Unit 3 – Linear Transformations and Orthogonality

Linear Transformations, Orthogonal Vectors and Subspaces, Cosines and Projections onto Lines, Projections and Least Squares.

Self Learning Component: Inner Products and Cosines

30-31	Linear Transformations, Examples					
32-33	Transformations Represented by Matrices					
34-35	Rotations, Reflections and Projections					
36-38	Orthogonal Vectors and Subspaces					
39-40	Cosines and Projections onto Lines					
41-42	Projections and Least Squares					
43	Scilab Class Number 6-Projections by Least Squares					

Class work Problems:

1	Find the matrix that rotates every vector in R ² through 90° in the positive sense							
	and then projects the result onto the x axis. Find also the matrix that projects onto							
	x axis and then rotates every vector through 90°. Compare the results.							
2	Let S and T be two linear transformations on R^2 defined by T (x, y) = (x, 0)							
	and S $(x, y) = (0, x)$ for all (x, y) in R ² . Show that ST \neq TS.							
3	Suppose T is reflection across 45° line and S is reflection across the y axis. Find							
	in general the products ST and TS.							
4	Give an example of a non linear transformation T such that $T(0) = 0$.							
5	Which of these transformations is not linear? The input vector is $v = (v_1, v_2)$.							
	$(i) T(v) = (v_2, v_1)$ $(ii) T(v) = (v_1, v_1)$							
	$ \begin{array}{lll} (i) \ T \ (v) &= (v_2, v_1) \\ (iii) \ T \ (v) &= (0, v_1) \\ \end{array} $ $ \begin{array}{lll} (ii) \ T \ (v) &= (v_1, v_1) \\ (iv) \ T \ (v) &= (0, 1) \\ \end{array} $							
	Answer : All are linear except (iv)							
6	For each of the following linear transformations T, find a basis and the dimension							
	of the range and kernel of T:							
	(i) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x + y, x - y, y)$							
	(ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (y, 0)$							
	Answer: (i) Range is a 2-d plane spanned by (1, 1, 0) and (1, -1, 1) and kernel							
	is the origin in R ² .							
	(ii) Range and kernel are x axis.							
7	Find the matrix of the linear transformation T on R ³ defined by							
	T(x, y, z) = (2y + z, x - 4y, 3x) with respect to							
	(i) the standard basis (1,0,0), (0,1,0), (0,0,1) and							
	(ii) the basis (1, 1, 1), (1, 1, 0), (1, 0, 0)							
	Answer: (i) $\begin{bmatrix} 0 & 2 & 1 \\ 1 & -4 & 0 \\ 3 & 0 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1 \end{bmatrix}$							
	Answer: (i) $\begin{vmatrix} 1 & -4 & 0 \end{vmatrix}$ (ii) $\begin{vmatrix} -6 & -6 & -2 \end{vmatrix}$							

8	Let V be the vector space of all 2 x 2 real matrices and T be a linear							
	transformation on V that sends each matrix X onto AX where $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find							
	the matrix of T with respect to the standard basis of M _{2x2} .							
	Approx 0 1 0 1							
	Allswei . 1 0 1 0							
	Answer: $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$							
9								
	On the space P ₃ of cubic polynomials, what matrix represents $\frac{d^2}{dt^2}$? Find its null							
	space and column space. What do they mean in terms of polynomials?							
10	From the cubics P ₃ to the fourth degree polynomials P ₄ , what matrix represents							
4.4	multiplication by 3t – 5?							
11	Suppose all vectors x in the unit square $0 \le x$, $y \le 1$ are transformed to Ax							
	where A is a 2 x 2 matrix. (i) What is the shape of the transformed region when A is nonsingular?							
	(ii) For which matrices A is that region a square?							
	(iii) For which A is it a line?							
	(iv) For which A is the new area still unity?							
	Answer: (i) Parallelogram with one corner at (0, 0)							
12	(ii) A is orthogonal (iii) A is singular (iv) Area of parallelogram = det A Describe the linear transformations of the xy plane that are represented with the							
'-	standard basis by the matrices							
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
	Answer: (i) ref on x axis (ii) shear that sends (x,y) to (x,2x+y). It leaves							
	y axis unchanged and transforms x axis to the line $y = 2x$ (iii) rotation thro ' -90°							
13								
	Let $A = \begin{bmatrix} 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$ Find a vector x orthogonal to the row space of A, a							
	vector y orthogonal to the column space and a vector z orthogonal to the null							
	space.							
14	Answer: $x = (2, -1, 0)$, $y = (1, 1, -1)$, $z = (1, 2, 1)$ Find all vectors in \mathbb{R}^3 that are orthogonal to $(1, 1, 1)$ and $(1, -1, 0)$. Produce an							
	orthonormal basis from these vectors.							
15	Answer: all multiples of $(1, 1, -2)$. Normalize the three independent vectors. Let P be the plane in \mathbb{R}^4 with equation $x - 2y + 3z - t = 0$. Find a vector							
	perpendicular to P. What matrix has the plane P as its null space? What is a							
	basis for P?							
	Answer: (1, -2, 3, -1) is perpendicular to P. The matrix A = [1 -2 3 1]							
	has P= N(A). A basis for P is (2, 1, 0, 0), (-3, 0, 1, 0), (1, 0, 0, 1).							

16	Suppose S is spanned by (1, 2, 2, 3) and (1, 3, 3, 2). Find a basis for S^{\perp} . Answer: (0, 1, -1, 0), (-5, 0, 1, 1)							
17	By choosing the correct vector b in the Schwarz inequality, prove that							
	$(a_1 + a_2 + \dots + a_n)^2 \le n (a_1^2 + a_2^2 + \dots + a_n^2)$. When does equality hold?							
18	Verify that the length of the projection is $ p = b \cos\theta$.							
19	What multiple of a = (1, 1, 1) is closest to b = (2, 4, 4)? Find also the point							
	on the line through b that is closest to a.							
20	Answer: $10/3(1, 1, 1)$, $(5/9, 10/9, 10/9)$ Find the matrix that projects every point in R^3 onto the line of intersection of the planes $x + y + z = 0$ and $x - z = 0$. What are the column space and row space							
	of this matrix?							
	Answer: $\frac{1}{6}\begin{vmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{vmatrix}$							
	Answer: $\frac{1}{6} - 2 + 4 - 2$							
21	Project b = (1, 2, 2) onto the line through a = (1, 1, 1). Check that e is							
	perpendicular to a.							
22	Answer: $p = 5/3 (1, 1, 1)$.							
22	Project b = $(1, 0, 0)$ onto the lines through $a_1 = (-1, 2, 2)$, $a_2 = (2, 2, -1)$ and $a_3 = (2, -1, 2)$. Add the three projections to get the sum b. Also find the							
	corresponding projection matrices P_1 , P_2 and P_3 . Check that their sum is I and the							
	product is 0.							
23	Find $ E ^2 = Ax - b ^2$ and set to zero its derivatives with respect to u and v if							
	$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, x = \begin{bmatrix} u \\ v \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$							
	$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$							
	Compare the resulting equations with $A^T A \hat{x} = A^T b$ to confirm that Calculus and							
	Geometry give the same Normal equations. Find the solution \hat{x} and the							
	projection $p = A\hat{x}$. Why is $p = b$?							
	Solution: $u = 1$, $v = 3$. Since $Ax = b$ is solvable, $p = b$.							
24	Find the projection of $b = (1, 2, 7)$ onto the column space of A spanned by							
	(1, 1, -2) and $(1, -1, 4)$. Split b into p + q with p in C(A) and q in N(A ^T).							
	Answer: $p = (3, 0, 6)$.							
25	If V is the subspace spanned by (1, 1, 0, 1), (0, 0, 1, 0) find							
	(i) a basis for V^{\perp} (ii) the projection matrix P onto V							
	(iii) the vector in V closest to b = (0, 1, 0, -1) in V^{\perp}							
0.0	Answer: (i) (-1, 1, 0, 0), (-1, 0, 0, 1) (iii) p = 0							
26	Find a basis for the orthogonal complement of the row space of A =							
	$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$. Split the vector (3, 3, 3) into a row space component xr and a							
	null space component xn.							
Ī	Answer: basis is (-2, -2, 1), (3, 3, 3) = (1, 1, 4) + (2, 2, -1)							

27	Use the method of least squares to fit the best line to the data b = 4, 3, 1, 0 at t = -2, -1, 0, 2 respectively. Find the projection of b = (4, 3, 1, 0) onto the column space of A. Calculate the error vector e and check that e is orthogonal to the columns of A. Answer: b = 61/35 - 36t/35. P = 1/35 (133, 95, 61, -11)									
28	(optional) An ice- cream vendor records the number of hours of sun shine (x) versus the number of ice- creams sold in an hour (y) at his shop from Monday to Friday and found the following data:									
		X:	2	3	5	7	9			
		y:	4	5	7	10	15			
	Find the best values of m and c that suit the equation $y = mx + c$. If there is a weather forecast that says there would be 8 hours of sun shine the next day, estimate the number of ice- creams that he expects to sell on that day. Answer: $y = 1.518 x + 0.305$, 13									