

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: C12N 15/12, A61K 38/17, C07K 14/47, C07K 14/705, C07K 16/18, C12N 15/62, G01N 33/53	A1	(11) International Publication Number: WO 00/73454 (43) International Publication Date: 07 December 2000 (07.12.2000)																																																																						
<p>(21) International Application Number: PCT/US00/08439</p> <p>(22) International Filing Date: 30 March 2000 (30.03.2000)</p> <p>(30) Priority Data:</p> <table> <tbody> <tr><td>60/141,037</td><td>23 June 1999 (23.06.1999) US</td></tr> <tr><td>60/143,048</td><td>07 July 1999 (07.07.1999) US</td></tr> <tr><td>60/144,758</td><td>20 July 1999 (20.07.1999) US</td></tr> <tr><td>60/145,698</td><td>26 July 1999 (26.07.1999) US</td></tr> <tr><td>60/146,222</td><td>28 July 1999 (28.07.1999) US</td></tr> <tr><td>60/149,396</td><td>17 August 1999 (17.08.1999) US</td></tr> <tr><td>60/158,663</td><td>08 October 1999 (08.10.1999) US</td></tr> <tr><td>PCT/US00/00219</td><td>05 January 2000 (05.01.2000) US</td></tr> <tr><td>PCT/US00/00376</td><td>06 January 2000 (06.01.2000) US</td></tr> <tr><td>PCT/US00/03565</td><td>11 February 2000</td></tr> <tr><td>(11.02.2000) US</td><td></td></tr> <tr><td>PCT/US00/04341</td><td>18 February 2000</td></tr> <tr><td>(18.02.2000) US</td><td></td></tr> <tr><td>PCT/US00/04414</td><td>22 February 2000</td></tr> <tr><td>(22.02.2000) US</td><td></td></tr> <tr><td>PCT/US00/04914</td><td>24 February 2000</td></tr> <tr><td>(24.02.2000) US</td><td></td></tr> <tr><td>PCT/US00/05004</td><td>24 February 2000</td></tr> <tr><td>(24.02.2000) US</td><td></td></tr> <tr><td>PCT/US00/05841</td><td>02 March 2000 (02.03.2000) US</td></tr> <tr><td>PCT/US00/06884</td><td>15 March 2000 (15.03.2000) US</td></tr> <tr><td>PCT/US00/07377</td><td>20 March 2000 (20.03.2000) US</td></tr> <tr><td>PCT/US99/12252</td><td>02 June 1999 (02.06.1999) US</td></tr> <tr><td>PCT/US99/21090</td><td>15 September 1999</td></tr> <tr><td>(15.09.1999) US</td><td></td></tr> <tr><td>PCT/US99/21547</td><td>15 September 1999</td></tr> <tr><td>(15.09.1999) US</td><td></td></tr> <tr><td>PCT/US99/28301</td><td>01 December 1999</td></tr> <tr><td>(01.12.1999) US</td><td></td></tr> <tr><td>PCT/US99/28313</td><td>30 November 1999</td></tr> <tr><td>(30.11.1999) US</td><td></td></tr> <tr><td>PCT/US99/30095</td><td>16 December 1999</td></tr> <tr><td>(16.12.1999) US</td><td></td></tr> <tr><td>PCT/US99/30911</td><td>20 December 1999</td></tr> <tr><td>(20.12.1999) US</td><td></td></tr> </tbody> </table> <p>(60) Parent Application or Grant</p> <p>GENENTECH, INC. [/]; O. ASHKENAZI, Avi, J. [/]; O. BAKER, Kevin, P. [/]; O. BOTSTEIN, David [/]; O. DESNOYERS, Luc [/]; O. EATON, Dan, L. [/]; O. FERRARA, Napoleone [/]; O. FONG, Sherman [/]; O. GERBER, Hanspeter [/]; O. GERRITSEN, Mary, E. [/]; O. GODDARD, Audrey [/]; O. GODOWSKI, Paul, J. [/]; O. GRIMALDI, Christopher, J. [/]; O. GURNEY, Austin, L. [/]; O. KLJAVIN, Ivar, J. [/]; O. NAPIER, Mary, A. [/]; O. PAN, James [/]; O. PAONI, Nicholas, F. [/]; O. ROY, Margaret, Ann [/]; O. STEWART, Timothy, A. [/]; O. TUMAS, Daniel [/]; O. WATANABE, Colin, K. [/]; O. WILLIAMS, P., Mickey [/]; O. WOOD, William, I. [/]; O. ZHANG, Zemin [/]; O. ASHKENAZI, Avi, J. [/]; O. BAKER, Kevin, P. [/]; O. BOTSTEIN, David [/]; O. DESNOYERS, Luc [/]; O. EATON, Dan, L. [/]; O. FERRARA, Napoleone [/]; O. FONG, Sherman [/]; O. GERBER, Hanspeter [/]; O. GERRITSEN, Mary, E. [/]; O. GODDARD, Audrey [/]; O. GODOWSKI, Paul, J. [/]; O. GRIMALDI, Christopher, J. [/]; O. GURNEY, Austin, L. [/]; O. KLJAVIN, Ivar, J. [/]; O. NAPIER, Mary, A. [/];</p>			60/141,037	23 June 1999 (23.06.1999) US	60/143,048	07 July 1999 (07.07.1999) US	60/144,758	20 July 1999 (20.07.1999) US	60/145,698	26 July 1999 (26.07.1999) US	60/146,222	28 July 1999 (28.07.1999) US	60/149,396	17 August 1999 (17.08.1999) US	60/158,663	08 October 1999 (08.10.1999) US	PCT/US00/00219	05 January 2000 (05.01.2000) US	PCT/US00/00376	06 January 2000 (06.01.2000) US	PCT/US00/03565	11 February 2000	(11.02.2000) US		PCT/US00/04341	18 February 2000	(18.02.2000) US		PCT/US00/04414	22 February 2000	(22.02.2000) US		PCT/US00/04914	24 February 2000	(24.02.2000) US		PCT/US00/05004	24 February 2000	(24.02.2000) US		PCT/US00/05841	02 March 2000 (02.03.2000) US	PCT/US00/06884	15 March 2000 (15.03.2000) US	PCT/US00/07377	20 March 2000 (20.03.2000) US	PCT/US99/12252	02 June 1999 (02.06.1999) US	PCT/US99/21090	15 September 1999	(15.09.1999) US		PCT/US99/21547	15 September 1999	(15.09.1999) US		PCT/US99/28301	01 December 1999	(01.12.1999) US		PCT/US99/28313	30 November 1999	(30.11.1999) US		PCT/US99/30095	16 December 1999	(16.12.1999) US		PCT/US99/30911	20 December 1999	(20.12.1999) US	
60/141,037	23 June 1999 (23.06.1999) US																																																																							
60/143,048	07 July 1999 (07.07.1999) US																																																																							
60/144,758	20 July 1999 (20.07.1999) US																																																																							
60/145,698	26 July 1999 (26.07.1999) US																																																																							
60/146,222	28 July 1999 (28.07.1999) US																																																																							
60/149,396	17 August 1999 (17.08.1999) US																																																																							
60/158,663	08 October 1999 (08.10.1999) US																																																																							
PCT/US00/00219	05 January 2000 (05.01.2000) US																																																																							
PCT/US00/00376	06 January 2000 (06.01.2000) US																																																																							
PCT/US00/03565	11 February 2000																																																																							
(11.02.2000) US																																																																								
PCT/US00/04341	18 February 2000																																																																							
(18.02.2000) US																																																																								
PCT/US00/04414	22 February 2000																																																																							
(22.02.2000) US																																																																								
PCT/US00/04914	24 February 2000																																																																							
(24.02.2000) US																																																																								
PCT/US00/05004	24 February 2000																																																																							
(24.02.2000) US																																																																								
PCT/US00/05841	02 March 2000 (02.03.2000) US																																																																							
PCT/US00/06884	15 March 2000 (15.03.2000) US																																																																							
PCT/US00/07377	20 March 2000 (20.03.2000) US																																																																							
PCT/US99/12252	02 June 1999 (02.06.1999) US																																																																							
PCT/US99/21090	15 September 1999																																																																							
(15.09.1999) US																																																																								
PCT/US99/21547	15 September 1999																																																																							
(15.09.1999) US																																																																								
PCT/US99/28301	01 December 1999																																																																							
(01.12.1999) US																																																																								
PCT/US99/28313	30 November 1999																																																																							
(30.11.1999) US																																																																								
PCT/US99/30095	16 December 1999																																																																							
(16.12.1999) US																																																																								
PCT/US99/30911	20 December 1999																																																																							
(20.12.1999) US																																																																								

O. PAN, James [/]; O. PAONI, Nicholas, F. [/]; O. ROY, Margaret, Ann [/]; O. STEWART, Timothy, A. [/]; O. TUMAS, Daniel [/]; O. WATANABE, Colin, K. [/]; O. WILLIAMS, P., Mickey [/]; O. WOOD, William, I. [/]; O. ZHANG, Zemin [/]; O. KRESNAK, Mark, T. ; O.

Published

- (54) Title: SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME
(54) Titre: POLYPEPTIDES TRANSMEMBRANAIRES SECRETES ET ACIDES NUCLEIQUES CODANTS POUR CEUX-CI

(57) Abstract

The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

(57) Abrégé

La présente invention concerne des polypeptides et des molécules d'acides nucléiques codant pour ces polypeptides. Cette invention concerne aussi des vecteurs et des cellules hôtes qui comprennent ces séquences d'acides nucléiques, des molécules de polypeptides chimériques qui comprennent les polypeptides de l'invention fusionnés avec les séquences de polypeptides hétérologues, des anticorps se liant aux polypeptides de l'invention et des techniques permettant d'obtenir les polypeptides de l'invention.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2000 (07.12.2000)

PCT

(10) International Publication Number
WO 00/73454 A1

(51) International Patent Classification ⁷ :	C12N 15/12, C07K 14/47, 14/705, C12N 15/62, C07K 16/18, G01N 33/53, A61K 38/17	PCT/US00/04341 PCT/US00/04414	18 February 2000 (18.02.2000) US 22 February 2000 (22.02.2000) US
(21) International Application Number:	PCT/US00/08439	PCT/US00/04914	24 February 2000 (24.02.2000) US
(22) International Filing Date:	30 March 2000 (30.03.2000)	PCT/US00/05004	24 February 2000 (24.02.2000) US
(25) Filing Language:	English	PCT/US00/05841 PCT/US00/06884	2 March 2000 (02.03.2000) US 15 March 2000 (15.03.2000) US
(26) Publication Language:	English	PCT/US00/07377	20 March 2000 (20.03.2000) US
(30) Priority Data:		(71) Applicant (<i>for all designated States except US</i>): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080-4990 (US).	
	PCT/US99/12252 60/141,037 60/143,048 60/144,758 60/145,698 60/146,222 60/149,396 PCT/US99/21090 PCT/US99/21547 60/158,663 PCT/US99/28313 PCT/US99/28301 PCT/US99/30095 PCT/US99/30911 PCT/US00/00219 PCT/US00/00376 PCT/US00/03565	2 June 1999 (02.06.1999) US 23 June 1999 (23.06.1999) US 7 July 1999 (07.07.1999) US 20 July 1999 (20.07.1999) US 26 July 1999 (26.07.1999) US 28 July 1999 (28.07.1999) US 17 August 1999 (17.08.1999) US 15 September 1999 (15.09.1999) US 15 September 1999 (15.09.1999) US 8 October 1999 (08.10.1999) US 30 November 1999 (30.11.1999) US 1 December 1999 (01.12.1999) US 16 December 1999 (16.12.1999) US 20 December 1999 (20.12.1999) US 5 January 2000 (05.01.2000) US 6 January 2000 (06.01.2000) US 11 February 2000 (11.02.2000) US	(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): ASHKENAZI, Avi, J. [US/US]; 1456 Tarrytown Street, San Mateo, CA 94402 (US). BAKER, Kevin, P. [GB/US]; 14006 Indian Run Drive, Darneystown, MD 20878 (US). BOTSTEIN, David [US/US]; 2539 Somerset Drive, Belmont, CA 94002 (US). DESNOYERS, Lue [CA/US]; 2050 Stockton Street, San Francisco, CA 94133 (US). EATON, Dan, L. [US/US]; 75 Knight Drive, San Rafael, CA 94901 (US). FERRARA, Napoleone [US/US]; 2090 Pacific Avenue #704, San Francisco, CA 94109 (US). FONG, Sherman [US/US]; 19 Basinside Way, Alameda, CA 94502 (US). GERBER, Hanspeter [CH/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). GERRITSEN, Mary, E. [CA/US]; 541 Parrot Drive, San Mateo, CA 94402 (US). GODDARD, Audrey [CA/US]; 110 Congo Street, San Francisco, CA 94131 (US). GODOWSKI, Paul, J. [US/US]; 2627 Easton Drive, Burlingame, CA 94010 (US). GRIMALDI, Christopher, J. [US/US]; 1434 36th Avenue, San Francisco, CA 94122 (US). GURNEY, Austin, L. [US/US]; 1 Debbie Lane, Belmont, CA

[Continued on next page]

(54) Title: SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

WO 00/73454 A1

MLAARLVCRLTLPSRVFHPAFTKASPVVKNSITKNQWLTPSREYATKTRIGIRRGRTGQEL
KEAALEPSMEKIFKIDQMGRWFVAGGAAVGLGALCYGLGLSNEIGAIKAVIWPQYVKDRI
HSTYMYLAGSIGLTALSAIAISRTPVLNFMMRGSWVTIGVTFAAMVGAGMLVRSIPYDQSP
GPKHLAWLLHSGVMGAVVAPLTLGGPLLIRAAWYTAGIVGLSTVAMCAPSEKFLNMGAPL
GVGLGLVFVSSLGSMFLPPPTTVAGATLYSVAMYGGLVLFSMFLLYDTQKVIKRAEVSPMYGV
QKYDPINSMLSIIYMDTLNIFMRVATMLATGNNRKK

(57) Abstract: The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

94002 (US). KLJAVIN, Ivar, J. [US/US]; 3673 Crescent Drive, Lafayette, CA 94549 (US). NAPIER, Mary, A. [US/US]; 1015 Hayne Road, Hillsborough, CA 94010 (US). PAN, James [CA/US]; 2705 Coronet Boulevard, Belmont, CA 94002 (US). PAONI, Nicholas, F [US/US]; 1756 Terrace Drive, Belmont, CA 94002 (US). ROY, Margaret, Ann [US/US]; 2960 Webster Street #4, San Francisco, CA 94123 (US). STEWART, Timothy, A. [US/US]; 465 Douglass Street, San Francisco, CA 94114 (US). TUMAS, Daniel [US/US]; 3 Rae Avenue, Orinda, CA 94563 (US). WATANABE, Colin, K. [US/US]; 128 Corliss Drive, Moraga, CA 94556 (US). WILLIAMS, P., Mickey [US/US]; 509 Alto Avenue, Half Moon Bay, CA 94019 (US). WOOD, William, I. [US/US]; 35 Southdown Court, Hillsborough, CA 94010 (US). ZHANG, Zemin [CN/US]; 876 Taurus Drive, Foster City, CA 94404 (US).

(74) Agents: KRESNAK, Mark, T. et al.; Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,

DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Description

5

10

15

20

25

30

35

40

45

50

55

5

SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING
THE SAME

10

FIELD OF THE INVENTION

The present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides.

15

BACKGROUND OF THE INVENTION

Extracellular proteins play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. These secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment.

Secreted proteins have various industrial applications, including as pharmaceuticals, diagnostics, biosensors and bioreactors. Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins. Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents. Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Patent No. 5,536,637].

Membrane-bound proteins and receptors can play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include

30

35

40

45

50

55

5 fibroblast growth factor receptor and nerve growth factor receptor.

10 Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immunoaffines, for instance, can be employed as therapeutic agents to block receptor-ligand interactions. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction.

15 Efforts are being undertaken by both industry and academia to identify new, native receptor or membrane-bound proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor or membrane-bound proteins.

15 1. **PRO281**

10 A novel gene designated testis enhanced gene transcript (TEGT) has recently been identified in humans (Walter et al., *Genomics* 20:301-304 (1995)). Recent results have shown that TEGT protein is developmentally regulated in the mammalian testis and possesses a nuclear targeting motif that allows the protein to localize to the nucleus (Walter et al., *Mamm. Genome* 5:216-221 (1994)). As such, it is believed that the TEGT protein plays an important role in testis development. There is, therefore, substantial interest 15 in identifying and characterizing novel polypeptides having homology to the TEGT protein. We herein describe the identification and characterization of novel polypeptides having homology to TEGT protein, 20 designated herein as PRO281 polypeptides.

20 2. **PRO276**

25 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to 30 identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO276 polypeptides.

35 3. **PRO189**

40 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to 45 identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO189 polypeptides.

30 4. **PRO190**

45 Of particular interest are proteins having seven transmembrane domains (7TM), or more generally, all multiple transmembrane spanning proteins. Among multiple transmembrane spanning proteins are ion channels and transporters. Examples of transporters are the UDP-galactose transporter described in Ishida, 50 et al., *J. Biochem.*, 120(6):1074-1078 (1996), and the CMP-sialic acid transporter described in Eckhardt, et al., *PNAS*, 93(15):7572-7576 (1996). We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO190 polypeptides.

5 **PRO341**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO341 polypeptides.

10 **PRO180**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO180 polypeptides.

15 **PRO194**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO194 polypeptides.

20 **PRO203**

Enzymatic proteins play important roles in the chemical reactions involved in the digestion of foods, the biosynthesis of macromolecules, the controlled release and utilization of chemical energy, and other processes necessary to sustain life. ATPases are a family of enzymes that play a variety of important roles, including energizing transport of ions and molecules, across cellular membranes. Transport mechanisms that employ ATPases often involve excluding xeno- and endobiotic toxins from the cellular environment, thereby protecting cells from toxicity of these compounds. Lu et al. report a detoxification mechanism where glutathione S-transferase (GST) catalyzes glutathionation of plant toxins, and a specific Mg²⁺-ATPase is involved in the transport of the glutathione S-conjugates from the cytosol. *Proc. Natl. Acad. Sci. USA* 94(15):8243-8248 (1997). This study and others indicate the importance of the identification of ATPases, such as GST ATPases, and of novel proteins having sequence identity with ATPases.

More generally, and also of interest are novel membrane-bound proteins, including those which may be involved in the transport of ions and molecules across membranes. Membrane-bound proteins and receptors can play an important role in the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors

5 involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor.

10 In light of the important physiological roles played by ATPases and membrane-bound proteins efforts 5 are being undertaken by both industry and academia to identify new, native membrane-bound proteins, and proteins having sequence identity to ATPases. We herein describe the identification and characterization of novel polypeptides having sequence identity to GST ATPase, designated herein as PRO203 polypeptides.

15 9. **PRO290**

10 Of particular interest are novel proteins and nucleic acids which have sequence identity with known 20 proteins and nucleic acids. Proteins of interest which are well known in the art include NTII-1, a nerve protein which facilitates regeneration, FAN, and beige. Beige, or bg, is a murine analog related to Chediak-Higashi Syndrome (CHS), a rare autosomal recessive disease in which neutrophils, monocytes and lymphocytes contain giant cytoplasmic granules. See Perou et al., *J. Biol. Chem.* 272(47):29790 (1997) and Barbosa et al., *Nature* 15 382:262 (1996).

25 We herein describe the identification and characterization of novel polypeptides having sequence identity to NTII-1, FAN and beige, designated herein as PRO290 polypeptides.

30 10. **PRO874**

20 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound 30 proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO194 polypeptides.

35 25 11. **PRO710**

40 In *Saccharomyces cerevisiae*, the chromatin structure of DNA replication origins changes as cells 30 become competent for DNA replication, suggesting that G1 phase-specific association of replication factors with origin DNA regulates entry into S phase (Aparicio et al., *Cell* 91:59-69 (1997)). In fact, it has been shown that the initiation of DNA replication in *Saccharomyces cerevisiae* requires the protein product of the 45 CDC45 gene which encodes a protein that stays at relatively constant levels throughout the cell cycle (Owens et al., *Proc. Natl. Acad. Sci USA* 94:12521-12526 (1997)). The CDC45 protein is part of a prereplication complex that may move with DNA replication forks in yeast. Given the obvious importance of the CDC45 protein in DNA replication, there is significant interest in identifying and characterizing novel polypeptides 35 having homology to CDC45. We herein describe the identification and characterization of novel polypeptides having homology to the CDC45 protein, designated herein as PRO710 polypeptides.

5 **12. PRO1151**

The complement proteins comprise a large group of serum proteins some of which act in an enzymatic cascade, producing effector molecules involved in inflammation. The complement proteins are of particular importance in regulating movement and function of cells involved in inflammation. One of the complement proteins, C1q, has been shown to be involved in the recognition of microbial surfaces and antibody-antigen complexes in the classical pathway of complement (Shapiro et al., *Curr. Biol.*, 8(6):335-338 (1998)).

10 Given the physiological importance of inflammation and related mechanisms *in vivo* and in the specific physiological activities of complement C1q protein, efforts are currently being undertaken to identify new, native proteins which share sequence similarity to the complement proteins. We herein describe the identification and characterization of novel polypeptides having homology to complement C1q protein, 15 designated herein as PRO1151 polypeptides.

10 **13. PRO1282**

20 All proteins containing leucine-rich repeats are thought to be involved in protein-protein interactions. Leucine-rich repeats are short sequence motifs present in a number of proteins with diverse functions and 25 cellular locations. The crystal structure of ribonuclease inhibitor protein has revealed that leucine-rich repeats correspond to beta-alpha structural units. These units are arranged so that they form a parallel beta-sheet with one surface exposed to solvent, so that the protein acquires an unusual, nonglobular shape. These two features have been indicated as responsible for the protein-binding functions of proteins containing leucine-rich repeats. See, Kobe and Deisenhofer, *Trends Biochem. Sci.*, 19(10):415-421 (Oct. 1994); Kobe and Deisenhofer, *Curr. 30 Opin. Struct. Biol.*, 5(3):409-416 (1995).

35 A study has been reported on leucine-rich proteoglycans which serve as tissue organizers, orienting and ordering collagen fibrils during ontogeny and are involved in pathological processes such as wound healing, tissue repair, and tumor stroma formation. Iozzo, R. V., *Crit. Rev. Biochem. Mol. Biol.*, 32(2):141-174 (1997). Others studies implicating leucine rich proteins in wound healing and tissue repair are De La 40 Salle, C., et al., *Vouv. Rev. Fr. Hematol.* (Germany), 37(4):215-222 (1995), reporting mutations in the leucine rich motif in a complex associated with the bleeding disorder Bernard-Soulier syndrome, Chlcmetson, K. J., *Thromb. Haemost.* (Germany), 74(1):111-116 (July 1995), reporting that platelets have leucine rich repeats and Ruoslahti, E. I., et al., WO9110727-A by La Jolla Cancer Research Foundation reporting that decorin binding to transforming growth factor β has involvement in a treatment for cancer, wound healing and 45 scarring. Related by function to this group of proteins is the insulin like growth factor (IGF), in that it is useful in wound-healing and associated therapies concerned with re-growth of tissue, such as connective tissue, skin and bone; in promoting body growth in humans and animals; and in stimulating other growth-related processes. The acid labile subunit of IGF (ALS) is also of interest in that it increases the half-life of IGF and is part of the IGF complex *in vivo*.

50 35 Another protein which has been reported to have leucine-rich repeats is the SLIT protein which has been reported to be useful in treating neuro-degenerative diseases such as Alzheimer's disease, nerve damage such as in Parkinson's disease, and for diagnosis of cancer, see, Artavanistsakonas, S. and Rothberg, J. M.,

5 WO9210518-A1 by Yale University. Of particular interest is LIG-1, a membrane glycoprotein that is expressed specifically in glial cells in the mouse brain, and has leucine rich repeats and immunoglobulin-like domains. Suzuki, et al., J. Biol. Chem. (U.S.), 271(37):22522 (1996). Other studies reporting on the biological functions of proteins having leucine rich repeats include: Tayar, N., et al., Mol. Cell Endocrinol.,
10 (Ireland), 125(1-2):65-70 (Dec. 1996) (gonadotropin receptor involvement); Miura, Y., et al., Nippon Rinsho (Japan), 54(7):1784-1789 (July 1996) (apoptosis involvement); Harris, P. C., et al., J. Am. Soc. Nephrol.,
15 6(4):1125-1133 (Oct. 1995) (kidney disease involvement).

10 Leucine rich repeat proteins are further discussed in Kajava, J. Mol. Biol., 277(3):519-527 (1998), Nagasawa, et al., Genomics, 44(3):273-279 (1997), Bengtsson, J. Biol. Chem., 270(43):25639-25644 (1995), Gaillard, et al., Cell, 65(7):1127-1141 (1991) and Ohkura and Yanagida, Cell, 64(1):149-157 (1991), all incorporated herein by reference.

15 Thus, due to all the reasons listed above, new members of the leucine rich repeat superfamily are of interest. On a more general level, all novel proteins are of interest. We herein describe the identification and characterization of novel leucine-rich repeat-containing polypeptides, designated herein as PRO1282 polypeptides.

15

20 14. **PRO358**

25 The cloning of the Toll gene of *Drosophila*, a maternal effect gene that plays a central role in the establishment of the embryonic dorsal-ventral pattern, has been reported by Hashimoto et al., Cell 52:269-279 (1988). The *Drosophila* Toll gene encodes an integral membrane protein with an extracytoplasmic domain of 20 803 amino acids and a cytoplasmic domain of 269 amino acids. The extracytoplasmic domain has a potential membrane-spanning segment, and contains multiple copies of a leucine-rich segment, a structural motif found in many transmembrane proteins. The Toll protein controls dorsal-ventral patterning in *Drosophila* embryos and activates the transcription factor Dorsal upon binding to its ligand Spätzle. (Morisato and Anderson, Cell 76:677-688 (1994)). In adult *Drosophila*, the Toll/Dorsal signaling pathway participates in the anti-fungal 30 immune response. (Lenainre et al., Cell 86:973-983 (1996)).

35 A human homologue of the *Drosophila* Toll protein has been described by Medzhitov et al., Nature 388:394-397 (1997). This human Toll, just as *Drosophila* Toll, is a type I transmembrane protein, with an 40 extracellular domain consisting of 21 tandemly repeated leucine-rich motifs (leucine-rich region - LRR), separated by a non-LRR region, and a cytoplasmic domain homologous to the cytoplasmic domain of the 45 human interleukin-1 (IL-1) receptor. A constitutively active mutant of the human Toll transfected into human cell lines was shown to be able to induce the activation of NF- κ B and the expression of NF- κ B-controlled genes for the inflammatory cytokines IL-1, IL-6 and IL-8, as well as the expression of the constitulatory molecule B7.1, which is required for the activation of native T cells. It has been suggested that Toll functions in vertebrates as a non-clonal receptor of the immune system, which can induce signals for activating both an 50 innate and an adaptive immune response in vertebrates. The human Toll gene reported by Medzhitov et al., *supra* was most strongly expressed in spleen and peripheral blood leukocytes (PBL), and the authors suggested that its expression in other tissues may be due to the presence of macrophages and dendritic cells, in which it

5 could act as an early-warning system for infection. The public GenBank database contains the following Toll sequences: Toll1 (DNAX# HSU88540-1, which is identical with the random sequenced full-length cDNA #HUMRSC786-1); Toll2 (DNAX# HSU88878-1); Toll3 (DNAX# HSU88879-1); and Toll4 (DNAX# HSU88880-1, which is identical with the DNA sequence reported by Medzhitov et al., *supra*). A partial Toll sequence (Toll5) is available from GenBank under DNAX# HSU88881-1.

10 Further human homologues of the Drosophila Toll protein, designated as Toll-like receptors (huTLRs1-5) were recently cloned and shown to mirror the topographic structure of the Drosophila counterpart (Rock et al., *Proc. Natl. Acad. Sci. USA* 95:588-593 [1998]). Overexpression of a constitutively active mutant of one human TLR (Toll-protein homologue - Medzhitov et al., *supra*; TLR4 - Rock et al., *supra*) leads to the activation of NF- κ B and induction of the inflammatory cytokines and costimulatory molecules. Medzhitov et al., *supra*.

15 We herein describe the identification and characterization of novel polypeptides having homology to Toll, designated herein as PRO358 polypeptides.

20 15. **PRO1310**

25 Of interest are proteins related to carboxypeptidases. Various carboxypeptidases are described in the literature, i.e., Krause et al., *Immunol. Rev.* 161:119-127 (1998) and Leiter, *J. Endocrinol.* 155(2):211-214 (1997). We herein describe the identification and characterization of novel polypeptides having homology to a carboxypeptidase, designated herein as PRO1310 polypeptides.

30 16. **PRO698**

35 The extracellular mucous matrix of olfactory neuroepithelium is a highly organized structure in intimate contact with chemosensory cilia that house the olfactory transduction machinery. The major protein component of this extracellular matrix is olfactomedin, a glycoprotein that is expressed in olfactory neuroepithelium and which form intermolecular disulfide bonds so as to produce a polymer (Yokoe et al., *Proc. Natl. Acad. Sci. USA* 90:4655-4659 (1993), Bal et al., *Biochemistry* 32:1047-1053 (1993) and Snyder et al., *Biochemistry* 30:9143-9153 (1991)). It has been suggested that olfactomedin may influence the maintenance, growth or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. Given this important role, there is significant interest in identifying and characterizing novel polypeptides having homology to olfactomedin. We herein describe the identification and characterization of novel polypeptides having homology to olfactomedin protein, designated herein as PRO698 polypeptides.

40 17. **PRO732**

45 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides having sequence identity to the Diff33 protein, designated herein as PRO732 polypeptides.

5 **18. PRO1120**

Enzymatic proteins play important roles in the chemical reactions involved in the digestion of foods, the biosynthesis of macromolecules, the controlled release and utilization of chemical energy, and other processes necessary to sustain life. Sulfatases are a family of secreted enzymatic proteins that play a variety of important metabolic roles and thus are the subject of interest in research and industry (see, e.g., Sleat et al., *Biochem J.*, 324(Pt. 1):33-39 (1997)). Deficiencies of certain sulfatases have been implicated in various human disorders including Sanfilippo D syndrome (see, Litjens et al., *Biochem J.*, 327(Pt 1):899-94 (1997); Leipprandt et al. *J. Inherit Metab. Dis.* 18(5):647-648 (1995); and Freeman et al. *Biochem J.* 282(pt2):605-614 (1992)). We herein describe the identification and characterization of novel polypeptides having sequence identity to sulfatase protein, designated herein as PRO1120 polypeptides.

10 **19. PRO537**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO537 polypeptides.

15 **20. PRO536**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO536 polypeptides.

25 **21. PRO535**

Isomerase proteins play many important physiological roles in the mammal. Many different types of isomerase proteins have been identified and characterized including, for example, protein disulfide isomerases and peptidyl-prolyl isomerases. It has been reported that many immunophilin proteins, i.e., proteins that serve as receptors for immunosuppressant drugs, exhibit peptidyl-prolyl isomerase activity in that they function to catalyze the interconversion of the cis and trans isomerase of peptide and protein substrates for immunophilin proteins. As such, there is significant interest in identifying and characterizing novel polypeptides having sequence similarity to peptidyl-prolyl isomerase proteins. We herein describe the identification and characterization of novel polypeptides having homology to a putative peptidyl-prolyl isomerase protein, designated herein as PRO535 polypeptides.

45 **22. PRO718**

Efforts are being undertaken by both industry and academia to identify new, native transmembrane proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel transmembrane proteins. We herein describe the identification and

characterization of novel transmembrane polypeptides, designated herein as PRO718 polypeptides.

5

23. **PRO872**

Enzymatic proteins play important roles in the chemical reactions involved in the digestion of foods, the biosynthesis of macromolecules, the controlled release and utilization of chemical energy, and other processes necessary to sustain life. Dehydrogenases and desaturases are a family of enzymes that play a variety of important metabolic roles and thus are the subject of interest in research and industry (see Hable et al., *Mol. Gen. Genet.* 257(2):167-176 (1998); Schneider, C. et al., *Prot. Expr. Purif.* 10(2):175-179 (1997)). We herein describe the identification and characterization of novel polypeptides having sequence identity to dehydrogenase proteins, designated herein as PRO872 polypeptides.

10

5

24. **PRO1063**

Collagens constitute the most abundant proteins of the extracellular matrix (ECM) in mammalian organisms. Collagen and other macromolecules of the ECM are deposited by resident cells and organized into a three-dimensional meshwork. This ECM environment plays an essential role in guiding cell migration and in cell-to-cell communication during morphogenic processes. The restructuring of the ECM during remodeling occurs as a cooperative multistep process involving a localized degradation of existing macromolecules, rearrangement of the cytoskeleton, cell translocation, and deposition of new ECM components. Involved in this restructuring are enzymes such as collagenases and gelatinases which play important roles in the degradation of the ECM. In light of the obviously important roles played by the collagenase enzymes, there is substantial interest in identifying and characterizing novel polypeptides having homology to these proteins. We herein describe the identification and characterization of novel polypeptides having homology to human type IV collagenase protein, designated herein as PRO1063 polypeptides.

20

15

25

30

25. **PRO619**

Immunoglobulins are antibody molecules, the proteins that function both as receptors for antigen on the B-cell membrane and as the secreted products of the plasma cell. Like all antibody molecules, immunoglobulins perform two major functions: they bind specifically to an antigen and they participate in a limited number of biological effector functions. Therefore, new members of the Ig superfamily are always of interest.

40

35

Of particular interest are novel gene products associated with mu chains in immature B cells. Shirasawa, et al., *EMBO J.*, 12(5):1827-1834 (1993); Dul, et al., *Eur. J. Immunol.*, 26(4):906-913 (1996). Moreover, the molecular components and assembly of mu surrogate light chain complexes in pre-B cell lines are of interest. Ohnishi and Takemori, *J. Biol. Chem.*, 269(45):28347-28353 (1994); Bauer, et al., *Curr. Top. Microbiol.*, 137:130-135 (1988). Novel nucleic acids and peptides related to VpreB1, VpreB2 and VpreB3 by sequence identity are of particular interest. The assembly and manipulation of immunoglobulins can effect the entire industry related to antibodies and vaccines.

50

We herein describe the identification and characterization of novel polypeptides having homology to

55

5 VpreB proteins, designated herein as PRO619 polypeptides.

26. **PRO943**

Fibroblast growth factor (FGF) proteins exhibit a variety of activities and act by binding to cell surface fibroblast growth factor receptors. Many different fibroblast growth factor receptors have been identified and characterized, including the fibroblast growth factor receptor-4, which has been shown to be a high affinity receptor for both acidic and basic FGF (Ron et al., *J. Biol. Chem.* 268:5388-5394 (1993) and Stark et al., *Development* 113:641-651 (1991)). Given the obvious importance of the FGF family of proteins and the cell surface receptors to which they bind, there is significant interest in identifying novel polypeptides having homology to the FGF receptor family. We herein describe the identification and characterization of novel polypeptides having homology to the fibroblast growth factor receptor-4 protein, designated herein as PRO943 polypeptides.

20 27. **PRO1188**

The identification of nucleotide pyrophosphohydrolases has been of interest because of the potential roles these secreted molecules play in calcium pyrophosphate dihydrate (CPPD) deposition disease, arthritis, and other joint diseases (see Masuda et al. *J. Rheumatol.* (1997) 24(8):1588-1594; and Terkeltaub et al., *Arthritis Rheum.* (1998) 37(6):934-941). We herein describe the identification and characterization of novel polypeptides having homology to nucleotide pyrophosphohydrolases, designated herein as PRO1188 polypeptides.

20 28. **PRO1133**

Netrins are molecules that guide growing axons and that are strikingly similar in sequence and in function in flies, nematodes and vertebrates. Additionally, netrin receptors have been identified in all three animal groups and shown to have crucial, conserved roles in axon navigation. Netrins and their receptors are further described in the literature, i.e., Varela-Echavarria and Guthrie, *Genes Dev.*, 11(5):545-557 (1997); Guthrie, *Curr. Biol.*, 7(1):R6-R9 (1997); and Keynes and Cook, *Neuron*, 17(6):1031-1034 (1996). Due to their relation to neurons, netrins and their related proteins are of interest. Of particular interest are molecules having sequence identity or similarity with netrin. We herein describe the identification and characterization of novel polypeptides having homology to netrins, designated herein as PRO1133 polypeptides.

30 29. **PRO784**

45 Of interest are membrane-bound and receptor proteins involved in intracellular signaling, metabolism, transport, and other pathways. For example, membrane-bound proteins of the endoplasmic reticulum and golgi apparatus play important roles in the transport of proteins. The sec22 protein is an endoplasmic reticulum membrane-bound protein involved in fundamental membrane trafficking reactions where secretory products are routed from their site of synthesis to their final destination. The roles of sec22 in transport pathways have 50 been reported by numerous investigators (see Tang et al., *Biochem Biophys Res Commun* 243(3):885-891

5 (1998); Hay et al., *J. Biol. Chem.* 271(10):5671-5679 (1996); and Newman et al., *Mol. Cell. Biol.* 10(7):3405-3414 (1990)). We herein describe the identification and characterization of novel polypeptides having homology to sec22, designated herein as PRO784 polypeptides.

10 30. **PRO783**

15 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO783 polypeptides.

10 31. **PRO820**

20 Immunoglobulin molecules play roles in many important mammalian physiological processes. The structure of immunoglobulin molecules has been extensively studied and it has been well documented that intact immunoglobulins possess distinct domains, one of which is the constant domain or F_c region of the immunoglobulin molecule. The F_c domain of an immunoglobulin, while not being directly involved in antigen 15 recognition and binding, does mediate the ability of the immunoglobulin molecule, either uncomplexed or complexed with its respective antigen, to bind to F_c receptors either circulating in the serum or on the surface of cells. The ability of an F_c domain of an immunoglobulin to bind to an F_c receptor molecule results in a variety of important activities, including for example, in mounting an immune response against unwanted foreign particles. Thus, molecules related to F_c receptors are of interest. F_c receptors are further described 25 in Tominaga et al., *Biochem. Biophys. Res. Commun.*, 168(2):683-689 (1990); Zhang et al., *Immuno.*, 39(6):423-427 (1994). We herein describe the identification and characterization of novel polypeptides having 30 homology to F_c receptor, designated herein as PRO820 polypeptides.

35 32. **PRO1080**

40 The folding of proteins and the assembly of protein complexes within subcompartments of the eukaryotic cell is catalysed by different members of the Hsp70 protein family. The chaperone function of Hsp70 proteins in these events is regulated by members of the DnaJ-like protein family, which occurs through direct interaction of different Hsp70 and DnaJ-like protein pairs that appear to be specifically adapted to each other. The diversity of functions of DnaJ-like proteins using specific examples of DnaJ-Hsp70 interactions 45 with polypeptides in yeast protein-biogenesis pathways is further described in Cyr et al., *Trends Biochem. Sci.*, 19(4):176-181 (1994). DnaJ proteins and their involvement in the binding of secretory precursor polypeptides to a translocon subcomplex and polypeptide translocation machinery in the yeast endoplasmic reticulum are further described in Lyman and Schekman, *Cell* 88(1):85-96 (1997) and Lyman and Schekman, *Experientia* 52(12):1042-1049 (1996), respectively. Thus, DnaJ proteins are of interest, as are proteins related to DnaJ 50 proteins, particularly those having sequence identity with DnaJ proteins. We herein describe the identification and characterization of novel polypeptides having homology to DnaJ proteins, designated herein as PRO1080 polypeptides.

5 **33. PRO1079**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1079 polypeptides.

10 **34. PRO793**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO793 polypeptides.

15 **35. PRO1016**

Enzymatic proteins play important roles in the chemical reactions involved in the digestion of foods, the biosynthesis of macromolecules, the controlled release and utilization of chemical energy, and other processes necessary to sustain life. Acyltransferases are enzymes which acylate moieties. Acyl-glycerol-phosphate acyltransferases can act on lysophosphatidic acid as a substrate. The lysophosphatidic acid is converted to phosphatidic acid and thus plays a role in forming phosphatidylethanolamine found in membranes. See, Brown, et al., *Plant Mol. Biol.*, 26(1):211-223 (1994). Thus, acyltransferases play an important role in the biosynthesis of molecules requiring acylation. We herein describe the identification and characterization of novel polypeptides having homology to acyltransferase proteins, designated herein as PRO1016 polypeptides.

20 **36. PRO1013**

Efforts are being undertaken by both industry and academia to identify new, native proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel proteins. We herein describe the identification and characterization of novel polypeptides, designated herein as PRO1013 polypeptides.

25 **37. PRO937**

The glycan family of heparan sulfate proteoglycans are major cell-surface proteoglycans of the developing nervous system. It is believed that members of the glycan family play a role in regulating cell cycle progression during the transition of proliferating neuronal progenitor cells to differentiated neurons. Lander et al. *Perspect Dev. Neurobiol* 3(4):347-358 (1996). It is likely that proteoglycans of the glycan family play other important roles in neural development (Lander et al., *supra*), and as well as other tissues, as glycan family members have also been found in the developing kidney (Watanabe et al. *J. Cell Biol.* 130(5):1207-1218 (1995)). Accordingly, the identification of new members of the glycan family of proteins is of interest in research and in industry.

5 Described herein is the identification and characterization of novel polypeptides having sequence identity with glypcan family proteins, designated herein as PRO937 polypeptides.

10 38. **PRO842**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins.

15 5 Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO842 polypeptides.

20 15 39. **PRO839**

10 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO839 polypeptides.

25 15 40. **PRO1180**

Methyltransferase enzymes catalyze the transfer of methyl groups from a donor molecule to an acceptor molecule. Methyltransferase enzymes play extremely important roles in a number of different biological processes including, for example, in the electron transport chain in the plasma membrane in prokaryotes and in the inner mitochondrial membrane in eukaryotic cells (see, e.g., Barkovich et al., *J. Biol. Chem.* 272:9182-9188 (1997), Dibrov et al., *J. Biol. Chem.* 272:9175-9181 (1997), Lee et al., *J. Bacteriol.* 179:1748-1754 (1997) and Marbois et al., *Arch. Biochem. Biophys.* 313:83-88 (1994)). Methyltransferase enzymes have been shown to be essential for the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), both of which are essential isoprenoid quinone components of the respiratory electron transport chain. Given the obvious importance of the methyltransferase enzymes, there is substantial interest in identifying novel polypeptide homologs of the methyltransferases. We herein describe the identification and characterization of a novel polypeptide having homology to methyltransferase enzymes, designated herein as PRO1180 polypeptides..

30 40 41. **PRO1134**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1134 polypeptides.

35 45 42. **PRO830**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the

5 coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO830 polypeptides.

10 43. **PRO1115**

10 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1115 polypeptides.

15 44. **PRO1277**

10 Efforts are being undertaken by both industry and academia to identify new, native proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor and other proteins. Of interest is the identification of proteins that may play roles in various 20 human disorders and dysfunction. For example, the identification of proteins of the ear and the functions they play in hearing may lead to an understanding of the causes of hearing loss and deafness. Coch-B2 is one such 15 protein that has been found to be specifically expressed in the inner ear (cochlea). It has been characterized and studied for its possible role in hearing loss (Robertson et al. *Genomics* (1994) 23(1):52-50; Robertson et al. *Genomics* (1997) 46(3):345-354). We herein describe the identification and characterization of novel 25 polypeptides having sequence identity to Coch-B2, designated herein as PRO1277 polypeptides.

20 45. **PRO1135**

30 Glycosylation is an important mechanism for modulating the physiochemical and biological properties of proteins in a stage- and tissue-specific manner. One of the important enzymes involved in glycosylation in *Saccharomyces cerevisiae* is alpha 1,2-mannosidase, an enzyme that catalyzes the conversion of Man9GlcNAc2 to Man8GlcNAc2 during the formation of N-linked oligosaccharides. The *Saccharomyces cerevisiae* alpha 1,2- 35 mannosidase enzyme of is a member of the Class I alpha 1,2-mannosidases that are conserved from yeast to mammals. Given the important roles played by the alpha 1,2-mannosidases in glycosylation and the physiochemical activity regulated by glycosylation, there is significant interest in identifying novel polypeptides 40 having homology to one or more mannosidases. We herein describe the identification and characterization of novel polypeptides having homology to alpha 1,2-mannosidase protein, designated herein as PRO1135 30 polypeptides.

45 46. **PRO1114**

45 Interferons (IFNs) encompass a large family of secreted proteins occurring in vertebrates. Although 50 they were originally named for their antiviral activity, growing evidence supports a critical role for IFNs in cell growth and differentiation (Jaramillo et al., *Cancer Investigation* 13(3):327-338 (1995)). IFNs belong to a class of negative growth factors having the ability to inhibit the growth of a wide variety of cells with both normal and transformed phenotypes. IFN therapy has been shown to be beneficial in the treatment of human

5 malignancies such as Karposi's sarcoma, chronic myelogenous leukemia, non-Hodgkin's lymphoma, and hairy
cell leukemia as well as in the treatment of infectious diseases such as hepatitis B (Gamlie et al., Scanning
Microscopy 2(1):485-492 (1988), Einhorn et al., Med. Oncol. & Tumor Pharmacother. 10:25-29 (1993),
Ringenberg et al., Missouri Medicine 85(1):21-26 (1988), Saracco et al., Journal of Gastroenterology and
Hepatology 10:668-673 (1995), Gonzalez-Mateos et al., Hepato-Gastroenterology 42:893-899 (1995) and
10 Malaguarnera et al., Pharmacotherapy 17(5):998-1005 (1997)).

10 Interferons can be classified into two major groups based upon their primary sequence. Type I
interferons, IFN- α and IFN- β , are encoded by a superfamily of intronless genes consisting of the IFN- α gene
15 family and a single IFN- β gene that are thought to have arisen from a common ancestral gene. Type I
interferons may be produced by most cell types. Type II IFN, or IFN- γ , is restricted to lymphocytes (T cells
10 and natural killer cells) and is stimulated by nonspecific T cell activators or specific antigens *in vivo*.

20 Although both type I and type II IFNs produce similar antiviral and antiproliferative effects, they act
on distinct cell surface receptors, wherein the binding is generally species specific (Langer et al., Immunol.
Today 9:393-400 (1988)). Both IFN- α and IFN- β bind competitively to the same high affinity type I receptor,
25 whereas IFN- γ binds to a distinct type II receptor. The presence and number of IFN receptors on the surface
of a cell does not generally reflect the sensitivity of the cell to IFN, although it is clear that the effects of the
IFN protein is mediated through binding to a cell surface interferon receptor. As such, the identification and
characterization of novel interferon receptor proteins is of extreme interest.

30 We herein describe the identification and characterization of novel interferon receptor polypeptides,
designated herein as "PRO1114 interferon receptor" polypeptides. Thus, the PRO1114 polypeptides of the
present invention represents a novel cell surface interferon receptor.

47. **PRO828**

35 Glutathione peroxidases are of interest because they play important roles in protection against risk of
coronary disease, atherosclerosis, platelet hyperaggregation and synthesis of proaggregant and proinflammatory
25 compounds. Glutathione peroxidases are involved in the reduction of hydrogen peroxides and lipid peroxides,
which in turn regulate the activities of cyclooxygenase and lipoxygenase pathways. This ultimately influences
the production of eicosanoids and modulates the balance between a proaggregatory and antiaggregatory state
40 of platelets. These and other activities and functions of glutathione peroxidases are discussed in greater detail
by Ursini et al., Biomed. Environ. Sci 10(2-3): 327-332 (1997); Vitoux et al., Ann. Biol. Clin (Paris) 54(5):
45 181-187 (1996); and Mirault et al., Ann N.Y. Acad. Sci 738: 104-115 (1994).

45 We herein describe the identification and characterization of novel polypeptides having sequence
identity with glutathione peroxidases, designated herein as PRO828 polypeptides.

48. **PRO1009**

50 Long chain acyl-CoA synthetase converts free fatty acids to acyl-CoA esters. This synthetase has been
reported to have interesting characteristics. Specifically, it has been reported that two boys having Alport
syndrome, elliptocytosis and mental retardation carried a large deletion where long chain acyl-CoA synthetase

5 4 would have been located. Thus, the absence of this enzyme is believed to play a role in the development of
mental retardation or other signs associated with Alport syndrome in the family. Piccini, et al., Genomics,
10 47(3):350-358 (1998). Moreover, it has been reported that an inhibitor of acyl coenzyme A synthetase, triacsin
C, inhibits superoxide anion generation and degranulation by human neutrophils. Thus, it is suggested that
15 there is a role for acyl-CoA esters in regulating activation of O₂ generation and degranulation at the G protein
or subsequent step(s). Korchak, et al., J. Biol. Chem., 269(48):30281-30287 (1994). Long chain acyl-CoA
synthetase is also briefly discussed in a report which describes very long chain acyl-CoA synthetase.
Uchiyama, et al., J. Biol. Chem., 271(48):30360 (1994). Thus, long chain acyl-CoA synthetase and particular
novel polypeptides having sequence identity therewith are of interest.

15 We herein describe the identification and characterization of novel polypeptides having sequence
identity with long chain acyl-CoA synthetase, designated herein as PRO1009 polypeptides.

20 49. **PRO1007**

25 Glycosylphosphatidylinositol (GPI) anchored proteoglycans are generally localized to the cell surface
and are thus known to be involved in the regulation of responses of cells to numerous growth factors, cell
adhesion molecules and extracellular matrix components. The metastasis-associated GPI-anchored protein
(MAGPIAP) is one of these cell surface proteins which appears to be involved in metastasis. Metastasis is the
form of cancer wherein the transformed or malignant cells are traveling and spreading the cancer from one site
to another. Therefore, identifying the polypeptides related to metastasis and MAGPIAP is of interest.

30 We herein describe the identification and characterization of novel polypeptides having sequence
identity with MAGPIAP, designated herein as PRO1007 polypeptides.

35 50. **PRO1056**

40 Mammalian cell membranes perform very important functions relating to the structural integrity and
activity of various cells and tissues. Of particular interest in membrane physiology is the study of trans-
membrane ion channels which act to directly control a variety of physiological, pharmacological and cellular
processes. Numerous ion channels have been identified including calcium (Ca), sodium (Na), chloride (Cl)
45 and potassium (K) channels, each of which have been analyzed in detail to determine their roles in
physiological processes in vertebrate and insect cells. These roles include such things as maintaining cellular
homeostasis, intracellular signaling, and the like. Given the obvious importance of the ion channels, there is
50 significant interest in identifying and characterizing novel polypeptides having homology to one or more ion
channels. We herein describe the identification and characterization of novel polypeptides having homology
to a chloride channel protein, designated herein as PRO1056 polypeptides..

45 51. **PRO826**

55 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins.
Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the
coding sequences for novel secreted proteins. We herein describe the identification and characterization of

5 novel secreted polypeptides, designated herein as PRO826 polypeptides.

10 52. **PRO819**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO819 polypeptides.

15 53. **PRO1006**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1006 polypeptides.

20 54. **PRO1112**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1112 polypeptides.

25 55. **PRO1074**

Many membrane-bound enzymatic proteins play important roles in the chemical reactions involved in metabolism, including the biosynthesis of macromolecules, the controlled release and utilization of chemical energy, development of tissues, and other processes necessary to sustain life. Galactosyltransferases are a family of enzymes that play a variety of important metabolic roles and thus are the subject of interest in research and industry. Numerous references have been published on the identification of galactosyltransferases and the roles they play in cellular development, maintenance, and dysfunction.

We herein describe the identification and characterization of novel polypeptides having homology to galactosyltransferases, designated herein as PRO1074 polypeptides.

30 56. **PRO1005**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1005 polypeptides.

35 57. **PRO1073**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins.

5 Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1073 polypeptides.

10 58. **PRO1152**

15 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1152 polypeptides.

10 59. **PRO1136**

20 PDZ domain-containing proteins assist formation of cell-cell junctions and localization of membrane protein receptors and ion channels (Daniels et al., *Nat. Struct. Biol.* 5:317-325 (1998) and Ullmer et al., *FEBS Lett.* 424:63-68 (1998)). PDZ domains interact with the C-terminal residues of a particular target membrane protein. Based on their binding specificities and sequence homologies, PDZ domains fall into two classes, 25 class I and class II. In light of the obvious importance of the PDZ domain-containing proteins, there is significant interest in identifying novel polypeptides that have homology to those proteins. We herein describe the identification and characterization of novel polypeptides having homology to PDZ domain-containing proteins, designated herein as PRO1136 polypeptides.

20 60. **PRO813**

30 Surfactant proteins play extremely important biological roles in the mammalian pulmonary system. One mammalian protein that has been studied and well characterized is pulmonary surfactant-associated protein C. For example, Qanbar et al., *Am. J. Physiol.* 271:L572-L580 (1996) studied the effect of palmitoylation of pulmonary surfactant-associated protein C on the surface activity of phospholipid mixtures. Specifically, 35 the authors demonstrated that palmitoylation of pulmonary surfactant-associated protein C greatly enhanced lipid respreading and film stability and, therefore, was extremely important for surfactant function. Given the obvious important roles played by surfactant protein in the mammalian organism, there is significant interest in identifying novel polypeptides having homology to one or more surfactant enzymes. We herein describe the identification and characterization of novel polypeptides having homology to pulmonary surfactant- 40 associated protein, designated herein as PRO813 polypeptides.

45 61. **PRO809**

45 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the 50 coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO809 polypeptides.

5 **62. PRO791**

Of particular interest are novel proteins which have sequence identity with known proteins. For example, novel proteins having some sequence identity with the major histocompatibility complex (MHC) are of interest. The MHC complex is a region of multiple loci that play major roles in determining whether transplanted tissue will be accepted as self (histocompatible) or rejected as foreign (histoincompatible). Moreover, the MHC plays a central role in the development of both humoral and cell-mediated immune responses. There are class I, II and III MHC antigens, all known in the art. Class I antigens are glycoproteins expressed on the surface of nearly all nucleated cells, where they present peptide antigens of altered self-cells necessary for the activation of Tc cells. The assembly of MHC class I antigens is further described in Kvist and Levy, *Semin. Immunol.*, 5(2):105-116 (1993) and Maffei, et al., *Hum. Immunol.*, 54(2):91-103 (1997).

10 We herein describe the identification and characterization of novel polypeptides having sequence identity to various MHC-I antigens, designated herein as PRO791 polypeptides.

20 **63. PRO1004**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1004 polypeptides.

25 **64. PRO1111**

Protein-protein interactions include receptor and antigen complexes and signaling mechanisms. As more is known about the structural and functional mechanisms underlying protein-protein interactions, protein-protein interactions can be more easily manipulated to regulate the particular result of the protein-protein interaction. Thus, the underlying mechanisms of protein-protein interactions are of interest to the scientific and medical community.

30 All proteins containing leucine-rich repeats are thought to be involved in protein-protein interactions. Leucine-rich repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. The crystal structure of ribonuclease inhibitor protein has revealed that leucine-rich repeats correspond to beta-alpha structural units. These units are arranged so that they form a parallel beta-sheet with one surface exposed to solvent, so that the protein acquires an unusual, nonglobular shape. These two features 35 have been indicated as responsible for the protein-binding functions of proteins containing leucine-rich repeats. See, Kobe and Deisenhofer, *Trends Biochem. Sci.*, 19(10):415-421 (Oct. 1994).

40 A study has been reported on leucine-rich proteoglycans which serve as tissue organizers, orienting and ordering collagen fibrils during ontogeny and are involved in pathological processes such as wound healing, tissue repair, and tumor stroma formation. Iozzo, R. V., *Crit. Rev. Biochem. Mol. Biol.*, 32(2):141-45 174 (1997). Others studies implicating leucine rich proteins in wound healing and tissue repair are De La Salle, C., et al., *Vouv. Rev. Fr. Hematol.* (Germany), 37(4):215-222 (1995), reporting mutations in the 50 leucine rich motif in a complex associated with the bleeding disorder Bernard-Soulier syndrome, Chlemetson,

5 K. J., Thromb. Haemost. (Germany), 74(1):111-116 (July 1995), reporting that platelets have leucine rich repeats and Ruoslahti, E. I., et al., WO9110727-A by La Jolla Cancer Research Foundation reporting that decorin binding to transforming growth factor β has involvement in a treatment for cancer, wound healing and scarring. Related by function to this group of proteins is the insulin like growth factor (IGF), in that it is useful in wound-healing and associated therapies concerned with re-growth of tissue, such as connective tissue, skin and bone; in promoting body growth in humans and animals; and in stimulating other growth-related processes. The acid labile subunit of IGF (ALS) is also of interest in that it increases the half-life of IGF and is part of the IGF complex in vivo.

10 Another protein which has been reported to have leucine-rich repeats is the SLIT protein which has been reported to be useful in treating neuro-degenerative diseases such as Alzheimer's disease, nerve damage such as in Parkinson's disease, and for diagnosis of cancer, see, Artavanis-Tsakonas, S. and Rothberg, J. M., WO9210518-A1 by Yale University. Of particular interest is LIG-1, a membrane glycoprotein that is expressed specifically in glial cells in the mouse brain, and has leucine rich repeats and immunoglobulin-like domains. Suzuki, et al., J. Biol. Chem. (U.S.), 271(37):22522 (1996). Other studies reporting on the biological functions of proteins having leucine rich repeats include: Tayar, N., et al., Mol. Cell Endocrinol., 15 (Ireland), 125(1-2):65-70 (Dec. 1996) (gonadotropin receptor involvement); Miura, Y., et al., Nippon Rinsho (Japan), 54(7):1784-1789 (July 1996) (apoptosis involvement); Harris, P. C., et al., J. Am. Soc. Nephrol., 6(4):1125-1133 (Oct. 1995) (kidney disease involvement).

15 We herein describe the identification and characterization of novel polypeptides having homology to LIG, designated herein as PRO1111 polypeptides.

20 65. **PRO1344**
Factor C is a protein that is intimately involved with the coagulation cascade in a variety of organisms. The coagulation cascade has been shown to involve numerous different intermediate proteins, including factor C, all of whose activity is essential to the proper functioning of this cascade. Abnormal coagulation cascade function can result in a variety of serious abnormalities and, as such, the activities of the coagulation cascade proteins is of particular interest. As such, efforts are currently being undertaken to identify novel polypeptides having homology to one or more of the coagulation cascade proteins.

25 40 We herein describe the identification and characterization of novel polypeptides having homology to factor C protein, designated herein as PRO1344 polypeptides.

30 66. **PRO1109**
45 Carbohydrate chains on glycoproteins are important not only for protein conformation, transport and stability, but also for cell-cell and cell-matrix interactions. β -1,4-galactosyltransferase is an enzyme that is involved in producing carbohydrate chains on proteins, wherein the β -1,4-galactosyltransferase enzyme acts 35 to transfer galactose to the terminal N-acetylglucosamine of complex-type N-glycans in the Golgi apparatus (Asano et al., EMBO J., 16:1850-1857 (1997)). In addition, it has been suggested that β -1,4-galactosyltransferase is involved directly in cell-cell interactions during fertilization and early embryogenesis

5 through a subpopulation of this enzyme distributed on the cell surface. Specifically, Lu et al., Development 124:4121-4131 (1997) and Larson et al., Biol. Reprod. 57:442-453 (1997) have demonstrated that β -1,4-galactosyltransferase is expressed on the surface of sperm from a variety of mammalian species, thereby suggesting an important role in fertilization. In light of the above, novel polypeptides having sequence identity to β -1,4-galactosyltransferase are of interest.

10 5 We herein describe the identification and characterization of novel polypeptides having homology to β -1,4-galactosyltransferase, designated herein as PRO1109 polypeptides.

15 67. **PRO1383**

10 The nmb gene is a novel gene that encodes a putative transmembrane glycoprotein which is differentially expressed in metastatic human melanoma cell lines and which shows substantial homology to the precursor of pMEL17, a melanocyte-specific protein (Wetterman et al., Int. J. Cancer 60:73-81 (1995)). Given the interest in identifying tumor-specific cell-surface polypeptide markers, there is substantial interest in novel 20 polypeptides having homology to nmb. We herein describe the identification and characterization of novel polypeptides having homology to the nmb protein, designated herein as PRO1383 polypeptides.

15

25 68. **PRO1003**

20 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of 30 novel secreted polypeptides, designated herein as PRO1003 polypeptides.

35 69. **PRO1108**

25 Lysophosphatidic acid acyltransferase (LPAAT) is an enzyme that in lipid metabolism converts lysophosphatidic acid (LPA) into phosphatidic acid (PA). LPA is a phospholipid that acts as an intermediate in membrane phospholipid metabolism. Various LPAAT enzymes have been identified in a variety of species (see, e.g., Aguado et al., J. Biol. Chem. 273:4096-4105 (1998), Stamps et al., Biochem. J. 326:455-461 (1997), Eberhart et al., J. Biol. Chem. 272:20299-20305 (1997) and West et al., DNA Cell Biol. 16:691-701 (1997)). Given the obvious importance of LPAAT in a variety of different applications including cell 40 membrane maintenance, there is substantial interest in identifying and characterizing novel polypeptides having homology to LPAAT. We herein describe the identification and characterization of novel polypeptides having 30 homology to LPAAT protein, designated herein as PRO1108 polypeptides.

45 70. **PRO1137**

35 A particular class of secreted polypeptides that are of interest in research and industry are 50 ribosyltransferases. Braren et al. described the use of EST databases for the identification and cloning of novel ribosyltransferase gene family members (Adv. Exp. Med. Biol. 419:163-168 (1997)). Ribosyltransferases have been identified playing roles in a variety of metabolic functions including posttranslational modification of

5 proteins (Saxty et al., *J. Leukoc. Biol.*, 63(1):15-21 (1998)), and mediation of the assembly of filamentous actin and chemotaxis in polymorphonuclear neutrophil leukocytes (Kefalas et al. *Adv. Exp. Med. Biol.* 419:241-244 (1997)).

10 Described herein is the identification and characterization of novel polypeptides having homology to ribosyltransferase, designated herein as PRO1137 polypeptides.

15 5 **71. PRO1138**

Efforts are being undertaken by both industry and academia to identify new, native receptor proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor proteins. Of particular interest is the identification of membrane-bound proteins found in cells of the hematopoietic system, as they often play important roles in fighting infection, repair of injured tissues, and other activities of cells of the hematopoietic system. For instance, CD84 leukocyte antigen has recently been identified as a new member of the Ig superfamily (de la Fuente et al., *Blood*, 90(6):2398-2405 (1997)).

20 Described herein is the identification and characterization of a novel polypeptide having homology to CD84 leukocyte antigen, designated herein as PRO1138 polypeptides.

25 72. **PRO1054**

The proteins of the major urinary protein complex (MUP), proteins which are members of the lipocalin family, function to bind to volatile pheromones and interact with the vomeronasal neuroepithelium of the olfactory system. As such, proteins in the MUP family are intimately involved in the process of attraction between mammals of different sexes. Many different MUP family members have been identified and characterized and shown to possess varying degrees of amino acid sequence homology (see, e.g., Mucignat et al., *Chem. Senses* 23:67-70 (1998), Ferrari et al., *FEBS Lett.* 401:73-77 (1997) and Bishop et al., *EMBO J.* 1:615-620 (1982)). Given the physiological and biological importance of the MUP family of proteins, there is significant interest in identifying and characterizing novel members of this family. We herein describe the identification and characterization of novel polypeptides having homology to MUP family of proteins, designated herein as PRO1054 polypeptides.

40 73. **PRO994**

30 The L6 cell surface antigen, which is highly expressed on lung, breast, colon, and ovarian carcinomas, has attracted attention as a potential therapeutic target for murine monoclonal antibodies and their humanized counterparts (Marken et al., *Proc. Natl. Acad. Sci. USA* 89:3503-3507 (1992)). The cDNA encoding this tumor-associated cell surface antigen has been expressed in COS cells and shown to encode a 202 amino acid polypeptide having three transmembrane domains. The L6 antigen has been shown to be related to a number of cell surface proteins that have been implicated in the regulation of cell growth, including for example CD63 and CO-029, proteins which are also highly expressed on tumor cells. As such, there is significant interest in identifying novel polypeptides having homology to the L6 tumor cell antigen as potential targets for cancer

5 therapy. We herein describe the identification and characterization of novel polypeptides having homology to the L6 cell surface tumor cell-associated antigen, designated herein as PRO994 polypeptides.

10 74. PRO812

10 Steroid binding proteins play important roles in numerous physiological processes associated with steroid function. Specifically, one steroid binding protein-associated polypeptide that has been well characterized is component 1 of the prostatic binding protein. Component 1 of the prostatic binding protein has been shown to be specific for subunit F of the prostatic binding protein, the major secretory glycoprotein of the rat ventral prostate (Peeters et al., *Eur. J. Biochem.*, 123:55-62 (1982) and Liao et al., *J. Biol. Chem.* 257:122-125 (1982)). The amino acid sequence of component 1 of the prostatic binding protein has been determined, wherein the sequence is highly rich in glutamic acid residues and is overall highly acidic. This protein plays an important role in the response of the prostate gland to steroid hormones. We herein describe the identification and characterization of novel polypeptides having homology to prostatic steroid-binding protein c1, designated herein as PRO812 polypeptides.

20 15. PRO1069

25 Of particular interest is the identification of new membrane-bound proteins involved in ion conductance such as channel inhibitory factor (CHIF) and MAT-8, which have recently been reported (see Wald et al., *Am. J. Physiol.*, 272(5 pt 2): F617-F623 (1997); Capurro et al., *Am. J. Physiol.*, 271(3 pt 1): C753-C762 (1996); Wald et al., *Am. J. Physiol.*, 271(2 pt 2): F322-F329 (1996); and Morrison et al., *J. Biol. Chem.* 270(5):2176-2182 (1995)).

30 Described herein is the identification and characterization of novel polypeptides having homology to CHIF and MAT-8 polypeptides, designated herein as PRO1069 polypeptides.

35 76. PRO1129

35 Cytochromes P-450 are a superfamily of hemoproteins which represent the main pathway for drug and chemical oxidation (Horsmans, *Acta Gastroenterol. Belg.*, 60:2-10 (1997)). This superfamily is divided into families, subfamilies and/or single enzymes. Recent reports have provided a great deal of information concerning the cytochrome P-450 isozymes and increased awareness of life threatening interactions with such commonly prescribed drugs as cisapride and some antihistamines (Michalets, *Pharmacotherapy* 18:84-112 (1998) and Singer et al., *J. Am. Acad. Dermatol.*, 37:765-771 (1997)). Given this information, there is significant interest in identifying novel members of the cytochrome P-450 family of proteins. We herein describe the identification and characterization of novel polypeptides having homology to cytochrome P-450 proteins, designated herein as PRO1129 polypeptides.

45 35. PRO1068

50 Urotensins are neurosecretory proteins that are of interest because of their potential roles in a variety of physiological processes including smooth muscle contraction (Yano et al. *Gen. Comp. Endocrinol.*, 96(3):

5 412-413 (1994)), regulation of arterial blood pressure and heart rate (Le Mevel et al. *Am. J. Physiol.* 271(5 Pt 2): R1335-R1343 (1996)), and corticosteroid secretion (Feuilloley et al. *J. Steroid Biochem Mol. Biol.* 48(2-3): 287-292 (1994)).

10 We herein describe the identification and characterization of novel polypeptides having homology to urotensin, designated herein as PRO1068 polypeptides.

15 5 78. **PRO1066**

10 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1066 polypeptides.

20 79. **PRO1184**

15 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1184 polypeptides.

25 80. **PRO1360**

20 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1360 polypeptides.

30 81. **PRO1029**

35 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1029 polypeptides.

40 30 82. **PRO1139**

45 Obesity is the most common nutritional disorder which, according to recent epidemiologic studies, affects about one third of all Americans 20 years of age or older. Kuczmarski et al., *J. Am. Med. Assoc.* 272, 205-11 (1994). Obesity is responsible for a variety of serious health problems, including cardiovascular disorders, type II diabetes, insulin-resistance, hypertension, hypertriglyceridemia, dyslipoproteinemia, and 50 some forms of cancer. Pi-Sunyer, F.X., *Anns. Int. Med.* 119, 655-60 (1993); Colitz, G.A., *Am. J. Clin. Nutr.* 55, 503S-507S (1992). A single-gene mutation (the obesity or "ob" mutation) has been shown to result in obesity and type II diabetes in mice. Friedman, *Genomics* 11, 1054-1062 (1991). Zhang et al., *Nature*

372, 425-431 (1994) have recently reported the cloning and sequencing of the mouse *ob* gene and its human homologue, and suggested that the *ob* gene product may function as part of a signaling pathway from adipose tissue that acts to regulate the size of the body fat depot. Parabiosis experiments performed more than 20 years ago predicted that the genetically obese mouse containing two mutant copies of the *ob* gene (*ob*/*ob* mouse) does not produce a satiety factor which regulates its food intake, while the diabetic (*db*/*db*) mouse produces but does not respond to a satiety factor. Coleman and Hummal, Am. J. Physiol. 217, 1298-1304 (1969); Coleman, Diabetol. 9, 294-98 (1973). OB proteins are disclosed, for example, in U.S. patent Nos. 5,532,336; 5,552,522; 5,552,523; 5,552,514; 5,554,727. Recent reports by three independent research teams have demonstrated that daily injections of recombinant OB protein inhibit food intake and reduce body weight and fat in grossly obese *ob*/*ob* mice but not in *db*/*db* mice (Pelleymounter et al., Science 269, 540-43 [1995]; Halaas et al., Science 269, 543-46 [1995]; Campfield et al., Science 269, 546-49 [1995]), suggesting that the *ob* protein is such a satiety factor as proposed in early cross-circulation studies.

A receptor of the OB protein (OB-R) is disclosed in Tartaglia et al., Cell 83, 1263-71 (1995). The OB-R is a single membrane-spanning receptor homologous to members of the class I cytokine receptor family (Tartaglia et al., *supra*; Bazan, Proc. Natl. Acad. Sci. USA 87, 6934-6938 [1990]). Two 5'-untranslated regions and several 3'-alternative splice variants encoding OB-R with cytoplasmic domains of different lengths have been described in mouse, rat and human (Chen et al., Cell 84, 491-495 [1996]; Chua et al., Science 271, 994-996 [1996]; Tartaglia et al., *supra*; Wang et al., FEBS Lett. 392:87-90 [1996]; Phillips et al., Nature Genet. 13, 18-19 [1996]; Cioffi et al., Nature Med., 2 585-589 [1996]). A human hematopoietin receptor, which might be a receptor of the OB protein, is described in PCT application Publication No. WO 96/08510, published 21 March 1996.

Bailleul et al., *Nucl. Acids Res.* 25, 2752-2758 (1997) identified a human mRNA splice variant of the OB-R gene that potentially encodes a novel protein, designated as leptin receptor gene-related protein (OB-RGRP). This protein displays no sequence similarity to the leptin receptor itself. The authors found that the OB-RGRP gene shares its promoter and two exons with the OB-R gene, and suggested that there is a requirement for a coordinate expression of OB-R and OB-RGRP to elicit the full physiological response to leptin *in vivo*.

83. PRO1309

Protein-protein interactions include receptor and antigen complexes and signaling mechanisms. As more is known about the structural and functional mechanisms underlying protein-protein interactions, protein-protein interactions can be more easily manipulated to regulate the particular result of the protein-protein interaction. Thus, the underlying mechanisms of protein-protein interactions are of interest to the scientific and medical community.

All proteins containing leucine-rich repeats are thought to be involved in protein-protein interactions. Leucine-rich repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. The crystal structure of ribonuclease inhibitor protein has revealed that leucine-rich repeats correspond to beta-alpha structural units. These units are arranged so that they form a parallel beta-sheet with

5 one surface exposed to solvent, so that the protein acquires an unusual, nonglobular shape. These two features have been indicated as responsible for the protein-binding functions of proteins containing leucine-rich repeats. See, Kobe and Deisenhofer, Trends Biochem. Sci., 19(10):415-421 (Oct. 1994); Kobe and Deisenhofer, Curr. Opin. Struct. Biol., 5(3):409-416 (1995).

10 A study has been reported on leucine-rich proteoglycans which serve as tissue organizers, orienting and ordering collagen fibrils during ontogeny and are involved in pathological processes such as wound healing, tissue repair, and tumor stroma formation. Iozzo, R. V., Crit. Rev. Biochem. Mol. Biol., 32(2):141-174 (1997). Other studies implicating leucine rich proteins in wound healing and tissue repair are De La Salle, C., et al., Vouv. Rev. Fr. Hematol. (Germany), 37(4):215-222 (1995), reporting mutations in the leucine rich motif in a complex associated with the bleeding disorder Bernard-Soulier syndrome, Chlemetson, 15 K. J., Thromb. Haemost. (Germany), 74(1):111-116 (July 1995), reporting that platelets have leucine rich repeats and Ruoslahti, E. I., et al., WO9110727-A by La Jolla Cancer Research Foundation reporting that decorin binding to transforming growth factor β has involvement in a treatment for cancer, wound healing and scarring. Related by function to this group of proteins is the insulin like growth factor (IGF), in that it is useful 20 in wound-healing and associated therapies concerned with re-growth of tissue, such as connective tissue, skin and bone; in promoting body growth in humans and animals; and in stimulating other growth-related processes. The acid labile subunit of IGF (ALS) is also of interest in that it increases the half-life of IGF and is part of 25 the IGF complex in vivo.

Another protein which has been reported to have leucine-rich repeats is the SLIT protein which has 30 been reported to be useful in treating neuro-degenerative diseases such as Alzheimer's disease, nerve damage such as in Parkinson's disease, and for diagnosis of cancer, see, Artavanis-Tsakonas, S. and Rothberg, J. M., WO9210518-A1 by Yale University. Of particular interest is LIG-1, a membrane glycoprotein that is expressed specifically in glial cells in the mouse brain, and has leucine rich repeats and immunoglobulin-like domains. Suzuki, et al., J. Biol. Chem. (U.S.), 271(37):22522 (1996). Other studies reporting on the 35 biological functions of proteins having leucine rich repeats include: Tayar, N., et al., Mol. Cell Endocrinol. (Ireland), 125(1-2):65-70 (Dec. 1996) (gonadotropin receptor involvement); Miura, Y., et al., Nippon Rinsho (Japan), 54(7):1784-1789 (July 1996) (apoptosis involvement); Harris, P. C., et al., J. Am. Soc. Nephrol., 6(4):1125-1133 (Oct. 1995) (kidney disease involvement).

Efforts are therefore being undertaken by both industry and academia to identify new proteins having 40 leucine rich repeats to better understand protein-protein interactions. Of particular interest are those proteins having leucine rich repeats and homology to known proteins having leucine rich repeats such as platelet 45 glycoprotein V, SLIT and ALS. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins having leucine rich repeats.

84. **PRO1028**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. 50 Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of

5 novel secreted polypeptides, designated herein as PRO1028 polypeptides.

10 85. **PRO1027**

15 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the
20 coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1027 polypeptides.

25 86. **PRO1107**

10 Of particular interest are novel proteins having some sequence identity to known proteins. Known
20 proteins include PC-1, an ecto-enzyme possessing alkaline phosphodiesterase I and nucleotide pyrophosphatase activities, further described in Belli et al., *Eur. J. Biochem.*, 228(3):669-676 (1995). Phosphodiesterases are also described in Fuss et al., *J. Neurosci.*, 17(23):9095-9103 (1997) and Scott et al., *Hepatology*, 25(4):995-1002 (1997). Phosphodiesterase I, is described as a novel adhesin molecule and/or cytokine (related to autotaxin) involved in oligodendrocyte function. Fuss, *supra*.

15 We herein describe the identification and characterization of novel polypeptides having homology to
25 PC-1, designated herein as PRO1107 polypeptides.

30 87. **PRO1140**

20 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound
30 proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1140 polypeptides.

35 88. **PRO1106**

25 As the mitochondria is primarily responsible for generating energy, proteins associated with the
40 mitochondria are of interest. Recently, a cDNA from a novel Ca⁺⁺-dependent member of the mitochondrial
30 solute carrier superfamily was isolated from a rabbit small intestinal cDNA library as described in Weber, et
al., *PNAS USA*, 94(16):8509-8514 (1997). It was reported that this transporter has four elongation factor-
hand motifs in the N-terminal and is localized in the peroxisome, although a fraction can be found in the
mitochondria. Thus, this transporter, and proteins which have sequence identity to this and other members
of the mitochondrial solute carrier superfamily are of particular interest.

45 We herein describe the identification and characterization of novel polypeptides having homology to
a peroxisomal calcium dependent solute carrier protein, designated herein as PRO1106 polypeptides.

50 89. **PRO1291**

35 Butyrophilin is a milk glycoprotein that constitutes more than 40% of the total protein associated with
50 the fat globule membrane in mammalian milk. Expression of butyrophilin mRNA has been shown to correlate

5 with the onset of milk fat production toward the end pregnancy and is maintained throughout lactation. Butyrophilin has been identified in bovine, murine and human (see Taylor et al., *Biochim. Biophys. Acta* 1306:1-4 (1996), Ishii et al., *Biochim. Biophys. Acta* 1245:285-292 (1995), Mather et al., *J. Dairy Sci.* 76:3832-3850 (1993) and Banghart et al., *J. Biol. Chem.* 273:4171-4179 (1998)) and is a type I transmembrane protein that is incorporated into the fat globulin membrane. It has been suggested that butyrophilin may play
10 a role as the principle scaffold for the assembly of a complex with xanthine dehydrogenase/oxidase and other proteins that function in the budding and release of milk-fat globules from the apical surface during lactation (Banghart et al., *supra*).

15 Given that butyrophilin plays an obviously important role in mammalian milk production, there is substantial interest in identifying novel butyrophilin homologs. We herein describe the identification and
10 characterization of novel polypeptides having homology to butyrophilin, designated herein as PRO1291 polypeptides.

20 90. **PRO1105**

15 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to
25 identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1105 polypeptides.

91. **PRO511**

20 Proteins of interest include those having sequence identity with RoBo-1, a novel member of the
30 urokinase plasminogen activator receptor/CD59/Ly-6/snake toxin family selectively expressed in bone and growth plate cartilage as described in Noel et al., *J. Biol. Chem.* 273(7):3878-3883 (1998). RoBo-1 is believed to play a novel role in the growth or remodeling of bone. Proteins also of interest include those having sequence identity with phospholipase inhibitors.

35 25 We herein describe the identification and characterization of novel polypeptides having homology to urokinase plasminogen activator receptors and phospholipase inhibitors, designated herein as PRO511 polypeptides.

40 92. **PRO1104**

30 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the
45 coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1104 polypeptides.

35 93. **PRO1100**

50 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to

5 identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1100 polypeptides.

10 94. **PRO836**

15 Of interest are luminal proteins, or proteins specific to the endoplasmic reticulum (ER). Of particular interest are proteins having sequence identity with known proteins. Known proteins include proteins such as SLS1. In *Saccharomyces cerevisiae*, SLS1 has been reported to be a mitochondrial integral membrane protein involved in mitochondrial metabolism. Rouillard, et al., *Mol. Gen. Genet.*, 252(6):700-708 (1996). In yeast *Yarrowia lipolytica*, it has been reported that the SLS1 gene product (SLS1p) behaves as a luminal protein of the ER. It is believed that SPS1p acts in the preprotein translocation process, interacting directly with translocating polypeptides to facilitate their transfer and/or help their folding in the ER. Bosirame, et al., *J. Biol. Chem.*, 271(20):11668-11675 (1996).

20 We herein describe the identification and characterization of novel polypeptides having homology to SLS1, designated herein as PRO836 polypeptides.

25 95. **PRO1141**

30 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1141 polypeptides.

35 96. **PRO1132**

40 Proteases are enzymatic proteins which are involved in a large number of very important biological processes in mammalian and non-mammalian organisms. Numerous different protease enzymes from a variety of different mammalian and non-mammalian organisms have been both identified and characterized, including 45 the serine proteases which exhibit specific activity toward various serine-containing proteins. The mammalian protease enzymes play important roles in biological processes such as, for example, protein digestion, activation, inactivation, or modulation of peptide hormone activity, and alteration of the physical properties of proteins and enzymes.

50 Neuropsin is a novel serine protease whose mRNA is expressed in the central nervous system. Mouse neuropsin has been cloned, and studies have shown that it is involved in the hippocampal plasticity. Neuropsin has also been indicated as associated with extracellular matrix modifications and cell migrations. See, generally, Chen, et al., *Neurosci.*, 7(2):5088-5097 (1995) and Chen, et al., *J. Histochem. Cyrochem.*, 46:313-320 (1998).

55 Another serine protease of interest is the enamel matrix serine proteinase. The maturation of dental enamel succeeds the degradation of organic matrix. Inhibition studies have shown that this degradation is accomplished by a serine-type proteinase. Proteases associated with enamel maturation are described in, i.e., Simmer, et al., *J. Dent. Res.*, 77(2):377-386 (1998), Overall and Limeback, *Biochem J.*, 256(3):965-972

5 (1988), and Moradian-Oldak, Connect. Tissue Res., 35(1-4):231-238 (1996).

We herein describe the identification and characterization of novel polypeptides having homology to serine proteases, designated herein as PRO1132 polypeptides.

10 97. **PRO1346**

The abbreviations "TIE" or "tie" are acronyms, which stand for "tyrosine kinase containing Ig and EGF homology domains" and were coined to designate a new family of receptor tyrosine kinases which are almost exclusively expressed in vascular endothelial cells and early hemopoietic cells, and are characterized by the presence of an EGF-like domain, and extracellular folding units stabilized by intra-chain disulfide bonds, generally referred to as "immunoglobulin (IG)-like" folds. A tyrosine kinase homologous cDNA fragment from human leukemia cells (tie) was described by Partanen et al., Proc. Natl. Acad. Sci. USA 87, 8913-8917 (1990). The mRNA of this human "TIE" receptor has been detected in all human fetal and mouse embryonic tissues, and has been reported to be localized in the cardiac and vascular endothelial cells. Korhonen et al., Blood 80, 2548-2555 (1992); PCT Application Publication No. WO 93/14124 (published 22 July 1993). The rat homolog of human TIE, referred to as "TIE-1", was identified by Maisonpierre et al., Oncogene 8, 1631-1637 (1993). Another TIE receptor, designated "TIE-2" was originally identified in rats (Dumont et al., Oncogene 8, 1293-1301 (1993)), while the human homolog of TIE-2, referred to as "ork" was described in U.S. Patent No. 5,447,860 (Ziegler). The murine homolog of TIE-2 was originally termed "tek." The cloning of a mouse TIE-2 receptor from a brain capillary cDNA library is disclosed in PCT Application Publication No. WO 95/13387 (published 18 May 1995). TIE-2 is a receptor tyrosine kinase that is expressed almost exclusively by vascular endothelium. Tie-2 knockout mice die by defects in the formation of microvessels. Accordingly, the TIE receptors are believed to be actively involved in angiogenesis, and may play a role in hemopoiesis as well. Indeed, recent results (Lin et al., J. Clin. Invest. 100(8), 2072-2078 [1997]) demonstrating the ability of a soluble TIE-2 receptor to inhibit tumor angiogenesis have been interpreted to indicate that TIE-2 plays a role in pathologic vascular growth. In another study, TIE-2 expression was examined in adult tissues undergoing angiogenesis and in quiescent tissues. TIE2 expression was localized by immunohistochemistry to the endothelium of neovessels in rat tissues undergoing angiogenesis during hormonally stimulated follicular maturation and uterine development and in healing wounds. TIE-2 was also reported to be expressed in the entire spectrum of the quiescent vasculature (arteries, veins, and capillaries) in a wide range of adult tissues. Wong et al., Circ. Res. 81(4), 567-574 (1997). It has been suggested that TIE-2 has a dual function in adult angiogenesis and vascular maintenance.

The expression cloning of human TIE-2 ligands has been described in PCT Application Publication No. WO 96/11269 (published 18 April 1996) and in U.S. Patent No. 5,521,073 (published 28 May 1996). A vector designated as λgt10 encoding a TIE-2 ligand NL7d "htie-2 ligand 1" or "hTL1" has been deposited under ATCC Accession No. 75928. A plasmid encoding another TIE-2 ligand designated "htic-2 2" or "hTL2" is available under ATCC Accession No. 75928. This second ligand has been described as an antagonist of the TAI-2 receptor. The identification of secreted human and mouse ligands for the TIE-2 receptor has been reported by Davis et al., Cell 87, 1161-1169 (1996). The human ligand designated

5 "Angiopoietin-1", to reflect its role in angiogenesis and potential action during hemopoiesis, is the same ligand
as the ligand variously designated as "htie-2 1" or "hTL-1" in WO 96/11269. Angiopoietin-1 has been
described to play an angiogenic role later and distinct from that of VEGF (Suri et al., Cell 87, 1171-1180
10 (1996)). Since TIE-2 is apparently upregulated during the pathologic angiogenesis requisite for tumor growth
(Kaipainen et al., Cancer Res. 54, 6571-6577 (1994)) angiopoietin-1 has been suggested to be additionally
15 useful for specifically targeting tumor vasculature (Davis et al., supra).

We herein describe the identification and characterization of novel TIE ligand polypeptides, designated
herein as PRO1346 polypeptides.

15 98. **PRO1131**

10 The low density lipoprotein (LDL) receptor is a membrane-bound protein that plays a key role in
cholesterol homeostasis, mediating cellular uptake of lipoprotein particles by high affinity binding to its ligands,
20 apolipoprotein (apo) B-100 and apoE. The ligand-binding domain of the LDL receptor contains 7 cysteine-rich
repeats of approximately 40 amino acids, wherein each repeat contains 6 cysteines, which form 3 intra-repeat
disulfide bonds. These unique structural features provide the LDL receptor with its ability to specifically
15 interact with apo B-100 and apoE, thereby allowing for transport of these lipoprotein particles across cellular
membranes and metabolism of their components. Soluble fragments containing the extracellular domain of the
25 LDL receptor have been shown to retain the ability to interact with its specific lipoprotein ligands (Simmons
et al., J Biol. Chem. 272:25531-25536 (1997)). LDL receptors are further described in Javitt, FASEB J.,
9(13):1378-1381 (1995), van Berkel, et al., Atherosclerosis, 118 Suppl:S43-S50 (1995) and Herz and Willnow,
20 Ann. NY Acad. Sci., 737:14-19 (1994). Thus, proteins having sequence identity with LDL receptors are of
interest.

30 We herein describe the identification and characterization of novel polypeptides having homology to
LDL receptors, designated herein as PRO1131 polypeptides.

35 25 99. **PRO1281**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins.
Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the
40 coding sequences for novel secreted proteins. We herein describe the identification and characterization of
novel secreted polypeptides, designated herein as PRO1281 polypeptides.

30 100. **PRO1064**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound
proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to
45 identify the coding sequences for novel membrane-bound proteins. We herein describe the identification and
characterization of novel transmembrane polypeptides, designated herein as PRO1064 polypeptides.

5 101. PRO1379

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1379 polypeptides.

10 102. PRO844

Proteases are enzymatic proteins which are involved in a large number of very important biological processes in mammalian and non-mammalian organisms. Numerous different protease enzymes from a variety of different mammalian and non-mammalian organisms have been both identified and characterized. The mammalian protease enzymes play important roles in many different biological processes including, for example, protein digestion, activation, inactivation, or modulation of peptide hormone activity, and alteration of the physical properties of proteins and enzymes. Thus, proteases are of interest. Also of interest are protease inhibitors.

Of particular interest are serine proteases. In one study it was reported that when the serine protease inhibitor antileukoproteinase (aLP) is injected, it accumulates in articular and extraarticular cartilage of normal rats. This physiological pathway of cartilage accumulation, lost in proteoglycan depleted arthritic cartilage is believed to serve to maintain the local balance between proteinase function and inhibition. Burkhardt, et al., J. Rheumatol., 24(6):1145-1154 (1997). Moreover, aLP and other protease inhibitors have been reported to play a role in the in vitro growth of hematopoietic cells by the neutralization of proteinases produced by bone marrow accessory cells. Gosklink, et al., J. Exp. Med., 184(4):1305-1312 (1996). Also of interest are mutants of aLP. Oxidation resistant mutants of aLP have been reported to have significant therapeutic effects on animal models having emphysema. Steffens, et al., Agents Actions Suppl., 42:111-121 (1993). Thus, serine protease inhibitors are of interest.

We herein describe the identification and characterization of novel polypeptides having homology to serine protease inhibitors, designated herein as PRO844 polypeptides.

35 103. PRO848

Membrane-bound proteins of interest include channels such as ion channels. Furthermore, membrane-bound proteins of interest include enzymes bound to intracellular vacuoles or organelles, such as transferases. For example, a peptide of interest is the GalNAc alpha 2, 6-sialyltransferase as described in Kurosawa, et al., J. Biol. Chem., 269(2):1402-1409 (1994). This peptide was constructed to be secreted, and retained its catalytic activity. The expressed enzyme exhibited activity toward asialomucin and asialofetuin, but not other glycoproteins tested. As sialylation is an important function, sialyltransferases such as this one, and peptides related by sequence identity, are of interest.

35 We herein describe the identification and characterization of novel polypeptides having homology to sialyltransferases, designated herein as PRO848 polypeptides.

5 **104. PRO1097**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1097 polypeptides.

10 **105. PRO1153**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel transmembrane proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1153 polypeptides.

15 **106. PRO1154**

Aminopeptidase N causes enzymatic degradation of orally administered peptide drugs. Thus, aminopeptidase N has been used in studies to develop and identify inhibitors so as to increase the efficacy of peptide drugs by inhibiting their degradation. Aminopeptidases are also generally of interest to use to degrade peptides. Aminopeptidases, particularly novel aminopeptidases are therefore of interest. Aminopeptidase N and inhibitors thereof are further described in Bornkop-Schnurch and Marschutz, Pharm. Res., 14(2):181-185 ((1997); Lerche, et al., Mamm. Genome, 7(9):712-713 (1996); Papapetropoulos, et al., Immunopharmacology, 32(1-3):153-156 (1996); Miyachi, et al., J. Med. Chem., 41(3):263-265 (1998); and Olsen, et al., Adv. Exp. Med. Biol., 421:47-57 (1997).

We herein describe the identification and characterization of novel polypeptides having homology to aminopeptidase N, designated herein as PRO1154 polypeptides.

25 **107. PRO1181**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1181 polypeptides.

30 **108. PRO1182**

Conglutinin is a bovine serum protein that was originally described as a vertebrate lectin protein and which belongs to the family of C-type lectins that have four characteristic domains, (1) an N-terminal cysteine-rich domain, (2) a collagen-like domain, (3) a neck domain and (4) a carbohydrate recognition domain (CRD). Recent reports have demonstrated that bovine conglutinin can inhibit hemagglutination by influenza A viruses as a result of their lectin properties (Eda et al., Biochem. J., 316:43-48 (1996)). It has also been suggested that lectins such as conglutinin can function as immunoglobulin-independent defense molecules due to complement-mediated mechanisms. Thus, conglutinin has been shown to be useful for purifying immune complexes *in vitro*.

5 and for removing circulating immune complexes from patients plasma *in vivo* (Lim et al., Biochem. Biophys. Res. Commun., 218:260-266 (1996)). We herein describe the identification and characterization of novel polypeptides having homology to conglutinin protein, designated herein as PRO1182 polypeptides.

10 109. PRO1155

15 Substance P and the related proteins, neuropeptide A and neuropeptide B have been reported as compounds which elicit contraction of the ileum both directly through action on a muscle cell receptor and indirectly through stimulation of a neuronal receptor. This action leads to the release of acetylcholine which causes muscle contraction via muscarinic receptors. It has also been reported that neuropeptide B was found to be the most potent agonist for the neuronal Substance P receptor and that neuropeptide B can be inhibited by enkephalinamide. Laufer, et al., PNAS USA, 82(21):74444-7448 (1985). Moreover, neuropeptide B has been reported to provide neuroprotection and cognitive enhancement, and therefore believed to be useful for the treatment of neurodegenerative disorders, including alzheimers disease. Wenk, et al., Behav. Brain Res., 83(1-2):129-133 (1997). Tachykinins are also described in Chawla, et al., J. Comp. Neurol., 384(3):429-442 (1997). Thus, tachykinins, particularly those related to neuropeptide B are of interest.

20 15 We herein describe the identification and characterization of novel polypeptides having homology to neuropeptide B protein, designated herein as PRO1155 polypeptides.

25 110. PRO1156

30 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1181 polypeptides.

35 111. PRO1098

40 25 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1098 polypeptides.

45 30 112. PRO1127

50 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1127 polypeptides.

55 35 113. PRO1126

50 The extracellular mucous matrix of olfactory neuroepithelium is a highly organized structure in

5 intimate contact with chemosensory cilia that house the olfactory transduction machinery. The major protein component of this extracellular matrix is olfactomedin, a glycoprotein that is expressed in olfactory neuroepithelium and which form intermolecular disulfide bonds so as to produce a polymer (Yokoe et al.,
10 Proc. Natl. Acad. Sci. USA 90:4655-4659 (1993), Bal et al., Biochemistry 32:1047-1053 (1993) and Snyder et al., Biochemistry 30:9143-9153 (1991)). It has been suggested that olfactomedin may influence the
15 maintenance, growth or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. Given this important role, there is significant interest in identifying and characterizing novel polypeptides having homology to olfactomedin. We herein describe the identification and characterization of novel polypeptides having homology to olfactomedin protein, designated herein as PRO1126 polypeptides.

15

10 114. **PRO1125**

20 Of particular interest are proteins which have multiple Trp-Asp (WD) repeats. WD proteins are made up of highly conserved repeating units usually ending with WD. They are found in eukaryotes but not in prokaryotes. They regulate cellular functions, such as cell division, cell-fate determination, gene transcription,
25 gene transcription, transmembrane signaling, mRNA modification and vesicle fusion. WD are further described in Neer, et al., Nature, 371(6495):297-300 (1994); Jiang and Struhl, Nature, 391(6666):493-496(1998); and DeSilva, et al., Genetics, 148(2):657-667 (1998). Thus, new members of this superfamily are all of interest.

25

15 115. **PRO1186**

30 Protein A from Dendroaspis polylepis polylepis (black mamba) venom comprises 81 amino acids, including ten half-cystine residues. Venoms are of interest on the one hand as weapons in war, and on the other hand, to use in assays to determine agents which reverse or inhibit the effects of the venom or a similar poison. Black mamba venom is further described in Int. J. Biochem., 17(6):695-699 (1985) and Joubert and Strydom, Hoppe Seylers Z Physiol. Chem., 361(12):1787-1794 (1980).

35

35 We herein describe the identification and characterization of novel polypeptides having homology to snake venom protein A, designated herein as PRO1186 polypeptides.

40

116. **PRO1198**

45 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins.
30 Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1198 polypeptides.

45

35 117. **PRO1158**

50 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel transmembrane proteins. We herein describe the identification and

55

5 characterization of novel transmembrane polypeptides, designated herein as PRO1158 polypeptides.

10 118. **PRO1159**

10 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1159 polypeptides.

15 119. **PRO1124**

15 Ion channels are considered to be the gateway to the final frontier, the brain. Ion channels and the receptors which control these channels are responsible for the passage of ions, or nerve impulses to be communicated from cell to cell, thus, ion channels are responsible for communication. In addition to their critical role in the brain, ion channels play a critical role in the heart as well as blood pressure. Ion channels have also been linked to other important bodily functions and conditions, as well as disorders, such as cystic fibrosis. For all of these reasons, ion channels, such as sodium, potassium and chloride channels, as well as 20 all of their related proteins and receptors are of interest. For example, it has been reported that cystic fibrosis results from a defect in the chloride channel protein, cystic fibrosis transmembrane conductance regulator. 25 McGill, et al., *Dig. Dis. Sci.*, 41(3):540-542 (1996). Chloride channels are further described in at least Finn, et al., *PNAS USA*, 90(12):5691-569 (1993) and Finn, et al., *Mol. Cell Biochem.*, 114(1-2):21-26 (1992).

20 Also of interest are molecules related to adhesion molecules, as adhesion molecules are known to be involved in cell-cell signaling and interactions. More generally, all novel membrane bound-proteins are of 30 interest. Membrane-bound proteins and receptors can play an important role in the formation, differentiation, and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for 35 instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor 40 kinases, receptor phosphatases, receptors involved in cell-cell interactions, channels, transporters, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth 45 and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor.

45 Membrane-bound proteins include those which are bound to the outer membrane and intracellular membranes and organelles. Membrane-bound proteins and receptor molecules have various industrial 50 applications, including as pharmaceutical and diagnostic agents. Receptor immunoadhesins, for instance, can be employed as therapeutic agents to block receptor-ligand interaction. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand

5 interaction.

Efforts are being undertaken by both industry and academia to identify new, native receptor proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor proteins. Herein is presented a polypeptide and nucleic acid encoding therefor which has sequence identity with a chloride channel protein chloride channel protein and lung-endothelial cell adhesion molecule-1 (ECAM-1).

10 5 **120. PRO1287**

Fringe is a protein which specifically blocks serrate-mediated activation of notch in the dorsal compartment of the Drosophila wing imaginal disc. Fleming et al., *Development*, 124(15):2973-81 (1997).

15 10 Therefore, fringe protein is of interest for both its role in development as well as its ability to regulate serrate, particularly serrate's signaling abilities. Also of interest are novel polypeptides which may have a role in development and/or the regulation of serrate-like molecules. Of particular interest are novel polypeptides having homology to fringe.

20 20 We herein describe the identification and characterization of novel polypeptides having homology to fringe protein, designated herein as PRO1287 polypeptides.

25 25 **121. PRO1312**

Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel transmembrane proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1312 polypeptides.

30 30 **122. PRO1192**

35 35 Membrane-bound proteins of myelin are of interest because of their possible implications in various nervous system disorders associated with improper myelination. Myelin is a cellular sheath, formed by glial cells, that surrounds axons and axonal processes that enhances various electrochemical properties and provides trophic support to the neuron. Myelin is formed by Schwann cells in the peripheral nervous system (PNS) and by oligodendrocytes in the central nervous system (CNS). Improper myelination of central and peripheral neurons occurs in a number of pathologies and leads to improper signal conduction within the nervous systems.

40 40 Among the various demyelinating diseases Multiple Sclerosis is the most notable.

45 45 The predominant integral membrane protein of the CNS myelin of amphibians, reptiles, birds and mammals are proteolipid protein (PLP) and P0, the main glycoprotein in PNS myelin. (Schlieess and Stoffel, *Biol. Chem. Hoppe Seyler* (1991) 372(9):865-874). In view of the importance of membrane-bound proteins of the myelin, efforts are being undertaken by both industry and academia to identify and characterize various myelin proteins (see Stratmann and Jeserich, *J. Neurochem* (1995) 64(6):2427-2436).

5 **123. PRO1160**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1160 polypeptides.

10 **124. PRO1187**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1187 polypeptides.

15 **125. PRO1185**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1185 polypeptides.

20 **126. PRO345**

Human tetranectin is a 202 amino acid protein encoded by a gene spanning approximately 12 kbp of DNA (Berglund et al., *FEBS Lett.* 309:15-19 (1992)). Tetranectin has been shown to be expressed in a variety of tissues and functions primarily as a plasminogen binding protein. Tetranectin has been classified in a distinct group of the C-type lectin superfamily but has structural and possibly functional similarity to the collectin proteins (Nielsen et al., *FEBS Lett.* 412(2):388-396 (1997)). Recent studies have reported that variability in serum tetranectin levels may be predictive of the presence of various types of cancers including, for example, ovarian and colorectal cancers (Hogdall et al., *Acta Oncol.* 35:63-69 (1996), Hogdall et al., *Eur. J. Cancer* 31A(6):888-894 (1995) and Tuxen et al., *Cancer Treat. Rev.* 21(3):215-245 (1995)). As such, there is significant interest in identifying and characterizing novel polypeptides having structural and functional similarity to the tetranectin protein.

We herein describe the identification and characterization of novel polypeptides having homology to tetranectin protein, designated herein as PRO1345 polypeptides.

40 **127. PRO1245**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1245 polypeptides.

5 **128. PRO358**

Serine protease inhibitors are of interest because they inhibit catabolism and are sometimes associated with regeneration of tissue. For example, a gene encoding a plasma protein associated with liver regeneration has been cloned and termed regeneration-associated serpin-1 (RASP-1). New, et al., *Biochem. Biophys. Res. Commun.*, 223(2):404-412 (1996). While serine protease inhibitors are of interest, particularly of interest are those which have sequence identity with known serine protease inhibitors such as RASP-1.

We herein describe the identification and characterization of novel polypeptides having homology to RASP-1, designated herein as PRO1245 polypeptides.

15 **129. PRO1195**

Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1195 polypeptides.

15 **130. PRO1270**

The recognition of carbohydrates by lectins has been found to play an important role in various aspects of eukaryotic physiology. A number of different animal and plant lectin families exist, but it is the calcium dependent, or type C, lectins that have recently garnered the most attention. For example, the recognition of carbohydrate residues on either endothelial cells or leukocytes by the selectin family of calcium dependent lectins has been found to be of profound importance to the trafficking of leukocytes to inflammatory sites. Lasky, L., *Ann. Rev. Biochem.*, 64 113-139 (1995). The biophysical analysis of these adhesive interactions has suggested that lectin-carbohydrate binding evolved in this case to allow for the adhesion between leukocytes and the endothelium under the high shear conditions of the vasculature. Thus, the rapid on rates of carbohydrate recognition by such lectins allows for a hasty acquisition of ligand, a necessity under the high shear of the vascular flow. The physiological use of type C lectins in this case is also supported by the relatively low affinities of these interactions, a requirement for the leukocyte rolling phenomenon that has been observed to occur at sites of acute inflammation. The crystal structures of the mannose binding protein (Weis et al., *Science* 254, 1608-1615 [1991]; Weis et al., *Nature* 360 127-134 [1992]) and E-selectin (Graves et al., *Nature* 367(6463), 532-538 [1994]), together with various mutagenesis analyses (Erbe et al., *J. Cell. Biol.* 119(1), 215-227 [1992]; Drickamer, *Nature* 360, 183-186 [1992]; Iobst et al., *J. Biol. Chem.* 169(22), 15505-15511 [1994]; Kogan et al., *J. Biol. Chem.* 270(23), 14047-14055 [1995]), is consistent with the supposition that the type C lectins are, in general, involved with the rapid recognition of clustered carbohydrates. Together, these data suggest that type C lectins perform a number of critical physiological phenomena through the rapid, relatively low affinity recognition of carbohydrates.

Given the obvious importance of the lectin proteins in numerous biological processes, efforts are currently being made to identify novel lectin proteins or proteins having sequence homology to lectin proteins. We herein describe the identification and characterization of novel polypeptides having homology to a lectin

5 protein, designated herein as PRO1270 polypeptides.

10 131. **PRO1271**

15 Efforts are being undertaken by both industry and academia to identify new, native membrane-bound proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel transmembrane proteins. We herein describe the identification and characterization of novel transmembrane polypeptides, designated herein as PRO1271 polypeptides.

20 132. **PRO1375**

25 The proteins LICAM, G6PD and P55 are each associated with various known disease states. Thus, the genomic loci of Fugu rubripes homologs of the human disease genes LICAM, G6PD and P55 were analyzed. This analysis led to the identification of putative protein 2 (PUT2), GENBANK locus AF026198, accession AF026198. (See GENBANK submission data). Thus, PUT2 and proteins which have sequence identity with PUT2, are of interest.

30 133. **PRO1385**

35 Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many of these efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. We herein describe the identification and characterization of novel secreted polypeptides, designated herein as PRO1385 polypeptides.

40 134. **PRO1387**

45 Membrane-bound proteins of myelin are of interest because of their possible implications in various nervous system disorders associated with improper myelination. Myelin is a cellular sheath, formed by glial cells, that surrounds axons and axonal processes that enhances various electrochemical properties and provides trophic support to the neuron. Myelin is formed by Schwann cells in the peripheral nervous system (PNS) and by oligodendrocytes in the central nervous system (CNS). Improper myelination of central and peripheral neurons occurs in a number of pathologies and leads to improper signal conduction within the nervous systems. Among the various demyelinating diseases Multiple Sclerosis is the most notable.

50 The predominant integral membrane protein of the CNS myelin of amphibians, reptiles, birds and mammals are proteolipid protein (PLP) and P0, the main glycoprotein in PNS myelin. (Schlieess and Stoffel, *Biol. Chem. Hoppe Seyler* (1991) 372(9):865-874). In view of the importance of membrane-bound proteins of the myelin, efforts are being undertaken by both industry and academia to identify and characterize various myelin proteins (see Stratmann and Jeserich, *J. Neurochem* (1995) 64(6):2427-2436).

55 We herein describe the identification and characterization of novel polypeptides having homology to myelin protein, designated herein as PRO1387 polypeptides.

5 **135. PRO1384**

One class of receptor proteins that has been of interest is the NKG2 family of type II transmembrane molecules that are expressed in natural killer cells. These proteins, which have been shown to be covalently associated with CD94, are involved in natural killer cell-mediated recognition of different HLA-allotypes (Plougastel, B. et al., *Eur. J. Immunol.* (1997) **27**(11):2835-2839), and interact with major histocompatibility complex (MHC) class I to either inhibit or activate functional activity (Ho, E.L. et al., *Proc. Natl. Acad. Sci.* (1998) **95**(11):6320-6325). Accordingly, the identification and characterization of new members of this family of receptor proteins is of interest (see Houchins JP, et al. *J. Exp. Med.* (1991) **173**(4):1017-1020).

15

SUMMARY OF THE INVENTION10 **1. PRO281**

A cDNA clone (DNA16422-1209) has been identified, having homology to nucleic acid encoding testis enhanced gene transcript (TEGT) protein that encodes a novel polypeptide, designated in the present application as "PRO281".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO281 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO281 polypeptide having the sequence of amino acid residues from about 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO281 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 80 or about 122 and about 1114, inclusive, of Figure 1 (SEQ ID NO:1). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209929 (DNA16422-1209) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209929 (DNA16422-1209).

In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2), or (b) the complement of the DNA of (a).

50

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10
nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA
molecule encoding a PRO281 polypeptide having the sequence of amino acid residues from 1 or about 15 to
about 345, inclusive of Figure 2 (SEQ ID NO:2), or (b) the complement of the DNA molecule of (a), and, if
the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence
identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence
identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO281 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary
15 to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
about amino acid position 1 to about amino acid position 14 in the sequence of Figure 2 (SEQ ID NO:2). The
multiple transmembrane domains have been tentatively identified as extending from about amino acid position
20 83 to about amino acid position 105, from about amino acid position 126 to about amino acid position 146,
from about amino acid position 158 to about amino acid position 177, from about amino acid position 197 to
25 about amino acid position 216, from about amino acid position 218 to about amino acid position 238, from
about amino acid position 245 to about amino acid position 265, and from about amino acid position 271 to
about amino acid position 290 in the PRO281 amino acid sequence (Figure 2, SEQ ID NO:2).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
25 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2), or (b) the
complement of the DNA of (a).

30 Another embodiment is directed to fragments of a PRO281 polypeptide coding sequence that may find
use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length,
35 25 preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50
nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived
from the nucleotide sequence shown in Figure 1 (SEQ ID NO:1).

40 In another embodiment, the invention provides isolated PRO281 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove identified.

45 30 In a specific aspect, the invention provides isolated native sequence PRO281 polypeptide, which in
certain embodiments, includes an amino acid sequence comprising residues 1 or about 15 to about 345 of
Figure 2 (SEQ ID NO:2).

50 45 In another aspect, the invention concerns an isolated PRO281 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
55 35 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2).

5 In a further aspect, the invention concerns an isolated PRO281 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2).

10 In yet another aspect, the invention concerns an isolated PRO281 polypeptide, comprising the sequence of amino acid residues 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2), or a fragment thereof sufficient to provide a binding site for an anti-PRO281 antibody. Preferably, the PRO281 fragment retains a qualitative biological activity of a native PRO281 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO281 polypeptide having the sequence of amino acid residues from about 1 or about 15 to about 345, inclusive of Figure 2 (SEQ ID NO:2), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO281 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO281 antibody.

25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO281 polypeptide by contacting the native PRO281 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 In a still further embodiment, the invention concerns a composition comprising a PRO281 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

2. **PRO276**

35 A cDNA clone (DNA16435-1208) has been identified that encodes a novel polypeptide having two transmembrane domains and designated in the present application as "PRO276."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO276 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO276 polypeptide having the sequence of amino acid residues from about 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO276 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 180 and about 932, inclusive, of Figure 3 (SEQ ID NO:5). Preferably, hybridization occurs under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209930 (DNA16435-1208), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
10 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209930 (DNA16435-1208).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
20 identity to the sequence of amino acid residues from about 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or the complement of the DNA of (a).

25 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO276 polypeptide having the sequence of
30 amino acid residues from about 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO276 polypeptide in its soluble, i.e. transmembrane domains deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains are at about amino acids 98-116 and 152-172.

40 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
45 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or (b) the complement of the DNA of (a).

50 Another embodiment is directed to fragments of a PRO276 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

55 In another embodiment, the invention provides isolated PRO276 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

60 In a specific aspect, the invention provides isolated native sequence PRO276 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 251 of Figure 4 (SEQ ID NO:6).

5 In another aspect, the invention concerns an isolated PRO276 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6).

10 5 In a further aspect, the invention concerns an isolated PRO276 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 251 of Figure 4 (SEQ ID NO:6).

15 10 In yet another aspect, the invention concerns an isolated PRO276 polypeptide, comprising the sequence of amino acid residues 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or a fragment thereof sufficient to provide a binding site for an anti-PRO276 antibody. Preferably, the PRO276 fragment retains a qualitative biological activity of a native PRO276 polypeptide.

20 15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO276 polypeptide having the sequence of amino acid residues from about 1 to about 251, inclusive of Figure 4 (SEQ ID NO:6), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO276 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO276 antibody.

30 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO276 polypeptide, by contacting the native PRO276 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 25 In a still further embodiment, the invention concerns a composition comprising a PRO276 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

3. **PRO189**

40 30 A cDNA clone (DNA21624-1391) has been identified that encodes a novel polypeptide, designated in the present application as "PRO189". PRO189 polypeptides have a cytosolic fatty-acid binding domain.

45 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO189 polypeptide.

50 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO189 polypeptide having the sequence of amino acid residues from about 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO189 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 200 and about 1300, inclusive, of Figure 5 (SEQ ID NO:7). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209917 (DNA21624-1391), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209917 (DNA21624-1391).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO189 polypeptide having the sequence of amino acid residues from about 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8), or (b) the complement of the DNA of (a).

30 In another embodiment, the invention provides isolated PRO189 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO189 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 367 of Figure 6 (SEQ ID NO:8).

40 In another aspect, the invention concerns an isolated PRO189 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8).

50

5 In a further aspect, the invention concerns an isolated PRO189 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 367 of Figure 6 (SEQ ID NO:8).

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO189 polypeptide having the sequence of amino acid residues from about 1 to about 367, inclusive of Figure 6 (SEQ ID NO:8), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO189 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO189 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO189 polypeptide, by contacting the native PRO189 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO189 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 4. **PRO190**
Applicants have identified a cDNA clone that encodes a novel polypeptide having seven transmembrane domains and having sequence identity with CMP-sialic acid and UDP-galactose transporters, wherein the polypeptide is designated in the present application as "PRO190".

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO190 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO190 polypeptide having amino acid residues 1 through 424 of Figure 9 (SEQ ID NO:14), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the vector deposited on June 2, 1998 with the ATCC as DNA23334-1392 which includes the nucleotide sequence encoding PRO190.

40 45 30 35 In another embodiment, the invention provides isolated PRO190 polypeptide. In particular, the invention provides isolated native sequence PRO190 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 424 of Figure 9 (SEQ ID NO:14). An additional embodiment of the present invention is directed to an isolated PRO190 polypeptide, excluding the transmembrane domains. Optionally, the PRO190 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the vector deposited on June 2, 1998 with the ATCC as DNA23334-1392.

5 In another embodiment, the invention provides an expressed sequence tag (EST) comprising the nucleotide sequence of SEQ ID NO:15.

10 5. **PRO341**

10 A cDNA clone (DNA26288-1239) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO341".

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO341 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most

20 10 preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO341 polypeptide having the sequence of amino acid residues from about 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO341 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 380

25 15 or about 431 and about 1753, inclusive, of Figure 11 (SEQ ID NO:19). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

30 20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209792 (DNA26288-1239) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209792 (DNA26288-1239).

35 25 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or (b) the complement of the DNA of (a).

40 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 165 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO341 polypeptide having the sequence of amino acid residues from 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

45 35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO341 polypeptide, with or without the N-terminal signal sequence and/or the initiating

50

55

methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 17 in the sequence of Figure 12 (SEQ ID NO:20). The transmembrane domains have been tentatively identified as extending from about amino acid position 171 to about amino acid position 190, from about amino acid position 220 to about amino acid position 239, from about amino acid position 259 to about amino acid position 275, from about amino acid position 286 to about amino acid position 305, from about amino acid position 316 to about amino acid position 335, from about amino acid position 353 to about amino acid position 378 and from about amino acid position 396 to about amino acid position 417 in the PRO341 amino acid sequence (Figure 12, SEQ ID NO:20).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO341 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 11 (SEQ ID NO:19).

In another embodiment, the invention provides isolated PRO341 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

In a specific aspect, the invention provides isolated native sequence PRO341 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 18 to about 458 of Figure 12 (SEQ ID NO:20).

In another aspect, the invention concerns an isolated PRO341 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20).

In a further aspect, the invention concerns an isolated PRO341 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20).

In yet another aspect, the invention concerns an isolated PRO341 polypeptide, comprising the sequence of amino acid residues 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or a fragment thereof sufficient to provide a binding site for an anti-PRO341 antibody. Preferably, the PRO341 fragment retains a qualitative biological activity of a native PRO341 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO341 polypeptide having the

5 sequence of amino acid residues from about 1 or about 18 to about 458, inclusive of Figure 12 (SEQ ID NO:20), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about
10 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
15 (iii) recovering the polypeptide from the cell culture.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA12920 comprising the nucleotide sequence of SEQ ID NO:21 (see Figure 13).

15 6. **PRO180**

10 A cDNA clone (DNA26843-1389) has been identified that encodes a novel polypeptide having multiple transmembrane domains designated in the present application as "PRO180".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO180 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO180 polypeptide having the sequence of amino acid residues from about 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or
30 (b) the complement of the DNA molecule of (a).

35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO180 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 121 and about 918, inclusive, of Figure 14 (SEQ ID NO:22). Preferably, hybridization occurs under stringent
40 hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
50 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203099 (DNA26843-1389), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203099 (DNA26843-1389).

55 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or the complement of the DNA of (a).

60 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO180 polypeptide having the sequence of

5 amino acid residues from about 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or (b) the complement
of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably
at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most
preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
5 encoding a PRO180 polypeptide in its soluble form, i.e. transmembrane domains deleted or inactivated
variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains are shown
in Figure 15. It is believed that PRO180 has a type II transmembrane domain from about amino acids 13-33
of SEQ ID NO:23.

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
10 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
20 amino acid sequence of residues 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or (b) the
complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO180 polypeptide coding sequence that may find
15 use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length,
preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50
nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO180 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO180 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 1 through 266 of Figure 15 (SEQ ID
NO:23).

40 In another aspect, the invention concerns an isolated PRO180 polypeptide, comprising an amino acid
35 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23).

45 In a further aspect, the invention concerns an isolated PRO180 polypeptide, comprising an amino acid
30 sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least
about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 1 through 266 of Figure 15 (SEQ ID NO:23).

50 In yet another aspect, the invention concerns an isolated PRO180 polypeptide, comprising the
sequence of amino acid residues 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or a fragment thereof
45 sufficient to provide a binding site for an anti-PRO180 antibody. Preferably, the PRO180 fragment retains
a qualitative biological activity of a native PRO180 polypeptide.

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO180 polypeptide having the
sequence of amino acid residues from about 1 to about 266, inclusive of Figure 15 (SEQ ID NO:23), or (b)

5 the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b). (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO180 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO180 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO180 polypeptide, by contacting the native PRO180 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 10 In a still further embodiment, the invention concerns a composition comprising a PRO180 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 20 In another embodiment, the invention provides an expressed sequence tag (EST) (DNA12922) comprising the nucleotide sequence of Figure 16 (SEQ ID NO:24).

15 7. **PRO194**

25 Applicants have identified a cDNA clone that encodes a novel transmembrane polypeptide, wherein the polypeptide is designated in the present application as "PRO194".

30 20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO194 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO194 polypeptide having amino acid residues 1 to 264 of Figure 18 (SEQ ID NO:28), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO194 polypeptide having amino acid residues about 18 to 264 of Figure 18 (SEQ ID NO:28) or amino acid 1 or about 18 to X of Figure 18 (SEQ ID NO:28), where X is any amino acid from 96 to 105 of Figure 18 35 25 (SEQ ID NO:28), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA26844-1394 vector deposited on June 2, 1998 as ATCC 209926 which includes the nucleotide sequence encoding PRO194.

40 30 In another embodiment, the invention provides isolated PRO194 polypeptide. In particular, the invention provides isolated native sequence PRO194 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 264 of Figure 18 (SEQ ID NO:28). Additional embodiments of the present invention are directed to PRO194 polypeptides comprising amino acids about 18 to 264 of Figure 18 (SEQ ID NO:28) or amino acid 1 or about 18 to X of Figure 18 (SEQ ID NO:28), where X is any amino acid from 96 to 105 of Figure 18 45 35 (SEQ ID NO:28). Optionally, the PRO194 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA26844-1394 vector deposited on June 2, 1998 as ATCC 209926.

5 **PRO203**

Applicants have identified a cDNA clone that encodes a novel polypeptide having sequence identity to glutathione-S-transferase, wherein the polypeptide is designated in the present application as "PRO203".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO203 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO203 polypeptide having amino acid residues 1 to 347 of Figure 20 (SEQ ID NO:30), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO203 polypeptide having amino acid residues X to 347 of Figure 20 (SEQ ID NO:30), where X is any amino acid from 83 to 92 of Figure 20 (SEQ ID NO:30), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA30862-1396 vector deposited on June 2, 1998, as ATCC 209920 which includes the nucleotide sequence encoding PRO203.

In another embodiment, the invention provides isolated PRO203 polypeptide. In particular, the invention provides isolated native sequence PRO203 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 347 of Figure 20 (SEQ ID NO:30). Additional embodiments of the present invention are directed to PRO203 polypeptides comprising amino acid X to 347 of Figure 20 (SEQ ID NO:30), where X is any amino acid from 83 to 92 of Figure 20 (SEQ ID NO:30). Optionally, the PRO203 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA30862-1396 vector deposited on June 2, 1998, as ATCC 209920.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA15618 which comprises the nucleotide sequence of Figure 21 (SEQ ID NO:31).

20 **PRO290**

A cDNA clone (DNA35680-1212) has been identified which encodes a polypeptide designated in the present application as "PRO290." PRO290 polypeptides have sequence identity with NTII-1, FAN and beige.

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO290 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO290 polypeptide having the sequence of amino acid residues from about 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO290 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 293 and about 3301, inclusive, of Figure 22 (SEQ ID NO:32). Preferably, hybridization occurs under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209790 (DNA35680-1212), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
10 5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209790 (DNA35680-1212).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
20 10 identity to the sequence of amino acid residues from about 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33), or the complement of the DNA of (a).

25 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO290 polypeptide having the sequence of amino acid residues from about 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33), or (b) the complement of the DNA of (a).

35 In another embodiment, the invention provides isolated PRO290 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

40 In a specific aspect, the invention provides isolated native sequence PRO290 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 1003 of Figure 23 (SEQ ID NO:33).

45 In another aspect, the invention concerns an isolated PRO290 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33).

50 In a further aspect, the invention concerns an isolated PRO290 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 1003 of Figure 23 (SEQ ID NO:33).

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO290 polypeptide having the sequence of amino acid residues from about 1 to about 1003, inclusive of Figure 23 (SEQ ID NO:33), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO290 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO290 antibody.

15 10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO290 polypeptide, by contacting the native PRO290 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 20 In a still further embodiment, the invention concerns a composition comprising a PRO290 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 10. **PRO874**

25 Applicants have identified a cDNA clone that encodes a novel multi-span transmembrane polypeptide, which is designated in the present application as "PRO874".

30 20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO874 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO874 polypeptide having amino acid residues 1 to 321 of Figure 25 (SEQ ID NO:36), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO874 polypeptide having amino acid from about X to 321 of Figure 25 (SEQ ID NO:36), where X is any 35 25 amino acid from about 270 to about 279 of Figure 25 (SEQ ID NO:36), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA40621-1440 vector deposited on June 2, 1998, as ATCC 209922 which includes the nucleotide sequence encoding PRO874.

40 30 In another embodiment, the invention provides isolated PRO874 polypeptide. In particular, the invention provides isolated native sequence PRO874 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 321 of Figure 25 (SEQ ID NO:36). Additional embodiments of the present invention are directed to PRO874 polypeptides comprising amino acids X to 321 of Figure 25 (SEQ 45 35 ID NO:36), where X is any amino acid from about 270 to about 279 of Figure 25 (SEQ ID NO:36). Optionally, the PRO874 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA40621-1440 vector deposited on June 2, 1998, as ATCC 209922.

5 **11. PRO710**

Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to CDC45 protein, wherein the polypeptide is designated in the present application as "PRO710".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO710 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO710 polypeptide having amino acid residues 1 to 566 of Figure 27 (SEQ ID NO:41), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO710 polypeptide having amino acid residues about 33 to 566 of Figure 27 (SEQ ID NO:41) or amino acid 1 or about 33 to X of Figure 27 (SEQ ID NO:41), where X is any amino acid from 449 to 458 of Figure 27 (SEQ ID NO:41), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA44161-1434 vector deposited on May 27, 1998 as ATCC 209907 which includes the nucleotide sequence encoding PRO710.

In another embodiment, the invention provides isolated PRO710 polypeptide. In particular, the invention provides isolated native sequence PRO710 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 566 of Figure 27 (SEQ ID NO:41). Additional embodiments of the present invention are directed to PRO710 polypeptides comprising amino acids about 33 to 566 of Figure 27 (SEQ ID NO:41) or amino acid 1 or about 33 to X of Figure 27 (SEQ ID NO:41), where X is any amino acid from 449 to 458 of Figure 27 (SEQ ID NO:41). Optionally, the PRO710 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA44161-1434 vector deposited on May 27, 1998 as ATCC 209907.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA38190 comprising the nucleotide sequence of Figure 28 (SEQ ID NO:42).

35 **25 12. PRO1151**

A cDNA clone (DNA44694-1500) has been identified, having homology to nucleic acid encoding C1q protein, that encodes a novel polypeptide, designated in the present application as "PRO1151".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1151 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1151 polypeptide having the sequence of amino acid residues from about 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1151 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 272 or about 332 and about 1048, inclusive, of Figure 29 (SEQ ID NO:46). Preferably, hybridization occurs under

5 stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203114 (DNA44694-1500) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203114 (DNA44694-1500).

In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or (b) the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1151 polypeptide having the sequence of amino acid residues from 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1151 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 20 in the sequence of Figure 30 (SEQ ID NO:47).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1151 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 29 (SEQ ID NO:46).

In another embodiment, the invention provides isolated PRO1151 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

5 In a specific aspect, the invention provides isolated native sequence PRO1151 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 21 to about 259 of Figure 30 (SEQ ID NO:47).

10 5 In another aspect, the invention concerns an isolated PRO1151 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47).

15 10 In a further aspect, the invention concerns an isolated PRO1151 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47).

20 20 In yet another aspect, the invention concerns an isolated PRO1151 polypeptide, comprising the sequence of amino acid residues 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or a fragment thereof sufficient to provide a binding site for an anti-PRO1151 antibody. Preferably, the PRO1151 fragment retains a qualitative biological activity of a native PRO1151 polypeptide.

25 15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1151 polypeptide having the sequence of amino acid residues from about 1 or about 21 to about 259, inclusive of Figure 30 (SEQ ID NO:47), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about an 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b). (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1151 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1151 antibody.

35 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1151 polypeptide by contacting the native PRO1151 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 40 In a still further embodiment, the invention concerns a composition comprising a PRO1151 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

45 13. **PRO1282**

45 A cDNA clone (DNA45495-1550) has been identified that encodes a novel polypeptide having sequence identity with leucine rich repeat proteins and designated in the present application as "PRO1282."

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1282 polypeptide.

5 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1282 polypeptide having the sequence of amino acid residues from about 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or (b) the complement of the DNA molecule of (a).

10 10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1282 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 189 and about 2138, inclusive, of Figure 31 (SEQ ID NO:51). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203156 (DNA45495-1550), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203156 (DNA45495-1550).

25 20 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or the complement of the DNA of (a).

30 35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1282 polypeptide having the sequence of amino acid residues from about 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

40 45 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1282 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 23 in the sequence of Figure 32 (SEQ ID NO:52). The transmembrane domain has been tentatively identified as extending from about amino acid position 579 through about amino acid position 599 in the PRO1282 amino acid sequence (Figure 32, SEQ ID NO:52).

50 55 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the

5 amino acid sequence of residues 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or (b) the complement of the DNA of (a).

10 Another embodiment is directed to fragments of a PRO1282 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

15 In another embodiment, the invention provides isolated PRO1282 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

20 In a specific aspect, the invention provides isolated native sequence PRO1282 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 24 through 673 of Figure 32 (SEQ ID NO:52).

25 In another aspect, the invention concerns an isolated PRO1282 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52).

30 15 In a further aspect, the invention concerns an isolated PRO1282 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 24 through 673 of Figure 32 (SEQ ID NO:52).

35 20 In yet another aspect, the invention concerns an isolated PRO1282 polypeptide, comprising the sequence of amino acid residues 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or a fragment thereof sufficient to provide a binding site for an anti-PRO1282 antibody. Preferably, the PRO1282 fragment retains a qualitative biological activity of a native PRO1282 polypeptide.

40 35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1282 polypeptide having the sequence of amino acid residues from about 24 to about 673, inclusive of Figure 32 (SEQ ID NO:52), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

45 30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1282 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1282 antibody.

50 45 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1282 polypeptide, by contacting the native PRO1282 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

55 35 In a still further embodiment, the invention concerns a composition comprising a PRO1282 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically

5 acceptable carrier.

10 14. **PRO358**

Applicants have identified a novel cDNA clone that encodes novel human Toll polypeptides, designated in the present application as PRO358.

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising a DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO358 polypeptide having amino acids 20 to 575 of Figure 34 (SEQ ID NO:57), or (b) the complement of the DNA molecule of (a). The complementary DNA molecule 20 preferably remains stably bound to such encoding nucleic acid sequence under at least moderate, and optionally, under high stringency conditions.

25 In a further embodiment, the isolated nucleic acid molecule comprises a polynucleotide that has at least about 90%, preferably at least about 95% sequence identity with a polynucleotide encoding a polypeptide comprising the sequence of amino acids 1 to 811 of Figure 34 (SEQ ID NO:57).

30 15 In a specific embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding native or variant PRO358 polypeptide, with or without the N-terminal signal sequence, and with or without the transmembrane regions of the respective full-length sequences. In one aspect, the isolated nucleic acid comprises DNA encoding a mature, full-length native PRO358 polypeptide having amino acid residues 1 to 811 of Figure 34 (SEQ ID NO:57), or is complementary to such encoding nucleic acid sequence. In another aspect, the invention concerns an isolated nucleic acid molecule that comprises DNA encoding a native PRO358 polypeptide without an N-terminal signal sequence, or is complementary to such encoding nucleic acid sequence. In yet another embodiment, the invention concerns nucleic acid encoding transmembrane-domain deleted or inactivated forms of the full-length native PRO358 protein.

35 25 In another embodiment, the invention provides an isolated nucleic acid molecule which comprises the clone (DNA 47361-1249) deposited on November 7, 1997, under ATCC number 209431.

40 30 In a specific embodiment, the invention provides a vector comprising a polynucleotide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity with a polynucleotide encoding a polypeptide comprising the sequence of amino acids 20 to 811 of Figure 34 (SEQ ID NO:57), or the complement of such polynucleotide. In a particular embodiment, the vector comprises DNA encoding the novel Toll homologue (PRO358), with or without the N-terminal signal sequence (about amino acids 1 to 19), or a transmembrane-domain (about amino acids 576-595) deleted or inactivated variant thereof, or the extracellular domain (about amino acids 20 to 595) of the mature protein, or a protein comprising any one of these sequences. A host cell comprising such a vector is also provided.

45 35 In another embodiment, the invention provides isolated PRO358 polypeptides. The invention further provides an isolated native sequence PRO358 polypeptide, or variants thereof. In particular, the invention provides an isolated native sequence PRO358 polypeptide, which in certain embodiments, includes the amino

acid sequence comprising residues 20 to 575, or 20 to 811, or 1 to 811 of Figure 34 (SEQ ID NO:57).

5 In yet another embodiment, the invention concerns agonists and antagonists of the native PRO358 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO358 antibody.

10 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of the native PRO358 polypeptide.

15 5 In a still further embodiment, the invention concerns a composition comprising a PRO358 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

The invention further concerns a composition comprising an antibody specifically binding a PRO358 polypeptide, in combination with a pharmaceutically acceptable carrier.

15 10 The invention also concerns a method of treating septic shock comprising administering to a patient an effective amount of an antagonist of a PRO358 polypeptide. In a specific embodiment, the antagonist is a blocking antibody specifically binding a native PRO358 polypeptide.

20 15. **PRO1310**

A cDNA clone (DNA47394-1572) has been identified that encodes a novel polypeptide having 15 sequence identity with carboxypeptidase X2 and designated in the present application as "PRO1310."

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1310 polypeptide.

20 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1310 polypeptide having the sequence of amino acid residues from about 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62), or (b) the complement of the DNA molecule of (a).

30 35 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1310 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 401 and about 2593, inclusive, of Figure 35 (SEQ ID NO:61). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 45 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203109 (DNA47394-1572), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203109 (DNA47394-1572).

35 50 45 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 26 to about 765, inclusive of Figure 36 (SEQ ID

5 NO:62), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1310 polypeptide having the sequence of amino acid residues from about 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62), or (b) the complement of the DNA of (a).

15 20 In another embodiment, the invention provides isolated PRO1310 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

15 25 In a specific aspect, the invention provides isolated native sequence PRO1310 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 26 through 765 of Figure 36 (SEQ ID NO:62).

20 30 In another aspect, the invention concerns an isolated PRO1310 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62).

35 40 In a further aspect, the invention concerns an isolated PRO1310 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 26 through 765 of Figure 36 (SEQ ID NO:62).

45 50 In yet another aspect, the invention concerns an isolated PRO1310 polypeptide, comprising the sequence of amino acid residues 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62), or a fragment thereof sufficient to provide a binding site for an anti-PRO1310 antibody. Preferably, the PRO1310 fragment retains a qualitative biological activity of a native PRO1310 polypeptide.

55 30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1310 polypeptide having the sequence of amino acid residues from about 26 to about 765, inclusive of Figure 36 (SEQ ID NO:62), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

5 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1310 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1310 antibody.

10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1310 polypeptide, by contacting the native PRO1310 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

15 5 In a still further embodiment, the invention concerns a composition comprising a PRO1310 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 16. **PRO698**

10 Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to olfactomedin, wherein the polypeptide is designated in the present application as "PRO698".

20 20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO698 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO698 polypeptide having amino acid residues 1 to 510 of Figure 38 (SEQ ID NO:67), or is complementary

25 15 to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO698 polypeptide having amino acid residues about 21 to 510 of Figure 38 (SEQ ID NO:67), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA48320-1433 vector deposited on May 27, 1998 as ATCC 209904 which includes the

30 20 nucleotide sequence encoding PRO698.

35 25 In another embodiment, the invention provides isolated PRO698 polypeptide. In particular, the invention provides isolated native sequence PRO698 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 510 of Figure 38 (SEQ ID NO:67). Additional embodiments of the

40 30 present invention are directed to PRO698 polypeptides comprising amino acids about 21 to 510 of Figure 38 (SEQ ID NO:67). Optionally, the PRO698 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA48320-1433 vector deposited on May 27, 1998 as ATCC 209904.

45 35 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA39906 comprising the nucleotide sequence of Figure 39 (SEQ ID NO:68).

45 17. **PRO732**

50 35 Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to the human placental protein Diff33, wherein the polypeptide is designated in the present application as "PRO732".

55 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO732 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO732 polypeptide having amino acid residues 1 to 453 of Figure 41 (SEQ ID NO:73), or is complementary

5 to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO732 polypeptide having amino acid residues about 29 to 453 of Figure 41 (SEQ ID NO:73) or amino acid 1 or about 29 to X of Figure 41 (SEQ ID NO:73), where X is any amino acid from 31 to 40 of Figure 41 (SEQ ID NO:73), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under
10 5 at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA48334-1435 vector deposited on June 2, 1998 as ATCC 209924 which includes the nucleotide sequence encoding PRO732.

15 In another embodiment, the invention provides isolated PRO732 polypeptide. In particular, the invention provides isolated native sequence PRO732 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 453 of Figure 41 (SEQ ID NO:73). Additional embodiments of the present invention are directed to PRO732 polypeptides comprising amino acids about 29 to 453 of Figure 41 (SEQ ID NO:73) or amino acid 1 or about 29 to X of Figure 41 (SEQ ID NO:73), where X is any amino acid from 31 to 40 of Figure 41 (SEQ ID NO:73). Optionally, the PRO732 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA48334-1435 vector deposited on June
20 15 2, 1998 as ATCC 209924.

25 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA20239 comprising the nucleotide sequence of Figure 42 (SEQ ID NO:74).

30 20 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA38050 comprising the nucleotide sequence of Figure 43 (SEQ ID NO:75).

35 25 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA40683 comprising the nucleotide sequence of Figure 44 (SEQ ID NO:76).

40 30 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA42580 comprising the nucleotide sequence of Figure 45 (SEQ ID NO:77).

45 35 **18. PRO1120**
A cDNA clone (DNA48606-1479) has been identified that encodes a novel polypeptide having homology sulfatases, designated in the present application as "PRO1120."

50 40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1120 polypeptide.

45 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1120 polypeptide having the sequence of amino acid residues from about 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or (b) the complement of the DNA molecule of (a).

55 50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1120 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 659 and about 3208, inclusive, of Figure 46 (SEQ ID NO:83). Preferably, hybridization occurs under stringent

5 hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203040 (DNA48606-1479), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203040 (DNA48606-1479).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1120 polypeptide having the sequence of amino acid residues from about 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1120 polypeptide, with or without the N-terminal signal sequence, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 17 in the sequence of Figure 47 (SEQ ID NO:84).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1120 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO1120 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO1120 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 18 to 867 of Figure 47 (SEQ ID NO:84).

5 In another aspect, the invention concerns an isolated PRO1120 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84).

10 In a further aspect, the invention concerns an isolated PRO1120 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 18 to 867 of Figure 47 (SEQ ID NO:84).

15 In yet another aspect, the invention concerns an isolated PRO1120 polypeptide, comprising the sequence of amino acid residues 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or a fragment thereof sufficient to provide a binding site for an anti-PRO1120 antibody. Preferably, the PRO1120 fragment retains a qualitative biological activity of a native PRO1120 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1120 polypeptide having the sequence of amino acid residues from about 18 to about 867, inclusive of Figure 47 (SEQ ID NO:84), or (b) 15 the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1120 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1120 antibody.

30 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1120 polypeptide, by contacting the native PRO1120 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 In a still further embodiment, the invention concerns a composition comprising a PRO1120 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

40 19. **PRO537**

30 A cDNA clone (DNA49141-1431) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO537".

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO537 polypeptide.

50 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO537 polypeptide having the sequence of amino acid residues from about 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID

5 NO:95), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO537 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 97 or about 190 and about 441, inclusive, of Figure 48 (SEQ ID NO:94). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203003 (DNA49141-1431) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the
15 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203003 (DNA49141-1431).

20 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
25 identity to the sequence of amino acid residues 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95), or (b) the complement of the DNA of (a).

30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO537 polypeptide having the sequence of amino acid residues from 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO537 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 31 in the sequence of Figure 49 (SEQ ID NO:95).

40 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95), or (b) the complement of the DNA of (a).

45 Another embodiment is directed to fragments of a PRO537 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived
50

from the nucleotide sequence shown in Figure 48 (SEQ ID NO:94).

5 In another embodiment, the invention provides isolated PRO537 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO537 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 32 to about 115 of Figure 49 (SEQ ID NO:95).

15 In another aspect, the invention concerns an isolated PRO537 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95).

20 10 In a further aspect, the invention concerns an isolated PRO537 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95).

25 15 In yet another aspect, the invention concerns an isolated PRO537 polypeptide, comprising the sequence of amino acid residues 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95), or a fragment thereof sufficient to provide a binding site for an anti-PRO537 antibody. Preferably, the PRO537 fragment retains a qualitative biological activity of a native PRO537 polypeptide.

30 20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO537 polypeptide having the sequence of amino acid residues from about 1 or about 32 to about 115, inclusive of Figure 49 (SEQ ID NO:95), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and 35 25 (iii) recovering the polypeptide from the cell culture.

20. **PRO536**

A cDNA clone (DNA49142-1430) has been identified, that encodes a novel secreted polypeptide, designated in the present application as "PRO536".

40 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO536 polypeptide.

45 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO536 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO536 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 48 or about 123 and about 986, inclusive, of Figure 50 (SEQ ID NO:96). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203002 (DNA49142-1430) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203002 (DNA49142-1430).

15 20 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or (b) the complement of the DNA of (a).

25 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO536 polypeptide having the sequence of amino acid residues from 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

35 40 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO536 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 25 in the sequence of Figure 51 (SEQ ID NO:97).

45 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or (b) the complement of the DNA of (a).

55 Another embodiment is directed to fragments of a PRO536 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 50 (SEQ ID NO:96).

5 In another embodiment, the invention provides isolated PRO536 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO536 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 26 to about 313 of Figure 51 (SEQ ID NO:97).

15 5 In another aspect, the invention concerns an isolated PRO536 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97).

20 10 In a further aspect, the invention concerns an isolated PRO536 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97).

25 15 In yet another aspect, the invention concerns an isolated PRO536 polypeptide, comprising the sequence of amino acid residues 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or a fragment thereof sufficient to provide a binding site for an anti-PRO536 antibody. Preferably, the PRO536 fragment retains a qualitative biological activity of a native PRO536 polypeptide.

30 20 25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO536 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 313, inclusive of Figure 51 (SEQ ID NO:97), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

35 25 21. **PRO535**

40 A cDNA clone (DNA49143-1429) has been identified, having homology to nucleic acid encoding a putative peptidyl-prolyl isomerase that encodes a novel polypeptide, designated in the present application as "PRO535".

30 45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO535 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO535 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO535 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 78 or about 153 and about 680, inclusive, of Figure 52 (SEQ ID NO:98). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203013 (DNA49143-1429) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203013 (DNA49143-1429).

15 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or (b) the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO535 polypeptide having the sequence of amino acid residues from 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO535 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 25 in the sequence of Figure 53 (SEQ ID NO:99). The transmembrane domain has been tentatively identified as extending from about amino acid position 155 to about amino acid position 174 in the PRO535 amino acid sequence (Figure 53, SEQ ID NO:99).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or (b) the complement of the DNA of (a).

35 Another embodiment is directed to fragments of a PRO535 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50

5 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 52 (SEQ ID NO:98).

In another embodiment, the invention provides isolated PRO535 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO535 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 26 to about 201 of Figure 53 (SEQ ID NO:99).

15 In another aspect, the invention concerns an isolated PRO535 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99).

20 In a further aspect, the invention concerns an isolated PRO535 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99).

25 In yet another aspect, the invention concerns an isolated PRO535 polypeptide, comprising the sequence of amino acid residues 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or a fragment thereof sufficient to provide a binding site for an anti-PRO535 antibody. Preferably, the PRO535 fragment retains a qualitative biological activity of a native PRO535 polypeptide.

30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO535 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 201, inclusive of Figure 53 (SEQ ID NO:99), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

35 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO535 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO535 antibody.

40 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO535 polypeptide by contacting the native PRO535 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

45 In a still further embodiment, the invention concerns a composition comprising a PRO535 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

50 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA30861 comprising the nucleotide sequence of Figure 54 (SEQ ID NO:100).

55 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA36351 comprising the nucleotide sequence of Figure 55 (SEQ ID NO:101).

5 **22. PRO718**

Applicants have identified a cDNA clone that encodes a novel tetraspan membrane polypeptide, wherein the polypeptide is designated in the present application as "PRO718".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO718 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO718 polypeptide having amino acid residues 1 to 157 of Figure 57 (SEQ ID NO:103), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO718 polypeptide having amino acid residues X to 157 of Figure 57 (SEQ ID NO:103), where X is any amino acid from 143 to 152 of Figure 57 (SEQ ID NO:103), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA49647-1398 vector deposited on June 2, 1998 as ATCC 209919 which includes the nucleotide sequence encoding PRO718.

In another embodiment, the invention provides isolated PRO718 polypeptide. In particular, the invention provides isolated native sequence PRO718 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 157 of Figure 57 (SEQ ID NO:103). Additional embodiments of the present invention are directed to isolated PRO718 polypeptides comprising amino acids X to 157 of Figure 57 (SEQ ID NO:103), where X is any amino acid from 143 to 152 of Figure 57 (SEQ ID NO:103). Optionally, the PRO718 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA49647-1398 vector deposited on June 2, 1998 as ATCC 209919.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA15386 which comprises the nucleotide sequence of Figure 58 (SEQ ID NO:104).

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA16630 which comprises the nucleotide sequence of Figure 59 (SEQ ID NO:105).

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA16829 which comprises the nucleotide sequence of Figure 60 (SEQ ID NO:106).

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA28357 which comprises the nucleotide sequence of Figure 61 (SEQ ID NO:107).

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA43512 which comprises the nucleotide sequence of Figure 62 (SEQ ID NO:108).

30 **23. PRO872**

Applicants have identified a cDNA clone, DNA49819-1439, that encodes a novel polypeptide having homology to dehydrogenases wherein the polypeptide is designated in the present application as "PRO872".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO872 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most

preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO872 polypeptide having the sequence of amino acid residues from 1 or about 19 to about 610, inclusive of Figure 64 (SEQ ID NO:113), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO872 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid between about residues 68 and about 1843, inclusive of Figure 63 (SEQ ID NO:112). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209931 (DNA49819-1439), which was deposited on June 2, 1998. In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209931 (DNA49819-1439).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to about 610, inclusive of Figure 64 (SEQ ID NO:113).

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO872 extracellular domain (ECD), with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble variants (i.e. transmembrane domain(s) deleted or inactivated) or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 to about amino acid position 18 in the sequence of Figure 64 (SEQ ID NO:113). The first transmembrane domain region has been tentatively identified as extending from about amino acid position 70 to about amino acid position 87 in the PRO872 amino acid sequence (Figure 64, SEQ ID NO:113).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to about 610, inclusive of Figure 64 (SEQ ID NO:113).

Another embodiment is directed to fragments of a PRO872 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO872 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

5 In a specific aspect, the invention provides isolated native sequence PRO872 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 19 to 610 of Figure 64 (SEQ ID NO:113).

10 In another aspect, the invention concerns an isolated PRO872 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to 610, inclusive of Figure 64 (SEQ ID NO:113).

15 In a further aspect, the invention concerns an isolated PRO872 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to 610 of Figure 64 (SEQ ID NO:113).

20 In another aspect, the invention concerns a PRO872 extracellular domain comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to X of Figure 64 (SEQ ID NO:113), wherein X is any one of 15 amino acid residues 66 to 75 of Figure 64 (SEQ ID NO:113).

25 In yet another aspect, the invention concerns an isolated PRO872 polypeptide, comprising the sequence of amino acid residues 1 or about 19 to about 610, inclusive of Figure 64 (SEQ ID NO:113), or a fragment thereof sufficient to provide a binding site for an anti-PRO872 antibody. Preferably, the PRO872 fragment retains a qualitative biological activity of a native PRO872 polypeptide.

30 In another aspect, the present invention is directed to fragments of a PRO872 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

In yet another embodiment, the invention concerns agonist and antagonists of the PRO872 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO872 antibody.

35 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO872 polypeptide.

40 In still a further embodiment, the invention concerns a composition comprising a PRO872 polypeptide as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

45 24. **PRO1063**

30 Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to human type IV collagenase, wherein the polypeptide is designated in the present application as "PRO1063".

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1063 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1063 polypeptide having amino acid residues 1 to 301 of Figure 66 (SEQ ID NO:115), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA 50 encoding the PRO1063 polypeptide having amino acid residues about 22 to 301 of Figure 66 (SEQ ID NO:115).

5 NO:115), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA49820-1427 vector deposited on June 2, 1998 as ATCC 209932 which includes the nucleotide sequence encoding PRO1063.

10 In another embodiment, the invention provides isolated PRO1063 polypeptide. In particular, the invention provides isolated native sequence PRO1063 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 301 of Figure 66 (SEQ ID NO:115). Additional embodiments of the present invention are directed to PRO1063 polypeptides comprising amino acids about 22 to 301 of Figure 66 (SEQ ID NO:115). Optionally, the PRO1063 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA49820-1427 vector deposited on June 2, 1998 as
15 ATCC 209932.
10

20 **25. PRO619**

25 A cDNA clone (DNA49821-1562) has been identified that encodes a novel polypeptide, designated in the present application as "PRO619." PRO619 polypeptides have sequence identity with VpreB genes, particularly to VpreB3.

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO619 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO619 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 123, inclusive of Figure 68 (SEQ ID NO:117), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO619 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 81 or 45 141 and about 449, inclusive, of Figure 67 (SEQ ID NO:116). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 30 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209981 (DNA49821-1562), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209981 (DNA49821-1562).

50 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 21 to about 123, inclusive of Figure 68 (SEQ

5 ID NO:117), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO619 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 123, inclusive of Figure 68 (SEQ ID NO:117), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO619 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, which is in a soluble form. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 20 in the sequence of Figure 68 (SEQ ID NO:117).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 20 amino acid sequence of residues 1 or 21 to about 123, inclusive of Figure 68 (SEQ ID NO:117), or (b) the 25 complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO619 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 40 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 30 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO619 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO619 polypeptide, which in 25 one embodiment, includes an amino acid sequence comprising residues 1 or 21 through 123 of Figure 68 (SEQ ID NO:117).

40 In another aspect, the invention concerns an isolated PRO619 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more 45 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 21 through about 123, inclusive of Figure 68 (SEQ ID NO:117).

45 In a further aspect, the invention concerns an isolated PRO619 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid 50 sequence of residues 1 or 21 through 123 of Figure 68 (SEQ ID NO:117).

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO619 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 123, inclusive of Figure 68 (SEQ ID NO:117),

5 or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 5 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO619 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO619 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO619 polypeptide, by contacting the native PRO619 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 10 In a still further embodiment, the invention concerns a composition comprising a PRO619 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 20 **26. PRO943**

15 A cDNA clone (DNA52192-1369) has been identified, having homology to nucleic acid encoding fibroblast growth factor receptor-4 that encodes a novel polypeptide, designated in the present application as "PRO943".

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO943 polypeptide.

30 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO943 polypeptide having the sequence of amino acid residues from about 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or (b) the complement of the DNA molecule of (a).

35 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO943 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 150 or about 201 and about 1661, inclusive, of Figure 69 (SEQ ID NO:118). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203042 (DNA52192-1369) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203042 (DNA52192-1369).

45 35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence

50

5 identity to the sequence of amino acid residues 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or (b) the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO943 polypeptide having the sequence of amino acid residues from 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA 10 encoding a PRO943 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary 20 to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 17 in the sequence of Figure 70 (SEQ ID NO:119). The transmembrane domain has been tentatively identified as extending from about amino acid position 376 25 to about amino acid position 396 in the PRO943 amino acid sequence (Figure 70, SEQ ID NO:119).

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 20 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85 % positives, more preferably at least about 90% positives, most preferably at least about 95 % positives when compared with the amino acid sequence of residues 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or (b) the complement of the DNA of (a).

30 Another embodiment is directed to fragments of a PRO943 polypeptide coding sequence that may find 35 use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 69 (SEQ ID NO:118).

35 In another embodiment, the invention provides isolated PRO943 polypeptide encoded by any of the 40 isolated nucleic acid sequences hereinabove identified.

40 In a specific aspect, the invention provides isolated native sequence PRO943 polypeptide, which in 45 certain embodiments, includes an amino acid sequence comprising residues 1 or about 18 to about 504 of Figure 70 (SEQ ID NO:119).

45 In another aspect, the invention concerns an isolated PRO943 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85 % sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95 % sequence identity to the 50 sequence of amino acid residues 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119).

55 In a further aspect, the invention concerns an isolated PRO943 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85 % positives, more preferably at least about 90% positives, most preferably at least about 95 % positives when compared with the amino acid

5 sequence of residues 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119).

In yet another aspect, the invention concerns an isolated PRO943 polypeptide, comprising the sequence of amino acid residues 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or a fragment thereof sufficient to provide a binding site for an anti-PRO943 antibody. Preferably, the PRO943 fragment retains a qualitative biological activity of a native PRO943 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO943 polypeptide having the sequence of amino acid residues from about 1 or about 18 to about 504, inclusive of Figure 70 (SEQ ID NO:119), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO943 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO943 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO943 polypeptide by contacting the native PRO943 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO943 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 **27. PRO1188**
A cDNA clone (DNA52598-1518) has been identified that encodes a novel polypeptide having homology to nucleotide pyrophosphohydrolase and designated in the present application as "PRO1188."

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1188 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1188 polypeptide having the sequence of amino acid residues from about 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1188 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 199 and about 3687, inclusive, of Figure 71 (SEQ ID NO:123). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203107 (DNA52598-1518), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203107 (DNA52598-1518).

10 5 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124), or the complement of the DNA of (a).

15 10 15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1188 polypeptide having the sequence of amino acid residues from about 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 20 25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1188 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 21 in the sequence of Figure 72 (SEQ ID NO:124).

25 30 35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124), or (b) the complement of the DNA of (a).

40 30 35 In another embodiment, the invention provides isolated PRO1188 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

45 40 45 In a specific aspect, the invention provides isolated native sequence PRO1188 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 22 to 1184 of Figure 72 (SEQ ID NO:124).

50 45 50 In another aspect, the invention concerns an isolated PRO1188 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124).

55 50 55 In a further aspect, the invention concerns an isolated PRO1188 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid

sequence of residues 22 to 1184 of Figure 72 (SEQ ID NO:124).

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1188 polypeptide having the sequence of amino acid residues from about 22 to about 1184, inclusive of Figure 72 (SEQ ID NO:124), or
10 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1188 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1188 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1188 polypeptide, by contacting the native PRO1188 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO1188 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

28. **PRO1133**

30 A cDNA clone (DNA53913-1490) has been identified that encodes a novel polypeptide having sequence identity with netrin-1a and designated in the present application as "PRO1133."

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1133 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1133 polypeptide having the sequence of amino acid residues from about 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1133 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 320 and about 1579, inclusive, of Figure 73 (SEQ ID NO:128). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203162 (DNA53913-1490), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA

in ATCC Deposit No. 203162 (DNA53913-1490).

5 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1133 polypeptide having the sequence of amino acid residues from about 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or (b) the 15 complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more 25 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1133 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in 20 length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO1133 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO1133 polypeptide, which in 35 one embodiment, includes an amino acid sequence comprising residues 19 through 438 of Figure 74 (SEQ ID NO:129).

40 In another aspect, the invention concerns an isolated PRO1133 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 45 sequence of amino acid residues 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129).

50 In a further aspect, the invention concerns an isolated PRO1133 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 19 through 438 of Figure 74 (SEQ ID NO:129).

55 In yet another aspect, the invention concerns an isolated PRO1133 polypeptide, comprising the sequence of amino acid residues 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or a fragment thereof sufficient to provide a binding site for an anti-PRO1133 antibody. Preferably, the PRO1133 fragment

5 retains a qualitative biological activity of a native PRO1133 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1133 polypeptide having the sequence of amino acid residues from about 19 to about 438, inclusive of Figure 74 (SEQ ID NO:129), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1133 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1133 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1133 polypeptide, by contacting the native PRO1133 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1133 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 29. **PRO784**

A cDNA clone (DNA53978-1443) has been identified that encodes a novel polypeptide, designated in the present application as "PRO784".

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO784 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO784 polypeptide having the sequence of amino acid residues from about 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO784 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 182 and about 820, inclusive, of Figure 75 (SEQ ID NO:134). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 35 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209983 (DNA53978-1443), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA

5 in ATCC Deposit No. 209983 (DNA53978-1443).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 50, and preferably at least 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO784 polypeptide having the sequence of amino acid residues from about 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO784 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position about 1 to about amino acid position 15 in the sequence of Figure 76 (SEQ ID NO: 135). The first transmembrane domain has been tentatively identified as extending from about amino acid position 68 to about amino acid position 87 in the PRO784 amino acid sequence (Figure 76, SEQ ID NO:135).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or (b) the complement of the DNA of (a).

In another aspect, the invention concerns hybridization probes that comprise fragments of the PRO784 coding sequence, or complementary sequence thereof. The hybridization probes preferably have at least about 20 nucleotides to about 80 nucleotides, and more preferably, at least about 40 to about 80 nucleotides.

In another embodiment, the invention provides isolated PRO784 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO784 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 16 to 228 of Figure 76 (SEQ ID NO:135).

In another aspect, the invention concerns an isolated PRO784 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135).

5 In a further aspect, the invention concerns an isolated PRO784 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 16 to 228 of Figure 76 (SEQ ID NO:135).

10 In yet another aspect, the invention concerns an isolated PRO784 polypeptide, comprising the sequence of amino acid residues 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or a fragment thereof sufficient to provide a binding site for an anti-PRO784 antibody. Preferably, the PRO784 fragment retains a qualitative biological activity of a native PRO784 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO784 polypeptide having the sequence of amino acid residues from about 16 to about 228, inclusive of Figure 76 (SEQ ID NO:135), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 25 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO784 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO784 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO784 polypeptide, by contacting the native PRO784 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 In a still further embodiment, the invention concerns a composition comprising a PRO784 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 25 30. **PRO783**

40 Applicants have identified a cDNA clone that encodes a novel multi-span transmembrane polypeptide, wherein the polypeptide is designated in the present application as "PRO783".

40 30 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO783 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO783 polypeptide having amino acid residues 1 to 489 of Figure 79 (SEQ ID NO:138), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO783 polypeptide having amino acid residues 1 to X of Figure 79 (SEQ ID NO:138), where X is any amino acid from 19 to 28 of Figure 79 (SEQ ID NO:138), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA53996-1442 vector deposited on June 2, 1998 as ATCC 209921 which includes the nucleotide sequence encoding PRO783.

5 In another embodiment, the invention provides isolated PRO783 polypeptide. In particular, the invention provides isolated native sequence PRO783 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 489 of Figure 79 (SEQ ID NO:138). Additional embodiments of the present invention are directed to PRO783 polypeptides comprising amino acid 1 to about X of Figure 79 (SEQ ID NO:138), where X is any amino acid from 19 to 28 of Figure 79 (SEQ ID NO:138). Optionally, the PRO783 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA53996-1442 vector deposited on June 2, 1998, as ATCC 209921.

10 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA45201 which comprises the nucleic acid sequence shown in Figure 80 (SEQ ID NO:139).

15 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA14575 which comprises the nucleic acid sequence shown in Figure 81 (SEQ ID NO:140).

20 31. **PRO820**

A cDNA clone (DNA56041-1416) has been identified, having sequence identity with immunoglobulin gamma Fc receptors that encodes a novel polypeptide, designated in the present application as "PRO820".

25 15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO820 polypeptide.

30 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO820 polypeptide having the sequence of amino acid residues from about 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-124, or in another embodiment, 16-124.

35 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO820 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 115 or 160 and about 486, inclusive, of Figure 82 (SEQ ID NO:145). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203021 (DNA56041-1416), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. (DNA56041-1416).

45 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence

50

55

5 identity to the sequence of amino acid residues from about 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146), or the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO820 polypeptide having the sequence of amino acid residues from about 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 10 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146), or (b) the 20 complement of the DNA of (a).

25 In another embodiment, the invention provides isolated PRO820 polypeptide encoded by any of the 15 isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO820 polypeptide, which in 25 one embodiment, includes an amino acid sequence comprising residues 1 or 16 through 124 of Figure 83 (SEQ ID NO:146).

35 In another aspect, the invention concerns an isolated PRO820 polypeptide, comprising an amino acid 20 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 30 sequence of amino acid residues 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146).

40 In a further aspect, the invention concerns an isolated PRO820 polypeptide, comprising an amino acid 35 sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least 40 about 90% positives, most preferably at least about 95% positives when compared with the amino acid 45 sequence of residues 1 or 16 through 124 of Figure 83 (SEQ ID NO:146).

45 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA 40 molecule under stringent conditions with (a) a DNA molecule encoding a PRO820 polypeptide having the 50 sequence of amino acid residues from about 1 or 16 to about 124, inclusive of Figure 83 (SEQ ID NO:146), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

55 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO820 50 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO820 antibody.

5 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO820 polypeptide, by contacting the native PRO820 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

10 10 In a still further embodiment, the invention concerns a composition comprising a PRO820 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 5 **32. PRO1080**

A cDNA clone (DNAS6047-1456) has been identified that encodes a novel polypeptide, designated in the present application as "PRO1080." PRO1080 polypeptides have sequence identity with DnaJ proteins.

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1080 polypeptide.

20 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1080 polypeptide having the sequence of amino acid residues from about 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID NO:148), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-358, or in another embodiment, 23-358.

25 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1080 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 159 or 225 and about 1232, inclusive, of Figure 84 (SEQ ID NO:147). Preferably, hybridization occurs under stringent hybridization and wash conditions.

30 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209948 (DNAS6047-1456), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209948 (DNAS6047-1456).

35 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID NO:148), or the complement of the DNA of (a).

40 40 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1080 polypeptide having the sequence of amino acid residues from about 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID

5 NO:148), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1080 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 22 in the sequence of Figure 85 (SEQ ID NO:148).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID NO:148), or (b) the complement of the DNA of (a).

20 In another embodiment, the invention provides isolated PRO1080 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

15 In a specific aspect, the invention provides isolated native sequence PRO1080 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 23 through 358 of Figure 85 (SEQ ID NO:148).

25 In another aspect, the invention concerns an isolated PRO1080 polypeptide, comprising an amino acid sequence having at least about 80 % sequence identity, preferably at least about 85 % sequence identity, more preferably at least about 90 % sequence identity, most preferably at least about 95 % sequence identity to the sequence of amino acid residues 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID NO:148).

30 In a further aspect, the invention concerns an isolated PRO1080 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 23 through 358 of Figure 85 (SEQ ID NO:148).

35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1080 polypeptide having the sequence of amino acid residues from about 1 or 23 to about 358, inclusive of Figure 85 (SEQ ID NO:148), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1080 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1080 antibody.

45 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1080 polypeptide, by contacting the native PRO1080 polypeptide with a candidate molecule and

monitoring a biological activity mediated by said polypeptide.

5 In a still further embodiment, the invention concerns a composition comprising a PRO1080 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA36527 comprising the nucleotide sequence of Figure 86 (SEQ ID NO:149).

15 33. **PRO1079**

'A cDNA clone (DNA56050-1455) has been identified that encodes a novel polypeptide, designated in the present application as "PRO1079".

20 10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1079 polypeptide.

25 20 15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1079 polypeptide having the sequence of amino acid residues from about 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or (b) the complement of the DNA molecule of (a).

30 25 20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1079 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 270 and about 860, inclusive, of Figure 87 (SEQ ID NO:150). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 30 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203011 (DNA56050-1455), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203011 (DNA56050-1455).

40 40 30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or the complement of the DNA of (a).

45 45 35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides and preferably at least about 100 nucleotides, and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1079 polypeptide having the sequence of amino acid residues from about 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence

5 identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1079 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 29 in the sequence of Figure 88 (SEQ ID NO:151).

15 5 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1079 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 10 In another embodiment, the invention provides isolated PRO1079 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 15 In a specific aspect, the invention provides isolated native sequence PRO1079 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 30 to 226 of Figure 88 (SEQ ID NO:151).

35 20 In another aspect, the invention concerns an isolated PRO1079 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151).

40 25 In a further aspect, the invention concerns an isolated PRO1079 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 30 to 226 of Figure 88 (SEQ ID NO:151).

45 30 In yet another aspect, the invention concerns an isolated PRO1079 polypeptide, comprising the sequence of amino acid residues 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or a fragment thereof sufficient to provide a binding site for an anti-PRO1079 antibody. Preferably, the PRO1079 fragment retains a qualitative biological activity of a native PRO1079 polypeptide.

50 35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1079 polypeptide having the sequence of amino acid residues from about 30 to about 226, inclusive of Figure 88 (SEQ ID NO:151), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell

5 comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 34. **PRO793**

15 A cDNA clone (DNA56110-1437) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO793".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO793 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO793 polypeptide having the sequence of amino acid residues from about 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO793 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 77 and about 490, inclusive, of Figure 89 (SEQ ID NO:152). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203113 (DNA56110-1437) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203113 (DNA56110-1437).

40 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 35 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or (b) the complement of the DNA of (a).

45 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 30 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO793 polypeptide having the sequence of amino acid residues from 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

50 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO793 polypeptide, with or without the initiating methionine, and its soluble, i.e., transmembrane

5 domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains have been tentatively identified as extending from about amino acid position 12 to about amino acid position 30, from about amino acid position 33 to about amino acid position 52, from about amino acid position 69 to about amino acid position 89 and from about amino acid position 93 to about amino acid position 109 in the PRO793 amino acid sequence (Figure 90, SEQ ID NO:153).

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or (b) the complement of the DNA of (a).

15 Another embodiment is directed to fragments of a PRO793 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 89 (SEQ ID NO:152).

20 10 Another embodiment, the invention provides isolated PRO793 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

25 In a specific aspect, the invention provides isolated native sequence PRO793 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 to about 138 of Figure 90 (SEQ ID NO:153).

30 20 In another aspect, the invention concerns an isolated PRO793 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153).

35 25 In a further aspect, the invention concerns an isolated PRO793 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153).

40 30 In yet another aspect, the invention concerns an isolated PRO793 polypeptide, comprising the sequence of amino acid residues 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or a fragment thereof sufficient to provide a binding site for an anti-PRO793 antibody. Preferably, the PRO793 fragment retains a qualitative biological activity of a native PRO793 polypeptide.

45 35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO793 polypeptide having the sequence of amino acid residues from about 1 to about 138, inclusive of Figure 90 (SEQ ID NO:153), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell

5 comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNAs0177 comprising the nucleotide sequence of Figure 91 (SEQ ID NO:154).

- 10 35. **PRO1016**
A cDNA clone (DNA56113-1378) has been identified, having sequence identity with acyltransferases that encodes a novel polypeptide, designated in the present application as "PRO1016".
- 15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1016 polypeptide.
- 20 10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1016 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino acids is meant to refer to two alternative embodiments provided herein, i.e., 1-378, or in another embodiment, 19-378.
- 25 15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1016 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 168 or 222 and about 1301, inclusive, of Figure 92 (SEQ ID NO:155). Preferably, hybridization occurs under stringent hybridization and wash conditions.
- 30 20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203049 (DNA56113-1378), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203049 (DNA56113-1378).
- 35 25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156), or the complement of the DNA of (a).
- 40 30 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1016 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a
- 45 35 50

5 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test
DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1016 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e. transmembrane domains deleted or inactivated variants, or is complementary
15 to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
amino acid position 1 through about amino acid position 18 in the sequence of Figure 93 (SEQ ID NO:156).
The transmembrane domains have been tentatively identified as extending from about amino acid position 305
through about amino acid position 330 and from about amino acid position 332 through about amino acid
position 352 in the PRO1016 amino acid sequence (Figure 93, SEQ ID NO:156).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156), or (b) the
complement of the DNA of (a).

25 In another embodiment, the invention provides isolated PRO1016 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO1016 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 1 or 19 through 378 of Figure 93 (SEQ
ID NO:156).

35 In another aspect, the invention concerns an isolated PRO1016 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156).

40 In a further aspect, the invention concerns an isolated PRO1016 polypeptide, comprising an amino
acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably
at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 1 or 19 through 378 of Figure 93 (SEQ ID NO:156).

45 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO1016 polypeptide having the
sequence of amino acid residues from about 1 or 19 to about 378, inclusive of Figure 93 (SEQ ID NO:156),
or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host
cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
recovering the polypeptide from the cell culture.

50 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1016
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1016 antibody.

5 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
a native PRO1016 polypeptide, by contacting the native PRO1016 polypeptide with a candidate molecule and
monitoring a biological activity mediated by said polypeptide.

10 10 In a still further embodiment, the invention concerns a composition comprising a PRO1016
polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically
acceptable carrier.

15 36. **PRO1013**

Applicants have identified a cDNA clone that encodes a novel polypeptide having sequence identity
with P120, wherein the polypeptide is designated in the present application as "PRO1013".

20 10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1013 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the
PRO1013 polypeptide having amino acid residues 1 through 409 of Figure 95 (SEQ ID NO:158), or is
complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate,
and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA
15 insert of the vector deposited on June 2, 1998 with the ATCC as DNA56410-1414 which includes the
nucleotide sequence encoding PRO1013.

25 25 In another embodiment, the invention provides isolated PRO1013 polypeptide. In particular, the
invention provides isolated native sequence PRO1013 polypeptide, which in one embodiment, includes an
amino acid sequence comprising residues 1 through 409 of Figure 95 (SEQ ID NO:158). Optionally, the
20 PRO1013 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert
of the vector deposited on June 2, 1998 with the ATCC as DNA56410-1414.

30 37. **PRO937**

35 25 Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to
glycan family proteins, wherein the polypeptide is designated in the present application as "PRO937".

40 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO937 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the
PRO937 polypeptide having amino acid residues 1 to 556 of Figure 97 (SEQ ID NO:160), or is complementary
to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally,
45 35 under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the
PRO937 polypeptide having amino acid residues about 23 to 556 of Figure 97 (SEQ ID NO:160), or is
complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate,
and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA
insert of the DNA56436-1448 vector deposited on May 27, 1998, as ATCC 209902 which includes the
nucleotide sequence encoding PRO937.

50 50 In another embodiment, the invention provides isolated PRO937 polypeptide. In particular, the
invention provides isolated native sequence PRO937 polypeptide, which in one embodiment, includes an amino

5 acid sequence comprising residues 1 to 556 of Figure 97 (SEQ ID NO:160). Additional embodiments of the present invention are directed to PRO937 polypeptides comprising amino acids about 23 to 556 of Figure 97 (SEQ ID NO:160). Optionally, the PRO937 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA56436-1448 vector deposited on May 27, 1998 as ATCC 209902.

10

5

38. PRO842

A cDNA clone (DNA56855-1447) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO842."

15

10

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO842 polypeptide.

20

15

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO842 polypeptide having the sequence of amino acid residues from about 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or (b) the complement of the DNA molecule of (a).

25

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO842 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 219 and about 509, inclusive, of Figure 98 (SEQ ID NO:164). Preferably, hybridization occurs under stringent hybridization and wash conditions.

30

20

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203004 (DNA56855-1447), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203004 (DNA56855-1447).

35

25

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or the complement of the DNA of (a).

40

30

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides, and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO842 polypeptide having the sequence of amino acid residues from about 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence

50

identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO842 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 22 in the sequence of Figure 99 (SEQ ID NO:165).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO842 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO842 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO842 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 23 to 119 of Figure 99 (SEQ ID NO:165).

In another aspect, the invention concerns an isolated PRO842 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165).

In a further aspect, the invention concerns an isolated PRO842 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 to 119 of Figure 99 (SEQ ID NO:165).

In yet another aspect, the invention concerns an isolated PRO842 polypeptide, comprising the sequence of amino acid residues 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or a fragment thereof sufficient to provide a binding site for an anti-PRO842 antibody. Preferably, the PRO842 fragment retains a qualitative biological activity of a native PRO842 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO842 polypeptide having the sequence of amino acid residues from about 23 to about 119, inclusive of Figure 99 (SEQ ID NO:165), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell

5 comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 39. **PRO839**

10 A cDNA clone (DNA56859-1445) has been identified that encodes a novel polypeptide, designated in the present application as "PRO839."

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO839 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO839 polypeptide having the sequence of amino acid residues from about 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO839 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 71 and 15 about 262, inclusive, of Figure 100 (SEQ ID NO:166). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203019 (DNA56859-1445), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203019 (DNA56859-1445).

30 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 25 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167), or the complement of the DNA of (a).

40 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 50 35 nucleotides, and preferably at least 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO839 polypeptide having the sequence of amino acid residues from about 24 to about 87, inclusive of Figure 101 (SEQ ID NO: 167), or (b) the complement 45 of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

50 35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO839 polypeptide, with or without the N-terminal signal sequence and/or the initiating

5 methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 23 in the sequence of Figure 101 (SEQ ID NO:167).

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167), or (b) the complement of the DNA of (a).

15 Another embodiment is directed to fragments of a PRO839 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

20 In another embodiment, the invention provides isolated PRO839 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

25 In a specific aspect, the invention provides isolated native sequence PRO839 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 24 to 87 of Figure 101 (SEQ ID NO:167).

30 In another aspect, the invention concerns an isolated PRO839 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167).

35 In a further aspect, the invention concerns an isolated PRO839 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 24 to 87 of Figure 101 (SEQ ID NO:167).

40 In yet another aspect, the invention concerns an isolated PRO839 polypeptide, comprising the sequence of amino acid residues 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167), or a fragment thereof sufficient to provide a binding site for an anti-PRO839 antibody. Preferably, the PRO839 fragment retains a qualitative biological activity of a native PRO839 polypeptide.

45 40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO839 polypeptide having the sequence of amino acid residues from about 24 to about 87, inclusive of Figure 101 (SEQ ID NO:167), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

50

5 **40. PRO1180**

Applicants have identified a cDNA clone (DNA56860-1510) having homology to nucleic acid encoding methyltransferase enzymes that encodes a novel polypeptide, designated in the present application as "PRO1180".

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
5 encoding a PRO1180 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1180 polypeptide having the sequence of amino acid residues from about 1 or about 24 to about 277, inclusive of Figure 103
10 (SEQ ID NO:169), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1180
20 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 78 or about 147 and about 908, inclusive of Figure 102 (SEQ ID NO:168). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209952 (DNA56860-1510). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature
20 polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209952 (DNA56860-1510).

30 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 277, inclusive of Figure 103 (SEQ ID
35 NO:169).

40 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
30 encoding a PRO1180 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 23 in the
40 sequence of Figure 103 (SEQ ID NO:169).

45 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding
a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid
45 sequence of residues 1 or about 24 to about 277, inclusive of Figure 103 (SEQ ID NO:169).

50 35 Another embodiment is directed to fragments of a PRO1180 polypeptide coding sequence that may
find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about
50

50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

5 In another embodiment, the invention provides isolated PRO1180 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO1180 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 24 to about 277 of Figure 10 103 (SEQ ID NO:169).

15 In another aspect, the invention concerns an isolated PRO1180 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 277, inclusive of Figure 103 (SEQ ID NO:169).

20 In a further aspect, the invention concerns an isolated PRO1180 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 277, inclusive of Figure 103 (SEQ ID NO:169).

25 In yet another aspect, the invention concerns an isolated PRO1180 polypeptide, comprising the sequence of amino acid residues 1 or about 24 to about 277, inclusive of Figure 103 (SEQ ID NO:169), or a fragment thereof sufficient to provide a binding site for an anti-PRO1180 antibody. Preferably, the PRO1180 fragment retains a qualitative biological activity of a native PRO1180 polypeptide.

30 In another aspect, the present invention is directed to fragments of a PRO1180 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

35 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1180 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1180 antibody.

40 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1180 polypeptide.

45 In still a further embodiment, the invention concerns a composition comprising a PRO1180 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

41. **PRO1134**

50 A cDNA clone (DNA56865-1491) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1134".

55 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1134 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1134 polypeptide having the sequence of amino acid residues from about 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1134 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 153 or about 222 and about 1265, inclusive, of Figure 104 (SEQ ID NO:170). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203022 (DNA56865-1491) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203022 (DNA56865-1491).

15 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or (b) the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1134 polypeptide having the sequence of amino acid residues from 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1134 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 23 in the sequence of Figure 105 (SEQ ID NO:171).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or (b) the complement of the DNA of (a).

35 Another embodiment is directed to fragments of a PRO1134 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more prefecrably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 104 (SEQ ID NO:170).

5 In another embodiment, the invention provides isolated PRO1134 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO1134 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 24 to about 371 of Figure 105 (SEQ ID NO:171).

15 5 In another aspect, the invention concerns an isolated PRO1134 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171).

20 10 In a further aspect, the invention concerns an isolated PRO1134 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171).

25 15 In yet another aspect, the invention concerns an isolated PRO1134 polypeptide, comprising the sequence of amino acid residues 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or a fragment thereof sufficient to provide a binding site for an anti-PRO1134 antibody. Preferably, the PRO1134 fragment retains a qualitative biological activity of a native PRO1134 polypeptide.

30 20 25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1134 polypeptide having the sequence of amino acid residues from about 1 or about 24 to about 371, inclusive of Figure 105 (SEQ ID NO:171), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

35 30 35 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA52352 comprising the nucleotide sequence of SEQ ID NO:172 (see Figure 106).

40 40 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA55725 comprising the nucleotide sequence of SEQ ID NO:173 (see Figure 107).

45 30 42. **PRO830**
A cDNA clone (DNA56866-1342) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO830".

45 45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO830 polypeptide.

50 35 50 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO830 polypeptide having

5 the sequence of amino acid residues from about 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or (b) the complement of the DNA molecule of (a).

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO830 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 154 or about 253 and about 414, inclusive, of Figure 108 (SEQ ID NO:174). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203023 (DNA56866-1342) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203023 (DNA56866-1342).

20 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or (b) the complement of the DNA of (a).

25 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO830 polypeptide having the sequence of amino acid residues from 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO830 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 33 in the sequence of Figure 109 (SEQ ID NO:175).

35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or (b) the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO830 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50

5 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 108 (SEQ ID NO:174).

In another embodiment, the invention provides isolated PRO830 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

10 In a specific aspect, the invention provides isolated native sequence PRO830 polypeptide, which in
15 certain embodiments, includes an amino acid sequence comprising residues 1 or about 34 to about 87 of Figure
109 (SEQ ID NO:175).

15 In another aspect, the invention concerns an isolated PRO830 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
10 sequence of amino acid residues 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175).

20 In a further aspect, the invention concerns an isolated PRO830 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175).

25 In yet another aspect, the invention concerns an isolated PRO830 polypeptide, comprising the sequence of amino acid residues 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or a fragment thereof sufficient to provide a binding site for an anti-PRO830 antibody. Preferably, the PRO830 fragment retains a qualitative biological activity of a native PRO830 polypeptide.

30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO830 polypeptide having the sequence of amino acid residues from about 1 or about 34 to about 87, inclusive of Figure 109 (SEQ ID NO:175), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a
35 host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 43. **PRO1115**

40 A cDNA clone (DNA56868-1478) has been identified that encodes a novel transmembrane
30 polypeptide, designated in the present application as "PRO1115".

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1115 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1115 polypeptide
35 having the sequence of amino acid residues from about 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177), or (b) the complement of the DNA molecule of (a).
50

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1115 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 249 and about 1523, inclusive, of Figure 110 (SEQ ID NO:176). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203024 (DNA56868-1478), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203024 (DNA56868-1478).

15 20 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177), or the complement of the DNA of (a).

25 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1115 polypeptide having the sequence of amino acid residues from about 21 to about 445, inclusive of Figure 111 (SEQ ID NO: 177), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 40 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1115 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and one or more of its transmembrane domains deleted or inactivated, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 20 in the sequence of Figure 111 (SEQ ID NO: 177). Transmembrane domains have been tentatively identified as extending from about amino acid positions 35-54, 75-97, 126-146, 185-204, 333-350, and 352-371 in the PRO1115 amino acid sequence (Figure 111, SEQ ID NO: 177).

45 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1115 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in

5 length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO1115 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO1115 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 21 to 445 of Figure 111 (SEQ ID NO:177).

15 In another aspect, the invention concerns an isolated PRO1115 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177).

20 In a further aspect, the invention concerns an isolated PRO1115 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to 445 of Figure 111 (SEQ ID NO:177).

25 In yet another aspect, the invention concerns an isolated PRO1115 polypeptide, comprising the sequence of amino acid residues 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177), or a fragment thereof sufficient to provide a binding site for an anti-PRO1115 antibody. Preferably, the PRO1115 fragment retains a qualitative biological activity of a native PRO1115 polypeptide.

30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1115 polypeptide having the sequence of amino acid residues from about 21 to about 445, inclusive of Figure 111 (SEQ ID NO:177), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 44. **PRO1277**

45 A cDNA clone (DNAS6869-1545) has been identified that encodes a novel polypeptide having homology to Coch-5B2 and designated in the present application as "PRO1277."

50 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1277 polypeptide.

55 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1277 polypeptide having the sequence of amino acid residues from about 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1277 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 266 and about 2221, inclusive, of Figure 112 (SEQ ID NO:178). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203161 (DNA56869-1545), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203161 (DNA56869-1545).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1277 polypeptide having the sequence of amino acid residues from about 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or (b) the 25 complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1277 polypeptide, with or without the N-terminal signal sequence and/or the initiating 30 methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 26 in the sequence of Figure 113 (SEQ ID NO:179). The transmembrane domain has been tentatively identified as extending from about amino acid position 181 35 to about amino acid position 200 in the PRO1277 amino acid sequence (Figure 113, SEQ ID NO:179).

40 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 45 amino acid sequence of residues 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or (b) the complement of the DNA of (a).

45 50 Another embodiment is directed to fragments of a PRO1277 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 55

5 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO1277 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO1277 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 27 to 678 of Figure 113 (SEQ ID
NO:179).

15 In another aspect, the invention concerns an isolated PRO1277 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179).

20 10 In a further aspect, the invention concerns an isolated PRO1277 polypeptide, comprising an amino
acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably
at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 27 to 678 of Figure 113 (SEQ ID NO:179).

25 15 In yet another aspect, the invention concerns an isolated PRO1277 polypeptide, comprising the
sequence of amino acid residues 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or a fragment
thereof sufficient to provide a binding site for an anti-PRO1277 antibody. Preferably, the PRO1277 fragment
retains a qualitative biological activity of a native PRO1277 polypeptide.

30 20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO1277 polypeptide having the
sequence of amino acid residues from about 27 to about 678, inclusive of Figure 113 (SEQ ID NO:179), or
35 25 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell
comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
recovering the polypeptide from the cell culture.

40 30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1277
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1277 antibody.

45 35 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
a native PRO1277 polypeptide, by contacting the native PRO1277 polypeptide with a candidate molecule and
monitoring a biological activity mediated by said polypeptide.

50 40 In a still further embodiment, the invention concerns a composition comprising a PRO1277
polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically
acceptable carrier.

55 35 45. PRO1135

Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to alpha
1,2-mannosidase, wherein the polypeptide is designated in the present application as "PRO1135".

5 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1135 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the
PRO1135 polypeptide having amino acid residues 1 to 541 of Figure 115 (SEQ ID NO:181), or is
complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate,
and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA
10 encoding the PRO1135 polypeptide having amino acid residues about 22 to 541 of Figure 115 (SEQ ID
NO:181), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under
at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may
15 comprise the cDNA insert of the DNA56870-1492 vector deposited on June 2, 1998 as ATCC 209925 which
includes the nucleotide sequence encoding PRO1135.

10 In another embodiment, the invention provides isolated PRO1135 polypeptide. In particular, the
invention provides isolated native sequence PRO1135 polypeptide, which in one embodiment, includes an
amino acid sequence comprising residues 1 to 541 of Figure 115 (SEQ ID NO:181). Additional embodiments
20 of the present invention are directed to PRO1135 polypeptides comprising amino acids about 22 to 541 of
Figure 115 (SEQ ID NO:181). Optionally, the PRO1135 polypeptide is obtained or is obtainable by expressing
15 the polypeptide encoded by the cDNA insert of the DNA56870-1492 vector deposited on June 2, 1998 as
ATCC 209925.

25 46. **PRO1114**

A cDNA clone (DNA57033-1403) has been identified that encodes a novel interferon receptor
20 polypeptide, designated in the present application as "PRO1114 interferon receptor".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
30 encoding a PRO1114 interferon receptor polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
35 preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1114 interferon
receptor polypeptide having the sequence of amino acid residues from about 1 or about 30 to about 311,
inclusive of Figure 117 (SEQ ID NO:183), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1114
40 interferon receptor polypeptide comprising DNA hybridizing to the complement of the nucleic acid between
about nucleotides 250 or about 337 and about 1182, inclusive, of Figure 116 (SEQ ID NO:182). Preferably,
hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
45 at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
35 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209905
(DNA57033-1403) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
50

in ATCC Deposit No. 209905 (DNA57033-1403).

5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183), or (b) the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1114 interferon receptor polypeptide having the sequence of amino acid residues from 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183), or (b) the complement of the DNA 15 molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1114 interferon receptor polypeptide, with or without the N-terminal signal sequence and/or 25 the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 29 in the sequence of Figure 117 (SEQ ID NO:183). The transmembrane domain has been tentatively identified as extending from about amino 30 acid position 230 to about amino acid position 255 in the PRO1114 interferon receptor amino acid sequence (Figure 117, SEQ ID NO:183).

35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183), or (b) the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1114 interferon receptor polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 45 40 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 116 (SEQ ID NO:182).

50 In another embodiment, the invention provides isolated PRO1114 interferon receptor polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

45 In a specific aspect, the invention provides isolated native sequence PRO1114 interferon receptor 55 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 30 to about 311 of Figure 117 (SEQ ID NO:183).

In another aspect, the invention concerns an isolated PRO1114 interferon receptor polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85%

5 sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183).

10 In a further aspect, the invention concerns an isolated PRO1114 interferon receptor polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183).

15 In yet another aspect, the invention concerns an isolated PRO1114 interferon receptor polypeptide, comprising the sequence of amino acid residues 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183), or a fragment thereto sufficient to provide a binding site for an anti-PRO1114 interferon receptor antibody. Preferably, the PRO1114 interferon receptor fragment retains a qualitative biological activity of a native PRO1114 interferon receptor polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1114 interferon receptor polypeptide having the sequence of amino acid residues from about 1 or about 30 to about 311, inclusive of Figure 117 (SEQ ID NO:183), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression 25 of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1114 interferon receptor polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1114 interferon receptor antibody.

35 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1114 interferon receptor polypeptide by contacting the native PRO1114 interferon receptor polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 In a still further embodiment, the invention concerns a composition comprising a PRO1114 interferon receptor polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

45 30 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA48466 comprising the nucleotide sequence of SEQ ID NO:184 (see Figure 118).

47. **PRO828**

50 35 Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to glutathione peroxidases wherein the polypeptide is designated in the present application as "PRO828".

55 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO828 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the

5 PRO828 polypeptide having amino acid residues 1 to 187 of Figure 120 (SEQ ID NO:189), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO828 polypeptide having amino acid residues about 22 to 187 of Figure 120 (SEQ ID NO:189), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under
10 5 at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA57037-1444 vector deposited on May 27, 1998 as ATCC 209903 which includes the nucleotide sequence encoding PRO828.

15 In another embodiment, the invention provides isolated PRO828 polypeptide. In particular, the invention provides isolated native sequence PRO828 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 187 of Figure 120 (SEQ ID NO:189). Additional embodiments of the present invention are directed to PRO828 polypeptides comprising amino acids about 22 to 187 of Figure 120 (SEQ ID NO:189). Optionally, the PRO828 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA57037-1444 vector deposited on May 27, 1998 as ATCC 209903.
20
25

15 48. **PRO1009**

25 A cDNA clone (DNA57129-1413) has been identified, having sequence identity with a long chain acyl-CoA synthetase homologuc, a long chain acyl-CoA synthetase and a long chain acyl-CoA synthetase ligase that encodes a novel polypeptide, designated in the present application as "PRO1009."

30 20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1009 polypeptide.

35 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1009 polypeptide having the sequence of amino acid residues from about 1 or 23 to about 615, inclusive of Figure 122 (SEQ ID NO:194), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two separate alternative embodiments provided herein, i.e., 1-615 or 23-615.

40 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1009 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 41 or 107 and about 1885, inclusive, of Figure 121 (SEQ ID NO:193). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209977 (DNA57129-1413), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
50

5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 209977 (DNA57129-1413).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 1 or 23 to about 615, inclusive of Figure 122 (SEQ
ID NO:194), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing
a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1009 polypeptide
having the sequence of amino acid residues from about 1 or 23 to about 615, inclusive of Figure 122 (SEQ ID
NO:194), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an
10 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a
90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test
20 DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1009 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary
to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
amino acid position 1 to about amino acid position 22 in the sequence of Figure 122 (SEQ ID NO:194). The
transmembrane domains have been tentatively identified as extending from about amino acid positions 140-161,
20 213-229 and 312-334 in the PRO1009 amino acid sequence (Figure 122, SEQ ID NO:194).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 1 or 23 to about 615, inclusive of Figure 122 (SEQ ID NO:194), or (b) the
35 complement of the DNA of (a).

40 In another embodiment, the invention provides isolated PRO1009 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

45 In a specific aspect, the invention provides isolated native sequence PRO1009 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 1 or 23 to 615 of Figure 122 (SEQ
ID NO:194).

50 In another aspect, the invention concerns an isolated PRO1009 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 or 23 to about 615, inclusive of Figure 122 (SEQ ID NO:194).

55 In a further aspect, the invention concerns an isolated PRO1009 polypeptide, comprising an amino
acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably
at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid

5 sequence of residues 1 or 23 to 615 of Figure 122 (SEQ ID NO:194).

In yet another aspect, the invention concerns an isolated PRO1009 polypeptide, comprising the sequence of amino acid residues 1 or 23 to about 615, inclusive of Figure 122 (SEQ ID NO:194), or a fragment thereof sufficient to provide a binding site for an anti-PRO1009 antibody. Preferably, the PRO1009 fragment retains a qualitative biological activity of a native PRO1009 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1009 polypeptide having the sequence of amino acid residues from about 1 or 23 through about 615, inclusive of Figure 122 (SEQ ID NO:194), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about 15 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1009 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1009 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1009 polypeptide, by contacting the native PRO1009 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO1009 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA50853 comprising the nucleotide sequence of Figure 123 (SEQ ID NO:195).

49. **PRO1007**

35 Applicants have identified a cDNA clone that encodes a novel polypeptide having sequence identity with MAGPIAP, wherin the polypeptide is designated in the present application as "PRO1007".

40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1007 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1007 polypeptide having amino acid residues 1 through 346 of Figure 125 (SEQ ID NO:197), or is 45 complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the vector deposited on June 9, 1998 with the ATCC as DNA57690-1374 which includes the nucleotide sequence encoding PRO1007.

50 In another embodiment, the invention provides isolated PRO1007 polypeptide. In particular, the invention provides isolated native sequence PRO1007 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 346 of Figure 125 (SEQ ID NO:197). An additional embodiment of the present invention is directed to an isolated extracellular domain of a PRO1007 polypeptide.

5 Optionally, the PRO1007 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by
the cDNA insert of the vector deposited with the ATCC on June 9, 1998 as DNA57690-1374.

10 50. **PRO1056**

10 A cDNA clone (DNA57693-1424) has been identified, having homology to nucleic acid encoding a
chloride channel protein that encodes a novel polypeptide, designated in the present application as "PRO1056".

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1056 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1056 polypeptide
having the sequence of amino acid residues from about 1 or about 19 to about 120, inclusive of Figure 127
(SEQ ID NO:199), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1056
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 56
15 or about 110 and about 415, inclusive, of Figure 126 (SEQ ID NO:198). Preferably, hybridization occurs
under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203008
(DNA57693-1424) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
30 in ATCC Deposit No. 203008 (DNA57693-1424).

35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
25 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID
NO:199), or (b) the complement of the DNA of (a).

40 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10
30 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA
molecule encoding a PRO1056 polypeptide having the sequence of amino acid residues from 1 or about 19 to
about 120, inclusive of Figure 127 (SEQ ID NO:199), or (b) the complement of the DNA molecule of (a), and,
45 if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85% sequence
identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence
35 identity to (a) or (b), isolating the test DNA molecule.

50 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1056 polypeptide, with or without the N-terminal signal sequence and/or the initiating

5 methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 18 in the sequence of Figure 127 (SEQ ID NO:199). The transmembrane domain has been tentatively identified as extending from about amino acid position 39 to about amino acid position 58 in the PRO1056 amino acid sequence (Figure 127, SEQ ID NO:199).

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID NO:199), or (b) the complement of the DNA of (a).

15 Another embodiment is directed to fragments of a PRO1056 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 126 (SEQ ID NO:198).

20 In another embodiment, the invention provides isolated PRO1056 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

25 In a specific aspect, the invention provides isolated native sequence PRO1056 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 19 to about 120 of Figure 127 (SEQ ID NO:199).

30 In another aspect, the invention concerns an isolated PRO1056 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID NO:199).

35 In a further aspect, the invention concerns an isolated PRO1056 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID NO:199).

40 In yet another aspect, the invention concerns an isolated PRO1056 polypeptide, comprising the sequence of amino acid residues 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID NO:199), or a fragment thereof sufficient to provide a binding site for an anti-PRO1056 antibody. Preferably, the PRO1056 fragment retains a qualitative biological activity of a native PRO1056 polypeptide.

45 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1056 polypeptide having the sequence of amino acid residues from about 1 or about 19 to about 120, inclusive of Figure 127 (SEQ ID NO:199), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about 50 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about 55 a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a

5 host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
(iii) recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1056 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1056 antibody.

10 5 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1056 polypeptide by contacting the native PRO1056 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

15 15 In a still further embodiment, the invention concerns a composition comprising a PRO1056 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10

51. **PRO826**

20 A cDNA clone (DNA57694-1341) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO826".

15

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO826 polypeptide.

25 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO826 polypeptide having the sequence of amino acid residues from about 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or (b) the complement of the DNA molecule of (a).

30 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO826 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 13 or about 79 and about 309, inclusive, of Figure 128 (SEQ ID NO:200). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203017 (DNA57694-1341) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203017 (DNA57694-1341).

40 30 45 35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or (b) the complement of the DNA of (a).

50

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO826 polypeptide having the sequence of amino acid residues from 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO826 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 22 in the sequence of Figure 129 (SEQ ID NO:201).

20 25 10 15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or (b) the complement of the DNA of (a).

25 30 20 25 Another embodiment is directed to fragments of a PRO826 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 128 (SEQ ID NO:200).

35 30 In another embodiment, the invention provides isolated PRO826 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

35 35 25 30 In a specific aspect, the invention provides isolated native sequence PRO826 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 23 to about 99 of Figure 129 (SEQ ID NO:201).

40 45 30 35 In another aspect, the invention concerns an isolated PRO826 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201).

45 50 35 40 In a further aspect, the invention concerns an isolated PRO826 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201).

55 35 In yet another aspect, the invention concerns an isolated PRO826 polypeptide, comprising the sequence of amino acid residues 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or a fragment thereof sufficient to provide a binding site for an anti-PRO826 antibody. Preferably, the PRO826

5 fragment retains a qualitative biological activity of a native PRO826 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO826 polypeptide having the sequence of amino acid residues from about 1 or about 23 to about 99, inclusive of Figure 129 (SEQ ID NO:201), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about 10 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 10 **52. PRO819**

A cDNA clone (DNA57695-1340) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO819".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO819 polypeptide.

25 15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO819 polypeptide having the sequence of amino acid residues from about 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or (b) the complement of the DNA molecule of (a).

30 20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO819 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 46 or about 118 and about 201, inclusive, of Figure 130 (SEQ ID NO:202). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203006 (DNA57695-1340) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203006 (DNA57695-1340).

40 30 45 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or (b) the complement of the DNA of (a).

50 35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA

- 5 molecule encoding a PRO819 polypeptide having the sequence of amino acid residues from 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.
- 10 5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO819 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 24 in the sequence of Figure 131 (SEQ ID NO:203).
- 15 10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or (b) the complement of the DNA of (a).
- 20 15 Another embodiment is directed to fragments of a PRO819 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 130 (SEQ ID NO:202).
- 25 20 In another embodiment, the invention provides isolated PRO819 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.
- 30 25 In a specific aspect, the invention provides isolated native sequence PRO819 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 25 to about 52 of Figure 131 (SEQ ID NO:203).
- 35 30 In another aspect, the invention concerns an isolated PRO819 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203).
- 40 35 In a further aspect, the invention concerns an isolated PRO819 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203).
- 45 40 In yet another aspect, the invention concerns an isolated PRO819 polypeptide, comprising the sequence of amino acid residues 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or a fragment thereof sufficient to provide a binding site for an anti-PRO819 antibody. Preferably, the PRO819 fragment retains a qualitative biological activity of a native PRO819 polypeptide.

50

55

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO819 polypeptide having the sequence of amino acid residues from about 1 or about 25 to about 52, inclusive of Figure 131 (SEQ ID NO:203), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about an 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 53. **PRO1006**

15 A cDNA clone (DNA57699-1412) has been identified, having sequence identity with a virud protein believed to be a tyrosine protein kinase, that encodes a novel polypeptide, designated in the present application as "PRO1006."

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1006 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1006 polypeptide having the sequence of amino acid residues from about 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-392, or in another embodiment, 24-392.

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1006 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 28 or 97 and about 1203, inclusive, of Figure 132 (SEQ ID NO:204). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203020 (DNA57699-1412), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203020 (DNA57699-1412).

40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205), or the complement of the DNA of (a).

5 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1006 polypeptide having the sequence of amino acid residues from about 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 10 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 10 amino acid sequence of residues 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205), or (b) the complement of the DNA of (a).

20 In another embodiment, the invention provides isolated PRO1006 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

25 In a specific aspect, the invention provides isolated native sequence PRO1006 polypeptide, which in 15 one embodiment, includes an amino acid sequence comprising residues 1 or 24 through 392 of Figure 133 (SEQ ID NO:205).

30 In another aspect, the invention concerns an isolated PRO1006 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 20 sequence of amino acid residues 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205).

35 In a further aspect, the invention concerns an isolated PRO1006 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid 30 sequence of residues 1 or 24 through 392 of Figure 133 (SEQ ID NO:205).

40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA 35 molecule under stringent conditions with (a) a DNA molecule encoding a PRO1006 polypeptide having the sequence of amino acid residues from about 1 or 24 to about 392, inclusive of Figure 133 (SEQ ID NO:205), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% 45 sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

50 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1006 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1006 antibody.

55 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1006 polypeptide, by contacting the native PRO1006 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

5 In a still further embodiment, the invention concerns a composition comprising a PRO1006
polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically
acceptable carrier.

10 **54. PRO1112**

10 Applicants have identified a cDNA clone that encodes a novel polypeptide having multiple
transmembrane domains and having some sequence identity with a *Mycobacterium tuberculosis* peptide, a
peptide found in a Dayhoff database designated as "MTY20B11_13", wherein the novel polypeptide is
designated in the present application as "PRO1112".

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1112 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1112 polypeptide
having the sequence of amino acid residues from 1 or about 14 through about 262 of Figure 135 (SEQ ID
15 NO:207), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1112
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues about
20 or 59 through 809 of Figure 134 (SEQ ID NO:206). Preferably, hybridization occurs under stringent
hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
encoding the same mature polypeptide encoded by the human protein cDNA in the ATCC Deposit of
35 DNA57702-1476 made on June 9, 1998. In a preferred embodiment, the nucleic acid comprises a DNA
encoding the same mature polypeptide encoded by the human protein cDNA in the ATCC Deposit of
DNA57702-1476 made on June 9, 1998.

40 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
45 identity to the sequence of amino acid residues 1 or about 14 through about 262 of Figure 135 (SEQ ID
NO:207).

50 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1112 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e., transmembrane domains deleted or inactivated variants, or is complementary
45 to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
amino acid position 1 through about amino acid position 13 of Figure 135 (SEQ ID NO:207). The
transmembrane domains have been tentatively identified as extending from about amino acid positions 58-76,

99-113, 141-159 and 203-222 of Figure 135 (SEQ ID NO:207).

5 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 14 through 262 of Figure 135 (SEQ ID NO:207).

10 Another embodiment is directed to fragments of a PRO1112 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 60 to about 100 nucleotides in length.

15 In another embodiment, the invention provides isolated PRO1112 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

20 In a specific aspect, the invention provides isolated native sequence PRO1112 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 14 through about 262 of Figure 135 (SEQ ID NO:207).

25 In another aspect, the invention concerns an isolated PRO1112 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 14 through about 262 of Figure 135 (SEQ ID NO:207).

30 In a further aspect, the invention concerns an isolated PRO1112 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 14 through about 262 of Figure 135 (SEQ ID NO:207).

35 In yet another aspect, the invention concerns an isolated PRO1112 polypeptide, comprising the sequence of amino acid residues 1 or about 14 through about 262 of Figure 135 (SEQ ID NO:207), or a fragment thereof sufficient to provide a binding site for an anti-PRO1112 antibody. Preferably, the PRO1112 fragment retains a qualitative biological activity of a native PRO1112 polypeptide.

40 25 In another aspect, the present invention is directed to fragments of a PRO1112 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

55. **PRO1074**

45 30 Applicants have identified a cDNA clone, DNA57704-1452, that encodes a novel polypeptide having homology to galactosyltransferase, wherein the polypeptide is designated in the present application as "PRO1074".

50 45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1074 polypeptide.

55 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1074 polypeptide having the sequence of amino acid residues from 1 to about 331, inclusive of Figure 137 (SEQ ID NO:209),

5 or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1074 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid sequence having about residues 322 to 1314, inclusive of Figure 136 (SEQ ID NO:208). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209953 (DNAS57704-1452), which was deposited on June 9, 1998, or (b) the complement of the DNA molecule of (a).

15 10 In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209953 (DNAS57704-1452).

20 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95%

25 15 sequence identity to the sequence of amino acid residues 1 to about 331, inclusive of Figure 137 (SEQ ID NO:209).

30 25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1074 extracellular domain (ECD), with or without the initiating methionine, and its soluble variants (i.e. transmembrane domain(s) deleted or inactivated) or is complementary to such encoding nucleic acid molecule. A type II transmembrane domain region has been tentatively identified as extending from about amino acid position 20 to 39 in the PRO1074 amino acid sequence (Figure 137, SEQ ID NO:209).

35 25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 331, inclusive of Figure 137 (SEQ ID NO:209).

40 30 Another embodiment is directed to fragments of a PRO1074 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

45 35 In another embodiment, the invention provides isolated PRO1074 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

50 40 In a specific aspect, the invention provides isolated native sequence PRO1074 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 331 of Figure 137 (SEQ ID NO:209).

45 45 In another aspect, the invention concerns an isolated PRO1074 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to

5 the sequence of amino acid residues 1 to 331, inclusive of Figure 137 (SEQ ID NO:209).

In a further aspect, the invention concerns an isolated PRO1074 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 331 of Figure 137 (SEQ ID NO:209).

10 In another aspect, the invention concerns a PRO1074 extracellular domain comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues X to 331 of Figure 2 (SEQ ID NO:3), wherein X is any one of amino acid residues 35 to 44 of Figure 137 (SEQ ID NO:209).

15 10 In yet another aspect, the invention concerns an isolated PRO1074 polypeptide, comprising the sequence of amino acid residues 1 to about 331, inclusive of Figure 137 (SEQ ID NO:209), or a fragment thereof sufficient to provide a binding site for an anti-PRO1074 antibody. Preferably, the PRO1074 fragment retains a qualitative biological activity of a native PRO1074 polypeptide.

20 15 In another aspect, the present invention is directed to fragments of a PRO1074 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

25 25 In yet another embodiment, the invention concerns agonist and antagonists of the PRO1074 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1074 antibody.

30 30 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1074 polypeptide.

20 35 In still a further embodiment, the invention concerns a composition comprising a PRO1074 polypeptide as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

56. **PRO1005**

35 25 A cDNA clone (DNA57708-1411) has been identified that encodes a novel polypeptide, designated in the present application as "PRO1005."

40 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1005 polypeptide.

45 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1005 polypeptide having the sequence of amino acid residues from about 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or (b) the complement of the DNA molecule of (a).

50 45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1005 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 90 and about 584, inclusive, of Figure 138 (SEQ ID NO:210). Preferably, hybridization occurs under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203021 (DNA57708-1411), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
10 5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203021 (DNA57708-1411).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 50 nucleotides, and preferably at least 100 nucleotides, and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1005 polypeptide having the sequence of amino
25 15 acid residues from about 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1005 polypeptide, with or without the N-terminal signal sequence, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 20 in the sequence of Figure 139 (SEQ ID NO:211).

35 25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or (b) the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1005 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

45 In another embodiment, the invention provides isolated PRO1005 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

50 35 In a specific aspect, the invention provides isolated native sequence PRO1005 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 21 to 185 of Figure 139 (SEQ ID NO:211).

5 In another aspect, the invention concerns an isolated PRO1005 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211).

10 In a further aspect, the invention concerns an isolated PRO1005 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to 185 of Figure 139 (SEQ ID NO:211).

15 In yet another aspect, the invention concerns an isolated PRO1005 polypeptide, comprising the sequence of amino acid residues 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or a fragment thereof sufficient to provide a binding site for an anti-PRO1005 antibody. Preferably, the PRO1005 fragment retains a qualitative biological activity of a native PRO1005 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1005 polypeptide having the sequence of amino acid residues from about 21 to about 185, inclusive of Figure 139 (SEQ ID NO:211), or
25 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 57. **PRO1073**
A cDNA clone (DNA57710-1451) has been identified that encodes a novel polypeptide, designated in the present application as "PRO1073."

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1073 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1073 polypeptide having the sequence of amino acid residues from about 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1073 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 438 and about 1241, inclusive, of Figure 140 (SEQ ID NO:212). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 35. In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203048 (DNA57710-1451), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203048 (DNA57710-1451).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1073 polypeptide having the sequence of amino acid residues from about 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1073 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 31 in the sequence of Figure 141 (SEQ ID NO:213).

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or (b) the complement of the DNA of (a).

30 Another embodiment is directed to fragments of a PRO1073 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

35 In another embodiment, the invention provides isolated PRO1073 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

40 In a specific aspect, the invention provides isolated native sequence PRO1073 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 32 to 299 of Figure 141 (SEQ ID NO:213).

45 35 In another aspect, the invention concerns an isolated PRO1073 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the

5 sequence of amino acid residues 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213).

In a further aspect, the invention concerns an isolated PRO1073 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 32 to 299 of Figure 141 (SEQ ID NO:213).

10 In yet another aspect, the invention concerns an isolated PRO1073 polypeptide, comprising the sequence of amino acid residues 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or a fragment thereof sufficient to provide a binding site for an anti-PRO1073 antibody. Preferably, the PRO1073 fragment retains a qualitative biological activity of a native PRO1073 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1073 polypeptide having the sequence of amino acid residues from about 32 to about 299, inclusive of Figure 141 (SEQ ID NO:213), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 **58. PRO1152**

A cDNA clone (DNA57711-1501) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO1152".

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1152 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1152 polypeptide having the sequence of amino acid residues from about 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1152 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 58 or about 142 and about 1494, inclusive, of Figure 143 (SEQ ID NO:215). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203047 (DNA57711-1501) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA

5 in ATCC Deposit No. 203047 (DNA57711-1501).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or (b) the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 300 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1152 polypeptide having the sequence of amino acid residues from 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or (b) the complement of the DNA molecule of (a), and, 20 if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1152 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary 30 to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 28 in the sequence of Figure 144 (SEQ ID NO:216). The various transmembrane domains have been tentatively identified as extending from about amino acid position 133 to about amino acid position 155, from about amino acid position 168 to about amino acid position 20 187, from about amino acid position 229 to about amino acid position 247, from about amino acid position 264 to about amino acid position 285, from about amino acid position 309 to about amino acid position 330, from about amino acid position 371 to about amino acid position 390 and from about amino acid position 441 to about amino acid position 464 in the PRO1152 amino acid sequence (Figure 144, SEQ ID NO:216).

35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more 40 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or (b) the complement of the DNA of (a).

45 Another embodiment is directed to fragments of a PRO1152 polypeptide coding sequence that may 30 find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 143 (SEQ ID NO:215).

50 In another embodiment, the invention provides isolated PRO1152 polypeptide encoded by any of the 35 isolated nucleic acid sequences hereinabove identified.

55 In a specific aspect, the invention provides isolated native sequence PRO1152 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 29 to about 479 of

5 Figure 144 (SEQ ID NO:216).

In another aspect, the invention concerns an isolated PRO1152 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216).

10 In a further aspect, the invention concerns an isolated PRO1152 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216).

15 In yet another aspect, the invention concerns an isolated PRO1152 polypeptide, comprising the sequence of amino acid residues 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or a fragment thereof sufficient to provide a binding site for an anti-PRO1152 antibody. Preferably, the PRO1152 fragment retains a qualitative biological activity of a native PRO1152 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1152 polypeptide having the sequence of amino acid residues from about 1 or about 29 to about 479, inclusive of Figure 144 (SEQ ID NO:216), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 In another embodiment, the invention provides a nucleic acid molecule designated herein as DNA55807 comprising the nucleotide sequence of SEQ ID NO:217 (see Figure 145).

59. **PRO1136**

35 A cDNA clone (DNA57827-1493) has been identified, having homology to nucleic acid encoding PDZ domain-containing proteins that encodes a novel polypeptide, designated in the present application as "PRO1136".

40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1136 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1136 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or (b) the complement of the DNA molecule of (a).

50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1136 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 216 or about 261 and about 2111, inclusive, of Figure 146 (SEQ ID NO:218). Preferably, hybridization occurs

under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203045 (DNA57827-1493) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203045 (DNA57827-1493).

10 15 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or (b) the complement of the DNA of (a).

20 25 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1136 polypeptide having the sequence of amino acid residues from 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

35 40 45 50 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1136 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 15 in the sequence of Figure 147 (SEQ ID NO:219).

20 25 30 35 40 45 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1136 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 146 (SEQ ID NO:218).

35 In another embodiment, the invention provides isolated PRO1136 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

5 In a specific aspect, the invention provides isolated native sequence PRO1136 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 16 to about 632 of Figure 147 (SEQ ID NO:219).

10 In another aspect, the invention concerns an isolated PRO1136 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219).

15 In a further aspect, the invention concerns an isolated PRO1136 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219).

20 In yet another aspect, the invention concerns an isolated PRO1136 polypeptide, comprising the sequence of amino acid residues 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or a fragment thereof sufficient to provide a binding site for an anti-PRO1136 antibody. Preferably, the PRO1136 fragment retains a qualitative biological activity of a native PRO1136 polypeptide.

25 15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1136 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 632, inclusive of Figure 147 (SEQ ID NO:219), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about an 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1136 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1136 antibody.

35 35 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1136 polypeptide by contacting the native PRO1136 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 40 In a still further embodiment, the invention concerns a composition comprising a PRO1136 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

50 60. **PRO813**

45 45 Applicants have identified a cDNA clone (DNA57834-1339) having homology to pulmonary surfactant-associated protein C that encodes a novel polypeptide, designated in the present application as "PRO813".

50 50 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO813 polypeptide.

5 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO813 polypeptide having the sequence of amino acid residues from about 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221), or (b) the complement of the DNA molecule of (a).

10 5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO813 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 109 or about 187 and about 636, inclusive, of Figure 148 (SEQ ID NO:220). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209954 (DNA57834-1339). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209954 (DNA57834-1339).

20 15 25 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221).

25 20 30 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO813 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 26 in the sequence of Figure 149 (SEQ ID NO:221).

35 25 40 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221).

45 30 45 Another embodiment is directed to fragments of a PRO813 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

50 35 55 In another embodiment, the invention provides isolated PRO813 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

55 35 In a specific aspect, the invention provides isolated native sequence PRO813 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 27 to about 176 of Figure 149 (SEQ ID NO:221).

5 In another aspect, the invention concerns an isolated PRO813 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221).

10 In a further aspect, the invention concerns an isolated PRO813 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221).

15 In yet another aspect, the invention concerns an isolated PRO813 polypeptide, comprising the sequence of amino acid residues 1 or about 27 to about 176, inclusive of Figure 149 (SEQ ID NO:221), or a fragment thereof sufficient to provide a binding site for an anti-PRO813 antibody. Preferably, the PRO813 fragment retains a qualitative biological activity of a native PRO813 polypeptide.

20 In another aspect, the present invention is directed to fragments of a PRO813 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

25 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO813 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO813 antibody.

In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO813 polypeptide.

30 In still a further embodiment, the invention concerns a composition comprising a PRO813 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

20 61. **PRO809**

A cDNA clone (DNA57836-1338) has been identified, having sequence identity with heparan sulfate proteoglycans, that encodes a novel polypeptide, designated in the present application as "PRO809."

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO809 polypeptide.

40 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO809 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-265, or in another embodiment, 19-265.

50 55 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO809 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 63 or 117 and about 867, inclusive, of Figure 150 (SEQ ID NO:222). Preferably, hybridization occurs under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203025 (DNA57836-1338), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
10 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203025 (DNA57836-1338).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO809 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an
25 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223), or (b) the complement of the DNA of (a).

35 In another embodiment, the invention provides isolated PRO809 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

40 In a specific aspect, the invention provides isolated native sequence PRO809 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 19 through 265 of Figure 151 (SEQ ID NO:223).

45 In another aspect, the invention concerns an isolated PRO809 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223).

50 55 In a further aspect, the invention concerns an isolated PRO809 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 19 through 265 of Figure 151 (SEQ ID NO:223).

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO809 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 265, inclusive of Figure 151 (SEQ ID NO:223), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO809 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO809 antibody.

15 10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO809 polypeptide, by contacting the native PRO809 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 20 In a still further embodiment, the invention concerns a composition comprising a PRO809 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 62. **PRO791**

30 A cDNA clone (DNA57838-1337) has been identified, having sequence identity with MHC class I antigens that encodes a novel polypeptide, designated in the present application as "PRO791."

20 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO791 polypeptide.

35 25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO791 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 246, inclusive of Figure 153 (SEQ ID NO:225), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-246, or in another embodiment, 26-246.

40 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO791 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 9 or 84 and about 746, inclusive, of Figure 152 (SEQ ID NO:224). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203014 (DNA57838-1337), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the

5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 203014 (DNA57838-1337).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 1 or 26 to about 246, inclusive of Figure 153 (SEQ
ID NO:225), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing
a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO791 polypeptide
having the sequence of amino acid residues from about 1 or 26 to about 246, inclusive of Figure 153 (SEQ ID
NO:225), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an
10 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a
90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test
DNA molecule.

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
25 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 1 or 26 to about 246, inclusive of Figure 153 (SEQ ID NO:225), or (b) the
complement of the DNA of (a).

20 In another embodiment, the invention provides isolated PRO791 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO791 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 1 or 26 through 246 of Figure 153
(SEQ ID NO:225).

35 In another aspect, the invention concerns an isolated PRO791 polypeptide, comprising an amino acid
25 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 or 26 to about 246, inclusive of Figure 153 (SEQ ID NO:225).

40 In a further aspect, the invention concerns an isolated PRO791 polypeptide, comprising an amino acid
30 sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least
about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 1 or 26 through 246 of Figure 153 (SEQ ID NO:225).

45 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO791 polypeptide having the
sequence of amino acid residues from about 1 or 26 to about 246, inclusive of Figure 153 (SEQ ID NO:225),
35 or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host

5 cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO791 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO791 antibody.

10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO791 polypeptide, by contacting the native PRO791 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

15 In a still further embodiment, the invention concerns a composition comprising a PRO791 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10

63. **PRO1004**

20 A cDNA clone (DNA57844-1410) has been identified that encodes a novel polypeptide, designated in the present application as "PRO1004."

15

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1004 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1004 polypeptide having the sequence of amino acid residues from about 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1004 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 191 and about 463, inclusive, of Figure 154 (SEQ ID NO:226). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203010 (DNA57844-1410), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203010 (DNA57844-1410).

40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or the complement of the DNA of (a).

50

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 50 nucleotides, and preferably at least 100 nucleotides, and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1004 polypeptide having the sequence of amino acid residues from about 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or (b) the complement
10 of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1004 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 through about amino acid position 24 in
20 the sequence of Figure 155 (SEQ ID NO:227).

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
30 amino acid sequence of residues 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or (b) the complement of the DNA of (a).

35 Another embodiment of the invention is directed to fragments of a PRO1004 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in
40 length.

45 In another embodiment, the invention provides isolated PRO1004 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

50 In a specific aspect, the invention provides isolated native sequence PRO1004 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 25 to 115 of Figure 155 (SEQ ID NO:227).

55 In another aspect, the invention concerns an isolated PRO1004 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227).

60 In a further aspect, the invention concerns an isolated PRO1004 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 25 to 115 of Figure 155 (SEQ ID NO:227).

65 In yet another aspect, the invention concerns an isolated PRO1004 polypeptide, comprising the sequence of amino acid residues 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or a fragment thereof sufficient to provide a binding site for an anti-PRO1004 antibody. Preferably, the PRO1004 fragment

5 retains a qualitative biological activity of a native PRO1004 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1004 polypeptide having the sequence of amino acid residues from about 25 to about 115, inclusive of Figure 155 (SEQ ID NO:227), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 10 64. **PRO1111**

A cDNA clone (DNA58721-1475) has been identified that encodes a novel polypeptide having sequence identity with LIG and designated in the present application as "PRO1111."

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1111 polypeptide.

25 15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1111 polypeptide having the sequence of amino acid residues from about 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or (b) the complement of the DNA molecule of (a).

30 20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1111 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 57 and about 2015, inclusive, of Figure 156 (SEQ ID NO:228). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203110 (DNA58721-1475), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203110 (DNA58721-1475).

40 30 45 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or the complement of the DNA of (a).

50 55 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule

5 under stringent conditions with (a) a DNA molecule encoding a PRO1111 polypeptide having the sequence of amino acid residues from about 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1111 polypeptide in its soluble form, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains has been tentatively identified as extending from about amino acid positions 21-40 (type II) and 528-548 in the PRO1111 amino acid sequence (Figure 157, SEQ ID NO:229).

15 10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or (b) the complement of the DNA of (a).

20 15 Another embodiment is directed to fragments of a PRO1111 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 20 In another embodiment, the invention provides isolated PRO1111 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 25 In a specific aspect, the invention provides isolated native sequence PRO1111 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 653 of Figure 157 (SEQ ID NO:229).

35 35 In another aspect, the invention concerns an isolated PRO1111 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229).

40 40 In a further aspect, the invention concerns an isolated PRO1111 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 653 of Figure 157 (SEQ ID NO:229).

45 45 In yet another aspect, the invention concerns an isolated PRO1111 polypeptide, comprising the sequence of amino acid residues 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or a fragment thereof sufficient to provide a binding site for an anti-PRO1111 antibody. Preferably, the PRO1111 fragment retains a qualitative biological activity of a native PRO1111 polypeptide.

50 50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1111 polypeptide having the

5 sequence of amino acid residues from about 1 to about 653, inclusive of Figure 157 (SEQ ID NO:229), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1111 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1111 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1111 polypeptide, by contacting the native PRO1111 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1111 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 65. **PRO1344**

25 A cDNA clone (DNA58723-1588) has been identified, having homology to nucleic acid encoding factor C that encodes a novel polypeptide, designated in the present application as "PRO1344".

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1344 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1344 polypeptide having the sequence of amino acid residues from about 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1344 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 26 or about 95 and about 2185, inclusive, of Figure 158 (SEQ ID NO:230). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203133 (DNA58723-1588) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203133 (DNA58723-1588).

50 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence

5 identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or (b) the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA
15 molecule encoding a PRO1344 polypeptide having the sequence of amino acid residues from 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1344 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 23 in the sequence of Figure 159 (SEQ ID NO:231).

20 15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or (b) the complement of the DNA of (a).

25 20 Another embodiment is directed to fragments of a PRO1344 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 158 (SEQ ID NO:230).

30 25 In another embodiment, the invention provides isolated PRO1344 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

35 In a specific aspect, the invention provides isolated native sequence PRO1344 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 24 to about 720 of Figure 159 (SEQ ID NO:231).

40 30 In another aspect, the invention concerns an isolated PRO1344 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231).

45 35 In a further aspect, the invention concerns an isolated PRO1344 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231).

5 In yet another aspect, the invention concerns an isolated PRO1344 polypeptide, comprising the sequence of amino acid residues 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or a fragment thereof sufficient to provide a binding site for an anti-PRO1344 antibody. Preferably, the PRO1344 fragment retains a qualitative biological activity of a native PRO1344 polypeptide.

10 10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1344 polypeptide having the sequence of amino acid residues from about 1 or about 24 to about 720, inclusive of Figure 159 (SEQ ID NO:231), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1344 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1344 antibody.

15 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1344 polypeptide by contacting the native PRO1344 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 30 In a still further embodiment, the invention concerns a composition comprising a PRO1344 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

20 35 **66. PRO1109**

A cDNA clone (DNA58737-1473) has been identified, having homology to nucleic acid encoding β -1,4-galactosyltransferase, that encodes a novel polypeptide, designated in the present application as "PRO1109".

35 40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1109 polypeptide.

40 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1109 polypeptide having the sequence of amino acid residues from about 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or (b) the complement of the DNA molecule of (a).

45 50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1109 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 119 or about 200 and about 1150, inclusive, of Figure 160 (SEQ ID NO:235). Preferably, hybridization occurs under stringent hybridization and wash conditions.

55 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least

5 about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203136 (DNA58737-1473) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203136 (DNA58737-1473).

10 5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or (b) the complement of the DNA of (a).

15 10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1109 polypeptide having the sequence of amino acid residues from 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

20 15 25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1109 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 27 in the sequence of Figure 161 (SEQ ID NO:236).

20 30 35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or (b) the complement of the DNA of (a).

40 35 40 Another embodiment is directed to fragments of a PRO1109 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 160 (SEQ ID NO:235).

45 45 In another embodiment, the invention provides isolated PRO1109 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

50 35 55 In a specific aspect, the invention provides isolated native sequence PRO1109 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 28 to about 344 of Figure 161 (SEQ ID NO:236).

5 In another aspect, the invention concerns an isolated PRO1109 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236).

10 In a further aspect, the invention concerns an isolated PRO1109 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236).

15 In yet another aspect, the invention concerns an isolated PRO1109 polypeptide, comprising the sequence of amino acid residues 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or a fragment thereof sufficient to provide a binding site for an anti-PRO1109 antibody. Preferably, the PRO1109 fragment retains a qualitative biological activity of a native PRO1109 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1109 polypeptide having the sequence of amino acid residues from about 1 or about 28 to about 344, inclusive of Figure 161 (SEQ ID NO:236), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1109 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1109 antibody.

30 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1109 polypeptide by contacting the native PRO1109 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 25 In a still further embodiment, the invention concerns a composition comprising a PRO1109 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

40 67. **PRO1383**

30 A cDNA clone (DNA58743-1609) has been identified, having homology to nucleic acid encoding the human melanoma cell-expressed protein nmb, that encodes a novel polypeptide, designated in the present application as "PRO1383".

45 45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1383 polypeptide.

50 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1383 polypeptide

5 having the sequence of amino acid residues from about 1 or about 25 to about 423, inclusive of Figure 163
(SEQ ID NO:241), or (b) the complement of the DNA molecule of (a).

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1383 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 122 or about 194 and about 1390, inclusive, of Figure 162 (SEQ ID NO:240). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203154
10 (DNA58743-1609) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203154 (DNA58743-1609).

20 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
15 identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241), or (b) the complement of the DNA of (a).

25 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10
20 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1383 polypeptide having the sequence of amino acid residues from 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

30 35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1383 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 24 in the sequence of Figure 163 (SEQ ID NO:241).
40 30 The transmembrane domain has been tentatively identified as extending from about amino acid position 339 to about amino acid position 362 in the PRO1383 amino acid sequence (Figure 163, SEQ ID NO:241).

45 35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241), or (b) the complement of the DNA of (a).

5 Another embodiment is directed to fragments of a PRO1383 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 162 (SEQ ID NO:240).

10 In another embodiment, the invention provides isolated PRO1383 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

15 In a specific aspect, the invention provides isolated native sequence PRO1383 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 25 to about 423 of Figure 163 (SEQ ID NO:241).

20 10 In another aspect, the invention concerns an isolated PRO1383 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241).

25 15 In a further aspect, the invention concerns an isolated PRO1383 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241).

30 20 In yet another aspect, the invention concerns an isolated PRO1383 polypeptide, comprising the sequence of amino acid residues 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241), or a fragment thereof sufficient to provide a binding site for an anti-PRO1383 antibody. Preferably, the PRO1383 fragment retains a qualitative biological activity of a native PRO1383 polypeptide.

35 25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1383 polypeptide having the sequence of amino acid residues from about 1 or about 25 to about 423, inclusive of Figure 163 (SEQ ID NO:241), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1383 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1383 antibody.

45 35 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1383 polypeptide by contacting the native PRO1383 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

50 35 In a still further embodiment, the invention concerns a composition comprising a PRO1383 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

5 **68. PRO1003**

Applicants have identified a cDNA clone, DNA58846-1409, that encodes a novel secreted polypeptide wherein the polypeptide is designated in the present application as "PRO1003".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1003 polypeptide.

10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1003 polypeptide having the sequence of amino acid residues from 1 or about 25 to about 84, inclusive of Figure 165 (SEQ ID NO:246), or (b) the complement of the DNA molecule of (a).

15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1003 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid between about residues 41 or about 113 and about 292 inclusive of Figure 164 (SEQ ID NO:245). Preferably, hybridization occurs under stringent hybridization and wash conditions.

20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209957 (DNA58846-1409), which was deposited on June 9, 1998. In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209957 (DNA58846-1409).

25 In an additional aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 84, inclusive of Figure 165 (SEQ ID NO:246).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 84, inclusive of Figure 165 (SEQ ID NO:246).

35 Another embodiment is directed to fragments of a PRO1003 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

40 In another embodiment, the invention provides isolated PRO1003 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

45 In a specific aspect, the invention provides isolated native sequence PRO1003 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 25 to 84 of Figure 165 (SEQ

5 ID NO:246).

In another aspect, the invention concerns an isolated PRO1003 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to 84, inclusive of Figure 165 (SEQ ID NO:246).

10 In a further aspect, the invention concerns an isolated PRO1003 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 25 to about 84 of Figure 165 (SEQ ID NO:246).

15 In yet another aspect, the invention concerns an isolated PRO1003 polypeptide, comprising the sequence of amino acid residues 1 or about 25 to about 84, inclusive of Figure 165 (SEQ ID NO:246), or a fragment thereof sufficient to provide a binding site for an anti-PRO1003 antibody. Preferably, the PRO1003 fragment retains a qualitative biological activity of a native PRO1003 polypeptide.

20 In another aspect, the present invention is directed to fragments of a PRO1003 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

15 69. **PRO1108**

25 Applicants have identified a cDNA clone (DNA58848-1472) having homology to nucleic acid encoding the LPAAT protein that encodes a novel polypeptide, designated in the present application as "PRO1108".

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1108 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1108 polypeptide having the sequence of amino acid residues from about 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1108 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 77 and about 1444, inclusive, of Figure 166 (SEQ ID NO:247). Preferably, hybridization occurs under stringent 45 hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209955 50 (DNA58848-1472). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209955 (DNA58848-1472).

5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248).

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1108 polypeptide, with or without the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains have been tentatively identified as being type II domains extending from about amino acid position 22 to about amino acid position 42, from about amino acid position 156 to about amino acid position 176, from about amino acid position 180 to about amino acid position 199 and from about amino acid position 369 to about amino acid position 388 in the PRO1108 amino acid sequence (Figure 167, SEQ ID NO:248).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248).

20 Another embodiment is directed to fragments of a PRO1108 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1108 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

30 In a specific aspect, the invention provides isolated native sequence PRO1108 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to about 456 of Figure 167 (SEQ ID NO:248).

35 In another aspect, the invention concerns an isolated PRO1108 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248).

40 In a further aspect, the invention concerns an isolated PRO1108 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248).

45 In yet another aspect, the invention concerns an isolated PRO1108 polypeptide, comprising the sequence of amino acid residues 1 to about 456, inclusive of Figure 167 (SEQ ID NO:248), or a fragment thereof sufficient to provide a binding site for an anti-PRO1108 antibody. Preferably, the PRO1108 fragment retains a qualitative biological activity of a native PRO1108 polypeptide.

5 In another aspect, the present invention is directed to fragments of a PRO1108 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1108 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1108 antibody.

15 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1108 polypeptide.

20 In still a further embodiment, the invention concerns a composition comprising a PRO1108 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 10. **PRO1137**

20 Applicants have identified a cDNA clone, DNA58849-1494, that encodes a novel polypeptide having homology to ribosyltransferase wherein the polypeptide is designated in the present application as "PRO1137".

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1137 polypeptide.

30 15. In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1137 polypeptide having the sequence of amino acid residues from 1 or about 15 to about 240, inclusive of Figure 169 (SEQ ID NO:250), or (b) the complement of the DNA molecule of (a).

35 20. In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1137 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid sequence having about residues 77 or about 119 to about 796, inclusive of Figure 168 (SEQ ID NO:249). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 25. In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209958 (DNA58849-1494), which was deposited on June 9, 1998, or (b) the complement of the DNA molecule of (a).

45 30. In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209958 (DNA58849-1494).

50 35. In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 15 to about 240, inclusive of Figure 169 (SEQ ID NO:250).

55 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1137 polypeptide with or without the N-terminal signal sequence and/or the initiating

5 methionine, or the complement of such encoding DNA molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 14 in the sequence of Figure 169 (SEQ ID NO:250).

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 15 to about 240, inclusive of Figure 169 (SEQ ID NO:250).

15 Another embodiment is directed to fragments of a PRO1137 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 10 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

20 In another embodiment, the invention provides isolated PRO1137 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

25 In a specific aspect, the invention provides isolated native sequence PRO1137 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 15 to 240 of Figure 169
15 (SEQ ID NO:250).

30 In another aspect, the invention concerns an isolated PRO1137 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 15 to 240, inclusive of Figure 169 (SEQ ID NO:250).

35 In a further aspect, the invention concerns an isolated PRO1137 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 15 to about 240 of Figure 169 (SEQ ID NO:250).

40 In yet another aspect, the invention concerns an isolated PRO1137 polypeptide, comprising the sequence of amino acid residues 1 or about 15 to about 240, inclusive of Figure 169 (SEQ ID NO:250), or a fragment thereof sufficient to provide a binding site for an anti-PRO1137 antibody. Preferably, the PRO1137 fragment retains a qualitative biological activity of a native PRO1137 polypeptide.

45 In another aspect, the present invention is directed to fragments of a PRO1137 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

50 In yet another embodiment, the invention concerns agonist and antagonists of the PRO1137 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1137 antibody.

55 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1137 polypeptide.

In still a further embodiment, the invention concerns a composition comprising a PRO1137 polypeptide as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

5 **71. PRO1138**

Applicants have identified a cDNA clone, DNA58850-1495, that encodes a novel polypeptide having homology to CD84 leukocyte antigen wherein the polypeptide is designated in the present application as "PRO1138".

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
5 encoding a PRO1138 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1138 polypeptide having the sequence of amino acid residues from 1 or about 23 to about 335, inclusive of Figure 171 (SEQ ID NO:253), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1138 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid sequence having about residues 38 or about 104 to about 1042, inclusive of Figure 170 (SEQ ID NO:252). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209956 (DNA58850-1495), which was deposited on June 9, 1998, or (b) the complement of the DNA molecule of (a).

30 In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209956 (DNA58850-1495).

35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 23 to about 335, inclusive of Figure 171 (SEQ ID NO:253).

40 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1138 extracellular domain (ECD), with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble variants (i.e. transmembrane domain(s) deleted or inactivated) or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 to about amino acid position 22 in the sequence of Figure 171 (SEQ ID NO:253). A transmembrane domain region has been tentatively identified as extending from about amino acid position 224 to about amino acid position 250 in the PRO1138 amino acid sequence (Figure 171, SEQ ID NO:253).

45 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 23 to about

5 335, inclusive of Figure 171 (SEQ ID NO:253).

10 Another embodiment is directed to fragments of a PRO1138 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

15 10 In another embodiment, the invention provides isolated PRO1138 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

15 In a specific aspect, the invention provides isolated native sequence PRO1138 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 23 to 335 of Figure 171 (SEQ ID NO:253).

20 10 In another aspect, the invention concerns an isolated PRO1138 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 23 to 335, inclusive of Figure 171 (SEQ ID NO:253).

25 15 In a further aspect, the invention concerns an isolated PRO1138 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 23 to about 335 of Figure 171 (SEQ ID NO:253).

30 20 In another aspect, the invention concerns a PRO1138 extracellular domain comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 23 to X of Figure 171 (SEQ ID NO:253), wherein X is any one of amino acid residues 219 to 228 of Figure 171 (SEQ ID NO:253).

35 25 In yet another aspect, the invention concerns an isolated PRO1138 polypeptide, comprising the sequence of amino acid residues 1 or about 23 to about 335, inclusive of Figure 171 (SEQ ID NO:253), or a fragment thereof sufficient to provide a binding site for an anti-PRO1138 antibody. Preferably, the PRO1138 fragment retains a qualitative biological activity of a native PRO1138 polypeptide.

40 In another aspect, the present invention is directed to fragments of a PRO1138 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

45 30 In yet another embodiment, the invention concerns agonist and antagonists of the PRO1138 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1138 antibody.

35 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1138 polypeptide.

45 In still a further embodiment, the invention concerns a composition comprising a PRO1138 polypeptide as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

50 35 In another embodiment, the invention provides a nucleotide sequence designated herein as DNA49140 comprising the nucleotide sequence of Figure 172 (SEQ ID NO:254).

5 **72. PRO1054**

A cDNA clone (DNA58853-1423) has been identified, having homology to nucleic acid encoding major urinary proteins (MUPs) that encodes a novel polypeptide, designated in the present application as "PRO1054".

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
5 encoding a PRO1054 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1054 polypeptide having the sequence of amino acid residues from about 1 or about 19 to about 180, inclusive of Figure 174
10 (SEQ ID NO:256), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1054 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 46 or about 100 and about 585, inclusive, of Figure 173 (SEQ ID NO:255). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203016 (DNA58853-1423) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the
20 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203016 (DNA58853-1423).

30 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
15 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256), or (b) the complement of the DNA of (a).

35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10
40 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA
30 molecule encoding a PRO1054 polypeptide having the sequence of amino acid residues from 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

45 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
35 encoding a PRO1054 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 18 in the
50

5 sequence of Figure 174 (SEQ ID NO:256).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256), or (b) 10 the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1054 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 15 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 173 (SEQ ID NO:255).

10 In another embodiment, the invention provides isolated PRO1054 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

20 In a specific aspect, the invention provides isolated native sequence PRO1054 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 19 to about 180 of 15 Figure 174 (SEQ ID NO:256).

25 In another aspect, the invention concerns an isolated PRO1054 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256).

30 20 In a further aspect, the invention concerns an isolated PRO1054 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256).

35 25 In yet another aspect, the invention concerns an isolated PRO1054 polypeptide, comprising the sequence of amino acid residues 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256), or a fragment thereof sufficient to provide a binding site for an anti-PRO1054 antibody. Preferably, the PRO1054 fragment retains a qualitative biological activity of a native PRO1054 polypeptide.

40 30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1054 polypeptide having the sequence of amino acid residues from about 1 or about 19 to about 180, inclusive of Figure 174 (SEQ ID NO:256), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about 45 35 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

50 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1054 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1054 antibody.

5 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1054 polypeptide by contacting the native PRO1054 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

10 In a still further embodiment, the invention concerns a composition comprising a PRO1054 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 73. **PRO994**

A cDNA clone (DNA58855-1422) has been identified, having homology to nucleic acid encoding the tumor-associated antigen L6 that encodes a novel polypeptide, designated in the present application as 10 "PRO994".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO994 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most 15 preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO994 polypeptide having the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO994 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 31 and about 717, inclusive, of Figure 175 (SEQ ID NO:257). Preferably, hybridization occurs under stringent 30 hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 25 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203018 (DNA58855-1422) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203018 (DNA58855-1422).

40 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 30 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or (b) the complement of the DNA of (a).

45 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 35 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO994 polypeptide having the sequence of amino acid residues from 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or (b) the complement of the DNA molecule of (a), and, if the 50

5 DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO994 polypeptide, with or without the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The multiple transmembrane domains have been tentatively identified as extending from about amino acid position 10 to about amino acid position 31, from about amino acid position 50 to about amino acid position 72, from about amino acid position 87 to about amino acid position 110 and from about amino acid position 191 to about amino acid position 213 in the PRO994 amino acid sequence (Figure 176, SEQ ID NO:258).

15 10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or (b) the complement of the DNA of (a).

20 15 Another embodiment is directed to fragments of a PRO994 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 175 (SEQ ID NO:257).

25 20 In another embodiment, the invention provides isolated PRO994 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

30 25 In a specific aspect, the invention provides isolated native sequence PRO994 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 to about 229 of Figure 176 (SEQ ID NO:258).

35 30 In another aspect, the invention concerns an isolated PRO994 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258).

40 35 In a further aspect, the invention concerns an isolated PRO994 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258).

45 40 In yet another aspect, the invention concerns an isolated PRO994 polypeptide, comprising the sequence of amino acid residues 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or a fragment thereof sufficient to provide a binding site for an anti-PRO994 antibody. Preferably, the PRO994 fragment retains a qualitative biological activity of a native PRO994 polypeptide.

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO994 polypeptide having the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 176 (SEQ ID NO:258), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 15 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO994 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO994 antibody.

10 20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO994 polypeptide by contacting the native PRO994 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 25 In a still further embodiment, the invention concerns a composition comprising a PRO994 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 74. **PRO812**

25 A cDNA clone (DNA59205-1421) has been identified, having homology to nucleic acid encoding prostatic steroid-binding protein c1 that encodes a novel polypeptide, designated in the present application as "PRO812".

30 20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO812 polypeptide.

35 30 25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO812 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or (b) the complement of the DNA molecule of (a).

40 40 30 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO812 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 55 or about 100 and about 303, inclusive, of Figure 177 (SEQ ID NO:259). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 45 35 30 25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203009 (DNA59205-1421) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203009 (DNA59205-1421).

5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or (b) the complement of the DNA of (a).

10 5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO812 polypeptide having the sequence of amino acid residues from 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

15 20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO812 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 15 in the sequence of Figure 178 (SEQ ID NO:260).

25 15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 20 amino acid sequence of residues 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or (b) the complement of the DNA of (a).

30 25 Another embodiment is directed to fragments of a PRO812 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived 35 from the nucleotide sequence shown in Figure 177 (SEQ ID NO:259).

35 25 In another embodiment, the invention provides isolated PRO812 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

40 30 In a specific aspect, the invention provides isolated native sequence PRO812 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 16 to about 83 of Figure 178 (SEQ ID NO:260).

45 35 In another aspect, the invention concerns an isolated PRO812 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260).

50 35 In a further aspect, the invention concerns an isolated PRO812 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least

5 about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260).

10 In yet another aspect, the invention concerns an isolated PRO812 polypeptide, comprising the sequence of amino acid residues 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or a fragment thereof sufficient to provide a binding site for an anti-PRO812 antibody. Preferably, the PRO812
15 fragment retains a qualitative biological activity of a native PRO812 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO812 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 83, inclusive of Figure 178 (SEQ ID NO:260), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
20 (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO812 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO812 antibody.

25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO812 polypeptide by contacting the native PRO812 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 In a still further embodiment, the invention concerns a composition comprising a PRO812 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 75. **PRO1069**

35 Applicants have identified a cDNA clone, DNA59211-1450, that encodes a novel polypeptide having homology to CHIF wherein the polypeptide is designated in the present application as "PRO1069".

40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1069 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1069 polypeptide having the sequence of amino acid residues from 1 or about 17 to about 89, inclusive of Figure 180 (SEQ ID NO:262), or (b) the complement of the DNA molecule of (a).

50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1069 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid sequence having about residues 197 or about 245 to about 463, inclusive of Figure 179 (SEQ ID NO:261). Preferably, hybridization occurs under stringent hybridization and wash conditions.

55 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least

5 about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209960 (DNA59211-1450), which was deposited on June 9, 1998. In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209960 (DNA59211-1450).

10 5 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 17 to about 89, inclusive of Figure 180 (SEQ ID NO:262).

15 10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1069 extracellular domain (ECD), with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble variants (i.e. transmembrane domain(s) deleted or inactivated) or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 to about amino acid position 16 in the sequence of Figure 180 (SEQ ID NO:262). A transmembrane domain region has been tentatively identified as extending from about amino acid position 36 to about amino acid position 59 in the PRO1069 amino acid sequence (Figure 180, SEQ ID NO:262).

20 15 25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 17 to about 89, inclusive of Figure 180 (SEQ ID NO:262).

30 20 25 Another embodiment is directed to fragments of a PRO1069 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

35 25 In another embodiment, the invention provides isolated PRO1069 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

40 30 In a specific aspect, the invention provides isolated native sequence PRO1069 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 17 to 89 of Figure 180 (SEQ ID NO:262).

45 35 In another aspect, the invention concerns an isolated PRO1069 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 17 to 89, inclusive of Figure 180 (SEQ ID NO:262).

50 35 In a further aspect, the invention concerns an isolated PRO1069 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid

sequence of residues 1 or about 17 to about 89 of Figure 180 (SEQ ID NO:262).

5 In another aspect, the invention concerns a PRO1069 extracellular domain comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 17 to X of Figure 180 (SEQ ID NO:262), wherein X is any one
10 5 of amino acid residues 32 to 41 of Figure 180 (SEQ ID NO:262).

15 In yet another aspect, the invention concerns an isolated PRO1069 polypeptide, comprising the sequence of amino acid residues 1 or about 17 to about 89, inclusive of Figure 180 (SEQ ID NO:262), or a fragment thereof sufficient to provide a binding site for an anti-PRO1069 antibody. Preferably, the PRO1069 fragment retains a qualitative biological activity of a native PRO1069 polypeptide.

10 In another aspect, the present invention is directed to fragments of a PRO1069 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

20 In yet another embodiment, the invention concerns agonist and antagonists of the PRO1069 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1069 antibody.

25 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1069 polypeptide.

In still a further embodiment, the invention concerns a composition comprising a PRO1069 polypeptide as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

76. **PRO1129**

20 Applicants have identified a cDNA clone (DNA59213-1487) having homology to nucleic acid encoding cytochrome P-450 family members that encodes a novel polypeptide, designated in the present application as "PRO1129".

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1129 polypeptide.

30 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1129 polypeptide having the sequence of amino acid residues from about 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264), or (b) the complement of the DNA molecule of (a).

40 45 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1129 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 42 and about 1613, inclusive, of Figure 181 (SEQ ID NO:263). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 50 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209959

5 (DNA59213-1487). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209959 (DNA59213-1487).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264).

15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1129 polypeptide, with or without the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The type II transmembrane domains have been tentatively identified as extending from about amino acid position 13 to about amino acid position 32 and from about amino acid position 77 to about amino acid position 102 in the PRO1129 amino acid sequence (Figure 182, SEQ ID NO:264).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264).

25 Another embodiment is directed to fragments of a PRO1129 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO1129 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

35 In a specific aspect, the invention provides isolated native sequence PRO1129 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to about 524 of Figure 182 (SEQ ID NO:264).

40 45 In another aspect, the invention concerns an isolated PRO1129 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264).

50 55 In a further aspect, the invention concerns an isolated PRO1129 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264).

In yet another aspect, the invention concerns an isolated PRO1129 polypeptide, comprising the sequence of amino acid residues 1 to about 524, inclusive of Figure 182 (SEQ ID NO:264), or a fragment thereof sufficient to provide a binding site for an anti-PRO1129 antibody. Preferably, the PRO1129 fragment retains a qualitative biological activity of a native PRO1129 polypeptide.

5 In another aspect, the present invention is directed to fragments of a PRO1129 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1129 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1129 antibody.

15 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1129 polypeptide.

20 In still a further embodiment, the invention concerns a composition comprising a PRO1129 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10 77. **PRO1068**

20 A cDNA clone (DNA59214-1449) has been identified, that encodes a novel polypeptide having homology to urotensin and designated the present application as "PRO1068."

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1068 polypeptide.

30 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1068 polypeptide having the sequence of amino acid residues from about 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or (b) the complement of the DNA molecule of (a).

35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1068 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 102 and about 413, inclusive, of Figure 183 (SEQ ID NO:265). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203046 (DNA59214-1449), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203046 (DNA59214-1449).

45 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or the complement of the DNA of (a).

50 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule

5 under stringent conditions with (a) a DNA molecule encoding a PRO1068 polypeptide having the sequence of amino acid residues from about 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1068 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 20 in the sequence of Figure 184 (SEQ ID NO:266).

15 10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or (b) the complement of the DNA of (a).

20 15 Another embodiment is directed to fragments of a PRO1068 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 20 In another embodiment, the invention provides isolated PRO1068 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 30 In a specific aspect, the invention provides isolated native sequence PRO1068 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 21 to 124 of Figure 184 (SEQ ID NO:266).

35 35 In another aspect, the invention concerns an isolated PRO1068 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266).

40 40 In a further aspect, the invention concerns an isolated PRO1068 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 21 to 124 of Figure 184 (SEQ ID NO:266).

45 45 In yet another aspect, the invention concerns an isolated PRO1068 polypeptide, comprising the sequence of amino acid residues 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or a fragment thereof sufficient to provide a binding site for an anti-PRO1068 antibody. Preferably, the PRO1068 fragment retains a qualitative biological activity of a native PRO1068 polypeptide.

50 50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1068 polypeptide having the

5 sequence of amino acid residues from about 21 to about 124, inclusive of Figure 184 (SEQ ID NO:266), or
(b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell
10 comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1068
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1068 antibody.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
15 a native PRO1068 polypeptide, by contacting the native PRO1068 polypeptide with a candidate molecule and
monitoring a biological activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO1068
polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically
20 acceptable carrier.

15 78. **PRO1066**

Applicants have identified a cDNA clone (DNA59215-1425) that encodes a novel secreted
25 polypeptide, designated in the present application as "PRO1066".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1066 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1066 polypeptide
having the sequence of amino acid residues from about 1 or about 24 to about 117, inclusive of Figure 186
(SEQ ID NO:268), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1066
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 176
or about 245 and about 527, inclusive, of Figure 185 (SEQ ID NO:267). Preferably, hybridization occurs
under stringent hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209961
(DNA59215-1425). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature
45 polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209961 (DNA59215-1425).

35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence

50

55

5 identity to the sequence of amino acid residues 1 or about 24 to about 117, inclusive of Figure 186 (SEQ ID NO:268).

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1066 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 23 in the sequence of Figure 186 (SEQ ID NO:268).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 117, inclusive of Figure 186 (SEQ ID NO:268).

20 Another embodiment is directed to fragments of a PRO1066 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1066 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

30 In a specific aspect, the invention provides isolated native sequence PRO1066 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 24 to about 117 of Figure 186 (SEQ ID NO:268).

35 In another aspect, the invention concerns an isolated PRO1066 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 24 to about 117, inclusive of Figure 186 (SEQ ID NO:268).

40 In a further aspect, the invention concerns an isolated PRO1066 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 24 to about 117, inclusive of Figure 186 (SEQ ID NO:268).

45 In yet another aspect, the invention concerns an isolated PRO1066 polypeptide, comprising the sequence of amino acid residues 1 or about 24 to about 117, inclusive of Figure 186 (SEQ ID NO:268), or a fragment thereof sufficient to provide a binding site for an anti-PRO1066 antibody. Preferably, the PRO1066 fragment retains a qualitative biological activity of a native PRO1066 polypeptide.

50 In another aspect, the present invention is directed to fragments of a PRO1066 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

35 79. **PRO1184**

Applicants have identified a cDNA clone (DNA59220-1514) that encodes a novel secreted polypeptide, designated in the present application as "PRO1184".

5 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1184 polypeptide.

10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1184 polypeptide having the sequence of amino acid residues from 1 or about 39 through 142 of Figure 188 (SEQ ID NO:270), or (b) the complement of the DNA molecule of (a).

15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1184 polypeptide comprising DNA hybridizing to the complement of the nucleic acid at about residues 106 or 220 through 531 of SEQ ID NO:269. In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1184 polypeptide comprising DNA hybridizing to the complement of the nucleic acid of SEQ ID NO:269. Preferably, hybridization occurs under stringent hybridization and wash conditions.

20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC of DNA59220-1514. In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit of DNA59220-1514.

25 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 39 through 142 of SEQ ID NO:270.

30 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1184 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble variants, or is complementary to such an encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 to about amino acid position 38 of SEQ ID NO:270.

35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 39 through 142 of SEQ ID NO:270.

40 Another embodiment is directed to fragments of a PRO1184 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length.

45 35 In another embodiment, the invention provides isolated PRO1184 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

5 In a specific aspect, the invention provides isolated native sequence PRO1184 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or about 39 through 142 of SEQ ID NO:270.

10 In another aspect, the invention concerns an isolated PRO1184 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 39 through 142 of SEQ ID NO:270.

15 In a further aspect, the invention concerns an isolated PRO1184 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 39 through 142 of SEQ ID NO:270.

20 In yet another aspect, the invention concerns an isolated PRO1184 polypeptide, comprising the sequence of amino acid residues 1 or about 39 through 142 of SEQ ID NO:270, or a fragment thereof sufficient to provide a binding site for an anti-PRO1184 antibody. Preferably, the PRO1184 fragment retains a qualitative biological activity of a native PRO1184 polypeptide.

25 15 In another aspect, the present invention is directed to fragments of a PRO1184 polypeptide which are sufficiently long to provide an epitope against which an antibody may be generated.

25 80. **PRO1360**

30 20 A cDNA clone (DNA59488-1603) has been identified that encodes a novel polypeptide designated in the present application as "PRO1360."

35 25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1360 polypeptide.

40 30 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1360 polypeptide having the sequence of amino acid residues from about 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or (b) the complement of the DNA molecule of (a).

45 35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1360 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 140 and about 908, inclusive, of Figure 189 (SEQ ID NO:271). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 40 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203157 (DNA59488-1603), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA

in ATCC Deposit No. 203157 (DNA59488-1603).

5 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1360 polypeptide having the sequence of amino acid residues from about 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or (b) the 15 complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more 25 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1360 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in 20 length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

In another embodiment, the invention provides isolated PRO1360 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO1360 polypeptide, which in 35 one embodiment, includes an amino acid sequence comprising residues 30 through 285 of Figure 190 (SEQ ID NO:272).

40 In another aspect, the invention concerns an isolated PRO1360 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 45 sequence of amino acid residues 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272).

50 In a further aspect, the invention concerns an isolated PRO1360 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 30 through 285 of Figure 190 (SEQ ID NO:272).

55 In yet another aspect, the invention concerns an isolated PRO1360 polypeptide, comprising the sequence of amino acid residues 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or a fragment thereof sufficient to provide a binding site for an anti-PRO1360 antibody. Preferably, the PRO1360 fragment

5 retains a qualitative biological activity of a native PRO1360 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1360 polypeptide having the sequence of amino acid residues from about 30 to about 285, inclusive of Figure 190 (SEQ ID NO:272), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1360 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1360 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1360 polypeptide, by contacting the native PRO1360 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1360 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 **81. PRO1029**

20 A cDNA clone (DNA59493-1420) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1029".

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1029 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1029 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1029 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 39 or about 96 and about 296, inclusive, of Figure 191 (SEQ ID NO:274). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203050 (DNA59493-1420) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA

5 in ATCC Deposit No. 203050 (DNA59493-1420).

In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or (b) the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1029 polypeptide having the sequence of amino acid residues from 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequcnc identity, most preferably at least about a 95 % scquence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1029 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 19 in the sequence of Figure 192 (SEQ ID NO:274).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1029 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 191 (SEQ ID NO:273).

In another embodiment, the invention provides isolated PRO1029 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

In a specific aspect, the invention provides isolated native sequence PRO1029 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 20 to about 86 of Figure 192 (SEQ ID NO:274).

In another aspect, the invention concerns an isolated PRO1029 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85 % sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95 % sequence identity to the sequence of amino acid residues 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274).

5 In a further aspect, the invention concerns an isolated PRO1029 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274).

10 In yet another aspect, the invention concerns an isolated PRO1029 polypeptide, comprising the sequence of amino acid residues 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or a fragment thereof sufficient to provide a binding site for an anti-PRO1029 antibody. Preferably, the PRO1029 fragment retains a qualitative biological activity of a native PRO1029 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1029 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 86, inclusive of Figure 192 (SEQ ID NO:274), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
20 (iii) recovering the polypeptide from the cell culture.
15

25 82. PRO1139

Applicants have identified a novel cDNA clone (DNA59497-1496) that encodes a novel human protein originally designated as PRO1139.

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1139 polypeptide having the sequence of amino acid residues from about 29 to about 131 of Figure 194 (SEQ ID NO:276), or (b) the complement of the DNA molecule of (a).

35 25 In another embodiment, the invention concerns an isolated nucleic acid molecule comprising DNA hybridizing to the complement of the polynucleotide sequence between about residues 80 and 391, inclusive, of Figure 193 (SEQ ID NO:275). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 30 In a further embodiment, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209941 (DNA59497-1496). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209941 (DNA59497-1496).

45 35 In a still further embodiment, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95%

50

55

5 sequence identity to the sequence of amino acid residues from about 29 to about 131 of Figure 194 (SEQ ID NO:276).

10 In a specific embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a native or variant PRO1139 polypeptide; with or without the N-terminal signal sequence, and with or without the transmembrane regions which have been identified as stretching from about amino acid position 33 to about amino acid position 52; from about amino acid position 71 to about amino acid position 89; and from about amino acid position 98 to about amino acid position 120, respectively of the amino acid sequence of Figure 194, SEQ ID NO:276. In one aspect, the isolated nucleic acid comprises DNA encoding a mature, full-length native PRO1139 polypeptide having amino acid residues 1 to 131 of Figure 194, SEQ ID NO:276, or is complementary to such encoding nucleic acid sequence.

15 10 In another embodiment, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues from about 29 to about 131 of Figure 194 (SEQ ID NO:276).

20 15 In another embodiment, the invention provides isolated PRO1139 polypeptides. In particular, the invention provides isolated native sequence PRO1139 polypeptide, which in one embodiment, include the amino acid sequence comprising residues 29 to 131 of Figure 194 (SEQ ID NO:276). The invention also provides for variants of the PRO1139 polypeptide which are encoded by any of the isolated nucleic acid molecules hereinabove defined. Specific variants include, but are not limited to, deletion (truncated) variants of the full-length native sequence PRO1139 which lack the N-terminal signal sequence and/or have at least one 25 transmembrane domain deleted or inactivated. The variants specifically include variants of the full-length mature polypeptide of Figure 194 (SEQ ID NO:276) in which one or more of the transmembrane regions between amino acid residues 33-52, 71-8, and 98-120, respectively have been deleted or inactivated, and which may additionally have the N-terminal signal sequence (amino acid residues 1-28) and/or the initiating methionine deleted.

30 25 In a further embodiment, the invention concerns an isolated PRO1139 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues from about 29 to about 131 of Figure 194 (SEQ ID NO:276).

35 40 In yet another aspect, the invention concerns an isolated PRO1139 polypeptide, comprising the sequence of amino acid residues 29 to about 131, inclusive of Figure 194 (SEQ ID NO:276) or a fragment thereof sufficient to provide a binding site for an anti-PRO1139 antibody. Preferably, the PRO1139 fragment retains a qualitative biological activity of a native PRO1139 polypeptide.

45 45 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1139 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1139 antibody.

50 55 In a further embodiment, the invention concerns screening assays to identify agonists or antagonists of a native PRO1139 polypeptide.

5 In a still further embodiment, the invention concerns a composition comprising a PRO1139 polypeptide (including variants), or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10 The invention also concerns a method of treating obesity comprising administering to a patient an effective amount of an antagonist of a PRO1139 polypeptide. In a specific embodiment, the antagonist is a blocking antibody specifically binding a native PRO1139 polypeptide.

15 83. **PRO1309**

A cDNA clone (DNA59588-1571) has been identified that encodes a novel polypeptide having leucine rich repeats and designated in the present application as "PRO1309."

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1309 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1309 polypeptide having the sequence of amino acid residues from about 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1309 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 822 and about 2285, inclusive, of Figure 195 (SEQ ID NO:277). Preferably, hybridization occurs under stringent 30 hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203106 35 (DNA59588-1571), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203106 (DNA59588-1571).

40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 45 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or the complement of the DNA of (a).

50 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule 55 under stringent conditions with (a) a DNA molecule encoding a PRO1309 polypeptide having the sequence of amino acid residues from about 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence

5 identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1309 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 34 in the sequence of Figure 196 (SEQ ID NO:278). The transmembrane domain has been tentatively identified as extending from about amino acid position 428 through about amino acid position 450 in the PRO1309 amino acid sequence (Figure 196, SEQ ID NO:278).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 10 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or (b) the 20 complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO1309 polypeptide coding sequence that may 15 find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO1309 polypeptide encoded by any of the 20 isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO1309 polypeptide, which in 25 one embodiment, includes an amino acid sequence comprising residues 35 through 522 of Figure 196 (SEQ ID NO:278).

40 In another aspect, the invention concerns an isolated PRO1309 polypeptide, comprising an amino acid 35 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more 45 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 30 sequence of amino acid residues 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278).

45 In a further aspect, the invention concerns an isolated PRO1309 polypeptide, comprising an amino acid 35 sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably 40 at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid 45 sequence of residues 35 through 522 of Figure 196 (SEQ ID NO:278).

50 In yet another aspect, the invention concerns an isolated PRO1309 polypeptide, comprising the 45 sequence of amino acid residues 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or a fragment thereof sufficient to provide a binding site for an anti-PRO1309 antibody. Preferably, the PRO1309 fragment retains a qualitative biological activity of a native PRO1309 polypeptide.

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA 45 molecule under stringent conditions with (a) a DNA molecule encoding a PRO1309 polypeptide having the 50 sequence of amino acid residues from about 35 to about 522, inclusive of Figure 196 (SEQ ID NO:278), or

(b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1309 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1309 antibody.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1309 polypeptide, by contacting the native PRO1309 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO1309 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

84. PRO1028

Applicants have identified a cDNA clone that encodes a secreted novel polypeptide, wherein the polypeptide is designated in the present application as "PRO1028".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1028 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1028 polypeptide having amino acid residues 1 through 197 of Figure 198 (SEQ ID NO:281), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the vector deposited on June 9, 1998 with the ATCC as DNA59603-1419 which includes the nucleotide sequence encoding PRO1028.

In another embodiment, the invention provides isolated PRO1028 polypeptide. In particular, the invention provides isolated native sequence PRO1028 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 197 of Figure 198 (SEQ ID NO:281). Optionally, the PRO1028 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the vector deposited on June 9, 1998 with the ATCC as DNA59603-1419.

85. PRO1027

A cDNA clone (DNA59605-1418) has been identified, having a type II fibronectin collagen-binding domain that encodes a novel polypeptide, designated in the present application as "PRO1027."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1027 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1027 polypeptide

5 having the sequence of amino acid residues from about 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-77, or in another embodiment, 34-77.

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1027 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 31 or 15 130 and about 261, inclusive, of Figure 199 (SEQ ID NO:282). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least 10 about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203005 (DNA59605-1418), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203005 (DNA59605-1418).

20 15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283), or the complement of the DNA of (a).

25 20 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1027 polypeptide having the sequence of amino acid residues from about 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 30 35 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

40 30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 45 35 amino acid sequence of residues 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283), or (b) the complement of the DNA of (a).

50 In another embodiment, the invention provides isolated PRO1027 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

55 35 In a specific aspect, the invention provides isolated native sequence PRO1027 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 34 through 77 of Figure 200 (SEQ ID NO:283).

5 In another aspect, the invention concerns an isolated PRO1027 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283).

10 5 In a further aspect, the invention concerns an isolated PRO1027 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 34 through 77 of Figure 200 (SEQ ID NO:283).

15 10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1027 polypeptide having the sequence of amino acid residues from about 1 or 34 to about 77, inclusive of Figure 200 (SEQ ID NO:283), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 15 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1027 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1027 antibody.

25 20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1027 polypeptide, by contacting the native PRO1027 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 30 In a still further embodiment, the invention concerns a composition comprising a PRO1027 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 25 86. **PRO1107**

40 30 Applicants have identified a cDNA clone that encodes a novel polypeptide having sequence identity with PC-1, wherein the polypeptide is designated in the present application as "PRO1107".

45 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1107 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1107 polypeptide having amino acid residues 1 through 477 of Figure 202 (SEQ ID NO:285), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO1107 polypeptide having amino acid residues about 23 through 477 of Figure 202 (SEQ ID NO:285) or amino acids about 1 or 23 through 428 ± 5 of Figure 202 (SEQ ID NO:285), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA59606-1471 vector deposited on June 9, 1998 with the ATCC, which includes the nucleotide sequence

50

55

5 encoding PRO1107.

In another embodiment, the invention provides isolated PRO1107 polypeptide. In particular, the invention provides isolated native sequence PRO1107 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 477 of Figure 202 (SEQ ID NO:285). Additional embodiments of the present invention are directed to PRO1107 polypeptides comprising amino acids about 23 through 477 of Figure 202 (SEQ ID NO:285) or amino acids about 1 or 23 through 428 ± 5 of Figure 202 (SEQ ID NO:285). Optionally, the PRO1107 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA59606-1471 vector deposited with the ATCC on June 9, 1998.

15

10 87. **PRO1140**

Applicants have identified a cDNA clone, DNA59607-1497, that encodes a novel multi-span transmembrane polypeptide wherein the polypeptide is designated in the present application as "PRO1140".

20

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1140 polypeptide.

25

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1140 polypeptide having the sequence of amino acid residues from 1 to about 255, inclusive of Figure 204 (SEQ ID NO:287), or (b) the complement of the DNA molecule of (a).

30

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1140 polypeptide comprising DNA that hybridizes to the complement of the nucleic acid sequence having about residues 210 to about 974, inclusive of Figure 203 (SEQ ID NO:286). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209946 (DNA59607-1497), which was deposited on June 9, 1998, or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209946 (DNA59607-1497).

40

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 255, inclusive of Figure 204 (SEQ ID NO:287).

50

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1140 extracellular domain (ECD), with or without the initiating methionine, and its soluble

55

5 variants (i.e. transmembrane domain(s) deleted or inactivated) or is complementary to such encoding nucleic acid molecule. Referring to the PRO1140 amino acid sequence (SEQ ID NO:287) shown in Figure 204, transmembrane domain regions have been tentatively identified as extending from about amino acid positions 101 to about 118, about 141 to about 161, and from about 172 to about 191.

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising DNA encoding 5 a polypeptide scoring at least about 80% positives, preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 255, inclusive of Figure 204 (SEQ ID NO:287).

15 Another embodiment is directed to fragments of a PRO1140 polypeptide coding sequence that may 10 find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

20 In another embodiment, the invention provides isolated PRO1140 polypeptide encoded by any of the 20 isolated nucleic acid sequences hereinabove identified.

25 In a specific aspect, the invention provides isolated native sequence PRO1140 polypeptide, which in 15 one embodiment, includes an amino acid sequence comprising residues 1 to 255 of Figure 204 (SEQ ID NO:287).

30 In another aspect, the invention concerns an isolated PRO1140 polypeptide, comprising an amino acid 20 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to 255, inclusive of Figure 204 (SEQ ID NO:287).

35 In a further aspect, the invention concerns an isolated PRO1140 polypeptide, comprising an amino acid 25 sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, and most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 255 of Figure 204 (SEQ ID NO:287).

40 In another aspect, the invention concerns a PRO1140 extracellular domain comprising an amino acid 30 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to X of Figure 204 (SEQ ID NO:287), wherein X is any one of amino acid residues 96 to 105 of Figure 204 (SEQ ID NO:287).

45 In yet another aspect, the invention concerns an isolated PRO1140 polypeptide, comprising the 35 sequence of amino acid residues 1 to about 255, inclusive of Figure 204 (SEQ ID NO:287), or a fragment thereof sufficient to provide a binding site for an anti-PRO1140 antibody. Preferably, the PRO1140 fragment retains a qualitative biological activity of a native PRO1140 polypeptide.

50 In another aspect, the present invention is directed to fragments of a PRO1140 polypeptide which are 55 sufficiently long to provide an epitope against which an antibody may be generated.

5 **88. PRO1106**

Applicants have identified a cDNA clone that encodes a novel polypeptide having sequence identity with a peroxisomal calcium-dependent solute carrier, wherein the polypeptide is designated in the present application as "PRO1106".

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1106 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1106 polypeptide having amino acid residues 1 through 469 of Figure 206 (SEQ ID NO:289), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA59609-1470 vector deposited on June 9, 1998 with the ATCC, which includes the nucleotide sequence encoding PRO1106.

15 In another embodiment, the invention provides isolated PRO1106 polypeptide. In particular, the invention provides isolated native sequence PRO1106 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 469 of Figure 206 (SEQ ID NO:289). Optionally, the PRO1106 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert 10 15 of the DNA59609-1470 vector deposited with the ATCC on June 9, 1998.

25 **89. PRO1291**

A cDNA clone (DNA59610-1556) has been identified, having homology to nucleic acid encoding buryrophilin that encodes a novel polypeptide, designated in the present application as "PRO1291".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1291 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1291 polypeptide 30 35 having the sequence of amino acid residues from about 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1291 45 50 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 61 or about 145 and about 906, inclusive, of Figure 207 (SEQ ID NO:290). Preferably, hybridization occurs under stringent hybridization and wash conditions.

55 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209990 (DNA59610-1556) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209990 (DNA59610-1556).

5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or (b) the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1291 polypeptide having the sequence of amino acid residues from 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1291 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 28 in the sequence of Figure 208 (SEQ ID NO:291).
20 The transmembrane domain has been tentatively identified as extending from about amino acid position 258 to about amino acid position 281 in the PRO1291 amino acid sequence (Figure 208, SEQ ID NO:291).

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85 % positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or (b) the complement of the DNA of (a).

30 Another embodiment is directed to fragments of a PRO1291 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 207 (SEQ ID NO:290).

35 In another embodiment, the invention provides isolated PRO1291 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

40 In a specific aspect, the invention provides isolated native sequence PRO1291 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 29 to about 282 of Figure 208 (SEQ ID NO:291).

45 In another aspect, the invention concerns an isolated PRO1291 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291).

5 In a further aspect, the invention concerns an isolated PRO1291 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291).

10 In yet another aspect, the invention concerns an isolated PRO1291 polypeptide, comprising the sequence of amino acid residues 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or a fragment thereof sufficient to provide a binding site for an anti-PRO1291 antibody. Preferably, the PRO1291 fragment retains a qualitative biological activity of a native PRO1291 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1291 polypeptide having the sequence of amino acid residues from about 1 or about 29 to about 282, inclusive of Figure 208 (SEQ ID NO:291), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
20 (iii) recovering the polypeptide from the cell culture.

25 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1291 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1291 antibody.

30 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1291 polypeptide by contacting the native PRO1291 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 In a still further embodiment, the invention concerns a composition comprising a PRO1291 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 25 90. **PRO1105**

40 Applicants have identified a cDNA clone that encodes a novel polypeptide having two transmembrane domains, wherein the polypeptide is designated in the present application as "PRO1105".

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1105 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1105 polypeptide having amino acid residues 1 through 180 of Figure 210 (SEQ ID NO:293), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO1105 polypeptide having amino acid residues about 20 through 180 of Figure 210 (SEQ ID NO:293), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA59612-1466 vector deposited on June 9, 1998 with the ATCC, which includes the nucleotide sequence encoding PRO1105.

5 In another embodiment, the invention provides isolated PRO1105 polypeptide. In particular, the invention provides isolated native sequence PRO1105 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 180 of Figure 210 (SEQ ID NO:293). Additional embodiments of the present invention are directed to PRO1105 polypeptides comprising amino acids about 20 through 180 of Figure 210 (SEQ ID NO:293). Other embodiments of the present invention are directed to 10 PRO1105 polypeptides comprising amino acids about 1 through 79 and 100 through about 144 of Figure 210 (SEQ ID NO:293). Optionally, the PRO1105 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA59612-1466 vector deposited with the ATCC on June 9, 15 1998.

10 91. **PRO511**

A cDNA clone (DNA59613-1417) has been identified, having some sequence identity with RoBo-1 and phospholipase inhibitors that encodes a novel polypeptide, designated in the present application as 20 "PRO1026."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA 15 encoding a PRO1026 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, 25 preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1026 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 237, inclusive of Figure 212 (SEQ ID 20 NO:295), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-237, or in another embodiment, 26-237.

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1026 30 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 233 or 308 and about 943, inclusive, of Figure 212 (SEQ ID NO:295). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having 35 at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203007 (DNA59613-1417), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203007 (DNA59613-1417).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 40 45 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 26 to about 237, inclusive of Figure 212 (SEQ 50

5 ID NO:295), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1026 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 237, inclusive of Figure 212 (SEQ ID NO:295), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 26 to about 237, inclusive of Figure 212 (SEQ ID NO:295), or (b) the complement of the DNA of (a).

15 20 In another embodiment, the invention provides isolated PRO1026 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

15 25 In a specific aspect, the invention provides isolated native sequence PRO1026 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 26 through 237 of Figure 212 (SEQ ID NO:295).

20 30 In another aspect, the invention concerns an isolated PRO1026 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 26 to about 237, inclusive of Figure 212 (SEQ ID NO:295).

35 40 In a further aspect, the invention concerns an isolated PRO1026 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 26 through 237 of Figure 212 (SEQ ID NO:295).

45 50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1026 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 237, inclusive of Figure 212 (SEQ ID NO:295), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

55 60 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1026 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1026 antibody.

65 70 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1026 polypeptide, by contacting the native PRO1026 polypeptide with a candidate molecule and

monitoring a biological activity mediated by said polypeptide.

5 In a still further embodiment, the invention concerns a composition comprising a PRO1026 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10 5 **92. PRO1104**
A cDNA clone (DNA59616-1465) has been identified, that encodes a novel polypeptide, designated in the present application as "PRO1104."

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1104 polypeptide.

20 10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1104 polypeptide having the sequence of amino acid residues from about 1 or about 23 to about 341, inclusive of Figure 214 (SEQ ID NO:297), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer 25 15 to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-341, or in another embodiment, 23-341.

25 20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1104 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 109 or 175 and about 1131, inclusive, of Figure 213 (SEQ ID NO:296). Preferably, hybridization occurs under stringent hybridization and wash conditions.

30 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209991 35 25 (DNA59616-1465), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209991 (DNA59616-1465).

40 40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence 30 35 identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or about 23 to about 341, inclusive of Figure 214 (SEQ ID NO:297), or the complement of the DNA of (a).

45 45 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1104 polypeptide 35 50 having the sequence of amino acid residues from about 1 or about 23 to about 341, inclusive of Figure 214 (SEQ ID NO:297), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least

5 about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 15 amino acid sequence of residues 1 or about 23 to about 341, inclusive of Figure 214 (SEQ ID NO:297), or (b) the complement of the DNA of (a).

15 In another embodiment, the invention provides isolated PRO1104 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

20 In a specific aspect, the invention provides isolated native sequence PRO1104 polypeptide, which in 10 one embodiment, includes an amino acid sequence comprising residues 1 or about 23 through 341 of Figure 214 (SEQ ID NO:297).

25 In another aspect, the invention concerns an isolated PRO1104 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 20 sequence of amino acid residues 1 or about 23 through about 341, inclusive of Figure 214 (SEQ ID NO:297).

30 In a further aspect, the invention concerns an isolated PRO1104 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid 25 sequence of residues 1 or about 23 through 341 of Figure 214 (SEQ ID NO:297).

35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA 20 molecule under stringent conditions with (a) a DNA molecule encoding a PRO1104 polypeptide having the sequence of amino acid residues from about 1 or about 23 to about 341, inclusive of Figure 214 (SEQ ID NO:297), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about 35 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 93. **PRO1100**

30 A cDNA clone (DNA59619-1464) has been identified that encodes a novel polypeptide having multiple transmembrane domains, designated in the present application as "PRO1100."

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1100 polypeptide.

50 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1100 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID

5 NO:299), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-320, or in another embodiment, 21-320.

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1100 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 33 or 93 and about 992, inclusive, of Figure 215 (SEQ ID NO:298). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203041 (DNA59619-1464), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203041 (DNA59619-1464).

25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 30 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID NO:299), or the complement of the DNA of (a).

35 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing 40 a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1100 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID NO:299), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test 45 DNA molecule.

50 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA 45 encoding a PRO1100 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domains deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule.

55 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 50 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID NO:299), or (b) the complement of the DNA of (a).

60 In another embodiment, the invention provides isolated PRO1100 polypeptide encoded by any of the 55 isolated nucleic acid sequences hereinabove defined.

5 In a specific aspect, the invention provides isolated native sequence PRO1100 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 21 through 320 of Figure 216 (SEQ ID NO:299).

10 In another aspect, the invention concerns an isolated PRO1100 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID NO:299).

15 In a further aspect, the invention concerns an isolated PRO1100 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 21 through 320 of Figure 216 (SEQ ID NO:299).

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1100 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 320, inclusive of Figure 216 (SEQ ID NO:299), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1100 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1100 antibody.

30 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1100 polypeptide, by contacting the native PRO1100 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 In a still further embodiment, the invention concerns a composition comprising a PRO1100 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

94. PRO836

40 A cDNA clone (DNA59620-1463) has been identified, having some sequence identity with SLS1 that encodes a novel polypeptide, designated in the present application as "PRO836."

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO836 polypeptide.

50 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO836 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino

5 or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-461, or in another embodiment, 30-461.

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO836 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 65 or 152 and about 1447, inclusive, of Figure 217 (SEQ ID NO:300). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209989 (DNA59620-1463), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209989 (DNA59620-1463).

20 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301), or the complement of the DNA of (a).

25 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO836 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301), or (b) the complement of the DNA of (a).

35 In another embodiment, the invention provides isolated PRO836 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

40 In a specific aspect, the invention provides isolated native sequence PRO836 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 30 through 461 of Figure 218 (SEQ ID NO:301).

45 In another aspect, the invention concerns an isolated PRO836 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the

55

10

15

5

10

20

15

25

30

35

40

45

50

55

5 sequence of amino acid residues 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301).

In a further aspect, the invention concerns an isolated PRO836 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives; most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 30 through 461 of Figure 218 (SEQ ID NO:301).

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO836 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 461, inclusive of Figure 218 (SEQ ID NO:301), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO836 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO836 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO836 polypeptide, by contacting the native PRO836 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO836 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 **95. PRO1141**

A cDNA clone (DNA59625-1498) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO1141".

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1141 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1141 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1141 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 204 or about 261 and about 944, inclusive, of Figure 219 (SEQ ID NO:302). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least

5 about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209992 (DNA59625-1498) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209992 (DNA59625-1498).

10 5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or (b) the complement of the DNA of (a).

15 10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1141 polypeptide having the sequence of amino acid residues from 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1141 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 19 in the sequence of Figure 220 (SEQ ID NO:303). The transmembrane domains have been tentatively identified as extending from about amino acid position 38 to about amino acid position 57, from about amino acid position 67 to about amino acid position 83, from about amino acid position 117 to about amino acid position 139 and from about amino acid position 153 to about amino acid position 170, in the PRO1141 amino acid sequence (Figure 220, SEQ ID NO:303).

25 30 35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or (b) the complement of the DNA of (a).

40 45 50 Another embodiment is directed to fragments of a PRO1141 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 219 (SEQ ID NO:302).

55 In another embodiment, the invention provides isolated PRO1141 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

5 In a specific aspect, the invention provides isolated native sequence PRO1141 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 20 to about 247 of Figure 220 (SEQ ID NO:303).

10 In another aspect, the invention concerns an isolated PRO1141 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303).

15 In a further aspect, the invention concerns an isolated PRO1141 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303).

20 In yet another aspect, the invention concerns an isolated PRO1141 polypeptide, comprising the sequence of amino acid residues 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or a fragment thereof sufficient to provide a binding site for an anti-PRO1141 antibody. Preferably, the PRO1141 fragment retains a qualitative biological activity of a native PRO1141 polypeptide.

25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1141 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 247, inclusive of Figure 220 (SEQ ID NO:303), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about an 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA33128 comprising the nucleotide sequence of SEQ ID NO:304 (see Figure 221).

35 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA34256 comprising the nucleotide sequence of SEQ ID NO:305 (see Figure 222).

40 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA47941 comprising the nucleotide sequence of SEQ ID NO:306 (see Figure 223).

45 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNAs4389 comprising the nucleotide sequence of SEQ ID NO:307 (see Figure 224).

96. PRO1132

45 A cDNA clone (DNA59767-1489) has been identified that encodes a novel polypeptide having sequence identity with serine proteases and trypsinogen and designated in the present application as "PRO1132."

50 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1132 polypeptide.

5 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1132 polypeptide having the sequence of amino acid residues from about 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or (b) the complement of the DNA molecule of (a).

10 10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1132 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 420 and about 1232, inclusive, of Figure 225 (SEQ ID NO:308). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203108 (DNA59767-1489), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203108 (DNA59767-1489).

20 20 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or the complement of the DNA of (a).

25 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1132 polypeptide having the sequence of amino acid residues from about 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 40 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or (b) the complement of the DNA of (a).

45 35 Another embodiment is directed to fragments of a PRO1132 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

5 In another embodiment, the invention provides isolated PRO1132 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO1132 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 23 through 293 of Figure 226 (SEQ ID NO:309).

15 5 In another aspect, the invention concerns an isolated PRO1132 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309).

20 10 In a further aspect, the invention concerns an isolated PRO1132 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 through 293 of Figure 226 (SEQ ID NO:309).

25 15 In yet another aspect, the invention concerns an isolated PRO1132 polypeptide, comprising the sequence of amino acid residues 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or a fragment thereof sufficient to provide a binding site for an anti-PRO1132 antibody. Preferably, the PRO1132 fragment retains a qualitative biological activity of a native PRO1132 polypeptide.

30 20 25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1132 polypeptide having the sequence of amino acid residues from about 23 to about 293, inclusive of Figure 226 (SEQ ID NO:309), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

35 30 35 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1132 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1132 antibody.

40 35 40 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1132 polypeptide, by contacting the native PRO1132 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

45 40 45 In a still further embodiment, the invention concerns a composition comprising a PRO1132 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

97. **PRO1346**

50 35 50 A cDNA clone (DNAS9776-1600) has been identified, that encodes a novel polypeptide, designated in the present application as PRO1346 (or NL7), having homology to known TIE ligands.

5 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding an NL7 polypeptide.

10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding an NL7 polypeptide having the sequence of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or (b) the complement of the DNA molecule of (a).

15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding an NL7 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 1-3 (ATG) and about 1381-1383 (CGC, preceding the TAG stop codon), inclusive, of Figure 227 (SEQ ID NO:313). Preferably, hybridization occurs under stringent hybridization and wash conditions.

20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203128 (DNA59776-1600), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203128 (DNA59776-1600).

25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or the complement of the DNA of (a).

30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 1000 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding an NL7 polypeptide having the sequence of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding an NL7 polypeptide, with or without the initiating methionine, or its soluble forms, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domain has been tentatively identified as extending from about amino acid position 31 to about amino acid position 50 in the NL7 amino acid sequence (Figure 228, SEQ ID NO:314).

40 45 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the

5 amino acid sequence of residues 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or (b) the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule, at least about 200 bases in length, which encodes a fragment of a native NL7 polypeptide.

15 In another embodiment, the invention provides an isolated NL7 polypeptide encoded by any of the 5 isolated nucleic acid sequences hereinabove defined.

20 In a specific aspect, the invention provides an isolated native sequence NL7 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues from about 51 to about 461 of Figure 228 (SEQ ID NO:314).

25 In another aspect, the invention concerns an isolated NL7 polypeptide, comprising an amino acid 10 sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314).

30 In a further aspect, the invention concerns an isolated NL7 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least 15 about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 51 to 461 of Figure 228 (SEQ ID NO:314).

35 In yet another aspect, the invention concerns an isolated NL7 polypeptide, comprising the sequence 20 of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or a fragment thereof sufficient to provide a binding site for an anti-NL7 antibody. Preferably, the NL7 fragment retains a qualitative biological activity of a native NL7 polypeptide.

40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA 30 molecule under stringent conditions with (a) a DNA molecule encoding an NL7 polypeptide having the sequence of amino acid residues from about 51 to about 461, inclusive of Figure 228 (SEQ ID NO:314), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell 35 comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

45 In yet another embodiment, the invention concerns agonists and antagonists of the a native NL7 30 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-NL7 antibody.

50 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native NL7 polypeptide, by contacting the native NL7 polypeptide with a candidate molecule and monitoring 45 a biological activity mediated by said polypeptide.

55 In a still further embodiment, the invention concerns a composition comprising an NL7 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

5 **98. PRO1131**

A cDNA clone (DNA59777-1480) has been identified that encodes a novel polypeptide having sequence identity with LDL receptors and designated in the present application as "PRO1131."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1131 polypeptide.

10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1131 polypeptide having the sequence of amino acid residues from about 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or (b) the complement of the DNA molecule of (a).

15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1131 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 144 and about 983, inclusive, of Figure 229 (SEQ ID NO:318). Preferably, hybridization occurs under stringent hybridization and wash conditions.

20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203111 (DNA59777-1480), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203111 (DNA59777-1480).

25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or the complement of the DNA of (a).

30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1131 polypeptide having the sequence of amino acid residues from about 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1131 polypeptide in its soluble form, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domain (type II) has been tentatively identified as extending from about amino acid positions 49-74 in the amino acid sequence of Figure 230, SEQ ID NO:319.

5 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or (b) the complement of the DNA of (a).

10 Another embodiment is directed to fragments of a PRO1131 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

15 In another embodiment, the invention provides isolated PRO1131 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

20 In a specific aspect, the invention provides isolated native sequence PRO1131 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 280 of Figure 230 (SEQ ID NO:319).

25 In another aspect, the invention concerns an isolated PRO1131 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319).

30 In a further aspect, the invention concerns an isolated PRO1131 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 280 of Figure 230 (SEQ ID NO:319).

35 In yet another aspect, the invention concerns an isolated PRO1131 polypeptide, comprising the sequence of amino acid residues 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or a fragment thereof sufficient to provide a binding site for an anti-PRO1131 antibody. Preferably, the PRO1131 fragment retains a qualitative biological activity of a native PRO1131 polypeptide.

40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1131 polypeptide having the sequence of amino acid residues from about 1 to about 280, inclusive of Figure 230 (SEQ ID NO:319), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

45 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1131 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1131 antibody.

50 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1131 polypeptide, by contacting the native PRO1131 polypeptide with a candidate molecule and

monitoring a biological activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO1131 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA43546 comprising the nucleotide sequence of Figure 231 (SEQ ID NO:320).

99. **PRO1281**

A cDNA clone (DNA59820-1549) has been identified that encodes a novel secreted polypeptide designated in the present application as "PRO1281".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1281 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1281 polypeptide

having the sequence of amino acid residues from about 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1281 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 273 and about 2552, inclusive, of Figure 232 (SEQ ID NO:325). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203129 (DNA59820-1549), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203129 (DNA59820-1549).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1281 polypeptide having the sequence of amino acid residues from about 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence

5 identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1281 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been 15 tentatively identified as extending from amino acid position 1 through about amino acid position 15 in the sequence of Figure 233 (SEQ ID NO:326).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 20 amino acid sequence of residues 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1281 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 25 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1281 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO1281 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 16 to 775 of Figure 233 (SEQ ID NO:326).

35 In another aspect, the invention concerns an isolated PRO1281 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 40 sequence of amino acid residues 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326).

45 In a further aspect, the invention concerns an isolated PRO1281 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid 45 sequence of residues 16 to 775 of Figure 233 (SEQ ID NO:326).

50 In yet another aspect, the invention concerns an isolated PRO1281 polypeptide, comprising the sequence of amino acid residues 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or a fragment thereof sufficient to provide a binding site for an anti-PRO1281 antibody. Preferably, the PRO1281 fragment retains a qualitative biological activity of a native PRO1281 polypeptide.

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1281 polypeptide having the sequence of amino acid residues from about 16 to about 775, inclusive of Figure 233 (SEQ ID NO:326), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%

5 sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

100. **PRO1064**

10 A cDNA clone (DNA59827-1426) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO1064".

15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1064 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1064 polypeptide having the sequence of amino acid residues from about 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1064 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 532 or about 604 and about 990, inclusive, of Figure 234 (SEQ ID NO:333). Preferably, hybridization occurs under stringent hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203089 (DNA59827-1426) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203089 (DNA59827-1426).

35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334), or (b) the complement of the DNA of (a).

40 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1064 polypeptide having the sequence of amino acid residues from 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1064 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary
to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
about amino acid position 1 to about amino acid position 24 in the sequence of Figure 235 (SEQ ID NO:334).
10 The transmembrane domain has been tentatively identified as extending from about amino acid position 89 to
about amino acid position 110 in the PRO1064 amino acid sequence (Figure 235, SEQ ID NO:334).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
10 amino acid sequence of residues 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334), or (b)
the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1064 polypeptide coding sequence that may
find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in
length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about
15 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be
derived from the nucleotide sequence shown in Figure 234 (SEQ ID NO:333).

25 In another embodiment, the invention provides isolated PRO1064 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove identified.

30 In a specific aspect, the invention provides isolated native sequence PRO1064 polypeptide, which in
certain embodiments, includes an amino acid sequence comprising residues 1 or about 25 to about 153 of
Figure 235 (SEQ ID NO:334).

35 In another aspect, the invention concerns an isolated PRO1064 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
25 sequence of amino acid residues 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334).

40 40 In a further aspect, the invention concerns an isolated PRO1064 polypeptide, comprising an amino
acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably
at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334).

45 45 In yet another aspect, the invention concerns an isolated PRO1064 polypeptide, comprising the
sequence of amino acid residues 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID NO:334), or a
fragment thereof sufficient to provide a binding site for an anti-PRO1064 antibody. Preferably, the PRO1064
fragment retains a qualitative biological activity of a native PRO1064 polypeptide.

50 50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO1064 polypeptide having the
sequence of amino acid residues from about 1 or about 25 to about 153, inclusive of Figure 235 (SEQ ID
NO:334), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about

5 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In another embodiment, the invention provides an expressed sequence tag (EST) designated herein
15 as DNA45288 comprising the nucleotide sequence of SEQ ID NO:335 (see Figure 236).

101. PRO1379

15 A cDNA clone (DNA59828-1608) has been identified that encodes a novel secreted polypeptide
designated in the present application as "PRO1379."

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1379 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1379 polypeptide
15 having the sequence of amino acid residues from about 18 to about 574, inclusive of Figure 238 (SEQ ID
NO:340), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1379
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 61 and
about 1731, inclusive, of Figure 237 (SEQ ID NO:339). Preferably, hybridization occurs under stringent
20 hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203158
35 (DNA59828-1608), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 203158 (DNA59828-1608).

40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 18 to about 574, inclusive of Figure 238 (SEQ ID
NO:340), or the complement of the DNA of (a).

45 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50
nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule
35 under stringent conditions with (a) a DNA molecule encoding a PRO1379 polypeptide having the sequence of
amino acid residues from about 18 to about 574, inclusive of Figure 238 (SEQ ID NO:340), or (b) the
complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence

5 identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1379 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 17 in the sequence of Figure 238 (SEQ ID NO:340).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
10 amino acid sequence of residues 18 to about 574, inclusive of Figure 238 (SEQ ID NO:340), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1379 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about
15 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1379 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO1379 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 18 to 574 of Figure 238 (SEQ ID NO:340).

35 In another aspect, the invention concerns an isolated PRO1379 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 18 to about 574, inclusive of Figure 238 (SEQ ID NO:340).

40 In a further aspect, the invention concerns an isolated PRO1379 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 18 to 574 of Figure 238 (SEQ ID NO:340).

45 In yet another aspect, the invention concerns an isolated PRO1379 polypeptide, comprising the sequence of amino acid residues 18 to about 574, inclusive of Figure 238 (SEQ ID NO:340), or a fragment thereof sufficient to provide a binding site for an anti-PRO1379 antibody. Preferably, the PRO1379 fragment retains a qualitative biological activity of a native PRO1379 polypeptide.

50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1379 polypeptide having the sequence of amino acid residues from about 18 to about 574, inclusive of Figure 238 (SEQ ID NO:340), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%

5 sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

102. **PRO844**

10 A cDNA clone (DNA59838-1462) has been identified, having sequence identity with protease inhibitors, that encodes a novel polypeptide, designated in the present application as "PRO844."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO844 polypeptide.

15 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO844 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-111, or in another embodiment, 20-111.

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO844 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 5 or 62 and about 337, inclusive, of Figure 239 (SEQ ID NO:344). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209976 (DNA59838-1462), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209976 (DNA59838-1462).

30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345), or the complement of the DNA of (a).

35 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO844 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about a 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test

5

10

15

20

25

30

35

40

45

50

55

5 DNA molecule.

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345), or (b) the complement of the DNA of (a).

In another embodiment, the invention provides isolated PRO844 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO844 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 20 through 111 of Figure 240 (SEQ ID NO:345).

In another aspect, the invention concerns an isolated PRO844 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345).

In a further aspect, the invention concerns an isolated PRO844 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 20 through 111 of Figure 240 (SEQ ID NO:345).

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO844 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 111, inclusive of Figure 240 (SEQ ID NO:345), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO844 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO844 antibody.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO844 polypeptide, by contacting the native PRO844 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO844 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 103. **PRO848**

50 A cDNA clone (DNAS9839-1461) has been identified, having sequence identity with sialytransferases

5 that encodes a novel polypeptide, designated in the present application as "PRO848."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO848 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO848 polypeptide having the sequence of amino acid residues from about 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-600, or in another embodiment, 36-600.

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO848 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 1 or 251 and about 1945, inclusive, of Figure 241 (SEQ ID NO:346). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209988 (DNA59839-1461), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209988 (DNA59839-1461).

20 30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347), or the complement of the DNA of (a).

25 35 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO848 polypeptide having the sequence of amino acid residues from about 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 40 30 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

45 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347), or (b) the complement of the DNA of (a).

5 In another embodiment, the invention provides isolated PRO848 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO848 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 36 through 600 of Figure 242 (SEQ ID NO:347).

15 5 In another aspect, the invention concerns an isolated PRO848 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347).

20 10 In a further aspect, the invention concerns an isolated PRO848 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 36 through 600 of Figure 242 (SEQ ID NO:347).

25 15 20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO848 polypeptide having the sequence of amino acid residues from about 1 or 36 to about 600, inclusive of Figure 242 (SEQ ID NO:347), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 30 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO848 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO848 antibody.

35 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO848 polypeptide, by contacting the native PRO848 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 40 In a still further embodiment, the invention concerns a composition comprising a PRO848 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 104. **PRO1097**

45 Applicants have identified a cDNA clone (DNA59841-1460) that encodes a novel secreted polypeptide having domains therein from the glycoprotease family proteins and the acyltransferase ChoActasc/COT/CPT family, wherein the polypeptide is designated in the present application as "PRO1097".

50 45 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1097 polypeptide.

55 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most

5 preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1097 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-91, or in another embodiment, 21-91.

10 5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1097 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 3 or 63 and about 275, inclusive, of Figure 243 (SEQ ID NO:348). Preferably, hybridization occurs under stringent hybridization and wash conditions.

15 10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203044 (DNA59841-1460), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203044 (DNA59841-1460).

20 15 25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349), or the complement of the DNA of (a).

30 30 35 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1097 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

40 30 40 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1097 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 20 in the sequence of Figure 244 (SEQ ID NO:349).

45 35 50 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349), or (b) the complement of the DNA of (a).

5 In another embodiment, the invention provides isolated PRO1097 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO1097 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 21 through 91 of Figure 244 (SEQ ID NO:349).

15 5 In another aspect, the invention concerns an isolated PRO1097 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349).

20 10 In a further aspect, the invention concerns an isolated PRO1097 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 21 through 91 of Figure 244 (SEQ ID NO:349).

25 15 20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1097 polypeptide having the sequence of amino acid residues from about 1 or 21 to about 91, inclusive of Figure 244 (SEQ ID NO:349), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 30 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1097 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1097 antibody.

35 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1097 polypeptide, by contacting the native PRO1097 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 40 In a still further embodiment, the invention concerns a composition comprising a PRO1097 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 105. **PRO1153**

45 A cDNA clone (DNA59842-1502) has been identified, having two transmembrane domains and being very proline rich, that encodes a novel polypeptide, designated in the present application as "PRO1153."

50 45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1153 polypeptide.

55 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1153 polypeptide

5 having the sequence of amino acid residues from about 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351), or (b) the complement of the DNA molecule of (a).

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1153 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 92 and about 682, inclusive, of Figure 245 (SEQ ID NO:350). Preferably, hybridization occurs under stringent
15 hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209982 (DNA59842-1502), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209982 (DNA59842-1502).

25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
30 identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351), or the complement of the DNA of (a).

35 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1153 polypeptide having the sequence of amino acid residues from about 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

40 35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1153 polypeptide, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains have been tentatively identified as extending from about amino acid positions 10-28 and 85-110 in the PRO1153 amino acid sequence (Figure 246, SEQ ID NO:351).

45 30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351), or (b) the complement of the DNA of (a).

50 35 In another embodiment, the invention provides isolated PRO1153 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

5 In a specific aspect, the invention provides isolated native sequence PRO1153 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 197 of Figure 246 (SEQ ID NO:351).

10 In another aspect, the invention concerns an isolated PRO1153 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351).

15 In a further aspect, the invention concerns an isolated PRO1153 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 197 of Figure 246 (SEQ ID NO:351).

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1153 polypeptide having the sequence of amino acid residues from about 1 to about 197, inclusive of Figure 246 (SEQ ID NO:351), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 106. **PRO1154**

30 A cDNA clone (DNA59846-1503) has been identified that encodes a novel aminopeptidase, designated in the present application as "PRO1154."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1154 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1154 polypeptide having the sequence of amino acid residues from about 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353), or (b) the complement of the DNA molecule of (a).

40 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1154 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 86 or 188 and about 2908, inclusive, of Figure 247 (SEQ ID NO:35 2). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209978

5 (DNA59846-1503), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209978 (DNA59846-1503).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1154 polypeptide having the sequence of amino acid residues from about 1 or 35 to about 941, inclusive of Figure 258 (SEQ ID NO:353), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353), or (b) the complement of the DNA of (a).

25 20 In another aspect, the invention concerns an isolated nucleic acid molecule consisting essentially of DNA encoding a polypeptide having amino acids 1 or 35 through about 73 of SEQ ID NO:353.

30 In another embodiment, the invention provides isolated PRO1154 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 25 In a specific aspect, the invention provides isolated native sequence PRO1154 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 35 to 941 of Figure 248 (SEQ ID NO:353).

40 30 In a specific aspect, the invention provides a polypeptide having amino acids 1 or 35 through about 73 of SEQ ID NO:353.

45 35 In another aspect, the invention concerns an isolated PRO1154 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353).

50 45 In a further aspect, the invention concerns an isolated PRO1154 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 35 through 941 of Figure 248 (SEQ ID NO:353).

5 In yet another aspect, the invention concerns an isolated PRO1154 polypeptide, comprising the sequence of amino acid residues 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353), or a fragment thereof sufficient to provide a binding site for an anti-PRO1154 antibody. Preferably, the PRO1154 fragment retains a qualitative biological activity of a native PRO1154 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1154 polypeptide having the sequence of amino acid residues from about 1 or 35 to about 941, inclusive of Figure 248 (SEQ ID NO:353), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 20 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1154 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1154 antibody.

25 15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1154 polypeptide, by contacting the native PRO1154 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 20 In a still further embodiment, the invention concerns a composition comprising a PRO1154 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 20 107. **PRO1181**

A cDNA clone (DNA59847-1511) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1181".

40 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1181 polypeptide.

45 30 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1181 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or (b) the complement of the DNA molecule of (a).

50 35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1181 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 17 or about 62 and about 1327, inclusive, of Figure 249 (SEQ ID NO:354). Preferably, hybridization occurs under stringent hybridization and wash conditions.

55 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203098 (DNA59847-1511) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203098 (DNA59847-1511).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or (b) the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1181 polypeptide having the sequence of amino acid residues from 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1181 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 15 in the 25 sequence of Figure 250 (SEQ ID NO:355). The transmembrane domain is at amino acids positions 243-260 of Figure 250.

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 35 amino acid sequence of residues 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or (b) the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1181 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 30 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 249 (SEQ ID NO:354).

45 In another embodiment, the invention provides isolated PRO1181 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

50 35 In a specific aspect, the invention provides isolated native sequence PRO1181 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 16 to about 437 of Figure 250 (SEQ ID NO:355).

5 In another aspect, the invention concerns an isolated PRO1181 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355).

10 In a further aspect, the invention concerns an isolated PRO1181 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355).

15 In yet another aspect, the invention concerns an isolated PRO1181 polypeptide, comprising the sequence of amino acid residues 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or a fragment thereof sufficient to provide a binding site for an anti-PRO1181 antibody. Preferably, the PRO1181 fragment retains a qualitative biological activity of a native PRO1181 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1181 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 437, inclusive of Figure 250 (SEQ ID NO:355), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 108. **PRO1182**
A cDNA clone (DNA59848-1512) has been identified, having homology to nucleic acid encoding conglutinin that encodes a novel polypeptide, designated in the present application as "PRO1182".

30 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1182 polypeptide.

40 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1182 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or (b) the complement of the DNA molecule of (a).

50 55 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1182 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 67 or about 142 and about 879, inclusive, of Figure 251 (SEQ ID NO:356). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203088 (DNA59848-1512) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203088 (DNA59848-1512).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 15 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or (b) the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 20 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA 25 molecule encoding a PRO1182 polypeptide having the sequence of amino acid residues from 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence 30 identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence 35 identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA 30 encoding a PRO1182 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 25 in the 35 sequence of Figure 252 (SEQ ID NO:357).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 25 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more 30 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or (b) 35 the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1182 polypeptide coding sequence that may 45 find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be 50 derived from the nucleotide sequence shown in Figure 251 (SEQ ID NO:356).

30 In another embodiment, the invention provides isolated PRO1182 polypeptide encoded by any of the 35 isolated nucleic acid sequences hereinabove identified.

35 In a specific aspect, the invention provides isolated native sequence PRO1182 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 26 to about 271 of Figure 252 (SEQ ID NO:357).

40 In another aspect, the invention concerns an isolated PRO1182 polypeptide, comprising an amino acid 45 sequence having at least about 80% scquence identity, preferably at least about 85 % sequence identity, more 50

5 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357).

10 In a further aspect, the invention concerns an isolated PRO1182 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357).

15 In yet another aspect, the invention concerns an isolated PRO1182 polypeptide, comprising the sequence of amino acid residues 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or a fragment thereof sufficient to provide a binding site for an anti-PRO1182 antibody. Preferably, the PRO1182 fragment retains a qualitative biological activity of a native PRO1182 polypeptide.

20 10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1182 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 271, inclusive of Figure 252 (SEQ ID NO:357), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 15 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1182 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1182 antibody.

30 20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1182 polypeptide by contacting the native PRO1182 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 25 In a still further embodiment, the invention concerns a composition comprising a PRO1182 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

40 109. PRO1155

A cDNA clone (DNA59849-1504) has been identified, having sequence identity with neurokinin B that encodes a novel polypeptide, designated in the present application as "PRO1155."

45 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1155 polypeptide.

50 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1155 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 135, inclusive of Figure 254 (SEQ ID NO:359), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to nucleic or amino acids is meant to convey alternative embodiments, i.e., 1-135 or alternatively in another embodiment,

19-135.

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1155 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 158 or 212 and about 562, inclusive, of Figure 253 (SEQ ID NO:358). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209986 (DNAS9849-1504), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the 15 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209986 (DNAS9849-1504).

20 10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence 15 identity to the sequence of amino acid residues from about 1 or 19 to about 135, inclusive of Figure 254 (SEQ ID NO:359), or the complement of the DNA of (a).

25 20 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1155 polypeptide having the sequence of amino acid residues from about 19 to about 135, inclusive of Figure 254 (SEQ ID 20 NO:359), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more 35 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 19 to about 135, inclusive of Figure 254 (SEQ ID NO:359), or (b) the complement of the DNA of (a).

40 30 In another embodiment, the invention provides isolated PRO1155 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

45 35 In a specific aspect, the invention provides isolated native sequence PRO1155 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 19 through 135 of Figure 254 (SEQ ID NO:359).

50 35 In another aspect, the invention concerns an isolated PRO1155 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more 40 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 19 to about 135, inclusive of Figure 254 (SEQ ID NO:359).

5 In a further aspect, the invention concerns an isolated PRO1155 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 19 through 135 of Figure 254 (SEQ ID NO:359).

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1155 polypeptide having the sequence of amino acid residues from about 1 or 19 to about 135, inclusive of Figure 254 (SEQ ID NO:359), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1155 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1155 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1155 polypeptide, by contacting the native PRO1155 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO1155 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 **110. PRO1156**

35 A cDNA clone (DNA59853-1505) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1156."

40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1156 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1156 polypeptide having the sequence of amino acid residues from about 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361), or (b) the complement of the DNA molecule of (a).

50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1156 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 281 and about 688, inclusive, of Figure 255 (SEQ ID NO:360). Preferably, hybridization occurs under stringent hybridization and wash conditions.

55 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209985
10 (DNA59853-1505), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
15 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 209985 (DNA59853-1505).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
15 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 23 to about 159, inclusive of Figure 256 (SEQ ID
NO:361), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 50
20 nucleotides, preferably at least 100 nucleotides, and produced by hybridizing a test DNA molecule under
stringent conditions with (a) a DNA molecule encoding a PRO1156 polypeptide having the sequence of amino
25 acid residues from about 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361), or (b) the complement
of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably
at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most
30 preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
30 encoding a PRO1156 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been
tentatively identified as extending from amino acid position 1 to about amino acid position 22 in the sequence
35 of Figure 256 (SEQ ID NO:361).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
35 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361), or (b) the
complement of the DNA of (a).

40 In another aspect, the invention concerns hybridization probes that comprise fragments of the PRO784
45 coding sequence, or complementary sequence thereof. The hybridization probes preferably have at least about
20 nucleotides to about 80 nucleotides, and more preferably, at least about 20 to about 50 nucleotides.

45 In another embodiment, the invention provides isolated PRO1156 polypeptide encoded by any of the
50 isolated nucleic acid sequences hereinabove defined.

55 In a specific aspect, the invention provides isolated native sequence PRO1156 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 23 to 159 of Figure 256 (SEQ ID
NO:361).

50 In another aspect, the invention concerns an isolated PRO1156 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361).

5 in a further aspect, the invention concerns an isolated PRO1156 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 to 159 of Figure 256 (SEQ ID NO:361).

10 In yet another aspect, the invention concerns an isolated PRO1156 polypeptide, comprising the sequence of amino acid residues 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361), or a fragment thereof sufficient to provide a binding site for an anti-PRO1156 antibody. Preferably, the PRO1156 fragment retains a qualitative biological activity of a native PRO1156 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1156 polypeptide having the sequence of amino acid residues from about 23 to about 159, inclusive of Figure 256 (SEQ ID NO:361), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 **111. PRO1098**

A cDNA clone (DNA59854-1459) has been identified which encodes a novel polypeptide, designated in the present application as "PRO1098."

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1098 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1098 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363), or (b) the complement of the DNA molecule of (a). The term "or" as used herein to refer to amino or nucleic acids is meant to refer to two alternative embodiments provided herein, i.e., 1-78, or in another embodiment, 20-78.

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1098 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 58 or 115 and about 291, inclusive, of Figure 257 (SEQ ID NO:362). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209974 (DNA59854-1459), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the

5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209974 (DNA59854-1459).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1098 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363), or (b) the complement of the DNA of (a).

25 In another embodiment, the invention provides isolated PRO1098 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO1098 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 20 through 78 of Figure 258 (SEQ ID NO:363).

35 In another aspect, the invention concerns an isolated PRO1098 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363).

40 In a further aspect, the invention concerns an isolated PRO1098 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 20 through 78 of Figure 258 (SEQ ID NO:363).

45 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1098 polypeptide having the sequence of amino acid residues from about 1 or 20 to about 78, inclusive of Figure 258 (SEQ ID NO:363), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host

5 cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 5 **112. PRO1127**

A cDNA clone (DNA60283-1484) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1127."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1127 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1127 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365), or (b) the complement of the DNA molecule of (a). The term "or" in reference to amino or nucleic acids as used herein refers to two alternative embodiments, i.e., 1-67 in one embodiment, or alternatively, 30-67.

15 10 20 25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1127 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 126 or 213 and about 326, inclusive, of Figure 259 (SEQ ID NO:364). Preferably, hybridization occurs under stringent hybridization and wash conditions.

20 30 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203043 (DNA60283-1484), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203043 (DNA60283-1484).

40 45 30 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365), or the complement of the DNA of (a).

50 55 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1127 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1127 polypeptide without the N-terminal signal sequence and/or the initiating methionine. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 29 in the sequence of Figure 260 (SEQ ID NO:365).

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365), or (b) the complement of the DNA of (a).

15 Another embodiment is directed to fragments of a PRO1127 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

20 In another embodiment, the invention provides isolated PRO1127 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

25 In a specific aspect, the invention provides isolated native sequence PRO1127 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 or 30 through 67 of Figure 260 (SEQ ID NO:365).

30 In another aspect, the invention concerns an isolated PRO1127 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365).

35 In a further aspect, the invention concerns an isolated PRO1127 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or 30 through 67 of Figure 260 (SEQ ID NO:365).

40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1127 polypeptide having the sequence of amino acid residues from about 1 or 30 to about 67, inclusive of Figure 260 (SEQ ID NO:365), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

45 35 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1127 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1127 antibody.

5 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1127 polypeptide, by contacting the native PRO1127 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

10 In a still further embodiment, the invention concerns a composition comprising a PRO1127 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

15 **113. PRO1126**

A cDNA clone (DNA60615-1483) has been identified, having homology to nucleic acid encoding olfactomedin that encodes a novel polypeptide, designated in the present application as "PRO1126".

10 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1126 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1126 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or (b) the complement of the DNA molecule of (a).

25 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1126 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 110 or about 185 and about 1315, inclusive, of Figure 261 (SEQ ID NO:366). Preferably, hybridization occurs under stringent hybridization and wash conditions.

30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209980 (DNA60615-1483) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209980 (DNA60615-1483).

35 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or (b) the complement of the DNA of (a).

40 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1126 polypeptide having the sequence of amino acid residues from 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence

5 identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1126 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 25 in the sequence of Figure 262 (SEQ ID NO:367).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
10 amino acid sequence of residues 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1126 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about
25 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 261 (SEQ ID NO:366).

25 In another embodiment, the invention provides isolated PRO1126 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

30 20 In a specific aspect, the invention provides isolated native sequence PRO1126 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 26 to about 402 of Figure 262 (SEQ ID NO:367).

35 25 In another aspect, the invention concerns an isolated PRO1126 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367).

40 30 In a further aspect, the invention concerns an isolated PRO1126 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367).

45 35 In yet another aspect, the invention concerns an isolated PRO1126 polypeptide, comprising the sequence of amino acid residues 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or a fragment thereof sufficient to provide a binding site for an anti-PRO1126 antibody. Preferably, the PRO1126 fragment retains a qualitative biological activity of a native PRO1126 polypeptide.

50 35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1126 polypeptide having the sequence of amino acid residues from about 1 or about 26 to about 402, inclusive of Figure 262 (SEQ ID NO:367), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about

5 an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1126 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1126 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1126 polypeptide by contacting the native PRO1126 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1126 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

20 **114. PRO1125**

15 A cDNA clone (DNA60619-1482) has been identified, having beta-transducin family Trp-Asp (WD) conserved regions, that encodes a novel polypeptide, designated in the present application as "PRO1125."

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1125 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1125 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or (b) the complement of the DNA molecule of (a). As used herein, "or" when referring to nucleic acids or amino acids, refers to two alternative embodiments, i.e., 1-447 and 26-447.

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1125 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 47 or 122 and about 1387, inclusive, of Figure 263 (SEQ ID NO:368). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209993 (DNA60619-1482), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209993 (DNA60619-1482).

40 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence

5 identity to the sequence of amino acid residues from about 1 or 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1125 polypeptide having the sequence of amino acid residues from about 1 or 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

15 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA 10 encoding a PRO1125 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from 20 amino acid position 1 through about amino acid position 25 in the sequence of Figure 264 (SEQ ID NO:369).

25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 15 encoding a polypeptide scoring at least about 80 % positives, preferably at least about 85 % positives, more preferably at least about 90 % positives, most preferably at least about 95 % positives when compared with the amino acid sequence of residues 1 or 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or (b) the complement of the DNA of (a).

30 In another embodiment, the invention provides isolated PRO1125 polypeptide encoded by any of the 20 isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO1125 polypeptide, which in 25 one embodiment, includes an amino acid sequence comprising residues 1 or 26 to 447 of Figure 264 (SEQ ID NO:369).

40 In another aspect, the invention concerns an isolated PRO1125 polypeptide, comprising an amino 30 acid sequence having at least about 80 % sequence identity, preferably at least about 85 % sequence identity, more preferably at least about 90 % sequence identity, most preferably at least about 95 % sequence identity to the sequence of amino acid residues 1 or 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369).

45 In a further aspect, the invention concerns an isolated PRO1125 polypeptide, comprising an amino acid sequence scoring at least about 80 % positives, preferably at least about 85 % positives, more preferably 35 at least about 90 % positives, most preferably at least about 95 % positives when compared with the amino acid sequence of residues 1 or 26 through 447 of Figure 264 (SEQ ID NO:369).

50 In yet another aspect, the invention concerns an isolated PRO1125 polypeptide, comprising the 35 sequence of amino acid residues 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or a fragment thereof sufficient to provide a binding site for an anti-PRO1125 antibody. Preferably, the PRO1125 fragment retains a qualitative biological activity of a native PRO1125 polypeptide.

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1125 polypeptide having the

5 sequence of amino acid residues from about 26 to about 447, inclusive of Figure 264 (SEQ ID NO:369), or
10 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host
cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
15 recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1125
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1125 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
a native PRO1125 polypeptide, by contacting the native PRO1125 polypeptide with a candidate molecule and
10 monitoring a biological activity mediated by said polypeptide.

20 **115. PRO1186**

A cDNA clone (DNA60621-1516) has been identified that encodes a novel polypeptide having
sequence identity with venom protein A and designated in the present application as "PRO1186."

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1186 polypeptide.

30 In one aspect; the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1186 polypeptide
having the sequence of amino acid residues from about 20 to about 105, inclusive of Figure 266 (SEQ ID
NO:371), or (b) the complement of the DNA molecule of (a).

35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1186
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 148
and about 405, inclusive, of Figure 265 (SEQ ID NO:370). Preferably, hybridization occurs under stringent
hybridization and wash conditions.

40 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
45 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203091
(DNA60621-1516), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 203091 (DNA60621-1516).

50 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 20 to about 105, inclusive of Figure 266 (SEQ ID
NO:371), or the complement of the DNA of (a).

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1186 polypeptide having the sequence of amino acid residues from about 20 to about 105, inclusive of Figure 266 (SEQ ID NO:371), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 15 amino acid sequence of residues 20 to about 105, inclusive of Figure 266 (SEQ ID NO:371), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1186 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 25 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1186 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 In a specific aspect, the invention provides isolated native sequence PRO1186 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 20 through 105 of Figure 266 (SEQ ID NO:371).

35 In another aspect, the invention concerns an isolated PRO1186 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 40 sequence of amino acid residues 20 to about 105, inclusive of Figure 266 (SEQ ID NO:371).

45 In a further aspect, the invention concerns an isolated PRO1186 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 20 through 105 of Figure 266 (SEQ ID NO:371).

50 In yet another aspect, the invention concerns an isolated PRO1186 polypeptide, comprising the sequence of amino acid residues 20 to about 105, inclusive of Figure 266 (SEQ ID NO:371), or a fragment thereof sufficient to provide a binding site for an anti-PRO1186 antibody. Preferably, the PRO1186 fragment retains a qualitative biological activity of a native PRO1186 polypeptide.

55 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1186 polypeptide having the sequence of amino acid residues from about 20 to about 105, inclusive of Figure 266 (SEQ ID NO:371), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%

5 sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1186 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1186 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1186 polypeptide, by contacting the native PRO1186 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1186 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

20 **116. PRO1198**

15 A cDNA clone (DNA60622-1525) has been identified that encodes a novel secreted polypeptide designated in the present application as "PRO1198."

25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1198 polypeptide.

20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1198 polypeptide having the sequence of amino acid residues from about 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373), or (b) the complement of the DNA molecule of (a).

30 35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1198 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 156 and about 740, inclusive, of Figure 268 (SEQ ID NO:373). Preferably, hybridization occurs under stringent hybridization and wash conditions.

40 45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203090 (DNA60622-1525), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203090 (DNA60622-1525).

50 55 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 35 to about 229, inclusive of Figure 268 (SEQ ID

5 NO:373), or the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1198 polypeptide having the sequence of amino acid residues from about 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1198 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 through about amino acid position 35 in the sequence of Figure 268 (SEQ ID NO:373).

15 20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373), or (b) the complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO1198 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO1198 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 40 In a specific aspect, the invention provides isolated native sequence PRO1198 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 35 to 229 of Figure 268 (SEQ ID NO:373).

45 50 In another aspect, the invention concerns an isolated PRO1198 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373).

55 In a further aspect, the invention concerns an isolated PRO1198 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 35 to 229 of Figure 268 (SEQ ID NO:373).

35 In yet another aspect, the invention concerns an isolated PRO1198 polypeptide, comprising the sequence of amino acid residues 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373), or a fragment thereof sufficient to provide a binding site for an anti-PRO1198 antibody. Preferably, the PRO1198 fragment

5 retains a qualitative biological activity of a native PRO1198 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1198 polypeptide having the sequence of amino acid residues from about 35 to about 229, inclusive of Figure 268 (SEQ ID NO:373), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15

10 117. **PRO1158**

A cDNA clone (DNA60625-1507) has been identified that encodes a novel transmembrane polypeptide, designated in the present application as "PRO1158".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1158 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1158 polypeptide having the sequence of amino acid residues from about 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or (b) the complement of the DNA molecule of (a).

20 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1158 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 220 and about 531, inclusive, of Figure 269 (SEQ ID NO:374). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209975 (DNA60625-1507), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209975 (DNA60625-1507).

40 30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or the complement of the DNA of (a).

45 35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule

50

5 under stringent conditions with (a) a DNA molecule encoding a PRO1158 polypeptide having the sequence of amino acid residues from about 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1158 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 19 in the sequence of Figure 270 (SEQ ID NO:375).

15 The transmembrane domain has been tentatively identified as extending from about amino acid position 56 to about amino acid position 80 in the PRO1158 amino acid sequence (Figure 270, SEQ ID NO:375).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80 % positives, preferably at least about 85 % positives, more preferably at least about 90 % positives, most preferably at least about 95 % positives when compared with the 25 amino acid sequence of residues 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or (b) the complement of the DNA of (a).

25 In another aspect, the invention concerns hybridization probes that comprise fragments of the PRO1158 coding sequence, or complementary sequence thereof. The hybridization probes preferably have at least about 20 nucleotides to about 80 nucleotides, and more preferably, at least about 20 to about 50 30 nucleotides.

35 In another embodiment, the invention provides isolated PRO1158 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO1158 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 20 to 123 of Figure 270 (SEQ ID NO:375).

40 In another aspect, the invention concerns an isolated PRO1158 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85 % sequence identity, more preferably at least about 90 % sequence identity, most preferably at least about 95 % sequence identity to the sequence of amino acid residues 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375).

45 In a further aspect, the invention concerns an isolated PRO1158 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85 % positives, more preferably at least about 90 % positives, most preferably at least about 95 % positives when compared with the amino acid sequence of residues 20 to 123 of Figure 270 (SEQ ID NO:375).

50 In yet another aspect, the invention concerns an isolated PRO1158 polypeptide, comprising the sequence of amino acid residues 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or a fragment thereof sufficient to provide a binding site for an anti-PRO1158 antibody. Preferably, the PRO1158 fragment retains a qualitative biological activity of a native PRO1158 polypeptide.

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1158 polypeptide having the sequence of amino acid residues from about 20 to about 123, inclusive of Figure 270 (SEQ ID NO:375), or
10 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 **118. PRO1159**

10 A cDNA clone (DNA60627-1508) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1159".

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1159 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1159 polypeptide having the sequence of amino acid residues from about 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1159 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 92 or about 137 and about 361, inclusive, of Figure 271 (SEQ ID NO:376). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203092 (DNA60627-1508) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203092 (DNA60627-1508).

40 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377), or (b) the complement of the DNA of (a).

45 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1159 polypeptide having the sequence of amino acid residues from 1 or about 16 to

5 about 90, inclusive of Figure 272 (SEQ ID NO:377), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1159 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 15 in the sequence of Figure 272 (SEQ ID NO:377).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1159 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 271 (SEQ ID NO:376).

25 In another embodiment, the invention provides isolated PRO1159 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

30 In a specific aspect, the invention provides isolated native sequence PRO1159 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 16 to about 90 of Figure 272 (SEQ ID NO:377).

35 In another aspect, the invention concerns an isolated PRO1159 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377).

40 In a further aspect, the invention concerns an isolated PRO1159 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377).

45 In yet another aspect, the invention concerns an isolated PRO1159 polypeptide, comprising the sequence of amino acid residues 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377), or a fragment thereof sufficient to provide a binding site for an anti-PRO1159 antibody. Preferably, the PRO1159 fragment retains a qualitative biological activity of a native PRO1159 polypeptide.

50 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1159 polypeptide having the

sequence of amino acid residues from about 1 or about 16 to about 90, inclusive of Figure 272 (SEQ ID NO:377), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

119. **PRO1124**

A cDNA clone (DNA60629-1481) has been identified, having sequence identity with a chloride channel protein and lung-endothelial cell adhesion molecule-1 (EAM-1) that encodes a novel polypeptide, designated in the present application as "PRO1124."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1124 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1124 polypeptide having the sequence of amino acid residues from about 1 or 22 to about 919, inclusive of Figure 274 (SEQ ID NO:379), or (b) the complement of the DNA molecule of (a). As used herein, "or", i.e., 1 or 22 and 25 or 88, is used to describe two alternative embodiments. For example, the invention includes amino acids 1 through 919 and in an alternative embodiment, provides amino acids 22 through 919, etc.

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1124 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 25 or 88 and about 2781, inclusive, of Figure 273 (SEQ ID NO:378). In another aspect, the invention concerns an isolated nucleic acid molecule hybridizing to the complement of the nucleic acid of SEQ ID NO:378. Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209979 (DNA60629-1481), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 209979 (DNA60629-1481).

In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 or 22 to about 919, inclusive of Figure 274 (SEQ ID NO:379), or the complement of the DNA of (a).

5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1124 polypeptide, with or without the N-terminal signal sequence and/or the initiating
methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary
to such encoding nucleic acid molecule. The cytoplasmic end can be excluded as well. The signal peptide has
been tentatively identified as extending from amino acid position 1 to about amino acid position 21 in the
10 sequence of Figure 274 (SEQ ID NO: 379). The transmembrane domains have been tentatively identified as
extending from about amino acid position 284 to about amino acid position 300 and from about amino acid
position 617 to about amino acid position 633 in the amino acid sequence (Figure 274, SEQ ID NO:379).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more
10 preferably at least about 90% positives, most preferably at least about 95% positives when compared with the
amino acid sequence of residues 1 or 22 to about 919, inclusive of Figure 274 (SEQ ID NO:379), or (b) the
complement of the DNA of (a).

20 In another embodiment, the invention provides isolated PRO1124 polypeptide encoded by any of the
isolated nucleic acid sequences hereinabove defined.

25 15 In a specific aspect, the invention provides isolated native sequence PRO1124 polypeptide, which in
one embodiment, includes an amino acid sequence comprising residues 1 or 22 through 919 of Figure 274
(SEQ ID NO:379).

30 20 In another aspect, the invention concerns an isolated PRO1124 polypeptide, comprising an amino acid
sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more
preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the
sequence of amino acid residues 1 or 22 to about 919, inclusive of Figure 274 (SEQ ID NO:379).

35 25 In a further aspect, the invention concerns an isolated PRO1124 polypeptide, comprising an amino
acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably
at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid
sequence of residues 1 or 22 to 919 of Figure 274 (SEQ ID NO:379).

40 30 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO1124 polypeptide having the
sequence of amino acid residues from about 1 or 22 to about 919, inclusive of Figure 274 (SEQ ID NO:379),
or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host
cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
recovering the polypeptide from the cell culture.

45 35 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1124
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1124 antibody.

50 50 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
a native PRO1124 polypeptide, by contacting the native PRO1124 polypeptide with a candidate molecule and

monitoring an activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO1124 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10 5 120. PRO1287

A cDNA clone (DNA61755-1554) has been identified, having homology to nucleic acid encoding fringe protein, that encodes a novel polypeptide, designated in the present application as "PRO1287".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1287 polypeptide.

15 10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1287 polypeptide having the sequence of amino acid residues from about 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or (b) the complement of the DNA molecule of (a).

20 15 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1287 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 655 or about 736 and about 2250, inclusive, of Figure 275 (SEQ ID NO:380). Preferably, hybridization occurs under stringent hybridization and wash conditions.

25 20 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203112 (DNA61755-1554) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203112 (DNA61755-1554).

30 25 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or (b) the complement of the DNA of (a).

35 30 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1287 polypeptide having the sequence of amino acid residues from 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1287 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 27 in the sequence of Figure 276 (SEQ ID NO:381).

In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or (b) the complement of the DNA of (a).

Another embodiment is directed to fragments of a PRO1287 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 275 (SEQ ID NO:380).

In another embodiment, the invention provides isolated PRO1287 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

In a specific aspect, the invention provides isolated native sequence PRO1287 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 28 to about 532 of Figure 276 (SEQ ID NO:381).

In another aspect, the invention concerns an isolated PRO1287 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381).

In a further aspect, the invention concerns an isolated PRO1287 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381).

In yet another aspect, the invention concerns an isolated PRO1287 polypeptide, comprising the sequence of amino acid residues 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or a fragment thereof sufficient to provide a binding site for an anti-PRO1287 antibody. Preferably, the PRO1287 fragment retains a qualitative biological activity of a native PRO1287 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1287 polypeptide having the sequence of amino acid residues from about 1 or about 28 to about 532, inclusive of Figure 276 (SEQ ID NO:381), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b). (ii) culturing a

5 host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
(iii) recovering the polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1287 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1287 antibody.

10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1287 polypeptide by contacting the native PRO1287 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

15 In a still further embodiment, the invention concerns a composition comprising a PRO1287 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

10

121. PRO1312

20 A cDNA clone (DNA61873-1574) has been identified that encodes a novel transmembrane polypeptide designated in the present application as "PRO1312".

15

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1312 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1312 polypeptide having the sequence of amino acid residues from about 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1312 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 49 and about 642, inclusive, of Figure 277 (SEQ ID NO:386). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203132 (DNA61873-1574), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203132 (DNA61873-1574).

40 30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or the complement of the DNA of (a).

50

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1312 polypeptide having the sequence of amino acid residues from about 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1312 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 14 in the sequence of Figure 278 (SEQ ID NO:387). The transmembrane domain has been tentatively identified as extending from about amino acid position 141 to about amino acid position 160 in the PRO1312 amino acid sequence (Figure 278, SEQ ID NO:387).

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or (b) the complement of the DNA of (a).

20 Another embodiment is directed to fragments of a PRO1312 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 In another embodiment, the invention provides isolated PRO1312 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 35 In a specific aspect, the invention provides isolated native sequence PRO1312 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 15 to 212 of Figure 278 (SEQ ID NO:387).

35 40 In another aspect, the invention concerns an isolated PRO1312 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387).

45 50 In a further aspect, the invention concerns an isolated PRO1312 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 15 to 212 of Figure 278 (SEQ ID NO:387).

55 In yet another aspect, the invention concerns an isolated PRO1312 polypeptide, comprising the sequence of amino acid residues 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or a fragment

5 thereof sufficient to provide a binding site for an anti-PRO1312 antibody. Preferably, the PRO1312 fragment
retains a qualitative biological activity of a native PRO1312 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA
molecule under stringent conditions with (a) a DNA molecule encoding a PRO1312 polypeptide having the
sequence of amino acid residues from about 15 to about 212, inclusive of Figure 278 (SEQ ID NO:387), or
15 (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80%
sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90%
sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell
comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii)
recovering the polypeptide from the cell culture.

10

122. **PRO1192**

20 A cDNA clone (DNA62814-1521) has been identified that encodes a novel polypeptide having
homology to myelin P0 protein and designated in the present application as "PRO1192."

15

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1192 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1192 polypeptide
having the sequence of amino acid residues from about 22 to about 215, inclusive of Figure 280 (SEQ ID
20 NO:389), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1192
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 184
and about 764, inclusive, of Figure 279 (SEQ ID NO:388). Preferably, hybridization occurs under stringent
hybridization and wash conditions.

35

25 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203093
40 (DNA62814-1521), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 203093 (DNA62814-1521).

45 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
35 identity to the sequence of amino acid residues from about 22 to about 215, inclusive of Figure 280 (SEQ ID
NO:389), or the complement of the DNA of (a).

50

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1192 polypeptide having the sequence of amino acid residues from about 22 to about 215, inclusive of Figure 280 (SEQ ID NO:389), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1192 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 21 in the sequence of Figure 280 (SEQ ID NO:389). The transmembrane domain has been tentatively identified as extending from about amino acid position 153 through about amino acid position 176 in the PRO1192 amino acid sequence (Figure 280, SEQ ID NO:389).

15 20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 22 to about 215, inclusive of Figure 280 (SEQ ID NO:389), or (b) the complement of the DNA of (a).

25 30 Another embodiment is directed to fragments of a PRO1192 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, prefcrably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

35 40 In another embodiment, the invention provides isolated PRO1192 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

45 50 In a specific aspect, the invention provides isolated native sequence PRO1192 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 22 to 215 of Figure 280 (SEQ ID NO:389).

55 In another aspect, the invention concerns an isolated PRO1192 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 22 to about 215, inclusive of Figure 280 (SEQ ID NO:389).

60 65 In a further aspect, the invention concerns an isolated PRO1192 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 22 to 215 of Figure 280 (SEQ ID NO:389).

70 75 In yet another aspect, the invention concerns an isolated PRO1192 polypeptide, comprising the sequence of amino acid residues 22 to about 215, inclusive of Figure 280 (SEQ ID NO:389), or a fragment

5 thereof sufficient to provide a binding site for an anti-PRO1192 antibody. Preferably, the PRO1192 fragment retains a qualitative biological activity of a native PRO1192 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1192 polypeptide having the sequence of amino acid residues from about 22 to about 215, inclusive of Figure 280 (SEQ ID NO:389), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1192 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1192 antibody.

20 20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1192 polypeptide, by contacting the native PRO1192 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 15 In a still further embodiment, the invention concerns a composition comprising a PRO1192 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

123. **PRO1160**

30 20 A cDNA clone (DNA62872-1509) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1160".

35 25 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1160 polypeptide.

40 30 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1160 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or (b) the complement of the DNA molecule of (a).

45 35 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1160 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 40 or about 97 and about 309, inclusive, of Figure 282 (SEQ ID NO:394). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 40 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most prefcrably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203100 (DNA62872-1509) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the

5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203100 (DNA62872-1509).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or (b) the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1160 polypeptide having the sequence of amino acid residues from 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA 15 encoding a PRO1160 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been 25 tentatively identified as extending from about amino acid position 1 to about amino acid position 19 in the sequence of Figure 282 (SEQ ID NO:394).

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 30 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or (b) the complement of the DNA of (a).

35 Another embodiment is directed to fragments of a PRO1160 polypeptide coding sequence that may 25 find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 281 (SEQ ID NO:393).

40 In another embodiment, the invention provides isolated PRO1160 polypeptide encoded by any of the 30 isolated nucleic acid sequences hereinabove identified.

45 In a specific aspect, the invention provides isolated native sequence PRO1160 polypeptide, which in 35 certain embodiments, includes an amino acid sequence comprising residues 1 or about 20 to about 90 of Figure 282 (SEQ ID NO:394).

50 In another aspect, the invention concerns an isolated PRO1160 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394).

5 In a further aspect, the invention concerns an isolated PRO1160 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394).

10 In yet another aspect, the invention concerns an isolated PRO1160 polypeptide, comprising the sequence of amino acid residues 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or a fragment thereof sufficient to provide a binding site for an anti-PRO1160 antibody. Preferably, the PRO1160 fragment retains a qualitative biological activity of a native PRO1160 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1160 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 90, inclusive of Figure 282 (SEQ ID NO:394), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
20 (iii) recovering the polypeptide from the cell culture.
15

25 **124. PRO1187**

A cDNA clone (DNA62876-1517) has been identified that encodes a novel polypeptide having sequence identity with endo-beta-1,4-xylanase and designated in the present application as "PRO1187."

20 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1187 polypeptide.

25 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1187 polypeptide having the sequence of amino acid residues from about 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or (b) the complement of the DNA molecule of (a).

30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1187 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 172 and about 480, inclusive, of Figure 283 (SEQ ID NO:398). Preferably, hybridization occurs under stringent hybridization and wash conditions.

35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203095 (DNA62876-1517), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203095 (DNA62876-1517).

5 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or the complement of the DNA of (a).

10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1187 polypeptide having the sequence of amino acid residues from about 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 20 amino acid sequence of residues 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or (b) the complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO1187 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO1187 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO1187 polypeptide, which in 25 one embodiment, includes an amino acid sequence comprising residues 18 through 120 of Figure 284 (SEQ ID NO:399).

40 In another aspect, the invention concerns an isolated PRO1187 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the 45 sequence of amino acid residues 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399).

45 In a further aspect, the invention concerns an isolated PRO1187 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 18 through 120 of Figure 284 (SEQ ID NO:399).

50 In yet another aspect, the invention concerns an isolated PRO1187 polypeptide, comprising the sequence of amino acid residues 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or a fragment thereof sufficient to provide a binding site for an anti-PRO1187 antibody. Preferably, the PRO1187 fragment

5 retains a qualitative biological activity of a native PRO1187 polypeptide.

In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1187 polypeptide having the sequence of amino acid residues from about 18 to about 120, inclusive of Figure 284 (SEQ ID NO:399), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1187 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1187 antibody.

15 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1187 polypeptide, by contacting the native PRO1187 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 In a still further embodiment, the invention concerns a composition comprising a PRO1187 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

25 **125. PRO1185**

A cDNA clone (DNA62881-1515) has been identified that encodes a novel polypeptide having 20 sequence identity to a glucose repression regulatory protein, tup1, and designated in the present application as "PRO1185."

30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1185 polypeptide.

35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1185 polypeptide having the sequence of amino acid residues from about 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or (b) the complement of the DNA molecule of (a).

40 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1185 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 67 and about 597, inclusive, of Figure 285 (SEQ ID NO:400). Preferably, hybridization occurs under stringent hybridization and wash conditions.

45 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule 35 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203096 (DNA62881-1515), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the

5 nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203096 (DNA62881-1515).

10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1185 polypeptide having the sequence of amino acid residues from about 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

20 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or (b) the complement of the DNA of (a).

25 Another embodiment is directed to fragments of a PRO1185 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

30 In another embodiment, the invention provides isolated PRO1185 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

35 In a specific aspect, the invention provides isolated native sequence PRO1185 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 22 through 198 of Figure 286 (SEQ ID NO:401).

40 In another aspect, the invention concerns an isolated PRO1185 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401).

45 In a further aspect, the invention concerns an isolated PRO1185 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 22 through 198 of Figure 286 (SEQ ID NO:401).

5 In yet another aspect, the invention concerns an isolated PRO1185 polypeptide, comprising the sequence of amino acid residues 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or a fragment thereof sufficient to provide a binding site for an anti-PRO1185 antibody. Preferably, the PRO1185 fragment retains a qualitative biological activity of a native PRO1185 polypeptide.

10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1185 polypeptide having the sequence of amino acid residues from about 22 to about 198, inclusive of Figure 286 (SEQ ID NO:401), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

15 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1185 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1185 antibody.

20 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1185 polypeptide, by contacting the native PRO1185 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

25 In a still further embodiment, the invention concerns a composition comprising a PRO1185 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

30 **126. PRO1345**

A cDNA clone (DNA64852-1589) has been identified, having homology to nucleic acid encoding tetranectin protein that encodes a novel polypeptide, designated in the present application as "PRO1345".

35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1345 polypeptide.

40 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1345 polypeptide having the sequence of amino acid residues from about 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or (b) the complement of the DNA molecule of (a).

45 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1345 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 7 or about 100 and about 624, inclusive, of Figure 287 (SEQ ID NO:402). Preferably, hybridization occurs under stringent hybridization and wash conditions.

50 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule

5 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203127 (DNA64852-1589) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203127 (DNA64852-1589).

10 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or (b) the complement of the DNA of (a).

15 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 100
10 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1345 polypeptide having the sequence of amino acid residues from 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA
25 encoding a PRO1345 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 or amino acid 10 to about amino acid position 31 in the sequence of Figure 288 (SEQ ID NO:403).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95 % positives when compared with the amino acid sequence of residues 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or (b)
35 the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1345 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 287 (SEQ ID NO:402).

45 In another embodiment, the invention provides isolated PRO1345 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

50 In a specific aspect, the invention provides isolated native sequence PRO1345 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 32 to about 206 of Figure 288 (SEQ ID NO:403).

55 In another aspect, the invention concerns an isolated PRO1345 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85 % sequence identity, more

5 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403).

10 In a further aspect, the invention concerns an isolated PRO1345 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403).

15 In yet another aspect, the invention concerns an isolated PRO1345 polypeptide, comprising the sequence of amino acid residues 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or a fragment thereof sufficient to provide a binding site for an anti-PRO1345 antibody. Preferably, the PRO1345 fragment retains a qualitative biological activity of a native PRO1345 polypeptide.

20 10 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1345 polypeptide having the sequence of amino acid residues from about 1 or about 32 to about 206, inclusive of Figure 288 (SEQ ID NO:403), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

25 20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1345 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1345 antibody.

30 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1345 polypeptide by contacting the native PRO1345 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

35 25 In a still further embodiment, the invention concerns a composition comprising a PRO1345 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

40 127. **PRO1245**

A cDNA clone (DNA64884-1527) has been identified that encodes a novel secreted polypeptide designated in the present application as "PRO1245."

45 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1245 polypeptide.

35 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1245 polypeptide having the sequence of amino acid residues from about 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or (b) the complement of the DNA molecule of (a).

5 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1245 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 133 and about 390, inclusive, of Figure 289 (SEQ ID NO:407). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203155 (DNA64884-1245), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203155 (DNA64884-1245).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1245 polypeptide having the sequence of amino acid residues from about 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

25 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1245 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from amino acid position 1 through about amino acid position 18 in the sequence of Figure 290 (SEQ ID NO:408).

30 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or (b) the complement of the DNA of (a).

35 Another embodiment is directed to fragments of a PRO1245 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

5 In another embodiment, the invention provides isolated PRO1245 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

10 In a specific aspect, the invention provides isolated native sequence PRO1245 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 19 to 104 of Figure 290 (SEQ ID NO:408).

15 5 In another aspect, the invention concerns an isolated PRO1245 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408).

20 10 In a further aspect, the invention concerns an isolated PRO1245 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 19 to 104 of Figure 290 (SEQ ID NO:408).

25 15 In yet another aspect, the invention concerns an isolated PRO1245 polypeptide, comprising the sequence of amino acid residues 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or a fragment thereof sufficient to provide a binding site for an anti-PRO1245 antibody. Preferably, the PRO1245 fragment retains a qualitative biological activity of a native PRO1245 polypeptide.

30 20 25 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1245 polypeptide having the sequence of amino acid residues from about 19 to about 104, inclusive of Figure 290 (SEQ ID NO:408), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b). (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

35 25 **128. PRO1358**

40 30 A cDNA clone (DNA64890-1612) has been identified that encodes a novel polypeptide having sequence identity with RASP-1 and designated in the present application as "PRO1358."

45 35 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1358 polypeptide.

50 40 45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1358 polypeptide having the sequence of amino acid residues from about 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or (b) the complement of the DNA molecule of (a).

55 45 50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1358 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 140

5 and about 1417, inclusive, of Figure 292 (SEQ ID NO:410). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203131 (DNA64890-1612), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203131 (DNA64890-1612).

15 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 10 encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or the complement of the DNA of (a).

20 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 25 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1358 polypeptide having the sequence of 30 amino acid residues from about 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA 20 encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the 30 amino acid sequence of residues 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or (b) the complement of the DNA of (a).

40 Another embodiment is directed to fragments of a PRO1358 polypeptide coding sequence that may 45 find use as hybridization probes. Such nucleic acid fragments are from about 80 nucleotides to about 120 nucleotides in length.

45 In another embodiment, the invention provides isolated PRO1358 polypeptide encoded by any of the 50 isolated nucleic acid sequences hereinabove defined.

55 In a specific aspect, the invention provides isolated native sequence PRO1358 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 19 through 444 of Figure 292 (SEQ ID NO:410).

55 In another aspect, the invention concerns an isolated PRO1358 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410).

5 In a further aspect, the invention concerns an isolated PRO1358 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 19 through 444 of Figure 292 (SEQ ID NO:410).

10 In yet another aspect, the invention concerns an isolated PRO1358 polypeptide, comprising the sequence of amino acid residues 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or a fragment thereof sufficient to provide a binding site for an anti-PRO1358 antibody specific therefore. Preferably, the PRO1358 fragment retains a qualitative biological activity of a native PRO1358 polypeptide.

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1358 polypeptide having the sequence of amino acid residues from about 19 to about 444, inclusive of Figure 292 (SEQ ID NO:410), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1358 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1358 antibody.

25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1358 polypeptide, by contacting the native PRO1358 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 In a still further embodiment, the invention concerns a composition comprising a PRO1358 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 25 129. PRO1195

A cDNA clone (DNA65412-1523) has been identified that encodes a novel polypeptide having sequence identity with a mouse proline rich acidic protein and designated in the present application as "PRO1195."

40 30 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1195 polypeptide.

45 35 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1195 polypeptide having the sequence of amino acid residues from about 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412), or (b) the complement of the DNA molecule of (a).

50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1195 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 124

5 and about 510, inclusive, of Figure 293 (SEQ ID NO:411). Preferably, hybridization occurs under stringent hybridization and wash conditions.

10 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203094 (DNA65412-1523), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203094 (DNA65412-1523).

15 10 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412), or the complement of the DNA of (a).

20 15 25 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1195 polypeptide having the sequence of amino acid residues from about 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

30 20 35 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412), or (b) the complement of the DNA of (a).

40 30 45 Another embodiment is directed to fragments of a PRO1195 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 through about 80 nucleotides in length, preferably from about 20 through about 60 nucleotides in length, more preferably from about 20 through about 50 nucleotides in length, and most preferably from about 20 through about 40 nucleotides in length.

50 35 55 In another embodiment, the invention provides isolated PRO1195 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

In a specific aspect, the invention provides isolated native sequence PRO1195 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 23 through 151 of Figure 294 (SEQ ID NO:412).

In another aspect, the invention concerns an isolated PRO1195 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more

5 preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412).

10 In a further aspect, the invention concerns an isolated PRO1195 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 23 through 151 of Figure 294 (SEQ ID NO:412).

15 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1195 polypeptide having the sequence of amino acid residues from about 23 to about 151, inclusive of Figure 294 (SEQ ID NO:412), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of the a native PRO1195 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1195 antibody.

25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1195 polypeptide, by contacting the native PRO1195 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

30 In a still further embodiment, the invention concerns a composition comprising a PRO1195 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

130. PRO1270

35 A cDNA clone (DNA66308-1537) has been identified, having homology to nucleic acid encoding a lectin protein, that encodes a novel polypeptide, designated in the present application as "PRO1270".

40 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1270 polypeptide.

45 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1270 polypeptide having the sequence of amino acid residues from about 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or (b) the complement of the DNA molecule of (a).

50 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1270 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 103 or about 151 and about 1041, inclusive, of Figure 295 (SEQ ID NO:413). Preferably, hybridization occurs under stringent hybridization and wash conditions.

5 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203159 (DNA66308-1537) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203159 (DNA66308-1537).

10 5 In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or (b) the complement of the DNA of (a).

15 10 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 285 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1270 polypeptide having the sequence of amino acid residues from 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, prefereably at least about an 85 % sequence identity, more preferably at least about a 90 % sequence identity, most preferably at least about a 95 % sequence identity to (a) or (b), isolating the test DNA molecule.

20 20 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1270 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 16 in the sequence of Figure 296 (SEQ ID NO:414).

25 25 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or (b) the complement of the DNA of (a).

30 30 Another embodiment is directed to fragments of a PRO1270 polypeptide coding scquence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 295 (SEQ ID NO:413).

35 35 In another embodiment, the invention provides isolated PRO1270 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.

40 45 In a specific aspect, the invention provides isolated native sequence PRO1270 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 17 to about 313 of

5 Figure 296 (SEQ ID NO:414).

In another aspect, the invention concerns an isolated PRO1270 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414).

10 In a further aspect, the invention concerns an isolated PRO1270 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414).

15 In yet another aspect, the invention concerns an isolated PRO1270 polypeptide, comprising the sequence of amino acid residues 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or a fragment thereof sufficient to provide a binding site for an anti-PRO1270 antibody. Preferably, the PRO1270 fragment retains a qualitative biological activity of a native PRO1270 polypeptide.

20 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1270 polypeptide having the sequence of amino acid residues from about 1 or about 17 to about 313, inclusive of Figure 296 (SEQ ID NO:414), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

30 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1270 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1270 antibody.

35 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1270 polypeptide by contacting the native PRO1270 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

40 In a still further embodiment, the invention concerns a composition comprising a PRO1270 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

45 30 131. **PRO1271**

A cDNA clone (DNA66309-1538) has been identified that encodes a novel polypeptide having serine and threonine rich regions designated in the present application as "PRO1271" polypeptides.

45 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1271 polypeptide.

50 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1271 polypeptide

5 having the sequence of amino acid residues from about 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or (b) the complement of the DNA molecule of (a).

10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1271 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 187 and about 717, inclusive, of Figure 297 (SEQ ID NO:415). Preferably, hybridization occurs under stringent
15 hybridization and wash conditions.

15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
20 encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203235 (DNA66309-1538), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203235 (DNA66309-1538).

25 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
30 identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or the complement of the DNA of (a).

35 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule
40 under stringent conditions with (a) a DNA molecule encoding a PRO1271 polypeptide having the sequence of amino acid residues from about 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

45 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1271 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, and its soluble, i.e. transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from
50 amino acid position 1 through about amino acid position 31 in the sequence of Figure 298 (SEQ ID NO:416). The transmembrane domain has been tentatively identified as extending from about amino acid position 166 through about amino acid position 187 in the PRO1271 amino acid sequence (Figure 298, SEQ ID NO:416).

55 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or (b) the complement of the DNA of (a).

5 Another embodiment is directed to fragments of a PRO1271 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

10 In another embodiment, the invention provides isolated PRO1271 polypeptide encoded by any of the 5 isolated nucleic acid sequences hereinabove defined.

15 In a specific aspect, the invention provides isolated native sequence PRO1271 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 32 through 208 of Figure 298 (SEQ ID NO:416).

20 In another aspect, the invention concerns an isolated PRO1271 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416).

25 In a further aspect, the invention concerns an isolated PRO1271 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 32 through 208 of Figure 298 (SEQ ID NO:416).

30 In yet another aspect, the invention concerns an isolated PRO1271 polypeptide, comprising the sequence of amino acid residues 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or a fragment thereof sufficient to provide a binding site for an anti-PRO1271 antibody. Preferably, the PRO1271 fragment retains a qualitative biological activity of a native PRO1271 polypeptide.

35 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1271 polypeptide having the sequence of amino acid residues from about 32 to about 208, inclusive of Figure 298 (SEQ ID NO:416), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

40 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1271 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1271 antibody.

45 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1271 polypeptide, by contacting the native PRO1271 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

50 In a still further embodiment, the invention concerns a composition comprising a PRO1271 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

5 132. PRO1375

A cDNA clone (DNA67004-1614) has been identified that encodes a novel polypeptide having sequence identity with PUT2 and designated in the present application as "PRO1375."

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1375 polypeptide.

10 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1375 polypeptide having the sequence of amino acid residues from about 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418), or (b) the complement of the DNA molecule of (a).

15 10 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1375 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 104 and about 697, inclusive, of Figure 299 (SEQ ID NO:417). Preferably, hybridization occurs under stringent 20 hybridization and wash conditions.

25 15 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203115 (DNA67004-1614), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA 20 in ATCC Deposit No. 203115 (DNA67004-1614).

30 30 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues from about 1 to about 198, inclusive of Figure 300 (SEQ ID 35 25 NO:418), or the complement of the DNA of (a).

40 40 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1375 polypeptide having the sequence of 45 30 amino acid residues from about 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

45 35 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1375 polypeptide in its soluble form, i.e. transmembrane domains deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The transmembrane domains have been tentatively identified as at about amino acid positions 11-28 (type II) and 103-125 of SEQ ID NO:418.

5 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418), or (b) the complement of the DNA of (a).

10 Another embodiment is directed to fragments of a PRO1375 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

15 In another embodiment, the invention provides isolated PRO1375 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

20 In a specific aspect, the invention provides isolated native sequence PRO1375 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 through 198 of Figure 300 (SEQ ID NO:418).

25 In another aspect, the invention concerns an isolated PRO1375 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418).

30 In a further aspect, the invention concerns an isolated PRO1375 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 through 198 of Figure 300 (SEQ ID NO:418).

35 In yet another aspect, the invention concerns an isolated PRO1375 polypeptide, comprising the sequence of amino acid residues 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418), or a fragment thereof sufficient to provide a binding site for an anti-PRO1375 antibody. Preferably, the PRO1375 fragment retains a qualitative biological activity of a native PRO1375 polypeptide.

40 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1375 polypeptide having the sequence of amino acid residues from about 1 to about 198, inclusive of Figure 300 (SEQ ID NO:418), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

45 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1375 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1375 antibody.

50 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1375 polypeptide, by contacting the native PRO1375 polypeptide with a candidate molecule and

monitoring a biological activity mediated by said polypeptide.

In a still further embodiment, the invention concerns a composition comprising a PRO1375 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

133. PRO1385
A cDNA clone (DNA68869-1610) has been identified that encodes a novel secreted polypeptide, designated in the present application as "PRO1385".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1385 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1385 polypeptide having the sequence of amino acid residues from about 1 or about 29 to about 128, inclusive of Figure 302 (SEQ ID NO:420), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1385 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 26 or about 110 and about 409, inclusive, of Figure 301 (SEQ ID NO:419). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203164 (DNA68869-1610) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203164 (DNA68869-1610).

In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 29 to about 128, inclusive of Figure 302 (SEQ ID NO:420), or (b) the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 245 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1385 polypeptide having the sequence of amino acid residues from 1 or about 29 to about 128, inclusive of Figure 302 (SEQ ID NO:420), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80 % sequence identity, preferably at least about an 85 % sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1385 polypeptide, with or without the N-terminal signal sequence and/or the initiating methionine, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 28 in the sequence of Figure 302 (SEQ ID NO:420).

10 15 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 29 to about 128, inclusive of Figure 302 (SEQ ID NO:420), or (b) the complement of the DNA of (a).

20 25 30 Another embodiment is directed to fragments of a PRO1385 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 301 (SEQ ID NO:419).

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 1

host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
5 (iii) recovering the polypeptide from the cell culture.

134. **PRO1387**

A cDNA clone (DNA68872-1620) has been identified, having homology to nucleic acid encoding myelin, that encodes a novel polypeptide, designated in the present application as "PRO1387".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1387 polypeptide.

In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1387 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or (b) the complement of the DNA molecule of (a).

In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1387 polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about nucleotides 85 or about 142 and about 1266, inclusive, of Figure 303 (SEQ ID NO:421). Preferably, hybridization occurs under stringent hybridization and wash conditions.

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203160 (DNA68872-1620) or (b) the complement of the nucleic acid molecule of (a). In a preferred embodiment, the nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203160 (DNA68872-1620).

In still a further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or (b) the complement of the DNA of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule having at least 395 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1387 polypeptide having the sequence of amino acid residues from 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1387 polypeptide, with or without the N-terminal signal sequence and/or the initiating

- methionine, and its soluble, i.e., transmembrane domain deleted or inactivated variants, or is complementary to such encoding nucleic acid molecule. The signal peptide has been tentatively identified as extending from about amino acid position 1 to about amino acid position 19 in the sequence of Figure 304 (SEQ ID NO:422). The transmembrane domain has been tentatively identified as extending from about amino acid position 275 to about amino acid position 296 in the PRO1387 amino acid sequence (Figure 304, SEQ ID NO:422).
- In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or (b) the complement of the DNA of (a).
- Another embodiment is directed to fragments of a PRO1387 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length and most preferably from about 20 to about 40 nucleotides in length and may be derived from the nucleotide sequence shown in Figure 303 (SEQ ID NO:421).
- In another embodiment, the invention provides isolated PRO1387 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.
- In a specific aspect, the invention provides isolated native sequence PRO1387 polypeptide, which in certain embodiments, includes an amino acid sequence comprising residues 1 or about 20 to about 394 of Figure 304 (SEQ ID NO:422).
- In another aspect, the invention concerns an isolated PRO1387 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422).
- In a further aspect, the invention concerns an isolated PRO1387 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422).
- In yet another aspect, the invention concerns an isolated PRO1387 polypeptide, comprising the sequence of amino acid residues 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or a fragment thereof sufficient to provide a binding site for an anti-PRO1387 antibody. Preferably, the PRO1387 fragment retains a qualitative biological activity of a native PRO1387 polypeptide.
- In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1387 polypeptide having the sequence of amino acid residues from about 1 or about 20 to about 394, inclusive of Figure 304 (SEQ ID NO:422), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a

5 host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and
(iii) recovering the polypeptide from the cell culture.

10 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1387
polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1387 antibody.

15 10 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of
a native PRO1387 polypeptide by contacting the native PRO1387 polypeptide with a candidate molecule and
monitoring a biological activity mediated by said polypeptide.

15 15 In a still further embodiment, the invention concerns a composition comprising a PRO1387
polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically
acceptable carrier.

10 135. **PRO1384**

20 A cDNA clone, referred to herein as "DNA71159", has been identified that encodes a novel
polypeptide having homology to NKG2-D protein designated in the present application as "PRO1384".

25 15 In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA
encoding a PRO1384 polypeptide.

30 20 In one aspect, the isolated nucleic acid comprises DNA having at least about 80% sequence identity,
preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most
preferably at least about 95% sequence identity to (a) a DNA molecule encoding a PRO1384 polypeptide
having the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 306 (SEQ ID
NO:424), or (b) the complement of the DNA molecule of (a).

35 30 In another aspect, the invention concerns an isolated nucleic acid molecule encoding a PRO1384
polypeptide comprising DNA hybridizing to the complement of the nucleic acid between about residues 182
and about 868, inclusive, of Figure 305 (SEQ ID NO:423). Preferably, hybridization occurs under stringent
hybridization and wash conditions.

40 35 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising DNA having
at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least
about 90% sequence identity, most preferably at least about 95% sequence identity to (a) a DNA molecule
encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. 203135
(DNA71159-1617), or (b) the complement of the DNA molecule of (a). In a preferred embodiment, the
nucleic acid comprises a DNA encoding the same mature polypeptide encoded by the human protein cDNA
in ATCC Deposit No. 203135 (DNA71159-1617).

45 35 In a still further aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA
encoding a polypeptide having at least about 80% sequence identity, preferably at least about 85% sequence
identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence
identity to the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 306 (SEQ ID
NO:424), or the complement of the DNA of (a).

5 In a further aspect, the invention concerns an isolated nucleic acid molecule having at least about 50 nucleotides, and preferably at least about 100 nucleotides and produced by hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1384 polypeptide having the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 306 (SEQ ID NO:424), or (b) the complement of the DNA molecule of (a), and, if the DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), isolating the test DNA molecule.

10 5 In a specific aspect, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1384 polypeptide with its transmembrane domain deleted or inactivated, or is complementary to such encoding nucleic acid molecule. The transmembrane domain has been tentatively identified as extending from about amino acid position 32 through about amino acid position 57 in the PRO1384 amino acid sequence (Figure 306, SEQ ID NO:424).

15 10 In another aspect, the invention concerns an isolated nucleic acid molecule comprising (a) DNA encoding a polypeptide scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to about 229, inclusive of Figure 306 (SEQ ID NO:424), or (b) the complement of the DNA of (a).

20 25 Another embodiment is directed to fragments of a PRO1384 polypeptide coding sequence that may find use as hybridization probes. Such nucleic acid fragments are from about 20 to about 80 nucleotides in length, preferably from about 20 to about 60 nucleotides in length, more preferably from about 20 to about 50 nucleotides in length, and most preferably from about 20 to about 40 nucleotides in length.

25 30 In another embodiment, the invention provides isolated PRO1384 polypeptide encoded by any of the isolated nucleic acid sequences hereinabove defined.

30 35 In a specific aspect, the invention provides isolated native sequence PRO1384 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 229 of Figure 306 (SEQ ID NO:424).

35 40 In another aspect, the invention concerns an isolated PRO1384 polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, most preferably at least about 95% sequence identity to the sequence of amino acid residues 1 to about 229, inclusive of Figure 306 (SEQ ID NO:424).

40 45 In a further aspect, the invention concerns an isolated PRO1384 polypeptide, comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 85% positives, more preferably at least about 90% positives, most preferably at least about 95% positives when compared with the amino acid sequence of residues 1 to 229 of Figure 306 (SEQ ID NO:424).

45 50 In yet another aspect, the invention concerns an isolated PRO1384 polypeptide, comprising the sequence of amino acid residues 1 to about 229, inclusive of Figure 306 (SEQ ID NO:424), or a fragment thereof sufficient to provide a binding site for an anti-PRO1384 antibody. Preferably, the PRO1384 fragment retains a qualitative biological activity of a native PRO1384 polypeptide.

5 In a still further aspect, the invention provides a polypeptide produced by (i) hybridizing a test DNA molecule under stringent conditions with (a) a DNA molecule encoding a PRO1384 polypeptide having the sequence of amino acid residues from about 1 to about 229, inclusive of Figure 306 (SEQ ID NO:424), or (b) the complement of the DNA molecule of (a), and if the test DNA molecule has at least about an 80% sequence identity, preferably at least about an 85% sequence identity, more preferably at least about a 90% sequence identity, most preferably at least about a 95% sequence identity to (a) or (b), (ii) culturing a host cell comprising the test DNA molecule under conditions suitable for expression of the polypeptide, and (iii) recovering the polypeptide from the cell culture.

10 15 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO1384 polypeptide. In a particular embodiment, the agonist or antagonist is an anti-PRO1384 antibody.

10 20 25 In a further embodiment, the invention concerns a method of identifying agonists or antagonists of a native PRO1384 polypeptide, by contacting the native PRO1384 polypeptide with a candidate molecule and monitoring a biological activity mediated by said polypeptide.

20 25 30 In a still further embodiment, the invention concerns a composition comprising a PRO1384 polypeptide, or an agonist or antagonist as hereinabove defined, in combination with a pharmaceutically acceptable carrier.

35 40 45 50 **136. Additional Embodiments**

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided.

20 25 30 By way of example, the host cells may be CHO cells, *E. coli*, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

35 40 45 50 In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.

40 45 50 In another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.

30 35 40 45 50 In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences.

35 40 45 50 In other embodiments, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.

35 40 45 50 55 In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about

5 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence
10 10 identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein,
15 15 an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

20 20 In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length
25 25 PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

30 30 In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length
35 35 PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

5 at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more
preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet
more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity
and yet more preferably at least about 99% sequence identity to (a) a DNA molecule that encodes the same
10 mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein,
or (b) the complement of the DNA molecule of (a).

15 Another aspect the invention provides an isolated nucleic acid molecule comprising a nucleotide
sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane
domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane
domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein
described PRO polypeptides are contemplated.

20 Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the
complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO
polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or
as antisense oligonucleotide probes. Such nucleic acid fragments are usually at least about 20 nucleotides in
length, preferably at least about 30 nucleotides in length, more preferably at least about 40 nucleotides in
length, yet more preferably at least about 50 nucleotides in length, yet more preferably at least about 60
nucleotides in length, yet more preferably at least about 70 nucleotides in length, yet more preferably at least
25 about 80 nucleotides in length, yet more preferably at least about 90 nucleotides in length, yet more preferably
at least about 100 nucleotides in length, yet more preferably at least about 110 nucleotides in length, yet more
preferably at least about 120 nucleotides in length, yet more preferably at least about 130 nucleotides in length,
yet more preferably at least about 140 nucleotides in length, yet more preferably at least about 150 nucleotides
30 in length, yet more preferably at least about 160 nucleotides in length, yet more preferably at least about 170
nucleotides in length, yet more preferably at least about 180 nucleotides in length, yet more preferably at least
about 190 nucleotides in length, yet more preferably at least about 200 nucleotides in length, yet more
preferably at least about 250 nucleotides in length, yet more preferably at least about 300 nucleotides in length,
yet more preferably at least about 350 nucleotides in length, yet more preferably at least about 400 nucleotides
35 in length, yet more preferably at least about 450 nucleotides in length, yet more preferably at least about 500
nucleotides in length, yet more preferably at least about 600 nucleotides in length, yet more preferably at least
about 700 nucleotides in length, yet more preferably at least about 800 nucleotides in length, yet more
preferably at least about 900 nucleotides in length and yet more preferably at least about 1000 nucleotides in
length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus
40 10% of that referenced length. It is noted that novel fragments of a PRO polypeptide-encoding nucleotide
sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide
sequence with other known nucleotide sequences using any of a number of well known sequence alignment
45 programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All
of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the
50 PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide

5 fragments that comprise a binding site for an anti-PRO antibody.

In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the
10 isolated nucleic acid sequences hereinabove identified.

In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more
15 preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more
20 preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to a PRO polypeptide having a full-length amino
25 acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein.

In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more
30 preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more
35 preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to an amino acid sequence encoded by any of the
40 human protein cDNAs deposited with the ATCC as disclosed herein.

In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 81% positives, more preferably at least
45 about 82% positives, yet more preferably at least about 83% positives, yet more preferably at least about 84% positives, yet more preferably at least about 85% positives, yet more preferably at least about 86% positives,
50 yet more preferably at least about 87% positives, yet more preferably at least about 88% positives, yet more preferably at least about 89% positives, yet more preferably at least about 90% positives, yet more preferably at least about 91% positives, yet more preferably at least about 92% positives, yet more preferably at least

5 about 93 % positives, yet more preferably at least about 94 % positives, yet more preferably at least about 95 %
positives, yet more preferably at least about 96 % positives, yet more preferably at least about 97 % positives,
yet more preferably at least about 98 % positives and yet more preferably at least about 99 % positives when
compared with the amino acid sequence of a PRO polypeptide having a full-length amino acid sequence as
disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain
10 of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically
defined fragment of the full-length amino acid sequence as disclosed herein.

10 In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal
sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino
15 acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein
those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding
nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO
polypeptide from the cell culture.

20 Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane
domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein
15 described, wherein those processes comprise culturing a host cell comprising a vector which comprises the
appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide
25 and recovering the PRO polypeptide from the cell culture.

20 In yet another embodiment, the invention concerns agonists and antagonists of a native PRO
polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody
or a small molecule.

30 In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a
PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring
a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO
polypeptide.

35 In a still further embodiment, the invention concerns a composition of matter comprising a PRO
polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody,
in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

40 Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an
agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the preparation of a
30 medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or
antagonist thereof or an anti-PRO antibody.

45 **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO281 (UNQ244)
35 cDNA, wherein SEQ ID NO:1 is a clone designated herein as "DNA16422-1209".

40 Figure 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ
30 ID NO:1 shown in Figure 1.

5 Figure 3 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO276 (UNQ243) cDNA, wherein SEQ ID NO:5 is a clone designated herein as "DNA16435-1208".

10 Figure 4 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in Figure 3.

15 Figure 5 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO189 (UNQ163) cDNA, wherein SEQ ID NO:7 is a clone designated herein as "DNA21624-1391".

20 Figure 6 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in Figure 5.

25 Figure 7 shows a nucleotide sequence designated herein as DNA14187 (SEQ ID NO:9).

30 Figure 8 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO190 (UNQ164) cDNA, wherein SEQ ID NO:13 is a clone designated herein as "DNA23334-1392".

35 Figure 9 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in Figure 8.

40 Figure 10 shows a nucleotide sequence designated herein as DNA14232 (SEQ ID NO:15).

45 Figure 11 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO341 (UNQ300) cDNA, wherein SEQ ID NO:19 is a clone designated herein as "DNA26288-1239".

50 Figure 12 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in Figure 11.

55 Figure 13 shows a nucleotide sequence designated herein as DNA12920 (SEQ ID NO:21).

60 Figure 14 shows a nucleotide sequence (SEQ ID NO:22) of a native sequence PRO180 (UNQ154) cDNA, wherein SEQ ID NO:22 is a clone designated herein as "DNA26843-1389".

65 Figure 15 shows the amino acid sequence (SEQ ID NO:23) derived from the coding sequence of SEQ ID NO:22 shown in Figure 14.

70 Figure 16 shows a nucleotide sequence designated herein as DNA12922 (SEQ ID NO:24).

75 Figure 17 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO194 (UNQ168) cDNA, wherein SEQ ID NO:27 is a clone designated herein as "DNA26844-1394".

80 Figure 18 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in Figure 17.

85 Figure 19 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO203 (UNQ177) cDNA, wherein SEQ ID NO:29 is a clone designated herein as "DNA30862-1396".

90 Figure 20 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in Figure 19.

95 Figure 21 shows a nucleotide sequence designated herein as DNA15618 (SEQ ID NO:31).

100 Figure 22 shows a nucleotide sequence (SEQ ID NO:32) of a native sequence PRO290 (UNQ253) cDNA, wherein SEQ ID NO:32 is a clone designated herein as "DNA35680-1212".

105 Figure 23 shows the amino acid sequence (SEQ ID NO:33) derived from the coding sequence of SEQ ID NO:32 shown in Figure 22.

5 Figure 24 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO874 (UNQ441) cDNA, wherein SEQ ID NO:35 is a clone designated herein as "DNA40621-1440".

10 Figure 25 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in Figure 24.

15 Figure 26 shows a nucleotide sequence (SEQ ID NO:40) of a native sequence PRO710 (UNQ374) cDNA, wherein SEQ ID NO:40 is a clone designated herein as "DNA44161-1434".

20 Figure 27 shows the amino acid sequence (SEQ ID NO:41) derived from the coding sequence of SEQ ID NO:40 shown in Figure 26.

25 Figure 28 shows a nucleotide sequence designated herein as DNA38190 (SEQ ID NO:42).

30 Figure 29 shows a nucleotide sequence (SEQ ID NO:46) of a native sequence PRO1151 (UNQ581) cDNA, wherein SEQ ID NO:46 is a clone designated herein as "DNA44694-1500".

35 Figure 30 shows the amino acid sequence (SEQ ID NO:47) derived from the coding sequence of SEQ ID NO:46 shown in Figure 29.

40 Figure 31 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO1282 (UNQ652) cDNA, wherein SEQ ID NO:51 is a clone designated herein as "DNA45495-1550".

45 Figure 32 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in Figure 31.

50 Figure 33 shows a nucleotide sequence (SEQ ID NO:56) of a native sequence PRO358 cDNA, wherein SEQ ID NO:56 is a clone designated herein as "DNA47361-1154".

55 Figure 34 shows the amino acid sequence (SEQ ID NO:57) derived from the coding sequence of SEQ ID NO:56 shown in Figure 33.

60 Figure 35 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO1310 cDNA, wherein SEQ ID NO:61 is a clone designated herein as "DNA47394-1572".

65 Figure 36 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in Figure 35.

70 Figure 37 shows a nucleotide sequence (SEQ ID NO:66) of a native sequence PRO698 (UNQ362) cDNA, wherein SEQ ID NO:66 is a clone designated herein as "DNA48320-1433".

75 Figure 38 shows the amino acid sequence (SEQ ID NO:67) derived from the coding sequence of SEQ ID NO:66 shown in Figure 37.

80 Figure 39 shows a nucleotide sequence designated herein as DNA39906 (SEQ ID NO:68).

85 Figure 40 shows a nucleotide sequence (SEQ ID NO:72) of a native sequence PRO732 (UNQ396) cDNA, wherein SEQ ID NO:72 is a clone designated herein as "DNA48334-1435".

90 Figure 41 shows the amino acid sequence (SEQ ID NO:73) derived from the coding sequence of SEQ ID NO:72 shown in Figure 40.

95 Figure 42 shows a nucleotide sequence designated herein as DNA20239 (SEQ ID NO:74).

100 Figure 43 shows a nucleotide sequence designated herein as DNA38050 (SEQ ID NO:75).

105 Figure 44 shows a nucleotide sequence designated herein as DNA40683 (SEQ ID NO:76).

110 Figure 45 shows a nucleotide sequence designated herein as DNA42580 (SEQ ID NO:77).

5 Figure 46 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO1120 (UNQ559) cDNA, wherein SEQ ID NO:83 is a clone designated herein as "DNA48606-1479".

10 Figure 47 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in Figure 46.

15 Figure 48 shows a nucleotide sequence (SEQ ID NO:94) of a native sequence PRO537 (UNQ338) cDNA, wherein SEQ ID NO:94 is a clone designated herein as "DNA49141-1431".

20 Figure 49 shows the amino acid sequence (SEQ ID NO:95) derived from the coding sequence of SEQ ID NO:94 shown in Figure 48.

25 Figure 50 shows a nucleotide sequence (SEQ ID NO:96) of a native sequence PRO536 (UNQ337) cDNA, wherein SEQ ID NO:96 is a clone designated herein as "DNA49142-1430".

30 Figure 51 shows the amino acid sequence (SEQ ID NO:97) derived from the coding sequence of SEQ ID NO:96 shown in Figure 50.

35 Figure 52 shows a nucleotide sequence (SEQ ID NO:98) of a native sequence PRO535 (UNQ336) cDNA, wherein SEQ ID NO:98 is a clone designated herein as "DNA49143-1429".

40 Figure 53 shows the amino acid sequence (SEQ ID NO:99) derived from the coding sequence of SEQ ID NO:98 shown in Figure 52.

45 Figure 54 shows a nucleotide sequence designated herein as DNA30861 (SEQ ID NO:100).

50 Figure 55 shows a nucleotide sequence designated herein as DNA36351 (SEQ ID NO:101).

55 Figure 56 shows a nucleotide sequence (SEQ ID NO:102) of a native sequence PRO718 (UNQ386) cDNA, wherein SEQ ID NO:102 is a clone designated herein as "DNA49647-1398".

60 Figure 57 shows the amino acid sequence (SEQ ID NO:103) derived from the coding sequence of SEQ ID NO:102 shown in Figure 56.

65 Figure 58 shows a nucleotide sequence designated herein as DNA15386 (SEQ ID NO:104).

70 Figure 59 shows a nucleotide sequence designated herein as DNA16630 (SEQ ID NO:105).

75 Figure 60 shows a nucleotide sequence designated herein as DNA16829 (SEQ ID NO:106).

80 Figure 61 shows a nucleotide sequence designated herein as DNA28357 (SEQ ID NO:107).

85 Figure 62 shows a nucleotide sequence designated herein as DNA43512 (SEQ ID NO:108).

90 Figure 63 shows a nucleotide sequence (SEQ ID NO:112) of a native sequence PRO872 (UNQ439) cDNA, wherein SEQ ID NO:112 is a clone designated herein as "DNA49819-1439".

95 Figure 64 shows the amino acid sequence (SEQ ID NO:113) derived from the coding sequence of SEQ ID NO:112 shown in Figure 63.

100 Figure 65 shows a nucleotide sequence (SEQ ID NO:114) of a native sequence PRO1063 (UNQ128) cDNA, wherein SEQ ID NO:114 is a clone designated herein as "DNA49820-1427".

105 Figure 66 shows the amino acid sequence (SEQ ID NO:115) derived from the coding sequence of SEQ ID NO:114 shown in Figure 65.

110 Figure 67 shows a nucleotide sequence (SEQ ID NO:116) of a native sequence PRO619 (UNQ355) cDNA, wherein SEQ ID NO:116 is a clone designated herein as "DNA49821-1562".

5 Figure 68 shows the amino acid sequence (SEQ ID NO:117) derived from the coding sequence of SEQ ID NO:116 shown in Figure 67.

10 Figure 69 shows a nucleotide sequence (SEQ ID NO:118) of a native sequence PRO943 (UNQ480) cDNA, wherein SEQ ID NO:118 is a clone designated herein as "DNA52192-1369".

15 Figure 70 shows the amino acid sequence (SEQ ID NO:119) derived from the coding sequence of SEQ ID NO:118 shown in Figure 69.

20 Figure 71 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO1188 (UNQ602) cDNA, wherein SEQ ID NO:123 is a clone designated herein as "DNA52598-1518".

25 Figure 72 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in Figure 71.

30 Figure 73 shows a nucleotide sequence (SEQ ID NO:128) of a native sequence PRO1133 (UNQ571) cDNA, wherein SEQ ID NO:128 is a clone designated herein as "DNA53913-1490".

35 Figure 74 shows the amino acid sequence (SEQ ID NO:129) derived from the coding sequence of SEQ ID NO:128 shown in Figure 73.

40 Figure 75 shows a nucleotide sequence (SEQ ID NO:134) of a native sequence PRO784 (UNQ459) cDNA, wherein SEQ ID NO:134 is a clone designated herein as "DNA53978-1443".

45 Figure 76 shows the amino acid sequence (SEQ ID NO:135) derived from the coding sequence of SEQ ID NO:134 shown in Figure 75.

50 Figure 77 shows a nucleotide sequence designated herein as DNA44661 (SEQ ID NO:136).

55 Figure 78 shows a nucleotide sequence (SEQ ID NO:137) of a native sequence PRO783 (UNQ458) cDNA, wherein SEQ ID NO:137 is a clone designated herein as "DNA53996-1442".

60 Figure 79 shows the amino acid sequence (SEQ ID NO:138) derived from the coding sequence of SEQ ID NO:137 shown in Figure 78.

65 Figure 80 shows a nucleotide sequence designated herein as DNA45201 (SEQ ID NO:139).

70 Figure 81 shows a nucleotide sequence designated herein as DNA14575 (SEQ ID NO:140).

75 Figure 82 shows a nucleotide sequence (SEQ ID NO:145) of a native sequence PRO820 (UNQ503) cDNA, wherein SEQ ID NO:145 is a clone designated herein as "DNA56041-1416".

80 Figure 83 shows the amino acid sequence (SEQ ID NO:146) derived from the coding sequence of SEQ ID NO:145 shown in Figure 82.

85 Figure 84 shows a nucleotide sequence (SEQ ID NO:147) of a native sequence PRO1080 (UNQ537) cDNA, wherein SEQ ID NO:147 is a clone designated herein as "DNA56047-1456".

90 Figure 85 shows the amino acid sequence (SEQ ID NO:148) derived from the coding sequence of SEQ ID NO:147 shown in Figure 84.

95 Figure 86 shows a nucleotide sequence designated herein as DNA36527 (SEQ ID NO:149).

100 Figure 87 shows a nucleotide sequence (SEQ ID NO:150) of a native sequence PRO1079 (UNQ536) cDNA, wherein SEQ ID NO:150 is a clone designated herein as "DNA56050-1455".

105 Figure 88 shows the amino acid sequence (SEQ ID NO:151) derived from the coding sequence of SEQ ID NO:150 shown in Figure 87.

- 5 Figure 89 shows a nucleotide sequence (SEQ ID NO:152) of a native sequence PRO793 (UNQ432) cDNA, wherein SEQ ID NO:152 is a clone designated herein as "DNA56110-1437".
- 10 Figure 90 shows the amino acid sequence (SEQ ID NO:153) derived from the coding sequence of SEQ ID NO:152 shown in Figure 89.
- 15 Figure 91 shows a nucleotide sequence designated herein as DNA50177 (SEQ ID NO:154).
- 20 Figure 92 shows a nucleotide sequence (SEQ ID NO:155) of a native sequence PRO1016 (UNQ499) cDNA, wherein SEQ ID NO:155 is a clone designated herein as "DNA56113-1378".
- 25 Figure 93 shows the amino acid sequence (SEQ ID NO:156) derived from the coding sequence of SEQ ID NO:155 shown in Figure 92.
- 30 Figure 94 shows a nucleotide sequence (SEQ ID NO:157) of a native sequence PRO1013 (UNQ496) cDNA, wherein SEQ ID NO:157 is a clone designated herein as "DNA56410-1414".
- 35 Figure 95 shows the amino acid sequence (SEQ ID NO:158) derived from the coding sequence of SEQ ID NO:157 shown in Figure 94.
- 40 Figure 96 shows a nucleotide sequence (SEQ ID NO:159) of a native sequence PRO937 (UNQ474) cDNA, wherein SEQ ID NO:159 is a clone designated herein as "DNA56436-1448".
- 45 Figure 97 shows the amino acid sequence (SEQ ID NO:160) derived from the coding sequence of SEQ ID NO:159 shown in Figure 96.
- 50 Figure 98 shows a nucleotide sequence (SEQ ID NO:164) of a native sequence PRO842 (UNQ473) cDNA, wherein SEQ ID NO:164 is a clone designated herein as "DNA56855-1447".
- 55 Figure 99 shows the amino acid sequence (SEQ ID NO:165) derived from the coding sequence of SEQ ID NO:164 shown in Figure 98.
- 60 Figure 100 shows a nucleotide sequence (SEQ ID NO:166) of a native sequence PRO839 (UNQ472) cDNA, wherein SEQ ID NO:166 is a clone designated herein as "DNA56859-1445".
- 65 Figure 101 shows the amino acid sequence (SEQ ID NO:167) derived from the coding sequence of SEQ ID NO:166 shown in Figure 100.
- 70 Figure 102 shows a nucleotide sequence (SEQ ID NO:168) of a native sequence PRO1180 (UNQ594) cDNA, wherein SEQ ID NO:168 is a clone designated herein as "DNA56860-1510".
- 75 Figure 103 shows the amino acid sequence (SEQ ID NO:169) derived from the coding sequence of SEQ ID NO:168 shown in Figure 102.
- 80 Figure 104 shows a nucleotide sequence (SEQ ID NO:170) of a native sequence PRO1134 (UNQ572) cDNA, wherein SEQ ID NO:170 is a clone designated herein as "DNA56865-1491".
- 85 Figure 105 shows the amino acid sequence (SEQ ID NO:171) derived from the coding sequence of SEQ ID NO:170 shown in Figure 104.
- 90 Figure 106 shows a nucleotide sequence designated herein as DNA52352 (SEQ ID NO:172).
- 95 Figure 107 shows a nucleotide sequence designated herein as DNA55725 (SEQ ID NO:173).
- 100 Figure 108 shows a nucleotide sequence (SEQ ID NO:174) of a native sequence PRO830 (UNQ470) cDNA, wherein SEQ ID NO:174 is a clone designated herein as "DNA56866-1342".

5 Figure 109 shows the amino acid sequence (SEQ ID NO:175) derived from the coding sequence of SEQ ID NO:174 shown in Figure 108.

10 Figure 110 shows a nucleotide sequence (SEQ ID NO:176) of a native sequence PRO1115 (UNQ558) cDNA, wherein SEQ ID NO:176 is a clone designated herein as "DNA56868-1478".

15 Figure 111 shows the amino acid sequence (SEQ ID NO:177) derived from the coding sequence of SEQ ID NO:176 shown in Figure 110.

20 Figure 112 shows a nucleotide sequence (SEQ ID NO:178) of a native sequence PRO1277 (UNQ647) cDNA, wherein SEQ ID NO:178 is a clone designated herein as "DNA56869-1545".

25 Figure 113 shows the amino acid sequence (SEQ ID NO:179) derived from the coding sequence of SEQ ID NO:178 shown in Figure 112.

30 Figure 114 shows a nucleotide sequence (SEQ ID NO:180) of a native sequence PRO1135 (UNQ573) cDNA, wherein SEQ ID NO:180 is a clone designated herein as "DNA56870-1492".

35 Figure 115 shows the amino acid sequence (SEQ ID NO:181) derived from the coding sequence of SEQ ID NO:180 shown in Figure 114.

40 Figure 116 shows a nucleotide sequence (SEQ ID NO:182) of a native sequence PRO1114 (UNQ557) cDNA, wherein SEQ ID NO:182 is a clone designated herein as "DNA57033-1403".

45 Figure 117 shows the amino acid sequence (SEQ ID NO:183) derived from the coding sequence of SEQ ID NO:182 shown in Figure 116.

50 Figure 118 shows a nucleotide sequence designated herein as DNA48466 (SEQ ID NO:184).

55 Figure 119 shows a nucleotide sequence (SEQ ID NO:188) of a native sequence PRO828 (UNQ469) cDNA, wherein SEQ ID NO:188 is a clone designated herein as "DNA57037-1444".

60 Figure 120 shows the amino acid sequence (SEQ ID NO:189) derived from the coding sequence of SEQ ID NO:188 shown in Figure 119.

65 Figure 121 shows a nucleotide sequence (SEQ ID NO:193) of a native sequence PRO1009 (UNQ493) cDNA, wherein SEQ ID NO:193 is a clone designated herein as "DNA57129-1413".

70 Figure 122 shows the amino acid sequence (SEQ ID NO:194) derived from the coding sequence of SEQ ID NO:193 shown in Figure 121.

75 Figure 123 shows a nucleotide sequence designated herein as DNA50853 (SEQ ID NO:195).

80 Figure 124 shows a nucleotide sequence (SEQ ID NO:196) of a native sequence PRO1007 (UNQ491) cDNA, wherein SEQ ID NO:196 is a clone designated herein as "DNA57690-1374".

85 Figure 125 shows the amino acid sequence (SEQ ID NO:197) derived from the coding sequence of SEQ ID NO:196 shown in Figure 124.

90 Figure 126 shows a nucleotide sequence (SEQ ID NO:198) of a native sequence PRO1056 (UNQ521) cDNA, wherein SEQ ID NO:198 is a clone designated herein as "DNA57693-1424".

95 Figure 127 shows the amino acid sequence (SEQ ID NO:199) derived from the coding sequence of SEQ ID NO:198 shown in Figure 126.

100 Figure 128 shows a nucleotide sequence (SEQ ID NO:200) of a native sequence PRO826 (UNQ467) cDNA, wherein SEQ ID NO:200 is a clone designated herein as "DNA57694-1341".

5 Figure 129 shows the amino acid sequence (SEQ ID NO:201) derived from the coding sequence of SEQ ID NO:200 shown in Figure 128.

10 Figure 130 shows a nucleotide sequence (SEQ ID NO:202) of a native sequence PRO819 (UNQ466) cDNA, wherein SEQ ID NO:202 is a clone designated herein as "DNA57695-1340".

15 Figure 131 shows the amino acid sequence (SEQ ID NO:203) derived from the coding sequence of SEQ ID NO:202 shown in Figure 130.

20 Figure 132 shows a nucleotide sequence (SEQ ID NO:204) of a native sequence PRO1006 (UNQ490) cDNA, wherein SEQ ID NO:204 is a clone designated herein as "DNA57699-1412".

25 Figure 133 shows the amino acid sequence (SEQ ID NO:205) derived from the coding sequence of SEQ ID NO:204 shown in Figure 132.

30 Figure 134 shows a nucleotide sequence (SEQ ID NO:206) of a native sequence PRO1112 (UNQ555) cDNA, wherein SEQ ID NO:206 is a clone designated herein as "DNA57702-1476".

35 Figure 135 shows the amino acid sequence (SEQ ID NO:207) derived from the coding sequence of SEQ ID NO:206 shown in Figure 134.

40 Figure 136 shows a nucleotide sequence (SEQ ID NO:208) of a native sequence PRO1074 (UNQ531) cDNA, wherein SEQ ID NO:208 is a clone designated herein as "DNA57704-1452".

45 Figure 137 shows the amino acid sequence (SEQ ID NO:209) derived from the coding sequence of SEQ ID NO:208 shown in Figure 136.

50 Figure 138 shows a nucleotide sequence (SEQ ID NO:210) of a native sequence PRO1005 (UNQ489) cDNA, wherein SEQ ID NO:210 is a clone designated herein as "DNA57708-1005".

55 Figure 139 shows the amino acid sequence (SEQ ID NO:211) derived from the coding sequence of SEQ ID NO:210 shown in Figure 138.

60 Figure 140 shows a nucleotide sequence (SEQ ID NO:212) of a native sequence PRO1073 (UNQ530) cDNA, wherein SEQ ID NO:212 is a clone designated herein as "DNA57710-1451".

65 Figure 141 shows the amino acid sequence (SEQ ID NO:213) derived from the coding sequence of SEQ ID NO:212 shown in Figure 140.

70 Figure 142 shows a nucleotide sequence designated herein as DNA55938 (SEQ ID NO:214).

75 Figure 143 shows a nucleotide sequence (SEQ ID NO:215) of a native sequence PRO1152 (UNQ582) cDNA, wherein SEQ ID NO:215 is a clone designated herein as "DNA57711-1501".

80 Figure 144 shows the amino acid sequence (SEQ ID NO:216) derived from the coding sequence of SEQ ID NO:215 shown in Figure 143.

85 Figure 145 shows a nucleotide sequence designated herein as DNA55807 (SEQ ID NO:217).

90 Figure 146 shows a nucleotide sequence (SEQ ID NO:218) of a native sequence PRO1136 (UNQ574) cDNA, wherein SEQ ID NO:218 is a clone designated herein as "DNA57827-1493".

95 Figure 147 shows the amino acid sequence (SEQ ID NO:219) derived from the coding sequence of SEQ ID NO:218 shown in Figure 146.

100 Figure 148 shows a nucleotide sequence (SEQ ID NO:220) of a native sequence PRO813 (UNQ465) cDNA, wherein SEQ ID NO:220 is a clone designated herein as "DNA57834-1339".

5 Figure 149 shows the amino acid sequence (SEQ ID NO:221) derived from the coding sequence of SEQ ID NO:220 shown in Figure 148.

10 Figure 150 shows a nucleotide sequence (SEQ ID NO:222) of a native sequence PRO809 (UNQ464) cDNA, wherein SEQ ID NO:222 is a clone designated herein as "DNA57836-1338".

15 Figure 151 shows the amino acid sequence (SEQ ID NO:223) derived from the coding sequence of SEQ ID NO:222 shown in Figure 150.

20 Figure 152 shows a nucleotide sequence (SEQ ID NO:224) of a native sequence PRO791 (UNQ463) cDNA, wherein SEQ ID NO:224 is a clone designated herein as "DNA57838-1337".

25 Figure 153 shows the amino acid sequence (SEQ ID NO:225) derived from the coding sequence of SEQ ID NO:224 shown in Figure 152.

30 Figure 154 shows a nucleotide sequence (SEQ ID NO:226) of a native sequence PRO1004 (UNQ488) cDNA, wherein SEQ ID NO:226 is a clone designated herein as "DNA57844-1410".

35 Figure 155 shows the amino acid sequence (SEQ ID NO:227) derived from the coding sequence of SEQ ID NO:226 shown in Figure 154.

40 Figure 156 shows a nucleotide sequence (SEQ ID NO:228) of a native sequence PRO1111 (UNQ554) cDNA, wherein SEQ ID NO:228 is a clone designated herein as "DNA58721-1475".

45 Figure 157 shows the amino acid sequence (SEQ ID NO:229) derived from the coding sequence of SEQ ID NO:228 shown in Figure 156.

50 Figure 158 shows a nucleotide sequence (SEQ ID NO:230) of a native sequence PRO1344 (UNQ699) cDNA, wherein SEQ ID NO:230 is a clone designated herein as "DNA58723-1588".

55 Figure 159 shows the amino acid sequence (SEQ ID NO:231) derived from the coding sequence of SEQ ID NO:230 shown in Figure 158.

60 Figure 160 shows a nucleotide sequence (SEQ ID NO:235) of a native sequence PRO1109 (UNQ552) cDNA, wherein SEQ ID NO:235 is a clone designated herein as "DNA58737-1473".

65 Figure 161 shows the amino acid sequence (SEQ ID NO:236) derived from the coding sequence of SEQ ID NO:235 shown in Figure 160.

70 Figure 162 shows a nucleotide sequence (SEQ ID NO:240) of a native sequence PRO1383 (UNQ719) cDNA, wherein SEQ ID NO:240 is a clone designated herein as "DNA58743-1609".

75 Figure 163 shows the amino acid sequence (SEQ ID NO:241) derived from the coding sequence of SEQ ID NO:240 shown in Figure 162.

80 Figure 164 shows a nucleotide sequence (SEQ ID NO:245) of a native sequence PRO1003 (UNQ487) cDNA, wherein SEQ ID NO:245 is a clone designated herein as "DNA58846-1409".

85 Figure 165 shows the amino acid sequence (SEQ ID NO:246) derived from the coding sequence of SEQ ID NO:245 shown in Figure 164.

90 Figure 166 shows a nucleotide sequence (SEQ ID NO:247) of a native sequence PRO1108 (UNQ551) cDNA, wherein SEQ ID NO:247 is a clone designated herein as "DNA58848-1472".

95 Figure 167 shows the amino acid sequence (SEQ ID NO:248) derived from the coding sequence of SEQ ID NO:247 shown in Figure 166.

5 Figure 168 shows a nucleotide sequence (SEQ ID NO:249) of a native sequence PRO1137 (UNQ575) cDNA, wherein SEQ ID NO:249 is a clone designated herein as "DNA58849-1494".

10 Figure 169 shows the amino acid sequence (SEQ ID NO:250) derived from the coding sequence of SEQ ID NO:249 shown in Figure 168.

15 Figure 170 shows a nucleotide sequence (SEQ ID NO:252) of a native sequence PRO1138 (UNQ576) cDNA, wherein SEQ ID NO:252 is a clone designated herein as "DNA58850-1495".

20 Figure 171 shows the amino acid sequence (SEQ ID NO:253) derived from the coding sequence of SEQ ID NO:252 shown in Figure 170.

25 Figure 172 shows a nucleotide sequence designated herein as DNA49140 (SEQ ID NO:254).

30 Figure 173 shows a nucleotide sequence (SEQ ID NO:255) of a native sequence PRO1054 (UNQ519) cDNA, wherein SEQ ID NO:255 is a clone designated herein as "DNA58853-1423".

35 Figure 174 shows the amino acid sequence (SEQ ID NO:256) derived from the coding sequence of SEQ ID NO:255 shown in Figure 173.

40 Figure 175 shows a nucleotide sequence (SEQ ID NO:257) of a native sequence PRO994 (UNQ518) cDNA, wherein SEQ ID NO:257 is a clone designated herein as "DNA58855-1422".

45 Figure 176 shows the amino acid sequence (SEQ ID NO:258) derived from the coding sequence of SEQ ID NO:257 shown in Figure 175.

50 Figure 177 shows a nucleotide sequence (SEQ ID NO:259) of a native sequence PRO812 (UNQ517) cDNA, wherein SEQ ID NO:259 is a clone designated herein as "DNA59205-1421".

55 Figure 178 shows the amino acid sequence (SEQ ID NO:260) derived from the coding sequence of SEQ ID NO:259 shown in Figure 177.

60 Figure 179 shows a nucleotide sequence (SEQ ID NO:261) of a native sequence PRO1069 (UNQ526) cDNA, wherein SEQ ID NO:261 is a clone designated herein as "DNA59211-1450".

65 Figure 180 shows the amino acid sequence (SEQ ID NO:262) derived from the coding sequence of SEQ ID NO:261 shown in Figure 179.

70 Figure 181 shows a nucleotide sequence (SEQ ID NO:263) of a native sequence PRO1129 (UNQ568) cDNA, wherein SEQ ID NO:263 is a clone designated herein as "DNA59213-1487".

75 Figure 182 shows the amino acid sequence (SEQ ID NO:264) derived from the coding sequence of SEQ ID NO:263 shown in Figure 181.

80 Figure 183 shows a nucleotide sequence (SEQ ID NO:265) of a native sequence PRO1068 (UNQ525) cDNA, wherein SEQ ID NO:265 is a clone designated herein as "DNA59214-1449".

85 Figure 184 shows the amino acid sequence (SEQ ID NO:266) derived from the coding sequence of SEQ ID NO:265 shown in Figure 183.

90 Figure 185 shows a nucleotide sequence (SEQ ID NO:267) of a native sequence PRO1066 (UNQ524) cDNA, wherein SEQ ID NO:267 is a clone designated herein as "DNA59215-1425".

95 Figure 186 shows the amino acid sequence (SEQ ID NO:268) derived from the coding sequence of SEQ ID NO:267 shown in Figure 185.

5 Figure 187 shows a nucleotide sequence (SEQ ID NO:269) of a native sequence PRO1184 (UNQ598) cDNA, wherein SEQ ID NO:269 is a clone designated herein as "DNA59220-1514".

10 Figure 188 shows the amino acid sequence (SEQ ID NO:270) derived from the coding sequence of SEQ ID NO:269 shown in Figure 187.

15 Figure 189 shows a nucleotide sequence (SEQ ID NO:271) of a native sequence PRO1360 (UNQ709) cDNA, wherein SEQ ID NO:271 is a clone designated herein as "DNA59488-1603".

20 Figure 190 shows the amino acid sequence (SEQ ID NO:272) derived from the coding sequence of SEQ ID NO:271 shown in Figure 189.

25 Figure 191 shows a nucleotide sequence (SEQ ID NO:273) of a native sequence PRO1029 (UNQ514) cDNA, wherein SEQ ID NO:273 is a clone designated herein as "DNA59493-1420".

30 Figure 192 shows the amino acid sequence (SEQ ID NO:274) derived from the coding sequence of SEQ ID NO:273 shown in Figure 191.

35 Figure 193 shows a nucleotide sequence (SEQ ID NO:275) of a native sequence PRO1139 (UNQ577) cDNA, wherein SEQ ID NO:275 is a clone designated herein as "DNA59497-1496".

40 Figure 194 shows the amino acid sequence (SEQ ID NO:276) derived from the coding sequence of SEQ ID NO:275 shown in Figure 193.

45 Figure 195 shows a nucleotide sequence (SEQ ID NO:277) of a native sequence PRO1309 (UNQ675) cDNA, wherein SEQ ID NO:277 is a clone designated herein as "DNA59588-1571".

50 Figure 196 shows the amino acid sequence (SEQ ID NO:278) derived from the coding sequence of SEQ ID NO:277 shown in Figure 195.

55 Figure 197 shows a nucleotide sequence (SEQ ID NO:280) of a native sequence PRO1028 (UNQ513) cDNA, wherein SEQ ID NO:280 is a clone designated herein as "DNA59603-1419".

60 Figure 198 shows the amino acid sequence (SEQ ID NO:281) derived from the coding sequence of SEQ ID NO:280 shown in Figure 197.

65 Figure 199 shows a nucleotide sequence (SEQ ID NO:282) of a native sequence PRO1027 (UNQ512) cDNA, wherein SEQ ID NO:282 is a clone designated herein as "DNA59605-1418".

70 Figure 200 shows the amino acid sequence (SEQ ID NO:283) derived from the coding sequence of SEQ ID NO:282 shown in Figure 199.

75 Figure 201 shows a nucleotide sequence (SEQ ID NO:284) of a native sequence PRO1107 (UNQ550) cDNA, wherein SEQ ID NO:284 is a clone designated herein as "DNA59606-1471".

80 Figure 202 shows the amino acid sequence (SEQ ID NO:285) derived from the coding sequence of SEQ ID NO:284 shown in Figure 201.

85 Figure 203 shows a nucleotide sequence (SEQ ID NO:286) of a native sequence PRO1140 (UNQ578) cDNA, wherein SEQ ID NO:286 is a clone designated herein as "DNA59607-1497".

90 Figure 204 shows the amino acid sequence (SEQ ID NO:287) derived from the coding sequence of SEQ ID NO:286 shown in Figure 203.

95 Figure 205 shows a nucleotide sequence (SEQ ID NO:288) of a native sequence PRO1106 (UNQ549) cDNA, wherein SEQ ID NO:288 is a clone designated herein as "DNA59609-1470".

5 Figure 206 shows the amino acid sequence (SEQ ID NO:289) derived from the coding sequence of SEQ ID NO:288 shown in Figure 205.

10 Figure 207 shows a nucleotide sequence (SEQ ID NO:290) of a native sequence PRO1291 (UNQ659) cDNA, wherein SEQ ID NO:290 is a clone designated herein as "DNA59610-1556".

15 Figure 208 shows the amino acid sequence (SEQ ID NO:291) derived from the coding sequence of SEQ ID NO:290 shown in Figure 207.

20 Figure 209 shows a nucleotide sequence (SEQ ID NO:292) of a native sequence PRO1105 (UNQ548) cDNA, wherein SEQ ID NO:292 is a clone designated herein as "DNA59612-1466".

25 Figure 210 shows the amino acid sequence (SEQ ID NO:293) derived from the coding sequence of SEQ ID NO:292 shown in Figure 209.

30 Figure 211 shows a nucleotide sequence (SEQ ID NO:294) of a native sequence PRO511 (UNQ511) cDNA, wherein SEQ ID NO:294 is a clone designated herein as "DNA59613-1417".

35 Figure 212 shows the amino acid sequence (SEQ ID NO:295) derived from the coding sequence of SEQ ID NO:294 shown in Figure 211.

40 Figure 213 shows a nucleotide sequence (SEQ ID NO:296) of a native sequence PRO1104 (UNQ547) cDNA, wherein SEQ ID NO:296 is a clone designated herein as "DNA59616-1465".

45 Figure 214 shows the amino acid sequence (SEQ ID NO:297) derived from the coding sequence of SEQ ID NO:296 shown in Figure 213.

50 Figure 215 shows a nucleotide sequence (SEQ ID NO:298) of a native sequence PRO1100 (UNQ546) cDNA, wherein SEQ ID NO:298 is a clone designated herein as "DNA59619-1464".

55 Figure 216 shows the amino acid sequence (SEQ ID NO:299) derived from the coding sequence of SEQ ID NO:298 shown in Figure 215.

60 Figure 217 shows a nucleotide sequence (SEQ ID NO:300) of a native sequence PRO836 (UNQ545) cDNA, wherein SEQ ID NO:300 is a clone designated herein as "DNA59620-1463".

65 Figure 218 shows the amino acid sequence (SEQ ID NO:301) derived from the coding sequence of SEQ ID NO:300 shown in Figure 217.

70 Figure 219 shows a nucleotide sequence (SEQ ID NO:302) of a native sequence PRO1141 (UNQ579) cDNA, wherein SEQ ID NO:302 is a clone designated herein as "DNA59625-1498".

75 Figure 220 shows the amino acid sequence (SEQ ID NO:303) derived from the coding sequence of SEQ ID NO:302 shown in Figure 219.

80 Figure 221 shows a nucleotide sequence designated herein as DNA33128 (SEQ ID NO:304).

85 Figure 222 shows a nucleotide sequence designated herein as DNA34256 (SEQ ID NO:305).

90 Figure 223 shows a nucleotide sequence designated herein as DNA47941 (SEQ ID NO:306).

95 Figure 224 shows a nucleotide sequence designated herein as DNA54389 (SEQ ID NO:307).

100 Figure 225 shows a nucleotide sequence (SEQ ID NO:308) of a native sequence PRO1132 (UNQ570) cDNA, wherein SEQ ID NO:308 is a clone designated herein as "DNA59767-1489".

105 Figure 226 shows the amino acid sequence (SEQ ID NO:309) derived from the coding sequence of SEQ ID NO:308 shown in Figure 225.

- 5 Figure 227 shows a nucleotide sequence (SEQ ID NO:313) of a native sequence PRO1346 cDNA, wherein SEQ ID NO:313 is a clone designated herein as "DNA59776-1600".
- 10 Figure 228 shows the amino acid sequence (SEQ ID NO:314) derived from the coding sequence of SEQ ID NO:313 shown in Figure 227.
- 15 Figure 229 shows a nucleotide sequence (SEQ ID NO:318) of a native sequence PRO1131 (UNQ569) cDNA, wherein SEQ ID NO:318 is a clone designated herein as "DNA59777-1480".
- 20 Figure 230 shows the amino acid sequence (SEQ ID NO:319) derived from the coding sequence of SEQ ID NO:318 shown in Figure 229.
- 25 Figure 231 shows a nucleotide sequence designated herein as DNA43546 (SEQ ID NO:320).
- 30 Figure 232 shows a nucleotide sequence (SEQ ID NO:325) of a native sequence PRO1281 (UNQ651) cDNA, wherein SEQ ID NO:325 is a clone designated herein as "DNA59820-1549".
- 35 Figure 233 shows the amino acid sequence (SEQ ID NO:326) derived from the coding sequence of SEQ ID NO:325 shown in Figure 232.
- 40 Figure 234 shows a nucleotide sequence (SEQ ID NO:333) of a native sequence PRO1064 (UNQ111) cDNA, wherein SEQ ID NO:333 is a clone designated herein as "DNA59827-1426".
- 45 Figure 235 shows the amino acid sequence (SEQ ID NO:334) derived from the coding sequence of SEQ ID NO:333 shown in Figure 234.
- 50 Figure 236 shows a nucleotide sequence designated herein as DNA45288 (SEQ ID NO:335).
- 55 Figure 237 shows a nucleotide sequence (SEQ ID NO:339) of a native sequence PRO1379 (UNQ716) cDNA, wherein SEQ ID NO:339 is a clone designated herein as "DNA59828-1608".
- 60 Figure 238 shows the amino acid sequence (SEQ ID NO:340) derived from the coding sequence of SEQ ID NO:339 shown in Figure 237.
- 65 Figure 239 shows a nucleotide sequence (SEQ ID NO:344) of a native sequence PRO844 (UNQ544) cDNA, wherein SEQ ID NO:344 is a clone designated herein as "DNA59838-1462".
- 70 Figure 240 shows the amino acid sequence (SEQ ID NO:345) derived from the coding sequence of SEQ ID NO:344 shown in Figure 239.
- 75 Figure 241 shows a nucleotide sequence (SEQ ID NO:346) of a native sequence PRO848 (UNQ543) cDNA, wherein SEQ ID NO:346 is a clone designated herein as "DNA59839-1461".
- 80 Figure 242 shows the amino acid sequence (SEQ ID NO:347) derived from the coding sequence of SEQ ID NO:346 shown in Figure 241.
- 85 Figure 243 shows a nucleotide sequence (SEQ ID NO:348) of a native sequence PRO1097 (UNQ542) cDNA, wherein SEQ ID NO:348 is a clone designated herein as "DNA59841-1460".
- 90 Figure 244 shows the amino acid sequence (SEQ ID NO:349) derived from the coding sequence of SEQ ID NO:348 shown in Figure 243.
- 95 Figure 245 shows a nucleotide sequence (SEQ ID NO:350) of a native sequence PRO1153 (UNQ583) cDNA, wherein SEQ ID NO:350 is a clone designated herein as "DNA59842-1502".
- 100 Figure 246 shows the amino acid sequence (SEQ ID NO:351) derived from the coding sequence of SEQ ID NO:350 shown in Figure 245.

5 Figure 247 shows a nucleotide sequence (SEQ ID NO:352) of a native sequence PRO1154 (UNQ584) cDNA, wherein SEQ ID NO:352 is a clone designated herein as "DNA59846-1503".

10 Figure 248 shows the amino acid sequence (SEQ ID NO:353) derived from the coding sequence of SEQ ID NO:352 shown in Figure 247.

15 Figure 249 shows a nucleotide sequence (SEQ ID NO:354) of a native sequence PRO1181 (UNQ595) cDNA, wherein SEQ ID NO:354 is a clone designated herein as "DNA59847-1511".

20 Figure 250 shows the amino acid sequence (SEQ ID NO:355) derived from the coding sequence of SEQ ID NO:354 shown in Figure 249.

25 Figure 251 shows a nucleotide sequence (SEQ ID NO:356) of a native sequence PRO1182 (UNQ596) cDNA, wherein SEQ ID NO:356 is a clone designated herein as "DNA59848-1512".

30 Figure 252 shows the amino acid sequence (SEQ ID NO:357) derived from the coding sequence of SEQ ID NO:356 shown in Figure 251.

35 Figure 253 shows a nucleotide sequence (SEQ ID NO:358) of a native sequence PRO1155 (UNQ585) cDNA, wherein SEQ ID NO:358 is a clone designated herein as "DNA59849-1504".

40 Figure 254 shows the amino acid sequence (SEQ ID NO:359) derived from the coding sequence of SEQ ID NO:358 shown in Figure 253.

45 Figure 255 shows a nucleotide sequence (SEQ ID NO:360) of a native sequence PRO1156 (UNQ586) cDNA, wherein SEQ ID NO:360 is a clone designated herein as "DNA59853-1505".

50 Figure 256 shows the amino acid sequence (SEQ ID NO:361) derived from the coding sequence of SEQ ID NO:360 shown in Figure 255.

55 Figure 257 shows a nucleotide sequence (SEQ ID NO:362) of a native sequence PRO1098 (UNQ541) cDNA, wherein SEQ ID NO:362 is a clone designated herein as "DNA59854-1459".

60 Figure 258 shows the amino acid sequence (SEQ ID NO:363) derived from the coding sequence of SEQ ID NO:362 shown in Figure 257.

65 Figure 259 shows a nucleotide sequence (SEQ ID NO:364) of a native sequence PRO1127 (UNQ565) cDNA, wherein SEQ ID NO:364 is a clone designated herein as "DNA60283-1484".

70 Figure 260 shows the amino acid sequence (SEQ ID NO:365) derived from the coding sequence of SEQ ID NO:364 shown in Figure 259.

75 Figure 261 shows a nucleotide sequence (SEQ ID NO:366) of a native sequence PRO1126 (UNQ564) cDNA, wherein SEQ ID NO:366 is a clone designated herein as "DNA60615-1483".

80 Figure 262 shows the amino acid sequence (SEQ ID NO:367) derived from the coding sequence of SEQ ID NO:366 shown in Figure 261.

85 Figure 263 shows a nucleotide sequence (SEQ ID NO:368) of a native sequence PRO1125 (UNQ563) cDNA, wherein SEQ ID NO:368 is a clone designated herein as "DNA60619-1482".

90 Figure 264 shows the amino acid sequence (SEQ ID NO:369) derived from the coding sequence of SEQ ID NO:368 shown in Figure 263.

95 Figure 265 shows a nucleotide sequence (SEQ ID NO:370) of a native sequence PRO1186 (UNQ600) cDNA, wherein SEQ ID NO:370 is a clone designated herein as "DNA60621-1516".

5 Figure 266 shows the amino acid sequence (SEQ ID NO:371) derived from the coding sequence of SEQ ID NO:370 shown in Figure 265.

10 Figure 267 shows a nucleotide sequence (SEQ ID NO:372) of a native sequence PRO1198 (UNQ611) cDNA, wherein SEQ ID NO:372 is a clone designated herein as "DNA60622-1525".

15 Figure 268 shows the amino acid sequence (SEQ ID NO:373) derived from the coding sequence of SEQ ID NO:372 shown in Figure 267.

20 Figure 269 shows a nucleotide sequence (SEQ ID NO:374) of a native sequence PRO1158 (UNQ588) cDNA, wherein SEQ ID NO:374 is a clone designated herein as "DNA60625-1507".

25 Figure 270 shows the amino acid sequence (SEQ ID NO:375) derived from the coding sequence of SEQ ID NO:374 shown in Figure 269.

30 Figure 271 shows a nucleotide sequence (SEQ ID NO:376) of a native sequence PRO1159 (UNQ589) cDNA, wherein SEQ ID NO:376 is a clone designated herein as "DNA60627-1508".

35 Figure 272 shows the amino acid sequence (SEQ ID NO:377) derived from the coding sequence of SEQ ID NO:376 shown in Figure 271.

40 Figure 273 shows a nucleotide sequence (SEQ ID NO:378) of a native sequence PRO1124 (UNQ562) cDNA, wherein SEQ ID NO:378 is a clone designated herein as "DNA60629-1481".

45 Figure 274 shows the amino acid sequence (SEQ ID NO:379) derived from the coding sequence of SEQ ID NO:378 shown in Figure 273.

50 Figure 275 shows a nucleotide sequence (SEQ ID NO:380) of a native sequence PRO1287 (UNQ656) cDNA, wherein SEQ ID NO:380 is a clone designated herein as "DNA61755-1554".

55 Figure 276 shows the amino acid sequence (SEQ ID NO:381) derived from the coding sequence of SEQ ID NO:380 shown in Figure 275.

60 Figure 277 shows a nucleotide sequence (SEQ ID NO:386) of a native sequence PRO1312 (UNQ678) cDNA, wherein SEQ ID NO:386 is a clone designated herein as "DNA61873-1574".

65 Figure 278 shows the amino acid sequence (SEQ ID NO:387) derived from the coding sequence of SEQ ID NO:386 shown in Figure 277.

70 Figure 279 shows a nucleotide sequence (SEQ ID NO:388) of a native sequence PRO1192 (UNQ606) cDNA, wherein SEQ ID NO:388 is a clone designated herein as "DNA62814-1521".

75 Figure 280 shows the amino acid sequence (SEQ ID NO:389) derived from the coding sequence of SEQ ID NO:388 shown in Figure 279.

80 Figure 281 shows a nucleotide sequence (SEQ ID NO:393) of a native sequence PRO1160 (UNQ590) cDNA, wherein SEQ ID NO:393 is a clone designated herein as "DNA62872-1509".

85 Figure 282 shows the amino acid sequence (SEQ ID NO:394) derived from the coding sequence of SEQ ID NO:393 shown in Figure 281.

90 Figure 283 shows a nucleotide sequence (SEQ ID NO:398) of a native sequence PRO1187 (UNQ601) cDNA, wherein SEQ ID NO:398 is a clone designated herein as "DNA62876-1517".

95 Figure 284 shows the amino acid sequence (SEQ ID NO:399) derived from the coding sequence of SEQ ID NO:398 shown in Figure 283.

5 Figure 285 shows a nucleotide sequence (SEQ ID NO:400) of a native sequence PRO1185 (UNQ599) cDNA, wherein SEQ ID NO:400 is a clone designated herein as "DNA62881-1515".

10 Figure 286 shows the amino acid sequence (SEQ ID NO:401) derived from the coding sequence of SEQ ID NO:400 shown in Figure 285.

15 Figure 287 shows a nucleotide sequence (SEQ ID NO:402) of a native sequence PRO1345 (UNQ700) cDNA, wherein SEQ ID NO:402 is a clone designated herein as "DNA64852-1589".

20 Figure 288 shows the amino acid sequence (SEQ ID NO:403) derived from the coding sequence of SEQ ID NO:402 shown in Figure 287.

25 Figure 289 shows a nucleotide sequence (SEQ ID NO:407) of a native sequence PRO1245 (UNQ629) cDNA, wherein SEQ ID NO:407 is a clone designated herein as "DNA64884-1527".

30 Figure 290 shows the amino acid sequence (SEQ ID NO:408) derived from the coding sequence of SEQ ID NO:407 shown in Figure 289.

35 Figure 291 shows a nucleotide sequence (SEQ ID NO:409) of a native sequence PRO1358 (UNQ707) cDNA, wherein SEQ ID NO:409 is a clone designated herein as "DNA64890-1612".

40 Figure 292 shows the amino acid sequence (SEQ ID NO:410) derived from the coding sequence of SEQ ID NO:409 shown in Figure 291.

45 Figure 293 shows a nucleotide sequence (SEQ ID NO:411) of a native sequence PRO1195 (UNQ608) cDNA, wherein SEQ ID NO:411 is a clone designated herein as "DNA65412-1523".

50 Figure 294 shows the amino acid sequence (SEQ ID NO:412) derived from the coding sequence of SEQ ID NO:411 shown in Figure 293.

55 Figure 295 shows a nucleotide sequence (SEQ ID NO:413) of a native sequence PRO1270 (UNQ640) cDNA, wherein SEQ ID NO:413 is a clone designated herein as "DNA66308-1537".

60 Figure 296 shows the amino acid sequence (SEQ ID NO:414) derived from the coding sequence of SEQ ID NO:413 shown in Figure 295.

65 Figure 297 shows a nucleotide sequence (SEQ ID NO:415) of a native sequence PRO1271 (UNQ641) cDNA, wherein SEQ ID NO:415 is a clone designated herein as "DNA66309-1538".

70 Figure 298 shows the amino acid sequence (SEQ ID NO:416) derived from the coding sequence of SEQ ID NO:415 shown in Figure 297.

75 Figure 299 shows a nucleotide sequence (SEQ ID NO:417) of a native sequence PRO1375 (UNQ712) cDNA, wherein SEQ ID NO:417 is a clone designated herein as "DNA67004-1614".

80 Figure 300 shows the amino acid sequence (SEQ ID NO:418) derived from the coding sequence of SEQ ID NO:417 shown in Figure 299.

85 Figure 301 shows a nucleotide sequence (SEQ ID NO:419) of a native sequence PRO1385 (UNQ720) cDNA, wherein SEQ ID NO:419 is a clone designated herein as "DNA68869-1610".

90 Figure 302 shows the amino acid sequence (SEQ ID NO:420) derived from the coding sequence of SEQ ID NO:419 shown in Figure 301.

95 Figure 303 shows a nucleotide sequence (SEQ ID NO:421) of a native sequence PRO1387 (UNQ722) cDNA, wherein SEQ ID NO:421 is a clone designated herein as "DNA68872-1620".

5 Figure 304 shows the amino acid sequence (SEQ ID NO:422) derived from the coding sequence of SEQ ID NO:421 shown in Figure 303.

10 Figure 305 shows a nucleotide sequence (SEQ ID NO:423) of a native sequence PRO1384 (UNQ721) cDNA, wherein SEQ ID NO:423 is a clone designated herein as "DNA71159-1617".

15 Figure 306 shows the amino acid sequence (SEQ ID NO:424) derived from the coding sequence of SEQ ID NO:423 shown in Figure 305.

20 Figure 307 shows a nucleotide sequence (SEQ ID NO:494) of a native sequence PRO183 cDNA, wherein SEQ ID NO:494 is a clone designated herein as "DNA28498".

25 Figure 308 shows the amino acid sequence (SEQ ID NO:495) derived from the coding sequence of SEQ ID NO:494 shown in Figure 307.

30 Figure 309 shows a nucleotide sequence (SEQ ID NO:496) of a native sequence PRO184 cDNA, wherein SEQ ID NO:496 is a clone designated herein as "DNA28500".

35 Figure 310 shows the amino acid sequence (SEQ ID NO:497) derived from the coding sequence of SEQ ID NO:496 shown in Figure 309.

40 Figure 311 shows a nucleotide sequence (SEQ ID NO:498) of a native sequence PRO185 cDNA, wherein SEQ ID NO:498 is a clone designated herein as "DNA28503".

45 Figure 312 shows the amino acid sequence (SEQ ID NO:499) derived from the coding sequence of SEQ ID NO:498 shown in Figure 311.

50 Figure 313 shows a nucleotide sequence (SEQ ID NO:500) of a native sequence PRO331 cDNA, wherein SEQ ID NO:500 is a clone designated herein as "DNA40981-1234".

55 Figure 314 shows the amino acid sequence (SEQ ID NO:501) derived from the coding sequence of SEQ ID NO:500 shown in Figure 313.

60 Figure 315 shows a nucleotide sequence (SEQ ID NO:502) of a native sequence PRO363 cDNA, wherein SEQ ID NO:502 is a clone designated herein as "DNA45419-1252".

65 Figure 316 shows the amino acid sequence (SEQ ID NO:503) derived from the coding sequence of SEQ ID NO:502 shown in Figure 315.

70 Figure 317 shows a nucleotide sequence (SEQ ID NO:504) of a native sequence PRO5723 cDNA, wherein SEQ ID NO:504 is a clone designated herein as "DNA82361".

75 Figure 318 shows the amino acid sequence (SEQ ID NO:505) derived from the coding sequence of SEQ ID NO:504 shown in Figure 317.

80 Figure 319 shows a nucleotide sequence (SEQ ID NO:506) of a native sequence PRO3301 cDNA, wherein SEQ ID NO:506 is a clone designated herein as "DNA88002".

85 Figure 320 shows the amino acid sequence (SEQ ID NO:507) derived from the coding sequence of SEQ ID NO:506 shown in Figure 319.

90 Figure 321 shows a nucleotide sequence (SEQ ID NO:508) of a native sequence PRO9940 cDNA, wherein SEQ ID NO:508 is a clone designated herein as "DNA92282".

95 Figure 322 shows the amino acid sequence (SEQ ID NO:509) derived from the coding sequence of SEQ ID NO:508 shown in Figure 321.

Figure 323 shows a nucleotide sequence (SEQ ID NO:510) of a native sequence PRO9828 cDNA, wherein SEQ ID NO:510 is a clone designated herein as "DNA142238-2768".

Figure 324 shows the amino acid sequence (SEQ ID NO:511) derived from the coding sequence of SEQ ID NO:510 shown in Figure 323.

Figure 325 shows a nucleotide sequence (SEQ ID NO:512) of a native sequence PRO7170 cDNA, wherein SEQ ID NO:512 is a clone designated herein as "DNA108722-2743".

Figure 326 shows the amino acid sequence (SEQ ID NO:513) derived from the coding sequence of SEQ ID NO:512 shown in Figure 325.

Figure 327 shows a nucleotide sequence (SEQ ID NO:514) of a native sequence PRO361 cDNA, wherein SEQ ID NO:514 is a clone designated herein as "DNA45410-1250".

Figure 328 shows the amino acid sequence (SEQ ID NO:515) derived from the coding sequence of

SEQ ID NO:514 shown in Figure 327.

Figure 329 shows a nucleotide sequence (SEQ ID NO:516) of a native sequence PRO846 cDNA, wherein SEQ ID NO:516 is a clone designated herein as "DNA44196-1353".

Figure 330 shows the amino acid sequence (SEQ ID NO:517) derived from the coding sequence of

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I Definitions

The terms "PRO polypeptide" and "PRO" as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms "PRO/number polypeptide" and "PRO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.

A "native sequence PRO polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino

acid residue for the PRO polypeptides.

The PRO polypeptide "extracellular domain" or "ECD" refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.

The approximate location of the "signal peptides" of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., *Prot. Eng.* 10:1-6 (1997) and von Heinje et al., *Nucl. Acids Res.* 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

"PRO polypeptide variant" means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80% amino acid sequence identity, preferably at least about 81% amino acid sequence identity, more preferably at least about 82% amino acid sequence identity, more preferably at least about 83% amino acid sequence identity, more preferably at least about 84% amino acid sequence identity, more preferably at least about 85% amino acid sequence identity, more preferably at least about 86% amino acid sequence identity, more preferably at least about 87% amino acid sequence identity, more preferably at least about 88% amino acid sequence identity, more preferably at least about 89% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity, more preferably at least about 91% amino acid sequence identity, more preferably at least about 92% amino acid sequence identity, more preferably at least

about 93% amino acid sequence identity, more preferably at least about 94% amino acid sequence identity, more preferably at least about 95% amino acid sequence identity, more preferably at least about 96% amino acid sequence identity, more preferably at least about 97% amino acid sequence identity, more preferably at least about 98% amino acid sequence identity and most preferably at least about 99% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant polypeptides are at least about 10 amino acids in length, often at least about 20 amino acids in length, more often at least about 30 amino acids in length, more often at least about 40 amino acids in length, more often at least about 50 amino acids in length, more often at least about 60 amino acids in length, more often at least about 70 amino acids in length, more often at least about 80 amino acids in length, more often at least about 90 amino acids in length, more often at least about 100 amino acids in length, more often at least about 150 amino acids in length, more often at least about 200 amino acids in length, more often at least about 300 amino acids in length, or more.

"Percent (%) amino acid sequence identity" with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

50 100 times the fraction X/Y

5 where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2
10 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "PRO", wherein "PRO" represents the amino acid sequence of a hypothetical PRO polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "PRO" polypeptide of interest is being compared, and "X", "Y"
15 and "Z" each represent different hypothetical amino acid residues.

10 Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % amino acid sequence identity values may also be obtained as described below by using the WU-
20 BLAST-2 computer program (Altschul et al., *Methods in Enzymology* 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable
15 parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the
25 amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example,
30 in the statement "a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B", the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.

35 Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., *Nucleic Acids Res.* 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from <http://www.ncbi.nlm.nih.gov>. NCBI-BLAST2 uses several
40 search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass
30 e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

45 In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

5

where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

"PRO variant polynucleotide" or "PRO variant nucleic acid sequence" means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide

10 sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein.

20 Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, more preferably at least about 81% nucleic acid sequence identity, more preferably at least about 82% nucleic acid sequence identity, more preferably at least about 83% nucleic acid sequence identity, more preferably at least about 84% nucleic acid sequence identity, more preferably at least about 85% nucleic acid sequence identity,

25 more preferably at least about 86% nucleic acid sequence identity, more preferably at least about 87% nucleic acid sequence identity, more preferably at least about 88% nucleic acid sequence identity, more preferably at least about 89% nucleic acid sequence identity, more preferably at least about 90% nucleic acid sequence identity,

30 more preferably at least about 91% nucleic acid sequence identity, more preferably at least about 92% nucleic acid sequence identity, more preferably at least about 93% nucleic acid sequence identity, more preferably at least about 94% nucleic acid sequence identity, more preferably at least about 95% nucleic acid sequence identity, more preferably at least about 96% nucleic acid sequence identity, more preferably at least about 97% nucleic acid sequence identity, more preferably at least about 98% nucleic acid sequence identity

35 and yet more preferably at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-

40 length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

30

45 Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, often at least about 60 nucleotides in length, more often at least about 90 nucleotides in length, more often at least about 120 nucleotides in length, more often at least about 150 nucleotides in length, more often at least about 180 nucleotides in length, more often at least about 210 nucleotides in length, more often at least about 240 nucleotides in length, more often at least about 270 nucleotides in length, more often at least about 300 nucleotides in length, more often at least about 450 nucleotides in length, more often at least about 600 nucleotides in length, more often at least about 900 nucleotides in length, or more.

50

45

35

55

5 "Percent (%) nucleic acid sequence identity" with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

10 15 In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

20
$$100 \text{ times the fraction } W/Z$$

30 where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "PRO-DNA", wherein "PRO-DNA" represents a hypothetical PRO-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "PRO-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides.

35 40 45 50 Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., *Methods in Enzymology* 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold

5 (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest
10 is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement "an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B", the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of
15 the PRO polypeptide-encoding nucleic acid molecule of interest.

10 Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., *Nucleic Acids Res.*, 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from <http://www.ncbi.nlm.nih.gov>. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example,
20 unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix
25 = BLOSUM62.

20 In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

$$100 \text{ times the fraction } W/Z$$

35 where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.
40

30 In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide.
45

35 The term "positives", in the context of sequence comparison performed as described above, includes residues in the sequences compared that are not identical but have similar properties (e.g. as a result of conservative substitutions, see Table 6 below). For purposes herein, the % value of positives is determined by dividing (a) the number of amino acid residues scoring a positive value between the PRO polypeptide amino
50

acid sequence of interest having a sequence derived from the native PRO polypeptide sequence and the comparison amino acid sequence of interest (i.e., the amino acid sequence against which the PRO polypeptide sequence is being compared) as determined in the BLOSUM62 matrix of WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest.

Unless specifically stated otherwise, the % value of positives is calculated as described in the immediately preceding paragraph. However, in the context of the amino acid sequence identity comparisons performed as described for ALIGN-2 and NCBI-BLAST-2 above, includes amino acid residues in the sequences compared that are not only identical, but also those that have similar properties. Amino acid residues that score a positive value to an amino acid residue of interest are those that are either identical to the amino acid residue of interest or are a preferred substitution (as defined in Table 6 below) of the amino acid residue of interest.

For amino acid sequence comparisons using ALIGN-2 or NCBI-BLAST2, the % value of positives of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % positives to, with, or against a given amino acid sequence B) is calculated as follows:

$$100 \text{ times the fraction } X/Y$$

where X is the number of amino acid residues scoring a positive value as defined above by the sequence alignment program ALIGN-2 or NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % positives of A to B will not equal the % positives of B to A.

"Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide *in situ* within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-

5 encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

10 The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

15 Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is 20 accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

25 The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term "monoclonal antibody" as used herein refers to an antibody obtained from 30 a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.

35 "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower 40 temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of 45 stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

50 "Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM

sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

"Active" or "activity" for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide disclosed herein. In a similar

5 manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a
10 candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide.

15 "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom
10 the disorder is to be prevented.

20 "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

25 "Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.

30 Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

35 "Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™.

40 "Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies (Zapata et al., *Protein Eng.* 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

45 Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

5 "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V_H - V_L dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three
10 CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

15 The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab' fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
10 Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

20 The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains.
15

25 Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.

30 20 "Single-chain Fv" or "sFv" antibody fragments comprise the V_H and V_L domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

35 25 The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) in the same polypeptide chain (V_H - V_L). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161;
40 30 and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).

45 An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or
50

5 nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

10 The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a "labeled" antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

15 By "solid phase" is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and
10 silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

20 A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal. The
15 components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

25 A "small molecule" is defined herein to have a molecular weight below about 500 Daltons.

30

35

40

45

50

55

Table 1

40

50

33

33

Table 1 (cont')

```

5
/*
*/
#include <stdio.h>
#include <ctype.h>
5
#define MAXJMP 16 /* max jumps in a diag */
#define MAXGAP 24 /* don't continue to penalize gaps larger than this */
#define J MPS 1024 /* max jmps in an path */
#define MX 4 /* save if there's at least MX-1 bases since last jmp */
10
#define DMAT 3 /* value of matching bases */
#define DMIS 0 /* penalty for mismatched bases */
#define DINS0 8 /* penalty for a gap */
#define DINS1 1 /* penalty per base */
15
#define PINS0 8 /* penalty for a gap */
#define PINS1 4 /* penalty per residue */
20
struct jmp {
    short n[MAXJMP]; /* size of jmp (neg for delay) */
    unsigned short x[MAXJMP]; /* base no. of jmp in seq x */
    };
25
struct diag {
    int score; /* score at last jmp */
    long offset; /* offset of prev block */
    short ijmp; /* current jmp index */
    struct jmp jp; /* list of jmps */
    };
30
struct path {
    int spc; /* number of leading spaces */
    short n[J MPS]; /* size of jmp (gap) */
    int x[J MPS]; /* loc of jmp (last elem before gap) */
    };
35
char *ofile; /* output file name */
char *namex[2]; /* seq names: getseqs() */
char *prog; /* prog name for err msgs */
char *seqx[2]; /* seqs: getseqs0() */
40
int dmax; /* best diag: nw0 */
int dmax0; /* final diag */
int dna; /* set if dna: main0 */
int endgaps; /* set if penalizing end gaps */
int gapk, gapy; /* total gaps in seqs */
45
int len0, lcn1; /* seq lens */
int ngapx, ngapy; /* total size of gaps */
int smax; /* max score: nw0 */
int *xbm; /* bitmap for matching */
long offset; /* current offset in jmp file */
50
struct diag *dx; /* holds diagonals */
struct path pp[2]; /* holds path for seqs */
45
char *calloc(), *malloc(), *index(), *strcpy();
char *getseq(), *g_malloc();
55

```

Table 1 (cont')

```

5      /* Needleman-Wunsch alignment program
       *
       * usage: progs file1 file2
       * where file1 and file2 are two dna or two protein sequences.
       * The sequences can be in upper- or lower-case and may contain ambiguity
       * Any lines beginning with ';' or '>' or '<' are ignored
       * Max file length is 65535 (limited by unsigned short x in the jmp struct)
       * A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
       * Output is in the file "align.out"
       *
10     *
       * The program may create a tmp file in /tmp to hold info about traceback.
       * Original version developed under BSD 4.3 on a vax 8650
       */
15     #include "nw.h"
15     #include "day.h"

20     static _dbval[26] = {
       1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
     };

20     static _pbval[26] = {
       1, 2 |(1 < ('D'-'A'))|(1 < ('N'-'A')), 4, 8, 16, 32, 64,
       128, 256, 0xFFFFFFFF, 1 < < 10, 1 < < 11, 1 < < 12, 1 < < 13, 1 < < 14,
       1 < < 15, 1 < < 16, 1 < < 17, 1 < < 18, 1 < < 19, 1 < < 20, 1 < < 21, 1 < < 22,
25     1 < < 23, 1 < < 24, 1 < < 25 |(1 < < ('E'-'A'))|(1 < < ('Q'-'A'))
     };

25     main(ac, av)                                main
30     int ac;
30     char *av[];                                {
     {
       prog = av[0];
       if (ac != 3) {
         fprintf(stderr, "usage: %s file1 file2\n", prog);
         fprintf(stderr, "where file1 and file2 are two dna or two protein sequences.\n");
         fprintf(stderr, "The sequences can be in upper- or lower-case\n");
         fprintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
         fprintf(stderr, "Output is in the file \"align.out\"\n");
         exit(1);
       }
35     namex[0] = av[1];
35     namex[1] = av[2];
35     seqx[0] = getseq(namex[0], &len0);
35     seqx[1] = getseq(namex[1], &len1);
35     xbm = (dnx)? _dbval : _pbval;

40     endgaps = 0;                                /* 1 to penalize endgaps */
40     ofile = "align.out";                         /* output file */

50     nw0;                                     /* fill in the matrix, get the possible jmps */
50     readjmps();                               /* get the actual jmps */
50     print();                                  /* print stats, alignment */

45     cleanup();                                /* unlink any tmp files */
45   }

```

Table 1 (cont')

```

5      /* do the alignment, return best score: main()
 * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
 * pro: PAM 250 values
 * When scores are equal, we prefer mismatches to any gap, prefer
5     * a new gap to extending an ongoing gap, and prefer a gap in seqx
 * to a gap in seq y.
 */
10    nw0
15    {
10      char      *px, *py;          /* seqs and ptrs */
10      int       *ndely, *dely;   /* keep track of dely */
10      int       ndelx, delx;   /* keep track of delx */
10      int       *tmp;
10      int       mis;           /* score for each type */
15      int       ins0, ins1;   /* insertion penalties */
15      register id;           /* diagonal index */
15      register ij;           /* jmp index */
15      register *col0, *col1;  /* score for curr, last row */
15      register xx, yy;       /* index into seqs */
20      dx = (struct diag *)g_calloc("to get diags", len0+len1+1, sizeof(struct diag));
20      ndely = (int *)g_calloc("to get ndely", len1+1, sizeof(int));
20      dely = (int *)g_calloc("to get dely", len1+1, sizeof(int));
25      col0 = (int *)g_calloc("to get col0", len1+1, sizeof(int));
25      col1 = (int *)g_calloc("to get col1", len1+1, sizeof(int));
25      ins0 = (dna)? DINS0 : PINS0;
25      ins1 = (dna)? DINS1 : PINS1;
30      smax = -10000;
30      if (endgaps) {
30        for (col0[0] = dely[0] = -ins0, yy = 1; yy <= len1; yy++) {
30          col0[yy] = dely[yy] = col0[yy-1] - ins1;
30          ndely[yy] = yy;
35        }
35        col0[0] = 0;      /* Waterman Bull Math Biol 84 */
35      }
35      else
40        for (yy = 1; yy <= len1; yy++)
40          dely[yy] = -ins0;
35      /* fill in match matrix
40      */
45      for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
45        /* initialize first entry in col
45        */
45        if (endgaps) {
45          if (xx == 1)
45            col1[0] = delx = -(ins0+ins1);
50          else
45            col1[0] = delx = col0[0] - ins1;
50          ndelx = xx;
55        }
55        else {
55          col1[0] = 0;
55          delx = -ins0;
55          ndelx = 0;
55        }
60      }
50

```

Table 1 (cont')

...nw

```

5      for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
       mis = col0[yy-1];
       if (dma)
          mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT : DMIS;
       else
          mis += _day[*px-'A'][*py-'A'];

10     /* update penalty for del in x seq;
       * favor new del over ongoing del
       * ignore MAXGAP if weighting endgaps
       */
15     if (endgaps || ndely[yy] < MAXGAP) {
          if (col0[yy] - ins0 >= dely[yy]) {
             dely[yy] = col0[yy] - (ins0+ins1);
             ndely[yy] = 1;
          } else {
             dely[yy] -= ins1;
             ndely[yy]++;
          }
       } else {
          if (col0[yy] - (ins0+ins1) >= dely[yy]) {
             dely[yy] = col0[yy] - (ins0+ins1);
             ndely[yy] = 1;
          } else
             ndely[yy]++;
       }

20     /* update penalty for del in y seq;
       * favor new del over ongoing del
       */
25     if (endgaps || ndelx < MAXGAP) {
          if (col1[yy-1] - ins0 >= delx) {
             delx = col1[yy-1] - (ins0+ins1);
             ndelx = 1;
          } else {
             delx -= ins1;
             ndelx++;
          }
       } else {
          if (col1[yy-1] - (ins0+ins1) >= delx) {
             delx = col1[yy-1] - (ins0+ins1);
             ndelx = 1;
          } else
             ndelx++;
       }

30     /* pick the maximum score; we're favoring
       * mis over any del and delx over dely
       */
35
40
45
50

45     55

60
50

```

Table 1 (cont')

5

...nw

10

```

id = xx - yy + len1 - 1;
if (mis >= delx && mis >= dely(yy))
    col1[yy] = mis;
else if (delx >= dely(yy)) {
    col1[yy] = delx;
    ij = dx[id].ijmp;
    if (dx[id].jp.n[0] && (!dma || (ndelx >= MAXJMP
&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
        dx[id].ijmp++;
        if (++ij >= MAXJMP) {
            writejmps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp) + sizeof(offset);
        }
    }
    dx[id].jp.n[ij] = ndelx;
    dx[id].jp.x[ij] = xx;
    dx[id].score = delx;
}
else {
    col1[yy] = dely(yy);
    ij = dx[id].ijmp;
    if (dx[id].jp.n[0] && (!dma || (ndely(yy) >= MAXJMP
&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
        dx[id].ijmp++;
        if (++ij >= MAXJMP) {
            writejmps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp) + sizeof(offset);
        }
    }
    dx[id].jp.n[ij] = -ndely(yy);
    dx[id].jp.x[ij] = xx;
    dx[id].score = dely(yy);
}
if (xx == len0 && yy < len1) {
/* last col
 */
if (endgaps)
    col1[yy] -= ins0+ins1*(len1-yy);
if (col1[yy] > smax) {
    smax = col1[yy];
    dmax = id;
}
}
if (endgaps && xx < len0)
    col1[yy-1] -= ins0+ins1*(len0-xx);
if (col1[yy-1] > smax) {
    smax = col1[yy-1];
    dmax = id;
}
tmp = col0; col0 = col1; col1 = tmp;
}
(void) free((char *)ndely);
(void) free((char *)dely);
(void) free((char *)col0);
(void) free((char *)col1);
}

```

15

15

20

20

25

25

30

30

35

35

40

40

50

50

45

45

55

55

55

Table 1 (cont')

```

5      /*
6      *
7      * print() -- only routine visible outside this module
8      *
9      5   * static:
10     * getmat() -- trace back best path, count matches: print()
11     * pr_align() -- print alignment of described in array p[]: print()
12     * dumpblock() -- dump a block of lines with numbers, stars: pr_align()
13     * numS() -- put out a number line: dumpblock()
14     * putline() -- put out a line (name, [num], seq, [num]): dumpblock()
15     * stars() -put a line of stars: dumpblock()
16     * stripname() -- strip any path and prefix from a seqname
17     */
18
19    15 #include "nw.h"
20
21    #define SPC      3
22    #define P_LINE   256      /* maximum output line */
23    #define P_SPC    3      /* space between name or num and seq */
24
25    extern _day[26][26];
26    int olen;           /* set output line length */
27    FILE *fx;           /* output file */
28
29    25 printO
30    {
31        int lx, ly, firstgap, lastgap; /* overlap */
32
33        if ((fx = fopen(ofile, "w")) == 0) {
34            fprintf(stderr, "%s: can't write %s\n", prog, ofile);
35            cleanup(1);
36        }
37        sprintf(fx, "< first sequence: %s (length = %d)\n", namex[0], len0);
38        sprintf(fx, "< second sequence: %s (length = %d)\n", namex[1], len1);
39        olen = 60;
40        lx = len0;
41        ly = len1;
42        firstgap = lastgap = 0;
43        if (dmax < len1 - 1) { /* leading gap in x */
44            pp[0].spc = firstgap = len1 - dmax - 1;
45            ly -= pp[0].spc;
46        }
47        else if (dmax > len1 - 1) { /* leading gap in y */
48            pp[1].spc = firstgap = dmax - (len1 - 1);
49            lx -= pp[1].spc;
50        }
51        if (dmax0 < len0 - 1) { /* trailing gap in x */
52            lastgap = len0 - dmax0 - 1;
53            lx -= lastgap;
54        }
55        else if (dmax0 > len0 - 1) { /* trailing gap in y */
56            lastgap = dmax0 - (len0 - 1);
57            ly -= lastgap;
58        }
59        getmat(lx, ly, firstgap, lastgap);
60        pr_align();
61    }
62
63    60
64
65    55

```

Table 1 (cont')

```

5      /* trace back the best path, count matches
6      */
7      static
8      5    getmat(lx, ly, firstgap, lastgap)
9      10   {
10        int      lx, ly;           /* "core" (minus endgaps) */
11        int      firstgap, lastgap; /* leading/trailing overlap */
12        {
13          int      nm, i0, i1, siz0, siz1;
14          char     outx[32];
15          double   pct;
16          register int n0, n1;
17          register char *p0, *p1;
18
19          /* get total matches, score
20          */
21          i0 = i1 = siz0 = siz1 = 0;
22          p0 = seqx[0] + pp[1].spc;
23          p1 = seqx[1] + pp[0].spc;
24          n0 = pp[1].spc + 1;
25          n1 = pp[0].spc + 1;
26
27          nm = 0;
28          while (*p0 && *p1) {
29            if (siz0) {
30              p1++;
31              n1++;
32              siz0--;
33            }
34            else if (siz1) {
35              p0++;
36              n0++;
37              siz1--;
38            }
39            else {
40              if (xbm[*p0-'A']&xhm[*p1-'A'])
41                nm++;
42              if (n0++ == pp[0].x[i0])
43                siz0 = pp[0].n[i0++];
44              if (n1++ == pp[1].x[i1])
45                siz1 = pp[1].n[i1++];
46              p0++;
47              p1++;
48            }
49
50            /* pct homology:
51             * if penalizing endgaps, base is the shorter seq
52             * else, knock off overhangs and take shorter core
53             */
54            if (endgaps)
55              lx = (len0 < len1)? len0 : len1;
56            else
57              lx = (lx < ly)? lx : ly;
58            pct = 100.* (double)nm / (double)lx;
59            fprintf(fx, "\n");
60            fprintf(fx, "< %d match%d in an overlap of %d: %.2f percent similarity\n",
61            nm, (nm == 1)? "" : "es", lx, pct);
62
63          }
64
65        }
66
67      }
68
69      /* trace back the best path, count matches
70      */
71      static
72      5    getmat(lx, ly, firstgap, lastgap)
73      10   {
74        int      lx, ly;           /* "core" (minus endgaps) */
75        int      firstgap, lastgap; /* leading/trailing overlap */
76        {
77          int      nm, i0, i1, siz0, siz1;
78          char     outx[32];
79          double   pct;
80          register int n0, n1;
81          register char *p0, *p1;
82
83          /* get total matches, score
84          */
85          i0 = i1 = siz0 = siz1 = 0;
86          p0 = seqx[0] + pp[1].spc;
87          p1 = seqx[1] + pp[0].spc;
88          n0 = pp[1].spc + 1;
89          n1 = pp[0].spc + 1;
90
91          nm = 0;
92          while (*p0 && *p1) {
93            if (siz0) {
94              p1++;
95              n1++;
96              siz0--;
97            }
98            else if (siz1) {
99              p0++;
100             n0++;
101             siz1--;
102           }
103           else {
104             if (xbm[*p0-'A']&xhm[*p1-'A'])
105               nm++;
106             if (n0++ == pp[0].x[i0])
107               siz0 = pp[0].n[i0++];
108             if (n1++ == pp[1].x[i1])
109               siz1 = pp[1].n[i1++];
110             p0++;
111             p1++;
112           }
113
114         }
115
116       }
117
118     }
119
120   }
121
122   /* trace back the best path, count matches
123   */
124   static
125   5    getmat(lx, ly, firstgap, lastgap)
126   10   {
127     int      lx, ly;           /* "core" (minus endgaps) */
128     int      firstgap, lastgap; /* leading/trailing overlap */
129     {
130       int      nm, i0, i1, siz0, siz1;
131       char     outx[32];
132       double   pct;
133       register int n0, n1;
134       register char *p0, *p1;
135
136       /* get total matches, score
137       */
138       i0 = i1 = siz0 = siz1 = 0;
139       p0 = seqx[0] + pp[1].spc;
140       p1 = seqx[1] + pp[0].spc;
141       n0 = pp[1].spc + 1;
142       n1 = pp[0].spc + 1;
143
144       nm = 0;
145       while (*p0 && *p1) {
146         if (siz0) {
147           p1++;
148           n1++;
149           siz0--;
150         }
151         else if (siz1) {
152           p0++;
153           n0++;
154           siz1--;
155         }
156         else {
157           if (xbm[*p0-'A']&xhm[*p1-'A'])
158             nm++;
159           if (n0++ == pp[0].x[i0])
160             siz0 = pp[0].n[i0++];
161           if (n1++ == pp[1].x[i1])
162             siz1 = pp[1].n[i1++];
163           p0++;
164           p1++;
165         }
166
167       }
168
169     }
170
171   }
172
173   /* trace back the best path, count matches
174   */
175   static
176   5    getmat(lx, ly, firstgap, lastgap)
177   10   {
178     int      lx, ly;           /* "core" (minus endgaps) */
179     int      firstgap, lastgap; /* leading/trailing overlap */
180     {
181       int      nm, i0, i1, siz0, siz1;
182       char     outx[32];
183       double   pct;
184       register int n0, n1;
185       register char *p0, *p1;
186
187       /* get total matches, score
188       */
189       i0 = i1 = siz0 = siz1 = 0;
190       p0 = seqx[0] + pp[1].spc;
191       p1 = seqx[1] + pp[0].spc;
192       n0 = pp[1].spc + 1;
193       n1 = pp[0].spc + 1;
194
195       nm = 0;
196       while (*p0 && *p1) {
197         if (siz0) {
198           p1++;
199           n1++;
200           siz0--;
201         }
202         else if (siz1) {
203           p0++;
204           n0++;
205           siz1--;
206         }
207         else {
208           if (xbm[*p0-'A']&xhm[*p1-'A'])
209             nm++;
210           if (n0++ == pp[0].x[i0])
211             siz0 = pp[0].n[i0++];
212           if (n1++ == pp[1].x[i1])
213             siz1 = pp[1].n[i1++];
214           p0++;
215           p1++;
216         }
217
218       }
219
220     }
221
222   }
223
224   /* trace back the best path, count matches
225   */
226   static
227   5    getmat(lx, ly, firstgap, lastgap)
228   10   {
229     int      lx, ly;           /* "core" (minus endgaps) */
230     int      firstgap, lastgap; /* leading/trailing overlap */
231     {
232       int      nm, i0, i1, siz0, siz1;
233       char     outx[32];
234       double   pct;
235       register int n0, n1;
236       register char *p0, *p1;
237
238       /* get total matches, score
239       */
240       i0 = i1 = siz0 = siz1 = 0;
241       p0 = seqx[0] + pp[1].spc;
242       p1 = seqx[1] + pp[0].spc;
243       n0 = pp[1].spc + 1;
244       n1 = pp[0].spc + 1;
245
246       nm = 0;
247       while (*p0 && *p1) {
248         if (siz0) {
249           p1++;
250           n1++;
251           siz0--;
252         }
253         else if (siz1) {
254           p0++;
255           n0++;
256           siz1--;
257         }
258         else {
259           if (xbm[*p0-'A']&xhm[*p1-'A'])
260             nm++;
261           if (n0++ == pp[0].x[i0])
262             siz0 = pp[0].n[i0++];
263           if (n1++ == pp[1].x[i1])
264             siz1 = pp[1].n[i1++];
265           p0++;
266           p1++;
267         }
268
269       }
270
271     }
272
273   }
274
275   /* trace back the best path, count matches
276   */
277   static
278   5    getmat(lx, ly, firstgap, lastgap)
279   10   {
280     int      lx, ly;           /* "core" (minus endgaps) */
281     int      firstgap, lastgap; /* leading/trailing overlap */
282     {
283       int      nm, i0, i1, siz0, siz1;
284       char     outx[32];
285       double   pct;
286       register int n0, n1;
287       register char *p0, *p1;
288
289       /* get total matches, score
290       */
291       i0 = i1 = siz0 = siz1 = 0;
292       p0 = seqx[0] + pp[1].spc;
293       p1 = seqx[1] + pp[0].spc;
294       n0 = pp[1].spc + 1;
295       n1 = pp[0].spc + 1;
296
297       nm = 0;
298       while (*p0 && *p1) {
299         if (siz0) {
300           p1++;
301           n1++;
302           siz0--;
303         }
304         else if (siz1) {
305           p0++;
306           n0++;
307           siz1--;
308         }
309         else {
310           if (xbm[*p0-'A']&xhm[*p1-'A'])
311             nm++;
312           if (n0++ == pp[0].x[i0])
313             siz0 = pp[0].n[i0++];
314           if (n1++ == pp[1].x[i1])
315             siz1 = pp[1].n[i1++];
316           p0++;
317           p1++;
318         }
319
320       }
321
322     }
323
324   }
325
326   /* trace back the best path, count matches
327   */
328   static
329   5    getmat(lx, ly, firstgap, lastgap)
330   10   {
331     int      lx, ly;           /* "core" (minus endgaps) */
332     int      firstgap, lastgap; /* leading/trailing overlap */
333     {
334       int      nm, i0, i1, siz0, siz1;
335       char     outx[32];
336       double   pct;
337       register int n0, n1;
338       register char *p0, *p1;
339
340       /* get total matches, score
341       */
342       i0 = i1 = siz0 = siz1 = 0;
343       p0 = seqx[0] + pp[1].spc;
344       p1 = seqx[1] + pp[0].spc;
345       n0 = pp[1].spc + 1;
346       n1 = pp[0].spc + 1;
347
348       nm = 0;
349       while (*p0 && *p1) {
350         if (siz0) {
351           p1++;
352           n1++;
353           siz0--;
354         }
355         else if (siz1) {
356           p0++;
357           n0++;
358           siz1--;
359         }
360         else {
361           if (xbm[*p0-'A']&xhm[*p1-'A'])
362             nm++;
363           if (n0++ == pp[0].x[i0])
364             siz0 = pp[0].n[i0++];
365           if (n1++ == pp[1].x[i1])
366             siz1 = pp[1].n[i1++];
367           p0++;
368           p1++;
369         }
370
371       }
372
373     }
374
375   }
376
377   /* trace back the best path, count matches
378   */
379   static
380   5    getmat(lx, ly, firstgap, lastgap)
381   10   {
382     int      lx, ly;           /* "core" (minus endgaps) */
383     int      firstgap, lastgap; /* leading/trailing overlap */
384     {
385       int      nm, i0, i1, siz0, siz1;
386       char     outx[32];
387       double   pct;
388       register int n0, n1;
389       register char *p0, *p1;
390
391       /* get total matches, score
392       */
393       i0 = i1 = siz0 = siz1 = 0;
394       p0 = seqx[0] + pp[1].spc;
395       p1 = seqx[1] + pp[0].spc;
396       n0 = pp[1].spc + 1;
397       n1 = pp[0].spc + 1;
398
399       nm = 0;
400       while (*p0 && *p1) {
401         if (siz0) {
402           p1++;
403           n1++;
404           siz0--;
405         }
406         else if (siz1) {
407           p0++;
408           n0++;
409           siz1--;
410         }
411         else {
412           if (xbm[*p0-'A']&xhm[*p1-'A'])
413             nm++;
414           if (n0++ == pp[0].x[i0])
415             siz0 = pp[0].n[i0++];
416           if (n1++ == pp[1].x[i1])
417             siz1 = pp[1].n[i1++];
418           p0++;
419           p1++;
420         }
421
422       }
423
424     }
425
426   }
427
428   /* trace back the best path, count matches
429   */
430   static
431   5    getmat(lx, ly, firstgap, lastgap)
432   10   {
433     int      lx, ly;           /* "core" (minus endgaps) */
434     int      firstgap, lastgap; /* leading/trailing overlap */
435     {
436       int      nm, i0, i1, siz0, siz1;
437       char     outx[32];
438       double   pct;
439       register int n0, n1;
440       register char *p0, *p1;
441
442       /* get total matches, score
443       */
444       i0 = i1 = siz0 = siz1 = 0;
445       p0 = seqx[0] + pp[1].spc;
446       p1 = seqx[1] + pp[0].spc;
447       n0 = pp[1].spc + 1;
448       n1 = pp[0].spc + 1;
449
450       nm = 0;
451       while (*p0 && *p1) {
452         if (siz0) {
453           p1++;
454           n1++;
455           siz0--;
456         }
457         else if (siz1) {
458           p0++;
459           n0++;
460           siz1--;
461         }
462         else {
463           if (xbm[*p0-'A']&xhm[*p1-'A'])
464             nm++;
465           if (n0++ == pp[0].x[i0])
466             siz0 = pp[0].n[i0++];
467           if (n1++ == pp[1].x[i1])
468             siz1 = pp[1].n[i1++];
469           p0++;
470           p1++;
471         }
472
473       }
474
475     }
476
477   }
478
479   /* trace back the best path, count matches
480   */
481   static
482   5    getmat(lx, ly, firstgap, lastgap)
483   10   {
484     int      lx, ly;           /* "core" (minus endgaps) */
485     int      firstgap, lastgap; /* leading/trailing overlap */
486     {
487       int      nm, i0, i1, siz0, siz1;
488       char     outx[32];
489       double   pct;
490       register int n0, n1;
491       register char *p0, *p1;
492
493       /* get total matches, score
494       */
495       i0 = i1 = siz0 = siz1 = 0;
496       p0 = seqx[0] + pp[1].spc;
497       p1 = seqx[1] + pp[0].spc;
498       n0 = pp[1].spc + 1;
499       n1 = pp[0].spc + 1;
500
501       nm = 0;
502       while (*p0 && *p1) {
503         if (siz0) {
504           p1++;
505           n1++;
506           siz0--;
507         }
508         else if (siz1) {
509           p0++;
510           n0++;
511           siz1--;
512         }
513         else {
514           if (xbm[*p0-'A']&xhm[*p1-'A'])
515             nm++;
516           if (n0++ == pp[0].x[i0])
517             siz0 = pp[0].n[i0++];
518           if (n1++ == pp[1].x[i1])
519             siz1 = pp[1].n[i1++];
520           p0++;
521           p1++;
522         }
523
524       }
525
526     }
527
528   }
529
530   /* trace back the best path, count matches
531   */
532   static
533   5    getmat(lx, ly, firstgap, lastgap)
534   10   {
535     int      lx, ly;           /* "core" (minus endgaps) */
536     int      firstgap, lastgap; /* leading/trailing overlap */
537     {
538       int      nm, i0, i1, siz0, siz1;
539       char     outx[32];
540       double   pct;
541       register int n0, n1;
542       register char *p0, *p1;
543
544       /* get total matches, score
545       */
546       i0 = i1 = siz0 = siz1 = 0;
547       p0 = seqx[0] + pp[1].spc;
548       p1 = seqx[1] + pp[0].spc;
549       n0 = pp[1].spc + 1;
550       n1 = pp[0].spc + 1;
551
552       nm = 0;
553       while (*p0 && *p1) {
554         if (siz0) {
555           p1++;
556           n1++;
557           siz0--;
558         }
559         else if (siz1) {
560           p0++;
561           n0++;
562           siz1--;
563         }
564         else {
565           if (xbm[*p0-'A']&xhm[*p1-'A'])
566             nm++;
567           if (n0++ == pp[0].x[i0])
568             siz0 = pp[0].n[i0++];
569           if (n1++ == pp[1].x[i1])
570             siz1 = pp[1].n[i1++];
571           p0++;
572           p1++;
573         }
574
575       }
576
577     }
578
579   }
580
581   /* trace back the best path, count matches
582   */
583   static
584   5    getmat(lx, ly, firstgap, lastgap)
585   10   {
586     int      lx, ly;           /* "core" (minus endgaps) */
587     int      firstgap, lastgap; /* leading/trailing overlap */
588     {
589       int      nm, i0, i1, siz0, siz1;
590       char     outx[32];
591       double   pct;
592       register int n0, n1;
593       register char *p0, *p1;
594
595       /* get total matches, score
596       */
597       i0 = i1 = siz0 = siz1 = 0;
598       p0 = seqx[0] + pp[1].spc;
599       p1 = seqx[1] + pp[0].spc;
600       n0 = pp[1].spc + 1;
601       n1 = pp[0].spc + 1;
602
603       nm = 0;
604       while (*p0 && *p1) {
605         if (siz0) {
606           p1++;
607           n1++;
608           siz0--;
609         }
610         else if (siz1) {
611           p0++;
612           n0++;
613           siz1--;
614         }
615         else {
616           if (xbm[*p0-'A']&xhm[*p1-'A'])
617             nm++;
618           if (n0++ == pp[0].x[i0])
619             siz0 = pp[0].n[i0++];
620           if (n1++ == pp[1].x[i1])
621             siz1 = pp[1].n[i1++];
622           p0++;
623           p1++;
624         }
625
626       }
627
628     }
629
630   }
631
632   /* trace back the best path, count matches
633   */
634   static
635   5    getmat(lx, ly, firstgap, lastgap)
636   10   {
637     int      lx, ly;           /* "core" (minus endgaps) */
638     int      firstgap, lastgap; /* leading/trailing overlap */
639     {
640       int      nm, i0, i1, siz0, siz1;
641       char     outx[32];
642       double   pct;
643       register int n0, n1;
644       register char *p0, *p1;
645
646       /* get total matches, score
647       */
648       i0 = i1 = siz0 = siz1 = 0;
649       p0 = seqx[0] + pp[1].spc;
650       p1 = seqx[1] + pp[0].spc;
651       n0 = pp[1].spc + 1;
652       n1 = pp[0].spc + 1;
653
654       nm = 0;
655       while (*p0 && *p1) {
656         if (siz0) {
657           p1++;
658           n1++;
659           siz0--;
660         }
661         else if (siz1) {
662           p0++;
663           n0++;
664           siz1--;
665         }
666         else {
667           if (xbm[*p0-'A']&xhm[*p1-'A'])
668             nm++;
669           if (n0++ == pp[0].x[i0])
670             siz0 = pp[0].n[i0++];
671           if (n1++ == pp[1].x[i1])
672             siz1 = pp[1].n[i1++];
673           p0++;
674           p1++;
675         }
676
677       }
678
679     }
680
681   }
682
683   /* trace back the best path, count matches
684   */
685   static
686   5    getmat(lx, ly, firstgap, lastgap)
687   10   {
688     int      lx, ly;           /* "core" (minus endgaps) */
689     int      firstgap, lastgap; /* leading/trailing overlap */
690     {
691       int      nm, i0, i1, siz0, siz1;
692       char     outx[32];
693       double   pct;
694       register int n0, n1;
695       register char *p0, *p1;
696
697       /* get total matches, score
698       */
699       i0 = i1 = siz0 = siz1 = 0;
700       p0 = seqx[0] + pp[1].spc;
701       p1 = seqx[1] + pp[0].spc;
702       n0 = pp[1].spc + 1;
703       n1 = pp[0].spc + 1;
704
705       nm = 0;
706       while (*p0 && *p1) {
707         if (siz0) {
708           p1++;
709           n1++;
710           siz0--;
711         }
712         else if (siz1) {
713           p0++;
714           n0++;
715           siz1--;
716         }
717         else {
718           if (xbm[*p0-'A']&xhm[*p1-'A'])
719             nm++;
720           if (n0++ == pp[0].x[i0])
721             siz0 = pp[0].n[i0++];
722           if (n1++ == pp[1].x[i1])
723             siz1 = pp[1].n[i1++];
724           p0++;
725           p1++;
726         }
727
728       }
729
730     }
731
732   }
733
734   /* trace back the best path, count matches
735   */
736   static
737   5    getmat(lx, ly, firstgap, lastgap)
738   10   {
739     int      lx, ly;           /* "core" (minus endgaps) */
740     int      firstgap, lastgap; /* leading/trailing overlap */
741     {
742       int      nm, i0, i1, siz0, siz1;
743       char     outx[32];
744       double   pct;
745       register int n0, n1;
746       register char *p0, *p1;
747
748       /* get total matches, score
749       */
750       i0 = i1 = siz0 = siz1 = 0;
751       p0 = seqx[0] + pp[1].spc;
752       p1 = seqx[1] + pp[0].spc;
753       n0 = pp[1].spc + 1;
754       n1 = pp[0].spc + 1;
755
756       nm = 0;
757       while (*p0 && *p1) {
758         if (siz0) {
759           p1++;
760           n1++;
761           siz0--;
762         }
763         else if (siz1) {
764           p0++;
765           n0++;
766           siz1--;
767         }
768         else {
769           if (xbm[*p0-'A']&xhm[*p1-'A'])
770             nm++;
771           if (n0++ == pp[0].x[i0])
772             siz0 = pp[0].n[i0++];
773           if (n1++ == pp[1].x[i1])
774             siz1 = pp[1].n[i1++];
775           p0++;
776           p1++;
777         }
778
779       }
780
781     }
782
783   }
784
785   /* trace back the best path, count matches
786   */
787   static
788   5    getmat(lx, ly, firstgap, lastgap)
789   10   {
790     int      lx, ly;           /* "core" (minus endgaps) */
791     int      firstgap, lastgap; /* leading/trailing overlap */
792     {
793       int      nm, i0, i1, siz0, siz1;
794       char     outx[32];
795       double   pct;
796       register int n0, n1;
797       register char *p0, *p1;
798
799       /* get total matches, score
800       */
801       i0 = i1 = siz0 = siz1 = 0;
802       p0 = seqx[0] + pp[1].spc;
803       p1 = seqx[1] + pp[0].spc;
804       n0 = pp[1].spc + 1;
805       n1 = pp[0].spc + 1;
806
807       nm = 0;
808       while (*p0 && *p1) {
809         if (siz0) {
810           p1++;
811           n1++;
812           siz0--;
813         }
814         else if (siz1) {
815           p0++;
816           n0++;
817           siz1--;
818         }
819         else {
820           if (xbm[*p0-'A']&xhm[*p1-'A'])
821             nm++;
822           if (n0++ == pp[0].x[i0])
823             siz0 = pp[0].n[i0++];
824           if (n1++ == pp[1].x[i1])
825             siz1 = pp[1].n[i1++];
826           p0++;
827           p1++;
828         }
829
830       }
831
832     }
833
834   }
835
836   /* trace back the best path, count matches
837   */
838   static
839   5    getmat(lx, ly, firstgap, lastgap)
840   10   {
841     int      lx, ly;           /* "core" (minus endgaps) */
842     int      firstgap, lastgap; /* leading/trailing overlap */
843     {
844       int      nm, i0, i1, siz0, siz1;
845       char     outx[32];
846       double   pct;
847       register int n0, n1;
848       register char *p0, *p1;
849
850       /* get total matches, score
851       */
852       i0 = i1 = siz0 = siz1 = 0;
853       p0 = seqx[0] + pp[1].spc;
854       p1 = seqx[1] + pp[0].spc;
855       n0 = pp[1].spc + 1;
856       n1 = pp[0].spc + 1;
857
858       nm = 0;
859       while (*p0 && *p1) {
860         if (siz0) {
861           p1++;
862           n1++;
863           siz0--;
864         }
865         else if (siz1) {
866           p0++;
867           n0++;
868           siz1--;
869         }
870         else {
871           if (xbm[*p0-'A']&xhm[*p1-'A'])
872             nm++;
873           if (n0++ == pp[0].x[i0])
874             siz0 = pp[0].n[i0++];
875           if (n1++ == pp[1].x[i1])
876             siz1 = pp[1].n[i1++];
877           p0++;
878           p1++;
879         }
880
881       }
882
883     }
884
885   }
886
887   /* trace back the best path, count matches
888   */
889   static
890   5    getmat(lx, ly, firstgap, lastgap)
891   10   {
892     int      lx, ly;           /* "core" (minus endgaps) */
893     int      firstgap, lastgap; /* leading/trailing overlap */
894     {
895       int      nm, i0, i1, siz0, siz1;
896       char     outx[32];
897       double   pct;
898       register int n0, n1;
899       register char *p0, *p1;
900
901       /* get total matches, score
902       */
903       i0 = i1 = siz0 = siz1 = 0;
904       p0 = seqx[0] + pp[1].spc;
905       p1 = seqx[1] + pp[0].spc;
906       n0 = pp[1].spc + 1;
907       n1 = pp[0].spc + 1;
908
909       nm = 0;
910       while (*p0 && *p1) {
911         if (siz0) {
912           p1++;
913           n1++;
914           siz0--;
915         }
916         else if (siz1) {
917           p0++;
918           n0++;
919           siz1--;
920         }
921         else {
922           if (xbm[*p0-'A']&xhm[*p1-'A'])
923             nm++;
924           if (n0++ == pp[0].x[i0])
925             siz0 = pp[0].n[i0++];
926           if (n1++ == pp[1].x[i1])
927             siz1 = pp[1].n[i1++];
928           p0++;
929           p1++;
930         }
931
932       }
933
934     }
935
936   }
937
938   /* trace back the best path, count matches
939   */
940   static
941   5    getmat(lx, ly, firstgap, lastgap)
942   10   {
943     int      lx, ly;           /* "core" (minus endgaps) */
944     int      firstgap, lastgap; /* leading/trailing overlap */
945     {
946       int      nm, i0, i1, siz0, siz1;
947       char     outx[32];
948       double   pct;
949       register int n0, n1;
950       register char *p0, *p1;
951
952       /* get total matches, score
953       */
954       i0 = i1 = siz0 = siz1 = 0;
955       p0 = seqx[0] + pp[1].spc;
956       p1 = seqx[1] + pp[0].spc;
957       n0 = pp[1].spc + 1;
958       n1 = pp[0].spc + 1;
959
960       nm = 0;
961       while (*p0 && *p1) {
962         if (siz0) {
963           p1++;
964           n1++;
965           siz0--;
966         }
967         else if (siz1) {
968           p0++;
969           n0++;
970           siz1--;
971         }
972         else {
973           if (xbm[*p0-'A']&xhm[*p1-'A'])
974             nm++;
975           if (n0++ == pp[0].x[i0])
976             siz0 = pp[0].n[i0++];
977           if (n1++ == pp[1].x[i1])
978             siz1 = pp[1].n[i1++];
979           p0++;
980           p1++;
981         }
982
983       }
984
985     }
986
987   }
988
989   /* trace back the best path, count matches
990   */
991   static
992   5    getmat(lx, ly, firstgap, lastgap)
993   10   {
994     int      lx, ly;           /* "core" (minus endgaps) */
995     int      firstgap, lastgap; /* leading/trailing overlap */
996     {
997       int      nm, i0, i1, siz0, siz1;
998       char     outx[32];
999       double   pct;
1000      register int n0, n1;
1001      register char *p0, *p1;
1002
1003      /* get total matches, score
1004      */
1005      i0 = i1 = siz0 = siz1 = 0;
1006      p0 = seqx[0] + pp[1].spc;
1007      p1 = seqx[1] + pp[0].spc;
1008      n0 = pp[1].spc + 1;
1009      n1 = pp[0].spc + 1;
1010
1011      nm = 0;
1012      while (*p0 && *p1) {
1013        if (siz0) {
1014          p1++;
1015          n1++;
1016          siz0--;
1017        }
1018        else if (siz1) {
1019          p0++;
1020          n0++;
1021          siz1--;
1022        }
1023        else {
1024          if (xbm[*p0-'A']&xhm[*p1-'A'])
1025            nm++;
1026          if (n0++ == pp[0].x[i0])
1027            siz0 = pp[0].n[i0++];
1028          if (n1++ == pp[1].x[i1])
1029            siz1 = pp[1].n[i1++];
1030          p0++;
1031          p1++;
1032        }
1033
1034      }
1035
1036    }
1037
1038  }
1039
1040  /* trace back the best path, count matches
1041  */
1042  static
1043  5    getmat(lx, ly, firstgap, lastgap)
1044  10   {
1045    int      lx, ly;           /* "core" (minus endgaps) */
1046    int      firstgap, lastgap; /* leading/trailing overlap */
1047    {
1048      int      nm, i0, i1, siz0, siz1;
1049      char     outx[32];
1050      double   pct;
1051      register int n0, n1;
1052      register char *p0, *p1;
1053
1054      /* get total matches, score
1055      */
1056      i0 = i1 = siz0 = siz1 = 0;
1057      p0 = seqx[0] + pp[1].spc;
1058      p1 = seqx[1] + pp[0].spc;
1059      n0 = pp[1].spc + 1;
1060      n1 = pp[0].spc + 1;
1061
1062      nm = 0;
1063      while (*p0 && *p1) {
1064        if (siz0) {
1065          p1++;
1066          n1++;
1067          siz0--;
1068        }
1069        else if (siz1) {
1070          p0++;
1071          n0++;
1072          siz1--;
1073        }
1074        else {
1075          if (xbm[*p0-'A']&xhm[*p1-'A'])
1076            nm++;
1077          if (n0++ == pp[0].x[i0])
1078            siz0 = pp[0].n[i0++];
1079          if (n1++ == pp[1].x[i1])
1080            siz1 = pp[1].n[i1++];
1081          p0++;
1082          p1++;
1083        }
1084
1085      }
1086
1087    }
1088
1089  }
1090
1091  /* trace back the best path, count matches
1092  */
1093  static
1094  5    getmat(lx, ly, firstgap, lastgap)
1095  10   {
1096    int      lx, ly;           /* "core" (minus endgaps) */
1097    int      firstgap, lastgap; /* leading/trailing overlap */
1098    {
1099      int      nm, i0, i1, siz0, siz1;
1100      char     outx[32];
1101      double   pct;
1102      register int n0, n1;
1103      register char *p0, *p1;
1104
1105      /* get total matches, score
1106      */
1107      i0 = i1 = siz0 = siz1 = 0;
1108      p0 = seqx[0] + pp[1].spc;
1109      p1 = seqx[1] + pp[0].spc;
1110      n0 = pp[1].spc + 1;
1111      n1 = pp[0].spc + 1;
1112
1113      nm = 0;
1114      while (*p0 && *p1) {
1115        if (siz0) {
1116          p1++;
1117          n1++;
1118          siz0--;
1119        }
1120        else if (siz1) {
1121          p0++;
1122          n0++;
1123          siz1--;
1124        }
1125        else {
1126          if (xbm[*p0-'A']&xhm[*p1-'A'])
1127            nm++;
1128          if (n0++ == pp[0].x[i0])
1129            siz0 = pp[0].n[i0++];
1130          if (n1++ == pp[1].x[i1])
1131            siz1 = pp[1].n[i1++];
1132          p0++;
1133          p1++;
1134        }
1135
1136      }
1137
1138    }
1139
1140  }
1141
1142  /* trace back the best path, count matches
1143  */
1144  static
1145  5    getmat(lx, ly, firstgap, lastgap)
1146  10   {
1147    int      lx, ly;           /* "core" (minus endgaps) */
1148    int      firstgap, lastgap; /* leading/trailing overlap */
1149    {
1150      int      nm, i0, i1, siz0, siz1;
1151      char     outx[32];
1152      double   pct;
1153      register int n0, n1;
1154      register char *p0, *p1;
1155
1156      /* get total matches, score
1157      */
1158      i0 = i1 = siz0 = siz1 = 0;
1159      p0 = seqx[0] + pp[1].spc;
1160      p1 = seqx[1] + pp[0].spc;
1161      n0 = pp[1].spc + 1;
1162      n1 = pp[0].spc + 1;
1163
1164      nm = 0;
1165      while (*p0 &
```

Table 1 (cont')

```

5           fprintf(fx, "< gaps in first sequence: %d", gapx); ...getmat
if (gapx) {
5             (void) sprintf(outx, " (%d %s%s)",
ngapx, (dna)? "base":"residue", (ngapx == 1)? ":";"s");
fprintf(fx, "%s", outx);

10          fprintf(fx, ", gaps in second sequence: %d", gapy);
if (gapy) {
10            (void) sprintf(outx, " (%d %s%s",
ngapy, (dna)? "base":"residue", (ngapy == 1)? ":";"s");
fprintf(fx, "%s", outx);
}

15          if (dna)
fprintf(fx,
"\n< score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n",
smax, DMAT, DMIS, DINSO, DINSI);
else
20            fprintf(fx,
"\n< score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
smax, PINSO, PINSI);
if (endgaps)
25            fprintf(fx,
"< endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n",
firstgap, (dna)? "base" : "residue", (firstgap == 1)? ":";"s",
lastgap, (dna)? "base" : "residue", (lastgap == 1)? ":";"s");
else
30            fprintf(fx, "< endgaps not penalized\n");
}

35          static nm; /* matches in core -- for checking */
static lmax; /* lengths of stripped file names */
static ij[2]; /* jmp index for a path */
30          static nc[2]; /* number at start of current line */
static ni[2]; /* current elem number -- for gapping */
static siz[2];
static char *ps[2]; /* ptr to current element */
static char *po[2]; /* ptr to next output char slot */
40          static char out[2][P_LINE]; /* output line */
static char star[P_LINE]; /* set by stars() */

35          /*
45          * print alignment of described in struct path pp[]
*/
45          static pr_align()
40          {
50          int nn; /* char count */
int more;
register i;

55          for (i = 0, lmax = 0; i < 2; i++) {
nn = stripname(namex[i]);
if (nn > lmax)
lmax = nn;

60          nc[i] = 1;
ni[i] = 1;
siz[i] = ij[i] = 0;
ps[i] = seqx[i];
po[i] = out[i];
}
50

```

Table 1 (cont')

```

5           ...pr_align
for (nn = nm = 0, more = 1; more; ) {
  for (i = more = 0; i < 2; i++) {
    /*
     * do we have more of this sequence?
     */
    if (!*ps[i])
      continue;

10          more++;

15          if (pp[i].spc) { /* leading space */
      *po[i]++ = ' ';
      pp[i].spc--;
    }
    else if (siz[i]) { /* in a gap */
      *po[i]++ = '-';
      siz[i]--;
    }
    else { /* we're putting a seq element
      */
      *po[i] = *ps[i];
      if (islower(*ps[i]))
        *ps[i] = toupper(*ps[i]);
      po[i]++;
      ps[i]++;
    }

25          /*
     * are we at next gap for this seq?
     */
    if (ni[i] == pp[i].x[ij[i]]) {
      /*
       * we need to merge all gaps
       * at this location
       */
      siz[i] = pp[i].n[ij[i]++];
      while (ni[i] == pp[i].x[ij[i]])
        siz[i] += pp[i].n[ij[i]++];
      ni[i]++;
    }

30          }

35          if (++nn == olen || !more && nn) {
            dumpblock();
            for (i = 0; i < 2; i++)
              po[i] = out[i];
            nn = 0;
          }

40          }

45          }

50          }

55          /*
           * dump a block of lines, including numbers, stars: pr_align()
           */
static
dumpblock()
{
  register i;

60          for (i = 0; i < 2; i++)
    *po[i] = '\0';

```

dumpblock

Table 1 (cont')

5

...dumpblock

```

5      (void) putc('\n', fx);
       for (i = 0; i < 2; i++) {
          if (*out[i] && (*out[i] != ' ' || *(po[i]) != ' ')) {
             if (i == 0)
                num(i);
             if (i == 0 && *out[1])
                stars();
10            putline(i);
             if (i == 0 && *out[1])
                sprintf(fx, star);
             if (i == 1)
                num(i);
15            }
           }

20      /*
21       * put out a number line: dumpblock()
22       */
23       static
24       num(ix)
25       {
26          int      ix;      /* index in out[] holding seq line */
27          char     nline[P_LINE];
28          register i, j;
29          register char  *pn, *px, *py;
30          for (pn = nline, i = 0; i < lmax+P_SPC; i++, pn++)
31             *pn = ' ';
32          for (i = nc[ix], py = out[ix]; *py; py++, pn++) {
33             if (*py == ' ' || *py == '-')
34                *pn = ' ';
35             else {
36                if (i%10 == 0 || (i == 1 && nc[ix] != 1)) {
37                  j = (i < 0)? -i : i;
38                  for (px = pn; j; j /= 10; px--)
39                     *px = j%10 + '0';
40                  if (i < 0)
41                     *px = '-';
42                }
43              else
44                *pn = ' ';
45              i++;
46            }
47          }
48          *pn = '\0';
49          nc[ix] = i;
50          for (pn = nline; *pn; pn++)
51             (void) putc(*pn, fx);
52          (void) putc('\n', fx);
53        }

45      /*
46       * put out a line (name, [num], seq, [num]): dumpblock()
47       */
48       static
49       putline(ix)
50       {
51          int      ix;

```

50

putline

55

Table 1 (cont')

5

...putline

```

5      int          i;
register char    *px;
10     for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
           (void) putc(*px, fx);
for (; i < lmax+P_SPC; i++)
           (void) putc(' ', fx);

10     /* these count from 1:
* ni[] is current element (from 1)
* nc[] is number at start of current line
*/
15     for (px = out[ix]; *px; px++)
           (void) putc(*px&0x7F, fx);
           (void) putc('\n', fx);
}

20     /*
* put a line of stars (seqs always in out[0], out[1]): dumpblock()
*/
25     static stars0
{
25     int          i;
register char    *p0, *p1, cx, *px;

30     if (!*out[0] || (*out[0] == ' ' && *(po[0]) == ' ') ||
           !*out[1] || (*out[1] == ' ' && *(po[1]) == ' '))
           return;
px = star;
for (i = lmax+P_SPC; i; i--)
           *px++ = ' ';

35     for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
           if (isalpha(*p0) && isalpha(*p1)) {
40             if (xbm[*p0-'A']&xbm[*p1-'A']) {
                   cx = '*';
                   nm++;
               }
               else if (!dma && _day[*p0-'A'][*p1-'A'] > 0)
                   cx = '.';
               else
                   cx = ' ';
           }
           else
               cx = ' ';
50             *px++ = cx;
           }
           *px++ = '\n';
           *px = '0';
55         }

60
50

```

55

Table I (cont')

```
5      /*  
 * strip path or prefix from pn, return len: pr_align0  
 */  
10     static  
15     stripname(pn)  
20         char    *pn;    /* file name (may be path) */  
25         {  
30             register char   *px, *py;  
35             py = 0;  
40             for (px = pn; *px; px++)  
45                 if (*px == '/')  
50                     py = px + 1;  
55             if (py)  
60                 (void) strcpy(pn, py);  
65             return(strlen(pn));  
70         }  
75     }  
80     /*  
85     */  
90     /*  
95     */
```

Table 1 (cont')

```

5
/* cleanup() -- cleanup any tmp file
 * getseq() -- read-in seq, set dna, len, maxlen
 * g_malloc() -- calloc() with error checkin
5   * readjmps() -- get the good jmps, from tmp file if necessary
 * writejmps() -- write a filled array of jmps to a tmp file: nw()
 */
10 #include "nw.h"
10 #include <sys/file.h>
15 char *jname = "/tmp/homgXXXXXX"; /* tmp file for jmps */
FILE *fj;
15 int cleanup(); /* cleanup tmp file */
long lseek();
20 /*
 * remove any tmp file if we blow
 */
20 cleanup(i)
25     int i;
{
    if (fj) (void) unlink(jname);
    exit(i);
}
25 /*
30 * read, return ptr to seq, set dna, len, maxlen
 * skip lines starting with ';', '<', or '>'
 * seq in upper or lower case
 */
30 char *
getseq(file, len)
35     char *file; /* file name */
int *len; /* seq len */
{
    char line[1024], *pseq;
register char *px, *py;
40     int natgc, tlen;
FILE *fp;
45
if ((fp = fopen(file, "r")) == 0) {
    fprintf(stderr, "%s: can't read %s\n", prog, file);
    exit(1);
}
50 tlen = natgc = 0;
while (fgets(line, 1024, fp)) {
    if (*line == ';' || *line == '<' || *line == '>')
        continue;
    for (px = line; *px != '\n'; px++)
        if (isupper(*px) || islower(*px))
            tlen++;
}
55 if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
    fprintf(stderr, "%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
    exit(1);
}
60 pseq[0] = pseq[1] = pseq[2] = pseq[3] = '\0';

```

Table 1 (cont.)

5

...getseq

```

5      py = pseq + 4;
*len = tlen;
rewind(fp);

10     while (fgets(line, 1024, fp)) {
if (*line == ';' || *line == '<' || *line == '>')
    continue;
for (px = line; *px != '\n'; px++) {
    if (isupper(*px))
        *py++ = *px;
    else if (islower(*px))
        *py++ = toupper(*px);
    if (index("ATGCU", *(py-1)))
        natgc++;
}
*py++ = '0';
*py = '0';
(void) fclose(fp);
dna = natgc > (tlen/3);
return(pseq+4);
}

```

```

25    char *
g_calloc(msg, nx, sz)
25      char   *msg;           /* program, calling routine */
      int    nx, sz;          /* number and size of elements */
{
30      char   *px, *calloc();
if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
    if (*msg) {
        fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
        exit(1);
    }
}
return(px);
}

```

g_calloc

```

35    /*
* get final jmps from dx[] or tmp file, set pp[], reset dmax: main()
*/

```

readjmps

```

40    readjmps()
45    {
int         fd = -1;
int         siz, i0, i1;
register i, j, xx;

50    if (fj) {
    (void) fclose(fj);
    if ((fd = open(jname, O_RDONLY, 0)) < 0) {
        fprintf(stderr, "%s: can't open() %s\n", prog, jname);
        cleanup();
    }
}
for (i = i0 = i1 = 0, dmāx0 = dmāx, xx = len0; i++;) {
    while (1) {
        for (j = dx[dmax].jmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j--)
;
}

```

50

Table 1 (cont')

...readjmps

```

5           if (j < 0 && dx[dmax].offset && fj) {
5             (void) lseek(fd, dx[dmax].offset, 0);
5             (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
5             (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
5             dx[dmax].jmp = MAXJMP-1;
5           }
5         else
5           break;
10        }
10       if (i >= J MPS) {
10         fprintf(stderr, "%s: too many gaps in alignment\n", prog);
10         cleanup(1);
15       }
15       if (j >= 0) {
15         siz = dx[dmax].jp.n[j];
15         xx = dx[dmax].jp.x[j];
15         dmax += siz;
15         if (siz < 0) { /* gap in second seq */
20           pp[1].n[i1] = -siz;
20           xx += siz;
20           /* id = xx - yy + len1 - 1
20            */
25           pp[1].x[i1] = xx - dmax + len1 - 1;
25           gappy++;
25           ngappy -= siz;
25         /* ignore MAXGAP when doing endgaps */
25         siz = (-siz < MAXGAP || endgaps)? -siz : MAXGAP;
25         i1++;
30       }
30       else if (siz > 0) { /* gap in first seq */
30         pp[0].n[i0] = siz;
30         pp[0].x[i0] = xx;
30         gappy++;
30         ngappy += siz;
35       /* ignore MAXGAP when doing endgaps */
35       siz = (siz < MAXGAP || endgaps)? siz : MAXGAP;
35       i0++;
40     }
40   }
40   else
40     break;
45 }
45 /* reverse the order of jmps
45 */
45 for (j = 0, i0--; j < i0; j++, i0--) {
45   i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;
45   i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
50 }
50 for (j = 0, i1--; j < i1; j++, i1--) {
50   i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;
50   i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
55 }
55 if (fd >= 0)
55   (void) close(fd);
55 if (fj) {
55   (void) unlink(jname);
55   fj = 0;
60   offset = 0;
60 }
50

```

Table 1 (cont')

```
5      /*  
 * write a filled jmp struct offset of the prev one (if any): nw()  
 */  
10     writejmps(ix) -  
15     {  
20       int      ix;  
25       char    *mktemp();  
30       if (!fj) {  
35         if (mktemp(jname) < 0) {  
40           fprintf(stderr, "%s: can't mktemp() %s\n", prog, jname);  
45           cleanup(1);  
50         }  
55         if ((fj = fopen(jname, "w")) == 0) {  
60           fprintf(stderr, "%s: can't write %s\n", prog, jname);  
65           exit(1);  
70       }  
75       (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);  
80       (void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);  
85     }  
90  
95
```

Table 2

5

PRO	XXXXXXXXXXXXXXXXXX	(Length = 15 amino acids)
Comparison Protein	XXXXXYYYYYYY	(Length = 12 amino acids)

10

5 % amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

15

10 5 divided by 15 = 33.3%

20

25

30

35

40

45

50

Table 3

5

PRO	XXXXXXXXXX	(Length = 10 amino acids)
Comparison Protein	XXXXXYYYYYZZYZ	(Length = 15 amino acids)

10

5 % amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

15

10 5 divided by 10 = 50%

20

25

30

35

40

45

50

5

Table 4

PRO-DNA	NNNNNNNNNNNNNN	(Length = 14 nucleotides)
Comparison DNA	NNNNNNLLLLLLLLLL	(Length = 16 nucleotides)

10

5 % nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

15

10 6 divided by 14 = 42.9%

20

25

30

35

40

45

50

55

Table 5

5

PRO-DNA	NNNNNNNNNNNN	(Length = 12 nucleotides)
Comparison DNA	NNNNLLLVV	(Length = 9 nucleotides)

10

5 % nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

15

10 4 divided by 12 = 33.3%

20

25

30

35

40

45

50

55

5 II. Compositions and Methods of the InventionA. Full-Length PRO Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as "PRO/number", regardless of their origin or mode of preparation.

As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.

25 1. Full-length PRO281 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO281 (UNQ244). In particular, cDNA encoding a PRO281 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

Using the WU-BLAST-2 sequence alignment computer program, it has been found that a full-length native sequence PRO281 (shown in Figure 2 and SEQ ID NO:2) has certain amino acid sequence identity with the rat TEGT protein. Accordingly, it is presently believed that PRO281 disclosed in the present application is a newly identified TEGT homolog and may possess activity typical of that protein.

35 2. Full-length PRO276 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO276 (UNQ243). In particular, cDNA encoding a PRO276 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

As far as is known, the DNA16435-1208 sequence encodes a novel factor designated herein as PRO276; using WU-BLAST-2 sequence alignment computer programs, no significant sequence identities to any known proteins were revealed. The sequence identity identifications which were found are listed below in the examples.

45 3. Full-length PRO189 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding

5 polypeptides referred to in the present application as PRO189. In particular, Applicants have identified and isolated cDNA encoding a PRO189 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA21624-1391 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, no significant sequence identities to any known proteins were revealed.

10 5

4. Full-length PRO190 Polypeptides

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO190. In particular, Applicants have identified and isolated cDNA encoding a PRO190 polypeptide, as disclosed in further detail in the Examples below. The 10 PRO190-encoding clone was isolated from a human retina library. To Applicants present knowledge, the DNA23334-1392 nucleotide sequence encodes a novel multiple transmembrane spanning protein; using BLAST and FastA sequence alignment computer programs, there is some sequence identity with CMP-sialic acid and 20 UDP-galactose transporters, indicating that PRO190 may be related to transporter or that PRO190 may be a novel transporter.

15

5. Full-length PRO341 Polypeptides

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO341 (UNQ300). In particular, cDNA encoding a PRO341 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20

The DNA26288-1239 clone was isolated from a human placenta library. As far as is known, the 30 DNA26288-1239 sequence encodes a novel factor designated herein as PRO341; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

6. Full-length PRO180 Polypeptides

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO180 (UNQ154). In particular, cDNA encoding a PRO180 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 The DNA26843-1389 clone was isolated from a human placenta library using oligos formed from DNA12922 isolated from an amylase screen. As far as is known, the DNA26843-1389 sequence encodes a 30 novel factor designated herein as PRO180.

7. Full-length PRO194 Polypeptides

45 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO194. In particular, Applicants have identified and isolated cDNA encoding a PRO194 polypeptide, as disclosed in further detail in the Examples below. The 35 PRO194-encoding clone was isolated from a human fetal lung library. To Applicants present knowledge, the DNA26844-1394 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment 50

computer programs, no significant sequence identities to any known proteins were revealed.

5

8. Full-length PRO203 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO203. In particular, Applicants have identified and isolated cDNA encoding a PRO203 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO203 polypeptide has sequence identity with GST ATPase. Accordingly, it is presently believed that PRO203 polypeptide disclosed in the present application is a newly identified member of the ATPase family and possesses activity typical of the GST ATPase.

10

10

9. Full-length PRO290 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO290. In particular, cDNA encoding a PRO290 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20

15

An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST2 sequence alignment analysis of the full-length sequence shown in Figure 23 (SEQ ID NO:33), revealed sequence identities between the PRO290 amino acid sequence and the following Dayhoff sequences: P_R99800, CC4H_HUMAN, YCS2_YEAST, CEF35G12_13, HSFAN_1, MMU52461_1, MMU70015_1, HSU67615_1, CET01H10_8 and CELT28F2_6.

25

20

It is currently believed that PRO290 is an intracellular protein related to one or more of the above proteins.

30

10. Full-length PRO874 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO874. In particular, Applicants have identified and isolated cDNA encoding a PRO874 polypeptide, as disclosed in further detail in the Examples below. The PRO874-encoding clone was isolated from a human fetal lung library. To Applicants present knowledge, the DNA40621-1440 nucleotide sequence encodes a novel factor. Although, using BLAST and FastA sequence alignment computer programs, some sequence identity with known proteins was revealed.

40

30

11. Full-length PRO710 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO710. In particular, Applicants have identified and isolated cDNA encoding a PRO710 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO710 polypeptide has significant similarity to the CDC45 protein. Accordingly, it is presently believed that PRO710 polypeptide disclosed in the present application is a newly identified CDC45 homolog.

50

55

5 **12. Full-length PRO1151 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1151. In particular, cDNA encoding a PRO1151 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using the WU-BLAST-2 sequence alignment computer program, it has been found that a full-length native sequence PRO1151 (shown in Figure 30 and SEQ ID NO:47) has certain amino acid sequence identity with the human 30 kD adipocyte complement-related precursor protein (ACR3_HUMAN). Accordingly, it is presently believed that PRO1151 disclosed in the present application is a newly identified member of the complement protein family and may possess activity typical of that family.

15 **10 13. Full-length PRO1282 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1282. In particular, cDNA encoding a PRO1282 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 As far as is known, the DNA45495-1550 sequence encodes a novel factor designated herein as PRO1282. Using WU-BLAST-2 sequence alignment computer programs, some sequence identities between PRO1282 and other leucine rich repeat proteins were revealed, as discussed in the examples below, indicating that a novel member of the leucine rich repeat superfamily has been identified.

30 **14. Full-length PRO358 Polypeptides**

35 The present invention further provides newly identified and isolated nucleotide sequences encoding a polypeptide referred to in the present application as PRO358. In particular, Applicants have identified and isolated cDNA encoding a novel human Toll polypeptide (PRO358), as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the coding sequence of PRO358 shows significant homology to DNA sequences HSU88540_1, HSU88878_1, HSU88879_1, HSU88880_1, HS88881_1, and HSU79260_1 in the GenBank database. With the exception of HSU79260_1, the noted proteins have been identified as human toll-like receptors.

40 Accordingly, it is presently believed that the PRO358 proteins disclosed in the present application are newly identified human homologues of the *Drosophila* protein Toll, and are likely to play an important role in adaptive immunity. More specifically, PRO358 may be involved in inflammation, septic shock, and response to pathogens, and play possible roles in diverse medical conditions that are aggravated by immune response, such as, for example, diabetes, ALS, cancer, rheumatoid arthritis, and ulcers. The role of PRO358 as pathogen pattern recognition receptors, sensing the presence of conserved molecular structures present on microbes, is further supported by the data disclosed in the present application, showing that a known human Toll-like receptor, TLR2 is a direct mediator of LPS signaling.

45 **35 15. Full-length PRO1310 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding

5 polypeptides referred to in the present application as PRO1310. In particular, cDNA encoding a PRO1310 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1310 (shown in Figure 36 and SEQ ID NO:62) has certain amino acid sequence identity with carboxypeptidase X2. Accordingly, it is presently believed that PRO1310 disclosed in the present application is a newly identified member of the carboxypeptidase family and may possess carboxyl end amino acid removal activity.

15 **16. Full-length PRO698 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO698. In particular, Applicants have identified and isolated cDNA encoding a PRO698 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO698 polypeptide has significant similarity to the olfactomedin protein. Accordingly, it is presently believed that PRO698 polypeptide disclosed in the present application may be a newly identified olfactomedin homolog.

20

15 **17. Full-length PRO732 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO732. In particular, Applicants have identified and isolated cDNA encoding a PRO732 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO732 polypeptide has significant similarity to the human placental Diff33 protein. Accordingly, it is presently believed that PRO732 polypeptide disclosed in the present application is a newly identified Diff33 homolog.

30

35 **18. Full-length PRO1120 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1120. In particular, cDNA encoding a PRO1120 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45

25

Using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1120 (shown in Figure 47 and SEQ ID NO:84) has certain amino acid sequence identity with the known sulfatase proteins designated CELK09C4_1, and GL6S_HUMAN, respectively, in the Dayhoff database (version 35.45 SwissProt 35). Accordingly, it is presently believed that PRO1120 disclosed in the present application is a newly identified member of the sulfatase family and may possess activity typical of sulfatases.

50

35

19. Full-length PRO537 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO537. In particular, cDNA encoding a PRO537

5 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below. The DNA49141-1431 clone was isolated from a human placenta library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA49141-1431 clone does encode a secreted factor. As far as is known, the DNA49141-1431 sequence encodes a novel factor designated herein as PRO537; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities
10 to any known proteins were revealed.

20. Full-length PRO536 Polypeptides

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO536. In particular, cDNA encoding a PRO536
10 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20 The DNA49142-1430 clone was isolated from a human infant brain library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA49142-1430 clone does encode a secreted factor. As far as is known, the DNA49142-1430 sequence encodes a novel factor designated
25 herein as PRO536; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

25. Full-length PRO535 Polypeptides

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO535. In particular, cDNA encoding a PRO535
30 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

30 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO535 (shown in Figure 53 and SEQ ID NO:99) has amino acid sequence identity with a putative peptidyl-prolyl isomerase protein. Accordingly, it is presently believed that PRO535 disclosed in the present application is a newly identified member of the isomerase protein family and may possess activity
35 typical of those proteins.

40. Full-length PRO718 Polypeptides

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO718. In particular, Applicants have identified and
45 isolated cDNA encoding a PRO718 polypeptide, as disclosed in further detail in the Examples below. The PRO718-encoding clone was isolated from a human fetal lung library. To Applicants present knowledge, the DNA49647-1398 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, no significant sequence identities to any known proteins were revealed.

50. Full-length PRO872 Polypeptides

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO872. In particular, Applicants have identified and

5 isolated cDNA encoding a PRO872 polypeptide, as disclosed in further detail in the Examples below. Using
BLAST and FastA sequence alignment computer programs, Applicants found that the PRO872 polypeptide has
sequence identity with dehydrogenases. Accordingly, it is presently believed that PRO872 polypeptide
disclosed in the present application is a newly identified member of the dehydrogenase family and possesses
dehydrogenase activity.

10 5

24. Full-length PRO1063 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO1063. In particular, Applicants have identified and
isolated cDNA encoding a PRO1063 polypeptide, as disclosed in further detail in the Examples below. Using
15 10 BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1063 polypeptide
has significant similarity to the human type IV collagenase protein. Accordingly, it is presently believed that
PRO1063 polypeptide disclosed in the present application is a newly identified collagenase homolog.

20

25. Full-length PRO619 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO619. In particular, cDNA encoding a PRO619
25 20 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

Using WU-BLAST-2 sequence alignment computer program, it has been found that a full-length native
sequence PRO619 (shown in Figure 68 and SEQ ID NO:117) has certain amino acid sequence identity with
20 25 VpreB3. Accordingly, it is presently believed that PRO619 disclosed in the present application is a newly
identified member of the IgG superfamily and may possess activity related to the assembly and/or components
30 35 of the surrogate light chain associated with developing B cells.

26. Full-length PRO943 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO943. In particular, cDNA encoding a PRO943
35 40 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

Using the WU-BLAST-2 sequence alignment computer program, it has been found that a full-length
native sequence PRO943 (shown in Figure 70 and SEQ ID NO:119) has amino acid sequence identity with the
40 45 fibroblast growth factor receptor-4 protein. Accordingly, it is presently believed that PRO943 disclosed in the
present application is a newly identified member of the fibroblast growth factor receptor family and may
possess activity typical of that family.

27. Full-length PRO1188 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO1188. In particular, cDNA encoding a PRO1188
50 55 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 As discussed in more detail in Example 1 below, using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1188 (shown in Figure 72; SEQ ID NO:124) has certain amino acid sequence identity with nucleotide pyrophosphohydrolase (SSU83114_1). Accordingly, it is presently believed that PRO1188 disclosed in the present application is a newly identified member of the nucleotide pyrophosphohydrolase family and may possess activity typical of that family of
10 proteins.

15 **28. Full-length PRO1133 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1133. In particular, cDNA encoding a PRO1133 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20 Using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1133 (shown in Figure 74 and SEQ ID NO:129) has certain amino acid sequence identity with netrin 1a, Dayhoff accession AF002717_1. Accordingly, it is presently believed that PRO1133 disclosed in the present application shares at least one related mechanism with netrin.
15

25 **29. Full-length PRO784 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO784. In particular, cDNA, designated herein as "DNA53978-1443", which encodes a PRO784 polypeptide, has been identified and isolated, as disclosed in further detail in the Examples below.

30 Using BLAST and FastA sequence alignment computer programs, it has been found that a full-length native sequence PRO784 (shown in Figure 76 and SEQ ID NO:135) has certain amino acid sequence identity with sec22 homologs. Accordingly, it is presently believed that PRO784 disclosed in the present application is a newly identified member of the sec22 family and may possess vesicle trafficking activities typical of the sec22 family.
35

40 **30. Full-length PRO783 Polypeptides**

30 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO783. In particular, Applicants have identified and isolated cDNA encoding a PRO783 polypeptide, as disclosed in further detail in the Examples below. The PRO783-encoding clone was isolated from a human fetal kidney library. To Applicants present knowledge, the DNA53996-1442 nucleotide sequence encodes a novel factor. However, using BLAST and FastA sequence alignment computer programs, some sequence identity to known proteins was found.
45

50 **31. Full-length PRO820 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO820. In particular, Applicants have identified and

5 isolated cDNA encoding a PRO820 polypeptide, as disclosed in further detail in the Examples below. Using
BLAST and FastA sequence alignment computer programs, Applicants found that various portions of the
PRO820 polypeptide have sequence identity with the low affinity immunoglobulin gamma Fc receptor, the IgE
high affinity Fc receptor and the high affinity immunoglobulin epsilon receptor. Accordingly, it is presently
believed that PRO820 polypeptide disclosed in the present application is a newly identified member of the Fc
10 receptor family.

5 **32. Full-length PRO1080 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO1080. In particular, Applicants have identified and
isolated cDNA encoding a PRO1080 polypeptide, as disclosed in further detail in the Examples below. Using
BLAST and FastA sequence alignment computer programs, Dayhoff database (version 35.45 SwissProt 35),
20 Applicants found that the PRO1080 polypeptide has sequence identity with a 39.9 kd protein designated as
"YRY1_CAEEL", a DnaJ homolog designated "AF027149_5", a DnaJ homolog 2 designated
"RNU95727_1", and Dna3/Cpr3 designated "AF011793_1". Accordingly, these results indicate that the
15 PRO1080 polypeptide disclosed in the present application may be a newly identified member of the DnaJ-like
protein family and therefore may be involved in protein biogenesis.

25 **33. Full-length PRO1079 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO1079. In particular, cDNA encoding a PRO1079
30 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

As far as is known, the DNA56050-1455 sequence encodes a novel factor designated herein as
35 PRO1079. Although, using WU-BLAST2 sequence alignment computer programs, some sequence identities
to known proteins was revealed.

25 **34. Full-length PRO793 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO793. In particular, cDNA encoding a PRO793
polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45 The DNA56110-1437 clone was isolated from a human skin tumor library. As far as is known, the
DNA56110-1437 sequence encodes a novel factor designated herein as PRO793; using the WU-BLAST-2
30 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

50 **35. Full-length PRO1016 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding
polypeptides referred to in the present application as PRO1016. In particular, Applicants have identified and
isolated cDNA encoding a PRO1016 polypeptide, as disclosed in further detail in the Examples below. Using

5 BLAST and FastA sequence alignment computer programs, Applicants found that various portions of the PRO1016 polypeptide have sequence identity with acyltransferases. Accordingly, it is presently believed that PRO1016 polypeptide disclosed in the present application is a newly identified member of the acyltransferase family and possesses acylation capabilities typical of this family.

10 5 **36. Full-length PRO1013 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1013. In particular, Applicants have identified cDNA encoding a PRO1013 polypeptide, as disclosed in further detail in the Examples below. The PRO1013-encoding clone came from a human breast tumor tissue library. Thus, the PRO1013-encoding clone may encode a secreted factor related to cancer. To Applicants present knowledge, the DNA56410-1414 nucleotide sequence encodes a novel factor. Using BLAST and FastA sequence alignment computer programs, some sequence identity with KIAA0157 and P120 was revealed. PRO1013 has at least one region in common with growth factor and cytokine receptors.

20 15 **37. Full-length PRO937 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO937. In particular, Applicants have identified and isolated cDNA encoding a PRO937 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO937 polypeptide has significant sequence identity with members of the glycan family of proteins. Accordingly, it is presently believed that PRO937 polypeptide disclosed in the present application is a newly identified member of the glycan family possesses properties typical of the glycan family.

30 20 **38. Full-length PRO842 Polypeptides**

35 25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO842. In particular, cDNA encoding a PRO842 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 30 As far as is known, the DNA56855-1447 sequence encodes a novel secreted factor designated herein as PRO842. However, using WU-BLAST2 sequence alignment computer programs, some sequence identity to any known proteins were revealed.

45 35 **39. Full-length PRO839 Polypeptides**

45 35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO839. In particular, cDNA encoding a PRO839 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

50 50 As far as is known, the DNA56859-1445 sequence encodes a novel factor designated herein as PRO839. However, using WU-BLAST-2 sequence alignment computer programs, some sequence identities

5 to known proteins was revealed.

10 **40. Full-length PRO1180 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1180. In particular, Applicants have identified and isolated cDNA encoding a PRO1180 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1180 polypeptide has significant similarity to methyltransferase enzymes. Accordingly, it is presently believed that PRO1180 polypeptide disclosed in the present application is a newly identified member of the methyltransferase family and possesses activity typical of that family.

15 **41. Full-length PRO1134 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1134. In particular, cDNA encoding a PRO1134 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 **15 The DNA56865-1491 clone was isolated from a human fetal liver spleen library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA56865-1491 clone does encode a secreted factor. As far as is known, the DNA56865-1491 sequence encodes a novel factor designated herein as PRO1134; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.**

30 **42. Full-length PRO830 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO830. In particular, cDNA encoding a PRO830 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 **25 The DNA56866-1342 clone was isolated from a human fetal liver/spleen library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA56866-1342 clone does encode a secreted factor. As far as is known, the DNA56866-1342 sequence encodes a novel factor designated herein as PRO830; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.**

45 **30 43. Full-length PRO1115 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1115. In particular, cDNA encoding a PRO1115 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

50 **35 As far as is known, the DNA56868-1478 sequence encodes a novel transmembrane protein designated herein as PRO1115. Although, using WU-BLAST-2 sequence alignment computer programs, some sequence identities to known proteins were revealed.**

5 **44. Full-length PRO1277 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1277. In particular, cDNA encoding a PRO1277 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1277 (shown in Figure 113 and SEQ ID NO:179) has certain amino acid sequence identity with Coch-5B2 protein (designated "AF012252_1" in the Dayhoff database). Accordingly, it is presently believed that PRO1277 disclosed in the present application is a newly identified member of the Coch-5B2 protein family and may possess the same activities and properties as Coch-5B2.

15 **10 45. Full-length PRO1135 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1135. In particular, Applicants have identified and isolated cDNA encoding a PRO1135 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1135 polypeptide has significant similarity to the alpha 1,2-mannosidase protein. Accordingly, it is presently believed that PRO1135 polypeptide disclosed in the present application is a newly identified member of the mannosidase enzyme family and possesses activity typical of that family of proteins.

25 **20 46. Full-length PRO1114 Polypeptides**

30 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1114 interferon receptor. In particular, cDNA encoding a PRO1114 interferon receptor polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

35 Using the WU-BLAST-2 sequence alignment computer program, it has been found that a full-length native sequence PRO1114 interferon receptor polypeptide (shown in Figure 117 and SEQ ID NO:183) has sequence identity with the other known interferon receptors. Accordingly, it is presently believed that PRO1114 interferon receptor possesses activity typical of other interferon receptors.

40 **40 47. Full-length PRO828 Polypeptides**

45 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO828. In particular, Applicants have identified and isolated cDNA encoding a PRO828 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO828 polypeptide has sequence identity with glutathione peroxidases. Accordingly, it is presently believed that PRO828 polypeptide disclosed in the present application is a newly identified member of the glutathione peroxidase family and possesses peroxidase activity and other properties typical of glutathione peroxidases.

5 **48. Full-length PRO1009 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1009. In particular, cDNA encoding a PRO1009 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using WU-BLAST-2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1009 (shown in Figure 122 and SEQ ID NO:194) has certain amino acid sequence identity with long-chain acyl-CoA synthetase homolog designated "F69893". Accordingly, it is presently believed that PRO1009 disclosed in the present application is a newly identified member of the long-chain acyl-CoA synthetase family and may possess activity related to this family.

15 **10 49. Full-length PRO1007 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1007. In particular, Applicants have identified and isolated cDNA encoding a PRO1007 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that various portions of the 25 PRO1007 polypeptide have sequence identity with MAGPIAP. Accordingly, it is presently believed that PRO1007 polypeptide disclosed in the present application is a newly identified member of the MAGPIAP family and is associated with metastasis and/or cell signaling and/or cell replication.

30 **20 50. Full-length PRO1056 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1056. In particular, cDNA encoding a PRO1056 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using the WU-BLAST-2 sequence alignment computer program, it has been found that a full-length native sequence PRO1056 (shown in Figure 127 and SEQ ID NO:199) has amino acid sequence identity with 45 a chloride channel protein. Accordingly, it is presently believed that PRO1056 disclosed in the present application is a newly identified chloride channel protein homolog.

50 **30 51. Full-length PRO826 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO826. In particular, cDNA encoding a PRO826 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45 The DNA57694-1341 clone was isolated from a human fetal heart library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA57694-1341 clone does encode a secreted factor. As far as is known, the DNA57694-1341 sequence encodes a novel factor designated 50 herein as PRO826; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

5 **52. Full-length PRO819 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO819. In particular, cDNA encoding a PRO819 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 The DNA57695-1340 clone was isolated from a human fetal liver spleen library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA57695-1340 clone does encode a secreted factor. As far as is known, the DNA57695-1340 sequence encodes a novel factor designated herein as PRO819; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

15 **10 53. Full-length PRO1006 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1006. In particular, Applicants have identified and isolated cDNA encoding a PRO1006 polypeptide, as disclosed in further detail in the Examples below. The PRO1006-encoding clone was isolated from a human uterus library. To Applicants present knowledge, the DNA57699-1412 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, some sequence identity with a putative tyrosine protein kinase was revealed.

25 **15 54. Full-length PRO1112 Polypeptides**

30 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1112. In particular, Applicants have identified cDNA encoding a PRO1112 polypeptide, as disclosed in further detail in Example 1 below. To Applicants present knowledge, the DNA57702-1476 nucleotide sequence encodes a novel factor, although using BLAST and FastA sequence alignment computer programs some sequence identity with other known proteins was found.

35 **25 55. Full-length PRO1074 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1074. In particular, Applicants have identified and isolated cDNA encoding a PRO1074 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1074 polypeptide has sequence identity with galactosyltransferase. Accordingly, it is presently believed that PRO1074 polypeptide disclosed in the present application is a newly identified member of the galactosyltransferase family and possesses galactosyltransferase activity.

45 **35 56. Full-length PRO1005 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1005. In particular, cDNA encoding a PRO1005 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 As far as is known, the DNA57708-1411 sequence encodes a novel factor designated herein as PRO1005. However, using WU-BLAST2 sequence alignment computer programs, some sequence identities with known proteins was revealed.

10 57. Full-length PRO1073 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1073. In particular, cDNA encoding a PRO1073 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

15 10 As far as is known, the DNA57710 sequence encodes a novel secreted factor designated herein as PRO1073. However, using WU-BLAST2 sequence alignment computer programs, some sequence identities to known proteins were revealed.

20 20 58. Full-length PRO1152 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1152. In particular, cDNA encoding a PRO1152 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 15 The DNAs57711-1501 clone was isolated from a human infant brain library. As far as is known, the DNAs57711-1501 sequence encodes a novel factor designated herein as PRO1152; using the WU-BLAST-2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

30 20 59. Full-length PRO1136 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1136. In particular, cDNA encoding a PRO1136 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

35 25 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1136 (shown in Figure 147 and SEQ ID NO:219) has amino acid sequence identity with PDZ domain-containing proteins. Accordingly, it is presently believed that PRO1136 disclosed in the present application is a newly identified member of the PDZ domain-containing protein family and may possess activity typical of that family.

40 30 60. Full-length PRO813 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO813. In particular, Applicants have identified and isolated cDNA encoding a PRO813 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO813 polypeptide has significant similarity to the pulmonary surfactant-associated protein C. Accordingly, it is presently believed that PRO813 polypeptide disclosed in the present application is a newly identified pulmonary surfactant-associated protein C homolog.

5 **61. Full-length PRO809 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO809. In particular, Applicants have identified and isolated cDNA encoding a PRO809 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA57836-1338 nucleotide sequence encodes a novel factor.

10 **5 62. Full-length PRO791 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO791. In particular, Applicants have identified and isolated cDNA encoding a PRO791 polypeptide, as disclosed in further detail in the Examples below. To
10 Applicants present knowledge, the DNA57838-1337 nucleotide sequence encodes a novel factor; however, using BLAST and FastA sequence alignment computer programs, there does appear to be some sequence identity with MHC-1 antigens, indicating that PRO791 may be related thereto in structure and function.

20 **20 63. Full-length PRO1004 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1004. In particular, cDNA encoding a PRO1004 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

30 As far as is known, the DNA57844-1410 sequence encodes a novel factor designated herein as PRO1004. However, using WU-BLAST2 sequence alignment computer programs, some sequence identities with known proteins were revealed.

35 **30 64. Full-length PRO1111 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1111. In particular, cDNA encoding a PRO1111 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1111 (shown in Figure 157 and SEQ ID NO:229) has certain amino acid sequence identity with LIG. Accordingly, it is presently believed that PRO1111 disclosed in the present application is a newly identified member of this glycoprotein family.

50 **30 65. Full-length PRO1344 Polypeptides**

55 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1344. In particular, cDNA encoding a PRO1344 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

60 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1344 (shown in Figure 159 and SEQ ID NO:231) has certain amino acid sequence identity with the factor C protein of Carcinoscorpius rotundicauda. Accordingly, it is presently believed that PRO1344

5 disclosed in the present application is a newly identified factor C protein and may possess activity typical of
that protein.

10 66. **Full-length PRO1109 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding
5 polypeptides referred to in the present application as PRO1109. In particular, cDNA encoding a PRO1109
polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

15 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length
native sequence PRO1109 (shown in Figure 161 and SEQ ID NO:236) has certain amino acid sequence identity
with the human UDP-Gal:GlcNAc galactosyltransferase protein. Accordingly, it is presently believed that
10 PRO1109 disclosed in the present application is a newly identified β-galactosyltransferase enzyme and has
activity typical of those enzymes.

20 67. **Full-length PRO1383 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding
5 polypeptides referred to in the present application as PRO1383. In particular, cDNA encoding a PRO1383
polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length
native sequence PRO1383 (shown in Figure 163 and SEQ ID NO:241) has certain amino acid sequence identity
with the putative human transmembrane protein nmb precursor (NMB_HUMAN). Accordingly, it is presently
20 believed that PRO1383 disclosed in the present application is a newly identified nmb homolog.

30 68. **Full-length PRO1003 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding
5 polypeptides referred to in the present application as PRO1003. In particular, Applicants have identified and
isolated cDNA encoding a PRO1003 polypeptide, as disclosed in further detail in the Examples below. The
PRO1003-encoding clone was isolated from a human breast tumor tissue library. The PRO1003-encoding
clone was isolated using a trapping technique which selects for nucleotide sequences encoding secreted
proteins. Thus, the PRO1003-encoding clone may encode a secreted factor. To Applicants present knowledge,
40 the UNQ487 (DNA58846-1409) nucleotide sequence encodes a novel factor; using BLAST and FastA sequence
30 alignment computer programs, no sequence identities to any known proteins were revealed.

45 69. **Full-length PRO1108 Polypeptides**

45 The present invention provides newly identified and isolated nucleotide sequences encoding
5 polypeptides referred to in the present application as PRO1108. In particular, Applicants have identified and
isolated cDNA encoding a PRO1108 polypeptide, as disclosed in further detail in the Examples below. Using
BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1108 polypeptide
50 has significant similarity to the LPAAT protein. Accordingly, it is presently believed that PRO1108

5 polypeptide disclosed in the present application is a newly identified LPAAT homolog.

10 50 70. Full-length PRO1137 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1137. In particular, Applicants have identified and isolated cDNA encoding a PRO1137 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1137 polypeptide has sequence identity with ribosyltransferases. Accordingly, it is presently believed that PRO1137 polypeptide disclosed in the present application is a newly identified member of the ribosyltransferase family and possesses ribosyltransferase activity.

15 100 71. Full-length PRO1138 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1138. In particular, Applicants have identified and isolated cDNA encoding a PRO1138 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1138 polypeptide has sequence identity with CD84 leukocyte antigen. Accordingly, it is presently believed that PRO1138 polypeptide disclosed in the present application is a newly identified member of the Ig superfamily and has activity typical of other members of the Ig superfamily.

20 200 72. Full-length PRO1054 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1054. In particular, cDNA encoding a PRO1054 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 300 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1054 (shown in Figure 174 and SEQ ID NO:256) has amino acid sequence identity with one or more of the major urinary proteins. Accordingly, it is presently believed that PRO1054 disclosed in the present application is a newly identified member of the MUP family and may possess activity typical of that family.

35 400 73. Full-length PRO994 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO994. In particular, cDNA encoding a PRO994 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45 350 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO994 (shown in Figure 176 and SEQ ID NO:258) has amino acid sequence identity with the tumor-associated antigen L6. Accordingly, it is presently believed that PRO994 disclosed in the present application is a newly identified L6 antigen homolog.

5 **74. Full-length PRO812 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO812. In particular, cDNA encoding a PRO812 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO812 (shown in Figure 178 and SEQ ID NO:260) has amino acid sequence identity with the prostatic steroid-binding c1 protein. Accordingly, it is presently believed that PRO812 disclosed in the present application is a newly identified prostatic steroid-binding c1 protein homolog.

15 **75. Full-length PRO1069 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1069. In particular, Applicants have identified and isolated cDNA encoding a PRO1069 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, it was found that the PRO1069 polypeptide has sequence identity with CHIF. Accordingly, it is presently believed that PRO1069 polypeptide disclosed in the present application is a newly identified CHIF polypeptide and is involved in ion conductance or regulation of ion conductance.

25 **76. Full-length PRO1129 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1129. In particular, Applicants have identified and isolated cDNA encoding a PRO1129 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1129 polypeptide has significant similarity to the cytochrome P-450 family of proteins. Accordingly, it is presently believed that PRO1129 polypeptide disclosed in the present application is a newly identified member of the cytochrome P-450 family and possesses activity typical of that family.

35 **77. Full-length PRO1068 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1068. In particular, cDNA encoding a PRO1068 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

45 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1068 has amino acid sequence identity with urotensin. Accordingly, it is presently believed that PRO1068 disclosed in the present application is a newly identified member of the urotensin family and may possess activity typical of the urotensin family.

50 **78. Full-length PRO1066 Polypeptides**

55 The present invention provides newly identified and isolated nucleotide sequences encoding

5 polypeptides referred to in the present application as PRO1066. In particular, Applicants have identified and isolated cDNA encoding a PRO1066 polypeptide, as disclosed in further detail in the Examples below. The PRO1066-encoding clone was isolated from a human pancreatic tumor tissue library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the PRO1066-encoding clone may encode a secreted factor. To Applicants present knowledge, the DNA59215-1425 nucleotide sequence encodes
10 a novel factor; using BLAST and FastA sequence alignment computer programs, no sequence identities to any known proteins were revealed.

15 **79. Full-length PRO1184 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1184. In particular, Applicants have identified cDNA encoding a PRO1184 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59220-1514 nucleotide sequence encodes a novel secreted factor.
20

25 **80. Full-length PRO1360 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1360. In particular, cDNA encoding a PRO1360 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.
20

25 As far as is known, the DNA59488-1603 sequence encodes a novel factor designated herein as PRO1360; using WU-BLAST2 sequence alignment computer programs, no significant sequence identities to any known proteins were revealed. Some sequence identities were revealed, as indicated below in the examples.
30

35 **81. Full-length PRO1029 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1029. In particular, cDNA encoding a PRO1029 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.
40

30 The DNA59493-1420 clone was isolated from a human fetal liver spleen library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA59493-1420 clone does encode a secreted factor. As far as is known, the DNA59493-1420 sequence encodes a novel factor designated herein as PRO1029; using the WU-BLAST2 sequence alignment computer program, no sequence identities to any known proteins were revealed.
45

45 **82. Full-length PRO1139 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1139. In particular, Applicants have identified and isolated cDNAs encoding PRO1139, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the human PRO1139 protein originally
50

5 identified exhibits a significant sequence homology to the a OB receptor associated protein HSOBRGRP_1, described by Baileul et al., *Nucleic Acids Res.* 25, 2752-2758 (1997) (EMBL Accession No: Y12670).

10 5 **83. Full-length PRO1309 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1309. In particular, cDNA encoding a PRO1309 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

15 10 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1309 (shown in Figure 196 and SEQ ID NO:278) has certain amino acid sequence identity with a protein designated KIAA0416, given the Dayhoff designation AB007876_1. Moreover, PRO1309 has leucine rich repeats, accordingly, it is presently believed that PRO1309 disclosed in the present application is a newly identified member of the leucine rich protein family and may be involved in protein protein interactions.

20 15 **84. Full-length PRO1028 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1028. In particular, Applicants have identified and isolated cDNA encoding a PRO1028 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59603-1419 nucleotide sequence encodes a novel factor. BLAST and FastA sequence alignment computer programs showed some sequence identity with proteins such as those designated "A53050" and EMU39529_1".

30 20 **85. Full-length PRO1027 Polypeptides**

35 25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1027. In particular, Applicants have identified and isolated cDNA encoding a PRO1027 polypeptide, as disclosed in further detail in the Examples below. The PRO1027-encoding clone was identified in a human uterine cervical tissue library. To Applicants present knowledge, the DNA59605-1418 nucleotide sequence encodes a novel factor.

40 30 **86. Full-length PRO1107 Polypeptides**

45 35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1107. In particular, Applicants have identified and isolated cDNA encoding a PRO1107 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1107 polypeptide has some similarity to the PC-1 protein, human insulin receptor tyrosine kinase inhibitor, an alkaline phosphodiesterase, and autotaxin. Accordingly, it is presently believed that PRO1107 polypeptide disclosed in the present application is a newly identified member of the phosphodiesterase family.

5 **87. Full-length PRO1140 Polypeptides**

The present invention provides newly identified and isolated nucleotide sequences encoding novel multi-span transmembrane polypeptides referred to in the present application as PRO1140. In particular, Applicants have identified and isolated cDNA encoding a PRO1140 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, some sequence identity with known proteins was found.

10 **88. Full-length PRO1106 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1106. In particular, Applicants have identified and isolated cDNA encoding a PRO1106 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1106 polypeptide has significant similarity to the peroxisomal calcium-dependent solute carrier. Accordingly, it is presently believed that PRO1106 polypeptide disclosed in the present application is a newly identified member of the mitochondrial carrier superfamily and possesses transporter activity typical of this family.

20 **89. Full-length PRO1291 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1291. In particular, cDNA encoding a PRO1291 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

30 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1291 (shown in Figure 208 and SEQ ID NO:291) has certain amino acid sequence identity with the butyrophilin protein. Accordingly, it is presently believed that PRO1291 disclosed in the present application is a newly identified butyrophilin homolog and may possess activity typical of that protein.

35 **90. Full-length PRO1105 Polypeptides**

40 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1105. In particular, Applicants have identified cDNA encoding a PRO1105 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59612-1466 nucleotide sequence encodes a novel factor. There is, however, some sequence identity with a peroxydase precursor designated in a Dayhoff database as "ATTS1623_1".

45 **91. Full-length PRO511 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO511. In particular, Applicants have identified and isolated cDNA encoding a PRO511 polypeptide, as disclosed in further detail in the Examples below. The PRO511-encoding clone was isolated from a human colon tissue library. To Applicants present knowledge, the DNA59613-1417 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment

5 computer programs, sequence identities with RoBo-1, phospholipase inhibitors and a protein designated as "SSC20F10_1" were revealed, indicated that PRO511 may be related to one or more of these proteins.

10 **92. Full-length PRO1104 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1104. In particular, Applicants have identified and isolated cDNA encoding a PRO1104 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59616-1465 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, some sequence identity appeared with proteins designated as "AB002107_1", "AF022991_1" and "SP96_DICDI".

10

20 **93. Full-length PRO1100 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1100. In particular, Applicants have identified cDNA encoding a PRO1100 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59619-1464 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, only some sequence identity with known proteins was revealed. There is some sequence identity with the yeast hypothetical 42.5 KD protein in TSM1-ARE1 intergenic region (ACCESSION NO:140496), designated "YSCT4_YEAST".

20

30 **94. Full-length PRO836 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO836. In particular, Applicants have identified and isolated cDNA encoding a PRO836 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59620-1463 nucleotide sequence encodes a novel factor. Using BLAST and FastA sequence alignment computer programs, there appears to be some sequence identity with SLS1.

40 **95. Full-length PRO1141 Polypeptides**

45 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1141. In particular, cDNA encoding a PRO1141 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

50 The DNA59625-1498 clone was isolated from a human ileum tissue library. As far as is known, the DNA59625-1498 sequence encodes a novel factor designated herein as PRO1141; using the WU-BLAST2 sequence alignment computer program, no sequence identities to any known proteins were revealed.

35

55 **96. Full-length PRO1132 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding

5 polypeptides referred to in the present application as PRO1132. In particular, cDNA encoding a PRO1132 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1132 (shown in Figure 226 and SEQ ID NO:309) has certain amino acid sequence identity with enamel matrix serine proteinase 1 and neuropsin. Accordingly, it is presently believed that PRO1132 disclosed in the present application is a newly identified member of the serine protease family and may possess protease activity typical of this family.

15 **97. Full-length PRO1346 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as NL7 (UNQ701). In particular, cDNA encoding an NL7 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20 As disclosed in the Examples below, a clone DNA59776-1600 has been deposited with ATCC. The actual nucleotide sequence of the clone can be readily determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from 25 the nucleotide sequence using routine skill. For the NL7 (PRO1346) herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time of filing.

25 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence NL7 (shown in Figure 228 and SEQ ID NO:314) has certain amino acid sequence identity with microfibril-associated glycoprotein 4 (MFA4_HUMAN); ficolin-A - Mus musculus (AB007813_1); human lectin P35 (D63155S6_1); ficolin B - Mus musculus (AFO063217_1); human tenascin-R (restriction) (HSS18E13_1); the long form of a rat janusin precursor (A45445); fibrinogen-related protein HFREP-1 precursor (JNO596); a human Tenascin precursor (TENA_HUMAN); human CDT6 (HSY16132_1); and angiopoietin-1 - Mus musculus (MMU83509_1). It is presently believed that NL7 disclosed in the present application is a novel TIE ligand homologue, and may play a role in angiogenesis and/or vascular maintenance and/pr wound healing and/or inflammation and/or tumor development and/or growth

30 **98. Full-length PRO1131 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1131. In particular, cDNA encoding a PRO1131 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1131 (shown in Figure 230 and SEQ ID NO:319) has certain amino acid sequence identity with 45 a lectin-like oxidized LDL receptor. Accordingly, it is presently believed that PRO1131 disclosed in the present application may have at least one mechanism similar to those of the LDL receptors.

99. Full-length PRO1281 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1281. In particular, cDNA encoding a PRO1281 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

The DNA59820-1549 clone was isolated from a human fetal liver library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, as far as is known, the DNA59820-1549 sequence encodes a novel factor designated herein as PRO1281. Using WU-BLAST2 sequence alignment computer programs, some sequence identities to known proteins was found, but determined not to be significant.

100. Full-length PRO1064 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1064. In particular, cDNA encoding a PRO1064 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

The DNA59827-1426 clone was isolated from a human fetal kidney library. As far as is known, the DNA59827-1426 sequence encodes a novel factor designated herein as PRO1064; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

101. Full-length PRO1379 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1379. In particular, cDNA encoding a PRO1379 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

The DNA59828 clone was isolated from a human fetal kidney library. As far as is known, the PRO1379 polypeptide encoded thereby is a novel secreted factor. Using WU-BLAST2 sequence alignment computer programs, sequence identity was found between PRO1379 and a hypothetical yeast protein "YHY8_YEAST" (Dayhoff database; version 35.45 SwissProt 35), particularly at the C-terminal ends. Sequence homologies with other known proteins were revealed, but determined not to be significant.

102. Full-length PRO844 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO844. In particular, Applicants have identified and isolated cDNA encoding a PRO844 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO844 polypeptide has sequence identity with serine protease inhibitors. Accordingly, it is presently believed that PRO844 polypeptide disclosed in the present application is a newly identified serine protease inhibitor and is capable of inhibiting serine proteases.

103. Full-length PRO848 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO848. In particular, Applicants have identified and isolated cDNA encoding a PRO848 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO848 polypeptide has sequence identity with sialyltransferases. Accordingly, it is presently believed that PRO848 polypeptide disclosed in the present application is a newly identified member of the sialyltransferase family and possesses sialylation capabilities as typical of this family.

15 104. Full-length PRO1097 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1097. In particular, Applicants have identified and isolated cDNA encoding a PRO1097 polypeptide, as disclosed in further detail in the Examples below. To Applicants present knowledge, the DNA59841-1460 nucleotide sequence encodes a novel factor. Using BLAST and FastA sequence alignment computer programs, some sequence identity with proteins designated as "CELK05G3_3", "CRU26344_1", "SPBC16C6_8", "P_W13844" and "AF013403" was revealed.

25 105. Full-length PRO1153 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1153. In particular, cDNA encoding a PRO1153 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

30 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1153 (shown in Figure 246 and SEQ ID NO:351) has certain amino acid sequence identity with HPBRII-7 protein submitted to the EMBL Data Library June 1992. Accordingly, it is presently believed that PRO1153 disclosed in the present application may be related to HPBRII-7.

35 106. Full-length PRO1154 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1154. In particular, cDNA encoding a PRO1154 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1154 (shown in Figure 248 and SEQ ID NO:353) aligns with a KIAA0525 protein, designated AB011097. PRO1154 has a novel N-terminus of 73 amino acids. Accordingly, PRO1154 is believed to be novel. PRO1154 also has significant sequence identity with aminopeptidase N, insulin-regulated membrane aminopeptidase, throtropin-releasing hormone degrading enzyme and placental leucine aminopeptidase. Therefore, PRO1154 is believed to be a novel aminopeptidase, or peptide which degrades peptides.

107. Full-length PRO1181 Polypeptides

5 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1181. In particular, cDNA encoding a PRO1181 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 The DNA59847-1511 clone was isolated from a human prostate tissue library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA59847-1511 clone does encode a secreted factor. As far as is known, the DNA59847-1511 sequence encodes a novel factor designated herein as PRO1181; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

15 **108. Full-length PRO1182 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1182. In particular, cDNA encoding a PRO1182 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1182 (shown in Figure 252 and SEQ ID NO:357) has amino acid sequence identity with the conglutinin protein. Accordingly, it is presently believed that PRO1182 disclosed in the present application is a newly identified conglutinin homolog.

30 **109. Full-length PRO1155 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1155. In particular, cDNA encoding a PRO1155 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1155 (shown in Figure 254 and SEQ ID NO:359) has certain amino acid sequence identity with neurokinin B. Accordingly, it is presently believed that PRO1155 disclosed in the present application is a newly identified member of the tachykinin family.

45 **110. Full-length PRO1156 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1156. In particular, cDNA encoding a PRO1156 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

55 The DNA59853-1505 clone was isolated from an adult human heart library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA59853-1505 clone may encode a secreted factor. As far as is known, the DNA59853-1505 sequence encodes a novel factor designated herein as PRO1156. However, using WU-BLAST2 sequence alignment computer programs, some sequence identity with known proteins were revealed.

111. Full-length PRO1098 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1098. In particular, Applicants have identified cDNA encoding a PRO1098 polypeptide, as disclosed in further detail in the Examples below. The PRO1098-encoding clone was isolated from a human lung tissue library. To Applicants present knowledge, the DNA59854-1459 nucleotide sequence encodes a novel factor; using BLAST and FastA sequence alignment computer programs, no significant sequence identities to any known proteins were revealed. Some sequence identity appeared with proteins such as the "Env" polyprotein and a methyltransferase.

112. Full-length PRO1127 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1127. In particular, cDNA encoding a PRO1127 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

The DNA60283-1484 clone encodes a secreted factor. As far as is known, the DNA60283-1484 sequence encodes a novel factor designated herein as PRO1127; using WU-BLAST2 sequence alignment computer programs, minimal sequence identities to any known proteins were revealed.

113. Full-length PRO1126 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1126. In particular, cDNA encoding a PRO1126 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1126 (shown in Figure 262 and SEQ ID NO:367) has certain amino acid sequence identity with the olfactomedin protein. Accordingly, it is presently believed that PRO1126 disclosed in the present application is a newly identified olfactomedin homolog and may possess activity typical of that protein.

114. Full-length PRO1125 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1125. In particular, cDNA encoding a PRO1125 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1125 (shown in Figure 264 and SEQ ID NO:369) has certain amino acid sequence identity with transcriptional repressor rco-1. Accordingly, it is presently believed that PRO1125 disclosed in the present application is a newly identified member of the WD superfamily.

115. Full-length PRO1186 Polypeptides

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1186. In particular, cDNA encoding a PRO1186

5 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1186 (shown in Figure 266 and SEQ ID NO:371) has amino acid sequence identity with venom protein A from Dendroaspis polylepis polylepis venom. Accordingly, it is presently believed that PRO1186 disclosed in the present application is a newly identified member of venom protein A and may share a related mechanism.

116. Full-length PRO1198 Polypeptides

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1198. In particular, cDNA encoding a PRO1198 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20 As far as is known, the DNA60622-1525 sequence encodes a novel factor designated herein as PRO1198. However, using WU-BLAST2 sequence alignment computer programs, some sequence identity with known proteins was found.

117. Full-length PRO1158 Polypeptides

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1158. In particular, cDNA encoding a PRO1158 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

30 The DNA60625-1507 clone was isolated from a human lung tumor tissue library. As far as is known, the DNA60625-1507 sequence encodes a novel factor designated herein as PRO1158. However, using WU-BLAST2 sequence alignment computer programs, some sequence identities with known proteins were shown.

118. Full-length PRO1159 Polypeptides

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1159. In particular, cDNA encoding a PRO1159 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 The DNA60627-1508 clone was isolated from a human peripheral blood granulocyte tissue library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA60627-1508 clone does encode a secreted factor. As far as is known, the DNA60627-1508 sequence 45 encodes a novel factor designated herein as PRO1159; using the WU-BLAST2 sequence alignment computer program, no sequence identities to any known proteins were revealed.

119. Full-length PRO1124 Polypeptides

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1124. In particular, cDNA encoding a PRO1124 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1124 (shown in Figure 274 and SEQ ID NO:377) has amino acid sequence identity with an epithelial chloride channel protein from bos taurus. PRO1124 also has sequence identity with ECAM-1. Accordingly, it is presently believed that PRO1124 disclosed in the present application is a newly identified 10 cell membrane protein involved in communication of cells either through ion channels or cell adhesion molecules.

10 5 **120. Full-length PRO1287 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1287. In particular, cDNA encoding a PRO1287 20 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

20 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1287 (shown in Figure 276 and SEQ ID NO:381) has amino acid sequence identity with the radical fringe protein from Gallus gallus (GGU82088_1). Accordingly, it is presently believed that PRO1287 disclosed in the present application is a newly identified fringe protein homolog and may possess 25 activity typical of the fringe protein.

25 **121. Full-length PRO1312 Polypeptides**

30 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1312. In particular, cDNA encoding a PRO1312 35 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

35 Using WU-BLAST2 sequence alignment computer programs, some sequence identities with known proteins were revealed, but were determined not to be significant. Therefore, as far as is known, the DNA61873-1574 sequence encodes a novel transmembrane protein designated herein as PRO1312.

40 25 **122. Full-length PRO1192 Polypeptides**

45 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1192. In particular, cDNA encoding a PRO1192 50 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

50 40 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1192 (shown in Figure 280 and SEQ ID NO:389) has amino acid sequence identity with trout P0-like glycoprotein (GEN12838 IP1). Accordingly, it is presently believed that PRO1192 disclosed in the 55 present application is a newly identified member of the myelin P0 glycoprotein family.

55 35 **123. Full-length PRO1160 Polypeptides**

55 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1160. In particular, cDNA encoding a PRO1160 60 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 The DNA62872-1509 clone was isolated from a human breast tissue library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA62872-1509 clone does encode a secreted factor. As far as is known, the DNA62872-1509 sequence encodes a novel factor designated herein as PRO1160; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

10 5

124. Full-length PRO1187 Polypeptides

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1187. In particular, cDNA encoding a PRO1187 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

10

As far as is known, the DNA62876-1517 sequence encodes a novel factor designated herein as PRO1187; using WU-BLAST2 sequence alignment computer programs, no significant sequence identities to any known proteins were revealed.

20

125. Full-length PRO1185 Polypeptides

15

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1185. In particular, cDNA encoding a PRO1185 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25

As far as is known, the DNA62881-1515 clone encodes a novel factor designated herein as PRO1185; using WU-BLAST2 sequence alignment computer programs, no significant sequence identities to any known proteins were revealed.

30

126. Full-length PRO1345 Polypeptides

35

25

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1345. In particular, cDNA encoding a PRO1345 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40

30

Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1345 (shown in Figure 288 and SEQ ID NO:403) has amino acid sequence identity with the C-type lectin homolog precursor protein of *bos taurus* (BTU22298_1). Accordingly, it is presently believed that PRO1345 disclosed in the present application is a newly identified member of the C-type lectin protein family and may possess activity typical of that family or of the tetranectin protein in particular.

127. Full-length PRO1245 Polypeptides

45

35

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1245. In particular, cDNA encoding a PRO1245 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

50

The DNA64884-1527 clone was identified using methods that selects for nucleotide sequences encoding secreted proteins. As far as is known, the DNA64884-1527 sequence encodes a novel secreted factor

5 designated herein as PRO1245. Using WU-BLAST2 sequence alignment computer programs, some sequence identities to known proteins were revealed; however, it was determined that they were not significant.

10 **128. Full-length PRO1358 Polypeptides**

10 The present invention provides newly identified and isolated nucleotide sequences encoding 5 polypeptides referred to in the present application as PRO1358. In particular, cDNA encoding a PRO1358 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

15 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1358 (shown in Figure 292 and SEQ ID NO:410) has amino acid sequence identity with RASP-1. Accordingly, it is presently believed that PRO1358 disclosed in the present application is a newly identified 10 member of the serpin family of serine protease inhibitors and may possess serine protease inhibition activity, protein catabolism inhibitory activity and/or be associated with regeneration of tissue.

20 **129. Full-length PRO1195 Polypeptides**

20 The present invention provides newly identified and isolated nucleotide sequences encoding 15 polypeptides referred to in the present application as PRO1195. In particular, cDNA encoding a PRO1195 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1195 (shown in Figure 294 and SEQ ID NO:412) has amino acid sequence identity with MMU28486_1, termed a proline rich acidic protein from *Mus musculus*, locus MMU28486, Accession: 20 U28486, database GBTRANS, submitted 06-JUN-1995 by John W. Kasik. Accordingly, it is presently 30 believed that PRO1195 disclosed in the present application is a newly identified member of this protein family.

35 **130. Full-length PRO1270 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding 25 polypeptides referred to in the present application as PRO1270. In particular, cDNA encoding a PRO1270 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1270 (shown in Figure 296 and SEQ ID NO:414) has amino acid sequence identity with 30 the lectin protein (XLU86699_1) of *Xenopus laevis*. Accordingly, it is presently believed that PRO1270 disclosed in the present application is a newly identified member of the lectin protein family and may possess activity typical of that family.

45 **131. Full-length PRO1271 Polypeptides**

45 The present invention provides newly identified and isolated nucleotide sequences encoding 35 polypeptides referred to in the present application as PRO1271. In particular, cDNA encoding a PRO1271 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 As far as is known, the DNA66309-1538 sequence encodes a novel factor designated herein as PRO1271; using WU-BLAST2 sequence alignment computer programs, no significant sequence identities to any known proteins were revealed (results further described in the examples below).

10 **132. Full-length PRO1375 Polypeptides**

15 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1375. In particular, cDNA encoding a PRO1375 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

15 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1375 (shown in Figure 300 and SEQ ID NO:418) has amino acid sequence identity PUT2.

10 Accordingly, it is presently believed that PRO1375 disclosed in the present application has at least one related mechanism of PUT2.

20 **133. Full-length PRO1385 Polypeptides**

25 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1385. In particular, cDNA encoding a PRO1385 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

25 The DNA68869-1610 clone was isolated from a human tissue library using a trapping technique which selects for nucleotide sequences encoding secreted proteins. Thus, the DNA68869-1610 clone does encode a secreted factor. As far as is known, the DNA68869-1610 sequence encodes a novel factor designated herein as PRO1385; using the WU-BLAST2 sequence alignment computer program, no significant sequence identities to any known proteins were revealed.

30 **134. Full-length PRO1387 Polypeptides**

35 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1387. In particular, cDNA encoding a PRO1387 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

40 Using the WU-BLAST2 sequence alignment computer program, it has been found that a full-length native sequence PRO1387 (shown in Figure 304 and SEQ ID NO:422) has amino acid sequence identity with the myelin p0 protein protein precursor (MYP0_HETFR). Accordingly, it is presently believed that PRO1387 disclosed in the present application is a newly identified member of the myelin protein family and may possess activity typical of that family.

45 **135. Full-length PRO1384 Polypeptides**

50 The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1384. In particular, cDNA encoding a PRO1384 polypeptide has been identified and isolated, as disclosed in further detail in the Examples below.

5 Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PRO1384 (shown in Figure 306 and SEQ ID NO:424) has amino acid sequence identity with NKG2-D (AF054819_1; Dayhoff database, version 35.45 SwissProt 35). Accordingly, it is presently believed that
10 PRO1384 disclosed in the present application is a newly identified member of the NKG2 family and may possess MHC activation/inactivation activities typical of the NKG2 family.

10

5 B. PRO Polypeptide Variants

15 In addition to the full-length native sequence PRO polypeptides described herein, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will
10 appreciate that amino acid changes may alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

20 Variations in the native full-length sequence PRO or in various domains of the PRO described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or
25 insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and
30 minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in
35 the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

40 PRO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO
45 polypeptide.

50 PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, PRO polypeptide

5 fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed
herein.

10 In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference
15 to amino acid classes, are introduced and the products screened.

Table 6

		<u>Original Residue</u>	<u>Exemplary Substitutions</u>	<u>Preferred Substitutions</u>
15	10	Ala (A)	val; leu; ile	val
		Arg (R)	lys; gln; asn	lys
		Asn (N)	gln; his; lys; arg	gln
20	15	Asp (D)	glu	glu
		Cys (C)	ser	ser
		Gln (Q)	asn	asn
		Glu (E)	asp	asp
	20	Gly (G)	pro; ala	ala
		His (H)	asn; gln; lys; arg	arg
		Ile (I)	leu; val; met; ala; phe; norleucine	
25		Leu (L)	norleucine; ile; val; met; ala; phe	leu
	25	Lys (K)	arg; gln; asn	arg
		Met (M)	leu; phe; ile	leu
		Phe (F)	leu; val; ile; ala; tyr	ile
30		Pro (P)	ala	ala
	30	Ser (S)	thr	thr
		Thr (T)	ser	ser
		Trp (W)	tyr; phe	tyr
		Tyr (Y)	trp; phe; thr; ser	phe
		Val (V)	ile; leu; met; phe; ala; norleucine	leu
35	35			

40 Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;
- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.

50

5 Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.

10 The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., *Nucl. Acids Res.*, **13**:4331 (1986); Zoller et al., *Nucl. Acids Res.*, **10**:6487 (1987)], cassette mutagenesis [Wells et al., *Gene*, **34**:315 (1985)], restriction selection mutagenesis [Wells et al., *Philos. Trans. R. Soc. London SerA*, **317**:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA.

15 Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, *Science*, **244**: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, *The Proteins*, (W.H. Freeman & Co., N.Y.); Chothia, *J. Mol. Biol.*, **150**:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

C. Modifications of PRO

20 Covalent modifications of PRO are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the PRO. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly 30 used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

35 Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, *Proteins: Structure and Molecular Properties*, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

45 Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying glycosylation site or by deleting the

5 glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

10 Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

15 Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

20 Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

25 Another type of covalent modification of PRO comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

30 The PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence.

35 In one embodiment, such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the 40 PRO to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)];

5 an α -tubulin epitope peptide [Skinner et al., *J. Biol. Chem.*, 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., *Proc. Natl. Acad. Sci. USA*, 87:6393-6397 (1990)].

10 In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form 15 of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995.

10

D. Preparation of PRO

20 The description below relates primarily to production of PRO by culturing cells transformed or transfected with a vector containing PRO nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare PRO. For instance, the PRO sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, *J. Am. Chem. Soc.*, 85:2149-2154 (1963)]. *In vitro* protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the PRO may be 25 chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO.

30

1. Isolation of DNA Encoding PRO

35 DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated 40 nucleic acid synthesis).

40

30 Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., 45 *supra*; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

45

35 The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to 50

50

5 DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ^{32}P -labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.

10 Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases.

15 5 Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.

15 Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and

10 processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

2. Selection and Transformation of Host Cells

20 Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, 15 selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. 25 In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.

20 20 Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl_2 , CaPO_4 , liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant 35 25 cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system 40 transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as 45 by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).

50 35 Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as *E. coli*. Various *E. coli* strains are publicly available, such as *E. coli* K12 strain MM294 (ATCC 31,446); *E. coli* X1776 (ATCC 31,537);

5 *E. coli* strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as *Escherichia*, e.g., *E. coli*, *Enterobacter*, *Erwinia*, *Klebsiella*, *Proteus*, *Salmonella*, e.g., *Salmonella typhimurium*, *Serratia*, e.g., *Serratia marcescens*, and *Shigella*, as well as *Bacilli* such as *B. subtilis* and *B. licheniformis* (e.g., *B. licheniformis* 41P disclosed in DD 266,710 published 12 April 1989), *Pseudomonas* such as *P. aeruginosa*, and *Streptomyces*. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including *E. coli* W3110 strain 1A2, which has the complete genotype *tonA*; *E. coli* W3110 strain 9E4, which has the complete genotype *tonA ptr3*; *E. coli* W3110 strain 27C7 (ATCC 55,244), which has the complete genotype *tonA ptr3 phoA E15 (argF-lac)169 degP ompT karf*; *E. coli* W3110 strain 37D6, which has the complete genotype *tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG karf*; *E. coli* W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant *degP* deletion mutation; and an *E. coli* strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, *in vitro* methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

10 In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO-encoding vectors. *Saccharomyces cerevisiae* is a commonly used lower eukaryotic host microorganism. Others include *Schizosaccharomyces pombe* (Beach and Nurse, *Nature*, 290: 140 [1981]; EP 139,383 published 2 May 1985); *Kluyveromyces* hosts (U.S. Patent No. 4,943,529; Fleer et al., *Bio/Technology*, 9:968-975 (1991)) such as, e.g., *K. lactis* (MW98-8C, CBS683, CBS4574; Louvencourt et al., *J. Bacteriol.*, 154(2):737-742 [1983]), *K. fragilis* (ATCC 12,424), *K. bulgaricus* (ATCC 16,045), *K. wickeramii* (ATCC 24,178), *K. waltii* (ATCC 56,500), *K. drosophilae* (ATCC 36,906; Van den Berg et al., *Bio/Technology*, 8:135 (1990)), *K. thermotolerans*, and *K. marxianus*; *yarrowia* (EP 402,226); *Pichia pastoris* (EP 183,070; Sreekrishna et al., *J. Basic Microbiol.*, 28:265-278 [1988]); *Candida*; *Trichoderma reesia* (EP 244,234); *Neurospora crassa* (Case et al., *Proc. Natl. Acad. Sci. USA*, 76:5259-5263 [1979]); *Schwanniomyces* such as *Schwanniomyces occidentalis* (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., *Neurospora*, *Penicillium*, *Tolypocladium* (WO 91/00357 published 10 January 1991), and *Aspergillus* hosts such as *A. nidulans* (Ballance et al., *Biochem. Biophys. Res. Commun.*, 112:284-289 [1983]; Tilburn et al., *Gene*, 26:205-221 [1983]; Yelton et al., *Proc. Natl. Acad. Sci. USA*, 81: 1470-1474 [1984]) and *A. niger* (Kelly and Hynes, *EMBO J.*, 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of *Hansenula*, *Candida*, *Kloeckera*, *Pichia*, *Saccharomyces*, *Torulopsis*, and *Rhodotorula*. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, *The Biochemistry of Methylotrophs*, 269 (1982).

15 35 Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as *Drosophila S2* and *Spodoptera Sf9*, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells.

5 More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651);
human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al.,
J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells-DHFR (CHO, Urlaub and Chasin, Proc. Natl.
Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980));
10 human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor
(MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in
the art.

15 3. Selection and Use of a Replicable Vector

10 The nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable
vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The
vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate
20 nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted
into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components
generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or
25 more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction
of suitable vectors containing one or more of these components employs standard ligation techniques which
are known to the skilled artisan.

20 The PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a
heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site
at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component
30 of the vector, or it may be a part of the PRO-encoding DNA that is inserted into the vector. The signal
sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline
phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence
35 may be, e.g., the yeast invertase leader, alpha factor leader (including *Saccharomyces* and *Kluyveromyces* α -
factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the *C. albicans*
glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published
15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct
secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species,
as well as viral secretory leaders.

40 30 Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate
in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses.
The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid
45 origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful
for cloning vectors in mammalian cells.

50 35 Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker.
Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin,
neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical

5 nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., *Proc. Natl. Acad. Sci. USA*, 77:4216 (1980). A suitable selection gene for use in yeast is the *trp1* gene present in the yeast plasmid YRp7 [Stinchcomb et al., *Nature*, 282:39 (1979); Kingsman et al., *Gene*, 7:141 (1979); Tschemper et al., *Gene*, 10:157 (1980)]. The *trp1* gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, *Genetics*, 85:12 (1977)].

10 Expression and cloning vectors usually contain a promoter operably linked to the PRO-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., *Nature*, 275:615 (1978); Goeddel et al., *Nature*, 281:544 (1979)], alkaline phosphatase, a tryptophan (*trp*) promoter system [Goeddel, *Nucleic Acids Res.*, 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., *Proc. Natl. Acad. Sci. USA*, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding PRO.

15 Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., *J. Biol. Chem.*, 255:2073 (1980)] or other glycolytic enzymes [Hess et al., *J. Adv. Enzyme Reg.*, 7:149 (1968); Holland, *Biochemistry*, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

20 Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

25 PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

30 35 Transcription of a DNA encoding the PRO by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use

5 an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the PRO coding sequence, but is preferably located at a site 5' from the promoter.

10 Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO.

15 Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO in recombinant vertebrate cell culture are described in Gething et al., *Nature*, 293:620-625 (1981); Mantei et al., *Nature*, 281:40-46 (1979); EP 117,060; and EP 117,058.

20 4. Detecting Gene Amplification/Expression

15 Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, *Proc. Natl. Acad. Sci. USA*, 77:5201-5205 (1980)], dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

25 20 Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope.

30 40 5. Purification of Polypeptide

35 Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

45 35 It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as

5 DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182
10 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced.

15 E. Uses for PRO

10 Nucleotide sequences (or their complement) encoding PRO have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA. PRO nucleic acid will also be useful for the preparation of PRO polypeptides by the recombinant techniques described herein.

20 The full-length native sequence PRO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO cDNA or to isolate still other cDNAs (for instance, those
25 encoding naturally-occurring variants of PRO or PRO from other species) which have a desired sequence identity to the native PRO sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO. By way of example, a screening method will comprise isolating the coding region of the PRO gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as ³²P or ³⁵S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.

30 Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein.

40 Other useful fragments of the PRO nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target PRO mRNA (sense) or PRO DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of PRO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).

5 Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation
of duplexes that block transcription or translation of the target sequence by one of several means, including
enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means.
10 The antisense oligonucleotides thus may be used to block expression of PRO proteins. Antisense or sense
oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other
15 5 sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to
endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable *in vivo* (i.e., capable of
resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide
sequences.

15 Other examples of sense or antisense oligonucleotides include those oligonucleotides which are
10 10 covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that
increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still,
20 20 intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or
antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target
nucleotide sequence.

25 15 Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid
sequence by any gene transfer method, including, for example, CaPO₄-mediated DNA transfection,
electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an
antisense or sense oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target
20 20 nucleic acid sequence is contacted with the recombinant retroviral vector, either *in vivo* or *ex vivo*. Suitable
retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a
30 30 retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see
WO 90/13641).

35 Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide
sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable
35 25 ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines,
or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does
not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule
or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

40 40 Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid
sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448.
30 30 The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous
lipase.

45 Antisense or sense RNA or DNA molecules are generally at least about 5 bases in length, about 10
bases in length, about 15 bases in length, about 20 bases in length, about 25 bases in length, about 30 bases
50 35 in length, about 35 bases in length, about 40 bases in length, about 45 bases in length, about 50 bases in length,
about 55 bases in length, about 60 bases in length, about 65 bases in length, about 70 bases in length, about
75 bases in length, about 80 bases in length, about 85 bases in length, about 90 bases in length, about 95 bases

5 in length, about 100 bases in length, or more.

The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO coding sequences.

10 Nucleotide sequences encoding a PRO can also be used to construct hybridization probes for mapping the gene which encodes that PRO and for the genetic analysis of individuals with genetic disorders. The 15 nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as *in situ* hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries.

15 When the coding sequences for PRO encode a protein which binds to another protein (example, where the PRO is a receptor), the PRO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO can be used to isolate 20 correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO or a receptor for PRO. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule 25 drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.

20 Nucleic acids which encode PRO or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques and the genomic sequences used to generate transgenic animals that 25 contain cells which express DNA encoding PRO. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for PRO transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding PRO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of 30 increased expression of DNA encoding PRO. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of 35 the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition.

35 Alternatively, non-human homologues of PRO can be used to construct a PRO "knock out" animal which has a defective or altered gene encoding PRO as a result of homologous recombination between the 40

5 endogenous gene encoding PRO and altered genomic DNA encoding PRO introduced into an embryonic stem
cell of the animal. For example, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in
accordance with established techniques. A portion of the genomic DNA encoding PRO can be deleted or
replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor
integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included
10 in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous
recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation)
15 and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected
[see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal
(e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in *Teratocarcinomas and Embryonic
20 Stem Cells: A Practical Approach*, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric
embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to
term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ
cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain
the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to
25 defend against certain pathological conditions and for their development of pathological conditions due to
absence of the PRO polypeptide.

25 Nucleic acid encoding the PRO polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve *in vivo* synthesis of a therapeutically effective
30 genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional
gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic
agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA.
35 Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes *in vivo*. It has already been shown that short antisense oligonucleotides can be imported into cells where they act
as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell
membrane. (Zamecnik et al., Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can
be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by
uncharged groups.

40 There are a variety of techniques available for introducing nucleic acids into viable cells. The
techniques vary depending upon whether the nucleic acid is transferred into cultured cells *in vitro*, or *in vivo*
45 in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells *in vitro*
include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium
phosphate precipitation method, etc. The currently preferred *in vivo* gene transfer techniques include
50 transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau
et al., Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic
acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane
protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed,
proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting

5 and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies
for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance
intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et
al., J. Biol. Chem. 262, 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414
10 (1990). For review of gene marking and gene therapy protocols see Anderson et al., Science 256, 808-813
15 (1992).

The PRO polypeptides described herein may also be employed as molecular weight markers for protein electrophoresis purposes and the isolated nucleic acid sequences may be used for recombinantly expressing those markers.

15 The nucleic acid molecules encoding the PRO polypeptides or fragments therof described herein are
10 useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome
markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently
available. Each PRO nucleic acid molecule of the present invention can be used as a chromosome marker.

20 The PRO polypeptides and nucleic acid molecules of the present invention may also be used for tissue
typing, wherein the PRO polypeptides of the present invention may be differentially expressed in one tissue
15 as compared to another. PRO nucleic acid molecules will find use for generating probes for PCR, Northern
analysis, Southern analysis and Western analysis.

25 The PRO polypeptides described herein may also be employed as therapeutic agents. The PRO
polypeptides of the present invention can be formulated according to known methods to prepare
pharmaceutically useful compositions, whereby the PRO product hereof is combined in admixture with a
20 pharmaceutically acceptable carrier vehicle. Therapeutic formulations are prepared for storage by mixing the
active ingredient having the desired degree of purity with optional physiologically acceptable carriers,
30 excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form
of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic
35 to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and
other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues)
polypeptides; proteins, such as serum albumin, gelatin or immunoglobulins; hydrophilic polymers such as
40 polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides,
disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as
EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic
45 surfactants such as TWEEN™, PLURONICS™ or PEG.

30 The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished
by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution.

45 Therapeutic compositions herein generally are placed into a container having a sterile access port, for
example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

35 The route of administration is in accord with known methods, e.g. injection or infusion by
intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial or intralesional routes,
50 topical administration, or by sustained release systems.

5 Dosages and desired drug concentrations of pharmaceutical compositions of the present invention may vary depending on the particular use envisioned. The determination of the appropriate dosage or route of administration is well within the skill of an ordinary physician. Animal experiments provide reliable guidance for the determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles laid down by Mordenti, J. and Chappell, W. "The use of interspecies scaling in toxicokinetics" In Toxicokinetics and New Drug Development, Yacobi et al., Eds., Pergamon Press, 10 New York 1989, pp. 42-96.

15 When *in vivo* administration of a PRO polypeptide or agonist or antagonist thereof is employed, normal dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of mammal body weight or more per day, preferably about 1 μ g/kg/day to 10 mg/kg/day, depending upon the route of administration. Guidance 20 as to particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212. It is anticipated that different formulations will be effective for different treatment compounds and different disorders, that administration targeting one organ or tissue, for example, may necessitate delivery in a manner different from that to another organ or tissue.

25 Where sustained-release administration of a PRO polypeptide is desired in a formulation with release characteristics suitable for the treatment of any disease or disorder requiring administration of the PRO 30 polypeptide, microencapsulation of the PRO polypeptide is contemplated. Microencapsulation of recombinant proteins for sustained release has been successfully performed with human growth hormone (rhGH), interferon-(rhIFN- β), interleukin-2, and MN rgp120. Johnson et al., Nat. Med., 2:795-799 (1996); Yasuda, Biomed. Ther., 27:1221-1223 (1993); Hora et al., Bio/Technology, 8:755-758 (1990); Cleland, "Design and Production 35 of Single Immunization Vaccines Using Polylactide Polyglycolide Microsphere Systems," in Vaccine Design: The Subunit and Adjuvant Approach, Powell and Newman, eds, (Plenum Press: New York, 1995), pp. 439-462; WO 97/03692, WO 96/40072, WO 96/07399; and U.S. Pat. No. 5,654,010.

40 The sustained-release formulations of these proteins were developed using poly-lactic-coglycolic acid (PLGA) polymer due to its biocompatibility and wide range of biodegradable properties. The degradation products of PLGA, lactic and glycolic acids, can be cleared quickly within the human body. Moreover, the degradability of this polymer can be adjusted from months to years depending on its molecular weight and composition. Lewis, "Controlled release of bioactive agents from lactide/glycolide polymer," in: M. Chasin and R. Langer (Eds.), Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp. 1-41.

45 40 This invention encompasses methods of screening compounds to identify those that mimic the PRO 45 polypeptide (agonists) or prevent the effect of the PRO polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins. Such screening assays will include assays amenable to high-throughput screening 50 of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.

55 The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art.

5 All assays for antagonists are common in that they call for contacting the drug candidate with a PRO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

10 In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the 15 immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody 20 specifically binding the immobilized complex.

25 If the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, 30 protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature (London), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation 35 domain. The yeast expression system described in the foregoing publications (generally referred to as the "two-hybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. 40 Colonies containing interacting polypeptides are detected with a chromogenic substrate for β -galactosidase. A complete kit (MATCHMAKERTM) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended 45 to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.

50 35 Compounds that interfere with the interaction of a gene encoding a PRO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time

5 allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the
10 reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner.

15 To assay for antagonists, the PRO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the PRO polypeptide indicates that the compound is an antagonist to the PRO polypeptide.

10 Alternatively, antagonists may be detected by combining the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The PRO polypeptide can be labeled, such as by radioactivity, such that the
20 number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those
25 of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the PRO polypeptide.
30 Transfected cells that are grown on glass slides are exposed to labeled PRO polypeptide. The PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor.

35 As an alternative approach for receptor identification, labeled PRO polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.

40 30 In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured.

45 35 More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with PRO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form
50

5 of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the PRO polypeptide.

10 Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res., 15 6:3073 (1979); Cooney et al., Science, 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the PRO polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA *in vivo* and blocks translation of the mRNA molecule into the PRO polypeptide (antisense - Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988). The oligonucleotides described above can also be delivered 20 to cells such that the antisense RNA or DNA may be expressed *in vivo* to inhibit production of the PRO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred.

25 Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological 30 activity of the PRO polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds.

35 Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by 40 endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current Biology, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997).

45 Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it 50 promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, *supra*.

55 These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art.

35 Uses of the herein disclosed molecules may also be based upon the positive functional assay hits disclosed and described below.

5 F. Anti-PRO Antibodies

The present invention further provides anti-PRO antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

10 1. Polyclonal Antibodies

15 The anti-PRO antibodies may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to 20 conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue 25 experimentation.

25 2. Monoclonal Antibodies

30 The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized 35 with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized *in vitro*.

40 The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or 45 spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may 50 be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

55 Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from

5 the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, *J. Immunol.*, **133**:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 10 51-63].

10 The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the 15 Scatchard analysis of Munson and Pollard, *Anal. Biochem.*, **107**:220 (1980).

20 After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

25 The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

30 The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily 35 isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis 40 of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., supra] or by covalently joining to the 45 immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

50 The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent 55 heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

5 *In vitro* methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art.

10 3. Human and Humanized Antibodies

15 The anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., *Nature*, 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.*, 2:593-596 (1992)].

20 Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., *Nature*, 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-327 (1988); Verhoeyen et al., *Science*, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

25 Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of 30 human monoclonal antibodies (Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77 (1985) and Boerner et al., *J. Immunol.*, 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous

5 immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks *et al.*, Bio/Technology 10, 779-783 (1992); Lonberg *et al.*, Nature 368 856-859 (1994);
10 Morrison, Nature 368, 812-13 (1994); Fishwild *et al.*, Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995).

15 4. Bispecific Antibodies

10 Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor
15 subunit.

20 Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct
25 bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in
30 Traunecker *et al.*, EMBO J., 10:3655-3659 (1991).

35 Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present
40 in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh *et al.*, Methods in Enzymology, 121:210 (1986).

45 According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody
50 molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5 Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂, bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared can be prepared using chemical linkage. Brennan *et al.*, Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

10 10 Fab' fragments may be directly recovered from *E. coli* and chemically coupled to form bispecific antibodies. Shalaby *et al.*, J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic

15 15 activity of human cytotoxic lymphocytes against human breast tumor targets.

20 20 Various technique for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelnik *et al.*, J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger *et al.*, Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber *et al.*, J. Immunol. 152:5368 (1994).

25 25 Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt *et al.*, J. Immunol. 147:60 (1991).

30 30 Exemplary bispecific antibodies may bind to two different epitopes on a given PRO polypeptide herein. Alternatively, an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular PRO polypeptide. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide. These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE,

5 DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF).

10 5. Heteroconjugate Antibodies

10 Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming 15 a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptopbutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

20 6. Effector Function Engineering

15 It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, *e.g.*, the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron *et al.*, *J. Exp Med.*, 176: 1191-1195 (1992) and Shope, *J. Immunol.*, 148: 2918-2922 (1992). Homodimeric antibodies 25 with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff *et al.* *Cancer Research*, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has 30 dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson *et al.*, *Anti-Cancer Drug Design*, 3: 219-230 (1989).

35 25 7. Immunoconjugates

40 The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (*e.g.*, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (*i.e.*, a radioconjugate).

45 Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, saponaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the trichothecenes. A variety 50 of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹¹¹In, ⁹⁰Y, and ¹⁸⁶Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridylthio) propionate (SPDP),

5 iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta *et al.*, Science,
10 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid
15 (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

10 In another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionuclotide).

20 8. Immunoliposomes

15 The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein *et al.*, Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang *et al.*, Proc. Natl. Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 25 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

20 Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin *et al.*, J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon *et al.*,
35 J. National Cancer Inst., 81(19): 1484 (1989).

40 9. Pharmaceutical Compositions of Antibodies

Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders in the form of pharmaceutical compositions.

45 If the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the 50 variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco *et al.*, Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). T h e

5 formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

10 5 The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's *Pharmaceutical Sciences, supra*.

15 10 The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

20 20 Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include 15 15 polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release 25 20 of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide 30 35 35 interchange, stabilization may be achieved by modifying sulphydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

G. Uses for anti-PRO Antibodies

40 30 The anti-PRO antibodies of the invention have various utilities. For example, anti-PRO antibodies may be used in diagnostic assays for PRO, e.g., detecting its expression in specific cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct 45 45 or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, *Monoclonal Antibodies: A Manual of Techniques*, CRC Press, Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should 50 35 35 be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ^3H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-

5 galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., *Nature*, 144:945 (1962); David et al., *Biochemistry*, 13:1014 (1974); Pain et al., *J. Immunol. Meth.*, 40:219 (1981); and Nygren, *J. Histochem. and Cytochem.*, 30:407 (1982).

10 Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources. In this process, the antibodies against PRO are immobilized on a suitable support, such as a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody.

15 The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

20 All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

15

EXAMPLES

25 Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas,

20 VA.

30 EXAMPLE 1: Extracellular Domain Homology Screening to Identify Novel Polypeptides and cDNA Encoding Therefor

35 The extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to search EST databases. The EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST-2 (Altschul et al., *Methods in Enzymology* 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled

40 into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, WA).

45 Using this extracellular domain homology screen, consensus DNA sequences were assembled relative to the other identified EST sequences using phrap. In addition, the consensus DNA sequences obtained were often (but not always) extended using repeated cycles of BLAST or BLAST-2 and phrap to extend the consensus sequence as far as possible using the sources of EST sequences discussed above.

50

5 Based upon the consensus sequences obtained as described above, oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional 10 oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the 15 primer pairs.

10 The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to Sall hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRK8 or pRKD; pRK5B is a precursor of pRKSD that does not contain the SfiI site; see, Holmes et al., 20 Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.

15 15

25 **EXAMPLE 2: Isolation of cDNA clones by Amylase Screening**

30 1. **Preparation of oligo dT primed cDNA library**

35 mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, CA (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, MD (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the Sall/NotI linker cDNA was cloned into XhoI/NotI cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the XhoI/NotI cDNA cloning 40 sites.

45 2. **Preparation of random primed cDNA library**

50 A secondary cDNA library was generated in order to preferentially represent the 5' ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linked with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from 55 appropriately transfected yeast colonies.

5 3. Transformation and Detection

DNA from the library described in paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37°C for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37°C). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.

10 The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis.

15 The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL⁺, SUC⁺, GAL⁺. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec71, sec72, sec62, with truncated sec71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.

20 Transformation was performed based on the protocol outlined by Gietz et al., Nucl. Acid. Res., 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30°C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 207 (1994). The overnight culture was then diluted to about 2 x 10⁶ cells/ml (approx. OD₆₀₀=0.1) into fresh YEPD broth (500 ml) and regrown to 1 x 10⁷ cells/ml (approx. OD₆₀₀=0.4-0.5).

25 The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li₂OOCCH₃), and resuspended into LiAc/TE (2.5 ml).

30 Transformation took place by mixing the prepared cells (100 µl) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, MD) and transforming DNA (1 µg, vol. < 10 µl) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 µl, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li₂OOCCH₃, pH 7.5) was added. This mixture was gently mixed and incubated at 30°C while agitating for 30 minutes. The cells were then heat shocked at 42°C for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 µl, 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The

5 cells were then diluted into TE (1 ml) and aliquots (200 μ l) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).

10 Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly.

15 The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., *Methods in Yeast Genetics*, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 208-210 (1994). Transformants were grown at 30°C for 2-3 days.

20 The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., *Anal. Biochem.*, 172:176-179 (1988). The coupled starch was incorporated into the SCD-Ura 10 agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).

25 The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies 20 were determined by their ability to break down starch resulting in a clear halo around the positive colony 15 visualized directly.

25 4. Isolation of DNA by PCR Amplification

30 When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μ l) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μ l) was used as a template for the PCR reaction in a 25 μ l volume containing: 0.5 μ l KlenTaq (Clontech, Palo Alto, CA); 4.0 μ l 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μ l KlenTaq buffer (Clontech); 0.25 μ l forward oligo 1; 0.25 μ l reverse oligo 2; 12.5 μ l distilled water. The sequence of the forward oligonucleotide 1 was:

35 5'-TGTAACGACGGCCAGTTAAATAGACCTGCAATTATTAAATCT-3' (SEQ ID NO:3)

The sequence of reverse oligonucleotide 2 was:

40 5'-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3' (SEQ ID NO:4)

45 PCR was then performed as follows:

40	30	a.	Denature	92°C, 5 minutes
		b. 3 cycles of:	Denature Anneal Extend	92°C, 30 seconds 59°C, 30 seconds 72°C, 60 seconds
45	35	c. 3 cycles of:	Denature Anneal Extend	92°C, 30 seconds 57°C, 30 seconds 72°C, 60 seconds
	40	d. 25 cycles of:	Denature Anneal Extend	92°C, 30 seconds 55°C, 30 seconds 72°C, 60 seconds

5 e. Hold 4°C

The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5' end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences.

Following the PCR, an aliquot of the reaction (5 μ) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook et al., *supra*. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, CA).

EXAMPLE 3: Isolation of cDNA Clones Using Signal Algorithm Analysis

Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc. (South San Francisco, CA) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, CA) databases. The signal sequence algorithm computes a secretion signal score based on the character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5'-end of the sequence or sequence fragment under consideration. The nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored. In order to determine whether the EST sequence contains an authentic signal sequence, the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences.

EXAMPLE 4: Isolation of cDNA clones Encoding Human PRO281

In order to obtain a cDNA clone encoding PRO281, methods described in Klein et al., *Proc. Natl. Acad. Sci. USA* 93:7108-7113 (1996) were employed with the following modifications. Yeast transformation was performed with limiting amounts of transforming DNA in order to reduce the number of multiple transformed yeast cells. Instead of plasmid isolation from the yeast followed by transformation of *E. coli* as described in Klein et al., *supra*, PCR analysis was performed on single yeast colonies. PCR primers employed were bipartite in order to amplify the insert and a small portion of the invertase gene (allowing to determine that the insert was in frame with invertase) and to add on universal sequencing primer sites.

An invertase library was transformed into yeast and positives were selected on sucrose plates. Positive clones were re-tested and PCR products were sequenced. The sequence of one clone, PRO281, was determined to contain a signal peptide coding sequence. Oligonucleotide primers and probes were designed using the nucleotide sequence of PRO281. A full length plasmid library of cDNAs from human umbilical vein

5 endothelium tissue was titered and approximately 100,000 cfu were plated in 192 pools of 500 cfu/pool into
96-well round bottom plates. The plates were sealed and pools were grown overnight at 37°C with shaking
(200rpm). PCR was performed on the individual cultures using primers. Agarose gel electrophoresis was
performed and positive wells were identified by visualization of a band of the expected size. Individual
10 positive clones were obtained by colony lift followed by hybridization with ³²P-labeled oligonucleotide. These
clones were characterized by PCR, restriction digest, and southern blot analyses.

15 A full length clone was identified that contained a single open reading frame with an apparent
translational initiation site at nucleotide positions 80-82, and a stop signal at nucleotide positions 1115-1117
(Figure 1, SEQ ID NO:1). The predicted polypeptide precursor is 345 amino acids long, has a calculated
molecular weight of approximately 37,205 daltons and an estimated pI of approximately 10.15. Analysis of
10 the full-length PRO281 sequence shown in Figure 2 (SEQ ID NO:2) evidences the presence of the following:
a signal peptide from about amino acid 1 to about amino acid 14, multiple transmembrane domains from about
amino acid position 83 to about amino acid position 105, from about amino acid position 126 to about amino
acid position 146, from about amino acid position 158 to about amino acid position 177, from about amino acid
position 197 to about amino acid position 216, from about amino acid position 218 to about amino acid position
15 238, from about amino acid position 245 to about amino acid position 265, and from about amino acid position
271 to about amino acid position 290 and an amino acid sequence block having homology to G-protein coupled
20 receptor proteins from about amino acid 115 to about amino acid 155. Clone UNQ244 (DNA16422-1209) has
been deposited with ATCC on June 2, 1998 and is assigned ATCC deposit no. 209929.

25 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence
20 alignment analysis of the full-length sequence shown in Figure 2 (SEQ ID NO:2), evidenced significant
homology between the PRO281 amino acid sequence and the following Dayhoff sequences: H64634,
30 AF033095_1, B64815, YBHL_ECOLI, EMEQUTR_1, AF064763_3, S53708, A69253, AF035413_12 and
S63281.

35 25 **EXAMPLE 5: Isolation of cDNA clones Encoding Human PRO276**

In order to obtain a cDNA clone encoding PRO276, methods described in Klcin et al., PNAS,
40 93:7108-7113 (1996) were employed with the following modifications. Yeast transformation was performed
with limiting amounts of transforming DNA in order to reduce the number of multiple transformed yeast cells.
Instead of plasmid isolation from the yeast followed by transformation of *E. coli* as described in Klcin et al.,
45 30 supra, PCR analysis was performed on single yeast colonies. PCR primers employed were bipartite in order
to amplify the insert and a small portion of the invertase gene (allowing to determine that the insert was in
frame with invertase) and to add on universal sequencing primer sites.

50 45 An invertase library was transformed into yeast and positives were selected on sucrose plates. Positive
clones were re-tested and PCR products were sequenced. The sequence of one clone, PRO276, was
35 determined to contain a signal peptide coding sequence. Oligonucleotide primers and probes were designed
using the nucleotide sequence of PRO276. A full length plasmid library of cDNAs from human fetal liver cells
was titered and approximately 100,000 cfu were plated in 192 pools of 500 cfu/pool into 96-well round bottom

5 plates. The plates were sealed and pools were grown overnight at 37 C with shaking (200rpm). PCR was performed on the individual cultures using primers. Agarose gel electrophoresis was performed and positive wells were identified by visualization of a band of the expected size. Individual positive clones were obtained by colony lift followed by hybridization with ³²P-labeled oligonucleotide. These clones were characterized by PCR, restriction digest, and southern blot analyses.

10 5 A full length clone was identified that contained a single open reading frame with an apparent translational initiation site at nucleotide positions 180-182 and a stop signal at nucleotide positions 933-935 (Figure 3; SEQ ID NO:5). The predicted polypeptide precursor is 251 amino acids long has a calculated molecular weight of approximately 28,801 daltons and an estimated pI of approximately 9.58. The transmembrane domains are approximately at amino acids 98-116 and 152-172 of the sequence shown in Figure 15 10 4 (SEQ ID NO:6). Clone DNA16435-1208 (UNQ243) has been deposited with the ATCC and is assigned ATCC deposit no. 209930.

20 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 4 (SEQ ID NO:6), revealed some sequence identity between the PRO276 amino acid sequence and the following Dayhoff sequences: CEG25D7_2, 15 ATT805_2, S69696, GRHR_RAT, NPCBAABCD_3, AB013149_1, P_R85942 and AP000006_5.

25 **EXAMPLE 6: Isolation of cDNA clones Encoding Human PRO189**

A clone designated herein as DNA14187 was isolated as described in Example 2 above from a human retina tissue library. The DNA14187 sequence is shown in Figure 7 (SEQ ID NO:9). Based on the 20 DNA14187 sequence shown in Figure 7 (SEQ ID NO:9), oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO189. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In order to screen several libraries for a full-length clone, DNA 30 25 from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

A pair of PCR primers (forward and reverse) were synthesized:

40 forward PCR primer 5'-TTGACCTATAACAGAGATTCACTC-3' (SEQ ID NO:10); and
30 reverse PCR primer 5'-CTAAGAACCTCCCTCAGGATTT-3' (SEQ ID NO:11).

Additionally, a synthetic oligonucleotide hybridization probe was constructed from the DNA14187 sequence which had the following nucleotide sequence:

45 hybridization probe
5'-ATGAAGATCAATTCAAGAACATGCACCTCTCCTTGC-3' (SEQ ID NO:12).

35 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was 50 screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO189 gene using the probe oligonucleotide and one of the PCR primers.

5 RNA for construction of the cDNA libraries was isolated from human retina tissue (LIB94). The
cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially
available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT
containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately
by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRK8 or
10 pRKD; pRK8 is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science,
253:1278-1280 (1991)) in the unique XbaI and NotI sites.

15 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for
PRO189 and the derived protein sequence for PRO189.

10 The entire nucleotide sequence of DNA21624-1391 is shown in Figure 5 (SEQ ID NO:7). Clone
DNA21624-1391 contains a single open reading frame with an apparent translational initiation site at nucleotide
positions 200-202 and ending at the stop codon at nucleotide positions 1301-1303 (Figure 5). The predicted
20 polypeptide precursor is 367 amino acids long (Figure 6). The full-length PRO189 protein shown in Figure
6 has an estimated molecular weight of about 41,871 daltons and a pI of about 5.06. Clone DNA21624-1391
has been deposited with the ATCC. Regarding the sequence, it is understood that the deposited clone contains
15 the correct sequence, and the sequences provided herein are based on known sequencing techniques.

25 Analyzing the amino acid sequence of SEQ ID NO:8, the putative N-glycosylation sites are at about
amino acids 224-227, 246-249 and 285-288. A domain for cytosolic fatty-acid binding proteins is at amino
acids 78-107 of SEQ ID NO:8. The corresponding nucleotides can be routinely determined given the
sequences provided herein.

20 Some sequence identity was found to W01A6_1 and F35D11_11, C. Elegans proteins, designated in
a Dayhoff database as CEW01A6_10 and CELF35D11_11, respectively. Some sequence identity was also
30 found to an antigen to malaria and to restin, designated in a Dayhoff database as P_R05766 and AF014012_1,
respectively. Some sequence identity was also found to a microtubule binding protein and to myosin,
designated in a Dayhoff database as AF041382_1 and S07537, respectively. There is also some sequence
35 identity with 1-phosphatidylinositol-4, 5-bisphosphate, designated as PIP1_RAT.

EXAMPLE 7: Isolation of cDNA clones Encoding Human PRO190

40 A clone designated herein as DNA14232 was isolated as described in Example 2 above from a human
fetal retina tissue library. The DNA14232 sequence is shown in Figure 10 (SEQ ID NO:15). Based on the
45 DNA14232 sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained
the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for
PRO190. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed
to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length.
In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR
50 amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A
positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide
and one of the primer pairs.

5 A pair of PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-CTATACCTACTGTAGCTTCT-3' (SEQ ID NO:16); and
reverse PCR primer 5'-TCAGAGAATTCCCTICCAGGA-3' (SEQ ID NO:17).

10 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the DNA14232 sequence which had the following nucleotide sequence:

15 hybridization probe
5'-ACAGTGCTGTAGTCATCCTGTAATATGCTCCTGTCAACA-3' (SEQ ID NO:18).

10 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO190 gene using the probe oligonucleotide and one of the PCR primers.

20 RNA for construction of the cDNA libraries was isolated from human retina tissue (LIB94). The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of pRKSD that does not contain the SfiI site; see, Holmes et al., Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.

25 DNA sequencing of the clones isolated as described above gave sequences which include the full-length DNA sequence for PRO190 [herein designated as DNA23334-1392] (SEQ ID NO:13) and the derived protein sequence for PRO190.

30 20 The entire nucleotide sequence of DNA23334-1392 is shown in Figure 8 (SEQ ID NO:13). Clone DNA23334-1392 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 193-195 and which ends at the stop codon at nucleotide positions 1465-1467 (Figure 8). The predicted polypeptide precursor is 424 amino acids long (Figure 9). The full-length PRO190 protein shown in Figure 9 has an estimated molecular weight of about 48,500 daltons and a pI of about 8.65. Clone

35 25 DNA23334-1392 has been deposited with the ATCC. Regarding the sequence, it is understood that the deposited clone contains the correct sequence, and the sequences provided herein are based on known sequencing techniques.

40 Analyzing the amino acid sequence of SEQ ID NO:14, the putative transmembrane domains are at about amino acids 16-36, 50-74, 147-168, 229-250, 271-293, 298-318 and 328-368 of SEQ ID NO:14. N-glycosylation sites are at about amino acids 128-131, 204-207, 218-221 and 274-377 of SEQ ID NO:14. The corresponding nucleotides can be routinely determined given the sequences provided herein:

45 PRO190 has sequence identity with at least the following Dayhoff sequences designated as: CEZK896_2, JC5023, GMS1_SCHPO and S44668.

35 EXAMPLE 8: Isolation of cDNA clones Encoding Human PRO341

50 A clone designated herein as DNA12920 was isolated as described in Example 2 above from a human placenta tissue library. The DNA12920 sequence is shown in Figure 13 (SEQ ID NO:21). The DNA12920

5 sequence was then compared to various EST databases including public EST databases (e.g., GenBank), and
a proprietary EST database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify homologous EST
sequences. The comparison was performed using the computer program BLAST or BLAST2 [Altschul et al.,
Methods in Enzymology, 266:460-480 (1996)]. Those comparisons resulting in a BLAST score of 70 (or in
some cases, 90) or greater that did not encode known proteins were clustered and assembled into a consensus
10 DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). This
consensus sequence is herein designated DNA25314. Oligonucleotide primers based upon the DNA25314
sequence were then synthesized and employed to screen a human placenta cDNA library which resulted in the
identification of the DNA26288-1239 clone shown in Figure 11. The cloning vector was pRK5B (pRK5B is
15 a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science*, 253:1278-1280 (1991)),
and the cDNA size cut was less than 2800 bp.

10 A full length clone was identified that contained a single open reading frame with an apparent
translational initiation site at nucleotide positions 380-382, and a stop signal at nucleotide positions 1754-1756
(Figure 11, SEQ ID NO:19). The predicted polypeptide precursor is 458 amino acids long, has a calculated
molecular weight of approximately 50,264 daltons and an estimated pI of approximately 8.17. Analysis of the
15 full-length PRO341 sequence shown in Figure 12 (SEQ ID NO:20) evidences the presence of the following:
a signal peptide from about amino acid 1 to about amino acid 17, transmembrane domains from about amino
acid 171 to about amino acid 190, from about amino acid 220 to about amino acid 239, from about amino acid
259 to about amino acid 275, from about amino acid 286 to about amino acid 305, from about amino acid 316
20 to about amino acid 335, from about amino acid 353 to about amino acid 378 and from about amino acid 396
to about amino acid 417 and potential N-glycosylation sites from about amino acid 145 to about amino acid
147 and from about amino acid 155 to about amino acid 158. Clone DNA26288-1239 has been deposited with
30 ATCC on April 21, 1998 and is assigned ATCC deposit no. 209792.

25 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence
alignment analysis of the full-length sequence shown in Figure 12 (SEQ ID NO:20), evidenced homology
between the PRO341 amino acid sequence and the following Dayhoff sequences: S75696, H69788, D69852,
A69888, B64918, F64752, LPU89276_1, G64962, S52977 and S44253.

EXAMPLE 9: Isolation of cDNA clones Encoding Human PRO180

40 A clone designated herein as DNA12922 was isolated as described in Example 2 above from a human
30 placenta tissue library. The DNA12922 sequence is shown in Figure 16 (SEQ ID NO:24). The DNA12922
sequence was then compared to various EST databases including public EST databases (e.g., GenBank), and
a proprietary EST database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify homologous EST
sequences. The comparison was performed using the computer program BLAST or BLAST2 [Altschul et al.,
Methods in Enzymology, 266:460-480 (1996)]. Those comparisons resulting in a BLAST score of 70 (or in
45 some cases, 90) or greater that did not encode known proteins were clustered and assembled into a consensus
35 DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington).

5 An oligonucleotide probe was formed based upon the consensus sequence obtained above. This probe had the following sequence.

5'-ACCTGTTAGAAATGTGGTGGTTTCAGCAAGGCCTCAGTTT (SEQ ID NO:25).

10 This probe was used to screen a human placenta library prepared as described in paragraph 1 of Example 2 above. The cloning vector was pRK5B (pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science*, 253:1278-1280 (1991)), and the cDNA size cut was less than 2800 bp. A clone designated herein as DNA26843-1389 was obtained.

15 The entire nucleotide sequence of DNA26843-1389 is shown in Figure 14 (SEQ ID NO:22). Clone DNA26843-1389 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 121-123 and ending at the stop codon at nucleotide positions 919-921 (Figure 14). The predicted polypeptide precursor is 266 amino acids long (Figure 15). The full-length PRO180 protein shown in Figure 15 has an estimated molecular weight of about 29,766 daltons and a pI of about 8.39. Clone DNA26843-1389 has been deposited with the ATCC. Regarding the sequence, it is understood that the deposited clone contains the correct sequence, and the sequences provided herein are based on known sequencing techniques.

20 Still analyzing the amino acid sequence of SEQ ID NO:23, the transmembrane domains are at about amino acids 13-33 (type II), 54-73, 94-113, 160-180 and 122-141 of SEQ ID NO:23. N-myristylation sites are at about amino acids 57-62, 95-100, 99-104, 124-129 and 183-188 of SEQ ID NO:23. The corresponding nucleotides can be routinely determined given the sequences provided herein.

25 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST2 sequence alignment analysis of the full-length sequence shown in Figure 15 (SEQ ID NO:23), evidenced some sequence identity between the PRO180 amino acid sequence and the following Dayhoff sequences: CEC33A11_2, CEG11E6_5, CELW03A5_1 AND PEU83861_2 (NADH dehydrogenase subunit 4L, mitochondrion).

EXAMPLE 10: Isolation of cDNA clones Encoding Human PRO194

30 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This consensus sequence is herein DNA19464. Based on the DNA19464 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO194. PCR primers (forward and reverse) were synthesized based upon the DNA19464 sequence. Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA19464 sequence.

35 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO194 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal lung tissue (LIB25).

40 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO194 [herein designated as DNA26844-1394] (SEQ ID NO:27) and the derived protein sequence for PRO194.

5 The entire nucleotide sequence of DNA26844-1394 is shown in Figure 17 (SEQ ID NO:27). Clone
DNA26844-1394 contains a single open reading frame with an apparent translational initiation site at nucleotide
positions 81-83 and ending at the stop codon at nucleotide positions 873-875 (Figure 17). The predicted
polypeptide precursor is 264 amino acids long (Figure 18). The full-length PRO194 protein shown in Figure
18 has an estimated molecular weight of about 29,665 daltons and a pI of about 9.34. Analysis of the full-
length PRO194 sequence shown in Figure 18 (SEQ ID NO:28) evidences the presence of various important
polypeptides domains as shown in Figure 18. Clone DNA26844-1394 has been deposited with ATCC on June
2, 1998 and is assigned ATCC deposit no. 209926.

10 Analysis of the amino acid sequence of the full-length PRO194 polypeptide suggests that it does not
exhibit significant sequence similarity to any known human protein. However, an analysis of the Dayhoff
15 database (version 35.45 SwissProt 35) evidenced some homology between the PRO194 amino acid sequence
and the following Dayhoff sequences, HUMORFT_1, CET07F10_5, ATFCA9_12, F64934, YDJX_ECOLI,
10 ATAF00065719F29G20.19, H70002, S76980, H64934 and S76385.
20

EXAMPLE 11: Isolation of cDNA clones Encoding Human PRO203

15 A clone designated herein as DNA15618 was isolated as described in Example 2 above from a human
fetal lung tissue library. The DNA15618 sequence is shown in Figure 21 (SEQ ID NO:31). Oligonucleotide
25 probes were generated from the sequence of the DNA15618 molecule and were used to screen a human fetal
lung library (LIB26) prepared as described in paragraph 1 of Example 2 above. The cloning vector was
pRK5B (pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science*,
20 253:1278-1280 (1991)), and the cDNA size cut was less than 2800 bp.

30 A full length clone was identified that contained a single open reading frame with an apparent
translational initiation site at nucleotide positions 159-161 and ending at the stop codon found at nucleotide
positions 1200-1202 (Figure 19; SEQ ID NO:29). The predicted polypeptide precursor is 347 amino acids
long, has a calculated molecular weight of approximately 39,870 daltons and an estimated pI of approximately
35 6.76. Analysis of the full-length PRO203 sequence shown in Figure 20 (SEQ ID NO:30) evidences the
presence of the following: a type II transmembrane domain at about amino acid 64 to about amino acid 87;
possible N-glycosylation sites at about amino acid 147 to about amino acid 150, about amino acid 155 to about
amino acid 158, and about amino acid 237 to about amino acid 240; sequence identity with heavy-metal-
40 associated domain proteins at about amino acid 23 to about amino acid 45, and sequence identity with D-isomer
30 specific 2-hydroxyacid dehydrogenase at about amino acid 24 to about amino acid 34. Clone DNA30862-1396
was deposited with the ATCC on June 2, 1998, and is assigned ATCC deposit no. 209920.

45 Analysis of the amino acid sequence of the full-length PRO203 polypeptide suggests that it possesses
sequence similarity to GST ATPase, thereby indicating that PRO203 may be a novel GST ATPase. More
specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced homology between
35 the PRO203 amino acid sequence and the following Dayhoff sequences, AF008124_1, CFRCD1GEN_1, and
P_R82566.

EXAMPLE 12: Isolation of cDNA clones Encoding Human PRO290

5 An expressed sequence tag (EST) DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) was searched and an EST was identified that had homology to beige and FAN. An oligonucleotide probe based upon the identified EST sequence was then synthesized and used to screen human fetal kidney cDNA libraries in an attempt to identify a full-length cDNA clone. The oligonucleotide probe had the following sequence:

10 5' TGACTGCACTACCCCGTGGCAAGCTGTTGAGCCAGCTCAGCTG 3' (SEQ ID NO:34).

15 RNA for construction of cDNA libraries was isolated from human fetal kidney tissue. The cDNA libraries used to isolate the cDNA clones encoding human PRO290 were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRK8 or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science* 253:1278-1280 (1991)) in the unique Xhol and NotI.

20 A cDNA clone was identified and sequenced in entirety. The entire nucleotide sequence of DNA35680-1212 is shown in Figure 22 (SEQ ID NO:32). Clone DNA35680-1212 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 293-295, and a stop codon at nucleotide positions 3302-3304 (Figure 22; SEQ ID NO:32). The predicted polypeptide precursor is 1003 amino acids long.

25 It is currently believed that the PRO290 polypeptide is related to FAN and/or beige. Clone DNA35680-1212 has been deposited with ATCC and is assigned ATCC deposit no. 209790. It is understood that the deposited clone has the actual correct sequence rather than the representations provided herein. The 30 full-length PRO290 protein shown in Figure 23 has an estimated molecular weight of about 112,013 daltons and a pI of about 6.4.

EXAMPLE 13: Isolation of cDNA Clones Encoding Human PRO874

35 A consensus DNA sequence designated herein as DNA36459 was identified using phrap as described in Example 1 above. Based on the DNA36459 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the coding sequence for PRO874.

40 PCR primers (forward and reverse) were synthesized:

30 forward PCR primer 5'-TCGTGCCAGGGCTGATGTGC-3' (SEQ ID NO:37); and
reverse PCR primer 5'-GTCTTTACCCAGCCCCGGGATGCG-3' (SEQ ID NO:38).

45 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA36459 sequence which had the following nucleotide sequence:

hybridization probe

35 5'-GGCTTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGCTCTGGG-3' (SEQ ID NO:39).

50 In order to screen several libraries for a source of a clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate

5 clones encoding the PRO874 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal lung tissue (LIB25).

10 DNA sequencing of the clones isolated as described above gave the DNA sequence for PRO874 [herein designated as DNA40621-1440] (SEQ ID NO:35) and the derived protein sequence for PRO874.

15 The entire nucleotide sequence of DNA40621-1440 is shown in Figure 24 (SEQ ID NO:35). Clone DNA40621-1440 contains a single open reading frame ending at the stop codon at nucleotide positions 964-966 (Figure 24). The predicted polypeptide encoded by DNA40621-1440 is 321 amino acids long (Figure 25). The PRO874 protein shown in Figure 25 has an estimated molecular weight of about 36,194 daltons and a pI of about 9.85. Analysis of the PRO874 sequence shown in Figure 25 (SEQ ID NO:36) evidenced the presence of the following: a type II transmembrane domain at about amino acids 57-80; additional transmembrane domains at about amino acids 110-126, 215-231, and 254-274; potential N-glycosylation sites at about amino acids 16-19, 27-30, and 289-292; sequence identity with hypothetical YBR002c family proteins at about amino acids 276-287; and sequence identity with ammonium transporter proteins at about amino acids 204-230. Clone DNA40621-1440 was deposited with the ATCC on June 2, 1998, and is assigned ATCC deposit no. 209922.

20 15 Analysis of the amino acid sequence of the PRO874 polypeptide suggests that it is a novel multi-span transmembrane protein. However, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced sequence identity between the PRO874 amino acid sequence and the following Dayhoff sequences: S67049, AF054839_1, S73437, S52460, and HIVU80570_1.

25 20 **EXAMPLE 14: Isolation of cDNA Clones Encoding Human PRO710**

30 A yeast screening assay was employed to identify cDNA clones that encoded potential secreted proteins. Use of this yeast screening assay allowed identification of a single cDNA clone whose sequence (herein designated as DNA38190) is shown in Figure 28 (SEQ ID NO:42). Based on the DNA38190 sequence shown in Figure 28, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO710. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., *Current Protocols in Molecular Biology*, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

35 30 PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-TTCCGCAAAGAGTTCTACGAGGTGG-3' (SEQ ID NO:43)

reverse PCR primer 5'-ATTGACAACATTGACTGGCCTATGGG-3' (SEQ ID NO:44)

40 45 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the DNA38190 sequence which had the following nucleotide sequence

45 35 hybridization probe

50 5' -GTGGATGCTCTGTGTGCGTGCAAGATCCTTCAGGCCTTGTCCAGTGTGA-3' (SEQ ID NO:45)

5 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO710 gene using the probe oligonucleotide and one of the PCR primers.

10 RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue (LIB227). The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRK5D; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science*, 15 253:1278-1280 (1991)) in the unique Xhol and NotI sites.

10 A full length clone was identified that contained a single open reading frame with an apparent translational initiation site at nucleotide positions 67-69 and ending at the stop codon found at nucleotide positions 1765-1767 (Figure 26, SEQ ID NO:40). The predicted polypeptide precursor is 566 amino acids long, has a calculated molecular weight of approximately 65,555 daltons and an estimated pI of approximately 20 5.44. Analysis of the full-length PRO710 sequence shown in Figure 27 (SEQ ID NO:41) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 32, a transmembrane domain from about amino acid 454 to about amino acid 476, an aminoacyl-transfer RNA synthetase class-II 25 signature sequence from about amino acid 6 to about amino acid 26 and potential N-glycosylation sites from about amino acid 111 to about amino acid 114, from about amino acid 146 to about amino acid 149 and from about amino acid 292 to about amino acid 295. Clone DNA44161-1434 has been deposited with ATCC on 20 May 27, 1998 and is assigned ATCC deposit no. 209907.

30 Analysis of the amino acid sequence of the full-length PRO710 polypeptide suggests that it possesses significant sequence similarity to the CDC45 protein, thereby indicating that PRO710 may be a novel CDC45 homolog. More specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced significant homology between the PRO710 amino acid sequence and the following Dayhoff sequences, 35 25 HSAJ3728_1, CEF34D10_1, S64939, UMUS0276_1, TRHY_SHEEP, CELT14E8_1, RNA1_YEAST, LVU89340_1, HSU80736_1 and CEZK337_2.

EXAMPLE 15: Isolation of cDNA clones Encoding Human PRO1151

40 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described 30 in Example 1 above. This consensus sequence is herein designated DNA40665. Based on the DNA40665 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for 45 PRO1151.

PCR primers (forward and reverse) were synthesized:

35 forward PCR primer 5'-CCAGACGCTGCTTCGAAAGGGTC-3' (SEQ ID NO:48)

reverse PCR primer 5'-GGTCCCCGTAGGCCAGGTCCAGC-3' (SEQ ID NO:49)

5 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA40665 sequence which had the following nucleotide sequence

hybridization probe

5'-CTACTTCTTCAGCCTCAATGTGCACAGCTGGAATTACAAGGAGACGTACG-3' (SEQ ID NO:50)

10 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO1151 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue.

15 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1151 (designated herein as DNA44694-1500 [Figure 29, SEQ ID NO:46]; and the derived protein sequence for PRO1151.

20 The entire nucleotide sequence of DNA44694-1500 is shown in Figure 29 (SEQ ID NO:46). Clone DNA44694-1500 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 272-274 and ending at the stop codon at nucleotide positions 1049-1051 (Figure 29). The predicted polypeptide precursor is 259 amino acids long (Figure 30). The full-length PRO1151 protein shown in Figure 25 30 has an estimated molecular weight of about 28,770 daltons and a pI of about 6.12. Analysis of the full-length PRO1151 sequence shown in Figure 30 (SEQ ID NO:47) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 20, a potential N-glycosylation site from about amino acid 72 to about amino acid 75 and amino acid sequence blocks having homology to C1q domain-containing proteins from about amino acid 144 to about amino acid 178, from about amino acid 78 to about 30 amino acid 111 and from about amino acid 84 to about amino acid 117. Clone UNQ581 (DNA44694-1500) has been deposited with ATCC on August 11, 1998 and is assigned ATCC deposit no. 203114.

An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 30 (SEQ ID NO:47), evidenced significant homology between the PRO1151 amino acid sequence and the following Dayhoff sequences: ACR3_HUMAN, 35 25 HP25_TAMAS, HUMC1QB2_1, P_R99306, CA1F_HUMAN, JX0369, CA24_HUMAN, S32436, P_R28916 and CA54_HUMAN.

EXAMPLE 16: Isolation of cDNA clones Encoding Human PRO1282

40 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This consensus sequence is designated herein as DNA33778. Based on the DNA33778 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO1282.

45 PCR primers (forward and reverse) were synthesized:

35 forward PCR primer 5'TCTTCAGCCGCTTGCGAACCTC3' (SEQ ID NO:53); and

50 reverse PCR primer 5'TTGCTCACATCCAGCTCCTGCAGG3' (SEQ ID NO:54).

5 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA33778 sequence which had the following nucleotide sequence:

hybridization probe

5' TGGATGTTGTCCAGACAACCAAGCTGGAGCTGTATCCGAGGC3' (SEQ ID NO:55).

10 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO1282 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal liver.

15 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1282 (designated herein as DNA45495-1550 [Figure 31, SEQ ID NO:51]; and the derived protein sequence for PRO1282.

20 The entire coding sequence of PRO1282 is shown in Figure 31 (SEQ ID NO:51). Clone DNA45495-1550 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 120-122, and an apparent stop codon at nucleotide positions 2139-2141 (SEQ ID NO:51). The predicted polypeptide precursor is 673 amino acids long. The signal peptide is at about amino acids 1-23; the 25 transmembrane domain is at about amino acids 579-599; an EGF-like domain cysteine pattern signature starts at about amino acid 430; and leucine zipper patterns start at about amino acids 197 and 269 of SEQ ID NO:52, see Figure 32. Clone DNA45495-1550 has been deposited with the ATCC and is assigned ATCC deposit no. 203156. The full-length PRO1282 protein shown in Figure 32 has an estimated molecular weight of about 71,655 daltons and a pI of about 7.8.

30 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 32 (SEQ ID NO:52), revealed sequence identity between the PRO1282 amino acid sequence and the following Dayhoff sequences (data from database incorporated by reference): AB007876_1, RNPLGPV_1, MUSLRRP_1, ALS_PAPPA, AC004142_1, 35 ALS_HUMAN, AB014462_1, DMTARTAN_1, HSCHON03_1 and S46224.

40 EXAMPLE 17: Isolation of cDNA clones Encoding Human PRO358

45 Using the method described in Example 1 above, a single EST sequence was identified in the Incyte database, designated herein as INC3115949. Based on the INC3115949 EST sequence, oligonucleotides were synthesized to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for PRO358.

50 A pair of PCR primers (forward and reverse) were synthesized:

55 forward PCR primer 5'-TCCCACCAGGTATCATAACTGAA-3' (SEQ ID NO:58)

reverse PCR primer 5'-TTATAGACAATCTGTTCTCATCAGAGA-3' (SEQ ID NO:59)

A probe was also synthesized:

5' -AAAAAGCATACTTGAATGGCCAAGGATAGGTGTAAATG-3' (SEQ ID NO:60)

In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used

5 to isolate clones encoding the PRO358 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human bone marrow (LIB256). The cDNA libraries used to isolated the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to Sall hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRK8 or pRKD; 10 pRKSB is a precursor of pRKSD that does not contain the SfiI site; see, Holmes et al., *Science*, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.

15 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO358 (Figure 33, SEQ ID NO:56) and the derived protein sequence for PRO358 (Figures 34, SEQ ID NO:57).

10 The entire nucleotide sequence of the clone identified (DNA47361-1154) is shown in Figure 33 (SEQ ID NO:56). Clone DNA47361-1154 contains a single open reading frame with an apparent translational initiation site (ATG start signal) at nucleotide positions underlined in Figure 33. The predicted polypeptide precursor is 811 amino acids long, including a putative signal sequence (amino acids 1 to 19), an extracellular 15 domain (amino acids 20 to 575, including leucine rich repeats in the region from position 55 to position 575), a putative transmembrane domain (amino acids 576 to 595). Clone DNA47361-1249 has been deposited with 20 ATCC and is assigned ATCC deposit no. 209431.

25 **EXAMPLE 18: Isolation of cDNA clones Encoding Human PRO1310**

20 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This consensus sequence is designated herein as DNA37164. Based on the DNA37164 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO1310.

25 PCR primers (forward and reverse) were synthesized:

30 forward PCR primer: 5'GTTCTCAATGAGCTACCGTCCCC3' (SEQ ID NO:63) and

35 reverse PCR primer: 5'CGCGATGTAGTGGAACTCGGGCTC3' (SEQ ID NO:64).

40 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA47394 sequence which had the following nucleotide sequence:

45 hybridization probe:

50 5'ATCCGCATAAACCTCAGTCCTGGTTGATAATGGGAGCATCTGCATGAG3' (SEQ ID NO:65).

In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO1310 gene using the probe oligonucleotide and one of the PCR primers.

35 RNA for construction of the cDNA libraries was isolated from human fetal liver tissue.

40 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1310 and the derived protein sequence for PRO1310.

5 The entire coding sequence of PRO1310 is shown in Figure 35 (SEQ ID NO:61). Clone DNA47394-1572 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 326-328, and an apparent stop codon at nucleotide positions 2594-2596 (SEQ ID NO:61). The predicted polypeptide precursor is 765 amino acids long. The signal peptide is at about amino acids 1-25 of SEQ ID NO:62. Clone DNA47394-1572 has been deposited with ATCC and is assigned ATCC deposit no. 203109.

10 10 The full-length PRO1310 protein shown in Figure 36 has an estimated molecular weight of about 85,898 daltons and a pI of about 6.87.

15 15 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 36 (SEQ ID NO:62), revealed sequence identity between the PRO1310 amino acid sequence and the following Dayhoff sequences: AF017639_1, P_W36817,

20 10 JC5256, CBPH_HUMAN, MMU23184_1, CBPN_HUMAN, HSU83411_1, CEF01D4_7, RNU62897_1 and P_W11851.

20 20 **EXAMPLE 19: Isolation of cDNA Clones Encoding Human PRO698**

15 15 A yeast screening assay was employed to identify cDNA clones that encoded potential secreted proteins. Use of this yeast screening assay allowed identification of a single cDNA clone whose sequence (herein designated as DNA39906) is shown in Figure 39 (SEQ ID NO:68). Based on the DNA39906 sequence shown in Figure 39, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO698. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by

25 20 PCR amplification, as per Ausubel et al., *Current Protocols in Molecular Biology*, with the PCR primer pair.

30 30 A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

35 25 PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-AGCTGTGGTCATGGTGGTGTGGTG-3' (SEQ ID NO:69)

reverse PCR primer 5'-CTACCTTGGCCATAGGTGATCCGC-3' (SEQ ID NO:70)

40 35 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA39906 sequence which had the following nucleotide sequence

hybridization probe

5'-CATCAGCAAACCGTCTGTGGTTCACTGGAGAGGGTT-3' (SEQ ID NO:71)

45 40 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO698 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human bone marrow tissue (LIB255). The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or

5 pRKD; pRK5B is a precursor of pRK5D that does not contain the Sfil site; see, Holmes et al., Science,
253:1278-1280 (1991)) in the unique Xhol and NotI sites.

10 A full length clone was identified that contained a single open reading frame with an apparent
translational initiation site at nucleotide positions 14-16 and ending at the stop codon found at nucleotide
positions 1544-1546 (Figure 37, SEQ ID NO:66). The predicted polypeptide precursor is 510 amino acids
long, has a calculated molecular weight of approximately 57,280 daltons and an estimated pI of approximately
15 5.61. Analysis of the full-length PRO698 sequence shown in Figure 38 (SEQ ID NO:67) evidences the
presence of the following: a signal peptide from about amino acid 1 to about amino acid 20, potential N-
glycosylation sites from about amino acid 72 to about amino acid 75, from about amino acid 136 to about
amino acid 139, from about amino acid 193 to about amino acid 196, from about amino acid 253 to about
20 amino acid 256, from about amino acid 352 to about amino acid 355 and from about amino acid 411 to about
amino acid 414 an amino acid block having homology to legume lectin beta-chain proteins from about amino
acid 20 to about amino acid 39 and an amino acid block having homology to the HBGF/FGF family of proteins
from about amino acid 338 to about amino acid 365. Clone DNA48320-1433 has been deposited with ATCC
on May 27, 1998 and is assigned ATCC deposit no. 209904.

15 Analysis of the amino acid sequence of the full-length PRO698 polypeptide suggests that it possesses
25 significant sequence similarity to the olfactomedin protein, thereby indicating that PRO698 may be a novel
olfactomedin homolog. More specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35)
evidenced significant homology between the PRO698 amino acid sequence and the following Dayhoff
20 sequences, OLFM_RANCA, I73637, AB006686S3_1, RNU78105_1, RNU72487_1, P_R98225,
CELC48E7_4, CEF11C3_3, XLUB85970_1 and S42257.

30 **EXAMPLE 20: Isolation of cDNA Clones Encoding Human PRO732**

A yeast screening assay was employed to identify cDNA clones that encoded potential secreted
proteins. Use of this yeast screening assay allowed identification of a single cDNA clone whose sequence
35 (herein designated as DNA42580) is shown in Figure 45 (SEQ ID NO:77). The DNA42580 sequence was then
compared to a variety of known EST sequences to identify homologies. The EST databases employed included
public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ™, Incyte
Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST2
40 (Altshul et al., Methods in Enzymology 266:460-480 (1996)) as a comparison to a 6 frame translation of the
EST sequence. Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did
not encode known proteins were clustered and assembled into consensus DNA sequences with the program
“phrap” (Phil Green, University of Washington, Seattle, Washington).

45 Using the above analysis, a consensus DNA sequence was assembled relative to other EST sequences
using phrap. This consensus sequence is herein designated consen01. Proprietary Genentech EST sequences
35 were employed in the consensus assembly and they are herein designated DNA20239 (Figure 42; SEQ ID
NO:74), DNA38050 (Figure 43; SEQ ID NO:75) and DNA40683 (Figure 44; SEQ ID NO:76).

5 Based on the consen01 sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO732. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus
10 sequence is greater than about 1-1.5kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

15 PCR primers (forward and reverse) were synthesized:

10 forward PCR primer 5'-ATGTTTGTGTGGAAGTGCCCCG-3' (SEQ ID NO:78)

forward PCR primer 5'-GTCAACATGCTCCTCTGC-3' (SEQ ID NO:79)

reverse PCR primer 5'-AATCCATTGTGCACTGCAGCTCTAGG-3' (SEQ ID NO:80)

reverse PCR primer 5'-GAGCATGCCACCCTGGACTGAC-3' (SEQ ID NO:81)

20 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA 44143

15 sequence which had the following nucleotide sequence

hybridization probe

25 5'-GCCGATGCTGTCCTAGTGGAAACAACCTCCACTGTAACTAGATTGATCTATGCAC-3' (SEQ ID NO:82)

30 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was

20 screened by PCR amplification with the PCR primer pairs identified above. A positive library was then used
30 to isolate clones encoding the PRO732 gene using the probe oligonucleotide and one of the PCR primers.

35 RNA for construction of the cDNA libraries was isolated from human fetal lung tissue (LIB26). The
cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially
available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT
25 containing a NotI site, linked with blunt to Sall hemikinased adaptors, cleaved with NotI, sized appropriately
by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or
pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science,
253:1278-1280 (1991)) in the unique Xhol and NotI sites.

40 A full length clone was identified that contained a single open reading frame with an apparent
30 translational initiation site at nucleotide positions 88-90 and ending at the stop codon found at nucleotide
positions 1447-1449 (Figure 40, SEQ ID NO:72). The predicted polypeptide precursor is 453 amino acids
long, has a calculated molecular weight of approximately 50,419 daltons and an estimated pI of approximately
5.78. Analysis of the full-length PRO732 sequence shown in Figure 41 (SEQ ID NO:73) evidences the
45 presence of the following: a signal peptide from about amino acid 1 to about amino acid 28, transmembrane
domains from about amino acid 37 to about amino acid 57, from about amino acid 93 to about amino acid 109,
35 from about amino acid 126 to about amino acid 148, from about amino acid 151 to about amino acid 172, from
about amino acid 197 to about amino acid 215, from about amino acid 231 to about amino acid 245, from about
50 about amino acid 261 to about amino acid 270, and from about amino acid 285 to about amino acid 304.

5 amino acid 260 to about amino acid 279, from about amino acid 315 to about amino acid 333, from about
amino acid 384 to about amino acid 403 and from about amino acid 422 to about amino acid 447, potential N-
glycosylation sites from about amino acid 33 to about amino acid 36, from about amino acid 34 to about amino
acid 37, from about amino acid 179 to about amino acid 183, from about amino acid 298 to about amino acid
301, from about amino acid 337 to about amino acid 340 and from about amino acid 406 to about amino acid
409, an amino acid block having homology to the MIP family of proteins from about amino acid 119 to about
amino acid 149 and an amino acid block having homology to DNA/RNA non-specific endonuclease proteins
from about amino acid 279 to about amino acid 286. Clone DNA48334-1435 has been deposited with ATCC
on June 2, 1998 and is assigned ATCC deposit no. 209924.

10 15 Analysis of the amino acid sequence of the full-length PRO732 polypeptide suggests that it possesses
significant sequence similarity to the Diff33 protein, thereby indicating that PRO732 may be a novel Diff33
homolog. More specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced
20 significant homology between the PRO732 amino acid sequence and the following Dayhoff sequences,
HS179M20_2, MUSTETU_1, CER11H6_2, RATDRP_1, S51256, E69226, AE000869_1, JC4120,
CYB_PARTE and P_RS0619.

15

EXAMPLE 21: Isolation of cDNA clones Encoding Human PRO1120

25 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described
in Example 1 above. This consensus sequence is designated herein consen0352. The consen0352 sequence
was then extended using repeated cycles of BLAST and phrap to extend the consensus sequence as far as
20 possible using the sources of EST sequences discussed above. The extended consensus sequence is designated
herein as DNA34365. Based on the DNA34365 consensus sequence, oligonucleotides were synthesized: 1)
30 to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate
a clone of the full-length coding sequence for PRO1120.

PCR primers (forward and reverse) were synthesized:

35 25 forward PCR primers: 5'-GAAGCCGGCTGTGAATC-3' (SEQ ID NO:85),
5'-GGCCAGCTATCTCCGCAG-3' (SEQ ID NO:86), 5'-AAGGGCCTGCAAGAGAAAG-3' (SEQ ID
NO:87), 5'-CACTGGGACAACGTGGGG-3' (SEQ ID NO:88),
5'-CAGAGGCAACGTGGAGAG-3' (SEQ ID NO:89), and
40 30 reverse PCR primers: 5'-AAGTATTGTCATACAGTGTTC-3' (SEQ ID NO:90);
5'-TAGTACTTGGGCACGAGGTTGGAG-3' (SEQ ID NO:91), and 5'-
TCATACCAACTGCTGGTCATTGGC-3' (SEQ ID NO:92).

45 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the DNA34365
consensus sequence which had the following nucleotide sequence:

hybridization probe:

35 55 5'-CTCAAGCTGGACACGGAGCGGCCGGTGAATCGGTTTCACTTG-3' (SEQ ID NO:93).

In order to screen several libraries for a source of a full-length clone, DNA from the libraries was
50 screened by PCR amplification with the PCR primer pairs identified above. A positive library was then used

5 to isolate clones encoding the PRO1120 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue.

10 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1120 (designated herein as DNA48606-1479 [Figure 46, SEQ ID NO:83]; and the derived protein sequence for PRO1120.

15 5 The entire coding sequence of PRO1120 is shown in Figure 46 (SEQ ID NO:83). Clone DNA48606-1479 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 608-610 and an apparent stop codon at nucleotide positions 3209-3211. The predicted polypeptide precursor is 867 amino acids long. The full-length PRO1120 protein shown in Figure 47 has an estimated molecular weight of about 100,156 Daltons and a pI of about 9.44. Additional features of the PRO1120 polypeptide include a signal peptide at about amino acids 1-17; a sulfatase signature at about amino acids 86-98; regions of homology to sulfatases at about amino acids 87-106, 133-146, 216-229, 291-320, and 365-375; and potential N-glycosylation sites at about amino acids 65-68, 112-115, 132-135, 149-152, 171-174, 198-201, 241-245, 561-564, 608-611, 717-720, 754-757, and 764-767.

20 10 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 47 (SEQ ID NO:84), revealed significant 15 25 homology between the PRO1120 amino acid sequence and the following Dayhoff sequences: CELK09C4_1, GL6S_HUMAN, G65169, NCU89492_1, BCU44852_1, E64903, P_RS1355, STS_HUMAN, GA6S_HUMAN, and IDS_MOUSE. Clone DNA48606-1479 was deposited with the ATCC on July 1, 1998, and is assigned ATCC deposit no. 203040.

20 30 **EXAMPLE 22: Isolation of cDNA clones Encoding Human PRO537**

35 25 Use of the signal sequence algorithm described in Example 3 above allowed identification of an EST cluster sequence from the Incyte database, designated as Incyte EST cluster no. 29605. This EST cluster sequence was then compared to a variety of expressed sequence tag (EST) databases which included public 40 30 EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated DNA48350.

45 35 In light of an observed sequence homology between the DNA48350 consensus sequence and an EST sequence encompassed within the Merck EST clone no. R63443, the Merck EST clone R63443 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The sequence of this cDNA insert is shown in Figure 48 and is herein designated as DNA49141-1431.

50 30 Clone DNA49141-1431 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 97-99 and ending at the stop codon at nucleotide positions 442-444 (Figure 48).

5 The predicted polypeptide precursor is 115 amino acids long (Figure 49). The full-length PRO537 protein shown in Figure 49 has an estimated molecular weight of about 13,183 daltons and a pI of about 12.13. Analysis of the full-length PRO537 sequence shown in Figure 49 (SEQ ID NO:95) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 31, a potential N-glycosylation site from about amino acid 44 to about amino acid 47, potential N-myristylation sites from about amino acid 10

10 3 to about amino acid 8 and from about amino acid 16 to about amino acid 21 and an amino acid block having homology to multicopper oxidase proteins from about amino acid 97 to about amino acid 105. Clone DNA49141-1431 has been deposited with ATCC on June 23, 1998 and is assigned ATCC deposit no. 203003.

15 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 49 (SEQ ID NO:95), evidenced homology between the PRO537 amino acid sequence and the following Dayhoff sequences: A54523, CELF22H10_2, FKH4_MOUSE, OTX1_HUMAN, URBI_USTMA, KNOB_PLAFN, A32895_1, AF036332_1, HRG_HUMAN and HRP3_PLAFS.

20 **EXAMPLE 23: Isolation of cDNA clones Encoding Human PRO536**

15 Use of the signal sequence algorithm described in Example 3 above allowed identification of an EST cluster sequence from the Incyte database, designated herein as ss.clu2437.init. This EST cluster sequence was then compared to a variety of expressed sequence tag (EST) databases which included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated DNA48351.

30 In light of an observed sequence homology between the DNA48351 consensus sequence and an EST sequence encompassed within the Merck EST clone no. H11129, the Merck EST clone H11129 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The sequence of this cDNA insert is shown in Figure 50 and is herein designated as DNA49142-1430.

35 Clone DNA49142-1430 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 48-50 and ending at the stop codon at nucleotide positions 987-989 (Figure 50). The predicted polypeptide precursor is 313 amino acids long (Figure 51). The full-length PRO536 protein shown in Figure 51 has an estimated molecular weight of about 34,189 daltons and a pI of about 4.8. Analysis of the full-length PRO536 sequence shown in Figure 51 (SEQ ID NO:97) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 25, a potential N-glycosylation site from about amino acid 45 to about amino acid 48 and an amino acid sequence block having homology to sulfatase proteins from about amino acid 16 to about amino acid 26. Clone DNA49142-1430 has been deposited with ATCC on June 23, 1998 and is assigned ATCC deposit no. 203002.

5 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 51 (SEQ ID NO:97), evidenced homology between the PROS36 amino acid sequence and the following Dayhoff sequences: APU46857_1, PK2_DICDI, H64743, F5I14_18, CEAM_ECOLI, GEN14267, H64965, TCU39815_1, PSBJ_ODOSI and P_R06980.

10 5 **EXAMPLE 24: Isolation of cDNA clones Encoding Human PROS35**

15 Use of the signal sequence algorithm described in Example 3 above allowed identification of an EST cluster sequence from the Incyte database, designated herein as ss.clu12694.init. This EST cluster sequence was then compared to a variety of expressed sequence tag (EST) databases which included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altschul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated 20 10 DNA48352. Two proprietary Genentech EST sequences were employed in the assembly are are herein shown in Figures 54 and 55.

25 In light of an observed sequence homology between the DNA48352 consensus sequence and an EST sequence encompassed within the Merck EST clone no. H86994, the Merck EST clone H86994 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein.

30 20 The sequence of this cDNA insert is shown in Figure 52 and is herein designated as DNA49143-1429.

35 30 Clone DNA49143-1429 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 78-80 and ending at the stop codon at nucleotide positions 681-683 (Figure 52). The predicted polypeptide precursor is 201 amino acids long (Figure 53). The full-length PROS35 protein shown in Figure 53 has an estimated molecular weight of about 22,180 daltons and a pI of about 9.68.

40 35 Analysis of the full-length PROS35 sequence shown in Figure 53 (SEQ ID NO:99) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 25, a transmembrane domain from about amino acid 155 to about amino acid 174, a potential N-glycosylation site from about amino acid 196 to about amino acid 199 and FKBP-type peptidyl-prolyl cis-trans isomer signature sequences from about amino acid 62 to about amino acid 77, from about amino acid 87 to about amino acid 123 and from about amino acid 128 to about amino acid 141. Clone DNA49143-1429 has been deposited with ATCC on June 23, 1998 and is assigned ATCC deposit no. 203013.

45 35 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST- sequence alignment analysis of the full-length sequence shown in Figure 53 (SEQ ID NO:99), evidenced homology between the PROS35 amino acid sequence and the following Dayhoff sequences: S71237, P_R93551, P_R28980, S71238, FKB2_HUMAN, CELC05C8_1, S55383, S72485, CELC50F2_6 and S75144.

EXAMPLE 25: Isolation of cDNA clones Encoding Human PRO718

5 A cDNA sequence isolated in the amylase screen described in Example 2 (human fetal lung library) above is herein designated DNA43512 (see Figure 62; SEQ ID NO:108). The DNA43512 sequence was then compared to a variety of expressed sequence tag (EST) databases which included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated DNA45625.

10 Proprietary Genentech EST sequences were employed in the assembly and are herein shown in Figures 58-61.

15 Based on the DNA45625 sequence, oligonucleotide probes were generated and used to screen a human fetal lung library (LIB25) prepared as described in paragraph 1 of Example 2 above. The cloning vector was pRK5B (pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., *Science*, 253:1278-1280 (1991)), and the cDNA size cut was less than 2800 bp.

20 PCR primers (forward and reverse) were synthesized:

25 forward PCR primer 5'-GGGTGGATGGTACTGCTGCATCC-3' (SEQ ID NO:109)
reverse PCR primer 5'-TGTTGTGCTGTGGGAAATCAGATGTG-3' (SEQ ID NO:110)

30 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the DNA45625 sequence which had the following nucleotide sequence:

35 hybridization probe
5'-GTGCTGGAGGCTGTGCCGTTTGTCTGGCTAAATCGGG-3' (SEQ ID NO:111)

40 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO718 gene using the probe oligonucleotide and one of the PCR primers.

45 A full length clone was identified that contained a single open reading frame with an apparent translational initiation site at nucleotide positions 36-38 and ending at the stop codon found at nucleotide positions 607-609 (Figure 56; SEQ ID NO:102). The predicted polypeptide precursor is 157 amino acids long, has a calculated molecular weight of approximately 17,400 daltons and an estimated pI of approximately 5.78.

50 Analysis of the full-length PRO718 sequence shown in Figure 57 (SEQ ID NO:103) evidences the presence of the following: a type II transmembrane domain from about amino acid 21 to about amino acid 40, and other transmembrane domains at about amino acid 58 to about amino acid 78, about amino acid 95 to about amino acid 114, and about amino acid 127 to about amino acid 147; a cell attachment sequence from about amino acid 79 to about amino acid 81; and a potential N-glycosylation site from about amino acid 53 to about amino acid 56. Clone DNA49647-1398 has been deposited with ATCC on June 2, 1998 and is assigned ATCC deposit no. 209919.

55 Analysis of the amino acid sequence of the full-length PRO718 polypeptide suggests that it possesses no significant sequence similarity to any known protein. However, an analysis of the Dayhoff database

5 (version 35.45 SwissProt 35) evidenced some degree of homology between the PRO718 amino acid sequence and the following Dayhoff sequences: AF045606_1, AF039906_1, SPBC8D2_2, S63441, F64728, COX1_TRYBB, F64375, E64173, RPYGJT_3, MTCY261_23.

10 **EXAMPLE 26: Isolation of cDNA clones Encoding Human PRO872**

15 5 Use of the signal sequence algorithm described in Example 3 above allowed identification of a single Incyte EST sequence designated herein as clu120709.init. The clu120709.init sequence was then compared a proprietary EST DNA database (LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a BLAST score of 70

10 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated DNA48254.

20 20 In light of an observed sequence homology between the DNA48254 consensus sequence and an EST sequence encompassed within the Incyte EST clone no. 3438068, the Incyte EST clone 3438068 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The sequence of this cDNA insert is shown in Figure 63 and is the full-length DNA sequence for PRO872. Clone DNA49819-1439 was deposited with the ATCC on June 2, 1998, and is assigned ATCC deposit no. 25 25 209931.

30 25 The entire nucleotide sequence of DNA49819-1439 is shown in Figure 63 (SEQ ID NO:112). Clone DNA49819-1439 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 14-16 and ending at the stop codon at nucleotide positions 1844-1846 (Figure 63). The predicted polypeptide precursor is 610 amino acids long (Figure 64). The full-length PRO872 protein shown in Figure 64 has an estimated molecular weight of about 66,820 daltons and a pI of about 8.65. Analysis of the full-length PRO872 sequence shown in Figure 64 (SEQ ID NO:113) evidences the presence of the following features: a signal peptide at amino acid 1 to about 18, putative transmembrane domains at about amino acids 70-87, 200-222 and 568-588; sequence identity with bacterial-type phytoene dehydrogenase protein at about amino acids 71-105; sequence identity with a regulator of chromosome condensation (RCC1) signature 2 at about amino acids 201-211; leucine zipper patterns at about amino acids 214-235, 221-242, 228-249 and 364-385; a potential N-glycosylation site at about amino acids 271-274; and a glycosaminoglycan attachment site at about amino acids 75-78. Analysis of the amino acid sequence of the full-length PRO872 polypeptide using the Dayhoff database (version 35.45 SwissProt 35) evidenced homology between the PRO872 amino acid sequence and the following Dayhoff sequences: PRCRTI_1, S75951, S74689, CELF37C4_3, CRTI_RHOCA, S76617, YNI2_METTL, MTV014_14, AOFB_HUMAN, and MMU70429_1.

40 30 45 35 **EXAMPLE 27: Isolation of cDNA clones Encoding Human PRO1063**

50 50 Use of the signal sequence algorithm described in Example 3 above allowed identification of a single Incyte EST cluster sequence designated herein as ss.clu119743.init. The Incyte EST cluster sequence

5 ss.clu119743.init sequence was then compared to a variety of expressed sequence tag (EST) databases which included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)).
10 Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained therefrom is herein designated DNA48288.

15 In light of an observed sequence homology between the DNA48288 consensus sequence and an EST sequence encompassed within the Incyte EST clone no. 2783726, the Incyte EST clone 2783726 was purchased
10 and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The sequence of this cDNA insert is shown in Figure 65 and is herein designated DNA49820-1427.

20 The full length clone shown in Figure 65 contained a single open reading frame with an apparent translational initiation site at nucleotide positions 90-92 and ending at the stop codon found at nucleotide positions 993-995 (Figure 65; SEQ ID NO:114). The predicted polypeptide precursor is 301 amino acids long,
25 has a calculated molecular weight of approximately 33,530 daltons and an estimated pI of approximately 4.80. Analysis of the full-length PRO1063 sequence shown in Figure 66 (SEQ ID NO:115) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 21, potential N-glycosylation sites from about amino acid 195 to about amino acid 198, from about amino acid 217 to about amino acid 220 and from about amino acid 272 to about amino acid 275, a glycosaminoglycan attachment site from about amino acid 267 to about amino acid 270, a microbodies C-terminal targeting signal site from about amino acid 299 to about amino acid 301, a type II fibronectin collagen-binding domain homology sequence from about amino acid 127 to about amino acid 168 and a fructose-bisphosphate aldolase class II protein homology sequence from about amino acid 101 to about amino acid 118. Clone DNA49820-1427 has been deposited with the ATCC on June 2, 1998 and is assigned ATCC deposit no. 209932.

30 35 Analysis of the amino acid sequence of the full-length PRO1063 polypeptide suggests that it possesses sequence similarity to the human type IV collagenase protein. More specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced some degree of homology between the PRO1063 amino acid sequence and the following Dayhoff sequences, S68303, CFU68533_1, P_P91139, RNU65656_1, PA2R_RABIT, MMUS6734_1, FINC_XENLA, A48925, P_R92778 and FA12_HUMAN.

40 45 **EXAMPLE 28: Isolation of cDNA clones Encoding Human PRO619**

50 Use of the signal sequence algorithm described in Example 3 above allowed identification of an EST cluster sequence from the Incyte database, designated herein as 88434. This EST cluster sequence was then compared to a variety of expressed sequence tag (EST) databases which included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify existing homologies. The homology search was performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-480 (1996)). Those comparisons resulting in a

5 BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and
assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington,
Seattle, Washington).

10 In light of an observed sequence homology between the consensus sequence and an EST sequence
encompassed within the Incyte EST clone no. 1656694, the Incyte EST clone 1656694 was purchased and the
15 cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The
sequence of this cDNA insert is shown in Figure 67 and is herein designated as DNA49821-1562.

15 The full length clone shown in Figure 67 contained a single open reading frame with an apparent
translational initiation site at nucleotide positions 81-83 and ending at the stop codon found at nucleotide
10 positions 450-452 (Figure 67; SEQ ID NO:116). The predicted polypeptide precursor (Figure 68, SEQ ID
NO:117) is 123 amino acids long including a predicted signal peptide at about amino acids 1-20. PRO619 has
a calculated molecular weight of approximately 13,710 daltons and an estimated pI of approximately 5.19.
Clone DNA49821-1562 was deposited with the ATCC on June 16, 1998 and is assigned ATCC deposit no.
20 209981.

15 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence
alignment analysis of the full-length sequence shown in Figure 68 (SEQ ID NO:117), revealed significant
homology between the PRO619 amino acid sequence and the following Dayhoff sequences: S35302,
25 D87009_1, HSU93494_1, HUMIGLAM5_1, D86999_2, HUMIGLYM1_1, HUMIGLYMKE_1, A29491_1,
A29498_1, and VPR2_MOUSE.

20 **EXAMPLE 29: Isolation of cDNA clones Encoding Human PRO943**

30 A consensus DNA sequence encoding PRO943 was assembled relative to other EST sequences using
phrap as described in Example 1 above. This consensus sequence was then extended using repeated cycles of
BLAST and phrap to extend the consensus sequence as far as possible using the sources of EST sequences
discussed above. The extended consensus sequence is herein designated DNA36360. Based on the DNA36360
35 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained
the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for
PRO943.

40 PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-CGAGATGACGCCGAGCCCC-3' (SEQ ID NO:120)

45 reverse PCR primer 5'-CGGTTGGACACGCCGCAGGTG-3' (SEQ ID NO:121)

50 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA36360
sequence which had the following nucleotide sequence

hybridization probe

5'-TGCTGCTCCTGCTGCCGCCGCTGCTGCTGGGGGCCTCCGCCGG-3' (SEQ ID NO:122)

55 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was
screened by PCR amplification with the PCR primer pair identified above. A positive library was then used
to isolate clones encoding the PRO943 gene using the probe oligonucleotide and one of the PCR primers.

5 RNA for construction of the cDNA libraries was isolated from human fetal brain tissue.

10 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO943 (designated herein as DNA52192-1369 [Figure 69, SEQ ID NO:118]) and the derived protein sequence for PRO943.

15 The entire nucleotide sequence of DNA52192-1369 is shown in Figure 69 (SEQ ID NO:118). Clone DNA52192-1369 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 150-152 and ending at the stop codon at nucleotide positions 1662-1664 (Figure 69). The predicted polypeptide precursor is 504 amino acids long (Figure 70). The full-length PRO943 protein shown in Figure 70 has an estimated molecular weight of about 54,537 daltons and a pI of about 10.04. Analysis of the full-length PRO943 sequence shown in Figure 70 (SEQ ID NO:119) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 17, a transmembrane domain from about amino acid 376 to about amino acid 396, tyrosine kinase phosphorylation sites from about amino acid 212 to about amino acid 219 and from about amino acid 329 to about amino acid 336, potential N-glycosylation sites from about amino acid 111 to about amino acid 114, from about amino acid 231 to about amino acid 234, from about amino acid 255 to about amino acid 258 and from about amino acid 293 to about amino acid 296 and an immunoglobulin and MHC protein sequence homology block from about amino acid 219 to about amino acid 236. Clone DNA52192-1369 has been deposited with ATCC on July 1, 1998 and is assigned ATCC deposit no. 203042.

20 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 70 (SEQ ID NO:119), evidenced significant homology between the PRO943 amino acid sequence and the following Dayhoff sequences: B49151, A39752, FGR1_XENLA, S38579, RATHBFGFRB_1, TVHU2F, FGR2_MOUSE, CEK3_CHICK, P_R21080 and A27171_1.

30 **EXAMPLE 30: Isolation of cDNA clones Encoding Human PRO1188**

35 A consensus DNA sequence was assembled relative to other EST sequences using the program "phrap" as described in Example 1 above. This consensus sequence is designated herein as DNA45679. Based on the DNA45679 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO1188.

40 PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-CTGGTGCCTAACAGGGAGCAG-3' (SEQ ID NO:125)

reverse PCR primer 5'-CCATTGTGCAGGTCAGGTACAG-3' (SEQ ID NO:126)

45 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA45679 sequence which had the following nucleotide sequence:

50 hybridization probe

5'-CTGGAGCAAGTGCTCAGCTGCCTGTGGTCAGACTGGGTC-3' (SEQ ID NO:127)

5 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pair identified above. A positive library was then used to isolate clones encoding the PRO1188 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue.

10 10 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1188 (designated herein as DNA52598-1518 [Figure 71, SEQ ID NO:123]); and the derived protein sequence for PRO1188.

15 15 The entire coding sequence of PRO1188 is shown in Figure 71 (SEQ ID NO:123). Clone DNA52598-1518 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 136-138 and an apparent stop codon at nucleotide positions 3688-3690. The predicted polypeptide precursor is 1184 amino acids long. The full-length PRO1188 protein shown in Figure 72 has an estimated molecular weight of about 132,582 Daltons and a pI of about 8.80. Additional features include: a signal peptide at about amino acids 1-31; an ATP/GTP binding site motif A (P-loop) at about amino acids 266-273; an aldehyde dehydrogenases cysteine active site at about amino acids 188-199; growth factor and cytokines receptors family signature 2 at about amino acids 153-159; and potential N-glycosylation sites at about amino acids 129-132, 132-135, 346-349, 420-423, 550-553, 631-634, 1000-1003, and 1056-1059.

20 20 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 72 (SEQ ID NO:124), revealed significant homology between the PRO1188 amino acid sequence and the following Dayhoff sequences: SSU83114_1, S56015, CET21B6_4, CELT19D2_1, and TSPI_MOUSE.

25 25 Clone DNA52598-1518 has been deposited with ATCC and is assigned ATCC deposit no 203107.

30 30 **EXAMPLE 31: Isolation of cDNA clones Encoding Human PRO1133**

35 35 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This sequence was extended using repeated cycles of phrap. The extended consensus sequence is designated herein DNA38102. Based on the DNA38102 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PRO1133.

40 40 PCR primers (two forward and one reverse) were synthesized:

forward PCR primer 1 5'-TCGATTATGGACGAAACATGGCAGC-3' (SEQ ID NO:130);

30 30 forward PCR primer 2 5'-TTCTGAGATCCCTCATCCTC-3' (SEQ ID NO:131); and

reverse primer 5'-AGGTTCAGGGACAGCAAGTTGGG-3' (SEQ ID NO:132).

45 45 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA38102 sequence which had the following nucleotide sequence:

hybridization probe

35 35 5'TTTGCTGGACCTCGGCTACGGAATTGGCTCCCTACGGACAGCTGGAT3' (SEQ ID NO:133).

50 50 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with a PCR primer pair identified above. A positive library was then used to

5 isolate clones encoding the PRO1133 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue.

10 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO1133 and the derived protein sequence for PRO1133.

15 The entire coding sequence of PRO1133 is shown in Figure 73 (SEQ ID NO:128). Clone DNA53913-1490 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 266-268 and an apparent stop codon at nucleotide positions 1580-1582 of SEQ ID NO:128. The predicted polypeptide precursor is 438 amino acids long. The signal peptide is at amino acids 1-18 of SEQ ID NO:129. EGF-like domain cysteine pattern signatures start at 315 and 385 of SEQ ID NO:129 as shown in Figure 74. Clone DNA53913-1490 has been deposited with ATCC and is assigned ATCC deposit no. 10 203162. The full-length PRO1133 protein shown in Figure 74 has an estimated molecular weight of about 49,260 daltons and a pI of about 6.15.

20 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 74 (SEQ ID NO:129), revealed some sequence identity between the PRO1133 amino acid sequence and the following Dayhoff sequences (data from the 25 database incorporated herein): AF002717_1, LMG1_HUMAN, B54665, UNC6_CAEEL, LML1_CAEEL, LMAS_MOUSE, MMU88353_1, LMA1_HUMAN, HSLN2C64_1 and AF005258_1.

EXAMPLE 32: Isolation of cDNA clones Encoding Human PRO784

30 An initial DNA sequence (SEQ ID NO:136), referred to herein as DNA44661 and shown in Figure 77, was identified using a yeast screen, in a human fetal lung cDNA library that preferentially represents the 3' ends of the primary cDNA clones. DNA44661 was then compared to ESTs from public databases (e.g., GenBank), and a proprietary EST database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA), using the computer program BLAST or BLAST2 [Altschul et al., *Methods in Enzymology*, 266:460-480 (1996)]. The ESTs were then clustered and assembled into a consensus DNA sequence using the computer program "phrap" 35 (Phil Green, University of Washington, Seattle, Washington). The consensus sequence obtained is designated herein as "DNA45463". Based on the DNA45463 consensus sequence, oligonucleotides were synthesized for use as probes to isolate a clone of the full-length coding sequence for PRO784 from a human fetal lung cDNA library.

40 The full length DNA53978-1443 clone shown in Figure 75 contained a single open reading frame with 30 an apparent translational initiation site at nucleotide positions 37-39 and ending at the stop codon found at nucleotide positions 821-823 (Figure 75; SEQ ID NO:134). The predicted polypeptide precursor (Figure 76, SEQ ID NO:135) is 228 amino acids long. PRO784 has a calculated molecular weight of approximately 45 25,735 Daltons and an estimated pI of approximately 5.45. PRO784 has the following features: a signal peptide at about amino acid 1 to about 15; transmembrane domains at about amino acids 68 to about 87 and 35 at about 183 to about 204; potential N-myristylation sites at about amino acids 15-20, 51-56, 66-60, 163-168, and 206-211; and an RNP-1 protein RNA-binding region at about amino acids 108 to about 117.

5 Clone DNA53978-1443 was deposited with ATCC on June 16, 1998, and is assigned ATCC deposit
no. 209983.

10 Based on a BLAST and FastA sequence alignment analysis (using the ALIGN computer program) of
the full-length sequence, PRO784 shows amino acid sequence identity to the following proteins: RNU42209_1,
MMU91538_1, CGU91742_1, CELF55A4_6, SC22_YEAST, and F48188.

15 **EXAMPLE 33: Isolation of cDNA Clones Encoding Human PRO783**

20 A yeast screening assay was employed to identify cDNA clones that encoded potential secreted
proteins. Use of this yeast screening assay allowed identification of a single cDNA clone, designated herein
as DNA45201 (Figure 80; SEQ ID NO:139).

25 The DNA45201 sequence was then used to search expressed sequence tag (EST) databases for the
presence of potential homologies. The EST databases included public EST databases (e.g., GenBank) and a
proprietary EST DNA database (LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA). The search was
performed using the computer program BLAST or BLAST2 (Altshul et al., *Methods in Enzymology* 266:460-
480 (1996)). Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did
not encode known proteins were clustered and assembled into a consensus DNA sequence with the program
“phrap” (Phil Green, Univ. of Washington, Seattle, Washington). The consensus sequence obtained is herein
designated as “consen01”. A proprietary Genentech EST sequence was used in the consensus assembly and
is herein designated as DNA14575 (Figure 81; SEQ ID NO:140).

30 Based on the consen01 sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA
library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length
coding sequence for PRO783. In order to screen several libraries for a full-length clone, DNA from the
libraries was screened by PCR amplification, as per Ausubel et al., *Current Protocols in Molecular Biology*,
with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest
using the probe oligonucleotide and one of the primer pairs.

35 PCR primers (forward and reverse) were synthesized:

forward PCR primer 5'-GACTGTATCTGAGCCCCAGACTGC-3' (SEQ ID NO:141),

forward PCR primer 5'-TCAGCAATGAGGTGCTGCTC-3' (SEQ ID NO:142), and

reverse PCR primer 5'-TGAGGAAGATGAGGGACAGGTTGG-3' (SEQ ID NO:143).

40 Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consen01
sequence which had the following nucleotide sequence:

hybridization probe

5'-TATGGAAGCACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCC-3' (SEQ ID NO:144).

45 In order to screen several libraries for a source of a full-length clone, DNA from the libraries was
screened by PCR amplification with a PCR primer pair identified above. A positive library was then used to
isolate clones encoding the PRO783 gene using the probe oligonucleotide and one of the PCR primers.

50 RNA for construction of the cDNA libraries was isolated from human fetal kidney tissue (LIB228).

The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially

5 available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to Sall hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRK8 or pRKD; pRK8 is a precursor of pRKSD that does not contain the SfiI site; see, Holmes et al., *Science*, 253:1278-1280 (1991)) in the unique Xhol and NotI sites.

10 5 DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PRO783 [herein designated as DNA53996-1442] (SEQ ID NO:137) and the derived protein sequence for PRO783.

15 10 The entire nucleotide sequence of DNA53996-1442 is shown in Figure 78 (SEQ ID NO:137). Clone DNA53996-1442 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 310-312 and ending at the stop codon at nucleotide positions 1777-1779 (Figure 78). The predicted polypeptide precursor is 489 amino acids long (Figure 79). The full-length PRO783 protein shown in Figure 79 has an estimated molecular weight of about 55,219 daltons and a pI of about 8.47. Analysis of the full-length PRO783 sequence shown in Figure 79 (SEQ ID NO:138) evidences the presence of the following features: transmembrane domains located at about amino acids 23-42, 67-89, 111-135, 154-176, 194-218, 15 15 296-319, 348-370, 387-410 and 427-452; leucine zipper patterns located at about amino acids 263-283 and 399-420; a potential tyrosine kinase phosphorylation site at about amino acids 180-187; potential N-glycosylation sites at about amino acids 105-108 and 121-124; potential cAMP- and a cGMP-dependent protein kinase phosphorylation site at about amino acids 288-291; and a region having sequence identity with bacterial rhodopsins retinal binding site protein at about amino acids 190-218.

20 20 An analysis of the Dayhoff database (version 35.45 SwissProt 35) shows some sequence identity between the PRO783 amino acid sequence and the following Dayhoff sequences: YNC2_CAEEL, D64048, ATAC002332_3F4P9.3, NY2R_SHEEP, and VSH_MUMPA.

25 25 Clone DNA53996-1442 was deposited with the ATCC on June 2, 1998, and is assigned ATCC deposit no. 209921.

30 30 **EXAMPLE 34: Isolation of cDNA Clones Encoding Human PRO820**

35 35 An expressed sequence tag (EST) DNA database (Merck/Wash. U) was searched and an EST designated EST no. AA504080, Merck clone 825136, was identified (library 312, human B-cell tonsil). Homology searches revealed that this EST showed sequence identity with low affinity immunoglobulin gamma Fc receptor II. DNA sequencing gave the full-length DNA sequence for PRO820 and the derived protein sequence for PRO820.

40 45 45 The entire nucleotide sequence of DNA56041-1416 is shown in Figure 82 (SEQ ID NO:145). Clone DNA56041-1416 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 115-117 and ending at the stop codon at nucleotide positions 487-489 (Figure 82). The predicted polypeptide precursor is 124 amino acids long (Figure 83). The full-length PRO820 protein shown in Figure 83 has an estimated molecular weight of about 14,080 daltons and a pI of about 7.48. Clone DNA56041-1416 50 55 has been deposited with ATCC. Regarding the sequence, it is understood that the deposited clone contains the

5 correct sequence, and the sequences provided herein are based on known sequencing techniques.

Still analyzing the amino acid sequence of SEQ ID NO:146, the putative signal peptide is at about amino acids 1-15 of SEQ ID NO:146. Protein kinase C phosphorylation sites are at about amino acids 20-22 and 43-45 of SEQ ID NO:146. An N-myristylation site is at about amino acids 89-94 of SEQ ID NO:146. An immunoglobulin and major histocompatibility complex domain is at about amino acids 83-90 of SEQ ID NO:146. The corresponding nucleotides can be routinely determined given the sequences provided herein.

10 **EXAMPLE 35: Isolation of cDNA Clones Encoding Human PRO1080**

15 A consensus DNA sequence was assembled relative to other EST sequences using phrap and was extended using repeated cycles of BLAST and phrap so as to extend the consensus sequence as far as possible
10 using the sources of the EST sequences as described in Example 1 above. The consensus sequence is designated herein as DNA52640. An EST proprietary to Genentech was employed in the consensus assembly and is herein designated as DNA36527 (Figure 86; SEQ ID NO:149).

20 In light of an observed sequence homology between the DNA36527 consensus sequence and an EST sequence encompassed within the Merck EST clone no. 526423, the Merck EST clone 526423 was purchased
15 and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein.
The sequence of this cDNA insert is shown in Figure 84 and is herein designated as DNA56047-1456.

25 The entire nucleotide sequence of DNA56047-1456 is shown in Figure 84 (SEQ ID NO:147). Clone
DNA56047-1456 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 159-161 and ending at the stop codon at nucleotide positions 1233-1235 of SEQ ID NO:147 (Figure
20 84). The predicted polypeptide precursor is 358 amino acids long (Figure 85). The full-length PRO1080
protein shown in Figure 85 has an estimated molecular weight of about 40,514 daltons and a pI of about 6.08.
30 Clone DNA56047-1456 has been deposited with ATCC on June 9, 1998. It is understood that the deposited
clone has the actual nucleic acid sequence and that the sequences provided herein are based on known
sequencing techniques.

35 25 Also shown in Figure 85 are the approximate locations of the signal peptide, cell attachment site, Nt-DnaJ domain signature, region having sequence identity with Nt-DnaJ domain proteins, and N-glycosylation
sites. The corresponding nucleic acids of these amino acid sequences and others provided herein can be
routinely determined by the information provided herein.

40 30 **EXAMPLE 36: Isolation of cDNA Clones Encoding Human PRO1079**

A consensus DNA sequence was assembled relative to other EST sequences using phrap as described
in Example 1 above, and is herein designated DNA52714. Based on information provided by the assembly,
45 the clone for Merck EST no. HO6898 was obtained and sequenced, thereby giving the nucleotide sequence
designated herein as DNA56050-1455. The entire nucleotide sequence of DNA56050-1455 is shown in Figure
35 87 (SEQ ID NO:150). Clone DNA56050-1455 contains a single open reading frame with an apparent
translational initiation site at nucleotide positions 183-185 and ending at the stop codon at nucleotide positions
861-863 (Figure 87). The predicted polypeptide precursor is 226 amino acids long (Figure 88). The full-

length PRO1079 protein shown in Figure 88 has an estimated molecular weight of about 24,611 Daltons and a pI of about 4.85. Analysis of the full-length PRO1079 sequence shown in Figure 88 (SEQ ID NO:3) evidences the presence of the following features: a signal peptide at about amino acid 1-29; potential N-myristylation sites at about amino acids 10-15, and 51-56; homology to photosystem I psaG and psaK proteins at about amino acids 2 to 20; and homology to prolyl endopeptidase family serine proteins at about amino acids 150 to 163.

Analysis of the amino acid sequence of the full-length PRO1079 polypeptide using the Dayhoff database (version 35.45 SwissProt 35) evidenced some sequence identity between the PRO1079 amino acid sequence and the following Dayhoff sequences: CEK10C3_4, MMU50734_1, D69503, AF051149_1, and VSMP_CVMS.

Clone UNQ536 (DNA56050-1455) was deposited with the ATCC on June 22, 1998, and is assigned ATCC deposit no. 203011.

EXAMPLE 37: Isolation of cDNA clones Encoding Human PRO793

A cDNA clone (DNA56110-1437) encoding a native human PRO793 polypeptide was identified by a yeast screen, in a human skin tumor cDNA library that preferentially represents the 5' ends of the primary cDNA clones. The yeast screen employed identified a single EST clone designated herein as DNA50177 (Figure 91; SEQ ID NO:154). The DNA50177 sequence was then compared to various EST databases including public EST databases (e.g., GenBank), and a proprietary EST database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) to identify homologous EST sequences. The comparison was performed using the computer program BLAST or BLAST2 [Altschul et al., *Methods in Enzymology*, 266:460-480 (1996)]. Those comparisons resulting in a BLAST score of 70 (or in some cases, 90) or greater that did not encode known proteins were clustered and assembled into a consensus DNA sequence with the program "phrap" (Phil Green, University of Washington, Seattle, Washington). This consensus sequence is herein designated DNA50972.

In light of an observed sequence homology between the DNA50972 consensus sequence and an EST sequence encompassed within the Merck EST clone no. N33874, the Merck EST clone N33874 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein. The sequence of this cDNA insert is shown in Figure 89 and is herein designated as DNA56110-1437.

The full-length DNA56110-1437 clone shown in Figure 89 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 77-79 and ending at the stop codon at nucleotide positions 491-493 (Figure 89). The predicted polypeptide precursor is 138 amino acids long (Figure 90). The full-length PRO793 protein shown in Figure 90 has an estimated molecular weight of about 15,426 daltons and a pI of about 10.67. Analysis of the full-length PRO793 sequence shown in Figure 90 (SEQ ID NO:153) evidences the presence of the following: transmembrane domains from about amino acid 12 to about amino acid 30, from about amino acid 33 to about amino acid 52, from about amino acid 69 to about amino acid 89 and from about amino acid 93 to about amino acid 109, potential N-myristylation sites from about amino acid 11 to about amino acid 16, from about amino acid 51 to about amino acid 56 and from about amino acid 116

5 to about amino acid 121 and an amino acid sequence block having homology to an aminoacyl-transfer RNA synthetase class-II protein from about amino acid 49 to about amino acid 59. Clone DNA56110-1437 has been deposited with ATCC on August 11, 1998 and is assigned ATCC deposit no. 203113.

10 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST-2 sequence alignment analysis of the full-length sequence shown in Figure 90 (SEQ ID NO:153), evidenced certain homology between the PRO793 amino acid sequence and the following Dayhoff sequences: S47453, AF015193_12, MTEHGNS9_2, E64030, H69784, D64995, CD53_MOUSE, GEN8006, AE001138_7 and COX2_STRPU.

15 **EXAMPLE 38: Isolation of cDNA Clones Encoding Human PRO1016**

10 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. The consensus sequence obtained is herein designated DNA53502.

20 In light of an observed sequence homology between the DNA53502 consensus sequence and an EST sequence encompassed within the Merck EST clone no. 38680, the Merck EST clone 38680 was purchased and the cDNA insert was obtained and sequenced. It was found that this insert encoded a full-length protein.

25 The sequence of this cDNA insert is shown in Figure 92.

30 The entire nucleotide sequence of DNA56113-1378 is shown in Figure 92 (SEQ ID NO:155). Clone DNA56113-1378 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 168-170 and ending at the stop codon at nucleotide positions 1302-1304 (Figure 92). The predicted polypeptide precursor is 378 amino acids long (Figure 93). The full-length PRO1016 protein shown in Figure 93 has an estimated molecular weight of about 44,021 daltons and a pI of about 9.07. Clone DNA56113-1378 has been deposited with the ATCC. Regarding the sequence, it is understood that the deposited clone contains the correct sequence, and the sequences provided herein are based on known sequencing techniques.

35 Analysis of the amino acid sequence of the full-length PRO1016 polypeptide suggests that portions of it possess sequence identity with acyltransferase, thereby indicating that PRO1016 may be a novel acyltransferase.

40 Still analyzing the amino acid sequence of SEQ ID NO:156, the putative signal peptide is at about amino acids 1-18 of SEQ ID NO:156. The transmembrane domain(s) are at about amino acids 332-352 and 305-330 of SEQ ID NO:156. The fructose-bisphosphate aldolase class-II protein homology sequence is at about amino acids 73-90 of SEQ ID NO:156. The extradiol ring-cleavage dioxygenase protein is at about amino acids 252-275 of SEQ ID NO:156. The corresponding nucleotides can be routinely determined given the sequences provided herein.

45 The specific Dayhoff database designation names of sequences to which PRO1016 has sequence identity with include the following: S52645, P_RS9712, P_R99249, P_RS9713, BNAGPATRF_1, CELT05H4_15 and CELZK40_1.

35 **EXAMPLE 39: Isolation of cDNA Encoding Human PRO1013**

50 A consensus DNA sequence was assembled relative to other EST sequences using phrap as described