

Autonomous
Institution Affiliated
to Visvesvaraya
Technological
University, Belagavi

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

Go. change the world RUCC 27 BPL 054

DEPARTMENT OF MATHEMATICS

Course: Fundamentals of Linear Algebra, Calculus and statistics	CIE-II (QUIZ & TEST)	Maximum marks: 10+50=60			
Course code: 22MA11C	First semester 2022-2023 Chemistry Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 1:00PM-3:00PM Date: 21-02-2023			

Instructions to students:

- 1. Answer all questions.
- 2. Part A must be answered in the first two pages of the answer book only.

Q.No	PART- A (Quiz)	M	BT	CO
1.1	The coefficient of x^2 in the Maclaurin series expansion of $e^{-\left(\frac{x}{3}\right)}$ is	2	Ll	1
1.2	If $z = x \sin(y) + y \cos(x)$ then $\frac{\partial^2 z}{\partial x \partial y} =$	2	LI	1
1.3	Total differential of the function $u = x^3 e^y z^2$ is	2	L2	2
1.4	The critical point of the function $f(x,y) = x^2 + 2x + 9y - 3y^2 + 5$ is	2	L1	1
1.5	If $x = u \sin(v)$ and $y = u \cos(v)$ then $\frac{\partial(u,v)}{\partial(x,y)} =$	2	L2	2

SI.	PART-B	М	ВТ	со		
1	Obtain the Maclaurin series expansion of $\log_e(1+e^x)$ up to the term containing x^4 and hence deduce the expansion of $\frac{1}{e^{-x}(1+e^x)}$.					
2. (a)	Find the value of n so that the equation $V = r^n (3\cos^2(\theta) - 1)$ satisfies the relation $\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial V}{\partial \theta} \right) = 0.$					
2. (b)	Find $\frac{du}{dx}$ for $u = \log_e(x^2 + y^2)$, where $x^3 + y^3 + 5xy = 19$.					
8. (a)	Using chain rule express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \log_e(s)$, $z = 2r$.					
3. (b)	The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation $PV = 8.31T$. Find the rate at which the pressure is changing when the temperature is 300K and increasing at a rate of 0.1K/s and the volume is 100L and increasing at a rate of 0.2L/s.		L3	4		
	Find the shortest and longest distance from the point $P(1,2,-1)$ to the sphere $x^2 + y^2 + z^2 = 24$ using Lagrange's multiplier method.	10	L3	3		
	If $u = x + y + z$, $uv = y + z$ and $uvw = z$ then find $J = \frac{\partial(u,v,w)}{\partial(x,y,z)}$ and $J' = \frac{\partial(x,y,z)}{\partial(u,v,w)}$. Also show that $JJ' = 1$.	10	L3			

			BT-	Blooms T	axonomy,	CO-Course	e Outcome	es, M-Mar	KS			
Marks	Particulars		CO1	CO2	CO3	CO4	LI	L2	L3	L4	L5	L6
Distribution	Test+Quiz	Max Marks	12	24	20	04	06	30	24			