Carlingford High School

2017

TERM 2

Student Number

Mathematics

- General Instructions
- Working time 50 minutes
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 2 and 3, show relevant mathematical reasoning and/or calculations

Total Marks - 44

Section I

Page 2

4 marks

- Multiple Choice
- Circle the correct answer

Section II

Pages 3-4

40 marks

• Attempt Questions 2 – 3

	Exponentials and Logarithms	Trigonometric Functions	Total
Q1	/2	/2	
Q2	/20		
Q3		/20	
Total	****		/44

QUESTION 1 (4 marks) CIRCLE THE CORRECT ANSWER

- (a) Which expression is equivalent to $4 + \log_2 x$?
 - A. $\log_2 2x$
 - B. $\log_2 16x$
 - C. $4 \log_2 2x$
 - D. $\log_2 8x$
- (b) What is the solution to the equation $\log_2(x-2) = 5$?
 - A. 8
 - B. 12
 - C. 27
 - D. 34

(c)

The area of this sector, correct to the nearest centimetre is:

- A. 11cm²
- B. 5cm²
- C. 15cm²
- D. 12cm²
- (d) How many solutions does (2sinx 1)(tanx + 3) = 0 have between 0 and 2π ?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

QUESTION 2 (20 marks)

- (a) If $y = \frac{\log x}{\log 2}$, express x in terms of y.
- (b) Solve $\log_{10} x \log_{10} (x 1) = 1$
- (c) Write log 2 + log 4 + log 8 +.....log 512 in the form alog b where a and b are positive integers.
- (d) Differentiate with respect to x:
 - (i) $y = e^{4x}$ (ii) $y = \ln(x^3)$
 - (iii) $y = x^2 e^{3x}$
- (e) Find the exact value for:
 - (i) $\int_0^2 e^{\frac{x}{2}} dx$
 - (ii) $\int_{-3}^{-1} \frac{2}{1-3x} dx$
- (g) Use the trapezoidal rule with two strips to find the approximate area under the curve $y=e^x$ which is
- bounded by the x axis and the lines x = 1 and x = 5.
- (h) The diagram shows the graph of $\log_e x$.

(f) Find the equation of the tangent to the curve $y = \ln(2x - 5)$ at the point (3,0).

- (i) Find the co-ordinates of point A in exact form.
- (ii) Find the shaded area.

1

2

2

2

2

QUESTION 3 (20 marks)

(a) Express 25° in radians in terms of π .

1

(b) Find in degrees and minutes the angle subtended at the centre of a circle of radius 8cm by an arc length 6cm long.

2

(c) Find solutions, in terms of π , for $2\sin x = 1$ for $0 \le x \le 2\pi$

2

(d) Consider the function $y = 3\cos 2x$

2

(i) Draw a neat sketch of y = 3cos2x, $-\pi \le x \le \pi$

2

(ii) Find the period of $y = 3\cos 2x$

1

(iii) Find the amplitude of $y = 3\cos 2x$

1

- (e) Differentiate with respect to x:
 - (i) $y = (1 \cos x)^5$

2

(ii) $y = x \sin x$

2

- (f) Find the following indefinite integrals:
 - (i) $\int (\sin 2x + \cos 3x) \ dx$

2

(ii) $\int \cos \pi x \ dx$

2

(g) (i) Draw a neat sketch of y = secx

1

(iii) The area $\int_0^{\frac{\pi}{6}} \sec x \ dx$ is rotated about the x axis. Find the volume so generated.

2

-END OF PAPER-

Mathematics

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$$

$$\cot \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

$$Area = \frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = ar^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P \left(1 + \frac{r}{100} \right)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

$$180^{\circ} = \pi \text{ radians}$$

Length of an arc

$$l = r\theta$$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Question 1

(a) Which expression is equivalent to $4 + \log_2 x$?

- $log_2 2x$
- (B) log₂ 16x
- C 4 log_ 2x
- D. logz 8x

02 a-d AG
02 a-d W
22 a-d CGF
3d-e KC
03 f-g PW

- (b) What is the solution to the equation $\log_2(x-2) = 5$?
 - 8
 - 12
 - 27
 - 34

(C)

The area of this sector, correct to the nearest centimetre is:

- (A) 11cm²
- 5cm²
- C. 15cm²
- D. 12cm²
- How many solutions does (2sinx 1)(tanx + 3) = 0 have between 0 and 2π ? (d)
 - A. 1
 - Ź В.

QUESTION 2

a)
$$y = \frac{\log x}{\log 2}$$

 $\log x = \log 2$
 $\log x = \log 2^y$
 $x = 2^y$

b)
$$\log_{10} x - \log_{10}(x-1) = 1$$

$$\log_{10} \frac{x}{12-1} = \log_{10} 10$$

$$\frac{x}{x-1} = 10$$

$$x = 10x - 10$$

$$9x = 10$$

$$2 = 10$$

$$2 = 10$$

0

c)
$$\log 2 + \log 4 + \log 8 + \dots + \log 512$$

= $\log 2 + 2\log 2 + 3\log 2 + \dots + 9\log 2$
= $45\log 2$

d) 1)
$$y = e^{4x}$$

 $\frac{dy}{dx} = 4e^{4x}$

$$y = \ln x^{3}$$

$$= 3 \ln x$$

$$\frac{dy}{dx} = \frac{3}{2}$$

(iii)
$$y = x^{2}e^{3x}$$
 $u = x^{2}$

$$\frac{dy}{dx} = vu' + uv'$$
 $u' = 2x$

$$= e^{3x} \cdot 2x + x^{2} \cdot 3e^{3x} \quad v = e^{3x}$$

$$= xe^{3x} (z + 3x)$$
 (2)

e) i)
$$\int_{0}^{2} e^{\frac{x}{2}} dx$$

= $2 \int_{0}^{2} \frac{1}{2} e^{\frac{x}{2}} dx$
= $2 (e^{\frac{x}{2}}) \int_{0}^{2} e^{\frac{x}{2}} dx$
= $2 (e^{-1})$ (2)
ii) $\int_{-3}^{-1} \frac{2}{1-3x} dx$
= $\frac{2}{3} \int_{-3}^{1-3} e^{-\frac{x}{3}} dx$
= $\frac{-2}{3} \left[\ln (1-3x) \right]_{-3}^{-3}$
= $-\frac{2}{3} \left[\ln (1-3x) \right]_{-3}^{-3}$
= $-\frac{2}{3} \ln \frac{2}{5}$ or $\frac{2}{3} \ln \frac{5}{2}$ (2)
f) $y = \ln (2x-5)$ at $(3,0)$

$$\frac{dy}{dx} = \frac{2}{2x-5}$$

$$m = \frac{2}{2x3-5}$$

$$m = \frac{4}{2}$$

$$y - y_{1} = \frac{m(x-x_{1})}{2x-3}$$

$$y - 0 = \frac{8}{3} (x-3)$$

$$y = \frac{3}{3}x + \frac{4}{3} y = 2x - 6$$
 (2)
9)
$$A = \frac{h_{1}}{2} (f(1) + 2f(3) + f(5))$$

$$= \frac{2}{2} (e^{\frac{1}{2}} + 2e^{\frac{3}{2}} + e^{\frac{5}{2}})$$
Area = $(e + 2e^{\frac{3}{2}} + e^{\frac{5}{2}})$ units 2 (2)

(2)

.'. Area =
$$(2\ln 2 - 1)$$
 units²

a)
$$25^{\circ} = 25 \times \frac{\pi}{180}$$

$$= 5\pi c$$

$$= \frac{5\pi}{36}$$

b)
$$L = \frac{9}{360} \times 2\pi \times 8$$

$$G = \frac{9}{360} \times 2\pi \times 8$$

$$G = \frac{6 \times 360}{16\pi}$$

$$= 42.97183463$$

$$O = 42.58'$$
or
$$L = 6$$

$$O = \frac{6}{8} \times \frac{180}{11}$$

$$O = 42.58'$$
(2)

c)
$$2\sin x = 1$$

 $5\ln x = \frac{1}{2}$
 $x = 30^{\circ}, 150^{\circ}$
 $x = \pi^{\circ} \frac{5\pi^{\circ}}{6}$ (2)

e) i)
$$y = (1-\cos x)^5$$
 $dy = 5(1-\cos x)(4\sin x)$
 $= 5\sin x (1-\cos x)^4$

ii) $y = x\sin x$
 $dy = yu' + uv'$
 $= \sin x + x\cos x$
 $= \sin x + x\cos x$

iii) $\int (\sin 2x + \cos 3x) dx$
 $= -\cos 2x + \sin 3x + c$
 $= \sin 3x - \cos 2x + c$

iii) $\int \cos \pi x dx$
 $= \sin \pi x + c$

(check for constant)

3)

1)

y = secx

$$= \pi \times \frac{1}{\sqrt{3}}$$
Volume = $\sqrt{3}\pi$ units³
(Accept 1.813799364 u³)