Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Titolo della tesi

Tesi di laurea

 $\label{eq:Relatore} Relatore$ Prof. Tullio Vardanega

 ${\it Laure and o}$ Riccardo Montagnin

Anno Agguppiggo 2016 2017

Anno Accademico 2016-2017

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Pinco Pallino presso l'azienda Azienda S.p.A. Gli obbiettivi da raggiungere erano molteplici.

In primo luogo era richiesto lo sviluppo di ... In secondo luogo era richiesta l'implementazione di un ... Tale framework permette di registrare gli eventi di un controllore programmabile, quali segnali applicati Terzo ed ultimo obbiettivo era l'integrazione ...

$\hbox{``Life is really simple,}\\$	but we	insist on	$making\ it$	complicated"
				— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. NomeDelProfessore, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Luglio 2017

Riccardo Montagnin

Indice

1	Intr	roduzione	1
	1.1	L'azienda	1
	1.2	L'idea	1
	1.3	Organizzazione del testo	1
2	Pro	cessi e metodologie	3
	2.1	Processo sviluppo prodotto	3
3	Des	crizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
	3.3	Requisiti e obiettivi	6
	3.4	Pianificazione	6
4	Ana	disi dei requisiti	9
	4.1	Casi d'uso	9
	4.2	Tracciamento dei requisiti	10
5	Pro	gettazione e codifica	13
	5.1	Tecnologie e strumenti	13
	5.2	Ciclo di vita del software	13
	5.3	Progettazione	13
	5.4	Design Pattern utilizzati	13
	5.5	Codifica	13
6	Ver	ifica e validazione	15
7	Con	nclusioni	17
	7.1	Consuntivo finale	17
	7.2	Raggiungimento degli obiettivi	17
	7.3	Conoscenze acquisite	17
	7.4	Valutazione personale	17
A	App	pendice A	19
Bi	bliog	crafia	23

Elenco delle figure

4.1	Use Case	- UC0:	Scenario	principal	е.																		9
-----	----------	--------	----------	-----------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Elenco delle tabelle

3.1	Tabella dei Requisiti	(
4.1	Tabella del tracciamento dei requisti funzionali	1
4.2	Tabella del tracciamento dei requisiti qualitativi	1
4.3	Tabella del tracciamento dei requisiti di vincolo	1

Introduzione

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea site:agile-manifesto.

Esempio di citazione nel pie' di pagina citazione 1

1.1 L'azienda

Descrizione dell'azienda.

1.2 L'idea

Introduzione all'idea dello stage.

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

 $^{^{1}}$ womak: lean-thinking.

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[\mathrm{g}]};$
- $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Processi e metodologie

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

In questo capitolo viene descritto come si pianificato e svolto lo stage presso SAI, introducendo il progetto, considerando gli obiettivi e i possibili rischi.

3.1 Introduzione al progetto

Lo stage svolto presso SAI aveva come scopo la creazione di un prototipo di piattaforma web/desktop per il caricamento delle registrazioni audio effettuate nelle aule di tribunale, con l'aiuto di alcuni metadata prodotti durante le medesime registrazioni. In particolare l'applicazione da sviluppare è divisa in due parti backend e frontend (spiegare meglio back e front) che comunicano tra loro mediante API rest (spiegare API). Lo stage si è focalizzato sullo sviluppo della parte frontend, avanzando di pari passo con lo sviluppo del backend realizzata da altri membri del team di sviluppo. Per la realizzazione del frontend si è scelto di utilizzare Javascript con i framework React e Redux.

3.2 Analisi preventiva dei rischi

Nella fase di analisi iniziali si sono individuati i principali rischi a cui si poteva andare incontro e si è proceduto a definire le possibili soluzione per farne fronte.

1. Uso di nuove tecnologie

Descrizione: le tecnologie proposte per la gestione e lo sviluppo del progetto erano per lo più nuove o scarsamente conosciute..

Soluzione: è stato previsto un periodo iniziale di studio e formazione su queste tecnologie..

2. Modalità di lavoro smart working

Descrizione: lo stage è stato fatto completamente da remoto, e poteva portare ad una possibile mancanza di comunicazione e ad un incertezza nelle attività da svolgere.. **Soluzione:** il tutor aziendale si è reso disponibile a vari meeting nelle prime fasi del progetto e nella formazione iniziale, e rimanendo a disposizione per altri meeting in caso di dubbi sulle attività da svolgere..

O01	autenticazione mediante server remoto
O02	lettura dati da CD
O03	precompilazione di form con i dati caricati da CD
O04	editing dei dati del form
D01	upload dei dati verso i sistemi esterni
D02	test di unità esaustivi
F01	possibilità di ascoltare le registrazioni
F02	possibilità di modificare i dati mediante interazioni evolute (per es. drag-n-drop)
F03	realizzazione di un'applicazione desktop con Electron
F04	compilazione multipiattaforma dell'applicazione desktop

Tabella 3.1: Tabella dei Requisiti

3.3 Requisiti e obiettivi

Si farà riferimento ai requisiti secondo le seguenti notazioni:

- * O per i requisiti obbligatori, vincolanti in quanto obiettivo primario richiesto dal committente;
- * D per i requisiti desiderabili, non vincolanti o strettamente necessari, ma dal riconoscibile valore aggiunto;
- * F per i requisiti facoltativi, rappresentanti valore aggiunto non strettamente competitivo. Le sigle precedentemente indicate saranno seguite da una coppia sequenziale di numeri, identificativo del requisito.

3.4 Pianificazione

La pianificazione, in termini di quantità di ore, sarà distribuita in attività di studio e attività implementative.

Lo stage è stato strutturato in due fasi principali, la prima dedicata alle attività di studio e la seconda alle attività implementative. Di seguito vengono elencate le attività pianificate con la relativa quantità di ore stimata per ogni attività.

- * Studio delle tecnologie (80 ore)
 - Setup di un prototipo di applicazione React e del backend (16 ore);

- Studio delle librerie necessarie (React, Redux, JWT, OAuth) (64 ore);
- * Implementazione prototipo (240 ore)
 - Realizzazione dell'interfaccia di login (30 ore);
 - Implementazione lettura e visualizzazione dei dati da CD (70 ore);
 - Implementazione editing dei dati letti da CD (70 ore);
 - Implementazione upload dei dati (30 ore);
 - Testing dei prodotti realizzati (40ore);

Per ogni attività riguardante la fase di implementazione del prototipo è stata prevista anche la relativa attività di testing. Il tutto viene rappresentato dal seguente dal diagramma di Gantt.

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'IDE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia $2\,$

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia