Equilibrium Dependence of Iron (III) Thiocyanate Complexation Nathan Gillispie

For the complexation reaction,

$$Fe^{3+} + SCN^- \rightleftarrows [Fe(SCN)]^{2+}$$

the apparent equilibrium constant K_c can be calculated using the initial concentrations of iron (III) C_F and thiocyanate C_S through the following linear relationship

$$\frac{C_F C_S}{A} = \frac{1}{\varepsilon b K_C} + \frac{C_F + C_S}{\varepsilon b}$$

for molar absorptivity ε , cuvette length b and absorbance A. Although, the ε and b variables disappear by taking the slope/y-intercept ratio of a plot of C_FC_S/A vs. C_F+C_S giving only K_c .

Figure 1: Plot for the calculation of Kc.

For our data,

$$K_c = \frac{0.0003062}{0.000001886} = 162$$

Alternatively, the thermodynamic equilibrium constant K_a , can be calculated using standard Gibbs energy of reaction ΔG_r , and temperature T from standard formation values.

$$\Delta G_{\rm r}^0 = -RT \ln K \rightarrow K_a = \exp \frac{-16900 \frac{J}{\text{mol}}}{-8.314 \frac{J}{\text{K mol}} 298.15 \text{K}} = 914$$

We can compare our apparent equilibrium constant to the literature by the relationship to the thermodynamic equilibrium constant by $K_a = K_\gamma K_c$. K_γ is calculated via the Davies equation. For each addition of iron (III), the ionic strength of solution changes. We find that K_γ does not deviate from the mean value of 2.235 by more than 0.06% for all ionic strengths in the reaction.

Figure 2: Demonstration of the stability of $K\gamma$.

Because of this, we can find the calculated thermodynamic constant for our data.

$$K_a = K_v K_c = 2.235 * 162 = 362$$

This value is closer to the literature calculated Ka than Kc due to the salting in effect. When $K\gamma$ is calculated for hypothetical much higher concentrations, the $K\gamma$ vs. ionic strength graph obeys an almost perfect exponential fit. Applying an exponential fit to the graph and extrapolating back to I=0, we find $K\gamma=2.469$, therefore

$$K_a = K_v K_c = 2.469 * 162 = 400.$$

This result is even closer to the expected Ka than before.