МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический

университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ФН</u>

КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Теория вероятности и математическая статистика

Домашняя работа №7

Группа: ФН11-51Б

Вариант №15

Студент: Пунегов Д.Е.

Преподаватель: Облакова Т.В.

Задача 7

Критерий согласия для проверки простой непараметрической гипотезы

Исходные данные:

Основная гипотеза:

(A=2) Выборка получена из закона распределения, совпадающего с распределением $\eta = 1 - \sqrt{\xi}$, $\xi \sim R[0,1]$

Варианты значений п

1.
$$n = 250$$

Варианты метрик для группированной выборки

1.
$$(D = 5)$$
 $D5(n, l) = \sum_{j=1}^{l} \frac{(v_j - np_j)^2}{np_j(n - np_j)}$

 ν_j -количество значений, попавших в j-ый интервал группировки p_j -теоретическая вероятность попадания в j-ый интервал группировки

Задание.

Постройте с помощью стохастического эксперимента на основе указанной метрики приближенный критерий для проверки основной гипотезы. Найдите критические значения $D_{\rm KD}$ для трех уровней значимости $\alpha=0.1,0.05$ и 0.01.

Протестируйте критерий на двух-трех примерах и сформулируйте выводы.

Критерий согласия для проверки простой непараметрической гипотезы

```
In [62]: A = 2
D = 5
n = 250
```

При A = 2 выборка получена из закона распределения, совпадающего с распределением η =1- $\sqrt{\xi}$, ξ ~R[0,1]

Метрика $D5(n,l) = \sum_{j} \frac{(v_{j} - np_{j})^{2}}{np_{j}(n - np_{j})}$

0. Импорт нужных библиотек

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import Markdown as md
from IPython.display import Latex
import math
import scipy
import warnings
warnings.filterwarnings("ignore")
```

1. Моделирование выборки, подчиняющейся основной гипотезе

```
In [64]: m = 20000
          x = np.zeros((m, n), dtype=float)
          for i in range(m):
               x[i] = np.random.uniform(0, 1, size=n)
          x = 1 - np.sqrt(x)
          print(x[1])
          [2.01338496e-01 2.58776746e-03 1.21568043e-01 1.00558134e-02 3.80278486e-01 7.95360229e-03 2.30451271e-01 1.90570609e-01
           1.29384348e-01 2.12362243e-01 1.89100846e-04 2.68064383e-01
            4.09444374e-01 8.28040402e-01 3.08372885e-01 2.21204091e-02
            4.45510714e-02 4.56010705e-01 1.22110392e-01 6.97645555e-02
            5.29785690e-01 1.91371623e-02 4.65114917e-01 1.08807498e-01
            4.18996627e-01 1.35000559e-01 8.85904360e-01 7.01873692e-01
            1.85476922e-01 2.70926340e-01 1.60738638e-01 5.78793575e-01
            7.23830831e-01 8.95924945e-01 8.10205516e-02 2.10980157e-02
            2.62692394e-01 5.30869436e-01 5.37803286e-01 2.09033163e-01 7.74411736e-01 5.02043928e-01 9.78059447e-02 7.75367866e-01
            1.75916495e-01 3.33882800e-01 1.09413061e-01 2.03260837e-01
            4.94771044e-01 1.34931249e-01 1.60484735e-01 3.67930405e-01
            1.81849024e-01 2.48538626e-01 2.72480516e-01 1.27812814e-01
            6.67257095e-01 1.26168006e-02 2.34512247e-01 4.25571938e-01
            3.08730689e-01 7.84231921e-01 3.08456398e-01 2.80101800e-01
            2.34102251e-01 1.07502236e-01 2.64352360e-01 7.32426725e-02 7.96860130e-02 1.99421863e-01 2.93492265e-01 2.89909090e-01
           3.46005534e-01 9.13708070e-01 3.42294184e-01 4.66049760e-01 3.18790449e-01 1.15203536e-01 7.01412418e-02 4.41350018e-01
            2.85811734e-02 2.13577199e-01 7.60187367e-01 5.03960672e-01
            3.65768725e-01 2.10567380e-02 1.31270431e-01 5.87323038e-01
            3.28573729e-01 1.35615325e-01 3.11287750e-01 3.81487840e-01
            7.58287633e-02 2.79830126e-02 4.48118680e-01 1.06406268e-01
            2.63279557e-01 1.18984604e-01 4.69596612e-01 8.04195736e-02
           1.86452113e-01 5.90021860e-02 2.88111667e-01 3.87606950e-01 2.10588185e-01 1.69254615e-01 2.22538328e-01 2.74871734e-01
            2.76564714e-01 3.52808902e-01 4.60009469e-01 4.28515996e-01
            3.88667697e-02 4.81896745e-01 2.78239204e-01 1.09118624e-01
            2.80151490e-01 2.79152911e-01 2.01171882e-01 4.11701835e-01
            2.06218877e-01 1.52950919e-01 5.20435824e-01 8.61390068e-01
            3.53161366e-01 4.69664134e-02 4.81915462e-01 1.51479794e-01
            1.81201040e-01 3.82614120e-02 7.24466337e-01 5.52678023e-02
            4.56328891e-01 2.86312938e-01 3.98186518e-01 2.27025721e-01
            3.85493996e-01 1.21411148e-01 9.29430155e-02 2.96690677e-01
            5.40143167e-01 1.00185665e-01 7.98306269e-01 2.04112483e-01
           2.01163955e-01 2.90921159e-01 5.89582943e-01 4.67325541e-02 1.77860872e-01 7.68465907e-02 4.83216558e-01 2.03568722e-01
            8.65200315e-01 7.12941558e-01 3.17557822e-01 4.49129838e-01
            2.68084446e-02 8.70069557e-01 4.23341366e-01 3.50817323e-02
            2.70393874e-01 1.27677876e-01 4.12338369e-01 2.12616964e-01
            1.93870229e-01 1.96095039e-01 5.37162184e-02 1.31381976e-01
            4.32512683e-01 3.93811853e-01 1.84948972e-01 1.34265128e-01
            4.83698575e-01 8.74044231e-02 3.55411516e-01 5.21034489e-01
            1.22601802e-01 5.68621773e-01 1.22274363e-01 7.07454868e-03
            3.99917615e-01 5.78009202e-01 8.03945729e-01 6.21566214e-01 4.79723667e-01 2.32500117e-01 5.13029112e-01 2.78699858e-01
            2.01561387e-01 2.92016482e-01 7.94409004e-02 1.75525824e-01
            1.03484694e-01 3.45486792e-01 7.41139556e-03 3.97064021e-01
            4.02125269e-01 1.90684182e-01 4.98079888e-01 6.43039618e-02
            4.28152444e-01 1.52664018e-02 6.64613907e-01 1.04448823e-01
            3.30533746e-02 4.61921882e-01 3.92761266e-01 6.51210723e-01
            6.32157071e-01 3.07684880e-01 7.46133172e-01 1.52731876e-01
            2.69902120e-01 9.71229233e-02 2.65523861e-01 2.21267577e-02
           1.08556657e-01 3.92469109e-02 2.85869878e-02 7.61378709e-01 1.20714310e-01 1.94225791e-01 3.52034486e-01 1.91872095e-01
            6.82365894e-01 4.90274036e-01 4.90877572e-01 1.69961398e-01
            3.63230440e-01 1.24727655e-01 3.34768356e-01 6.50303941e-01
            3.36500551e-01 2.06305670e-01 6.23888472e-01 2.32069596e-01
            3.68637732e-01 4.45310811e-01 3.11402079e-01 2.37477252e-01
            1.72337704e-01 2.90170585e-03 5.43830893e-01 2.45418730e-01
            1.46525391e-01 2.54273164e-01 5.55018178e-01 8.93244657e-01
```

2.77318594e-02 4.50121962e-01]

2. Функция распределения, соответствующая основной гипотезе

$$\eta = 1 - \sqrt{\xi}, \, \xi \in [0, 1]$$

$$p\xi(x) = 1$$

$$g(x) = 1 - \sqrt{x} \Rightarrow g^{-1}(y) = (1 - y)^2$$

$$p\eta(y) = p\xi(g^{-1}(y)) * |(g^{-1}(y))'| = 2|y - 1| \Rightarrow$$

$$F\eta(y) = 2y - y^2, \, y \in [0, 1]$$

3. Формирование интервалов

Out [65]: Количество интервалов: $l = [1 + log_2n] = 8$

```
In [66]:
    nui = np.zeros(m * l).reshape(m, l)
    for i in range(m):
        grouped = np.histogram(x[i], xn)[0]
        nui[i] = np.array(grouped)

df = pd.DataFrame()
    intervals = np.round(np.linspace(0,1,l+1), 7)
    interval_rows = ['[{}, {})'.format(intervals[val], intervals[val+1]) for val in range(linterval_rows.append('[{}, {}]'.format(intervals[-2], intervals[-1]))
    df['Интервалы'] = interval_rows
    df['snp_i$'] = npi

for i in range(m):
    df[f'{i + 1}) $\nu_i$'] = nui[i]

df.transpose()
```

Out[66]:

	0	1	2	3	4	5	6	7
Интервалы	[0.0, 0.125)	[0.125, 0.25)	[0.25, 0.375)	[0.375, 0.5)	[0.5, 0.625)	[0.625, 0.75)	[0.75, 0.875)	[0.875, 1.0]
np_i	58.59375	50.78125	42.96875	35.15625	27.34375	19.53125	11.71875	3.90625
1) <i>vi</i>	56.0	47.0	49.0	36.0	24.0	19.0	13.0	6.0
2) <i>vi</i>	62.0	57.0	47.0	40.0	18.0	11.0	11.0	4.0
3) <i>vi</i>	50.0	49.0	40.0	40.0	26.0	24.0	20.0	1.0
19996) vi	54.0	49.0	50.0	43.0	25.0	18.0	10.0	1.0
19997) vi	63.0	49.0	32.0	37.0	32.0	17.0	16.0	4.0
19998) vi	80.0	40.0	47.0	37.0	22.0	19.0	4.0	1.0
19999) vi	64.0	41.0	56.0	36.0	26.0	14.0	12.0	1.0
20000) <i>vi</i>	59.0	54.0	49.0	37.0	24.0	11.0	15.0	1.0

20002 rows × 8 columns

4. Вычисление метрик для сгенерированных выборок

```
In [67]: D = np.zeros(m)
    for i in range(m):
        D[i] = np.sum((nui[i]-npi) ** 2 / npi/(n-npi))

D.sort() # сортируем по возрастанию
print(D)
```

[0.00116488 0.00129913 0.00137216 ... 0.16016535 0.16395956 0.18869845]

```
In [68]: plt.hist(D);
plt.title('Гистограмма распределения значений')
plt.show()
```


5. Эмпирические квантили для различных уровней значимости

6. Тестирование критерия для различных выборок:

6.1 Протестируем критерий на выборке, полученной из распределения R[0; 1] (A = 0). Для этого сгенерируем выборку, найдем эмпирические частоты и вычислим статистику.

```
In [70]: x1 = np.random.uniform(0, 1, size=n)
    nui1 = np.histogram(x1, xn)[0]
    D1 = np.sum((nui1-npi)**2 / npi/(n - npi))
```

```
In [71]: counts, bins, bars = plt.hist(x1)
          data = pd.DataFrame(columns = range(10), index=['Интервал', 'Количество значений'], dat
         display(data)
print(data.transpose().describe())
          plt.hist(x1);
          plt.title('Гистограмма распределения значений из равномерного закона')
          plt.show()
```

	0	1	2	3	4	5	6	7
Интервал	0.107559	0.20631	0.305061	0.403812	0.502563	0.601314	0.700065	0.798816

Количество 22.000000 28.00000 26.000000 24.000000 26.000000 27.000000 23.000000 26.000000 значений

	Интервал	Количество значений
count	10.000000	10.000000
mean	0.551939	25.000000
std	0.298983	3.018462
min	0.107559	19.000000
25%	0.329749	23.250000
50%	0.551939	26.000000
75%	0.774128	26.750000
max	0.996318	29.000000

Гистограмма распределения значений из равномерного закона


```
In [ ]:
In [72]: md(f' \{D1\} > D_{\{\kappa p\}}(\lambda), \lambda), \lambda \in [0.01, 0.05, 0.1]
Out [72]: 1.0930861546955675 > D_{KP}(\alpha), \forall \alpha \in [0.01, 0.05, 0.1]
```

Из этого делаем вывод, что гипотеза о том, что данная выборка распределена по η =1- $\sqrt{\xi}$, ξ ~R[0,1], отвергается.

6.2 Протестируем критерий на выборке, полученной из распределения $\eta = \sqrt{\xi}$, $\xi \sim R[0,1]$ (A=1) Для этого сгенерируем выборку из равноменрого закона, найдем эмпирические частоты и вычислим статистику.

```
In [73]: x2 = np.random.uniform(0, 1, size=n)
x2 = np.sqrt(x2)
          nui2 = np.histogram(x2, xn)[0]
D2 = np.sum((nui2-npi)**2 / npi/(n-npi))
In [74]:
          counts, bins, bars = plt.hist(x2);
data = pd.DataFrame(columns = range(10), index=['Интервал', 'Количество значений'], dat
display(data)
          print(data.transpose().describe())
          plt.title('Гистограмма распределения значений из закона $n=\sqrt{\epsilon}$')
          plt.show()
                                0
                                                                                                 6
                                                                                                            7
                                          1
                                                     2
                                                                3
                                                                           4
                                                                                      5
                                                                               0.615384
              Интервал 0.134999 0.231076
                                              0.327153
                                                         0.42323
                                                                    0.519307
                                                                                          0.711461
                                                                                                     0.807538
           Количество
                         3.000000 4.000000 16.000000 20.00000 24.000000 25.000000 33.000000 5
              значений
                    Интервал
                               Количество значений
          count
                   10.000000
                                           10.000000
                                           25.000000
          mean
                    0.567345
                    0.290888
                                           15.180397
          std
                    0.134999
                                             3.000000
          min
          25%
                                           17.000000
                    0.351172
                                           24.500000
          50%
                    0.567345
                    0.783519
                                           33.000000
          75%
          max
                    0.999692
                                           50.000000
```


отвергается.

```
In [75]: md(f'\$\{D2\} > D_{\{\kappa p\}}(\lambda), \lambda), \lambda \in [0.01, 0.05, 0.1]
Out[75]: 4.328648102023741 > D_{\kappa p}(\alpha), \forall \alpha \in [0.01, 0.05, 0.1]
```

Из этого делаем вывод, что гипотеза о том, что данная выборка распределена по η=1- $\sqrt{\xi}$, ξ ~R[0,1],

6.3 Протестируем критерий на выборке, полученной из бэта-распределения с параметрами d1 = 10, d2 = 20. Для этого сгенерируем выборку, найдем эмпирические частоты и вычислим статистику.

```
In [76]: x3 = scipy.stats.beta.rvs(10, 20, size=n)
           nui3 = np.histogram(x3, xn)[0]
D3 = np.sum((nui3-npi)**2 / npi/(n-npi))
In [77]:
           counts, bins, bars = plt.hist(x3);
data = pd.DataFrame(columns = range(10), index=['Интервал', 'Количество значений'], dat
display(data)
           print(data.transpose().describe())
           plt.title('Гистограмма распределения значений из бета-распределения')
                                                                     3
                                                                                 4
                                                                                             5
                                                                                                         6
                                                                                                                     7
                                  0
                                             1
                                                         2
               Интервал 0.154781 0.201435
                                                 0.248088
                                                             0.294741
                                                                         0.341394
                                                                                     0.388048
                                                                                                 0.434701
                                                                                                             0.481354
```

Количество значений 4.000000 9.000000 30.000000 52.000000 50.000000 37.000000 41.000000 17.000000

	Интервал	Количество значений
count	10.000000	10.000000
mean	0.364721	25.000000
std	0.141250	19.287302
min	0.154781	3.000000
25%	0.259751	7.500000
50%	0.364721	23.500000
75%	0.469691	40.000000
max	0.574661	52.000000

Гистограмма распределения значений из бета-распределения


```
In [78]: md(f'$\{D3\} > D_{\{\kappa p\}}(\Lambda), \Lambda), \Lambda (0.01, 0.05, 0.1]
Out [78]: 1.4660738663440447 > D_{KT}(\alpha), \Lambda (0.05, 0.1)
```

Из этого делаем вывод, что гипотеза о том, что данная выборка распределена по η =1- $\sqrt{\xi}$, ξ ~R[0,1], отвергается.

6.4 Протестируем критерий на выборке, полученной из исходного закона. Для этого сгенерируем выборку, найдем эмпирические частоты и вычислим статистику.

```
In [79]: x4 = np.random.uniform(0, 1, size=n)
x4 = 1 - np.sqrt(x4)
nui4 = np.histogram(x4, xn)[0]
D4 = np.sum((nui4-npi)**2 / npi/(n - npi))

In [80]: counts, bins, bars = plt.hist(x4);
data = pd.DataFrame(columns = range(10), index=['Интервал', 'Количество значений'], dat display(data)
print(data.transpose().describe())

plt.title('Гистограмма распределения значений из исходного закона')
plt.show()
```

	0	1	2	3	4	5	6	7
Интервал	0.098211	0.194933	0.291655	0.388376	0.485098	0.58182	0.678542	0.775264
Количество значений	44.000000	44.000000	37.000000	36.000000	29.000000	19.00000	16.000000	15.000000

	Интервал	Количество значений
count	10.000000	10.000000
mean	0.533459	25.000000
std	0.292840	14.988885
min	0.098211	4.000000
25%	0.315835	15.250000
50%	0.533459	24.000000
75%	0.751083	36.750000
max	0.968707	44.000000


```
In [81]: md(f'$\{D4\} < D_{\{\kappa p\}}(\Lambda), \Lambda) (0.01, 0.05, 0.1]$')
```

Out [81]: $0.011343783638827046 < D_{KD}(\alpha), \forall \alpha \in [0.01, 0.05, 0.1]$

Из этого делаем вывод, что гипотеза о том, что данная выборка распределена по η =1- $\sqrt{\xi}~$, ξ ~R[0,1], принимается.

7. Вывод

На основе стохастического эксперимента был построен критерий согласия для проверки простой гипотезы. Критерий был проверен на трех выборках распределенных не в соответствие с основной гипотезой, и для каждой из них основную гипотезу отклонил, что говорит в пользу критерия. Кроме того, критерий был проверен на выборке, распределенной в соответствие с основной гипотезой. Для этого случая была получена статистика, меньшая каждого из уровней доверия, и основная гипотеза была принята, что также говорит в пользу критерия.