Job No.: SB 048 Shed House Address: 164 Birchwood Road, Ohai, New Zealand Date: 3/6/2025

Latitude: -45.934481 Longitude: 167.946016 Elevation: 206 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	1.1 KPa	Roof Snow Load	0.77 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	2	Ultimate wind & Earthquake ARI	500 Years	Max Height	3.72 m
Wind Region	NZ2	Terrain Category	1.77	Design Wind Speed	43.72 m/s
Wind Pressure	1.15 KPa	Lee Zone	NO	Ultimate Snow ARI	150 Years
Wind Category	High	Earthquake ARI	500		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.57 m Cpe = -0.9 pe = -0.93 KPa pnet = -0.93 KPa

For roof CP,e from 3.57 m To 7.13 m Cpe = -0.52 KPa pnet = -0.52 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 10.53 m Cpe = 0.7 pe = 0.72 KPa pnet = 1.06 KPa

For side wall CP,e from 0 m To 3.57 m Cpe = pe = -0.67 KPa pnet = -0.67 KPa

Maximum Upward pressure used in roof member Design = 0.93 KPa

Maximum Downward pressure used in roof member Design = 0.44 KPa

Maximum Wall pressure used in Design = 1.06 KPa

Maximum Racking pressure used in Design = 1.20 KPa

Design Summary

Intermediate Design Front and Back

Intermediate Spacing = 1735.5 mm Intermediate Span = 3255 mm Try Intermediate 2x240x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward = 1.00 S1 Downward = 13.82 S1 Upward = 0.83

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.53 Kn-m Capacity 9.68 Kn-m Passing Percentage **382.61 %** V_{0.9D-WnUp} 3.11 Kn Capacity -34.74 Kn Passing Percentage **1117.04 %**

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.79 mm Limit byWoolcock et al, 1999 Span/250 = 13.02 mm

Reactions

Maximum = 3.11 kn

Intermediate Design Sides

Intermediate Spacing = 1760.5633802816903 Intermediate Span = 3531 Try Intermediate 2x240x45 mm SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward = 1.00 S1 Downward = 13.82 S1 Upward = 0.87

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.51 Kn-m Capacity 9.68 Kn-m Passing Percentage 641.06 % Vo.9D-WnUp 1.71 Kn Capacity 34.74 Kn Passing Percentage 2031.58 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.745 mm Limit by Woolcock et al, 1999 Span/250 = 14.12 mm

Reactions

Maximum = 1.71 kn

Girt Design Front and Back

Girt's Spacing = 600 mm

Girt's Span = 1736 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward =1.00

K8 Upward =0.92

S1 Downward = 10.36

S1 Upward =14.39

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$

 $0.24~\mathrm{Kn}\text{-m}$

Capacity

1.52 Kn-m

Passing Percentage

633.33 %

 $V_{0.9D\text{-W}nUp}$

0.55 Kn

Capacity

10.13 Kn

Passing Percentage

1841.82 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 1.88 mm

Limit by Woolcock et al, 1999 Span/250 = 6.94 mm

Sag during installation = 0.68 mm

Reactions

Maximum = 0.55 kn

Girt Design Sides

Girt's Spacing = 600 mm

Girt's Span = 1761 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward = 1.00

K8 Upward =0.92

S1 Downward = 10.36

S1 Upward =14.49

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow

0.25 Kn-m

Capacity

1.51 Kn-m

Passing Percentage

604.00 %

4/5

V_{0.9D-WnUp} 0.56 Kn Capacity 10.13 Kn Passing Percentage 1808.93 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 1.99 mm Limit by Woolcock et al. 1999 Span/100 = 7.04 mm Sag during installation = 0.72 mm

Reactions

Maximum = 0.56 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 21.61 Kn

Uplift on one Pile = 6.12 Kn

Uplift is ok