Apellidos:	
Nombre:	D.N.I.:

1° C ALEM. Temas 1, 2

28 de noviembre de 2014

Ejercicio 1. Sea f, $g: \mathbb{Z}_{60} \to \mathbb{Z}_{60}$ las aplicaciones definidas como f(x) = 23x + 42 y $g(x) = x^2 + 10$.

- 1. Estudia si f y g son inyectivas y/o sobreyectivas.
- 2. Calcula, si es posible, inversas por la izquierda y por la derecha de f y g.

Ejercicio 2. Sea $X = \{1, 2, 3, 4, 5\}$. En $X \times X$ definimos la relación:

$$(x,y)R(z,t)$$
 si, y sólo si, $x \cdot t = y \cdot z$

1. Comprueba que R es una relación de equivalencia.

y los elementos minimales de Z (cuando existan)

- 2. Calcula la clase de equivalencia de los elementos (4, 1), (1, 1), (1, 2) y (2, 3).
- 3. Calcula cuántos elementos tiene el conjunto cociente.

Ejercicio 3. Sea X = D(10) e Y = D(9). Consideramos en X y en Y el orden dado por la divisibilidad. Dibuja el diagrama de Hasse de $X \times Y$ considerando el orden producto en $X \times Y$. Sea ahora $Z = \{((10,3), (2,9), (5,1)\}$. Calcula el máximo, el supremo, las cotas inferiores

Ejercicio 4. Sea b un número natural mayor que 2. Sea x el número cuya expresión en base b es 72 e y el número cuya expresión en base b es 48. Si $x \cdot y$ se escribe en baser b como 2010. ¿Cuánto vale b?

Ejercicio 5. Da todas las soluciones entre 5000 y 13000 del sistema de congruencias:

$$\begin{cases}
13x \equiv 4 \mod 15 \\
15x \equiv 33 \mod 36 \\
22x \equiv 44^{337} \mod 49
\end{cases}$$