- a) Die äußere Schleife wird x-mal durchlaufen. Bei der inneren Schleife wird bei jedem Durchlauf um 2^x erhöht. Anzahl Durchläufe = x^2x ; Das entspricht in der O-Nation (ohne Kennzeichnung der Basis 2): $O(a(x)) = O(x^*log(x))$
- b) Die erste Schleife wird x-mal durchlaufen. Die zweite Schleife wird 3^x Mal durchlaufen.
 Anzahl Durchläufe = x+3^x;
 Das entspricht in der O-Nation (ohne Kennzeichnung der Basis 3, sowie dem zusätzlichen x):
 O(b(x)) = O(log(x))
- c) Die erste Schleife wird x^2+x^3 mal durchlaufen, da die Schleife von $-x^2$ bis $+x^3$ durchlaufen wird. Hierbei wird eine Zählvariable erhöht, welche entsprechend groß ist (x^2+x^3) . In der zweiten Schleife wird die vorherige Zählvariable noch einmal mit x multipliziert $(x^2+x^3)^*x$. Die Schleife wird dann genauso oft durchlaufen. Anzahl der Durchläufe von Schleife 1 + Schleife 2 + umgeformt: $2 + x^4 + 2 + x^3$ Das ergibt in der O-Nation: $O(c(x)) = O(x^4+x^3)$
- d) Die Schleife zählt von x herunter. Das entspricht x Durchläufen. O(d(x,y)) = O(x)
- e) Um den Wert für i zu berechnen wird die Funktion d x-mal durchlaufen. Anschließend wird die Schleife an sich noch einmal 2^y mal durchlaufen.
 Anzahl der Durchläufe = x*2^y;
 O(e(x,y)) = O(x log(y))
- f) Die Schleife wird kein einziges mal durchlaufen, da die Endbedingung von Anfang an erfüllt ist. O(f(x)) = O(1)