火爆全球的区块链到底是怎么一回事?一文带你看懂

2018-01-11 Python开发者

(点击上方公众号,可快速关注)

来源: 阮一峰

www.ruanyifeng.com/blog/2017/12/blockchain-tutorial.html

区块链(blockchain)是眼下的大热门,新闻媒体大量报道,宣称它将创造未来。

可是,简单易懂的入门文章却很少。区块链到底是什么,有何特别之处,很少有解释。

下面,我就来尝试,写一篇最好懂的区块链教程。毕竟它也不是很难的东西,核心概念非常简单,几句话就 能说清楚。我希望读完本文,你不仅可以理解区块链,还会明白什么是挖矿、为什么挖矿越来越难等问题。

需要说明的是,我并非这方面的专家。虽然很早就关注,但是仔细地了解区块链,还是从今年初开始。文中 的错误和不准确的地方,欢迎大家指正。

一、区块链的本质

区块链是什么?一句话,它是一种特殊的分布式数据库。

首先,区块链的主要作用是储存信息。任何需要保存的信息,都可以写入区块链,也可以从里面读取,所以 它是数据库。

其次,任何人都可以架设服务器,加入区块链网络,成为一个节点。区块链的世界里面,没有中心节点,每 个节点都是平等的,都保存着整个数据库。你可以向任何一个节点,写入/读取数据,因为所有节点最后都 会同步,保证区块链一致。

二、区块链的最大特点

分布式数据库并非新发明,市场上早有此类产品。但是,区块链有一个革命性特点。

区块链没有管理员,它是彻底无中心的。其他的数据库都有管理员,但是区块链没有。如果有人想对区块链 添加审核,也实现不了,因为它的设计目标就是防止出现居于中心地位的管理当局。

正是因为无法管理,区块链才能做到无法被控制。否则一旦大公司大集团控制了管理权,他们就会控制整个 平台,其他使用者就都必须听命于他们了。

但是,没有了管理员,人人都可以往里面写入数据,怎么才能保证数据是可信的呢?被坏人改了怎么办?请 接着往下读,这就是区块链奇妙的地方。

三、区块

区块链由一个个区块(block)组成。区块很像数据库的记录,每次写入数据,就是创建一个区块。

每个区块包含两个部分。

• 区块头(Head):记录当前区块的元信息

• 区块体(Body):实际数据

区块头包含了当前区块的多项元信息。

- 生成时间
- 实际数据(即区块体)的 Hash
- 上一个区块的 Hash

这里,你需要理解什么叫 Hash,这是理解区块链必需的。

所谓 Hash 就是计算机可以对任意内容,计算出一个长度相同的特征值。区块链的 Hash 长度是256位,这 就是说,不管原始内容是什么,最后都会计算出一个256位的二进制数字。而且可以保证,只要原始内容不 同,对应的 Hash 一定是不同的。

举例来说,字符串123的 Hash 是a8fdc205a9f19cc1c7507a60c4f01b13d11d7fd0(十六进制),转成二 进制就是256位,而且只有123能得到这个 Hash。

因此,就有两个重要的推论。

• 推论1:每个区块的 Hash 都是不一样的,可以通过 Hash 标识区块。

• 推论2:如果区块的内容变了,它的 Hash 一定会改变。

四、 Hash 的不可修改性

区块与 Hash 是——对应的,每个区块的 Hash 都是针对"区块头"(Head)计算的。

Hash = SHA256(区块头)

上面就是区块 Hash 的计算公式, Hash 由区块头唯一决定, SHA256是区块链的 Hash 算法。

前面说过,区块头包含很多内容,其中有当前区块体的 Hash (注意是"区块体"的 Hash , 而不是整个区 块),还有上一个区块的 Hash。这意味着,如果当前区块的内容变了,或者上一个区块的 Hash 变了,一 定会引起当前区块的 Hash 改变。

这一点对区块链有重大意义。如果有人修改了一个区块,该区块的 Hash 就变了。为了让后面的区块还能连 到它,该人必须同时修改后面所有的区块,否则被改掉的区块就脱离区块链了。由于后面要提到的原因, Hash 的计算很耗时,同时修改多个区块几乎不可能发生,除非有人掌握了全网51%以上的计算能力。

正是通过这种联动机制,区块链保证了自身的可靠性,数据一旦写入,就无法被篡改。这就像历史一样,发 生了就是发生了,从此再无法改变。

每个区块都连着上一个区块,这也是"区块链"这个名字的由来。

五、采矿

由于必须保证节点之间的同步,所以新区块的添加速度不能太快。试想一下,你刚刚同步了一个区块,准备 基于它生成下一个区块,但这时别的节点又有新区块生成,你不得不放弃做了一半的计算,再次去同步。因 为每个区块的后面,只能跟着一个区块,你永远只能在最新区块的后面,生成下一个区块。所以,你别无选 择,一听到信号,就必须立刻同步。

所以,区块链的发明者中本聪(这是假名,真实身份至今未知)故意让添加新区块,变得很困难。他的设计 是,平均每10分钟,全网才能生成一个新区块,一小时也就六个。

这种产出速度不是通过命令达成的,而是故意设置了海量的计算。也就是说,只有通过极其大量的计算,才 能得到当前区块的有效 Hash,从而把新区块添加到区块链。由于计算量太大,所以快不起来。

这个过程就叫做采矿(mining),因为计算有效 Hash 的难度,好比在全世界的沙子里面,找到一粒符合 条件的沙子。计算 Hash 的机器就叫做矿机,操作矿机的人就叫做矿工。

六、难度系数

读到这里,你可能会有一个疑问,人们都说采矿很难,可是采矿不就是用计算机算出一个 Hash 吗,这正是 计算机的强项啊,怎么会变得很难,迟迟算不出来呢?

原来不是任意一个 Hash 都可以,只有满足条件的 Hash 才会被区块链接受。这个条件特别苛刻,使得绝大 部分 Hash 都不满足要求,必须重算。

原来,区块头包含一个难度系数(difficulty),这个值决定了计算 Hash 的难度。举例来说,第100000个 区块的难度系数是 14484.16236122。

Block #100000 BlockHash 000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506 Summary **Number Of Transactions** Difficulty 14484.16236122 Height 15048548 100000 (Mainchain) Bits **Block Reward** 50 BTC Size (bytes) 957 Dec 29, 2010 7:57:43 PM Version Timestamp Mined by Nonce 274148111 Merkle Root F3e94742aca4b5ef85488dc37c06c3... Next Block 100001 Previous Block 99999

区块链协议规定,使用一个常量除以难度系数,可以得到目标值(target)。显然,难度系数越大,目标值 就越小。

target = targetmax / difficulty

difficulty = 14484.162361

Hash 的有效性跟目标值密切相关,只有小于目标值的 Hash 才是有效的,否则 Hash 无效,必须重算。由 于目标值非常小, Hash 小于该值的机会极其渺茫, 可能计算10亿次, 才算中一次。这就是采矿如此之慢的 根本原因。

区块头里面还有一个 Nonce 值,记录了 Hash 重算的次数。第 100000 个区块的 Nonce 值是 274148111,即计算了 2.74 亿次,才得到了一个有效的 Hash,该区块才能加入区块链。

七、难度系数的动态调节

就算采矿很难,但也没法保证,正好十分钟产出一个区块,有时一分钟就算出来了,有时几个小时可能也没 结果。总体来看,随着硬件设备的提升,以及矿机的数量增长,计算速度一定会越来越快。

为了将产出速率恒定在十分钟,中本聪还设计了难度系数的动态调节机制。他规定,难度系数每两周 (2016个区块)调整一次。如果这两周里面,区块的平均生成速度是9分钟,就意味着比法定速度快了 10%,因此难度系数就要调高10%;如果平均生成速度是11分钟,就意味着比法定速度慢了10%,因此难 度系数就要调低10%。

难度系数越调越高(目标值越来越小),导致了采矿越来越难。

八、区块链的分叉

即使区块链是可靠的,现在还有一个问题没有解决:如果两个人同时向区块链写入数据,也就是说,同时有 两个区块加入,因为它们都连着前一个区块,就形成了分叉。这时应该采纳哪一个区块呢?

现在的规则是,新节点总是采用最长的那条区块链。如果区块链有分叉,将看哪个分支在分叉点后面,先达 到6个新区块(称为"六次确认")。按照10分钟一个区块计算,一小时就可以确认。

由于新区块的生成速度由计算能力决定,所以这条规则就是说,拥有大多数计算能力的那条分支,就是正宗 的比特链。

九、总结

区块链作为无人管理的分布式数据库,从2009年开始已经运行了8年,没有出现大的问题。这证明它是可行 的。

但是,为了保证数据的可靠性,区块链也有自己的代价。一是效率,数据写入区块链,最少要等待十分钟, 所有节点都同步数据,则需要更多的时间;二是能耗,区块的生成需要矿工进行无数无意义的计算,这是非 常耗费能源的。

因此,区块链的适用场景,其实非常有限。

- 1. 不存在所有成员都信任的管理当局
- 2. 写入的数据不要求实时使用
- 3. 挖矿的收益能够弥补本身的成本

如果无法满足上述的条件,那么传统的数据库是更好的解决方案。

目前,区块链最大的应用场景(可能也是唯一的应用场景),就是以比特币为代表的加密货币。下一篇文 章,我将会介绍比特币的入门知识。

十、参考

- How does blockchain really work?, by Sean Han
- Bitcoin mining the hard way: the algorithms, protocols, and bytes, by Ken Shirriff

看完本文有收获?请转发分享给更多人

关注「Python开发者」,提升Python技能

Python开发者

分享Python相关技术干货·资讯·高薪职位·教程

微信号: PythonCoder

长按识别二维码关注

伯乐在线 旗下微信公众号

商务合作QQ: 2302462408

Read more