Acorn A4 Technical Reference Manual

Copyright @ Acorn Computers Limited 1993. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature, without the written permission of the copyright holder and the publisher, application for which shall be made to the publisher.

The product described in the manual is not intended for use as a critical component in life support devices or any system in which failure could be expected to result in personal injury.

The products described in this manual are subject to continuous development and improvement. All information of a technical nature and particulars of the products and their use (including the information and particulars in this manual) are given by Acorn Computers Limited in good faith. However, Acorn Computers Limited cannot accept any liability for any loss or damage arising from the use of any information or particulars in this manual, or any incorrect use of the products. All maintenance and service on the products must be carried out by Acorn Computers' authorised dealers or Approved Service Centres. Acorn Computers Limited can accept no liability whatsoever for any loss or damage caused by service, maintenance or repair by unauthorised personnel.

If you have any comments on this manual, please complete the form at the back of the manual and send it to the address given there.

Acorn supplies its products through a national and international distribution network. Your supplier is available to help resolve any queries you may have.

ACORN, ARCHIMEDES and ECONET are trademarks of Acorn Computers Limited. ARM is a trademark of Advanced RISC Machines Ltd, IBM is a trademark of International Business Machines Corporation.

Published by Acorn Computers Limited ISBN 1 85250 101 4 Part number 0490,058 Issue 1, January 1993

Contents

About this manual	vi
Part 1 - System description	1-1
Introduction	1-1
General	1-1
System timing	1-2
· I/O system	1-2
Sound system	1-10
Video system	1-10
LC ASIC	1-12
Memory system	1-12
Keyboard and mouse	1-13
Floppy disc drive	1-17
Hard disc drive	1-19
Econet (optional network connection	on) 1-19
Parallel port	1-20
Serial port	1-22
Power supply system	1-23
Plugs	1-26
Sockets	1-27
Main PCB Links	1-28
Switches	1-28
Part 2 - Parts lists	2-1
A4 2M final assembly parts list, iss	ue 2 2-1
A4 2M main PCB assy parts list, is	sue 1 2-1
A4 4M main PCB assy parts list, is	sue 1 2-6
A4 4M + 60MHD final assembly pa	rts list, issue 4 2-11
A4 Econet PCB assembly parts lis	t, issue 1 2-11
A4 display assembly parts list, issu	e 2 2-12
Appendix A - Monitor adaptor cables	A-1
Appendix B - Expansion bay	B-1
Interface	B-1
Details of other signals	B-1
Mechanical issues	B-1
Appendix C - Engineering drawings	C-1
Final assembly drawings (base an	d display)
Main PCB circuit diagram	
DC/DC convertor circuit diagram	_
Backlight control board circuit diag	ram
Speaker board circuit diagram	
Econet PCB circuit diagram	

About this manual

This manual is intended as a hardware reference manual for the Acorn A4.

This manual supplements the basic information given on system hardware in the *Welcome Guide* and the *Portable Handbook*.

The operating system is covered at the user level in the RISC OS 3 User Guide, supplied with certain models (also available for separate purchase). Programmers and users requiring a greater depth of information about RISC OS will also need the RISC OS 3 Programmer's Reference Manual, which is available from Acorn authorised dealers.

Full details on the ARM chip set used in the computer are given in the ARM Family Data Manual, ISBN 0-13-781618-9, available from:

VLSI Technology, Inc. Application Specific Logic Products Division 8375 South River Parkway Tempe, AZ 85284 USA 602-752-8574

or from the VLSI national distributor.

Details on the 82C711 chip are available from:

Chips and Technology Inc. 3050 Zanker Road San Jose, CA 95134

USA

Note: This manual describes various PCB assemblies. The issue of each PCB is as defined by the relevant schematic.

Part 1 – System description

Introduction

The computer is built around the ARM chip set, comprising the Advanced RISC Machine (ARM3) itself, the Memory Controller (MEMC-1A), Video Controller (VIDC) and Input/Output Controller (IOC). The memory size is configurable for 1, 2 or 4MB. A block diagram of the computer is shown below.

An ASIC (IOEB) provides much of the support and extension logic for the system. Another ASIC (LC) controls the LCD panel, and a battery management micro-controller (BMU) supports the power system.

General

The ARM3 CPU is a pipelined, 32-bit reduced instruction set microprocessor which accepts instructions and manipulates data via a high speed 32-bit data bus and 26-bit address bus, giving a 64MB uniform address space. The ARM supports virtual memory systems using a simple but powerful instruction set with good high-level language compiler support. The ARM3 has 4KB of onchip cache memory, which greatly increases the speed with which some data is handled (typically 2 - 3 times faster than ARM2).

Figure 1.1: Block diagram of computer

MEMC acts as the interface between the ARM, VIDC, IOEB (Input/Output Extension Block), ROM (Read Only Memory) and DRAM (Dynamic RAM) devices, providing all critical system timing signals, including processor clocks.

MEMC, IOEB and IOC together control the I/O system.

The internal peripherals (floppy disc, serial port, parallel

port and hard disc) are all controlled by the 711 Universal Peripheral Controller chip, which itself is controlled by IOEB. IOC and IOEB control the I/O bus and expansion cards, and IOC provides basic functions such as the keyboard interface, system timers, interrupt masks and control registers. It supports a number of different peripheral cycles. All I/O accesses are memory mapped. IOEB also contains miscellaneous registers/latches and generates the necessary signals to control ROM accesses, including the additional 5th column ROM. Up to 4MB of DRAM can be connected to MEMC which provides all signals and refresh operations. A logical to physical translator maps the physical memory into a 32MB logical address space (with three levels of protection) allowing virtual memory and multi-tasking operations to be implemented. Fast page mode DRAM accesses are used to maximise memory bandwidth. VIDC requests data from the DRAM when required and buffers it in one of three FIFOs before using it. Data is requested in blocks of four 32-bit words, allowing efficient use of paged-mode DRAM without locking the system

MEMC supports Direct Memory Access (DMA) operations with a set of programmable DMA address generators which provide a circular buffer for video data, a linear buffer for cursor data and a double buffer for sound data. VIDC takes video data from memory under DMA control, serialises it and passes it through a colour look-up palette and converts it to analogue signals for driving the CRT guns. VIDC controls all the CRT timing parameters and controls the position and pattern of the cursor sprite. When the LCD is enabled, video data is passed from VIDC to the LCD controller (LC). LC re-times the video data, performs grey-scaling based on frame rate modulation, and generates all timing and control signals for the LCD panel. VIDC is a highly programmable device, offering a very wide choice of display formats. The colour look-up palette which drives the three on-chip DACs is 13 bits wide, offering a choice from 4096 colours or an external video source.

data bus for long periods.

The cursor sprite is 32 pixels wide and any number of rasters high. Three simultaneous colours (again from a choice of 4096) are supported and any pixel can be defined as transparent, making possible cursors of many shapes. The cursor can be positioned anywhere on the screen.

The sound system implemented supports up to eight channels, each with a separate stereo position.

Also, VIDC incorporates an exponential Digital to Analogue Converter (DAC) and stereo image table for the generation of high-quality sound from data in DRAM.

System timing

Figure 1.3 on page 1-5 shows how the various clock signals are derived for the system.

MEMC divides the 36MHz clock by three to drive the memory system at 12MHz.

The ARM processor uses the 24MHz clock.

The VIDC clock is provided by LC, which selects between the 16MHz or 8MHz LCD clock, and the CRT clock provided by IOEB. IOEB provides a selection of video clock rates from 24MHz (for TV frequency modes) 25.175MHz (for VGA modes) and 36MHz (for Super VGA mode).

IOEB divides the 24MHz clock by three to produce an 8MHz clock, REF8M, which is fed to IOC, for use by 8MHz peripherals.

IOEB also divides the 24MHz clock by two to provide a 12MHz clock for the keyboard controller.

Power save mode

In power save mode, IOEB divides both the 36MHz and the 24MHz clocks by four. MEMC then uses (36/4)/3 = 3MHz, and the ARM uses 24/4 = 6MHz.

When video data is required, the MEMC clock speed flips to normal speed during the video request, then flips back to the slower power save speed.

System memory map

The system memory map is defined by MEMC, and is shown in *Figure 1.2* on page 1-4. Note that all system components, including I/O devices, are memory mapped.

I/O system

The I/O system is controlled by MEMC, IOEB and IOC. The I/O bus supports all the internal peripherals and the optional Econet expansion card.

Note: This section is intended to give the reader a general understanding of the I/O system and should not be used to program the I/O system directly. The implementation details are liable to change at any time and only the published software interfaces should be used to manipulate the I/O system. Future systems may have a different implementation of the I/O system, and in particular the addresses of locations may move. For this reason, all driver code must be relocatable.

System architecture

The I/O system consists of a 16-bit data bus (BD[0:15]), a buffered address bus (LA[2:21]), and various control and timing signals. The I/O data bus is independent of the main 32-bit system data bus, being separated from it by bidirectional latches and buffers. In this way the I/O data bus can run at much slower speeds than the main system bus to cater for slower peripheral devices. The latches between the two buses, and hence the I/O bus timing, are

controlled by the I/O controller, IOC and IOEB. IOC caters for four different cycle speeds (slow, medium, fast and synchronous). The I/O system is shown in Figure 1.4 on page 1-6. For clarity, the data and address buses are omitted from this diagram.

Data bus mapping

The I/O data bus is 16 bits wide. Bytewide accesses are used for 8-bit peripherals. The I/O data bus (BD[0:15]) connects to the main system data bus (D[0:31]) via a set of bidirectional data latches.

The mapping of the BD[0:15] bus onto the D[0:31] bus is as follows:

- During a WRITE (i.e. ARM to peripheral) D[16:31] is mapped to BD[0:15].
- During a READ (i.e. peripheral to ARM) BD[0:15] is mapped to D[0:15].

Byte accesses

Byte instructions are used to access bytewide devices. A byte store instruction places the written byte on all four bytes of the word, and so correctly places the desired value on the lowest byte of the I/O bus. A byte or word load may be used to read a bytewide expansion card into the lowest byte of an ARM register.

Half-word accesses

To access a 16-bit wide device, half-word instructions are used. When storing, the half-word is placed on the upper 16 bits, D[16:31]. To maintain upwards compatibility with future machines, half-word stores replicate the written data on the lower half-word, D[0:15]. When reading, the upper 16 bits are undefined.

I/O space memory map

The I/O space memory map is shown in *Figure 1.5* on page 1-6.

The I/O space is controlled by IOC, MEMC and IOEB. It includes IOC controlled peripherals, the type 711 Universal Peripheral Controller. The address in I/O space determines the cycle type and the speed of the I/O access. There are basically two different types of I/O access:

- synchronised to the system memory clock (12{3}MHz) (the {3}MHz applies during power save mode)
- synchronised to the I/O clock (8MHz) whose speed is determined by IOC

IOEB determines whether an I/O access is synchronised to the 12MHz memory clock (known here as a synchronous access) by decoding address lines LA[13:18] and LA21. For synchronous accesses it enables its internal synchronous access state machine. This state machine generates an I/O cycle. The IDE drive has the capability of stretching the cycle as described below.

The following signals are generated:

•	IOR	Read Strobe (to 711 and IDE Hard Disc)
•	IOW	Write Strobe (to 711 and IDE Hard Disc)
•	FIOGT	Fast IO Grant handshaking signal (to

MEMC)

BL Data Bus Latch Control (read direction)
 BLW Data Bus Latch Control (write direction)

AEN Address Enable (to 711)

• DACK Floppy Disc Data Acknowledge (to 711)

TC Floppy Disc DMA Terminal Count signal (to 711)

• RDY IDE drive IORDY signal (internal)

LCDCS LC controller select

All read/write accesses to the 711 and the IDE hard disc are synchronous and are all programmed I/O since MEMC1A is not capable of implementing DMA transfers to I/O space. However, a DRQ/DACK handshaking protocol (a simulated DMA cycle) is implemented with the Floppy Disc Controller section of the 711 which is used in DMA mode. This type of cycle is referred to here as a DMA cycle although this is not strictly correct. IDE hard disc accesses are programmed I/O whereas 711 accesses can be either programmed I/O or DMA cycles. Programmed I/O cycles are generated when addressing locations in the range &3010000H to &3011FFFH.

Addressing locations in the range &3012000H to &302A000H simulates DMA cycles. Each DMA cycle generates a DACK signal which the floppy driver software issues in response to a DRQ signal from the 711. The uppermost address, &302A000H, generates a TC (Terminal Count) signal in addition to a DACK signal which informs the 711 that the byte to be read/written is the last byte of the DMA transfer. The large address range in which the DACK signal is generated allows up to 24KB (i.e. sufficient for one cylinder of a 2MB floppy disc) to be transferred without resetting software pointers.

The IDE hard disc hardware interface is as used on IBM PC-AT computers. Reads and writes to the IDE registers are 8 bits wide whereas data transfers are 16 bits wide. The IDE interface is controlled by IOEB in conjunction with the 711 (which generates two chip selects, HDCS0 and HDCS1).

An input pin on IOEB allows the IDE hard disc to stretch the basic synchronous cycle by asserting its IORDY signal. It may do this to slow down data transfers to and from disc, for example if it does not have data ready to be read or is not ready to accept data during a write.

For all non-synchronous I/O cycles IOEB triggers its internal I/O access synchroniser. This state machine synchronises the 12MHz memory cycles to the 8MHz I/O cycles; it buffers the FIORQ and FIOGT signals from and to MEMC and generates the data bus buffer control signals (RBE, BL and BLW).

As stated earlier non-synchronous I/O cycles are controlled by IOC. The type and speed is determined by further address decoding and connection of address lines to IOC. IOC is connected as follows:

юс	ARM
OE	LA21
T1	LA20
ТО	LA19
82	LA18
B1	LA17
B0	LA16

LA21 distinguishes an IOC controlled cycle (LA21=1) from a non-IOC controlled cycle (LA21=0). Address lines connected to IOC's Type lines T[0:1] determine the cycle timing, whilst connection to IOC's Bank Select lines determines whether the access is to an IOC internal register or to a peripheral. IOC decodes B[0:3] to provide seven peripheral select lines S[1:7]. Table 1.1 on page 1-7 shows the internal register memory map of IOC, whilst Table 1.2 shows the peripheral address map. Note that both IOC and IOEB may all drive BL. IOC controls WBE for all I/O accesses.

Figure 1.2: System memory map

Read	Write	Hex address
Main ROMs	Logical to Physical address translator	3FFFFFF
		3800000
5th ∞lumn ROM	DMA address generators	3600000
	Video Controller	3400000
Input/Output C	3000000	
Physically map	2000000	
Logically mapp		
	0000000	

Figure 1.3: System timing

Figure 1.4: The I/O system

Figure 1.5: The I/O system memory map

Table 1.1: Internal register memory map

Address	Read	Write
3200000H	Control	Control
3200004H	Serial Rx Data	Serial Tx Data
3200008H	-	
320000CH	-	-
3200010H	IRO status A	-
3200014H	IRQ request A	IRQ clear
3200018H	IRQ mask A	IRQ mask A
320001CH	-	-
3200020H	IRQ status B	•
3200024H	IRQ request B	-
3200028H	IRQ mask B	IRQ mask B
320002CH	-	• .
3200030H	FIQ status	
3200034H	FIQ request	-
3200038H	FIQ mask	FIQ mask
320003CH	-	-
3200040H	T0 count Low	T0 latch Low
3200044H	T0 count High	T0 latch High
3200048H	-	T0 go command
320004CH	-	T0 latch command
2280050H	T1 count Low	T1 latch Low
3200054H	T1 count High	T1 latch High
3200058H	-	T1 go command
320005CH	-	T1 latch command
3200060H	T2 count Low	T2 latch Low
3200064H	T2 count High	T2 latch High
3200068H	•	T2 go command
320006CH	•	T2 latch command
3200070H	T3 count Low	T3 latch Low
3200074H	T3 count High	T3 latch High
3200078H		T3 go command
320007CH	-	T3 latch command

Table 1.2: Peripheral address map

Cycle type	вк	Base address	IC	Use
Sync	2	&33A0000	6854	Econet controller *
Fast	5	&335 0048	ЮЕВ	Video Control Latch
Fast	5	&3350050	KOEB	IOEB Present Register
Fast	5	&3350054	ЮEВ	PS Latch (Reserved)
Fast	5	&3350058	ЮEВ	Printer Clear Register
Fast	5	&3350070	ЮEВ	Monitor Type Register
Fast	5	&3350074	ЮЕВ	Latch A (reserved)
Fast	5	&3350078	ЮЕВ	Register B
Fast	5	&335007C	ЮЕВ	Register C

I/O programming details

This section is intended to give a general understanding of the I/O system and should not be used to program the I/O system directly. The implementation details are likely to change at any time and only published software interfaces should be used to manipulate the I/O system. Direct references to I/O addresses should never be used when programming the I/O system. The operating system determines which address is used to access a particular register or peripheral.

The following registers and latches are contained within IOEB.

Video control latch (&3350048)

This latch is a write-only register that is used by the operating system to control video sync polarity and clock speed. See *Figure 1.6*.

PS latch (&3350054)

This latch is reserved for future use.

Printer clear register(&3350058)

This is a read/write register that is used by the operating system to clear the Printer Port Interrupt Request. The Interrupt Request is cleared regardless of the value of data written.

Latch A (&3350074)

Latch A is reserved for future use.

IOEB present register (&3350050)

This is a read-only register which is used by the operating system to establish the presence of IOEB in a machine. A read will produce the bit pattern 0101 (Hex. 5) on the lower four data bits; all other bits are undefined.

Monitor type register (&3350070)

This is a read-only register which can be used to read the Identity code of the monitor connected to the video connector of the computer. Standard VGA monitors use a scheme whereby four ID bits (which are either connected to GND or left open circuit in the monitor/monitor lead) are used to identify the monitor type. This scheme has been adopted and further extended to automatically sense a variety of different monitor types (see Figure 1.7, and Video system on page 1-10 for further details).

Register B (&3350078)

Register B is reserved for future use.

Register C (&335007C)

Register C is reserved for future use.

Figure 1.7: Monitor type register

X = don't care

Interrupts

The I/O system generates two independent interrupt requests, IRQ and FIQ. Interrupt requests can be caused by events internal to IOC or by external events on the interrupt or control port input pins.

The interrupts are controlled by four types of register:

- status
- mask
- request
- clear.

The status registers reflect the current state of the various interrupt sources. The mask registers determine which sources may generate an interrupt. The request registers are the logical AND of the status and mask registers and indicate which sources are generating interrupt requests to the processor. The clear register allows clearing of interrupt requests where appropriate. The mask registers are undefined after power up.

The IRQ events are split into two sets of registers, A and B. There is no priority encoding of the sources.

Internal Interrupt Events

- Timer interrupts TM[0:1]
- · Power-on reset POR
- · Keyboard Rx data available SRx
- Keyboard Tx data register empty STx
- · Force interrupts 1.

External Interrupt Events

- IRQ active low inputs IL[0:7] wired as (0-7 respectively) PFIQ, SIRQ, SINTR, HDIRQ, FINTR, PIRQ, LPINTR, with IL7 not used
- IRQ falling-edge input IF wired as INDEX
- IRQ rising-edge input IR wired as VFLYBK
- FIQ active high inputs FH[0:1] wired as FDDRQ with FH1 not used
- · FIQ active low input FL wired as EFIQ
- · Control port inputs C[3:5].

Table 1.3: IRQ status A

Bit	Name	Function
0	LPINTR	Parallel port latched Interrupt
1		Not used
2	INDEX	Start of floppy disc index pulse
3	VFLYBK	Start of display vertical flyback
4	POR	Power-on reset has occurred
5	TMO	Timer 0 event, latched
6	TM1	Timer 1 event, latched
7	FORCE	Software generated IRQ

Table 1.4: IRQ status B

Bit	Name	Function
0	PFIQ	Podule FIQ request
1	SIRQ	Sound buffer pointer used
2	SINTR	Serial line interrupt
3	HDIRQ	Hard disc interrupt
4	FINTR	Floppy disc interrupt
5	PIRQ	Podule IRQ request
6	STX	Keyboard transmit register empty
7	SRX	Keyboard receive register full

Table 1.5: FIQ Interrupt status

Bit	Name	Function
0	FDDRQ	Floppy Disc Data Request
1	-	not used
2	EFIQ	Econet Interrupt Request
3	СЗ	Used as an I/O bit
4	SINTR	Serial Line interrupt
5		not used
6	PFIQ	Podule FIQ request
7	Force	Software generated FIQ interrupt

Control port

The control register allows the external control pins C[0:5] to be read and written and the status of the INDEX and VFLY inputs to be inspected. The C[0:5] bits manipulate the C[0:5] I/O port. When read, they reflect the current state of these pins. When written LOW the output pin is driven LOW. These outputs are open-drain, and if programmed HIGH the pin is undriven and may be treated as an input.

Table 1.6: Control register bit settings

Bit	Name	Function
C7	VFLYBK	Allows the state of VFLYBK to be inspected. Reads HIGH during vertical flyback and LOW during display. See VIDC data sheet for details. This bit MUST be programmed HIGH for normal system operation.
C6	INDEX	Allows the state of the floppy disc drive INDEX signal to be inspected. This bit MUST be programmed HIGH for normal operation.
C5	SMUTE	This controls the muting of the internal speaker, it is programmed HIGH to mute the speaker and LOW to enable it. The speaker is muted on reset.
C4	SINTR	Used as the Serial Line Interrupt Request, and must be programmed HIGH.
СЗ	СЗ	Reserved for future use.
C2	C2	Reserved for future use.
C[1:0]	SDA, SCL	Used to implement the bi-directional serial I2C bus to the Real Time Clock.

Sound system

The sound system is based on the VIDC stereo sound hardware. External analogue anti-alias filters are used which are optimised for a 20 kHz sample rate. The sound output is available from a 3.5mm stereo jack socket which will directly drive personal stereo headphones, or, alternatively, an amplifier and speakers. One internal speaker is fitted, to provide mono audio.

VIDC sound system hardware

VIDC contains an independent sound channel consisting of the following components: A four-word FIFO buffers 16 8-bit sound samples, with a DMA request issued whenever the last byte is consumed from the FIFO. The sample bytes are read out at a constant sample rate programmed into the 8-bit Audio Frequency Register. This may be programmed to allow samples to be output synchronously at any integer value between 3 and 255 microsecond intervals.

The sample data bytes are treated as sign plus 7-bit logarithmic magnitude and, after exponential digital to analogue conversion, de-glitching and sign-bit steering, are output as a current at one of the audio output pins to be integrated and filtered externally.

VIDC also contains a bank of eight stereo image position registers, each of three bits. These eight registers are sequenced through at the sample rate with the first register synchronised to the first byte clocked out of the FIFO. Every sample time is divided into eight time slots and the 3-bit image value programmed for each register is used to pulse width modulate the output amplitude between the LEFT and RIGHT audio current outputs in multiples of time slot subdivisions. This allows the signal to be spatially positioned in one of seven stereo image positions.

MEMC sound system hardware

MEMC provides three internal DMA address registers to support sound buffer output; these control the DMA operations performed following Sound DMA requests from VIDC. The registers allow the physical addresses for the START, PNTR (incremental) and END buffer pointers to a block of data in the lowest half megabyte of physical RAM to be accessed.

These operate as follows: programming a 19-bit address into the PNTR register sets the physical address from which sequential DMA reads will occur (in multiples of four words), and programming the END pointer sets the last physical address of the buffer. Whenever the PNTR register increments up to this END value the address programmed into the START register is automatically written into the PNTR register for the DMA to continue with a new sample buffer in memory.

A Sound Buffer Interrupt (SIRQ) signal is generated when the reload operation occurs which is processed by IOC as a maskable interrupt (IRQ) source.

MEMC also includes a sound channel enable/disable signal. Because this enable/disable control signal is not synchronised to the sound sampling, requests will normally be disabled after the waveforms which are being synthesised have been programmed to decay to zero amplitude; the last value loaded into the audio data latch in the VIDC will be output to each of the stereo image positions at the current audio sample rate.

IOC sound system hardware

IOC provides a programmed output control signal which is used to turn the internal speaker on or off, as well as an interrupt enable/status/reset register interface for the Sound Start Buffer reload signal generated by MEMC.

The internal speaker may be muted by the control line SMUTE which is driven from the IOC output C5. On reset this signal will be taken high and the internal speaker will be muted.

The stereo output to the headphones socket is not muted by SMUTE and will always reflect the current output of the DAC channels.

Video system

The video connector is a 15-way miniature D-type whose pin allocation is very similar to a standard VGA pin-out but with several enhancements, as detailed below:

- Pin 9 (normally used for keying) is used to supply +5V, specifically for powering an external UHF modulator.
 The output is protected by a 750mA fuse.
- Pin 12 provides +12V (source impedance = 1k5Ω).
 This output is used to provide a SCART function switching signal for use with SCART TVs.
- Pin 15 is an input, ID3, which may be used in the future to identify standard monitor types.

The monitor types listed below are supported. A scheme of automatically sensing the monitor type connected to the computer is implemented (see *Appendix A – Monitor adaptor cables*). This scheme ensures that a user sees a picture regardless of what monitor type is connected to the computer and that, where possible, the complete list of modes available for the particular monitor type is made available.

Monitor type		Modes	
0	TV frequency/SCART TV/UHF modulator	0-17, 24, 33-36	
1	Multifrequency monitor	0-21, 24-31, 33-46	
3	VGA monitor	0-15, 25-28, 41-46	
4	VGA/Super VGA monitor	0-15, 25-31, 41-46	
5	LCD panel	0-17, 24-28	
Auto	Auto-configure	Monitor-dependent	

The automatic sensing scheme uses the four ID bit inputs, ID[3:0], present on the video connector to detect the type of monitor connected to the computer. The ID bits are read directly by software, where data bits D[3:0] correspond to ID[3:0]. Monitors designed for use with IBM PCs and compatibles use a coding system whereby ID[3:0] define the monitor type. ID bits are either connected to 0V or are left open circuit in the monitor or monitor cable. For example, a mono VGA monitor connects ID1 to 0V, leaving ID0 and ID2 open circuit. This ID system has been adopted and extended as detailed in the following table:

Manitontuna	ID settings			
Monitor type	D3	D2	D1	D0
LCD	•	1	1	1
Mono VGA	•	1	0 .	1
Colour VGA		1	1	0
Colour SVGA	•	0	1	0
Multifrequency	}			
(using composite	•	HSYNC	1	1
syncs)	}			
TV/UHF mod./		1	1	HSYNC
SCART				1

^{* -} undefined HSYNC - horizontal sync pulse

NOTE 1: If none of the ID bits are connected to 0V or HSYNC, then the software will default to LCD.

NOTE 2: the HSYNC to ID bit connections are Acorn defined and are made in the monitor cable.

The *Configure options: MONITORTYPE, SYNC and WIMPMODE have an AUTO setting (e.g. *Configure MONITORTYPE AUTO) which determines the operation of the automatic monitor type sensing scheme. At poweron or following a hard reset with all three options set to AUTO the software senses the monitor type connected and sets the Wimpmode, Sync type and Monitor type (which defines the list of available modes) for the particular monitor - see Figure 1.8. These are temporary values which are not written back to CMOS RAM. Subsequent *Configure Monitortype, Sync and WimpModes selected by the user overwrite the relevant AUTO setting in CMOS RAM so that the machine is initialised in the mode etc. desired - the power-on/reset sequence is the same as described above, except software uses the options selected by the user instead of the AUTO setting.

Many multi-frequency monitors have their ID bits set to Super VGA. As these are becoming more common than SVGA monitors the automatic sensing system allows multi-frequency modes whenever an SVGA monitor is detected. For those users who wish to use a genuine SVGA monitor, the system can be manually configured to SVGA using the !Configure application which overrides the automatic system. Some multi-frequency monitors have their ID bits set to VGA. Once again, use !Configure, this time to gain access to multi-frequency modes.

Appendix A – Monitor adaptor cables contains details of how to acquire cable adaptors to connect monitors that do not have a 15-way VGA connector. These adaptors take advantage of the automatic sensing scheme.

Figure 1.8: Monitor sensing

LC ASIC

The LC ASIC provides a programmable interface to monochrome flat panel LCD displays, offering 16 levels of grey scale. A large range of display formats are catered for, including 320x200 and 640x200 single panel displays, and 640x400 and 640x480 dual panel displays. The device accepts pixel data, and horizontal and vertical sync signals, from a conventional CRT display controller. It re-times the image and converts it to greyscales, for display on an LCD panel. When used to control a dual panel display, one or two external DRAMs are needed to act as a half frame buffer. The LC ASIC supports a wide variety of DRAMs, though in most applications two 64Kx4 devices are sufficient.

Figure 1.9 is a block diagram of the LC ASIC. The LCCLK block generates clocks for the LC ASIC and the display controller, and includes a crystal oscillator. The LCVINT block synchronises the incoming video data and sync signals, and inverts the incoming data before performing a logical-to-physical colour translation. It does this by looking up the logical colour on the 16 entry on-chip palette. The LCREG block contains all the software programmable control bits in the device, and outputs them to other parts of the chip. The LCGS block converts the post-palette data to greyscales, and outputs the data to the LCDRAM block. This block stores data temporarily in the external DRAM devices, generating all necessary timing and control signals for them, and also outputs the data to the LCD panel with the correct timing. The LCCTL block generates all the internal control signals. The greyscaling system is the subject of Acorn patent application GB2245743A.

Memory system

The memory system consists of banks of DRAM directly driven by MEMC, which provides all the necessary signals and refresh operations.

MEMC uses fast page mode DRAM accesses to maximise memory bandwidth. Once the row address has been strobed into the DRAM, any column in that row may be accessed merely by strobing in the new column address. This method is used whenever a number of sequential addresses in the DRAM are to be accessed, either by the processor or during a DMA operation. The first memory access in the sequence is a non-sequential memory cycle (N cycle) where both the row and column addresses are strobed into the DRAMs. Subsequent memory accesses are sequential memory cycles (S cycles) where the previous row address is held, and only the column address is strobed into the DRAMs. The memory system runs at 12MHz and either 70ns or 80ns DRAMS are used (depending on different manufacturers' timing parameters).

The memory size is configurable for either 1MB, 2MB or 4MB by fitting the appropriate type of DRAMs to the main PCB and setting the DRAM size switches.

The base 1MB machine is two SOJ DRAMs (256Kx16). The second MB is two 40-pin ZIPs (256Kx16). The upgrade from 2MB to 4MB uses four 28-pin ZIPs (512Kx8).

Mem size	D[31:.24]	D[23.:16]	D[15:.8]	D[7.:0]	
1MB base	IC	37	IC29		
2MB	IC	IC30		39	
4MB	IC27	IC19	IC18	IC21	

The table below shows the internal switch settings for different memory sizes.

Mem size	SW1	SW2
1MB	1-4	1-3
2MB	1-2	1-3
4MB	1-3	1-2

Keyboard and mouse

The keyboard assembly comprises a keyswitch panel connected to a micro-controller on the main PCB, which serialises the keyboard and mouse data; connection to the ARM is made via a serial link to the IOC. The ARM reads and writes to the KART registers in the IOC. The protocol is essentially half duplex, so in normal operation the keyboard micro-controller will not send a second byte until it has received an ACK. The only exception to this is during the reset protocol used to synchronise the handshaking, where each side is expecting specific responses from the other and will not respond further until it has these.

In addition to this simple handshaking system, the keyboard micro-controller will not send mouse data unless specifically allowed to, as indicated by ACK MOUSE, which allows the transmission of one set of accumulated mouse coordinate changes, or the next move made by the mouse. While it is not allowed to send mouse changes, the keyboard will buffer mouse changes.

A similar handshake exists on key changes, transmitted as key up and key down, and enabled by ACK SCAN. At the end of a keyboard packet (two bytes) the operating system will perform an ACK SCAN as there is no protocol for re-enabling later. Mouse data may be requested later by means of Request Mouse Position (RQMP).

Key codes

The keyboard micro-controller identifies each key by its row and column address in the keyboard matrix and converts it to the standard row and column codes for RISC OS computers.

Row and column codes are appended to the key up or down prefix to form the complete key code.

For example, Q key down – the complete row code is 11000010 (&C2) and the column code is 11000111 (&C7).

Note: The CTRL key has N-key rollover. The Shift function has N-key rollover, but the Shift keys are not uniquely identifiable. The operating system is responsible for implementing two-key rollover, therefore the keyboard controller transmits all key changes (when enabled). The keyboard does not operate any auto-repeat; only one down code is sent, at the start of the key down period.

FN mode

The keyboard micro-controller detects the FN key down and converts those keyswitches which have legends for keys not physically present on the smaller Acorn A4 keyboard into the appropriate matrix position codes. In addition, mouse movement and buttons are simulated by the micro-controller if cursor keys and/or Q,W,E are pressed while FN is held down.

The FN key down event is also transmitted. Various FN modes can be locked by the micro-controller.

Data protocol

Data transmissions from the keyboard are either one or two bytes in length. Each byte sent by the keyboard is individually acknowledged. The keyboard will not transmit a byte until the previous byte has been acknowledged, unless it is the HRST (HardReSeT) code indicating that a power on or user reset occurred or that a protocol error occurred; see paragraph below.

```
START reset
                                                                                Reset protocol program
ONerror Send HRST code to ARM then wait for code from ARM.
IF code = HRST THEN restart ELSE error
ONrestart clear mouse position counters
           set mouse mode to data only in response to an RMPS request.
           stop key matrix scanning and set key flags to up
           send HRST code to ARM
Wait for next code
IF code = RAK1 THEN send RAK1 to ARM
                                       ELSE
                                              error
Wait for next code
IF code = RAK2 THEN send RAK2 to ARM
                                       ELSE
                                              error
Wait for next code
IF code = SMAK THEN mouse mode to send if not zero and enable key scan
ELSE IF code = SACK THEN enable key scanning
ELSE IF code = MACK THEN set mouse mode to send when not zero
ELSE IF code = NACK THEN do nothing
                                      ELSE
                                             error
END reset
Reset sequencing
                                               Action on
                       Expected
                                   Action on
                                                           Action if
Direction Code
                                                           unexpected
                       reply
                                   wrong reply timeout
                                    (Sender)
                                                (Sender)
                                                           (Receiver)
                                                           Hard reset
ARM -> Kb
           Hard reset Hard reset Resenc
                                               Resend
Kb -> ARM Hard reset
                       Reset Ack 1 Resend
                                                Nothing
                                               Hard reset
                                                           Hard reset
ARM -> Kb
           Reset Ack 1 Reset Ack 1 Hard reset
                                               Nothing
                                                           Hard reset
Kb -> ARM Reset Ack 1 Reset Ack 2 Nothing
ARM -> Kb
            Reset Ack 2 Reset Ack 2 Hard reset
                                               Hard reset Hard reset
```

Reset protocol

The keyboard restarts when it receives an HRST code from the ARM. To initiate a restart the keyboard sends an HRST code to the ARM, which will then send back HRST to command a restart.

The keyboard sends HRST to the ARM if

- · a power-on reset occurs
- · a user reset occurs
- · a protocol error is detected.

After sending HRST, the keyboard waits for an HRST code. Any non-HRST code received causes the keyboard to resend HRST. The pseudo program on the previous page illustrates the reset sequence or protocol.

Note: the on/off state of the keyboard LEDs does not change across a reset event, hence the LED state is not defined at power on. The ARM is always responsible for selecting the LED status. After the reset sequence, key scanning is only enabled if a scan enable acknowledged (SACK or SMAK) was received from the ARM.

Data transmission

When enabled for scanning, the keyboard controller informs the ARM of any new key down or new key up by sending a two byte code incorporating the key row and column addresses. The first byte gives the row and is acknowledged by a byte acknowledge (BACK) code from the ARM. If BACK is not the acknowledge code then the error process (ON error) is entered. When the BACK code is received, the keyboard controller sends the column information and waits for an acknowledge.

If either a NACK, SACK, MACK or SMAK acknowledge code is received, the keyboard controller continues by processing the ACK type and selecting the mouse and scan modes implied. If the character received as the second byte acknowledge is not one of NACK, MACK, SACK or SMAK, then the error process is entered.

Mouse data

Mouse data is sent by the keyboard controller if requested by an RQMP request from the ARM, or if a SMAK or MACK has enabled transmission of non-zero values. Two bytes are used for mouse position data. Byte one encodes the accumulated movement along the X axis, while byte two gives Y axis movement. Both X and Y counts are transferred to temporary registers when data transmission is triggered, so that accumulation of further mouse movement can occur. The X and Y counters are cleared upon each transfer to the transmit holding registers. Therefore, the count values are relative to the last values sent. The ARM acknowledges the first byte (Xcount) with a BACK code and the second byte (Ycount) with any of NACK/MACK/SACK/SMAK. A protocol failure causes the keyboard controller to enter the error process (ON error). When transmission of non-zero mouse data is enabled, the keyboard controller gives key data transmission priority over mouse data except when the mouse counter over/underflows.

Table 1.7: Code values

Mnemonic	msb	Isb	Comments
HRST	1111	1111	1-byte command, keyboard reset.
RAK1	1111	1110	1-byte response in reset protocol.
RAK2	1111	1101	1-byte response in reset protocol.
RQPD	0100	xxxx [†]	1-byte from ARM, encodes four bits of data.
PDAT	1110	xxxx	1-byte from keyboard, echoes four data bits of ROPD.
ROID	0010	0000	1-byte ARM request for keyboard ID.
KBID	10xx	xxxx	1-byte from keyboard encoding keyboard ID.
KDDA	1100	xxxx	New key down data. Encoded Row (first byte) and column (second byte) numbers.
KUDA	1101	xxxx	Encoded Row (first byte) and column (second byte) numbers for a new key up.
ROMP	0010	0010	1-byte ARM request for mouse data.
MDAT	0xxx	xxxx	Encoded mouse count, X (byte 1) then Y (byte2). Only from ARM to keyboard.
BACK	0011	1111	ACK for first keyboard data byte pair.
NACK	0011	0000	Last data byte ACK, selects scan/mouse mode.
SACK	0011	0001	Last data byte ACK.
MACK	0011	0010	Last data byte ACK.
SMAK	0011	0011	Last data byte ACK.
LEDS	0000	0xxx	bit flag to turn LED(s) on/off.
PRST	0010	0001	From ARM, 1-byte command, does nothing.
AMAC	0101	0xxx	Set mouse acceleration rate, encoded.
SDFN	0110	10df	d - Select/deselect PC-direct mode. f - Select/deselect FN mode processing (1=select)

[†] x is a data bit in the Code; e.g. xxxx is a four bit data field

Acknowledge codes

There are seven acknowledge codes which may be sent by the ARM. RAK1 and RAK2 are used during the reset sequence. BACK is the acknowledge to the first byte of a 2-byte keyboard data set. The four remaining types, NACK/MACK/SACK and SMAK, acknowledge the final byte of a data set. NACK disables key scanning and therefore key up/down data transmission as well as setting the mouse mode to send data only on RQMP request. SACK enables key scanning and key data transmission but disables unsolicited mouse data. MACK disables key scanning and key data transmission and enables the transmission of mouse count values if either X or Y counts are non-zero. SMAK enables key scanning and both key and mouse data transmission. It combines the enable function of SACK and MACK.

While key scanning is suspended (after NACK or MACK) any new key depression is ignored and will not result in a key down transmission unless the key remains down after scanning resumes following a SACK or SMAK. Similarly, a key release is ignored while scanning is off.

Commands may be received at any time. Therefore, commands can be interleaved with acknowledge replies from the ARM, for example keyboard sends KDDA (first byte), keyboard receives command, keyboard receives BACK, keyboard sends KDDA (second byte), keyboard receives command, keyboard receives SMAK. If the HRST command is received the keyboard immediately enters the restart sequence. The LEDS and PRST commands are normally acted on immediately. Commands which require a response are held pending until the current data protocol is complete. Repeated commands only require a single response from the keyboard.

Table 1.8: ARM commands

Mnemonic	Function
HRST	Reset keyboard.
LEDS	Turns keyboard LEDs on/off. A three bit field indicates which state the LEDs should be in. Logic 1 is ON, logic 0 (zero) OFF.
	D0 controls CAPS LOCK
1	D1 controls NUM LOCK
	D2 controls SCROLL LOCK
ROMP	Request mouse position (X,Y counts).
ROID	Request keyboard identification code. The computer is manufactured with a 6-bit code to identify the keyboard type to the ARM. Upon receipt of RQID the keyboard controller transmits KBID to the ARM.
PRST	Reserved for future use, the keyboard controller currently ignores this command.
RQPD	For future use. The keyboard controller will encode the four data bits into the PDAT code data field and then send PDAT to the ARM.
AMAC	Sets acceleration rate for FN mode simulated mouse movement.
SDFN	Allows FN mode processing to be disabled and allows PC keycode conversions disabled (see External keyboards below).

External keyboards

The keyboard micro-controller is also connected to a PS/2-compatible 6-pin mini-DIN keyboard socket. Periodically (about every 2s) it will check for the presence of an external PS/2 type keyboard. It does this by sending out an ECHO command and testing for a valid response. If such a response is received, the micro-controller will take keyswitch data from the external keyboard in preference to the internal keyswitch matrix. All keyswitch codes from the external keyboard are converted to RISC OS-compatible codes. LED updates from the ARM system are translated and passed onto the external keyboard. The auto-repeat function of a PS/2 keyboard is disabled by the micro-controller.

If communication with the external keyboard fails for any reason (e.g. if it is unplugged) the micro-controller will resume scanning of the internal matrix.

The conversion of PS/2 keyboard keyswitch codes into RISC OS keyboard codes can be disabled with the SDFN command. When this command is issued, data sent by the ARM processor will be passed unmodified to the external PS/2 keyboard and vice-versa. An external PS/2 keyboard does not affect mouse operation.

The micro-controller is capable of detecting whether the external keyboard is a PS/2 keyboard or an Archimedestype keyboard, although Archimedes keyboards are not currently supported. If it is an Archimedes keyboard, it switches to a bit copy mode — it becomes a bi-directional buffer passing on the bit-stream from IOC to the external Archimedes keyboard and vice-versa. If the external Archimedes keyboard is unplugged, the micro-controller detects this and returns to normal operation. While an Archimedes keyboard is plugged in, the micro-controller can no longer monitor the mouse. Instead, the mouse must be plugged into the Archimedes keyboard. In addition, the RESET switch on the Archimedes keyboard will NOT function.

Mouse interface

The mouse interface has three switch sense inputs and two quadrature encoded movement signals for each of the X axis and Y axis directions. Mouse key operations are debounced and then reported to the ARM using the Acorn key up / key down protocol. The mouse keys are allocated unused row and column codes within the main key matrix.

Switch 3 (right)	Row code - 7	Column code - 2
,	Row code - 7	Column code - 1
Switch 1 (left)	Row code - 7	Column code - 0

For example, switch 1 release would give 11010111 (&D7) as the complete row code, followed by 11010000 (&D0) for the column code.

Note: Mouse keys are disabled by NACK and MACK acknowledge codes, and are only enabled by SACK and SMAK codes, i.e. they behave in the same way as the keyboard keys.

The mouse is powered from the computer 5V supply and may consume up to 80mA.

Movement signals

Each axis of movement is independently encoded in two quadrature signals. The two signals are labelled REFerence and DIRection (eg X REF and X DIR). Table 1.10 defines the absolute direction of movement. Circuitry in the keyboard decodes the quadrature signals and maintains a signed 7-bit count for each axis of mouse movement.

When count overflow or underflow occurs on either axis, both X and Y axis counts lock and ignore further mouse movement until the current data has been sent to the ARM.

Table 1.10: Direction of movement

Initia	state	Next state		
REF	DIR	REF	DIR	
1	1	1	0	
1	0	0	0	Increase count by one
0	0	0	1	for each change of state.
0	1	1	1	
1	1	0	1	
0	1	0	0	Decrease count by one
0	0	1	0	for each change of state.
1	0	1	1	

Overflow occurs when a counter holds its maximum positive count (0111111 binary). Underflow occurs when a counter holds its maximum negative count (1000000 binary).

Table 1.9: Base keyswitch mapping

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	Esc	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	Print	Scroll Lock	Break
1	~	1	2	3	4	5	6	7	8	9	0	•	=	£	+	Insert
2	Home	PgUp	Num Lock	NK /	NK *	NK #	Tab	Q	W	E	R	T	Y	U	ı	0
3	Р	Ţ]	١	Del	Copy End	PgDn.	NK 7	NK 8	NK 9	NK •	LHS Ctrl	Α	S	D	F
4	G	Н	j	К	L	;	•	Return	NK 4	NK 5	NK 6	NK +	LHS Shift		Z	Х
5	С	٧	В	N	М	•	•	1	RHS Shift	†	NK 1	NK 2	NK 3	Caps Lock	LHS Alt	Space
6	RHS Alt	RHS Ctrl	-	 	-	NK 0	NK	NK Enter								
7	SW1	SW2	SW3	i L										D		FN

Notes:

Items in bold occur in FN mode, or when pressed in conjunction with the FN key.

NK

numeric keypad

LHS

lefthand side

RHS

righthand side

Floppy disc drive

The floppy disc drive fitted to the computer supports both 3.5 inch double-sided double-density and 3.5 inch double-sided high-density floppy discs.

Pin assignment:

Pin	Signal	Pin	Signal
1,3,5	+5V	11	HD IN
2	INDEX	12	DIR
4	SEL	14	STEP
6	DISC CHANGE	16	WRITE DATA
8,13,15,17,	ov	18	WRITE GATE
19,21,23,25		ł	
7	N/C	20	TRACK 0
9	HD OUT	22	WRITE PROTECT
10	MOTOR ON	24	READ DATA
		26	SIDE 1

Performance

Item	Specification
Drive type	SMD-1040-321 (Epson)
Capacity	1MB/2MB (unformatted)
Transfer rate	500/250Kbs ⁻¹
Track density	135TPI
No. tracks/disc (double- sided)	160
Track to track step rate	3ms
Seek settle time	15ms
Power supply	+5Vdc (± 5%)
Maximum continuous power (typical)	3W .
Disc life	3x10 ⁶ passes/track @ 300rpm
Average seek time	95ms
Average latency	100ms
Error rates	1 in 10 ⁹ recoverable read errors
	1 in 10 ¹² non-recoverable read errors
	1 in 10 ⁶ seek errors
MTBF	15,000 POH, 12.5% spindle
	motor duty cycle
I/P signal levels	
Logic 0	0.4V max
Logic 1	2.5V min
O/P signal levels 1KΩ load to +5V	
Logic 0	0.4V max
Logic 1	2.4V min to 5.25V max

Link settings

The floppy disc drive has a cut-out in its casing, through which you can see a link. The jumpers should be set to the "MODE 1" positions as follows:

Drive input signals

MODE SELECT

Logic 0 (pin 11): 1MB mode. Logic 1: 2MB mode.

DRIVE SELECT [0:1]

These signals condition all drive interface signals except MOTOR ON (which is independent of DRIVE SELECT). The drive will only respond to an interface signal when the relevant DRIVE SELECT signal is active. The drive select switch (if fitted) on the drive is set to Drive 0.

MOTOR ON

Spindle motor rotates when MOTOR ON is active AND a disc has been inserted in the drive.

DIRIN

Logic 0: a STEP pulse causes the head to be stepped in towards the spindle. Logic 1: a STEP pulse causes the head to be stepped away from the spindle.

STEP

A STEP pulse causes the head to be stepped in or out one track, depending on the polarity of DIRIN. Stepping to negative tracks is inhibited by the drive.

WRITE DATA

MFM data written to the disc. The drive gates this signal with WRITE ENABLE.

WRITE ENABLE

Logic 0 enables the current drive's write head. The drive delays side switching and head stepping until the internal trim erase process is completed.

SIDE 1

Logic 0 selects the upper head, logic 1 the lower head.

Drive output signals

INDEX

Index pulses are generated by the drive when the drive is Selected and the drive is ready.

TRACK 0

This signal is logic 0 when the head is positioned over track 0 as determined by the track 0 sensor (with or without a disc inserted).

WRITE PROTECT

Logic 0 indicates that a write protected disc is inserted.

READ DATA

MFM data read from the disc.

DISC CHANGE

This signal indicates to the system when a disc has been removed from the drive. Logic 0: at power-on and when the disc is removed from the drive. Reset to logic 1 by a STEP pulse when a disc is inserted and the drive is selected.

Operation of interface

Hardware

The floppy disc section of the 711 controller comprises a 765 floppy disc controller, which is widely used in IBM PCs (and compatibles).

There are several differences in operation between the 711-based interface and the interface based around the 1772 floppy disc controller (used in older Archimedes machines).

In common with the PC-AT interface the drive's READY signal is not used. This signal was available on older floppy drives but the majority of modern drives (and future 4MB ones) do not provide a READY signal. Instead the drive INDEX signal is fed directly to IOC and the software uses this signal together with suitable time delays to determine when the drive is ready. In this way there is a common method of determining when a drive is ready for all types of drive.

The hardware provides a MOTOR ON signal.

The maximum sink current of the floppy interface is

48mA. A single 3.5" drive requires the floppy disc controller to typically sink 5mA.

The 711 supports both MFM and FM recording. Older Acorn formats (as well as IBM formats) can be read, written and formatted as listed below. In addition, a new 1.6Mbyte ADFS F format is supported at a data rate of 500kbs⁻¹. This format has 10 x 1024 byte sectors per track (each side) with a 1 sector skew between both surfaces of the disc.

Formats supported

- ADFS F, MFM 500KHz (read/write/format)
- ADFS L, D and E, MFM 250kHz, (read/write/format)
- BBC Master 128 ADFS S and M, MFM 250kHz (read/write)
- DFS, FM 125kHz (requires a DFSReader utility to read/write)

Two features of the 765 floppy disc controller are:

- it cannot format a disc without an INDEX Address field following the physical INDEX pulse
- the skew between top and bottom sides of a disc must be an integral number of sectors.

Discs formatted on a 711 based machine are therefore not physically identical to those produced on a 1772 base machine. However, this does NOT affect interchangability between 711 and 1772-based machines. The leading Index address field feature causes discs formatted as ADFS L format (16 x 256 byte sectors/track) to have rather reduced inter-sector gaps and thus be susceptible to drive speed variation beyond ±1.5%. This is only likely to be a problem when interchanging ADFS L format discs between poor quality disc drives

Software

The new RISC OS driver supports the MultiFS specification, thereby allowing RISC OS to read/write discs in a hardware-independent manner from virtually any computer system supporting IBM/ISO compatible disc formats.

In keeping with the original 1772 driver software, it is possible to *Configure step rates of 2, 3, 6 or 12ms on a drive-by-drive basis. However, the step rates provided by the 765 controller depend on the data clock rate selected and it is not always possible to set exactly the step rate configured. Note that in single and double density modes selection of the 12ms step rate actually results in a 26ms rate being used. The following table shows the configured and actual step rates used for various data clock rates (in kbs⁻¹):

	Actual step rate (ms)						
Configured step rate (ms)	125 (kbs ⁻¹)	250 (kbs ⁻¹)	300 (kbs ⁻¹)	500 (kbs ⁻¹)			
2	2	2	1.7	2			
3	4	4	3.3	3			
6	6	6	6.7	6			
12	26	26	25	12			

Hard disc drive

The hard disc drive used on the computer is a 2.5 inch IDE (Intelligent Drive Electronics) drive and has the following typical performance parameters:

Capacity	60MB
Power supply	+5V
Ave. seek time	25ms max
Start/stop cycles	40,000 min
Spin up after auto spin	10s typical
down	(20s max)
Stop time	5s max
MTBF	50,000 POH
Error rates	< 1 in 10 ¹⁰ recoverable read errors
1	< 1 in 10 ¹³ non-recov, read errors
	< 1 in 10 ⁶ seek errors
Power consumption:	
read/write	2.5W max
idle	1.5W max
spin-up	-
standby	0.4W max
sleep	0.25W max

This type of drive is used increasingly in PC-AT computers and an official standard describing the hardware and software interface has recently been agreed by the CAM (the Common Access Method) Committee. The hard disc controller of an IDE drive is integrated into the circuit board of the drive so that the interface to the computer is very simple:.

Pin	Signal	Dir.	Pin	Signal	Dir.
1	RESET	0	23	īow	0
2	GND		24	GND	. }
3	DATA 7	Ю	25	ĪŌR	.0
4	DATA 8	NO	26	GND	
5	DATA 6	NO	27	IORDY	- 1
6	DATA 9	Ю	28	N/C	
7	DATA 5	vo	29	N/C	
8	DATA 10	1/0	30	GND	
9	DATA 4	VO	31	IRO	ı
10	DATA 11	NO	32	ĪŌ16	1
11	DATA 3	Ю	33	HOST A1	0
12	DATA 12	vo	34	PDIAG	νo
13	DATA 2	vo	35	HOST A0	0
14	DATA 13	10	36	HOST A2	0
15	DATA 1	vo	37	HOST CS0	0
16	DATA 14	NO	38	HOST CS1	0
17	DATA 0	100	39	IN USE LED	1
18	DATA 15	10	40	GND	
19	GND		41	+5V	
20	KEY		42	+5V	
21	N/C		43	GND	1
22	GND		44	AT/XT	

The IDE interface can support one drive which is known as the Master. Like SCSI, the IDE interface is a logic level interface. Drives accept high level commands (e.g. Read Sector) and generate an interrupt on completion of a

command. Being intelligent, IDE drives possess features which result in faster operation and more efficient storage of data. For example, many have a buffer memory which they use to cache several sectors of data during reads and writes. They also invariably perform logical to physical sector translation and so can take advantage of recording techniques (e.g. zoned recording).

The IDE interface is essentially an extension of the computer's internal data, address and control buses. Because of this, the cable length is kept to a minimum. The RISC OS IDE driver software adheres as closely as possible to the CAM recommendations. It does not implement any of the Multiple commands which allow multiple sector operations with a single interrupt since many drives do not as yet support these commands. Disc transfers are performed one sector/interrupt with individual sectors being transferred to/from disc at a rate of approx. 2.4MBs⁻¹. Figure 1.10 on page 1-21 shows a sector write to disc (using a VGA monitor in mode 27). Continuous large file transfer rates of 500 to 700kbs⁻¹ can be sustained in all screen modes.

There is no separate filing system for the IDE drive. It is assigned an ADFS drive number (usually 4).

Econet (optional network connection)

The A4 Econet interface module (ALA66) is based on the existing Econet II (ADF10) design. It is a repackaged design using surface mount technology and incorporates additional circuitry for providing a power down feature.

Econet General

Econet is a low cost synchronous differential clock and data communication channel. Each station has an interface based on the 68B54 Advanced Data Link controller. This is an intelligent peripheral device used to transmit and receive data packets over the communications channel between two or more computers using a Bit Orientated Protocol. The ADLC converts parallel to serial data and constructs the packets sent over the network. Its functions include automatic generation of opening and closing flags, Cyclic Redundancy Check calculations/checking and zero insertions and deletions.

The 68B54 drives the channel using differential line drivers. High speed comparators and monostable elements provide the receive/collision detect function.

Power save circuitry

An extra signal on the computer interface $\overline{\text{ECON}}$ is asserted by the computer when the network is not required. This disables a set of buffers between the computer interface and the 68B54. It also removes power from the 68B54 and the rest of the Econet circuitry via a transistor switch.

Parallel port

The parallel port is an IBM PC-XT/AT compatible port and also has a PS/2 like bi-directional capability. It can be configured via software for output only (printer application) or input/output (e.g. scanner application).

Connector: 25 way D (Female on the computer)

Pin	Signal	Direction/ Type
1	/STROBE	0
2	DATA 0	1/0
3	DATA 1	1/0
4	DATA 2	VO
5	DATA 3	1/0
6	DATA 4	1/0
7	DATA 5	1/0
8	DATA 6	1/0
9	DATA 7	1/0
10	/ACK	ı
11	BUSY	1
12	PE	1
13	SLCT	0
14	/AUTOFD XT	0
15	/ERROR	l l
16	/INIT	0
17	/SLCT IN	0
18 to 25	GND	

The data bus is capable of sinking 24mA and the control signals (STROBE, SLCTIN, INIT and AUTOFD) are open collector capable of sinking 24mA. These control signals are driven in both input and output mode whilst the control signals ACK, BUSY, PE, SLCT and ERROR are always input signals.

Many printers work with a subset of the signals available, for example: STROBE, ACK, BUSY and the 8 data lines. Base address for the PC I/O system is 3010000H. The offset into this area for the printer port is 4* 278H = 9E0H Therefore the printer port base address is 30109E0H.

The printer port has three registers:

Data Latch:

Printer Base address + 4 * 00H = 30109E0H

Status Register:

Printer Base address + 4 * 01H = 30109E4H

Control Register:

Printer Base address + 4 * 02H = 30109E8H Note: These addresses are for byte accesses.

Data Latch

Read / Write register for printer data. In normal mode, data written to this register is put onto the data pins to the printer. Data read from this address is the data that is on the printer port data pins.

Status Register

Read only register.

Parallel port interrupt

The Parallel port interrupt signal (PINTR) generated by the 711 is not used directly. Instead it is latched in IOEB to produce the signal LPINTR which is then fed into IOC. LPINTR is latched on the rising edge of PINTR (assuming that the interrupt is programmed as active low in the 711) which corresponds to the falling edge of ACK. Once latched LPINTR may be cleared by a read or write to the Printer Clear register (&3350058). Figure 1.11 on page 1-21 shows various control signals during a print operation. The following notes describe the printer port hardware registers and a typical use for each pin. The actual use of each signal will depend upon the operating system, application, printer driver and type of printer connected.

Bit	Signal	Meaning
Bit 7	/BUSY	This bit reflects the INVERTED state of the BUSY input pin. Note: The signal is inverted, ie Read a 0 when the pin is high. A 0 means the printer is busy and cannot accept data. A 1 means that the printer is ready to accept data.
Bit 6	/ACK	This bit reflects the state of the /ACK input pin. A 0 means that the printer has received a character and is ready to accept another. A printer would normally pulse this pin low when it is ready to receive the next character. The rising edge of this signal will latch a pending interrupt.
Bit 5	PE	Paper Empty. This bit reflects the state of the PE input. A 0 indicates the presence of paper. A 1 indicates a paper end condition.
Bit 4	SLCT	This bit reflects the state of the SLCT input pin. A 0 means the printer is not selected. A 1 means the printer is on line.
Bit 3	/ERROR	This bit reflects the state of the /ERROR input. A 0 means that an error condition has been detected. A 1 indicates no errors.
Bits 2-0	Reserved	

Figure 1.10: Sector write to disc

Figure 1.11: Parallel port control signals

Control Register

Read / Write register.

Bit	Signal	Meaning
Bit 7-6	Reserved	
Bit 5	DIR	Data direction. Valid only in extended mode. A 0 for output. A 1 for input. Recommendation: Write a 0 for normal use.
Bit 4	IRQEN	Used in a PC system to enable interrupts. On some Acorn systems the state of this bit is ignored. Hardware reset to 0. Recommendation: Always write a 1. Interrupt disabling should be done in IOC.
Bit 3	/SLCTIN	Used to drive the /SLCTIN output pin. A hardware reset sets the register to 0 and the pin high. A 1 selects the printer.
Bit 2	/INIT	Used to drive the /INIT output pin. A hardware reset sets the register to 0 and the pin low. A 0 initializes the printer. (Set low for 50µS minimum)
Bit 1	/AUTOFD	Used to control the /AUTOFD output pin. Note: Writing a 1 sets the pin low. A hardware reset sets the register to 0 and the pin high. A 1 causes the printer to generate a line feed after each line is printed. A 0 means no autofeed.
Bit 0	/STROBE	Used to control the /STROBE output pin. A hardware reset sets the register to 0 and the pin high. A 1 in this bit generates an active low output. For normal printing, the data should be setup at least 0.5µs before strobe.

Serial port

The serial port is controlled by the 711 which contains a NS16450 compatible UART. The serial port is an asynchronous serial interface which uses a 9-way D-type connector.

Pin	Signal	
1	DCD VP	
2	RXD O/P	
3	TXD O/P	
4	DTR O/P	
5	oV	
6	DSR VP	
7	RTS O/P	
8	CTS VP	
9	RI I/P	

The line drivers and receivers meet all the EIA RS-232C and CCITT V.28 specifications. In particular, the line driver meets the minimum RS-232/V.28 output voltage swing of ±5V when all outputs are driving the 3K minimum allowable load impedance. The line driver's characteristics ensure reliable operation at 19200 baud provided that the load capacitance does not exceed the RS-232/V.28 recommended limit of 2500pF (i.e. several

metres of cable). Operation at baud rates greater than 19200 baud (which the UART can generate as detailed below) may even be possible over short cable lengths and under light line driver loading.

The 16450 UART potentially allows all the baud rates shown in the table below to be programmed, although currently the operating system does not support the two highest baud rates.

Baud Rate	Percentage error	
50	0.001	
75	•	
110	•	
134.5	0.004	
150	•	
300	•	
600	•	
1200	•	
1800	•	
2000	0.005	
2400	•	
3600	•	
4800	•	
7200	•	
9600	•	
19200	•	
38400	•	
56000	0.030	

^{*} indicates 0.002% error

The UART's programmable baud rate generator uses the 711 24MHz crystal oscillator which it divides by 13 to produce a 1.8462MHz clock. This is further divided by the transmitter and receiver sections of the UART to produce the baud rate selected. The same baud rate is used for both receiving and transmitting serial data (i.e. split baud rates are not supported).

Other programmable features of the UART include:

- · 5 to 8-bit character size
- 1, 1.5 or 2 stop bits
- · parity options

For backwards compatibility the software interface is an extended version of that used on older RISC OS computers which use the 65C51 UART. The 711 contains two serial interfaces. The second is not used.

Power supply system

DANGER

THE POWER SUPPLY IS A SEPARATE REPLACEABLE ITEM, AND CONTAINS NO USER SERVICEABLE PARTS.

ALL ACORN POWER SUPPLIES CONTAIN
HAZARDOUS VOLTAGES AND MUST NOT BE
OPENED BY UNAUTHORISED PERSONNEL.
SAFETY EARTH CONTINUITY TESTING MUST BE
CARRIED OUT AFTER ANY POWER SUPPLY HAS
BEEN OPENED.

The power supply system for a portable computer is considerably more complex than that of a conventional desktop computer. It must capable of supplying power to the computer from either an external power adapter or the internal battery pack, switching smoothly between the two as necessary, monitoring the state of the battery pack and controlling the battery charging process whenever an external power adapter is connected.

Both the battery pack and the external power adapter supply a voltage much higher than the 5 volts required for the system logic and hence a DC/DC converter is used to produce the required system voltage.

When the external power adapter is connected the internal battery pack will be charged from a constant current source built into the external power adapter. The charging process is monitored and controlled by a single chip micro-controller (BMU) which functions independently of the main ARM CPU.

When the external power adapter in not connected power is supplied by the battery pack. The BMU monitors the discharge current and displays the calculated charge remaining in the battery on the five segment LCD 'gasgauge'. Battery voltage is also monitored and the host system is alerted via interrupts when it drops below predetermined thresholds.

Battery status information is passed to the ARM via the I²C bus. Control information can also be passed from the ARM to the BMU via the I²C bus.

WARNING!

Writing erroneous data to the BMU could cause overcharging of the battery pack and a resultant reduction in battery life. Details of the software interface to the BMU are given in the RISC OS 3 Programmer's Reference Manual.

External Power Adapter

The external power adapter converts the AC mains supply to a low voltage (typically 25V) dc supply. The regulated dc supply then splits into two separate supplies, a 21V supply (UMAIN) directly into the computer unit to the DC/DC converter (via the ON/OFF switch) and the other (UBATT) being converted into a

switchable rate current source within the power adapter. The current source is used to charge the battery, with the charge rate being controlled by the BMU via control signals on the 9 pin power connector.

Circuit Description

The heart of the battery management system is an Hitachi HD404304F 4 bit micro-controller. The main features of this device are:

- 4K x 10bit program ROM
- 96 nybbles user RAM
- Two 8-bit timers
- · 4 channel 8-bit a/d converter
- 16 level stack
- 5 prioritised interrupts
- Very low power 'Stop mode'.

For further details, refer to the manufacturer's datasheet.

The A/D system is used to monitor battery voltage, battery current and battery temperature. These three parameters determine the action of the BMU (Battery Management Unit). In addition to the three analogue inputs the BMU has several other digital control input and output signals:

Port	Signal	Function
R0.0	LCD20	'Gas-gauge 20%' segment drive
R0.1	LCD40	'Gas-gauge 40%' segment drive
R0.2	LCD60	'Gas-gauge 60%' segment drive
R0.3	LCD80	'Gas-gauge 80%' segment drive
R1.0	LCD100	'Gas-gauge 100%' segment drive
R1.1		Not used, connected to ground
R1.2		Not used, connected to ground
R1.3	LCDCOM	'Gas-gauge' common connection
R2.0	LIDSWITCH	Detect lid closed or open
R2.1		Not used, connected to ground
R2.2		Not used, connected to ground
R2.3		Not used, connected to ground
R3.0	RESETBLK	Prevent further reset pulses (see below)
R3.1		Not used, open circuit
R3.2	SDA	I ² C bus data (interrupt input)
R3.3	SCL	I ² C bus dock
D0	LOWBAT	Low battery warning LED drive
D1	CHARGE	Battery-on-charge LED drive
D2	SCL	I ² C bus dock
D3	SDA	I ² C bus data
D4	CRSEL1	Charge rate select
D5	CRSEL2	Charge rate select
D6	HOSTINT	Host interrupt
D7	HOSTSW	Detect state of main power switch
D8	BMUSER	Serial debug data output
D9	UMAIN	Detect presence of charger
D10	SUPP12	Switch on 12V supply for op-amps
D11	MAINON	Enable DC/DC converter
D12		Not used, open circuit

Analogue signal inputs

All three analogue signals are pre-processed by operational amplifier stages before being fed into the BMU A/D converter. All analogue inputs have an input range of 0V to Vref, where Vref (nominally 5V) is a buffered version of the BMU Vcc supply. The Vcc supply for the A/D converter is Vref, this eliminates errors due to differences between Vref and the supply.

Battery Temperature

The battery pack contains a series connected pair of positive temperature coefficient thermistors with a nominal impedance of $2K\Omega$ at 25°C. This is fed from a high precision (0.1%) $2K\Omega$ resistor from Vref. An op-amp provides a simple buffer to protect the BMU analogue input.

Input specification:

Input range: 0°C to 50°C

Resolution: 2°C Accuracy: 2°C

Battery Current

Battery current maybe positive or negative depending on whether the battery is charging or discharging. A sense resistor is placed in the battery negative line, the voltage across which is amplified by an op-amp and fed to the BMU analogue input. The amplifier stage is biased to half Vref to give a mid-range reading when battery current is zero. Use of precision resistors and software self-calibration eliminates the need for any manual calibration of the circuit.

Input specification:

Input range: -1300mA to +1300mA

Resolution: 10.3mA Accuracy: 25mA

Battery Voltage

Battery voltage is fed to a high impedance potential divider. The output from the potential divider is then fed through a buffer amplifier stage to protect the BMU analogue input.

Input specification: Input range: 0V to +25V Resolution: 97.7mV Accuracy: 200mV

Figure 1.12: Power control system

Digital Signals

Gas-Gauge

The 'Gas-gauge' displays the calculated charge remaining in the battery pack. It is displayed as a percentage of the nominal usable capacity of the battery pack (typically approx. 1650mAH) to a resolution of 20%. The BMU drives a square wave onto the LCD common and an out-of-phase square wave onto the input of the segment to be 'lit'. The other segments are all driven with an in-phase square wave. These square waves are generated in software with a frequency of approximately 32Hz.

Lid Switch

The lid switch causes the screen to be switched off when the lid is closed. This input is fed from a mechanical switch in the lid assembly. The signal has a pull-up resistor on it (connected to the main system 5V supply) and is pulled to 0V when the switch is closed (lid is closed). The switch is debounced in software with a debounce period of 1 second.

Reset Blocking

This active low output is used to block further reset pulses being generated by the low power 555 reset pulse generator circuit. This is achieved by pulling the reset input of the 555 low.

I²C Bus signals

Both the I²C data line (SDA) and the I²C clock line (SCL) are fed to two inputs on the BMU. The D port inputs are used to provide single instruction bit tests of the state of the signals. D ports are only able to pull high so the totem pole outputs of the R3 port are used to drive the I²C bus signals during a transmit phase of the I²C protocol. In addition the R3.2 input is also the highest priority interrupt of the BMU system and is used to switch the BMU software into I²C transfer processing.

CHARGE and LOW-BATTERY LED drivers

These outputs source the current for the red and green sections of the tri-colour 'low-battery' and 'on-charge' indicator LED. Colour selection and flashing is all controlled in software.

Charge rate select signals

The power adaptor used to charge the A4 battery pack provides a current source UBATT with a selectable current level. The low current level is between 60mA and 70mA (used for trickle charge) and the higher level is between 320mA and 380mA (used for quick charge). The active high charge rate select output signal CRSEL1 is used to select between the two charge rates. CRSEL1 low is trickle charge, CRSEL1 high is quick charge.

Host System Interrupt

This active low output signal is used to generate an interrupt in the host system when certain events are detected by the BMU software. An external transistor circuit generates an open-collector signal which has a pull-up resistor to the host system +5V supply.

Host Power Switch Position

When the host switch is closed this signal goes high. When the host switch is opened this signal goes low. The state of this signal is regularly scanned by the software.

Serial debug

The contents of the BMU RAM are transmitted in PPM format on this pin, compatible with the standard Acorn test adaptor system.

Charger presence

This input signal is used to detect the presence of an external charger. When a charger is plugged in (and switched on) this signal will go high.

Op-Amp 12V supply control

To keep quiescent supply current to a minimum when the BMU is in stop mode the power to the op-amps is switched off. This active high output allows the BMU to enable or disable the 12V supply.

DC/DC Converter control

To prevent erratic system behaviour when the battery voltage gets very low the BMU uses this active high output to disable the DC/DC converter (and hence disable the host system 5V supply) at a predetermined battery voltage level. This also ensures that there is sufficient potential from the battery pack to sustain proper BMU operation.

Reset Pulse Generator

The BMU is able to track the self-discharge of the battery pack whether the host system is active or not. This is necessary in order to maintain a reasonably accurate estimation of charge remaining in the battery pack and hence how much charging is required.

The micro-power 555 timer generates a 10mS active high reset pulse once each second (±10%). This reset pulse takes the BMU out of stop mode and it checks for the presence of a charger or a closed host switch. If neither if these are true then a simple self-discharge calculation is carried out and the BMU re-enters stop mode. (NB. The op-amp 12V supply is not enabled, keeping average current consumption over a one second period to less than 500µA). If a charger is present or the host switch is closed then the BMU will activate the reset-blocking signal to prevent further reset pulses, and begin tracking battery charge state.

Plugs

Plug	Fitted	Function/Specification
PL1	Yes	Serial Port. (IBM PC-AT Pinout) 9-way D-type plug Pin Signal Pin Signal 1 DCD 6 DSR 2 RxD 7 RTS 3 TxD 8 CTS 4 DTR 9 RI 5 0V
PL2	Yes	IDE hard disc drive data connector. This is a 44-way box-header containing all the signals required by the drive in AT mode. Pin Signal Pin Signal 1 RST 2 OV 3 DATA7 4 DATA8 5 DATA6 6 DATA9 7 DATA5 8 DATA10 9 DATA4 10 DATA11 11 DATA3 12 DATA12 13 DATA2 14 DATA13 15 DATA1 16 DATA13 15 DATA1 16 DATA14 17 DATA0 18 DATA15 19 OV 20 nc 21 nc 22 OV 22 IOW 24 OV 25 IOR 26 OV 27 IORDY 28 nc 29 nc 30 OV 31 IRQ 32 IO16 33 LA3 34 PDIAG 35 LA2 36 LA4 37 CSO 38 CS1 39 SLV/ACT 40 OV 41 +5V 42 +5V 43 OV 44 AT/XT
PL3	Yes	Econet upgrade module socket. Pin Signal Pin Signal 1 +5V 2 LA2 3 0V 4 LA3 5 BD0 6 LA4 7 BD1 8 LA5 9 BD2 10 WBE 11 BD3 12 S2 13 BD4 14 CLK2 15 BD5 16 ECON 17 BD6 18 S4 19 BD7 20 PIRO 21 RST 22 EFIO 23 0V 24 PWE 25 0V 26 PRE
PL4	Yes	Charge state indicator, 6-way 2mm SIL header used to provide electrical connection to the 5 segment LCD charge state indicator. Pin Signal 1 CHRGECOM 2 CHRGE20 3 CHRGE40 4 CHRGE60 5 CHRGE80 6 CHRGE100

Plugs

Plug	Fitted	Function/Specification			
PL5	Yes	Battery/Switch Connector. 6-way 2mm DIL boxed header used to provide electrical connection to the the battery pack and the computer ort/off switch. Pin Signal 1 USUPP 2 USUPPS 3 BATT- 4 TEMP+ 5 BATT+ 6 0V			
PL6	Yes	Charger Connector. 10-way 2mm DIL boxed header used to provide electrical connection to the external charger unit. Pin Signal Pin Signal 1 NC 6 0V 2 UMAIN 7 IBATT 3 UBATT 8 0V 4 0V 9 0V 5 CRSEL2 10 CRSEL1			
PL7	Yes	DC/DC convertor connector. 10-way 2mm DIL straight header used to provide electrical connection to the DC/DC convertor board Pin Signal Pin Signal 1 USUPPS 6 MAINON 2 0V 7 NC 3 0V 8 M24V 4 5V 9 NC 5 5V 10 NC			

Sockets

Skt	Fitted	Function/Specification			
SK1	Yes	9-way mini-DIN providing connection for quadrature mouse.			
SK2	Yes	Stereo headphone output. 3-way 3.5mm stereo jack socket providing output to "Walkman-type" 32 ohm stereo headphones. Pin Signal 1 GND (outer) 2 RIGHT (centre) 3 LEFT (tip)			
SK3	Yes	LCD panel interface Connector. 20 Way 1mm Flex connector used to connect LCD panel to main PCB. Pin Signal Pin Signal 1 LIDSWITCH 11 LEDFLOPPY 2 SPEAKER 12 M24V 3 LCDON 13 5V 4 BL2 14 0V 5 0V 15 NC 6 NC 16 NC 16 USUPPS 7 5V 17 5V 17 5V 18 LEDBATTLO 18 LEDACON 9 HDLED 19 LEDCHARGE 10 USUPPS 20 NC			
SK4	Yes	LCD panel interface Connector. 20 Way 1mm Flex connector used to connect LCD panel to main PCB. Pin Signal Pin Signal 1 DF 11 FLM 2 CL1 12 0V 3 NC 13 0V 4 CL2 14 0V 5 NC 15 LD3 6 LD2 16 LD1 7 LD0 17 UD3 8 UD2 18 UD1 9 UD0 19 5V 10 OEL 20 5V			
SK5	Yes	Floppy Disc Drive Data Connector. 26-way 1.25mm			

Sockets

Skt	Fitted	Function/Specification		
SK6	Yes	RGB video socket. This is a 15-way mini D-type socket providing an interface to RGB monitors and SCART TVs. RGB video levels are 0.7V Pk-Pk into 75Ω Sync voltage levels are >= 2.0V (TTL). Pin Signal RED GREEN BLUE ID2 VV VV VV VV VV VV VV VV VV		
SK7	No	Video hybrid (internal)		
SK10	Yes	Parallel printer port. 25-way D-type socket providing a parallel printer interface. Pin Signal 1 STB 14 AUTOFD 2 PD0 15 ERROR 3 PD1 16 INIT 16 INIT 17 SLCTIN 17 SLCTIN 18 OV 19 OV 19 OV 19 OV 10 ACK 23 OV 12 PE 25 OV 13 SLCT SLCTIN 18 OV 19 OV 10 ACK 23 OV 11 BSY 24 OV 12 PE 25 OV 13 SLCT OV OV OV OV OV OV OV O		
SK11	Yes	Internal keyboard switch matrix.		
SK12	Yes	Internal keyboard switch matrix.		
SK15	Yes	6-way mini-DIN socket providing an external con- nection point for an external keyboard.		

Main PCB Links

Link	Fitted		Effect	
LK1	Yes	Used to select '5th or device). Size (bits) up to 1M 2M - 8M	blumn' ROM LK15 2-3 1-2	•
LK2	Yes	Test connector used designed test equipm Pin Signal P1 5V P2 D0 P3 LA21 P4 TESTAK P5 RST P6 0V P7 TBA P8 TBA	•	ion with Acorn

Switches

Skt	Fitted			Effect	
SW1	Yes	Reset			
SW2	Yes	RAM size			
SW3	Yes	Mem size 1MB 2MB 4MB	SW1 1-4 1-2 1-3	SW2 1-3 1-3 1-2	

Part 2 – Parts lists

A4 2M final assembly parts list, issue 2

TEM	PART No.	DESCRIPTION	QTY	Remarks
	0090,260/A	Final Assy Drg		1 Per Batch
1	0190,009	Perth Display Unit Assy	1	
	0190,011	Perth UK Keyboard Assy	1	
1	0490.043	Perth Base Label	1	
-	0290,063	Floory Disc Flexy Cable	1	
	0230,000	(10,000)	·	Not fitted on
Ì			.	this Assy
	0190,074	ON/OFF/Battery Cable Assy	1	
	0290,075	Rear Wall RFI Shield	1	
-	0290,076	Main PCB Insulation Sheet	1	
	0290,077	Clamp Plate	1	
	0190,083	DC/DC Convertor PCB Assy	1	
				Not fitted on this Assy
	0190,085	K/B Rear Edge Carrier	1	
	0190,094	DC inlet Cable Assembly	1	
	0190,095	Battery LCD Cable Assy	1	
ŀ	0290,097	Battery LCD Perspex Windw	1	
- 1	0290,100	Nut M3 Collared captive	3	
- 1	0190,103	Rear Wall RFI Strip	1	
	0290,104	Keyboard Support Collar	3	
- 1	0190,109	Scw M3x4 Pan Head Posi Sp	3	Use on Item 48
- 1	0190,109	Scw 3x8 TC Pan Head PosiS	5	Use on Items
				17,48
	0190,112	Scw 3x35 TC Pan Posi Spec	3	Use on Items 6 41
- 1	0290,114	K/B Rear Edge RFI Strip	1	
	0190,115	Floppy Disc Drive Bezel	1	
- (0290,117	Battery Status LCD	1	
1	0290,118	Floppy D/O RFI Plate	1	
	0290,119	Battery LCD Insulator	1	
- 1	0190,120	Side Drop Flap	1	
	0190,121	Case Lower Sliding Insert	1	
-	0190,122	Case Lower (TA/Acorn)	1	
1	0190,125	Rear Drop Flap (TA/Acorn)	1	
ļ	0290,135	Foam Strip (Long) 15mm	,	Not litted on
1	0190,142	Scw with Washer M3x5	4	this Assy Use on Item 73
ı		1	1	USE ON ILEM 73
- 1	0190,145	Rear Wall	1	
	0190,200	Perth (2M) Main PCB Assy	1	
	0800,999	Conrd 4-40UNC Scwlk Stpd	8	
	0800,997	Wshr 4-40UNC Int-Spri SnP	2	Use on Item 22
- 1	0800,998	Nut 4-40UNC Z&P	2	Use on Item 22
	0805,909	SW SPST DC 2A Roc Snp	1	Use on Item 14 Not fitted on
		1.0.8-4	١.	this Assy
1	0895,082	Adh Pad Insulator	4	Use on Item 16
	0907,008	Tape Pisto Bik Insu SFAD 20mm		Use on Items 26,48
ĺ	0912,018	Floppy Drive 2MB 3.518mm	1	Not fitted on this Assy
	0940,004	Adh Scw-Lock 222 A/R	Use	n Items 56,58
				1

A4 2M main PCB assy parts list, issue 1

issue 1					
ITEM	PART No.	DESCRIPTION	QTY	Remarks	
1	0290,000	BARE PCB	l	1	
2	0190,200/A	{2M} PCB ASSEMBLY DWG		1 PER BATCH	
3	0190,000/C	PCB CIRCUIT DIAGRAM	1	1 PER BATCH	
6	0490,201	PERTH (2M) PCB LABEL	1 1	ĺ	
12	0800,071	CONR 2W SHUNT 2mm	1	LK1	
13	0870,420	WIRE 22SWG CPR TIN	A/R	X2	
15	0902,004	LABEL SERIAL PCB 40x10mm] 1		
17	0800,102	SKT IC 42/0.6 SUPA	11	IC4	
18	0800,102	SKT IC 42/0.6 SUPA	1	IC15	
19	0800,199	SKT STRIP 14/0.1 LP SIL	2	IC18	
20	0800,199	SKT STRIP 14/0.1 LP SIL	2	IC19	
21	0800,199	SKT STRIP 14/0.1 LP SIL	2	IC21	
22	0800,197	SKT STRIP 3/0.1 TURN	1	IC22	
1		SKT STRIP 14/0,1 LP SIL	2	IC27	
23	0800,199		_	1	
24	0800,198	SKT IC 32/0.6 TURN O/F	1 1	IC38	
B1	0817,015	BAT NICAD 1V2 11MAH PCB	1		
C1	0692,333	CPCTR 33N CML 20% 805	1		
C2	0690,220	CPCTR 22P CML 2% 805	1	1	
C3	0691,102	CPCTR 1N CML 10% 805	1		
C4	0691,102	CPCTR 1N CML 10% 805	1		
C5	0692,333	CPCTR 33N CML 20% 805	1		
C6	0692,104	CPCTR 100N CML 20% 805	1		
C7	0692,103	CPCTR 10N CML 20% 805	1		
C8	0692,473	CPCTR 47N CML 20% 805] 1		
C9	0690,220	CPCTR 22P CML 2% 805	1		
C10	0691,102	CPCTR 1N CML 10% 805	1	ļ	
C11	0692,333	CPCTR 33N CML 20% 805	1		
C12	0692,473	CPCTR 47N CML 20% 805	1		
C13	0647,002	CPCTR 47U ALEC 16V SMD	1		
C14	0691,102	CPCTR IN CML 10% 805	1		
C15	0690,220	CPCTR 22P CML 2% 805	1		
C16	0690,150	CPCTR 15P CML 2% 80\$	1	[
C17	0692,333	CPCTR 33N CML 20% 805	1		
C18	0692,333	CPCTR 33N CML 20% 805	;		
C19	0647,001	CPCTR 10U ALEC 16V SMD	1		
1		ł			
C20	0692,333	CPCTR 33N CML 20% 805	1		
C21	0692,333	CPCTR 33N CML 20% 805	1	1	
C22	0692,333	CPCTR 33N CML 20% 805	11	[
C23	0692,473	CPCTR 47N CML 20% 805	1		
C24	0690,220	CPCTR 22P CML 2% 805	1	I	
C25	0692,104	CPCTR 100N CML 20% 805	1 1	1	
C26	0692,473	CPCTR 47N CML 20% 805	1	1	
C27	0692,104	CPCTR 100N CML 20% 805	1	!	
C28	0692,473	CPCTR 47N CML 20% 805	1	1	
C29	0692,473	CPCTR 47N CML 20% 805	1	1	
C30	0692,473	CPCTR 47N CML 20% 805	1	1	
C31	0692,473	CPCTR 47N CML 20% 805	1	1	
C32	0692,473	CPCTR 47N CML 20% 805	1	J	
C33	0692,473	CPCTR 47N CML 20% 805	1	1	
C34	0692,104	CPCTR 100N CML 20% 805	1		
C35	0692,333	CPCTR 33N CML 20% 805	1	1	
C36	0692,333	CPCTR 33N CML 20% 805	1	1	
C37	0692,333	CPCTR 33N CML 20% 805	1	1	
C38	0647,002	CPCTR 47U ALEC 16V SMD	1		
C39	0692,473	CPCTR 47N CML 20% 805	1		
C40	0692,333	CPCTR 33N CML 20% 805	1		
C41	0692,333	CPCTR 33N CML 20% 805	1		
C42	0692,333	CPCTR 33N CML 20% 805	1		
}	1	1			
Ь	·	<u> </u>		L	

	DADY M	DECCRIPTION	QTY	Remarks
ITEM	PART No.	DESCRIPTION CPCTR 33N CML 20% 805	1	Hemarks
C43	0692,333	CPCTR 33N CML 20% 805	1	
C44	0692,333	CPCTR 33N CML 20% 805		*
C45 C46	0692,333 0692,333	CPCTR 33N CML 20% 805		ľ
1 1	0692,333	CPCTR 33N CML 20% 805	;	
C47		CPCTR 33N CML 20% 805	1	
C48	0692,104	CPCTR 100N CML 20% 805	1	
C49	0692,104	CPCTR 33N CML 20% 805	1	
C50	0692,333	CPCTR 33N CML 20% 805	;	
C51	0692,333	CPCTR 33N CML 20% 805	1	
C52	0692,333	CPCTR 33N CML 20% 805	1	
C53	0692,333	CPCTR 33N CML 20% 805		
C54	0692,333		;	
C55	0647,002	CPCTR 47U ALEC 16V SMD	;	
C56	0692,104	CPCTR 100N CML 20% 805	1	
C57	0647,002	CPCTR 47U ALEC 16V SMD	1 .	
C58	0692,104	CPCTR 100N CML 20% 805	1 1	
C59	0692,333	CPCTR 33N CML 20% 805	1	
C60	0692,104	CPCTR 100N CML 20% 805	1	
C61	0647,003	CPCTR 100U ALEC 6V3 SMD	1	
C62	0647,002	CPCTR 47U ALEC 16V SMD	1	
C63	0691,102	CPCTR 1N CML 10% 805	1	
C64	0692,333	CPCTR 33N CML 20% 805	1	
C65	0647,001	CPCTR 10U ALEC 16V SMD	1	
C66	0647,002	CPCTR 47U ALEC 16V SMD	1	1
C67	0647,001	CPCTR 10U ALEC 16V SMD	1	
C68	0692,333	CPCTR 33N CML 20% 805	1	
C69	0691,102	CPCTR 1N CML 10% 805	1	
C70	0691,102	CPCTR 1N CML 10% 805	1	
C71	0692,104	CPCTR 100N CML 20% 805	1	
C72	0692,104	CPCTR 100N CML 20% 805	1	
C73	0692,104	CPCTR 100N CML 20% 805	1	
C74	0694,272	CPCTR 2N7 CML 5% 805	1	
C75	0681,050	CPCTR 150N CML 5% 1210	1	
C76	0692,333	CPCTR 33N CML 20% 805	1	
C77	0692,473	CPCTR 47N CML 20% 805	1	
C78	0647,002	CPCTR 47U ALEC 16V SMD	1	
C79	0691,102	CPCTR 1N CML 10% 805	1	'
C80	0691,102	CPCTR 1N CML 10% 805	1	
C81	0691,102	CPCTR 1N CML 10% 805	1	
C82	0692,104	CPCTR 100N CML 20% 805	1	
C83	0694,223	CPCTR 22N CML 5% 805	1	
C84	0692,104	CPCTR 100N CML 20% 805	1	!
C85	0692,473	CPCTR 47N CML 20% 805	1	1 1
C86	0691,102	CPCTR 1N CML 10% 805	1	
C87	0692,333	CPCTR 33N CML 20% 805	1	
C88	0692,473	CPCTR 47N CML 20% 805	1	
C89	0647,002	CPCTR 47U ALEC 16V SMD	1]
C90	0691,102	CPCTR 1N CML 10% 805	1	
C91	0691,102	CPCTR 1N CML 10% 805	1	1
C92	0692,473	CPCTR 47N CML 20% 805	1	
C93	0647,001	CPCTR 10U ALEC 16V SMD	1]
C94	0690,220	CPCTR 22P CML 2% 805	1	
C95	0692,473	CPCTR 47N CML 20% 805	1	
C96	0692,104	CPCTR 100N CML 20% 805	1	
C97	0647,003	CPCTR 100U ALEC 6V3 SMD	1	
C98	0692,333	CPCTR 33N CML 20% 805	1	1
C99	0692,333	CPCTR 33N CML 20% 805	1	
C100	0691,102	CPCTR IN CML 10% 805	1	<u> </u>
C101	0691,102	CPCTR 1N CML 10% 805	1	
C102	0647,004	CPCTR 220U ALEC 4V SMD	1	
C103	0692,104	CPCTR 100N CML 20% 805	1	
C104	0691,102	CPCTR 1N CML 10% 805	1	
C105	0692,333	CPCTR 33N CML 20% 805	1	

ITEM	PART No.	DESCRIPTION	QTY	Remarks
C106	0692,333	CPCTR 33N CML 20% 805	1	
C107	0647,000	CPCTR 4U7 ALEC 25V SMD	1	
C108	0647,001	CPCTR 10U ALEC 16V SMD	1	
C109	0691,102	CPCTR 1N CML 10% 805	1	
C110	0691,102	CPCTR 1N CML 10% 805	1	
C111	0691,102	CPCTR 1N CML 10% 805	1	
C112	0691,102	CPCTR 1N CML 10% 805	1	
C113	0692,333	CPCTR 33N CML 20% 805	1	
C114	0691,102	CPCTR 1N CML 10% 805	1	
C115	· ·	CPCTR 100N CML 20% 805	1	
C116	· ·	CPCTR 22P CML 2% 805	1	
C117	· ·	CPCTR 22P CML 2% 805	1	
C118	· ·	CPCTR 1N CML 10% 805	1	
C119		CPCTR 1N CML 10% 805	,	
1 1	0691,102	CPCTR 1N CML 10% 805	,	
C121	0691,102	CPCTR 1N CML 10% 805	1	
1 1		CPCTR 1N CML 10% 805		
	0691,102		;	
1 1	0692,333	CPCTR 33N CML 20% 805		
C124	0692,333	CPCTR 33N CML 20% 805	1 1	
1 1	0681,102	CPCTR 1U TANT SMD 16V 10%	!!	
1 1	0691,102	CPCTR 1N CML 10% 805	1	
C127		CPCTR 1N CML 10% 805	1	
C128		CPCTR 100N CML 20% 805	1	
C129		CPCTR 1N CML 10% 805	1	
C131	· ·	CPCTR 22P CML 2% 805	1	
C132	0692,333	CPCTR 33N CML 20% 805	1	
C133	0647,001	CPCTR 10U ALEC 16V SMD	1	
C134	0647,000	CPCTR 4U7 ALEC 25V SMD	1	
C135	0647,001	CPCTR 10U ALEC 16V SMD	1	
C136	0647,000	CPCTR 4U7 ALEC 25V SMD	1	
C137	0647,001	CPCTR 10U ALEC 16V SMD	1	
C138	0647,002	CPCTR 47U ALEC 16V SMD	1	,
C139	0692,333	CPCTR 33N CML 20% 805	1	
C140	0692,333	CPCTR 33N CML 20% 805	1	
C141	0692,333	CPCTR 33N CML 20% 805	1	
C142	0692,333	CPCTR 33N CML 20% 805	1	
C143	0692,333	CPCTR 33N CML 20% 805	1	
C500	0692,333	CPCTR 33N CML 20% 805	1	
C501	0692,333	CPCTR 33N CML 20% 805	1	
C502	0692,333	CPCTR 33N CML 20% 805	1	
C503	0692,333	CPCTR 33N CML 20% 805	1	
C504	1	CPCTR 33N CML 20% 805	1	
C505	1	CPCTR 33N CML 20% 805	1	l
C506	,	CPCTR 33N CML 20% 805	1	
D1	0796,000	DIODE SI BAS16 SOT23	1	
D2	0796,000	DIODE SI BAS16 SOT23	1	İ
D3	0796,000	DIODE SI BAS16 SOT23	1	Ì
D5	0796,200	DIODE SI SB 1A/30V SOT89	1	
D6	0796,200	DIODE SI SB 1A/30V SOT89	1	
D7	0796,000	DIODE SI BAS16 SOT23	1	
D8	0796,000	DIODE SI BAS16 SOT23	1	
D9	0796,000	DIODE SI BAS16 SOT23	1	
D10	0796,200	DIODE SI SB 1A/30V SQT89	;	1
D11	0796,002	DIODE SI SB 0A1/20V SOT23		1
D12	0796,002	DIODE SI SB 0A1/20V SOT23	;	1
D13	0796,002	DIODE SI SB 0A1/20V SOT23	;	
D16	0796,000	DIODE SI BAS16 SOT23	;	
FSI	0815,500	FUSE 800MA F 63VAC SMD		1
FS2	0815,501	FUSE 2A F 63VAC SMD		1
FS3	0815,502	FUSE 4A F 63VAC SMD	;	
IC1	0771,324	IC LM324 QUAD OP AMP SOIC	;	
IC2	1		1	I
1	0290,031	KBD CTRLR CMOS [708,053] IC 74AC86 CMOS 14P SOIC	1!	1
IC3	1 30,000	10 14A000 CMO3 14F SUIC	1	L

ITEM	PART No.	DESCRIPTION	QTY	Remarks
IC4	0296,061	RISC OS GREEN (X16) ROM1	1	
IC5	0761,004	IC 74HC04 CMOS 14P SOIC	1	
IC6	0708,584	IC 8583 RTC RAM 8P SOIC	1	
IC7	0292,030	IC IOEB ASIC 100QFP	1	
Ю	0704,125	IC DRAM 64KX4 18PLCC BONS	1	
Ю	0761,075	IC 74HC75 CMOS 16P SOIC	1	!
IC10	0735,241	IC MAX241 RS232 28P SOIC	1	
IC11	0704,125	IC DRAM 64KX4 18PLCC 80NS	1	
IC12	0290,030	IC LC ASIC 100QFP	1	
IC13	2201,368	IC IOC PLSTC	1	
IC14	0771,555	IC 555 TIMER CMOS 8P SOIC	1	
IC15	0296,062	RISC OS GREEN (X16) ROM2	1	
IC16	0758,139	IC 74AC139 CMOS 16P SOIC	1	
IC17	0761,573	IC 74HC573 CMOS 20P SOIC	1	
IC18				NOT FITTED
IC19				NOT FITTED
IC20	0761,573	IC 74HC573 CMOS 20P SOIC	1	
IC21	0,0,0			NOT FITTED
IC21	0702,401	IC DS2400 ID 3W SIL 0.1	1	
		ARM3 CPU (PQFP)	1	
1C23		IC LM386 AUDIO AMP 8PSOIC		
IC24	0771,386	IC LM386 AUDIO AMP 8PSOIC	;	
IC25	0771,386	1	;	-
IC26	0761,365	IC 74HC365 CMOS 16P SOIC	1'	NOT FITTED
IC27			١.	NOTFILED
IC28	0761,365	IC 74HC365 CMOS 16P SOIC	1	
IC29	0704,128	IC DRAM 256KX16 80NS SOJ	1	
IC30	0704,129	IC DRAM 256KX16 80NS ZIP	1	
IC32	0771,386	IC LM386 AUDIO AMP 8PSOIC	1	
IC33	0290,032	BATT MGR CTRLR (708,304)	1	
IC34	0701,711	IC 82C711 UCNTRLR 100OFP	1	
IC35	0757,951	IC 74HCT4051 CMOS 16SOIC	1	
IC36	0757,951	IC 74HCT4051 CMOS 16SOIC	1	
1C37	0704,128	IC DRAM 256KX16 80NS SOJ	1	
IC38	0296,063	RISC OS GREEN (PORT) ROM	1	
IC39	0704,129	IC DRAM 256KX16 80NS ZIP	1	
IC40	0758,004	IC 74AC04 CMOS 14P SOIC	1	
IC41	2201,367	IC VIDC 1A PLSTC	1	· .
IC42	0762,573	IC 74HCT573 CMOS 20P SOIC	1	
IC43	0761,573	IC 74HC573 CMOS 20P SOIC	1	
IC44	1	IC MEMC1A 12MHZ PLSTC	1	1
IC45		IC 74HCT573 CMOS 20P SOIC	1	
IC46		IC 74HC573 CMOS 20P SOIC	1	
L1	0860,500	CHOKE 80R/100MHZ SMD		
L3	0860,500	CHOKE 80R/100MHZ SMD	1	1
L4	0860,500	CHOKE BOR/100MHZ SMD	1	
LB	0860,500	CHOKE 80R/100MHZ SMD	1	
L10	0860,500	CHOKE 80R/100MHZ SMD		1
L11	0860,500	CHOKE BORV100MHZ SMD		ł
L15	0860,500	IND CHK 1A 80R@100MHZ SMD	1 ;	
L16	0860,503	IND CHK 1A 80R@100MHZ SMD	;	1
1	0860,503	IND EMI FLTER 100PF SMD	;	1
L17				
L18	0860,501	IND EMIFLTER 100PF SMD	1	
L19	0860,501	IND EMIFLTER 100PF SMD	!	
L20	0860,501	IND EMI FLTER 100PF SMD	1	
L21	0860,502	IND EMI FILTER 2N2 SMD	!	
L24	0860,502	IND EMI FILTER 2N2 SMD	1	
L25	0860,501	IND EMIFLTER 100PF SMD	1	1
L26	0860,501	IND EMIFLTER 100PF SMD	1	
L27	0860,502	IND EMI FILTER 2N2 SMD	1	
L28	0860,502	IND EMI FILTER 2N2 SMD	1	
L29	0860,501	IND EMI FLTER 100PF SMD	1	
L30	0860,502	IND EMI FILTER 2N2 SMD	1	
L31	0860,501	IND EMIFLTER 100PF SMD	1 1	

ITEM	PART No.	DESCRIPTION	QTY	Remarks
L32	0860,502	IND EMI FILTER 2N2 SMD	1	
L33	0860,502	IND EMI FILTER 2N2 SMD	1	
L34	0860,502	IND EMI FILTER 2N2 SMD	1	
L35	0860,502	IND EMI FILTER 2N2 SMD	1	
L36	0860,502	IND EMI FILTER 2N2 SMD	1	
L37	0860,501	IND EMI FLTER 100PF SMD	1	
L38	0860,502	IND EMI FILTER 2N2 SMD	1	
L39	0860,502	IND EMI FILTER 2N2 SMD	1	
L40	0860,501	IND EMI FLTER 100PF SMD	1	
L41	0860,502	IND EMI FILTER 2N2 SMD	1	
L42	0860,502	IND EMI FILTER 2N2 SMD	1	
L43	0860,502	IND EMI FILTER 2N2 SMD	1	
LK1	0804,007	CONR 3W WAFR SIL 2MM STR	1	
LK2	0804,009	CONR 9W WAFR SIL 2MM STR	1	
LK55	·			NOT FITTED
PL1	0800,297	CONRD 9WPLG RA PCB+RFI+L	1	
PL2	0804,004	CONR 16W STAKE 2ROW 2mmP	2	
PL3	0804,011	CONR 26W BOX HDR 2ROW 2MM	1	
PL4	0804,010	CONR 6W HDR SIL 2MM LK	1 .	
PL5	0804,000	CONR 6W BOX HDR 2ROW 2MM	1	
PL6	0804,001	CONR 10W BOX HDR 2ROW 2MM	1	
PL7	0804,005	CONR 10W WAFR 2ROW 2MM ST	1	
Q1	0778,212	VOLT REG 78L12 12V 8PSOIC	1	
Q2	0778,205	VOLT REG 5V UPWR TO92	1	ŀ
O3	0784,849	TRANS BC849C NPN SOT23	1	
04	0784,859	TRANS BC859C PNP SOT23	1	
Q5	0784,859	TRANS BC859C PNP SOT23	1	
Q6	0784,849	TRANS BC849C NPN SOT23	1	-
Q7	0784,849	TRANS BC849C NPN SOT23	1	į
R1	0523,333	RES 33K SMD 5% 0W10 0805	1	
R2	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R3	0523,471	RES 470R SMD 5% 0W10 0805	1	
R4	0523,102	RES 1K0 SMD 5% 0W10 0805	1	j
R5	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R6	0523,183	RES 18K SMD 5% 0W10 0805	1	
R7	0523,104	RES 100K SMD 5% 0W10 0805	1	i
R8	0523,102	RES 1K0 SMD 5% 0W10 0805	1	İ
R9	0523,680	RES 68R SMD 5% 0W10 0805	1	
R10	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R11	0523,331	RES 330R SMD 5% 0W10 0805	1	
R12	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R13	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1
R14	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1
R15	0523,680	RES 68R SMD 5% 0W10 0805	1	!
R16	0523,103	RES 10K SMD 5% 0W10 0805	1	
R17	0523,223	RES 22K SMD 5% 0W10 0805	1	
R18	0523,183	RES 18K SMD 5% 0W10 0805	1	1
R19	0523,223	RES 22K SMD 5% 0W10 0805	1	1
R20	0523,680	RES 68R SMD 5% 0W10 0805	1	1
R21	0523,221	RES 220R SMD 5% 0W10 0805	1	
R22	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R23	0523,330	RES 33R SMD 5% 0W10 0805	1	}
R24	0523,680	RES 68R SMD 5% 0W10 0805	1	
R25	0523,223	RES 22K SMD 5% 0W10 0805	1	
R26	0523,330	RES 33R SMD 5% 0W10 0805	1	
R27	0523,105	RES 1M0 SMD 5% 0W10 0805	1	
R28	0523,330	RES 33R SMD 5% 0W10 0805	1	
R29	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R30	0523,330	RES 33R SMD 5% 0W10 0805	1	
R31	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1
R32	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R33		RES 330R SMD 5% 0W10 0805	1	1
R34	0523,152	RES 1K5 SMD 5% 0W10 0805	1 1	<u> </u>

ITEM	PART No.	DESCRIPTION	QTY	Remarks
R35	0523,331	RES 330R SMD 5% 0W10 0805	1	
R36	0523,331	RES 330R SMD 5% 0W10 0805	1	
R37	0523,104	RES 100K SMD 5% 0W10 0805	1	
R38	0523,104	RES 100K SMD 5% 0W10 0805	1	
R39	0523,104	RES 100K SMD 5% 0W10 0805	1	
R40	0523,103	RES 10K SMD 5% 0W10 0805	1	' <u> </u>
R41	0523,104	RES 100K SMD 5% 0W10 0805	1	
R42	0523, 102	RES 1K0 SMD 5% 0W10 0805	1	ļ
R43	0523,330	RES 33R SMD 5% 0W10 0805	1	
R44	0523,330	RES 33R SMD 5% 0W10 0805	1	
R45	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R46	0523,561	RES 560R SMD 5% 0W10 0805	1	
R47	0523,100	RES 10R SMD 5% 0W10 0805	1	
R48		RES 33R SMD 5% 0W10 0805	1	
-	0523,330		i .	
R49	0523,680	RES 68R SMD 5% 0W10 0805		1
R50	0523,680	RES 68R SMD 5% 0W10 0805	1	ļ
R51	0523,680	RES 68R SMD 5% 0W10 0805	1	
R52	0523,680	RES 68R SMD 5% 0W10 0805	!	
R53	0523,680	RES 68R SMD 5% 0W10 0805	1 1	ļ
R54	0523,680	RES 68R SMD 5% 0W10 0805	1	
R55	0523,680	RES 68R SMD 5% 0W10 0805	1	
R56	0523,680	RES 68R SMD 5% 0W10 0805	1	J i
R57	0523,680	RES 68R SMD 5% 0W10 0805	1	
R58	0523,680	RES 68R SMD 5% 0W10 0805	1	
R59	0523,680	RES 68R SMD 5% 0W10 0805	1	
R60	0523,680	RES 68R SMD 5% 0W10 0805	1	Ļ
R61	0523,680	RES 68R SMD 5% 0W10 0805	1	
R62	0523,680	RES 68R SMD 5% 0W10 0805	1	
R63	0523,680	RES 68R SMD 5% 0W10 0805	1	1
R64	0523,680	RES 68R SMD 5% 0W10 0805	1	}
R65	0523,680	RES 68R SMD 5% 0W10 0805	1	
R66	0523,102	RES 1K0 SMD 5% 0W10 0805	1	İ
R67	0523,330	RES 33R SMD 5% 0W10 0805	1	{
R68	0523,473	RES 47K SMD 5% 0W10 0805	1	ļ
R69	0523,473	RES 47K SMD 5% 0W10 0805	1	ł
R70	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R71	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
_	1	1		
R72	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R73	0523,472	RES 4K7 SMD 5% 0W10 0805	1 1)
R74	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R75	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R76	0523,473	RES 47K SMD 5% 0W10 0805	1	{
R77	0523,122	RES 1K2 SMD 5% 0W10 0805	ו	
R78	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R79	0523,330	RES 33R SMD 5% 0W10 0805	1	
R80	0523,183	RES 18K SMD 5% 0W10 0805	1	
R81	0523,330	RES 33R SMD 5% 0W10 0805	1	{
R82	0523,100	RES 10R SMD 5% 0W10 0805	1	
R83	0523,330	RES 33R SMD 5% 0W10 0805	1	
R84	0523,221	RES 220R SMD 5% 0W10 0805	1	
R85	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R86	0523,331	RES 330R SMD 5% 0W10 0805	1	
R87	0523,680	RES 68R SMD 5% 0W10 0805	1	
R88	0523,561	RES 560R SMD 5% 0W10 0805	1	
R89	0523,103	RES 10K SMD 5% 0W10 0805	1	
R90	0523,472	RES 4K7 SMD 5% 0W10 0805	1 ;	
R91	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R92	0523,330	RES 18K SMD 5% 0W10 0805	1 ;	
R93	0523,163	RES 22K SMD 5% 0W10 0805] ;	
	i	RES 4K7 SMD 5% 0W10 0805		1
R94	0523,472	ì		
R95	0523,105	RES 1M0 SMD 5% 0W10 0805	1:	1
R96	0523,330	RES 33R SMD 5% 0W10 0805	1 1	1
R97	0523,183	RES 18K SMD 5% 0W10 0805	1	1

ITEM	PART No.	DESCRIPTION	QTY	Remarks
R98	0523,330	RES 33R SMD 5% 0W10 0805	1	
R99	0523,223	RES 22K SMD 5% 0W10 0805	1	
R100	0523,472	RES 4K7 SMD 5% 0W10 0805	1	i j
R101	0523,330	RES 33R SMD 5% 0W10 0805	1	
R102	0509,001	RES 0R33 0W5 1% AXIAL	1	
R103	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R104	0509,001	RES 0R33 0W5 1% AXIAL	1	
R105	0523,331	RES 330R SMD 5% 0W10 0805	1	
R106	· ·	RES 4K7 SMD 5% 0W10 0805	1	
R107		RES 1KO SMD 5% 0W10 0805	1	
R108	0523,100	RES 10R SMD 5% 0W10 0805	1	
R109		RES 4K7 SMD 5% 0W10 0805	1	
R110		RES 330R SMD 5% 0W10 0805	;	
R111		RES 10K SMD 5% 0W10 0805 RES 33R SMD 5% 0W10 0805	' 1	1
R112		RES 10K SMD 5% 0W10 0805	;	
R113		RES 1K2 SMD 5% 0W10 0805	i .	
1	0523,122	RES 68R SMD 5% 0W10 0805	;	
R116		RES 68R SMD 5% 0W10 0805	i	
R117	1	RES 68R SMD 5% 0W10 0805	1	
R118	1	RES 68R SMD 5% 0W10 0805	1	İ
R119	l '	RES 68R SMD 5% 0W10 0805	1	
R120		RES 68R SMD 5% 0W10 0805	1	İ
R121		RES 68R SMD 5% 0W10 0805	1	
R122		RES 68R SMD 5% 0W10 0805	1]
1	0523,680	RES 68R SMD 5% 0W10 0805	1	
R124		RES 68R SMD 5% 0W10 0805	1	ĺ
R125		RES 68R SMD 5% 0W10 0805	1	
R126	0523,680	RES 68R SMD 5% 0W10 0805	1	ļ
R127	0523,680	RES 68R SMD 5% 0W10 0805	1	
R128	0523.680	RES 68R SMD 5% 0W10 0805	1]
R129	0523,220	RES 22R SMD 5% 0W10 0805	1	[
R130	0523,220	RES 22R SMD 5% 0W10 0805	1	
R131	0523,220	RES 22R SMD 5% 0W10 0805	1	
R132	0523,220	RES 22R SMD 5% 0W10 0805	1	i
R133	0523,220	RES 22R SMD 5% 0W10 0805	1	
R134	0523,331	RES 330R SMD 5% 0W10 0805	1	<u>}</u>
R135	0523,103	RES 10K SMD 5% 0W10 0805	1	1
R136	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R137	0523,680	RES 68R SMD 5% 0W10 0805	1	
R138	0523.331	RES 330R SMD 5% 0W10 0805	1	ļ
R139	1	RES 4K7 SMD 5% 0W10 0805	1	1
R140		RES 33R SMD 5% 0W10 0805	1	1
1	0523,330	RES 33R SMD 5% 0W10 0805	1 1	1
R142	i	RES 4K7 SMD 5% 0W10 0805	1	1
R143		RES 10K SMD 5% 0W10 0805	[]	1
R144		RES 330R SMD 5% 0W10 0805		ļ
R145		RES 4K7 SMD 5% 0W10 0805 RES 1K0 SMD 5% 0W10 0805	1 !	1
	1	1	1:	(
R147		RES 3K3 SMD 5% 0W10 0805 RES 4K7 SMD 5% 0W10 0805	1 1	
R148	· ·	RES 1K2 SMD 5% 0W10 0805	;	*
R150	1	RES 33R SMD 5% 0W10 0805	'	Į.
1	0523,330	RES 33R SMD 5% 0W10 0805	;	1
R152		RES 4K7 SMD 5% 0W10 0805		
R153		RES 33R SMD 5% 0W10 0805	1	ļ
R154	1	RES 33R SMD 5% 0W10 0805	1	1
R155		RES 10K SMD 5% 0W10 0805	1	1
R156	1	RES 33R SMD 5% 0W10 0805	1	}
R157	0523,330	RES 33R SMD 5% 0W10 0805	1	
R158	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R159	0523,330	RES 33R SMD 5% 0W10 0805	1	
R160	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
Ь				

ITEM	PART No.	DESCRIPTION	OTY	Remarks
R161	0523,330	RES 33R SMD 5% 0W10 0805	1	
R162	0523,330	RES 33R SMD 5% 0W10 0805	1	
R163	0523,330	RES 33R SMD 5% 0W10 0805	1 ,	
R164	0523,103	RES 10K SMD 5% 0W10 0805	1	
R165	0523,330	RES 33R SMD 5% 0W10 0805	1	
R166	0523,330	RES 33R SMD 5% 0W10 0805	1	
R167		RES 33R SMD 5% 0W10 0805	1	
R168		RES 33R SMD 5% 0W10 0805	1	
R169		RES 33R SMD 5% 0W10 0805	1	Ì
R170		RES 330R SMD 5% 0W10 0805	1	
R171		RES 4K7 SMD 5% 0W10 0805	1	i
	·	RES 2K2 SMD 5% 0W10 0805		
R172		RES 4K7 SMD 5% 0W10 0805	1	i
R173			1	
R174		RES 100K SMD 5% 0W10 0805		i
R175		RES 270R SMD 5% 0W10 0805	1	
R176	1	RES 300R SMD 5% 0W10 0805	1	
R177	0523,135	RES 1M3 SMD 5% 0W10 0805	1	
R178	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R179	0523,101	RES 100R SMD 5% 0W10 0805	1	
R180	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R181	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R182	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R183		RES 1K2 SMD 5% 0W10 0805	1	
F184	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R185		RES 4K7 SMD 5% 0W10 0805	1	
R186		RES 2K2 SMD 5% 0W10 0805	1	
R187		RES 2K2 SMD 5% 0W10 0805	1	
		RES 220R SMD 5% 0W10 0805	1	
R188				
R189		RES 4K7 SMD 5% 0W10 0805	1	
R190	0523,223	RES 22K SMD 5% 0W10 0805	1	l
R191	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R192	0523,101	RES 100R SMD 5% 0W10 0805	1	
R193	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R194	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R195	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R196	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R197	0523,105	RES 1M0 SMD 5% 0W10 0805	1	
R198	0523,332	RES 3K3 SMD 5% 0W10 0805	1	
R199	1	RES 1K0 SMD 5% 0W10 0805	١,	
R200	1	RES 18K2 SMD 1% 0W25 1206	1	ì
R201	L	RES 3K3 SMD 5% 0W10 0805	;	1
	1	1	i	
R202	i	RES 10K SMD 5% 0W10 0805	1	1
R203	l	RES 1K50 SMD 1% 0W25 1206	!	1
R204	ł	RES 4K7 SMD 5% 0W10 0805		1
	0522,380	RES 6K81 SMD 1% 0W25 1206	1	1
l	0522,450	RES 33K2 SMD 1% 0W25 1206	1	1
R207	0523,101	RES 100R SMD 5% 0W10 0805	1	1
R208	0523,271	RES 270R SMD 5% 0W10 0805	1	1
R209	0522,500	RES 100K SMD 1% 0W25 1206	1	1
R210	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R211	0523,271	RES 270R SMD 5% 0W10 0805	1	
R212	0522,558	RES 402K SMD 1% 0W25 1206	1	[
R213	0523.680	RES 68R SMD 5% 0W10 0805	1	
	0523,104	RES 100K SMD 5% 0W10 0805	1	
	0525,202	RES 2K0 SMD .1% 0W1 1206	1	
	0525,152	RES 1K5 SMD .1% 0W1 1206	1	
	0525,152	RES 16K SMD .1% 0W1 1206]
1		RES 82K SMD 5% 0W10 0805	1]
	0523,823	i	!	1
	0523,472	RES 4K7 SMD 5% 0W10 0805	!!	
R220		RES 10K SMD 5% 0W10 0805	!	
1	0523,102	RES 1K0 SMD 5% 0W10 0805	1	1
R222	0523,183	RES 18K SMD 5% 0W10 0805	1 1	
R223	0523,471	RES 470R SMD 5% 0W10 0805	1	1

ITEM	PART No.	DESCRIPTION	QTY	Remarks
R224	0523,103	RES 10K SMD 5% 0W10 0805	1	
R225	0523,103	RES 10K SMD 5% 0W10 0805	1	
R226	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R227	0523,680	RES 68R SMD 5% 0W10 0805	1	
R228	0523,680	RES 68R SMD 5% 0W10 0805	1	
R229	0523,680	RES 68R SMD 5% 0W10 0805	1	
R230	0523,680	RES 68R SMD 5% 0W10 0805	1	
R231	· ·	RES 68R SMD 5% 0W10 0805	1	!
R232	0523,103	RES 10K SMD 5% 0W10 0805	1	
R503	·	RES 68R SMD 5% 0W10 0805	1	
R504		RES 68R SMD 5% 0W10 0805	1	
R505		RES 68R SMD 5% 0W10 0805	1	
R506		RES 68R SMD 5% 0W10 0805	1	'
R507		RES 68R SMD 5% 0W10 0805	!	
R508		RES 68R SMD 5% 0W10 0805	1	
R509		RES 68R SMD 5% 0W10 0805 RES 68R SMD 5% 0W10 0805	' '	
R510		RES 68R SMD 5% 0W10 0805	,	
R511	1	RES 68R SMD 5% 0W10 0805	1	
R513	1	RES 68R SMD 5% 0W10 0805	1	
R514		RES 68R SMD 5% 0W10 0805	1	
R515	1	RES 68R SMD 5% 0W10 0805	1	
R516		RES 68R SMD 5% 0W10 0805	1	
R517		RES 68R SMD 5% 0W10 0805	1	
R518		RES 68R SMD 5% 0W10 0805	1	
R519	1	RES 100K SMD 5% 0W10 0805	1	
R520		RES 100K SMD 5% 0W10 0805	1	
R521	0523,104	RES 100K SMD 5% 0W10 0805	1	
R522	0523,104	RES 100K SMD 5% 0W10 0805	1	
-R523	0523,104	RES 100K SMD 5% 0W10 0805	1	
R524	0523,104	RES 100K SMD 5% 0W10 0805	1	
R525	0523,104	RES 100K SMD 5% 0W10 0805	1	
R526	0523,104	RES 100K SMD 5% 0W10 0805	1	
R527	0523,104	RES 100K SMD 5% 0W10 0805	1	
R528	0523,104	RES 100K SMD 5% 0W10 0805	1	j
R529	0523,104	RES 100K SMD 5% 0W10 0805	1	
R549	0523,104	RES 100K SMD 5% 0W10 0805	1	_
R551	0523,472	RES 4K7 SMD 5% 0W10 0805	1	}
R552	0523,472	RES 4K7 SMD 5% 0W10 0805	1	<u> </u>
SK1	0800,925	CONR 9W MINDIN RAPCS MRFI	١	
SK2	0800,645	CONR 3,5MM RA PCB JKSKT	1	
SK3	0801,203	CONR 20W FPC 1MMP ST ZIF	1	
SK4	0801,203	CONR 20W FPC 1MMP ST ZIF	1	
SK5		CONR 26W 1.25 RA FPC ZIF	1	
SK6	0800,995	CONRD 15WSKT RA HD+RFI+L	1]
SK7	i i	VIDEO HYBRID 15P	!	1
SKIC	1	CONRD 25WSKT RA PCB+RF+L		
SK11	1	CONR 8W 1,25MM ST CIC ZIF CONR 20W 1,25 ST CIC ZIF	1	1
SKIS		CONR 6W MINDIN RAPCB MRFI	;	1
SWI	1	SW 1P MOM PTM P/B RA PCB	;	
SW2	1	SW SP 3W CO ROTARY SMD	1	i
SW3	1	SW SPCO ROTARY SMD	1	1
X1	0820,243	XTAL 24MHZ HC49 5,08MMH	1	
X2	0821,327	XTAL 32.768KHZ CC 0.05P	1	1
хз	0820,253	XTAL 25,175MHZ HC49 5,08H	١,	
X4	0820,243	XTAL 24MHZ HC49 5,08MMH	1	1
X5	0820,363	XTAL OSC 36MHZ CMOS 8P PL	1	
X6	0820,041	XTAL 4.194304M HC49 5,08H	1	
Z١	0796,102	DIODE 3V9 ZNR OW3 SOT23	1	
Z 2	0796,101	DIODE 4V7 ZNR 0W3 SOT23	1	
Z3	0796,101	DIODE 4V7 ZNR 0W3 SOT23	1	}
Z4	0796,101	DIODE 4V7 ZNR 0W3 SOT23	1	<u> </u>

A4 4M main PCB assy parts list, issue 1

ITEM	PART No.	DESCRIPTION	QTY	Remarks
Z 5	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	
Z 6	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	
Z 7	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	
Z 8	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	}
Z 9	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	
Z10	0796,101	DIODE 4V7 ZNR OW3 SOT23	1	1
Z11	0796,103	DIODE 5V1 ZNR 0W3 SOT23	1	
Z12	0796,101	DIODE 4V7 ZNR 0W3 SOT23	1	

ITEM	PART No.	DESCRIPTION	QTY	Remarks
1	0290,000	BARE PCB		1
2	0190,260/A	(4M) PCB ASSEMBLY DWG		1 PER BATCH
3	0190,000/C	PCB CIRCUIT DIAGRAM		1 PER BATCH
6	0490,261	PERTH (4M) PCB LABEL	1	
12	0800,071	CONR 2W SHUNT 2mm	1	LK1
13	0870,420	WIRE 22SWG CPR TIN	A/R	X2
15	0902,004	LABEL SERIAL PCB 40x10mm	1	1
17	0800,102	SKT IC 42/0.6 SUPA	1	IC4
18	0800,102	SKT IC 42/0.6 SUPA	1	IC15
22	0800,197	SKT STRIP 3/0.1 TURN	1	IC22
24	0800,198	SKT IC 32/0.6 TURN O/F	1	IC38
Bi	0817,015	BAT NICAD 1V2 11MAH PCB	1	
Cı	0692,333	CPCTR 33N CML 20% 805	1	l
C2	0690,220	CPCTR 22P CML 2% 805	1	
СЗ	0691,102	CPCTR IN CML 10% 805	1	
C4	0691,102	CPCTR 1N CML 10% 805	1	
C5	0692,333	CPCTR 33N CML 20% 805	1	
C6	0692,104	CPCTR 100N CML 20% 805	1	
C7	0692,103	CPCTR 10N CML 20% 805	1	
C8	0692,473	CPCTR 47N CML 20% 805	1	
C9	0690,220	CPCTR 22P CML 2% 805	1	
C10	0691,102	CPCTR IN CML 10% 805	1	
C11	0692,333	CPCTR 33N CML 20% 805	1	
C12	0692,473	CPCTR 47N CML 20% 805	1	
C13	0647,002	CPCTR 47U ALEC 16V SMD	1	1
C14	0691,102	CPCTR 1N CML 10% 805	1	
C15	0690,220	CPCTR 22P CML 2% 805	1	
C16	0690,150	CPCTR 15P CML 2% 805	1	
C17	0692,333	CPCTR 33N CML 20% 805	1	
C18	0692,333	CPCTR 33N CML 20% 805		
C19	0647,001	CPCTR 10U ALEC 16V SMD	i .	
		CPCTR 33N CML 20% 805	ì	
C20	0692,333		;	
C21	0692,333	CPCTR 33N CML 20% 805	;	
C22	0692,333	CPCTR 33N CML 20% 805	1	
C23	0692,473	CPCTR 47N CML 20% 805	1	* •
C24	0690,220	CPCTR 22P CML 2% 805	1	1
C25	0692,104	CPCTR 100N CML 20% 805	1	
C26	0692,473	CPCTR 47N CML 20% 805	1	
C27	0692,104	CPCTR 100N CML 20% 805	1	
C28	0692,473	CPCTR 47N CML 20% 805	1	
C29	0692,473	CPCTR 47N CML 20% 805	1	
C30	0692,473	CPCTR 47N CML 20% 805	1 1	
C31	0692,473	CPCTR 47N CML 20% 805	!	
C32	0692,473	CPCTR 47N CML 20% 805	1	1
C33	0692,473	CPCTR 47N CML 20% 805	1	
C34	0692,104	CPCTR 100N CML 20% 805	1	
C35	0692,333	CPCTR 33N CML 20% 805	1	
C36	0692,333	CPCTR 33N CML 20% 805	1	
C37	0692,333	CPCTR 33N CML 20% 805	1	
C38	0647,002	CPCTR 47U ALEC 16V SMD	1	
C39	0692,473	CPCTR 47N CML 20% 805	1	
C40	0692,333	CPCTR 33N CML 20% 805	1	
C41	0692,333	CPCTR 33N CML 20% 805	1	
C42	0692,333	CPCTR 33N CML 20% 805	1	
C43	0692,333	CPCTR 33N CML 20% 805	1	
C44	0692,333	CPCTR 33N CML 20% 805	1	
C45	0692,333	CPCTR 33N CML 20% 805	1	
C46	0692,333	CPCTR 33N CML 20% 805	1	1
C47	0692,333	CPCTR 33N CML 20% 805	1 1	
	0000.000			
C48	0692,104	CPCTR 100N CML 20% 805	1	

17534	DADT No.	DESCRIPTION	QTY	Remarks
C50	PART No. 0692,333	CPCTR 33N CML 20% 805	1	
C50	0692,333	CPCTR 33N CML 20% 805	1	-
C52	0692,333	CPCTR 33N CML 20% 805	1	i
C53	0692,333	CPCTR 33N CML 20% 805	1	
C54	0692,333	CPCTR 33N CML 20% 805	1	1
C55	0647,002	CPCTR 47U ALEC 16V SMD	1	
C56	0692,104	CPCTR 100N CML 20% 805	1	
C57	0647,002	CPCTR 47U ALEC 16V SMD	1	
C58	0692,104	CPCTR 100N CML 20% 805	1	
C59	0692,333	CPCTR 33N CML 20% 805	1	
C60	0692,104	CPCTR 100N CML 20% 805	1	
C61	0647,003	CPCTR 100U ALEC 6V3 SMD	1	
C62	0647,002	CPCTR 47U ALEC 16V SMD	1	İ
C63	0691,102	CPCTR 1N CML 10% 805	1	
C64	0692,333	CPCTR 33N CML 20% 805	1	
C65	0647,001	CPCTR 10U ALEC 16V SMD	1	
C66	0647,002	CPCTR 47U ALEC 16V SMD	1	
C67	0647,001	CPCTR 10U ALEC 16V SMD	1	1
C68	0692,333	CPCTR 33N CML 20% 805	1	İ
C69	0691,102	CPCTR 1N CML 10% 805	1	
C70	0691,102	CPCTR IN CML 10% 805	1	[
C71	0692,104	CPCTR 100N CML 20% 805	1	ļ i
C72	0692,104	CPCTR 100N CML 20% 805	1	
C73	0692,104	CPCTR 100N CML 20% 805	1	
C74	0694,272	CPCTR 2N7 CML 5% 805	1	
C75	0681,050	CPCTR 150N CML 5% 1210	1 .	
C76	0692,333	CPCTR 33N CML 20% 805	1	! !
C77	0692,473	CPCTR 47N CML 20% 805	1	1
C78	0647,002	CPCTR 47U ALEC 16V SMD CPCTR 1N CML 10% 805	;	
C79	0691,102	CPCTR IN CML 10% 805	;	
C80	0691,102	CPCTR IN CML 10% 805	;	1
1	0691,102	CPCTR 100N CML 20% 805	1	
C82	0694,223	CPCTR 22N CML 5% 805	,	
C84	0692,104	CPCTR 100N CML 20% 805	1	
C85	0692,473	CPCTR 47N CML 20% 805	1	
C86	0691,102	CPCTR 1N CML 10% 805	1	
C87	0692,333	CPCTR 33N CML 20% 805	1	
C88	0692,473	CPCTR 47N CML 20% 805	1	
C89	0647,002	CPCTR 47U ALEC 16V SMD	1	
C90	0691,102	CPCTR 1N CML 10% 805	1	
C91	0691,102	CPCTR 1N CML 10% 805	1	
C92	0692,473	CPCTR 47N CML 20% 805	1	
C93		CPCTR 10U ALEC 16V SMD	1	
C94		CPCTR 22P CML 2% 805	1	
C95	1	CPCTR 47N CML 20% 805	1	1
C96	1	CPCTR 100N CML 20% 805	1	- '
C97	0647,003	CPCTR 100U ALEC 6V3 SMD	1	1
C98	0692,333	CPCTR 33N CML 20% 805	1	1
C99	0692,333	CPCTR 33N CML 20% 805	1	
C10	0691,102	CPCTR 1N CML 10% 805	1	1
C10	1 0691,102	CPCTR 1N CML 10% 805	1	1
C10	2 0647,004	CPCTR 220U ALEC 4V SMD	1	
C10	3 0692.104	CPCTR 100N CML 20% 805	1	
C10	4 0691,102	CPCTR IN CML 10% B05	1	
C10	5 0692,333	CPCTR 33N CML 20% 805	1	
C10	6 0692,333	CPCTR 33N CML 20% 805	1	
C10	7 0647,000	CPCTR 4U7 ALEC 25V SMD	1	
C10		CPCTR 10U ALEC 16V SMD	1	
C10	i i	CPCTR 1N CML 10% 805	1	1
C11		CPCTR IN CML 10% 805	1	
C11	i .	CPCTR 1N CML 10% 805	1	
C11	2 0691,102	CPCTR IN CML 10% 805	1	

ITEM	PART No.	DESCRIPTION	OTY	Remarks
C113	0692,333	CPCTR 33N CML 20% 805	1	
C114	0691,102	CPCTR IN CML 10% 805	1	
C115	0692,104	CPCTR 100N CML 20% 805	1	
C116		CPCTR 22P CML 2% 805	1	
C117		CPCTR 22P CML 2% 805	1	
C118		CPCTR IN CML 10% 805	1	
C119		CPCTR 1N CML 10% 805	1	
C120		CPCTR 1N CML 10% 805	1	
C121		CPCTR IN CML 10% 805	1	
C122	0691,102	CPCTR 1N CML 10% 805 CPCTR 33N CML 20% 805		
C123		CPCTR 33N CML 20% 805	1	
C124		CPCTR 1U TANT SMD 16V 10%	;	
C125		CPCTR IN CML 10% 805	;	
C127		CPCTR IN CML 10% 805	1	
C128		CPCTR 100N CML 20% 805	1	
C129	i	CPCTR 1N CML 10% 805	1	
C131		CPCTR 22P CML 2% 805	1	
C132	1	CPCTR 33N CML 20% 805	1	
C133	0647,001	CPCTR 10U ALEC 16V SMD	1	
C134	1	CPCTR 4U7 ALEC 25V SMD	1	
C135	0647,001	CPCTR 10U ALEC 16V SMD	1	1
C136	0647,000	CPCTR 4U7 ALEC 25V SMD	1	
C137	0647,001	CPCTR 10U ALEC 16V SMD	1	
C138	0647,002	CPCTR 47U ALEC 16V SMD	1	,
C139	0692,333	CPCTR 33N CML 20% 805	1	
C140	0692,333	CPCTR 33N CML 20% 805	1	
C141	0692,333	CPCTR 33N CML 20% 805	1	
C142		CPCTR 33N CML 20% 805	1	
C143		CPCTR 33N CML 20% 805	1	
C500	1	CPCTR 33N CML 20% 805	1	
C501		CPCTR 33N CML 20% 805	1	
C502	1	CPCTR 33N CML 20% 805 CPCTR 33N CML 20% 805	1	ļ
C503		CPCTR 33N CML 20% 805	;	
C504		CPCTR 33N CML 20% 805	;	}
C505		CPCTR 33N CML 20% 805	1	
D1	0796,000	DIODE SI BAS16 SOT23	1 ;	
D2	0796.000	DIODE SI BAS16 SOT23		
D3	0796,000	DIODE SI BAS16 SOT23	1	
D5	0796,200	DIODE SI SB 1A/30V SOT89	1	ļ
D6	0796,200	DIODE SI SB 1A/30V SOT89	1	
D7	0796,000	DIODE SI BAS16 SOT23	1	I
DB	0796,000	DIODE SI BAS16 SOT23	1	
D9	0796,000	DIODE SI BAS 16 SOT23	1	1
D10	0796,200	DIODE SI SB 1A/30V SOT89	1	1
D11	0796,002	DIODE SI SB 0A1/20V SOT23	1	
D12	0796,002	DIODE SI SB 0A1/20V SOT23	1	1
D13	0796,002	DIODE SI SB 0A1/20V SOT23	1	
D16	0796,000	DIODE SI BAS 16 SOT23	1	1
FS1	0815,500	FUSE 800MA F 63VAC SMD	1	
FS2	t	FUSE 2A F 63VAC SMD	1	1
FS3	1	FUSE 4A F 63VAC SMD	1	
IC1	0771,324	IC LM324 QUAD OP AMP SOIC	1!	
IC2	0290,031	KBD CTRLR CMOS [708,053]	1:	ļ
IC3	0758,086	ì	1:	
IC4	0296,061	RISC OS GREEN (X16) ROM1	1 1	ļ
IC5	0761,004	IC 74HC04 CMOS 14P SOIC IC 8583 RTC RAM 8P SOIC		
IC6	0708,584		;	
IC7	0292,030	IC DRAM 64KX4 18PLCC BONS	1;	1
100	0761,075	1		1
IC10		IC MAX241 RS232 28P SOIC	1	1
	1 33,2,7	1		

ITEM	PART No.	DESCRIPTION	QTY	Remarks
IC11	0704,125	IC DRAM 64KX4 18PLCC BONS	1	
IC12	0290,030	IC LC ASIC 100QFP	1	
IC13	2201,368	IC IOC PLSTC	1 1	
IC14	0771,555	IC 555 TIMER CMOS 8P SOIC	1	
IC15	0296,062	RISC OS GREEN (X16) ROM2	1	
IC16	0758,139	IC 74AC139 CMOS 16P SOIC	1	
IC17	0761,573	IC 74HC573 CMOS 20P SOIC	1]
IC18	0704,127	IC DRAM 512KX8 80NS ZIP	1	1
IC19	0704,127	IC DRAM 512KX8 80NS ZIP	1	
IC20	0761,573	IC 74HC573 CMOS 20P SOIC	1	
IC21	0704,127	IC DRAM 512KX8 80NS ZIP	1	
IC22	0702,401	IC DS2400 ID 3W SIL 0.1	1	
IC23	2201,330	ARM3 CPU (PQFP)	1	
IC24	0771,386	IC LM386 AUDIO AMP 8PSOIC	1	1
IC25	0771,386	IC LM386 AUDIO AMP 8PSOIC	1	
IC26	0761,365	IC 74HC365 CMOS 16P SOIC	1	
IC27	0704,127	IC DRAM 512KX8 80NS ZIP	1	
IC28	0761,365	IC 74HC365 CMOS 16P SOIC	1	
IC29	0704,128	IC DRAM 256KX16 80NS SOJ	1	1
IC30	0704,129	IC DRAM 256KX16 BONS ZIP	1	1
IC32	0771,386	IC LM386 AUDIO AMP 8PSOIC	1	1
IC33	0290,032	BATT MGR CTRLR (708,304)	1	
IC34	0701,711	IC 82C711 UCNTRLR 100OFP	1	
IC35	0757,951	IC 74HCT4051 CMOS 16SOIC	1	
IC36	0757,951	IC 74HCT4051 CMOS 16SOIC	1]
IC37	0704,128	IC DRAM 256KX16 80NS SOJ	1	[
IC38	0296,063	RISC OS GREEN (PORT) ROM	1	
IC39	0704,129	IC DRAM 256KX16 80NS ZIP	1]
IC40	0758,004	IC 74AC04 CMOS 14P SOIC	1	[[
IC41	2201,367	IC VIDC 1A PLSTC	1	
IC42	0762,573	IC 74HCT573 CMOS 20P SOIC	1	
IC43	0761,573	IC 74HC573 CMOS 20P SOIC	1	1
IC44	0700,104	IC MEMC1A 12MHZ PLSTC	1	<u> </u>
IC45	0762,573	IC 74HCT573 CMOS 20P SOIC	1	
IC46	0761,573	IC 74HC573 CMOS 20P SOIC	1	1
L1	0860,500	CHOKE BOR/100MHZ SMD	1	. 1
L3	0860,500	CHOKE 80FV100MHZ SMD	1	
L4	0860,500	CHOKE 80R/100MHZ SMD	1	
L8	0860,500	CHOKE BOR/100MHZ SMD	1	\
L10	0860,500	CHOKE 80R/100MHZ SMD	1]
Lii	0860,500	CHOKE BORV100MHZ SMD	1	
L15	0860,503	IND CHK 1A 80R@100MHZ SMD	1	
L16	0860,503	IND CHK 1A 80R@100MHZ SMD	1	}
L17	0860,501	IND EMI FLTER 100PF SMD	1	
L18	0860,501	IND EMI FLTER 100PF SMD	1	
L19	0860,501	IND EMI FLTER 100PF SMD	1	j l
L20	0860,501	IND EMI FLTER 100PF SMD	1	1
L21	0860,502	IND EMI FILTER 2N2 SMD	1	
L24	0860,502	IND EMI FILTER 2N2 SMD	1]
L25	0860,501	IND EMI FLTER 100PF SMD	1	
L26	0860,501	IND EMI FLTER 100PF SMD	1]
L27	0860,502	IND EMI FILTER 2N2 SMD	1	<u>,</u>
L28	0860,502	IND EMI FILTER 2N2 SMD	1	
L29	0860,501	IND EMI FLTER 100PF SMD	1	
L30	0860.502	IND EMI FILTER 2N2 SMD	1]
L31	0860,501	IND EMI FLTER 100PF SMD	1	
L32	0860,502	IND EMI FILTER 2N2 SMD	1]
L33	0860,502	IND EMI FILTER 2N2 SMD	1 1]
L34	0860,502	IND EMI FILTER 2N2 SMD	1	
L35	0860,502	IND EMI FILTER 2N2 SMD	!	
L36	0860,502	IND EMI FILTER 2N2 SMD	1	}
L37	0860,501	IND EMI FLITER 100PF SMD	1	[
L38	0860,502	IND EMI FILTER 2N2 SMD	1_1_	

		7500N070N	- O.DV	(
ITEM L39	PART No. 0860,502	DESCRIPTION IND EMI FILTER 2N2 SMD	QTY	Remarks
L40	0860,502	IND EMI FLIER 100PF SMD	1	
L41	0860,502	IND EMI FILTER 2N2 SMD	1	
L42	0860,502	IND EMI FILTER 2N2 SMD	1	
L43	0860,502	IND EMI FILTER 2N2 SMD	1	
LK1	0804,007	CONR 3W WAFR SIL 2MM STR	1	
LK2	0804,009	CONR 9W WAFR SIL 2MM STR	1	
LK55				NOT FITTED
PL1	0800,297	CONRD 9WPLG RA PCB+RFI+L	1	
PL2	0804,004	CONR 16W STAKE 2ROW 2mmP	2	
PL3	0804,011	CONR 26W BOX HDR 2ROW 2MM	1	
PL4	0804,010	CONR 6W HDR SIL 2MM LK	1	
PL5	0804,000	CONR 6W BOX HDR 2ROW 2MM	1	
PL6	0804,001	CONR 10W BOX HDR 2ROW 2MM	1	
PL7	0804,005	CONR 10W WAFR 2ROW 2MM ST	1	
01	0778,212	VOLT REG 78L12 12V 8PSOIC	1	
Q2	0778,205	VOLT REG 5V UPWR TO92	1	
Q3	0784,849	TRANS BC849C NPN SOT23	1	
04	0784,859	TRANS BC859C PNP SOT23	1	
Q5	0784,859	TRANS BC859C PNP SOT23	1	ĺ
Q6	0784,849	TRANS BC849C NPN SOT23	1	
Q7	0784,849	TRANS BC849C NPN SOT23	1	
R1	0523,333	RES 33K SMD 5% 0W10 0805	1	
R2	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R3	0523,471	RES 470R SMD 5% 0W10 0805	1	
R4	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R5	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R6	0523,183	RES 18K SMD 5% 0W10 0805	1	
R7	0523,104	RES 100K SMD 5% 0W10 0805	1	
R8	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R9	0523,680	RES 68R SMD 5% 0W10 0805	1	
R10	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R11	0523,331	RES 330R SMD 5% 0W10 0805	1	
R12	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R13	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R14	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R15	0523,680	RES 68R SMC 5% 0W10 0805	1	
R16	0523,103	RES 10K SMD 5% 0W10 0805	1	
R17	0523,223	RES 22K SMD 5% 0W10 0805	1	
R18	0523,183	RES 18K SMD 5% 0W10 0805	1	
R19	0523,223	RES 22K SMD 5% 0W10 0805	1	[
R20	0523,680	RES 68R SMD 5% 0W10 0805	1	
R21	0523,221	RES 220R SMD 5% 0W10 0805	1	
R22	0523,330	RES 33R SMD 5% 0W10 0805	1	
R23	0523,330	RES 33R SMD 5% 0W10 0805	1	
R24	0523,680	RES 68R SMD 5% 0W10 0805	1	
R25	0523,223	RES 22K SMD 5% 0W10 0805	1	
R26	0523,330	RES 33R SMD 5% 0W10 0805	1	
R27	0523,105	RES 1M0 SMD 5% 0W10 0805	1	
R28	0523,330	RES 33R SMD 5% 0W10 0805	1	
R29	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
R30	0523,330	RES 33R SMD 5% 0W10 0805	1	
R31	0523,472	RES 4K7 SMD 5% 0W10 0805	1	ĺ
R32	0523,330	RES 33R SMD 5% 0W10 0605	1	
R33	0523,331	RES 330R SMD 5% 0W10 0805	1	
R34	0523,152	RES 1K5 SMD 5% 0W10 0805	1	[
R35	0523,331	RES 330R SMD 5% 0W10 0805	1	
R36	0523,331	RES 330R SMD 5% 0W10 0805	1	
R37	0523,104	RES 100K SMD 5% 0W10 0805	1	{
F138	0523,104	RES 100K SMD 5% 0W10 0805	1	!
R39	0523,104	RES 100K SMD 5% 0W10 0805	1	1
R40	0523,103	RES 10K SMD 5% 0W10 0805	1	1
R41	0523,104	RES 100K SMD 5% 0W10 0805	1	

_					
┝	ITEM	PART No.	DESCRIPTION	QTY	Remarks
l	R42	0523,102	RES 1K0 SMD 5% 0W10 0805		
1	R43	0523,330	RES 33R SMD 5% 0W10 0805	1	
l	R44	0523,330	RES 33R SMD 5% 0W10 0805	1	
1	R45	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
1	R46	0523,561	RES 560R SMD 5% 0W10 0805	;	
l	R47	0523,100	RES 10R SMD 5% 0W10 0805 RES 33R SMD 5% 0W10 0805	;	
ı	R48	0523,330	RES 68R SMD 5% 0W10 0805		
l	R49	0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R50		RES 68R SMD 5% 0W10 0805	1	
١	R51	0523,680	RES 68R SMD 5% 0W10 0805	1	
1	R52	0523,680 0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R53	0523,680	RES 68R SMD 5% 0W10 0805	1	
l		0523,680	RES 68R SMD 5% 0W10 0805	1	
l	R55 R56	0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R57	0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R58	0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R59	0523,680	RES 68R SMD 5% 0W10 0805	1	
-	R60	0523,680	RES 68R SMD 5% 0W10 0805	1	
1	R61	0523,680	RES 68R SMD 5% 0W10 0805	1	
1	R62	0523,680	RES 68R SMD 5% 0W10 0805	1	
١	R63	0523,680	RES 68R SMD 5% 0W10 0805	1	
1	R64	0523,680	RES 68R SMD 5% 0W10 0805	1	į
1	R65	0523,680	RES 68R SMD 5% 0W10 0805	1	ļ
١	R66	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
1	R67	0523,330	RES 33R SMD 5% 0W10 0805	1	<u> </u>
ı	R68	0523.473	RES 47K SMD 5% 0W10 0805	1	
١	R69	0523,473	RES 47K SMD 5% 0W10 0805	1	
1	R70	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
1	R71	0523,102	RES 1K0 SMD 5% 0W10 0805	1	
	R72	0523,330	RES 33R SMD 5% 0W10 0805	1	
١	R73	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1
١	R74	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
1	R75	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
1	R76	0523,473	RES 47K SMD 5% 0W10 0805	1	1
١	R77	0523,122	RES 1K2 SMD 5% 0W10 0805	1	
1	R78	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
1	R79	0523,330	RES 33R SMD 5% 0W10 0805	1	
١	R80	0523,183	RES 18K SMD 5% 0W10 0805	1	
l	R81	0523,330	RES 33R SMD 5% 0W10 0805	1	
	R82	0523,100	RES 10R SMD 5% 0W10 0805	1	
-	R83	0523,330	RES 33R SMD 5% 0W10 0805	1	
]	R84	0523,221	RES 220R SMD 5% 0W10 0805	1	
	R85	0523,472	RES 4K7 SMD 5% 0W10 0805	1 1	
	R86	0523,331	RES 330R SMD 5% 0W10 0805	!	1
	R87	0523,680	RES 68R SMD 5% 0W10 0805	1!	
1	R88	0523,561	RES 560R SMD 5% 0W10 0805	1	
	R89	0523,103	RES 10K SMD 5% 0W10 0805	'	
	R90	0523,472	RES 4K7 SMD 5% 0W10 0805	!	
	R91	0523,330	RES 33R SMD 5% 0W10 0805	!	
	R92	0523,183	RES 18K SMD 5% 0W10 0805	1 !	
	R93	0523,223	RES 22K SMD 5% 0W10 0805	;	1
	R94	0523,472	RES 4K7 SMD 5% 0W10 0805 RES 1M0 SMD 5% 0W10 0805	;	
ļ	R95 R96	0523,105	RES 33R SMD 5% 0W10 0805	;	1
	R97	0523,330	RES 18K SMD 5% 0W10 0805		
	R98	0523,183	RES 33R SMD 5% 0W10 0805	;	1
	R99	0523,330	RES 22K SMD 5% 0W10 0805	;	}
	R100		RES 4K7 SMD 5% 0W10 0805	1	1
	R101	1	RES 33R SMD 5% 0W10 0805	1	
	R102	1	RES 0R33 0W5 1% AXIAL	1	1
	R103	i .	RES 1K0 SMD 5% 0W10 0805	1	
	R104	1	RES 0R33 0W5 1% AXIAL	1	
- 1					

ITC.	PART No.	DESCRIPTION	QTY	Remarks
R105	0523,331	RES 330R SMD 5% 0W10 0805	1	
R106	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R107	0523,102	RES 1KO SMD 5% 0W10 0805	1	ļ
	0523,100	RES 10R SMD 5% 0W10 0805	1	
R109		RES 4K7 SMD 5% 0W10 0805	1	
R110	0523,331	RES 330R SMD 5% 0W10 0805	1	
R111	0523,103	RES 10K SMD 5% 0W10 0805	1	
R112	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R113	0523,103	RES 10K SMD 5% 0W10 0805	1	
R114	0523,122	RES 1K2 SMD 5% 0W10 0805	1	
R115	0523,680	RES 68R SMD 5% 0W10 0805	1	
R116	0523,680	RES 68R SMD 5% 0W10 0805	1	
R117	0523,680	RES 68R SMD 5% 0W10 0805	1	
R118	0523,680	RES 68R SMD 5% 0W10 0805 RES 68R SMD 5% 0W10 0805	1	
R119 R120		RES 68R SMD 5% 0W10 0805	1	
R121	0523,680	RES 68R SMD 5% 0W10 0805	1	
R122	0523,680	RES 68R SMD 5% 0W10 0805	1	
R123	0523,680	RES 68R SMD 5% 0W10 0805	1	
R124		RES 68R SMD 5% 0W10 0805	1	
R125	0523,680	RES 68R SMD 5% 0W10 0805	1	
R126	0523,680	RES 68R SMD 5% 0W10 0805	1	
R127	0523,680	RES 68R SMD 5% 0W10 0805	1	
R128	0523,680	RES 68R SMD 5% 0W10 0805	1	
R129	0523,220	RES 22R SMD 5% 0W10 0805	1	
R130	0523,220	RES 22R SMD 5% 0W10 0805	1	
R131		RES 22R SMD 5% 0W10 0805	1	
R132		RES 22R SMD 5% 0W10 0805	1	
R133	1	RES 22R SMD 5% 0W10 0805 RES 330R SMD 5% 0W10 0805	1	
R134	i	RES 10K SMD 5% 0W10 0805		
R136	1	RES 4K7 SMD 5% 0W10 0805	1	
R137		RES 68R SMD 5% 0W10 0805	1	
R138	· .	RES 330R SMD 5% 0W10 0805	1	
R139		RES 4K7 SMD 5% 0W10 0805	1	
R140	0523,330	RES 33R SMD 5% 0W10 0805	1	
R'+ı	0523,330	RES 33R SMD 5% 0W10 0805	1	
R142	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1
R143	0523,103	RES 10K SMD 5% 0W10 0805	1	
R144	0523,331	RES 330R SMD 5% 0W10 0805	1	
R145	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R146		RES 1K0 SMD 5% 0W10 0805	1	1
R147		RES 3K3 SMD 5% 0W10 0805 RES 4K7 SMD 5% 0W10 0805	1	
	0523,472	RES 4K7 SMD 5% 0W10 0805 RES 1K2 SMD 5% 0W10 0805	1	1
1	0523,122	RES 33R SMD 5% 0W10 0805	;	
1	0523,330	RES 33R SMD 5% 0W10 0805	;	
1	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
i i	0523,330	RES 33R SMD 5% 0W10 0805	1	
1	0523,330	RES 33R SMD 5% 0W10 0805	1	
R155	0523,103	RES 10K SMD 5% 0W10 0805	1	
R156	0523,330	RES 33R SMD 5% 0W10 0805	1	1
R157	0523,330	RES 33R SMD 5% 0W10 0805	1	
R158	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R159	i	RES 33R SMD 5% 0W10 0805	1	
R160		RES 4K7 SMD 5% 0W10 0805	1	
	0523,330	RES 33R SMD 5% 0W10 0805	1:	
R162	1	RES 33R SMD 5% 0W10 0805 RES 33R SMD 5% 0W10 0805	1	1
R163		RES 10K SMD 5% 0W10 0805		1
R165	1	RES 33R SMD 5% 0W10 0805	;	İ
R166	1	RES 33R SMD 5% 0W10 0805		1
R167	1	RES 33R SMD 5% 0W10 0805	1	1
	1	1	.1	1

ITEM	PART No.	DESCRIPTION	QTY	Remarks	Г	ITEM	PART No.	DESCRIPTION	QTY	Remarks
R168	0523,330	RES 33R SMD 5% 0W10 0805	1	Tierris III	f	R231	0523,680	RES 68R SMD 5% 0W10 0805	1	
R169	0523,330	RES 33R SMD 5% 0W10 0805	1		1	R232	0523,103	RES 10K SMD 5% 0W10 0805	1	
R170	0523,331	RES 330R SMD 5% 0W10 0805				R503	0523,680	RES 68R SMD 5% 0W10 0805	1	
R171	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R504	0523,680	RES 68R SMD 5% 0W10 0805	۱ ا	
R172	0523,222	RES 2K2 SMD 5% 0W10 0805	1		1	R505	0523,680	RES 68R SMD 5% 0W10 0805	1	
R173	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R506	0523,680	RES 68R SMD 5% 0W10 0805	1	
R174	0523,104	RES 100K SMD 5% 0W10 0805	1			R507	0523,680	RES 68R SMD 5% 0W10 0905	1	
R175	0523,271	RES 270R SMD 5% 0W10 0805	1	:		R508	0523,680	RES 68R SMD 5% 0W10 0805	1 1	
R176	0523,301	RES 300R SMD 5% 0W10 0805	1			R509	0523,680	RES 68R SMD 5% 0W10 0805	1	
R177	0523,135	RES 1M3 SMD 5% 0W10 0805	1			R510	0523,680	RES 68R SMD 5% 0W10 0805	1	
R178	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R511	0523,680	RES 68R SMD 5% 0W10 0905	1 :	
R179	0523,101	RES 100R SMD 5% 0W10 0805	1			R512	0523,680	RES 68R SMD 5% 0W10 0805	1	
R180	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R513	0523,680	RES 68R SMD 5% 0W10 0805	1	
R181	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R514	0523,680	RES 68R SMD 5% 0W10 0805	1 1	
R182	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R515	0523,680	RES 68R SMD 5% 0W10 0805	1	
R183	0523,122	RES 1K2 SMD 5% 0W10 0805	1			R516	0523,680	RES 68R SMD 5% 0W10 0805	1	
R184	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R517	0523,680	RES 68R SMD 5% 0W10 0805	1 -	
R185	0523,472	RES 4K7 SMD 5% 0W10 0805	۱ [R518	0523,680	RES 68R SMD 5% 0W10 0805	1	
R186	0523,222	RES 2K2 SMD 5% 0W10 0805	1			R519	0523,104	RES 100K SMD 5% 0W10 0805	1	
R187	0523,222	RES 2K2 SMD 5% 0W10 0805	1			R520	0523,104	RES 100K SMD 5% 0W10 0805	1	
R188	0523,221	RES 220R SMD 5% 0W10 0805	1			R521	0523,104	RES 100K SMD 5% 0W10 0805	1	
R189	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R522	0523,104	RES 100K SMD 5% 0W10 0805	1	
R190	0523,223	RES 22K SMD 5% 0W10 0805	1	}		R523	0523,104	RES 100K SMD 5% 0W10 0805	1	
R191	0523,102	RES 1K0 SMD 5% 0W10 0805	1	}		R524	0523,104	RES 100K SMD 5% 0W10 0805	1	
R192	0523,101	RES 100R SMD 5% 0W10 0805	1			R525	0523,104	RES 100K SMD 5% 0W10 0805	ļ 1	
R193	0523,102	RES 1K0 SMD 5% 0W10 0805	1	1		R526	0523,104	RES 100K SMD 5% 0W10 0805	1)
R194	0523,102	RES 1K0 SMD 5% 0W10 0805	1	1		R527	0523,104	RES 100K SMD 5% 0W10 0805	1	
R195	0523,472	RES 4K7 SMD 5% 0W10 0805	1			R528	0523,104	RES 100K SMD 5% 0W10 0805	1	
R196	0523,472	RES 4K7 SMD 5% 0W10 0805	1	1	1 1	R529	0523,104	RES 100K SMD 5% 0W10 0805	1	
R197	0523,105	RES 1M0 SMD 5% 0W10 0805	1]))	R549	0523,104	RES 100K SMD 5% 0W10 0805] 1	
R198	0523,332	RES 3K3 SMD 5% 0W10 0805	1	1		R551	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R199	0523,102	RES 1K0 SMD 5% 0W10 0805	1	i		R552	0523,472	RES 4K7 SMD 5% 0W10 0805	1	
R200	0522,425	RES 18K2 SMD 1% 0W25 1206	1		, ,	SK1	0800,925	CONR 9W MINDIN RAPCS MRFI] 1	
R201	0523,332	RES 3K3 SMD 5% 0W10 0805	1			SK2	0800,645	CONR 3,5MM RA PCB JKSKT	1	
R202	0523,103	RES 10K SMD 5% 0W10 0805	1	1	1 1	SK3	0801,203	CONR 20W FPC 1MMP ST ZIF	1	
R203	0522,317	RES 1K50 SMD 1% 0W25 1206	1]]	SK4	0801,203	CONR 20W FPC 1MMP ST ZIF	1	}
R204	0523,472	RES 4K7 SMD 5% 0W10 0805	1	İ	1 1	SK5	0801,206	CONR 26W 1,25 RA FPC ZIF	1	ļ
R205	0522,380	RES 6K81 SMD 1% 0W25 1206	1		1 1	SK6	0800,995	CONRD 15WSKT RA HD+RFI+L	1	
R206		RES 33K2 SMD 1% 0W25 1206	1	1		SK7	0194,008	VIDEO HYBRID 15P	1	ļ
R207	0523,101	RES 100R SMD 5% 0W10 0805	1	1		SK10	0898,005	CONRD 25WSKT RA PCB+RF+L	1	
R208	0523,271	RES 270R SMD 5% 0W10 0805	1		1	SK11	0801,204	CONR 8W 1,25MM ST CIC ZIF	1	ĺ
R209	0522,500	RES 100K SMD 1% 0W25 1206	1	1	, ,	SK12	0801,205	CONR 20W 1,25 ST CIC ZIF	1 1]
R210		RES 4K7 SMD 5% 0W10 0805	1	1		SK15	0800,923	CONR 6W MINDIN RAPCS MRFI	1 1	į.
R211		RES 270R SMD 5% 0W10 0805	1	1		SW1	0805,709	SW 1P MOM PTM P/B RA PCB	1 !	1
R212	1	RES 402K SMD 1% 0W25 1206	1	1		SW2	0805,125	SW SP 3W CO ROTARY SMD	1 !	1
R213		RES 68R SMD 5% 0W10 0805	1			SW3	0805,126	SW SPCO ROTARY SMD	1 !	
R214		RES 100K SMD 5% 0W10 0805	1 !			X1	0820,243	XTAL 24MHZ HC49 5,08MMH	1!	1
R215	1	RES 2K0 SMD .1% 0W1 1206	1:			X2	0821,327	XTAL 32.768KHZ CC 0.05P	1	Į.
R216		RES 1K5 SMD .1% 0W1 1206	1:			X3	0820,253	XTAL 25.175MHZ HC49 5,08H	!	1
R217	k .	RES 16K SMD .1% 0W1 1206	1:]	X4	0820,243	XTAL 24MHZ HC49 5,08MMH	1:	[
R218	Į.	RES 82K SMD 5% 0W10 0805	1 !]	X5	0820,363	XTAL OSC 36MHZ CMOS 8P PL	1:	1
R219		RES 4K7 SMD 5% 0W10 0805	1:			X6	0820,041	XTAL 4.194304M HC49 5,08H DIODE 3V9 ZNR 0W3 SOT23	1:	1
R220		RES 10K SMD 5% 0W10 0805	1			Z1	0796,102		1 1	1
R221	j	RES 1K0 SMD 5% 0W10 0805	!	1		72	0796,101	DIODE 4V7 ZNR 0W3 SOT23		1
R222	i	RES 18K SMD 5% 0W10 0805 RES 470R SMD 5% 0W10 0805	1 1	1		Z3 Z4	0796,101	DIODE 4V7 ZNR 0W3 SOT23		1
R223			;	-		Z5		DIODE 4V7 ZNR 0W3 SOT23		1
R224	j i	RES 10K SMD 5% 0W10 0805	;	-). .	Z6	0796,101	DIODE 4V7 ZNR 0W3 SOT23 DIODE 4V7 ZNR 0W3 SOT23	1	}
R225	i	RES 10K SMD 5% 0W10 0805 RES 4K7 SMD 5% 0W10 0805				Z7	0796,101	DIODE 4V7 ZNR 0W3 SOT23	1	1
R226		RES 68R SMD 5% 0W10 0805		1		Z8	0796,101	DIODE 4V7 ZNR 0W3 SOT23		
R228	ì	RES 68R SMD 5% 0W10 0805				28 Z9	0796,101	DIODE 4V7 ZNR 0W3 SOT23	;	
R229		RES 68R SMD 5% 0W10 0805	;			Z10	0796,101	DIODE 4V7 ZNR 0W3 SOT23	;	
R230	1	RES 68R SMD 5% 0W10 0805	1	1	{	Z11	0796,103	DIODE 5V1 ZNR OW3 SOT23	[]	1
230		1.25 551 5115 511 5005	1	1	1	Z12	0796,103	DIODE 4V7 ZNR 0W3 SOT23	1;	
L	1		ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	J		1 2:23,101	1	 _	ـــــــ

A4 4M + 60MHD final assembly parts list, issue 4

ITEM	PART No.	DESCRIPTION	QTY	Remarks
	0090,260/A	Final Assy Drg		1 Per Batch
	0190,009	Perth Display Unit Assy	1	
	0190,011	Perth UK Keyboard Assy	1	
	0490,043	Perth Base Label	1	[[
1	0290,063	Floppy Disc Flexy Cable	1	
	0190,067	H/D Ribbon Cable Assy	1	
	0190,074	ON/OFF/Battery Cable Assy	1	
	0290,075	Rear Wall RFI Shield	1	1
	0290,076	Main PCB Insulation Sheet	1	
	0290,077	Clamp Plate	1	
	0190,083	DC/DC Convertor PCB Assy	1	
	0190,084	H/D Bracket (Conner)	1	
	0190,085	K/B Rear Edge Carrier	1	[
	0190,094	DC Inlet Cable Assembly	1	
	0190,095	Battery LCD Cable Assy	1	
	0290,097	Battery LCD Perspex Windw	1	
	0290,100	Nut M3 Collared captive	3	ŀ
1	0190,103	Rear Wall RFI Strip	1	[
] :	0290,104	Keyboard Support Collar	3	
	0190,109	Scw M3x4 Pan Head Posi Sp	3	Use on Item 48
1	0190,110	Scw 3x8 TC Pan Head PosiS	5	Use on Items
	0190,112	Scw 3x35 TC Pan Posi Spec	3	17, 48 Use on Items 6,41
	0290.114	K/B Rear Edge RFI Strip	,	-
{	0190,115	Floopy Disc Drive Bezel	1 ;	[
ļ	0290,117	Battery Status LCD	;	
	0290,117	Floopy D/D RFI Plate	;]
	0290,118	Battery LCD Insulator	1	[
	0190,120	Side Drop Flap	1	1
1	0190,121	Case Lower Sliding Insert	;	
	0190,122	Case Lower (TA/Acorn)	1	1
1	0190,125	Rear Drop Flap (TA/Acorn)	1	
	0290,135	Foam Strip (Long) 15mm		1
	0290,140	DC/DC Con-H/D RFI Shield	1	
	0190,142	Scw with Washer M3x5	4	Use on Item 73
	0190,145	Rear Wall	1	250 0 11011773
1	0190,260	Perth (4M) Main PCB Assy	1	
1	0800,999	Conrd 4-40UNC Scwlk Stod	8	1
	0800,999	Wshr 4-40UNC Int-Spri SnP	2	Use on Item 22
	0800,998	Nut 4-40UNC Z&P	2	Use on Item 22
l	0805,909	SW SPST DC 2A Roc Sno	1	Use on item 22
	0882,121	Scw M3x6 Pan Hd Posi	4	Use on Items
	0882,717	Scw 3x6mm Pan Posi PLST45	1	Use on Item 19
]	0895,082	Adh Pad Insulator	4	Use on Item 16
	0907,008	Tape Pisto Bik Insu SFAD 20mm	"	Use on Items 26,48
	0912,018	Floppy Drive 2MB 3.518mm	1	
	0912,025	Wini Drive 60MB 2.5 IDE	1	1
	0940,004	Adh Sow-Lock 222 A/R		Use on Items 56,58
				•

A4 Econet PCB assembly parts list, issue 1

list, issue i					
ITEM	PART No.	DESCRIPTION	QTY	Remarks	
1	0290,005	BARE PCB		1	
2	0190,005/A	PCB ASSEMBLY DWG		1 PER BATCH	
3	0190,005/C	PCB CIRCUIT DIAGRAM		1 PER BATCH	
16	0902,012	LABEL SERIAL NO SA 40x10mm	1		
C1	0692,333	CPCTR 33N CML 20% 805	1		
C2	0692,333	CPCTR 33N CML 20% 805	1	1	
C4	1	CPCTR 47U ALEC 16V SMD	1		
C5	0681,100	CPCTR 47U TANT SMD	1		
C6	i	CPCTR 10U TANT SMD 16V	1		
C7	1	CPCTR 2N2 CML 10% 805	1 .		
СВ	0692.333	CPCTR 33N CML 20% 805	1		
C9		CPCTR 10N CML 20% 805	1		
C10	1	CPCTR 33N CML 20% 805	1	1	
C11	0692,333	CPCTR 33N CML 20% 805	1		
C12		CPCTR 33N CML 20% 805	1		
C13	0692,333	CPCTR 33N CML 20% 805	1		
C14	0692,333	CPCTR 33N CML 20% 805	1		
C15	0647.002	CPCTR 47U ALEC 16V SMD	1		
C16	0647,002	CPCTR 47U ALEC 16V SMD	1		
IC1	0732,635	IC 26LS30 RS422/3 DR SOIC	1		
IC2	1	IC 74LS123 TTL 16P SOIC	1		
IC3	0771,319	IC LM319 DUAL COMP 14SOIC	1		
IC4	0771,319	IC LM319 DUAL COMP 14SOIC	;		
IC5	1	IC 68B54 ADLC 2MHZ 28PLCC	1		
IC6	0761,132	IC 74HC132 CMOS 14P SOIC	1		
IC7	0761,132	IC 74HC244 CMOS 20P SOIC	;		
IC8	l.	IC 74HCT245 CMOS 20P SOIC	l :		
PL1		CONR 26W BOX HDR 2R 2MMRA	1:	l i	
01	0804,003	TRANS BCX18 PNP SOT23			
RI	0784,018	RES 1K0 SMD 5% 0W10 0805			
R2		RES 1M5 SMD 5% 0W10 0805	;	j j	
1	0523,155		`		
R3 R4	0523,102	RES 1K0 SMD 5% 0W10 0805 RES 1M5 SMD 5% 0W10 0805	1		
R5	0523,155	RES 10K SMD 2% 0W1 0805	;]	
	0524,103		i '		
R6	0523,155	RES 1M5 SMD 5% 0W10 0805	1		
R7	0524,103	RES 10K SMD 2% 0W1 0805			
R8	0524,103	RES 10K SMD 2% 0W1 0805	1		
R9	0523,102	RES 1K0 SMD 5% 0W10 0805	1		
R10	0523,561	RES 560R SMD 5% 0W10 0805	1		
811	0523,224	RES 220K SMD 5% 0W10 0805	1]	
R12	0523,393	RES 39K SMD 5% 0W10 0805	1		
R13	0524,563	RES 56K SMD 2% 0W1 0805	1 1		
H14	0524,152	RES 1K5 SMD 2% 0W1 0805			
R15	0523,472	RES 4K7 SMD 5% 0W10 0805	1		
R16	0524,563	RES 56K SMD 2% 0W1 0805	1	1	
R17	0524,563	RES 56K SMD 2% 0W1 0805	!		
R18	0524,104	RES 100K SMD 2% 0W1 0805	!		
R19	0524,563	RES 56K SMD 2% 0W1 0805	<u> </u>		
R20	0524,102	RES 1K0 SMD 2% 0W1 0805	1		
R21	0524,104	RES 100K SMD 2% 0W1 0805	1:		
R22	0523,472	RES 4K7 SMD 5% 0W10 0805	1 1		
R23	0524,103	RES 10K SMD 2% 0W1 0805	!		
R24	0524,104	RES 100K SMD 2% 0W1 0805	!		
R25	0524,104	RES 100K SMD 2% 0W1 0805	!		
R26	0523,472	RES 4K7 SMD 5% 0W10 0805	!	1	
R27	0521,472	RES 4K7 SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206			
SK1	0521,472		1:		
1341	0800,924	SKT 5W MINDIN RA PCB RFI	1	1	

A4 display assembly parts list, issue 2

ITEM	PART No.	DESCRIPTION	QTY	Remarks
	0190,009/A	Assembly Drg		1 Per Batch
	0490,041	Perth Acorn Logo Label	1	
	0190,086	Upgrade Cover {TA/Acorn}	1	
	0190,088	Case Upper (TA/Acorn)	1	
	0290,098	Hinge Pin (Short)	1	
	0290,099	Hinge Pin {Long}	1	
	0290,101	Lid Screw Cover	2	
	0290,102	Lid Hinge Cam Nut	2	
	0290,105	Lid Catch Release Button	2	
	0290,106	Lid Catch	2	
	0290,108	Thumbwheel	2	ł
	0190,111	SCW 2.2x6 TC Pan Posi	2	Use on Item 17
	0190,113	SCW 2.2x4.5 TC Pan Posi	2	Use on Items 20,21
	0190,123	Display Carrier(TA/Acorn)	1	
	0190,124	Display Frame (TA/Acom)	1	
	0290,126	B/L Control PCB Insul Sht	1	
	0290,127	Insulating Washer	2	
	0190,128	B/L Control PCB Assy	1	
	0190,129	Speaker PCB Assy	1	1
	0290,175	Spring Clip	2	
	0190,133	Control/Speaker PCB Cable	1	l
	0290,134	Display Foam Strip(Short)	2	
	0290,135	Display Foam Strip (Long)	2	
	0290,136	Display Central Foam Pad	1	1
	0290,137	Hinge Pin Spacer (Short)	1	
	0290,138	Hinge Pin Spacer (Long)	1	
	0290,139	Main Insulator Sheet	1	
	0290,141	Speaker PCB Insulator Sht	1	
	0290,143	Wshr Hinge Pin	2	
	0190,158	Lamp & Diffuser Assy	1	
}	0290,162	Display Frame Insul Sht	1	
l	0290,176	Insulating Washer	2	
1	0870,224	Cbl 20W FlatFlex 1mmP 88L	1	
	0870,226	Cbl 20W FlatFlex 1mmP 98L	1	
	0895,083	Adh Pad Foam SS 5mm Thk	1	
	0913,002	LCD Mono VGA Transmissive	1	1
	0940,009	Grease Contact Treatment A/R		Use on Items 5.16

Appendix A – Monitor adaptor cables

This appendix describes how to make adaptor cables for monitors not supplied with a 15-way VGA connector.

Adaptor type 1

The cable supplied with some Multiscan monitors is terminated at the computer end with a 9-way D-type plug. You need a standard 15-way plug to 9-way socket adaptor:

	15-way plug	9-way socket	
⁵ 10 15	1 Red ———————————————————————————————————	1 2 3	~ (00000)
1 6 11	8 Blue rtn (0V) - 9 +5V 10 0V 11 ID0 12 ID1 (nc) 13 HSync 14 VSync 15 ID3 (nc)	9 4 5	005

Note: The ID[0] to 0V connection will make the monitor type 3 modes available and the computer will generate separate sync signals.

Most Multiscan monitors are now being designed to be VGA-compatible and will work satisfactorily when driven with separate horizontal and vertical sync signals.

Adaptor type 2

The cable supplied with some Multiscan monitors requiring composite sync is terminated at the computer end with a 9 pin D-type plug. You need a 15-way plug to 9-way socket adaptor:

	15-way plug	9-way socket	
5 10 15 1 6 11	1 Red 2 Green 3 Blue 4 ID2 5 OV (test) 6 Red rtn (OV) 7 Green rtn (OV) 9 +5V 10 OV 11 ID0 (nc) 12 ID1 (nc) 13 HSync 14 CSync 15 ID3 (nc)	1 2 3 3 6 6 7 8 9 9 (nc) 5	1 (00000 m

Note: The HSYNC to ID[2] connection will make the monitor type 1 modes available and the computer will generate a composite sync signal.

Adaptor type 3

The cable supplied with some TV-type monitors is terminated at the computer end with a 9 pin D-type plug. You need a 15-way plug to 9-way socket adaptor:

	15-way plug	9-way socket	
5 10 15 1 6 11	1 Red 2 Green 3 Blue 4 ID2 (nc) 5 0V (test) 6 Red rtn (0V) 7 Green rtn (0V) 8 Blue rtn (0V) 9 +5V 10 0V 11 ID0 4 12 ID1 (nc) 13 HSync 14 CSync 15 ID3 (nc)		ω <u>(00000</u>)ω (00000)ω

Note: The HSYNC to ID[0] connection will make the monitor type 0 modes available and the computer will generate a composite sync signal.

Cable type 4

You need to make this cable to use with televisions and TV-type monitors using a SCART input socket:

The 220Ω resistor results in a CSYNC signal of approximately 1V peak on pin 20 of the SCART connector. The 75Ω resistor results in a blanking signal of approximately 2.5V dc on pin 16 of the SCART connector.

Cable type 5

You need to make this cable to use with monochrome monitors which have a phono input socket. You need a 15-way plug to phono socket adaptor with resistors, to mix the separate red, green and blue signals into a composite monochrome signal (you can fit these components into a 15-way connector shell).

You need to make an adaptor cable that has a 15-way D-type plug on one end, and a phono plug on the other. The connections you need to make are as follows:

Note: The HSYNC to ID[0] connection will make the monitor type 0 modes available and the computer will generate a composite sync signal.

Appendix B - Expansion bay

The expansion bay is provided for low-power miniature expansion cards. These cards are mounted in a lid moulding that clips into the top of the case. The interface connector has a limited set of signals, due to space constraints, and has been designed specifically to support the A4 Econet module. It should not be regarded as a general purpose expansion slot.

Interface

The interface connector PL3 provides the select lines \$\overline{52}\$ and \$\overline{54}\$. These are IOC-controlled memory-mapped peripheral select lines which allow programmable slow, medium, fast or synchronous cycles. See I/O system on page 1-2 for address details and IOC data sheet (available separately – see page iv) for timing information.

Details of other signals

LA[2:5]

Addressing 16 register locations.

CLK₂

2MHz clock derived from the main I/O clock. When programmed for a synchronous cycle this signal can be used as ECLK for communications with 6800 peripherals (see the Econet circuit diagram in *Appendix C – Engineering drawings*).

WBE

Write buffer enable. This signal, generated by IOC, enables the on board write buffers during an IOC controlled cycle and is used as a read/write strobe on the Econet upgrade. (See IOC data sheet for timing details)

EFIQ

Active low FIQ used for Econet upgrade. Appears as bit 2 FIQ status register 3200030. This signal has a 4k7 resistive pull-up on the main PCB.

PIRQ

Active low IRQ, appears as bit 5 in the IOC IRQ status register B address 3200020. This signal has a 4k7 resistive pull-up on the main PCB.

PWE and **PRE**

Podule read write strobes used to manipulate data during programmed I/O cycles. (See IOC data sheet for timing details).

RST

System reset. Open drain signal driven by IOC at power up and by IOEB when the reset button is pressed. This signal can be driven by the expansion card. The pulse

width should be at least 250ms. Output drivers should be able to sink at least 6mA (1k2 pull-up plus four LS TTL gate input loads.)

BD[0:7]

It is recommended that these lines are buffered prior to use on an expansion card (see below).

ECON

Power control signal. This signal is controlled by register LICR (address 302C030) bit 0 in the LC ASIC. By programming this bit to a logic 1, the ECON signal goes low (this bit is set to logic 1 after reset).

Power available

It is recommended that the expansion card draws no more than 200mA @ 5V continuous, to avoid excessive heating within the A4 unit. It is also recommended that peak currents are limited to 400mA. This is particularly important at machine power-on when the charger unit may have to supply current to charge a flat battery, spin up discs etc.

Using the power control signal

It is strongly recommended that when not in use the expansion card is powered down to conserve battery life. To ensure that the expansion circuitry is protected when powered down, isolation buffers are needed. A scheme for isolating the Econet circuitry and switching the 5V rail is shown on the Econet circuit diagram in Appendix C – Engineering drawings.

Mechanical issues

Figure B.1 shows the outline of the Econet module PCB. This outline should be followed to ensure a fit with the cover moulding (Acorn part number 0191,087/T).

Figure B.2 shows the insulation sheet (Acorn part number

0290,062) that needs to be provided between the PCB and the lid assembly.

Connector information

The internal Econet upgrade cable (Acorn part number 0190,078/A) uses two 26-way connectors. For the pin out of the internal connector, see *Plugs* on page 1-26. The 5-pin mini-DIN to 5-pin DIN Econet lead (2m) is Acorn part number 0190,068/T.

PART No.	DESCRIPTION	QTY
0804,202	CONR 26W SKT HSNG 2mmFREE	2
0805,250	CONR 1W CRMP SKT 24-28AWG	52
0870141	WIRE 28AWG PVC UL1007	21 00 mm
0880,043	RUBBER SLEEVING	15mm

Figure B.1: Outline of Econet Module PCB

Figure B.2: Econet insulation sheet

Appendix C - Engineering drawings

- · Final assembly drawings (base and display)
- · Main PCB circuit diagram
- · DC/DC convertor circuit diagram
- · BacklightDC control board circuit diagram
- · Speaker board circuit diagram
- · Econet PCB circuit diagram

Reader's Comment Form

Acorn A4 Technical Reference Manual

We would greatly appreciate your comments about this Manual, which will be taken into account for the next issue:

Did you find the Information you wa	nted?
Do you like the way the information	is presented?
	·
General comments:	
	·
	If there is not enough room for your comments, please continue overleaf
What do you use your A4 Technical Re	eference Manual for?
General Interest H/W developme	nt S/W development Other (please specify)
Cut out (or photocopy) and post to:	Your name and address :
Dept RC, Technical Publications Acom Computers Limited 645 Newmarket Road	•
Cambridge CB5 8PB England	This information will only be used to get in touch with you in case we wish to explore your comments further

