2023 ~2024 学年第 一 学期

《 微积分 (一)》课程考试试卷(A卷)

一. 单项选择题(每小题3分,6个小题共18分,将结果涂在答题卡上.)

1. 下列函数在其定义域上无界的是【

A.
$$x^2D(x)$$
 ($D(x)$ 为迪尼克雷函数) B. $tan(\sin x)$ C. $\frac{\sin x}{x}$ D. 符号函数 $sgn(x)$

$$x \in R, |\sin x| \le 1, |\tan x(\sin x)| \le \frac{\pi}{4}$$

$$sgn(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \end{cases}$$
, 显然在定义域中有界. $-1, x < 0$

故选 A

2. 曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
 的斜渐近线为【 】

A.
$$v = -x$$

A.
$$y = -x$$
 B. $y = -x + 1$

C.
$$v = x$$

C.
$$y = x$$
 D. $y = x + 1$

解答:
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \left(\frac{1}{x} + \ln(1+e^x)\right) = 0$$
, $y=0$ 为水平渐近线

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} (\frac{1}{x} + \ln(1 + e^x)) = \infty$$
, $x = 0$ 为垂直渐近线

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{1}{x} + \ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{1}{x^2} + \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1$$

$$b = \lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} (\frac{1}{x} + \ln(1 + e^x) - x) = \lim_{x \to +\infty} \frac{1}{x} + \lim_{x \to +\infty} (\ln(1 + e^x) - x)$$

$$= \lim_{x \to +\infty} (\ln(1 + e^x) - \ln e^x) = \lim_{x \to +\infty} \ln(1 + e^{-x}) = 0$$

斜渐近线为y = x

故选 C

3. 通解为 $y = (C_1 + C_2 x)e^x + x$ (其中 C_1, C_2 为任意常数)的微分方程是【 】.

A.
$$y'' - y' = 1$$
 B. $y'' - y = 0$ C. $y'' - 2y' + y = e^x$ D. $y'' - 2y' + y = x - 2$.

解答:由线性微分方程通解的结构, $(C_1+C_2x)\mathbf{e}^x$ 是一个齐次方程的通解,y=x是一个相应非齐次方程的特解,所以选项 B 不对;从 $(C_1+C_2x)\mathbf{e}^x$ 知 \mathbf{e}^x 对应的是齐次方程的二重特征根 r=1,即特征方程为 $r^2-2r+1=0$,相应的二阶齐次方程为 y''-2y'+y=0,所以在 CD 中选择.将特解 y=x 分别代入选项 C、D,可确定 D 是正确答案.答案为 D.

- 4. 设f(x)在 $x = x_0$ 的某个邻域内有定义,则下列命题
 - ①若 $f'(x_0)$ 存在,则 f(x) 在 $x = x_0$ 连续.
 - ②若 $f'_{+}(x_0)$, $f'_{-}(x_0)$ 都存在,则 f(x) 在 $x = x_0$ 连续.
 - ③若 $\lim_{x \to x_0^+} f'(x)$, $\lim_{x \to x_0^-} f'(x)$ 都存在,则 f(x) 在 $x = x_0$ 连续.

其中正确的个数是

解答:由导数与连续之间的关系得(1)(2)是正确的

$$f(x) = \begin{cases} x^2, x > 0 \\ 0, x = 0, & \lim_{x \to 0^+} f'(x) = 0, \lim_{x \to 0^-} f'(x) = -1, & \lim_{x \to 0^+} f(x) = 0, \lim_{x \to 0^-} f(x) = 1, \\ -x + 1, x < 0 & \end{cases}$$

因而 $\lim_{x\to 0} f(x)$ 不存在,从而 f(x) 在 x=0 不连续,故 \mathbb{C} 不对.

故答案为: B

5. 设
$$f(x)$$
 在 $x = 1$ 的某邻域内连续,且 $\lim_{x \to 0} \frac{\ln(f(x+1) + e^{x^2})}{x^2} = 2$,则 $x = 1$ 是 $f(x)$ 的【 】.

A. 驻点且为极大值点

B.驻点且为极小值点

B. 不可导点

D.可导点但不是驻点

解答: 由条件得 $\lim_{x\to 0} \ln(f(x+1)+e^x)=0$, 于是由连续性有 $\ln(f(1)+1)=0$, 因而 f(1)=0

$$\overline{\min} \lim_{x \to 0} \frac{\ln(f(x+1) + e^x)}{x^2} = \lim_{x \to 0} \frac{f(x+1) + e^{x^2} - 1}{x^2} = \lim_{x \to 0} \left(\frac{f(x+1)}{x^2} + \frac{e^{x^2} - 1}{x^2} \right) = 2$$

 $\lim_{x\to 0} \frac{f(x+1)}{r^2} = 1$,由极限的保号性得 $\forall x \in N(0,\delta), f(x+1) > 0 = f(1)$,故 x = 1 是极小值点

又
$$\lim_{x\to 0} \frac{f(x+1)-f(1)}{x^2} = \lim_{x\to 0} \frac{\frac{f(x+1)-f(1)}{x}}{x} = 1$$
 ,所以 $\lim_{x\to 0} \frac{f(x+1)-f(1)}{x} = 0$,因而 $f'(1) = 0$. 故答案为: B.

6.设
$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4 x \sin^3 x dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos^3 x + \sin^3 x) dx, P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x \cos x - \sin^2 x) dx$$
,则【 】

A.
$$M > N > P$$
 B. $N > P > M$ C. $N > M > P$

B.
$$N > P > M$$

C.
$$N > M > P$$

D.
$$M > P > N$$

解: 由对称性
$$M=0$$
, $N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^3x dx=2\int_{0}^{\frac{\pi}{2}}\cos^3x dx=\frac{4}{3}>0, P=-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^2x dx<0$

所以N > M > P. 故答案为: C.

二、填空题 (每小题 4 分, 共 16 分)

7. 设曲线 y = f(x) 与 $y = x^2 - x + 1$ 在点 (2,3) 处有公共切线, 则 $\lim_{n \to \infty} n \left(f(2 - \frac{1}{n}) - 3 \right) =$ ____.

解: 由题中条件可得 f(2) = 3, $f'(2) = (2x-1)|_{x=2} = 3$,

$$\lim_{n \to \infty} n \left[f(2 - \frac{1}{n}) - 3 \right] = \lim_{n \to \infty} \frac{f(2 - \frac{1}{n}) - f(2)}{\frac{1}{n}} = -f'(2) = -3.$$

8. y = f(x) 满足 $y' = (1-y)y^{\alpha}(\alpha > 0)$,若曲线 y = f(x) 的一个拐点为 $(t, \frac{1}{2})$,则 $\alpha = \underline{\hspace{1cm}}$.

解析:
$$\frac{d^2y}{dx^2} = (\alpha - (1+\alpha)y)(1-y)y^{2\alpha-1}$$
, 由题意 $\frac{d^2y}{dx^2}|_{x=t} = 0$, $y(t) = \frac{1}{2}$,

所以
$$\left(\alpha-(1+\alpha)\frac{1}{2}\right)\left(\frac{1}{2}\right)^{2\alpha}=0$$
,解得 $\alpha=1$.

9. 已知
$$f(x)$$
 的一个原函数是 e^{-x} ,则 $\int_{-\frac{1}{2}}^{0} x f(2x) dx = ______$.

解:
$$f(x) = (e^{-x})' = -e^{-x}$$
, 令 $u = 2x$,则

$$\int xf(2x)dx = \frac{1}{4}\int uf(u)du = \frac{1}{4}\int ude^{-u} = \frac{1}{4}(u+1)e^{-u} + C$$
$$\int_{-\frac{1}{2}}^{0} xf(2x)dx = \frac{1}{4}$$

10. 位于曲线 $y = xe^{-x} (0 \le x < +\infty)$ 下方、x 轴上方的无界图形的面积为 ______.

解:
$$A = \int_0^{+\infty} x e^{-x} dx = -x e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

三. 计算题(每小题7分, 6个小题共42分, 必须写出主要计算过程.)

11. 设
$$y = y(x)$$
 由方程 $e^{y} + 6xy + x^{2} - 1 = 0$ 确定,求 $y'(0)$, $y''(0)$.

解: 由方程得x = 0时, v = 0.

方程两边关于x求导得

$$(e^y + 6x)y' + 6y + 2x = 0,$$

关于 x 再求导得

$$(e^y + 6x)y'' + e^y(y')^2 + 12y' + 2 = 0,$$

将
$$x = 0, y'(0) = 0$$
 代入得 $y''(0) = -2$.

12. 设 $f(x) = e^x \ln(1+x) - x(1+\frac{1}{2}x)$, 当 $x \to 0$ 时, 求 f(x) 的主部及阶数.

解: 由泰勒公式得

$$e^x = 1 + x + \frac{x^2}{2!} + o(x^2)$$
, $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)$

$$f(x) = \left(1 + x + \frac{x^2}{2!} + o(x^2)\right) \left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)\right) - x(1 + \frac{1}{2}x)$$
$$= \frac{1}{3}x^3 + o(x^3) - \frac{1}{3}x^3(x \to 0),$$

故 f(x) 的主部为 $\frac{1}{3}x^3$,阶数为 3.

13. 求极限
$$l = \lim_{x \to 0} \frac{e^{\sin x}}{x \sin x^2} \int_0^x \sin(x - t)^2 dt$$
.

解: 令
$$u = x - t$$
, 则
$$\int_0^x \sin(x - t)^2 dt = \int_0^x \sin u^2 du$$

原式 =
$$\lim_{x \to 0} \frac{\int_0^x \sin u^2 du}{x^3}$$

= $\lim_{x \to 0} \frac{\sin x^2}{3x^2} = \frac{1}{3}$

14. 求极限
$$l = \lim_{n \to \infty} \frac{1}{n} \left[\ln(1 + \frac{1}{n}) + \ln(1 + \frac{2}{n}) + \dots + \ln(1 + \frac{n}{n}) \right]$$

解:
$$l = \lim_{n \to \infty} \sum_{i=1}^{n} \ln(1 + \frac{i}{n}) \cdot \frac{1}{n} = \int_{0}^{1} \ln(1 + x) dx$$

 $= x \ln(1 + x) \Big|_{0}^{1} - \int_{0}^{1} x \cdot \frac{1}{1 + x} dx$
 $= 2 \ln 2 - 1$

15. 设
$$f(x) = \int_0^x \frac{\sin t}{1-t} dt$$
, 求 $I = \int_0^1 (x-1)f(x) dx$.

$$\Re: f'(x) = \frac{\sin x}{1-x}, f(0) = 0$$

$$I = \int_0^1 (x-1)f(x)dx = \frac{(x-1)^2}{2}f(x)\Big|_0^1 - \int_0^1 \frac{(x-1)^2}{2}f'(x)dx$$

$$= -\int_0^1 \frac{(x-1)^2}{2} f'(x) dx$$

$$= \int_0^1 \frac{x-1}{2} \sin x dx = \frac{1}{2} \int_0^1 (x-1) d(-\cos x)$$

$$= \frac{1}{2} \left(-(x-1)\cos x \right) \Big|_0^1 + \frac{1}{2} \int_0^1 \cos x dx$$

$$= \frac{1}{2} (\sin 1 - 1).$$

16. 若曲线 y = f(x) 是 $y'' + 2y' - 3y = 4e^x$ 的一条积分曲线,此曲线过点 A(0,1),且在点

A(0,1) 处的切线的倾斜角为 $\frac{3\pi}{4}$, 求f(x).

解: 由题意得
$$y(0) = 1, y'(0) = \tan \frac{3}{4}\pi = -1$$

方程对应的齐次方程的特征方程为

$$r^2 + 2r - 3 = 0$$
, 特征根 $r_1 = -3, r_2 = 1$

对应的线性齐次方程通解为: $y = C_1 e^{-3x} + C_2 e^x (C_1, C_2)$ 为常数)

 $\lambda=1$ 为特征方程的特征单根,故可设线性非齐次方程的特解为 $y^*=Axe^x$, A 为待定常数,代

入线性非齐次方程得 4A=4, A=1, 特解为 $y=xe^x$.

原方程的通解为 $y = C_1 e^{-3x} + C_2 e^x + x e^x$

将初始条件代入解得 $C_1 = \frac{3}{4}, C_2 = \frac{1}{4}$

$$y = \frac{3}{4}e^{-3x} + \frac{1}{4}e^x + xe^x$$
.

四. 综合题(每小题7分,2个小题共14分,必须写出主要过程.)

17. 设f(x)在 $(-\infty,+\infty)$ 上可导,其反函数存在为g(x),若

$$\int_0^{f(x)} g(t) dt + \int_0^x f(t) dt = xe^x - e^x + 1,$$

求f(x).

解 在所给方程两边对x求导,得

$$g(f(x))f'(x) + f(x) = xe^{x},$$

由于g(f(x)) = x, 上式变为 $xf'(x) + f(x) = xe^x$.

若 x = 0,则 f(0) = 0;

若 $x \neq 0$,则上式变为 $f'(x) + \frac{1}{x} f(x) = e^x$,

因此,
$$f(x) = e^{-\int \frac{1}{x} dx} (\int e^x e^{\int \frac{1}{x} dx} dx + C) = \frac{1}{x} (\int x e^x dx + C) = \frac{1}{x} (x e^x - e^x + C)$$
,

由
$$f(x)$$
 在 $x = 0$ 处连续,有 $0 = f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} [e^x + \frac{C - e^x}{x}]$,从而 $C = 1$,于是

$$f(x) = \begin{cases} 0, & x = 0, \\ \frac{1}{x}(xe^{x} - e^{x} + 1), & x \neq 0. \end{cases}$$

18. 设函数 $f(x) = ax + \frac{3}{2}bx^2$ 在区间 (0,1) 内大于零,其中 a,b 为未知常数,曲线 y = f(x) 与直线 x = 1, y = 0 所围成的区域 D 的面积为 2. 求 a,b 的值,使得 D 绕 x 轴旋转一周得到的旋转体的体积最小,并求出最小值.

解: 由题意得

$$\int_0^1 (ax + \frac{3}{2}bx^2)dx = 2$$
,从而得 $a + b = 4$,即 $a = 4 - b$ 。

所以
$$f(x) = (4-b)x + \frac{3}{2}bx^2$$
,

D 绕 x 轴旋转一周得到的旋转体的体积

$$V = \int_0^1 \pi \left((4 - b)x + \frac{3}{2}bx^2 \right)^2 dx = \left(\frac{16}{3} + \frac{b}{3} + \frac{b^2}{30} \right) \pi$$

$$V' = (\frac{1}{3} + \frac{b}{15})\pi$$
 , $\diamondsuit V' = 0$, $\eth b = -5$, $\lnot \pounds a = 9$, $V = \frac{9}{2}\pi$,

 $V''(-5) = \frac{\pi}{15} > 0$,体积的最小值存在,故 a = 9, b = -5 时,旋转体体积最小值为 $\frac{9}{2}\pi$. (7分)

五、证明题(每小题5分,共10分)

19. 设函数 f(x)、g(x) 在区间[0,a]上连续且单调增加,其中a>0.证明

$$a\int_0^a f(x)g(x)dx \ge \int_0^a f(x)dx \int_0^a g(x)dx.$$

证 构造函数 $F(x) = x \int_0^x f(t)g(t)dt - \int_0^x f(t)dt \int_0^x g(t)dt$, $x \in [0,a]$,

则
$$F(0) = 0$$
 , 且对于 $x \in [0,a]$, 有

$$F'(x) = \int_0^x f(t)g(t)dt + xf(x)g(x) - f(x)\int_0^x g(t)dt - g(x)\int_0^x f(t)dt$$

$$= \int_0^x [f(t)g(t) + f(x)g(x) - f(x)g(t) - g(x)f(t)]dt$$

$$= \int_0^x [f(t)(g(t) - g(x)) + f(x)(g(x) - g(t))]dt$$

$$= \int_0^x [(f(t) - f(x))(g(t) - g(x))] dt.$$

由f(x)、g(x)单调增加知,在[0,a]上有 $(f(t)-f(x))(g(t)-g(x)) \ge 0$,从而 $F'(x) \ge 0$,

F(x) 在 [0,a] 上单调增加,所以 $F(a) \ge F(0) = 0$,即

$$a\int_0^a f(x)g(x)dx \ge \int_0^a f(x)dx \int_0^a g(x)dx.$$

20. 设f(x)在[a,b]上有二阶导数,且f'(a)=f'(b)=0,证明:存在 $\xi\in(a,b)$,使得

$$(b-a)^2 |f''(\xi)| \ge 4 |f(b)-f(a)|.$$

证明: 将 $f(\frac{a+b}{2})$ 分别在 x = a 及 x = b 展开成泰勒公式为:

$$f(\frac{a+b}{2}) = f(a) + f'(a)(\frac{b-a}{2}) + \frac{f''(\xi_1)}{2!}(\frac{b-a}{2})^2, \quad \xi_1 \in (a, \frac{a+b}{2}),$$

$$\mathbb{H} f(\frac{a+b}{2}) = f(a) + \frac{f''(\xi_1)}{2!} (\frac{b-a}{2})^2;$$

$$f(\frac{a+b}{2}) = f(b) + f'(b)(\frac{a-b}{2}) + \frac{f''(\xi_2)}{2!}(\frac{a-b}{2})^2, \quad \xi_2 \in (\frac{a+b}{2},b),$$

$$\mathbb{H} \quad f(\frac{a+b}{2}) = f(b) + \frac{f''(\xi_2)}{2!} (\frac{a-b}{2})^2.$$

两式相减得

$$f(b)-f(a) = \left(\frac{f''(\xi_2)}{2!} - \frac{f''(\xi_1)}{2!}\right) \left(\frac{a-b}{2}\right)^2,$$

$$|f(b)-f(a)| \le \frac{(b-a)^2}{8} (|f''(\xi_2)| + |f''(\xi_1)|).$$

取| $f''(\xi)$ |= $\max\{|f''(\xi_1)|,|f''(\xi_2)|\}$,则

$$|f(b)-f(a)| \le \frac{(b-a)^2}{8} \cdot 2|f''(\xi)|, \quad \text{PP}(b-a)^2|f''(\xi)| \ge 4|f(b)-f(a)|.$$