

Congestion Pricing in a World of Fully-Automated Vehicles (AVs): Analyzing Traffic & Traveler Behaviors

Kara Kockelman

UT Austin Professor of Transportation Engineering & NTU Tan Chin Tuan Exchange Fellow in Engineering

Long-term: AVs Add Much VKT

- +10% from longer urban trips to more distant stores & such.
- +5 to 15% from mode shifts away from transit & walk modes.
- +10% from "driving" by **under-served populations** (elderly, infirm, & youth).
- +10% from empty driving in Shared AVs (SAVs).
- +10% from **shift away from airline** travel on trips < 800 km.

Perhaps +10% from land use changes? (sprawl)

→ VKT/capita is likely to rise > 25%

Central Question: Can tolling strategies keep traffic moving while improving social welfare?

PART I Real-time Pricing of AVs + HVs

2019 Transp Research Record paper with **Jooyong Lee**

Introduction

- Automated driving makes travel easier, adding VMT to congested networks. Most regions need CP to keep moving.
- Human-driven + AV mixtures (HV vs. CACC) & driver/vehicle behaviors will be key to traffic conditions, along with toll levels + policies.
- Cooperative Adaptive Cruise Control (CACC) = key automation technology used here, to microscopically simulate traffic flows (along with standard car-following choices for HVs).
- This work develops real-time traffic-based CP for mixtures of CACCs & HVs, to anticipate simple-network outcomes (for fixed-demand with variable departure-time examples).

Newell's Car-following Theory for HV Driving

- HVs use standard car-following on single-lane roadway (no passing permitted).
- If distance to lead vehicle < min. stopping sight distance (SSD), HV is in car-following mode.
- Else, HV moves at free-flow speed.

Recall that
$$\frac{SSD}{2g(f_b+G)}$$

where t_r = driver's response time (2 s assumed), g = 9.81 m/s², f_b = coef. of (emergency) braking friction (0.4 assumed), & G = roadway grade (0 % [flat roads] assumed here).

CACC Car-Following

Acquire & respond to info on instrumented forward vehicles within radio range.

$$a_{ref_r} = a_{ld} + h(v_{ld} - v_{flw}) + (s_{flw} - s_{ref}), \text{ (h=0.58)}$$

where a_{ld} = acceleration of the leader

Cooperative

 v_{ld} = speed of the leader

 v_{flw} = speed of the follower

 s_{flw} = spacing between the leader & the follower

 s_{ref} = reference spacing

Adaptive

$$a_{ref_d} = k \left(v_{des} - v_{flw} \right), \text{ (k=0.3)}$$

where v_{des} = desired speed

 v_{flw} = current speed of the follower

Cruise Control

$$\therefore a_{flw} = \min(a_{ref_r}, a_{ref_d})$$

CAVs adjust speeds & positions for safer & more efficient driving.

Reference: Van Arem et al., 2006

Network Assumptions

- 3 routes connect single OD pair. Route lengths, capacities & speed limits differ.
- Links 1 & 2 = tolled. So Route 1 = fully tolled, & Route 2 = partly tolled.
- Node A = stop-controlled intersection → Delays at Node A.
- Simulated for 1 hour of heavy traffic → Delays in Node O due to heavy traffic.

Desired Departure Time Assumptions (but travelers can delay trips to avoid tolls)

Demand levels every 5 minutes, vary from 2200 veh/hr for 5 min, to 1400, 1300, 1000, 2000, 2000, 1600, 1800, 1300, & 1200 veh/hr.

Other Assumptions

- Network starts empty, & vehicles wait to enter at Node O if another vehicle has arrived first & is still occupying this node.
- BPR function for running times along each link:

$$t_i = t_{ff} \left(1 + \alpha \left(\frac{q_i}{c_i} \right)^{\beta} \right), \alpha = 0.84, \beta = 5.5$$

where t_{ff} = free-flow travel time = link length/speed limit, q_i = flow of link i, & c_i = capacity of link i

- Total travel time = running time + intersection delay + network entry wait time (if initial links are backed up).
- Travelers have full information on current tolls & travel times (thanks to navigation apps).

Values of Travel Time

- CACC owners are more tech-savvy, & likely have higher
 VOTT than HV drivers, on average.
- Thus, 50% of HVs assumed to have VOTT1 = \$15/hr & 50% VOTT2 = \$7/hr, while 64% of CACCs travel with VOTT1 & just 36% have VOTT2.
- Route Choice minimizes generalized cost to each traveler = VOTT*route travel Time + route Tolls

Marginal Social Cost Tolling

$$AC(q) = VOTT * t = VOTT * \frac{d}{v} = \frac{VOTT}{v}$$

$$TC(q) = q \frac{VOTT}{v}$$

$$MC(q) = \frac{dTC(q)}{dq} = \frac{VOTT}{v} - \frac{qVOTT}{v^2} \frac{dv}{dq} = AC(q) - \frac{qVOTT}{v^2} \frac{dv}{dq}$$

$$\tau = MC(q) - AC(q) = -\frac{q \text{ VOTT}}{v^2} \frac{dv}{dq} = -\frac{\text{VOTT}}{v} \left(\frac{q}{v} \frac{dv}{dq} \right) \ge 0$$

Traffic stream model required

Marginal Congestion Cost

• Greenshield's speed-density assumptions used here, to simplify marginal social cost (congestion toll) calculations: $q = v_f \left(1 - \frac{k}{k_i}\right) k$

inal Tall Calculations

Final Toll Calculations

$$\tau_{\pmb{i}} = -\frac{\textit{VOTT}}{\textit{v}} \left(\frac{\textit{q}}{\textit{v}} \frac{\textit{dv}}{\textit{dq}} \right) = -\frac{\textit{VOTT}}{\textit{v}} \left(\frac{\textit{v}_f - \textit{v}}{\textit{2v} - \textit{v}_f} \right) \quad \text{(for link \textit{i} assuming Greenshield's model, so $\textit{v} < \textit{v}_f/2$)}$$

 $q = q_1 + q_2$ (where $q_j = flow$ by those with $VOTT_j$)

Thus,
$$\tau_i = \sum_{j=1}^{2} \left\{ -\frac{VOTT_j}{v_j} \left(\frac{v_f - v_j}{2v_j - v_f} \right) \right\}$$
 for link i

Notes: Reactive tolling used here, based on prior 5 minute period's traffic conditions.

Each of 6 scenarios run 100 times: Toll vs. No toll, %CACCs = 0%, 50%, & 100%

Results: Speeds & Times

- Rising CACC penetration rate improves travel speeds of all scenarios, so congestion-based tolls fall as CACC use rises.
- Tolling policy delivers higher speeds along Route 1 (fully tolled), but lower speeds on Routes 2 (partly tolled) & 3 (non-tolled).
- Not-tolled scenarios have almost similar travel time among routes.
 When tolled, Route 1 delivers shortest travel times.

Average result across 100 Iterations		0% CACCs			50% CACCs			100% CACCs		
		Route 1	Route 2	Route 3	Route 1	Route 2	Route 3	Route 1	Route 2	Route 3
Tolled Scenarios	Average Toll (\$/mi)	5.95	\$/mi	-	4.0	04	-	1.	55	-
	Travel Speed (mi/hr)	33.02 mph	23.46 mph	20.66 mph	37.11	26.92	23.96	47.12	36.89	32.12
	Travel time (min)	3.61 min	4.92 min	5.41 min	3.22	4.29	4.67	2.53	3.13	3.48
Not-tolled Scenarios	Travel Speed (mi/hr)	31.1 mph	28.2	27.0	34.7	31.8	31.3	45.2	42.4	38.5
	Travel time (min)	3.84 min	4.09	4.14	3.44	3.64	3.57	2.64	2.72	2.90

Results: Route Choices & Tolls

- Dynamic change in route choice & toll rate observed
- Route 1 demand rises with %CACCs, while Route 3's falls.

Time Point in	0% CACCs				50% CACCs				100% CACCs			
Simulation (secs)	Route 1 veh. (#)	Route 2 veh. (#)	Route 3 veh. (#)	Toll (\$/mi)	Route 1 veh. (#)	Route 2 veh. (#)	Route 3 veh. (#)	Toll (\$/mi)	Route 1 veh. (#)	Route 2 veh. (#)	Route 3 veh. (#)	Toll (\$/mi)
300	125	0	1	0 \$/mi	132	0	0	0	150	0	1	0
600	2	3	124	13.21	1	14	117	15.31	6	28	120	6.99
900	44	10	102	3.65	27	45	68	3.07	63	11	34	0.00
1200	1	62	23	15.66	0	37	44	8.06	44	0	29	0.00
1500	49	7	93	0	70	3	82	0	83	1	77	0
1800	15	38	87	6.68	13	41	89	3.38	1	69	78	3.69
2100	67	2	96	0	78	3	86	0	79	10	70	0
2400	0	35	90	22.15	0	46	89	9.14	0	70	72	3.44
2700	49	9	97	1.03	45	11	65	0.00	56	1	44	0.00
3000	0	70	35	14.24	0	62	33	4.10	63	0	48	0.00
3300	0	0	0	0	0	0	0	0	0	0	0	0
3600	0	0	0	0	0	0	0	0	0	0	0	0
Average (#)	29.33	19.67	62.33	6.39	30.50	21.83	56.08	3.59	45.42	15.83	47.75	1.17
Percent (%)	26.3	17.7	56.0		27.4	19.6	50.4		40.8	14.2	42.9	

VOTT & Route Choice

- VOTT affects Route choice: VOTT1 drivers (\$15/hr) choose Route 1 more than VOTT2 driver (\$7/hr).
- CACC penetration rate affects Route choice: More drivers select Route 1 when CACC penetration rate increases.
- Tolling strategy affects Route choice: Drivers in Not-tolled scenario choose Route 1 more (no toll); & Fewer drivers in Route 1 when tolled → travel speed rises.

Average value from 100 Iterations		CACC 0%			CACC 50%			CACC 100%		
		Route 1 (%)	Route 2 (%)	Route 3 (%)	Route 1 (%)	Route 2 (%)	Route 3 (%)	Route 1 (%)	Route 2 (%)	Route 3 (%)
Tolled Scenario	VOTT1 (\$15/hr)	13.21 (26.88)	10.19 (20.74)	25.74 (52.38)	16.59 (29.25)	11.13 (19.62)	29 (51.13)	22.92 (36.11)	13.62 (21.46)	26.93 (42.43)
	VOTT2 (\$7/hr)	12.07 (23.73)	10.56 (20.76)	28.23 (55.51)	12.71 (29.36)	8.45 (19.52)	22.12 (51.12)	14.67 (40.17)	6.66 (18.22)	15.2 (41.61)
Not-tolled Scenario	VOTT1 (\$15/hr)	18.99 (38.93)	1.97 (4.04)	27.82 (57.03)	24.00 (44.94)	3.63 (6.79)	25.77 (48.27)	35.83 (56.51)	1.95 (3.07)	25.62 (40.42)
	VOTT2 (\$7/hr)	19.38 (37.84)	1.42 (2.77)	30.42 (59.39)	20.22 (43.38)	3.39 (7.28)	22.99 (49.34)	19.39 (52.98)	2.1 (5.74)	15.11 (41.28)

Travel Times, Revenues, & Net Benefits

- Route 1's travel time falls with this tolling strategy, while
 Route 2 & Route 3's travel times rise, as expected.
- Route 2 & Route 3's travel time increases can be compensated by revenues earned from toll users. (Credit-based congestion pricing!)
- Net social benefits are positive when tolling strategy is applied to the network. NSB falls as %CACC rises!
- CACC improves the network, since it lowers congestion & thus tolls!
- However, tolling still improves the network conditions, since NSB remains positive with higher %CACCs.
- As expected, higher VOTT drivers tend to choose tolled routes more.
- +\$675/hr net benefits for 0% CACC case can be used to improve Routes 2 & 3.

PART II Regional Congestion Pricing in a World of Personal + Shared AVs

2019 Transp Research Part C paper

with Michele Simoni, Murthy Gurumurthy & Joschka Bischoff

COLLABORATE. INNOVATE. EDUCATE.

cxpectations of privately owned + shared AVs (AVs + SAVs)

BENEFITS

in road safety,
accessibility,
electrification of
vehicles + higher
link capacities
may be mostly
offset by Rising
Congestion?

OPPORTUNITY:

Smart system
management with
congestion pricing
(traditional &
advanced strategies)

Agent-based Austin Simulation

- MATSim model from ETH Zurich + TU Berlin
- Activity-based (using people's daily plans)
- Dynamic traffic assignment
- Endogenous mode, departure time, & route choices

Agent 1: Home→Leisure →Shopping→Home

Agent 2: Home→Education
→Leisure→Home

Agent 3: Home → Work → Home

Scenarios Evaluated

Base Scenario: No AVs

- 5% sample from 1M population
- Car, transit, + walk/bike modes
- High car access (90% of travelers)

Private AV-Oriented Scenario

- 90% of travelers now own AVs
- AVs travel similar to cars, but lower cost
- Just 1 SAV for every 50 agents, function similar to current taxis

SAV-Oriented Scenario

- Low car ownership (10% of travelers)
- Large fleet: 1 SAV for every 10 agents
- 50% lower SAV fares

Travel Demand & Traffic Efficiency Changes

- New, high-service modes: No AV parking costs + SAVs dynamically dispatched (door to door)
- 50% lower VOTT for Drivers
- Non-linear rise in link capacities for mixed (HV + AV flows)

Mode Split & VMT Results

	Base Scenario	AV-oriented Scenario	SAV-oriented Scenario
Total Weekday VMT	2.8M mi/day	3.0M mi/day	3.3 M mi/day
VMT by Empty SAVs	0	< 0.1M mi/day	0.3 M miles/day
Total Travel Delay (veh-hours per weekday)	437,887	459,781	523,594

Simple Tolling Strategies

1. Congestion-based

- Toll most congested links (v/c > 0.9)
- Simply \$0.10 to \$0.20 each, during peak periods
- Just 4% of Austin's network

2. Distance-based

- Simply \$0.10 per VMT
- Over entire day

Advanced CP Strategies

3. Marginal Cost Pricing (MCP): Each link's toll varies dynamically based on fundamental diagram for traffic flow...

$$delay, d = \left[\left(\frac{l}{v_B} - \frac{l}{v_A} \right) \cdot n \right] \qquad \rightarrow \qquad toll = \tau = max \left\{ 0; \frac{d \cdot VOTT}{\Delta n} \right\}$$

where v = average speed, n = #vehicles & VOTT = (average) value of travel time

4. Travel Time-based Congestion Tolls: $\tau = \frac{\alpha(\sum_{i=1}^{M} d_i) \cdot VOTT}{D \cdot r}$

where D = # departures; r = average trip duration; $\alpha =$ parameter

Results: Mode Shifts

All tolling scenarios lower AV & SAV use...

AV & SAV trip changes (%)

Transit use rises, especially under simple link-based (v/c > 0.9) tolling...

Results: Network Performance Changes

Results: Welfare Changes

- Link-Based Scheme: Total traveler welfare rises just
 +0.5% & +0.7% across scenarios.
- Distance-Based Scheme: Welfare up +1.2% & +1.4% in SAV & No-AV Scenarios, but falls -1.2% in the AV-Oriented Scenario (!).
- MCP Tolling: +2.0% & +3.2% in AV & SAV Scenarios
- Travel-Time Congestion-based Tolling: +2.6% &
 +4.4% in AV & SAV Scenarios = BEST result

Conclusions

- Smart system management exploits benefits of smart cars & navigation apps.
- All CP strategies improve mode splits & traffic conditions.
- But relatively low welfare gains, even after compensation → Importance of thoughtful credit distribution.
- Dynamic CP schemes are best (greatest improvements for lowest behavioral changes).
- Opportunities for future research: endogenous destination choice, explicit parking choice, & more advanced strategies.

PART III

Value of Dynamic Ride-Sharing in SAVs: Opportunities for Congestion Pricing

2019 *Transp Research Record* article with K. **Murthy Gurumurthy & Michele Simoni**

DRS: Dynamic Ride-Sharing

SAVs can increase congestion via empty VMT & added demand (from new motorists & longer trips, mode shift, etc.)

But...

- SAVs can also raise average vehicle occupancy (AVO) & lower VMT (through DRS) & lower emissions & energy use (via smaller vehicles, DRS + keeping engines warm)
- Smart cars enable smarter system management.
- What's the net result on congestion?

Fleet Size + Fare Assumptions

- 4 fleet sizes: 1 SAV per 10, 25, 50 & 100 travelers
- DRS & SAV Pricing to mimic ride-pooling apps
- Solo travel in SAV costs 2x a shared ride.

DRS Pricing	Fixed Cost for Pickup	+ Distance- based Cost	+ Time- based Cost		
High Fare	25 ¢	20¢ per mi	<mark>5</mark> ¢ per min		
Medium Fare	15¢	10¢	3¢		
Low Fare	10¢	5¢	2 ¢		

Congestion Pricing (CP) Simulations

- Austin key congested corridors selected for CP.
- Peak-period tolling peaks (7-9 am & 5-7 pm).
- CP Tolls based on travel times: 5¢ per min.
- MATSim DTA code modified for SAVs + DRS + CP.
- Horl's heuristic DRS code with 2 settings:
 - SAV Under-supply: High ratio of # requests to available SAVs (low-cost DRS paths calculated)
 - SAV Over-supply: Low ratio (requests matched instantly to nearest SAV)

Results: Mode Splits + VMT

LOW DRS FARE: 10¢, 5¢/mi, 2¢/min

* with congestion pricing

%eVMT, %ldling, & AVO

LOW DRS FARES: 10¢ pickup + 5¢/mi + 2¢/min

* with congestion pricing

Profits + Tolls + Trips/day/SAV

* with congestion pricing

Conclusions

- AVs & SAVs will bring benefits but also much VMT, especially with large fleet sizes or AV ownership levels.
- As expected, CP moderates VMT + congestion.
- But truly dynamic pricing can be harmful & needs much smoothing via demand anticipation.
- DRS is helpful, but may be popular in US only at competitive fares.
- Both large & small SAV fleet sizes (1:10 & 1:100 persons) deliver low DRS use (due to excess supply of vehicles & inadequate matching, respectively).
- Fleet profits ≈ \$113/SAV/day, even with low fares.
- Targeted analysis needed if goal is to maximize AVO.

Paper References

- Lee, J., & Kockelman, K. 2019. Development of Traffic-based Congestion Pricing & Its Application to Automated Vehicles. Transportation Research Record: Journal of the Transportation Research Board 2673 (6): 536-547.
- Simoni, M.D., Kockelman, K., Gurumurthy, K.M. & Bischoff, J. 2019. Congestion Pricing in a World of Self-Driving Vehicles: An Analysis of Different Strategies in Alternative Future Scenarios. Transportation Research Part C: Emerging Technologies 98: 167-185.
- Gurumurthy, K.M., Kockelman, K. & Simoni, M.D. 2019. Benefits & Costs of Ride-Sharing in Shared Automated Vehicles Across Austin, Texas: Opportunities For Congestion
 Pricing. Transportation Research Record: Journal of the Transportation Research Board 2673 (6): 548-556.

Thank you! Questions & Suggestions?

30+ CAV papers & reports at www.caee.utexas.edu prof/kockelman