

# CHAPTER 3

# **BOOLEAN ALGEBRA**

#### **Basic Logical Operations**

NOT 
$$F = x' = \overline{x}$$



| X | F |
|---|---|
| 0 | 1 |
| 1 | 0 |

$$F(x) = x'$$

$$(x')' = x$$



Figure 3.1 Logic symbol for inverter.

F: logic function, Boolean function, switching function, or in short a function of x.

x: Boolean variable, switching variable, or in short, a variable.



Figure 3.2 Logic symbol for buffer.

$$F(x,y) = x \bullet y = xy$$



Table 3.2 Truth table for AND.

| x y | F(x,y) |
|-----|--------|
| 0 0 | 0      |
| 0 1 | 0      |
| 1 0 | 0      |
| 1 1 | 1      |



$$A \cdot A = A$$

$$\mathbf{A} \bullet \mathbf{1} = \mathbf{A}$$

$$\mathbf{A} \bullet \mathbf{0} = \mathbf{0}$$

$$\mathbf{A} \bullet \mathbf{A}' = \mathbf{0}$$

$$\mathbf{A} \bullet \mathbf{B} = \mathbf{B} \bullet \mathbf{A}$$



$$F(x,y) = x + y$$

Table 3.3 Truth table for OR.

| XY  | F(x,y) |
|-----|--------|
| 0 0 | 0      |
| 0 1 | 1      |
| 1 0 | 1      |
| 1 1 | 1      |



Figure 3.4 Logic symbol for OR.

$$A + A = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A' = 1$$

$$A + B = B + A$$



Figure 3.5 Logic circuit.

#### **Basic Laws**

- (1) Involution law (A')' = A
- (2) Idempotency law
  - (a)  $A \cdot A = A$
  - (b) A + A = A
- (3) Laws of 0 and 1
  - (a)  $A \cdot 1 = A$
  - (b) A + 0 = A
  - (a')  $\mathbf{A} \bullet \mathbf{0} = \mathbf{0}$
  - (b') A + 1 = 1
- (4) Complementary law
  - (a)  $A \cdot A' = 0$
  - (b) A + A' = 1
- (5) Commutative law
  - (a)  $A \cdot B = B \cdot A$
  - (b) A + B = B + A



#### (6) Associative law

(a) 
$$(A \bullet B) \bullet C = A \bullet (B \bullet C)$$

(b) 
$$(A + B) + C = A + (B + C)$$

Table 3.4 Proof of associative law (6a)

| АВС   | A B | Left-hand-side<br>of (6a)<br>(A B) C | ВС | Right-hand-<br>side of (6a)<br>A (B C) |
|-------|-----|--------------------------------------|----|----------------------------------------|
| 0 0 0 | 0   | 0                                    | 0  | 0                                      |
| 0 0 1 | 0   | 0                                    | 0  | 0                                      |
| 0 1 0 | 0   | 0                                    | 0  | 0                                      |
| 0 1 1 | 0   | 0                                    | 1  | 0                                      |
| 1 0 0 | 0   | 0                                    | 0  | 0                                      |
| 1 0 1 | 0   | 0                                    | 0  | 0                                      |
| 1 1 0 | 1   | 0                                    | 0  | 0                                      |
| 1 1 1 | 1   | 1                                    | 1  | 1                                      |



Figure 3.6 (a) Logic circuit for (AB) C. (b) Logic circuit for A (BC). (c) 3-input AND gate.





#### (6) Associative law

(a) 
$$(A \bullet B) \bullet C = A \bullet (B \bullet C)$$

(b) 
$$(A + B) + C = A + (B + C)$$

Table 3.4 Proof of associative law (6a)

| АВС   | АВ | Left-hand-side<br>of (6a)<br>(A B) C | ВС | Right-hand-<br>side of (6a)<br>A (B C) |
|-------|----|--------------------------------------|----|----------------------------------------|
| 0 0 0 |    | 0                                    |    | 0                                      |
| 0 0 1 |    | AB = 0                               |    | 0                                      |
| 0 1 0 |    | 0                                    |    | 0                                      |
| 0 1 1 |    | AB = 0                               |    | 0                                      |
| 1 0 0 |    | 0                                    |    | BC = 0                                 |
| 1 0 1 |    | AB = 0                               |    | BC = 0                                 |
| 1 1 0 |    | 0                                    |    | BC = 0                                 |
| 1 1 1 |    | AB = 1                               |    | BC =1                                  |

#### (7) Distributive law

(a) 
$$A(B+C) = AB + AC$$

(b) 
$$A + B C = (A + B) (A + C)$$



| 1 able 5.5 FIC | or or ars | uiduuve iaw (                           | (7a). |     |                                       |
|----------------|-----------|-----------------------------------------|-------|-----|---------------------------------------|
| АВС            | B+C       | Left-hand-<br>side of (7a)<br>A (B + C) | A B   | A C | Right-hand-side<br>of (7a)<br>AB + AC |
| 0 0 0          | 0         | 0                                       | 0     | 0   | 0                                     |
| 0 0 1          | 1         | 0                                       | 0     | 0   | 0                                     |
| 0 1 0          | 1         | 0                                       | 0     | 0   | 0                                     |
| 0 1 1          | 1         | 0                                       | 0     | 0   | 0                                     |
| 1 0 0          | 0         | 0                                       | 0     | 0   | 0                                     |
| 1 0 1          | 1         | 1                                       | 0     | 1   | 1                                     |
| 1 1 0          | 1         | 1                                       | 1     | 0   | 1                                     |
| 1 1 1          | 1         | 1                                       | 1     | 1   | 1                                     |





Table 3.6 Proof of distributive law (7b).

| A | Left-hand-side of (7b)<br>A + B C | Right-hand-side of (7b) $(A + B)(A + C)$ |
|---|-----------------------------------|------------------------------------------|
| 0 | 0 + B C = B C                     | (0 + B) (0 + C) = B C                    |
| 1 | 1 + B C = 1                       | $(1 + B) (1 + C) = 1 \cdot 1 = 1$        |

#### Distributive law (7a)



#### Distributive law (7b)





#### 3.3 Sum-of-Products and Product-of-sums Expressions

Literal: a variable appears unprimed or primed in a switching expression.

$$AB' + BC + A'BD'$$

$$B' + CD + A'C'D' + AE'$$

Product-of-sums (POS)

$$(A' + C')(A + C + D')(B + D')$$

$$C'(B' + D')(A + B + D)$$



#### (7) Distributive law

(a) 
$$A(B+C) = AB + AC$$
  
POS SOP

(b) 
$$A + B C = (A + B) (A + C)$$
  
SOP POS

# s Expressions

### Simplest (Minimal) Sum-of-Products and Product-of-Sums Expression

When a literal or a product is deleted from a sum-of-products expression for a switching function, the expression with deleted literal/product is no longer correct for the function. Then the sum-of-products expression is said to be simplest or minimal. In other words, a sum-of-products expression is simplest if and only if no literal or product can be deleted from the expression. Thus a simplest sum-of-products expression for a function consists of a minimum number of product terms and the total number of literals in all the number of product terms is also a minimum.



#### **Example 3.1**

Show that the sum-of-product expression (AB' + BCD + A'B'D') is not minimal and can be simplified by removing the literal A' from the third product. In other words, show that the following equation is valid.

$$AB' + BCD + A'B'D' = AB' + BCD + B'D'$$
 (3.1)

Table 3.7 Proof of Equation (3.1).

| A B | Left-hand-side of Equation (3.1)<br>AB' + BCD + A'B'D'                 | Right-hand-side of Equation (3.1)<br>AB' + BCD + B'D'       |
|-----|------------------------------------------------------------------------|-------------------------------------------------------------|
| 0 0 | $0 \bullet 0' + 0 \bullet C \bullet D + 0' \bullet 0' \bullet D' = D'$ | $0 \bullet 0' + 0 \bullet C \bullet D + 0' \bullet D' = D'$ |
| 0 1 | $0 \bullet 1' + 1 \bullet C \bullet D + 0' \bullet 1' \bullet D' = CD$ | $0 \bullet 1' + 1 \bullet C \bullet D + 1' \bullet D' = CD$ |
| 1 0 | $1 \bullet 0' + 0 \bullet C \bullet D + 1' \bullet 0' \bullet D' = 1$  | $1 \cdot 0' + 0 \cdot C \cdot D + 0' \cdot D' = 1 + D' = 1$ |
| 1 1 | $1 \cdot 1' + 1 \cdot C \cdot D + 1' \cdot 1' \cdot D' = CD$           | $1 \bullet 1' + 1 \bullet C \bullet D + 1' \bullet D' = CD$ |

#### **\$** Example 3.2

Show that the sum-of-products expression (AB' + BCD + B'D') on the right-hand-side of Equation (3.1) is minimal.

Table 3.8 Proof for simplest sum-of-products expression.

| АВСД                                                  | Right-hand-side of Equation (3.1) | Expression after removing either a literal or a product from right-hand-side of Equation (3.1) | Literal or product<br>removed from<br>right-hand-side of<br>Equation (3.1) |
|-------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 0 0 0 1 0 0 1 1                                       | AB' + BCD + B'D' = 0              | B' + BCD + B'D' = 1                                                                            | A in 1 <sup>st</sup> product                                               |
| 1 1 0 0<br>1 1 0 1<br>1 1 1 0                         | AB' + BCD + B'D' = 0              | A + BCD + B'D' = 1                                                                             | B' in 1 <sup>st</sup> product                                              |
| 0 0 1 1                                               | AB' + BCD + B'D' = 0              | AB' + CD + B'D' = 1                                                                            | B in 2 <sup>nd</sup> product                                               |
| 0 1 0 1<br>1 1 0 1                                    | AB' + BCD + B'D' = 0              | AB' + BD + B'D' = 1                                                                            | C in 2 <sup>nd</sup> product                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | AB' + BCD + B'D' = 0              | AB' + BC + B'D' = 1                                                                            | D in 2 <sup>nd</sup> product                                               |
| 0 1 0 0<br>0 1 1 0<br>1 1 0 0<br>1 1 1 0              | AB' + BCD + B'D' = 0              | AB' + BCD + D' = 1                                                                             | B' in 3 <sup>rd</sup> product                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | AB' + BCD + B'D' = 0              | AB' + BCD + B' = 1                                                                             | D' in 3 <sup>rd</sup> product                                              |
| 1 0 0 1<br>1 0 1 1                                    | AB' + BCD + B'D' = 1              | BCD + B'D' = 0                                                                                 | Product AB'                                                                |
| 0 1 1 1 1 1 1 1 1                                     | AB' + BCD + B'D' = 1              | AB' + B'D' = 0                                                                                 | Product BCD                                                                |
| 0 0 0 0 0 0 0 0 1 0                                   | AB' + BCD + B'D' = 1              | AB' + BCD = 0                                                                                  | Product B'D'                                                               |





#### 3.4 Theorems

- (1) Combination theorem
  - (a) A B + A B' = A
  - (b) (A + B) (A + B') = A

Proof: (a) LHS = 
$$A B + A B'$$
  
=  $A (B + B')$   
=  $A \cdot 1$   
=  $A = RHS$ 

(b) LHS 
$$= (A + B) (A + B')$$
  
 $= A + B B'$   
 $= A + 0$   
 $= A = RHS$ 

#### (2) Absorption theorem

(a) 
$$A + AB = A$$

(b) 
$$A (A + B) = A$$

Proof: (a) LHS = 
$$A + A B$$
  
=  $A \cdot 1 + A B$   
=  $A (1 + B)$   
=  $A \cdot 1$   
=  $A = RHS$ 

(b) LHS = 
$$A (A + B)$$
  
=  $A A + A B$   
=  $A + A B$   
=  $A = RHS$ 

#### **\*** Example 3.3

(a) 
$$AC + AB'CDE = (AC) + (AC) (B'DE) = AC$$

(b) 
$$B'(A + B')(B' + CD') = B'(B' + CD') = B'$$





(a) 
$$A + A' B = A + B$$

(b) 
$$A (A' + B) = A B$$

Proof: (a) LHS = 
$$A + A'B$$
  
=  $(A + A') (A + B)$   
=  $1 \cdot (A + B)$   
=  $A + B = RHS$ 

(b) LHS = 
$$A (A' + B)$$
  
=  $A A' + A B$   
=  $0 + A B$   
=  $A B = RHS$ 

#### **\*** Example 3.4

(a) 
$$AC' + AB'CDE' = A(C' + B'CDE') = A[C' + C(B'DE')]$$
  
=  $A(C' + B'DE') = AC' + AB'DE'$ 

(b) 
$$(B + C') (A + B + C' + D + E)$$
  
=  $(B + C') [(B + C') + (A + D + E)]$   
=  $B + C'$ 





#### **\*** Example 3.5

Simplify the sum-of-products expression (AB' + BCD + A'B'D').

This example is the revisit of Example 3.1. By applying the elimination theorem

(a) 
$$A B + A' C + B C = A B + A' C$$

(b) 
$$(A + B) (A' + C) (B + C) = (A + B) (A' + C)$$



Proof: (a) LHS = 
$$A B + A' C + B C$$
  
=  $A B + A' C + 1 \cdot B \cdot C$   
=  $A B + A' C + (A + A') B C$   
=  $A B + A' C + A B C + A' B C$   
=  $(A B) + (A B) C + (A' C) + (A' C) B$   
=  $A B + A' C = RHS$ 

#### **Example 3.6**



#### **\$** Example 3.7

Consensus term from A and A'  $\longrightarrow$  (B'C') (C'D') = B'C'D'

Consensus term from B and B'  $\longrightarrow$  D' (A C') = AC'D'

$$BD' + AB'C' + A'C'D' = BD' + AB'C' + A'C'D' + AC'D'$$

$$A'C'D' + AC'D' = (A' + A) C'D' = C'D'$$

$$BD' + AB'C' + C'D'$$



#### **Example 3.8**

$$A'C + BCD + AC'D + AB'C'$$

$$A'C + BCD + AC'D + AB'C' = A'C + BCD + AC'D + AB'C' + ABD$$

$$\underline{A'C} + \underline{BCD} + \underline{AC'D} + \underline{AB'C'} + \underline{ABD} = \underline{A'C} + \underline{AC'D} + \underline{AB'C'} + \underline{ABD}$$

$$A'C + AC'D + AB'C' + ABD = A'C + AB'C' + ABD$$



#### (5) Interchange Theorem

$$A B + A' C = (A + C) (A' + B)$$

Proof: RHS = 
$$(A + C) (A' + B)$$
  
=  $A A' + A B + A' C + B C$   
=  $0 + A B + A' C + B C$   
=  $A B + A' C + B C$   
=  $A B + A' C = LHS$ 



#### POS to SOP

$$(A+B+C)(A+B+D)$$

$$= AA + AB + AD + AB + BB + BD + AC + BC + CD$$

$$= A + AB + AD + B + BD + AC + BC + CD$$

$$= A + B + BD + BC + CD$$
  $= A + B + CD$ 



#### POS to SOP

$$(A + B + C)(A + B + D)$$
  
=  $AA + AB + AD + AB + BB + BD + AC + BC + CD$   
 $AA + AB + AD + AB + BB + BD + AC + BC + CD$   
=  $A + AB + AD + B + BD + AC + BC + CD$   
=  $A + B + BD + BC + CD = A + B + CD$ 

$$(A + B + C)(A + B + D)$$

$$= [(A + B) + C][(A + B) + D]$$

$$= (A + B) + CD$$



## Sandwich Algorithm

Distributive law (collections)

Interchange Theorem

Distributive law (distribution)



#### **A** Example 3.9



#### **\*** Example 3.10

Convert (BCD' + B'D + AB) to a product-of-sums expression.

$$BCD' + B'D + AB = B(A + CD') + B'D$$

$$(B + D) (B' + A + CD')$$

$$A + B' + CD' = (A + B' + C) (A + B' + D')$$

$$BCD' + B'D + A'B = (B + D) (A + B' + C) (A + B' + D')$$



#### **\*** Example 3.11 POS to SOP

$$(A + B) (A' + C) (C' + D)$$

$$= (AC + A'B)(C' + D)$$

$$= ACC' + ACD + A'BC' + A'BD$$

$$= ACD + A'BC' + A'BD$$



#### **\*** Example 3.12

Convert the SOP expression (A'B + CD) to a POS.

$$A'B + CD = (A'B + C) (A'B + D)$$

$$C + A'B = (C + A')(C + B)$$

$$D + A'B = (D + A')(D + B)$$

$$A'B + CD = (A' + C) (B + C) (A' + D) (B + D)$$



#### (6) DeMorgan's theorem

(a) 
$$(A \cdot B)' = A' + B'$$

(b) 
$$(A+B)'=A' \bullet B'$$

Distribute the prime, Change the sign

Collect the primes, change the sign



#### (6) DeMorgan's theorem

(a) 
$$(A \cdot B)' = A' + B'$$

(b) 
$$(A+B)'=A' \bullet B'$$

Table 3.9 Proof of DeMorgan's theorem (6a).

| A B | АВ | Left-hand-<br>side of (6a)<br>(A B)' | A' B' | Right-hand-<br>side of (6a)<br>A' + B' | A'•B' |
|-----|----|--------------------------------------|-------|----------------------------------------|-------|
| 0 0 | 0  | 1                                    | 1 1   | 1                                      | 1     |
| 0 1 | 0  | 1                                    | 1 0   | 1                                      | 0     |
| 1 0 | 0  | 1                                    | 0 1   | 1                                      | 0     |
| 1 1 | 1  | 0                                    | 0 0   | 0                                      | 0     |

$$(A B)' \neq A' B'$$

$$(A+B)' \neq A' + B'$$

(a) 
$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1} \bullet x_n)' = x_1' + x_2' + x_3' + \dots + x_{n-1}' + x_n'$$

(b) 
$$(x_1+x_2+x_3+\ldots+x_{n-1}+x_n)'=x_1'\bullet x_2'\bullet x_3'+\ldots-\delta x_{n-1}'\bullet x_n'$$



$$(x_1 \bullet x_2 \bullet x_3)' = ((x_1 \bullet x_2) \bullet x_3)' = (x_1 \bullet x_2)' + x_3'$$

$$= (x_1' + x_2') + x_3' = x_1' + x_2' + x_3'$$

$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1})' = x_1' + x_2' + x_3' + \dots + x_{n-1}'$$

$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1} \bullet x_n)'$$

$$= ((x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1}) \bullet x_n)'$$

= 
$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1})' + x_n'$$

$$= (x_1' + x_2' + x_3' + \dots + x_{n-1}') + x_n'$$

$$= x_1' + x_2' + x_3' + \dots + x_{n-1}' + x_n'$$



(a) 
$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1} \bullet x_n)' = x_1' + x_2' + x_3' + \dots + x_{n-1}' + x_n'$$

(b) 
$$(x_1+x_2+x_3+\ldots+x_{n-1}+x_n)'=x_1'\bullet x_2'\bullet x_3'+\ldots+x_{n-1}'\bullet x_n'$$

Distribute the prime, Change the sign Collect the primes, change the sign



#### Example 3.13

$$[A' + B(C + D') + E]'$$

$$= \mathbf{A} \bullet [\mathbf{B} (\mathbf{C} + \mathbf{D}')]' \bullet \mathbf{E}'$$

$$= \mathbf{A} \bullet [\mathbf{B'} + (\mathbf{C} + \mathbf{D'})'] \bullet \mathbf{E'}$$

$$= \mathbf{A} \bullet (\mathbf{B'} + \mathbf{C'} \mathbf{D}) \bullet \mathbf{E'}$$

$$= AB'E' + AC'DE'$$

#### Eliminating of internal inversions by gate equivalencies

(a) 
$$(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1} \bullet x_n)' = x_1' + x_2' + x_3' + \dots + x_{n-1}' + x_n'$$

(b) 
$$(x_1+x_2+x_3+\ldots+x_{n-1}+x_n)'=x_1'\bullet x_2'\bullet x_3'+\ldots-\bullet x_{n-1}'\bullet x_n'$$





Move bubble(s), change symbol.

Add bubble(s), change symbol.

Figure 4.13 Gate equivalencies using DeMorgan's theorem.



#### Minimization of Literals

#### **\*** Example 3.14

$$F(A,B,C,D) = BD + CD + A'BC + ABC'$$

$$D(B+C) + B(A'C+AC')$$

$$CD + B(D + A'C + AC')$$

$$B(D + AC') + C(D + A'B)$$



#### **\*** Example 3.15

$$F(A,B,C,D) = (A + C') (B + D) (A' + C + D)$$

$$F(A,B,C,D) = (A + C') (B + D) (A' + C + D)$$
  
=  $(A + C') [D + B(A' + C)]$ 

$$F(A,B,C,D) = (A + C') (B + D) (A' + C + D)$$

$$= (B + D) (A + C') [A' + (C + D)]$$

$$= (B + D) [A'C' + A(C + D)]$$

#### **Duality**

AND 
$$\longrightarrow$$
 OR
OR  $\longrightarrow$  AND
0  $\longrightarrow$  1
1  $\longrightarrow$  0

$$F^{D}(x_{n-1}, x_{n-2}, \dots, x_{2}, x_{1}, x_{0}, 0, 1, \bullet, +)$$

$$= F(x_{n-1}, x_{n-2}, \dots, x_{2}, x_{1}, x_{0}, 1, 0, +, \bullet)$$

$$\begin{array}{ccc}
A & \bullet & 0 & = & 0 \\
\downarrow & \downarrow & & \downarrow \\
& & & & & & \\
\end{array}$$

$$A + 1 = 1$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A + (B \bullet C) = (A + B) \bullet (A + C)$$





#### **\*** Example 3.11

$$F = [A' + B(C + D') + E \bullet 0]' \bullet B'$$

F fully parenthesized:

**Transformation:** 

$$F^{D} = \{ A' \bullet [B + (C \bullet D')] \bullet (E + 1) \}' + B'$$

$$= [A'(B+CD')(E+1)]'+B'$$

# Positive Logic and Negative Logic





Table 3.10 Truth tables for three types of gates

| Input      | Output      |  |
|------------|-------------|--|
| L          | Н           |  |
| Н          | L           |  |
| (1         | p)          |  |
|            |             |  |
| Inputs     | Output      |  |
| Inputs L L | Output<br>L |  |
|            |             |  |
| LL         | L           |  |

(a)

| (c)    |        |
|--------|--------|
| Inputs | Output |
| LLL    | L      |
| L L H  | Н      |
| L H L  | H      |
| LHH    | Н      |
| H L L  | Н      |
| H L H  | Н      |
| H H L  | Н      |
| н н н  | Н      |
|        |        |
|        |        |

#### Positive Logic and Negative Logic





Figure 3.7 A digital circuit with different logic. (a) Positive logic. (b) Negative logic.

Positive Logic Z = vw + x'y + 0

Negative Logic  $Z = (v + w) \bullet (x' + y) \bullet 1$