Practice 4 Support Vector Machine

Problem

- > Predict whether income exceeds \$50K/yr
- > Use linear SVM in mllib

Use predefined function in pyspark.mllib.classification

Dataset

- > Dataset description
 - We encoded the features of data points like following

> 14 Statistic Features

> Preprocessed 123 features

- **❖** The first column of the data matrix indicates the class labels.
 - * UCI Machine Learning Repository:

https://archive.ics.uci.edu/ml/datasets/adult

> You can download the pre-processed train and test dataset on i-campus

Dataset

> We encoded original feature(Continuous, Categorical, etc) to have True/False value.

then the value of new range feature "30~40" becomes true.

- 1. Continuous feature: Whether this value is in specific range

 For example, if the value of age variable is bigger than 30 and smaller than 40,
- 2. Categorical feature: We made new features (for example, *A*, *B* and *C*) which are same with original category, and if one data had *A* category, then this data has true value in *A* feature but false value in *B* and *C* feature (OneHotEncoding).

	AGE	Categorical
Data 1	35	A

	10~20	20~30	30~40	A	В	C
Data 1	False	False	True	True	False	False

Practice 4

1. Use predefined classes in pyspark.mllib.classification: SVMwithSGD()

Parameters for the method (default)

- iterations = 100, step = 1.0, regParam = 0.01, regTypre = "12"
- 2. After training the models, calculate the F1 score, precision, recall for each label and accuracy using test data points.
- 3. Due date: May 7th 23:59

Submission

- > You need to submit *result.txt* file
 - ✓ Write f1 score, precision, recall value of SVM result for label 0, NOT using predefined function but using filter() function
 - ✓ Write **f1 score, precision, recall** value of SVM result for **label 1**, **NOT** using predefined function but using **filter()** function
 - ✓ Write accuracy for all labels, using TP(true positive), TN(true negative), FN(false negative), and FP(false positive) values.

Label 0 Label 1

F1 Score: 0.8958 F1 Score: 0.5976

Precision: 0.8528 Precision: 0.7419

Recall: 0.9433 Recall: 0.5003

Accuracy: 0.8345

Windows

Label 0

F1 Score : 0.8958

Precision : 0.8528

Recall : 0.9433

Label 1 F1 Score : 0.5976

Precision : 0.7419

Recall : 0.5003

Accuracy: 0.8345

Linux