ÁLGEBRA

CHAPTER 24

5th

of Secondary

TEMA:

Programación Lineal

@ SACO OLIVEROS

MOTIVATING STRATEGY

EL PROGRAMADOR MECÁNICO

HELICO THEORY

PROGRAMACIÓN LINEAL

Parte de las matemáticas dedicadas a la optimización.

OPTIMIZAR:

Conseguir los mejores resultados ya sea minimizando o maximizando variables de operación.

EJEMPLOS DE OPTIMIZACIÓN:

- Maximizar las ganancias reduciendo costos de producción.
- > Maximizar alcance de audiencia reduciendo inversión en publicidad.

Función Objetivo: $F_{(x,y)} = ax + by + c$

Es la funcion que se busca optimizar (maximizar o minimizar)

REGIÓN FACTIBLE (R.F)

Se llama asi a la región formada por la intersección de todas las inecuaciones lineales dadas en el sistema y por lo general es una región acotada de forma poligonal y por ello presenta vértices y a las coordenadas de esos puntos se les denominan

Soluciones Factibles (S.F) (Teoria de los vértices)

Son los puntos (x,y) de los vértices de la región factible que tienen que ser evaluados en la Función Objetivo y con ello se espera obtener un valor máximo o mínimo según corresponda a la optimización.

Ejemplo Halle el máximo valor de la función:

$$Z = 3x + 4y$$
 en la región factible

Resolución

$$f(x;y) = 3x + 4y$$
Evaluando en los vértices

$$f(3;5) = 3(3) + 4(5) = 29$$

$$f(3;5) = 3(3)+4(5)=29$$

 $f(4;6) = 3(4)+4(6)=36$ (máximo)
 $f(7;1) = 3(7)+4(1)=25$

$$f_{(7;1)} = 3(7) + 4(1) = 25$$

El máximo valor es 36

Ejemplo:

Maximice la función Z = x + 4ysujeto a las restricciones:

$$\begin{cases} 2x + y \le 8 \\ 2x + 3y \le 12 \\ x \ge 0, y \ge 0 \text{ (Ier. Cuad.)} \end{cases}$$

RESOLUCIÓN

$$2x + y \le 8$$
 tabulamos:

2x + y = 8

$$0 \le 8$$

$$2x + 3y \le 12$$

$$2x + 3y = 12$$

tabulamos:

$$0 \le 12$$

Evaluando en cada vértice:

$$F_{(0,4)} = 0 + 4(4) = 16$$
(máximo)

$$F_{(3,2)} = 3 + 4(2) = 11$$

 $F_{(4,0)} = 4 + 4(0) = 4$

HELICO PRACTICE

1) Se muestran 4 regiones en el plano x-y; indique cual o cuales de ellas representan la región factible de un problema de programación lineal

Resolución

Las regiones factibles deben ser poligonales

Rpta: I y III

2) Calcule la suma de los valores óptimos de la función

f(x;y)=5x+3y, cuya región es la que se muestra

Resolución

Evaluamos la función f(x;y)=5x+3y en los vértices de la región:

$$(1;2) \implies f(1;2) = 5(1) + 3(2) = 11$$
 (valor Minimo)

$$(2;5) \implies f(2;5) = 5(2) + 3(5) = 25$$

$$(4;3) \implies f(4;3) = 5(4) + 3(3) = 29 \text{ (valor Máximo)}$$

Suma de valores optimos=29+11 Rpta: 40

3) Determine los vértices del conjunto solución del sistema:

Resolución

X	Υ
0	9
9	0

falso

ii)
$$5x+4 y = 40$$

 $5x+4 y = 40$

X	Υ
0	10
8	0

Rpta: Los vértices son: A=(0;9)

$$B=(0;10)$$

$$C=(4;5)$$

4) Determine el valor mínimo de la función objetivo:

Z=x+3y sujeta a las restricciones

$$\begin{cases} 2x + 5y \ge 30 \\ 2x + 3y \le 30 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Resolución

i)
$$2x+5y \ge 30$$

 $2x+5y = 30$

- · · · · ·		
X	Υ	
0	6	
15	0	
)>3	O(f	al

ii)
$$2x+3 y \le 30$$

 $2x+3 y = 30$

Х	Υ
0	10
15	0

 $0 \le 30$ (VERDAD)

Los vértices de la región factible son:

Evaluamos Z=x+3y

$$A=(0;6) \implies Z=0+3(6)=18$$

$$B=(0;10) \implies Z=0+3(10)=30$$

$$C=(15;0) \implies Z=15+3(0)=15(minimo)$$

Rpta: El valor máximo de Zes 15

5) Halle el valor máximo de la función objetivo:

Z=4x+5y sujeta a las restricciones

$$\begin{cases} 3x + y \le 18 \\ 2x - y \le 2 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Resolución

i)
$$3x+y \le 18$$

 $3x+y = 18$

X	Υ
0	18
6	0

0≤18(verdad)

ii)
$$2x - y \le 2$$

 $2x - y = 2$

Х	Υ
0	-2
1	0

 $0 \le 30$ (VERDAD)

Los vértices de la región factible son:

Evaluamos Z=4x+5y

$$A=(0;0) \implies Z=4(0)+5(0)=0$$

$$B=(0;18) \longrightarrow Z=4(0)+5(18) = 90 \text{ (máximo)}$$

$$C=(4;6) \implies Z=4(4)+5(6)=46$$

$$D=(1;0) \implies Z=4(1)+5(0)=4$$

D=(1;0) => Z=4(1)+5(0)= 4 Rpta: El valor máximo de Z es 90

6) Para recorrer un determinado trayecto una compañía aérea desea operar a lo sumo, 5000 plazas de dos tipos: T (turistas) y P(primera). La ganancia correspondiente a cada plaza de tipo T es de 30 dólares, mientras que la ganancia del tipo P es de 40 dólares. El número de plazas de tipo T no debe exceder de 4500 y el del tipo P debe ser como máximo la tercera parte de las del tipo T que se ofertan. Obtener la función objetivo y sus respectivas restricciones. (x: número de plazas del tipo T) (y: número de plazas del tipo P)

Resolución:

Variables: x: números de plazas del tipo T
y: números de plazas del tipo p

Función Objetivo: Z: Ganancia Z=30x+40y

Restriciones:

(número de operaciones) $x + y \le 5000$ (Plazas de T) $x \le 4500$ (Plazas de P) $y \le x/3$ No negatividad $x \ge 0$ $y \ge 0$

7) Una editorial planea utilizar una sección de planta para producir 2 libros de texto. La utilidad unitaria es de s/2 para el libro I y de s/3 para el libro II. El libro I requiere 4 horas para su impresión y 6 horas para su encuadernación, el libro II requiere 5horas para imprimirse y 3 horas para ser encuadernado. Se dispone de 200 horas para imprimir y 210 para encuadernar. Determine la máxima utilidad que se puede obtener.

Variables

x: Libro del tipo I y: Libro del tipo I

F. Objetivo

$$z = 2x + 3y$$

Restricciones

$$z_{(0:0)} = 2(0) + 3(0) = 0$$

$$z_{(0;40)} = 2(0) + 3(40) = 120$$
 (máxima utilidad)

$$z_{(25;20)} = 2(25) + 3(20) = 110$$

$$z_{(35:0)} = 2(35) + 3(0) = 70$$