Introdução ao Tratamento e Análise de Dados em R

Sérgio Rivero

PPGE-UFPA

19 de maio de 2019

Sumário

- 🚺 Objetivo da Aula
- Gerando Tabelas com Xtable e Stargazer
- Análise
- 4 Exercícios

Objetivo da Aula

- Neste capítulo veremos como é possível gerar um grande conjunto de tabelas em R
- vamos utilizar o Markdown para isso
- Sem como discutiremos a apresentação de resultados de modelos com estas bibliotecas.

Gerando Tabelas com Xtable e Stargazer

- A geração de tabelas no R pode ser feita utilizando alguns pacotes específicos adequados para tal.
- Estes pacotes leem dataframes ou matrizes e geram tabelas a partir destes.
- Muitos destes pacotes têm também a capacidade de:
 - ler objetos específicos do R (como resultados de regressões, análise de cluster, etc)
 - e gerar tabelas correspondentes às saídas normais de apresentação destes resultados.

xtable

Aqui temos o nosso velho conhecido banco de dados MTCARS. Utilizando a opção auto, o xtable define o tipo de saída em termos de casas decimais, automaticamente.

```
library(xtable)

mtc2 <- xtable(head(mtcars),
auto = TRUE,
caption = 'Base mtcars, primeiras linhas')

print.xtable(mtc2, caption.placement='top')</pre>
```


Tabelas com xtable

Tabela 1. Base mtcars, primeiras linhas

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

A tabela apresentando as primeiras 6 linhas do dataframe mtcars

Gerando uma tabela sintética com dplyr

```
library(dplyr)
data(mtcars)
sintesePot <- as.data.frame(mtcars %>% group_by(cyl) %>%
      summarize(potenciaMedia = mean(hp,na.rm = TRUE),
      sigmaPotencia = sd(hp, na.rm = TRUE),
      n = n()
tabelaPot <- xtable(sintesePot,
                    caption = 'Média e Desvio Padrão ...')
print(tabelaPot, type = "html",
       caption.placement='bottom')
                                                  FACECO
```

Tabelas com xtable

	cyl	potenciaMedia	sigmaPotencia	n
1	4.00	82.64	20.93	11
2	6.00	122.29	24.26	7
3	8.00	209.21	50.98	14

Tabela 2. Média e Desvio Padrão da potência por no. de cilindros

Olhando para os dados

O gráfico

Análise

Podemos então pensar em uma regressão que olhe para a relação entre potência e consumo

summary(hpmpg)

O resultado da regressão pelo summary

```
Call:
lm(formula = mpg ~ hp, data = mtcars)
Residuals:
   Min 10 Median 30 Max
-5.7121 -2.1122 -0.8854 1.5819 8.2360
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.09886    1.63392    18.421    < 2e-16 ***
           -0.06823 0.01012 -6.742 1.79e-07 ***
hp
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared:
                                                      0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
```


O resultado da regressão pelo xtable

Tabela 3. Resultado do Modelo Consumo versus HP

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	30.0989	1.6339	18.42	0.0000
$_{ m hp}$	-0.0682	0.0101	-6.74	0.0000

Utilizando o stargazer

A saída do **stargazer**

Tabela 4. Resultado do Modelo Consumo versus HP

_	$Dependent\ variable:$		
	mpg		
hp	-0.068***		
	(0.010)		
Constant	30.099***		
	(1.634)		
Observations	32		
\mathbb{R}^2	0.602		
Adjusted R ²	0.589		
Residual Std. Error	3.863 (df = 30)		
F Statistic	45.460*** (df = 1; 30)		

Exercícios

Exercícios

