CPSC436/536 Project1

Exploring Labeled Data Using kNN and Regression Models

Objective: Gain understanding of kNN and Regression Models and enhance proficiency by applying these techniques to a real-world dataset.

Dataset: You'll work on a dataset (attached) extracted from National Health and Nutrition Examination Survey: https://www.cdc.gov/nchs/nhanes/index.htm.

- The dataset contained health records of n NHANES participants.
 - The attribute list includes:
 - Age, Gender, Race, Blood Pressure readings (Systolic and Diastolic), Lab work (levels of total cholesterol (TCHOL), LDL, HDL, triglyceride), and certain medical conditions such as Diabetes. We also know whether he/she is a current smoker (smoker).
 - In addition to the above attributes, medical professionals consider some cross terms are important, such as age* Systolic, age* TCHOL, age*HDL, age* smoker. You might want to consider them.
 - Target variable: MI. (whether the participant had a heart attack (myocardial infarction).

Goal: Predict the probability of a participant suffering a heart attack (MI) in the near future.

Output: Utilize your <u>most optimal model</u> to forecast the likelihood of individuals in the testing dataset experiencing a heart attack (MI) in the near future.

Evaluation: Your project will be graded based on the difference between your predicted probability and the true label. Specifically, I'll be using both the accuracy and Kullback-Leibler (KL) divergence between the predicted probability and the observed target [wiki],

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \; \log igg(rac{P(x)}{Q(x)}igg) \; ,$$

where P(x) is the true label, Q(x) is your predicted probability.

Things to consider when you tune your kNN models:

- 1. How many features/attributes does the dataset have?
- 2. What is the class distribution? How many instances are in class1 and how many in class2? If it's unbalanced, should you consider balancing the data?
- 3. What's the best k value in kNN?
- 4. What distance metric is good to use? Do you need to scale your dataset?

- 5. Do you need to include all attributes? Consider excluding those that do not contribute to the classification, as their inclusion may introduce unnecessary noise.
- 6. Try different dataset partitions (training, testing) to understand your model.
- 7. ...

Additional things to consider when you tune your regression models:

- 1. Should you use just ordinary least square, lasso or ridge?
- 2. How does logistic regression compare with linear regression?
- 3. ...

What to submit: Your Jupyter notebook and your predictions for the participants in the testing dataset.

(**Graduate students**) A report that summaries your investigation, and your understanding why some models perform better than others (2 pages)

Attributes keys:

Age	Continues
BMI	Continues
CurrentSmoker	1 yes; 2 no
Diabetes	1 yes; 2 no
Diastolic	Continues
	1- Less than 9th grade; 2- 9-11th grade (Includes 12th grade with no diploma); 3-
	High school graduate/GED or equivalent; 4- Some college or AA degree; 5-
Edu	College graduate or above
HDL	Continues
Income	Ratio of family income to poverty
isActive	1 yes; 2 no
isInsured	1 yes; 2 no
kidneys_eGFR	Continues
LDL	Continues
Pulse	Continues
	1 Mexican American, 2 Other Hispanic, 3 Non-Hispanic White, 4 Non-Hispanic
Race*	Black, 5. None, 6. Non-Hispanic Asian, 7. Other Race - Including Multi-Racial
Sex	1 male; 2 female
Systolic	Continues
TCHOL	Continues
Trig	Continues

^{*}Sometime people consider only three race groups: white, black, and others