

Pontifícia Universidade Católica do Paraná Plano de Ensino

Escola/ Câmpus:	Politécnica - Curitiba				
Curso:	Ciência da Computação e Cibersegurança Ano/Semestre: 2022/2				
Código/Nome da disciplina:	PCP113	PCP113A - Programação Imperativa			
Carga Horária:	80 horas	80 horas			
Requisitos:	Raciocín	Raciocínio Algoritmo			
Créditos:	4	Período: 2	Turma: U	Turno: Diurno e Noturno	
Professor Responsável:	Alcides Calsavara e Edson Justino				

1. Ementa

A disciplina, de natureza teórico-prática, é ofertada no segundo período dos cursos de Ciência da Computação e Cibersegurança. O estudante aplica os conceitos de programação imperativa na resolução de problemas computacionais estruturados. Ao término da disciplina, o estudante é capaz de utilizar uma linguagem imperativa de nível médio de abstração, tal como a linguagem C, de forma a considerar as funcionalidades e recursos específicos da linguagem para fins de eficiência dos programas desenvolvidos com relação ao uso de memória e de processador. Para frequentar a disciplina, é necessário ter conhecimento de lógica de programação e de construção de algoritmos.

2. Relação com disciplinas precedentes e posteriores

Esta disciplina é parte integrante do eixo de formação em programação dos cursos. Ela tem a disciplina de Raciocínio Algoritmo como pré-requisito direcional. A disciplina fornece a base conceitual e tecnológica para as seguintes disciplinas posteriores:

- 1. Conectividade em Sistemas Ciberfísicos
- 2. Experiência Criativa: criando soluções computacionais
- 3. Segurança da Informação
- 4. Performance em Sistemas Ciberfísicos
- 5. Redes Convergentes
- 6. Sistemas Operacionais Ciberfísicos
- 7. Programação Distribuída
- 8. Construção de Interpretadores

3. Temas de estudo

- 1. Representação abstrata de dados (tipos de dados)
- 2. Recursos para escrita e leitura de dados
- 3. Comandos de controle de fluxo
- 4. Estruturação de programas em funções
- 5. Boas práticas de codificação e documentação
- 6. Representação física de dados (memória e endereçamento)
- 7. Operações sobre bits
- 8. Arquitetura do sistema de execução
- 9. Alocação dinâmica de memória
- 10. Arquivos

4. Resultados de Aprendizagem

Resultados de Aprendizagem	Temas de Estudo	Elemento de Competência (Internaliza, Mobiliza, Certifica) e Competência
RA 1. Desenvolver programas auto-documentados em uma linguagem imperativa fortemente tipada	1 a 5	Competência A: Desenvolver software eficiente e seguro, seguindo padrões e boas práticas, de forma criativa e autônoma.
		Elementos de Competência:
		A1. Avaliar o contexto do problema e recursos de hardware e software
		A2. Projetar soluções de software
		A3. Implementar software eficiente e seguro de forma criativa e autônoma
		A4. Avaliar a implementação do software
RA 2. Utilizar a memória e o processador do computador de forma adequada e eficiente por meio de uma linguagem imperativa	6 a 10	Competência A : Desenvolver software eficiente e seguro, seguindo padrões e boas práticas, de forma criativa e autônoma.

Elementos de Competência:
A1. Avaliar o contexto do problema e recursos de hardware e software
A2. Projetar soluções de software
A3. Implementar software eficiente e seguro de forma criativa autônoma
A4. Avaliar a implementação do software

5. Mapa Mental

(Elaborado por Prof. Henri F. Eberspacher)

6. Metodologia e Avaliação

Alinhamento Construtivo				
Resultado de aprendizagem	Indicadores de desempenho	Processos de Avaliação	Métodos ou técnicas empregados**	
RA 1. Desenvolver programas autodocumentados em uma linguagem imperativa fortemente tipada	Indicadores de		Métodos ou técnicas empregados** 1. Aula expositiva dialogada sobre conceitos e técnicas de programação 2. Resolução em equipes (TBL) de exercícios em sala de aula sobre os conceitos e as técnicas de programação 3. Aplicação dos conceitos e das técnicas de programação na resolução de problemas (PBL - em equipes) e no desenvolvimento de um projeto (PjBL - individual) 4. Atividade extra-classe para estudo complementar de temas específicos, incluindo operações sobre arquivos textos	
		Feedback: Individual		

RA 2. Utilizar a memória e o
processador do computador de forma
adequada e eficiente por meio de
uma linguagem imperativa

ID 2.1. Escreve expressões baseadas em operadores lógicos sobre bits, complemento binário e de deslocamento de bits

ID 2.2. Define e manipula corretamente memória alocada dinamicamente

ID 2.3. Emprega corretamente o modo de passagem por referência nos parâmetros e no retorno de uma função

Avaliação formativa:

Resolução de exercícios em sala de aula sobre os conceitos e as técnicas de programação

Feedback: Coletivo

Avaliação somativa:

1. Uma série de, aproximadamente, 4 trabalhos semanais realizados em equipes para a aplicação dos conceitos e das técnicas de programação na resolução de problemas (PBL).

Feedback: Por equipe

2. Um projeto realizado individualmente de longa duração (aproximadamente, um mês) para a aplicação dos conceitos e das técnicas de programação para desenvolvimento de um sistema (PjBL).

Feedback: Individual

- 1. Aula expositiva dialogada sobre conceitos e técnicas de programação
- 2. Resolução em equipes (TBL) de exercícios em sala de aula sobre os conceitos e as técnicas de programação
- 3. Aplicação dos conceitos e das técnicas de programação na resolução de problemas (PBL em equipes) e no desenvolvimento de um projeto (PjBL individual)
- 4. Atividade extra-classe para estudo complementar de temas específicos, incluindo operações sobre arquivos binários

Avaliação Somativa:

Tipo de trabalho	Descrição	Forma de realização	Peso na nota do semestre
PBL	Trabalhos semanais (aproximadamente, 10 entregas, todas com o mesmo peso na nota)	Equipes de, no máximo, 4 estudantes	60%
PjBL	Trabalho de longa duração (aproximadamente, um mês) e de tema livre	Individual	40%

Critério de aprovação: nota do semestre igual ou superior a 7 (sete) e

frequência mínima de **75%**.

Recuperação:

O estudante pode recuperar a nota de todo e qualquer trabalho:

- 1. Se um PBL não for entregue no prazo, o estudante poderá entregar com atraso de até duas semanas após o prazo, sendo a nota máxima igual a 7 (sete).
- 2. Se um PBL for entregue no prazo e a nota atribuída seja inferior a 7 (sete), o estudante poderá refazer a entrega até uma semana após a publicação da nota.
- 3. Se o PjBL não for entregue no prazo ou caso tenha sido entregue e a nota atribuída seja inferior a 7 (sete), o estudante poderá entregar até a "Semana Estendida de Recuperação", conforme Calendário Acadêmico da PUCPR, sendo a nota máxima igual a 7 (sete).

7. Cronograma de atividades

Período (horas aula totais, (dia, semana, quinzena, mês)		Atividades pedagógicas	Em aula / TDE	Carga horária da atividade
Semana 1		Introdução à linguagem C. Estudo das funções para entrada e saída de dados.	Em aula	4
Semana 2	1	Estudo sobre variáveis de tipos primitivos e operadores.	Em aula	4
Semana 3	1	Estudo dos comandos de desvio de fluxo (if) e de repetição (while e do)	Em aula	4
Semana 4	1	Estudo sobre tipos de dados compostos e o comando switch	Em aula	4
	1	Estudo sobre boas práticas de codificação e documentação	TDE	4
Semana 5	1	Estudo sobre alocação estática de vetores e matrizes e sobre o comando de repetição for	Em aula	4
Semana 6	1	Estudo sobre definição e uso de funções, parâmetros e variáveis globais	Em aula	4
Semana 7	1	Estudo sobre a estruturação de código fonte em arquivos cabeçalho e arquivos de implementação	Em aula	4
	2	Estudo sobre funções para leitura e escrita de dados em arquivo texto	TDE	4 a 6
Semana 8	2	Estudo sobre operadores lógicos sobre bits, complemento binário e deslocamento de bits	Em aula	4
Semana 9	2	Estudo sobre a representação física de dados em memória, endereçamento de memória, uso de ponteiros e operador sizeof	Em aula	4
Semana 10	2	Estudo sobre alocação dinâmica de memória: funções malloc e free	Em aula	4
Semana 11	2	Estudo sobre o modo de passagem por referência para os parâmetros e o retorno de uma função	Em aula	4
	2	Estudo sobre arquivos binários	TDE	4 a 6
Semana 12	1 e 2	Desenvolvimento do PjBL	Em aula	16
Semana 13				
Semana 14				
Semana 15				

8. Bibliografia

Básica:

- 1. BACKES, André. Linguagem C Completa e Descomplicada. Elsevier Editora Ltda. 2013.
- 2. PINHEIRO, Francisco C. Elementos de programação em C. Bookman, 2012.
- 3. SCHILDT, Herbert. C Completo e Total. Berkeley. Pearson, 1997.

Complementar:

- 1. STROUSTRUP, B. A linguagem de programação C++. Bookman, 2000.
- 2. DAMAS, L. Linguagem C. São Paulo: LTC, 2007.
- 3. KERNIGHAN, BW; RITCHIE, DM. C: a linguagem de programação padrão ANSI. Campus, 1990.
- 4. MIZRAHI, VV. Treinamento em linguagem C. Pearson/Prentice Hall, 2008.
- 5. PEREIRA, SL. Algoritmos e lógica de programação em C: uma abordagem didática. Erica, 2010.

9. Acessibilidade**

Não houve necessidade de adaptação.

10. Adaptações para práticas profissionais**

Não se aplica.

** conforme nota técnica conjunta número 17/2020 CGLNRS/DPR/SERES/SERES