Algebre Lineaire II

David Wiedemann

Table des matières

1	Pol	ynomes	5
	1.1	Division avec reste	7
	1.2	Factorisation des polynomes sur un corps	8
	1.3	Factorisation des polynomes sur un corps	9
	1.4	Diviseurs Communs le plus grand	9
	1.5	Factorisation en elements irreductibles	11
2	Val	eurs et Vecteurs Propres	12
3	Le j	polynome caracteristique	14
	3.1	Theoreme de Cayley-Hamilton	16
4	Formes Bilineaires		17
	4.1	Orthogonalite	19
	4.2	Orthogonalite	19
	4.3	Matrices congruentes	20
	4.4	Formes Bilineaires symmetriques definies positives	21
	4.5	La methode de Gram Schmidt	23
	4.6	La methode des moindres carres	25
	4.7	Formes sesquilineaires et produits hermitiens	26
5	Formes quadratiques reelles et matrices symmetriques reelles		
	5.1	Decomposition en valeurs singulieres	33
	5.2	Pseudo-inverse d'une matrice	34
	5.3	Encore des systemes d'equation	36
	5.4	Le meilleur sous-espace approximatif \hdots	36
		$5.4.1 k=1 \dots $	37
6	Sys	temes differentiels lineaires	40

List of Theorems

1	Definition (Centre d'un anneau)
2	Definition (Diviseurs de 0)
3	Definition (Anneau integre)
1	Theorème
4	Definition (Polynome)
2	Theorème
5	Definition (Degre d'un polynome)
3	Theorème
4	Theorème
5	Theorème
6	Corollaire
7	Theorème
6	Definition (Diviseurs de polynomes)
7	Definition (Racine)
8	Theorème
8	Definition (Multiplicite d'une racine)
9	Theorème (Theoreme fondamental de l'algebre)
9	Definition (Polynome irreductible)
10	Theorème
11	Theorème
10	Definition (Polynome Unitraire)
11	Definition (Diviseur Commun)
12	Theorème
12	Definition (PGCD)
13	Theorème (Algorithme d'Euclide)
14	Theorème
15	Theorème (La factorisation est unique)
16	Corollaire
13	Definition (Vecteur propre)
17	Lemme
14	Definition
18	Corollaire
15	Definition (Matrices semblables)
16	Definition (Sous-espace propre)
19	Lemme
20	Corollaire
17	Definition (Multiplicite algebrique)
21	Proposition
22	Theorème (Theoreme de diagonalisation) $\dots \dots 15$
23	Theorème (Evaluation d'une matrice dans un polynome) 16

24	Theorème (Cayley-Hamilton)	16
18		16
25		17
19		17
26		18
20		19
21	,	19
27		19
28	-	19
22	Definition (Matrices Congruentes)	19
23	,	19
29	,	19
30	Theorème	20
31		21
24		21
25	Definition (Norme d'un vecteur)	21
26	· · · · · · · · · · · · · · · · · · ·	21
32		22
33	Theorème (Theoreme de Pythagore)	22
34		22
35	Theorème (Inegalite Cauchy-Schwarz)	22
36	Theorème (Inegalite triangulaire)	23
37		23
38		24
27	Definition	25
39	Corollaire	25
40	Theorème	25
41	Theorème	26
28	Definition (Produit Hermitien)	26
29	Definition (Matrice hermitienne)	26
42	Proposition	27
30	Definition (Matrices Complexes congruentes)	27
43	Theorème	27
44		27
45	Lemme	27
46	Corollaire	28
31		29
32	· - /	29
47		29
33		30
48		30

34	Definition (k-mineur principal)	30
49	Theorème	31
50	Theorème (Theoreme spectral reel)	31
35	Definition	32
51	Theorème	32
52	Theorème	32
53	Theorème (Theoreme Min-Max)	33
54	Theorème (Decomposition en valeurs singulieres)	33
36	Definition (Pseudo inerse)	34
56	Theorème	35
57	Theorème	35
58	Theorème	36
37	Definition (Norme de Frobenius)	38
38	Definition (Trace)	38
59	Lemme	38
60	Lemme	38
39	Definition	39
61	Lemme	39
62	Theorème	40
64	Theorème	41
65	Lemme	41
66	Theorème	41
68	Lemme	42
60	Lommo	19

Lecture 1: Introduction

Tue 23 Feb

1 Polynomes

Definition 1 (Centre d'un anneau)

Le centre Z(R) est l'ensemble des elements x satisfaisant

$$\{x \in R | ra = ar \forall a \in R\}$$

Definition 2 (Diviseurs de 0)

a est un element non nul d'un anneau R satisfaisant qu'il existe $b \in R$ tel que ab = 0 ou ba = 0.

Definition 3 (Anneau integre)

Si un anneau est commutatif et n'a pas de diviseurs de 0, alors l'anneau est integre.

Theorème 1

Soit R un anneau, alors il existe un anneau $S\supseteq R$ (R est un sous-anneau) et $\exists x\in S\setminus R$ tel que

$$-ax = xa, \forall a \in R$$

—
$$Si \ a_0 + \ldots + a_n x^n = 0 \ et \ a_i \in R \forall i \ alors \ a_i = 0 \forall i$$

 $Cet\ x\ est\ appele\ indeterminee\ ou\ variable.$

Definition 4 (Polynome)

Un polynomer sur R est une expression de la forme

$$p(x) = a_0 + \ldots + a_n x^n$$

ou a_i est le i-eme coefficient de p(x).

R[x] est l'ensemble des polynomes sur R.

Theorème 2

R[X] est un sous-anneau. R est sans diviseurs de $0 \Rightarrow R[X]$ est sans diviseurs de 0.

De meme, si R est commutatif, R[x] aussi.

Preuve

Soit $f(x) = \sum a_i x_i, g(x) = \sum b_i x^i$ de degre n resp. m.

$$f(x) + g(x) = \sum_{i=1}^{\max(m,n)} (a_i + b_i)x^i$$

De meme, on a

$$f(x) \cdot g(x) = a_0 b_0 + \dots = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j \right) x^k$$

Donc R[X] est stable pour +, \cdot et donc immediatement pour -, donc R[X] est un sous-anneau de S.

Soient $f(x), g(x) \neq 0$ et $n = \max\{i : a_i = 0\}$, le m + n-ieme coefficient de f(x)g(x) est a_nb_m et donc si R est integre, R[x] l'est aussi.

Definition 5 (Degre d'un polynome)

Soit $f(x) = a_0 + \ldots \in R[X]$, $f(x) \neq 0$. On definit

$$\deg(f) = \max\{i : a_i = 0\}$$

Ce dernier terme s'appelle le coefficient dominant de f, de plus on definit

$$f(x) = 0 : \deg(f) = -\infty$$

 $Si \deg(f) = 0$, alors f est une constante.

Theorème 3

Soit R un anneau, $f,g \in R[X] \neq 0$ tel que au moins un de leur coefficients dominants de f ou de g ne sont pas des diviseurs de 0. Alors $\deg(f \cdot g) = \deg(f) + \deg(g)$

Preuve

Soit $f(x) = a_0 + \dots, g(x) = b_0 + \dots, \deg f = n, \deg g = m$. Le n + m ieme coefficient de $f \cdot g = a_n \cdot b_m \neq 0$

Soit $p(x) \in R[x]$, ce polynome induit une application $f_p : R \to R$, on ecrit aussi p(r)

Theorème 4

Soit K un corps et $r_0, r_1, \ldots, r_n \in K$ des elements distincts et soient $g_0, \ldots, g_n \in K$.

Il existe un seul polynome $f \in K[x]$ tel que

- 1. $\deg f \leq n$
- 2. $f(r_i) = g_i$

Preuve

On cherche $a_0, \ldots a_n$ tel que

$$a_0 + a_1 r_i + \dots a_n r_i^n = g_i$$

Donc, on cherche

$$\begin{pmatrix} 1 & r_0 & \dots & r_0^n \\ \vdots & \dots & \dots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \dots \end{pmatrix} = \begin{pmatrix} g_1 \\ \dots \\ \dots \end{pmatrix}$$

 ${\it Il faut \ donc \ montrer \ que \ la \ matrice \ ci-dessus \ a \ un \ determinant \ non \ nul.}$

On le montre par induction sur n.

Dans le cas n = 0, le determinant vaut trivialement 1. Dans le cas n > 0, on a

$$\det\begin{pmatrix} 1 & 0 \dots \\ 1(r_1 - r_0) & \dots \\ \dots & \ddots \\ 1(r_n - r_0) & \dots \end{pmatrix} = (r_1 - r_0)(r_2 - r_0) \dots \det(V(r_1, \dots, r_n)) \neq 0 \quad \Box$$

Lecture 2: Polynomes

Wed 24 Feb

Theorème 5

Soit K un corps fini de characteristique q, alors $K \supseteq \mathbb{Z}_q$.

De plus K est un espace vectoriel de \mathbb{Z}_q de dimension finie.

Corollaire 6

 $Soit\ K\ un\ corps\ infini.\ Deux\ polynomes\ sont\ egaux\ si\ et\ seulement\ si\ leurs\ evaluations\ sont\ les\ memes.$

Preuve

Une direction est triviale.

L'autre suit immediatement du theoreme 1.6

1.1 Division avec reste

Theorème 7

Soit R un anneau, $f,g \in R[x], g \neq 0$ et soit le coefficient de $g \in R^*$ Il existe $q,r \in R[x]$ uniques tel que

1.
$$f(x) = q(x)g(x) + r(x)$$

2.
$$\deg r < \deg g$$

Preuve

 $Si \deg f < \deg g$, on a fini.

Soit donc deg $f \geq g$, donc

$$f(x) = a_0 + \ldots + a_n x^n$$

et

$$g(x) = b_0 + \dots b_m x^m$$

 $et \ b_m^{-1} \ existe.$

On procede par induction sur n.

 $Si \ n = m :$

On note que

$$f(x) - \frac{a_n}{b_m}g(x)$$

 $est \ un \ polynome \ de \ degre < n \ Si \ n > m \ :$

 $On\ note\ que$

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$$

est un polynome de degre < n.

Par hypothese d'induction il existe q(x), r(x) tel que

$$- f(x) - \frac{a_n}{b_m} x^{n-m} g(x) + r(x)$$

$$- \deg r < \deg g$$

et donc on a fini de montrer l'existence.

Supposons maintenant qu'il existe r' et q' satisfaisant les memes proprietes que q et g, alors on a

$$q(x)g(x) + r(x) = q'(x)g(x) + r'(x)$$

Donc

$$r' \neq r \ et \ q' \neq q$$

en comparant les degre, on a une contradiction.

1.2 Factorisation des polynomes sur un corps

Definition 6 (Diviseurs de polynomes)

Soit $q(x) \in K[x]$.

q divise f si il existe g(x) tel que

$$q(x)g(x) = f(x)$$

On dit que q est un diviseur de f, on ecrit q(x)|f(x)

Definition 7 (Racine)

Soit $p(x) \in K[x]$, et soit $\alpha \in K$ tel que $p(\alpha) = 0$

Theorème 8

Soit $f(x) \in K[x] \setminus \{0\}$, alors $\alpha \in K$ est une racine de f si et seulement si (x-a)|f(x)

Preuve

 $Si(x-\alpha)q(x)=f(x)$, alors on a fini.

sinon, la division de f(x) par $x - \alpha$ avec reste donne

$$f(x) = q(x)(x - \alpha) + r \text{ ou } r \in K$$

Si
$$r \neq 0$$
, alors $f(\alpha) = g(\alpha)(\alpha - \alpha) + r = r = 0$ et donc $(x - a)|f(x)$

Definition 8 (Multiplicite d'une racine)

La multiplicite d'une racine α de $p(x) \in K[x]$ est le plus grand $i \geq 1$ tel que

$$(x-\alpha)^i|p(x)$$

Theorème 9 (Theoreme fondamental de l'algebre)

Tout polynome $p(x) \in \mathbb{C}[x] \setminus \{0\}$ de degre ≥ 1 possede une racine complexe.

Lecture 3: Factorisation des polynomes sur un corps

Tue 02 Mar

1.3 Factorisation des polynomes sur un corps

Soit K un corps.

Definition 9 (Polynome irreductible)

Un polynome $p(x) \in K[x] \setminus \{0\}$ est irreductible si

$$--\deg p\geq 1$$

$$-si p(x) = f(x) \cdot g(x)$$
, alors deg $f = 0$ ou deg $g = 0$.

Theorème 10

Un polynome de degre 2 sur K[x] est irreductible si et seulement si le polynome ne possede pas de racines.

1.4 Diviseurs Communs le plus grand

Theorème 11

Soient $f(x), g(x) \in K[x]$ pas tous les deux nuls.

On considere l'ensemble $I = \{u \cdot f + v \cdot g : u, v \in K[x]\}.$

Il existe un polynome $d(x) \in K[x]$ satisfaisant

$$I = \{h \cdot d : h \in K[x]\}$$

Preuve

Soit $a \in I \setminus \{0\}$ de degre minimal.

L'ensemble $\{h \cdot d : h \in K[x]\}$ est clairement un sous-ensemble de I.

Il reste a montre l'inclusion inverse.

 $Si\ d\ ne\ divise\ pas\ uf + vg,\ la\ division\ avec\ reste\ donne$

$$uf + vg = qd + r \iff r = uf + vg - qd = (u - qu')f + (v - qv')g$$

Or le reste est non nul, mais le reste est de degre inferieur a $\deg d$. $\not\subseteq$

Definition 10 (Polynome Unitraire)

Un polynome $f(x) \in K[x]$ dont le coeff. dominant = 1 est un polynome unitaire.

Definition 11 (Diviseur Commun)

Soient $f, g \in K[x]$ non-nuls.

Un diviseur commun de f et g est un polynome qui divise f et g.

Theorème 12

Soient $f, g \in K[x]$ non-nuls.

Soit $d \in K[x]$ comme dans le theoreme precedent.

- d est un diviseur commun de f et g.
- Chaque diviseur commun de f et g est un diviseur de d.
- Si d est unitaire, alors d est unique.

Preuve

- $\ f \in I \Rightarrow \exists h \ tel \ que \ hd = f \iff d|f \ et \ g \in I \Rightarrow d|g$
- Soit $d' \in K[x]$ tq d'|f, d'|g, on veut montrer que d'|d.

$$f = f'd', q = q'd'$$

des que $d \in I$, il existe $u, v \in K[x]$ tel que

$$d = uf + vg = uf'd' + vg'd' = (uf' + vg')d' \Rightarrow d'|d \qquad \Box$$

— Soit $d' \in I$ tel que $I = \{hd' | h \in K[x]\}$.

Soient d, d' unitaires.

d|d' et d'|d, donc ils sont les memes a un facteur pres.

Definition 12 (PGCD)

L'unique polynome unitaire $d \in K[x]$ qui satisfait les conditions ci-dessus est appele le plus grand commun diviseur de f et g.

Theorème 13 (Algorithme d'Euclide)

Soient f_0, f_1 non nuls et

$$\deg f_0 \ge \deg f_1$$

On cherche $gcd(f_0, f_1)$ Si $f_1 = 0$, alors $gcd = f_0$.

 $Si f_1 \neq 0 \ On \ pose$

$$f_0 = q_1 f_1 + f_2$$

Soit $h \in K[x]$: $h|f_0$ et $h|f_1 \Rightarrow h|f_2$ Et donc on pose $gcd(f_0, f_1) = gcd(f_1, f_2)$ On repete jusqu'a trouver un f_k nul.

Grace a l'algorithme d'Euclide, on peut aussi trouver $u, v \in K[x]$ tel que $uf_0 + vf_1 = \gcd(f_0, f_1)$.

En effet, on a

$$\begin{pmatrix} f_i \\ f_{i+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_i \end{pmatrix} \begin{pmatrix} f_{i-1} \\ f_i \end{pmatrix}$$

et donc en appliquant cette matrice plusieurs fois, on trouve une dependance lineaire entre f_{k-1} et f_k

Et donc le $gcd(f_0, f_1) = \frac{1}{\text{coeff dominant de } f_{k-1}} (uf_0 + vf_1)$

Lecture 4: Polynomes 2

Wed 03 Mar

1.5 Factorisation en elements irreductibles

Un polynome p(x) est irreductible si le degre de p est ≥ 1 , $p(x) \neq 0$.

Si h|p, alors h = a ou $h = a \cdot p$.

Tout $f(x) \in K[x]$ se laisse factoriser

$$f(x) = a \prod_{i} p_i(x), p_i(x)$$
 irreductibles, unitaires

Est-ce que cette factorisation est unique?

Theorème 14

Soit $p(x) \in K[x] \setminus \{0\}$ irreductible et supposons que $p|f_1(x) \dots f_k(x)$, alors il existe i tel que $p(x)|f_i(x)$

Preuve

Par recurrence, il suffit de demontrer l'assertion pour k=2.

Supposons que $p|f \cdot g, f, g \in K[x] \setminus \{0\}.$

Si $p \nmid f$, alors gcd(p, f) = 1. Donc, il existe $u, v \in K[x]$ tel que up + vf = 1, donc on a

$$upg + vfg = g \Rightarrow p|upg + vfg \Rightarrow p|g \qquad \qquad \Box$$

Theorème 15 (La factorisation est unique)

La factorisation est unique a l'ordre pres des p_i .

Preuve

Soit $f(x) = a \prod p_i(x)$ et $f(x) = a \prod q_j(x)$ une autre factorisation en elements irreductible.

Par recurrence sur k.

 $Si \ k = 1, \ alors$

$$ap_1(x) = aq_1(x) \dots q_l(x)$$

Et donc $q_1(x) = p_1(x)$, car p_1 est irreductible. Si k > 1,

$$ap_1(x) \dots p_k(x) = aq_1(x) \dots q_l(x)$$

Grace au theoreme ci-dessus, $p_1|q_j$ pour un certain $j \iff p_1 = q_j$. Et donc on obtient

$$p_2(x) \dots = q_1(x) \dots q_l(x)$$

Par recurrence, cette factorisation existe et est la meme a ordre pres.

Corollaire 16

Soit $f(x) \in K[x] \setminus \{0\}$ et $\alpha_1 \dots$ des racines de f de multiplicite k_1, \dots, k_l respectivement.

Alors il existe $g(x) \in K[x]$ tel que

$$f(x) = g(x) \prod (x - \alpha_i)^{k_i}$$

Preuve

Exercice

2 Valeurs et Vecteurs Propres

Definition 13 (Vecteur propre)

Soit V un espace vectoriel sur K et f un endomorphisme sur V.

Un vecteur propre de f associe a la valeur propre $\lambda \in K$ est un vecteur $v \neq 0$ satisfaisant

$$f(v) = \lambda v$$

Lemme 17

Soit $B = \{v_1, \ldots, v_n\}$ une base de V et $A \in K^{n \times n}$ la matrice de l'endomorphisme f relatif a B.

La matrice A est une matrice diagonale

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$

 $\iff v_i \text{ est un vecteur propre associe a la valeur propre } \lambda_i.$

Preuve

On a

$$[f(v_i)]_B = Ae_i = \lambda_i e_i$$

Donc v_i est un vecteur propre associe a λ_i .

Dans l'autre sens, les arguments sont similaires.

Definition 14

Un endomorphisme f sur un espace vectoriel de dimension finie est appele diagonalisable s'il existe une base tel que $\{v_1, \ldots\}$ de V composee de vecteurs propres.

Lecture 5: Vecteurs/Valeurs Propres

Tue 09 Mar

Corollaire 18

Soit $f: V \to V$ un endomorphisme et $\{v_1, \ldots, v_n\}$ une base de V. Alors f est diagonalisable si et seulement si il existe une matrice inversible $P \in K^{n \times n}$ tel que $P^{-1}A_BP$ est diagonale.

Preuve

f est diagonalisable $\iff \exists B' = \{w_1, \ldots\}$ tel que $A_{B'}$ est diagonale. Mais $A_{B'} = P^{-1}A_BP$

Definition 15 (Matrices semblables)

 $A, B \in K^{n \times n}$ sont semblables s'il existe $P \in K^{n \times n}$ inversible tel que

$$P^{-1}AP = B$$

Donc si f est diagonalisable, la matrice de f est semblable a une matrice diagonale.

Definition 16 (Sous-espace propre)

Soit $f: V \to V$ un endomorphisme et λ une valeur propre de f, alors

$$E_{\lambda} = \ker(f - \lambda \cdot \mathrm{Id})$$

est l'espace propre de f associe a λ . dim E_{λ} est la multiplicite geometrique de λ .

Lemme 19

Soit $f: V \to V$ un endomorphisme et v_1, \ldots, v_r des vecteurs propres associes aux valeurs propres $\lambda_1, \ldots, \lambda_r$ distinctes.

Alors $\{v_1, \ldots, v_r\}$ est un ensemble libre.

Preuve

r = 1 est evident.

Pour r=2:

Supposons que v_1, v_2 sont lineairement dependants, alors il existe $\exists \alpha_1, \alpha_2 \in K \setminus \{0\}$ tel que

$$\alpha_1 v_1 + \alpha_2 v_2 = 0$$

 $Spg \ \lambda_2 \neq 0$, en appliquant f, on trouve

$$0 = \alpha_1 f(v_1) + \alpha_2 f(v_2)$$
$$0 = \alpha_1 \frac{\lambda_1}{\lambda_2} v_1 + \alpha_2 v_2$$
$$0 = \alpha_1 (1 - \frac{\lambda_1}{\lambda_2}) v_2$$

 $Pour \ r > 2$

Supposons l'assertion est fausse et soit r > 2 minimal tel que v_1, \ldots, v_r sont

lin. dependants.. Soit

$$\alpha_1 v_1 + \ldots = 0$$

avec $\alpha_i \neq 0 \ \forall i, \ alors$

$$0 = \alpha_1 \frac{\lambda_1}{\lambda_r} v_1 + \ldots + \alpha_r v_r$$

En soustrayant les deux egalites, on trouve

$$0 = \alpha_1 (1 - \frac{\lambda_1}{\lambda_r}) v_1 + \dots$$

Ce qui contredit la minimalite.

Corollaire 20

Soit $f: V \to V$ un endomorphisme de V sur K et dim V = n.

Soient λ_1, \ldots , les valeurs propres differentes de f.

Soit $n_1 \dots$ les multiplicites geometriques respectives.

Soient $B_i = \left\{ v_1^{(i)}, \dots, v_{n_i}^{(i)} \right\}$ des bases de E_{λ_i} , alors

$$\bigcup_{i} B_{i}$$

est un ensemble libre.

f est diagonalisable $\iff n_1 + \ldots + n_r = n$

Preuve

Soit

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} \alpha_{ij} v_j^{(i)} = 0$$

Montrons que $\alpha_{ij} = 0 \forall i, j$ "Immediat" par lemme d'avant.

On remarque immediatement que si $\sum n_i = n$, les vecteurs propres forment une base.

A l'inverse, soit f diagonalisable, cad il existe une base B de V composee de vecteurs propres. Soit $m_i = |B \cap E_{\lambda_i}|$, donc m_i est le nombre de vecteurs dans B associe a λ_i .

Clairement $\sum m_i = n$, mais $m_i \le n_i \le \dim E_{\lambda_i}$, donc $\sum n_i = n$.

Lecture 7: Polynome caracteristique

Wed 10 Mar

3 Le polynome caracteristique

Soit A une matrice $n \times n$, $\lambda \in K$ est une valeur propre de l'endomorphisme defini par A si et seulement si $\ker(A - \lambda \operatorname{Id}) \supseteq \{0\}$. On note

$$\det(A - \lambda I) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n (A - \lambda \operatorname{Id})_{i\pi(i)}$$

On observe que λ est une valeur propre de f si et seulement si λ est une racine de p_A .

Soit $f: V \to V$ un endomorphisme, $B = \{v_1, \ldots\}$ une base de V. Le polynome caracteristique de f est donne par

$$\det(A_B - \lambda \operatorname{Id})$$

Cette definition fait du sens, car le changement de base n'influence pas la valeur du determinant.

Definition 17 (Multiplicite algebrique)

La multiplicite algebrique d'une valeur propre est la multiplicite comme racine du polynome caracteristique.

Proposition 21

Soit f un endomorphisme de $V \to V$.

Soit $\lambda \in K$ une valeur propre.

La multiplicite geometrique de λ est au plus la multiplicite algebrique.

Preuve

Soit $\{v_1, \ldots, v_r\}$ une base de E_{λ} , on complete cette base en une base de V avec $\{w_1, \ldots, w_{n-r}\}$. Dans cette base, la representation de la matrice de $A - \lambda \operatorname{Id}$ implique que

$$\det(A - x \operatorname{Id}) = (\lambda - x)^r \det C$$

 $et\ donc\ r\ est\ au\ plus\ la\ multiplicite\ algebrique.$

Theorème 22 (Theoreme de diagonalisation)

Soit V un espace vectoriel sur K de dimension $n, f: V \to V$ un endomorphisme $\lambda_1, \ldots \in K$ les valeurs propres distinctes, alors f est diagonalisable si et seulement si

- $-p_f(x) = (-1)^n \prod_{i=1}^r (x \lambda_i)^{g_i}$
- $-\dim E_{\lambda_i} = g_i \ pour \ tout \ i$

Preuve

Soit f diagonalisable et soit $B = \{v_1, \ldots\}$ une base composee de vecteurs propres. A_B est une matrice diagonale, alors $p_f(x) = \det(A_B - x \operatorname{Id}) = (-1)^n \prod (\lambda_i - x)^{g_i}$. De plus $\dim(\ker(A_B - \lambda_i \operatorname{Id})) = g_i$

Soient m_i les multiplicites geometriques des valeurs propres. car

$$deg(p_f) = n$$

on a fini. \Box

Lecture 7: Cayley-Hamilton

Tue 16 Mar

3.1 Theoreme de Cayley-Hamilton

Theorème 23 (Evaluation d'une matrice dans un polynome)

Soit $p(x) = a_0 + \ldots + a_n x^n \in K[x]$ Pour $A \in K^{n \times n}$, on definit

$$p(A) = a_0 \operatorname{Id} + \ldots + a_n A^n$$

Theorème 24 (Cayley-Hamilton)

Soit $A \in K^{n \times n}$ et $p(\lambda) \in K[\lambda]$ le polynome caracteristique de A, alors $p(A) = 0 \in K^{n \times n}$

Preuve

Supposons d'abord que $A \in K^{n \times n}$ est diagonalisable.

Alors $\exists \{v_1, \ldots\}$ une base composee de vecteurs propres de A.

Considerons

$$p(A) \cdot v_i = a_0 v_i + a_1 A v_i + \dots$$
$$= a_0 v_i + a_1 \lambda_i v_i + \dots$$
$$= p(\lambda_i) v_i = 0$$

Supposons donc que A n'est pas diagonalisable.

Notons que

$$\mathrm{Id} = \frac{cof(A - \lambda \mathrm{Id})^T}{\det(A - \lambda \mathrm{Id})} \cdot (A - \lambda \mathrm{Id})$$

Alors

$$a_0 + a_1 \lambda \operatorname{Id} + \ldots = \operatorname{cof}(A - \lambda \operatorname{Id})^T \cdot (A - \lambda \operatorname{Id})$$

$$cof(A - \lambda \operatorname{Id})^{T} \cdot (A - \lambda \operatorname{Id}) = B_{0}A + \sum_{i=1}^{n-1} \lambda^{i} (B_{i}A - B_{i-1}) - \lambda_{n}B_{n-1}$$

 $Ce\ qui\ implique$

$$a_0 \operatorname{Id} = B_0 A$$

$$a_i \operatorname{Id} = B_i A - B_{i-1} \text{ pour } i \in \{1, \dots, n-1\}$$

$$a_n \operatorname{Id} = -B_{n-1}$$

On multiplie chacune de ces equations par A^i et on les additionne. On trouve alors

$$p(A) = 0 \qquad \Box$$

Definition 18 (Polynome minimal)

Le polynome unitaire de degre minimal parmi ceux, qui annullent la matrice $A \in K^{n \times n}$ est appele le polynome minimal de A.

Preuve

 $Ce\ polynome\ est\ unique.$

 $Supposons \ qu'il \ existe \ q,p \ des \ polynomes \ qui \ annullent \ A. \ Alors$

$$p \nmid q et q \mid p$$

Donc

$$p = qq' + r$$

 $ou \ r \neq 0, \deg r < \deg p, \ donc$

$$0 = p(A) = r(A) + q'(A)q(A) = r(A)$$

Donc p n'est pas de degre minimal $\frac{1}{2}$.

Corollaire 25

Soit $A \in K^{n \times n}$

- A^k est combinaison lineaire de $\mathrm{Id}, A, \ldots, A^{n-1}$ pour tout $k \in \mathbb{N}$
- A inversible, alors A^{-1} s'ecrit comme combinaison lineaire de $\operatorname{Id},A,\ldots,A^{n-1}$

Preuve

— Pour $k \in 0, \ldots, n-1$ clair.

Soit
$$k \ge n : x^k = q(x)p_A(x) + r(x)$$
, on evalue

$$A^k = q(A)p_A(A) + r(A) = r(A)$$

et r est de degre n-1.

 $\det A \neq 0$

Donc il suffit de reformuler p(A) = 0.

Lecture 8: Formes bilineaires

Wed 17 Mar

4 Formes Bilineaires

Definition 19 (Forme Bilineaire)

 $-BL1 \ \forall u \in V,$

$$f_u: V \to K$$

 $v \to \langle u, v \rangle$

 $est\ lineaire$

 $-BL2 \ \forall u \in V$

$$f_u: V \to K$$

 $v \to \langle v, u \rangle$

est lineaire

La forme $\langle . \rangle$ est dite symmetrique si pour tout $u, v \in V : \langle u, v \rangle = \langle v, u \rangle$.

La forme $\langle . \rangle$ est dite non degeneree a gauche (resp. a droite) si $\forall v \in V \ \langle v, w \rangle = 0 \Rightarrow w = 0$.

Soit V un espace vect de dimension n et $\{v_1, \ldots, v_n\}$ une base.

 $x, y \in V$ sont representes comme combinaison lineaire de $\{v_1, \ldots\}$, soit $x = \sum x_i v_i$, et $y = \sum y_i v_i$, alors

$$\left\langle \sum x_i v_i, y \right\rangle = \sum \left\langle x_i v_i, y \right\rangle$$

$$= \sum x_i \left\langle v_i, y \right\rangle$$

$$= \sum x_i \left\langle v_i, \sum y_j v_j \right\rangle$$

$$= \sum x_i \sum y_j \left\langle v_i, v_j \right\rangle$$

$$= (x_1, \dots, x_n) \begin{pmatrix} \left\langle v_1, v_1 \right\rangle & \dots & \left\langle v_1, v_n \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle v_n, v_1 \right\rangle & \dots & \left\langle v_n, v_n \right\rangle \end{pmatrix} (y_1, \dots, y_n)^T$$

Proposition 26

Soit V un espace vectoriel sur K de dimension finie et $B = \{b_1, \ldots, b_n\}$ une base de V.

Soit $f: V \times V \to K$ une forme bilineaire.

Les conditions suivantes sont equivalentes

- $rg(A_B^f) = n$
- f est non degeneree a gauche
- f est non degeneree a droite

Preuve

On demontre que 1 est equivalent a 2.

Il faut montrer que $\exists u \in V \text{ tel que } f(v,u) \neq 0, \text{ or }$

$$f(v, u) = [v]_B^T \cdot A_B^f \cdot [u]_B$$

 $\textit{mais } \textit{rg} A_B^f = n \Rightarrow [v]_B^T \cdot A_B^f \neq 0^T.$

Soit $i \in \{1, ..., n\}$ tel que la i-eme composante de $([v]_B^T \cdot A_B^f)_i \neq 0$, alors pour $u = b_i$ on a fini.

Supposons maintenant que $rgA_B^f < n$, alors $\exists x \in K^n \setminus \{0\}$ tel que $x^T \cdot A_B^f = 0$ donc les lignes de A sont lineairements independantes.

4.1 Orthogonalite

Soit $\langle . \rangle$ une forme bilineaire symetrique.

Definition 20 (Orthogonalite)

 $Deux \ elements \ u, v \ sont \ orthogonaux \ si$

$$\langle u, v \rangle = 0$$

Definition 21 (Complement orthogonal)

Soit $E \subseteq V$, alors

$$E^{\perp} = \{ u \in V : u \perp e \forall e \in E \}$$

Proposition 27

Soit $E \subseteq V$, alors E^{\perp} est un sous-espace de V.

Lemme 28

 $Soit\ K\ un\ corps\ de\ characteristique\ differente\ de\ 2.$

 $Si \langle u, u \rangle = 0$ pour tout $u \in V$, alors $\langle u, v \rangle = 0 \forall u, v \in V$

Preuve

Soient $u, v \in V$:

$$2\langle u, v \rangle = \langle u + v, u + v \rangle - \langle u, u \rangle - \langle v, v \rangle$$

Tue 23 Mar

et donc $\langle u, v \rangle = 0$.

Lecture 9: Formes bilineaires

Definition 22 (Matrices Congruentes)

Deux matrices $A, B \in K^{n \times n}$ sont congruentes s'il existe une matrice inversible $P \in K^{n \times n}$ inversible tel que

$$P^T \cdot A \cdot P = B$$

4.2 Orthogonalite

On supposera que $\langle . \rangle$ est une forme bilineaire symmetrique.

Definition 23 (Base orthogonale)

Soit $\{v_1, \ldots, v_n\}$ une base de V. B est une base orthogonale si $\langle v_i, v_j \rangle = 0$ $\forall i \neq j$.

Lemme 29

Soit V de dim V = n et $B = \{v_1, \dots, v_n\}$ une base de V. B est orthogonale

si et seulement si la matrice $A_B^{\langle . \rangle}$ est une matrice diagonale.

Theorème 30

Soit $char(K) \neq 2$ et dim $V = n < \infty$.

Alors V possede une base orthogonale.

Preuve

Dans le cas n = 1, le theoreme est trivial.

 $Si \ n > 1$, alors on distingue deux cas.

 $Si \langle u, u \rangle = 0$, la base est trivialement orthogonale.

Sinon, soit $u \in V$ tel que $\langle u, u \rangle \neq 0$.

On complete avec $v_2, \ldots, v_n \in V$ tel que $\{u, v_2, \ldots\}$ est une base de V.

FIGURE 1 - gramschmidt

On construit une nouvelle base definie par

$$\{u, v_2 - \beta_2 u, \dots, v_n - \beta_n u\} := \{u, v_2', \dots\}$$

Avec
$$\beta_i = \frac{\langle \overrightarrow{v_i}, u \rangle}{\langle u, u \rangle}$$

On remarque que $u \perp v_i'$ et donc $u \perp span\{v_2', \ldots\}$.

Par hypothese de recurrence, on voit que qu'on peut repeter ce procede pour $\{v_2',\dots,v_n'\}$

4.3 Matrices congruentes

On dit que $A \simeq B$ s'il existe $P \in K^{n \times n}$ inversible tel que

$$P^TAP = B$$

Etre congruent est une relation d'equivalence.

Lemme 31

Soit $B = \{v_1, \dots, v_n\}$ une base de V. V possede une base orthogonale si et seulement si $\exists D$ une matrice diagonale $\in K^{n \times n}$ tel que $A_B^{\langle . \rangle} \simeq D$

Algorithme pour trouver une matrice diagonale congruente a $A \in K^{n \times n}$ symmetrique

L'algorithme prend n iterations.

Apres la i-1 ieme iteration A est transformee en

$$\begin{pmatrix} c_1 & \cdot & \cdot \\ \cdot & c_1 & \cdot \\ \cdot & \cdot & M \end{pmatrix}$$

Ou M est une matrice quelconque.

S'il existe un index $j \ge i$ tel que $b_{jj} \ne 0$, on echange la colonne i et la ligne i et la ligne j.

Si $b_{ij} = 0 \ \forall j \geq i$, on procede a la i+1-ieme iteration.

Pour chaque $j \in \{i+1,\ldots,n\}$ on additionne $\frac{-b_{ij}}{b_{ii}}$

Lecture 11: Formes Bilineaires definies positives et Espaces Euclidiens

Tue 30 Mar

4.4 Formes Bilineaires symmetriques definies positives

Ici, V sera toujours un espace vectoriel reel.

Definition 24 (Formes Bilineaires definies positives)

Une forme bilineaire $\langle . \rangle$ est definie positive, si

$$\forall v \in V \setminus \{0\} : \langle v, v \rangle > 0$$

Une f.b.s. definie positive est appellee un produit scalaire.

Definition 25 (Norme d'un vecteur)

La longueur (ou norme) d'un vecteur de $v \in V$:

$$\|v\| = \sqrt{\langle v,v\rangle}$$

Definition 26

Un espace vectoriel reel muni d'un produit scalaire est appele espace euclidien.

Proposition 32

Pour $u \in V, \alpha \in \mathbb{R}$,

$$\|\alpha \cdot u\| = |\alpha| \, \|u\|$$

Preuve

$$\|\alpha \cdot u\| = \sqrt{\langle \alpha u, \alpha u \rangle} = |\alpha| \|u\|$$

Theorème 33 (Theoreme de Pythagore)

Pour $v, w \in V$:, $si \langle v, w \rangle = 0$, alors

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Preuve

$$\|v + w\|^2 = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle$$

$$= \langle v, v \rangle + \langle w, w \rangle$$

Proposition 34 (Regle du parallelogramme)

Pour $u, w \in V$:

$$||u + w||^2 + ||u - w||^2 = 2 ||u||^2 + 2 ||w||^2$$

Sans preuve(facile)

Soit $w, v \in V$, on cherche α tel que

$$\langle v - \alpha w, w \rangle = 0$$

Donc

$$\alpha = \frac{\langle v, w \rangle}{\langle w, w \rangle}$$

On appelle α la composante de v sur w et αw la projection de v sur w.

Theorème 35 (Inegalite Cauchy-Schwarz)

Pour tout $v, w \in V$,

$$|\langle v, w \rangle| \le ||v|| \, ||w||$$

Preuve

On considere d'abord le cas special ||w|| = 1.

Donc, $\alpha = \langle v, w \rangle$, le theoreme de pythagore donne

$$||v||^2 = ||v - \alpha w||^2 + ||\alpha \cdot w||^2 \ge \alpha^2 \cdot ||w||^2 = \alpha^2 = |\langle v, w \rangle|^2$$

Le cas general donne donc

$$\left\langle v, \|w\| \frac{w}{\|w\|} \right\rangle \le \|w\|^2 \|v\|^2$$

Theorème 36 (Inegalite triangulaire)

$$||v + w|| \le ||v|| + ||w||$$

Preuve

$$||v + w||^{2} = \langle v + w, v + w \rangle^{2}$$

$$= ||v||^{2} + w \langle v, w \rangle + ||w||^{2}$$

$$< (||v|| + ||w||)^{2}$$

4.5 La methode de Gram Schmidt

Pour $\langle . \rangle$ un produit scalaire, on a

$$\forall v \in V \setminus \{0\}, \langle v, v \rangle \neq 0$$

Lemme 37

soit V un espace euclidient et soient v_1, \ldots, v_n deux-a-deux orthogonaux. Soit $v \in V$, il existe $a_1, \ldots, a_n \in \mathbb{R}$ uniques tel que

$$v - a_1 v_1 - \ldots - a_n v_n$$

est orthogonal a chaque v_i

Preuve

$$\left\langle v - \sum_{i=1}^{n} a_i v_i, v_j \right\rangle = \left\langle v, v_j \right\rangle - \left\langle \sum_{i=1}^{n} a_i v_i, v_j \right\rangle = \left\langle v, v_j \right\rangle - a_j \left\langle v_j, v_j \right\rangle$$

On peut donc poser $a_j = \frac{\langle v, v_j \rangle}{\langle v_j, v_j \rangle}$

Le procede de Gram-Schmidt

Soit V un espace vectoriel euclidien et $\{v_1, \ldots, v_n\}$. Il existe un ensemble libre $\{u_1, \ldots, u_n\}$ tel que

1.
$$\langle u_i, u_j \rangle = 0 \forall i \neq j$$

2.
$$\forall k \in \{1, ..., n\}$$
:

$$span \{v_1, \ldots, v_k\} = span \{u_1, \ldots, u_k\}$$

Pour ceci, on itere sur tous les elements de $\{v_1, \ldots, v_n\}$, on pose

$$\begin{aligned} u_1 &= v_1 \\ u_2 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} \cdot u_1 \\ &\vdots \\ u_3 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} \cdot u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 \end{aligned}$$

etc

Pour $i \in \{1, ..., k\}$:

$$u_1 = v_i - \sum_{i=1}^{i-1} \frac{\langle v_i, u_j \rangle}{\langle u_j, u_j \rangle} u_j$$

Par induction, on demontre que

$$span \{v_1, \ldots, v_i\} = span \{u_1, \ldots, u_{i-1}, v_i\}$$

Or u_i est combinaison lineaire des autres elements de la famille.

Corollaire 38

Soit $A \in \mathbb{R}^{m \times n}$ une matrice de rang-colonne plein.

 $On\ peut\ factoriser\ A\ comme$

$$A = A' \cdot \begin{pmatrix} 1 & \dots & \mu_{ij} \\ \vdots & \ddots & \\ 0 & & 1 \end{pmatrix}$$

 $\it Tel \ que \ A' \ est \ compose \ de \ colonnes \ 2-a-2 \ orthogonales \ pour \ le \ produit \ scalaire \ standard.$

Preuve

Pour a_i les colonnes de A, Gram-Schmidt donne

$$a_i' = a_i - \sum_{j=1}^{i-1} \frac{\langle a_i, a_j; \rangle}{\langle a_j', a_j' \rangle} a_j'$$

Donc

$$a_{i} = \sum_{j=1}^{i-1} \frac{\langle a_{i}, a_{j}' \rangle}{\langle a_{j}', a_{j}' \rangle} \cdot a_{j}' + a_{i}' \Rightarrow A = A' \cdot \begin{pmatrix} 1 & \dots & \mu_{ij} \\ \vdots & \ddots & \\ 0 & & 1 \end{pmatrix}$$

Lecture 12: ... Definition 27

Wed 31 Mar

Soit V un espace Euclidien, et $\langle . \rangle$ un produit scalaire. Une base $\{u_1, \ldots, u_n\}$ orthogonale est appelee orthonormale si $\|u\|_i = 1 \forall i$.

Corollaire 39

Soit $V \in \mathbb{R}^{m \times n}$ une matrice de plein rang colonne, alors on peut factoriser $V = U^* \cdot R$ ou $U^* \in \mathbb{R}^{m \times n}$ dont les colonnes sont deux-a-deux orthogonales et de norme = 1, et ou R est une matrice triangulaire superieur

4.6 La methode des moindres carres

Soit $A \cdot x = b$ un systeme lineaire en m variables sans solution. On cherche un x tel que $\|A \cdot x - b\|$ est minimale. On resout donc

$$\min_{x \in \mathbb{R}} \|A \cdot -b\|$$

Theorème 40

Soit V un espace euclidien et soient v_1, \ldots, v_n des vecteurs deux-a-deux orthogonaux non-nuls. Soit $v \in V$ et $\alpha_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}$, alors

$$\left\| v - \sum_{i=1}^{n} \alpha_i v_i \right\| \le \left\| v - \sum_{i=1}^{n} \beta_i v_i \right\|$$

pour tout $\beta_1, \ldots, \beta_n \in \mathbb{R}$

Preuve

on a

$$\left\|v - \sum_{i=1}^{n} \beta_{i} v_{i}\right\|^{2} = \left\|\underbrace{v - \sum_{i=1}^{n} \alpha_{i} v_{i}}_{perpendiculaire\ a\ tous\ les\ v_{i}} - \sum_{i=1}^{n} (\beta_{i} - \alpha_{i}) v_{i}\right\|^{2}$$

$$= \left\|v - \sum_{i=1}^{n} \alpha_{i} v_{i}\right\|^{2} + \left\|\sum_{i=1}^{n} (\beta_{i} - \alpha_{i}) v_{i}\right\|^{2} \ge \left\|v - \sum_{i=1}^{n} \alpha_{i} v_{i}\right\|$$

Donc, pour resourdre $\min_{x \in \mathbb{R}^n} ||Ax - b||$, on calcule d'abord une base orthogonale de l'espace engendre par les vecteurs-collone de A.

Ensuite, on calcule la projection de b, cad $\sum_{i=1}^{n} \frac{\langle b, a_i^* \rangle}{\langle a_i^*, a_i^* \rangle}$

Ensuite, on resout Ax = proj(b) et on trouve un x proche.

Theorème 41

Les solutions du système

$$A^T \cdot Ax = A^T b$$

sont les solutions optimales de $\min_{x \in \mathbb{R}^n} ||Ax - b||$

Preuve

x est une solution optimale $\iff A \cdot x = proj(b)$, de plus proj(b) est le vecteur v unique dans $\{A \cdot x : x \in \mathbb{R}^n\}$ tel que $b - v \perp span\{A\} = \{A \cdot x : x \in \mathbb{R}^n\}$ Donc

$$A^T A x = A^T b \iff A^T (A x - b) = 0 \iff A x - b \perp \{A \cdot x : x \in \mathbb{R}^n\} \qquad \Box$$

Formes sesquilineaires et produits hermitiens

Soit
$$v=\begin{pmatrix}a_1+ib_1\\ \vdots\\ a_n+ib_n\end{pmatrix}\in\mathbb{C}^n,$$
 avec $a_i,b_i\in\mathbb{R}.$ On definit

$$\sum_{i=1}^{n} a_i^2 + b_i^2 = \sum_{i=1}^{n} v_i \overline{v_i}$$

Definition 28 (Produit Hermitien)

Soit V un espace vectoriel sur \mathbb{C} , $\langle . \rangle$ une application, alors on a

- $-PH1:\langle v,w\rangle=\overline{\langle w,v\rangle}\forall v,w\in V$
- PH2

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \langle w + u, v \rangle = \langle v, w \rangle + \langle u, w \rangle$$

— РН3

$$\forall x \in \mathbb{C}, u, v \in V, \langle xu, v \rangle = x \langle u, v \rangle, \langle u, xv \rangle = \overline{x} \langle u, v \rangle$$

- 1. Une forme sesquilineaire satisfait PH2, PH3
- 2. Forme hermitienne satisfait PH1,PH2, PH3
- 3. Un produit hermitien satisfait PH1,PH2,PH3 et de plus

$$\langle v, v \rangle > 0 \forall v \in V \setminus \{0\}$$

Le produit hermition est l'analogue d'un produit scalaire.

Definition 29 (Matrice hermitienne)

 $A \in \mathbb{C}^{n \times n}$ est appellee hermitienne si $A^T = \overline{A}$

Proposition 42

Soit V un espace vectoriel sur \mathbb{C} de dimension finie et soit B une base de V. Une forme sesquilineaire est une forme hermitienne si et seulement si A_B^f est une matrice hermitienne.

Si B, B' sont deux bases differentes, alors $f(v, w) = [v]_B^T A_B^f \overline{[w]}_B$. Si B' est une autre base, et $P_{BB'}, P_{B'B}$ les matrices de changement de base correspondentes. Alors on a

$$[v_{B'}]^T (P_{B'B})^T A_B^f \overline{P_{B'B}} \overline{[w]}_B' = f(v, w)$$

On en deduit que

$$A_{B'}^f = (P_{B'B})^T A_B^f \overline{P_{B'B}}$$

Definition 30 (Matrices Complexes congruentes)

Deux matrices complexes A, B sont congruentes complexes, si il existe P une matrice inversible satisfaisant

$$A = P^T B \overline{P}$$

Comme avant, une base $B=\{b_1,\ldots\}$ est une base orthogonale si et seulement si $A_B^{\langle,\rangle}$ est diagonale.

Theorème 43

Soit V un espace vectoriel complexe et $\langle . \rangle$ une forme hermitienne, alors V possede une base orthogonale.

On utilise le procede analogue aux espaces hermitiens.

Lecture 13: Matrices Symmetriques

____ Tue 13 Apr

Theorème 44 (Theoreme Spectral)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique, alors il existe $P \in \mathbb{R}^{n \times n}$ orthogonale tel que

$$P^T \cdot A \cdot P$$

 $est\ diagonale.$

Donc A est congruent a une matrice diagonale et est semblable D.

Lemme 45

Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne, alors toutes ses valeurs propres sont reelles.

Preuve

Soit $\lambda \in \mathbb{C}$ une valeur propre et $v \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre associe a λ . On va montrer que $\lambda v^T \overline{v} = \overline{\lambda} v$.

On a

$$\lambda v^T \overline{v} = v^T A^T \overline{v} = v^T \overline{A} \overline{v} = v^T \overline{\lambda} \overline{v} = \overline{\lambda} v \overline{v}$$

Corollaire 46

Soit $A \in \mathbb{R}^{n \times n}$ resp. $\mathbb{C}^{n \times n}$ une matrice symmetrique resp., hermitienne. Alors A possede une valeur propre reelle.

Preuve

Les valeurs propres de A sont les racines relles resp. complexes du polynome characteristique de A.

Soit $\lambda \in \mathbb{C}$ une racine, donc λ est une valeur propre de A sur \mathbb{C}^n , par le lemme ci-dessus, λ est reel.

Et donc λ est une valeur propre d'une matrice reelle de A.

Prouvons maintenant le theoreme spectral.

Preuve

On demontre le cas reel.

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique. Il existe $U \in \mathbb{R}^{n \times n}$ orthogonale tel que U^TAU est orthogonale.

On procede par recurrence.

Le cas n = 1, $A = (a_{11})$ est clair.

Pour n > 1, soit $\lambda \in \mathbb{R}$ une valeur propre de A et $v \in \mathbb{R}^n \setminus \{0\}$ un vecteur propre associe tel que $v^Tv = 1$.

Soit $\{v_1, u_2, \ldots\}$ une base de \mathbb{R}^n .

Avec Gram-Schmidt, on peut supposer que cette base est orthonormale.

Soit U la matrice donnee par les colonnes $(u_2, \ldots, u_n) \in \mathbb{R}^{n \times (n-1)}$, on considere U

 $^TAU \in \mathbb{R}^{(n-1)\times(n-1)}$, c'est une matrice symmetrique (parce que A est symmetrique).

Par recurrence, il existe une matrice orthogonale tel que K^TU^TAUK est diagonale et reelle.

Posons $P = (v, U \cdot K) \in \mathbb{R}^{n \times n}$.

P est orthogonale, en effet

$$P^T P = \begin{pmatrix} v^T \\ K^T U^T \end{pmatrix} \begin{pmatrix} v \\ U K \end{pmatrix} = \begin{pmatrix} v^T v & v^T U K \\ K^T U^T v & K^T U^T U K \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \text{Id} \end{pmatrix}$$

Et donc

$$P^T A P = \begin{pmatrix} v^T \\ K^T U^T \end{pmatrix} A(V, UK)$$

Or v est orthogonal a tous les u_i et donc cette matrice est orthogonale.

Lecture 14: Formes quadratiques reelles

Wed 14 Apr

5 Formes quadratiques reelles et matrices symmetriques reelles

Definition 31 (Sphere)

 $S^{n-1} \subseteq \mathbb{R}^n$ est defini comme $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$

Definition 32 (Forme Quadratique)

Une forme quadratique est une application $f: \mathbb{R}^n \to \mathbb{R}, x \to x^T A x$, avec A une matrice symmetrique ¹

Probleme d'optimisation

On veut trouver le maximum

$$\max_{x \in S^{n-1}} x^T A x$$

L'existence du maximum est garantie car S^{n-1} est compacte et $x \to x^T A x$ est continue

Donc il existe $x \in S^{n-1}: x^TAx \ge y^TAy \forall y \in S^{n-1}$.

Par symmetrie, il existe au moins deux solutions optimales sur S^{n-1} .

Lemme 47

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique et $v \in S^{n-1}$ une solution optimale. On a

$$Av = \lambda v$$

pour $\lambda \in \mathbb{R}$ cad A possede une valeur propre reelle.

Preuve

On suppose que $A \cdot v \neq \lambda v \forall \lambda \in \mathbb{R}$ (avec v une solution optimale du système).

$$A \cdot v = \alpha v + \beta w(\alpha, \beta \in \mathbb{R})$$

Notons que

$$\sqrt{(1-x^2)}v + xw, x \in [-1,1] \in S^{n-1}$$

Posons

$$g(x) := (\sqrt{1 - x^2}v + xw)^T A(\sqrt{1 - x^2}v + xw)$$

^{1.} La symmetrie n'est pas necessaire, car $x^T B x = x^T (\frac{1}{2}B + \frac{1}{2}B^T) x$

avec $g(0) = v^T A v$, il reste a montrer que $g'(0) \neq 0$. On a

$$g(x) = (1 - x^{2})v^{T}Av + \sqrt{1 - x^{2}}xv^{T}Aw + x\sqrt{1 - x^{2}}w^{T}Av + x^{2}w^{T}Aw$$
$$= (1 - x^{2})v^{T}Av + 2x\sqrt{1 - x^{2}}v^{T}Av + x^{2}w^{T}Aw$$

Donc

$$g'(0) = 2w^T A w = 2\beta \neq 0$$

Definition 33 (Matrice Symmetrique definie positive/negative)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique, A est

- definie positive si $x^T A x > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$
- definie negative si $x^T A x < 0 \forall x \in \mathbb{R}^n \setminus \{0\}$
- semi-definie positive si $x^T A x \ge 0 \forall x \in \mathbb{R}^n$
- semi-definie negative si $x^T A x \leq 0 \forall x \in \mathbb{R}^n$

Theorème 48

Une matrice symmetrique $A \in \mathbb{R}^{n \times n}$ est

- definie positive si et seulement si toutes ses valeurs propres sont > 0
- definie negative si et seulement si toutes ses valeurs propres sont
 0
- semi-definie positive si et seulement si toutes ses valeurs propres sont ≥ 0
- semi-definie negative si et seulement si toutes ses valeurs propres sont ≤ 0

Preuve

$$A = P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^T$$

— Si $\lambda_1, \ldots, \lambda_n > 0$, alors, en recrivant $v = \sum \beta_i p^i$

$$v^T A v = \sum_{i=1}^n \beta_i^2 \lambda_i > 0$$

On en deduit facilement les autres points.

Definition 34 (k-mineur principal)

Soit $A \in K^{n \times n}$. On considere la matrice formee par les k premieres lignes et colonnes de A, notons la B, le k-mineur principal est le determinant de B.

Theorème 49

Soit $A \in \mathbb{R}^{n \times n}$ une matrice symmetrique.

A est definie positive si et seulement si tous ses mineurs principaux sont strictement positif.

Preuve

Si A est definie positive, alors C_k est definie positive (ie. toutes les sousmatrices). On a

$$C_k = P_k \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix} P_k^T$$

Ou on a utilise la decomposition selon le theoreme spectral.

Par le theoreme ci-dessus $\det C_k > 0$

Montrons l'implication inverse.

Supposons maintenant que le determinant $det(C_k) > 0 \forall k \in \{1, ..., n\}.$

On veut montrer que $x^T A x > 0 \forall x \in \mathbb{R}^n \setminus \{0\}.$

On applique l'algorithme d'orthogonalisation sur A.

Par recurrence, on a jamais echange de lignes et de colonnes car sinon un determinant serait nul.

L'algorithme produit une matrice triangulaire superieure $R \in \mathbb{R}^{n \times n}$ (avec une diagonale contenant des 1) tel que

$$R^T A R = \begin{pmatrix} c_1 & & \\ & \ddots & \\ & & c_n \end{pmatrix}$$

On observe donc que $\det C_k = c_1 \dots c_k$ et donc tous les c_i sont positifs.

Lecture 15: Theoreme Spectral

Tue 20 Apr

Theorème 50 (Theoreme spectral reel)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique cad $A^T = A$, alors il existe $P \in \mathbb{R}^{n \times n}$ orthogonale tel que

$$A = PDP^T$$

Avec D une matrice diagonale.

Donc A est semblable et congruente a une matrice diagonale. Pour $P = (P_1, P_2, ...)$ les vecteurs colonne de $P, P_1, ...$ forment une base orthonor-

male de vecteurs propres de A, cad

$$A \cdot p_i = PDP^T P_i$$
$$= P\lambda_i e_i = \lambda_i P e_i$$

Definition 35

Soit $K \subseteq \{1, ..., n\}$ et $A \in \mathbb{R}^{n \times n}$, ecrivons

$$K = \{l_1, \dots, l_k\}$$
 ou $l_1 < l_2 < \dots < l_k$

Alors $A_k \in \mathbb{R}^{k \times k}$, avec $a_{k,ij} = a_{l_i,l_j}$.

Theorème 51

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique.

A est semi definie positive si

Preuve

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique et semi definie positive pour $K \subseteq \{l_1, \ldots\}$. A_k est semi-definie positive, donc

$$A_K = P^{K^T} D_k' P_K$$

Et donc

$$\det(A_k) > 0 \qquad \qquad \Box$$

L'autre implication est identique au theoreme spectral.

Theorème 52

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique et soit $f : \mathbb{R}^n \to \mathbb{R}$ definie par

$$f(x) = x^T A x$$

, alors

$$\max_{x \in S^{n-1}} f(x) = \lambda_1$$

et

$$\min_{x \in S^{n-1}} f(x) = \lambda_n$$

sont des valeurs propres qui satisfont

$$\lambda_1 > \lambda_2 > \ldots > \lambda_n$$

Preuve

Si $P = (p_1, ..., p_n)$ alors $\{p_1, ...\}$ est une base orthonormale de vecteurs propres de A.

Soit $x \in \mathbb{R}^n$ et $||x||_2^2 = x^T x$ On peut donc recerire

$$x^T x = \sum_{i=1}^n (\alpha_i)^2$$

Donc, pour $x \in S^{n-1}$, on a

$$f(x) = x^T \sum_{i=1}^n \beta_i \lambda_i p_i$$
$$= \sum_{i=1}^n \beta_i^2 \lambda_i \qquad \Box$$

Theorème 53 (Theoreme Min-Max)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique et $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ les valeurs propres de A. Alors

$$\lambda_k = \max_{U \le \mathbb{R}^n, \dim(U) = k} \min_{x \in S^{n-1} \cap U} x^T A x$$
$$= \min_{U \le \mathbb{R}^n, \dim(U) = n-k} \max_{x \in S^{n-1} \cap U} x^T A x$$

Preuve

 λ_k est atteint par l'espace span $\{p_1, \ldots, p_k\}$ et $p_k^T A p_k = \lambda_k$. Pour

$$x = \sum_{i=1}^{k} \alpha_i p_i \in span\{p_1, \dots, p_k\} \cap S^{n-1}$$

Alors

$$x^T A x = \sum_{i=1}^k \alpha_i^2 \lambda_i \ge \lambda_k$$

Donc

$$\min_{x \in S^{n-1}, x \in span\{p_1, \dots, p_k\}}$$

Il reste a montrer que pour tout $U \subseteq \mathbb{R}^n$, on a

$$\dim(U) = k \Rightarrow \min_{x \in S^{n-1}, x \in U} x^T A x \le \lambda_k$$

Lecture 16: Valeurs Singulieres

Wed 21 Apr

5.1 Decomposition en valeurs singulieres

Theorème 54 (Decomposition en valeurs singulieres)

Soit $A \in \mathbb{C}^{m \times n}$, il existe des matrices unitaires $P \in \mathbb{C}^{m \times n}$, $Q \in \mathbb{C}^{n \times n}$ tel que A = PDQ avec $D \in \mathbb{R}^{m \times n}_{\geq 0}$ une matrice diagonale.

Preuve
$$On \ veut \ A = P \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{pmatrix} Q \ avec \ \sigma_1 \geq \ldots \geq \sigma_r > 0 \ les \ valeurs \ singulieres.$$

Soit u_1, \ldots, u_n une base orthogonale par rapport au produit hermitien standard

compose de valeurs propres associees a $\sigma_1^2 \ge \sigma_2^2 \ldots \ge \sigma_r^2 \ge \sigma_{r+1}^2 = \ldots = 0$. On definit

$$Q \coloneqq \begin{pmatrix} u_1^* \\ \vdots \\ u_n^* \end{pmatrix}$$

Et soit

$$v_i := \frac{Au_i}{\sigma_i}, \quad i = 1, \dots, r$$

et on complete v_1, \ldots, v_r en une base orthogonale de \mathbb{C}^m , on va montrer que

$$P := (v_1, \dots, v_r, v_{r+1}, \dots, v_m) \in \mathbb{C}^{m \times m}$$

est unitaire.

Il est clair que $v_j^*v_j = 1 \forall j \geq r+1$, sinon, pour $1 \leq i, j \leq r$, on a

$$v_i^* v_j = \frac{u_i^* A^*}{\sigma_i} \cdot \frac{A \cdot u_j}{\sigma_j}$$
$$= \frac{u_i^* \sigma_j^2 u_j}{\sigma_i \sigma_j}$$
$$= \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$$

Il reste a verifier que

$$(P^*AQ^*)_{ij} = \begin{cases} 0 \text{ si } i \ge r \text{ ou } j > 0 \text{ ou } i \ne j \\ \sigma_i \text{ autrement} \end{cases}$$

Pour i > r et $j \le r$, on a donc

$$u_i^* A u_j = v_i^* \sigma_j v_j = 0$$

Et finalement, pour $i \leq j \leq r$, on a

$$= \frac{u_i^* A^*}{\sigma_i} A u_j$$

5.2 Pseudo-inverse d'une matrice

Definition 36 (Pseudo inerse)

Pour une matrice $A \in \mathbb{C}^{m \times n}$, on note

$$D^{+} = \begin{pmatrix} \frac{1}{\sigma_{1}} & & \\ & \ddots & \\ & & \frac{1}{\sigma_{r}} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

ou σ_i sont les valeurs singulieres de A.

Remarque

La factorisation en valeurs singulieres n'est pas unique.

On va montrer que le pseudo-inverse d'une matrice est unique.

Theorème 56

Soit $A \in \mathbb{C}^{m \times n}$, il existe au plus une seule matrice $X \in \mathbb{C}^{n \times m}$ qui satisfait les conditions de penrose

$$-AXA = A$$

$$- (A \cdot X)^* = AX$$

$$-XAX = X$$

$$-(X \cdot A)^* = XA$$

Preuve

Supposons que $X,Y \in \mathbb{C}^{n \times m}$ satisfait les conditions de penrose

$$X = XAX$$

$$= XAYAX$$

$$= XAYAYAYAX$$

$$= (XA)^*(YA)^*Y(AY)^*(AX)^*$$

$$= A^*X^*A^*Y^*YY^*A^*X^*A^*$$

$$= (AXA)^*Y^*YY^*(AXA)^*$$

$$= A^*Y^*YY^*A^*$$

$$= (YA)^*Y(AY)^* = YAYAY = YAY$$

Theorème 57

Soit $A \in \mathbb{C}^{m \times n}$, alors A^+ verifie les regles de penrose.

Preuve

On verifie facilement pour D diagonale

$$AA^*A = PDQQ^*D^*P^*PDQ = PDQ = A$$

 $-\ idem\ pour\ le\ reste.$

Lecture 17: Valeurs singulieres

Tue 27 Apr

 $A\in\mathbb{C}^{m\times n},$ avec $A=PDQ^*$ avec D diagonale, P unitaire. On a defini

$$A^+ = QD^+P^*$$

avec
$$D^+ = \begin{pmatrix} \frac{1}{\sigma_1} & & \\ & \ddots & \\ & & \frac{1}{\sigma_n} \end{pmatrix}$$

5.3 Encore des systemes d'equation

On essaie a nouveau de resoudre

$$Ax = b, \quad A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^m$$

On veut trouver

$$\min_{x \in \mathbb{C}^n} \left\| Ax - b \right\|^2$$

On a, entre autre resolu $A^T A x = A^T b$.

On va utiliser la pseudo-inverse de A pour trouver la solution.

On veut trouver $x \in \mathbb{C}^n$ la solution optimale tel que ||x|| est optimale.

Theorème 58

Soit $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, alors $x = A^+b$ est une solution optimale de norme minimale parmi les solutions du systeme Ax = b.

Preuve

Soit $x \in \mathbb{C}^n$ et $Q \in \mathbb{C}^{n \times n}$ unitaire, alors

$$||x||^2 = x^*x = x^*Q^*Qx = ||Qx||^2$$

On a donc

$$\min_{x \in \mathbb{C}^n} ||Ax - b|| = \min_{x \in \mathbb{C}} \left\| PD \underbrace{Qx}_{:=y} - b \right\|$$

$$= \min_{y \in \mathbb{C}^n} ||Dy - P^*b||$$

$$= \min_{y \in \mathbb{C}^n} ||Dy - c||$$

De plus y est une solution optimale $\iff y_{r+1} = \ldots = y_n = 0$ Et alors, $x = Q^*y = Q^*D^+P^*b$ est la solution optimale de norme minimale unique du probleme.

5.4 Le meilleur sous-espace approximatif

Etant donne $a_1, \ldots, a_m \in \mathbb{R}^n, 1 \le k \le n$.

On veut trouver un sous-espace $H \subseteq \mathbb{R}^n$, dim $H \leq k$ tel que

$$\sum_{i=1}^{m} d(H, \alpha_i)^2$$

est minimale.

On choisit une base orthonormale de $H : \{u_1, \ldots, u_k\}$, on peut facilement trouver la projection sur U, avec

$$proj(a_i) = \sum_{j=1}^{k} \langle \alpha_i, u_j \rangle u_j$$

Grace au theoreme de pythagore, on a

$$||a_i||^2 = ||proj(a_i)||^2 + d(a_i, H)^2$$

Donc

$$\sum_{i=1}^{m} \|a_i\|^2 = \sum_{i=1}^{m} \|proj(a_i)\|^2 + \sum_{i=1}^{m} d(a_i, H)^2$$

$$= \underbrace{\sum_{i=1}^{m} \sum_{j=1}^{k} (u_j^T a_i)^2}_{A \text{ maximiser}} + \sum_{i=1}^{m} d(a_i, H)^2$$

On veut trouver un $H \subseteq \mathbb{R}^n$ tel que

$$\sum_{j=1}^{k} u_j^T A^T A u_j$$

avec
$$A = \begin{pmatrix} a_1^T \\ \vdots \\ a_m^T \end{pmatrix}$$
.

On veut maintenant trouver $H \subseteq \mathbb{R}^n$, dim H = k et avec n'importe quelle base orthogonale tel que

$$\sum_{j=1}^{k} u_j^T A^T A u_j$$

est maximale.

5.4.1 k = 1

On veut trouver

$$\max_{u \in S^{n-1}} u^T A^T A u$$

Avec le theoreme spectrale, on trouve la valeur propre maximale, et alors le sous-espace propre associe est solution. Par recurrence, on a

$$\sum_{j=1}^{k} w_j^T A^T A w_j = \sum_{j=1}^{k-1} w_j^T A^T A w_j + w_k^T A^T A w_k$$
$$\leq \sum_{j=1}^{k-1} u_j^T A^T A u_j + u_k^T A^T A u_k$$

Lecture 18: Minimisation de la norme de Frobenius

Wed 28 Apr

Etant donne $A\in\mathbb{R}^{m\times n}, k\in\mathbb{N},$ on veu
ut trouver $B\in\mathbb{R}^{m\times n}$ tel que $rang(B)\leq k$ et

$$min_{C \in \mathbb{R}^{m \times n}, rangC \le k} \|A - C\|_{F}$$

est atteint a B.

Definition 37 (Norme de Frobenius)

Soit $A \in \mathbb{R}^{m \times n}$,

$$\|A\|_F = \sqrt{\sum_{i,j} a_{i,j}^2}$$

Definition 38 (Trace)

 $A \in K^{n \times n}$, la trace de A est definie par

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Lemme 59

On a

$$Tr(A \cdot B) = Tr(B \cdot A)$$

pour toute matrices dans $K^{n \times n}$

Preuve

$$(AB)_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki}$$

$$Tr(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = Tr(BA)$$

Lemme 60

Soit $A \in \mathbb{R}^{m \times n}$, alors

$$||A||_F^2 = \sum_{i=1}^r \sigma_i^2$$

ou σ_i sont les valeurs singulieres.

Preuve

$$||A||_F^2 = Tr(A^T A)$$

$$= Tr(Q^T D^T P^T P D Q)$$

$$= Tr(Q^T D^2 Q)$$

$$= Tr(D^2) = \sum \sigma_i^2$$

On veut donc trouver $B \in \mathbb{R}^{m \times n}$ tel que

- $--rangB \le k$
- $-\sum \|a_i b_i\|^2$ est minimale

Pour
$$A \in \mathbb{R}^{m \times n}$$
, $A = PDQ$, avec $P = (v_1, \dots, v_m)$ et $Q = \begin{pmatrix} u_1^T \\ \vdots \\ u_m^T \end{pmatrix}$.

Rappel : le span $\{u_1, \ldots, u_k\}$ minimise

$$\sum_{i=1}^{m} d(\alpha_i, H)^2$$

Definition 39

 $On\ definit$

$$A_k = \sum_{i=1}^k v_i \sigma_i u_i^T$$

Clairement $rang(A_k) \leq k$.

Lemme 61

Les lignes de A_k sont les projections des lignes correspondantes de A dans le span $\{u_1, \ldots, u_k\}$.

Preuve

Soit a^T une ligne de A.

La projection

$$\tilde{A}^T = \sum_{i=1}^k (a^T u_i) u_i^T$$

Alors les projections de toutes les lignes de A sont

$$\sum_{i=1}^{k} A u_{i} u_{i}^{T} = \sum_{i=1}^{k} \sigma_{i} v_{i} u_{i}^{T} = A_{k}$$

Theorème 62

Soit $B \in \mathbb{R}^{m \times n}$, $rang B \leq k$ alors

$$||A - A_k||_F^2 \le ||A - B||_F^2$$

$$\begin{array}{l} \mathbf{Preuve} \\ \mathit{Soit} \ A = \begin{pmatrix} a_1^T \\ \vdots \\ a_m^T \end{pmatrix}, \ B \begin{pmatrix} b_1^T \\ \vdots \\ b_m^T \end{pmatrix} \ et \ A_k = \begin{pmatrix} \tilde{a}_1^T \\ \vdots \\ \tilde{a}_m^T \end{pmatrix}.$$

Soit $H = \operatorname{span}\{b_1, \ldots, b_k'\}$ sont une base de l'espace engendre par les lignes de B, alors

$$||A - B||_F^2 = \sum_{i=1}^m ||a_i - b_i||^2 \ge \sum_{i=1}^m d(a_i, H)^2$$

Soit $\tilde{H} = span\{u_1, \dots, u_k\}$, alors

$$\sum_{i=1}^{m} d(a_i, H)^2 \ge \sum_{i=1}^{m} d(a_i, \tilde{H})^2 = \sum_{i=1}^{m} \|a_i - \tilde{a}_i\|_F^2$$

Lecture 19: Systemes differentiels lineaires

Tue 04 May

6 Systemes differentiels lineaires

Etant donne $a_{ij} \in \mathbb{R}, 1 \leq i \leq n, 1 \leq j \leq n$, on cherche une solution au systeme

$$\begin{cases} x'_1(t) = a_{11}x(t) + \dots + a_{1n}x_n(t) \\ u \\ \vdots \\ x'_n(t) = a_{n1}x(t) + \dots + a_{nn}x_n(t) \end{cases}$$

On cherche $x_i: \mathbb{R} \to \mathbb{R}$ derivable qui resolvent le systeme d'equations lineaires.

Exemple

$$x'(t) = x(t)$$

Une solution est: $x(t) = e^t$.

Une autre est : $x(t) = 2e^t$.

Si on exige les <u>conditions initiales</u> x(0) = 5, on aura la solution

$$x(t) = 5e^t$$

Theorème 64

Etant donne les conditions initiales x(0), il existe une <u>solution unique</u> qui respecte les conditions initiales.

On peut reecrire notre systeme comme

$$A \cdot x = x', A \in \mathbb{R}^{n \times n}$$

Supposons que $x(t) = ve^{\lambda t}$ est une solution du systeme $(v \in \mathbb{R}^n)$. Alors,

$$x'(t) = A \cdot x(t) = \lambda v e^{\lambda t}$$

Donc v est un vecteur propre de A.

Lemme 65

Soit $\mathcal{X} = \{x : x \text{ solution du systeme differentiel }\}$, alors \mathcal{X} est un espace vectoriel sur \mathbb{R} .

Theorème 66

Soit $\{v_1, \ldots, v_n\}$ une base de vecteurs propres de A associee aux valeurs propres $\lambda_1, \ldots, \lambda_n$.

Alors

$$x_i = e^{\lambda_i t} v_i, \quad i = 1, \dots, n$$

est une base de \mathcal{X} .

Preuve

On a deja vu que x_i est une solution du système, car

$$A \cdot x_i = A v_i e^{\lambda_i t}$$

Soient $x(0) \in \mathbb{R}^n$ des conditions initiales, on veut trouver

$$\beta_1, \ldots, \beta_n \in \mathbb{R}^n \ tel \ que \ \sum \beta_i x_i$$

est une solution qui respecte x(0).

Soit
$$x(0) = \sum \beta_i x_i(0) = \sum \beta_i v_i$$
.

Cette combinaison lineaire existe car les v_i forment une base.

Supposons $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$ tel que

$$\sum \gamma_i x_i(t) = 0$$

 $\text{Considerons maintenant } A = P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1}, \text{ou } P \in \mathbb{C}^{n \times n}, \lambda_1, \dots, \lambda_n \in \mathbb{C}^{n \times n}, \lambda_n = 0$

 $\mathbb{C}.$

Toute fonction $f: \mathbb{R} \to \mathbb{C}$ s'ecrit comme

$$f(t) = f_R(t) + i f_I(t)$$

avec $f_R, f_I : \mathbb{R} \to \mathbb{R}$.

f est derivable si f_R et f_I sont derivables.

Remarque
Si
$$x_1, ..., x_n : \mathbb{R} \to \mathbb{C}$$
 sont derivables, alors $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ est une solution du

 $systeme \ si$

$$x' = A \cdot x$$

Lemme 68

Si $\lambda \in \mathbb{C}$ est une valeur propre de A et si $v \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre correspondant, alors

$$x(t) = e^{\lambda t} v$$

est une solution complexe du système

Preuve

$$x' = \lambda e^{\lambda t} v = e^{\lambda t} A v = A x$$

Lemme 69

Etant donne une solution complexe $x = x_R + ix_I$ du système, alors x_R et x_I sont des solutions reelles du système.

Preuve

$$x_R' + ix_I' = x' = Ax = Ax_R + iAx_I$$

Marche a suivre pour la resolution d'un systeme lineaire, avec valeurs propres complexes

— Soient $v_i = u_i + iw_i \in \mathbb{C}^n$ une base de vecteurs propres, alors on peut

$$v_{2j-1} = \overline{v}_{2j}$$
 et $\lambda_{2j-1} = \overline{\lambda}_{2j}$ $i \le j \le k \le \frac{n}{2}$

- $\{u_1,\ldots,u_k,w_1,\ldots,w_k,v_{2k+1},\ldots,v_n\}$ une base de $\mathbb{R}^n u$
- Soit v = u + iw une solution avec $\lambda = a + ib$

$$v = e^{\lambda t}v = e^{at}(\cos(bt) + i\sin(bt)) \cdot (u + iw)$$
$$= e^{at}\left((\cos(bt)u - \sin(bt)w\right) + (\sin(bt)u + \cos(bt)w)\right)$$