6 Расчёт статических характеристик асинхронного электропривода с фазным ротором

6.2 Характеристики при ступенчатом реостатном пуске

Пуск привода осуществляется согласно схеме, приведенной на рисунке 1. Мы будем исходить из трех ступеней пуска.

Рисунок 1 – Схема для ступенчатого реостатного пуска АДФР

Величины пусковых сопротивлений рассчитываются графоаналитическим методом лучевой диаграммы в следующем порядке:

- строим естественную механическую характеристику двигателя;
- задаемся первым и вторым моментами переключения;

$$M_{\pi 1} = 0.8 M_{\text{M}} = 0.8 \cdot 414,26 = 331,408 \text{ (H·m)},$$

$$M_{\pi 2} = 7 M_{\text{c}} = 7 \cdot 25,684 = 180 \text{ (H·m)}.$$

- луч "gh" диаграммы проводим через две точки с координатами:

e)
$$M = M_{\pi 1} = 331,408$$
, $\omega = \omega_{e1}$;

f)
$$M = M_{\pi 2} = 180$$
, $\omega = \omega_{e2}$.

- проводим горизонталь "ji" через точку идеального холостого хода с координатами:

h)
$$M = 0$$
, $\omega = \omega_0$.

Точка "j" – есть точка пересечения этой горизонтали с вертикалью "aj", проведенной через точку "a" с координатами:

g)
$$M = M_{\pi 1} = 331,408$$
, $\omega = \omega_0$.

- продолжаем луч "gh" до пересечения с горизонталью "ji" в точке "A";
- строим полную лучевую диаграмму с пересечением лучей в точке "A". Если до естественной характеристики не укладывается целое число пусковых ступеней, то следует вернуться в пункт 2, задаться несколько большим, чем в первом случае, значением момента и повторить расчеты и построения так я и сделал, и взял $M_{\rm H2}=180~({\rm H\cdot m})$. Построенная диаграмма представлена на рисунке 2.

Рисунок 2 – Лучевая диаграмма

Рассчитываем сопротивления пусковых ступеней согласно выражениям:

$$R_{II} = r_p \cdot \frac{ac}{gj} = 0.13 \cdot \frac{43.49}{12} = 0.47 \text{ (OM)},$$

$$R_{II2} = r_p \cdot \frac{ce}{gj} = 0.13 \cdot \frac{19.33}{12} = 0.2 \text{ (OM)},$$

$$R_{II3} = r_p \cdot \frac{eg}{gj} = 0.13 \cdot \frac{4.83}{12} = 0.05 \text{ (OM)}.$$

Теперь рассчитываем параметры с учетом реостатов.

Для R₁:

$$\begin{split} r_p^{'} &= k_r \cdot (r_p + R_{\pi 1} + R_{\pi 2} + R_{\pi 3}) = 3,84 \cdot (0,13 + 0,47 + 0,2 + 0,05) = 3,26 \text{ (Om)}, \\ x_p^{'} &= k_r \cdot x_p = 3,84 \cdot 0,23 = 0,88 \text{ (Om)}. \\ s_\kappa &= \frac{r_p^{'}}{\sqrt{r_c^2 + (x_c + x_p^{'})^2}} = \frac{3,26}{\sqrt{0,53^2 + (0,56 + 0,88)^2}} = 2,12, \\ q &= \frac{r_c \cdot 2s_\kappa}{r_p^{'}} = \frac{0,53 \cdot 2 \cdot 2,12}{3,26} = 0,69. \\ M &= M_{_M} \cdot \frac{2 + q}{\frac{s}{s_k} + \frac{s_k}{s} + q}, \\ \omega &= \omega_0 (1 - s). \end{split}$$

В таблицу 1 заносим значения s, M и ω с учетом полного сопротивления ротора R_1 .

Таблица 1 – Значения для построения характеристики

S	1	0,8	0,7	0,6	0,5	0,3	0,2	0,1	0
М, Н·м	339,6	299,77	275,2	247,28	215,7	141,09	97,88	50,79	0
ω, рад/с	0	15,706	23,56	31,4	39,27	54,97	62,82	70,67	78,67

Для R₂:

$$\mathbf{r}_{p} = \mathbf{k}_{r} \cdot (\mathbf{r}_{p} + \mathbf{R}_{n2} + \mathbf{R}_{n3}) = 3,84 \cdot (0,13 + 0,47 + 0,05) = 2,49 \text{ (Om)},$$

$$\mathbf{x}_{p} = \mathbf{k}_{r} \cdot \mathbf{x}_{p} = 3,84 \cdot 0,23 = 0,88 \text{ (Om)}.$$

$$s_{k} = \frac{r_{p}^{'}}{\sqrt{r_{c}^{2} + (x_{c} + x_{p}^{'})^{2}}} = \frac{2,49}{\sqrt{0,53^{2} + (0,56 + 0,88)^{2}}} = 1,62,$$

$$q = \frac{r_{c} \cdot 2s_{k}}{r_{p}^{'}} = \frac{0,53 \cdot 2 \cdot 1,62}{2,49} = 0,69.$$

$$M = M_{M} \cdot \frac{2 + q}{\frac{s}{s_{k}} + \frac{s_{k}}{s} + q},$$

$$\omega = \omega_{0}(1 - s).$$

В таблицу 2 заносим значения s, M и ω с учетом полного сопротивления ротора R_2 .

Таблица 2 – Значения для построения характеристики

S	1	0,8	0,7	0,6	0,5	0,3	0,2	0,1	0
М, Н·м	380,7	406,7	395,36	376,9	349,3	257,75	189,19	103,3	0
ω, рад/с	0	15,706	23,56	31,4	39,27	54,97	62,82	70,67	78,67

Для R₃:

$$\begin{split} r_p^{'} &= k_r \cdot (r_p^{} + R_{_{\Pi 3}}) = 3,84 \cdot (0,13 + 0,05) = 0,69 \text{ (Om)}, \\ x_p^{'} &= k_r \cdot x_p^{} = 3,84 \cdot 0,23 = 0,88 \text{ (Om)}. \\ s_{_K} &= \frac{r_p^{'}}{\sqrt{r_c^2 + (x_c^{} + x_p^{'})^2}} = \frac{0,69}{\sqrt{0,53^2 + (0,56 + 0,88)^2}} = 0,45, \\ q &= \frac{r_c \cdot 2s_{_K}}{r_p^{'}} = \frac{0,53 \cdot 2 \cdot 0,45}{0,69} = 0,69. \\ M &= M_{_M} \cdot \frac{2 + q}{\frac{s}{s_k} + \frac{s_k}{s} + q}, \\ \omega &= \omega_0 (1 - s). \end{split}$$

В таблицу 3 заносим значения s, M и ω с учетом полного сопротивления ротора R_3 .

Таблица 3 – Значения для построения характеристики

S	1	0,8	0,7	0,6	0,5	0,3	0,2	0,1	0
М, Н·м	331,4	367,74	385,8	401,8	412,56	390	329,26	205,9	0
ω, рад/с	0	15,706	23,56	31,4	39,27	54,97	62,82	70,67	78,67

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

На рисунке 3 изображены характеристики при реостатном пуске АДФР.

Рисунок 3 – Характеристики при ступенчатом реостатном пуске