Cálculo de Programas

2.° ano da Licenciatura em Engenharia Informática da Universidade do Minho

2010/11 - Ficha nr.º 9

1. Recorde o diagrama genérico de um catamorfsimo de gene g sobre o tipo T e a sua propriedade universal:

Nesta disciplina vimos vários exemplos de T, por exemplo os números naturais \mathbb{N}_0 , listas [A] e dois tipos de árvores binárias,

data LTree
$$a = \text{Leaf } a \mid \text{Fork (LTree } a, \text{LTree } a)$$

e

data BTree
$$a = \text{Empty} \mid \text{Node} (a, (\text{BTree } a, \text{BTree } a))$$

A estes tipos podemos acrescentar outros como, por exemplo, o das listas não vazias

data NEList
$$a = \text{Sing } a \mid \text{Add } (a, \text{NEList } a)$$

e o das chamadas "rose trees":

$$\mathbf{data} \; \mathsf{Rose} \; a = \mathsf{Rose} \; a \; [\mathsf{Rose} \; a]$$

Preencha o quadro seguinte, em que a coluna da esquerda identifica funções sobre o tipo da coluna T, funções essas que conhece ou cujo significado facilmente identifica:

k	g	FX	F f	$\mid T \mid$	in	B
length		$1 + A \times X$		[A]	[nil, cons]	\mathbb{N}_0
length			$id + id \times f$	NEList A		\mathbb{N}_0
count					[Leaf , Fork]	N
listify	$[singl, \widehat{(++)}]$			LTree A		[A]
reverse					[nil, cons]	
sum		$1 + A \times X^2$				
sum					[Sing , Add]	
mirror	$\mathbf{in} \cdot (id + swap)$				[Leaf , Fork]	
mirror					[Empty , Node]	
filter p			$id + id \times f$	[A]		[A]
gmax	[id, max]	$A + A \times X$				A
gmax	[id, max]				[Leaf , Fork]	A

2. A função que calcula a média dos elementos que se guardam numa árvore de tipo LTree pode escrever-se sob a forma

$$avg \ t = \frac{\mathsf{sum} \ t}{\mathsf{count} \ t}$$

em que sum e count são catamorfismos já identificdos. Essa função, que necessita de duas visitas à árvore t para fazer esse cálculo, pode ser convertida numa que só faz uma tal visita,

avg
$$t = s / c$$
 where $(s, c) = (|g|) t$

recorrendo à lei de banana-split. Calcule o gene g e converta (|g|) para Haskell com variáveis.

3. Considere o diagrama

que capta a seguinte propriedade da função a,

$$a = inList \cdot (id + id \times a) \cdot (id + \langle x, id \rangle) \cdot outNat$$

para $inNat = [\underline{0}, succ]$ e inList = [nil, cons], onde nil = [] e cons (h, t) = h : t.

Funções com esta estrutura dizem-se *anamorfismos* do seu tipo de saída (listas de naturais neste caso).

(a) Explique por que é que a propriedade dada se pode escrever, alternativamente, sob a forma

$$a \cdot inNat = inList \cdot (id + \langle x, a \rangle) \tag{1}$$

- (b) Diga o que faz a função a para x = succ.
- 4. Investigue o comportamento do anamorfismo repeat cujo diagrama é:

$$\begin{split} [\mathbb{N}_0] & \longleftarrow & inList \\ \text{repeat} & & \Big | & 1 + \mathbb{N}_0 \times [\mathbb{N}_0] \\ & & \Big | & id + id \times \text{repeat} \\ & & \mathbb{N}_0 & \longrightarrow & 1 + \mathbb{N}_0 \times \mathbb{N}_0 \end{split}$$

Em particular, derive a definição pointwise de repeat.

5. Seja dada a função

$$odd = (id + \langle impar, id \rangle) \cdot outNat$$

where $impar \ n = 2 * n + 1$

Faça o diagrama do anamorfismo de listas odds = [odd] e derive a correspondente versão em Haskell com váriáveis.

2