

Выбор оптимальной модели и гиперпараметров

Исходные данные

Данные представлены 2 файлами (data_train and data_test), содержащими основные признаки (buy_time, id, id_vas), а также файлом features, содержащим детальные данные по каждому пользователю с анонимизированными признаками

Основные данные

- Количество записей
 - Train: ~ 831,7 тыс. (в т.ч. ~806,6 тыс.users)
 - Test: ~ 71,2 тыс. (в т.ч. ~70,2 тыс.users)
- Основные признаки:
 - Пользователи (id)
 - Время (4 месяца + 1 месяц)
 - Предложения (i_vas) 10 видов
- Особенности:
 - Пользователи на train и test практически не пересекаются (число пересечений – 4,2 тыс.)
 - Отсутствуют пропуски

Детальные данные

- Всего около 4,4 млн.записей
- Количество анонимизированных признаков 256

Целевой класс

- Наблюдается сильный дисбаланс классов
 - 0 ~ 93%
 - 1 ~ 7%

Для целей обучения и использования моделей: на основе **id** данные из **features** импортируются в **train** и **test** с усреднением по **id** (в случае нескольких данных), после **id** и **buy_time** – удаляются из датасетов. Категориальные данные определяются, если число уникальных данных не более – 10.

Этапы обучения

2. EDA

- Class counts
- Corellation map
- PCA

4. GridSearch

- BaseLine model
- GridSearch
- · Probability calibration
- Final model -> to pkl

1. Преобразование данных

- Загрузка
- Добавление аноним.признаков
- Удаление id и buy_time
- Category Encoding

3. Clustering

Kmeans

5. Predict on TEST

- Model loading
- Generating forecast
- CSV

Разведочный анализ данных

Корелляционная матрица

Анализ РСА

n_PCA	VAR portion
13	80%
21	90%
28	95%
36	97,5%
45	99,0%

• Найдено 138 пар признаков с корелляцией более 0,8

Кластерный анализ

Оценка метрики Калински-Харабас

- Для выявления возможных кластеров применен метод Kmeans
- Инициализатор: Kmeans++
- Использованные для анализа данные: X_train с категориальными dummy-признаками
- Найденное оптимальное число кластеров 3
- Вместе с тем, использование кластеров не было в дальнейшем реализовано

Параметры поиска гиперпараметров

Преобразование данных

- **№** Масштабирование: MinMaxScaler
- Уменьшение размерности признаков: PCA(n=45)
- **№** Балансировка классов: SMOTE oversampler

Алгоритм поиска гиперпараметров

- Trainset > Train_gs (0,8) и Valid (0,2)
- **№** Подбор параметров: GridSearchCV (cv = 3), метрика: F1 (average=macro)
- № 2 этап: обучение модели на полной train_gs с опт.параметрами

Калибровка вероятностей. Случайный лес

- Выше представлены прогнозные кривые для алгоритма случайного леса (Выбранный в качестве оптимального алгоритма)
- Вероятность: 0,707
- F1 на валидационной метрике:
 - До калибровки вероятности: 0,6893
 - После калибровки вероятности: 0,6916

Результаты обучения

Алгоритм	F1_Macro	Threshold Probability
Логистическая Регрессия	0,6910	0,734
Naïve Bayes	0,6913	0,569
Random Forest	0,6916	0,707
XG-boost	0,6848	0,513
LightGBM	0,6900	0,679

В качестве оптимального варианта выбран алгоритм случайного леса

