HW/SW Codesign AS 2009

Exercise 8: Design Space, Pareto Points

25. November 2009

Nikolay Stoimenov nikolays@tik.ee.ethz.ch

Exercise Topics

- Given a task graph, a number of resource components, and constraints (binding to component, cost of a component, execution times of tasks on a component)
 - Determine all possible resource allocations, bindings of tasks, (and schedules). Calculate cost and total execution time for each design point
- Determine Pareto points in the design space

Multi-criteria optimization / Pareto-points

Multi-criteria optimization / Pareto-points

Multi-criteria optimization / Pareto-points

Dominance, Pareto Points

- A (design) point J_k is dominated by J_i , if J_i is
 - better or equal than J_k in all criteria and
 - better in at least one criterion.
- A point is Pareto-optimal or a Pareto-point, if it is not dominated.
- The domination relation imposes a partial order on all design points
 - We are faced with a set of optimal solutions.

Multiobjective Optimization

Pareto set = set of all Pareto-optimal solutions

The Knapsack Problem

weight = 750g profit = 5

weight = 1500g profit = 8

weight = 300g profit = 7

weight = 1000g profit = 3

Goal: choose subset that

- · maximizes overall profit
- · minimizes total weight

The Solution Space

The Trade-off Front

Institute of Technology

Observations: • there is no single optimal solution, but **2** some solutions (•) are better than others (•) profit 20 15 finding the good solutions 10 5 weight 2000g **500g** 1000g 1500g 2500g 3000g 3500g Swiss Federal Computer Engineering