Steps into Linear Regression

Quang-Vinh Dinh PhD in Computer Science

Objective

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House price data

	reature	es	Label
TV	Radio	Newspaper	♦ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Footures

Advertising data

Label

if area=6.0,	price=?
--------------	---------

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=? **Features** Label

crim \$	zn \$	indus \$	chas \$	nox \$	rm ÷	age \$	dis ÷	rad \$	tax \$	ptratio \$	black \$	Istat \$	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9

Boston House Price Data

House Price Prediction

Feature	Label
area	price
6.7	8.1
4.6	5.6
3.5	4.3
5.5	6.7

House price data

I	Teature	Label	
	area	price	_
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

House price data

Outline

- > Review on Optimization
- > Partial Gradient and Chain Rules
- > Finding a Line
- > Linear Regression

Gradient descent

$$\frac{d}{dx}J(x) = \lim_{\Delta x \to 0} \frac{J(x + \Delta x) - J(x)}{\Delta x}$$

Gradient descent

Dịch chuyển θ

về phía phải

Optimization Algorithms

Optimization Algorithms

Learning rate

(a) Gradient descent missing global minimum on a convex cost function due to a very large learning rate.

(b) Gradient Descent missing global minimum on a non-convex cost function due to a very large learning rate.

Square function

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

Initialize x

$x_t = x_{t-1} - \eta f'(x_{t-1})$

Square function

$$-100 \le x \le 100$$
$$x \in \mathbb{N}$$

$$x_0 = 70.0$$
 $\eta = 0.1$

$$f'(x_0) = 140.0$$
$$x_1 = x_0 - \eta f'(x_0) = 56.0$$

$$f'(x_1) = 112.0$$

 $x_2 = x_1 - \eta f'(x_1) = 44.8$

$$f'(x_2) = 89.6$$

 $x_3 = x_2 - \eta f'(x_2) = 35.84$

$$f'(x_3) = 71.68$$

 $x_4 = x_3 - \eta f'(x_3) = 28.672$

$x_t = x_{t-1} - \eta f'(x_{t-1})$

Square function

Keep doing

$$x_{10} = 6.012$$
 $\eta = 0.1$

$$f'(x_{10}) = 12.02$$
$$x_{11} = x_{10} - \eta f'(x_{10}) = 4.81$$

$$f'(x_{11}) = 9.62$$

$$x_{12} = x_{11} - \eta f'(x_{11}) = 3.84$$

$$f'(x_{12}) = 7.69$$
$$x_{13} = x_{12} - \eta f'(x_{12}) = 3.078$$

$$f'(x_{13}) = 6.15$$

 $x_{14} = x_{13} - \eta f'(x_{13}) = 2.46$

Square function

Keep doing

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

$$x_{30} = 0.069$$
 $\eta = 0.1$

$$f'(x_{30}) = 0.138$$

 $x_{31} = x_{30} - \eta f'(x_{30}) = 0.055$

$$f'(x_{31}) = 0.11$$
$$x_{32} = x_{31} - \eta f'(x_{31}) = 0.044$$

$$f'(x_{32}) = 0.88$$

 $x_{33} = x_{32} - \eta f'(x_{32}) = 0.035$

$$f'(x_{34}) = 0.071$$
$$x_{34} = x_{33} - \eta f'(x_{33}) = 0.028$$

Square function

Square function

$$x_0 = 99.0$$

$$\eta = 0.1$$

$$x_t = x_{t-1} - \eta f'(x)$$

Square function

Discussion

$$x_0 = 99.0$$

$$\eta = 0.001$$

$$x_t = x_{t-1} - \eta f'(x)$$

Square function

Discussion

$$x_0 = 99.0$$

$$\eta = 0.8$$

$$x_t = x_{t-1} - \eta f'(x)$$

Square function

Discussion

$$x_0 = 99.0$$

$$\eta = 1.1$$

$$x_t = x_{t-1} - \eta f'(x)$$

Square function

- Given a function f(x), find optimal x_{opt} so that $f(x_{opt})$ is minimum
- After an update, $f(x_{new}) \le f(x_{old})$

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

$$x_{30} = 0.069 \eta = 0.1$$

$$f'(x_{30}) = 0.138$$

$$x_{31} = x_{30} - \eta f'(x_{30}) = 0.055$$

$$f'(x_{31}) = 0.11$$

$$x_{32} = x_{31} - \eta f'(x_{31}) = 0.044$$

Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

***** Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

$$x = x - \eta \frac{\partial f(x, y)}{\partial x}$$

$$y = y - \eta \frac{\partial f(x, y)}{\partial y}$$

$$x_0 = 6.0$$
 $y_0 = 9.0$ $\eta = 0.1$

$$\frac{\partial f(x_0, y_0)}{\partial x} = 12 \qquad \frac{\partial f(x_0, y_0)}{\partial y} = 18$$
$$x_1 = 4.8 \qquad y_1 = 7.2$$

$$\frac{\partial f(x_1, y_1)}{\partial x} = 9.6 \qquad \frac{\partial f(x_1, y_1)}{\partial y} = 14.4$$
$$x_2 = 3.84 \qquad y_2 = 5.75$$

$$\frac{\partial f(x_2, y_2)}{\partial x} = 7.68 \quad \frac{\partial f(x_2, y_2)}{\partial y} = 11.51$$
$$x_3 = 3.07 \qquad y_3 = 4.608$$

$$\frac{\partial f(x_3, y_3)}{\partial x} = 6.14 \quad \frac{\partial f(x_3, y_3)}{\partial y} = 9.21$$

$$x_4 = 2.45 \qquad y_4 = 3.68$$

***** Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

$\frac{\partial f(x_2, y_2)}{\partial x} = 7.68$ $\frac{\partial f(x_2, y_2)}{\partial y} = 11.51$ $x_3 = 3.07$ $y_3 = 4.608$

$$\frac{\partial f(x_3, y_3)}{\partial x} = 6.14$$
 $\frac{\partial f(x_3, y_3)}{\partial y} = 9.21$ $x_4 = 2.45$ $y_4 = 3.68$

Summary:

- Given a function f(x, y), find optimal (x_{opt}, y_{opt}) so that $f(x_{opt}, y_{opt})$ is minimum
- After an update, $f(x_{new}, y_{new}) \le f(x_{old}, y_{old})$

Outline

- > Review on Optimization
- > Partial Gradient and Chain Rules
- > Finding a Line
- > Linear Regression

***** For composite function

$$f(x) \quad g(f)$$

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

***** For composite function

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

$$f(x) = 2x - 1$$
$$g(f) = (f - 3)^2$$

$$g(x) = (2x - 1 - 3)^2$$
$$= (2x - 4)^2$$

$$g'(x) = 4(2x - 4)$$
$$= 8x - 16$$

***** For composite function and chain rule

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

$$f(x) = 2x - 1$$
$$g(f) = (f - 3)^2$$

$$f'(x) = 2$$
$$g'(f) = 2(f - 3)$$

Implementation

```
f(x) = 2x - 1g(f) = (f - 3)^2
```

$$\frac{dg}{dx} = 8x - 16$$

```
1 def fx(x):
       return 2*x - 1
3
  def gf(f):
       return (f-3)**2
6
  def dg_dx(x):
       return 8*x - 16
8
```

```
1 import random
 2
   # parameters
 4 lr = 0.1
 5
   # initialize x
 7 x = 60
 8
   old_loss = gf(fx(x)) # Logging
   print(f'old_loss: {old_loss}')
11
12 # compute derivative
   dg_dx_value = dg_dx(x)
14
15 # update
16 x = x - lr*dg dx value
17
   new_loss = gf(fx(x)) # Logging
   print(f'new_loss: {new_loss}')
old_loss: 13456
new_loss: 538.239999999994
```

Implementation

```
f(x) = 2x - 1g(f) = (f - 3)^2
```

$$\frac{dg}{dx} = 8x - 16$$

```
1 def fx(x):
       return 2*x - 1
3
4 def gf(f):
       return (f-3)**2
6
  def dg_dx(x):
8
       return 8*x - 16
```

```
1 import random
   # parameters
   num steps = 5
 5 lr = 0.1
 6
 7 # set x randomly
   x = random.randint(-100, 100)
 9
  for _ in range(num_steps):
       # Logging
11
12
       loss = gf(fx(x))
13
14
       # compute derivative
        dg_dx_value = dg_dx(x)
15
16
17
       # update
18
       x = x - lr*dg_dx_value
```

***** For composite function

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

- Given a function g(f(x)), find optimal x_{opt} so that $f(x_{opt})$ is minimum
- After an update, $g(f(x_{new})) \le g(f(x_{old}))$

Another context

$$f(x) = ax + b$$

***** Constraints

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

How to measure the distance between the red line and an predicted line?

Compute partial gradient at a, b

Move a, b opposite to db, db

Initialize a, b

Another context

$$f(x) = ax + b$$

Constraints

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

$$(x_1 = -2, y_1 = -1)$$

$$(x_2=5, y_2=13)$$

$$g(f) = (f - y_i)^2$$

Initialize a, b

Compute partial gradient at a, b

Move a, b opposite to db, db

$$\eta = 0.1$$

Equations for partial gradients

$$f(x_i) = ax_i + b$$
 $(x_1=1, y_1=5)$

$$g(f) = (f - y_i)^2$$
 $(x_2=2, y_2=7)$

$$\frac{df}{da} = x \qquad \frac{df}{db} = 1$$

$$\frac{dg}{df} = 2(f - y)$$

$$\frac{dg}{da} = \frac{dg}{df} \frac{df}{da} = 2x(f - y)$$

$$\frac{dg}{db} = \frac{dg}{df} \frac{df}{db} = 2(f - y)$$

During looking for optimal a and b, at a given time, a and b have concrete values

Optimization for a composite function

Find a and b so that
$$g(f(x))$$
 is minimum

$$f(x_i) = ax_i + b$$
 $(x_1=1, y_1=5)$

$$g(f) = (f - y_i)^2$$
 $(x_2=2, y_2=7)$

Partial derivative functions

$$\frac{dg}{da} = \frac{dg}{df} \frac{df}{da} = 2x(f - y)$$

$$\frac{dg}{db} = \frac{dg}{df} \frac{df}{db} = 2(f - y)$$

$$\sum_{i} \frac{dg_i}{da} = \frac{dg_1}{df_1} \frac{df_1}{da} + \frac{dg_2}{df_2} \frac{df_2}{da}$$

$$\sum_{i} \frac{dg_i}{db} = \frac{dg_1}{df_1} \frac{df_1}{db} + \frac{dg_2}{df_2} \frac{df_2}{db}$$

 $dg_2 df_2$

***** How to use gradient information


```
1 for i in range(num_steps):
 1 import random
                                                for sample in data:
 2
                                                    x_value, y_value = sample
                                         3
 3 # predict function
                                         4
 4 def predict_func(x, a, b):
                                                    # compute predicted_y
                                         5
 5
       return a*x + b
                                                    predicted_y = predict_func(x_value, a, b)
                                         6
 6
                                         7
 7 # parameters
 8 num_steps = 100
                                         8
                                                    # compute q
                                                    g_value = (predicted_y - y_value)**2
 9 lr = 0.01
                                         9
                                        10
10
11 # given data
                                                    # compute partial gradients for a and b
                                        11
                                                    dg_da = 2*x_value*(predicted_y - y_value)
                                        12
12 data = [[-2, -1],
                                                    dg db = 2*(predicted y - y value)
           [5, 13]]
                                        13
13
                                        14
14
                                        15
                                                    # update
15 # 1. set a, b randomly
16 a = random.random()*10.0 - 5.0
                                                    a = a - lr*dg_da
                                        16
                                                    b = b - lr*dg db
   b = random.random()*10.0 - 5.0
                                        17
```

Summary


```
2
```

```
3 # predict function
                                                 predicted_y1 = predicted_func(x1, a, b)
                                           3
4 def predicted_func(x, a, b):
                                                 predicted_y2 = predicted_func(x2, a, b)
                                          4
       return a*x + b
5
                                           5
 6
                                           6
                                                 # 3. compute g
7 # parameters
                                          7
                                                 g value 1 = (predicted y1 - y1)**2
8 num_steps = 100
                                                 g value 2 = (predicted y2 - y2)**2
                                          8
9 lr = 0.01
                                          9
10
                                                 # Logging
                                         10
11 # given data
                                         11
12 x1 = -2
                                         12
13 y1 = -1
                                         13
                                                 # 4. compute partial gradients for a and b
14
                                         14
                                                 dg_da = 2*x1*(predicted_y1 - y1) + 2*x2*(predicted_y2 - y2)
15 	ext{ } 	ext{x2} = 5
                                         15
                                                 dg_db = 2*(predicted_y1 - y1) + 2*(predicted_y2 - y2)
16 	 y2 = 13
                                         16
17
                                                 # 5. update
                                         17
18 # 1. set a, b randomly
                                         18
                                                 a = a - lr*dg da
19 a = random.random()*10.0 - 5.0
                                                 b = b - lr*dg db
                                         19
  b = random.random()*10.0 - 5.0
```

1 for i in range(num_steps):

2. compute predicted_y1 and predicted_y2

2

1 import random

Summary

Summary

List-based Implementation

***** Vectorization

$$f(x) = ax + b$$

```
f(x) = ax + b
= ax + b1
= \begin{bmatrix} x \\ 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}
```

```
1 # implement 1: naive approach
2 def predict_w1(x, a, b):
3    return a*x + b
4    5 # test
6 print(predict_w1(2, 1, 3))
1 # implement 2: using list
2 def predict_w2(data, weights):
3    return sum([d*w for d, w in zip(data, weights)])
4    5 # test
6 print(predict_w1(2, 1, 3))
6 print(predict_w2([2, 1], [1, 3]))
```

Discussion

Remove the red line

Have one more sample

$$(x_1 = -2, y_1 = -1)$$

$$(x_2=5, y_2=13)$$

$$(x_2=1, y_2=3)$$

Discussion

***** What about the given samples?

Line 2: smallest summation of distances

Line 3: go through one point

