No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose

of gaining credits towards an NCEA qualification.

91577

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Level 3 Calculus, 2015

91577 Apply the algebra of complex numbers in solving problems

2.00 p.m. Wednesday 25 November 2015 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Apply the algebra of complex numbers in solving problems.	Apply the algebra of complex numbers, using relational thinking, in solving problems.	Apply the algebra of complex numbers, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Show ALL working.

Make sure that you have the Formulae and Tables Booklet L3-CALCF.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Excellence

TOTAL

ASSESSOR'S USE ONLY

Solve the equation $x^2 - 8x + 4 = 0$. (a)

Write your answer in the form $a \pm b\sqrt{c}$, where a, b, and c are integers and $b \neq 1$.

If $u = 1 + \sqrt{3}i$, clearly show u^3 on the Argand diagram below. (b)

U= (+ N3i

C= 51+3 = 54-2 1+3=54=2

rcisa

tane =

2 cist/3
(2 cist/3)3: 8 cist = -8

Calculus 91577, 2015

Find the real numbers p and q such that pv + qw = 6.5 - 11i.

$$\frac{-14p + 12q - -22}{5 - 5p - 5p - 5} = 0.5$$

(d) Prove that the roots of the equation $3x^2 + (2c+1)x - (c+3) = 0$ are always real for all values of c, where c is real.

$$\frac{1}{2} = -2c - 2 \pm \sqrt{4c^2 + 4c + 1 + 4c + 12}$$

WAYGO

C is always real, go

14c2+16C+37

is also real, so no

imaginary roots

ns

(e)	If $x^2 + bx + b$	$-c$ and x^2 +	-dx + e have	a common	factor	of $(x-p)$,
-----	-------------------	------------------	--------------	----------	--------	--------------

prove that $\frac{e-c}{b-d} = p$, where b, c, d, e, and p are all real.

(x-p) is factor of 22 bouse & x2 date

p2+pb+C.O.

p2-1 pb+c- p2-1 pd+ e

pb+C=pd+e. pb-pd. e-c p(b-d) = e-c p= e-c b-d.

QUESTION TWO

(a) What is the remainder when $2x^3 + x^2 - 5x + 7$ is divided by x + 3?

$p(x) = 2x^3 + x^2 - 5x + 7$
p(-3) = & Remaindu.
 p(-3) = -54+9+15+7

- -23.

(b) The complex number $\frac{2+3i}{5+i}$ can be expressed in the form k(1+i), where k is a real number.

Find the value of k.

$$(2+3i)(5-i)$$
 $(0-2i+15i-3i^2)$ $(5-i)(5-i)$ $= 25+1$

26

$$\frac{13}{26}$$
 (1+i) - $\frac{1}{2}$ (1+i)

k - 12/

SSESSOR'S USE ONLY

Find real numbers A, B and C such that $\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x-1)}$

ASSESSOR'S USE ONLY

$$A_{x^{2}(x-1)} + B_{x(x-1)} + C_{x^{3}}$$

$$\frac{A \times^3 - A \times^2 + B \times^2 - B \times + C \times^3}{\alpha^3 (\alpha - 1)} = \frac{A \times^2 - A \times + B \times - B + C \times^2}{\alpha^2 (\alpha - 1)}$$

 $Ax^{2}-Ax+Bx-B+Cx^{2}=1$ $x^{2}(A+C)+x(B-A)-B-1=0$

Write the complex number $\left(\frac{4i^7-i}{1+2i}\right)^2$ in the form a+bi, where a and b are real numbers.

$$\frac{1}{1+2i} = -i \qquad \left(-\frac{4i-i}{1+2i}\right)^{2} = \left(-\frac{5i}{1+2i}\right)^{2} \\
-5i \qquad -5i(1-2i) \qquad -5i+10i^{2} \qquad -10-5i \\
1+2i \qquad (1+2i)(1-2i) \qquad 1-4i^{2} \qquad = 5$$

$$a\left(\frac{-5i}{1-12i}\right)^{2} = \left(\frac{-10-5i}{5}\right)^{2} = \frac{(-10-5i)^{2}}{25} = \frac{100+100i-25}{25}$$

- At 73-22/

$$(x-2)+q: (x-2+q:)(x+5-q:)$$

$$(x+5)+q: (x+5+q:)(x+5-q:)$$

$$= x^{2}+5x-x+2x-10+2q:+5q:+2x+2q!}$$

$$= x^{2}+5x-x+2x-10+2q:+5q:+2x+2q!}$$

$$= x^{2}+5x-x+4x+2x-2q:+3x+2q!}$$

$$= \frac{2^{2}+1^{2}+3\times+8\pi^{-10}+2\pi^{2}}{2(2+3)^{2}+10\times+2\pi^{2}}$$

$$= \frac{2^{2}+10\times+2\pi^{2}}{2(2+3)\times+2\pi^{2}-10} + \frac{7\pi^{2}}{2\pi^{2}+10\times+2\pi^{2}} = \frac{7\pi^{2}+10\times+2\pi^{2}}{2(2+10)\times+2\pi^{2}} = \frac{7\pi^{2}+10\times+2\pi^{2}}{2(2+10)\times$$

$$\frac{(24.5)^{2}}{24.5} \cdot \frac{(3-3.5)^{2}}{24.5} = 1$$

QUESTION THREE

tance: -1

(a) If z = 4 + 2i and w = -1 + 3i, find arg(zw).

(b) For what real value(s) of k does the equation $kx^2 + \frac{x}{k} + 2 = 0$ have equal roots?

$$\frac{b^{2}-4ac=0}{\left(\frac{1}{4}\right)^{2}-4\left(2h\right)=0}$$

$$\frac{1}{h^{2}}-8h=0$$

$$\frac{1}{h^{2}}-8h$$

$$\frac{1}{8}-h^{3}$$

$$\frac{1}{8}-h^{3}$$

$$h=\frac{1}{2}$$

(c) One solution of the equation $3w^3 + Aw^2 - 3w + 10 = 0$ is w = -2.

If A is a real number, find the value of A and the other two solutions of the equation.

44.8 A-2

AT BACK

ASSESSOR'S USE ONLY

U

Write your solutions in polar form in terms of k.

Question Three continues on the following page.

ASSESSOR'S USE ONLY (e) (i) Find each of the roots of the equation $z^5 - 1 = 0$.

25 - 1 Cis O 2 - 1 Cis S k=0, Z=1 Cis O=1

4-1 22 = 105 /g

h=2, 23-105 /5

k=3, Z== 1056715

K=4, Z== 1C:58T15

(ii) Let p be the root in part (i) with the smallest positive argument.

Show that the roots in part (i) can be written as $1, p, p^2, p^3, p^4$.

Smallest positive argument = 27/15. (10027/5)

P. 2015. 1 Cis 27/5, 1 Cis 67/5, 1 Cis 67/5.

De Maiures theoren = (101327/5)2 = 1015

p²= 1 cis 15

p³= (1cis²⁷/5)³= 1cis⁶⁷¹/5

p⁴= (1cis²⁷/5)⁴= 1cis⁸⁷¹/5

Symports can be written as: 1, p, p2, p3, p4

ASSESSOR'S USE ONLY

QUESTION NUMBER		er if required. number(s) if applicable.
and the second s	(W-3W3+AW2-3W+10=0.	W=-2 is solution
P	(-2)=0	
	= -2424A26410=0	
	GAN 4A-8:0	
	44-8	*
	A= 2.	
	f(x)=3w3-2w2-3w+10.	
	(4) 64 24 64 10,)
	W 3 W2 - 4 W 45	
-\ 2	W 34 242 - 34 + 10	
	3W3 + 6W2 -4W2 - 3W +10	(W-12) (3 W2- 4W-18)
	442-8W	342-4W+5=0
	SW+10	W: 41 2 16-60
	SMY 10	6
10	30. A=2	- 41544
	Other 2 solutions are:	- 41 × 44 i graded
		4 2 511 ; 2 1 511 ;
	W= 21 SII;	6 - 3

Excellence exemplar for 91577 2015 Total score 2			24		
Q	Grade score	e score Annotation			
	E8	This is an E8 because the proof required in part e) was completed correctly with clear communication of the candidate's understanding of the factor theorem shown.			
		a) The candidate has substituted into the quadratic formula and then written their solution in its most simplified form.			
		b) The complex number has been converted from rectangular form to polar form. Then the candidate has used De Moivre's Theorem to raise the complex number to the power of 3. They have also indicated its position on the Argand diagram.			
1		c) The correct pair of equations in two unknowns has been found by substituting for v and w into the given equation and then equating the real and imaginary parts. The candidate has solved the two equations simultaneously to find the values of p and q.			
		d) The candidate has demonstrated that they can find the discriminant of the given quadratic equation but has shown that they do not understand how they can use it to prove that the roots of the equation will always be real.			
		e) The candidate has set up the two corresponding function and demonstrated their understanding of the factor theorem then f(p) and g(p) would both result in a zero remainder. The two equations resulting from f(p) and g(p) that both equals	n by stating that if (ne proof follows qui	(x-p) is a factor	
		This is an E8 because the Cartesian equation required in part e) was completed correctly.			
		a) The remainder theorem was correctly applied.			
2	E8	b) The quotient of the two complex numbers written in rectangular form was simplified correctly to arrive at a rational denominator and the k value was identified.			
		c) The three algebraic fractions were correctly written over a common denominator. The candidate equated the numerators of each side of the equation which is why they scored a u. In order to gain the r grade, they needed to continue to compare coefficients of the expressions on each side of the equation.			
		d) The candidate successfully simplified all the terms involved square the resulting complex number.	ving i in the numera	ator then was able to	
		e) The candidate has substituted for z in both the numerat top and bottom by the conjugate of the denominator in order of the simplified complex number. The candidate has realist number is $\frac{\pi}{4}$, then the real and imaginary parts must be equinformation to arrive at the required equation of the circle.	er to identify the reased that if the argur	al and imaginary parts nent of the complex	
3	E8	This is an E8 because the candidate has demonstrated an in part e to both find the required roots of the quintic equationships between the roots.			
		a) The product of zw was found but not the correct argume angle measured anticlockwise from the positive direction of			
		b) The candidate realised that the discriminant had to equal equation were equal and has solved the resulting equation.		f the given quadratic	
		c) The candidate has divided the cubic by the factor corres subsequently found the value of the unknown coefficient, A cubic equation. They have then used the quadratic formula	, as well as the qua	adratic factor of the	
		d) The complex number has been converted to its polar for	m and the 3 require	ed cube roots found.	
		e) The complex number has been converted to its polar for root with the smallest positive argument has been identified candidate has shown how 3 of the roots can be expressed	d and by using de N	Moivre's Theorem, the	