

深度学习与自然语言处理 第二次大作业

EM 算法

院	(系)名称			自动化科学与电气工程学院
学	生	学	号	ZY2103803
学	生	姓	名	李鑫磊

2022年 04 月

一、问题描述

一个袋子中三种硬币的混合比例为: s1, s2 与 1-s1-s2 (0<=si<=1), 三种硬币掷出正面的概率分别为: p, q, r。

自己指定系数 s1, s2, p, q, r,生成 N 个投掷硬币的结果(由 01 构成的序列,其中 1 为正面,0 为反面),利用 EM 算法来对参数进行估计并与预先假定的参数进行比较。

二、具体算法实现

EM 算法是一种迭代算法,1977 年由 Dempster 等人总结提出,用于含有隐变量的概率模型参数的最大似然估计。

三种硬币的混合比例是 $s_1:s_2:1-s_1-s_2$,三种硬币掷出正面的概率分别为: π, p, q ,隐变量z表示硬币属于第几种,对于单次抛硬币的结果,可用以下模型来表示:

$$p(y_i | \theta) = \sum_{z} p(y_i, z | \theta)$$

$$= \sum_{z} p(z | \theta) p(y_j | z, \theta)$$

$$= s_1 \pi^{y_j} (1 - \pi)^{1 - y_j} + s_2 p^{y_j} (1 - p)^{1 - y_j} + (1 - s_1 - s_2) q^{y_j} (1 - q)^{1 - y_j}$$

观测数据的似然函数可表示为:

$$p(y \mid \theta) = \prod_{j=1}^{n} \left[s_1 \pi^{y_j} (1-\pi)^{1-y_j} + s_2 p^{y_j} (1-p)^{1-y_j} + (1-s_1-s_2) q^{y_j} (1-q)^{1-y_j} \right]$$

假设 y_i 来自硬币 1 的概率为 u_{1j} ,来自硬币 2 的概率为 u_{2j} ,完全数据的似然函数可表示为:

$$p(y \mid \theta) = \prod_{j=1}^{n} \{ [s_1 \pi^{y_j} (1-\pi)^{1-y_j}]^{u_{1j}} + [s_2 p^{y_j} (1-p)^{1-y_j}]^{u_{2j}} + [(1-s_1-s_2)q^{y_j} (1-q)^{1-y_j}]^{1-u_{1j}-u_{2j}} \}$$

相应的对数似然函数为:

$$\log p(y, u \mid \theta) = \sum_{j=1}^{n} u_{1j} [\log s_1 + y_j \log \pi + (1 - y_j) \log(1 - \pi)]$$
$$+ u_{2j} [\log s_2 + y_j \log p + (1 - y_j) \log(1 - p)]$$

$$+(1-u_{1i}-u_{2i})[\log(1-s_1-s_2)+y_i\log q+(1-y_i)\log(1-q)]$$

E-step:

EM 算法是在不断迭代中完成的,对于第 i+1 次迭代,其中的隐变量为:

$$u_{1j}^{(i+1)} = \frac{s_1 \pi^{y_j} (1-\pi)^{1-y_j}}{s_1 \pi^{y_j} (1-\pi)^{1-y_j} + s_2 p^{y_j} (1-p)^{1-y_j} + (1-s_1-s_2) q^{y_j} (1-q)^{1-y_j}}$$

$$u_{2j}^{(i+1)} = \frac{s_2 p^{y_j} (1-p)^{1-y_j}}{s_1 \pi^{y_j} (1-\pi)^{1-y_j} + s_2 p^{y_j} (1-p)^{1-y_j} + (1-s_1-s_2) q^{y_j} (1-q)^{1-y_j}}$$

$$u_{3j}^{(i+1)} = 1 - u_{1j}^{(i+1)} - u_{2j}^{(i+1)}$$

我们可以直接求取 Q 函数:

$$Q(\theta, \theta_i) = \sum_{z} p(z \mid y, \theta_i) \log p(y, z \mid \theta) = E_z[\log(y, z \mid \theta, \theta^{(i)})]$$

将上述隐变量代入 Q 函数可得:

$$Q(\theta, \theta_i) = \sum_{j=1}^{n} u_{1j}^{(i+1)} [\log s_1 + y_j \log \pi + (1 - y_j) \log(1 - \pi)]$$

$$+ u_{2j}^{(i+1)} [\log s_2 + y_j \log p + (1 - y_j) \log(1 - p)]$$

$$+ (1 - u_{1j}^{(i+1)} - u_{2j}^{(i+1)}) [\log(1 - s_1 - s_2) + y_j \log q + (1 - y_j) \log(1 - q)]$$

M-step:

得到 Q 函数后,对参数进行极大化:

$$\theta^{(i+1)} = \arg\max_{\theta} Q(\theta, \theta^i)$$

使用 Q 函数分别对不同参数求导并令其为 0, 可得:

$$S_1^{(i+1)} = \frac{\sum_{j=1}^n u_{1j}^{(i+1)}}{n}$$

$$s_2^{(i+1)} = \frac{\sum_{j=1}^n u_{2j}^{(i+1)}}{n}$$

$$\pi^{(i+1)} = \frac{\sum_{j=1}^{n} u_{1,j}^{(i+1)} y_{j}}{\sum_{j=1}^{n} u_{1,j}^{(i+1)}}$$

$$p^{(i+1)} = \frac{\sum_{j=1}^{n} u_{2j}^{(i+1)} y_j}{\sum_{j=1}^{n} u_{2j}^{(i+1)}}$$

$$q^{(i+1)} = \frac{\sum_{j=1}^{n} (1 - u_{1j}^{(i+1)} - u_{2j}^{(i+1)}) y_{j}}{\sum_{j=1}^{n} (1 - u_{1j}^{(i+1)} - u_{2j}^{(i+1)})}$$

三、运行结果

随机生成 1000 个 0 和 1 的序列数据, 然后设置好五个参数的初始值, 令其迭代 100 次之后, 得到的结果如下表所示:

参数	初始值	迭代 100 次后的值
s_1	0.2	0.1806
s_2	0.4	0.3936
π	0.8	0.6568
р	0.7	0.5274
q	0.6	0.4177

表 1 自行生成数据参数估计结果

由表中我们可以得出,三种硬币的数量占比并没有发生太大变化,迭代后的结果与初始值相近,而三种硬币抛出正面的概率,随着迭代的次数会渐渐趋向于 0.5,可能是数据是随机生成的原因。

四、个人总结和体会

通过本次大作业的算法设计,对于 EM 算法的理解更加透彻,也理解了初始值对于 EM 算法所起到的关键性作用。同时提高了 Python 语言的编程能力,理解了参数的选择

对于算法效果的重要性。

参考:

https://blog.csdn.net/weiwei19890308/article/details/82943969

 $https://github.com/Asbee1/DL_NLP_homework2$