Students Id:

Total Number of Pages: 2

B.TECH MA102

Second Semester Examination - 2015

Mathematics-II

BRANCH: ALL Time: 3 Hours

Max marks: 50

Answer Question No.1 which is compulsory and any four from the rest.

The figures in the right hand margin indicate marks.

1. (2×5)

a) Find the unit normal vector to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1,2,-1).

b) Verify whether the vector field $(x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is conservative.

c) Find the inverse Laplace of $F(s) = \frac{s}{(s^2+1)^2}$ using convolution theorem.

d) Define Dirac-delta function and find its Fourier transform.

e) If $e^{-kx} = \frac{2}{\pi} \int_0^\infty B \sin(\omega x) d\omega$, find the value of B.

2. (5+5)

a) Let R be the region determined by the inequalities $x^2 + y^2 \le 4$ and $y^2 \le x^2$. Evaluate the following integral $\iint_R \sin(x^2 + y^2) dA$.

b) The following picture shows the parametric curve $(x, y) = (t - t^3, t^2)$. Use Green's theorem to find the area of the shaded region.

(2+2+6)

- a) Find the parametric representation of elliptic cone $z = \sqrt{x^2 + 4y^2}$
 - b) Evaluate $\int_C y dx + 2x dy$ where C is the boundary of the rectangle enclosed by the lines x = 0, x = 1, y = 0, y = 2
 - c) Let C be the rectangle in space with vertices (0,0,0), (1,0,0), (1,1,1), and (0,1,1), oriented in the given order. Use stoke's theorem to evaluate the line integral

$$\int_{C} \sin(x^2) dx + xy^2 dy + xz^2 dz$$

State Gauss divergence theorem and Green's identities.

Let S be the surface given by the parametric equation
$$x = 2 + \cos u + \cos v$$
, $y = u$, $z = \sin v$, $0 \le u \le 2\pi$, $0 \le v \le 2\pi$

Use the divergence theorem to find the volume of the region inside S

(a) Find the Fourier series of the periodic function

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 1 - x, & 1 < x < 2 \end{cases} \quad p = 2L = 2.$$

(b) Solve the following differential equations using Laplace transform:

$$t\frac{d^2y}{dt^2} - \frac{dy}{dt} = -1; \quad y(0) = 0.$$

- 6. (a) Determine the Fourier transform for $f(x) = e^{-2x^2}$, $x \ge 0$.
 - (b) Find the Laplace transform of the periodic function defined by the triangular wave $f(t) = t, 0 \le t \le a$, and f(t + 2a) = f(t)
- 7. (a) State the Parsevall's identity for Fourier transform.

(2+8)

(5+5)

(b) Determine the Fourier cosine transform for $f(t) = e^{-t} \cos t$, $t \ge 0$ and show that

$$e^{-t}\cos t = \frac{2}{\pi} \int_{0}^{\infty} \frac{(\alpha^2 + 2)\cos \alpha t}{\alpha^4 + 4} d\alpha, \quad t \ge 0.$$
