Taller Arboles Binarios Optimos

Pablo Ariza - Santiago Chaustre Abril 9 del 2018

1. Problema

En los arboles binarios ordenados los elementos son estrictamente ordenados con una relación de comparación < y si estós son equilibrados los arboles tienden a ser equivalentes con un mismo conjunto de datos haciendo que todas las busquedas tengan una complejidad $O(\log n)$. Los arboles binarios ordenados optimos tienden a dejar los datos más buscados de un conjunto de datos lo más cerca de la raiz, esto para que los tiempos de respuesta sean más rapido en los casos «generales».

2. Formalizacion

2.1. Entradas

Un histograma $h(c): \mathbb{E} \longrightarrow [0,1]$ que representa la probabilidad (o frecuencia) de la búsqueda de un código c.

2.2. Salidas

Una secuencia $S = \{(n,t) | (n \in \mathbb{N}) \land (t \in \mathbb{R})\}$ donde n es el tamaño de las busquedas realizadas y t el tiempo que se demoro realizando las n busquedas.

3. Estructura óptima del problema

$$e\left[i,j\right] = \begin{cases} q_{i-1} & ; \quad j = i-1 \\ \min_{i \le r \le j} \left\{ e\left[i,r-1\right] + e\left[r+1,j\right] + w\left(i,j\right) \right\} & ; \quad i \le j \end{cases}$$

$$w\left(i,j\right) = \sum_{l=i}^{j} p_{l} + \sum_{l=i-1}^{j} q_{l}$$

4. Algoritmo recurrente

- 1: **procedure** BUILD OPTBINTREE(P,Q)
- 2: **return** BUILD OPTBINTREE REC(P, Q, 1, |P|)
- 3: end procedure

```
1: procedure BUILD OPTBINTREE Rec(P,Q,i,j)
        if j = i - 1 then
 2:
            return Q[i-1]
 3:
        else
 4:
            w \leftarrow \text{Dummy Weight}(P, Q, i, j)
            e \leftarrow \infty
 6:
            for r \leftarrow i to j do
 7:
                v_l \leftarrow \text{Build OptBinTree Rec}(P, Q, i, r - 1)
                v_r \leftarrow \text{Build OptBinTree Rec}(P, Q, r+1, j)
 9:
                v \leftarrow v_l + v_r + w
10:
11:
                if v < e then
                    e \leftarrow v
12:
13:
                end if
            end for
14:
            \mathbf{return}\ e
15:
        end if
16:
17: end procedure
```

```
1: \mathbf{procedure} Dummy_Weight(P,Q,i,j)
2: w \leftarrow Q[i-1]
3: \mathbf{for}\ l \leftarrow i\ \mathbf{to}\ j\ \mathbf{do}
4: w \leftarrow w + P[l] + Q[l]
5: \mathbf{end}\ \mathbf{for}
6: \mathbf{return}\ w
7: \mathbf{end}\ \mathbf{procedure}
```

5. Algoritmo recurrente «memoizado»

```
1: procedure BUILD OPTBINTREE(P,Q)
2:
        let W be a matrix [1..|P|] \times [1..|P|]
        let M be a matrix [0..|P|] \times [0..|P|]
3:
        W \leftarrow 0
4:
        M \leftarrow 0
        for i \leftarrow 1 to |P| do
6:
            W[i,i] \leftarrow Q[i-1] + P[i] + Q[i]
7:
            M[i,i] \leftarrow Q[i-1]
            for j \leftarrow i + 1 to |P| do
                W[i, j] \leftarrow W[i, j - 1] + P[j] + Q[j]
10:
                M[i,j] \leftarrow \infty
11:
            end for
12:
        end for
13:
        return BUILD OPTBINTREE REC(P, Q, 1, |P|, M, W)
14:
15: end procedure
```

```
1: procedure Build_OptBinTree_Rec(P,Q,i,j,M,W)
 2:
        if M[i,j] = \infty then
            if j = i - 1 then
 3:
                 M[i,j] \leftarrow Q[i-1]
 4:
             else
                 for r \leftarrow i to j do
 6:
                     v_l \leftarrow \texttt{Build\_OptBinTree\_Rec}\left(P, Q, i, r - 1, M, W\right)
 7:
                     v_r \leftarrow \text{Build\_OptBinTree\_Rec}(P, Q, r + 1, j, M, W)
                     v \leftarrow v_l + v_r + W\left[i, j\right]
 9:
                     if v < M[i,j] then
10:
                         M\left[i,j\right] \leftarrow v
11:
                     end if
12:
                 end for
13:
             end if
14:
        end if
15:
        \mathbf{return}\ M\left[i,j\right]
16:
17: end procedure
```

La tabla de memoización tiene la siguiente forma:

M[i,j]	0	1	2	3	4	5
0	0	0	0	0	0	0
1	Q[0]	M[1,1]	M[1,2]	M[1,3]	M[1,4]	M[1,5]
2	0	Q[1]	M[2,2]	M[2,3]	M[2,4]	M[2,5]
3	0	0	Q[2]	M[3,3]	M[3,4]	M[3,5]
4	0	0	0	Q[3]	M[4,4]	M[4,5]
5	0	0	0	0	Q[4]	M[5,5]

Y w puede ser pre-calculado:

$W\left[i,j ight]$	1	2	3	4	5
1	$Q\left[0\right] + P\left[1\right] + Q\left[1\right]$	W[1,1] + P[2] + Q[2]	W[1,2] + P[3] + Q[3]	W[1,3] + P[4] + Q[4]	W[1,4] + P[5] + Q[5]
2	0	$Q\left[1\right] + P\left[2\right] + Q\left[2\right]$	W[2,2] + P[3] + Q[3]	W[2,3] + P[4] + Q[4]	W[2,4] + P[5] + Q[5]
3	0	0	Q[2] + P[3] + Q[3]	W[3,3] + P[4] + Q[4]	W[3,4] + P[5] + Q[5]
4	0	0	0	Q[3] + P[4] + Q[4]	W[4,4] + P[5] + Q[5]
5	0	0	0	0	$Q\left[4\right] + P\left[5\right] + Q\left[5\right]$

6. Algoritmo «bottom-up» con la solución

```
1: procedure BUILD OPTBINTREE(P,Q)
        let W be a matrix [1..|P|] \times [1..|P|]
        let M be a matrix [0..|P|] \times [0..|P|]
        let R be a matrix [1..|P|] \times [1..|P|]
 4:
        W \leftarrow 0
        M \leftarrow 0
 6:
         R \leftarrow 0
        for i \leftarrow 1 to |P| do
 8:
             W[i, i] \leftarrow Q[i - 1] + P[i] + Q[i]
 9:
             M[i,i] \leftarrow Q[i-1]
10:
             for j \leftarrow i + 1 to |P| do
11:
                 W[i,j] \leftarrow W[i,j-1] + P[j] + Q[j]
12:
13:
                 M[i,j] \leftarrow \infty
             end for
14:
         end for
15:
         for l \leftarrow 1 to |P| do
16:
             for i \leftarrow 1 to |P| - l + 1 do
17:
                 j \leftarrow i + l - 1
18:
                 for r \leftarrow i to j do
19:
                     v \leftarrow M[i, r - 1] + M[r + 1, j] + W[i, j]
20:
                     if v < M[i,j] then
21:
                          M[i,j] \leftarrow v
22:
                          R[i,j] \leftarrow r
23:
                     end if
24:
                 end for
25:
             end for
26:
         end for
27:
        return R
29: end procedure
```

7. Invariante

La invariante del bottom up es recorrer la tabal e ir llenandola con el minimo de la suma de las probabilidades de exito y de desborde.

8. Resultado

9. Manual de compilacion

Leer el readme.md para compilar y ejecutar el codigo.