

计算机学院(软件学院) SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle 编译原理

第12讲: 语法分析(9)

张献伟

xianweiz.github.io

DCS290, 4/4/2023

Quiz Questions

- Q1: main differences between LL and LR parse table?
 - LL: row nonterminal, column terminal + \$, cell rule or empty LR: action + goto, row state, column T+\$/N, cell action/state
- Q2: for a sentential form bbAa: S ⇒*_{rm} bBa ⇒ bbAa, suppose bA is the handle, list the viable prefix.

b, bb, bbA

Q3: for the grammar, get FIRST(S) and FOLLOW(A).

$$FIRST(S) = \{a, b\}, FOLLOW(A) = \{b\}$$

- Q4: is the grammar a LL(1)?
 - NO. FIRST(AB) \cap FIRST(a) \neq \emptyset .

$$S \rightarrow AB \mid a$$

$$A \rightarrow a \mid \epsilon$$

$$B \rightarrow b$$

• Q5: augment the grammar, and give the initial state (S_0) .

$$\{S' \rightarrow .S, S \rightarrow .AB, S \rightarrow .a, A \rightarrow .a, A \rightarrow .\}$$

(0	$S) S' \rightarrow S$	(1) $S \rightarrow BB$	(2) B → aB	(3) $B \rightarrow b$	
Initial iter	$S' \rightarrow \cdot S$	$S \rightarrow \cdot BB$ $S \rightarrow B \cdot B$	B → ·aB B → a·B	B o b	Reduce item
	$S' \rightarrow S$.	$S \rightarrow BB$.	B → aB·	$B \rightarrow b$.	

Accept item

- Closure: the action of adding equivalent items to a set
 - Example: $S' \rightarrow \cdot S$ $S \rightarrow \cdot BB$ $B \rightarrow \cdot aB$

- $B \rightarrow b$
- Intuitively, $A \rightarrow \alpha \cdot B\beta$ means that we might next see a substring derivable from Bβ (sub) as input. The sub will have a prefix derivable from B by applying one of the Bproductions[期待意义等价]
 - Thus, we add items for all the B-productions, i.e., if B \rightarrow γ is a production, we add B $\rightarrow \cdot \gamma$ in the closure

- (0) $S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- (0) $S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$I_0$$

$$I_0$$
:
 $S' \rightarrow \cdot S$

Grammar:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

l₀:

$$S' \rightarrow \cdot S$$

 $S \rightarrow \cdot BB$

Grammar:

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

I_0 :

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow \cdot b$$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$I_0$$
: S I_1 : $S' \rightarrow S$ $S \rightarrow BB$ $B \rightarrow B \rightarrow B$ $S \rightarrow B$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items I_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s 4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	<u>r2</u>	r2			

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items I_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items l_j

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION		GOTO		
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

"state j" refers to the state corresponding to the set of items l_j

CLOSURE()[闭包]

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If $A \to \alpha \cdot B\beta$ is in *CLOSURE(I)* and $B \to \gamma$ is a production, then add item $B \to \gamma$ to *CLOSURE(I)*, if it is not already there[期待B]
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

- goto(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items [A $\rightarrow \alpha X \cdot \beta$] such that [A $\rightarrow \alpha \cdot X\beta$] is in /[即:识别了/归约到X后的item再闭包]
 - Used to define the transitions in the LR(0) automaton[定义了状态间的转换]
 - The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X

Grammar:

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

I_0

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow \cdot b$$

- goto(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items [A $\rightarrow \alpha X \cdot \beta$] such that [A $\rightarrow \alpha \cdot X\beta$] is in /[即:识别了/归约到X后的item再闭包]
 - Used to define the transitions in the LR(0) automaton[定义了状态间的转换]
 - The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

- goto(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items [A $\rightarrow \alpha X \cdot \beta$] such that [A $\rightarrow \alpha \cdot X\beta$] is in /[即:识别了/归约到X后的item再闭包]
 - Used to define the transitions in the LR(0) automaton[定义了状态间的转换]
 - The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$I_0$$
:

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

- goto(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items [A $\rightarrow \alpha X \cdot \beta$] such that [A $\rightarrow \alpha \cdot X\beta$] is in /[即:识别了/归约到X后的item再闭包]
 - Used to define the transitions in the LR(0) automaton[定义了状态间的转换]
 - The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

$$S \rightarrow B \cdot B$$

- goto(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items [A $\rightarrow \alpha X \cdot \beta$] such that [A $\rightarrow \alpha \cdot X\beta$] is in /[即:识别了/归约到X后的item再闭包]
 - Used to define the transitions in the LR(0) automaton[定义了状态间的转换]
 - The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

$$S \rightarrow B \cdot B$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

Construct LR(0) States

- [增广文法]Create augmented grammar G' for G
 - Given G: S → α | β , create G': S' → S S → α | β
 - Creates a single rule $S' \rightarrow S$ that when reduced, signals acceptance
- [初始状态]Create 1st state by performing a closure on initial item S'→·S
 - Closure(I): creates state from an initial set of items I
 - Closure($\{S' \rightarrow \cdot S\}$) = $\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$
- [添加状态]Create additional states by performing a **goto** on each symbol
 - Goto(I, X): creates state that can be reached from I by advancing X
 - If α was single symbol, the following new state would be created: Goto($\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$, α) = Closure($\{S \rightarrow \alpha \cdot \}$) = $\{S \rightarrow \alpha \cdot \}$
- [重复操作]Repeatedly perform gotos until there are no more states to add

Construct DFA

- Compute canonical LR(0) collection[规范LR(0)项集族, C], i.e., set of all states in DFA
 - One collection of sets of LR(0) items provides the basis for constructing a DFA that is used to make parsing decisions
 - Such an automaton is called an **LR(0) automaton**[LR(0)自动机]
 - Each state of the LR(0) automaton represents a set of items in the C
- All new states are added through goto(I, X)
 - State transitions are done on symbol X

LR(0) Automaton[自动机]

- The LR(0) automaton: each time we perform a shift we are following a transition to a new state[移入:到新状态]
 - States: the sets of items in C
 - Start state: CLOSURE($\{[S' \rightarrow \cdot S]\}$)
 - \Box State j refers to the state corresponding to the set of items I_i
 - Transitions are given by the goto() function
- How can the automaton help with shift-reduce decisions?
 - Suppose that the string γ of grammar symbols takes the LR(0) automaton from the start state 0 to some state j
 - Then, shift on next input symbol α if state j has a transition on α
 - Otherwise, we choose to reduce
 - □ The items in state j tell us which production to use (e.g., $E \rightarrow \alpha$)
 - □ $E \rightarrow \alpha$: pop states for α , bringing state x to the top and look for a transition on E to state y (i.e., state x has a transition on E to state y), which is then pushed to stack

The Example

```
Grammar:
```

```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```

- $S_0 = Closure(\{S' \rightarrow .S\})$ $= \{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) $S_2 = \{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $\{B \rightarrow a.B\}\}$) $= \{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ Goto(S₀, b) = closure({ $\{B \rightarrow a.B\}\}$)
 - $= \{B \rightarrow b.\}$


```
Grammar:
```

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) S₂ = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $B \rightarrow a.B$ }) = { $B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b$ }
- $= \{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ Goto(S₀, b) = closure(\{\begin{subarray}{c} B \otimes b.\} \\ = \{B \otimes b.\} \end{subarray}

Build Parse Table from DFA

- ACTION: [state, terminal symbol]
- GOTO: [state, non-terminal symbol]
- ACTION[动作]
 - If $[A \rightarrow \alpha \cdot a\beta]$ is in S_i and goto $(S_i, a) = S_j$, where "a" is a terminal, then ACTION $[S_i, a] = \text{shift j } (sj)$
 - If $[A \rightarrow \alpha \cdot]$ is in S_i and $A \rightarrow \alpha$ is rule numbered j, then ACTION $[S_i, a]$ = reduce j (r_j)
 - If $[S' \rightarrow S \cdot]$ is in S_i then ACTION $[S_i, \$]$ = accept
 - If no conflicts among 'shift' and 'reduce' (the first two 'if's), then this parser is able to parse the given grammar
- GOTO[跳转]
 - if $goto(S_i, A) = S_i$ then $GOTO[S_i, A] = j$
- All entries not filled are rejects

Ctata		ACTION	GO	GОТО	
State	а	b	\$	S	В
0	s3	s4		1	2
_ 1 _		-	асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Chaha		ACTION			GOTO	
State	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

Grammar:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata	ACTION			GC	то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata	ACTION			GC	то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata	ACTION			GC	то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Stata		ACTION			ТО
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION			то
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- $(3) B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- $(3) B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- $(3) B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- $(3) B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

☆ 是LR(0),没有任何lookahead ☆

- o state直接决定了是shift/reduce,并不需要看输入符号
- o 若reduce,输入符号及整个input buffer没有任何变化
- o 若shift,输入符号从input buffer移入stack

LR(0) Parsing

- Construct LR(0) automaton from the Grammar[由文法构建自动机]
- Idea: assume
 - Input buffer contains α[但buffer不止有α]
 - Next input is *t*[α后是t]
 - DFA on input α terminates in state sα处理完毕后处于状态s
- Next: **reduce** by $X \rightarrow \beta$ if[归约]
 - s contains item $X \rightarrow \beta$.
- Or, shift if[移进]
 - s contains item $X \rightarrow \beta \cdot t\omega$
 - Equivalent to saying s has a transition labeled t

