

Emission Component in GRB

Chuck Dermer (NRL) Armen Atoyan (UdeM) Stuart Wick (NRL)

GRB 2003, Santa Fe, NM, Sept. 8-12,

González, et al. (2003)

Hard γ-ray component reaches 10⁻⁷ – 10⁻⁶ ergs cm⁻² s⁻¹

Fireball/Blast Wave Model for GRBs

• Leptonic Modelle száros, Rees, Paczynski, ...)

Synchrotron, Adiabatic Expansion,
Synchrotron Self-Compton, External
Cascad**©Radiation** spfroncesses e+e-followed by e+B →

γ, e+ γ→ e + γ - Hadronic Mode man, Vietri, Mészáros, Atoyan, Dern

Photopion, Photopair, Hadron Synchrotron, Cascade Radiation

Cascade RPdPaGeFsFom $N + \gamma \rightarrow \pi^0 \rightarrow \gamma, \gamma \gamma * \rightarrow e^+e^-, e + B \rightarrow \gamma, e + \gamma \rightarrow e^+ + \gamma^-$

 $\pi^{\pm} \rightarrow e^{\pm}$, followed by $e+B \rightarrow \gamma$, **e**

+
$$\gamma \rightarrow e'$$
 + γ'

(Photopion; similar cascades for photopair processes $N + \gamma \rightarrow N + e^{\pm}$)

Blast Wave Theory for Leptonic **Models: Forward** Shock

Nonthermal synchrotron radiation in shocked fluid

Joint normalization to power and number gives

$$\gamma_{\min} \simeq e_e(\frac{p-2}{p-1})(\frac{m_p}{m_e})\Gamma$$
; $\dot{E}_e = e_e(dE^{\parallel}/dt')$

Magnetic field parameterized in terms of equipartition field

$$\frac{B^2}{8\pi} \cong 4e_B m_p c^2 n_* (\Gamma^2 - \Gamma) \Rightarrow B \propto \Gamma$$
Injection of power-law electrons downstream of forward

shock

$$N(\gamma_e) = N_e \gamma_e^{-p}$$
, $\gamma_{\min} < \gamma_e < \gamma_2$ (comoving)
 $N_e = 4\pi n_{ext} \chi^3 / 3$

- Maximum injection energy: balancing losses and acceleration $\text{yat} \cong 4 \times 10^{\circ} / \sqrt{B(G)}$
- Cooling electron break: balance synchrotron loss time with the diabation time $(\frac{4}{3} c\sigma_T \frac{u_B}{mc^2} \gamma_c)^{-1}$

$$\Rightarrow \gamma_c \cong \frac{3m_e}{16e_B n_* m_p c \sigma_T \Gamma^3 t} \Rightarrow \gamma_{\min} \propto t^{-3/8}, \gamma_c \propto t^{1/8}$$

Evolving electron spectrum:

Spectral Energy Distribution

$$N_e(\gamma_e) \cong N_e \gamma_o^{s-1} \gamma_e^{-s}$$
, $\gamma_0 < \gamma_e < \gamma_1$

$$N_e(\gamma_e) \cong N_e^o \gamma_o^{s-1} \gamma_1^{-s} (\gamma_e/\gamma_1)^{-(p+1)}, \gamma_1 < \gamma_e < \gamma_2$$

(Sari et al. 1998)

•
$$2$$

• SSC increasingly important when

$$e_B \le e_e$$

Radial Density Gradients

$$v_i = \Gamma \gamma_i^2 eB/[2\pi m_e c(1+z)]$$

Numerical Simulation with Uniform Surrounding Medium;

Relativistic forward shock and nonrelativistic reverse shock

> Chiang and Dermer (1999)

Dermer, Böttcher and Chiang (2000

SEDs: Parameters of Wijers and Galama (1999) for

Vanilla Parameters

Vanilla Parameters with $\varepsilon_{\rm B} = 10^{-4}$

Simulate Collapsar Model Emission during Prompt Phase

External Radiation Field

- Pre-SN Radiation Field Scattered by Surrounding Gas and Dust in Collapsar Model
- τ_{yy} optical depth at threshold $(\frac{hv_1}{m_1}c^2) \approx 2$

$$\tau_{yy}(v_1) \approx \frac{u_0(erg x m^3)}{h \overline{v}} R \sigma_T$$

External Radiation Field (no yy transparency included)

- No yy-transparency
- External Compton decays in concert with synchrotron photons

Are Leptonic Models Ruled out for γ-ray Emission Components in GRB 941017?

- Major difficulty is that >10 MeV γ -ray component increases while < 2MeV synchrotron component decays
- Yet to rule out reverse shock emission that increases during the progression of the GRB to provide target photons for forward shock-accelerated electrons

Nonthermal Hadronic Models in the Blast-Wave Framework

Dermer and Atoyan, PRL (2003), see

- High-energy meteral beam production from ultrarelativistic hadrons accelerated by GRB blast waves.
- Collapsar model: internal nonthermal synchrotron radiation is the primary target photon field. Supranova model: external pulsar-wind synchrotron radiation provides additional target photons
- Under the assumption that equal energy is injected in the form of nonthermal protons as is observed in the form of radiation (f_b = 1) GRBs are not detectable neutrino sources with km-scale neutrino detectors. $E_p \approx 4\pi d_x^2 \Phi_{tot} f_b \delta^{-3} / (1+z); fluence_{tot}$

Cosmic Rays from GRB Sources

- If GRBs are hadronically dominated (f_b >> 1), as required in our model where high energy cosmic rays are produced by GRB sources (see talk by Wick), then we predict that kmscale neutrino telescopes such as *IceCube* could detect several GRBs per year.
- Calculate associated cascade gamma-ray spectrum from hadronic proceses in GRBs.
- Inject energy in hadrons in the form of 50 one-second pulses $(t_{var}=1 \text{ s; } t_{dur}=100 \text{ sec})$

$$\Delta R^{'} \cong t_{\text{var}} c \delta / (1 + z)$$
 (t_{var} determines energy density of internal radiation field)

• GRB with $E_{br} = 300 \text{ keV}$, $\alpha_{ph} = -2/3, -1.5, -2.5 \text{ in energy}$ range E< 30 keV, 30 keV < E < 300 keV, E > 300 keV, respectively

Pair Production Optical Depth for Collapsar Model GRB

Cooling Timescales for Electrons and

Proton Injection and Cooling Spectra

Proton Injection and Cooling Spectra ($\delta = 200$)

Proton Injection and Cooling Spectra ($\delta = 300$)

Neutrino Fluences from Collapsar Model GRB

Generations of Nonthermal Leptons in

Adapt
blazar
neutral
beam
code; See
Atoyan
and
Dermer,
ApJ,
586, 79
(2003)
for details

Absorbed Cascade Fluxes

Synchrotron fluxes limited if blob expands and magnetic field decays.

Compton component gives good representati on of GRB 941017

Summary

- Anomalous hard γ -ray emission component in GRB 941017 due to
 - SSC from nonthermal electrons X
 - External radiation component from nonthermal electrons X (Reverse shock target photons?)
 - Hadronic cascade contribution?
- If the latter, require hadronically dominated GRBs; would be detectable with km-scale neutrino telescopes such as *IceCube* provided δ < 200: *GLAST* will constrain minimum value of δ from $\gamma\gamma$ transparency constraints (and directly observer such components)
- Observation of GRB 941017 may provide first clear clue to hadronic acceleration in GRBs