[BAC] EXPONENTIELLE - LIMITES - TANGENTE

Soient $f(x) = e^x$ et $g(x) = 2e^{\frac{x}{2}} - 1$ deux fonctions définies sur \mathbb{R} .

1) On voit aisément que f(0) = g(0) = 1, ce qui implique que les courbes représentatives C_f et C_g de f et g ont un point commun d'abscisse 0 et d'ordonnée 1.

Le coefficient directeur des tangentes en ce point à C_f et C_g est donnée, respectivement, par les valeurs de f'(0) et g'(0).

on a $f'(x) = e^x \text{ d'où } f'(0) = 1$

et $g'(x) = e^{\frac{x}{2}} d'où g'(0) = 1.$

Donc les tangentes en (0; 1) à C_f et C_g ayant même coefficient directeur elles sont confondues en une seule droite Δ dont on détermine facilement l'équation : y = x + 1.

2) Soit $h(x) = 2e^{\frac{x}{2}} - x - 2$ définie sur \mathbb{R} .

2.a) En observant que $e^{\frac{x}{2}} \to 0$ et $(-x) \to +\infty$ quand $x \to -\infty$, on en déduit que $\lim h(x) = +\infty$.

2.b) On peut écrire $h(x) = (x) \frac{e^{\frac{x}{2}}}{x} - (x)l - (x)\frac{2}{x}$ et en mettant x en facteur :

$$h(x) = x \left(\frac{e^{\frac{x}{2}}}{\frac{x}{2}} - 1 - \frac{2}{x} \right)$$
. Comme $\lim_{x \to +\infty} \left(\frac{e^{\frac{x}{2}}}{\frac{x}{2}} \right) = +\infty$, on en déduit que $\lim_{x \to +\infty} h(x) = +\infty$.

2.c) On calcule la dérivée de $h: h'(x) = e^{\frac{x}{2}} - 1$. La fonction $e^{\frac{x}{2}}$ est monotone croissante sur \mathbb{R} et varie de 0 à $+\infty$ quand x varie de $-\infty$ à $+\infty$.

On a h'(0) = 0 et donc :

h'(x) < 0 pour x < 0 et h'(x) > 0 pour x > 0

2.d) En remarquant que h(0) = 0, on peut dresser le tableau de variation de h sur \mathbb{R} :

2.e) D'après le tableau ci-dessus, on voit que $h(x) \ge 0$ pour tout $x \in \mathbb{R}$.

C'est à dire $2e^{\frac{x}{2}} - x - 2 \ge 0$ d'où l'on tire : $2e^{\frac{x}{2}} - 1 \ge x + 1$.

2.f) On en déduit que Δ est au-dessous de C_g sauf pour x=0 où elle est tangente à C_g . (Voir graphe ci-dessous).

3.a)
$$\left(e^{\frac{x}{2}}-1\right)^2 = e^x - 2e^{\frac{x}{2}}+1$$

3.b) On remarque que l'expression ci-dessus est égale à f(x) - g(x). De plus, étant un carré qui s'annule pour x = 0, elle est ≥ 0 sur \mathbb{R} . D'où l'on déduit que : $f(x) \geq g(x)$ pour tout $x \in \mathbb{R}$, et C_f est au-dessus de C_g sauf pour x = 0 où les deux courbes sont tangentes. (Voir graphe ci-dessous).

