folgt die Behauptung $A(n+1) : vahr$

$$\Rightarrow \forall n \in N \ A(n) : vahr$$

Elementare Zahlentheorie

$$kgV(m,n) \cdot ggT(m,n) = m \cdot n$$

Teilbarkeit

Eine ganze Zahl a heißt durch eine natürliche Zahl b teilbar, wenn es eine ganze Zahl n gibt, sodass $\underline{a} = n \cdot \underline{b}$ ist. Die Zahl b heißt in diesem Fall Teiler von a. Man schreibt dafür $\underline{b}|\underline{a}$, gelesen: «b teilt a».

<u>Teilermenge</u>: $T(y) = \{x \in \mathbb{N} | x | y\}$

Teilerfremd: Zwei ganze Zahlen x, y heissen teilerfremd, wenn ggT (x, y) = 1 gilt

ggT

$$\begin{split} & \operatorname{ggT}\left(n,m\right) = \operatorname{ggT}\left(n,m-n\right) \\ & \operatorname{ggT}(n,m) = ggT(n,m-k\cdot n). \quad k\cdot n \leqslant m \end{split}$$

Euklidischer Algorithmus zur Bestimmung von ggT(n, m)

$$693 = 2.286 + 121$$

$$286 = 2.121 + 44$$

$$121 = 2.44 + 33$$

$$44 = 1.33 + 111 = 95T(653,286)$$

$$33 = 3.11 + 0$$
oberhalb dus Ross 0

$$kgV(x, y): (x * y) / ggT(x, y)$$

Erweiterter Euklidischer Algorithmus

Lemma von Bézout:

$$ggT(x,y) = ax + by$$
 falls x, y teilerfremd

x steht immer bei der grösseren Zahl! Eine solche Gleichung bezeichnet man auch als diophantische Gleichung.

$$x0 = 1 x1 = 0$$
; $y0 = 0 y1 = 1$

$$x_k = x_{k-2} - q_k \cdot x_{k-1}$$

$$y_k = y_{k-2} - q_k \cdot y_{k-1}$$

Beispiel

$$ax + by = c \rightarrow 75x + 38y = 10'000$$

 $ax + by = ggT(a, b) \rightarrow 75x + 38y = 1$

Es gibt hier eine ganzzahlige Lösung, da c = 10000 ein Vielfaches von ggT(75,38) = 1 ist.

$$75 = 1 \cdot 38 + 37$$
, $x_2 = 1 - 1 \cdot 0 = 1$, $y_2 = 0 - 1 \cdot 1 = -1$
 $38 = 1 \cdot 37 + 1$, $x_3 = 0 - 1 \cdot 1 = -1$, $y_3 = 1 - 1 \cdot (-1) = 2$
 $37 = 37 \cdot 1 + 0$

Primzahlen

Primzahl: Eine natürliche Zahl p > 1, die nur durch sich selbst und durch 1 teilbar ist.

Primfaktorzerlegung: $60 = 2 \cdot 2 \cdot 3 \cdot 5 = 2^2 \cdot 3 \cdot 5$

Modulare Arithmetik

Kongruent modulo m: Wenn zwei ganze Zahlen a und b bei Division durch $m \in \mathbb{N}$ <u>denselben Rest</u> haben, so sagt man, a und b sind <u>kongruent modulo m</u>.

Man schreibt dafür $a \equiv b \pmod{m}$. Die Zahl m heisst Modul. $\rightarrow 17 \equiv 22 \pmod{5}$

Zwei Zahlen sind also genau dann kongruent modulo m, wenn sie sich um ein Vielfaches von m unterscheiden.

Rechnen mit kongruenten Zahlen

Satz 3.4 Wenn
$$a = b \pmod{m}$$
 und $c = d \pmod{m}$ gilt, dann folgt
$$a + c = b + d \pmod{m}$$

$$a \cdot c = b \cdot d \pmod{m}.$$

Beispiel:
$$(38 + 22 \cdot 17) \pmod{4} = (2 + 2 \cdot 1) \pmod{4} = 4 \pmod{4} = 0 \pmod{4}$$
$$[a]_n + [b]_n = [a + b]_n$$
$$[a]_n \cdot [b]_n = [a \cdot b]_n$$

Restklassen

⇒ Klassen mit demselben Rest bei der Division durch eine Zahl

$$[z]_n := \{x \in \mathbb{Z} \mid x \equiv_n z\}$$

Menge aller Restklassen:

$$\mathbb{Z}/n = \{[z]_n \mid z \in \mathbb{Z}\} = \{[0]_n, [1]_n, [2]_{n,\dots}[n-1]_n\}$$

Prime Restklassen

Diejenigen Restklassen, die teilerfremd zu n sind => Notation: $\mathbb{Z}_{/n}^*$

Beispiele:

$$\mathbb{Z}_{17}^* = \{1, 2, 3, 4, 5, 6\}$$

$$\mathbb{Z}_{16}^* = \{1, 5\}$$

$$\mathbb{Z}_{18}^* = \{1, 3, 5, 7\}$$

Mächtigkeit von \mathbb{Z}^*/n : Eulersche φ – Funktion

$$\begin{array}{lll} 1. \ \varphi(n \cdot m) = \varphi(n) \cdot \varphi(m) & , ggT(n,m) = 1 \\ 2. \ \varphi(p) = p - 1 & , p \in \mathbb{P} \\ 3. \ \varphi(p^k) = p^k - p^{k-1} & , k \in \mathbb{N}_{>0} \\ |\mathbb{Z}_8^*| = \varphi(8) = \varphi(2^3) = 2^3 - 2^{3-1} = 8 - 4 = 4 \\ |\mathbb{Z}_{15}^*| = \varphi(15) = \varphi(3 \cdot 5) = \varphi(3) \cdot \varphi(5) = 2 \cdot 4 = 8 \\ |\mathbb{Z}_{240}^*| = \varphi(240) = \varphi(2^4 \cdot 3 \cdot 5) = \varphi(2^4) \cdot \varphi(3) \cdot \varphi(5) = (2^4 - 2^3) \cdot 2 \cdot 4 = 64 \end{array}$$

Verknüpfungstabelle

Die Verknüpfungstabellen für $\mathbb{Z}/6$ sind wie folgt:

Multiplikative Inverse

$$[a]_n \cdot [a^{-1}]_n = [1]_n$$

⇒ Multiplikatives Inverse existiert nur falls ggT(a, n) = 1 = teilerfremd

Berechnen

1. Pröbeln 2. Erweiterter Eukl. Algorithmus

Lluma von Bézont für Kilerfreunde Zahlen
$$gf(a_jn)=1$$
 $ax + ny = 1$
Gleichung mod $n:$
 $ax = n \cdot 1$
 $= n^0$
 $x: mult.$ Inverses zu a
 $x: mult.$ Inverses

Kongruenzgleichungen

Wichtig: Sind a und m nicht teilerfremd, so kann es keine oder auch mehrere Lösungen geben (aber nicht genau eine). Es gibt genau t = ggT(a, m) Lösungen, falls t auch b teilt; ansonsten existiert keine Lösung. Beispiel:

Fermat

Satz 3.43 (Fermat) Sei
$$p$$
 eine Primzahl. Für jede Zahl x , die teilerfremd zu p ist, gilt
$$x^{p-1}=1\ (\mathrm{mod}\, p).$$

Bsp:
$$26^{123} \mod 7$$
 $ggT(26,7) = 1$ / $26^{7-1} = 26^6 = 1$ (and likeram Fermat) $26^{123} = \frac{1}{7} (26^6)^{20} \cdot 26^3 = \frac{1}{7} 26^3 = \frac{1$

Satz von Euler

ggT(a,m) =
$$\Lambda$$
 \Rightarrow $\Lambda^{4(m)} \equiv \Lambda \mod m$
Bsp: $M\Lambda^{Ab2} \equiv_{A5} \stackrel{?}{\cdot} \qquad ggT(M_1, A5) = \Lambda$

$$M\Lambda^{4(A5)} \equiv_{A5} \Lambda \qquad (ans Sche von Enler) \qquad \Psi(A9) = A8$$

$$M\Lambda^{Ab2} \equiv_{A5} \Lambda$$

$$M\Lambda^{Ab2} \equiv_{A5} (M\Lambda^{A8})^{10} M\Lambda^{2} \equiv_{A5} \Lambda^{10} M\Lambda^{2}$$

$$\equiv_{A5} M\Lambda^{2} \equiv_{A5} \Lambda^{2} \stackrel{?}{\cdot} \qquad 256$$

Chinesischer Restsatz

Mit dem chinesischen Restsatz kann man Systeme von Kongruenzen eindeutig lösen, bei denen die Module m paarweise teilerfremd sind.

Vorgehensweise für 2 Kongruenzen

3sp.:
$$X \equiv 2 \mod 3$$
 $a_1 = 2 \mod 3$ $a_2 = 5 \mod 4$ $a_2 = 5 \mod 3$ $a_2 = 5 \mod 3$ We a 7

Vorghunsatist für 2 Kongruenem:

1. Inverse der Hodelin erginschig:

 $M_A = 7 : 7 \cdot N_A = 3 \land [N_A]_3 = [\Lambda]_3 \quad N_A = \Lambda$
 $M_2 = 3 : 3 \cdot N_2 = 7 \land [N_A]_3 = [5]_4 \quad N_2 = 5$

2. Kongruene Eusammen glass:

 $X \equiv 2 \cdot 7 \cdot \Lambda + 5 \cdot 3 \cdot 5 \mod 3$

Eine Lösung der simultanen Kongruenz existiert genau dann, wenn für alle $i \neq j$ gilt:

 $a_i \equiv a_j \mod {
m ggT}(m_i, m_j).$

Alle Lösungen sind dann kongruent modulo dem kg ${ t V}$ der m_i

Mehrere Kongruenzen

$$3spe: X = 2 \mod 3$$
 $X = 3 \mod 5$
 $X = 3 \mod 5$
 $X = 2 \mod 7$
 $X = 3 \mod 7$
 X