Indian Institute of Technology Mandi

IC 110: B.Tech. I year

Odd Semester 2013-2014

Tutorial-4 (Sequence, Series and Jacobian)

- 1. Prove or disprove if $\sum a_n$ is convergent, then $\sum (a_n)^{1/2}$ is also convergent, where a_n is positive for all n.
- 2. Prove or disprove if $\sum a_n$ is convergent, then $\sum |a_n|$ is also convergent, where a_n is positive for all n.
- 3. By comparison test, show that $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$ converges for all $n \in \mathbb{N}$.
- 4. By comparison test, show that $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges for all $n \in \mathbb{N}$.
- 5. Show that series is convergent/divergent, (a) $\sum_{n=1}^{\infty} \cos n$ (b) $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$.
- 6. Determine the boundedness and monotonicity of the sequence.

$$\frac{4n}{\sqrt{4n^2+1}}$$

7. State whether the sequence converges, and, if it does, find the limit.

$$(1+\frac{1}{n})^{n/2}$$

8. State whether the sequence converges as $n \to \infty$; if it does, find the limit.

$$\frac{2^{3n-1}}{7^{n+2}}$$

- 9. Find two divergent series ∑ a_n and ∑ b_n such that ∑ a_nb_n converge.
 10. If ∑ a_k² and ∑ b_k² both converges, prove ∑ a_kb_k converges.
 11. If ∑_{n=1}[∞] a_n converges, prove ∑ a_n/(1+a_n) converges.

- 12. Calculate the Jacobian determinant of $T(u,v) = \langle u^2 v, u^2 + v \rangle$. 13. Prove (i) $\frac{\partial(x,y)}{\partial(u,v)} = -\frac{\partial(y,x)}{\partial(u,v)}$ (ii) $\frac{\partial(x,x)}{\partial(u,v)} = \frac{\partial(y,y)}{\partial(u,v)} = 0$.
- 14. Prove that if f(u, v), g(u, v) and h(u, v) are differentiable then prove that $(i)\frac{\partial (f+g,h)}{\partial (u,v)} = \frac{\partial (f,h)}{\partial (u,v)} + \frac{\partial (g,h)}{\partial (u,v)}$ $(ii)\frac{\partial (fg,h)}{\partial (u,v)} = \frac{\partial (f,h)}{\partial (u,v)}g + f\frac{\partial (g,h)}{\partial (u,v)}$

$$(i)\frac{\partial(f+g,h)}{\partial(u,v)} = \frac{\partial(f,h)}{\partial(u,v)} + \frac{\partial(g,h)}{\partial(u,v)}$$

(ii)
$$\frac{\partial (fg,h)}{\partial (u,v)} = \frac{\partial (f,h)}{\partial (u,v)}g + f\frac{\partial (g,h)}{\partial (u,v)}$$

15. Show that $\frac{\partial(kf,g)}{\partial(u,v)} = k \frac{\partial(f,g)}{\partial(u,v)}$, Where k is constant.