Name:

(Supp-4) Let $\alpha \colon A \to B$ be a mapping of sets. Define a relation on A by $a_1 \equiv a_2$ if and only if $\alpha(a_1) = \alpha(a_2)$. This is in fact an equivalence relation. Thus there is a set of equivalence classes we will denote by A_{\equiv} .

Define $\sigma \colon A_{\equiv} \to B$ by $\sigma([a]) = \alpha(a)$.

1. Show that σ is well-defined. That is, show that if $[a_1] = [a_2]$, then $\sigma([a_1]) = \sigma([a_2])$.

2. Show that σ is one-to-one.

3. Show that if α is onto then σ is also onto.