x86架构和armv8架构比对

一、浮点寄存器:

- 1. x86的FPU(浮点运算单元)中包含8个80位可以直接进行浮点运算的寄存器R0-R7,浮点数以双精度格式存储在寄存器中,浮点寄存器包括8个80位的通用寄存器,两个48位寄存器(指令指针寄存器和数据指针寄存器),三个16位寄存器(控制寄存器、状态寄存器和标志寄存器)。
- 2. armv8寄存器: AArch64的NEON架构使用32×128位寄存器;单精度浮点值使用低位32位,而双精度值使用128位寄存器的低位64位。 在对标量数据进行操作的 NEON 和浮点指令中,浮点和 NEON 寄存器的行为与主要通用整数寄存器类似。因此,仅访问较低位,而未使用的高位在读取时被忽略并在写入时设置为零。
 - 32×64位D寄存器D0-D31。D寄存器称为双精度寄存器,包含双精度浮点值
 - 32×32位S寄存器S0-S31。S寄存器称为单精度寄存器,包含单精度浮点值
 - 32×16位H寄存器H0-H31。H寄存器称为半精度寄存器,包含半精度浮点值
 - 如下图所示,

	Unused		D31				
	Unused		 		S3	31	
	Unused			i		H31	
		Register V31	 				
127		64	63	32 31	16	15	0

Unused	D0			
Unused	 	S	0	
Unused	 		НО	
Pogister VO				
Register V0	!			
127 64	63 32	31 16	15 0	

二、x86、armv8、IEEE754下浮点数精度

	X86架构	armv8架构	IEEE754标准
单精度浮点数	32位	32位	32位
双精度浮点数	64位	64位	64位
长双精度浮点数	80位	128位	80位

1. 单精度和双精度格式的位模式:

. 长双精度(80位)格式的位模式(x86):

3. 长双精度(128位)格式的位模式(arm):

4. IEEE754标准中,延伸单精确度(43比特以上)与延伸双精确度(79比特以上,通常以80位实现)。

	+	-
0	0x0000000	0x8000000
无穷	0x7F800000	0XFF800000
NaN	指数全部为	1, 尾数非0

三、x86和armv8架构下浮点运算的汇编指令

x86指令	说明	arm指令	说明	
finit	初始化控制和状态寄存器	ldr	从内存中加载单精度或双精度	
			浮点数到寄存器中	
flds value	加载内存中的单精浮点到寄存	ldrh	从内存中加载半精度浮点数到	
	器堆栈		寄存器中	
fld1 value	加载内存中的双精浮点到fpu寄	ldrsh	从内存中加载有符号的半精度	
	存器堆栈		浮点数到寄存器中	
fldt value	加载内存中的扩展精度点到fpu	1drb	从内存中加载字节大小的浮点	
	寄存器堆栈		数到寄存器中	
fadd	浮点加法	fadd	FP加法指令	
fdiv	浮点除法	fsub	FP减法指令	
fdivr	反向浮点除法	fmul	FP乘法指令	
fmul	浮点乘法	fdiv	FP除法指令	
fsub	浮点减法	fsqrt	FP开根号指令	
fsubr	反向浮点减法	frcp	FP取倒数指令	
fcom	浮点数比较指令	fcmp	FP比较指令	