

Conditional Crystal Structure Generation Using FlowMM

Oliver Tang[†], Ray Zhu[†],

Faradawn Yang, Hanlei Wen, Haroan Wu

https://github.com/oytang/Agent47-Material

Crystal Design

Problem Statement

Limited constraints

Crystal Structure Generation

Generated structures

Conditional
Filter
(Stability,
Sym,
Tc,...)

Designed structure

- Stability
- Physical realisticity and symmetry
- Multi-objective generation (e.g. functionality and stability)

All necessary constraints (Stability, Sym, Tc,...)

Designed structure

Crystal Design

Relevant work and practical insight

CDVAE (https://arxiv.org/abs/2110.06197)

VAE

Flow

FlowMM (https://arxiv.org/abs/2406.04713)

PGCGM (https://arxiv.org/abs/2203.14352)

Diffusion

MatterGen (https://arxiv.org/abs/2312.03687)

FlowMM

Riemannian Flow Matching

Fit probability distribution over crystals

Procedure

- Represent crystal symmetries and leveraging Niggli reduction for unique unit cell representation.
- 2. Use permutation, translation, and rotation invariant density functions.
- 3. Employ a binary representation for atomic types to reduce dimensionality.
- 4. Apply a new objective to estimate density while maintaining symmetry invariances.
- 5. Conduct extensive quantum chemistry calculations to validate generated structures.

Model Training

Data

- Superconductor database JARVIS 3D
 - 1058 structures with Tc
- Crystal structure data conversion
 - JARVIS atoms object -> CIF
- Train/val/test split = 8:1:1
 - 846:106:106 structures
- Best model at 679 epochs
 - ~24 hours training on NVIDIA A100
 - <12 hours with distributed training</p>

Conditional Generation

Crystal Structure Prediction

Task: reconstruct the test set

of steps: 1000

Dataset	Match Rate (%)	RMSE	Size
JARVIS-3D	47.00	0.21	1058
MP-20	61.39	0.0566	45231
Perov-5	53.15	0.0992	18928
Carbon-24	23.47	0.4122	10153
MPTS-52	17.54	0.1726	40476

Unconditional Generation

De Novo Generation

Structure generation

(10,000 structures)

Structure relaxation using CHGNet

Dataset	MP-20	JARVIS-3D	
Size	45231	1058	
Validity % Structural	96.85	88.21	
Validity % Composition	83.19	68.43	
Wdist (ρ)	0.239	0.533	
Wdist (N _{el})	0.083	1.122	

Example

Spacegroup: Cm

E(gen) = -33.78 eV/atom

E(relax) = -44.76 eV/atom

De Novo Generation

Co3Sn I4/mmm E = -25.11 eV/atom Ehull = 111 meV/atom

TiBeZnRh
P4mm
E = -21.98 eV/atom
Ehull = 67 meV/atom

LiBeCdNi
P4mm
E = -21.91 eV/atom
Ehull = 80 meV/atom

ScAIFeSi P4/mmm E = -46.03 eV/atom Ehull = 321 meV/atom

Nb6AIRh Cmmm E = -73.00 eVatom Ehull = 112 meV/atom

LiZrSiRh F-43m E = -17.97 eV/atom Ehull = 22 meV/atom

CaMgBeCr P4mm E = -15.13 eV/atom Ehull = 587 meV/atom

Mn2BeCr Fm-3m E = -31.93 eV/atom Ehull = 40 meV/atom

Colr P-6m2 E = -15.88 eV/atom Ehull = 31 meV/atom

BeCo3 Pm-3m E = -25.33 eV/atom Ehull = 85 meV/atom

RbPd2Rh
P4/mmm
E = -16.40 eV/atom
Ehull = 575 meV/atom

TiCo2Cu P4mm E = -26.55 eV/atom Ehull = 145 meV/atom

Conclusion

FlowMM is an effective and efficient generative model for predicting and generating stable crystal structures.

By leveraging Riemannian Flow Matching, FlowMM achieves superior performance and efficiency in model training and evaluation.

Outlook

- 1. Reduce the number of integration steps required for FlowMM to generate stable materials
- 2. Incorporate DFT calculation to further validate the generated structure
- 3. Expand its application to larger datasets and different types of materials

Project Github:

https://github.com/oytang/Agent47-Material

Conditional Crystal Structure Generation Using FlowMM

Oliver Tang[†], Ray Zhu[†],

Faradawn Yang, Hanlei Wen, Haroan Wu

https://github.com/oytang/Agent47-Material

Backup Slides

Convex Hull Energy Calculation

Tool: pymatgen.analysis.phase_diagram.PhaseDiagram

Database: Materials Project

