

Algorithmen & Datenstrukturen

Suchen und Sortieren

Wolfgang Auer

Suchen

Das Suchen von Elementen ist eine der häufigsten Aufgaben in Anwendungen

- Abhängig von der Datenstruktur und der Information über die bereits vorhandene Ordnung der Daten kommen unterschiedliche Verfahren zum Einsatz
 - z.B.: Lineares Suchen, Binäres Suchen, Pattern-Matching (Suche in Zeichenketten)

Lineare Suche

- Gegeben ist ein Feld von Werten values []. Es sind keine zusätzlichen Angaben über die zu untersuchende Datenmenge vorhanden
- Lösungsidee:
 Feld wird schrittweise durchlaufen bis das Element gefunden oder das Ende des Feldes erreicht wird ⇒
 Lineares Suchen

```
/* n: Number of elements
    x: element to be searched for */
i = 0;
while ( (i < n) && (values[i] != x)) {
    i++;
}

Im schlechtesten Fall
    müssen alle n Elemente
    /* x was found */
untersucht werden</pre>
```

Binäre Suche (1)

- Verbesserung der linearen Suche kann erzielt werden, wenn man in einer sortierten Datenmenge sucht ⇒
 Ausnutzen der Ordnung der Daten
- Idee:
 - Wähle ein zufälliges Element values [m]
 - Ist values[m] == x, kann die Suche beendet werden
 - Ist values [m] < x, können alle Elemente mit Index kleiner oder gleich m ausgeschlossen werden
 - Ist values [m] > x, können alle Element mit Index größer oder gleich m ausgeschlossen werden
 - Es werden schrittweise Elemente oberhalb oder unterhalb der gewählten Stichprobe eliminiert. Aus diesem Grund wird dieses Verfahren als Binäre Suche bezeichnet

Binäre Suche (2)

Prinzipielles Vorgehen

gesucht ist 9, m wird zufällig im Bereich 1..r gewählt

Binäre Suche (3)

Verbesserung

gesucht ist 9, m halbiert zu untersuchende Datenmenge

 \Rightarrow maximale Anzahle der benötigten Vergleich: $\lceil ld \ n \rceil$

Binäre Suche (4)


```
1 = 0;
r = nrOfValues;
m = 0;
found = false;
while ((1 < r) \&\& (!found)) {
    m = (1 + r) / 2;
     if (values[m] == x) {
         found = true;
     } else if ( values[m] < x) {</pre>
         1 = m + 1;
     } else {
      r = m;
```

Sortieren

Sortieren ist das Anordnen einer Menge von Objekten in einer bestimmten Ordnung und dient zur Vereinfachung des späteren Suchens nach einem bestimmten Element

- Es werden interne und externe Verfahren unterschieden:
 - Interne Verfahren arbeiten mit Datenmengen, die sich direkt im Speicher befinden und den direkten Zugriff auf einzelne Elemente erlauben
 - Selection sort (Auswahlsortieren)
 - Insertion sort (Einfügesortieren)
 - Shell sort (Mehrfaches Einfügesortieren)
 - Bubble sort ("Bläschensortieren")
 - Quicksort
 - ..
 - Externe Verfahren arbeiten mit Datenmengen auf externen
 Speichermedien, direkter Zugriff auf Elemente ist nicht möglich
 - Merge sort (Mischsortieren)
 - _

Selection sort (1)

FHV 🌲

Auswahlsortieren

- Geg: Feld von Ganzzahlen der Länge n: int a[n]
- Algorithmus:
 - 1. Setzte *i* auf den Anfang des Feldes
 - Wähle ab i das kleinste Element a_{min}
 - 3. Tausche a_{min} mit a_i
 - 4. Setze i = i + 1 und fahre bei Schritt 2 solange fort, bis das Ende des Feldes erreicht wird.

Selection sort (2)

Auswahlsortieren

```
/* n ... number of values */
for (i = 0; i < n - 1; i++) {
    min = i;
    for (j = i + 1; j < n; j++) {
         if (values[j] < values[min]) {</pre>
              min = j;
    } /* end for */
    /* swap values */
    temp = values[min];
    values[min] = values[i];
    values[i] = temp;
```

Anzahl der Vergleiche \approx (n - 1) * n/2 \Rightarrow O(n²) Anzahl der Vertauschungen \approx (n - 1) \Rightarrow O(n) Beide Maßzahlen sind unabhängig vom Listeninhalt

Insertion sort (1)

FHV 🔷

Einfügesortieren

- Geg: Feld von Ganzzahlen der Länge n: int a[n]
- Algorithmus:
 - 1. Setzte i = 1
 - 2. Füge a_i am geeigneten Ort in a₀..a_i ein.
 - 3. Setze i = i + 1 und fahre bei Schritt 2 solange fort, bis das Ende des Feldes erreicht wird.

Insertion sort (2)

Einfügesortieren

```
/* n ... number of values */
for (i = 1; i < n; i++) {
     x = values[i];
     i = i:
     while (j > 0 \&\& values[j - 1] > x) {
          values[j] = values[j-1];
          i −−;
     values[j] = x;
} /* end for */
Günstigster Fall: (korrekt sortierte Liste)
Anzahl der Vergleiche \approx 2^* (n - 1) \Rightarrow O(n)
```

Anzahl der Zuweisungen $\approx 2 * (n-1) \Rightarrow O(n)$

<u>Ungünstigster Fall</u>: (umgekehrt sortierte Liste)

Anzahl der Vergleiche \approx (n - 1) * n/2 \Rightarrow O(n²)

Anzahl der Zuweisungen \approx (n - 1) * n/2 \Rightarrow O(n²)

Shell sort (1)

FHV 🌲

- Idee von H.D. Shell war, den Weg des "Nach-Vorne-Wanderns" zu verkürzen
- Umsetzung der Lösungsidee durch Anpassung des Einfügesortierens, wobei die Schrittweise von 1 auf m verändert wird.

Shell sort (2)

Shell sort (3)

FHV 🔷

```
void shellSort(int values[], int n) {
      int i = 0;
      int delta = n;
      do {
            delta = 1 + delta/3;
            for (i = 0; i < delta; i++) {</pre>
                  deltaInsertionSort(values, n, i, delta);
      } while (delta > 1);
} /* end ShellSort */
void deltaInsertionSort(int values[], int n, int i, int delta) {
      int j = 0;
      int k = 0;
      int x = 0;
      j = i + delta;
      while (j < n) {
            x = values[j];
            k = \dot{j};
            while (k > 0 \&\& values[k - delta] > x) {
                  values[k] = values[k-delta];
                  k = k - delta;
            } ;
            values[k] = x;
             j = j + delta;
     } /* end while */
} /* end DeltaInsertionSort */
```

Shell sort (4)

- Komplexitätsanalyse bis heute nicht abgeschlossen Laufzeit ≈ O(n^{1.5})
- Prinzipiell sehr gutes Verhalten, das durch die Wahl von m unwesentlich beeinflusst werden kann.
- Wahl von m
 - Jede absteigende Zahlenfolge
 - Knuth schlägt Fibonacci-Folge

Bubble sort (1) Bläschensortieren

 Bubble sort beruht auf der Vorstellung, dass kleine Elemente ihrem "Gewicht" entsprechend wie Blasen in einer Flüssigkeit nach oben (d.h. nach vorne) steigen.

Bubble sort (2)

Bläschensortieren

```
for (i = 1; i < n; i++) {
    for (j = n - 1; j >= i; j--) {
        if (values[j - 1] > values[j]) {
            int x = values[j - 1];
            values[j - 1] = values[j];
            values[j] = x;
        }
    }
    Bubble sort ist einfach,
    aber sehr ineffizient!
}
```

Günstigster Fall: (korrekt sortierte Liste)

Anzahl der Vergleiche $\approx 2^* (n - 1) \Rightarrow O(n)$

Anzahl der Zuweisungen $\approx 2 * (n-1) \Rightarrow O(n)$

<u>Ungünstigster Fall</u>: (umgekehrt sortierte Liste)

Anzahl der Vergleiche \approx (n - 1) * n/2 \Rightarrow O(n²)

Anzahl der Zuweisungen \approx (n - 1) * n/2 \Rightarrow O(n²)

Durchschnittlicher Fall: O(n2)!!!!

Quicksort (1) Sortieren durch Zerlegen

- Quicksort wurde von C.A.R. Hoare erfunden und ist einer der leistungsfähigsten Sortieralgorithmen.
- Quicksort beruht auf dem "Teile-und-Herrsche-Prinzip" (Devide and conquer) d.h. das Gesamtproblem wird in kleinere, einfachere Teilprobleme zerlegt. Die Gesamtlösung ergibt sich aus der Kombination der Teillösungen.
- Algorithmus:
 - 1. Wähle aus dem Feld ein "willkürliches" Element pivot.
 - Zerlege das Feld in zwei Teilfelder, wobei im einen Teilfeld nur Werte <= pivot und im anderen Werte >= pivot enthalten sind.
 - 3. Wiederhole die Schritte rekursive für jedes Teilfeld bis nur noch Felder der Länge 1 betrachten werden müssen.

Quicksort (2)

Vorgehen

Bilde zwei Teilfelder

Quicksort (3) Vorgehen

Quicksort (4) Implementierung


```
void quickSort(int[] values, int m, int n) {
   if (m < n) {
      int i = m;
      int j = n;

      partition(values, ref i, ref j);

      quickSort(values, m, j);
      quickSort(values, i, n);
   }
}</pre>
```

Quicksort (5) Implementierung


```
void Partition(int[] values, ref int i, ref int j) {
     int pivot = values[(i + j) / 2];
     while(i <= j) {</pre>
         /* from left to right */
          while(values[i] < pivot ) {</pre>
              i++;
         /* from right to left */
          while ( values[j] > pivot ) {
              j--;
          if ( i <= j) {</pre>
              /* swap values */
              int temp = values[i];
              values[i] = values[j];
              values[j] = temp;
              i++;
              j--;
```

Quicksort (6) Bewertung

- günstigster Fall: das Feld wird jeweils halbiert. Damit hat der Baum der rekursiven Aufrufe eine minimale Höhe ld(n). Auf jeder Ebene werden n Elemente untersucht:
 - Durchläufe: Id (n)
 - Vergleiche: n * ld (n)
- Ungünstigster Fall: das Feld ist bereits sortiert:
 - Durchläufe: n
 - Vergleiche: n * n
- Durchschnittlicher Fall: 1.4n * ld (n)