Complementos de Matematica II

15 de septiembre de 2019

Índice general

Ι	Te	oría d	lel orden y Grupos	3	
1.	Relaciones				
	1.1.	Definic	ciones	4	
		1.1.1.	Relación	4	
		1.1.2.	Relación funcional	4	
		1.1.3.	Relación inversa	4	
		1.1.4.	Union, intersección y diferencia	5	
		1.1.5.	Composición	5	
		1.1.6.	Restricción	5	
	1.2.	Clasifie	cación de relaciones	5	
		1.2.1.	Propiedades	5	
		1.2.2.	Relación de equivalencia	5	
	1.3.	Teoren	nas	7	
		1.3.1.	Invertibilidad de relaciones funcionales	7	
		1.3.2.	Composición de funciones	7	
		1.3.3.	Herencia de propiedades	7	
		1.3.4.	Biyectividad entre relaciones de equivalencia y parti-		
			ciones	8	
		1.3.5.	Teorema de factorización	8	
2.	Conjuntos ordenados				
		•	lenes	9	
		2.1.1.	Definiciones	9	
		2.1.2.	Orden inverso	10	
		2.1.3.	Teorema de extremos en preordenes	10	
	2.2.	Relacio	ón de orden	10	
3.	Ret	Retículos 11			

ÍNDICE GENERAL	2
4. Grupos	12
II Teoría de categorias	13

Parte I Teoría del orden y Grupos

Capítulo 1

Relaciones

1.1. Definiciones

1.1.1. Relación

Una relación R entre un conjunto A y un conjunto B es un subconjunto del producto cartesiano $A \times B$. Para notar que un elemento $a \in A$ se relaciona con otro elemento $b \in B$ escribimos aRb o $(a,b) \in R$.

1.1.2. Relación funcional

Diremos que una relación $R \subseteq A \times B$ es una relación funcional si:

$$aRb \wedge aRc \Rightarrow b = c$$

Llamaremos dominio de la relación al conjunto $dom\left(R\right)=\{a\in A|\exists b\in B:aRb\}.$ Diremos que el conjunto $im\left(R\right)=\{b\in B|\exists a\in A:aRb\}$ es la imagen de R.

Cuando dom(R) = A diremos que R es una función.

1.1.3. Relación inversa

Si R es una relación entre A y B se define la relación inversa R^{-1} entre B y A como:

$$R^{-1} = \{(b, a) \in B \times A : aRb\}$$

1.1.4. Union, intersección y diferencia

Sean R y S relaciones entre A y B llamamos union de R y S a la relación $R \cup S$.

Analogamente podemos considerar las relaciones $R \cap S$ y R - S.

1.1.5. Composición

Dada una relación R entre A y B, y otra relación S entre B y C; definimos la relación:

$$S \circ R = \{(a, b) \in A \times C | \exists b \in b : aRb \land bSc \}$$

1.1.6. Restricción

Sean R una relación de A en B, $A' \subseteq A$ y $B' \subseteq B$, llamaremos restricción de R a $A' \times B'$ a la relación:

$$R|_{A'\times B'} = \{(a,b) \in A' \times B' : aRb\}$$

Si $f: A \to B$ es una función entonces $f|_{A'} = f|_{A' \times B}$.

1.2. Clasificación de relaciones

1.2.1. Propiedades

Sea R una relación de A en A, diremos que R es:

Reflexiva si $\forall a \in A : aRa$.

Simétrica si $\forall a, b \in A : aRb \Rightarrow bRa$.

Antisimétrica si $\forall a, b \in A : aRb \land bRa \Rightarrow a = b$.

Transitiva si $\forall a, b, c \in A : aRb \land bRc \Rightarrow aRc$.

1.2.2. Relación de equivalencia

Si R es una relación en A reflexiva, simétrica y transitiva diremos que R es una relación de equivalencia.

■ Llamaremos clase de equivalencia de $a \in A$ y lo notaremos \overline{a} al conjunto:

$$\overline{a} = \{b \in A : aRb\}$$

• A la siguiente partición de A la llamaremos conjunto cociente:

$$A/R = {\overline{a} : a \in A}$$

- La función $\pi: A \to A/R$ definida por $\pi(a) = \overline{a}$ es llamada proyección al cociente.
- Para cualquier función $f:A\to B$ llamaremos nucelo de f a la siguiente relación de equivalencia:

$$ker(f) = \{(a, a') : f(a) = f(a')\}$$

Observación Cuando definimos una función sobre el conjunto cociente de una relación de equivalencia, debemos prestar atención a la forma en la que lo hacemos. Consideremos a modo de ejemplo la siguiente función sobre el cociente de la relación de equivalencia modulo 5:

$$f : \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}$$

$$\overline{x} \to f(\overline{x}) = x$$

Esta función no esta bien definida, o mas precisamente, f no es una función. En efecto $f(\overline{0}) = 0$ y $f(\overline{5}) = 5$ pero $\overline{0} = \overline{5}$ por lo cual existe un elemento del dominio con dos imagenes diferentes.

Debemos entonces, cada vez que definimos una función sobre clases de equivalencia asegurarnos de que si $x \sim y$ entonces $f(\overline{x}) = f(\overline{y})$, de ser asi diremos que f tiene una buena definición.

1.3. Teoremas

1.3.1. Invertibilidad de relaciones funcionales

Enunciado Sea f una relación funcional de A en B, entonces f^{-1} es relación funcional si y solo si f es inyectiva.

Demostración

- \Longrightarrow : Sean a, a', b tales que f(a) = b y f(a') = b luego $f^{-1}(b) = a$ y $f^{-1}(b) = a'$ y como f^{-1} es funcional resulta a = a'.
- E: Sean a, a', b tales que $f^{-1}(b) = a$ y $f^{-1}(b) = a'$ luego f(a) = b y f(a') = b y como f es inyectiva resulta a = a'.

1.3.2. Composición de funciones

Enunciado Si $f: A \to B$ y $g: B \to C$ son funciones, entonces $g \circ f$ es una función.

Demostración Dado $a \in A$ sabemos que existe un único $b \in B$ tal que f(a) = b pues f es una función.

Por la misma razón, para dicho elemento b existe un único elemento $c \in C$ tal que $g(b) = g(f(a)) = g \circ f(a) = c$.

Hemos visto que dado $a \in A$ existe un único elemento $c \in C$ tal que $g \circ f(a) = c$, es decir $g \circ f$ es una función.

1.3.3. Herencia de propiedades

Enunciado Sean R una relación de A en B, $A' \subseteq A$ y $B' \subseteq B$, entonces si R es reflexiva tambien lo será $R|_{A'\times B'}$. También ocurre lo mismo si R es simétrica, antisimétrica o transitiva.

Demostración EJERCICIO.

1.3.4. Biyectividad entre relaciones de equivalencia y particiones

Enunciado Si R es una relación de equivalencia en A entonces A/R es una partición de A y además, dada una partición $P \subseteq \mathcal{P}(A)$ la relación definida por $a \sim b \iff \exists X \in P : a, b \in X$ es una relación de equivalencia.

Demostración EJERCICIO.

1.3.5. Teorema de factorización

Enunciado Si \sim es una relación de equivalencia en A y $f:A\to B$ es una función tal que $a\sim b\Rightarrow f(a)=f(b)$, entonces existe una única función $\widetilde{f}:A/\sim\to B$ tal que $f=\widetilde{f}\circ\pi$.

Demostración EJERCICIO. Definir $f(\overline{a}) = f(a)$ y probar que esta definición no depende del representante elegido.

Capítulo 2

Conjuntos ordenados

2.1. Preordenes

2.1.1. Definiciones

Una relación \leq en A es un preorden si es reflexiva y transitiva. Diremos que un elemento a es

```
maximal si \forall x: a \preceq x \Rightarrow x \preceq a.

minimal si \forall x: x \preceq a \Rightarrow a \preceq x.

máximo si \forall x: x \preceq a.

mínimo si \forall x: a \preceq x.

cota superior de B \subseteq A si \forall b \in B: b \preceq a.

cota inferior de B \subseteq A si \forall b \in B: a \preceq b.

supremo de B \subseteq A si a \in \min \{c \in A: c \text{ es cota superior de } B\}.

ínfimo de a \subseteq A si a \in \max \{c \in A: c \text{ es cota superior de } a\}.
```

2.1.2. Orden inverso

Si (A, \preceq) es un conjunto preordenado, el orden inverso \succeq se define como $a \succeq b \iff b \preceq a$, resultando este un preorden donde todas las definiciones se dualizan:

- a es elemento maximal en (A, \preceq) \iff a es elemento minimal en (A, \succeq) .
- a es cota superior en $(A, \preceq) \iff a$ es cota inferior en (A, \succeq) .
- a es supremo en $(A, \preceq) \iff a$ es ínfimo en (A, \succeq) .

2.1.3. Teorema de extremos en preordenes

Enunciado Sea \leq un preorden sobre un conjunto A, luego las siguientes proposiciones son validas:

- Si $M \in A$ es un elemento máximo, entonces también es maximal.
- Si $m \in A$ es un elemento mínimo, entonces también es minimal.

Demostración EJERCICIO.

2.2. Relación de orden

Capítulo 3

Retículos

Capítulo 4 Grupos

Parte II Teoría de categorias