Lineare Algebra - Übungen 6

Klaus Rheinberger, FH Vorarlberg

1. April 2025

i Abgabe in ILIAS

- Alle PYTHON-Aufgaben gesamthaft in einem lauffähigen Jupyter Notebook, siehe Vorlage in ILIAS.
- Alle PAPIER-Aufgaben gesamthaft in einer PDF-Datei inkl. Name auf den gescannten Seiten.

1 Lesen, Studieren und Fragen Notieren (0 Punkte)

Lesen und studieren Sie vor der Bearbeitung der Aufgaben auf der LV-Homepage die Abschnitte Methoden und Beispiele zur Matrizenrechnung. Notieren Sie sich Fragen und Unklarheiten, die Sie in der Übung besprechen möchten.

2 Darstellung in einer Basis (3 + 2 = 5 Punkte)

Gegeben ist der Vektor $v=\begin{pmatrix} 5\\4 \end{pmatrix}$ und die Basis $B=\begin{pmatrix} 3&1\\1&-2 \end{pmatrix}$ mit den Basisvektoren in den Spalten.

- 1. PAPIER: Zeichnen Sie die Basisvektoren $b_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ und $b_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ in ein Koordinatensystem. Zeigen Sie, dass B eine Basis ist. Stellen Sie v in der Basis B dar, indem Sie ein entsprechendes LGS lösen.
- 2. PYTHON: Zeigen Sie, dass B eine Basis ist. Stellen Sie v in der Basis B dar, indem Sie ein entsprechendes LGS lösen.

Endergebnis

Die Basisvektoren sind linear unabhängig und spannen den \mathbb{R}^2 auf. $v=Bc=2\cdot b_1-1\cdot b_2$

3 Koordinatentransformation (2 + 1 = 3 Punkte)

Gegeben sind die Basen $B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ und $D = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ mit den jeweiligen Basisvektoren in den Spalten.

- 1. PYTHON: Stellen Sie den Vektor $v = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ sowohl in der Basis B als auch in der Basis D dar, indem Sie die entsprechenden LGS lösen.
- 2. PYTHON: Wie lautet die Transformationsmatrix T, die Koordinaten bzgl. B in Koordinaten bzgl. D umwandelt? Überprüfen Sie, ob T die Transformation am vorherigen Beispiel korrekt durchführt, indem Sie die Koordinaten von v bzgl. B mit T multiplizieren und das Ergebnis mit den Koordinaten von v bzgl. D vergleichen.

$$v=3b_1-b_2, v=-11d_1+5d_2, \, T=\begin{pmatrix} -5 & -4 \\ 2 & 1 \end{pmatrix}.$$

4 Orthogonale Matrizen (2 + 2 = 4 Punkte)

- 1. PAPIER: Zeigen Sie, dass die Matrix $A=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\-1&1\end{pmatrix}$ orthogonal ist, d. h. dass $A^T=A^{-1}$. 2. PYTHON: Überprüfen Sie, dass $A^T=A^{-1}$, $A^TA=I$ und $AA^T=I$ gelten.

Endergebnis

 $A^T=A^{-1}$, denn A^TA und AA^T ergeben jeweils die Einheitsmatrix. Alternativ: A^{-1} berechnen und mit A^T vergleichen.

5 Eigenwerte und -vektoren (3 + 2 = 5 Punkte)

- 1. PAPIER: Berechnen Sie die Eigenwerte und Eigenvektoren der Matrix $\begin{pmatrix} 3 & 0.25 \\ 1 & 3 \end{pmatrix}$.
- 2. PYTHON: Überprüfen Sie Ihr Ergebnis mit der Funktion np.linalg.eig().

Endergebnis

Die Eigenwerte sind $\lambda_1 = 3.5$ und $\lambda_2 = 2.5$. Die Eigenvektoren sind z. B. $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und

6 Eigenwerte und -vektoren, Invertierbarkeit, Eindeutigkeit der Lösung (3 + 2 + 1 = 6 Punkte)

Gegeben ist die Matrix
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$
.

- 1. PAPIER: Berechnen Sie die Eigenwerte und Eigenvektoren von A. Ist die Matrix A invertierbar? Begründen Sie Ihre Antwort.
- 2. PYTHON: Überprüfen Sie Ihr Ergebnis mit der Funktion np.linalg.eig(). Ist die Matrix A invertierbar? Begründen Sie Ihre Antwort.
- 3. PAPIER: Besitzt das Gleichungssystem Ax = b eine eindeutige Lösung für alle b? Begründen Sie Ihre Antwort.

Hinweis:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

Endergebnis

Eigenwerte von A: $\lambda_1=1, \lambda_2=2, \lambda_3=3$. Zugehörigen Eigenvektoren sind z. B. $v_1=(1,0,0)^T, v_2=(1,0,1)^T, v_3=(-2,1,-1)^T$. A ist invertierbar, und Ax=b hat eine eindeutige Lösung für alle b.