

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year – Semester II Examination – February/March 2019

PHY 2106 - ATOMIC & NUCLEAR PHYSICS

Time allowed: 1 hour and 30 minutes

Answer All Questions.

Unless otherwise specified, symbols have their usual meaning. Use of a non-programmable calculator is allowed.

Electron Charge (e) -1.6×10^{-19} C,

Avogadro number – 6.022×10^{23} atoms/g.mol.

Electron Mass (m_e) – 9.1 \times 10⁻³¹ kg,

Reduced Plank Constant (ħ) = 1.054×10^{-34} J.s

 $1 \text{ a.m.u.} = 1.67 \times 10^{-27} \text{ kg} = 931 \text{ MeV/C}^2$

 $1 C^2 = 931 \text{ MeV/u}$

Speed of Light $c = 3.0 \times 10^8 \text{ ms}^{-1}$

- 1. According to the normal Zeeman effect energy levels of a single electron atom placed in an external magnetic field would split into equally spaced sublevels with the spacing $\frac{e\hbar}{2m}B$.
 - a. Show that the normal Zeeman splitting of an atom when placed in an magnetic field B is given by, $d\lambda = \frac{\lambda^2 dE}{hc}$, where symbols have their usual meaning. (20 Marks)
 - b. If an atom placed in an external magnetic field of 4 T, find the Zeeman splitting of the spectral line at 5000 Å. (20 Marks)
 - c. In a normal Zeeman experiment the calcium 4226 Å line splits into three lines separated by 0.25 Å in a magnetic field of 3 T. Determine the e/m ratio for the electron from these data.

 (20 Marks)
 - d. Transition occurs in an atom between l = 2 to l = 1 state in a magnetic field of 0.6 T. If the wavelength before the field was turned on was 5000 Å, determine the wavelengths that are observed. (30 Marks)
 - e. What is Anomalous Zeeman effect?

(10 Marks)

- 2. The activity of a radioactive element is defined as the number of atoms that decay per unit time $(A = \frac{dN}{dt})$.
 - a. If $A = -\frac{dN}{dt} = \lambda N$, show that the time dependence of the activity is $A(t) = A_0 e^{-\lambda t}$, where A_0 is the activity at the beginning (t = 0) and λ is the decay constant.

(20 Marks)

- b. Explain what is meant by "half-life" in radioactive decay and show that the half-life of a material is equal to $\frac{0.693}{\lambda}$. (20 Marks)
- c. What is the activity of 1 g of $^{226}_{88}Ra$, whose half-life is 1622 years? (20 Marks)
- d. During a radioactive decay a ${}_{1}^{3}H$ atom converts into ${}_{2}^{3}He$ atom.
 - i. Name the type of the decay and represent the decay in a reaction form. (20 Marks)
 - ii. Calculate the maximum energy emitted during the decay. (Mass of ${}_{1}^{3}H = 3.016050 \text{ U}$, mass of the ${}_{2}^{3}He = 3.016030 \text{ U}$) (20 Marks)
- 3. The magnetic energy of an atom placed inside an external magnetic field B is given by the equation $U = \mu_B B(m_l + gm_s)$, where g and m_s are the gyromagnetic coefficient and spin quantum number respectively.
 - a. Write down all possible energies for the n=2 and l=1 level in terms of \hbar , ω and E_2 , where E_2 is the Energy in the absence of an external magnetic field. (Assume g=2)

 (60 Marks)
 - b. Draw the split in l = 1 level on an energy diagram. (40 Marks)

END