Apéndice B. Diseño de software

El objetivo de este apartado es ilustrar de manera grafica las funcionalidades que tendrá el software a desarrollar; así se puede interpretar cada proceso y codificarlo de forma eficiente.

Caso de uso: interfaz intuitiva

Intereses y objetivos:

Usuario: Poder utilizar la aplicación de manera correcta.

BodyScan: desplegar de manera adecuada todos los elementos que conforman la interfaz.

Precondiciones: tener el software "instalado" en su computadora.

Garantía de éxito: manejar el software sin errores.

Escenario de éxito

- 1.- El usuario abre la interfaz.
- 2.- La aplicación despliega la ventana de bienvenida.
- 3.- El usuario da clic en iniciar.
- 4.- La aplicación muestra la pantalla de inicio.
- 5.- El usuario da clic en el switch: "on".

Escenario alternativo

2a.- ventana acerca de

- 1.- El usuario da clic en acerca de.
- 2.- La aplicación despliega la ventana acerca de.
- 3.- El usuario cierra la ventana.
- 4.- La aplicación regresa a la ventana de bienvenida.

- 6.- La aplicación inicia el procesamiento.
- 7.- La aplicación muestra datos.
- 8.- El usuario da clic en el switch: "off".
- 9.- La aplicación detiene el procesamiento.
- 10.- El usuario cierra la ventana.
- 11.- La aplicación destruye la ventana.

2b.- cerrar aplicación

- 1.- El usuario da clic en el botón cerrar.
- 2.- La aplicación destruye la ventana.

Caso de uso mensajes de funcionamiento

Nombre: mensajes		de	Actores: Usuario, BodyScan.
funcionamiento.			

Intereses y objetivos:

Usuario: obtener información del proceso.

BodyScan: desplegar mensajes en pantalla mensajes de cada etapa del proceso; así como mensajes de error si los hay.

Precondiciones: tener abierta la aplicación en la ventana de inicio.

Garantía de éxito: desplegar los mensajes en pantalla.

Escenario de éxito

- La aplicación se encuentra en la ventana de inicio.
- 2.- El usuario da clic en el switch: "on".
- 3.- Se imprime "Reseteando imagen".
- 4.- Pausa de 3 segundos.
- 5.- Se imprime "Creando objeto de video".
- 6.- Pausa de 3 segundos.
- 7.- Se imprime "Configurando frames".
- 8.- Pausa de 3 segundos.
- 9.- Se imprime "Iniciando video".
- 10.- Pausa de 3 segundos.
- 11.- Se imprime "Adquisición de datos iniciada".
- 12.- El usuario da clic en el switch: "off".
- 13.- Se imprime "Programa finalizado".

Escenario alternativo

2a.- no está conectado el Kinect

- 1.- Se imprime "El dispositivo Kinect no se encuentra conectado".
- 2.- La aplicación termina el proceso.

2b.- cualquier otro caso

- 1.- Se imprime "Hay un error de ejecución, reiniciar el programa".
- 2.- La aplicación termina el proceso.

6a.- no hay objeto de video

- 1.- Se imprime "No es posible crear un objeto de video, por favor apague el programa".
- 2.- La aplicación termina el proceso.

8a.- tiempo de espera agotado

- 1.- Se imprime "El tiempo de espera está agotado".
- 2.- La aplicación termina el proceso.

10a.- no inicia video o frames

- 1.- Se imprime "No se puede mostrar video o no hay *frames* disponibles".
- 2.- La aplicación termina el proceso.

11a.- no se puede realizar el seguimiento

- 1.- Se imprime "El seguimiento del cuerpo, no se puede realizar".
- 2.- La aplicación termina el proceso.

12a.- se eliminó el objeto de video

- 1.- Se imprime "Se ha eliminado el video, programa finalizado".
- 2.- La aplicación termina el proceso.

Caso de uso: cálculo de longitud de zancada

Nombre: Cálculo de longitud Actores: BodyScan, Kinect. de zancada.

Intereses y objetivos:

BodyScan: realizar la medición de la longitud de zancada.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular la longitud de zancada.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación asigna [0,0,0] a inicial.
- 3.- Se compara con una referencia = 2.8.
- 4.- La aplicación toma como final la coordenada del tobillo derecho.
- 5.- La aplicación realiza el cálculo.

||final - inicial||

6.- Se asigna final a inicial.

Escenario alternativo

1a.- no hay datos

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

4a.- no es igual a la referencia

- 1.- La aplicación asigna 0 a LZ.
- 2.- Inicial sigue igual.

Caso de uso: cálculo de longitud de paso

Nombre: Cálculo de longitud | Actores: BodyScan, Kinect de paso.

Intereses v objetivos:

BodyScan: realizar la medición de la longitud de paso.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular la longitud de paso.

Escenario de éxito

1.- El Kinect se encuentra la.- no hay datos adquiriendo datos.

- 2.- La aplicación toma las coordenadas ν de ambos tobillos.
- 3.- La aplicación realiza el cálculo.

|tobilloI - tobilloD|

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: cálculo de velocidad de marcha

Nombre: Cálculo de velocidad	Actores: BodyScan, Kinect.
de marcha.	

Intereses y objetivos:

BodyScan: realizar la medición de la velocidad de marcha.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular la velocidad de marcha.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- Toma el dato de LP.
- 3.- La aplicación realiza el cálculo LP/time.

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: cálculo de efecto de acortamiento de la pierna

Nombre: Cálculo de efecto de	Actores: BodyScan, Kinect.
acortamiento de la pierna.	

Intereses y objetivos:

BodyScan: realizar la medición del efecto de acortamiento de la pierna.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular el efecto de acortamiento de la pierna.				
Escenario de éxito	Escenario alternativo			
1 El Kinect se encuentra	1a no hay datos			
adquiriendo datos.				

- 2.- La aplicación calcula *e* como rodilla tobillo.
- 3.- La aplicación calcula EAP como.

$$\left(\frac{\max(e) - \min(e)}{\max(e)}\right) * 100$$

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: cálculo de ángulos

Nombre: Cálculo de ángulos.	Actores: BodyScan, Kinect.
-----------------------------	----------------------------

Intereses y objetivos:

BodyScan: realizar la medición de los ángulos:

- Espina-cadera-rodilla.
- Cadera-rodilla-tobillo.
- Rodilla-tobillo-pie.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular los ángulos de entre articulaciones.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación realiza las restas entre articulaciones.
- 3.- La aplicación calcula el ángulo entre dos vectores.

$$a\cos\left(\frac{v1\cdot v2}{\|v1\|*\|v2\|}\right)$$

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: cálculo de eslabones

Nombre: Cálculo de eslabones. | Actores: BodyScan, Kinect.

Intereses y objetivos:

BodyScan: realizar la medición de los eslabones:

- cadera-rodilla
- rodilla-tobillo
- tobillo-pie

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: calcular el tamaño entre articulaciones.

Escenario de éxito Escenario alternativo

1a.- no hay datos

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación calcula la distancia entre dos vectores.

$$||v1 - v2||$$

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: cálculo de cinemática directa

Nombre:	Cálculo	de	cinemática	Actores: BodyScan, Kinect
directa				

Intereses y objetivos:

BodyScan: encontrar mediante ángulos y eslabones la coordenada (x,y) del marco de referencia del pie con respecto a la cadera.

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación, adquiriendo datos y tener el cálculo de ángulos y eslabones.

Garantía de éxito: calcular los ángulos de entre articulaciones.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación toma los valoresde los ángulos y eslabonesobtenidos.
- 3.- La aplicación realiza el cálculo con.

$$a_{1}Sin(\theta_{1}) - a_{2}Cos(\theta_{1,2}) \\ + a_{3}Sin(\theta_{1,2,3}) \\ -a_{1}Cos(\theta_{1}) - a_{2}Sin(\theta_{1,2}) \\ -a_{3}Cos(\theta_{1,2,3})$$

sustituyendo los valores del paso 2.

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: grafica de esqueleto

Nombre: Gráfica de esqueleto.	Actores: BodyScan, Kinect.				
Intereses y objetivos:					
BodyScan: dibujar la réplica aproximada del cuerpo del paciente					
en un objeto de tipo "ejes".					
Kinect: realiza la adquisición de datos.					
Precondiciones: tener abierta la aplicación y adquiriendo datos.					
Garantía de éxito: dibujar el esqueleto del paciente.					
Escenario de éxito Escenario alternativo					
1 El Kinect se encuentra la no hay datos					
adquiriendo datos.					

- 2.- La aplicación toma los valores para cada articulación.
- 3.- La aplicación calcula los vectores para unir cada articulación.
- 4.- La aplicación dibuja en los ejesla aproximación, graficando puntos y vectores.

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

4a.- no hay datos que graficar

 La aplicación no grafica nada.

Caso de uso: muestra video de profundidad

Nombre: Muestra video de Actores: BodyScan, Kinect. profundidad.

Intereses y objetivos:

BodyScan: mostrar el video obtenido de la cámara de profundidad en un objeto de tipo "ejes".

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: mostrar el video de profundidad.

Escenario de éxito

- 1.- La aplicación crea un objeto figure.
- 2.- Se verifica si es un objeto figura.
- 3.- El Kinect adquiere datos de la cámara.
- 4.- La aplicación configura el objeto tipo ejes.
- 5.- La aplicación toma imagen de la cámara.
- 6.- La aplicación muestra la imagen en el objeto tipo ejes.

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: muestra de puntos clave en el video

Nombre:	Muestra	de	puntos	Actores: BodyScan, Kinect.
clave en el video.				
Intereses y objetivos:				
BodyScan: mostrar los puntos de cada articulación, superpuestos				
en el video de profundidad.				

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: graficar los puntos de cada articulación.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación toma las coordenadas de cada articulación.
- 3.- La aplicación grafica los puntos en el video de profundidad.

Escenario alternativo

1a.- no hay datos

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

3a.- no hay datos que graficar

 La aplicación no grafica nada.

Caso de uso: configuración de intensidad de color

Nombre:	bre: Configuración		Actores: BodyScan, Kinect,
intensidad de color.			Usuario.

Intereses y objetivos:

BodyScan: mostrar los puntos de cada articulación, superpuestos en el video de profundidad.

Kinect: realiza la adquisición de datos.

Usuario: cambiar la intensidad de color para el video de profundidad.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: cambiar los valores de intensidad de color.

Escenario de éxito Escenario alternativo

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- El usuario modifica los valores con ayuda de perillas o sliders.
- 3.- La aplicación cambiar los valores en el objeto imagen del video.
- 4.- La aplicación muestra el cambio en el video.

1a.- no hay datos

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

2a.- rango de datos incorrecto

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación termina el proceso.

Caso de uso: comparación grafica de articulaciones

Nombre: Comparación grafica de Actores: BodyScan, Kinect. articulaciones.

Intereses y objetivos:

BodyScan: graficar la y para las articulaciones:

- Cadera
- Rodilla
- Tobillo
- Pie

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: graficar los puntos de articulaciones específicas.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación toma las coordenadas de *y* de la articulación.
- 3.- La aplicación grafica los puntos de cada articulación.

Escenario alternativo

- 1.- La aplicación muestra un las mensaje de error.
 - 2.- La aplicación se detiene.

Caso de uso: muestra de datos espacio temporales

Nombre: Muestra de datos Actores: BodyScan, Kinect. espacio temporales.

Intereses y objetivos:

BodyScan: mostrar datos espacio temporales, en cajas de texto:

- Longitud de zancada
- Longitud de paso
- Velocidad de marcha
- Efecto de acortamiento de la pierna

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: mostrar datos espacio temporales en la interfaz.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- Realiza los cálculos para LP,
 LZ, VM y EAP.
- 3.- La aplicación muestra en la interfaz las mediciones obtenidas.

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: muestra datos cinemática directa

Nombre: Muestra datos de Actores: BodyScan, Kinect. cinemática directa.

Intereses y objetivos:

BodyScan: mostrar los datos que se utilizan para el cálculo; asi como las coordenadas resultantes:

- Ángulos
- Eslabones
- Coordenadas del pie real y modelo
- Porcentaje de error

Kinect: realiza la adquisición de datos.

Precondiciones: tener abierta la aplicación y adquiriendo datos.

Garantía de éxito: mostrar los datos que utiliza la cinemática directa.

Escenario de éxito

- 1.- El Kinect se encuentra adquiriendo datos.
- 2.- La aplicación crea dos matrices:
 - a) matriz de ángulos.
 - b) matriz de eslabones.
- La aplicación asigna las matrices a tablas diferentes.

Escenario alternativo

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

- 4.- La aplicación muestra las tablas en la interfaz.
- 5.- La aplicación toma la coordenada de la cadera y suma la coordenada (x,y) resultante de cinemática directa.
- 6.- La aplicación muestra la coordenada real y del modelo en la interfaz.
- 7.- La aplicación calcula el error porcentual.
- 8.- La aplicación muestra el error porcentual en la interfaz.

Caso de uso: control encendido/apagado

Nombre:	Control	Actores:	BodyScan,	
encendido/apagado.		Usuario.		
Intereses y objetivos:				
BodyScan: encender o apagar el procesamiento de datos.				

Usuario: controla el funcionamiento con un siwtch.

Precondiciones: tener abierta la aplicación.

Garantía de éxito: encender o apagar la aplicación.

Escenario de éxito

- 1.- La aplicación se encuentra en la ventana de inicio.
- 2.- El usuario da clic en el switch.
- 3.- La aplicación cambia a "on".
- 4.- La aplicación inicia el procesamiento.
- 5.- El usuario da clic en el switch.
- 6.- La aplicación cambia a "off".
- 7.- La aplicación termina el procesamiento.

Escenario alternativo

2a.- error de ejecución

- 1.- La aplicación muestra un mensaje de error.
- 2.- La aplicación se detiene.

Caso de uso: adquisición de datos

Nombre: Adquisición de datos.	Actores: BodyScan, Kinect,
	Usuario.
Intereses y objetivos:	

BodyScan: tomar datos de la adquisición del dispositivo.

Kinect: realiza la adquisición de datos.

Usuario: utiliza la aplicación.

Precondiciones: tener abierta la aplicación.

Garantía de éxito: adquirir datos del Kinect.

Escenario de éxito

- La aplicación se encuentra en la ventana de inicio.
- 2.- El usuario iniciar la aplicación.
- 3.- La aplicación configura ajustes previos.
- 4.- El Kinect realiza la adquisición de datos.

Escenario alternativo

- 1.- La aplicación muestra unla mensaje de error.
 - 2.- La aplicación se detiene.

Caso de uso: indicador de funcionamiento

Nombre: Indicador de	Actores: BodyScan,				
funcionamiento.	Usuario.				
Intereses y objetivos:					
BodyScan: indica con colores el estado de la aplicación.					
Usuario: maneja la aplicación.					
Precondiciones: tener abierta la aplicación.					
Garantía de éxito: mostrar el estado de la aplicación.					
Escenario de éxito	Escenario alternativo				
1 La aplicación se encuentra en la	1a error de ejecución				
ventana de inicio.					

- 2.- El usuario inicia la aplicación.
- 3.- Se muestra un indicador de color verde.
- 4.- El usuario termina el proceso.
- 5.- Se muestra un indicador de color rojo.
- 6.- La aplicación se detiene.

- Se muestra un indicador de color amarillo.
- 2.- La aplicación se detiene.

Diagrama de flujo

