EE6367: Topics in Data Storage and Communications

2023

Lecture 13: 9 October 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Stochastic Rounding

We consider stochastic rounding in the case of n users. Let a random permutation π of $\{0, 1, \ldots, n-1\}$ be shared among the users. User i is given the number π_i (here the users are 0-indexed). Then, each user generates $\gamma_i \sim \text{Unif}\left[0, \frac{1}{m}\right]$. Note that γ_i is private randomness. Define

$$U_i \triangleq \frac{\pi_i}{m} + \gamma_i. \tag{13.1}$$

The CDF of U_i , for $u \in [0, 1]$, is

$$\Pr\left(U_i \leqslant u\right) = \Pr\left(\frac{\pi_i}{m} + \gamma_i \leqslant u\right) \tag{13.2}$$

$$=\Pr\left(\pi_i + m\gamma_i \leqslant mu\right) \tag{13.3}$$

$$= \Pr\left(\pi_i < \lfloor mu \rfloor\right) + \Pr\left(\pi_i = \lfloor mu \rfloor, \ m\gamma_i \leqslant \mu - \lfloor mu \rfloor\right)$$
(13.4)

$$=\frac{\lfloor mu\rfloor}{m} + \frac{mu - \lfloor mu\rfloor}{m} = u \tag{13.5}$$

and hence $U_i \sim \text{Unif } [0, 1]$.

Now, each user i transmits

$$Y_i \triangleq \mathbb{1}_{\{U_i \leqslant x_i\}}.\tag{13.6}$$

Clearly, this scheme is unbiased because $\mathbb{E}[Y_i] = x_i$. We now present a claim for the MSE of this scheme.

Claim 13.1. For the above scheme, the MSE is upper bounded by $\frac{3}{m}\sigma_{md} + \frac{12}{m^2}$, where

$$\sigma_{md} \triangleq \frac{1}{m} \sum_{i=1}^{m} |x_i - \bar{x}| \le \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - \bar{x})^2}.$$
 (13.7)

Proof. Define

$$z_i \triangleq \frac{\lfloor mx_i \rfloor}{m} \tag{13.8}$$

$$Y_i \triangleq Q_i\left(x_i\right) \tag{13.9}$$

$$Q_i(t) \triangleq \mathbb{1}_{\{U_i < t\}} \tag{13.10}$$

The MSE is given by

$$MSE = \mathbb{E}\left[\left(\frac{1}{m}\sum_{i=1}^{m}Y_{i} - \frac{1}{m}\sum_{i=1}^{m}x_{i}\right)^{2}\right]$$
(13.11)

$$= \frac{1}{m^2} \mathbb{E}\left[\left(\sum_{i=1}^m (Y_i - x_i)\right)^2\right]$$
(13.12)

$$= \frac{1}{m^2} \mathbb{E} \left[\left(\sum_{i=1}^m \left((x_i - z_i) + (z_i - Q_i(z_i)) + (Q_i(z_i) - Q_i(x_i)) \right)^2 \right]$$
 (13.13)

$$\leq \frac{3}{m^{2}} \left\{ \mathbb{E} \left[\left(\sum_{i=1}^{m} (x_{i} - z_{i}) \right)^{2} \right] + \mathbb{E} \left[\left(\sum_{i=1}^{m} (z_{i} - Q_{i}(z_{i})) \right)^{2} \right] + \mathbb{E} \left[\left(\sum_{i=1}^{m} (Q_{i}(z_{i}) - Q_{i}(x_{i})) \right)^{2} \right] \right\}$$
(13.14)
$$(13.15)$$

where we use in (13.13) the inequality

$$(\alpha + \beta + \gamma)^2 \leqslant 3(\alpha^2 + \beta^2 + \gamma^2). \tag{13.16}$$

for reals α, β, γ .

Note that

$$x_i - z_i = x_i - \frac{\lfloor mx_i \rfloor}{m} = \frac{mx_i - \lfloor mx_i \rfloor}{m} \leqslant \frac{1}{m}, \tag{13.17}$$

hence

$$\mathbb{E}\left[\left(\sum_{i=1}^{m} (x_i - z_i)\right)^2\right] \leqslant 1. \tag{13.18}$$

Now,

$$\mathbb{E}\left[\left(\sum_{i=1}^{m} z_{i} - Q_{i}(z_{i})\right)^{2}\right] = \sum_{i=1}^{m} \mathbb{E}\left[\left(z_{i} - Q_{i}(z_{i})\right)^{2}\right]$$
(13.19)