Divisibilité, Division euclidienne, PGCD

Exercice 1: Soient $A; B \in \mathbb{K}[X]$

Soient $U; V \in \mathbb{K}[X]$ tels que AU + BV = PGCD(A; B).

Montrer que $U \wedge V = 1$. Comment caractérise-t-on que deux polynômes sont premiers entre eux ?

Exercice 2:

Réaliser les divisions euclidiennes dans $\mathbb{R}[X]$ de :

- $X^4 + 2X + 3 par X^2 1$
- $X^4 + 2X^3 X + 6$ par $X^3 6X^2 + X + 4$
- $1 + 6X^2 + 4X^3 5X^4 par X^2 5X + 3$

Exercice 3:

Déterminer les restes dans la division euclidienne de $A=X^n+2X-2\ par\ B$ lorsque :

$$B = X - 2$$
: $B = (X - 2)(X - 3)$: $B = (X - 3)^2$

Exercice 4: Soient $a \in \mathbb{K}, P \in \mathbb{K}[X]$

1) à l'aide de la division euclidienne montrer que :

$$P(a) = 0 \Leftrightarrow X - a \mid P$$

2) Donner une condition similaire pour que $(X - a)^2 \mid P$

<u>Exercice 5</u>: Déterminer les $a \in \mathbb{R}$ tels que $X^2 - aX + 1$ divise $X^4 - X + a$ dans $\mathbb{R}[X]$

<u>Exercice 6</u>: Soit A un polynôme dont les reste de la DE par X-1; X-2; X-3 soient respectivement 3; 7 et 13.

Déterminer le reste de la division euclidienne de A par B = (X-1)(X-2)(X-3)

Exercice 7:

- 1) Déterminer un PGCD de $P(X) = X^4 1$ et $Q(X) = X^2 3X + 2$.
- 2) Déterminer une relation de Bézout entre P et Q.
- 3) Même travail avec $X^7 X 1$ et $X^5 + 1$.

Exercice 8:

Soient $n, m \in \mathbb{N}$. On écrit n = mq + r la division euclidienne de n par m.

Montrer que $X^r - 1$ est le reste de la division euclidienne de $X^n - 1$ par $X^m - 1$

<u>Exercice 9</u>: Effectuer la division euclidienne de $2X^3 + 3X^2 + 1$ $par X^2 + 2X + 3$ dans $\mathbb{F}_5[X]$

<u>Exercice 10</u>: Soient $P, Q \in \mathbb{F}_2[X]$ tels que $P(X) = X^4 + X + 1et Q(X) = 1 + X^2 + X$, $R(X) = X^7$.

- 1) Ecrire la division euclidienne de *R* par *P*
- 2) Calculer, dans $\mathbb{F}_2[X]$, PGCD(P;Q). Que dire de Q dans $\mathbb{F}_2[X]/\langle P \rangle$?

<u>Exercice 11</u>: Déterminer le reste de la division euclidienne de $(\sin(\theta)X + \cos(\theta))^n par X^2 + 1$

Irréductibilité

Exercice 1:

- 1) Montrer qu'un polynôme $P \in \mathbb{K}[X]$ de degré 1 est irréductible.
- 2) Montrer que si $P \in \mathbb{K}[X]$ est de degré 2 ou 3. P est irréductible si et seulement si il ne possède pas de racine.
- 3) Montrer que $P = X^3 + X + 1$ est irréductible dans $F_5[X]$. L'est-il dans $\mathbb{R}[X]$

<u>Exercice 2</u>: Dire si les polynômes suivants sont irréductibles dans $\mathbb{F}_2[X]$

- $X^2 + 1$
- $X^2 + X + 1$
- $X^3 + X + 1$

Exercice 3:

Soit $P(X)=a_nX^n+a_{n-1}X^{n-1}+\ldots+a_1X+a_0$ un polynôme à coefficient dans $\mathbb Z$ avec $a_n\neq 0$.

- 1) Si $x=\frac{p}{q}$ $avec\ p\land q=1$ est une racine de P, montrez que p divise a_0 et q divise a_n
- 2) Montrer que X^3-X-1 n'a pas de racine rationnelle. (pouvant s'écrire comme au-dessus)
- 3) Déterminer les racines rationnelles de $Q(X) = 3X^3 + 8X^2 + 12X 5$.
- 4) En déduire la décomposition en produit d'irréductible dans de Q dans $\mathbb{R}[X]$

Exercice 4: On pose $P(X) = X^4 + 1$.

- 1) Ce polynôme est-il irréductible dans $\mathbb{R}[X]$? Donner sa décomposition s'il ne l'est pas.
- 2) Est-il irréductible dans $\mathbb{Z}[X]$? Même question dans $\mathbb{F}_2[X]$ et $\mathbb{F}_3[X]$

<u>Exercice 5</u>: Nombre de polynômes irréductibles sur \mathbb{F}_p . Soit $p \in \mathbb{P}$

- 1) Combien existe-t-il de polynôme unitaires de degré 2 dans $\mathbb{F}_p[X]$
- 2) Montrer que si P est un polynôme unitaire réductible de degré 2 de $\mathbb{F}_p[X]$ alors :
 - Ou bien $P = (X a)(X b)avec \ a \neq b \in \mathbb{F}_p$. Combien existe-t-il de tels polynômes ?
 - Ou bien $P = (X a)^2$ avec $a \in \mathbb{F}_p[X]$. Combien existe-t-il de tels polynômes ?
- 3) En déduire le nombre de polynômes unitaires irréductibles de degré 2 dans $\mathbb{F}_n[X]$. Les lister pour p=3
- 4) Montrer qu'il existe $\frac{1}{3}p(p^2-1)$ polynômes irréductibles de degré 3 dans $\mathbb{F}_p[X]$. On pourra remarquer qu'un polynôme réductible P s'écrit :
 - Ou bien P(X) = (X a)(X b)(X c) $a \neq b \neq c \in \mathbb{F}_p$
 - Ou bien $P(X) = (X a)^2 (X b)$ $a \neq b \in \mathbb{F}_p$ (attention l'ordre compte)
 - Ou bien $P(X) = (X a)^3$, $a \in \mathbb{F}_p$
 - Ou bien P(X) = (X a)Q(X) avec Q irréductible de degré 2 sur \mathbb{F}_p