A NATIONAL STUDY COMPARING CHARTER AND TRADITIONAL PUBLIC SCHOOLS USING PROPENSITY SCORE ANALYSIS

by

Jason M. Bryer

A Dissertation Submitted to the
University at Albany, State University of New York
In Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

School of Education

Department of Educational and Counseling Psychology

Division of Educational Psychology & Methodology

2014

A National Study Comparing Charter and Traditional Public Schools using Propensity Score Analysis

by

Jason M. Bryer

COPYRIGHT 2014

To my wife, Heather, and three sons Gabriel, Miles, and Rowan for providing the inspiration and support for life's journey.

Abstract

Unlike their private school counterparts, charter schools receive public funding but are relieved of some of the bureaucratic and regulatory constraints of public schools in exchange for being held accountable for student performance. Studies provide mixed results with regard to charter school performance. Charter schools are, by definition, schools of choice, and this means that observational data methods are required for comparing such schools with others. In observational data contexts, simple comparisons of two groups such as traditional public and charter schools typically ignore the inherent and systematic differences between the two groups. However, given well-designed observational studies and appropriate analysis methods, the effects of the selection bias can be reduced, if not eliminated. The result is that the usual simple comparisons of two independent groups are replaced by comparisons that make adjustments for covariate differences. This study includes development of new methods, largely graphic in form, designed for observational data to compare two groups. These methods are then used to investigate the question of whether students who attend charter schools perform differently than their traditional public school counterparts on two key academic domains: reading and mathematics. The new methods represent extensions of propensity score analysis (Rosenbaum & Rubin, 1983) by aiding descriptions and aim in reducing selection bias in the context of clustered data.

Using data from the 2009 National Assessment of Educational Progress (NAEP) for mathematics and reading at grades four and eight, estimates of the differences between charter and traditional public schools were calculated at the state and national levels. This study finds that there is wide variability in math and reading performance for charter schools. But in aggregate, charter schools do not perform any differently than their traditional public school counterparts. The new methods are also used to examine the relationship between the quality of state charter laws as determined by the National Alliance for Public Charter Schools

(NAPCS; 2010a) and differences in NAEP scores are explored. Results suggest that there is small to moderate correlation between NAPCS's ratings of charter law quality and differences in NAEP scores within each state.

Acknowledgements

It takes a village to...

to complete a dissertation.

Being a graduate student is very much like being a child in a village. You enter barely speaking the language, and with the help of an advisor, faculty members, and fellow students, you begin to develop an understanding of the village in which you live. The dissertation is the culmination of all the learning within that village and marks a transition to life outside the village. Like the original proverb states, it takes a village to raise a child, a dissertation, although the result of an individual endeavor, is impossible without the support of many people. There are too many people who have influenced and taught me so much over the years to name them all. But some have had a substantial influence on my growth, and I wish to thank them here.

To my advisor and chair, Bob Pruzek, who introduced me to new ways of seeing and measuring the world. By introducing me to PSA, graphics, and R, you have significantly changed my professional life. You have provided the inspiration and foundation not only for the work in this dissertation, but for the work I will be doing for years to come.

To my entire committee, Bruce Dudek, Heidi Andrade, and Katy Schiller. But especially to Bruce and Heidi who went above and beyond to help me bring this dissertation to completion. Their time, patience, and insight are so greatly appreciated. Also a very special thanks to Joan Newman who coordinated and provided invaluable advice in bringing this dissertation to completion.

To my wife, Heather. She has been a constant supporter and cheerleader providing the encouragement when I needed it most. And for being such a wonderful editor, making sure everything I write sounded the best it could.

To Gabriel, Miles, and Rowan, who provide the inspiration to continue to be the best father, teacher, and person I can be.

To my mom, who has been a constant believer in me and for being a great Nana for the boys when dad was teaching or writing.

To my Excelsior College family, Lisa Daniels, Patti Croop, Jane Weyers, Bethany de Barros, Kim Speershneider, Vaishali Jahagirdar, and Erin Applegarth Vitali, for providing invaluable time, support, and encouragement. And especially to the R Groupers!

To the National Center for Education Statistics (NCES) and Education Testing Service (ETS) who provided training on the use of NAEP and financial support for the development of the naep R package.

To the fourth and eighth grades students who participated in NAEP. Your participation helps make education better for you and all students.

Table of Contents

Abstract	V
Acknowledgements	vii
Table of Contents	ix
List of Tables	xii
List of Figures	xiv
Chapter 1: Introduction	1
Statement of the Problem	3
Purpose of the Study	5
Chapter 2: Review of the Literature	7
Empirical Evidence for Charter School Effectiveness	8
Overview of Current Studies	9
National Charter School Studies	11
Comparing Charter and Public School Students' Using HLM and NAEP	12
The CREDO Study	13
The Role of State Charter Laws	15
Propensity Score Analysis	17
Research Questions	20
Chapter 3: Method	21
Overview of NAEP	22
Mathematics	23
Reading	24
Reliability	25
Sample	25

Missing Data Imputation	27
Analysis	29
Graphical Representation	32
The multilevelPSA R Package	34
State Charter Laws and Charter School Performance	41
Chapter 4: Results	43
Propensity Score Analysis with Stratification	43
Covariate Balance	46
Propensity Score Matching	50
Multilevel Propensity Score Analysis	52
Covariate Balance	54
Visualizing Multilevel PSA	55
Summary and Overall Results	58
Differences Between States	60
Chapter 5: Discussion	63
Discussion of Research Questions	63
Differences Between Charter and Traditional Public Schools	63
State Charter Laws and Charter School Performance	64
Discussion of Research Methods	65
Multilevel Propensity Score Analysis	65
The Display of Multilevel Results	67
Limitations	70
Conclusion	71
References	73
Appendices	81
Appendix A: Charter School & Student Enrollment by State	81

Appendix B: Descriptive Statistics	83
Appendix C: Covariate Missingness	103
Appendix D: Loess Regression Plots	107
Appendix E: Covariate Balance Plots	111
Appendix F: Classification Method Results	122
Appendix G: Multilevel PSA Covariate Balance Plots	131
Appendix H: Multilevel PSA Results	137
Appendix I: Multilevel PSA Classification Tree Heat Maps	155
Appendix J: multilevelPSA R Package	157
Appendix K: Simulating Propensity Score Ranges	159
Appendix L: Rubric for Rating the Quality of Charter School Laws	162
Appendix M: Matrix Plot of NAPCS Charter Law Scores and NAEP Charter	
School Effect Sizes	176

List of Tables

1	Summary of studies on charter school achievement	11
2	Distribution of math items by grade and content area	24
3	Descriptive statistics of dependent variables (unadjusted) for all and	
	close (within 5 miles) traditional public schools	27
4	Descriptive statistics of dependent variables (unadjusted)	27
5	Logistic regression stratification results for grade 4 math	46
6	Logistic regression AIC stratification results for grade 4 math	50
7	Classification trees stratification results for grade 4 math	50
8	Summary of overall propensity score results	62
9	Charter schools & student enrollment by state	81
10	Grade 4 math descriptive statistics	83
11	Grade 4 math unadjusted NAEP score	87
12	Grade 4 reading descriptive statistics	88
13	Grade 4 reading unadjusted NAEP score	92
14	Grade 8 math descriptive statistics	93
15	Grade 8 math unadjusted NAEP score	97
16	Grade 8 reading descriptive statistics	98
17	Grade 8 reading unadjusted NAEP score	102
18	Logistic regression stratification results for grade 4 reading	122
19	Logistic regression AIC stratification results for grade 4 reading	123
20	Classification trees stratification results for grade 4 reading	124
21	Logistic regression stratification results for grade 8 math	125
22	Logistic regression AIC stratification results for grade 8 math	126
23	Classification trees stratification results for grade 8 math	127
24	Logistic regression stratification results for grade 8 reading	128
25	Logistic regression AIC stratification results for grade 8 reading	129

26	Classification trees stratification results for grade 8 reading	130
27	NAPCS rubric for rating the quality of state charter laws	163

List of Figures

1	Charter school growth 1999-2013	2
2	Stages of a charter school life cycle	8
3	Number of PSA Publications by Year	18
4	Annotated multilevel PSA assessment plot	34
5	Multilevel PSA balance plot for PISA	38
6	Multilevel PSA assessment plot for PISA	40
7	Multilevel PSA difference plot for PISA	41
8	Loess regression assessment plot: Grade 4 math	44
9	Propensity score assessment plot for logistic regression stratification:	
	Grade 4 math	47
10	Propensity score assessment plot for classification tree stratification:	
	Grade 4 math	48
11	Covariate balance plot for logistic regression stratification: Grade 4 math	49
12	Loess Plot with Matched Pairs	51
13	Multilevel PSA covariate heat map for classification trees: Grade 4 math	53
14	Multilevel PSA covariate balance plot classification trees: Grade 4 math	54
15	Multilevel PSA assessment plot classification trees: Grade 4 math $$	56
16	Multilevel PSA difference plot classification trees: Grade 4 math $$	57
17	PSA circle plot of adjusted means	59
18	Overall differences in effect size	60
19	Comparison of 2010 NAPCS quality of charter law scores and NAEP	
	charter school effect sizes	61
20	Propensity score ranges for varying treatment-to-control ratios	67
21	Covariate missingness for grade 4 math	103
22	Covariate missingness for grade 4 reading	104
23	Covariate missingness for grade 8 math	105

24	Covariate missingness for grade 8 reading	6
25	Loess regression assessment plot: Grade 4 reading	7
26	Loess regression assessment plot: Grade 8 math	8
27	Loess regression assessment plot: Grade 8 reading	8
28	Loess regression AIC assessment plot: Grade 4 math	9
29	Loess regression AIC assessment plot: Grade 4 reading	9
30	Loess regression AIC assessment plot: Grade 8 math	0
31	Loess regression AIC assessment plot: Grade 8 reading	0
32	Covariate balance plot for logistic regression AIC stratification: Grade	
	4 math	1
33	Covariate balance plot for classification tree stratification: Grade 4 math11	2
34	Covariate balance plot for logistic regression stratification: Grade 4	
	reading	3
35	Covariate balance plot for logistic regression AIC stratification: Grade	
	4 reading	4
36	Covariate balance plot for classification tree stratification: Grade 4	
	reading	5
37	Covariate balance plot for logistic regression stratification: Grade 8 math110	6
38	Covariate balance plot for logistic regression AIC stratification: Grade	
	8 math	7
39	Covariate balance plot for classification tree stratification: Grade 8 math118	8
40	Covariate balance plot for logistic regression stratification: Grade 8	
	reading	9
41	Covariate balance plot for logistic regression AIC stratification: Grade	
	8 reading	0
42	Covariate balance plot for classification tree stratification: Grade 8	
	reading	1

43	Propensity score assessment plot for logistic regression stratification:	
	Grade 4 reading	
44	Propensity score assessment plot for logistic regression AIC stratifica-	
	tion: Grade 4 reading	
45	Propensity score assessment plot for classification tree stratification:	
	Grade 4 reading	
46	Propensity score assessment plot for logistic regression stratification:	
	Grade 8 math	
47	Propensity score assessment plot for logistic regression AIC stratifica-	
	tion: Grade 8 math	
48	Propensity score assessment plot for classification tree stratification:	
	Grade 8 math	
49	Propensity score assessment plot for logistic regression stratification:	
	Grade 8 reading	
50	Propensity score assessment plot for logistic regression AIC stratifica-	
	tion: Grade 8 reading	
51	Propensity score assessment plot for classification tree stratification:	
	Grade 8 reading	
52	Multilevel PSA covariate balance plot logistic regression: Grade 4 math 131	
53	Multilevel PSA covariate balance plot logistic regression AIC: Grade 4	
	math	
54	Multilevel PSA covariate balance plot classification tree: Grade 4 math 132	
55	Multilevel PSA covariate balance plot logistic regression: Grade 4 reading 132 $$	
56	Multilevel PSA covariate balance plot logistic regression AIC: Grade 4	
	reading	
57	Multilevel PSA covariate balance plot classification tree: Grade 4 reading 133	
58	Multilevel PSA covariate balance plot logistic regression: Grade 8 math 134	

59	Multilevel PSA covariate balance plot logistic regression AIC: Grade 8	
	math	34
60	Multilevel PSA covariate balance plot classification tree: Grade 8 math 13	35
61	Multilevel PSA covariate balance plot logistic regression: Grade 8 reading 13	35
62	Multilevel PSA covariate balance plot logistic regression AIC: Grade 8	
	reading	36
63	Multilevel PSA covariate balance plot classification tree: Grade 8 reading 13	6
64	Multilevel PSA assessment plot logistic regression: Grade 4 reading . 13	37
65	Multilevel PSA difference plot logistic regression: Grade 4 reading 13	8
66	Multilevel PSA assessment plot logistic regression AIC: Grade 4 reading 13	39
67	Multilevel PSA difference plot logistic regression AIC: Grade 4 reading 14	0
68	Multilevel PSA assessment plot classification trees: Grade 4 reading $$. $$ 14	1
69	Multilevel PSA difference plot classification trees: Grade 4 reading 14	2
70	Multilevel PSA assessment plot logistic regression: Grade 8 math 14	3
71	Multilevel PSA difference plot logistic regression: Grade 8 math 14	4
72	Multilevel PSA assessment plot logistic regression AIC: Grade 8 math 14	15
73	Multilevel PSA difference plot logistic regression AIC: Grade 8 math . 14	6
74	Multilevel PSA assessment plot classification trees: Grade 8 math $$ 14	17
75	Multilevel PSA difference plot classification trees: Grade 8 math \dots 14	8
76	Multilevel PSA assessment plot logistic regression: Grade 8 reading $$. $$ 14	19
77	Multilevel PSA difference plot logistic regression: Grade 8 reading 15	0
78	Multilevel PSA assessment plot logistic regression AIC: Grade 8 reading 15	1
79	Multilevel PSA difference plot logistic regression AIC: Grade 8 reading 15	52
80	Multilevel PSA assessment plot classification trees: Grade 8 reading . 15	3
81	Multilevel PSA difference plot classification trees: Grade 8 reading 15	i4
82	Heat map of relative importance of covariates from classification trees:	
	Grade 4 reading	55

83	Heat map of relative importance of covariates from classification trees:	
	Grade 8 math	156
84	Heat map of relative importance of covariates from classification trees:	
	Grade 8 reading	156
85	Propensity score ranges for varying treatment-to-control ratios with	
	perfect overlapping covariate	160
86	Propensity score ranges for varying treatment-to-control ratios with	
	non-overlapping covariate	161
87	Matrix plot of NAPCS charter law scores and NAEP charter school	
	effect sizes	176

Chapter 1: Introduction

Since the opening of the first charter school in Minnesota in 1991, the United States¹ has increasingly embraced charter schools as an important option for educational reform. In the last 10 years alone, the number of charter schools has grown from 507 in the 1998-1999 school year to 6,187 in the 2012-2013 school year (see Figure 1; Center for Education Reform, 2010). By the 2011-12 school year, 40 states and the District of Columbia have charter school laws (see Appendix A for enrollment by state). Given Arne Duncan's appointment as Secretary of Education by President Barack Obama and the Race to the Top program (specifically the requirement that states raise the limit on the number of charter schools in their state to be eligible), charter school growth and support is unlikely to slow in the near future. Moreover, some charter school supporters argue for the eventual replacement of traditional public schools with charter schools (Ravitch, 2013, October 1, 2013).

In principle, charter schools opt out of some bureaucratic rules and union contracts in exchange for the academic autonomy needed to create better academic environments for students (Wells, 2002). The idea is that teachers, administrators, students, and the community that comprise the charter school would be free to innovate. That is, charter schools serve as experimental schools, and their innovations would inform the reform of public education at large.

Charter schools have become a popular vehicle for educational reform among parents. The Center for Education Reform (2008) reports that 59% of charter schools have waiting lists averaging 198 students. Charter schools provide an apparent choice to parents and are in line with the individualistic culture of the United States (Hofstede & Hofstede, 2004; Maccall, 1847; Swart, 1962).

Like so many other fields, school reform has further emphasized marketization and privatization (Wells, 2002). The influence of capitalism on education is not

¹Though this study focuses on charter schools in the U.S., Canada (Foundations for the Future Charter Academy, 2007), Chile (Larrañaga, 2004), England (Wohlstetter & Anderson, 1994), Germany (Herbst, 2006), and New Zealand (Lander, 2001) also have charter schools.

Figure 1: Charter school growth 1999-2013

new. A major contributor to the expanded role of education during the industrial revolution is capitalism itself. That is, education expanded its initial purpose of providing a minimally informed electorate to providing an educated work force, not to mention keeping children off the streets as child labor laws came into existence. However, the shift of capitalistic principles from being the inspiration of educational reform to being the educational reform has profound implications. Proponents of charter schools argue that public schools have been bogged down by bureaucracy and union contracts. Freeing schools of these requirements then allows teachers and schools to innovate which, in theory, leads to increased student performance. The principled argument is the "market metaphor" (Wells, 2002). That is, if schools were forced to compete for "customers" (i.e. students and parents), then the differentiating factor between schools would be their quality of education.

Opponents, on the other hand, have questioned the accountability, equity, effectiveness, and sustainability of charter schools. Several studies have shown that charter schools are not only failing to increase student performance, but in many instances are performing well below their traditional public school counterparts (see

e.g., Center for Research on Education Outcomes, 2009; Braun, Jenkins, & Grigg, 2006a; Nelson, Rosenberg, & Meter, 2004).

Others argue that charter schools may be a solution in search of a problem. Carnoy, Jacobsen, Mishel, and Rothstein (2005), in summarizing the controversy that ensued after the Nelson et al. (2004) study argue that:

If, however, charter schools are not improving the achievement of disadvantaged children, it may be that the cause of low student performance is not bureaucratic rules but something else. When a treatment is based on a diagnosis, and the treatment doesn't work, it is prudent to examine not only whether the treatment should be improved, but also whether the diagnosis might be flawed. (Carnoy et al., 2005)

This study primarily focuses on evaluating the effects of charter schools, or the treatment from Carnoy et al's point-of-view. However, as a result of the new methods developed, the relationship between the quality of state charter laws and differences between charter and traditional schools are explored.

Statement of the Problem

As Betts and Hill (2006) point out, there are three major obstacles to addressing the question of "whether students in charter schools are learning more or less than they would have learned in conventional schools" (p. 1), namely:

- 1. The issues of counterfactuals. That is, there are several barriers to determine the causal relationship between school choice and learning, most significantly the fact that students and families self-select to attend charter schools.
- 2. The variation in types of charter schools.
- 3. The nature of student achievement. Research has shown there are many other factors that contribute to student success including, but not limited to, socioeconomic status, parents' education, student motivation, etc.

Deciphering how school choice contributes to student learning in the context of all the other factors proves difficult. Though these issues are significant, they can be reasonably addressed. I do not claim to fully account for these issues, but I attempt to address them using the best data and methods available while clearly stating the limitations.

Issue one is dealt with in detail in chapter three. However, in short, the propensity score analysis (PSA; Rosenbaum & Rubin, 1983) used for this study is, assuming proper implementation, the best approach to estimating causal inferences short of well designed randomized experiments. Of course in the context of an observational study the fundamental problem of causal inference remains² (Holland, 1986), but limitations of this are addressed.

The issue of charter school variation is often cited in critiques of national or large scale charter school studies (c.f. National Alliance for Public Charter Schools, 2010b). However, given that the charter school debate is a national debate with implications at the federal level, as exemplified by the *No Child Left Behind* legislation of the George W. Bush Administration and the *Race to the Top* policy of the Barak Obama Administration, larger scale studies are necessary. Additional research on the effects of variation in types of charter schools is also needed but is beyond the scope of this study (see also Betts & Tang, 2011).

Third, the environmental, social, community, and cultural factors that contribute to a student's academic achievement are often significantly underestimated. Often educational reform, as exemplified by the *No Child Left Behind Act* and *Race to the Top*, places the responsibility solely on the school without consideration of the context in which the school operates. PSA addresses this issue by providing a method to adjust for observed characteristics by finding matched pairs or clusters. As such, comparisons between matched and clustered students substantially reduces the effects of these environmental factors providing a much better estimate of the effects of charter versus traditional public schools.

A fourth issue not mentioned by Betts and Hill (2006) but often cited as a factor related to charter school performance are state laws, which vary widely.

²The fundamental problem of causal inference states that it is impossible to observe the effect of a treatment and lack of treatment (usually referred to the control but is true for any two conditions) for any one subject simultaneously.

NAPCS annually publishes scores and rankings of the quality of state charter school laws (National Alliance for Public Charter Schools, 2010a, 2012). These scores and rankings enable an exploratory analysis of the relationship between state laws and charter school effectiveness. Since one of the purposes of charter schools is to experiment with schools that operate outside existing bureaucratic rules and laws for public schools, exploring the relationship between the new rules and laws charter school operate under and student performance is important. Although this study cannot address the causal question of whether "better" charter laws, as defined by the NAPCS, effect better student performance, this is the first known study to explore this relationship.

Purpose of the Study

A primary purpose of this study is to explore the differences in performance between charter and traditional public schools controlling for self-selection and observed characteristics. In addition, differences between states are examined in terms of the quality of state charter laws, as measured by The National Alliance for Public Charter Schools (NAPCS 2010a).

A secondary purpose is the development of a new set of methods for propensity score analysis with multilevel, or clustered, data. An additional aim of the study is to show how graphics can be used to address research questions in the context of multilevel propensity score analysis; another is to describe and illustrate the key features of a new package of R functions to facilitate multilevel propensity score analyses, vis-à-vis the multilevelPSA package in R. These new multilevel methods for propensity score analysis are presented within the context of more traditional methods for propensity score analysis, namely stratification and matching.

The newly developed multilevelPSA package is shown to provide an effective means of estimating and visualizing propensity score results with clustered (multilevel) data. These procedures are discussed more fully in chapters three and four. The use of pre-existing visualization procedures such as loess regression plots,

density plots, as well as the PSA balance and assessment plots introduced by Helmreich and Pruzek (2009), can provide critical insight into the analysis and eventual interpretation of results. More succinctly, the presentation of graphics in this study is not merely provided for diagnostic or descriptive purposes, but is a critical component of presenting, analyzing, and interpreting results.

This study compares the academic performance of charter and traditional public schools in two domains using the National Assessment of Educational Progress (NAEP), using multiple propensity score methods. More specifically, this study proposes to address three questions:

- 1. Given appropriate adjustments based on available student data, is there a discernible difference between charter and traditional public schools with regard to NAEP math and reading scores at grades 4 and 8?
- 2. If so, what is the nature and magnitude of this difference for the two outcomes, reading and mathematics scores?
- 3. What is the relationship, if any, of the quality of charter school laws to charter school student performance in NAEP math and reading scores at grades 4 and 8?

Chapter 2: Review of the Literature

Though Professor Ray Budde is often credited with the current charter school movement (Kolderie, 2005), the term school choice can be traced back to Adam Smith's Wealth of Nations, Thomas Paine's Rights of Man, and John Stuart Mill's On Liberty (Herbst, 2006). Prior to the Revolutionary War, given the religious diversity of colonial America, issues of education were left to local communities. However, after the war, Revolutionary leaders argued that local schools were no longer sufficient for educating students for the emerging state and federal governments. It was Thomas Jefferson who, in 1779, introduced the first bill in Virginia that would establish a public school system. It was Jefferson, along with numerous other American intellects during the 1780s and 1790s, who was responsible for establishing public schools throughout the young nation, thereby relegating school choice to a choice between public schools and predominately religious private schools.

In the wake of the landmark report A Nation at Risk (The National Commission on Excellence in Education, 1983), Budde (1988) authored a pivotal document that started the charter school movement in the United States. In this document, Budde argues that system-wide changes to the way schools are structured are required, including: more rigorous curriculum and graduation standards; extended school days and year; more homework; teacher accountability for student results; termination of "incompetent" teachers; and higher pay for teachers. To achieve these goals, he proposed a fundamental change to the "internal organization of the school district... making substantial changes in the roles of teachers, principals, the superintendent, the school board, parents, and others in the community" (p. 16). More specifically, a framework for charter schools was proposed that includes five stages over a three year period (see Figure 2). The five stages include: (1) generating ideas; (2) planning the charter; (3) preparing for teaching; (4) teaching under the educational charter; and (5) program monitoring and evaluation. For the

Figure 2: Stages of a charter school life cycle (adapted from Budde, 1988)

first iteration of the cycle, stages one, two, and three occur prior to the opening of the school with stage one ideally beginning a full school year before.

There are several features of this framework that deviate from traditional public school models, most notably the repetition of what may appear to be preparatory stages. That is, the charter school personnel must re-plan their school structure periodically (every three to five years according to Budde's framework) in a manner consistent with the initial charter school creation, thereby forcing a re-evaluation of the school bureaucracy.

Following the suggestions of Budde, Minnesota passed the first charter school law in 1991 with California following in 1992. As of spring 2009, 40 states and the District of Columbia had charter school laws which comprise 1,407,421 students in 4,578 schools (Center for Education Reform, 2010).

Empirical Evidence for Charter School Effectiveness

According to National Alliance of Public Charter Schools (2009), there are currently over 200 studies that examine charter school achievement. The National Alliance of Public Charter Schools (2009) provides a review of 140 studies selected on several criteria. Their review reveals significant gaps in the research with regard to states evaluated, research quality that addresses achievement, as well as

timeliness of results. This is further exemplified by a meta-analysis conducted by Betts and Tang (2008) that includes just 13 studies that represent nine states. In this section I provide an overview of the current literature available vis-à-vis the published meta-analysis and literature reviews. I then focus on two recent studies that together provide the context for the study proposed here: a hierarchical linear modeling analysis of the 2005 NAEP study (Braun et al., 2006a) and a matching study comparing charter and public schools in 2009 in 16 states (Center for Research on Education Outcomes, 2009) and again in 2013 in 27 states (Center for Research on Education Outcomes, 2013).

Overview of Current Studies

Research has shown that parents of students in charter schools are generally more satisfied with the charter school than the public school and also tend to be more involved in their child's education (Teske & Schneider, 2001; Vanourek, Manno, Finn, & Bierlein, 1998). However, their satisfaction may simply be a rationalization (Hubbard & Kulkarni, 2009). Moreover, Fuller et al. (1996, as cited in Hubbard & Kulkarni, 2009) suggests that parents that choose charter schools "believe that the charter must therefore be superior to a conventional public school" (p. 177). This is reinforced by a study conducted by Cullen, Jacob, and Levitt (2005) that examines school choice in Chicago Public Schools, where more than half of the students elect to attend a public school (e.g. career academy, high-achieving school) other than their locally assigned school. Although students who opt out of their local school are more likely to graduate, Cullen et al. (2005) argue that "those who opt out are superior along unobservable dimensions such as their motivation level and parental involvement" (p. 755).

The National Alliance of Public Charter Schools (NAPCS; 2009) provides perhaps the most comprehensive review of available research on charter school performance. The current report, *Charter School Achievement: What We Know* is now in its fifth edition, having been updated periodically to account for recent

studies. In addition to covering published research reports, the review includes unpublished reports such as conference presentations, dissertations, policy group and think tank reports, and state evaluations. Of the 210 studies identified in the fifth edition, 140 are included in their review. These 140 studies were determined to compare charter schools with traditional public schools, use "serious research methods" (p. 2), and examine "a significant segment of the charter sector" (p. x). The studies are then further classified into one of three categories: (1) panel studies that are longitudinal and examine student growth over time; (2) cohort change studies that are longitudinal but use some method other than tracking individual students; and (3) snapshot studies that examine school performance at a single point in time (also known as observational studies).

Table 1 summarizes the findings of the 140 studies included, first by breaking out the year(s) upon which the study's data is based, and second by the results reported. It should be noted that many of the pre-2001 studies were concentrated in a few states (Arizona, California, Florida, North Carolina, and Texas). This is expected, given that these states were among the earliest to adopt charter school laws (see Appendix A) as well as the substantial increase in the number of charter schools since 2000 (see Figure 1). The National Alliance of Public Charter Schools concluded that:

[I]t becomes dramatically clear that studies examining public charter schools in more recent academic years show that charter schools produce more instances of larger achievement gains in both math and reading when compared to traditional public schools. (p. 3)

However, this interpretation downplays the fact that approximately 30% of charter schools performed worse than their traditional public school counterpart. These results are consistent with a recent study by the Center for Research on Education Outcomes (2009) that reported that 37% of charter schools performed worse than their public school counterpart in 2009 and 31% in 2013.

Betts and Tang (2008) employ more stringent selection criteria for including studies in their meta-analysis. Only studies that used experimental, student-level,

Table 1: Summary of studies on charter school achievement

		Pre	2001			Post	2001	
	Larger	Similar	Mixed	Smaller	Larger	Similar	Mixed	Smaller
	Gains	Gains	Gains	Gains	Gains	Gains	Gains	Gains
Math	4	4	4	20	17	17	1	14
	(13%)	(13%)	(13%)	(63%)	(35%)	(35%)	(2%)	(29%)
Reading	7	10	3	14	18	12	1	14
	(21%)	(29%)	(9%)	(41%)	(40%)	(27%)	(2%)	(31%)

Source: National Alliance of Public Charter Schools, 2009

growth-based methods were included, resulting in a total of 14 studies published between 2001 and 2007 utilizing data ranging from 1998 through 2005. Similar to the review produced by the National Alliance of Public Charter Schools (2009), the studies were done in a limited number of locations, including Arizona, California (three from San Diego), Chicago, Delaware, Florida, Idaho, North Carolina, and Texas, with one anonymous location. Overall, the analysis of the available studies provide very mixed results. However, some patterns emerge, specifically that charter schools generally outperform traditional public schools in elementary school reading and middle school math, although effect sizes for the latter are small. Charter schools are generally underperforming traditional public schools in high school reading and math, but studies examining these grade levels are relatively small studies (see also, National Alliance of Public Charter Schools, 2009) and in these studies the effect sizes are also small.

National Charter School Studies

There are two known studies that examine the differences between charter and traditional public schools from a national perspective. Braun et al. (2006a) explored the differences using hierarchical linear modeling (HLM) with the 2005 National Assessment of Educational Progress (NAEP). The Center for Research on Education Outcomes (2009, 2013), using their own data, used methods similar to propensity score matching. These studies are discussed in detail in the following sections. They

provide a foundation for this study. Specifically, this study utilizes the high quality NAEP data used by Braun et al. (2006a) with the methods similar to, but expanded upon, those used by the Center for Research on Education Outcomes (2009, 2013).

Comparing Charter and Public School Students' Using HLM and NAEP

Braun, Jenkins, and Grigg have published two research reports utilizing NAEP data and HLM analyses that look at how public school students' test scores compare to those of private school students (2006b) and charter schools students (2006a). HLM was used because ordinary least squares or ANOVA is inappropriate since these statistical models do not account for the school effects. HLM provides a model with which school effects can be partitioned from student effects, thereby providing adjustments for the lack of independence of observations (see e.g., Bryk & Raudenbush, 1992; Gelman & Hill, 2006).

For the charter school study (Braun et al., 2006a), the analysis was conducted in three phases for both reading and mathematics. In phase one, all sampled charter schools were compared to all sampled public schools. Results suggest that, when student characteristics were taken into account, charter schools performed, on average, 4.2 points lower than public schools in reading (effect size is 0.11) and 4.7 points lower in mathematics (effect size is 0.17).

Phase two separated charter schools into two groups: charter schools associated with a public school district (PSD) and those that were not. The purpose for this analysis is to examine the relationship between two approaches to charter school governance and student achievement. One approach has the charter schools governed by the public school district in which they operate and those that are not. For reading, there was no significant difference between charter schools affiliated with a PSD and public schools. However, for schools not affiliated with a PSD, charter school students scored significantly lower than public school students, with an adjusted difference of 0.17 standard deviations. For mathematics, there was no difference between charter schools affiliated with a PSD and public schools, but

charter schools not affiliated with PSD scored significantly lower, with an adjusted difference of 0.23 standard deviations.

Phase three compared only charter and publics schools located in a central city and serving a high-minority population. For reading, there was no significant difference between charter and public schools for any model. For mathematics, however, charter schools not affiliated with a PSD scored significantly lower than public school students with an adjusted difference of 0.17 standard deviations. There was no difference for schools affiliated with a PSD.

The CREDO Study

The Center for Research on Education Outcomes (2009, 2013) conducted a study of more than 1.7 million records from 2400 charter schools within 16 and 27 states in 2009 and 2013, respectively. The methodology involves creating a Virtual Control Record (VCR) for each charter school student (see also, Abadie, Diamond, & Hainmueller, 2007; Northwest Evaluation Association, 2009) which is used to find matching students from an eligible traditional public school. Students within a traditional public school become available in a pool of potential matches when at least one student is identified as transferring to a charter school. Once the "feeder schools" are identified, all students from feeder schools are pooled and serve as the source to select matches to the charter school students. Students are then matched on the following factors: grade-level, gender³, race/ethnicity, free or reduced price lunch status, English language learner status, special education status, and prior test score on state achievement tests. This procedure, which is similar to propensity score matching, resulted in 83.7% and 84.4% of charter school students being matched to a public school student for reading and math, respectively.

Once matches were determined, ordinary least squares regression was utilized to analyze both math and reading scores of the charter school students and matched public school students separately. Moreover, controls for student characteristics, excluding gender, along with state indicators and scores affected by Hurricane

³Gender was not available in Florida

Katrina, were added to the basic model. Overall results showed that charter school students performed, on average, 0.01 and 0.03 standard deviations below traditional public school students for reading and math, respectively. Both results are significant at $p \leq 0.01$.

Further analysis by Center for Research on Education Outcomes (2009) revealed that the effectiveness of charter schools varied considerably by state. Five states (Arkansas, Colorado, Illinois, Louisiana, and Missouri) were found to have higher learning gains for charter schools. Six states (Arizona, Florida, Minnesota, New Mexico, Ohio, and Texas) were found to have lower learning gains for charter schools. The remaining four states (California, District of Columbia, Georgia, and North Carolina) had either mixed results or no difference in academic gains. The new methods developed for this study also explicitly accounts for the variation between states by comparing states in relation to rankings of charter school laws. This analysis provides insight into implications of the varied policy environments in which charter schools operate.

The Center for Research on Education Outcomes (2009) also found variation in charter school effectiveness across school characteristics. That is, schools that focused on elementary or middle grades separately tended to perform as well or better than their public school counterparts. However, charter schools that focused on high grades or multi-level grades performed anywhere from .02 to .08 standard deviations below public schools. Moreover, school level comparisons find that only 17% of charter schools performed better than public schools while 46% perform no differently and 37% perform significantly worse.

The results from the 2013 study (Center for Research on Education Outcomes, 2013) showed a small increase in the differences between charter and traditional public school students. The Center for Research on Education Outcomes prefers to present their results in a metric of school days. In 2009, charter school students had a loss of 7 school days which increased to a gain of 8 school days in 2013. For math,

charter school students had a loss of 22 days in 2009 and were on par with traditional public school students in 2013. Reporting in terms of days is problematic since it is difficult to compare to other studies. More typically, standardized effect sizes are used to express the difference between two groups. Loveless (2013) re-expressed these differences as effect sizes estimating that they are roughly equivalent to an effect size between 0.01 and 0.03. These results, as shown in chapter four, are consistent with the results of this study.

The Role of State Charter Laws

Charter schools must operate in accordance with the laws governing their home state. In 2009, the National Alliance for Public Charter Schools (NAPCS) published a report, A New Model Law for Supporting the Growth of High-Quality Public Charter Schools, in part to reflect what had been learned since the first charter school law was passed in Minnesota. This report serves as a model charter school law for each state to adapt for their use in creating or modifying their state law. The NAPCS argues that the quality of charter school laws influences the quality of charter school education in each respective state. NAPCS (2009) acknowledges that there are other key components as well. Specifically, NAPCS lists five "primary ingredients" (National Alliance for Public Charter Schools, 2009, p. 1) for a successful charter school: (1) Supportive laws and regulations (both what is on the books and how it is implemented); (2) Quality authorizers; (3) Effective charter support organizations, such as state charter associations and resource centers; (4) Outstanding school leaders and teachers; and (5) Engaged parents and community members.

After this report was published, NAPCS began publishing annual scores and rankings of state charter school laws in order to quantify each state's adherence to their model law. In determining the rankings, they evaluate existing charter school laws against 20 "essential components of good charter school laws" (National Alliance for Public Charter Schools, 2012, pp. 6–7). It should be noted that an

"authorizer" is a legally defined entity that can grant charters to schools. The 20 points from this document are:

- 1. No caps.
- 2. A variety of public charter schools allowed.
- 3. Multiple authorizers available.
- 4. Authorizer and overall program accountability system required.
- 5. Adequate authorizer funding.
- 6. Transparent charter application, review, and decision-making processes.
- 7. Performance-based charter contracts required.
- 8. Comprehensive public charter school monitoring and data collection processes.
- 9. Clear processes for renewal, nonrenewal, and revocation decisions.
- 10. Educational service providers allowed.
- 11. Fiscally and legally autonomous schools.
- 12. Clear student recruitment, enrollment and lottery procedures.
- 13. Automatic exemptions from many state and district laws and regulations.
- 14. Automatic collective bargaining exemption.
- 15. Multi-school charter contracts and/or multi-charter contract boards allowed.
- 16. Extra-curricular and interscholastic activities eligibility and access.
- 17. Clear identification of special education responsibilities.
- 18. Equitable operational funding and equal access to all state and federal categorical funding.
- 19. Equitable access to capital funding and facilities.
- 20. Access to relevant employee retirement systems.

Appendix L provides the rubric used by NAPCS to determine the score for each state law. Specifically, each component is rated on a scale ranging from 0 to 4. Components are assigned a weight ranging from 1 to 4 depending on their relative importance to a quality law as determined by NAPCS. The rating for each component is multiplied by the weight. The resulting scores, the sum of the weighted 20 components, range between 0 and 208.

The third purpose of this study is to explore the relationship between charter school performance and quality of state charter laws, as determined by the NAPCS scores. The multilevel PSA methods developed for this study provide effect sizes (standardized mean differences) for each state. These differences are preferable to using only charter school scores because these differences adjust for the overall variation in educational quality across states. That is, the differences are relative to

traditional public school students within each state. The relationship between the quality of charter laws and differences between charter and traditional public schools is be explored using scatter plots and correlations using the NAPCS ratings and effect sizes.

Propensity Score Analysis

Randomized experiments are the *gold standard* for estimating causal effects of a treatment. However, as is frequently the case in educational contexts, randomization for the current project is neither ethical nor feasible. Therefore, propensity score methods (Rosenbaum & Rubin, 1983) using matching (Stuart & Rubin, 2008; Stuart, 2010) and stratification methods (Raudenbush, Hong, & Rowan, 2003) are used to make quasi-experimental estimates of causal effects (see also Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007; Stuart & Rubin, 2008). Propensity scores are defined more thoroughly in Chapter 3, but in brief, propensity score analysis (PSA) is a quasi-experimental method used to adjust selection bias in two phases. In the first phase, treatment and control units with similar covariate profiles (using observed covariates) are matched or clustered. The goal is to eliminate or minimize the differences in the observed covariates. When the differences between treatment and control units are minimized between matched pairs or clusters, differences in the dependent variable are calculated in phase two. Those differences are then aggregated to provide an overall estimated effect size.

Recent research comparing the use of propensity score methods with randomized experiments have shown that causal estimates from observational studies using propensity score methods are generally consistent with those from randomized experiments (Cook, Shadish, & Wong, 2008; Shadish, Clark, & Steiner, 2008). The use of propensity score methods in published research in psychology and education has been growing over the last decade (Thoemmes & Kim, 2011). Using the Web of Science database (Thomson Reuters, 2014), the number of articles published containing the keywords "propensity score," "propensity score analysis,"

Figure 3: Number of PSA Publications by Year (source: Web of Science)

and "propensity score matching" were extracted. Figure 3 depicts the number of articles published with these keywords from 1993 through 2013. Clearly, the number of publications using propensity score methods is increasing steadily over the last decade.

The selection of covariates is particularly challenging in propensity score analysis. As such, multiple methods for the estimation of propensity scores are used (Rosenbaum, 2012). The goal in the estimation of propensity scores is to reduce selection bias, therefore simple significance testing is not appropriate (Rosenbaum, 2002, 2010) since potentially non-significant covariates may be proxies for important non-observed covariates. Although this study has been designed to measure the same covariates as would be used in a randomized block design, multiple methods utilizing varying number of covariates are used. Moreover, I wish to provide overall effect sizes but also measure the effects of clustering by state.

Although propensity score analysis has been shown to provide estimates consistent with randomized experiments (Shadish et al., 2008; Dehejia & Wahba, 1999; Heckman, Ichimura, Smith, & Todd, 1997), its use has not been immune to criticism (c.f. Shadish, 2013). Pearl (2009) has raised concerns about a potential increase in bias due to the inclusion of certain covariates in the estimation of

propensity scores in response to Rosenbaum's (2002, 2010) suggestion that, in general, the inclusion of all observable covariates is preferable to excluding them. However, Pearl's concerns can be mitigated in at least three ways. First, careful checking of balance across all observable covariates is done even if the covariate is not used in the modeling of the propensity scores. Second, sensitivity analysis (Rosenbaum, 2002, 2010) can be conducted after matching to consider the question of whether the estimate would differ in the presence of additional unobserved covariates. That is, sensitivity analysis tests the robustness of the propensity score estimation for hidden bias. However, sensitivity analysis is only well defined for one-to-one matching and therefore is not used in this study. Third, multiple methods can be utilized for estimating propensity scores (Rosenbaum, 2012). Specifically, in addition to matching based upon propensity scores estimated from logistic regression, stratification methods using both quintiles on the logistic regression estimated propensity scores and classification trees provide parametric and non-parametric estimates, respectively.

The use of propensity score methods is still preferable to traditional regression models in spite of Pearl's (2009) criticisms. Propensity score analysis separates the covariates related to selection bias and the comparison of the outcome of interest. This clean separation also allows for a clear interpretation of results similar to randomized experiments. As will be discussed more fully in chapter three, special emphasis must be placed on achieving balance. In the context of propensity score analysis, balance refers to reducing bias or differences between observed covariates for the units that are compared. For example if, after matching each matched pair has the same ethnicity, one might conclude that perfect balance has been achieved for that covariate. In chapter three I outline a number of approaches for checking balance for both matching and stratification methods. Although there is the possibility of a lack of balance in an unobserved covariate (i.e. "hidden bias"), this would similarly affect regression methods and is admittedly an important limitation

of any non-randomized method for estimating causal effects. However, NAEP is designed to include most, if not all, the important covariates one would expect to be related to charter school attendance (see Appendix B for descriptive statistics for all the covariates used in this study).

Research Questions

Clearly charter schools have become a significant part of education in the United States. Given their position as an alternative to traditional public schools, it is important to have good research about their effectiveness. Given that randomized trials are not possible, propensity score methods may provide the best alternative for making causal estimates of the differences between students who attend charter schools and their traditional public school counterpart. Moreover, the new methods developed for this study provide further insight into the extent of the variation among charter schools as well as the variation between states. As such, this study addresses the following research questions:

- 1. Given appropriate adjustments based on available student data, is there a discernible difference between charter and traditional public schools with regard to math and reading scores on the NAEP scores at grades 4 and 8?
- 2. If so, what is the nature and magnitude of this difference for the two outcomes, reading and mathematics scores?
- 3. What is the relationship, if any, of different charter school laws on charter school student performance in math and reading at grades 4 and 8?

Chapter 3: Method

This chapter outlines the methods that were utilized to describe and analyze the data in order to address the research questions central to this study. Given the strong political interests in the question of charter school effectiveness and the implications for educational policy both at the state and national level, obtaining good empirical evidence, preferably with strong causal inferences, is most desirable. The gold standard of inferential research about treatment differences is the randomized experiment. A research design that addresses the research questions proposed here would require that students be randomly assigned, possibly with blocking on key covariates, to either a charter or public school. The theoretical justification for such a scheme is that any systematic differences between the two groups would be balanced through the randomization processes. However, in practice, especially in education, such randomization is neither feasible nor ethical. The result of the lack of randomization is a phenomenon called selection bias. That is, any comparisons of the two groups will be biased given the fact that the units of study, in this case students, self-selected to be in their respective group. Propensity score analysis (Rosenbaum & Rubin, 1983) is a statistical approach whereby the observed differences between the two groups are balanced by the careful analysis of covariate information. This procedure lends itself well to secondary analysis of observational data.

I have written and published two R packages primarily for conducting the analysis in this dissertation. The naep package provides functions to read and work with the National Assessment of Educational Progress (NAEP) data sets. Secondly, the multilevelPSA package provides functions to conduct multilevel propensity score analysis as described below. Both of these packages are available from the Comprehensive R Archive Network (CRAN).

Formatting note. Since the development of the R packages are a major component of this dissertation, I make reference to some of the functions available.

By convention, all references to R packages and functions appear in a fixed width font.

Overview of NAEP

The source of the data utilized in this study is the National Center for Educational Statistics (NCES), which is within the U.S. Department of Education's Institute of Education Sciences (IES). The National Assessment of Educational Progress (NAEP) was started in 1971 and has provided national measures of student achievement in many subjects including mathematics, reading, science, writing, history, civics, and the arts. In 2003 NAEP began assessing charter schools as well as private and public schools. This study utilizes the 2009 administration of the NAEP assessments in mathematics and reading in grades four and eight. The 2009 assessment included over 6,000 public schools and over 200 charter schools comprising over 145,000 and 3,000 students, respectively. Given this large, nationally representative sample, analysis of NAEP assessments utilizing propensity score analysis may provide valuable insights into the academic differences between charter and public schools, should they exist.

Another key advantage of NAEP is the fact that it is not designed to assess individual students or schools, but rather to inform subject-matter achievement, instructional experiences, and school environments (Braun et al., 2006a). To achieve this goal, NAEP utilizes a complex item-sampling design such that individual students are presented a subset of the total items, thereby reducing the burden on participants. Though not appropriate for assessing individual student achievement, in aggregate, the NAEP measures provide a robust, accurate, and reliable estimate of student achievement (U.S. Department of Education, Office of Planning, Evaluation and Policy Development, 2009).

In addition to subject area measures, NAEP includes student, teacher, and school questionnaires that provide contextual information about the learning environment. Given that PSA relies on adjusting for selection bias by adjusting for

known covariates, it is the answers to these questionnaires that serve as the basis for determining a student's propensity score, or likelihood of being in the treatment (charter school in the context of this study). In addition to typical demographic items such as gender and race, students are asked about computers, books, magazines, and encyclopedias in the home; parents' education level; and the level of interaction with academics within the home (see Appendix C for complete list of items).

The responsibility for developing the assessment objectives and test specifications lies with the National Assessment Governing Board, which was created by Congress in 1988. The 26-member board is made up of governors, state legislators, local and state school officials, educators and researchers, business representatives, and members of the general public. Given the varied standards across states, it is this governing board that is to determine the appropriate achievement goals for each age and grade. The following two sections provide the framework for mathematics and reading assessments, respectively. These frameworks ensure that NAEP is a valid and reliable assessment of the academic achievement of students in the United States.

Mathematics

Since 1990, the Council of Chief State School Officers (CCSSO) has been contracted to design a framework for the mathematics assessment (National Assessment Governing Board, 2006a). The framework was most recently updated in 2000 to take into account state standards, the National Council of Teachers of Mathematics (NCTM) standards, the Trends in International Mathematics and Science Study (TIMSS), the Achieve Project, and a 2001 report issued by the National Research Council of the National Academy of Sciences. The result of their work was six recommendations for the mathematics assessment regarding content areas, mathematical complexity of items, distribution of items, item formats, manipulatives, and calculators. For the purposes of this study, a composite score is

Table 2: Distribution of math items by grade and content area

Content Area	Grade 4	Grade 8
Number Properties and Operations	40%	20%
Measurement	20%	15%
Geometry	15%	20%
Data Analysis and Probability	10%	15%
Algebra	15%	30%

utilized that is comprised of five content areas, number properties and operations; measurement; geometry; data analysis and probability; and algebra. Table 2 provides details regarding the distribution of items comprising the composite score for the grade four and eight assessments.

Reading

The NAEP reading assessment (National Assessment Governing Board, 2006b) is designed to account for three reading contexts: reading for literacy experience, reading for information, and reading to perform a task. Within these contexts, four aspects of reading are considered: forming a general understanding, developing interpretation, making reader/text connections, and examining content and structure. The reading assessment is administered by supplying students with booklets that contain reading materials and comprehension questions. The questions consist of both multiple-choice and constructed-response question formats with at least half of the questions being of the constructed-response type.

The National Assessment Governing Board NAEP Reading Framework (2006) provides guidelines and a theoretical basis for reading assessment. This framework is designed with the input of individuals and organizations involved in reading education including researchers, policymakers, teachers, and business representatives. However, a particular emphasis is placed on the work of the National Institute for Child Health and Human Development (NICHID). According to the NICHID the cognitive research suggests that "reading is purposeful and active. According to this view, a reader reads a text to understand what is read, to

construct memory representations of what is understood, and to put this understanding to use" (p. 4, NICHD, 2000, as cited in National Assessment Governing Board, 2006b). Moreover, reading is considered to be a complex process rather than a simple set of skills. As such, the NAEP reading assessment is designed such that comprehension is defined as: "[I]ntentional thinking during which meaning is constructed through interactions between text and reader" (Harris & Hodges, 1995). Thus, readers derive meaning from text when they engage in intentional, problem solving thinking processes (NICHD, 2000, as cited in National Assessment Governing Board, 2006b). Given this framework, NAEP provides an excellent tool for evaluating overall reading achievement but not to specific individuals.

Reliability

For constructed response items, interrater reliability statistics are obtained by having multiple rates double score a sample of items as well as reused items evaluated across years. Cohen's Kappa (Cohen, 1968) is used for dichotomized items and interclass correlation is used for polytomously scored items. Cohen's Kappas and the interclass correlations range from 0.80 to 0.99, with the vast majority of reliability statistics greater than 0.90 indicating very good interrater reliability.

Sample

NAEP is designed to be a representative sample both at the national and state levels. NCES utilizes a multistage random sample whereby public schools are randomly sampled and then students within those selected schools. To ensure an unbiased sample, NCES and the Governing Board have established participation rates at both the school and student level of 85%. The participation rates for schools were 98% and 97% for grades 4 and 8, respectively. Student participation rates were 95% and 92% for grades 4 and 8, respectively.

Since not all students have an equal probability of being randomly sampled (e.g. students in smaller schools are slightly more likely to be sampled than students in large schools), NCES provides sampling weights to adjust for the sampling

design. However, the use of sampling weights is not well established for propensity score analysis (c.f. Gelman, 2007). As such, the sampling estimates are not utilized in any phase of the propensity score analysis. It should be noted that NCES has been oversampling charter schools since the 2003 implementation of NAEP. This is advantageous for this study as it provides a larger sample from which inferences can be made. As described in detail below, not all traditional public schools are utilized in this sample. Specifically, only traditional public schools located within five miles of a charter school are used in the comparison group.

As a result of this sampling method, the 2009 sample included approximately of 4,000 and 160,000 charter and traditional public school students, respectively. Appendix A lists the number of students by state and Appendix B provides the descriptive statistics for all the observed characteristics for charter and traditional public school students separately.

The propensity score methods use the available covariates to adjust for selection bias. However, the geographic distribution of charter schools is not equal. That is, charter schools are more prevalent in certain geographic regions of the country, often within urban areas. Since there are several orders of magnitude difference in the number of charter school to traditional public school students, selecting a subset of all the traditional public school students available in NAEP is necessary. By selecting traditional public school students who live in close proximity to a charter school, the likelihood of the former actually choosing a charter school increases. According to the National Household Travel Study, students travel an average of five miles to school. The Common Core of Data (National Center for Educational Statistics, 2009) provides the location of every public school in the United States. For each traditional public school, the distance to the closest charter school was calculated using line-of-sight distance. Within states that have charter schools, approximately 20% of traditional public schools were more than five miles from a charter school. Those schools, and subsequently students attending those schools in

Table 3: Descriptive statistics of dependent variables (unadjusted) for all and close (within 5 miles) traditional public schools

	Charter	All	Public Scho	ools	Close	Public So	chools
Subject	Mean	Mean	n	Diff	Mean	n	Diff
Grade 4 Math	231.2	238.3	159338	-6.9	237.3	85272	-6.0
Grade 4 Reading	212.9	218.8	168597	-6.0	217.1	92756	-4.2
Grade 8 Math	272.8	280.7	152048	-8.6	279.4	71528	-7.5
Grade 8 Reading	256.2	261.7	151304	-5.5	259.8	73810	-3.6

any of the NAEP datasets, were eliminated from the study. Table 3 provides descriptive statistics for charter school students, all public school students, and public school students within five miles on each of the outcome measures. It shows that there is not a substantial difference in the mean scores for traditional public school students and in fact, reduces the unadjusted differences between charter and traditional public school students.

Appendix B provides descriptive statistics for all the covariates for the four datasets. Additionally, unadjusted differences in NAEP scores for each state containing a charter school are provided. Table 4 below provides the overall, unadjusted, differences in NAEP scorers for the four datasets.

Table 4: Descriptive statistics of dependent variables (unadjusted)

	1		-	L	\	J	
	Charter		Public		Mean	Confi	dence
Subject	Mean	SD	Mean	SD	Difference	$\operatorname{Int}\epsilon$	erval
Grade 4 Math	231.2	28.3	237.3	28.5	-6.0	-7.0	-5.0
Grade 4 Reading	212.9	33.0	217.1	34.5	-4.2	-5.3	-3.1
Grade 8 Math	271.8	35.5	279.4	35.8	-7.5	-8.7	-6.4
Grade 8 Reading	256.2	32.9	259.8	32.6	-3.6	-4.7	-2.6

Missing Data Imputation

Logistic regression, which is one of the two ways propensity scores are estimated, requires a complete dataset for estimation. Appendix D provides figures created using the missing.plot function in the multilevelPSA package representing the extent of missingness for each covariate within each state. The first thing these figures reveal is that there is complete missingness in the majority of covariates for Alaska in grade four. As a result, Alaska was removed from all

datasets and was not included in the study.

Secondly, the figures show that there are fewer than 5% of values missing for the vast majority of covariates. In grade four math and reading, the three exceptions are newspapers in home, magazines in home, and encyclopedia in home. Grade eight math and reading also show a higher rate of missingness in these three covariates, but also in parents' education level. To examine whether data is missing at random, a logistic regression model was estimated predicting treatment from a shadow matrix (i.e. a matrix with the same dimension of the original dataset with 0s and 1s where 1s indicate the value is missing).

The results of these models indicate that there is no relationship between charter school attendance and whether a student completed items regarding newspapers, magazines, and encyclopedias in the home. However, for grade eight math and reading, missingness of mother's and father's education level were statistically significant (p < .05) predictors of treatment. Charter school students' mother's education level was less likely to be missing whereas father's education level was less likely to be missing for traditional public schools. Although these two covariates are often important for understanding students' educational achievement, the figures in Appendix I depicting the relative importance of each covariate for predicting charter school attendance using conditional inference trees, which are estimated with missingness included, suggest that these covariates have relatively low, or no, predictive value for charter school attendance. Therefore, missing values for these covariates are imputed and used to estimate propensity scores for the logistic regression and matching methods. It should also be noted that this variable was not collected from fourth grade students.

Multiple imputation (Rubin, 1987, 1996) has become a popular approach for imputing missing values in datasets. For this study, missing data was imputed using multivariate imputation by chained equations vis-à-vis the MICE package (van Buuren & Groothuis-Oudshoorn, 2011; van Buuren & Groothuis-Oudshoorn, n.d.)

in R. This package implements the fully conditional specification (FCS) method of imputation whereby separate multivariate imputation models are estimated for each variable containing missing values so that each model has its own set of conditional densities. Since the algorithm iterates through the data in small steps, providing the imputed values as it proceeds, the result is a robust estimate of imputed values. This study used both the original incomplete data for estimating propensity scores with classification trees and the complete imputed data for estimation of propensity scores using logistic regression.

Analysis

This study utilizes propensity score analysis for estimating causal effects of students attending charter schools. The propensity score is "the conditional probability of assignment to a particular treatment given a vector of observed covariates" (Rosenbaum & Rubin, 1983). The probability of being in the treatment is defined as:

$$\pi(X_i) \equiv Pr(T_i = 1|X_i) \tag{1}$$

Where X is a matrix of observed covariates and $\pi(X_i)$ is the propensity score. The balancing property under exogeneity states that,

$$T_i \perp \!\!\! \perp X_i \mid \pi(X_i) \tag{2}$$

Where T_i is the treatment indicator for subject i. In the case of randomized experiments, the strong ignobility assumption states,

$$(Y_i(1), Y_i(0)) \perp T_i | X_i$$
 (3)

for all X_i . That is, treatment is independent of all covariates, observed or otherwise. However, the strong ignobility assumption can be restated with the propensity score

$$(Y_i(1), Y_i(0)) \perp T_i \mid \pi(X_i)$$
 (4)

so that treatment placement is ignorable given the propensity score presuming sufficient balance⁴ is achieved.

The average treatment effect (ATE) is defined as $E(r_1) - E(r_0)$ where E(.) is the expected value in the population. Given a set of covariates, X, and outcomes Y, where 0 denotes traditional public school student and 1 denotes charter school student, ATE is defined as:

$$ATE = E(Y_1 - Y_0|X) = E(Y_1|X) - E(Y_0|X)$$
(5)

Or the difference between charter and traditional public school given the set observed covariates.

For matched analysis, the ATE is the mean of the differences between each matched treatment and control. For stratification methods, the mean difference for each stratum is calculated first, then a weighted mean (weighted by the n in each stratum) of the differences across stratum are calculated. The ATE for PSA is a direct analog of the ATE for randomized experiments. However, for randomized experiments the difference between the mean of the treatments and the mean of controls is calculated. For observational studies, and PSA in particular, differences between matched pairs or within stratum are calculated first, then the mean of the differences, so to adjust for the observed bias.

Rosenbaum (2012) suggests that hypotheses should be tested more than once in observational study. This study estimates treatment effects using nine separate propensity score models within three larger classes. The first two classes of PSA, stratification and matching, are well established in the PSA literature. The third

⁴Balance in the context of PSA refers to differences in observed covariates between treatment and control units is minimized.

class of PSA, multilevel PSA, is implemented in the multilevelPSA R package, which was developed for this dissertation. With these three classes of PSA, results reflect: (1) no adjustment for states (stratification), (2) implicit adjustment for states (matching), and (3) explicit adjustment for states (multilevel PSA). For each of the four subject and grade combinations, the following methods are used, resulting in a total of 36 propensity score analyses being conducted.

- 1. Propensity score analysis using stratification. This method ignores state assignment as a clustering variable. Under this broader method three statistical methods for stratification used are:
 - (a) Full logistic regression. This method estimates propensity scores using logistic regression with all available covariates, but exclude interaction or product terms.
 - (b) Logistic regression with step AIC. The step AIC in the MASS package (Venables & Ripley, 2002) select the best logistic model based upon the Akaike Information Criterion (Akaike, 1974). In this case the "best" first order interaction terms are added to the main effect terms in (a).
 - (c) Conditional inference trees, based on all covariates; missing data are also accommodated with the tree-based methods.
- 2. Propensity score matching. This method implicitly accounts for clustering.

 That is, the method first finds matches between charter and traditional school students that match exactly on state, ethnicity, and gender, then finds a best match based upon the propensity scores estimated using logistic regression. As suggested by Stuart (2010), multiple matched sets are formed using:
 - (a) One-to-one (i.e. one charter school student is matched to no more than one traditional public school student).

- (b) One-to-five (i.e. one charter school student is matched to as many as five traditional public school students).
- (c) One-to-ten (i.e. one charter school student is matched to as many as ten traditional public school students).

A dependent sample analysis is performed on the resulting matched pairs Austin (2011).

- 3. Multilevel propensity score analysis (see e.g. Bryer, 2011). This method utilizes the same stratification methods as described in method one above, namely:
 - (a) Full logistic regression.
 - (b) Logistic regression with step AIC.
 - (c) Conditional inference trees.

Graphical Representation

Given the large amount of data to be summarized, the use of graphics are an integral component of representing the results. Pruzek and Helmreich (2009) introduced a class of graphics for visualizing dependent sample tests (see also Pruzek & Helmreich, 2010; Danielak, Pruzek, Doane, Helmreich, & Bryer, 2011). This framework was then extended for propensity score methods using stratification (Helmreich & Pruzek, 2009). In particular, the representation of confidence intervals relative to the unit line (i.e. the line y = x) provided a new way of determining whether there is a statistical significant difference between two groups. The multilevelPSA⁵ package provides a number of graphing functions that extend these frameworks for multilevel PSA. Figure 4 represents a multilevel PSA assessment plot with annotations. This graphic represents the results of comparing private and public schools in North America using the Programme of International Student

 $^{^5{}m The}$ multilevelPSA package was developed by the author and is available from http://github.com/jbryer/multilevelPSA.

Assessment (PISA; Organisation for Economic Co-Operation and Development, 2009). The PISA data to create this graphic are included in the multilevelPSA package and a more detailed description of how to create this graphic are discussed at the end of this chapter. Additionally, the use of PISA makes more visible certain features of the graphics used. As discussed in chapters four and five, the differences between charter and traditional public schools is minimal and therefore some features of the figures are less apparent. The following section focuses on the features of this graphic.

In Figure 4, the x-axis corresponds to math scores for private schools and the y-axis corresponds to public school maths cores. Each colored circle (a) is a country with its size corresponding to the number of students sampled within each country. Each country is projected to the lower left, parallel to the unit line, such that a tick mark is placed on the line with slope -1 (b). These tick marks represent the distribution of differences between private and public schools across countries. Differences are aggregated (and weighted by size) across countries. For math, the overall adjusted mean for private schools is 487, and the overall adjusted mean for public schools is 459 and represented by the horizontal (c) and vertical (d) blue lines, respectively. The dashed blue line parallel to the unit line (e) corresponds to the overall adjusted mean difference and likewise, the dashed green lines (f) correspond to the confidence interval. Lastly, rug plots along the right and top edges of the graphic (g) correspond to the distribution of each country's overall mean private and public school math scores, respectively.

Figure 4 represents a large amount of data and provides insight into the data and results. The figure provides overall results that would be present in a traditional table, for instance the fact that the green dashed lines do not span the unit line (i.e. y = x) indicates that there is a statistically significant difference between the two groups. However additional information is difficult to convey in tabular format. For example, the rug plots indicate that the spread in the performance of both private

Figure 4: Annotated multilevel PSA assessment plot. This plot compares private schools (x-axis) against public schools (y-axis) for North America from the Programme of International Student Assessment.

and public schools across countries is large. Also observe that Canada, which has the largest PISA scores for both groups, also has the largest difference (in favor of private schools) as represented by the larger distance from the unit line.

The multilevelPSA R Package

All of the analyses for this study were conducted using R (R Development Core Team, 2014). The use of R provides a number of important advantages. First, all of

the analyses are reproducible. That is, researchers can download all the R scripts⁶ and those with access to the restricted NAEP data⁷ can run all the analyses. However, since NAEP is not readily available to anyone, PISA data are used to demonstrate the features of the multilevelPSA package. Another important advantage of using R is that it is an extensible vis-à-vis R packages. Packages are collections of functions, data, and documentation designed for a specific purpose. Since the multilevel PSA methods described in this dissertation have never been conducted or implemented elsewhere, the multilevelPSA package was developed. As of this writing, version 1.2 is available on The Comprehensive R Archive Network (CRAN)⁸. In this section I outline the core functionality of the multilevelPSA package. Appendix J provides a complete list of the available functions with brief descriptions of their purpose. By convention, R commands are type faced in a fixed-width font and begin with a greater than (>) symbol.

To begin, the install.packages and require functions install and load the package, respectively.

```
> install.packages('multilevelPSA', repos='http://cran.r-project.org')
> require('multilevelPSA')
```

The multilevelPSA package includes North American data from the Programme of International Student Assessment (PISA; Organisation for Economic Co-Operation and Development, 2009). This data is made freely available for research and is utilized here so that the R code is reproducible⁹. This example compares the performance of private and public schools clustered by country.

> data(pisana)

> data(pisa.psa.cols)

⁶Available on Github at https://github.com/jbryer/Dissertation.

⁷Typically data is included for the analysis to be fully reproducible. However, given the sensitive nature of the data the National Center for Education Statistics (NCES) requires a restricted license for access to the data.

⁸The CRAN package page is available at: http://cran.r-project.org/web/packages/multilevelPSA/index.html ⁹NAEP requires a restricted use license and therefore the data is only available to qualified researchers. The R scripts for all analysis however, are available on Github at http://github.com/jbryer/Dissertation.

The mlpsa.ctree function performs phase I of the propensity score analysis using classification trees, specifically using the ctree function in the party package. The getStrata function returns a data frame with a number of rows equivalent to the original data frame indicating the stratum for each student.

Similarly, the mlpsa.logistic estimates propensity scores using logistic regression. The getPropensityScores function returns a data frame with a number of rows equivalent to the original data frame

```
> mlpsa.lr <- mlpsa.logistic(pisana[,c('CNT', 'PUBPRIV',pisa.psa.cols)],</pre>
                               formula=PUBPRIV ~ ., level2='CNT')
> mlpsa.lr.df <- getPropensityScores(mlpsa.lr, nStrata=5)
> head(mlpsa.lr.df)
  level2
            ps strata
1
     CAN 0.917
                     2
2
     CAN 0.941
                     3
3
     CAN 0.969
                     4
4
     CAN 0.930
                     2
5
     CAN 0.836
                     1
6
     CAN 0.973
                     4
```

The covariate balance function calculates balance statistics for each covariate by estimating the effect of each covariate before and after adjustment. The results can be converted to a data frame to view numeric results or the plot function provides a balance plot. This figure depicts the effect size of each covariate before (blue triangle) and after (red circle) propensity score adjustment. As shown here, the effect size for nearly all covariates is smaller than the unadjusted effect

size. The few exceptions are for covariates where the unadjusted effect size was already small. There is no established threshold for what is considered a sufficiently small effect size. In general, I recommend adjusted effect sizes less than 0.1 which reflect less than 1% of variance explained.

```
> cv.bal <- covariate.balance(covariates=student[,pisa.psa.cols],</pre>
                               treatment=student$PUBPRIV,
                               level2=student$CNT,
                               strata=mlpsa.df$strata)
> head(as.data.frame(cv.bal))
  covariate es.adj es.adj.wtd es.unadj
1
    ST04Q01 0.0565
                    -0.000396
                                 0.0258
2
    ST06Q01 0.0167
                    -0.000292
                                 0.0796
3
    ST08Q01 0.0766
                    0.000515
                                 0.1014
4
    ST08Q02 0.0379
                    0.000500
                                 0.0913
    ST08Q03 0.0150
5
                    -0.000850
                                 0.0286
6
    ST08Q04 0.0431
                    -0.000278
                                 0.0058
> plot(cv.bal)
```


Figure 5: Multilevel PSA balance plot for PISA. The effect sizes (standardized mean differences) for each covariate are provided before PSA adjustment (blue triangles) and after PSA adjustment (red circles).

The mlpsa function performs phase II of propensity score analysis and requires four parameters: the response variable, treatment indicator, stratum, and clustering indicator. The minN parameter (which defaults to five) indicates what the minimum stratum size is to be included in the analysis. For this example, 463, or less than one percent of students were removed because the stratum (or leaf node for classification trees) did not contain at least five students from both the treatment and control groups.

Removed 463 (0.696%) rows due to stratum size being less than 5

The summary function provides the overall treatment estimates as well as level one and two summaries.

> summary(results.psa.math)

Multilevel PSA Model of 85 strata for 3 levels.

Approx t: -10.8

Confidence Interval: -31.3, -24.75

level2 strata Treat Treat.n Control Control.n ci.min ci.max 1 CAN Overall 579 1625 513 21093 -72.1 -59.572 <NA> 1 580 28 492 1128 NΑ NΑ 2 3 <NA> 600 9 476 1326 NANA

... # Output truncated to save space

The plot function creates the multilevel assessment plot. Here it is depicted with side panels showing the distribution of math scores for all strata for public school students to the left and private school students below. These panels can be plotted separately using the mlpsa.circ.plot and mlpsa.distribution.plot functions.

Figure 6: Multilevel PSA assessment plot for PISA. The main panel provides the adjusted mean for private (x-axis) and public (y-axis) for each country. The left and lower panels provide the mean for each stratum for the public and private students, respectively. The overall adjusted mean difference is represented by the dashed blue line and the 95% confidence interval by the dashed green lines. There is a statistical significant difference between private and public school student performance as evidenced by the confidence interval not spanning zero (i.e. not crossing the unit line y=x.

Lastly, the mlpsa.difference.plot function plots the overall differences. The sd parameter is optional, but if specified, the x-axis can be interpreted as standardized effect sizes.

> mlpsa.difference.plot(results.psa.math,

sd=mean(mlpsa.df\$MathScore, na.rm=TRUE))

Figure 7: Multilevel PSA difference plot for PISA. Each blue dot corresponds to the effect size (standardized mean difference) for each country. The vertical blue line corresponds to the overall effect size for all countries. The green lines correspond to the 95% confidence intervals. The size of each dot is proportional to the sample size within each country.

State Charter Laws and Charter School Performance

Due to the explicit adjustment within clusters in multilevel PSA, a natural means of comparing clusters is available. That is, since effect sizes are estimated for each cluster, clusters can be compared on those estimated effect sizes. In the process of estimating a national effect size, an effect size for each individual state is also estimated. As such, states can be compared with regard to the effectiveness of charter school performance within that state to some other state level indicators.

This study compares the effect sizes from the multilevel PSA with the quality of state charter school law scores from NAPCS. Specifically, the correlation between the NAPCS scores for the quality of charter schools laws and the state level effect

sizes of charter schools are calculated. Although this analysis is simply correlational, no known analysis exploring the relationship between charter law and student performance has been conducted despite the fact that National Alliance for Public Charter Schools (2009) argues that the quality of charters laws are necessary for higher achieving charter schools. Additionally, in keeping with the emphasis of visualizations, scatter plots are provided.

The National Alliance for Public Charter Schools (2010a) rates the quality of charter schools using a 4-point rubric across 20 components (see Appendix L). The resulting ratings have a maximum value of 208. These scores are compared to the effect sizes from the multilevel PSA (using standardized mean differences). The correlation for each grade and subject are evaluated to be small, moderate, or strong using Cohen's (1988) thresholds of 0.10, 0.30, and 0.50, respectively.

Chapter 4: Results

This chapter outlines in detail the results of all the propensity score models described in chapter three. Since NAEP is organized such that each grade and subject combination is a separate dataset, this chapter focuses on the analysis of grade four math. The results for grade four reading, grade eight math, and grade eight reading are included in the appendices. The chapter begins with details of the nine propensity score methods used and concludes with a summary, including tables and figures, of the overall results across all grades and subjects.

Propensity Score Analysis with Stratification

The first class of propensity score methods used was stratification. The general approach of stratification methods is to subdivide the available sample into smaller groups that have similar covariate profiles. Then a comparison using mean differences between the treatment and control are made, and an overall result is pooled from those individual comparisons. There are several ways to stratify the sample: for this study deciles based upon the propensity scores (i.e. fitted values of a logistic regression model) and leaves of a fitted classification tree were used. Moreover, given the importance of covariate selection and omission from propensity score models, two types of logistic regression models were used, namely a full model using all available covariates and an Akaike Information Criterion (AIC; Akaike, 1974) optimized model. The latter is determined by a stepwise model selection algorithm where covariates are added and dropped and the model that optimizes the AIC is retained. Like all analysis in phase one, this was done without outcome variables.

However, before stratifying the logistic regression models, I examined the relationship between propensity scores and the outcome variable for the two groups and fitted a Loess regression line to the scatter plot to provide an overall indication of the differences, if any. Figure 8 is a Loess Regression Assessment Plot created

Figure 8: Loess regression assessment plot: Grade 4 math. The upper panel provides the distributions of propensity scores. The right panel provides the unadjusted distributions of dependent variable grade 4 NAEP math score. The main panel plots each students' propensity score against their outcome variable. Two Loess regression lines are provided for charter and traditional public schools. The grey bands correspond to the 95% confidence interval. Given that the confidence intervals overlap across the entire range of propensity scores provides evidence that there is little or no difference in the performance between charter and traditional public school student.

using the loess.plot function in the multilevelPSA package.¹⁰ The main panel is a scatterplot of each student's propensity score on the x-axis and math score on the y-axis (for clarity a random 10% sample of data points are plotted; more than 10% would have resulted in a graphic too dense to interpret).

Two fitted Loess regression lines with approximate 95% confidence intervals are also plotted¹¹. Loess lines are based upon the full dataset. The panel on the top

¹⁰This function is adapted from the loess.psa function from the PSAgraphics package (Helmreich & Pruzek, 2009). This version implements the figure utilizing the grammar of graphics framework (Wilkinson, 2005) implemented in the ggplot2 (Wickham, 2009) R package.

 $^{^{11}}$ The confidence intervals are based upon the t-distribution using the standard errors from the fitted values (Cleveland, Grosse, & Shyu, 1992). This is implemented in the loess function in the stats package included as part of the base R (R Development Core Team, 2014) installation

provides density distributions of the propensity scores and shows that there is generally good overlap between the two groups. Having adequate overlap is critical since it indicates there are treatment and comparison units with similar propensity scores that are compared on their outcome variables. The panel on the right is a density distribution of the unadjusted outcome and shows that before propensity score adjustment, traditional public school students performed slightly better than charter school students. However, given the strong overlap in the two Loess regression lines, this figure suggests there is no discernible difference in performance between traditional public school students and charter school students in grade four math. Corresponding plots for the other datasets, as well as those for the AIC optimized models, are provided in Appendix D.

The vertical lines in the main panel of Figure 8 represent the deciles, or strata. Figure 9 is a propensity score assessment plot (Helmreich & Pruzek, 2009) where the x-axis is the outcome score for charter schools and the y-axis is the outcome score for traditional public schools (corresponding to the points within each vertical line in Figure 8). Each circle corresponds to each stratum and the size of the circle is proportional to the number of students within each stratum. For the Logistic regression models, since deciles were used, each circle is of the same size. Figure 10 is the corresponding propensity score assessment plot for the classification tree model and therefore each stratum is not of the same size. Points that lie on or near the unit line, y = x, indicate no significant difference in the outcome of the two scores. Lines are projected to a line perpendicular to the unit line and the tick placed. These tick marks correspond to the distribution of difference scores and the dashed blue line parallel to the unit line the overall mean difference. Furthermore, the green bar represent exactly the 95% confidence interval. The fact that the confidence interval does not span the unit line and is on the tradition public school side indicates there is a small, statistically significant difference in favor of traditional public school students. Tables 5, 6, and 7 provide numeric results for

each stratum. Appendix F contains propensity score assessment plots and summary tables for grade four reading, grade eight math, and grade eight reading.

Covariate Balance

The goal of propensity score methods is to adjust for selection bias with the available observed covariates, and the results discussed above are only as good as the balance achieved. In practice researchers test for the effectiveness of bias reduction by evaluating covariate balance. Perfect balance is achieved when there are no differences in covariate values for any matched pair or stratum. However, perfect balance is almost never achieved. Figure 11 is a Covariate Effect Size balance plot. For each covariate on the y-axis, the absolute standardized effect size before adjustment (in red) and after adjustment (in blue) are plotted. Effect sizes for each stratum are represented by letters. This figure shows that the propensity score adjustment greatly reduced the effects of each covariate. There is not a conventional adjusted effect size threshold for achieving sufficient balance in the PSA literature. However, more generally Cohen (1988) has suggested that an effect size between 0.2 and 0.3 would be small. As a general rule of thumb I suggest that an adjusted effect size of less than 0.1 would be very small (accounting for less than 1% of the variance in the model) and therefore evidence of sufficient balance. The remaining covariate balance plots are provided in Appendix E.

Table 5: Logistic regression stratification results for grade 4 math

	Publ	ic	Charter	
Strata	Mean	n	Mean	n
1	228.64	8702	225.26	158
2	237.61	8694	239.91	165
3	242.02	8637	239.31	222
4	246.25	8645	241.62	214
5	245.68	8607	248.17	253
6	247.34	8615	244.96	244
7	245.96	8566	242.53	293
8	234.39	8494	232.75	365
9	218.62	8246	217.66	613
10	224.42	8066	221.55	794

Figure 9: Propensity score assessment plot for logistic regression stratification: Grade 4 math

Figure 10: Propensity score assessment plot for classification tree stratification: Grade 4 math

Absolute Standardized Covariate Effect Sizes w/ & w/o PS adjustment

Standardized Effect Sizes: treatment TRUE – treatment FALSE Open circles are stES–unadj; Closed circles are stES–adj; Letters represent strata

Figure 11: Covariate balance plot for logistic regression stratification: Grade 4 math

Table 6: Logistic regression AIC stratification results for grade 4 math

	Pub	lic	Cha	rter
Strata	Mean	n	Mean	n
1	229.81	8864	226.26	165
2	239.11	8630	241.24	162
3	245.14	11091	243.45	275
4	244.90	6095	242.28	160
5	244.90	8719	244.52	262
6	246.66	8483	246.44	250
7	245.45	8581	241.09	291
8	232.05	8507	231.18	349
9	218.70	8331	217.03	621
10	224.41	7971	222.01	786

Table 7: Classification trees stratification results for grade 4 math

	Pub	lic	Charter	
Strata	Mean	n	Mean	n
5	219.03	6783	218.32	492
6	209.53	731	205.16	78
7	199.37	1469	198.49	68
9	229.54	4489	226.60	376
11	216.31	595	216.81	38
12	222.64	3920	220.45	438
16	235.93	5918	232.69	110
17	218.06	2272	222.53	69
20	243.38	11290	242.95	260
21	235.67	15740	232.40	487
22	251.54	13499	250.68	478
24	237.01	11130	235.71	223
25	253.48	7436	251.58	204

Propensity Score Matching

The second class of propensity score method used is propensity score matching. In propensity score matching, the goal is to match students from the two groups with small differences in their propensity scores in order to adjust for selection bias. In large datasets, or when particular covariates are determined to be more important for adjusting selection bias, whether theoretically or otherwise, partial exact matching is done. In the context of this study, partial exact matching is akin to implicitly adjusting for the multilevel nature of the data. Students were first

Figure 12: Loess Plot with Matched Pairs. This is a modified version of Figure 8. A random sample of 100 matched pairs were selected from the one-to-one matching analysis. The propensity scores are plotted against the grade 4 math NAEP score for each student. The students who were matched are connected by a black line segment. The Loess regression lines, however, are estimated from the full dataset.

matched exactly by state, gender, and ethnicity, and then by propensity score using nearest neighbor (i.e. the difference between propensity scores of pairs is minimized). Furthermore, a caliper of 0.25 is specified which guarantees that the distance between any matched pair is no more than one-fourth of a standard deviation as suggested by Rosenbaum (2002). Propensity scores from the full logistic regression model were used for matching.

The Matchby function in the Matching package (Sekhon, 2011) was used to find matches. First, propensity scores were estimated using the full logistic regression model. The Matchby algorithm first determines which students match exactly on state, gender, and ethnicity. Within those subgroups, students with the smallest standardized difference and less than 0.25 standard deviations, are returned. Three matched sets were produced (stated as charter-to-public): one-to-one, one-to-five,

and one-to-ten. Matching was done without replacement. Figure 12 depicts the relationship between the propensity scores and NAEP scores for matched pairs. In this figure, 100 random matched pairs were selected from the one-to-one matched analysis for grade 4 math. Note that the Loess regression lines are estimated from the full dataset. For those 100 matched pairs, their propensity scores are plotted against their grade 4 math score. The students who were matched are then connected by the black line segment. Given that all the lines are nearly perfectly vertical indicates that the difference in propensity scores is minimized. The ATE is then calculated approximately¹² as the mean of the lengths of those lines.

Once matched pairs were determined, dependent sample t-tests were performed (Austin, 2011) to estimate average treatment effect and corresponding confidence intervals. Figures 17 and 18 and Table 8 at the end of the chapter provide the overall results. In general however, matching methods tend to estimate slightly larger treatment effects than both the stratification and multilevel models. And of additional note, the confidence intervals shrink as the ratio of treatment-to-control units increase due to the large sample n.

By using partial exact matching, perfect balance is achieved on the covariates exactly matched on, namely state, gender, and ethnicity. Since balance was achieved using the full logistic regression model discussed above in the stratification section, by extension balance is also achieved for propensity score matching. That is, since balance was achieved for students with propensity scores within each quintile, and the fact the maximum distance between any two matched students in 0.25 standard deviations of the propensity score, then any matched pair must also be balanced.

Multilevel Propensity Score Analysis

The final class of propensity score method utilized is multilevel propensity score analysis. This approach to PSA was developed for this dissertation and implemented in the multilevelPSA R package. The multilevel PSA approach

¹²Technically the lines are the hypotenuse of a right triangle. The ATE is calculated from the difference in scores which would be the side of the triangle parallel with the y-axis.

Figure 13: Multilevel PSA covariate heat map for classification trees: Grade 4 math. Each colored cell indicates that that covariate was used in the classification tree for that state. The darkness indicates the relative importance for that covariate in that state such that darker colors indicate that the covariate was used to split closer to the root node.

makes explicit in both phase I and II the multilevel nature of the data, in the case of this study, state. In principle, the multilevel PSA approach is a conceptual combination of the partial exact matching and stratification. However, whereas partial exact matching utilizes propensity scores estimated from a single logistic regression model, the multilevel PSA algorithm estimates separate propensity score models, using either logistic regression or classification trees (both were done for this study), for each level two cluster (i.e. state). That is, the algorithm performs m separate propensity score analyses using stratification where m is the number of states. This approach provides average treatment effects for each state as well as an overall, national, estimated treatment effect.

The same three methods of stratification described above were used: full logistic regression model using all covariates, logistic regression model that optimized the Akaike Information Criterion (AIC), and classification trees. For the logistic regression models strata are defined using quintiles of the propensity scores. One

Figure 14: Multilevel PSA covariate balance plot classification trees: Grade 4 math

difficulty in interpreting results for multilevel PSA models is the relative importance of covariates for predicting treatment. Figure 13 is a covariate heat map that depicts each covariate on the y-axis and state on the x-axis. If a covariate is present in the fitted classification tree for that state, the intersecting cell is shaded. The darkness of the color represents how far down the tree that covariate first appears. That is, the darkest color indicates that the covariate was used to split the tree at the root (or the first splitting covariate). This provides an opportunity to compare the relative importance of each covariate across states. The results for grade four math show that ethnicity is the strongest predictor of treatment, having appeared in 17 of the trees, with National School Lunch eligibility as the second. For the classification tree methods, stratum with fewer than five students in either of the two groups were eliminated. Since quintiles were used for the logistic regression models, all students within those states are used. Table 5 provides the results within each stratum of each state including stratum size.

Covariate Balance

Figure 14 is the multilevel PSA counterpart to the covariate balance plot described above. Individual stratum have been excluded for clarity since there are

substantially more strata. This figure shows that, in general, relatively good balance has been achieved since the adjusted absolute effect sizes are smaller or not substantially different than the unadjusted effect sizes, and using the same criteria discussed above, all the adjusted effect sizes are smaller than 0.1. The remaining multilevel PSA covariate balance plots are provided in Appendix G. The classification tree methods, in general, provide much better balance than the logistic regression models. This is a limitation of estimating logistic regression models with samples that have disproportional numbers of control-to-treatment students in the dependent variable. As such, interpreting the multilevel PSA logistic regression models in isolation is discouraged. However, this study follows the advice of Rosenbaum (2012) in that these are just two of the nine methods used to estimate causal effects.

Visualizing Multilevel PSA

An important advantage of multilevel PSA is that average treatment effects can be estimated for each state and then aggregated to provide a national average treatment effect. A number of graphics have been developed to help interpret these results. Figure 15 is a multilevel PSA assessment plot for grade four math. This is an extension of the PSA assessment plots (Helmreich & Pruzek, 2009) described earlier. Each point represents the overall adjusted score for each state (the point size is proportional to the number of students sampled in each state) with traditional public schools on the x-axis and charter schools on the y-axis. The overall national mean scores are represented by the blue lines. The tick marks on the line perpendicular to the unit line (y = x) represent the distribution of differences for states. The dashed blue line¹³ is the overall national mean difference and the green lines are the 95% confidence interval. This figure depicts that there is not a statistically significant difference nationally for grade four math using classification trees as evidenced by the confidence interval (the green lines) overlapping the zero (the unit line). Moreover, there is minimal difference for most

¹³For this dataset the blue and green lines almost completely overlaps the unit line but are present.

Figure 15: Multilevel PSA assessment plot classification trees: Grade 4 math

states, since most of the points fall close to the unit line. However, there are some states that have a small positive effect size for charter school students while others have a small negative effect.

Figure 16 provides a more detailed depiction of the differences in Figure 15.

The tick marks in Figure 15 on the line perpendicular to the unit line in the lower left corner of the plot correspond to the distribution of difference scores. Figure 16 represents only this distribution with more details. Specifically, the small grey points correspond to the difference for each stratum. The blue points are the overall difference for each state, with the point size corresponding to the number of students sampled. The 95% confidence intervals for each state are provided in green.

Figure 16: Multilevel PSA difference plot classification trees: Grade 4 math

The overall adjusted national effect size and corresponding 95% confidence interval are represented by the vertical blue line and vertical green lines, respectively. From this figure, charter school students performed statistically significantly better than traditional public school students in Idaho, Illinois, Georgia, and Minnesota as evidenced by the confidence intervals that do not span zero. Conversely, traditional public school students performed higher in Arizona, Texas, Massachusetts, and New Jersey. For all other states there was no statistical difference. From a national perspective, there is no difference between the performance of charter and traditional public school students as evidenced by the vertical green lines spanning zero. Figures for grade four reading, grade eight math, and grade eight reading are provided in Appendix H.

Summary and Overall Results

Up to this point in the chapter, I have outlined the nine propensity score methods used for estimating treatment effects with grade four math. The corresponding tables and figures have been referenced in the appendices. In this section, I provide two figures and one table that summarize the 36 propensity score models estimated.

A scatter plot of the overall national estimated treatment effects for all 36 PSA methods is presented in Figure 17. The differences across subjects and grades are a result of different scales used for the assessment and therefore comparisons across subject and grade levels is not appropriate. The diameters of the circles in this figure are equal to the confidence interval so that circles that overlap the unit line indicate a non-significant difference. The horizontal and vertical lines (with numeric labels) represent the overall unadjusted NAEP score for traditional public school students and charter school students. This figure shows that, in general, the scores for charter school students are higher when adjusted, whereas the traditional public school scores are the same or lower. Regardless, in most cases the differences do not deviate substantially from the unit line indicating either difference in scores is small.

Figure 18 provides the overall national effect sizes for each PSA method within each grade and subject. Table 8 provides numeric results for this figure. Figure 18 reveals a number of important results. First, with regard to the effects of charter schools, there is some variety in effects across the different grades and subjects. In general, it appears charter schools either perform worse than or equal to traditional public schools in grade four. Nearly half of the grade eight models in both math and reading suggest small positive effects. However, even when there are statistically significant positive effects, the maximum effect size is relatively small (0.11).

Figure 18 also reveals some trends in the behavior of the different propensity score methods. There appears to be fairly good consistency in the estimated effects within the stratification and matching methods, although in general, the matching

Figure 17: PSA circle plot of adjusted means. The vertical and horizontal lines correspond to the unadjusted means for charter and traditional public schools, respectively. The points represent the overall effect sizes (standardized mean difference) for each of the nine propensity score methods used.

methods provide larger effect size estimates. However, the matching methods, even with one-to-ten, use fewer than 40% of the available traditional public school students, whereas the stratification methods use all traditional public school students. There is some variation in the estimated effect sizes for the multilevel models with the classification trees providing larger estimates. As noted above, this may be due, in part, to insufficient balance being achieved. This is likely a limitation of the logistic regression to provide stable estimates given one, the larger charter-to-public school student ratio and two, the smaller samples within each state. The following chapter provides a discussion of the implications of these results.

Figure 18: Overall differences in effect size. The blue dots correspond to the overall effect (standardized mean difference) for each method. The green bard correspond to the 95% confidence interval.

Differences Between States

The National Alliance for Public Charter Schools (NAPCS; 2010a) publishes annual ratings and rankings of state charter school laws. The scores are based upon a rubric of 20 essential components of effective charter laws (see Appendix L). Figure 19 is a scatter plot for the NAPCS scores and the effect sizes from the multilevel PSA for math and reading at grades 4 and 8. The correlations are small to moderate (Cohen, 1988) ranging from 0.095 for grade 4 math to 0.33 for grade 8 math. Additionally, the linear (formulas in lower right) and Loess regression lines in black and blue, respectively, are included. Appendix M provides a matrix plot of the NAPCS quality of charter law scores and NAEP effect sizes. In this plot, the

Figure 19: Comparison of 2010 NAPCS quality of charter law scores and NAEP charter school effect sizes. Linear and Loess regression lines are provided in black and blue, respectively. Grey bands correspond to the 95% confidence interval for the Loess regression. The size of the points correspond to the overall mean NAEP score (converted to a z-score) for each state.

lower panels contain scatter plots for each pair of variables with linear and Loess regression lines in black and blue, respectively. The main diagonal contains histograms for each variable. The upper panels contain the Pearson correlation between each pair of variables. Excluding grade 4 math, there appears to be a moderate correlation between each of the charter school effect sizes and NAPCS quality of charter law scores.

Table 8:	Summary	of overall	propensity	score results

Method	Charter	Public Public	ATE	95%	ó CI
			e 4 Mat		
Stratification Logistic Regression	235.37	237.09	-0.06	-2.77	-0.68
Stratification Logistic Regression AIC	235.55	237.09	-0.05	-2.59	-0.49
Stratification Classification Tree	235.48	237.09	-0.06	-2.74	-0.47
Matching One-to-One	231.22	231.18	0.00	-1.12	1.20
Matching One-to-Five	232.67	232.14	0.02	-0.01	1.07
Matching One-to-Ten	234.02	233.33	0.02	0.29	1.09
Multilevel PSA Logistic Regression	237.24	232.67	-0.16	-3.53	-5.60
Multilevel PSA Logistic Regression AIC	237.24	233.33	-0.14	-2.80	-5.01
Multilevel PSA Classification Trees	235.90	235.91	0.00	1.32	-1.30
		Grade	4 Read	ing	
Stratification Logistic Regression	216.96	216.92	0.00	-1.13	1.23
Stratification Logistic Regression AIC	216.92	216.92	0.00	-1.17	1.17
Stratification Classification Tree	217.12	216.92	0.01	-1.23	1.63
Matching One-to-One	212.88	211.82	0.03	-0.30	2.41
Matching One-to-Five	214.51	213.54	0.03	0.33	1.60
Matching One-to-Ten	215.63	214.75	0.03	0.42	1.35
Multilevel PSA Logistic Regression	217.01	214.69	-0.07	-1.07	-3.58
Multilevel PSA Logistic Regression AIC	216.99	214.85	-0.06	-0.86	-3.42
Multilevel PSA Classification Trees	216.19	216.71	0.01	1.95	-0.93
			e 8 Mat		
Stratification Logistic Regression	277.58	279.05	-0.04	-2.69	-0.25
Stratification Logistic Regression AIC	277.41	279.06	-0.05	-2.86	-0.43
Stratification Classification Tree	278.11	279.04	-0.03	-2.31	0.44
Matching One-to-One	272.05	269.16	0.08	1.51	4.28
Matching One-to-Five	274.85	273.46	0.04	0.72	2.06
Matching One-to-Ten	276.21	274.08	0.06	1.63	2.62
Multilevel PSA Logistic Regression	278.86	276.63	-0.06	-0.92	-3.54
Multilevel PSA Logistic Regression AIC	278.95	277.11	-0.05	-0.52	-3.16
Multilevel PSA Classification Trees	278.98	278.30	-0.02	0.94	-2.30
			8 Read		
Stratification Logistic Regression	260.20	259.63	0.02	-0.55	1.69
Stratification Logistic Regression AIC	260.25	259.63	0.02	-0.49	1.74
Stratification Classification Tree	261.30	259.60	0.05	0.43	2.97
Matching One-to-One	256.29	253.48	0.09	1.51	4.12
Matching One-to-Five	258.19	256.24	0.06	1.33	2.58
Matching One-to-Ten	258.93	256.82	0.06	1.65	2.57
Multilevel PSA Logistic Regression	259.51	259.30	-0.01	1.13	-1.55
Multilevel PSA Logistic Regression AIC	259.52	259.49	-0.00	1.24	-1.31
Multilevel PSA Classification Trees	258.70	262.29	0.11	4.96	2.23

Chapter 5: Discussion

This study aims to make two major contributions: first, to address the question of the effectiveness of charter schools from a state and national perspective, and second, to develop a new method of propensity score analysis for multilevel data to facilitate answering the research questions. This chapter interprets the results as well as point out some limitations of this study.

Discussion of Research Questions

This study set out to address three research questions regarding the differences between charter and traditional public schools. The first two questions, regarding differences in terms of student performance on NAEP, are addressed in the following section. The relationship between charter school performance and state charter school laws are discussed separately.

Differences Between Charter and Traditional Public Schools

The first research question addressed by this study was: Given appropriate adjustments based on available student data, is there a discernible difference between charter and traditional public schools with regard to math and reading scores on the NAEP evaluated at grades 4 and 8? The second question was: If so, what is the nature and magnitude of this difference for the two outcomes, in reading and mathematics? Of the 36 different propensity score models estimated, 11 resulted in a positive effect for charter schools, another 11 resulted in a positive effect for traditional public schools, and the remaining 14 resulted in no difference (see Figure 18 and Table 8). Across all models, effect sizes ranged from -0.16 to 0.11, all considered very small by virtually all statistical standards (Cohen, 1988). In aggregate, and given the available data, there is no discernible difference in the performance of charter and traditional public school students in grade 4 and 8 math and reading in NAEP.

These results must be considered in terms of a limitation of the study. Given the substantial difference in sample n's for charter and public schools (i.e. there are

as many as three to four orders of magnitude more public school students available in the NAEP data sets), it is expected that there would be public school students who would not have a counterpart from the charter school group. However, the relatively high percentage of public schools students who do not have a charter school counterpart (as much as 35%) suggests that there may be imbalance between the two groups as a whole. That is, although reasonable balance was achieved with regard to the individual stratum where comparisons are made, the overall sample imbalance, as evidenced by the unmatched public school students, suggests that public schools serve a more heterogeneous population. The nature of the demographic differences between charter and traditional public school students should be explored in a future study.

State Charter Laws and Charter School Performance

Braun et al. (2006a) suggested that there are political and policy influences on the performance of charter schools. The National Alliance for Public Charter Schools (NAPCS; 2010a, 2012) publishes ratings and rankings of state charter law quality annually, in part because they believe that poor charter school laws can hinder the performance of students in charter schools. The fact that the results of the multilevel PSA provides a natural ranking based upon student differences within each state provide an opportunity to test the relationship between the quality of state laws and student performance in NAEP. Results suggest there is a small to moderate correlation between the quality of charter laws and charter school effects in math and reading at grades 4 and 8 in NAEP (see Figure 19). Although this study suggests there is a relationship between the quality of charter laws and charter school performance vis-à-vis NAEP, a causal relationship cannot be concluded. Future studies should examine how the 20 components of good charter laws identified by NAPCS relate to the performance of specific charter schools.

Another limitation of this analysis is that not all states that have charter laws had sufficient sample size in NAEP to be included in the analysis (16 states, or 39%)

of the 41 states with charter laws). Although the larger states and the states who have had charter schools operating for many years are included, these results should be updated with future NAEP studies as the number and percentage of charter school students grows in the states not included in this analysis.

Discussion of Research Methods

In order to address the research questions discussed above, a new class of propensity score method was developed for multilevel, or clustered data. The results of this study indicate that this method provides estimates that are consistent with more traditional approaches to PSA. However, this method provides important insight into the relationship of clusters not available using other methods. This section addresses the methodological implications of this study.

Multilevel Propensity Score Analysis

The development of the multilevelPSA R package for estimating and visualizing propensity score models of multilevel data provides important insight into the implications of what traditionally would have been one of many covariates. The results suggest that this method performs and provides effect size estimates consistent with other propensity score methods. However, a key advantage to using this new method includes an explicit adjustment of the multilevel nature of some data as well as being able to understand the implication of clustering when comparing the outcome of interest.

Propensity score methods have been effective for estimating treatment effects with relatively small samples (see e.g. Helmreich & Pruzek, 2009). However, as observed in chapter four, estimating multilevel PSA models requires larger samples, given the need to stratify within clusters. Although NCES began oversampling charter schools in 2003, the fact that the ratio of charter to traditional public school students is so large results in model specification problems, especially with logistic regression¹⁴. This has been alleviated to some extent by removing traditional public

¹⁴Nationally, approximately 2 million students, or 4.2%, attend charter schools (National Center for Educational Statistics, 2009).

school students who attend a school farther than five miles from a charter school.

More specifically, with regard to propensity score ranges, the range tends to shrink as the ratio of treatment-to-control increases. Figure 20 depicts the range and distribution of propensity scores (using logistic regression) with varying treatment-to-control ratios. The data used to create this figure is simulated and available in Appendix K. The psrange and plot.psrange functions are included in the multilevelPSA R package. Propensity scores are estimated with a single covariate where the mean for the treatment and control are 0.6 and 0.4, respectively. The standard deviation for both is 0.4. There are 100 treatment units and 1,000 control units simulated. The goal in choosing these means and standard deviations is to have some separation between treatment and control. Each row in the figure represents the percentage of control units sampled before estimating the propensity scores, starting with 100% (i.e. all 1,000 control units) to 10% (100 of the control units). As the figure shows, as the ratio decreases to where there are equal treatment and control units, the range of the propensity scores becomes more normal. To calculate the ranges, each sampling step is bootstrapped so the green bar and black points represent each of the 20 bootstrap samples taken. The bars then represent the mean of the minimum and mean of the maximum for each step.

The "shrinking" of propensity score ranges as the ratio of treatment-to-control increases has implications for the interpretation of propensity scores. Typically, propensity scores are interpreted as the probability of being in the treatment. For studies where the number of treatment and control units are roughly equal, this interpretation is valid. However, in cases where the ratio of treatment-to-control is large, it best to simply interpret the propensity scores as adjustment scores and not probabilities. Since the matching and stratification procedures utilize standard scores (i.e. the propensity score divided by the standard deviation of the propensity scores), this only impacts interpretation of the propensity scores and has no impact on the estimated treatment effects.

Figure 20: Propensity score ranges for varying treatment-to-control ratios

The Display of Multilevel Results

In the development of the multilevelPSA, as well as all the analyses in this study, two overarching principal decisions were made with regard to how results are displayed, specifically the lack of p-values and an emphasis on visualizations over tabular output. Both of these issues have received substantial attention and debate over the last several decades (Shrout, 1997; Hunter, 1997; Harris, 1997; Abelson, 1997; Scarr, 1997; Estes, 1997b). Although there is no clear consensus on best practice, I contend that given the nature of propensity score analysis and

observational studies, simple null hypotheses reported as either statistically significant or not in tables with p-values does a disservice to the results. The use of graphics with confidence intervals provide context as well as magnitudes of differences.

The practice of significance testing¹⁵ dates to the early work of Fisher (1925). Gigerenzer (2004) describes the current practice in peer-reviewed research journals as "the null ritual" that involves three steps:

- 1. Define a null hypothesis where the researcher is testing that there is no mean difference. Do not specify any predictions or alternative hypotheses.
- 2. Use a p-value of .05 for rejecting the null hypothesis and report your p-value using a range (i.e. p < .05, p < .01, or p < .001).
- 3. Always perform this procedure.

In 1996 the American Psychological Association (APA) brought the debate regarding the use of significance testing to the forefront by entertaining a ban in the journals it publishes (Shrout, 1997; Hunter, 1997; Harris, 1997; Abelson, 1997; Scarr, 1997; Estes, 1997b). Although a ban was not instituted, APA now recommends the reporting of exact p-values, confidence intervals, and effect sizes.

What is the issue with p-values? First, the practice of significance testing as represented in the social sciences for nearly a century reduces research questions to a dichotomous outcome. Rarely can a study be reduced to a simple yes/no answer, especially in the social sciences. Moreover, the use of p < .05 is entirely arbitrary and the difference between significant and non-significant results is itself not significant (Gelman & Stern, 2006). However, perhaps more damning is the likelihood of committing Type II errors (Bakan, 1966; Carver, 1978; Cohen, 1994; Henkel & Morrison, 1970; Rozenboom, 1960; Schmidt, 1996). A study by Sedlmeier and Gigerenzer (1989) that examined all articles published in 1984 in the *Journal of*

 $^{^{15}}$ Here, I use the phrases significance testing, null hypothesis testing, and p-values to represent the same statistical practice and are generally interchangeable.

Abnormal Psychology found that the error rate was 60%. That is to say that the researchers would have done better to flip a coin!

Lastly, given the relationship between p-values and sample size, it would be expected that with n > 100,000, as in this study, most differences would be statistically significant. Even in one-to-one matched analysis where $n \approx 3,000$, one would expect p < 0.05 for even small differences. For example, the formula for calculating t for a dependent sample paired t-test is:

$$t = \frac{\bar{X}_D - \mu_0}{S_D / \sqrt{n}} \tag{6}$$

Where X_D is the mean difference, μ_0 is non-zero for testing differences other than zero, S_D is the standard deviation of the differences, and n is the sample size. Using the approximate sample standard deviation of 40 from grade 8 reading results, a mean difference 2 (representing a small effect size of 0.06 by most standards), and n = 3,000, results in t = 2.738 and p = 0.003. For the one-to-one paired analysis with a very small effect size the power estimate (Cohen, 1988) is 0.64. However, the one-to-two matched analysis increases the power to a very acceptable 0.90. The result of this exercise is to demonstrate that relying on p-values to make decisions is a fool's errand. Instead, Scarr (1997) suggestion that a "better uses of statistics would focus on the magnitude of effects and error estimates" (p. 17) is appropriate.

The use of graphics have made substantial advancements in the twentieth century, with seminal works by Tukey (Cleveland, 1988), Tufte (2001), Cleveland (1993, 1994; see also Cleveland & Becker, 1991), and Chambers, Cleveland, Kleiner, and Tukey (1983). The implementations in this dissertation are based upon Wilkinson's grammar of graphics as implemented in R using the ggplot2 package (Wickham, 2009). Wherever possible, confidence intervals are used to show the magnitude of the differences (Cumming, 2012; Estes, 1997a).

Although the use of graphics are frequently taught in statistics courses, they are often omitted from journal publications (Gelman, Pasarica, & Dodhia, 2002) and

relegated to diagnostic purposes (Gelman, 2011). The graphics presented here provide important insights into the nature and magnitude of the differences between charter and traditional public schools. The multilevel assessment plots (see Figure 9 and Appendix H) show the distribution scores (charter, traditional public, and differences) across multiple dimensions simultaneously. Although a table could show that the differences are small within states with few exceptions. But what would be lost is that the range of scores across states for charter and traditional public school students separately is relatively wide. Similarly, for the multilevel PSA difference plots (see Figure 16 and Appendix H) the graphic provides immediate evidence of the nature of the differences. Also, by providing confidence intervals, the results can be expressed vis-à-vis the graphic similar to the traditional p-value in a summary table.

Limitations

This study, and many like it, only examined a small subset of students educational experiences. That is, NAEP, as well as CREDO (Center for Research on Education Outcomes, 2009, 2013), only examine student performance in math and reading. This leaves out all other, and arguably equally important, subjects. These studies are not alone in overemphasizing these subjects. The Common Core State Standards which are being implemented in the majority of states and are a cornerstone of the *Race to the Top* initiative, currently only define standards and curriculum for mathematics and English Language Arts. As a consequence, the results of this study are limited to reading and math: They are silent in terms of charter school performance in writing, science, physical education, and the arts.

Lastly, this study considered charter schools as an entire, single class of schools. I believe it is important to explore the effectiveness of charter schools as compared to traditional public schools, especially given that in some cities (e.g. New Orleans and Philadelphia) the majority of students attend charter schools, and the Department of Education is currently emphasizing charter school expansion as part

of the Race to the Top initiative. However, this study, and other national studies like it (e.g. Braun et al., 2006a; Center for Research on Education Outcomes, 2009), does not explicitly account for the large variability in type and quality of individual charter schools. This study does provide some evidence that there is wide variability in charter school performance on reading and math, mostly as a feature of the visualizations. Consider the multilevel PSA difference plots (e.g. Figure 16) where the grey points represent the difference for each stratum (i.e. students with similar covariate profiles). The spread of these points is quite large and there are some stratum with much larger gains than the overall aggregate. This suggests that, for some classes of students, charter schools provide much larger gains over their traditional school student counterparts. This should be expected, given Budde's (1988) original vision and model for charter schools. That is, charter schools provide an opportunity for teachers, administrators, parents, and communities to experiment with alternative school models. Future studies should consider the varying types of charter schools (e.g. for-profit, non-profit, KIPP, online) when making comparisons with traditional public schools.

Conclusion

In summary, the results of this study are consistent with the wide body of research on charter schools. Namely, some charter schools perform better than their traditional public school counterpart on NAEP reading and math tests, while others perform worse. However, in aggregate, the average difference is nonexistent or very small. Ray Budde (1988) originally envisioned charter schools as a way for teachers, administrators, parents, and communities to experiment with the goal of finding better ways to teach students. But with *No Child Left Behind* and *Race to the Top*, among other initiatives from private for-profit and not-for-profit organizations, charter schools are often offered as a wholesale replacement for traditional public schools. That is, charter schowols were originally envisioned as experimental schools but more recently have been presented as schools of choice (to traditional public

schools). The results of this study, along with the other national studies examining the differences between charter and traditional public schools (Center for Research on Education Outcomes, 2009, 2013; Braun et al., 2006a), suggest that charter schools do not provide, in aggregate, substantial benefit on NAEP reading and math scores over their traditional public school counterparts.

References

- Abadie, A., Diamond, A., & Hainmueller, J. (2007). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. NBER Working Paper Series, w12831. Retrieved from
 - http://papers.ssrn.com/sol3/papers.cfm?abstract_id=958483
- Abelson, R. P. (1997). On the surprising longevity of flogged horses: Why there is a case for the significance test. *Psychological Science*, 8(1), 12–15.
- Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 19, 716-723.
- Austin, P. C. (2011). Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistical in Medicine, 30, 1292-1301.
- Bakan, D. (1966). The test of significance in psychological research. *Psychological Bulletin*, 66, 423–437.
- Betts, J. R., & Hill, P. T. (2006). Key issues in studying charter schools and achievement: A review and suggestions for national guidelines. National Charter School Research Project, Center on Reinventing Public Education, University of Washington Bothell.
- Betts, J. R., & Tang, Y. E. (2008). Value-added and experimental studies of the effect of charter schools on student achievement. National Charter School Research Project, Center on Reinventing Public Education, University of Washington Bothell.
- Betts, J. R., & Tang, Y. E. (2011). Measuring charter performance: A review of public charter school achievement studies: A meta-analysis of the literature. Washington D.C.: National Charter School Research Project.
- Braun, H., Jenkins, F., & Grigg, W. (2006a). A closer look at charter schools using hierarchical linear modeling. U.S. Government Printing Office.
- Braun, H., Jenkins, F., & Grigg, W. (2006b). Comparing private schools and public schools using hierarchical linear modeling (NCES 2006-461). Washington, DC: U.S. Department of Education, National Center for Educational Studies, Institute of Education Sciences.
- Bryer, J. (2011). multilevelpsa: Multilevel propensity score analysis [Computer software manual].

 Retrieved from http://multilevelpsa.r-forge.r-project.org (R package version 1.0)

- Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage Publications.
- Budde, R. (1988). Education by charter: Restructuring school districts. The Regional Laboratory for Education Improvement.
- Carnoy, M., Jacobsen, R., Mishel, L., & Rothstein, R. (2005). The charter school dust-up:

 Examining the evidence on enrollment and achievement. Teacher College Press & Economic Policy Institute.
- Carver, R. P. (1978). The case against statistical significance testing. Harvard Educational Review, 48, 378–399.
- Center for Education Reform. (2008). Annual survey of america's charter schools. Retrieved November 29, 2009, from
 - http://edreform.com/wp-content/uploads/2013/03/CER_charter_survey_2008.pdf
- Center for Education Reform. (2010). National charter school & enrollment statistics. Retrieved from http://www.edreform.com/download/CER_Charter_Survey_2010.pdf
- Center for Research on Education Outcomes. (2009). Multiple choice: Charter school performance in 16 states. Stanford University.
- Center for Research on Education Outcomes. (2013). National charter school study. Stanford University.
- Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data analysis. Belmont.
- Cleveland, W. S. (1988). The collected works of John W. Tukey, Volume V graphics. Wadsworth and Brooks.
- Cleveland, W. S. (1993). Visualizing data. AT&T Bell Laboratories.
- Cleveland, W. S. (1994). The elements of graphing data (rev. ed.). AT&T Bell Laboratories.
- Cleveland, W. S., & Becker, R. A. (1991). Take a broader view of scientific visualization. Pixel, $\mathcal{Z}(2)$.
- Cleveland, W. S., Grosse, E., & Shyu, M.-J. (1992). A package of C and Foutran routines for fitting local regression models [Computer software manual]. Bell Labs.
- Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–220.
- Cohen, J. (1988). Statistical power for the behavioral sciences (2nd ed.). Academic Press.

- Cohen, J. (1994). The earth is round (p. 1.05). American Psychologist, 49, 997–1003.
- Cook, T. D., Shadish, W. R., & Wong, V. C. (2008). Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons. *Journal of Policy Analysis and Management*, 27(4).
- Cullen, J. B., Jacob, B. A., & Levitt, S. D. (2005). The impact of school choice onstudent outcomes: An analysis of the Chicago Public Schools. *Journal of Public Economics*, 89, 729-760.
- Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. Routledge.
- Danielak, B. A., Pruzek, R. W., Doane, W. E. J., Helmreich, J. E., & Bryer, J. (2011). granovagg: Elemental graphics for analysis of variance using ggplot2 [Computer software manual].

 Retrieved from http://github.com/briandk/granovaGG (R package version 1.0)
- Dehejia, R. H., & Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. Journal of the American Statistical Association, 94 (448), 1053–1062.
- Estes, W. K. (1997a). On the communication of information by displays of standard errors and confidence intervals. *Psychological Bulletin & Review*, 4(3), 330–341.
- Estes, W. K. (1997b). Significance testing in psychological research: Some persisting issues.

 Psychological Science, 8(1), 18–20.
- Fisher, R. A. (1925). Statistical methods for research workers. Oliver and Boyd.
- Foundations for the Future Charter Academy. (2007, May). Charter document. Retrieved from http://www.ffca-calgary.com/downloads/Charter.pdf
- Gelman, A. (2007). Struggles with survey weighting and regression modeling. Statistical Science, 22(2), 153–164.
- Gelman, A. (2011). Why tables are really much better than graphs. *Journal of Computational and Graphical Statistics*, 20(1), 3–7.
- Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models.
 New York, NY: Cambridge University Press.
- Gelman, A., Pasarica, C., & Dodhia, R. (2002). Let's practice what we preach: Turning tables into graphs. *The American Statistician*, 56(2), 121–130.
- Gelman, A., & Stern, H. (2006). The difference between "significant" and "not significant" is not

- itself statistically significant. American Statistician, 6-(4), 328-331.
- Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33, 587-606.
- Harris, R. J. (1997). Significance tests have their place. Psychological Science, 8(1), 8-11.
- Heckman, J., Ichimura, H., Smith, J., & Todd, P. (1997). Characterizing selection bias using experimental data. Retrieved from
 - http://athens.src.uchicago.edu/jenni/dvmaster/FILES/matchingf.pdf
- Helmreich, J. E., & Pruzek, R. M. (2009). PSAgraphics: An R package to support propensity score analysis. *Journal of Statistical Software*, 29(6).
- Henkel, R., & Morrison, D. (1970). The significance test controversy. Butterworth.
- Herbst, J. (2006). School choice and school governance: A historical study of the United States and Germany. Palgrave Macmillan.
- Hofstede, G., & Hofstede, G. J. (2004). Cultures and organizations: Software of the mind (2nd ed.). New York, NY: McGraw Hill.
- Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945-960.
- Hubbard, L., & Kulkarni, R. (2009). Charter schools: Learning from the past, planning for the future. Journal of Educational Change, 10, 173-189.
- Hunter, J. E. (1997). Needed: A ban on the significance test. Psychological Science, 8(1), 3-7.
- Kolderie, T. (2005). Ray Budde and the origins of the charter school.
- Lander, M. (2001). School chice, Kiwi-style: When New Zealand abolished school boards. (Tech. Rep.). Frontier Centre for Public Policy.
- Larrañaga, O. (2004). Competencia y participación privada: la experiencia chilena en educación. (Tech. Rep.). Estudios Publicos.
- Loveless, T. (2013). Charter school study: Much ado about tiny differences. Retrieved from http://www.brookings.edu/blogs/brown-center-chalkboard/posts/2013/07/03-charter-schools-loveless
- Maccall, W. (1847). The elements of individualism. London: John Chapman.
- National Alliance for Public Charter Schools. (2009). A new model law for supporting the growth of high-quality public charter schools. Washington D.C.: National Alliance for Public Charter Schools.
- National Alliance for Public Charter Schools. (2010a). How state charter laws rank against the

- new model public charter school law. Washington D.C.: National Alliance for Public Charter Schools.
- National Alliance for Public Charter Schools. (2010b). Measuring charter performance: A review of public charter school achievement studies (6th ed.). Washington D.C.: National Alliance for Public Charter Schools.
- National Alliance for Public Charter Schools. (2012). Measuring up to the model: A ranking of state charter school laws (3rd ed.). Washington D.C.: National Alliance for Public Charter Schools.
- National Alliance of Public Charter Schools. (2009). Charter school achievement: What we know.

 Retrieved from http://www.publiccharters.org/What+We+Know+5
- National Assessment Governing Board. (2006a). Mathematics framework for the 2007 national assessment of educational progress. Washington, DC: U.S. Department of Education.
- National Assessment Governing Board. (2006b). Reading framework for the 2007 national assessment of educational progress. Washington, DC: U.S. Department of Education.
- National Center for Educational Statistics. (2009). Common core of data. Retrieved from http://nces.ed.gov/ccd
- Nelson, F. H., Rosenberg, B., & Meter, N. V. (2004). Charter school achievement on the 2003 national assessment of educational progress. Washington, DC: American Federation of Teachers. Retrieved from http://www.aft.org/pubs-reports/downloads/teachers/NAEPCharterSchoolReport.pdf
- Northwest Evaluation Association. (2009). Why is the growth research database significant.

 Retrieved from http://www.nwea.org/support/details.aspx?content=1053
- Organisation for Economic Co-Operation and Development. (2009). Programme of international student assessment [Computer software manual]. Retrieved from http://www.oecd.org/pisa/
- Pearl, J. (2009). Causality: Models, reasoning and inference (2nd ed.). Cambridge University Press.
- Pruzek, R. M., & Helmreich, J. E. (2009). Enhancing dependent sample analysis with graphics.

 *Journal of Statistical Education, 17(1).
- Pruzek, R. M., & Helmreich, J. E. (2010). granova: Graphical analysis of variance [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=granova (R

- package version 2.0)
- R Development Core Team. (2014). [computer software]. R: A language and environment for statistical computing. r foundation for statistical computing. Vienna, Austria.
- Raudenbush, S. W., Hong, G., & Rowan, B. (2003). Studying the causal effects of instruction with application to primary-school mathematics. invited talk at the research seminar ii:

 Instructional and performance consequences of high poverty schooling.
- Ravitch, D. (2013). Reign of error. Random House, Inc.
- Ravitch, D. (October 1, 2013). The charter school mistake. Los Angeles Times. Retrieved from http://articles.latimes.com/2013/oct/01/opinion/la-oe-ravitch-charters-school-reform-20131001
- Rosenbaum, P. R. (2002). Observational studies (2nd ed.). New York, NY: Springer.
- Rosenbaum, P. R. (2010). Design of observational studies. New York, NY: Springer.
- Rosenbaum, P. R. (2012). Testing one hypothesis twice in observational studies. *Biometrika*, 99, 763-774.
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70, 41-55.
- Rozenboom, W. (1960). The fallacy of the null-hypothesis significance test. *lotical Bulletin*, 57, 316–428.
- Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley.
- Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489.
- Scarr, S. (1997). Rules of evidence: A larger context for the statistical debate. *Psychological Science*, 8(1), 16–17.
- Schmidt, F. (1996). Statistical significance testing and cumulative knowledge chology: Implications for training of researchers. *Psychological Methods*, 129.
- Schneider, B., Carnoy, M., Kilpatrick, J., Schmidt, W. H., & Shavelson, R. J. (2007). Estimating causal effects using experimental and observational designs. American Educational Research Association.
- Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? *Psychological Bulletin*, 105(2), 309–316.
- Sekhon, J. S. (2011, 6 14). Multivariate and propensity score matching software with automated

- balance optimization: The matching package for r. Journal of Statistical Software, 42(7), 1-52. Retrieved from http://www.jstatsoft.org/v42/i07
- Shadish, W. R. (2013). Propensity score analysis: promise, reality and irrational exuberance.

 Journal of Experimental Criminology, 9(2), 128–144.
- Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008). Can nonrandomized experiments yield accurate answers? a randomized experiment comparing random and nonrandom assignments. *Journal of the American Statistical Association*, 103(484), 1334–1343.
- Shrout, P. E. (1997). Should significance tests be banned? Psychological Science, 8(1), 1–2.
- Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25, 1-21.
- Stuart, E. A., & Rubin, D. B. (2008). Best practices in quantitative methods. In J. Osborne (Ed.), (p. 155-176). Sage Publications.
- Swart, K. W. (1962). "Individualism" in the mid-nineteenth century. *Journal of the History of Ideas*, 23(1), 77-90.
- Teske, P., & Schneider, M. (2001). What research can tell policymakers about school choice.

 Journal of Policy Analysis and Management, 20(4), 609-631.
- The National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform.
- Thoemmes, F. J., & Kim, E. S. (2011). A systematic review of propensity score methods in the social sciences. *Multivariate Behavioral Research*, 46, 90-118.
- Tufte, E. (2001). The visual display of quantitative information. Graphics Press LLC.
- U.S. Department of Education, Office of Planning, Evaluation and Policy Development. (2009).
 Evaluation of the national assessment of educational progress, study reports.
- van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in r. *Journal of Statistical Software*, 45(3), 1–67. Retrieved from http://www.jstatsoft.org/v45/i03/
- van Buuren, S., & Groothuis-Oudshoorn, K. (n.d.). MICE: Multivariate imputation by chained equations in r. *Journal of Statistical Software*.
- Vanourek, G., Manno, B., Finn, C., & Bierlein, L. (1998). Charter schools. In B. Hassel &
 P. Peterson (Eds.), Learning from school choice (p. 187-211). Washington, DC: Brookings Institution.

- Venables, W. N., & Ripley, B. D. (2002). *Modern applied statistics with s* (Fourth ed.). New York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4 (ISBN 0-387-95457-0)
- Wells, A. S. (Ed.). (2002). Where charter school policy fails: The problems of accountability and equity. New York, NY: Teachers College Press.
- Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer.
- Wilkinson, L. (2005). The grammar of graphics (2nd ed). Springer.
- Wohlstetter, P., & Anderson, L. (1994). What can U.S. charter schools learn from England's grant-maintained schools. *Phi Delta Kappan*, 75(6), 486-491.

${\bf Appendix}~{\bf A}$ Charter Schools & Student Enrollment by State

Table 9: Charter schools & student enrollment by state

	Law		r Charter		NAEP S	
State	Enacted	Operating	Closed	Students	Charters	Publics
Alabama ^a		0	0	0	0	2759
Alaska	1995	26	5	$5,\!198$	69	2517
Arizona	1994	510	96	119,903	99	2674
Arkansas	1995	25	6	6,750	30	2407
California	1992	802	103	$316,\!468$	417	7803
Colorado	1993	151	10	$54,\!497$	108	2598
Connecticut	1996	21	5	3,932	0	2531
Delaware	1995	21	2	8,740	180	2641
Washington DC	1996	93	16	$25,\!385$	652	1336
Florida	1996	382	82	$108,\!382$	175	3876
Georgia	1993	83	5	40,807	64	3465
Hawaii	1994	32	0	7,317	132	2605
Idaho	1998	32	1	$10,\!492$	59	2784
Illinois	1996	74	8	27,683	33	4015
Indiana	2001	50	2	12,631	11	2720
Iowa	2002	10	0	1,462	0	2839
Kansas	1994	40	10	3,361	17	2726
Kentucky ^a		0	0	0	0	2696
Louisiana	1995	66	10	23,634	97	2264
Maine ^a		0	0	0	0	2658
Maryland	2003	34	2	7,301	6	2825
Massachusetts	1993	64	6	23,905	56	3667
Michigan	1993	250	27	94,092	134	2480
Minnesota	1991	159	29	28,371	16	2875
Mississippi	1997	1	0	367	0	2613
Missouri	1998	39	5	13,125	38	2771
Montana ^a		0	0	0	0	2581
Nebraska ^a		0	0	0	0	2688
Nevada	1997	26	7	7,295	0	2662
New Hampshire	1995	11	2	1,212	0	2803
New Jersey	1996	64	19	17,986	0	2813
New Mexico	1993	70	3	11,426	54	2722
New York	1998	118	10	32,602	16	3745
North Carolina	1996	103	32	30,445	72	4090
North Dakota ^a		0	0	0	0	2307
Ohio	1997	293	48	$94,\!171$	45	3746
Oklahoma	1999	14	1	4,770	0	2612
Oregon	1999	93	8	13,612	41	2626
Pennsylvania	1997	133	12	61,823	64	2709
Rhode Island	1995	11	0	2,894	30	2621
South Carolina	1996	36	10	8,705	16	2697
South Dakota ^a		0	0	0	0	2889

Charter Schools & Student Enrollment by State (cont.)

	Law	Totals fo	r Charter	Schools ^b	NAEP S	tudents
State	Enacted	Operating	Closed	Students	Charters	Publics
Tennessee	2002	14	1	2,585	54	2815
Texas	1995	331	33	$108,\!541$	199	7070
Utah	1998	68	1	23,233	38	2722
Vermont ^a		0	0	0	0	2003
Virginia	1998	4	3	275	0	2848
Washington ^a		0	0	0	0	2968
West Virginia ^a		0	0	0	0	2831
Wisconsin	1993	221	37	41,799	114	2592
Wyoming	1995	3	0	244	0	1897
Total		4,578	657	1,407,421	3,164	156,963

 $^{^{\}rm a}{\rm State}$ currently does not have a charter school law. $^{\rm b}{\rm Source}:$ Center for Education Reform (2010)

${\bf Appendix~B}$ Descriptive Statistics

Table 10: Grade 4 math descriptive statistics

	Traditio	onal	Ch	arter
Race/ethnicity from	n school r			,
White	90268	57%	1202	33%
Black	27565	17%	1546	43%
Hispanic	27927	18%	642	18%
Asian Amer/Pacif Is	7657	5%	172	5%
Amer Ind/Alaska Nat	3753	2%	35	1%
Other	2168	1%	28	1%
Unknown	0	0%	0	0%
Natl School Lunch F	Prog eligib		catego:	
Eligible	79160	50%	2074	57%
Not eligible	79273	50%	1381	38%
Info not available	905	1%	170	5%
Unknown	0	0%	0	0%
Student has Indiv	ridualized		tion Pla	
Yes, IEP	17871	11%	332	9%
Yes, 504 plan	1414	1%	23	1%
Yes, 504 in process	0	0%	0	0%
Not IEP	140022	88%	3270	90%
Omitted	0	0%	0	0%
Unknown	31	0%	0	0%
Student classified Eng			3 catego	
Yes	13002	8%	275	8%
No	143127	90%	3273	90%
Formerly ELL	3174	2%	77	2%
Omitted	0	0%	0	0%
Unknown	35	0%	0	0%
	Gender			
Male	81536	51%	1796	50%
Female	77802	49%	1829	50%
Unknown	0	0%	0	0%
Student classified a				
Student with disabi	19285	12%	355	10%
Not student with di	140022	88%	3270	90%
Omitted	31	0%	0	0%
Unknown	0	0%	0	0%
Student cla	assified SI		LL	
Student with disabi	17847	11%	328	9%
English language le	11564	7%	248	7%
Both SD and ELL	1438	1%	27	1%
M '/1 OD DIT	128441	81%	3022	83%
Neither SD nor ELL	120441	01/0		
Unknown	48	0%	0	0%
Unknown		0%	0	

	Chart	er	Tradi	tional
No	55957	35%	1334	37%
I Don't Know	55462	35%	1210	33%
Omitted	3004	2%	115	3%
Multiple	21	0%	0	0%
Unknown	0	0%	0	0%
Magaz	zines in h			
Yes	89988	56%	1998	55%
No	38593	24%	877	24%
I Don't Know	27543	17%	627	17%
Omitted	3190	2%	123	3%
Multiple	24	0%	0	0%
Unknown	0	0%	0	0%
Boo	ks in hon	ne		
0-10 books	19625	12%	423	12%
11-25 books	33693	21%	825	23%
26-100 books	52311	33%	1079	30%
More than 100 books	50511	32%	1181	33%
Omitted	3159	2%	117	3%
Multiple	39	0%	0	0%
Unknown	0	0%	0	0%
Comp	outer in h	ome		
Yes	136033	85%	3078	85%
No	19502	12%	413	11%
Omitted	3787	2%	134	4%
Multiple	16	0%	0	0%
Unknown	0	0%	0	0%
	opedia in			
Yes	80440	50%	1874	52%
No	25501	16%	514	14%
I Don't Know	50222	32%	1120	31%
Omitted	3146	2%	114	3%
Multiple	29	0%	3	0%
Unknown	0	0%	0	0%
Pages read in so				220
5 or fewer	33661	21%	819	23%
6-10	27785	17%	618	17%
11-15	20828	13%	442	12%
16-20	22687	14%	488	13%
More than 20	51046	32%	1134	31%
Omitted	3259	2%	124	3%
Multiple	72	0%	0	0%
Unknown	0	0%	0	0%
Talk abou				100
Never or hardly eve	29003	18%	578	16%
Every few weeks	21264	13%	468	13%
About once a week	18741	12%	400	11%
2-3 times a week	31451	20%	680	19%
Every day	55569	35%	1377	38%

continued from previ	Chart	er	Trad	itional
Omitted	3247	2%	121	3%
Multiple	63	0%	1	0%
Unknown	0	0%	0	0%
Days absent f	from schoo	l last r	nonth	
None	79833	50%	1622	45%
1-2 days	46548	29%	1111	31%
3-4 days	18267	11%	434	12%
5-10 days	7351	5%	207	6%
More than 10 days	4078	3%	130	4%
Omitted	3207	2%	120	3%
Multiple	54	0%	1	0%
Unknown	0	0%	0	0%
Language other th	an English	ı spoke	en in hor	ne
Never	85236	53%	1679	46%
Once in a while	33507	21%	833	23%
Half the time	11284	7%	297	8%
All or most of time	26049	16%	695	19%
Omitted	3214	2%	121	3%
Multiple	48	0%	0	0%
Unknown	0	0%	0	0%
Do math at after-	school or t	utorin	g progra	m
Yes	53627	34%	$\frac{1532}{1532}$	42%
No	101907	64%	1955	54%
Omitted	3780	2%	137	4%
Multiple	24	0%	1	0%
Unknown	0	0%	0	0%
Math	work is too	hard		
Never or hardly eve	46369	29%	1028	28%
Sometimes	87164	55%	1964	54%
Often	14112	9%	305	8%
Always or almost	7374	5%	177	5%
Omitted	4254	3%	151	4%
Multiple	65	0%	0	0%
Unknown	0	0%	0	0%
	work is too			
Never or hardly eve	21759	14%	518	14%
Sometimes	77107	48%	1656	46%
Often	31769	20%	634	17%
Always or almost	24192	15%	648	18%
Omitted	4467	3%	167	5%
Multiple	44	0%	2	0%
Unknown	0	0%	0	0%
	Like math			
Never or hardly eve	18905	12%	406	11%
Sometimes	38466	24%	794	22%
Often	33116	21%	680	19%
Always or almost	64083	40%	1567	43%
Omitted	4724	3%	177	5%

...continued from previous page

	Charte	er	Tradi	tional
Multiple	44	0%	1	0%
Unknown	0	0%	0	0%

Table 11: Grade 4 math unadjusted NAEP score

			Charter	Charter Schools	ו מממר ד	ומסוו מוו	mani miaajasoa		Public	Schools		
•	n	mean	$_{\mathrm{ps}}$	median	mim	max	n	mean	ps	median	mim	max
Overall	3625	231.93	28.19	232.18	136.95	310.45	159338	238.34	27.71	239.71	117.69	334.07
Alaska	102	247.41	24.64	248.79	183.80	296.82	2496	238.50	28.87	240.91	133.70	314.90
Arkansas	226	229.38	29.27	230.22	145.74	294.08	2836	228.66	29.47	229.71	142.09	324.86
Canal zone	170	223.41	26.86	221.21	152.40	290.14	7241	227.05	30.42	227.52	127.08	330.95
Connecticut	132	250.45	28.67	256.63	148.19	308.90	2550	242.34	28.39	244.89	130.83	317.99
D.C.	512	217.48	26.97	215.26	146.95	306.62	1282	219.99	32.15	219.20	133.26	317.28
Florida	195	240.20	26.34	238.76	168.45	294.30	2586	239.42	24.64	239.68	159.44	316.57
Idaho	166	241.09	24.28	244.36	175.09	293.17	4531	239.76	24.97	240.17	147.51	324.61
Illinois	164	241.86	25.56	244.89	183.18	310.45	3865	232.69	28.18	232.54	140.58	316.17
Iowa	22	230.95	26.26	234.88	146.85	273.46	2695	236.28	31.24	239.72	127.32	314.05
Kansas	09	255.08	20.79	255.56	183.42	300.83	3024	240.97	24.84	242.25	139.84	314.77
Kentucky	78	229.74	27.71	231.49	147.64	295.55	4059	232.94	29.83	233.75	117.69	318.75
Michigan	65	230.80	16.68	230.98	197.30	279.19	2830	229.16	24.90	229.32	144.26	308.71
Mississippi	141	219.12	26.52	217.25	164.93	293.18	3249	239.22	27.40	238.06	148.45	318.09
Missouri	52	229.29	22.62	226.30	179.65	284.75	3615	248.36	25.63	249.08	145.76	317.96
Montana	215	218.06	29.43	216.04	136.95	288.98	3204	229.38	31.66	231.15	128.36	318.70
Nebraska	109	247.68	26.51	248.08	188.30	302.32	3204	248.59	27.03	251.09	150.58	323.00
New York	72	231.01	31.20	229.16	162.07	303.29	2977	234.90	25.81	236.10	137.78	303.75
North Dakota	74	224.15	23.57	223.48	179.04	284.71	2780	247.30	26.13	249.06	155.28	325.63
Oklahoma	09	229.73	21.88	230.70	189.84	269.90	3997	239.50	26.83	240.45	145.65	315.10
Oregon	96	249.72	19.40	250.68	206.39	290.68	4320	243.07	26.92	243.12	130.47	323.33
Rhode Island	124	218.15	22.02	217.22	159.99	269.17	3324	237.62	29.58	239.43	126.61	319.60
Utah	79	230.94	23.07	227.57	185.38	297.38	2404	239.08	28.41	241.89	136.10	307.88
Washington	91	231.23	20.75	229.44	166.83	278.23	6193	238.97	24.48	239.19	139.25	317.06
West Virginia	197	247.20	25.79	250.06	164.01	305.53	3145	239.22	28.47	241.50	130.38	319.46
DoDEA/DDESS	136	229.43	26.14	226.78	178.41	289.56	3694	237.95	29.14	239.24	134.42	320.51

Table 12: Grade 4 reading descriptive statistics

	Traditio	onal	Ch	arter
Race/ethnicity from				
White	96992	58%	1343	34%
Black	29127	17%	1636	42%
Hispanic	28133	17%	705	18%
Asian Amer/Pacif Is	8114	5%	162	4%
Amer Ind/Alaska Nat	3898	2%	49	1%
Other	2333	$\frac{1}{2}$	41	1%
Unknown	0	0%	0	0%
Natl School Lunch P	_		3 catego:	
Eligible	82354	49%	2223	56%
Not eligible	85304	51%	1528	39%
Info not available	939	1%	185	5%
Unknown	0	0%	0	0%
Student has Indiv	_		-	
Yes, IEP	16579	10%	307	8%
Yes, 504 plan	1385	1%	29	1%
Yes, 504 in process	0	0%	0	0%
Not IEP	150596	89%	3600	91%
Omitted	0	0%	0	0%
Unknown	37	0%	0	0%
Student classified Eng	٠.			
Yes	12095	7%	285	7%
No	153110	91%	3569	91%
Formerly ELL	3357	$\frac{3170}{2\%}$	82	$\frac{3170}{2\%}$
Omitted	0	0%	0	0%
Unknown	35	0%	0	0%
	Gender	070		070
Male	85214	51%	1960	50%
Female	83383	49%	1976	50%
Unknown	0	0%	0	0%
Student classified a	_		_	
Student with disabi	17964	11%	$\frac{336}{336}$	9%
Not student with di	150596	89%	3600	91%
Omitted	37	0%	0	0%
Unknown	0	0%	0	0%
Student cla	_		_	070
Student with disabi	16722	10%	314	8%
English language le	10722	6%	$\frac{314}{263}$	7%
Both SD and ELL	10833 1242	1%	$\frac{203}{22}$	1%
Neither SD nor ELL		83%		1% 85%
	139727 53	83% 0%	3337	85% 0%
Unknown			0	U70
	aper in h		11./1	2007
Yes	47839	28%	1141	$\frac{29\%}{24\%}$
No	59247	35%	1327	34%
I Don't Know	58294	35%	1343	34%
Omitted	3205	2%	125	3%

continued from previo	Chart	er	Trad	itional
Multiple	12	0%	0	0%
Unknown	0	0%	0	0%
Maga	zines in h	ome		
Yes	95695	57%	2225	57%
No	40167	24%	911	23%
I Don't Know	29309	17%	667	17%
Omitted	3404	2%	133	3%
Multiple	22	0%	0	0%
Unknown	0	0%	0	0%
Boo	oks in hon	ne		
0-10 books	19634	12%	434	11%
11-25 books	35306	21%	901	23%
26-100 books	56725	34%	1217	31%
More than 100 books	53526	32%	1258	32%
Omitted	3359	2%	126	3%
Multiple	47	0%	0	0%
Unknown	0	0%	0	0%
	outer in he			
Yes	144162	86%	3362	85%
No	20419	12%	428	11%
Omitted	3999	2%	146	4%
Multiple	17	0%	0	0%
Unknown	0	0%	0	0%
Encycle	opedia in	home		
Yes	85818	51%	2035	52%
No	25320	15%	544	14%
I Don't Know	54087	32%	1229	31%
Omitted	3350	2%	128	3%
Multiple	22	0%	0	0%
Unknown	0	0%	0	0%
Pages read in se	chool and	for ho	mework	
5 or fewer	34944	21%	912	23%
6-10	30880	18%	746	19%
11-15	23139	14%	449	11%
16-20	23805	14%	529	13%
More than 20	52313	31%	1167	30%
Omitted	3450	2%	129	3%
Multiple	66	0%	4	0%
Unknown	0	0%	0	0%
Talk abou	it studies		ne	
Never or hardly eve	29602	18%	648	16%
Every few weeks	22498	13%	475	12%
About once a week	19884	12%	429	11%
2-3 times a week	33893	20%	687	17%
Every day	59212	35%	1566	40%
Omitted	3465	2%	129	3%
Multiple	43	0%	2	0%
Unknown	0	0%	0	0%

continued from prev	Chart	er	Trad	itiona
Days absent				
None	84418	50%	1838	47%
1-2 days	49650	29%	1177	30%
3-4 days	19327	11%	474	12°
5-10 days	7608	5%	208	5%
More than 10 days	4136	2%	109	3%
Omitted	3396	2%	128	3%
Multiple	62	0%	2	0%
Unknown	0	0%	0	0%
Language other the	han Englisl	ı spoke	en in hor	ne
Never	90390	54%	1798	46%
Once in a while	36078	21%	901	$23^{\circ}_{?}$
Half the time	12161	7%	362	9%
All or most of time	26507	16%	743	19%
Omitted	3412	2%	129	3%
Multiple	49	0%	3	0%
Unknown	0	0%	0	0%
Learn a lot	when reac	ding bo	oks	
Never or hardly eve	8448	5%	185	5%
Sometimes	59897	36%	1331	34%
Often	50052	30%	1076	27%
Always or almost	46493	28%	1201	31%
Omitted	3687	2%	142	4%
Multiple	20	0%	1	0%
Unknown	0	0%	0	0%
Reading	is a favorite		ect	
Never or hardly eve	25581	15%	611	16%
Sometimes	60476	36%	1409	36%
Often	36703	22%	783	20°
Always or almost	41959	25%	987	25%
Omitted	3855	2%	146	4%
Multiple	23	0%	0	0%
Unknown	0	0%	0	0%
Do reading at afte	r-school or		ng progr	
Yes	60364	36%	1718	44%
No	102803	61%	2029	52%
Omitted	5387	3%	189	5%
Multiple	43	0%	0	0%
Unknown	0	0%	0	0%
Go to book clubs, o				
Yes	49006	29%	1255	32%
No	113968	68%	2491	63%
Omitted	5592	3%	189	5%
Multiple	31	0%	1	0%
Unknown	0	0%	0	0%

569

14%

15%

24696

Once or twice/month

	c	•	
continued	from	previous	page

	Chart	er	Trad	itional
1-2 times a week	41186	24%	923	23%
Almost every day	72670	43%	1677	43%
Omitted	4984	3%	182	5%
Multiple	33	0%	1	0%
Unknown	0	0%	0	0%
Talk with friend	s about v	what yo	ou read	
Never or hardly eve	46333	27%	997	25%
Once or twice/month	34554	20%	739	19%
1-2 times a week	43383	26%	943	24%
Almost every day	40113	24%	1106	28%
Omitted	4180	2%	150	4%
Multiple	34	0%	1	0%
Unknown	0	0%	0	0%
Read a book	you cho	se your	self	
Never or hardly eve	22712	13%	593	15%
Sometimes	40804	24%	1009	26%
Often	42467	25%	932	24%
Always or almost	56171	33%	1196	30%
Omitted	6413	4%	205	5%
Multiple	30	0%	1	0%
Unknown	0	0%	0	0%

			Tabl	Table 13: Gr	Grade 4 re	ading ur	4 reading unadjusted	NAEP	score			
			Charte	Charter Schools					Public	Schools		
	n	mean	sd	median	min	max	n	mean	sd	median	min	max
Overall	3936	213.26	32.94	215.22	92.27	302.97	168597	218.76	33.66	221.79	14.71	330.96
Alaska	117	226.06	33.86	233.08	101.93	278.72	2666	214.43	36.60	219.70	78.50	302.46
Arkansas	242	213.15	34.22	216.30	105.63	294.52	2943	208.58	38.27	212.92	14.71	319.32
Canal zone	183	196.96	35.30	194.82	92.27	286.62	7822	204.44	35.95	206.11	51.07	318.34
Connecticut	143	229.69	33.61	235.33	124.55	291.85	2777	225.49	34.52	230.29	85.98	316.87
D.C.	541	198.75	31.53	199.60	102.07	280.99	1307	204.14	37.69	203.42	71.14	330.96
Florida	216	222.89	27.69	223.23	152.52	293.06	2649	225.96	27.61	227.81	113.17	309.18
Idaho	185	227.25	24.58	228.11	141.86	288.14	4771	224.10	29.65	226.17	97.23	312.59
Illinois	179	220.16	32.54	220.82	94.63	287.95	4056	215.07	33.27	216.54	89.20	321.26
Iowa	78	215.14	36.63	222.41	96.15	289.85	2914	210.77	38.37	214.86	50.22	309.30
Kansas	72	242.29	27.73	247.02	157.89	290.30	3169	220.49	31.59	224.11	73.45	294.68
Kentucky	81	204.56	33.03	206.21	134.27	276.43	4314	213.09	36.59	216.16	82.70	322.40
Michigan	73	200.08	24.97	197.83	158.07	269.88	3079	207.87	31.56	209.30	75.54	298.16
Mississippi	152	207.05	28.29	208.95	142.04	274.30	3297	220.71	32.60	220.73	109.43	322.77
Missouri	54	225.77	22.09	225.23	169.00	265.05	3894	229.30	30.48	231.56	95.48	309.48
Montana	217	201.20	31.78	202.59	123.87	289.31	3487	212.74	34.23	215.29	75.67	302.63
Nebraska	109	221.06	36.91	223.34	101.89	285.11	3506	222.79	34.75	227.05	58.17	316.17
New York	75	215.17	29.94	216.60	134.65	278.63	3155	210.12	35.62	213.99	18.03	295.53
North Dakota	80	213.75	21.85	212.65	153.51	263.03	2805	230.06	28.90	231.41	118.16	321.05
Oklahoma	69	220.92	30.41	218.55	157.69	300.34	4162	221.95	32.22	224.25	99.34	306.82
Oregon	104	226.53	26.97	227.31	148.58	287.27	4720	219.46	34.73	223.00	40.55	309.55
Rhode Island	138	196.41	31.14	196.45	112.19	273.31	3464	218.63	32.97	220.65	101.22	305.91
South Dakota	56	225.22	31.87	229.31	148.54	285.83	3027	217.79	35.12	221.68	44.79	306.49
Tennessee	59	218.66	33.26	221.67	130.12	302.97	3846	216.38	36.39	218.94	45.75	316.07
Utah	85	217.99	31.30	218.14	135.33	283.96	2566	222.83	34.75	226.45	49.36	310.49
Washington	100	217.52	24.77	220.63	151.32	277.02	5854	216.69	30.85	216.91	91.15	318.03
West Virginia	203	228.59	27.26	231.71	137.46	287.80	3290	218.54	32.67	222.79	46.89	303.80
DoDEA/DDESS	153	200.04	32.60	198.92	123.03	273.93	3935	214.63	35.37	218.79	92.04	301.72

Table 14: Grade 8 math descriptive statistics

	Traditio	onal	Ch	arter
Race/ethnicity from				
White	89701	59%	1114	27%
Black	26613	18%	1711	41%
Hispanic	23669	16%	974	24%
Asian Amer/Pacif Is	7318	5%	230	6%
Amer Ind/Alaska Nat	3250	2%	55	1%
Other	1497	$\frac{270}{1\%}$	46	1%
Unknown	0	0%	0	0%
Natl School Lunch F	_		-	
Eligible	67525	44%		57%
Not eligible	83452	55%		38%
Info not available	1071	1%	219	5%
Unknown	0	0%	0	0%
Student has Indiv	-		_	
Yes, IEP	14792	10%	377	9%
Yes, 504 plan	1308	1%	38	1%
Yes, 504 in process	0	0%	0	0%
Not IEP	135935	89%	3715	90%
Unknown	13	0%	0	0%
Student classified Eng				
Yes	6615	4%	276	7%
No	142006	93%	3712	90%
Formerly ELL	3404	2%	140	3%
Unknown	23	0%	2	0%
CIRCIOWII	Gender	070		070
Male	76976	51%	1996	48%
Female	75072	49%		52%
Unknown	0	0%	0	0%
Student classified a	_		-	
Student with disabi	16100	11%	415	10%
Not student with di	135935	89%	3715	90%
Omitted	13	0%	0	0%
Unknown	0	0%	0	0%
Student cla			-	070
Student with disabi	15250	10%	389	9%
English language le	5765	4%		6%
Both SD and ELL	850	1%	26	1%
Neither SD nor ELL	130158	86%	3464	84%
Unknown	$\frac{150155}{25}$	0%	1	0%
	paper in h		1	070
Yes	55041	36%	1501	36%
No	62855	41%	1740	42%
I Don't Know	31056	20%	862	$\frac{4270}{21\%}$
Omitted	3068	$\frac{20\%}{2\%}$	27	1%
Multiple	28	0%	0	0%
Unknown	0	0%	0	0%
OHKHOWH				
	con	unued	on next	page

-	ious page Chart	er	Tradi	tional
Maga	azines in h			
Yes	92419	61%	2444	59%
No	40632	27%	1198	29%
I Don't Know	15801	10%	456	11%
Omitted	3172	2%	32	1%
Multiple	24	0%	0	0%
Unknown	0	0%	0	0%
Во	oks in hon	ne		
0-10 books	21803	14%	578	14%
11-25 books	32216	21%	966	23%
26-100 books	51674	34%	1404	34%
More than 100 books	42985	28%	1148	28%
Omitted	3318	2%	34	1%
Multiple	52	0%	0	0%
Unknown	0	0%	0	0%
Com	puter in h	ome		
Yes	133737	88%	3658	89%
No	13012	9%	386	9%
Omitted	5276	3%	86	2%
Multiple	23	0%	0	0%
Unknown	0	0%	0	0%
Encyc	lopedia in	home		
Yes	106692	70%	3015	73%
No	22181	15%	571	14%
I Don't Know	19857	13%	509	12%
Omitted	3290	2%	35	1%
Multiple	28	0%	0	0%
Unknown	0	0%	0	0%
Pages read in s			mework	
5 or fewer	44700	29%	1192	29%
6-10	32989	22%	928	22%
11-15	21654	14%	582	14%
16-20	17204	11%	512	12^{9}
More than 20	31906	21%	865	21%
Omitted	3486	2%	46	1%
Multiple	109	0%	5	0%
Unknown	0	0%	0	0%
Talk abo	ut studies		ne	
Never or hardly eve	35140	23%	825	20%
Every few weeks	28163	19%	776	19%
About once a week	26142	17%	698	17%
2-3 times a week	31254	21%	924	22%
Every day	27771	18%	863	21%
Omitted	3512	2%	44	19
Multiple	66	0%	0	0%
Unknown	0	0%	0	0%

65078 43% 1692

41%

Days absent from school last month

None

continued from previo				
	Chart			litional
1-2 days	52510	35%	1393	34%
3-4 days	20084	13%	651	16%
5-10 days	7792	5%	257	6%
More than 10 days	3158	2%	101	2%
Omitted	3369	2%	35	1%
Multiple	57	0%	1	0%
Unknown	0	0%	0	0%
Mother's	s education	n level		
Did not finish h.s.	15175	10%	444	11%
Graduated h.s.	30320	20%	789	19%
Some ed after h.s.	25294	17%	752	18%
Graduated college	55231	36%	1396	34%
I Don't Know	22091	15%	701	17%
Omitted	3648	2%	44	1%
Multiple	289	0%	4	0%
Unknown	0	0%	0	0%
·	educatio			
Did not finish h.s.	15904	10%	457	11%
Graduated h.s.	30398	20%	730	18%
Some ed after h.s.	19878	13%	504	12%
Graduated college	46634	31%	1115	27%
I Don't Know	35054	23%	1267	31%
Omitted	3955	3%	52	1%
Multiple	225	0%	5	0%
Unknown	0	0%	0	0%
Language other the	an Englisl		en in ho	
Never	86942	57%	1938	47%
Once in a while	28690	19%	860	21%
Half the time	11236	7%	428	10%
All or most of time	20361	13%	821	20%
Omitted	4766	3%	80	2%
Multiple	53	0%	3	0%
Unknown	0	0%	0	0%
Do math at after-s				
Yes	25981	17%	$\frac{1025}{1025}$	25%
No	109053	72%	2712	66%
Omitted	16955	11%	393	10%
Multiple	59	0%	0	0%
Unknown	0	0%	0	0%
	vork is to			070
Never or hardly eve	25733	17%	667	16%
Sometimes	79651	52%	2205	53%
Often	29995	20%	800	19%
Always/almost alway	11127	7%	339	8%
Omitted	5343	4%	111	3%
		0%	8	0%
Multiple	199			
Multiple Unknown	199 0	0%	0	0%

continued	from	previous	page
			Char

continued from prev	Chart	er	Trac	litional
Never or hardly eve	17626	12%	418	10%
Sometimes	64961	43%	1726	42%
Often	44818	29%	1298	31%
Always/almost alway	16629	11%	512	12%
Omitted	7824	5%	174	4%
Multiple	190	0%	2	0%
Unknown	0	0%	0	0%
Math work is	engaging a	nd inte	resting	
Never or hardly eve	34020	22%	756	18%
Sometimes	53378	35%	1415	34%
Often	38173	25%	1054	26%
Always or almost	19386	13%	732	18%
Omitted	7027	5%	171	4%
Multiple	64	0%	2	0%
Unknown	0	0%	0	0%
	Math is fur	1		
Strongly disagree	17997	12%	472	11%
Disagree	49601	33%	1262	31%
Agree	62324	41%	1685	41%
Strongly agree	17723	12%	629	15%
Omitted	4319	3%	80	2%
Multiple	84	0%	2	0%
Unknown	0	0%	0	0%
	Like math			
Strongly disagree	17227	11%	428	10%
Disagree	34661	23%	922	22%
Agree	69362	46%	1827	44%
Strongly agree	26051	17%	875	21%
Omitted	4628	3%	74	2%
Multiple	119	0%	4	0%
Unknown	0	0%	0	0%
Math is	a favorite		t	
Strongly disagree	31790	21%	863	21%
Disagree	43981	29%	1133	27%
Agree	40525	27%	1020	25%
Strongly agree	30609	20%	1004	24%
Omitted	5108	3%	109	3%
Multiple	35	0%	1	0%
Unknown	0	0%	0	0%

Table 15: Grade 8 math unadjusted NAEP score

			Charte	harter Schools					Public	Public Schools		
1	n	mean	ps	median	min	max	n	mean	ps	median	mim	max
Overall	4130	272.20	35.28	271.11	169.36	393.58	152048	280.77	34.88	281.50	126.93	400.47
Arkansas	105	273.39	34.78	265.78	169.36	343.91	2810	276.52	37.05	277.89	127.19	388.86
Canal zone	525	270.52	32.62	271.64	179.08	355.79	9099	266.15	36.73	265.25	146.91	384.02
Connecticut	125	294.37	39.89	294.63	184.51	393.58	2604	287.16	35.40	289.18	150.14	388.99
D.C.	825	256.83	30.99	254.59	173.87	346.00	870	251.82	39.61	250.26	142.88	384.80
Florida	201	294.07	34.66	294.89	204.19	374.46	2541	283.58	30.34	283.45	163.22	380.68
Idaho	272	283.12	29.62	282.81	192.00	370.99	4055	275.81	33.28	276.45	155.34	374.40
Illinois	90	262.43	29.52	262.06	193.38	330.81	3420	272.88	33.19	271.68	150.65	379.68
Iowa	167	278.44	33.09	281.78	183.00	354.42	2652	273.38	35.74	276.02	141.25	387.09
Kansas	90	302.88	29.24	303.84	198.35	377.42	2881	286.73	33.00	288.11	155.23	390.15
Kentucky	110	262.54	28.28	263.47	186.53	346.25	3981	276.59	34.83	276.44	145.80	377.44
Louisiana	22	283.53	31.97	290.89	206.16	341.36	2571	286.85	30.56	287.45	180.13	375.12
Michigan	90	266.23	32.25	264.51	193.70	359.20	2498	272.22	31.66	270.90	144.33	379.44
Mississippi	73	265.06	26.02	264.32	210.36	330.42	3132	280.86	37.37	279.87	165.91	380.51
Missouri	61	291.78	28.81	294.00	227.58	353.68	3513	294.51	36.13	295.84	160.48	390.57
Montana	160	250.50	32.19	248.72	182.79	361.40	3221	268.85	39.61	269.65	152.12	381.41
Nebraska	80	296.78	37.39	299.59	186.61	371.70	2818	293.76	33.17	295.30	176.56	388.60
Oregon	93	285.52	33.31	287.31	201.69	346.33	4347	281.90	36.25	282.12	138.57	399.87
Rhode Island	94	264.65	29.71	260.31	205.85	355.42	3400	278.90	34.16	278.95	159.93	383.14
Tennessee	112	266.91	31.22	268.06	185.07	329.18	3439	282.63	36.14	284.27	141.96	391.93
Washington	134	291.15	37.59	291.27	199.06	372.41	5650	283.48	33.17	283.10	147.24	392.43
West Virginia	118	294.04	32.96	298.47	221.08	366.48	2765	282.25	33.24	284.52	153.63	374.36
DoDEA/DDESS	231	252.79	31.72	251.29	178.28	376.65	3243	282.00	34.97	284.13	143.51	372.36

Table 16: Grade 8 reading descriptive statistics

Race/ethnicity from school records (raw data) White		Traditio	onal	Cha	arter
White	Race/ethnicity from				
Hispanic					
Asian Amer/Pacif Is 7232 5% 241 6% Amer Ind/Alaska Nat 3341 2% 50 1% Other 1494 1% 45 1% Unknown 0 0% 0 0% Natl School Lunch Prog eligibility (3 categories) 2 categories 56% Not eligible 83449 55% 1593 39% Info not available 1116 1% 213 5% Unknown 0 0% 0 0% Student has Individualized Education Plan 1433 1% 38 1% Yes, IEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Formerly ELL 34226 94% 3674 90% Formerly ELL	Black	26163	17%	1631	40%
Asian Amer/Pacif Is 7232 5% 241 6% Amer Ind/Alaska Nat 3341 2% 50 1% Other 1494 1% 45 1% Unknown 0 0% 0 0% Natl School Lunch Prog eligibility (3 categories) Eligible 66739 44% 2282 56% Not eligible 83449 55% 1593 39% Info not available 1116 1% 213 5% Unknown 0 0% 0 0% Student has Individualized Education Plan Ves, 504 plan 1433 1% 38 1% Yes, EEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 plan 1433 1%<	Hispanic	23219	15%	974	24%
Amer Ind/Alaska Nat 3341 2% 50 1% Other 1494 1% 45 1% Unknown 0 0% 0 0% Natl School Lunch Prog eligibility (3 categories) 2 categories 56% Not eligible 83449 55% 1593 39% Info not available 1116 1% 213 5% Unknown 0 0% 0 0% Student has Individualized Education Plan 1433 1% 38 1% Yes, IEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90%	_	7232	5%	241	6%
Other Unknown 1494 1% 0 0% 45 0 0% Natl School Lunch Prog eligibility (3 categories) Not eligible 66739 44% 2282 56% Not eligible 83449 55% 1593 39% 1593 39% Info not available 1116 1% 213 5% 1593 39% Unknown 0 0% 0 0% 0 0% Student has Individualized Education Plan Yes, 504 plan 1433 1% 38 1% 38 1% Yes, 504 plan 1433 1% 38 1% 38 1% Yes, 504 in process 0 0% 0 0% 0 0% Not IEP 136080 90% 3714 91% 91% Unknown 12 0% 2 0% 2 0% Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% 7% No 142262 94% 3674 90% 7% Formerly ELL 3422 2% 132 3% 3% Unknown 11 0% 4 0% 4 0% Female 75155 50% 2201 54% 54% Unknown 0 0% 0 0% 3714 91% Student classified shaving a disability (504)		3341	2%	50	1%
Natl School Lunch Prog eligibility (3 categories)			1%	45	1%
Eligible	Unknown	0	0%	0	0%
Eligible	Natl School Lunch P	rog eligib	oility (3	3 categor	ries)
Info not available Unknown 1116 1% 213 5% Unknown Student has Individualized Education Plantyes, IEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90% 90% 50% 1887 46% 76 7%					
Unknown	Not eligible	83449	55%	1593	39%
Student has Individualized Education Plan Yes, IEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 5 5 18% 18% Omitted 12 0% 372 9% No No 0 0%	Info not available	1116	1%	213	5%
Yes, IEP 13779 9% 334 8% Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90% Pow 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% 0 <td< td=""><td>Unknown</td><td>0</td><td>0%</td><td>0</td><td>0%</td></td<>	Unknown	0	0%	0	0%
Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) 8 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 504 100 0% Student with disabi 15212 10% 372 9% Not student with disabi 15212 10% 3714 91% Omitted 12 0% 2 0% Un	Student has Indiv	idualized	Educa	tion Pla	n
Yes, 504 plan 1433 1% 38 1% Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) 8 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 504 100 0% Student with disabi 15212 10% 372 9% Not student with disabi 15212 10% 3714 91% Omitted 12 0% 2 0% Un	Yes, IEP	13779	9%	334	8%
Yes, 504 in process 0 0% 0 0% Not IEP 136080 90% 3714 91% Unknown 12 0% 2 0% Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 5 504% 201 54% Unknown 0 0% 372 9% 9% Not student with disabi 15212 10% 372 9% Not student with disabi 14453 10% 343 8%		1433	1%	38	1%
Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Yes, 504 in process	0	0%	0	0%
Student classified Eng Lang Learner (3 categories) Yes 5609 4% 278 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with disabi 15212 10% 372 9% Nostudent classified SD or ELL Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Newspaper in home Yes 54092 36%<	Not IEP	136080	90%	3714	91%
Yes 5609 4% 278 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 50% 1887 46% Student with disabi 15212 10% 372 9% Not student with disabi 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL	Unknown	12	0%	2	0%
Yes 5609 4% 278 7% No 142262 94% 3674 90% Formerly ELL 3422 2% 132 3% Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) 50% 1887 46% Student with disabi 15212 10% 372 9% Not student with disabi 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL	Student classified Eng	g Lang Le	earner	(3 catego	ories)
Formerly ELL	Yes				7%
Unknown 11 0% 4 0% Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with disabi 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home	No	142262	94%	3674	90%
Gender Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% <td>Formerly ELL</td> <td>3422</td> <td>2%</td> <td>132</td> <td>3%</td>	Formerly ELL	3422	2%	132	3%
Male 76149 50% 1887 46% Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765	Unknown	11	0%	4	0%
Female 75155 50% 2201 54% Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080		Gender			
Unknown 0 0% 0 0% Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962	Male	76149	50%	1887	46%
Student classified as having a disability (504) Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24	Female	75155	50%	2201	54%
Student with disabi 15212 10% 372 9% Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Unknown	0	0%	0	0%
Not student with di 136080 90% 3714 91% Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home 7 43% 4 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Student classified a	s having	a disab	oility (50	
Omitted 12 0% 2 0% Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Student with disabi	15212	10%	372	9%
Unknown 0 0% 0 0% Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Not student with di	136080	90%	3714	91%
Student classified SD or ELL Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Omitted	12	0%	2	0%
Student with disabi 14453 10% 343 8% English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Unknown	0	0%	0	0%
English language le 4850 3% 249 6% Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Student cla	assified SI	or El	LL	
Both SD and ELL 759 1% 29 1% Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Student with disabi	14453		343	
Neither SD nor ELL 131226 87% 3463 85% Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	English language le	4850	3%	249	6%
Unknown 16 0% 4 0% Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%		759	1%	29	1%
Newspaper in home Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Neither SD nor ELL	131226		3463	85%
Yes 54092 36% 1448 35% No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Unknown	16	0%	4	0%
No 63146 42% 1765 43% I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%	Newsp	aper in h			
I Don't Know 31080 21% 842 21% Omitted 2962 2% 33 1% Multiple 24 0% 0 0%		54092		1448	35%
Omitted 2962 2% 33 1% Multiple 24 0% 0 0%		63146		1765	
Multiple 24 0% 0 0%				842	
•				33	
Unknown 0 0% 0 0%	_	24		0	
	Unknown	0	0%	0	0%

continued from previo	Chart	er	Trad	itional
Maga	zines in h			
Yes	92551	61%	2405	59%
No	39842	26%	1194	29%
I Don't Know	15813	10%	455	11%
Omitted	3079	2%	34	1%
Multiple	19	0%	0	0%
Unknown	0	0%	0	0%
Вос	oks in hon	ne		
0-10 books	20713	14%	567	14%
11-25 books	31676	21%	960	23%
26-100 books	52567	35%	1392	34%
More than 100 books	43159	29%	1134	28%
Omitted	3145	2%	35	1%
Multiple	44	0%	0	0%
Unknown	0	0%	0	0%
Comp	outer in h	ome		
Yes	133345	88%	3639	89%
No	12521	8%	351	9%
Omitted	5411	4%	97	2%
Multiple	27	0%	1	0%
Unknown	0	0%	0	0%
Encycle	opedia in			
Yes	105951	70%	2979	73%
No	21837	14%	542	13%
I Don't Know	20295	13%	527	13%
Omitted	3196	2%	40	1%
Multiple	25	0%	0	0%
Unknown	0	0%	0	0%
Pages read in so				
5 or fewer	42569	28%	1103	27%
6-10	33717	22%	943	23%
11-15	22450	15%	609	15%
16-20	18014	12%	497	12%
More than 20	31097	21%	890	22%
Omitted	3365	2%	44	1%
Multiple	92	0%	2	0%
Unknown	0	0%	0	0%
Talk abou				000
Never or hardly eve	33589	22%	798	20%
Every few weeks	27196	18%	723	18%
About once a week	26128	17%	693	17%
2-3 times a week	32644	22%	922	23%
Every day	28300	19%	907	22%
Omitted	3401	2%	43	1%
Multiple	46	0%	2	0%
Unknown	0	0%	0	0%

42%

43% 1734

Days absent from school last month

64800

None

continued from previo				• • • •
	Chart			itional
1-2 days	52913	35%	1411	35%
3-4 days	19761	13%	580	14%
5-10 days	7545	5%	239	6%
More than 10 days	2959	2%	85	2%
Omitted	3273	2%	37	1%
Multiple	53	0%	2	0%
Unknown	0	0%	0	0%
Mother's	educatio			
Did not finish h.s.	14613	10%	404	10%
Graduated h.s.	29684	20%	738	18%
Some ed after h.s.	25710	17%	780	19%
Graduated college	55743	37%	1439	35%
I Don't Know	21753	14%	670	16%
Omitted	3557	2%	46	1%
Multiple	244	0%	11	0%
Unknown	0	0%	0	0%
	educatio	n level		- , ,
Did not finish h.s.	15332	10%	423	10%
Graduated h.s.	30398	20%	710	17%
Some ed after h.s.	20427	14%	545	13%
Graduated college	46954	31%	1153	28%
I Don't Know	34150	23%	1197	29%
Omitted	3868	3%	53	1%
Multiple	175	0%	7	0%
Unknown	0	0%	0	0%
Language other tha	an Englisl	h spoke	n in ho	me
Never	86786	57%	1894	46%
Once in a while	28564	19%	922	23%
Half the time	11228	7%	433	11%
All or most of time	20222	13%	765	19%
Omitted	4455	3%	72	2%
Multiple	49	0%	2	0%
Unknown	0	0%	0	0%
Reading is				
Strongly disagree	37705	25%	830	20%
Disagree	54254	36%	1467	36%
Agree	33790	22%	1103	27%
Strongly agree	19268	13%	579	14%
Omitted	6237	4%	108	3%
Multiple	50	0%	1	0%
Unknown	0	0%	0	0%
	-			- 7 0
Read f	or run on			
	46454	31%	1032	25%
Never or hardly eve	46454			$\frac{25\%}{25\%}$
Never or hardly eve Once or twice/month	$46454 \\ 33556$	31% $22%$	1021	25%
Never or hardly eve Once or twice/month 1-2 times a week	46454 33556 35520	31% 22% 23%	$1021 \\ 1055$	25% $26%$
Never or hardly eve Once or twice/month	$46454 \\ 33556$	31% $22%$	1021	25%

continued	from	previous	page

	Charter		Traditional			
Unknown	0	0%	0	0%		
Use school/public	Use school/public library for info for own use					
Never or hardly eve	76861	51%	2100	51%		
Once/twice a month	44184	29%	1205	29%		
Once or twice a wee	20071	13%	558	14%		
Every day or almost	6138	4%	175	4%		
Omitted	4029	3%	50	1%		
Multiple	21	0%	0	0%		
Unknown	0	0%	0	0%		
Do Eng/lang arts at	after-scho	ool or t	utoring	prog		
Yes	26604	18%	1099	27%		
No	120344	80%	2920	71%		
Omitted	4330	3%	67	2%		
Multiple	26	0%	2	0%		
Unknown	0	0%	0	0%		
Go to book clubs, competitions, fairs for reading						
Yes	33064	22%	1147	28%		
No	111689	74%	2818	69%		
Omitted	6523	4%	123	3%		
Multiple	28	0%	0	0%		
Unknown	0	0%	0	0%		

Kansas Michigan Oregon Idaho Connecticut Canal zone Washington Montana Missouri lowa Illinois D.C. Arkansas West Virginia Tennessee Rhode Island Nebraska Mississippi $\operatorname{Kentucky}$ Florida OverallLouisiana 162 78 90 87 107 77 89 77 76 195 86 $275.83 \\ 245.73$ 244.84 272.22 245.50276.04248.96256.04255.62253.08266.50276.37247.56250.34253.69248.44284.32256.51247.23268.82273.34 256.27mean $39.25 \\ 37.32$ 30.73 29.7221.9623.29 20.75 27.67 25.9032.1831.3730.0829.4428.2735.63Charter Schools 26.71 41.63 sd median 250.03271.59275.57246.59272.99245.11250.06256.41250.67257.96283.61252.66256.14271.95255.80272.90244.12289.36254.58258.06280.31207.58 194.44 148.27 193.19170.18174.13154.60182.71196.99170.25198.59173.44159.75192.71190.41163.67126.10339.36335.37 326.77 337.02 350.97319.40343.64290.06333.93300.52341.67331.34307.27331.07340.18330.85341.03345.55320.67304.42344.88294.13350.97 \max 151304 $3174 \\ 2803$ 2607 5602 2712 3181 3429 4374 3267 3557 3095 3996 2579 2514 2879 2693 $3928 \\ 3397$ 2557 6684 826 266.40 253.14 262.49 247.48263.73 257.67 269.01255.36269.19259.71263.96254.25258.36262.15264.75241.77 256.81261.65262.96257.97264.17mean 34.99 29.01 34.14 31.6831.6732.04 28.5930.2631.7 31.06 $37.62 \\ 27.37$ 30.1432.5031.40 35.3332.48 31.76 31.6534.4331.88Public Schools sqmedian $258.19 \\ 272.52$ 262.56267.31257.49264.16267.22241.67250.24260.57264.69260.22266.63265.72261.08271.05263.18255.03268.56259.82266.49116.64 112.27 113.45 140.72 144.33 133.60 119.83 133.45166.92102.43145.83117.90132.08 115.34111.28 124.79124.5398.3096.30126.5673.88 min 349.01 337.32341.04 349.25350.95352.86336.22337.56343.14349.50332.18340.51356.84358.39340.59358.89344.09357.58350.65348.55342.91395.38

 ${
m DoDEA/DDESS}$

119.62

Table 17: Grade 8 reading unadjusted NAEP score

Appendix C Covariate Missingness

Figure 21: Covariate missingness for grade 4 math

Figure 22: Covariate missingness for grade 4 reading

Figure 23: Covariate missingness for grade 8 math

Figure 24: Covariate missingness for grade 8 reading

${\bf Appendix~D}$ ${\bf Loess~Regression~Plots}$

Figure 25: Loess regression assessment plot: Grade 4 reading

Figure 26: Loess regression assessment plot: Grade 8 math

Figure 27: Loess regression assessment plot: Grade 8 reading

Figure 28: Loess regression AIC assessment plot: Grade 4 math

Figure 29: Loess regression AIC assessment plot: Grade 4 reading

Figure 30: Loess regression AIC assessment plot: Grade 8 math

Figure 31: Loess regression AIC assessment plot: Grade 8 reading

Appendix E

Covariate Balance Plots

Absolute Standardized Covariate Effect Sizes w/ & w/o PS adjustment

Figure 32: Covariate balance plot for logistic regression AIC stratification: Grade 4 math

Figure 33: Covariate balance plot for classification tree stratification: Grade 4 math

Figure 34: Covariate balance plot for logistic regression stratification: Grade 4 reading

Figure 35: Covariate balance plot for logistic regression AIC stratification: Grade 4 reading

Open circles are stES–unadj; Closed circles are stES–adj; Letters represent strata

Figure 36: Covariate balance plot for classification tree stratification: Grade 4 reading

Figure 37: Covariate balance plot for logistic regression stratification: Grade 8 math

Figure 38: Covariate balance plot for logistic regression AIC stratification: Grade 8 math

Figure 39: Covariate balance plot for classification tree stratification: Grade 8 math

Open circles are stES–unadj; Closed circles are stES–adj; Letters represent strata

Figure 40: Covariate balance plot for logistic regression stratification: Grade 8 reading

Figure 41: Covariate balance plot for logistic regression AIC stratification: Grade 8 reading

Figure 42: Covariate balance plot for classification tree stratification: Grade 8 reading

 ${\bf Appendix} \ {\bf F}$ Classification Method Results

Figure 43: Propensity score assessment plot for logistic regression stratification: Grade 4 reading

Table 18: Logistic regression stratification results for grade 4 reading

	Public		Charter	
Strata	Mean	n	Mean	n
1	205.86	9440	207.51	201
2	218.60	9396	217.40	244
3	223.91	9439	224.76	202
4	227.23	9403	225.16	236
5	227.65	9371	228.10	270
6	226.52	9334	228.88	306
7	223.52	9317	223.07	323
8	210.39	9292	212.81	348
9	199.67	8990	198.92	650
10	205.81	8774	203.04	867

Figure 44: Propensity score assessment plot for logistic regression AIC stratification: Grade 4 reading

Table 19: Logistic regression AIC stratification results for grade 4 reading

	Public		Charter	
Strata	Mean	n	Mean	n
1	205.11	9434	207.83	218
2	217.96	9415	215.48	215
3	224.45	9406	225.53	233
4	227.24	9562	226.22	230
5	227.62	9241	226.63	263
6	227.15	9341	229.26	284
7	223.73	9296	223.77	354
8	210.40	9293	212.38	337
9	199.42	8996	199.06	648
_10	206.10	8772	203.07	865

Figure 45: Propensity score assessment plot for classification tree stratification: Grade 4 reading

Table 20: Classification trees stratification results for grade 4 reading

	Public		Charter	
Strata	Mean	n	Mean	n
4	220.99	20677	223.57	464
5	211.08	28477	213.06	826
6	232.65	24503	230.28	785
8	192.06	3690	191.14	223
11	210.33	7001	207.16	547
13	212.50	3225	210.35	294
14	197.88	3735	196.15	429
15	170.31	1448	176.22	79

Figure 46: Propensity score assessment plot for logistic regression stratification: Grade 8 math

Table 21: Logistic regression stratification results for grade 8 math

	Public		Charter	
Strata	Mean	n	Mean	n
1	278.58	7402	273.03	135
2	289.98	7359	288.65	177
3	294.62	7334	292.99	202
4	298.77	7292	297.52	244
5	294.60	7207	297.14	329
6	277.44	7183	275.17	353
7	270.63	7132	267.17	404
8	263.73	7022	264.47	514
9	259.42	6864	257.97	672
_10	262.71	6733	261.67	803

Figure 47: Propensity score assessment plot for logistic regression AIC stratification: Grade 8 math

Table 22: Logistic regression AIC stratification results for grade 8 math

	Public		Charter	
Strata	Mean	n	Mean	n
1	277.84	7407	271.47	135
2	289.62	7388	288.77	172
3	294.71	7324	293.29	211
4	299.00	7268	298.16	240
5	296.38	7199	297.38	338
6	276.51	7193	273.37	342
7	270.59	7122	266.88	417
8	263.89	7033	265.24	512
9	258.98	6862	257.92	666
_10	263.08	6732	261.66	800

Figure 48: Propensity score assessment plot for classification tree stratification: Grade 8 math

Table 23: Classification trees stratification results for grade 8 math

	Public		Charter	
Strata	Mean	n	Mean	n
4	257.31	5529	253.98	261
6	288.14	5544	285.21	257
7	270.93	10414	271.28	704
10	286.65	15771	285.89	318
11	283.75	5109	283.55	156
13	310.81	2000	316.58	51
16	301.54	4895	301.98	166
18	308.30	4163	307.37	172
19	309.29	1720	306.81	106
20	298.44	694	294.44	48
23	246.10	1432	242.53	92
24	252.32	6261	250.66	581
26	268.06	6244	265.49	670
27	253.90	1752	257.52	251

Figure 49: Propensity score assessment plot for logistic regression stratification: Grade 8 reading

Table 24: Logistic regression stratification results for grade 8 reading

	Public		Charter	
Strata	Mean	n	Mean	n
1	251.94	7634	250.40	129
2	264.16	7596	266.72	167
3	271.47	7535	272.48	226
4	275.49	7519	278.03	243
5	274.12	7471	273.95	291
6	262.72	7413	266.11	349
7	252.41	7379	251.00	383
8	247.25	7213	248.63	549
9	244.57	7103	243.99	659
10	252.15	6947	250.66	816

Figure 50: Propensity score assessment plot for logistic regression AIC stratification: Grade 8 reading

Table 25: Logistic regression AIC stratification results for grade 8 reading

	Public		Charter	
Strata	Mean	n	Mean	n
1	251.87	7636	250.42	128
2	264.22	7592	267.28	169
3	271.64	7530	273.13	232
4	275.70	7530	276.96	232
5	274.23	7466	274.95	296
6	262.42	7417	266.24	345
7	252.44	7365	250.93	397
8	247.31	7208	248.03	554
9	244.53	7132	244.14	630
10	251.91	6934	250.44	829

Figure 51: Propensity score assessment plot for classification tree stratification: Grade 8 reading

Table 26: Classification trees stratification results for grade 8 reading

	Public		Charter	
Strata	Mean	n	Mean	n
5	265.67	14613	267.03	381
6	261.08	8482	268.53	163
8	276.22	3089	280.42	79
10	284.87	7238	287.92	265
11	289.66	3063	291.96	157
13	236.11	5341	236.11	233
17	262.51	3239	261.80	188
18	259.98	2725	257.24	112
19	267.97	7196	270.08	453
20	222.21	3127	226.81	250
23	253.26	5887	248.70	529
25	239.75	1400	242.16	119
26	246.96	6535	246.22	766
28	210.10	1606	214.26	84
29	212.56	269	231.94	33

Appendix G

Multilevel PSA Covariate Balance Plots

Figure 52: Multilevel PSA covariate balance plot logistic regression: Grade 4 math

Figure 53: Multilevel PSA covariate balance plot logistic regression AIC: Grade 4 math

Figure 54: Multilevel PSA covariate balance plot classification tree: Grade 4 math

Figure 55: Multilevel PSA covariate balance plot logistic regression: Grade 4 reading

Figure 56: Multilevel PSA covariate balance plot logistic regression AIC: Grade 4 reading

Figure 57: Multilevel PSA covariate balance plot classification tree: Grade 4 reading

Figure 58: Multilevel PSA covariate balance plot logistic regression: Grade 8 math

Figure 59: Multilevel PSA covariate balance plot logistic regression AIC: Grade 8 math

Figure 60: Multilevel PSA covariate balance plot classification tree: Grade 8 math

Figure 61: Multilevel PSA covariate balance plot logistic regression: Grade 8 reading

Figure 62: Multilevel PSA covariate balance plot logistic regression AIC: Grade 8 reading

Figure 63: Multilevel PSA covariate balance plot classification tree: Grade 8 reading

$\begin{array}{c} {\bf Appendix} \ {\bf H} \\ \\ {\bf Multilevel} \ {\bf PSA} \ {\bf Results} \end{array}$

Figure 64: Multilevel PSA assessment plot logistic regression: Grade 4 reading

Figure 65: Multilevel PSA difference plot logistic regression: Grade 4 reading

Figure 66: Multilevel PSA assessment plot logistic regression AIC: Grade 4 reading

Figure 67: Multilevel PSA difference plot logistic regression AIC: Grade 4 reading

Figure 68: Multilevel PSA assessment plot classification trees: Grade 4 reading

Figure 69: Multilevel PSA difference plot classification trees: Grade 4 reading

Figure 70: Multilevel PSA assessment plot logistic regression: Grade 8 math

Figure 71: Multilevel PSA difference plot logistic regression: Grade 8 math

Figure 72: Multilevel PSA assessment plot logistic regression AIC: Grade 8 math

Figure 73: Multilevel PSA difference plot logistic regression AIC: Grade 8 math

Figure 74: Multilevel PSA assessment plot classification trees: Grade 8 math

Figure 75: Multilevel PSA difference plot classification trees: Grade 8 math

Figure 76: Multilevel PSA assessment plot logistic regression: Grade 8 reading

Figure 77: Multilevel PSA difference plot logistic regression: Grade 8 reading

Figure 78: Multilevel PSA assessment plot logistic regression AIC: Grade 8 reading

Figure 79: Multilevel PSA difference plot logistic regression AIC: Grade 8 reading

Figure 80: Multilevel PSA assessment plot classification trees: Grade 8 reading

Figure 81: Multilevel PSA difference plot classification trees: Grade 8 reading

${\bf Appendix~I}$ ${\bf Multilevel~PSA~Classification~Tree~Heat~Maps}$

Figure 82: Heat map of relative importance of covariates from classification trees: Grade 4 reading

Figure 83: Heat map of relative importance of covariates from classification trees: Grade 8 math

Figure 84: Heat map of relative importance of covariates from classification trees: Grade 8 reading

Appendix J

multilevelPSA R Package

The multilevelPSA R package was developed, in part, to conduct the analysis for this dissertation. It is available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/web/packages/multilevelPSA. The latest version can be installed using the install.packages function in R:

> install.packages('multilevelPSA', repos='http://cran.r-project.org')

The following list provides brief descriptions of the key functions in the multilevelPSA package. More information is available vis-à-vis the R help system.

- getPropensityScores Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.
- getStrata Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.
- loess.plot Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.
- missing.plot Returns a heat map graphic representing missingness of variables grouped by the given grouping vector.
- mlpsa This function will perform phase II of the multilevel propensity score analysis.
- plot.mlpsa Creates the multilevel assessment plot.
- mlpsa.circ.plot Plots the results of a multilevel propensity score model.
- mlpsa.ctree Estimates propensity scores using the recursive partitioning in a conditional inference framework.
- mlpsa.difference.plot Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

mlpsa.distribution.plot Plots distribution for either the treatment or comparison group.

mlpsa.logistic Estimates propensity scores using logistic regression.

psrange Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

plot.psrange Plots the results of psrange.

tree.plot Heat map representing variables used in a conditional inference tree across level 2 variables.

Appendix K

Simulating Propensity Score Ranges

The getSimulatedData function is what is used to simulate covariates with varying overlap.

```
getSimulatedData <- function(nvars = 3,</pre>
    ntreat = 100, treat.mean = 0.6, treat.sd = 0.5,
    ncontrol = 1000, control.mean = 0.4, control.sd = 0.5) {
    if (length(treat.mean) == 1) {
        treat.mean = rep(treat.mean, nvars)
    }
    if (length(treat.sd) == 1) {
        treat.sd = rep(treat.sd, nvars)
    if (length(control.mean) == 1) {
        control.mean = rep(control.mean, nvars)
    if (length(control.sd) == 1) {
        control.sd = rep(control.sd, nvars)
    }
    df <- c(rep(0, ncontrol), rep(1, ntreat))</pre>
    for (i in 1:nvars) {
        df <- cbind(df, c(</pre>
             rnorm(ncontrol, mean = control.mean[1], sd = control.sd[1]),
             rnorm(ntreat, mean = treat.mean[1], sd = treat.sd[1])
    }
    df <- as.data.frame(df)</pre>
    names(df) <- c("treat", letters[1:nvars])</pre>
    return(df)
}
The following code was used to create Figure 20 in Chapter 5 which represents moderate overlap
but some separation in covariates between treatment and control.
set.seed(2112)
df.psrange <- getSimulatedData(ncontrol = 1000, nvars=1,</pre>
                                 treat.mean=0.6, treat.sd=0.4,
                                 control.mean=0.4, control.sd=0.4)
psrange.test <- psrange(df.psrange, df.psrange$treat, treat ~ .,</pre>
                          samples = seq(100, 1000, by = 100), nboot = 20)
plot(psrange.test)
The following simulates covariates with perfect overlap (i.e. the differences between covariate
```

values between treatment and control is random).

```
df.overlap <- getSimulatedData(ncontrol = 1000, nvars=1,</pre>
                                 treat.mean=0.5, treat.sd=0.4,
                                 control.mean=0.5, control.sd=0.4)
psrange.overlap <- psrange(df.overlap, df.overlap$treat, treat ~ .,</pre>
```

```
{\tt samples = seq(100, 1000, by = 100), nboot = 20)} \\ {\tt plot(psrange.overlap)}
```


Figure 85: Propensity score ranges for varying treatment-to-control ratios with perfect overlapping covariate

The following simulates covariates with almost no overlap (i.e. the covariate values can almost perfectly predict treatment placement).

Figure 86: Propensity score ranges for varying treatment-to-control ratios with non-overlapping covariate

Appendix L

Rubric for Rating the Quality of Charter School Laws

This appendix contains the rubric used by the National Alliance for Public Charter Schools (2010a) to rate the quality of state charter laws. For each state law rated, the law is given a score between 0 to 4 for each of the 20 components. The score for each component is then multiplied by the weight (ranging from 1 to 4) and those 20 values are summed to provide a total score. The range of possible scores for each law therefore ranges between 0 and 208.

Table 27: NAPCS rubric for rating the quality of state charter laws

	Weight	က	-	က
	4	The state does not have a cap.	The state allows new start-ups, public school conversions, and virtual schools.	The state allows two or more viable authorizing options for each applicant.
q	33	The state has a cap with room for ample growth. OR The state does not have a cap, but allows districts to restrict growth.	The state allows new start-ups and virtual schools, but not public school conversions.	The state allows two or more viable authorizing options for each applicant, but requires applicants to get preliminary approval from a state charter school advisory committee.
Scoring	7.	The state has a cap with room for some growth.	The state allows new start-ups and public school conversions, but not virtual schools. OR The state allows only new start-ups.	The state has only a single viable authorizer option available, and there is considerable authorizing activity. OR The state allows two or more viable authorizing options for applicants in some but not all situations.
Ţ	1	The state has a cap with room for limited growth.	Not Applicable	The state has only a single viable authorizer option available, and there is some authorizing activity.
C	0	The state has a cap with no room for growth.	The state allows only public school conversions.	The state has only a single viable authorizer option available, and there is no or almost no authorizing activity.
	Component	No Caps, whereby: 1A. No limits are placed on the number of public charter schools or students (and no geographic limits). 1B. If caps exist, adequate room for growth.	A Variety of Public Charter Schools Allowed, including: 2A. New start-ups. 2B. Public school conversions. 2C. Virtual schools.	Multiple Authorizers Available, including: 3A. Two or more viable authorizing options for each applicant with direct application allowed to each authorizing option.
		1	24	es

...continued from previous page

				Scoring			
	Component	0		2	က	4	Weight
4	Authorizer and Overall Program Accountability System Required, including: 4A. At least a registration process for local school boards to affirm their interest in chartering to the state. 4B. Application process for other eligible authorizing entities. 4C. Authorizer submission of annual report, which summarizes the agencys authorizing activities as well as the performance of its school portfolio. 4D. A regular review process by authorizer oversight body. 4E. Authorizer oversight body with authority to sanction authorizers, including removal of authorizer right to approve schools. 4F. Periodic formal evaluation of overall state charter school program and outcomes.	The state law includes none of the elements of the model laws authorizer and overall program accountability system.	The state law includes a small number of the elements of the model laws authorizer and overall program accountability system.	The state law includes some of the elements of the model laws authorizer and overall program accountability system.	The state law includes many of the elements of the model laws authorizer and overall program accountability system.	The state law includes all of the elements of the model laws authorizer and overall program accountability system.	က
o.	Adequate Authorizer Funding, including: 5A. Adequate funding from authorizing fees (or other sources). 5B. Guaranteed funding from authorizing fees (or from sources not subject to annual legislative appropriations). 5E. Prohibition on authorizers requiring schools to purchase services from them.	The state law includes none of the model laws provisions for adequate authorizer funding.	The state law includes a small number of the model laws provisions for adequate authorizer funding.	The state law includes some of the model laws provisions for adequate authorizer funding.	The state law includes many of the model laws provisions for adequate authorizer funding.	The state law includes all of the model laws provisions for adequate authorizer funding.	74

Weight the model laws procharter appli-The state law includes all of cation, review, decisiontransparent provisions making cesses. and The state law includes many laws provisions and decision-making transpar- $_{
m charter}$ of the model application, processes. review, ent laws provisions and The state law includes some of the model transparcharter decision-making application, Scoring processes. review, forand laws provisions The state law number transparcharter decision-making of the model application, review, processes. includes small $_{
m ent}$ forThe state law laws provisions for transparent proincludes none charter application, review, decisionof the model making cesses. and cation elements specific to conversion cific when using educational service view, and Decision-making Processes, including: 6A. Application elements for all schools. 6B. Additional applischools. 6C. Additional application ele-Additional application elements speproviders. 6E. Additional application Authorizer-issued request for proposals uation of each application including an 6H. All charter approval or de-Transparent Charter Application, Rements specific to virtual schools. 6D. (including application requirements and approval criteria). 6G. Thorough evalin-person interview and a public meetnial decisions made in a public meeting, with authorizers stating reasons for deelements specific to replications. 6F. nials in writing. Component 9

... continued from previous page

Weight the model laws based charter includes all of The state law performanceprovisions contracts. laws based charter includes performanceprovisions contracts. model many the model laws provisions for includes some of based charter The state law performance-Scoring contracts. laws number of the based charter provisions for The state law includes a small performancecontracts. model the model laws includes none of based charter The state law performanceprovisions contracts. ing created as a separate document from the application and executed by the and the authorizer. 7B. Defining the Performance-Based Charter Contracts Required, with such contracts: 7A. Beroles, powers, and responsibilities for the school and its authorizer. 7C. Definwill be judged, based on a performance rollment, postsecondary readiness (high board stewardship (including compliance). 7D. Providing an initial term of five operating years (or a longer term with periodic high-stakes reviews). 7E. Including requirements addressing the governing board of the charter school ing academic and operational performance expectations by which the school framework that includes measures and metrics for, at a minimum, student acaschools), financial performance, and unique environments of virtual schools, demic proficiency and growth, achievement gaps, attendance, recurrent en-... continued from previous page if applicable. Component

Weight the model laws monitoring and data collection The state law includes all of charter school comprehensive provisions processes. data collection and The state law includes many laws provisions hensive charter monof the model compreprocesses. itoring school forThe state law includes some of the model laws monitoring and data collection charter school comprehensive Scoring provisions processes. laws provisions for data collection number of the monitoring and The state law charter school includes a small comprehensive processes. model The state law the model laws monitoring and data collection includes none of charter school comprehensive orovisions processes. performance framework outlined in the contract). 8B. Financial accountabilnually by authorizers (consistent with ity for charter schools (e.g., Generally Accepted Accounting Principles, inde-pendent annual audit reported to aureports produced and made public by each authorizer. 8E. Authorizer notification to their schools of perceived Comprehensive Charter School Monitoring and Data Collection Processes, including: 8A. The collection and analysis of student outcome data at least anthorizer). 8C. Authorizer authority to conduct or require oversight activities. 8D. Annual school performance problems, with opportunities to remedy such problems. 8F. Authorizer authority to take appropriate corrective actions or exercise sanctions short of re-Component vocation. ∞

... continued from previous page

že
page
previous
from
ntinued
3

			Scoring			
Component	0	1	2	3	4	Weight
Clear Processes for Renewal, Nonre-	The state law	The state law	The state law		The state law	4
newal, and Kevocation Decisions, in- cluding: 9A Authorizer must issue	the model laws	includes a small	the model laws	nany of the	the model laws	
school performance renewal reports to	clear processes	model laws	clear processes	_	clear processes	
schools whose charter will expire the	for renewal,	clear processes	for renewal,	clear processes	for renewal,	
following year. 9B. Schools seeking re-	nonrenewal,	for renewal,	nonrenewal,	for renewal,	nonrenewal,	
newal must apply for it. 9C. Authoriz-	and revocation	nonrenewal,	and revocation	nonrenewal,	and revocation	
ers must issue renewal application guid-	decisions.	and revocation	decisions.	and revocation	decisions.	
ance that provides an opportunity for		decisions.		decisions.		
schools to augment their performance						
record and discuss improvements and						
-						
newal and nonrenewal/revocation. 9E.						
Authorizers must ground renewal deci-						
sions based on evidence regarding the						
schools performance over the term of						
the charter contract (in accordance with						
the performance framework set forth						
in the charter contract). 9F. Autho-						
rizer authority to vary length of char-						
ter renewal contract terms based on						
performance or other issues. 9G. Au-						
thorizers must provide charter schools						
with timely notification of potential re-						
vocation or non-renewal (including rea-						
sons) and reasonable time to respond.						
9H. Authorizers must provide charter						
schools with due process for nonrenewal						
and revocation decisions (e.g., public						
hearing, submission of evidence). 9I. All						
charter renewal, non-renewal, and revo-						
cation decisions made in a public meet-						
ing, with authorizers stating reasons for						
non-renewals and revocations in writ-						
ing. 9J. Authorizers must have school						
closure protocols to ensure timely par-						
ent notification, orderly student and						
record transitions, and property and as-						
set disposition						

				$\operatorname{Scoring}$			
	Component	0	1	2	က	4	Weight
10	Educational Service Providers Allowed,	The state law	The state law	The state law	The state law	The state law	2
	including: 10A. All types of educational	prohibits char-	is silent re-	explicitly allows	explicitly allows	explicitly allows	
	service providers allowed to operate all	ter schools	garding these	contracting	contracting	contracting	
	or parts of charter schools. 10A. All	from contract-	arrangements.	with all types of	with all types of	with all types of	
	types of educational service providers	ing with all	OR The state	educational ser-	educational ser-	educational ser-	
	allowed to operate all or parts of charter	types of educa-	law prohibits	vice providers	vice providers	vice providers	
	schools. 10B. A performance contract	tional service	contracting	but does not	and requires	and has provi-	
	between the independent public charter	providers.	with certain	include provi-	performance	sions regarding	
	school board and the service provider is		types of educa-	sions regarding	contracts or	performance	
	required. 10C. Existing and potential		tional service	performance	conflicts of	contracts and	
	conflicts of interest between the two en-		providers.	contracts and	interest provi-	conflicts of	
	tities are required to be disclosed and			conflicts of	sions, but not	interest.	
	explained in application.			interest.	both.		
11	Fiscally and Legally Autonomous	The state law	The state law	The state law	The state law	The state law	3
	Schools with Independent Public	includes none	includes a	includes some	includes many	includes all	
	Charter School Boards, including:	of the model	small number	of the model	of the model	of the model	
	11A. Fiscally and legally autonomous	s pro	of the model	laws provisions	prc	pr	
	schools (e.g., schools have authority to	for fiscally	laws provisions	for fiscally	for fiscally	for fiscally	
	receive and disburse funds, enter into	and legally	for fiscally	and legally	and legally	of the model	
	contracts, and sue and be sued in their	autonomous	and legally	autonomous	autonomous	laws provisions	
	own names). 11B. School governing	schools with	autonomous	schools with	schools with	for fiscally	
	boards independent of the authorizer	independent	schools with	independent	independent	and legally	
	and created specifically to govern their	public charter	independent	public charter	public charter	autonomous	
	charter $school(s)$.	school boards.	public charter	school boards.	school boards.	schools with	
			school boards.	OR The state		independent	
				law includes		public charter	
				all of these		school boards.	
				provisions for			
				some schools,			
				but not others.			

Weight includes all of the model laws lottery The state law studentrequirements recruitment, enrollment, procedures. and $_{
m for}$ laws lottery includes student requirements recruitment, procedures. enrollment, model many and for the model laws The state law includes some of student lottery requirements recruitment, Scoring enrollment, procedures. and for laws lottery number of the $\operatorname{student}$ The state law includes a small requirements recruitment, enrollment, procedures. model and laws includes none nearly of the student lottery The state law requirements recruitment, enrollment, procedures. model none) and within conversions, prior year students within chartered schools, and siblings of Clear Student Recruitment, Enrollment, and Lottery Procedures, includdent in the state. 12B. Lottery requireerences for previously enrolled students enrolled students enrolled at a charter erence for children of a schools founders, governing board members, and full-time employees, not exceeding 10% of the ing: 12A. Open enrollment to any stuments. 12C. Required enrollment prefschool. 12D. Optional enrollment prefschools total student population. ... continued from previous page Component 12

				Scoring			
	Component	0	1	2	3	4	Weight
l	Automatic Exemptions from Many	The state law	The state law	e.			က
	State and District Laws and Regula-	does not pro-	allows schools	variations for	law provides	law provides	
	olous, including. 1973. Evenipolous nom	ovemptions	evemptions	handled 13A	autions from	autions from	
	safety, civil rights, student accountabil-	from state and	from state and	В	many state and		
	ity, employee criminal history checks,	district laws	district laws	were included	district laws	district laws	
	open meetings, freedom of information,		and requires	in this cell.	and regulations	and regulations	
	and generally accepted accounting prin-	does not allow	all of a schools		and requires	and does not	
	ciples. 13B. Exemption from state	schools to apply	teachers to be		some of a	require any of a	
	teacher certification requirements.	for exemptions,	certified. OR		schools teachers	schools teachers	
		and requires	The state law		to be certified.	to be certified.	
		all of a schools	does not pro-				
		teachers to be	vide automatic				
		certified.	exemptions				
			from many				
			state and dis-				
			trict laws and				
			regulations and				
			does not require				
			any of a schools				
			teachers to be				
			certified. OR				
			The state law				
			allows schools				
			to apply for ex-				
			emptions from				
			state and dis-				
			trict laws and				
			requires some				
			of a schools				
			teachers to be				
			certified.				

...continued from previous page

	See Local Processing			Comme			
	Component	0	·	2001 mg	cc	4	Weight
14	Automatic Collective Bargaining Exemption. whereby: 14A. Charter	The state law requires all	The state law requires all	The state law exempts some	The state law exempts some	The state law does not require	က
	schools authorized by non-local board	charter schools	charter schools	schools from	schools from	any charter	
	authorizers are exempt from partici- pation in district collective bargaining	to be part or district collec-	to be part or district collec-	district collective bargaining	district collective bargaining	schools to be part of dis-	
	agreements. 14B. Charter schools au-	tive bargaining	tive bargaining	agreements, but	agreements, but	trict collective	
	thorized by local boards are exempt from participation in district collective	agreements,	agreements,	not others.	not others (but	bargaining acreements	
	bargaining agreements.		••		not exempted		
		exemptions.	exemptions.		to apply for exemptions).		
15	Multi-School Charter Contracts and/or	The state law	The state law is	The state law	Not Applicable	The state law	1
	Multi-Charter Contract Boards Al-	prohibits these	silent regarding	allows either of		explicitly allows	
	lowed, whereby an independent public	arrangements.	arra	arra		either of these	
	charter school board may: 15A. Over-		ments. OR			arrangements	
	see multiple schools linked under a sin-		The state law	only requires		and requires	
	gle contract with independent fiscal and		explicitly allows	schools autho-		_	
	academic accountability for each school.		either of these	rized by some		be indepen-	
	15B. Hold multiple charter contracts		arrangements	entities to be		dently account-	
	with independent fiscal and academic			independently			
	accountability for each school.		require each	9		and academic	
			school to be	_		performance.	
			independently	academic per-			
			accountable	iormance.			
			ioi liscai allu				
			formance. OR.				
			explicitly allows				
			these arrange-				
			ments for some				
			schools but not				
			others.				

Weight က and clearly and state equitable operproviding for The state law includes all of the model laws ational funding cess to all state eliserand equal acfederal low-incident, The state sponsibility provisions categorical addresses nigh-cost funding. funding provides services ensures gibility charter access. vices. and for federal and ity and access to students, but laws provisions equitable access The state law charter eligibil-The state law includes many of the model state Not Applicable not employees. operational categorical provides funding all funding. ednal and for to provides either The state law is forThe state law the model laws ational funding cess to all state state law charter eligibility or access, providing includes some of equitable operclear on either vices, but not and equal acfederal responsibility but not both. low-incident, Scoring provisions categorical high-cost funding services funding. both. and for federal laws eduand forcess to all state is silent about state addresses cation, but is about number of the provisions for equitable oper-The state law charter eligibilfor providing ser-The state law includes a small ational funding and equal acity and access. responsibility low-incident, categorical high-cost services special unclear funding funding. model vices. and law prohibits charter eligibility special reserthe model laws forequitable operational funding The state law state silent and funding for includes none of cess to all state The state law and equal acfederal sponsibilities low-incident, provisions and access. categorical education high-cost funding. about law and cal education agency (LEA) responsible plicable categorical federal and state tic Activities Eligibility and Access, whereby: 16A. Laws or regulations explicitly state that charter school students and employees are eligible to participate in all interscholastic leagues, competitions, awards, scholavailable to non-charter public school 16B. Laws or regulations explicitly allow charter school students in schools not providing at non-charter public schools for a fee tion Responsibilities, including: 17A. Clarity regarding which entity is the lofor providing special education services. 17B. Clarity regarding funding for lowincident, high-cost services for charter schools (in the same amount and/or in Equitable Operational Funding and Categorical Funding, including: 18A. Equitable operational funding statutofunding, and clear guidance on the passthrough of such funds. 18C. Funding and recognition programs extra-curricular and interscholastic activities to have access to those activities Equal Access to All State and Federal rily driven.18B. Equal access to all apfor transportation similar to school dis-Interscholas-Clear Identification of Special Educaa manner similar to other LEAs) students and employees. Extra-Curricular and by a mutual agreement. Component arships, 18 16

...continued from previous page

laws provisions equitable access to capital of the model The state law funding includes facilities. for includes many laws provisions and equitable The state law access to capital of the model funding facilities. includes some laws provisions equitable and The state law of the model access to capital Scoring funding facilities. for number of the model laws protable access to capital funding The state law includes a small visions for equiand facilities. includes none laws provisions equitable and of the model The state law access to capital funding facilities. $_{
m for}$ and Facilities, including: 19A. A perpupil facilities allowance which annutal costs. 19B. A state grant program state loan program for charter school facilities. 19D. Equal access to taxing authority. 19E. A mechanism to provide credit enhancement for public hibition of facility-related requirements Equitable Access to Capital Funding ally reflects actual average district capiexempt bonding authorities or allow charter schools to have their own bondcess to existing state facilities programs 19G. Right of first refusal to purchase or lease at or below fair market value a closed, unused, or underused public school facility or property. 19H. Prostricter than those applied to traditional for charter school facilities. 19C. A charter school facilities. 19F. Equal acavailable to non-charter public schools. ... continued from previous page public schools. Component 19

Weight

${\bf Appendix\ M}$ Matrix Plot of NAPCS Charter Law Scores and NAEP Charter School Effect Sizes

Figure 87: Matrix plot of NAPCS charter law scores and NAEP charter school effect sizes