Mar 09, 14 22:14	stdin	Page 1/225
library ieee; use ieee.std_logic_1164.a use ieee.numeric_std.all		
library work; use work.trb_net_std.all use work.nxyter_component		
entity adc_ad9228 is port (CLK_IN RESET_IN CLK_ADCDAT_IN	<pre>: in std_logic; : in std_logic; : in std_logic;</pre>	
ADC0_DATA_C_IN	: in std_logic; Sampling Clock ADC0 : out std_logic; : in std_logic; Data Clock from ADC0 : in std_logic; Frame Clock from ADC0	
	: in std_logic; Sampling Clock ADC1 : out std_logic; : in std_logic; Data Clock from ADC1 : in std_logic; Frame Clock from ADC1	
ADC0_DATA_A_OUT ADC0_DATA_B_OUT ADC0_DATA_C_OUT ADC0_DATA_D_OUT ADC0_DATA_VALID_OUT	<pre>: out std_logic_vector(11 downto 0); : out std_logic;</pre>	
ERROR_ADC0_OUT ERROR_ADC1_OUT DEBUG_IN DEBUG_OUT); end adc_ad9228;	<pre>: out std_logic; : out std_logic; : in std_logic_vector(3 downto 0); : out std_logic_vector(15 downto 0)</pre>	
architecture Behavioral	of adc_ad9228 is	
DDR Generic Handler signal DDR_DATA_CLK signal q_0 signal q_1	<pre>: std_logic; : std_logic_vector(19 downto 0); : std_logic_vector(19 downto 0);</pre>	
NotLock Counters signal adc0_frame_notlo	ocked : std_logic;	

```
stdin
Mar 09, 14 22:14
                                                                   Page 2/225
signal adc0_frame_notlocked_p : std_logic;
signal adc0_notlock_ctr
                             : unsigned(7 downto 0);
signal adc0 bit shift
                             : unsigned(1 downto 0);
signal adc0 bit shift last : unsigned(1 downto 0);
signal adc0_bit_shift_change : std_logic;
signal adc1 frame notlocked : std logic;
signal adc1 frame notlocked p : std logic;
signal adc1_notlock_ctr
                             : unsigned(7 downto 0);
signal adc1 bit shift
                             : unsigned(1 downto 0);
signal adc1_bit_shift_last : unsigned(1 downto 0);
signal adc1 bit shift change : std logic;
-- Merge Data
type q map t
                      is array(0 to 4) of std_logic_vector(3 downto 0);
                      is array(0 to 4) of std logic vector(15 downto 0);
type adc_data_buf_t
type adc_data_t
                      is array(0 to 3) of std_logic_vector(11 downto 0);
signal adc0 data buf
                              : adc data buf t;
signal adc0_frame_ctr
                              : unsigned(2 downto 0);
signal adc0_frame_locked
                              : std_logic;
signal adc0_new_data_t
                              : std_logic;
signal adc0_data_t
                              : adc_data_t;
signal adc1_data_buf
                              : adc_data_buf_t;
signal adc1 frame ctr
                              : unsigned(2 downto 0);
signal adc1_frame_locked
                              : std logic;
signal adc1_new_data_t
                              : std_logic;
signal adc1 data t
                              : adc data t;
-- Clock Transfer
signal adc0 fifo empty
                             : std logic;
                             : std_logic;
signal adc0_fifo_full
signal adc0 write enable
                             : std logic;
signal adc0_read_enable
                             : std logic;
signal adc0 read enable t
                           : std logic;
signal adc0_read_enable_tt : std_logic;
signal adc0 fifo reset
                             : std logic;
signal adc1_fifo_empty
                             : std_logic;
signal adc1 fifo full
                             : std logic;
signal adc1 write enable
                             : std logic;
signal adcl_read_enable
                            : std_logic;
                            : std_logic;
signal adc1_read_enable_t
signal adc1_read_enable_tt
                            : std logic;
signal adc1_fifo_reset
                              : std_logic;
-- Error
signal error_adc0_o
                              : std logic;
signal error_adc1_o
                              : std_logic;
-- Output
signal adc0_data_valid_o
                              : std_logic;
signal adc0_data_f
                              : adc_data_t;
                              : adc_data_t;
signal adc0_data_o
signal adc1 data valid o
                              : std logic;
signal adc1_data_f
                              : adc_data_t;
signal adc1_data_o
                              : adc_data_t;
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 3/225
 -- Resets
 signal RESET_CLK_ADCDAT_IN
                             : std logic;
 signal RESET DDR DATA CLK
                              : std logic;
begin
 PROC DEBUG: process (DEBUG IN)
 begin
   case DEBUG IN is
     when x"0" =>
       -- DEBUG
       DEBUG OUT(0)
                              <= CLK IN;
       DEBUG OUT(1)
                              <= DDR_DATA_CLK;
       DEBUG OUT(2)
                              <= adc0 bit shift change;
                              <= adc0 write enable;
       DEBUG OUT(3)
       DEBUG_OUT(4)
                              <= adc0_fifo_full;
       DEBUG OUT(5)
                              <= adc0_fifo_empty;
       DEBUG_OUT(6)
                              <= adc0_frame_locked;
                              <= adc0_new_data_t;
       DEBUG_OUT(7)
       DEBUG_OUT(8)
                              <= adc0_read_enable;
       DEBUG OUT(9)
                              <= adc0 read enable t;
       DEBUG_OUT(10)
                              <= adc0_read_enable_tt;</pre>
                              <= adc0_data_valid_o;
       DEBUG_OUT(11)
       DEBUG OUT(15 downto 12) <= (others => '0');
     when x"1" =>
       DEBUG OUT
                              <= adc0 data buf(0);
     when x"2" =>
       DEBUG OUT
                              <= adc0 data buf(1);
     when x"3" =>
       DEBUG OUT
                              <= adc0 data buf(2);
     when x"4" =>
       DEBUG OUT
                              <= adc0 data buf(3);
     when x"5" =>
       DEBUG OUT
                              <= adc0 data buf(4);
     --when x"e" =>
     -- DEBUG OUT
                                <= q 0(15 \text{ downto } 0);
     --when x"f" =>
     -- DEBUG OUT
                                \neq q_1(15 downto 0);
     when others =>
                              <= (others => '0');
       DEBUG OUT
   end case;
 end process PROC_DEBUG;
 -- Reset Domain Transfer
 ______
 signal_async_trans_RESET_IN: signal_async_trans
   port map (
     CLK IN
                => CLK_ADCDAT_IN,
     SIGNAL A IN => RESET IN,
     SIGNAL_OUT => RESET_CLK_ADCDAT_IN
```

```
stdin
Mar 09. 14 22:14
                                                                    Page 4/225
signal_async_trans_RESET_IN_2: signal_async_trans
  port map (
    CLK IN
                => DDR DATA CLK,
    SIGNAL A IN => RESET IN,
    SIGNAL_OUT => RESET_DDR_DATA_CLK
adc ddr generic 1: adc ddr generic
  port map (
    clk 0
                   => ADC0 DCLK IN,
    clk 1
                   => ADC1 DCLK IN,
    clkdiv_reset => RESET_CLK_ADCDAT_IN,
    eclk
                   => CLK_ADCDAT_IN,
                   => RESET DDR DATA CLK,
    reset 0
    reset 1
                   => RESET_DDR_DATA_CLK,
    sclk
                   => DDR DATA CLK,
    datain_0(0)
                  => ADC0_DATA_A_IN,
    datain_0(1)
                  => ADC0_DATA_B_IN,
    datain 0(2)
                  => ADC0 DATA C IN,
    datain_0(3)
                   => ADC0_DATA_D_IN,
    datain_0(4)
                   => ADCO_FCLK_IN,
                   => ADC1_DATA_A_IN,
    datain_1(0)
    datain 1(1)
                  => ADC1 DATA B IN,
    datain 1(2)
                  => ADC1_DATA_C_IN,
    datain_1(3)
                  => ADC1_DATA_D_IN,
    datain_1(4)
                  => ADC1_FCLK_IN,
    q_0
                   => q_0,
    q_1
                   => q_1
PROC MERGE DATA0: process(DDR DATA CLK)
  variable q_0_map : q_map_t;
  if (rising_edge(DDR_DATA_CLK)) then
     -- Remap DDR Output q_value
    for I in 0 to 4 loop
      q_0_{map}(I) := q_0(I + 0) \& q_0(I + 5) \& q_0(I + 10) \& q_0(I + 15);
    end loop;
     for I in 0 to 4 loop
      adc0_data_buf(I)(3 downto 0) <= q_0_map(I);</pre>
      adc0_data_buf(I)(15 downto 4) <= adc0_data_buf(I)(11 downto 0);</pre>
     end loop;
    if (RESET_DDR_DATA_CLK = '1') then
                             <= '0';
      adc0 new data t
      adc0_frame_ctr
                             <= (others => '0');
                             <= '0';
      adc0 frame locked
                             <= "00";
      adc0_bit_shift
      adc0_bit_shift_last <= "00";</pre>
      adc0_bit_shift_change <= '0';</pre>
     else
       -- Test Frame Clock Pattern
                                       <= '0';
      adc0_new_data_t
      case adc0 data buf(4) is
                                      -- adc0 data buf(4) is frame clock
```

```
stdin
Mar 09, 14 22:14
                                                                       Page 5/225
         when "00001111111000000" =>
           for I in 0 to 3 loop
                                        <= adc0 data buf(I)(11 downto 0);
             adc0 data t(I)
           end loop;
           adc0_new_data_t
                                        <= '1';
                                        <= "00";
           adc0 bit shift
         when "00011111110000001" =>
           for I in 0 to 3 loop
             adc0 data t(I)
                                        <= adc0 data buf(I)(12 downto 1);
           end loop;
           adc0 new data t
                                        <= '1';
           adc0 bit shift
                                        <= "01";
         when "0011111100000011" =>
           for I in 0 to 3 loop
             adc0 data t(I)
                                        <= adc0 data buf(I)(13 downto 2);
           end loop;
           adc0_new_data_t
                                        <= '1';
                                        <= "10";
           adc0_bit_shift
         when "0111111000000111" =>
           for I in 0 to 3 loop
             adc0_data_t(I)
                                        <= adc0_data_buf(I)(14 downto 3);
           end loop;
           adc0_new_data_t
                                        <= '1';
           adc0 bit shift
                                        <= "11";
         when others => null;
       end case;
       -- ADC Lock Status
       if (adc0 \text{ new data } t = '1') \text{ then}
         adc0_frame_ctr
                                     <= (others => '0');
         adc0 frame locked
                                     <= '1';
       elsif (adc0 frame ctr < x"4") then
         adc0 frame ctr
                                     <= adc0 frame ctr + 1;
         adc0 frame locked
                                     <= '0';
       end if;
       adc0 bit shift last
                                     <= adc0 bit shift;
       if (adc0 bit shift /= adc0 bit shift last) then
         adc0_bit_shift_change
                                     <= '1';
       else
         adc0_bit_shift_change
                                     <= '0';
       end if;
     end if;
  end if;
end process PROC_MERGE_DATA0;
PROC_MERGE_DATA1: process(DDR_DATA_CLK)
  variable q_1_map : q_map_t;
begin
  if (rising edge(DDR DATA CLK)) then
     -- Remap DDR Output q_value
     for I in 0 to 4 loop
       q_1_map(I) := q_1(I + 0) \& q_1(I + 5) \& q_1(I + 10) \& q_1(I + 15);
```

```
stdin
Mar 09, 14 22:14
                                                                      Page 6/225
     end loop;
     for I in 0 to 4 loop
      adc1 data buf(I)(3 downto 0) <= q 1 map(I);</pre>
       adcl_data_buf(I)(15 downto 4) <= adcl_data_buf(I)(11 downto 0);</pre>
     end loop;
    if (RESET DDR DATA CLK = '1') then
       adc1 new data t
                              <= '0';
                              \leq (others => '0');
       adc1 frame ctr
       adc1_frame_locked
                              <= '0';
                              <= "00";
       adc1 bit shift
       adc1 bit shift last
                              <= "00";
       adc1 bit shift change <= '0';
       -- Test Frame Clock Pattern
       adc1_new_data_t
       case adc1 data buf(4) is
                                          -- adcl data buf(4) is frame clock
         when "00001111111000000" =>
           for I in 0 to 3 loop
             adc1_data_t(I)
                                        <= adc1_data_buf(I)(11 downto 0);
           end loop;
           adc1_new_data_t
                                        <= '1';
          adc1_bit_shift
                                        <= "00";
         when "00011111110000001" =>
           for I in 0 to 3 loop
             adc1 data t(I)
                                        <= adc1 data buf(I)(12 downto 1);
           end loop;
           adc1_new_data_t
                                        <= '1';
          adcl bit shift
                                        <= "01";
         when "00111111100000011" =>
           for I in 0 to 3 loop
             adc1 data t(I)
                                        <= adc1 data buf(I)(13 downto 2);
           end loop;
           adc1 new data t
                                        <= '1';
           adc1 bit shift
                                        <= "10";
         when "01111111000000111" =>
           for I in 0 to 3 loop
             adc1_data_t(I)
                                        <= adc1_data_buf(I)(14 downto 3);
           end loop;
           adc1 new data t
                                        <= '1';
          adcl bit shift
                                        <= "11";
         when others => null;
       end case;
       -- ADC Lock Status
       if (adc1_new_data_t = '1') then
         adc1 frame ctr
                                    <= (others => '0');
         adc1_frame_locked
                                    <= '1';
       elsif (adc1_frame_ctr < x"4") then
                                    <= adc1_frame_ctr + 1;
         adc1 frame ctr
       else
         adc1_frame_locked
                                    <= '0';
       end if;
       adc1_bit_shift_last
                                     <= adc1_bit_shift;
       if (adc1_bit_shift /= adc1_bit_shift_last) then
```

```
stdin
Mar 09. 14 22:14
                                                                      Page 7/225
         adc1_bit_shift_change
                                    <= '1';
       else
        adc1 bit shift change
                                    <= '0';
       end if;
    end if;
  end if;
end process PROC MERGE DATA1;
 -- Tansfer to CLK IN
fifo adc 48to48 dc 1: fifo adc 48to48 dc
  port map (
    Data(11 downto 0) => adc0_data_t(0),
    Data(23 downto 12) => adc0 data t(1),
    Data(35 downto 24) => adc0 data t(2),
    Data(47 \text{ downto } 36) => adc0 \text{ data } t(3),
                 => DDR_DATA_CLK,
    WrClock
    RdClock
                     => CLK_IN,
    WrEn
                     => adc0 write enable,
    RdEn
                      => adc0_read_enable,
                      => RESET_IN,
    Reset
                      => adc0_fifo_reset,
    RPReset
    Q(11 \text{ downto } 0) => adc0_data_f(0),
    O(23 \text{ downto } 12) => adc0 data f(1).
    Q(35 \text{ downto } 24) => adc0_data_f(2),
    Q(47 \text{ downto } 36) => adc0_data_f(3),
                       => adc0_fifo_empty,
    Empty
                       => adc0_fifo_full
    Full
    );
-- Readout Handler
adc0 fifo reset
                      <= RESET IN;
adc0 write enable
                      <= adc0 new data t and not adc0 fifo full;
adc0 read enable
                      <= not adc0 fifo empty;
PROC_ADCO_FIFO_READ: process(CLK_IN)
begin
  if (rising_edge(CLK_IN)) then
    adc0_read_enable_t <= adc0_read_enable;</pre>
     if (RESET IN = '1') then
       adc0 read enable tt <= '0';
       for I in 0 to 3 loop
         adc0_data_o(I) <= (others => '0');
       end loop;
       adc0_data_valid_o <= '0';</pre>
    else
       -- Read enable
       adc0_read_enable_tt <= adc0_read_enable_t;</pre>
       if (adc0 read enable tt = '1') then
        for I in 0 to 3 loop
           adc0_data_o(I) <= adc0_data_f(I);</pre>
         end loop;
        adc0_data_valid_o <= '1';</pre>
       else
         adc0 data valid o <= '0';
       end if;
    end if;
   end if;
```

```
stdin
Mar 09. 14 22:14
                                                                      Page 8/225
end process PROC_ADCO_FIFO_READ;
fifo_adc_48to48_dc_2: fifo_adc_48to48_dc
  port map (
    Data(11 downto 0) => adc1 data t(0),
    Data(23 downto 12) => adc1 data t(1),
    Data(35 downto 24) => adc1 data t(2),
    Data(47 downto 36) => adc1 data t(3).
                       => DDR DATA CLK,
    WrClock
    RdClock
                        => CLK IN,
    WrEn
                       => adc1 new data t.
    RdEn
                       => adc1 read enable,
    Reset.
                     => RESET_IN,
    RPReset => adcl_fifo_reset,
Q(11 downto 0) => adcl_data_f(0),
    Q(23 downto 12) => adc1_data_f(1),
    Q(35 \text{ downto } 24) => adcl_data_f(2),
    Q(47 \text{ downto } 36) => adc1_data_f(3),
    Empty
                        => adc1_fifo_empty,
    Full
                        => adc1 fifo full
    );
-- Readout Handler
adc1_fifo_reset
                      <= RESET_IN;
adc1 write enable
                     <= adc1_new_data_t and not adc1_fifo_full;</pre>
adc1 read enable
                      <= not adc1 fifo empty;
PROC_ADC1_FIFO_READ: process(CLK_IN)
begin
  if (rising_edge(CLK_IN)) then
    if (RESET_IN = '1') then
       adc1 read enable t <= '0';
       adc1 read enable tt <= '0';
       for I in 0 to 3 loop
        adc1 data o(I) <= (others => '0');
       end loop;
       adc1_data_valid_o <= '0';</pre>
     else
       -- Read enable
       adc1 read enable t <= adc1 read enable;
       adc1 read enable tt <= adc1 read enable t;
      if (adc1 read enable tt = '1') then
        for I in 0 to 3 loop
           adcl_data_o(I) <= adcl_data_f(I);</pre>
        end loop;
        adc1 data valid o <= '1';
       else
        adc1_data_valid_o <= '0';</pre>
       end if:
    end if;
  end if;
end process PROC ADC1 FIFO READ;
level_to_pulse_1: level_to_pulse
  port map (
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 9/225
    CLK IN
             => DDR_DATA_CLK,
    RESET_IN => RESET_DDR_DATA_CLK,
    LEVEL_IN => not adc0_frame_locked,
    PULSE OUT => adc0 frame notlocked p
level to pulse 2: level to pulse
  port map (
    CLK IN => DDR DATA CLK,
    RESET IN => RESET DDR DATA CLK.
    LEVEL IN => not adc1 frame locked.
    PULSE OUT => adc1 frame notlocked p
pulse dtrans 1: pulse dtrans
  generic map (
    CLK RATIO => 2
  port map (
    CLK_A_IN => DDR_DATA_CLK,
    RESET_A_IN => RESET_DDR_DATA_CLK,
    PULSE A IN => adc0 frame notlocked p,
    CLK B IN => CLK IN,
    RESET_B_IN => RESET_IN,
    PULSE B OUT => adc0 frame notlocked
pulse_dtrans_2: pulse_dtrans
  generic map (
    CLK_RATIO => 2
  port map (
    CLK_A_IN => DDR_DATA_CLK,
    RESET A IN => RESET DDR DATA CLK,
    PULSE_A_IN => adc1_frame_notlocked_p,
    CLK B IN => CLK IN,
    RESET B IN => RESET IN,
    PULSE B OUT => adc1 frame notlocked
PROC NOTLOCK COUNTER: process(CLK IN)
begin
  if (rising edge(CLK IN)) then
    if (RESET IN = '1') then
      adc0 notlock ctr
                        <= (others => '0');
                           <= (others => '0');
      adc1 notlock ctr
    else
      if (adc0_frame_notlocked = '1') then
        adc0 notlock ctr <= adc0 notlock ctr + 1;
      end if;
      if (adc1_frame_notlocked = '1') then
        adc1 notlock ctr <= adc1 notlock ctr + 1;
      end if;
    end if;
  end if;
end process PROC_NOTLOCK_COUNTER;
PROC ERROR: process(CLK IN)
begin
  if (rising_edge(CLK_IN)) then
    if (RESET IN = '1') then
```

```
stdin
 Mar 09. 14 22:14
                                                                     Page 10/225
        error_adc0_o
                         <= '0';
                         <= '0';
        error_adc1_o
      else
        error adc0 o
                         <= '0';
                         <= '0';
        error_adc1_o
        if (adc0 frame notlocked = '1' or
           adc0 bit shift change = '1') then
          error adc0 o <= '1';
        end if;
        if (adc1 frame notlocked = '1' or
            adc1 bit shift change = '1') then
          error adc1 o <= '1';
        end if;
      end if;
    end if;
  end process PROC ERROR;
 -- Output
 ADC0_SCLK OUT
                       <= ADC0 SCLK IN;
 ADC1 SCLK OUT
                       <= ADC1 SCLK IN;
 ADCO DATA A OUT
                       <= adc0 data o(0);
 ADC0_DATA_B_OUT
                       <= adc0_data_o(1);
                       <= adc0 data o(2);
 ADCO DATA C OUT
                       <= adc0 data o(3);
 ADCO DATA D OUT
 ADCO_DATA_VALID_OUT <= adc0_data_valid_o;
  ADC1 DATA A OUT
                       <= adc1 data o(0);
 ADC1_DATA_B_OUT
                       <= adc1 data o(1);
                       <= adc1_data_o(2);
 ADC1_DATA_C_OUT
 ADC1 DATA D OUT
                       <= adc1 data o(3);
 ADC1_DATA_VALID_OUT <= adc1_data_valid_o;
  ADC0 NOTLOCK COUNTER <= adc0 notlock ctr;
 ADC1 NOTLOCK COUNTER <= adc1 notlock ctr;
  ERROR ADCO OUT
                       <= error adc0 o;
 ERROR ADC1 OUT
                       <= error adc1 o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter_components.all;
entity adc_spi_master is
 generic (
    SPI SPEED : unsigned(7 downto 0) := x"32"
    );
 port(
                           : in
                                   std logic;
    CLK IN
                           : in
    RESET_IN
                                   std_logic;
    -- SPI connections
    SCLK OUT
                           : out std_logic;
    SDIO_INOUT
                           : inout std_logic;
    CSB OUT
                           : out std logic;
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 11/225
   -- Internal Interface
   INTERNAL COMMAND IN : in
                                  std logic vector(31 downto 0);
   COMMAND ACK OUT
                         : out.
                                 std logic;
                         : out
                                 std_logic_vector(31 downto 0);
   SPI_DATA
   SPI LOCK IN
                         : in
                                 std logic;
   -- Slave bus
   SLV READ IN
                          : in
                                 std logic;
   SLV WRITE IN
                                 std logic;
                          : in
   SLV DATA OUT
                          : out
                                 std logic vector(31 downto 0);
   SLV DATA IN
                          : in
                                 std logic vector(31 downto 0);
   SLV ACK OUT
                          : out.
                                 std logic;
   SLV NO MORE DATA OUT
                         : out
                                 std_logic;
   SLV UNKNOWN ADDR OUT
                         : out
                                 std logic;
   -- Debug Line
   DEBUG OUT
                                 std logic vector(15 downto 0)
                          : out.
   );
end entity;
architecture Behavioral of adc spi master is
 signal sdio_i
                     : std_logic;
 signal sdio x
                     : std logic;
 signal sdio
                     : std_logic;
 signal sclk o
                    : std logic;
 signal command_ack_o : std_logic;
 -- SPI Master
 signal csb o
                             : std logic;
 signal spi_start
                             : std_logic;
 signal spi_busy
                             : std_logic;
 signal takeover sdio
                             : std logic;
 signal wait timer start
                             : std logic;
 signal sendbyte_seq_start : std_logic;
 signal readbyte_seq_start : std_logic;
 signal sendbyte byte
                              : std logic vector(7 downto 0);
 signal read seg ctr
                              : std logic;
 signal reg_data
                              : std_logic_vector(31 downto 0);
 signal spi busy x
                              : std logic;
 signal wait_timer_start_x : std_logic;
 signal sendbyte_seq_start_x : std_logic;
 signal sendbyte_byte_x
                          : std logic vector(7 downto 0);
 signal readbyte_seq_start_x : std_logic;
 signal read_seq_ctr_x
                             : std logic;
 signal reg_data_x
                              : std_logic_vector(31 downto 0);
 signal sdio_sendbyte
                              : std logic;
 signal sclk sendbyte
                              : std logic;
 signal sendbyte_done
                              : std_logic;
 signal sclk_readbyte
                              : std logic;
                              : std_logic_vector(7 downto 0);
 signal readbyte_byte
 signal readbyte_done
                              : std logic;
 type STATES is (S_RESET,
                 S_IDLE,
                 S START,
```

```
stdin
 Mar 09. 14 22:14
                                                                   Page 12/225
                 S_START_WAIT,
                 S SEND CMD A,
                 S SEND CMD A WAIT,
                 S_SEND_CMD_B,
                 S SEND CMD B WAIT,
                 S SEND DATA,
                 S SEND DATA WAIT,
                 S GET DATA.
                 S_GET_DATA_WAIT,
                 S STOP,
                 S STOP WAIT
 signal STATE, NEXT_STATE : STATES;
  -- SPI Timer
 signal wait timer done
                                : std logic;
 -- TRBNet Slave Bus
 signal slv data out o
                                : std logic vector(31 downto 0);
 signal slv_no_more_data_o
                                : std_logic;
 signal slv_unknown_addr_o
                                : std_logic;
 signal slv ack o
                                : std logic;
 signal spi_chipid
                                : std_logic_vector(6 downto 0);
 signal spi rw bit
                                : std logic;
 signal spi registerid
                               : std logic vector(12 downto 0);
 signal spi_register_data
                               : std_logic_vector(7 downto 0);
 signal spi_register_value_read : std_logic_vector(7 downto 0);
begin
 -- Timer
 timer_static_1: timer_static
   generic map (
     CTR WIDTH => 8,
     CTR END => to integer(SPI SPEED srl 2)
   port map (
     CLK IN
                    => CLK IN.
     RESET IN
                    => RESET IN,
     TIMER START IN => wait timer start,
     TIMER DONE OUT => wait timer done
     );
 adc_spi_sendbyte_1: adc_spi_sendbyte
   generic map (
     SPI SPEED => SPI SPEED
   port map (
     CLK IN
                        => CLK IN,
                        => RESET IN,
     RESET IN
     START_IN
                        => sendbyte_seq_start,
                        => sendbyte byte,
     BYTE IN
     SEQUENCE_DONE_OUT => sendbyte_done,
                        => sdio_sendbyte,
     SDIO_OUT
                        => sclk_sendbyte
     SCLK_OUT
     );
 adc_spi_readbyte_1: adc_spi_readbyte
   generic map (
```

```
stdin
Mar 09. 14 22:14
                                                                     Page 13/225
    SPI_SPEED => SPI_SPEED
  port map (
    CLK IN
                       => CLK IN,
    RESET_IN
                       => RESET_IN,
                       => readbyte seg start,
    START IN
    BYTE OUT
                       => readbyte byte,
    SEQUENCE_DONE_OUT => readbyte_done,
    SDIO IN
                       => sdio,
    SCLK OUT
                       => sclk readbyte
-- Debug Line
DEBUG OUT(0)
                        <= CLK IN;
DEBUG OUT(1)
                        <= sclk o;
DEBUG_OUT(2)
                        <= SDIO INOUT;
DEBUG_OUT(3)
                        <= csb o;
DEBUG OUT(4)
                        <= spi busy;
DEBUG_OUT(5)
                        <= wait_timer_done;
DEBUG_OUT(6)
                        <= sendbyte_seq_start;</pre>
DEBUG OUT(7)
                        <= sendbyte done;
DEBUG_OUT(8)
                        <= sclk_sendbyte;
                        <= sdio_sendbyte;
DEBUG_OUT(9)
                        <= sclk readbyte;
DEBUG OUT(10)
DEBUG_OUT(11)
                        <= takeover_sdio;
-- Sync SPI SDIO Line
sdio_i <= SDIO_INOUT;</pre>
PROC I2C LINES SYNC: process(CLK IN)
begin
  if (rising_edge(CLK_IN)) then
    if ( RESET IN = '1' ) then
       sdio_x <= '1';
       sdio <= '1';
       sdio x <= sdio i;
       sdio <= sdio x;
    end if;
  end if;
end process PROC_I2C_LINES_SYNC;
PROC I2C MASTER TRANSFER: process(CLK IN)
begin
  if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
       spi_busy
                            <= '0';
       sendbyte_seq_start
                            <= '0';
       readbyte_seq_start
       sendbyte_byte
                             <= (others => '0');
       wait_timer_start
                             <= '0';
       req data
                             <= (others => '0');
       read_seq_ctr
                             <= '0';
       STATE
                             <= S RESET;
     else
                             <= spi_busy_x;
       spi_busy
       sendbyte_seq_start
                            <= sendbyte_seq_start_x;</pre>
                            <= readbyte seg start x;
       readbyte seg start
                             <= sendbyte_byte_x;
       sendbyte_byte
       wait_timer_start
                             <= wait_timer_start_x;</pre>
       req data
                             <= req data x;
```

```
stdin
Mar 09, 14 22:14
                                                                     Page 14/225
       read_seq_ctr
                             <= read_seq_ctr_x;
       STATE
                             <= NEXT_STATE;
     end if;
  end if;
end process PROC_I2C_MASTER_TRANSFER;
PROC I2C MASTER: process(STATE,
                          spi start,
                          wait timer done.
                          sendbyte done,
                          readbyte done
begin
  -- Defaults
  takeover_sdio
                           <= '0';
                           <= '0';
  sclk o
  csb o
                           <= '0';
  spi_busy_x
                           <= '1';
  sendbyte_seq_start_x <= '0';</pre>
  sendbyte byte x
                           <= (others => '0');
  readbyte_seq_start_x
                          <= '0';
  wait_timer_start_x
                           <= '0';
  req data x
                           <= reg data;
  read_seq_ctr_x
                           <= read_seq_ctr;
  case STATE is
    when S RESET =>
      reg data x <= (others => '0');
      NEXT STATE <= S IDLE;
    when S IDLE =>
                    <= '1';
       csb_o
       if (spi start = '1') then
        reg data x <= x"8000 0000"; -- Set Running , clear all other bits
        NEXT STATE <= S START;
       else
        spi_busy_x
                        <= '0';
                        <= reg_data and x"7fff_fffff"; -- clear running bit;</pre>
        req data x
        read_seq_ctr_x <= '0';
        NEXT STATE
                        <= S IDLE;
       end if;
       -- SPI START Sequence
     when S START =>
       wait_timer_start_x <= '1';</pre>
      NEXT STATE
                          <= S START WAIT;
     when S_START_WAIT =>
      if (wait_timer_done = '0') then
        NEXT_STATE <= S_START_WAIT;</pre>
       else
        takeover_sdio <= '1';
        NEXT_STATE <= S_SEND_CMD_A;</pre>
       end if;
       -- I2C SEND CMD Part1
    when S_SEND_CMD_A =>
                                   <= '1';
       takeover_sdio
       sendbyte byte x(7)
                                   <= spi rw bit;
```

```
stdin
Mar 09. 14 22:14
                                                                       Page 15/225
       sendbyte_byte_x(6 downto 5) <= "00";</pre>
       sendbyte_byte_x(4 downto 0) <= spi_registerid(12 downto 8);</pre>
                                    <= '1';
       sendbyte seg start x
       NEXT STATE
                                    <= S SEND CMD A WAIT;
     when S SEND CMD A WAIT =>
       takeover sdio <= '1';
       if (sendbyte done = '0') then
         NEXT STATE <= S SEND CMD A WAIT;
         NEXT STATE <= S SEND CMD B;
       end if;
       -- I2C SEND CMD Part1
     when S SEND CMD B =>
       takeover sdio
                                    <= '1';
       sendbyte_byte_x(7 downto 0) <= spi_registerid(7 downto 0);</pre>
                                   <= '1';
       sendbyte seg start x
       NEXT STATE
                                    <= S SEND CMD B WAIT;
     when S_SEND_CMD_B_WAIT =>
       takeover sdio <= '1';
       if (sendbyte_done = '0') then
         NEXT_STATE <= S_SEND_CMD_B_WAIT;</pre>
       else
         if (spi_rw_bit = '1') then
           NEXT STATE
                             <= S GET DATA;
         else
           NEXT_STATE
                              <= S_SEND_DATA;
         end if;
       end if;
       -- I2C SEND DataWord
     when S SEND DATA =>
                               <= '1';
       takeover_sdio
       sendbyte byte x
                               <= spi register data;
       sendbyte_seq_start_x <= '1';</pre>
       NEXT_STATE
                               <= S SEND DATA WAIT;
     when S SEND DATA WAIT =>
       takeover_sdio <= '1';</pre>
       if (sendbyte_done = '0') then
         NEXT_STATE <= S_SEND_DATA_WAIT;</pre>
         NEXT STATE <= S STOP;
       end if;
       -- I2C GET DataWord
     when S GET DATA =>
       readbyte_seq_start_x <= '1';</pre>
       NEXT_STATE
                               <= S GET DATA WAIT;
     when S GET DATA WAIT =>
       if (readbyte_done = '0') then
         NEXT_STATE <= S_GET_DATA_WAIT;</pre>
         reg_data_x(7 downto 0) <= readbyte_byte;</pre>
         NEXT STATE
                                 <= S STOP;
       end if;
       -- SPI STOP Sequence
     when S STOP =>
```

```
stdin
Mar 09. 14 22:14
                                                                 Page 16/225
      wait_timer_start_x
                           <= '1';
      NEXT STATE
                            <= S_STOP_WAIT;
    when S STOP WAIT =>
      if (wait_timer_done = '0') then
        NEXT STATE <= S STOP WAIT;
        reg data x <= reg data or x"4000 0000"; -- Set DONE Bit
        NEXT STATE <= S IDLE;
      end if;
  end case;
end process PROC I2C MASTER;
 -- TRBNet Slave Bus
     Write bit definition
     __
     D[31]
              SPI GO
                              0 => don't do anything on SPI,
                              1 => start SPI access
                              0 => write byte, 1 => read byte
     D[30]
             SPI_ACTION
                              SPI Register Id
     D[20:8] SPI CMD
     D[7:0] SPI_DATA
                             data to be written
___
     Read bit definition
     -----
     D[31]
              RUNNING
                              whatever
    D[30]
              SPI DONE
                             whatever
    D[29:21] reserved
                             reserved
     D[20:16] debug
                              subject to change, don't use
    D[15:8] reserved
                             reserved
     D[7:0] SPI DATA
                             result of SPI read operation
PROC_SLAVE_BUS: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if ( RESET_IN = '1' ) then
                        <= (others => '0');
      slv data out o
      slv no more data o <= '0';
      slv_unknown_addr_o <= '0';
      slv_ack_o
                       <= '0';
      spi_start
                        <= '0';
      command_ack_o
                        <= '0';
      spi_chipid
                              <= (others => '0');
      spi_rw_bit
                             <= '0';
      spi_registerid
                             <= (others => '0');
                           <= (others => '0');
      spi register data
      spi_register_value_read <= (others => '0');
     else
      slv_data_out_o
                        <= (others => '0');
      slv_unknown_addr_o <= '0';</pre>
      slv no more data o <= '0';
                         <= '0';
      spi_start
      command ack o
                         <= '0';
```

```
stdin
 Mar 09, 14 22:14
                                                                   Page 17/225
        --if (spi_busy = '0' and INTERNAL_COMMAND_IN(31) = '1') then
                              <= INTERNAL COMMAND IN(30);
        -- spi rw bit
                              <= INTERNAL COMMAND IN(20 downto 8);
        -- spi_registerid
        -- spi_register_data <= INTERNAL_COMMAND_IN(7 downto 0);
                             <= '1';
        -- spi start
                              <= '1';
        -- command ack o
                             <= '1';
        -- slv ack o
        --elsif (SLV WRITE IN = '1') then
       if (SLV WRITE IN = '1') then
         if (spi busy = '0' and SLV DATA IN(31) = '1') then
           spi_rw_bit <= SLV_DATA_IN(30);</pre>
           spi registerid <= SLV DATA IN(20 downto 8);
           spi register data <= SLV DATA IN(7 downto 0);
                       <= '1';
           spi start
           slv_ack_o
                            <= '1';
          _lc_
           slv ack o
                            <= '1';
          end if;
       elsif (SLV READ IN = '1') then
         if (spi_busy = '1') then
           slv_no_more_data_o <= '1';
           slv ack o
                             <= '0';
          else
           slv_data_out_o
                              <= reg data;
                              <= '1';
           slv ack o
         end if;
        else
         slv ack o
                              <= '0';
       end if;
     end if;
   end if;
  end process PROC SLAVE BUS;
  -- Output Signals
  -- SPI Outputs
 SDIO INOUT
                 <= sdio_sendbyte when (takeover_sdio = '1')</pre>
                    else 'Z';
 SCLK_OUT
                 <= sclk_o or
                    sclk sendbyte or
                    sclk_readbyte;
 CSB_OUT
                 <= csb_o;
 COMMAND ACK OUT <= command ack o;
  -- Slave Bus
 SLV DATA OUT
                      <= slv_data_out_o;</pre>
 SLV_NO_MORE_DATA_OUT <= slv_no_more_data_o;</pre>
 SLV_UNKNOWN_ADDR_OUT <= slv_unknown_addr_o;</pre>
 SLV ACK OUT
                    <= slv ack o;
end Behavioral;
library ieee;
```

```
stdin
 Mar 09. 14 22:14
                                                                 Page 18/225
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.nxyter_components.all;
entity adc_spi_readbyte is
 generic (
   SPI SPEED: unsigned(7 downto 0) := x"32"
   );
 port(
   CLK IN
                      : in std logic;
   RESET IN
                       : in std logic;
                      : in std logic;
   START IN
   BYTE OUT
                       : out std_logic_vector(7 downto 0);
   SEQUENCE DONE OUT : out std logic;
   -- SPI connections
   SDIO IN
                       : in std_logic;
   SCLK OUT
                       : out std logic
   );
end entity;
architecture Behavioral of adc_spi_readbyte is
 -- Send Byte
 signal sclk_o
                         : std_logic;
 signal spi_start
                         : std_logic;
 signal sequence_done_o
                         : std logic;
 signal spi_byte
                         : unsigned(7 downto 0);
 signal bit ctr
                         : unsigned(3 downto 0);
 signal spi_ack_o : std_logic;
 signal wait timer start : std logic;
  signal sequence done o x : std logic;
 signal spi_byte_x : unsigned(7 downto 0);
                        : unsigned(3 downto 0);
 signal bit ctr x
 signal spi_ack_o_x : std_logic;
 signal wait_timer_start_x : std_logic;
  type STATES is (S IDLE,
                 S_UNSET_SCKL,
                 S_UNSET_SCKL_HOLD,
                 S GET BIT,
                 S_SET_SCKL,
                 S_NEXT_BIT,
                 S_DONE
                 );
 signal STATE, NEXT_STATE : STATES;
 -- Wait Timer
 signal wait_timer_done : std_logic;
begin
 -- Timer
 timer_static_1: timer_static
   generic map(
     CTR WIDTH => 8,
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 19/225
    CTR_END => to_integer(SPI_SPEED srl 1)
  port map (
    CLK IN
                   => CLK IN,
               => RESET_IN,
    RESET_IN
    TIMER START IN => wait timer start,
    TIMER DONE OUT => wait timer done
PROC READ BYTE TRANSFER: process(CLK IN)
begin
  if ( rising edge (CLK IN) ) then
    if ( RESET IN = '1' ) then
      sequence done o <= '0';
                  <= (others => '0');
      bit ctr
                      <= '0';
      spi ack o
      wait_timer_start <= '0';</pre>
                      <= S IDLE;
      STATE
    else
      sequence_done_o <= sequence_done_o_x;</pre>
      spi_byte <= spi_byte_x;
      bit_ctr <= bit_ctr_x;
spi_ack_o <= spi_ack_o_x;
      wait_timer_start <= wait_timer_start_x;</pre>
      STATE
                     <= NEXT STATE;
    end if;
  end if;
end process PROC READ BYTE TRANSFER;
PROC_READ_BYTE: process(STATE,
                         START IN,
                         wait timer done,
                         bit_ctr
begin
  sclk o
                      <= '0';
  sequence_done_o_x <= '0';</pre>
  spi_byte_x <= spi_byte;</pre>
  bit ctr x
                   <= bit ctr;
                <= spi_ack_o;
  spi_ack_o_x
  wait timer start x <= '0';</pre>
  case STATE is
     when S IDLE =>
      if (START_IN = '1') then
         spi_byte_x
                        <= (others => '0');
        bit ctr x
                         <= x"7";
        wait_timer_start_x <= '1';</pre>
        NEXT_STATE
                     <= S UNSET SCKL;
      else
        NEXT STATE
                         <= S IDLE;
      end if;
      -- SPI Read byte
     when S_UNSET_SCKL =>
      wait_timer_start_x <= '1';</pre>
      NEXT_STATE
                            <= S_UNSET_SCKL_HOLD;
     when S UNSET SCKL HOLD =>
      if (wait_timer_done = '0') then
        NEXT_STATE <= S_UNSET_SCKL_HOLD;</pre>
       else
```

```
stdin
 Mar 09. 14 22:14
                                                                     Page 20/225
          NEXT_STATE <= S_GET_BIT;</pre>
        end if;
      when S GET BIT =>
                             <= SDIO_IN;
        spi_byte_x(0)
        wait timer start x <= '1';
       NEXT STATE
                            <= S SET SCKL;
      when S SET SCKL =>
        sclk o <= '1';
        if (wait_timer_done = '0') then
         NEXT STATE <= S SET SCKL;
        else
          wait timer start x <= '1';</pre>
         NEXT STATE <= S NEXT BIT;
        end if;
      when S NEXT BIT =>
        sclk o <= '1';
        if (bit_ctr > 0) then
                            <= bit_ctr - 1;
         bit ctr x
         spi byte x
                           <= spi byte sll 1;
         wait_timer_start_x <= '1';</pre>
         NEXT_STATE
                           <= S_UNSET_SCKL;
        else
         NEXT_STATE
                          <= S DONE;
        end if;
      when S_DONE =>
        sclk_o <= '1';
        sequence done o x <= '1';
       NEXT STATE
                         <= S IDLE;
    end case;
  end process PROC_READ_BYTE;
  -- Output Signals
 SEQUENCE_DONE_OUT <= sequence_done_o;</pre>
 BYTE OUT
                   <= spi_byte;
 -- I2c Outputs
 SCLK OUT <= sclk o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.nxyter_components.all;
entity adc_spi_sendbyte is
 generic (
    SPI_SPEED : unsigned(7 downto 0) := x"32"
    );
 port(
                        : in std_logic;
    CLK_IN
    RESET IN
                        : in std logic;
```

```
stdin
Mar 09. 14 22:14
                                                                      Page 21/225
   START IN
                         : in std logic;
                         : in std logic vector(7 downto 0);
   BYTE IN
   SEQUENCE DONE OUT
                        : out std logic;
   -- SPI connections
   SCLK OUT
                         : out std logic;
   SDIO OUT
                         : out std logic
end entity;
architecture Behavioral of adc spi sendbyte is
 -- Send Byte
 signal sclk o
                            : std logic;
                            : std logic;
 signal sdio o
 signal spi_start
                           : std logic;
 signal sequence_done_o
                           : std logic;
 signal spi_byte
signal bit_ctr
                           : unsigned(7 downto 0);
                           : unsigned(3 downto 0);
 signal wait timer start : std logic;
 signal sequence_done_o_x : std_logic;
 signal spi_byte_x : unsigned(7 downto 0);
signal bit_ctr_x : unsigned(3 downto 0);
 signal wait_timer_start_x : std_logic;
 type STATES is (S_IDLE,
                  S SET SDIO.
                  S SET SCLK,
                  S_NEXT_BIT,
                  S_DONE
                  );
 signal STATE, NEXT STATE : STATES;
 -- Wait Timer
 signal wait timer done
                           : std logic;
begin
 -- Timer
 timer static 1: timer static
   generic map (
     CTR WIDTH => 8,
     CTR_END => to_integer(SPI_SPEED srl 1)
   port map (
     CLK IN
                     => CLK IN,
     RESET IN
                  => RESET IN,
     TIMER_START_IN => wait_timer_start,
     TIMER_DONE_OUT => wait_timer_done
     );
 PROC_SEND_BYTE_TRANSFER: process(CLK_IN)
 begin
   if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
        sequence done o <= '0';
                   <= (others => '0');
        bit ctr
        wait_timer_start <= '0';</pre>
        STATE
                         <= S IDLE;
```

```
stdin
Mar 09, 14 22:14
                                                                     Page 22/225
     else
       sequence_done_o <= sequence_done_o_x;</pre>
                   <= spi_byte_x;
       spi_byte
      bit ctr
                        <= bit ctr x;
       wait_timer_start <= wait_timer_start_x;</pre>
                       <= NEXT STATE;
       STATE
     end if;
  end if;
end process PROC SEND BYTE TRANSFER;
PROC_SEND_BYTE: process(STATE,
                         START IN,
                         wait timer done,
                         bit ctr
                         )
begin
  sdio o
                      <= '0';
                      <= '0';
  sclk o
  sequence_done_o_x <= '0';</pre>
  spi_byte_x <= spi_byte;
  bit_ctr_x
                     <= bit_ctr;
  wait timer start x <= '0';
  case STATE is
    when S IDLE =>
      if (START_IN = '1') then
        spi_byte_x
                            <= BYTE IN;
        bit_ctr_x
                            <= x"7";
        wait_timer_start_x <= '1';</pre>
        NEXT STATE
                            <= S SET SDIO;
        NEXT STATE <= S IDLE;
       end if;
    when S_SET_SDIO =>
       sdio o <= spi bvte(7);</pre>
       if (wait timer done = '0') then
        NEXT STATE
                           <= S SET SDIO;
       else
         wait timer start x <= '1';</pre>
        NEXT STATE
                        <= S SET SCLK;
       end if;
     when S SET SCLK =>
       sdio_o <= spi_byte(7);</pre>
       sclk_o <= '1';
      if (wait_timer_done = '0') then
        NEXT_STATE
                         <= S_SET_SCLK;
       else
        NEXT_STATE
                            <= S_NEXT_BIT;
       end if;
     when S NEXT BIT =>
       sdio_o <= spi_byte(7);</pre>
       sclk o <= '1';
       if (bit_ctr > 0) then
        bit_ctr_x
                            <= bit_ctr - 1;
         spi_byte_x
                            <= spi_byte sll 1;
         wait_timer_start_x <= '1';</pre>
        NEXT_STATE
                           <= S_SET_SDIO;
       else
         NEXT STATE
                            <= S DONE;
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 23/225
       end if;
     when S DONE =>
       sdio o <= spi byte(7);</pre>
       sclk_o <= '1';
       sequence_done_o_x <= '1';</pre>
       NEXT STATE
                            <= S IDLE;
   end case;
 end process PROC SEND BYTE;
 -- Output Signals
 SEQUENCE DONE OUT <= sequence done o;
 -- SPI Outputs
 SDIO OUT <= sdio o;
 SCLK OUT <= sclk o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
entity bus_async_trans is
 generic (
   BUS_WIDTH : integer range 2 to 32 := 8;
   NUM_FF : integer range 2 to 4 := 2
   );
 port (
              : in std_logic;
   CLK_IN
   RESET IN : in std_logic;
   SIGNAL_A_IN : in std_logic_vector(BUS_WIDTH - 1 downto 0);
   SIGNAL OUT : out std logic vector(BUS WIDTH - 1 downto 0)
   );
end entity;
architecture Behavioral of bus async trans is
 type buffer_t is array(0 to NUM_FF - 1) of
   std_logic_vector(BUS_WIDTH - 1 downto 0);
 signal signal_ff
                     : buffer t;
begin
 -- Clock CLK IN Domain
 PROC_SYNC_SIGNAL: process(CLK_IN)
 begin
   if( rising_edge(CLK_IN) ) then
     signal_ff(NUM_FF - 1)
                                <= SIGNAL A IN;
     if( RESET_IN = '1' ) then
       for i in NUM_FF - 2 downto 0 loop
         signal ff(i)
                            <= (others => '0');
       end loop;
     else
       for i in NUM_FF - 2 downto 0 loop
         signal ff(i)
                                \leq signal ff(i + 1);
```

```
stdin
 Mar 09. 14 22:14
                                                                       Page 24/225
        end loop;
      end if;
    end if;
 end process PROC SYNC SIGNAL;
  -- Output Signals
 SIGNAL OUT
                  <= signal ff(0);
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxvter components.all;
entity debug_multiplexer is
 generic (
   NUM PORTS : integer range 1 to 32 := 1
 port(
    CLK_IN
                     : in std logic;
    RESET_IN
                         : in std logic;
    DEBUG LINE IN
                       : in debug array t(0 to NUM PORTS-1);
                         : out std_logic_vector(15 downto 0);
    DEBUG_LINE_OUT
    -- Slave bus
    SLV_READ_IN
                       : in std_logic;
   SLV_READ_IN : IN Std_logic;
SLV_DATA_OUT : out std_logic_vector(31 downto 0);
SLV_DATA_IN : in std_logic_vector(31 downto 0);
   SLV_ADDR_IN : in std_logic_vector(15 downto 0);
SLV_ACK_OUT : out std_logic;
    SLV NO MORE DATA OUT : out std logic;
    SLV UNKNOWN ADDR OUT : out std logic
   );
end entity;
architecture Behavioral of debug multiplexer is
  signal port select
                            : std logic vector(7 downto 0);
  signal debug line o
                           : std logic vector(15 downto 0);
  signal slv_data_out_o : std_logic_vector(31 downto 0);
 signal slv_no_more_data_o : std_logic;
 signal slv_unknown_addr_o : std_logic;
 signal slv ack o : std logic;
begin
  PROC_MULTIPLEXER: process(port_select,
                             DEBUG_LINE_IN)
 begin
   if (unsigned(port_select) < NUM_PORTS) then
      debug_line_o
        DEBUG_LINE_IN(to_integer(unsigned(port_select)));
    elsif (unsigned(port select) = NUM PORTS) then
      -- Checkerboard
      for I in 0 to 7 loop
        debug line o(I * 2)
                                  <= CLK IN;
```

```
stdin
Mar 09. 14 22:14
                                                                 Page 25/225
      debug_line_o(I * 2 + 1) <= not CLK IN;
    end loop;
  else
    debug line o
                            <= (others => '1');
  end if;
end process PROC MULTIPLEXER;
PROC SLAVE BUS: process(CLK IN)
  if (rising edge (CLK IN)) then
    if( RESET_IN = '1') then
      slv data out o
                      <= (others => '0');
      slv no more data o <= '0';
      slv_unknown_addr_o <= '0';
      slv_ack_o <= '0';
      port select
                        <= (others => '0');
    else
                      <= '1';
      slv ack o
      slv_unknown_addr_o <= '0';</pre>
      slv_no_more_data_o <= '0';</pre>
      slv_data_out_o <= (others => '0');
      if (SLV_WRITE_IN = '1') then
        case SLV_ADDR_IN is
          when x'''0000''' =>
            if (unsigned(SLV_DATA_IN(7 downto 0)) < NUM_PORTS + 1) then
             port select <= SLV DATA IN(7 downto 0);
            end if;
                                       <= '1';
            slv_ack_o
          when others =>
            slv_unknown_addr_o
                                    <= '1';
                                       <= '0';
            slv_ack_o
        end case;
      elsif (SLV READ IN = '1') then
        case SLV ADDR IN is
          when x"0000" =>
            slv data out o(7 downto 0) <= port select;
            slv data out o(31 downto 8) <= (others => '0');
          when others =>
            slv unknown addr o
                                    <= '1';
            slv ack o
                                       <= '0';
        end case;
      else
                                       <= '0';
        slv ack o
      end if;
    end if;
  end if;
end process PROC_SLAVE_BUS;
-- Output Signals
SLV DATA OUT
                 <= slv_data_out_o;
SLV NO MORE DATA OUT <= slv no more data o;
SLV_UNKNOWN_ADDR_OUT <= slv_unknown_addr_o;</pre>
SLV_ACK_OUT
                 <= slv_ack_o;
```

```
stdin
 Mar 09. 14 22:14
                                                                             Page 26/225
  DEBUG_LINE_OUT
                         <= debug_line_o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter components.all;
entity fifo_44_data_delay_my is
    port (
        Data : in std_logic_vector(43 downto 0);
Clock : in std_logic;
WrEn : in std_logic;
RdEn : in std_logic;
Reset : in std_logic;
AmEmptyThresh : in std_logic_vector(7 downto 0);
        0 : out std logic vector(43 downto 0);
                       : out std_logic;
        Empty
        Full
                       : out std_logic;
        AlmostEmpty : out std logic;
        DEBUG_OUT : out std_logic_vector(15 downto 0)
         );
end entity;
architecture Behavioral of fifo_44_data_delay_my is
 constant BUS_WIDTH : integer := 8;
  constant DATA_WIDTH : integer := 44;
  constant FULL LEVEL : unsigned(BUS_WIDTH - 1 downto 0) := (others => '1');
  signal write_address : std_logic_vector(BUS_WIDTH - 1 downto 0);
  signal write_data : std_logic_vector(DATA_WIDTH - 1 downto 0);
  signal write enable : std logic;
  signal write_ctr : unsigned(BUS_WIDTH - 1 downto 0);
signal write_ctr_x : unsigned(BUS_WIDTH - 1 downto 0);
  signal full o
                          : std logic;
  signal read_address : std_logic_vector(BUS_WIDTH - 1 downto 0);
  signal read enable : std logic;
  signal read_enable_last : std_logic;
 signal read_ctr : unsigned(BUS_WIDTH - 1 downto 0);
signal read_ctr_x : unsigned(BUS_WIDTH - 1 downto 0);
signal read_data : std_logic_vector(DATA_WIDTH - 1 downto 0);
signal empty_o : std_logic;
signal empty_o_x : std_logic;
  signal almost_empty_o : std_logic;
  signal almost_empty_o_x : std_logic;
 begin
  DEBUG_OUT(0)
                              <= Clock;
  DEBUG OUT(1)
                              <= WrEn;
  DEBUG OUT(2)
                              <= write enable;
  DEBUG_OUT(3)
                              <= RdEn;
  DEBUG_OUT(4)
                              <= read_enable;
  DEBUG OUT(5)
                              <= read enable last;
```

```
stdin
Mar 09, 14 22:14
                                                              Page 27/225
DEBUG_OUT(6)
              <= rull_0,
<= empty_0;
                        <= full o;
DEBUG_OUT(7)
DEBUG_OUT(15 downto 8) <= std_logic_vector(write_ctr - read_ctr);</pre>
ram fifo delay 256x44 1: ram fifo delay 256x44
  port map (
    WrAddress => write address,
    RdAddress => read address.
    Data => write_data,
    WE:
            => not Reset,
    RdClock => Clock,
    RdClockEn => read enable,
    Reset => Reset,
    WrClock => Clock.
    WrClockEn => write enable,
    0 => read data
    );
-- RAM Handler
PROC_MEM_WRITE_TRANSFER: process(Clock)
begin
  if( rising_edge(Clock) ) then
    if( Reset = '1' ) then
      read_enable_last <= '0';
                       <= (others => '0');
      0 0
    else
      read_enable_last <= read_enable;</pre>
      0 0
                       <= 0 o x;
    end if;
  end if;
end process PROC_MEM_WRITE_TRANSFER;
PROC MEM WRITE: process(WrEn,
                      Data.
                      write ctr,
                      read ctr.
                      read data,
                      read enable last,
                      full_o,
                       empty_o,
                      AmEmptyThresh
                     : unsigned(BUS_WIDTH - 1 downto 0);
: std_logic;
  variable delta_ctr
  variable full : std_logic;
variable empty : std_logic;
  variable almost_empty : std_logic;
begin
  -- Fill Level
  delta ctr
                   := write_ctr - read_ctr;
  -- Empty
```

```
stdin
Mar 09. 14 22:14
                                                    Page 28/225
  if (delta_ctr = 0) then
                := '1';
   empty
  else
                := '0';
  empty
  end if;
  -- Almost Empty
  if (delta ctr < unsigned(AmEmptyThresh)) then
   almost empty := '1';
  else
  almost_empty := '0';
  end if;
  -- Full
  if (delta ctr = FULL LEVEL) then
   full := '1';
  else
  full
                := '0';
  end if;
        <= full;
<= empty;
  full o
  empty o
  almost_empty_o <= almost_empty;</pre>
  -- FIFO Writes
  if (WrEn = '1' and full = '0') then
  write_address <= write_ctr;</pre>
                   <= Data;
   write data
   write_enable <= '1';
   write_ctr_x
                   <= write ctr + 1;
  else
   write_ctr_x
                    <= write_ctr;
  end if;
  -- FIFO Reads
  if (RdEn = '1' \text{ and empty } = '0') then
  read_address <= read_ctr;
  else
   read_address <= (others => '0');
read_enable <= '0';
   read enable
  read_ctr_x
                   <= read ctr;
  end if;
  if (read_enable_last = '1') then
  Q_o_x <= read_data;
  else
  Q_o_x
                   <= (others => '0');
  end if;
end process PROC MEM WRITE;
_____
-- Output Signals
        <= Q_o;
<= empty_o;
Empty
```

Mar 09, 14 22:14	stdin	Page 29/225
	<= full_o; <= almost_empty_o;	
end Behavioral;		
Gray Decoder		
library issa:		
library ieee; use ieee.std_loguse ieee.numeric		
entity gray_deco	der is	
generic (WIDTH : integ	ger range 2 to 32 := 12 Register Width	
port (CLK_IN : RESET_IN :	<pre>in std_logic; in std_logic;</pre>	
Input GRAY_IN :	<pre>in std_logic_vector(WIDTH - 1 downto 0);</pre>	
OUTPUT BINARY_OUT :);	<pre>out std_logic_vector(WIDTH - 1 downto 0)</pre>	
end entity;		
architecture Beha	avioral of gray_decoder is	
signal binary_o	o : std_logic_vector(WIDTH - 1 downto 0);	
begin Gray_De	ecoder	
<pre>variable b : begin if(rising_ed if(RESET_ b := (ot) else</pre>	<pre>process (CLK_IN) std_logic_vector(WIDTH -1 downto 0) := (others => dge(CLK_IN)) then IN = '1') then hers => '0'); - 1) := GRAY_IN(WIDTH - 1);</pre>	′0′);
	b;	
Output BINARY_OUT <= 1	binary_o;	
end Behavioral;		

```
stdin
 Mar 09, 14 22:14
                                                                     Page 30/225
-- Gray EnCcoder
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
entity gray_encoder is
 generic (
   WIDTH: integer range 2 to 32 := 12 -- Register Width
 port (
   CLK IN
               : in std_logic;
   RESET IN
               : in std logic;
   -- Input
   BINARY_IN
               : in std logic vector(WIDTH - 1 downto 0);
    -- OUTPUT
    GRAY_OUT
               : out std_logic_vector(WIDTH - 1 downto 0)
    );
end entity;
architecture Behavioral of gray_encoder is
 signal gray_o : std_logic_vector(WIDTH - 1 downto 0);
begin
  PROC_ENCODER: process (CLK_IN)
  begin
   if (rising edge (CLK IN) ) then
      if ( RESET_IN = '1' ) then
        gray_o <= (others => '0');
        gray_o(WIDTH - 1) <= BINARY_IN(WIDTH -1);</pre>
        for I in (WIDTH - 2) downto 0 loop
         gray_o(I) <= BINARY_IN(I + 1) xor BINARY_IN(I);</pre>
        end loop;
      end if;
    end if;
  end process PROC_ENCODER;
  -- Output
 GRAY_OUT <= gray_o;</pre>
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity level_to_pulse is
 port (
    CLK_IN
                  : in std_logic;
    RESET IN
                  : in std_logic;
    LEVEL_IN
                  : in std_logic;
    PULSE_OUT
                  : out std_logic
```

```
stdin
 Mar 09, 14 22:14
                                                                      Page 31/225
   );
end entity;
architecture Behavioral of level_to_pulse is
 type STATES is (IDLE,
                  WAIT LOW
                );
 signal STATE, NEXT STATE : STATES;
 signal pulse o
                          : std logic;
begin
 PROC CONVERT TRANSFER:process(CLK IN)
 begin
   if ( rising edge (CLK IN) ) then
      if( RESET_IN = '1' ) then
        STATE
                  <= IDLE;
      elee
        STATE
                  <= NEXT STATE;
      end if;
    end if;
  end process PROC CONVERT TRANSFER;
 PROC_CONVERT: process(STATE,
                        LEVEL_IN
 begin
    case STATE is
      when IDLE =>
        if (LEVEL_IN = '1') then
          pulse o
                      <= '1';
          NEXT STATE <= WAIT LOW;
                      <= '0';
          pulse o
          NEXT STATE <= IDLE;
        end if;
      when WAIT LOW =>
        pulse o
                     <= '0';
        if (LEVEL IN = '0') then
          NEXT STATE <= IDLE;
        else
         NEXT_STATE <= WAIT_LOW;</pre>
        end if;
    end case;
  end process PROC_CONVERT;
  -- Output Signals
 PULSE_OUT <= pulse_o;</pre>
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
```

```
stdin
 Mar 09, 14 22:14
                                                                    Page 32/225
library work;
use work.nxyter_components.all;
entity nx control is
 port(
   CLK_IN
                          : in std logic;
    RESET IN
                          : in std logic;
    -- Monitor PLL Locks
    PLL NX CLK LOCK IN
                          : in std logic;
    PLL_ADC_DCLK_LOCK_IN
                          : in std logic;
    PLL ADC SCLK LOCK IN
                          : in std logic;
    -- Signals
    I2C SM RESET OUT
                          : out std logic;
    I2C REG RESET OUT
                          : out std logic;
   NX_TS_RESET_OUT
                          : out std logic;
    I2C ONLINE IN
                          : in std logic;
    OFFLINE OUT
                          : out std logic;
    -- Error
    ERROR ALL IN
                          : in std logic vector(7 downto 0);
    -- Slave bus
                          : in std logic;
    SLV READ IN
    SLV_WRITE_IN
                          : in std_logic;
    SLV DATA OUT
                          : out std_logic_vector(31 downto 0);
                          : in std_logic_vector(31 downto 0);
    SLV_DATA_IN
                          : in std_logic_vector(15 downto 0);
    SLV_ADDR_IN
                          : out std logic;
    SLV_ACK_OUT
    SLV NO MORE DATA OUT : out std logic;
    SLV_UNKNOWN_ADDR_OUT : out std_logic;
    DEBUG OUT
                          : out std logic vector(15 downto 0)
    );
end entity;
architecture Behavioral of nx control is
  -- Offline Handler
 signal offline_force_internal : std_logic;
 signal offline_force
                                 : std logic;
 signal offline_o
                                : std logic;
 signal offline on
                               : std logic;
 signal online_on
                                 : std logic;
                                 : std logic;
 signal offline_last
  -- T2C Reset
 signal i2c_sm_reset_start
                                 : std logic;
                                 : std logic;
  signal i2c_reg_reset_start
 signal nx_ts_reset_start
                                 : std_logic;
                                 : std logic;
  signal i2c sm reset o
 signal i2c_reg_reset_o
                                 : std_logic;
                                 : std logic;
 signal nx_ts_reset_o
  type STATES is (S_IDLE,
                 S I2C SM RESET,
                 S_I2C_SM_RESET_WAIT,
                 S_I2C_REG_RESET,
                 S I2C REG RESET WAIT,
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 33/225
                 S_NX_TS_RESET,
                 S_NX_TS_RESET_WAIT
                 );
 signal STATE : STATES;
 -- Wait Timer
 signal wait timer start
                               : std logic;
 signal wait timer init
                                : unsigned(7 downto 0);
 signal wait timer done
                                : std logic;
 -- PLL Locks
 signal pll nx clk lock
                                : std logic;
 signal pll adc dclk lock
                                 : std logic;
 signal pll adc sclk lock
                                : std logic;
 signal pll_nx_clk_notlock
                                : std logic;
 signal pll adc dclk notlock
                                : std logic;
 signal pll adc sclk notlock
                               : std logic;
 signal pll_nx_clk_notlock_ctr : unsigned(15 downto 0);
 signal pll adc dclk notlock ctr : unsigned(15 downto 0);
 signal pll_adc_sclk_notlock_ctr : unsigned(15 downto 0);
 signal clear notlock counters : std logic;
 -- Nxvter Data Clock
 signal nx_data_clk_dphase_o : std_logic_vector(3 downto 0);
 signal nx_data_clk_finedelb_o : std_logic_vector(3 downto 0);
 -- Slave Bus
 signal sly data out o
                                 : std logic vector(31 downto 0);
 signal slv_no_more_data_o
                           : std_logic;
 signal slv unknown addr o
                              : std logic;
 signal slv_ack_o
                                : std_logic;
begin
 DEBUG OUT(0)
                         <= CLK IN;
 DEBUG OUT(1)
                         <= i2c sm reset o;
 DEBUG OUT(2)
                         <= i2c reg reset o;
 DEBUG_OUT(3)
                         <= nx_ts_reset_o;
 DEBUG OUT(4)
                         <= PLL_NX_CLK_LOCK_IN;</pre>
 DEBUG OUT(5)
                         <= pll nx clk lock;
 DEBUG OUT(6)
                         <= PLL_ADC_DCLK_LOCK_IN;
                         <= pll_adc_dclk_lock;</pre>
 DEBUG_OUT(7)
 DEBUG OUT(8)
                         <= PLL ADC SCLK LOCK IN;
 DEBUG_OUT(9)
                         <= pll_adc_sclk_lock;</pre>
 DEBUG_OUT(10)
                         <= I2C_ONLINE_IN;
 DEBUG_OUT(11)
                         <= offline force;
                         <= offline force internal;
 DEBUG OUT(12)
                         <= offline_o;
 DEBUG_OUT(13)
                         <= online on;
 DEBUG OUT(14)
                         <= '0';
 DEBUG_OUT(15)
 timer_1: timer
   generic map (
     CTR WIDTH => 8
   port map (
```

```
stdin
Mar 09. 14 22:14
                                                                Page 34/225
    CLK_IN
                   => CLK_IN,
    RESET IN
                   => RESET IN.
    TIMER_START_IN => wait_timer_start,
    TIMER END IN => wait timer init,
    TIMER_DONE_OUT => wait_timer_done
    );
-- Offline Handler
offline force internal <= '0';
PROC NXYTER OFFLINE: process(CLK IN)
  variable offline state : std logic vector(1 downto 0) := "00";
  if ( rising_edge(CLK_IN) ) then
    if( RESET IN = '1' ) then
      offline on
                        <= '0';
      online_on
                        <= '0';
      offline o
                        <= '1';
      offline last
                       <= '0';
    else
      if (offline_force = '1' or offline_force_internal = '1') then
        offline o
                        <= '1';
      else
       offline_o
                        <= not I2C ONLINE IN;
      end if;
      -- Offline State changes
      offline on
                        <= '0';
                        <= '0';
      online on
                        <= offline_o;
      offline_last
      offline state := offline o & offline last;
      case offline state is
        when "01" =>
         offline on
                        <= '1';
        when "10" =>
         online on
                        <= '0';
        when others => null;
      end case;
    end if;
  end if;
end process PROC_NXYTER_OFFLINE;
PROC_I2C_SM_RESET: process(CLK_IN)
begin
  if (rising_edge(CLK_IN)) then
    if( RESET_IN = '1' ) then
      wait_timer_start <= '0';</pre>
      i2c_sm_reset_o
                        <= '0';
      i2c_reg_reset_o <= '0';
      nx_ts_reset_o
                        <= '0';
      STATE
                        <= S_IDLE;
    else
```

Mar 09, 14 22:14	stdin	Page 35/225
i2c_sm_reset_o i2c_reg_reset_o nx_ts_reset_o wait_timer_start	<= '0'; <= '0';	
STATE elsif (i2c_reg STATE elsif (nx_ts_:	o <= '1'; it <= x"8f";	
STATE when S_I2C_SM_RI i2c_sm_reset_c if (wait_time:	<pre><= S_I2C_SM_RESET_WAIT; ESET_WAIT =></pre>	
when S_I2C_REG_I i2c_reg_reset_ wait_timer_in: wait_timer_sta	_o <= '1'; it <= x"8f";	
when S_NX_TS_RE; nx_ts_reset_o wait_timer_in: wait_timer_sta STATE	<= '1'; it <= x"01";	
when S_NX_TS_RE: nx_ts_reset_o if (wait_time: STATE else STATE end if;		
end case; end if; end if;		

```
stdin
Mar 09, 14 22:14
                                                                    Page 36/225
end process PROC_I2C_SM_RESET;
 -- PLL Not Lock Counters
signal_async_trans_1: signal_async_trans
  port map (
    CLK IN
                => CLK IN,
    SIGNAL_A_IN => PLL_NX_CLK_LOCK_IN,
    SIGNAL OUT => pll nx clk lock
signal_async_trans_2: signal_async_trans
  port map (
    CLK IN
               => CLK_IN,
    SIGNAL_A_IN => PLL_ADC_DCLK_LOCK_IN,
    SIGNAL_OUT => pll_adc_dclk_lock
signal_async_trans_3: signal_async_trans
  port map (
    CLK_IN
                => CLK_IN,
    SIGNAL_A_IN => PLL_ADC_SCLK_LOCK_IN,
    SIGNAL_OUT => pll_adc_sclk_lock
    );
level_to_pulse_1: level_to_pulse
  port map (
    CLK IN => CLK IN,
    RESET_IN => RESET_IN,
    LEVEL_IN => not pll_nx_clk_lock,
    PULSE OUT => pll nx clk notlock
    );
level_to_pulse_2: level_to_pulse
  port map (
    CLK_IN => CLK_IN,
    RESET IN => RESET IN,
    LEVEL_IN => not pll_adc_dclk_lock,
    PULSE_OUT => pll_adc_dclk_notlock
    );
level_to_pulse_3: level_to_pulse
  port map (
    CLK_IN => CLK_IN,
    RESET_IN => RESET_IN,
    LEVEL_IN => not pll_adc_sclk_lock,
    PULSE_OUT => pll_adc_sclk_notlock
    );
PROC_PLL_UNLOCK_COUNTERS: process (CLK_IN)
begin
  if (rising_edge(CLK_IN)) then
    if( RESET_IN = '1') then
      pll_nx_clk_notlock_ctr <= (others => '0');
      pll_adc_dclk_notlock_ctr <= (others => '0');
pll_adc_sclk_notlock_ctr <= (others => '0');
    else
      if (clear_notlock_counters = '1') then
        pll_nx_clk_notlock_ctr
                                     <= (others => '0');
```

Mar 09, 14 22:14	stdin	Page 37/225
<pre>pll_adc_dclk_notlock_ctr pll_adc_sclk_notlock_ctr else if (pll_nx_clk_notlock = pll_nx_clk_notlock_ctr</pre>		;
end if; if (pll_adc_dclk_notlock pll_adc_dclk_notlock_c end if;	: = '1') then tr <= pll_adc_dclk_notlock_ctr +	1;
<pre>if (pll_adc_sclk_notlock</pre>	: = '1') then :tr <= pll_adc_sclk_notlock_ctr +	1;
end process PROC_PLL_UNLOCK_COUN	TERS;	
Slave Bus		
slv_unknown_addr_o slv_ack_o i2c_sm_reset_start i2c_reg_reset_start nx_ts_reset_start offline_force nx_data_clk_dphase_o nx_data_clk_finedelb_o clear_notlock_counters else slv_unknown_addr_o slv_no_more_data_o slv_data_out_o i2c_sm_reset_start	<pre><= (others => '0'); <= '0'; <= x"7"; <= x"0"; <= '0'; <= '0';</pre>	
case SLV_ADDR_IN is when x"0000" => i2c_sm_reset_start slv_ack_o	<= '1'; <= '1';	
when x"0001" => i2c_reg_reset_start slv_ack_o	<= '1'; <= '1';	
when x"0002" => nx_ts_reset_start slv_ack_o	<= '1'; <= '1';	
when x"0003" =>		

		,
,	stdin Page 38	/225
offline_force slv_ack_o	<= SLV_DATA_IN(0); <= '1';	
<pre>when x"000a" => clear_notlock_counters slv_ack_o</pre>	<= '1'; <= '1';	
<pre>when others => slv_unknown_addr_o slv_ack_o end case;</pre>	<= '1'; <= '0';	
<pre>elsif (SLV_READ_IN = '1') then case SLV_ADDR_IN is when x"0003" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<= offline_force;	
<pre>when x"0004" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<pre><= I2C_ONLINE_IN; 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"0005" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<pre><= offline_o; 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"0006" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<pre><= pll_nx_clk_lock; 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"0007" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<pre><= pll_adc_dclk_lock; 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"0008" => slv_data_out_o(0) slv_data_out_o(31 downto slv_ack_o</pre>	<pre><= pll_adc_sclk_lock; 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"0009" => slv_data_out_o(15 downto slv_data_out_o(31 downto slv_ack_o</pre>	0) <= pll_nx_clk_notlock_ctr; 6) <= (others => '0'); <= '1';	
<pre>when x"000a" => slv_data_out_o(15 downto slv_data_out_o(31 downto slv_ack_o</pre>		
<pre>when x"000b" => slv_data_out_o(15 downto slv_data_out_o(31 downto slv_ack_o</pre>	0) <= pll_adc_sclk_notlock_ctr; 6) <= (others => '0'); <= '1';	
<pre>when x"000c" => slv_data_out_o(7 downto 0 slv_data_out_o(31 downto</pre>		

Mar 09, 14 22:14	stdin	Page 39/225
slv_ack_o	<= '1';	
when others => slv_unknown_ slv_ack_o end case;		
else slv_ack_o end if; end if; end if; end if; end process PROC_NX_REGI	<= '0'; STERS;	
SLV_NO_MORE_DATA_OUT <= SLV_UNKNOWN_ADDR_OUT <=		
I2C_REG_RESET_OUT <= NX_TS_RESET_OUT <=	<pre>i2c_sm_reset_o; i2c_reg_reset_o; nx_ts_reset_o; offline_o;</pre>	
<pre>end Behavioral; library ieee; use ieee.std_logic_1164.al use ieee.numeric_std.all;</pre>	1;	
library work; use work.trb_net_std.all; use work.trb_net_component use work.trb3_components.a use work.nxyter_components	11;	
entity nx_data_delay is		
port(CLK_IN RESET_IN	: in std_logic; : in std_logic;	
Signals NX_FRAME_IN ADC_DATA_IN NEW_DATA_IN	: in std_logic_vector(31 downto 0) : in std_logic_vector(11 downto 0) : in std_logic;	
NX_FRAME_OUT ADC_DATA_OUT NEW_DATA_OUT	<pre>: out std_logic_vector(31 downto 0) : out std_logic_vector(11 downto 0) : out std_logic;</pre>	
FIFO_DELAY_IN	: in std_logic_vector(7 downto 0);	
Slave bus SLV_READ_IN SLV_WRITE_IN SLV_DATA_OUT SLV_DATA_IN SLV_ADDR_IN SLV_ACK_OUT SLV_NO_MORE_DATA_OUT SLV_UNKNOWN_ADDR_OUT	<pre>: in std_logic; : in std_logic; : out std_logic_vector(31 downto 0) : in std_logic_vector(31 downto 0) : in std_logic_vector(15 downto 0) : out std_logic; : out std_logic; : out std_logic;</pre>	;

```
stdin
 Mar 09, 14 22:14
                                                                      Page 40/225
    DEBUG_OUT
                           : out std_logic_vector(15 downto 0)
end entity;
architecture Behavioral of nx_data_delay is
  -- FIFO Write Handler
  signal fifo data in
                               : std_logic_vector(43 downto 0);
 signal fifo full
                               : std logic;
                               : std logic;
  signal fifo write enable
  signal fifo_reset
                               : std_logic;
  -- FIFO READ
  signal fifo data out
                               : std logic vector(43 downto 0);
  signal fifo read enable
                               : std logic;
  signal fifo empty
                               : std logic;
  signal fifo_almost_empty
                               : std logic;
  signal fifo_read_enable_t
                               : std logic;
  signal fifo_read_enable_tt
                               : std_logic;
  signal nx_frame_o
                               : std_logic_vector(31 downto 0);
  signal adc data o
                                : std logic vector(11 downto 0);
  signal new_data_o
                               : std_logic;
  -- Fifo Delay
  signal fifo_delay
                               : std_logic_vector(7 downto 0);
  signal fifo_delay_reset
                               : std_logic;
  -- Slave Bus
  signal slv_data_o
                               : std_logic_vector(31 downto 0);
  signal slv no more data o
                               : std logic;
 signal slv_unknown_addr_o
                               : std_logic;
                               : std_logic;
  signal slv_ack_o
  signal fifo reset r
                               : std logic;
  signal debug_r
                               : std_logic;
  -- Misc
  signal fifo select
                               : std logic;
 signal debug_fifo
                               : std_logic_vector(15 downto 0);
begin
  -- Debug
  PROC_DEBUG_MULTIPLEXER: process(debug_r)
 begin
   if (debug_r = '0') then
    DEBUG_OUT(0)
                            <= CLK IN;
    DEBUG_OUT(1)
                            <= fifo_reset;
    DEBUG_OUT(2)
                            <= fifo full;
    DEBUG_OUT(3)
                            <= fifo_write_enable;
    DEBUG_OUT(4)
                            <= fifo_empty;
    DEBUG_OUT(5)
                            <= fifo_almost_empty;
    DEBUG_OUT(6)
                            <= fifo read enable;
    DEBUG_OUT(7)
                            <= fifo_read_enable_t;
                            <= fifo_read_enable_tt;
    DEBUG_OUT(8)
                            <= new_data_o;
    DEBUG_OUT(9)
    DEBUG_OUT(12 downto 10) <= NX_FRAME_IN(11 downto 9);</pre>
    DEBUG_OUT(15 downto 13) <= nx_frame_o(11 downto 9);</pre>
    --DEBUG OUT(15 downto 13) <= fifo data out(11 downto 9);
    else
      DEBUG_OUT
                            <= debug_fifo;
    end if;
```

```
stdin
Mar 09, 14 22:14
                                                            Page 41/225
end process PROC_DEBUG_MULTIPLEXER;
-- FIFO Delay Handler
______
fifo 44 data delay my 1: fifo 44 data delay my
  port map (
                => fifo data in,
    Data
                => CLK IN.
    Clock
    WrEn
                => fifo write enable.
                => fifo read enable, --LOOP??
    RdEn
                => fifo reset,
    Reset.
    AmEmptyThresh => fifo_delay,
                => fifo data out,
                                    --fifo data out 0,
                Empty
                => fifo full,
    Full
    AlmostEmpty => fifo_almost_empty, -- fifo_almost_empty_0,
    DEBUG OUT
                => debug fifo
    );
fifo read enable
                          <= not fifo almost empty;
fifo reset
                          <= RESET IN or fifo reset r or fifo delay reset;
fifo_data_in(31 downto 0) <= NX_FRAME_IN;
fifo data in(43 downto 32) <= ADC DATA IN;
fifo_write_enable
                          <= NEW_DATA_IN and not fifo_full;</pre>
-- FIFO Read Handler
PROC_FIFO_READ: process(CLK_IN)
begin
  if (rising edge(CLK IN)) then
    if (RESET_IN = '1' or fifo_delay_reset = '1') then
      fifo_read_enable_t <= '0';
      fifo read enable tt <= '0';
      nx frame o
                      <= (others => '0');
      adc data o
                     <= (others => '0');
      new data o
                       <= '0';
    else
      -- Read enable
      fifo read enable t    <= fifo read enable;</pre>
      fifo_read_enable_tt <= fifo_read_enable_t;</pre>
      if (fifo read enable tt = '1') then
       <= fifo_data_out(43 downto 32);
       adc data o
       new_data_o
                      <= '1';
      else
                      <= x"ffff ffff";
       nx frame o
       adc_data_o
                      <= x"fff";
       new data o
                      <= '0';
      end if;
    end if;
  end if;
end process PROC_FIFO_READ;
PROC_FIFO_DELAY: process(CLK_IN)
begin
  if (rising edge (CLK IN)) then
    if (RESET_IN = '1') then
      fifo_delay
                      <= x"02";
      fifo delay reset
                          <= '0';
```

```
stdin
Mar 09, 14 22:14
                                                                Page 42/225
    else
      fifo_delay_reset
                            <= '0';
      if ((FIFO_DELAY_IN /= fifo delay) and
          (unsigned(FIFO DELAY IN) >= 2)
                                                and
          (unsigned(FIFO_DELAY_IN) <= 250)
          ) then
          fifo delay
                            <= FIFO DELAY IN;
          fifo delay reset <= '1';
      else
        fifo delay reset
                            <= '0';
      end if;
    end if;
  end if;
end process PROC FIFO DELAY;
-- TRBNet Slave Bus
-- Give status info to the TRB Slow Control Channel
PROC_FIFO_REGISTERS: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      slv data o
                          <= (others => '0');
      slv_ack_o
                            <= '0';
      slv_unknown_addr_o <= '0';</pre>
      slv_no_more_data_o
                            <= '0';
      fifo_reset_r
                             <= '0';
      debug r
                             <= '0';
      fifo_select
                            <= '0';
    else
                           <= (others => '0');
      slv_data_o
      slv unknown addr o <= '0';
      slv_no_more_data_o <= '0';
      fifo reset r
                             <= '0';
      if (SLV READ IN = '1') then
        case SLV ADDR IN is
          when x"0000" =>
            slv data o( 7 downto 0) <= fifo delay;</pre>
            slv_data_o(31 downto 8) <= (others => '0');
            slv ack o
                                   <= '1';
          when x"0001" =>
                                  <= debug r;
            slv data o(0)
            slv data o(31 downto 1) <= (others => '0');
            slv_ack_o
                                  <= '1';
          when x"0002" =>
            slv data o(0)
                          <= fifo select;
            slv_data_o(31 downto 1) <= (others => '0');
                                  <= '1';
            slv ack o
          when others =>
            slv_unknown_addr_o
                                  <= '1';
                                  <= '0';
            slv_ack_o
        end case;
      elsif (SLV_WRITE_IN = '1') then
        case SLV_ADDR_IN is
          when x"0000" =>
```

Mar 09, 14 22:14		stdin	Page 43/225
fifo_res slv_ack_	_	<= '1'; <= '1';	
when x"000 debug_r slv_ack_		<= SLV_DATA_IN(0); <= '1';	
when x"000 fifo_sel slv_ack_	ect	<= SLV_DATA_IN(0); <= '1';	
when other slv_unkn slv_ack_	own_addr_o	<= '1'; <= '0';	
end case; else slv_ack_o end if; end if; end if; end process PROC_FIF	O_REGISTERS;	<= '0';	
Output Signals NX_FRAME_OUT ADC_DATA_OUT NEW_DATA_OUT	<= nx_frame_ <= adc_data_ <= new_data_	.o <i>i</i>	
SLV_DATA_OUT SLV_NO_MORE_DATA_OUT SLV_UNKNOWN_ADDR_OUT SLV_ACK_OUT	<= slv_data_ <= slv_no_mo <= slv_unkno <= slv_ack_o	re_data_o; wn_addr_o;	
end Behavioral; library ieee; use ieee.std_logic_116 use ieee.numeric_std.a			
library work; use work.trb_net_std.a use work.trb_net_compon use work.nxyter_compon	nents.all;		
entity nx_data_receive port(r is		
CLK_IN RESET_IN NX_DATA_CLK_TEST_I TRIGGER_IN	: in std_l : in std_l N : in std_lo : in std_l	ogic; gic;	
nXyter Ports NX_TIMESTAMP_CLK_I NX_TIMESTAMP_IN	N : in std_l : in std_l	ogic; ogic_vector (7 downto 0);
ADC Ports ADC_CLK_DAT_IN ADC_FCLK_IN ADC_DCLK_IN ADC_SAMPLE_CLK_OUT ADC_A_IN ADC_B_IN ADC_NX_IN	: in std_l : in std_l : out std_l : in std_l : in std_l	ogic; ogic_vector(1 downto 0) ogic_vector(1 downto 0) ogic; ogic_vector(1 downto 0) ogic_vector(1 downto 0) ogic_vector(1 downto 0)	; ; ;

```
stdin
 Mar 09, 14 22:14
                                                                  Page 44/225
   ADC_D_IN
                        : in std_logic_vector(1 downto 0);
                       : out std_logic;
   ADC_SCLK_LOCK_OUT
   -- Outputs
   NX_TIMESTAMP_OUT
                        : out std_logic_vector(31 downto 0);
   ADC DATA OUT
                        : out std logic vector(11 downto 0);
   NEW DATA OUT
                        : out std logic;
   -- Slave bus
   SLV READ IN
                        : in std logic;
   SLV_WRITE_IN
                        : in std_logic;
   SLV DATA OUT
                       : out std logic vector(31 downto 0);
   SLV DATA IN
                       : in std logic vector(31 downto 0);
   SLV ADDR IN
                       : in std_logic_vector(15 downto 0);
                 : out std_logic;
   SLV ACK OUT
   SLV NO MORE DATA OUT : out std logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   ERROR OUT
                       : out std logic;
   DEBUG OUT
                       : out std_logic_vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx_data_receiver is
 -- Clock Check
 signal counter_nx_domain
                                   : unsigned(7 downto 0);
                                   : unsigned(7 downto 0);
 signal counter_nx_ref_domain
 signal counter_nx_diff
                                   : unsigned(7 downto 0);
  -- NX TIMESTAMP CLK Domain
 -- FIFO DC Input Handler
 signal nx fifo write enable
                                   : std logic;
 signal nx_timestamp_fff
                                   : std logic vector(7 downto 0);
 signal nx timestamp ff
                                   : std logic vector(7 downto 0);
 signal nx_fifo_full
                                   : std logic;
 signal nx fifo delay
                                   : unsigned(3 downto 0);
 signal nx_fifo_reset
                                   : std logic;
  -- NX TIMESTAMP IN Process
                                   : unsigned(1 downto 0);
 signal frame byte ctr
 signal nx_frame_word
                                   : std_logic_vector(31 downto 0);
 signal nx_new_frame
                                   : std_logic;
  -- Frame Sync Process
 signal frame_byte_pos
                                   : unsigned(1 downto 0);
  -- RS Sync FlipFlop
 signal nx_frame_synced
                                   : std_logic;
                                   : std logic;
 signal rs_sync_set
 signal rs_sync_reset
                                   : std_logic;
  -- Parity Check
                                   : std_logic;
 signal parity_error
 -- NX Clock Active
 signal nx_clk_active_ff_0
                                   : std_logic;
 signal nx_clk_active_ff_1
                                   : std_logic;
 signal nx_clk_active_ff_2
                                   : std logic;
```

Mar 09, 14 22:14	stdin	Page 45/225
ADC Ckl Generator signal adc_clk_skip signal adc_sampling_clk signal johnson_ff_0 signal johnson_ff_1 signal johnson_counter_sync signal adc_clk_ok	<pre>: std_logic; : std_logic; : std_logic; : std_logic; : std_logic_vector(1 downto 0) : std_logic;</pre>	;
signal pll_adc_sampling_clk_o signal pll_adc_sampling_clk_lock signal pll_adc_sampling_clk_reset	<pre>: std_logic; : std_logic;</pre>	
PLL ADC Monitor signal pll_adc_not_lock signal pll_adc_not_lock_f signal pll_adc_not_lock_ctr signal pll_adc_not_lock_ctr_clear ADC RESET	: std_logic;	;
signal adc_clk_ok_last signal adc_reset_sync_s signal adc_reset_sync signal adc_reset_ctr	<pre>: std_logic; : std_logic; : std_logic; : unsigned(11 downto 0);</pre>	
<pre> Reset Handler signal startup_reset signal rs_wait_timer_start signal rs_wait_timer_done</pre>		
signal rs_timeout_timer_start signal rs_timeout_timer_done signal rs_timeout_timer_reset	<pre>: std_logic; : std_logic; : std_logic;</pre>	
type R_STATES is (R_IDLE,	_RATE_OK,	
signal R_STATE : R_STATES; signal frame_rates_reset	: std_logic;	
signal frame_rates_reset signal sampling_clk_reset signal adc_reset signal adc_reset_p signal output_handler_reset	<pre>std_logic; std_logic; std_logic; std_logic;</pre>	
signal reset_handler_counter signal reset_handler_busy signal reset_timeout_flag	<pre>: unsigned(15 downto 0); : std_logic; : std_logic;</pre>	
CLK_IN Domain		
NX FIFO READ ENABLE signal nx_fifo_read_enable signal nx_fifo_empty signal nx_read_enable	<pre>: std_logic; : std_logic; : std_logic;</pre>	

```
stdin
Mar 09, 14 22:14
                                                                  Page 46/225
signal nx_fifo_data_valid_tt
                                   : std_logic;
signal nx_fifo_data_valid_t
                                  : std logic;
signal nx fifo data valid
                                  : std logic;
signal nx_fifo_data
                                   : std_logic_vector(31 downto 0);
-- NX FIFO READ
type delay array t is array(0 to 15) of std logic vector(31 downto 0);
signal nx timestamp d
                                  : delay array t;
                                  : std logic vector(31 downto 0);
signal nx timestamp t
signal nx new timestamp
                                  : std logic;
signal nx new timestamp ctr
                                  : unsigned(3 downto 0);
signal nx fifo data f
                                  : std logic vector(31 downto 0);
-- Resync Counter Process
signal resync counter
                                  : unsigned(11 downto 0);
signal resync_ctr_inc
                                  : std logic;
signal nx clk active
                                  : std logic;
-- Parity Error Counter Process
signal parity_error_counter
                                  : unsigned(11 downto 0);
signal parity error ctr inc
                                  : std logic;
signal reg_nx_frame_synced
                                  : std_logic;
-- ADC Data Handler
-- ADC Handler
                                  : std logic;
signal ADC RESET AD9228
                                  : std_logic_vector(11 downto 0);
signal adc_data
signal test_adc_data
                                  : std_logic_vector(11 downto 0);
signal adc data valid
                                  : std logic;
signal adc data t
                                  : std logic vector(11 downto 0);
signal adc new data
                                  : std logic;
signal adc new data ctr
                                  : unsigned(3 downto 0);
signal adc_notlock_ctr
                                  : unsigned(7 downto 0);
signal ADC DEBUG
                                  : std logic vector(15 downto 0);
signal adc debug type
                                  : std logic vector(3 downto 0);
-- Data Output Handler
type STATES is (IDLE,
                WAIT ADC,
                WAIT_TIMESTAMP
                );
signal STATE : STATES;
signal STATE d
                                  : std_logic_vector(1 downto 0);
signal nx_timestamp_o
                                  : std_logic_vector(31 downto 0);
signal adc_data_o
                                  : std_logic_vector(11 downto 0);
                                  : std logic;
signal new data o
-- Check Nxyter Data Clock via Johnson Counter
signal nx_data_clock_test_0
                                  : std_logic;
                                  : std_logic;
signal nx_data_clock_test_1
signal nx_data_clock
                                  : std_logic;
signal nx data clock state
                                  : std logic vector(3 downto 0);
signal nx_data_clock_ok
                                  : std_logic;
signal pll adc sample clk dphase : std logic vector(3 downto 0);
```

Mar 09, 14 22:14	stdin	Page 47/225
signal pll_adc_sample_clk_finedelb	: std_logic_vector(3 downto 0)	;
signal nx_frame_rate signal adc_frame_rate_ctr signal adc_frame_rate signal frame_rate_ctr	<pre>: unsigned(27 downto 0); : unsigned(27 downto 0);</pre>	
Error signal error_adc0 signal error_adc1 signal error_o signal error_status_bits Rate Errors signal nx_frame_rate_offline_last signal nx_frame_rate_error signal nx_frame_rate_error signal adc_frame_rate_error signal frame_rate_error signal parity_rate_error signal reset_for_offline	: std_logic;);
Slave Bus signal slv_data_out_o signal slv_no_more_data_o	<pre>: std_logic_vector(31 downto 0 : std_logic;</pre>);
signal slv_unknown_addr_o signal slv_ack_o	<pre>: std_logic; : std_logic;</pre>	
signal reset_resync_ctr signal reset_parity_error_ctr signal debug_adc signal reset_handler_start_r signal reset_handler_counter_clear	<pre>: std_logic; : std_logic; : std_logic_vector(1 downto 0) : std_logic; : std_logic; : unsigned(3 downto 0); : unsigned(1 downto 0);</pre>	;
Reset Domain Transfers signal RESET_NX_TIMESTAMP_CLK_IN signal RESET_NX_DATA_CLK_TEST_IN		
signal debug_state	: std_logic_vector(3 downto 0)	;
begin		
PROC_DEBUG_MULT: process(debug_adc, adc_data, adc_data_v test_adc_d adc_clk_ok adc_clk_ok adc_clk_sk adc_reset_ ADC_RESET_	ralid, data, s, s_last, sip, sync, sync, sync_s,	

Mar 09, 14 22:14	stdin	Page 48/225
add nx nx nx nx nx nx add STI net	new_frame, c_reset_ctr, fifo_full, fifo_write_enable, fifo_empty, fifo_read_enable, fifo_data_valid, new_timestamp, c_new_data, v_data_o, frame_synced, _sync_reset	
begin case debug_adc is when "00" => Default DEBUG_OUT(0) DEBUG_OUT(1) DEBUG_OUT(2) DEBUG_OUT(3) DEBUG_OUT(4) DEBUG_OUT(5) DEBUG_OUT(6) DEBUG_OUT(7) DEBUG_OUT(7) DEBUG_OUT(8) DEBUG_OUT(9) DEBUG_OUT(10) DEBUG_OUT(11) DEBUG_OUT(12) DEBUG_OUT(12) DEBUG_OUT(13) DEBUG_OUT(14) DEBUG_OUT(15)	<pre><= CLK_IN; <= TRIGGER_IN; <= nx_fifo_full; <= nx_fifo_empty; <= nx_fifo_empty; <= nx_fifo_read_enable; <= nx_fifo_data_valid; <= adc_data_valid; <= nx_new_timestamp; <= adc_new_data; <= nx_fifo_reset; <= '0'; <= nx_new_frame; <= new_data_o; <= nx_frame_synced;</pre>	
when "01" => Reset Handler DEBUG_OUT(0) DEBUG_OUT(1) DEBUG_OUT(2) DEBUG_OUT(3) DEBUG_OUT(4) DEBUG_OUT(5) DEBUG_OUT(6) DEBUG_OUT(7) DEBUG_OUT(8) DEBUG_OUT(9) DEBUG_OUT(10) DEBUG_OUT(11) DEBUG_OUT(15 downto 12)	<pre><= CLK_IN; <= nx_new_frame; <= adc_clk_skip; <= adc_reset_sync; <= adc_reset; <= ADC_RESET_AD9228; <= pll_adc_not_lock; <= reset_for_offline; <= nx_fifo_reset; <= reset_handler_busy; <= sampling_clk_reset; 2) <= debug_state;</pre>	
when "10" => AD9228 Handler Debu DEBUG_OUT	ug output <= ADC_DEBUG;	
when "11" => Test Channel DEBUG_OUT(0) DEBUG_OUT(3 downto 1) DEBUG_OUT(4) DEBUG_OUT(5) DEBUG_OUT(6)	<pre><= CLK_IN; <= debug_state(2 downto 0); <= reset_handler_busy; <= nx_frame_rate_offline; <= nx_frame_rate_error;</pre>	

```
stdin
Mar 09. 14 22:14
                                                                     Page 49/225
       DEBUG_OUT(7)
                               <= pll_adc_not_lock;</pre>
       DEBUG OUT(8)
                               <= error adc0;
       DEBUG OUT (9)
                               <= adc frame rate error;
       DEBUG OUT(10)
                               <= nx fifo reset;
       DEBUG_OUT(11)
                               <= sampling_clk_reset;</pre>
       DEBUG OUT(12)
                               <= adc reset;
       DEBUG OUT(13)
                               <= output handler reset;
       DEBUG OUT(14)
                               <= frame rate error;
                               <= reset timeout flag;
       DEBUG OUT(15)
  end case;
end process PROC DEBUG MULT;
 -- Reset Domain Transfer
signal_async_trans_RESET_IN: signal_async_trans
  port map (
    CLK IN => NX TIMESTAMP CLK IN,
    SIGNAL_A_IN => RESET_IN,
    SIGNAL_OUT => RESET_NX_TIMESTAMP_CLK_IN
signal_async_trans_RESET_IN_2: signal_async_trans
  port map (
    CLK_IN
                => NX_DATA_CLK_TEST_IN,
    SIGNAL_A_IN => RESET_IN,
    SIGNAL OUT => RESET NX DATA CLK TEST IN
  );
-- Check NX Data Clk
PROC COUNTER NX CLOCK: process(NX TIMESTAMP CLK IN)
begin
  if (rising edge(NX TIMESTAMP CLK IN) ) then
    if( RESET NX TIMESTAMP CLK IN = '1' ) then
       counter nx domain <= (others => '0');
       counter nx domain <= counter nx domain + 1;</pre>
    end if;
end process PROC COUNTER NX CLOCK;
PROC_COUNTER_NX_REF_CLOCK: process(NX_DATA_CLK_TEST_IN)
begin
  if (rising_edge(NX_DATA_CLK_TEST_IN) ) then
     if (NX_DATA_CLK_TEST_IN = '1') then
       counter nx ref domain <= (others => '0');
       counter nx ref domain <= counter nx ref domain + 1;
    end if;
  end if;
end process PROC_COUNTER_NX_REF_CLOCK;
counter_nx_diff <= counter_nx_ref_domain - counter_nx_domain;</pre>
-- ADC CLK DOMAIN
pll_adc_sampling_clk_reset <= sampling_clk_reset;</pre>
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 50/225
 -- Shift dphase show 0 as optimal value
pll adc sample clk dphase <=
  std logic vector(pll adc sample clk dphase r - 1);
pll adc sampling clk 2: pll adc sampling clk
  port map (
    CLK
              => adc sampling clk,
    RESET
              => pll_adc_sampling_clk_reset,
    FINEDELBO => pll_adc_sample_clk_finedelb(0),
    FINEDELB1 => pll_adc_sample_clk_finedelb(1),
    FINEDELB2 => pll adc sample clk finedelb(2),
    FINEDELB3 => pll_adc_sample_clk_finedelb(3),
    DPHASE0 => pll_adc_sample_clk_dphase(0),
    DPHASE1 => pll adc sample clk dphase(1),
    DPHASE2 => pll_adc_sample_clk_dphase(2),
    DPHASE3 => pll_adc_sample_clk_dphase(3),
    CLKOP
              => open.
    CLKOS
              => pll_adc_sampling_clk_o,
    LOCK
              => pll_adc_sampling_clk_lock
    );
signal_async_trans_2: signal_async_trans
  port map (
    CLK IN
                => CLK_IN,
    SIGNAL_A_IN => not pll_adc_sampling_clk_lock,
    SIGNAL OUT => pll adc not lock
    );
PROC PLL LOCK COUNTER: process(CLK IN)
  if (rising_edge(CLK_IN) ) then
    if( RESET IN = '1' or pll adc not lock ctr clear = '1') then
      pll adc not lock f <= (others => '0');
      pll adc not lock ctr <= (others => '0');
    else
      pll adc not lock f(0) <= pll adc not lock;
      pll_adc_not_lock_f(1) <= pll_adc_not_lock_f(0);</pre>
      if (pll adc not lock f = "01") then
        pll_adc_not_lock_ctr <= pll_adc_not_lock_ctr + 1;</pre>
      end if;
    end if;
  end if;
end process PROC_PLL_LOCK_COUNTER;
ADC_RESET_AD9228 <= RESET_IN or adc_reset;
adc ad9228 1: adc ad9228
  port map (
    CLK IN
                         => CLK IN,
    RESET_IN
                         => ADC_RESET_AD9228,
    CLK ADCDAT IN
                        => ADC CLK DAT IN,
    ADC0 SCLK IN
                         => pll adc sampling clk o.
                         => ADC SAMPLE CLK OUT,
    ADC0 SCLK OUT
                         => ADC_NX_IN(0),
    ADC0_DATA_A_IN
    ADC0_DATA_B_IN
                         => ADC_B_IN(0),
    ADCO DATA C IN
                         => ADC A IN(0),
    ADC0_DATA_D_IN
                         => ADC_D_IN(0),
    ADC0_DCLK_IN
                         => ADC_DCLK_IN(0),
    ADC0 FCLK IN
                         => ADC FCLK IN(0),
```

```
stdin
Mar 09. 14 22:14
                                                                    Page 51/225
                          => pll_adc_sampling_clk_o,
     ADC1 SCLK IN
    ADC1 SCLK OUT
                          => open,
                          => ADC NX IN(1),
    ADC1 DATA A IN
                          => ADC_A_IN(1),
    ADC1_DATA_B_IN
    ADC1 DATA C IN
                         => ADC B IN(1),
    ADC1 DATA D IN
                          => ADC D IN(1),
    ADC1 DCLK IN
                          => ADC DCLK IN(1),
    ADC1 FCLK IN
                          => ADC FCLK IN(1),
    ADC0_DATA_A_OUT
                          => adc data,
    ADCO DATA B OUT
                          => test adc data,
    ADCO DATA C OUT
                          => open.
    ADC0_DATA_D_OUT
                          => open,
    ADCO DATA VALID OUT => adc data valid,
    ADC1_DATA_A_OUT
                          => open,
    ADC1 DATA B OUT
                         => open,
    ADC1 DATA C OUT
                         => open,
    ADC1_DATA_D_OUT
                          => open,
    ADC1_DATA_VALID_OUT => open,
    ADC0_NOTLOCK_COUNTER => adc_notlock_ctr,
    ADC1_NOTLOCK_COUNTER => open,
     ERROR_ADC0_OUT
                         => error_adc0,
    ERROR ADC1 OUT
                         => error adc1,
    DEBUG IN
                         => adc_debug_type,
    DEBUG_OUT
                         => ADC_DEBUG
    );
timer_static_RESET_TIMER: timer_static
  generic map (
    CTR WIDTH => 20,
    CTR_END => 500000 -- 1ms
  port map (
    CLK IN
                    => CLK IN,
                   => RESET IN,
    RESET IN
    TIMER START IN => rs wait timer start,
    TIMER_DONE_OUT => rs_wait_timer_done
timer_static_RESET_TIMEOUT: timer_static
  generic map (
    CTR_WIDTH => 26,
    CTR END => 10000000 -- 1s
  port map (
    CLK_IN
                   => CLK_IN,
    RESET IN
                   => rs_timeout_timer_reset,
    TIMER_START_IN => rs_timeout_timer_start,
    TIMER DONE OUT => rs timeout timer done
    );
pulse_dtrans_1: pulse_dtrans
  generic map (
     CLK_RATIO => 4
  port map (
     CLK_A_IN
                => NX_TIMESTAMP_CLK_IN,
    RESET A IN => RESET NX TIMESTAMP CLK IN,
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 52/225
    PULSE_A_IN => adc_reset_sync_s,
    CLK B IN => CLK IN,
    RESET B IN => RESET IN,
    PULSE B OUT => adc reset sync
PROC RESET HANDLER: process(CLK IN)
begin
  if (rising edge(CLK IN) ) then
    if ( RESET IN = '1' ) then
      frame rates reset
                                   <= '0';
      nx fifo reset
                                   <= '0';
      sampling_clk_reset
                                   <= '0';
      adc reset p
                                   <= '0';
      adc reset
                                   <= '0';
                                   <= '0';
      output handler reset
                                   <= '0';
      rs wait timer start
      rs timeout timer start
                                   <= '0';
      rs_timeout_timer_reset
                                  <= '1';
      reset_handler_counter
                                  <= (others => '0');
      reset handler busy
                                   <= '0';
      reset_timeout_flag
                                   <= '0';
                                   <= '1';
      startup_reset
      R STATE
                                   <= R IDLE;
     else
      frame rates reset
                                   <= '0';
                                   <= '0';
      nx fifo reset
      sampling_clk_reset
                                   <= '0';
                                   <= '0';
      adc_reset_p
       adc reset
                                   <= '0';
      output_handler_reset
                                   <= '0';
                                  <= '0';
      rs wait timer start
      rs_timeout_timer_start
                                  <= '0';
      rs timeout timer reset
                                   <= '0';
      reset handler busy
                                   <= '1';
      debug_state <= x"0";</pre>
       if (reset handler counter clear = '1') then
                                    <= (others => '0');
        reset_handler_counter
       end if;
      if (rs_timeout_timer_done = '1') then
        -- Reset Timeout
        reset timeout flag
                                     <= '1';
      end if;
      case R_STATE is
        when R IDLE =>
          if (reset_for_offline
                                    = '1' or
                                      = '1' or
              --pll adc not lock
              --adc_reset_sync
                                      = '1' or
              reset_handler_start_r = '1' or
                                    = '1'
              startup_reset
              ) then
            if (reset_handler_counter_clear = '0') then
              reset handler counter <= reset handler counter + 1;
            end if;
            R_STATE
                                     <= R_SET_ALL_RESETS;
           else
```

reset_handler_busy <= '0'; R_STATE end if; when R_SET_ALL_RESETS => frame_rates_reset	Mar 09, 14 22:14	stdin	Page 53/225
RSTATE		<= '0';	
<pre>end if; when R_SET_ALL_RESETS => frame_rates_reset</pre>	_		
frame_rates_reset	end if;	_	
frame_rates_reset			
<pre>mx_fifo_reset sampling_clk_reset</pre>			
<pre>sampling_clk_reset adc_reset_p adc_reset output_handler_reset c= '1'; adc_reset output_handler_reset R_STATE R_STATE debug_state when R_WAIT_l => if (rs_wait_timer_done = '0') then nx_fifo_reset sampling_clk_reset c= '1'; adc_reset output_handler_reset c= '1'; adc_reset c= '1</pre>			
adc_reset_p			
adc_reset			
<pre>output_handler_reset <= '1'; rs_wait_timer_start</pre>			
rs_wait_timer_start			
<pre>R_STATE</pre>	output_nandier_reset	<- I /	
<pre>R_STATE</pre>	rs wait timer start	<= '1'; wait 1mue to set	tle
<pre>when R_WAIT_1 => if (rs_wait_timer_done = '0') then nx_fifo_reset</pre>			
<pre>if (rs_wait_timer_done = '0') then nx_fifo_reset</pre>	debug_state	<= x"1";	
<pre>if (rs_wait_timer_done = '0') then nx_fifo_reset</pre>			
<pre>nx fifo reset</pre>		(0/) then	
<pre>sampling_clk_reset</pre>			
adc_reset			
<pre>output_handler_reset <= '1'; R_STATE</pre>			
R_STATE	Output handler recet	<= '1';	
else Release NX Fifo Reset + Start Timeout HAndler sampling_clk_reset <= '1'; adc_reset <= '1'; output_handler_reset <= '1'; reset_timeout_flag <= '0'; rs_timeout_timer_start <= '1'; R_STATE	R STATE	<= R WAIT 1;	
Release NX Fifo Reset + Start Timeout HAndler sampling_clk_reset			
<pre>adc_reset</pre>		et + Start Timeout HAndler	
<pre>output_handler_reset reset_timeout_flag</pre>	sampling_clk_reset	<= '1';	
<pre>rs_timeout_timer_start <= '1'; R_STATE</pre>	adc_reset		
<pre>rs_timeout_timer_start <= '1'; R_STATE</pre>	output_handler_reset	<= '1';	
R_STATE	reset_timeout_flag	<= '0';	
<pre>end if; debug_state</pre>			
<pre>debug_state</pre>		<= R_WAIT_NX_FRAME_RATE_OK;	
<pre>when R_WAIT_NX_FRAME_RATE_OK => if (nx_frame_rate_offline = '0' and nx_frame_rate_error = '0') then Release PLL Reset adc_reset</pre>		<= x"2";	
<pre>if (nx_frame_rate_offline = '0' and</pre>	acbag_beace	7 - A 2 /	
nx_frame_rate_error = '0') then Release PLL Reset adc_reset	when R_WAIT_NX_FRAME_RATE_C)K =>	
Release PLL Reset adc_reset			
<pre>adc_reset output_handler_reset <= '1';</pre>		= '0') then	
else sampling_clk_reset <= '1'; adc_reset <= '1'; output_handler_reset <= '1'; R_STATE <= R_WAIT_NX_FRAME_RATE_OK; end if; debug_state <= x"3"; when R_PLL_WAIT_LOCK => if (pll_adc_not_lock = '1') then adc_reset <= '1'; output_handler_reset <= '1'; R_STATE <= R_PLL_WAIT_LOCK; else Release ADC Reset output_handler_reset <= '1'; R_STATE <= R_PLL_WAIT_LOCK; else Release ADC Reset output_handler_reset <= '1'; R_STATE <= R_WAIT_ADC_OK; end if; debug_state <= x"4";			
else sampling_clk_reset <= '1'; adc_reset <= '1'; output_handler_reset <= '1'; R_STATE <= R_WAIT_NX_FRAME_RATE_OK; end if; debug_state <= x"3"; when R_PLL_WAIT_LOCK => if (pll_adc_not_lock = '1') then adc_reset <= '1'; output_handler_reset <= '1'; R_STATE <= R_PLL_WAIT_LOCK; else Release ADC Reset output_handler_reset <= '1'; R_STATE <= R_PLL_WAIT_LOCK; else Release ADC Reset output_handler_reset <= '1'; R_STATE <= R_WAIT_ADC_OK; end if; debug_state <= x"4";	adc_reset	<= 'l';	
<pre>else sampling_clk_reset</pre>	Output_nandier_reset	<= D DII MAIM IOGE:	
<pre>sampling_clk_reset adc_reset</pre>	_ —	<= R_PLL_WAII_LOCK;	
<pre>adc_reset output_handler_reset R_STATE end if; debug_state when R_PLL_WAIT_LOCK => if (pll_adc_not_lock = '1') then adc_reset</pre>		<= '1';	
<pre>output_handler_reset R_STATE end if; debug_state when R_PLL_WAIT_LOCK => if (pll_adc_not_lock = '1') then adc_reset output_handler_reset R_STATE else Release ADC Reset output_handler_reset end if; debug_state <pre></pre></pre>			
<pre>R_STATE</pre>			
<pre>debug_state</pre>			
<pre>when R_PLL_WAIT_LOCK => if (pll_adc_not_lock = '1') then adc_reset</pre>	end if;		
<pre>if (pll_adc_not_lock = '1') then adc_reset</pre>	debug_state	<= x"3";	
<pre>if (pll_adc_not_lock = '1') then adc_reset</pre>	when R DI.I. WATT I.OCK		
<pre>adc_reset</pre>		') then	
<pre>output_handler_reset</pre>			
<pre>R_STATE</pre>	_		
<pre>else Release ADC Reset output_handler_reset</pre>		<= R_PLL_WAIT_LOCK;	
<pre>output_handler_reset <= '1'; R_STATE <= R_WAIT_ADC_OK; end if; debug_state <= x"4";</pre>	_	_	
<pre>R_STATE</pre>			
<pre>end if; debug_state <= x"4";</pre>			
debug_state <= x"4";		<= R_WAIT_ADC_OK;	
-			
when R_WAIT_ADC_OK =>	depug_state	<= X"4";	
	when R_WAIT_ADC_OK =>		

```
stdin
Mar 09, 14 22:14
                                                                   Page 54/225
          if (error\_adc0 = '0' and
              adc_frame_rate_error = '0') then
             -- Release Output Handler Reset
                                    <= R WAIT DATA HANDLER OK;
            R STATE
          else
            R STATE
                                    <= R WAIT ADC OK;
          end if;
          debug state
                                    <= x"5";
        when R WAIT DATA HANDLER OK =>
          if (frame_rate_error = '0') then
            startup_reset
                                   <= '0';
            R STATE
                                    <= R IDLE;
          else
            R STATE
                                    <= R WAIT DATA HANDLER OK;
          end if;
          debug_state
                                    <= x"6";
      end case;
    end if;
  end if;
end process PROC RESET HANDLER;
-- NX TIMESTAMP CLK IN Domain
-- Merge TS Data 8bit to 32Bit Timestamp Frame
PROC_8_TO_32_BIT: process(NX_TIMESTAMP_CLK_IN)
  if (rising edge(NX TIMESTAMP CLK IN) ) then
    if( RESET_NX_TIMESTAMP_CLK_IN = '1' ) then
      frame_byte_ctr <= (others => '0');
      nx frame word
                        <= (others => '0');
      nx_timestamp_ff <= (others => '0');
      nx new frame
                        <= '0';
     else
      nx timestamp fff <= NX TIMESTAMP IN;
      nx_timestamp_ff <= nx_timestamp_fff;</pre>
      nx new frame
                        <= '0';
      case frame_byte_pos is
        when "11" => nx_frame_word(31 downto 24) <= nx_timestamp_ff;
                     frame_byte_ctr
                                                 <= frame byte ctr + 1;
        when "10" => nx_frame_word(23 downto 16) <= nx_timestamp_ff;
                     frame_byte_ctr
                                                 <= frame_byte_ctr + 1;</pre>
        when "01" => nx_frame_word(15 downto 8) <= nx_timestamp_ff;
                     frame_byte_ctr
                                                 <= frame_byte_ctr + 1;</pre>
        when "00" => nx_frame_word( 7 downto 0) <= nx_timestamp_ff;
                     if (frame_byte_ctr = "11") then
                       nx_new_frame
                                                 <= '1';
                     end if;
                                                 <= (others => '0');
                     frame_byte_ctr
      end case;
    end if;
  end if;
end process PROC_8_TO_32_BIT;
-- Frame Sync process
```

Mar 09, 14 22:14	stdin	Page 55/225
	cocess(NX_TIMESTAMP_CLK_IN)	
frame_byte_pos rs_sync_set rs_sync_reset else	MP_CLK_IN = '1') then <= "11"; <= '0'; <= '0';	
	cd is 5" => <= '1';	
when x"7f7f067 rs_sync_reset frame_byte_po	<= '1';	
when x"7f067f7i rs_sync_reset frame_byte_po	<pre><= '1'; os <= frame_byte_pos - 3;</pre>	
when x"067f7f7f rs_sync_reset frame_byte_po	<= '1';	
when others => frame_byte_po end case; else	os <= frame_byte_pos - 1;	
	<= frame_byte_pos - 1;	
end process PROC_SYNC_TO	_NX_FRAME;	
<pre>begin if (rising_edge(NX_TIM) if (RESET_NX_TIMESTA) nx_frame_synced <= elsif (rs_sync_set = nx_frame_synced <= end if; end if;</pre>	ccess(NX_TIMESTAMP_CLK_IN) ESTAMP_CLK_IN)) then MP_CLK_IN = '1' or rs_sync_reset '0'; '1') then '1';	= '1') then
end process PROC_RS_FRAMI	E_SINCED,	
Check Parity PROC_PARITY_CHECK: proces variable parity_bits: variable parity : begin	<pre>std_logic_vector(22 downto 0);</pre>	
parity_error else	MP_CLK_IN = '1') then <= '0';	
	<pre><= '0'; '1' and nx_frame_synced = '1') #6 is excluded (funny nxyter-bu</pre>	

```
stdin
Mar 09, 14 22:14
                                                                     Page 56/225
         parity_bits
                              := nx_frame_word(31)
                                nx_frame_word(30 downto 24) &
                                nx frame word(21 downto 16) &
                                nx frame word(14 downto 8) &
                                nx_frame_word( 2 downto 1);
         parity
                             := xor all(parity bits);
         if (parity /= nx_frame_word(0)) then
          parity_error <= '1';</pre>
         end if;
       end if;
     end if;
  end if;
end process PROC PARITY CHECK;
fifo_ts_32to32_dc_1: fifo_ts_32to32_dc
  port map (
    Data
                   => nx frame word,
    WrClock
                   => NX TIMESTAMP CLK IN,
    RdClock
                   => CLK_IN,
    WrEn
                   => nx_fifo_write_enable,
    RdEn
                   => nx fifo read enable,
    Reset
                   => nx_fifo_reset,
    RPReset
                   => nx_fifo_reset,
                   => nx_fifo_data_f,
    Empty
                   => nx_fifo_empty,
    Full
                   => nx fifo full
    );
nx_fifo_write_enable <= nx_new_frame and not nx_fifo_full;</pre>
PROC_NX_CLK_ACT: process(NX_TIMESTAMP_CLK_IN)
begin
  if (rising edge(NX TIMESTAMP CLK IN)) then
    if(RESET_NX_TIMESTAMP_CLK_IN = '1') then
      nx clk active ff 0 <= '0';
      nx clk active ff 1 <= '0';
      nx clk active ff 2 <= '0';
       nx clk active ff 0 <= not nx clk active ff 2;
      nx_clk_active_ff_1 <= nx_clk_active_ff_0;</pre>
      nx_clk_active_ff_2 <= nx_clk_active_ff_1;</pre>
     end if;
  end if;
end process PROC_NX_CLK_ACT;
-- ADC Sampling Clock Generator using a Johnson Counter
PROC_ADC_SAMPLING_CLK_GENERATOR: process(NX_TIMESTAMP_CLK_IN)
begin
  if (rising_edge(NX_TIMESTAMP_CLK_IN)) then
    if (RESET_NX_TIMESTAMP_CLK_IN = '1') then
       johnson_ff_0 <= '0';</pre>
       johnson_ff_1 <= '0';</pre>
     else
      if (adc_clk_skip = '0') then
         johnson_ff_0
                          <= not johnson_ff_1;
         johnson_ff_1
                          <= johnson_ff_0;
         adc_sampling_clk <= not johnson_ff_1;</pre>
       end if;
     end if;
  end if;
  adc_sampling_clk <= johnson_ff_0;</pre>
```

```
stdin
Mar 09. 14 22:14
                                                             Page 57/225
end process PROC_ADC_SAMPLING_CLK_GENERATOR;
-- Adjust johnson counter sync to show optimal value at 0
johnson counter sync <= std logic vector(johnson counter sync r + 3);
PROC_ADC_SAMPLING_CLK_SYNC: process(NX_TIMESTAMP_CLK_IN)
  variable adc clk state : std logic vector(1 downto 0);
begin
  if (rising edge(NX TIMESTAMP CLK IN)) then
    if (RESET NX TIMESTAMP CLK IN = '1') then
                   <= '0';
      adc clk skip
                       <= '0';
      adc clk ok
    else
      adc_clk_state := johnson_ff_1 & johnson_ff_0;
                     <= <sup>7</sup>0';
      adc clk skip
      if (nx new frame = '1') then
       if (adc clk state /= johnson_counter_sync) then
         adc clk skip <= '1';
                     <= '0';
         adc clk ok
        else
         adc_clk_ok <= '1';
        end if;
      end if:
    end if;
  end if;
end process PROC ADC SAMPLING CLK SYNC;
PROC ADC RESET: process(NX TIMESTAMP CLK IN)
  if (rising_edge(NX_TIMESTAMP_CLK_IN)) then
    if (RESET NX TIMESTAMP CLK IN = '1') then
      adc clk ok last <= '0';
      adc_reset_sync_s <= '0';
      adc_reset_sync_s <= '0';</pre>
      adc clk ok last <= adc clk ok;
      if (adc clk ok last = '0' and adc clk ok = '1') then
        adc_reset_sync_s <= '1';</pre>
      end if;
    end if;
  end if;
end process PROC ADC RESET;
PROC RESET CTR: process(CLK IN)
  if (rising_edge(CLK_IN)) then
    if (RESET IN = '1') then
      adc reset ctr
                      <= (others => '0');
      if (adc_reset_p = '1') then
       adc_reset_ctr <= adc_reset_ctr + 1;</pre>
      end if;
    end if;
  end if;
end process PROC_RESET_CTR;
    _____
-- NX CLK_IN Domain
-- Gray Decode Timestamp Frame (Timestamp and Channel Id)
______
```

```
stdin
Mar 09. 14 22:14
                                                                    Page 58/225
gray_decoder_TIMESTAMP: gray_decoder
                                               -- Decode nx_timestamp
  generic map (
    WIDTH => 14
  port map (
    CLK IN
                            => CLK IN,
    CLR_IN,

RESET_IN => RESET_IN,

GRAY_IN(13 downto 7) => not nx_fifo_data_f(30 downto 24),

GRAY_IN(6 downto 0) => not nx_fifo_data_f(22 downto 16),
    BINARY OUT(13 downto 7) => nx fifo data(30 downto 24).
    BINARY OUT(6 downto 0) => nx fifo data(22 downto 16)
gray decoder CHANNEL ID: gray decoder
                                            -- Decode Channel ID
  generic map (
    WIDTH => 7
  port map (
    CLK_IN
               => CLK_IN,
    RESET_IN => RESET_IN,
    GRAY IN => nx_fifo_data_f(14 downto 8),
    BINARY OUT => nx fifo data(14 downto 8)
-- Leave other bits untouched
PROC GRAY DECODE: process(CLK IN)
  if (rising_edge(CLK_IN) ) then
    nx_fifo_data(31) <= nx_fifo_data_f(31);
    nx_fifo_data(23)
    nx_fifo_data(7 downto 0) <= nx_fifo_data_f(7 downto 0);</pre>
  end if;
end process PROC GRAY DECODE;
nx fifo read enable <= not nx fifo empty;
PROC NX FIFO READ ENABLE: process(CLK IN)
  if (rising_edge(CLK_IN) ) then
    nx_fifo_data_valid_tt <= nx_fifo_read_enable;</pre>
    if(RESET IN = '1') then
      nx_fifo_data_valid_t <= '0';</pre>
      nx fifo data valid
                              <= '0';
      -- Delay read signal by two Clock Cycles
      nx_fifo_data_valid_t <= nx_fifo_data_valid_tt;</pre>
      nx fifo data valid
                              <= nx fifo data valid t;
    end if;
  end if;
end process PROC_NX_FIFO_READ_ENABLE;
PROC_NX_FIFO_READ: process(CLK_IN)
  if (rising_edge(CLK_IN) ) then
    if (RESET_IN = '1') then
      nx timestamp t
                              <= (others => '0');
```

```
Mar 09, 14 22:14
                                     stdin
                                                                   Page 59/225
      nx_new_timestamp
                             <= '0';
      nx_new_timestamp_ctr <= (others => '0');
      for I in 1 to 15 loop
        nx timestamp d(I)
                             <= (others => '0');
      end loop;
    else
       if (nx fifo data valid = '1') then
         -- Delay Data relative to ADC by 8 steps
         for I in 1 to 15 loop
          nx timestamp d(I) \le nx timestamp d(I - 1);
         end loop;
        nx timestamp d(0) <= nx fifo data;</pre>
        nx timestamp t
                             <= nx timestamp d(to integer(nx fifo delay));</pre>
        nx new_timestamp
                             <= '1';
        nx new timestamp ctr <= nx new timestamp ctr + 1;
       else
        nx timestamp t
                             <= x"deadbeef";
                             <= '0';
        nx new timestamp
      end if;
    end if;
  end if;
end process PROC NX FIFO READ;
-- Status Counters
-- Domain Transfers
pulse_dtrans_2: pulse_dtrans
  generic map (
    CLK RATIO => 3
  port map (
    CLK A IN => NX TIMESTAMP CLK IN,
    RESET_A_IN => RESET_NX_TIMESTAMP_CLK_IN,
    PULSE A IN => rs sync reset.
    CLK B IN => CLK IN,
    RESET B IN => RESET IN,
    PULSE_B_OUT => resync_ctr_inc
pulse_dtrans_3: pulse_dtrans
  generic map (
    CLK RATIO => 3
  port map (
    CLK_A_IN => NX_TIMESTAMP_CLK_IN,
    RESET_A_IN => RESET_NX_TIMESTAMP_CLK_IN,
    PULSE_A_IN => parity_error,
    CLK_B_IN => CLK_IN,
    RESET_B_IN => RESET_IN,
    PULSE_B_OUT => parity_error_ctr_inc
    );
-- nx_frame_synced --> CLK_IN Domain
signal_async_trans_1: signal_async_trans
  port map (
    CLK IN
                => CLK_IN,
     SIGNAL A IN => nx frame synced,
    SIGNAL_OUT => reg_nx_frame_synced
     );
```

```
stdin
                                                                    Page 60/225
Mar 09, 14 22:14
 -- Counters
PROC_RESYNC_COUNTER: process(CLK_IN)
begin
  if (rising edge(CLK IN) ) then
    if (RESET_IN = '1' or reset_resync_ctr = '1') then
      resync counter <= (others => '0');
      if (resync ctr inc = '1') then
        resync counter <= resync counter + 1;
     end if;
  end if;
end process PROC RESYNC COUNTER;
PROC PARITY ERROR COUNTER: process(CLK IN)
begin
  if (rising_edge(CLK_IN) ) then
    if (RESET IN = '1' or reset parity error ctr = '1') then
      parity error counter <= (others => '0');
      if (parity_error_ctr_inc = '1') then
        parity error counter <= parity error counter + 1;
      end if:
     end if;
  end if;
end process PROC_PARITY_ERROR_COUNTER;
-- ADC Fifo Handler
PROC ADC DATA READ: process(CLK IN)
  variable adcval : unsigned(11 downto 0) := (others => '0');
  if (rising edge(CLK IN) ) then
    if (RESET_IN = '1') then
      adc data t
                        <= (others => '0');
      adc new data
                         <= '0';
      adc new data ctr <= (others => '0');
     else
      if (adc bit shift(3) = '1') then
        adcval
                           := unsigned(adc_data) rol
                              to_integer(adc_bit_shift(2 downto 0));
       else
        adcval
                            := unsigned(adc data) ror
                               to_integer(adc_bit_shift(2 downto 0));
       end if;
      if (adc_data_valid = '1') then
        adc data t
                        <= std_logic_vector(adcval);</pre>
        adc new data
                         <= '1';
        adc_new_data_ctr <= adc_new_data_ctr + 1;</pre>
      222
                         <= x"aff";
        adc_data_t
                         <= '0';
        adc new data
      end if;
    end if;
  end if;
end process PROC_ADC_DATA_READ;
-- Output handler
PROC_OUTPUT_HANDLER: process(CLK_IN)
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 61/225
begin
  if (rising_edge(CLK_IN) ) then
    if (RESET IN = '1' or output handler reset = '1') then
      nx_timestamp_o <= (others => '0');
      adc_data_o <= (others => '0');
                  <= '0';
      new data o
      STATE
                     <= IDLE;
    else
      case STATE is
        when IDLE =>
          STATE d <= "00";
          if (nx_new_timestamp = '1' and adc_new_data = '1') then
            nx timestamp o <= nx timestamp t;
            adc data o
                         <= adc data t;
            new data o
                            <= '1';
            STATE
                            <= IDLE;
          elsif (nx new timestamp = '1') then
            nx_timestamp_o <= nx_timestamp_t;</pre>
                         <= (others => '0');
            adc_data_o
            new_data_o
                            <= '0';
            STATE
                            <= WAIT ADC;
          elsif (adc_new_data = '1') then
            adc_data_o
                         <= adc_data_t;
            nx timestamp o <= (others => '0');
            new_data_o <= '0';
            STATE
                            <= WAIT TIMESTAMP;
          else
            nx_timestamp_o <= (others => '0');
            adc data o <= (others => '0');
                        <= '0';
            new data o
            STATE
                            <= IDLE;
          end if;
        when WAIT_ADC =>
          STATE d <= "01";
          if (adc new data = '1') then
            adc data o
                           <= adc data t;
            new data o
                         <= '1';
            STATE
                            <= IDLE;
          else
            new data o
                            <= '0';
            STATE
                            <= WAIT ADC;
          end if;
         when WAIT TIMESTAMP =>
          STATE d <= "10";
          if (nx_new_timestamp = '1') then
            nx timestamp o <= nx timestamp t;</pre>
                         <= '1';
            new data o
            STATE
                            <= IDLE;
          else
                         <= '0';
            new data o
            STATE
                            <= WAIT_TIMESTAMP;
          end if;
      end case;
    end if;
  end if;
end process PROC OUTPUT HANDLER;
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 62/225
-- Rate Counters + Rate Error Check
PROC RATE COUNTER: process(CLK IN)
begin
  if (rising_edge(CLK_IN) ) then
    if (RESET IN = '1' or frame rates reset = '1') then
      nx frame rate ctr
                            \leq (others \Rightarrow '0');
      nx frame rate
                            <= (others => '0');
                          \leq (others \Rightarrow '0');
      adc frame rate ctr
      adc frame_rate
                            \leq (others => '0');
                            <= (others => '0');
      frame rate ctr
                            <= (others => '0');
      frame rate
      else
      if (rate_timer_ctr < x"5f5e100") then</pre>
        rate timer ctr
                                       <= rate timer ctr + 1;
        if (nx_fifo_data_valid = '1') then
          nx_frame_rate_ctr
                                       <= nx_frame_rate_ctr + 1;</pre>
        end if:
        if (adc_data_valid = '1') then
          adc frame rate ctr
                                       <= adc frame rate ctr + 1;
        end if;
        if (new data o = '1') then
          frame_rate_ctr
                                        <= frame_rate_ctr + 1;</pre>
        end if;
        if (parity_error_ctr_inc = '1') then
          parity_rate_ctr
                                        <= parity_rate_ctr + 1;</pre>
        end if;
      else
        rate timer ctr
                                       <= (others => '0');
        nx frame rate
                                       <= nx frame rate ctr;
        adc frame rate
                                       <= adc frame rate ctr;
        frame rate
                                        <= frame rate ctr;
        parity rate
                                       <= parity rate ctr;
        nx_frame_rate_ctr(27 downto 1) <= (others => '0');
        nx frame rate ctr(0)
                                       <= nx fifo data valid;
        adc_frame_rate_ctr(27 downto 1) <= (others => '0');
        adc_frame_rate_ctr(0)
                                       <= adc data valid;
        frame_rate_ctr(27 downto 1)
                                       <= (others => '0');
        frame rate ctr(0)
                                       <= new data o;
        parity_rate_ctr(27 downto 1)
                                       <= (others => '0');
        parity_rate_ctr(0)
                                       <= parity_error_ctr_inc;</pre>
      end if;
    end if;
  end if;
end process PROC_RATE_COUNTER;
-- Check Rates for errors
PROC RATE ERRORS: process(CLK IN)
begin
  if (rising_edge(CLK_IN)) then
    if (RESET IN = '1') then
```

Mar 09, 14 22:14	stdin	Page 63/225
nx_frame_rate_offline nx_frame_rate_offline nx_frame_rate_error adc_frame_rate_error frame_rate_error parity_rate_error reset_for_offline else	e <= '1'; e_last <= '1'; <= '0'; <= '0'; <= '0'; <= '0'; <= '0';	
<pre>if (nx_frame_rate < 2</pre>	<pre>not online or does not receive ine <= '1';</pre>	clock
<pre>if ((nx_frame_rate <</pre>	x"1dc_d652")) then r <= '1';	
<pre>if ((adc_frame_rate adc_frame_rate adc_frame_rate_errors</pre>	> x"1dc_d652")) then or <= '1';	
frame_rate_error else	ldc_d652")) then	
<pre>if (parity_rate > 0) parity_rate_error else parity_rate_error end if;</pre>	then <= '1'; <= '0';	
if (nx_frame_rate_of	e_last <= nx_frame_rate_offline	:;
reset_for_offline end if; end if; end if; end if; end process PROC_RATE_ERRON		
TRBNet Slave Bus		
Give status info to the PROC_FIFO_REGISTERS: proces begin	ss(CLK_IN)	
if (rising_edge(CLK_IN)) then	

```
stdin
Mar 09, 14 22:14
                                                                     Page 64/225
    if( RESET_IN = '1' ) then
       slv_data_out_o
                                     <= (others => '0');
                                     <= '0';
       slv ack o
                                     <= '0';
       slv unknown addr o
                                     <= '0';
       slv_no_more_data_o
                                     <= '0';
       reset resync ctr
                                     <= '0';
       reset parity error ctr
       debug adc
                                     <= (others => '0');
       johnson counter sync r
                                     <= "00";
       pll adc sample clk dphase r
                                     <= x"0";
       pll_adc_sample_clk_finedelb
                                     <= (others => '0');
       pll adc not lock ctr clear
                                     <= '0';
       nx_fifo_delay
                                     <= x"8";
                                     <= '0';
       reset handler start r
       reset handler counter clear
                                     <= '0';
       adc bit shift
                                     <= x"0";
       adc_debug_type
                                     <= (others => '0');
     else
       slv_data_out_o
                                     \leq (others => '0');
                                     <= '0';
       slv_ack_o
                                     <= '0';
       slv_unknown_addr_o
       slv no more data o
                                     <= '0';
      reset_resync_ctr
                                     <= '0';
       reset_parity_error_ctr
                                     <= '0';
       pll_adc_not_lock_ctr_clear
                                     <= '0';
       reset_handler_start_r
                                     <= '0';
       reset_handler_counter_clear <= '0';
       if (SLV_READ_IN = '1') then
        case SLV_ADDR_IN is
           when x'''0000''' =>
            slv_data_out_o
                                           <= nx_timestamp_t;</pre>
                                            <= '1';
             slv_ack_o
           when x"0001" =>
             sly data out o(0)
                                           <= nx fifo full;
             slv data out o(1)
                                           <= nx fifo empty;
             slv data out o(2)
                                           <= '0';
             slv_data_out_o(3)
                                           <= '0';
             slv data out o(4)
                                           <= nx fifo data valid;
             slv data out o(5)
                                           <= adc new data;
             slv_data_out_o(29 downto 5)
                                           <= (others => '0');
             slv data out o(30)
                                            <= '0';
             slv data out o(31)
                                           <= reg_nx_frame_synced;</pre>
             slv_ack_o
                                           <= '1';
           when x"0002" =>
             slv_data_out_o(11 downto 0) <=
               std_logic_vector(resync_counter);
             slv_data_out_o(31 downto 12) <= (others => '0');
             slv_ack_o
                                           <= '1';
           when x"0003" =>
            slv_data_out_o(11 downto 0) <=
               std_logic_vector(parity_error_counter);
             slv_data_out_o(31 downto 12) <= (others => '0');
                                           <= '1';
             slv_ack_o
           when x"0004" =>
            slv_data_out_o(11 downto 0) <=
               std_logic_vector(pll_adc_not_lock_ctr);
             slv data out o(31 downto 12) <= (others => '0');
```

Mar 09, 14 22:14	stdin	Page 65/225
slv_ack_o	<= '1';	
<pre>when x"0005" => slv_data_out_o(1 downto slv_data_out_o(31 downt slv_ack_o</pre>	0) <= johnson_counter_ o 2) <= (others => '0'); <= '1';	_sync_r;
<pre>when x"0006" => slv_data_out_o(3 downto std_logic_vector(pll_ slv_data_out_o(31 downt slv_ack_o</pre>	0) <= adc_sample_clk_dphase_r); o 4) <= (others => '0'); <= '1';	
<pre>when x"0007" => slv_data_out_o(3 downto slv_data_out_o(31 downt slv_ack_o</pre>		
<pre>when x"0008" => slv_data_out_o(11 downt slv_data_out_o(31 downt slv_ack_o</pre>	o 0) <= adc_data_t; o 12) <= (others => '0'); <= '1';	
	o 0) <= std_logic_vector o 12) <= (others => '0'); <= '1';	
when x"000a" => slv_data_out_o(31 downt slv_ack_o	o 0) <= (others => '0'); <= '1';	
<pre>when x"000b" => slv_data_out_o(0) slv_data_out_o(31 downt slv_ack_o</pre>	<pre><= reset_handler_bu o 1) <= (others => '0'); <= '1';</pre>	
<pre>when x"000c" => slv_data_out_o(15 downt slv_data_out_o(31 downt slv_ack_o</pre>	o 0) <= reset_handler_cc o 6) <= (others => '0'); <= '1';	
<pre>when x"000d" => slv_data_out_o(3 downto slv_data_out_o(31 downt slv_ack_o</pre>	0) <= std_logic_vector o 4) <= (others => '0'); <= '1';	r(nx_fifo_delay);
	0) <= std_logic_vector o 4) <= (others => '0'); <= '1';	
<pre>when x"000f" => slv_data_out_o(7 downto std_logic_vector(adc_ slv_data_out_o(31 downt slv_ack_o</pre>	notlock_ctr);	
<pre>when x"0010" => slv_data_out_o(27 downt slv_data_out_o(31 downt slv_ack_o</pre>		

Mar 09, 14 22:14	stdin Page 66/225
<pre>when x"0011" => slv_data_out_o(27 downto 0 slv_data_out_o(31 downto 0 slv_ack_o</pre>	
<pre>when x"0012" => slv_data_out_o(11 downto 0 slv_data_out_o(31 downto 0) slv_ack_o</pre>	
<pre>when x"0013" => slv_data_out_o(27 downto 0 slv_data_out_o(31 downto 2 slv_ack_o</pre>	
<pre>when x"0014" => slv_data_out_o(11 downto 0 slv_data_out_o(31 downto 0 slv_ack_o</pre>	
<pre>when x"0015" => slv_data_out_o(27 downto 0 slv_data_out_o(31 downto 2 slv_ack_o</pre>	
<pre>when x"001e" => slv_data_out_o(1 downto 0 slv_data_out_o(31 downto 2 slv_ack_o</pre>	
<pre>when x"001f" => slv_data_out_o(3 downto 0 slv_data_out_o(31 downto 0 slv_ack_o</pre>	
<pre>when others => slv_unknown_addr_o end case;</pre>	<= '1';
<pre>elsif (SLV_WRITE_IN = '1') then case SLV_ADDR_IN is when x"0002" => reset_resync_ctr slv_ack_o</pre>	<pre><= '1'; <= '1';</pre>
<pre>when x"0003" => reset_parity_error_ctr slv_ack_o</pre>	<= '1'; <= '1';
<pre>when x"0004" => pll_adc_not_lock_ctr_clear slv_ack_o</pre>	r <= '1'; <= '1';
<pre>when x"0005" => johnson_counter_sync_r reset_handler_start_r slv_ack_o</pre>	<pre><= SLV_DATA_IN(1 downto 0); <= '1'; <= '1';</pre>
<pre>when x"0006" => pll_adc_sample_clk_dphase unsigned(SLV_DATA_IN(3 or section))</pre>	

Mar 09, 14 22:14	stdin	Page 67/225
reset_handler_sta slv_ack_o	rt_r <= '1'; <= '1';	
when x"0007" => pll_adc_sample_cl reset_handler_sta slv_ack_o	.k_finedelb <= SLV_DATA_IN .rt_r <= '1'; <= '1';	N(3 downto 0);
when x"000b" => reset_handler_sta slv_ack_o	<pre>cart_r <= '1'; <= '1';</pre>	
when x"000c" => reset_handler_cou slv_ack_o	unter_clear <= '1';	
when x"000d" => nx_fifo_delay unsigned(SLV_DA slv_ack_o	<pre><= TA_IN(3 downto 0)); <= '1';</pre>	
when x"000e" => adc_bit_shift unsigned(SLV_DA slv_ack_o	<pre><= TA_IN(3 downto 0)); <= '1';</pre>	
when x"001e" => debug_adc slv_ack_o	<= SLV_DATA_IN <= '1';	N(1 downto 0);
when x"001f" => adc_debug_type unsigned(SLV_DA slv_ack_o	<pre><= TA_IN(3 downto 0)); <= '1';</pre>	
when others => slv_unknown_addr_	_o <= '1';	
end case; end if; end if; end if; end if; end process PROC_FIFO_REGISTE	ers;	
ErrorPROC_ERROR: process(C PROC_ERROR: process(CLK_IN) begin	LK_IN)	
<pre>if (rising_edge(CLK_IN)) th if (RESET_IN = '1') then error_status_bits <= (error_o <= '</pre>	others => '0');	
else if (error_adc0 pll_adc_not_lock nx_frame_rate_offli nx_frame_rate_error adc_clk_ok parity_error_ctr_in reg_nx_frame_synced adc_frame_rate_erro parity_rate_error) then	c = '1' or = '0' or oc = '1' or d = '0' or or = '1' or	

```
stdin
 Mar 09. 14 22:14
                                                                       Page 68/225
                               <= '1';
          error_o
        else
                               <= '0';
          error o
        end if;
        error status bits(0) <= nx frame rate offline;</pre>
        error status bits(1) <= frame rate error;</pre>
        error_status_bits(2) <= nx_frame_rate_error;</pre>
        error_status_bits(3) <= adc_frame_rate_error;</pre>
        error status bits(4) <= parity rate error;
        error_status_bits(5) <= not reg_nx_frame_synced;</pre>
        error_status_bits(6) <= error_adc0;</pre>
        error status bits(7) <= pll adc not lock;
        error status bits(8) <= not adc clk ok;
        error_status_bits(9) <= '0';
        error status bits(10) <= '0';
        error_status_bits(11) <= '0';
      end if;
    end if;
  end process PROC_ERROR;
  -- Output Signals
 NX_TIMESTAMP_OUT
                          <= nx_timestamp_o</pre>
                             when new_data_o = '1' else x"0000_0000";
 ADC_DATA_OUT
                          <= adc_data_o when new_data_o = '1' else x"000";</pre>
 NEW DATA OUT
                          <= new data o;
 ADC_SCLK_LOCK_OUT
                          <= pll_adc_sampling_clk_lock;</pre>
  ERROR_OUT
                          <= error_o;
                          <= slv data out o;
  SLV DATA OUT
 SLV_NO_MORE_DATA_OUT
                         <= slv_no_more_data_o;</pre>
 SLV_UNKNOWN_ADDR_OUT
                         <= slv_unknown_addr_o;</pre>
 SLV ACK OUT
                          <= slv ack o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;
library work;
use work.trb_net_std.all;
use work.nxyter_components.all;
entity nx_data_validate is
 port (
    CLK IN
                          : in std_logic;
    RESET_IN
                          : in std_logic;
    -- Inputs
    NX_TIMESTAMP_IN
                          : in std_logic_vector(31 downto 0);
    ADC_DATA_IN
                          : in std_logic_vector(11 downto 0);
    NEW_DATA_IN
                          : in std logic;
    -- Outputs
    TIMESTAMP_OUT
                          : out std_logic_vector(13 downto 0);
                          : out std_logic_vector(6 downto 0);
    CHANNEL_OUT
    TIMESTAMP_STATUS_OUT : out std_logic_vector(2 downto 0);
    ADC DATA OUT
                         : out std logic vector(11 downto 0);
    DATA_VALID_OUT
                          : out std_logic;
    NX_TOKEN_RETURN_OUT : out std_logic;
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 69/225
   NX_NOMORE_DATA_OUT
                       : out std_logic;
   -- Slave bus
   SLV READ IN
                        : in std logic;
   SLV_WRITE_IN
                        : in std_logic;
   SLV DATA OUT
                        : out std logic vector(31 downto 0);
   SLV DATA IN
                        : in std logic vector(31 downto 0);
   SLV ADDR IN
                        : in std logic vector(15 downto 0);
   SLV ACK OUT
                       : out std logic;
   SLV NO MORE DATA OUT : out std logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   DEBUG OUT
                       : out std logic vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx data validate is
 -- Grav Decoder
 signal nx timestamp
                             : std_logic_vector(13 downto 0);
 signal nx channel id
                             : std logic vector( 6 downto 0);
 -- TIMESTAMP_BITS
 signal new timestamp
                             : std logic;
 signal valid_frame_bits
                             : std_logic_vector(3 downto 0);
 signal status bits
                             : std logic vector(1 downto 0);
 signal parity error
                             : std logic;
 signal adc_data
                             : std_logic_vector(11 downto 0);
 -- Validate Timestamp
 signal timestamp o
                             : std_logic_vector(13 downto 0);
 signal channel_o
                             : std_logic_vector(6 downto 0);
 signal timestamp status o
                            : std logic vector(2 downto 0);
 signal adc_data_o
                             : std_logic_vector(11 downto 0);
 signal data valid o
                             : std logic;
 signal nx token return o
                            : std logic;
 signal nx_nomore_data_o
                             : std logic;
 signal invalid frame ctr
                             : unsigned(15 downto 0);
 signal overflow_ctr
                             : unsigned(15 downto 0);
 signal pileup ctr
                             : unsigned(15 downto 0);
 signal trigger_rate_inc
                             : std logic;
 signal frame_rate_inc
                             : std logic;
 signal pileup rate inc
                             : std logic;
 signal overflow_rate_inc
                            : std_logic;
 -- Self Trigger
 signal self_trigger_o
                             : std logic;
 -- Rate Calculation
 signal nx_trigger_ctr_t
                             : unsigned(27 downto 0);
 signal nx frame ctr t
                             : unsigned(27 downto 0);
 signal nx pileup ctr t
                             : unsigned(27 downto 0);
                            : unsigned(27 downto 0);
 signal nx_overflow_ctr_t
 signal nx_rate_timer
                             : unsigned(27 downto 0);
 -- ADC Averages
 signal adc_average_divisor : unsigned(3 downto 0);
 signal adc average ctr
                             : unsigned(8 downto 0);
```

```
stdin
 Mar 09. 14 22:14
                                                                    Page 70/225
 signal adc_average_sum
                              : unsigned(24 downto 0);
 signal adc average
                              : unsigned(11 downto 0);
 signal adc data last
                              : std logic vector(11 downto 0);
 signal adc av
                              : std logic;
 -- Config
 signal readout type
                             : std logic vector(1 downto 0);
 -- Slave Bus
 signal sly data out o
                             : std logic vector(31 downto 0);
 signal sly no more data o
                             : std logic;
                             : std logic;
 signal slv unknown addr o
 signal slv ack o
                             : std logic;
 signal clear counters
                             : std logic;
 signal nx hit rate
                             : unsigned(27 downto 0);
 signal nx frame rate
                             : unsigned(27 downto 0);
 signal nx pileup rate
                             : unsigned(27 downto 0);
 signal nx_overflow_rate
                             : unsigned(27 downto 0);
 signal invalid adc : std logic;
begin
 -- Debug Line
 DEBUG_OUT(0)
                                 <= CLK IN;
 DEBUG OUT(1)
                                 <= nx token return o;
 DEBUG_OUT(2)
                                 <= nx_nomore_data_o;</pre>
 DEBUG OUT(3)
                                 <= data valid o;
 DEBUG OUT(4)
                                 <= new timestamp;
 DEBUG_OUT(5)
                                 <= self_trigger_o;
 DEBUG OUT(8 downto 6)
                                 <= (others => '0');
 DEBUG OUT(15 downto 9)
                                 <= channel o;
                                  <= timestamp_status_o;
 --DEBUG_OUT(6 downto 4)
 --DEBUG_OUT(7)
                                   <= nx_token_return_o;</pre>
                                   <= invalid adc; --nx nomore data o;
 --DEBUG OUT(8)
 --DEBUG OUT(15 downto 9)
                                   <= channel o;
 -- Data Separation
  -- Separate Timestamp-, Status-, Parity- and Frame-bits
 PROC TIMESTAMP BITS: process (CLK IN)
 begin
   if (rising edge (CLK IN)) then
     if (RESET IN = '1') then
       valid frame bits <= (others => '0');
                           <= (others => '0');
       nx_timestamp
                           <= (others => '0');
       status bits
       parity_error
                          <= '0';
                           <= '0';
       new_timestamp
       adc data
                           \leq (others => '0');
      else
       if (NEW_DATA_IN = '1') then
         valid frame bits(3)
                                   <= NX_TIMESTAMP_IN(31);
         valid frame bits(2)
                                   <= NX TIMESTAMP IN(23);
         valid_frame_bits(1)
                                   <= NX_TIMESTAMP_IN(15);
         valid_frame_bits(0)
                                   <= NX_TIMESTAMP_IN(7);</pre>
         nx timestamp(13 downto 7) <= NX TIMESTAMP IN(30 downto 24);
         nx_timestamp(6 downto 0) <= NX_TIMESTAMP_IN(22 downto 16);</pre>
                                   <= NX_TIMESTAMP_IN(2 downto 1);
         status_bits
         parity error
                                   <= NX TIMESTAMP IN(0);
```

```
stdin
Mar 09. 14 22:14
                                                                Page 71/225
        adc_data
                                 <= ADC DATA IN;
        new_timestamp
                                 <= '1';
      else
        valid frame bits
                                \leq (others => '0');
                                <= (others => '0');
        nx_timestamp
                                \leq (others => '0');
        status bits
                                <= '0';
        parity error
        adc data
                                <= (others => '0');
        new timestamp
                                <= '0';
      end if;
    end if;
  end if;
end process PROC TIMESTAMP BITS;
-- Filter only valid events
PROC VALIDATE TIMESTAMP: process (CLK IN)
begin
  if( rising_edge(CLK_IN) ) then
    if (RESET IN = '1') then
      timestamp_o <= (others => '0');
                        <= (others => '0');
      channel_o
      timestamp_status_o <= (others => '0');
      adc_data_o <= (others => '0');
                        <= '0';
      data valid o
      nx_token_return_o <= '0';</pre>
      nx_nomore_data_o <= '0';
      trigger_rate_inc <= '0';</pre>
      frame_rate_inc <= '0';</pre>
      pileup_rate_inc
                         <= '0';
      overflow_rate_inc <= '0';</pre>
      invalid_frame_ctr <= (others => '0');
      overflow ctr
                          <= (others => '0');
      pileup ctr
                       <= (others => '0');
    else
      timestamp o
                       <= (others => '0');
                    <= (others => '0');
      channel o
      timestamp status o <= (others => '0');
                   <= (others => '0');
      adc data o
                        <= '0';
      data valid o
      trigger rate inc <= '0';
      frame rate inc
                        <= '0';
      pileup_rate_inc
                       <= '0';
      overflow_rate_inc <= '0';</pre>
                         <= '0';
      invalid_adc
      if (new_timestamp = '1') then
        case valid frame bits is
          -- Data Frame
          when "1000" =>
            ---- Check Overflow
            if ((status_bits(0) = '1') and (clear_counters = '0')) then
                                  <= overflow_ctr + 1;
              overflow_ctr
              overflow_rate_inc
                                       <= '1';
            end if;
            -- Check PileUp
            if ((status bits(1) = '1') and (clear counters = '0')) then
```

```
stdin
Mar 09, 14 22:14
                                                               Page 72/225
             pileup_ctr
                                         <= pileup_ctr + 1;
             pileup_rate_inc
                                         <= '1';
            end if;
            -- Take Timestamp
                                         <= nx timestamp;
            timestamp o
            channel o
                                         <= nx channel id;
            timestamp status o(2)
                                         <= parity error;
            timestamp status o(1 downto 0) <= status bits;
            adc data o
                                         <= adc data;
                                         <= '1';
            data valid o
            if (adc data = x"aff") then
             invalid adc
                                         <= '1';
            end if;
            nx token return o
                                         <= '0';
            nx nomore data o
                                         <= '0';
            trigger rate inc
                                         <= '1';
          -- Token return and nomore_data
          when "0000" =>
           nx_token_return_o
                                         <= '1';
           nx_nomore_data_o
                                         <= nx_token_return_o;
          when others =>
            -- Invalid frame, not empty, discard timestamp
            if (clear counters = '0') then
             invalid_frame_ctr
                                       <= invalid_frame_ctr + 1;</pre>
            end if;
            nx token return o
                                         <= '0';
            nx nomore data o
                                         <= '0';
        end case;
        frame rate inc
                                         <= '1';
      else
        nx token return o
                                         <= nx token return o;
        nx nomore data o
                                         <= nx nomore data o;
      end if;
      -- Reset Counters
      if (clear counters = '1') then
        invalid_frame_ctr
                                      <= (others => '0');
                                       <= (others => '0');
        overflow ctr
                                       \leq (others => '0');
       pileup ctr
      end if;
    end if;
  end if;
end process PROC_VALIDATE_TIMESTAMP;
PROC_CAL_RATES: process (CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if (RESET_IN = '1') then
      nx_trigger_ctr_t <= (others => '0');
     else
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 73/225
      if (nx_rate_timer < x"5f5e100") then</pre>
        if (trigger_rate_inc = '1') then
          nx trigger ctr t
                                       <= nx trigger ctr t + 1;
         end if;
        if (frame_rate_inc = '1') then
          nx frame ctr t
                                      <= nx frame ctr t + 1;
         end if;
        if (pileup rate inc = '1') then
          nx pileup ctr t
                                       <= nx pileup ctr t + 1;
         end if;
        if (overflow rate inc = '1') then
          nx overflow ctr t
                                      <= nx overflow ctr t + 1;
         end if;
        nx rate timer
                                       <= nx rate timer + 1;
      else
                                       <= nx trigger ctr t;
        nx hit rate
        nx frame rate
                                       <= nx frame ctr t;
                                       <= nx pileup ctr t;
        nx pileup rate
        nx overflow rate
                                       <= nx overflow ctr t;
        nx_trigger_ctr_t(27 downto 1) <= (others => '0');
        nx trigger ctr t(0)
                                       <= trigger rate inc;
                                       <= (others => '0');
        nx_frame_ctr_t(27 downto 1)
        nx frame ctr t(0)
                                       <= frame rate inc;
        nx_pileup_ctr_t(27 downto 1) <= (others => '0');
        nx_pileup_ctr_t(0)
                                       <= pileup rate inc;
         nx_overflow_ctr_t(27 downto 1) <= (others => '0');
        nx overflow ctr t(0)
                                     <= overflow rate inc;</pre>
                                      <= (others => '0');
        nx_rate_timer
      end if;
    end if;
  end if;
end process PROC CAL RATES;
PROC_ADC_AVERAGE: process(CLK_IN)
begin
  if (rising edge(CLK IN) ) then
    if (RESET_IN = '1') then
      adc_average_ctr <= (others => '0');
      adc_average_sum <= (others => '0');
      adc_average <= (others => '0');
                      <= (others => '0');
      adc data last
      adc av
                         <= '0';
    else
      adc av
                         <= '0';
      if ((adc_average_ctr srl to_integer(adc_average_divisor)) > 0) then
        adc average
                         <= (adc_average_sum srl
                             to_integer(adc_average_divisor))(11 downto 0);
         adc average sum <= (others => '0');
        adc_average_ctr <= (others => '0');
                     <= '1';
         adc av
       elsif (data_valid_o = '1') then
         adc_average_sum <= adc_average_sum + unsigned(adc_data_o);</pre>
         adc_average_ctr <= adc_average_ctr + 1;</pre>
      end if;
      if (data_valid_o = '1') then
         adc data last
                         <= adc data o;
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 74/225
      end if:
    end if;
  end if;
end process PROC ADC AVERAGE;
-- TRBNet Slave Bus
-- Give status info to the TRB Slow Control Channel
PROC FIFO REGISTERS: process(CLK IN)
begin
  if ( rising edge (CLK IN) ) then
    if( RESET_IN = '1' ) then
      slv data out o
                             \leq (others => '0');
                             <= '0';
      slv ack o
      slv_unknown_addr_o
                             <= '0';
                             <= '0';
      slv no more data o
      clear counters
                             <= '0';
      adc_average_divisor <= x"3";</pre>
    else
      slv data out o
                             <= (others => '0');
      slv_unknown_addr_o
                             <= '0';
                             <= '0';
      slv_no_more_data_o
      clear counters
                             <= '0';
      if (SLV READ IN = '1') then
        case SLV ADDR IN is
          when x"0000" =>
            slv data out o(15 downto 0) <=
              std_logic_vector(invalid_frame_ctr);
            slv_data_out_o(31 downto 16) <= (others => '0');
            slv ack o
                                        <= '1';
          when x"0001" =>
            slv data out o(15 downto 0) <=
              std logic vector(overflow ctr);
            slv_data_out_o(31 downto 16) <= (others => '0');
            slv ack o
                                        <= '1';
          when x"0002" =>
            slv data out o(15 downto 0) <=
              std logic vector(pileup ctr);
            slv_data_out_o(31 downto 16) <= (others => '0');
            slv_ack_o
          when x"0003" =>
            -- Reserved
            slv_data_out_o
                                      <= (others => '0');
            slv_ack_o
                                        <= '1';
          when x"0004" =>
            slv_data_out_o(27 downto 0) <=
              std_logic_vector(nx_hit_rate);
            slv_data_out_o(31 downto 28) <= (others => '0');
                                        <= '1';
            slv_ack_o
          when x"0005" =>
            slv_data_out_o(27 downto 0) <=
              std_logic_vector(nx_frame_rate);
            slv data out o(31 downto 28) <= (others => '0');
```

Mar 09, 14 22:14	stdin	Page 75/225
slv_ack_o	<= '1';	-
when x"0006" =: slv_data_out slv_data_out slv_ack_o	> _o(11 downto 0) <= adc_dat _o(31 downto 12) <= (others <= '1';	a_last; => '0');
	> _o(11 downto 0)	
std_logic_	> _o(3 downto 0) <= vector(adc_average_divisor); _o(31 downto 4) <= (others <= '1';	
std_logic_	> _o(27 downto 0) <= vector(nx_pileup_rate); _o(31 downto 28) <= (other <= '1';	s => '0');
std_logic_	> _o(27 downto 0) <= vector(nx_overflow_rate); _o(31 downto 28) <= (other	s => '0');
<pre>when others =: slv_unknown_; slv_ack_o end case;</pre>		
elsif (SLV_WRITE_I) case SLV_ADDR_IN when x"0000" =: clear_counte: slv_ack_o	is >	
when x"0008" =: adc_average_0 slv_ack_o		A_IN(3 downto 0);
when others =: slv_unknown_; slv_ack_o end case;		
else slv_ack_o end if; end if; end if; end process PROC_FIFO_REG	<= '0'; GISTERS;	
Output Signals		
	timestamp_o; channel_o;	

```
stdin
 Mar 09, 14 22:14
                                                                     Page 76/225
 TIMESTAMP_STATUS_OUT
                       <= timestamp_status_o;
 ADC_DATA_OUT
                        <= adc_data_o;
                        <= data valid o;
 DATA VALID OUT
 NX TOKEN RETURN OUT
                       <= nx token return o;
 NX_NOMORE_DATA_OUT
                        <= nx_nomore_data_o;</pre>
  -- Slave
  SLV DATA OUT
                        <= slv data out o;
 SLV NO MORE DATA OUT
                       <= slv no more data o;
 SLV UNKNOWN ADDR OUT <= slv unknown addr o;
 SLV_ACK_OUT
                        <= slv ack o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter_components.all;
use work.trb3_components.all;
entity nx event buffer is
 generic (
    BOARD_ID : std_logic_vector(1 downto 0) := "11"
    );
 port (
    CLK_IN
                               : in std_logic;
                               : in std_logic;
    RESET IN
    RESET_DATA_BUFFER_IN
                               : in std_logic;
   NXYTER_OFFLINE_IN
                               : in std_logic;
    -- Data Buffer FIFO
    DATA_IN
                               : in std_logic_vector(31 downto 0);
    DATA CLK IN
                               : in std logic;
    EVT_NOMORE_DATA_IN
                               : in std_logic;
    -- Trigger
    TRIGGER IN
                               : in std logic;
    FAST_CLEAR_IN
                               : in std_logic;
    TRIGGER BUSY OUT
                               : out std logic;
    EVT_BUFFER_FULL_OUT
                               : out std logic;
    --Response from FEE
    FEE DATA OUT
                               : out std logic vector(31 downto 0);
    FEE_DATA_WRITE_OUT
                               : out std logic;
    FEE_DATA_ALMOST_FULL_IN
                               : in std_logic;
    -- Slave bus
                               : in std logic;
    SLV_READ_IN
    SLV_WRITE_IN
                               : in std_logic;
    SLV_DATA_OUT
                               : out std_logic_vector(31 downto 0);
    SLV_DATA_IN
                               : in std_logic_vector(31 downto 0);
                               : in std_logic_vector(15 downto 0);
    SLV ADDR IN
    SLV_ACK_OUT
                               : out std_logic;
                               : out std_logic;
    SLV_NO_MORE_DATA_OUT
    SLV_UNKNOWN_ADDR_OUT
                               : out std_logic;
    ERROR_OUT
                               : out std_logic;
    DEBUG_OUT
                               : out std_logic_vector(15 downto 0)
    );
```

Mar 09, 14 22:14	stdin	Page 77/225
end entity;		-
architecture Behavioral of nx	_event_buffer is	
signal fee data write o	<pre>: std_logic_vector(31 downto 0); : std_logic; : std_logic; : std_logic;</pre>	
type STATES is (S_IDLE,	FER_WAIT	
FIFO signal fifo_reset signal fifo_read_enable	: std_logic; : std_logic;	
signal fifo_full signal fifo_write_enable	<pre>: std_logic_vector(31 downto 0); : std_logic; : std_logic; : std_logic_vector(10 downto 0);</pre>	
NOMORE_DATA RS FlipFlog signal flush_end_enable_set signal flush_end_enable	: std_logic;	
FIFO Read Handler signal fifo_o signal fifo_empty signal fifo_read_start signal fifo_almost_full	<pre>: std_logic_vector(31 downto 0); : std_logic; : std_logic; : std_logic;</pre> : std_logic;	
type R_STATES is (R_IDLE, R_NOP1, R_NOP2, R_READ_WO)		
signal R_STATE : R_STATES;		
Event Buffer Output Hand signal evt_data_clk signal evt_data_flushed	: std_logic;	
signal fifo_read_enable_f signal fifo_read_enable_f2 signal fifo_flush_ctr signal fifo_flush_ctr_last	<pre>: std_logic; : std_logic; : unsigned(10 downto 0); : unsigned(10 downto 0);</pre>	
signal evt_data_flushed_x signal fifo_flush_ctr_x signal flush_end_enable_reso	<pre>: std_logic; : unsigned(10 downto 0); et_x : std_logic;</pre>	

```
stdin
 Mar 09, 14 22:14
                                                                      Page 78/225
  type F_STATES is (F_IDLE,
                    F FLUSH,
                    F END
                    );
 signal F STATE, F NEXT STATE : F STATES;
  -- Error Status
                               : std logic;
 signal fifo almost full p
 signal error_status_o
                               : std_logic;
 signal fifo_full_rate_ctr
                               : unsigned(19 downto 0);
 signal fifo_full_rate
                               : unsigned(19 downto 0);
 signal rate timer ctr
                               : unsigned(27 downto 0);
  -- Slave Bus
 signal slv_data_out_o
                               : std_logic_vector(31 downto 0);
 signal slv no more data o
                               : std logic;
 signal slv_unknown_addr_o
                               : std_logic;
 signal slv_ack_o
                               : std_logic;
 signal register fifo status : std logic vector(7 downto 0);
 signal data_wait
                               : std_logic;
begin
 DEBUG_OUT(0)
                         <= CLK IN;
 DEBUG_OUT(1)
                         <= DATA_CLK_IN;
 DEBUG_OUT(2)
                         <= fifo_empty;
 DEBUG OUT(3)
                         <= fifo almost full;
 DEBUG_OUT(4)
                         <= RESET_DATA_BUFFER_IN;
 DEBUG_OUT(5)
                         <= trigger_busy_o;</pre>
 DEBUG OUT(6)
                         <= TRIGGER IN;
 DEBUG OUT(7)
                         <= evt data flush;
 DEBUG OUT(8)
                         <= flush end enable;
 DEBUG_OUT(9)
                         <= evt_data_clk;</pre>
 DEBUG OUT(10)
                         <= fee data write o;
 DEBUG_OUT(11)
                         <= evt_data_flushed;</pre>
                         <= '0';
 DEBUG_OUT(12)
 DEBUG OUT(13)
                         <= EVT_NOMORE_DATA_IN;</pre>
 DEBUG_OUT(14)
                         <= FAST_CLEAR_IN;
 DEBUG OUT(15)
                         <= FEE_DATA_ALMOST_FULL_IN;</pre>
 PROC_DATA_HANDLER: process(CLK_IN)
 begin
   if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
                             <= '0';
        evt_data_flush
        trigger_busy_o
                             <= '0';
       STATE
                             <= S_IDLE;
      else
                             <= '0';
        evt_data_flush
        trigger_busy_o
                             <= '1';
        if (FAST_CLEAR_IN = '1') then
          STATE
                                      <= S_IDLE;
        else
```

```
Mar 09, 14 22:14
                                      stdin
                                                                    Page 79/225
         case STATE is
           when S IDLE =>
             if (NXYTER OFFLINE IN = '1') then
               trigger busy o
                                          <= S IDLE;
               STATE
             elsif (TRIGGER_IN = '1') then
               evt data flush
                                          <= '1';
               STATE
                                          <= S FLUSH BUFFER WAIT;
             else
                                          <= '0';
               trigger busy o
               STATE
                                          <= S IDLE;
             end if;
           when S FLUSH BUFFER WAIT =>
             if (evt data flushed = '0') then
               STATE
                                          <= S FLUSH BUFFER WAIT;
             else
               STATE
                                          <= S IDLE;
             end if;
         end case;
       end if:
     end if;
   end if;
 end process PROC DATA HANDLER;
 -- FIFO Input Handler
 -- Send data to FIFO
fifo 32 data 1: fifo 32 data
  port map (
     Data
                  => fifo next word,
     Clock
                  => CLK IN,
     WrEn
                  => fifo write enable,
     RdEn
                  => fifo read enable,
     Reset.
                  => fifo reset,
     AmFullThresh => fifo_almost_full_thr,
                  => fifo o,
                  => fifo empty,
     Empty
     Full
                  => fifo full.
     AlmostFull => fifo almost full
     );
 fifo reset
                  <= RESET_IN or RESET_DATA_BUFFER_IN;</pre>
 fifo_read_enable <= fifo_read_enable_f or fifo_read_enable_s;</pre>
 PROC FIFO WRITE HANDLER: process(CLK IN)
begin
   if(rising_edge(CLK_IN)) then
     if(RESET_IN = '1' or RESET_DATA_BUFFER_IN = '1') then
       fifo write enable <= '0';
     else
       fifo write enable <= '0';
       fifo next word
                           <= x"deadbeef";
       if (DATA_CLK_IN
                            = '1' and
           fifo full
                         = '0' and
           fifo_almost_full = '0') then
         fifo_next_word <= DATA_IN;</pre>
         fifo write enable <= '1';
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 80/225
      end if;
    end if;
  end if;
end process PROC_FIFO_WRITE_HANDLER;
PROC FLUSH END RS FF: process(CLK IN)
begin
  if ( rising edge (CLK IN) ) then
    if( RESET IN = '1' or flush end enable reset x = '1') then
      flush end enable <= '0';
      if (flush end enable set = '1') then
        flush end enable <= '1';
      end if;
     end if;
  end if;
end process PROC FLUSH END RS FF;
flush_end_enable_set <= EVT_NOMORE_DATA_IN;</pre>
PROC_FLUSH_BUFFER_TRANSFER: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
     fifo read enable f2
                          <= fifo read enable f;
    if( RESET_IN = '1' ) then
                             <= '0';
      evt_data_clk
      evt data flushed
                             <= '0';
      fifo_flush_ctr
                             <= (others => '0');
      fifo_flush_ctr_last <= (others => '0');
      F STATE
                             <= F IDLE;
     else
      evt_data_flushed
                             <= evt_data_flushed_x;</pre>
      fifo flush ctr
                             <= fifo flush ctr x;
      F STATE
                             <= F_NEXT_STATE;
      evt data clk
                             <= fifo read enable f2;
      if (F STATE = F END) then
        fifo_flush_ctr_last <= fifo_flush_ctr_x;</pre>
       end if;
     end if;
  end if;
end process PROC FLUSH BUFFER TRANSFER;
PROC FLUSH BUFFER: process(F STATE,
                            evt data flush,
                            fifo empty,
                            evt data clk,
                            flush end enable
begin
  -- Defaults
  fifo read enable f
                            <= '0';
  fifo_flush_ctr_x
                            <= fifo_flush_ctr;
                         <= '0';
  evt data flushed x
  flush_end_enable_reset_x <= '0';
  -- Multiplexer fee_data_o
  if (evt data clk = '1') then
    fee_data o
                                  <= fifo o;
    fee_data_write_o
                                  <= '1';
  else
```

Mar 09, 14 22:14	stdin	Page 81/225
<pre>fee_data_o fee_data_write_o end if;</pre>	<= (others => '1'); <= '0';	
<pre> FIFO Read Handler case F_STATE is when F_IDLE =></pre>		
if (evt_data_flush fifo_flush_ctr_x flush_end_enable	<pre>< (others => '0'); e_reset_x <= '1';</pre>	
else F_NEXT_STATE	<= F_FLUSH; <= F_IDLE;	
end if;		
<pre>when F_FLUSH => if (fifo_empty = ' fifo_read_enable fifo_flush_ctr_x</pre>	<pre>0') then e_f</pre>	
else	<pre><= F_FLUSH; table = '0') then</pre>	
F_NEXT_STATE else	<= F_FLUSH;	
F_NEXT_STATE end if; end if;	<= F_END;	
when F_END => evt_data_flushed_x F_NEXT_STATE	<pre><= '1'; <= F_IDLE;</pre>	
end case; end process PROC_FLUSH_B	suffer;	
FIFO Output Handler		
PROC_FIFO_READ_WORD: pro begin if(rising_edge(CLK_IN if(RESET_IN = '1'))) then	
fifo_read_enable_s fifo_read_busy	<pre> <</pre>	
fifo_data fifo_read_done	<= (others => '0'); <= '0';	
K_SIAIL	<= '1'; <= R_IDLE;	
else fifo_read_busy	<= '0';	
fifo_read_busy fifo_no_data fifo_read_done	<= '0'; <= '0';	
fifo_data fifo_read_enable_s	<= (others => '0');	
TITO_TCAG_CHADIC_B		
case R_STATE is when R_IDLE =>	start = '1') then	

Mar 09, 14 22:14	stdin	Page 82/225
R_STATE else fifo_no_data fifo_read_done R_STATE end if;	<= R_NOP1; <= '1'; <= '1'; <= R_IDLE;	
else R_STATE end if;	<= R_IDLE;	
when R_NOP1 => fifo_read_busy R_STATE	<= '1'; <= R_NOP2;	
when R_NOP2 => fifo_read_busy R_STATE	<= '1'; <= R_READ_WORD;	
when R_READ_WORD => fifo_read_busy fifo_data fifo_read_done R_STATE	<= '0'; <= fifo_o; <= '1'; <= R_IDLE;	
<pre>end case; end if; end if; end process PROC_FIFO_READ_WORD</pre>	o;	
Rate Counters + Rate Error C		
<pre>level_to_pulse_FIFO_FULL: level port map (CLK_IN => CLK_IN, RESET_IN => RESET_IN, LEVEL_IN => fifo_almost_fu PULSE_OUT => fifo_almost_fu);</pre>	L_to_pulse	
	en = (others => '0'); = (others => '0'); = (others => '0'); = '0';	+ 1;
<pre>if (fifo_almost_full_p fifo_full_rate_ctr end if; else</pre>	<pre>= '1') then <= fifo_full_rate_</pre>	ctr + 1;
rate_timer_ctr fifo_full_rate	<pre><= (others => '0') <= fifo_full_rate_</pre>	ctr;
ilio_iuii_rate_ctr(19 c	downto 1) <= (others => '0')	,

```
stdin
Mar 09. 14 22:14
                                                               Page 83/225
                                      <= fifo_almost_full_p;
        fifo_full_rate_ctr(0)
        if (fifo full rate > 0) then
          error status o
                                      <= '1';
        else
                                      <= '0';
          error status o
        end if;
      end if;
    end if;
  end if;
end process PROC RATE COUNTER;
-- Slave Bus Slow Control
register_fifo_status(0)
                                 <= fifo write enable;
register fifo status(1)
                                <= fifo full;
register fifo status(3 downto 2) <= (others => '0');
register_fifo_status(5)
                                <= fifo empty;
register fifo status(7 downto 6) <= (others => '0');
PROC_SLAVE_BUS: process(CLK_IN)
begin
  if ( rising_edge(CLK_IN) ) then
    if( RESET IN = '1' ) then
                            <= (others => '0');
      slv_data_out_o
                            <= '0';
      slv_ack_o
      slv_unknown_addr_o
                            <= '0';
      slv no more data o
                           <= '0';
      fifo_read_start
                            <= '0';
      data wait
                            <= '0';
      fifo almost full thr <= "00101011110"; -- default: 350 = 1.4k
      slv data out o
                            <= (others => '0');
      slv ack o
                           <= '0';
      slv unknown addr o
                            <= '0';
                           <= '0';
      slv no more data o
      fifo read start
                            <= '0';
      data wait
                            <= '0';
      if (data wait = '1') then
        if (fifo read done = '0') then
          data wait.
                                       <= '1';
        else
          if (fifo no data = '0') then
            slv data_out_o
                                       <= fifo data;
           slv ack o
                                       <= '1';
          else
            slv no more data o
                                       <= '1';
           slv ack o
                                       <= '0';
          end if;
          data wait
                                       <= '0';
        end if;
      elsif (SLV READ IN = '1') then
        case SLV_ADDR_IN is
          when x"0000" =>
            fifo read start
                                        <= '1';
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 84/225
            data_wait
                                           <= '1';
           when x"0001" =>
            slv_data_out_o(10 downto 0) <= fifo_almost_full_thr;</pre>
            slv_data_out_o(31 downto 11) <= (others => '0');
            slv ack o
                                           <= '1';
           when x"0002" =>
            slv data out o(10 downto 0) <=
              std logic vector(fifo flush ctr last);
            slv_data_out_o(31 downto 11) <= (others => '0');
                                          <= '1';
            slv ack o
          when x"0003" =>
              slv data out o(19 downto 0) <= fifo full rate;</pre>
              slv data out o(31 downto 20) <= (others => '0');
             slv_ack_o
                                          <= '1';
          when x"0004" =>
              slv_data_out_o(0)
                                        <= error_status_o;</pre>
              slv_data_out_o(31 downto 1) <= (others => '0');
             slv ack o
          when x"0005" =>
            slv data out o(7 downto 0)
                                          <= register fifo status;
            slv_data_out_o(31 downto 8) <= (others => '0');
                                           <= '1';
            slv ack o
          when others =>
            slv unknown addr o
                                          <= '1';
        end case;
      elsif (SLV_WRITE_IN = '1') then
        case SLV ADDR IN is
          when x"0001" =>
            if (unsigned(slv data out o(10 downto 0)) < 2040) then
              fifo almost full thr
                                          <= SLV DATA IN(10 downto 0);
            end if;
            slv_ack_o
                                           <= '1';
           when others =>
            slv_unknown_addr_o
                                          <= '1';
            slv ack o
                                           <= '0';
        end case;
      else
        slv ack o
                                         <= '0';
      end if;
    end if;
  end if;
end process PROC SLAVE BUS;
-- Output Signals
                       <= fifo_almost_full;
evt_buffer_full_o
TRIGGER_BUSY_OUT
                       <= trigger_busy_o;</pre>
EVT BUFFER FULL OUT
                       <= evt buffer full o;
FEE_DATA_OUT
                        <= fee_data_o;
FEE DATA WRITE OUT
                       <= fee data write o;
```

```
stdin
 Mar 09. 14 22:14
                                                                           Page 85/225
  SLV DATA OUT
                          <= slv data out o;
  SLV_NO_MORE_DATA_OUT <= slv_no_more_data_o;</pre>
 SLV UNKNOWN ADDR OUT <= slv unknown addr o;
                          <= slv_ack_o;
 SLV_ACK_OUT
 ERROR OUT
                          <= error status o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxvter components.all;
entity nx_fpga_timestamp is
 port (
   CLK IN
                              : in std logic;
   CLK_IN : in std_logic;

RESET_IN : in std_logic;

NX_MAIN_CLK_IN : in std_logic;
   TIMESTAMP_SYNC_IN : in std_logic;
TRIGGER_IN : in std_logic; -- must be in NX_MAIN_CLK_DOMAIN
   TIMESTAMP_CURRENT_OUT : out unsigned(11 downto 0);
   TIMESTAMP_HOLD_OUT : out unsigned(11 downto 0);
   TIMESTAMP SYNCED OUT : out std logic;
   TIMESTAMP TRIGGER OUT : out std logic;
    -- Slave bus
   SLV_READ_IN : in std_logic;
SLV_WRITE_IN : in std_logic;
SLV_DATA_OUT : out std_logic_vector(31 downto 0);
SLV_DATA_IN : in std_logic_vector(31 downto 0);
SLV_ACK_OUT : out std_logic;
    SLV NO MORE DATA OUT : out std logic;
   SLV UNKNOWN ADDR OUT : out std logic;
    -- Debug Line
   DEBUG OUT
                              : out std logic vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx_fpga_timestamp is
                             : unsigned(11 downto 0);
  signal timestamp_ctr
  signal timestamp_current_o : unsigned(11 downto 0);
  signal timestamp_hold_o : std_logic_vector(11 downto 0);
  signal timestamp_trigger_o : std_logic;
  signal timestamp_sync : std_logic;
  signal timestamp_synced : std_logic;
 signal timestamp_synced_o : std_logic;
 signal fifo_full : std_logic;
 signal fifo_write_enable : std_logic;
 signal RESET NX MAIN CLK IN : std logic;
begin
```

```
stdin
Mar 09. 14 22:14
                                                              Page 86/225
DEBUG_OUT(0)
                       <= CLK_IN;
DEBUG OUT(1)
                       <= TIMESTAMP_SYNC_IN;
DEBUG OUT(2)
                       <= timestamp synced o;
                       <= TRIGGER IN;
DEBUG OUT(3)
DEBUG OUT(15 downto 4) <= timestamp hold o(11 downto 0);
-- Reset Domain Transfer
 _____
signal_async_trans_RESET_IN: signal_async_trans
  port map (
    CLK IN => NX MAIN CLK IN,
    SIGNAL A IN => RESET IN.
    SIGNAL OUT => RESET NX MAIN CLK IN
-- NX Clock Domain
signal async to pulse TIMESTAMP SYNC IN: signal async to pulse
  generic map (
    NUM_FF => 3
  port map (
    CLK_IN => NX_MAIN_CLK_IN,
    RESET IN => RESET NX MAIN CLK IN,
    PULSE_A_IN => TIMESTAMP_SYNC_IN,
    PULSE_OUT => timestamp_sync
    );
-- Timestamp Process + Trigger
PROC TIMESTAMP CTR: process (NX MAIN CLK IN)
  if ( rising edge(NX MAIN CLK IN) ) then
    if( RESET_NX_MAIN_CLK_IN = '1' ) then
      timestamp_ctr <= (others => '0');
      timestamp_hold_o
timestamp_synced
                         <= (others => '0');
                          <= '0';
    else
      timestamp_trigger_o
                         <= '1';
      timestamp synced
                           <= '0';
      if (timestamp sync = '1') then
       timestamp_ctr <= (others => '0');
                        <= '1';
       timestamp_synced
      else
       if (TRIGGER IN = '1') then
         timestamp_hold_o <= std_logic_vector(timestamp_ctr);</pre>
         timestamp_trigger_o <= '1';
        end if;
       timestamp ctr <= timestamp ctr + 1;
      end if;
    end if;
  end if;
end process PROC_TIMESTAMP_CTR;
timestamp current o <= timestamp ctr;
-- Output Signals
```

```
stdin
 Mar 09, 14 22:14
                                                                  Page 87/225
 pulse dtrans 1: pulse dtrans
   generic map (
     CLK_RATIO => 4
   port map (
     CLK A IN => NX MAIN CLK IN.
     RESET A IN => RESET NX MAIN CLK IN,
     PULSE A IN => timestamp synced.
     CLK B IN => CLK IN,
     RESET B IN => RESET IN,
     PULSE B OUT => timestamp synced o
 TIMESTAMP CURRENT OUT <= timestamp current o;
 TIMESTAMP_HOLD_OUT <= timestamp_hold_o;
 TIMESTAMP SYNCED OUT
                         <= timestamp synced o;</pre>
 TIMESTAMP TRIGGER OUT <= timestamp trigger o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.nxvter components.all;
entity nx_histogram is
 generic (
              : integer := 7;
   BUS WIDTH
   DATA_WIDTH : integer := 32
   );
 port (
                       : in std logic;
   CLK IN
   RESET IN
                       : in std logic;
   NUM AVERAGES IN
                       : in unsigned(2 downto 0);
   AVERAGE ENABLE IN : in std logic;
   CHANNEL ID IN : in std logic vector(BUS WIDTH - 1 downto 0);
   CHANNEL_DATA_IN
                       : in std_logic_vector(DATA_WIDTH - 1 downto 0);
   CHANNEL ADD IN
                       : in std logic;
                     : in std_logic;
   CHANNEL WRITE IN
   CHANNEL WRITE BUSY OUT : out std logic;
   CHANNEL ID READ IN
                         : in std_logic_vector(BUS_WIDTH - 1 downto 0);
   CHANNEL_READ_IN : in std_logic;
CHANNEL_DATA_OUT : out std_logic_vector(DATA_WIDTH - 1 downto 0);
   CHANNEL_DATA_VALID_OUT : out std_logic;
   CHANNEL_READ_BUSY_OUT : out std_logic;
   DEBUG OUT
                     : out std logic vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx_histogram is
 -- Hist Fill/Ctr Handler
 type H_STATES is (H_IDLE,
                   H WRITEADD CHANNEL,
```

```
stdin
Mar 09. 14 22:14
                                                              Page 88/225
                  H_WRITE_CHANNEL
 signal H STATE, H NEXT STATE : H STATES;
                             : std_logic_vector(6 downto 0);
 signal address_hist_m
 signal address hist m x
                             : std logic vector(6 downto 0);
 signal data_hist_m
                             : std logic vector(DATA WIDTH - 1 downto 0);
 signal data hist m x
                             : std logic vector(DATA WIDTH - 1 downto 0);
 signal read data hist
                             : std logic vector(DATA WIDTH - 1 downto 0);
 signal read data ctr hist
                             : unsigned(7 downto 0);
                             : std logic vector(BUS WIDTH - 1 downto 0);
 signal read_address_hist
 signal read enable hist
                             : std logic;
 signal write data hist
                             : std logic vector(DATA WIDTH - 1 downto 0);
 signal write data ctr hist
                             : unsigned(7 downto 0);
 signal write address hist
                             : std_logic_vector(BUS_WIDTH - 1 downto 0);
 signal write enable hist
                             : std logic;
 signal write_address
                             : std_logic_vector(BUS_WIDTH - 1 downto 0);
 signal write data
                             : std_logic_vector(DATA_WIDTH - 1 downto 0);
 signal write enable
                             : std logic;
 signal channel_write_busy_o
                            : std_logic;
 -- Hist Read Handler
 signal read address
                            : std logic vector(BUS WIDTH - 1 downto 0);
 signal read data
                            : std logic vector(DATA WIDTH - 1 downto 0);
 signal channel_data_valid_o : std_logic;
 signal channel_data_valid_o_f : std_logic_vector(2 downto 0);
 signal channel read busy o : std logic;
begin
 DEBUG OUT(0)
                        <= CLK IN;
 DEBUG OUT(1)
                    <= channel_write_busy_o;
<= CHANNEL_ADD_IN;</pre>
 DEBUG OUT(2)
 DEBUG_OUT(15 downto 8) <= channel_data_o(7 downto 0);</pre>
 ram_dp_128x40_hist: ram_dp_128x40
   port map (
     WrAddress
                      => write_address_hist,
                      => read address hist.
     RdAddress
     Data(31 downto 0) => write data hist,
     Data(39 downto 32) => write_data_ctr_hist,
                      => not RESET_IN,
     RdClock
                      => CLK_IN,
     RdClockEn
                    => read_enable_hist,
                      => RESET_IN,
     Reset
     WrClock
                      => CLK IN,
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 89/225
     WrClockEn
                        => write_enable_hist,
                        => read data hist.
    O(31 downto 0)
                       => read data ctr hist
    O(39 downto 32)
ram dp 128x32 result: ram dp 128x32
  port map (
    WrAddress => write address.
    RdAddress => read address,
              => write data.
               => not RESET IN,
    RdClock => CLK IN,
    RdClockEn => read enable,
    Reset => RESET IN.
    WrClock => CLK IN,
    WrClockEn => write enable,
    0
              => read data
    );
-- Memory Handler
pulse_to_level_1: pulse_to_level
  generic map (
    NUM_CYCLES => 2
  port map (
    CLK_IN => CLK_IN,
    RESET_IN => RESET_IN,
    PULSE IN => read enable p,
    LEVEL_OUT => read_enable
    );
PROC HIST READ: process(CLK IN)
  if (rising edge (CLK IN)) then
     if ( RESET IN = '1' ) then
      read enable p
                                   <= '0';
       read address
                                   <= (others => '0');
      channel data_valid_o_f
                                   \leq (others => '0');
      channel_data_valid_o
                                   <= '0';
      channel data o
                                   \leq (others \Rightarrow '0');
      channel read busy o
                                   <= '0';
     else
       channel_data_valid_o_f(2)
      channel_data_valid_o_f(1)
                                   <= channel_data_valid_o_f(2);</pre>
      channel_data_valid_o_f(0)
                                   <= channel_data_valid_o_f(1);</pre>
      read_enable_p
                                   <= '0';
      read_address
                                   <= (others => '0');
      channel_data_o
                                   <= (others => '0');
      channel data valid o
                                  <= '0';
      channel_read_busy_o
                                   <= '0';
       if (CHANNEL_READ_IN = '1') then
                                  <= '1';
         read_enable_p
         read_address
                                   <= CHANNEL_ID_READ_IN;
         channel data valid o f(2) <= '1';
       end if;
       if (channel data valid o f(0) = '1') then
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 90/225
        channel_data_o
                                   <= read data;
                                   <= '1';
        channel_data_valid_o
       end if;
      if (channel data valid of = "000" and CHANNEL READ IN = '0') then
        channel_read_busy_o
                                   <= '0';
       else
        channel read busy o
                                   <= '1';
       end if;
     end if;
  end if;
end process PROC HIST READ;
PROC HIST HANDLER TRANSFER: process(CLK IN)
  if ( rising edge (CLK IN) ) then
    if ( RESET IN = '1' ) then
      address hist m <= (others => '0');
                           <= (others => '0');
      data hist m
      H STATE
                           <= H IDLE;
     else
      address_hist_m
                           <= address_hist_m_x;
      data hist m
                           <= data_hist_m_x;
      H STATE
                           <= H NEXT STATE;
     end if;
  end if;
end process PROC_HIST_HANDLER_TRANSFER;
PROC HIST HANDLER: process(H STATE,
                            CHANNEL_ID_IN,
                            CHANNEL_DATA_IN,
                            CHANNEL ADD IN,
                            CHANNEL WRITE IN
  variable new data
                              : unsigned(31 downto 0);
begin
  address hist m x
                               <= address hist m;
  data hist m x
                               <= data hist m;
  case H STATE is
     when H IDLE =>
      write address hist
                               \leq (others => '0');
      write_data_hist
                               <= (others => '0');
      write_data_ctr_hist
                               \leq (others \Rightarrow '0');
      write enable hist
                               <= '0';
      write address
                               <= (others => '0');
                               \leq (others => '0');
      write data
      write enable
                               <= '0';
                              <= '0';
      channel_write_busy_o
       if (CHANNEL_ADD_IN = '1') then
        read_address_hist
                               <= CHANNEL_ID_IN;
        read_enable_hist
                               <= '1';
        address hist m x
                               <= CHANNEL ID IN;
        data_hist_m_x
                               <= CHANNEL_DATA_IN;</pre>
        H NEXT STATE
                               <= H_WRITEADD_CHANNEL;
       elsif (CHANNEL_WRITE_IN = '1') then
                              <= (others => '0');
        read_address_hist
        read_enable_hist
                               <= '0';
        address hist m x
                               <= CHANNEL_ID_IN;
        data_hist_m_x
                              <= CHANNEL_DATA_IN;
        H_NEXT_STATE
                               <= H_WRITE_CHANNEL;
       else
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 91/225
         read_address_hist
                               <= (others => '0');
        read enable hist
                               <= '0';
        address hist m x
                              <= (others => '0');
         data hist m x
                               <= (others => '0');
        H_NEXT_STATE
                               <= H IDLE;
       end if;
     when H WRITEADD CHANNEL =>
      if (AVERAGE ENABLE IN = '0') then
        new data
                              := std logic vector(unsigned(read data hist) +
                                                  unsigned(data hist m));
         write data ctr hist <= read data ctr hist + 1;
        write address
                              <= address hist m;
        write data
                               <= new data;
        write enable
                              <= '1';
       elsif ((read data ctr hist srl to integer(NUM AVERAGES IN)) > 0)
        new data
                              := std logic vector(unsigned(data hist m));
        write_data_ctr_hist <= x"01";</pre>
        write address
                              <= address hist m;
        write data
                               <= new_data;
        write_enable
                               <= '1';
      else
        new data
                              := std_logic_vector(unsigned(read_data_hist) +
                                                   unsigned(data hist m));
        write data ctr hist <= read data ctr hist + 1;
        write address
                              <= (others => '0');
        write data
                              <= (others => '0');
                               <= '0';
        write enable
       end if;
       read address hist
                               <= (others => '0');
      read enable hist
                               <= '0';
       write address hist
                               <= address hist m;
       write data hist
                               <= new data;
       write enable hist
                               <= '1';
       channel write busy o
                               <= '1';
      H NEXT STATE
                               <= H IDLE;
     when H WRITE CHANNEL =>
      new data
                              := unsigned(data hist m);
      read address hist
                               <= (others => '0');
      read_enable_hist
                              <= '0';
      write address hist
                              <= address hist m;
      write_data_hist
                              <= new data;
                              <= (others => '0');
      write_data_ctr_hist
      write_enable_hist
                               <= '1';
      write_address
                               <= address_hist_m;
      write data
                              <= new data;
      write_enable
                              <= '1';
                              <= '1';
      channel_write_busy_o
                              <= H IDLE;
      H NEXT STATE
  end case;
end process PROC HIST HANDLER;
```

```
stdin
 Mar 09. 14 22:14
                                                                    Page 92/225
  -- Output Signals
                           <= channel write busy o;
  CHANNEL WRITE BUSY OUT
                           <= channel_data_o;
 CHANNEL_DATA_OUT
 CHANNEL DATA VALID OUT
                           <= channel data valid o;
 CHANNEL READ BUSY OUT
                           <= channel read busy o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter components.all;
entity nx histograms is
 port (
   CLK_IN
                        : in std_logic;
   RESET IN
                        : in std_logic;
   RESET HISTS IN
                        : in std logic;
   CHANNEL FILL IN
                        : in std logic;
   CHANNEL_ID_IN
                        : in std_logic_vector(6 downto 0);
                        : in std logic vector(11 downto 0);
   CHANNEL ADC IN
   CHANNEL PILEUP IN : in std logic;
   CHANNEL_OVERFLOW_IN : in std_logic;
   -- Slave bus
   SLV READ IN
                        : in std logic;
   SLV_WRITE_IN
                        : in std_logic;
   SLV DATA OUT
                        : out std logic vector(31 downto 0);
                        : in std logic vector(31 downto 0);
   SLV DATA IN
   SLV ADDR IN
                        : in std logic vector(15 downto 0);
   SLV ACK OUT
                        : out std logic;
   SLV NO MORE DATA OUT : out std logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
                      : out std_logic_vector(15 downto 0)
   DEBUG OUT
   );
end entity;
architecture Behavioral of nx_histograms is
  -- Hit Histogram
 signal hit num averages
                            : unsigned(2 downto 0);
 signal hit_average_enable : std_logic;
 signal hit_write_busy
                            : std_logic;
 signal hit_read_busy
                            : std_logic;
 signal hit_write_id
                            : std_logic_vector(6 downto 0);
 signal hit write data
                            : std logic vector(31 downto 0);
 signal hit_write
                            : std logic;
                            : std_logic;
 signal hit_add
  signal hit read id
                            : std_logic_vector(6 downto 0);
 signal hit_read
                            : std logic;
 signal hit_read_data
                           : std_logic_vector(31 downto 0);
 signal hit read data valid : std logic;
```

Mar 09, 14 22:14	stdin	Page 93/225
PileUp Histogram signal pileup_num_averages signal pileup_average_enable signal pileup_write_busy signal pileup_read_busy	<pre>: unsigned(2 downto 0); : std_logic; : std_logic; : std_logic;</pre>	
signal pileup_write_id signal pileup_write_data signal pileup_write signal pileup_add	<pre>: std_logic_vector(6 downto 0); : std_logic_vector(31 downto 0); : std_logic; : std_logic;</pre>	
signal pileup_read_id signal pileup_read signal pileup_read_data signal pileup_read_data_vali	<pre>: std_logic_vector(6 downto 0); : std_logic; : std_logic_vector(31 downto 0); d : std_logic;</pre>	
OverFlow Histogram signal ovfl_num_averages signal ovfl_average_enable signal ovfl_write_busy signal ovfl_read_busy	<pre>: unsigned(2 downto 0); : std_logic; : std_logic; : std_logic;</pre>	
signal ovfl_write_id signal ovfl_write_data signal ovfl_write signal ovfl_add	<pre>: std_logic_vector(6 downto 0); : std_logic_vector(31 downto 0); : std_logic; : std_logic;</pre>	
signal ovfl_read_id signal ovfl_read signal ovfl_read_data signal ovfl_read_data_valid	<pre>: std_logic_vector(6 downto 0); : std_logic; : std_logic_vector(31 downto 0); : std_logic;</pre>	
ADC Value Histogram signal adc_num_averages : signal adc_average_enable : signal adc_write_busy : signal adc_read_busy :	<pre>unsigned(2 downto 0); std_logic; std_logic; std_logic;</pre>	
signal adc_write_id : signal adc_write_data : signal adc_write : signal adc_add :	<pre>std_logic_vector(6 downto 0); std_logic_vector(31 downto 0); std_logic; std_logic;</pre>	
<pre>signal adc_read_id : signal adc_read : signal adc_read_data : signal adc_read_data_valid :</pre>	<pre>std_logic_vector(6 downto 0); std_logic; std_logic_vector(31 downto 0); std_logic;</pre>	
signal slv_unknown_addr_o	<pre>: std_logic_vector(31 downto 0); : std_logic; : std_logic; : std_logic;</pre>	
begin		
DEBUG_OUT(0) DEBUG_OUT(1)	<= CLK_IN; <= CHANNEL_FILL_IN;	

```
stdin
Mar 09, 14 22:14
                                                                 Page 94/225
-- DEBUG_OUT(2)
                             <= hit_write_busy;
-- DEBUG_OUT(3)
                             <= pileup_write_busy;
-- DEBUG OUT(4)
                             <= ovfl write busy;
-- DEBUG OUT(5)
                             <= adc write busy;
-- DEBUG OUT(6)
                             <= hit read busy;
-- DEBUG OUT(7)
                             <= pileup read busy;
-- DEBUG OUT(8)
                             <= ovfl read busy;
-- DEBUG OUT(9)
                             <= adc read busy;
-- DEBUG_OUT(15 downto 10) <= (others => '0');
-- DEBUG OUT(15 downto 1) <= SLV ADDR IN(14 downto 0);
 nx_histogram_hits: nx_histogram
   port map (
     CLK IN
                           => CLK IN.
     RESET_IN
                          => RESET_IN,
     NUM AVERAGES IN
                           => hit num averages,
     AVERAGE_ENABLE_IN
                           => hit_average_enable,
     CHANNEL_ID_IN
                           => hit_write_id,
     CHANNEL_DATA_IN
                           => hit_write_data,
     CHANNEL_ADD_IN
                           => hit_add,
                           => hit_write,
     CHANNEL_WRITE_IN
     CHANNEL_WRITE_BUSY_OUT => hit_write_busy,
     CHANNEL_ID_READ_IN
                           => hit_read_id,
                           => hit read,
     CHANNEL READ IN
                           => hit_read_data,
     CHANNEL_DATA_OUT
     CHANNEL_DATA_VALID_OUT => hit_read_data_valid,
     CHANNEL READ BUSY OUT => hit read busy,
     DEBUG OUT
                           => DEBUG OUT --open
     );
 nx_histogram_adc: nx_histogram
   port map (
     CLK IN
                           => CLK IN,
     RESET_IN
                          => RESET_IN,
     NUM_AVERAGES_IN
                           => adc num averages,
     AVERAGE_ENABLE_IN
                           => adc_average_enable,
                           => adc_write_id,
     CHANNEL_ID_IN
                           => adc_write_data,
     CHANNEL_DATA_IN
     CHANNEL_ADD_IN
                           => adc_add,
     CHANNEL_WRITE_IN
                          => adc write,
     CHANNEL_WRITE_BUSY_OUT => adc_write_busy,
     CHANNEL_ID_READ_IN
                           => adc_read_id,
                           => adc read,
     CHANNEL READ IN
     CHANNEL_DATA_OUT
                           => adc_read_data,
     CHANNEL_DATA_VALID_OUT => adc_read_data_valid,
     CHANNEL_READ_BUSY_OUT => adc_read_busy,
     DEBUG_OUT
                           => open
     );
 nx_histogram_pileup: nx_histogram
   port map (
```

Mar 09, 14 22:14	stdin	Page 95/225
CLK_IN RESET_IN	=> CLK_IN, => RESET_IN,	
NUM_AVERAGES_IN AVERAGE_ENABLE_IN CHANNEL_ID_IN CHANNEL_DATA_IN CHANNEL_ADD_IN CHANNEL_WRITE_IN CHANNEL_WRITE_BUSY_OUT		
CHANNEL_ID_READ_IN CHANNEL_READ_IN CHANNEL_DATA_OUT CHANNEL_DATA_VALID_OUT CHANNEL_READ_BUSY_OUT	<pre>=> pileup_read_id, => pileup_read, => pileup_read_data, => pileup_read_data_valid, => pileup_read_busy,</pre>	
DEBUG_OUT	=> open	
nx_histogram_ovfl: nx_hist	ogram	
port map (CLK_IN RESET_IN	=> CLK_IN, => RESET_IN,	
NUM_AVERAGES_IN AVERAGE_ENABLE_IN CHANNEL_ID_IN CHANNEL_DATA_IN CHANNEL_ADD_IN CHANNEL_WRITE_IN CHANNEL_WRITE_BUSY_OUT	<pre>=> ovfl_num_averages, => ovfl_average_enable, => ovfl_write_id, => ovfl_write_data, => ovfl_add, => ovfl_write, => ovfl_write,</pre>	
CHANNEL_ID_READ_IN CHANNEL_READ_IN CHANNEL_DATA_OUT CHANNEL_DATA_VALID_OUT CHANNEL_READ_BUSY_OUT	<pre>=> ovfl_read, => ovfl_read_data, => ovfl_read_data_valid,</pre>	
DEBUG_OUT	=> open	
PROC_FILL_HISTOGRAMS: proc begin if (rising_edge(CLK_IN)) if (RESET_IN = '1') th hit_write_id hit_write_data hit_write hit_add	then	
adc_write_id adc_write_data adc_write adc_add	<pre><= (others => '0'); <= (others => '0'); <= '0'; <= '0';</pre>	
pileup_write_id pileup_write_data	<= (others => '0'); <= (others => '0');	

Mar 09, 14 22:14	stdin	Page 96/225
pileup_write pileup_add	<= '0'; <= '0';	
ovfl_write_id ovfl_write_data ovfl_write ovfl_add else	<pre><= (others => '0'); <= (others => '0'); <= '0'; <= '0';</pre>	
hit_write_id hit_write_data hit_write hit_add	<= (others => '0'); <= (others => '0'); <= '0'; <= '0';	
adc_write_id adc_write_data adc_write adc_add	<= (others => '0'); <= (others => '0'); <= '0'; <= '0';	
<pre>pileup_write_id pileup_write_data pileup_write pileup_add</pre>	<= (others => '0'); <= (others => '0'); <= '0'; <= '0';	
<pre>ovfl_write_id ovfl_write_data ovfl_write ovfl_add</pre>	<= (others => '0'); <= (others => '0'); <= '0'; <= '0';	
<pre>if (CHANNEL_FILL_IN = '1' and hit_write_id hit_write_data hit_add</pre>	hit_write_busy = '0') then <= CHANNEL_ID_IN; <= x"0000_0001"; <= '1';	
<pre>adc_write_id adc_write_data(11 downto 0) adc_write_data(31 downto 12) adc_add</pre>	<pre><= CHANNEL_ID_IN; <= CHANNEL_ADC_IN; <= (others => '0'); <= '1';</pre>	
<pre>if (CHANNEL_PILEUP_IN = '1') pileup_write_id pileup_write_data pileup_add end if;</pre>	then <= CHANNEL_ID_IN; <= x"0000_0001"; <= '1';	
<pre>if (CHANNEL_OVERFLOW_IN = '1 ovfl_write_id ovfl_write_data ovfl_add end if;</pre>	<pre>') then <= CHANNEL_ID_IN; <= x"0000_0001"; <= '1';</pre>	
<pre>end if; end if; end if; end process PROC_FILL_HISTOGRAMS;</pre>		

Mar 09, 14 22:14	stdin	Page 97/225
if(rising_edge(CLK_IN))		
if(RESET_IN = '1') the	en	
slv_data_out_o slv_no_more_data_o	<pre><= (others => '0'); <= '0';</pre>	
slv_unknown_addr_o		
slv_ack_o	<= '0';	
hit_read_id	<= (others => '0');	
hit_read	<= '0';	
hit_num_averages hit_average_enable	<= "000"; <= '0';	
mre_average_enabre		
adc_read_id	<= (others => '0');	
adc_read adc_num_averages	<= '0'; <= "001";	
adc_average_enable	<= '1';	
pileup_read_id	<= (others => '0');	
pileup_read	<= '0';	
pileup_num_averages		
pileup_average_enable	<= '0';	
ovfl_read_id	<= (others => '0');	
ovfl_read	<= '0';	
ovfl_num_averages ovfl_average_enable	<= "000"; <= '0';	
else	•	
slv_data_out_o	<= (others => '0');	
slv_unknown_addr_o slv no more data o	<= '0'; <= '0';	
hit_read_id hit_read	<= (others => '0'); <= '0';	
adc_read_id	<= (others => '0');	
adc_read	<= '0';	
pileup_read_id pileup_read	<= (others => '0'); <= '0';	
ovfl_read_id	<= (others => '0');	
ovfl_read	<= '0';	
if (hit_read_busy	= '1' or	
	= '1' or	
pileup_read_busy ovfl_read_busy		
if (hit_read_data_va		
slv_data_out_o	<= hit_read_data;	
slv_ack_o elsif (adc_read_data	<= '1'; a valid = '1') then	
slv_data_out_o	<pre><= adc_read_data;</pre>	
slv_ack_o	<= '1';	
slv_data_out_o	data_valid = '1') then <= pileup_read_dat	a <i>i</i>
slv_ack_o	<= '1';	
	ta_valid = '1') then	
slv_data_out_o slv_ack_o	<= ovfl_read_data; <= '1';	
else		
slv_ack_o end if;	<= '0';	
end III		
elsif (SLV_READ_IN =		
II (unsigned(SLV_AD)	$DR_IN) >= x"0000"$ and	

```
stdin
Mar 09, 14 22:14
                                                                    Page 98/225
             unsigned(SLV_ADDR_IN) <= x"007f") then
           hit_read_id
                                            <= SLV_ADDR_IN(6 downto 0);
                                            <= '1';
          hit read
                                            <= '0';
           slv ack o
         elsif (unsigned(SLV_ADDR_IN) >= x"0100" and
                unsigned(SLV ADDR IN) <= x"017f") then
          pileup read id
                                            <= SLV ADDR IN(6 downto 0);
          pileup read
                                            <= '1';
                                            <= '0';
          slv ack o
         elsif (unsigned(SLV ADDR IN) >= x"0200" and
                unsigned(SLV_ADDR_IN) <= x"027f") then
          ovfl read id
                                            <= SLV ADDR IN(6 downto 0);
          ovfl read
                                            <= '1';
                                            <= '0';
          slv ack o
         elsif (unsigned(SLV ADDR IN) >= x"0300" and
                unsigned(SLV ADDR IN) <= x"037f") then
          adc read id
                                            <= SLV ADDR IN(6 downto 0);
          adc read
                                            <= '1';
          slv_ack_o
                                            <= '0';
        else
          case SLV_ADDR_IN is
            when x'''0080''' =>
              slv_data_out_o(2 downto 0)
                 std_logic_vector(hit_num_averages);
               slv_data_out_o(31 downto 3) <= (others => '0');
              slv_ack_o
                                            <= '1';
             when x"0081" =>
              slv_data_out_o(0)
                                            <= hit_average_enable;</pre>
               slv_data_out_o(31 downto 1) <= (others => '0');
              slv ack o
                                            <= '1';
             when x"0180" =>
              slv data out o(2 downto 0) <=
                 std_logic_vector(pileup_num_averages);
               slv_data_out_o(31 downto 3) <= (others => '0');
               slv ack o
                                            <= '1';
             when x"0181" =>
               slv data out o(0)
                                            <= pileup average enable;
              slv_data_out_o(31 downto 1) <= (others => '0');
                                            <= '1';
              slv_ack_o
             when x"0280" =>
               slv_data_out_o(2 downto 0) <=</pre>
                 std_logic_vector(ovfl_num_averages);
               slv_data_out_o(31 downto 3) <= (others => '0');
              slv_ack_o
                                            <= '1';
             when x"0281" =>
              slv_data_out_o(0)
                                            <= ovfl_average_enable;</pre>
              slv_data_out_o(31 downto 1) <= (others => '0');
                                            <= '1';
              slv ack o
             when x"0380" =>
              slv_data_out_o(2 downto 0) <=</pre>
                 std_logic_vector(adc_num_averages);
               slv_data_out_o(31 downto 3) <= (others => '0');
              slv ack o
                                            <= '1';
             when x"0381" =>
              slv data out o(0)
                                            <= adc average enable;
```

Mar 09, 14 22:14	std	in	Page 99/225
	<pre>slv_data_out_o(31 downto 1) slv_ack_o</pre>	<pre><= (others => '0'); <= '1';</pre>	-
w.	nen others => slv_unknown_addr_o slv_ack_o	<= '1'; <= '0';	
end end i	case; f;		
elsif (SLV_WRITE_IN = '1') then		
whe: h	SLV_ADDR_IN is n x"0080" => it_num_averages lv_ack_o	<= SLV_DATA_IN(2 downto	0);
h	n x"0081" => it_average_enable lv_ack_o	<= SLV_DATA_IN(0); <= '1';	
р	n x"0180" => ileup_num_averages lv_ack_o	<= SLV_DATA_IN(2 downto	0);
p	n x"0181" => ileup_average_enable lv_ack_o	<= SLV_DATA_IN(0); <= '1';	
0.	n x"0280" => vfl_num_averages lv_ack_o	<= SLV_DATA_IN(2 downto	0);
0	n x"0281" => vfl_average_enable lv_ack_o	<= SLV_DATA_IN(0); <= '1';	
a	n x"0380" => dc_num_averages lv_ack_o	<= SLV_DATA_IN(2 downto	0);
a	n x"0381" => dc_average_enable lv_ack_o	<= SLV_DATA_IN(0); <= '1';	
s	n others => lv_unknown_addr_o lv_ack_o	<= '1'; <= '0';	
end c	ase;		
slv_a end if; end if; end if;		<= '0';	
	ROC_HISTOGRAMS_READ;		
Output Sig	 nals		

```
stdin
 Mar 09, 14 22:14
                                                                  Page 100/225
  SLV_DATA_OUT
                       <= slv_data_out_o;
                       <= slv_no_more_data_o;
  SLV_NO_MORE_DATA_OUT
                       <= slv unknown addr o;
 SLV UNKNOWN ADDR OUT
 SLV ACK OUT
                       <= slv ack o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter components.all;
entity nx_i2c_master is
 generic (
   I2C SPEED : unsigned(11 downto 0) := x"3e8"
    );
 port(
    CLK_IN
                        : in
                                std_logic;
    RESET_IN
                        : in
                                std_logic;
    -- I2C connections
    SDA_INOUT
                        : inout std_logic;
    SCL_INOUT
                        : inout std_logic;
    -- Internal Interface
    INTERNAL_COMMAND_IN : in
                                std_logic_vector(31 downto 0);
    COMMAND_BUSY_OUT : out
                                std logic;
                        : out
   I2C_DATA_OUT
                                std_logic_vector(31 downto 0);
    I2C_DATA_BYTES_OUT : out
                                std_logic_vector(31 downto 0);
                        : in
    I2C LOCK IN
                                std logic;
    -- Slave bus
                        : in
    SLV READ IN
                                std logic;
    SLV_WRITE_IN
                        : in
                                std_logic;
    SLV_DATA_OUT
                        : out
                                std logic vector(31 downto 0);
    SLV_DATA_IN
                        : in
                                std_logic_vector(31 downto 0);
    SLV ADDR IN
                        : in
                                std logic vector(15 downto 0);
    SLV_ACK_OUT
                       : out
                                std logic;
    SLV_NO_MORE_DATA_OUT : out
                                std logic;
    SLV_UNKNOWN_ADDR_OUT : out
                                std_logic;
    -- Debug Line
    DEBUG OUT
                        : out std_logic_vector(15 downto 0)
    );
end entity;
architecture Behavioral of nx_i2c_master is
  signal sda_o
                              : std_logic;
 signal scl_o
                              : std_logic;
 signal sda i
                              : std logic;
 signal sda_x
                              : std_logic;
 signal sda
                              : std_logic;
  signal scl_i
                              : std_logic;
 signal scl_x
                              : std_logic;
                              : std logic;
 signal scl
 signal command_busy_o
                              : std_logic;
  -- I2C Master
```

Mar 09, 14 22:14	stdin	Page 101/225
signal startstop_select signal startstop_seq_start signal sendbyte_seq_start signal readbyte_seq_start signal sendbyte_byte	<pre>: std_logic; : std_logic_vector(7 downto 0); : std_logic; : std_logic; : std_logic; : std_logic_vector(31 downto 0); : std_logic_vector(31 downto 0);</pre>	
gional readbyte seg start v	<pre>: std_logic; : std_logic; : std_logic_vector(7 downto 0);</pre>	
	<pre>: std_logic; : std_logic; : std_logic; : std_logic;</pre>	
signal scl_sendbyte signal sendbyte_ack	<pre>: std_logic; : std_logic; : std_logic; : std_logic;</pre>	
signal scl_readbyte signal readbyte_byte	<pre>: std_logic; : std_logic; : std_logic_vector(31 downto 0); : std_logic;</pre>	
type STATES is (S_RESET, S_IDLE, S_START, S_START_WAIT	,	
S_SEND_CHIP_ S_SEND_CHIP_ S_SEND_REGIS' S_SEND_DATA, S_SEND_DATA_I S_GET_DATA, S_GET_DATA_W	ID_WAIT, TER, TER_WAIT, WAIT,	
S_STOP, S_STOP_WAIT); signal STATE, NEXT_STATE : S'	TATES;	
TRBNet Slave Bus signal slv_data_out_o signal slv_no_more_data_o signal slv_unknown_addr_o signal slv_ack_o	<pre>: std_logic_vector(31 downto 0 : std_logic; : std_logic; : std_logic;</pre>));

```
stdin
Mar 09, 14 22:14
                                                                    Page 102/225
 signal i2c_chipid
                                   : std_logic_vector(6 downto 0);
 signal i2c rw bit
                                  : std logic;
 signal i2c num bytes
                                  : unsigned(2 downto 0);
                                  : std_logic_vector(7 downto 0);
 signal i2c_registerid
                                  : std logic vector(7 downto 0);
 signal i2c register data
 signal i2c register value read : std logic vector(7 downto 0);
 signal disable slave bus
                                  : std logic;
 signal internal command
                                  : std logic;
 signal internal_command_d
                                  : std_logic;
 signal i2c data internal o
                                 : std logic vector(31 downto 0);
 signal i2c data internal bytes o : std logic vector(31 downto 0);
 signal i2c data slave
                                  : std logic vector(31 downto 0);
begin
 -- Debug
 DEBUG OUT(0)
                         <= CLK IN;
 DEBUG_OUT(3 downto 1) <= i2c_num_bytes; --i2c_data(7 downto 0);</pre>
 DEBUG_OUT(4)
                         <= startstop_seq_start;</pre>
 DEBUG OUT(5)
                         <= readbyte seg start;
 DEBUG_OUT(6)
                         <= startstop_done;
                         <= sendbyte_done;
 DEBUG_OUT(7)
                         <= readbyte done;
 DEBUG OUT(8)
 --DEBUG OUT(10 downto 9) <= i2c data(31 downto 30);
                         <= i2c busy;
 DEBUG OUT(9)
 DEBUG_OUT(10)
                         <= i2c_busy;
 DEBUG_OUT(11)
                         <= i2c_busy;
 DEBUG OUT(12)
                         <= sda o;
 DEBUG_OUT(13)
                         <= scl o;
                         <= sda;
 DEBUG_OUT(14)
 DEBUG OUT(15)
                         <= scl;
 --DEBUG_OUT(12 downto 9) <= i2c_data(31 downto 28);
 -- Start / Stop Sequence
 nx_i2c_startstop_1: nx_i2c_startstop
   generic map (
     I2C SPEED => I2C SPEED
   port map (
     CLK IN
                       => CLK IN,
     RESET IN
                       => RESET IN,
     START_IN
                       => startstop_seq_start,
     SELECT_IN
                       => startstop_select,
     SEQUENCE_DONE_OUT => startstop_done,
                       => sda_startstop,
     SDA_OUT
     SCL_OUT
                       => scl_startstop,
     NREADY_OUT
                       => i2c_notready
     );
 nx_i2c_sendbyte_1: nx_i2c_sendbyte
   generic map (
     I2C_SPEED => I2C_SPEED
   port map (
     CLK_IN
                       => CLK_IN,
     RESET IN
                       => RESET IN,
                       => sendbyte_seq_start,
     START_IN
                       => sendbyte_byte,
     BYTE_IN
     SEQUENCE_DONE_OUT => sendbyte_done,
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 103/225
    SDA_OUT
                       => sda_sendbyte,
    SCL OUT
                       => scl_sendbyte,
    SDA IN
                       => sda.
    SCL IN
                       => scl.
    ACK_OUT
                       => sendbyte_ack
nx_i2c_readbyte_1: nx_i2c_readbyte
  generic map (
    I2C SPEED => I2C SPEED
  port map (
    CLK IN
                       => CLK IN.
    RESET IN
                      => RESET IN,
    START IN
                       => readbyte seg start,
                      => i2c num bytes,
    NUM BYTES IN
    BYTE OUT
                       => readbyte byte,
    SEQUENCE DONE OUT => readbyte done,
    SDA OUT
                       => sda readbyte.
    SCL_OUT
                       => scl_readbyte,
    SDA_IN
                      => sda
    );
  -- Sync I2C Lines
sda i <= SDA INOUT;
scl_i <= SCL_INOUT;</pre>
PROC_I2C_LINES_SYNC: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if ( RESET IN = '1' ) then
      sda x <= '1';
      sda <= '1';
      scl x <= '1';
      scl <= '1';
    else
      sda x <= sda i;
      sda <= sda x;
      scl x <= scl i;
      scl <= scl_x;</pre>
    end if;
  end if;
end process PROC_I2C_LINES_SYNC;
PROC_I2C_MASTER_TRANSFER: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      i2c_busy
                            <= '1';
                             <= '0';
      startstop_select
      startstop_seq_start <= '0';
      sendbyte_seq_start
                            <= '0';
                            <= '0';
      readbyte_seq_start
      sendbyte_byte
                            <= (others => '0');
      i2c_data
                            <= (others => '0');
      i2c_bytes
                            <= (others => '0');
      read seg ctr
                            <= '0';
      STATE
                             <= S RESET;
     else
       i2c busy
                             <= i2c busy x;
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 104/225
       startstop_select
                            <= startstop_select_x;
      startstop_seq_start <= startstop_seq_start_x;</pre>
                            <= sendbyte seg start x;
      sendbyte seg start
      readbyte seg start
                            <= readbyte seg start x;
      sendbyte_byte
                            <= sendbyte_byte_x;
      i2c data
                            <= i2c data x;
                            <= i2c bytes x;
      i2c bytes
      read seg ctr
                            <= read seg ctr x;
      STATE
                            <= NEXT STATE;
    end if;
  end if;
end process PROC I2C MASTER TRANSFER;
PROC I2C MASTER: process(STATE,
                         i2c start,
                         startstop_done,
                         read seg ctr,
                         sendbyte done,
                         sendbyte_ack,
                         readbyte_done,
                         startstop done
begin
  -- Defaults
                            <= '1';
  sda master
  scl master
                            <= '1';
  i2c_busy_x
                            <= '1';
  startstop_select_x
                            <= '0';
                            <= '0';
  startstop seg start x
                            <= '0';
  sendbyte_seq_start_x
                            <= (others => '0');
  sendbyte_byte_x
  readbyte seg start x
                            <= '0';
                            <= i2c_data;
  i2c_data_x
  i2c bytes x
                            <= i2c bytes;
  read seg ctr x
                            <= read seg ctr;
  case STATE is
    when S RESET =>
      i2c_data_x
                              <= (others => '0');
      i2c bytes x
                              <= (others => '0');
      NEXT STATE
                              <= S IDLE;
    when S IDLE =>
      if (i2c start = '1') then
                              <= x"8000_0000"; -- Set Running, clear all
        i2c_data_x
                                             -- other bits
        NEXT_STATE
                              <= S_START;
      else
        i2c_busy_x
                              <= '0';
                              <= i2c_data and x"7fff_fffff"; -- clear running
        i2c data x
                                                             -- bit;
                              <= '0';
        read_seq_ctr_x
        NEXT_STATE
                              <= S IDLE;
      end if;
       -- I2C START Sequence
    when S_START =>
                              <= '1';
      startstop_select_x
       startstop seg start x <= '1';
```

Mar 09, 14 22:14	stdin	Page 105/225
NEXT_STATE	<= S_START_WAIT;	
<pre>when S_START_WAIT => if (startstop_done = ' NEXT_STATE else sda_master scl_master NEXT_STATE end if;</pre>		
I2C SEND ChipId Sec when S_SEND_CHIP_ID => scl_master sendbyte_byte_x(7 down if (read_seq_ctr = '0' sendbyte_byte_x(0) else sendbyte_byte_x(0) end if; sendbyte_seq_start_x NEXT_STATE	<pre><= '0'; nto 1) <= i2c_chipid; ') then <= '0';</pre>	
else if (read_seq_ctr = read_seq_ctr_x NEXT_STATE else	<pre>') then <= S_SEND_CHIP_ID_WAIT; <= '0'; '0') then <= i2c_data or x"0100_0000"; <= S_STOP;</pre>	
I2C SEND RegisterId when S_SEND_REGISTER => scl_master sendbyte_byte_x sendbyte_seq_start_x NEXT_STATE when S_SEND_REGISTER_WAI if (sendbyte_done = 'C	<pre><= '0'; <= i2c_registerid; <= '1'; <= S_SEND_REGISTER_WAIT; IT => 0') then</pre>	
NEXT_STATE else scl_master if (sendbyte_ack = ' i2c_data_x NEXT_STATE else if (i2c_rw_bit = ' NEXT_STATE else NEXT_STATE else NEXT_STATE end if;	<= i2c_data or x"0200_0000"; <= S_STOP;	

```
stdin
Mar 09, 14 22:14
                                                                  Page 106/225
        end if;
      end if;
      -- I2C SEND DataWord
    when S_SEND_DATA =>
      scl master
                              <= '0';
      sendbyte_byte_x
                              <= i2c_register_data;
                              <= '1';
      sendbyte_seq_start_x
      NEXT_STATE
                              <= S SEND DATA WAIT;
     when S_SEND_DATA_WAIT =>
      if (sendbyte done = '0') then
        NEXT STATE
                              <= S SEND DATA WAIT;
      else
        scl master
                              <= '0';
        if (sendbyte_ack = '0') then
          i2c_data_x
                              <= i2c_data or x"0400_0000";
        end if;
        NEXT STATE
                              <= S_STOP;
      end if;
      -- I2C GET DataWord
    when S_GET_DATA =>
                              <= '0';
      scl_master
                              <= '1';
      readbyte_seq_start_x
                              <= S_GET_DATA_WAIT;
      NEXT_STATE
    when S_GET_DATA_WAIT =>
      if (readbyte_done = '0') then
        NEXT_STATE
                              <= S_GET_DATA_WAIT;
      else
                                      <= '0';
        scl_master
        i2c_data_x(7 downto 0)<= readbyte_byte(7 downto 0);</pre>
        i2c bytes x
                              <= readbyte byte;
        NEXT_STATE
                              <= S_STOP;
      end if;
      -- I2C STOP Sequence
     when S_STOP =>
                              <= '0';
      sda master
      scl master
                              <= '0';
      startstop_select_x
                              <= '0';
      startstop_seq_start_x <= '1';</pre>
      NEXT_STATE
                              <= S STOP WAIT;
    when S_STOP_WAIT =>
      if (startstop_done = '0') then
        NEXT_STATE
                              <= S_STOP_WAIT;
      else
        i2c_data_x
                              <= i2c_data or x"4000_0000"; -- Set DONE Bit
                              <= S_IDLE;
        NEXT_STATE
      end if;
  end case;
end process PROC_I2C_MASTER;
PROC_I2C_DATA_MULTIPLEXER: process(CLK_IN)
  if (rising edge (CLK IN)) then
    if( RESET_IN = '1') then
      i2c_data_internal_o
                                <= (others => '0');
      i2c_data_internal_bytes_o <= (others => '0');
```

```
stdin
Mar 09. 14 22:14
                                                                 Page 107/225
      i2c_data_slave
                                <= (others => '0');
      command_busy_o
                                <= '0';
      if (internal command = '0' and internal command d = '0') then
        i2c_data_slave
                                  <= i2c data;
      else
        i2c data internal o
                                  <= i2c data;
         i2c data internal bytes o <= i2c bytes;
      end if;
    end if;
    command busy o
                                  <= i2c busy;
  end if;
end process PROC I2C DATA MULTIPLEXER;
-- TRBNet Slave Bus
     Write bit definition
___
     -----
--
___
     D[31]
             I2C GO
                              0 => don't do anything on I2C,
___
                              1 => start I2C access
                              0 => write byte, 1 => read byte
     D[30]
             I2C_ACTION
___
     D[29:27] RESERVED
                              set all to '0'
     D[26:24] I2C_NUM_BYTES
                              number of bytes to be read 1..4
     D[23:16] I2C ADDRESS
                              address of I2C chip
     D[15:8] I2C_REG_ADDRESS command byte for access
     D[7:0] I2C_DATA
                              data to be written
--
     Read bit definition
     -----
--
___
     D[31]
              RUNNING
                              whatever
              I2C_DONE
                              whatever
--
     D[30]
     D[29]
              ERROR RADDACK
                              no acknowledge for repeated address byte
     D[28]
              ERROR RSTART
                              generation of repeated START condition failed
                              no acknowledge for data byte
     D[27]
              ERROR DATACK
     D[26]
              ERROR CMDACK
                              no acknowledge for command byte
                              no acknowledge for address byte
     D[25]
              ERROR ADDACK
     D[24]
              ERROR START
                              generation of START condition failed
     D[23:21] reserved
                              reserved
     D[20:16] debug
                              subject to change, don't use
     D[15:8] reserved
                              reserved
     D[7:0] I2C DATA
                              result of I2C read operation
PROC_SLAVE_BUS: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      slv_data_out_o
                       <= (others => '0');
      slv no more data o <= '0';
      slv_unknown_addr_o <= '0';</pre>
                       <= '0';
      slv ack o
                         <= '0';
      i2c start
      internal_command <= '0';</pre>
      internal command d <= '0';
      i2c chipid
                              <= (others => '0');
                              <= '0';
      i2c_rw_bit
                              <= "001";
      i2c num bytes
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 108/225
       i2c_registerid
                               \leq (others => '0');
      i2c register data
                              <= (others => '0');
      i2c register value read <= (others => '0');
      slv unknown addr o
                              <= '0';
                              <= '0';
      slv no more data o
      slv data out o
                              <= (others => '0');
                              <= '0';
      i2c start
       internal command d
                              <= internal command;
       if (i2c busy = '0' and internal command d = '1') then
        internal command
                              <= '0';
        slv ack o
                              <= '0';
       elsif (i2c busy = '0' and INTERNAL COMMAND IN(31) = '1') then
        -- Internal Interface Command
        i2c rw bit
                             <= INTERNAL COMMAND IN(30);
        i2c_num_bytes
                              <= unsigned(INTERNAL_COMMAND_IN(26 downto 24));
        i2c chipid
                              <= INTERNAL_COMMAND_IN(22 downto 16);</pre>
        i2c registerid
                              <= INTERNAL COMMAND IN(15 downto 8);
        i2c_register_data
                             <= INTERNAL COMMAND IN(7 downto 0);
        i2c_start
                              <= '1';
        internal command
                              <= '1';
                             <= '0';
        slv_ack_o
       elsif (SLV_WRITE_IN = '1') then
        case SLV_ADDR_IN is
          when x"0000" =>
            if (internal command = '0' and
                I2C LOCK IN
                                 = '0' and
                                  = '0' and
                i2c_busy
                SLV_DATA_IN(31) = '1') then
                                 <= SLV_DATA_IN(30);
               i2c rw bit
              if (SLV DATA IN(29 downto 24) = "1111111") then
                i2c num bytes
                                 <= "001";
                i2c num bytes
                                 <= unsigned(SLV_DATA_IN(26 downto 24));
              end if;
              i2c chipid
                                  <= SLV DATA IN(22 downto 16);
              i2c_registerid
                                  <= SLV DATA IN(15 downto 8);
              i2c register data <= SLV DATA IN(7 downto 0);
              i2c start
                                 <= '1';
              slv ack o
                                 <= '1';
              slv_no_more_data_o <= '1';
                                 <= '0';
              slv ack o
            end if;
           when others =>
            slv_unknown_addr_o <= '1';
                                 <= '0';
            slv ack o
        end case;
       elsif (SLV_READ_IN = '1') then
        case SLV_ADDR_IN is
          when x"0000" =>
            if (internal command = '0' and
                I2C_LOCK_IN
                               = '0' and
                                 = '0') then
                i2c_busy
              slv data out o
                                 <= i2c data slave;
```

```
stdin
 Mar 09, 14 22:14
                                                                    Page 109/225
                slv_ack_o
                                   <= '1';
              else
                slv_data_out_o <= (others => '0');
                slv no more data o <= '1';
                                  <= '0';
                slv_ack_o
              end if;
            when x"0001" =>
                                   <= i2c bytes;
              slv data out o
                                   <= '1';
              slv ack o
            when others =>
              slv unknown addr o <= '1';
              slv ack o
                                   <= '0';
          end case;
        else
         slv ack o
                            <= '0';
        end if;
      end if;
    end if;
  end process PROC_SLAVE_BUS;
  -- Output Signals
  -- I2C Outputs
  sda o
                       <= (sda master
                                       and
                           sda_startstop and
                           sda_sendbyte and
                           sda readbyte
                           );
  SDA INOUT
                       <= '0' when (sda o = '0') else 'Z';
  scl o
                       <= (scl master
                           scl_startstop and
                           scl sendbyte and
                           scl_readbyte
  SCL INOUT
                       <= '0' when (scl o = '0') else 'Z';
  COMMAND BUSY OUT
                       <= command busy o;
                       <= i2c_data_internal_o;
  I2C DATA OUT
  I2C_DATA_BYTES_OUT <= i2c_data_internal_bytes_o;</pre>
  -- Slave Bus
                       <= slv_data_out_o;
  SLV DATA OUT
  SLV_NO_MORE_DATA_OUT <= slv_no_more_data_o;</pre>
  SLV_UNKNOWN_ADDR_OUT <= slv_unknown_addr_o;</pre>
 SLV ACK OUT
                    <= slv ack o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.nxyter_components.all;
```

```
stdin
 Mar 09, 14 22:14
                                                                        Page 110/225
entity nx_i2c_readbyte is
 generic (
    I2C SPEED : unsigned(11 downto 0) := x"3e8"
 port(
    CLK IN
                         : in std logic;
    RESET IN
                          : in std logic;
                         : in std logic;
    START IN
                         : in unsigned(2 downto 0);
    NUM BYTES IN
    BYTE OUT
                         : out std logic vector(31 downto 0);
    SEQUENCE DONE OUT : out std logic;
    -- I2C connections
                         : out std logic;
    SDA OUT
    SCL OUT
                          : out std_logic;
                         : in std logic
    SDA IN
    );
end entity;
architecture Behavioral of nx i2c readbyte is
 -- Send Byte
 signal sda o
                            : std logic;
 signal scl_o
                            : std_logic;
 signal i2c_start
                            : std logic;
 signal sequence_done_o
                            : std_logic;
 signal i2c_data
                            : unsigned(31 downto 0);
 signal bit ctr
                            : unsigned(3 downto 0);
 signal i2c_ack_o
signal byte_ctr
                            : std_logic;
                            : unsigned(2 downto 0);
  signal wait timer start : std logic;
 signal wait_timer_init : unsigned(11 downto 0);
  signal sequence_done_o_x : std_logic;
 signal i2c_data_x : unsigned(31 downto 0);
signal bit_ctr_x : unsigned(3 downto 0);
signal i2c_ack_o_x : std_logic;
signal byte_ctr_x : unsigned(2 downto 0);
 signal wait_timer_start_x : std_logic;
 signal wait timer init x : unsigned(11 downto 0);
 type STATES is (S_IDLE,
                  S_INIT,
                  S_INIT_WAIT,
                   S_READ_BYTE,
                   S_UNSET_SCL1,
                   S_SET_SCL1,
                   S_GET_BIT,
                   S SET SCL2,
                   S_UNSET_SCL2,
                   S_NEXT_BIT,
                   S_ACK_SET,
                   S_ACK_SET_SCL,
                   S ACK UNSET SCL,
                   S_NACK_SET,
                   S NACK SET SCL,
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 111/225
                 S_NACK_UNSET_SCL
                 );
 signal STATE, NEXT STATE: STATES;
 -- Wait Timer
 signal wait timer done
                          : std logic;
begin
 -- Timer
 timer 1: timer
   generic map(
     CTR WIDTH => 12
   port map (
     CLK IN
                    => CLK IN,
     RESET IN
                    => RESET IN,
     TIMER START IN => wait timer start,
     TIMER END IN => wait timer init,
     TIMER_DONE_OUT => wait_timer_done
     );
 PROC_READ_BYTE_TRANSFER: process(CLK_IN)
 begin
   if ( rising_edge(CLK_IN) ) then
     if ( RESET IN = '1' ) then
       sequence_done_o <= '0';</pre>
       i2c_data <= (others => '0');
       bit ctr
                        <= (others => '0');
                        <= '0';
       i2c ack o
       bvte ctr
                        <= (others => '0');
       wait_timer_start <= '0';</pre>
       wait timer init <= (others => '0');
       STATE
                        <= S IDLE;
     else
       sequence_done_o <= sequence_done_o_x;</pre>
       i2c data
                   <= i2c data x;
       bit ctr
                        <= bit ctr x;
       i2c ack o
                        <= i2c ack o x;
                      <= byte ctr x;
       byte ctr
       wait_timer_start <= wait_timer_start_x;</pre>
       wait_timer_init <= wait_timer_init_x;</pre>
       STATE
                         <= NEXT STATE;
     end if;
   end if;
 end process PROC_READ_BYTE_TRANSFER;
 PROC_READ_BYTE: process(STATE,
                          wait_timer_done,
                          bit_ctr
 begin
                       <= '1';
   sda o
                       <= '1';
   scl o
   sequence_done_o_x <= '0';</pre>
   i2c_data_x
                      <= i2c_data;
                      <= bit ctr;
   bit ctr x
                      <= i2c_ack_o;
   i2c_ack_o_x
   byte_ctr_x
                      <= byte_ctr;
   wait timer init x <= wait timer init;</pre>
```

```
stdin
                                                                     Page 112/225
Mar 09, 14 22:14
  wait_timer_start_x <= '0';</pre>
  case STATE is
    when S IDLE =>
      if (START_IN = '1') then
                            <= '()';
         sda o
                            <= '0';
         scl o
         i2c data x
                            <= (others => '0');
         byte ctr x
                            <= (others => '0');
         NEXT STATE
                            <= S INIT;
       else
         NEXT STATE
                             <= S IDLE;
       end if;
       -- INIT
     when S INIT =>
       sda o
                             <= '0';
                             <= '0';
       scl o
       wait_timer_start_x <= '1';</pre>
       wait_timer_init_x <= I2C_SPEED srl 1;</pre>
      NEXT STATE
                             <= S_INIT_WAIT;
     when S_INIT_WAIT =>
                             <= '0';
       sda_o
                             <= '0';
       scl o
       if (wait_timer_done = '0') then
        NEXT STATE
                            <= S INIT WAIT;
       else
        NEXT_STATE
                             <= S_READ_BYTE;
       end if;
       -- I2C Read byte
     when S_READ_BYTE =>
       scl o
                             <= '0';
                             <= x"7";
       bit_ctr_x
       byte ctr x
                             <= byte ctr + 1;
       wait_timer_start_x <= '1';</pre>
       wait timer init x <= I2C SPEED srl 2;</pre>
       NEXT STATE
                            <= S UNSET SCL1;
     when S UNSET SCL1 =>
       scl o <= '0';
       if (wait_timer_done = '0') then
         NEXT STATE
                             <= S UNSET SCL1;
       else
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
         NEXT STATE
                            <= S_SET_SCL1;
       end if;
     when S_SET_SCL1 =>
       if (wait_timer_done = '0') then
         NEXT STATE
                             <= S SET SCL1;
       else
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
         NEXT_STATE
                            <= S_GET_BIT;
       end if;
     when S_GET_BIT =>
       i2c_data_x(0)
                                <= SDA_IN;
       i2c data x(31 downto 1) <= i2c data(30 downto 0);
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 113/225
       NEXT_STATE
                                <= S_SET_SCL2;
     when S SET SCL2 =>
       if (wait timer done = '0') then
        NEXT_STATE <= S_SET_SCL2;</pre>
       else
         wait timer start x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
        NEXT STATE
                           <= S UNSET SCL2;
       end if;
     when S UNSET SCL2 =>
                            <= '0';
       scl o
       if (wait timer done = '0') then
        NEXT STATE <= S UNSET SCL2;
       else
        NEXT STATE
                         <= S NEXT BIT;
       end if;
     when S_NEXT_BIT =>
       scl_o
                            <= '0';
       if (bit ctr > 0) then
        bit_ctr_x
                       <= bit_ctr - 1;
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
         NEXT_STATE
                          <= S UNSET SCL1;
       else
         if (byte_ctr < NUM_BYTES_IN) then
           wait_timer_start_x <= '1';</pre>
           wait_timer_init_x <= I2C_SPEED srl 2;</pre>
           NEXT STATE
                           <= S ACK SET;
         else
           wait_timer_start_x <= '1';</pre>
           wait timer init x <= I2C SPEED srl 2;</pre>
          NEXT_STATE
                          <= S_NACK_SET;
         end if;
       end if;
       -- I2C Send ACK (ACK) Sequence to tell client to read next byte
     when S ACK SET =>
                            <= '0';
       sda o
                            <= '0';
       scl_o
       if (wait_timer_done = '0') then
        NEXT STATE
                          <= S ACK SET;
       else
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 1;</pre>
        NEXT STATE
                      <= S_ACK_SET_SCL;
       end if;
     when S_ACK_SET_SCL =>
                            <= '0';
       sda_o
       if (wait_timer_done = '0') then
        NEXT_STATE
                      <= S_ACK_SET_SCL;
       else
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
        NEXT STATE
                        <= S_ACK_UNSET_SCL;</pre>
       end if;
     when S_ACK_UNSET_SCL =>
       sda o
                            <= '0';
```

```
stdin
 Mar 09. 14 22:14
                                                                   Page 114/225
        scl o
                            <= '0';
        if (wait_timer_done = '0') then
         NEXT STATE
                           <= S ACK UNSET SCL;
        else
         NEXT_STATE
                            <= S_READ_BYTE;
        end if;
        -- I2C Send NOT ACK (NACK) Sequence to tell client to release the bus
      when S NACK SET =>
        scl o
                            <= '0';
        if (wait_timer_done = '0') then
         NEXT STATE
                          <= S NACK SET;
        else
         wait timer start x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 1;</pre>
         NEXT STATE <= S NACK SET SCL;
        end if;
      when S_NACK_SET_SCL =>
       if (wait_timer_done = '0') then
         NEXT STATE
                      <= S_NACK_SET_SCL;
        else
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
         NEXT STATE <= S NACK UNSET SCL;
        end if;
      when S_NACK_UNSET_SCL =>
                           <= '0';
       scl_o
        if (wait_timer_done = '0') then
         NEXT STATE
                         <= S NACK UNSET SCL;
         sequence_done_o_x <= '1';
         NEXT STATE
                         <= S IDLE;
        end if;
    end case;
  end process PROC READ BYTE;
  -- Output Signals
 SEQUENCE DONE OUT <= sequence done o;
 BYTE OUT
               <= i2c data;
 -- I2c Outputs
 SDA_OUT <= sda_o;
 SCL OUT <= scl o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;
library work;
use work.nxyter_components.all;
entity nx_i2c_sendbyte is
 generic (
    I2C SPEED : unsigned(11 downto 0) := x"3e8"
```

```
stdin
Mar 09. 14 22:14
                                                                 Page 115/225
   );
 port(
   CLK IN
                       : in std logic;
   RESET IN
                       : in std logic;
   START IN
                       : in std logic;
                       : in std logic vector(7 downto 0);
   BYTE IN
   SEOUENCE DONE OUT
                       : out std logic;
   -- I2C connections
                       : out std_logic;
   SDA OUT
                       : out std logic;
   SCL OUT
   SDA IN
                       : in std_logic;
   SCL IN
                       : in std_logic;
   ACK OUT
                       : out std logic
   );
end entity;
architecture Behavioral of nx i2c sendbyte is
 -- Send Byte
 signal sda o
                          : std logic;
 signal scl_o
                          : std_logic;
                          : std_logic;
 signal i2c_start
 signal sequence_done_o
                         : std_logic;
 signal i2c_byte
                          : unsigned(7 downto 0);
 signal bit_ctr
                          : unsigned(3 downto 0);
 signal i2c_ack_o
                         : std_logic;
 signal wait_timer_start : std_logic;
                         : unsigned(11 downto 0);
 signal wait timer init
 signal stretch_timeout
                         : unsigned(19 downto 0);
 signal sequence done o x : std logic;
 signal i2c_byte_x : unsigned(7 downto 0);
                         : unsigned(3 downto 0);
 signal bit ctr x
 signal i2c ack o x
                        : std logic;
 signal wait timer start x : std logic;
 signal wait_timer_init_x : unsigned(11 downto 0);
 signal stretch timeout x : unsigned(19 downto 0);
 type STATES is (S_IDLE,
                 S INIT.
                 S INIT WAIT,
                 S_SEND_BYTE,
                 S SET SDA,
                 S_SET_SCL,
                 S_UNSET_SCL,
                 S_NEXT_BIT,
                 S_ACK_UNSET_SCL,
                 S ACK SET SCL,
                 S_STRETCH_CHECK_SCL,
                 S STRETCH WAIT SCL.
                 S_STRETCH_PAUSE,
                 S_ACK_STORE,
                 S_ACK_UNSET_SCL2
                 );
 signal STATE, NEXT_STATE : STATES;
 -- Wait Timer
```

```
stdin
 Mar 09, 14 22:14
                                                                      Page 116/225
 signal wait_timer_done
                            : std_logic;
begin
  -- Timer
 timer_1: timer
    generic map (
     CTR WIDTH => 12
   port map (
      CLK IN
                     => CLK IN,
      RESET IN
                    => RESET IN,
     TIMER START IN => wait timer start,
     TIMER END IN => wait timer init,
     TIMER DONE OUT => wait timer done
 PROC SEND BYTE TRANSFER: process(CLK IN)
    if( rising_edge(CLK_IN) ) then
     if( RESET IN = '1' ) then
        sequence_done_o <= '0';</pre>
        bit_ctr <= (others => '0');
                       <= '0';
        i2c ack o
        wait_timer_start <= '0';</pre>
        wait_timer_init <= (others => '0');
        stretch timeout <= (others => '0');
        STATE
                       <= S_IDLE;
      else
        sequence done o <= sequence done o x;
        i2c_byte <= i2c_byte_x;
       bit_ctr <= bit_ctr_x;
i2c_ack_o <= i2c_ack_o_x;
        wait timer start <= wait timer start x;</pre>
        wait timer init <= wait timer init x;</pre>
        stretch timeout <= stretch timeout x;</pre>
        STATE
                         <= NEXT STATE;
      end if;
    end if;
  end process PROC SEND BYTE TRANSFER;
 PROC SEND BYTE: process(STATE,
                          START IN,
                          wait_timer_done,
                          bit_ctr
                          )
 begin
                       <= '1';
    sda o
   scl_o
                       <= '1';
    sequence_done_o_x <= '0';</pre>
    i2c_byte_x
                       <= i2c_byte;
   bit_ctr_x
                       <= bit ctr;
                       <= i2c_ack_o;
    i2c_ack_o_x
    wait_timer_start_x <= '0';</pre>
    wait_timer_init_x <= wait_timer_init;</pre>
    stretch_timeout_x <= stretch_timeout;</pre>
    case STATE is
     when S IDLE =>
       if (START_IN = '1') then
          sda o
                                <= '0';
```

Mar 09, 14 22:14	stdin	Page 117/225
scl_o	<= '0';	
i2c_byte_x	<= BYTE_IN;	
NEXT_STATE	<= S_INIT;	
else		
NEXT_STATE	<= S_IDLE;	
end if;		
INIT		
when S_INIT =>		
sda_o	<= '0';	
scl_o	<= '0';	
wait_timer_start_x	<= '1';	
	<= I2C_SPEED srl 1	L;
NEXT_STATE	<= S_INIT_WAIT;	
allow C. TNITE MATE		
when S_INIT_WAIT =>	<= '0';	
sda_o scl_o	<= '0';	
if (wait_timer_done =		
NEXT_STATE	<= S_INIT_WAIT;	
else		
NEXT STATE	<= S_SEND_BYTE;	
end if;	- -	
TOO 0 11 .		
I2C Send byte		
when S_SEND_BYTE =>	<= '0';	
sda_o scl_o	<= '0';	
bit_ctr_x	<= x"7";	
wait_timer_start_x		
wait_timer_init_x	<= '1'; <= I2C_SPEED srl 2	2;
NEXT_STATE	<= S_SET_SDA;	
when S_SET_SDA => sda_o	<= i2c_byte(7);	
scl_o	<= '0';	
if (wait_timer_done =		
NEXT_STATE	<= S_SET_SDA;	
else	2_221_2211	
wait_timer_start_x		
wait_timer_init_x	<= I2C_SPEED srl 1	L;
NEXT_STATE	<= S_SET_SCL;	
end if;		
when S_SET_SCL =>		
sda_o	<= i2c_byte(7);	
if (wait_timer_done =		
NEXT_STATE	<= S_SET_SCL;	
else		
wait_timer_start_x		
wait_timer_init_x NEXT_STATE	<= I2C_SPEED srl 2	2;
	<= S_UNSET_SCL;	
end if;		
when S_UNSET_SCL =>		
sda_o	<= i2c_byte(7);	
scl_o	<= '0';	
<pre>if (wait_timer_done =</pre>		
NEXT_STATE	<= S_UNSET_SCL;	
else	. C MENT DIE	
NEXT_STATE	<= S_NEXT_BIT;	
end if;		

```
stdin
Mar 09, 14 22:14
                                                                   Page 118/225
    when S_NEXT_BIT =>
                              <= i2c byte(7);
       sda o
       scl o
                              <= '0';
       if (bit_ctr > 0) then
        bit ctr x
                              <= bit ctr - 1;
        i2c byte x
                              <= i2c byte sll 1;
        wait_timer_start_x
                              <= '1';
                              <= I2C_SPEED srl 2;
        wait_timer_init_x
        NEXT STATE
                              <= S SET SDA;
       else
        wait timer start x <= '1';</pre>
        wait_timer_init_x
                              <= I2C_SPEED srl 2;
        NEXT STATE
                              <= S_ACK_UNSET_SCL;
       end if;
       -- Get Slave ACK bit
    when S ACK UNSET SCL =>
      scl_o
                              <= '0';
       if (wait_timer_done = '0') then
        NEXT_STATE
                              <= S_ACK_UNSET_SCL;
       else
        wait_timer_start_x <= '1';</pre>
        wait_timer_init_x <= I2C_SPEED srl 2;</pre>
        NEXT STATE
                              <= S_ACK_SET_SCL;
       end if;
    when S_ACK_SET_SCL =>
      if (wait_timer_done = '0') then
        NEXT_STATE
                              <= S_ACK_SET_SCL;
       else
        NEXT_STATE
                              <= S_STRETCH_CHECK_SCL;
       end if;
       -- Check for Clock Stretching
     when S STRETCH CHECK SCL =>
      if (SCL_IN = '1') then
        wait timer start x <= '1';</pre>
        wait_timer_init_x
                              <= I2C_SPEED srl 2;
        NEXT STATE
                              <= S ACK STORE;
       else
        stretch_timeout_x
                              <= (others => '0');
        NEXT STATE
                              <= S_STRETCH_WAIT_SCL;
      end if;
     when S_STRETCH_WAIT_SCL =>
      if (SCL_IN = '0') then
        if (stretch_timeout < x"30d40") then
           stretch_timeout_x <= stretch_timeout + 1;</pre>
          NEXT_STATE
                              <= S_STRETCH_WAIT_SCL;
        else
                              <= '0';
          i2c_ack_o_x
          wait_timer_start_x <= '1';</pre>
          wait_timer_init_x <= I2C_SPEED srl 2;</pre>
          NEXT_STATE
                              <= S_ACK_UNSET_SCL;
        end if;
       else
        wait_timer_start_x <= '1';</pre>
        wait timer init x
                              <= I2C SPEED srl 2;
        NEXT_STATE
                              <= S_STRETCH_PAUSE;
       end if;
```

```
stdin
 Mar 09. 14 22:14
                                                                Page 119/225
       when S_STRETCH_PAUSE =>
       if (wait_timer_done = '0') then
                             <= S STRETCH PAUSE;
         NEXT STATE
       else
         end if;
       -- Read ACK Bit
     when S ACK STORE =>
       if (wait timer done = '0') then
         NEXT STATE
                             <= S ACK STORE;
       else
         i2c ack o x
                           <= not SDA IN;
         wait_timer_start_x <= '1';</pre>
         wait_timer_init_x <= I2C_SPEED srl 2;</pre>
         NEXT STATE
                         <= S ACK UNSET SCL2;
       end if;
     when S_ACK_UNSET_SCL2 =>
                 <= '0';
       scl o
       if (wait_timer_done = '0') then
         NEXT_STATE <= S_ACK_UNSET_SCL2;</pre>
         sequence_done_o_x <= '1';</pre>
         NEXT STATE
                            <= S IDLE;
       end if;
   end case;
 end process PROC SEND BYTE;
 SEQUENCE DONE OUT <= sequence done o;
 ACK OUT
              <= i2c ack o;
 -- I2c Outputs
 SDA OUT <= sda o;
 SCL_OUT <= scl_o;</pre>
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter_components.all;
entity nx_i2c_startstop is
 generic (
   I2C_SPEED : unsigned(11 downto 0) := x"3e8"
   );
 port(
                       : in std_logic;
   CLK_IN
   RESET_IN
                       : in std_logic;
                       : in std_logic; -- Start Sequence
   START_IN
                       : in std_logic; -- '1' -> Start, '0'-> Stop
   SELECT_IN
   SEQUENCE_DONE_OUT : out std_logic;
```

```
stdin
 Mar 09, 14 22:14
                                                                      Page 120/225
    -- I2C connections
                         : out std logic;
    SDA OUT
    SCL OUT
                       : out std logic;
                         : out std_logic
    NREADY_OUT
end entity;
architecture Behavioral of nx i2c startstop is
 -- I2C Bus
 signal sda o
                           : std logic;
                           : std_logic;
 signal scl o
 signal sequence_done_o : std_logic; signal wait_timer_start : std_logic;
 signal wait_timer_start_x : std_logic;
 signal sequence done o x : std logic;
 type STATES is (S_IDLE,
                  S START,
                  S WAIT START 1,
                  S_WAIT_START_2,
                  S_WAIT_START_3,
                  S_STOP,
                  S_WAIT_STOP_1,
                  S_WAIT_STOP_2,
                  S_WAIT_STOP_3
                  );
 signal STATE, NEXT STATE : STATES;
 -- I2C Timer
 signal wait timer done : std logic;
begin
 -- Timer
 timer_static_1: timer_static
    generic map (
     CTR WIDTH => 12,
      CTR_END => to_integer(I2C_SPEED srl 1)
    port map (
     CLK IN
                    => CLK_IN,
                 => RESET IN,
     RESET IN
     TIMER_START_IN => wait_timer_start,
     TIMER_DONE_OUT => wait_timer_done
     );
 PROC_START_STOP_TRANSFER: process(CLK_IN)
 begin
   if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
        wait_timer_start <= '0';</pre>
        sequence_done_o <= '0';</pre>
        STATE <= S_IDLE;
        wait timer start <= wait timer start x;
        sequence_done_o <= sequence_done_o_x;</pre>
        STATE
                       <= NEXT_STATE;
      end if;
```

Mar 09, 14 22:14	stdin	Page 121/225
end if; end process PROC_START_S	TOP_TRANSFER;	
PROC_START_STOP: process		
	'1'; '1'; '0';	
<pre>case STATE is when S_IDLE => if (START_IN = '1' if (SELECT_IN = NEXT_STATE <= else sda_o <= scl_o <= NEXT_STATE <= end if; else NEXT_STATE <= S_end if;</pre>	'1') then S_START; '0'; '0'; S_STOP;	
I2C START Seque when S_START => wait_timer_start_x NEXT_STATE		
when S_WAIT_START_1 if (wait_timer_don	<pre>de = '0') then <= S_WAIT_START_1;</pre>	
<pre>when S_WAIT_START_2 sda_o if (wait_timer_don NEXT_STATE <= S_ else wait_timer_start NEXT_STATE end if;</pre>	<pre><= '0'; te = '0') then WAIT_START_2;</pre>	
when S_WAIT_START_3 sda_o scl_o if (wait_timer_don NEXT_STATE else sequence_done_o_ NEXT_STATE end if;	<pre><= '0'; <= '0'; te = '0') then <= S_WAIT_START_3;</pre>	
I2C STOP Sequen when S_STOP =>	ce	

```
stdin
 Mar 09, 14 22:14
                                                                  Page 122/225
                            <= '0';
        sda_o
                            <= '0';
        scl_o
        wait_timer_start_x <= '1';</pre>
       NEXT STATE
                            <= S_WAIT_STOP_1;
      when S_WAIT_STOP_1 =>
        sda o
                            <= '0';
        scl o
                           <= '0';
       if (wait_timer_done = '0') then
         NEXT STATE <= S WAIT STOP 1;
        else
         wait timer start x <= '1';</pre>
         NEXT_STATE <= S_WAIT_STOP_2;</pre>
        end if;
     when S_WAIT_STOP_2 =>
       sda_o
                  <= '0';
       if (wait_timer_done = '0') then
         NEXT_STATE <= S_WAIT_STOP_2;</pre>
       else
         wait_timer_start_x <= '1';</pre>
         NEXT STATE <= S WAIT STOP 3;
       end if;
      when S_WAIT_STOP_3 =>
       if (wait_timer_done = '0') then
         NEXT_STATE <= S_WAIT_STOP_3;</pre>
         sequence_done_o_x <= '1';</pre>
         NEXT_STATE <= S_IDLE;</pre>
        end if;
   end case;
 end process PROC_START_STOP;
 -- Output Signals
 SEQUENCE_DONE_OUT <= sequence_done_o;</pre>
 SDA OUT <= sda o;
 SCL OUT
                 <= scl o;
 NREADY_OUT <= '0';
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.trb_net_std.all;
use work.trb_net_components.all;
use work.nxyter_components.all;
entity nx_setup is
 port(
    CLK IN
                      : in std logic;
    RESET_IN
                      : in std_logic;
                        : out std_logic_vector(31 downto 0);
    I2C COMMAND OUT
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 123/225
   I2C_COMMAND_BUSY_IN : in std_logic;
                        : in std_logic_vector(31 downto 0);
   I2C DATA IN
                        : in std logic vector(31 downto 0);
   I2C DATA BYTES IN
   I2C LOCK_OUT
                        : out std logic;
                        : out std_logic;
   I2C_ONLINE_OUT
   I2C REG RESET IN
                        : in std logic;
   SPI COMMAND OUT
                        : out std logic vector(31 downto 0);
   SPI COMMAND BUSY IN : in std logic;
                        : in std logic vector(31 downto 0);
   SPI DATA IN
   SPI LOCK OUT
                        : out std logic;
   -- Internal Register Read
   INT READ IN
                 : in std logic;
   INT ADDR IN
                        : in std logic vector(15 downto 0);
   INT ACK OUT
                       : out std logic;
   INT DATA OUT
                       : out std logic vector(31 downto 0);
   -- Slave bus
   SLV READ IN
                        : in std_logic;
   SLV WRITE IN
                        : in std logic;
   SLV DATA OUT
                        : out std logic vector(31 downto 0);
   SLV_DATA_IN
                        : in std_logic_vector(31 downto 0);
   SLV_ADDR_IN
                        : in std_logic_vector(15 downto 0);
   SLV_ACK OUT
                       : out std logic;
   SLV_NO_MORE_DATA_OUT : out std_logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   -- Debug Line
   DEBUG OUT
                        : out std_logic_vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx setup is
 -- I2C Command Multiplexer
 signal i2c lock 0
                        : std logic;
 signal i2c lock 1
                        : std logic;
 signal i2c lock 2
                       : std logic;
 signal i2c lock 3
                       : std logic;
 signal i2c lock 4
                       : std logic;
 signal i2c_command
                       : std_logic_vector(31 downto 0);
 -- Send I2C Command
 type I2C_STATES is (I2C_IDLE,
                     12C_WAIT_BUSY_HIGH,
                     I2C_WAIT_BUSY_LOW
                     );
 signal I2C_STATE : I2C_STATES;
 signal i2c_command_o
                                : std_logic_vector(31 downto 0);
 signal i2c command busy o
                                : std logic;
 signal i2c_command_done
                                : std_logic;
 signal i2c error
                                : std logic;
 signal i2c data
                                : std_logic_vector(31 downto 0);
 signal i2c_data_bytes
                                : std_logic_vector(31 downto 0);
 -- I2C Register Ram
 type i2c_ram_t is array(0 to 45) of std_logic_vector(7 downto 0);
 signal i2c_ram
                                : i2c_ram_t;
```

```
stdin
Mar 09. 14 22:14
                                                                Page 124/225
type register_access_type_t is array(0 to 45) of std_logic_vector(1 downto 0);
constant register_access_type : register_access_type_t :=
  -- I2C RAM Handler
signal ram index 0
                              : integer;
signal ram index 1
                              : integer;
signal ram data 0
                              : std logic vector(7 downto 0);
signal ram data 1
                              : std logic vector(7 downto 0);
signal ram write 0
                              : std logic;
signal ram write 1
                              : std_logic;
signal do write
                              : std logic;
-- DAC Trim FIFO RAM Handler
type dac_ram_t is array(0 to 128) of std_logic_vector(5 downto 0);
signal dac ram
                             : dac ram t;
signal dac_ram_write_0
                              : std_logic;
signal dac_ram_write_1
                             : std_logic;
signal dac ram index 0
                             : integer;
signal dac_ram_index_1
                              : integer;
signal dac ram data 0
                              : std logic vector(5 downto 0);
signal dac ram data 1
                              : std logic vector(5 downto 0);
signal do_dac_write
                              : std_logic;
-- ADC RAM Handler
type adc_ram_t is array(0 to 3) of std_logic_vector(12 downto 0);
signal adc_ram
                              : adc_ram_t;
-- Token Handler
signal i2c read token
                              : std logic vector(45 downto 0);
signal i2c write token
                              : std logic vector(45 downto 0);
-- I2C Registers IO Handler
type T STATES is (T IDLE TOKEN,
                  T WRITE I2C REGISTER,
                  T_WAIT_I2C_WRITE_DONE,
                  T_READ_I2C_REGISTER,
                  T WAIT I2C READ DONE,
                 T_READ_I2C_STORE_MEM,
                  T_NEXT_TOKEN
                  );
signal T_STATE : T_STATES;
signal nx_i2c_command
                              : std_logic_vector(31 downto 0);
                              : unsigned(5 downto 0);
signal token ctr
signal next_token
                              : std_logic;
signal read_token_clear
                              : std_logic_vector(45 downto 0);
                              : std_logic_vector(45 downto 0);
signal write token clear
signal i2c_lock_0_clear
                              : std_logic;
-- DAC Token Handler
signal dac read token
                              : std_logic_vector(128 downto 0);
signal dac_write_token
                              : std_logic_vector(128 downto 0);
```

Mar 09, 14 22:14	stdin	Page 125/225
Read DAC I2C Registers type DR_STATES is (DR_IDLE,	BACK, EGISTER,	
signal DR_STATE, DR_STATE_RE	TURN : DR_STATES;	
signal dac_read_i2c_command signal r_fifo_ctr signal dac_read_token_clear signal next_token_dac_r signal i2c_lock_1_clear	<pre>: unsigned(7 downto 0); : std_logic_vector(128 downto 0);</pre>	
Write DAC I2C Registers type DW_STATES is (DW_IDLE,	BACK, EGISTER,	
signal DW_STATE, DW_STATE_RE	TURN : DW_STATES;	
gional w fifo ctr	<pre>: std_logic_vector(31 downto 0); : unsigned(7 downto 0); : std_logic_vector(128 downto 0); : std_logic; : std_logic;</pre>	
ADC Token Handler signal adc_read_token	: std_logic_vector(3 downto 0);	
ADC_WAIT	_I2C_REGISTER, '_I2C_READ_DONE, '_I2C_STORE_MEM,	
signal ADC_STATE : ADC_STATE	s;	
signal adc token ctr	<pre>: std_logic_vector(3 downto 0); : std_logic;</pre>	
I2C Online Check type R_STATES is (R_TIMER_RE R_IDLE, R_READ_DUM R_WAIT_DON);	MY,	
signal R_STATE : R_STATES;		
signal wait_timer_start signal wait_timer_done signal i2c_online_command	<pre>: std_logic; : std_logic; : std_logic_vector(31 downto 0);</pre>	

<pre>id_logic; id_logic; id_logic_vector(45 downto 0); id_logic_vector(45 downto 0); id_logic_vector(128 downto</pre>	0: negative
<pre>id_logic; id_logic; id_logic_vector(45 downto 0); id_logic_vector(45 downto 0); id_logic_vector(128 downto 0); id_logic_vector(128 downto 0); id_logic_vector(128 downto 0); id_logic_vector(3 downto 0);</pre>	0: negative
<pre>cd_logic; cd_logic; cd_logic; cd_logic; cd_logic; cd_logic; cd_logic; cd_logic_vector(45 downto 0); cd_logic_vector(45 downto 0); cd_logic_vector(128 downto 0); cd_logic_vector(128 downto 0); cd_logic_vector(128 downto 0);</pre>	0: negative
<pre>cd_logic; cd_logic_vector(45 downto 0); cd_logic_vector(45 downto 0); cd_logic_vector(128 downto 0); cd_logic_vector(128 downto 0); cd_logic_vector(3 downto 0);</pre>	0: negative
<pre>cd_logic_vector(128 downto 0); cd_logic_vector(128 downto 0); cd_logic_vector(3 downto 0);</pre>	0: negative
<pre>:d_logic_vector(128 downto 0); :d_logic_vector(3 downto 0);</pre>	0: negative
	0: negative
d_logic_vector(1 downto 0); d_logic_vector(1 downto 0);	0: negative
<pre>d_logic_vector(1 downto 0); d_logic_vector(1 downto 0); d_logic_vector(1 downto 0); d_logic_vector(1 downto 0); d_logic_vector(2 downto 0); d_logic;</pre>	-
nand_busy_o; or; land_done; leen_dac_r or leen_dac_w; lite_memory; lite_oclear; lite_lear; lite_clear; lite_clear; lite_clear; lite_clear; lite_clear; lite_o;	
i	MAND_BUSY_IN; mand_busy_o; or; mand_done; ken_dac_r or ken_dac_w; ate_memory; k_O_clear; k_1_clear; k_2_clear; ine_o; k_1; k_2; k_4_clear;

```
stdin
Mar 09, 14 22:14
                                                    Page 127/225
PROC_I2C_RAM: process(CLK_IN)
begin
  if ( rising edge (CLK IN) ) then
   if( RESET IN = '1' ) then
     i2c_write_token_r <= (others => '0');
     do write
                    <= '0';
     i2c_write_token_r <= (others => '0');
     do write <= '0';
     if (ram_write_0 = '1') and
        register access type(ram index 0)(0) = '1') then
       i2c ram(ram index 0) <= ram data 0;
       i2c write token r(ram index 0) <= '1';
                  <= '1';
       do write
     elsif (ram write 1 = '1'
                                          and
          register_access_type(ram_index_1)(0) = '1' and
           i2c write token(ram index 1) = '0') then
      i2c ram(ram index 1) <= ram data 1;</pre>
                               <= '1';
       do write
     elsif (nxyter_polarity(1) = '1') then
      elsif (nxyter_clock(1) = '1') then
       i2c_ram(33)(3) <= nxyter_clock(0);
      i2c_write_token_r(33) <= '1';
       do write
                               <= '1';
     elsif (nxyter testtrigger(1) = '1') then
      <= '1';
       do write
     elsif (nxyter_testpulse(1) = '1') then
      <= '1';
       do write
     elsif (nxyter_testchannels(2) = '1') then
       do write
                              <= '1';
     end if;
   end if;
  end if;
end process PROC_I2C_RAM;
PROC_DAC_RAM: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
   if( RESET_IN = '1' ) then
     dac_write_token_r <= (others => '0');
     do dac write
                     <= '0';
     dac_write_token_r <= (others => '0');
     do_dac_write
                 <= <sup>'</sup>0';
     if (dac_ram_write_0 = '1') then
       dac ram(dac ram index 0)
                                  <= dac ram data 0;
       dac_write_token_r(dac_ram_index_0) <= '1';</pre>
                                  <= '1';
       do_dac_write
     elsif (dac ram write 1 = '1' and
```

```
stdin
Mar 09. 14 22:14
                                                            Page 128/225
            dac_write_token(dac_ram_index_1) = '0') then
       dac_ram(dac_ram_index_1) <= dac_ram_data_1;</pre>
                                       <= '1';
       do dac write
      end if;
    end if;
  end if;
end process PROC DAC RAM;
PROC I2C COMMAND MULTIPLEXER: process(CLK IN)
  variable locks : std logic vector(4 downto 0) := (others => '0');
  if (rising edge (CLK IN) ) then
    if( RESET IN = '1' ) then
     i2c_lock_0 <= '0';
                  <= '0';
      i2c_lock_1
                  <= '0';
      i2c lock 2
                   <= '0';
     i2c lock 3
                   <= '0';
     i2c_lock_4
     i2c_command <= (others => '0');
    else
     i2c command <= (others => '0');
     locks
                    := i2c_lock_4 & i2c_lock_3 &
                     i2c lock 2 & i2c lock 1 &
                       i2c_lock_0;
      -- Clear Locks
     if (i2c_lock_0_clear = '1') then
      i2c lock 0
      end if;
     if (i2c_lock_1_clear = '1') then
      i2c lock 1 <= '0';
      end if;
     if (i2c lock 2 clear = '1') then
      i2c lock 2
                       <= '0';
      end if;
      if (i2c lock 3 clear = '1') then
      i2c lock 3 <= '0';
      if (i2c\_lock\_4\_clear = '1') then
      i2c_lock_4 <= '0';
      end if;
      if (i2c_command_busy_o = '0') then
       if (nx_i2c_command(31) = '1'
           ((locks and "11110") = "00000") and
           i2c\_lock\_0\_clear = '0') then
         i2c_command <= nx_i2c_command;
i2c_lock_0 <= '1';
         i2c lock 0
        elsif (dac_write_i2c_command(31) = '1'
              ((locks and "11011") = "00000") and
              i2c lock 2 clear
                                   = '0') then
         elsif (dac_read_i2c_command(31) = '1'
              ((locks and "11101") = "00000") and
              i2c_lock_1_clear
                                   = '0') then
         i2c_command <= dac_read_i2c_command;
         i2c_lock_1
                         <= '1';
       elsif (i2c_online_command(31) = '1'
              ((locks and "10111") = "00000") and
```

```
stdin
Mar 09, 14 22:14
                                                          Page 129/225
                                = '0') then
             i2c_lock_3_clear
         i2c_command <= i2c_online_command;</pre>
                        <= '1';
         i2c lock 3
        elsif (adc_i2c_command(31) = '1'
              ((locks and "01111") = "00000") and
             i2c_lock_4_clear = '0') then
         i2c_command <= adc_i2c_command;
         i2c lock 4
                        <= '1';
       end if;
      end if;
    end if;
  end if;
end process PROC I2C COMMAND MULTIPLEXER;
PROC SEND I2C COMMAND: process(CLK IN)
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET IN = '1' ) then
      i2c command o
                   \leq (others => '0');
      i2c_command_busy_o <= '0';
      i2c_command_done <= '0';
                      <= '0';
      i2c error
      i2c data
                      <= (others => '0');
      i2c_data_bytes <= (others => '0');
      I2C STATE
                      <= I2C IDLE;
    else
      i2c command o
                       <= (others => '0');
      i2c_command_busy_o <= '1';
      i2c_command_done <= '0';
      i2c error
                       <= '0';
      case I2C STATE is
       when I2C IDLE =>
         if (i2c\_command(31) = '1') then
           i2c command o <= i2c command;
           I2C STATE
                          <= I2C WAIT BUSY HIGH;
           i2c command busy o <= '0';
           I2C STATE <= I2C IDLE;
         end if;
        when I2C WAIT BUSY HIGH =>
         if (I2C COMMAND BUSY IN = '0') then
           else
           T2C STATE
                        <= I2C_WAIT_BUSY_LOW;
         end if;
       when I2C WAIT BUSY LOW =>
         if (I2C_COMMAND_BUSY_IN = '1') then
          I2C_STATE <= I2C_WAIT_BUSY_LOW;</pre>
         else
           if (i2c_data(29 downto 24) = "000000") then
            i2c error <= '0';
           else
            i2c error
                         <= '1';
           end if;
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 130/225
            I2C_STATE
                                <= I2C IDLE;
          end if;
      end case;
    end if;
  end if;
end process PROC SEND I2C COMMAND;
PROC I2C TOKEN HANDLER: process(CLK IN)
  variable read token mask : std logic vector(45 downto 0) := (others => '1');
  if (rising edge (CLK IN) ) then
    if ( RESET IN = '1' ) then
      i2c_read_token <= (others => '0');
      i2c_write_token <= (others => '0');
      if (i2c ram(32)(3) = '1') then
        read_token_mask(15 downto 0) := (others => '0');
        read_token_mask(45 downto 16) := (others => '1');
        read token mask
                            := (others => '1');
      end if;
      -- Write Token
      if (unsigned(i2c_write_token_r) /= 0) then
        i2c write token <= i2c write token or i2c write token r;
      elsif (unsigned(write_token_clear) /= 0) then
        i2c write_token <= i2c_write_token and (not write_token_clear);</pre>
      end if;
      -- Read Token
      if (i2c update memory = '1') then
        i2c read token <= read token mask;
      elsif (unsigned(i2c read token r) /= 0) then
        i2c read token <= (i2c read token or i2c read token r) and
                           read token mask;
      elsif (unsigned(read token clear) /= 0) then
        i2c_read_token <= i2c_read_token and (not read_token_clear);</pre>
      end if;
    end if;
  end if;
end process PROC I2C TOKEN HANDLER;
PROC_DAC_TOKEN_HANDLER: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET IN = '1' ) then
      dac_read_token <= (others => '0');
      dac write token <= (others => '0');
      -- Write Token
      if (unsigned(dac_write_token_r) /= 0) then
        dac write token <= dac write token or dac write token r;
      elsif (unsigned(dac_write_token_clear) /= 0) then
        dac_write_token <= dac_write_token and (not dac_write_token_clear);</pre>
      end if;
      -- Read Token
      if (i2c_update_memory = '1') then
        dac read token <= (others => '1');
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 131/225
       elsif (unsigned(dac_read_token_r) /= 0) then
         dac_read_token <= dac_read_token or dac_read_token_r;</pre>
       elsif (unsigned(dac read token clear) /= 0) then
         dac read token <= dac read token and (not dac read token clear);
       end if;
     end if;
   end if;
 end process PROC_DAC_TOKEN_HANDLER;
 PROC_ADC_TOKEN_HANDLER: process(CLK_IN)
begin
  if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
       adc read token
                          <= (others => '0');
     else
       -- Read Token
       if (i2c update memory = '1') then
         adc read token <= (others => '1');
       elsif (unsigned(adc_read_token_r) /= 0) then
         adc_read_token <= (adc_read_token or adc_read_token_r);</pre>
       elsif (unsigned(adc read token clear) /= 0) then
         adc_read_token <= adc_read_token and (not adc_read_token_clear);</pre>
       end if;
     end if;
   end if;
 end process PROC_ADC_TOKEN_HANDLER;
 PROC I2C REGISTERS HANDLER: process(CLK IN)
  variable index : integer := 0;
begin
  if (rising edge (CLK IN)) then
     if ( RESET IN = '1' ) then
       nx i2c command
                                <= (others => '0');
       token ctr
                                <= (others => '0');
       next token
                                <= '0';
       read_token_clear
                                <= (others => '0');
       write token clear
                                <= (others => '0');
       ram write 1
                                <= '0';
       i2c_lock_0_clear
                                <= '0';
       T STATE
                                <= T IDLE TOKEN;
     else
       index
                                := to_integer(unsigned(token_ctr));
                                <= (others => '0');
       nx_i2c_command
                                <= '0';
       next_token
       read_token_clear
                                <= (others => '0');
                                <= (others => '0');
       write_token_clear
       ram write 1
                                <= '0';
       i2c_lock_0_clear
                                <= '0';
       case T STATE is
         when T_IDLE_TOKEN =>
           if (register_access_type(index)(0) = '1') then
             if (i2c_write_token(index) = '1') then
                                                 <= T_WRITE_I2C_REGISTER;
             elsif (i2c read token(index) = '1') then
               T STATE
                                                <= T_READ_I2C_REGISTER;</pre>
             else
               T STATE
                                                <= T NEXT TOKEN;
```

Mar 09, 14 22:14	stdin	Page 132/225
end if; else read_token_cl write_token_c T_STATE end if;		<= '1'; <= '1'; <= T_NEXT_TOKEN;
Write I2C Re when T_WRITE_I2C_ nx_i2c_command(nx_i2c_command(nx_i2c_command(if (i2c_lock_0 T_STATE else write_token_c T_STATE end if;	REGISTER => 31 downto 16) 15 downto 14) 13 downto 8) 7 downto 0) = '0') then	<pre><= x"8008"; <= (others => '0'); <= token_ctr; <= i2c_ram(index); <= T_WRITE_I2C_REGISTER; <= '1'; <= T_WAIT_I2C_WRITE_DONE;</pre>
when T_WAIT_I2C_W if (i2c_command T_STATE else i2c_lock_0_cl T_STATE end if;	_done = '0') then	<pre><= T_WAIT_I2C_WRITE_DONE; <= '1'; <= T_NEXT_TOKEN;</pre>
Read I2C Reg when T_READ_I2C_R nx_i2c_command(nx_i2c_command(nx_i2c_command(if (i2c_lock_0 T_STATE	EGISTER => 31 downto 16) 15 downto 14) 13 downto 8) 7 downto 0)	<pre><= x"c108"; <= (others => '0'); <= token_ctr; <= (others => '0'); <= T_READ_I2C_REGISTER;</pre>
else read_token_cl T_STATE end if;	ear(index)	<= '1'; <= T_WAIT_I2C_READ_DONE;
when T_WAIT_I2C_R if (i2c_command T_STATE else T_STATE end if;	EAD_DONE => L_done = '0') then	<= T_WAIT_I2C_READ_DONE; <= T_READ_I2C_STORE_MEM;
when T_READ_I2C_S ram_index_1 ram_data_1 ram_write_1 i2c_lock_0_clea T_STATE		<pre><= index; <= i2c_data(7 downto 0); <= '1'; <= '1'; <= T_NEXT_TOKEN;</pre>
<pre> Next Token when T_NEXT_TOKEN if (token_ctr < token_ctr else token_ctr end if;</pre>		<= token_ctr + 1; <= (others => '0');

```
stdin
Mar 09, 14 22:14
                                                                   Page 133/225
           next_token
                                                <= '1';
                                                <= T IDLE TOKEN;
           T STATE
      end case;
     end if;
  end if;
end process PROC I2C REGISTERS HANDLER;
PROC READ DAC REGISTERS: process(CLK IN)
  variable index : integer := 0;
begin
  if ( rising edge (CLK IN) ) then
    if( RESET IN = '1' ) then
      dac read i2c command <= (others => '0');
      dac ram write 1
                              <= '0';
      dac ram index 1
                              \leq = 0;
      dac_ram_data_1
                             <= (others => '0');
                             <= (others => '0');
      r_fifo_ctr
      dac_read_token_clear <= (others => '0');
      next_token_dac_r <= '0';</pre>
      i2c_lock_1_clear <= '0';
DR_STATE_RETURN <= DR_IDLE;
      DR STATE
                             <= DR IDLE;
     else
      dac_read_i2c_command <= (others => '0');
      dac_ram_write_1
                             <= '0';
      dac_ram_index_1
                              <= 0;
      dac_ram_data_1
                              <= (others => '0');
      dac read token clear <= (others => '0');
      next_token_dac_r <= '0';</pre>
       i2c_lock_1_clear
                         <= '0';
      index
                             := to integer(r fifo ctr);
       case DR STATE is
         when DR IDLE =>
           if (unsigned(dac read token) /= 0) then
            DR STATE
                                                <= DR REGISTER;
            DR STATE
                                                <= DR IDLE;
           end if;
           r fifo ctr
                                                \leq (others \Rightarrow '0');
         when DR REGISTER =>
           dac_read_i2c_command(31 downto 16) <= x"c108";</pre>
           dac_read_i2c_command(15 downto 8) <= x"2a"; -- DAC Reg 42</pre>
           dac_read_i2c_command(7 downto 0)
                                                <= (others => '0');
           if (i2c lock 1 = '0') then
            DR STATE
                                                 <= DR_REGISTER;
           else
            dac_read_token_clear(index)
                                                 <= '1';
            DR STATE RETURN
                                                 <= DR WRITE BACK;
            DR STATE
                                                 <= DR_WAIT_DONE;
           end if;
         when DR_WRITE_BACK =>
           -- Store FIFO Entry
           dac ram data 1
                                                 <= i2c data(5 downto 0);
           dac_ram_index_1
                                                 <= index;
                                                 <= '1';
           dac_ram_write_1
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 134/225
           -- Write Data Back to FIFO
          dac_read_i2c_command(31 downto 16)
                                                <= x"8008";
          dac read i2c command(15 downto 8)
                                                <= x"2a"; -- DAC Reg 42
          dac read i2c command(5 downto 0)
                                                <= i2c data(5 downto 0);
          dac_read_i2c_command(7 downto 6)
                                                <= (others => '0');
          DR STATE RETURN
                                                <= DR NEXT REGISTER;
          DR STATE
                                                 <= DR WAIT DONE;
        when DR NEXT REGISTER =>
          if (r fifo ctr < x"80") then
            r fifo ctr
                                                 <= r fifo ctr + 1;
            next token dac r
                                                <= '1';
            DR STATE
                                                <= DR REGISTER;
          else
            i2c lock 1 clear
                                                 <= '1';
            DR STATE
                                                 <= DR IDLE;
          end if;
        when DR WAIT DONE =>
          if (i2c_command_done = '0') then
            DR STATE
                                                 <= DR_WAIT_DONE;
          else
            DR STATE
                                                <= DR STATE RETURN;
          end if;
      end case;
    end if;
  end if;
end process PROC_READ_DAC_REGISTERS;
PROC WRITE DAC REGISTERS: process(CLK IN)
  variable index : integer := 0;
begin
  if (rising edge (CLK IN)) then
    if( RESET_IN = '1' ) then
      dac write i2c command <= (others => '0');
       w fifo ctr
                     <= (others => '0');
      dac_write_token_clear <= (others => '0');
      next_token_dac_w <= '0';</pre>
      i2c_lock_2_clear <= '0';
DW_STATE_RETURN <= DW_IDLE;
      DW_STATE
                             <= DW_IDLE;
     else
      dac_write_i2c_command <= (others => '0');
      dac_write_token_clear <= (others => '0');
      next_token_dac_w <= '0';</pre>
      i2c lock 2 clear
                             <= '0';
      index
                             := to_integer(w_fifo_ctr);
      case DW_STATE is
        when DW_IDLE =>
          if (unsigned(dac_write_token) /= 0) then
            DW STATE
                                                 <= DW REGISTER;
          else
           DW STATE
                                                 <= DW IDLE;
          end if;
          w_fifo_ctr
                                                 <= (others => '0');
        when DW REGISTER =>
          dac_write_i2c_command(31 downto 16) <= x"c108";</pre>
          dac_write_i2c_command(15 downto 8) <= x"2a"; -- DAC Reg 42</pre>
          dac_write_i2c_command(7 downto 0)
                                                <= (others => '0');
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 135/225
           dac_write_token_clear(index)
                                                 <= '1';
           if (i2c\_lock\_2 = '0') then
            DW STATE
                                                 <= DW REGISTER;
           else
                                                 <= '1';
            dac_write_token_clear(index)
            DW STATE RETURN
                                                 <= DW WRITE BACK;
            DW STATE
                                                 <= DW WAIT DONE;
           end if;
         when DW WRITE BACK =>
           -- Write Data Back to FIFO
           dac write i2c command(31 downto 16) <= x"8008";</pre>
           dac write i2c command(15 downto 8)
                                                 <= x"2a"; -- DAC Reg 42
           dac write i2c command(7 downto 6)
                                                 <= (others => '0');
           dac write i2c command(5 downto 0)
                                                 <= dac ram(index);
           DW STATE RETURN
                                                 <= DW NEXT REGISTER;
           DW STATE
                                                 <= DW WAIT DONE;
         when DW NEXT REGISTER =>
          if (w_fifo_ctr < x"80") then
            w fifo ctr
                                                 <= w_fifo_ctr + 1;
            next token dac w
                                                 <= '\bar{1}';
            DW STATE
                                                 <= DW REGISTER;
           else
                                                 <= '1';
            i2c lock 2 clear
            DW STATE
                                                 <= DW_IDLE;
           end if;
         when DW_WAIT_DONE =>
           if (i2c_command_done = '0') then
            DW STATE
                                                 <= DW WAIT DONE;
           else
            DW STATE
                                                 <= DW_STATE_RETURN;</pre>
           end if;
      end case;
   end if;
  end if;
end process PROC_WRITE_DAC_REGISTERS;
PROC ADC REGISTERS HANDLER: process(CLK IN)
  variable index : integer := 0;
begin
  if( rising_edge(CLK_IN) ) then
     if ( RESET IN = '1' ) then
                               <= (others => '0');
      adc_i2c_command
                              <= (others => '0');
      adc token ctr
                              <= '0';
      next_token_adc
      adc_read_token_clear
                              <= (others => '0');
      i2c_lock_4_clear
                               <= '0';
      ADC STATE
                                <= ADC IDLE TOKEN;
    else
                                := to_integer(unsigned(adc_token_ctr));
      index
      adc i2c command
                               <= (others => '0');
                               <= '0';
      next_token_adc
      adc_read_token_clear <= (others => '0');
      i2c lock 4 clear
                               <= '0';
       case ADC_STATE is
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 136/225
         when ADC_IDLE_TOKEN =>
          if (adc_read_token(index) = '1') then
            ADC STATE
                                                <= ADC READ I2C REGISTER;
           else
            ADC_STATE
                                                <= ADC_NEXT_TOKEN;
           end if;
          -- Read I2C Register
        when ADC_READ_I2C_REGISTER =>
          adc i2c command(31 downto 16)
                                             \leq x c229;
          case adc token ctr is
            when "00" => adc_i2c_command(15 downto 8) <= x"10";
            when "01" => adc_i2c_command(15 downto 8) <= x"20";
            when "10" => adc_i2c_command(15 downto 8) <= x"40";
            when "11" => adc i2c command(15 downto 8) <= x"80";
           end case;
          adc i2c command(7 downto 0)
                                                <= (others => '0');
          if (i2c lock 4 = '0') then
            ADC STATE
                                                <= ADC READ I2C REGISTER;
          else
            adc_read_token_clear(index)
                                                <= '1';
            ADC STATE
                                                <= ADC WAIT I2C READ DONE;
          end if;
         when ADC WAIT I2C READ DONE =>
          if (i2c_command_done = '0') then
            ADC STATE
                                                <= ADC WAIT I2C READ DONE;
          else
            ADC STATE
                                                <= ADC_READ_I2C_STORE_MEM;</pre>
          end if;
        when ADC READ I2C STORE MEM =>
          if (i2c_data_bytes(13 downto 12) =
               std logic vector(adc token ctr)) then
                                                <= i2c_data_bytes(11 downto 0);
            adc_ram(index)(11 downto 0)
            adc ram(index)(12)
                                                <= '0';
            adc ram(index)
                                                <= (others => '1');
           end if;
          i2c lock 4 clear
                                                <= '1';
          ADC STATE
                                                <= ADC NEXT TOKEN;
           -- Next Token
        when ADC NEXT TOKEN =>
          if (adc_token_ctr < "11") then</pre>
            adc_token_ctr
                                                <= adc_token_ctr + 1;
          else
            adc_token_ctr
                                                <= (others => '0');
           end if;
                                                <= '1';
          next_token_adc
          ADC STATE
                                                <= ADC IDLE TOKEN;
      end case;
    end if;
  end if;
end process PROC_ADC_REGISTERS_HANDLER;
timer_static_1: timer_static
  generic map (
    CTR WIDTH => 32,
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 137/225
    CTR_END => 50000000
                               --5S
  port map (
    CLK IN
                    => CLK IN,
    RESET_IN
                   => RESET_IN,
    TIMER START IN => wait timer start,
    TIMER DONE OUT => wait timer done
PROC I2C ONLINE: process(CLK IN)
begin
  if (rising edge (CLK IN)) then
    if ( RESET IN = '1' ) then
       i2c online command
                             <= (others => '0');
       i2c online o
                              <= '0';
      i2c lock 3 clear
                             <= '0';
      wait timer start
                             <= '0';
                             <= R TIMER RESTART;
      R STATE
     else
                             <= (others => '0');
      i2c_online_command
      i2c_lock_3_clear
                             <= '0';
      wait timer start
                             <= '0';
      case R_STATE is
        when R_TIMER_RESTART =>
                                              <= '1';
          wait_timer_start
          R STATE
                                              <= R IDLE;
         when R IDLE =>
          if (wait timer done = '1') then
            R STATE
                                              <= R READ DUMMY;
           else
            R STATE
                                              <= R IDLE;
           end if;
         when R READ DUMMY =>
           i2c online command(31 downto 16)
                                              <= x"c108";
           i2c_online_command(15 downto 8)
                                              <= x"lf"; -- Dummy register
           i2c online command(7 downto 0)
                                              <= (others => '0');
           if (i2c lock 3 = '0') then
            R STATE
                                              <= R_READ_DUMMY;
           else
            R STATE
                                              <= R WAIT DONE;
           end if;
         when R WAIT DONE =>
           if (i2c_command_done = '0') then
            R STATE
                                              <= R WAIT DONE;
           else
            i2c online o
                                              <= not i2c_error;
            i2c_lock_3_clear
                                              <= '1';
            R STATE
                                              <= R TIMER RESTART;
           end if;
      end case;
    end if;
  end if;
end process PROC_I2C_ONLINE;
PROC I2C STATUS: process(CLK IN)
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 138/225
begin
  if( rising_edge(CLK_IN) ) then
    if ( RESET IN = '1' ) then
      i2c update memory p <= '0';
                            <= '0';
      i2c_disable_memory
      i2c online t
                             <= (others => '0');
      i2c reg reset clear <= '0';
     else
      i2c reg reset clear <= '0';
       -- Shift Online
      i2c online t(0)
                             <= i2c online o;
       for I in 1 to 7 loop
        i2c online t(I)
                             \leq i2c online t(I - 1);
       end loop;
      if (i2c_update_memory_r = '1') then
        i2c_update_memory_p
                                  <= '1';
        i2c disable memory
                                   <= '0';
       else
        case i2c online t(7 downto 6) is
          when "00" =>
            i2c_update_memory_p <= '0';</pre>
            i2c_disable_memory
                                   <= '1';
           when "10" =>
                                  <= '0';
            i2c_update_memory_p
            i2c_disable_memory
                                   <= '1';
          when "01" =>
            i2c_update_memory_p
                                  <= '1';
            i2c disable memory
                                   <= '0';
           when "11" =>
            if (i2c reg reset in s = '1' and I2C REG RESET IN = '0') then
               i2c update memory p <= '1';
              i2c_reg_reset_clear <= '1';
              i2c update memory p <= '0';
            end if;
            i2c disable memory
                                  <= '0';
        end case;
      end if;
    end if;
  end if;
end process PROC_I2C_STATUS;
pulse_delay_1: pulse_delay
  generic map (
    DELAY => 1000000
  port map (
    CLK IN
              => CLK_IN,
    RESET_IN => RESET_IN,
    PULSE_IN => i2c_update_memory_p,
    PULSE OUT => i2c update memory
PROC REG RESET: process(CLK IN)
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 139/225
begin
  if ( rising_edge(CLK_IN) ) then
    if( RESET IN = '1' ) then
      i2c reg reset in s <= '0';
      if (i2c reg reset clear = '1') then
        i2c reg reset in s <= '0';
      elsif(I2C REG RESET IN = '1') then
        i2c reg reset in s <= '1';
       end if;
    end if;
  end if;
end process PROC REG RESET;
PROC INTERNAL REG READ: process(CLK IN)
  variable index : integer := 0;
begin
  if( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      int data o <= (others => '0');
      int_ack_o
                         <= '0';
    else
                        <= (others => '0');
      int data o
      int_ack_o
                          <= '0';
      if (INT READ IN = '1') then
        if (INT_ADDR_IN >= x"0000" and INT_ADDR_IN <= x"002d") then
          index := to_integer(unsigned(INT_ADDR_IN(5 downto 0)));
          if (i2c disable memory = '0') then
            int_data_o(7 downto 0)
                                        <= i2c ram(index);
            int_data_o(28 downto 8)
                                        <= (others => '0');
            int data o(29)
              not register_access_type(index)(0);
            int data o(30)
                                       <= i2c read token(index);
            int data o(31)
                                       <= i2c write token(index);
            int data o(31 downto 0)
                                      <= (others => '1');
          end if;
          int ack o
                                        <= '1';
         elsif (INT ADDR IN >= x"0100" and INT ADDR IN <= x"0180") then
          index := to integer(unsigned(INT ADDR IN(7 downto 0)));
          if (i2c disable memory = '0') then
            int_data_o(5 downto 0) <= dac_ram(index);</pre>
            int data o(29 downto 6)
                                    \leq (others => '0');
                                      <= dac_read_token(index);
            int_data_o(30)
            int data o(31)
                                       <= dac_write_token(index);
          else
            int_data_o(31 downto 0)
                                      <= (others => '1');
          end if;
          int ack o
                                        <= '1';
         elsif (INT_ADDR_IN >= x"0080" and INT_ADDR_IN <= x"0083") then
          index := to_integer(unsigned(INT_ADDR_IN(1 downto 0)));
          if (i2c_disable_memory = '0') then
            int_data_o(12 downto 0) <= adc_ram(index);</pre>
            int_data_o(31 downto 13) <= (others => '0');
            int_data_o(31 downto 0)
                                       <= (others => '1');
          end if;
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 140/225
          int_ack_o
                                        <= '1';
        else
          case INT ADDR IN is
            when x"0050" =>
              -- Nxvter Clock
              if (i2c disable memory = '0') then
                int data o(0)
                                        <= i2c ram(33)(3);
                int data o(31 downto 1) <= (others => '0');
                int data o(31 \text{ downto } 0) \le (\text{others} => '1');
              end if;
              int ack o
                                       <= '1';
            when x"0051" =>
              -- Nxyter Polarity
              if (i2c disable memory = '0') then
                int_data_o(0)
                                       <= i2c_ram(33)(2);
                int data o(31 downto 1) <= (others => '0');
                int_data_o(31 downto 0) <= (others => '1');
              end if;
              int ack o
                                       <= '1';
            when x"0052" =>
              -- Nxyter Testpulse Polarity
              if (i2c_disable_memory = '0') then
                int data o(0) <= i2c ram(32)(2);
                int_data_o(31 downto 1) <= (others => '0');
                int_data_o(31 downto 0) <= (others => '1');
              end if;
              int ack o
                                        <= '1';
            when x"0053" =>
              -- Nxyter Testpulse
              if (i2c disable memory = '0') then
                int data o(0)
                                       <= i2c ram(32)(0);
                int data o(31 downto 1) <= (others => '0');
                int data o(31 downto 0) <= (others => '1');
              end if;
              int_ack_o
                                        <= '1';
            when x"0054" =>
              -- Nxyter Testtrigger
              if (i2c_disable_memory = '0') then
                                       <= i2c_ram(32)(3);
                int data o(0)
                int_data_o(31 downto 1) <= (others => '0');
                int_data_o(31 downto 0) <= (others => '1');
              end if;
              int ack o
                                        <= '1';
            when x"0055" =>
              -- Nxyter Testpulse Channels
              if (i2c_disable_memory = '0') then
                int_data_o(1 downto 0) <= i2c_ram(33)(1 downto 0);</pre>
                int_data_o(31 downto 2) <= (others => '0');
              else
                int data o(31 downto 0) <= (others => '1');
              end if;
              int ack o
                                        <= '1';
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 141/225
             when x"0056" =>
               -- I2C Online
               int data o(0)
                                         <= i2c online o;
                                       <= (others => '0');
               int_data_o(31 downto 2)
               int ack o
                                         <= '1';
             when others =>
               int data o(31 downto 0) <= (others => '1');
                                        <= '1';
               int ack o
          end case;
         end if;
       end if;
     end if;
  end if;
end process PROC INTERNAL REG READ;
PROC_SLAVE_BUS: process(CLK_IN)
  variable index
                   : integer := 0;
begin
  if ( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      slv data out o
                             <= (others => '0');
      slv_no_more_data_o
                              <= '0';
      slv_unknown_addr_o
                              <= '0';
      slv ack o
                              <= '0';
      ram data 0
                             <= (others => '0');
      ram index 0
                             <= 0;
                             <= '0';
      ram write 0
      i2c_read_token_r
                             <= (others => '0');
      dac_ram_data_0
                              <= (others => '0');
      dac ram index 0
                              <= 0;
      dac ram write 0
                              <= '0';
      dac read token r
                              <= (others => '0');
      adc read token r
                              <= (others => '0');
       i2c update memory r
                             <= '0';
      nxyter clock
                              \leq (others => '0');
      nxyter_polarity
                              <= (others => '0');
      nxyter testtrigger
                              \leq (others => '0');
      nxyter testpulse
                              \leq (others => '0');
      nxyter_testchannels
                             <= (others => '0');
     else
      slv_unknown_addr_o
                              <= '0';
                             <= '0';
      slv_no_more_data_o
                              <= (others => '0');
      ram_data_0
      ram index 0
                              <= 0;
      ram_write_0
                              <= '0';
      i2c read token r
                             <= (others => '0');
      dac ram data 0
                              <= (others => '0');
      dac ram index 0
                             <= ();
                             <= '0';
      dac_ram_write_0
      dac_read_token_r
                             <= (others => '0');
      adc_read_token_r
                             <= (others => '0');
       i2c update memory r
                              <= '0';
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 142/225
      nxyter_clock
                              <= (others => '0');
      nxyter_polarity
                              <= (others => '0');
                              <= (others => '0');
      nxyter testtrigger
      nxyter testpulse
                              \leq (others \Rightarrow '0');
                             <= (others => '0');
      nxyter_testchannels
      if (SLV WRITE IN = '1') then
        if (SLV ADDR IN >= x"0000" and SLV ADDR IN <= x"002d") then
           index := to integer(unsigned(SLV ADDR IN(5 downto 0)));
           if (i2c disable memory = '0') then
            ram index 0
                                       <= index;
            ram data 0
                                       <= SLV DATA IN(7 downto 0);
            ram write 0
                                        <= '1';
           end if;
          slv ack o
                                        <= '1';
        elsif (SLV ADDR IN >= x"0100" and SLV ADDR IN <= x"0180") then
           -- Write value to ram
          index := to integer(unsigned(SLV ADDR IN(7 downto 0)));
          if (index = 0) then
            index := 128;
          else
            index := index - 1;
           end if;
          if (i2c_disable_memory = '0') then
            dac ram index 0
                                       <= index;
            dac ram data 0
                                       <= SLV DATA IN(5 downto 0);
            dac_ram_write_0
                                       <= '1';
           end if;
          slv ack o
                                       <= '1';
        else
          case SLV ADDR IN is
            when x"0050" =>
              -- Nxvter Clock
              if (i2c disable memory = '0') then
                nxyter clock(0)
                                        <= SLV DATA IN(0);
                nxvter clock(1)
                                        <= '1';
              end if;
                                        <= '1';
              slv ack o
            when x"0051" =>
              -- Nxyter Polarity
              if (i2c_disable_memory = '0') then
                nxyter_polarity(0)
                                        <= SLV DATA IN(0);
                nxyter_polarity(1)
                                        <= '1';
              end if;
              slv ack o
                                        <= '1';
            when x"0053" =>
              -- Nxyter Testpulse
              if (i2c disable memory = '0') then
                nxyter_testpulse(0)
                                        <= SLV_DATA_IN(0);
                nxyter_testpulse(1)
                                        <= '1';
              end if;
                                        <= '1';
              slv_ack_o
            when x"0054" =>
              -- Nxyter Testtrigger
              if (i2c_disable_memory = '0') then
                nxyter testtrigger(0) <= SLV DATA IN(0);</pre>
```

```
Mar 09. 14 22:14
                                     stdin
                                                                   Page 143/225
                nxyter_testtrigger(1) <= '1';</pre>
               end if;
               slv ack o
                                        <= '1';
             when x"0055" =>
               -- Nxyter Testtrigger
               if (i2c disable memory = '0') then
                nxyter testchannels(1 downto 0) <= SLV DATA IN(1 downto 0);
                nxyter testchannels(2) <= '1';
               end if;
               slv ack o
                                        <= '1';
             when x"0060" =>
               if (i2c disable memory = '0') then
                i2c read token r
                                        \leq (others => '1');
               end if;
               slv ack o
                                        <= '1';
             when x"0061" =>
               if (i2c_disable_memory = '0') then
                dac_read_token_r
                                        <= (others => '1');
               end if;
               slv_ack_o
                                        <= '1';
             when x"0062" =>
               if (i2c_disable_memory = '0') then
                i2c update memory r
                                        <= '1';
               end if;
                                        <= '1';
               slv_ack_o
             when others =>
                                        <= '1';
               slv unknown addr o
                                        <= '0';
               slv_ack_o
           end case;
         end if;
       elsif (SLV READ IN = '1') then
         if (SLV ADDR IN >= x"0000" and SLV ADDR IN <= x"002d") then
           index := to integer(unsigned(SLV ADDR IN(5 downto 0)));
           if (i2c disable memory = '0') then
             slv data out o(7 downto 0)
                                             <= i2c ram(index);
             slv data out o(28 downto 8)
                                             \leq (others => '0');
             slv data out o(29)
               not register_access_type(index)(0);
             slv data out o(30)
                                             <= i2c read token(index);
             slv data out o(31)
                                             <= i2c_write_token(index);
           else
             slv data out o(31 downto 0)
                                             <= (others => '1');
           end if;
           slv ack o
                                             <= '1';
         elsif (SLV ADDR IN >= x"0100" and SLV ADDR IN <= x"0180") then
           index := to_integer(unsigned(SLV_ADDR_IN(7 downto 0)));
           if (index = 0) then
             index := 128;
           else
             index := index - 1;
           end if;
           if (i2c_disable_memory = '0') then
             slv data out o(5 downto 0)
                                             <= dac ram(index);
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 144/225
             slv_data_out_o(29 downto 6)
                                             \leq (others => '0');
             slv data out o(30)
                                             <= dac read token(index);
                                             <= dac write token(index);
             slv data out o(31)
           else
            slv data_out_o(31 downto 0)
                                             <= (others => '1');
           end if;
          slv ack o
                                             <= '1';
         elsif (SLV ADDR IN >= x"0080" and SLV ADDR IN <= x"0083") then
           index := to integer(unsigned(SLV ADDR IN(1 downto 0)));
           if (i2c disable memory = '0') then
             slv_data_out_o(12 downto 0)
                                             <= adc ram(index);
             sly data out o(31 downto 13)
                                             <= (others => '0');
                                             <= 11';
             adc read token r(index)
            slv data out o(31 downto 0)
                                             <= (others => '1');
           end if;
          slv ack o
                                             <= '1';
        else
          case SLV_ADDR_IN is
            when x"0050" =>
              -- Nxvter Clock
              if (i2c_disable_memory = '0') then
                 slv data out o(0)
                                             \leq i2c ram(33)(3);
                 slv_data_out_o(31 downto 1) <= (others => '0');
                 slv data out o(31 downto 0) <= (others => '1');
               end if;
              slv ack o
                                             <= '1';
             when x"0051" =>
               -- Nxyter Polarity
              if (i2c_disable_memory = '0') then
                 slv data out o(0)
                                             \leq i2c ram(33)(2);
                 slv data out o(31 downto 1) <= (others => '0');
                 slv data out o(31 downto 0) <= (others => '1');
               end if:
              slv ack o
                                             <= '1';
             when x"0052" =>
               -- Nxyter Testpulse Polarity
              if (i2c disable memory = '0') then
                 slv data out o(0)
                                             \leq i2c ram(32)(2);
                 slv_data_out_o(31 downto 1) <= (others => '0');
                 slv_data_out_o(31 downto 0) <= (others => '1');
               end if;
              slv ack o
                                             <= '1';
             when x"0053" =>
              -- Nxyter Testpulse
              if (i2c_disable_memory = '0') then
                 slv data out o(0)
                                             \leq i2c ram(32)(0);
                 slv_data_out_o(31 downto 1) <= (others => '0');
              else
                 slv_data_out_o(31 downto 0) <= (others => '1');
               end if;
              slv ack o
                                             <= '1';
             when x"0054" =>
```

Mar 09, 14 22:14	stdin		Page 145/225
6	Nxyter Testtrigger if (i2c_disable_memory = '0') slv_data_out_o(0) slv_data_out_o(31 downto 1) else slv_data_out_o(31 downto 0) end if; slv_ack_o	<= i2c_ram(32)(3); <= (others => '0');	
	en x"0055" => Nxyter Testpulse Channels if (i2c_disable_memory = '0') slv_data_out_o(1 downto 0) slv_data_out_o(31 downto 2) else slv_data_out_o(31 downto 0) end if; slv_ack_o	<= i2c_ram(33)(1 down <= (others => '0');	nto 0);
_	en x"0056" => I2C Online slv_data_out_o(0) slv_data_out_o(31 downto 2) slv_ack_o	<= i2c_online_o; <= (others => '0'); <= '1';	
= = = = = = = = = = = = = = = = = = = =	else slv_data_out_o end if;	= 0) then <= (others => '0'); <= x"0000_0001"; <= '1';	
	else	= 0) then <= (others => '0'); <= x"0000_0001"; <= '1';	
-	else	= 0 and	
s s whe	en x"0070" => WriteToken slv_data_out_o slv_ack_o en x"0071" => WriteToken slv_data_out_o(13 downto 0) slv_data_out_o(31 downto 14) slv_ack_o	<pre><= i2c_write_token(33 <= '1'; <= i2c_write_token(45 <= (others => '0'); <= '1';</pre>	

Mar 09, 14 22:14	stdin		Page 146/225
when x"0072" => ReadToken			d
slv_data_out_o slv_ack_o when x"0073" => ReadToken		<= i2c_read_token(31 <= '1';	downto U);
slv_data_out_o(13 slv_data_out_o(31 slv_ack_o	downto 0) downto 14)	<pre><= i2c_read_token(45 <= (others => '0'); <= '1';</pre>	downto 32);
<pre>when x"0074" => WriteTokenDAC slv_data_out_o slv_ack_o when x"0075" =></pre>		<= dac_write_token(31 <= '1';	downto 0);
WriteTokenDAC slv_data_out_o slv_ack_o when x"0076" =>		<pre><= dac_write_token(63 <= '1';</pre>	downto 32);
WriteTokenDAC slv_data_out_o slv_ack_o when x"0077" => WriteTokenDAC		<pre><= dac_write_token(95 <= '1';</pre>	downto 64);
slv_data_out_o slv_ack_o when x"0078" => WriteTokenDAC		<= dac_write_token(12 <= '1';	7 downto 96);
slv_data_out_o(0) slv_data_out_o(31 slv_ack_o		<= dac_write_token(12 <= (others => '0'); <= '1';	8);
when x"0079" => ReadTokenDAC slv_data_out_o slv_ack_o when x"007a" => ReadTokenDAC		<= dac_read_token(31 <= '1';	downto 0);
slv_data_out_o slv_ack_o when x"007b" => ReadTokenDAC		<= dac_read_token(63 <= '1';	downto 32);
slv_data_out_o slv_ack_o when x"007c" => ReadTokenDAC		<= dac_read_token(95	downto 64);
slv_data_out_o slv_ack_o when x"007d" => ReadTokenDAC		<= dac_read_token(127 <= '1';	downto 96);
slv_data_out_o(0) slv_data_out_o(31 slv_ack_o	downto 1)	<= dac_read_token(128 <= (others => '0'); <= '1';);
<pre>when others => slv_unknown_addr_ slv_ack_o end case;</pre>	o	<= '1'; <= '0';	
end if; else			

```
stdin
 Mar 09. 14 22:14
                                                                  Page 147/225
         slv_ack_o
                                             <= '0';
        end if;
     end if;
   end if;
  end process PROC SLAVE BUS;
  -- Output Signals
  _____
  I2C COMMAND OUT
                         <= i2c command o;
  I2C LOCK OUT
                         <= i2c command busy o;
  I2C ONLINE OUT
                         <= i2c online o;
  SPI COMMAND OUT
                         \leq (others \Rightarrow '0');
  SPI LOCK OUT
                         <= '0';
  -- Internal Read
  INT ACK OUT
                         <= int_ack_o;
 INT_DATA_OUT
                         <= int_data_o;
  -- Slave Bus
  SLV DATA OUT
                         <= slv_data_out_o;</pre>
                       <= slv no more data o;
 SLV NO MORE DATA OUT
 SLV_UNKNOWN_ADDR_OUT
                       <= slv_unknown_addr_o;</pre>
 SLV ACK OUT
                         <= slv ack o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter_components.all;
use work.trb3 components.all;
entity nx status event is
 generic (
   BOARD ID : std logic vector(1 downto 0) := "11"
   );
 port (
   CLK IN
                              : in std logic;
   RESET IN
                             : in std logic;
   NXYTER OFFLINE IN
                             : in std_logic;
   -- Trigger
   TRIGGER_IN
                             : in std_logic;
   FAST_CLEAR_IN
                             : in std logic;
   TRIGGER_BUSY_OUT
                             : out std_logic;
   --Response from FEE
   FEE DATA OUT
                              : out std logic vector(31 downto 0);
   FEE_DATA_WRITE_OUT
                              : out std_logic;
   FEE_DATA_ALMOST_FULL_IN : in std_logic;
   -- Interface to NX Setup
   INT READ OUT
                              : out std_logic;
   INT ADDR OUT
                              : out std logic vector(15 downto 0);
   INT_ACK_IN
                              : in std logic;
   INT_DATA_IN
                              : in std_logic_vector(31 downto 0);
```

```
stdin
 Mar 09, 14 22:14
                                                                 Page 148/225
   DEBUG OUT
                              : out std_logic_vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx status event is
 --Data channel
 signal trigger busy o
                            : std logic;
 signal event write start : std logic;
 type STATES is (S IDLE,
                 S EVT WRITE WAIT
                 );
 signal STATE
               : STATES;
 -- Event Write
 type E STATES is (E IDLE,
                   E_READ_NEXT,
                   E READ,
                   E NEXT INDEX,
                   E END
                   );
 signal E_STATE : E_STATES;
                                 := 3;
 constant NUM REGS : integer
 type reg_addr_t is array 0 to NUM_REGS - 1) of std_logic_vector(15 downto 0);
 constant reg_addr_start
                                : req addr t :=
   (x"0000",
    x"0100",
    x"0080"
    );
 constant reg_addr_end
                              : reg_addr_t :=
   (x"002d",
    x"0180",
    x"0083"
    );
                             : unsigned(3 downto 0);
: unsigned(15 downto 0);
: std_logic;
 signal index ctr
 signal register_addr
 signal int read o
 : std_logic_vector(15 downto 0);
                                : std_logic_vector(31 downto 0);
begin
 DEBUG_OUT(0)
                     <= CLK IN;
 DEBUG_OUT(1)
                     <= TRIGGER_IN;
                     <= FAST_CLEAR_IN;
 DEBUG OUT(2)
 DEBUG_OUT(3)
                     <= FEE_DATA_ALMOST_FULL_IN;</pre>
                      <= trigger_busy_o;
 DEBUG OUT(4)
 DEBUG_OUT(5)
                       <= event_write_start;</pre>
                       <= event_write_done;</pre>
 DEBUG_OUT(6)
 DEBUG_OUT(10 downto 7) <= index_ctr;</pre>
                <= int_read_o;
 DEBUG OUT(11)
 DEBUG_OUT(12)
                       <= INT_ACK_IN;
                     <= fee_data_write_o;
 DEBUG_OUT(13)
                       <= '0';
 DEBUG OUT(14)
```

Mar 09, 14 22:14	stdin	Page 149/225
DEBUG_OUT(15)	<= NXYTER_OFFLINE_IN;	•
PROC_DATA_HANDLER: pi	cocess(CLK_IN)	
<pre>begin if(rising_edge(CLF)</pre>	IN)) then	
if(RESET_IN = '1		
event_write_sta trigger_busy_o	rt <= '0';	
trigger_busy_o	<= '0';	
STATE	<= S_IDLE;	
else		
event_write_sta trigger_busy_o	irt <= 'U';	
trigger_busy_o	ζ= 1 /	
if (FAST_CLEAR_	_IN = '1') then	
STATE	<= S_IDLE;	
else		
case STATE is		
when S_IDLE		
	CR_OFFLINE_IN = '1') then thus o <= '0';	
STATE	_busy_o	
	RIGGER_IN = '1') then	
	rite_start <= '1';	
STATE	<pre>- <= S_EVT_WRITE_WAIT</pre>	Γ;
else		
	_busy_o <= '0';	
STATE end if;	<= S_IDLE;	
end ii,		
	WRITE_WAIT =>	
	_write_done = '0') then	_
STATE	<= S_EVT_WRITE_WAI	Ľi
else STATE	<= S_IDLE;	
end if;	<- β_1DΠΕ <i>1</i>	
Cita III		
end_case;		
end if;		
end if;		
end if; end process PROC_DATA	HANDLER;	
ond process inco_DAIR		
	(() () () () () () () () () (
PROC_WRITE_EVENT: pro variable index : i	nteger := 0:	
begin		
if(rising_edge(CLF	[_IN)) then	
if(RESET_IN = '1	.') then	
index_ctr	<= (others => '0');	
register_addr	<= (others => '0');	
int_read_o	<= '0';	
int_addr_o fee_data_o	<= (others => '0'); <= (others => '0');	
fee_data_write_ event_write_dor	ie <= '0';	
E_STATE	<= E_IDLE;	
else		
index	<pre>:= to_integer(index_ctr);</pre>	

```
stdin
Mar 09, 14 22:14
                                                                    Page 150/225
       int_read_o
                             <= '0';
       int_addr_o
                             <= (others => '0');
       fee data o
                             <= (others => '0');
                             <= '0';
       fee data write o
                             <= '0';
       event_write_done
       case E STATE is
        when E_IDLE =>
                                      <= (others => '0');
           index ctr
          if (event_write_start = '1') then
            E_STATE
                                      <= E_NEXT_INDEX;
           else
            E STATE
                                      <= E IDLE;
           end if;
        when E READ NEXT =>
          if (register_addr <= unsigned(reg_addr_end(index))) then</pre>
            int addr o
                                      <= register addr;
            int_read_o
                                      <= '1';
            E_STATE
                                      <= E_READ;
           else
            index ctr
                                      <= index ctr + 1;
            E STATE
                                      <= E_NEXT_INDEX;
          end if;
        when E_READ =>
          if (INT_ACK_IN = '1') then
            fee_data_o(15 downto 0) <= INT_DATA_IN(15 downto 0);</pre>
            fee_data_o(31 downto 16) <= register_addr;</pre>
             fee_data_write_o
                                      <= '1';
            register addr
                                      <= register addr + 1;
            E_STATE
                                      <= E_READ_NEXT;
           else
            E STATE
                                      <= E READ;
           end if;
        when E NEXT INDEX =>
           if (index ctr < NUM REGS) then
            register_addr
                                      <= reg_addr_start(index);</pre>
            E STATE
                                      <= E READ NEXT;
           else
            E STATE
                                      <= E_END;
           end if;
        when E END =>
                                      <= '1';
           event_write_done
          E_STATE
                                      <= E_IDLE;
       end case;
    end if;
  end if;
end process PROC_WRITE_EVENT;
-- Output Signals
TRIGGER_BUSY_OUT
                        <= trigger_busy_o;
                        <= fee_data_o;
FEE_DATA_OUT
FEE_DATA_WRITE_OUT
                        <= fee_data_write_o;
INT_READ_OUT
                        <= int_read_o;
INT_ADDR_OUT
                        <= int_addr_o;
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 151/225
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter components.all;
entity nxyter timestamp sim is
 port.(
   CLK IN
                         : in std_logic; -- Clock 128MHz
   RESET IN
                         : in std logic;
                        : out std logic vector(7 downto 0);
   TIMESTAMP OUT
   CLK128 OUT
                         : out std logic
end entity;
architecture Behavioral of nxyter timestamp sim is
 signal timestamp_n
                        : std_logic_vector(7 downto 0);
 signal timestamp q
                         : std logic vector(7 downto 0);
 signal counter
                        : unsigned(1 downto 0);
 signal counter2
                         : unsigned(3 downto 0);
                         : unsigned(1 downto 0);
 signal counter3
begin
 PROC_NX_TIMESTAMP: process(CLK_IN)
   if ( rising edge (CLK IN) ) then
     if( RESET_IN = '1' ) then
        timestamp_n <= (others => '0');
                   <= (others => '0');
        counter
                 <= (others => '0');
        counter2
        counter3 <= (others => '0');
      else
        if (counter3 /= 0) then
          case counter is
            when "11" \Rightarrow timestamp_n \Leftarrow x"06";
                         counter3 <= counter3 + 1;
            when "10" => timestamp n <= x"7f";
            when "01" => timestamp n <= x"7f";
            when "00" => timestamp n <= x"7f";
          end case;
        else
          case counter is
            when "11" =>
             timestamp n(7)
                                       <= '0';
              timestamp_n(6 downto 4) <= (others => '0');
              timestamp_n(3 downto 0) <= counter2;
              counter3 <= counter3 + 1;
            when "10" =>
                                       <= '0';
              timestamp_n(7)
              timestamp n(6 downto 4) <= (others => '0');
```

```
stdin
 Mar 09, 14 22:14
                                                                      Page 152/225
              timestamp_n(3 downto 0) <= counter2;</pre>
            when "01" =>
              timestamp n(7)
                                        <= '0';
              timestamp_n(6 downto 4) <= (others => '0');
              timestamp n(3 downto 0) <= counter2;
            when "00" =>
              timestamp n(7)
                                        <= '0';
              timestamp n(6 \text{ downto } 4) \le (\text{others} \Rightarrow '0');
              timestamp n(3 downto 0) <= counter2;
          counter2 <= counter2 + 1;</pre>
        end if;
        counter <= counter + 1;
      end if;
    end if;
  end process PROC_NX_TIMESTAMP;
     gray Encoder 1: gray Encoder
       generic map (
___
         WIDTH => 8
__
       port map (
__
         CLK IN => CLK IN,
         RESET IN => RESET IN,
___
         BINARY_IN => timestamp_n,
__
         GRAY_OUT => timestamp_g
___
         );
   timestamp_g <= timestamp_n;
-- Output Signals
 TIMESTAMP OUT <= timestamp n;
 CLK128 OUT
              <= CLK IN;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
library work;
use work.nxyter_components.all;
entity nx_trigger_generator is
 port (
    CLK_IN
                         : in std_logic;
                         : in std_logic;
    RESET IN
    NX_MAIN_CLK_IN
                         : in std_logic;
    TRIGGER_IN
                         : in std_logic; -- must be in NX_MAIN_CLK_DOMAIN
                         : out std logic;
    TRIGGER OUT
    TS RESET OUT
                         : out std logic;
                         : out std_logic;
    TESTPULSE_OUT
    TIMESTAMP IN
                         : in std logic vector(31 downto 0);
    ADC_DATA_IN
                         : in std_logic_vector(11 downto 0);
                         : in std_logic;
    NEW_DATA_IN
    SELF TRIGGER OUT
                         : out std logic;
```

```
stdin
 Mar 09. 14 22:14
                                                                         Page 153/225
    -- Slave bus
   SLV READ IN
                          : in std logic;
                  : in std_logic;

: out std_logic_vector(31 downto 0);

: in std_logic_vector(31 downto 0);

: in std_logic_vector(15 downto 0);

: out std_logic;
   SLV WRITE IN
   SLV_DATA_OUT
   SLV DATA IN
   SLV ADDR IN
   SLV ACK OUT
   SLV NO MORE DATA OUT : out std logic;
   SLV UNKNOWN ADDR OUT : out std logic;
    -- Debug Line
   DEBUG OUT
                          : out std logic vector(15 downto 0)
   );
end entity;
architecture Behavioral of nx_trigger_generator is
 signal start cycle : std logic;
 signal trigger_cycle_ctr : unsigned(7 downto 0);
  signal wait_timer_start : std_logic;
 signal wait_timer_init : unsigned(11 downto 0);
  signal wait_timer_done : std_logic;
 signal trigger_o : std_logic;
signal ts_reset_o : std_logic;
signal testpulse_o : std_logic;
signal testpulse_o_b : std_logic;
 signal testpulse_p : std_logic; signal extern_trigger : std_logic;
  type STATES is (S_IDLE,
                   S WAIT TESTPULSE END
                   );
  signal STATE : STATES;
  -- Rate Calculation
  signal testpulse
                                 : std logic;
 signal testpulse : std_logic;
signal testpulse rate t : unsigned(27 downto 0);
  signal rate timer
                                  : unsigned(27 downto 0);
  -- Self Trigger
  signal self trigger
                                 : std logic;
  signal self_trigger_o
                                   : std_logic;
  -- TRBNet Slave Bus
 : std logic vector(31 downto 0);
  signal slv_unknown_addr_o
                                 : std logic;
  signal slv_ack_o
                                   : std_logic;
  signal reg_trigger_period
                                   : unsigned(15 downto 0);
  signal reg_testpulse_length : unsigned(11 downto 0);
  signal reg_trigger_num_cycles : unsigned(7 downto 0);
  signal reg_ts_reset_on : std_logic;
 signal testpulse_rate
                                   : unsigned(27 downto 0);
 signal RESET_NX_MAIN_CLK_IN : std_logic;
begin
 -- Debug Line
                       <= CLK_IN;
<= NEW_DATA_IN;
 DEBUG_OUT(0)
 DEBUG OUT(1)
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 154/225
DEBUG_OUT(2)
                         <= start_cycle;
DEBUG_OUT(2) <= start_cycle,
DEBUG_OUT(3) <= ts_reset_o;
DEBUG_OUT(4) <= testpulse_o_b;
DEBUG_OUT(5) <= testpulse;
DEBUG_OUT(6) <= self_trigger;
DEBUG_OUT(7) <= self_trigger_o;
DEBUG OUT(15 downto 8) <= (others => '0');
-- Reset Domain Transfer
______
signal async trans RESET IN: signal async trans
  port map (
    CLK IN => NX MAIN CLK IN,
    SIGNAL A IN => RESET IN.
    SIGNAL OUT => RESET NX MAIN CLK IN
-- Timer
timer 1: timer
  generic map (
   CTR WIDTH => 12
  port map (
    CLK IN
    CLK_IN => NX_MAIN_CLK_IN,
RESET_IN => RESET_NX_MAIN_CLK_IN,
    TIMER_START_IN => wait_timer_start,
    TIMER_END_IN => wait_timer_init,
    TIMER_DONE_OUT => wait_timer_done
    );
wait timer init <= reg testpulse length - 1;
-- Generate Trigger
PROC TESTPULSE OUT: process(NX MAIN CLK IN)
begin
  if ( rising edge(NX MAIN CLK IN) ) then
    if (RESET_NX_MAIN_CLK_IN = '1') then
      trigger_o <= '0';
testpulse_o <= '0';
      testpulse_p <= '0';
ts_reset_o <= '0';
       wait_timer_start <= '0';</pre>
       trigger_cycle_ctr <= (others => '0');
       extern_trigger <= '0';
      STATE
                        <= S IDLE;
     else
      trigger_o <= '0';
testpulse_o <= '0';
      testpulse_p <= '0';
ts_reset_o <= '0';
      wait timer start <= '0';
       case STATE is
        when S IDLE =>
          if (TRIGGER IN = '1') then
            extern_trigger
                                             <= '1';
                                            <= '1';
            testpulse_o
                                             <= '1';
             testpulse p
```

```
Mar 09, 14 22:14
                                    stdin
                                                                 Page 155/225
            if (reg_testpulse_length > 0) then
                                           <= '1';
              wait_timer_start
              STATE
                                           <= S WAIT TESTPULSE END;
            else
              STATE
                                            <= S_IDLE;
            end if;
          else
            extern trigger
                                           <= '0';
            STATE
                                           <= S IDLE;
          end if;
         when S WAIT TESTPULSE END =>
          if (WAIT TIMER DONE = '0') then
            testpulse o
                                            <= '1';
            STATE
                                           <= S WAIT TESTPULSE END;
          else
            STATE
                                           <= S IDLE;
          end if;
      end case;
    end if;
  end if:
end process PROC_TESTPULSE_OUT;
-- Transfer testpulse p to CLK IN Domain
pulse_dtrans_TESTPULSE: pulse_dtrans
  generic map (
    CLK RATIO => 6
  port map (
    CLK A IN => NX MAIN CLK IN,
    RESET_A_IN => RESET_NX_MAIN_CLK_IN,
    PULSE_A_IN => testpulse_p,
    CLK B IN => CLK IN,
    RESET_B_IN => RESET_IN,
    PULSE B OUT => testpulse
PROC_CAL_RATES: process (CLK_IN)
begin
  if ( rising edge (CLK IN) ) then
    if (RESET_IN = '1') then
      testpulse rate t <= (others => '0');
      testpulse rate
                             \leq (others => '0');
      rate timer
                             <= (others => '0');
    else
      if (rate_timer < x"5f5e100") then
        if (testpulse = '1') then
          testpulse_rate_t
                             <= testpulse rate t + 1;</pre>
        end if;
        rate timer
                                   <= rate timer + 1;
      else
        testpulse rate
                                    <= testpulse rate t;</pre>
        testpulse_rate_t(27 downto 1) <= (others => '0');
        testpulse_rate_t(0)
                                    <= testpulse;
        rate timer
                                   <= (others => '0');
      end if;
    end if;
  end if;
end process PROC_CAL_RATES;
```

```
stdin
Mar 09. 14 22:14
                                                                Page 156/225
-- Self Trigger
PROC SELF TRIGGER: process(CLK IN)
  variable frame bits : std logic vector(3 downto 0);
  if (rising edge (CLK IN)) then
    if( RESET_IN = '1' ) then
      self trigger
                       <= '0';
      frame bits := TIMESTAMP IN(31) &
                    TIMESTAMP_IN(23) &
                    TIMESTAMP IN(15) &
                   TIMESTAMP IN(7);
      if (NEW DATA IN = '1' and
         frame_bits = "1000") then
        self_trigger <= '1';</pre>
      else
        self trigger <= '0';
      end if:
    end if;
  end if;
end process PROC_SELF_TRIGGER;
pulse_to_level_SELF_TRIGGER: pulse_to_level
  generic map (
    NUM_CYCLES => 2
  port map (
    CLK_IN => CLK_IN,
    RESET IN => RESET IN,
    PULSE IN => self trigger,
    LEVEL OUT => self trigger o
    );
PROC SLAVE BUS: process(CLK IN)
begin
  if ( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
      reg_trigger_period
                            <= x"00ff";
      reg_trigger_num_cycles <= x"01";</pre>
      reg_testpulse_length <= x"064";</pre>
      slv_no_more_data_o <= '0';
      slv_unknown_addr_o <= '0';
      start_cycle
                           <= '0';
                            <= '0';
      slv_ack_o
    else
      slv_unknown_addr_o <= '0';</pre>
      slv_no_more_data_o <= '0';</pre>
      slv data out o <= (others => '0');
      start_cycle
                       <= '0';
```

```
Mar 09, 14 22:14
                                       stdin
                                                                     Page 157/225
        if (SLV_WRITE_IN = '1') then
          case SLV_ADDR_IN is
            when x"0000" =>
              if (unsigned(SLV DATA IN(11 downto 0)) > 0) then
                reg_testpulse_length
                  unsigned(SLV DATA IN(11 downto 0));
              end if;
              slv_ack_o
                                            <= '1';
            when others =>
                                            <= '1';
              slv unknown addr o
                                            <= '0';
              slv ack o
          end case;
        elsif (SLV READ IN = '1') then
          case SLV ADDR IN is
            when x"0000" =>
              slv data out o(11 downto 0) <=
                std logic vector(reg testpulse length);
              slv_data_out_o(31 downto 12) <= (others => '0');
              slv_ack_o
                                           <= '1';
            when x"0001" =>
              slv_data_out_o(27 downto 0) <= std_logic_vector(testpulse_rate);</pre>
              slv data out o(31 downto 28) <= (others => '0');
              slv_ack_o
            when others =>
                                            <= '1';
              slv_unknown_addr_o
              slv ack o
                                            <= '0';
          end case;
        else
          slv ack o
                                            <= '0';
        end i\bar{f};
      end if;
    end if;
  end process PROC SLAVE BUS;
  -- Output Signals
  -- Buffer for timing
 testpulse_o_b
                       <= testpulse_o when rising_edge(NX_MAIN_CLK_IN);</pre>
  -- Trigger Output
 TRIGGER OUT
                       <= trigger_o;
 TS_RESET_OUT
                       <= ts reset o;
 TESTPULSE_OUT
                       <= testpulse o b;
 SELF TRIGGER OUT
                       <= self_trigger_o;
  -- Slave Bus
 SLV DATA OUT
                       <= slv_data_out_o;
 SLV_NO_MORE_DATA_OUT <= slv_no_more_data o;</pre>
 SLV UNKNOWN ADDR OUT <= slv unknown addr o;
 SLV_ACK_OUT
                       <= slv_ack_o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
```

```
stdin
 Mar 09. 14 22:14
                                                                    Page 158/225
library work;
use work.nxyter components.all;
entity nx_trigger_handler is
 port. (
    CLK IN
                               : in std logic;
    RESET IN
                              : in std logic;
    NX MAIN CLK IN
                              : in std logic;
                               : in std logic;
    NXYTER OFFLINE IN
    --Input Triggers
    TIMING TRIGGER IN
                               : in std logic; -- The raw timing Trigger Signal
                               : in std logic; -- Data Trigger is valid
    LVL1 TRG DATA VALID IN
    LVL1_VALID_TIMING_TRG_IN : in std_logic; -- Timin Trigger is valid
    LVL1 VALID NOTIMING TRG IN : in std logic; -- calib trigger w/o ref time
    LVL1 INVALID TRG IN
                               : in std logic;
    LVL1 TRG TYPE IN
                               : in std logic vector(3 downto 0);
                               : in std_logic_vector(15 downto 0);
    LVL1_TRG_NUMBER_IN
                               : in std_logic_vector(7 downto 0);
    LVL1_TRG_CODE_IN
    LVL1 TRG INFORMATION IN
                               : in std logic vector(23 downto 0);
                               : in std_logic_vector(15 downto 0);
    LVL1 INT TRG NUMBER IN
    --Response from FEE
    FEE_DATA_OUT
                               : out std_logic_vector(31 downto 0);
                               : out std logic;
    FEE DATA WRITE OUT
    FEE DATA FINISHED OUT
                               : out std logic;
    FEE_TRG_RELEASE_OUT
                               : out std_logic;
    FEE_TRG_STATUSBITS_OUT
                               : out std_logic_vector(31 downto 0);
    FEE DATA 0 IN
                               : in std_logic_vector(31 downto 0);
                               : in std logic;
    FEE_DATA_WRITE_0_IN
    FEE DATA 1 IN
                               : in std logic vector(31 downto 0);
    FEE DATA WRITE 1 IN
                               : in std logic;
    -- Internal FPGA Trigger
    INTERNAL TRIGGER IN
                               : in std logic;
    -- Trigger FeedBack
    TRIGGER VALIDATE BUSY IN
                               : in std logic;
    TRIGGER_BUSY_0_IN
                               : in std_logic;
    TRIGGER_BUSY_1_IN
                               : in std logic;
    -- OUT
                               : out std logic;
    VALID_TRIGGER_OUT
                               : out std logic;
    TIMESTAMP TRIGGER OUT
                               : out std_logic;
    TRIGGER_TIMING_OUT
    TRIGGER_STATUS_OUT
                               : out std logic;
                               : out std logic;
    FAST_CLEAR_OUT
    TRIGGER_BUSY_OUT
                               : out std_logic;
    -- Pulser
    TRIGGER TESTPULSE OUT
                               : out std_logic;
    -- Slave bus
    SLV_READ_IN
                               : in std_logic;
    SLV_WRITE_IN
                               : in std logic;
    SLV DATA OUT
                               : out std logic vector(31 downto 0);
    SLV_DATA_IN
                               : in std_logic_vector(31 downto 0);
                               : in std_logic_vector(15 downto 0);
    SLV_ADDR_IN
    SLV ACK OUT
                               : out std logic;
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 159/225
   SLV_NO_MORE_DATA_OUT
                              : out std_logic;
   SLV_UNKNOWN_ADDR_OUT
                              : out std_logic;
   -- Debug Line
   DEBUG_OUT
                              : out std_logic_vector(15 downto 0)
end entity;
architecture Behavioral of nx trigger handler is
 -- Timing Trigger Handler
 constant NUM FF
                                   : integer := 10;
 signal timing trigger ff p
                                   : std logic vector(1 downto 0);
 signal timing_trigger_ff
                                   : std logic vector(NUM FF - 1 downto 0);
 signal timing trigger 1
                                   : std logic;
 signal timing trigger
                                   : std logic;
 signal timing trigger set
                                   : std_logic;
 signal timestamp trigger o
                                   : std logic;
 signal invalid_timing_trigger_n : std_logic;
 signal invalid_timing_trigger : std_logic;
 signal invalid timing trigger ctr : unsigned(15 downto 0);
 signal trigger_busy
                                   : std_logic;
 signal fast clear
                                   : std logic;
 type TS_STATES is (TS_IDLE,
                    TS WAIT VALID TIMING TRIGGER,
                    TS_INVALID_TRIGGER,
                    TS_WAIT_TRIGGER_END
                    );
 signal TS_STATE : TS_STATES;
 signal ts wait timer reset
                                  : std logic;
 signal ts_wait_timer_start
                                  : std_logic;
 signal ts wait timer done
                                   : std logic;
 -- Trigger Handler
 signal valid_trigger_o
                                   : std logic;
 signal timing trigger o
                                   : std logic;
 signal status_trigger_o
                                : std logic;
 signal fast_clear_o
                                : std_logic;
 signal trigger_busy_o
                                  : std logic;
 signal fee data o
                                  : std logic vector(31 downto 0);
                             : std_logic;
: std_logic;
 signal fee_data_write_o
 signal fee_data_finished_o
                              : std_logic;
: std_logic_vector(31 downto 0);
 signal fee_trg_release_o
 signal fee_trg_statusbits_o
 signal send_testpulse
                                   : std logic;
 type STATES is (S_IDLE,
                 S_CTS_TRIGGER,
                 S WAIT TRG DATA VALID,
                 S_WAIT_TIMING_TRIGGER_DONE,
                 S_FEE_TRIGGER_RELEASE,
                 S_WAIT_FEE_TRIGGER_RELEASE_ACK,
                 S_INTERNAL_TRIGGER,
                 S_WAIT_TRIGGER_VALIDATE_ACK,
                 S WAIT TRIGGER VALIDATE DONE
 signal STATE : STATES;
```

```
stdin
Mar 09. 14 22:14
                                                                    Page 160/225
 type TRIGGER_TYPES is (T_UNDEF,
                         T IGNORE,
                         T INTERNAL,
                         T TIMING,
                         T_SETUP
                         );
 signal TRIGGER TYPE : TRIGGER TYPES;
 -- Testpulse Handler
 type T_STATES is (T_IDLE,
                    T WAIT TIMER,
                   T SET TESTPULSE
 signal T_STATE : T_STATES;
 signal trigger testpulse o
                                    : std logic;
 signal wait timer reset
                                    : std logic;
 signal wait_timer_start
                                    : std_logic;
 signal wait_timer_done
                                     : std_logic;
 -- Rate Calculation
 signal accepted_trigger_rate_t
                                     : unsigned(27 downto 0);
                                     : unsigned(27 downto 0);
 signal rate timer
 -- TRBNet Slave Bus
 signal slv data out o
                                    : std logic vector(31 downto 0);
 signal slv_no_more_data_o
                                    : std_logic;
 signal slv_unknown_addr_o
                                    : std_logic;
                                    : std logic;
 signal slv ack o
 signal reg_testpulse_delay
                                    : unsigned(11 downto 0);
                                    : std_logic;
 signal reg testpulse enable
 signal accepted_trigger_rate
                                    : unsigned(27 downto 0);
 signal invalid t trigger ctr clear : std logic;
 signal RESET_NX_MAIN_CLK_IN
                                    : std logic;
begin
 -- Debug Line
 DEBUG OUT(0)
                          <= CLK IN;
 DEBUG OUT(1)
                          <= TIMING TRIGGER IN;
 DEBUG_OUT(2)
                         <= invalid_timing_trigger;</pre>
 DEBUG OUT(3)
                         <= LVL1_VALID_TIMING_TRG_IN;</pre>
 DEBUG_OUT(4)
                         <= LVL1_TRG_DATA_VALID_IN;</pre>
 DEBUG_OUT(5)
                         <= fee_data_write_o;
 DEBUG_OUT(6)
                         <= TRIGGER_VALIDATE_BUSY_IN;</pre>
 DEBUG_OUT(7)
                          <= TRIGGER_BUSY_0_IN;
 DEBUG_OUT(8)
                         <= valid_trigger_o;
 DEBUG OUT(9)
                          <= timing trigger o;
 DEBUG_OUT(10)
                          <= fee_data_finished_o;
                          <= fee_trg_release_o;</pre>
 DEBUG OUT(11)
                          <= trigger busy o;
 DEBUG OUT(12)
                          <= timestamp_trigger_o;
 DEBUG_OUT(13)
 DEBUG OUT(14)
                          <= send_testpulse;</pre>
                          <= trigger testpulse o;
 DEBUG OUT(15)
 -- Reset Domain Transfer
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 161/225
signal_async_trans_RESET_IN: signal_async_trans
  port map (
    CLK IN
                => NX MAIN CLK IN,
    SIGNAL_A_IN => RESET_IN,
    SIGNAL OUT => RESET NX MAIN CLK IN
-- Trigger Handler
PROC TIMING TRIGGER HANDLER: process(NX MAIN CLK IN)
  constant pattern : std logic vector(NUM FF - 1 downto 0)
  := (others => '1');
begin
  if( rising_edge(NX_MAIN_CLK_IN) ) then
    timing trigger ff p(1)
                                             <= TIMING TRIGGER IN;
    if (RESET NX MAIN CLK IN = '1') then
      timing_trigger_ff_p(0)
                                             <= '0';
      timing_trigger_ff(NUM_FF - 1 downto 0) <= (others => '0');
      timing trigger 1
                                             <= '0';
    else
      timing_trigger_ff_p(0)
                                             <= timing_trigger_ff_p(1);
      timing trigger ff(NUM FF - 1)
                                             <= timing trigger ff p(0);
       for I in NUM_FF - 2 downto 0 loop
        timing_trigger_ff(I)
                                             <= timing_trigger_ff(I + 1);
      end loop;
       if (timing trigger ff = pattern) then
        timing trigger 1
                                             <= '1';
        timing trigger 1
                                             <= '0';
       end if;
    end if;
  end if;
end process PROC TIMING TRIGGER HANDLER;
level to pulse 1: level to pulse
  port map (
             => NX_MAIN_CLK_IN,
    RESET IN => RESET NX MAIN CLK IN,
    LEVEL IN => timing trigger 1,
    PULSE_OUT => timing_trigger
    );
-- Timer
timer_static_2: timer_static
  generic map (
    CTR_WIDTH => 8,
    CTR_END => 32 -- 128ns
  port map (
    CLK IN
                   => NX MAIN CLK IN,
                => ts_wait_timer_reset,
    TIMER_START_IN => ts_wait_timer_start,
    TIMER_DONE_OUT => ts_wait_timer_done
    );
PROC_TIMING_TRIGGER_HANDLER: process(NX_MAIN_CLK_IN)
begin
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 162/225
  if( rising_edge(NX_MAIN_CLK_IN) ) then
    if (RESET_NX_MAIN_CLK_IN = '1') then
      invalid timing trigger n <= '1';
      ts wait timer start
                                 <= '0';
                                 <= '1';
      ts_wait_timer_reset
                                 <= '0';
      send testpulse
                                 <= '0';
      timestamp trigger o
      TS STATE
                                 <= TS IDLE;
    else
      invalid timing trigger n <= '0';
      ts_wait_timer_start
                                 <= '0';
                                 <= '0';
      ts wait timer reset
      send testpulse
                                 <= '0';
      timestamp trigger o
                                 <= '0';
      if (fast clear = '1') then
        ts_wait_timer_reset <= '1';</pre>
        TS STATE
                                 <= TS IDLE;
      else
        case TS_STATE is
          when TS IDLE =>
            -- Wait for Timing Trigger synced to NX MAIN CLK DOMAIN
            if (timing_trigger = '1') then
              if (trigger_busy = '1') then
                -- If busy is set --> Error
                TS_STATE
                                        <= TS_INVALID_TRIGGER;
                if (reg_testpulse_enable = '1') then
                  send_testpulse
                                       <= '1';
                end if;
                timestamp trigger o <= '1';
                ts_wait_timer_start
                                       <= '1';
                TS STATE
                                        <= TS_WAIT_VALID_TIMING_TRIGGER;</pre>
              end if;
            else
              TS STATE
                                        <= TS IDLE;
            end if;
           when TS WAIT VALID TIMING TRIGGER =>
            -- Wait and test if CLK IN Trigger Handler does accepted Trigger
            if (trigger_busy = '1') then
              -- Trigger has been accepted, stop timer and wait trigger end
              ts_wait_timer_reset <= '1';
              TS STATE
                                        <= TS WAIT TRIGGER END;
            else
              if (ts_wait_timer_done = '1') then
                -- Timeout after 128ns --> Invalid Trigger Error
                TS_STATE
                                       <= TS_INVALID_TRIGGER;
              else
                TS STATE
                                        <= TS_WAIT_VALID_TIMING_TRIGGER;</pre>
              end if;
            end if;
           when TS_INVALID_TRIGGER =>
            invalid_timing_trigger_n
                                        <= '1';
                                        <= TS IDLE;
            TS STATE
          when TS_WAIT_TRIGGER_END =>
            if (trigger busy = '0') then
              TS STATE
                                        <= TS_IDLE;
            else
              TS STATE
                                        <= TS WAIT TRIGGER END;
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 163/225
             end if;
         end case;
      end if;
     end if;
  end if;
end process PROC TIMING TRIGGER HANDLER;
PROC TIMING TRIGGER COUNTER: process(CLK IN)
begin
  if ( rising_edge(CLK_IN) ) then
    if (RESET IN = '1') then
      invalid timing trigger ctr <= (others => '0');
      if (invalid t trigger ctr clear = '1') then
        invalid timing trigger ctr <= (others => '0');
       elsif (invalid timing trigger = '1') then
        invalid timing trigger ctr <= invalid timing trigger ctr + 1;
       end if;
    end if;
  end if;
end process PROC_TIMING_TRIGGER_COUNTER;
signal_async_trans_TRIGGER_BUSY: signal_async_trans
  port map (
    CLK IN
                => NX_MAIN_CLK_IN,
    SIGNAL_A_IN => trigger_busy_o,
    SIGNAL OUT => trigger busy
    );
signal async to pulse FAST CLEAR: signal async to pulse
  generic map (
    NUM_FF => 2
  port map (
    CLK IN
               => NX MAIN CLK IN,
    RESET IN => RESET NX MAIN CLK IN,
    PULSE A IN => fast clear o,
    PULSE OUT => fast clear
pulse_dtrans_INVALID_TIMING_TRIGGER: pulse_dtrans
  generic map (
    CLK_RATIO => 4
  port map (
    CLK_A_IN => NX_MAIN_CLK_IN,
    RESET_A_IN => RESET_NX_MAIN_CLK_IN,
    PULSE_A_IN => invalid_timing_trigger_n,
    CLK B IN => CLK IN,
    RESET_B_IN => RESET_IN,
     PULSE_B_OUT => invalid_timing_trigger
    );
PROC_TRIGGER_HANDLER: process(CLK_IN)
begin
  if (rising edge (CLK IN)) then
    if (RESET_IN = '1') then
                           <= '0';
      valid_trigger_o
       timing trigger o
                           <= '0';
```

```
stdin
Mar 09. 14 22:14
                                                                   Page 164/225
       status_trigger_o
                            <= '0';
       fee_data_finished_o <= '0';</pre>
                           <= '0';
       fee trg release o
       fee trg statusbits o <= (others => '0');
                           <= '0';
       fast_clear_o
                           <= '0';
       trigger busy o
      TRIGGER TYPE
                           <= T UNDEF;
       STATE
                            <= S IDLE;
     else
      valid trigger o
                           <= '0';
      timing trigger o
                           <= '0';
      status trigger o
                           <= '0';
       fee data finished o <= '0';
       fee trg release o <= '0';
       fee trg statusbits o <= (others => '0');
                      <= '0';
       fast clear o
      trigger_busy_o
                           <= '1';
      if (LVL1 INVALID TRG IN = '1') then
        -- There was no valid Timing Trigger at CTS, do a fast clear
        fast clear o
                                   <= '1';
        fee trg release o
                                   <= '1';
        STATE
                                   <= S IDLE;
       else
        case STATE is
          when S_IDLE =>
            if (LVL1_VALID_NOTIMING_TRG_IN = '1') then
              -- Calibration Trigger .. ignore
              TRIGGER_TYPE
                                   <= T_IGNORE; --T_SETUP;
                                   <= S_WAIT_TRG_DATA_VALID;
            elsif (LVL1_VALID_TIMING_TRG_IN = '1') then
              if (NXYTER_OFFLINE_IN = '0') then
                -- Normal Trigger
                TRIGGER TYPE
                                    <= T_TIMING;
                STATE
                                    <= S CTS TRIGGER;
                 -- Ignore Trigger for nxyter is offline
               TRIGGER TYPE
                                    <= T IGNORE;
               STATE
                                    <= S WAIT TRG DATA VALID;
               end if;
            elsif (INTERNAL_TRIGGER_IN = '1') then
              -- Internal Trigger, not defined yet
              TRIGGER TYPE
                                   <= T INTERNAL;
              STATE
                                    <= S_INTERNAL_TRIGGER;
            else
              trigger_busy_o
                                   <= '0';
              TRIGGER_TYPE
                                   <= T UNDEF;
              STATE
                                   <= S IDLE;
            end if;
           when S_CTS_TRIGGER =>
                                   <= '1';
            valid trigger o
                                   <= '1';
            timing_trigger_o
            STATE
                                    <= S_WAIT_TRG_DATA_VALID;</pre>
           when S_WAIT_TRG_DATA_VALID =>
            if (LVL1_TRG_DATA_VALID_IN = '0') then
              STATE
                                   <= S WAIT TRG DATA VALID;
            else
              STATE
                                    <= S_WAIT_TIMING_TRIGGER_DONE;</pre>
            end if;
```

```
stdin
Mar 09, 14 22:14
                                                                     Page 165/225
           when S_WAIT_TIMING_TRIGGER_DONE =>
             if (TRIGGER BUSY 0 IN = '1') then
               STATE
                                     <= S WAIT TIMING TRIGGER DONE;
             else
               fee data finished o <= '1';
               STATE
                                     <= S FEE TRIGGER RELEASE;
             end if;
           when S FEE TRIGGER RELEASE =>
             fee trg release o
                                     <= S WAIT FEE TRIGGER RELEASE ACK;
           when S WAIT FEE TRIGGER RELEASE ACK =>
             if (LVL1 TRG DATA VALID IN = '1') then
                                    <= S WAIT FEE TRIGGER RELEASE ACK;
               STATE
             else
                                     <= S IDLE;
               STATE
             end if;
             -- Internal Trigger Handler
           when S INTERNAL TRIGGER =>
             valid_trigger_o
                                     <= '1';
             STATE
                                     <= S_WAIT_TRIGGER_VALIDATE_ACK;</pre>
           when S_WAIT_TRIGGER_VALIDATE_ACK =>
             if (TRIGGER VALIDATE BUSY IN = '0') then
               STATE
                                     <= S_WAIT_TRIGGER_VALIDATE_ACK;</pre>
             else
               STATE
                                     <= S_WAIT_TRIGGER_VALIDATE_DONE;</pre>
             end if;
           when S_WAIT_TRIGGER_VALIDATE_DONE =>
             if (TRIGGER VALIDATE BUSY IN = '1') then
               STATE
                                     <= S_WAIT_TRIGGER_VALIDATE_DONE;</pre>
             else
               STATE
                                     <= S IDLE;
             end if;
         end case;
       end if;
     end if;
  end if;
end process PROC TRIGGER HANDLER;
PROC_EVENT_DATA_MULTIPLEXER: process(TRIGGER_TYPE)
begin
  case TRIGGER_TYPE is
     when T_UNDEF | T_IGNORE | T_INTERNAL =>
                                     <= (others => '0');
       fee data o
       fee_data_write_o
                                     <= '0';
     when T TIMING =>
       fee data o
                                     <= FEE_DATA_0_IN;</pre>
       fee data write o
                                     <= FEE DATA WRITE 0 IN;
     when T_SETUP =>
       fee data o
                                     <= FEE_DATA_1_IN;</pre>
                                     <= FEE_DATA_WRITE_1_IN;</pre>
       fee data write o
  end case;
end process PROC_EVENT_DATA_MULTIPLEXER;
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 166/225
timer 1: timer
  generic map (
    CTR WIDTH => 12
  port map (
    CLK IN
                    => NX MAIN CLK IN,
    RESET IN
                    => wait timer reset,
    TIMER START IN => wait timer start,
    TIMER END IN => reg testpulse delay.
    TIMER DONE OUT => wait timer done
PROC TESTPULSE HANDLER: process (NX MAIN CLK IN)
begin
  if ( rising edge(NX MAIN CLK IN) ) then
    if (RESET_NX_MAIN_CLK_IN = '1') then
       wait timer start
                          <= '0';
       wait timer reset
                            <= '1';
       trigger_testpulse_o <= '0';</pre>
      T STATE
                           <= T IDLE;
     else
       trigger_testpulse_o <= '0';</pre>
       wait_timer_start <= '0';</pre>
      wait timer reset <= '0';
      if (fast clear = '1') then
        wait timer reset <= '1';
        T_STATE
                            <= T_IDLE;
       else
        case T STATE is
          when T_IDLE =>
             if (send testpulse = '1') then
               if (reg testpulse delay > 0) then
                 wait timer start <= '1';</pre>
                 T STATE
                                  <= T WAIT TIMER;
               else
                 T STATE
                                  <= T_SET_TESTPULSE;
               end if;
             else
              T STATE
                                  <= T IDLE;
             end if;
           when T WAIT TIMER =>
             if (wait_timer_done = '0') then
              T STATE
                                  <= T WAIT TIMER;
             else
              T STATE
                                  <= T SET TESTPULSE;
             end if;
           when T_SET_TESTPULSE =>
             trigger_testpulse_o <= '1';</pre>
             T STATE
                                  <= T IDLE;
         end case;
       end if;
    end if;
  end if;
end process PROC TESTPULSE HANDLER;
PROC_CAL_RATES: process (CLK_IN)
begin
```

```
stdin
Mar 09. 14 22:14
                                                               Page 167/225
  if( rising_edge(CLK_IN) ) then
    if (RESET_IN = '1') then
      accepted_trigger_rate_t
                                 <= (others => '0');
      accepted_trigger_rate
                               \leq (others \Rightarrow '0');
                                 <= (others => '0');
      rate_timer
    else
      if (rate timer < x"5f5e100") then
        if (timing trigger o = '1') then
          accepted trigger rate t
                                           <= accepted trigger rate t + 1;
        end if;
        rate timer
                                           <= rate timer + 1;
      else
        rate timer
                                           \leq (others \Rightarrow '0');
        accepted trigger rate
                                           <= accepted trigger rate t;
        accepted trigger rate t(27 downto 0) <= (others => '0');
        accepted_trigger_rate_t(0) <= timing_trigger_o;</pre>
      end if;
    end if;
  end if;
end process PROC_CAL_RATES;
-- TRBNet Slave Bus
PROC SLAVE BUS: process(CLK IN)
begin
  if ( rising_edge(CLK_IN) ) then
    if( RESET_IN = '1' ) then
                                   <= (others => '0');
      slv data out o
                                 <= '0';
      slv_no_more_data_o
                                 <= '0';
      slv_unknown_addr_o
                                  <= '0';
      slv ack o
      invalid t trigger ctr clear <= '1';
      slv unknown addr o
                                    <= '0';
      slv_no_more_data_o
                                   <= '0';
      slv_data_out_o
                                 \leq (others \Rightarrow '0');
      slv ack o
                                  <= '0';
      invalid t trigger ctr clear <= '1';
      if (SLV WRITE IN = '1') then
        case SLV ADDR IN is
          when x"0000" =>
            reg_testpulse_enable
                                     <= SLV_DATA_IN(0);
                                     <= '1';
            slv ack o
          when x"0001" =>
            reg_testpulse_delay
              unsigned(SLV_DATA_IN(11 downto 0));
            slv_ack_o
                                       <= '1';
          when x"0003" =>
            invalid_t_trigger_ctr_clear <= '1';</pre>
            slv_ack_o
                                       <= '1';
          when others =>
            slv_unknown_addr_o
                                       <= '1';
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 168/225
        end case;
      elsif (SLV READ IN = '1') then
        case SLV ADDR IN is
          when x"0000" =>
            slv data out o(0)
                                        <= reg testpulse enable;
            slv_data_out_o(31 downto 1) <= (others => '0');
                                        <= '1';
            slv ack o
          when x"0001" =>
            slv data out o(11 downto 0) <=
              std logic vector(reg testpulse delay);
            slv data out o(31 downto 12) <= (others => '0');
            slv ack o
                                         <= '1';
          when x"0002" =>
            slv data out o(27 downto 0) <=
              std logic vector(accepted trigger rate);
            slv_data_out_o(31 downto 28) <= (others => '0');
            slv_ack_o
          when x"0003" =>
            slv_data_out_o(15 downto 0) <=
              std_logic_vector(invalid_timing_trigger_ctr);
            slv_data_out_o(31 downto 26) <= (others => '0');
            slv ack o
          when others =>
            slv_unknown_addr_o
                                      <= '1';
        end case;
      end if;
    end if;
  end if;
end process PROC SLAVE BUS;
-- Trigger Output
VALID TRIGGER OUT
                          <= valid trigger o;
TIMESTAMP_TRIGGER_OUT
                          <= timestamp trigger o;
                          <= timing trigger o;
TRIGGER_TIMING_OUT
TRIGGER_STATUS_OUT
                          <= status trigger o;
FAST_CLEAR_OUT
                          <= fast_clear_o;
TRIGGER BUSY OUT
                          <= trigger busy o;
FEE_DATA_OUT
                          <= fee data o;
FEE_DATA_WRITE_OUT
                          <= fee_data_write_o;
FEE_DATA_FINISHED_OUT
                          <= fee data finished o;
                          <= fee_trg_release_o;
FEE_TRG_RELEASE_OUT
                          <= fee trg statusbits o;
FEE_TRG_STATUSBITS_OUT
TRIGGER_TESTPULSE_OUT
                          <= trigger_testpulse_o;
-- Slave Bus
SLV_DATA_OUT
                          <= slv_data_out_o;</pre>
SLV_NO_MORE_DATA_OUT
                          <= slv_no_more_data_o;</pre>
SLV UNKNOWN ADDR OUT
                          <= slv unknown addr o;
```

Mar 09, 14 22:14	stdin	Page 169/225
SLV_ACK_OUT	<= slv_ack_o;	
<pre>end Behavioral; library ieee; use ieee.std_logic_1164.all use ieee.numeric_std.all;</pre>	.;	
library work; use work.nxyter_components.	all;	
<pre>entity nx_trigger_validate generic (BOARD_ID : std_logic_ve);</pre>	is ector(1 downto 0) := "11"	
port (CLK_IN RESET_IN	: in std_logic; : in std_logic;	
TIMESTAMP_IN CHANNEL_IN TIMESTAMP_STATUS_IN ADC DATA IN		- 2: Parity Err - 1: Pileup - 0: Ovfl
TRIGGER_BUSY_IN FAST_CLEAR_IN TRIGGER_BUSY_OUT	<pre>: in std_logic; : in std_logic; : in std_logic; : out std_logic; : in unsigned(11 downto 0); : out std_logic_vector(7 downto 0);</pre>	
Event Buffer I/O DATA_OUT DATA_CLK_OUT NOMORE_DATA_OUT EVT_BUFFER_CLEAR_OUT EVT_BUFFER_FULL_IN	<pre>: out std_logic_vector(31 downto 0); : out std_logic; : out std_logic; : out std_logic; : in std_logic;</pre>	
Histogram HISTOGRAM_FILL_OUT HISTOGRAM_BIN_OUT HISTOGRAM_ADC_OUT HISTOGRAM_PILEUP_OUT HISTOGRAM_OVERFLOW_OUT	<pre>: out std_logic_vector(6 downto 0); : out std_logic_vector(11 downto 0); : out std_logic;</pre>	
Slave bus SLV_READ_IN SLV_WRITE_IN SLV_DATA_OUT SLV_DATA_IN SLV_ADDR_IN SLV_ACDR_UT SLV_ACK_OUT SLV_NO_MORE_DATA_OUT SLV_UNKNOWN_ADDR_OUT	<pre>: in std_logic; : in std_logic; : out std_logic_vector(31 downto 0); : in std_logic_vector(31 downto 0); : in std_logic_vector(15 downto 0); : out std_logic; : out std_logic; : out std_logic;</pre>	
DEBUG_OUT);	: out std_logic_vector(15 downto 0)	
end entity;		

```
stdin
Mar 09, 14 22:14
                                                                    Page 170/225
architecture Behavioral of nx_trigger_validate is
                               : std logic vector(3 downto 0) := x"1";
 constant VERSION NUMBER
                               : integer := 2;
 constant S_PARITY
 constant S PILEUP
                               : integer := 1;
 constant S OVFL
                               : integer := 0;
 -- Process Channel Status
 signal channel index
                               : std logic vector(6 downto 0);
 signal channel_wait
                               : std_logic_vector(127 downto 0);
 signal channel done
                               : std logic vector(127 downto 0);
 signal channel hit
                               : std logic vector(127 downto 0);
 signal channel all done
                               : std logic;
 signal channel done r
                               : std_logic_vector(127 downto 0);
                               : std_logic_vector(127 downto 0);
 signal channel_wait_r
                               : std_logic_vector(127 downto 0);
 signal channel hit r
 signal channel_all_done_r
                               : std_logic;
 signal token_update
                               : std_logic;
 -- Channel Status Commands
 type CS_CMDS is (CS_RESET,
                  CS_CLEAR_WAIT,
                  CS TOKEN UPDATE,
                  CS_SET_WAIT,
                  CS_SET_HIT,
                  CS_SET_DONE,
                  CS_NONE
                 );
 signal channel status cmd
                               : CS CMDS;
 -- Process Calculate Trigger Window
 signal fifo delay time
                               : unsigned(11 downto 0);
 -- Process Timestamp
 signal d data o
                               : std_logic_vector(31 downto 0);
 signal d data clk o
                               : std logic;
 signal out_of_window_l
                               : std_logic;
 signal out of window h
                               : std logic;
 signal window hit
                               : std logic;
 signal out_of_window_error
                               : std_logic;
 signal ch_status_cmd_pr
                               : CS CMDS;
 -- Window Status Counter
 signal out_of_window_l_ctr
                               : unsigned(15 downto 0);
 signal window_hit_ctr
                               : unsigned(15 downto 0);
 signal out_of_window_h_ctr : unsigned(15 downto 0);
 signal out_of_window_l_ctr_r : unsigned(15 downto 0);
 signal window_hit_ctr_r
                               : unsigned(15 downto 0);
 signal out_of_window_h_ctr_r : unsigned(15 downto 0);
 signal validation_busy
                               : std_logic_vector(1 downto 0);
 -- Rate Calculations
 signal data rate ctr
                               : unsigned(27 downto 0);
                               : unsigned(27 downto 0);
 signal data_rate
                               : unsigned(27 downto 0);
 signal rate_timer_ctr
 -- Self Trigger Mode
 signal self_trigger_mode
                               : std_logic;
 -- Process Trigger Handler
```

Mar 09, 14 22:14	stdin	Page 171/225
signal trigger_busy_o signal nomore_data_o signal wait_timer_start signal wait_timer_start_ns signal wait_timer_init_ns signal token_return_last signal token_return_first signal ch_status_cmd_tr signal wait for data time r	r : std_logic_vector(19 downto 0);	
type STATES is (S_TEST_SELF_ S_IDLE, S_TRIGGER, S_WAIT_DATA, S_WRITE_HEAI S_PROCESS_ST S_WAIT_PROCE S_WRITE_TRAI S_SET_NOMORE); signal STATE : STATES;	, DER, FART, ESS_END, ILER,	
signal t_data_o	<pre>: std_logic; : unsigned(9 downto 0);</pre>	
signal readout_mode signal timestamp_fpga_i signal timestamp_fpga signal timestamp_ref signal busy_time_ctr_last signal evt_buffer_clear_o	<pre>: std_logic_vector(3 downto 0); : unsigned(11 downto 0); : unsigned(11 downto 0); : unsigned(11 downto 0); : unsigned(11 downto 0); : std_logic;</pre>	
Timers signal timer_reset signal wait_timer_done signal wait_timer_done_ns	<pre>: std_logic; : std_logic; : std_logic;</pre>	
Histogram signal histogram_fill_o signal histogram_bin_o signal histogram_adc_o signal histogram_pileup_o signal histogram_ovfl_o	<pre>: std_logic; : std_logic_vector(6 downto 0); : std_logic_vector(11 downto 0); : std_logic; : std_logic;</pre>	
Data FIFO Delay signal data_fifo_delay_o	: unsigned(7 downto 0);	
Output signal data_clk_o signal data_o	<pre>: std_logic; : std_logic_vector(31 downto 0);</pre>	
Slave Bus signal slv_data_out_o signal slv_no_more_data_o	<pre>: std_logic_vector(31 downto 0); : std_logic;</pre>	

```
stdin
 Mar 09, 14 22:14
                                                                     Page 172/225
 signal slv_unknown_addr o
                               : std_logic;
                                : std_logic;
 signal slv_ack_o
 signal readout mode r
                                : std logic vector(3 downto 0);
 signal out_of_window_error_ctr_clear : std_logic;
  -- Timestamp Trigger Window Settings
 signal nxyter cy time
                                : unsigned(11 downto 0);
 signal cts trigger delay
                                : unsigned(11 downto 0);
 signal ts window offset
                               : signed(11 downto 0);
 signal ts_window_width
                               : unsigned(9 downto 0);
 signal readout time max
                               : unsigned(11 downto 0);
 signal fpga timestamp offset : unsigned(11 downto 0);
 signal
              state d
                                : std logic vector(1 downto 0);
begin
 -- Debug Line
 DEBUG_OUT(0)
                          <= CLK_IN;
 DEBUG_OUT(1)
                          <= TRIGGER_IN;
 DEBUG OUT(2)
                          <= trigger busy o;
 DEBUG_OUT(3)
                          <= DATA_CLK_IN;
 DEBUG_OUT(4)
                          <= out_of_window_l;</pre>
                          <= out of window h;
 DEBUG_OUT(5)
 DEBUG_OUT(6)
                          <= NX_TOKEN_RETURN_IN;</pre>
 DEBUG_OUT(7)
                          <= NX_NOMORE_DATA_IN;
                          <= channel_all_done;
 DEBUG_OUT(8)
                          <= store_to_fifo;
 DEBUG_OUT(9)
 DEBUG_OUT(10)
                          <= data_clk_o;
 DEBUG OUT(11)
                          <= out of window error or EVT BUFFER FULL IN;
                          <= token_update; --TRIGGER_BUSY_IN; --wait_timer_done;</pre>
 DEBUG_OUT(12)
                          <= min_val_time_expired;</pre>
 DEBUG_OUT(13)
 DEBUG OUT(14)
                          <= token update;
                          <= nomore_data_o;
 DEBUG_OUT(15)
  -- Timer
 timer 1: timer
    generic map(
      CTR WIDTH => 12
    port map (
      CLK IN
                     => CLK IN,
      RESET IN
                     => timer reset,
     TIMER_START_IN => wait_timer_start,
     TIMER_END_IN => readout_time_max,
     TIMER_DONE_OUT => wait_timer_done
     );
  timer_2: timer
    generic map(
     CTR_WIDTH => 20,
     STEP_SIZE => 10
    port map (
     CLK_IN
                     => CLK_IN,
     RESET_IN
                     => timer_reset,
     TIMER_START_IN => wait_timer_start_ns,
     TIMER END IN => wait timer init ns,
     TIMER_DONE_OUT => wait_timer_done_ns
      );
```

```
stdin
Mar 09, 14 22:14
                                                                                    Page 173/225
timer_reset <= RESET_IN or wait_timer_reset_all;</pre>
 -- Filter only valid events
 PROC FILTER TIMESTAMPS: process (CLK IN)
   variable ts window offset unsigned : unsigned(11 downto 0);
   variable window_upper_thr
variable ts_window_check_value
variable deltaTStore
variable store data
begin
   if ( rising edge (CLK IN) ) then
      if (RESET IN = '1') then
                      <= (others => '0');
o <= '0':
        d data o
        d data clk o
        out_of_window_b
                                     <= '0';
                                     <= '0';
        out_of_window_h
        window hit
                                      <= '0';
        out of window error <= '0';
        fifo_delay_time <= (others => '0');
        out_of_window_error_ctr <= (others => '0');
      else
        d data o
                                    <= (others => '0');
                                   <= '0';
        d data clk o
                                   <= '0';
        out of window 1
                                   <= '0';
        out_of_window_h
        window hit
                                   <= '0';
        out of window error <= '0';
        fifo_delay_time <= (others => '0');
        ch_status_cmd_pr
                                   <= CS_NONE;
                                   <= '0';
        histogram_fill_o
        histogram_bin_o <= (others => '0');
histogram_adc_o <= (others => '0');
        histogram pileup o <= '0';
        histogram_ovfl_o
                                      <= '0';
        -- Calculate Thresholds and values for FIFO Delay
        if (ts window offset(11) = '1') then
           -- Offset is negative
           ts_window_offset_unsigned :=
              (unsigned(ts_window_offset) xor x"fff") + 1;
           window lower thr :=
             cts_trigger_delay + ts_window_offset_unsigned;
        else
           -- Offset is positive
           window lower thr
             cts_trigger_delay - unsigned(ts_window_offset);
        end if;
        -- Calculate FIFO Delay
        if (window_lower_thr(11) = '0') then
           fifo delay time <= window lower thr; -- unit is 4ns
        else
           fifo_delay_time <= (others => '0');
        end if;
```

```
stdin
Mar 09. 14 22:14
                                                              Page 174/225
      -- Final lower Threshold value relative to TS Reference TS
      window lower thr := timestamp fpga - window lower thr;
      window_upper_thr
        window lower thr + resize(ts window width, 12);
      ts window check value :=
        unsigned(TIMESTAMP IN(13 downto 2)) - window lower thr;
      -- Timestamp to be stored
      deltaTStore(13 downto 2) := ts_window_check_value;
      deltaTStore( 1 downto 0) := unsigned(TIMESTAMP IN(1 downto 0));
      -- Validate incoming Data
      if (DATA_CLK_IN = '1') then
        if (store to fifo = '1' and EVT BUFFER FULL IN = '0') then
         store data
          -- TS Window Check
          if (ts_window_check_value(11) = '1') then
           -- TS below Window: Set WAIT Bit in LUT and discard Data
           channel_index <= CHANNEL_IN;</pre>
           ch_status_cmd_pr <= CS_SET_WAIT;
out_of_window_l <= '1';
store_data := '0';
           store data
                                       := '0';
          elsif (ts_window_check_value > ts_window_width) then
           -- TS above Window: Set DONE Bit in LUT and discard Data
           := '0';
           store data
          elsif ((ts_window_check_value >= 0) and
                (ts window check value <= ts window width)) then
            -- TS in between Window: Set WAIT Bit in LUT and Take Data
           window hit
                                       <= '1';
           store data
                                         := '1';
            -- TS Window Error condition, do nothing
           out_of_window_error
store data
                                         <= '1';
           store_data
                                         := '0';
           if (out_of_window_error_ctr_clear = '0') then
             out_of_window_error_ctr <= out_of_window_error_ctr + 1;</pre>
           end if;
          end if;
          --TS Window Disabled, always store data
          if (readout_mode(2) = '1' or
             self_trigger_mode = '1') then
           store_data
                                        := '1';
          end if;
          if (store_data = '1') then
            case readout mode(1 downto 0) is
             when "00" =>
               -- Default Mode
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 175/225
                 if (TIMESTAMP_STATUS_IN(S_PARITY) = '0') then
                   d_data_o(10 downto 0)
                                              <= deltaTStore(10 downto 0);
                   d data o(22 downto 11)
                                              <= ADC DATA IN;
                   d data o(23)
                                              <= TIMESTAMP STATUS IN(S OVFL);
                                              <= TIMESTAMP_STATUS_IN(S_PILEUP);
                   d_data_o(24)
                   d data o(31 downto 25)
                                              <= CHANNEL IN;
                   d data clk o
                                              <= '1';
                 end if;
               when "01" =>
                 -- Extended Timestamp Mode 12Bit
                if (TIMESTAMP STATUS IN(S PARITY) = '0') then
                   d data o(11 downto 0)
                                              <= deltaTStore(11 downto 0);
                   d data o(22 downto 12)
                                              <= ADC DATA IN(11 downto 1);
                   d data o(23)
                                              <= TIMESTAMP_STATUS_IN(S_OVFL);
                   d data o(24)
                                              <= TIMESTAMP STATUS IN(S PILEUP);
                   d data o(31 downto 25)
                                              <= CHANNEL IN;
                   d data clk o
                                              <= '1';
                end if;
               when "10" =>
                 -- Extended Timestamp Mode 14Bit
                if (TIMESTAMP_STATUS_IN(S_PARITY) = '0') then
                   d_data_o(13 downto 0)
                                              <= deltaTStore;
                   d data o(22 downto 14)
                                              <= ADC_DATA_IN(11 downto 3);
                   d_data_o(23)
                                              <= TIMESTAMP_STATUS_IN(S_OVFL);</pre>
                   d data o(24)
                                              <= TIMESTAMP STATUS IN(S PILEUP);
                   d data o(31 downto 25)
                                              <= CHANNEL IN;
                   d_data_clk_o
                                              <= '1';
                 end if;
               when "11" =>
                if (TIMESTAMP_STATUS_IN(S_PARITY) = '0') then
                   d data o(13 downto 0)
                                              <= deltaTStore;
                   d_data_o(24 downto 14)
                                              <= ADC_DATA_IN(11 downto 1);
                                              <= CHANNEL_IN;
                   d data o(31 downto 25)
                   d data clk o
                                              <= '1';
                 end if;
             end case;
           end if;
           if (out of window error ctr clear = '1') then
             out_of_window_error_ctr
                                              <= (others => '0');
           end if;
         end if;
         -- Fill Histogram
         histogram fill o
                                            <= '1';
         histogram_bin_o
                                            <= CHANNEL IN;
         histogram_adc_o
                                            <= ADC DATA IN;
         histogram_pileup_o
                                            <= TIMESTAMP_STATUS_IN(S_PILEUP);
        histogram ovfl o
                                            <= TIMESTAMP STATUS IN(S OVFL);
      end if;
    end if;
  end if;
end process PROC_FILTER_TIMESTAMPS;
PROC_WINDOW_STATE_CTR: process(CLK_IN)
begin
   if ( rising edge (CLK IN) ) then
```

```
stdin
Mar 09. 14 22:14
                                                                     Page 176/225
     if (RESET_IN = '1') then
       out of window 1 ctr
                                <= (others => '0');
       window hit ctr
                                <= (others => '0');
       out of window h ctr
                                \leq (others => '0');
       out_of_window_l_ctr_r
                                <= (others => '0');
       window hit ctr r
                                <= (others => '0');
       out of window h ctr r
                                \leq (others => '0');
       validation busy
                                <= (others => '0');
     else
       validation busy(0)
                                     <= store to fifo;
       validation busy(1)
                                     <= validation busy(0);
       case validation busy is
         when "00"=>
                                        -- No validation
           out of window 1 ctr
                                     \leq (others \Rightarrow '0');
           window hit ctr
                                     \leq (others \Rightarrow '0');
           out of window 1 ctr
                                     <= (others => '0');
         when "01"=>
                                        -- Start validation
                                     <= (others => '0');
           out_of_window_l_ctr
                                     <= (others => '0');
           window_hit_ctr
           out of window 1 ctr
                                     \leq (others => '0');
         when "10"=>
                                        -- End validation
                                     <= out of window l ctr;
           out of window 1 ctr r
           window_hit_ctr_r
                                     <= window_hit_ctr;</pre>
           out of window 1 ctr r
                                     <= out of window 1 ctr;
                                        -- Validation
         when "11" =>
           if (out_of_window_l = '1') then
             out of window 1 ctr
                                    <= out of window l ctr + 1;
           end if;
           if (window hit = '1') then
             window_hit_ctr
                                     <= window_hit_ctr + 1;
           end if;
           if (out of window l = '1') then
             out of window h ctr
                                      <= out of window h ctr + 1;
           end if;
       end case;
     end if;
  end if;
end process PROC WINDOW STATE CTR;
PROC_RATE_COUNTER: process(CLK_IN)
begin
  if (rising_edge(CLK_IN) ) then
     if (RESET_IN = '1') then
       data rate ctr
                               <= (others => '0');
       data rate
                               <= (others => '0');
                               <= (others => '0');
       rate timer ctr
     else
       if (rate timer ctr < x"5f5e100") then
         rate_timer_ctr
                                     <= rate_timer_ctr + 1;</pre>
         if (d_data_clk_o = '1') then
           data rate ctr
                                     <= data rate ctr + 1;
         end if;
       else
         rate timer ctr
                                     <= (others => '0');
```

Mar 09, 14 22:14	stdin	Page 177/225
data_rate	<= data_rate_ctr;	
<pre>data_rate_ctr(27 downto data_rate_ctr(0) end if; end if; end if;</pre>	o 0) <= (others => '0');	
end process PROC_RATE_COUNTER;		
Trigger Handler		
Set Self Trigger Mode Toggle PROC_SELF_TRIGGER: process(CLK_begin if(rising_edge(CLK_IN)) the if (RESET_IN = '1') then self_trigger_mode <= 'e else if (trigger_busy_o = '0') if (readout_mode_r(3) = self_trigger_mode <= else self_trigger_mode <= else self_trigger_mode <= end if; end if; end if; end process PROC_SELF_TRIGGER;	_IN) en '0';) then = '1') then = '1';	
PROC_TRIGGER_HANDLER: process(C variable wait_for_data_time variable min_validation_time begin if(rising_edge(CLK_IN)) the timestamp_fpga_i	<pre>: unsigned(19 downto 0); : unsigned(19 downto 0); en <= TIMESTAMP_FPGA_IN;</pre>	
<pre>if (RESET_IN = '1' or FAST_ store_to_fifo trigger_busy_o nomore_data_o wait_timer_start wait_timer_start_ns wait_timer_reset_all min_val_time_expired</pre>	<pre>_CLEAR_IN = '1') then</pre>	
t_data_o t_data_clk_o busy_time_ctr busy_time_ctr_last token_return_last token_return_first	<pre><= (others => '0'); <= '0'; <= (others => '0'); <= (others => '0'); <= '0'; <= '0'; <= '0'; <= '0';</pre>	
<pre>ch_status_cmd_tr event_counter readout_mode timestamp_fpga timestamp_ref evt_buffer_clear_o wait_for_data_time_r</pre>	<pre><= CS_RESET; <= (others => '0'); <= (others => '0'); <= (others => '0'); <= (others => '0'); <= '0'; <= (others => '0');</pre>	
<pre>min_validation_time_r STATE else store to fifo</pre>	<pre><= (others => '0'); <= S_TEST_SELF_TRIGGER; <= '0';</pre>	

Mar 09, 14 22:14	stdin	Page 178/225
<pre>wait_timer_start wait_timer_start_ns wait_timer_reset_all trigger_busy_o nomore_data_o t_data_o t_data_clk_o ch_status_cmd_tr evt_buffer_clear_o</pre>	<pre><= '0'; <= '0'; <= '0'; <= '1'; <= '0'; <= (others => '0'); <= '0'; <= CS_NONE; <= '0';</pre>	
Wait for Data and min_validation_time min_validation_time wait_for_data_time resize(nxyter_cv_time if (skip_wait_for_data min_validation_time min_validation_time wait_for_data_time end if;	<pre>inimum Validation Time calc</pre>	idth * 4, 20); * 32 + 320;
<pre>min_validation_time_r wait_for_data_time_r</pre>	<= min_validation_tim <= wait_for_data_time	e; ;
NX_TOKEN_RETURN_IN token_return_last if (min_val_time_exp: if (token_return_f: ch_status_cmd_tr else token_return_firs ch_status_cmd_tr end if; else	= '0') then ired = '1') then irst = '1') then	; handled by TK-UPDATE
<pre>case STATE is when S_TEST_SELF_TRIC state_d <= "00";</pre>	GGER =>	
if (self_trigger_mo	<pre>VL2 Trigger Cycle _IN = '1') then</pre>	_r; 0');
<pre>when S_IDLE => state_d <= "01";</pre>		

Mar 09, 14 22:14	S	tdin	Page 179/225
busy_t: STATE else trigge: min_va: if (se: ch_st	e_to_fifo	<pre><= (others => '0'); <= S_TRIGGER; <= '0'; <= '0'; then <= CS_RESET; <= '1'; <= S_IDLE;</pre>	
when S_TRIO if (self_ readout	_trigger_mode = '0')	then <= readout_mode_r;	
wait_t: wait_t:		<pre>and clear evt buffer <= '1'; <= wait_for_data_time; <= '1'; <= S_WAIT_DATA; <= S_WRITE_TRAILER;</pre>	
STATE else timesta times	r_DATA => _timer_done_ns = '0' amp_fpga stamp_fpga_i + fpga_ amp_ref	<= S_WAIT_DATA;	
when S_WRIT state_d	ΓE_HEADER =>	<= "10";	
t_data_o Readou Bit #:	data will be w	<pre><= timestamp_ref; <= event_counter; election Window lection Window, i.e. written to disk as long as fax (Reg.: 0x8184) is valid</pre>	
Bit #: 	10: 00: Standard 01: UNDEF 10: UNDEF 11: UNDEF (25 downto 22) (29 downto 26) (31 downto 30) lk_o	<pre><= readout_mode; <= VERSION_NUMBER; <= BOARD_ID; <= '1';</pre>	
event_cot if (self_ STATE else	unter _trigger_mode = '0')	<pre><= event_counter + 1; then <= S_PROCESS_START;</pre>	

STATE end if; when S_PROCESS_START => wait_timer_start wait_timer_start_ns wait_timer_init_ns token_return_first ch_status_cmd_tr	<= S_IDLE; <= '1';	
<pre>when S_PROCESS_START => wait_timer_start wait_timer_start_ns wait_timer_init_ns token_return_first</pre>	<= '1';	
<pre>wait_timer_start wait_timer_start_ns wait_timer_init_ns token_return_first</pre>	<= '1';	
store_to_fifo STATE	<pre><= '1'; <= min_validation_tim <= '0'; <= CS_RESET; <= '1'; <= S_WAIT_PROCESS_END</pre>	
<pre>when S_WAIT_PROCESS_END Check minimum valid if (wait_timer_done_ns min_val_time_expired end if;</pre>	dation time s = '1') then	
<pre>if (wait_timer_done wait_timer_reset_all STATE elsif (readout_mode(2)</pre>	<pre>1</pre>	as expired
wait_timer_reset_all STATE else	<pre>1 <= '1'; <= S_WRITE_TRAILER;</pre>	
Continue Validati store_to_fifo STATE end if;	ion <= '1'; <= S_WAIT_PROCESS_END	;
<pre>when S_WRITE_TRAILER => state_d t_data_o t_data_clk_o STATE when S_SET_NOMORE_DATA = nomore_data_o</pre>	<= '1';	
busy_time_ctr_last STATE	<= busy_time_ctr; <= S_TEST_SELF_TRIGGE	R;
end case;		
<pre>if (STATE /= S_IDLE) then busy_time_ctr end if;</pre>	<= busy_time_ctr + 1;	
<pre>end if; end if; end process PROC_TRIGGER_HANDLEF</pre>	R <i>;</i>	
Channel Status Handler		

```
stdin
Mar 09. 14 22:14
                                                                   Page 181/225
begin
  if (ch_status_cmd_tr /= CS_NONE) then
    channel status cmd <= ch status cmd tr;
  elsif (ch status cmd pr /= CS NONE) then
     channel_status_cmd <= ch_status_cmd_pr;</pre>
  else
    channel status cmd <= CS NONE;
  end if;
end process PROC CHANNEL STATUS CMD;
PROC CHANNEL STATUS: process(CLK IN)
  constant all one : std logic vector(127 downto 0) := (others => '1');
begin
  if ( rising edge (CLK IN) ) then
    if( RESET IN = '1') then
      channel wait
                     <= (others => '0');
      channel done
                             \leq (others => '0');
      channel hit
                            \leq (others => '0');
                            <= (others => '0');
      channel_done_r
      channel wait r
                            <= (others => '0');
      channel hit r
                            \leq (others => '0');
      channel_all_done
                            <= '0';
      channel_all_done_r
                           <= '0';
      token update
                             <= '0';
    else
      token update
                             <= '0';
       -- Check done status
      if (channel_status_cmd /= CS_RESET ) then
        if (channel_done = all_one) then
           channel all done <= '1';
         end if;
       else
         channel all done <= '0';
         channel all done r <= channel all done;
       end if;
       -- Process Command
       case channel_status_cmd is
         when CS RESET =>
           channel wait
                             <= (others => '0');
           channel done
                         \leq (others => '0');
           channel hit
                            \leq (others => '0');
           channel done r <= channel done;
                             <= channel hit;
           channel_hit_r
           channel wait r <= channel wait;</pre>
         when CS CLEAR WAIT =>
           channel_wait <= (others => '0');
         when CS_TOKEN_UPDATE =>
                          <= channel_done or (not channel_wait);</pre>
           channel done
                           <= '1';
           token_update
           channel wait
                          <= (others => '0');
         when CS_SET_WAIT =>
           channel_wait(to_integer(unsigned(channel_index))) <= '1';</pre>
         when CS SET HIT =>
           channel_hit(to_integer(unsigned(channel_index))) <= '1';</pre>
           channel wait(to integer(unsigned(channel index))) <= '1';</pre>
```

```
stdin
Mar 09, 14 22:14
                                                             Page 182/225
        when CS SET DONE =>
          channel done(to integer(unsigned(channel index))) <= '1';</pre>
        when CS_NONE => null;
      end case;
    end if;
  end if;
end process PROC CHANNEL STATUS;
PROC DATA FIFO DELAY: process(CLK IN)
  variable fifo delay : unsigned(11 downto 0);
  if ( rising edge (CLK IN) ) then
    if ( RESET IN = '1') then
      data fifo delay o
                            <= x"01";
      -- nxyter delay assumed to be 400ns
      nx cvt
                           := nxyter_cv_time / 4;
      if (fifo delay time > nx cvt and fifo delay time < 1000) then
       fifo_delay := (fifo_delay_time - nx_cvt) / 8;
        data_fifo_delay_o
                         <= fifo_delay(7 downto 0);
      else
       data_fifo_delay_o
                            \leq x 01;
      end if;
    end if;
  end if;
end process PROC_DATA_FIFO_DELAY;
 ______
-- TRBNet Slave Bus
-- Give status info to the TRB Slow Control Channel
PROC SLAVE BUS: process(CLK IN)
begin
  if (rising edge (CLK IN)) then
    if ( RESET IN = '1' ) then
      slv_data_out_o
                                  <= (others => '0');
      slv ack o
                                  <= '0';
      slv_unknown_addr_o
                                 <= '0';
      slv_no_more_data_o
                                 <= '0';
      ts_window_offset
                                 \leq (others => '0');
                                 <= "0000110010"; -- 50
      ts_window_width
      cts_trigger_delay
                                 <= x"0c8";
      readout_mode_r
                                 <= "0000";
      readout_time_max
                                 <= x"3e8";
      fpga_timestamp_offset
                                 <= (others => '0');
      out_of_window_error_ctr_clear <= '0';</pre>
      skip_wait_for_data
                               <= '0';
      nxyter_cv_time
                                 <= x"190"; -- 400ns
    else
                                 <= (others => '0');
      slv_data_out_o
      slv_unknown_addr_o
                                 <= '0';
      slv no more data o
                                 <= '0';
      cts_trigger_delay(11 downto 10) <= (others => '0');
      readout time max(11 downto 10) <= (others => '0');
```

Mar 09, 14 22:14	stdin		Page 183/225
out_of_window_erro	or_ctr_clear <= '()';	
	l is	<pre><= readout_mode_r; <= (others => '0'); <= '1';</pre>	
std_logic_ if (ts_win slv_data else slv_data_c end if;	c_o(11 downto 0) _vector(ts_window_off ndow_offset(11) = '1	') then) <= (others => '1');	
std_logic_	=> c_o(9 downto 0) vector(ts_window_wide_o(31 downto 10)	<= lth);	
std_logic_	=> c_o(9 downto 0) cvector(cts_trigger_c c_o(31 downto 10)		
std_logic_	=> c_o(9 downto 0) vector(readout_time c_o(31 downto 10)		
std_logic_	z_o(11 downto 0) _vector(fpga_timestan	<= mp_offset); <= (others => '0'); <= '1';	
std_logic_	=> c_o(11 downto 0) cvector(busy_time_ctr c_o(31 downto 12)		
	=> c_o(11 downto 0) c_o(31 downto 12)	<= timestamp_ref; <= (others => '0'); <= '1';	
	=> c_o(11 downto 0) c_o(31 downto 12)	<= fifo_delay_time; <= (others => '0'); <= '1';	
	=> =_o(15 downto 0) =_o(31 downto 16)	<pre><= out_of_window_erro <= (others => '0');</pre>	r_ctr;

Mar 09, 14 22:14	stdin	Page 184/225
slv_ack_o	<= '1';	
std_logic_	> _o(7 downto 0) <= vector(data_fifo_delay_o); _o(31 downto 8) <= (others => '(0′);
4x Channel 1	WAIT	
when x"000b" =: slv_data_out_ std_logic_ slv_ack_o		;
when x"000c" =: slv_data_out_ std_logic_ slv_ack_o);
when x"000d" =: slv_data_out_ std_logic_ slv_ack_o);
when x"000e" =: slv_data_out std_logic_ slv_ack_o));
4x Channe	l HIT	
when x"000f" =: slv_data_out std_logic_; slv_ack_o		
when x"0010" =: slv_data_out_ std_logic_ slv_ack_o		;
when x"0011" =: slv_data_out_ std_logic_ slv_ack_o		;
when x"0012" =: slv_data_out_ std_logic_ slv_ack_o);
4x Channe	1 DONE	
when x"0013" =: slv_data_out_ std_logic_ slv_ack_o		;
when x"0014" =: slv_data_out_ std_logic_);

Mar 09, 14 22	D·14	stdin		Page 185/225
17101 00, 14 22	slv_ack_o	Otani	<= '1';	1 490 100/220
	when x"0015" => slv_data_out_o std_logic_vector slv_ack_o	c(channel_done	<= _r(95 downto 64)); <= '1';	
	when x"0016" => slv_data_out_o std_logic_vector slv_ack_o	c(channel_done	<= _r(127 downto 96)); <= '1';	
	<pre>when x"0017" => slv_data_out_o(0) slv_data_out_o(31 slv_ack_o</pre>	downto 1)	<pre><= channel_all_done_: <= (others => '0'); <= '1';</pre>	r;
	<pre>when x"0018" => slv_data_out_o(0) slv_data_out_o(31 slv_ack_o</pre>	downto 1)	<pre><= EVT_BUFFER_FULL_II <= (others => '0'); <= '1';</pre>	и;
	<pre>when x"0019" => slv_data_out_o(19 slv_data_out_o(30 slv_data_out_o(31) slv_ack_o</pre>	downto 20)	<pre><= wait_for_data_tim <= (others => '0'); <= skip_wait_for_data <= '1';</pre>	
	<pre>when x"001a" => slv_data_out_o(11 std_logic_vector slv_data_out_o(31 slv_ack_o</pre>	r(nxyter_cv_time	<= me); <= (others => '0'); <= '1';	
	<pre>when x"001b" => slv_data_out_o(19 std_logic_vector slv_data_out_o(31 slv_ack_o</pre>	r(min_validatio	<pre><= on_time_r); <= (others => '0'); <= '1';</pre>	
	<pre>when x"001c" => slv_data_out_o(15 std_logic_vector slv_data_out_o(31 slv_ack_o</pre>	r(out_of_windo	<= w_l_ctr_r); <= (others => '0'); <= '1';	
	<pre>when x"001d" => slv_data_out_o(15 std_logic_vector slv_data_out_o(31 slv_ack_o</pre>	r(window_hit_c	<= tr_r); <= (others => '0'); <= '1';	
	<pre>when x"001e" => slv_data_out_o(15 std_logic_vector slv_data_out_o(31 slv_ack_o</pre>	r(out_of_windo	<= w_h_ctr_r); <= (others => '0'); <= '1';	
	<pre>when x"001f" => slv_data_out_o(27 slv_data_out_o(31 slv_ack_o</pre>		<= std_logic_vector((<= (others => '0'); <= '1';	data_rate);

Mar 09, 14 22:14	stdin	Page 186/225
when others => slv_unknown_a slv_ack_o		
end case;		
elsif (SLV_WRITE_IN case SLV_ADDR_IN when x"0000" => readout_mode_ slv_ack_o	is	IN(3 downto 0);
(signed(S ts_window_o	SLV_DATA_IN(11 downto 0)) > -204 SLV_DATA_IN(11 downto 0)) < 204 ffset(11 downto 0) <= LV_DATA_IN(11 downto 0));	
when x"0002" => ts_window_wid unsigned(SI slv_ack_o		
	delay(9 downto 0) <= LV_DATA_IN(9 downto 0)); <= '1';	
readout_tim	SLV_DATA_IN(9 downto 0)) >= 1) ne_max(9 downto 0) <= SLV_DATA_IN(9 downto 0));	then
slv_ack_o	<= '1';	
	<pre>ap_offset(11 downto 0) <= LV_DATA_IN(11 downto 0));</pre>	
when x"0009" => out_of_window slv_ack_o	y_error_ctr_clear <= '1'; <= '1';	
when x"0019" => skip_wait_for slv_ack_o		IN(31);
when x"001a" => nxyter_cv_tim unsigned(SI slv_ack_o		
when others => slv_unknown_a slv_ack_o end case; else		
else slv_ack_o	<= '0';	

Mar 09, 14 22:14	stdin	Page 187/225
end if; end if; end if;		
end process PROC_SLAVE	_BUS;	
Output Signals		
data_clk_o <= d_data_c data_o <= d_data_o		
TRIGGER_BUSY_OUT DATA_OUT DATA_CLK_OUT NOMORE_DATA_OUT DATA_FIFO_DELAY_OUT EVT_BUFFER_CLEAR_OUT	<pre><= trigger_busy_o; <= data_o or t_data_o; <= data_clk_o; <= nomore_data_o; <= std_logic_vector(data_fifo_delay_o); <= evt_buffer_clear_o;</pre>	
HISTOGRAM_FILL_OUT HISTOGRAM_BIN_OUT HISTOGRAM_ADC_OUT HISTOGRAM_PILEUP_OUT HISTOGRAM_OVERFLOW_OUT	<pre><= histogram_fill_o; <= histogram_bin_o; <= histogram_adc_o; <= histogram_pileup_o; <= histogram_ovfl_o;</pre>	
Slave SLV_DATA_OUT SLV_NO_MORE_DATA_OUT SLV_UNKNOWN_ADDR_OUT SLV_ACK_OUT	<pre><= slv_data_out_o; <= slv_no_more_data_o; <= slv_unknown_addr_o; <= slv_ack_o;</pre>	
end Behavioral; library ieee; use ieee.std_logic_1164. use ieee.numeric_std.all		
package nxyter_component	s is	
TRBNet interfaces		
component nXyter_FEE_b generic (BOARD_ID : std_log port (CLK_IN RESET_IN CLK_NX_MAIN_IN CLK_ADC_IN PLL_NX_CLK_LOCK_IN PLL_ADC_DCLK_LOCK_ NX_DATA_CLK_TEST_I TRIGGER_OUT I2C_SDA_INOUT I2C_SDA_INOUT I2C_SM_RESET_OUT I2C_REG_RESET_OUT SPI_SCLK_OUT SPI_SCLK_OUT SPI_CSB_OUT NX_DATA_CLK_IN	<pre>ic_vector(1 downto 0)); : in</pre>	

```
stdin
 Mar 09, 14 22:14
                                                                Page 188/225
     NX_TIMESTAMP_IN
                               : in
                                      std_logic_vector (7 downto 0);
                                      std logic;
                               : out
     NX_RESET_OUT
                                      std logic;
     NX_TESTPULSE_OUT
                               : out
                             : out.
                                      std logic;
     NX TIMESTAMP TRIGGER OUT
                                      std_logic_vector(1 downto 0);
     ADC_FCLK_IN
                               : in
                                      std logic vector(1 downto 0);
     ADC DCLK IN
                               : in
     ADC SAMPLE CLK OUT
                               : out.
                                      std logic;
     ADC A IN
                               : in
                                      std logic vector(1 downto 0);
                                      std logic vector(1 downto 0);
     ADC B IN
                               : in
                                      std logic vector(1 downto 0);
     ADC NX IN
                               : in
                                      std_logic_vector(1 downto 0);
     ADC D IN
                               : in
     TIMING TRIGGER IN
                              : in
                                      std logic;
                              : in
                                      std logic;
     LVL1 TRG DATA VALID IN
     LVL1 VALID TIMING TRG IN : in
                                      std_logic;
     LVL1_VALID_NOTIMING_TRG_IN : in
                                      std logic;
     LVL1_INVALID_TRG_IN
                                      std logic;
                             : in
                                      std_logic_vector(3 downto 0);
     LVL1_TRG_TYPE_IN
                              : in
                              : in
                                      std logic vector(15 downto 0);
     LVL1 TRG NUMBER IN
     LVL1 TRG CODE IN
                              : in
                                      std logic vector(7 downto 0);
                                      std_logic_vector(23 downto 0);
     LVL1_TRG_INFORMATION_IN
                              : in
     LVL1_INT_TRG_NUMBER_IN
                              : in
                                      std_logic_vector(15 downto 0);
     FEE TRG RELEASE OUT
                              : out
                                      std logic;
     FEE_TRG_STATUSBITS_OUT
                              : out
                                      std_logic_vector(31 downto 0);
                                      std_logic_vector(31 downto 0);
     FEE_DATA_OUT
                              : out
                              : out
                                      std logic;
     FEE DATA WRITE OUT
     FEE_DATA_FINISHED_OUT
                              : out
                                      std_logic;
     FEE_DATA_ALMOST_FULL_IN
                             : in
                                      std logic;
                              : in
                                      std logic vector(15 downto 0);
     REGIO ADDR IN
                                      std_logic_vector(31 downto 0);
     REGIO_DATA_IN
                              : in
     REGIO_DATA_OUT
                              : out
                                      std_logic_vector(31 downto 0);
     REGIO_READ_ENABLE_IN
                             : in
                                      std logic;
     REGIO_WRITE_ENABLE_IN
                             : in
                                      std_logic;
                              : in
                                      std_logic;
     REGIO_TIMEOUT_IN
     REGIO DATAREADY OUT
                              : out
                                      std logic;
     REGIO_WRITE_ACK_OUT
                              : out
                                      std_logic;
     REGIO NO MORE DATA OUT
                              : out
                                      std logic;
     REGIO UNKNOWN ADDR OUT
                              : out
                                      std logic;
     DEBUG LINE OUT
                              : out
                                      std logic vector(15 downto 0)
     );
 end component;
-- nXyter I2C Interface
component nx_i2c_master
 generic (
   I2C_SPEED : unsigned(11 downto 0)
   );
 port (
   CLK_IN
                      : in
                              std_logic;
                     : in
                              std logic;
   RESET IN
   SDA_INOUT
                      : inout std_logic;
                      : inout std_logic;
   SCL INOUT
   INTERNAL_COMMAND_IN : in std_logic_vector(31 downto 0);
   COMMAND_BUSY_OUT : out std_logic;
   I2C_DATA_OUT
                       : out
                              std_logic_vector(31 downto 0);
   I2C_DATA_BYTES_OUT : out
                              std logic vector(31 downto 0);
                       : in
                              std_logic;
   I2C_LOCK_IN
                       : in
                              std_logic;
   SLV_READ_IN
   SLV WRITE IN
                       : in
                               std logic;
```

```
stdin
Mar 09, 14 22:14
                                                                       Page 189/225
   SLV_DATA_OUT
                         : out std_logic_vector(31 downto 0);
   SLV_DATA_IN
                         : in
                                  std logic vector(31 downto 0);
                                std logic vector(15 downto 0);
   SLV ADDR IN
                         : in
                         : out std logic;
   SLV ACK OUT
   SLV_NO_MORE_DATA_OUT : out std_logic;
   SLV UNKNOWN ADDR OUT : out std logic;
   DEBUG OUT
                    : out std logic vector(15 downto 0)
   );
end component;
component nx_i2c_startstop
 generic (
   I2C SPEED : unsigned(11 downto 0)
 port (
              : in std_logic,
: in std_logic;
: in std_logic; -- Start Sequence
: in std_logic; -- '1' -> Start, '0'-> Stop
   CLK IN
   RESET IN
   START IN
   SELECT IN
   SEQUENCE_DONE_OUT : out std_logic;
   SDA_OUT : out std logic;
   SCL OUT
                    : out std logic;
                 : out std_logic
   NREADY OUT
   );
end component;
component nx i2c sendbyte
 generic (
   I2C_SPEED : unsigned(11 downto 0)
   );
 port (
   CLK IN
                      : in std_logic;
                      : in std_logic;
   RESET_IN
                 : in std_logic;
: in std_logic_vector(7 downto 0);
   START IN
   BYTE IN
   SEQUENCE DONE OUT : out std logic;
   SDA_OUT : out std_logic;
            : out std_logic;
: in std_logic;
: in std_logic;
: out std_logic
   SCL OUT
   SDA IN
   SCL IN
   ACK OUT
   );
end component;
component nx_i2c_readbyte
 generic (
   I2C_SPEED : unsigned(11 downto 0)
   );
 port (
   CLK_IN
                      : in std_logic;
   CLK_IN : in std_logic;
RESET_IN : in std_logic;
START_IN : in std_logic;
                   : in unsigned(2 downto 0);
   NUM BYTES IN
   BYTE_OUT : out std_logic_vector(31 downto 0);
   SEQUENCE DONE OUT : out std logic;
   SDA_OUT : out std_logic; SCL_OUT : out std_logic;
                    : in std_logic
   SDA_IN
   );
end component;
```

```
stdin
 Mar 09. 14 22:14
                                                                                 Page 190/225
-- ADC SPI Interface
component adc spi master
  generic (
    SPI SPEED : unsigned(7 downto 0)
    );
  port (
    CLK IN
                           : in
                                       std logic;
    RESET_IN
                          : in std_logic; : out std_logic;
    SCLK OUT
    SDIO_INOUT : inout std_logic;
CSB_OUT : out std_logic;
    INTERNAL_COMMAND_IN : in std_logic_vector(31 downto 0);
COMMAND_BUSY_OUT : out std_logic;
    COMMAND_BUSY_OUT : out std_logic;

SPI_DATA_OUT : out std_logic;

SPI_LOCK_IN : in std_logic;

SLV_READ_IN : in std_logic;

SLV_WRITE_IN : in std_logic;

SLV_DATA_OUT : out std_logic_vector(31 downto 0);

SLV_ACK_OUT : out std_logic_vector(31 downto 0);

SLV_ACK_OUT : out std_logic;
    SLV_NO_MORE_DATA_OUT : out std_logic;
    SLV_UNKNOWN_ADDR_OUT : out std_logic;
    DEBUG OUT : out std logic vector(15 downto 0)
    );
end component;
component adc_spi_sendbyte
  generic (
    SPI SPEED : unsigned(7 downto 0)
    );
  port (
    CLK IN
                         : in std logic;
    RESET_IN : in std_logic;
START_IN : in std_logic;
                   : in std_logic_vector(7 downto 0);
    BYTE IN
    SEQUENCE DONE OUT : out std logic;
    SCLK OUT
                  : out std_logic;
    SDIO OUT
                         : out std logic
    );
end component;
component adc_spi_readbyte
  generic (
    SPI SPEED : unsigned(7 downto 0)
    );
  port (
    CLK_IN
                         : in std logic;
    RESET_IN
                         : in std_logic;
                         : in std_logic;
    START IN
    BYTE_OUT : out std_logic_vector(7 downto 0);
    SEQUENCE DONE OUT : out std logic;
    SDIO_IN : in std_logic;
                         : out std logic
    SCLK OUT
    );
end component;
-- ADC Data Handler
```

Mar 09, 14 22:14	stdin	Page 191/225
component adc_ad9228 port (CLK_IN RESET_IN CLK_ADCDAT_IN	: in std_logic; : in std_logic; : in std_logic;	
	<pre>: in std_logic; : out std_logic; : in std_logic;</pre>	
ADC1_DATA_C_IN ADC1_DATA_D_IN	<pre>: in std_logic; : out std_logic; : in std_logic;</pre>	
ADC0_DATA_A_OUT ADC0_DATA_B_OUT ADC0_DATA_C_OUT ADC0_DATA_D_OUT ADC0_DATA_VALID_OUT	<pre>: out std_logic_vector(11 downto 0); : out std_logic;</pre>	
ADC1_DATA_A_OUT ADC1_DATA_B_OUT ADC1_DATA_C_OUT ADC1_DATA_D_OUT ADC1_DATA_VALID_OUT	<pre>: out std_logic_vector(11 downto 0); : out std_logic;</pre>	
	<pre>: out unsigned(7 downto 0); : out unsigned(7 downto 0);</pre>	
ERROR_ADC0_OUT ERROR_ADC1_OUT DEBUG_IN DEBUG_OUT); end component;	<pre>: out std_logic; : out std_logic; : in std_logic_vector(3 downto 0); : out std_logic_vector(15 downto 0)</pre>	
clk_1 : in s clkdiv_reset : in s eclk : in s reset_0 : in s reset_1 : in s sclk : out s datain_0 : in s datain_1 : in s q_0 : out s	td_logic; td_logic;	

```
stdin
 Mar 09, 14 22:14
                                                                  Page 192/225
component ddr_generic_single
 port (
   clk 0
                : in std logic;
   clkdiv reset : in std logic;
                : in std_logic;
   eclk
                : in std logic;
   reset 0
   sclk
                : out std logic;
   datain 0
                : in std_logic_vector(4 downto 0);
   a 0
                : out std logic vector(19 downto 0)
   );
end component;
component fifo_adc_48to48_dc
 port (
   Data : in std_logic_vector(47 downto 0);
   WrClock : in std_logic;
   RdClock: in std_logic;
   WrEn : in std_logic;
   RdEn : in std_logic;
   Reset : in std_logic;
   RPReset : in std_logic;
   Q : out std_logic_vector(47 downto 0);
   Empty : out std_logic;
   Full : out std_logic
   );
end component;
-- TRBNet Registers
component nx_setup
 port (
   CLK IN
                       : in std logic;
                       : in std_logic;
   RESET_IN
   I2C COMMAND OUT
                     : out std_logic_vector(31 downto 0);
   I2C_COMMAND_BUSY_IN : in std_logic;
   I2C DATA IN
                        : in std logic vector(31 downto 0);
   I2C_DATA_BYTES_IN
                       : in std_logic_vector(31 downto 0);
   I2C_LOCK_OUT
                        : out std logic;
   I2C_ONLINE_OUT
                        : out std logic;
   I2C_REG_RESET_IN
                        : in std_logic;
   SPI_COMMAND_OUT
                        : out std_logic_vector(31 downto 0);
   SPI_COMMAND_BUSY_IN : in std_logic;
   SPI_DATA_IN
                        : in std_logic_vector(31 downto 0);
   SPI_LOCK_OUT
                        : out std_logic;
   INT_READ_IN
                        : in std_logic;
                        : in std_logic_vector(15 downto 0);
   INT_ADDR_IN
   INT_ACK_OUT
                        : out std_logic;
                        : out std_logic_vector(31 downto 0);
   INT_DATA_OUT
   SLV_READ_IN
                        : in std_logic;
   SLV_WRITE_IN
                        : in std_logic;
                        : out std_logic_vector(31 downto 0);
   SLV_DATA_OUT
                        : in std_logic_vector(31 downto 0);
   SLV_DATA_IN
                        : in std_logic_vector(15 downto 0);
   SLV_ADDR_IN
   SLV_ACK_OUT
                        : out std_logic;
   SLV_NO_MORE_DATA_OUT : out std_logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   DEBUG OUT
                       : out std logic vector(15 downto 0)
   );
end component;
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 193/225
component nx_control
 port (
   CLK IN
                          : in std logic;
                          : in std logic;
   RESET IN
   PLL_NX_CLK_LOCK_IN
                          : in std logic;
   PLL ADC DCLK LOCK IN
                         : in std logic;
                         : in std logic;
   PLL ADC SCLK LOCK IN
   I2C SM RESET OUT
                          : out std logic;
   I2C REG RESET OUT
                          : out std logic;
   NX TS RESET OUT
                          : out std logic;
                          : in std logic;
   I2C ONLINE IN
   OFFLINE OUT
                          : out std logic;
                          : in std logic vector(7 downto 0);
   ERROR ALL IN
                          : in std logic;
   SLV READ IN
   SLV WRITE IN
                          : in std logic;
   SLV DATA OUT
                          : out std logic vector(31 downto 0);
   SLV_DATA_IN
                          : in std logic vector(31 downto 0);
   SLV ADDR IN
                          : in std logic vector(15 downto 0);
   SLV ACK OUT
                          : out std logic;
   SLV_NO_MORE_DATA_OUT : out std_logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   DEBUG OUT
                          : out std logic vector(15 downto 0)
   );
end component;
component clock10MHz
 port (
   CLK : in std logic;
   CLKOP : out std_logic;
   LOCK : out std logic
   );
end component;
component fifo ts 32to32 dc
 port (
   Data
                 : in std logic vector(31 downto 0);
   WrClock
                 : in std_logic;
   RdClock
                 : in std logic;
   WrEn
                 : in std logic;
   RdEn
                 : in std logic;
                 : in std logic;
   Reset.
   RPReset
                 : in std logic;
                 : out std logic vector(31 downto 0);
   Empty
                 : out std logic;
   Full
                 : out std logic
   );
end component;
component ram_fifo_delay_256x44
 port (
   WrAddress : in std_logic_vector(7 downto 0);
   RdAddress: in std_logic_vector(7 downto 0);
            : in std logic vector(43 downto 0);
   Dat.a
             : in std_logic;
   RdClock : in std logic;
   RdClockEn : in std logic;
           : in std_logic;
   Reset
   WrClock : in std logic;
   WrClockEn : in std_logic;
             : out std logic vector(43 downto 0)
   Q
   );
end component;
```

```
stdin
 Mar 09, 14 22:14
                                                                  Page 194/225
component fifo_44_data_delay_my
 port (
   Data
                 : in std logic vector(43 downto 0);
   Clock
                 : in std_logic;
                 : in std logic;
   WrEn
                 : in std logic;
   RdEn
                 : in std logic;
   Reset
   AmEmptyThresh : in std_logic_vector(7 downto 0);
                 : out std logic vector(43 downto 0);
                 : out std_logic;
   Empty
                 : out std logic;
   Full
   AlmostEmpty
                : out std logic;
   DEBUG OUT
                 : out std logic vector(15 downto 0)
end component;
component fifo 32 data
 port (
   Data
                : in std_logic_vector(31 downto 0);
   Clock
                : in std logic;
   WrEn
                : in std logic;
   RdEn
                : in std_logic;
   Reset
                : in std_logic;
   AmFullThresh: in std logic vector(10 downto 0);
                : out std_logic_vector(31 downto 0);
                : out std logic;
   Empty
   Full
                : out std logic;
   AlmostFull : out std_logic
   );
end component;
component nx_data_receiver
 port (
   CLK IN
                        : in std logic;
   RESET IN
                        : in std logic;
   NX_DATA_CLK_TEST_IN : in std_logic;
   TRIGGER IN
                        : in std logic;
   NX_TIMESTAMP_CLK_IN : in std logic;
                        : in std logic vector (7 downto 0);
   NX TIMESTAMP IN
   ADC CLK DAT IN
                        : in std logic;
   ADC_FCLK_IN
                        : in std_logic_vector(1 downto 0);
   ADC DCLK IN
                        : in std logic vector(1 downto 0);
   ADC SAMPLE CLK OUT
                       : out std logic;
   ADC A IN
                        : in std logic vector(1 downto 0);
                        : in std logic vector(1 downto 0);
   ADC B IN
                        : in std logic vector(1 downto 0);
   ADC NX IN
                        : in std_logic_vector(1 downto 0);
   ADC D IN
                        : out std logic;
   ADC_SCLK_LOCK_OUT
   NX_TIMESTAMP_OUT
                        : out std_logic_vector(31 downto 0);
                        : out std_logic_vector(11 downto 0);
   ADC_DATA_OUT
   NEW_DATA_OUT
                        : out std_logic;
                        : in std logic;
   SLV READ IN
   SLV_WRITE_IN
                        : in std_logic;
                        : out std_logic_vector(31 downto 0);
   SLV DATA OUT
                        : in std_logic_vector(31 downto 0);
   SLV DATA IN
                        : in std_logic_vector(15 downto 0);
   SLV_ADDR_IN
   SLV ACK OUT
                        : out std_logic;
   SLV NO MORE DATA OUT : out std logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
                      : out std_logic;
   ERROR_OUT
                        : out std logic vector(15 downto 0)
   DEBUG OUT
```

Mar 09, 14 22:14	stdin	Page 195/225
); end component;		
component nx_data_delay port (CLK_IN RESET_IN NX_FRAME_IN ADC_DATA_IN NEW_DATA_IN NX_FRAME_OUT ADC_DATA_OUT NEW_DATA_OUT FIFO_DELAY_IN SLV READ IN	: out std_logic;	
); end component;	: out sta_logic_vector(15 downto 0)	
TIMESTAMP_OUT CHANNEL_OUT TIMESTAMP_STATUS_OUT ADC_DATA_OUT DATA_VALID_OUT NX_TOKEN_RETURN_OUT NX_NOMORE_DATA_OUT SLV_READ_IN SLV_WRITE_IN SLV_DATA_OUT	<pre>: in std_logic; : in std_logic; : in std_logic_vector(31 downto 0); : in std_logic_vector(11 downto 0); : in std_logic_vector(13 downto 0); : out std_logic_vector(6 downto 0); : out std_logic_vector(2 downto 0); : out std_logic_vector(11 downto 0); : out std_logic_vector(11 downto 0); : out std_logic; : out std_logic; : out std_logic; : in std_logic; : in std_logic; : out std_logic; : in std_logic; : out std_logic; : out std_logic; : out std_logic_vector(31 downto 0); : in std_logic_vector(31 downto 0); : in std_logic_vector(15 downto 0); : out std_logic; : out std_logic;</pre>	
end component; component nx_trigger_val; generic (BOARD_ID : std_logic_); port (CLK_IN RESET_IN DATA_CLK_IN TIMESTAMP_IN CHANNEL_IN		

```
stdin
                                                                   Page 196/225
 Mar 09, 14 22:14
   TIMESTAMP_STATUS_IN
                          : in std_logic_vector(2 downto 0);
                          : in std_logic_vector(11 downto 0);
   ADC_DATA_IN
                          : in std logic;
   NX TOKEN RETURN IN
                          : in std logic;
   NX NOMORE DATA IN
                          : in std_logic;
   TRIGGER_IN
   TRIGGER BUSY IN
                          : in std logic;
                          : in std logic;
   FAST CLEAR IN
   TRIGGER BUSY OUT
                          : out std logic;
                          : in unsigned(11 downto 0);
   TIMESTAMP FPGA IN
                          : out std logic vector(7 downto 0);
   DATA FIFO DELAY OUT
   DATA_OUT
                          : out std_logic_vector(31 downto 0);
   DATA CLK OUT
                          : out std logic;
   NOMORE DATA OUT
                          : out std logic;
   EVT_BUFFER_CLEAR_OUT
                          : out std_logic;
   EVT_BUFFER_FULL_IN
                          : in std logic;
                          : out std logic;
   HISTOGRAM FILL OUT
   HISTOGRAM_BIN_OUT
                          : out std_logic_vector(6 downto 0);
                          : out std logic vector(11 downto 0);
   HISTOGRAM ADC OUT
   HISTOGRAM PILEUP OUT : out std logic;
   HISTOGRAM_OVERFLOW_OUT : out std_logic;
   SLV_READ_IN
                          : in std_logic;
   SLV WRITE IN
                          : in std logic;
   SLV_DATA_OUT
                          : out std_logic_vector(31 downto 0);
                          : in std_logic_vector(31 downto 0);
   SLV_DATA_IN
                          : in std logic vector(15 downto 0);
   SLV ADDR IN
   SLV_ACK_OUT
                          : out std_logic;
   SLV_NO_MORE_DATA_OUT
                        : out std logic;
   SLV_UNKNOWN_ADDR_OUT
                         : out std logic;
   DEBUG_OUT
                          : out std_logic_vector(15 downto 0)
   );
end component;
component nx_event_buffer
 generic (
   BOARD_ID : std_logic_vector(1 downto 0)
   );
 port (
   CLK IN
                           : in std logic;
   RESET IN
                           : in std logic;
   RESET DATA BUFFER IN
                           : in std logic;
   NXYTER OFFLINE IN
                           : in std logic;
                           : in std_logic_vector(31 downto 0);
   DATA_IN
   DATA_CLK_IN
                           : in std logic;
   EVT NOMORE DATA IN
                           : in std logic;
   TRIGGER_IN
                           : in std_logic;
                           : in std_logic;
   FAST_CLEAR_IN
                           : out std logic;
   TRIGGER_BUSY_OUT
                           : out std_logic;
   EVT_BUFFER_FULL_OUT
                           : out std_logic_vector(31 downto 0);
   FEE_DATA_OUT
                           : out std logic;
   FEE_DATA_WRITE_OUT
   FEE_DATA_ALMOST_FULL_IN : in std_logic;
   SLV_READ_IN
                           : in std_logic;
                           : in std logic;
   SLV WRITE IN
   SLV_DATA_OUT
                           : out std_logic_vector(31 downto 0);
                           : in std_logic_vector(31 downto 0);
   SLV_DATA_IN
                           : in std_logic_vector(15 downto 0);
   SLV_ADDR_IN
                           : out std_logic;
   SLV_ACK_OUT
   SLV_NO_MORE_DATA_OUT
                           : out std_logic;
   SLV UNKNOWN ADDR OUT
                           : out std logic;
   ERROR_OUT
                           : out std_logic;
   DEBUG_OUT
                           : out std_logic_vector(15 downto 0)
   );
```

```
stdin
Mar 09, 14 22:14
                                                              Page 197/225
end component;
component nx status event
 generic (
   BOARD_ID : std_logic_vector(1 downto 0));
 port. (
   CLK IN
                         : in std logic;
   RESET_IN
                         : in std logic;
   NXYTER OFFLINE IN
                        : in std logic;
                        : in std logic;
   TRIGGER IN
   FAST_CLEAR_IN
                        : in std logic;
   TRIGGER_BUSY_OUT
                        : out std logic;
   FEE DATA OUT
                        : out std logic vector(31 downto 0);
   FEE DATA WRITE OUT
                        : out std logic;
   FEE DATA FINISHED OUT : out std logic;
   FEE DATA ALMOST FULL IN : in std logic;
   INT_ADDR_OUT
                        : out std_logic_vector(15 downto 0);
   INT ACK IN
                        : in std logic;
                        : in std_logic_vector(31 downto 0);
   INT_DATA_IN
                        : out std_logic_vector(15 downto 0)
   DEBUG_OUT
   );
end component;
component nx_histogram
 generic (
   BUS_WIDTH : integer;
   DATA_WIDTH : integer
   );
 port (
                        : in std_logic;
   CLK_IN
   RESET IN
                       : in std logic;
                      : in unsigned(2 downto 0);
   NUM AVERAGES IN
   AVERAGE ENABLE IN : in std logic;
   CHANNEL ID IN
                       : in std_logic_vector(BUS_WIDTH - 1 downto 0);
   CHANNEL DATA IN
                        : in std logic vector(DATA WIDTH - 1 downto 0);
   CHANNEL ADD IN
                      : in std logic;
   CHANNEL WRITE IN
                     : in std logic;
   CHANNEL WRITE BUSY OUT : out std logic;
   CHANNEL_ID_READ_IN : in std_logic_vector(BUS_WIDTH - 1 downto 0);
   CHANNEL READ IN
                        : in std logic;
   CHANNEL DATA OUT
                      : out std_logic_vector(DATA_WIDTH - 1 downto 0);
   CHANNEL_DATA_VALID_OUT : out std_logic;
   CHANNEL_READ_BUSY_OUT : out std_logic;
                        : out std_logic_vector(15 downto 0));
   DEBUG OUT
end component;
component nx_histograms
 port (
   CLK_IN
                      : in std_logic;
                      : in std logic;
   RESET IN
   RESET_HISTS_IN
                      : in std_logic;
                      : in std logic;
   CHANNEL FILL IN
                      : in std_logic_vector(6 downto 0);
   CHANNEL ID IN
                      : in std_logic_vector(11 downto 0);
   CHANNEL_ADC_IN
   CHANNEL_PILEUP_IN : in std_logic;
   CHANNEL OVERFLOW IN : in std logic;
   SLV_READ_IN
                      : in std_logic;
                      : in std_logic;
   SLV_WRITE_IN
                      : out std logic vector(31 downto 0);
   SLV DATA OUT
```

```
stdin
 Mar 09, 14 22:14
                                                                Page 198/225
   SLV_DATA_IN
                       : in std_logic_vector(31 downto 0);
   SLV ADDR IN
                 in stu_rogre;
out std_logic;
                       : in std_logic_vector(15 downto 0);
   SLV ACK OUT
   SLV NO MORE DATA OUT : out std logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   DEBUG OUT
                    : out std logic vector(15 downto 0)
end component;
component ram dp 128x40
 port (
   WrAddress: in std logic vector(6 downto 0);
   RdAddress: in std_logic_vector(6 downto 0);
   Data : in std_logic_vector(39 downto 0);
            : in std logic;
   RdClock : in std_logic;
   RdClockEn : in std_logic;
   Reset : in std logic;
   WrClock : in std logic;
   WrClockEn : in std_logic;
   Q : out std_logic_vector(39 downto 0)
   );
end component;
component ram dp 128x32
 port (
   WrAddress : in std logic vector(6 downto 0);
   RdAddress : in std_logic_vector(6 downto 0);
              : in std_logic_vector(31 downto 0);
   Data
              : in std logic;
              : in std logic;
   RdClock
   RdClockEn : in std_logic;
              : in std_logic;
   Reset
              : in std logic;
   WrClock
   WrClockEn : in std_logic;
              : out std logic vector(31 downto 0)
   );
end component;
component level_to_pulse
 port (
   CLK IN
                 : in std logic;
   RESET IN
                : in std logic;
               : in std logic;
   LEVEL_IN
   PULSE OUT
                : out std logic
   );
end component;
component pulse_to_level
 generic (
   NUM CYCLES: integer range 2 to 15
   );
 port (
   CLK_IN : in std_logic;
   RESET_IN : in std_logic;
   PULSE_IN : in std_logic;
   LEVEL OUT : out std logic
end component;
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 199/225
component signal_async_to_pulse
 generic (
   NUM FF : integer range 2 to 4
 port (
   CLK IN
              : in std logic;
   RESET IN : in std logic;
   PULSE A IN : in std logic;
   PULSE OUT : out std logic
   );
end component;
component signal async trans
 generic (
   NUM FF: integer range 2 to 4
 port (
   CLK IN
           : in std logic;
   SIGNAL A IN : in std logic;
   SIGNAL_OUT : out std_logic
   );
end component;
component bus_async_trans
 generic (
   BUS_WIDTH : integer range 2 to 32;
   NUM_FF : integer range 2 to 4);
 port (
   CLK_IN
              : in std_logic;
   RESET_IN : in std_logic;
   SIGNAL A IN : in std logic vector(BUS WIDTH - 1 downto 0);
   SIGNAL_OUT : out std_logic_vector(BUS_WIDTH - 1 downto 0)
   );
end component;
component pulse dtrans
 generic (
   CLK RATIO: integer range 2 to 15
   );
 port (
   CLK_A_IN : in std_logic;
   RESET_A_IN : in std_logic;
   PULSE A IN : in std logic;
   CLK_B_IN : in std_logic;
   RESET_B_IN : in std_logic;
   PULSE_B_OUT : out std_logic
   );
end component;
component Gray_Decoder
 generic (
   WIDTH: integer range 2 to 32
   );
 port (
              : in std_logic;
   CLK IN
   RESET IN : in std logic;
   GRAY_IN : in std_logic_vector(WIDTH - 1 downto 0);
   BINARY_OUT : out std_logic_vector(WIDTH - 1 downto 0)
   );
end component;
component Gray_Encoder
```

```
stdin
 Mar 09, 14 22:14
                                                                 Page 200/225
 generic (
   WIDTH: integer range 2 to 32
   );
 port (
   CLK_IN : in std_logic;
   RESET IN : in std logic;
   BINARY IN : in std logic vector(WIDTH - 1 downto 0);
   GRAY OUT : out std logic vector(WIDTH - 1 downto 0)
end component;
component pulse delay
 generic (
   DELAY: integer range 2 to 16777216);
 port. (
   CLK_IN : in std_logic;
   RESET_IN : in std_logic;
   PULSE IN : in std logic;
   PULSE OUT : out std logic
   );
end component;
component pll_nx_clk250
 port (
   CLK : in std_logic;
   CLKOP : out std logic;
   CLKOK : out std logic;
   LOCK : out std logic
   );
end component;
component pll_adc_clk
 port (
   CLK : in std logic;
   CLKOP : out std logic;
   LOCK : out std logic
   );
end component;
component pll_adc_sampling_clk
 port (
             : in std_logic;
   RESET
          : in std_logic;
   FINEDELBO : in std_logic;
   FINEDELB1 : in std_logic;
   FINEDELB2 : in std_logic;
   FINEDELB3 : in std_logic;
   DPHASE0 : in std_logic;
   DPHASE1 : in std logic;
   DPHASE2
            : in std_logic;
   DPHASE3 : in std logic;
             : out std logic;
   CLKOP
            : out std_logic;
   CLKOS
   LOCK
             : out std_logic
   );
end component;
component nx fpga timestamp
```

Mar 09, 14 22:14	stdin	Page 201/225
port (
_	in std_logic;	
	out unsigned(11 downto 0);	
	out unsigned(11 downto 0);	
	out std_logic;	
	out std_logic;	
	<pre>in std_logic; in std_logic;</pre>	
	out std_logic_vector(31 downto 0);	
	in std_logic_vector(31 downto 0);	
	out std_logic;	
SLV_NO_MORE_DATA_OUT :	out std logic:	
SLV_NO_MORE_DATA_OUT :	<pre>out std_logic; out std_logic;</pre>	
DEBUG_OUT :	out std_logic_vector(15 downto 0)	
);	111 104_1031000001(10 40***********************************	
end component;		
component nx_trigger_handler		
port (
CLK_IN	: in std_logic;	
RESET_IN	: in std_logic;	
NX_MAIN_CLK_IN	: in std_logic;	
NXYTER_OFFLINE_IN	: in std_logic;	
TIMING_TRIGGER_IN	: in std_logic;	
LVL1_TRG_DATA_VALID_IN	: in std_logic;	
LVL1_VALID_TIMING_TRG_IN	: in std_logic;	
LVL1_VALID_NOTIMING_TRG_IN		
LVL1_INVALID_TRG_IN	: in std_logic;	
LVL1_TRG_TYPE_IN	: in std_logic_vector(3 downto 0);	
LVL1_TRG_NUMBER_IN	: in std_logic_vector(15 downto 0)	;
LVL1_TRG_CODE_IN	: in std_logic_vector(7 downto 0);	
LVL1_TRG_INFORMATION_IN	: in std_logic_vector(23 downto 0)	
LVL1_INT_TRG_NUMBER_IN	: in std_logic_vector(15 downto 0)	
FEE_DATA_OUT	: out std_logic_vector(31 downto 0)	i
FEE_DATA_WRITE_OUT	: out std_logic;	
FEE_DATA_FINISHED_OUT	: out std_logic;	
FEE_TRG_RELEASE_OUT FEE_TRG_STATUSBITS_OUT	<pre>: out std_logic; : out std_logic_vector(31 downto 0)</pre>	•
FEE_IRG_STATUSBITS_OUT FEE_DATA_0_IN	: in std_logic_vector(31 downto 0)	
FEE_DATA_U_IN FEE_DATA_WRITE_O_IN	: in std_logic;	,
FEE_DATA_1_IN	: in std_logic_vector(31 downto 0)	;
FEE_DATA_TIN FEE_DATA_WRITE_1_IN	: in std_logic;	•
INTERNAL_TRIGGER_IN	: in std_logic;	
TRIGGER_VALIDATE_BUSY_IN		
	: in std_logic;	
TRIGGER_BUSY_1_IN	: in std_logic;	
VALID_TRIGGER_OUT	: out std_logic;	
TIMESTAMP_TRIGGER_OUT	: out std_logic;	
TRIGGER_TIMING_OUT	: out std_logic;	
TRIGGER_STATUS_OUT	: out std_logic;	
FAST_CLEAR_OUT	: out std_logic;	
TRIGGER_BUSY_OUT	: out std_logic;	
TRIGGER_TESTPULSE_OUT	: out std_logic;	
SLV_READ_IN	: in std_logic;	
SLV_WRITE_IN	: in std_logic;	
SLV_DATA_OUT	: out std_logic_vector(31 downto 0)	
SLV_DATA_IN	: in std_logic_vector(31 downto 0)	
SLV_ADDR_IN	: in std_logic_vector(15 downto 0)	;

```
stdin
 Mar 09, 14 22:14
                                                                  Page 202/225
   SLV_ACK_OUT
                              : out std_logic;
                              : out std_logic;
   SLV_NO_MORE_DATA_OUT
                              : out std logic;
   SLV UNKNOWN ADDR OUT
   DEBUG OUT
                              : out std logic vector(15 downto 0)
end component;
component nx_trigger_generator
 port (
   CLK IN
                       : in std logic;
   RESET_IN
                       : in std_logic;
   NX MAIN CLK IN
                       : in std logic;
   TRIGGER IN
                       : in std logic;
   TRIGGER OUT
                       : out std_logic;
   TS_RESET_OUT
                       : out std_logic;
   TESTPULSE OUT
                       : out std logic;
   TIMESTAMP_IN
                       : in std_logic_vector(31 downto 0);
   ADC DATA IN
                       : in std logic vector(11 downto 0);
                       : in std_logic;
   NEW DATA IN
   SELF_TRIGGER_OUT : out std_logic;
   SLV_READ_IN
                       : in std_logic;
   SLV WRITE IN
                       : in std logic;
   SLV_DATA_OUT
                       : out std_logic_vector(31 downto 0);
   SLV_DATA_IN
                       : in std_logic_vector(31 downto 0);
                 : in std_logic_vector(15 downto 0);
: out std_logic;
   SLV ADDR IN
   SLV_ACK_OUT
   SLV_NO_MORE_DATA_OUT : out std_logic;
   SLV_UNKNOWN_ADDR_OUT : out std_logic;
   DEBUG_OUT
                     : out std_logic_vector(15 downto 0)
   );
end component;
component timer
 generic (
   CTR_WIDTH : integer range 2 to 32;
   STEP SIZE: integer range 1 to 100
   );
 port (
   CLK IN
                 : in std logic;
   RESET IN
              : in std_logic;
   TIMER_START_IN : in std_logic;
   TIMER_END_IN : in unsigned(CTR_WIDTH - 1 downto 0);
   TIMER_DONE_OUT : out std_logic
   );
end component;
component timer_static
 generic (
   CTR_WIDTH : integer range 2 to 32;
   CTR_END : integer;
   STEP_SIZE : integer range 1 to 100
   );
 port (
   CLK_IN
                  : in std_logic;
             : in std_logic;
   RESET IN
   TIMER_START_IN : in std_logic;
   TIMER_DONE_OUT : out std_logic
   );
```

Mar 09, 14 22:14	stdin	Page 203/225
end component;		
Simulations 		
<pre>component nxyter_timestamp_s port (CLK_IN : in std_ RESET_IN : in std_ TIMESTAMP_OUT : out std_ CLK128_OUT : out std_); end component;</pre>	logic; logic; logic_vector(7 downto 0);	
type debug_array_t is array(<pre>integer range <>) of std_logic_v</pre>	ector(15 downto 0);
RESET_IN : i DEBUG_LINE_IN : i DEBUG_LINE_OUT : o SLV_READ_IN : i SLV_WRITE_IN : i SLV_DATA_OUT : o SLV_DATA_IN : i SLV_DATA_IN : i	<pre>in std_logic; in std_logic; in debug_array_t(0 to NUM_PORTS- but std_logic_vector(15 downto 0) in std_logic; in std_logic; but std_logic_vector(31 downto 0) in std_logic_vector(31 downto 0) in std_logic_vector(15 downto 0) but std_logic; but std_logic; but std_logic;</pre>	; ; ;
end package;		
library work; use work.trb_net_std.all; use work.trb_net_components. use work.trb3_components.all use work.nxyter_components.a	. i	
<pre>entity nXyter_FEE_board is generic (BOARD_ID : std_logic_vec); port (CLK_IN PESET_IN</pre>	<pre>:tor(1 downto 0) := "11" : in std_logic; : in std_logic;</pre>	
RESET_IN CLK_NX_MAIN_IN CLK_ADC_IN	: in std_logic; : in std_logic; : in std_logic;	

```
stdin
Mar 09, 14 22:14
                                                                  Page 204/225
  PLL_NX_CLK_LOCK_IN
                             : in std_logic;
                             : in std logic;
  PLL_ADC_DCLK_LOCK_IN
                             : in std logic;
  NX DATA CLK TEST IN
  TRIGGER OUT
                              : out std logic;
  -- I2C Ports
  I2C SDA INOUT
                              : inout std logic; -- nXyter I2C fdata line
  I2C SCL INOUT
                             : inout std_logic; -- nXyter I2C Clock line
  I2C SM RESET OUT
                             : out std logic;
                                                 -- reset nXyter I2C SMachine
  I2C REG RESET OUT
                                                 -- reset I2C registers
                             : out std logic;
  -- ADC SPI
  SPI SCLK OUT
                             : out std logic;
  SPI SDIO INOUT
                             : inout std logic;
  SPI CSB OUT
                             : out std logic;
  -- nXyter Timestamp Ports
  NX DATA CLK IN
                              : in std logic;
  NX TIMESTAMP IN
                              : in std logic vector (7 downto 0);
                             : out std_logic;
  NX_RESET_OUT
  NX_TESTPULSE_OUT
                             : out std_logic;
  NX TIMESTAMP TRIGGER OUT
                           : out std logic;
  -- ADC nXyter Pulse Hight Ports
  ADC FCLK IN
                             : in std logic vector(1 downto 0);
  ADC_DCLK_IN
                             : in std_logic_vector(1 downto 0);
  ADC_SAMPLE_CLK_OUT
                             : out std logic;
                             : in std_logic_vector(1 downto 0);
  ADC A IN
                             : in std_logic_vector(1 downto 0);
  ADC_B_IN
  ADC_NX_IN
                             : in std_logic_vector(1 downto 0);
                             : in std logic vector(1 downto 0);
  ADC D IN
  -- Input Triggers
  TIMING TRIGGER IN
                             : in std logic;
                             : in std_logic;
  LVL1_TRG_DATA_VALID_IN
  LVL1 VALID TIMING TRG IN
                            : in std logic;
  LVL1_VALID_NOTIMING_TRG_IN : in std_logic; -- Status + Info TypE
  LVL1 INVALID TRG IN
                             : in std logic;
  LVL1 TRG TYPE IN
                             : in std logic vector(3 downto 0);
  LVL1 TRG NUMBER IN
                             : in std logic vector(15 downto 0);
  LVL1_TRG_CODE_IN
                             : in std_logic_vector(7 downto 0);
  LVL1_TRG_INFORMATION_IN
                             : in std_logic_vector(23 downto 0);
  LVL1_INT_TRG_NUMBER_IN
                             : in std logic vector(15 downto 0);
  --Response from FEE
  FEE_TRG_RELEASE_OUT
                              : out std logic;
                             : out std_logic_vector(31 downto 0);
  FEE_TRG_STATUSBITS_OUT
  FEE_DATA_OUT
                              : out std_logic_vector(31 downto 0);
                             : out std_logic;
  FEE_DATA_WRITE_OUT
  FEE_DATA_FINISHED_OUT
                             : out std_logic;
  FEE_DATA_ALMOST_FULL_IN
                             : in std_logic;
  -- TRBNet RegIO Port for the slave bus
  REGIO ADDR IN
                             : in std_logic_vector(15 downto 0);
                             : in std_logic_vector(31 downto 0);
  REGIO_DATA_IN
                             : out std_logic_vector(31 downto 0);
  REGIO_DATA_OUT
  REGIO_READ_ENABLE_IN
                             : in std_logic;
  REGIO WRITE ENABLE IN
                             : in std logic;
  REGIO_TIMEOUT_IN
                             : in std_logic;
                             : out std_logic;
  REGIO_DATAREADY_OUT
  REGIO WRITE ACK OUT
                              : out std logic;
```

Mar 09, 14 22:14	stdin	Page 205/225
REGIO_NO_MORE_DATA_OUT REGIO_UNKNOWN_ADDR_OUT	<pre>: out std_logic; : out std_logic;</pre>	
Debug Signals DEBUG_LINE_OUT);	: out std_logic_vector(15 do	ownto 0)
end entity;		
architecture Behavioral of n	Xyter_FEE_board is	
Signals		
Bus Handler		
constant NUM_PORTS	_	
signal slv_read signal slv_write signal slv_no_more_data signal slv_ack signal slv_addr signal slv_data_rd signal slv_data_wr signal slv_unknown_addr	<pre>: std_logic_vector(NUM_PORTS- : std_logic_vector(NUM_PORTS-</pre>	-1 downto 0); -1 downto 0); -1 downto 0); -1 downto 0); *16-1 downto 0); *32-1 downto 0); *32-1 downto 0);
TRB Register signal i2c_sm_reset_o signal nx_ts_reset_1 signal nx_ts_reset_2 signal nx_ts_reset_o signal i2c_reg_reset_o signal nxyter_offline	<pre>: std_logic; : std_logic; : std_logic; : std_logic; : std_logic; : std_logic;</pre>	
NX Register Access signal i2c_lock signal i2c_command signal i2c_command_busy signal i2c_data signal i2c_data_bytes signal spi_lock signal spi_command signal spi_command signal spi_data signal spi_data signal nxyter_online_i2c	<pre>: std_logic; : std_logic_vector(31 downto : std_logic; : std_logic_vector(31 downto : std_logic_vector(31 downto : std_logic; : std_logic_vector(31 downto : std_logic; : std_logic; : std_logic; : std_logic; : std_logic;</pre>	<pre>0); 0); 0); 0); 0);</pre>
SPI Interface ADC signal spi_sdi signal spi_sdo	<pre>: std_logic; : std_logic;</pre>	
Data Receiver signal timestamp_recv signal adc_data_recv signal data_clk_recv signal self_trigger signal pll_sadc_clk_lock	<pre>: std_logic_vector(31 downto : std_logic_vector(11 downto : std_logic; : std_logic; : std_logic;</pre>	0);
Data Delay signal timestamp_delayed signal adc_data_delayed	: std_logic_vector(31 downto : std_logic_vector(11 downto	0);

```
stdin
Mar 09, 14 22:14
                                                                  Page 206/225
signal data_clk_delayed
                              : std_logic;
signal data_fifo_delay
                              : std_logic_vector(7 downto 0);
-- Data Validate
signal timestamp
                              : std_logic_vector(13 downto 0);
signal timestamp channel id
                              : std logic vector(6 downto 0);
signal timestamp status
                              : std logic vector(2 downto 0);
signal adc data
                              : std logic vector(11 downto 0);
signal data valid
                              : std logic;
signal nx token return
                              : std_logic;
signal nx nomore data
                              : std logic;
-- Trigger Validate
signal trigger data
                              : std logic vector(31 downto 0);
signal trigger data clk
                              : std logic;
signal event buffer clear
                              : std_logic;
signal trigger validate busy : std logic;
signal validate nomore data : std logic;
signal trigger_validate_fill : std_logic;
signal trigger validate bin
                              : std logic vector(6 downto 0);
signal trigger_validate_adc
                              : std_logic_vector(11 downto 0);
signal trigger_validate_pileup : std_logic;
signal trigger validate ovfl : std logic;
-- Event Buffer
signal fee data o 0
                              : std_logic_vector(31 downto 0);
signal fee_data_write_o_0
                              : std_logic;
signal trigger evt busy 0
                              : std logic;
signal evt_buffer_full
                              : std logic;
signal fee_trg_statusbits_o
                              : std_logic_vector(31 downto 0);
signal fee data o
                              : std logic vector(31 downto 0);
signal fee_data_write_o
                              : std_logic;
signal fee data finished o
                              : std logic;
signal fee_almost_full_i
                              : std logic;
-- Calib Event
signal fee data o 1
                              : std logic vector(31 downto 0);
signal fee_data_write_o_1
                              : std logic;
signal trigger_evt_busy_1
                              : std_logic;
signal int read
                              : std logic;
signal int_addr
                              : std_logic_vector(15 downto 0);
signal int_ack
                              : std logic;
signal int data
                              : std_logic_vector(31 downto 0);
-- Trigger Handler
                              : std_logic;
signal trigger
                              : std_logic;
signal timestamp_trigger
signal trigger_timing
                              : std_logic;
                              : std logic;
signal trigger status
signal trigger_busy
                              : std_logic;
                              : std_logic;
signal fast_clear
signal fee_trg_release_o
                              : std logic;
                              : std_logic;
signal trigger_testpulse
-- FPGA Timestamp
signal timestamp_current
                              : unsigned(11 downto 0);
signal timestamp_hold
                              : unsigned(11 downto 0);
signal nx timestamp sync
                              : std logic;
```

Mar 09, 14 22:14	stdin	Page 207/225
signal nx_timestamp_trigger	_o : std_logic;	
Trigger Generator signal trigger_intern signal nx_testpulse_o	: std_logic; : std_logic;	
Error signal error_all signal error_data_receiver signal error_event_buffer	<pre>: std_logic_vector(7 downto 0 : std_logic; : std_logic;</pre>);
Debug Handler constant DEBUG_NUM_PORTS signal debug_line	: integer := 14; : debug_array_t(0 to DEBUG_NU	M_PORTS-1);
begin		
DEBUG		
DEBUG_LINE_OUT(0) DEBUG_LINE_OUT(15 downto See Multiplexer		
error_all(0) <= er error_all(1) <= er error_all(7 downto 2) <= (o	ror_data_receiver; ror_event_buffer; thers => '0');	
THE_BUS_HANDLER: trb_net16_generic map(regio_bus_handler	
	NUM_PORTS,	
PORT_ADDRESSES =>	(0 => x"0100", NX Contro 1 => x"0040", I2C Maste 2 => x"0500", Data Rece 3 => x"0600", Data Buff 4 => x"0060", SPI Maste 5 => x"0140", Trigger G 6 => x"0120", Data Vali 7 => x"0160", Trigger H 8 => x"0400", Trigger V 9 => x"0200", NX Setup 10 => x"0800", NX Histog 11 => x"0020", Debug Han 12 => x"0130", Data Dela others => x"0000"	r iver er r enerator date andler falidate rams
PORT_ADDR_MASK =>	(0 => 4,	r iver er r enerator

Mar 09, 14 22:14	stdin	Page 208/225
	8 => 5,	gger Handler gger Validate Setup Histograms ug Handler a Delay
PORT_MASK_ENABLE	=> 1	
) port map(CLK RESET	=> CLK_IN, => RESET_IN,	
DAT_ADDR_IN DAT_DATA_IN DAT_DATA_OUT DAT_READ_ENABLE_IN DAT_WRITE_ENABLE_IN DAT_TIMEOUT_IN DAT_DATAREADY_OUT DAT_WRITE_ACK_OUT DAT_NO_MORE_DATA_OUT DAT_UNKNOWN_ADDR_OUT	=> REGIO_ADDR_IN, => REGIO_DATA_IN, => REGIO_DATA_OUT, => REGIO_READ_ENABLE_I => REGIO_WRITE_ENABLE_ => REGIO_TIMEOUT_IN, => REGIO_DATAREADY_OUT => REGIO_WRITE_ACK_OUT => REGIO_NO_MORE_DATA_ => REGIO_UNKNOWN_ADDR_	IN, , OUT,
All NXYTER PORTS BUS_READ_ENABLE_OUT BUS_WRITE_ENABLE_OUT BUS_DATA_OUT BUS_DATA_IN BUS_ADDR_OUT BUS_TIMEOUT_OUT BUS_DATAREADY_IN BUS_WRITE_ACK_IN BUS_NO_MORE_DATA_IN BUS_UNKNOWN_ADDR_IN	<pre>=> slv_read, => slv_write, => slv_data_wr, => slv_data_rd, => slv_addr, => open, => slv_ack, => slv_ack, => slv_no_more_data, => slv_unknown_addr,</pre>	
DEBUG STAT_DEBUG);	=> open	
nx_control_1: nx_control port map (CLK_IN RESET_IN	=> CLK_IN, => RESET_IN,	
PLL_NX_CLK_LOCK_IN PLL_ADC_DCLK_LOCK_IN PLL_ADC_SCLK_LOCK_IN	<pre>=> PLL_NX_CLK_LOCK_IN, => PLL_ADC_DCLK_LOCK_IN, => pll_sadc_clk_lock,</pre>	
I2C_SM_RESET_OUT I2C_REG_RESET_OUT NX_TS_RESET_OUT I2C_ONLINE_IN OFFLINE_OUT	<pre>=> i2c_sm_reset_o, => i2c_reg_reset_o, => nx_ts_reset_1, => nxyter_online_i2c, => nxyter_offline,</pre>	
ERROR_ALL_IN	=> error_all,	

```
stdin
Mar 09, 14 22:14
                                                                      Page 209/225
     SLV_READ_IN
                                => slv_read(0),
                                => slv_write(0),
      SLV_WRITE_IN
                               => slv data rd(0*32+31 downto 0*32),
     SLV DATA OUT
     SLV DATA IN
                                => slv data wr(0*32+31 downto 0*32),
                               => slv_addr(0*16+15 downto 0*16),
      SLV_ADDR_IN
                                => slv ack(0),
     SLV ACK OUT
      SLV NO MORE DATA OUT
                                => slv no more data(0),
     SLV UNKNOWN ADDR OUT
                               => slv unknown addr(0),
     DEBUG OUT
                                => debug line(0)
 nx_setup_1: nx_setup
   port map (
     CLK IN
                           => CLK IN.
                           => RESET IN.
     RESET IN
     I2C COMMAND OUT
                           => i2c command,
     I2C_COMMAND_BUSY_IN => i2c_command_busy,
     I2C DATA IN
                           => i2c data,
     I2C_DATA_BYTES_IN
                           => i2c_data_bytes,
      I2C_LOCK_OUT
                           => i2c lock.
      I2C ONLINE OUT
                           => nxyter online i2c,
      I2C_REG_RESET_IN
                           => i2c_reg_reset_o,
                           => spi_command,
      SPI_COMMAND_OUT
     SPI COMMAND BUSY IN => spi command busy,
     SPI_DATA_IN
                           => spi_data,
                           => spi lock.
     SPI LOCK OUT
                    ----_read,

=> int_addr,

=> int_ack,

=> int_data,

=> slv_read(9),

=> slv_write(9),

=> slv_data_rd/or

=> slv_
                           => int read,
     INT READ IN
     INT_ADDR_IN
     INT_ACK_OUT
      INT_DATA_OUT
     SLV_READ_IN
     SLV_WRITE_IN
                           => slv data rd(9*32+31 downto 9*32),
     SLV DATA OUT
                           => slv_data_wr(9*32+31 downto 9*32),
     SLV_DATA_IN
      SLV ADDR IN
                           => slv addr(9*16+15 downto 9*16),
     SLV ACK OUT
                           => slv ack(9),
      SLV NO MORE DATA OUT => slv no more data(9),
      SLV_UNKNOWN_ADDR_OUT => slv_unknown_addr(9),
                           => debug line(1)
      DEBUG OUT
-- I2C master block for accessing the nXyter
 nx_i2c_master_1: nx_i2c_master
   generic map (
     I2C\_SPEED => x"3e8"
   port map (
     CLK IN
                            => CLK IN,
     RESET_IN
                            => RESET_IN,
                            => I2C SDA INOUT.
     SDA INOUT
                            => I2C SCL INOUT,
     SCL INOUT
     INTERNAL_COMMAND_IN => i2c_command,
     COMMAND_BUSY_OUT
                            => i2c_command_busy,
                            => i2c data,
      I2C DATA OUT
      I2C_DATA_BYTES_OUT
                            => i2c_data_bytes,
                            => i2c_lock,
      I2C_LOCK_IN
      SLV READ IN
                            => slv read(1),
```

```
stdin
Mar 09, 14 22:14
                                                                    Page 210/225
     SLV_WRITE_IN
                           => slv_write(1),
                           => slv_data_rd(1*32+31 downto 1*32),
     SLV_DATA_OUT
                           => slv data wr(1*32+31 downto 1*32),
     SLV DATA IN
                           => slv addr(1*16+15 downto 1*16),
     SLV ADDR IN
                           => slv_ack(1),
     SLV_ACK_OUT
     SLV NO MORE DATA OUT => slv no more data(1),
     SLV UNKNOWN ADDR OUT => slv unknown addr(1),
                           => debug line(2)
     DEBUG OUT
-- SPI master block to access the ADC
 adc_spi_master_1: adc_spi_master
   generic map (
     SPI SPEED => x"c8"
   port map (
     CLK IN
                          => CLK IN,
                          => RESET_IN,
     RESET IN
     SCLK_OUT
                         => SPI_SCLK_OUT,
     SDIO_INOUT
                         => SPI_SDIO_INOUT,
     CSB OUT
                          => SPI CSB OUT,
     INTERNAL_COMMAND_IN => spi_command,
     COMMAND BUSY OUT
                          => spi command busy,
     SPI_DATA_OUT
                          => spi data,
     SPI_LOCK_IN
SLV_READ_IN
SLV_WRITE_IN
SLV_DATA_OUT
                          => spi_lock,
                          => slv read(4),
                          => slv_write(4),
                          => slv_data_rd(4*32+31 downto 4*32),
                          => slv_data_wr(4*32+31 downto 4*32),
     SLV_DATA_IN
     SLV ACK OUT
                          => slv ack(4),
     SLV NO MORE DATA OUT => slv no more data(4),
     SLV UNKNOWN ADDR OUT => slv unknown addr(4).
     DEBUG OUT
                          => debug line(3)
     );
 nx_fpga_timestamp_1: nx_fpga_timestamp
   port map (
     CLK IN
                              => CLK IN,
     RESET_IN
                            => RESET_IN,
     NX_MAIN_CLK_IN => CLK_NX_MAIN_IN,
TIMESTAMP_SYNC_IN => nx_ts_reset_o,
     TRIGGER_IN
                              => timestamp_trigger,
     TIMESTAMP_CURRENT_OUT
                              => timestamp_current,
     TIMESTAMP_HOLD_OUT
                              => timestamp hold,
     TIMESTAMP_SYNCED_OUT
                              => nx_timestamp_sync,
     TIMESTAMP_TRIGGER_OUT
                              => nx timestamp trigger o.
                              => open,
     SLV_READ_IN
     SLV_WRITE_IN
                              => open,
     SLV_DATA_OUT
                              => open,
     SLV DATA IN
                              => open,
     SLV_ACK_OUT
                              => open,
     SLV_NO_MORE_DATA_OUT
                              => open,
     SLV UNKNOWN ADDR OUT
                              => open,
```

Mar 09, 14 22:14	stdin	Page 211/225
DEBUG_OUT =	> debug_line(4)	
Trigger Handler		
nx_trigger_handler_1: nx_trigg	er_handler	
port map (CLK_IN	=> CLK_IN,	
RESET_IN	=> RESET_IN,	
NX_MAIN_CLK_IN	=> CLK_NX_MAIN_IN,	
NXYTER_OFFLINE_IN	=> nxyter_offline,	
TIMING_TRIGGER_IN	=> TIMING_TRIGGER_IN,	
LVL1_TRG_DATA_VALID_IN	=> LVL1_TRG_DATA_VALID_IN,	
LVL1_VALID_TIMING_TRG_IN	=> LVL1_TRG_DATA_VALID_IN, => LVL1_VALID_TIMING_TRG_IN,	
	=> LVL1_VALID_NOTIMING_TRG_IN,	
LVL1_INVALID_TRG_IN	=> LVL1_INVALID_TRG_IN,	
LVL1_TRG_TYPE_IN	=> LVL1_TRG_TYPE_IN,	
	=> LVL1_TRG_NUMBER_IN,	
LVL1_TRG_CODE_IN	=> LVL1_TRG_CODE_IN,	
LVL1_TRG_INFORMATION_IN	=> LVL1_TRG_INFORMATION_IN,	
LVL1_INT_TRG_NUMBER_IN	=> LVL1_INT_TRG_NUMBER_IN,	
FEE_DATA_OUT	=> FEE_DATA_OUT,	
FEE_DATA_WRITE_OUT	=> FEE_DATA_WRITE_OUT,	
FEE_DATA_FINISHED_OUT	=> FEE_DATA_FINISHED_OUT,	
FEE_TRG_RELEASE_OUT	=> FEE_TRG_RELEASE_OUT,	
FEE_TRG_STATUSBITS_OUT	=> FEE_TRG_STATUSBITS_OUT,	
FEE_DATA_0_IN	=> fee_data_o_0,	
	=> fee_data_write_o_0,	
	=> fee_data_o_1,	
	=> fee_data_write_o_1,	
INTERNAL_TRIGGER_IN	=> trigger_intern,	
TRIGGER_VALIDATE_BUSY_IN	=> trigger_validate_busy,	
TRIGGER_BUSY_0_IN	=> trigger_evt_busy_0,	
TRIGGER_BUSY_1_IN	=> trigger_evt_busy_1,	
VALID_TRIGGER_OUT	=> trigger,	
TIMESTAMP_TRIGGER_OUT	=> timestamp_trigger,	
TRIGGER_TIMING_OUT	<pre>=> trigger_timing,</pre>	
	=> trigger_status,	
FAST_CLEAR_OUT	=> fast_clear,	
TRIGGER_BUSY_OUT	=> trigger_busy,	
TRIGGER_TESTPULSE_OUT	=> trigger_testpulse,	
SLV_READ_IN	=> slv_read(7),	
SLV_WRITE_IN	=> slv_write(7),	0.)
SLV_DATA_OUT	=> slv_data_rd(7*32+31 downto 7*3	
SLV_DATA_IN	=> slv_data_wr(7*32+31 downto 7*3	۷),
SLV_ADDR_IN SLV_ACK_OUT	=> slv_addr(7*16+15 downto 7*16), => slv_ack(7),	
SLV_ACK_OUT SLV_NO_MORE_DATA_OUT	=> siv_ack(/), => slv_no_more_data(7),	
SLV_NO_MOKE_DATA_OUT	=> slv_inc_more_data(7), => slv_unknown_addr(7),	
DEBUG_OUT	=> debug_line(5)	

```
stdin
 Mar 09, 14 22:14
                                                                        Page 212/225
      );
-- NX Trigger Generator
 nx trigger generator 1: nx trigger generator
   port map (
     CLK IN
                            => CLK IN,
     RESET_IN
                         => RESET_IN.
     TRISGET_IN => RESET_IN,

NX_MAIN_CLK_IN => CLK_NX_MAIN_IN,

TRIGGER_IN => trigger_testpulse,

TRIGGER_OUT => trigger_intern,

TS_RESET_OUT => nx_ts_reset_2,

TESTPULSE_OUT => nx_testpulse_o,
      TESTPULSE OUT
                            => nx testpulse o,
      TIMESTAMP_IN
                            => timestamp_recv,
      ADC_DATA_IN
                            => adc_data_recv,
      NEW DATA IN
                            => data_clk_recv,
                            => self_trigger,
      SELF_TRIGGER_OUT
      SLV READ IN
                            => slv read(5),
      SLV_WRITE_IN
                            => slv_write(5),
      SLV_DATA_OUT
                            => slv_data_rd(5*32+31 downto 5*32),
                            => slv_data_wr(5*32+31 downto 5*32),
      SLV_DATA_IN
                            => slv_addr(5*16+15 downto 5*16),
      SLV_ADDR_IN
      SLV_ACK_OUT
                            => slv_ack(5),
      SLV_NO_MORE_DATA_OUT => slv_no_more_data(5),
      SLV_UNKNOWN_ADDR_OUT => slv_unknown_addr(5),
                            => debug line(6)
      DEBUG OUT
      );
-- nXyter Data Receiver
 nx_data_receiver_1: nx_data_receiver
   port map (
      CLK IN
                            => CLK IN,
      RESET IN
                            => RESET IN,
      NX_DATA_CLK_TEST_IN => NX_DATA_CLK_TEST_IN,
                            => trigger_timing,
      TRIGGER IN
      NX_TIMESTAMP_CLK_IN => NX_DATA_CLK_IN,
                            => NX_TIMESTAMP_IN,
      NX_TIMESTAMP_IN
      ADC_CLK_DAT_IN
                            => CLK_ADC_IN,
     ADC_FCLK_IN
                            => ADC_FCLK_IN,
                            => ADC_DCLK_IN,
      ADC_DCLK_IN
      ADC_SAMPLE_CLK_OUT => ADC_SAMPLE_CLK_OUT,
      ADC_A_IN
                            => ADC_A_IN,
      ADC_B_IN
                            => ADC B IN,
     ADC_NX_IN
                            => ADC_NX_IN,
      ADC_D_IN
                            => ADC_D_IN,
      ADC_SCLK_LOCK_OUT
                            => pll_sadc_clk_lock,
      NX_TIMESTAMP_OUT
                            => timestamp_recv,
                            => adc data recv,
      ADC DATA OUT
      NEW_DATA_OUT
                            => data_clk_recv,
      SLV READ IN
                            => slv read(2),
```

```
stdin
Mar 09, 14 22:14
                                                               Page 213/225
     SLV_WRITE_IN
                         => slv write(2),
     SLV_DATA_OUT
                         => slv_data_rd(2*32+31 downto 2*32),
                         => slv data wr(2*32+31 downto 2*32),
     SLV DATA IN
     SLV ADDR IN
                         => slv addr(2*16+15 downto 2*16),
     SLV_ACK_OUT
                         => slv_ack(2),
     SLV NO MORE DATA OUT => slv no more data(2),
     SLV UNKNOWN ADDR OUT => slv unknown addr(2),
                 => error_data_receiver,
     ERROR OUT
                        => debug line(7)
     DEBUG OUT
-- NX and ADC Data Delay FIFO
______
 nx data delay 1: nx data delay
   port map (
     CLK IN
                         => CLK IN,
     RESET IN
                        => RESET IN,
     NX_FRAME_IN
                        => timestamp_recv,
     ADC_DATA_IN
                         => adc data recv.
     NEW DATA IN
                         => data clk recv,
                         => timestamp_delayed,
     NX_FRAME_OUT
                         => adc data delayed,
     ADC DATA OUT
     NEW_DATA_OUT
                         => data_clk_delayed,
                        => data fifo delay,
     FIFO DELAY IN
                         => slv_read(12),
     SLV_READ_IN
                        => slv_write(12),
     SLV WRITE IN
     SLV_DATA_OUT
                         => slv_data_rd(12*32+31 downto 12*32),
                         => slv_data_wr(12*32+31 downto 12*32),
     SLV_DATA_IN
                         => slv addr(12*16+15 downto 12*16),
     SLV ADDR IN
                        => slv_ack(12),
     SLV_ACK_OUT
     SLV NO MORE DATA OUT => slv no more data(12),
     SLV UNKNOWN ADDR OUT => slv unknown addr(12),
     DEBUG OUT
                         => debug line(8)
-- Timestamp Decoder and Valid Data Filter
 nx_data_validate_1: nx_data_validate
   port map (
     CLK_IN
                          => CLK IN,
     RESET IN
                          => RESET IN,
     NX TIMESTAMP IN
                          => timestamp delayed,
     ADC_DATA_IN
                          => adc_data_delayed,
                          => data clk delayed,
     NEW DATA IN
     TIMESTAMP OUT
                          => timestamp,
                          => timestamp_channel_id,
     CHANNEL OUT
     TIMESTAMP_STATUS_OUT => timestamp_status,
     ADC_DATA_OUT
                          => adc_data,
     DATA VALID OUT
                          => data_valid,
                          => nx_token_return,
     NX_TOKEN_RETURN_OUT
     NX NOMORE DATA OUT
                          => nx nomore data,
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 214/225
                           => slv read(6),
     SLV_READ_IN
     SLV WRITE IN
                           => slv write(6),
     SLV DATA OUT
                           => slv data rd(6*32+31 downto 6*32),
                          => slv data_wr(6*32+31 downto 6*32),
     SLV_DATA_IN
                          => slv addr(6*16+15 downto 6*16),
     SLV ADDR IN
     SLV ACK OUT
                           => slv ack(6),
     SLV NO MORE DATA OUT => slv no more data(6),
     SLV UNKNOWN ADDR OUT => slv unknown addr(6),
     DEBUG OUT
                           => debug line(9)
-- NX Trigger Validate
 nx trigger validate 1: nx trigger validate
   generic map (
     BOARD ID => BOARD ID
   port map (
     CLK IN
                             => CLK IN.
                             => RESET IN,
     RESET IN
     DATA_CLK_IN
                             => data_valid,
     TIMESTAMP IN
                             => timestamp,
                         => timestamp,
=> timestamp channel id,
     CHANNEL IN
     TIMESTAMP_STATUS_IN => timestamp_status,
                          => adc data,
     ADC DATA IN
                             => nx_token_return,
     NX TOKEN RETURN IN
     NX_NOMORE_DATA_IN
                             => nx nomore data,
     TRIGGER IN
                             => trigger,
                             => trigger_busy,
     TRIGGER_BUSY_IN
     FAST CLEAR IN
                             => fast clear.
     TRIGGER BUSY OUT
                             => trigger validate busy,
     TIMESTAMP FPGA IN
                             => timestamp hold,
     DATA_FIFO_DELAY_OUT
                             => data fifo delay,
                             => trigger data,
     DATA OUT
     DATA_CLK_OUT
                             => trigger_data_clk,
     NOMORE DATA OUT
                             => validate nomore data,
     EVT BUFFER CLEAR OUT
                             => event buffer clear,
     EVT_BUFFER_FULL_IN
                             => evt buffer full.
     HISTOGRAM_FILL_OUT
                             => trigger validate fill,
     HISTOGRAM_BIN_OUT
                             => trigger_validate_bin,
     HISTOGRAM_ADC_OUT
                             => trigger validate adc,
                             => trigger_validate_pileup,
     HISTOGRAM_PILEUP_OUT
     HISTOGRAM_OVERFLOW_OUT
                             => trigger_validate_ovfl,
                             => slv read(8),
     SLV READ IN
                             => slv_write(8),
     SLV_WRITE_IN
                             => slv_data_rd(8*32+31 downto 8*32),
     SLV_DATA_OUT
                             => slv_data_wr(8*32+31 downto 8*32),
     SLV_DATA_IN
                             => slv_addr(8*16+15 downto 8*16),
     SLV_ADDR_IN
     SLV_ACK_OUT
                             => slv ack(8),
     SLV NO MORE DATA OUT
                             => slv no more data(8),
     SLV_UNKNOWN_ADDR_OUT
                             => slv_unknown_addr(8),
     DEBUG OUT
                             => debug line(10)
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 215/225
     );
-- Data Buffer FIFO
 nx event buffer 1: nx event buffer
   generic map (
     BOARD ID => BOARD ID
   port map (
     CLK IN
                               => CLK IN,
                               => RESET IN.
     RESET IN
     RESET DATA BUFFER IN
                               => event buffer clear.
     NXYTER OFFLINE IN
                               => nxyter offline,
     DATA_IN
                               => trigger data,
     DATA CLK IN
                               => trigger data clk,
     EVT NOMORE DATA IN
                               => validate nomore data,
     TRIGGER_IN
                               => trigger_timing,
     FAST_CLEAR_IN
                               => fast clear,
     TRIGGER_BUSY_OUT
                               => trigger_evt_busy_0,
                               => evt_buffer_full,
     EVT_BUFFER_FULL_OUT
                               => fee_data_o_0,
     FEE_DATA_OUT
     FEE DATA WRITE OUT
                               => fee data write o 0,
                               => FEE DATA ALMOST FULL IN,
     FEE_DATA_ALMOST_FULL_IN
                               => slv_read(3),
     SLV READ IN
                               => slv_write(3),
     SLV WRITE IN
                               => slv_data_rd(3*32+31 downto 3*32),
     SLV_DATA_OUT
                               => slv_data_wr(3*32+31 downto 3*32),
     SLV_DATA_IN
     SLV ADDR IN
                               => slv addr(3*16+15 downto 3*16),
     SLV ACK OUT
                               => slv ack(3),
     SLV NO MORE DATA OUT
                               => slv no more data(3),
     SLV UNKNOWN ADDR OUT
                               => slv unknown addr(3),
     ERROR OUT
                               => error event buffer,
     DEBUG OUT
                               => debug line(11)
     );
 nx_status_event_1: nx_status_event
   generic map (
     BOARD ID => BOARD ID
   port map (
                            => CLK IN,
     CLK_IN
     RESET_IN
                           => RESET IN,
                        => nxyter_offline,
     NXYTER_OFFLINE_IN
     TRIGGER_IN
                           => trigger_status,
                       => fast_clear,
     FAST_CLEAR_IN
                      => trigger_evt_busy_1,
     TRIGGER BUSY OUT
                         => fee_data_o_1,
     FEE_DATA_OUT
     FEE_DATA_WRITE_OUT => fee_data_write_o_1,
     FEE_DATA_ALMOST_FULL_IN => FEE_DATA_ALMOST_FULL_IN,
                        => int_read,
     INT_READ_OUT
     INT_ADDR_OUT
                            => int_addr,
                           => int ack,
     INT ACK IN
     INT_DATA_IN
                           => int_data,
                            => debug_line(13)
     DEBUG_OUT
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 216/225
 nx_histograms_1: nx_histograms
   port map (
     CLK IN
                                => CLK IN.
     RESET_IN
                                => RESET_IN,
     RESET HISTS IN
                                => '0',
     CHANNEL FILL IN
                                => trigger validate fill,
                                => trigger validate bin,
     CHANNEL ID IN
                                => trigger validate adc.
     CHANNEL ADC IN
     CHANNEL_PILEUP_IN
                                => trigger validate pileup,
                                => trigger validate ovfl,
     CHANNEL OVERFLOW IN
     SLV READ IN
                                => slv read(10),
     SLV WRITE IN
                                => slv write(10).
                                => slv data rd(10*32+31 downto 10*32),
     SLV DATA OUT
     SLV_DATA_IN
                                => slv_data_wr(10*32+31 downto 10*32),
                                => slv addr(10*16+15 downto 10*16),
     SLV ADDR IN
     SLV ACK OUT
                                => slv ack(10),
                                => slv_no_more_data(10),
     SLV_NO_MORE_DATA_OUT
     SLV_UNKNOWN_ADDR_OUT
                                => slv_unknown_addr(10),
     DEBUG OUT
                                => debug_line(12)
     );
-- nXvter Signals
 nx_ts_reset_0 <= nx_ts_reset_1 or nx_ts_reset_2;</pre>
 NX RESET OUT <= not nx_ts_reset_o;
 NX TESTPULSE OUT <= nx testpulse o;
 I2C SM RESET OUT <= not i2c sm reset o;
 I2C REG RESET OUT <= not i2c reg reset o;
-- Others
 NX_TIMESTAMP_TRIGGER_OUT <= nx_timestamp_trigger_o;</pre>
 TRIGGER OUT <= self trigger;
-- DEBUG Line Select
 debug_multiplexer_1: debug_multiplexer
   generic map (
     NUM_PORTS => DEBUG_NUM_PORTS
   port map (
     CLK_IN
                         => CLK_IN,
     RESET IN
                         => RESET IN,
                         => debug line,
     DEBUG_LINE_IN
                     => DEBUG_LINE_OUT,
     DEBUG_LINE_OUT
     SLV_READ_IN
                         => slv_read(11),
                         => slv write(11),
     SLV WRITE IN
                         => slv_data_rd(11*32+31 downto 11*32),
     SLV_DATA_OUT
     SLV_DATA_IN
                         => slv_data_wr(11*32+31 downto 11*32),
     SLV ADDR IN
                         => slv addr(11*16+15 downto 11*16),
```

```
stdin
Mar 09, 14 22:14
                                                                   Page 217/225
     SLV_ACK_OUT
                          => slv_ack(11),
     SLV_NO_MORE_DATA_OUT => slv_no_more_data(11),
     SLV UNKNOWN ADDR OUT => slv unknown addr(11)
-- END
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
use work.nxyter components.all;
entity pulse_delay is
 generic (
   DELAY : integer range 2 to 16777216 := 100
   );
 port (
   CLK_IN
                 : in std logic;
   RESET IN
                 : in std_logic;
                 : in std logic;
   PULSE IN
   PULSE_OUT
                 : out std_logic
   );
end entity;
architecture Behavioral of pulse delay is
 signal start_timer_x : std_logic;
 signal start timer : std logic;
 signal timer done
                    : std logic;
 signal pulse_o
                      : std logic;
 type STATES is (IDLE,
                 WAIT TIMER
 signal STATE, NEXT_STATE : STATES;
begin
 timer_static_1: timer_static
   generic map (
     CTR_WIDTH => 24,
     CTR\_END => (DELAY - 1)
   port map (
     CLK_IN
                     => CLK_IN,
     RESET_IN
                     => RESET_IN,
     TIMER START IN => start timer,
     TIMER_DONE_OUT => timer_done
     );
 PROC_CONVERT_TRANSFER: process(CLK_IN)
 begin
   if (rising edge (CLK IN)) then
     if( RESET_IN = '1' ) then
       start_timer <= '0';
       STATE
                      <= IDLE;
```

```
stdin
 Mar 09, 14 22:14
                                                                   Page 218/225
      else
                      <= start_timer_x;</pre>
       start_timer
                       <= NEXT STATE;
       STATE
      end if;
    end if;
  end process PROC CONVERT TRANSFER;
  PROC CONVERT: process(STATE,
                        PULSE IN,
                        timer done
 begin
    pulse o
                          <= '0';
    case STATE is
      when IDLE =>
       if (PULSE_IN = '1') then
         start timer x
                          <= '1';
         pulse_o
                          <= '0';
                          <= WAIT_TIMER;
         NEXT_STATE
       else
         start timer x
                          <= '0';
         pulse_o
                              <= '0';
         NEXT_STATE
                          <= IDLE;
        end if;
      when WAIT TIMER =>
                          <= '0';
        start timer x
       if (timer_done = '0') then
                          <= '0';
         pulse_o
         NEXT STATE
                          <= WAIT TIMER;
        else
                          <= '1';
         pulse_o
         NEXT STATE
                          <= IDLE;
        end if;
    end case;
 end process PROC CONVERT;
 -- Output Signals
 PULSE_OUT <= pulse_o;</pre>
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.nxyter_components.all;
entity pulse_dtrans is
 generic (
    CLK_RATIO : integer range 2 to 15 := 4
    );
 port (
    CLK_A_IN
                : in std_logic;
    RESET_A_IN : in std_logic;
   PULSE_A_IN : in std_logic;
    CLK_B_IN
                : in std_logic;
    RESET B IN : in std logic;
    PULSE_B_OUT : out std_logic
```

```
stdin
Mar 09. 14 22:14
                                                                  Page 219/225
end entity;
architecture Behavioral of pulse dtrans is
 attribute HGROUP : string;
 attribute HGROUP of Behavioral : architecture is "PULSE_DTRANS";
 signal pulse a l
                      : std logic;
 signal pulse_b_o : std logic;
begin
  -- Clock A Domain
 pulse to level 1: pulse to level
   generic map (
     NUM CYCLES => CLK RATIO
   port map (
     CLK IN
              => CLK_A_IN,
     RESET_IN => RESET_A_IN,
     PULSE_IN => PULSE_A_IN,
     LEVEL OUT => pulse a l
     );
  -- Clock B Domain
  signal_async_to_pulse_1: signal_async_to_pulse
   generic map (
     NUM FF => 2
   port map (
     CLK IN
                => CLK B IN,
     RESET_IN => RESET_B_IN,
     PULSE A IN => pulse a 1,
     PULSE_OUT => pulse_b_o
     );
  -- Outputs
 PULSE_B_OUT <= pulse_b_o;
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.nxyter_components.all;
entity pulse_to_level is
 generic (
   NUM_CYCLES
               : integer range 2 to 15 := 4
   );
 port (
   CLK IN
                 : in std_logic;
                 : in std_logic;
   RESET_IN
   PULSE_IN
                 : in std_logic;
                 : out std logic
   LEVEL OUT
   );
end entity;
```

```
stdin
 Mar 09, 14 22:14
                                                                   Page 220/225
architecture Behavioral of pulse_to_level is
 attribute HGROUP : string;
 attribute HGROUP of Behavioral : architecture is "PULSE TO LEVEL";
 signal start timer x : std logic;
 signal start timer
                     : std_logic;
                       : std logic;
 signal timer done
 signal level o
                      : std logic;
  type STATES is (IDLE,
                 WAIT TIMER
                 );
 signal STATE, NEXT STATE: STATES;
begin
 timer_static_1: timer_static
   generic map (
     CTR_WIDTH => 5,
     CTR END => NUM CYCLES
   port map (
                => CLK_IN,
=> RESET_IN,
     CLK IN
     RESET_IN
     TIMER_START_IN => start_timer,
     TIMER_DONE_OUT => timer_done
     );
 PROC LEVEL OUT TRANSFER: process(CLK IN)
   if( rising_edge(CLK_IN) ) then
     if ( RESET IN = '1' ) then
       start timer <= '0';
       STATE
                      <= IDLE;
     else
       start timer <= start timer x;
       STATE
                      <= NEXT STATE;
     end if;
   end if;
 end process PROC_LEVEL_OUT_TRANSFER;
 PROC LEVEL OUT: process(STATE,
                         PULSE IN.
                         timer_done
 begin
   case STATE is
     when IDLE =>
       if (PULSE_IN = '1') then
         level o
                          <= '1';
         start_timer_x
                          <= '1';
         NEXT STATE
                          <= WAIT TIMER;
       else
         level_o
                          <= '0';
         start_timer_x <= '0';
         NEXT STATE
                          <= IDLE;
       end if;
     when WAIT TIMER =>
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 221/225
       start_timer_x
                          <= '0';
       if (timer_done = '0') then
         level o
                         <= '1';
         NEXT STATE
                         <= WAIT TIMER;
       else
         level o
                         <= '0';
         NEXT STATE
                         <= IDLE;
       end if;
   end case;
 end process PROC_LEVEL_OUT;
 -- Output Signals
 LEVEL OUT <= level o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
use work.nxyter_components.all;
entity signal_async_to_pulse is
 generic (
   NUM FF: integer range 2 to 4 := 2
   );
 port (
               : in std_logic;
   CLK IN
   RESET_IN : in std_logic;
   PULSE_A_IN : in std_logic;
   PULSE OUT : out std logic
   );
end entity;
architecture Behavioral of signal async to pulse is
 attribute HGROUP : string;
 attribute HGROUP of Behavioral : architecture is "SIGNAL ASYNC TO PULSE";
                  : std logic vector(NUM FF - 1 downto 0);
 signal pulse ff
 signal pulse o
                     : std logic;
begin
 -- Clock CLK IN Domain
 PROC SYNC PULSE: process(CLK IN)
 begin
   if( rising_edge(CLK_IN) ) then
     pulse_ff(NUM_FF - 1)
                                     <= PULSE_A_IN;
     for i in NUM_FF - 2 downto 0 loop
       pulse_ff(i)
                           <= pulse_ff(i + 1);</pre>
     end loop;
   end if;
 end process PROC_SYNC_PULSE;
 level to pulse 1: level to pulse
   port map (
     CLK_IN => CLK_IN,
     RESET_IN => RESET_IN,
```

```
stdin
 Mar 09, 14 22:14
                                                                   Page 222/225
     LEVEL_IN => pulse_ff(0),
     PULSE_OUT => pulse_o
 -- Outputs
 PULSE OUT
               <= pulse o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
entity signal async trans is
 generic (
   NUM FF: integer range 2 to 5 := 2
 port (
   CLK IN : in std logic;
    SIGNAL_A_IN : in std_logic;
   SIGNAL_OUT : out std_logic
   );
end entity;
architecture Behavioral of signal async trans is
 type signal_ff_t is array(0 to NUM_FF - 1) of std_logic;
 signal signal ff
                    : signal ff t;
begin
  -- Clock CLK_IN Domain
  PROC SYNC SIGNAL: process(CLK IN)
 begin
    if (rising edge (CLK IN)) then
      signal_ff(NUM_FF - 1) <= SIGNAL_A_IN;</pre>
      for i in NUM FF - 2 downto 0 loop
       signal ff(i)
                             <= signal ff(i + 1);
      end loop;
    end if;
 end process PROC SYNC SIGNAL;
-- Output Signals
 SIGNAL OUT
                 <= signal ff(0);
end Behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity timer is
 generic (
    CTR_WIDTH : integer range 2 to 32 := 12;
    STEP_SIZE : integer range 1 to 100 := 1
    );
 port(
    CLK IN
                      : in std_logic;
    RESET_IN
                       : in std_logic;
```

```
stdin
Mar 09, 14 22:14
                                                                  Page 223/225
   TIMER_START_IN
                        : in std_logic;
   TIMER END IN
                        : in unsigned(CTR_WIDTH - 1 downto 0);
   TIMER DONE OUT
                       : out std logic
   );
end entity;
architecture Behavioral of timer is
 attribute HGROUP : string;
 attribute HGROUP of Behavioral : architecture is "NX TIMER";
 signal timer ctr x : unsigned(CTR WIDTH - 1 downto 0);
 signal timer ctr
                     : unsigned(CTR WIDTH - 1 downto 0);
 signal timer done o : std logic;
 type STATES is (S IDLE,
                 S COUNT
                 );
 signal STATE, NEXT_STATE : STATES;
begin
 PROC_TIMER_TRANSFER: process(CLK_IN)
 begin
   if( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
       timer_ctr <= (others => '0');
       STATE
                     <= S_IDLE;
     else
       timer ctr
                      <= timer ctr x;
       STATE
                      <= NEXT STATE;
     end if;
   end if;
 end process PROC_TIMER_TRANSFER;
 PROC TIMER: process(STATE,
                     TIMER START IN,
                     TIMER END IN,
                     timer ctr
 begin
   case STATE is
     when S IDLE =>
                       <= '0';
       timer done o
       if (TIMER_START_IN = '1' and TIMER_END_IN > 0) then
         timer_ctr_x <= TIMER_END_IN - 1;</pre>
         NEXT STATE
                      <= S COUNT;
       else
         timer_ctr_x
                         <= (others => '0');
         NEXT STATE
                         <= S_IDLE;
       end if;
     when S COUNT =>
       if (timer_ctr > to_unsigned(STEP_SIZE - 1, CTR_WIDTH)) then
         timer_ctr_x
                       <= timer_ctr - to_unsigned(STEP_SIZE, CTR_WIDTH);</pre>
         timer_done_o <= '0';</pre>
         NEXT STATE
                         <= S COUNT;
       else
                         <= (others => '0');
         timer_ctr_x
         timer_done_o <= '1';</pre>
```

```
stdin
 Mar 09. 14 22:14
                                                                  Page 224/225
         NEXT_STATE
                         <= S IDLE;
        end if;
   end case;
 end process PROC TIMER;
  -- Output Signals
 TIMER DONE OUT <= timer done o;
end Behavioral;
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
entity timer static is
 generic (
   CTR_WIDTH : integer range 2 to 32 := 12;
   CTR END : integer range 2 to 4000 := 10;
   STEP_SIZE : integer range 1 to 100 := 1
   );
 port(
   CLK_IN
RESET_IN
                   : in std_logic;
                      : in std logic;
   TIMER_START_IN : in std_logic;
   TIMER DONE OUT
                     : out std_logic
   );
end entity;
architecture Behavioral of timer static is
 attribute HGROUP : string;
 attribute HGROUP of Behavioral : architecture is "NX TIMER STATIC";
 constant ctr limit
                     : unsigned(CTR_WIDTH - 1 downto 0)
   := to unsigned(CTR END - 1, CTR WIDTH);
 signal timer ctr x : unsigned(CTR WIDTH - 1 downto 0);
 signal timer ctr
                      : unsigned(CTR WIDTH - 1 downto 0);
 signal timer_done_o : std_logic;
  type STATES is (S_IDLE,
                 S COUNT
                 );
 signal STATE, NEXT_STATE : STATES;
begin
 PROC TIMER TRANSFER: process(CLK IN)
 begin
   if ( rising_edge(CLK_IN) ) then
     if( RESET_IN = '1' ) then
                     <= (others => '0');
       timer_ctr
       STATE
                      <= S IDLE;
     else
       timer ctr
                      <= timer_ctr_x;
                      <= NEXT_STATE;
       STATE
     end if;
```

```
stdin
Mar 09, 14 22:14
                                                                 Page 225/225
   end if;
 end process PROC_TIMER_TRANSFER;
 PROC_TIMER: process(STATE,
                     TIMER_START_IN,
                     timer_ctr
 begin
   case STATE is
     when S_IDLE =>
                      <= '0';
       timer done o
       if (TIMER_START_IN = '1') then
         timer_ctr_x <= ctr_limit - 1;</pre>
         NEXT_STATE
                      <= S_COUNT;
       else
         timer_ctr_x <= (others => '0');
         NEXT_STATE
                     <= S IDLE;
       end if;
     when S_COUNT =>
       if (timer_ctr > to_unsigned(STEP_SIZE - 1, CTR_WIDTH)) then
         timer_ctr_x <= timer_ctr - to_unsigned(STEP_SIZE, CTR_WIDTH);</pre>
         timer_done_o <= '0';
         NEXT_STATE <= S_COUNT;
       else
         timer_ctr_x
                      <= (others => '0');
         timer_done_o <= '1';
         NEXT_STATE <= S_IDLE;
       end if;
   end case;
 end process PROC_TIMER;
 -- Output Signals
 TIMER_DONE_OUT <= timer_done_o;
end Behavioral;
```