

intersection semilattice of a subspace arrangement

 ${\bf Canonical\ name} \quad {\bf Intersection Semilattice Of A Subspace Arrangement}$

Date of creation 2013-03-22 15:47:58 Last modified on 2013-03-22 15:47:58

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 52B99
Classification msc 52C35

Synonym intersection lattice Synonym intersection semilattice Let \mathcal{A} be a finite subspace arrangement in a finite-dimensional vector space V. The of \mathcal{A} is the subspace arrangement $L(\mathcal{A})$ defined by taking the http://planetmath.org/ClosureAxiomsclosure of \mathcal{A} under intersections. More formally, let

$$L(\mathcal{A}) = \{\bigcap_{H \in \mathcal{S}} H \mid \mathcal{S} \subset \mathcal{A}\}.$$

http://planetmath.org/PosetOrder the elements of $L(\mathcal{A})$ by reverse inclusion, and give it the structure of a join-semilattice by defining $H \vee K = H \cap K$ for all H, K in $L(\mathcal{A})$. Moreover, the elements of $L(\mathcal{A})$ are naturally graded by codimension. If \mathcal{A} happens to be a central arrangement, its intersection semilattice is in fact a lattice, with the meet operation defined by $H \wedge K = \operatorname{span}(H \cup K)$, where $\operatorname{span}(H \cup K)$ is the subspace of V spanned by $H \cup K$.