Xây dựng bảng phân tích cú pháp LR chính tắc

Hoàng Văn Tuân

Email: tuanhoang.97dx@gmail.com

Các bước xây dựng bảng LR chính tắc

- ✓ Bước 1: Xây dựng văn phạm tăng cường
- ✓ Bước 2: Xây dựng họ tập các mục $C = \{I_0, I_1, ..., I_n\}$
- ✓ Bước 3: Xây dựng bảng phân tích cú pháp LR chính tắc.

Bài toán

- Xây dựng bảng phân tích cú pháp LR chính tắc cho văn phạm sau:
- $(1) S \rightarrow CC$
- $(2) C \rightarrow cC$
- $(3) C \rightarrow d$
- ⇒ Xây dựng văn phạm tăng cường:
- $(0) S' \rightarrow S$
- $(1) S \rightarrow CC$
- $(2) C \rightarrow cC$
- $(3) C \rightarrow d$

1. Phép bao đóng - Closure

- Giả sử I là một tập mục LR(1) của văn phạm G thì bao đóng closure(I) là một tập mục được xây dựng từ I như sau:
- 1) Tất cả các mục của I được thêm vào closure(I) = J.

2) Nếu
$$\begin{cases} [A \to \alpha. B\beta, a] \in closure(I) \\ B \to \gamma, là một luật sinh \\ b \in First(\beta a) \end{cases}$$

 \Rightarrow Thì thêm [B \rightarrow . γ , b] vào J (nếu nó chưa có trong J)

Lặp lại quá trình này cho đến khi không thể thêm được gì vào J được nữa.

1. Phép bao đóng - Closure

Ví dụ: Xét văn phạm đã tăng cường như sau:

$$(0) S' \to S$$

$$(1) S \rightarrow CC$$

$$(2) C \rightarrow cC$$

$$I = \{[S' \rightarrow .S, \$]\}$$
. Hãy tính closure $(I) = J$?

 $(3) C \rightarrow d$

Giải:

• Đưa các mục trong I vào $J \Rightarrow J = \{[S' \rightarrow .S, \$]\}$

$$X\acute{e}t \ [S' \to .S,\$] \ c\acute{o} \begin{cases} S \to CC \\ First(\$) = \{\$\} \end{cases} \qquad X\acute{e}t \ [S \to .CC,\$] \ c\acute{o} \begin{cases} C \to cCv\grave{a} \ C \to d \\ First(C\$) = \{c,d\} \end{cases}$$
 Thêm $[S \to .CC,\$]$ vào J

$$J = closure(I) = \{ [S' \rightarrow .S, \$], [S \rightarrow .CC, \$], [C \rightarrow .cC, c|d], [C \rightarrow .d, c|d] \}$$

2. Phép chuyển - goto

Phép toán goto

Nếu I là một tập các mục và X là một ký hiệu của văn phạm thì goto(I, X) là bao đóng của tập hợp các mục

 $[A \rightarrow \alpha X.\beta, a]$ sao cho $[A \rightarrow \alpha.X\beta, a] \in I$

- Cách tính goto
 - 1) Khởi tạo $I' = \emptyset$
 - 2) Nếu $[A \rightarrow \alpha.X\beta, a] \in I$ thì đưa $[A \rightarrow \alpha X.\beta, a]$ vào I', tiếp tục quá trình này cho đến khi xét hết tập I thì dừng.
 - 3) goto(I, X) = closure(I')

2. Phép chuyển - goto

```
Ví dụ: Cho I = { [S' \rightarrow .S, \$], [S \rightarrow .CC, \$], [C \rightarrow .cC, c|d], [C \rightarrow .d, c|d] }  \begin{cases} [S \rightarrow C.C, \$] \\ C \rightarrow cC \ và \ C \rightarrow d \\ First(\$) = \{\$\} \end{cases}
```

Tính goto(I, C)???

- 1) $I' = \emptyset$
- 2) Trong I có mục $[S \rightarrow .CC, \$]$ nên ta đưa $[S \rightarrow C.C, \$]$ vào I'
- 3) goto(I, C) = closure(I') = { [S \rightarrow C.C, \$], [C \rightarrow .cC, \$], [C \rightarrow .d, \$] }

3. Xây dựng bảng phân tích cú pháp LR chính tắc

• Giải thuật xây dựng họ tập hợp các mục LR(1), ký hiệu là C, của văn phạm G':

```
Void Item(G')
      C:=\{closure(\{[S'\rightarrow.S,\$]\})\};
      repeat
             for với mỗi tập mục I∈C và mỗi ký hiệu văn phạm X sao
             cho goto(I, X) \neq \emptyset và goto(I, X) \notin C thì thêm goto(I, X)
              vào C
      until không còn tập mục nào có thể thêm vào C;
```

4. Ví dụ

• Xây dựng họ tập các mục LR(1) cho văn phạm sau:

- $(0) S' \rightarrow S$
- $(1) S \to CC$
- $(2) C \rightarrow cC$
- $(3) C \rightarrow d$

Xây dựng họ tập mục

Xây dựng họ tập hợp các mục LR(1)

	ľ	Closure(I')	
$closure(\{S' \rightarrow \bullet S, \$\})$	S' → • S, \$	S' → • S, \$	
		$S \rightarrow \cdot CC, \$$	
		$C \rightarrow \cdot cC$,	I_0
		c/d	
		$C \rightarrow \bullet d, c/d$	
Goto(I ₀ , S)	$S' \rightarrow S \bullet, \$$	S' → S •, \$	I ₁
$Goto(I_0, C)$	$S \rightarrow C \cdot C, \$$	$S \rightarrow C \cdot C$,	
		\$	
		$C \rightarrow \cdot cC, \$$ $C \rightarrow \cdot d, \$$	I ₂
		$C \rightarrow \cdot d, \$$	
Goto(I ₀ , c)	$C \rightarrow c \cdot C$,	$C \rightarrow c \cdot C$,	
	c/d	c/d	
		$C \rightarrow \cdot cC$, c/d	I ₃
		c/d	
		$C \rightarrow \bullet d, c/d$	
Goto(I ₀ , d)	$C \rightarrow d \bullet, c/d$	$C \rightarrow d \bullet, c/d$	I ₄

S'	\rightarrow	S	

- (1) $S \rightarrow CC$
- (2) $C \rightarrow cC$
- (3) C → d

Goto(I ₂ , C)	$S \to CC \cdot, \$$	$S \rightarrow CC \cdot, \$$	I ₅
Goto(I2, c)	C → c • C,\$	$C \rightarrow c \cdot C, \$$	
		$C \rightarrow \cdot cC, \$$	I ₆
		C → • d, \$	
Goto(I ₂ , d)	C → d •, \$	C → d •, \$	I ₇
Goto(I ₃ , C)	$C \rightarrow cC \bullet$,	$C \rightarrow cC \cdot$	Ţ
	c/d	c/d	I ₈
Goto(I ₃ , c)	$C \rightarrow c \cdot C$,		
	c/d		≡I ₃
Goto(I ₃ , d)	$C \rightarrow d \bullet, c/d$		≡I ₄
Goto(I ₆ , C)	C → cC •, \$	C → cC •, \$	I ₉
Goto(I ₆ , c)	$C \rightarrow c \cdot C, \$$		≡I ₆
Goto(I ₆ , d)	C → d •, \$		≡I ₇

State	Action			Goto	
State	С	d	\$	S	С
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					

QT2.a: Nếu $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ và goto $(I_i, a) = I_j$ thì action[i, a] = "shift j", a là ký hiệu kết thúc

- Xét tập I₀ có:

$$(1) C \rightarrow \cdot cC, c/d$$

$$Goto(I_0, c) = I_3$$

$$\rightarrow$$
 action[0,c] = S₃

(2)
$$C \rightarrow \cdot d$$
, c/d

$$Goto(I_0, d) = I_4$$

$$\rightarrow$$
 action[0,d] = S₄

Xét tập I₁: không có mục nào thỏa mãn.

	Р	Closure(I')	
closure($\{S' \rightarrow \cdot S, \$\}$)	S' → • S, \$	$S' \rightarrow \cdot S, \$$ $S \rightarrow \cdot CC, \$$ $C \rightarrow \cdot cC,$ c/d $C \rightarrow \cdot d, c/d$	10
Goto(I ₀ , S)	$S' \rightarrow S \cdot, S$	S' → S •, \$	1,
Goto(I ₀ , C)	S → C • C, \$	$S \rightarrow C \cdot C$, S $C \rightarrow \cdot cC$, S $C \rightarrow \cdot d$, S	12
Goto(I ₀ , c)	C → c • C, c/d	$C \rightarrow c \cdot C$, c/d $C \rightarrow \cdot cC$, c/d $C \rightarrow \cdot d$, c/d	13
Goto(I ₀ , d)	$C \rightarrow d \cdot, c/d$	C → d •, c/d	I_4

QT 2.b: Nếu $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ thì action[i, a] = "reduce $(A \rightarrow \alpha)$ ", $A \neq S$ '

- Xét các tập I_0 , I_1 , I_2 , I_3 không có mục nào thỏa mãn.
- Xét tập I4 có:

$$C \rightarrow d \cdot c/d$$

$$\rightarrow$$
 action[4, c] = R₃
action[4, d] = R₃

với (3):
$$C \rightarrow d$$

• • • • • • • •

	Р	Closure(I')	
closure($\{S' \rightarrow \cdot S, \$\}$)	S' → • S, S	$S' \rightarrow \cdot S, \$$ $S \rightarrow \cdot CC, \$$ $C \rightarrow \cdot cC,$ c/d $C \rightarrow \cdot d, c/d$	I ₀
Goto(I ₀ , S)	$S' \rightarrow S \cdot, S$	S' → S •, \$	I_1
Goto(I ₀ , C)	S → C • C, \$	$S \rightarrow C \cdot C$, S $C \rightarrow \cdot cC$, S $C \rightarrow \cdot d$, S	I ₂
Goto(I ₀ , c)	C → c • C, c/d	$C \rightarrow c \cdot C$, c/d $C \rightarrow \cdot cC$, c/d $C \rightarrow \cdot d$, c/d	I ₃
Goto(I ₀ , d)	$C \rightarrow d \cdot, c/d$	$C \rightarrow d \cdot, c/d$	I_4

QT 2.c: Nếu $[S' \rightarrow S \cdot , \$] \in I_i$ thì action[i, \$] = "accept"

Có
$$[S' \rightarrow S \cdot, \$] \in I_1$$

 \rightarrow action[1, \$] = "accept".

QT 3: Nếu goto (I_i,A)=I_j thì goto [i, A]=j, A là kí hiệu chưa kết thúc

$$Goto(I_0, S) = I_1 \rightarrow goto[0, S] = 1$$

$$Goto(I_0, C) = I_2 \rightarrow goto[0, C] = 2$$

$$Goto(I_2, C) = I_5 \rightarrow goto[2, C] = 5$$

$$Goto(I_3, C) = I_8 \rightarrow goto[3, C] = 8$$

$$Goto(I_6, C) = I_9 \rightarrow goto[6, C] = 9$$

	P	Closure(I')	
closure($\{S' \rightarrow \cdot S, \$\}$)	S' → • S, \$	$S' \rightarrow \cdot S, \$$ $S \rightarrow \cdot CC, \$$ $C \rightarrow \cdot cC,$ c/d $C \rightarrow \cdot d, c/d$	I ₀
Goto(I ₀ , S)	$S' \rightarrow S \cdot, S$	S' → S •, \$	I_1
Goto(I ₀ , C)	$S \rightarrow C \cdot C, \$$	$S \rightarrow C \cdot C$, S $C \rightarrow \cdot cC$, S $C \rightarrow \cdot d$, S	I ₂
Goto(I ₀ , c)	C → c · C, c/d	$C \rightarrow c \cdot C$, c/d $C \rightarrow \cdot cC$, c/d $C \rightarrow \cdot d$, c/d	I ₃
Goto(I ₀ , d)	C → d •, c/d	$C \rightarrow d \cdot, c/d$	I_4

Bảng LR chính tắc

State	Action			Goto	
State	C	d	\$	S	С
0	s_3	S ₄		1	2
1			acc		
2	s ₆	S ₇			5
3	s ₃	S ₄			8
4	r ₃	r ₃			
5			r ₁		
6	s ₆	S ₇			9
7			r ₃		
8	r ₂	r ₂			
9			r ₂		

Giải thuật xây dựng bảng phân tích cú pháp LR chính tắc

- 1) Xây dựng họ tập hợp các mục LR(1): $C = \{I_0, I_1, ..., I_n\}$
- 2) Trạng thái i được xây dựng từ trạng thái I_i . Các action tương ứng trạng thái i xác định như sau:
 - a) Nếu $[A \rightarrow \alpha.a\beta, b] \in I_i$ và $goto(I_i, a) = I_j$ thì action[i, a] = "shift j", với a là ký hiệu kết thúc.
 - b) Nếu $[A \rightarrow \alpha., a] \in I_i$ thì action[i, a]="redure $(A \rightarrow \alpha)$ ", với $A \neq S$ "
 - c) Nếu $[S' \rightarrow S., \$] \in I_i$ thì action[i, \$]="accept"

Nếu một action đụng độ được sinh ra bởi các luật trên, ta nói văn phạm không phải là LR(1). Giải thuật thất bại!

- 3) Nếu goto $(I_i, A) = I_j$ thì goto[i, A] = j, với A là ký hiệu chưa kết thúc.
- 4) Các ô không xác định bởi 2 và 3 đều là "error"
- 5) Trạng thái khởi đầu của bộ phân tích cú pháp được xây dựng từ tập các mục chứa [S'→.S, \$]

Thank you for watching

Hoàng Văn Tuân