Шаблон отчёта по лабораторной работе 05

5

Дзаки Рафли Зайдан

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	13
6	Ответы на контрольные вопросы	14

Список иллюстраций

4.1	Создание файла
	Создание директории
4.3	Копирование файла
4.4	Создание директории
4.5	Переименовывание файла
4.6	Создание директории
4.7	Работа с правами доступа
4.8	Работа с правами доступа
4.9	Работа с правами доступа
4.10	Проверка файловой системы

Список таблиц

1 Цель работы

Целью данной лабораторной работы является ознакомление с файловой системой Linux, её структурой, именами и содержанием каталогов. Приобретение практических навыков по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке использования диска и обслуживанию файловой системы

2 Задание

- 1. Выполнить все примеры из лабораторной работы
- 2. Выполнить команды по копированию, созданию и перемещению файлов и каталогов
- 3. Определить опции команды chmod
- 4. Изменить права доступа к файлам
- 5. Прочитать документацию о командах mount, fsck, mkfs, kill

3 Теоретическое введение

Для создания текстового файла можно использовать команду touch. Для просмотра файлов небольшого размера можно использовать команду cat. Для просмотра файлов постранично удобнее использовать команду less. Команда ср используется для копирования файлов и каталогов. Команды mv и mvdir предназначены для перемещения и переименования файлов и каталогов.

Каждый файл или каталог имеет права доступа. В сведениях о файле или каталоге указываются:

- тип файла (символ (-) обозначает файл, а символ (d) каталог);
- права для владельца файла (r разрешено чтение, w разрешена запись,
- x разрешено выполнение, — право доступа отсутствует);
 - права для членов группы (r разрешено чтение, w разрешена запись, x
- разрешено выполнение, — право доступа отсутствует);
 - права для всех остальных (r разрешено чтение, w разрешена запись, х
- разрешено выполнение, — право доступа отсутствует).

Права доступа к файлу или каталогу можно изменить, воспользовавшись командой chmod. Сделать это может владелец файла (или каталога) или пользователь с правами администратора.

Файловая система в Linux состоит из фалов и каталогов. Каждому физическому носителю соответствует своя файловая система. Существует несколько типов файловых систем. Перечислим наиболее часто встречающиеся типы:

- ext2fs (second extended filesystem);
- ext2fs (third extended file system);

- ext4 (fourth extended file system);
- ReiserFS;
- xfs;
- fat (file allocation table);
- ntfs (new technology file system).

Для просмотра используемых в операционной системе файловых систем можно вос- пользоваться командой mount без параметров.

4 Выполнение лабораторной работы

Создаю файл, дважды копирую его с новыми имнами и проверяю, что все команды были выполнены корректно (рис. fig. 4.1).

```
raflzaa@raflzaa:-/work/blog$ cd
raflzaa@raflzaa:-$ touch abc1
raflzaa@raflzaa:-$ cp abc1 april
raflzaa@raflzaa:-$ cp abc1 may
raflzaa@raflzaa:-$ ls
abc1 conf.txt Downloads Music Pictures Templates
april Desktop file.txt newdir snap Videos
bin Documents may pandoc-crossref study_2023-2024_os-intro work
```

Рис. 4.1: Создание файла

Создаю директорию, копирую в нее два файла, созданных на прошлом этапе, проверяю, что все скопировалось (рис. fig. 4.2).

```
raflzaa@raflzaa:~$ mkdir monthly
raflzaa@raflzaa:~$ cp april may monthly/
raflzaa@raflzaa:~$ ls monthly/
april may
```

Рис. 4.2: Создание директории

Копирую файл, находящийся не в текущей диреткории в файл с новым именем тоже не текущей директории (рис. fig. 4.3).

```
raflzaa@raflzaa:~$ cp monthly/may monthly/june
raflzaa@raflzaa:~$ ls monthly/
april june may
raflzaa@raflzaa:~$
```

Рис. 4.3: Копирование файла

Создаю новую директорию. Копирую предыдущую созданную директорию вместе со всем содержимым в каталог /tmp. Затем копирую предыдущую созданную директорию в новую созданную (рис. fig. 4.4).

```
raflzaa@raflzaa:~$ mkdir monthly.00
raflzaa@raflzaa:~$ cp -r monthly /tmp
raflzaa@raflzaa:~$ ls monthly
april june may
raflzaa@raflzaa:~$ cp -r monthly monthly.00
raflzaa@raflzaa:~$ ls monthly.00
monthly
```

Рис. 4.4: Создание директории

Переименовываю файл, затем перемещаю его в каталог (рис. fig. 4.5).

```
raflzaa@raflzaa:~$ mv april july
raflzaa@raflzaa:~$ mv july monthly.00
raflzaa@raflzaa:~$ ls monthly.00/
july monthly
raflzaa@raflzaa:~$
```

Рис. 4.5: Переименовывание файла

Создаю новую диреткорию, переименовываю monthly.00 в monthly.01, перемещаю директорию в директорию reports, переименовываю эту директорию, убираю из названия 01 (рис. fig. 4.6).

```
raflzaa@raflzaa:~$ mkdir reports
raflzaa@raflzaa:~$ mv monthly.00 monthly.01
raflzaa@raflzaa:~$ mv monthly.01/ reports/
raflzaa@raflzaa:~$ mv reports/monthly.01 reports/monthly
raflzaa@raflzaa:~$
```

Рис. 4.6: Создание директории

Создаю пустой файл, проверяю права доступа у него, изменяю права доступа, добавляя пользователю (создателю) можно выполнять файл (рис. fig. 4.7).

```
raflzaa@raflzaa:~$ touch may
raflzaa@raflzaa:~$ ls -l may
-rw-rw-r-- 1 raflzaa raflzaa 0 map 16 22:43 may
raflzaa@raflzaa:~$ chmod u+x may
raflzaa@raflzaa:~$ ls -l may
-rwxrw-r-- 1 raflzaa raflzaa 0 map 16 22:43 may
raflzaa@raflzaa:~$ chmod u-x may
raflzaa@raflzaa:~$ ls -l may
-rw-rw-r-- 1 raflzaa raflzaa 0 map 16 22:43 may
raflzaa@raflzaa:~$
```

Рис. 4.7: Работа с правами доступа

Меняю права доступа у директории: группы и остальные пользователи не смогут ее прочетсь (рис. fig. 4.8).

```
raflzaa@raflzaa:~$ chmod g-r monthly
raflzaa@raflzaa:~$ chmod o-r monthly
raflzaa@raflzaa:~$
```

Рис. 4.8: Работа с правами доступа

Изменяю права доступа у директории, запрещаю группам и остальным пользователям читать. Создаю новый пустой файл, даю ему права доступа: группы могут в этом чато писатю содержимое (рис. fig. 4.9).

```
raflzaa@raflzaa:~$ touch abc1
raflzaa@raflzaa:~$ chmod g+w abc1
raflzaa@raflzaa:~$ ls -l abc1
-rw-rw-r-- 1 raflzaa raflzaa 0 map 16 22:45 abc1
raflzaa@raflzaa:~$
```

Рис. 4.9: Работа с правами доступа

Проверяю файловую систему (рис. fig. 4.10).

```
raflzaa@raflzaa:-$ fsck /dev/sda1
fsck from util-linux 2.37.2
e2fsck 1.46.5 (30-Dec-2021)
fsck.ext2: Permission denied while trying to open /dev/sda1
You must have r/w access to the filesystem or be root
raflzaa@raflzaa:-$ sudo fsck /dev/sda1
[sudo] password for raflzaa:
fsck from util-linux 2.37.2
e2fsck 1.46.5 (30-Dec-2021)
ext2fs_open2: Bad magic number in super-block
fsck.ext2: Superblock invalid, trying backup blocks...
fsck.ext2: Bad magic number in super-block while trying to open /dev/sda1
The superblock could not be read or does not describe a valid ext2/ext3/ext4
filesystem. If the device is valid and it really contains an ext2/ext3/ext4
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate superblock:
    e2fsck -b 8193 <device>
or
    e2fsck -b 32768 <device>
```

Рис. 4.10: Проверка файловой системы

5 Выводы

При выполнении данной лабораторной работы я ознакомилась с файловой системой Linux, её структурой, именами и содержанием каталогов. Приобрела практические навыки по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке использования диска и обслуживанию файловой системы

6 Ответы на контрольные вопросы

1. Дайте характеристику каждой файловой системе, существующей на жёстком диске компьютера, на котором вы выполняли лабораторную работу. Ext2, Ext3, Ext4 или Extended Filesystem - это стандартная файловая система для Linux. Она была разработана еще для Minix. Она самая стабильная из всех существующих, кодовая база изменяется очень редко и эта файловая система содержит больше всего функций. Версия ext2 была разработана уже именно для Linux и получила много улучшений. В 2001 году вышла ext3, которая добавила еще больше стабильности благодаря использованию журналирования. В 2006 была выпущена версия ext4, которая используется во всех дистрибутивах Linux до сегодняшнего дня. В ней было внесено много улучшений, в том числе увеличен максимальный размер раздела до одного экзабайта.

Вtrfs или В-Tree File System - это совершенно новая файловая система, которая сосредоточена на отказоустойчивости, легкости администрирования и восстановления данных. Файловая система объединяет в себе очень много новых интересных возможностей, таких как размещение на нескольких разделах, поддержка подтомов, изменение размера не лету, создание мгновенных снимков, а также высокая производительность. Но многими пользователями файловая система Btrfs считается нестабильной. Тем не менее, она уже используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

2. Приведите общую структуру файловой системы и дайте характеристику

каждой директории первого уровня этой структуры.

/ — root каталог. Содержит в себе всю иерархию системы;

/bin — здесь находятся двоичные исполняемые файлы. Основные общие команды, хранящиеся отдельно от других программ в системе (прим.: pwd, ls, cat, ps);

/boot — тут расположены файлы, используемые для загрузки системы (образ initrd, ядро vmlinuz);

/dev — в данной директории располагаются файлы устройств (драйверов). С помощью этих файлов можно взаимодействовать с устройствами. К примеру, если это жесткий диск, можно подключить его к файловой системе. В файл принтера же можно написать напрямую и отправить задание на печать;

/etc — в этой директории находятся файлы конфигураций программ. Эти файлы позволяют настраивать системы, сервисы, скрипты системных демонов;

/home — каталог, аналогичный каталогу Users в Windows. Содержит домашние каталоги учетных записей пользователей (кроме root). При создании нового пользователя здесь создается одноименный каталог с аналогичным именем и хранит личные файлы этого пользователя;

/lib — содержит системные библиотеки, с которыми работают программы и модули ядра;

/lost+found — содержит файлы, восстановленные после сбоя работы системы. Система проведет проверку после сбоя и найденные файлы можно будет посмотреть в данном каталоге;

/media — точка монтирования внешних носителей. Например, когда вы вставляете диск в дисковод, он будет автоматически смонтирован в директорию /media/cdrom;

/mnt — точка временного монтирования. Файловые системы подключаемых устройств обычно монтируются в этот каталог для временного использования;

/opt — тут расположены дополнительные (необязательные) приложения. Такие программы обычно не подчиняются принятой иерархии и хранят свои

файлы в одном подкаталоге (бинарные, библиотеки, конфигурации);

/proc — содержит файлы, хранящие информацию о запущенных процессах и о состоянии ядра ОС;

- /root директория, которая содержит файлы и личные настройки суперпользователя;
- /run содержит файлы состояния приложений. Например, PID-файлы или UNIX-сокеты;
- /sbin аналогично /bin содержит бинарные файлы. Утилиты нужны для настройки и администрирования системы суперпользователем;
- /srv содержит файлы сервисов, предоставляемых сервером (прим. FTP или Apache HTTP);
- /sys содержит данные непосредственно о системе. Тут можно узнать информацию о ядре, драйверах и устройствах;
- /tmp содержит временные файлы. Данные файлы доступны всем пользователям на чтение и запись. Стоит отметить, что данный каталог очищается при перезагрузке;
- /usr содержит пользовательские приложения и утилиты второго уровня, используемые пользователями, а

не системой. Содержимое доступно только для чтения (кроме root). Каталог имеет вторичную иерархию и похож на корневой;

- /var содержит переменные файлы. Имеет подкаталоги, отвечающие за отдельные переменные. Например, логи будут храниться в /var/log, кэш в /var/cache, очереди заданий в /var/spool/ и так далее.
 - 3. Какая операция должна быть выполнена, чтобы содержимое некоторой файловой системы было доступно операционной системе? Монтирование тома.
 - 4. Назовите основные причины нарушения целостности файловой системы. Как устранить повреждения файловой системы? Отсутствие синхронизации между образом файловой системы в памяти и ее данными на диске в

случае аварийного останова может привести к появлению следующих ошибок:

Один блок адресуется несколькими mode (принадлежит нескольким файлам). Блок помечен как свободный, но в то же время занят (на него ссылается onode). Блок помечен как занятый, но в то же время свободен (ни один inode на него не ссылается). Неправильное число ссылок в inode (недостаток или избыток ссылающихся записей в каталогах). Несовпадение между размером файла и суммарным размером адресуемых inode блоков. Недопустимые адресуемые блоки (например, расположенные за пределами файловой системы). "Потерянные" файлы (правильные inode, на которые не ссылаются записи каталогов). Недопустимые или неразмещенные номера inode в записях каталогов.

- 5. Как создаётся файловая система? mkfs позволяет создать файловую систему Linux.
- 6. Дайте характеристику командам для просмотра текстовых файлов. Сат выводит содержимое файла на стандартное устройство вывода. Выполнение команды head выведет первые 10 строк текстового файла. Выполнение команды tail выведет последние 10 строк текстового файла. Команда tac это тоже самое, что и саt, только отображает строки в обратном порядке. Для того, чтобы просмотреть огромный текстовый файл применяются команды для постраничного просмотра. Такие как more и less.
- 7. Приведите основные возможности команды ср в Linux. Ср копирует или перемещает директорию, файлы.
- 8. Приведите основные возможности команды mv в Linux. Mv переименовать или переместить файл или директорию

9. Что такое права доступа? Как они могут быть изменены? Права доступа к файлу или каталогу можно изменить, воспользовавшись командой chmod. Сделать это может владелец файла (или каталога) или пользователь с правами администратора.