CLAIMS

We claim:

5 1. A compound of the formula

wherein X_1 is O, $S(O)_n$, $-\stackrel{N}{N}-$, $co-\stackrel{N}{N}-$, or -CH₂-, with the proviso that when X_1 is -CH₂-, R_1 and R_2 are only halogen.

n is 0, 1 or 2;

Ra and Rb when taken together form an oxo (=O) group, or Ra and Rb are each independently hydrogen, OH, OCOR9, NH₂, N₃, NHCOOR9, NHCOCOR9, NHSO₂R9 or F;

X is H, CF₃, OCF₃, halogen, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic;

 R^1 and R^2 are each independently H, halogen, OR^9 , C_1 – C_7 alkyl, C_2 – C_7 alkynyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or

cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic;

- R³, R⁴ and Y are each independently H, halogen, OR¹⁰, S(O)_nR¹⁰, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic, with the proviso that not all of R³, R⁴ and Y may be the same halogen;
- R⁵, R⁶ and R⁷ are each independently H, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, PO₃R⁸ or heterocyclic;
- 25 R8 is H, C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R⁹ is same as R⁸ but is not hydrogen;

 R^{10} is $\mathsf{C}_1-\mathsf{C}_7$ alkyl, $\mathsf{C}_2-\mathsf{C}_7$ alkenyl, $\mathsf{C}_2-\mathsf{C}_7$ alkynyl or $\mathsf{C}_3-\mathsf{C}_7$ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO₃R8, SO₃R8, heterocyclic, OR8, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR6R7, OR8, COOR8, SO3R8, OCOR8, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic:

133

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹²:

10

5

 ${\sf R^{11}}$ and ${\sf R^{12}}$ are each independently hydrogen, ${\sf C_1-C_7}$ alkyl, ${\sf C_2-C_7}$ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by NR¹³R¹⁴, S(O)_nR¹³, OR¹³, with the proviso that both R¹¹ and R¹² may not be hydrogen:

15

20

 R^{13} and R^{14} are each independently H, SiR¹⁵R¹⁶R¹⁷, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR8, OR8, Si R15R16R17, OR¹⁵, aryl, biaryl or heteroaryl, said aryl, biaryl or heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, or CN;

25

 R^{13} and R^{14} when taken together may form a 5 –7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR8, COOR8, or C(O)NR5R6;

R¹⁵, R¹⁶, R¹⁷ are each independently aryl, benzyl, benzhydryl, biaryl, heteroaryl, (C₁–C₆) alkyl-aryl or (C₁–C₆) alkyl-heteroaryl, said aryl radical

being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, C_1 - C_7 alkyl.

2. A compound of the formula

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, S(O)_n, $-\stackrel{R^5}{N}$, $\stackrel{R^5}{N}$ or -CH₂-, with the proviso that when X_1 is -CH₂-, R_1 and R_2 are only halogen.

n is 0, 1 or 2;

Ra and Rb when taken together form an oxo (=O) group, or Ra and Rb are each independently hydrogen, OH, OCOR9, NH₂, N₃, NHCOOR9, NHCOCOR9, NHSO₂R9 or F.

X is H, CF₃, OCF₃, halogen, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic;

25

R¹ and R² are each independently H, halogen, OR9, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkenyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic;

R³, R⁴ and Y are each independently H, OR¹⁰, S(O)_nR¹⁰, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic;

R⁵, R⁶ and R⁷ are each independently H, C₁–C₇ alkyl, C₂–C₇ alkenyl,

C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸,

PO₃R⁸, halogen, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸,

SO₃R⁸, PO₃R⁸ or heterocyclic;

 R^8 is H, C_1 – C_7 saturated straight chain alkyl or cycloalkyl, CF_3 or CH_2CF_3 ;

R⁹ is same as R⁸ but is not hydrogen;

 R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ or heterocyclic;

Z is OR^{11} , $S(O)_nR^{11}$, $NR^{11}R^{12}$ or $CHR^{11}R^{12}$;

10

5

 R^{11} and R^{12} are each independently hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, with the proviso that both R^{11} and R^{12} may not be hydrogen;

15

20

R¹³ and R¹⁴ are each independently H, SiR¹⁵R¹⁶R¹⁷, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl, aryl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, biaryl or heteroaryl, said aryl, biaryl or heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, or CN;

25

R¹³ and R¹⁴ when taken together may form a 5 – 7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR⁸, COOR⁸, or C(O)NR⁵R⁶;

 R^{15} , R^{16} , R^{17} are each independently aryl, benzyl, benzhydryl, biaryl, heteroaryl, (C_1-C_6) alkyl-aryl or (C_1-C_6) alkyl-heteroaryl, said aryl radical

being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 – C_7 alkyl.

- A compound of claim 2 wherein X₁ is O, or S(O)_n and Y is OR¹⁰ in which R¹⁰ is C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic, said R⁶, R⁷, R⁸ and R⁹ substituents being defined as in claim 2.
- A compound of claim 3 in which R^a and R^b taken together
 represent an oxo (=O) group, or R^a and R^b are each independently hydrogen or OH.
- 5. A compound of claim 3 wherein R^a and R^b are each independently hydrogen, OCOR⁹, NH₂, N₃, NHCOOR⁹ or NHCOCOR⁹ in which R⁹ is as defined in claim 2.
 - 6. A compound of claim 4 wherein R¹ and R² are each independently halogen.
- 25 7. A compound of claim 3, 4, 5 or 6 in which

Z is

in which m and p each independently represent an integer of one to six, R¹⁵, R¹⁶, R¹⁷ are each independently C_1 – C_7 alkyl, R¹⁸ is C_1 – C_7 alkyl and

aryl represents $\stackrel{X^1}{=}$ in which X^1 is halogen.

5 8. A compound selected from

CH₃COCONH

or a pharmaceutically acceptable salt thereof.

- 9. A pharmaceutical composition for the inhibition of cytosolic
 5 phospholipase A₂ comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- 10. A method of inhibiting cytosolic phospholipase A₂ in a mammal in need thereof, comprising administering to said mammal a therapeutically
 10 effective amount of a compound of claim 1.