IN THE CLAIMS:

This listing of claims replaces the prior version and provides a listing of claims in the application.

Claim 1 (currently amended):

A compound represented by the structural

5 formula:

Formula III

wherein:

10

15

20

R is selected from the group consisting of alkyl, aryl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, arylalkyl, cycloalkyl, -NR⁶R⁷, -C(O)R7, -C(O)OR6, -C(O)NR6R7 and -S(O2)R7, wherein each of said alkyl, aryl, heteroaryl, heteroarylaikyl, heterocyclyl, heterocyclylaikyl, cycloaikyl and arylalkyl can be unsubstituted or optionally independently substituted with one or more mojeties which can be the same or different, each mojety being independently selected from the group consisting of halogen, alkyl, CF₃, CN, $-OCF_3$, $-OR^6$, $-C(O)R^7$, $-NR^6R^7$, $-C(O)OR^6$, $-C(O)NR^6R^7$, $-SR^6$, $-S(O_2)R^7$, $-S(O_2)NR^6R^7$. $-N(R^5)S(O_2)R^7$. $-N(R^6)C(O)R^8$ and $-N(R^5)C(O)NR^6R^7$ and NO_2 ;

R² is selected from the group consisting of hydrogen, R⁹, halogen, CN. -C(O)OR6, -C(O)NR5R10, -OR6, -C(O)R7, -SR6, -S(O2)R7, -S(O2)NR5R10, $-N(R^5)S(O_2)R^7$, $-N(R^5)C(O)R^7$ and $-N(R^5)C(O)NR^5R^{10}$, alkyl, alkenyl, alkynyl, alkenylalkyl, alkynylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl, cycloalkylalkyl, -CF₃, -C(O)R⁷, -NR⁶R², -C(O)OR⁶, -C(O)NR⁵R⁶, alkyl substituted with 1-6 R⁹ groups which groups can be the same or different with each R9 being

independently selected, $\{-(CH_2)_m - N - R^B, \sqrt[3]{4}\}$ 25 -aryl—N—R⁸ and N—R⁸, wherein each of said aryl,

heteroaryl, arylalkyl and heterocyclyl can be unsubstituted or optionally independently substituted with one or more moleties which can be the same

15

20

3

or different, each moiety being independently selected from the group consisting of halogen, alkyl, cycloalkyl, CF₃, CN, -OCF₃, -OR⁶, -C(O)R⁷, -NR⁶R⁷, -C(O)OR⁶, -C(O)NR⁵R⁶, -SR⁶, -S(O₂)R⁷, -S(O₂)NR⁵R⁶, -N(R⁵)S(O₂)R⁷, -N(R⁵)C(O)R⁷ and -N(R⁵)C(O)NR⁵R⁶;

 R^3 is selected from the group consisting of H, halogen, -NR⁵R⁶, CF₃, alkyl, cycloalkyl, aryl, heteroaryl, heteroarylalkyl, heteroarylyl, heteroaryl, heteroarylylalkyl, alkynyl, alkenyl, -(CHR⁵)_n-aryl, -(CHR⁵)_n-heteroaryl, -(CHR⁵)_n-OR⁶, -S(O₂)R⁶, -C(O)R⁶, -S(O₂)NR⁵R⁶, -C(O)OR⁶, -C(O)NR⁵R⁶,

-CH(aryl)₂, and -(CH₂)_m-NR⁸, $(R^8)_n$ $(R^8)_n$

wherein each of said aryl, alkyl, arylalkyl, <u>and</u> cycloalkyl, <u>heteroaryl</u>, heteroarylalkyl, heterocyclyl and heterocyclylalkyl for R³ and the heterocyclyl moieties whose-structures are shown immediately above for R³ can be substituted or optionally independently substituted with one or more moleties which moieties can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, cycloalkyl, CF₃, CN, -OCF₃, -OR⁵, -C(R⁴R⁵)_nOR⁵, -NR⁵R⁶, -C(R⁴R⁵)_nNR⁵R⁶, -C(O₂)R⁵, -C(O)R⁵, -C(O)NR⁵R⁶, -SR⁶, -S(O₂)R⁶, -S(O₂)NR⁵R⁶, -N(R⁵)S(O₂)R⁷, -N(R⁵)C(O)R⁷ and -N(R⁵)C(O)NR⁶R⁶;

 R^4 is selected from the group consisting of H, halogen, CF₃, alkyl, cycloalkyl, aryl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkynyl, alkenyl, -(CHR⁵)_n-aryl, - (CHR⁵)_n-heteroaryl, -(CHR⁵)_n-OR⁶, -S(O₂)R⁶, -C(O)R⁶, -S(O₂)NR⁵R⁶, -C(O)OR⁶, -C(O)NR⁵R⁶, cycloalkyl, -CH(aryl)₂,

25 –(CH₂)_m-NR⁸, and N-R⁸, wherein each of said aryl, alkyl, cycloalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl can

10

15

20

25

30

4

be substituted or optionally substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, cycloalkyl, CF_3 , CN, $-OCF_3$, $-OR^5$, $-NR^5R^6$, $-C(O_2)R^5$, $-C(O)NR^5R^6$, $-SR^6$, $-S(O_2)R^6$, $-S(O_2)NR^5R^6$, $-N(R^5)S(O_2)R^7$, $-N(R^5)C(O)R^7$ and $-N(R^5)C(O)NR^5R^6$;

R⁵ is H, alkyl or aryl;

R⁶ Is selected from the group consisting of H, alkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein each of said alkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl can be unsubstituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, cycloalkyl, heterocyclylalkyl, CF₃, OCF₃, CN, -OR⁵, -NR⁵R¹⁰, -N(R⁵)Boc, -C(R⁴R⁵)OR⁵, - C(O)R⁶, -C(O)OR⁵, -C(O)OR⁵, -C(O)OR⁵, -C(O)OR⁵, -SO₃H, -SR¹⁰, -S(O₂)R⁷, -S(O₂)NR⁵R¹⁰, -N(R⁵)S(O₂)R⁷, -N(R⁵)C(O)R⁷ and -N(R⁵)C(O)NR⁵R¹⁰;

R¹⁰ is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkyl, wherein each of said alkyl, aryl, arylalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkyl, and heteroarylalkyl can be unsubstituted or optionally substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, cycloalkyl, heterocyclylalkyl, CF₃, OCF₃, CN, -OR⁵, -NR⁴R⁵, -N(R⁵)Boc, -(CR⁴R⁵)_nOR⁵, -C(O₂)R⁵, -C(O)NR⁴R⁵, -C(O)R⁵, -SO₃H, -SR⁵, -S(O₂)R⁷, -S(O₂)NR⁴R⁵, -N(R⁵)S(O₂)R⁷, -N(R⁵)C(O)R⁷ and -N(R⁵)C(O)NR⁴R⁵;

or optionally (i) R⁵ and R¹⁰ in the molety –NR⁵R¹⁰, or (ii) R⁵ and R⁶ in the molety –NR⁵R⁶, may be joined together to form a cycloalkyl or heterocyclyl molety, with each of said cycloalkyl or heterocyclyl molety being unsubstituted or optionally independently being substituted with one or more R⁹ groups;

R⁷ is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, arylalkyl and heteroarylalkyl wherein each of said alkyl, cycloalkyl, heteroarylalkyl, aryl, heteroaryl and arylalkyl can be unsubstituted or

optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, cycloalkyl, CF_3 , OCF_3 , CN, $-OR^5$, $-NR^5R^{10}$, $-CH_2OR^5$, $-C(O_2)R^5$, $-C(O)NR^5R^{10}$, $-C(O)R^5$, $-SR^{10}$, $-S(O_2)R^{10}$, $-S(O_2)NR^5R^{10}$, $-N(R^5)S(O_2)R^{10}$, $-N(R^5)C(O)R^{10}$ and $-N(R^5)C(O)NR^5R^{10}$;

R⁶ is selected from the group consisting of R⁶, -C(O)NR⁵R¹⁰.

 $-S(O_2)NR^5R^{10}$, $-C(O)R^7$, $-C(O)OR^6$ and $-S(O_2)R^7$;

 R^9 is selected from the group consisting of halogen, CN, NR^5R^{10} , $-C(O)OR^6$, $-C(O)NR^5R^{10}$, $-OR^6$, $-C(O)R^7$, $-SR^6$, $-S(O_2)R^7$, $-S(O_2)NR^5R^{10}$,

-N(R⁵)S(O₂)R⁷, -N(R⁵)C(O)R⁷and -N(R⁵)C(O)NR⁵R¹⁰;

R¹¹ is H, alkyl or aryl;

m is 0 to 4; and

n is 1-4.

10

15

20

25

30

Claim 2 (currently amended): The compound of claim 1, R is selected from the group consisting of aryl, heteroaryl, alkyl, arylalkyl, heteroarylalkyl, -S(O₂)R⁷ and -C(O)R⁷, wherein each of said alkyl, aryl and heteroaryl can be unsubstituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, CF₃, CN, -OCF₃, -NR⁶R⁷, -NR⁶C(O)R⁸ and -OR⁶; and R⁷ is alkyl, phenyl or pyridyl, with each of said alkyl, phenyl and pyridyl for R⁷ being unsubstituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, CN, CF₃, alkyl, -S(O₂)R⁷, -S(O₂)NR⁶R⁷, -N(R⁶)S(O₂)R⁷, and -N(R⁶)C(O)R⁸;

R² is selected from the group consisting of H, halogen, alkyl, alkynyl, alkenyl, aryl, heteroaryl and --C(O)R⁷, wherein each of said alkyl, alkynyl, alkenyl, aryl and heteroaryl can be unsubstituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, CF₃, CN, -OCF₃, and -OR⁶;

 R^3 is selected from the group consisting of H. aryl, heteroaryl, -(CHR⁵)_n-aryl, -(CHR⁵)_n-heteroaryl, -(CHR⁵)_n-OR⁶, -C(O)R⁶, cycloalkyl,

10

15

20

6

, <u>or</u>

wherein each of said aryl, <u>and</u> cycloalkyl and heteroaryl and the heterocyclyl structures shown immediately above for R³ can be substituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, CF_3 , OCF_3 , alkyl, CN, aryl, $-C(O)R^5$, $-C(O_2)R^5$, $-S(O_2)R^6$, $-C(=NH)-NH_2$, $-C(=CN)-NH_2$, hydroxyalkyl, alkoxycarbonyl, $-SR^6$, and OR^5 , with the proviso that no carbon adjacent to a nitrogen atom on a heterocyclyl ring carries a $-OR^5$ moiety;

R⁴ is selected from the group consisting of H, alkyl, aryl, heteroaryl, -(CHR⁵)_n-aryl, - (CHR⁵)_n-heteroaryl, -(CHR⁵)_n-OR⁶, -C(O)R⁶, cycloalkyl,

-CH(aryl)₂ and , wherein each of said aryl and heteroaryl can be substituted or optionally substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of halogen, alkyl, aryl, CF₃, CN, -C(O₂)R⁵ and -S(O₂)R⁶;

R⁵ is R⁵ is H, aryl or lower alkyl;

R¹¹ is H or lower alkyl;

m is 0 to 2, and

n is 1 to 3.

Claim 3 (original): The compound of claim 2, wherein R is selected from the group consisting of phenyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzyl, pyridylmethyl, pyrazinylmethyl, pyridazinylmethyl, pyrimidinylmethyl,

- S(O₂)aryl, -S(O₂)heteroaryl, -S(O₂)alkyl, -C(O)alkyl, -C(O)aryl, and
- 5 -C(O)heteroaryl, wherein each of said phenyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, alkyl, aryl and heteroaryl can be unsubstituted or optionally independently substituted with one or more moleties which can be the same or different, each moiety being independently selected from the group consisting of Cl, Br, I, lower alkyl, CF₃, CN, -C(O)OR⁶, -OCF₃, -N(H)C(O)alkyl, alkoxy and -OH.
 - Claim 4 (original): The compound of claim 3, wherein R is unsubstituted phenyl, unsubstituted pyridyl, benzyl whose phenyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN, CF₃, and –N(H)C(O)CH₃, pyridylmethyl
- whose pyridyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN, CF₃, and –N(H)C(O)CH₃, phenylsulfonyl whose phenyl can be unsubstituted or optionally substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN, -N(H)C(O)CH₃ and CF₃, or pyridylsulfonyl whose
- pyridyl can be unsubstituted or optionally substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN,-N(H)C(O)CH₃ and CF₃. Claim 5 (original): The compound of claim 4, wherein R is benzyl whose phenyl is substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN, -N(H)C(O)CH₃ and CF₃.
- 25 Claim 6 (original): The compound of claim 3, wherein R is pyridylmethyl whose pyridyl is substituted with one or more moieties selected from the group consisting of F, Cl, Br, CN,-N(H)C(O)CH₃ and CF₃.
 - Claim 7 (original): The compound of claim 3, wherein R is pyrimidinylmethyl. Claim 8 (original): The compound of claim 2, wherein R² is H, F, Cl, Br,
- 30 hydroxyalkyl, or lower alkyl.
 - Claim 9 (original): The compound of claim 8, wherein R² is H, Cl, Br, hydroxymethyl or methyl.
 - Claim 10 (currently amended): The compound of claim 2, wherein R^3 is H, alkyl, aryl, or -NR⁵R⁶,

10

8

wherein said alkyl and aryl and the heterocyclyl moleties shown immediately above for \mathbb{R}^3 -can be unsubstituted or optionally independently substituted with one or more moleties which can be the same or different, each molety being independently selected from the group consisting of F, Cl, Br, CF₃, lower alkyl, hydroxyalkyl, alkoxy, -S(O₂)R⁶, and CN.

Claim 11 (original): The compound of claim 2, wherein R⁴ is H, alkyl or aryl, wherein said alkyl or aryl can be unsubstituted or optionally independently substituted with one or more moieties which can be the same or different, each moiety being independently selected from the group consisting of F, Cl, Br,

CF₃, lower alkyl, hydroxyalkyl, alkoxy, -S(O₂)R⁸, and CN.

Claim 12 (Original): The compound of claim 2, wherein R⁵ is H.

Claim 13 (original): The compound of claim 2, wherein m is 0.

Claim 14 (Original): The compound of claim 2, wherein n is 1.

15 Claim 15 (currently amended): A compound of the formula:

5

or a pharmaceutically acceptable salt or solvate thereof.

5 Claim 16 (currently amended): A compound of the formula:

or a pharmaceutically acceptable salt or solvate thereof.

Claims 17-25: Cancelled. 5

25

Claim 26 (original): A pharmaceutical composition comprising a therapeutically effective amount of at least one compound of claim 1 in combination with at least one pharmaceutically acceptable carrier. The pharmaceutical composition of claim 26 Claim 27 (currently amended): 25, additionally comprising one or more anti-cancer agents selected from the 10 group consisting of cytostatic agent, cisplatin, doxorubicin, taxotere, taxol, etoposide, CPT-11, irinotecan, camptostar, topotecan, paclitaxel, docetaxel, epothilones, tamoxifen, 5-fluorouracil, methoxtrexate, 5-fluorouracil, temozolomide, cyclophosphamide, 4-[2-[4-[(11R)-3,10-dibromo-8-chloro-6,11dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-yl-]-1-piperidinyl]-2-15 oxoehtyl]-1-piperidinecarboxamide, Zarnestra® (tipifarnib), L778,123 (a famesyl protein transferase inhibitor), BMS 214662 (a famesyl protein transferase inhibitor), Iressa, Tarceva, antibodies to EGFR, Gleevec, intron, ara-C, adriamycin, cytoxan, gemcitabine, Uracil mustard, Chlormethine, Ifosfamide, Melphalan, Chlorambucil, Pipobroman, Triethylenemelamine, 20 Triethylenethiophosphoramine, Busulfan, Carmustine, Lomustine, Streptozocin, Dacarbazine, Floxuridine, Cytarabine, 6-Mercaptopurine, 6-Thioguanine, Fludarabine phosphate, Pentostatine, Vinblastine, Vincristine, Vindesine, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mithramycin, Deoxycoformycin, Mitomycin-C, L-Asparaginase,

Teniposide 17α -Ethinylestradiol, Diethylstilbestrol, Testosterone, Prednisone, Fluoxymesterone, Dromostanolone propionate, Testolactone, Megestrolacetate, Methylprednisolone, Methyltestosterone, Prednisolone, Triamcinolone, Chlorotrianisene, Hydroxyprogesterone, Aminoglutethimide, Estramustine, Medroxyprogesteroneacetate, Leuprolide, Flutamide, 5 Toremifene, goserelin, Cisplatin, Carboplatin, Hydroxyurea, Amsacrine, Procarbazine, Mitotane, Mitoxantrone, Levamisole, Navelbene, Anastrazole, Letrazole, Capecitabine, Reloxafine, Droloxafine, or Hexamethylmelamine. Claim 28 (original): A compound of claim 1, in isolated and purified form.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.