Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.3.5

по курсу общей физики на тему: «Эффект Холла в металлах»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет проведено измерение подвижности и концентрации носителей заряда в металлах.

2 Теоретические сведения

Формула проводимости

$$\sigma = enb \tag{1}$$

b — подвижность, n — концентрация, e — элементарный заряд, показывает что исследование электрической проводимости проводников позволяет определить произведение nb. Как мы увидим ниже, исследование эффекта Холла позволяет находить плотность носителей n, после чего можно найти и их подвижность b. Таким образом, одновременное исследование электрической проводимости и эффекта Холла позволяет экспериментально находить важнейшие параметры, определяющие состояние электронов в металлах и полупроводниках. Эффект Холла позволяет также определить преобладающий тип проводимости — электронный или дырочный.

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течёт ток I (рис. 1).

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов. В самом деле, на электрон, движущийся со скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\pi} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B} \tag{2}$$

где e — абсолютная величина заряда электрона, E — напряжённость электрического поля, B — индукция магнитного поля. В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z:

$$F_B = e |\langle v_x \rangle| B$$

Здесь $|\langle v_x \rangle|$ — абсолютная величина дрейфовой скорости электронов вдоль оси x, возникающая под действием внешнего электрического поля.

Рис. 1. Образец с током в магнитном поле

Под действием этой силы электроны отклоняются к грани Б, заряжая её отрицательно (для простоты рассматриваем только один тип носителей). На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , И накопление электрических зарядов на боковых гранях пластины прекращается. Из условия равновесия $F_B = F_E$ найдём

$$E_z = |\langle v_x \rangle| B \tag{3}$$

Оборудование

Поле E_z даёт вклад в общее поле E, в котором движутся электроны. С полем E_z связана разность потенциалов $U_{\rm AB}$ между гранями A и Б:

$$U_{AB} = -E_z l = -|\langle v_x \rangle| Bl \tag{4}$$

В этом и состоит эффект Холла. Второе слагаемое в силе Лоренца (2), с которым связан эффект, часто называют «холловским».

Замечая, что сила тока

$$I = ne|\langle v_x \rangle|l \cdot a, \tag{5}$$

и объединяя (3) и (5), найдем ЭДС Холла:

$$\mathscr{E}_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a} \tag{6}$$

Константа R_x называется постоянной Холла. Как видно из (6):

$$R_x = \frac{1}{ne}$$

3 Оборудование

В работе используются: электромагнит с источником питания, источник постоянного тока, микровольтметр $\Phi116/1$, амперметры, милливеберметр, образцы из меди и цинка.

Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 2.

Рис. 2. Схема установки для исследования эффекта Холла в металлах

Оборудование

В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Разъём K_1 позволяет менять направление тока в обмотках электромагнита. Ток питания электромагнита измеряется амперметром A_1 . Градуировка магнита проводится с помощью милливеберметра.

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (рис. 26). Ток через образец регулируется реостатом R_2 и измеряется амперметром A_2 .

Для измерений ЭДС Холла используется микровольтметр $\Phi 116/1$, в котором высокая чувствительность по напряжению сочетается с малой величиной тока, потребляемого измерительной схемой: минимальный предел измерения напряжения составляет 1,5 мкВ, а потребляемый ток — всего 10^{-8} А.

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов, которая измеряется с помощью микровольтметра, если переключатель K_3 подключён к точке 2 образца. При подключении K_3 к точке 3 микровольтметр измеряет омическое падение напряжения U_{34} , вызванное основным током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Kлюч K_2 позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Иногда контакты 2 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом — их разности. В этом случае ЭДС Холла \mathcal{E}_x может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение U_0 между точками 2 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_x = U_{24} \pm U_0 \tag{7}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{34} между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = \frac{IL_{34}}{U_{34}al},\tag{8}$$

где L_{34} – расстояние между контактами 3 и 4, a – толщина образца, l – его ширина.

4 Результаты измерений и обработка результатов

Снимем зависимость индукции магнитного поля от тока через магнит:

$I_{\mathrm{M}}, \mathrm{A}$	0	0,11	0,34	0,54	0,76	0,95	1,03	1,27
В, мТл	20	133	414	660	862	978	1012	1080

Таблица 1. Зависимость индукции магнитного поля B от тока через магнит I_{M}

По результатам в таблице 1 построим график $B = f(I_{\rm M})$

Рис. 3. График зависимости индукции магнитного поля B от тока через магнит I_{M}

Рассчитаем ЭДС Холла и построим семейство характеристик $\mathscr{E} = f(B)$ при разных значениях тока I через образец из меди.

<i>I</i> , A	В, мТл	\mathscr{E} , мкВ	I, A	В, мТл	\mathscr{E} , мкВ	I, A	В, мТл	\mathscr{E} , мкВ
	436,31	0,03		178,87	0,06		178,87	0,09
	569,47	0,06		267,64	0,12		267,64	0,18
0,2	640,49	0,09		356,42	0,18		356,42	0,27
	1013,33	0,12		445,19	0,24		445,19	0,36
	1208,63	0,12		533,96	0,33		533,96	0,45
	205,50	0,06	0,8	631,61	0,42	1,01	622,73	0,54
	267,64	0,09		711,50	0,48] 1,01	720,38	0,63
	383,05	0,12		800,28	0,54		800,28	0,69
0,4	480,70	0,18		889,05	0,57		889,05	0,75
0,4	604,98	0,24		986,70	0,6		986,70	0,78
	782,52	0,3		1066,59	0,63		1075,47	0,81

I, A	В, мТл	\mathscr{E} , мкВ	I, A	В, мТл	\mathscr{E} , мкВ	I, A	В, мТл	\mathscr{E} , мкВ
	1013,33	0,33		1199,75	0,66		1190,87	0,84
	1199,75	0,33	0,9	178,87	0,06	1,01	178,87	0,06
	187,75	0,06		267,64	0,12		267,64	0,15
	276,52	0,12		356,42	0,21		356,42	0,24
0,63	374,17	0,18		445,19	0,3		445,19	0,36
	462,94	0,24		533,96	0,39		533,96	0,45
	560,59	0,3		640,49	0,51		631,61	0,57
	675,99	0,36		711,50	0,54		711,50	0,63
	782,52	0,42		800,28	0,6		800,28	0,72
	889,05	0,45		906,80	0,66		889,05	0,75
	1048,84	0,48		986,70	0,69		995,57	0,81
	1199,75	0,51		1075,47	0,72		1066,59	0,87
			1	1190,87	0,75	1	1190,87	0,87

Таблица 2. Зависимость тока I через образец от магнитной индукции B магнитного поля, в котором находится образец

Рис. 4. Семейство характеристик $\mathscr{E} = f(B)$ при разных значениях тока I через образец

Определим угловые коэффициенты $k(I) = \Delta \mathscr{E}/\Delta B$ полученных прямых. Построим график k = f(I)

Рис. 5. График зависимости углового коэффициента $k=\Delta\mathscr{E}/\Delta B$ от тока через образец I

Вычислим постоянную Холла по углу наклона графика на рис. 5. $R_x = -a \cdot t$, где t — тангенс угла наклона графика $k = f(I); \ a =$ толщина образца из меди. (a=0,05 мм)

$$R_x^{\text{медь}} = -(0, 42 \pm 0, 08) \cdot 10^{-10} \text{ м}^3/\text{Кл}$$

Повторим измерения для образца из цинка. Построим график зависимости $\mathscr{E}_x = f(B)$ и по наклону прямой рассчитаем постоянную Холла $R_x = -\mathscr{E}_x a/(BI)$ (a=0,12 мм, I=1 A)

Рис. 6. График зависимости ЭДС Холла $\mathscr E$ от магнитной индукции B для образца из цинка

$$R_x^{\text{цинк}} = (1,07 \pm 0,06) \cdot 10^{-10} \text{ м}^3/\text{K}$$
л

Для определение удельной проводимости определим значение U_{34} при токе $I\,=\,1\,$ А

$$U_{34}^{
m медь} = 240 \pm 15 \ {
m mkB}$$
 $U_{34}^{
m цинк} = 300 \pm 15 \ {
m mkB}$

Для обоих образцов рассчитаем концентрацию n носителей тока $n=1/(R_x e)$. Также вычислим удельную проводимость σ материала образцов по формуле (8). По результатам рассчитаем подвижность b носителей тока.

Металл	$n, (M^3)^{-1}$	σ , $(O_{\rm M} \cdot {\rm M})^{-1}$	$b, \text{ cm}^2/(\text{B} \cdot \text{c})$
Медь	$1,5\pm0,3\cdot10^{29}$	$7,8 \pm 0,5 \cdot 10^7$	33 ± 7
Цинк	$6,0\pm 0,1\cdot 10^{29}$	$1,1\pm 0,1\cdot 10^{7}$	$11, 4 \pm 1, 2$

Таблица 3. Плотность заряда n, электропроводность σ и подвижность носителей тока b для образца из меди и цинка

5 Обсуждение результатов и выводы

Результаты занесены в таблицу.

Металл	R_x	Табл. R_x ,	Знак	n	σ ,	b,
	$10^{-10} { m M}^3 / { m K}$ л	$10^{-10} { m M}^3 / { m K}$ л	носит.	$10^{29} (\mathrm{M}^3)^{-1}$	$10^7 (\mathrm{Om} \cdot \mathrm{m})^{-1}$	$cm^2/(B \cdot c)$
Медь	$-(0,42\pm0,08)$	-0,53	_	$1,5 \pm 0,3$	$7,8 \pm 0,5$	33 ± 7
Цинк	$1,07 \pm 0,06$	1,04	+	$6,0 \pm 0,1$	$1, 1 \pm 0, 1$	$11, 4 \pm 1, 2$

Таблица 4. Постоянная Холла R_x , плотность заряда n, электропроводность σ и подвижность носителей тока b для образца из меди и цинка