Chapter 2 Properties of electromagnetic waves

- Basic information on electromagnetic waves in free space or other uniform media, but no rigorous development
- Maxwell's equations (brief reference to them)
- Plane wave properties
- Polarisation

Maxwell's equations

An electric field is produced by a time-varying magnetic field

A magnetic field is produced by a time-varying electric field or a current

Electric field lines may either start and end on charges, or are continuous

Magnetic field lines are continuous

Will use del-operator next, definitions:

$$\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Maxwell's equations

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot (\varepsilon \mathbf{E}) = \rho$$

$$\nabla \cdot (\mu \mathbf{H}) = 0$$

Faraday's law. Time varying magnetic and electrics fields.

Ampère's law. Magnetic field and current.

Gauss' law. Electric flux out of a closed surface surrounding the charge.

No net magnetic flux out or in of a closed surface

E: electric field (V/m)

H: magnetic field (A/m)

J: current density (A/m²)

 ρ : charge density (C/m³)

ε: permittivity, dielectric constant (F/m)

 μ : permeability (H/m)

$$\varepsilon = \varepsilon_0 \varepsilon_r$$
, $\varepsilon_0 = 8.854 \cdot 10^{-12}$ F/m

$$\mu = \mu_0 \mu_r$$
, $\mu_0 = 4\pi 10^{-7}$ H/m

$$\varepsilon_r = \mu_r = 1$$
 in free space

Wave equation in free space

In free space is J = 0 and $\rho = 0$.

Take the curl of the first equation

$$\nabla \times \left(\nabla \times \mathbf{E} + \mu_0 \frac{\partial \mathbf{H}}{\partial t} \right) = \nabla \times \nabla \times \mathbf{E} + \mu_0 \frac{\partial}{\partial t} \nabla \times \mathbf{H} = 0$$

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot (\varepsilon \mathbf{E}) = \rho$$

$$\nabla \cdot (\varepsilon \mathbf{E}) = \rho$$
$$\nabla \cdot (\mu \mathbf{H}) = 0$$

Use
$$\nabla \times \nabla \times \mathbf{E} = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$$

and second equation
$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Then
$$-\nabla^2 \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$
 for $\nabla \cdot \mathbf{E} = 0$ (in free space)

Wave equation:
$$\nabla^2 \mathbf{E} - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

Time-harmonic plane wave equation solution

With time dependency $e^{j\omega t}$ a solution is

$$\mathbf{E} = E_0 \cos(\omega t - kz)\hat{\mathbf{x}}$$

for a wave propagating in the *z*-direction with the field varying in the *x*-direction.

The wave phase angle is ωt -kz, where ω is angle frequency, $\omega = 2\pi f$ and k the wave number. E_0 is the amplitude.

The wave number expresses the phase angle rate of change as a function of travelled distance z, i.e.

and
$$k = \frac{2\pi}{\lambda}$$

$$\cos(\omega t - kz) = \cos\left(\omega t - \frac{2\pi}{\lambda}z\right)$$

Convenient to use complex variables $\mathbf{E} = E_0 e^{j(\omega t - kz)\hat{\mathbf{x}}}$

Phase front velocity

Given a fixed point on the wave with an arbitrary phase, ωt -kz=constant => z= (ωt -constant)/k then the phase front velocity v

$$\mathbf{v} = \frac{dz}{dt} = \frac{\omega}{k} = \lambda f$$

Given $k^2 = \omega^2 \mu_0 \varepsilon_0$ then $\mathbf{E} = E_0 \cos(\omega t - \omega \sqrt{\mu_0 \varepsilon_0} z) \hat{\mathbf{x}}$ and

$$c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \, ms^{-1}$$

The ratio of velocity in free space to the velocity in the medium is the refractive index $n = \frac{c}{v}$

Plane wave propagation

Wave impedance, Z

The solution for E and H satisfy Maxwell's equations provided

$$\frac{|\mathbf{E}|}{|\mathbf{H}|} = \frac{E_x}{H_y} = \frac{E_0}{H_0} = \sqrt{\frac{\mu}{\varepsilon}} = \mathbf{Z}$$

for a given medium (ε, μ) .

In free space (ε_0, μ_0) the impedance becomes

$$\mathbf{Z}_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx \sqrt{4\pi \cdot 10^{-7} \cdot \frac{36\pi}{10^{-9}}} = 120\pi \approx 377\Omega$$

Power flow Poynting vector, S

From laws of conservation of energy and momentum the instantaneous power flux per unit area **S** is

$$S = E \times H^*$$

for a given medium (ε, μ) .

More useful with time averaged over one period

$$S_{av} = \frac{1}{2} E_0 H_0 \hat{\mathbf{z}}$$

Lossy media

Write n = n'-jn'' in a lossy medium. Note $k = \omega n/c$

$$\mathbf{E} = E_0 \exp[j(\omega \mathbf{t} - k'z) - \alpha z]\hat{\mathbf{x}}$$

Energy is removed from the wave and converted to heat. The attenuation constant is α .

Skin depth δ : travelled distance where the field is reduced to 1/e is $\delta = 1/\alpha$

Attenuation constant, wave number, wave impedance, wavelength and phase velocity (Table 2.1)

	Exact expression	Good dielectric	Good conductor
$n = ck/\omega$		(insulator)	
in all cases		$(\sigma/\omega\varepsilon)^2 << 1$	$(\sigma/\omega\varepsilon)^2 >> 1$
Attenuation constant $\alpha \text{ [m}^{-1}\text{]}$	$\omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1 \right]$	$\approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\approx \sqrt{\frac{\omega\mu\sigma}{2}}$
Wavenumber $k [\text{m}^{-1}]$	$\omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]$	$\approx \omega \sqrt{\mu \varepsilon}$	$\approx \sqrt{\frac{\omega\mu\sigma}{2}}$
Wave impedance $Z\left[\Omega ight]$	$\sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}}$	$pprox \sqrt{rac{\mu}{arepsilon}}$	$\approx \sqrt{\frac{\omega\mu}{2\sigma}} (1+j)$
Wavelength λ [m]	$\frac{2\pi}{k}$	$\approx \frac{2\pi}{\omega\sqrt{\mu\varepsilon}}$	$\approx 2\pi \sqrt{\frac{2}{\omega\mu\sigma}}$
Phase velocity v [m s ⁻¹]	$\frac{\omega}{k}$	$\approx \frac{1}{\sqrt{\mu \varepsilon}}$	$\approx \sqrt{\frac{2\omega}{\mu\sigma}}$

Example

A linear polarised 900 MHz wave travels in the z-direction in a medium with constitutive parameters $\mu_r = 1$, $\varepsilon_r = 3$, and $\sigma = 0.01$ Sm⁻¹. The electric field at z = 0 is 1 Vm⁻¹.

Calculate:

- a) the wave impedance
- b) the magnitude of the magnetic field at z = 0
- c) the average power available in a 0.5 m^2 area perpendicular to the direction of propagation at z = 0
- d) the time taken for the wave to travel 10 cm
- e) the distance travelled by the wave before its field strength drops to one tenth its value at z=0

Example solution

A linear polarised 900 MHz wave travels in the *z*-direction in a medium with constitutive parameters $\mu_r = 1$, $\varepsilon_r = 3$, and $\sigma = 0.01$ Sm⁻¹. The electric field at z = 0 is 1 Vm⁻¹.

$$\frac{\sigma}{\omega\varepsilon} = \frac{0.01}{2\pi \cdot 900 \cdot 10^6 \cdot 3 \cdot \frac{10^{-9}}{36\pi}} \approx 0.07 <<1 \qquad \text{From Table 2.1: good insulator}$$

a) the wave impedance

$$\mathbf{Z} \approx \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_0}{\varepsilon_r \varepsilon_0}} = \frac{Z_0}{\sqrt{\varepsilon_r}} \approx 218\Omega$$

b) the magnitude of the magnetic field at z = 0

$$H = \frac{E}{Z} = \frac{1}{218} \approx 4.6 \text{Am}^{-1}$$

Example solution continued

A linear polarised 900 MHz wave travels in the *z*-direction in a medium with constitutive parameters $\mu_r = 1$, $\varepsilon_r = 3$, and $\sigma = 0.01$ Sm⁻¹. The electric field at z = 0 is 1 Vm⁻¹.

c) the average power available in a 0.5 m² area perpendicular to the direction of propagation at z = 0

$$P = SA = \frac{EH}{2}A = \frac{1.0.005}{2} = 1.25 \text{ mW}$$

d) the time taken for the wave to travel 10 cm

$$t = \frac{d}{v} = d\sqrt{\mu\varepsilon} = d\sqrt{\mu_0\varepsilon_r\varepsilon_0} = \frac{d}{c}\sqrt{\varepsilon_r} \approx \frac{0.1}{3\cdot 10^8}\sqrt{3} \approx 0.6$$
ns

e) the distance travelled by the wave before its field strength drops to one tenth its value at z = 0

$$E(z) = E(0)e^{-z/\delta} \implies z = -\delta \ln \frac{E(z)}{E(0)} \quad \text{where} \quad \delta = \frac{1}{\alpha} \approx \frac{2}{\sigma} \sqrt{\frac{\varepsilon}{\mu}} = \frac{2}{\sigma Z}$$
$$z = -\frac{2}{\sigma Z} \ln \frac{E(z)}{E(0)} = -\frac{2}{0.01 \cdot 218} \ln \frac{1}{10} = 2.11 \text{m}$$

Polarisation

Generally, along the propagation direction the tip of the timevarying electric field vector will form an ellipse, where circle or line is degenerated special cases

Polarisation states

Conclusion

- Plane wave in uniform media
- Plane wave properties and interaction with the medium
- Poynting vector
- Polarisation

Chapter 3 Propagation mechanisms

- Reflection and refraction: reflected and transmitted wave
- Rough surfaces
- Diffraction

Reflection and refraction

Reflection and refraction

Snell's law of refraction

Wave number *k* and Fermat's principle minimising the electrical path length

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{k_2}{k_1}$$

Refractive index n, the ratio of free space phase velocity c to the phase velocity in the medium

$$n = \frac{c}{v} = \frac{ck}{\omega}$$
$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{n_2}{n_1}$$

Fresnel reflection and transmission coefficients

$$\begin{split} R_{||} &= \frac{E_{r||}}{E_{i||}} = \frac{Z_{1}\cos\theta_{i} - Z_{2}\cos\theta_{t}}{Z_{2}\cos\theta_{t} + Z_{1}\cos\theta_{i}} \quad R_{\perp} = \frac{E_{r\perp}}{E_{i\perp}} = \frac{Z_{2}\cos\theta_{i} - Z_{1}\cos\theta_{t}}{Z_{2}\cos\theta_{i} + Z_{1}\cos\theta_{t}} \\ T_{||} &= \frac{E_{t||}}{E_{i||}} = \frac{2Z_{2}\cos\theta_{t}}{Z_{2}\cos\theta_{t} + Z_{1}\cos\theta_{i}} \quad T_{\perp} = \frac{E_{t\perp}}{E_{i\perp}} = \frac{2Z_{2}\cos\theta_{i}}{Z_{2}\cos\theta_{i} + Z_{1}\cos\theta_{t}} \end{split}$$

Total reflected field:

$$\begin{split} \mathbf{E}_r &= E_{r||} \mathbf{a}_{||} + E_{r\perp} \mathbf{a}_{\perp} = E_{i||} R_{||} \mathbf{a}_{||} + E_{i\perp} R_{\perp} \mathbf{a}_{\perp} \\ \mathbf{E}_i &= E_{i||} \mathbf{a}_{||} + E_{i\perp} \mathbf{a}_{\perp} \end{split}$$

where a_{\parallel} and a_{\perp} are unit vectors parallel and normal to the scattering plane, respectively

Reflected and transmitted field

$$\mathbf{E}_r = \mathbf{RE}_i$$

where

$$\mathbf{E}_r = egin{bmatrix} E_{r||} \ E_{r\perp} \end{bmatrix}, \, \mathbf{R} = egin{bmatrix} R_{||} & 0 \ 0 & R_{\perp} \end{bmatrix}, \, \mathbf{E}_i = egin{bmatrix} E_{i||} \ E_{i\perp} \end{bmatrix}$$

similarly

$$\mathbf{E}_r = \mathbf{T}\mathbf{E}_i$$

where

$$\mathbf{E}_t = egin{bmatrix} E_{t||} \ E_{t\perp} \end{bmatrix}, \, \mathbf{T} = egin{bmatrix} T_{||} & 0 \ 0 & T_{\perp} \end{bmatrix}, \, \mathbf{E}_i = egin{bmatrix} E_{i||} \ E_{i\perp} \end{bmatrix}$$

Loss media

Fresnel reflection and transmission coefficients still hold given

$$Z = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

Example

A linear polarised plane wave in free space with an electric field amplitude 30 V/m is incident with angle 30° onto a plane boundary of a lossless non-magnetic medium with ε_r =2. The electric field is parallel to the plane of incidence.

Calculate

- a) angle of reflection
- b) angle of refraction
- c) amplitude of transmitted electric and magnetic fields
- d) amplitude of electric field

Example solution

- a) Wave and boundary are plane. Snell's law gives reflection angle of 30°.
- b) Use Snell's law

$$\theta_t = \sin^{-1}\left(\frac{n_1}{n_2}\sin\theta_i\right) = \sin^{-1}\left(\frac{\sqrt{\mu_{r_1}\varepsilon_{r_1}}}{\sqrt{\mu_{r_2}\varepsilon_{r_2}}}\sin\theta_i\right) = \sin^{-1}\left(\frac{\sqrt{1}}{\sqrt{2}}\sin 30\right) = 20.7^{\circ}$$

c) Find T_{\parallel} with $Z_1 = Z_0 = 377\Omega$ and $Z_2 = Z_0/\text{sqrt}(\varepsilon_{r2}) = 377/\text{sqrt}(2)\Omega$

$$T_{\parallel} = \frac{2\cos\theta_i}{\cos\theta_t + \frac{Z_1}{Z_2}\cos\theta_i} = \frac{2\cos30^{\circ}}{\cos20.7^{\circ} + \sqrt{2}\cos30^{\circ}} \approx 0.8$$

$$E_t = E_i T_{||} = 0.8 \cdot 30 = 24 V m^{-1}$$
 $H_t = \frac{E_t}{Z_2} = \frac{24\sqrt{2}}{377} \approx 0.09 A m^{-1}$

d) Reflected electric field

etric field
$$E_r = R_{||} E_i = \frac{\frac{Z_1}{Z_2} \cos \theta_i - \cos \theta_t}{\cos \theta_t + \frac{Z_1}{Z_2} \cos \theta_i} E_i \approx -8.54 \cdot 30 = -256.2 Vm^{-1}$$

Typical transmission and reflection coefficients

Surface	Conductivity, σ [S m ⁻¹]	Relative dielectric constant, ε_r
Dry ground	0.001	4-7
Average ground	0.005	15
Wet ground	0.02	25-30
Sea water	5	81
Fresh water	0.01	81

Relative permittivity, $\varepsilon_{\rm r}$ (ITU-R Rec.P.527)

A: sea water (average salinity), 20° C

B: wet ground

C: fresh water, 20° C

D: medium dry ground

E: very dry ground

F: pure water, 20° C

G: ice (fresh water)

Conductivity, σ (ITU-R Rec.P.527)

- A: sea water (average salinity), 20° C
- B: wet ground
- C: fresh water, 20° C
- D: medium dry ground
- E: very dry ground
- F: pure water, 20° C
- G: ice (fresh water)

Reflection and transmission coefficients

F=100 MHz

Dry ground: $\sigma = 0.001$ S/m, $\varepsilon_r = 7$

Example absolute value of reflection coefficient

Example phase of reflection coefficient

Brewster's angle

- The reflection example:
 - represents the vertical polarisation
 - ⊥ represents the horizontal polarisation
- Vertical polarisation reflected amplitude goes to zero at angle $\theta_{\rm B}$, Brewster's angle

$$\theta_B = \tan^{-1} \frac{n_2}{n_1}$$

- At reflection angle of 0, i.e., incidence angle of 90, the reflected amplitude is -1. This is the grazing angle
- Note that vertical polarisation undergoes a phase shift from 0 to -180

Change of polarisation state

$$R_{co} = \frac{1}{2} (R_{||} + R_{\perp})$$
 and $R_{cx} = \frac{1}{2} (R_{||} - R_{\perp})$

	$\theta_{\rm i} < \theta_{\rm B}$	$\theta_{\rm i} > \theta_{\rm B}$
Right-hand circular	Left-hand elliptical	Right-hand elliptical
Left-hand circular	Right-hand elliptical	Left-hand elliptical
Right -hand elliptical	Left-hand elliptical (axial ratio changed)	Right-hand elliptical (axial ratio changed)
Left-hand elliptical	Right-hand elliptical (axial ratio changed)	Left-hand elliptical (axial ratio changed)

Rough surface

Roughness depends on :

- Surface height range
- Angle of incidence
- Wavelength

14

Definition of rough surface

What is 'rough'?

Rayleigh criterion

$$\Delta \phi < \frac{\pi}{2}$$

$$\Delta h < \frac{\lambda}{8\cos\theta_i}$$

Roughness factor f

Conclusion

- Reflection and refraction
- Transmission
- Rough surface scattering