

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 174011				
4.0	Matemática - /	Álgebra	1.a Série	М	21/11/2017					
Questões	Testes	Páginas	Professor(es)							
10	8	2	Fábio Cáceres/Fátima Regina/Sílvia Guiti							

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	Assinatura do	o Professor

Instruções:

- 1. A prova pode ser resolvida a lápis, mas respostas finais somente a tinta azul ou preta.
- 2. Únicos materiais permitidos: lápis (ou lapiseira), caneta e borracha.
- 3. Resposta que não vier acompanhada de resolução não será considerada.
- 4. Ao término da prova, entregue somente as folhas de respostas.

Note e adote:	•
Termo geral da P.A.	$a_n = a_1 + (n-1) \cdot r$
Soma de n termos da P.A. finita	$S_n = \frac{(a_1 + a_n)}{2} \cdot n$
Termo geral da P.G.	$a_n = a_1 \cdot q^{n-1}$
Soma de n termos da P.G. finita	$S_n = \frac{a_1 - a_n \cdot q}{1 - q}$ ou $S_n = \frac{a_1(1 - q^n)}{1 - q}$, $q \neq 1$

Parte I: Testes (valor: 2,0)

- 01. Em uma progressão aritmética, sabe-se que $a_{10} = 10$ e $a_{12} = 22$. O décimo terceiro termo é:
 - a. 34
 - b. 24
 - c. 28
 - d. 30
 - e. 44
- 02. Em uma progressão aritmética de quatro termos, a soma de seus termos é 42. Sabendo-se que o primeiro termo é 3. Então, a razão dessa P.A. é igual a:
 - a. 3
 - b. 5
 - c. 8
 - d. 10
 - e. 15

03	8. Em uma progressão aritmética de termos positivos, os três primeiros são: $1-a$; $-a$; $\sqrt{11-a}$. O quarto termo dessa P.A. é:
	a. 2 b. 3
	c. 4
	d. 5
	e. 6

04.	0	te	rce	iro	te	rmo	d	e ı	ıma	pr	og	ress	são	ari	tme	ética	a é	11	е	a I	razâ	йO	é 4	. A	SOI	na	dos	20	pri	me	iros	term	OS	é:

- a. 790 b. 800 c. 810
- d. 820 e. 830
- 05. Na progressão geométrica $(x^2, x, \log x)$, de razão q, x é um número real e positivo. Então, $\log(q)$ vale:
 - a. 1 b. -1
 - c. -2
 - d. 2
 - e. $\frac{1}{2}$
- 06. O terceiro e o sétimo termos de uma progressão geométrica valem, respectivamente, 10 e 18. O quinto termo dessa progressão é:
 - a. 14
 - b. $\sqrt{30}$
 - c. $2\sqrt{7}$
 - d. $6\sqrt{5}$
 - e. 30
- 07. A sequência $(2x + 5, x + 1, \frac{x}{2}, \cdots)$, com $x \in IR$, é uma progressão geométrica de termos positivos. O décimo terceiro termo dessa sequência é:
 - a. 2 b. 3^{-10}

 - c. 3 d. 3¹⁰
 - e. 3^{12}
- 08. O número que deve ser subtraído de 1, de $\frac{11}{8}$ e de $\frac{31}{16}$ para que os resultados formem, nessa mesma ordem, uma progressão geométrica é:
 - a. 2

Folha de Respostas

Assinatura do Aluno

	Disciplina	Data da prova	P 174011				
4.0	Matemática -Álgebra	21/11/2017	p 1				
Aluno(a) / N.o / Turma							

Parte I: Testes (valor: 2,0)

Quadro de Respostas

- Obs.: 1. Faça marcas sólidas nas bolhas sem exceder os limites.
 - 2. Rasura = Anulação.

Parte II: Questões Dissertativas (valor: 8,0)

01. (valor: 1,0) Resolva as inequações nos casos abaixo

a.
$$\left(\frac{1}{2}\right)^{x^2-4} \ge 8^{2-x}$$

b.
$$9^x - 4 \cdot 3^{x+1} + 27 > 0$$

Assinatura do Professor

Nota

02. (valor: 1,0) Resolva a inequação $\log_{\frac{1}{3}}(x^2-3) \geq 0$

03. (valor: 1,0) Dada a progressão aritmética (-73, -69, ...), determine:

- a. a razão da P.A.
- b. o termo da 30.a posição
- c. a soma dos 30 termos iniciais
- d. o número mínimo de termos que devemos somar para que a soma seja positiva

r =______, $a_{30} =$ ______, $S_{30} =$ ______ e $n_{min} =$ _____

04. (valor: 0,5) Sabendo-se que a sequência (1 - 3x, x - 2, 2x + 1) é uma progressão aritmética, determine:

- a. o valor de x
- b. a razão da P.A.

x = _____ e r = _____

Aluno(a)	Turm	a N.o	P 174011
			р3

- 05. (valor: 0,75) Sobre o conjunto dos múltiplos de 11 compreendidos entre 100 e 10000, determine:
 - a. o número de elementos desse conjunto
 - b. a soma desses elementos

$$n =$$
_____ e $S_n =$ _____

06. (valor: 0,75) Determine três números em uma progressão aritmética (termos consecutivos), crescente, sabendo que sua soma é 21 e o produto 231.

$$P.A. = (, ,)$$

- 07. (valor: 0,75) Dada a progressão geométrica $\left(\frac{27}{4},-\frac{9}{2},\cdots\right)$, determine:
 - a. a razão da P.G.
 - b. o termo da quinta posição.
 - c. a soma dos cinco termos iniciais.

$$q =$$
______, $a_5 =$ ______ e $S_5 =$ _____

08. (valor: 0,75) Determine a razão de uma progressão geométrica cujos termos satisfazem as relações: $a_2 + a_4 + a_6 = 10$ e $a_1 + a_3 + a_5 = 5$.

q =

09. (valor: 0,75) Uma P.A. e uma P.G. têm, ambas, o primeiro termo igual a 4, sendo que os seus terceiros termos são positivos e coincidentes. Sabe-se ainda que o segundo termo da P.A. excede o segundo termo da P.G. em 2. Então, qual o valor do terceiro termo dessas progressões?

Resposta:

10. (valor: 0,75) Resolva a equação $x-1+2x-3+3x-5+\cdots+50x-99=50$

Parte I: Testes (valor: 2,0)

- 01. Em uma progressão aritmética, sabe-se que $a_{10} = 10$ e $a_{12} = 22$. O décimo terceiro termo é:
 - a. 34

b. 24

c. 28

d. 30

e. 44

- Aplicando a fórmula do termo central da P.A., temos: (1) $a_{11} = \frac{a_{10} + a_{12}}{2} \Rightarrow a_{11} = \frac{10 + 22}{2} \Rightarrow a_{11} = 16$
- (2) $a_{12} = \frac{a_{11} + a_{13}}{2} \Rightarrow 22 = \frac{16 + a_{13}}{2} \Rightarrow a_{13} = 28$
- 02. Em uma progressão aritmética de quatro termos, a soma de seus termos é 42. Sabendo-se que o primeiro termo é 3. Então, a razão dessa P.A. é igual a:
 - Pela definição da P.A., obtemos (3, 3+r, 3+2r, 3+3r), onde r é a razão da P.A.. a. 3

b. 5 Logo. $3 + 3 + r + 3 + 2r + 3 + 3r = 42 \Rightarrow 6r = 30 \Rightarrow r = 5$

- c. 8
- d. 10
- e. 15
- 03. Em uma progressão aritmética de termos positivos, os três primeiros são: 1-a; -a; $\sqrt{11-a}$. O quarto termo dessa P.A. é:
 - Aplicando a fórmula do termo central da P.A., temos:

b. 3

- $a_2 = \frac{a_1 + a_3}{2} \Rightarrow -a = \frac{1 a + \sqrt{11 a}}{2} \Rightarrow -2a = 1 a + \sqrt{11 a} \Rightarrow a + 1 = -\sqrt{11 a} \Rightarrow a + 1 = -\sqrt$ c. 4
- d. 5 $\Rightarrow a^2 + 2a + 1 = 11 - a \Rightarrow a^2 + 3a - 10 = 0 \Rightarrow (a + 5)(a - 2) = 0 \Rightarrow$
- e. 6 $\Rightarrow a = -5$ ou a = 2 (não convém, pois é uma sequência de termos positivos).
 - (2) $a_3 = \frac{a_2 + a_4}{2} \Rightarrow \sqrt{11 (-5)} = \frac{-(-5) + a_4}{2} \Rightarrow a_4 = 3$
- 04. O terceiro termo de uma progressão aritmética é 11 e a razão é 4. A soma dos 20 primeiros termos é:
 - a. 790 Aplicando a fórmula do termo geral da P.A., temos:
 - b. 800 c. 810
- (1) $a_3 = a_1 + (3-1) \cdot 4 \Rightarrow 11 = a_1 + 8 \Rightarrow a_1 = 3$
- d. 820
- (2) $a_{20} = a_1 + (20 1) \cdot 4 \Rightarrow a_{20} = 3 + 19 \cdot 4 \Rightarrow a_{20} = 3 + 76 \Rightarrow a_{20} = 79$
- e. 830
- (3) A soma pedida é $S_{20} = \frac{(3+79)}{2} \cdot 20 \Rightarrow S_{20} = 820$
- 05. Na progressão geométrica $(x^2, x, \log x)$, de razão q, x é um número real e positivo. Então, $\log (q)$ vale:
 - a. 1 Aplicando a fórmula do terno central da P.G.:
 - b. 1 $(x)^2 = x^2 \cdot \log x \Rightarrow \log x = 1$, pois x > 0, então x = 10c. -2
 - (2) razão $q = \frac{x}{x^2} \Rightarrow q = \frac{1}{10}$ d. 2
 - e. $\frac{1}{2}$ (3) Logo, $\log\left(\frac{1}{10}\right) = \log 10^{-1} = -\log 10 = -1$

- 06. O terceiro e o sétimo termos de uma progressão geométrica valem, respectivamente, 10 e 18. O quinto termo dessa progressão é:
 - Aplicando a fórmula do terno central da P.G.: a. 14
 - $(a_5)^2 = a_3 \cdot a_7 \Rightarrow (a_5)^2 = 10 \cdot 18 \Rightarrow a_5 = 6\sqrt{5}$ ou $a_5 = -6\sqrt{5}$ b. $\sqrt{30}$
 - c. $2\sqrt{7}$ Note que, se dois termos de ordem ímpar de uma P.G. são positivos
 - $(a_3 = 10 \text{ e } a_7 = 18)$, então todos os outros termos de ordem ímpar são também positivos. d. $6\sqrt{5}$
 - Logo, $a_5 = 6\sqrt{5}$ e. 30
- 07. A sequência $\left(2x+5,x+1,\frac{x}{2},\ldots\right)$, com $x\in IR$, é uma progressão geométrica de termos positivos.
 - O décimo terceiro termo dessa seguência é:
 - Aplicando a fórmula do termo central da P.G.:
 - a. 2 b. 3^{-10} $(x+1)^2 = (2x+5) \cdot \frac{x}{2} \Rightarrow 2x^2 + 4x + 2 = 2x^2 + 5x \Rightarrow x = 2$
 - c. 3 d. 3¹⁰ e. 3¹² (2) A razão $q = \frac{x+1}{2x+5} \Rightarrow q = \frac{3}{9} \Rightarrow q = \frac{1}{3}$
 - (3) Aplicando a fórmula do termo geral:

$$a_n = a_1 \cdot q^{n-1} \Rightarrow a_{13} = 9 \cdot \left(\frac{1}{3}\right)^{13-1} \Rightarrow a_{13} = 3^{-10}$$

- 08. O número que deve ser subtraído de 1, de $\frac{11}{8}$ e de $\frac{31}{16}$ para que os resultados formem, nessa mesma ordem, uma progressão geométrica é:
 - (1) Do enunciado, segue que, $\left(1-x, \frac{11}{8}-x, \frac{31}{16}-x\right)$ é uma P.G..
 - (2) Aplicando a fórmula do termo central da P.G., temos:
 - $\left(\frac{11}{8}-x\right)^2=(1-x)\cdot\left(\frac{31}{16}-x\right)\Rightarrow x=\frac{1}{4}$
 - d. $\frac{1}{8}$
 - e. $\frac{1}{16}$

Parte II: Questões (valor: 8,0)

- 01. (valor: 1,0) Resolva as inequações nos casos abaixo:
- a. $\left(\frac{1}{2}\right)^{x^2-4} \ge 8^{2-x}$
 - $(2^{-1})^{x^2-4} \ge (2^3)^{2-x}$
 - $2^{4-x^2} \ge 2^{6-3x} \Leftrightarrow 4-x^2 \ge 6-3x$
 - $x^2 3x + 2 < 0$
 - $(x-1)(x-2) \le 0$

Portanto, $S = \{x \in IR/1 \le x \le 2\} = [1, 2]$

b.
$$9x - 4 \cdot 3^{x+1} + 27 > 0$$

$$(3^x)^2 - 12(3^x) + 27 > 0$$
, substituindo 3^x por y e reescrevendo a inequação, temos:

$$y^2 - 12y + 27 > 0$$

$$(y-3)(y-9) > 0$$

$$y < 3 \Rightarrow 3^x < 3^1 \Leftrightarrow x < 1$$

ou

$$y > 9 \Rightarrow 3^x > 3^2 \Leftrightarrow x > 2$$

Portanto,
$$S = \{x \in IR/x < 1 \text{ ou } x > 2\} =] - \infty, 1 [\cup] 2, + \infty [$$

02. (valor: 1,0) Resolva a inequação $\log_{\frac{1}{2}}(x^2-3) \ge 0$

1. Condição de existência

$$x^2 - 3 > 0$$

$$-\sqrt{3}$$

$$\sqrt{3}$$

$$S_1 = \{x \in IR/x < -\sqrt{3} \text{ ou } x > \sqrt{3} \}$$

2.
$$\log_{\frac{1}{3}}(x^2 - 3) \ge 0 \Leftrightarrow x^2 - 3 \le \left(\frac{1}{3}\right)^0 \Rightarrow x^2 - 4 \le 0$$

$$S_2 = \{x \in IR / -2 \le x \le 2\}$$

3. Quadro de intersecções $(S_1 \cap S_2)$

a. a razão da P.A..

$$r = -69 - (-73) \Rightarrow r = -69 + 73 \Rightarrow r = 4$$

b. o termo da 30.a posição.

$$a_{30} = a_1 + (30 - 1) \cdot r \Rightarrow a_{30} = -73 + 29 \cdot 4 \Rightarrow a_{30} = -73 + 116 \Rightarrow a_{30} = 43$$

c. a soma dos 30 termos iniciais.

$$S_{30} = \frac{(a_1 + a_{30})}{2} \cdot 30 \Rightarrow S_{30} = (-73 + 43) \cdot 15 \Rightarrow S_{30} = (-30) \cdot 15 \Rightarrow S_{30} = -450$$

d. o número mínimo de termos que devemos somar para que a soma seja positiva.

$$S_n > 0 \Rightarrow \frac{[a_1 + a_n]}{2} \cdot n > 0 \Rightarrow \frac{[-73 - 73 + (n-1) \cdot 4]}{2} \cdot n > 0 \Rightarrow [-75 + 2n] \cdot n > 0 \Rightarrow \mathbf{2n^2 - 75} > \mathbf{0}$$

$$2n^2 - 75n > 0 \Rightarrow n (n - 37, 5) > 0$$

Logo, a menor quantidade de termos que devemos somar para obter soma positiva é 38.

04. (valor: 0,5) Sabendo-se que a sequência (1-3x, x-2, 2x+1) é uma progressão aritmética, determine:

a. o valor de x.

Aplicando a fórmula do termo central da P.A., temos:

$$a_2 = \frac{a_1 + a_3}{2} \Rightarrow x - 2 = \frac{1 - 3x + 2x + 1}{2} \Rightarrow 2x - 4 = 2 - x \Rightarrow 3x = 6 \Rightarrow x = 2$$

b. a razão da P.A..

Note que
$$(1-3x, x-2, 2x+1) = (-5, 0, 5)$$

Logo,
$$r = 5 - 0 \Rightarrow r = 5$$

05. (valor: 0,75) Sobre o conjunto dos múltiplos de 11 compreendidos entre 100 e 10000, determine:

a. o número de elementos desse conjunto.

Os números múltiplos de 11 compreendidos entre 100 e 10000 são 110, 121, 132, ..., 9988, 9999 Note que esses números formam uma P.A. de primeiro termo a_1 = 110, último termo a_n = 9999 e razão r = 11

Para calcular o número de elementos desse conjunto, aplicamos a fórmula do termo geral da P.A.:

$$a_n = a_1 + (n-1) \cdot r \Rightarrow 9999 = 110 + (n-1) \cdot 11 \Rightarrow n = 900$$

b. a soma desses elementos.

Para calcular a soma desses números, aplicamos a fórmula da soma dos termos da P.A.:

$$S_{900} = \frac{(110 + 9999)}{2} \cdot 900 \Rightarrow S_{900} = 10109 \cdot 450 \Rightarrow S_{900} = 4549050$$

06. (valor: 0,75) Determine três números em uma progressão aritmética (termos consecutivos), crescente, sabendo que sua soma é 21 e o produto 231.

Sabendo que se três números são termos consecutivos de uma P.A. de razão r e o termo do meio for x, podemos afirmar que o antecessor de x será x-r e o sucessor será x+r, ou seja, P.A. = (x-r, x, x+r). Então:

- (1) $x-r+x+x+r=21 \Rightarrow 3x=21 \Rightarrow x=7$
- (2) $(x-r) \cdot x \cdot (x+r) = 231 \Rightarrow (7-r)(7+r) = 33 \Rightarrow r^2 = 16 \Rightarrow r = 4$ ou r = -4 (não convém, pois a sequência é crescente, ou seja, r > 0).

Logo, os três números, nesta ordem, são: 3, 7, 11

07. (valor: 0,75) Dada a progressão geométrica $\left(\frac{27}{4}, -\frac{9}{2}, \cdots\right)$, determine:

a. a razão da P.G..

$$q = \left(-\frac{9}{2}\right) : \left(\frac{27}{4}\right) \Rightarrow q = \left(-\frac{9}{2}\right) \cdot \left(\frac{4}{27}\right) \Rightarrow q = -\frac{2}{3}$$

b. o termo da quinta posição.

$$a_n = a_1 \cdot q^{n-1} \Rightarrow a_5 = a_1 \cdot q^4 \Rightarrow a_5 = \frac{27}{4} \cdot \left(-\frac{2}{3}\right)^4 \Rightarrow a_5 = \frac{4}{3}$$

c. a soma dos cinco termos iniciais.

$$S_n = \frac{a_1 - a_n \cdot q}{1 - q} \Rightarrow S_5 = \frac{\frac{27}{4} - \left(\frac{4}{3}\right)\left(-\frac{2}{3}\right)}{1 - \left(-\frac{2}{3}\right)} \Rightarrow S_5 = \frac{\frac{243 + 32}{36}}{\frac{5}{3}} \Rightarrow S_5 = \frac{275}{36} \cdot \frac{3}{5} \Rightarrow S_5 = \frac{55}{12}$$

08. (valor: 0,75) Determine a razão de uma progressão geométrica cujos termos satisfazem as relações: $a_2 + a_4 + a_6 = 10$ e $a_1 + a_3 + a_5 = 5$

$$\begin{cases} a_2 + a_4 + a_6 = 10 \\ a_1 + a_3 + a_5 = 5 \end{cases}$$

Reescrevendo as relações acima em função do primeiro termo a_1 e da razão q da P.G., temos:

$$\begin{cases} a_1 \cdot q + a_1 \cdot q^3 + a_1 \cdot q^5 = 10 \\ a_1 + a_1 \cdot q^2 + a_1 \cdot q^2 = 5 \end{cases}$$

$$\begin{cases} a_1 \cdot q (1 + q^2 + q^4) = 10 \\ a_1 \cdot (1 + q^2 + q^4) = 5 \end{cases}$$
 (I)

$$a_1 \cdot (1 + q^2 + q^4) = 5$$
 (II)

Dividindo (I) por (II), obtemos a razão q = 2

09. (valor: 0,75) Uma P.A. e uma P.G. têm, ambas, o primeiro termo igual a 4, sendo que os seus terceiros termos são positivos e coincidentes. Sabe-se ainda que o segundo termo da P.A. excede o segundo termo da P.G. em 2. Então, qual o valor do terceiro termo dessas progressões?

De acordo com o enunciado, temos a P.A. = (4, y + 2, x, ...) e a P.G. = (4, y, x, ...), com x > 0, então:

- termo central da P.A.: $y + 2 = \frac{x+4}{2} \Rightarrow y = \frac{x}{2}$
- termo central da P.G.: $y^2 = 4x$ (2)

Substituindo (1) em (2), obtemos x = 16 ou x = 0 (não convém)

Logo, o terceiro termo dessas progressões é igua a 16.

10. (valor: 0,75) Resolva a equação $x - 1 + 2x - 3 + 3x - 5 + \dots + 50x - 99 = 50$

Reescrevendo a equação, temos: $x \cdot (1 + 2 + 3 + \dots + 50) - (1 + 3 + 5 + \dots + 99) = 50$

Note que
$$1 + 2 + 3 + \dots + 50 = \frac{(1+50)}{2} \cdot 50 = 1275$$
 e $1 + 3 + 5 + \dots + 99 = \frac{(1+99)}{2} \cdot 50 = 2500$

Assim. $1275 \cdot x - 2500 = 50 \Rightarrow 1275x = 2550 \Rightarrow x = 2$