DISTRIBUIÇÕES AMOSTRAIS, INTERVALOS DE CONFIANÇA e TESTES DE HIPÓTESES PARAMÉTRICOS

• Para a média:

Condições	Distribuição Amostral	Intervalo de Confiança	R
População Normal σ conhecido	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$	$\left \overline{x} - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right[$	z.test() library(BSDA)
População Normal σ desconhecido	$T = rac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{(n-1)}$	$\left] \overline{x} - t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} \right[$	t.test()
População Qualquer σ conhecido $n \geq 30$	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$	$\left \overline{x}-z_{1-rac{lpha}{2}rac{\sigma}{\sqrt{n}}};\overline{x}+z_{1-rac{lpha}{2}rac{\sigma}{\sqrt{n}}} ight[$	$\mathrm{z.test}()$ library(BSDA)
População Qualquer σ desconhecido $n \geq 30$	$Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N\left(0, 1\right)$	$\left \overline{x} - z_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \overline{x} + z_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}} \right $	$\mathrm{z.test}()$ library(BSDA)

• Para a diferença de duas médias:

Condições			R
Populações Normais σ, e σ, conhecidos	D. A.	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	z.test()
Amostras Independentes	I. C.	$\left] (\overline{x_1} - \overline{x_2}) - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; (\overline{x_1} - \overline{x_2}) + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right[$	library(BSDA)
Populações Normais σ_1 e σ_2 desconhecidos	D. A.	$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \times \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t_{(n_1 + n_2 - 2)}$	t.test()
Amostras Independentes	I. C.	$\left (\overline{x}_1 - \overline{x}_2) - t_{1-\frac{\alpha}{2}; n_1 + n_2 - 2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \times \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}; \right. $ $\left. ; (\overline{x}_1 - \overline{x}_2) + t_{1-\frac{\alpha}{2}; n_1 + n_2 - 2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \times \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \right[\right.$	
Populações Normais σ_1 e σ_2 desconhecidos	D. A.	$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{(gl_2)}$, test()
$\sigma_1 \neq \sigma_2$ Amostras Independentes	I. C.	$\left] (\overline{x}_1 - \overline{x}_2) - t_{1 - \frac{\alpha}{2}; gl_2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}; (\overline{x}_1 - \overline{x}_2) + t_{1 - \frac{\alpha}{2}; gl_2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right[$	

 $\text{com } gl_2 \approx \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2(n_1-1)} + \frac{S_2^4}{n_2^2(n_2-1)}}, \text{ habitualmente considera-se o inteiro mais próximo ou faz-se a correção de Welch-Satterthwaite}$

• Para a diferença de duas médias (continuação):

Condições			R
Populações Quaisquer σ_1 e σ_2 conhecidos	D. A.	$Z = rac{\left(\overline{X}_1 - \overline{X}_2 ight) - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2^2}}} \sim N\left(0, 1 ight)$	z.test()
Amostras Independentes $n_1 \ge 30 \text{ e } n_2 \ge 30$	I. C.	I. C. $\left (\overline{x}_1 - \overline{x}_2) - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; (\overline{x}_1 - \overline{x}_2) + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right $	library(BSDA)
Populações Quaisquer σ_1 e σ_2 desconhecidos	D. A.	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$	z.test()
Amostras Independentes $n_1 \ge 30 \text{ e } n_2 \ge 30$	I. C.	I. C. $\left (\overline{x}_1 - \overline{x}_2) - z_{1-\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}; (\overline{x}_1 - \overline{x}_2) + z_{1-\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right $	library(BSDA)

• Para a variância:

	(82)
R	$\operatorname{varTest}()$ library(EnvStats)
Distribuição Amostral Intervalo de Confiança	$\left[\frac{(n-1)s^2}{x_{1-\frac{\alpha}{2};n-1}^2}, \frac{(n-1)s^2}{x_{\frac{\alpha}{2};n-1}^2}\right]$
Distribuição Amostral	$X^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{(n-1)}^2$
Condição	População Normal

• Para o quociente de duas variâncias:

Condições	Distribuição Amostral	Intervalo de Confiança	R
Populações Normais Amostras Independentes	$F = \frac{S_1^2}{S_2^2} \times \frac{\sigma_2^2}{\sigma_1^2} \sim F_{(n_1 - 1, n_2 - 1)}$	$\int_{f_{1-\frac{\alpha}{2};n_{1}-1;n_{2}-1}} \frac{1}{x^{\frac{s_{1}^{2}}{s_{2}^{2}}}} \times \frac{s_{1}^{2}}{s_{2}^{2}}, \frac{1}{f_{\frac{\alpha}{2};n_{1}-1;n_{2}-1}} \times \frac{s_{1}^{2}}{s_{2}^{2}} \left[v_{3} + \frac{s_{1}^{2}}{s_{2}^{2}} \right]$	ar.test()

• Para a proporção:

Condições	Distribuição Amostral	Intervalo de Confiança	R
$n \ge 30$	$Z = \frac{p^* - p}{\sqrt{\frac{pq}{n}}} \approx \frac{p^* - p}{\sqrt{\frac{p^* q^*}{n}}} \sim N(0, 1)$	$Z = \frac{p^* - p}{\sqrt{\frac{pq}{n}}} \approx \frac{p^* - p}{\sqrt{\frac{p^* q^*}{n}}} \stackrel{\sim}{\sim} N(0, 1) \left[p^* - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p^* q^*}{n}}; p^* + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p^* q^*}{n}} \right[$	z.test() library(BSDA)

• Para a diferença de duas proporções:

R	z.test()	library(BSDA)
	$Z = \frac{(p_1^* - p_2^*) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1 + p_2 q_2}{n_1} + \frac{p_2 q_2}{n_2}}} \approx \frac{(p_1^* - p_2^*) - (p_1 - p_2)}{\sqrt{\frac{p_1^* q_1^* + p_2^* q_2^*}{n_1} + \frac{p_2^* q_2^*}{n_2}}} \sim N\left(0, 1\right)$	I. C. $\left \int (p_1^* - p_2^*) - z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}}; (p_1^* - p_2^*) + z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}} \right $
	D. A.	I. C.
Condições	Amostras Independentes	$n_1 \ge 30 \text{ e } n_2 \ge 30$

• TESTES DE AJUSTAMENTO

Condições	Teste de Ajustamento	R
Distribuição Discreta		
no	Qui-Quadrado	$\operatorname{chisq.test}()$
Distribuição Contínua (com recurso a classes)		
Distribuição Contínua (completamente especificada)	Kolmogorov-Smirnov	ks.test()
Normal e $n \ge 50$	Lilliefors	lillie.test() (library(nortest))
Normal e $n < 50$	Shapiro Wilk	$\operatorname{shapiro.test}()$