Федеральное государственное автономное образовательное учреждение высшего образования Университет ИТМО

Отчет по лабораторной работе №4 «Администрирование систем и сетей»

Выполнили:

Чжоу Хунсян Группа: Р34131

1 pyllila. 1 3+131

Желаемая оценка: 3

Преподаватель:

Афанасьев Дмитрий Борисович

 $2024\ \Gamma.$ Санкт-Петербург

Оглавление

ACL Configuration	3
Цели	
Топология	3
План работы	3
Процедура конфигурирования	4
Шаг 1. Настройте IP-адреса	
Шаг 2. Настройте OSPF для обеспечения возможности сетевого	
подключения	5
Шаг 3. Сконфигурируйте R3 в качестве сервера	6
Шаг 4. Настройте ACL на основе необходимого трафика	7
Проверка	8
Справочные конфигурации	8
Настройка локального механизма ААА	11
Цели	11
Топология	11
План работы	11
Процедура конфигурирования	
Шаг 1. Настройте основные параметры устройств.\	12
Шаг 2. Настройте схему ААА.	13
Шаг 3. Создайте домен и примените к нему схему ААА	
Шаг 4. Настройте локальных пользователей.	15
Шаг 5. Включите функцию telnet на R2	
Шаг 6 Проверьте конфигурацию	17
Справочные конфигурации	
Настройка NAT	
Цели	
Топология	
План работы	
Процедура конфигурирования	
Шаг 1. Настройте основные параметры	
Шаг 2 Предприятие получает общедоступные IP-адреса в диапазон	
1.2.3.10 до 1.2.3.20, поэтому ему требуется функция динамического	
NAT	22
Шаг 3 Если IP-адрес GigabitEthernet0/0/4 на R2 назначается	
динамически (например, через DHCP или PPPoE), необходимо	
настроить Easy IP.	
Шаг 4 R3 должен предоставлять сетевые услуги (в данном примере	•
telnet) для пользователей в общедоступной сети. Поскольку R3 не	
имеет общедоступного IP-адреса, необходимо настроить сервер NA	
на исходящем интерфейсе R2	
REIROI	24

ACL Configuration

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Настройка списков ACL
- Применение ACL на интерфейсе
- Основные методы фильтрации трафика

Топология

План работы

- 1. Настройка ІР-адресов.
- 2. Настройка OSPF для обеспечения возможности сетевого подключения.
- 3. Создание ACL на основе необходимого трафика.
- 4. Настройка фильтрации трафика.

Процедура конфигурирования

Шаг 1. Настройте ІР-адреса.

Настройте IP-адреса для маршрутизаторов R1, R2 и R3.

```
[AR1]interface g0/0/2
[AR1-GigabitEthernet0/0/1]ip address 10.1.2.1 24
[AR1]interface LoopBack 0
[AR1-LoopBack0]ip address 10.1.1.1 24
[AR1]interface LoopBack 1
[AR1-LoopBack1]ip address 10.1.4.1 24
```

```
[AR2]interface g0/0/2
[AR2-GigabitEthernet0/0/3]ip address 10.1.2.2 24
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/4]ip address 10.1.3.2 24
```

```
[AR3]interface g0/0/2
[AR3-GigabitEthernet0/0/3]ip address 10.1.3.1 24
```

Шаг 2. Настройте OSPF для обеспечения возможности сетевого подключения.

Настройте OSPF на маршрутизаторах R1, R2 и R3 и назначьте их в область 0, чтобы обеспечить возможность подключения.

```
[AR1]ospf
[AR1-ospf-1]area 0
[AR1-ospf-1-area-0.0.0.0]network 10.1.1.1 0.0.0.0
[AR1-ospf-1-area-0.0.0.0]network 10.1.2.1 0.0.0.0
[AR1-ospf-1-area-0.0.0.0]network 10.1.4.1 0.0.0.0
[AR1-ospf-1-area-0.0.0.0]return
```

```
[AR2]ospf

[AR2-ospf-1]area 0

[AR2-ospf-1-area-0.0.0.0]network 10.1.2.2 0.0.0.0

[AR2-ospf-1-area-0.0.0.0]network 10.1.3.2 0.0.0.0

[AR2-ospf-1-area-0.0.0.0]return
```

```
[AR3]ospf
[AR3-ospf-1]area 0
[AR3-ospf-1-area-0.0.0.0]network 10.1.3.1 0.0.0.0
[AR3-ospf-1-area-0.0.0.0]return
```

Выполните команду ping на маршрутизаторе R3, чтобы проверить

возможность подключения к сети.

```
[AR3]ping 10.1.1.1
  PING 10.1.1.1: 56 data bytes, press CTRL_C to break
    Reply from 10.1.1.1: bytes=56 Sequence=1 ttl=254 time=40 ms
    Reply from 10.1.1.1: bytes=56 Sequence=2 ttl=254 time=30 ms
    Reply from 10.1.1.1: bytes=56 Sequence=3 ttl=254 time=20 ms
    Reply from 10.1.1.1: bytes=56 Sequence=4 ttl=254 time=30 ms
    Reply from 10.1.1.1: bytes=56 Sequence=5 ttl=254 time=40 ms
  --- 10.1.1.1 ping statistics ---
    5 packet(s) transmitted
5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/32/40 ms
[AR3]ping 10.1.2.1
[AR3]ping 10.1.2.1
  PING 10.1.2.1: 56 data bytes, press CTRL_C to break
    Reply from 10.1.2.1: bytes=56 Sequence=1 ttl=254 time=20 ms
    Reply from 10.1.2.1: bytes=56 Sequence=2 ttl=254 time=40 ms
    Reply from 10.1.2.1: bytes=56 Sequence=3 ttl=254 time=30 ms
    Reply from 10.1.2.1: bytes=56 Sequence=4 ttl=254 time=30 ms
Reply from 10.1.2.1: bytes=56 Sequence=5 ttl=254 time=30 ms
  --- 10.1.2.1 ping statistics --- 5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/30/40 ms
[AR3]ping 10.1.4.1
  PING 10.1.4.1: 56 data bytes, press CTRL_C to break
    Reply from 10.1.4.1: bytes=56 Sequence=1 ttl=254 time=30 ms
    Reply from 10.1.4.1: bytes=56 Sequence=2 ttl=254 time=20 ms
    Reply from 10.1.4.1: bytes=56 Sequence=3 ttl=254 time=20 ms
    Reply from 10.1.4.1: bytes=56 Sequence=4 ttl=254 time=10 ms
    Reply from 10.1.4.1: bytes=56 Sequence=5 ttl=254 time=30 ms
  --- 10.1.4.1 ping statistics ---
    5 packet(s) transmitted
5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 10/22/30 ms
```

Шаг 3. Сконфигурируйте R3 в качестве сервера.

Включите функцию Telnet на R3, установите для уровня пользователя значение 3 и задайте для входа пароль — Huawei@123.

[AR3]telnet server enable [AR3]user-interface vty 0 4 [AR3-ui-vty0-4]user privilege level 3 [AR3-ui-vty0-4]set authentication password cipher Huawei@123

Шаг 4. Настройте ACL на основе необходимого трафика.

Способ 1. Настройте ACL на интерфейсе VTY маршрутизатора R3, чтобы разрешить

вход с R1 в R3 через Telnet, используя IP-адрес LoopBack 1.

Настройте ACL на R3.

```
[AR3]acl 3000
[AR3-acl-adv-3000]rule 5 permit tcp source 10.1.4.1 0.0.0.0 destination 10.1.3.1 0.0.0.0 destination-port eq 23
[AR3-acl-adv-3000]rule 10 deny tcp source any
[AR3-acl-adv-3000]quit
```

Выполните фильтрацию трафика на интерфейсе VTY маршрутизатора R3.

```
[AR3]user-interface vty 0 4
[AR3-ui-vty0-4]acl 3000 inbound
```

Выведите на экран конфигурацию ACL на R3.

```
[AR3-ui-vty0-4]display acl 3000
Advanced ACL 3000, 2 rules
Acl's step is 5
rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq
telnet
rule 10 deny tcp
```

Способ 2. Настройте ACL на физическом интерфейсе маршрутизатора R2, чтобы разрешить вход с R1 в R3 через Telnet, используя IP-адрес физического интерфейса.

Настройте ACL на R2.

```
[AR2]acl 3001
[AR2-acl-adv-3001]rule 5 permit tcp source 10.1.4.1 0.0.0.0 destination 10.1.3.1 0.0.0.0 destination-port eq 23
[AR2-acl-adv-3001]rule 10 deny tcp source any
[AR2-acl-adv-3001]quit
```

Выполните фильтрацию трафика на интерфейсе GE0/0/3 маршрутизатора R3.

```
[AR2]interface g0/0/2
[AR2-GigabitEthernet0/0/2]traffic-filter inbound acl 3001
```

Выведите на экран конфигурацию ACL на R2.

```
[AR2]display acl 3001
Advanced ACL 3001, 2 rules
Acl's step is 5
rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq
telnet
rule 10 deny tcp
```

Проверка

```
<AR1>telnet -a 10.1.1.1 10.1.3.1
Press CTRL_] to quit telnet mode
Trying 10.1.3.1 ...
Error: Can't connect to the remote host

<AR1>telnet -a 10.1.4.1 10.1.3.1
Press CTRL_] to quit telnet mode
Trying 10.1.3.1 ...
Connected to 10.1.3.1 ...
Login authentication

Password:
<AR3>
```

Справочные конфигурации

```
[V200R003C00]
sysname AR1
snmp-agent local-engineid 800007DB03000000000000
snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
drop illegal-mac alarm
#
set cpu-usage threshold 80 restore 75
#
aaa
authentication-scheme default
authorization-scheme default
accounting-scheme default
domain default
domain default_admin
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
ip address 10.1.2.1 255.255.255.0
interface NULL0
interface LoopBack0
ip address 10.1.1.1 255.255.255.0
interface LoopBack1
ip address 10.1.4.1 255.255.255.0
ospf 1
area 0.0.0.0
 network 10.1.1.1 0.0.0.0
 network 10.1.2.1 0.0.0.0
 network 10.1.4.1 0.0.0.0
```

```
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
#
wlan ac
#
return
```

AR2

```
[V200R003C00]
sysname AR2
 snmp-agent local-engineid 800007DB03000000000000
snmp-agent
 clock timezone China-Standard-Time minus 08:00:00
portal local-server load flash:/portalpage.zip
drop illegal-mac alarm
wlan ac-global carrier id other ac id \theta
set cpu-usage threshold 80 restore 75
acl number 3001
rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq telnet
rule 10 deny tcp
aaa
 authentication-scheme default
 authorization-scheme default
accounting-scheme default
 domain default
 domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0\8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
ip address 10.1.3.2 255.255.255.0
interface GigabitEthernet0/0/2
 ip address 10.1.2.2 255.255.255.0
traffic-filter inbound acl 3001
interface NULL0
#
ospf 1
area 0.0.0.0
 network 10.1.2.2 0.0.0.0
 network 10.1.3.2 0.0.0.0
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

```
[V200R003C00]
```

```
#
 sysname AR3
snmp-agent local-engineid 800007DB03000000000000
snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load flash:/portalpage.zip
drop illegal-mac alarm
wlan ac-global carrier id other ac id 0
#
set cpu-usage threshold 80 restore 75
acl number 3000
rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq telnet
rule 10 deny tcp
#
aaa
authentication-scheme default
 authorization-scheme default
accounting-scheme default
 domain default
domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
ip address 10.1.3.1 255.255.255.0
interface NULL0
#
ospf 1
area 0.0.0.0
 network 10.1.3.1 0.0.0.0
user-interface con 0
authentication-mode password
user-interface vty 0 4
acl 3000 inbound
authentication-mode password
user privilege level 3
set authentication password
cipher %$%$tG$i<Lp^LP+~>+SkQiaP,"2iR%YeYm#4uVR4TcHY&K\5"2l,%$%$
user-interface vty 16 20
#
wlan ac
return
```

Настройка локального механизма ААА

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Настройка локального механизма ААА
- Процедура создания домена
- Процедура создания локального пользователя
- Управление пользователями на основе домена

Топология

План работы

- 1. Настройка схемы ААА.
- 2. Создание домена и применение к нему схемы ААА.
- 3. Настройка локальных пользователей.

Процедура конфигурирования

Шаг 1. Настройте основные параметры устройств.\

Присвойте имена маршрутизаторам R1 и R2.

AR1

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR1

AR2

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR2

Настройте IP-адреса для маршрутизаторов R1 и R2.

[AR1]interface g0/0/2 [AR1-GigabitEthernet0/0/2]ip address 10.0.12.1 24

[AR2]interface g0/0/2 [AR2-GigabitEthernet0/0/2]ip address 10.0.12.2 24

Шаг 2. Настройте схему ААА.

Настройте схемы аутентификации и авторизации.

[AR2]aaa

[AR2-aaa]authentication-scheme datacom

Info: Create a new authentication scheme.
[AR2-aaa-authen-datacom]authentication-mode local
[AR2-aaa-authen-datacom]quit

[AR2-aaa]authorization-scheme datacom
Info: Create a new authorization scheme.
[AR2-aaa-author-datacom]authorization-mode local
[AR2-aaa-author-datacom]quit

Шаг 3. Создайте домен и примените к нему схему ААА.

[AR2]aaa
[AR2-aaa]domain datacom
Info: Success to create a new domain.
[AR2-aaa-domain-datacom]authentication-scheme datacom
[AR2-aaa-domain-datacom]authorization-scheme datacom

Шаг 4. Настройте локальных пользователей.

Создайте локального пользователя и настройте для него пароль.

[AR2-aaa]local-user hcia@datacom password cipher HCIA-Datacom Info: Add a new user. [AR2-aaa]local-user hcia@datacom service-type telnet [AR2-aaa]local-user hcia@datacom privilege level 3

Шаг 5. Включите функцию telnet на R2.

[AR2]telnet server enable [AR2]user-interface vty 0 4 [AR2-ui-vty0-4]authentication-mode aaa

Шаг 6 Проверьте конфигурацию.

Выполните вход с R1 на R2 через Telnet.

```
<AR1>telnet 10.0.12.2
Press CTRL_] to quit telnet mode
Trying 10.0.12.2 ...
Connected to 10.0.12.2 ...
Login authentication

Username:hcia@datacom
Password:
<AR2>
```

Выведите на экран список пользователей, подключенных к R2.

[AR2]display users
User-Intf Delay Type Network Address AuthenStatus AuthorcmdFlag
+ 0 CON 0 00:00:00 pass
Username: Unspecified

129 VTY 0 00:00:55 TEL 10.0.12.1 pass
Username: hcia@datacom

Справочные конфигурации

AR1

```
[V200R003C00]
sysname AR1
 snmp-agent local-engineid 800007DB03000000000000
 snmp-agent
 clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
 drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
aaa
 authentication-scheme default
 authorization-scheme default
accounting-scheme default
domain default
 domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
ip address 10.0.12.1 255.255.255.0
interface NULL0
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

```
[V200R003C00]
#
sysname AR2
#
snmp-agent local-engineid 800007DB03000000000000
snmp-agent
#
clock timezone China-Standard-Time minus 08:00:00
#
portal local-server load portalpage.zip
#
drop illegal-mac alarm
#
set cpu-usage threshold 80 restore 75
#
aaa
authentication-scheme default
authentication-scheme datacom
```

```
authorization-scheme default
 authorization-scheme datacom
 accounting-scheme default
 domain default
 domain default_admin
 domain datacom
 authentication-scheme datacom
  authorization-scheme datacom
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0\8bmE3Uw}%$%$
 local-user admin service-type http
local-user hcia@datacom password cipher %$%$>ds5=-Pz,AhTG#Y0@>3J^c/+%$%$
local-user hcia@datacom privilege level 3
local-user hcia@datacom service-type telnet
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
ip address 10.0.12.2 255.255.255.0
interface NULL0
user-interface con 0
authentication-mode password
user-interface vty 0 4
authentication-mode aaa
user-interface vty 16 20
wlan ac
return
```

Настройка NAT

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Настройка динамического NAT
- Настройка Easy IP
- Настройка NAT-сервера

Топология

План работы

- 1. Настройка динамического NAT.
- 2. Настройка Easy IP.
- 3. Настройка сервера NAT.

Процедура конфигурирования

Шаг 1. Настройте основные параметры.

Настройте IP-адреса и маршруты.

```
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ip address 192.168.1.1 24
[AR1-GigabitEthernet0/0/0]quit
[AR1]ip route-static 0.0.0.0 0 1.2.3.254

[AR2]interface g0/0/0
[AR2-GigabitEthernet0/0/0]ip address 192.168.1.254 24
[AR2-GigabitEthernet0/0/0]interface g0/0/1
[AR2-GigabitEthernet0/0/1]ip address 1.2.3.4 24
[AR2-GigabitEthernet0/0/1]ip route-static 0.0.0.0 0 1.2.3.254

[AR3]interface g0/0/0
[AR3-GigabitEthernet0/0/0]ip address 1.2.3.254 24
```

Настройте функцию Telnet на маршрутизаторах R1 и R3 для последующей проверки.

```
[AR1]user-int vty 0 4
[AR1-ui-vty0-4]authentication-mode aaa
[AR1-ui-vty0-4]quit
[AR1]aaa
[AR1-aaa]local-user test password cipher Huawei@123
Info: Add a new user.
[AR1-aaa]local-user test service-type telnet
[AR1-aaa]local-user test privilege level 15
[AR1-aaa]quit
[AR3]user-interface vty 0 4
[AR3-ui-vty0-4]authentication-mode aaa
[AR3-ui-vty0-4]quit
[AR3]aaa
[AR3-aaa]local-user test password cipher Huawei@123
Info: Add a new user.
[AR3-aaa]local-user test service-type telnet
[AR3-aaa]local-user test privilege level 15
[AR3-aaa]quit
```

Проверьте возможность установления связи.

```
[AR1]ping 1.2.3.254
  PING 1.2.3.254: 56 data bytes, press CTRL_C to break
   Request time out
    Request time out
   Request time out
   Request time out
Request time out
   -- 1.2.3.254 ping statistics ---
5 packet(s) transmitted
    0 packet(s) received
    100.00% packet loss
[AR2]ping 1.2.3.254
  PING 1.2.3.254: 56 data bytes, press CTRL_C to break
   Reply from 1.2.3.254: bytes=56 Sequence=1 ttl=255 time=230 ms
    Reply from 1.2.3.254: bytes=56 Sequence=2 ttl=255 time=20 ms
    Reply from 1.2.3.254: bytes=56 Sequence=3 ttl=255 time=10 ms
   Reply from 1.2.3.254: bytes=56 Sequence=4 ttl=255 time=20 ms
   Reply from 1.2.3.254: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 1.2.3.254 ping statistics ---
   5 packet(s) transmitted
    5 packet(s) received
   0.00% packet loss
   round-trip min/avg/max = 10/60/230 ms
```

Шаг 2 Предприятие получает общедоступные IP-адреса в диапазоне от 1.2.3.10 до 1.2.3.20, поэтому ему требуется функция динамического NAT.

Настройте пул адресов NAT.

```
[AR2]nat address-group 1 1.2.3.10 1.2.3.20
```

Настройте ACL.

```
[AR2]acl 2000
[AR2-acl-basic-2000]rule 5 permit source any
```

Hacтройте динамический NAT на GigabitEthernet0/0/4 маршрутизатора R2.

```
[AR2]int g0/0/1
[AR2-GigabitEthernet0/0/1]nat outbound 2000 address-group 1
```

Проверьте возможность установления связи.

```
[AR1]ping 1.2.3.254
PING 1.2.3.254: 56 data bytes, press CTRL_C to break
Reply from 1.2.3.254: bytes=56 Sequence=1 ttl=254 time=40 ms
Reply from 1.2.3.254: bytes=56 Sequence=2 ttl=254 time=30 ms
Reply from 1.2.3.254: bytes=56 Sequence=3 ttl=254 time=60 ms
Reply from 1.2.3.254: bytes=56 Sequence=4 ttl=254 time=30 ms
Reply from 1.2.3.254: bytes=56 Sequence=5 ttl=254 time=20 ms

--- 1.2.3.254 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 20/36/60 ms
```

Выполните вход с R1 на R3 через Telnet, чтобы смоделировать трафик TCP.

```
<AR1>telnet 1.2.3.254
Press CTRL_] to quit telnet mode
Trying 1.2.3.254 ...
Connected to 1.2.3.254 ...
Login authentication

Username:test
Password:
<AR3>quit
```

Выведите на экран таблицу сеансов NAT на R2.

```
[AR2]display nat session all
NAT Session Table Information:

Protocol : TCP(6)
SrcAddr Port Vpn : 192.168.1.1 1990
DestAddr Port Vpn : 1.2.3.254 5888
NAT-Info
New SrcAddr : 1.2.3.16
New SrcPort : 10240
New DestAddr : ----
New DestPort : ----
Total : 1
```

Шаг 3 Если IP-адрес GigabitEthernet0/0/4 на R2 назначается динамически (например, через DHCP или PPPoE), необходимо настроить Easy IP.

Удалите конфигурацию, созданную на предыдущем шаге.

```
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/1]undo nat outbound 2000 address-group 1
```

Настройте Easy IP.

[AR2-GigabitEthernet0/0/1]nat outbound 2000

Проверьте возможность установления связи.

```
<AR1>ping 1.2.3.254
  PING 1.2.3.254: 56 data bytes, press CTRL_C to break
Reply from 1.2.3.254: bytes=56 Sequence=1 ttl=254 time=30 ms
     Reply from 1.2.3.254: bytes=56 Sequence=2 ttl=254 time=30 ms
     Reply from 1.2.3.254: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 1.2.3.254: bytes=56 Sequence=4 ttl=254 time=50 ms
     Reply from 1.2.3.254: bytes=56 Sequence=5 ttl=254 time=30 ms
  --- 1.2.3.254 ping statistics --- 5 packet(s) transmitted
     5 packet(s) received
     0.00% packet loss
     round-trip min/avg/max = 30/34/50 ms
<AR1>telnet 1.2.3.254
Press CTRL_] to quit telnet mode
Trying 1.2.3.254 ...
  Connected to 1.2.3.254 ...
Login authentication
Username:test
Password:
  User last login information:
  Access Type: Telnet
  IP-Address : 1.2.3.16
  Time : 2024-12-06 06:04:04-08:00
<AR3>
```

Выполните вход с R1 на R3 через Telnet, чтобы смоделировать трафик TCP.

Шаг 4 R3 должен предоставлять сетевые услуги (в данном примере telnet) для пользователей в общедоступной сети. Поскольку R3 не имеет общедоступного IP-адреса, необходимо настроить сервер NAT на исходящем интерфейсе R2.

Настройте сервер NAT на R2.

```
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/1]nat server protocol tcp global current-interface 2323
inside 192.168.1.1 telnet
```

Выполните вход с R3 на R1 через Telnet.

```
<AR3>telnet 1.2.3.4 2323
Press CTRL_] to quit telnet mode
Trying 1.2.3.4 ...
Connected to 1.2.3.4 ...

Login authentication

Username:test
Password:
<AR1>
```

Выведите на экран таблицу сеансов NAT на R2.

Справочные конфигурации

```
[V200R003C00]
#
    sysname AR1
#
    snmp-agent local-engineid 800007DB0300000000000
    snmp-agent
#
    clock timezone China-Standard-Time minus 08:00:00
#
    portal local-server load portalpage.zip
#
    drop illegal-mac alarm
#
    set cpu-usage threshold 80 restore 75
```

```
#
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user test password cipher %$%$tzV{W9}UlX;6M&~dQAqI^S@r%$%$
 local-user test privilege level 15
local-user test service-type telnet
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
 local-user admin service-type http
firewall zone Local
 priority 15
interface GigabitEthernet0/0/0
 ip address 192.168.1.1 255.255.255.0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface NULL0
ip route-static 0.0.0.0 0.0.0.0 192.168.1.254
user-interface con 0
 authentication-mode password
user-interface vty 0 4
 authentication-mode aaa
user-interface vty 16 20
wlan ac
return
```

```
[V200R003C00]
sysname AR2
snmp-agent local-engineid 800007DB03000000000000
snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
acl number 2000
rule 5 permit
authentication-scheme default
authorization-scheme default
accounting-scheme default
domain default
domain default_admin
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
#
nat address-group 1 1.2.3.10 1.2.3.20
interface GigabitEthernet0/0/0
```

```
ip address 192.168.1.254 255.255.255.0
#
interface GigabitEthernet0/0/1
ip address 1.2.3.4 255.255.255.0
nat server protocol tcp global current-interface 2323 inside 192.168.1.1 telnet
nat outbound 2000
#
interface GigabitEthernet0/0/2
#
interface NULL0
#
ip route-static 0.0.0.0 0.0.0.0 1.2.3.254
#
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
#
wlan ac
#
return
```

```
[V200R003C00]
 sysname AR3
 snmp-agent local-engineid 800007DB03000000000000
 snmp-agent
 clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
#
aaa
authentication-scheme default
 authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user\ test\ password\ cipher\ \$\$\$R(cP5Q3f|Yh9*]+i7g1H^Tz5\$\$\$
 local-user test privilege level 15
 local-user test service-type telnet
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0'8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
ip address 1.2.3.254 255.255.255.0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface NULL0
user-interface con 0
authentication-mode password
user-interface vty 0 4
authentication-mode aaa
user-interface vty 16 20
wlan ac
#
return
```

Вывод

В ходе лабораторной работы познакомились с ACL, AAA и NAT.