

Machine Learning Modeling of Superconducting Critical Temperature

Valentin Stanev
University of Maryland, College Park

Machine Learning for Materials Research Bootcamp
August 2, 2018

Outline

- Short presentation explaining the idea, the data and the ML method
- Three notebooks
 - Quick look at the data
 - Classification models
 - Regression models

V. Stanev, C. Oses, A. Kusne, E. Rodriguez, JP. Paglione, S. Curtarolo, I. Takeuchi, *Machine learning modeling of superconducting critical temperature*, npj Computational Materials 4 (1), 29 (2018)

Motivation – what and why

Superconductivity – macroscopic quantum state (below critical temperature T_c)

Apply Machine Learning methods to superconductivity:

1) Better understand superconductivity in known materials – find connection between

materials parameters and $T_{\rm c}$

2) Search for superconducting materials?

We need data!

Critical temperature data

MatNavi SuperCon database – experimentally measured T_c (http://supercon.nims.go.jp/index_en.html)

- ~ 22,000 compounds in the database;
- ~16,400 after combining/removing the duplicates;
- ~12,400 with $T_{\rm c}$ plus about 4000 without $T_{\rm c}$ (what should we do with them?)

5700 cuprates (35%)

1500 Fe-based (9%)

Predictors for T_c

We have only composition and T_c . Need some predictors!

Use Magpie to generate elemental features

std(Electronegativity) = standard deviation of elemental electronegativities

A general-purpose machine learning framework for predicting properties of inorganic materials

Logan Ward¹, Ankit Agrawal², Alok Choudhary² and Christopher Wolverton¹

npj Computational Materials, (2016)

Atomic Number	Mendeleev		Atomic Weight		Melting	Column
	Number ⁹			Temperature		
Row	Covalent Radius		Electronegativity*	# s Valence		# p Valence
				Electrons		Electrons
# d Valence	# f Valence		Total # Valance	# Unfilled s		# Unfilled p
Electrons	Electrons		Electrons	States†		States†
# Unfilled d	# Unfilled f		Total # Unfilled	Specific Volume		Band Gap Energy
States†	States†		States†	of 0 K Ground		of 0 K Ground
				State‡		State‡
Magnetic Moment (per atom) Sp		Spa	ace Group Number of 0 K			
of 0 K ground state‡			Ground State‡			
or o k ground	state+	Ground State+				

Random forest I

Now we have predictors and target (T_c). Let's create ML model. Use decision trees – can be used for both regression and classification.

Random forest II

Now we have predictors and target (T_c). Let's create ML model. Use decision trees – can be used for both regression and classification.

Pros:

- don't require pre-processing of the data
- can learn very non-linear functions
- can be inspected/interpreted

Cons:

Easy to overfit – tend to be low bias/high variance

Use averaging to reduce the variance! Bootstrap aggregation (bagging)

Low bias

.ow variance

High bias

Random forest III

Random forest – combine many individual decision trees.

- 1. Each tree is grown on a bootstrapped sample of the data
- 2. At each split only a random subsample of the features is used reduce correlation between the trees
- 3. Average the results of all the trees

Accurate and easy to use algorithm. Don't require too much optimization. Extra points – feature importance

Classification model for T_c

Separate materials in two classes: above- T_{sep} and below- T_{sep} materials (T_{c} bigger/smaller than T_{sep}). Allows us to deal with compounds without T_{c} . But how to choose T_{sep} ?

$$\mathrm{accuracy} \equiv \frac{tp + tn}{tp + tn + fp + fn},$$

$$precision \equiv \frac{tp}{tp + fp}$$

$$recall \equiv \frac{tp}{tp + fn}$$

$$F_1 \equiv 2 * \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

V. Stanev, C. Oses, A. Kusne, E. Rodriguez, JP. Paglione, S. Curtarolo, I. Takeuchi, npj Computational Materials 4 (1), 29 (2018)

Regression model for T_c

Separat the " T_c > 10 K" materials and fit regression model for T_c

Single model for all families works very well! But they have different physics...

V. Stanev, C. Oses, A. Kusne, E. Rodriguez, JP. Paglione, S. Curtarolo, I. Takeuchi, npj Computational Materials 4 (1), 29 (2018)

Regression model for T_c II

Separated the " T_c > 10 K" materials and fit regression model for T_c

The model is creating different branches for different groups.

Model trained on a single family - no predictive power for other families.

V. Stanev, C. Oses, A. Kusne, E. Rodriguez, JP. Paglione, S. Curtarolo, I. Takeuchi, npj Computational Materials 4 (1), 29 (2018)

Conclusion

- Machine Learning is valuable tool for study of superconductivity
- Use composite descriptors to train classification and regression models

Now let's try it!