Теория автоматов и формальных языков Синтаксически управляемая трансляция

Автор: Григорьев Семён

Санкт-Петербургский государственный университет

03 декабря 2020

Дерево разбора — лишь цепочка в некотором языке

Дерево разбора — лишь цепочка в некотором языке

[.E[.E[.T[.P[.n]]]][.+][.T[.T[.P[.n]]][.*][.P[.n]]]]

Трансляция (перевод)

- **Трансляция** преобразование некоторой входной строки в некоторую выходную
 - ▶ Σ входной алфавит, Π выходной алфавит. **Трансляцией** с языка $L_i \subseteq \Sigma^*$ на язык $L_o \subseteq \Pi^*$ называется отображение $\tau: L_i \to L_o$
- Построение дерева разбора простейший пример трансляции
- Другие примеры трансляции
 - Вычисление значения арифметического выражения
 - Преобразование арифметического выражения из инфиксной записи в постфиксную
 - ▶ Преобразование программы на языке Java в байт-код
 - Компиляция программ
- Фактически синтаксический анализ нужен для трансляции

Схемы синтаксически управляемой трансляции

Схема синтаксически управляемой трансляции — пятерка (N, Σ, Π, P, S)

- N конечное множество нетерминальных символов
- Σ конечный входной алфавит
- П конечный выходной алфавит
- $S \in \mathcal{N}$ стартовый нетерминал
- P конечное множество правил трансляции вида $A \to \alpha, \beta$, где $\alpha \in (N \cup \Sigma)^*, \beta \in (N \cup \Pi)^*$
 - \blacktriangleright Вхождения нетерминалов в цепочку β образуют перестановку нетерминалов из цепочки α
 - Если нетерминалы повторяются больше одного раза, то их различают по индексам: $E \to E^I + E^r, E^r + E^I$

Выводимая пара в СУ-схеме

- Если $A \to (\alpha,\beta) \in P$, то $(\gamma A^i \delta, \ \gamma' A^i \delta') \Rightarrow (\gamma \alpha \delta, \ \gamma' \beta \delta')$
- Рефлексивно-транзитивное замыкание отношения \Rightarrow называется отношением выводимости в СУ-схеме, обозначается $\stackrel{*}{\Rightarrow}$
- Трансляцией назовем множество пар $\{(\alpha,\beta) \mid (S,S) \stackrel{*}{\Rightarrow} (\alpha,\beta), \alpha \in \Sigma^*, \beta \in \Pi^*\}$
- СУ-схема называется простой, если во всех правилах $A \to (\alpha, \beta)$, нетерминалы в α и β встречаются в одном и том же порядке

Простая СУ-схема

Определение

СУ-схема называется простой, если во всех правилах $A \to (\alpha, \beta)$, нетерминалы в α и β встречаются в одном и том же порядке

Однозначная СУ-схема

Определение

Однозначная СУ-схема — СУ-схема, в которой не существует двух правил A o lpha, eta и $A o lpha, \gamma$ таких, что $eta \neq \gamma$

Пример СУ-схемы

Пример СУ-схемы

$$(\underline{E},\underline{E}) \Rightarrow (\underline{T},\underline{T}) \Rightarrow (\underline{T}*F,\underline{T}F*) \Rightarrow (\underline{F}*F,\underline{F}F*) \Rightarrow (n*\underline{F},n\underline{F}*) \Rightarrow (n*(\underline{E}),n\underline{E}*) \Rightarrow (n*(\underline{E}+T),n\underline{E}T+*) \Rightarrow (n*(\underline{T}+T),n\underline{T}T+*) \Rightarrow (n*(\underline{F}+T),n\underline{F}T+*) \Rightarrow (n*(n+\underline{T}),n\underline{n}\underline{T}+*) \Rightarrow (n*(n+\underline{F}),n\underline{F}+*) \Rightarrow (n*(n+n),n\underline{n}+*)$$

Обобщенные схемы синтаксически управляемой трансляции

Обобщенная схема синтаксически управляемой трансляции — шестерка $(N, \Sigma, \Pi, \Gamma, P, S)$

- ullet Г конечное множество символов перевода вида $A_i, A \in \mathcal{N}; i \in \mathbb{Z}$
- Р конечное множество правил трансляции вида

$$A olpha,A_1=eta_1,\ldots,A_n=eta_n$$
, где $lpha\in(N\cup\Sigma)^*$

- ▶ $A_i \in \Gamma, 1 \leq i \leq n$
- ▶ Каждый символ x, входящий в β_i , либо $x \in \Pi$, либо $x = B_k \in \Gamma$, где $B \in \alpha$
- ▶ Если α имеет более одного вхождения символа B, то каждый символ B_k во всех β соотнесен (верхним индексом) с конкретным вхождением B

Входной грамматикой назовем четверку (N, Σ, P', S) , где $P' = \{A \to \alpha \mid A \to \alpha, A_1 = \beta_1, \dots, A_n = \beta_n \in P\}$

Выход обобщенной СУ-схемы

- Для каждой внутренней вершины дерева, соответствующей нетерминалу A, с каждым A; связывается одна цепочка
 - ightharpoonup Такую цепочку назовем значением (трансляцией) символа A_i
- Каждое значение определяется подстановкой значений символов трансляции данного элемента $A_i = \beta_i$, определенных в прямых потомках вершины
- **Трансляция**, определяемая данной схемой множество $\{(\alpha,\beta)\}$
 - lacktriangledown имеет дерево разбора в данной входной грамматике
 - ightharpoonup eta значение выделенного символа S_k

Пример обобщенной СУ-схемы: дифференцирование

Магазинный преобразователь

Магазинный автомат, который при каждом переходе пишет что-то в выходную строку

Формальное определение

Магазинный преобразователь это набор $(Q, \Sigma, \Gamma, \Delta, \delta, q_0, Z_0, F)$

- Q конечное множество состояний
- ullet Σ конечное множество символов, входной алфавит
- Г конечное множество символов, стековый алфавит
- ullet Δ конечное множество символов, выходной алфавит
- $\delta\subseteq Q imes (Z\cuparepsilon) imes \Gamma o 2^{Q imes \Gamma^* imes \Delta^*}$ отношение переходов
- $q_0 \in Q$ стартовое состояние
- $Z_0 \in \Gamma$ начальный элемент стека
- $F\subseteq Q$ множество принимающих (конечных) состояний

Отношение переходов

$$\delta(\textit{p},\textit{a},\textit{Z}) = \{(\textit{q}_i,\gamma_i,\alpha_i)\,|\,1\leq i\leq \textit{n}\}$$
 означает

- Если магазинный преобразователь находится в состоянии $p \in Q$, на вершине стека находится $Z \in \Gamma$, а со входа читается символ $a \in \Sigma \cup \varepsilon$, то для некоторого i:
 - lacktriangle Изменяем состояние на $q_i \in Q$
 - lacktriangle Снимаем со стека символ Z, записываем на стек строку $\gamma_i \in \Gamma^*$
 - lacktriangle В выходную строку дописываем $lpha_i \in \Delta^*$
- ullet $\Sigma \cup arepsilon$ сигнализирует о том, что вход можно и не читать
- Если $\gamma_i = \varepsilon$, символ со стека стирается
- Если $\alpha_i = \varepsilon$, в выходную строку ничего не пишем

Семантика магазинного преобразователя

- Мгновенное описание МП: $(p, \omega, \beta, \alpha) \in Q \times \Sigma^* \times \Gamma^* \times \Delta^*$
 - ▶ р текущее состояние автомата
 - lacktriangledown непрочитанный фрагмент входного потока
 - β содержимое стека (верхушка записана первой)
 - α содержимое выходной ленты
- Отношение ⊢ на мгновенных описаниях (шаг)
 - ▶ Для каждого $(q, \gamma, \alpha) \in \delta(p, a, Z)$, верно $(p, ax, Z\eta, \zeta) \vdash (q, x, \gamma\eta, \alpha\zeta)$ для произвольных $x \in \Sigma^*, \eta \in \Gamma^*, \zeta \in \Delta^*$
- Шаг не определен, если стек пуст

Семантика магазинного преобразователя: вычисление

- Вычисление последовательность шагов
 - ▶ ⊢* транизитивно рефлексивное замыкание отношения ⊢
- Начальное мгновенное описание $(q_0, \omega, Z_0, \varepsilon)$
- Два варианта окончания работы
 - ▶ По достижении конечного состояния

*
$$\tau(M) = \{(\omega, \alpha) \mid \omega \in \Sigma^*, \alpha \in \Delta^*, (q_0, \omega, Z_0, \varepsilon) \vdash^* (f, \varepsilon, \gamma, \alpha), f \in F, \gamma \in \Gamma^* \}$$

▶ По опустошении стека

$$\star \ \tau_{\varepsilon}(M) = \{(\omega, \alpha) \mid \omega \in \Sigma^*, \alpha \in \Delta^*, (q_0, \omega, Z_0, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon, \alpha), q \in Q\}$$

 Эти варианты эквивалентны: по преобразователю, завершающемуся по первой схеме, можно посмотроить преобразователь, завершающийся по второй схеме, и наоборот

Детерминированные магазинные преобразователи

Магазинный преобразователь является детерминированным, если

- $\forall q \in Q, a \in \Sigma \cup \{\varepsilon\}, Z \in \Gamma : |\delta(q, a, Z)| \leq 1$
- ullet Если $\delta(q,arepsilon,Z)
 eqarnothing$, то $orall a\in\Sigma:\delta(q,a,Z)=arnothing$
- Детерминированный магазинный преобразователь является частным случаем недетерминированного

Пример: преобразование префиксных арифметических выражений в постфиксные

$$M = \{ \{q\}, \{a, +, *\}, \{E, +, *\}, \{a, +, *\}, \delta, q, E, \{q\} \}$$

$$\delta(q, a, E) = \{ (q, \varepsilon, a) \}$$

$$\delta(q, +, E) = \{ (q, EE +, \varepsilon) \}$$

$$\delta(q, *, E) = \{ (q, EE *, \varepsilon) \}$$

$$\delta(q, \varepsilon, +) = \{ (q, \varepsilon, +) \}$$

$$\delta(q, \varepsilon, *) = \{ (q, \varepsilon, *) \}$$

$$(q, +* aaa, E, \varepsilon) \vdash (q, *aaa, EE +, \varepsilon) \vdash (q, aaa, EE * E +, \varepsilon) \vdash (q, aa, E * E +, a) \vdash (q, a, *E +, aa) \vdash (q, a, E +, aa*) \vdash (q, \varepsilon, +, aa*a) \vdash (q, \varepsilon, \varepsilon, aa*a+)$$

Взаимоотношение между простыми СУ-схемами и магазинными преобразователями

Теорема

По простой СУ-схеме $(N, \Sigma, \Delta, R, S)$ можно построить магазинный преобразователь, задающий эквивалентную трансляцию

Теорема

По магазинному преобразователю $P = (Q, \Sigma, \Gamma, \Delta, \delta, q_0, Z_0, \varnothing)$ можно построить простую СУ-схему, задающую эквивалентную трансляцию

Теорема

Класс трансляций, задаваемых простыми СУ-трансляциями совпадает с классом трансляций, задаваемых магазинными автоматами

Однозначные СУ-схемы и левосторонний вывод

Теорема

Выходная цепочка однозначной СУ-схемы может быть сгенерирована при левостороннем выводе входной цепочки

Транслирующие грамматики

- КС-грамматика, терминальный алфавит которой разбит на два множества: входных и выходных символов
- Транслирующая грамматика пятерка $(N, \Sigma_i, \Sigma_o, P, S)$
 - № N алфавит нетерминалов
 - $ightharpoonup \Sigma_i$ алфавит входных терминалов
 - Σ_o алфавит выходных терминалов
 - ▶ $S \in N$ стартовый нетерминал
 - ▶ $P = \{A \to \alpha\}, \alpha \in (\Sigma_i \cup \Sigma_o \cup N)^*$ множество правил вывода

Пример транслирующей грамматики

$$E \rightarrow E + T \{+\}$$

$$\mid T$$

$$T \rightarrow T * F \{*\}$$

$$\mid F$$

$$F \rightarrow n \{n\}$$

$$\mid (E)$$

Пример транслирующей грамматики

$$\begin{array}{cccc} E & \to & E + T \{+\} \\ & | & T \\ T & \to & T * F \{*\} \\ & | & F \\ F & \to & n \{n\} \\ & | & (E) \end{array}$$

$$E \Rightarrow E + T\{+\} \Rightarrow T + T\{+\} \Rightarrow F + T\{+\} \Rightarrow n\{n\} + T\{+\} \Rightarrow n\{n\} + T*F\{*\}\{+\} \Rightarrow n\{n\} + F*F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * n\{n\} * F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * n\{n$$

Пример транслирующей грамматики

$$\begin{array}{cccc} E & \to & E + T \{+\} \\ & | & T \\ T & \to & T * F \{*\} \\ & | & F \\ F & \to & n \{n\} \\ & | & (E) \end{array}$$

$$E \Rightarrow E + T\{+\} \Rightarrow T + T\{+\} \Rightarrow F + T\{+\} \Rightarrow n\{n\} + T\{+\} \Rightarrow n\{n\} + T*F\{*\}\{+\} \Rightarrow n\{n\} + F*F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * n\{n\} * F\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * n\{n$$

- Если вычеркнуть все выходные символы, получим n + n * n
- Если вычеркнуть все входные символы, получим $n \, n \, n + *$ постфиксная запись выражения

Постфиксная транслирующая грамматика

- Если выходные символы встречаются только в конце правил, транслирующая грамматика называется постфиксной
- Это требование формально не выдвигается: транслирующие грамматики могут быть не постфиксными
- На практике постфиксные транслирующие грамматики удобнее

Атрибутная транслирующая грамматика

- Входной алфавит алфавит лексем
 - Лексема характеризуется типом и значением
- Транслирующая грамматика описывает перевод только типа лексемы
 - > Это существенно снижает выразительность формализма
- Для борьбы с этим недостатком предложены атрибутные грамматики
 - ▶ Модификация транслирующих грамматик, снабженная атрибутами

Атрибут

Атрибут — дополнительные данные, ассоциированные с грамматическими символами

- Если X символ, а a его атрибут, то значение a в узле дерева, помеченном X, записывается как X.a
- Узлы дерева могут реализовываться как записи или объекты, а атрибуты — как поля
- Атрибуты могут быть любого типа
- Если в каждом узле дерева атрибуты уже вычислены, оно называется **аннотированным**
- Процесс вычисления этих атрибутов называется аннотированием дерева разбора

Вычисление атрибутов не всегда возможно

$$A \rightarrow B$$
 $A.s = B.i$
 $B.i = A.s + 1$

Синтезируемый атрибут, S-атрибутная грамматика

- Атрибут, значение которого зависит от значений атрибутов детей данного узла или от других атрибутов этого узла, называется синтезируемым
- Если в транслирующей грамматике используются только синтезируемые атрибуты, она называется **S-атрибутной** грамматикой
- Аннотирование дерева разбора S-атрибутной грамматики возможно путем выполнения семантических правил снизу вверх (от листьев к корню)

Пример S-атрибутной грамматики

$$S \rightarrow E \qquad \{S.val = E.val\}$$

$$E^{0} \rightarrow E^{1} + T \qquad \{E^{0}.val = E^{1}.val + T.val\}$$

$$E \rightarrow T \qquad \{E.val = T.val\}$$

$$T^{0} \rightarrow T^{1} * F \qquad \{T^{0}.val = T^{1}.val * F.val\}$$

$$T \rightarrow F \qquad \{T.val = F.val\}$$

$$F \rightarrow n \qquad \{F.val = n.val\}$$

$$F \rightarrow (E) \qquad \{F.val = E.val\}$$

Наследуемый атрибут, L-атрибутная грамматика

Атрибут, значение которого зависит только от атрибутов братьев узла слева или атрибутов родителей, называется **наследуемым**

Грамматика называется **L-атрибутной**, если каждый наследуемый атрибут узла X_j в правиле $A \to X_1 \dots X_n$ зависит только от:

- Атрибутов узлов $X_1 \dots X_{j-1}$ (братья слева)
- Наследуемых атрибутов узла (предок)

Синтезируемые атрибуты тоже разрешены

Любая S-атрибутная грамматика является L-атрибутной

Пример L-атрибутной грамматики

$$D o TL$$
 $\{L.inh = T.type;$ $D.val = L.val\}$
 $T o int$ $\{T.type = integer\}$
 $T o real$ $\{T.type = real\}$
 $L^0 o L^1, id$ $\{L^1.inh = L^0.inh\}$
 $\{L^0.val = (id.text, L_0.inh) :: L^1.val\}$
 $L o id$ $\{[id.text, L.inh]\}$