58. Вычислить:

1)
$$\lim_{x\to 2} \frac{\arctan(2-x)+\sin(x-2)^2}{x^2-4}$$
; 2) $\lim_{x\to 0} \frac{\sqrt[4]{1+x^2}+x^3-1}{\ln\cos x}$;

3)
$$\lim_{x\to 0} \frac{x^2(\sqrt[3]{1+3x}-1)+\sin^3 x}{1-\sqrt{1+x^3}};$$

4)
$$\lim_{x\to 0} \frac{(\sin 2x - 2 \operatorname{tg} x)^2 + (1 - \cos 2x)^3}{\operatorname{tg}^7 6x + \sin^6 x}$$

- 1) $\lim_{x\to 2} \frac{\arctan b}{x^2-4}$; 2) $\lim_{x\to 0} \frac{\sqrt[4]{1+x^2}+x^3-1}{\ln \cos x}$; 3) $\lim_{x\to 0} \frac{x^2(\sqrt[3]{1+3x}-1)+\sin^3 x}{1-\sqrt{1+x^3}}$; 4) $\lim_{x\to 0} \frac{(\sin 2x-2 \tan x)^2+(1-\cos 2x)^3}{\tan^7 6x+\sin^6 x}$. 59. Пусть $\lim_{t\to t_0} \varphi(t)=a$, причем $\varphi(t)\neq a$ при $t\neq t_0$ в некоторой окрестности точки t_0 . Доказать, что:
 - 1) если f(x) = o(g(x)) при $x \to x_0$, то $f(\varphi(t)) = o(g(\varphi(t)))$ при $t \to t_0$;
 - 2) если f(x)=O(g(x)) при $x\to x_0$, то $f(\varphi(t))=O(g(\varphi(t)))$ при $t\to t_0$.
 - **60.** Найти $\lim_{x \to x_0} f(x), x \in R$, если

$$\mathrm{f}(\mathrm{x}) = \left\{egin{array}{ll} 1/q & \mathrm{при}\ x = p/q, \ 0 & \mathrm{при}\ x \ \mathrm{иррациональном}, \end{array}
ight.$$

где p и q — взаимно простые целые числа.

- **61.** Пусть $\lim_{x \to x_0} f(x) = a$ и $\lim_{t \to t_0} g(t) = x_0$. Следует ли отсюда, что $\lim_{t \to t_0} f(g(t)) = a\Gamma$
- **62.** Доказать, что если функция $f(x), x \in (x_0; +\infty)$, ограничена в каждом интервале $(x_0; x_1)$ и существует конечный или бесконечный

$$\lim_{x \to +\infty} \frac{f(x+1) - f(x)}{x^n} \quad (n = 0, 1, 2, \dots),$$

TO

$$\lim_{x \to +\infty} \frac{f(x)}{x^{n+1}} = \frac{1}{n+1} + \lim_{x \to +\infty} \frac{f(x+1) - f(x)}{x^n}.$$

- **63.** Найти $\overline{\lim_{x\to x_0}} f(x)$ и $\underline{\lim_{x\to x_0}} f(x)$, если: 1) $f(x)=e^{\cos(1/x^2)};$ 2) $f(x)=\frac{1}{x^2}\sin^2\frac{1}{x};$ 3) $f(x)=\arctan(\frac{1}{x});$
- 4) $f(x) = \sqrt{1/x^2 1/x} 1/x$.
- **64.** Найти $\overline{\lim}_{n\to\infty} f(x)$ и $\underline{\lim}_{n\to\infty} f(x)$ если:
 1) $f(x) = \frac{\pi}{2}\cos^2 x + \operatorname{arctg} x$; 2) $f(x) = \frac{1+x+6x^2}{1-x+2x^2}\sin x^2$;
 3) $f(x) = (\sqrt{4x^2+x+1} \sqrt{4x^2-x+1})(1+\cos 2x)$;
- 4) $f(x) = (1 + \cos^2 x)^{1/\cos^2 x}$.
- **65.** Доказать, что

$$\overline{\lim}_{n \to \infty} (\cos x + \sin \sqrt{2x}) = 2$$