27. a.	Design a solar PV system who computer. The system should							10	2	2	2
	The operating hours and power										
	Loa		W	H/day							
	CFI		9	5							
	Fan		60	8							
		nputer									
		(OR)									
b.	It is required to design a ba	. ,	harge	er for a	24V. 0.5	5 Ah lead	l-acid	10	2	2	2
	battery. A 230 : 8 V single		-		45.7						
	recommended. For use a I										
	recommended on power stage				_						
	current are 5% and 3% res					_					
	required for the system and dr	_	-	_	, , , ,	as compe					
	roquired for the system and a	aw die p	,0110	i biago.							
28 a i	Compare Darrieus and Savoni	us wind	turh	ines				5	1	3	1
20. a.i.	Compare Darrieus and Savoin	us willu	turo	mos.							
ii	What are the relative features	of drag :	and 1	ift tyne	machines	7		5	1	3	1
11.	What are the relative reatures	or mag	and i	nt type	machines	•					
		(OR)									
hi	Draw and explain the working		le nh	ace mat	riv conver	tor		4	1	3	1
0.1.	Draw and explain the working	or singl	ic pii	ase mau	IIX COIIVE	ici.					
::	Draw and explain the working	a of DI	FIG :	hased V	/ECC wit	h hack to	back	6	1	3	1
11.	PWM converters.	וכו וט פו	OI	vascu v	VECS WIL	II Uack-10	-Uack				
	r wivi converters.										
29. a.	Draw the circuit diagram of a	ny two	isola	ited con	verters an	d explain	their	10	1	4	1
	working while power condition										
	ALL THE PARTY										
		(OR)									
b.	Describe the working of	` /						10	1	4	1
	(i) Solid oxide fuel cell										
	(ii) Molten carbonate fu										
	(-2)										
30. a.i.	What are the advantages and	disadva	ntag	es of hy	brid syste	ems over	stand	5	1	5	1
00.411	alone system?		8				7.11				
	diolic system.										
ii	Draw the schematic diagram	of PV-v	vind	and PV	-fuel cell	hybrid sy	stem	5	1	5	1
11.	and explain.	011 7 7	TILL	una i v	Tuoi com	ny ond by	Stom				
	and explain.										
		(OR)									
b.	What is multiport converter?	Explain	the	workin	g of thre	e port DO	C-DC	10	1	5	1
	converter used in PV-battery h										
	•	-									
		*	* *	* *							

		-1-1-	7 1		
Reg. No.				-u-jara	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18EEE405T - POWER ELECTRONICS IN RENEWABLE ENERGY SYSTEMS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Tiote.					ATTACHMENT OF THE STATE OF			_	
(i)		ove	r to hall invigilator at the end of 40	0 th minute		et shou	d be	han	ded
(ii)	K.	Par	t - B should be answered in answer	er bookie					
Time	: 2!	⁄2 Ho	urs			Max.	Ma	rks:	75
			D.A.D.E A. (25	1 051	M-1-1-5	Marks	BL	со	PO
			PART – A (25 ×						
	1	01-1	Answer ALI	_	ons	1	1	1	1
	1.		bal warming is mainly caused		Emission of CO due to		-	•	-
		(A)	engines	eat (B)	Emission of CO_2 due to burning of fossil fuels	,			
		(C)	Use of nuclear energy	(D)	Air pollution				
	2.	Hov	v much solar power is intercep	ted by tl	ne earth's surface?	1	1	1	1
		(A)	$1.8 \times 10^{11} MW$	(B)	$18 \times 10^{11} MW$				
		(C)	$180 \times 10^{11} MW$	(D)	$1800 \times 10^{11} MW$				
								all.	•
	3.		at matter created by the process		is called biomass.	1	1	1	1
		` '	Gasification		Digestion				
		(C)	Photosynthesis	(D)	Fermentation				
	4.	The	current density of an individua	al fuel c	ell is	1	1	1	1
			10 to 50 mA/cm ²		100 to 500 mA/cm ²				
		\ /	10 to 50 A/cm ²	. ,	1000 to 500 A/cm ²				
	5.		1	1	1	1			
	٥.	(A)	Power transmission system		ox brakes and yaw mechanism. Tower				
		(C)	Hub	(/	Nascelle				
	6	Δ 157	pical photovoltaic cell has			1	2	2	2
	0.		$= 0.611 Volts; I_{SC} = 2.75 Amp$	2.0					
			$= 0.5V, I_{mp} = 2.59A$						
			culate the fill factor of the cell						
			7.07	(B)	70.7				
		(C)	0.707	(D)					
	7	. ,				1	2	2	2
	7.				dules connected in parallel, each $\left(V_{OC} ight)$ of 10V and short circuit		_	_	_
					current axis intercept in the I-V				
		char	acteristics?						
		(A)	10	(B)	20				
		(C)	2	(D)	4				

Note:

8.	find	sidering solar radiation of 200 <i>J</i> / <i>m</i> the area of PV cells needed to gene atop computer using 400 W. Efficient	era	te enough electric power to run a	1	2	2	2
				10 m ²				
	` '			5 m ²				
9.	A P	V array is connected to a resistive lo	oad	R_I of 30 ohms through a buck-	1	2	2	2
		st converter and operates in continu						
	the	duty cycle of the interfacing convert voltage of 28.08 V and 1.67 Amps.						
			3)	0.8				
			-	0.57				
10.		ead acid battery has the reduction plation potential of anode in $-(-0.36)$	-		1	2	2	2
			_	+1.33 V				
	(C)	`	-	2.05 V				
	` ′	g of set to a second	Ĺ					
11.	Whi	ch is the largest onshore wind farm i	in	India?	1	1	3	1
				Muppandal wind farm				
	(C)	Jaisalmer wind park (D))	Brahmanvel wind farm				
12.	The	IEEE 1547-2003 provides			1	1	3	1
		Technical requirements and (B	3)	Information on models to be				
	` ′	tests for grid connected operation		used for communication				
	(C)	Information on electrical (D equipment and wiring safety		Rules for realization of grid operation of WECS				
13.	A tv	vo stage ac-ac converter without DC	sto	orage link is	1	1	3	1
	(A)	Direct matrix converter (B	3)	Cyclo converter				
	(C)	AC-AC voltage regulator (D))	Indirect matrix converter				
14.	The	rate of change of speed with height	is (called	1	1	3	1
	(A)	Gradient height (B	3)	Wind shear				
	(C)	Wind rose (D))	Local wind				
15.	The	wind turbine that does not require ya	aw	mechanism is	1	1	3	1
		Darrieus rotor wind turbine (B	3)	Dotch type rotor wind turbine				
	(C)	Two bladed rotor wind turbine (D))	Chalk multi-blade wind turbine				
16.	Whi	ch fuel cell has the lowest operating	te	mperature?	1	1	4	1
				PEMFC				
	(C)	SOFC (D))	MCFC				
17.	The	most mature technology avail	lab	le for hydrogen storage is	1	1	4	1
	(A)	Liquid hydrogen at low (B temperature	3)	Metal hydride				
	(C)	Carbon nanotubes (D		Compressed hydrogen gas in a steel tank				
2 of 4					22NF6	& 7-181	EEE40)5T

18.	The type of catalyst used in direct me	than	ol fuel cell is	1	1	4	1
	(A) Platinum-ruthenium	(B)	Platinum				
	(C) Nickel	` /	Methane				
19.	Polarization reduces of a f	uel c	ell.	1	1	4	1
	(A) Operating temperature	(B)	Open circuit voltage				
	(C) Efficiency		Current				
20.	Assume a fuel cell stack feeding LEI) loa	d of 20 V. 5A, the stack consists	1	1	4	1
	of 5 series connected fuel cell. Indivi-						
	of converter is suitable?						
	(A) Forward boost converter		Full bridge inverter				
	(C) Half-bridge bulk converter	(D)	Push-pull buck converter				
21.	Hybrid system can be classified based	l on		1	1	5	1
	(A) Source	(B)	Load				
	(C) Controller	` '	Interfacing element				
22.	The inverter in a PV-diesel hy	brid	system should be rated for	1	1	5	1
	(A) Minimum power source available	(B)	Maximum power source				
	(C) Minimum load requirement	(D)	available Maximum load requirement				
23	In type C regulated standalone system	m	reduces the battery	1	1	5	1
23.	life and increases the cost of PV syste	_	reduces the battery				
	(A) Power conversion	(B)	Deep-discharging				
	(C) Overcharging	(D)	Maximum power point tracking				
24.	l gram of lead in a lead-acid battery d	lelive	ers	1	1	5	1
	(A) 0.26 Ah	(B)	103.6 Ah				
	(C) 207.2 Ah	(D)	2.68 Ah		181		
25.	The most suitable stand alone hy applications is	brid	system suitable for domestic	1	1	5	1
	(A) Type a unregulated system	(B)	Type b regulated standalone				
	La Company to be and the country of		system				
		(D)	Type d system with PV and				
	system with auxiliary power supply		battery				
	$PART - B (5 \times 10 = Answer ALL Qu$			Marks	BL	co	PO
26. a.	Draw the block diagram, label the co wind energy conversion system.	mpo	nents and explain the working of	10	1	1	1
	(OR)						
b.	Explain the current scenario of soldescribe the various initiatives takedeployment.		-	10	1	1	1

Page 2 of 4

Page 3 of 4

22NF6&7-18EEE405T