

Computação Evolucionária

Daniel Reis

Universidade Federal de Ouro Preto UFOP 2017

Código

- População inicial -> aleatória no intervalo de -5,12 a 5,12;
- Estratégia utilizada:
 - Elitismo (mantendo 20% dos pais);
 - Crossover
 - 1 pt = Parte 1 do pai1 e parte 2 do pai2
 - 2 pts = (Parte 1 e 3 do pai com > FO e parte 2 do pai com < FO)
 - Mutação por bit.
- Taxas: Crossover = 0,8; Mutação = 0,05; Mu = 100; Lambda = 1000;
- Tampop = 100, gerações = 300, nvar = 100, execucoes = 30;

Main

- rnd [1,6]
 - Caso 1: AG -> crossover 1 pt + mutação + elitismo
 - Caso 2: AG -> crossover 2 pts + mutação + elitismo
 - Caso 3: ES -> mutação + mu + lambda + sem elitismo
 - Caso 4: ES -> mutação + mu + lambda + elitismo
 - Caso 5: DE -> crossover + mutação + sem elitismo
 - Caso 6: DE -> crossover + mutação + elitismo

- Cria e avalia pop inicial
- Salva melhor e pior indivíduo e as FO e imprime a solução inicial
- Calcula o número de pais (% elitismo)
- Para cada **geração**
 - Move os x% melhores indivíduos (pop -> novaPop)
 - Gera os (tamPop numPais)
 - Se rnd [0,1] < taxa de crossover
 - Seleciona dois pais aleatórios (diferentes)
 - descendente = pai1
 - Crossover (1 ou 2 pontos)
 - Mutação por bit no descendente
 - Avalia descendente
 - Adiciona FO do descendente na lista e descendente na novapop
 - Define sobreviventes (pop += novaPop) -> ordena (FO) -> corta
 - Atualiza e salva melhor e pior indivíduo

- Cria e avalia pop inicial
- Salva melhor e pior indivíduo e as FO e imprime a solução inicial
- Calcula o número de pais (% elitismo)
- Para cada **geração**
 - Move os x% melhores indivíduos (pop -> novaPop)
 - Gera os (tamPop numPais)
 - Para cada pai, gerar lambda/mu filhos
 - Se rnd [0,1] < taxa de mutação
 - descendente = pai
 - Mutação por bit no descendente
 - Avalia descendente
 - Adiciona FO do descendente na lista e descendente na novapop
 - Define sobreviventes (pop += novaPop) -> ordena (FO) -> corta
 - Atualiza e salva melhor e pior indivíduo

- Cria e avalia pop inicial
- Salva melhor e pior indivíduo e as FO e imprime a solução inicial
- Calcula o número de pais (% elitismo)
- Para cada geração
 - Move os x% melhores indivíduos (pop -> novaPop)
 - Gera os (tamPop numPais)
 - rnd r0, r1, r2 (Seleciona três indivíduos aleatórios)
 - Cria um novo indivíduo (trial)
 - Analisa a perturbação (diferença entre xr1 e xr2) e insere no trial
 - Mutação (trial = trial * fator de mutação + xro)
 - Pega o indivíduo target
 - Crossover (Combina trial e target)
 - Seleção (Maior FO entre trial e target)
 - Adiciona FO do selecionado na lista e selecionado na novapop
 - Define sobreviventes (pop += novaPop) -> ordena (FO) -> corta
 - Atualiza e salva melhor e pior indivíduo

Resultados

Caso	melhor	pior	dpmelhor	dppior
1	6.69947667120141e-07	1187.44099653045	1.95036773632388e-06	24.1794177332845
2	2.26180532081344e-07	1249.9678115148	3.69905023280917e-07	35.1243748686675
3	0.237866960237056	1234.00594194152	0.18396926813449	39.3481380309871
4	0.00980539218346621	1238.2681923504	0.0160429455350935	36.8420419472484
5	613.878736655566	1230.81553489873	37.9562354229704	33.6769955740409
6	681.99451673681	1218.40866775178	22.6813622417445	39.8676688382511

Caso	mediamelhor	mediapior	mediageral
1	3.05265435069183e-06	1138.75965160512	49.9849552468538
2	8.65391522590168e-07	1131.9718057317	46.9041618666468
3	0.512057121442967	1134.50029562343	135.833766818797
4	0.0370830106173609	1124.534106919	98.718347472088
5	721.247224147569	1145.31823580138	734.557055179519
6	729.319936124982	1142.08416608205	733.271825103767

Boxplot

Melhor Resultado ~ Caso

Pior Resultado ~ Caso

Boxplot

Desvio Padrão ~ Caso

Média ~ Caso

Boxplot

Tempo ~ Caso

Caso	Tipo	pv alor	pvalorL	pvalorG
1-2	MelhorResultado ~ Caso	1.09937267779972e-06	0.999999450313661	5.49686338899858e-07
1-2	PiorResultado ~ Caso	0.387329996936737	0.806335001531631	0.193664998468369
1-2	Media ~ Caso	2.17970166399912e-20	1	1.08985083199956e-20
1-2	DesvioPadrao ~ Caso	8.80149873183317e-14	0.9999999999956	4.40074936591659e-14
1-2	Tempo ~ Caso	0.434561418139903	0.217280709069951	0.782719290930049
3-4	MelhorResultado ~ Caso	1.09937267779972e-06	0.999999450313661	5.49686338899858e-07
3-4	PiorResultado ~ Caso	0.387329996936737	0.806335001531631	0.193664998468369
3-4	Media ~ Caso	2.17970166399912e-20	1	1.08985083199956e-20
3-4	DesvioPadrao ~ Caso	8.80149873183317e-14	0.99999999999956	4.40074936591659e-14
3-4	Tempo ~ Caso	0.434561418139903	0.217280709069951	0.782719290930049
5-6	MelhorResultado ~ Caso	0.322398993090035	0.161199496545017	0.838800503454983
5-6	PiorResultado ~ Caso	0.735551620672012	0.632224189663994	0.367775810336006
5-6	Media ~ Caso	0.566466327923766	0.716766836038117	0.283233163961883
5-6	DesvioPadrao ~ Caso	5.67405069322809e-09	0.999999997162975	2.83702534661404e-09
5-6	Tempo ~ Caso	1.33701278270486e-56	6.68506391352431e-57	1

Caso	Tipo	pv alor	pv alorL	pvalorG
1-4	MelhorResultado ~ Caso	2.44316186602139e-13	1.2215809330107e-13	0.9999999999878
1-4	PiorResultado ~ Caso	0.0831361867924938	0.958431906603753	0.0415680933962469
1-4	Media ~ Caso	9.18366084830625e-60	4.59183042415313e-60	1
1-4	DesvioPadrao ~ Caso	8.70311184092032e-69	4.35155592046016e-69	1
1-4	Tempo ~ Caso	3.29585183996036e-50	1	1.64792591998018e-50
1-5	MelhorResultado ~ Caso	7.11193573147011e-39	3.55596786573506e-39	1
1-5	PiorResultado ~ Caso	0.390159143646715	0.195079571823357	0.804920428176643
1-5	Media ~ Caso	1.56106661261732e-55	7.80533306308661e-56	1
1-5	DesvioPadrao ~ Caso	4.9918700215624e-34	1	2.4959350107812e-34
1-5	Tempo ~ Caso	1.07860351942651e-56	1	5.39301759713255e-57
4-5	MelhorResultado ~ Caso	7.12235507066687e-39	3.56117753533344e-39	1
4-5	PiorResultado ~ Caso	0.0262893280952025	0.0131446640476012	0.986855335952399
4-5	Media ~ Caso	3.69012264754909e-56	1.84506132377454e-56	1
4-5	DesvioPadrao ~ Caso	6.40269476624624e-39	1	3.20134738312312e-39
4-5	Tempo ~ Caso	4.29429721562399e-51	1	2.147148607812e-51

Referências

Código disponível em:

https://github.com/UFOP-CSI557/2017-02-atividades-danieel-reis