





# GPC510 - Well logging

भारतीय प्रौद्योगिकी

(भारतीय खनि विद्यापीठ)

संस्थान

Semester - Winter 2025; Lecture-5

Partha Pratim Mandal Assistant Professor **Department of Applied Geophysics** 

E: partham@iitism.ac.in / partha87presi@gmail.com

#### TEACHING OUTLINE

#### Week 2

Tutorial 4 – Borehole effects, environmental impacts

Tutorial 5 – Tool geometry, resolution, rock composition

Tutorial 6 – depth of investigation, resolution, resistivity, salinity

#### Week 3

<u>Tutorial 7</u> – Clay definition, porosity

## AGENDA

- Resistivity & Salinity
- Clay definition
- Porosity

#### **DEPTH OF INVESTIGATION & RESOLUTION**

Depth Of Investigation Of Logging Tools

#### Logging Tools



#### RESISTIVITY AND SALINITY

- Salinity is a measure of the concentration of dissolved salts
- Expressed in ppm [mg solute/ L solution]
- Salt water has salinity of 35000 ppm
- Resistivity of an electrolyte depends upon concentration and type of dissolved salts



## RESISTIVITY AND SALINITY

- Charts to convert
   other dissolved salts
   in terms of equivalent
   NaCl
- NaCl is the most salt contained in formation waters and in the drilling muds



#### RESISTIVITY& TEMPERATURE

- Resistivity of a solution decreases with increasing temperature
- According to Arp's formula -

$$R_{wT2} = R_{wT1} \left[ \frac{T_1 + 6.77}{T_2 + 6.77} \right] \text{ in (0F)}$$

$$R_{wT2} = R_{wT1} \left[ \frac{T_1 + 21.5}{T_2 + 21.5} \right] \text{ in (°C)}$$

 Chart presented here can be used to convert resistivity at a given temperature to that at any other temperature



## PHYSICAL PROPERTIES OF CLAYS

- Clays are sheet-like particles, very thin (a few angstroms = 10<sup>-7</sup> mm) but large specific surface area (SSA), creating a strong negative electric fields perpendicular to the clay surfaces
- It attracts positive ions (Na+, K+, Ca2+) and repels negative ions (CI-) present in the water, lead to the concept of Cation Exchange Capacity (CEC)
- SSA and CEC are expressed in m2/gram



| Sample                                                              | CEC (meq/100gr)                                                                                          | SSA-N2 (m <sup>2</sup> /gr)                                                                                                                                    | TSSA-EGME (m <sup>2</sup> /gr)                                                                            |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Smectite <sup>a</sup><br>Illite<br>Chlorite<br>Kaolinite<br>Kerogen | 76.1-150 <sup>b-f</sup> 9-40 <sup>b-d,f,g</sup> 1 <sup>c</sup> 0.9-15 <sup>a-e,h</sup> <0.5 <sup>h</sup> | 31.13 <sup>i</sup> , 75.9 <sup>j</sup><br>25 <sup>k</sup> , 67.2 <sup>j</sup><br>15 <sup>k</sup><br>11.5 <sup>i</sup> –21 <sup>j</sup><br>5.5–300 <sup>l</sup> | 400-850 <sup>h,m</sup> 57-118 <sup>h,m</sup> 9-62 <sup>h,m</sup> 9-62 <sup>h,m</sup> 860-921 <sup>h</sup> |

#### DIFFERENT MODEL OF DIFFUSE LAYER



n – concentration of ions (number of ions/m<sup>3</sup>) A – thickness in Angstrom (  $1 \text{ A} = 10^{-10} \text{ m}$ )

#### RESISTIVITY OF CLAYS

- Excess of conductivity in clays is due to additional cations held loosely captive in a diffuse layer surrounding to clay particles
- Conductivity of a clay dominated sedimentary rock (inverse of resistivity) depends upon (i) free water/ water filled pore space (ii) CEC
- Dealing with formation containing clay can not be considered to be nonconductive for solid matrix
- CEC and SSA indirectly influence subsurface rock's mechanical and elastic properties



#### POROSITY

- Porosity is defined as the ratio of the pore volume to the bulk volume (V<sub>b</sub>) of the rock
- The pore volume is the available space which holds pore fluids (water, hydrocarbon)

$$\emptyset = \frac{pore\ volume}{bulk\ volume} = \frac{V_b - V_g}{V_b}$$

- Total porosity  $(\phi_t)$  is the total pore volume relative to the bulk rock volume
- Total porosity is a combination of intergranular and secondary
- Effective porosity ( $\phi_e$ ) is the ratio of interconnected pore volume and the bulk volume of the rock





## POROSITY CHART OF ROCKS



## POROSITY TOOLS

- Porosity can be calculated from several wireline logging tools (Sonic, Density, Neutron) and can be estimated from Resistivity log
- Some a prior knowledges are necessary (depositional environment, log type) before going into porosity calculation
- Necessary action should be taken to tackle poor hole conditions, presence of hydrocarbons and shale within the reservoirs
- All reliable logs can be used to compute porosity

# **END OF LECTURE**

