Unidad 1.C. Representación finita de números reales en punto flotante

Dr. Ing. Hernán Garrido

Control y sistemas
Universidad Nacional de Cuyo, Facultad de Ingeniería

carloshernangarrido@gmail.com

Noviembre de 2023

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- Múmeros especiales
- Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Motivación

Figura: Números en punto flotante (decimal).

Un número en punto flotante típicamente se expresa en notación científica en la forma:

$$(-1)^S \cdot s \cdot B^e$$

donde

- S es el bit de signo,
- s es una fracción llamada mantisa o significando,
- e es un exponente sesgado, y
- B es 10 para base decimal o 2 para binarios.

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- 4 Números especiales
- 5 Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Estándar IEEE 754-2008

- Han habido varios formatos en el pasado, por ejemplo IBM, DEC,
 MIL-STD 1750A, los cuales asignaban distinta cantidad de bits a F y E.
- La mayoría de las computadoras modernas adoptan el formato IEEE 754

Primera versión: 1985.Última versión: 2019.

	Binary form	ats $(B=2)$		
Parameter	Binary 16	Binary 32	Binary 64	Binary 128
p, digits	10 + 1	23 + 1	52 + 1	112 + 1
e_{max}	+15	+127	+1023	+16383
e_{min}	-14	-126	-1022	-16382
Common name	Half precision	Single precision	Double precision	Quadruple precision

Figura: Formatos binarios de la IEEE 754-2008

Lo que se guarda y su significado

Las cadenas de k bits están compuestas por tres campos:

- 1 bit de signo *S*,
- Un exponente sesgado de w bits E = e + bias (E es un entero sin signo),
- Los p-1 bits finales del significando; el bit faltante se codifica en el exponente (primer bit oculto).

Table 12.2 Binary interchange format parameters

Parameter	Binary16	Binary32	Binary64	Binary128	Binary $\{k\}$ $(k \ge 128)$
k, storage width in bits	16	32	64	128	Multiple of 32
p, precision in bits	11	24	53	113	k - w
e_{max}	15	127	1,023	16,383	$2^{(k-p-1)}-1$
bias, E - e	15	127	1,023	16,383	e_{max}
w, exponent field width	5	8	11	15	Round $(4 \cdot \log_2 k) - 13$
t, trailing significand bits	10	23	52	112	k - w - 1

1 bit	MSB WIL	oits LSB	MSB $t = \rho - 1$ bits	LSB
S	E		T	\neg
(sign)	(biased e	xponent)	(trailing significand field)	
	E ₀	E _{w-1}	d ₁	d _{p-1}

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- 3 Representación normalizada y denormalizada
- 4 Números especiales
- Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Representación normalizada y denormalizada

- La representación de números en punto flotante podría no ser única;
- ullet por ejemplo, $1101.01_2 \cdot (2^0) = 110.101_2 \cdot (2^1) = 11.0101_2 \cdot (2^2)$

Representación normalizada: Se codifica con E>0

El bit oculto de la mantisa es implícitamente igual a 1 y se ajusta la parte fraccionaria.

$$s = 1.T = 1 + T_{t-1}2^{-1} + T_{t-2}2^{-2} + \dots + T_12^{-t+1} + T_02^{-t}$$
$$(-1)^S \cdot s \cdot B^e = (-1)^S \cdot s \cdot 2^{E-\text{bias}}$$

Representación denormalizada: Se codifica con E=0

El bit oculto de la mantisa es implícitamente igual a 0.

$$s = 0.T = 0 + T_{t-1}2^{-1} + T_{t-2}2^{-2} + \dots + T_12^{-t+1} + T_02^{-t}$$
$$(-1)^S \cdot s \cdot B^e = (-1)^S \cdot s \cdot 2^{-bias}$$

Representación normalizada: Características

Características

- Representación:
 - incompleta, como toda representación finita; pero
 - única, gracias a forzar el 1 antes del punto decimal
- Multiplicar y dividir por 2 es trivial
 - Simplemente se suma o se resta 1 al exponente (ya que la base es 2)
- ¡Auto-rango!
 - ... como toda notación exponencial. La notación científica y la representación en punto flotante son casos particulares de notación exponencial.

Normalized floating-point numbers

Denormalized floating-point numbers

Representación normalizada: Ejemplos

Ejemplo 1: $3215.020002 \cdot 2 = 6430.040004$

Decimal Value Entered: 6430.040004 Single precision (32 bits): Binary: Status: normal Bit 31 Bits 30 - 23 Bits 22 - 0 Sign Bit Exponent Field Significand 0 10001011 1.10010001111000001010010 Decimal value of the significand Decimal value of exponent field and exponent 1: -139 - 127 = 12 1.5698340 Hexadecimal: 45C8F052 Decimal: 6430.0400

Representación normalizada: Ejemplos

```
Ejemplo 2: 3215.020002 / 4 = 803.7550005
```

```
Decimal Value Entered: 803.7550005
Single precision (32 bits):
Binary:
          Status: normal
  Bit 31
                           Bits 30 - 23
                                                                     Bits 22 - 0
 Sign Bit
                          Exponent Field
                                                                     Significand
   0
                                                            1 .10010001111000001010010
                             10001000
   0: +
          Decimal value of exponent field and exponent
                                                          Decimal value of the significand
  1: -
                           - 127 = 9
                       136
                                                                     1.5698340
                          Decimal: 803.75500
Hexadecimal: 4448F052
```

Representación denormalizada: Características

Características

- Representación:
 - incompleta, como toda representación finita; pero
 - única, gracias a forzar que el exponente sea constante.
- Se puede representar el 0
 - Con un 1 implícito a la izquierda del punto no se podía.
- Sirve para representar número pequeños:
 - El exponente es el más chico posible, y
 - pueden haber varios 0s luego del punto y antes del primer 1.

Normalized floating-point numbers

Denormalized floating-point numbers

Representación denormalizada: Ejemplos

```
Ejemplo 3: -3.4 \cdot 10^{-39}
```


- Representación en punto flotante
- Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- 4 Números especiales
- Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Números especiales

- Zero = cero: E = 0, T = 0. Tiene dos representaciones
 - -0 (S = 1)+0 (S = 0)
- Infinity = Inf = infinito: E = 111...1, T = 0. Tiene dos representaciones
 - -Inf (S = 1)
 - + Inf (S = 0)
- Not a number = NaN = no-número: E = 111...1, $T \neq 0$. Resultados de operaciones que no son números reales, por ejemplo 0/0.

```
1 % En MATLAB
2 a = 1/0; % a = Inf
3 b = exp(1000); % b = Inf
4 c = log(0); % c = -Inf
5 d = -1/0; % d = -Inf
6 e = 0/0; % e = NaN
7 f = Inf/Inf; % f = NaN
```

- Representación en punto flotante
- Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- 4 Números especiales
- Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Esquemas de redondeo: Definiciones

Unidad de menor precisión

Unidad de menor precisión = unit of least precision = unit of last place = ulp \approx eps (Matlab) = exactitud relativa de punto flotante Sean f', f'' dos valores en punto flotante consecutivos, y $x \in \mathbb{R}$: Si $f' \leq x \leq f''$, entonces:

$$\mathrm{ulp}(x) = f'' - f'$$

Si $f' \le |x| \le f''$, entonces:

$$\operatorname{eps}(x) = f'' - |x|$$

Esquema de redondeo

Es el criterio y/o procedimiento para redondear el resultado x de una operación en punto flotante a ya sea a f' o a f''.

Esquemas de redondeo

Sea $f' \le x \le f''$:

Truncado = rendodeo hacia 0 = cropping

$$\operatorname{round}(x) = \begin{cases} f' & si \quad x > 0 \\ f'' & si \quad x < 0 \\ 0 & si \quad x = 0 \end{cases}$$

• Rendondeo hacia más infinito

$$\operatorname{round}(x) = f''$$

Rendondeo hacia menos infinito

$$round(x) = f'$$

• Rendondeo al más próximo

$$\operatorname{round}(x) = \begin{cases} f' & si \quad x < f' + \frac{\operatorname{ulp}(x)}{2} \\ f'' & si \quad x \ge f' + \frac{\operatorname{ulp}(x)}{2} \end{cases}$$

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- 4 Números especiales
- 5 Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Rango Dinámico

Definición

$$\mathsf{DR}_{\mathsf{dB}} = 20 \, \mathsf{log}_{10} \left(\frac{\mathsf{mayor} \; \mathsf{valor} \; \mathsf{posible}}{\mathsf{menor} \; \mathsf{valor} \; \mathsf{posible}} \right) \, [\mathsf{dB}]$$

Para números de punto flotante:

$$DR_{dB} \approx 6.02 \cdot 2^{w}$$

donde w es el número de bits del campo del exponente E. Para números de punto flotante con precisión simple (32 bits):

$$\mathsf{DR}_{\mathsf{dB}} \approx 6.02 \cdot 2^8 \approx 1541\,\mathsf{dB}$$

Para números de punto fijo con precisión simple (32 bits):

$$\mathsf{DR}_{\mathsf{dB}} \approx 6.02 \cdot 31 \approx 186 \, \mathsf{dB}$$

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- Representación normalizada y denormalizada
- 4 Números especiales
- 5 Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Precisión en punto fijo

```
% En MATLAB
% Fixed-point quantizer
q = quantizer('fixed','floor','saturate',[5 1]);
% [wordlength fractionlength]
u = linspace(-15,15,1000);
y1 = quantize(q,u);
plot(u,y1); title(tostring(q))
```

Precisión en punto fijo: Resolución constante

Figura: 5 bits: 1 para la parte fraccionaria, 1 para el signo, y 3 para la parte entera.

Precisión en punto flotante

```
% En MATLAB
% Floating-point quantizer
q = quantizer([5 3],'float', 'nearest');
% [wordlength exponentlength]
y2 = quantize(q,u);
plot(u,y2); title(tostring(q))
```

Precisión en punto flotante: Resolución variable

Figura: 5 bits: 3 para el exponente, 1 para el signo, y 1 para la parte fraccionaria de la mantisa $(1.1_2 \cdot 2^{2^3-5} = 1.5 \cdot 2^3 = 12)$.

- Representación en punto flotante
- 2 Estándar IEEE 754-2008
- 3 Representación normalizada y denormalizada
- 4 Números especiales
- **5** Esquemas de redondeo
- 6 Rango dinámico
- Precisión
- 8 Limitaciones del formato

Problemas de precisión

Cuando la misma operación involucra números muy grandes y muy pequeños, se pierde el valor del pequeño.

```
1
      % En MATLAB
      a = (2^53 + 1) - 2^53;
     % a = 0;
      if (a == 0)
          disp( Turn off nuclear reactor)
      else
          disp( Do     not turn off nuclear reactor )
      end
     x = 0;
10
      t = \tan(x) - \sin(x)/\cos(x)
11
      t = 0
     x = 1;
13
     t = \tan(x) - \sin(x)/\cos(x)
14
      t = 2.2204e-16 \% eps(1)
15
```

Suma de dos números de orden similar

Ejemplo: Sumar 0.5 + (-0.4375) utilizando 4 bits para la mantisa

$$0.5_{10} = 0.1000_2 \cdot 2^0 = 1.0000_2 \cdot 2^{-1}$$
$$-0.4375_{10} = -0.0111_2 \cdot 2^0 = -1.1100_2 \cdot 2^{-2}$$

Hacer coincidir los exponentes al mayor: Aplicar n corrimientos a -0.4375 donde n = (exponente1 - exponente2) = -1 - (-2) = 1.

$$-0.4375 = -1.1100_2 \cdot 2^{-2} = -0.1110_2 \cdot 2^{-1}$$

Sumar las mantisas:

$$(1.0000_2 - 0.1110_2) \cdot 2^{-1} = 0.0010_2 \cdot 2^{-1}$$

Normalizar la suma, verificando el overflow/underflow:

$$0.0010_2 \cdot 2^{-1} = 1.0000_2 \cdot 2^{-4} = 0.0625$$

Si $e_{min} \le -4 \le e_{max}$, no hay overflow ni underflow.

Redondear la suma: Como cabe en 4 bits, no es necesario redondear.

Suma de dos números de orden diferente

Ejemplo: Sumar
$$10^{10}+1500$$
 con IEEE-754 de 32 bits ($p=23+1, w=8$)
$$1000000000_{10}=1.0010101000001011111001_2 \cdot 2^{33}$$

$$1500_{10}=1.0111011100000000000000_2 \cdot 2^{10}$$

Hacer coincidir los exponentes al mayor: Aplicar n corrimientos al 1500 donde n = 33 - 10 = 23.

$$1500_{10}\approx 0.000000000000000000001_2\cdot 2^{33}=1\cdot 2^{10}=1024$$

Sumar las mantisas:

$$(1.001010100000010111111001_2 + 0.0000000000000000000001_2) \cdot 2^{33}$$

Normalizar la suma, verificando el overflow/underflow:

$$1.001010100000010111111010_2 \cdot 2^{33} = 1.16415333710 \cdot 2^{33} = 10000001024$$

Si $-126 \le 33 \le 127$, no hay overflow ni underflow.

Redondear la suma: Como cabe en 23 bits, no es necesario redondear

Comparación entre punto flotante y punto fijo

Ventajas

Aspecto	Punto Flotante	Punto Fijo	
Precisión	Mayor rango dinámico	Resolución constante	
Costos	Menor tiempo de desarrollo	Menor costo de producción	

Bibliografía

- IEEE-SA Standards Board. IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8. Approved 12 June 2008. New York, NY, USA.
- Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Floating Point Arithmetic. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12. Springer, 2012.