OMA and OMArk for homology exploration and gene annotation quality control

Learning objectives

- Where to easily find orthology information for well-studied species?
 Query the OMA Browser and understanding HOGs
- Where to get quick homology estimate for my newly sequenced species?
 - Run OMAmer for sequence placement into HOGs and interpret results
- How to know if a proteome is of good quality?
 - Run OMArk for proteome quality assessment and interpret results

Session plan

1. Hierarchical Orthologous Groups and the OMA Browser

2. Fast sequence placement with OMAmer

3. Gene repertoire quality assessment with OMArk

OMA Academy website

https://omabrowser.org/oma/academy/

https://tinyurl.com/OMABGA24

Tables of contents

- 1. Exploring Orthology with the OMA Browser
- 2. OMAmer
- 3. FastOMA
- 4. Estimating a Species Tree
- 5. BGA OMA and OMArk for homology exploration and gene annotation quality control

Orthology & Hierarchical Orthologous Groups (HOGs)

Homology

- The study of genetic material almost always starts with identifying, within or across species, homologous regions—regions of common ancestry.
- Homologs = gene families
- It is useful to distinguish between two classes of homologous genes.

 Two genes in two species are orthologous if they derive from one gene in their last common ancestor

HOGs = Sets of genes that descended from a common ancestral gene in a given ancestral species

HOGs = Sets of genes that descended from a common ancestral gene in a given ancestral species

HOGs are defined with respect to specific clades

HOGs are hierarchical because groups defined with respect to deeper clades subsume multiple groups defined on their descendants

HOGs are gene families; SubHOGs are nested subfamilies

The OMA browser

The OMA browser

Hierarchical Orthologous Groups (HOGs)

HOG:E0723114 with 39 members (zinc finger protein)

Primates / Lower Level >

Hierarchical group HOG:0723114 open at level of **Root**

- A HOG is a gene family
- A collection of orthologs and paralogs which descended from a common ancestral gene

Ancestral genomes

The collection of HOGs at a given taxonomic level

Ancestral genome of Primates

with 24 descendant species and 38534 ancestral genes (HOGs).

Hand-on exercices

https://omabrowser.org/

https://omabrowser.org/oma/academy/

https://tinyurl.com/OMABGA24

Fast sequence placements with OMAmer

What is OMAmer?

Fast sequence placement into existing HOGs from the OMA Browser

More accurate than closest sequence matching for subfamily placement!

OMAmer: tree-driven and alignment-free protein assignment to subfamilies outperforms closest sequence approaches

Victor Rossier (1) 1,2,3, Alex Warwick Vesztrocy (1) 1,2,3, Marc Robinson-Rechavi (1) 3,4,* and Christophe Dessimoz (1) 1,2,3,5,6,*

OMAmer placement - principle

HOG:D0686527

k-mer based placement

k-mers: words of k characters in a sequences

```
Query sequence

MHPYSTQMFS LQITVMEDSQ SDMSIELPLS

MHPYST
HPYSTQ
PYSTQM

...
...
MSIELP
SIELPL
IELPLS
```


How to use OMAmer

>Seq1 MXXXXX >Seq2 MXXXX >Seq3 MXXXXX omamer search --query query.fa --db db.h5 --output results.txt

Query sequences

FASTA format

From any species

Seq1 HOG:E0578800.1c.1d
Seq2 HOG:E0571029
Seq3 HOG:E0606120.3n

OMAmer database

HDF5 format

Built with HOGs from the OMA Browser

OMAmer output

Tab separated format

All HOG placements

Hand-on exercices

https://omabrowser.org/oma/academy/

https://tinyurl.com/OMABGA24

+ v ... ^ × **PROBLEMS** DEBUG CONSOLE TERMINAL OUTPUT Get the OMAMer database: bash - 36.5/36.5 MB 22.9 MB/s eta 0:00:00 Downloading tgdm-4.66.1-pv3-none-anv.whl (78 kB) install mamba and omark: bash - 78.3/78.3 kB 10.4 MB/s eta 0:00:00 Using cached Cython-3.0.2-cp39-cp39-manylinux 2 17 x86 64.manylinux2014 x86 64.whl (3.6 MB) Downloading llvmlite-0.40.1-cp39-cp39-manylinux 2 17 x86 64.manylinux2014 x86 64.whl (42.1 MB) - 42.1/42.1 MB 23.1 MB/s eta 0:00:00 Downloading numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383 kB) 383.4/383.4 kB 49.9 MB/s eta 0:00:00 Downloading pytz-2023.3.post1-py2.py3-none-any.whl (502 kB) - 502.5/502.5 kB 26.7 MB/s eta 0:00:00 Downloading zipp-3.16.2-py3-none-any.whl (7.2 kB) Building wheels for collected packages: ete3, pysais Building wheel for ete3 (setup.pv) ... done Created wheel for ete3: filename=ete3-3.1.3-py3-none-any.whl size=2273785 sha256=4ccfdde9ed73794ac9d307a1f40e1f9024e9396bf04d42d0e90a759a40eddee5 Stored in directory: /home/gitpod/.cache/pip/wheels/ad/2e/cc/edcca721b423e1604c84f480a1e8e0547a223bfc068d373259 Building wheel for pysais (pyproject.toml) ... done Created wheel for pysais: filename=PySAIS-1.1.0-cp39-cp39-linux x86 64.whl size=208050 sha256=49fa1a68eae838e42724a7873ec6eacd603bf99958ff601a9c8020bbb2c11de6 Stored in directory: /home/gitpod/.cache/pip/wheels/61/23/b1/f9fa092122f602b8820f2cf75d454dd3b3f7739e0819e0b902 Successfully built ete3 pysais Installing collected packages: verboselogs, pvtz, pv-cpuinfo, msgpack, ete3, zipp, tzdata, tgdm, six, pvparsing, pillow, packaging, numpv, MarkupSafe, llvmlite, ki wisolver, humanfriendly, fonttools, Cython, cycler, blosc2, scipy, python-dateutil, property-manager, numexpr, numexpr, numex, imja2, importlib-resources, contourpy, biopy thon, tables, pandas, matplotlib, pysais, omamer, omark Successfully installed Cython-3.0.2 MarkupSafe-2.1.3 biopython-1.81 blosc2-2.0.0 contourpy-1.1.0 cycler-0.11.0 ete3-3.1.3 fonttools-4.42.1 humanfriendly-10.0 impor tlib-resources-6.0.1 jinia2-3.1.2 kiwisolver-1.4.5 llvmlite-0.40.1 matplotlib-3.8.0 msgpack-1.0.5 numba-0.57.1 numexpr-2.8.6 numpy-1.24.4 omamer-0.2.6 omark-0.2.5 packaging-23.1 pandas-2.1.0 pillow-10.0.0 property-manager-3.0 py-cpuinfo-9.0.0 pyparsing-3.1.1 pysais-1.1.0 python-dateutil-2.8.2 pytz-2023.3.post1 scipy-1.11.2 s ix-1.16.0 tables-3.8.0 tqdm-4.66.1 tzdata-2023.3 verboselogs-1.7 zipp-3.16.2 (omark) gitpod /workspace \$ (omark) gitpod /workspace \$ (omark) gitpod /workspace \$ ls

cd oma-omark/working_dir/

conda oma-omark

Quality assessment with OMArk

How to use OMAmer

Coding-gene repertoire: set of coding-genes annotated on a given genome sequence

Available on database as **proteomes**

- Missing genes
 Fragmented genes
 Inclusion of non-coding regions
 - Contamination

Lack of tool to detect all these issues!

Ancestral lineage:

- ➤ Latest ancestor clades in with 5+ representatives in OMA
- Dynamically selected from taxid or from the placements

Conserved ancestral genes:

- Gene families defined at the ancestral lineage level (ancestral gene repertoire)
- Present in at least 80% species

Completeness

Completeness

Big-headed turtle Platysternon megacephalum

Clade: Archelosauria

10,514 conserved HOGs

Number of genes: 21,371

Results - Graph summary

Hand-on exercices

https://omabrowser.org/oma/academy/

https://tinyurl.com/OMABGA24

using output of omamer from the expected_outputs

\$ cd working_dir

\$ cp ../expected_outputs/omamer/Monmon.omamer.txt omamer/

Hint: use tab to navigate between files!

https://omark.omabrowser.org/

OMArk is a software to assess the quality of gene repertoire annotated from a genomic sequence - also called proteome. It relies on comparisons to the predicted ancestral gene repertoire of the target species and to the extant gene repertoire of close species to:

- Estimate the completeness of the gene-repertoire by comparison to conserved orthologous groups.
- Estimate the proportion of accurate and erroneous gene models in the proteome.
- Detect possible contamination from other species in the proteome.

The software is available as a command-line tool on GitHub or can be executed from this webserver.

Submit genomes

