Oblig 1 - MAT3500

Fredrik Meyer

For lettleselighet gjentar vi opplysningene i oppgaven. La

$$C = \mathbb{R}^2 - 0.$$

La

$$D = \{e, n, w, s, \}$$

hvor e, n, w, s er elementer i en eller annen arbitrær mengde. La

$$p(x,y) = \begin{cases} e \text{ hvis } x > 0 \text{ og } y = 0 \\ n \text{ hvis } y > 0 \\ w \text{ hvis } x < 0 \text{ og } y = 0 \\ s \text{ hvis } y < 0 \end{cases}$$

Vi gir D kvotienttopologien slik at p blir en kvotientavbildning. Ordet avbildning vil alltid bety "kontinuerlig funksjon".

(1) Finn alle åpne mengder i D.

En mengde A er åpen i D hvis og bare hvis $p^{-1}(A)$ er åpen i C. Hele øvre åpne halvplan sendes til n, så n er åpen. Linjen y=0 er lukket, og det er også strålen fra origo på linjen y=0 (den er komplementet av øvre, nedre og venstre halvplan, alle åpne). Slik resonnering gir oss en kort liste over åpne mengder i D:

$$\mathcal{T} = \{\emptyset, \{n\}, \{s\}, \{n, s\}, \{n, e, s\}, \{n, w, s\}, D\}$$

(2) Er D Hausdorff?

Nei. Eneste åpne mengde som inneholder e, inneholder også n, så det finnes ingen disjunkte åpne mengder som skiller e og n.

(3) Er D kompakt?

Ja. Enhver åpen overdekning er endelig (eventuelt etter å ha fjernet gjentakelser).

(4) Er D homoemorf med et produkt $A \times B$ av to to-punktsrom A, B?

Nei. Det finnes få topunktstopologier å prøve seg på. Det er opp til homeomorfi kun tre topunktstopologier, nemlig den trivielle topologien, Sierpinskitopologien ($\{\emptyset, \{a\}, \{a,b\}\}\)$), og den diskrete topologien. Vi har noen tilfeller: Tilfelle 1: Både A og B har den trivielle topologien. Dette går ikke, for da vil det ikke finnes åpne ettpunktsmengder (som det gjør i D).

Tilfelle 2: A har den trivielle topologien og B har Sierpinski-topologien. Siden de åpne mengdene i D er helt symmetrisk med hensyn på n, s, e, w går ikke dette. Faktisk ser vi at både A og B må ha samme topologi.

Tilfelle 3: Begge er Sierpinski. Dette går ikke, for da ender vi opp med mer enn ni åpne mengder.

Tifelle 4: Begge er diskrete. Dette går ikke, for da har vi også altfor mange åpne mengder.

(5) Finn alle lukkede mengder i D.

De lukkede mengdene er komplementene av de åpne:

$$C = \{\emptyset, \{e\}, \{w\}, \{e, w\}, \{n, e, w\}, \{s, e, w\}, D\}.$$

(6) Finn tillukningen til hver singletonmengde i D.

Tillukningen til en mengde er den minste lukkede mengden som inneholder mengden. Derfor får vi fra forrige oppgave:

$$\overline{\{e\}}=\{e\},\overline{\{n\}}=\{n,e,w\},\overline{\{w\}}=\{w\},\overline{\{s\}}=\{s,e,w\}$$

(7) Hvis at hver avbildning $f: D \to \mathbb{R}$ er konstant.

For enhver avbildning må vi ha at $f(\overline{A}) \subset \overline{f(A)}$. Betegn $f(e) = r_1, f(n) = r_2, f(w) = r_3, f(s) = r_4$. Siden $\overline{\{n\}} = \{n, e, w\}$ har vi at

$$f(\{n, e, w\}) \subset \{r_2\}$$

siden punkter er lukkede i \mathbb{R} . Med andre ord er $f(n) = f(e) = f(w) = r_2$. Samme argument gir at

$$f(\{s,e,w\}) \subset \{r_4\}.$$

Slik at $f(s) = r_2 = f(e) = r_4$. Så f er konstant.

(8) Finnes det en avbildning $r: D \to C$ slik at $p \circ r = id_D$?

Nei. Nøyaktig samme argument som i forrige oppgave gir at $r: D \to C$ er konstant, siden C er et underrom av \mathbb{R}^2 . (hvor punkter er lukkede)

(9) Er p en åpen avbildning?

Ja. Det holder å se på basiselementer for C. Disse er på formen $(A \times B) \cap C$ med A, B åpne i \mathbb{R} . Altså rektangulære åpne bokser. Det er åpenbart at hver slik boks kun kan sendes til åpne mengder i D. (det finnes for eksempel ingen åpne bokser som sendes til e, for hver boks som inneholder et punkt (x,0) (x>0), må også inneholde punkter både over og under x-aksen, slik at en boks som inneholder (x,0) vil ihvertfall sendes til $\{n,e,s\}$, som er åpen)

(10) Er p en lukket avbildning?

Nei. $(1,1) \in C$ er lukket, men $p(\{(1,1)\}) = \{n\}$, som er åpen.

(11) Er D sammenhengende?

Ja. For de eneste åpenlukkede delmengdene av D er \emptyset og D.

(12) Konstruer en kontinuerlig vei i D fra e til w.

Vi har lyst å reise fra øst til vest. Vi ønsker å lage en avbildning $f: [0,1] \to D \mod f(0) = e$ og f(1) = w. Definer resten av $f \mod f(x) = n$ for $x \in (0,1)$. Da er f kontinuerlig. For $f^{-1}(\{e\}) = \{0\}$ er lukket, og samme for $f^{-1}(\{w\})$. Og $f^{-1}(\{n\}) = (0,1)$, som er åpen.

(13) La $\alpha, \beta: C \to C$ være gitt som $\alpha(x,y) = (x,-y)$ og $\beta(x,y) = (y,x)$. Hvilke av $p \circ \alpha, p \circ \beta: C \to D$ faktoriseres som $k \circ p$ med $k: D \to D$ en avbildning?

Funksjonen α bytter om på nord og sør, mens β bytter om på øst og vest, så på grunn av symmetri i \mathcal{T} , ser vi at å bytte om øst og vest/nord og sør er helt greit. I tilfellet $p \circ \alpha$ får vi at k er gitt ved $n \mapsto s$, $s \mapsto n$ og resten avbildes til seg selv.

(14) Finn alle homemorfier $h: D \to D$.

Vi har ikke mange muligheter. Avbildningen h må være bijektiv og åpen (evt. bijektiv og lukket). Dette betyr (for eksempel) at n kun kan sendes til seg selv eller s fordi det ikke finnes andre åpne singleton-mengder i D. Vi ender opp med fire homemorfier:

- 1. id_D
- 2. $s \mapsto n, n \mapsto s, w \mapsto e, e \mapsto w$
- 3. $s \mapsto s, n \mapsto n, w \mapsto e, e \mapsto w$
- 4. $s \mapsto n, n \mapsto s, w \mapsto w, e \mapsto w$

Disse er alle injektive og surjektive (lett å seg), og kontinuerlige (noenlunde åpenbart). 1 .

 $^{^1\}mathrm{Det}$ bør nevnes at automorfigruppen er isomorf med $\mathbb{Z}_2\times\mathbb{Z}_2$