Catalan families

Sajjad Ranjbar
Combinatorial Algorithms
Shahid Beheshti university of Tehran
Fall semester 2024-2025

Mingantu 1730

1 1 5 10 1 6 15 7 21 35 8 20 56 36 04 126

Historical documents

Mingantu 1730

Ge Yuan Mi Lu Jie Fa

The Quick Method for Obtaining the Precise Ratio of Division of a Circle.

Mingantu 1730

Euler 1751

Mingantu 1730

Euler 1751

In 1751, Leonhard Euler (1707–1783) introduced and found a closed formula for what we now call the Catalan numbers. The proof of this result had eluded him, until he was assisted by Christian Goldbach (1690–1764), and more substantially by Johann Segner. By 1759, a complete proof was obtained.

Mingantu 1730

Euler 1751

Désiré André 1887

Mingantu 1730

Euler 1751

Désiré André 1887

He found the reflection counting trick (second proof) for Dyck words.

Mingantu 1730

Euler 1751

Désiré André 1887

Euler 1751

Désiré André 1887

He was a French and Belgian mathematician who worked on continued fractions, descriptive geometry, number theory and combinatorics. stating the famous Catalan's conjecture, which was eventually proved in 2002; and introducing the Catalan numbers to solve a combinatorial problem.

1. Counting Full Binary Trees

- 1. Counting Full Binary Trees
- 2. Counting Valid Parentheses Combinations

- 1. Counting Full Binary Trees
- 2. Counting Valid Parentheses Combinations
- 3. Counting Triangulations of an n-gon

- 1. Counting Full Binary Trees
- 2. Counting Valid Parentheses Combinations
- 3. Counting Triangulations of an n-gon
- 4. Counting Lattice Paths

- 1. Counting Full Binary Trees
- 2. Counting Valid Parentheses Combinations
- 3. Counting Triangulations of an n-gon
- 4. Counting Lattice Paths
- 5. Counting Binary Search Trees

Catalan numbers are a sequence of numbers.

Catalan families

Catalan numbers are a sequence of numbers.

For any n > 0:

$$C_n = \frac{1}{1+n} \binom{2n}{n}$$

Catalan families

Catalan numbers are a sequence of numbers.

For any n > 0:

$$C_n = \frac{1}{1+n} \binom{2n}{n}$$

[1, 2, 5, 14, 42, ...]

Let n be a positive integer Let $a = [a_1, a_2, a_3, ..., a_{2n}] \ni (\mathbb{Z}_2)^{2n}$

Let n be a positive integer Let $a = [a_1, a_2, a_3, ..., a_{2n}] \ni (\mathbb{Z}_2)^{2n}$

We say that the sequence a is balanced if:

1 1 3 1 5 10 1 6 15 10 1 6 15 1 7 21 35 0 20 56 9 36 84 126

Catalan's definition

Let n be a positive integer Let $a = [a_1, a_2, a_3, ..., a_{2n}] \ni (\mathbb{Z}_2)^{2n}$

We say that the sequence a is balanced if:

a contain n 0s and n 1s

1 1 3 1 3 1 5 10 1 6 15 1 7 21 35 8 28 56 8 126 56 9 36 84 126

Catalan's definition

Let n be a positive integer Let $a = [a_1, a_2, a_3, ..., a_{2n}] \ni (\mathbb{Z}_2)^{2n}$

We say that the sequence a is balanced if:

- a contain n 0s and n 1s
- For any $1 \le i \le 2n$ hold that:

$$|\{j: 1 \le j \le i, a_i=o\}| > = |\{j: 1 \le j \le i, a_i=1\}|$$

000001

000001

000001

010110

010101

000001

010110

010101

n=3:

n=3:

- 1. 000111
- 2. 001011
- 3. 001101
- 4. 010011
- 5. 010101 \(\]

a

Let C_n denote the set of all balanced sequences in $(\mathbb{Z}_2)^{2n}$

Let C_n denote the set of all balanced sequences in $(\mathbb{Z}_2)^{2n}$

We will refer C_n to the Calatan family of order n.

Let C_n denote the set of all balanced sequences in $(\mathbb{Z}_2)^{2n}$

We will refer C_n to the Calatan family of order n.

The Catalan number C_n is defied to be $C_n = |C_n|$

1 1 3 1 1 3 1 1 5 10 1 5 10 1 5 10 7 21 35 6 6 36 84 126 5 120 210

The few first Catalan numbers

$$C_2 = 2$$

$$C_3 = 5$$

$$C_4 = 14$$

$$C_5 = 42$$

$$C_6 = 132$$

$$C_7 = 429$$

$$C_8 = 1430$$

$$C_9 = 4862$$

$$C_{10} = 16796$$

Theorem

For any n > 0:

$$C_n = \frac{1}{1+n} \binom{2n}{n}$$

Combinatorial explanation

Combinatorial explanation

Combinatorial explanation

$$C_n = {2n \choose n}$$
 – squences with length 2n that do not satisfy second condition of balanced sequences

Graphical path

$$P = \{(0, 0), (1, y_1), ..., (2n-1, y_{2n-1}), (2n, y_{2n})\}$$

Graphical path

```
P = \{(0, 0), (1, y_1), ..., (2n-1, y_{2n-1}), (2n, y_{2n})\}
```

SequenceToPath($[a_1, a_2, ..., a_{2n}]$)

Graphical path example

001101

$$P = \{(0, 0)\}$$

Graphical path example

$$P = \{(0, 0), (1, 1)\}$$

Graphical path example

$$P = \{(0, 0), (1, 1), (2, 2)\}$$

Graphical path example

 $P = \{(0, 0), (1, 1), (2, 2), (3, 1)\}$

Graphical path example

 $P = \{(0, 0), (1, 1), (2, 2), (3, 1), (4, 0)\}$

Graphical path example

 $P = \{(0, 0), (1, 1), (2, 2), (3, 1), (4, 0), (5, 1)\}$

Graphical path example

 $P = \{(0, 0), (1, 1), (2, 2), (3, 1), (4, 0), (5, 1), (6, 0)\}$

Graphical path example

00110100110010100100111011

00110100110010100100111011

01011000110010100100111011

01011000110010100100111011

01011000110010100100111011

x₀: first point under y=0

01011000110010100100111011

x₀: first point under y=0

P [(0,0), (2n,0)]

P*[(0,-2), (2n, 0)]

 $P \longrightarrow P^*$

P bijection P*

P*

Mountain ranges under y=0

Graphical path

P*

Mountain ranges under y=0
Don't satisfy second condition
of balanced strings.

Graphical path

P*

Mountain ranges under y=0

Don't satisfy second condition

of balanced strings.

Strings with length 2n that contain n+1 0s and n-1 1s.

Graphical path

Mountain ranges under y=0

Don't satisfy second condition of balanced strings.

Strings with length 2n that contain n+1 0s and n-1 1s.

$$\binom{2n}{n+1}$$

Combinatorial explanation

$$C_n = {2n \choose n}$$
 – squences with length 2n that do not satisfy second condition of balanced sequences

Combinatorial explanation

$$C_n = \binom{2n}{n} - \binom{2n}{n+1}$$

Combinatorial explanation

$$C_{n} = {2n \choose n} - {2n \choose n+1}$$

$$= \frac{2n!}{n!n!} - \frac{2n!}{(n+1)!(n-1)!}$$

Combinatorial explanation

Number of string that have exactly n 0s and n 1s is $\binom{2n}{n}$

$$C_{n} = {2n \choose n} - {2n \choose n+1}$$

$$= \frac{2n!}{n!n!} - \frac{2n!}{(n+1)!(n-1)!}$$

$$= \frac{2n!(n+1-n)}{n!n!(n+1)}$$

Combinatorial explanation

Number of string that have exactly n 0s and n 1s is $\binom{2n}{n}$

$$C_{n} = {2n \choose n} - {2n \choose n+1}$$

$$= \frac{2n!}{n!n!} - \frac{2n!}{(n+1)!(n-1)!}$$

$$= \frac{2n!(n+1-n)}{n!n!(n+1)} = \frac{1}{1+n} {2n \choose n}$$

Theorem

For any n > 0:

$$C_n = \frac{1}{1+n} \binom{2n}{n}$$

Let n be a positive integer

Let n be a positive integer Let $(x, y) \ni \mathbb{Z} \times \mathbb{Z}$

Let n be a positive integer Let $(x, y) \ni \mathbb{Z} \times \mathbb{Z}$ $0 \le x \le 2n$

1 1 5 10 1 5 10 1 6 15 1 7 21 35 8 20 56 9 36 04 126

Rank & Unrank

Let n be a positive integer Let $(x, y) \ni \mathbb{Z} \times \mathbb{Z}$ $0 \le x \le 2n$

Mn(x,y) set of all mountain ranges from (x,y) to (2n,o) that do not drop below y=o

1 1 1 1 5 10 1 5 10 1 6 15 1 7 21 55 8 20 56 94 126 45 22 210

Rank & Unrank

Let n be a positive integer Let $(x, y) \ni \mathbb{Z} \times \mathbb{Z}$ $0 \le x \le 2n$

Mn(x,y) set of all mountain ranges from (x,y) to (2n,o) that do not drop below y=o

$$M_n(x,y) = |M_n(x,y)|$$

$$M_n(0,0) = C_n$$

$$M_n(0,0) = C_n$$

 $M_n(2n,0) = 0$

$$M_n(0,0) = C_n$$

 $M_n(2n,0) = 0$
 $M_n(x,y) = 0$ if y<0

1 1 3 1 3 1 1 4 1 1 5 10 1 1 6 15 1 7 2 1 35 0 20 56 9 36 0 0 126

$$M_n(0,0) = C_n$$

 $M_n(2n,0) = 0$
 $M_n(x,y) = 0$ if y<0
 $M_n(x,y) = 0$ if x+y>2n

Lemma

 $0 \le x \le 2n$ $y \ge 0$ x+y is even $x+y \le 2n$

Lemma

$$0 \le x \le 2n$$

 $y \ge 0$
 $x+y$ is even
 $x+y \le 2n$

$$Mn(x,y) = {2n-x \choose n-\frac{x+y}{2}} - {2n-x \choose n-1-\frac{x+y}{2}}$$