OPFN

Help | Contact Us

Find Courses About Give Now Featured Sites Search Advanced Search

Home » Courses » Mathematics » Linear Algebra » Calendar

Calendar

COURSE HOME			
COOKSE FIONE	SES #	TOPICS	KEY DATES
SYLLABUS	1	The geometry of linear equations	
	2	Elimination with matrices	
CALENDAR	3	Matrix operations and inverses	
READINGS	4	LU and LDU factorization	
	5	Transposes and permutations	Problem set 1 due
ASSIGNMENTS	6	Vector spaces and subspaces	
EXAMS	7	The nullspace: Solving $Ax = 0$	
	8	Rectangular $PA = LU$ and $Ax = b$	Problem set 2 due
STUDY MATERIALS	9	Row reduced echelon form	
	10	Basis and dimension	
TOOLS	11	The four fundamental subspaces	Problem set 3 due
RELATED RESOURCES	12	Exam 1: Chapters 1 to 3.4	
RELATED RESUURCES	13	Graphs and networks	
VIDEO LECTURES	14	Orthogonality	Problem set 4 due
	15	Projections and subspaces	
	16	Least squares approximations	
	17	Gram-Schmidt and $A = QR$	Problem set 5 due
	18	Properties of determinants	
	19	Formulas for determinants	
	20	Applications of determinants	Problem set 6 due
	21	Eigenvalues and eigenvectors	
	22	Diagonalization	
	23	Markov matrices	Problem set 7 due
	24	Review for exam 2	
	25	Exam 2: Chapters 1-5, 6.1-6.2, 8.2	
	26	Differential equations	
	27	Symmetric matrices	
	28	Positive definite matrices	
	29	Matrices in engineering	Problem set 8 due
	30	Similar matrices	
	31	Singular value decomposition	Problem set 9 due
	32	Fourier series, FFT, complex matrices	

SES #	TOPICS	KEY DATES
33	Linear transformations	
34	Choice of basis	Problem set 10 due
35	Linear programming	
36	Course review	
37	Exam 3: Chapters 1-8 (8.1, 2, 3, 5)	
38	Numerical linear algebra	
39	Computational science	
40	Final exam	

FIND COURSES

Find by Topic
Find by Course Number
Find by Department
Instructional Approach
Teaching Materials
New Courses
Most Visited Courses
OCW Scholar Courses
Audio/Video Courses
Courses with Subtitles
Online Textbooks
Instructor Insights
Supplemental Resources
Translated Courses
View All Courses

ABOUT

About OpenCourseWare Site Statistics OCW Stories News Press Releases

TOOLS

Help & FAQs Contact Us Advanced Search Site Map Privacy & Terms of Use RSS Feeds

GIVE NOW

Make a Donation
Why Give?
Our Supporters
Other Ways to Contribute
Shop OCW
Become a Corporate
Sponsor

FEATURED SITES

Highlights for High School
OCW Educator
MIT Crosslinks and OCW
MITx and Related OCW
Courses
MIT+K12 Videos
Teaching Excellence at MIT
Outreach@MIT
Open Education Consortium

OUR CORPORATE SUPPORTERS

ABOUT MIT OPENCOURSEWARE

Massachusetts Institute of Technology

MIT OpenCourseWare makes the materials used in the teaching of almost all of MIT's subjects available on the Web, free of charge. With more than 2,400 courses available, OCW is delivering on the promise of open sharing of knowledge. Learn more »

Massachusetts Institute of Technology

Your use of the MIT OpenCourseWare site and materials is subject to our Creative Commons License and other terms of use.