DISTRIBUTED STREAMING TEXT EMBEDDING METHOD

=> DISTRIBUTED TRAINING WITH PYTORCH

SNU 2018 - 2 Blg Data and Deep Learning 2018. 12. 18 Final Project Team I 김누리, 김지영, 류성원, 이지훈

DISTRIBUTED STREAMING TEXT EMBEDDING FRAMEWORK

- Parameter Server architecture
 - Nodes
 - Crawl with CPUs
 - Train the model with GPU
 - Parameter Server
 - Model update
 - Evaluation
 - Asynchronous Update

EMBEDDING MODEL FOR STREAMING TEXT

- Character-wise word embedding with LSTM
- Skipgram Training
- Last hidden state as word embedding

- 1. No stable streaming datasource
 - 2. No clear evaluation metric
- 3. Unstable Pytorch distributed framework

PROBLEM I

No stable streaming datasource

- Too few machines
- Crawling APIs are extremely unstable (Facebook, Youtube, Twitter)
- Crawling bottleneck >> GPU bottleneck
- => Check validity of distributed word embedding and our model

· No clear evaluation metric

- Word similarity task
 - MEN, MTurk, RW, SimLex999, WS353
- Word analogy task
 - Google analogy, MSR analogy
- Need to train with dataset that contains all the words
 - Wikipedia dataset: 32GB text, 320GB when preprocessed
 - Takes Forever

```
Word 1 Word 2 Human (mean)
tiger cat 7.35
tiger tiger 10.00
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31
stock jaguar 0.92
```


- · Solution: PIP Loss*
 - · Metric to measure distance between embeddings
 - Exploit unitary invariance property of embeddings

•
$$ext{PIP}(E) = EE^T \ \| ext{PIP}(E_1) - ext{PIP}(E_2)\| = \|E_1E_1^T - E_2E_2^T\| = \sqrt{\sum_{i,j} (\langle v_i^{(1)}, v_j^{(1)} \rangle - \langle v_i^{(2)}, v_j^{(2)} \rangle)^2}$$

- The Ground truth of Skip-gram: SPPMI matrix*
 - $\bullet \quad \mathrm{PMI}_{ij} = \log \frac{p(v_i, v_j)}{p(v_i)p(v_j)}$
 - PIP Loss with SPPMI matrix can be used as evaluation metric

- Unstable Pytorch distributed framework
 - Data parallel

```
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
    model = nn.DataParallel(model)

model.to(device)
```

```
def data_parallel(module, inputs, device_ids=None, output_device=None, dim=0, module_kwargs=None):
    if not isinstance(inputs, tuple):
        inputs = (inputs,)

if device_ids is None:
        device_ids = list(range(torch.cuda.device_count()))

if output_device is None:
        output_device = device_ids[0]

inputs, module_kwargs = scatter_kwargs(inputs, module_kwargs, device_ids, dim)
    if len(device_ids) == 1:
        return module(*inputs[0], **module_kwargs[0])
    used_device_ids = device_ids[:len(inputs)]
    replicas = replicate(module, used_device_ids)
    outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids)
    return gather(outputs, output_device, dim)
```

- Pytorch I.0
 - Distributed Library
 - Synchronous
 - Asynchronous

EXPERIMENT SETUP

- SGNS
 - 6Mb text dataset
 - Harry Potter Series
 - Tokenized / lemmatized
 - window: 5 / ns: 10 / threshold: 3 / subsample: 2e-3
 - Learning Rate: le-4
 - epoch: 300

- Pytorch
 - I process no GPU
 - I process one GPU (970)
 - I process 4 GPUs (970)
 - 4 process 4 GPUs (Ethernet)
 - Asynchronous
 - Synchronous

EXPERIMENT RESULT I

- Embedding size: 200
- Batch size: 1024

	Average time Throughput per epoch		Best PIP loss	
I process I GPU	34.10	98,212.7	123.6	
l process 4 GPUs	25.37	132,060.5	129.6	
Cluster	394.27	8,494.3	?	

EXPERIMENT RESULT 2

- Embedding size: 200
- Batch size: 8192

	Average time Throughput per epoch		Best PIP loss	
I process I GPU	28.6	117,099.8	129.3	
I process 4 GPUs	24.1	138,964.9		
Cluster (Sync)	52.79	63,441	193.6	
Cluster (Async)	46.5	72,022.6	?	

EXPERIMENT RESULT 3

• Embedding size: 50

• Batch size: 1024

	Average time per epoch Throughput		Best PIP loss	
I process I GPU	21.6	155,048.8	14.52	
l process 4 GPUs	24.08	139,080.3	15.44	
Cluster	93.81	35,700.4	44.21	

EXPERIMENT RESULT 4

- Embedding size: 50
- Batch size: 8192

	Average time per epoch	Throughput	Best PIP loss	
I process I GPU	29.32	114,224.2	15.19	
I process 4 GPUs	21.28	157,380.3		
Cluster	Cluster I 6.93		44.12	

RESULT SUMMARY

model	node	sync	gpu	embedding	batch	time/epoch	lowest PIP loss
sgns	4	async	4	200	8192 * 4	46.5	X
sgns	4	sync	4	200	8192 * 4	52.79	193.6
sgns	4	sync	4	200	1024 * 4	394	X
sgns	4	sync	4	50	8192 * 4	16.93	44.12
sgns	4	sync	4	50	1024 * 4	93.81	44.21
sgns	I	_	1	200	8192	28.6	129.3
sgns	1	-		200	1024	34.1	123.6
sgns		-	1	50	8192	29	15.1885
sgns		-		50	1024	21.6	14.52
sgns		-	4	200	8192 * 4	24.1	ing
sgns	I	-	4	200	1024 * 4	25.37	129.6
sgns		-	4	50	8192 * 4	21.28	ing
sgns		-	4	50	1024 * 4	24.08	15.44
rnn	1	-		200	1024	1133.9	1.11

CONCLUSION

- · Single node is usually better when cluster is not big enough
- Less communication (more batch size, less weights) leads to faster training
- The quality of the word embedding is affected by batch-size (smaller seems better)
- · Therefore, sparse word embedding is not appropriate for distributed training

FUTUREWORK

- Do experiment with dense model
- Compare with Tensorflow / with PS architecture
- Try Ring all-reduce
- Find way to minimize the communication