equations

$$x_2 - x_1 = 1$$

$$x_1 + 6x_2 = 15$$

$$4x_1 - x_2 = 10$$

$$x_1 = 0$$

$$x_2 = 0.$$

In general, each constraint $a_i x \leq b_i$ corresponds to the affine form φ_i given by $\varphi_i(x) = a_i x - b_i$ and defines the half-space $H_-(\varphi_i)$, and each inequality $x_j \geq 0$ defines the half-space $H_+(x_j)$. The intersection of these half-spaces is the set of solutions of all these constraints. It is a (possibly empty) \mathcal{H} -polyhedron denoted $\mathcal{P}(A, b)$.

Definition 45.2. If $\mathcal{P}(A, b) = \emptyset$, we say that the Linear Program (P) has no feasible solution, and otherwise any $x \in \mathcal{P}(A, b)$ is called a feasible solution of (P).

The linear program shown in Example 45.2 obtained by reversing the direction of the inequalities $x_2 - x_1 \le 1$ and $4x_1 - x_2 \le 10$ in the linear program of Example 45.1 has no feasible solution; see Figure 45.2.

Example 45.2.

maximize
$$x_1 + x_2$$

subject to $x_1 - x_2 \le -1$
 $x_1 + 6x_2 \le 15$
 $x_2 - 4x_1 \le -10$
 $x_1 \ge 0, x_2 \ge 0$.

Assume $\mathcal{P}(A, b) \neq \emptyset$, so that the Linear Program (P) has a feasible solution. In this case, consider the image $\{cx \in \mathbb{R} \mid x \in \mathcal{P}(A, b)\}$ of $\mathcal{P}(A, b)$ under the objective function $x \mapsto cx$.

Definition 45.3. If the set $\{cx \in \mathbb{R} \mid x \in \mathcal{P}(A,b)\}$ is unbounded above, then we say that the Linear Program (P) is *unbounded*.

The linear program shown in Example 45.3 obtained from the linear program of Example 45.1 by deleting the constraints $4x_1 - x_2 \le 10$ and $x_1 + 6x_2 \le 15$ is unbounded.

Example 45.3.

maximize
$$x_1 + x_2$$

subject to
$$x_2 - x_1 \le 1$$
$$x_1 > 0, x_2 > 0.$$