stealth web design

Kengo Nakajima @ Community Engine Inc.

ステルス・デザイン

「レーダーに写りにくい造形は、 良い造形である」

- 本「ステルス・デザインの方法」http://www.amazon.co.jp/gp/product/4860450132
- パスファインダー・チームのWebサイト
 http://pathfind.motion.ne.jp/stealth.htm
- これをwebにあてはめたらどうなるか?を考えた。

ポン・デュ・ガール水道橋

ステルス度:低

ステルス度:高

「ステルス・デザインの方法」より。

Webデザインの理論

● 人間がWebに触れている時間は長くなる 一方である。Webに適用可能な建築やデ ザインの理論もあるはずだ。

理論化によって

- 職人芸から工業化・自動化への一歩。
- 「こっちのほうが良いよ」から「こっちのほうがステルス度が2.8ポイント高い」への変化。
- 「角丸は一時の流行である」といった言説に決着。

ステルスデザイン理論

まずここの理論を読むべし

http://pathfind.motion.ne.jp/stealth.htm

digg™

鉛直でなくするだけ

「ステルス・デザイン」における電磁波吸収塗料に対応。

これも電磁波吸収塗料に対応。

直角の角が減ると反射も減る

内部から見ると電磁波が逃げる場所がある

壁面近くの処理

ウェブ

反射

「ステルスデザインの方法」における水面の配置に対応。 反射は、一時の流行ではない。

立体

斜めの部分に当たった電磁波が斜めに逃げるので、 直接反射が軽減される。

疑似立体が、一時の流行でないことがわかる。→windows

Connect

透明

電磁波が後ろに逃げるので、直接反射が軽減される。 Aquaも一時の流行でないことがわかる。

角丸と共通

余白1

隙間から電磁波が逃げる

余白2

多いとたくさん逃げる

適切な幅で並べることにより電磁波が弱め合う。

一部、色を変える。「角」との組み合わせ

異なる色を繰り返す

3:41	Clark	Body Ridd
5:10	Flying Lotus	1983
4:14	SUBTLE	For Hero f
4.20	CLIDTLE	Con Horo 6

床面付近の電磁波反射を軽減

半透明

電磁波吸収素材と同様。

曲線

丸みは飾りではなく、反射を軽減させるパーツ

斜め 1

直角をなくす

斜め2

直角をなくす

斜め3

現在のwebフレームワークでは面倒、建築では多用

四角くないブラウザ

ブラウザによる電磁波の反射を減らす。 →はdashboard widget

色 1

奥行き方向に傾いていると言える。鉛直をなくす効果がある。

色 2

さらに斜めにする。webではまだ多用されていない

色3

あかさ ささ ささ たち

「斜め」を文字の色に応用。 webではまだ多用されていない

フォント1

発

瓷

「角」を応用し画数を増やし電磁波を散乱させる

フォント2

発

発

角の丸みに同じ。直角は少ないほうがよい。

フォント3

Anonymous Coward 曰く、"<u>米id Software社</u>のCEOであるTodd Hollenshead氏が日本時間の15日、氏自身の.planにおいて <u>DOOM 3</u>が量産体制に入ったことを<u>公表</u>した。氏曰く、米国内での販売開始は8月3日の午前12:01からとのこと(一部地域では先行販売もあるようだ)。また、<u>CNN/Moneyによれば、メディアは当初言われていたDVDではなく、CD3.4枚組み。日本の小売</u>

Anonymous Coward曰く、"<u>米id Software社</u>のCEOであるTodd Hollenshead氏が日本時間の15日、氏自身の.planにおいて<u>DOOM</u> <u>3</u>が量産体制に入ったことを<u>公表</u>した。氏曰く、米国内での販売開始は8月3日の午前12:01からとのこと(一部地域では先行販売もあるようだ)。また、<u>CNN/Moneyによれば</u>、メディアは当初言われてく、CD3,4枚組み。日本の小売店は8月6日にも入荷する見込みで、

アンチエイリアスで電磁波軽減吸収

ページ遷移

色の変化差分を小さくして反射量の増減幅を小さくする。 モーフィングも含む。AJAXは一時の流行ではない。

マウス動作

操作に必要なマウスの奇跡も電磁波を当てる対象とする。

操作の時系列

時系列データに対しても電磁波を当てる。 「列柱」の電磁波低減効果について考える。

まずWebサーバの応答速度を一定に保つ必要がある。

文字の切れ

あ

accepts (ActionController::Abstrac activate_drb (Breakpoint) active? (ActiveRecord::Connection

webのフレーム

時間 アーティスト 4:28 Imogen Heap 6:45 Telefon Tel Aviv

iTunes

スクロール領域の上端が切れると直角が増え、反射が増えてしまう iTunesでは上面を常に切れないように調整している。

不均一1

電磁波が散乱する。

不均一2

出版では常套手段だがwebではまだ。 アルゴリズムが複雑だからか

不均一3

あかさ さ さ さ し さ し っ た

色の不均一。 まだあまり活用されていない access add apple blog blogging blogs case community computer cory doctorow download email flickr giant google groups help hope http idea india intel interface ipod link thanks lot man media microsoft mit mobile moodle nice open source org php podcast podcasting podcasts popular progress reading sakai search Service space stellar tool university wiki

フラクタル

下の方で強く電磁波を吸収。「波長決定のサイズ」に関係 かならずしも文字が少ないほうがいいとは限らない

非常に細かい模様

微細な模様は電磁波吸収効果が高い(mixi,greeより) 電子レンジののぞき窓と同様の効果が期待できる。

列柱

適切な幅にすることで電磁波が弱まる

境界線

列柱と同じ原理で電磁波が弱め合う (波長には注意)

自然物

境界に自然物を置く。電磁波吸収効果が高い

提案 1

- 「ステルス・デザインの方法」で使われている建築物測定ツール"Arc-Stealth"のWeb版を作れる。
- 実装:ブラウザプラグインとして実装し、ステータスバーに常時表示されるのが良い。
- 「今日のストレス合計値」を測定できる。

測定ツールの仕様

- webページの構成要素を分解(Render Tree)して3次元空間内に置かれた平面の上に配置する。
- 要素の背景が塗りつぶしてある場合は平らな板を置き、グラデーションが検出されたときは 丸める。フォントのアンチエイリアスがかかっているときも丸める。
- 各ピクセルの輝度をそのまま高さ方向に伸ばして針を立てるだけでいいかも。
- ユーザーの目から3次元的に電磁波を放射する。(とりあえず真上から見ると仮定)
- ユーザーの目に戻る電磁波の反射波の強さを計算で求め、測定する。
- レイトレーシングでできるかも。(10回反射とかで)
- ●ページの内容が変化するごとに測定し、変化量や加速度も加味して総合点を出力する。

) 🔴 🔴 Render Tree for 都市	対建築のデザイン!	とステルス技術	
oe .	Absolute	Relative	Width
RenderCanvas	(0, 0)	(0, 0)	997
▼ RenderBlock	(0, 0)	(0, 0)	997
▼RenderBody	(99, 8)	(99, 8)	799
▼RenderTable	(398, 8)	(299, 0)	200
▼RenderTableSection	(398, 8)	(0, 0)	0
▼RenderTableRow	(398, 8)	(0, 0)	0
▶ RenderTableC	(400, 10)	(2, 2)	196
▶ RenderBlock	(99, 49)	(0, 41)	799
► RenderBlock (anonym	(99, 80)	(0, 72)	799
▶ RenderBlock	(99, 183)	(0, 175)	799
▶ RenderBlock	(99, 214)	(0, 206)	799
▶ RenderBlock	(99, 245)	(0, 237)	799
▶ RenderBlock	(99, 1032)	(0, 1024)	799
► RenderBlock (anonym	(99, 1191)	(0, 1183)	799
▶ RenderBlock	(99, 1317)	(0, 1309)	799
► RenderBlock (anonym	(99, 1511)	(0, 1503)	799
▶ RenderBlock	(99, 2033)	(0, 2025)	799
► RenderBlock (anonym	(99, 2323)	(0, 2315)	799
▶ RenderBlock	(99, 2611)	(0, 2603)	799
► RenderBlock (anonym	(99, 2785)	(0, 2777)	799
▶ RenderBlock	(99, 2947)	(0, 2939)	799
► RenderBlock (anonym	(99, 3226)	(0, 3218)	799
▶ RenderBlock	(99, 3388)	(0, 3380)	799
► RenderBlock (anonym	(99, 3573)	(0, 3565)	799
RenderBlock	(99. 3771)	(0. 3763)	799

提案 2

- ステルス・デザイン理論に基づく建築方式があり得るのと同様に、 Web開発のフレームワークがあり得る。
- QuartsやWPFが同じといえば同じだが、 レイヤーがひとつ不足している。
- 組版業界から何かもって来れないのかな。