Instance Extraction

Fabian M. Suchanek

Semantic IE

Source Selection and Preparation

Def: Is-A

Is-A is the binary relation that holds between X and Y, if X is an instance or a subclass of Y.

```
is-a(Lisa, girl) is-a(girl, person)
```

In all of the following, we assume that the entity mentions in our corpora have been disambiguated already (= are unambiguous).

Is-A Extraction

Is-A Extraction is the task of extracting Is-A facts from a corpus.

(Different from NEA, the class names are not given upfront.)

In the Simpson episode "HOMR", Doctor Monson discovers a crayon in Homer's brain and removes it. His IQ goes up from 55 to 105, but he feels uncomfortable and wants it back. Moe, who is not only a bartender but also an unlicensed physician, puts the crayon back, returning Homer to the idiot.

Is-A Extraction

Is-A Extraction is the task of extracting Is-A facts from a corpus.

In the Simpson episode "HOMR", Doctor Monson discovers a crayon in Homer's brain and removes it. His IQ goes up from 55 to 105, but he feels uncomfortable and wants it back. Moe, who is not only a bartender but also an unlicensed physician, puts the crayon back, returning Homer to the idiot.

HOMR is-a Simpson episode

Monson is-a Doctor

Homer is-a idiot

Moe is-a bartender

Moe is-a unlicensed physician

A Hearst pattern is a simple textual pattern that indicates an is-a fact.

"Y such as X"

An idiot such as Homer. is-a(Homer, idiot)

A Hearst pattern is a simple textual pattern that indicates an is-a fact.

"Y such as X"

An idiot such as Homer. ____

→ is-a(Homer, idiot)

...many activists, such as Lisa...

is-a(Lisa, activist)

...some animals, such as dogs...

is-a(dog, animal)

...some scientists, such as computer scientists...

...some plants, such as nuclear power plants....

A Hearst pattern is a simple textual pattern that indicates an is-a fact.

"Y such as X"

An idiot such as Homer.

```
\rightarrow is-a(Homer, idiot)
```

```
...many activists, such as Lisa...
```

```
is-a(Lisa, activist)
```

...some animals, such as dogs...

```
is-a(dog, animal)
```

...some scientists, such as computer scientists...

```
is-a(computer, scientist)?
```

...some plants, such as nuclear power plants....

```
is-a(nuc.Pow.Plants, plants)?
```

A Hearst pattern is a simple textual pattern that indicates an is-a fact.

"Y such as X"

An idiot such as Homer.

```
→ is-a(Homer, idiot)
```

```
...many activists, such as Lisa...
```

is-a(Lisa, activist)

...some animals, such as dogs...

is-a(dog, animal)

...some scientists, such as computer scientists...

is-a(computer, scientist)?

...some plants, such as nuclear power plants....

is-a(nuc.Pow.Plants, plants)?

=> Hearst patterns have to be combined with NER and disambiguation to yield entity facts.

Def: Classical Hearst Patterns

The classical Hearst Patterns are

```
Y such as X+
such Y as X+
X+ and other Y
Y including X+
Y, especially X+
```

```
...where X+ is a list of names of the form "X_1,...,X_{n-1} (and—or)? X_n". (In the original paper, the X_i are noun phrases)
```

These imply is- $a(X_i, Y)$.

(assuming that the words are disambiguated)

Task: Classical Hearst Patterns

Apply

- 1. Y such as X+
- 2. such Y as X+
- 3. X+ and other Y
- 4. Y including X+
- 5. Y, especially X+

I lived in such countries as Germany, France, and Bavaria.

He wrote about fictional entities such as Homer, Lisa, and Bielefeld.

I love people that are not genies, especially Homer.

Example: Hearst on the Web

"cities such as"

Web Images

Maps

Shopping

More ▼

Search tools

About 79,800,000 results (0.19 seconds)

These 12 Hellholes Are Examples Of What The Rest Of America Wi...

theeconomiccollapseblog.com/.../these-12-hellholes-are-examples-of-wh... ▼
Jul 15, 2012 – The reality is that most of the country has been experiencing a slow decline for a very long time and once thriving cities such as Gary, Indiana ...

City - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/City ▼

Every city expansion would imply a new circle (canals together with town walls). In cities such as Amsterdam, Haarlem, and also Moscow, this pattern is still ...

try it out

Def: Set Expansion

Set Expansion is the task of, given names of instances of a class ("seeds"), extracting more such instance names from a corpus.

```
cities: {Springfield, Seattle}

Set Expansion

cities: {Springfield, Seattle, Washington, Chicago, ...}
```

Recursive Pattern Application is the following algorithm for set expansion:

0. Start with the seeds

cities: {Austin, Seattle}

Recursive Pattern Application is the following algorithm for set expansion:

- 0. Start with the seeds
- 1. Find the pattern "X, Y, and Z" in the corpus.

cities: {Austin, Seattle}

Seattle, Chicago, and Austin

Recursive Pattern Application is the following algorithm for set expansion:

- 0. Start with the seeds
- 1. Find the pattern "X, Y, and Z" in the corpus.
- 2. If 2 variables match known instance names, add the match of the 3rd.

cities: {Austin, Seattle}

Seattle, Chicago, and Austin

Recursive Pattern Application is the following algorithm for set expansion:

- 0. Start with the seeds
- 1. Find the pattern "X, Y, and Z" in the corpus.
- 2. If 2 variables match known instance names, add the match of the 3rd.

cities: {Austin, Seattle}

Seattle, Chicago, and Austin

cities: {Austin, Seattle, Chicago}

3. Go to 1

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle, Houston}

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle, Houston}

... Houston, Chicago, and Springfield...

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle, Houston}

... Houston, Chicago, and Springfield...

cities: {Springfield, Austin, Seattle, Houston, Chicago}

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle, Houston}

... Houston, Chicago, and Springfield...

cities: {Springfield, Austin, Seattle, Houston, Chicago}

... Austin, Texas, and Seattle, Washington...

cities: {Springfield, Austin, Seattle}

... Austin, Seattle, and Houston...

cities: {Springfield, Austin, Seattle, Houston}

... Houston, Chicago, and Springfield...

cities: {Springfield, Austin, Seattle, Houston, Chicago}

... Austin, Texas, and Seattle, Washington...

Precision may suffer over time

Def: Semantic Drift

Semantic Drift is the problem in Set Expansion that names of instances of other classes get into the set.

```
cities: {Springfield, Austin, Seattle, Houston}
```

... Houston, Chicago, and Springfield...

cities: {Springfield, Austin, Seattle, Houston, Chicago}

... Austin, Texas, and Seattle, Washington...

cities: {Chicago, Seattle, ..., Texas}

Def: Table Set Expansion

Table Set Expansion is the following algorithm for set expansion:

0. Start with the seeds

countries: {Russia, China}

1. Find HTML tables where one column contains 2 known instance names

Largest Countries in the World

view as: list / slideshow / map

A	Country	Total Area (sq km)
1.	Russia	17,098,242
2.	Canada	9,984,670
3.	United States	9,826,675
4.	* China	9,596,961

2. Add all column entries to the set

countries: {Russia, China, Canada, United States}

3. Go to 1

countries: {Russia, China, Brazil}

countries: {Russia, China, Brazil}

Richest Countries in the World

view as: list / slideshow / map

A	Country	<u>GDP</u>
1.	United States	\$15,290,000,000,000
2.	*** China	\$11,440,000,000,000
3.	India	\$4,515,000,000,000
4.	Japan	\$4,497,000,000,000
5.	Germany	\$3,139,000,000,000
6.	Russia	\$2,414,000,000,000

countries: {Russia, China, Brazil}

Richest Countries in the World

view as: list / slideshow / map

A	Country	GDP
1.	United States	\$15,290,000,000,000
2.	*** China	\$11,440,000,000,000
3.	India	\$4,515,000,000,000
4.	Japan	\$4,497,000,000,000
5.	Germany	\$3,139,000,000,000
6.	R ussia	\$2,414,000,000,000

countries: {Russia, China, Brazil, United States, Japan, India, Germ.}

countries: {Russia, China, Brazil, United States, Japan, India, Germ.}

Countries with the Largest Armed Forces in the World

view as: list / slideshow / map

A	Country	Total armed forces
1.	China China	2,255,000
2.	United States	1,456,850
3.	India	1,325,000
4.	Russia	1,058,000
5.	Korea, South	687,000
6.	C Pakistan	620,000
7.	- Iran	540,000

countries: {Russia, ..., Germany, Korea, South, Pakistan, Iran}

countries: {Russia, ..., Germany, Korea, South, Pakistan, Iran}

Countries and dependencies

Rank \$	Country \$	To km
_	World	51 (196
1	Russia	1 (£
_	Antarctica	1 (£
2	■ Canada	(3
3	China	(3
4	America	(3


```
countries: {
Russia,...,
World,
Antarctica,
America}
```

All continents:

Antarctica

Africa

Asia

America

Australia

Europe

```
countries: {
Russia,...,
World,
Antarctica,
America}
```

All continents:

Antarctica

Africa

Asia

America

Australia

Europe

Semantic Drift may occur

Summary: Set Expansion

Set Expansion extends a set of instance names. We saw 2 methods:

1. Recursively applied patterns

X, Y, and Z

2. Table Set Expansion

Richest Countries in the World

view as: list / slideshow / map		
A	Country	GDP
1.	United States	\$15,290,000,000,000
2.	China	\$11,440,000,000,000
3.	India	\$4,515,000,000,000
4.	Japan	\$4,497,000,000,000
5.	Germany	\$3,139,000,000,000
6.	Russia	\$2,414,000,000,000

Summary: Is-A Extraction

Is-a finds names of instance/class or subclass/superclass pairs.

We saw 2 methods:

1. Hearst Patterns

vegetarians such as Lisa

2. Set Expansion

cities: {Chicago, Springfield}

singer Elvis

Entity Recognition

Source Selection and Preparation

References

Marti Hearst: Automatic Acquisition of Hyponyms
Learning Arguments and Supertypes of Semantic Relations
Knowledge Harvesting from Text and Web Sources

->dipre