NIP compressible types

Pablo Andújar Guerrero

University of Leeds

Workshop?

A Boolean atom of a finite family of sets \mathcal{F} is a maximal non-empty Boolean combination of sets in \mathcal{F} .

(In model-theoretic terminology a Boolean atom can be called a type.)

Let $BA(\mathcal{F})$ denote the number of Boolean atoms of \mathcal{F} .

A Boolean atom of a finite family of sets \mathcal{F} is a maximal non-empty Boolean combination of sets in \mathcal{F} .

Let $BA(\mathcal{F})$ denote the number of Boolean atoms of \mathcal{F} .

A Boolean atom of a finite family of sets \mathcal{F} is a maximal non-empty Boolean combination of sets in \mathcal{F} .

Let $BA(\mathcal{F})$ denote the number of Boolean atoms of \mathcal{F} .

A Boolean atom of a finite family of sets \mathcal{F} is a maximal non-empty Boolean combination of sets in \mathcal{F} .

(In model-theoretic terminology a Boolean atom can be called a type.)

Let $BA(\mathcal{F})$ denote the number of Boolean atoms of \mathcal{F} .

Definition

Let S be a family of sets. The dual shatter function of S is the function

$$\pi_{\mathcal{S}}^* : \omega \to \omega$$

$$n \mapsto \max\{BA(\mathcal{F}) : \mathcal{F} \subseteq \mathcal{S}, |\mathcal{F}| = n\}$$

Observe that $\pi_{\mathcal{S}}^*(n) \leq 2^n$ for all n.

Observe that $\pi_{\mathcal{S}}^*(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{S}}^*(d) < 2^d$ for some d then $\pi_{\mathcal{S}}^*(n) = O(n^{d-1})$ (Sauer's Lemma).

Observe that $\pi_{\mathcal{S}}^*(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{S}}^*(d) < 2^d$ for some d then $\pi_{\mathcal{S}}^*(n) = O(n^{d-1})$ (Sauer's Lemma).

In this case we call S a VC class (VC=Vapnik-Chervonenkis).

Observe that $\pi_{\mathcal{S}}^*(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{S}}^*(d) < 2^d$ for some d then $\pi_{\mathcal{S}}^*(n) = O(n^{d-1})$ (Sauer's Lemma).

In this case we call S a VC class (VC=Vapnik-Chervonenkis).

Definition

The VC-codensity of a VC class \mathcal{S} is

$$\operatorname{vc}^*(\mathcal{S}) = \inf\{r \in \mathbb{R}^{\geq 0} : \pi_{\mathcal{S}}^*(n) = O(n^r)\}.$$

Observe that $\pi_{\mathcal{S}}^*(n) \leq 2^n$ for all n.

If $\pi_{\mathcal{S}}^*(d) < 2^d$ for some d then $\pi_{\mathcal{S}}^*(n) = O(n^{d-1})$ (Sauer's Lemma).

In this case we call S a VC class (VC=Vapnik-Chervonenkis).

Definition

The VC-codensity of a VC class \mathcal{S} is

$$vc^*(\mathcal{S}) = \inf\{r \in \mathbb{R}^{\geq 0} : \pi_{\mathcal{S}}^*(n) = O(n^r)\}.$$

E.g. If $S = \{\text{intervals in } \mathbb{R}\}\ \text{then } \pi_S^*(n) = 2n \text{ and } \mathrm{vc}^*(S) = 1.$

A family of sets S is (downward) directed if, for any **finite** subfamily $F \subseteq S$, there exists some $S \in S$ such that $S \subseteq \cap F$.

Equivalently, S is directed if, for any $S_1, S_2 \in S$ there exists $S \in S$ with $S \subseteq S_1 \cap S_2$.

E.g.

- In a poset (P, \leq) the sets $\{a \in P : a \leq b\}$ for $b \in P$.
- The neighborhoods of a given point in a topological spaces.
- Any filter basis.

A family of sets S has a finite transversal $T = \{a_1, \ldots, a_n\}$ if every $S \in S$ satisfies that $S \cap T \neq \emptyset$.

A family of sets S has a finite transversal $T = \{a_1, \ldots, a_n\}$ if every $S \in S$ satisfies that $S \cap T \neq \emptyset$.

A family of sets S has a finite transversal $T = \{a_1, \ldots, a_n\}$ if every $S \in S$ satisfies that $S \cap T \neq \emptyset$.

We care about the property that S does **not** have a finite transversal.

A family of sets S has a finite transversal $T = \{a_1, \ldots, a_n\}$ if every $S \in S$ satisfies that $S \cap T \neq \emptyset$.

We care about the property that S does **not** have a finite transversal.

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

 \mathcal{S} could be directed.

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

 \mathcal{S} could be directed.

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

 \mathcal{S} could be directed.

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

Now suppose that S is **not** directed, witnessed by S_1 and S_2 .

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

Now suppose that S is **not** directed, witnessed by S_1 and S_2 .

Fix a family of sets S that is consistent (=has the finite intersection property). Suppose it does not have a finite transversal.

Now suppose that S is **not** directed, witnessed by S_1 and S_2 .

$$BA(S_1, S_2, S_3) \ge 3 + 1 + 1.$$

$$F = S_1 \cap S_2 \cap S_3$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$F = S_1 \cap S_2 \cap S_3$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

 $F \cap \mathcal{S}$ could be directed.

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

 $F \cap \mathcal{S}$ could be directed.

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

 $F \cap \mathcal{S}$ could be directed.

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$BA(S_1, S_2, S_3, S_4, S_5) \ge BA(S_1, S_2, S_3) + 3$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$BA(S_1, S_2, S_3, S_4, S_5) \ge BA(S_1, S_2, S_3) + 3$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$BA(S_1, S_2, S_3, S_4, S_5) \ge BA(S_1, S_2, S_3) + 3$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$BA(S_1,...,S_6) \ge BA(S_1,S_2,S_3) + 3 + 2.$$

Consider the family of sets $F \cap S = \{F \cap S : S \in S\}$.

$$BA(S_1,\ldots,S_6) \ge BA(S_1,S_2,S_3) + 3 + 2 + 1.$$

We continue this process, and one of two things can happen:

- We find a finite intersection F of sets in S such that $F \cap S$ is directed.
- There is a sequence $(S_i)_i$ of sets in S such that

$$BA(B_i: i \le 3n) \ge \sum_{j=1}^n j.$$

Meaning that

$$\pi_{\mathcal{S}}^*(3n) \ge \frac{n^2 + n}{2}.$$

Lemma A (A.G. '23)

Let S be a family of sets with $vc^*(S) < 2$. Then at least one holds:

- (a) There exists a finite intersection F of sets in S such that $F \cap S = \{F \cap S : S \in S\}$ is directed.
- (b) S has a finite transversal.

Lemma A (A.G. '23)

Let S be a family of sets with $vc^*(S) < 2$. Then at least one holds:

- (a) There exists a finite intersection F of sets in S such that $F \cap S = \{F \cap S : S \in S\}$ is directed.
- (b) S has a finite transversal.

In fact we can improve (b) in the above lemma.

Lemma A (A.G. '23)

Let S be a family of sets with $vc^*(S) < 2$. Then at least one holds:

- (a) There exists a finite intersection F of sets in S such that $F \cap S = \{F \cap S : S \in S\}$ is directed.
- (b) S has a finite transversal.

In fact we can improve (b) in the above lemma.

Better Lemma A (A.G. '23)

Let S be a family of sets with $vc^*(S) < 2$. Then at least one holds:

- (a) There exists a finite intersection F of sets in S such that $F \cap S = \{F \cap S : S \in S\}$ is directed.
- (b) There exists F_1, \ldots, F_m , finite non-empty Boolean combinations of sets in S such that, for every $S \in S$ there is some $i \leq m$ such that $F_i \subseteq S$.

Now let us talk compressibility.

Our two main references are:

- Martin Bays, Itay Kaplan and Pierre Simon. Density of compressible types and some consequences.
 ArXiv: 2107.05197, 2022.
- Xi Chen, Yu Cheng, and Bo Tang. On the recursive teaching dimension of VC classes.
 Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems, 2016, Barcelona, Spain, p 2164–2171.

Model-theoretic framework

Let T be a theory and and $\varphi(x,y)$ be a (partitioned) formula. For any $M \models T$ and $b \in M^y$ let $\varphi(M,b) = \{a \in M^x : M \models \varphi(a,b)\}$. We identify $\varphi(x,y)$ with the family of sets $\{\varphi(M,b) : b \in M^y\}$:

- $\varphi(x,y)$ may be directed.
- It has dual shatter function π_{φ}^* .
- It has VC-codensity . . .

(All these are independent of M.)

Model-theoretic framework

Let T be a theory and and $\varphi(x,y)$ be a (partitioned) formula. For any $M \models T$ and $b \in M^y$ let $\varphi(M,b) = \{a \in M^x : M \models \varphi(a,b)\}$. We identify $\varphi(x,y)$ with the family of sets $\{\varphi(M,b) : b \in M^y\}$:

- $\varphi(x,y)$ may be directed.
- It has dual shatter function π_{φ}^* .
- It has VC-codensity ...

(All these are independent of M.)

A formula φ is NIP if it is a VC class.

A theory T is NIP if every formula φ is NIP.

Model-theoretic framework

Let T be a theory and and $\varphi(x,y)$ be a (partitioned) formula. For any $M \models T$ and $b \in M^y$ let $\varphi(M,b) = \{a \in M^x : M \models \varphi(a,b)\}$. We identify $\varphi(x,y)$ with the family of sets $\{\varphi(M,b) : b \in M^y\}$:

- $\varphi(x,y)$ may be directed.
- It has dual shatter function π_{φ}^* .
- It has VC-codensity ...

(All these are independent of M.)

A formula φ is NIP if it is a VC class.

A theory T is NIP if every formula φ is NIP.

Conjecture: in any dp-minimal theory (a subclass of NIP theories) any formula $\varphi(x,y)$ with |x|=1 has VC-codensity at most one.

Theorem (Baldwin-Saxl '76)

Let G be a group definable in an NIP structure. Let \mathcal{H} be a (uniformly) definable family of subgroups of G. Then there is $k < \omega$ such that, for any finite family $\mathcal{F} \subseteq \mathcal{H}$, there is a subfamily $\mathcal{C} \subseteq \mathcal{F}$ with $|\mathcal{C}| \leq k$ such that $\cap \mathcal{C} = \cap \mathcal{F}$.

Definition

Let $k < \omega$. A family of sets S is k-compressible if, for any **finite** family $F \subseteq S$, there exists a subfamily $G \subseteq S$ of size **at most** k such that $\cap G \subseteq \cap F$.

Equivalently, S is k-compressible if, for any family $F \subseteq S$ of size k+1, there exists a subfamily $G \subseteq S$ of size **at most** k such that $\cap G \subseteq \cap F$.

Definition

Let $k < \omega$. A family of sets S is k-compressible if, for any **finite** family $F \subseteq S$, there exists a subfamily $G \subseteq S$ of size **at most** k such that $\cap G \subseteq \cap F$.

Equivalently, S is k-compressible if, for any family $\mathcal{F} \subseteq S$ of size k+1, there exists a subfamily $\mathcal{G} \subseteq S$ of size **at most** k such that $\cap \mathcal{G} \subseteq \cap \mathcal{F}$.

Note: Directed = 1-compressible.

"This terminology is inspired by the terminology around compression schemes in the statistical learning literature."

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

- The set of real intervals in 0^+ is 1-compressible.
- The set of unbounded real intervals in 0^+ is 2-compressible.
- In \mathbb{R}^k , the set of "stripes" of the form $\{(x_1, \ldots, x_k) : a < x_i < b\}$ for $a \le 0 < b$ and $i \le n$, is k-compressible.

A k-compressible family of sets is consistent iff it is k-consistent (every k sets have non-empty intersection).

So for k-compressible **definable** families of sets consistency is expressible with a single first order sentence.

For a formula $\varphi(x,y)$ and $i \in \{0,1\}$ let $\varphi^1(x,y) = \varphi(x,y)$ and $\varphi^0(x,y) = \neg \varphi(x,y)$.

For a formula $\varphi(x,y)$ and $i \in \{0,1\}$ let $\varphi^1(x,y) = \varphi(x,y)$ and $\varphi^0(x,y) = \neg \varphi(x,y)$.

By a φ -type p(x) over $B \subseteq M^y$ we mean a maximal consistent collection of formulas of the form $\varphi^i(x,b)$, for $b \in B$ and $i \in \{0,1\}$.

For a formula $\varphi(x,y)$ and $i \in \{0,1\}$ let $\varphi^1(x,y) = \varphi(x,y)$ and $\varphi^0(x,y) = \neg \varphi(x,y)$.

By a φ -type p(x) over $B \subseteq M^y$ we mean a maximal consistent collection of formulas of the form $\varphi^i(x,b)$, for $b \in B$ and $i \in \{0,1\}$.

We identify types p(x) with the family of sets defined in M by the formulas in it.

For a formula $\varphi(x,y)$ and $i \in \{0,1\}$ let $\varphi^1(x,y) = \varphi(x,y)$ and $\varphi^0(x,y) = \neg \varphi(x,y)$.

By a φ -type p(x) over $B \subseteq M^y$ we mean a maximal consistent collection of formulas of the form $\varphi^i(x,b)$, for $b \in B$ and $i \in \{0,1\}$.

We identify types p(x) with the family of sets defined in M by the formulas in it.

Definition

A φ -type p(x) is k-compressible if for any **finite** partial type $q(x) \subseteq p(x)$ there exists $r(x) \subseteq p(x)$ with $|r(x)| \le k$ such that

$$r(x) \vdash q(x)$$
 (i.e. $r(M) \subseteq q(M)$).

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$.

There exists $k, n < \omega$ such that, for every $B \subseteq M^y$ and φ -type p(x) over B, there exist n many k-compressible φ -types over B,

$$q_1(x),\ldots,q_n(x),$$

such that any formula $\varphi(x,b)$, $b \in B$, belongs in p(x) if and only if it belongs in more than n/2 of the types $q_i(x)$:

$$p(x) = \{ \varphi^{i}(x, b) : b \in B, i \in \{0, 1\}, \exists I \subseteq \{1, \dots, n\},$$

$$|I| > n/2, \varphi^{i}(x, b) \in q_{i}(x) \, \forall i \in I \}.$$

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$.

There exists $k, n < \omega$ such that, for every $B \subseteq M^y$ and φ -type p(x) over B, there exist n many k-compressible φ -types over B,

$$q_1(x),\ldots,q_n(x),$$

such that any formula $\varphi(x,b)$, $b \in B$, belongs in p(x) if and only if it belongs in more than n/2 of the types $q_i(x)$:

$$p(x) = \{ \varphi^{i}(x, b) : b \in B, i \in \{0, 1\}, \exists I \subseteq \{1, \dots, n\}, \\ |I| > n/2, \varphi^{i}(x, b) \in q_{i}(x) \, \forall i \in I \}.$$

The type p(x) is the rounded average of the k-compressible types $q_1(x), \ldots, q_n(x)$.

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$.

There exists $k, n < \omega$ such that, for every $B \subseteq M^y$ and φ -type p(x) over B, there exist n many k-compressible φ -types over B,

$$q_1(x),\ldots,q_n(x),$$

such that any formula $\varphi(x,b)$, $b \in B$, belongs in p(x) if and only if it belongs in more than n/2 of the types $q_i(x)$:

$$p(x) = \{ \varphi^{i}(x, b) : b \in B, i \in \{0, 1\}, \exists I \subseteq \{1, \dots, n\},$$

$$|I| > n/2, \varphi^{i}(x, b) \in q_{i}(x) \, \forall i \in I \}.$$

The type p(x) is the rounded average of the k-compressible types $q_1(x), \ldots, q_n(x)$.

The n and k depend only on the dual VC-dimension of φ (the maximum d such that $\pi_{\varphi}^*(d)=2^d$).

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$. Fix $1/2 \le \alpha < 1$.

There exists $k, n < \omega$ such that, for every $B \subseteq M^y$ and φ -type p(x) over B, there exist n many k-compressible φ -types over B,

$$q_1(x),\ldots,q_n(x),$$

such that

$$p(x) = \{ \varphi^i(x, b) : b \in B, i \in \{0, 1\}, \exists I \subseteq \{1, \dots, n\},$$

$$|I| > \alpha n, \varphi^i(x, b) \in q_i(x) \, \forall i \in I \}.$$

The n/2 in the theorem can be improved to αn for any fixed $1/2 \le \alpha < 1$.

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$. Fix $1/2 \le \alpha < 1$.

There exists $k, n < \omega$ such that, for every $B \subseteq M^y$ and φ -type p(x) over B, there exist n many k-compressible φ -types over B,

$$q_1(x),\ldots,q_n(x),$$

such that

$$p(x) = \{ \varphi^{i}(x, b) : b \in B, i \in \{0, 1\}, \exists I \subseteq \{1, \dots, n\}, \\ |I| > \alpha n, \varphi^{i}(x, b) \in q_{i}(x) \, \forall i \in I \}.$$

The n/2 in the theorem can be improved to αn for any fixed $1/2 \le \alpha < 1$.

Theorem B was used to prove existence of uniform honest definitions for NIP formulas.

Two considerations around Theorem B

- Does VC-codensity play a role in refining Theorem B?
- If the type p(x) is definable, can the k-compressible types $q_1(x), \ldots, q_n(x)$ be chosen definable too?

Does VC-codensity play a role in refining Theorem B?

Theorem B (Bays-Kaplan-Simon '22)

Let $\varphi(x, y)$ be an NIP formula in a theory T and $M \models T$. Then there exists $k, n < \omega$ such that every φ -type over any $B \subseteq M^y$ is the rounded average of n many k-compressible φ -types over B.

Does VC-codensity play a role in refining Theorem B?

Theorem B (Bays-Kaplan-Simon '22)

Let $\varphi(x, y)$ be an NIP formula in a theory T and $M \models T$. Then there exists $k, n < \omega$ such that every φ -type over any $B \subseteq M^y$ is the rounded average of n many k-compressible φ -types over B.

Proposition C (A.G. '23) - *Uniform Better Lemma A*

Let $\varphi(x,y)$ be a formula in a theory T with $\mathbf{vc}^*(\varphi) < 2$. Let $M \models T$. Then there exist $k, n < \omega$ such, for every φ -type p(x) over any $B \subseteq M^y$, at least one holds:

- (a) p(x) is k-compressible.
- (b) There are n many partial φ -types $q_1(x), \ldots q_n(x)$, with $\mathbf{vc}^*(q_i) < 1$ for every $i \leq n$, such that every formula in p(x) belongs in at least one of the $q_i(x)$.

Does VC-codensity play a role in refining Theorem B?

Theorem B (Bays-Kaplan-Simon '22)

Let $\varphi(x,y)$ be an NIP formula in a theory T and $M \models T$. Then there exists $k, n < \omega$ such that every φ -type over any $B \subseteq M^y$ is the rounded average of n many k-compressible φ -types over B.

Proposition C (A.G. '23) - Uniform Better Lemma A

Let $\varphi(x,y)$ be a formula in a theory T with $\mathbf{vc}^*(\varphi) < 2$. Let $M \models T$. Then there exist $k, n < \omega$ such, for every φ -type p(x) over any $B \subseteq M^y$, at least one holds:

- (a) p(x) is k-compressible.
- (b) There are n many partial φ -types $q_1(x), \ldots q_n(x)$, with $\mathbf{vc}^*(q_i) < 1$ for every $i \leq n$, such that every formula in p(x) belongs in at least one of the $q_i(x)$.

Does Proposition C have a generalization to $vc^*(\varphi) < n$?

Why do we care?

Because we are interested in further understanding the density of k-compressible types.

Why do we care?

Because we are interested in further understanding the density of k-compressible types.

Corollary D (of Theorem B)

Let M be a distal structure, $\varphi(x,y)$ a formula, and p(x) a φ -type. Then there exists another formula $\psi(x,z)$ and a directed (i.e. 1-compressible) ψ -type q(x) such that

$$q(x) \vdash p(x)$$
.

(q(x)) can be chosen over the same parameters as p(x)

This corollary is a strong "uniform" density result for k-compressible types.

Question E

In Corollary D, if the φ -type p(x) extends to a definable type over M (in the full language), can the directed ψ -type q(x) be chosen definable?

Question E

In Corollary D, if the φ -type p(x) extends to a definable type over M (in the full language), can the directed ψ -type q(x) be chosen definable?

A positive answer to our question about Theorem B, would yield a positive answer to Question E.

This one.

Question E

In Corollary D, if the φ -type p(x) extends to a definable type over M (in the full language), can the directed ψ -type q(x) be chosen definable?

A positive answer to our question about Theorem B, would yield a positive answer to Question E.

A theory T is of VC-density one if every formula $\varphi(x,y)$ with |x|=1 has VC-codensity less than 2.

Using Proposition C we can show that Question E has a positive answer in distal theories of VC-density one.

A theory T is of VC-density one if every formula $\varphi(x,y)$ with |x|=1 has VC-codensity less than 2.

Using Proposition C we can show that Question E has a positive answer in distal theories of VC-density one.

Theorem (A.G. '23)

Let M be a distal structure of VC-density one, $\varphi(x,y)$ be a formula, and p(x) a φ -type. If p(x) extends to a **definable** type in $S_x(M)$, then there exists another formula $\psi(x,z)$ and a directed **definable** ψ -type q(x) such that

$$q(x) \vdash p(x)$$
.

Mar 07/03/2023 18:57

Para: Pablo Andujar Guerrero

I talked about it with Martin and Pierre.

It seems that there might be a counterexample but maybe it's not so easy to verify. The idea is to take a meet-tree with a height function. So let's take M to be (omega^<omega, omega, h) where h goes from w^<w to w and gives the level. The language has the tree order, the omega order, h (and the meet). Now if you take a point s in the tree, you can look at the type saying x>=s and x is incomparable to any other point >=s (the generic type of a "closed ball") and h(x) > M (height = infinity).

Then this type is the average of compressible types by taking 3 different branches > s, say B1, B2, B3, and looking at the types saying x>B i, h(x)>M, but these branches won't be definable. In order to verify that this actually works, one would need to understand what are definable types, etc.

Itay

In the 2-sorted structure $(\omega^{<\omega} \cup \omega, <, <_{\omega}, h)$, with $h: \omega^{<\omega} \to \omega$ the height function, consider the formulas

$$\varphi_1(x, y_1) := (x = y_1) \lor (x < y_1) \lor (x > y_1)$$
 for $y_1 \in \omega^{<\omega}$,
 $\varphi_2(x, y_2) := y_2 < h(x)$ for $y_2 < \omega$.

In the 2-sorted structure $(\omega^{<\omega} \cup \omega, <, <_{\omega}, h)$, with $h: \omega^{<\omega} \to \omega$ the height function, consider the formulas

$$\varphi_1(x, y_1) := "(x = y_1) \lor (x < y_1) \lor (x > y_1)" \text{ for } y_1 \in \omega^{<\omega},$$

 $\varphi_2(x, y_2) := "y_2 <_{\omega} h(x)" \text{ for } y_2 < \omega.$

Consider the $\{\varphi_1, \varphi_2\}$ -type p(x) given by

$$\varphi_1(x,()),$$

 $\neg \varphi_1(x,b_1)$ for every $b_1 \in \omega^{<\omega} \setminus \{()\},$
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega.$

The type p(x) is clearly definable.

In the 2-sorted structure $(\omega^{<\omega} \cup \omega, <, <_{\omega}, h)$, with $h: \omega^{<\omega} \to \omega$ the height function, consider the formulas

$$\varphi_1(x, y_1) := \text{``}(x = y_1) \lor (x < y_1) \lor (x > y_1) \text{''} \text{ for } y_1 \in \omega^{<\omega},$$

 $\varphi_2(x, y_2) := \text{``}y_2 <_{\omega} h(x) \text{''} \text{ for } y_2 < \omega.$

Consider the $\{\varphi_1, \varphi_2\}$ -type p(x) given by

$$\varphi_1(x,()),$$

 $\neg \varphi_1(x,b_1)$ for every $b_1 \in \omega^{<\omega} \setminus \{()\},$
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega.$

The type p(x) is clearly definable. (I believe that we can apply Theorem B to p(x).) Consider the $\{\varphi_1, \varphi_2\}$ -type p(x) given by

$$\varphi_1(x,()),$$

 $\neg \varphi_1(x,b_1)$ for every $b_1 \in \omega^{<\omega} \setminus \{()\},$
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega.$

The type p(x) is clearly definable. (I believe that we can apply Theorem B to p(x).) Consider the $\{\varphi_1, \varphi_2\}$ -type p(x) given by

$$\varphi_1(x,()),$$

 $\neg \varphi_1(x,b_1)$ for every $b_1 \in \omega^{<\omega} \setminus \{()\},$
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega.$

The type p(x) is clearly definable. (I believe that we can apply Theorem B to p(x).)

Pick 3 disjoint branches B_1, B_2, B_3 . For each $i \in \{1, 2, 3\}$ let $q_i(x)$ be the $\{\varphi_1, \varphi_2\}$ -type:

$$\varphi_1(x, b_1)$$
 iff $b_1 \in B_i$,
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega$.

Consider the $\{\varphi_1, \varphi_2\}$ -type p(x) given by

$$\varphi_1(x,()),$$

 $\neg \varphi_1(x,b_1)$ for every $b_1 \in \omega^{<\omega} \setminus \{()\},$
 $b_2 <_{\omega} h(x)$ for every $b_2 < \omega.$

The type p(x) is clearly definable. (I believe that we can apply Theorem B to p(x).)

Pick 3 disjoint branches B_1, B_2, B_3 . For each $i \in \{1, 2, 3\}$ let $q_i(x)$ be the $\{\varphi_1, \varphi_2\}$ -type:

$$\varphi_1(x, b_1) \text{ iff } b_1 \in B_i,$$

 $b_2 <_{\omega} h(x) \text{ for every } b_2 < \omega.$

The type p(x) is the rounded average of the types $q_1(x)$, $q_2(x)$, $q_3(x)$. Moreover these are 2-compressible. However they are probably not definable.

Email (Bays-Kaplan-Simon)

The $\{\varphi_1, \varphi_2\}$ -type p(x) is definable but might not be the rounded average of finitely many k-compressible (for any k) **definable** $\{\varphi_1, \varphi_2\}$ -types.

In particular p(x) is the rounded average of the 2-compressible types $q_1(x)$, $q_2(x)$ and $q_3(x)$, but these are probably not definable.

The big picture: what do we know about NIP types?

- 1. Few types over finite sets.
- 2. Indiscernible sequences converge to types.
- 3. Equivalence of invariance, non-dividing and non-forking over models.
- 4. Existence of honest definitions.
- 5. Described by **compressible types** (Theorem B).

The big picture: what do we know about NIP types?

- 1. Few types over finite sets.
- 2. Indiscernible sequences converge to types.
- 3. Equivalence of invariance, non-dividing and non-forking over models.
- 4. Existence of honest definitions.
- 5. Described by **compressible types** (Theorem B).

Opinion: VC-(co)density is conspicuously absent.