Correlations

a. Show that the regression R^2 in the regression of Y on X is the squared value of the sample correlation between X and Y. That is, show that $R^2 = r_{XY}^2$.

Pearson's sample correlation coefficient r_{XY} (population is denoted ρ_{XY}) is

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

The OLS estimator may be written:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}$$

where s_{XY} denotes the sample covariance and s_X^2 denotes the variance, $s_{XY}=s_X^2$. The proof of this is standard and follows from minimizing the sum of squared residuals of the regression of Y on X.

The coefficient of determination of the regression of Y on X is

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i})^{2}}{s_{YY}}$$

Correlations

b. Show that the \mathbb{R}^2 from the regression of Y on X is the same as the \mathbb{R}^2 from the regression of X on Y.

Since we have shown that $R^2 = r_{XY}^2$, it follows from $s_{XY} = s_{YX}$:

$$R^2 \operatorname{of} Y \operatorname{on} X = r_{XY}^2 = \frac{s_{XY}}{s_X s_Y} = \frac{s_{YX}}{s_Y s_X} = r_{YX}^2 = R^2 \operatorname{of} X \operatorname{on} Y$$

Correlations

a. Show that the regression R^2 in the regression of Y on X is the squared value of the sample correlation between X and Y. That is, show that $R^2=r_{XY}^2$.

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \, \overline{X} \implies \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 = \sum_{i=1}^n [(Y_i - \overline{Y}) - \hat{\beta}_1 (X_i - \overline{X})])^2$$

$$= \sum_{i=1}^n (Y_i - \overline{Y})^2 - 2\hat{\beta}_1 \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) + \hat{\beta}_1^2 \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= s_{YY} - 2\hat{\beta}_1 s_{XY} + \hat{\beta}_1^2 s_{XX}$$

Plugging the above into the coefficient of determination:

$$R^{2} = 1 - \frac{s_{YY} - 2\hat{\beta}_{1}s_{XY} + \hat{\beta}_{1}^{2}s_{XX}}{s_{YY}} = 2\hat{\beta}_{1}\frac{s_{XY}}{s_{YY}} - \hat{\beta}_{1}^{2}\frac{s_{XX}}{s_{YY}}$$
$$= 2\frac{s_{XY}}{s_{X}^{2}}\frac{s_{XY}}{s_{YY}} - \left(\frac{s_{XY}}{s_{X}^{2}}\right)^{2}\frac{s_{XX}}{s_{YY}} = \frac{s_{XY}^{2}}{s_{X}^{2}s_{Y}^{2}} = r_{XY}^{2}$$

Correlations

c. Show that $\hat{\beta}_1 = r_{XY}(s_Y/s_X)$, where r_{XY} is the sample correlation between X and Y, and s_Y are the sample standard deviations of X and Y.

We've done most of the work already:

$$\hat{\beta}_1 = \frac{s_{XY}}{s_X^2} = \frac{r_{XY}s_Xs_Y}{s_X^2} = \frac{r_{XY}s_Y}{s_X}$$