Programa de Doctorado en Ingeniería Matemática, Estadística e Investigación Operativa por la Universidad Complutense de Madrid y la Universidad Politécnica de Madrid

Simulación Social mediante Inteligencia Artificial y Teoría de Juegos

Aplicación al estudio del efecto de las emociones en las comunicaciones en redes sociales

TESIS DOCTORAL

Óscar Serrano Cuéllar

Directores: Juan Antonio Tejada Cazorla José Francisco Vélez Serrano

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD DE LA TESIS PRESENTADA PARA OBTENER EL TÍTULO DE DOCTOR

D./Dña		,
		,
de la Facultad de		_ de la Universidad Complutense de
Madrid, como autor/a de la te titulada:	esis presentada para l	a obtención del título de Doctor y
DECLARO QUE:		
los derechos de propiedad indivigente, en particular, la Ley de abril, por el que se aprueba modificado por la Ley 2/2019,	ustrial u otros, de acu e Propiedad Intelectua el texto refundido de de 1 de marzo, regul	derechos de propiedad intelectual ni uerdo con el ordenamiento jurídico al (R.D. legislativo 1/1996, de 12 de e la Ley de Propiedad Intelectual, larizando, aclarando y armonizando a), en particular, las disposiciones
	o falta de originalidad	idad cualquier responsabilidad que del contenido de la tesis presentada e.
En Madrid, a	de	de 20
Fdo.:		

Esta DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD debe ser insertada en la primera página de la tesis presentada para la obtención del título de Doctor.

Dedicatoria

Dedico esta Tesis a ...

Agradecimientos

I want to thank...

Resumen

Simulación Social mediante Inteligencia Artificial y Teoría de Juegos.

Resumen de la Tesis aparece a continuación. Lo siguiente es un resumen. Según el esquema de la UCM, debe tener una extensión de entre 500 y 1000 palabra (vendría a ser un folio por las dos caras las 1000), e incluir:

- El título de la tesis.
- Introducción.
- Una síntesis que incluya, al menos, objetivos y resultados.
- Conclusiones.

Debe estar redactado en español e inglés. Además debe estar incluido en el índice de la tesis.

Abstract

Simulación Social mediante Inteligencia Artificial y Teoría de Juegos.

Introducción. Aquí aparece la Introducción. Mención al problema de flujo de información en una red, y el estudio que llevaremos a cabo. Primero llevaremos a cabo un análisis de las interacciones estratégicas que se producen entre los agentes.

Objetivos y resultados. En esta parte mencionar el empleo de herramientas de Inteligencia Artificial, como es el empleo de Aprendizaje por Refuerzo (*Reinforcement Learning*). Esto nos permitirá analizar la influencia de las emociones en el proceso de comunicación.

El código de las aplicaciones que se desarrollen podría incorporarse aparte en un repositorio, del que se proporcionaría la dirección (si se da el caso de no incorporarlo directamente al final de la Tesis, posiblemente en algún Apéndice).

Conclusiones. Resumir los resultados de las simulaciones llevadas a cabo, y la forma de provocar flujo masivo de información en una red.

Índice de figuras

1.1.	Clusters emocionales detectados en el estudio Framingham (Fowler, J. H. & Christakis, N. A. (2008) [61])	3
1.2.	Automatas celulares de Axelrod y surgimiento de la cooperación	5
1.3.	Rejilla de simulación (grid). Aparece resaltada una de sus celdas y su vecindario inmediato.	5
1.4.	Simulación de la aparición de segregación racial mediante autómatas	6
1.5.	Evolución de la cultura tras 20.000, 40.000 y 80.000 ciclos (Axelrod(1997) [5])	6
1.6.	La interacción se produce con una probabilidad proporcional a la similaridad entre	
	los agentes.	7
1.7.	a) Dilema de los bienes públicos b) Dilema tragedia de los comunes	10
2.1.	Representación de una secuencia de decisiones. Partimos en la etapa 0 de un determinado estado inicial X_0 , y cada decisión conduce a un nuevo estado $(X_1, X_2,, X_k,$ Las decisiones que se pueden tomar son propias de cada estado $(u_k \in U(x_k))$, y llevan aparejadas unas consecuencias, que en este caso (al ser un entorno determinato) con del timo e (x_0, x_0)	
2.2.	minista) son del tipo: $g(x_k, u_k)$	16 19
2.3.	En un entorno determinista, la función de valor se encuentra optimizando la suma del costo/ganancia a un paso $(g_{ik}(u_k), k = 1, 2,, n)$ más el valor del estado destino $J^*(k+1)$	26
2.4.	En un entorno aleatorio, la función de valor se encuentra optimizando el valor esperado de la suma del costo/ganancia a un paso $(g_{ij}(u_k), k = 1, 2,, n)$ más el valor óptimo del estado destino $(J_{k+1}^*(1),, J_{k+1}^*(n))$. Suponemos que la incertidumbre reside en el estado final al que se llegar tras tomar la decisión, no en el coste asociado a dicha transición $(g_{ij}(u_k), k = 1, 2,, n)$.	27
2.5.	Interpretación geométrica del operador de Bellman T_{μ} . (Ver código Python en el Apéndice)	29
2.6.	Interpretación geométrica del operador de Bellman T. (Ver código Python en el Apéndice).	30
2.7.	Representación del supuesto de contractividad (se utiliza una sola dimensión para facilitar la visualización). También aparece indicado el punto fijo J_{μ} , que cumple $T_{\mu}J = J$ (Adaptado de Bertsekas, D. (2022) [22] - pag. 8)	37
2.8.	Ecuación de Bellman. En un entorno no determinista, la función de valor se encuentra minimizando/maximizando la esperanza: del costo/ganancia a un paso $(g_{ik}(u_k), k = 1, 2,, n)$ más el valor óptimo del estado destino $(J^*(k), k = 1, 2,, n)$	
	1, 2,, n)	42

3.1.	Representación del algoritmo VI (Value Iteration) y el punto al que convergen la secuencia de iteraciones. El punto fijo J^* , que cumple $TJ^* = J$, aparece señalado en el gráfico (Adaptado de Bertsekas, D. (2022) [22] - pag. 8 y 71)
3.2.	Representación del algoritmo PI (Policy Iteration) y el punto al que convergen la secuencia de iteraciones. El punto fijo J^* , que cumple $TJ^* = J$, aparece señalado en el gráfico (Adaptado de Bertsekas, D. (2022) [22] - pag. 71)
3.3.	Empleo de costes intermedios para estimar el valor de estados visitados en secciones
3.4.	de la trayectoria muestral. En la figura el estado i_0 ha sido visitado m veces 59 Simulando K trayectorias $(1,2,,k,,K)$ podemos obtener una estimación de la función de valor en los estados que son visitados en ellas (en la figura aparece un estado i_0)
3.5.	Acotación de los valores r_t que proporciona el algoritmo
3.6.	Empleamos un decaimiento geométrico para los pesos (Adaptado de Barto, R. S. & Sutton, A. G. (2018) [192] - pag. 290)
3.7.	Dinámica del sistema 73
4.1.	Esquema de las disciplinas que confluyen en el Reinforcement Learning 81
4.2.	Esquema de las equivalencias entre la notación empleada en Programación Dinámica y la utilizada en Aprendizaje por Refuerzo
4.3.	Transiciones entre estados
4.4.	El agente dispone, como información del Entorno, de los valores (s_t, r_t) , donde s_t
	alude al estado en el instante 't', y r_t el feedback en forma de recompensa. En base a estos valores, lleva a cabo una acción: a_t . Esto se traduce en una transición a otro
	estado s_{t+1} . La consecuencia para el agente consiste en recibir una recompensa: r_{t+1} . 85
4.5.	Conforme hacemos crecer los pasos hacia delante que tenemos en cuenta a la hora de realizar la estimación, nos aproximamos al caso límite: el método de Monte Carlo, que ha de disponer de toda la trayectoria antes de realizar los cálculos 90
4.6.	Algunos de los algoritmos empleados en Aprendizaje por Refuerzo (Reinforcement
4.7.	
4.8.	(Adaptado de: Tsitsiklis, J. & Bertsekas, D. (1996) [28] - pag. 36)
5.1.	Algunas funciones de activación usuales (donde: $net = W \cdot input + b$)
5.2.	Representación gráfica del procesamiento de información que realiza una Red Neuronal. Se han empleado unos inputs de dimensión 'p': $\mathbf{x} = (x_1, x_2,, x_p)$ y dos capas ocultas de neuronas. La neurona final genera un valor \mathbf{y} . En todos los casos se ha empleando una función de activación tangente hiperbólica
5.3.	Obtención del vector de parámetros óptimo θ^*
5.4.	
	C. et al. (1999) [154], Goodfellow, I. et al. (2016) [71] y Brunton, S. L. & Kutz, J. N. (2022) [40])
5.5.	Funcionamiento del bufer, y extracción posterior de una muestra para entrenar la
5.6.	Funcionamiento del bufer, y extracción de una muestra ponderada por el efecto que
	la observación tiene en el error
5.7.	Estructura de la Red Neuronal empleada en Dueling DQN
5.8.	Esquema de la implementación del modelo A3C

6.1.	Entorno multiagente. La acción conjunta de todos los agentes (\bar{a}_t), genera una	
	$se\~{n}al$ por parte del entorno en forma de recompensa (\overline{r}_t) y una alteración de su	
	estado (s_t) , lo que sirve a los agentes como refuerzo para optimizar la elección de	
	sus acciones (gráfico adaptado de Nowe et al. (2012) [138])	125
6.2.	vonNeumann Morgenstern (FOTO)	127
6.3.	Esquema del tipo de modelos según el número de agentes y el tipo de conjunto de estados. Además, cuando el agente no tiene la posibilidad de conocer con precisión el estado del sistema, nos encontramos ante POMDP (Partially Observable Markov	
	Decision Processes)	128
6.4.	Esquema de la matriz de pagos en un juego matricial	130
6.5.	Esquema con la matriz de pagos de un juego matricial (r_{ij}, c_{ij}) , y las probabilidades de cada estrategia $(\alpha, 1 - \alpha; \beta, 1 - \beta)$ por jugador $(J_1, J_2: jugador fila/columna)$.	137
7.1.	Prueba de modelo de las transiciones emocionales de un agente.	149

Índice de cuadros

	Expresión de la función $J_{\pi}(x_0)$ en los escenarios más comunes	
3.1.	Representación tabular del conjunto de estados-acciones	47
4.1.	Equivalencias entre los términos empleados en Reinforcement Learning y Programación Dinámica (PD) (y Control Óptimo). (Adaptado de Bertsekas, D. (2019) [27] - pag. 44)	83
	[21] Pag. 11)	00
6.1.	Principales algoritmos clásicos multiagente	136
	Representación tabular de la función $Q(s,a)$	173
	mediante el máximos valor de la función para el estado s'	176

Índice general

Declar	ación de autoría y originalidad	II
Dedicat	goria	v
Agradeo	cimientos	VI
Resum	uen	IJ
Abstra	net	X
Índice	de figuras	χV
Índice	de cuadros	XVI
	Coducción El problema de la difusión de información en una Red Social	2
	Aportaciones de la Tesis	
2.1. 2.2. 2.3.	delización de la toma de decisiones secuenciales Conceptos y notación	18 20 22 28
3. Mét 3.1.	todos de solución Solución exacta: Programación Dinámica	48 53

ÍNDICE GENERAL

		3.2.2. Método de las diferencias temporales (TD)	
		3.2.3. Algoritmo Q-Learning	
	3.3.	Solución aproximada: Métodos de Simulación II (Policy based methods)	
		3.3.1. Método 1: Optimización del vector de parámetros	77
		3.3.2. Método 2: Utilizar Aprendizaje Supervisado	79
4	Apr	rendizaje por refuerzo (RL)	81
••		Conceptos	
	4.2.	Proceso de Decisiones de Markov (MDP)	
	4.3.		
	4.4.	Funciones para la toma de decisiones del agente	
	4.4.	4.4.1. Funciones de valor	
	4 =	4.4.2. Función de estrategia	
	4.5.	Estimación de las funciones de valor	90
		4.5.1. Método de Montecarlo (MC)	
	4.0	4.5.2. Método de las diferencias temporales (TD)	
	4.6.	Estimación de la función de estrategia	91
	4.7.	Value based Methods	93
		4.7.1. SARSA	93
		4.7.2. Q-learning	
	4.8.	Policy Methods	95
		4.8.1. REINFORCE	
		4.8.2. REINFORCE with reward-to-go	96
		4.8.3. REINFORCE with baseline	96
	4.9.	Actor-Critic Methods	97
	4.10	. Transferencia de aprendizaje: el problema de la representación	97
	4.11	. Otras lineas de investigación.	98
		4.11.1. Imitation Learning	98
		4.11.2. Meta Reinforcement Learning	98
		4.11.3. Hierarchical Reinforcement Learning	
		4.11.4. Imagination	
	4.12	. Procesos de Decisión de Markov	
		. MDP Parcialmente Observable (POMDP)	
5 .	_	rendizaje por refuerzo profundo (Deep RL)	109
	5.1.	Redes Neuronales	
	5.2.	Entrenamiento de una red neuronal	
	5.3.	Arquitecturas de Redes Neuronales	
	5.4.	Utilización de Redes Neuronales en RL	
	5.5.	Value based Methods	
		5.5.1. Deep Q-Network (DQN)	
		5.5.2. Double Deep Q Network (DDQN)	
		5.5.3. Deep Q-Network with Prioritized Experience Replay (PER)	
		5.5.4. Dueling Deep Q-Network (Dueling DQN) (D2QN)	
		5.5.5. Deep Recurrent QN (DRQN)	118
	5.6.	\checkmark	
		5.6.1. Proximal Policy Optimization (PPO)	119
		5.6.2. Trust Region Policy Optimization (TRPO)	
		5.6.3. Actor-Critic using Kronecker-factored Trust Region (ACKTR)	119

ÍNDICE GENERAL

B. Teoría de Juegos	165
C. Redes Sociales	167
D. Código PYTHON D.1. Implementación del algoritmo SARSA D.2. Implementación del algoritmo Q-Learning D.3. Análisis Geométrico del Operador de Bellman J_{μ} D.4. Resolución de Sistemas Lineales - Cálculo de J_{μ^k} .	175 176
Referencias	181
Índice alfabético	199
Lista de Símbolos y Acrónimos	201
Glosario	205

Capítulo 1

Introducción

Una sociedad podemos entenderla como una red de individuos interconectados. La complejidad de las relaciones que pueden establecerse entre ellos hace muy difícil obtener expresiones matemáticas y construir modelos.

Para el estudio de muchos fenómenos sociales ha surgido una vía alternativa: la Simulación Social. Consiste en la representación simplificada de una sociedad para su posterior programación en un ordenador. Su principal virtud consiste en que permite el estudio de propiedades que emergen de las interacciones entre los individuos, y de las que es muy difícil ser consciente.

De entre los muchos elementos que pueden llamar la atención a la hora de estudiar fenómenos sociales, hay uno que tiene especial interés, y es la difusión de información, ya que está implícita en cualquier tipo de relación social. Alude a la transmisión de opiniones, gustos o ideas. De entre los escenarios a los que podamos enfrentarnos hay uno que tiene un atractivo especial, se trata de una forma extrema de difusión de información: el contagio viral.

Su estudio ha sido abordado tradicionalmente basándose exclusivamente en la estructura de la red social. Sin embargo, cada vez más estudios revelan la importancia de las emociones en el flujo de información, por lo que creemos necesaria su inclusión.

Por lo tanto en esta tesis abordaremos el estudio del flujo de información en una Red Social mediante técnicas de Simulación, y un tratamiento sobre el efecto que tienen las emociones en las comunicaciones. Esto se concreta en dos vías principales que desarrollaremos a lo largo de la tesis:

- 1. Análisis estratégico de las interacciones entre agentes dotados de emociones.
- 2. Estudio del efecto del contenido emocional de la información a la hora de impulsar su transmisión en una Red Social.

En las lineas que siguen procedemos a introducir algunos conceptos relativos a la información y las Redes Sociales. Posteriormente repasamos algunas referencias clásicas en la literatura sobre el flujo de información en una Red Social, y tratamos los trabajos más importantes sobre Simulación. Este capítulo cierra con una visión breve de la estructura de la tesis.

1.1. El problema de la difusión de información en una Red Social

- Planteamiento del problema de viralizar un producto de marketing en sitios de compartir información por Domingos Richardson (2001) [54] y (2002) [157].
- Modelo de referencia de Kemple, Kleinberg y Tardos. Artículo de los autores [99] (2003) y [98] (2005).
- Modelo Agent-based para el contagio emocional. Menciona su importancia y la competición que podrían mantener, y el papel que jugarían en la formación de la opinión pública (Fan et al. (2018) [58]).
- -Estudio de Framingham que se realizó sobre el corazón en principio, recogiendo un gran número de variables. Esto permitió descubrir relaciones interesantes. Entre ellas, el que la felicidad se contagiaba y extendía (Fowler, J. & Christakis, N. (2008) [61]).

Más sobre el flujo de emociones en distintas plataformas: - Sobre los hiperenlaces y cómo se van difundiendo las emociones (Miller, M. et al. (2011) [120]).

- Sobre los contagios emocionales en TWITTER y FACEBOOK tenemos un estudio como el llevado a cabo para analizar esta cuestión (Ferrara, E. & Yang, Z. (2015) [60]).
- Algún otro estudio también se ha centrado en FACEBOOK (Kramer, A. (2012) [103]), así como el realizado algún año más tarde (Kramer, A. et al. (2014) [104]).
- Otras plataformas como LIVE JOURNAL también han atraido la mirada de los investigadores, realizándose estudios sobre su funcionamiento (Zafarani, R. et al. (2010) [219]).
- Comportamiento distintivo: Las malas noticias parecen propagarse más rápido (Wu, S; Kleinberg, J. et al. (2011) [213]).
- Estudios sobre mecanismos de difusión de información en TWITTER (Romero & Kleinberg (2011) [159]).
- Estudios de John Berger apuntan a las razones que pueden encontrarse detrás de la viralidad mayor o menor de la información (Berger, J. (2011)[19]). Sobre la viralidad del contenido on-line tenemos su estudio de 2012 que relaciona emociones y viralidad (Berger, J. (2012) [21]). Su libro también trata temas como los mencionados (Berger, J. (2016) [20]).

Algunos estudios sobre las consecuencias en el mundo de hoy en día de la transmisión viral de información.

- Sobre el tema de la movilización política (Bond et al. (2012)[32]).
- También algún artículo como el estudio sobre Fake News (Vosoughi, S. et al. (2018)[205]).

- Sobre la polarización y el enfrentamiento (Stella, M. et al. (2018)[186]).

1.2. Influencia de las Emociones

A continuación se mencionan algunos artículos relativos al impacto que tienen las emociones en la difusión de información.

Figura 1.1: Clusters emocionales detectados en el estudio Framingham (Fowler, J. H. & Christakis, N. A. (2008) [61]).

Como podemos ver en la figura 1.1, las emociones tienden a presentarse formando clusters, lo que induce a pensar que se transmiten y son compartidas (Ver Fowler, J. H. & Christakis, N. A. (2008) [61]).

- Artículo sobre los contagios masivos en redes (Coviello, L. et al (2014)[51]).
- Los artículos de Ferrara y Yang sobre el contagio emocional en las redes sociales (Ferrara, E. & Yang, Z. (2015) [60]), y en el mismo año sobre la medición de dichos efectos (Ferrara, E. & Yang, Z. (2015) [59]).
 - Otro artículo sobre emociones e interacciones sociales (Jin, S. & Zafarani, R. (2017) [95])
- Un artículo sobre modelización y simulación de contagios emocionales y el proceso de difusión de rumores (Zeng, R. & Zhu, D. (2019)[220]).

1.3. Hipótesis y objetivos

La principal hipótesis que pretendemos estudiar es la de que las emociones juegan un papel en la transmisión de información. Detrás del flujo de información se encuentra lo que vendríamos a denominar 'influencia social', y un elemento clave son las emociones. Los mecanismos que operan detrás no quedan recogidos correctamente por los modelos tradicionales.

HIPÓTESIS:

- 1. Las emociones afectan a la forma de difundirse la información.
- 2. La difusión de información puede depender del estado emocional previo de los agentes y la red.
- 3. Podemos plantear nuevos métodos de modelar las emociones en agentes y mensajes.
- 4. El uso de Redes Neuronales y métodos de Inteligencia Artificial puede contribuir decisivamente a crear mejores agentes.

Entre las tareas que se pretenden abordar se encuentra la de crear redes sociales simuladas para problemas de difusión de información. El objetivo final consiste en analizar el flujo en una Red Social. Conociendo mejor la dinámica subyacente se puede tratar mejor el problema de encontrar la manera óptima de propagar la información. Si tenemos en cuenta que información propagada de manera viral puede contribuir a crear un clima de opinión arbitrario, el tema de las interacciones estratégicas entre agentes surge de manera natural y es otro de los objetivos sobre los que nos centraremos.

OBJETIVOS GENERALES:

- Estudio de los fenómenos de difusión de información en presencia de emociones.
- Estudio de las interacciones estratégicas entre agentes dotados de emociones.

OBJETIVOS ESPECÍFICOS:

- Desarrollo de modelos de interacción estratégica para analizar los fenómenos de competencia por imponer un clima de opinión en redes sociales, en presencia de emociones.
- Implementación mediante redes neuronales de agentes emocionales que interaccionan en el contexto de autómatas celulares o de redes sociales.
- Desarrollo de modelos de difusión de la información en redes sociales que tengan en cuenta la presencia de emociones, tanto en los agentes como en el mensaje.
- Estudiar cómo influye la inclusión de emociones en el problema de maximización de la difusión en una red social.

1.4. Metodología: Empleo de métodos de Simulación

Si nos fijamos en la naturaleza de las técnicas podemos distinguir por un lado Simulación social a nivel de sistema. Se lleva a cabo mediante la utilización de ecuaciones matemáticas que recoten la dinámica del fenómeno que se está estudiando. Un ejemplo clásico es el de Hanneman (1988) [77]. El obstáculo principal consiste en que en muchas ocasiones no somos capaces de expresar de manera explícita el tipo de relaciones que existen.

Por otro lado nos encontramos con Simulación social basada en agentes. Cosiste en la creación de una sociedad artificial poblada por agentes, programados para sonseguir ciertas metas. A veces reglas sencillas de interacción hacern emerger patrones muy complejos que se pueden identificar con fenómenos que se observan en la realidad. Un ejemplo perfecto de esto se encuentra en la obra de Schelling ("Micromotives and Macrobehaviour" [169]). El caso más llamativo es el relacionado con la aparición de la segregación racial (Schelling, T. (1971) [168]).

Si nos fijamos en el origen de estas técnicas, habría que retrotaerse hasta von Neummann.

Autómatas celulares.

Entre los trabajos más destacados tenemos el de John Conway (*El juego de la vida* (1970) [50] - libro de Martin Gardner sobre el tema [70]). Hay una web con una comunidad dedicada a desarrollar el juego original ¹.

Figura 1.2: Automatas celulares de Axelrod y surgimiento de la cooperación.

Entre las aplicaciones posteriores destacan las desarrolladas en el área de la Teoría de Juegos, en el que se ha analizado el surgimiento de la cooperación (Axelrod, J. (1981) [6]). En esta linea otros investigadores realizaron aportaciones como Martin Nowak (2006) [135], o John Maynard Smith (1984) [184].

Agentes autónomos.

Los autómatas celulares implementan rígidas normas de comportamiento, lo que conlleva serias limitaciones a los resultados que se pueden conseguir con ellos. Para solventar este obstáculo se suelen añadir un entorno y otros elementos con los que interactuar.

Agentes inteligentes que aprenden del entorno.

Autómatas celulares. Los orígenes de la simulación social habría que situarlos en la idea de von Neummann de los autómatas celulares [131]. Básicamente se trata de una rejilla regular formada por celdas, cada una de las cuales puede tomar un número finito de estados, y donde en cada uno de una serie de pasos sucesivos, el estado de cada celda varía de acuerdo a ciertas reglas y la influencia del estado de las celdas vecinas. La figura 1.3 permite hacerse una idea.

Figura 1.3: Rejilla de simulación (grid). Aparece resaltada una de sus celdas y su vecindario inmediato.

Pese a su aparente sencillez, esta representación puede modelizar procesos bastante complejos. Buscando la representación de la evolución de un ser vivo, el procedimiento sería puesto en práctica en el trabajo clásico de John Conway: 'El Juego de la vida' (Conway, J. (1970) [69]), poniendo de manifiesto que reglas de aplicación local pueden generar la emergencia de patrones globales en

¹Web ConwayLife.com https://www.conwaylife.com/

el tablero. Thomas Schelling emplearía la misma técnica posteriormente para el estudio del surgimiento de la segregación en una sociedad (Schelling, T. (1981) [168]), tal como se puede ver en la figura 1.4. Basta con inducir en los individuos una preferencia por otros vecinos cercanos similares a él para observar este efecto de separación. Es decir: agentes que sólo procesan información local, generan efectos macroscóspicos en toda la red ("Micromotives and Macrobehavior" (2006) [169]).

Figura 1.4: Simulación de la aparición de segregación racial mediante autómatas.

El concepto de autómata sería extendido gradualmente de manera satisfactoria a otras áreas como la Teoría de Juegos (juegos iterados basados en el Dilema del Prisionero), dando lugar a análisis sobre el surgimiento de la cooperación por Axelrod en su clásico estudio sobre el tema (Axelrod, R. (1981) [6]). Análogo enfoque sería posterormente utilizado en el campo de la Biología por Martin Nowak (Nowak, M. (2006) [135]), y John Maynard Smith (Smith, J. M. (1979) [185]), cuyos resultados arrojarían luz sobre la manera en que evolucionan las especies.

Axelrod, años despues de su estudio sobre la cooperación, llevaría a cabo análisis sobre la diseminación de la cultura empleando nuevamente simulaciones computacionales (Axelrod, R. (1997) [5]). En su artículo, el autor trata el mecanismo de influencia social convergente empleando un modelo basado en agentes. Con él pretende explicar el fenómeno consistente en que, pese a la tendencia a la convergencia en creencias, actitudes y comportamiento (fruto del contacto continuado entre personas), las diferencias entre individuos y grupos persisten en cierto grado.

Figura 1.5: Evolución de la cultura tras 20.000, 40.000 y 80.000 ciclos (Axelrod(1997) [5]).

Por tratarse de un artículo pionero sobre la influencia social, conviene analizarlo detenidamente, ya que será uno de los artículos que nos sirvan de referencia. El escenario original es el habitual: una rejilla regular en la que los agentes se encuentran en localizaciones fijas, y donde las interacciones tienen lugar entre las celdas vecinas más inmediatas. En el procedimiento planteado, la mayor similaridad entre vecinos conduce a la adopción de algunos de sus rasgos. El autor propone explorar una de las formas en que un proceso de convergencia local como éste (y que impulsa a los individuos a volverse más similares entre sí) puede conducir a un mantenimiento de las diferencias. Es decir, un mecanismo local se va difundiendo por el tablero, aunque no logra una convergencia total.

El artículo plantea en definitiva un modelo sobre la influencia social, donde por cultura entendemos una colección de atributos sujetos a la influencia. Como menciona el autor, la comunicación es más efectiva entre agentes similares. Esto comporta que los rasgos se difundan de un individuo o grupo a otro de manera más efectiva cuanto mayor número de rasgos compartan previamente. Sus características generales podríamos resumirlas en tres puntos:

- 1. Las propiedades emergentes en el sistema surgen a partir de la aplicación exclusiva de reglas locales de interacción.
- 2. Todo el proceso discurre sin una autoridad central que lo dirija.
- 3. Los agentes emplean reglas automáticas, no fruto de ningún proceso racional.

La cultura es descrita como una 'colección de atributos' (lenguaje, religión, tecnología,...), lo que se representa con un vector de 5 componentes, cada uno de los cuales es un valor numérico que puede tomar 8 niveles (los números del 1 al 8). El grado de similaridad entre individuos vendrá dado por el porcentaje de rasgos comunes.

El algoritmo que gobierna la interacción local de los agentes puede sintetizarse en los siguientes pasos:

- 1. Nos desplazamos por el tablero de agente en agente. Cada uno de ellos realiza una selección aleatoria.
- 2. Una vez realizada la selección, puede tener lugar la interacción entre ellos, que se producirá con una probabilidad. Esta probabilidad se corresponderá con el grado de similaridad entre ellos.
- 3. Si la interacción tiene lugar, el agente en cuestión cambia una de sus características diferentes por las de su vecino.

Figura 1.6: La interacción se produce con una probabilidad proporcional a la similaridad entre los agentes.

En el ejemplo de la figura 1.6, podemos ver los rasgos aleatorios asociados a dos posibles celdas vecinas. Podemos observar que comparten el mismo valor en 2 atributos. En base a ello la probabilidad de que tenga lugar la interacción entre los agentes correspondientes es de: 2/5 = 0.4. Si finalmente ocurre la interacción, el primer agente adopta el valor de uno de los rasgos de la celda vecina con la que interactúa.

El efecto final es una cierta convergencia que se difunde por todo el tablero. Esta propiedad puede facilitar el flujo de información, algo que resulta de interés para el objetivo que nos hemos planteado.

Algunos de sus otros trabajos más destacados destacan los relativos a la evolución de las normas sociales (Axelrod, R. (1986) [4]), o su estudio sobre la aparición de nuevas figuras políticas (Axelrod, R. (1995) [3]).

Estudios más recientes se han centrado en dotar a los autómatas de memoria (Alonso et al.

(2007) [1]), o en el empleo de técnicas de optimización como los algoritmos genéticos, para generar la evolución de los mismos (Vázquez et al. (2008) [204]). El objetivo final consiste, en este caso, en lograr autómatas que lleven a cabo tareas concretas y muy específicas, en contraposición a versiones anteriores (como el modelo de John Conway), que tienen un diseño más universal, pero que ejecutan las tareas de manera más ineficiente.

Agentes autónomos. Debido a la rígida estructura inicial que impone el procedimiento que acabamos de analizar, los estudios han ido progresivamente incorporando capacidades cada vez mayores, para dar lugar a lo que ha pasado a denominarse 'agentes autónomos' y modelización basada en agentes, que suele incluir la introducción de un entorno que explorar, así como otros elementos con los que interactuar. Esto permite simular sistemas muy complejos en los que intervienen personas, como ciudades, e introducir factores que aparecen excepcionalmente pero que resulta esencial saber enfrentarse a ellos, como migraciones masivas, catástrofes o alteraciones en el medio ambiente.

La misma técnica nos permite reconstruir escenarios históricos y testar hipótesis sobre la evolución humana. Por ejemplo, Cecconi y Parisi (1998) [45] desarrollaron simulaciones sobre poblaciones primitivas. Los resultados obtenidos arrojan luz sobre la gestión de recursos naturales escasos, la aparición de la cooperación dentro de comunidades y cómo las aportaciones de los individuos al bienestar común (frente a estrategias egoistas) es una estrategia que permite sobrevivir mejor al grupo.

Aún así, y pese a su utilidad, las reglas implementadas resultan demasiado rudimentarias y esquemáticas para representar muchos tipos de fenómenos sociales (Sun, R. (2007) [190]). La mayoría de los estudios se suelen centrar en reproducir los hechos observables, sin adentrarse en los mecanismos y procedimientos reales que subyacen. Por este motivo autores como Ron Sun (Sun, R. (2005) [188]) han ido añadiendo rasgos psicológicos a los agentes: como la memoria y el aprendizaje para lograr mayor fidelidad a los procesos que se pretende estudiar (llamada simulación social cognitiva). Esto desembocaría en el diseño de la plataforma CLARION (Sun, R. (2006) [189]) que permite realizar simulaciones siguiendo estas consideraciones. Los agentes están dotados de habilidades genéricas, lo que permite sortear la limitación de algunas otras plataformas que están dirigidas a la simulación de tareas muy específicas.

La idea de dotar al agente de propiedades mentales, así como reflejar la mente como un modelo interno del mundo que va evolucionando (Gabora, L. (2004) [66]) ha sido también abordado por Liane Gabora. Sus esfuerzos se han traducido en la construcción de un modelo computacional para la evolución de la cultura (Gabora, L. (1995) [67]), que sería posteriormente actualizado (Gabora, L. (2008) [68]). En ellos la autora analiza la evolución de ideas, su mutación o la adopción e imitación por parte de otros agentes, entendiendo la cultura como otro mecanismo evolutivo paralelo a la Biología. En sus estudios se concluye papel esencial que tiene la innovación, frente a la imitación ciega, para la adaptación de los seres vivos al entorno.

Sobre otros aspectos tan humanos como las emociones, también se han llevado a cabo simulaciones, empleando agentes y proponiendo modelos de contagio (Fan, R. et al. (2018) [58]). Debido a su impacto sobre organizaciones y estructuras en el ámbito laboral, también se han llevado a cabo estudios sobre su papel en el rendimiento de grupos, (Kramer, A. et al. (2012) [103]), así como simulaciones sobre su contagio (Bosse, T. (2015) [34]).

Algunas de estas visiones han desembocado en el desarrollo de aplicaciones informáticas, entre las que destacan: Swarm, MASON y NetLogo; aunque son entornos genéricos programables, no específicamente diseñados para ningún tipo de problema.

Agentes dotados de Aprendizaje por refuerzo. Si tenemos en cuenta que los agentes se enfrentan a la toma de decisiones extendidas a lo largo del tiempo, tiene todo el sentido plantearse que su conducta se vaya adaptando según reciben información del tipo de consecuencias que tienen sus decisiones. Es por ello por lo que, progresivamente, al diseño de agentes se han ido incorporando modos de prendizaje. Las técnicas que proporciona el Aprendizaje por refuerzo (Reinforcement Learning) se encuentran entre las que logrado algunos de los éxitos más notables.

Originariamente los problemas de secuencias de decisiones eran abordados con el empleo de técnicas como las que proporciona la programación dinámica. Los primeros resultados en este sentido quedaron recogidos en los artículos clásicos: Bellman (1952) [16] y Bellman (1957) [15].

Sin embargo, surge el problema de que es imprescindible el conocimiento preciso de todas las reglas que gobiernan el sistema. Es por ello que algunos autores comenzaron a explorar un nuevo enfoque, una aproximación computacional del aprendizaje a través de la interacción, un aprendizaje orientado a objetivos y en el que las simulaciones juegan un papel fundamental (Sutton (2018) [192]).

La aplicación de este enfoque ha traido éxitos notables. Los investigadores comenzaron a lograr que agentes entrenados mediante estas técnicas, superasen el rendimiento humano en habilidades complejas como las que se ponen en práctica en juegos de mesa o de ordenador. Los primeros avances importantes surgieron a principios de los años 90, en juegos como el Backgammon (Tesauro, G. (1994)) [198].

El impulso definitivo llegaría alrededor de 2010, con la fundación de DeepMind por: Demis Hassabis, Shane Legg y Mustafa Suleyman. Su objetivo fundamental: ampliar la Inteligencia Artificial, desarrollando algoritmos de propósito general que permitan desarrollar agentes dotados de inteligencia. Una inteligencia que les permita abordar la resolución de diferentes tareas, no sólo las circunscritas a un dominio muy concreto como hasta ahora. En la actualidad los principales esfuerzos van dirigidos al desarrollo de esta Inteligencia Artificial General.

Algunos de los logros conseguidos por la aplicación del aprendizaje por refuerzo consisten en el dominio de juegos sin conocimiento previo de las reglas. Algunos ejemplos los encontramos en los trabajos llevados a cabo con consolas de videojuegos Atari. Podemos encontrar avances en Bellemare (2012) [14], y posteriormente el nivel de excelencia en Mnih et al. (2013) [123] y Mnih et al. (2015) [122]. Avances notables también se han llevado a cabo en juegos con múltiples agentes como el Quake Arena III (Jaderberg, M. et al (2018) [93]).

Conseguir nivel de humnano, en el Go, es un juego de mesa de estrategia que enfrenta a dos jugadores y que es muy popular el Asia, es otro de los avances conseguidos. Las sucesivas generaciones AlphaGo y AlphaGo Zero han logrado batir al campeón mundial en esta disciplina (David Silver et al. (2016) [178] y (2017) [179]).

En el ámbito más específico de la Simulación social encontramos abundantes aplicaciones liga-

das sobre todo al transporte. Aquí existen multitud de problemas en los que es necesario contar con agentes dotados de inteligencia, y donde el Aprendizaje por refuerzo proporciona buenos resultados.

Encontramos estudios sobre la coexistencia de peatones y conductores, y cómo lograr una reducción de accidentes de transeuntes (Li, J. et al. (2020)[111] y Everett, M. et al. (2021) [57]) o sobre la regulación óptima del tráfico en las distintas situaciones que puedan provocar los agentes también se han realizado estudios (Calvo, J. & Disparic I. (2018) [42]).

Del lado de la economía encontramos por ejemplo la simulación de mercados bursátiles (Schmid, K. et al. (2018) [170]) o la gestión de recursos comunes (Perolat, J. (2017) [147]). Estudios sobre conflictos e insurgencia (Collins, A. et al. (2014) [48]).

Planteado explícitamente como un dilema social secuencial tenemos el trabajo de referencia de Leibo et al. (2017) [110].

Siguiendo este trabajo inicial tenemos una serie de artículos que explotan algunos de los dilemas que plantea, para los desarrolla un entorno con el que desarrollar las simulaciones (ver figura 1.7).

Figura 1.7: a) Dilema de los bienes públicos b) Dilema tragedia de los comunes.

1.5. Estructura de la tesis

La metodología que hemos empleado no llevará a centrarnos en estos primeros capítulos en la parte de **Simulación**. Teniendo en cuenta esta estructura, la tesis comienza con la presentación del problema que pretendemos resolver. La formalización matemática ocupará especialmente los capítulos 2, 3 y 5; que tratan de la toma de decisiones y los métodos de optimización matemáticos que se encuentran detrás. Las interacciones entre agentes se beneficiarán del empleo de la Teoría de Juegos.

Tras abordar la implementación de agentes inteligentes para la generación de simulaciones, pasaremos al a centrarnos en el empleo de métodos de **Inteligencia Artificial** para el estudio del flujo de información en una red. Esta parte hará un uso intensivo de técnicas de Aprendizaje Automático (especialmente deep learning).

La organización por capítulos se detalla a continuación.

Capítulo 1
 En el primer capítulo planteamos la relevancia del estudio del efecto de las emociones en la

difusión de información en una red social. El problema que pretendemos analizar requiere del empleo de métodos de Simulación, por lo que analizamos las príncipales técnicas que aparecen en la literatura. Tras señalar las deficiencias proponemos algunas mejoras.

■ Capítulo 2

En este capítulo presentamos los principales resultados teóricos de optimización que se han desarrollado para resolver problemas de toma de decisiones secuenciales. El enfoque que planteamos hace un uso intensivo de Programación dinámica y métodos de optimización. Este planteamiento permite presentar con rigor las soluciones que se han desarrollado en áreas como la del Control Óptimo, y que serán necesarias para entender el comportamiento de algoritmos que se presentan en el siguiene capítulo.

■ Capítulo 3

En este capítulo concretamos el problema y el area de estudio que pretendemos aplicar, que es el Aprendizaje por Refuerzo. ('Reinforcement Learning'). El objetivo final es la utilización de agentes inteligentes para la simulación de comunicaciones. Nos centramos en el Aprendizaje por Refuerzon con un sólo agente, y cuando el espacio de estados y de decisiones es de pequeño tamaño (representación tabular).

■ Capítulo 4

En este capítulo ampliamos el capítulo anterior, abordando la utilización de Redes Neuronales como mecanismo para aproximar las funciones de valor que hemos estudiado. Es especialmente útil cuando el espacio de acciones que el agente tiene que rastrar es muy amplio.

La aparición de potentes arquitecturas de redes neuronales permiten analizar grandes volúmenes de datos, y detectar patrones y regularidades. Se analizarán también para su aplicación más adelante, cuando abordemos el estudio del flujo de información en una red.

■ Capítulo 5

Una vez sentadas las bases que permiten diseñar un agente inteligente que aprende de los estímulos que recibe de su entorno, procedemos a extender el marco de trabajo a la presencia de múltiples decisores, empleando Aprendizaje por Refuerzo multiagente ('Multiagent Reinforcement Learning'). En este apartado nos será de utilidad la Teoría de Juegos.

■ Capítulo 6

En este capítulo abordamos el diseño final de un agente que está dotado de emociones. Analizaresmos en profundidad cómo afecta a la toma de decisiones, y profundizaremos en el análisis de unos de los objetivos principales que nos propusimos a la hora de afrontar el estudio que planteamos es esta tesis: se trata de las interacciones estratégicas que se producen entre los agentes.

■ Capítulo 7

En este capítulo estudiaremos el otro gran objetivo que nos propusimos, que es incluir la naturaleza de la información que circula por la red de invididuos para explicar el flujo de

información. Esto nos permitirá afrontar el problema de la viralización de información, así como la polarización y los aspectos estratégicos detrás de la imposición de un cierto clima de opinión.

Capítulo 8

En este capítulo presentamos los **resultados** del estudio y todos los aspectos relativos a la programación que hemos llevado a cabo en Simulación Social.

■ Capítulo 9

En este capítulo esquematizaremos las **conclusiones** a las que hemos llegado, así como las pondremos en relación a los objetivos e hipótesis que habíamos establecido al inicio del trabajo.

El texto finaliza con algunos apéndices en los que se detallan algunos aspectos técnicos y de formalización de las herramientas que hemos empleado. Posteriormente aparecen los libros y artículos de investigación referenciados en el trabajo. Finalmente aparecen los símbolos y acrónimos, así como un glosario con los términos técnicos más utilizados.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

1.6. Aportaciones de la Tesis

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 2

Modelización de la toma de decisiones secuenciales

La situación que pretendemos analizar es la de una agente dotado de capacidad de aprendizaje que interactúa con su entorno a lo largo del tiempo. El agente percibe de alguna manera aspectos de lo que le rodea, y toma decisiones con la finalidad de conseguir un objetivo, ya sea maximizar las recompensas que recibe de su entorno o minimizar los costes que acarrean las decisiones que toma.

Las disciplinas que han abordado tradicionalmente este tipo de sistemas que evolucionan por etapas son la Programación Dinámica y la Teoría del Control Óptimo. En lo que sigue expresaremos un poco más formalmente las ideas anteriores y presentaremos los resultados que nos serán de utilidad a la hora de modelizar matemáticamente los fenómenos de comunicación que hemos planteado.

2.1. Conceptos y notación

Inicialmente planteamos un modelo de la forma más general posible, presentando los resultados más destacados para el tratamiento de este tipo de problemas (ver "Dynamic Programing and Optimal Control" Bertsekas, D. (vol. I (2017) [25] & vol. II (2012) [26]) y "Simulation-Based Optimization" Gosavi, A. (2015) [72], siguiendo especialmente la notación del primero de ellos). Tras la formalización de la situación que pretendemos estudiar, presentaremos el tipo de soluciones que existen para este tipo de problemas.

Supodremos que un determinado agente toma decisiones siguiendo una determinada regla decisión en tiempos discretos. El agente se encuentra en un determinado estado, y las decisiones que toma tienen como consecuencia el alterar su estado, y el proporcionarle algún tipo de coste o beneficio. El agente busca optimizar el resultado que obtiene. Seiguiendo este planteamiento manejaremos la notación que aparece a continuación.

 \mathbf{k} : índice del tiempo (en horizonte finito tendríamos: $\mathbf{k} = 0,1,...,N$)

 $\mathbf{x_k}$: estado del sistema (agente) en el instante k, donde: $x_k \in X \ \forall k$

 $\mathbf{U}(\mathbf{x_k})$: representa el conjunto de acciones disponibles en el estado x_k .

 $\mathbf{u_k}$: decisión tomada en el instante k, donde: $u_k \in U(x_k) \quad \forall k$. También podemos expresar que la decisión es una función de la información de que se dispone (es decir, del estado del sistema): $u_k = \mu(x_k)$. También notado μ_k .

 π : estrategia (policy), alude a la colección de reglas de decisión de cada periodo: $\{\mu_0, \mu_1, ..., \mu_{N-1}\}$. Si la regla de decisión no varía de etapa en etapa $(\pi = \{\mu, \mu, \mu, ...\})$, se dice que π es **estacionaria**.

 $\mathbf{w_k}$: perturbación aleatoria, donde $w_k \sim p(\cdot|x_k, u_k)$ y las w_k son variables aleatorias independientes $\forall k$

En base a la información de que se dispone (x_k) se toma una decisión (u_k) , que conduce al sistema a un nuevo estado: x_{k+1} (pudiendo verse afectada la transición a dicho nuevo estado por algún tipo de perturbación aleatoria (w_k)). Siendo en este caso:

$$x_{k+1} = f(x_k, u_k, w_k)$$
 k = 0,1,...,N-1

Figura 2.1: Representación de una secuencia de decisiones. Partimos en la etapa 0 de un determinado estado inicial X_0 , y cada decisión conduce a un nuevo estado $(X_1, X_2, ..., X_k, ..., X_N)$. Las decisiones que se pueden tomar son propias de cada estado $(u_k \in U(x_k))$, y llevan aparejadas unas consecuencias, que en este caso (al ser un entorno determinista) son del tipo: $g(x_k, u_k)$.

Las consecuencias para el decisor se concretan en algún tipo de coste (o beneficio), que puede verse influido también por algún tipo de componente aleatorio (w_k) .

 $\mathbf{g}(\mathbf{x_k}, \mathbf{u_k}, \mathbf{w_k})$: coste de la decisión u_k en x_k que conduce al sistema a un nuevo estado x_{k+1}

En la figura 2.1 podemos ver una representación de un proceso de toma de decisiones como el que hemos descrito. El objetivo consiste en seleccionar en cada estado la decisión más apropiada, de tal manera que las consecuencias para el decisor sean óptimas. Para ello necesitamos expresarlo mediante una función de valor, tal y como aparece a continuación.

 $\mathbf{J}(\mathbf{x_0})$: Representa el Coste (o beneficio) acumulado cuando se llevan a cabo el conjunto de decisiones que se han tomado $\{u_0, u_1, ..., u_{N-1}\}$. También notado: $J(x_0; u_0, u_1, ..., u_{N-1})$ o $J_{\pi}(x_0)$

 $\mathbf{J}^*(\mathbf{x_0})$: Valor óptimo que buscamos. J^* es en realidad una función, que nos proporciona el coste óptimo para cada estado inicial. Tenemos que: $J^*(x) = min_{\pi \in \Pi} J_{\pi}(x), x \in X$.

El horizonte en el que podemos movernos puede ser finito o infinito (tal y como aparece en el cuadro 2.1), y pueden aparecer componentes aleatorios.

Teniendo todo esto encuenta, el objetivo consistirá en obtener el máximo valor de las recompensas acumuladas que se reciben, o en el caso de costes obtener el valor mínimo. El problema quedaría representado como:

$$min./max.: J_{\pi}(x_0)$$

$$s.a.: x_{k+1} = f(x_k, u_k, w_k) \ \forall k$$

$$u_k \in U(x_k)$$

Vemos que la expresión como un problema de optimización tiene en cuenta las transiciones entre los estados y las decisiones que son posibles de tomar en cada instante actúan como restricciones en el problema.

	Horizonte finito	Horizonte infinito
Entorno Determinista	$J_{\pi}(x_0; u_0, u_1,, u_{N-1}) =$ $g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \underbrace{\mu_k(x_k)}_{u_k})$	$J_{\pi}(x_0) = \lim_{N \to \infty}$ $\sum_{k=0}^{N-1} \alpha^k \cdot g_k(x_k, \underbrace{\mu_k(x_k)}_{u_k})$
Entorno Estocástico	$J_{\pi}(x_0; u_0, u_1,, u_{N-1}) = \mathbb{E}\left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \underbrace{\mu_k(x_k)}_{u_k}, \omega_k)\right]$	$J_{\pi}(x_0) = \lim_{N \to \infty}$ $\mathbb{E}\left[\sum_{k=0}^{N-1} \frac{\alpha^k}{\alpha^k} \cdot g_k(x_k, \underbrace{\mu_k(x_k)}_{u_k}, \omega_k)\right]$ factor de descuento: $\alpha \in (0, 1)$

Cuadro 2.1: Expresión de la función $J_{\pi}(x_0)$ en los escenarios más comunes.

Una vez que hemos representado matemáticamente el problema que pretendemos resolver, pasamos a mencionar las técnicas que existen y que analizaremos en los siguientes apartados.

2.1.1. Representación de la función de valor.

Para clarificar la forma de resolver el problema que acabamos de plantear es necesario profundizar en la forma de representar las funciones de valor. Si partimos de la expresión general que hemos visto para la función de valor de los estados:

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathbb{E} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \underbrace{\mu_k(x_k)}_{u_k}, \omega_k) \right]$$

tomando $g_N(x_N) = 0$ para simplificar, podemos extraer el valor de la primera transición y dejar agrupados el resto de términos de la siguiente manera:

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathbb{E} \left[\underbrace{g(x_0, u_0, w_0)}^{valor \ transición \ 1} + \underbrace{\sum_{k=1}^{N-1} g_k(x_k, u_k, \omega_k)}_{resto \ de \ transiciones} \right]$$

Esta expresión sugiere una forma de abordar la búsqueda de las acciones que conducen al valor óptimo: dividir el problema en optimizaciones a un paso, relacionando recursivamente los estados por los que se va pasando.

Este procedimiento nos permite acudir a la conocida como **Ecuación de Bellman**, como veremos más adelante, y que permite resolver este tipo de problemas. Tomando para simplificar: $g(x_k = i, u_k = u, x_{k+1} = j, \omega) = g_{ij}(u)$, y los valores óptimos asociados a los estados implicados en la transición a un paso $J^*(i)$ y $J^*(j)$, la forma que adopta dicha ecuación en un problema de minimización es la siguiente:

$$J^*(i) = \min_{u} \underbrace{\mathbb{E}\left[g_{ij}(u) + J^*(j)\right]}_{Q^*(i,u)}$$

La expresión a minimizar también se le conoce como factor Q, notado $Q^*(i, u)$. A partir de la obtención recursiva de los valores óptimos de cada estado $(J^*(i), \forall i \in X)$ tendremos que las acciones óptimas son:

$$\mu(i) = \underset{\cdot}{\operatorname{arg\,min}} \mathbb{E}\left[g_{ij}(u) + J^*(j)\right]$$

Esto nos permite reconstruir toda la secuencia de decisiones óptimas que nos conducen al valor óptimo de los estados, que es el objetivo que nos hemos planteado.

En el plano de la implementación, cuando la función de valor (también la función de estrategia) se definen sobre un conjunto de acciones y estados de pequeña dimensión, los algoritmos emplean una **representación tabular**. Cada acción-estado se puede reflejar como las filas y columnas de una matriz. Sin embargo, cuando su número es muy elevado se suelen emplear la **representación mediante aproximadores funcionales**, como es el caso de las Redes Neuronales.

La razón reside en que cuando el número de estados/acciones crece suficientemente, las exigencias computacionales hacen impracticable el obtener la solución exacta.

Por ello se ha de acudir a la obtención de una solución subóptima, mediante la sustitución de $J^*(\cdot)$ por $\widetilde{J}(\cdot;\theta)$, donde θ es un vector de parámetros. En la expresión de los costes óptimos el resultado que tendríamos para cada uno de los estados $(i \in X)$ sería el que aparece a continuación:

$$\widetilde{J}^*(i) = \min_{u} \underbrace{\mathbb{E}\left[g_{ij}(u) + \widetilde{J}^*(j)\right]}_{\widetilde{O}^*(i,u)}$$

lo que conducirá a una decisión subóptima: $\widetilde{\mu}$:

$$\widetilde{\mu}(i) = \underset{u}{\operatorname{arg\,min}} \mathbb{E}\left[g_{ij}(u) + \widetilde{J}^*(j)\right]$$

En la figura 2.2 podemos ver una representación de esta situación. Vemos que la desviación respecto de la decisión óptima puede llegar a ser bastante significativa si el ajuste no es bueno.

Figura 2.2: Gráfica de la aproximación $\widetilde{Q}^*(i,u)$ cuando el sistema se encuentra en un determinado estado $x_k = i$, y la decisión subóptima a la que conduce: \widetilde{u}_k . (Adaptado de Bertsekas, D. (2019) [27])

Si la situación en la que nos encontramos aconseja emplear una aproximación de la función de valor, tendremos que tener en cuenta algunas cuestiones como:

- 1) La estructura de la función \widetilde{J} . Usualmente se emplea alguna familia paramétrica de funciones como las Redes Neuronales. Notado: $\widetilde{J}(\cdot,\theta)$, donde θ es un vector de parámetros.
- 2) Cómo calcular el vector θ para que el error sea mínimo $(J^*(\cdot) \widetilde{J}(\cdot, \theta))$ y se consiga el mejor ajuste posible al verdadero valor óptimo.

En el siguiente apartado aparece una clasificación de los distintos métodos para encontrar los valores óptimos de los estados, y las decisiones óptimas que conducen a ellos.

Se empieza por métodos que emplean **Programación Dinámica** y que conducen a una solución exacta. Estos algoritmos también pueden emplearse para obtener una solución aproximada sin más que iterar hasta una cercanía aceptable al verdadero valor.

Posteriormente se enumeran algunas técinas que emplean métodos de **Simulación** para obtener una solución aproximada.

2.1.2. Clasificación de los métodos de solución.

En lo que sigue presentamos esquemáticamente los métodos de obtención de la estrategia óptima, y que se desarrollarán en los capítulos que siguen.

Métodos basados en un modelo

Las tecnicas que podríamos englobar bajo este epígrafe nos permiten encontrar la estrategia óptima μ^* , pero siempre y cuando conozcamos de manera precisa todos los elementos que intervienen en el problema. Esto implica disponer de todas las probabilidades de transición $p(x_{k+1} = j \mid x_k = i, u_k = u)$ (si es un problema no deterministico), así como las funciones de decisión $\mu(i)$, $i \in X$ y de recompensa/costos $q(x_k, u_k, w_k)$.

Los algoritmos clásicos se basan en técnicas de **Programación Dinámica** y nos permiten encontrar la política óptima μ^* ; es decir: la acción más adecuada en cada estado, de tal manera que la acumulación de recompensas se vuelva máxima (o mínima en el caso de manejar costes). Los dos principales son los siguientes:

A. Iteración de valor (Value iteration).

Se emplea la función de valor con valores iniciales arbitrarios, y sucesivamente se van actualizando, empleando para ello la llamada ecuación de Bellman.

B. Iteración de estrategia (Policy iteration).

El algoritmo comienza directamente con una estrategia arbitraria y procede iterativamente hasta obtener una estrategia óptima cuando ya no es posible obtener mejoras. Consta de:

I. Paso '**policy evaluation**': Dada la estrategia actual (π) , obtenemos los valores que consigue $(J_{\pi}(i), i \in X)$.

II: Paso 'policy improvement': Se procede a obtener una nueva estrategia (π') que consiga mejores valores $(J_{\pi'})$ que los conseguidos con la estrategia previa (J_{π}) .

Métodos libres de modelo

Por el contrario los métodos conocidos como libres de modelo, nos permiten enfrentarnos a la resolución del problema cuando no disponemos del conocimiento de elementos esenciales como las probabilidades de transición. Se emplea Simulación.

I. Métodos basados en la función de valor (Value based methods)

En este caso buscamos obtener una aproximación de la función de valor óptima (\tilde{J}^*) , o bien la función de valor de una estrategia en particular (\tilde{J}_{π}) . Los dos métodos que siguen pueden integrarse como primer paso (policy evaluation) dentro del procedimiento de Iteración de estrategia.

- a) Método de Montecarlo
- b) Método de las Diferencias Temporales. Uno de los algoritmos que emplean esta técnica, como es Q-Learning, también se emplea como método de iteración de valor.

II. Métodos basados en la función de estrategia (Policy based methods)

En este caso el procedimiento consiste en aproximar la función de estrategia, a través de la selección de alguna familia paramétrica de funciones (como puede ser una red neuronal), y ajustar sus parámetros mediante la simulación del sistema.

Las técnicas de resolución del problema de optimización que hemos planteado queda esquematizadas en el siguiente cuadro resumen 2.2.

Métodos basados en Modelo	Tipo de	Tipo de	
$(Model\ based\ methods)$	técnica	solución	
■ Value Iteration	Programación Dinámica	Exacta	
■ Policy Iteration I. Policy Evaluation II. Policy Improvement	Programación Dinámica	Exacta	
Métodos libres de Modelo	Tipo de	Tipo de	
$(Model\ free\ methods)$	técnica	solución	
Value based - Método de Montecarlo - Método de las Diferencias Temporales	Simulación	Aproximada	
Policy based	Simulación	Aproximada	

Cuadro 2.2: Esquema con las técnicas de resolución del problema de optimización planteado.

En los apartados que siguen pasamos a analizar detenidamente el problema desde el punto de vista de la *Programación Dinámica*, y la forma de resolverlo iterativamente.

Ésto nos llevará al estudio del llamado **operador de Bellman**, que nos permitirá analizar la convergencia de los algoritmos hacia los valores correctos de la función de valor.

Esto nos permite pasar a analizar la solución del problema, y estar en condiciones de presentar los dos algoritmos principales de Programación Dinámica (Iteración de valor e Iteración de estrategia). Finalmente se presentan los métodos de solución aproximada, que emplean métodos de simulación para obtener el resultado.

2.2. Análisis mediante Programación Dinámica (PD)

La **Programación Dinámica** es una técnica de resolución de problemas complejos, que consiste en dividir un problema principal en subproblemas que se solapan, de tal manera que combinando secuencialmente las soluciones de cada uno de ellos podemos obtener la solución del problema original.

El ejemplo siguiente permite visualizar el procedimiento. Vemos cómo podemos evitar arrastrar la enumeración exhaustiva acumulando a lo largo de cada ruta y optimizando a un sólo paso.

EJEMPLO 2.1: Decisiones en entorno determinista y con horizonte finito

Imaginemos que nos encontramos ante el problema de determinar la secuencia de decisiones óptimas en una serie finita de etapas (K=0,1,2,3). La siguiente figura representa un sencillo caso. X_0, X_1, X_2, X_3 son el estado del sistema en cada etapa. Sobre cada arco aparece el coste asociado a la transición en cuestión. El objetivo consiste en llegar desde X_0 al final con el mínimo coste acumulado.

La forma de plantear el problema desde la perspectiva de la Programación Dinámica consiste en dividir el problema principal en problemas más sencillos que impliquen un sólo paso o etapa y resolverlo olvidándose del resto del problema. Empezando por el final tenemos:

El valor de cada arco final se asocia a cada uno de los nodos en la etapa $3 \ (k=3)$ y se pasa al siguiente subproblema, que corresponde a la decisión en la etapa $2 \ (k=2)$. El nuevo subproblema aparece representado en la siguiente figura. Para resolverlo tenemos en cuenta el coste del arco y el del nodo al que conduce.

En la figura anterior podemos observar que desde el nodo 'd' se puede ir a dos nodos (el 'd' y el 'e'), siendo el que vuelve a pasar por 'd' el que conduciría a un menor coste (1+3) frente a la decisión de optar por el otro arco que conlleva un coste de (3+2). Como estamos minimizando el coste, será el menor valor el que etiquete el nodo y represente el coste futuro cuando se actúa optimamente a partir de ese punto.

En el caso del nodo 'b' ocurre algo parecido, siendo ahora las posibilidades las de pasar a 'b' o 'c'. La decisión de pasar de 'b' a 'c' es la que tiene menor coste (2+4) frente a mayor valor de (5+2), por lo que será el primer valor el que etiquete el nodo. El proceso aparece representado a continuación.

Vemos como en cada etapa el problema se ha reducido a manejar un coste presente más un valor del coste óptimo de todas las etapas que quedan por delante. Ahora es facil ver los valores que etiquetarán los nodos, ya que vuelve a ocurrir algo parecido.

Al nodo 'b' le asociamos el valor (3+6) fruto de elegir (3+(2+4)) frente a (5+(1+5)). El caso del nodo 'e' es igual: (2+(1+3)) frente a (4+(2+7)). Esta decisión aparece resaltada al ser la de menor valor.

En el siguiente paso llegamos al último subproblema. Ahora basta ver cuál de las dos decisiones que se toman en X_0 es la óptima, ya que aparejado al nodo destino tenemos la etiqueta del menor coste correspondiente a las etapas que quedan por delante. Tenemos que la decisión óptima consiste en ir al nodo 'e', lo que nos conduce ya al coste fina óptimo de (4+(2+4)).

El proceso anterior nos ha llevado secuencialmente hacia atrás para encontrar el camino con menor coste. Una vez que lo hemos encontrado, basta en recorrer a la inversa los costes óptimos para tener la secuencia de decisiones que se han de tomar en cada etapa, tal y como muestra la figura siguiente (Camino de menor coste: (Nodo inicial)-e-d-d-(Nodo final)).

Una solución se construye sobre la que le precede, resolviendo así un problema cada vez mayor.

Este tipo de técnica es especialmente útil para la resolución de problemas de toma de decisiones por etapas. Su formulación se la debemos a Richard Bellman, cuyas ideas fueron recogidas en diversos artículos sobre el tema, especialmente: "The Theory of Dynamic Programming" (1954) [16], y posteriormente en su libro "Dynamic programming and modern control theory" (1965) [17].

La idea que plantea este método es la de resolver un problema a una etapa, optimizando a un solo paso. En cada iteración se tiene en cuenta el coste de la transición actual y un coste terminal, que corresponde al valor óptimo del resto de etapas que quedan por delante.

Esta idea intuitiva se concreta en el conocido como Principio de Optimalidad, debido a Bellman; y que viene a decir que si tenemos una secuencia óptima para un problema, cualquier secuencia extraida de ella es también óptima para el subproblema correspondiente. La expresión formal aparece en la siguiente definición.

PRINCIPIO DE OPTIMALIDAD

Sea $\{u_0^*, u_1^*, ..., u_{N-1}^*\}$ una secuencia óptima de acciones, que conjuntamente con x_0 determinan la correspondiente secuencia de estados $\{x_1^*, x_2^*, ..., x_N^*\}$. Si consideramos el subproblema que comienza en el estado x_k^* en el instante k

y deseamos minimizar el coste futuro ('cost-to-go') desde el instante k al instante N, que adopta la siguiente expresión:

$$g_k(x_k^*, u_k) + \sum_{m=k+1}^{N-1} g_m(x_m, u_m) + g_N(x_N)$$

sobre las variables de decisión $\{u_k, ..., u_{N-1}\}$ donde $u_m \in U_m(x_m), m = k, ..., N-1$. Entonces, dada la secuencia de decisiones óptima del problema completo:

$$\{u_0^*, u_1^*, ..., u_{k-1}^*, u_k^*, ..., u_{N-1}^*\}$$

la secuencia de acciones truncada $\{u_k^*,...,u_{N-1}^*\}$ es óptima para el subproblema en cuestión.

Básicamente lo que afirma el principio anterior es que, dada una secuencia de decisiones óptimas para un problema de decisiones secuenciales, cualquier secuencia que elijamos sigue siendo óptima en el subproblema al que están asociadas.

Esto se refleja en el coste asociado a cada secuencia. Llamamos al coste futuro ('cost-to-go') desde un instante k, mediante la expresión $J(x_k; u_k, ..., u_{N-1})$, que recoge el valor de la secuencia de decisiones en cuestión en el subproblema que comienza en ese instante k.

$$J(x_k; u_k, ..., u_{N-1}) = g_N(x_N) + \sum_{m=k}^{N-1} g_k(x_m, u_m)$$

El proceso de encontrar los valores óptimos secuencialmente, y posteriormente reconstruir el conjunto de decisiones que conducen a ellos, se concreta en el siguiente algoritmo (Algoritmo 1), que resuelve un problema aprovechando la solución del subproblema inmediatamente anterior.

Algoritmo 1 - Búsqueda de acciones óptimas (caso determinista y horizonte finito)

begin // PASO 1: Obtención de las funciones J^* $J_N^*(x_N) = g_N(x_N) \, \forall \, x_N$ for k = N - 1 to 0 do $J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right] \, \forall x_k$ // PASO 2: Obtención de la secuencia óptima de decisiones $u_0^* \in \underset{u_0 \in U_0(x_0)}{\operatorname{arg min}} \left[g_0(x_0, u_0) + J_1^*(f_0(x_0, u_0)) \right]$ for k = 1 to k

El caso que se presenta es el más sencillo posible: sin incertidumbre y con un numero de pasos finito. Una vez tenemos las funciones de valor óptimo: $\{J_N^*(x_N), J_{N-1}^*(x_{N-1}), ..., J_0^*(x_0)\}$ vemos que secuencialmente y realizando los cálculos hacia atrás, estamos en disposición de especificar la secuencia de decisiones óptimas que conducen a dichos valores: $\{u_0^*, ..., u_{N-1}^*\}$. Tenemos además que el valor $J_0^*(x_0)$ obtenido en la última etapa es igual al coste óptimo $J^*(x_0)$.

En la figura 2.3 tenemos una representación del proceso de optimización a un paso. Vemos que para tener el valor $(J_k^*(i))$ de estado 'i' (i = 1, 2, ..., n), elegiremos la mejor acción $(u_k, k = 1, 2, ..., n)$ sopesando el coste que conlleva y el estado al que conduce (cuyo valor óptimo viene dado por: $J_{k+1}^*(1), J_{k+1}^*(2), ..., J_{k+1}^*(n)$, y que representa el resultado de actuar óptimamente a partir de él).

Figura 2.3: En un entorno determinista, la función de valor se encuentra optimizando la suma del costo/ganancia a un paso $(g_{ik}(u_k), k = 1, 2, ..., n)$ más el valor del estado destino $J^*(k+1)$.

Algoritmo 2 - Programación Dinámica (PD) (caso GENERAL)

```
begin-J_N^*(x_N) = g_N(x_N) \forall x_N
for k = N - 1 to 0 do
J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \mathbb{E} \left[ g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right] \forall x_k
```

En la medida en que las acciones óptimas quedan determinadas diréctamente a través de la secuencia de valores óptimos de los estados $(J^*(i))$, nos centraremos en el cálculo de estos últimos. El método general mediante **Programación Dinámica** es el que recoge el Algoritmo 2 (al que nos referiremos abreviadamente como Algoritmo PD, y que aparece mencionado como tal a lo largo del texto).

En la figura 2.4 tenemos una representación del proceso de optimización a un paso con un espacio de estados finito y la presencia de incertidumbre. Para tener el valor óptimo de estado 'i', elegiremos la mejor acción $(u_k, k = 1, 2, ..., n)$ sopesando el valor esperado del coste que conlleva dicha acción y el valor del estado al que conduce (cuyo valor viene dado por: $J_{k+1}^*(1), J_{k+1}^*(2), ..., J_{k+1}^*(n)$, y que representa el resultado de actuar óptimamente a partir de dicho punto).

Figura 2.4: En un entorno aleatorio, la función de valor se encuentra optimizando el valor esperado de la suma del costo/ganancia a un paso $(g_{ij}(u_k), k = 1, 2, ..., n)$ más el valor óptimo del estado destino $(J_{k+1}^*(1), ..., J_{k+1}^*(n))$. Suponemos que la incertidumbre reside en el estado final al que se llegar tras tomar la decisión, no en el coste asociado a dicha transición $(g_{ij}(u_k), k = 1, 2, ..., n)$.

El siguiente paso consistirá en analizar la convertencia del algoritmo de Programación Dinámica (Algoritmo PD), ya que será la base para construir los dos procedimientos para la obtención del valor exacto de la función de valor: El procedimiento de **Iteración de valor** y el procedimiento de **Iteración de estrategia**.

Para lograr este objetivo presentaremos en los siguientes apartados las dos herramientas de las que nos serviremos: el **operador de Bellman** y la **ecuación de Bellman**.

2.3. Estudio de la convergencia del algoritmo PD

El algoritmo que acabamos de concretar, acumula secuencialmente los costes futuros y en cada etapa construye la solución de un problema mayor. Ésto nos permite obtener la secuencia de decisiones óptima.

Para analizar el algoritmo y comprobar la convergencia se introduce una representación de un sólo paso a través del denominado **operador de Bellman** (T), y que aplicado sobre un vector de costes/beneficios se representa como TJ.

De todos los casos presentados en el cuadro 2.1, nos interesa el caso en el que aparece un factor de descuento α , que viene a reflejar que las consecuencias futuras de las decisiones que se tomen en etapas posteriores nos importan menos que las consecuencias inmediatas que surgen en el presente.

En este caso, cuando los costes/beneficios por etapa están acotados, el operador de Bellman tiene una propiedad importante tal y como veremos: T es una función contractiva, lo que implica que el operador de Bellman tiene un único punto fijo que es J^* (la función de coste/beneficio óptimo). La definición formal es la siguiente.

DEFINICIÓN 2.1: Operador de Bellman

Para cualquier función $J: X \longrightarrow \mathbb{R}$, definimos la función T (llamada operador de Bellman) que consiste en aplicar un paso del algoritmo de Programación Dinámica sobre J de la siguiente manera:

$$(TJ)(x) = \min_{u \in U(x)} \mathbb{E}\left[g(x, u, w) + \alpha \cdot J(f(x, u, w))\right] \quad \forall x \in X$$

Si la regla de decisión que gobierna la selección de acciones es estacionaria - es decir, no cambia de etapa a etapa -, se suele notar el operador como: T_{μ} , cuya expresión es:

$$(T_{\mu}J)(x) = \mathbb{E}\left[g(x, u, w) + \alpha \cdot J(f(x, u, w))\right] \quad \forall x \in X$$

TJ viene a representar la función de coste óptimo para el subproblema de una sóla etapa, en el que hay un coste inmediato que viene dado por g, y un coste terminal por αJ .

Para representar la aplicación reiterada del algoritmo se emplea la composición:

$$(T^k J)(x) = (T(T^{k-1}J))(x) \quad \forall x \in X, \ k = 1, 2, ...$$

donde:

$$(T^0J)(x) = J(x) \quad \forall x \in X$$

En el ejemplo que aparece a continuación nos enfrentamos al caso en el que dado vector de costes de partida J = (J(1), J(2), ..., J(n)), donde X = 1, 2, ..., n, se aplica el Algoritmo PD, lo que nos proporcionará las componentes de TJ ((TJ)(i)). Posteriormente vemos las propiedades del operador de Bellman.

Previamente analizamos la interpretación geométrica del Operador de Bellman.

Operador T_{μ} . El operador T_{μ} opera sobre los vectores de coste, por lo que tiene tantas dimensiones como estados tiene el sistema $(T_{\mu}(i), i \in X)$. Si observamos su expresión general, que en el caso de espacio de estados finito sería: $J(i) = \sum_{j=1}^{n} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot J(j)]$, donde $u = \mu(i)$, tenemos que es lineal en J. Vemos en la figura 2.5 que es un plano inclinado.

Operador de Bellman T_{μ}

Proyección en el plano

Figura 2.5: Interpretación geométrica del operador de Bellman T_{μ} . (Ver código Python en el Apéndice).

Podemos proyectar en un plano perpendicular a los ejes, fijando un valor por ejemplo para la componente J(1). Aparece en negro discontinuo la bisectriz del primer cuadrante, que refleja los puntos en los que $T_{\mu}J = J$. El punto en el que se corta la recta T_{μ} y la bisectriz, representa el valor al que conduce la estrategia μ . Es decir J_{μ} .

Operador T. El operador T opera igualmente sobre los vectores de coste, por lo que tiene nuevamente tantas dimensiones como estados $(T(i), i \in X)$. Sin embargo la toma de mínimos lo convierte ahora en no lineal. Su expresión general en el caso de espacio de estados finito sería la siguiente: $J(i) = \min_{u} \sum_{j=1}^{n} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot J(j)]$.

Operador de Bellman T

Proyección en el plano

Figura 2.6: Interpretación geométrica del operador de Bellman T. (Ver código Python en el Apéndice).

Vemos en la figura 2.6 que tiene forma cóncava y es lineal a trozos (generalmente con tantos fragmentos lineales como decisiones tenga el decisor $(u \in X(i))$). Si proyectamos en un plano perpendicular vemos el punto en el que se corta TJ con la bisectriz. Este punto lo simbolizaremos como J^* , es el punto fijo y representa el coste óptimo.

EJEMPLO 2.2: Aplicación del Algoritmo PD

Supongamos que deseamos obtener las decisiones óptimas de un sistema que pasa por 2 estados X=1,2, y en el que existen dos posibles elecciones para el decisor: $U(1)=U(2)=\{u_1,u_2\}$. Las probabilidades de transición: $p_{11}(u_1)=3/4$, $p_{12}(u_1)=1/4$, $p_{11}(u_2)=1/4$, $p_{12}(u_2)=3/4$ y $p_{21}(u_1)=3/4$, $p_{22}(u_1)=1/4$, $p_{21}(u_2)=1/4$, $p_{22}(u_2)=3/4$ aparecen en el gráfico siguiente, así como los costes asociados a cada decisión: $g_{11}(u_1)=g_{12}(u_1)=2$, $g_{11}(u_2)=g_{12}(u_2)=0.5$, $g_{21}(u_1)=g_{22}(u_1)=1$, $g_{21}(u_2)=g_{22}(u_2)=3$.

Supongamos que nos interesa estudiar su evolución en 2 etapas. Representado como una secuencia de decisiones, podemos ver el cálculo del valor de cada estado como la aplicación reiterada del operador de Bellman sobre el vector de costes previo.

Incluyendo el factor de descuento α , la expresión para el cálculo del operador de Bellman quedaría tal y como aparece a continuación.

$$(TJ)(i) = \min_{u \in \{u_1, u_2\}} \left[\sum_{j=1}^{2} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot J(j)] \right], \quad i = 1, 2$$

$$(T^{2}J)(i) = T(TJ)(i) = \min_{u \in \{u_{1}, u_{2}\}} \left[\sum_{j=1}^{2} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot (TJ)(j)] \right], \quad i = 1, 2$$

Basta sustituir los valores en las expresiones anteriores para obtener los valores de cada estado.

LEMA 2.1: Propiedad de monotonicidad del Operador de Bellman

Para cualesquiera funciones $J: X \longrightarrow \mathbb{R}$ y $J': X \longrightarrow \mathbb{R}$, tal que:

$$\forall x \in X, \ J(x) \le J'(x)$$

y dada cualquier estrategia estacionaria $\mu: X \longrightarrow \mathcal{U}$, tenemos que, $\forall x \in X, \ k = 1, 2, \dots$ se verifica el siguiente resultado:

$$(T^k J)(x) \le (T^k J')(x)$$

$$(T^k_\mu J)(x) \le (T^k_\mu J')(x)$$

Demostración:

Probamos por inducción, suponiendo que se cumple desde K=1 hasta m, y comprobaremos que se cumplea para (m+1):

k=1

$$\forall x \in X, J(x) \le J'(x) \implies$$

$$\begin{split} (TJ)(x) \; &= \min_{u \in U(x)} \, \mathbb{E} \left[g(x,u,w) \; + \; \alpha \cdot J(f(x,u,w)) \right] \; \leq \\ &\quad \min_{u \in U(x)} \, \mathbb{E} \left[g(x,u,w) \; + \; \alpha \cdot J'(f(x,u,w)) \right] \; = \; (TJ')(x) \end{split}$$

k=m

$$J(x) \leq J'(x) \Longrightarrow (T^m J)(x) \leq (T^m J')(x)$$

k=m+1

$$(T^{m+1}J)(x) = \min_{u \in U(x)} \mathbb{E} \left[g(x, u, w) + \alpha \cdot T^m J(f(x, u, w)) \right]$$

$$(T^{m+1}J')(x) = \min_{u \in U(x)} \mathbb{E} \left[g(x, u, w) + \alpha \cdot T^m J'(f(x, u, w)) \right]$$

y como por suposición:

$$(T^m J)(x) \le (T^m J')(x) \ \forall x \in X$$

sólo puede ser:

$$(T^{m+1}J)(x) < (T^{m+1}J')(x)$$

QED

Y la siguiente propiedad importante es la siguiente.

LEMA 2.2: Propiedad de variación constante del operador de Bellman

Dada una función $J: X \longrightarrow \mathbb{R}$, una estrategia estacionaria $(\mu, \text{ tal que } \mu \in \mathcal{M})$, un escalar $r, y \in X$, tenemos que $\forall k \text{ se cumple}$:

$$(T^k(J+re))(x) \le (T^kJ)(x) + \alpha^k \cdot r$$

$$(T^k_\mu(J+re))(x) \le (T^k_\mu J)(x) + \alpha^k \cdot r$$

Demostración:

Probamos por inducción, suponiendo que se cumple desde K=1 hasta m, y comprobaremos que se cumplea para (m+1). Basándonos en la siguiente relación:

$$(TJ)(x) = \min_{u \in U(x)} \mathbb{E}\left[g(x, u, w) + \alpha \cdot J(f(x, u, w))\right] \quad \forall x \in X$$

k=1

$$(T(J+re))(x) = \min_{u \in U(x)} \mathbb{E} \left[g(x,u,w) + \alpha \cdot (J(f(x,u,w)+re)) \right]$$

$$= \min_{u \in U(x)} \mathbb{E} \left[g(x,u,w) + \alpha \cdot J(f(x,u,w)+(\alpha re)) \right]$$

$$= \min_{u \in U(x)} \mathbb{E} \left[g(x,u,w) + \alpha \cdot J(f(x,u,w)) \right] + \alpha \cdot r$$

$$= (TJ)(x) + \alpha \cdot r$$

k=m

$$(T^m(J+re))(x) \ = \min_{u \in U(x)} \mathbb{E} \left[g(x,u,w) \ + \ \alpha \cdot \left(J(f(x,u,w)+re) \right] \right.$$

k=m+1

$$(T^m(J+re))(x)$$

QED ------

Entre las propiedades del operador T, se encuentra el que es una función contractiva respecto de una norma máxima. Este hecho está detrás de la convergencia del algoritmo de programación dinámica.

Conceptos de Análisis

DEFINICION

Sea un espacio vectorial real Y, definimos el operador **norma** ($simbolizado: \|\cdot\|$) que permite determinar la magnitud de cada vector: $\|y\| \ \forall y \in Y$. Entonces se verifican las siguientes propiedades:

- a) $||y|| \ge 0 \ \forall y \in Y$
- b) $||y|| = 0 \iff y = 0$
- c) $||ay|| = |a| ||y|| \quad \forall a \in \mathbb{R}$
- d) $||y+z|| \le ||y|| + ||z|| \quad \forall y, z \in Y$

DEFINICION

El espacio vectorial real Y bajo la norma ($\|\cdot\|$), se dice **completo** si toda secuencia de Cauchy ($\{y_k\} \subset Y$) es convergente. Es decir:

$$\overline{y} \in Y \implies ||y_k - \overline{y}|| \longrightarrow 0$$

DEFINICION

B(X) denotará el espacio de las funciones real valoradas $F(F:X\longrightarrow \mathbb{R})$ X tal que F(x)/v(x) está acotada $\forall x\in X$. Entonces, dada una funcion $F:B(X)\longrightarrow B(X)$ se dice **contractiva** con módulo de la contracción ρ ($\rho\in(0,1)$) si cumple:

$$\parallel Fy - Fz \parallel \leq \rho \parallel y - z \parallel, \ \forall y, z \in Y$$

TEOREMA

Dado un espacio vectorial real completo Y bajo una norma ($\|\cdot\|$), y una función **contractiva** $F: B(X) \longrightarrow B(X)$. Entonces la función F cumple la siguiente ecuación:

$$y = Fy$$

cuya solución y^* es única, llamada punto fijo de F.

Además la secuencia $\{y_k\}$ generada por la iteración: $y_{k+1} = Fy_k$ converge a y^* , comenzando por un punto inicial arbitrario y_0 .

TEOREMA

Sea $F: B(X) \longrightarrow B(X)$, una función contractiva con módulo $\rho \in (0,1)$. Entonces existe un único valor $J^* \in B(X)$ tal que:

$$J^* = FJ^*$$

además:

a) Tenemos que se cumple la siguiente relación:

$$\parallel F^k J - J^* \parallel \ \leq \ \rho^k \parallel J - J^* \parallel, \ \ k = 1, 2, \dots$$

b) La secuencia converge al punto fijo

$${F^k J} \longrightarrow J^* \ \forall J \in B(X)$$

PROPOSICIÓN 2.1: Contractividad de T respecto de una norma $\|\cdot\|_{\xi}$

Partiendo del caso en el que todas las estrategias (policies) estacionarias son propias, tenemos que existe un vector con componentes positivas $\xi = (\xi_1, ..., \xi_n)$ de tal manera que los operadores T y T_{μ} son funciones contractivas con respecto a la norma máxima ponderada $\|\cdot\|_{\xi}$ para todas las estrategias estacionarias μ . Es decir:

$$\parallel TJ - T\bar{J} \parallel_{\xi} \leq \beta \cdot \parallel J - \bar{J} \parallel_{\xi}$$

donde:

$$\parallel J \parallel_{\xi} = \max_{i=1,\dots,n} \frac{\mid J(i) \mid}{\xi(i)}$$

En particular existe un cierto valor $\beta < 1$ de tal manera que:

$$\sum_{i=1}^{n} p_{ij}(u) \leq \beta \cdot \xi(i), \quad \forall i, u \in U(i)$$

Demostración:

Partimos de un problema de búsqueda del camino más corto (SPP - 'Shortest Path Problem') que construimos con las mismas probabilidades de transición que el problema de partida que nos interesa. Los costes de transición los ponemos a -1.

Sea $\hat{J}(i)$ el coste óptimo asociado al estado i en este nuevo problema. Tenemos que $\forall i=1,...,n$ y toda estrategia estacionaria μ :

$$\hat{J}(i) = -1 + \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \cdot \hat{J}(j)$$

$$\leq -1 + \sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot \hat{J}(j)$$

Definimos el vector ξ como la solución del problema de Programación Dinámica, e intentaremos llegar al resultado de que cumple la propiedad que buscamos.

Tomamos por tanto: $\xi(i) = -J(i), \quad i = 1, ..., n.$

Entonces $\forall i$, tenemos que $\xi(i) \geq 1$, y para toda estrategia estacionaria μ se cumple:

$$\sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot \xi(j) \leq \xi(i) - 1 \leq \beta \cdot \xi(i), \quad i = 1, ..., n$$
(2.1)

donde β se define:

$$\beta = \max_{i=1,\dots,n} \frac{\xi(i) - 1}{\xi(i)} < 1.$$

Para cualquier estrategia estacionaria μ , y estado i, y cualesquiera vectores J y \bar{J} , aplicando la relación 2.1 tenemos:

$$| (T_{\mu}J)(i) - (T_{\mu}\bar{J})(i) | = | \sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot (J(j) - \bar{J}(j)) |$$

$$\leq \sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot | J(j) - \bar{J}(j) |$$

$$\leq \left(\sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot \xi(j) \right) \cdot \left(\max_{j=1,\dots,n} \frac{|J(j) - \bar{J}(j)|}{\xi(j)} \right)$$

$$\leq \beta \cdot \xi(i) \cdot \left(\max_{j=1,\dots,n} \frac{|J(j) - \bar{J}(j)|}{\xi(j)} \right)$$

Dividiendo ambos lados de la desigualdad por $\xi(i)$, y tomando el máximo sobre i en el lado izquierdo tenemos:

$$\max_{i=1,\dots,n} \frac{\mid (T_{\mu}J)(i) - (T_{\mu}\bar{J})(i) \mid}{\xi(i)} \leq \beta \cdot \max_{j=1,\dots,n} \frac{\mid J(j) - \bar{J}(j) \mid}{\xi(j)}$$

de tal manera que T_{μ} es una contracción con respecto a la norma máxima ponderada $\|\cdot\|_{\xi}$. esto conduce también a:

$$(T_{\mu}J)(i) \leq (T_{\mu}\bar{J})(i) + \beta \cdot \xi(i) \cdot \max_{j=1,\dots,n} \frac{|J(j) - J(j)|}{\xi(j)}$$

tomando el mínimo sobre μ en ambos lados:

$$(TJ)(i) \leq (T\bar{J})(i) + \beta \cdot \xi(i) \cdot \max_{j=1,\dots,n} \frac{|J(j) - \bar{J}(j)|}{\xi(j)}$$
 (2.2)

e intercambiando el papel de J y \bar{J} :

$$(T\bar{J})(i) \le (TJ)(i) + \beta \cdot \xi(i) \cdot \max_{j=1,\dots,n} \frac{|J(j) - \bar{J}(j)|}{\xi(j)}$$
 (2.3)

basta combinar las relaciones 2.2 y 2.3 para obtener:

$$|(TJ)(i) - (T\bar{J})(i)| \le \beta \cdot \xi(i) \cdot \max_{j=1,\dots,n} \frac{|J(j) - \bar{J}(j)|}{\xi(j)}$$

Dividiendo ambos lados por $\xi(i)$ y tomando el máximo sobre i en el lado derecho, tenemos que T es una contracción con respecto a $\|\cdot\|_{\xi}$.

Figura 2.7: Representación del supuesto de contractividad (se utiliza una sola dimensión para facilitar la visualización). También aparece indicado el punto fijo J_{μ} , que cumple $T_{\mu}J = J$ (Adaptado de Bertsekas, D. (2022) [22] - pag. 8).

En la figura 2.7 podemos observar una representación de la contractividad. Como se comprobará más adelante, esta propiedad tiene un papel esencial en la convergencia de los algoritmos que vamos a tratar. A continuación analizamos más detenidamente la propiedad contractiva aplicada al caso del operador de Bellman.

PROPOSICIÓN 2.2: Propiedad contractiva del operador de Bellman

Los operadores de Bellman T y T_{μ} son funciones contractivas de módulo α con respecto a la norma máxima (pag. 190 RL Bertekas):

$$||J|| = \max_{i} |J(i)|$$

Verificándose que para todo par de vectores J y J', tenemos que:

$$\parallel TJ - TJ' \parallel \ \leq \ \alpha \parallel J - J' \parallel$$

$$\parallel T_{\mu}J - T_{\mu}J' \parallel \leq \alpha \parallel J - J' \parallel$$

Demostración:

Sea:

$$c = \max_{x \in X} \mid J(i) - J'(i) \mid$$

Entonces tenemos que:

$$J(i)-c \le J'(i) \le J(i)+c \qquad i=1,...,n$$

Basta aplicar las proposiciones sobre monotonicidad y para obtener:

$$(TJ)(i) - \alpha \cdot c < (TJ')(i) < (TJ)(i) + \alpha \cdot c \qquad i = 1, ..., n$$

Se sigue de ello que:

$$|(TJ)(i) - (TJ')(i)| \le \alpha \cdot c \qquad i = 1, ..., n$$

El caso en que empleamos T_{μ} es directo sin mas que tener en cuenta que en este caso sólo tenemos una decisión en i que es $\mu(i)$.

Este resultado nos permite estudiar el comportamiento del algoritmos de programación dinámica.

PROPOSICIÓN 2.3: Convergencia del algoritmo de Programación Dinámica

Para cualquier función acotada $J: X \longrightarrow \mathbb{R}$, tenemos que $\forall x \in X$ se verifica el siguiente resultado:

$$J^*(x) = \lim_{N \to \infty} (T^N J)(x)$$

Demostración:

 $\forall N \in \mathbb{N}^+, \forall x_0 \in X \text{ y estrategia } \pi = \{\mu_0, \mu_1, ...\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathbb{E}_w \left[\sum_{k=0}^K \alpha^k \cdot g(x, \mu_k(x_k), w) \right] =$$

$$\mathbb{E}_w \left[\sum_{k=0}^{N-1} \alpha^k \cdot g(x, \mu_k(x_k), w) \right] + \lim_{K \to \infty} \mathbb{E}_w \left[\sum_{k=N}^K \alpha^k \cdot g(x, \mu_k(x_k), w) \right]$$
by scames were cotal parallel at a stression

Si tenemos en cuenta que los valores están acotados:

$$\left| \lim_{K \to \infty} \mathbb{E}_w \left[\sum_{k=N}^K \alpha^k \cdot g(x, \mu_k(x_k), w) \right] \right| \le M \sum_{k=N}^\infty \alpha_k = M \cdot \frac{\alpha^N}{1 - \alpha}$$

Si añadimos un coste terminal $\alpha^N \cdot J(x_N)$ a la n-ésima etapa, y llamamos:

$$\begin{cases} b = M \cdot \frac{\alpha^N}{1 - \alpha} + \alpha^N \cdot \max_{x \in X} J(x) \\ -b = -M \cdot \frac{\alpha^N}{1 - \alpha} - \alpha^N \cdot \max_{x \in X} J(x) \end{cases}$$

podemos expresar:

$$J_{\pi}(x_0) - b \leq \mathbb{E}_w \left[\alpha^N \cdot J(x_N) + \sum_{k=0}^{N-1} \alpha^k \cdot g(x, \mu_k(x_k), w) \right] \leq J_{\pi}(x_0) + b$$

y tomando el mínimo sobre π , tenemos que $\forall x_0 y N$:

$$J^*(x_0) - b \le (T^N J)(x_0) \le J^*(x_0) + b$$

basta tomar $\lim_{N\to\infty}$ para tener:

$$J^*(x_0) \le (T^N J)(x_0) \le J^*(x_0)$$

QED

PROPOSICIÓN 2.4: Ratio de Convergencia

Para cualquier par de funciones acotadas $J:X\longrightarrow \mathbb{R}$ y $J':X\longrightarrow \mathbb{R}$, tenemos que $\forall k=0,1,\dots$ se verifica el siguiente resultado:

$$\max_{x \in X} | (T^k J)(x) - (T^k J')(x) | \le \alpha^k \cdot \max_{x \in X} | (TJ)(x) - (TJ')(x) |$$

Demostración:

Sea:

$$c = \max_{x \in X} |J(x) - J'(x)|$$

de tal manera que $\forall x \in X$ se cumple:

$$J(x) - c \le J'(x) \le J(x) + c$$

Aplicando T^k y empleando los resultados de monotonicidad y variación constante, tenemos que $\forall x \in X$:

$$(T^k J)(x) - \alpha^k c \le (T^k J')(x) \le (T^k J)(x) + \alpha^k c$$

De donde se sigue que $\forall x \in X$:

$$|(T^kJ)(x) - (T^kJ')(x)| \le \alpha^k c$$

QED -------

2.4. Ecuación de Bellman

Asociado a cada estrategia π existe un vector que contiene el valor de cada uno de los estados. Dichos valores representan los costes/ganancias que se obtienen comenzando en cada uno de ellos y siguiendo en adelante la estrategia en consideración. Estos valores se obtienen resolviendo una ecuación que recibe el nombre de **Ecuación de Bellman para la estrategia** π . Su principal utilidad reside en que nos permite mejorar la estrategia y obtener otra que conduzca a mejores resultados.

Ecuación de Bellman para una estrategia μ

La ecuación de Bellman para una determinada estrategia μ se obtiene mediante la siguiente expresión:

$$J_{\mu}(x) = \mathbb{E}_{w} \left[g(x, u, w) + \alpha \cdot J_{\mu}(f(x, u, w)) \right] \quad \forall x \in X$$

Dicha expresión proporciona un sistema lineal de ecuaciones, cuya solución es el valor ótpimo de cada uno de los estados.

A continuación presentamos un ejemplo de la Ecuación de Bellman para el cálculo del valor de una estrategia en particular.

EJEMPLO 2.3: Ecuación de Bellman para una estrategia μ

En el caso de espacio de estados y espacio de acciones finitos, la ecuación de Bellman para una estrategia μ queda: .

$$J_{\mu}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) \cdot [g_{ij}(\mu(i)) + \alpha \cdot J_{\mu}(j)], \quad i = 1, 2, ..., n$$

Si tomamos los datos del ejemplo 2.2: $p_{11}(u_1)=3/4$, $p_{12}(u_1)=1/4$, $p_{11}(u_2)=1/4$, $p_{12}(u_2)=3/4$ y $p_{21}(u_1)=3/4$, $p_{22}(u_1)=1/4$, $p_{21}(u_2)=1/4$, $p_{22}(u_2)=3/4$; así como los costes asociados: $g_{11}(u_1)=g_{12}(u_1)=2$, $g_{11}(u_2)=g_{12}(u_2)=0.5$, $g_{21}(u_1)=g_{22}(u_1)=1$, $g_{21}(u_2)=g_{22}(u_2)=3$.

Nos planteamos encontrar el valor asociado a cada estado cuando se parte de él y se sigue a continuación una determinada estrategia μ .

Supongamos que dicha estrategia μ es determinista y viene dada por la relación que aparece a continuación:.

$$\mu(s) = \begin{cases} u_1 & si \ s = 1 \\ u_2 & si \ s = 2 \end{cases}$$

es decir:

Si utilizamos la ecuación de Bellman para la estrategia μ que hemos visto previamente, tendremos la siguiente expresión:

$$J_{\mu}(i) = \sum_{i=1}^{2} p_{ij}(\mu(i)) \cdot [g_{ij}(\mu(i)) + \alpha \cdot J_{\mu}(j)], \quad i = 1, 2$$

que desarrollada da lugar al siguiente sistema de ecuaciones:

$$J_{\mu}(1) = p_{11}(u_1) \cdot [g_{11}(u_1) + \alpha \cdot J_{\mu}(1)] + p_{12}(u_1) \cdot [g_{12}(u_1) + \alpha \cdot J_{\mu}(2)]$$

$$J_{\mu}(2) = p_{21}(u_2) \cdot [g_{21}(u_2) + \alpha \cdot J_{\mu}(1)] + p_{22}(u_2) \cdot [g_{22}(u_2) + \alpha \cdot J_{\mu}(2)]$$

sin más que sustituir la correspondiente matriz de probabilidades asociada a la estrategia μ del enunciado:

$$\begin{bmatrix} p_{11}(u_1) & p_{12}(u_1) \\ p_{21}(u_2) & p_{22}(u_2) \end{bmatrix} = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}$$

así como $\alpha = 9/10$, y los valores $g_{11}(u_1) = g_{12}(u_1) = 2$ y $g_{21}(u_2) = g_{22}(u_2) = 3$, tendríamos:

$$\begin{cases}
0.325 J_{\mu}(1) - 0.225 J_{\mu}(2) = 2 \\
-0.225 J_{\mu}(1) + 0.325 J_{\mu}(2) = 3
\end{cases}$$

que es un sistema lineal de ecuaciones, cuya solución es:

$$J_{\mu}(1) \approx 24.12$$
 y $J_{\mu}(2) \approx 25.96$

Tenemos por tanto que siguiendo la estrategia μ , el estado 2 del que partir es ligeramente más beneficioso en términos del valor descontado acumulado futuro.

Tal y como veremos a continuación, la anterior expresión es una vía para encontar la estrategia óptima. En la figura 2.8 podemos observar la búsqueda de la decisión óptima y el cálculo de los valores óptimos de los estados.

Figura 2.8: Ecuación de Bellman. En un entorno no determinista, la función de valor se encuentra minimizando/maximizando la esperanza: del costo/ganancia a un paso $(g_{ik}(u_k), k = 1, 2, ..., n)$ más el valor óptimo del estado destino $(J^*(k), k = 1, 2, ..., n)$.

Tomando el caso con espacio de estados finito $(X_1, X_2, ..., X_n)$ y entorno aleatorio, vemos que la optimización a un paso ha de tener en cuenta el valor esperado.

Si denominamos $J^{u_k}(i)$ al valor del estado i cuando se toma la decisión u_k y a partir de ahí se actúa optimamente, el valor óptimo $(J^*(i))$ se obtendrá sin más que estudiar el mínimo de dichos valores: $J^*(i) = min\{J^{u_1}(i), J^{u_2}(i), ..., J^{u_k}(i)\}$. La acción óptima: $u \in U(i)$, será aquella que en el estado en cuestión conduce a dicho resultado.

El proceso anterior se generaliza en la llamada **Ecuación de optimalidad de Bellman**, que aparece a continuación.

ECUACIÓN DE BELLMAN (Ecuación de optimalidad)

Dado un estado $x \in X$, una decisión $u \in U(x)$, y un estado destino al que conduce dicha decisión $f(x, u, \omega)$, el valor óptimo del estado de partida se obtiene como:

$$J^*(x) = \min_{u \in U(x)} \mathbb{E}_w \left[g(x, u, w) + \alpha \cdot J^*(f(x, u, w)) \right] \quad \forall x \in X$$

La interpretación de la Ecuación de Optimalidad de Bellman en términos de Programación Dinámica, consiste en que el valor óptimo del estado i ($J^*(i)$) es el mínimo del coste de la etapa actual más el valor esperado óptimo para el resto de etapas teniendo en cuenta el estado destino j, cuyo valor es $J^*(j)$.

EJEMPLO 2.4: Ecuación de Bellman (ecuación de optimalidad)

Imaginemos que nos encontramos ante el problema de determinar la secuencia de decisiones óptimas en un problema de decisiones secuenciales, para lo cual necesitamos obtener el valor de cada estado para actuar óptimamente. En el caso de un conjunto de estados finito: $X_1, X_2, ..., X_n$ (o más abreviadamente i=1,2,...,n) tendríamos:

$$J^*(i) = \min_{u \in U(i)} \left[\sum_{j=1}^n p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot J^*(j)] \right], \quad i = 1, 2, ..., n$$

Si para cada estado el conjunto de decisiones es: $U(i) = \{u_1, u_2, ..., u_k\}$, el valor óptimo del estado i se obtendría tras aplicar la expresión que acabamos de ver. El procedimiento quedaría representado en la siguiente figura, donde vemos los dos principales elementos que entran en juego: un coste inmediato asociado a la decisión, y un coste óptimo del estado destino: $J^*(1), ..., J^*(j), ..., J^*(n)$.

Si los valores resultantes, correspondientes a cada acción posible en el estado i, son como aparece en la figura superior tendríamos que: $J^*(i) = min\left\{J^1(i), J^2(i), ..., J^k(i)\right\}$. La acción óptima es aquel $u \in U(i)$ que conduce a dicho resultado.

PROPOSICIÓN 2.5: J* es la única solución a la ecuación de Bellman

La función de coste óptimo J^* , satisface la siguiente expresión, que recibe el nombre de Ecuación de Bellman:

$$J^*(x) = \min_{u \in U(x)} \mathbb{E}_w \left[g(x, u, w) + \alpha \cdot J^*(f(x, u, w)) \right] \quad \forall x \in X$$

o equivalentemente:

$$J^*(x) = TJ^*$$

Es decir; J^* es solución de la ecuación de Bellman, y aún es más: entre la clase de funciones acotadas es la única solución.

Demostración:

$$J^{*}(x) - M \cdot \frac{\alpha^{N}}{1 - \alpha} \leq (T^{N} J_{0})(x) \leq J^{*}(x) + M \cdot \frac{\alpha^{N}}{1 - \alpha}$$
$$(TJ)^{*}(x) - M \cdot \frac{\alpha^{N+1}}{1 - \alpha} \leq (T^{N+1} J_{0})(x) \leq J^{*}(x) + M \cdot \frac{\alpha^{N+1}}{1 - \alpha}$$

 $basta\ tomar\ \text{lim}_{N\to\infty}\ para\ tener:$

$$\lim_{N \to \infty} \left(T^{N+1} J_0 \right) (x) = J^*(x)$$

de donde tenemos que:

$$J^* = TJ^*$$

OED

TEOREMA 2.1: J^* es el punto fijo del operador de Bellman

Dada una función $v: X \longrightarrow \mathbb{R}$ donde v(x) > 0, $\forall x \in X$. B(X) denotará el espacio de las funciones real valoradas $J(J: X \longrightarrow \mathbb{R})$ X tal que J(x)/v(x) está acotada $\forall x \in X$.

Sea $T: B(X) \longrightarrow B(X)$ el **operador de Bellman**, donde T es una función contractiva con módulo $\alpha \in (0,1)$. Entonces existe un único valor $J^* \in B(X)$ tal que:

$$J^* = TJ^*$$

además:

a) Tenemos que se cumple la siguiente relación:

$$\parallel T^kJ-J^*\parallel \ \leq \ \alpha^k\parallel J-J^*\parallel, \ \ k=1,2,\dots$$

b) La secuencia converge al punto fijo

$$\{T^kJ\} \longrightarrow J^* \ \forall J \in B(X)$$

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. La iteración del algoritmo de Programación Dinámica $(J_{k+1} = TJ_k)$ converge a la función de coste óptimo J^* , que es solución unica de la ecuación de Bellman J = TJ.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 3

Métodos de solución

En el capítulo anterior hemos abordado el análisis y la formalización del problema de la toma de decisiones secuenciales; así como la presentación de formas de búsqueda de la solución. En el presente capítulo nos adentraremos en el estudio de los distintos métodos que se han desarrollado para encontrar el valor óptimo que buscamos.

Si recordamos los análisis que llevamos a cabo, la manera de encontrar los valores óptimos consiste en dividir recursivamente el problema y optimizar a un sólo paso. La ecuación de Bellman viene a recoger esta idea y su solución conduce a los valores óptimos de los estados que buscamos. En ciertas condiciones existe una solución única que es el punto fijo de la ecuación.

Distinguiremos:

- Solución exacta. Utiliza métodos de Programación Dinámica. Requiere el conocimiento de las probabilidades de transición entre los estados
- Solución aproximada. Se basa en el empleo de métodos de Simulación.

	a_1	 a_{j}	 a_m
s_1			
:			
s_i		Valor de (s_i, a_j)	
:			
s_n			

Cuadro 3.1: Representación tabular del conjunto de estados-acciones.

Cuando el cardinal de los conjuntos de estados (S) y acciones/decisiones del decisor (A) son finitos y no muy grandes (|S| = n y |A| = m) se emplea una representación matricial de los valores asociados a cada combinación estado-acción (**representación tabular** - Ver tabla 3.1). En el caso contrario en el que el cardinal es muy elevado, se emplean métodos de aproximación funcional de la función de valor. A menos que se especifique lo contrario el análisis que llevaremos a cabo se centrará en el primer caso.

3.1. Solución exacta: Programación Dinámica

Si disponemos de toda la información del comportamiento del sistema es posible encontrar la función de valor de manera exacta, lo que nos permite obtener la secuencia de decisiones óptimas. La aplicación de las ideas que hemos visto de programación dinámica genera 2 tipos de algoritmos, que son clásicos en este ámbito:

- -Algoritmo de Iteración de valor (Value Iteration).
- -Algoritmo de Iteración de Estrategias (Policy Iteration).

A continuación pasamos a detallarlos.

3.1.1. Iteración de valor (Value Iteration)

Comenzamos dando la expresión formal del algoritmo y enunciando el principal resultado referente a la convergencia del algoritmo.

ITERACIÓN DE VALOR (V.I. - Value Iteration)

La aplicación reiterada del algoritmo DP para generar una secuencia T^kJ comenzando por un valor J, se denomina **value iteration** y es el principal método para el cálculo del vector de coste óptimo futuro J^* . (pag. 24 Neuro-Dynamic Pr).

$$J_{k+1}(x) = \min_{u \in U(x)} \mathbb{E}_w \left[g(x, u, w) + \alpha \cdot J_k(f(x, u, w)) \right] \qquad k = 0, 1, \dots$$

(Observar que ahora, considerando el horizonte infinito, los órdenes temporales aparecen cambiados, ya que se empieza con el primer estado, para así poder encadenar hacia delante de manera indefinida. Generalmente empleando una condición inicial: $J_0(x) = 0 \ \forall x$)

La siguiente proposición presenta el principal resultado relativo a la convergencia de este algoritmo a los verdaderos valores óptimos de los estados.

PROPOSICIÓN 3.1: Convergencia del algoritmo de Iteración de Valor (V.I.)

Dadas unas condiciones iniciales cualesquiera: $J_0(x) \in B(X)$, la secuencia: $\{J_k(x)\} = \{TJ(x), T^2J(x), ...\}$ generada por el algoritmo de Iteración de Valor (Value Iteration), y donde T es una función contractiva, converge a la función de coste óptimo $J^*(x) \ \forall x \in X$.

$$J_k \longrightarrow J^*(x)$$

Además la secuencia de errores $\mid (T^k J)(x) - J^*(x) \mid$ está acotada por una constante multiplo de α^k , $\forall x \in X$. Es decir: (vol. II - pag. 120)

$$\mid (T^k J)(x) - J^*(x) \mid \ \leq \ \alpha^k \ \mid J(x) - J^*(x) \mid \quad \ k = 0, 1, 2, \dots$$

En la siguiente figura podemos observar la representación geométrica de la evolución del algoritmo. Se comprueba cómo la secuencia de estimaciones generadas por el algoritmo converge al punto fijo.

Figura 3.1: Representación del algoritmo VI (Value Iteration) y el punto al que convergen la secuencia de iteraciones. El punto fijo J^* , que cumple $TJ^* = J$, aparece señalado en el gráfico (Adaptado de Bertsekas, D. (2022) [22] - pag. 8 y 71).

El siguiente ejemplo permite ilustrar el algoritmo de Iteración de Valor (Adaptado de un ejemplo propuesto en *Reinforcement Learning*" (2018) Cap. 2 - Barto, Andrew G. & Sutton, Richard S. [192]).

EJEMPLO 3.1: Value Iteration (espacio de estados finito)

Supongamos un sistema con un conjunto de estados finito: X_1, X_2 (o más abreviadamente i=1,2), y acciones: $U(i)=\{u,v\}$. La dinámica de transiciones viene dada por el siguiente gráfico (Ejemplo desarrollado a partir de Bertsekas, D. (2022) [22] - pag. 30):

Supongamos entonces que las probabilidades de transición son: $p_{11}(u)=0.3,\ p_{12}(u)=0.7,\ p_{11}(v)=0.6,\ p_{12}(v)=0.4$ y $p_{21}(u)=0.4,\ p_{22}(u)=0.6,\ p_{21}(v)=0.9,\ p_{22}(v)=0.1.$ Junto a los costes asociados: $g_{11}(u)=3,\ g_{12}(u)=10,\ g_{11}(v)=7,\ g_{12}(v)=5,\ g_{21}(u)=0,\ g_{22}(u)=6,\ g_{21}(v)=3,\ g_{22}(v)=12.$

Imaginemos que nos encontramos ante el problema de determinar la secuencia de decisiones que minimizan el coste. El valor óptimo del estado i (i = 1, 2) cumple la siguiente expresión:

$$J^*(i) = \min_{a \in \{u,v\}} \left[\sum_{j=1}^{2} p_{ij}(a) \cdot [g_{ij}(a) + \alpha \cdot J^*(j)] \right], \quad i = 1, 2$$

Es decir, en el óptimo $J^* = \{J^*(1), J^*(2)\}$ se verifica que: $TJ^* = J^*$. Al ser ecuaciones no lineales no podemos resolverlo directamente, y necesitamos algoritmos iterativos como el de Iteración de Valor: $J_{k+1} = T \cdot J_k$. Desarrollando la expresión anterior tenemos:

$$J_{k+1}(1) = \min \{ p_{11}(u) \cdot [g_{11}(u) + \alpha \cdot J_k(1)] + p_{12}(u) \cdot [g_{12}(u) + \alpha \cdot J_k(2)] ,$$

$$p_{11}(v) \cdot [g_{11}(v) + \alpha \cdot J_k(1)] + p_{12}(v) \cdot [g_{12}(v) + \alpha \cdot J_k(2)] \}$$

$$J_{k+1}(2) = \min \{ p_{21}(u) \cdot [g_{21}(u) + \alpha \cdot J_k(1)] + p_{22}(u) \cdot [g_{22}(u) + \alpha \cdot J_k(2)] ,$$

$$p_{21}(v) \cdot [g_{21}(v) + \alpha \cdot J_k(1)] + p_{22}(v) \cdot [g_{22}(v) + \alpha \cdot J_k(2)] \}$$

sustituyendo las probabilidades de transición y los costes tenemos:

$$J_{k+1}(1) = \min \left\{ 0.3 \cdot [3 + 0.9 \cdot J_k(1)] + 0.7 \cdot [10 + 0.9 \cdot J_k(2)], \\ 0.6 \cdot [7 + 0.9 \cdot J_k(1)] + 0.4 \cdot [5 + 0.9 \cdot J_k(2)] \right\}$$
(3.1)

$$J_{k+1}(2) = \min \left\{ 0.4 \cdot [0 + 0.9 \cdot J_k(1)] + 0.6 \cdot [6 + 0.9 \cdot J_k(2)], \\ 0.9 \cdot [3 + 0.9 \cdot J_k(1)] + 0.1 \cdot [12 + 0.9 \cdot J_k(2)] \right\}$$
(3.2)

Esta expresión nos permite encadenar los valores hasta el fin del algoritmo.

Para tener una idea intuitiva del proceso podemos representar gráficamente los valores (J(1), J(2), TJ(1)) aplicando 3.1 y 3.2.

Si fijamos un valor arbitrario J(1)=30, por ejemplo, podemos ver el corte de dicho plano en la curva TJ. En la figura siguiente añadimos la recta de 45° grados a la proyección sobre el plano, lo que nos permite identificar el punto al que tendería el proceso iterativo.

El punto fijo al que tiende el algoritmo de Iteración de Valor (VI) aparece en la siguiente figura, junto al valor que alcanza la curva TJ (Ver código PYTHON en el Apéndice).

Se suele tomar 0 como valor inicial del algoritmo, aunque tomar un valor arbitrario más cercano para realizar menos iteraciones converge igualmente (Bertsekas, D. (2020) [23] - pag. 23). Por ejemplo: $J_0(1) = J_0(2) = 10$. Sustituyendo en las ecuaciones 3.1 y 3.2 y tenemos:.

$$J_{1}(1) = TJ_{0}(1) = \min \{0.3 \cdot [3 + 0.9 \cdot \mathbf{10}] + 0.7 \cdot [10 + 0.9 \cdot \mathbf{10}],$$

$$0.6 \cdot [7 + 0.9 \cdot \mathbf{10}] + 0.4 \cdot [5 + 0.9 \cdot \mathbf{10}] \}$$

$$= \min \{0.3 \cdot 12 + 0.7 \cdot 19, 0.6 \cdot 16 + 0.4 \cdot 14\}$$

$$= \min \{3.6 + 13.3, 9.6 + 5.6\} = \min \{16.9, 15.2\} = 15.2$$

$$J_{1}(2) = TJ_{0}(2) = \min \{0.4 \cdot [0 + 0.9 \cdot \mathbf{10}] + 0.6 \cdot [6 + 0.9 \cdot \mathbf{10}],$$

$$0.9 \cdot [3 + 0.9 \cdot \mathbf{10}] + 0.1 \cdot [12 + 0.9 \cdot \mathbf{10}] \}$$

$$= \min \{0.4 \cdot 9 + 0.6 \cdot 15, 0.9 \cdot 12 + 0.4 \cdot 14\}$$

$$= \min \{3.6 + 9, 10.8 + 5.6\} = \min \{12.6, 16.4\} = 12.6$$

Aplicando el algoritmo iterativo VI (Value Iteration) (representado gráficamente en la figura 3.1) tenemos los siguientes resultados numéricos.

	TJ(1)	TJ(2)
0	10.000000	10.000000
1	15.200000	12.600000
2	18.944000	15.876000
3	22.145120	18.992880
77	50.573678	47.402946
78	50.574847	47.404115
79	50.575899	47.405167

Podemos observar en el fragmento de salida que los valores se van estabilizando hacia la iteración 80. El punto fijo es $J^* = (J^*(1), J^*(2)) = (50.59, 47.41)$.

Como se puede comprobar en el ejemplo anterior, el algoritmo de **Iteración de valor** proporciona una secuencia de valores que progresivamente se aproximan a los valores correctos. La principal dificultad que entraña este algoritmo reside en que el número de iteraciones necesarias es infinito, y por lo tanto hemos de quedarnos con una aproximación que consideremos razonablemente cercana al valor límite.

Para solventar este problema existe el siguiente algoritmo que permite ir acercándose sucesivamente a través de un procedimiento de evaluación de una estrategia de partida y su mejora posterior. Se trata del algoritmo de **Iteración de estrategias** (**Policy Iteration**).

3.1.2. Iteración de estrategia (Policy Iteration)

El algoritmo que presentamos se basa igualmente en las ideas y conceptos de Programación Dinámica, y permite obtener la solución exacta. Implica dos tipos de pasos (*Policy Evaluation y Policy Improvemente* que pasamos a detallar a continuación.

ITERACIÓN DE ESTRATEGIA (PI - Policy Iteration)

Consiste en empezar por una determinada estrategia, mediante la cual se lleva a cabo un paso de evaluación J. A partir de estos valores se procede a una mejora estratégica eligiendo las acciones que conducen a un mejor valor que el que se tenía (policy improvement step) (pag. 29 Neuro-Dynamic Pr) y (pag. 202 RL).

- Policy Evaluation

Computar $J_{\mu^k}(x) \ \forall x \in X$ como solución del sistema de ecuaciones lineales de Bellman asociadas a la estrategia (policy) μ :

$$J_{\mu^k}(x) = \mathbb{E}_w \left[g(x, \mu^k(x), w) + \alpha \cdot J_{\mu^k}(f(x, \mu^k(x), w)) \right] \quad \forall x \in X$$

- Policy Improvement

Posteriormente calcular la nueva estrategia μ^{k+1} .

$$\mu^{k+1} \in \underset{u \in U(x)}{\operatorname{arg \, min}} \mathbb{E}_w \left[g(x, u, w) + \alpha \cdot J_{\mu^k}(f(x, u, w)) \right] \quad \forall x \in X$$

El proceso de Evaluación-Mejora se repite empleando la nueva estrategia obtenida (μ^{k+1}) para resolver el sistema de ecuaciones de Bellman, y posteriormente se vuelve a determinar la estrategia mejorada correspondiente a esa solución.

Los pasos finalizan cuando: $J_{\mu^{k+1}}(x) = J_{\mu^k}(x) \ \forall x \in X$, momento en el que disponemos de la estrategia óptima (μ^k) .

La siguiente proposición recoge el principal resultado sobre convergencia a los valores límites del algoritmo que acabamos de presentar.

PROPOSICIÓN 3.2: Convergencia del algoritmo de Iteración de Estrategias

El algoritmo de Iteración de Estrategias (Policy Iteration) genera una secuencia de estrategias con mejora creciente y finaliza con la obtención de la estrategia óptima.

En la siguiente figura podemos observar la representación geométrica de la evolución del algoritmo. Se comprueba cómo la secuencia de estimaciones generadas por el algoritmo converge al punto fijo.

En el gráfico de la parte de arriba podemos observar algunas iteraciones de valor. En el gráficode abajo podemos analizar una iteración de estrategia. Vemos como ésta obtiene una valor que se acerca al valor óptimo, que es el punto fijo J^* .

Figura 3.2: Representación del algoritmo PI (Policy Iteration) y el punto al que convergen la secuencia de iteraciones. El punto fijo J^* , que cumple $TJ^* = J$, aparece señalado en el gráfico (Adaptado de Bertsekas, D. (2022) [22] - pag. 71).

El siguiente ejemplo permite ilustrar el algoritmo de Iteración de Estrategia (Policy Iteration).

EJEMPLO 3.2: Policy Iteration (espacio de estados finito)

En el algoritmo Policy Iteration, en el caso de un espacio de estados finito las reglas de actualización adoptarían la forma:

Policy Evaluation:

$$J_{\mu^k}(i) = \sum_{j=1}^n p_{ij}(\mu^k(i)) \cdot [g_{ij}(\mu^k(i)) + \alpha \cdot J_{\mu^k}(j)]$$
 (3.3)

Policy Improvement:

$$\mu^{k+1}(i) \in \underset{u \in U(i)}{\operatorname{arg \, min}} \sum_{j=1}^{n} p_{ij}(u) \left[g_{ij}(u) + \alpha \cdot J_{\mu^{k}}(j) \right]$$
 (3.4)

El proceso se repita hasta que la variación en los valores de la función de valor no sea apreciable: Ver: pag. 202 de RL - Bertsekas. Procedemos a aplicarlo al siguiente ejemplo.

Para ilustrar la aplicación de la técnica acudimos al siguiente ejemplo (Ver: Bertsekas, D. P. (2012) [26] - pag. 99).

Supongamos que la estrategia μ es determinista y viene dada por la relación que aparece a continuación:.

$$\mu^{0}(i) = \begin{cases} u_{1} & si \ i = 1 \\ u_{2} & si \ i = 2 \end{cases}$$

1/4

Teniendo en cuenta que: $p_{11}(u_1)=3/4,\;p_{12}(u_1)=1/4,\;p_{11}(u_2)=1/4,\;p_{12}(u_2)=3/4$ y $p_{21}(u_1)=3/4,\;p_{22}(u_1)=1/4,\;p_{21}(u_2)=1/4,\;p_{22}(u_2)=3/4$; los costes asociados: $g_{11}(u_1)=g_{12}(u_1)=2,\;g_{11}(u_2)=g_{12}(u_2)=0,5,\;g_{21}(u_1)=g_{22}(u_1)=1,\;g_{21}(u_2)=g_{22}(u_2)=3$, así como $\alpha=9/10$, y los valores $g_{11}(u_1)=g_{12}(u_1)=2$ y $g_{21}(u_2)=g_{22}(u_2)=3$, procedemos a iniciar el algoritmo..

Policy Evaluation:

Expresamos una ecuación para cada estado (i=1,2) aplicando 3.3, y teniendo en cuenta que $\mu^0(1)=u_1$ y $\mu^0(2)=u_2$.

$$J_{\mu^{0}}(1) = p_{11}(u_{1}) \cdot [g_{11}(u_{1}) + \alpha \cdot J_{\mu^{0}}(1)] + p_{12}(u_{1}) \cdot [g_{12}(u_{1}) + \alpha \cdot J_{\mu^{0}}(2)]$$

$$J_{\mu^{0}}(2) = p_{21}(u_{2}) \cdot [g_{21}(u_{2}) + \alpha \cdot J_{\mu^{0}}(1)] + p_{22}(u_{2}) \cdot [g_{22}(u_{2}) + \alpha \cdot J_{\mu^{0}}(2)]$$

Tenemos que las probabilidades son las siguientes:

$$\begin{bmatrix} p_{11}(u_1) & p_{12}(u_1) \\ p_{21}(u_2) & p_{22}(u_2) \end{bmatrix} = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}$$

Por lo que sustituyendo y operando convenientemente el sistema de ecuaciones queda:

$$\begin{cases}
0.325 J_{\mu^0}(1) - 0.225 J_{\mu^0}(2) = 2 \\
-0.225 J_{\mu^0}(1) + 0.325 J_{\mu^0}(2) = 3
\end{cases}$$

Cuya solución es (24.09, 25.9) (Ver Apéndice con el código Python). Se expone la del libro:

$$J_{\mu^0}(1) \approx 24.12$$
 y $J_{\mu^0}(2) \approx 25.96$

Policy Improvement:

Procedemos a analizar las posibles mejoras de la estrategia de partida aplicando 3.4.

$$TJ_{\mu^0}(1) = \min \left\{ 3/4 \cdot [2 + 0.9 \cdot \mathbf{24.12}] + 1/4 \cdot [2 + 0.9 \cdot \mathbf{25.96}], \\ 1/4 \cdot [0.5 + 0.9 \cdot \mathbf{24.12}] + 3/4 \cdot [0.5 + 0.9 \cdot \mathbf{25.96}] \right\} \\ = \min \left\{ 17.78 + 6.34, 5.55 + 17.9 \right\} = \min \left\{ 24.12, 23.45 \right\} = 23.45$$

$$TJ_{\mu^0}(2) = \min \left\{ 3/4 \cdot [1 + 0.9 \cdot \mathbf{24.12}] + 1/4 \cdot [1 + 0.9 \cdot \mathbf{25.96}], \\ 1/4 \cdot [3 + 0.9 \cdot \mathbf{24.12}] + 3/4 \cdot [3 + 0.9 \cdot \mathbf{25.96}] \right\} \\ = \min \left\{ 17.03 + 6.09, 6.18 + 19.77 \right\} = \min \left\{ 23.12, 25.95 \right\} = 23.12$$

de aquí podemos extraer una mejor estrategia:

$$u_2 = \underset{u \in \{u_1, u_2\}}{\operatorname{arg \, min}} TJ_{\mu^0}(1) \implies \mu^1(1) = u_2$$

 $u_1 = \underset{u \in \{u_1, u_2\}}{\operatorname{arg \, min}} TJ_{\mu^0}(2) \implies \mu^1(2) = u_1$

Ahora procedemos a la siguiente iteración del algoritmo.

$$\mu^{1}(i) = \begin{cases} u_{2} & si \ i = 1 \\ u_{1} & si \ i = 2 \end{cases}$$

Policy Evaluation:

Aplicamos nuevamente la ecuación 3.3, considerando ahora que: $\mu^1(1)=u_1$ y $\mu^1(2)=u_2$.

3/4

$$J_{\mu^{1}}(1) = p_{11}(u_{2}) \cdot [g_{11}(u_{2}) + \alpha \cdot J_{\mu^{1}}(1)] + p_{12}(u_{2}) \cdot [g_{12}(u_{2}) + \alpha \cdot J_{\mu^{1}}(2)]$$

$$J_{\mu^{1}}(2) = p_{21}(u_{1}) \cdot [g_{21}(u_{1}) + \alpha \cdot J_{\mu^{1}}(1)] + p_{22}(u_{1}) \cdot [g_{22}(u_{1}) + \alpha \cdot J_{\mu^{1}}(2)]$$

sustituyendo los valores y operando convenientemente, el sistema de ecuaciones queda:

$$\begin{cases} 0.775 J_{\mu^{1}}(1) - 0.675 J_{\mu^{1}}(2) = 0.5 \\ -0.675 J_{\mu^{1}}(1) + 0.775 J_{\mu^{1}}(2) = 1 \end{cases}$$

Cuya solución es (7.327, 7.672) (Ver Apéndice con el código Python):

$$J_{\mu^1}(1) \approx 7.33$$
 y $J_{\mu^1}(2) \approx 7.67$

Policy Improvement:

Procedemos a analizar las posibles mejoras de la estrategia de partida aplicando 3.4.

$$TJ_{\mu^{0}}(1) = \min \left\{ 3/4 \cdot [2 + 0.9 \cdot 7.33] + 1/4 \cdot [2 + 0.9 \cdot 7.67], \\ 1/4 \cdot [0.5 + 0.9 \cdot 7.33] + 3/4 \cdot [0.5 + 0.9 \cdot 7.67] \right\} \\ = \min \left\{ 6.45 + 2.22, 1.77 + 5.55 \right\} = \min \left\{ 8.67, 7.32 \right\} = 7.32$$

$$TJ_{\mu^{0}}(2) = \min \left\{ 3/4 \cdot [1 + 0.9 \cdot 7.33] + 1/4 \cdot [1 + 0.9 \cdot 7.67], \\ 1/4 \cdot [3 + 0.9 \cdot 7.33] + 3/4 \cdot [3 + 0.9 \cdot 7.67] \right\} \\ = \min \left\{ 5.7 + 1.97, 2.4 + 7.42 \right\} = \min \left\{ 7.67, 9.83 \right\} = 7.67$$

Como tanto $J_{\mu^1}(1)=TJ_{\mu^1}(1)$, como $J_{\mu^1}(2)=TJ_{\mu^1}(2)$, tenemos que μ^1 es óptima y entonces: $J_{\mu^1}=J^*$. Donde: $J^*=(J^*(1),J^*(2))=(7.33,7.67)$.

El algoritmo Policy Iteration conduce a la estrategia:

$$\mu^*(i) = \begin{cases} u_2 & si \ i = 1 \\ u_1 & si \ i = 2 \end{cases}$$

3.2. Solución aproximada: Métodos de Simulación I (Value based methods)

Si repasamos el camino la secuencia de pasos que se han dado, tenemos que hemos llegado a 2 métodos computacionales que nos permiten obtener la solución exacta del problema de Programación Dinámica que planteamos al principio:

- Value Iteration Consiste en la iteración reiterada con el algoritmo PD. La secuencia de valores que genera (T^kJ) a partir de un cierto cojunto de valores iniciales (J_0) converge al vector de valores óptimos (J^*) .

 Requiere generalmente un número infinito de iteraciones, aunque en algunos casos se puede lograr con un número finito de pasos (como en el problema determinista del Camino más corto)
- Policy Iteration Se compone de dos pasos (*Policy evaluation* y *Policy improvement*), y es capaz de generar una secuencia de estrategias mejoradas.

En la medida en que ahora tratamos el caso en el que no disponemos de un modelo que disponga explícitamente de la estructura de costes y las probabilidades de transición entre los estados, pero disponemos de un simulador del sistema; podemos plantearnos diversas vías para obtener estimaciones mediante Simulación.

- Podemos utilizar simulaciones repetidas para generar estimaciones de las probabilidades de transición
- O bien podemos generar diversas trayectorias, y estimar $J_{\mu}(i)$, sin manejar explícitamente las probabilidades

La vía por la que optaremos es la segunda. En lo referente al cálculo de los valores, hay que tener en cuenta aspectos prácticos, como son el almacenamiento en memoria.

Cuando el espacio de estados es de pequeña dimensión y se calcula explícitamente el valor J(i) para cada uno de los estados $(i \in X)$ estamos ante el caso de **representación tabular**. Si por el contrario el número de estados es muy elevado el almacenamiento y tratamiento explícito de todos los valores puede volverse impracticable, por lo que se suele acudir a alguna forma de aproximación funcional, que denominamos **representación compacta**. Aquí se ajusta una función que depende de un conjunto de parámetros, y mediante ella se puede aproximar cualquier valor.

Los 2 principales métodos para la obtención del valor de cada estado son:

- Método de Montecarlo Utiliza simulaciones de trayectorias completas de transiciones, y solo al final estima los valores J(i), $i \in X$.
- Método de las Diferencias Temporales (TD: Temporal Differences) Es un método de aprendizaje secuencial que actualiza paso a paso la función de valor.

Con estos dos métodos podemos construir versiones de los algoritmos previamente tratados para el caso del cálculo exacto. El estudio de la convergencia se realiza acudiendo generalmente a resultados que pueden explotar la monotonicidado cantractividad de las reglas de actualización que se emplean.

3.2.1. Método de Montecarlo

Partimos de una estrategia estacionaria (y propia) μ , y pretendemos encontrar el vector de valor/costes asociado $J^{\mu}(i)$, (donde: $i \in \{1, 2, \dots, n\}$). Al espacio de estados puede añadirse un estado absorvente '0', que permite representar el problema como SPP (Shortest Path Problem).

La metodología que emplearemos será la mencionada previamente: generar por simulación trayectorias muestrales, y emplearlas para obtener estimaciones de valor de todos y cada uno de los estados que son visitados en la trayectoria. Simbolizaremos como c(i, m) el coste acumulado tras la visita m-ésima al estado i.

Figura 3.3: Empleo de costes intermedios para estimar el valor de estados visitados en secciones de la trayectoria muestral. En la figura el estado i_0 ha sido visitado m veces.

Si suponemos que trayectorias diferentes son independientes, y que cada una de ellas ha sido generada por el proceso de Markov asociado a μ . Tenemos que:

$$J^{\mu}(i) \ = \ \mathbb{E}\left[c(i,m)\right] \qquad \forall i, \forall m$$

que será estimado mediante la media muestral. Suponiendo n visitas al estado i tenemos:

$$J(i) = \frac{1}{n} \sum_{m=1}^{n} c(i,m)$$

Las figuras 3.3 y 3.4 representan el proceso de simulación. Podemos intuir que se presenta un problema cuando se producen varias visitas al mismo estado en la misma trayectoria. Vemos que los costes acumulados son dependientes entre sí, ya que son fragmentos unos de otros.

La consecuencia que se deriba de ello es que el estimador media muestral (J(i)) pasa a ser sesgado, además de que aumenta la dispersión de las estimaciones que genera. Sin embargo cuando se producen infinitas visitas a los estados, este efecto pasa a ser despreciable y las estimaciones convergen a los valores correctos (Tsitsiklis, J. & Bertsekas, D. (1996) [28]).

Figura 3.4: Simulando K trayectorias (1,2,...,k,...,K) podemos obtener una estimación de la función de valor en los estados que son visitados en ellas (en la figura aparece un estado i_0).

Las medias muestrales que nos permiten obtener las estimaciones del valor asociado a cada estado, también pueden ser calculadas de manera iterativa. Para ello, dado un estado i, y comenzando con J(i) = 0 se emplea la siguiente expresión de actualización:

$$J(i) := J(i) + \gamma_m \cdot [\ c(i,m) - J(i)\] \qquad m=1,2,\dots$$
 donde:
$$\gamma_m = \frac{1}{m} \qquad m=1,2,\dots$$

En el caso que se ha comentado de varias visitas al mismo estado, podemos conseguir disminuir el sesgo que se genera en el estimador, incrementando el número de trayectorias que intervienen en el calculo de la media muestra. La expresión que tiene en cuenta este hecho aparece a continuación.

■ Every visit Montecarlo En este caso la trayectoria incluye varias pasadas por el estado i en cuestión, por lo que tendremos que tenerlo en cuenta a la hora de realizar la estimación de la función de valor óptimo.

$$\lim_{K \to \infty} \frac{\sum_{\{k \mid n_k \ge 1\}} \sum_{m=1}^{n_k} c(i, m, k)}{\sum_{\{k \mid n_k \ge 1\}} n_k} = \lim_{k_i \to \infty} \frac{\frac{1}{K_i} \sum_{\{k \mid n_k \ge 1\}} \sum_{m=1}^{n_k} c(i, m, k)}{\frac{1}{K_i} \sum_{\{k \mid n_k \ge 1\}} n_k}$$

$$= \frac{\mathbb{E}\left[\sum_{m=1}^{n_k} c(i, m, k) \mid n_k \ge 1\right]}{\mathbb{E}\left[n_k \mid n_k \ge 1\right]}$$

Como se tiene por el siguiente resultado que:

$$\frac{\mathbb{E}\left[\sum_{m=1}^{n_k} c(i, m, k) \mid n_k \ge 1\right]}{\mathbb{E}\left[n_k | n_k \ge 1\right]}$$
$$= \mathbb{E}\left[c(i, 1, k) | n_k \ge 1\right] = J^{\mu}(i)$$

se sigue que efectivamente la expresión converge al vector de costes asociados a la estrategia μ , que es el resultado que estábamos buscando.

$$\lim_{K \to \infty} \frac{\sum_{\{k \mid n_k \ge 1\}} \sum_{m=1}^{n_k} c(i, m, k)}{\sum_{\{k \mid n_k \ge 1\}} n_k} = J^{\mu}(i)$$

■ First visit Montecarlo En este caso sólo se produce una pasada por el estado i, por lo que no aparece la difcultado mencionada previamente.

$$\frac{\sum\limits_{\{k|n_k\geq 1\}}c(i,1,k)}{K_i}$$

El método que acabamos de ver emplea la información recogida una vez a finalizado la trayectoria simulada. Sin embargo, tal como señalamos previamente, también se puede calcular incrementalmente sobre la marcha la estimación de la función de valor (J(i)). Es lo que se conoce como **diferencias temporales**, y que pasamos a analizar a continuación.

3.2.2. Método de las diferencias temporales (TD)

En el cálculo de la función de valor mediante **programación dinámica** establecíamos de manera exacta el valor que tiene cada estado $(J(i) \ \forall i \in \mathcal{S})$, empleando para ello algoritmos iterativos del tipo: TJ (donde T es un operador contractivo, y J la función de valor). La solución que obteníamos era el punto fijo del operador $(J^* \ donde : TJ^* = J^*)$.

Cuando no conocemos las probabilidades de transición entre los estados en un entorno aleatorio, no es posible medir de manera precisa la expresión TJ que estamos manejando, por lo que se hace necesario acudir a otras vías. En este caso: los **algoritmos estocásticos iterativos** son de gran utilidad.

Para hacernos una idea de la naturaleza de la técnica, supongamos que deseamos obtener el valor esperado (μ) de una determinada característica aleatoria: $X \sim f(x)$ donde $\mathbb{E}[X] = \mu$. La vía más apropiada consiste en acudir a una muestra de observaciones independientes (que desde el punto de vista matemático son n variables aleatorias: $X_1, X_2, ..., X_n$ tal que $X_i \sim f(x)$), y a partir de las realizaciones concretas obtener la media muestral.

Si observamos el siguiente desarrollo:

$$\bar{X}_n = \frac{1}{n} \cdot \sum_{i=1}^n X_i
= \frac{1}{n} \cdot \left[X_n + \sum_{i=1}^{n-1} X_i \right]
= \frac{1}{n} \cdot \left[X_n + (n-1) \cdot \frac{1}{(n-1)} \sum_{i=1}^{n-1} X_i \right]
= \frac{1}{n} \cdot (X_n + (n-1) \cdot \bar{X}_{n-1})
= \frac{1}{n} \cdot (X_n + n \cdot \bar{X}_{n-1} - \bar{X}_{n-1})
= \bar{X}_{n-1} + \frac{1}{n} \cdot (X_n - \bar{X}_{n-1})$$

es decir:

$$\underbrace{\bar{X}_n}_{\text{nación nueva}} = \underbrace{\bar{X}_{n-1}}_{\text{Estimación previa}} + \frac{1}{n} \cdot \underbrace{\left(X_n - \bar{X}_{n-1}\right)}_{\text{Corrección}}$$

Tenemos que la media (\bar{X}_k) para un determinado tamaño muestral k se puede calcular iterativamente y de manera secuencial, ajustando la estimación previamente obtenida (\bar{X}_{k-1}) con la información que incorpora la última observación $(X_n - \bar{X}_{n-1})$.

En la fórmula superior, esta corrección se realiza con un factor que es proporcional al tamaño del conjunto de observaciones (llamémoslo α que en este caso: $\alpha = 1/n$).

La idea que se encuentra detrás del ejemplo anterior se puede aplicar al caso que estamos estudiando y permite, como veremos, estimar las funciones de valor.

Si recordamos: estamos manejando funciones de valor J que nos permitan establecer el valor que tiene cada estado $(J(i) \ \forall i \in \mathcal{X})$, empleando para ello algoritmos iterativo del tipo: TJ (donde J es un operador contractivo). La solución es el punto fijo del operador $(TJ^* = J^*)$. Cuando no es posible medir precisamente la forma funcional que estamos manejando, se hace necesario acudir a otro tipo de herramientas. En este caso: los algoritmos estocásticos iterativos son de gran utilidad.

Algoritmos Estocásticos Iterativos

Buscamos resolver un sistema de ecuaciones del tipo: Hr = r, donde $H : \mathbb{R}^n \longrightarrow \mathbb{R}^n$. El vector r^* que satisface dicha expresión $(Hr^* = r^*)$ recibe el nombre de punto fijo de F.

Cuando surge el problema de que las actualizaciones a cada paso incorporan ruido, se ha de acceder a métodos **estocásticos iterativos** (Robbins, H. & Monro, S. (1951)) [158]. La regla de actualización consiste en:

$$r_{t+1} = (1 - \gamma_t) \cdot r_t + \gamma_t \cdot [Hr_t + \omega_t]$$

donde cada uno de los elementos tomaría la forma:

$$r_{t+1}(i) = (1 - \gamma_t(i)) \cdot r_t(i) + \gamma_t(i) \cdot [(Hr_t)(i) + \omega_t(i)]$$

Cuando la Función H es **contractiva** con respecto a la norma máxima, o satisface el supuesto de monotonicidad se dan las condiciones para que pueda aparecer la convergencia.

DEFINICIÓN.

Dado cualquier vector positivo ξ , definimos la **norma máxima ponderada** $\|\cdot\|_{\xi}$ como:

$$\parallel r \parallel_{\xi} = \max_{i} \frac{\mid r(i) \mid}{\xi(i)}$$

DEFINICIÓN.

Cuando todos los componentes de ξ son iguales a 1, la norma resultante se denomina **norma máxima** y se denota por $\|\cdot\|_{\infty}$.

$$||r||_{\infty} = \max_{i} |r(i)|$$

DEFINICIÓN.

Dada una función $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, se dice que es una función **pseudocontractiva** respecto a una norma máxima ponderada si existe algún $r^* \in \mathbb{R}^n$, un vector positivo $\xi = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n$, y una constante $\beta \in [0, 1)$ de tal manera que:

$$||Hr - r^*||_{\varepsilon} \le \beta \cdot ||r - r^*||_{\varepsilon} \quad \forall r$$

expresado:

$$\frac{\mid (Hr)(i) - r^*(i) \mid}{\xi(i)} \leq \beta \cdot \max_{j} \frac{\mid r(j) - r^*(j) \mid}{\xi(j)} \quad \forall i, r$$

Algoritmos Estocásticos Iterativos - Demostración

El cumplimiento de la **pseudocontractividad** implica que r^* es un punto fijo de H, es decir: $Hr^*=r^*$. Además no puede haber otros puntos fijos, ya que si existiera cualquier otro vector r tal que Hr=r, tendríamos que: $\parallel r-r^*\parallel_{\xi}=\parallel Hr-r^*\parallel_{\xi}\leq \beta\cdot \parallel r-r^*\parallel_{\xi}$, y como $\beta<1$ tenemos que forzosamente $\parallel r-r^*\parallel_{\xi}=0$ y por tanto $r=r^*$.

PROPOSICIÓN.

Sea r_t , una secuencia de valores generada por la regla de actualización que hemos enunciado, entonces: r_t converge a r^* con probabilidad 1 si se cumplen los siguientes supuestos:

a) Los stepsizes $\gamma_t(i)$ son no negativos y cumplen $\forall i$:

$$\sum_{t=0}^{\infty} \gamma_t(i) = \infty , \quad \sum_{t=0}^{\infty} \gamma_t^2(i) < \infty$$

b) Sea \mathcal{F}_t la historia del algoritmo hasta el instante t, entonces los términos de ruido $\omega_t(i)$ verifican: $\mathbb{E}[\omega_t(i) \mid \mathcal{F}_t] = 0$ y dada una norma $\|\cdot\|$ sobre \mathbb{R}^n existen A y B tal que:

$$\mathbb{E}[\ \omega^2_{\ t}(i) \mid \mathcal{F}_t\] \le A + B \cdot \|\ r_t\ \| \ \forall i, t.$$

c) La función H es una función semi-contractiva ponderada con respecto a la norma máxima

Demostración:

Intuitivamente veamos que, si partimos de $r^* = 0$ y H es pseudo-contractiva con respecto a la norma máxima $\|\cdot\|_{\infty}$, tenemos que:

$$|Hr(i)| \leq \beta \cdot \max_{i} |r(i)| \forall i, r.$$

Además sin pérdida de generalidad, suponemos que $w_t(i) = 0 \quad \forall i, t, y \text{ los stepsizes } \gamma_t(i)$ son la unidad (cuando el valor r(i) es actualizado) o cero (en caso contrario).

Comenzamos la secuencia de valores con un vector r_0 que: $|r_0(i)| \le c$, para una cierta constante c. Tenemos entonces que r_0 queda encajado dentro de un cubo de lado 2c sobre cada dimensión, centrado en el origen (ver fig. 3.5).

Supongamos que r_t reside dentro del cubo, y sus valores son actualizados según $r_{t+1}(i) = (Hr_t)(i)$. Debido a la pseudocontractividad de H tenemos que: $|r_{t+1}(i)| \leq \beta c < c$. Es decir partiendo del cubo n-dimensional inicial, todas las actualizaciones se mantienen dentro de él.

Suponiendo que cada componente es actualizada infinitas veces, los cubos son progresivamente más pequeños y convergen a 0.

QED -------

Algoritmos Estocásticos Iterativos - Demostración

En el caso de que la función H sea una función contractiva; sabemos que ha de verificar:

$$||Hr - H\bar{r}||_{\xi} \leq \beta \cdot ||r - \bar{r}||_{\xi} \quad \forall r, \bar{r}.$$

lo que garantizada la existencia del punto fijo r^* , y convierte automáticamente a H en **pseudo-contractiva**.

La demostración intuitiva que hemos visto nos permite abordar la cuestión de la convergencia de los algoritmos basados en la iteración de valor, que son expresados como un algoritmo estocástico iterativo. (Para ver la demostración en detalle acudir al APÉNDICE).

Figura 3.5: Cubo

Utilizaremos estos resultados para el análisis de la convergencia del algoritmo Q-Learning en las secciones que siguen.

Los algoritmos de Aprendizaje por Refuerzo que se empezaron a desarrollar fueron identificados por algunos autores como una generalización de estos Algoritmos Estocásticos Iterativos que acabamos de repasar (Tsitsiklis, J. (1994) [202]). Para un tratamiento unificado de la optimización estocástica ver: Powell, B. (2019) [152] y posteriormente Powell, B. (2022) [153].

Este resultado es de utilidad para establecer la convergencia de métodos de aproximación estocástica basados en algoritmos de iteración de valor (value iteration) del tipo J := TJ, especialmente en el caso en el que aparece un factor de descuento (α) o en los problemas SPP (Shortest Path Problem) donde todas las estrategias son propias (Bertsekas, D. & Tsitsiklis, J. (1996) [28].

Método de las Diferencias Temporales (Temporal Difference - TD)

Método computacional adecuado cuando no disponemos de un modelo explícito del sistema ni de la estructura de costes/beneficios. La regla de actualización consiste en:

$$J(i_k) := J(i_k) + \gamma \cdot d_l \qquad k = 0, ..., l$$

donde:

$$d_l = g(i_l, i_{l+1}) + J(i_{l+1}) - J(i_l)$$
 $l = k, ..., N - 1$

Una vez que disponemos de una trayectoria completa $(i_0, i_1, ..., i_N)$, los valores estimados de cada estado $J(i_k)$, k=0,...,N-1 se actualizan sin más que aplicar $\forall i_k \in X$ la regla:

$$J(i_k) := J(i_k) + \gamma \left[g(i_k, i_{k+1}) + g(i_{k+1}, i_{k+2}) + \dots + g(i_{N-1}, i_N) - J(i_k) \right]$$
(3.5)

Dicha regla de actualización puede ser reescrita introduciendo términos que se cancelan entre sí, de la siguiente forma (y aprovechando la convención de que $J(i_N) = 0$):

$$J(i_{k}) := J(i_{k}) + \gamma \left[\left[g(i_{k}, i_{k+1}) + J(i_{k+1}) - J(i_{k}) \right] + \left[g(i_{k+1}, i_{k+2}) + J(i_{k+2}) - J(i_{k+1}) \right] + \cdots + \left[\underbrace{g(i_{N-1}, i_{N}) + J(i_{N}) - J(i_{N-1})}_{differencia temporal div_{k+1}} \right] \right]$$

y en teniendo en cuenta la expresión siguiente, que llamaremos diferencia temporal:

$$d_k := \underbrace{g(i_k, i_{k+1}) + J(i_{k+1})}_{estimación \ del \ valor \ faltante} - \underbrace{J(i_k)}_{estimación \ actual}$$

admite la expresión equivalente:

$$J(i_k) := J(i_k) + \gamma [d_k + d_{k+1} + ... + d_{N-1}]$$

De esta manera podemos actualizar los valores incrementalmente:

$$J(i_k) := J(i_k) + \gamma \cdot d_l , \quad _{l=k,\dots,N-1}$$

PROPOSICIÓN 3.3: Convergencia del algoritmo TD

La secuencia de estimaciones generada por el algoritmo de las diferencias temporales (Temporal Difference - TD) converge con probabilidad 1 al valor óptimo.

Demostración:

Ver: Bertsekas, D. & Tsitsiklis, J. (1996) [28].

La ecuación anterior 3.5 es el resultado de aplicar el método de aproximación estocástica de Robbins-Monroe (Robbins, H. & Monro, S. (1951) [158]) para resolver una ecuación del tipo:

$$J_{\mu}(i_k) = \mathbb{E}\left[\sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1})\right], i_k \in X$$

Si en lugar de utilizar todos los costes/beneficios acumulados de la trayectoria completa, como en el método de Monte Carlo, utilizamos la ecuación de Bellman a un paso:

$$J_{\mu}(i_k) = \mathbb{E}[g(i_k, i_{k+1}) + J_{\mu}(i_{k+1})]$$

el método de aproximación estocástica conduce a la regla de actualización:

$$J(i_k) := J(i_k) + \gamma \cdot [g(i_k, i_{k+1}) + J(i_{k+1}) - J(i_k)]$$

Este procedimiento se puede generalizar para cualquier número de pasos l, estando en este caso interesados en resolver unas ecuaciones del tipo:

$$J_{\mu}(i_k) = \mathbb{E}\left[\sum_{m=0}^{l} g(i_{k+m}, i_{k+m+1}) + J_{\mu}(i_{k+l+1})\right]$$

Como la elección de este valor es arbitrario, se ha desarrollado un método que emplea un promedio ponderado de las ecuaciones de Bellman, utilizando un decaimiento geométrico en los valores de los pesos (ver fig. 3.6). Es el conocido como método $TD(\lambda)$, que pasamos a desarrollar a continuación.

Figura 3.6: Empleamos un decaimiento geométrico para los pesos (Adaptado de Barto, R. S. & Sutton, A. G. (2018) [192] - pag. 290).

• $TD(\lambda)$

A continuación expresamos el método de las Diferencias Temporales parametrizado por el parámetro λ . Partiendo de la expresión cuyo valor queremos obtener, que sería la siguiente:

$$J_{\mu}(i_k) = (1 - \lambda) \cdot \mathbb{E}\left[\sum_{l=0}^{\infty} \lambda^l \cdot \left(\sum_{m=0}^{l} g(i_{k+m}, i_{k+m+1}) - J_{\mu}(i_{k+l+1})\right)\right]$$
(3.6)

Operando sobre los sumatorios podemos obtener una expresión mucho más conveniente que permite simplificar la forma de la ecuación.

En concreto, si desarrollamos:

$$\sum_{l=0}^{\infty} \lambda^{l} \cdot \left(\sum_{m=0}^{l} g(i_{k+m}, i_{k+m+1}) - J_{\mu}(i_{k+l+1}) \right)$$
 (3.7)

tenemos:

$$\lambda^0 \cdot \left[\frac{g(i_k, i_{k+1}) - J_{\mu}(i_{k+1})}{} \right] +$$

$$\lambda^{1} \cdot \left[g(i_{k}, i_{k+1}) + g(i_{k+1}, i_{k+2}) - J_{\mu}(i_{k+2}) \right] +$$

$$\lambda^{2} \cdot \left[g(i_{k}, i_{k+1}) + g(i_{k+1}, i_{k+2}) + g(i_{k+2}, i_{k+3}) - J_{\mu}(i_{k+3}) \right] +$$

...

Vemos que el primer coste/beneficio $g(i_k, i_{k+1})$ (en color rojo) aparece multiplicado por todas las potencias de λ .

m=0

$$g(i_k, i_{k+1}) \cdot \sum_{l=0}^{\infty} \lambda^l = g(i_k, i_{k+1}) \cdot \frac{1}{1-\lambda}$$

El segundo coste/beneficio de la trayectoria: $g(i_{k+1}, i_{k+2})$ (en color azul) aparece multiplicado por las potencias de λ a partir de λ^1 .

m=1

$$g(i_{k+1}, i_{k+2}) \cdot \sum_{l=1}^{\infty} \lambda^{l} = g(i_{k+1}, i_{k+2}) \cdot \lambda \cdot \frac{1}{1-\lambda}$$

Con el siguiente valor de la trayectoria: $g(i_{k+2}, i_{k+3})$ ocurre igual pero a partir de λ^2 .

m=2

$$g(i_{k+2}, i_{k+3}) \cdot \sum_{l=2}^{\infty} \lambda^{l} = g(i_{k+2}, i_{k+3}) \cdot \lambda^{2} \cdot \frac{1}{1-\lambda}$$

Por tanto podemos sumar primero en el índice m, multiplicando cada término por la secuencia de productos en λ que le corresponde; intercambiando el orden en el doble sumatorio. Esto nos permite convertir la expresión 3.7 en la 3.8:

$$\sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1}) \sum_{l=m}^{\infty} \lambda^{l} - \sum_{l=0}^{\infty} \lambda^{l} J_{\mu}(i_{k+l+1})$$
(3.8)

Si tenemos en cuenta que: $(1 - \lambda) \cdot \sum_{l=m}^{\infty} \lambda^{l} = \lambda^{m}$ e incorporamos los cambios anteriores en 3.6, entonces tenemos que la expresión adopta la siguiente forma:

$$J_{\mu}(i_{k}) = (1 - \lambda) \cdot \mathbb{E} \left[\sum_{l=0}^{\infty} \lambda^{l} \cdot \left(\sum_{m=0}^{l} g(i_{k+m}, i_{k+m+1}) - J_{\mu}(i_{k+l+1}) \right) \right]$$

$$= (1 - \lambda) \cdot \mathbb{E} \left[\sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1}) \sum_{l=m}^{\infty} \lambda^{l} - \sum_{l=0}^{\infty} \lambda^{l} J_{\mu}(i_{k+l+1}) \right]$$

$$= \mathbb{E} \left[(1 - \lambda) \cdot \sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1}) \sum_{l=m}^{\infty} \lambda^{l} + \sum_{l=0}^{\infty} J_{\mu}(i_{k+l+1}) \cdot (\lambda^{l} - \lambda^{l+1}) \right]$$

$$= \mathbb{E} \left[\sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1}) \cdot (1 - \lambda) \cdot \sum_{l=m}^{\infty} \lambda^{l} + \sum_{l=0}^{\infty} J_{\mu}(i_{k+l+1}) \cdot (\lambda^{l} - \lambda^{l+1}) \right]$$

$$= \mathbb{E} \left[\sum_{m=0}^{\infty} g(i_{k+m}, i_{k+m+1}) \cdot \lambda^{m} + \sum_{l=0}^{\infty} J_{\mu}(i_{k+l+1}) \cdot \lambda^{l} - \sum_{l=0}^{\infty} J_{\mu}(i_{k+l+1}) \cdot \lambda^{l+1} \right]$$

Como los índices de los sumatorios son mudos, cambiamos a un índice común: l por m, e introducimos restado y sumado $J_{\mu}(i_k)$ para completar el término en λ^0 que falta en el tercer sumatorio. Esto nos permite extraer el factor común $\sum_{m=0}^{\infty} \lambda^m$:

$$= \mathbb{E}\left[\sum_{m=0}^{\infty} \lambda^m \cdot \left(g(i_{k+m}, i_{k+m+1}) + J_{\mu}(i_{k+m+1}) - J_{\mu}(i_{k+m})\right)\right] + J_{\mu}(i_k)$$

Sobre esta expresión, el método basado en la aproximación estocástica de Robbins-Monro conduce a la siguiente regla de actualización $\forall i_k \in X$:

$$J(i_k) := J(i_k) + \gamma \cdot \sum_{m=k}^{\infty} \lambda^{m-k} \cdot d_m$$

■ TD Método general

Partiendo de una trayectoria $i_0, i_1, ...$ y las correspondientes diferencias temporales (d_m) , pasamos a exponer un método general basado en ellas. En la expresión que sigue aparecen los llamados **coeficientes de elegibilidad** (eligibility coefficients): $z_m(i)$.

$$J(i_k) := J(i_k) + \gamma \cdot \sum_{m=k}^{\infty} z_m(i) \cdot d_m$$

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

3.2.3. Algoritmo Q-Learning

Una forma alternativa de plantear la toma de decisiones secuenciales consiste en asociar, no un valor óptimo a cada estado, sino explícitamente a la combinación del estado en consideración junto a cada una de las acciones que pueden llevarse a cabo desde él. Entre las alternativas que han planteado diversos autores encontramos los **valores Q**, o las **ventajas**.

Factor Q

Factor Q (Q-factor - o también valor estado-acción (Bertsekas, D. (2019) [27] y Bertsekas, D. (2020) [24])). En un MDP (Markov Decision Process) con espacio de estados finito vendría a representar al valor (coste/ganancia) asociado a un estado i cuando se toma una decisión u y a partir de ese momento se continúa actuando de manera óptima. Tendríamos:

$$Q(i, u) = \sum_{i=1}^{n} p_{ij}(u) \cdot [g(i, u, j) + J(j)], \quad i = 1, 2, ..., n, \quad u \in U(i)$$

y que en un problema con descuento el Q-factor óptimo se representaría tal y como aparece en la siguiene expresión (Bertsekas, D. (2019) [27] - pag. 253):

$$Q^*(i,u) = \sum_{j=1}^n p_{ij}(u) \cdot [g(i,u,j) + \alpha \cdot J^*(j)], \quad i = 1, 2, ..., n, \quad u \in U(i)$$

Utilización con Métodos basados en modelo (Programación Dinámica). Utilizando la notación más general, el Q-factor del par estado-acción (x_k, u_k) en el instante k, notado: $Q_k(x_k, u_k)$ vendría dado por la siguiente expresión:

$$Q_k(x_k, u_k) = \mathbb{E}\left[g_k(x_k, u_k, w_k) + J_{k+1}(x_k, u_k, w_k)\right] \quad k = 0, 1, 2....$$

donde J_{k+1} es la función de coste óptimo futuro para la etapa k+1. Y $Q_k(x_k, u_k)$ representa el coste obtenido al llevar a cabo la acción u_k en el estado x_k , y proceder a continuación a seguir una estrategia óptima (Bertsekas, D. (2020) pag. 344 Vol. I [25]).

Empleando los valores $Q_k(x_k, u_k)$ el algoritmo de Programación Dinámica se puede expresar de manera equivalente como:

$$J_k(x_k) = \min_{u \in U_k(x_k)} Q_k(x_k, u_k)$$

Se puede considerar una alternativa a la *Iteración de Valor (VI)* (del tipo: $J_{k+1} = TJ_k$) si conocemos las probabilidades de transición, en cuyo caso (ver Bertsekas, D. (2012) [26] - pag. 96) en el caso con descuento y número de estados finitos tendríamos:

$$Q_{k+1}(i,u) = \sum_{j=1}^{n} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q_k(j,v)], \quad i = 1, 2, ..., n, \quad u \in U(i)$$

(Observar que en este caso el subíndice alude a la iteración y no a la etapa como en el algoritmo PD, y los índices por tanto van hacia delante y no hacia atrás)

En la literatura tiene especial importancia el primero de los enfoques. Se puede emplear como alternativa a la función de valor J que hemos visto en el apartado de soluciones mediante Programación Dinámica, pero su verdadera importancia surge cuando no disponemos de un conocimiento del sistema y nos hemos de limitar a observarlo o realizar simulaciones con él, que es el enfoque que trataremos en este apartado.

El principal algoritmo para la estimación de los valores Q es el algoritmo Q-Learning, que fue desarrollado por Watkins, C. Dayan, P. (1992) [210].

Ventaja (Advantage)

Se denomina **Ventaja** (Advantage) (Baird, L.C. (1993) [7] y Harmon, M.E. et al. (1994) [78]) de la acción u en el estado x, notado: $A_k(x, u)$ a la siguiente expresión:

$$A_k(x, u) = Q_k(x, u) - \min_{u \in U_k(x_k)} Q_k(x, u)$$

Este valor permite comparar las distintas acciones, con el añadido de que tiene un rango de valores mucho más reducido (Bertsekas, D. (2020) pag. 346 Vol. I [25]). Representa la mejora obtenida mediante la elección de una determinada acción en un cierto estado respecto del promedio obtenido cuando se tienen en cuenta todas las acciones posibles.

Podemos deducir la expresión empleando la Ecuación de Bellman. Esto nos permite obtener una expresión para actualizar los factores $Q^*(i, u)$. Partiendo de la expresión de los costes óptimos:

$$J^{*}(i) = \min_{u \in U(i)} \left[\sum_{j=1}^{n} p_{ij}(u) \cdot [g_{ij}(u) + \alpha \cdot J^{*}(j)] \right], \quad i = 1, 2, ..., n$$

$$Q^{*}(i,u)$$

y teniendo en cuenta que:

$$J^*(j) = \min_{v \in U(j)} Q^*(j, v)$$

resulta:

$$Q^*(i,u) = \sum_{j=1}^n p_{ij}(u) \cdot \left[g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q^*(j,v) \right], \quad i = 1, 2, ..., n$$
 (3.9)

Entonces el algoritmo value iteration puede ser expresado en término de los Q-factores.

$$Q(i,u) := \sum_{j=1}^{n} p_{ij}(u) \cdot \left[g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q(j,v) \right], \quad \forall (i,u)$$

o en la forma más general, introduciendo un paso de aprendizaje $\gamma \in (0,1]$:

$$Q(i, u) := (1 - \gamma) \cdot Q(i, u) + \gamma \cdot \sum_{j=1}^{n} p_{ij}(u) \cdot \left[g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q(j, v) \right]$$

En esta expresión necesitamos conocer los valores de las probabilidades de transición $p_{ij}(u)$. El algoritmo **Q-Learning** es una aproximación de este algoritmo donde en lugar de calcular el valor esperado, empleamos un único valor muestral:

$$Q(i,u) := (1 - \gamma) \cdot Q(i,u) + \gamma \cdot \left[g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q(j,v) \right]$$

El método **Q-Learning** vendría a ser la aproximación estocástica de Robbins-Monro de la ecuación 3.9. El algoritmo genera una secuencia de valores $Q_t(i, u)$ que convergen a los verdaderos valores $Q^*(i, u)$, siempre y cuando cada par estado acción (i, u) se visite con frecuencia infinita y la tasa de aprendizaje (γ) disminuya convenientemente.

Vemos que ahora no necesitamos conocer explícitamente los detalles de cómo opera el sistema tales como disponer de los valores de las probabilidades de transición. Experimentalmente accedemos a los nuevos valores observados j y $g_{ij(u)}$, tomando como partida el valor actual (i, u).

Q-Learning

Método de cálculo del valor óptimo de cada par estado-acción ((i,u)) y que es adecuado cuando no disponemos de un modelo explícito del sistema ni de la estructura de costes/beneficios.

Q-Learning es análogo al algoritmo VI (Value Iteration), y actualiza directamente estimaciones de Q-Factores asociados con la estrategia óptima. (Bertsekas, D. & Tsitsiklis, J. (1996) [28] - pag. 245). Se suelen emplear las dos expresiones siguientes equivalentes:

$$Q(i, u) := Q(i, u) + \gamma \left[g(i, u, j) + \min_{v \in U(j)} Q(j, v) - Q(i, u) \right]$$

$$Q(i,u) := (1-\gamma)Q(i,u) + \gamma \left[g(i,u,j) + \min_{v \in U(j)} Q(j,v) \right]$$

que en el caso con factor de descuento $\alpha \in [0,1)$ quedaría esta última:

$$Q(i,u) := (1-\gamma)Q(i,u) + \gamma \left[g(i,u,j) + \alpha \cdot \min_{v \in U(j)} Q(j,v) \right]$$

Representación tabular. Computacionalmente se requiere guardar explícitamente cada uno de los valores de la función (para todo par (i, u)) en una matriz, por lo que puede ser inadecuado cuando se dispone de conjuntos de estados o de acciones muy grandes. En este caso se suelen emplear métodos de aproximación.

Representación compacta. Empleamos aproximadores funcionales, como una Red Neuronal, para obtener valores aproximados $\tilde{Q}(i,u)$ (Ver por ejemplo: Bertsekas, D. & Tsitsiklis, J. (1996) [28] - pag. 337).

EJEMPLO 3.3: Algoritmo Q-Learning

Sea un determinado sistema representado tal y como aparece en la figura 3.7. Tenemos dos estados $X = \{1, 2\}$ y un conjunto de acciones $U(i) = \{u_1, u_2\}, i = 1, 2$.

Figura 3.7: Dinámica del sistema

Si definimos el Q-factor óptimo correspondiente al par (i,u), notado: $Q^*(i,u)$, como aparece en la siguiente expresión:

$$Q^*(i,u) = \sum_{j=0}^{n} p_{ij}(u) \cdot [g(i,u,j) + J^*(j)], \quad i = 1, 2, ..., n$$
(3.10)

Podemos obtener una expresión alternativa para la ecuación de Bellman:

$$J^*(i) = \min_{u \in U(i)} Q^*(i, u) , \quad i = 1, 2, ..., n$$
(3.11)

Empleando esta nueva expresión de la ecuación de Bellman, podemos introducir la expresión 3.11 (de los costes óptimos $J^*(i)$) en la ecuación 3.10 que define $Q^*(i,u)$, obteniendose la siguiente expresión.

$$Q^*(i,u) = \sum_{j=0}^{n} p_{ij}(u) \cdot [g(i,u,j) + \min_{v \in U(j)} Q^*(j,v)], \quad i = 1, 2, ..., n$$

Expresión iterativa: Método computacional adecuado cuando no disponemos de un modelo explícito del sistema ni de la estructura de costes/beneficios. Es análogo al VI, y actualiza directamente estimaciones de Q-Factores asociados con la estrategia óptima. (pag. 245 Neuro Dynamic).

$$Q(i,u) := (1-\gamma)Q(i,u) + \gamma \left[g(i,u,j) + \min_{v \in U(j)} Q(j,v) \right]$$

Convergencia: La secuencia de estimaciones generada por el algoritmo Q-Learning está acotada con probabilidad 1 y converge por tanto a Q^* . Pag. 249 NeuroDynamic.

Ahora abordamos la cuestión relativa a la convergencia del algoritmo.

PROPOSICIÓN 3.4: Convergencia del algoritmo Q-Learning

La aplicación del algoritmo Q-Learning en base a la utilización reiterada de la siguiente regla de actualización (pag. 249 NeuroDynamic):

$$Q_{t+1}(i,u) = (1 - \gamma_t) \cdot Q_t(i,u) + \gamma_t \cdot \left[g(i,u,j) + \min_{v \in U(j)} Q_t(j,v) \right]$$
(3.12)

donde las tasas de aprendizaje (stepsizes) γ_t pueden depender de (i, u) ($\gamma_t(i, u)$), cumplen que son no negativas y $\forall (i, u)$:

$$\sum_{t=0}^{\infty} \gamma_t(i, u) = \infty , \quad \sum_{t=0}^{\infty} \gamma_t^2(i, u) < \infty$$

genera una secuenca de estimaciones que converge a los valores correctos $Q^*(i, u)$ con probabilidad 1 para todo par (i, u).

Demostración:

Planteamos el algoritmo Q-Learning con la estructura general de un algoritmo de aproximación estocástica del tipo:

$$r_{t+1} = (1 - \gamma_t) \cdot r_t + \gamma_t \cdot [Hr_t + w_t]$$

donde cada uno de los estados i = 1, 2, ..., n se actualiza según:

$$r_{t+1}(i) = (1 - \gamma_t(i)) \cdot r_t(i) + \gamma_t(i) \cdot [Hr_t(i) + r_t(i)]$$

Si la función H es una contracción con respecto a una norma máxima ponderada y cumple ciertas propiedades como la monotonicidad, estaremos en condiciones de asegurar la convergencia al punto fijo de la función de interés.

En nuestro caso partimos de la definición de los Q-factores y de la aplicación del operador de Bellman (T) de programación dinámica. Basta tomar H = T, donde:

$$(HQ)(i,u) = \sum_{j=1}^{n} p_{ij}(u) \cdot \left[g_{ij}(u) + \alpha \cdot \min_{v \in U(j)} Q^*(j,v) \right]$$

Ahora introducimos (HQ)(i, u) autocancelándose en la expresión 3.12 y agrupamos términos tal y como aparece a continuación:

$$Q_{t+1}(i, u) = (1 - \gamma_t(i, u)) \cdot Q_t(i, u) + \sum_{\substack{(HQ_t)(i, u) \\ w_t(i, u)}} \left[(HQ_t)(i, u) + \underbrace{g_{ij}(u) + \min_{v \in U(j)} Q^*(j, v) - (HQ_t)(i, u)}_{w_t(i, u)} \right]$$

Esto nos permite obtener la expresión del algoritmo Q-Learning que buscábamos, como un algoritmo estocástico iterativo:

$$Q_{t+1}(i,u) = (1 - \gamma_t(i,u)) \cdot Q_t(i,u) + \gamma_t(i,u) \cdot [(HQ_t)(i,u) + w_t(i,u)]$$

Bastará ahora comprobar que se cumplen las condiciones para la aplicación de los resultados de convergencia:

<u>Perturbación aleatoria</u>: Sea $\mathcal{F}_t = \{r_0, ..., r_t, w_0, ..., w_{t-1}, \gamma_0, ..., \gamma_t\}$ la historia del algoritmo hasta el instante t. Teniendo en cuenta que: $\text{Var}(\omega_t(i) \mid \mathcal{F}_t) = \mathbb{E}[\omega_t(i) \mid \mathcal{F}_t] + \mathbb{E}[\omega_t^2(i) \mid \mathcal{F}_t]$.

Entonces, dada una norma $\|\cdot\|$ sobre \mathbb{R}^n existen A, B $\in \mathbb{R}$, de tal manera que los términos de perturbación aleatoria $\omega_t(i)$ verifican:

$$\begin{cases} 1) & \text{Esperanza nula de } \omega_t \\ & \mathbb{E}[\ \omega_t(i) \mid \mathcal{F}_t\] = 0 \end{cases}$$

$$2) & \text{Varianza acotada} \\ & \mathbb{E}[\ \omega^2_t(i) \mid \mathcal{F}_t\] \leq A + B \cdot \parallel r_t \parallel \ \forall i, t.$$

vemos que se cumplen las condiciones relativas a la esperanza y varianza condicional de los términos $\omega_t(i)$ (para más detalles ver: Tsitsiklis, J. (1994) [202]).

<u>Función H</u>: Bastará con demostrar que H es una función semicontractiva respecto de una norma máxima ponderada (o una función contractiva respecto de una norma máxima), para estar en condiciones de aplicar los resultados de convergencia de los algoritmos estocásticos iterativos.

Si partimos del supuesto de que todas las estrategias son propias, entonces existen coeficiones positivos $\xi(i)$, $i \neq 0$ y un escalar $\beta \in [0, 1)$ tales que (dem. pag. 22 Neuro-Dynamic):

$$\sum_{j=1}^{n} p_{ij}(u) \cdot \xi(i) \leq \beta \cdot \xi(i) \quad \forall i, u \in U(i)$$

$$\parallel Q \parallel_{\xi} = \min_{i, u \in U(i)} \frac{\mid Q(i, u) \mid}{\xi(i)}$$

$$\mid (HQ)(i, u) - (H\bar{Q})(i, u) \mid \leq \sum_{j=1}^{n} p_{ij}(u) \cdot |\min_{v \in U(j)} Q(j, v) - \min_{v \in U(j)} \bar{Q}(j, v) \mid$$

$$\leq \sum_{j=1}^{n} p_{ij}(u) \cdot \max_{v \in U(j)} |Q(j, v) - \bar{Q}(j, v)|$$

$$\leq \sum_{j=1}^{n} p_{ij}(u) \cdot ||Q - \bar{Q}||_{\xi} \cdot \xi(j)$$

$$\leq \beta \cdot ||Q - \bar{Q}||_{\xi} \cdot \xi(j)$$

de donde se tiene que:

$$\frac{\mid (HQ)(i,u) - (H\bar{Q})(i,u) \mid}{\xi(i)} \leq \beta \cdot \parallel Q - \bar{Q} \parallel_{\xi}$$

tomando el mínimo:

$$\min_{i,u \in U(i)} \frac{\mid (HQ)(i,u) - (H\bar{Q})(i,u) \mid}{\xi(i)} \leq \beta \cdot \parallel Q - \bar{Q} \parallel_{\xi}$$

tenemos:

$$\| (HQ) - (H\bar{Q}) \|_{\xi} \leq \beta \cdot \| Q - \bar{Q} \|_{\xi}$$

por lo que H es una función contractiva respecto de la norma máxima ponderada, y de ellos se desprende la convergencia al punto fijo de la función.

La demostración anterior se debe a Tsitsiklis, J. (1994) [202] (ver también: Bertsekas, D. & Tsitsiklis, J. (1996) [28] - pag. 247). Sobre la convergencia del algoritmo Q-Learning, otra de las demostraciones la podemos encontrar en Jaakkola, T. et al. (1994) [91]. Para más información (Bertsekas, D. (2022) [22] - pag. 112). (Para un tratamiento más moderno de la convergencia de los algoritmos de aproximación estocástica tenemos Powell, W. B. (2022) [153] - pag. 256).

Empleando el método de Ecuaciones Diferenciales Ordinarias (ODE - *Ordinary Differential Equations*) tenemos el desarrollo llevado a cabo por Borkar, V. S. & Meyn, S. P. (2000) [33] (ver también: Gosavi, A. (2015) [72] - pag. 404 y Bertsekas, D. & Tsitsiklis, J. (1996) [28] - pag. 171).

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

3.3. Solución aproximada: Métodos de Simulación II (Policy based methods)

Procedemos a tratar el caso de la aproximación en el espacio de estrategias. Utilizaremos la notación y el esquema seguido por "Reinforcement Learning and Optimal Control" (Bertsekas, D. (2019) [27] - Capítulo 5).

Como hemos señalado previamente estamos tratando:

- Métodos de aproximación mediante **Funciones de valor**. Lo tratamos en el apartado anterior y nos basábamos en los conceptos de Programación Dinámica, y empleando la estructura de los algoritmos Value Iteration (V.I.) y Policy Iteration (P.I.).
- Métodos de aproximación mediante la Función de Estrategia. En este caso no nos basaremos en los resultados de Programación Dinámica, sino que utilizaremos métodos generales de optimización, como el método de descenso por el gradiente y la búsqueda aleatoria (random search). Podemos utilizar dos métodos:
 - 1) La vía consistirá en parametrizar la expresión de μ y optimizar respecto de una medida del rendimiento que ofrece.
 - 2) Plantear el problema como uno de Aprendizaje Supervisado y emplear mínimos cuadrados

3.3.1. Método 1: Optimización del vector de parámetros

En primer lugar procedemos a parametrizar la función de decisiones. Suponemos que depende de parámetro o vector de parámetros r:

$$\tilde{\mu}(r)$$
 donde: $\tilde{\mu}(r) = (\tilde{\mu}(1, r), ..., \tilde{\mu}(n, r))$

Teniendo en cuenta que el valor del estado inicial (i) en una trayectoria, cuando se actúa guiado por una función de estrategia $\tilde{\mu}(r)$ viene dado por: $J_{\tilde{\mu}(r)}(i)$, optimizar el valor esperado en el caso no determinista se traduce en:

$$\min_{r} \mathbb{E}\left[J_{\tilde{\mu}(r)}(i)\right]$$

■ Método del Gradiente. Emplearíamos la actualización:

$$r^{k+1} = r^k - \gamma^k \cdot \nabla_r J_{\tilde{\mu}(r^k)}(i_0) \quad k = 0, 1, \dots$$

Si no se dispone del gradiente se puede aproximar por diferencias finitas de valores de la función de coste $J_{\tilde{\mu}(r^k)}(i_0)$. Si el problema es estocástico los valores de la función de coste se pueden obtener por Simulación de Montecarlo. El problema reside en que este método introduce mucho ruido, y son necesarias muchas muestras a promediar para obtenerestimaciones del gradiente suficientemente precisas, lo que es muy ineficiente.

■ Método del Gradiente Incremental. En este caso se trata de plantear el problema de optimización como un problema de Optimización Estocástica, permitiendo estrategias aleatorizadas. Si suponemos que Z es un subconjunto de \mathbb{R}^m , F es una función de \mathbb{R}^m , z es un valor de Z, y \mathcal{P}_z una distribución de probabilidad sobre Z, la expresión general sería:

$$\min_{p \in \mathcal{P}_z} \ \mathbb{E}_p \left[F(z) \right]$$

y restringiendo el problema introduciendo la parametrización por r:

$$\min_{r} \ \mathbb{E}_{p(z;r)} \left[F(z) \right]$$

En este caso tendríamos que la regla de actualización sería del tipo:

$$r^{k+1} = r^k - \gamma^k \cdot \nabla_r \left(\mathbb{E}_{p(z;r^k)} \left[F(z) \right] \right) \tag{3.13}$$

Que convertimos en una expresión que maneja el gradiente respecto a r del logaritmo de la función de probabilidad evaluado en r sin más que operar convenientemente. En el caso de una distribución discreta tendríamos:

$$\nabla(E_{p(z;r)}[F(z)]) = \nabla\left(\sum_{z\in\mathcal{Z}} p(z;r) \cdot F(z)\right)$$

$$= \sum_{z\in\mathcal{Z}} \nabla p(z;r) \cdot F(z)$$

$$= \sum_{z\in\mathcal{Z}} p(z;r) \cdot \frac{\nabla p(z;r)}{p(z;r)} \cdot F(z)$$

$$\boxed{\frac{\nabla p}{p} = \nabla(\log p)} \longrightarrow = \sum_{z\in\mathcal{Z}} p(z;r) \cdot \nabla[\log(p(z;r))] \cdot F(z)$$

$$= \mathbb{E}_{p(z;r)} \left[\nabla(\log(p(z;r)) \cdot F(z)\right]$$

Es decir la expresión para el cálculo del gradiente queda:

$$\nabla_r(\mathbb{E}_{p(z;r^k)} [F(z)]) = \mathbb{E}_{p(z;r^k)} [\nabla(log(p(z;r)) \cdot F(z)]$$

que se sustituiría en la regla de actualización 3.13.

Empleando una linea base (baseline).

También puede introduciendo una linea de referencia (llamémosla b) en la expresión del cálculo del gradiente, lo que permite reducir la variabilidad, y por tanto aumentar la eficiencia. La expresión quedaría como sigue:

$$\nabla_r \left(\mathbb{E}_{p(z;r^k)} \left[F(z) \right] \right) = \mathbb{E}_{p(z;r^k)} \left[\nabla (log(p(z;r)) \cdot [F(z) - b]) \right]$$

e igualmente sustituiriamos en la ecuación 3.13.

La forma general del algoritmo del Gradiente quedaría tal como sigue.

Algoritmo 3 - Método del Gradiente

```
\begin{array}{|c|c|c|} \textbf{begin} \\ \hline & Inicializar \ r, \gamma \\ \hline & \textbf{repeat} \\ \hline & Obtener \ una \ muestra \ de \ z: \quad z^k \sim p(z; r^k) \\ \hline & Calcular \ el \ gradiente: \quad \nabla (log(p(z^k; r^k)) \\ \hline & Iterar: \\ \hline & r^{k+1} \ = \ r^k - \gamma^k \cdot \nabla_r (\ log(p(z^k; r^k)\ ) \cdot \ [F(z)]\ ) \\ \hline & \textbf{until} \ (optimo) \end{array}
```

3.3.2. Método 2: Utilizar Aprendizaje Supervisado

Ahora para obtener una aproximación de la función de estrategia podríamos obtener observaciones del sistema de interés. Tendríamos q pares de valores estado-acción: (i^s, u^s) , s = 1, ..., q, lo que nos permitiría converirlo en una problema de Aprendizaje Supervisado. Posteriormente se llevaría a cabo el ajuste siguiendo cualquiera de las dos siguientes formas, que son las más usuales.

Aplicando Mínimos Cuadrados. (Least Squares). El problema de mínimos cuadrados quedaría tal como sigue (podría añadirse además un término de regularización, para asegurarnos de que el modelo no crezca excesivamente en complejidad):

$$\min_{r} \sum_{s=1}^{q} \| u^{s} - \tilde{\mu}(i^{s}, r) \|^{2}$$
(3.14)

Aplicando Interpolación. Para ello se deben especificar par cada $i \in \{i^1, ... i^s\}$ una distribución de probabilidad $\{\phi_{i1}, ..., \phi_{is}\}$, y emplear como $\tilde{\mu}$ (ver más detalles Bertsekas, D. (2019) [27] - capítulo 5 y 6):

$$\tilde{\mu}(i) = \sum_{s=1}^{q} \phi_{is} u^s \tag{3.15}$$

Para obtener la colección de observaciones podríamos aplicar cualquiera de los dos siguientes métodos.

- Mediante un experto. En este caso μ se entrena para adaptarse al comportamiento de un experto, por lo que se supone que los valores u^s son valores lo más óptimos posibles ('near optimal') dado el estado i^s , que han sido generados expresamente para el aprendizaje.
- Generando muestras mediante simulación. En este caso partiríamos de un número de estados muestrales lo más elevado posible: i^s , s = 1, ..., q. Posteriormente generaríamos las acciones u^s , s = 1, ..., q a través de un proceso de minimización a un paso, ya sea utilizanco la aproximación de la función de valor (a un paso o varios hacia adelante) \tilde{J} :

$$u^{s} = \underset{u \in U(i^{s})}{\operatorname{arg \, min}} \sum_{j=1}^{q} p_{ij}(u) \cdot \left[g_{i^{s}j}(u) + \alpha \cdot \tilde{J}(j) \right]$$

o con los Q-factores aproximados:

$$u^s = \underset{u \in U(i^s)}{\arg\min} \ \tilde{Q}(i^s, u, r)$$

Los métodos empleando la función de estrategia (*Policy Methods*) se tratarán exténsamente en el capítulo dedicado a Aprendizaje por Refuerzo (*Reinforcement Learning*), cuando se trate el algoritmo REINFORCE.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. La iteración del algoritmo de Programación Dinámica $(J_{k+1} = TJ_k)$ converge a la función de coste óptimo J^* , que es solución unica de la ecuación de Bellman J = TJ.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 4

Aprendizaje por refuerzo (RL)

El Aprendizaje por refuerzo (*Reinforcement Learning*) es un área del Aprendizaje Automático (*Machine Learning*) (ver fig. 4.1) cuyo objetivo es la resolución de problemas de toma de decisiones secuenciales óptimas. Pese a que sus inicios se remontan a 1950, la auténtica explosión ha surgido alrededor del periodo que va de 2013 al presente. En estos años se han conseguido progresos realmente notables en el aprendizaje de tareas que requieren inteligencia, como son los juegos.

Figura 4.1: Esquema de las disciplinas que confluyen en el Reinforcement Learning.

En esta evolución ha tenido mucho que ver la madurez del Aprendizaje Profundo (*Deep Lear-ning*), que consiste en el empleo de Redes Neuronales de varias capas, que en este ámbito se emplean generalmente como aproximadores funcionales. Esto ha dado lugar, de hecho, a la aparición de un área propia dentro del Aprendizaje por Refuerzo, como es del Aprendizaje por Refuerzo profundo (*Deep Reinforcement Learning*).

Originariamente los problemas de secuencias de decisiones eran abordados con el empleo de técnicas como las que proporciona la **Programación Dinámica**, tal y como hemos analizado extensamente en el capítulo 2. Los primeros resultados en este sentido quedaron recogidos en los artículos clásicos: Bellman (1952) [16] y Bellman (1957) [15].

El principal obstáculo para su aplicación reside en que el conocimiento preciso de todas las reglas que gobiernan el sistema es un requisito imprescindible. Es por ello que algunos autores comenzaron a explorar un nuevo enfoque: la aproximación computacional del aprendizaje a través de la interacción, con un aprendizaje orientado a objetivos y en el que las simulaciones juegan un

papel fundamental (Barto, A. & Sutton, R. (2018) [192]) ¹.

De la mano del Aprendizaje por Refuerzo (Reinforcement Learning), los investigadores comenzaron a lograr que agentes entrenados mediante estas técnicas, superasen el rendimiento humano en habilidades complejas como las que se ponen en práctica en juegos de mesa o de ordenador, y sin conocimiento previo de las reglas. Los primeros avances importantes surgieron a principios de los años 90, en juegos como el Backgammon (Tesauro (1994)) [198].

El impulso definitivo llegaría alrededor de 2010, con la fundación de DeepMind ² por: Demis Hassabis, Shane Legg y Mustafa Suleyman. Su objetivo fundamental: ampliar la Inteligencia Artificial, desarrollando algoritmos de propósito general que permitan desarrollar agentes dotados de inteligencia. Esta Inteligencia Artificial General permitiría abordar la resolución de diferentes tareas, no sólo las circunscritas a un dominio muy concreto como hasta ahora.

Algunos de los logros alcanzados los encontramos por ejemplo en el aprendizaje con consolas de videojuegos Atari (Bellemare (2012) [14], y posteriormente Mnih et al. (2013) [123] y Mnih et al. (2015) [122]), o en el juego de estrategia Go. Las sucesivas generaciones AlphaGo y AlphaGo Zero han logrado batir al campeón mundial en esta disciplina (David Silver et al. (2016) [178] y (2017) [179]).

	PROGRAMACIÓN DINÁMICA	Aprendizaje por Refuerzo
Espacio de Estados y Acciones	$i \in X, u \in U$	$s \in \mathcal{S}, a \in \mathcal{A}$
Estrategia	$\mu(i)$	$\pi(s) \pi(a s)$
Función de Valor	J(i) $Q(i,u)$	$\begin{array}{ccc} & \underline{\text{Valor Exacto:}} \\ v^{\pi}(s) & q^{\pi}(s,a) \\ & \underline{\text{Estimación:}} \\ V^{\pi}(s) & Q^{\pi}(s,a) \\ \end{array}$

Figura 4.2: Esquema de las equivalencias entre la notación empleada en Programación Dinámica y la utilizada en Aprendizaje por Refuerzo.

El **Aprendizaje por Refuerzo** se construye en gran parte sobre los resultados que hemos visto de **Programación Dinámica**, por lo que existen una serie de relaciones que conviene resaltar antes de continuar, y que quedan reflejadas en la figura 4.2.

Las funciones de valor a partir de ahora acumulan lo que denominaremos recompensas, y convierten el problema en uno de maximización.

¹WEB Sutton: http://incompleteideas.net/

²WEB: https://deepmind.com/

En cuanto al objetivo sigue siendo encontrar la estrategia del agente que hace óptimas las decisiones. Para aclarar los matices que diferencian ambos enfoques resumimos en la cuadro 4.1 las equivalencias entre términos.

Aprendizaje por Refuerzo	Programación Dinámica
$(Reinforcement\ Learning)$	y Control Óptimo
Agente	Decisor
Ambiente	Sistema
Recompensa	Coste
Planificación	Resolución de un problema de PD
	con un modelo matemático conocido del
	sistema
Aprendizaje	Resolución de un problema de PD
	sin manejar un modelo explícito
Autoaprendizaje	Resolución de un problema de PD
(self-learnig o self-play)	utilizando alguna forma de
	iteración de valor
Predicción	Evaluación de una estrategia
Control	Encontrar la mejor estrategia
Backup	Aplicación del operador de
	Bellman en algún estado
Sweep	Aplicación del operador de
	Bellman a todos los estados
Ground Truth	Evidencias empíricas o información
	proporcionada mediante observaciones
	directas

Cuadro 4.1: Equivalencias entre los términos empleados en Reinforcement Learning y Programación Dinámica (PD) (y Control Óptimo). (Adaptado de Bertsekas, D. (2019) [27] - pag. 44).

En la medida en que en Aprendizaje por Refuerzo empleamos la experimentación, y la información se extrae de las interacciones de un agente con su entorno, ahora no disponemos de un modelo explícito del sistema. Es lo que se denomina *model-free*, y emplea extensamente métodos de aprendizaje para buscar la estrategia óptima, tal y como veremos.

La estrategia que está siendo evaluada y aprendida se denomina **target policy**, en contraposición a **behavior policy**, que es empleada para generar las decisiones. Por ello los métodos que emplean la misma estrategia que emplean para explorar se denominan *on-policy*, mientras que si son distintas se llaman *off-policy*.

En los apartados siguientes pasamos a analizar algunos conceptos más en detalle, y a desarrollar la formalización matemática.

4.1. Conceptos

Nos enfrentamos al problema de determinar la secuencia de decisiones que conducen a un mejor resultado para un decisor, cuando este interactúa con un entorno cuya dinámica desconoce. La única información (feedback) sobre la bondad de sus acciones la recibe en forma de algún tipo de refuerzo o recompensa. La notación y terminología que emplearemos se detalla a continuación.

- -Agente Es el encargado de tomar decisiones.
- -Ambiente (*Environment*) Es todo aquello que rodea al agente, y de donde obtiene la información (en términos de recompensa) que dirige su aprendizaje.
- -Estado $(s, donde \ s \in S)$ Alude a la situación en que se encuentra el agente. El conjunto de todos los posibles estados se simboliza por S. En la medida en que el estado del agente varía secuencialmente se suele introducir el tiempo como subíndice. Una forma de notar que el agente se encuentra en el estado s, en el instante t sería: $S_t = s$.

Además cada estado puede ser caracterizado por un conjunto de características (features) que miden algún aspecto que interesa considerar. $\phi: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}^d$, tal que $\phi(s, a, s') = (\phi_1, ..., \phi_d)$ (donde $s, s' \in \mathcal{S}$ y $a \in \mathcal{A}$).

$$\phi(s, a, s') = (\phi_1(s, a, s'), \phi_2(s, a, s'), ..., \phi_d(s, a, s'))$$
(4.1)

Es decir, cada característica adopta la forma $\phi_i: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}, i = 1, ..., d$.

- -Acción $(a, donde \ a \in \mathcal{A})$ Es la respuesta del agente ante la información que recibe del entorno. Para introducir el tiempo, y expresar que en el instante t se tomó la decisión a, la notación quedaría: $A_t = a$.
- -Recompensa (reward: r) Es el estímulo que recibe el agente de parte del entorno tras llevar a cabo una acción a, lo que conlleva pasar de un estado s a otro s'. Formalmente tendríamos una función $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$, tal que R(s, a, s') = r (donde $s, s' \in \mathcal{S}$ y $a \in \mathcal{A}$).

Para expresar que en un determinado instante t se recibió una recompensa r tendríamos: $R_t = r$.

Generalmente nos interesa la ganancia acumulada, llamémosla G, a partir de un determinado instante de tiempo t (t+1,t+2,...,t+T), por lo que es normal emplearlo como subíndice de G: G_t . Para facilitar el tratamiento matemático se suele tomar un horizonte infinito $(T=\infty)$. Para reflejar que el efecto de los momentos futuros influye menos que el momento presente se toma un factor de descuento, $\gamma \in [0,1]$.

$$G_t = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \dots + \gamma^T \cdot R_{t+T} = \sum_{i=0}^T \gamma^i \cdot R_{t+1+i}$$
 (4.2)

-Política o Estrategia (policy: π) Es una función que define la manera de comportarse del agente, especificando la acción a llevar a cabo en cada estado. $\pi: \mathcal{S} \longrightarrow \mathcal{A}$, tal que $\pi(s) = a$ (donde $s \in \mathcal{S}$ y $a \in \mathcal{A}$).

Puede ser una función determinista como acabamos de ver, aunque también puede ser una distribución de probabilidad. En este caso se suele notar: $\pi(a|s)$.

Figura 4.3: Transiciones entre estados.

-Probabilidades de transición. En el ámbito de un Proceso de Decisión de Markov, recoge la probabilidad de pasar de un estado s a otro s' tras llevar a cabo una acción a. Notado por algunos autores como: $\mathcal{P}_{s,s'}^a$, aunque también simplemente: $p(s'|s,a) = p(S_{t+1} = s' \mid S_t = s, A_t = a)$.

Estas probabilidades habrán de cumplir la propiedad de Markov, que consiste en que la probabilidad de pasar a un estado s' sólo depende lo ocurrido en el estado inmediatamente anterior, y no de toda su historia pasada.

-Trayectoria. Un conjunto de observaciones secuenciales (estado, acción, recompensa) forman una trayectoria (τ) . Para especificar abreviadamente que se trata de una realización concreta $(S_t = s, A_t = a, R_t = r)$, notémoslo acompañando el subíndice al valor observado: $\tau = \{(s_0, a_0, r_0), (s_1, a_1, r_1), (s_2, a_2, r_2), \ldots\}$.

Figura 4.4: El agente dispone, como información del Entorno, de los valores (s_t, r_t) , donde s_t alude al estado en el instante 't', y r_t el feedback en forma de recompensa. En base a estos valores, lleva a cabo una acción: a_t . Esto se traduce en una transición a otro estado s_{t+1} . La consecuencia para el agente consiste en recibir una recompensa: r_{t+1} .

Finalmente, la dinámica que se observa en una situación como la que estamos modelizando quedaría resumida tal y como refleja la Figura 4.4.

4.2. Proceso de Decisiones de Markov (MDP)

El modelo apropiado para representar un proceso de decisiones secuenciales es el conocido como Proceso de Decisiones de Markov (MDP - *Markov Decision Process*). En él las probabilidades de transición entre estados dependen únicamente del estado actual y de la decisión que se toma. La definición formal aparece a continuación.

DEFINICIÓN 4.1: Proceso de Decisiones de Markov (MDP)

Decimos que se ha definido un **Proceso de Decisiones de Markov** (MDP - Markov Decision Process), representado por la tupla: (S, A, R, p), cuando quedan especificados cada uno de los siguientes elementos:

- Espacio de estados: S. Una transición quedará representada mediante el estado inicial s y el estado destino s', (donde s, $s' \in S$).
- Espacio de acciones: A. $(a \in A)$.
- Función de Recompensa: R.

$$\mathbf{R} \colon \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$$
$$(s, a, s') \longmapsto r$$

■ Probabilidades de Transición: $p(\cdot)$. Si suponemos definidas las variables aleatorias en tiempo discreto (t = 1, 2, ...): S_t, A_t que toman valores respectivamente en los conjuntos anteriores $(S_t \in \mathcal{S}, A_t \in \mathcal{A})$, y H_t representa la historia hasta t, entonces:

$$P(S_{t+1} = s' \mid H_t) = P(S_{t+1} = s' \mid S_t = s, A_t = a) = p(s' \mid s, a)$$

Cuando no se conocen las probabilidades de transición hemos de acudir a métodos experimentales. Una vía por la que han optado algunos autores (Moore, A. & Atkeson, C. (1993) [126]) consiste en obtener estimaciones explícitas de los parámetros del MDP; es decir, de las probabilidades de transición y de las recompensas, y entonces aplicar los métodos de Programación Matemática.

Sin embargo, generalmente se emplean métodos de aprendizaje que no necesitan manejar expresamente las probabilidades, y es el enfoque que desarrollaremos. Con estos métodos podemos obtener la estimación del valor de cada estado, y determinar las acciones óptimas que conducen a ellos.

Entre los algoritmos de aprendizaje que se utilizan, podemos distinguir algoritmos *off-line*, que llevan a cabo la computación antes del proceso de control/decisión (Un ejemplo lo tenemos en el uso de Redes Neuronales, que necesitan un procesamiento por lotes y por tanto la información ha de ser acumulada y almacenada previamente). Por el contrario los algoritmos *on-line* llevan a cabo la computación cuando el proceso comienza, y los datos van estando disponibles.

Existen casos en los que el agente no puede determinar con exactitud el estado del sistema. Para estos casos existe una variante de este modelo, que es el Proceso de Markov Parcialmente Observable (POMDP - Partial Observable Markov Decision Process).

4.3. MDP Parcialmente Observable (POMDP)

El Proceso de Markov Parcialmente Observable (POMDP - Partially Observable Markov Decision Process) es una generalización del Proceso de Markov (MDP), donde permitimos la existencia de incertidumbre sobre el estado del sistema. Una primera recopilación de resultados la podemos encontrar en Monahan, G.E. (1982) [125].

La falta de conocimiento sobre el estado del sistema se suele sustituir por un estado interno, una creencia del agente sobre las condiciones exteriores (Cassandra, A. R. et al. (1994) [44]. Esto se traduce en una distribución de probabilidad $(b(\cdot))$ sobre \mathcal{S} basada en las observaciones llevadas a cabo $(z, \text{ donde } z \in \mathcal{Z})$.

DEFINICIÓN 4.2: Proceso de Decisiones de Markov Parcialmente Observable

Decimos que se ha definido un **Proceso de Decisiones de Markov Parcialmen**te **Observable** (**POMDP** - Partially Obsrvable Markov Decision Process), notado (S, A, Z, R, p, o), cuando quedan especificados cada uno de los siguientes elementos:

- Espacio de estados: S. Una transición quedará representada mediante el estado inicial s y el estado destino s' (donde $s, s' \in S$), aunque no es observable por el agente.
- Espacio de acciones: A. $(a \in A)$.
- Espacio de observaciones: \mathcal{Z} . $(z \in \mathcal{Z})$.
- Función de Recompensa.

$$\mathbf{R} \colon \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$$
$$(s, a, s') \longmapsto r$$

Y si suponemos definidas las variables aleatorias en tiempo discreto (t = 1, 2, ...): S_t, A_t, Z_t que toman valores respectivamente en los conjuntos anteriores $(S_t \in \mathcal{S}, A_t \in \mathcal{A}, Z_t \in \mathcal{Z})$, y H_t el historial pasado de transiciones hasta el instante t, entonces las probabilidades que gobiernan la dinámica del sistema vienen dadas por:

• Probabilidades de Transición: $p(\cdot)$.

$$P(S_{t+1} = s' \mid H_t) = P(S_{t+1} = s' \mid S_t = s, A_t = a) = p(s' \mid s, a)$$

■ Probabilidades de las observaciones: $o(\cdot)$.

$$P(Z_{t+1} = z \mid H_t) = P(Z_{t+1} = z \mid S_t = s, A_t = a) = o(z|s, a)$$

Algunos métodos de solución los podemos encontrar además en Kaelbling, L. P. et al. (1998) [96]. También en Jaakkola, T. et al. (1994) [92], quienes se centran en identificar los parámetros del MDP subvacente para aplicar luego los métodos tradicionales de Programación Dinámica.

En lo que sigue analizaremos en profundidad la implementación de métodos de solución para el Proceso de Decisiones de Markov.

4.4. Funciones para la toma de decisiones del agente

Los algoritmos de Aprendizaje por Refuerzo ($Reinforcement\ Learning$) implican generalmente la estimación de **funciones de valor**, de manera análoga a como hacíamos en Programación Dinámica (con la función J(i), $i \in X$). La intención es la de disponer de una medida de la bondad de un estado, o de una acción llevada a cabo en dicho estado. La idea de bondad alude en este caso al valor acumulado descontado de las recompensas que recibe el agente desde el instante en consideración en adelante.

La función de estrategia, por otro lado, nos permite relacionar cada estado con la acción más apropiada para llevar a cabo, y en conjunción con la función de valor (o por si sóla), permite abordar el problema de la optimización de las decisiones del agente.

Empezaremos definiendo la primera de las funciones, para a continuación pasar a tratar la segunda de ellas.

4.4.1. Funciones de valor

 $v^{\pi}(s)$ (Valor del estado 's'). Es el retorno o ganancia esperada cuando se parte desde el estado 's', y el agente se comporta a partir de dicho punto siguiendo la estrategia fijada por π . Es una forma de reflejar la bondad del estado 's'. Formalmente:

DEFINICIÓN 4.3: Función de valor de estado (State value function)

Se denomina función de valor de un estado 's' bajo una estrategia π , notado $v^{\pi}(s)$ a la siguiente expresión:

$$v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

que refleja el valor descontado esperado que supone para el agente el encontrarse en un estado sy siguiendo una estrategia π en su objetivo de maximizar el valor obtenido.

$$v^{\pi}(s) = \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots + \gamma^{T-1} R_{T} + \dots \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \cdot \underbrace{(R_{t+2} + \gamma R_{t+3} + \dots + \gamma^{T-2} R_{T}) + \dots}_{G_{t+1}} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t} + \gamma \cdot G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \cdot \sum_{s',r} p(s',r|s,a) \cdot [r + \gamma \cdot \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \cdot \sum_{s',r} p(s',r|s,a) [r + \gamma \cdot v^{\pi}(s')]$$

$$(4.3)$$

Lo normal en el tipo de problemas que estamos tratando es que no se disponga de las probabilidades transición entre los estados (p(s',r|s,a)) por lo que el cálculo exacto no se puede llevar a cabo. Analizaremos posteriormente la forma de estimar $v^{\pi}(s)$ a partir de experimentación o simulación.

DEFINICIÓN 4.4: Función de valor estado-acción

Se denomina **función de valor** de un estado 's' cuando se lleva a cabo una acción 'a', bajo una estrategia π (notado $q^{\pi}(s, a)$) a la siguiente expresión:

$$q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s \mid A_t = a \mid]$$

que refleja el valor descontado esperado que supone para el agente el encontrarse en un estado s y siguiendo una estrategia π en su objetivo de maximizar el valor obtenido.

 $q^{\pi}(s,a)$ (Valor del estado 's' y la acción 'a'). Representa la bondad de llevar a cabo la acción 'a' cuando el agente se encuentra en el estado 's' y se comporta siguiendo una estrategia π ..

$$q^{\pi}(s, a) = \mathbb{E}_{\pi} [G_t \mid S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} [R_t + \gamma \cdot G_{t+1} \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) [r + \gamma \cdot v^{\pi}(s')]$$
(4.4)

Nuevamente nos enfrentamos al problema de no disponer de las probabilidades de transición (p(s', r|s, a)), por lo que utilizaremos técnicas de estimación que analizaremos más adelante.

Una vez disponemos del valor asociado a cada estado en función de las acciones que condujeron al agente a él, el proceso de construir la estrategia óptima es sencillo. Para ello acudimos a la función de estrategia ('policy').

4.4.2. Función de estrategia

La situación que pretendemos analizar es la de una agente dotado de capacidad de aprendizaje que interactúa con su entorno a lo largo del tiempo. El agente percibe de alguna manera aspectos de lo que le rodea, y toma decisiones con la finalidad de conseguir un objetivo, que en este caso consiste en maximizar las recompensas que recibe de su entorno.

DEFINICIÓN 4.5: Función de estrategia

La función de estrategia es la función que asigna a cada estado $s \in \mathcal{S}$ la acción a llevar a cabo cuando el agente se encuentra en él: $\pi(s) = a \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$.

Para cualquier Proceso de Decisiones de Markov (MDP) existe una estrategia (policy) que es óptima π^* , tal que: $v^{\pi^*}(s) \geq v^{\pi}(s) \forall \pi$. La expresión en términos de la función valor estado-acción sería:

$$\pi^*(s) = \underset{a' \in \mathcal{A}}{\arg \max} \ q^{\pi}(s, a') \tag{4.5}$$

4.5. Estimación de las funciones de valor

Para obtener una aproximación a la función de estretegia óptima se emplean métodos de aprendizaje y se basan exclusivamente en la recolección de experiencias. Cuando nuestro objetivo consiste simplemente en estimar una de las funciones de estado para una cierta estrategia π , estamos ante un problema de **predicción**. Mientras que si buscamos el valor óptimo de la función de estrategia estamos ante un problema de **control**. Según su naturaleza podemos distinguir:

Método de Montecarlo: alude a una clase de algoritmos que promedian las recompensas para cada estado-acción a partir de trayectorias o episodios completos (Ver figura 4.5).

Métodos de aprendizaje por Diferencias Temporales (TD): son un tipo de algoritmos que actualizan los valores paso a paso, empleando lo que se llama el error o diferencia temporal, que es la diferencia entre una estimación adelante (a un paso o a varios) y el valor estimado al paso corriente. Este procedimiento de obtener una estimación en base a otra estimación de pasos siguientes recibe el nombre de *Bootstrapping*. Cuantos más periodos hacia adelante consideremos más nos aproximamos al método de Montecarlo (ver fig. 4.5).

Figura 4.5: Conforme hacemos crecer los pasos hacia delante que tenemos en cuenta a la hora de realizar la estimación, nos aproximamos al caso límite: el método de Monte Carlo, que ha de disponer de toda la trayectoria antes de realizar los cálculos.

Según sea el objetivo del proceso de aprendizaje podemos distinguir:

- -Método de las funciones de valor (*Value based methods*). Se emplean algoritmos que estiman alguna de las funciones que hemos visto (la función de estado, o la función de estado-acción).
- -Método de las función de estrategia (Policy based methods). Una forma alternativa consiste en construir una forma parametrizada de la función de estrategia ($\pi_{\theta}(s)$), y optimizar directamente sobre ella. Un pequeño esquema lo podemos encontrar en la figura 4.6.
- -Método del actor-crítico (Actor-Critic methods). Consiste en aprender simultaneamente una aproximación tanto a la función de valor como a la función de estrategia. El 'crítico' alude a la función de valor, que se encarga de juzgar la bondad de los valores que genera el 'actor' (la

función de estrategia) (Ver figura ??).

El procedimiento que se aplica en el caso de los métodos de Diferencias Temporales está inspirado en la Programación Dinámica. Si pretendemos encontrar el valor de un determinado estado en un proceso de Markov, la ecuación de Bellman establece una relación del tipo: $Valor(s) = R(s, a, s') + \gamma \ Valor(s')$.

Esto se traduce en que el valor de un determinado estado 's' se puede expresar como la suma de la Recompensa inmediata (resultado de llevar a cabo la transición de s a s' por medio de la ejecución de la acción a) más el valor descontado del siguiente estado s'. De dicha expresión surgen un conjunto de ecuaciones, resultado de aplicar recursivamente dicha relación. La aplicación hacia atrás, una vez llegado al estado terminal del que podemos establecer su valor, conduce a la obtención del valor deseado.

Figura 4.6: Algunos de los algoritmos empleados en Aprendizaje por Refuerzo (Reinforcement Learning).

4.5.1. Método de Montecarlo (MC)

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

4.5.2. Método de las diferencias temporales (TD)

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

4.6. Estimación de la función de estrategia

La situación que pretendemos analizar es la de una agente dotado de capacidad de aprendizaje que interactúa con su entorno a lo largo del tiempo. El agente percibe de alguna manera aspectos de lo que le rodea, y toma decisiones con la finalidad de conseguir un objetivo, que en este caso consiste en maximizar las recompensas que recibe de su entorno.

La situación que pretendemos analizar es la de una agente dotado de capacidad de aprendizaje que interactúa con su entorno a lo largo del tiempo. El agente percibe de alguna manera aspectos de lo que le rodea, y toma decisiones con la finalidad de conseguir un objetivo, que en este caso consiste en maximizar las recompensas que recibe de su entorno.

Objetivo

El objetivo consiste en encontrar la estrategia óptima $(\pi^*(s))$, que será aquella que conduzca a unas recompensas acumuladas máximas, a lo largo de las trayectorias (τ) que genera la estrategia en cuestión $(\tau \sim \pi)$. Como las recompensas se evalúan en términos de esperanza se notará: $\mathbb{E}_{\tau \sim \pi}$ o abreviadamente: \mathbb{E}_{π} .

Se suele introducir un factor de descuento γ , que refleja que las ganancias futuras tienen un menor valor para nosotros que las presentes. El objetivo deseable para el agente, por tanto, consistirá en maximizar el valor esperado descontado de las recompensas acumuladas. El 'retorno' de una cierta trayectoria ' τ ' vendrá dado por:

$$G(\tau) = R_1 + \gamma \cdot R_2 + \gamma^2 \cdot R_3 + \dots + \gamma^T \cdot r_{T+1} = \sum_{i=0}^T \gamma^i \cdot R_{i+1}$$
 (4.6)

Y por tanto nos interesa maximizar la expresión siguiente (tomando generalmente $T = \infty$):

$$\mathbb{E}_{\tau \sim \pi}[G(\tau)] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{i=0}^{T} \gamma^{i} \cdot R_{i+1} \right]$$
(4.7)

El proceso de búsqueda de la mejor estrategia es un proceso iterativo que se concreta en dos pasos, uno de evaluación y otro de mejora.

- Evaluación de las estrategias (*Policy Evaluation (PE)*). Consiste en calcular la función de valor asociada a la estrategia en consideración π .
- Mejora de la estrategia (Policy Improvement (PI)). Se realiza a través de la selección de la acción que consigue mejores resultados en cada estado, y se realiza iterativamente.

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_t + \gamma \cdot G_{t+1}|s]$$
(4.8)

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[R_t + \gamma \cdot G_{t+1} | s, a]$$
(4.9)

4.7. Value based Methods.

Con los algoritmos que analizamos a continuación podemos aproximar, por medio del aprendizaje, una de las funciones de valor que hemos visto. A partir de las valoraciones que proporciona de los pares (s,a) - en el caso de la función Q -, es inmediato el obtener la estrategia óptima.

4.7.1. SARSA

El algoritmo fue introducido por Rummery & Naranjan (1994) [162]. La regla de actualización de la función de valor estado-acción es la siguiente:

$$Q(s,a) \longleftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot Q(s',a') - Q(s,a)] \tag{4.10}$$

Algoritmo 4 - SARSA

```
begin
| Inicializar la tasa de aprendizaje \alpha
| Inicializar la probabilidad de exploración \epsilon
| Inicializar arbitrariamente Q(s,a) \ \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}
| repeat
| Inicializar s
| Elegir acción a
| repeat
| Observar: r y s'
| Elegir acción a' desde s' (\epsilon-greedy)
| Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot Q(s',a') - Q(s,a)]
| s \leftarrow s'
| a \leftarrow a'
| until (s \ estado \ Terminal)
| until (s \ estado \ Terminal)
```

Regla de actualización 1 (SARSA):

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot Q(s',a') - Q(s,a)]$$

equivalentemente:

$$Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [r + \gamma \cdot Q(s',a')]$$

4.7.2. Q-learning

Aparecen métodos TD en el artículo clásico de Sutton (1988) [191]. La regla de actualización de la función de valor estado-acción es la siguiente:

$$Q(s,a) \longleftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a' \in \mathcal{A}} Q(s',a')) - Q(s,a)]$$
(4.11)

Algoritmo 5 - Q-Learning

```
begin
Inicializar la tasa de aprendizaje \alpha
Inicializar la probabilidad de exploración \epsilon
Inicializar arbitrariamente Q(s,a) \ \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}
repeat
Inicializar s
Elegir acción a
repeat
Observar: r y s'
Elegir acción a' desde s' (\epsilon-greedy)
Q(s,a) \longleftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a' \in \mathcal{A}} Q(s',a') - Q(s,a)]
s \longleftarrow s'
a \longleftarrow a'
until (s \ estado \ Terminal)
until (s \ estado \ Terminal)
```

```
Regla de actualización 2 (Q-Learning): Q(s,a) \longleftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a' \in \mathcal{A}} Q(s',a') - Q(s,a)] equivalentemente: Q(s,a) \longleftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a' \in \mathcal{A}} Q(s',a')]
```

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

4.8. Policy Methods.

A continuación abordamos el estudio de aquellos algoritmos que permiten el aprendizaje directo de la función de estrategia π . Entre las ventajas se encuentra la convergencia local asegurada a un óptimo local (tal y como demostraron Sutton et al. (2000)) [193].

4.8.1. REINFORCE

Se trata de un algoritmo clásico debido a Ronald J. Williams (1992) [212]. Su utilidad reside en que permite aprender la función π , lo que conduce a obtener como resultado las probabilidades de los cursos de acción a partir de los estados.

La idea sobre la que se fundamenta es la de incrementar sucesivamente (a lo largo del aprendizaje) las probabilidades asociadas a acciones que conducen a buenos resultados. La estrategia óptima será la que maximice el total acumulado de las recompensas descontadas. En términos precisos, la función objetivo a maximizar sera:

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi}[R(\tau)] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} \cdot r_{t} \right]$$
(4.12)

que es la ganancia esperada sobre todas las trayectorias generadas por el agente. Esto se traduce en:

$$\max_{\theta} J(\pi_{\theta}) \tag{4.13}$$

Para ello acudimos al método de descenso por el gradiente, por lo que los parámetros se verán actualizados a partir de la siguiente regla:

$$\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} J(\pi_{\theta})$$
 (4.14)

y donde el gradiente de la función de estrategia (π) adopta la expresión que aparece a continuación:

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi} [R(\tau)] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} R_{t}(\tau) \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
(4.15)

Mejora: REINFORCE empleando una linea base.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

Algoritmo 6 - REINFORCE

```
begin
```

```
Inicializar la tasa de aprendizaje \alpha
Inicializar los pesos \theta de la red neuronal \pi_{\theta}
for episodio = 1 to MAX do

Generar una trayectoria \tau = (s_0, a_0, r_0, ..., s_T, a_T, r_T) empleando la estrategia en vigor \pi
Establecer \nabla_{\theta}J(\pi_{\theta}) = 0
for t = 0 to T do

\begin{bmatrix} R_t(\tau) = \sum_{t=0}^T \gamma^t \cdot r_t \\ \nabla_{\theta}J(\pi_{\theta}) \longleftarrow \nabla_{\theta}J(\pi_{\theta}) + R_t(\tau) \cdot \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) \end{bmatrix}
/* Actualizamos los parámetros de la red neuronal
\theta \longleftarrow \theta - \alpha \cdot \nabla_{\theta}J(\theta)
```

4.8.2. REINFORCE with reward-to-go

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

4.8.3. REINFORCE with baseline

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

4.9. Actor-Critic Methods.

Los métodos que se engloban bajo este epígrafe combinan los métodos de las funciones de valor y el ajuste de una función de estrategia. Los principales modelos son los que se presentan a continuación.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

Figura 4.7: Esquema de las interacciones de un agente implementando un sistema actor-crítico (Adaptado de: Tsitsiklis, J. & Bertsekas, D. (1996) [28] - pag. 36).

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

4.10. Transferencia de aprendizaje: el problema de la representación

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

4.11. Otras lineas de investigación.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

4.11.1. Imitation Learning

- Dataset Aggregation (DAgger)
- Deep Q-Learning from Demonstrations (DQfd)
- Generative Adversarial Imitation Learning (GAIL)
- Inverse Reinforcement Learning (IRL) Objetivo: Aprender la función de recompensa

4.11.2. Meta Reinforcement Learning

4.11.3. Hierarchical Reinforcement Learning

4.11.4. Imagination

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

DE CARA A LA IMPLEMENTACIÓN:

Algunas webs de interés con los entornos de prueba son Open AIGym ³ y Universe ⁴. También han surgido implementaciones en código abierto de los principales algoritmos de aprendizaje por

³WEB Open AIGym: https://gym.openai.com/

⁴WEB Universe: https://openai.com/blog/universe/

refuerzo como Stable Baselines⁵, lo que permite automatizar la tarea de aprendizaje de los agentes.

En el ámbito más específico de la Simulación social encontramos abundantes aplicaciones ligadas sobre todo al transporte. Aquí existen multitud de problemas en los que es necesario contar con agentes dotados de inteligencia, y donde el Aprendizaje por refuerzo proporciona buenos resultados.

Encontramos estudios sobre la coexistencia de peatones y conductores, y cómo lograr una reducción de accidentes de transeuntes [111] [57], sobre la regulación óptima del tráfico en las distintas situaciones que puedan provocar los agentes también se han realizado estudios [42]. Del lado de la economía encontramos por ejemplo la simulación de mercados bursátiles [170] o la gestión de recursos comunes [147].

Estudios sobre conflictos e insurgencia [48].

Planteado explícitamente como un dilema social secuencial tenemos el trabajo de referencia de Leibo et al. (2017) [110]. 213

 $^{^5 \}mathrm{WEB}\ \mathrm{Stable}\ \mathrm{Baselines}$: https://stable-baselines.readthedocs.io/en/master/

4.12. Procesos de Decisión de Markov

En el presente apartado ensamblamos todas las piezas que hemos manejado previamente para así, fijar las condiciones que nos permiten resolver el problema de toma de decisiones óptimas secuenciales, cuando el enttorno está sujeto a un comportamiento aleatorio. Para ello damos un conjunto de definiciones introductorias que nos permiten formalizar el tipo de proceso que buscamos.

Proceso estocástico. Si observamos un sistema que evoluciona aleatoriamente, siguiendo una determinada ley de probabilidad, y dicho sistema es observado en tiempos discretos: n = 0, 1, 2, ..., podemos definir una variable aleatoria X_n asociada a cada instante temporal de observación. Esta v.a. vendría a representar el estado del sistema en el instante de observación 'n'. En términos formales se ha difinido un **proceso estocástico en tiempo discreto** $(\{X_n, n \geq 0\})$.

El proceso estocástico serían este conjunto de variables aleatorias indexadas, que toman valor en un determinado conjunto \mathcal{S} , llamado el espacio de estados del proceso estocástico.

Figura 4.8: Representación de diversos tipos de procesos.

Un tipo especial de proceso es aquel que cumple la propiedad de Markov, que consiste básicamente en que, el pasado es irrelevante a la hora de predecir el futuro y únicamente aporta información el estado actual del sistema. En términos probabilísticos consistiría en que: $p(X_{n+1} = j \mid X_n = i, X_{n-1}, ..., X_1, X_0) = p(X_{n+1} = j \mid X_n = i)$. En este caso el proceso $\{X_n, n \geq 0\}$ recibe el nombre de $Cadena\ de\ Markov\ (Kulkarni, V.G.\ (2016)\ [105])$.

Proceso de Markov oculto (parcialmente observable) (HMM - $Hidden\ Markov\ Model$). Este tipo de modelo es apropiado cuando los estados del sistema bajo estudio no son diréctamente observables ($\{X_n,\ n \geq 0\}$) por lo que no podemos determinar con precisión el estado del sistema; pero, podemos observar ($\{Y_n,\ n \geq 0\}$) que depende del proceso de Markov X_n .

En la figura 4.8 podemos observar la representación de varios tipos de procesos, entre ellos un proceso HMM en B).

Proceso de decisiones de Markov. La situación que nos interesa analizar es la de un sistema probabilístico que evoluciona a lo largo del tiempo, y sobre el que podemos influir con la toma de decisiones, para conseguir que el sistema logre un desempeño óptimo (Puterman, M. L. (2014) [155]). La definición formal sería la que aparece a continuación.

DEFINICIÓN 4.6: Proceso de Decisiones de Markov (MDP)

Decimos que se ha definido un **Proceso de Decisiones de Markov** (MDP - Markov Decision Process), representado por la tupla: (S, A, R, p), cuando quedan especificados cada uno de los siguientes elementos:

- Espacio de estados: S. Una transición quedará representada mediante el estado inicial s y el estado destino s', (donde s, $s' \in S$).
- Espacio de acciones: \mathcal{A} . $(a \in \mathcal{A})$.
- Función de Recompensa: R.

$$\mathbf{R} \colon \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$$
$$(s, a, s') \longmapsto r$$

■ Probabilidades de Transición: $p(\cdot)$. Si suponemos definidas las variables aleatorias en tiempo discreto (t = 1, 2, ...): S_t, A_t que toman valores respectivamente en los conjuntos anteriores $(S_t \in \mathcal{S}, A_t \in \mathcal{A})$, y H_t representa la historia hasta t, entonces:

$$P(S_{t+1} = s' \mid H_t) = P(S_{t+1} = s' \mid S_t = s, A_t = a) = p(s' \mid s, a)$$

Si no se conocen las probabilidades de transición podemos acudir a métodos experimentales. Una posibilidad pasaría por obtener estimaciones explícitas de los parámetros del MDP (Moore, A. & Atkeson, C. (1993) [126]); es decir, de las probabilidades de transición y de las recompensas, y entonces aplicar los métodos de Programación Matemática.

Sin embargo, la opción más habitual consiste en el empleo de métodos de aprendizaje que no necesitan manejar expresamente las probabilidades. Con estos métodos podemos obtener la estimación del valor de cada estado, y determinar las acciones óptimas que conducen a ellos.

Entre los algoritmos de aprendizaje que se utilizan, podemos distinguir algoritmos *off-line*, que llevan a cabo la computación antes del proceso de control/decisión (Un ejemplo lo tenemos en el uso de Redes Neuronales, que necesitan un procesamiento por lotes y por tanto la información ha de ser acumulada y almacenada previamente). Por el contrario los algoritmos *on-line* llevan a cabo la computación cuando el proceso comienza, y los datos van estando disponibles.

EJEMPLO 4.1: MDP

Problema de sustitución de maquinaria. Supongamos que una determinada maquinaria puede pasar por tres estados $S = \{s_1, s_2, s_3\}$ correspondiéndose con la calidad de la máquina en orden creciente.

El estado del sistema evoluciona secuencialmente por etapas $(x_k, k = 0, 1, ...)$, y el decisor puede actuar llevando a cabo una de las dos acciones siguientes en cada paso $\mathcal{U} = \{u_1, u_2\}$:

$$\begin{cases} u_1 : "Reemplazar la máquina" \\ u_2 : "Seguir usando la máquina" \end{cases}$$

Supongamos que θ representa la probabilidad de que la maquinaria se deteriore hasta el nivel inferior de calidad. Entonces las probabilidades del proceso de decisiones de Markov son las que aparecen a continuación.

$$P(u_1) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad P(u_2) = \begin{bmatrix} 1 & 0 & 0 \\ \theta & (1-\theta) & 0 \\ 0 & \theta & (1-\theta) \end{bmatrix}$$

Si notamos s_i como i para simplificar notación, el proceso de funcionamiento del sistema puede representarse como refleja el siguiente gráfico, donde las probabilidades asociadas a cada transición aparecen sobre cada arco.

Cada decisión tiene un coste asociado. Si llevamos a cabo la acción u_1 (reemplazar la máquina) desde cualquier estado tenemos un coste de $c(x,u_1)=R$. Si por el contrario optamos por la acción u_2 y se deja funcionar sin recambiar, incurrimos en el mismo coste sea cual sea el estado: $c(x,u_2)=c, \quad x=1,2,3$.

El objetivo consiste en encontrar la secuencia de decisiones que permitan minimizar el coste asociado a la operación de la máquina (revisar la notación).

$$\mu^* = \min_{\mu} \mathbb{E}_{\mu} \left[\sum_{k=0}^{N-1} c(x_k, u_k) \mid x_0 \right]$$

Empleando la ecuación de Bellman, utilizamos programación dinámica, sustituyendo recursivamente hacia atrás, empezando por $J_N(i)=0,\ i\in X$, y prosiguiendo con k=N-1,...,0:

$$J_k(i) = min \{ R + J_{k+1}(1), c(i,2) + \sum_{j=1}^{3} P_{ij}(2) \cdot J_{k+1}(j) \}$$
 $i \in \{1,2,3\}$

4.13. MDP Parcialmente Observable (POMDP)

El Proceso de Markov Parcialmente Observable (POMDP - Partially Observable Markov Decision Process) es una generalización del Proceso de Markov (MDP), donde permitimos la existencia de incertidumbre sobre el estado del sistema. Una primera recopilación de resultados la podemos encontrar en Monahan, G.E. (1982) [125].

La falta de conocimiento sobre el estado del sistema se suele sustituir por un estado interno, una creencia del agente sobre las condiciones exteriores (Cassandra, A. R. et al. (1994) [44]. Esto se traduce en una distribución de probabilidad $(b(\cdot))$ sobre \mathcal{S} basada en las observaciones llevadas a cabo $(z, \text{ donde } z \in \mathcal{Z})$.

DEFINICIÓN 4.7: Proceso de Decisiones de Markov Parcialmente Observable

Decimos que se ha definido un **Proceso de Decisiones de Markov Parcialmen**te **Observable** (**POMDP** - Partially Obsrvable Markov Decision Process), notado (S, A, Z, R, p, o), cuando quedan especificados cada uno de los siguientes elementos:

- Espacio de estados: S. Una transición quedará representada mediante el estado inicial s y el estado destino s' (donde s, $s' \in S$), aunque no es observable por el agente.
- Espacio de acciones: A. $(a \in A)$.
- Espacio de observaciones: \mathcal{Z} . $(z \in \mathcal{Z})$.
- Función de Recompensa.

$$\mathbf{R} \colon \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$$
$$(s, a, s') \longmapsto r$$

Y si suponemos definidas las variables aleatorias en tiempo discreto (t = 1, 2, ...): S_t, A_t, Z_t que toman valores respectivamente en los conjuntos anteriores $(S_t \in \mathcal{S}, A_t \in \mathcal{A}, Z_t \in \mathcal{Z})$, y H_t el historial pasado de transiciones hasta el instante t, entonces las probabilidades que gobiernan la dinámica del sistema vienen dadas por:

• Probabilidades de Transición: $p(\cdot)$.

$$P(S_{t+1} = s' \mid H_t) = P(S_{t+1} = s' \mid S_t = s, A_t = a) = p(s' \mid s, a)$$

• Probabilidades de las observaciones: $o(\cdot)$.

$$P(Z_{t+1} = z \mid H_t) = P(Z_{t+1} = z \mid S_t = s, A_t = a) = o(z|s, a)$$

Algunos métodos de solución los podemos encontrar además en Kaelbling, L. P. et al. (1998) [96]. También en Jaakkola, T. et al. (1994) [92], quienes se centran en identificar los parámetros del MDP subvacente para aplicar luego los métodos tradicionales de Programación Dinámica.

En lo que sigue analizaremos en profundidad la implementación de métodos de solución para el Proceso de Decisiones de Markov.

EJEMPLO 4.2: MDP Parcialmente Observable (POMDP)

Problema de sustitución de maquinaria. Supongamos que una determinado proceso de producción puede pasar por dos estados $S = \{s_1, s_2\}$ correspondiéndose con:

$$\left\{\begin{array}{l} s_1: \text{ "Funcionamiento defectuoso"} \\ s_2: \text{ "Sustituci\'on de maquinaria"} \end{array}\right.$$

El estado del sistema evoluciona secuencialmente por etapas $(x_k, k = 0, 1, ...)$, y el decisor puede actuar llevando a cabo una de las dos acciones siguientes en cada paso $\mathcal{U} = \{u_1, u_2\}$, donde:

$$\begin{cases} u_1 : "Reemplazar la máquina" \\ u_2 : "Seguir usando la máquina" \end{cases}$$

Si notamos s_i como i para simplificar notación, el proceso de funcionamiento del sistema puede representarse como refleja el siguiente gráfico.

La dificultad que surge reside en que el estado x_k no es directamente observable. Únicamente podemos juzgarlo indirectamente en base a la calidad del producto que fabrica: $\mathcal{Y} = \{y_1, y_2\}$.

$$\begin{cases} y_1 : "Producto de mala calidad" \\ y_2 : "Producto de buena calidad" \end{cases}$$

Si la probabilidad de que una máquina defectuosa genere un producto de mala calidad es p $(p(y_1|x=1)=p)$ y la probabilidad de que la calidad sea buena 1-p $(p(y_2|x=1)=1-p)$; y la probabilidad de que una máquina en estado óptimo genere un producto de mala calidad es 1-q $(p(y_1|x=1)=1-q)$ y la probabilidad de que la calidad sea buena q $(p(y_2|x=1)=q)$, entonces el sistema quedaría representado como:

Y ahora tenemos en cuenta las transiciones relacionadas con cada acción que puede tomar el agente.

Y ahora tenemos en cuenta las transiciones relacionadas con cada acción que puede tomar el agente.

Para cada una de las decisiones ($u \in \mathcal{U}$), la matriz P(u) recogerá las probabilidades: $P_{ij}(u) = p(x_{k+1} = j \mid x_k = i, u_k = u) \quad \forall i, j \in \mathcal{X}$.

En concreto, la matriz de probabilidades de transición asociadas a la decisión u_1 :

Y si la decisión tomada es u_2 tenemos que la matriz de probabilidades asociada es la siguiente:

La dificultad que surge reside en que el estado x_k no es directamente observable. Únicamente podemos juzgarlo indirectamente en base a la calidad del producto que fabrica.

Ahora para cada acción $u \in \mathcal{U}$, la matriz B(u) recoge la distribución de probabilidad de las observaciones, asociada a la decisión u. En concreto tenemos que, los elementos que la constituyen son de la forma:

$$B_{iy}(u) = p(y_{k+1} = y \mid x_{k+1} = i, u_k = u) \ \forall i \in \mathcal{X}, \ y \in \mathcal{Y}$$

de esta matriz extraemos las matrices $B_y(u)$ $y \in \mathcal{Y}$, colocando en la diagonal de una matriz (0_{XxX}) la probabilidad de que cada uno de los estados del sistema genere la observación en cuestión 'y':

$$B_{y}(u) = \begin{pmatrix} B_{1y}(u) & 0 & \cdots & 0 \\ 0 & B_{2y}(u) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{Xy}(u) \end{pmatrix}$$
(4.16)

Lo que en nuestro caso se traduce en (creo que hay error en el libro, lo corrijo):

$$\mathbf{B} = \begin{bmatrix} q & (1-q) \\ (1-p) & p \end{bmatrix} \implies B_1 = \begin{bmatrix} q & 0 \\ 0 & (1-p) \end{bmatrix} \qquad B_2 = \begin{bmatrix} (1-q) & 0 \\ 0 & p \end{bmatrix}$$

Para obtener la acción óptima necesitamos la distribución a posteriori. Llamémosla:

$$\pi_k = [\pi_k(1), ..., \pi_k(X)]'$$

y que recoge la estimación del agente de la probabilidad de cada estado oculto, dada la información disponible hasta el periodo k ($\mathcal{I}_k = \{\pi_0, u_0, y_1, ..., u_{k-1}, y_k\}$):

$$\pi_k(i) = p(x_k = i | \mathcal{I}_k) \ i \in X$$

Tenemos que π_k es un estadístico suficiente, que no crece con la dimensión k. Para su cálculo nos serviremos de T, un filtro HMM (*Hidden Markov Model filter* - filtro de una modelo oculto de Markov). Es decir, el estado de creencia (*belief state o information state*) π_k se obtiene como:

$$\pi_k = T(\pi_{k-1}, y_k, u_{k-1})$$
 donde:

$$T(\pi, y, u) = \frac{B_y \cdot P^t(u) \cdot \pi}{\sigma(\pi, y, u)} \quad siendo: \quad \sigma(\pi, y, u) = \mathbf{1}_X^t \cdot B_y(u) \cdot P^t(u) \cdot \pi$$

Finalmente para obtener las acciones óptimas nos basamos en el estado de creencia. Si estamos en el periodo k, tendremos que $u_k = \mu_k^*(\pi_k)$.

Para la obtención de la estrategia óptima, vendrá en un problema finito de la aplicación recursiva hacia atrás de las siguiente expresiones.

$$J_k(\pi) = \min_{u \in \mathcal{U}} \left\{ c'_u \pi + \sum_{y \in \mathcal{Y}} J_{k+1}(T(\pi, y, u)) \cdot \sigma(\pi, y, u) \right\}$$

$$\mu_k^*(\pi) = \underset{u \in \mathcal{U}}{arg \min} \left\{ c_u' \ \pi \ + \ \sum_{y \in \mathcal{V}} J_{k+1}(T(\pi, y, u)) \cdot \sigma(\pi, y, u) \right\}$$

lo que se traduce en:

$$J_k(\pi) = \min_{u \in \{u_1, u_2\}} \left\{ c'_u \ \pi \ + \ J_{k+1}(T(\pi, y_1, u)) \cdot \sigma(\pi, y_1, u) \ + \ J_{k+1}(T(\pi, y_2, u)) \cdot \sigma(\pi, y_2, u) \right\}$$

realizando los cálculos recursivamente hacia atrás tendremos:

$$J_{N}(\pi) = 0$$

$$J_{N-1}(\pi) = \min_{u \in \{u_1, u_2\}} \{ c'_u \pi + J_N(T(\pi, y_1, u)) \cdot \sigma_{(\pi, y_1, u)} + J_N(T(\pi, y_2, u)) \cdot \sigma_{(\pi, y_2, u)} \}$$

$$J_{N-2}(\pi) = \min_{u \in \{u_1, u_2\}} \{ c'_u \pi + J_{N-1}(T(\pi, y_1, u)) \cdot \sigma_{(\pi, y_1, u)} + J_{N-1}(T(\pi, y_2, u)) \cdot \sigma_{(\pi, y_2, u)} \}$$

En resumen, encadenando valores recursivamente hacia atrás tenemos:

$$J_{N}(\pi) = 0$$

$$J_{N-1}(\pi) = \min \left\{ c'_{u_1} \pi + J_N(T(\pi, y_1, u_1)) \cdot \sigma_{(\pi, y_1, u_1)} + J_N(T(\pi, y_2, u_1)) \cdot \sigma_{(\pi, y_2, u_1)}, \right.$$

$$c'_{u_2} \pi + J_N(T(\pi, y_1, u_2)) \cdot \sigma_{(\pi, y_1, u_2)} + J_N(T(\pi, y_2, u_2)) \cdot \sigma_{(\pi, y_2, u_2)} \right\}$$

$$= \min \left\{ c^t_{u_1} \cdot \pi, c'_{u_2} \cdot \pi \right\}$$

$$J_{N-2}(\pi) = \min \left\{ c'_{u_1} \pi + J_{N-1}(T(\pi, y_1, u_1)) \cdot \sigma_{(\pi, y_1, u_1)} + J_{N-1}(T(\pi, y_2, u_1)) \cdot \sigma_{(\pi, y_2, u_1)}, \right.$$

 $c'_{u_2} \pi + J_{N-1}(T(\pi, y_1, u_2)) \cdot \sigma_{(\pi, y_1, u_2)} + J_{N-1}(T(\pi, y_2, u_2)) \cdot \sigma_{(\pi, y_2, u_2)} \}$

Y ahora tenemos en cuenta las transiciones relacionadas con cada acción que puede tomar el agente.

Las primeras iteraciones quedarían:

La gráfica con la evolución quedaría:

Este es el resultado al que se llega.

Texto para colocar el resumen.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 5

Aprendizaje por refuerzo profundo (Deep RL)

Cuando el número de estados y de acciones es reducido, la **representación tabular** de la función de valor $(J(x) \circ Q(x,u))$ surge de manera natural, tal y como hemos estado utilizando hasta ahora. Sin embargo, cuando el sistema bajo estudio tiene un gran número de estados o acciones, la utilización de matrices es una vía computacionalmente muy costosa. En estas condiciones lo adecuado consiste en optar por una **representación compacta** (ver capítulo 2), empleando aproximadores funcionales.

De manera simplificada nos enfrentamos al problema de construir una función $y = f(x, \theta)$ a partir de unos datos de entrenamiento (x_i, y_i) , de tal manera que dicha función se ajuste a ellos lo mejor posible. En nuestro caso, dada una estrategia μ , los valores podrían ser $(i, J^{\mu}(i))$ $i \in X$, obtenidos mediante experimentación o simulación.

Este esquema se traduce en encontrar el vector de parámetros θ^* que minimice una cierta función de pérdida (\mathcal{L}) que cuantifica de alguna manera las discrepancias entre lo observado (y) y lo predicho $(f(x,\theta))$. Es, decir:

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \mathcal{L}(\theta)$$

La elección del modelo a utilizar dependerá en gran medida del tipo de problema a tratar, pero el uso de Redes Neuronales es lo más común en la actualidad. Una de las razones reside en que es un aproximador universal (Hornik, et. al (1989) [86]), y la utilización de múltiples capas de neuronas puede ajustar señales muy complejas (Cybenko, G. (1989) [53]). Es por lo que procedemos a abordar este tema en las secciones que siguen.

5.1. Redes Neuronales

La idea principal detrás de las redes neuronales es la de componer recursivamente una función , para generar progresivamente una señal de respuesta cada vez más compleja. Utilizando la siguiente notación (Murphy, K. P. (2022) [128]), sea $f_l(\mathbf{x}) = f(\mathbf{x}, \theta_l)$, donde l = 1, ..., L la función paramétrica de ajuste sería:

$$f(\mathbf{x}, \boldsymbol{\theta}) = f_L(f_{L-1}(\cdots(f_1(\mathbf{x}))\cdots))$$

La función $f_l(x)$ se denomina **función de activación** y actúa como unidad de procesamiento. Si θ_l son los parámetros de la capa l, llamemos W_l a los pesos que afectan a una neurona en particular. Entonces la función de activación actúa transformando el producto de las entradas (inputs) **x** por los pesos W_l más una constante arbitraria b. En la figura 5.1 podemos observar algunas de las más habituales.

Figura 5.1: Algunas funciones de activación usuales (donde: $net = W \cdot input + b$).

Las interconexiones entre estas unidades de procesamiento quedan apiladas en forma de capas, tal y como refleja la figura 5.2.

Figura 5.2: Representación gráfica del procesamiento de información que realiza una Red Neuronal. Se han empleado unos inputs de dimensión 'p': $\mathbf{x} = (x_1, x_2, ..., x_p)$ y dos capas ocultas de neuronas. La neurona final genera un valor \mathbf{y} . En todos los casos se ha empleando una función de activación tangente hiperbólica.

Tras disponer de una modelo, el paso siguiente consiste ajustar los parámetros para conseguir que la señal que genera la red neuronal produzca los menores errores de predicción, dados los valores respuesta observados. Este proceso recive el nombre de **entrenamiento**.

5.2. Entrenamiento de una red neuronal

Dados un conjunto de datos muestrales (x_i, y_i) , buscamos ajustar los parámetros de la red neuronal dada por $f(\mathbf{x}, \theta)$. Los parámetros óptimos θ^* son aquellos que hacen que las diferencias $(y_i - f(x_i))$ sean mínimas en algún sentido. La forma de tratar estas diferencias vendrá dada por una función g, que suele consistir en promediar los valores cuadráticos de los errores. Esta función es la llamada función de pérdida \mathcal{L} .

Empleando métodos tradicionales de optimización, tenemos que el óptimo se encontrará actualizando los valores de los parámetros en el sentido dado por el mayor gradiente. El proceso esquemáticamente consistiría en:

- $\begin{cases} 1) & \text{Especificación de la función de pérdida}: \\ \mathcal{L}(\theta) = g(y (f(\mathbf{x}, \theta))) \end{cases}$ $2) & \text{Cálculo del gradiente}: \\ \nabla \mathcal{L}(\theta) \\ 3) & \text{Actualización de parámetros de la red:} \\ \theta = \theta \gamma \cdot \nabla \mathcal{L}(\theta)$

El procedimiento se traduce en un desplazamiento por la curva de error guiados por el valor del gradiente. En la figura 5.3 podemos observar una representación del proceso de optimización.

Figura 5.3: Obtención del vector de parámetros óptimo θ^* .

En la medida en que utilizamos el gradiente para avanzar en la actualización de los parámetros de la red, se pueden presentar algunos problemas como la desaparición del gradiente o su crecimiento expolsivo que convierte el aprendizaje en muy intestable. Existen métodos que permiten corregir algunas de estas deficiencias y ayudar a que el algoritmo de optimización encuentre el óptimo (ver: Goodfellow, I. et al (2016) [71]).

5.3. Arquitecturas de Redes Neuronales

El origen de las redes neuronales se retrotrae a un artículo de McCulloch, W. & Pitts, W. (1943) [119], en el que los autores plantean un modelo de computación basado en el funcionamiento de las neuronas biológicas. Básicamente se trata de una función umbral que se activa (valor 1) cuando la suma de los inputs por unos ciertos pesos más una constante superan un cierto valor (ver fig. 5.4). Sería algo más tarde cuando se propondría el Perceptrón (Rosenblatt, F. (1958) [160]), como una unidad computacional dotada de aprendizaje, que varía sus parámetros para adaptarse a la información que se le proporciona.

Sus limitaciones en el procesamiento de información, tal como demostraron Minsky, M. & Seumour, P. (1969) [117], hicieron que la comunidad científica perdiera el interés en este tipo de modelos. Sin embargo el descubrimiento, años más tarde, de construcciones más complejas y la forma de entrenarlas óptimamente provocó el resurgimiento de este área de investigación.

En el siguiente esquema se recogen algunas de las principales arquitecturas de Redes Neuronales, y los tipos de datos cada vez más complejos que son capaces de procesar.

- MLP (Multi-Layer Perceptron). Este tipo de red se construye conectando neuronas y apilando capas, todas ellas con conexiones exclusivamente hacia adelante (Feed Forward Network), y que genera al final una señal de respuesta. Se emplea como un aproximador funcional y se entrena mediante retroprogapación de error, tal y como vimos.

 Los autoencoders son un tipo especial de red multicapa alimentada hacia delante que es entrenada para generar una salida lo más aproximada posible a la entrada que se le proporciona (Bourlard, H. & Kamp, Y. (1988) [35]). Esta red está diseñada limitando la capacidad de las capas ocultas internas, de manera que impida a la red caer en el aprendizaje obvio de reconstruir de manera perfecta la señal de entrada. Esto permite a la red funcionar como una mecanismo para la reducción de las dimensiones de los datos.
- CNN (Convolutional Neural Network). Su origen se encuentra en el Neocognitron (Fukushima, K. & Miyake, S. (1982) [64] y su aplicación a detección de patrones Fukushima, K. (1988) [63]), que se basaba en hallazgos sobre el procesamiento de la información visual (Hubel, D. H. & Wiesel, T. N. (1962) [89]). Posteriormente se desarrolló un modo eficiente de aprendizaje por retropropagación del error (no con pesos asignados manualmente) (Le Cun, Y. et al. (1989) [109]). Se utiliza fundamentalmente en el procesamiento de imágenes.
- RNN (Recurrent Neural Networks). Este tipo de arquitectura es capaz de procesar datos secuenciales y se debe a Rumelhart, D. E. et al (1985) [161]. Su estructura particular dota a este tipo de red de memoria, ya que los outputs en pasos previos vuelven a entrar posteriormente como inputs. Esto permite su utilización en áreas que se habían resistido al empleo de redes neuronales tradicionales, como la del procesamiento del lenguaje natural (NLP Natural Language Processing).

Entre las dificultades que se tienen que abordar se encuentra el problema que surge con la desaparición del gradiente o su crecimiento explosivo, que fue detectado por Bengio, Y. et al (1993) [18]. Como consecuencia de ello han surgido variaciones que permiten mantener un flujo de gradiente estable como la red recurrente LSTM (Hochreiter, S. & Schmidhuber, J. (1997) [85]).

Respecto del uso en Aprendizaje por Refuerzo, tenemos que las redes neuronales se han adoptado extensamente como estimadores funcionales (MLP) (ver por ejemplo: Tsitsiklis, J. (1996) [202]), y para la extracción de 'features' (CNN).

Figura 5.4: Algunas arquitecturas de Redes Neuronales (Esquemas adaptados de Principe, J. C. et al. (1999) [154], Goodfellow, I. et al. (2016) [71] y Brunton, S. L. & Kutz, J. N. (2022) [40]).

A la hora de abordar el estudio del empleo de redes neuronales, conviene clasificar los distintos métodos. Posteriormente distinguiremos entre:

- 1) Value based methods. Estimamos la función de valor mediante RN. Generalmente Q(s,a).
- 2) **Policy based methods**. Consiste en parametrizar la función de decisión y en utilizar la red neuronal para estimar dicha función: $\mu(\cdot)$.
- 3) Actor-Critic methdos. Utilizan una mezcla de los métodos anteriores.

En los siguientes apartados procederemos a presentar algunos de los resultados más notables de aplicación de Redes Neuronales, comenzando primero con la construcción del tipo de función de pérdida que se emplea para el entrenamiento de las redes.

5.4. Utilización de Redes Neuronales en RL

Para construir la función de pérdida $\mathcal{L}(\theta)$ acudimos a la ecuación de Bellman. Para ello se toma en cuenta la diferencia entre el valor estimado del siguiente estado (s') - denominado target -, y el valor estimado para el estado actual, que sería el valor observado. La función de pérdida se construiría ponderando de alguna forma estos errores, mediante una función g:

$$\mathcal{L}(\theta) = g(\underbrace{r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta}(s', a')}_{target} - \underbrace{Q_{\theta}(s, a)}_{observado})$$

Como función g, podemos utilizar $g = \mathbb{E}[\ (\cdot\)^2\]$, lo que daría lugar al Error Cuadrático Medio (MSE), que es una de las medidas más usuales a utilizar.

5.5. Value based Methods.

Con los algoritmos que analizamos a continuación podemos aproximar, por medio del aprendizaje, una de las funciones de valor que hemos visto. A partir de las valoraciones que proporciona de los pares (s,a) - en el caso de la función Q -, es inmediato el obtener la estrategia óptima.

5.5.1. Deep Q-Network (DQN)

La introducción de Redes Neuronales profundas (Deep Neural Networks) permitió avances significativos en el entrenamiento por refuerzo. El algoritmo DQN es debido a Mnih et al. (2013) [123].

A partir de ahora notaremos $Q_{\theta}^{\pi}(s, a)$ a la función de valor estado-acción. Con ello queremos indicar que la red neuronal depende de un vector de parámetros θ .

En la medida en esta red neuronal va a servir para obtener las estimaciones, surge la pregunta acerca de cómo obtener los valores de los parámetros. La solución pasa por emplear un bufer ('replay bufer' o 'experience replay' - notado: \mathcal{D}) que almacene las experiencias que va acumulando el agente. El bufer acumula las transiciones que se han ido generando a lo largo de sucesivos episodios o trayectorias ($\tau_1, \tau_2, ..., \tau_h$) (Ver figura 5.5).

Figura 5.5: Funcionamiento del bufer, y extracción posterior de una muestra para entrenar la Red.

Como las experiencias dentro de un mismo episodio suelen estar altamente correladas, el procedimiento que se emplea es el de seleccionar una muestra aleatoria (batch o lote), que será el que se emplee para entrenar la red neuronal. El procedimiento es el habitual: emplear una función de pérdida $L(\theta)$, como puede ser el Error Cuadrático Medio (Mean Square Error). El gradiente de dicha función $(\nabla_{\theta}L(\theta))$ nos proporcionará la dirección en la que corregir los parámetros para acercar la salida al objetivo.

$$L(\theta) = MSE = \frac{1}{K} \sum_{i=1}^{K} \left[r_i + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s_i', a') - Q_{\theta}^{\pi}(s_i, a_i) \right]^2$$
 (5.1)

$$\theta = \theta - \alpha \cdot \nabla_{\theta} L(\theta) \tag{5.2}$$

Empleando el esquema que hemos venido empleando reiteradamente, los valores estado-acción quedarían, por tanto, actualizados según la siguiente expresión:

$$Q_{\theta}^{\pi}(s, a) \longleftarrow Q_{\theta}^{\pi}(s, a) + \alpha \cdot \underbrace{\left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{target} \underbrace{-Q_{\theta}^{\pi}(s, a)}_{output}$$

$$\underbrace{-Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{target}$$

$$\underbrace{-Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{output}$$

$$\underbrace{-Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{output}$$

$$\underbrace{-Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{output}$$

$$\underbrace{-Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s', a') - Q_{\theta}^{\pi}(s, a)\right]}_{output}$$

La secuencia de pasos completa quedaría recogida en el algoritmo 2 (incluir referencia).

Algoritmo 7 Deep Q-Network (DQN)

begin

Inicializar la tasa de aprendizaje α

Inicializar el factor de descuento γ

/*Llevamos a cabo una serie de episodios o trayectorias (M).

for
$$EPISODIO = 1$$
 to M do

/*Muestreamos K valores de bufer

Recoger K experiencias $(s_i, a_i, r_i, s_i', a_i')$ generadas por la estrategia en vigor π

for
$$i = 1$$
 to K do

$$\mathbf{if}$$
 $(s_{i}^{'}\ es\ un\ nodo\ terminal)$ then

$$y_i = r$$

$$y_{i} = r_{i}$$
else
$$y_{i} = r_{i} + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta_{target}}^{\pi}(s_{i}', a_{i}')$$
/*Calcular el Error Cuadrático Medio (MSE)

/*Calcular el Error Cuadrático
$$L(\theta) = \frac{1}{K} \sum_{t=0}^{K} [y_i - Q_{\theta}^{\pi}(s_i, a_i)]^2$$

/*Actualizar los parámetros de la red $\theta = \theta - \alpha \cdot \nabla_{\theta} L(\theta)$

$$\theta = \theta - \alpha \cdot \nabla_{\theta} L(\theta)$$

5.5.2. Double Deep Q Network (DDQN)

Algunos estudios han demostrado una sistemática sobreestimación en el valor de los estados en el caso del proceso de aprendizaje con Q-Learning cuando es combinado con un aproximador funcional como son las Redes Neuronales (Thrun, S. & Schwartz, A. (1993) [199]). La razón reside en la utilización del operador 'max' a la hora de aproximar el valor del siguiente estado en una transición, ya que introduce un sesgo positivo. Además al utilizar los mismos valores tanto para seleccionar una acción como para evaluarla, hace que sea más probable el seleccionar valores sobreestimados, lo que conduce a estimaciones de valor de los estados demasiado optimistas.

Una posible solución consistiría en desacoplar la parte de selección de acciones de la de evaluación, introduciendo un modo alternativo de aproximar el valor esperado máximo (Hasselt, H. (2010) [79]). En este artículo, el autor aproxima el valor esperado máximo para cualquier conjunto de variables aleatorias, y posteriormente lo aplica al algoritmo Q-Learning introduciendo un doble estimador (ver también: Hasselt, H. (2011) [80] y Hasselt, H. et al. (2015) [203]).

Esta extensión del modelo DQN recibe el nombre de Double Deep Q-Network (DDQN). La actualización de los pesos obedece a la siguiente expresión (Ecuación 5.4):

Los diferentes términos que intervienen son:

$$Q_{\theta}^{\pi}(s, a) \longleftarrow Q_{\theta}^{\pi}(s, a) + \alpha \cdot \left[\underbrace{r + \gamma \cdot \max_{a' \in \mathcal{A}} Q_{\theta'}^{\pi}(s', \arg\max_{a' \in \mathcal{A}} Q(s', a'))}_{target} - \underbrace{Q_{\theta}^{\pi}(s, a)}_{output}\right]$$
(5.5)

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.5.3. Deep Q-Network with Prioritized Experience Replay (PER)

Parece razonable centrarse en el conjunto de transiciones para el cual la red genera un error en término de la Diferencia Temporal más grande.

$$\underbrace{r + \gamma \cdot \max_{a' \in \mathcal{A}} Q^{\pi}_{\theta'}(s', a')}_{target} - \underbrace{Q^{\pi}_{\theta}(s, a)}_{output}$$

El algoritmo que procedemos a analizar fue desarrollado por Schaul et al. (2016) [167], y se centra en la cuestión que acabamos de mencionar: utiliza un buffer con una prioridad asignada a cada transición en función del error.

Figura 5.6: Funcionamiento del bufer, y extracción de una muestra ponderada por el efecto que la observación tiene en el error.

Existen dos métodos de priorización de las observaciones de la base de datos. Un primer paso consiste en asignar una valor proporcional al error, y otro emplea la ordenación previa en base al error y asigna posteriormente el rango que ocupa cada observación. Esto genera unos valores p_i

$$\begin{cases} \bullet \ Proporcional: & p_i = | TD \ error | + \epsilon \\ \bullet \ Con \ rango: & p_i = \frac{1}{rango(i)} \end{cases}$$

con estos p_i procedemos a calcular P(i), donde $\alpha \in [0,1]$:

$$P(i) = \frac{p_i^{\alpha}}{\sum_{k} p_k^{\alpha}}$$

Y para evitar el sobreajuste ('overfitting'), se reduce la importancia de transiciones que están siendo muestreadas muchas veces. Esto genera los pesos finales con los que se establece el muestreo.

$$w_i = \left[\frac{1}{N} \cdot \frac{1}{P(i)}\right]^{\beta}$$

El valor de N representa el tamaño del buffer, P(i) es la probabilidad de la transición a la hora de ser muestreada, y β es un valor que se ajusta mediante annealing (empezando por un valor alrededor de 0.4 y haciendolo tender a 1).

5.5.4. Dueling Deep Q-Network (Dueling DQN) (D2QN)

Si recordamos la definición de Ventaja ('advantage'), vemos que nos proporciona una medida de la bondad de una determinada acción a en un estado s en comparación con lo obtenido en promedio con el resto de acciones.

$$A(s,a) = Q(s,a) - V(s)$$

El algoritmo siguiente fue desarrollado por Wang et al. (2016) [209], y hace uso de este valor para calcular la función Q(s, a). Para ello calcula Q(s, a) mediante V(s) + A(s, a).

Figura 5.7: Estructura de la Red Neuronal empleada en Dueling DQN.

Se diseña una arquitectura neuronal (que podemos ver en la figura 5.7) cuya salida se bifurca para obtener la función de valor (V(s)) por un lado, y por otro lado la ventaja de todas las posibles acciones en ese estado $(A(s,a_i))$. El valor final de la función Q(s,a) se obtiene agregando estos valores generados por la red.

5.5.5. Deep Recurrent QN (DRQN)

El algoritmo fue desarrollado por Hauskchnet et. al (2017) [81].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

5.6. Policy Methods.

A continuación abordamos el estudio de aquellos algoritmos que permiten el aprendizaje directo de la función de estrategia π . Entre las ventajas se encuentra la convergencia local asegurada a un óptimo local (tal y como demostraron Sutton et al. (2000)) [193].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

5.6.1. Proximal Policy Optimization (PPO)

El algoritmo fue desarrollado por Schulman et al. (2017) [172].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.6.2. Trust Region Policy Optimization (TRPO)

El algoritmo fue desarrollado por Schulman et al. (2015) [171].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.6.3. Actor-Critic using Kronecker-factored Trust Region (ACKTR)

El algoritmo fue desarrollado por Wu et al. (2017) [214].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.7. Actor-critic Methods

Se han detectado problemas análogos de sobreestimación es este tipo de métodos a los ya mencionados que se producen en Deep Q-Learning, lo que puede conducir al aprendizaje de estrategias subóptimas (Fujimoto, S. et al. (2018) [62]).

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.7.1. Advantage Actor-Critic (A2C)

Sobre este tipo de métodos destaca el artículo de Konda y John Tsitsiklis (2000) [101]

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

5.7.2. Asyncronous Advantage Actor-Critic (A3C)

El algoritmo fue desarrollado por Mnih et al. (2016) [121].

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

Figura 5.8: Esquema de la implementación del modelo A3C.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

5.7.3. Deep Deterministic Policy Gradient (DDPG)

El algoritmo fue desarrollado por Lillicrap et al. (2016) [112].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal,

como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.7.4. Twin Delayed Deep Deterministic Policy Gradient (TD3)

El algoritmo fue desarrollado por Fujimoto et al. (2018) [62].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

5.7.5. Soft Actor-Critic (SAC)

El algoritmo fue desarrollado por Haarnoja et al. (2018) [75]. Y más en profundidas sobre este tipo de algoritmos ver también Haarnoja (2018) [76].

En lo que sigue se apuntan algunas de las lineas de investigación que han surgido recientemente y que abordan diferentes cuestiones que permiten mejorar los resultados obtenidos con los métodos tradicionales.

Artículo de McCulloch & Pitts (1943) [119].

Artículo de Rosenblatt, F. (1958) [160].

BENCHMARKS para Multi-agent Deep Reinforcement Learning:

Tenemos algunos entornos que nos permiten testar los algoritmos (Hernández-Leal, P. et al (2019) [83]).

También algunos autores han tratado de llevar a cabo una comparativa en el caso del Deep Reinforcement Learning Multiagente (Papoudakis, G. et al. (2020) [144]).

Se repasan los orígenes de las redes neuronales en las estructuras planteadas en los siguientes artículos: Artículo de McCulloch & Pitts (1943) [119] y Artículo de .

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

,				
CAPITULO 5.	APRENDIZAJE POR	REFUERZO	PROFUNDO	(DEEP RL)

Capítulo 6

Aprendizaje por refuerzo Multiagente (MARL)

Existen situaciones en las que la resolución de una determinada tarea requiere, por su complejidad, coordinación y cooperación simultanea de varios decisores. En otras ocasiones se trata más bien de aprender a tomar decisiones óptimas teniendo en cuenta los efectos que las decisiones de los otros agentes tienen sobre cada uno.

En cualquiera de estos casos nos encontramos ante un problema de toma de decisiones secuenciales en el que existe más de un agente. La solución consiste en extender el planteamiento del Aprendizaje por refuerzo analizado previamente al caso de n decisores.

Figura 6.1: Entorno multiagente. La acción conjunta de todos los agentes (\bar{a}_t), genera una señal por parte del entorno en forma de recompensa (\bar{r}_t) y una alteración de su estado (s_t), lo que sirve a los agentes como refuerzo para optimizar la elección de sus acciones (gráfico adaptado de Nowe et al. (2012) [138]).

La situación a la que nos enfrentamos queda esquematizada en la figura 6.1. Ahora nos encontramos con un grupo de agentes que comparten un entorno, y que se relacionan entre sí, afectando las decisiones que toman a los resultados que cada uno puede obtener.

En el caso de un sólo agente el objetivo se puede establecer fácilmente a través de la maximización de las recompensas que recibe. Sin embargo, en el caso de múltiples agentes ya no es tan sencillo. Ésto se debe a que los agentes pueden tener intereses encontrados.

6.1. Introducción

En el Aprendizaje por refuerzo multiagente (*Multiagent reinforcement learning*) se han ido generando objetivos divergentes, tal y como han recalcado algunos autores (Soham et al. (2007) [177]). Entre las lineas de investigación algunos trabajos se centran en la búsqueda de equilibrios entre los agentes (enfoque normativo), mientras que otros analizan no tanto cómo deberían actuar los agentes, sino en reproducir la manera en que realmente lo hacen (enfoque descriptivo), por poner un ejemplo.

Por lo tanto antes de comenzar la formalización es necesario aclarar el enfoque que se va adoptar, ya que determina el objetivo que se va a perseguir.

Análisis de la situación. La existencia de varios agentes que se ven forzados a interactuar entre sí, lo que provoca que el curso de acción óptimo dependa de las acciones que llevan a cabo el resto de agentes. Desde este punto de vista el Reinforcement Learning multiagente se adapta al esquema que plantea la **Teoría de Juegos** (von Neumann, J. & Morgenstern, O. - 1944 [127]). Esta disciplina estudia las interacciones estratégicas que se dan entre agentes, que pueden tener intereses enfrentados, a través del empleo de ciertos estereotipos de situaciones (llamadas juegos) que capturan en gran medida el tipo de relaciones que se dan en la vida real. Si atendemos al tipo de relación que se establece entre los jugadores, podemos distinguir entre:

-Juegos Cooperativos. Los jugadores comparten intereses comunes y, por tanto, tienen incentivos para cooperar.

- -Juegos Competitivos (o no cooperativos). En este caso los jugadores tienen intereses enfrentados. Podemos distinguir:
- 1) Juegos de suma cero, donde las ganancias de unos suponen las pérdidas de los oponentes.
- 2) Juegos de suma general, donde no se da la relación anterior.

-Juegos Mixtos. En los juegos mixtos existe una mezcla de incentivos de los dos casos anteriores, y pueden aparecer situaciones tanto de cooperación como de enfrentamiento.

El objetivo consiste en encontrar la estrategia óptima, que en esta situación gira en torno a aquella decisión de la que no es posible desviarse unilateralmente para generar una mejor ganancia (lo que se conoce como Equilibrio de Nash).

Por otro lado, si el interés se encuentra en cómo los individuos van cambiando sus estrategias con el paso del tiempo, el esquema que mejor se adapta puede ser el que plantéa la **Teoría de Juegos Evolutiva**. En este caso consideramos individuos que se replican y el éxito evolutivo hace que unos individuos que adoptan una determinada estrategia se adapten mejor al entorno que otros (Bloembergen, D. et al. (2015) [31]) y sobrevivan. En este caso el concepto de solución óptima está ligado a la estrategia que es inmune a la aparición de estrategias invasoras (*Estrategias Evolutivas Estables*).

Teoría de Juegos

La **Teoría de juegos** es una rama de las matemáticas y la economía, que surge a partir de los trabajos de John von Neumann y Oskar Morgenstern, y proporciona herramientas para el análisis de decisiones en situaciones en las que aparece el enfrentamiento y la cooperación entre decisores racionales.

Como hemos visto, las situaciones que analiza se denominan juegos y pueden dividirse en:

Tipos de Juegos - Cooperativos: Mismos intereses
- Competitivos: Intereses enfrentados
- Mixtos

Figura 6.2: John von Neumann (izqda.) y Oskar Morgenstern (dcha.) (Wikipedia)

En algunas clasificaciones se alude a juegos Cooperativos frente a no Cooperativos, pero en el sentido de que exista la posibilidad de llevar a cabo acuerdos vinculantes antes del juego y que se han de respetar. También podemos estar ante un juego con información perfecta/imperfecta (si el decisor conoce todo lo ocurrido previamente o no), y con información completa/incompleta (si se conocen los cursos de acción, beneficios e intereses del resto de jugadores, o si por el contrario se desconocen algunos elementos del juego).

Algunos conceptos adicionales son:

<u>TIPOS DE ESTRATEGIA</u>: La estrategia es la regla de decisión que emplea el decisor para decidir entre el conjunto de opciones que se le presentan. Podemos distinguir:

-Estrategias puras

Son aquellas que seleccionan una acción de manera determinista.

-Estrategias mixtas

Son aquellas que seleccionan una acción de manera probabilística sobre el conjunto de acciones posibles.

TIPO DE SOLUCIÓN:

-El principal concepto de solución en Teoría de Juegos es el **Equilibrio de Nash** (Nash, J. (1950) [129] y equilibrio en juegos no cooperativos: Nash, J. (1951) [130]), aunque no es el único. Entre otros tenemos el **Equilibrio correlado** (Aumann, R. J. (1987) [2]). También existe el **Equilibrio de Stackelberg** (Bjor, P. A. & Vuong, Q. H. (1985) [30]) basado en la teoría de la competencia de Stackelberg, según la cual uno de los agentes tiene una posición dominante por lo que su estrategia determina la de sus competidores.

6.2. Conceptos y formalización

Tal y como hemos visto, un Proceso de Decisión de Markov (MDP) se representa mediante la tupla $(\mathbf{S}, \mathbf{A}, \mathbf{R})$, y queda completamente especificado cuando conocemos cada uno de sus elementos. En el caso multiagente generalizamos dicha definición, introduciendo \mathcal{N} , que representa el conjunto de jugadores. Esto se traduce en que ahora manejamos los siguientes elementos:

- -Conjunto de Agentes: $\mathcal{N}=\{1,\ldots,n\}$.
- -Conjunto de Estados: $S = \{s_1, \ldots, s_m\}$

(En el caso de robots, puede haber una parte que es visible sólo para cada agente. En este caso algunos autores utilizan la notación: $\mathbf{S} = \mathcal{S}_1 \times \mathcal{S}_2 \times ... \times \mathcal{S}_n$ [163]).

- -Espacio conjunto de Acciones: $\mathbf{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times ... \times \mathcal{A}_n$
- -Conjunto de funciones de Recompensa $R_j: \mathcal{S} \times \mathcal{A}_1 \times \mathcal{A}_2 \times ... \times \mathcal{A}_n \longrightarrow \mathbb{R}$ $_{j=1,...,n}$

Según el número de agentes 'n', y el número de estados , así como la ausencia de conocimiento sobre el estado del entorno aparecen situaciones diferentes que se formalizan tal y como se esquematiza en la figura 6.3 y se detalla a continuación.

Figura 6.3: Esquema del tipo de modelos según el número de agentes y el tipo de conjunto de estados. Además, cuando el agente no tiene la posibilidad de conocer con precisión el estado del sistema, nos encontramos ante POMDP (Partially Observable Markov Decision Processes).

- Juegos Matriciales. (o juegos estratégicos). En este caso nos encontramos ante una situación estática, en la que el estado del entorno no juega ningún papel. El número de jugadores es 'n' y cada jugador dispone de un conjunto de acciones disponibles (\mathcal{A}_i , i=1,...,n). La recompensa que reciben depende del conjunto de decisiones llevadas a cabo por todos los jugadores: $R_j: \mathbf{A} \longrightarrow \mathbb{R}$ j=1,...,n
 - El objetivo del agente de maximizar la recompensa recibida, se traduce en encontrar la estrategia óptima que conduce a dicho resultado. Y en la medida en que depende de las decisiones de los demás, la solución pasa por ser la estrategia que es mejor respuesta a las acciones de los demás.

Juegos matriciales clásicos: DILEMAS

Un dilema es un tipo de juego en el que el decisor se enfrenta a una disyuntiva, al estar enfrentados sus intereses con los del otro jugador del que ahora desconocemos sus intenciones. El más conocido de ellos es el llamado Dilema del Prisionero. Su forma actual se debe a Albert Tucker a partir de un experimento psicológico que llevaron a cabo Merrill Flood y Melvin Dresher, dos investigadores de la RAND Corporation (organización encargada de análisis estratégicos) (Poundstone, W. (1993) [151] - capítulo 6).

- -Dilema del Prisionero. Dos ladrones son detenidos por la comisión de un delito grave, y la policía no dispone de pruebas, pero sí de indicios que apuntan a su participación. Para esclarecer los hechos, cada uno de ellos es encerrado en una celda sin que exista posibilidad de comunicación. Posteriormente se les plantea por separado un acuerdo.
- El dilema al que se enfrenta cada prisionero nace de la naturaleza de la elección a la que se les somete:
- a) Delatar (por tanto: no cooperar con el compañero). Esto abre la vía de librarse de la acusación y salir libre, recallendo sobre el otro la acusación del delito grave.
- b) No delatar (cooperando con el compañero), lo que implica ser acusado del delito menor que conlleva una pena más suave. Sin embargo el resultado final dependerá de la opción conjunta, ya que la otra persona se encuentra en la misma situación. Si ambos optan por la vía de la no cooperación, y se delatan implicándose mutuamente, serán acusados del delito grave obteniendo la menor satisfacción posible.

El problema reside en que la única opción que permite salir sin cargos es la de Delatar, pero conlleva el riesgo de que el otro, que también se enfrenta a la misma decisión, siga el mismo razonamiento y su decisión termine por llevar a los dos al peor escenario.

	J No Cooperar	2 Cooperar	Matriz de Pagos: (J1, J2)
No Coop.	(P,P)	(T,S)	R: Reward (<i>recompensa</i>) T: Temptation (<i>tentación</i>)
Coop.	(S,T)	(R,R)	S: Sucker (<i>ingenuo, pardillo</i>) P: Punishment (<i>pena</i>)

La matriz de pagos refleja la estructura de incentivos del juego: la tentación de traicionar (T), la recompensa de la colaboración mutua (R), el castigo por el enfrentamiento (P) o la temida situación de actuar de pardillo (S) y acabar pagando por los dos (Para un análisis de las tensiones de intereses ver: Mady, M. W. & Flache, A. (2002) [116]).

-Juego del Gallina. Éste es otro dilema que refleja el tipo de conflictos que aparecen en las relaciones entre individuos. El juego se basa en el reto entre 2 jugadores, en una carrera de automóviles hacia un precipicio (o uno hacia el otro). El primero que abandona y decide esquivar el choque, pierde y es el 'gallina'. El otro jugador puede frenar y queda como ganador. Pero si ninguno se aparta y siguen hasta el final (esperando en vano que el otro se aparte en el último momento), ambos se estrellan. En el caso de que los dos jugadores decidan apartarse, conseguirán salir ilesos, pero ninguno puede humillar al otro.

La forma usual de representar la interacción entre los agentes, es una matriz en la que se enfrentan sus acciones y se recoge el pago que recibe cada uno de ellos en cada posible decisión (ver figura 6.4).

Figura 6.4: Esquema de la matriz de pagos en un juego matricial.

■ Juegos Estocásticos (o juegos de Markov). En un juego estocástico existen 'n' jugadores, que toman decisiones de entre un conjunto de acciones disponibles $(A_i, i = 1, ..., n)$, por lo tanto son una extensión a múltiples agentes de un proceso de Markov (MDP).

A diferencia de los juegos matriciales, ahora las decisiones que toman los jugadores pueden alterar el estado del sistema, provocando una transición dentro del conjunto de estados (S). Ahora la función de recompensa adoptará por tanto la forma $R_j: S \times \mathbf{A} \longrightarrow \mathbb{R}$ $_{j=1,\dots,n}$, donde: $\mathbf{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_n$.

En este caso el agente ha de encontrar la estrategia, que proporciona la acción optima en cada estado del sistema. Y 'resolver el juego' se traduce en determinar la estrategia conjunta óptima.

■ Procesos de Decisión de Markov Parcialmente Observables. Si se permite que exista incertidumbre sobre el estado (debido a la falta de conocimiento del agente) nos encontramos ante un Proceso de Decisiones de Markov Parcialmente Observable (Partially Observable Markov Decision Process - POMDP [125]).

En este caso, nos encontramos entonces ante una generalización del Proceso de Decisión de Markov: puede haber desde uno a varios agentes, y donde ahora el agente no puede percibir el entorno con precisión. La vía para modelizar el problema consiste en manejar dos procesos. Por una lado está el estado del sistema $\mathcal{S}=\{s_1,\ldots,s_m\}$, que el agente no puede conocer con certeza. Y por otro lado tenemos están las observaciones que construye el agente con la información limitada de que dispone $\mathcal{O}=\{o_1,\ldots,o_r\}$.

Algún enfoque alternativo en: "Rollout, Policy Iteration and Distributed Reinforcement Learning" Bertsekas, D. (2021) [24].

6.3. Concepto de solución en MARL: Equilibrio de Nash

Suponemos que en el instante 't' todos los agentes toman una decisión simulataneamente, recibiendo cada uno de ellos una recompensa: $(r_t^j, j=1,...,n)$. La decisión dendrá dada a partir de su estrategia o policy $(\pi^j: \mathcal{S} \longrightarrow \Omega(\mathcal{A}^j))$. La estrategia conjunta de todos los agentes vendrá dada por:

$$\boldsymbol{\pi} = [\pi^1, ..., \pi^n]$$

Entonces, dado un estado inicial 's', la función de valor de un agente 'j' bajo la estrategia conjunta π , vendrá dada por la siguiente expresión:

$$v_{\pi}^{j} = \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}_{\pi}[r_{t}^{j} \mid S_{0} = s; \pi]$$

y la función de valor estado-acción:

$$Q_{\pi}^{j} = r^{j}(s, a) + \gamma \cdot \mathbb{E}_{s \sim \pi}[v_{\pi}^{j}(s')]$$

Equilibrio de Nash. En lo que sigue analizamos el objetivo que aparece cuando varios agentes interactúan entre sí. Generalmente buscamos una 'policy' óptima que conduzca a maximizar la función de valor del agente. Como optimizar la función: $v_{\pi}^{\ j}$ del agente 'j' depende de la estrategia conjunta del resto de agentes más él mismo, se acude al concepto de equilibrio de Nash.

DEFINICIÓN 6.1: Equilibrio de Nash

Dado un conjunto de jugadores $\mathcal{N} = \{1, ..., n\}$, el **equilibrio de Nash** alude a aquella estrategia conjunta de la forma:

$$\boldsymbol{\pi}_* = [\pi_*^{\ 1}, \pi_*^{\ 2}, ..., \pi_*^{\ n}]$$

tal que: $\forall s \in \mathcal{S}, j \in \{1, 2, ..., n\}$ y todas las π^j válidas se cumple:

$$v_{\pi}^{\,j}(s,\pi_*) \; = v^j(s,\pi_*^j,\pi_*^{-j}) \geq v^j(s,\pi^j,\pi_*^{-j})$$

donde π_*^{-j} es la estrategia del resto de agentes:

$$\pmb{\pi}_*^{-j} = [\pi_*^{\ 1}, ..., \pi_*^{\ j-1}, \pi_*^{\ j+1}, ..., \pi_*^{\ n}]$$

Vemos que cada agente reacciona con la mejor respuesta al resto de jugadores. Hu y Wellman (2003) [88] definieron un procedimiento iterativo para el cálculo del valor que buscamos (Nash Policy).

El proceso cuando el número de agentes crece se va haciendo progresivamente más dificil de realizar. Para evitar este problema algunos autores (Yang et al. (2018)) [216] han propuesto el Mean Field Multi-agent Reinforcement Learning.

EJEMPLO 6.1: Cálculo del Equilibrio de Nash

Imaginemos que nos encontramos ante el problema de determinar la secuencia de decisiones óptimas en una serie finita de etapas (K=0,1,2,3). La siguiente figura representa un sencillo caso. X_0, X_1, X_2, X_3 son el estado del sistema en cada etapa. Sobre cada arco aparece el coste asociado a la transición en cuestión. El objetivo consiste en llegar desde X_0 al final con el mínimo coste acumulado.

		J. Delatar	2 Callar
-	Delatar	(3,3)	(0,5)
	Callar	(5,0)	(1,1)

Ahora bien sie el jugador 1 decide optar por callar tenemos que la matriz de pagos es la que aparece a continuación.

	J2 Delatar Callar	
Delatar J1	(3,3)	(0,5)
Callar	(5,0)	(1,1)

Tomando ahora el análisis para el jugador número 2 tendremos el siguiente resultado. Aparece la estrategia que le reporta el mejor resultado ante las decisiones del otro jugador.

	Delatar J	2 Callar
Delatar	(3,3)	(0,5)
Callar	(5,0)	(1,1)

	J Delatar	2 Callar
Delatar	(3,3)	(<u>0</u> ,5)
Callar	(5,0)	(1,1)

y finalmente la siguiente figura. En ella podemos ver enmarcada la celda donde el cruce de estrategias conduce a un punto en el que a ninguno le conviene desviarse de es estrategia.

	J Delatar	2 Callar
Delatar	Eq. Nash (3, 3)	(0,5)
Callar	(5,0)	(1,1)

De donde tenemos que el resultado es que el **Equilibrio de Nash** consiste en el delatarse mutuamente.

6.4. Clasificación de los algoritmos de solución I: según el tipo de entrenamiento

El aprendizaje multiagente se enfrenta a retos adicionales, como es el hecho de que el entorno aparezca como no estacionario [142]. Se han abierto múltiples lineas de investigación, tal y como muestran algunos autores (Oroojlooy, A. & Hajinezhad, D. (2021) [141]). El principal problema al que nos enfrentamos es la coordinación y cooperación de los agentes. Siguiendo a Gupta, J. K. et al. (2017) [74], podemos señalar algunas de las soluciones que se han propuesto.

• Entrenamiento independiente.

La forma más simple de entrenamiento de un agente en el caso MARL, consiste en que cada uno de ellos lleva a cabo el proceso independientemente de los demás, tratando al resto de los agentes como un elemento del entorno. El problema como ya se ha mencionado previamente consiste en que éste se vuelve no estacionario, lo que provoca la pérdida de garantías sobre la convergencia de muchos algoritmos. (Algunos estudios plantean una medida capaz de reflejar este efecto: Lanctot, M. et al. (2017) [107]).

En el caso de llevar a cabo el aprendizaje no en el espacio de acciones individual , sino en el espacio de acciones conjunto (*joint action learners*); esto supone observar las acciones de los otros y actuar óptimamente respecto de la estrategia que se está estimando que guía el comportamiento de los otros agentes. El método ayuda a generar la cooperación entre ellos, aunque computacionalmente puede ser muy costoso conforme crece el número de agentes.

• Entrenamiento centralizado y ejecución descentralizada.

Estudios como el de Tan, M. [196] (1993) muestran los beneficios de la compartición de información durante el entrenamiento, lo que puede acelerar el aprendizaje. Este hecho sugiere la utilización de diversas formas de centralizar el aprendizaje para, por ejemplo, acelerar la aparición de la cooperación. Con esta vía cada agente toma decisiones por su cuenta, aunque se produce cierta coordinación en el entrenamiento.

La vía más extrema consiste en que sólo una unidad es entrenable con la información que se obtiene de todos los agentes, y posteriormente se generan decisiones para cada uno de ellos. El entrenamiento centralizado supone la existencia de un modelo conjunto tanto para las acciones como para las observaciones de los agentes. El problema que plantea el centralizar tanto la ejecución como el entrenamiento reside en el crecimiento exponencial del espacio de observaciones y acciones conforme crece el número de agentes.

Aprendizaje concurrente.

En aprendizaje concurrente se permite el aprendizaje independiente de la función de decisión de cada decisor. En los métodos basados en el gradiente, se emplea la señal de recompensa conjunta para la optimización de las estrategias. Sin embargo se incurre nuevamente en el peligro que ya se ha señalado, y es el de la inestabilidad del aprendizaje.

Compartición de parámetros.

En este caso las experiencias de todos los agentes se emplean para el entrenamiento. Si la representación de la función de estrategia está parametrizada, como por ejemplo a través de una Red Neuronal, los agentes compartirían los parámetros. Este enfoque es adecuado cuando los agentes son muy homogéneos entre sí.

6.5. Clasificación de los algoritmos de solución II: según el tipo de interacción

Siguiendo la clasificación de los métodos de aprendizaje por Refuerzo multiagente (MARL) dada por Busoniu, L. et al. (2018) [41]), tenemos que podemos distinguir:

- Cooperativo. En este caso los agentes comparten la misma función de recompensa.
 - Estático No existe distinción entre estados.

El algoritmo *Joint Action Learners* (JAL) fue desarrollado por Claus, C. & Boutilier, C. (1998) [47], en contraposición a agentes independientes (IL - *Independent Learners*) que aprenden ignorando la presencia de otros agentes. Ahora el aprendizaje se lleva a cabo en el espacio de acciones conjuntas.

No existen garantías sobre la convergencia de dicho algoritmo, por lo que se ha desarrollado una heurística: Frecuency Maximum Q-Value (Kapetanakis, S & Kudenko, D. (2004) [97]) con el objetivo de subsanar esta deficiencia.

- Dinámico Existen transiciones entre estados.

En este contexto se han desarrollado diversos algoritmos que implican la formación de grupos. Destaca *Team Q-Learning* propuesto por Littman, M. L. (2001) [115], *Distributed Q-Learning* (Lauer, M. & Riedmiller, M. (2000) [108]) que busca una estrategia óptima para el equipo en su conjunto; así como *Optimal Adatpive Learning* (OAL) (Wang, X. & Sandholm, T. (2002) [208]) que está diseñado para converger a NE en un juego por equipos y que además sea el óptimo.

En este tipo de sistemas la complejidad suele crecer rápidamente conforme lo hace el número de agentes, por lo que otros autores han propuesto centrar la coordinación en unos pocos estados y actuar independientemente en el resto. El algoritmo *Sparse Cooperative Q-Learning* se basa en esta idea (Kok, J. R. & Vlassis, N (2004) [100]).

- Competitivo. En el caso completamente competitivo tenemos que las ganancias de uno suponen las pérdidas de otro. De entre los algoritmos para este tipo de situación, y en el caso de 2 únicos agentes, tenemos el algoritmo minimax Q-Learning. Este algoritmo fue desarrollado por Littman, M. L. (2001) [115] y (1994) [114].

 También habría que destacar HAMRL Heuristically Accelerated Multi-agent Reinforcement Learning (Bianchi, R. A. et al. (2013) [29]).
- Mixto. En este caso no se impone ninguna restricción sobre la función de recompensa de cada jugador y el tipo de relación con los demás. Los algoritmos desarrollados para este tipo de situaciones suelen estar muy influidos por la Teoría de Juegos.

- Estático

En entornos multiagente es deseable un aprendizaje óptimo ante oponentes estacionarios, así como la convergencia a un equilibrio de Nash (NE) cuando todos emplean el mismo aprendizaje. El algoritmo AWESOME - Adapt When EveryBody is Stationary, Otherwise Move to Equilibrium (Conitzer,V.& Sandholm, T. (2003) [49]) ofrece buenos resultados, y es apropiado cuando existen más de dos agentes. Requiere que sean visibles las acciones de los otros.

El juego ficticio (*Fictitious play*) es una algoritmo desarrollado por Brown, G. W. (1951) [39], y permite alcanzar equilibrio en un juego coordinado.

Como alternativa, empleando métodos bayesianos, tenemos el algoritmo Hyper-Q desarrollado por Tesauro, G. (2003) [197]. Converge a la estrategia óptima si los oponentes emplean estrategias estacionarias.

Como alternativa a los métodos anteriores tenemos algunos algoritmos que emplean métodos basados en el gradiente para la búsqueda directa de una estrategia óptima. Algunos los veremos en detalle a continuación, y destacan entre los principales:

El algoritmo IGA (*Infinitesimal Gradient Ascent*) fue desarrollado por Singh, S. et al. (2000) [183], y una modificación del mismo: WoLF-IGA (Bowling, M. & Veloso, M. (2002) [37]) que emplea tasas de aprendizaje variable.

El algoritmo GIGA (*Generalized Infinitesimal Gradient Ascent*) fue desarrollado por Zinkevich, M. (2003 [222]) para el tratmiento de juegos con más de 2 acciones.

El algoritmo GIGA-WoLF fue desarrollado por Bowling, M. (2005 [36]).

- Dinámico

Debido a que se pierde la garantía de convergencia, el algoritmo Q-Learning no se suele aplicar directamente en entornos multiagente. Sin embargo algunos autores han obtenido resultados satisfactorios (Single-agent Reinforcement Learning - Sen, S. et al. (1994) [174]).

En lo que sigue se repasan modelos expresamente diseñados para el caso multi-agente. En concreto, los siguientes casos dependen del concepto de equilibrio de Nash (NE) de Teoría de Juegos (también existe *Asymmetric Q-Learning* (Könönen, V. (2004) [102]) que emplea el equilibrio de Stackeberg).

El algoritmo Nash Q-Learning (Hu, J. & Wellman, M. P. (1998) [87]) es la extensión del algoritmo Minimax Q-Learning de juegos estocásticos de suma cero al caso de suma general. Está diseñado para buscar la acción conjunta óptima (NE).

El algoritmo Correlated Q-Learning (Greenwald, A. et al. (2003) [73]) es aplicable igualmente al caso de suma general. Y Friend or Foe Q-Learning (Littman, M. L., (2001) [113]) ofrece mejoras en la convergencia y se emplean 2 tipos de equilibrio: equilibrio adversario.

Por otro lado tenemos un conjunto de algoritmos que cuya solución es independiente del concepto de equilibrio. El algoritmo WoLF-PHC (Win or Learn Fast Policy Hill Climbing) fue desarrollado por Bowling, M. & Veloso, M. (2002) [37]. Utiliza un procedimiento basado en el gradiente (PCH - Policy Hill Climbing) y adapta Q-Learning para el empleo de estrategias mixtas. La utilización del principio WoLF (Win or Learn Fast) permite introducir una tasa de aprendizaje variable.

El algoritmo PD-WoLF (*Policy Dynamic-based Win or Learn Fast*) desarrollado por Banerjee, B. & Peng, J. (2003) [9] emplea idéntico principio WoLF.

El algoritmo NSPC (*Non-Stationary Converging Policies*) (Weinberg, M. & Rosenschein, J. S. (2004) [211]) se centra en el problema de la no estacionaridad.

Finalmente, el algoritmo EXORL (*Extended Optimal Response Learning*) - Suematsu, N. & Hayashi, A. (2002) [187]) es apto para juegos de suma general.

El benchmarking puede ser complicado. Algunos autores han trabajado en la creación de plataformas que permiten la comparación de resultados de los distintos algoritmos (Papoudakis, et. al. (2020) [143]).

La perspectiva de Teoría de Juegos puede ser desde el punto de vista de la dinámica que se genera. Nos interesa no tanto como se distribuyen las estrategias, sino cómo evolucionan. Estudio en este sentido tenemos el trabajo de Bloemberguen, D. et al. (2015 [31]).

Algunos otros criterios para clasificar los algoritmos los tenemos en: Canese, L. et al. (2021) [43].

Tipo de tarea:			
COOPERATIVA	Juego Estático	Juego Dinámico	
Existe un objetivo común, que es compartido por todos los jugadores	Los principales algoritmos son: Joint-Action Learners (JAL) [47] Frecuency MQ-Value (FMQ) [97]	Los principales algoritmos son: Team-Q [115] Distributed-Q [108] Opt. Adaptive L. (OAL) [208] Sparse CQ-L (SCQL) [100] FMR Q-L. (FMRQL) [221]	
COMPETITIVA			
Existen intereses enfrentados entre los jugadores o entre grupos de ellos	Los algoritmos que aparecen a continuación no distinguen entre Juego estático o dinámico. Ambos sirven para dos jugadores. - Minimax-Q (Littman (1994)) [114] - Heuristically accelerated multi-agent (HAMRL) [29]		
MIXTA	Juego Estático	Juego Dinámico	
Pueden aparecer tanto situaciones de cooperación como de enfrentamiento	Los principales algoritmos son: AWESOME [49] Hyper-Q [197] Fictitious play [39] IGA [183] Wolf-IGA [37] GIGA [222] GIGA-Wolf [36]	Los principales algoritmos son: Single-agent RL [174] Nash-Q [87] Correlated EqQ [73] Wolf-PHC [37] PD-Wolf [9] NSPC [211] EXORL [187]	

Cuadro 6.1: Principales algoritmos clásicos multiagente

6.6. Algoritmos mixtos clásicos

Como hemos analizado en la clasificación de los algoritmos multiagente, este tipo de algoritmos se utilizan cuando los agentes pueden llevar a cabo estrategias cooperativas como de enfrentamiento. En lo que sigue se proporciona una colección de los principales algoritmos, y que fueron enunciados previamente.

6.6.1. Algoritmo IGA (Intinitesimal Gradiente Ascent)

Este algoritmo fue desarrollado por Singh et al. (2000) [183]. Se puede aplicar fácilmente al caso de 2 jugadores y dos acciones. En la figura 6.5 podemos observar el esquema de pagos y las probabilidades asociadas que constituyen la estrategia de cada uno de ellos.

$$\mathbf{J}_{1} \rightarrow \left\{ \begin{array}{ccc} \mathbf{J}_{2} \\ \downarrow \\ \beta & 1-\beta \\ 1-\alpha & \begin{bmatrix} r_{11}, c_{11} & r_{12}, c_{12} \\ r_{21}, c_{21} & r_{22}, c_{22} \end{bmatrix} \right.$$

Figura 6.5: Esquema con la matriz de pagos de un juego matricial (r_{ij}, c_{ij}) , y las probabilidades de cada estrategia $(\alpha, 1 - \alpha; \beta, 1 - \beta)$ por jugador $(J_1, J_2: jugador fila/columna)$.

A continuación desarrollamos alguno de los algoritmos para varios jugadores (Schwartz, H. M. (2014) pag. 50).

$$V_{r}(\alpha, \beta) = \alpha \cdot \beta \cdot r_{11} + \alpha \cdot (1 - \beta) \cdot r_{12} + (1 - \alpha) \cdot \beta \cdot r_{21} + (1 - \alpha) \cdot (1 - \beta) \cdot r_{22}$$

$$= + u_{r} \cdot \alpha \cdot \beta + \alpha \cdot (r_{12} - r_{22}) + \beta \cdot (r_{21} - r_{22}) + r_{22}$$

$$V_{c}(\alpha, \beta) = \alpha \cdot \beta \cdot c_{11} + \alpha \cdot (1 - \beta) \cdot c_{12} + (1 - \alpha) \cdot \beta \cdot c_{21} + (1 - \alpha) \cdot (1 - \beta) \cdot c_{22}$$

$$= + u_{c} \cdot \alpha \cdot \beta + \alpha \cdot (c_{12} - c_{22}) + \beta \cdot (c_{21} - c_{22}) + c_{22}$$

donde:

$$u_r = r_{11} - r_{12} - r_{21} + r_{22}$$
$$u_c = c_{11} - c_{12} - c_{21} + c_{22}$$

Y tras derivar tenemos:

$$\frac{\partial V_r(\alpha,\beta)}{\partial \alpha} = \beta \cdot u_r + (r_{12} - r_{22})$$

$$\frac{\partial V_c(\alpha,\beta)}{\partial \beta} = \alpha \cdot u_c + (c_{21} - r_{22})$$

el algoritmo consiste en actualizar la estrategia aplicando la siguiente regla:

$$\alpha_{k+1} = \alpha_k + \eta \cdot \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \alpha_k}$$

$$\beta_{k+1} = \beta_k + \eta \cdot \frac{\partial V_c(\alpha_k, \beta_k)}{\partial \beta_k}$$

La versión de este algoritmo WoLF-IGA, utiliza el procedimiento WoLF (Win or Learn Fast) que consiste básicamente en introducir una tasa de aprendizaje variable, con el objetivo de que éste se vuelva más lento cuando se está ganando y, por el contrario acelerar el aprendizaje cuando se está perdiendo. Vemos que la estrategia se actualiza con la información que proporciona el gradiente junto con esta tasa variable l (donde $l \in [l_{min}, l_{max}]$):

$$\alpha_{k+1} = \alpha_k + \eta \cdot l_k^r \cdot \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \alpha_k}$$

$$\beta_{k+1} = \beta_k + \eta \cdot l_k^r \cdot \frac{\partial V_c(\alpha_k, \beta_k)}{\partial \beta_k}$$

En cuanto a los resultados que ofrece, tenemos que converge al equilibrio de Nash (NE) en estrategias mixtas o estrategias puras en juegos matriciales de suma general (2 jugadores y dos estrategias). La principal dificultad para su implementación reside en que es necesario conocer tanto la estrategia de los oponentes como los pagos que reciben estos, por lo que no emplea aprendizaje descentralizado.

6.6.2. Algortimo PHC (Policy Hill Climbing)

Fue desarrollado igualmente por Bowling & Veloso (2002) [37] y está basado en el algoritmo Q-Learning. En cuanto a los resultados que ofrece, tenemos que converge a la solución óptima cuando el resto de jugadores emplean una estrategia estacionaria fija. Si el resto de jugadores se encuentran aprendiendo igualmente, entonces la convergencia no está asegurada.

La regla para actualizar el valor de cada acción (desde la iteración t a t+1) para el jugador j, donde α es la tasa de aprendizaje y γ el factor de descuento, se resume en:

$$Q_{t+1}^j(s,a) \ = \ (1-\alpha) \cdot Q_t^j(s,a) + \alpha \cdot \left[r^j + \gamma \cdot \max_{a'} Q_t^j(s,a')\right]$$

La acción de cada jugador se selecciona según la estrategia $\pi_t^j(s,a)$, y su valor se va actualizando en una pequeña cantidad Δ_a :

$$\pi^{j}_{t+1}(s,a) = \pi^{j}_{t}(s,a) + \Delta_{a}$$

donde:

$$\Delta_a = \begin{cases} \delta & a = \underset{a'}{\operatorname{arg max}} \ Q_t^j(s, a') \\ -\frac{\delta}{|A_j| - 1} & a \neq \underset{a'}{\operatorname{arg max}} \ Q_t^j(s, a') \end{cases}$$

Es decir la regla significa

Regla de actualización 5. 1 (Policy Hill Climbing (PHC)):

$$Q_{t+1}^{j}(s,a) \longleftarrow (1-\alpha) \cdot Q_{t}^{j}(s,a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(s,a')\right]$$

Algoritmo 8 Policy Hill Climbing (PHC)

begin

Inicializar las tasas de aprendizaje $\alpha \in (0,1]$, $\delta \in (0,1]$ Inicializar el factor de descuento $\gamma \in (0,1)$

Inicializar
$$Q_i(s, a_i) = 0$$
 y $\pi_i(s, a_i) = \frac{1}{|\mathcal{A}_i|}$

for iteracion do

Observar: s

Tomar decisión en base a la estrategia actual: a_c

Observar recompensa y nuevo estado: r_i , s'

Actualizar $Q_i(s, a_c)$ y $\pi_i(s, a_i)$:

$$Q_{t+1}^{j}(s, a) = (1 - \alpha) \cdot Q_{t}^{j}(s, a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(s, a')\right]$$

$$\pi_i(s, a_i) = \pi_i(s, a_i) + \Delta_{sa_i}$$

6.6.3. Algoritmo WoLF-PHC

Este algoritmo fue introducido por Bowling & Veloso (2002) [37], para juegos matriciales entre dos jugadores con dos tipos de acciones.

$$Q_{t+1}^{j}(s,a) = (1-\alpha) \cdot Q_{t}^{j}(s,a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(s,a')\right]$$

con:

$$\pi^j_{t+1}(s,a) = \pi^j_t(s,a) + \Delta_a$$

donde:

$$\Delta_a = \begin{cases} \delta & a = \underset{a'}{\operatorname{arg max}} \ Q_t^j(s, a') \\ -\frac{\delta}{|A_j| - 1} & a \neq \underset{a'}{\operatorname{arg max}} \ Q_t^j(s, a') \end{cases}$$

El valor de δ alterna entre dos valores δ_w (winning) y δ_l (lossing), dependiendo de si el jugador se encuentra ganando o perdiendo respectivamente. Estos valores cumplen: $\delta_l > \delta_w$, y permiten una adaptación más rápida de la estrategia en el caso de que los resultados del jugador frente al oponente no estén siendo favorables. El criterio que se toma para determinar la posición que se tiene en el juego consiste en comparar el valor esperado actual (bajo la estrategia π) frente a lo que consigue la estrategia promedio ($\bar{\pi}$). Es decir el jugador está en buena posición si:

$$\underbrace{\sum_{a'} \pi_t(a') \cdot Q^j_{t+1}(a')}_{Valor\ esperado\ actual} > \underbrace{\sum_{a'} \bar{\pi}_{t+1}(a') \cdot Q^j_{t+1}(a')}_{Valor\ esperado\ de\ \bar{\pi}}$$

lo que llevaría a utilizar δ_w . En resumidas cuentas la regla de selección de la tasa de aprendizaje queda:

$$\delta = \begin{cases} \delta_w & \sum_{a'} \pi_t(a') \cdot Q^j_{t+1}(a') > \sum_{a'} \bar{\pi}_{t+1}(a') \cdot Q^j_{t+1}(a') \\ \delta_l & \sum_{a'} \pi_t(a') \cdot Q^j_{t+1}(a') \le \sum_{a'} \bar{\pi}_{t+1}(a') \cdot Q^j_{t+1}(a') \end{cases}$$

donde la estrategia promedio $\bar{\pi}$ se obtiene como:

$$\bar{\pi}_{t+1}^{j}(s, a') = \bar{\pi}_{t}^{j}(s, a') + \frac{1}{C_{t+1}(s)} \cdot \left[\pi_{t}^{j}(s, a') - \bar{\pi}_{t}^{j}(s, a') \right] \quad \forall a' \in \mathcal{A}_{j}$$

y donde se actualiza un valor contador: $C_{t+1}(s) = C_t(s) + 1$.

Algoritmo 9 WoLF-PHC

begin

Inicializar las tasas de aprendizaje α , δ

Inicializar el factor de descuento γ

Inicializar
$$Q_i(s, a_i) = 0$$
 y $\pi_i(s, a_i) = \frac{1}{|\mathcal{A}_i|}$

for iteracion do

Observar: s

Tomar decisión en base a la estrategia actual: a_c

Observar recompensa y nuevo estado: r_i , s'

Actualizar $Q_i(s, a_c)$ y $\pi_i(s, a_i)$:

$$Q_{t+1}^{j}(s, a) = (1 - \alpha) \cdot Q_{t}^{j}(s, a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(s, a')\right]$$

$$\pi_i(s, a_i) = \pi_i(s, a_i) + \Delta_{sa_i}$$

Regla de actualización 5. 2 (Win or Learn Fast (WoLF-PHC)):

$$Q_{t+1}^{j}(s,a) \leftarrow Q_{t}^{j}(s,a) = (1-\alpha) \cdot Q_{t}^{j}(s,a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(s,a')\right]$$

Algoritmo WoLF-PHC. Este algoritmo fue introducido por Bowling & Veloso (2002) [37], para juegos matriciales entre dos jugadores con dos tipos de acciones. Empleamos el procedimiento WoLF para lograr la convergencia al **Equilibrio de Nash** en self-play. Recordemos que plantear una tasa de aprendizaje variable implica:

$$Q_{t+1}^{j} = (1 - \alpha) \cdot Q_{t}^{j}(a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(a') \right]$$

con:

$$\pi^j_{t+1}(a) = \pi^j_t(a) + \Delta_a$$

donde:

$$\Delta_a = \begin{cases} -\delta_a & a = \arg \max_{a'} Q_t^j(a') \\ \sum_{a' \neq a} \delta_{a'} & a \neq \arg \max_{a'} Q_t^j(a') \end{cases}$$

donde:

$$\delta_a = \min\left(\pi_t^j(a), \frac{\delta}{|A_j| - 1}\right)$$

con:

$$\delta = \begin{cases} \delta_w & \sum_{a'} \pi_t(a') \cdot Q^j_{t+1}(a') > \sum_{a'} \bar{\pi}_{t+1}(a') \cdot Q^j_{t+1}(a') \\ \delta_l & \sum_{a'} \pi_t(a') \cdot Q^j_{t+1}(a') \le \sum_{a'} \bar{\pi}_{t+1}(a') \cdot Q^j_{t+1}(a') \end{cases}$$

y donde:

$$\bar{\pi}_{t+1}^{j}(a') = \bar{\pi}_{t}^{j}(a) + \frac{1}{C_{t+1}} \cdot \left[\pi_{t}^{j}(a') - \bar{\pi}_{t}^{j}(a') \right] \quad \forall a' \in \mathcal{A}_{j}$$

y donde se actualiza un valor contador: $C_{t+1} = C_t + 1$.

Algoritmo 10 WoLF-IGA

begin

Inicializar las tasas de aprendizaje α , δ Inicializar el factor de descuento γ

Inicializar
$$Q_i(s, a_i) = 0$$
 y $\pi_i(s, a_i) = \frac{1}{|\mathcal{A}_i|}$

for iteracion do

Observar: s

Tomar decisión en base a la estrategia actual: a_c

Observar recompensa y nuevo estado: r_i , s'

Actualizar $Q_i(s, a_c)$ y $\pi_i(s, a_i)$:

$$Q_{t+1}^{j} = (1 - \alpha) \cdot Q_{t}^{j}(a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(a')\right]$$

$$\pi_i(s, a_i) = \pi_i(s, a_i) + \Delta_{sa_i}$$

Regla de actualización 5. 3 (Win or Learn Fast (WoLF-IGA)):

$$Q_{t+1}^{j} \longleftarrow Q_{t}^{j} = (1 - \alpha) \cdot Q_{t}^{j}(a) + \alpha \cdot \left[r^{j} + \gamma \cdot \max_{a'} Q_{t}^{j}(a') \right]$$

Algoritmo Minimax-Q El algoritmo propuesto por Littman (1994) [114] se detalla a continuación.

$$V_i^*(s) = \max_{\pi_i(s,\cdot)} \min_{a_{-i} \in \mathcal{A}_{-i}} \sum_{a_i \in \mathcal{A}_i} Q_i^*(s, a_i, a_{-i}) \cdot \pi_i(s, a_i) \qquad i = 1, 2$$

Algoritmo Friend or Foe Q-Learning El algoritmo propuesto por Littman, M. L. (2001) [115].

Algoritmo 11 Friend or Foe Q-Learning

begin

Fijar α (tasa de aprendizaje) y γ (factor de descuento)

Sea $(a_1, ..., a_{n_1})$ las acciones del jugador i y sus amigos

Sea $(o_1, ..., o_{n_2})$ las acciones de los oponentes del jugador i

Inicializar $V_i(s)$ y $Q_i(s, a_1, ..., a_{n_1}, o_1, ..., o_{n_2})$

for iteracion do

Observar: s

Tomar decisión el jugador i: a_i

Observar recompensa y nuevo estado de amigos y oponentes: r_i , s'

Actualizar $Q_i(s, a_1, ..., a_{n_1}, o_1, ..., o_{n_2})$:

$$Q_i(s, a_1, ..., a_{n_1}, o_1, ..., o_{n_2}) = (1 - \alpha) \cdot Q_i(s, a_1, ..., a_{n_1}, o_1, ..., o_{n_2}) + \alpha \cdot [r_i + \gamma \cdot V_i(s')]$$

Actualizar mediante programación dinámica $V_i(S)$

$$V_{i}(s) = \max_{\pi_{i}(s,\cdot),...,\pi_{n_{1}}(s,\cdot)} \min_{o_{1},...,o_{n_{2}}} \sum_{a_{1},...,a_{n_{1}} \in \mathcal{A}_{1} \times ... \times \mathcal{A}_{n_{1}}} Q_{i}(s, a_{1}, ..., a_{n_{1}}, o_{1}, ..., o_{n_{2}}) \cdot \pi_{i}(s, a_{1}) \cdot ... \cdot \pi_{n_{1}}(s, a_{n_{1}})$$

Estudios sobre algoritmos de aprendizaje en casos con información imperfecta, tenemos para el caso de suma cero Lakshmivarahan, S. & Narendra, K. S. (1981) [106]. También han tratado el tema Sastry, P. S. et al (1994) [166].

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

6.7. Algoritmos mixtos recientes

En los apartados anteriores se han analizado los principales algoritmos clásicos en los que los agentes interactúan tanto cooperando como enfrentándose entre sí. El principal problema que surge en muchos de ellos es que sólo es aplicable en el caso de un número reducido de agentes. Algunas técnicas más recientes intentas salvar este obstáculo.

6.7.1. Mean Field Q-Learning

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

$$\begin{split} Q^j(s,\mathbf{a}) \; &= \; \frac{1}{N^j} \, \sum_k Q^j(s,a^j,a^k) \; \approx \; Q^j(s,a^j,\overline{a}^j) \\ \\ Q^j_{\;t+1}(s,a^j,\overline{a}^j) \; &= \; (1-\alpha) \cdot Q^j_{\;t}(s,a^j,\overline{a}^j) \; + \; \alpha \cdot \left[r^j + \gamma \; v^j_t(s') \; \right] \\ \\ v^j_t(s') \; &= \; \sum_{a^j} \pi^j_t(a^j \mid s,\overline{a}^j) \cdot \mathbb{E}_{\;\overline{a}^j(a^{-j}) \, \sim \, \pi^{-j}_t} \left[Q^j_{\;t}(s',a^j,\overline{a}^j) \right] \end{split}$$

TEOREMA 6.1: Convergencia de la regla de actualización MF-Q

Dado un juego estocástico con espacio de estados finito, los valores Q_t calculados con la regla de actualización MF-Q (Mean Field Q-Learning) convergen a los Q-valores de Nash $Q_* = [Q_*^1, ..., Q_*^N]$ si se cumplen los siguentes supuestos.

- a) **Supuesto 1**. Cada par estado-acción es visitado con probabilidad 1 (i.o. infinitely often) y las recompensas están acotadas por una cierta constante K.
- b) **Supuesto 2**. La estrategia del agente es 'Greedy' en el limite con exploración infinita (GLIE Greedy in the Limit with Infinite Exploration).

Tenemos que en el caso de la estrategia de Boltzmann, se convierte en greedy con respecto a la función Q en el límite, según la temperatura (β) decae asintóticamenta a cero. La estrategia de Boltzmann (Boltzmann policy) adopta la siguiente expresión:

$$\pi_t^j(a^j \mid s, \overline{a}^j) = \frac{e^{\beta \cdot Q_t^j(s, a^j, \overline{a}^j)}}{\sum\limits_{a^{j'} \in \mathcal{A}^j} e^{\beta \cdot Q_t^j(s, a^{j'}, \overline{a}^j)}}$$

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal,

como cuando se incluye todo el texto en el archivo principal.

Regla de actualización 5. 4 (Mean Field Q-Learning):

$$Q^{j}(s, a^{j}, \overline{a}^{j}) \leftarrow Q^{j}(s, a^{j}, \overline{a}^{j}) + \alpha \cdot [r^{j} + \gamma \cdot v^{j}(s') - Q^{j}(s, a^{j}, \overline{a}^{j})]$$

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

El algoritmo L_{R-I} Lagging Anchor aborda algunos de los puntos débiles de los algoritmos basados en el gradiente (Schwartz, H. M. (1994) [173]).

Respecto a algunos otros algoritmos como Team-Q podemos encontrar en algunos textos el detalle de su funcionamiento (Konar, A. & Sadhu, A. K. (2020) [163]).

$$\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$\alpha \ 1 - \alpha \quad \beta \ 1 - \beta$$

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir

introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

En la literatura es normal encontrar el planteamiento anterior adaptado para trabajar dentro del marco propuesto por Littman (1994) [114], que considera el problema multiagente como un Juego de Markov.

ARTÍCULOS:

De entre los primeros análisis destaca el realizado sobre el aprendizaje por refuerzo y el Dilema del Prisionero iterado (Sandholm, T. W. & Crites R. H. (1996) [164]). La aportación consiste en que, a diferencia de análisis previos, aborda la situación en la que los pagos no están ni totalmente correlados positivamente (team problems) ni negativamente correlados (juegos de suma cero). Presenta el algoritmo Q-Learning como adecuado para su empleo con juegos repetidos contra un oponente desconocido, utilizando en este caso el Dilema del Prisionero Iterado. Como señala el autor: los supuestos que garantizan la convergencia del algoritmo Q-Learning no se cumplen, ya que el aprendizaje simultáneo de todos los agentes, convierte el ambiente en no estacionario. En su artículo analiza diversos tipos de oponente (jugadores Tit-for-Tat, o PAVLOV por ejemplo). Emplea una Red Neuronal Recurrente para mantener información de las jugas pasadas.

Lo que sigue sería el capítulo dedicado a Aprendizaje por Refuerzo Multi-agente. La creciente aparición de artículos y algunas monografías sobre el tema refleja el interés por el tema. Algunos de los reviews destacan como el de (Nguyen et al. 2018) [133] (2020 [134]). O libros como Swartz (2014) [173] o Sadhu (2020) [163].

CAPÍTULO 6. APRENDIZAJE POR REFUERZO MULTIAGENTE (MARL)

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 7

Diseño de un agente dotado de emociones

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Trabajos previos estudiando la evolución de la cooperación generalmente utilizan la disposición de los agentes en cuadrícula (tanto si se estudia evolutivamente como con los mismos agentes). Algunos otros han estudiado la evolución de la cooperación en una red (Ohtsuki, H. et al. (2006) [140] y Santos, F. C. & Pacheco, J. M. (2006) [165]).

7.1. Teorías sobre emociones

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

7.2. Influencia de las emociones en el flujo de información

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Modelos de Difusión de Información

- -Independent Cascade Model.
- -Threshold Model.
- (O quizás poner aquí algo de teoría, y luego en un cuadro de ejemplo poner estas figuras en blanco y negro)

Algunos ejemplos permitirán aclarar el funcionamiento de los diversos modelos para la difusión de información.

EJEMPLO 7.1: Modelos de Difusión de Información

Imaginemos que nos encontramos ante el problema de determinar la secuencia de decisiones óptimas en una serie finita de etapas. La siguiente figura representa un sencillo caso.

La forma de plantear el problema desde la perspectiva de la Programación Dinámica consiste en dividir el problema principal en problemas más sencillos que impliquen un sólo paso o etapa y resolverlo olvidándose del resto del problema. Tendríamos un sistema de ecuaciones para el ejemplo que aparece a continuación.

La resolución del sistema de ecuaciones nos proporciona una solución, que es el valor óptimo de cada estado cuando se sigue la estrategia en cuestión.

7.3. Agente emocional

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

-Artículo de Robert Plutchik sobre las emociones, donde viene la rueda con las principales de ellas. Puedo coger la referencia de las 4 que pretendo enfrentar (Plutchik, R. (2001) [150]).

Algunos artículos de AAnna Bazzan y Rafael Bordini:

-Sobre el diseño de agentes con emociones, y la realización de experimentos con el Dilema del Prisionero Iterado (Bazzan, A. & Bordini, R. H. (2001) [10]) y sobre la evolución de los agentes si los dotamos de sentimientos morales (Bazzan, A. & Bordini, R. H. (2002) [11]).

-Mencionan en uno de los artículos un análisis del dilema del prisionero y las emociones, desde la perspectiva de la Teoría de Juegos (O'Neill, B. (2000) [139]).

Figura 7.1: Prueba de modelo de las transiciones emocionales de un agente.

7.4. Integración en el esquema de RL

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Lo habitual consiste en añadir un componente a la función de recompensa que permite añadir el efecto de las emociones. En la literatura generalmente se trata de maximizar las emociones positivas y minimizar las negativas (survey: Moerland et al. (2018) [124]).

7.5. Representación del conocimiento

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir

introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

7.6. Transferencia de conocimiento y feature representation

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Construcción de una función de recompensa.

Algoritmos tradicionales de RL muestran un rendimiento deficiente en ciertas situaciones (Mataric, M. J. (1994) [118]). El autor propone una metodología para la construcción de una función de recompensa más adecuada, que permita la aceleración del aprendizaje. En este mismo sentido (Ng, Andrew et al. (1999) [132]) se ha estudiado el tipo de modificaciones en la recompensa que conservan la optimalidad de la mejor estrategia en el problema de partida.

Respecto a la naturaleza de la recompensa podemos distinguir entre recompensa intrínseca y la recompensa externa que se recibe del entorno. Respecto a la primera el trabajo pionero establece el marco de trabajo para profundizar en un agente guiado por motivaciones internas (Singh, S. et al. (2009) [180]). Los mismos autores ahondan (Singh, S. et al. (2010) [181]) en la naturaleza evolutiva de las recompensas intrínsecas.

Sobre el aprendizaje en casos no markovianos (POMDP) tenemos el trabajo de Singh, S. et al. (1994) [182].

Convergencia a la Cooperación en Dilemas Iterados

Los estudios de la difusión de la cooperación en una sociedad son abundantes. Se han empleado diversos mecanismos para promover la aparición de este tipo de estrategias. Podemos resaltar los estudios clásicos sobre reciprodidad directa (Trivers, R. (1971) [201], Axelrod, R. (1984) [6], Nowak, M. & Sigmund, K. (1992) [137], Nowak, M. & May, R. M. (1992) [136]). Estudios más recientes incorporan el tipo de red que interconecta a los individuos (Ohtsuki, H. et al. (2006) [140], Santos, F. C. & Pacheco, J. M. (2006) [165]).

En cuanto al empleo de redes neuronales entrenadas con retropropagación destaca el trabajo de Leibo, J. L. et al. (2017) [110]. En concreto trabajan con varios tipos de dilemas diseñados específicamente para el estudio de equilibrios en Dilemas Sociales Secuenciales. Aquí el agente seenfrenta a un entorno que sólo puede observar parcialmente. Emplean Deep Q-Networks. El entrenamiento es por lotes, por lo que de cara a diseñar una red social no sea el más apropiado.

Sobre este mismo diseño tenemos la adhesión como forma de promover la cooperación (Yuan, Y. et al. (2022) [218]).

El algoritmo Q-Learning ha sido estudiado en multi-agente. Pese a que las condiciones que garantizan la convergencia del algoritmo no se cumplen, se ha aplicado con éxito en entornos sencillos. Si tratamos de su aplicación en juegos matriciales algunos estudios revelan la dificultad para generar la cooperación (Wunder, M. et al. (2010) [215]). Estudios más generales tenemos el de Bloembergen, D. et al. (2015) [31].

Empleo de recompensas intrínsecas en Dilemas Iterados

El empleo de Teoría de Juegos y, en concreto, el Dilema del Prisionero como mecanismo de interacción entre agentes ha impulsado el estudio de los mecanismos mediante los cuales se promueve la estrategia cooperativa. El empleo de recompensas intrínsecas es uno de dichos mecanismos.

Uno de los trabajos es el de Eccles, T. et al. (2019) [55] que emplea la reciprocidad como recompensa intrínsica. En este estudio coexisten dos tipos de agentes: innovadores e imitadores. Ambos son entrenados mediante A3C (algoritmo Asynchronous Advantage Actor-Critic) con una red neuronal profunda. Los primeros aprenden del entorno y los imitadores se ven influidos por el nivel de sociabilidad de los innovadores.

Entre los mecanismos empleados para impulsar la cooperación destacan: la reciprocidad, el cumplimiento de normas, las emociones o el efecto de la red.

Empleo de emociones como recompensa intrínseca

Estudios que emplean emociones en los agentes para jugar al IPD tenemos el de Bazzan, A. et al. (2001) [10], basado en el modelo de emociones de OCC. Es básicamente un modelo evolutivo. Toma como referencia el trabajo de Nowak, M. A. & May, R. M. (1992) [136] y cada celda se sustituye por la que mejores resultados obtuvo entra las vecinas implementando un sistema emocional basado en reglas. Dicho trabajo es expandido posteriormente (Bazzan, A. et al. (2002) [11]) para dotar a algunos de los agente de sentimientos morales hacia agentes del mismo grupo social. Los agentes altruistas, que inicialmente no tienen un buen desempeño, acaban mejorando sustancialmente.

Empleando idéntico modelo como referencia tenemos el trabajo de Sequeira, P. et al (2011) [175], en el que utilizan 4 dimensiones de evaluación de elementos del entorno (reward features)

que combinan linealmente optimizando los pesos para estudiar la adaptación óptima al entorno. Posteriormente llevan a cabo un estudio más profundo sobre el tipo de diseño de la recompensa intrínseca (Sequeira, P. et al. (2014) [176]).

Algunas observaciones últimas a incorporar:

Distinguimos primero entre si es una teoría de Juegos evolutivos (Ver por ejemplo Perc, M & Szolnoki, A. (2010) [145] o también: Szabo, G. & Fath, G. (2007) [194] sobre los juegos evolutivos en grafos).

Sobre los problemas de coordinación en el aprendizaje, por ejemplo en los métodos que emplean Q-Learning (Fulda, N. & Ventura, D. (2007) [65]).

Sobre el equilibrio correlado (Hines, G. & Larson, K (2012) [84]).

Sobre la detección del tipo de oponentes a los que uno se enfrenta en juegos repetidos (Hernandez-Leal, P. & Kaisers, M (2017) [82]).

Sobre un aprendizaje más rápido de los agentes (Elidrisi, M. et al. (2014) [56]).

Algoritmo Pepper para juegos matriciales (Crandall, J. W. (2012) [52]).

Sobre la diversidad social y la promoción de la cooperación en juegos en el dilema del Prisionero espacial (Perc, M. & Szolnoki, A. (2008) [146]).

Efecto de las emociones en la evolución de la cooperación en dilemas sociales, mediante unos agentes con orientación social y otros más egoistas, empleo de emociones surgidas de la reciprocidad (Chen, W. et al. (2021) [46]).

Efecto de las emociones en dilemas espaciales con participación voluntaria (Wang, L. et al. (2018) [206]).

Hacia la cooperación en PD secuenciales con el enfoque Deep RL multiagente (Wang, W. et al. (2018) [207]).

Sobre la imitación de emociones, del perfil emocional, en lugar de estrategias como vía de elevar el bienestar social en juegos espaciales (Szolnoki, A. et al. (2011) [195]).

Imitación de las emociones en IPD con extorsión (Quan, J. et al. (2021) [156]).

Se estudia el aprendizaje del surgimiento de la cooperación utilizando 2 capas de aprendizaje que dotan al agente de capacidades cognitivas y emocionales (Yu, C. et al. (2015) [217]). Se utilizan diversos algoritmos, y los agentes interactúan en diversos espacios: un grid cuadricular y diferentes redes sencillas.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 8

Estudio de los agentes influyentes en una Red Social

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

8.1. Aplicación de Aprendizaje por refuerzo

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

8.2. Análisis estratégico de un agente emocional

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

8.3. Viralización de información

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 9

Resultados

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

9.1. Análisis estratégicos

Los siguientes 4 artículos emplean el entorno grid en el que llevan a cabo experimentos con varios tipos de dilemas.

- El siguiente parece ser el primer artículo, de lo que luego son varios que continúan el planteamiento de los dilemas iterados (Leibo, J. et al. (2017) [110]).
- Sobre el aprendizaje de la reciprocidad en dilemas sociales secuenciales tenemos el estudio de Eccles, T. (2019) [55].
- Respecto a otros factores que puedan favorecer la aparición de comportamientos prosociales, tenemos el estudio que relaciona la solución de un dilema social con la aversión a la desigualdad (Hughes, E. (2018) [90]). En este estudio se aborda el efecto de distanciar el impacto negativo del comportamiento egoista.
- Sobre la influencia social como motivación intrínseca tenemos el estudio llevado a cabo por Jaques, N. et al. (2019) [94].

Otro trabajo que también emplea el mismo entorno de entrenamiento:

- Trata la emergencia de la reciprocidad y la formación de grupos (Baker, B. (2020) [8]).

Otros autores también han creado plataformas para entrenamiento en juegos estratégios, como el desarrollado por Tian, Y. et al. (2017) [200].

Otro tipo de estudios también intentan analizar los factores que inducen la cooperación en el dilema del prisionero. En cuanto al empleo de emociones tenemos los siguientes estudios interrelacionados.

- 1. Los sentimientos morales y su efecto en el dilema del prisionero iterado en un sistema multiagente (Bazzan, A. et al. (1998) [12].
- 2. También la evolución del comportamiento en agentes dotados de sentimientos morales (Bazzan, A. et al. (2002) [11]).
- 3. Sobre el papel de los lazos sociales en el desarrollo de la cooperación en el dilema del prisionero iterado tenemos el estudio llevado a cabo por Bazzan, A et al. (2011) [13].
- 4. Sobre el planteamiento de un marco de trabajo para el desarrollo de agentes dotados de emociones en el Dilema del Prisionero iterado tenemos el trabajo de Bazzan, A. & Bordini, R. (2001) [10].

Algunos otros estudios que relacionan motivaciones intrínsecas al agente con el desarrollo del impulso a la cooperación son los que aparecen a continuación.

- 1. Sobre la imitación de emociones, en lugar de las estrategias, como vía de elevar el bienestar social en juegos espaciales (Szolnoki, A. (2011) [195]).
- 2. Sobre las emociones como una motivación intrínseca (Sequeira, P. et al. (2011) [175]), y sobre el diseño de este tipo de señales intrínsecas capaces de guiar el aprendizaje (Sequeira, P. et al. (2014) [176]).
- 3. Un modelo con algunas emociones (Broekens, J. et al. (2015) [38]).
- 4. Sobre la extensión en el tiempo de las estrategias cooperadoras (Peysakhovich, A. & Lerer, A. (2017) [148] y (2018) [149]).

9.2. Viralización de información en una red social

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

9.3. Distorsión de la información y consecuencias sobre la difusión

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

9.4. Polarización en una Red Social

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Al ir pulsando ENTER va apareciendo un numerado en los párrafos, por lo que parece que no se necesitan comandos y que tomará de aquí diréctamente el texto. Posteriormente voy a ir introduciendo órdenes para las diferentes secciones para comprobar si funciona de manera normal, como cuando se incluye todo el texto en el archivo principal.

Esto que aparece aquí es una pequeña muestra de texto para ir haciéndose una idea de la apariencia de la Tesis.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Capítulo 10

Conclusiones

Entre los resultados que procedemos a presentar se encuentran algunos y teoremas y resultados que pasaremos a continuación a estudiar pormenorizadamente.

10.1. Efecto de las emociones en las comunicaciones

A continuación se presentan algunos términos que serán de utilidad. Como se ha comentado, en un entorno multiagente, los agentes se ven forzados a interactuar entre sí. Esto provoca que el curso de acción óptimo dependa de las acciones que llevan a cabo el resto de agentes con los que se está interactuando. Por ello este área del Reinforcement Learning está muy influida por la Teoría de Juegos. A continuación se presentan algunos términos que serán de utilidad.

10.2. Viralización de la información

A continuación se presentan algunos términos que serán de utilidad. Como se ha comentado, en un entorno multiagente, los agentes se ven forzados a interactuar entre sí. Esto provoca que el curso de acción óptimo dependa de las acciones que llevan a cabo el resto de agentes con los que se está interactuando. Por ello este área del Reinforcement Learning está muy influida por la Teoría de Juegos. A continuación se presentan algunos términos que serán de utilidad.

A continuación se presentan algunos términos que serán de utilidad. Como se ha comentado, en un entorno multiagente, los agentes se ven forzados a interactuar entre sí. Esto provoca que el curso de acción óptimo dependa de las acciones que llevan a cabo el resto de agentes con los que se está interactuando. Por ello este área del Reinforcement Learning está muy influida por la Teoría de Juegos. A continuación se presentan algunos términos que serán de utilidad.

Resumen - Ideas principales

Esto son un conjunto de ideas resumidas que permiten hacerse una idea de todo aquello que se ha analizado en el capítulo.

- 1. Las redes neuronales que emplearemos serán fundamentalmente perceptrones.
- 2. También se emplearán redes recurrentes.
- 3. Además utilizaremos un tipo especial de redes recurrentes, como son las redes LSTM. Su uso es muy extendido en este tipo de modelizaciones.

Apéndice A Estadística y Probabilidad

Apéndice B

Teoría de Juegos

Lo que sigue es una prueba de lo que se pretende llevar a cabo en la tesis. Presentaremos interesantes resultados así como emplearemos una presentación cuidada e impactante. Lo que sigue es una prueba de lo que se pretende llevar a cabo en la tesis. Presentaremos interesantes resultados así como emplearemos una presentación cuidada e impactante. Lo que sigue es una prueba de lo que se pretende llevar a cabo en la tesis. Presentaremos interesantes resultados así como emplearemos una presentación cuidada e impactante.

Apéndice C

Redes Sociales

Dado que el otro paquete da algunos errores e impide la generación del ÍNDICE, pruebo con otro paquete.

Apéndice D

Código PYTHON

D.1. Implementación del algoritmo SARSA

En el código que aparece a continuación se especifican los parámetros para el funcionamiento de la simulación. En primer lugar se importan las librerías. Entre los más importantes para el aprendizaje tenemos el parámetro **alfa** que corresponde a la magnitud del cambio en el proceso de aprendizaje. Se emplea un **factor de descuento** (olvido) gamma igual a 0.1.

```
2 # Importamos las LIBRERIAS
3 import numpy as np
4 import pandas as pd
5 import random
7 # Especificamos los parametros que se emplearan a lo largo del
8 # PROGRAMA
10 # PARAMETROS
alfa = 0.1  # TASA DE APRENDIZAJE
gamma = 0.1  # TASA DE DESCUENTO
epsilon = 0.2  # probabilidad de EXPLORACION
num_estados = 3 # EMOCIONES - Inicialmente 3
16 num_acciones = 2 # Cooperar o NoCooperar
18 # Recompensas intr nsecas
r_alegria = 3
20 r_ira
r_{culpabilidad} = 2
23 # TAMA O DE LA CUADRICULA (Grid) - (size=10) => (10 filas x 10 columnas)
24 size = 10
```

Podemos ver que inicialmente se introducen 3 emociones. Las recompensas intrínsecas que intervendrán en el aprendizaje aparecen especificadas. El tamaño de prueba del tablero es de 10 filas por 10 columnas.

A continuación, una vez introducidos los parámetros del programa, procedemos a desarrollar

las clases principales. En primer lugar aparece el código de la clase AGENTE.

```
2 # CLASES PRINCIPALES
3 #
  # 1) Clase AGENTE >>> (Agente con exploracion epsilon-greedy)
6
  class AgenteEmocional(object):
    def __init__(self, alfa=0.1, gamma=0.1):
      self.alfa = alfa
9
      self.gamma
                    = gamma
10
       self.estados = num_estados
11
       self.acciones = num_acciones
13
       self.num_vecinos
14
       # RECOMPENSAS y GANANCIAS
16
       # -----
17
       self.recompensa
18
       self.recompensa_intrinseca = 0
19
       self.ganancias
20
21
       # ESTADOS EMOCIONALES (S y S')
22
23
       # Emocion inicial
24
                                   = np.random.randint(num_estados)
       self.emocion
25
       # Un valor cualquiera, se modificara de inmediato
26
       self.emocion_tras_jugada
27
28
       # DECISIONES
29
30
       # Un valor cualquiera, se modificara de inmediato
31
       self.accion_propia
                            = 0
32
       # Un valor cualquiera, se modificara de inmediato
33
       self.accion_vecindario = 0
34
                                   = 0
       self.numero_cooperadores
35
36
       # PROCESO DE APRENDIZAJE
37
38
       self.matriz_Q = np.zeros((num_estados, num_acciones))
39
       self.ERRORES
                                   = []
40
41
42
    def Fijar_vecinos(self, vecinos):
43
      self.num_vecinos = vecinos
44
45
46
    def Vecinos(self):
47
     return self.num_vecinos
48
49
50
    def Fijar_num_cooperadores(self, numero):
51
      self.numero_cooperadores = numero
54
    def Fijar_intensidad_emocional(self, intensidad):
   self.intensidad_emocional = intensidad
56
```

```
58
     def Q(self):
50
       return self.matriz_Q
60
61
62
     # DECISIONES: epsilon-greedy
63
     def Tomar_decision(self, estado):
64
       valor_aleatorio = np.random.uniform(0,1)
65
66
       if valor_aleatorio < epsilon:</pre>
67
         accion = np.random.randint(num_acciones)
68
         self.accion_propia = accion
69
       else:
70
         Qs = self.matriz_Q[estado]
71
         accion = np.argmax(Qs)
72
         self.accion_propia = accion
73
74
75
       return accion
76
77
     def Accion(self):
78
       return self.accion_propia
80
81
     def Accion_vecindario(self, accion_vecinos):
82
       self.accion_vecindario = accion_vecinos
83
84
85
     def Recompensa(self, recompensa):
86
       self.recompensa = recompensa
87
88
89
     def nuevo_estado(self, accion_vecindario):
90
       ALEGRIA
                     = 0
91
       IRA
                     = 1
92
       CULPABILIDAD = 2
93
94
       COOPERAR
95
       No_COOPERAR
96
97
       # Partimos de Estado inicial: ALEGRIA ('0')
98
99
       if ((self.emocion == ALEGRIA) and (self.accion_propia == COOPERAR)):
100
              # Est ALEGRE y COOPERA
          if (self.accion_vecindario == 1):
                                                          # <-- Vecinos COOPERAN
                                        = ALEGRIA
            self.emocion_tras_jugada
            self.recompensa_intrinseca = r_alegria
          else:
                                                          # <--
                                                                 Vecinos No COOPERAN
104
            self.emocion_tras_jugada
                                         = IRA
            self.recompensa_intrinseca = 0
106
       elif ((self.emocion == ALEGRIA) and (self.accion_propia == No_COOPERAR)):
107
           # Est ALEGRE y NoCOOPERA
          if (self.accion_vecindario == COOPERAR):
108
                                        = CULPABILIDAD
            self.emocion_tras_jugada
109
            self.recompensa_intrinseca = 0
          else:
            self.emocion_tras_jugada = ALEGRIA
```

```
self.recompensa_intrinseca = 0
114
       # Partimos de Estado inicial: IRA ('1')
116
       if (self.emocion == IRA) and (self.accion_propia == COOPERAR):
117
           # Est IRACUNDO y COOPERA
          if (self.accion_vecindario == COOPERAR):
                                                       # <-- Vecinos COOPERAN
118
            self.emocion_tras_jugada
            self.recompensa_intrinseca = 0
120
          else:
                                                         # <-- Vecinos No COOPERAN
121
            self.emocion_tras_jugada
                                        = IRA
122
            self.recompensa_intrinseca = 0
123
       elif (self.emocion == IRA) and (self.accion_propia == No_COOPERAR):
124
                IRACUNDO y NoCOOPERA
         # Est
          if (self.accion_vecindario == COOPERAR):
                                                         # <-- Vecinos COOPERAN
                                       = CULPABILIDAD
            self.emocion_tras_jugada
126
            self.recompensa_intrinseca = 0
127
                                                         # <--
                                                                Vecinos No COOPERAN
128
          else:
            self.emocion_tras_jugada
                                      = IRA
129
            self.recompensa_intrinseca = r_ira
130
       # Partimos de Estado inicial: CULPABILIDAD
133
       if (self.emocion == CULPABILIDAD) and (self.accion_propia == COOPERAR):
134
           # Siente CULPABILIDAD y COOPERA
          if (self.accion_vecindario == COOPERAR):
                                                        # <-- Vecinos COOPERAN
135
            self.emocion_tras_jugada = ALEGRIA
136
            self.recompensa_intrinseca = r_culpabilidad
          else:
                                                         # <-- Vecinos No COOPERAN
138
            self.emocion_tras_jugada
                                        = IRA
139
            self.recompensa_intrinseca = 0
140
       elif (self.emocion == CULPABILIDAD) and (self.accion_propia == No_COOPERAR
141
      ): # Siente CULPABILIDAD y NoCOOPERA
                                                         # <-- Vecinos COOPERAN
          if (self.accion_vecindario == COOPERAR):
142
            self.emocion_tras_jugada
                                      = CULPABILIDAD
143
            self.recompensa_intrinseca = 0
144
                                                         # <-- Vecinos COOPERAN
          else:
145
            self.emocion_tras_jugada = IRA
146
147
            self.recompensa_intrinseca = 0
148
      return self.emocion_tras_jugada
149
150
151
     def paso_aprendizaje(self):
      # ESTADOS:
                    s (estado) y s' (estado_nuevo)
       estado = self.emocion
154
       estado_nuevo = self.nuevo_estado(self.accion_vecindario)
      # RECOMPENSA: r
157
158
      r = self.recompensa + self.recompensa_intrinseca
159
       # ACCION:
                     a (accion) y a' (accion_nueva)
160
       accion = self.accion_propia
161
       accion_nueva = self.Tomar_decision(estado_nuevo)
162
163
       # Seguimos el rastro de las recompensas que recibe
164
165
       self.ganancias.append(r)
166
```

```
167
168
169
       # Algoritmo SARSA
170
171
       # APRENDIZAJE:
       target = float(r) + gamma * self.matriz_Q[estado_nuevo][accion_nueva]
       error = target - self.matriz_Q[estado][accion]
       self.ERRORES.append(error)
175
       self.matriz_Q[estado][accion] = self.matriz_Q[estado][accion] + (alfa*
176
      error)
177
       self.emocion = estado_nuevo
178
       self.accion_propia = accion_nueva
179
180
```

La implementación anterior emplea una representación tabular de la función Q. A continuación representamos los valores que intervienen en el proceso de aprendizaje en el algoritmo SARSA.

	a_1		a	 a'	
s_1					
:	:	:			
s			Q(s,a)		
:	:	:			
s'				Q(s',a')	
:					

Cuadro D.1: Representación tabular de la función Q(s, a).

A continuación aparece la implementación de la clase ENTORNO, que será la que nos permita reproducir las interacciones entre los agentes.

```
2 # 2) Clase AMBIENTE
 # Esta clase debe enviar: (s,r)
5 # Es decir: el estado siguiente (s) - o la informacion para determinarlo -
 # (en este caso las estrategias de los otros jugadores)
   y ademas la RECOMPENSA DEL DILEMA (r)
  class Environment(object):
9
    def __init__(self, size_):
10
      self.matriz_pagos_J1 = np.zeros((2,2))
      self.matriz_pagos_J2 = np.zeros((2,2))
12
      # MATRIZ DE PAGOS del Jugador 1 ( ndice : 0/1 = NoCooperar/Cooperar)
14
      self.matriz_pagos_J1[0][0] = 0
      self.matriz_pagos_J1[0][1]
16
      self.matriz_pagos_J1[1][0]
17
      self.matriz_pagos_J1[1][1] = 3
18
19
20
      # MATRIZ DE PAGOS del Jugador 2 ( ndice : 0/1 = NoCooperar/Cooperar)
      self.matriz_pagos_J2[0][0] = 0
21
```

```
self.matriz_pagos_J2[0][1] = 0
22
      self.matriz_pagos_J2[1][0] = 5
      self.matriz_pagos_J2[1][1] = 3
24
25
      self.size = size_
26
      self.Grid = np.full((size + 2, size + 2), AgenteEmocional)
27
2.8
29
      # INCLUIDO EN EL __init__. Antes: def inicializar_tablero(self):
      # ASIGNAR VECINOS al crear OBJETOS (Para graduar la intensidad emocional)
30
31
          AL INTERIOR DEL TABLERO:
                                                   <---- 8 VECINOS
32
      for i in range(size+2):
33
        for j in range(size+2):
34
           self.Grid[i][j] = AgenteEmocional()
35
           if ((i>1 and i<size) and (j>1 and j<size)):</pre>
36
             self.Grid[i][j].Fijar_vecinos(8)
37
           else:
38
             self.Grid[i][j].Fijar_vecinos(0)
39
40
           A LAS ESQUINAS
                                                   <---- 3 VECINOS
41
      self.Grid[1][1].Fijar_vecinos(3)
42
      self.Grid[size][size].Fijar_vecinos(3)
43
      self.Grid[size][1].Fijar_vecinos(3)
44
45
      self.Grid[1][size].Fijar_vecinos(3)
46
           AL BORDE
                                                            ---- 5 VECINOS
47
      for columna in range(2, size, +1): self.Grid[1][columna].Fijar_vecinos(5)
48
      for columna in range(2, size, +1): self.Grid[size][columna].Fijar_vecinos(5)
49
                                       self.Grid[fila][1].Fijar_vecinos(5)
self.Grid[fila][size].Fijar_vecinos(5)
      for fila in range(2, size, +1):
50
      for fila in range(2, size, +1):
51
53
    def Devolver_Grid(self):
54
      return self.Grid
56
57
    def step(self):
58
      num_cooperadores = 0
59
60
      reward
      Vecinos_Cooperan = 0
61
      filas
             = size
62
      columnas = size
63
      recompensa = 0
64
65
                  = np.zeros((size+2, size+2),dtype=int)
      acciones
66
      emociones = np.zeros((size+2, size+2),dtype=int)
67
      intensidad = np.zeros((size+2, size+2))
68
69
      # Aqui cada AGENTE toma su DECISION:
70
71
      for i in range(1, filas+1,+1):
72
        for j in range(1, columnas+1,+1):
           # ESTO CONSTITUIRA EL 'FRAME' con las acciones en un paso
73
                              = self.Grid[i][j].emocion
          estado
74
                              = self.Grid[i][j].Tomar_decision(estado)
           #acciones[i][j]
                              = self.Grid[i][j].Accion()
76
           acciones[i][j]
                                (A)
                             = self.Grid[i][j].emocion
           emociones[i][j]
77
                            # (E)
```

```
78
79
      # Recopilamos todos los resultados del ENTORNO para enviar al AGENTE
80
      for i in range(1, size+1,+1):
         for j in range(1, size+1,+1):
82
            \texttt{cooperadores = self.Grid[i-1][j-1].Accion() + self.Grid[i-1][j].}
83
      Accion() + self.Grid[i-1][j+1].Accion() + \
                            self.Grid[i][j-1].Accion()
            self.Grid[i][j+1].Accion()
                            self.Grid[i+1][j-1].Accion() + self.Grid[i+1][j].
85
      Accion() + self.Grid[i+1][j+1].Accion()
86
            grado_unanimidad_cooperacion = (cooperadores / self.Grid[i][j].
87
      Vecinos())
            if (grado_unanimidad_cooperacion > 0.5):
              Vecinos\_Cooperan = 1
90
            self.Grid[i][j].Accion_vecindario(Vecinos_Cooperan)
91
            self.Grid[i][j].Fijar_intensidad_emocional(
92
      grado_unanimidad_cooperacion)
93
            # LA OTRA MATRIZ QUE EMPLEAMOS
94
            intensidad[i][j] = grado_unanimidad_cooperacion
                            # (I)
            a_J1 = acciones[i][j]
96
            a_J2 = Vecinos_Cooperan
97
            self.Grid[i][j].Fijar_num_cooperadores(cooperadores)
98
            self.Grid[i][j].Recompensa(self.matriz_pagos_J1[a_J1][a_J2])
99
            self.Grid[i][j].paso_aprendizaje()
100
       return acciones, emociones, intensidad
```

D.2. Implementación del algoritmo Q-Learning

En el código que aparece a continuación se implementa el algoritmo Q-Learning, lo que permite al agente aprender. El resto del código es igual al que aparece en la sección anterior dedicada al algoritmo SARSA.

```
def paso_aprendizaje(self):
2
      # ESTADOS:
                    s (estado) y s' (estado_nuevo)
4
      estado = self.emocion
5
      estado_nuevo = self.nuevo_estado(self.accion_vecindario)
6
      # RECOMPENSA: r
      r = self.recompensa + self.recompensa_intrinseca
9
                    a (accion) y a' (accion_nueva)
      accion = self.accion_propia
      accion_nueva = self.Tomar_decision(estado_nuevo)
14
      # Seguimos el rastro de las recompensas que recibe
      self.ganancias.append(r)
16
```

```
17
18
19
        Algoritmo Q-Learning
21
      # APRENDIZAJE:
22
      target = float(r) + gamma * self.matriz_Q[estado_nuevo].max()
23
      error = target - self.matriz_Q[estado][accion]
      self.ERRORES.append(error)
25
26
      self.matriz_Q[estado][accion] = self.matriz_Q[estado][accion] +
27
                                         (alfa*error)
29
      self.emocion = estado_nuevo
30
      self.accion_propia = accion_nueva
31
```

La forma de actualizar los valores durante el aprendizaje emplea la representación tabular de la función Q(s, a) tal y como aparece en la siguiente figura.

	a_1		a		a'	
s_1						
:	:	:				
s			Q(s,a)			
:	:	:				
s'	m	á	X	i	m	О
:						

Cuadro D.2: Representación tabular de la función Q(s, a). Algoritmo Q-Learning. Actualizamos mediante el máximos valor de la función para el estado s'.

D.3. Análisis Geométrico del Operador de Bellman J_{μ}

El operador de Bellman nos permite expresar la aplicación reiterada del algoritmo de Programación Dinámica. Esto facilita tanto el análisis del mismo como la comprensión del mecanismo interno del algoritmo. A continuación se lleva a cabo el análisis gráfico del operador T_{μ} , que es lineal. A continuación aparecen las gráficas que permite seguir el análisis del texto principal con el operador T que no es lineal.

```
11
x = np.linspace(0, 60, 200)
y = np.linspace(0, 60, 200)
15 X, Y = np.meshgrid(x, y)
Z = T_mu_J_2(X, Y)
  # DIBUJAMOS LA CURVA DE COSTES (TJ(2))
19 #
fig = plt.figure(figsize=(10,6))
21 ax = plt.axes(projection='3d')
22 ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
                   cmap='viridis', edgecolor='none')
24 ax.set_title('surface');
ax.set_xlabel('J(1)')
26 ax.set_ylabel('J(2)')
27 ax.set_zlabel('T_$\mu$ J (2)');
28
29
30 # Fijamos el punto j_1
j_1 = 50
32
33 # DIBUJAMOS EL PLANO
yy, zz = np.meshgrid(range(60), range(60))
36 xx = yy*0 + j_1
ax.plot_surface(xx, yy, zz, alpha=0.2)
38
39 # DIBUJAMOS LA INTERSECCI N DE PLANO y CURVA
_{40} # (Ya que el plano pasa por J_{-1} = 30, basta con dar valores a J_{-2} y calcular
     TJ)
41 #
12 \text{ num\_puntos} = 200
43 # Fijamos 200 puntos a valor J_1 = 30'
j_1s = np.repeat(j_1, num_puntos)
_{45} # Fijamos 200 puntos equiespaciados en el sentido de los valores de J_2
46 limite_inf = 0
47 limite_sup = 60
48 j_2s = np.linspace(limite_inf,limite_sup, num_puntos)
49 # Obtenemos el valor de TJ para la combinaci n (T_1, T_2)
so valores_z = T_mu_J_2(j_1s, j_2s)
51 # DIBUJAMOS LA LINEA
52 ax.plot(j_1s, j_2s, valores_z, linewidth=2.4)
54 # Si se quiere pintar la bisectriz
ax.plot(j_1s, j_2s, j_2s, b--, linewidth=0.8)
```

Ahora procedemos a presentar el código que realiza la proyección en el plano.

```
# DIBUJAMOS LA PROYECCI N DEL PLANO
# ------

import matplotlib.pyplot as plt
```

```
7 # Utilizamos ax en lugar de plt, ya que el color del fondo s lo se puede
8 # cambiar accediendo a ax.
9 ax.set_facecolor('antiquewhite')
valores_z_J2 = T_mu_J_2(j_1s, j_2s)
12 ax.plot(j_2s, valores_z_J2)
13 puntos = np.linspace(0,60,200)
ax.plot(puntos, puntos, 'k--')
15
16 # Buscamos el ndice a partir del cual se cortan las curvas y TJ queda
17 # por debajo de la recta de 45
indices_debajo_recta_45_grados = np.where((valores_z - puntos) < 0)</pre>
20 indice = indices_debajo_recta_45_grados[0][0]
 puntos[indice]
22 ax.plot(puntos[indice], puntos[indice], 'ro')
23 ax.plot((puntos[indice], puntos[indice]),(puntos[indice],0), 'r--', linewidth
24
  #plt.text(38, 10, 'Punto Fijo J(2)*')
25
26
plt.xlabel('J(2)')
 plt.ylabel('T_$\mu$
                       J (2)')
30 plt.axis([0,60,0,60])
```

D.4. Resolución de Sistemas Lineales - Cálculo de J_{μ^k}

En el código que aparece a continuación se especifican los parámetros para el funcionamiento de la simulación. En primer lugar se importan las librerías. Entre los más importantes para el aprendizaje tenemos el parámetro **alfa** que corresponde a la magnitud del cambio en el proceso de aprendizaje. Se emplea un **factor de descuento** (olvido) gamma igual a 0.1.

```
2 # RESOLUCI N DE SISTEMAS - Policy Itaration
   EJERCICIO POLICY ITERATION - Enunciado Libro de Dimitri Bertsekas
6
   [k = 0]
9
10
11 import numpy as np
a = np.array([[ 0.325, -0.225],
                 [-0.225, 0.325]
14
 b = np.array([2,3])
15
16
17 J_mu = np.linalg.solve(a,b)
18 J_mu
20 >>> array([24.09090909, 25.90909091])
```

Respecto al algoritmo VALUE ITERATION, a continuación se expone el fragmento de algoritmo que genera la salida.

```
# GENERACION DE VALUE ITERATION
3
  import pandas as pd
6
7 # Procedimientos Operador de Bellman
8
9
10 def TJ_1(J_1, J_2):
    alpha = 0.9
11
    J_u1 = np.minimum(0.3*(3 + alpha*J_1) + 0.7*(10 + alpha*J_2),
12
13
                       0.6*(7 + alpha*J_1) + 0.4*(5 + alpha*J_2))
    return J_u1
14
15
16 def TJ_2(J_1, J_2):
    alpha = 0.9
17
    J_u2 = np.minimum(0.4*(0 + alpha*J_1) + 0.6*(6 + alpha*J_2),
18
                       0.9*(3 + alpha*J_1) + 0.1*(12 + alpha*J_2))
19
20
    return J_u2
21
22
23
J_1, J_2 = [], []
26
27
 # Valores iniciales
29 # -----
30 j1_0 = 0
31 j2_0 = 0
33
34 # Iniciaremos las iteraciones del algoritmo VALUE ITERATION con
35 # los valores iniciales
37 J_1.append(j1_o)
J_2.append(j2_0)
40 for iteracion in range (120):
tj1 = TJ_1(J_1[iteracion], J_2[iteracion])
```

Referencias

- [1] Alonso-Sanz, R. y Martin, M. "Elementary Cellular Automata with Elementary Memory Rules in Cells: The Case of Linear Rules." En: *Journal of Cellular Automata* 2.2 (2007). URL: https://pdfs.semanticscholar.org/1ba4/82587cb9e10cf4c6ebf56e3d31a21b8f6832.pdf (vid. pág. 8).
- [2] Aumann, R. J. "Correlated equilibrium as an expression of Bayesian rationality". En: Econometrica: Journal of the Econometric Society (1987), págs. 1-18. URL: http://www.ma.huji.ac.il/~raumann/pdf/Correlated%20Equilibrium%20as%20an%20Expression%20of%20Bayesian%20Rationality.pdf (vid. pág. 127).
- [3] Axelrod, R. "A model of the emergence of new political actors". En: Artificial societies. Routledge, 2006, págs. 27-44. URL: http://www-personal.umich.edu/~axe/research/Building.pdf (vid. pág. 7).
- [4] Axelrod, R. "An evolutionary approach to norms". En: American political science review 80.4 (1986), págs. 1095-1111. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.671.9896&rep=rep1&type=pdf (vid. pág. 7).
- [5] Axelrod, R. "The dissemination of culture: A model with local convergence and global polarization". En: Journal of conflict resolution 41.2 (1997), págs. 203-226. URL: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/67489/10.1177_0022002797041002001.pdf?sequence=2 (vid. pág. 6).
- [6] Axelrod, R. y Hamilton, W. D. "The evolution of cooperation". En: science 211.4489 (1981), págs. 1390-1396. URL: http://www-personal.umich.edu/~axe/research/Axelrod%20and%20Hamilton%20EC%201981.pdf (vid. págs. 5, 6, 151).
- [7] Baird III, L. C. Advantage updating. Inf. téc. WRIGHT LAB WRIGHT-PATTERSON AFB OH, 1993. URL: https://apps.dtic.mil/sti/pdfs/ADA280862.pdf (vid. pág. 71).
- [8] Baker, B. "Emergent reciprocity and team formation from randomized uncertain social preferences". En: *Advances in Neural Information Processing Systems* 33 (2020), págs. 15786-15799. URL: https://arxiv.org/pdf/2011.05373.pdf (vid. pág. 158).
- [9] Banerjee, B. y Peng, J. "Adaptive policy gradient in multiagent learning". En: *Proceedings of the second international joint conference on Autonomous agents and multiagent systems*. 2003, págs. 686-692. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.5911&rep=rep1&type=pdf (vid. págs. 135, 136).
- [10] Bazzan, A. L. y Bordini, R. H. "A framework for the simulation of agents with emotions". En: *Proceedings of the fifth international conference on Autonomous agents.* 2001, págs. 292-299. URL: https://web.archive.org/web/20070901220903id_/http://www.vhml.org/theses/wijayat/sources/writings/papers/p292-bazzan.pdf (vid. págs. 149, 151, 158).

- [11] Bazzan, A. L., Bordini, R. H. y Campbell, J. A. "Evolution of agents with moral sentiments in an iterated prisoner's Dilemma exercise". En: Game theory and decision theory in agent-based systems. Springer, 2002, págs. 43-64. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5305&rep=rep1&type=pdf (vid. págs. 149, 151, 158).
- [12] Bazzan, A. L., Bordini, R. H. y Campbell, J. A. "Moral sentiments in multi-agent systems". En: *International Workshop on Agent Theories, Architectures, and Languages.* Springer. 1998, págs. 113-131 (vid. pág. 158).
- [13] Bazzan, A. L., Peleteiro, A. y Burguillo, J. C. "Learning to cooperate in the Iterated Prisoner's Dilemma by means of social attachments". En: Journal of the Brazilian computer society 17 (2011), págs. 163-174. URL: https://link.springer.com/content/pdf/10.1007/s13173-011-0038-2.pdf (vid. pág. 158).
- [14] Bellemare, M. G., Naddaf, Y., Veness, J. y Bowling, M. "The arcade learning environment: An evaluation platform for general agents". En: *Journal of Artificial Intelligence Research* 47 (2013), págs. 253-279. URL: https://arxiv.org/pdf/1207.4708.pdf (vid. págs. 9, 82).
- [15] Bellman, R. "A Markovian decision process". En: Journal of mathematics and mechanics (1957), págs. 679-684. URL: https://apps.dtic.mil/sti/pdfs/AD0606367.pdf (vid. págs. 9, 81).
- [16] Bellman, R. "On the theory of dynamic programming". En: *Proceedings of the National Academy of Sciences of the United States of America* 38.8 (1952), pág. 716. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/pdf/pnas01581-0064.pdf (vid. págs. 9, 24, 81).
- [17] Bellman, R. y Kalaba, R. E. Dynamic programming and modern control theory. Vol. 81. Citeseer, 1965 (vid. pág. 24).
- [18] Bengio, Y., Frasconi, P. y Simard, P. "The problem of learning long-term dependencies in recurrent networks". En: *IEEE international conference on neural networks*. IEEE. 1993, págs. 1183-1188 (vid. pág. 112).
- [19] Berger, J. "Arousal increases social transmission of information". En: *Psychological science* 22.7 (2011), págs. 891-893. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.989.4895&rep=rep1&type=pdf (vid. pág. 2).
- [20] Berger, J. Contagious: Why things catch on. Simon y Schuster, 2016 (vid. pág. 2).
- [21] Berger, J. y Milkman, K. L. "What makes online content viral?" En: *Journal of marketing research* 49.2 (2012), págs. 192-205. URL: https://jonahberger.com/wp-content/uploads/2013/02/ViralityB.pdf (vid. pág. 2).
- [22] Bertsekas, D. Abstract dynamic programming. Athena Scientific, 2022 (vid. págs. 37, 49, 50, 54, 76).
- [23] Bertsekas, D. Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Control. Athena Scientific, 2022 (vid. pág. 52).
- [24] Bertsekas, D. Rollout, policy iteration, and distributed reinforcement learning. Athena Scientific, 2021 (vid. págs. 70, 130).
- [25] Bertsekas, D. P. Dynamic programming and optimal control: Vol. 1. 4th. Athena scientific Belmont, 2017 (vid. págs. 15, 70, 71).

- [26] Bertsekas, D. P. Dynamic programming and optimal control: Vol. 2. 4th. Athena scientific Belmont, 2012 (vid. págs. 15, 55, 70).
- [27] Bertsekas, D. P. Reinforcement Learning and Optimal Control. Athena Scientific, 2019 (vid. págs. 19, 70, 77, 79, 83).
- [28] Bertsekas, D. P. y Tsitsiklis, J. N. Neuro-dynamic programming. Athena Scientific, 1996 (vid. págs. 60, 65, 66, 72, 76, 97).
- [29] Bianchi, R. A., Martins, M. F., Ribeiro, C. H. y Costa, A. H. "Heuristically-accelerated multiagent reinforcement learning". En: *IEEE transactions on cybernetics* 44.2 (2013), págs. 252-265. URL: https://fei.edu.br/~rbianchi/publications/ecai2012031.pdf (vid. págs. 134, 136).
- [30] Bjorn, P. A. y Vuong, Q. H. "Econometric modeling of a Stackelberg game with an application to labor force participation". En: (1985). URL: https://authors.library.caltech.edu/81492/1/sswp577.pdf (vid. pág. 127).
- [31] Bloembergen, D., Tuyls, K., Hennes, D. y Kaisers, M. "Evolutionary dynamics of multiagent learning: A survey". En: *Journal of Artificial Intelligence Research* 53 (2015), págs. 659-697. URL: https://asset-pdf.scinapse.io/prod/1192553058/1192553058.pdf (vid. págs. 126, 136, 151).
- [32] Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E. y Fowler, J. H. "A 61-million-person experiment in social influence and political mobilization". En: Nature 489.7415 (2012), págs. 295-298. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834737/pdf/nihms524815.pdf (vid. pág. 2).
- [33] Borkar, V. S. y Meyn, S. P. "The ODE method for convergence of stochastic approximation and reinforcement learning". En: *SIAM Journal on Control and Optimization* 38.2 (2000), págs. 447-469. URL: http://repository.ias.ac.in/5333/1/351.pdf (vid. pág. 76).
- [34] Bosse, T., Duell, R., Memon, Z. A., Treur, J. y Wal, C. N. van der. "Agent-based modeling of emotion contagion in groups". En: Cognitive Computation 7.1 (2015), págs. 111-136. URL: https://www.researchgate.net/profile/Zulfiqar_Memon2/publication/304146148_Agent-based_modelling_of_emotion_contagion_in_groups/links/5a8d3c650f7e9b2285911956/Agent-based-modelling-of-emotion-contagion-in-groups.pdf (vid. pág. 8).
- [35] Bourlard, H. y Kamp, Y. "Auto-association by multilayer perceptrons and singular value decomposition". En: Biological cybernetics 59.4 (1988), págs. 291-294. URL: https://www.researchgate.net/profile/Herve-Bourlard/publication/19959069_Auto-Association_by_Multilayer_Perceptrons_and_Singular_Value_Decomposition/links/57600aaa08aeeada5bc2b4cc/Auto-Association-by-Multilayer-Perceptrons-and-Singular-Value-Decomposition.pdf (vid. pág. 112).
- [36] Bowling, M. "Convergence and no-regret in multiagent learning". En: Advances in neural information processing systems 17 (2005), págs. 209-216. URL: https://era.library.ualberta.ca/items/2225eedc-947a-4ff0-bba4-8c3bd49ddc86/view/2baeb07b-0225-402a-a400-c765a9f316f7/TR04-11.pdf (vid. págs. 135, 136).
- [37] Bowling, M. y Veloso, M. "Multiagent learning using a variable learning rate". En: Artificial Intelligence 136.2 (2002), págs. 215-250. URL: http://www.cs.cmu.edu/~mmv/papers/02aij-mike.pdf (vid. págs. 135, 136, 138-140).

- [38] Broekens, J., Jacobs, E. y Jonker, C. M. "A reinforcement learning model of joy, distress, hope and fear". En: *Connection Science* 27.3 (2015), págs. 215-233. URL: https://www.tandfonline.com/doi/pdf/10.1080/09540091.2015.1031081 (vid. pág. 158).
- [39] Brown, G. W. "Iterative solution of games by fictitious play". En: Activity analysis of production and allocation 13.1 (1951), págs. 374-376 (vid. págs. 135, 136).
- [40] Brunton, S. L. y Kutz, J. N. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2022 (vid. pág. 113).
- [41] Busoniu, L., Babuska, R. y De Schutter, B. "A comprehensive survey of multiagent reinforcement learning". En: *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 38.2 (2008), págs. 156-172. URL: https://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/07_019.pdf (vid. pág. 134).
- [42] Calvo, J. A. y Dusparic, I. "Heterogeneous Multi-Agent Deep Reinforcement Learning for Traffic Lights Control." En: AICS. 2018, págs. 2-13. URL: http://ceur-ws.org/Vol-2259/aics_2.pdf (vid. págs. 10, 99).
- [43] Canese, L., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M. y Spanò, S. "Multi-agent reinforcement learning: A review of challenges and applications". En: *Applied Sciences* 11.11 (2021), pág. 4948. URL: https://www.mdpi.com/2076-3417/11/11/4948 (vid. pág. 136).
- [44] Cassandra, A. R., Kaelbling, L. P. y Littman, M. L. "Acting optimally in partially observable stochastic domains". En: *Aaai*. Vol. 94. 1994, págs. 1023-1028. URL: https://aaai.org/Papers/AAAI/1994/AAAI94-157.pdf (vid. págs. 87, 103).
- [45] Cecconi, F., Parisi, D. y col. "Individual versus social survival strategies". En: Journal of Artificial Societies and Social Simulation 1.2 (1998), págs. 1-17. URL: https://pdfs.semanticscholar.org/418a/18a3aae327fd79bcacd9c35d53e602b1c47a.pdf?_ga=2.92403613.1431285231.1572435671-1455693994.1548699418 (vid. pág. 8).
- [46] Chen, W., Wang, J., Yu, F., He, J., Xu, W. y Wang, R. "Effects of emotion on the evolution of cooperation in a spatial prisoner's dilemma game". En: *Applied Mathematics and Computation* 411 (2021), pág. 126497 (vid. pág. 152).
- [47] Claus, C. y Boutilier, C. "The dynamics of reinforcement learning in cooperative multiagent systems". En: AAAI/IAAI 1998.746-752 (1998), pág. 2. URL: https://www.aaai.org/Papers/AAAI/1998/AAAI98-106.pdf (vid. págs. 134, 136).
- [48] Collins, A., Sokolowski, J. y Banks, C. "Applying reinforcement learning to an insurgency Agent-based Simulation". En: *The Journal of Defense Modeling and Simulation* 11.4 (2014), págs. 353-364. URL: https://www.researchgate.net/publication/261704876_Applying_Reinforcement_Learning_to_an_Insurgency_Agent-based_Simulation (vid. págs. 10, 99).
- [49] Conitzer, V. y Sandholm, T. "AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents". En: *Machine Learning* 67.1-2 (2007), págs. 23-43. URL: https://link.springer.com/content/pdf/10.1007/s10994-006-0143-1.pdf (vid. págs. 134, 136).
- [50] Conway, J. y col. "The game of life". En: Scientific American 223.4 (1970), pág. 4 (vid. pág. 5).

- [51] Coviello, L., Sohn, Y., Kramer, A. D., Marlow, C., Franceschetti, M., Christakis, N. A. y Fowler, J. H. "Detecting emotional contagion in massive social networks". En: *PloS one* 9.3 (2014), e90315. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090315 (vid. pág. 3).
- [52] Crandall, J. W. "Just add Pepper: extending learning algorithms for repeated matrix games to repeated markov games". En: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1. Citeseer. 2012, págs. 399-406. URL: https://faculty.cs.byu.edu/~crandall/papers/Crandall_AAMAS2012.pdf (vid. pág. 152).
- [53] Cybenko, G. "Approximation by superpositions of a sigmoidal function". En: *Mathematics of control, signals and systems* 2.4 (1989), págs. 303-314. URL: http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Cybenko-89.pdf (vid. pág. 109).
- [54] Domingos, P. y Richardson, M. "Mining the network value of customers". En: *Proceedings* of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. 2001, págs. 57-66. URL: http://snap.stanford.edu/class/cs224w-readings/domingos01networkvalue.pdf (vid. pág. 2).
- [55] Eccles, T., Hughes, E., Kramár, J., Wheelwright, S. y Leibo, J. Z. "Learning reciprocity in complex sequential social dilemmas". En: arXiv preprint arXiv:1903.08082 (2019). URL: https://arxiv.org/pdf/1903.08082.pdf (vid. págs. 151, 157).
- [56] Elidrisi, M., Johnson, N., Gini, M. L. y Crandall, J. W. "Fast adaptive learning in repeated stochastic games by game abstraction." En: AAMAS. 2014, págs. 1141-1148. URL: https://www.ifaamas.org/Proceedings/aamas2014/aamas/p1141.pdf (vid. pág. 152).
- [57] Everett, M., Chen, Y. F. y How, J. P. "Collision avoidance in pedestrian-rich environments with deep reinforcement learning". En: *IEEE Access* 9 (2021), págs. 10357-10377. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9317723 (vid. págs. 10, 99).
- [58] Fan, R., Xu, K. y Zhao, J. "An agent-based model for emotion contagion and competition in online social media". En: *Physica a: statistical mechanics and its applications* 495 (2018), págs. 245-259. URL: https://arxiv.org/pdf/1706.02676.pdf (vid. págs. 2, 8).
- [59] Ferrara, E. y Yang, Z. "Measuring emotional contagion in social media". En: *PloS one* 10.11 (2015), e0142390. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142390 (vid. pág. 3).
- [60] Ferrara, E. y Yang, Z. "Quantifying the effect of sentiment on information diffusion in social media". En: *PeerJ Computer Science* 1 (2015), e26. URL: https://peerj.com/articles/cs-26/ (vid. págs. 2, 3).
- [61] Fowler, J. H. y Christakis, N. A. "Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study". En: *Bmj* 337 (2008). URL: https://www.bmj.com/content/bmj/337/bmj.a2338.full.pdf (vid. págs. 2, 3).
- [62] Fujimoto, S., Van Hoof, H. y Meger, D. "Addressing function approximation error in actor-critic methods". En: arXiv preprint arXiv:1802.09477 (2018). URL: https://arxiv.org/pdf/1802.09477.pdf (vid. págs. 120, 122).
- [63] Fukushima, K. "Neocognitron: A hierarchical neural network capable of visual pattern recognition". En: *Neural networks* 1.2 (1988), págs. 119-130. URL: http://vision.stanford.edu/teaching/cs131_fall1415/lectures/Fukushima1988.pdf (vid. pág. 112).

- [64] Fukushima, K. y Miyake, S. "Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition". En: Competition and cooperation in neural nets. Springer, 1982, págs. 267-285. URL: https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf (vid. pág. 112).
- [65] Fulda, N. y Ventura, D. "Predicting and Preventing Coordination Problems in Cooperative Q-learning Systems." En: *IJCAI*. Vol. 2007. 2007, págs. 780-785. URL: https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-125.pdf (vid. pág. 152).
- [66] Gabora, L. "Ideas are not replicators but minds are". En: Biology and Philosophy 19.1 (2004), págs. 127-143. URL: https://arxiv.org/ftp/q-bio/papers/0402/0402002.pdf (vid. pág. 8).
- [67] Gabora, L. "Meme and variations: A computational model of cultural evolution". En: 1993 Lectures in complex systems. Addison Wesley, 1995, págs. 471-485. URL: https://arxiv.org/ftp/arxiv/papers/1309/1309.7524.pdf (vid. pág. 8).
- [68] Gabora, L. "Modeling Cultural Dynamics." En: AAAI Fall Symposium: Adaptive Agents in Cultural Contexts. 2008, págs. 18-25. URL: https://arxiv.org/ftp/arxiv/papers/0811/0811.2551.pdf (vid. pág. 8).
- [69] Games, M. "The fantastic combinations of John Conway's new solitaire game "life" by Martin Gardner". En: *Scientific American* 223 (1970), págs. 120-123. URL: https://web.stanford.edu/class/sts145/Library/life.pdf (vid. pág. 5).
- [70] Gardner, M. Wheels, life and other mathematical amusements. American Mathematical Soc., 2020. URL: https://www.maa.org/sites/default/files/pdf/pubs/focus/Gardner_GameofLife10-1970.pdf (vid. pág. 5).
- [71] Goodfellow, I., Bengio, Y. y Courville, A. *Deep learning*. MIT press, 2016. URL: https://www.deeplearningbook.org/ (vid. págs. 111, 113).
- [72] Gosavi, A. Simulation-based optimization. 2th Ed. Springer, 2015 (vid. págs. 15, 76).
- [73] Greenwald, A., Hall, K. y Serrano, R. "Correlated Q-learning". En: *ICML*. Vol. 3. 2003, págs. 242-249. URL: https://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-02/SS02-02-012.pdf (vid. págs. 135, 136).
- [74] Gupta, J. K., Egorov, M. y Kochenderfer, M. "Cooperative multi-agent control using deep reinforcement learning". En: *International conference on autonomous agents and multiagent systems*. Springer. 2017, págs. 66-83. URL: https://ala2017.it.nuigalway.ie/papers/ALA2017_Gupta.pdf (vid. pág. 133).
- [75] Haarnoja, T., Zhou, A., Abbeel, P. y Levine, S. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor". En: arXiv preprint arXiv:1801.01290 (2018). URL: https://arxiv.org/pdf/1801.01290.pdf (vid. pág. 122).
- [76] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P. y col. "Soft actor-critic algorithms and applications". En: arXiv preprint arXiv:1812.05905 (2018). URL: https://arxiv.org/pdf/1812.05905.pdf (vid. pág. 122).
- [77] Hanneman, R. A. Computer-assisted theory building: Modeling dynamic social systems. Sage Publications, Inc, 1988. URL: https://faculty.ucr.edu/~hanneman/ (vid. pág. 4).

- [78] Harmon, M. E., Baird, L. y Klopf, A. H. "Advantage updating applied to a differential game". En: Advances in neural information processing systems 7 (1994). URL: https://proceedings.neurips.cc/paper/1994/file/2a9d121cd9c3a1832bb6d2cc6bd7a8a7-Paper.pdf (vid. pág. 71).
- [79] Hasselt, H. "Double Q-learning". En: Advances in neural information processing systems 23 (2010). URL: https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c Paper.pdf (vid. pág. 116).
- [80] Hasselt, H. P. van. *Insights in reinforcement learning*. Hado van Hasselt, 2011 (vid. pág. 116).
- [81] Hausknecht, M. y Stone, P. "Deep recurrent q-learning for partially observable mdps". En: arXiv preprint arXiv:1507.06527 (2015). URL: https://arxiv.org/pdf/1507.06527.pdf (vid. pág. 118).
- [82] Hernandez-Leal, P. y Kaisers, M. "Towards a fast detection of opponents in repeated stochastic games". En: Autonomous Agents and Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16. Springer. 2017, págs. 239-257. URL: https://ir.cwi.nl/pub/27237/2017_TIRL_Hernandez.pdf (vid. pág. 152).
- [83] Hernandez-Leal, P., Kartal, B. y Taylor, M. E. "A survey and critique of multiagent deep reinforcement learning". En: *Autonomous Agents and Multi-Agent Systems* 33.6 (2019), págs. 750-797. URL: https://arxiv.org/pdf/1810.05587.pdf (vid. pág. 122).
- [84] Hines, G. y Larson, K. "Learning when to take advice: A statistical test for achieving a correlated equilibrium". En: arXiv preprint arXiv:1206.3261 (2012). URL: https://arxiv.org/ftp/arxiv/papers/1206/1206.3261.pdf (vid. pág. 152).
- [85] Hochreiter, S. y Schmidhuber, J. "Long short-term memory". En: Neural computation 9.8 (1997), págs. 1735-1780. URL: https://blog.xpgreat.com/file/lstm.pdf (vid. pág. 112).
- [86] Hornik, K., Stinchcombe, M. y White, H. "Multilayer feedforward networks are universal approximators". En: Neural networks 2.5 (1989), págs. 359-366. URL: https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf (vid. pág. 109).
- [87] Hu, J., Wellman, M. P. y col. "Multiagent reinforcement learning: theoretical framework and an algorithm." En: *ICML*. Vol. 98. Citeseer. 1998, págs. 242-250. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.2589&rep=rep1&type=pdf (vid. págs. 135, 136).
- [88] Hu, J. y Wellman, M. P. "Nash Q-learning for general-sum stochastic games". En: *Journal of machine learning research* 4.Nov (2003), págs. 1039-1069. URL: https://www.jmlr.org/papers/volume4/hu03a/hu03a.pdf (vid. pág. 131).
- [89] Hubel, D. H. y Wiesel, T. N. "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex". En: *The Journal of physiology* 160.1 (1962), pág. 106. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/pdf/jphysiol01247-0121.pdf (vid. pág. 112).
- [90] Hughes, E., Leibo, J. Z., Philips, M. G., Tuyls, K., Duéñez-Guzmán, E. A., Castañeda, A. G., Dunning, I., Zhu, T., McKee, K. R., Koster, R. y col. "Inequity aversion resolves intertemporal social dilemmas. CoRR abs/1803.08884 (2018)". En: arXiv preprint arXiv:1803.08884 (2018). URL: https://arxiv.org/pdf/1803.08884.pdf (vid. pág. 157).

- [91] Jaakkola, T., Jordan, M. y Singh, S. "Convergence of stochastic iterative dynamic programming algorithms". En: *Advances in neural information processing systems* 6 (1993). URL: https://proceedings.neurips.cc/paper/1993/file/5807a685d1a9ab3b599035bc566ce2b9-Paper.pdf (vid. pág. 76).
- [92] Jaakkola, T., Singh, S. y Jordan, M. "Reinforcement learning algorithm for partially observable Markov decision problems". En: *Advances in neural information processing systems* 7 (1994). URL: https://proceedings.neurips.cc/paper/1994/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf (vid. págs. 87, 103).
- [93] Jaderberg, M., Czarnecki, W., Dunning, I., Marris, L., Lever, G., Castaneda, A. y col. "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning. arXiv". En: arXiv preprint arXiv:1807.01281 (2018). URL: https://arxiv.org/pdf/1807.01281.pdf (vid. pág. 9).
- [94] Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D., Leibo, J. Z. y De Freitas, N. "Social influence as intrinsic motivation for multi-agent deep reinforcement learning". En: *International Conference on Machine Learning*. PMLR. 2019, págs. 3040-3049. URL: https://arxiv.org/pdf/1810.08647.pdf (vid. pág. 157).
- [95] Jin, S. y Zafarani, R. "Emotions in social networks: Distributions, patterns, and models". En: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, págs. 1907-1916. URL: http://reza.zafarani.net/publications/files/emotionsDPM.pdf (vid. pág. 3).
- [96] Kaelbling, L. P., Littman, M. L. y Cassandra, A. R. "Planning and acting in partially observable stochastic domains". En: *Artificial intelligence* 101.1-2 (1998), págs. 99-134. URL: https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf (vid. págs. 87, 103).
- [97] Kapetanakis, S. y Kudenko, D. "Reinforcement learning of coordination in heterogeneous cooperative multi-agent systems". En: Adaptive Agents and Multi-Agent Systems II. Springer, 2004, págs. 119-131. URL: https://www.aaai.org/Papers/AAAI/2002/AAAI02-050.pdf (vid. págs. 134, 136).
- [98] Kempe, D., Kleinberg, J. y Tardos, É. "Influential nodes in a diffusion model for social networks". En: *International Colloquium on Automata, Languages, and Programming*. Springer. 2005, págs. 1127-1138. URL: https://www.cs.cornell.edu/home/kleinber/icalp05-inf.pdf (vid. pág. 2).
- [99] Kempe, D., Kleinberg, J. y Tardos, É. "Maximizing the spread of influence through a social network". En: *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining.* 2003, págs. 137-146. URL: https://www.cs.cornell.edu/home/kleinber/kdd03-inf.pdf (vid. pág. 2).
- [100] Kok, J. R. y Vlassis, N. "Sparse cooperative Q-learning". En: *Proceedings of the twenty-first international conference on Machine learning*. 2004, pág. 61. URL: https://icml.cc/Conferences/2004/proceedings/papers/267.pdf (vid. págs. 134, 136).
- [101] Konda, V. R. y Tsitsiklis, J. N. "Actor-critic algorithms". En: Advances in neural information processing systems. 2000, págs. 1008-1014. URL: https://papers.nips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (vid. pág. 120).
- [102] Könönen, V. "Asymmetric multiagent reinforcement learning". En: Web Intelligence and Agent Systems: An international journal 2.2 (2004), págs. 105-121. URL: http://lib.tkk.fi/Diss/2004/isbn9512273594/article1.pdf (vid. pág. 135).

- [103] Kramer, A. D. "The spread of emotion via Facebook". En: *Proceedings of the SIGCHI conference on human factors in computing systems*. 2012, págs. 767-770. URL: https://research.fb.com/wp-content/uploads/2012/05/the-spread-of-emotion-via-facebook.pdf (vid. págs. 2, 8).
- [104] Kramer, A. D., Guillory, J. E. y Hancock, J. T. "Experimental evidence of massive-scale emotional contagion through social networks". En: *Proceedings of the National Academy of Sciences* 111.24 (2014), págs. 8788-8790. URL: https://www.pnas.org/content/pnas/111/24/8788.full.pdf (vid. pág. 2).
- [105] Kulkarni, V. G. Modeling and analysis of stochastic systems. Crc Press, 2016 (vid. pág. 100).
- [106] Lakshmivarahan, S. y Narendra, K. S. "Learning algorithms for two-person zero-sum sto-chastic games with incomplete information". En: *Math. of Op. R.* 6.3 (1981), págs. 379-386. URL: https://www.researchgate.net/profile/S-Lakshmivarahan/publication/238877175_Learning_Algorithms_for_Two-Person_Zero-Sum_Stochastic_Games_with_Incomplete_Information_A_Unified_Approach/links/59316c0c45851553b69445b9/Learning-Algorithms-for-Two-Person-Zero-Sum-Stochastic-Games-with-Incomplete-Information-A-Unified-Approach.pdf (vid. pág. 142).
- [107] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D. y Graepel, T. "A unified game-theoretic approach to multiagent reinforcement learning". En: Advances in neural information processing systems 30 (2017). URL: https://arxiv.org/pdf/1711.00832.pdf (vid. pág. 133).
- [108] Lauer, M. y Riedmiller, M. "An algorithm for distributed reinforcement learning in cooperative multi-agent systems". En: *In Proceedings of the Seventeenth International Conference on Machine Learning*. Citeseer. 2000. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.772 (vid. págs. 134, 136).
- [109] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. y Jackel, L. "Handwritten digit recognition with a back-propagation network". En: *Advances in neural information processing systems* 2 (1989). URL: https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf (vid. pág. 112).
- [110] Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J. y Graepel, T. "Multi-agent reinforcement learning in sequential social dilemmas". En: arXiv preprint arXiv:1702.03037 (2017). URL: https://arxiv.org/pdf/1702.03037.pdf (vid. págs. 10, 99, 151, 157).
- [111] Li, J., Yao, L., Xu, X., Cheng, B. y Ren, J. "Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving". En: *Information Sciences* 532 (2020), págs. 110-124. URL: https://www.sciencedirect.com/science/article/abs/pii/S0020025520302851 (vid. págs. 10, 99).
- [112] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. y Wierstra, D. "Continuous control with deep reinforcement learning". En: arXiv preprint arXiv:1509.02971 (2015). URL: https://arxiv.org/pdf/1509.02971.pdf (vid. pág. 121).
- [113] Littman, M. L. y col. "Friend-or-foe Q-learning in general-sum games". En: *ICML*. Vol. 1. 2001, págs. 322-328. URL: https://www.researchgate.net/profile/Michael-Littman/publication/2933305_Friend-or-Foe_Q-learning_in_General-Sum_Games/links/54b66cb80cf24eb34f6d19dc/Friend-or-Foe-Q-learning-in-General-Sum-Games.pdf (vid. pág. 135).

- [114] Littman, M. L. "Markov games as a framework for multi-agent reinforcement learning". En: *Machine learning proceedings 1994*. Elsevier, 1994, págs. 157-163. URL: https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf (vid. págs. 134, 136, 142, 145).
- [115] Littman, M. L. "Value-function reinforcement learning in Markov games". En: Cognitive systems research 2.1 (2001), págs. 55-66. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.7294&rep=rep1&type=pdf (vid. págs. 134, 136, 142).
- [116] Macy, M. W. y Flache, A. "Learning dynamics in social dilemmas". En: *Proceedings of the National Academy of Sciences* 99.suppl_3 (2002), págs. 7229-7236. URL: https://www.pnas.org/doi/full/10.1073/pnas.092080099 (vid. pág. 129).
- [117] Marvin, M. y Seymour, A. P. "Perceptrons". En: *Cambridge, MA: MIT Press* 6 (1969), págs. 318-362 (vid. pág. 112).
- [118] Mataric, M. J. "Reward functions for accelerated learning". En: *Machine learning proceedings 1994*. Elsevier, 1994, págs. 181-189. URL: https://www.sci.brooklyn.cuny.edu/~sklar/teaching/boston-college/s01/mc375/ml94.pdf (vid. pág. 150).
- [119] McCulloch, W. S. y Pitts, W. "A logical calculus of the ideas immanent in nervous activity". En: *The bulletin of mathematical biophysics* 5.4 (1943), págs. 115-133. URL: https://waldirbertazzijr.com/wp-content/uploads/2018/10/mcp.pdf (vid. págs. 112, 122).
- [120] Miller, M., Sathi, C., Wiesenthal, D., Leskovec, J. y Potts, C. "Sentiment flow through hyperlink networks". En: *Proceedings of the International AAAI Conference on Web and Social Media*. Vol. 5. 1. 2011. URL: https://cs.stanford.edu/people/jure/pubs/sentiflow-icwsm11.pdf (vid. pág. 2).
- [121] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. y Kavukcuoglu, K. "Asynchronous methods for deep reinforcement learning". En: *International conference on machine learning*. 2016, págs. 1928-1937. URL: http://proceedings.mlr.press/v48/mniha16.pdf (vid. pág. 121).
- [122] Mnih, V., Kavukcuoglu, K., Silver, D. y col. "Human-level control through deep reinforcement learning". En: nature 518.7540 (2015), págs. 529-533. URL: https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf (vid. págs. 9, 82).
- [123] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. y Riedmiller, M. "Playing atari with deep reinforcement learning". En: arXiv preprint arXiv:1312.5602 (2013). URL: https://arxiv.org/pdf/1312.5602.pdf (vid. págs. 9, 82, 114).
- [124] Moerland, T. M., Broekens, J. y Jonker, C. M. "Emotion in reinforcement learning agents and robots: a survey". En: *Machine Learning* 107.2 (2018), págs. 443-480. URL: https://link.springer.com/content/pdf/10.1007/s10994-017-5666-0.pdf (vid. pág. 149).
- [125] Monahan, G. E. "State of the art—a survey of partially observable Markov decision processes: theory, models, and algorithms". En: *Management science* 28.1 (1982), págs. 1-16. URL: https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.28.1.1 (vid. págs. 87, 103, 130).
- [126] Moore, A. W. y Atkeson, C. G. "Prioritized sweeping: Reinforcement learning with less data and less time". En: *Machine learning* 13.1 (1993), págs. 103-130. URL: https://link.springer.com/content/pdf/10.1007/BF00993104.pdf (vid. págs. 86, 101, 208).

- [127] Morgenstern, O. y Von Neumann, J. Theory of games and economic behavior. Princeton university press, 1953 (vid. pág. 126).
- [128] Murphy, K. P. Probabilistic machine learning: an introduction. MIT press, 2022 (vid. pág. 109).
- [129] Nash Jr, J. F. "Equilibrium points in n-person games". En: *Proceedings of the national academy of sciences* 36.1 (1950), págs. 48-49. URL: https://www.pnas.org/doi/full/10.1073/pnas.36.1.48 (vid. pág. 127).
- [130] Nash Jr, J. F. "Non-cooperative games". En: Annals of Mathematics 54.2 (1951), págs. 286-295. URL: https://www.cs.upc.edu/~ia/nash51.pdf (vid. pág. 127).
- [131] Neumann, J., Burks, A. W. y col. *Theory of self-reproducing automata*. Vol. 1102024. University of Illinois Press Urbana, 1966. URL: https://cdn.patentlyo.com/media/docs/2012/04/VonNeumann.pdf (vid. pág. 5).
- [132] Ng, A. Y., Harada, D. y Russell, S. "Policy invariance under reward transformations: Theory and application to reward shaping". En: *Icml.* Vol. 99. 1999, págs. 278-287. URL: http://luthuli.cs.uiuc.edu/~daf/courses/games/Alpapers/ml99-shaping.pdf (vid. pág. 150).
- [133] Nguyen, T. T., Nguyen, N. D. y Nahavandi, S. "Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications". En: arXiv pre-print arXiv:1812.11794 (2018). URL: https://arxiv.org/pdf/1812.11794.pdf (vid. pág. 145).
- [134] Nguyen, T. T., Nguyen, N. D. y Nahavandi, S. "Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications". En: *IEEE transactions on cybernetics* 50.9 (2020), págs. 3826-3839. URL: https://ieeexplore.ieee.org/document/9043893 (vid. pág. 145).
- [135] Nowak, M. A. "Five rules for the evolution of cooperation". En: science 314.5805 (2006), págs. 1560-1563. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279745/pdf/nihms49939.pdf (vid. págs. 5, 6).
- [136] Nowak, M. A. y May, R. M. "Evolutionary games and spatial chaos". En: Nature 359.6398 (1992), págs. 826-829. URL: https://www.researchgate.net/profile/Martin-Nowak/publication/216634494_Evolutionary_Games_and_Spatial_Chaos/links/54217b730cf274a67fEvolutionary-Games-and-Spatial-Chaos.pdf (vid. pág. 151).
- [137] Nowak, M. A. y Sigmund, K. "Tit for tat in heterogeneous populations". En: *Nature* 355.6357 (1992), págs. 250-253. URL: https://abel.math.harvard.edu/archive/153_fall_04/Additional_reading_material/tit_for_tat_in_heterogenous_populations.pdf (vid. pág. 151).
- [138] Nowé, A., Vrancx, P. y De Hauwere, Y.-M. "Game theory and multi-agent reinforcement learning". En: *Reinforcement Learning*. Springer, 2012, págs. 441-470. URL: https://perso.liris.cnrs.fr/laetitia.matignon/index/14.%20Game_Theory_and_Multi-agent_Reinforcemen.pdf (vid. pág. 125).
- [139] O'Neill, B. "Approaches to modelling emotions in game theory". En: *Proceedings of the Conference on Cognition, Emotion and Rational Choice, UCLA, April.* 2000. URL: http://www.sscnet.ucla.edu/polisci/faculty/boneill/emotions.html (vid. pág. 149).

- [140] Ohtsuki, H., Hauert, C., Lieberman, E. y Nowak, M. A. "A simple rule for the evolution of cooperation on graphs and social networks". En: *Nature* 441.7092 (2006), págs. 502-505. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430087/pdf/nihms51831. pdf (vid. págs. 147, 151).
- [141] OroojlooyJadid, A. y Hajinezhad, D. "A review of cooperative multi-agent deep reinforcement learning". En: arXiv preprint arXiv:1908.03963 (2019). URL: https://arxiv.org/pdf/1908.03963.pdf (vid. pág. 133).
- [142] Papoudakis, G., Christianos, F., Rahman, A. y Albrecht, S. V. "Dealing with non-stationarity in multi-agent deep reinforcement learning". En: arXiv preprint arXiv:1906.04737 (2019). URL: https://arxiv.org/pdf/1906.04737.pdf (vid. pág. 133).
- [143] Papoudakis, G., Christianos, F., Schäfer, L. y Albrecht, S. V. "Benchmarking multiagent deep reinforcement learning algorithms in cooperative tasks". En: arXiv preprint arXiv:2006.07869 (2020). URL: https://arxiv.org/pdf/2006.07869.pdf (vid. pág. 136).
- [144] Papoudakis, G., Christianos, F., Schäfer, L. y Albrecht, S. V. "Comparative evaluation of cooperative multi-agent deep reinforcement learning algorithms". En: arXiv: 2006.07869 (2020). URL: https://arxiv.org/pdf/2006.07869.pdf (vid. pág. 122).
- [145] Perc, M. y Szolnoki, A. "Coevolutionary games—a mini review". En: *BioSystems* 99.2 (2010), págs. 109-125. URL: https://arxiv.org/ftp/arxiv/papers/1206/1206.3261. pdf (vid. pág. 152).
- [146] Perc, M. y Szolnoki, A. "Social diversity and promotion of cooperation in the spatial prisoner's dilemma game". En: *Physical Review E* 77.1 (2008), pág. 011904. URL: https://arxiv.org/pdf/0708.1746.pdf (vid. pág. 152).
- [147] Perolat, J., Leibo, J. Z., Zambaldi, V., Beattie, C., Tuyls, K. y Graepel, T. "A multi-agent reinforcement learning model of common-pool resource appropriation". En: arXiv preprint arXiv:1707.06600 (2017). URL: https://arxiv.org/pdf/1707.06600.pdf (vid. págs. 10, 99).
- [148] Peysakhovich, A. y Lerer, A. "Consequentialist conditional cooperation in social dilemmas with imperfect information". En: arXiv preprint arXiv:1710.06975 (2017). URL: https://arxiv.org/pdf/1710.06975.pdf (vid. pág. 158).
- [149] Peysakhovich, A. y Lerer, A. "Maintaining cooperation in complex social dilemmas using deep reinforcement learning". En: (2018). URL: https://arxiv.org/pdf/1707.01068.pdf (vid. pág. 158).
- [150] Plutchik, R. "The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice". En: American scientist 89.4 (2001), págs. 344-350. URL: https://www.academia.edu/43620307/The_Nature_of_Emotions_Plutchik_2001_ (vid. pág. 148).
- [151] Poundstone, W. Prisoner's Dilemma/John Von Neumann, game theory and the puzzle of the bomb. Anchor, 1993 (vid. pág. 129).
- [152] Powell, W. B. "A unified framework for stochastic optimization". En: European Journal of Operational Research 275.3 (2019), págs. 795-821. URL: https://castlelab.princeton.edu/wp-content/uploads/2018/08/Powell-EJOR-Unified-Framework-for-Stoch-Opt-Aug-16-2018.pdf (vid. pág. 65).
- [153] Powell, W. B. Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. 1st Ed. Wiley, 2022 (vid. págs. 65, 76).

- [154] Principe, J. C., Euliano, N. R. y Lefebvre, W. C. Neural and adaptive systems: fundamentals through simulations with CD-ROM. John Wiley & Sons, Inc., 1999 (vid. pág. 113).
- [155] Puterman, M. L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014 (vid. pág. 101).
- [156] Quan, J., Zhou, Y., Ma, X., Wang, X. y Yang, J.-B. "Integrating emotion-imitating into strategy learning improves cooperation in social dilemmas with extortion". En: *Knowledge-Based Systems* 233 (2021), pág. 107550. URL: https://personalpages.manchester.ac.uk/staff/jian-bo.yang/JB%20Yang%20Journal_Papers/QuanZhouMaWangYang-KBS-Emotion-Imitating%20.pdf (vid. pág. 152).
- [157] Richardson, M. y Domingos, P. "Mining knowledge-sharing sites for viral marketing". En: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002, págs. 61-70. URL: https://homes.cs.washington.edu/~pedrod/papers/kdd02b.pdf (vid. pág. 2).
- [158] Robbins, H. y Monro, S. "A Stochastic Approximation Method". En: *The Annals of Mathematical Statistics* 22.3 (1951), págs. 400-407. URL: https://doi.org/10.1214/aoms/1177729586 (vid. págs. 63, 67).
- [159] Romero, D. M., Meeder, B. y Kleinberg, J. "Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter". En: *Proceedings of the 20th international conference on World wide web.* 2011, págs. 695-704. URL: https://www.cs.cornell.edu/home/kleinber/www11-hashtags.pdf (vid. pág. 2).
- [160] Rosenblatt, F. "The perceptron: a probabilistic model for information storage and organization in the brain." En: *Psy. r.* 65.6 (1958), pág. 386. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=65a83117cbcc4e6eb7c6ac5be8e61195dc84b9fc (vid. págs. 112, 122).
- [161] Rumelhart, D. E., Hinton, G. E. y Williams, R. J. Learning internal representations by error propagation. Inf. téc. California Univ San Diego La Jolla Inst for Cognitive Science, 1985. URL: https://apps.dtic.mil/sti/pdfs/ADA164453.pdf (vid. pág. 112).
- [162] Rummery, G. A. y Niranjan, M. On-line Q-learning using connectionist systems. Vol. 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994. URL: https://www.researchgate.net/profile/Mahesan_Niranjan/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems/links/5438d5db0cf204cab1d6db0f/On-Line-Q-Learning-Using-Connectionist-Systems.pdf (vid. pág. 93).
- [163] Sadhu, A. K. y Konar, A. Multi-Agent Coordination: A Reinforcement Learning Approach. John Wiley & Sons, 2020 (vid. págs. 128, 144, 145).
- [164] Sandholm, T. W. y Crites, R. H. "Multiagent reinforcement learning in the iterated prisoner's dilemma". En: *Biosystems* 37.1-2 (1996), págs. 147-166. URL: http://ww2.odu.edu/~jsokolow/projects/files/Multiagent%20Reinforcement%20Learning%20in%20the%20Iterated%20Prisoners%20Dilema.pdf (vid. pág. 145).
- [165] Santos, F. C. y Pacheco, J. M. "A new route to the evolution of cooperation". En: Journal of evolutionary biology 19.3 (2006), págs. 726-733. URL: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1420-9101.2005.01063.x (vid. págs. 147, 151).

- [166] Sastry, P. S., Phansalkar, V. V. y Thathachar, M. "Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information". En: *IEEE Transactions on systems, man, and cybernetics* 24.5 (1994), págs. 769-777. URL: https://web.archive.org/web/20171109184644id_/https://core.ac.uk/download/pdf/11606194.pdf (vid. pág. 142).
- [167] Schaul, T., Quan, J., Antonoglou, I. y Silver, D. "Prioritized experience replay". En: arXiv preprint arXiv:1511.05952 (2015). URL: https://arxiv.org/pdf/1511.05952.pdf (vid. pág. 117).
- [168] Schelling, T. C. "Dynamic models of segregation". En: Journal of mathematical sociology 1.2 (1971), págs. 143-186. URL: https://www.stat.berkeley.edu/~aldous/157/Papers/Schelling_Seg_Models.pdf (vid. págs. 4, 6).
- [169] Schelling, T. C. *Micromotives and macrobehavior*. WW Norton & Company, 2006 (vid. págs. 4, 6).
- [170] Schmid, K., Belzner, L., Gabor, T. y Phan, T. "Action markets in deep multi-agent reinforcement learning". En: *International Conference on Artificial Neural Networks*. Springer. 2018, págs. 240-249. URL: https://link.springer.com/chapter/10.1007/978-3-030-01421-6_24 (vid. págs. 10, 99).
- [171] Schulman, J., Levine, S., Abbeel, P., Jordan, M. y Moritz, P. "Trust region policy optimization". En: *International conference on machine learning*. 2015, págs. 1889-1897. URL: http://proceedings.mlr.press/v37/schulman15.pdf (vid. pág. 119).
- [172] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. y Klimov, O. "Proximal policy optimization algorithms". En: arXiv preprint arXiv:1707.06347 (2017). URL: https://arxiv.org/pdf/1707.06347.pdf (vid. pág. 119).
- [173] Schwartz, H. M. Multi-agent machine learning: A reinforcement approach. John Wiley & Sons, 2014 (vid. págs. 144, 145).
- [174] Sen, S., Sekaran, M., Hale, J. y col. "Learning to coordinate without sharing information". En: AAAI. Vol. 94. 1994, págs. 426-431. URL: https://www.aaai.org/Papers/AAAI/1994/AAAI94-065.pdf (vid. págs. 135, 136).
- [175] Sequeira, P., Melo, F. S. y Paiva, A. "Emotion-based intrinsic motivation for reinforcement learning agents". En: *International conference on affective computing and intelligent interaction*. Springer. 2011, págs. 326-336. URL: https://facsmelo.github.io/publications/sequeira11acii.pdf (vid. págs. 151, 158).
- [176] Sequeira, P., Melo, F. S. y Paiva, A. "Learning by appraising: an emotion-based approach to intrinsic reward design". En: *Adaptive Behavior* 22.5 (2014), págs. 330-349. URL: https://journals.sagepub.com/doi/pdf/10.1177/1059712314543837 (vid. págs. 152, 158).
- [177] Shoham, Y., Powers, R. y Grenager, T. "If multi-agent learning is the answer, what is the question?" En: *Artificial intelligence* 171.7 (2007), págs. 365-377. URL: http://www.dklevine.com/archive/refs4122247000000001156.pdf (vid. pág. 126).
- [178] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. y col. "Mastering the game of Go with deep neural networks and tree search". En: nature 529.7587 (2016), págs. 484-489. URL: http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/AlphaGo.nature16961.pdf (vid. págs. 9, 82).

- [179] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. y col. "Mastering the game of go without human knowledge". En: nature 550.7676 (2017), págs. 354-359. URL: https://discovery.ucl.ac.uk/id/eprint/10045895/1/agz_unformatted_nature.pdf (vid. págs. 9, 82).
- [180] Singh, S., Lewis, R. L. y Barto, A. G. "Where do rewards come from". En: *Proceedings of the annual conference of the cognitive science society*. Cognitive Science Society. 2009, págs. 2601-2606. URL: https://all.cs.umass.edu/pubs/2009/singh_1_b_09.pdf (vid. pág. 150).
- [181] Singh, S., Lewis, R. L., Barto, A. G. y Sorg, J. "Intrinsically motivated reinforcement learning: An evolutionary perspective". En: *IEEE Transactions on Autonomous Mental Development* 2.2 (2010), págs. 70-82. URL: http://www-personal.umich.edu/~rickl/pubs/singh-lewis-barto-2010-ieee.pdf (vid. pág. 150).
- [182] Singh, S. P., Jaakkola, T. y Jordan, M. I. "Learning without state-estimation in partially observable Markovian decision processes". En: *Machine Learning Proceedings* 1994. Elsevier, 1994, págs. 284-292. URL: https://web.eecs.umich.edu/~baveja/Papers/ML94.pdf (vid. pág. 150).
- [183] Singh, S. P., Kearns, M. J. y Mansour, Y. "Nash Convergence of Gradient Dynamics in General-Sum Games." En: *UAI*. 2000, págs. 541-548. URL: https://www.researchgate.net/profile/Satinder-Singh-3/publication/234140138_Nash_Convergence_of_Gradient_Dynamics_in_Iterated_General-Sum_Games/links/55ad059508ae98e661a2ade1/Nash-Convergence-of-Gradient-Dynamics-in-Iterated-General-Sum-Games.pdf (vid. págs. 135-137).
- [184] Smith, J. M. "Game theory and the evolution of behaviour". En: *Behavioral and Brain Sciences* 7.1 (1984), págs. 95-101 (vid. pág. 5).
- [185] Smith, J. M. "Game theory and the evolution of behaviour". En: *Proceedings of the Royal Society of London. Series B. Biological Sciences* 205.1161 (1979), págs. 475-488 (vid. pág. 6).
- [186] Stella, M., Ferrara, E. y De Domenico, M. "Bots increase exposure to negative and inflammatory content in online social systems". En: *Proceedings of the National Academy of Sciences* 115.49 (2018), págs. 12435-12440. URL: https://www.pnas.org/content/pnas/115/49/12435.full.pdf (vid. pág. 3).
- [187] Suematsu, N. y Hayashi, A. "A multiagent reinforcement learning algorithm using extended optimal response". En: Proceedings of the first international joint conference on Autonomous agents and multiagent systems: Part 1. 2002, págs. 370-377. URL: https://www.researchgate.net/profile/Nobuo-Suematsu/publication/221454885_A_multiagent_reinforcement_learning_algorithm_using_extended_optimal_response/links/00b495331616ee577e000000/A-multiagent-reinforcement-learning-algorithm-using-extended-optimal-response.pdf (vid. págs. 135, 136).
- [188] Sun, R. "Cognitive architectures and multi-agent social simulation". En: *Pacific Rim International Workshop on Multi-Agents*. Springer. 2005, págs. 7-21. URL: http://www.sts.rpi.edu/public_html/rsun/folder-files/sun-mass2009.pdf (vid. pág. 8).
- [189] Sun, R. "From Cognitive Modeling to Social Simulation". En: Cognition and multi-agent interaction: From cognitive modeling to social simulation (2006), pág. 79. URL: http://www.cogsci.rpi.edu/public_html/rsun/book/sun-clarion.pdf (vid. pág. 8).

- [190] Sun, R. y Naveh, I. "Social institution, cognition, and survival: a cognitive—social simulation". En: *Mind & Society* 6.2 (2007), págs. 115-142. URL: https://www.researchgate.net/publication/226314563_Social_institution_cognition_and_survival_A_cognitive-social_simulation (vid. pág. 8).
- [191] Sutton, R. S. "Learning to predict by the methods of temporal differences". En: *Machine learning* 3.1 (1988), págs. 9-44. URL: https://link.springer.com/content/pdf/10.1007/BF00115009.pdf (vid. pág. 94).
- [192] Sutton, R. S. y Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018. URL: http://incompleteideas.net/book/RLbook2020.pdf (vid. págs. 9, 49, 67, 82).
- [193] Sutton, R. S., McAllester, D. A., Singh, S. P. y Mansour, Y. "Policy gradient methods for reinforcement learning with function approximation". En: *Advances in neural inf. proc.* systems. 2000, págs. 1057-1063. URL: https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf (vid. págs. 95, 119).
- [194] Szabó, G. y Fath, G. "Evolutionary games on graphs". En: *Physics reports* 446.4-6 (2007), págs. 97-216. URL: https://arxiv.org/pdf/cond-mat/0607344.pdf (vid. pág. 152).
- [195] Szolnoki, A., Xie, N.-G., Wang, C. y Perc, M. "Imitating emotions instead of strategies in spatial games elevates social welfare". En: *Europhysics Letters* 96.3 (2011), pág. 38002. URL: https://arxiv.org/pdf/1109.1712.pdf (vid. págs. 152, 158).
- [196] Tan, M. "Multi-agent reinforcement learning: Independent vs. cooperative agents". En: Proceedings of the tenth international conference on machine learning. 1993, págs. 330-337. URL: https://web.media.mit.edu/~cynthiab/Readings/tan-MAS-reinfLearn.pdf (vid. pág. 133).
- [197] Tesauro, G. "Extending Q-learning to general adaptive multi-agent systems". En: Advances in neural information processing systems 16 (2003), págs. 871-878. URL: https://proceedings.neurips.cc/paper/2003/file/e71e5cd119bbc5797164fb0cd7fd94a4-Paper.pdf (vid. págs. 135, 136).
- [198] Tesauro, G. "TD-Gammon, a self-teaching backgammon program, achieves master-level play". En: Neural computation 6.2 (1994), págs. 215-219. URL: https://www.aaai.org/Papers/Symposia/Fall/1993/FS-93-02/FS93-02-003.pdf (vid. págs. 9, 82).
- [199] Thrun, S. y Schwartz, A. "Issues in using function approximation for reinforcement learning". En: *Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ. Lawrence Erlbaum.* Vol. 6. 1993, págs. 1-9. URL: https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf (vid. pág. 116).
- [200] Tian, Y., Gong, Q., Shang, W., Wu, Y. y Zitnick, C. L. "Elf: An extensive, lightweight and flexible research platform for real-time strategy games". En: Advances in Neural Information Processing Systems 30 (2017). URL: https://arxiv.org/pdf/1707.01067.pdf (vid. pág. 158).
- [201] Trivers, R. L. "The evolution of reciprocal altruism". En: *The Quarterly review of biology* 46.1 (1971), págs. 35-57. URL: https://pdodds.w3.uvm.edu/files/papers/others/1971/trivers1971a.pdf (vid. pág. 151).
- [202] Tsitsiklis, J. N. "Asynchronous stochastic approximation and Q-learning". En: *Machine learning* 16.3 (1994), págs. 185-202. URL: https://www.mit.edu/~jnt/Papers/J052-94-jnt-q.pdf (vid. págs. 65, 75, 76, 113).

- [203] Van Hasselt, H., Guez, A. y Silver, D. "Deep reinforcement learning with double q-learning". En: arXiv preprint arXiv:1509.06461 (2015). URL: https://arxiv.org/pdf/1509.06461.pdf (vid. pág. 116).
- [204] Vázquez, J. y Oliver, J. "Evolución de autómatas celulares utilizando algoritmos genéticos". En: *Universidad de Deusto. Spain* (2008). URL: https://www.cs.us.es/cursos/ia1-2008/trabajos/articulo1.pdf (vid. pág. 8).
- [205] Vosoughi, S., Roy, D. y Aral, S. "The spread of true and false news online". En: Science 359.6380 (2018), págs. 1146-1151. URL: https://science.sciencemag.org/content/359/6380/1146/tab-pdf (vid. pág. 2).
- [206] Wang, L., Ye, S.-Q., Cheong, K. H., Bao, W. y Xie, N.-g. "The role of emotions in spatial prisoner's dilemma game with voluntary participation". En: *Physica A: Statistical Mechanics and its Applications* 490 (2018), págs. 1396-1407. URL: https://www.sciencedirect.com/science/article/abs/pii/S0378437117307665 (vid. pág. 152).
- [207] Wang, W., Hao, J., Wang, Y. y Taylor, M. "Towards cooperation in sequential prisoner's dilemmas: a deep multiagent reinforcement learning approach". En: arXiv preprint arXiv:1803.00162 (2018). URL: https://arxiv.org/pdf/1803.00162.pdf (vid. pág. 152).
- [208] Wang, X. y Sandholm, T. "Reinforcement learning to play an optimal Nash equilibrium in team Markov games". En: *Advances in neural inf. processing systems* 15 (2002), págs. 1603-1610. URL: https://homes.luddy.indiana.edu/xw7/papers/wang2002reinforcement.pdf (vid. págs. 134, 136).
- [209] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. y Freitas, N. "Dueling network architectures for deep reinforcement learning". En: *International conference on machine learning*. 2016, págs. 1995-2003. URL: http://proceedings.mlr.press/v48/wangf16.pdf (vid. pág. 118).
- [210] Watkins, C. J. y Dayan, P. "Q-learning". En: *Machine learning* 8.3 (1992), págs. 279-292. URL: https://link.springer.com/content/pdf/10.1007/BF00992698.pdf (vid. pág. 71).
- [211] Weinberg, M. y Rosenschein, J. S. "Best-response multiagent learning in non-stationary environments". En: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2. 2004, págs. 506-513. URL: http://ww2.odu.edu/~jsokolow/projects/files/Best-Response%20Multiagent%20Learning%20in%20Non-Stationary%20Environments.pdf (vid. págs. 135, 136).
- [212] Williams, R. J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". En: *Machine learning* 8.3-4 (1992), págs. 229-256. URL: https://link.springer.com/content/pdf/10.1007/BF00992696.pdf (vid. pág. 95).
- [213] Wu, S., Tan, C., Kleinberg, J. y Macy, M. W. "Does bad news go away faster?" En: Fifth International AAAI Conference on Weblogs and Social Media. 2011. URL: https://www.cs.cornell.edu/home/kleinber/icwsm11-longevity.pdf (vid. pág. 2).
- [214] Wu, Y., Mansimov, E., Grosse, R. B., Liao, S. y Ba, J. "Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation". En: *Advances in neural information processing systems*. 2017, págs. 5279-5288. URL: https://arxiv.org/pdf/1708.05144.pdf (vid. pág. 119).
- [215] Wunder, M., Littman, M. L. y Babes, M. "Classes of multiagent q-learning dynamics with epsilon-greedy exploration". En: *ICML*. 2010. URL: https://icml.cc/Conferences/2010/papers/191.pdf (vid. pág. 151).

- [216] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W. y Wang, J. "Mean field multi-agent reinforcement learning". En: *International Conference on Machine Learning*. PMLR. 2018, págs. 5571-5580. URL: http://proceedings.mlr.press/v80/yang18d/yang18d.pdf (vid. pág. 131).
- [217] Yu, C., Zhang, M., Ren, F. y Tan, G. "Emotional multiagent reinforcement learning in spatial social dilemmas". En: *IEEE transactions on neural networks and learning systems* 26.12 (2015), págs. 3083-3096. URL: https://www.researchgate.net/profile/Minjie-Zhang-4/publication/273463080_Emotional_Multiagent_Reinforcement_Learning_in_Spatial_Social_Dilemmas/links/552309bc0cf29dcabb0ee0c7/Emotional-Multiagent-Reinforcement-Learning-in-Spatial-Social-Dilemmas.pdf (vid. pág. 152).
- [218] Yuan, Y., Guo, T., Zhao, P. y Jiang, H. "Adherence Improves Cooperation in Sequential Social Dilemmas". En: *Applied Sciences* 12.16 (2022), pág. 8004. URL: https://www.mdpi.com/2076-3417/12/16/8004 (vid. pág. 151).
- [219] Zafarani, R., Cole, W. D. y Liu, H. "Sentiment propagation in social networks: a case study in livejournal". En: International Conference on Social Computing, Behavioral Modeling, and Prediction. Springer. 2010, págs. 413-420. URL: https://www.researchgate.net/profile/Huan-Liu-51/publication/221118290_Sentiment_Propagation_in_Social_Networks_A_Case_Study_in_LiveJournal/links/00b495350968dccb61000000/Sentiment-Propagation-in-Social-Networks-A-Case-Study-in-LiveJournal.pdf (vid. pág. 2).
- [220] Zeng, R. y Zhu, D. "A model and simulation of the emotional contagion of netizens in the process of rumor refutation". En: *Scientific Reports* 9.1 (2019), págs. 1-15. URL: https://www.nature.com/articles/s41598-019-50770-4.pdf (vid. pág. 3).
- [221] Zhang, Z., Zhao, D., Gao, J., Wang, D. y Dai, Y. "FMRQ—A multiagent reinforcement learning algorithm for fully cooperative tasks". En: *IEEE transactions on cybernetics* 47.6 (2016), págs. 1367-1379 (vid. pág. 136).
- [222] Zinkevich, M. "Online convex programming and generalized infinitesimal gradient ascent". En: Proceedings of the 20th international conference on machine learning (icml-03). 2003, págs. 928-936. URL: https://www.aaai.org/Papers/ICML/2003/ICML03-120.pdf (vid. págs. 135, 136).

Índice alfabético

\mathbf{A}	representación tabular, 18
advantage	J Juegos matriciales129
Bellman, Richard E	M Modelos de Difusión de Información147
operador de Bellman, 28 C coeficientes de elegibilidad	N 34 norma máxima 63 norma máxima ponderada 63 P 63
D	pseudocontracción
diferencia temporal	T TD véase Diferencias Temporales Teoría de Juegos
funciones	Ü
representación mediante aproximadores funcionales, 18	$f V$ ventaja $vcute{e}ase$ advantage

Lista de Símbolos y Acrónimos

Conjuntos

 \mathbb{R} Números Reales \mathbb{N}^+ Números Naturales positivos \mathcal{S} Conjunto de Estados \mathcal{A} Conjunto de acciones П Conjunto de estrategias \mathcal{M} Conjunto de estrategias estacionarias \mathcal{N} Conjunto de agentes \mathbf{S} Conjunto de estados en un problema multiagente $(S = S_1 \times S_2 \times ... \times S_n)$

Conjunto de acciones en un problema multiagente $(A = A_1 \times A_2 \times ... \times A_n)$

Símbolos

 \mathbf{A}

Asignación de valor a una variable Asignación de valor en un proceso iterativo Estado de partida en un Proceso de Decisiones de Markov ($s \in \mathcal{S}$) Estado siguiente en una transición de un Proceso de Decisiones de Markov $(s' \in \mathcal{S})$ Acción $(a \in \mathcal{A})$ aRecompensa \mathcal{D} Replay Buffer (Colección de observaciones, generalmente en la forma: (s,a,r,s')) XVariable aleatoria (Con índice temporal: X_t) $X \sim f(x)$ Variable aleatoria X con distribución de probabilidad f(x) $\mathbb{E}[X]$ Esperanza matemática de la variable aleatoria X Variable aleatoria que representa el estado ocupado en un cierto instante temporal S_t 't' $(S_t = s, s \in \mathcal{S})$. Variable aleatoria que representa la acción llevada a cabo por el agente en un A_t

instante 't' $(A_t = a, a \in A)$.

 R_t Variable aleatoria que representa la recompensa recibida por el agente en un instante 't' $(R_t = r, r \in \mathbb{R})$. Factor de descuento ($\gamma \in [0,1]$) γ Tasa de aprendizaje ($\alpha \in [0,1]$) α p(s, a, r, s')Probabilidad de que en el estado 's' se lleve a cabo la acción 'a' y se reciba como recompensa 'r', produciéndose una transición a otro estado 's'. Probabilidad de pasar de un estado 's' a otro 's" tras llevar a cabo la acción 'a' arg min f(x)Valor de x para el que la función f(x) obtiene el menor valor arg max f(x)Valor de x para el que la función f(x) obtiene el mayor valor \mathcal{F}_t Historia pasada hasta el instante t en un Algoritmo Estocástico Iterativo. Es decir: $\mathcal{F}_t = \{r_0(i), ..., r_t(i), w_0(i), ..., w_{t-1}(i), \gamma_0(i), ..., \gamma_t(i), i = 1, ..., n\}$ $\|\cdot\|_{\varepsilon}$ Norma máxima ponderada $\|\cdot\|_{\infty}$ Norma máxima θ Vector de parámetros (de una Red Neuronal) Política o estrategia ('policy') Política o estrategia ('policy') óptima $\pi(s)$ Función de estretegia determinista $\pi(a \mid s)$ Función de estrategia estocástica $v_{\pi}(s)$ Función de estado. Proporciona el valor verdadero de los estados $(s, s \in \mathcal{S})$ cuando se sigue la estrategia π . $\hat{v}_{\pi}(s, \mathbf{w})$ Función de estado empleando un estimador funcional (por ejemplo una Red Neuronal). Proporciona el valor aproximado de los estados $(s, s \in \mathcal{S})$ cuando se sigue la estrategia π . Los parámetros se denotan por: w. $V^{\pi}(s)$ Función de estado estimada [Algunos autores utilizan la notación: $\hat{V}^{\pi}(s)$ para la estimación y $V^{\pi}(s)$ para el valor verdadero de la función $q_{\pi}(s,a)$ Función de estado-acción. Proporciona el valor verdadero que corresponde a estar en un determinado estado $(s, s \in \mathcal{S})$ y tomar una decisión $(a, a \in \mathcal{A})$, y a partir de ahí actuar en base a lo que determina la estrategia en consideración π . $Q^{\pi}(s,a)$ Función de estado-acción estimada [Algunos autores utilizan la notación: $\hat{Q}^{\pi}(s,a)$ para la estimación y $Q^{\pi}(s,a)$ para el valor verdadero de la función $Q^{\pi}_{\theta}(s,a)$ Función de estado-acción estimada (aproximación mediante una Red Neuronal con

Ventaja ('advantage'). Ventaja de tomar la decisión 'a' en el estado 's' cuando se sigue la estrategia π . Representa la mejora obtenida mediante la elección de

vector de parámetros θ)

 $A^{\pi}(s,a)$

una acción determinada $(a, a \in \mathcal{A})$ en un cierto estado $(s, s \in \mathcal{S})$ respecto del promedio obtenido cuando se tienen en cuenta todas las acciones posibles y se sigue una estrategia π .

 $\phi(s)$ Características ('features') asociadas al estado en cuestión $(s, s \in \mathcal{S})$ $\phi(s) = (\phi_1(s), \phi_2(s), ..., \phi_d(s)) \in \mathbb{R}^d$

 $\psi^{\pi}(s, a)$ 'Successor features' asociadas al par estado-acción: s y a ($s \in \mathcal{S}, a \in \mathcal{A}$), cuando se sigue la estrategia π

ACRÓNIMOS

A2C Advantage actor-critic

A3C Asynchronous advantage actor-critic

AC Actor-Critic

ACKTR Actor-critic using Kronecker-factored trust region

AI Artificial Intelligence

DDPG Deep Deterministic Policy Gradient

DPG Deterministic policy gradient

DQN Deep Q-Network

GAN Generative Adversarial Network

MC Monte Carlo

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

ML Machine Learning

PE Policy Evaluation

PI Policy Improvement

PPO Proximal Policy Optimization

QED Quod erat demonstrandum (que era lo que se quería demostrar)

RL Reinforcement Learning

SAC Soft Actor-Critic

SPG Stochastic Policy Gradient

TD3 Twin Delayed Deep Deterministic Policy Gradient

TD Temporal Difference

TRPO Trust Region Policy Optimization

Glosario

- Advantage Representa la mejora obtenida mediante la elección de una determinada acción en un cierto estado respecto del promedio obtenido cuando se tienen en cuenta todas las acciones posibles.
- Asíncrono vs Síncrono (en contraposición a síncrono) alude a que los pasos en las estimaciones no es necesario que se mantengan en un orden fijo de iteración. Esto permite paralelizar en diferentes máquinas el algoritmo más fácilmente. Ver libro de Sutton para otra forma de explicarlo: pag. 191.
- Baseline Es el punto de referencia que se toma en algunos algoritmos.
- **Batch** (*lote*) Conjunto de datos utilizados en cada pasada del algoritmo. En el proceso de entrenamiento es la unidad mínima de datos en que quedan divididos los datos de entrenamiento, y que se pasan al algoritmo para el ajuste del modelo en cada pasada.
- Behavior policy Ver: Target Policy vs Behavior policy.
- Bootstrapping Consiste en el procedimiento iterativo de actualizar una estimación en base a otra estimación previa. (Ver página 89 del libro de Barto y Sutton).
- **Control** Ver: Prediction vs Control En un proceso de Aprendizaje por Refuerzo alude al proceso de optimización que conduce al descubrimiento de la estrategia óptima de acción.
- **Diferencias Temporales (TD)** Es un método de aprendizaje de las funciones de valor, que utiliza como regla de actualización la diferencia entre estimaciones en dos momentos consecutivos.
- Eligibility traces Procedimiento que funciona como un mecanismo de memoria a corto plazo, que permite introducir una secuencia de pasos anteriores en los algoritmos. Suele contribuir a llevar a cabo un aprendizaje más eficiente. Generalmente proporciona mejores resultados que otros métodos con utilidad parecida, como las Diferencias Temporales a 'n' pasos (n-step TD).
- **Entorno Estacionario** En un MDP (*Markov Decision Process*) alude a que las probabilidades de transición entre los estados se mantienen estables. En caso contrario la convergencia (de los algoritmos de aprendizaje de la estrategia óptima) no queda garantizada.
- **Entrenamiento** (*Training*) Proceso mediante el cual un modelo se ajusta a unos datos, a partir de la estimación de los parámetros óptimos (aquellos que conducen a un menor error en la predicción).

- **Epoch** Alude a cada pasada completa por los datos de entrenamiento. En un proceso de aprendizaje la base de datos se encuentra dividida en 'lotes', y se le pasan en estos bloques al modelo para el aprendizaje.
- Estrategia de Boltzman Forma de caracterizar la distribución de probabilidad con la que un agente reacciona a su entorno. A cada par estado-acción (s, a), dado s, se le asigna la probabilidad de que la acción seleccionada sea a. Obedece a la siguiente expresión:

$$\pi(s, a) = \frac{e^{\frac{Q(s, a)}{T}}}{\sum\limits_{a' \in \mathcal{A}} e^{\frac{Q(s, a')}{T}}}$$

T es un parámetro llamado 'temperatura' (T>0) que controla la aleatoriedad de la exploración del entorno. Cuando $T\longrightarrow 0$ se acerca a la selección de acciones mediante el método 'greedy'. Cuando $T\longrightarrow \infty$ la selección de acciones por parte del agente es puramente aleatoria. En el rango $T\in (0,\infty)$ los valores altos de Q(s,a) tienen más probabilidad de ser seleccionados frente a los bajos .

Estrategia Epsilon-greedy (ϵ -greedy) Consiste en elegir con una pequeña probabilidad (epsilon) una acción que no es la óptima de una manera aleatoria uniforme, y con la probabilidad complementaria la acción que conduce a un mayor valor de Q(s,a). Es decir:

$$\pi(s,a) = \begin{cases} 1 - \epsilon & a = \underset{a'}{\operatorname{arg max}} \ Q(s,a') \\ \epsilon & a \neq \underset{a'}{\operatorname{arg max}} \ Q(s,a') \end{cases}$$

El valor de ϵ vendría a representar la probabilidad de exploración del agente. El resultado con este método es que 'explota' el conocimiento acumulado que viene recogido en Q(s,a) la mayor parte del tiempo, pero con una pequeña probabilidad ϵ 'explora' o tantea nuevos cursos de acción al azar .

- Estrategia greedy (Voraz) Consiste en seleccionar en un determinado estado s, sólo aquella acción que conduce al mejor resultado en la función de valor (por ejemplo: Q(s,a) si empleamos la función de estado-acción).
- Exploration vs Explotation Explotación consiste en comportarse eligiendo las acciones que al punto actual tienen un valor extimado mayor (las acciones con mayor valor reciben en nombre de acciones 'greedy'. Cuando elegimos una acción que no-greedy decimos que estamos Explorando, ya que esto nos permite trabajar más la estimación de estas acciones (pag. 26 Sutton).
- **Juego** Cierto estereotipo de interacción que modeliza de manera formal las relaciones entre decisores, y con los que se pretende analizar matemáticamente la forma óptima de tomar decisiones. Empleados en Teoría de Juegos.
- Juego Estático vs Juego Dinámico Juego estático es aquel en el que se analizan exclusivamente las estrategias de los jugadores si entrar en valoración la existencia de un 'estado'. En los juegos dinámicos el comportamiento del agente está muy ligado a un estado particular.

- Juegos de Suma Cero Son juegos en los que las ganancias de un jugador suponen las pérdidas de su oponente.
- Juegos de Suma General En los juegos de suma general no se impone ninguna restricción sobre la forma de las recompensas del juego.
- Maldición de la Dimensionalidad (Curse of Dimensionality) Alude al crecimiento exponencial de opciones a valorar en un problema de Aprendizaje por Refuerzo conforme crece el número de estados-acciones a tener en cuenta. El problema surge de tener que arrastrar una representación explícita de cada uno de estos valores (representación tabular). Este obstáculo puede ser sorteado empleando aproximadores funcionales (representación compacta) como las redes neuronales.
- Monte Carlo Tree Search (MCTS) Ver el libro de Sutton pag. 185.
- Montecarlo (MC) En el ámbito del Aprendizaje por Refuerzo (*Reinforcement Learning*) alude al método de aprendizaje, para la estimación de las funciones de valor, que no requiere conocimiento del entorno, y sólo se basa en secuencias muestrales generadas por simulación del tipo: estado, acción y recomensa.
- Off-line Alude al proceso en el que los datos se disponen de antemano, como la secuencia de ganancias de todo el episodio que se va a analizar.
- On-line Alude al proceso en el que los datos se generan sobre la marcha. [Libro de Bertsekas (Rollout) pag. 54].
- On-policy vs off-policy Un método de búsqueda de la estrategia óptima se dice 'on-policy' cuando el comportamiento del agente se genera empleando la misma estrategia cuya mejora se está realizando iterativamente. En los métodos 'off-policy' la estrategia que se mejora es distinta de la que emplea el agente para tomar decisiones. [Ver también: Target policy vs Behavior policy] pag. 202 Ravichandiran.
- Overfitting (Sobreajuste) Ocurre cuando la capacidad de ajuste del modelo es muy superior a la complejidad de los datos que se le proporcionan para el entrenamiento. Esto provoca que el error en el entrenamiento sea muy bajo, y sin embargo cuando se le proporcionan datos que no ha visto el modelo durante el entrenamiento (datos de validación) el error sea muy alto. En este caso la capacidad de generalización del modelo es muy baja.

Policy Evaluation Texto de prueba.

Policy Improvement Texto de prueba.

Prediction vs Control Predicción alude a la utilización de los algoritmos para encontrar el valor asociado a una determinada estrategia. Control alude a la utilización de los algoritmos para encontrar la estrategia óptima (la que tiene el mayor valor de todas).

Programación Dinámica Texto de prueba.

Rollout (Ver libro de Bertsekas), ver the libro de Sutton pag. 183.

- Sweep (barrido) En Aprendizaje por Refuerzo (Reinforcement Learning) consiste en la aplicación del operador de Bellman a todos los estados. En algunos algoritmos su puede priorizar el proceso en unos estados sobre otros ('prioritized sweeping' ver Moore, A. & Atkeson, C. (1993) [126]).
- Target móvil Alude a los problemas de aprendizaje que surgen especialmente en entornos multiagente (MARL *Multi-agent Reinforcement Learning*), debido a que la estrategia óptima va cambiando según cambia la estrategia de cada agente, al encontrarse todos ellos en situación de aprendizaje. Esto se traduce en que el entorno se vuelve no estacionario, con lo que las garantías de convergencia de muchos algoritmos no se mantienen.
- Target Policy vs Behavior policy La estrategia que está siendo aprendida recibe el nombre de *Target policy*, mientras que la estrategia que se emplea para generar comportamiento recibe en la literatura el nombre de *Behavior policy*. Los métodos en que ambas coinciden reciben el nombre de 'on-policy', mientras que si son distintas se llaman 'off-policy'.
- **Underfitting** Ocurre cuando la capacidad explicativa de un modelo ajustado es insuficiente para explicar y predecir correctamente el fenómeno que estamos estudiando.