NC STATE UNIVERSITY

Using in situ UV-vis spectroscopy to measure N, C, P and suspended solids at a high frequency in a brackish tidal marsh

Randall Etheridge, François Birgand, Mike Burchell

.

A missing legacy

- Continuous data available
 - For flow: over one century
 - For climate: decades
 - For water quality: just starting ...
- Currently water quality data 2-3 orders of magnitude less frequent than e.g. flow data
- Could new sensors be the beginning of a new legacy?

UV-Vis field spectrometers

- Measure absorbance of light in water from the UV to the visible range
- Some constituents like nitrate, Dissolved
 Organic Carbon (DOC) and particles absorb
 light

F. Birgand

3

F. Birgand

Parameters known to be measurable

- Nitrate: absorbs light from 190 to 250 nm
- DOC: absorbs light from ~270-295 nm
- Turbidity
- Others parameters of interest:
 - o NH4, ON, PO4, TP, salinity, SO4, etc.
- Theoretical reasons why UV-vis spectroscopy would not be able to measure those?

Dirty little secret...

Bie&Ag

Two Weeks Later

F. Birgand

Fouling...

Anti-fouling system

Journal of Environmental Quality

SHORT COMMUNICATIONS

Addressing the Fouling of In Situ Ultraviolet-Visual Spectrometers Used to Continuously Monitor Water Quality in Brackish Tidal Marsh Waters

J. Randall Etheridge, François Birgand,* Michael R. Burchell II, and Brad T. Smith

J. Environ. Qual. 42:1896–1901 (2013) doi:10.2134/jeq2013.02.0049

Fouling...

F. Birgand 11

Breaking the manufacturers code

- Manufacturers have created algorithms able to calculate concentrations
- Relatively simple to require affordable computational capabilities
- Use chemometrics to create regressions between absorbance and concentrations
- Main tool: Partial Least Square Regression (PLSR)

Nitrate

F. Birgand

Parameter	Calibration method	R²	RMSEP	Nb Comp	
NO ₃ -N	PLSR3	0.998	(0.10)	14	
TKN	PLSR + FDOM3	0.91	(0.27)	10	
DOC	PLSR + FDOM2	0.94	(1.3)	13	
TSS	PLSR1	0.92	(7.3)	6	
PO ₄ -P	PLSR2	0.66	(0.010)	18	
TP	PLSR3	0.73	(0.024)	14	
Salinity	PLSR3	0.97	(1.8)	12	

F. Birgand

What we were able to find

- Absorbance and/or covariability between concentrations and absorbance: more parameters predicted
- The code is available for all to use: create local calibration
- Needs to be tested for many other areas and several path lengths and concentration levels

LIMNOLOGY and OCEANOGRAPHY: METHODS

Using in situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh

J. Randall Etheridge¹, François Birgand^{1*}, Jason A. Osborne², Christopher L. Osburn³, Michael R. Burchell II¹, and Justin Irving⁴

F. Birgand

Questions?

F. Birgand