

Instalações Elétricas 1

Stéfani Vanussi Silva de Melo stefani.melo@ufes.br

- O primeiro passo consiste em determinar a corrente que tais circuitos consomem em regime contínuo de funcionamento.
 - E essas correntes são determinadas da seguinte maneira:

		Circuitos Alternados Corrente Consumida por Cargas Ligadas entre:										
	Fas	Fase e Neutro 2 Fases 3 Fases										
Potência	a	$= \frac{P}{U_0 \cdot \cos \varphi}$	ь	$I = \frac{P}{U \cdot \cos \varphi}$	c	$I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi}$						
Ativa	d /=	$\frac{P'}{U_0 \cdot \cos \varphi \cdot \eta}$	e	$I = \frac{P'}{U \cdot \cos \phi \cdot \eta}$	f	$I = \frac{P'}{\sqrt{3} \cdot U \cdot \cos \varphi \cdot \eta}$						
Potência Aparente	g	$I = \frac{S}{U_0}$	h	$I = \frac{S}{U}$	i	$I = \frac{S}{\sqrt{3} \cdot U}$						

• As expressões das letras d, e, f são válidas para motores e iluminação de descarga com reatores (fluorescente, vapor de mercúrio, etc)

Dimensionamento dos condutores

Fator de Potência e Rendimento: Valores Típicos		
Huminação	cos φ	η
- incandescente · · · · · · · · · · · · · · · · · · ·	1,00	1,00
– mista	≃ 1,00	1,00
 vapor de sódio a baixa pressão (sempre aparelhos compensados): 18 a 180W 	0,85	0,70 a 0,80
Iluminação com aparelhos não compensados (baixo cos φ)	соз ф	η
- iodeto metálico: 220V; 230 a 1000W · · · · · · · · · · · · · · · · · ·	0,60	0,90 a 0,95
- iodeto metálico: 380V; 2000W · · · · · · · · · · · · · · · · · ·	0,60	0,90
- fluorescente com starter: 18 a 65W · · · · · · · · · · · · · · · · · · ·	0,50	0,60 a 0,83
– partida rápida: 20 a 110W · · · · · · · · · · · · · · · · · · ·	0,50	0,54 a 0,80
 vapor de mercúrio: 220V; 50 a 1000W· · · · · · · · · · · · · · · · · ·	0,50	0,87 a 0,95
– vapor de sódio a alta pressão: 70 a 1000W · · · · · · · · · · · · · · · · · ·	0,40	0,90
Iluminação com aparelhos compensados (alto cos φ)	сов ф	η
- iodeto metálico: 220V; 230 a 1000W	0,85	0,90 a 0,95
- io deto metálico: 380V; 2000W · · · · · · · · · · · · · · · · · ·	0,85	0,90
- fluorescente com starter: 18 a 65W · · · · · · · · · · · · · · · · · · ·	0,85	0,60 a 0,83
– partida rápida: 20 a 110W · · · · · · · · · · · · · · · · · · ·	0,85	0,54 a 0,80
- vapor de mercúrio: 220V; 50 a 1000W· · · · · · · · · · · · · · · · · ·	0,85	0,87 a 0,95
– vapor de sódio a alta pressão: 70 a 1000W · · · · · · · · · · · · · · · · · ·	0,85	0,90
Motores trifásicos de galola	cos φ	η
- até 600W · · · · · · · · · · · · · · · · · ·	0,50	_
- de 1 a 4cv · · · · · · · · · · · · · · · · · · ·	0,75	0,75
- de 5 a 50cv · · · · · · · · · · · · · · · · · · ·	0,85	0,80
– acima de 50cv	0,90	0,90
Aquecimento	cos φ	η
– por resistor (chuveiros elétricos, por exemplo) · · · · · · · · · · · · · · · · · · ·	1,00	1,00

Dimensionamento dos condutores

• Para o nosso Projeto Exemplo:

Nō	EQUIPAMENTOS	Ib (A)
1	Iluminação 01	4,88
2	Iluminação 02	3,62
3	Tomadas 01 TUG's	4,72
4	Tomadas 02 TUG's	7,87
5	Tomadas 03 TUG's	9,45
6	Tomadas 04 TUG's	5,51
7	Tomadas 05 TUG's	9,45
8	Tomadas 06 TUG's	5,51
9	Tomadas 07 TUG's	9,45
10	Tomadas 08 TUG's	4,72
11	Tomadas 01 TUE	20,00
12	Tomadas 02 TUE	15,91
	SUBTOTAL	69,82

Aquecimento dos condutores

- A dissipação do calor gerado pela passagem de corrente nos condutores (Efeito Joule) depende dos materiais com os quais são construídos e do meio em que se encontram instalados, ou seja, em funcionamento normal, a temperatura dos condutores não deve ultrapassar a de regime permanente.
- Em condições de funcionamento nas quais a temperatura de regime permanente não é excedida, estima-se que a vida útil dos condutores gire em torno de 20 anos.
- Estima-se ainda que, para cada 5ºC acima da temperatura de regime, haja uma redução de 50% da vida útil.

Dimensionamento dos condutores de fase

- Para instalações elétricas de baixa tensão, o dimensionamento dos condutores <u>é essencialmente uma questão térmica</u>, fixando a seção nominal de maneira que não ocorra superaquecimento.
- Isto é feito através de quatro critérios que devem ser atendidos simultaneamente:
 - 1. Capacidade de corrente;
 - 2. Seção nominal mínima;
 - 3. Queda de tensão;
 - 4. Sobrecarga.

Passo 1: Escolhe-se o tipo de isolação de condutores;

Passo 2: Determina-se a quantidade de condutores carregados, que são aqueles efetivamente percorridos por corrente (fase e neutro);

Passo 3: Escolhe-se o método de instalação dos condutores;

Passo 4: Determina-se o fator de correção da temperatura, FCT;

Passo 5: Determina-se o fator de correção de grupamento, FCA, que representa o número de circuitos instalados no mesmo conduto;

Passo 6: Calcula-se a corrente corrigida Ic.

$$Ic = \frac{I}{FCT.FCA}$$

• Tabela de método de Instalação dos Condutores (tabela 33 da NBR FE OMNES GÉT

5410):

Codificação dos Métodos de Instalação de Conc	OKONOS		
Método de Instalação	Condutor	Cabo	Cabo
Atastado da parede ou suspenso por cabo de suporte (III)	(a)	F	E
Bandejas não perfuradas ou prateleiras	(a)	С	C
Bandejas perfuradas (horizontal ou vertica)	(a)	F	E
Canaleta fechada no piso, solo ou parede	B1	B1	B2
Canaleta ventilada no piso ou solo	(a)	81	B1
Diretamente em espaço de construção ⁽ⁱ⁾ : 1,5 De ≤ V < 5 De	(a)	B2	B2
Diretamente em espaço de construção (4): 5 De s V s 50 De	(a)	B1	B1
Diretamente enterrado	(a)	D	D
Detrocalha	B1	B1	B2
Eletroduto aparente	81	B1	82
Eletroduto de seção não circular embutido em alvenaria	(a)	B2	B2
Eletroduto de seção não circular em butido em alvenaria (□): 1,5 De ≤V < 5 De	82	(a)	(a)
Eletroduto de seção não circular emburido em alvenaria (□: 5De ≤V ≤50De	B1	(n)	(a)
Eletroduto em canaleta fechada №: 1,5 De ≤ V < 20 De	82	B2	(a)
Eletroduto em canaleta fechada ¹⁴ : V ≥ 20 De	81	B1	(a)
Eletroduto em canaleta ventilada no piso ou solo	B1	(a)	(a)
Eletroduto em espaço de construção	(a)	Đ2	B2

Eletroduto em espaço de construção (c): 1,5 De ≤ V < 20 De	B2	(a)	(a)
Eletroduto em espaço de construção (≈): V ≥ 20 De	B1	(a)	(a)
Eletroduto embutido em alvenaria	B1	B1	B2
Eletroduto embutido em cabilho de porta ou janela	A1	(a)	(10)
Eletroduto embutido em parede isolante	A1	A1	A1
Eletroduto enterrado no solo ou canaleta não ventilada no solo	(a)	D	D
Embutimento direto em alvenaria	(a)	C	C
Embutimento direto em caixilho de porta ou janela	(a)	A1	A1
Embutimento direto em parede isolante	(a)	(a)	A1
Fixação direta em parede ou teto (4)	(a)	C	C
Forro falso ou piso elevado (c): 1,5 De ≤V < 5 De	(a)	B2	B2
Farro falso ou piso elevado (□): 5De ≤V ≤50De	(a)	B1	B1
Leitos, suportes horizontais ou telas	(a)	F	E
Moldura	A1	A1	(11)
Sobre isoladores	G	(a)	(a)

Notas:

- (a): de acordo com a NBR 5410, o cabo não pode ser instalado pelo método correspondente ou, então, o método não é usual para a instalação do cabo correspondente;
- (b): a distância entre o cabo e a parede deve ser, no mínimo, igual a 30% do diâmetro externo do cabo;
- (c): De = diámetro externo do cabo; V = altura do espaço de construção ou da canaleta;
- d): a distância entre o cabo e a parede ou teto deve ser menor ou igual a 30% do diâmetro externo do cabo.

• Tabela do fator de correção da temperatura (tabela 40 da NBR 5410):

Fator de Correção de Temperatura (adaptada da NBR 5410)										
_	Material da Isolação									
Temperatura [°C]	PVC	EPR ou XLPE	PVC	EPR ou XLPE						
[9]	Temperatu	ıra Ambiente	Temperat	tura do Solo						
10	1,22	1,15	1,10	1,07						
15	1,17	1,12	1,05	1,04						
20	1,12	1,08	1,00	1,00						
25	1,06	1,04	0,95	0,96						
30	1,00	1,00	0,89	0,93						
35	0,94	0,96	0,84	0,89						
40	0,87	0,91	0,77	0,85						
45	0,79	0,87	0,71	0,80						
50	0,71	0,82	0,63	0,76						
55	0,61	0,76	0,55	0,71						
60	0,50	0,71	0,45	0,65						
65	_	0,65		0,60						
70	_	0,58		0,53						
75	_	0,50		0,46						
80	_	0,41		0,38						

• Tabela do fator de correção para agrupamento de circuitos (tabela 42 da NBR 5410):

Item	Disposição dos	ção dos Número de circuitos ou de cabos multipolares										Tabelas dos			
	cabos justapostos	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥ 20	métodos de referência	
1	Feixe de cabos ao ar livre ou sobre superfície; cabos em condutos fechados.	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	10.9 a 10.12 (métodos A a F)	
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira (1).	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	Nenhum fator de redução			10.9 e 10.10 (método C)	
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	7.41.11	al para m			
4	Camada única em bandeja perfurada (1)	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	circuitos ou cabos multipolares			10.11 e 10.12	
5	Camada unida em leito, suporte (1)	1,00	0,87	0,82	0,80	0,80	0,79	0,79 0,79 0,78 078					(métodos E e F)		

 Tabela da Capacidade de Condução de Corrente (tabelas 36 ao 39 da NBR 5410):

	Сар	acidade	de Con	dução de	Corren	te [A] er	n Balxa '	Tensão (adaptada i	da NBR 54	10)	
Flos e Ca								egime Pe				70 °C
Material do Condutor: Cobre				Temp	Temperatura Ambiente (flos e cabos não enterrados):							
Mater	rial da Is	olação:	P\	/C	Temperatura do Solo (flos e cabos enterrados):							
Seção Códigos		dos Mé	todos d	e Instala	ção ^(a) e	Quantic	dade de	Conduto	res Carı	re gad os		
Nominal A1		A	2	8	Ħ		2	(;		0	
[mm ²]	2	3	2	3	2	3	2	3	2	3	2	3
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	103
50	119	108	110	99	151	134	133	118	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151
95	182	164	167	150	232	207	201	179	258	223	216	179
120	210	188	192	172	269	239	232	206	299	259	246	203
150	240	216	219	196	309	275	265	236	344	299	278	230
185	273	245	248	223	353	314	300	268	392	341	312	258
240	321	286	291	261	415	370	351	313	461	403	361	297
300	367	328	334	298	477	426	401	358	530	464	408	336
400	438	390	398	355	571	510	477	425	634	557	478	394
500	502	447	456	406	656	587	545	486	729	642	540	445
630	578	514	526	467	758	678	626	559	843	743	614	506
800	669	593	609	540	881	788	723	645	978	865	700	577
1000	767	679	698	618	1012	906	827	738	1125	996	792	652

Aplicando este critério para o nosso Projeto Exemplo:

Passo 1(tipo de isolação): Serão escolhidos condutores isolados de cobre com isolação de PVC, que é o usual para instalações elétricas residenciais;

Passo 2 (Número de Condutores Carregados): voltando ao desenho que já realizamos, podemos notar que para os circuitos da nossa residência serão:

- -circuito de distribuição (2F+N)......3
- -circuitos terminais (FF ou FN).....2

Passo 3 (Método de Instalação dos Condutores): nas instalações elétricas residenciais, o método de instalação utilizado é o método de instalação em eletrodutos embutidos em alvenaria, que olhando na NBR 5410 é o método B1;

Passo 4 (Fator de Correção da Temperatura): considerando uma temperatura ambiente de 30°, olhando na tabela, nosso FCT é 1,0;

• Passo 5 (Fator de Correção de Agrupamento): Inicialmente, para cada um dos 13 circuitos do nosso projeto, é necessário "percorrer" todo trajeto e verificar, entre seus diversos trechos, qual a quantidade máxima de circuitos agrupados no mesmo eletroduto.

Circuito 1	5
Circuito 2	5
Circuito 3	5
Circuito 4	3
Circuito 5	5
Circuito 6	5
Circuito 7	4
Circuito 8	4
Circuito 9	3
Circuito 10	3
Circuito 11	3
Circuito 12	4
Circuito de distribuição	1

Nº do	Quant. de circuitos	FCA
Circuito	agrupados	
1	5	0,6
2	5	0,6
3	5	0,6
4	3	0,7
5	5	0,6
6	5	0,6
7	4	0,65
8	4	0,65
9	3	0,7
10	3	0,7
11	3	0,7
12	4	0,65
Distribuição	1	1

• Passo 6 (Corrente Corrigida): Com os valores da "Corrente Calculada", e dos fatores FCT e FCA, podemos obter a corrente corrigida:

$$Ic = \frac{I}{FCT.FCA}$$

Circuito 1
Circuito 2
Circuito 3
Circuito 4
Circuito 5
Circuito 6
Circuito 7
Circuito 8
Circuito 9
Circuito 10
Circuito 11
Circuito 12
Circuito de distribuição $I_c = \frac{69.82}{1.1}$

 Passo 7 (Escolha de Seção Nominal dos Condutores): devido a todas as escolhas realizadas e calculadas anteriormente, a tabela a ser consultada será a tabela 36 da NBR 5410, lembrando que escolhe-se a seção nominal <u>cuja capacidade de condução seja imediatamente</u> acima da corrente corrigida.

		1 - Critério de Corrente									
Nºº	EQUIPAMENTOS	FCA	FCT (30°C)	Ib' (A)	Isolação	Método Instalação	Condutor - Uni/Mult	Condutores Carregados	Iz (A)	S1 (mm²)	
			_			1	1	1 _	T _	1	
1	lluminação 01	0,6	1	8,14	PVC	B1	U	2	9	0,50	
2	lluminação 02	0,6	1	6,04	PVC	B1	U	2	9	0,50	
3	Tomadas 01 TUG's	0,6	1	7,87	PVC	B1	U	2	9	0,50	
4	Tomadas 02 TUG's	0,7	1	11,25	PVC	B1	U	2	14	1,00	
5	Tomadas 03 TUG's	0,6	1	15,75	PVC	B1	U	2	17,5	1,50	
6	Tomadas 04 TUG's	0,6	1	9,19	PVC	B1	U	2	11	0,75	
7	Tomadas 05 TUG's	0,65	1	14,54	PVC	B1	U	2	17,5	1,50	
8	Tomadas 06 TUG's	0,65	1	8,48	PVC	B1	U	2	9	0,50	
9	Tomadas 07 TUG's	0,7	1	13,50	PVC	B1	U	2	14	1,00	
10	Tomadas 08 TUG's	0,7	1	6,75	PVC	B2	U	2	9	0,50	
11	Tomadas 01 TUE	0,7	1	28,57	PVC	B1	U	2	32	4,00	
12	Tomadas 02 TUE	0,65	1	24,48	PVC	B1	U	2	32	4,00	
	SUBTOTAL	1	1	69,82	PVC	D	U	2	81	16,00	

2 - Critério da seção mínima

• Segundo NBR 5410, para este critério são adotados os seguintes valores (ver

Tabela 47 desta Norma):

•	para	circuitos	de iluminação	1,5mm2
---	------	-----------	---------------	--------

• para circuitos de força (TUG's e TUE's)....2,5mm2

Seção nominal atual dos condutores de fase				
Número Circuito	Critério Capacidade de Condução	Seção Nominal adotada		
1	0,50	1,5		
2	0,50	1,5		
3	0,50	2,5		
4	1,00	2,5		
5	1,50	2,5		
6	0,75	2,5		
7	1,50	2,5		
8	0,50	2,5		
9	1,00	2,5		
10	0,50	2,5		
11	4,00	4,00		
12	4,00	4,00		
Distribuição	16,00	16,00		

- A tensão nos terminais de qualquer equipamento tem que ser aquela para a qual tenha sido projetado, caso contrário, alguma coisa será sacrificada, seja na vida útil ou no desempenho do equipamento.
- Como todos os circuitos apresentam alguma queda de tensão, este critério tem como objetivo re-analizar as seções adotadas para os condutores de maneira que a queda ocorra dentro dos limites estabelecidos pela NBR 5410 mostrados abaixo:
- **6.2.7.1** Em qualquer ponto de utilização da instalação, a queda de tensão verificada não deve ser superior aos seguintes valores, dados em relação ao valor da tensão nominal da instalação:
- a) 7%, calculados a partir dos terminais secundários do transformador MT/BT, no caso de transformador de propriedade da(s) unidade(s) consumidora(s);
- b) 7%, calculados a partir dos terminais secundários do transformador MT/BT da empresa distribuidora de eletricidade, quando o ponto de entrega for aí localizado;
- 5%, calculados a partir do ponto de entrega, nos demais casos de ponto de entrega com fornecimento em tensão secundária de distribuição;
- d) 7%, calculados a partir dos terminais de saída do gerador, no caso de grupo gerador próprio.

 A queda de tensão é cálculada como costrada a seguir, sendo que L é o comprimento do circuito e em quilômetros:

Queda de Tensão Unitária
$$\overline{\Delta U} = \frac{\Delta U}{I \cdot L} \cdot 1000$$

• A aplicação do critério da queda de tensão é feita considerando duas situações distintas:

 cargas concentradas na extremidade do circuito, que é um caso típico do circuito de distribuição e das TUE's;

• cargas distribuídas ao longo do circuito, caso típico das TUG's e circuitos de

iluminação.

- O comprimento do circuito resulta da soma de duas parcelas:
 - da distância no plano horizontal entre os pontos considerados;
 - de uma distância no plano vertical, determinada em função da posição da caixa de passagem que abriga a carga. Esta posição não é prescrita pela NBR 5410, mas usualmente adota-se:

- Para o nosso Projeto Exemplo, foi considerado que a linha elétrica é constituída por cabos isolados, com isolação de PVC, acondicionados em eletrodutos de material não magnético.
- É importante saber que para circuito de distribuição, iluminação incandescente e TUE's o fator de potência é 1,0 e para TUG's é 0,80.

Tip	o do Condutor:	Flo e Cab	ensão Unitária [V/A.km] em Flo e Cabo Isolado		Temperatura em Regime	
Material da Isolação:		PVC		Permanente no Condutor:		70 °C
Seção Nominal [mm²]	Eletroduto e Eletrocalha (b) (material magnético)		Eletroduto e Eletrocalha (b) (material não-magnético)			
	Circuito Monofásico e Trifásico		Circuito Monofásico		Circuito Trifásico	
	$\cos \phi = 0.80$	cos φ = 0,95	cos φ = 0,80	∞ sφ= 0,9 5	cos φ = 0,80	cos φ = 0,95
1,5	23	27,4	23,3	27,6	20,2	23,9
2,5	14	16,8	14,3	16,9	12,4	14,7
4	9,00	10,5	8,96	10,6	7,79	9,15
6	5,87	7,00	6,03	7,07	5,25	6,14
10	3,54	4,20	3,63	4,23	3,17	3,67
16	2,27	2,70	2,32	2,68	2,03	2,33
25	1,50	1,72	1,51	1,71	1,33	1,49
35	1,12	1,25	1,12	1,25	0,98	1,09
50	0,86	0,95	0,85	0,94	0,76	0,82
70	0,64	0,67	0,62	0,67	0,55	0,59
95	0,50	0,51	0,48	0,50	0,43	0,44
120	0,42	0,42	0,40	0,41	0,36	0,36
150	0,37	0,35	0,35	0,34	0,31	0,30
185	0,32	0,30	0,30	0,29	0,27	0,25
240	0,29	0,25	0,26	0,24	0,23	0,21
300	0,27	0,22	0,23	0,20	0,21	0,18
400	0,24	0,20	0,21	0,17	0,19	0,15
500	0,23	0,19	0,19	0,16	0,17	0,14

Notas

⁽a): utilize esta tabela apenas se o fator de potência for próximo dos dois tabelados. Caso contrário, como pode o correr com o circuito das TUE's, proceda ao cálculo correto da queda de tensão pela expressão (a), utilizando os valores de resistência e reatância indicados nas tabelas 6.1 a 6.3.

 ⁽b): as dimensões do eletrodutos e da eletrocalha são tais que a área dos cabos não ultrapassa 40% da área interna dos mesmos.

Para o nosso Projeto Exemplo vamos fazer dois circuitos:

<u>Circuito de distribuição</u>:

$$\Delta U$$
 = 2% de 220 ΔU = 4,40 L= 9,50m
$$\overline{\Delta U} = \frac{4,40}{69.82,9.5} 1000 \longrightarrow 6,63$$

Olhando pela última tabela, a queda de tensão unitária <u>imediatamente abaixo da calculada</u> é 4,23 V/A.Km à qual corresponde a seção de 10mm2.

Circuito 1(Iluminação Social):

$$\Delta U = 3\% \text{ de } 127 \ \Delta U = 3,81 \text{V}$$

Para o cálculo do comprimento, como é um circuito de cargas distribuídas, considera-se em cada trecho em que estas o dividem conforme próxima figura.

Os trechos são:

Suas correntes serão:

$$I_{AB} = \frac{160+100}{127} = 2,05 \text{ A}$$
 $I_{BC} = \frac{160}{127} = 1,26 \text{ A}$

Então a queda de tensão será:

$$\overline{\Delta U} = \frac{3,81}{(2,05.3,51) + (1,26.3,00)} 1000$$
 347,13 V/A.Km

Olhando pela tabela, a seção será de 1,5mm2.

OUNIVERSION OOCETE OWNES GENTLES OLINES OLINES OF OWNES

• Fazendo este procedimento para todos os circuitos, encontraremos então os seguintes valores:

	2 - Queda de Tensão				
Tipo de Circuito	Delta U (%) Desejado	Comprimento do circuito (m)	Delta U Unitário	S2 (mm²)	
TE	3	6,51	347,13	1,50	
TE	3	3,38	311,21	1,50	
TE	3	7,09	113,74	1,50	
TE	3	3,63	133,30	1,50	
TE	3	3,92	102,86	1,50	
TE	3	5,20	132,93	1,50	
TE	3	4,20	96,01	1,50	
TE	3	4,00	172,81	1,50	
TE	3	3,70	108,98	1,50	
TE	3	2,82	285,98	1,50	
TE	3	4,70	57,21	1,50	
TE	3	4,80	86,43	1,50	
TE	2	9,50	6,63	10,00	
TE	2	9,50	6,63	10,00	