HEC 2019

Exercice

- 1. Dans cette question, on considère les matrices $C = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}), L = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$ et le produit matriciel M = CL.
 - a) (i) Calculer M et M^2 .
 - (ii) Déterminer le rang de M.
 - (iii) La matrice M est-elle diagonalisable?
 - **b)** Soit $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -2 & 1 \end{pmatrix}$. Justifier que la matrice P est inversible et calculer le produit $P \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.
 - c) Trouver une matrice inversible Q dont la transposée tQ vérifie : ${}^tQ\begin{pmatrix}1\\2\\-1\end{pmatrix}=\begin{pmatrix}1\\0\\0\end{pmatrix}$.
 - d) Pour une telle matrice Q, calculer le produit P M Q.
- 2. La fonction Scilab suivante permet de multiplier la $i^{\text{ème}}$ ligne L_i d'une matrice A par une réel sans modifier ses autres lignes, c'est-à-dire de lui appliquer l'opération élémentaire $L_i \leftarrow a L_i$ (où $a \neq 0$).

```
function B = multilig(a, i, A)
[n, p] = size(A)
B = A
for j = 1:p
B(i, j) = a * B(i,j)
end
endfunction
```

a) Donner le code Scilab de deux fonctions adlig (d'arguments b, i, j, A) et echlig (d'arguments i, j, A) permettant d'effectuer respectivement les autres opérations sur les lignes d'une matrice :

$$Li \leftarrow L_i + bL_j \ (i \neq j)$$
 et $L_i \leftrightarrow L_j \ (i \neq j)$

b) Expliquer pourquoi la fonction multligmat suivante retourne le même résultat B que la fonction multlig.

```
function B = multiligmat(a, i, A)
[n, p] = size(A)

D = eye(n, n)

D(i, i) = a

B = D * A
endfunction
```

3. Dans cette question, on note n un entier supérieur ou égal à 2 et M une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang 1. Pour tout couple $(i,j) \in [\![1,n]\!]^2$, on note $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf celui situé à l'intersection de sa $i^{\text{ème}}$ ligne et de sa $j^{\text{ème}}$ colonne, et qui vaut 1.

a) (i) Justifier l'existence d'une matrice colonne non nulle $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ et d'une matrice ligne non nulle $L_1 = (l_1 \dots l_n) \in \mathcal{M}_{1,n}(\mathbb{R})$ telles que M = CL.

- (ii) Calculer la matrice MC et en déduire une valeur propre de M.
- (iii) Montrer que si le réel $\sum_{i=1}^{n} c_i l_i$ est différent de 0, alors la matrice M est diagonalisable.
- b) (i) À l'aide de l'égalité $M=C\,L$, établir l'existence de deux matrices inversibles P et Q telles que $P\,M\,Q=E_{1,1}$.
 - (ii) En déduire que pour tout couple $(i,j) \in [1,n]^2$, il existe deux matrices inversibles P_i et Qj telles que $P_i M Q_j = E_{i,j}$.

Problème

Dans ce problème, on définit et on étudie les fonctions génératrices des cumulants de variables aléatoires discrètes ou à densité.

Les cumulants d'ordre 3 et 4 permettent de définir des paramètres d'asymétrie et d'aplatissement qui viennent compléter la description usuelle d'une loi de probabilité par son espérance (paramètre de position) et sa variance (paramètre de dispersion); ces cumulants sont notamment utilisés pour l'évaluation des risques financiers.

Dans tout le problème :

- on note $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et toutes les variables aléatoires introduites dans l'énoncé sont des variables aléatoires réelles définies sur (Ω, \mathcal{A}) ;
- sous réserve d'existence, l'espérance et la variance d'une variable aléatoire X sont respectivement notées $\mathbb{E}(X)$ et $\mathbb{V}(X)$;
- pour tout variable aléatoire X et pour tout réel t pour lesquels la variable aléatoire $\mathrm{e}^{t\,X}$ admet une espérance, on pose :

$$M_X(t) = \mathbb{E}\left(e^{tX}\right)$$
 et $K_X(t) = \ln\left(M_X(t)\right)$;

(les fonctions M_X et K_X sont respectivement appelées la fonction génératrice des moments et la fonction génératrice des cumulants de X)

• lorsque, pour un entier $p \in \mathbb{N}^*$, la fonction K_X est de classe \mathcal{C}^p sur un intervalle ouvert contenant l'origine, on appelle cumulant d'ordre p de X, noté $Q_p(X)$, la valeur de la dérivée $p^{\text{ème}}$ de K_X en 0:

$$Q_p(X) = K_X^{(p)}(0).$$

Partie I. Fonction génératrice des moments de variables aléatoires discrètes

Dans toute cette partie:

- on note n un entier supérieur ou égal à 2;
- toutes les variables aléatoires considérées sont discrètes à valeurs entières;
- on note S une variable aléatoire à valeurs dans $\{-1,1\}$ dont la loi est donnée par :

$$\mathbb{P}([S=-1]) \ = \ \mathbb{P}([S=+1]) \ = \ \frac{1}{2}.$$

- 1. Soit X une variable aléatoire à valeurs dans [-n, n].
 - a) Pour tout $t \in \mathbb{R}$, écrire $M_X(t)$ sous la forme d'une somme et en déduire que la fonction M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - b) Justifier pour tout $p \in \mathbb{N}^*$, l'égalité : $M_X^{(p)}(0) = \mathbb{E}(X^p)$.
 - c) Soit Y une variable aléatoire à valeurs dans [-n, n] dont la fonction génératrice des moments M_Y est la même que celle de X.

On note G_X et G_Y les deux polynômes définis par :

$$\forall x \in \mathbb{R}, \begin{cases} G_X(x) = \sum_{k=0}^{2n} \mathbb{P}([X = k - n]) x^k \\ G_Y(x) = \sum_{k=0}^{2n} \mathbb{P}([Y = k - n]) x^k \end{cases}$$

- (i) Vérifier pour tout $t \in \mathbb{R}$, l'égalité : $G_X(e^t) = e^{nt} M_X(t)$.
- (ii) Justifier la relation : $\forall t \in \mathbb{R}, G_X(e^t) = G_Y(e^t).$
- (iii) En déduire que la variable aléatoire Y suit la même loi que X.
- 2. Dans cette question, on note X_2 une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(2,\frac{1}{2}\right)$. On suppose que les variables aléatoires X_2 et S sont indépendantes et on pose $Y_2 = S X_2$.
 - a) (i) Préciser l'ensemble des valeurs possibles de la variable aléatoire Y_2 .
 - (ii) Calculer les probabilités $\mathbb{P}([Y_2 = y])$ attachées aux diverses valeurs possibles y de Y_2 .
 - b) Vérifier que la variable aléatoire $X_2 (S+1)$ suit la même loi que Y_2 .
- 3. Le script **Scilab** suivant permet d'effectuer des simulations de la variable aléatoire Y_2 définie dans la question précédente.

```
___ n = 10
___ X = grand(n,2,'bin',2,0.5)
___ B = grand(n,2,'bin',1,0.5)
___ S = 2 * B - ones(n,2)
___ Z1 = [S(1:n,1) .* X(1:n,1) , X(1:n,1) - S(1:n,1) - ones(n,1)]
__ Z2 = [S(1:n,1) .* X(1:n,1) , X(1:n,2) - S(1:n,2) - ones(n,1)]
```

- a) Que contiennent les variables X et S après l'exécution des quatre premières instructions?
- b) Expliquer pourquoi, après l'exécution des six instructions, chacun des coefficients des matrices Z1 et Z2 contient une simulation de la variable aléatoire Y_2 .
- c) On modifie la première ligne du script précédent en affectant à $\bf n$ une valeur beaucoup plus grande que 10 (par exemple, 100000) et en lui adjoignant les deux instructions $\bf 7$ et $\bf 8$ suivantes :

```
p1 = length(find(Z1(1:n,1) == Z1(1:n,2))) / n
p2 = length(find(Z2(1:n,1) == Z2(1:n,2))) / n
```

Quelles valeurs numériques approchées la loi faible des grands nombres permet-elle de fournir pour p1 et p2 après l'exécution des huit lignes du nouveau script?

Dans le langage **Scilab**, la fonction **length** fournit la « longueur » d'un vecteur ou d'une matrice et la fonction **find** calcule les positions des coefficients d'une matrice pour lesquels une propriété est vraie, comme l'illustre le script suivant :

```
--> A = [1 ; 2 ; 0 ; 4]

--> B = [2 ; 2 ; 4 ; 3]

--> length(A)

ans = 4.

--> length([A , B])

ans = 8.

--> find(A < B)

ans = 1. 3. // car 1 < 2 et 0 < 4, alors que 2 \geq 2 et 4 \geq 3
```

- 4. Dans cette question, on note X_n une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(n, \frac{1}{2}\right)$. On suppose que les variables aléatoires X_n et S sont indépendantes et on pose $Y_n = S X_n$.
 - a) Justifier que la fonction M_{X_n} est définie sur \mathbb{R} et calculer $M_{X_n}(t)$ pour tout $t \in \mathbb{R}$.
 - **b)** Montrer que la fonction M_{Y_n} est donnée par : $\forall t \in \mathbb{R}$, $M_{Y_n}(t) = \frac{1}{2^{n+1}} \left((1 + e^t)^n + (1 + e^{-t})^n \right)$.
 - c) En utilisant l'égalité $(1+e^{-t})^n = e^{-nt} (1+e^t)^n$, montrer que Y_n suit la même loi que la différence $X_n H_n$, où H_n est une variable aléatoire indépendante de X_n dont on précisera la loi.

Partie II. Propriétés générales des fonctions génératrices des cumulants et quelques exemples

- 5. Soit X une variable aléatoire et \mathcal{D}_X le domaine de définition de la fonction K_X .
 - a) Donner la valeur de $K_X(0)$.
 - **b**) Soit $(a,b) \in \mathbb{R}^2$ et Y = aX + b. Justifier pour tout réel t pour lequel at appartient à \mathcal{D}_X , l'égalité :

$$K_Y(t) = bt + K_X(at)$$

- c) On suppose ici que les variables aléatoires X et -X suivent la même loi. Que peut-on dire dans ce cas des cumulants d'ordre impair de la variables aléatoire X?
- 6. Soit X et Y deux variables aléatoires indépendantes et \mathcal{D}_X et \mathcal{D}_Y les domaines de définition respectifs des fonctions K_X et K_Y .
 - a) Monter que pour tout réel t appartenant à la fois à \mathcal{D}_X et \mathcal{D}_Y , on a : $K_{X+Y}(t) = K_X(t) + K_Y(t)$.
 - b) En déduire une relation entre les cumulants des variables aléatoires X, Y et X + Y.
- 7. Soit U une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1].
 - a) Montrer que la fonction M_U est définie sur \mathbb{R} et donnée par : $\forall t \in \mathbb{R}, M_U(t) = \begin{cases} \frac{e^t 1}{t} & \text{si } t \neq 0 \\ 1 & \text{si } t = 0 \end{cases}$
 - b) Calculer la dérivée de la fonction M_U en tout point $t \neq 0$.
 - c) Trouver la limite du quotient $\frac{M_U(t)-1}{t}$ lorsque t tend vers 0.
 - d) Montrer que la fonction M_U est de classe \mathcal{C}^1 sur \mathbb{R} .

- 8. Soit α et β deux réels tels que $\alpha < \beta$.
 - Dans cette question, on note X une variable aléatoire qui suit la loi uniforme sur l'intervalle $[\alpha, \beta]$.
 - a) Exprimer K_X en fonction de M_U , où la variable aléatoire U a été définie dans la question 7.
 - b) Justifier que la fonction K_X est de classe \mathcal{C}^1 sur \mathbb{R} et établir l'égalité : $Q_1(X) = \mathbb{E}(X)$.
- 9. Soit un réel $\lambda > 0$ et soit T une variable aléatoire qui suit la loi de Poisson de paramètre λ .
 - a) Déterminer les fonctions M_T et K_T .
 - b) En déduire les cumulants de T.
- 10. Soit Z une variable aléatoire qui suit la loi normale centrée réduite.
 - a) Justifier pour tout $t \in \mathbb{R}$, la convergence de l'intégrale $\int_{-\infty}^{+\infty} \exp\left(t \, x \frac{x^2}{2}\right) \, dx$.
 - **b)** Montrer que la fonction M_Z est définie sur \mathbb{R} et donnée par : $\forall t \in \mathbb{R}, M_Z(t) = \exp\left(\frac{t^2}{2}\right)$.
 - c) En déduire la valeur de tous les cumulants d'une variable aléatoire qui suit une loi normale d'espérance $\mu \in \mathbb{R}$ et d'écart-type $\sigma \in \mathbb{R}_+^*$.
- 11. Soit $(T_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires telles que, pour tout $n\in\mathbb{N}^*$, la variable aléatoire T_n suit la loi de Poisson de paramètre n. Pour tout $n\in\mathbb{N}^*$, on pose : $W_n=\frac{T_n-n}{\sqrt{n}}$.
 - a) Justifier la convergence en loi de la suite de variables aléatoires $(W_n)_{n\in\mathbb{N}^*}$ vers une variable aléatoire W.
 - **b)** Déterminer la fonction K_{W_n} .
 - c) Montrer que pour tout $t \in \mathbb{R}$, on a : $\lim_{n \to +\infty} K_{W_n}(t) = K_W(t)$.

Partie III. Cumulant d'ordre 4

Dans cette partie, on considère une variable aléatoire X telle que M_X est de classe \mathcal{C}^4 sur un intervalle ouvert I contenant l'origine.

On admet alors que X possède des moments jusqu'à l'ordre 4 qui coïncident avec les dérivées successives de la fonction M_X en 0. Autrement dit, pour tout $k \in [1,4]$, on a : $M_X^{(k)}(0) = \mathbb{E}(X^k)$.

De plus, on pose : $\mu_4(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^4\right)$.

- 12. Justifier les égalités : $Q_1(X) = \mathbb{E}(X)$ et $Q_2(X) = \mathbb{V}(X)$.
- 13. Soit X_1 et X_2 deux variables aléatoires indépendantes et de même loi que X. On pose : $S = X_1 X_2$.
 - a) Montrer que la variable aléatoire S possède un moment d'ordre 4 et établir l'égalité :

$$\mathbb{E}(S^4) = 2 \mu_4(X) + 6 (\mathbb{V}(X))^2$$

b) Montrer que les fonctions M_S et K_S sont de classe \mathcal{C}^4 sur I et que pour tout $t \in I$, on a :

$$M_S^{(4)}(t) = K_S^{(4)}(t) M_S(t) + 3 K_S^{(3)}(t) M_S'(t) + 3 K_S''(t) M_S''(t) + K_S'(t) M_S^{(3)}(t)$$

- c) En déduire l'égalité : $\mathbb{E}(S^4) = Q_4(S) + 3(\mathbb{V}(S))^2$.
- 14. Justifier que le cumulant d'ordre 4 de X est donné par la relation : $Q_4(X) = \mu_4(X) 3(\mathbb{V}(X))^2$.