Digital Logic Systems

Aakash Jog

2014-15

Contents

1	Lecturer Information Required Reading				
2					
Ι	Int	trodu	ction to Discrete Math	4	
1			Functions	4	
	1.1	Import	tant Boolean Functions	5	
2	Mathematical Induction				
3	Sequences and Series				
	3.1	Sequer	nces	6	
		3.1.1	Arithmetic Sequences	6	
		3.1.2	Geometric Sequences		
	3.2	Series		6	
			Arithmetic Series		
		3.2.2	Geometric Series	7	
		3.2.3	Harmonic Series	7	

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

4	Directed Graphs	E
5	Binary Representation	11
6	Propositional Logic	12

1 Lecturer Information

Prof. Guy Even

Office: Wolfson 202 Telephone: 03-640-7769 E-mail: guy@eng.tau.ac.il

2 Required Reading

Guy Even and Moti Medina: $Digital\ Logic\ Design$

Part I

Introduction to Discrete Math

1 Sets and Functions

Definition 1 (Universal set). The universal set is a set that contains all the possible objects.

Definition 2 (Set). A set is a collection of objects from a universal set.

Definition 3 (Subset). A is a subset of B if every element in A is also an element in B. It is denoted as $A \subseteq B$

Definition 4 (Equal sets). Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$.

Definition 5 (Strict containment). $A \subseteq B \iff A \subseteq B$ and $A \neq B$.

Definition 6 (Empty set). The empty set is the set that does not contain any element. It is usually denoted by \emptyset .

Definition 7 (Power set). The power set of a set A is the set of all the subsets of A. The power set of A is denoted by P(A) or 2^A .

Definition 8 (Ordered pair). Two objects (possibly equal) with an order (i.e., the first object and the second object) are called an ordered pair.

Definition 9 (Cartesian product). The Cartesian product of the sets A and B is the set

$$A \times B \triangleq \{(a, b) | a \in A \text{ and } b \in B\}$$

Theorem 1 (De Morgan's Laws).

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Theorem 2 (Binary relation). A subset $R \subseteq A \times B$ is called a binary relation.

Definition 10 (Function). A binary relation $R \subseteq A \times B$ is a function if for every $a \in A$ there exists a unique element $b \in B$ such that $(a, b) \in R$.

Definition 11 (Extension). Let f and g denote two functions. g is an extension of f if $f \subseteq g$, i.e., if every ordered pair in f is also an ordered pair in g.

Definition 12 (Boolean function). A function B : 0, 1n 0, 1k is called a Boolean function.

1.1 Important Boolean Functions

Definition 13 (NOT).

$$NOT(x) = 1 - x$$

Definition 14 (AND).

$$AND(x) = x \cdot y$$

Definition 15 (OR).

$$OR(x) = x + y - (x \cdot y)$$

Definition 16 (XOR).

$$XOR(x) = (x + y) \mod 2$$

2 Mathematical Induction

Theorem 3. For every $n \geq 2$, and for sets A_1, \ldots, A_n ,

$$\overline{A_1 \cup \dots \cup A_n} = \overline{A_1} \cap \dots \cap \overline{A_n}$$

Proof. If n=2, the statement is true, by De Morgan's Laws. Let

$$B = A_1 \cup \cdots \cup A_n$$

If possible, let

$$\overline{B} = \overline{A_1} \cap \dots \cap \overline{A_n}$$

Therefore,

$$\overline{A_1 \cup \dots \cup A_n \cup A_{n+1}} = \overline{B \cup A_{n+1}}$$

$$= \overline{B} \cap \overline{A_{n+1}}$$

$$= (\overline{A_1} \cap \dots \cap \overline{A_n}) \cap \overline{A_{n+1}}$$

Theorem 4 (Pigeon-hole Principle). If there are n holes and m > n pigeons then there exists at least one hole with more than one pigeon in it. Let $f: A \to \{1, ..., n\}$, and |A| > n, then f is not one-to-one, i.e., there are distinct $a_1, a_2 \in A$; $a_1 \neq a_2$, such that $f(a_1) = f(a_2)$.

3 Sequences and Series

3.1 Sequences

3.1.1 Arithmetic Sequences

Definition 17 (Arithmetic Sequence). An arithmetic sequence $\{a_n\}_{n=0}^{\infty}$ is defined as

$$a_n \doteq a_0 + n \cdot d$$

3.1.2 Geometric Sequences

Definition 18 (Geometric Sequence). A geometric sequence $\{b_n\}_{n=0}^{\infty}$ is defined as

$$b_n \doteq b_0 \cdot q^n$$

3.2 Series

Definition 19 (Series). The sum of the elements of a sequence is called a series.

3.2.1 Arithmetic Series

Theorem 5.

$$S_n = a_0 \cdot (n+1) + d \cdot \frac{n(n+1)}{2}$$

Proof.

$$S_n = \sum_{i=0}^n a_i$$

$$= \sum_{i=0}^n a_i + id$$

$$= \sum_{i=0}^n a_0 + \sum_{i=0}^n id$$

$$= a_0(n+1) + d \sum_{i=0}^n i$$

$$= a_0(n+1) + d \cdot \frac{n(n+1)}{2}$$

For estimation,

$$S_n = \sum_{i=0}^n a_i$$

$$\approx \int_0^n f(x) dx$$

$$= \int_0^n (a_0 + d \cdot x) dx$$

$$\therefore S_n \approx a_0 n + \frac{d}{2} n^2$$

3.2.2 Geometric Series

Theorem 6.

$$S_n = b_0 \cdot \frac{q^{n+1} - 1}{q - 1}$$

For estimation,

$$S_n = \sum_{i=0}^n b_i$$

$$\approx \int_0^n g(x) dx$$

$$= \int_0^n b_0 q^x dx$$

$$\therefore S_n \propto e^n$$

3.2.3 Harmonic Series

Theorem 7. Let

$$H_n \doteq \sum_{i=1}^n \frac{1}{i}$$

Then, $\forall k \in \mathbb{N}$,

$$1 + \frac{k}{2} \le H_{2^k} \le k + 1$$

Proof. If k = 0,

$$H_{2^0} = H_1$$

$$= 1$$

$$\therefore 1 \le k + 1$$

If possible, let $H_{2^k} \leq k + 1$. Therefore,

$$H_{2^{k+1}} = H_{2^k} + \sum_{i=2^k+1}^{2 \cdot 2^k} \frac{1}{i}$$

Therefore, by the induction hypothesis,

$$H_{2^{k+1}} \le k+1 + \sum_{i=2^k+1}^{2 \cdot 2^k} \frac{1}{i}$$

As the harmonic sequence monotonically decreases, the largest term between $2^k + 1$ and $2 \cdot 2^k$ is $\frac{1}{2^k}$. Therefore, $\sum_{i=2^k+1}^{2 \cdot 2^k} \frac{1}{i} \leq \frac{1}{2^k} \cdot 2^k$. Therefore,

$$H_{2^{k+1}} \le k + 1 + \frac{1}{2^k} \cdot 2^k$$

 $\therefore H_{2^{k+1}} \le k + 2$

Therefore, by induction,

$$H_{2^k} \le k + 1$$

If k = 0,

$$H_{2^0} = 1$$

$$\geq 1 + \frac{k}{2}$$

If possible, let $H_{2^k} \ge 1 + \frac{k}{2}$.

Therefore,

$$H_{2^{k+1}} = H_{2^k} + \sum_{i=2^k+1}^{2 \cdot 2^k} \frac{1}{i}$$

$$\therefore H_{2^{k+1}} \ge 1 + \frac{k}{2} + \frac{1}{2 \cdot 2^k} \cdot 2^k$$

$$\therefore H_{2^{k+1}} \ge 1 + \frac{k}{2} + \frac{1}{2}$$

$$\therefore H_{2^{k+1}} \ge 1 + \frac{k+1}{2}$$

Therefore, by induction,

$$H_{2^k} \ge 1 + \frac{k+1}{2}$$

Therefore,

$$1 + \frac{k}{2} \le H_{2^k} \le k + 1$$

For estimation,

$$H_n \approx \int_{1}^{n} \frac{1}{x} \, \mathrm{d}x$$
$$= \ln x$$

4 Directed Graphs

Definition 20 (Directed graph). Let V denote a finite set and $E \subset V \times V$. The pair G = (V, E) is called a directed graph. An element $v \in V$ is called a vertex or a node. An element $(u, v) \in E$ is called an arc or a directed edge.

Definition 21 (Path or walk). A path or a walk of length l in a directed graph G = (V, E) is a sequence $(v_0, e_0, v_1, e_1, \dots, v_{l-1}, e_{l-1}, v_l)$, such that

1.
$$v_i \in V \forall 0 \le i \le l$$

2.
$$e_i \in E \forall 0 \le i \le l$$

3.
$$e_i = (v_i, v_{i+1}) \forall 0 \le i < l$$

Definition 22 (Closed path or cycle). A path is said to be closed if the first and last vertices are equal.

Definition 23 (Open path). A path is said to be open if the first and last vertices are distinct.

Definition 24 (Simple path). An open path is said to be simple if every vertex in the path appears only once in the path.

Definition 25 (Closed path). A closed path is said to be simple if every interior vertex appears only once in the path.

Definition 26 (Directed acyclic graph). A directed acyclic graph (DAG) is directed graph that does not contain any cycles.

Definition 27 (In-degree). The in-degree of a vertex v is the number of edges that enter v. It is denoted as $\deg_{\mathrm{in}}(v)$.

Definition 28 (Out-degree). The out-degree of a vertex v is the number of edges that enter v. It is denoted as $\deg_{\text{out}}(v)$.

Definition 29 (Source and sink). A vertex is said to be a source if $\deg_{\text{out}}(v) = 0$. A vertex is said to be a sink if $\deg_{\text{in}}(v) = 0$.

Theorem 8. Each DAG has at least one sink.

Theorem 9. Each DAG has at least one source.

Definition 30 (Topological ordering). Let G = (V, E) denote a DAG with |V| = n. A bijection $\pi : V \to \{0, \dots, n-1\}$ is a topological ordering if $(u, v) \in E$ implies that $\pi(u) < \pi(v)$.

Algorithm 1 TS(V, E) - An algorithm for sorting the vertices of a DAG G = (V, E) in topological ordering.

- 1: Base Case: If |V| = 1, then let $v \in V$ and return $(\pi(v) = 0)$.
- 2: Reduction Rule
 - 1: Let $v \in V$ denote a sink and let E_v denote any path which begins from or ends in v.
 - 2: return $(TS(V \setminus v, E \setminus E_v)$ extended by $(\pi(v) = |V| 1))$.

Theorem 10. TS(V, E) computes a topological ordering of a DAG G = (V, E).

Definition 31 (Longest path ending in a node). A path Γ that ends in vertex v is a longest path ending in v if $|\Gamma'| \leq |\Gamma|$, for every path Γ' that ends in v.

Definition 32 (Longest path). A path Γ is a longest path if $|\Gamma'| \leq |\Gamma|$, for every path Γ' .

Theorem 11. If G = (V, E) is a DAG, then there exists a longest path that ends in v, for every v. In addition, there exists a longest path in G.

Algorithm 2 longest-path-lengths (V, E) - An algorithm for computing the lengths of longest paths in a DAG. Returns a delay function d(v).

- 1: topological sort: $(v_0, \ldots, v_{n1}) \leftarrow TS(V, E)$.
- 2: For j=0 to (n1) do
 - 1: If v_i is a source then $d(v_i) \leftarrow 0$
 - 2: Else $d(v_j) \leftarrow 1 + \max\{d(v_i)i < jand(v_i, v_j) \in E\}$

5 Binary Representation

Definition 33 (Binary string). A binary string is a finite sequence of bits.

Definition 34 (Least significant and most significant bit). The least significant bit of the string A[i:j] is the bit A[k], where $k = \min\{i, j\}$. The most significant bit of the string A[i:j] is the bit A[l], where $l = \max\{i, j\}$.

Definition 35 (Binary number). The natural number a is represented in binary representation by the binary string A[n-1:0] as

$$a \doteq \sum_{i=0}^{n-1} A[i] \cdot 2^i$$

The term 2^i is called the weight of the bit A[i].

Algorithm 3 BR(x, k) - An algorithm for computing a binary representation of a natural number a using k bits

```
1: if x \ge 2^k then

2: return fail

3: else if k = 1 then

4: return x

5: else if x \ge 2^{k-1} then

6: return \left(1 \circ \operatorname{BR}\left(x - 2^{k-1}, k - 1\right)\right)

7: else if x \le 2^{k-1} then

8: return \left(0 \circ \operatorname{BR}\left(x, k - 1\right)\right)

9: end if
```

6 Propositional Logic

Definition 36 (Constant or bit). A constant or a bit is either 0 or 1. As in the case of bits, 1 is interpreted as "true and a 0 as a false. The term bit is used in Boolean functions and in circuits while the term constants is used in Boolean formulas.

Definition 37 (Variable). A variable is an element in a set of variables. The set of variables is denoted by U. The set U does not contain constants. Variables are usually denoted by upper case letters.

Definition 38 (Connectives). Connectives are operators used to build longer formulas from shorter ones. The set of connectives is denoted by C.

Definition 39 (Arity). The arity of a connective is the number of operands or inputs that it accepts.

Definition 40 (Parse tree). A parse tree is a pair (G, π) where G = (V, E) is a rooted tree and $\pi: V \to \{0, 1\} \cup U \cup C$ is a labelling function that satisfies

- 1. A leaf is labelled by a constant or a variable, i.e. if $v \in V$ is a leaf, then $\pi(v) \in \{0,1\} \cup U$.
- 2. An interior vertex v is labelled by a connective whose arity is equal to the in-degree of v, i.e. if $v \in V$ is an interior vertex, then $\pi(v) \in \mathcal{C}$ is a connective with arity $\deg_{\mathrm{in}}(v)$.