MOSFET – Power, P-Channel, SOT-23 -20 V, -1 A

Features

- Ultra Low On–Resistance Provides Higher Efficiency and Extends Battery Life
 - $R_{DS(on)} = 0.180 \ \Omega, \ V_{GS} = -10 \ V$ $R_{DS(on)} = 0.280 \ \Omega, \ V_{GS} = -4.5 \ V$
- Power Management in Portable and Battery-Powered Products
- Miniature SOT-23 Surface Mount Package Saves Board Space
- Mounting Information for SOT-23 Package Provided
- NVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC-DC Converters
- Computers
- Printers
- PCMCIA Cards
- Cellular and Cordless Telephones

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	-20	V
Gate-to-Source Voltage - Continuous	V _{GS}	±20	V
Drain Current – Continuous @ T_A = 25°C – Pulsed Drain Current ($t_p \le 1 \mu s$)	I _D I _{DM}	-1.0 -2.67	A
Total Power Dissipation @ T _A = 25°C	P _D	400	mW
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	ç
Thermal Resistance; Junction-to-Ambient	$R_{\theta JA}$	300	°C/W
Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–20 V	148 mΩ @ –10 V	–1.0 A

MARKING DIAGRAM/ PIN ASSIGNMENT

SOT-23 CASE 318 STYLE 21

P2 = Specific Device Code

I = Date Code= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]	
NTR1P02T1G	SOT-23 (Pb-Free)	3000 / Tape & Reel	
NTR1P02T3G	SOT-23 (Pb-Free)	10000 / Tape & Reel	
NVR1P02T1G	SOT-23 (Pb-Free)	3000 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•	•	•
Drain-to-Source Breakdown Voltage $(V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A})$ (Positive Temperature Coefficient)	V _{(BR)DSS}	-20	32		V mV/°C
Zero Gate Voltage Drain Current (V _{DS} = -20 V, V _{GS} = 0 V, T _J = 25°C) (V _{DS} = -20 V, V _{GS} = 0 V, T _J = 150°C)	I _{DSS}			-1.0 -10	μΑ
Gate-Body Leakage Current ($V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$)	I _{GSS}			±100	nA
ON CHARACTERISTICS (Note 1)					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \mu A)$ (Negative Temperature Coefficient)	V _{GS(th)}	-1.1	-1.9 -4.0	-2.3	V mV/°C
Static Drain-to-Source On-State Resistance ($V_{GS} = -10 \text{ V}$, $I_D = -1.5 \text{ A}$) ($V_{GS} = -4.5 \text{ V}$, $I_D = -0.75 \text{ A}$)	R _{DS(on)}		0.148 0.235	0.180 0.280	Ω
DYNAMIC CHARACTERISTICS					
Input Capacitance $(V_{DS} = -5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$	C _{iss}		165		pF
Output Capacitance $(V_{DS} = -5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$	C _{oss}		110		
Reverse Transfer Capacitance (V _{DS} = -5 V, V _{GS} = 0 V, f = 1.0 MHz)	C _{rss}		35		
SWITCHING CHARACTERISTICS (Note 2)					
Turn–On Delay Time $(V_{DD}=-15~V,~I_{D}=-1~A,~V_{GS}=-5~V,~R_{G}=2.5~\Omega)$	^t d(on)		7.0		ns
Rise Time $(V_{DD} = -15 \text{ V}, I_D = -1 \text{ A}, V_{GS} = -5 \text{ V}, R_G = 2.5 \Omega)$	t _r		9.0		
Turn–Off Delay Time (V_{DD} = -15 V, I_{D} = -1 A, V_{GS} = -5 V, R_{G} = 2.5 Ω)	t _{d(off)}		9.0		
Fall Time $(V_{DD} = -15 \text{ V}, I_D = -1 \text{ A}, V_{GS} = -5 \text{ V}, R_G = 2.5 \Omega)$	t _f		3.0		
Total Gate Charge $(V_{DS} = -15 \text{ V}, V_{GS} = -5 \text{ V}, I_D = -0.8 \text{ A})$	Q _{tot}		2.5		nC
Gate-Source Charge $(V_{DS} = -15 \text{ V}, V_{GS} = -5 \text{ V}, I_D = -0.8 \text{ A})$	Q_{gs}		0.75		
Gate-Drain Charge $(V_{DS} = -15 \text{ V}, V_{GS} = -5 \text{ V}, I_D = -0.8 \text{ A})$	Q_{gd}		1.0		
BODY-DRAIN DIODE RATINGS (Note 1)		•	•		•
Diode Forward On–Voltage (Note 2) ($I_S = -0.6 \text{ A}, V_{GS} = 0 \text{ V})$ ($I_S = -0.6 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C})$	V _{SD}		-0.8 -0.6	-1.0	V
Reverse Recovery Time	t _{rr}		13.5		ns
$(I_S = -1 \text{ A, } dI_S/dt = 100 \text{ A/}\mu\text{s, } V_{GS} = 0 \text{ V})$	t _a		10.5		1
	t _b		3.0		1
Reverse Recovery Stored Charge $(I_S = -1 \text{ A, } dI_S/dt = 100 \text{ A/}\mu\text{s, V}_{GS} = 0 \text{ V})$	Q _{RR}		0.008		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

2. Switching characteristics are independent of operating junction temperature.

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Temperature

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales