Appendix B. Input Data

Appendix B.1. Physical Parameters

Molecular Diffusion. Type 1 is calculated from

$$b = AT^s (B.1)$$

Type 2 is calculated from

$$b = AT^s \exp\left(-S/T\right) \tag{B.2}$$

Type 3 from

$$b = AT^{s} \left[\ln(\phi/kT) \right]^{-2} \exp\left(-S/T - S'/T^{2} \right)$$
 (B.3)

Parameters for all these types are obtained from Mason et al. [1, 2].

Type 4 is calculated from the kinetic theory formula based on a Lennard-Jones 6-12 potential

$$b_{i,j} = \frac{3}{16} \frac{\sqrt{2\pi k^3 T/\mu_{i,j}}}{\pi \sigma_{i,j}^2 \Omega^{(1,1)*}(T_{i,j}^*)}$$
(B.4)

where $\mu_{i,j}$ is the reduced collision mass , $\sigma_{i,j}$ is the collision diameter, and $\Omega^{(1,1)\star}(T_{i,j}^{\star})$ is a Chapman-Cowling transport integral calculated at the reduced temperature

$$T_{i,j} \star = kT/\epsilon_{i,j} \tag{B.5}$$

The force parameter $\epsilon_{i,j}$ and collision diameter $\sigma_{i,j}$ are calculated from the Lennard-Jones parameters for the individual molecules by

$$\sigma_{i,j} = \frac{1}{2} \left(\sigma_i + \sigma_j \right) \tag{B.6}$$

$$\epsilon_{i,j} = \sqrt{\epsilon_i \epsilon_j}$$
 (B.7)

Lennard-Jones parameters are obtained from Poling et al. [3].

For molecules not included in the table, the binary diffusion parameter is obtained from the kinetic theory expression for hard sphere collisions

$$b = \frac{3}{8} \frac{kT/\mu}{\sqrt{\pi}\sigma^2} \tag{B.8}$$

	Г	able B.1: Mole	cular diff	usion coeff	icients.	
Species	Type	A	s	S	S'	ϕ/k
$\overline{\mathrm{CH}_4}$	1	7.34×10^{16}	0.750	0	0	0
$^{40}\mathrm{Ar}$	1	6.73×10^{16}	0.749	0	0	0
H_2	1	1.88×10^{17}	0.820	0	0	0
$C_2H_2^{(a)}$	1	7.91×10^{16}	0.730	0	0	0
C_2H_4	1	7.77×10^{16}	0.730	0	0	0
C_2H_6	1	3.74×10^{16}	0.774	0	0	0
$C_4 H_2^{(a)}$	1	6.54×10^{16}	0.668	0	0	0
N	1	9.69×10^{16}	0.774	0	0	0
HCN	4	$1.17{ imes}10^{16}$	1.012	0	0	0
HNC	4	$1.17{ imes}10^{16}$	1.012	0	0	0
$\mathrm{H_2O}$	1	1.38×10^{16}	1.072	0	0	0
CO	3	3.24×10^{19}	0.576	-36.23	3.83×10^{3}	1.57×10^{8}
CO_2	2	2.32×10^{17}	0.570	113.6	0	0
$H_2CO^{(b)}$	3	3.19×10^{19}	0.576	-36.23	3.83×10^{3}	1.57×10^{8}

 $[\]underline{\text{H}_2\text{CO}}$ 5 3.19×10 $^{(a)}$ Estimated from the values for C_2H_4 and C_2H_6 . $^{(b)}$ Estimated from the value for CO.

- [1] E. Mason, T. Marrero, The diffusion of atoms and molecules, in: D. Bates, I. Esterman (Eds.), Advances in Atomic and Molecular Physics, Vol. 6, Academic Press, New York, 1970, pp. 155–232.
- [2] T. Marrero, E. Mason, Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data 1 (1972) 3–118.
- [3] B. Poling, J. Prausnitz, J. O'Connell, Properties of Gases and Liquids, 5th Edition, McGraw-Hill Education: New York, 2001.

Saturation Vapor Pressure.

- [1] N. Fray, B. Schmitt, Sublimation of ices of astrophysical interest: A bibliographic review, Planet. Space Sci. 57 (2009) 2053–2080.
- [2] J. Moses, M. Allen, Y. Yung, Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere, Icarus 99 (1992) 318–346.
- [3] A. Tickner, F. Lossing, The measurement of low vapor pressures by means of a mass spectrometer, J. Phys. Colloid Chem. 55 (1951) 733–740.
- [4] J. Loison, E. Hébrard, M. Dobrijevic, K. Hickson, F. Caralp, V. Hue, G. Gronoff, O. Venot, Y. Benilan, The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan, Icarus 247 (2015) 218–247.

pressures.	
vapor	
Saturation	
B.2:	
Table	

	Tana Distriction and Distriction		
Species	Expression (μbar)	T (K)	Ref.
$C_{2}H_{2}$	$10^6 \times e^{(13.4 - 2536/T)}$	< 192	[1]
$\mathrm{C}_2\mathrm{H}_4$	$10^6 \times e^{(1.540 \times 10^4 - 2.206 \times 10^3/T - 1.216 \times 10^4/T^2 + 2.843 \times 10^5/T^3 - 2.203 \times 10^6/T^4)}$	20-104	
$\mathrm{C_2H_6}$	$10^6 \times e^{(1.511 \times 10^1 - 2.207 \times 10^3/T - 2.411 \times 10^4/T^2 + 7.744 \times 10^5/T^3 - 1.161 \times 10^7/T^4 + 6.763 \times 10^7/T^5)}$	20-90	Ī
$\widetilde{\mathrm{CH}_3\mathrm{CCH}}$	$1333 \times 10^{(7.7759 - 1240.32/T)}$	162 - 250	<u>[</u> [2]
$\mathrm{CH_2^{'}CCH_2}$	$1333 \times 10^{(7.7759-1240.32/T)}$	1	assumed same as CH ₃ CCH
$\mathrm{C_3H_6}$	$1333 \times 10^{(7.7759-1240.32/T)}$	1	assumed same as CH ₃ CCH
$\mathrm{C_3H_8}$	$1333 \times 10^{(8.16173-1176/T)}$	105-238	based on data from [3]
$ ext{C}_4^{} ext{H}_2^{}$	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	127 - 249	[2]
$\mathrm{C}_4^{H_4^{G}}$	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	ı	assumed same as C_4H_2
$\mathrm{C_4^{}H_6^{}}$	$1333 \times 10^{(8.032581-1441.42/T)}$	181-282	2
$\mathrm{C_4H_8}$	$1333 \times 10^{(8.032581-1441.42/T)}$	ı	assumed same as C_4H_6
$\mathrm{C_4H_{10}}$	$1333 \times 10^{(8.446 - 1461.2/T)}$	128 - 196	[2]
$\mathrm{C_{6}H_{2}^{-}}$	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	1	assumed same as C_4H_2
$\mathrm{C_{6}H_{6}^{-}}$	$10^6 \times e^{(1.735 \times 10^4 - 5.663 \times 10^3/T)}$	< 279	[1]
$^{\circ}_{ m NH_3}$	$10^6 \times e^{(1.596 \times 10^1 - 3.537 \times 10^3/T - 3.310 \times 10^4/T^2 + 1.742 \times 10^6/T^3 - 2.995 \times 10^7/T^4)}$	15-195	[1]
$ m N_2H_4$	$10^6 \times e^{(1.596 \times 10^1 - 3.537 \times 10^3/T - 3.310 \times 10^4/T^2 + 1.742 \times 10^6/T^3 - 2.995 \times 10^7/T^4)}$,	assumed same as NH_3
$ m CH_2 m NH$	$10^3 \times e^{(19.413-333.325/T)}$	ı	assumed same as CH ₂ NH
$\mathrm{CH_3NH_2}$	$10^3 \times e^{(19.413-3333.325/T)}$	196-267	[4]
HCN	$10^6 \times e^{(1.393\times10^1 - 3.624\times10^3/T - 1.325\times10^5/T^2 + 6.314\times10^6/T^3 - 1.128\times10^8/T^4)}$	15-260	[1]
HNC	$10^6 \times e^{(1.393\times10^1 - 3.624\times10^3/T - 1.325\times10^5/T^2 + 6.314\times10^6/T^3 - 1.128\times10^8/T^4)}$	ı	assumed same as HCN
$\mathrm{CH_3CN}$	$10^3 \times e^{(18.2432 - 4017.098/T)}$	295 - 354	[4]
HC_3N	$10^6 \times e^{(1.301 \times 10^4 - 4.426 \times 10^3/T)}$	< 202	
$\mathrm{C_2H_3CN}$	$10 \times 10^{(21.058 - 2371.0/T - 1.560 \times log(T))}$	291 - 350	[4]
$\mathrm{C_2H_5CN}$	$10^3 \times e^{(18.7211 - 4352.66/T)}$	204-371	[4]
$\mathrm{HC}_5\mathrm{N}$	$10^6 \times e^{(1.301 \times 10^4 - 4.426 \times 10^3/T)}$	1	assumed same as HC_3N
C_2N_2	$10^6 \times e^{(1.653 \times 10^4 - 4.109 \times 10^3/T)}$	< 245	
C_4N_2	$10^6 \times e^{(1.909 \times 10^4 - 6.036 \times 10^3/T)}$	< 273	[1]
$ m H_2^{ m O}$	$10^6 \times 6.11657 \times 10^{-3} \times e^{(1.5 \times log(T/273.16) + (1-273.16/T) \times (20.9969665107897)}$	< 273	
	$+3.72437478271362\times (T/273.16) - 13.9205483215524\times (T/273.16)^2 + 29.6988765013566\times (T/273.16)^3$		
	$-40.1972392635944\times (T/273.16)^{4} + 29.7880481050215\times (T/273.16)^{5} - 9.13050963547721\times (T/273.16)^{6}))$		
CO_2	$10^6 \times e^{(1.476\times10^1-2.571\times10^3/T-7.781\times10^4/T^2+4.325\times10^6/T^3-1.207\times10^8/T^4+1.350\times10^9/T^5)}$	40 - 195	[1]

"log" means log base e

Appendix B.2.1. Chemical Species

Table B.3: Neutral species included in the model.

Closed-shell molecules

 $\begin{array}{l} {\rm H_2,\,CH_4,\,C_2H_2,\,C_2H_4,\,C_2H_6,\,CH_3CCH,\,CH_2CCH_2,\,C_3H_6,\,C_3H_8}\\ {\rm C_4H_2,\,C_4H_4,\,C_4H_6,\,C_4H_8,\,C_4H_{10},\,C_6H_2,\,C_6H_6,\,C_7H_8}\\ {\rm N_2,\,NH_3,\,N_2H_4,\,CH_2NH,\,CH_3NH_2,\,HCN,\,HNC,\,CH_3CN}\\ {\rm HC_3N,\,C_2H_3CN,\,C_2H_5CN,\,HC_5N,\,C_2N_2,\,C_4N_2}\\ {\rm H_2O,\,CO,\,H_2CO,\,CH_2CO,\,CH_3CHO,\,CO_2,\,HNO} \end{array}$

Radicals

H, C, CH, $^3\mathrm{CH}_2,\,^1\mathrm{CH}_2,\,\mathrm{CH}_3,\,\mathrm{C}_2,\,\mathrm{C}_2\mathrm{H},\,\mathrm{C}_2\mathrm{H}_3,\,\mathrm{C}_2\mathrm{H}_5$ C₃, C₃H, C₃H₂, C₃H₃, C₃H₅, C₃H₇ C₄H, C₄H₃, C₄H₅, C₄H₇, C₄H₉, C₆H, C₆H₃, C₆H₅, C₇H₇ N(^4\mathrm{S}), N(^2\mathrm{D}), NH, NH₂ CN, H₂CN, C₂N, HC₂N, CH₂CN, C₃N, C₂H₂CN, C₂H₄CN O(^3\mathrm{P}), O(^1\mathrm{D}), O(^1\mathrm{S}), OH, HCO, CHOH, CH₂OH, HCCO, CH₃CO NO, NCO

Table B.4: Ion species included in the model.

```
Positive ions
H^{+}, H_{2}^{+}, H_{3}^{+}, H_{5}^{+}, C^{+}, CH^{+}, CH_{2}^{+}, CH_{3}^{+}, CH_{4}^{+}, CH_{5}^{+}
C_2H^+, C_2H_2^+, C_2H_3^+, C_2H_4^+, C_2H_5^+, C_2H_6^+, C_2H_7^+
\begin{array}{l} C_{6}H^{+},\ C_{6}H_{2}^{+},\ C_{6}H_{3}^{+},\ C_{6}H_{4}^{+},\ C_{6}H_{5}^{+},\ C_{6}H_{6}^{+},\ C_{6}H_{7}^{+},\ C_{6}H_{9}^{+},\ C_{6}H_{11}^{+},\ C_{6}H_{13}^{+}\\ C_{7}H^{+},\ C_{7}H_{2}^{+},\ C_{7}H_{3}^{+},\ C_{7}H_{4}^{+},\ C_{7}H_{5}^{+},\ C_{7}H_{6}^{+},\ C_{7}H_{7}^{+},\ C_{7}H_{8}^{+},\ C_{7}H_{9}^{+}\\ C_{8}H^{+},\ C_{8}H_{2}^{+},\ C_{8}H_{3}^{+},\ C_{8}H_{4}^{+},\ C_{8}H_{5}^{+},\ C_{8}H_{6}^{+},\ C_{8}H_{7}^{+},\ C_{8}H_{9}^{+}\\ \end{array}
C_9H^+, C_9H_2^+, C_9H_3^+, C_9H_4^+, C_9H_7^+, C_9H_8^-
N<sup>+</sup>, NH<sup>+</sup>, NH<sub>2</sub><sup>+</sup>, NH<sub>3</sub><sup>+</sup>, NH<sub>4</sub><sup>+</sup>, N<sub>2</sub><sup>+</sup>, N<sub>3</sub><sup>+</sup>, N<sub>4</sub><sup>+</sup>, N<sub>2</sub>H<sup>+</sup>, N<sub>2</sub>H<sub>5</sub><sup>+</sup>
CN<sup>+</sup>, HCN<sup>+</sup>, HNC<sup>+</sup>, HCNH<sup>+</sup>, CH<sub>2</sub>NH<sup>+</sup>, CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>, CH<sub>3</sub>NH<sub>2</sub><sup>+</sup>, CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>
CNC^+, C_2N^+, HC_2N^+, HC_2NH^+, C_2H_3N^+, C_2H_3NH^+, C_2H_5N^+
\begin{array}{l} C_{3}N^{+},\ HC_{3}N^{+},\ HC_{3}NH^{+},\ C_{3}H_{3}N^{+},\ C_{3}H_{3}NH^{+},\ C_{3}H_{5}N^{+},\ C_{3}H_{5}NH^{+},\ C_{3}H_{7}NH^{+},\ C_{3}H_{9}NH^{+}\\ C_{4}N^{+},\ HC_{4}N^{+},\ HC_{4}NH^{+},\ C_{4}H_{3}NH^{+},\ C_{4}H_{3}NH^{+},\ C_{4}H_{5}NH^{+},\ C_{4}H_{5}NH^{+},\ C_{4}H_{7}NH^{+},\ C_{4}H_{9}NH^{+}\\ \end{array}
C_5N^+, HC_5N^+, HC_5NH^+, C_5H_3N^+, C_5H_3NH^+, C_5H_5N^+, C_5H_5NH^+, C_5H_7NH^+
C_6N^+, HC_6NH^+, C_6H_3NH^+, C_6H_5NH^+, C_6H_7N^+, C_6H_7NH^+, C_6H_9NH^+
C_7N^+, HC_7N^+, HC_7NH^+, C_7H_3N^+, C_7H_3NH^+, C_7H_7NH^+
C_2N_2^+, C_2N_2H^+, C_4N_2^+, C_4N_2H^+, C_6N_2^+, C_6N_2H^+, C_xH_yN_z^+
O<sup>+</sup>, OH<sup>+</sup>, H<sub>2</sub>O<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, CO<sup>+</sup>, HCO<sup>+</sup>, HOC<sup>+</sup>, CH<sub>2</sub>O<sup>+</sup>, CH<sub>2</sub>OH<sup>+</sup>, CH<sub>3</sub>OH<sub>2</sub><sup>+</sup>
HC_2O^+, CH_2CO^+, CH_3CO^+, CH_3COH^+, CH_3CHOH^+, HC_3O^+, C_2H_2CO^+, C_2H_3CO^+
CO_2^+, OCOH^+, NO^+, HNO^+, NCO^+, HNCO^+
CH_5^+ \cdot CH_4, C_2H_5^+ \cdot CH_4, C_2H_7^+ \cdot CH_4, C_3H_7^+ \cdot CH_4, Adduct<sup>+</sup>
CH_2^+ \cdot N_2, CH_3^+ \cdot N_2, CH_5^+ \cdot N_2, C_2H_5^+ \cdot N_2, C_3H_7^+ \cdot N_2
CH<sub>5</sub><sup>+</sup>·HNC, HCNH<sup>+</sup>·CH<sub>4</sub>, HCNH<sup>+</sup>·N<sub>2</sub>, AdductN<sup>+</sup>
C_4H_3^+\cdot CO, CO^+\cdot N_2, HCO^+\cdot H_2, HCO^+\cdot CO
```

Negative ions

 $H^-, CH_2^-, CH_3^-, C_2H^-, C_4H^-, C_6H^-, CN^-, C_3N^-, C_5N^-, O^-, OH^-, C_xH_yN_z^-$

Appendix B.2.2. Primary Processes

Table B.5: Energy thresholds and references for $\rm N_2,\,CH_4$ and CO dissociation and ionization by photons and electrons.

Reaction	Chann	els	$\Delta E (eV)$		Photons	Electrons
				Branching Ratios	Cross-sections	
$(J_d 1a)$	N_2	$\rightarrow N(^2D) + N(^4S)$	12.1	[1]	[2] (100-83.5)	[3]
$(J_d 1b)$	-	$\rightarrow N(^2D) + N(^2D)$	14.5	[4]	[5] (83.5-79.5)	
$(J_i 1a)$	N_2	\rightarrow N ₂ ⁺ + e^-	15.6	[6]	[7] (79.5-65.0)	[8]
$(J_i 1b)$	-	$\rightarrow N^{+} + N(^{4}S) + e^{-}$	24.3	[9]	[10] as reported in [5] (65.0-11.5)	
$(J_i 1c)$		$\rightarrow N^{+} + N(^{2}D) + e^{-}$	26.7	[11]	[12] (11.5-1.50)	
$(J_d 2a)$	CH_4	$\rightarrow CH_3 + H$	4.48	[13]	[14] (160-140)	[15, 16]
$(J_d 2b)$		\rightarrow $^{1}CH_{2} + H_{2}$	5.14		[17] (140-100)	
$(J_d 2c)$		\rightarrow CH + H ₂ + H	9.05			
$(J_d 2d)$		\rightarrow $^{3}CH_{2} + 2 H$	9.18			
$(J_i 2a)$	CH_4	$\rightarrow \text{CH}_4^+ + e^-$	12.6		[18] (95-11)	[19]
$(J_i 2b)$		$\rightarrow \text{CH}_3^+ + \text{H} + e^-$	14.3			[15, 16]
$(J_i 2c)$		$\rightarrow \text{CH}_2^+ + \text{H}_2 + e^-$	15.2			
$(J_i 2d)$		\rightarrow H ⁺ + CH ₃ + e ⁻	18.0			
$(J_i 2e)$		\rightarrow C ⁺ + H ₂ + H ₂ + e ⁻	19.4			
$(J_i 2f)$		\rightarrow CH ₂ ⁺ + H + H + e ⁻	19.7			
$(J_i 2g)$		$\rightarrow \text{CH}^{\ddagger} + \text{H}_2 + \text{H} + e^-$	19.8			
$(J_i 2h)$		\rightarrow $\mathrm{H_{2}}^{+}$ + $^{3}\mathrm{CH_{2}}$ + e^{-}	20.2			
(J_d3a)	CO	$\rightarrow O(^{3}P) + C(^{3}P)$	11.1	[20]	[21] (100-60)	
$(J_d 3b)$		$\rightarrow O(^{1}D) + C(^{1}D)$	13.1	[20]	[22] (60-1.50)	
$(J_i 3a)$		\rightarrow CO ⁺ + e^-	14.0	[23, 24]		
$(J_i 3b)$		$\rightarrow C^{+} + O(^{3}P) + e^{-}$	22.6	[25, 24]		
(J_i3c)		\rightarrow O ⁺ + C(3 P) + e^{-}	24.6	[25, 24]		

Notes. ΔE is the adiabatic energy threshold for the given reaction channel.

The values in parenthesis represent the energy range in nm.

CO is largely shielded from photolysis by N_2 and CH_4 but we do include photoionization. Predissociation in the electronic band systems is not included.

- [1] C. W. Walter, P. C. Cosby, H. Helm, $N(^4S_0)$, $N(^2D_0)$ and $N(^2P_0)$ yields in predissociation of exacted singlet state of N_2 , J. Chem. Phys. 99 (1993) 3553–3561.
- [2] P. Lavvas, M. Galand, R. Yelle, A. Heays, B. Lewis, G. Lewis, A. Coates, Energy deposition and primary chemical products in Titan's upper atmosphere, Icarus 213 (2011) 233–251.
- [3] Y. Itikawa, Cross Sections for electron collisions with nitrogen molecules, J. Phys. Chem. Ref. Data 35 (2006) #31.
- [4] B. Lewis, S. Gibson, W. Zhang, H. Lefebvre-Brion, J.-M. Robbe, Predissociation mechanism for the lowest ${}^{1}\Pi_{u}$ states of N₂, J. Chem. Phys. 122 (2005) #144302.
- [5] J. Fennelly, D. Torr, Photoionization and photoabsorption cross sections of O, N₂, O₂, and N for aeronomic calculations, At. Data Nucl. Data Tables 51 (1992) 321–363.
- [6] T. Aoto, K. Ito, Y. Hikosaka, A. Shibasaki, R. Hirayama, N. Yamamono, E. Miyoshi, Inner-valence states of N₂⁺ and the dissociation dynamics studied by threshold photoelectron spectroscopy and configuration interaction calculation, J. Chem. Phys. 124 (2006) #234306.
- [7] D. A. Shaw, D. M. P. Holland, M. A. Macdonald, A. Hopkirk, M. A. Hayes, S. M. McSweeney, A study of the absolute photoabsorption cross section and the photoionization quantum efficiency of nitrogen from the ionization threshold to 485 Å, Chem. Phys. 166 (1992) 379–391.
- [8] D. Shemansky, X. Liu, Evaluation of electron impact excitation of N₂ X $^{1}\Sigma_{g}^{+}(0)$ into the N₂⁺ X $^{2}\Sigma_{g}^{+}(\nu)$, A $^{2}\Pi_{u}^{+}(\nu)$, and B $^{2}\Sigma_{u}^{+}(\nu)$ states, J. Geophys. Res. 110 (2005) #A07307.

- [9] K. Kirby, E. Constantinides, S. Babeu, M. Oppenheimer, G. Victor, Photoionization and photoabsorption cross sections of He, O, N_2 and O_2 for aeronomic calculations, At. Data Nucl. Data Tables 23 (1979) 63–81.
- [10] J. A. R. Samson, T. Masuoka, P. N. Pareek, G. C. Angel, Total and dissociative photoionization cross sections of N₂ from threshold to 107 eV, J. Chem. Phys. 86 (1987) 6128–6132.
- [11] S. Krummacher, V. Schmidt, F. Wuilleumier, Inner-shell photoionisation in molecules: the nitrogen case, J. Phys. B: Atom. Molec. Phys. 13 (1980) 3993–4005.
- [12] W. Stolte, Z. He, J. Cutler, Y. Lu, J. Samson, Dissociative photoionization cross sections of N_2 and O_2 from 100 to 800 eV, At. Data Nucl. Data Tables 69 (1998) 171–179.
- [13] B. Gans, S. Boyé-Péronne, M. Broquier, M. Delsaut, S. Douin, C. Fellows, P. Halvick, J.-C. Loison, R. Lucchese, D. Gauyacq, Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry, Phys. Chem. Chem. Phys. 13 (2011) 8140–8152.
- [14] G. H. Mount, E. S. Warden, H. W. Moos, Photoabsorption cross sections of methane from 1400 to 1850 Å, Astrophys. J. 214 (1977) L47–L49.
- [15] D. Erwin, J. Kunc, Electron-impact dissociation of the methane molecule into neutral fragments, Phys. Rev. A 72 (2005) 052719–052724.
- [16] D. Erwin, J. Kunc, Dissociation and ionization of the methane molecule by nonrelativistic electrons including the near threshold region, J. Appl. Phys. 103 (2008) #064906.
- [17] L. Lee, C. Chiang, Fluorescence yield from photodissociation of CH_4 at 1060-1420 Å, J. Chem. Phys. 78 (1983) 688–691.
- [18] J. Samson, G. Haddad, T. Masuoka, P. Pareek, D. Kilcoyne, Ionization yields, total absorption, and dissociative photoionization cross sections of CH₄ from 110-950 Å, J. Chem. Phys. 90 (1989) 6925–6932.
- [19] X. Liu, D. Shemansky, Analysis of electron impact ionization properties of methane, J. Geophys. Res. 111 (2006) A04303-A04319.
- [20] M. McElroy, J. C. McConnell, Atomic carbon in the atmospheres of Mars and Venus, J. Geophys. Res. 76 (1971) 6674–6690.
- [21] G. Cook, P. Metzger, M. Ogawa, Photoionization and absorption coefficients of CO in the 600 to 1000 Å region, Can. J. Chem. 43 (1965) 1706–1722.
- [22] W. Chan, G. Cooper, C. Brion, Absolute optical oscillator strengths for discrete and continuum photoabsorption of carbon monoxide (7-200 eV) and transition moments for the X $^1\Sigma^+ \to A$ $^1\Pi$ system, Chem. Phys. 170 (1993) 123–138.
- [23] R. Cairns, J. Samson, Absorption and photoionization cross sections of CO₂, CO, Ar, and He at intense solar emission lines, J. Geophys. Res. 70 (1965) 99–104.
- [24] T. Masuoka, J. Samson, Dissociative and double photoionization of CO from threshold to 90 Å, J. Chem. Phys. 74 (1981) 1093–1097.
- [25] P. Kronebusch, J. Berkowitz, Photodissociative ionization in the 21-41 eV region: O_2 , N_2 , CO, NO, CO_2 , H_2O , NH_3 and CH_4 , Int. J. Mass Spectrom. Ion Phys. 22 (1976) 283–306.

Table B.6: Photodissociation reactions

217 217 218 219 2200 2325 34 42 200 2000			ΔE (nm)	$\lambda \ (\mathrm{nm})$	Branching Ratios Values $(\%)$	Ref.	$\lambda \; (\mathrm{nm})$	Cross-sections T (K) Ref.	ctions Ref.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н,	1		Not included (cf. section 2.6.2.1)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2^{\bullet}H_2$	$\rightarrow C_2H + H$		>110	1.0	[1]	100-110	295	[2]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1				[3]	110-147	298	[4]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							147-153	195	[2]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							153-189 189-225	155 200	9][
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.H.	→ C, H, + H,	713	×118	Z;	∞c	100-185	295	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	$\rightarrow C_2 = 1.2$ $\rightarrow C_3 + 1.2$	200	>118	0.5	[0]	185-197	295	[11]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_3H_g	$\rightarrow C_2H_4 + H_3$	925	108-140 / >140	0.14 / 0.56	[12]	110-125	295	[13]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\rightarrow C_2^LH_2^+ + H_2^L + H_2$	403	_	. \	[14]	125-150	150	[15]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ ightarrow CH_3 + CH_3$ $\vec{}$	325	108-140 / > 140	0.06 / 0.00	[16]	150 - 161	295	[17]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ ightarrow ext{CH}_4^4 + {}^1 ext{CH}_2^2$	278	108-140 / >140	0.22 / 0.02					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow \text{C}_2 \text{H}_4 + 2 \text{H}$	213	_	. \					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_3CCH	$\rightarrow C_3H_2 + H_2$	394	>119	0.01	[18]	120 - 160	295	[19]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\downarrow \text{C}_3\text{H}_3 + \text{H}$	318	>119	0.89	[20]	160 - 195	233	[21]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow C_2H_2^2 + {}^1CH_2$	230	>119	0.10	[22]	195-219	183	[23]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH, CCH,	$\rightarrow C_3H_5 + H_5$	400	128-157 / >157	0.11 / 0.10	24	100-185	200	[25]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$ ightarrow ext{C}_3^{'} ext{H}_3^{'} + ext{H}_1^{'}$	322	27 /	0.0 / 0.89 / 0.90	[20]	185-229	183	[23]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow C_H$, $+ {}^1CH_2$	260	57 / 157-218 /	0.19 / 0.01 / 0.00	[26]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						[27]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_3H_6		942	>127	0.05	[28]	100-110	295	[59]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	$\downarrow \text{C}_3^{\text{H}_5} + \text{H}$	330	127-140 / > 140	\	[30]	110 - 155	295	[31]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow C_2 H_3 + CH_3$	288	140 /	\	[32]	155-200	223	[21]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow C_2 H_4 + {}^3 CH_2$	287	140 /	\	[33]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow CH_3CCH + H + H$	203	127-140 / > 140	0.14 / 0.07	[34]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow \text{CH}_2^{2}\text{CCH}_2 + \text{H} + \text{H}$	201	127-140 / > 140	0.21 / 0.10	[35]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_3H_8	$\rightarrow C_2 \dot{H}_4 + \dot{C} H_4$	1577	114-140 / >140	0.20 / 0.06	36	100 - 115	295	[13]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	$ ightarrow ext{C}_3^{-} ext{H}_6^{+} + ext{H}_2^{-}$	1024	/ 071	_	[37]	115-120	298	[38]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\downarrow \text{C}_2^{\text{H}_5} + \text{CH}_3$	329	114-140 / >140	0.38 / 0.00		120 - 160	295	[38]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow C_2^-H_6^+ + {}^1CH_2$	271	114-140 / > 140	0.09 / 0.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_4H_2	$\rightarrow C_4H+H$	215	/ 150-180 /	0.75 / 0.80 /	[40]	120-160	296	[41]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow \mathrm{C_2H_2} + \mathrm{C_2}$	203	/ 150-180 / 180-205 /	0.06 / 0.16 / 0.12 /		160 - 195	223	[42]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ ightarrow \mathrm{C_4} + \mathrm{H_2}$	192	/ 150-180 / 180-205 /	0.05 / 0.01 /		195-250	193	[43]	
$C_4H_4 \longrightarrow C_2H_2 + C_2H_2 \qquad 745 \\ \rightarrow C_4H_2 + H_2 \qquad 744 \\ \rightarrow C_4H_3 + H \qquad 287 \\ \rightarrow C_2H_3 + H \qquad 733 \\ \rightarrow C_2H_4 + C_2H_2 \qquad 701 \\ \rightarrow C_4H_6 \qquad \rightarrow C_2H_4 + H_2 \qquad 701 \\ \rightarrow C_3H_3 + CH_3 \qquad 317 \\ \rightarrow C_3H_3 + CH_3 \qquad 301 \\ \rightarrow C_3H_3 + CH_3 + CH_3 \qquad 301 \\ \rightarrow C_3H_3 + CH_3 + CH_3 \qquad 301 \\ \rightarrow C_3H_3 + CH_3 +$		$ ightarrow C_2 H + C_2 H$	179	/ 150-180 /	0.14 / 0.03 / 0.0 /					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_4H_4	$\rightarrow C_2H_2 + C_2H_2$	745	>129	99.0	[44]	160-240	220	[21]	
$C_4H_6 \longrightarrow C_2H_3 + H \qquad 287$ $C_4H_6 \longrightarrow C_2H_4 + C_2H_2 \qquad 733$ $\longrightarrow C_4H_4 + H_2 \qquad 701$ $\longrightarrow C_3H_3 + CH_3 \qquad 317$ $\longrightarrow C_7 + H_7 \qquad 911$		$ ightarrow \mathrm{C_4H_2} + \mathrm{H_2}$	744	>129	0.07					
$C_4H_6 \rightarrow C_2H_4 + C_2H_2 733$ $\rightarrow C_4H_4 + H_2 701$ $\rightarrow C_3H_3 + CH_3 317$ $\rightarrow C_3H_3 + CH_3 317$		$ ightarrow ext{C}_4^{ ext{H}}_3^{ ext{+}} + ext{H}^{ ext{-}}$	287	>129	0.27					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_4H_6	$\rightarrow \mathrm{C_2H_4} + \mathrm{C_2H_2}$	733	>137	0.20	[45]	160-240	218	[42]	
$ \downarrow C_3H_3 + CH_3 \qquad 317 $ $ \downarrow C_3H_3 + H_3 \qquad 301 $		$ ightarrow \mathrm{C_4H_4} + \mathrm{H_2}$	701	>137	0.02					
<u>п</u> н н н н н н н н н н н н н н н н н н н		C_3H_3	317	>137	0.50					
7 C4 II 231		$\rightarrow C_4H_5+H$	291	>137	0.20					
		$ ightarrow \mathrm{C_2H_3} + \mathrm{C_2H_3}$	251	>137	0.08					

 $\frac{[80]}{\text{Same as } C_2H_2}$ Cross-sections T (K) Ref. [29] [31] [48] [38] [51][69] [71]67 73 75 76 78 298 298 296 300 295 250 295 300 296 296 298 175 298 295 298 $\frac{295}{213}$ 298 298 296 295 295 $\begin{array}{c} 100 \text{--} 115 \\ 115 \text{--} 210 \\ 210 \text{--} 270 \end{array}$ 100-105 105-115 115-205 185-240 240-270 140-175 175-225 191-291 $\frac{100-152}{152-217}$ 120 - 185 185 - 300100-106 106-184 100-165 185-230 100-105 105-190 $\lambda \; (\mathrm{nm})$ 234-260 100 - 249120 - 160Estimate after C₂ H₃CN Estimate after C₄H₂ Ref. [53][46] [47] 39] 49] 50] $\begin{array}{c} 57 \\ 59 \\ \hline 61 \\ \end{array}$ 64 66 [68] [72][74] [77] [79]) / 0.88 / 1.0 3 / 0.12 / 0.0 1 / 0.0 / 0.0 3 / 0.0 / 0.0 Table B.6 – Continued from previous page Branching Ratios Values (%) / 0.07 / 0.01 / 0.46 / 0.00 / 0.44 / 0.00 / 0.01 / 0.01 / 0.80 / 0.16 / 0.01 / 0.03 0.01 0.12 0.70 0.10 0.03 0.03 , 1.0 , 0.0 $0.55 \\ 0.20$ 1.0 / 0.0 / 0.05 0.20 0.40 0.15 0.10 0.05 0.20 0.00 0.04 0.00 0.27 0.08 0.75 $0.75 \\ 0.25$ $0.57 \\ 0.43$ 0.59 0.04 0.12 0.24 0.01 0.16 0.59 0.01 0.24 1.0 0.1 1.0 1.0 1.0 180-205 / >205 180-205 / >205 180-205 / >205 180-205 / >205 Not included (cf. section 2.6.2.1) 150-180 / 150-180 / 150-180 / 150-180 / 140-160 140-160 140-160 140-160 140-160 140-160 >124 139-165 / >165 139-165 / >165 >150 >150 >150 >150 107-191 / >191130-150 / 130-150 / 130-150 / 130-150 / 130-150 / 130-150 / 130-150 / 131-150 / 131-150 / 131-150 / 131-150 / >153 >140 >123 653 295 270 213 191 668 528 528 345 273 273 221 864 840 $\frac{354}{229}$ 224 211 237 → C₄H₆+H₂ → CH₃CCH+CH₄ → C₄H₇+H₂ → C₃H₆+CH₄ → C₃H₆+CH₃+CH₃ → C₂H₇+CH₃+CH₃ → C₂H₇+C₂H₂+H → C₂H₄+C₂H₂+H → C₂H₄+CH₄ → C₂H₆+C₂H₃+H → C₂H₆+C₂H₄ → C₂H₆+C₂H₆ → C₂H₆+C₂H₆ → C₂H₇+CH₃+H → C₄H₇+CH₃+H → C₄H₇+CH₃+H → C₄H₇+CH₃+H → C₄H₇+CH₃+H → C₄H₇+C₄H₇+CH₃ → C₄H₇+C₄H₇+C₄H₇ → C₆H₇+C₄H₇+C₄H₇+C₄H₇+C₄H₇+C₅H₇+C₆H₇+C₆H₇+C₇H₇ $\begin{array}{l} \rightarrow \mathrm{CH_2NH} + \mathrm{H} + \mathrm{H} \\ \rightarrow \mathrm{HCN} + \mathrm{H_2} + \mathrm{H} + \mathrm{H} \end{array}$ $\begin{array}{c} \rightarrow \text{HC}_{3}\text{N} + \\ \rightarrow \text{HNC} + \text{C}_{2}\text{H}_{2} \\ \rightarrow \text{HNC} + \text{C}_{2}\text{H}_{2} \\ \rightarrow \text{HCN} + \text{C}_{2}\text{H}_{2} \\ \rightarrow \text{CN} + \text{CQ}_{2}\text{H}_{3} \\ \rightarrow \text{CN} + \text{C}_{2}\text{H}_{4} \\ \rightarrow \text{CN} + \text{C}$ \rightarrow HCN + H + H C_3N+H $CN+C_2H$ $\downarrow N_2H_3 + H$ $\downarrow CN + H$ $\rightarrow \text{CN} + \text{CH}_3$ $C_6H_5+\overline{H}$ ↑ ↑ C_2H_5CN CH3NH2 CH_3CN Reaction Channels C_4H_{10} CH_2NH HC_3N C_6H_2 $\mathrm{C_6H_6}$ C_4H_8 N_2H_4 HCN $^{
m NH}_3$ $\begin{array}{c} (J_d 12a) \\ (J_d 12b) \\ (J_d 12b) \\ (J_d 12c) \\ (J_d 12d) \\ (J_d 12f) \\ (J_d 12f) \\ (J_d 12h) \\ (J_d 13h) \\ (J_d 13e) \\$ $\begin{array}{c} \left(J_{d}25a \right) \\ \left(J_{d}25b \right) \\ \left(J_{d}25c \right) \\ \left(J_{d}25c \right) \\ \left(J_{d}26a \right) \\ \left(J_{d}26a \right) \\ \left(J_{d}26b \right) \\ \left(J_{d}26c \right) \end{array}$ $(J_d 14a)$ $(J_d 14b)$ $(J_d 14c)$ $(J_d 14d)$ $\frac{\left(J_d 21\right)}{\left(J_d 22a\right)}$ $\left(J_d 22b\right)$ $(J_d 23)$ $(J_d 15)$ $(J_d 18)$ $(J_d 17)$ $(J_d 19)$ $(J_d 20)$

Reaction Channels		ΔE		Branching Ratios			Cross-sections	ctions
		(mm)	$\lambda \; (\mathrm{nm})$	Values (%)	Ref.	$\lambda \; (\mathrm{nm})$	T (K)	Ref.
HC,N	$\rightarrow C_5N+H$	209	<174 / >174		Estimate after HC ₃ N	115-298	233	[81]
)	$\downarrow \text{CN} + \text{C}_4\text{H}$	189	<174 / >174	0.25 / 0.0)			
	$\downarrow \text{C}_3\text{N} + \text{C}_2\text{H}$	176	<174 / >174	0.25 / 0.0				
C_2N_2	$\downarrow \text{CN} + \text{CN}$	213	>100	1.0	[82]	100-114	295	[29]
						114 - 170	295	[72]
						185-214	293	$LISA^a$
						214 - 225	183	${ m LISA}^a$
C_4N_2	+ C ₃ N + CN	193	>105	1.0	[83]	100-176	295	[75]
1	o					195-275	233	$LISA^a$
H_2O	H + HO ←	243	<124 / 124-140 / >140	0.78 / 0.89 / 1.0	[84]	100-115	298	[82]
	$\rightarrow O(^{1}D) + H_{2}$	179	<140 / >140	0.11 / 0.0	[88]	115-194	298	[87]
	$\rightarrow O(^{3}P) + H + H$	129	<124 / >124	0.11 / 0.0	[88]			
H ₂ CO	\rightarrow CO + H ₂	361	114-250 / > 250		[68]	100-225	298	[06]
	\rightarrow HCO + $\overline{\text{H}}$	330	114-250 / >250	0.5 / Table B.7	[91]	225-375	223	[92]
CH_2CO	\rightarrow CO + 3 CH ₂	371	129-332 / > 332	0.0 / 1.0	[63]	290-354	298	[94]
ı	\rightarrow CO + 1 CH ₂	332	129-332 / > 332	1.0 / 0.0	[92]			
CH_3CHO	\rightarrow CO + CH ₄	<i>q</i> -	>113	1.0	[91]	113-184	298	[96]
,	,					202-300	298	[91]
CO_2	$\rightarrow CO + O(^{3}P)$	228	>100	Table B.8	[26]	100-117	298	[86]
	$\downarrow \text{CO} + \text{O}(^{1}\text{D})$	167	>100	Table B.8	[66]	117 - 163	195	[100]
	$\rightarrow \text{CO} + \text{O}(^{1}\text{S})$	129	>100	Table B.8		163-192	195	[101]

 $\label{eq:Notes.} \textbf{Notes.} \ ^a LISA \ cross-sections \ are \ taken \ from \ http://www.lisa.univ-paris12.fr/GPCOS/SCOOPweb/index.html. \\ ^b Exothermic reaction.$

- [1] A. Läuter, K. Lee, K. Jung, R. Vatsa, J. Mittal, H.-R. Volpp, Absolute primary H atom quantum yield measurements in the 193.3 and 121.6 nm photodissociation of acetylene, Chem. Phys. Lett. 358 (2002) 314–319.
- [2] G. Cooper, G. Burton, C. Brion, Absolute UV and soft X-ray photoabsorption of acetylene by high resolution dipole (e,e) spectroscopy, J. Electron Spectrosc. Rel. Phenomena 73 (1995) 139–148.
- [3] T. Kovács, M. Blitz, P. Seakins, H-atom yields from the photolysis of acetylene and from the reaction of C₂H with H₂, C₂H₂, and C₂H₄, J. Phys. Chem. A 114 (2010) 4735–4741.
- [4] T. Nakayama, K. Watanabe, Absorption and photoionization coefficients of acetylene, propyne, and 1-butyne, J. Chem. Phys. 40 (1964) 558–561.
- [5] P. Smith, K. Yoshino, W. Parkinson, K. Ito, G. Stark, High resolution VUV (147-201 nm) photoabsorption cross sections for C_2H_2 at 195 and 295 K, J. Geophys. Res. 96 (1991) 17529–17533.
- [6] R. Y. Wu, T. S. Chien, G. S. Liu, D. L. Judge, J. J. Caldwell, Photoabsorption and direct dissociation cross sections of $\rm C_2H_2$ in the 1530-1930 Å region: A temperature dependant study, J. Chem. Phys. 91 (1989) 272–280.
- [7] Y. Bénilan, N. Smith, A. Jolly, F. Raulin, The long wavelength range temperature variations of the mid-UV acetylene absorption coefficient, Planet. Space Sci. 48 (2000) 463–471.
- [8] B. A. Balko, J. Zhang, Y. T. Lee, Photodissociation of ethylene at 193 nm, J. Chem. Phys. 97 (1992) 935–942.
- [9] D. Holland, D. Shaw, M. Hayes, L. Shpinkova, E. Rennie, L. Karlsson, P. Baltzer, B. Wannberg, A photoabsorption, photodissociation and photoelectron spectroscopy study of C₂H₄ and C₂D₄, Chem. Phys. 219 (1997) 91–116.
- [10] S.-H. Lee, Y. Lee, X. Yang, Dynamics of photodissociation of ethylene and its isotopomers at 157 nm: Branching ratios and kinetic-energy distributions, J. Chem. Phys. 120 (2004) 10983–10991.
- [11] V. Orkin, R. Huie, M. Kurylo, Rate constants for the reactions of OH with HFC-245cb (CH₃CF₂CF₃) and some fluoroalkenes (CH₂CHCF₃, CH₂CFCF₃, CF₂CFCF₃, and CF₂CF₂), J. Phys. Chem. A 101 (1997) 9118–9124.
- [12] H. Akimoto, K. Obi, I. Tanaka, Primary process in the photolysis of ethane at 1236 Å, J. Chem. Phys. 42 (1965) 3864–3868.
- [13] K. Kameta, S. Machida, M. Kitajima, M. Ukai, N. Kouchi, Y. Hatano, K. Ito, Photoabsorption, photoionization, and neutral-dissociation cross sections of C_2H_6 and C_3H_8 in the extreme-uv region, J. Electron Spectrosc. Relat. Phenom. 79 (1996) 391–393.
- [14] J. R. Hampson, J. McNesby, Vacuum-ultraviolet photolysis of ethane at high temperature, J. Chem. Phys. 42 (1965) 2200–2208.
- [15] F. Chen, C. Wu, Temperature-dependent photoabsorption cross sections in the VUV-UV region. I. Methane and ethane, J. Quant. Spectrosc. Radiat. Transfer 85 (2004) 195–209.
- [16] S. Lias, G. Collin, R. Rebbert, P. Ausloos, Photolysis of ethane at 11.6-11.8 eV, J. Chem. Phys. 52 (1970) 1841–1851.
- [17] A. Lee, Y. Yung, B.-M. Cheng, M. Bahou, C.-Y. Chung, Y.-P. Lee, Enhancement of deuterated ethane on Jupiter, Astrophys. J. 551 (2001) L93–L96.
- [18] K. Seki, H. Okabe, Photodissociation of methylacetylene at 193 nm, J. Phys. Chem. 96 (1992) 3345–3349.

- [19] G. Ho, M. Lin, Y. Wang, T. Chang, Photoabsorption and photoionization of propyne, J. Chem. Phys. 109 (1998) 5868–5879.
- [20] C.-K. Ni, J. Huang, Y. Chen, A. Kung, W. Jackson, Photodissociation of propyne and allene at 193 nm with vacuum ultraviolet detection of the products, J. Chem. Phys. 110 (1999) 3320–3325.
- [21] A. Fahr, A. Nayak, Temperature dependant ultraviolet absorption cross sections of propylene, methylacetylene and vinylacetylene, Chem. Phys. 203 (1996) 351–358.
- [22] J. DeSain, C. Taatjes, Infrared laser absorption measurements of the kinetics of propargyl radical self-reaction and the 193 nm photolysis of propyne, J. Phys. Chem. A 107 (2003) 4843–4850.
- [23] Y. Bénilan, A. Jolly, F. Raulin, Comparative IR and UV spectroscopic studies of allene and methylacetylene: Implication for observation and modeling of Titan atmosphere, Bull. Am. Astron. Soc. 31 (1999) #1169.
- [24] W. Jackson, D. Anex, R. Continetti, B. Balko, Y. Lee, Molecular beam studies of the photolysis of allene and the secondary photodissociation of the C₃H_x fragments, J. Chem. Phys. 95 (1991) 7327– 7336.
- [25] F. Chen, D. Judge, C. Wu, Temperature dependent photoabsorption cross sections of allene and methylacetylene in the VUV-UV region, Chem. Phys. 260 (2000) 215–223.
- [26] S. Harich, Y. Lee, X. Yang, Photodissociation dynamics of allene at 157 nm, Phys. Chem. Chem. Phys. 2 (2000) 1187–1191.
- [27] J. Robinson, N. Sveum, S. Goncher, D. Neumark, Photofragment translational spectroscopy of allene, propyne, and propyne-d3 at 193 nm, Mol. Phys. 103 (2005) 1765–1783.
- [28] P. Borrell, A. Cervenka, J. W. Turner, Pressure effects and quantum yields in the photolysis of ethylene and propene at 185 nm, J. Chem. Soc. B 2 (1971) 2293–2298.
- [29] H. Koizumi, T. Yoshimi, K. Shinsaka, M. Ukai, M. Morita, Y. Hatano, VUV-optical oscillator strength distributions of C₃H₆ and C₄H₈ isomers, J. Chem. Phys. 82 (1985) 4856–4861.
- [30] G. Collin, H. Deslauriers, J. Deschenes, Photolyse du propène et du méthyl-2-butène vers 174 et à 163 nm, Can. J. Chem. 57 (1979) 870–875.
- [31] J. Samson, F. Marmo, K. Watanabe, Absorption and photoionization coefficients of propylene and butene-1 in the vacuum ultraviolet, J. Chem. Phys. 36 (1962) 783–786.
- [32] J. Niedzielski, M. Włodzimierz, J. Gawłowski, Gas phase photolysis of propylene at 8.4 and 10.0 eV, J. Photochem. 19 (1982) 123–131.
- [33] M. Naroznik, J. Niedzielski, Propylene photolysis at 6.7 eV: Calculation of the quantum yields for the secondary processes, J. Photochem. 32 (1986) 281–292.
- [34] G. Collin, Photochemistry of simple olefins: Chemistry of electronic excited states or hot ground state?, Adv. Photochem. 14 (1988) 135–176.
- [35] T. Gierczak, J. Gawlowski, J. Niedzielski, Reactions of excited C₃H₅ radicals: Implications for the photolysis of propylene at 8.4 eV, J. Photochem. Photobiol. A 43 (1988) 1–9.
- [36] H. Okabe, J. McNesby, Vacuum ultraviolet photochemistry. IV. Photolysis of propane, J. Chem. Phys. 37 (1962) 1340–1346.
- [37] A. Laufer, J. McNesby, The chain decomposition of propane initiated by vacuum ultraviolet photolysis, J. Phys. Chem. 70 (1966) 4094–4096.
- [38] J. Au, G. Cooper, G. Burton, T. Olney, C. Brion, The valence shell photoabsorption of the linear alkanes C_nH_{2n+2} (n=1-8): Absolute oscillator strengths (7-220 eV), Chem. Phys. 173 (1993) 209–239.

- [39] H. Okabe, D. Becker, Vacuum ultraviolet photochemistry. VII. Photolysis of n-butane, J. Chem. Phys. 39 (1963) 2549–2555.
- [40] R. Silva, W. Gichuhi, C. Huang, M. Doyle, V. Kislov, A. Mebel, A. Suits, H elimination and metastable lifetimes in the UV photoexcitation of diacetylene, P. Natl. Acad. Sci. USA 105 (2008) 12713–12718.
- [41] H. Okabe, Photochemistry of acetylene at 1470 Å, J. Chem. Phys. 75 (1981) 2772–2778.
- [42] A. Fahr, A. Nayak, Temperature dependant ultraviolet absorption cross sections of 1.3-butadiene and butadiyne, Chem. Phys. 189 (1994) 725–731.
- [43] N. Smith, Y. Bénilan, P. Bruston, The temperature dependant absorption cross sections of C₄H₂ at mid ultraviolet wavelengths, Planet. Space Sci. 46 (1998) 1215–1220.
- [44] J. Stearns, T. Zwier, E. Kraka, D. Cremer, Experimental and computational study of the ultraviolet photolysis of vinylacetylene. Part II, Phys. Chem. Chem. Phys. 8 (2006) 5317–5327.
- [45] J. Robinson, S. Harris, W. Sun, N. Sveum, D. Neumark, Photofragment translational spectroscopy of 1,3-butadiene and 1,3-butadiene-1,1,4,4-d4 at 193 nm, J. Am. Chem. Soc. 124 (2002) 10211–10224.
- [46] G. Collin, P. Perrin, Photolyse dans l'ultraviolet à vide du Cis- et du trans-butène-2, Can. J. Chem. 50 (1972) 2823–2832.
- [47] H. Deslauriers, W. Makulski, G. Collin, The $\alpha(C-C)/\beta(C-H)$ ratio of the primary processes in the 184.9 nm photolysis of gaseous cis- and trans-2-butene, Can. J. Chem. 65 (1987) 1631–1638.
- [48] E. Es-sebbar, Y. Benilan, A. Farooq, Temperature-dependent absorption cross-section measurements of 1-butene (1-C₄H₈) in VUV and IR, J. Quant. Spectrosc. Radiat. Transfer 115 (2013) 1–12.
- [49] K. Obi, H. Akimoto, Y. Ogata, I. Tanaka, Photolyses of propane, n-butane, and cyclobutane at Xe and Kr resonance lines, J. Chem. Phys. 55 (1971) 3822–3828.
- [50] J.-A. A. Jackson, S. Lias, Primary processes in the photolysis of n-butane with 8.4 and 10.0 eV photons, J. Photochem. 3 (1974) 151–162.
- [51] E. Kloster-Jensen, H. Haink, H. Christen, The electronic spectra of unsubstituted monoto pentaacetylene in the gas phase and in solution in the range 1100 to 4000 Å, Helv. Chim. Acta 57 (1974) 1731–1744.
- [52] F. Shindo, Y. Bénilan, J.-C. Guillemin, P. Chaquin, A. Jolly, F. Raulin, Ultraviolet and infrared spectrum of C₆H₂ revisited and vapor pressure curve in Titan's atmosphere, Planet. Space Sci. 51 (2003) 9–17.
- [53] S.-T. Tsai, C.-K. Lin, Y. Lee, C.-K. Ni, Dissociation rate of hot benzene, J. Chem. Phys. 113 (2000) #67.
- [54] E. Koch, A. Otto, Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV, Chem. Phys. Lett. 12 (1972) 476–480.
- [55] F. Capalbo, Y. Bénilan, N. Fray, M. Schwell, N. Champion, E. Es-sebbar, T. Koskinen, I. Lehocki, R. Yelle, New benzene absorption cross sections in the VUV, relevance for Titan's upper atmosphere, Icarus 265 (2016) 95–109.
- [56] E. Pantos, J. Philis, A. Bolovinos, The extinction coefficient of benzene vapor in the region 4.6 to 36 eV, J. Mol. Spectrosc. 72 (1978) 36–43.
- [57] K. Luther, J. Troe, K.-M. Weitzel, C-C and C-H bond splits of laser-excited aromatic molecules. 2. In situ measurements of branching ratios, J. Phys. Chem. 94 (1990) 6316–6320.
- [58] H. Hippler, J. Troe, H. Wendelken, UV absorption spectra of vibrationally highly excited toluene molecules, J. Chem. Phys. 78 (1983) 5351–5357.

- [59] R. Fröchtenicht, The photodissociation of toluene studied by forward photofragment translational spectroscopy, J. Chem. Phys. 102 (1995) 4850–4859.
- [60] C. Burton, W. Noyes, Electronic energy relaxation in toluene vapor, J. Chem. Phys. 49 (1968) 1705– 1714.
- [61] M. Ashfold, R. Dixon, M. Kono, D. Mordaunt, C. Reed, Near ultraviolet photolysis of ammonia and methylamine studied by H Rydberg atom photofragment translational spectroscopy, Phil. Trans. Roy. Soc. London A 355 (1997) 1659–1676.
- [62] B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. Mebel, L. Lee, M.-C. Liang, Y. Yung, Absorption cross sections of NH₃, NH₂D, NHD₂, and ND₃ in the spectral range 140-220 nm and implications for planetary isotopic fractionation, Astrophys. J. 647 (2006) 1535–1542.
- [63] F. Chen, D. Judge, C. Wu, J. Caldwell, Low and room temperature photoabsorption cross sections of NH₃ in the UV region, Planet. Space Sci. 47 (1999) 261–266.
- [64] G. Vaghjiani, Laser photolysis studies of hydrazine vapor: 193 and 222 nm H-atom primary quantum yields at 296 K, and the kinetics of H + N_2H_4 reaction over the temperature range 222-657 K, Int. J. Chem. Kin. 27 (1995) 777–790.
- [65] G. Vaghjiani, Ultraviolet absorption cross sections for N_2H_4 vapor between 191-291 nm and $H(^2S)$ quantum yield in 248 nm photodissociation at 296 K, J. Chem. Phys. 98 (1993) 2123–2131.
- [66] L. Lee, CN(A $^2\Pi \to X$ $^2\Sigma^+$) and CN(B $^2\Sigma^+ \to X$ $^2\Sigma^+$) yields from HCN photodissociation, J. Chem. Phys. 72 (1980) 6414–6421.
- [67] J. Nuth, S. Glicker, The vacuum ultraviolet spectra of HCN, C₂N₂, and CH₃CN, J. Quant. Spectr. Rad. Trans. 28 (1982) 223–231.
- [68] M. Nguyen, D. Sengupta, T.-K. Ha, Another look at the decomposition of methyl azide and methanimine: How is HCN formed?, J. Phys. Chem. 100 (1996) 6499–6503.
- [69] A. Teslja, B. Nizamov, P. Dagdigian, The electronic spectrum of methyleneimine, J. Phys. Chem. A 108 (2004) 4433–4439.
- [70] E. Gardner, J. McNesby, Vacuum-ultraviolet photolysis of methylamine, J. Phys. Chem. 86 (1982) 2646–2651.
- [71] M.-J. Hubin-Franskin, J. Delwiche, A. Giuliani, M.-P. Ska, F. Motte-Tollet, I. Walker, N. Mason, J. Gingell, N. Jones, Electronic excitation and optical cross sections of methylamine and ethylamine in the UV-VUV spectral region, J. Chem. Phys. 116 (2002) 9261–9268.
- [72] J. Halpern, X. Tang, Production of cyanogen $(A^2\Pi)$ in the photolysis of acetonitrile at 158 nm, Chem. Phys. Lett. 122 (1985) 294–299.
- [73] M. Suto, L. Lee, Photoabsorption cross section of CH₃CN: Photodissociation rates by solar flux and interstellar radiation, J. Geophys. Res. 90 (1985) 13037–13040.
- [74] R. Silva, W. Gichuhi, V. Kislov, A. Landera, A. Mebel, A. Suits, UV photodissociation of cyanoacety-lene: A combined ion imaging and theoretical investigation, J. Phys. Chem. A 113 (2009) 11182–11186.
- [75] R. Connors, J. Roebber, K. Weiss, Vacuum ultraviolet spectroscopy of cyanogen and cyanoacetylenes, J. Chem. Phys. 60 (1974) 5011–5024.
- [76] Y. Bénilan, P. Bruston, F. Raulin, C. Cossart-Magos, J.-C. Guillemin, Mid-UV spectroscopy of propynenitrile at low temperature: Consequences on expected results from observations of Titan's atmosphere, J. Geophys. Res. 99 (1994) 17069–17074.
- [77] A. Derecskei-Kovacs, S. North, The unimolecular dissociation of vinylcyanide: A theoretical investigation of a complex multichannel reaction, J. Chem. Phys. 110 (1999) 2862–2871.

- [78] S. Eden, P. Limão-Vieira, P. Kendall, N. Mason, S. Hoffmann, S. Spyrou, High resolution photoabsorption studies of acrylonitrile, C₂H₃CN, and acetonitrile, CH₃CN, Eur. Phys. J. D 26 (2003) 201–210.
- [79] M. Wilhelm, M. Nikow, L. Letendre, H.-L. Dai, Photodissociation of vinyl cyanide at 193 nm: Nascent product distributions of the molecular elimination channels, J. Chem. Phys. 130 (2009) #044307.
- [80] K. Kanda, T. Nagata, T. Ibuki, Photodissociation of some simple nitriles in the extreme vacuum ultraviolet region, Chem. Phys. 243 (1999) 89–96.
- [81] N. Fray, Y. Bénilan, M.-C. Gazeau, A. Jolly, M. Schwell, E. Arzoumanian, T. Ferradaz, E. Es-Sebbar, J.-C. Guillemin, Temperature-dependent photoabsorption cross section of cyanodiacetylene in the vacuum UV, J. Geophys. Res. 115 (2010) #E06010.
- [82] J. Halpern, Y. Huang, Radiative lifetimes, fluorescence quantum yields and photodissociation of the C_2N_2 ($A^1\Sigma_u^-$) and ($B^1\Delta_u$) states: Evidence for sterically hindered, triplet mediated crossings to the ($X^1\Sigma_q^+$) ground state, Chem. Phys. 222 (1997) 71–86.
- [83] J. Halpern, L. Petway, R. Lu, W. Jackson, V. McCrary, W. Nottingham, Photochemistry of cyanoand dicyanoacetylene at 193 nm, J. Phys. Chem. 94 (1990) 1869–1873.
- [84] D. H. Mordaunt, M. N. R. Ashfold, R. N. Dixon, Dissociation dynamics of H₂O(D₂O) following photoexcitation at the Lyman-α wavelength (121.6 nm), J. Chem. Phys. 100 (1994) 7360-7375.
- [85] W. Chan, G. Cooper, C. Brion, The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6-200 eV), Chem. Phys. 178 (1993) 387–401.
- [86] L. Stief, W. Payne, R. Klemm, A flash photolysis-resonance fluorescence study of the formation of O(¹D) in the photolysis of water and the reaction of O(¹D) with H₂, Ar, and He, J. Chem. Phys. 62 (1975) 4000–4008.
- [87] R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. Lourenço, G. Garcia, S. Hoffmann, M. Mason, P. Ribeiro, M. Raposo, P. Limão-Vieira, Water VUV electronic state spectroscopy by synchrotron radiation, Chem. Phys. Lett. 416 (2005) 152–159.
- [88] S. Sander, R. Friedl, D. Golden, M. Kurylo, G. Moortgat, H. Keller-Rudek, P. Wine, A. Ravishankara, C. Kolb, M. Molina, B. Finlayson-Pitts, R. Huie, V. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15 (2006).
- [89] S. Glicker, L. Stief, Photolysis of formaldehyde at 1470 and 1236 Å, J. Chem. Phys. 54 (1971) 2852–2857.
- [90] G. Cooper, J. Anderson, C. Brion, Absolute photoabsorption and photoionization of formaldehyde in the VUV and soft X-ray regions (3-200 eV), Chem. Phys. 209 (1996) 61–77.
- [91] S. Sander, R. Friedl, J. Barker, D. Golden, M. Kurylo, P. Wine, J. Abbatt, J. Burkholder, C. Kolb, G. Moortgat, R. Huie, V. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 17 (2011).
- [92] R. Meller, G. K. Moortgat, Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm, J. Geophys. Res. 105 (2000) 7089-7102. doi:10.1029/1999JD901074.
- [93] C. Hayden, D. Neumark, K. Shobatake, R. Sparks, Y. Lee, Methylene singlet-triplet energy splitting by molecular beam photodissociation of ketene, J. Chem. Phys. 76 (1982) 3607–3613.
- [94] A. Laufer, R. Keller, Lowest excited states of ketene, J. Am. Chem. Soc. 93 (1971) 61–63.
- [95] C. Morgan, M. Drabbels, A. Wodtke, The correlated product state distribution of ketene photodissociation at 308 nm, J. Chem. Phys. 104 (1996) 7460–7474.

- [96] P. Limão-Vieira, S. Eden, N. Mason, S. Hoffmann, Electronic state spectroscopy of acetaldehyde, CH₃CHO, by high-resolution VUV photoabsorption, Chem. Phys. Lett. 376 (2003) 737–747.
- [97] G. Lawrence, Production of O(¹S) from photodissociation of CO₂, J. Chem. Phys. 57 (1972) 5616–5617.
- [98] W. Chan, G. Cooper, C. Brion, The electronic spectrum of carbon dioxide. Discrete and continuum photoabsorption oscillator strengths (6-203 eV), Chem. Phys. 178 (1993) 401–413.
- [99] H. Okabe, Photochemistry of Small Molecules, 1st Edition, Vol. 1, John Wiley & Sons, New York, 1978.
- [100] K. Yoshino, J. Esmond, Y. Sun, W. Parkinson, K. Ito, T. Matsui, Absorption cross section measurements of carbon dioxide in the wavelength region 118.7 175.5 nm and the temperature dependence, J. Quant. Spectrosc. Radiat. Transfer 55 (1996) 53-60.
- [101] W. Parkinson, J. Rufus, K. Yoshino, Absolute absorption cross section measurements of CO_2 in the wavelength region 163-2000 nm and the temperature dependence, Chem. Phys. 290 (2003) 251–256.
- [102] D. Shemansky, CO₂ extinction coefficient 1700 3000 Å, J. Chem. Phys. 56 (1972) 1582–1587.

Table B.7: Photodissociation of $\mathrm{H}_2\mathrm{CO}$: Branching ratios.

Wavelength (nm)	Prod	lucts
- , ,	$CO + H_2$	HCO + I
250	0.490	0.310
251	0.492	0.308
252	0.493	0.307
253	0.494	0.306
254	0.495	0.305
255	0.496	0.304
256	0.496	0.304
257	0.497	0.303
258	0.497	0.303
259	0.496	0.304
260	0.493	0.307
261	0.490	0.312
262	0.430 0.487	0.312 0.318
263	0.487	0.315
264	0.483 0.482	0.323
265	0.482 0.477	
		0.343
266	0.471	0.354
267	0.465	0.365
268	0.458	0.377
269	0.450	0.390
270	0.441	0.404
271	0.432	0.418
272	0.422	0.433
273	0.412	0.448
274	0.401	0.464
275	0.391	0.479
276	0.380	0.495
277	0.371	0.512
278	0.362	0.528
279	0.356	0.544
280	0.347	0.560
281	0.337	0.576
282	0.329	0.591
283	0.321	0.606
284	0.313	0.620
285	0.307	0.633
286	0.302	0.645
287	0.296	0.657
288	0.291	0.669
289	0.284	0.680
290	0.278	0.690
291	0.270 0.272	0.700
292	0.266	0.710
293	0.262	0.718
294	0.252 0.259	0.716 0.726
295	0.259 0.256	0.720 0.734
296 296	0.250 0.254	0.734 0.740
	0.254 0.252	0.740 0.746
297		
298	0.249	0.751
299	0.245	0.755
300	0.242	0.758

Table B.8: Photodissociation of CO₂: Branching ratios.

	Photodissociation of		ratios.
Wavelength (nm)		Products	
	$CO + O(^{3}P)$	$CO + O(^{1}D)$	$CO + O(^1S)$
100	0.35	0	0.65
101	0.30	0	0.70
102	0.25	0	0.75
103	0.21	0	0.79
104	0.17	0	0.83
105	0.13	0	0.87
106	0.095	0	0.91
107	0.045	0	0.96
108	0	0	1
109	0	0	1
110	0	0	1
111	0	0	1
112	0	0	1
113	0	0.010	0.99
114	0	0.025	0.975
115	0	0.08	0.92
116	0	0.19	0.81
117	0	0.33	0.67
118	0	0.54	0.46
119	0	0.70	0.30
120	0	0.80	0.20
121	0	0.86	0.14
122	0	0.91	0.09
123	0	0.954	0.046
124	0	0.974	0.026
125	0	0.98	0.020
126	0	0.99	0.010
127	0	0.99	0.010
<u>≥128</u>	0	1	0

Table B.9: Photodissociation reactions for radicals.

-	:		1x711xx	D		J- C
reaction			wavelengtn	Dranching		nei.
			(nm)	Ratio	Cross-section	Branching Ratio
(J_d1)	$CH_3 + h\nu$	$ ightarrow ^{1}\mathrm{CH}_{2} + \mathrm{H}$	200-240	1.0	[1]	[2, 3]
$(J_d 2)$	$C_2H_3 + h\nu$	$\rightarrow C_2H_2+H$	160-170	1.0	[2]	
	1	1	225-238	1.0	[9]	
			360-505	1.0	<u></u>	[6]
(J_d3)	$C_2H_5 + h\nu$	$\rightarrow C_2H_4 + H$	200-260	1.0	[10]	[11]
(J_d4a)	$C_3H_3 + h\nu$	$\rightarrow C_3H_2 + H$	230-300	76.0	[12]	
$(J_d 4b)$,	$\downarrow \text{C}_3^{1}\text{H}^{-}_{+}\text{H}_2$		0.03		[13]
$(J_d 4a)$	$C_3H_3 + h\nu$	$ ightarrow \mathrm{C_3H_2} + \mathrm{H}$	305-340	0.97		[14]
$(J_d 4b)$)	→ C ₃ H ⁺ +H 3		0.03	[15]	,
(J_d4a)	$C_3H_3 + h\nu$	$ ightarrow \mathrm{C_3^3H_2} + \mathrm{\tilde{H}}$	340-347	1.0	,	
(J_d5a)	$C_3H_5 + h\nu$	$\rightarrow CH_3CCH + H$	210-233	0.30		
(J_d5b)	,	$\rightarrow \text{CH}_2^{\prime}\text{CCH}_2 + \text{H}$		0.40	[16]	[17]
(J_d5c)		$\rightarrow C_2H_2 + CH_3$		0.30		[18]
(J_d5a)	$C_3H_5 + h\nu$	$\rightarrow CH_3CCH + H$	370-420	0.40		[19]
(J_d5b)		$\rightarrow \text{CH}_2^{-}\text{CCH}_2 + \text{H}$		0.30	[20]	
(J_d5c)		$ ightarrow \mathrm{C}_{2}\mathrm{H}_{2} + \mathrm{CH}_{3}$		0.30		
(J_d6)	$C_3H_7 + h\nu$	$\rightarrow C_3H_6+H$	200-350	1.0	[21]	[22]
$(J_d 7)$	$C_6H_5 + h\nu$	$\rightarrow C_6H_4 + H$	225-360	1.0	[23]	[24]
$(J_d 8)$	$C_7H_7 + h\nu$	$\rightarrow \text{C}_7\text{H}_6 + \text{H}$	220-340	1.0	[25]	[26]
$(J_d 9)$	$H_2CN + h\nu$	\rightarrow HCN + H	278-287	1.0	[27]	[28]
					[29]	
$(J_d 10)$	$HCO + h\nu$	\rightarrow CO + H	613-616	1.0	[30]	

- M. Cameron, V. Sivakumaran, T. Dillon, J. Crowley, Reaction between OH and CH₃CHO Part 1. Primary product yields of CH₃ (296 K), CH₃CO (296 K), and H (237-296 K), Phys. Chem. Chem. Phys. 4 (2002) 3628–3638.
- [2] S. Wilson, M. Ashfold, R. Dixon, The dissociation dynamics of the methyl radical following excitation to the B ²A'₁ state, Chem. Phys. Lett. 222 (1994) 457–464.
- [3] S. Wilson, J. Howe, K. Rosser, M. Ashfold, R. Dixon, A reinvestigation of the near-ultraviolet photodissociation dynamics of the methyl radical, Chem. Phys. Lett. 227 (1994) 456–460.
- [4] G. Wu, B. Jiang, Q. Ran, J. Zhang, S. Harich, X. Yang, Photodissociation dynamics of the methyl radical at 212.5 nm: Effect of parent internal excitation, J. Chem. Phys. 120 (2004) 2193–2198.
- [5] A. Fahr, A. Laufer, Ultraviolet absorption of the vinyl radical and reaction with oxygen, J. Phys. Chem. 92 (1988) 7229-7232.
- [6] A. Fahr, P. Hassanzadeh, D. Atkinson, Ultraviolet absorption spectrum and cross-sections of vinyl (C₂H₃) radical in the 225-238 nm region, Chem. Phys. 236 (1998) 43–51.
- [7] M. Ahmed, D. Peterka, A. Suits, The photodissociation of the vinyl radical (C₂H₃) at 243 nm studied by velocity map imaging, J. Chem. Phys. 110 (1999) 4248–4253.
- [8] H. Hunziker, H. Kneppe, A. McLean, P. Siegbahn, H. Wendt, Visible electronic absorption-spectrum of vinyl radical, Can. J. Chem. 61 (1983) 993–995.
- [9] Z.-F. Xu, S.-M. Li, Y.-X. Yu, Z.-S. Li, C.-C. Sun, Theoretical studies on the reaction path dynamics and variational transition-state theory rate constants of the hydrogen-abstraction reactions of the NH(X³Σ⁻) radical with methane and ethane, J. Phys. Chem. A 103 (1999) 4910–4917.
- [10] K. Fagerström, A. Lund, G. Mahmoud, J. Jodkowski, E. Ratajczak, Kinetics of the gas-phase reaction between ethyl and hydroxyl radicals, Chem. Phys. Lett. 208 (1993) 321–327.
- [11] M. Steinbauer, J. Giegerich, K. Fischer, I. Fischer, The photodissociation dynamics of the ethyl radical, C₂H₅, investigated by velocity map imaging, J. Chem. Phys. 137 (2012) #014303.
- [12] A. Fahr, P. Hassanzadeh, B. Laszlo, R. Huie, Ultraviolet absorption and cross sections of propargyl (C₃H₃) radicals in the 230-300 nm region, Chem. Phys. 215 (1997) 59–66.
- [13] T. Nguyen, A. Mebel, S. Lin, R. Kaiser, Product branching ratios of the $C(^3P) + C_2H_3(^2A')$ and $CH(^2\Pi) + C_2H_2(^1\Sigma_g^+)$ reactions and photodissociation of $H_2CCCH(^2B_1)$ at 193 nm and 242 nm: An ab initio/RRKM study, J. Phys. Chem. A 105 (2001) 11549–11559.
- [14] S. Goncher, D. Moore, N. Sveum, D. Neumark, Photofragment translational spectroscopy of propargyl radicals at 248 nm, J. Chem. Phys. 128 (2008) #114303.
- [15] D. Atkinson, J. Hudgens, Rate coefficients for the propargyl radical self-reaction and oxygen addition reaction measured using ultraviolet cavity ring-down spectroscopy, J. Phys. Chem. A 103 (1999) 4242– 4252.
- [16] M. Jenkin, T. Murrells, S. Shalliker, G. Hayman, Kinetics and product study of the self-reactions of allyl and allyl peroxy radicals at 296 K, J. Chem. Soc. Faraday Trans. 89 (1993) 433–446.
- [17] H.-J. Deyerl, T. Gilbert, I. Fischer, P. Chen, Kinetics and dynamics in the photodissociation of the allyl radical, J. Chem. Phys. 107 (1997) 3329–3332.
- [18] D. Stranges, M. Stemmler, X. Yang, J. Chesko, A. Suits, Y. Lee, UV photodissociation dynamics of allyl radical by photofragment translational spectroscopy, J. Chem. Phys. 109 (1998) 5372–5382.

- [19] H.-J. Deyerl, I. Fischer, P. Chen, Photodissociation dynamics of the allyl radical, J. Chem. Phys. 110 (1999) 1450–1462.
- [20] K. Tonokura, M. Koshi, Absorption spectrum and cross sections of the allyl radical measured using cavity ring-down spectroscopy: The A \leftarrow X band, J. Phys. Chem. A 104 (2000) 8456–8461.
- [21] H. Wendt, H. Hunziker, The UV spectra of primary, secondary, and tertiary radicals, J. Chem. Phys. 81 (1984) 717–723.
- [22] B. Noller, I. Fischer, Photodissociation dynamics of the 2-propyl radical, C₃H₇, J. Chem. Phys. 126 (2007) #144302.
- [23] T. Wallington, H. Egsgaard, O. Nielsen, J. Platz, J. Sehested, T. Stein, UV-visible spectrum of the phenyl radical and kinetics of its reaction with NO in the gas phase, Chem. Phys. Lett. 290 (1998) 363–370.
- [24] Y. Song, M. Lucas, M. Alcaraz, J. Zhang, C. Brazier, Ultraviolet photodissociation dynamics of the phenyl radical, J. Chem. Phys. 136 (2012) #044308.
- [25] N. Ikeda, N. Nakashima, K. Yoshihara, Formation and relaxation of hot benzyl radicals in the gas phase, J. Phys. Chem. A 88 (1984) 5803–5806.
- [26] Y. Song, X. Zheng, M. Lucas, J. Zhang, Ultraviolet photodissociation dynamics of the benzyl radical, Phys. Chem. Chem. Phys. 13 (2011) 8296–8305.
- [27] B. Nizamov, P. Dagdigian, Spectroscopic and kinetic investigation of methylene amidogen by cavity ring-down spectroscopy, J. Phys. Chem. A 107 (2003) 2256–2263.
- [28] E. Bernard, B. Strazisar, H. Davis, Excited state dynamics of H₂CN radicals, Chem. Phys. Lett. 313 (1999) 461–466.
- [29] A. Teslja, P. Dagdigian, M. Banck, W. Eisfeld, Experimental and theoretical study of the electronic spectrum of the methylene amidogen radical ($\rm H_2CN$): Verification of the $^2\rm A_1 \leftarrow ^2\rm B_2$ assignment, J. Phys. Chem. A 110 (2006) 7826–7834.
- [30] J. Flad, S. Brown, J. Burkholder, H. Stark, A. Ravishankara, Absorption cross sections for the \tilde{A} ²A" $(0,9^0,0)\leftarrow \tilde{X}$ ²A" $(0,0^1,0)$ band of the HCO radical, Phys. Chem. Chem. Phys. 8 (2006) 3636–3642.

Table B.10: Photoionization reactions leading to ion-pair formation.

Reaction			Resonance Position (eV)	Cross-section (cm ²)	Ref.
Tteaction			rtesoliance i osition (ev)	(- /	Tter.
$(J_{ip}2)$	$CH_4 + h\nu$	\rightarrow H ⁻ + CH ₃ ⁺	21.5	1.0×10^{-20}	[1]
$(J_{ip}3)$	$H_2 + h\nu$	\rightarrow H ⁻ + H ⁺	17.3	2.5×10^{-23}	[2]
$(J_{ip}4)$	$C_2H_2 + h\nu$	$\rightarrow C_2H^- + H^+$	18.8	6.0×10^{-21}	[3]
$(J_{ip}20)$	$HCN + h\nu$	\rightarrow CN ⁻ + H ⁺	15.2	4.4×10^{-20}	[4]
$(J_{ip}31)$	$H_2O + h\nu$	\rightarrow OH ⁻ + H ⁺	16.9	1.1×10^{-20}	[5]
$(J_{ip}32)$	$CO + h\nu$	\rightarrow O ⁻ + C ⁺	20.9	1.1×10^{-19}	[6]

- [1] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, Negative-ion mass spectrometric study of ion-pair formation in the vacuum ultraviolet. IV. $\text{CH}_4 \to \text{H}^- + \text{CH}_3^+$ and $\text{CD}_4 \to \text{D}^- + \text{CD}_3^+$, J. Chem. Phys. 94 (1991) 6003–6006.
- [2] W. Chupka, P. Dehmer, W. Jivery, High resolution photoionization study of ion-pair formation in H_2 , HD, and D_2 , J. Chem. Phys. 63 (1975) 3929–3944.
- [3] B. Ruscic, J. Berkowitz, Photoion-pair formation and photoelectron-induced dissociative attachment in C_2H_2 : $D_0(HCC-H)$, J. Chem. Phys. 93 (1990) 5586–5593.
- [4] J. Berkowitz, W. Chupka, T. Walter, Photoionization of HCN: The electron affinity and heat of formation of CN, J. Chem. Phys. 50 (1969) 1497–1500.
- [5] J. Berkowitz, Photoion-pair formation, in: U. Becker, D. Shirley (Eds.), VUV and soft X-ray photoionization, Physics of atoms and molecules, Plenum Press, New York, 1996, pp. 263–289.
- [6] H. Oertel, H. Schenk, H. Baumgärtel, Ion pair formation from photon irradiation of O_2 , NO and CO in 17-30 eV, Chem. Phys. 46 (1980) 251–262.

Table B.11: Dissociative electron attachment reactions.

Reaction			Resonance Position (eV)	Cross-section (cm ²)	Ref.
$(J_{dea}2)$	$CH_4 + e^-$	\rightarrow CH $_2^-$ + H $_2$	10.4	1.4×10^{-19}	[1]
		\rightarrow H ⁻ + CH ₃	9.8	1.6×10^{-18}	
$(J_{dea}3)$	$H_2 + e^-$	\rightarrow H ⁻ + H	3.7	1.5×10^{-21}	[2]
			10.5	1.2×10^{-20}	
			14.0	1.7×10^{-20}	
$(J_{dea}4)$	$C_2H_2 + e^-$	$\rightarrow C_2H^- + H$	3.0	3.5×10^{-20}	[3]
		$\begin{array}{c} \rightarrow \mathrm{H^-} + \mathrm{C_2H} \\ \rightarrow \mathrm{H^-} + \mathrm{C_3H_3} \end{array}$	7.9	3.9×10^{-20}	
$(J_{dea}7)$	$\mathrm{CH_{3}CCH} + \mathrm{e^{-}}$	$\rightarrow \mathrm{H^-} + \mathrm{C_3H_3}$	3.6	6.0×10^{-22}	[4]
			6.9	1.2×10^{-20}	
			11.6	1.4×10^{-20}	
$(J_{dea}11)$	$\mathrm{C_4H_2} + \mathrm{e^-}$	$\rightarrow C_4H^- + H$	2.5	3.0×10^{-20}	[5]
			5.3	7.3×10^{-19}	
		$\rightarrow \mathrm{C_2H^-} + \mathrm{C_2H}$	6.0	2.1×10^{-20}	
			8.7	4.5×10^{-21}	
$(J_{dea}18)$	$\mathrm{NH_3} + \mathrm{e^-}$	$\rightarrow {\rm H}^- + {\rm NH}_2$	5.7	2.3×10^{-18}	[1]
			10.5	5.0×10^{-19}	
$(J_{dea}20)$	$HCN + e^{-}$	$\rightarrow \text{CN}^- + \text{H}$	1.9	9.4×10^{-18}	[6]
$(J_{dea}21)$	$HNC + e^{-}$	$\rightarrow \text{CN}^- + \text{H}$	3.0	1.0×10^{-17}	[7]
$(J_{dea}24)$	$\mathrm{CH_{3}CN} + \mathrm{e^{-}}$	\rightarrow CN ⁻ + CH ₃	2.0	4.2×10^{-25}	[8]
			8.0	1.1×10^{-24}	
$(J_{dea}25)$	$HC_3N + e^-$	$\rightarrow C_3N^- + H$	2.6	3.8×10^{-18}	[9]
		$\begin{array}{c} \rightarrow \text{CN}^- + \text{C}_2\text{H} \\ \rightarrow \text{CN}^- + \text{C}_2\text{H}_3 \end{array}$	4.9	4.0×10^{-18}	
$(J_{dea}26)$	$C_2H_3CN + e^-$	\rightarrow CN ⁻ + C ₂ H ₃	4.9	3.7×10^{-18}	[10]
			7.6	4.9×10^{-18}	
$(J_{dea}29)$	$\frac{\text{C}_2\text{N}_2 + \text{e}^-}{\text{C}_4\text{N}_2 + \text{e}^-}$	$\begin{array}{c} \rightarrow \text{CN}^- + \text{CN} \\ \rightarrow \text{C}_3 \text{N}^- + \text{CN} \end{array}$	5.5	1.9×10^{-17}	[11]
$(J_{dea}30)$	$C_4N_2 + e^-$	$\rightarrow C_3N^- + CN$	2.9	1.7×10^{-17}	[12]
			6.0	1.4×10^{-18}	
		\rightarrow CN ⁻ + C ₃ N	3.3	2.6×10^{-18}	
			6.0	1.9×10^{-18}	
$(J_{dea}31)$	$\mathrm{H_2O} + \mathrm{e^-}$	\rightarrow OH $^{-}$ + H	6.9	4.9×10^{-20}	[13]
			8.5	2.4×10^{-20}	[14]
			11.3	2.8×10^{-20}	
		\rightarrow O $^-$ + H $_2$	7.1	2.1×10^{-19}	
			9.2	6.4×10^{-19}	
			11.9	9.1×10^{-19}	
		\rightarrow H $^-$ + OH	6.4	6.4×10^{-18}	
			8.5	1.1×10^{-18}	
$(J_{dea}32)$	$CO + e^{-}$	\rightarrow O ⁻ + C	9.8	2.0×10^{-19}	[15]
					[16]

- [1] P. Rawat, V. Prabhudesai, M. Rahman, N. Bhargava Ram, E. Krishnakumar, Absolute cross sections for dissociative electron attachment to NH₃ and CH₄, Int. J. Mass Spectrom. 277 (2008) 96–102.
- [2] E. Krishnakumar, S. Denifl, I. Čadež, S. Markelj, N. Mason, Dissociative electron attachment cross sections for H_2 and D_2 , Phys. Rev. Lett. 106 (2011) #243201.
- [3] O. May, J. Fedor, M. Allan, Isotope effect in dissociative electron attachment to acetylene, Phys. Rev. A 80 (2009) #012706.
- [4] R. Janečková, O. May, J. Fedor, Dissociative electron attachment to methylacetylene and dimethylacetylene: Symmetry versus proximity, Phys. Rev. A 86 (2012) #052702.
- [5] O. May, J. Fedor, C. Ibănescu, M. Allan, Absolute cross sections for dissociative electron attachment to acetylene and diacetylene, Phys. Rev. A 77 (2008) #040701.
- [6] O. May, D. Kubala, M. Allan, Absolute cross sections for dissociative electron attachment to HCN and DCN, Phys. Rev. A 82 (2010) #010701(R).
- [7] S. Chourou, A. Orel, Dissociative electron attachment to HCN and HNC, Phys. Rev. A 80 (2009) #032709.

- [8] W. Sailer, A. Pelc, P. Limão-Vieira, N. Mason, J. Limtrakul, P. Scheier, M. Probst, T. Märk, Low energy electron attachment to CH₃CN, Chem. Phys. Lett. 381 (2003) 216–222.
- [9] V. Dibeler, R. Reese, J. Franklin, Mass spectrometric study of cyanogen and cyanoacetylenes, J. Am. Chem. Soc. 83 (1961) 1813–1818.
- [10] S. Tsuda, A. Yokohata, T. Umaba, Measurement of negative ions formed by electron impact. IX. Negative ion mass spectra and ionization efficiency curves of negative ions of m/e 25, 26, 27, 38, 39, 40 and 50 from acrylonitrile, Bull. Chem. Soc. Jpn 46 (1973) 2273–2277.
- [11] M. Inoue, Ions négatifs formés dans le cyanogène et l'acide cyanhydrique, J. Chim. Phys. PCB 63 (1966) 1061–1071.
- [12] K. Graupner, T. Field, G. Saunders, Experimental evidence for radiative attachment in astrochemistry from electron attachment to NCCCCN, Astrophys. J. 685 (2008) L95–L98.
- [13] J. Fedor, P. Cicman, B. Coupier, S. Feil, M. Winkler, K. Gluch, J. Husarik, D. Jaksch, B. Farizon, N. Mason, P. Scheier, T. Märk, Fragmentation of transient water anions following low-energy electron capture by H₂O/D₂O, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 3935–3944.
- [14] D. Haxton, T. Rescigno, C. McCurdy, Dissociative electron attachment to the H₂O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model, Phys. Rev. A 75 (2007) #012711.
- [15] D. Rapp, D. Briglia, Total cross sections for ionization and attachment in gases by electron impact. II. Negative-ion formation, J. Chem. Phys. 43 (1965) 1480–1489.
- [16] A. Stamatovic, G. Schulz, Dissociative attachment in CO and formation of C⁻, J. Chem. Phys. 53 (1970) 2663–2667.

Table B.12: Mass-to-charge (m/z), electron affinities (EA) and asymptotic cross-sections σ_0 used in the calculation of the photodetachment cross-sections.

Ion species	m/z (u)	EA (eV)	$\sigma_0 (\mathrm{cm}^2)$	Ref.
H-	1	0.75	1.0×10^{-17}	[1, 2]
$\mathrm{CH_2}^-$	14	0.65	1.0×10^{-17}	[3, 2]
CH_3^-	15	0.08	1.0×10^{-17}	[4, 2]
$C_2 H^-$	25	3.0	8.8×10^{-18}	[5]
$C_4^-H^-$	49	3.6	7.7×10^{-18}	[6, 5]
C_6H^-	73	3.8	4.8×10^{-18}	[6, 5]
CN^-	26	3.9	2.8×10^{-17}	[7, 8]
C_3N^-	50	4.3	5.2×10^{-17}	[9, 8]
C_5N^-	74	4.5	1.0×10^{-17}	[9, 2]
O_	16	1.5	1.2×10^{-17}	[1, 10]
OH ⁻	17	1.8	3.3×10^{-17}	[11, 10]

Notes. The asymptotic cross-sections for O⁻ and OH⁻ are derived from fits to Eq. (E.15) using the literature electron affinities shown in column 2, and measured cross-sections at 1.87 and 2.33 eV for O⁻ and 1.87 and 1.96 eV for OH⁻ (cf. [10]).

- [1] H. Hotop, W. Lineberger, Binding energies in atomic negative ions: II, J. Phys. Chem. Ref. Data 14 (1985) 731–750.
- [2] T. Millar, C. Walsh, M. Cordiner, R. Chuimín, E. Herbst, Hydrocarbon anions in interstellar clouds and circumstellar envelopes, Astrophys. J. 662 (2007) L87–L90.
- [3] D. Leopold, K. Murray, A. Stevens Miller, W. Lineberger, Methylene: A study of the X 3B_1 and \tilde{a} 1A_1 states by photoelectron spectroscopy of CH_2^- and CD_2^- , J. Chem. Phys. 83 (1985) 4849–4865.
- [4] G. Ellison, P. Engelking, W. Lineberger, An experimental determination of the geometry and electron affinity of methyl radical, J. Am. Chem. Soc. 100 (1978) 2556–2558.
- [5] T. Best, R. Otto, S. Trippel, P. Hlavenka, A. von Zastrow, S. Eisenbach, S. Jézouin, R. Wester, E. Vigren, M. Hamberg, W. Geppert, Absolute photodetachment cross-section measurements for hydrocarbon chain anions, Astrophys. J. 742 (2011) #63.
- [6] T. Pino, M. Tulej, F. Güthe, M. Pachkov, J. Maier, Photodetachment spectroscopy of the $C_{2n}H^-$ (n=2-4) anions in the vicinity of their electron detachment threshold, J. Chem. Phys. 116 (2002) 6126–6131.
- [7] S. Bradforth, E. Kim, D. Arnold, D. Neumark, Photoelectron spectroscopy of CN⁻, NCO⁻, and NCS⁻,
 J. Chem. Phys. 98 (1993) 800–810.
- [8] S. Kumar, D. Hauser, R. Jindra, T. Best, Š. Roučka, W. Geppert, T. Millar, R. Wester, Photodetachment as a destruction mechanism for $\rm CN^-$ and $\rm C_3N^-$ anions in circumstellar envelopes, Astrophys. J. 776 (2013) #25.
- [9] T. Yen, E. Garand, A. Shreve, D. Neumark, Anion photoelectron spectroscopy of C_3N^- and C_5N^- , J. Phys. Chem. A 114 (2010) 3215–3220.
- [10] P. Hlavenka, R. Otto, S. Trippel, J. Mikosch, M. Weidemüller, R. Wester, Absolute photodetachment cross section measurements of the O⁻ and OH⁻ anion, J. Chem. Phys. 130 (2009) #061105.
- [11] F. Goldfarb, C. Drag, W. Chaibi, S. Kröger, C. Blondel, C. Delsart, Photodetachment microscopy of the P, Q, and R branches of the $OH^-(v=0)$ to OH(v=0) detachment threshold, J. Chem. Phys. 122 (2005) #014308.

Table B.13: Column production rate (cm $^{-2})$ for the fragments of the ionization and dissociation of $\rm CH_4$ and $\rm N_2$ from GCRs.

Reaction			Total rate
$(J_{acr}1a)$	$N_2 + GCR$	$\rightarrow N_2^+ + e^-$	9.1×10^{7}
$(J_{qcr}1b)$	2	$\rightarrow N(^4S) + N(^2D)$	6.9×10^{7}
$(J_{gcr}1c)$		$\rightarrow N^{+} + N(^{4}S) + e^{-}$	2.3×10^{7}
$(J_{gcr}2a)$	$CH_4 + GCR$	\rightarrow $^{3}CH_{2} + H_{2}$	2.4×10^{6}
$(J_{gcr}2b)$		$\rightarrow CH_3 + H$	2.0×10^{6}
$(J_{gcr}2c)$		$\rightarrow \text{CH}_4^{+} + \text{e}^-$	1.8×10^{6}
$(J_{gcr}2d)$		$\rightarrow \text{CH}_3^{-+} + \text{H} + \text{e}^-$	1.4×10^{6}
$(J_{gcr}2e)$		$\rightarrow \text{CH}_{2}^{-+} + \text{H}_{2} + \text{e}^{-}$	2.4×10^{5}

Appendix B.2.3. Representation of Rate Coefficients

The model simulations require simple representations of the temperature and pressure dependence of the rate coefficients. The entries in Tables B.15 to B.20 correspond in order to the modified Arrhenius representations for k_1 , k_2 , and k_3 as outlined below.

Neutral Reactions. Here, the temperature dependence of the various rate coefficients are represented with modified Arrhenius forms:

$$k(T) = AT^B exp(C/T), (B.9)$$

where T is the temperature, and A, B, and C are fitting parameters.

Our most general rate representations employ 10 parameters: A, B, and C for k_o , for k_∞ , and for k_R and a temperature independent parameter F_c . However, in some cases we employ various limiting and alternative representations.

- Type 1: Pressure independent unimolecular reactions in the high-pressure limit: $k = k_1$, with k_1 in s⁻¹.
- Type 2: Pressure independent bimolecular reactions: $k = k_1$, with k_1 in cm³ s⁻¹.
- Type 3: Pressure dependent bimolecular reactions: The Troe form with $k_{\infty} = k_1$ in s⁻¹ and $k_{\circ} = k_2$ in cm³ s⁻¹.

$$k(T, [M]) = Fk_{\infty}k_{\circ}[M]/(k_{\infty} + k_{\circ}[M])$$
(B.10)

• Type 4: Pressure dependent association reactions:
Our modified Troe form with $k_{\infty} = k_1$ in cm³ s⁻¹, $k_{\circ} = k_2$ in cm⁶ s⁻¹, and $k_R = k_3$ in cm³ s⁻¹.

$$k(T, [M]) = k_R + Fk'_{\infty}k_{\circ}[M]/(k'_{\infty} + k_{\circ}[M])$$
 (B.11)

where $k'_{\infty} = k_{\infty} - k_R$.

• Types 5 and 6: Special case for OH + CO pressure dependent bimolecular reactions (section 2.1 in Sander et al. [1]):

 $OH + CO \rightarrow H + CO_2$

$$k([M]) = \left(\frac{k_{\circ}}{1 + \frac{k_{\circ}[M]}{k_{\infty}}}\right) 0.6^{\left[1 + \left(\log_{10}\left(\frac{k_{\circ}[M]}{k_{\infty}}\right)\right)^{2}\right]^{-1}}$$
(B.12)

 $k_{\infty} = k_1 \text{ in s}^{-1} \text{ and } k_{\circ} = k_2 \text{ in cm}^3 \text{ s}^{-1}.$

 $OH + CO \rightarrow HOCO$

$$k([M]) = \left(\frac{k_{\circ}[M]}{1 + \frac{k_{\circ}[M]}{k_{\infty}}}\right) 0.6^{\left[1 + \left(\log_{10}\left(\frac{k_{\circ}[M]}{k_{\infty}}\right)\right)^{2}\right]^{-1}}$$
(B.13)

 $k_{\infty} = k_1 \text{ in cm}^3 \text{ s}^{-1} \text{ and } k_{\circ} = k_2 \text{ in cm}^6 \text{ s}^{-1}.$

• Type 7: Special case for $H + C_2H_3$: The Troe form does not accurately reproduce the master equation results and so we instead interpolate the data from a table.

Positive and Negative Ion Reactions Here, the temperature dependence of the various rate coefficients are represented with modified Arrhenius forms:

$$k = A(300/T)^B exp(+C/T)$$
 (B.14)

where T is the temperature, and A, B, and C are fitting parameters.

 $\bullet\,$ Type 1: Unimolecular reactions.

$$k = k_{\infty} \tag{B.15}$$

with $T=T_n=T_i$, the ion and neutral temperature, respectively. k_{∞} in s⁻¹.

• Type 2: Bimolecular ion-neutral reactions.

$$k = k_{\infty} \tag{B.16}$$

with $T=T_n=T_i$.

 k_{∞} in cm³ s⁻¹.

• Type 3: Termolecular ion-neutral reactions.

$$k([M]) = \frac{k_{\infty}k_{\circ}[M]}{k_{\infty} + k_{\circ}[M]}$$
(B.17)

with $T=T_n=T_i$.

 k_{∞} in cm³ s⁻¹ and k_0 in cm⁶ s⁻¹.

• Type 4: Electron recombination reactions.

$$k = k_{\infty} \tag{B.18}$$

with $T=T_e$, the electron temperature.

 k_{∞} in cm³ s⁻¹.

• Type 5: Ion-neutral association reactions.

$$k([M]) = F \times \frac{(k_R' + k_\circ[M])k_\infty}{k_\circ[M] + k_R' + k_\infty}$$
 (B.19)

where

$$k_R' = \frac{k_R k_\infty}{k_\infty - k_R} \tag{B.20}$$

and

$$F = 10^{\left(\frac{\log_{10}(F_c)}{1 + \left(\frac{(\log_{10}[P_r] + C)}{N - 0.14(\log_{10}[P_r] + C)}\right)^2}\right)},$$
(B.21)

where $P_r = k_{\circ}[M]/k_{\infty}$, $N = 0.75 - 1.27log_{10}(F_c)$ and $C = -0.4 - 0.67log_{10}(F_c)$. with $T=T_n=T_i$.

 k_{∞} and k_R in cm³ s⁻¹, k_0 in cm⁶ s⁻¹.

References

[1] S. Sander, R. Friedl, J. Barker, D. Golden, M. Kurylo, P. Wine, J. Abbatt, J. Burkholder, C. Kolb, G. Moortgat, R. Huie, V. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 17, JPL Publication 10-6 (2011).

Table B.14: Radiative association reactions.

	$_{\mathrm{Type}}$				Re	Reaction	K	Ref.
$ m R_{ra}1$	4	Н	+	ө	1	_H	$3.37{\times}10^{-16}(300/\mathrm{T})^{-0.64}\mathrm{e}^{-9.2/T}~ $	[1]
R_{ra} 2	2	$^3\mathrm{CH}_2$	+	е	†	$ m CH_2^-$	1.00×10^{-14}	est.(CN+e)
$R_{ra}3$	2	$_{ m CH_3}$	+	е	†		1.00×10^{-14}	est.(CN+e)
$R_{ra}4$	2	$\mathrm{C_2H}$	+	ө	†		$2.00 \times 10^{-15} (300/T)^{0.50}$	[2]
$R_{ra}5$	4	C_4H	+	ө	\uparrow	$C_4^-H^-$	$6.60 \times 10^{-09} (300/T)^{0.41} e^{-0.6/T}$	[3]
$R_{ra}6$	4	$C_{6}H$	+	ө	↑		$8.62 \times 10^{-08} (300/T)^{0.23} e^{-0.5/T}$	[3]
R_{ra} 7	2	CN	+	е	†		1.00×10^{-14}	[4]
$R_{ra} 8$	4	C_3N	+	ө	↑	C ₃ N ₋	$2.60 \times 10^{-10} (300/T)^{0.50}$	[2]
R_{ra} 9	4	C ₂ N	+	ө	\uparrow	C _S N_	$1.25 \times 10^{-07} (300/T)^{0.50}$	[2],[5]
\mathbb{R}_{ra} 10	2	$O(^{3}P)$	+	е	†	_0	1.50×10^{-15}	[9]
R_{ra} 11	2	ОН	+	ө	↑	OH_	1.00×10^{-14}	est.(CN+e)

- [1] P. Stancil, A. Dalgarno, Chemical processes in astrophysical radiation fields, Faraday Discuss. 109 (1998) 61–69.
- [2] E. Herbst, Y. Osamura, Calculations of the formation rates and mechanisms for C_nH anions in interstellar and circumstellar media, Astrophys. J. 679 (2008) 1670–1679.
- [3] F. Carelli, M. Satta, T. Grassi, F. Gianturco, Carbon-rich molecular chains in protoplanetary and planetary atmospheres: Quantum mechanisms and electron attachment rates for anion formation, Astrophys J. 774 (2013) #97.
- [4] S. Petrie, Novel pathways to CN⁻ within interstellar clouds and circumstellar envelopes: implications for IS and CS chemistry, Mon. Not. R. Astron. Soc. 281 (1996) 137–144.
- [5] C. Walsh, N. Harada, E. Herbst, T. Millar, The effects of molecular anions on the chemistry of dark clouds, Astrophys. J. 700 (2009) 752–761.
- [6] S. Prasad, W. Huntress Jr., A model for gas phase chemistry in interstellar clouds: I. The basic model, library of chemical reactions, and chemistry among C, N, and O compounds, Astrophys. J. Suppl. Ser. 43 (1980) 1–35.

Table B.15: Neutral reaction list

Ref.	[1]	[2]	[4]	[6]	$[1] \\ [6], est. (AtomNumber)$		[5]	[1]	$\Gamma_{1}^{[1]}$ This Work	ThisWork [5]	5	-	[1] [6] set: (Atom Number)	(1)			est.(Kad+Kad),est.(AtomNumber)		est.(Rad+Rad),est.(AtomNumber)		[7],est.(AtomNumber)		[7],est.(AtomNumber)		[7],est.(AtomNumber)		ThisWork		ThisWork		This Work
T range	200-2500	50-500 185-800	290		300-2500 200-2000		50-300	200-3000	140	140 50-300			400-2000 200-2000))) 		298-2000	ı		1		200-2000		200-2000		200-2000		50-300		50-300		50-300
F	07.0	0.40		0.56		0.40	0.18				0.20			0.40			0.40		0.40		0 40	2	6	04.0		0.40	;	0.11		0.50	
k	1.00×10 ⁻¹⁰ 1 80×10 ⁻³⁰ T ^{-1.00}	$\begin{array}{c} 1.50 \times 10 \\ 2.81 \times 10^{-12} \mathrm{T}^{0.26} \\ 3.54 \times 10^{-11} \mathrm{T}^{0.32} \end{array}$	$\begin{array}{c c} 1.00 \times 10^{-10} \\ 1.40 \times 10^{-10} \pi^{0.15} \text{s}^{-1./T} \end{array}$	$7.68 \times 10^{-25} \text{T}^{-1.66} \text{e}^{-22./T}$ $7.68 \times 10^{-14} \text{T}^{-1.09} \text{e}^{-11./T}$	$2.10 \times 10^{-13} \text{ T} - 0.56_{\text{e}}^{-8000./T}$ $3.73 \times 10^{-11} \text{T}^{0.32}$	9.00×10^{-26} 1.00×10^{-13}	$1.72\times10^{-34}\mathrm{T^{8.41}e^{358./T}}$ $2.18\times10^{-27}\mathrm{T^{-1.07}e^{-83./T}}$	$1.05 \times 10^{-17} \text{T}^{-0.27} \text{e}^{-34./T}$ $1.67 \times 10^{-14} \text{T}^{1.64} \text{e}^{-15250./T}$	Tabulated	Tabulated $A \ 96 \times 10^{-26} \ \pi^{5.31} \ ^{173./T}$	$5.08 \times 10^{-25} \text{T}^{-1.51} \text{e}^{-72./T}$	$9.02 \times 10^{-10} T^{-0.33} e^{-10.7}$	3.90×10 =17.0=e 00.0/1	9.00×10 ⁻²⁶	1.00×10^{-13}	7.00×10^{-11}	2.00×10^{-13} 1.00×10^{-23}	2.00×10^{-12}	2.00×10^{-10} 1.00×10^{-23}	2.00×10^{-12}	$1.26 \times 10^{-10} \mathrm{T}^{0.22} \mathrm{e}^{43./T}$ 1.00×10^{-23}	2.00×10^{-12}	$1.06 \times 10^{-10} \text{T}^{0.10} \text{e}^{15./T}$	2.00×10 ⁻¹²	$3.40 \times 10^{-11} \mathrm{T}^{0.21} \mathrm{e}^{87./T}$	1.00×10^{-23} 2.00×10^{-12}	$5.01 \times 10^{-30} \text{T}^{6.79} \text{e}^{214./T}$	2.32×10^{-20} T $^{-2.91}$ e $^{-200.7}$ t $^{-2.92} \times 10^{-12}$ T $^{-1.30}$ e $^{-256.7}$ T	$5.01 \times 10^{-30} \text{T}^{6.79} \text{e}^{214./T}$	$4.78 \times 10^{-28} \text{T}^{-1.09} \text{e}^{-133.7}$ $6.50 \times 10^{-16} \text{T}^{-1.38} \text{e}^{-163.7}$	$2.46 \times 10^{-16} \mathrm{T^{8.57}e^{-803./T}}$
		H ₂ H,	$^2_{ m H_2}$		H_2			Ħ	7.75	H_2		;	$^{ m H}_2$	8		H_2															н
		+ +	+		+			+	-	+			+ +	-		+									8						+
Reaction	H_2	C	CH	4	$^{1}\mathrm{CH}_{2}$ $\mathrm{C}_{2}\mathrm{H}_{3}$	4	C_2H_3	H	C_2^{2H}	C_2H_2	(2115	;	$C_2^{ m H_3}$	£		C_2H_4	C_3H		$\mathrm{C_3H_2}$		C_3H_3		$\mathrm{CH_3CCH}$		$\mathrm{CH_2CCH_2}$		$\mathrm{C_3H_5}$		$\mathrm{C_3H_5}$		$\mathrm{CH_2}\mathrm{CCH_2}$
A	↑	↑ ↑	1 1		↑ ↑		\uparrow	1	` ↑	1 1			↑ ↑			\uparrow	↑		↑		\uparrow		\uparrow		↑		\uparrow		\uparrow		\uparrow
	H	CH ³CH,	$^{1}\mathrm{CH}_{2}^{2}$, iii	$\mathrm{CH_3}$ $\mathrm{C_3H}$	٩	C_2H_2	C.H.	$C_2^{H_3}$	C_2H_3	(2114	;	$C_2^{H_4}$	(Z-15)		$\tilde{\mathrm{C_2H_5}}$	ప్		$\mathrm{C_{3}H}$		$\mathrm{C_3H_2}$		$\mathrm{C_3H_3}$		$\mathrm{C_3H_3}$		$\mathrm{CH_3CCH}$		$\mathrm{CH_{3}CCH}$		СН ₃ ССН
	+	+ +	+ +	H	+ +		+	+	- +	+ +	+		+ +	-		+	+		+		+		+		+		+		+		+ .
	Н	нн	нн	1	нн		н	Ξ	: H	ΗН	1	:	I I	:		Η:	I,		H		Н		Н		Н		Н		Н		H Page
Type	4	21 23	0.7	+	2 4		4		14	4 4	۲	(N 4			2	4		4		4		4		4		4		4		$\frac{3}{\text{on Next}}$
	\mathbb{R}_n 1	$R_n 2$	\mathbb{R}_n^n	800	R_n5b	2	\mathbb{R}_n 7a	B. 7b	$R_n 8a$	\mathbb{R}_n 8b	200	3	$R_n 9b$ $R_n 10a$	301		$\mathbb{R}_n 10\mathrm{b}$	\mathbb{R}_{n} 11		\mathbb{R}_n 12		\mathbb{R}_n 13		\mathbb{R}_n 14a		\mathbb{R}_n 14b		\mathbb{R}_n 15a		\mathbb{R}_n 15b		$\mathbf{R}_n 15c \mid 3 \mid \mathbf{H}$ Continued on Next Page

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L	Type				Rea	Reaction			k k	- H _o	T range	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6 4	нн	+ +	CH_3CCH CH_2CCH_2	↑ ↑	$\mathrm{C_2H_2} \\ \mathrm{C_3H_5}$	+	$ m CH_3$	$1.03 \times 10^{-17} T^{9.30} e^{-776./T}$ $2.18 \times 10^{-38} T^{9.58} e^{418./T}$		50-300 50-300	This Work This Work
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	н	+	CH,CCH,	↑	C ₃ H _e			$\begin{array}{c} 5.84 \times 10^{-20} \mathrm{T}^{-2.23} \mathrm{e}^{-261./T} \\ 6.73 \times 10^{-25} \mathrm{T}^{3.74} \mathrm{e}^{0./T} \\ 7.57 \times 10^{-29} \mathrm{T}^{6.30} \mathrm{e}^{186./T} \end{array}$	0.06	50-300	This Work
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					4		0			$\begin{array}{c} 2.64\!\times\!10^{-25}\mathrm{T}^{-1.81}\mathrm{e}^{-164./T} \\ 2.99\!\times\!10^{-13}\mathrm{T}^{-1.62}\mathrm{e}^{-171./T} \end{array}$	09.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		დ ₹	нн	+ +	CH_2CCH_2	1 1	CH ₃ CCH	+	Н	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		50-300	This Work [7] est (Atom Number)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+	:	-	3115		3116			$\frac{0.00 \times 10^{-23}}{1.00 \times 10^{-12}}$	0.40		(1),00:((1,10,11,11,11,11,11,11,11,11,11,11,11,11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	н	+	C_3H_5		$\mathrm{CH_2CCH_2}$		$_{ m H_2}$	3.00×10^{-11}		300-1000	[1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	H	+	$\mathrm{C_{3}H_{6}}$		$\mathrm{C_{3}H_{7}}$			$\begin{array}{c c} 5.02 \times 10^{-32} T^{1.22} e^{295.7} I \\ 3.93 \times 10^{-30} T^{0.40} e^{-89.7} \end{array}$	0.80	50-300	$\operatorname{ThisWork}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	$\mathrm{C_3H_6}$	↑	C_3H_7			$1.27 \times 10^{-27} \text{T}^{6.03} \text{e}^{157./T}$	3	50-300	ThisWork
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-			$4.38 \times 10^{-17} \text{T}^{-2.36} \text{e}^{-273./T}$ $1.99 \times 10^{-13} \text{T}^{-0.79} \text{e}^{-140./T}$	0.20		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		က	н	+	C_3H_{ϵ}	↑	CH.,	+	C,H,	$1.01 \times 10^{-26} \mathrm{T}^{10.82} \mathrm{e}^{438./T}$		50-300	ThisWork
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Н	+	$\mathrm{C_3H_6}$	↑	$\mathrm{C_3} \ddot{\mathrm{H}_5}$	+	$_{ m H_2}$	$1.14 \times 10^{-29} T_{5.25}^{5.25} e^{312./T}$		50-300	ThisWork
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	$\mathrm{C_3H_7}$	↑	$\mathrm{C_3H_8}$			$2.76 \times 10^{-11} \mathrm{T}^{0.22}$	5	200-2000	[7], est. (AtomNumber)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							1.00×10^{-1} 2.00×10^{-12}	0.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	н	+	C_3H_7	↑	C_3H_6		Н,	1.00×10^{-10}		1	This Work
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	$C_4^{\dagger}H^{\dagger}$	\uparrow	$C_4^{'}H_2^{'}$		1	$9.69 \times 10^{-11} T^{0.24} e^{12./T}$		50-300	ThisWork
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$2.39 \times 10^{-10} \mathrm{T}^{-2.85} \mathrm{e}^{-125.7}$ $5.51 \times 10^{-06} \mathrm{T}^{-2.25} \mathrm{e}^{-106.7}$	0.48		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	н	+	C,H,	↑	C,H,			$1.28 \times 10^{-26} \mathrm{T}^{5.70} \mathrm{e}^{164./T}$		50-300	ThisWork
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		·			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0:30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	ш	+	C.H.	1	О.н.			3.98×10^{-1} $1.03 \times 10^{-10} \times 10^{-0.05}$		50-300	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+	:	-	~4**3		~4**4			$2.87 \times 10^{-14} \mathrm{T}^{-3.73} \mathrm{e}^{-208./T}$	0.72		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$6.79 \times 10^{-05} \mathrm{T}^{-2.85} \mathrm{e}^{-145./T}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	H	+	$\mathrm{C_4H_3}$	↑	$\mathrm{C_4H_2}$	+	${ m H}_2$	1.00×10^{-10}			ThisWork
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	$\mathrm{C}_4\mathrm{H}_4$	†	$\mathrm{C_4H_5}$			$6.69 \times 10^{-21} \mathrm{T}^{3.40} \mathrm{e}^{-6./T}$ $9.38 \times 10^{-15} \mathrm{T}^{-3.60} \mathrm{e}^{-134./T}$	0 30	50-300	$\operatorname{ThisWork}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$7.03 \times 10^{-12} \mathrm{T}^{-0.63} \mathrm{e}^{-260./T}$	8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	C_4H_5	↑	$\mathrm{C_4H_6}$			$3.28 \times 10^{-11} \mathrm{T}^{0.29} \mathrm{e}^{80./T}$		200-2000	[7],est.(AtomNumber)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							1.00×10^{-21}	0.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Н	+	C,H,	↑	C,H°			2.00×10 2.00×10^{-10}		1	est.(Rad+Rad).est.(AtomNumber)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					7 45 -		0 4			1.00×10^{-21}	0.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		-	;		;			2.00×10^{-11}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	I.	+	$\mathrm{C_4H_9}$	↑	$\mathrm{C_4H_{10}}$			8.60×10 = 1= 1.00×10=21	0 40	200-2000	[6],est.(AtomNumber)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1.00×10 2.00×10^{-11}	0.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Н	+	C_6H	\uparrow	C_6H_2			3.00×10^{-10}		50-300	ThisWork
$8.70 \times 10^{-20} \text{T}^{2.75} \text{e}^{-50./T}$		4	H	+	C_6H_2	↑	C_6H_3			$2.86 \times 10^{-26} T^{5.55} e^{153./T}$	06	1	$\operatorname{est.}(\operatorname{H+C4H2})$
										$8.70 \times 10^{-20} T^{2.75} e^{-50./T}$	00		

					1							í
	Type				Kes	Keaction			k	L	T range	Ret.
\mathbb{R}_n 29	4	Н	+	C_6H_3	↑	C_6H_4			2.00×10^{-10}			est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-17}	0.40		
6	_	=	-	1		= 7			2.00×10^{-2}		000	<u> </u>
\mathbb{R}_n 30	4	-	+	C_6H_5	†	C ₆ H ₆			$9.86 \times 10^{-12} \text{T}^{-2.54} \text{e}^{-122./T}$	0.51	90-300	[c]
									$1.41 \times 10^{-10} \mathrm{T^{0.01} e^{14.}} / T$			
\mathbb{R}_n 31	4	Ħ	+	$\mathrm{C_6H_6}$	↑	C_6H_7			$1.41 \times 10^{-10} T^{0.01} e^{14.7}$		50-300	This Work
									$4.52 \times 10^{-21} \mathrm{T}^{-2.16} \mathrm{e}^{-2.0./T}$	0.02		
33	_	Þ	-	Ε ζ		ב			$1.42 \times 10^{-1} - 1^{-1} = 6^{-1}$		300 3000	[1] set (Atom Number)
Γ_n 3.2	#	=	+	C7117	†	C7118			4.30×10 1 00 \ 10 - 15	0.40	2007-7000	[1],est.(Attomination)
									1.00×10 4.30×10 ⁻¹⁰	0.40		
B. 33	4	Ħ	+	C, H,	1	C.H.			2.00×10 ⁻¹⁰			est (Bad+Bad) est (AtomNumber)
	•	:	-	n ×		08**10			1.00×10^{-13}	0.40		
									2.00×10^{-10}			
R_n34	4	Ö	+	Н,	↑	3 CH $_3$			$2.06 \times 10^{-11} e^{-57./T}$		300-2000	<u>∞</u>
:				N.		4			2.50×10^{-28}	0.40		
									6.00×10^{-16}			
R., 35	2	Ö	+	CH.	↑	C,H,	+	Н	1.00×10^{-10}		10-300	[6]
$R_n 36a$	2	Ö	+	C,H,	↑	$C_{3}H$	+	Н	$8.62 \times 10^{-11} \mathrm{T}^{-0.12}$		15-295	[10],[11],[12]
R. 36h	2	۲	+	ZH,		ຳວິ	+	H	$4.88 \times 10^{-10} \text{T}^{-0.12}$		15-295	[10].[11].[12]
B 37	ı c) C	- +	C2112	1	ر ت ت	- +	7.7. H	5 61 ~10 一10 丁-0.11		15-295	[10][11][13]
7 2 E	10) C	- +	CH. CCH	· 1	Carra CH	- +	: 11	5.06×10 ⁻¹⁰ T-0.11		15-295	[1] [1]
15n30	1 c	ر 	- +	CH CCH	. 1	Ç4113 7 ⊞	- +		2 71 ~ 10 - 10 T - 0.01		15 205	[14];[14] [11] [15]
11,n 39	۹ د) (-	C112 C II	` ^	C4113	-	11	3.30×10-10H-0.08		15 205	[11],[10] [10] [14] [16]
1tn 40t	4 0) (-	(311 ₆	١.	C4115	-	117	2.23 × 10 T = 10.08		10-290	[10],[14],[10]
$\mathbf{K}_n 40\mathbf{D}$	21 0	<u>ن</u> د	+ -	C3H ₆	↑	C3H3	+ -	CH3	$Z.29 \times 10^{-1}$ $Z.29 \times 10^{-1}$		15-295	[10],[14],[16]
$\mathbf{K}_n 41$.71 (ن د	+ -	$C_4 H_2$	↑	C ₂ H	+ -	I,	5.75×10 = T = ===============================		1	est.(C+CZHZ)
R_n 42	.71 (ن د	+ -	C_4H_4		C_5H_3	+ -	I,	5.75×10 ±0.1			$\operatorname{est.}(\operatorname{C+CZHZ}),[\operatorname{I} 7]$
R_n43	21	ن د	+	$C_4 H_6$		C_5H_5	+	н:	1.10×10^{-5}		300	[18],[19]
$R_n 44a$	2	ပ	+	$\mathrm{C_4H_8}$		C_5H_7	+	H	$ 2.15\times10^{-19} $		300	[20]
$\mathbf{R}_n 44\mathbf{b}$	2	0	+	$\mathrm{C_4H_8}$		$\mathrm{C_4H_5}$	+	$ m CH_3$	2.15×10^{-10}		300	[20]
$R_n 45$	7	ڻ ص	+	$\mathrm{C_{6}H_{2}}$	↑	$\mathrm{C}_7\mathrm{H}$	+	Н	5.75×10 ⁻¹⁰ T ^{-0:12}			est.(C+C2H2)
$\mathbb{R}_n 46$	4	CH	+	H_2	†	$_{ m CH_3}$			$ 4.16\times10^{-11}T^{0.20}$		53-744	[21],[22]
									$5.72 \times 10^{-34} \mathrm{T}^{1.80}$	0.63		
									$ 6.00\times10^{-19}$			
$\mathbf{R}_n 47$	2	CH	+	CH_4	↑	$\mathrm{C_2H_4}$	+	Н	$4.00 \times 10^{-08} \mathrm{T^{-1.04} e^{-36.7}}$		23-295	[23]
$R_n 48$	7	CH	+	$\mathrm{C_2H_2}$	↑	C_3H_2	+	H	$1.59 \times 10^{-09} \mathrm{T}^{-0.23} \mathrm{e}^{-16./T}$		23-295	[23],[24]
$R_n 49a$	2	СН	+	$\mathrm{C_2H_4}$	↑	CH_3CCH	+	Н	$2.32\times10^{-09}\mathrm{T}^{-0.55}\mathrm{e}^{-29./T}$		23-295	[23], [25], [26]
$R_n 49b$	2	CH	+	C_3H_3	↑	CH, CCH,	+	Н	$ 5.42\times10^{-09}T^{-0.55}e^{-29./T}$		23-295	[23],[25],[26]
R. 50a	2	CH	+	$C_{ m H_o}^2$	↑	$C_{\rm oH}$,	+	CH.	$3.27 \times 10^{-08} \mathrm{T}^{-0.86} \mathrm{e}^{-53./T}$		23-295	[23],[25]
B. 50b	2	CH	+	C,H,	↑	C_sH_s	+	° H	$5.32 \times 10^{-09} \text{T}^{-0.86} \text{e}^{-53./T}$		23-295	[23].[25]
B. 51	2	E E	+	CHOCH	1	C,H,	+	Ξ.	$1.83 \times 10^{-08} \text{T}^{-0.67} \text{e}^{-59./T}$		77-170	[27].[26].[28]
R 52	۰	Ę.	+	CHOCH	1	μ Π Ε	- +	: =	T/.79 - 0.69 - 0.69 - 67./T		77-170	[],[],[]
Lun 22	1 0	E E	- +	C.H.	` ↑	C.H.	- +	Η	$2.84 \times 10^{-09} \text{ T}^{-0.39} \text{ e}^{-19./T}$		77-300	[27],[29],[29]
D R3h	1 0	. E		03116 7		CH 70H		II C	2 15 × 10 -10 T -0.39 -19./T		77 300	[21];[22];[23]
Γ_n 03D Γ_{45}	4 6	5 5	+ -	C3H ₆	\	CH3CCH CH3CCH	+ -	CH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10 300	[21],[29],[29] [20] E.,,,,(D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Γ_n 04a	71 0	5 5	+ -	C3H8		C ₂ H ₄	+ -	C ₂ n ₅	$7.50 \times 10^{-10} = 0.40 = 4.7$		10 300	[50], raure(reiscomm), [51]
\mathbf{R}_n 34D	71 0	5 5	+ -	C3H8		C3H6	+ -	CH ₃	0.02×10^{-1} 0.40×10^{-1}		10-300	[30], Faure (Fers Comm), $[31]$
\mathbf{R}_n 34c	71 0	5 5	+ -	C3H8		C4H8	+ -	-	2.97×10^{-1} $1.50 \times 10^{-09} \text{ m} - 0.23 \times 16.7$		10-300	[50],Faure(Fers.comm),[31]
\mathbf{K}_n 55	۷ .	5 E	+ -	C_4H_2	†	C_5H_2	+ -		1.59×10 ° T ° = e ° c ′ · · · · · · · · · · · · · · · · · ·		1	est.(CH+CZHZ)
R_n 56	7 Z Z	\mathbf{R}_n 56 2 CH Continued on Next Begge	+	$\mathrm{C}_4\mathrm{H}_4$		C_5H_4	+	II.	1.59×10 ° ° 1	_	_	est.(CH+C2H2)
Continua	d on ive	xt Fage										

Ref.	est.(CH+CH2CCH2)	[23],[28]	[23],[28]	Faure(PersComm),[30]	Faure(PersComm),[30]	est.(CH+C2H2)	[52]	$[1]$ set $(1CH9\pm N9)$	[33]	[33]	[34]	[1]	Ξ	1	[35],[36]	[35],[36]	[35],[36]	[35],[36]	[37]	[38]	[39]	[40]	[39]	[40] [36]	[56] [36]	[39]	[39]	est.(1CH2+C2H2)	est.(1CH2+C2H2)	est.(1CH2+C2H2)	est.(1CH2+C2H2)	est.(1CH2+CH2CCH2)	[40]	[41]	[41]	[39]	[39]	est.(1CH2+C2H2)	[42], est. (AtomNumber)	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$[42], \mathrm{est.}(\mathrm{AtomNumber})$		[42],est.(AtomNumber)	
T range	ı	23-295	23-295	10-300	10-300	1	- 000	200-1000	195-798	195-798	300-2500	200-1000	200-1000	200-1000	195-798	195-798	195-798	195-798	300-2000	210-475	298	200-2000	298	200-2000	195-798	298	298	-	1	1	1	1	200-2000	295	295	298	867.		300-2500)) 	4	300-2500		300	
전																																								0.40		0.40		0 40	<u> </u>
k	$2.12{\times}10^{-08}\mathrm{T}^{-0.69}\mathrm{e}^{-67./T}$	$6.06 \times 10^{-09} \mathrm{T}^{-0.53} \mathrm{e}^{-33./T}$	$2.72 \times 10^{-09} \mathrm{T^{-0.53} e^{-33.}}/T$	$2.52 \times 10^{-10} \text{T}^{-0.33} \text{e}^{-4./T}$	$1.55 \times 10^{-09} \text{T}^{-0.53} \text{e}^{-4./1}$	$1.59 \times 10^{-0.9} \mathrm{T}^{-0.23} \mathrm{e}^{-10.7}$	5.50×10 $5.00 \times 10^{-11} = -237.7T$	2.00×10^{-1} e = -:., = 3 00 × 10 = 11 = -237./ T	3.05×10^{-11}	7.46×10^{-11}	3.00×10^{-11}	$3.10 \times 10^{-12} e^{250./T}$	$1.40 \times 10^{-11} e^{250./T}$	$1.40 \times 10^{-11} e^{250./T}$	$2.03 \times 10^{-09} \mathrm{T^{-0.39}}$	$7.90{ imes}10^{-10}\mathrm{T}^{-0.39}$	$1.63 \times 10^{-08} \mathrm{T}^{-0.84}$	$8.80 \times 10^{-09} \mathrm{T}^{-0.84}$	3.60×10^{-11}	$2.24 \times 10^{-08} \mathrm{T}^{-0.90}$	1.68×10^{-10}	$4.25 \times 10^{-09} \mathrm{T}^{-0.52} \mathrm{e}^{92./T}$	1.68×10 10 1.10.10-09m-0.35.232./T	$6.13 \times 10^{-10} \text{m}^{-0.13}$	$6.13 \times 10^{-11} \mathrm{T}^{-0.13}$	1.12×10^{-10}	1.12×10^{-10}	$2.03 \times 10^{-09} \mathrm{T}^{-0.39}$	$7.90 \times 10^{-10} \mathrm{T}^{-0.39}$	$2.03 \times 10^{-09} \mathrm{T}^{-0.39}$	$7.90 \times 10^{-10} \mathrm{T}^{-0.39}$	1.68×10^{-10}	$2.92 \times 10^{-09} \mathrm{T}^{-0.48} \mathrm{e}^{220./T}$	1.13×10^{-10}	1.13×10^{-10}	1.27×10^{-10}	1.27×10^{-10}	7 an > 10 m − 10 m − 0.39	$2.94 \times 10^{-11} e^{-4./T}$	1.00×10^{-25}	1.00×10^{-13}	$1.18 \times 10^{-13} e^{-\pi \cdot / z}$ 1.00×10^{-25}	1.00×10^{-13}	$1.99 \times 10^{-09} \mathrm{T}^{-0.34} \mathrm{e}^{-77./T}$ 1.00×10^{-25}	1.00×10^{-13}
																																									;	H			
	H	Н	CH_3	Н	$ m CH_3$	н ;	N N	$\frac{N_2}{15_N14_N}$	Н,	⁷ H	Н	CH_4	$\mathrm{CH}_3^{ar{4}}$, н	С,Н,	, H	$\mathrm{C}_{2}\mathrm{H}_{4}$	'н	$\mathrm{C_2H_6}$	$ m CH_3$	CH_3CCH	H	${ m CH_2CCH_2}$	I I	Сзп ₆ Н	C_3H_8	° H	C_4H_2	. н	$\mathrm{C_4H_4}$	Н	$\mathrm{C_4H_6}$	Н	$\mathrm{C_4H_8}$	H	$\mathrm{C_4H_{10}}$	II C	⊖ ₆ 112 H	н,	7		H +		Н	
	H +	H +	+ CH ₃					$+ \frac{N_2}{15N14N}$											$+$ C_2H_6					# # -														+ C ₆ 11 ₂		7	;	+		H +	
teaction	+	+	+	+ + 01	+	+ -	+ -	+ +	- +	+	. +	+	+	+	+	+	+	+	+	+	+	+	+ -		+ +	+ -	+	+	+	+		+	+ +	+		+ -	+ -	F +		-	:	+ H			
Reaction	+	+	+	$C_5H_{10} +$	+	$^{3}C_{7}^{H_{2}}$ +	3CH2 +	+ +	- +	CH., +	C_2H_4 +	+	+	+	+	+	+	+	+	\rightarrow $^{\circ}_{\mathcal{Q}_2}$ $^{\circ}_{\mathcal{H}_5}$ +	\rightarrow $^{3}CH_{2}$ +	\downarrow C_4H_5 +	→ CH ₂ +	. ↓ C4H5 32H5	+ +	- +	+	+	+	+	+	+	+ +	+	+	$^{\circ}$ CH ₂ +	+ -	F +	C ₃ H ₃ +	-	;	2 + H +		+	
Reaction	\rightarrow C ₅ H ₆ +	\rightarrow C_5H_8 +	\rightarrow C ₄ H ₆ +	\rightarrow C_5H_{10} +	\downarrow \downarrow \downarrow \downarrow \downarrow	$^{3}C_{7}^{H_{2}}$ +	. 30m2 +	3CH2 +	, 3CH; + -	CH ² +	\downarrow C_2H_4 +	\rightarrow $^{3}\tilde{\text{CH}}_{2}$ +	→ CH ₃ +	+	\rightarrow 3 CH ₂ +	\downarrow C_3H_3 +	\rightarrow 3 ČH, $^{+}$	\downarrow C_3H_5 +	\rightarrow $^{3}CH_{2}$ +	\rightarrow $^{\circ}_{\mathcal{Q}_2}$ $^{\circ}_{\mathcal{H}_5}$ +	\rightarrow $^{3}CH_{2}$ +	\downarrow C_4H_5 +	→ CH ₂ +	$CH_2 \rightarrow C_4H_5 + 3CH_5 + 3CH_5$	+ +	. 3CH, +	\downarrow C_1H_0 +	\rightarrow ³ CH ₂ +	\downarrow $C_5H_3^-$ +	\rightarrow $^{3}CH_{2}$ +	\rightarrow C_5H_5 +	\rightarrow $^{3}CH_{2}$ +	\rightarrow C_5H_7 +	\rightarrow $^{3}\text{CH}_{2}$ +	\rightarrow $^{\circ}_{5}$ $^{\circ}_{5}$ $^{+}$	\downarrow $^{3}\text{CH}_{2}$ +	$C_{5H_{11}} + C_{5H_{11}} + $		C ₃ H ₃ +	7 7 7 7 7 7		$C_2H_2 + H +$		C_2H_4 +	
Reaction	\rightarrow C ₅ H ₆ +	\rightarrow C_5H_8 +	$C_4H_8 \rightarrow C_4H_6 +$	$C_4H_{10} \rightarrow C_5H_{10} +$	\downarrow C ₄ H ₈ +	→ C ₇ H ₂ +		$+ N_2 \rightarrow CH_2 + 15N_14N \rightarrow 3CH_2 + 1$	+ H, → 3CH, +	+ H,	\downarrow C_2H_4 +	$+ CH_4 \rightarrow {}^3\tilde{C}H_2 +$	$+ CH_4 \rightarrow CH_3 +$	$+ CH_4 \rightarrow C_2H_5 +$	$+$ C_2H_3 \rightarrow 3CH_3 $+$	$+ C_2H_2 \rightarrow C_3H_3 +$	$+$ C_2H_4 \rightarrow 3CH_2 $+$	$+ C_2^{\dagger}H_4^{\dagger} \rightarrow C_3H_5^{-} +$	\rightarrow $^{3}CH_{2}$ +	\rightarrow C_2H_5 +	$+$ CH ₃ CCH \rightarrow ³ CH ₂ $+$	$+ CH_3CCH \rightarrow C_4H_5 +$	CH ₂ CCH ₂ → CH ₂ +	$+$ CH_2CCH_2 \downarrow C_4H_5 $+$ C_4	+ C3H ₀ + CH ₂ +	$+ C_3H_s \rightarrow 3CH_s +$	$+$ C_3H_s $+$ C_4H_o $+$	$+ C_4^{H_2} \rightarrow {}^3C_{H_2} +$	$+ C_4^{\dagger}H_2^{-} \rightarrow C_5^{\dagger}H_3^{-} +$	$+ C_4H_4 \rightarrow {}^3CH_2 +$	$+ C_4 H_4 \rightarrow C_5 H_5 +$	$+ C_4H_6 \rightarrow {}^3CH_2 +$	\rightarrow C_5H_7 +	$+ C_4H_8 \rightarrow {}^{3}CH_2 +$	$+ C_4H_8 \rightarrow C_5H_9 +$	$+ C_4H_{10} \rightarrow {}^3CH_2 +$	$+ C_4^{H_{10}} \rightarrow C_5^{H_{11}} + C_4^{H_{10}} \rightarrow C_5^{H_{11}} + C_4^{H_{10}} \rightarrow C_5^{H_{11}} + C_$		$+$ $\overset{(611)}{\circ}$ $\overset{(711)}{\circ}$ $+$ $+$ $\overset{(711)}{\circ}$ $+$ $+$ $+$ $\overset{(711)}{\circ}$ $+$ $+$	7 7 7 7 7 7		$+$ $^{3}\text{CH}_{2}$ \rightarrow $^{2}\text{C}_{2}\text{H}_{2}$ $+$ H $+$		$+$ CH_3 \rightarrow C_2H_4 $+$	
Reaction	$+ C_4 H_6 \rightarrow C_5 H_6 +$	$+ C_4H_8 \rightarrow C_5H_8 +$	$+ C_4H_8 \rightarrow C_4H_6 +$	$+$ C_4H_{10} \rightarrow C_5H_{10} $+$	$+ C_4H_{10} \rightarrow C_4H_8 +$	→ C ₇ H ₂ +		N_2 $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$	+ H, → 3CH, +	+ H,	$+ CH_3 \rightarrow C_2H_4 +$	$+ CH_4 \rightarrow {}^3\tilde{C}H_2 +$	$+ CH_4 \rightarrow CH_3 +$	$+ CH_4 \rightarrow C_2H_5 +$	$+$ C_2H_3 \rightarrow 3CH_3 $+$	$+ C_2H_2 \rightarrow C_3H_3 +$	$+ C_2H_4 \rightarrow {}^3CH_3 +$	$+ C_2^{\dagger}H_4^{\dagger} \rightarrow C_3H_5^{-} +$	$+ C_2H_6 \rightarrow {}^3CH_2 +$	$+ C_2H_6 \rightarrow C_2H_5 +$	$+$ CH ₃ CCH \rightarrow ³ CH ₂ $+$	$+ CH_3CCH \rightarrow C_4H_5 +$	$+ CH_2CCH_2 \rightarrow ^3CH_2 + ^3CH_2 + ^3CH_3 + ^3CH_$	$CH_2CCH_2 \rightarrow C_4H_5 + 3CH_5 +$	+ C3H ₀ + CH ₂ +	$+ C_3H_s \rightarrow 3CH_s +$	$+$ C_3H_s $+$ C_4H_o $+$	$+ C_4^{H_2} \rightarrow {}^{3}C_{H_2} +$	$+ C_4^{\dagger}H_2^{-} \rightarrow C_5^{\dagger}H_3^{-} +$	$+ C_4H_4 \rightarrow {}^3CH_2 +$	$+ C_4 H_4 \rightarrow C_5 H_5 +$	$+ C_4 H_6 \rightarrow {}^{3}CH_2 +$	$+ C_4 H_6 \rightarrow C_5 H_7 +$	$+ C_4H_8 \rightarrow {}^{3}CH_2 +$	$+ C_4H_8 \rightarrow C_5H_9 +$	$+ C_4 H_{10} \rightarrow {}^3 CH_2 +$	C ₅ H ₁₁ +		$+$ $\overset{(611)}{\circ}$ $\overset{(711)}{\circ}$ $+$ $+$ $\overset{(711)}{\circ}$ $+$ $+$ $+$ $\overset{(711)}{\circ}$ $+$ $+$	7 - 7		$^{3}\mathrm{CH}_{2}$ \rightarrow $^{2}\mathrm{C}_{2}\mathrm{H}_{2}$ $+$ H $+$		$CH_3 \rightarrow C_2H_4 +$	+ D ₂
Type Reaction	$ CH + C_4H_6 \rightarrow C_5H_6 +$	$CH + C_4H_8 \rightarrow C_5H_8 +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ $ CH $+$ C ₄ H ₁₀ \rightarrow C ₅ H ₁₀ $+$	$ CH + C_4H_{10} \rightarrow C_4H_8 +$	$+ C_6 H_2 \rightarrow C_7 H_2 + C_8 H_2 + C_$	10tr N 30tr -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left {}^{1}\text{CH}_{2}^{2} + \text{CH}_{4}^{4} \right \rightarrow \text{CH}_{3}^{2} +$	$ ^{1}CH_{2} + CH_{4} \rightarrow C_{3}H_{5} +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left {}^{1}\text{CH}_{2}^{2} + {}^{2}\text{C}_{3}^{2}\text{H}_{3}^{2} \right. + \left. {}^{2}\text{C}_{3}\text{H}_{3}^{2} \right. + \left. {}^{2}\text{C}_{3}\text{H}_{$	$\left {}^{1}\text{CH}_{2} \right + \left {}^{2}\text{CH}_{4} \right \rightarrow \left {}^{3}\text{CH}_{2} \right + \left {}^{4}\text{CH}_{2} \right $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{ccccc} {}^{1}\mathrm{CH}_{2} & + & \mathrm{CH}_{3}\mathrm{CCH} & \rightarrow & {}^{3}\mathrm{CH}_{2} & + \\ \end{array}\right $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}\text{CH}_{2}$ + $^{1}\text{CH}_{2}\text{CCH}_{2}$ + $^{1}\text{CH}_{2}$ + $^{1}\text{CH}_{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left {}^{1}\mathrm{CH}_{2}^{2} \right. + \left. \mathrm{C}_{4}^{3}\mathrm{H}_{2}^{2} \right. \rightarrow \left. {}^{3}\mathrm{CH}_{2}^{4} \right. + \left. \right.$	$\left {}^{1}\text{CH}_{2}^{-} \right. + \left. {}^{C}\text{C}_{4}\text{H}_{2}^{-} \right. \rightarrow \left. {}^{C}\text{S}\text{H}_{3}^{-} \right. + \left. {}^{C}\text{C}_{3}\text{H}_{3}^{-} \right. + \left. {}^{C}\text{C}_{3}\text{H}_{3}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77		$+$ $^{3}\text{CH}_{2}$ \rightarrow $^{2}\text{C}_{2}\text{H}_{2}$ $+$ H $+$		$+$ CH_3 \rightarrow C_2H_4 $+$	Continued on Mart Dam

T range Ref.	- est.(Rad+Rad),est.(AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	300-2500 [34] est.(Rad+Rad),est.(AtomNumber)	300-2500 [34] est.(Rad+Rad),est.(AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	300-2500 [34] 50-300 This Work	300-2500 [34] 50-300 This Work	50-300 ThisWork 308-900 [43] 50-300 ThisWork	50-300 This Work est. (Rad+Rad), est. (AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	- est.(Rad+Rad),est.(AtomNumber)	301-800 [44],est.(AtomNumber)
FL	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.37	08.0	0.95	0.40	0.40	0.40	ç
k	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 2.00 \times 10^{-12} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-23} \end{array}$	2.00×10^{-12} 3.00×10^{-11} 8.00×10^{-11} 1.00×10^{-23}	2.00×10^{-12} 3.00×10^{-11} 8.00×10^{-11} 1.00×10^{-21}	$\begin{array}{c} 2.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-21} \end{array}$	2.00×10^{-11} 8.00×10^{-11} 1.00×10^{-21}	2.00×10^{-11} 8.00×10^{-11} 1.00×10^{-21}	$\begin{array}{c} 2.00 \times 10^{-11} \\ 5.00 \times 10^{-11} \\ 3.84 \times 10^{-10} T^{-0.29} e^{-28./T} \\ 5.53 \times 10^{-17} T^{-3.79} e^{-64./T} \\ 9.90 \times 10^{-0.7} e^{-3.25} e^{-7.7} \end{array}$	$\begin{array}{c} 1.20 \times 10 & 1 & e \\ 1.00 \times 10^{-11} & 1 & e \\ 8.87 \times 10^{-10} T^{-0.38} e^{39./T} \\ 1.66 \times 10^{-24} T^{-2.11} e^{-167./T} \\ 2.62 \times 10^{-12} T^{-2.18} = 122./T \end{array}$	$\begin{array}{c} 1.24 \times 10^{-10} \\ 1.24 \times 10^{+0.5} \\ 1.50 \times 10^{-11} \\ 2.86 \times 10^{-0.9} \\ 1.51 \times 10^{-10} \\ 2.85 \times 10^{-0.9} \\ 1.51 \times 10^{-12} \\ 1.$	$3.62 \times 10^{-0.2} \cdot 1^{-3.20} e^{-5.57}$ $4.88 \times 10^{-0.9} \cdot 1^{-4.59} e^{464./T}$ 8.00×10^{-11} 1.00×10^{-21}	2.00×10^{-11} 8.00×10^{-11} 1.00×10^{-21}	2.00×10^{-11} 8.00×10^{-11} 1.00×10^{-21}	2.00×10^{-11} 6.80×10^{-11} 6.00×10^{-21}
	н		$ m CH_3$	$ m CH_3$				н	н	$_{\mathrm{CH}_{4}}^{\mathrm{H}}$	CH_4			
	+		+	+				+	+	+ +	+			
Reaction	C_3H_2	$\mathrm{C_3H_5}$	$\mathrm{C_2H_2} \\ \mathrm{C_3H_7}$	$\mathrm{C_2H_4}\\\mathrm{C_4H_2}$	C_4H_3	$\mathrm{C_4H_4}$	$\mathrm{C_4H_5}$	$\mathrm{C_4H_6}$ $\mathrm{C_2H_6}$	$\mathrm{C_3H_3}$ $\mathrm{C_3H_6}$	$\begin{array}{c} \mathrm{C_3H_5} \\ \mathrm{C_2H_2} \\ \mathrm{C_3H_8} \end{array}$	$\mathrm{C_2H_4}_{2\mathrm{H_3}}$	$\mathrm{C}_4\mathrm{H}_4$	$\mathrm{C_4H_5}$	$\mathrm{C_4H_6}$
Re	†	\uparrow	↑ ↑	↑ ↑	↑	↑	↑	↑ ↑	↑ ↑	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow$	↑	↑	↑
	C_2H	$\mathrm{C_2H_3}$	$\mathrm{C_2H_3} \\ \mathrm{C_2H_5}$	${\rm C_2H_5}\atop{\rm C_3}$	C_3H	$\mathrm{C_3H_2}$	C_3H_3	$\mathrm{C_3H_5}$ $\mathrm{CH_3}$	$\mathrm{C_2H} \\ \mathrm{C_2H_3}$	$\mathbf{C_2H_3}\\\mathbf{C_2H_3}\\\mathbf{C_2H_5}$	${\rm C_2H_5}\atop{\rm C_3}$	C_3H	C_3H_2	$\mathrm{C_3H_3}$
	+	+	+ +	+ +	+	+	+	+ +	+ +	+ + +	+ +	+	+	+
	$ ^3 \text{CH}_2$	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$ $^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2$ $^\mathrm{CH}_3$	CH ₃	CH ₃ CH ₃	CH ₃	CH ₃	CH_3	$ m CH_3$
Type	4	4	S 4	2 4	4	4	4	2 4	2 4	ю c1 4	8 4	4	4	4
	$R_n 82$	\mathbb{R}_n 83a	$R_n 83b$ $R_n 84a$	$R_n 84b$ $R_n 85$	\mathbb{R}_n 86	\mathbb{R}_n 87	$\mathbb{R}_n 88$	$R_n 89$ $R_n 90$	$R_n 91$ $R_n 92a$	$R_n 92b$ $R_n 92c$ $R_n 93a$	$R_n 93b$ $R_n 94$	\mathbb{R}_n 95	\mathbb{R}_n 96	\mathbb{R}_n 97a

	Type				Rea	Reaction			k	F	T range	Ref.
\mathbb{R}_n 98a	4	CH_3	+	$\mathrm{C_3H_5}$	↑	C_4H_8			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	301-800	[44],[1],est.(AtomNumber)
\mathbb{R}_n 98b \mathbb{R}_n 99a	2 4	CH ₃	+ +	$\begin{array}{c} \mathrm{C_3H_5} \\ \mathrm{C_3H_7} \end{array}$	\uparrow \uparrow	$\mathrm{CH_2CCH_2}$ $\mathrm{C_4H_{10}}$	+	CH_4	2.00×10^{-2} 6.00×10^{-13} $5.33 \times 10^{-10} \text{ T}^{-0.47} \text{ e}^{97./T}$ 1.00×10^{-21}	0.40	500-800 200-2000	[1] [45],est.(AtomNumber)
$ m R_n99b \ m R_n100a$	2 4	CH ₃	+ +	$\mathrm{C_3H_7}$ $\mathrm{C_4H_3}$	\uparrow \uparrow	$\mathrm{C_{3}H_{6}}$	+	CH_4	2.00×10 ⁻¹¹ 1.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.000×10 ⁻¹⁹	0.40	1 1	This Work est. (Rad+Rad), est. (Atom Number)
$\mathbf{R}_n 100\mathbf{b} \\ \mathbf{R}_n 101$	24	CH ₃	+ +	$\mathrm{C_4H_3} \\ \mathrm{C_4H_5}$	\uparrow \uparrow	$\mathrm{C_4H_2} \\ \mathrm{C_5H_8}$	+	CH_4	8.00×10^{-2} 1.50×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	1 1	est.(CH3+C2H3) est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 102	4	$ m CH_3$	+	$\mathrm{C_4H_7}$	↑	$\mathrm{C}_5\mathrm{H}_{10}$			$ \begin{array}{c c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-19} \\ \vdots \end{array} $	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$\mathbb{R}_n 103$	4	$ m CH_3$	+	$\mathrm{C_4H_9}$	↑	$\mathrm{C_5H_{12}}$			8.00×10^{-11} $1.16 \times 10^{-09} \text{T}^{-0.67} \text{e}^{73./T}$ 1.00×10^{-19}	0.40	ı	[45],est.(AtomNumber)
R_n 104a	4	$ m CH_3$	+	$\mathrm{C_6H_3}$	↑	$\mathrm{C_7H_6}$			$\begin{array}{c} 1.16 \times 10^{-09} T^{-0.67} \mathrm{e}^{73./T} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \\ \vdots \\ 0.00 \times 10^{-15} \end{array}$	0.40	1	est.(Rad+Rad),est.(AtomNumber)
${ m R}_n 104{ m b}$ ${ m R}_n 105$	2 4	CH ₃	+ +	${ m C}_{6{ m H}_3}$	\uparrow \uparrow	$\mathrm{C_6H_2} \\ \mathrm{C_7H_8}$	+	CH_4	$\begin{array}{c} 8.00\times10^{-11} \\ 1.50\times10^{-11} \mathrm{e}^{385./T} \\ 3.62\times10^{-09} \mathrm{T}^{-0.62} \mathrm{e}^{-29./T} \\ 1.00\times10^{-15} \end{array}$	0.40	50-300	est.(CH3+C2H3) [5]
\mathbb{R}_n 106	4	$ m CH_3$	+	$\mathrm{C_7H_7}$	\uparrow	$\mathrm{C_8H_{10}}$			$3.62 \times 10^{-09} T^{-0.62} e^{-29./T}$ 8.00×10^{-11} 1.00×10^{-13}	0.40	1	est. (Rad+Rad), est. (AtomNumber)
R_n 107	4	$ m CH_3$	+	$\mathrm{C_8H_9}$	\uparrow	$\mathrm{C_9H_{12}}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
R _n 108 2 C ₂ R _n 110 2 C ₂ R _n 111a 2 C ₂ R _n 111b 2 C ₂ R _n 111c 2 C ₂ R _n 111 2 C ₂ R _n 113a 2 C ₂ R _n 113b 2 C ₂ R _n 115a 2 C ₂ R _n 115b 2 C ₂ R _n 115c 2 C ₂ R _n 11f 2 C ₂ R _n 11g 2 C ₂ R _n 11g 2 C ₂ R _n 11g 2 C ₂ </th <td>8 2 2 5 5 7 8 8</td> <td>ж ж ж Дого о о о о о о о о о о о о о о о о о о</td> <td>++++++++++++++</td> <td>H₂ CCH₄ C2H₄ C2H₄ C2H₄ C2H₄ C2H₄ C2H₄ C2H₄ CH₃CCH CH₄CCH CH₃CCH CH₄CCH CH₄ CG₃H₆ CG₃H₆ CG₃H₆ CG₄H₈ CG₄H₈ CG₄H₈</td> <td>↑↑↑↑↑↑↑↑</td> <td>С2 H С2 H С4 H С4 H С6 H С6 H С6 H С6 H С6 H С6 H С7 H С7 H С9 H С9 H</td> <td>+++++++++++++++</td> <td>н ССВ3 СС2 И2 Н2 СС2 И2 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3</td> <td>$8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 5.60 \times 10^{-11} \\ 1.92 \times 10^{-10} \\ 1.52 \times 10^{-11} \\ 1.52 \times 10^$</td> <td></td> <td>293-395 24-300 49-300 49-300 49-300 49-300 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296</td> <td>[46] [47] [47],[48],[49] [47],[50] [47],[50] [47],[50] [47],[50] [52],[54] [52],[54] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [51] [52],[51] [52],[52] [53],[54]</td>	8 2 2 5 5 7 8 8	ж ж ж Дого о о о о о о о о о о о о о о о о о о	++++++++++++++	H ₂ CCH ₄ C2H ₄ CH ₃ CCH CH ₄ CCH CH ₃ CCH CH ₄ CCH CH ₄ CG ₃ H ₆ CG ₃ H ₆ CG ₃ H ₆ CG ₄ H ₈ CG ₄ H ₈ CG ₄ H ₈	↑↑↑↑↑↑↑↑	С2 H С2 H С4 H С4 H С6 H С6 H С6 H С6 H С6 H С6 H С7 H С7 H С9 H С9 H	+++++++++++++++	н ССВ3 СС2 И2 Н2 СС2 И2 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3 ССВ И3	$8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 5.60 \times 10^{-11} \\ 1.92 \times 10^{-10} \\ 1.52 \times 10^{-11} \\ 1.52 \times 10^$		293-395 24-300 49-300 49-300 49-300 49-300 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296 77-296	[46] [47] [47],[48],[49] [47],[50] [47],[50] [47],[50] [47],[50] [52],[54] [52],[54] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [52],[56] [51] [52],[51] [52],[52] [53],[54]

nge Ref.		000 [34] [57]			59 [55],[59],[60]		0				0				70 [(/U],[/1]		70 [10],[02],[12] 86 [70]						[75]	['fb],est.(AtomNumber)		[92]	[76]	est.(Rad+Rad),est.(Atominumber)		est.(Rad+Rad),est.(AtomNumber)		est (Bad+Bad) est (AtomNumber)	(1)		est.(Rad+Rad),est.(AtomNumber)		est.(Bad+Bad).est.(AtomNumber)			000 [77]				-
T range	300-2500	300-2500 $15-295$	300 - 2500	300-2500	300-2500	300-2500	150-780	63-296	63-296	63-296	103-296	96-361	20-900	- 104	104-290	104-290	104-296	1	105-298	300-700			298	867		298	298	ı		1		1			1					300-2500	i 2			
F																					0.40			0.40				0,00	0.40		0.40		0.40			0.40		0.40				0.40		
k	3.00×10^{-11}	$3.00 \times 10^{-12} \ 4.37 \times 10^{-10} \mathrm{T}^{-0.25}$	3.00×10^{-11}	1.60×10^{-12}	7.80×10 - e/- 3.00×10-12	3.00×10^{-11}	$6.75\times10^{-12}T^{0.28}e^{62./T}$	$4.64 \times 10^{-10} \mathrm{T}^{-0.30}$	$6.96 \times 10^{-10} T^{-0.30}$	$1.95 \times 10^{-0.17}$	2.16×10 = 2 2.26×10=11 = 71.77	9.80×10 1 e 1 : 7 1 1 e 2 1 1 0 1 1 e 2 1 1 0 1 1 e 2 1 1 0 1 1 e 2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.02×10 $1.09 \times 10^{-0.23} \times 4.7$	1.03×10 1 e, -	3.00×10^{-1}	8 80×10-11	0.00×10 1 15×10 ⁻¹⁰	$1.03 \times 10^{-09} \text{ T}^{-0.23} \text{ p.4.} / T$	$9.10 \times 10^{-10} \text{T}^{-0.18}$	$1.20 \times 10^{-11} e^{400./T}$	1.00×10^{-21}	1.20×10^{-11}	2.40×10^{-11}	$\begin{array}{c c} 6.50 \times 10^{-21} \\ 1.00 \times 10^{-21} \end{array}$	2.00×10^{-11}	1.50×10^{-11}	1.50×10 ⁻¹¹	8.00×10 == 1.00×10=19	1.00×10^{-11} 8.00×10^{-11}	8.00×10^{-11}	1.00×10^{-19}	8.00×10 :: 8.00×10 ::	1.00×10 ⁻¹⁹	8.00×10^{-11}	8.00×10^{-11}	1.00×10^{-19}	$\begin{array}{c c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \end{array}$	1.00×10^{-19}	8.00×10^{-11}	4.00×10^{-12} 8.00×10^{-12}	8.00×10 ⁻¹¹	1.00×10^{-19}	8.00×10^{-11}	-
	H	H C		$\mathrm{C_2H_2}$	H C							$^{\mathrm{C_2H_2}}_{\mathrm{H}}$		==									$\mathrm{C_2H_2}$			$\mathrm{C_2H_4}$														$C_2^{H_4}$				
	+	+ +	+	+ -	+ +	- +	+	+	+	+ -	+ -	+ -	+ -	+ -	+ -	+ -	+ +	- +	- +	+			+			+	+													$\frac{1}{2}$				
Reaction	C_4H	C_2H_2 C_4H_3	$\mathrm{C_4^4H_3^2}$	C_2H_2	Ω Π Η Ψ Η	C_3H_3	$C_2^H_2$	$\mathrm{C_5H_4}$	C_4H_2	$_{\rm C_5H_4}$	C4H4	C3H2	C ₆ H ₂	C ₆ H ₄	9 Ц С	74H4	C.F.E.	C2112	C.H.	C_AH_{r}	o r		C_2H_4	C_4H_8		$\mathrm{C_2H_4}$	$C_2^{\mathrm{H}_6}$	C5H3		C_5H_4		C.H.	65.45		$\mathrm{C_5H_6}$		C, H.	x0 1 1 1 1		CH_2CCH_2	C,H,	0 10		
Re	1	↑ ↑	↑	†	1	^	↑	↑	↑	↑	†	↑ ′	†	<u></u>	1	1	1	1	^ ↑	†			↑ ′	↑		\uparrow	↑ ′	†		↑		1			↑		↑			1 1				
	C_2H	C_2^H	$\mathrm{C_2^LH_3^L}$	C_2H_3	C2H4	$C_2^{2H_5}$	$\mathrm{C_2^{ ilde{2}}H_6^{ ilde{2}}}$	CH_3CCH	CH3CCH	CH_2CCH_2	C3H ₆	C3H8	C4H2	C ₄ H ₄	7 4 H ₆	2 C 4 H 8	C4H8	C. H.	$C_6^{\rm H2}$	C_3H_3	0		C_2H_3	C_2H_5		$\mathrm{C_2H_5}$	$\mathrm{C_{2}H_{5}}$	္ဗ		C_3H		C. H.	(3++2		$\mathrm{C_3H_3}$		C,H,	9-18)		$C_{3}H_{5}$	C3H7	-		
	+	+ +	+	+ -	+ +	- +	+	+	+	+ -	+ -	+ -	+ -	+ -	+ -	+ -	+ +	- +	- +	+			+ -	+		+	+ -	+		+		+	-		+		+			+ +	- +			
	C_2H	C_2^H	C_2^L	C_2H	2 C	C,H	$C_2^{\tilde{1}}H$	C_2H	C_2^H	$C_2^{\rm H}$	1,E	Ξ,Ξ Σ	225	5 C	1, E	7 C	7 C	. T	C ₂ H	C_3H_3	0		$C_2^{H_3}$	C_2H_3		C_2H_3	C_2^H	C_2H_3		C_2H_3		H.	(2.13		$\mathrm{C_2H_3}$		C, H,	5 - 2		$C_2^{\rm H_3}$	C,H,	0		t Page
Type	2	21 21	2	2 0	7 0	1 (2)	2	2	2	27 (7 0	7 0	4 0	7 0	7 0	4 C	4 0	1 0	1 2	4			C1 =	4		2	C1 =	4		4		4			4		4			61 6	1 4			on Nex
	R_n 119a	$R_n 119b$ $R_n 120$	\mathbb{R}_n^{121a}	$R_n 121b$	$R_{n}122$	R _n 123b	\mathbb{R}_n 124	\mathbb{R}_n 125a	$R_n 125b$	$R_n 126$	R_n127	K _n 128	Ln129	K _n 130	Rn 131	Nn 1324	R. 133	R. 134	R. 135	$R_n 136a$	2		$\mathbb{R}_n 136b$	κ_n 137a		\mathbb{R}_n 137b	$R_n 137c$	K_n 158		$R_n 139$		B. 140	011111		\mathbb{R}_n 141		R., 142a			$R_n 142b$	R _n 143a	•		Continued on Next Page

	Type				Re	Reaction			×	판	T range	Ref.
$\begin{array}{c} \mathbf{R}_n \mathbf{143b} \\ \mathbf{R}_n \mathbf{143c} \end{array}$	2.2	$\begin{bmatrix} C_2H_3 \\ C_2H_3 \end{bmatrix}$	+ +	C_3H_7 C_3H_7		C_3H_6 C_3H_8	+ +	C_2H_4 C_2H_2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300-2500 300-2500	[87]
\mathbb{R}_n 144	4	C_2H_3	+	$\mathrm{C_4H_3}$	†	$\mathrm{C_6H_6}$			8.00×10^{-11} 1.00×10^{-17}	0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 145	4	$\mathrm{C_2H_3}$	+	$\mathrm{C_4H_5}$	↑	C_6H_8			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \end{array}$		ı	est.(Rad+Rad),est.(AtomNumber)
									$\begin{array}{c c} 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40		
\mathbb{R}_n 146	4	C_2H_3	+	$\mathrm{C_4H_7}$	\uparrow	$\mathrm{C_6H_{10}}$			8.00×10^{-11} 1.00×10^{-17}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
R_n 147	4	C_2H_3	+	$\mathrm{C_4H_9}$	↑	$\mathrm{C_6H_{12}}$			8.00×10^{-11} 8.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-17}	0.40		
\mathbb{R}_n 148	4	C_2H_3	+	C_6H_3	↑	$\mathrm{C_8H_6}$			8.00×10^{-11} 1.00×10^{-13}	0.40	1	${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 149	4	C_2H_3	+	C_6H_5	↑	$\mathrm{C_8H_8}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-13}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
$\mathbb{R}_n 150 \mathrm{a}$	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_2H_5}$	↑	$\mathrm{C_4H_{10}}$			8.00×10^{-24} $1.45 \times 10^{-09} \text{T}^{-0.70} \text{e}^{1./T}$ 1.00×10^{-21}	0.40	200-2000	[45],est.(AtomNumber)
\mathbb{R}_n 150b \mathbb{R}_n 151	2 4	$\begin{array}{c} C_2 H_5 \\ C_2 H_5 \end{array}$	+ +	${\rm C_2H_5}\atop{\rm C_3}$	\uparrow \uparrow	${\rm C_2H_4}\atop{\rm C_5H_5}$	+	$\mathrm{C_2H_6}$	$\begin{array}{c} 2.00 \times 10^{-11} \\ 2.40 \times 10^{-12} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-19} \end{array}$	0.40	300-1200	[79] est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 152	4	C_2H_5	+	$\mathrm{C_3H}$	↑	$\mathrm{C_5H_6}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	ı	${\rm est.}({\tt Rad+Rad}), {\rm est.}({\tt AtomNumber})$
\mathbb{R}_n 153	4	C_2H_5	+	$\mathrm{C_3H_2}$	↑	$\mathrm{C_5H_7}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	ı	est.(Rad + Rad), est.(AtomNumber)
\mathbb{R}_n 154	4	C_2H_5	+	$\mathrm{C_3H_3}$	↑	$\mathrm{C_5H_8}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	ı	${\rm est.}({\tt Rad+Rad}), {\rm est.}({\tt AtomNumber})$
\mathbb{R}_n 155a	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_3H_5}$	†	$\mathrm{C}_5\mathrm{H}_{10}$			8.00×10^{-11} 3.30×10^{-11} e ^{66./T} 1.00×10^{-11} e ^{66./T}	0.40	500-1200	[1],est.(AtomNumber)
R_n 155b R_n 155c R_n 156a R_n 156b R_n 156b	00004	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	+ + + + +	C ₃ H ₅ C ₃ H ₅ C ₃ H ₇ C ₃ H ₇	$\uparrow\uparrow\uparrow\uparrow\uparrow$	$egin{array}{c} {\rm C}_3{\rm H}_6 \\ {\rm CH}_2{\rm CCH}_2 \\ {\rm C}_3{\rm H}_8 \\ {\rm C}_3{\rm H}_6 \\ {\rm C}_5{\rm H}_{12} \\ \end{array}$	+ + + +	$egin{array}{c} { m C}_2{ m H}_4 \\ { m C}_2{ m H}_6 \\ { m C}_2{ m H}_4 \\ { m C}_2{ m H}_6 \end{array}$	3.30×10^{-1} 6.00×10^{-1} 4.30×10^{-1} $2.66 \times T$ 1.60×10^{-1} 5.00×10^{-1} 5.00×10^{-1} 5.37×10^{-10} $T = 0.00 \times 10^{-1}$		500-1200 500-1200 - 200-2000	[1] This Work This Work [45],est.(AtomNumber)
R_n 157	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_4H_3}$	†	$\mathrm{C_6H_8}$			$\begin{array}{c} 1.00 \times 10 \\ 5.37 \times 10^{-10} \mathrm{T}^{-0.60} \mathrm{e}^{161./T} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array}$	0.40	1	est.(Rad+Rad), est.(AtomNumber)
$\mathbf{R}_n 158$ 4 $\mathbf{C}_2 \mathbf{H}_5$ Continued on Next Page	4 on Nex	$\begin{array}{c} C_2 H_5 \\ \end{array}$ t Page	+	$\mathrm{C}_4\mathrm{H}_5$	↑	$\mathrm{C_6H_{10}}$			$ \begin{vmatrix} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{vmatrix} $	0.40	1	est.(Rad+Rad),est.(AtomNumber)

	Type				Re	Reaction	H	Fc	T range	Ref.
R_n 159	4	$\left \begin{array}{c} \mathrm{C_2H_5} \end{array} \right $	+	$\mathrm{C_4H_7}$	↑	C_6H_{12} C_6H_{12} 8.00×10^{-11} 8.00×10^{-11}		0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 160	4	C_2H_5	+	$\mathrm{C_4H_9}$	↑	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			200-2000	[45],est.(AtomNumber)
\mathbb{R}_n 161	4	C_2H_5	+	C_6H_3	↑	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.40		est.(Rad + Rad), est.(AtomNumber)
\mathbb{R}_n 162	4	C_2H_5	+	$\mathrm{C_6H_5}$	\uparrow	$\begin{array}{c} {\rm S.00}\!\times\!10^{-11} \\ {\rm S.00}\!\times\!10^{-11} \\ {\rm S.00}\!\times\!10^{-11} \\ {\rm 1.00}\!\times\!10^{-13} \end{array}$		0.40		${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 163	4	°C	+	$\mathrm{C_3H_3}$	\uparrow	$\begin{array}{ccc} C_6H_3 & 8.00\times 10^{-11} \\ 8.00\times 10^{-11} \\ 8.00\times 10^{-17} \\ 1.00\times 10^{-17} \end{array}$		0.40		${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 164	4	ǰ	+	$\mathrm{C_3H_5}$	\uparrow	C_6H_5 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷	0.4	0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 165	4	C_3H	+	$\mathrm{C_3H_3}$	\uparrow	C_6H_4 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷		0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 166	4	C ₃ H	+	$\mathrm{C_3H_5}$	\uparrow	C_6H_6 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷		0.40		${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 167	4	C_3H_2	+	$\mathrm{C_3H_3}$	\uparrow	C_6H_5 8.00×10^{-11} 8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-17}		0.40		${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 168	4	$ C_3H_2$	+	$\mathrm{C_3H_5}$	\uparrow	C_6H_7 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷		0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 169	4	C_3H_3	+	C_3H_3	\uparrow	C_6H_6 8.00×10 ⁻¹¹ 6.50×10^{-11} 1.00×10^{-17}		0.40	298-1000	[1],est.(AtomNumber)
$ m R_n$ 170a	4	C_3H_3	+	$\mathrm{C_3H_5}$	↑	C_6H_8 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷	0.4	0.40		est.(Rad+Rad),est.(AtomNumber)
$\mathbf{R}_n 170\mathbf{b}$ $\mathbf{R}_n 171$	2 4	C ₃ H ₃	+ +	$\mathrm{C_3H_5}$ $\mathrm{C_3H_7}$	↑ ↑	${ m CH_2CCH_2} + { m CH_2CCH_2} = { m 8.00 \times 10^{-11}} \\ { m C_6H_{10}} = { m 8.00 \times 10^{-11}} \\ { m 1.00 \times 10^{-17}} \\ { m 1.00 \times 10^{-17}}$	0.	0.40		est.(C3H5+C3H5) est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 172	4	C_3H_3	+	$\mathrm{C_4H_3}$	\uparrow	C_7H_6 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁵	0.4	0.40		est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 173	4	C_3H_3	+	$\mathrm{C_4H_5}$	\uparrow	C_7H_8 8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.	0.40		est.(Rad+Rad),est.(AtomNumber)
$ m R_n$ 174	4	C_3H_3	+	$\mathrm{C_4H_7}$	\uparrow	C_7H_{10} 8.00×10 ⁻¹¹ 8.00×10 ⁻¹² 1.00×10 ⁻¹⁵	0.4	0.40		est.(Rad + Rad), est.(AtomNumber)
$ \begin{array}{c c} R_n 175 & 4 & C_3 H_3 \\ Continued on Next Page $	4 on Nex	$\begin{vmatrix} C_3H_3 \\ t Page \end{vmatrix}$	+	$\mathrm{C_4H_9}$	\uparrow	C_7H_{12} 8.00×10 ⁻¹¹				est.(Rad+Rad),est.(AtomNumber)

	Type				Re	Reaction			k	FT.	T range	Ref.
									$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.40		
\mathbb{R}_n 176	4	C_3H_3	+	C_6H_3	↑	${ m C_9H_6}$			8.00×10^{-11} 1.00×10^{-11}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 177	4	C_3H_3	+	$\mathrm{C_6H_5}$	†	$\mathrm{C_9H_8}$			8.00×10 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 178a	4	C_3H_5	+	$\mathrm{C_3H_5}$	↑	C_6H_{10}			8.00×10^{-11} 2.30×10^{-11} 1.00×10^{-17}	0.40	300-1000	[1],est.(AtomNumber)
\mathbb{R}_n 178b \mathbb{R}_n 179a	2 4	$\begin{array}{c} C_3 H_5 \\ C_3 H_5 \end{array}$	+ +	C_3H_5 C_3H_7	↑ ↑	$\mathrm{C_3H_6} \atop \mathrm{C_6H_{12}}$	+	$\mathrm{CH_2}\mathrm{CCH_2}$	2.30×10^{-11} 1.00×10^{-13} 8.00×10^{-11} 1.00×10^{-17}	0.40	300-1000	[1] est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c} \mathbf{R}_n 179\mathbf{b} \\ \mathbf{R}_n 179\mathbf{c} \\ \mathbf{R}_n 180 \end{array}$	2 2 4	C3H5 C3H5 C3H5	+ + +	$C_{3}H_{7}$ $C_{3}H_{7}$ $C_{4}H_{3}$	$\uparrow\uparrow\uparrow$	$^{\mathrm{C_3H_8}}_{\mathrm{C_7H_8}}$	+ +	$\mathrm{CH_2}\mathrm{CCH_2}$ $\mathrm{C_3H_6}$	8.00×10^{-11} $7.60 \times 10^{-12} \text{T}^{-0.35} e^{66./T}$ $3.80 \times 10^{-11} \text{T}^{-0.35} e^{66./T}$ 8.00×10^{-11} 1.00×10^{-15}	0.40	300-2500 300-2500 -	[77] [77] est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 181	4	C_3H_5	+	$\mathrm{C_4H_5}$	\uparrow	$\mathrm{C_7H_{10}}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.40	1	est.(Rad + Rad), est.(AtomNumber)
$R_n 182$	4	C_3H_5	+	$\mathrm{C_4H_7}$	†	$\mathrm{C_7H_{12}}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15} 0.00×10^{-15}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 183	4	C_3H_5	+	$\mathrm{C_4H_9}$	\uparrow	$\mathrm{C_7H_{14}}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁵	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 184	4	C_3H_5	+	C_6H_3	↑	$\mathrm{C_9H_8}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11}	0.40	1	${\rm est.}({\tt Rad+Rad}), {\rm est.}({\tt AtomNumber})$
\mathbb{R}_n 185	4	C_3H_5	+	$\mathrm{C_6H_5}$	\uparrow	$\mathrm{C_9H_{10}}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11}	0.40	ı	${\rm est.}(Rad + Rad), {\rm est.}(AtomNumber)$
\mathbb{R}_n 186a	4	C_3H_7	+	$\mathrm{C_3H_7}$	↑	$\mathrm{C_6H_{14}}$			8.00×10^{-11} 9.79×10^{-10} T $^{-0.86}$ e $^{132./T}$ 1.00×10^{-17}	0.40	200-2000	[45],est.(AtomNumber)
$\begin{array}{c} \mathbf{R}_n 186\mathbf{b} \\ \mathbf{R}_n 187 \end{array}$	2 4	C ₃ H ₇	+ +	$\mathrm{C_3H_7}_{2}$ $\mathrm{C_4H_3}$	$\uparrow \uparrow$	$\substack{\text{C}_3\text{H}_8\\\text{C}_7\text{H}_{10}}$	+	$\mathrm{C_3H_6}$	$9.79 \times 10^{-10} \text{T}^{-0.80} \text{e}^{152.74}$ 4.20×10^{-12} 8.00×10^{-11} 1.00×10^{-15}	0.40	300-1000	[1] est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 188	4	C_3H_7	+	$\mathrm{C_4H_5}$	†	$\mathrm{C_7H_{12}}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 189	4	C_3H_7	+	C_4H_7	↑	$\mathrm{C_7H_{14}}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.40	1	${\rm est.}({\tt Rad+Rad}), {\rm est.}({\tt AtomNumber})$
\mathbb{R}_n 190	4	C_3H_7	+	$\mathrm{C_4H_9}$	†	$\mathrm{C_7H_{16}}$			$8.00 \times 10^{-11} \\ 9.66 \times 10^{-09} \mathrm{T}^{-1.17} \mathrm{e}^{65./T} \\ 1.00 \times 10^{-15} \\ 9.66 \times 10^{-09} \mathrm{T}^{-1.17} \mathrm{e}^{65./T}$	0.40	200-2000	[45],est.(AtomNumber)
Continued on Next Page	l on Nex	l t Page								_	_	

	Type				Res	Reaction			k	F	T range	Ref.
$R_n 191$	4	C ₃ H ₇	+	C_6H_3	↑	C_9H_{10}			8.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-11} 8 00 × 10 - 11	0.40		
$R_n 192$	4	C_3H_7	+	C_6H_5	\uparrow	C_9H_{12}			8.00×10-11 8.00×10-11 1.00×10-11	0.40	1	est.(Rad+Rad),est.(AtomNumber)
									8.00×10^{-11}			
\mathbb{R}_n 193	7	C_4H	+	${ m H}_2$	↑	$\mathrm{C_4H_2}$	+	Н	$3.50 \times 10^{-18} T^{2.32} e^{-444./T}$		1	est.(C2H+H2)
$R_n 194$	0.0	D H	+ -	$_{ m CH_4}$	↑	C_4H_2	+ -	$_{ m H_3}$	$1.63 \times 10^{-11} e^{-910.71}$		200	[80],[81] [60] [63] [63]
R 196	4 0	7 C	+ +	C ₂ H ₂	1	C ₆ H ₂	+ +		1.03×10 1 0.40×3.7		39-298	[80],[82], [80] [82]
R. 197	1 0	Ω Ε Ε Ε	+ +	C_2H_2	1	C.H.	+ +	C, H,	$3.19 \times 10^{-08} \text{ T}^{-1.23} \text{ e}^{-24./T}$		39-298	[80],[81]
$R_n 198a$. 2	C_4^{H}	- +	CH3CCH	· ↑	$_{7H_{4}}^{24}$	+	(25 H	$1.71 \times 10^{-08} \mathrm{T}^{-0.82} \mathrm{e}^{-47./T}$		39-298	[80],[82]
$R_n 198b$	2	$C_4^{\dagger}H$	+	$CH_3^{\dagger}CCH$	↑	$C_{6}^{'}H_{2}^{*}$	+	$ m CH_3$	$1.71 \times 10^{-08} \mathrm{T}^{-0.82} \mathrm{e}^{-47./T}$		39-298	[80],[82]
$R_n 199$	2	C_4^H	+	$\mathrm{CH_2^-CCH_2}$	↑	$\mathrm{C_7H_4}^-$	+	Н	$3.07 \times 10^{-07} \mathrm{T}^{-1.18} \mathrm{e}^{-91./T}$		39-300	[82]
$\mathbb{R}_n 200$	7	C_4H	+	$\mathrm{C_{3}H_{6}}$	↑	$\mathrm{C_7H_6}$	+	Н	$3.89 \times 10^{-08} \mathrm{T}^{-0.84} \mathrm{e}^{-48./T}$		39-298	[82]
$R_n 201$	01 0	C ₄ H	+ -	$C_{3}H_{8}$	↑ ·	$\mathrm{C_4H_2}$	+ -	C_3H_7	$2.46 \times 10^{-0.1} \mathrm{T}^{-1.33} \mathrm{e}^{-30.7} \mathrm{r}$		39-298	[80],[81]
R 203	4 C	7 C	+ +	C ₄ H ₂	1	C ₈ H ₂	+ +	пн	$ 7.63 \times 10 $ 1 e $ 7.63 \times 10^{-08}$ T $ 7.63 \times 10^{-08}$ T $ 7.63 \times 10^{-08}$ T $ 7.63 \times 10^{-08}$		1 1	est.(C4n+C2nz) est (C4H+C3H2)
R. 204	4 0	ο C	+ +	C.H.	1	C_8H_4	+ +	= =	6.65×10 ⁻⁰⁷ T ^{-1.25} e ^{-116.} /T		39-300	[82]
R, 205	1 (2)	C,H	- +	$C_{4}^{H_6}$	` ↑	CsH.	- +	: н	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		39-300	82]
$R_{n}^{2}206$	2	C,H	+	C_4^{\dagger}	↑	$_{ m C_4H}^{\circ}$	+	C_AH_o	$4.82 \times 10^{-07} \mathrm{T}^{-1.30} \mathrm{e}^{-90./T}$		39-300	[81]
R_{n}^{2}	2	C,H	+	C_6H_3	↑	$C_{10}H_{3}$	+	H	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$			est.(C4H+C2H2)
R_n^{208}	2	C_4^{\dagger}	+	C_2H_2	↑	$_{ m G_{H4}}^{ m L}$	+	Н	$1.65 \times 10^{-27} \mathrm{T}^{5.13} \mathrm{e}^{-2730./T}$		50-300	ThisWork
$R_n 209$	4	$C_4^{'}H_3^{'}$	+	$\mathrm{C_4^-H_3^-}$	↑	$\mathrm{C_{8}^{ m H_{6}^{ m c}}}$			5.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-13}	0.40		
B., 210	4	C, H,	+	C,H,	1	C, H,			8.00×10^{-11}		1	est. (Bad+Bad).est. (Atom Number)
212		5-4-	-	040		ю ю			1.00×10^{-13}	0.40		
									8.00×10^{-11}			
$\mathbb{R}_n 211$	4	C_4H_3	+	$\mathrm{C_4H_7}$	↑	$\mathrm{C_8H_{10}}$			8.00×10^{-11}	0 40	1	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	0.40		
$R_n 212$	4	C_4H_3	+	C_4H_9	↑	C_8H_{12}			8.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-13}	0.40		
R 913	_	Ξ	+	H	1	П			8.00×10 :: 8.00×10-11		ı	ost (Rad+Rad) ost (Atom Number)
C17U21	+	(4113	-	(6113		010446			1.00×10^{-11}	0.40	ı	
									8.00×10^{-11}			
$R_n 214$	4	C_4H_3	+	$\mathrm{C_6H_5}$	\uparrow	$\mathrm{C}_{10}\mathrm{H}_8$			8.00×10^{-11}	(1	est.(Rad+Rad),est.(AtomNumber)
									I.00×10 =- 8 00×10=11	0.40		
R_n 215	4	C_AH_r	+	C_AH_{ϵ}	↑	$C_{s}H_{10}$			5.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
2		*		o #		0			1.00×10^{-13}	0.40		
									5.00×10^{-11}			
\mathbb{R}_n 216	4	$\mathrm{C_4H_5}$	+	$\mathrm{C_4H_7}$	↑	$\mathrm{C_8H_{12}}$			8.00×10 ⁻¹¹	0 40	1	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	2.5		
R_n 217	4	C_4H_5	+	C_4H_9	↑	C_8H_{14}			8.00×10^{-11}		i	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-13}	0.40		
Continued on Next Page	on Nex	 t Page							8.00×10 ==	_	_	

	Type				E E	Reaction			ĸ	F	T range	Ref.
$R_n 218$	4	C_4H_5	+	C_6H_3	1	$\mathrm{C}_{10}\mathrm{H}_8$			8.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-11} 8.00×10^{-11}	0.40		
$R_n 219$	4	C_4H_5	+	C_6H_5	\uparrow	$\mathrm{C}_{10}\mathrm{H}_{10}$			8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 220$	4	C_4H_7	+	$\mathrm{C_4H_7}$	↑	$\mathrm{C_8H_{14}}$			8.00×10 5.00×10^{-11} 1.00×10^{-13}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 221	4	C_4H_7	+	$\mathrm{C_4H_9}$	\uparrow	$\mathrm{C_8H_{16}}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹³	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
$R_n 222$	4	C_4H_7	+	C_6H_3	\uparrow	$\mathrm{C}_{10}\mathrm{H}_{10}$			8.00×10 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
R_n 223	4	C_4H_7	+	C_6H_5	\uparrow	$\mathrm{C}_{10}\mathrm{H}_{12}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 224	4	$\mathrm{C_4H_9}$	+	$\mathrm{C_4H_9}$	\uparrow	$\mathrm{C_8H_{18}}$			8.00×10^{-11} $2.27 \times 10^{-10} \text{T}^{-0.92} \text{e}^{350./T}$ 1.00×10^{-13} $2.27 \times 10^{-10} \text{T}^{-0.92}$	0.40	200-2000	[45],est.(AtomNumber)
R_n 225	4	$\mathrm{C_4H_9}$	+	C_6H_3	\uparrow	$\mathrm{C}_{10}\mathrm{H}_{12}$			8.00×10^{-11} 1.00×10^{-11}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 226a	4	$\mathrm{C_4H_9}$	+	$\mathrm{C_6H_5}$	\uparrow	$\mathrm{C}_{10}\mathrm{H}_{14}$			8.00×10^{-2} $6.90 \times 10^{-10} T^{-0.75} e^{-28./T}$ 1.00×10^{-11}	0.40	290-972	[84],est.(AtomNumber)
R _n 226b	27 0	C_4H_9	+ -	C_6H_5	↑	C_6H_6	+ -	$^{ m C_4H_8}_{ m II}$	$6.90 \times 10^{-10} T^{-0.75} e^{-28./T}$ $2.10 \times 10^{-11} e^{300./T}$		290-972	[84]
Rn 228	7 (7) (7)	HH J J	+ + +	$_{ m CH_4}^{ m H_2}$	1 1	C ₆ H ₂ C ₆ H ₂	+ + +	$_{ m H}^{ m L}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			est.(Czn+nz) est.(C4H+CH4) est (C4H+C2H2)
$R_n 230$	1 (7)	C ₆ H	+	${ m C_2H_2} \\ { m C_2H_4}$	^	C_8H_4	+	н	$1.90 \times 10^{-09} \mathrm{T}^{-0.40} \mathrm{e}^{9./T}$			est.(C4H+C2H4)
$R_n 231$	2 5	C ₆ H	+ -	$\mathrm{C_2H_6}$	1	C_6H_2	+ -	$\mathrm{C_2H_5}_\mathrm{H}$	$3.19 \times 10^{-08} \text{T}^{-1.23} \text{e}^{-24./T}$ $1.71 \times 10^{-08} \text{T}^{-0.82} \times 47./T$			est.(C4H+C2H6)
$R_n 232b$	4 61	H ₉ O	+ +	CH ₃ CCH	↑ ↑	C_8H_2	+ +	$_{ m CH_3}$	$1.71 \times 10^{-08} \mathrm{T}^{-0.82} \mathrm{e}^{-47./T}$			est.(C4H+CH3CCH)
R _n 233	2 5	C _e H	+ +	CH_2 CCH_2 C H	1	C_9H_4	+ +	Н	$3.07 \times 10^{-07} \text{T}^{-1.18} \text{e}^{-91./T}$		1	est.(C4H+CH2CCH2)
R _n 235	1 21	C,H	+	C3Hs C3Hs	· ↑	$C_{\rm eH}^{\rm cgrs}$	+	C_3H_7	$2.46 \times 10^{-07} \mathrm{T}^{-1.36} \mathrm{e}^{-56./T}$		1	est.(C4H+C3H8)
$R_n^{-}236$	2	C_{6}^{H}	+	$\mathrm{C_4^{\circ}H_2^{\circ}}$	↑	$\mathrm{C}_{10}^{\circ}\mathrm{H}_{2}^{\circ}$	+	H	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$		ı	est.(C4H+C2H2)
$R_n 237$	2	C_6H	+	$\mathrm{C}_4\mathrm{H}_4$	\uparrow	$\mathrm{C}_{10}\mathrm{H}_4$	+	Н	$7.63 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-65./T}$		1	est.(C4H+C2H2)
$R_n 238$	01 0	H ^B U	+ -	$\mathrm{C}_4^{\mathrm{H}_6}$	†	$\mathrm{C}_{10}\mathrm{H}_{6}$	+ -	н	6.65×10=0'T=1:25e=110'/1		1	$\begin{vmatrix} \operatorname{est.}(\operatorname{C4H} + \operatorname{C4H6}) \\ \operatorname{cat.}(\operatorname{C4H} + \operatorname{C4H6}) \end{vmatrix}$
R. 240	7 0	H H	+ +	C4 H8	1	C_{10} H $_{\circ}$	+ +	п.	$4.82 \times 10^{-07} \mathrm{T}^{-1.30} \mathrm{e}^{-90./T}$			est.(C4n+C4ns) est.(C4H+C4H10)
R _n 241	1 (1)	C,H	+	C_6^4 C_6^4 C_6^4	†	C_{13} H3	+	Q4119 H	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$		1	est.(C4H+C2H2)
$R_n 242$	4	$C_6^{ m H_3}$	+	$C_6^{'}H_3^{'}$	\uparrow	$\mathrm{C}_{12}^{12}\mathrm{H}_6^2$			5.00×10^{-11}	(1	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-11} 5.00×10^{-11}	0.40		
\mathbb{R}_n 243	4	C_6H_3	+	$\mathrm{C_6H_5}$	\uparrow	$\mathrm{C}_{12}\mathrm{H}_8$			8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
Continued on Next Page	on Nex	t Page							8.00×10 ==	_		_

	Type				 Re	Reaction			**	댄	T range	Ref.
R_n 244	4	C ₆ H ₃	+	C_7H_7	1	$C_{13}H_{10}$)		est. (Rad+Rad), est. (AtomNumber)
		>		-					1.00×10^{-11} 8.00 × 10 ⁻¹¹	0.40		
\mathbb{R}_n 245	4	C_6H_3	+	C_8H_9	\uparrow	$\mathrm{C}_{14}\mathrm{H}_{12}$			8.00×10^{-11} 1.00×10^{-11}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 246	4	C_6H_5	+	C_6H_5	\uparrow	$\mathrm{C}_{12}\mathrm{H}_{10}$			8.00×10^{-2} 5.00×10^{-11} 1.00×10^{-11}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 247	4	C_6H_5	+	$\mathrm{C_7H_7}$	\uparrow	$\mathrm{C}_{13}\mathrm{H}_{12}$			5.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 248	4	C_6H_5	+	$\mathrm{C_8H_9}$	\uparrow	$\mathrm{C}_{14}\mathrm{H}_{14}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
$R_n 249$	4	C_7H_7	+	$\mathrm{C_7H_7}$	\uparrow	$\mathrm{C}_{14}\mathrm{H}_{14}$			8.00×10^{-11} $1.50 \times 10^{-10} \text{T}^{-0.23}$ 1.00×10^{-11}	0.40	250-400	[85],est.(AtomNumber)
$R_n 250$	4	C_7H_7	+	$\mathrm{C_8H_9}$	\uparrow	$\mathrm{C_{15}H_{16}}$			1.50×10 ±01 8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 251	4	C_8H_9	+	$\mathrm{C_8H_9}$	↑	$\mathrm{C_{16}H_{18}}$			8.00×10-11 5.00×10-11 1.00×10-11 7.00×10-11	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 252$ $R_n 253$ $R_n 254$	0.04	ннн	+ + +	$\begin{array}{c} \mathrm{NH_3} \\ \mathrm{N_2H_4} \\ \mathrm{HCN} \end{array}$	\uparrow \uparrow \uparrow	${\rm NH}_2 \\ {\rm N}_2 {\rm H}_3 \\ {\rm H}_2 {\rm CN}$	+ +	$egin{array}{c} H_2 \ H_2 \end{array}$	$7.08 \times 10^{-24} T^{3.93} e^{-4060./T}$ $7.78 \times 10^{-24} T^{3.93} e^{-4060./T}$ 5.00×10^{-11} 1.00×10^{-11}	90 0	200-2000 222-657 70-250	[86] [87] ThisWork
$egin{aligned} \mathbb{R}_n 255 \ \mathbb{R}_n 256a \end{aligned}$	01 01 4	ннн	+ + +	$\begin{array}{c} HNC \\ CH_2 NH \\ CH_2 NH \end{array}$	$\uparrow\uparrow\uparrow$	$egin{array}{c} HCN \ H_2CN \ CH_2NH_2 \end{array}$	+ +	Н Н ₂	$\begin{array}{c} 1.90 \times 10^{-11} T^{-2.88} e^{-442./T} \\ 4.12 \times 10^{-25} T^{5.13} e^{117./T} \\ 6.96 \times 10^{-22} T^{3.07} e^{171./T} \\ 2.15 \times 10^{-30} T^{6.55} e^{258./T} \\ 6.04 \times 10^{-24} T^{-2.03} e^{-54./T} \end{array}$	0.08	50-300 50-300 50-300	This Work This Work This Work
\mathbb{R}_n 256c	4	Н	+	$\mathrm{CH}_2\mathrm{NH}$	\uparrow	$\mathrm{CH}_2\mathrm{NH}_2$			$\begin{array}{c} 1.10 \times 10^{-13} \mathrm{T}^{-1.32} \mathrm{e}^{-150./T} \\ 7.65 \times 10^{-31} \mathrm{T}^{6.77} \mathrm{e}^{271./T} \\ 3.45 \times 10^{-24} \mathrm{T}^{-2.26} \mathrm{e}^{-44./T} \end{array}$	60.0	50-300	ThisWork
$R_n 257$ $R_n 258$	2 4	нн	+ +	$\mathrm{CH_3NH_2}$ $\mathrm{HC_3N}$	↑ ↑	$\mathrm{CH_2NH_2} \\ \mathrm{C_3H_2N}$	+	${ m H}_2$	$4.38 \times 10^{-14} T^{-1.60} e^{-84.7I}$ $1.34 \times 10^{-21} T^{3.46} e^{-1223.7T}$ $2.02 \times 10^{-33} T^{7.97} e^{306.7T}$ $5.69 \times 10^{-18} T^{-2.77} e^{-179.7T}$	0.40	200-3000 50-300	[88] ThisWork,est.(H+C4H2)
\mathbb{R}_n 259	4	н	+	C_3H_3N	\uparrow	$\mathrm{C_3H_4N}$			$4.10 \times 10^{-10} \text{ Tr}$ $2.02 \times 10^{-33} \text{ Tr}$ $3.7.97 \text{ e}^{-179}$ 7.97 e^{-179} $5.69 \times 10^{-18} \text{ Tr}$ -2.77 e^{-179} $/7$	0.40	1	est.(H+HC3N)
\mathbb{R}_n 260	4	н	+	C_2N_2	\uparrow	$\mathrm{HC_2N_2}$			$4.10 \times 10^{-16} T^{0.38} e^{-207./T}$ $2.02 \times 10^{-33} T^{7.97} e^{306./T}$ $5.69 \times 10^{-18} T^{-2.77} e^{-179./T}$	0.40	1	est.(H+HC3N)
R _n 261 4 H Continued on Next Page.	4 on Nex	H H	+	C_4N_2	↑	$\mathrm{HC_4N_2}$			$\begin{array}{c} 4.10 \times 10 \\ 2.02 \times 10^{-33} T^{7.9} e^{306./T} \\ 5.69 \times 10^{-18} T^{-2.77} e^{-179./T} \\ 4.10 \times 10^{-16} T^{0.38} e^{-207./T} \end{array}$	0.40	1	est.(H+HC3N)
Commune	21 HO	, r agy										

T range Ref.	[88]				96 [90],[91] 36 [90],[91]		96 est.(CH+HCN)				94 [97]						est.(CZH+CZH4) 			[94],[95]	[94],[95]	$\operatorname{est.}(\operatorname{C4H} + \operatorname{C2H2})$	est.(C4H+C2H2)	est.(C4H+C2H2)	[100],est.(AtomNumber)		20					[104]	[105],[103]	[105],[103]	[106]					. [89] . [108]		
T re	10-300	10-300	10-300	10-300	100-296 $100-296$	100-296	100-296	220-3000		90-200	104 - 294	106-07	150-359	1	262-360	20-300	104-298		80-300		ı			,	298		0000	10-300	10-300	150-200	150-200	1	298	298	298	90-611			10-500	56-296	200-363	10-300
Fc																										0.40											0.40					
k	$ 9.39\times10^{-11}\mathrm{T}^{-0.20}\mathrm{e}^{-6./T}$	$9.39 \times 10^{-11} \mathrm{T}^{-0.20} \mathrm{e}^{-6./T}$	$2.02 \times 10^{-10} \text{T}^{-0.05}$	$1.06 \times 10^{-11} \text{T}^{-0.05}$	$\begin{array}{c} 3.69{\times}10^{-10}\mathrm{T}^{-0.17} \\ 3.69{\times}10^{-10}\mathrm{T}^{-0.17} \end{array}$	$3.69 \times 10^{-10} \text{T}^{-0.17}$	$3.69 \times 10^{-10} T^{-0.1}$	$1.32 \times 10^{-24} \text{T}^{4.00} \text{e}^{-2037./T}$	$3.00 \times 10^{-11} e^{-3668./T}$	$1.16 \times 10^{-08} \mathrm{T}^{-0.82} \mathrm{e}^{-9./T}$	$4.89 \times 10^{-0.7} L^{-0.30}$	3.00×10^{-10}	$7.80 \times 10^{-11} e^{134./T}$	$4.90 \times 10^{-09} \mathrm{T}^{-0.90}$	$1.79 \times 10^{-11} e^{-769./T}$	$1.47 \times 10^{-0.1}$ $1.57 \times 10^{-0.1}$ 1.51×10^{-11}	1.80×10^{-1} $-6^{-2.7}$ 3.35×10^{-11} -297.7	$7.47 \times 10^{-09} \mathrm{T}^{-0.91} \mathrm{e}^{6./T}$	$5.69 \times 10^{-26} \mathrm{T}^{4.70} \mathrm{e}^{-2357./T}$	$3.00 \times 10^{-11} e^{-1996./T}$	3.00×10 - i e - 5000; 1	$7.63 \times 10^{-0.1}$ 100 0.17 100 0.17 1 $0.08 \times 10^{-0.1}$ $0.08 \times 10^{-0.1}$	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$	$7.63 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-65./T}$	$ 5.00 \times 10^{-16} $		5.00×10^{-10}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.14 \times 10^{-11} \mathrm{T}^{0.17}$	5.58×10^{-11}	6.20×10^{-12}	$4.55 \times 10^{-11} \mathrm{T}^{0.17}$	1.31×10^{-11}	6.39×10 ⁻¹¹	7.15×10 =- 3.85×10=11	5.00×10 ⁻¹⁶	₉ 485./ <i>T</i>	$ 5.00 \times 10^{-16}$	$2.83 \times 10^{-11} \text{T}^{0.10}$	1.20×10^{-12} 8 02 × 10 $^{-12}$ $^{+0.42}$	$1.00 \times 10^{-10} e^{-200./T}$	1.00×10^{-10}
Ш																															Η								;	I		
				~				_			2			~	$_{1}^{2}$					H ₃	15										H +				,	~				+		
	Н	II H	н	$ m CH_3$	нн́	H	$^{ m H_2}_{ m L}$	$_{ m CH_4}$	$\mathrm{CH}_3^{\frac{1}{3}}$	н	$^{ m NH}_2$	ιн	Н	NH_2	$^{ m C_2H_2}_{ m H_2}$	п	" "	Н	Н	$\mathrm{C_{2}H_{3}}$	$^{ m C_2H_5}_{ m H_2}$	I D	ıπ	: =	:		Þ	шш	н	Н	+	Н	HN	H	UH,	£)					HN	CN
	H +	∷			# # + +		+ H ₂				+ NH ₂		+	+	+ -	+ -	+ +	+	+	+ -	+ -	I :: -		: III					: H - +		+ H		HN +		+ +				н:	+		_
action	HCN + H	. C	+ HN ^c	+		+	+ -	+ +	+	+ -	+ -		+	+		+ -	+ +	+	+	+ -	+ -		- +	- +				+ +	- +	+	+ H +	+	+	+ -		-	CO CO		H;	+ = C	- + z	+
Reaction		. C	· CH ₂ NH +	+	+ +	+	C ₂ N	+ +	+	+ -	+ -	+ +	+	+	· CH ₂ CN +	HC ₅ N	+ +	HC ₇ N +	+	+ -	+ -	+ -	- +	- +	NH NH		-	+ +	- +	H,CN +	HCN + H +	+	+	CH ₂ CN +	+ +		01		N ₂ + H	+ = C + +	HCN +	+ CN
Reaction		CNH T	\downarrow CH ₂ NH +	+ HN +	$\downarrow \text{AG}_{2} \text{N} \qquad + \qquad $	\rightarrow HC ₂ N +	\downarrow C ₂ N \downarrow +	N2H3 +	+ HCN +	C327	+ -	+ + + HC.3.Z.	$^{\text{cH}}$ \rightarrow $^{\text{c}_3}$ $^{\text{H}_3}$ N $+$	$CH_3CCH +$	CH ₂ CN +	+ HC ₅ N	C ₅ H ₃ N	+ HC ₇ N +	\downarrow C_3H_3N +	+ HCN	+ HCN ↑ TO	+ HC ₇ N + -	- +	+ N;CH ↑	NH T		-	+ + + HON	+ + HNC	+ H ₂ CN +	→ HCN + H +	\downarrow C ₂ N +	$\rightarrow C_2H_2 +$	→ CH ₂ CN +	C ₂ H ₄ + +				+ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ HCN +	+ CN
Reaction	↑ HC	CNH \	\downarrow CH ₂ NH +	+ HN ↑	$\downarrow \text{AG}_{2} \text{N} \qquad + \qquad $	\rightarrow HC ₂ N +	$\begin{array}{c} C_2N \\ \end{array} + \begin{array}{c} C_2N \\ \end{array} + \begin{array}{c} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ HCN +	C327	\downarrow C_2H_2 +	+ + + HC.3.Z.	$^{\text{cH}}$ \rightarrow $^{\text{c}_3}$ $^{\text{H}_3}$ N $+$	$CH_3CCH +$	→ CH ₂ CN +	+ HC ₅ N	C ₅ H ₃ N ↓ H ₂ N + +	+ HC ₇ N +	$+$ HCN \rightarrow C ₃ H ₃ N $+$	+ HNC → HCN +	+ HCN ↑ TO	+ HC ₇ N + -	- + Z°CH ↑	+ N;CH ↑	NH T				3CH, → HNC +	+ H ₂ CN +	$CH_3 \rightarrow HCN + H +$	\downarrow C ₂ N +	$\rightarrow C_2H_2 +$	$C_2H_3 \rightarrow CH_2CN + C_1H_2CN + C_2H_3$	$\downarrow \begin{array}{c} C_2 \Pi_4 \\ \downarrow \\ \Pi_2 \Omega N \end{array} +$				+ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	H_2 CN \rightarrow HCN +	$+$ C_2N \downarrow CN $+$
Reaction	↑ HC	CNH \	\downarrow CH ₂ NH +	+ NH ₃ + NH +	$\downarrow \text{AG}_{2} \text{N} \qquad + \qquad $	$+$ HNC \rightarrow HC ₂ N $+$	$\begin{array}{c} C_2N \\ \end{array} + \begin{array}{c} C_2N \\ \end{array} + \begin{array}{c} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ HNC → HCN +	C327	$+$ NH ₃ \rightarrow C ₂ H ₂ $+$ $+$ HCM \rightarrow HC M \rightarrow	+ + + HC.3.Z.	$+$ CH_2NH \rightarrow C_3H_3N $+$	+ $CH_3^{2}NH_2$ \rightarrow $CH_3^{2}CCH$ +	+ CH ₃ CN + CH ₂ CN +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	C ₅ H ₃ N ↓ H ₂ N + +	$+ HC_5N \rightarrow HC_7N +$	$_3$ + HCN \rightarrow C ₃ H ₃ N +	+ HNC → HCN +	+ HNC + HCN +	+ HC ₇ N + -	+ NOM	+ HC:N + HC:N +	NH T		NO -	+ + CH + + HCN + +	+ 3CH, → HNC +	+ CH ₂ → H ₂ CN +	$+$ CH ₃ \rightarrow HCN $+$ H $+$	$+$ C_2H \rightarrow C_2N $+$	$+$ C_2H_3 \rightarrow C_2H_2 $+$	$+$ C_2H_3 \rightarrow CH_2CN $+$	$C_2H_5 \qquad \downarrow \qquad C_2H_4 \qquad + \qquad C_3H_4 \qquad + \qquad $	+ N + N	-		$H + c_N \uparrow H + c_N$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$+$ C_2N \downarrow CN $+$
Type Reaction	OH → NH + OH	C + NH, + HNC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH + NH_3 \rightarrow NH +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH + HNC \rightarrow HC_2N +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ CH_3 + HNC \rightarrow HCN +$	C_2 + HCN \downarrow C_3 N +	C_2H + NH_3 \downarrow C_2H_2 + C_2H_3 + C_3H_3 +	C_2H + HCN \downarrow HC ₃ N + C ₃ H + HNC \downarrow HC ₅ N +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ C_2^{\dagger}H + CH_3^{\dagger}NH_2 \rightarrow CH_3^{\dagger}CCH +$	C_2H + C_3CN \rightarrow CH_2CN +	C_2H + HC_3N \downarrow HC_5N +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2H_3 + HCN \rightarrow C_3H_3N +$	C_2H_3 + HNC \rightarrow HCN +	C_2H_5 + HNC + HCN +	$C_4H + HC_3N \rightarrow HC_7N + C_1N \rightarrow HC_2N + C_1N \rightarrow HC_1N \rightarrow$	$(411 \ + \ N_{C})$ $(411 \ + \ N_{C})$ $(411 \ + \ N_{C})$	+ HC, N + HC,	$\sim 11^{11}$ $\sim 10^{11}$ ~ 10		NO - N	HUN + NUN +	$N + {}^{3}CH_{5} \rightarrow HNC +$	N + CH ₂ + H ₂ CN +	$N + CH_3 \rightarrow HCN + H + H$	$N + C_2 \widetilde{H} \rightarrow C_2 N +$	$N + C_2H_3 \rightarrow C_2H_2 +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ C_2H_5 $+$ C_2H_4 $+$ C_2H_5 $+$ $+$ C_2N $+$		-		$N + NH \rightarrow N$	$+$ ON_2 $+$ ON_3 $+$ ON_4 $+$ ON_4 $+$ ON_4 $+$ ON_5 $+$ ON_4 $+$ ON_5	$N + H_2CN \rightarrow HCN +$	$N_{\rm ext} = \frac{1}{1} N_{\rm ext} + C_2^2 N_{\rm ext} \rightarrow CN_{\rm ext} + C_2^2 N_{\rm ext} + C$

	Type				H	Reaction			К	다 °	T range	Ref.
$R_n 300$	4	z —	+	HC ₂ N	1	C_2N_2	+	Н	8.00×10 ⁻¹¹	_		est.(Rad+Rad),est.(AtomNumber)
				1		1			1.00×10^{-21}	0.40		
B., 301	4	Z	+	N.H.D	1	C,H,N			2.00×10^{-11} 8.00×10^{-11}		1	est. (Bad+Bad).est. (Atom Number)
	1			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		2 - 2 - 2			1.00×10 ⁻¹⁹ 8.00×10 ⁻¹¹	0.40		
$R_{n}302$	4	Z	+	C_2H_4N	↑	$C_3H_4N_2$			8.00×10 ⁻¹¹		1	est.(Rad+Rad).est.(AtomNumber)
				,		i *			1.00×10^{-19}	0.40		
B 303	-	N(2D)			1	Z	+	h,	8.00×10 ± 3.00×10 ± 3.00×10 ± 5.00×1			[111]
$R_n 304$	7 27	$N^{(2D)}$	+	Z	` ↑	ZZ	- +	N K	1.70×10^{-14}		298	[112]
$R_n^{''}305$	2	$N(^2D)$	+	$^{15}_{ m N} ^{14}_{ m N}$	↑	Z	+	$^{15}\!$	1.70×10^{-14}		,	est.(N2D+N2)
R_n306	2	$N(^2D)$	+	H_2	↑	HN	+	Н	$4.20 \times 10^{-11} e^{-880./T}$		200-300	[112]
R_n307a	2	$N(^2D)$	+	CH_4	↑	CH_2NH	+	Н	$3.84 \times 10^{-11} e^{-750./T}$		223-292	[112]
R_n307b	20 0	N(2D)	+ -	$_{ m CH_4}$	↑	HN	+ -	CH3	$9.60 \times 10^{-12} e^{-130.77}$		223-292	[112]
$R_n 308$	71 0	N(TD) N(2D)	+ -	C ₂ H ₂	1	HC ₂ N	+ +		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		220-300	[112] [113] [114] [103]
It 309h	1 0	$N(^2D)$	- +	C2114	1	CHOCH	- +	: H	$\frac{2.25 \times 10}{1.96 \times 10^{-12}}$		230-232	[113][114][103]
R, 309c	1 (2)	$N^{(2D)}$	- +	C ₂ H ₄	` ↑	H, CN	- +	$^{3}_{ m CH_{s}}$	$1.56 \times 10^{-12} e^{-500./T}$		230-292	[113],[114],[103]
R_n309d	2	$N(^2D)$	+	$\mathrm{C_{2}H_{4}}$	↑	HCN	+	$_{ m CH_3}^{ m Z}$	$2.71 \times 10^{-12} e^{-500./T}$		230-292	[113],[114],[103]
R_n309e	2	$N(^2D)$	+	$\mathrm{C_2H_4}$	↑	HNC	+	$_{ m CH_3}$	$5.06 \times 10^{-13} e^{-500./T}$		230-292	[113],[114],[103]
\mathbb{R}_n 309f	2	$N(^2D)$	+	$\mathrm{C_2H_4}$	\uparrow	HN	+	C_2H_3	$2.30 \times 10^{-14} e^{-500./T}$		230-292	[113],[114],[103]
\mathbb{R}_n310a	2	$N(^2D)$	+	$\mathrm{C_2H_6}$	\uparrow	CH_2NH	+	$ m CH_3$	1.52×10^{-11}		298,94-175	[112],[115]
\mathbb{R}_n 310b	7	N(² D)	+	C_2H_6	↑	C_2H_5N	+	: ⊞	2.72×10^{-12}		298,94-175	[112],[115]
R_n310c	7 (N(2D)	+	$_{\widetilde{c}_{2}}^{\mathrm{C}_{2}}$ H $_{\widetilde{c}_{\widetilde{c}_{1}}}$	↑	HN:	+	$_{ m C_2H_5}$	1.05×10^{-12}		298,94-175	[112],[115]
\mathbb{R}_n311	7 0	N(^D)	+ -	CH ₃ CCH	↑	C_3H_3N	+ -	н:	$1.60 \times 10^{-19} e^{-2.13.71}$		1	est.(N2D+C2H2)
R_n312	21 0	N(2D)	+ -	CH_2CCH_2	↑	C_3H_3N	+ -	H :	$2.30 \times 10^{-13} e^{-330.7}$			$\begin{bmatrix} \operatorname{est.}(\operatorname{N2D+C2H4}) \end{bmatrix}$
$R_n 313$	77 0	N(2D)	+ -	C3H ₆	↑	C ₃ H ₅ N	+ -	Ξ Ξ	6.60×10^{-11}		298 908	[112]
$R_n 314a$ P $314b$	71 0	N(T) N(2D)	+ +	C3H8	1	CH2NH	+ +	C ₂ H ₅	9.67×10^{-2}		298	[112] [113]
It 3140	4 0.	$N(^2D)$	+ +	C3118	1	C ₂ H ₅ N	+ +	Н Н	9.01×10 9.67×10 ⁻¹²		298	[112]
En315	1 0	$N(^2D)$	- +	C.H.	` †	NO.CH	- +	: H	$1.60 \times 10^{-10} \mathrm{e}^{-270./T}$		1 1	est.(N2D+C2H2)
R_n316	. 0	$N(^2D)$	+	C,H,	· ↑	C,H,N	+	ıπ	$1.60 \times 10^{-10} e^{-270./T}$		1	est.(N2D+C2H2)
\mathbb{R}_n 317	2	$N(^2D)$	+	$\mathrm{C_4^4H_6^4}$	†	$C_4^{\dagger}H_5^{\dagger}N$	+	Н	6.60×10^{-11}		1	est.(N2D+C3H6)
\mathbb{R}_n318	2	$N(^2D)$	+	$\mathrm{C_4^{\dagger}H_8^{\circ}}$	†	$C_4^{\dagger}H_7^{\dagger}N$	+	Н	6.60×10^{-11}		1	est.(N2D+C3H6)
R_n319a	2	$N(^2D)$	+	$\mathrm{C_4H_{10}}$	↑	CH_2NH	+	C_3H_7	7.75×10^{-12}		298	[112]
\mathbb{R}_n 319b	2	$N(^2D)$	+	$\mathrm{C_4H_{10}}$	↑	C_2H_5N	+	$\mathrm{C_2H_5}$	7.75×10^{-12}		298	[112]
R_n319c	01 0	N(^D)		$\mathrm{C_{4}H_{10}}_{\mathfrak{A}}$	†	C_3H_7N	+ -	$_{ m H_3}^{ m CH_3}$	7.75×10 ⁻¹²		298	[112]
\mathbf{K}_n 319d	.7	N(TD)	+	$C_4^{H_{10}}$	↑	C_4H_9N	+	II :	7.75×10 == 770.77		867	
$R_n 320$.71	N(2D)	+ -	$C_{6}H_{2}$	↑	$^{\mathrm{HC}_{6}\mathrm{N}}$	+ -	H	$1.60 \times 10^{-19} e^{-2.13.7}$		0	est.(N2D+C2H2)
\mathbb{R}_n 321	7	N(2D)	+	HCN	↑	Z 2	+	CH	1.07×10-14-14:02-143:77		50-300	This Work
\mathbb{R}_n 322	7	N(^D)	+	HNC	†	CN ₂	+	Η	1.61×10 ⁻¹³ T ^{1.90} e ^{102./1}		50-300	ThisWork
\mathbb{R}_n 323	7	N(^D)	+	CH_2NH	↑	CH_2N_2	+	Η	$2.30 \times 10^{-10} e^{-300.71}$		1	est.(N2D+C2H4)
R_n 324a	2	N(^D)	+	CH_3CN	↑	$\mathrm{C_2H_2N_2}$	+	Н	$3.84 \times 10^{-11} e^{-130.71}$		1	est.(N2D+CH4)
R_n 324b	2	$N(^2D)$		CH_3CN	↑	CH_2CN	+	HN	$9.60 \times 10^{-12} e^{-7.50 \cdot 7}$		1	$\mid \operatorname{est.}(\operatorname{N2D+CH4})$
R_n325	7	$N(^2D)$	+	${ m HC}_3{ m N}$	†	C_3N_2	+	Н	$1.60 \times 10^{-10} e^{-270.7}$		-	est.(N2D+C2H2)
R_n326	2	$N(^2D)$	+	C_3H_3N	\uparrow	$\mathrm{C_3H_2N_2}$	+	Н	$2.30 \times 10^{-10} e^{-500./T}$		1	est.(N2D+C2H4)
\mathbb{R}_n 327a	7	$N(^2D)$	+	C_3H_5N	↑	$\mathrm{C_3H_4N_2}$	+	Н	$3.84 \times 10^{-11} e^{-750./T}$		1	est.(N2D+CH4)
R_n 327b	7	$N(^2D)$	+	C_3H_5N	↑	C_3H_4N	+	HN	$9.60 \times 10^{-12} e^{-750./T}$		1	est.(N2D+CH4)
R_n328	2		+	HC_5N	↑	C_5N_2	+	н	$1.60 \times 10^{-10} e^{-270.7T}$			est.(N2D+C2H2)
Continued on Next	d on Ne.	xt Page										

e Ref.	[116]	This Work	[117]	[117]	est.(NH+C2H2)	est.(NH+C2H4)	[117]	est.(NH+C2H6)	[111]	est.(NH+C4HZ)	est.(MH+C3H6)	est (NH+C3H6)	est.(NH+C4H2)	[118]	[118].est.(3CH2+3CH2)	[118]	[118]	est.(H+CH3)			[68]	[88]	[119],est.(CH3+CH3)			est.(CH3+C2H3)	est.(CH3+CZH3) cet.(CH3 - C9H5)	656.((110+(2110)		est.(CH3+C2H5)	est.(CH3+C3H3)			est.(CH3+C3H5)		est.(CH3+C3H5)	est. (CH3+C3H7)			est.(Rad+Rad),est.(AtomNumber)		4	est.(Kad+Kad),est.(AtomNumber)		est.(Rad+Rad),est.(AtomNumber)
T range	300-2000	20-500	53-188	53-188		. !	53-188	1 E	001-00	1	1			300-2500	200-2500	200-2500	300-2500	,			10-300	10-300	200-400					ı		1	1			,		,	,			ı					<u>'</u>
F_c																			0.42					0.33				0.41				0.40		9	0.40			0.40			0.40		0 40		
k	$3.12 \times 10^{-16} \mathrm{T}^{1.55} \mathrm{e}^{-103./T}$	$3.06 \times 10^{-10} \mathrm{T}^{-0.11} \mathrm{e}^{-7./T}$	$1.16 \times 10^{-09} \text{T}^{-1.09}$	6.80×10^{-12}	$2.00 \times 10^{-09} \mathrm{T}^{-1.07}$	$1.16 \times 10^{-09} \text{T}^{-1.09}$	$6.24 \times 10^{-99} \mathrm{T}^{-1.23}$	6.80×10^{-12}	6.24 × 10 = 09 m = 1.23	8.24×10 - 1 8.34×10-09m-1.23	6.24×10 I $6.94 \times 10^{-09} \pm 1.23$	6.80×10 ⁻¹²	$8.24 \times 10^{-09} \mathrm{T}^{-1.23}$	$9.40 \times 10^{-25} \mathrm{T}^{3.88} \mathrm{e}^{-172./T}$	$1.04 \times 10^{-10} \mathrm{T}^{-0.04} \mathrm{e}^{81./T}$	$7.07 \times 10^{-10} \mathrm{T}^{-0.27} \mathrm{e}^{39./T}$	$8.53 \times 10^{-23} \mathrm{T}^{3.41} \mathrm{e}^{-7350./T}$	$1.50 \times 10^{-10} \mathrm{T}^{0.13} \mathrm{e}^{-2./T}$	$2.56 \times 10^{-24} \mathrm{T}^{-1.80} \mathrm{e}^{-31./T}$	$2.05 \times 10^{-13} \mathrm{T}^{-1.29} \mathrm{e}^{-19./T}$	$9.39 \times 10^{-11} \mathrm{T}^{-0.20} \mathrm{e}^{-6./T}$	$9.39 \times 10^{-11} \mathrm{T}^{-0.20} \mathrm{e}^{-6./T}$	$1.20 \times 10^{-11} \mathrm{T}^{0.42}$	$6.00 \times 10^{-18} \text{T}^{-3.85}$	$2.97 \times 10^{-06} \mathrm{T}^{-3.23} \mathrm{e}^{-74./T}$	$3.30 \times 10^{-11} e^{235.7T}$	1.50×10^{-1} = 6.00% -2.0% $-$	$4.15 \times 10^{-10} \mathrm{T}^{-5.49} \mathrm{e}^{-441./T}$	$5.24 \times 10^{-02} \mathrm{T}^{-4.33} \mathrm{e}^{-193./T}$	$1.99 \times 10^{-08} \mathrm{T}^{-1.58} \mathrm{e}^{-38./T}$	$6.80 \times 10^{-11} e^{130./T}$	1.00×10^{-21}	2.00×10^{-11}	$1.55 \times 10^{-0.9} \mathrm{T}^{-0.54} \mathrm{e}^{11\%/4}$	1.00×10 =- 2.00×10=11	6.00×10^{-13}	$5.33 \times 10^{-10} \mathrm{T}^{-0.47} \mathrm{e}^{97./T}$	1.00×10^{-21}	2.00×10^{-11}	8.00×10^{-11}	1.00×10^{-19}	8.00×10 ⁻¹¹	8.00×10 == 1.00×10=19	8.00×10^{-11}	8.00×10^{-11}
	H_2	н	п С.Н.	$^{\mathrm{C_2H_3}}_{\mathrm{2H_5}}$	Н	C_3H_3	$\mathrm{C_3H_5}$	$^{\mathrm{C_3H_7}}_{\mathrm{H}}$	u :		II I	C.H.	о4119 Н	Z	H + H	-	NH	1			Н	Н				Н	$^{ m NH}_3$			NH_3						NH°	0								
	+	+ -	+ +	+	+	+	+	+ -	+ -	+ -	+ +	+ +	- +	+	+	+	+				+	+				+ -	+			+						+	-								
Reaction	Z	CH ₂ NH	OH2 NH2	$_{ m NH}^2$	C_3H_4N	$_{2}^{\mathrm{NH}_{2}}$	NH_2	NH ₂	C4H2N	C ₄ H ₄ N	C4H61N	NH.	C.H.N	NH,	Z	N _o H _o	NH,	$^{2}_{ m NH_{3}}$	o		HCN	HNC	$\mathrm{CH_3NH_2}$			C_2H_4N	C ₂ H ₂	(21171)		$\mathrm{C_2H_4}$	C_3H_5N		;	C_3H_7N		СН,ССН,	C.H.N			$\mathrm{C_4H_5N}$;	C ₄ H ₇ N		C_4H_9N
R	↑	↑ 1	1		\uparrow		↑	↑ ′	<u> </u>	† 1	1	1	<u></u>	†	↑	1	1	†			↑	\uparrow	\uparrow			↑	↑ 1	1		↑	↑			\uparrow		↑	1			↑			↑		\uparrow
	Н	CH ₃	C ₂ H ₂	C_2H_6	CH_3CCH	CH_2CCH_2	$\mathrm{C_3H_6}$	$C_{3}^{H_8}$	C4H2	C4H4	74H ₆	C4118	$C_{ m cH_2}$	T-9- HN	HN	NH	NH3	Н			Ç	Ö	CH_3			C_2H_3	C ₂ H ₃	O2115		$\mathrm{C_2H_5}$	$\mathrm{C_3H_3}$			$\mathrm{C_3H_5}$		C,H,	C,H,	(3		$\mathrm{C_4H_3}$;	C_4H_5		$\mathrm{C_4H_7}$
	+	+ -	+ +	+	+	+	+	+ -	+ -	+ -	+ +	+ +	- +	+	+	+	+	+			+	+	+			+ -	+ -	F		+	+			+		+	+	-		+			+		+ .
	HN	HN		HZ	NH	HZ :	HZ	H H				I H	I H	HZ	HZ	HZ	HN	NH,	1		NH_2	$^{ m NH}_2$	$^{-}_{ m NH}^{-}_{ m 2}$			NH ₂	NH2	7117		NH_2	NH_2			$_2^{ m NH}_2$		NH	NHS	7		NH_2		11.4	$^{ m NH}_2$		$^{\rm NH_2}_{\rm Page}$
Type	2	21 0	4 0	1 61	2	7	7	01 0	N C	71 0	4 0	4 C	1 61	2	2	2	2	4			2	2	4			2 2	N 5	ť		2	4			4		2	1 4	•		4			4		$R_n 357$ 4 NH ₂ Continued on Next Page
	\mathbb{R}_n 329	$R_n 330$	R_n 332	$R_n 333$	\mathbb{R}_n 334	$R_n 335$	R_n 336	R_n337	Γ_n 550	K_n 559 D 240	Γη 341	Ln 341	R. 343	R., 344a	R_n 344b	R., 345	$R_n 346$	$R_{n}347$			R_n348a	R_n348b	R_n349			R_n350a	K_n 350b	10^{n} 0014		$\mathbb{R}_n351\mathrm{b}$	\mathbb{R}_n352			R_n353a		R., 353b	B., 354)))22		\mathbb{R}_n355		i i	K_n 356		$\mathbf{R}_n 357$ Continue

	Type				Re	Reaction			-×	굔	T range	Ref.
									1.00×10^{-19}	0.40		
R_n358	4	NH_2	+	$\mathrm{C_4H_9}$	↑	$\mathrm{C_4H_{11}N}$			8.00×10^{-11} 8.00×10^{-11}		-	est.(Rad + Rad), est.(AtomNumber)
									1.00×10^{-19} 8.00×10^{-11}	0.40		
R_n359	4	$^{ m NH}_2$	+	C_6H_3	\uparrow	C_6H_5N			8.00×10^{-11}	9	ı	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-13} 8.00×10^{-11}	0.40		
R_n360	4	NH_2	+	C_6H_5	\uparrow	C_6H_7N			$3.62 \times 10^{-09} \mathrm{T}^{-0.62} \mathrm{e}^{-29./T}$	9	1	est.(CH3+C6H5)
									$1.00 \times 10^{-100} \text{ T}^{-0.62} \text{ e}^{-29./T}$	0.40		
R_n361a	2	NH_2	+	NH_2	\uparrow	NH_3	+	HN	$9.36 \times 10^{-24} \text{T}^{3.53} \text{e}^{-278./T}$		300-2500	[118]
R_n361b	4	NH_2	+	NH_2	\uparrow	N_2H_4			$9.33 \times 10^{-10} \text{T}^{-0.41} \text{e}^{-33./T}$		300-2500	[118],est.(CH3+CH3)
									$4.48 \times 10^{-14} \text{T}^{-5.49} \text{e}^{-1000./7}$	0.31		
B 369	c	HN	+	N	1	HN	+	NOH	$2.97 \times 10^{-0.1}$ $3.50 \times 10^{-0.8}$ -1.06 -60.7		200	[130]
R. 363	4 4	NH2 NH3	+ +	CH2CIN	1	CH.N.	+	II CI	8.00×10 ⁻¹¹		000-000	[120] est.(Bad+Bad).est.(AtomNumber)
		7	-	7		747			1.00×10^{-21}	0.40		
									2.00×10^{-11}			
\mathbb{R}_n 364	4	2	+	C_3H_2N	↑	$\mathrm{C_3H_4N_2}$			8.00×10 ⁻¹¹	04.0	1	est.(Rad+Rad),est.(AtomNumber)
									1.00 × 10 8 00 × 10 − 11	0.40		
$R_{n}365$	4	$^{ m NH}_2$	+	C_3H_4N	↑	$C_3H_6N_2$			8.00×10^{-11}			est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-19}	0.40		
226 0	c	1	-		-	MIN	-	MIL	8.00×10 3.66×10=12		006	[101]
$R_n 367$	4	02H3	+ +	= H	↑ ↑	HC ₂	+	11112	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		500-2500	[121] [122].est.(AtomNumber)
									$2.40 \times 10^{-24} \mathrm{T}^{-2.20} \mathrm{e}^{-567./T}$	0.40		
									1.00×10^{-13}			
R_n368	2	CN	+	H_2	↑	HCN	+	Н	$1.80 \times 10^{-19} T^{2.60} e^{-960.77}$		200-3500	[1]
$R_n 369$	2	CN	+	CH_4	↑	HCN	+	$ m CH_3$	$5.73 \times 10^{-12} e^{-6/3./1}$		160-298,195	[123],[124]
$R_n 370$	2	CN	+	C_2H_2	↑	HC_3N	+	Ħ	$5.30 \times 10^{-0.9} T^{-0.52} e^{-19.71}$		25-298,195	[123],[124]
\mathbb{R}_n371	7	CN	+	$_{2}^{\mathrm{C_2H_4}}$	↑	C_3H_3N	+	H	1.40×10 - cs.T-c.cse-3::/ 1		25-298,195	[123],[124]
R_n372	7	CN CN	+	$_{ m C_2H_6}^{ m C_2H_6}$	↑	HCN	+	$_{ m C_2H_5}$	5.90×10 ⁻¹² T ^{0.22} e ^{38.71}		25-298	[123]
$R_n 373$	21 0	Z S	+ -	CH ₃ CCH	↑	C_4H_3N	+ -	н:	4.10×10^{-10}		15-295	[61],[125]
Rn314 D 275	4 c	2 2	+ +	CH2CCH2 CH2CCH2	1	C ₄ H ₃ N	+ +	п	4.10×10 9.61×10-10π-0.09		15-295	[01],[125] [196] [194] [197]
Ita 375h	4 C	Z Z	+ +	C3116	1	C3H3N	+ +	CIL3 H	$2.01 \times 10^{-10} \text{ T} - 0.09$		23-238	[120],[124],[121] [196] [194] [197]
R. 376	1 2	CN	- +	C3H ₆	· ↑	HCN	- +	C,H,	$2.44 \times 10^{-14} \mathrm{T}^{1.19} \mathrm{e}^{378./T}$		170-740	[128]
R. 377	2	CN	+	C,H°	↑	HC, N	+	,,g. H	$1.60 \times 10^{-09} \mathrm{T}^{-0.24} \mathrm{e}^{-11./T}$		20-300	[67].[129]
R_n378	2	CN	+	C_AH_A	↑	C,H,N	+	Н	$1.07 \times 10^{-07} \mathrm{T}^{-0.82} \mathrm{e}^{-228./T}$		170-740	[130]
$R_{n}379$	2	CN	+	$\mathrm{C_4^4H_6}$	↑	C_5H_5N	+	Н	$4.80 \times 10^{-10} e^{-9./T}$		23-298	[131]
\mathbb{R}_n 380a	2	CN	+	$\mathrm{C}_4^{\mathrm{H}_8^{\circ}}$	\uparrow	$C_4^H_5^N$	+	$ m CH_3$	1.58×10^{-10}		195-298	[124]
\mathbb{R}_n 380b	2	CN	+	C_4H_8	↑	HCN	+	C_4H_7	1.58×10^{-10}		195-298	[124]
\mathbb{R}_n381	2	CN	+	$\mathrm{C_4H_{10}}$	\uparrow	HCN	+	C_4H_9	$3.61 \times 10^{-14} \mathrm{T}^{1.16} \mathrm{e}^{392./T}$		170-740	[128]
$R_n 382$	2	CN	+	C_6H_2	\uparrow	HC_7N	+	Н	$1.60 \times 10^{-09} \mathrm{T^{-0.24} e^{-11./T}}$			est.(CN+C4H2)
$R_n 383$	2	CN	+	$\mathrm{C_6H_6}$	\uparrow	C_7H_5N	+	Н	$2.70 \times 10^{-09} \mathrm{T}^{-0.39} \mathrm{e}^{-9./T}$		10-295	Faure09
\mathbb{R}_n 384	2 .	CN	+	NH ₃	\uparrow	HCN	+	NH_2	$\begin{vmatrix} 3.57 \times 10^{-09} \text{T}^{-0.85} \\ 2.5 \times 10^{-13} \end{vmatrix}$		10-300	[89]
R_n385	4	N O	+	N O	↑	C_2N_2			9.40×10^{-12}	i i	500-2500	[122], est. (AtomNumber)
Continued on Next Page	on Nex	 t Page							9.44×10 =- 1	0:20	_	

Ref.	ThisWork	[95]	est.(CN+H2CO) est.(CN+NH3)	[132]	[133]	[134]	$\mid est.(CN+CH3CN)$	$\mid est.(CN+HC3N)$	This Work	ThisWork	est.(NH2+H2CN)	est.(C2H3+C2H3)		est.(C2H3+C2H3)	est.(C2H3+C2H5)		cst (C9H3+C9H5)	$\begin{array}{c} \operatorname{cst.}(\operatorname{C2H3} + \operatorname{C2H3}) \\ \operatorname{est.}(\operatorname{C2H3} + \operatorname{C2H5}) \end{array}$	est.(Rad+Rad),est.(AtomNumber)			est.(Rad+Rad),est.(AtomNumber)		est.(Rad+Rad),est.(AtomNumber)		est (Bad+Bad) est (Atom Number)		(Do 1 Do 1) and (Atomorphical)	esc.(rau+rau),esc.(rcommunicer)		est.(C2H3+C3H5)	est.(C2H3+C3H5)	est.(Kad+Kad),est.(AtomNumber)		est.(C2H3+C3H7)	est.(C2H3+C3H7)	est.(Rad+Rad),est.(AtomNumber)		est.(Rad+Rad),est.(AtomNumber)		_
T range	70-300		1 1	296-578	20-300	297-740			50-300	50-300		300-700		298	298		806	298				ı		1		,			ı		300-2500	300-2500	ı		300-2500	300-2500	ı		1		
Fc												07	Q#.0			0.40				0.40		07.0	0.40		0.40		0.40		0.40				07.0	0.40			07.0	0.40	6	0.40	
k	$ \begin{vmatrix} 9.40 \times 10^{-12} \\ 5.99 \times 10^{-22} \text{T}^{3.60} \text{e}^{-933./T} \end{vmatrix} $	3.00×10^{-11}	$2.81 \times 10^{-19} T^{2.72} e^{1.8.7T}$ $3.57 \times 10^{-09} T^{-0.85}$	$6.46 \times 10^{-11} e^{-1190./T}$	8.18×10 ⁻¹⁰ T ^{-0.67}	$3.02 \times 10^{-11} e^{103./T}$	$6.46 \times 10^{-11} e^{-1190./1}$	$8.18 \times 10^{-10} T^{-0.67}$	$2.77 \times 10^{-10} \mathrm{T^{-0.03} e^{-4./T}}$	$ 6.07 \times 10^{-10} \mathrm{T^{-0.49} e^{-4./T}}$	$2.29 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-60./T}$	$1.20 \times 10^{-11} e^{400.7T}$	1.20×10 ⁻¹¹	2.40×10^{-11}	6.50×10^{-11}	1.00×10^{-21}	2.00×10 1 50×10-11	1.50×10^{-11}	8.00×10^{-11}	1.00×10^{-19}	8.00×10 ⁻¹¹	8.00×10 ⁻¹¹	8.00×10 ⁻¹¹	8.00×10^{-11}	1.00×10^{-19}	8.00×10 8.00×10-11	1.00×10^{-19}	8.00×10 ⁻¹¹	$ 3.00 \times 10^{-19}$ $ 1.00 \times 10^{-19}$	8.00×10^{-11}	4.00×10^{-12}	8.00×10^{-12}	8.00×10 ± 1.00×1	1.00×10 8.00×10^{-11}	$2.53 \times 10^{-10} \mathrm{T}^{-0.70}$	$2.53 \times 10^{-10} \mathrm{T}^{-0.10}$	$\begin{array}{c c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array}$	1.00 × 10 - 11	8.00×10^{-11} 1.00×10^{-17}	8.00×10^{-11}	-
	H +		+ HCN + CH,NH,					H +	+ H ₂		$+$ CH_4	H +		$+$ $C_{5}H_{4}$	•			$+$ $C_{2}^{2}H_{4}^{6}$													$+$ CH_2CCH_2	$+$ C_3H_6			$+$ C_3H_8						
Reaction	C_2N_2	$C_2^2N_2$	H ₂ CN HCN	C_2N_2	$C_4^{'}N_2^{'}$	$\mathrm{C_4H_2N_2}$	C_2N_2	C_6N_2	HCN	HNC	HCN	C_3H_4N		HCN	C_3H_7N		NUH	CH,NH	C_AH_2N	1	;	$\mathrm{C_4H_3N}$		C_4H_4N		N.H.	(45.	5	C41171N		CH_2NH	HCN:	C_4H_9N		HCN	CH ₂ NH	C_5H_5N		C_5H_7N		
Re	↑	↑	↑ ↑	↑	†	†	†	↑	†	\uparrow	↑	↑		↑	↑		1	↑ ↑	↑			↑		†		1			1		\uparrow	\uparrow	↑		↑	↑	↑		†		
	HCN	HNC	CH_2NH CH_5NH_5	CH3CN	HC_3N	C_3H_3N	C_3H_5N	HC_5N	Н	Н	CH_3	$\mathrm{C_2H_3}$		C_3H_3	$C_2^{-}H_5^{-}$		Ę	$C_2^{H_5}$	ప్	,	;	C_3H		C_3H_2		C, H	3	5	C3115		$\mathrm{C_{3}H_{5}}$	$C_{3}H_{5}$	C_3H_7		C_3H_7	C_{3H_7}	$\mathrm{C}_4\mathrm{H}_3$		$\mathrm{C_4H_5}$		
	+	+	+ +	+	+	+	+	+	+	+	+	+		+	+		+	+ +	+			+		+		+	-	-	+		+	+ -	+		+	+	+		+		
	CN	CN	N C C	CN	CN	CN	CN	CN	$\mathrm{H}_2\mathrm{CN}$	$\mathrm{H}_2\mathrm{CN}$	$\mathrm{H}_2\mathrm{CN}$	$\mathrm{H_2CN}$		H,CN	$\overline{\mathrm{H_2}}\mathrm{CN}$		E Z	H,CN	H,CN	1		H_2 CN		$\mathrm{H}_2\mathrm{CN}$		NO.	N N		11201		$\mathrm{H}_2\mathrm{CN}$	H_2^{CN}	H_2CN		$\mathrm{H_2CN}$	H ₂ CN	H_2CN		$\mathrm{H_2CN}$		Page
Type	2	61	0 0	2	2	7	7	2	2	2	2	4		2	4		c	1 (1	4			4		4		4			1		7	2 .	4		61	7	4		4		on Next
	R_n386	R_n387	R, 388	$R_n 390$	$R_n 391$	$R_n 392$	$R_n 393$	$R_n 394$	R_n 395a	\mathbb{R}_n 395b	$R_n 396$	\mathbb{R}_n 397a		R _n 397b	\mathbb{R}_n 398a		B 308h	R, 398c	$R_n^{''}399$:		$\mathbb{R}_{n}400$		$R_n 401$		B. 402	1	D 4035	Ln4034		$\mathbb{R}_n 403b$	$\mathbb{R}_n 403c$	\mathbb{R}_n 404a		\mathbb{R}_n 404b	$R_n 404c$	$\mathbb{R}_n 405$		$\mathbb{R}_n 406$		Continued on Next Page

	Type				Rea	Reaction			k	판	T range	Ref.
R_n407	4	$\mathrm{H_2CN}$	+	C_4H_7	1	C_5H_9N			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	1	est.(Rad+Rad),est.(AtomNumber)
	_								8.00×10 ⁻¹¹	0.40		
$\mathbb{R}_n 408$	4	$ m H_2CN$	+	$\mathrm{C_4H_9}$	↑	$\mathrm{C_5H_{11}N}$			8.00×10^{-11} 1.00×10^{-17} 0.00×10^{-17}	0.40	1	$\operatorname{est.}(\operatorname{Rad}+\operatorname{Rad}),\operatorname{est.}(\operatorname{AtomNumber})$
$R_n 409$	4	$\mathrm{H_2CN}$	+	C_6H_3	\uparrow	C_7H_5N			8.00×10 ⁻¹ 8.00×10 ⁻¹ 1.00×10 ⁻¹³	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 410	4	$\mathrm{H_2CN}$	+	$\mathrm{C_6H_5}$	↑	C_7H_7N			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-13}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 411a$ $R_n 411b$	24	${\rm H_2CN} \\ {\rm H_2CN}$	+ +	H_2 CN H_2 CN	\uparrow \uparrow	${\rm N_2 \atop C_2H_4N_2}$	+	$\mathrm{C_2H_4}$	8.00×10^{-11} 3.85×10^{-12} 3.85×10^{-12} 1.00×10^{-21}	0.40	296 296	[135] [135],est.(AtomNumber)
R_n412	4	$\mathrm{H_2CN}$	+	C_3H_2N	\uparrow	$\mathrm{C_4H_4N_2}$			3.85×10^{-12} 8.00×10^{-11} 1.00×10^{-17}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 413	4	$\mathrm{H_2CN}$	+	C_3H_4N	\uparrow	$\mathrm{C_4H_6N_2}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-17}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 414$ $R_n 415$ $R_n 416$	000	O O O	+++	$\begin{array}{c} H \\ C \\ C_2H_2 \end{array}$		HCN CN HC ₄ N	+++	\mathbb{C}^2	$0.00 \times 10^{-10} \text{T}^{0.17}$ $1.06 \times 10^{-10} \text{T}^{0.17}$ 0.59×10^{-11} 0.59×10^{-11}		10-300 10-300 300	[104] [136] [137]
$ R_n 417 $ $ R_n 418 $ $ R_n 419 $	2000		+ + +	$egin{array}{c} \mathrm{C}_2\mathrm{H}_4 \ \mathrm{C}_3\mathrm{H}_8 \ \mathrm{C}_4\mathrm{H}_{10} \end{array}$		CH_3C_3N HC_2N HC_2N	+ + +	\mathcal{C}_3 \mathcal{C}_4 \mathcal{C}_4 \mathcal{C}_9	$8.13 \times 10^{-0.1}$ $1.08 \times 10^{-0.7}$ $1.08 \times 10^{-0.7}$ $1.1.37$ $1.08 \times 10^{-0.7}$		300-673 10-298 10-298	[138],Faure(PersComm) [138],Faure(PersComm)
	0 0 0 4	HC_2N HC_2N HC_2N CH_2CN	++++	$\begin{array}{c} \mathrm{H} \\ \mathrm{CH}_3 \\ \mathrm{HC}_2 \mathrm{N} \\ \mathrm{H} \end{array}$	$\uparrow\uparrow\uparrow\uparrow$	C_2^{N} $C_3^{\mathrm{H}_3}\mathrm{N}$ $\mathrm{HC}_4^{\mathrm{N}_2}$ $\mathrm{CH}_3^{\mathrm{CN}}$	+++	н н	$3.00 \times 10^{-2.5}$ 3.00×10^{-11} 3.00×10^{-11} 2.00×10^{-10} 1.00×10^{-23}	0.40	200 200 -	[139] [139] est.(HC2N+CH3) est.(Rad+Rad),est.(AtomNumber)
R_n 424	4	CH ₂ CN	+	$ m CH_3$	\uparrow	$\mathrm{C_3H_5N}$			$\begin{array}{c} 2.00 \times 10^{-12} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-21} \end{array}$	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 425	4	$\mathrm{CH_2}\mathrm{CN}$	+	$\mathrm{C_2H_3}$	\uparrow	$\mathrm{C_4H_5N}$			2.00×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 426	4	CH ₂ CN	+	$\mathrm{C_2H_5}$	\uparrow	$\mathrm{C_4H_7N}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-19}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
R_n 427	4	$\mathrm{CH_2}\mathrm{CN}$	+	$\mathrm{C_3H_3}$	\uparrow	C_5H_5N			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-17}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
R_n 428	4	CH_2CN	+	$\mathrm{C_3H_5}$	\uparrow	C_5H_7N			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁷	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 429$ 4 CH_2CN Continued on Next Page	4	CH_2CN	+	C_3H_7	\uparrow	C_5H_9N			8.00×10^{-1} 8.00×10^{-11} 1.00×10^{-17}	0.40		est.(Rad+Rad),est.(AtomNumber)

		Type				Re	Reaction			k	Fc	T range	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 430	4			$\gamma_4 \mathrm{H}_3$		C_6H_5N			$\begin{vmatrix} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{vmatrix}$	0.40		est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 431	4			$\gamma_4^{}\mathrm{H}_5^{}$		C_6H_7N			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 432	4			$\gamma_6 \mathrm{H}_3$		C_8H_5N			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n433	4			$\gamma_{ m eH_5}$		C_8H_7N			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11}	0.40	1	est.(Rad + Rad), est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 434	4			CH ₂ CN	\uparrow	$\mathrm{C_4H_4N_2}$			8.00×10^{-11} 5.00×10^{-11} 1.00×10^{-17}	0.40	1	est.(Rad + Rad), est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 435	4			$^{ m J}_3{ m H_2}{ m N}$	\uparrow	$\mathrm{C_5H_4N_2}$			5.00×10^{-11} 8.00×10^{-11} 6.00×10^{-16}	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_n 436	4			$\Im_3 \mathrm{H}_4 \mathrm{N}$		$\mathrm{C_5H_6N_2}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 6.00×10 ⁻¹⁶ 8.00×10 ⁻¹¹	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 437$ $R_n 438$	2 2	Z Z Z Z	+ +	$^{ m H_2}_{ m CH_4}$				н Онз	$\begin{array}{c} 2.39 \times 10^{-18} \mathrm{T}^{2.35} \mathrm{e}^{-95./T} \\ 8.17 \times 10^{-10} \mathrm{T}^{-0.57} \mathrm{e}^{-3./T} \end{array}$		24-300 24-300	[140] [140]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 439$	2 2			72H2 75H2				H,	$8.31 \times 10^{-09} \mathrm{T}^{-0.58} \mathrm{e}^{-33./T}$ $3.76 \times 10^{-09} \mathrm{T}^{-0.42} \mathrm{e}^{-22./T}$		24-300	[140] [140]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n 441	1 2			$^{214}_{^2}$				C2H3	$1.25 \times 10^{-08} \mathrm{T}^{-0.69} \mathrm{e}^{-30./T}$		24-300	[140]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _n 442	2 5			CH ₃ CCH				H 5	$4.70 \times 10^{-09} \text{T}^{-0.41} \text{e}^{-32./T}$		24-300	[140]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n 444	4 61			3.H ₆				: E	$1.84 \times 10^{-08} \text{T}^{-0.64} \text{e}^{-51./T}$		24-300	[140]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _n 445	62 6			23H8				C_3H_7	$8.29 \times 10^{-09} \text{T}^{-0.55} \text{e}^{-34./T}$		24-300	[140] This Morb
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n 447	1 (1			$^{4}_{1}$ $^{2}_{2}$ $^{2}_{4}$ $^{4}_{4}$: =	$9.90 \times 10^{-10} \mathrm{T}^{-0.06} \mathrm{e}^{-9./T}$		000	est.(C3N+C4H2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 448$	2			$\gamma_4^{f H_6}$				н	$6.65 \times 10^{-0.7} \mathrm{T}^{-1.25} \mathrm{e}^{-116./T}$		1	est.(C4H+C4H6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n 449	7			24H8				:	$2.04 \times 10^{-08} \text{T}^{-0.61} \text{e}^{-65./T}$		ı	est.(C4H+C4H8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 450$ $R_n 451$	21 62			74H10				∵4H9 H	4.82×10^{-10} 10^{-10} 10^{-10}		1 1	est.(C4H+C4H10) est.(C3N+C4H2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 452$	1 2			JH3				VH ₂	$1.43 \times 10^{-08} \text{T}^{-0.67} \text{e}^{-28./T}$		24-300	[140]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{n}453$	2			ICN				, H	3.00×10^{-11}		200	[95]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_n 454	7			INC				ш:	3.00×10^{-11}		1	[95]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 455$	21 4			IC3N	1	7	+	E	$9.90 \times 10^{-10} \text{ L}^{-0.03} \text{ e}^{-0.07}$		1 1	$\operatorname{est.}(\operatorname{C3N} + \operatorname{C4H2})$ $\operatorname{est.}(\operatorname{Rad} + \operatorname{Rad}) \operatorname{est.}(\operatorname{Atom}\operatorname{Number})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	005437	۲			4	<u> </u>	(311314			1.00×10^{-23}	0.00	1	cse.(read_read);cse.(recomment)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$;			2.00×10^{-12}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 457$	4			2H3		C_4H_5N			8.00×10^{-11} 1.00×10^{-19} 6.00×10^{-11}	0.40	1	est.(Kad+Kad),est.(AtomNumber)
	R_n458	4			$\gamma_2 \mathrm{H}_3$		C_5H_5N			8.00×10 8.00×10^{-11} 1.00×10^{-17}	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
	Continued	Nev Nev	-+ Page							8.00×10^{-11}			

4 4 4 4 4 4 4 ,		C ₂ H ₅ C ₃ H ₇ C ₄ H ₃ C ₄ H ₅	<u></u>	C_5H_7N C_6H_5N	8.00×10^{-11}	0.40	<u>'</u>	est.(Rad+Rad),est.(AtomNumber)
4 4 4 4 4 4 .		C ₃ H ₅ C ₄ H ₅ C ₄ H ₅	\uparrow \uparrow \uparrow \uparrow	C_6H_5N	21-01	0.40		
4 4 4 4 4 4 .		C ₃ H ₃ C ₄ H ₅ C ₄ H ₅ C ₄ H ₅	\uparrow \uparrow \uparrow \uparrow \uparrow	$\mathrm{C_6H_5N}$	1.00×10^{-1}			_
4 4 4 4 4 4 .		C ₃ H ₅ C ₄ H ₅ C ₄ H ₅	\uparrow \uparrow \uparrow \uparrow	C_6H_5N	8.00×10^{-11}			
4 4 4 4 4 .		C ₃ H ₅ C ₄ H ₃ C ₄ H ₅	\uparrow \uparrow \uparrow \uparrow		8.00×10 ±		1	est.(Kad+Kad),est.(AtomNumber)
4 4 4 4 4 4		C ₃ H ₅ C ₃ H ₇ C ₄ H ₃ C ₄ H ₅	\uparrow \uparrow \uparrow \uparrow		8.00×10-11	0.40		
, A A A A A A		C4H3 C4H5 C4H7	† † †	NHU	8.00×10 ⁻¹¹		-	est (Bad + Bad) ast (Atom Number)
4 4 4 4 4		$\begin{array}{c} \mathrm{C_3H_7} \\ \mathrm{C_4H_3} \\ \mathrm{C_4H_5} \end{array}$	\uparrow \uparrow \uparrow	061171	3.00×10 1.00×10-15	0.0		est. (man tran), est. (minumine)
4 4 4 4 ,		C_3H_7 C_4H_3 C_4H_5	† † †		1:00×10 8:00×10=11	0.40		
i 4 4 4 4 .		C_4H_3 C_4H_5 C_4H_7	†	2 5	8.00×10			out (Bad Bad) aut (Atom Number)
4 4 4 4 ,		C ₄ H ₃ C ₄ H ₅	\uparrow \uparrow	N16119)	0.00×10 1.00×10-15	0 40		est.(mau†ivau),est.(Atominamoe
4 4 4 4		C_4H_3 C_4H_5 C_4H_7	\uparrow \uparrow		8.00×10-11	7.0		
4 4 4 4		$C_4 H_5$ $C_4 H_5$ $C_4 H_7$	†	;	8.00×10			
4 4 4		$\mathrm{C_4H_5}$ $\mathrm{C_4H_7}$	†	C_7H_5N	8.00×10 ==			est.(Kad+Kad),est.(AtomNumber)
4 4 4 ,		$\mathrm{C_4H_5}$ $\mathrm{C_4H_7}$	↑		1.00×10^{-13}	0.40		
4 4 4		$\mathrm{C_4H_5}$ $\mathrm{C_4H_7}$	↑		8.00×10^{-11}			
4 4 ,		$\mathrm{C_4H_7}$		C_2H_2N	8.00×10^{-11}			est.(Rad+Rad),est.(AtomNumber)
4 4		$\mathrm{C_4H_7}$			1.00×10^{-13}	0.40		
4 4		C_4H_7			0 00 < 10 - 11			
ħ 4 ,		C4H7		2 1	8.00×10 8.00×10−11			and (Do 1) Do 1) and (Atom Municher
4			↑	V2H9IN	8.00×10			est.(nau+nau),est.(Atominumber)
4					1.00×10	0.40		
4 ,					8.00×10^{-11}			
•	Carron +	$\mathrm{C_4H_o}$	↑	$C_7H_{11}N$	8.00×10^{-11}		•	est.(Rad+Rad),est.(AtomNumber)
•					1.00×10^{-13}	0.40		
_					8.00×10 ⁻¹¹			
7	1 Z	Ε.	1	ZHU	8 00 < 10 - 11			set (Bad+Bad) est (Atom Number)
				0	1.00.10	0 0	1	
					1.00×10 8.00×10=11	0.40		
,				;	8.00×10			
$K_n 468$ 4 C_3	C3H2N +	C_6H_5	↑	C ₉ H ₇ N	8.00×10^{-2}		1	est.(Kad+Kad),est.(AtomNumber)
					1.00×10^{-11}	0.40		
					8.00×10^{-11}			
$R_n 469 + C_3$	$C_3H_2N +$	C_3H_2N	↑	$C_6H_4N_2$	5.00×10^{-11}		,	est.(Rad+Rad),est.(AtomNumber)
					1.00×10^{-13}	0.40		
					5.00×10^{-11}			
B _z 470 4 C _z	C, H, N	N.H.D	1	C, H, N,	8.00×10 ⁻¹¹		_	est. (Bad+Bad) est. (Atom Number)
				799-	1.00<10-13	0 40		
					8 00 × 10 − 11	P		
		:		;	0.00 × 10			
$R_n 471 + C_3$	C_3H_4N +	I	↑	C_3H_5N	2.00×10^{-2}			est.(Rad+Rad),est.(AtomNumber)
					1.00×10^{-23}	0.40		
					2.00×10^{-12}			
$R_n 472 4 C_3$	C_3H_4N +	CH_3	↑	C_4H_7N	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		ı			1.00×10^{-19}	0.40		
					8.00×10^{-11}			
B. 473 4 C.	H.N.H.	C, H,	1	N-H-C	8.00×10 ⁻¹¹			est (Bad+Bad) est (AtomNumber)
•		(Z+3		(91-	1.00<10-17	0 40		
					0.00<10-11			
_				2 1	8.00×10 8.00×10−11			ort (Dod Dod) art (Atom Mumber)
15n+14 4 (3	O31141N +	V2115	1	(51191)	3.00×10 1.00×10=17			est. (mau + mau), est. (minumbe
					1.00×10	0.40		
					8.00×10 ±			
$R_n 475 4 C_3$	C_3H_4N +	$\mathrm{C_{3}H_{3}}$	↑	C_6H_7N	8.00×10^{-11}		1	est.(Rad+Rad),est.(AtomNumber)
					1.00×10^{-13}	0.40		
					8.00×10^{-11}	_		

	Type				Re	Reaction			k	됴	T range	Ref.
R_n476	4	C_3H_4N	+	C_3H_5	↑	C_6H_9N			$ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} $	0.40	1	est.(Rad+Rad),est.(AtomNumber)
R_n 477	4	C_3H_4N	+	$\mathrm{C_3H_7}$	↑	$\mathrm{C_6H_{11}N}$			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹⁵		1	est.(Rad+Rad), est.(AtomNumber)
$R_n 478$	4	$\mathrm{C_3H_4N}$	+	$\mathrm{C}_4\mathrm{H}_3$	↑	C_7H_7N			8.00×10 8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹³	0.40	1	est.(Rad+Rad),est.(AtomNumber)
\mathbb{R}_n 479	4	$\mathrm{C_3H_4N}$	+	$\mathrm{C_4H_5}$	↑	C_7H_9N			8.00×10 ⁻¹¹ 8.00×10 ⁻¹¹ 1.00×10 ⁻¹³	0.40	ı	est.(Rad+Rad),est.(AtomNumber)
$R_n 480$	4	C_3H_4N	+	$\mathrm{C_4H_7}$	↑	$\mathrm{C_7H_{11}N}$			8.00×10^{-11} 8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-13}	0.40	1	est.(Rad + Rad), est.(AtomNumber)
$R_n 481$	4	C_3H_4N	+	$\mathrm{C_4H_9}$	↑	$C_7H_{13}N$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \end{array}$	0.40	1	est.(Rad+Rad),est.(AtomNumber)
$R_n 482$	4	$\mathrm{C_3H_4N}$	+	$\mathrm{C_6H_3}$	↑	C_9H_7N			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array}$	0.40	1	${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
$R_n 483$	4	$\mathrm{C_3H_4N}$	+	$\mathrm{C_6H_5}$	↑	C_9H_9N			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array}$	0.40	1	${\rm est.}({\rm Rad+Rad}), {\rm est.}({\rm AtomNumber})$
\mathbb{R}_n 484	4	$\mathrm{C_3H_4N}$	+	C_3H_4N	↑	$\mathrm{C_6H_8N_2}$			8.00×10 ⁻¹¹ 5.00×10 ⁻¹¹ 1.00×10 ⁻¹³	0.40	1	est.(Rad + Rad), est.(AtomNumber)
$R_n 485$ $R_n 486$	2 2	Z Z	+ +	${ m H_2}$ CH,	↑ ↑	HC ₅ N HC ₅ N	+ +	H CH.	5.00×10^{-15} 3.50×10^{-18} T ² .32 _e -444./T 1.63 × 10 ⁻¹¹ e ^{-610.} /T		1 1	est.(C2H+H2) est.(C4H+CH4)
$R_n 487$ $R_n 488$	21 21	z z c c	+ +	C_2H_2 C_3H_4	\uparrow \uparrow	HC,N	+ +	н С,Н,	5.00×10^{-10} $1.90 \times 10^{-09} \mathrm{T}^{-0.40} \mathrm{e}^{9./T}$		20-400	ThisWork est.(C4H+C2H4)
$R_n^{''}489$	2 2	່ຊ່ຽ	+ +	$\mathrm{C_2^LH_6^C}$	↑ ↑	HC,N C,H,N	+ +	$egin{cases} egin{cases} igz Z_{ m H_5} \ igg H \end{array}$	$3.19 \times 10^{-08} \text{T}^{-1.23} \text{e}^{-24./T}$ $3.42 \times 10^{-08} \text{T}^{-0.82} \text{e}^{-47./T}$		1 1	est.(C4H+C2H6) est.(C4H+CH3CCH)
$R_n 491$	1 61 6	່ວິບີ	- + +	CH ₂ CCH ₂	1 1	C ₈ H ₃ N	- + +	: # #	$3.07 \times 10^{-07} \text{T}^{-1.18} \text{e}^{-91./T}$ $3.89 \times 10^{-08} \text{T}^{-0.84} \text{e}^{-48./T}$		1 1	est.(C4H+CH2CCH2)
$R_n 493$	1010	S Z Z	+ +	C3H8	1 1	HC ₅ N	- + +	C_3H_7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			est. (C4H+C3H8)
$R_n 495$	1 (1	Cr	+ +	C_4H_4	†	C ₉ H ₃ N	+ +	н	$9.90 \times 10^{-10} \text{T}^{-0.06} \text{e}^{-9./T}$		000	est.(C3N+C4H2)
$R_n 496$ $R_n 497$	2 2	z z č č	+ +	$\mathrm{C_4H_6}$ $\mathrm{C_4H_8}$	↑ ↑	C_9H_5N C_9H_7N	+ +	нн	$egin{array}{c} 6.65 \times 10^{-0.7} \mathrm{T^{-1.23}e^{-110.7}} \ 2.04 \times 10^{-08} \mathrm{T^{-0.61}e^{-65.7}} \ \end{array}$		1 1	est.(C4H+C4H6) est.(C4H+C4H8)
$R_n 498$	2 0	, D, C	+ +	$C_4^{H_{10}}$	1 1	HC ₅ N	+ +	C_4H_9	$\begin{vmatrix} 4.82 \times 10^{-07} \text{T}^{-1.30} \text{e}^{-90./T} \\ 0.00 \times 10^{-10} \text{T}^{-0.06} \text{e}^{-9./T} \end{vmatrix}$		1	$\operatorname{est.}(\operatorname{C4H+C4H10})$
$R_n 500$	1 (1) (ກິບິດ	+ + +	HCN HVI	1 1	C_6N_2	+++		3.00×10^{-11} 3.00×10^{-11}		200	(95) [95] [05]
R _n 502 R _n 503a	1 01 4	C ₅ N HC ₃ N,		HC ₃ N	`	$C_8^{\rm CN}_2$	- + +	H HCN	$9.90 \times 10^{-10} \mathrm{T}^{-0.06} \mathrm{e}^{-9./T}$ 2.00×10^{-10}		1 1	est.(C3N+C4H2) est.(Rad+Rad).est.(AtomNumber)
\mathbb{R}_n 503b \mathbb{R}_n 504a \mathbb{R}_n Continued	2 4 d on Nex	$R_n 503b$ 2 HC_2N_2 $R_n 504a$ 4 HC_4N_2 Continued on Next Page		нн	\uparrow \uparrow	$\mathbf{C_2N_2}\\\mathbf{HC_3N}$	+ +	$^{ m H_2}_{ m CN}$	$\begin{array}{c} 1.00 \times 10^{-23} \\ 2.00 \times 10^{-11} \\ 1.00 \times 10^{-10} \\ 2.00 \times 10^{-10} \end{array}$	0.40	1 1	est.(Rad+Rad) est.(Rad+Rad),est.(AtomNumber)

T range Ref.		est.(Rad+Rad) 00 [34],[141]	[89]		$\begin{bmatrix} 1 \end{bmatrix}$		500 [1] 500 [1])00 [1] 500 [1]		[1] 000 $[1]$			[1] 000 $[1]$ $[1]$: 		[142] 00 $[143]$		00 [143]		_		[00 [14b]		000 [1],est. (Atominumber)) Iniswork 00 [143]	
T ra		100-500	10-300	10-300	294-2500 298	10-298	250-2500	220-2000	220-2000	220-2000 300-2500	300-2500	280-2500	296-1000	296-1000	296-1000 298	298	1	200-300	200-300	200-300	298	200-300	113-333	100-2100	-	0-000	200-300	300-2500	20-300	20-300	20-300	200-300	300-2500
굔	0.40	0.40																						0.40		0.40							
k	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.00×10 1.00×10^{-10} 1.00×10^{-10} $1.30 \times 10^{-29} T^{-1.00}$	5.17×10^{-20} 1.00×10^{-10} 4.00×10^{-11}	2.00×10^{-12}	1.10×10^{-10} 2.80×10^{-11}	1.00×10^{-10}	$\begin{vmatrix} 3.90 \times 10^{-16} \mathrm{T}^{1.40} \mathrm{e}^{-1110./T} \\ 1.56 \times 10^{-15} \mathrm{T}^{1.40} \mathrm{e}^{-1110./T} \end{vmatrix}$	$1.35 \times 10^{-17} \text{T}^{1.88} \text{e}^{-92./T}$	$7.88 \times 10^{-18} T^{1.88} e^{-92./T}$	$1.13 \times 10^{-10} \text{Trice}_{-5.07}$	5.00×10^{-11}	1.60×10^{-10} 4.90×10^{-11} $e^{-560./T}$	$1.80 \times 10^{-12} e^{-680./T}$	$6.00 \times 10^{-13} e^{-680./T}$	$6.00 \times 10^{-13} e^{-0.00.7}$ 2.60×10^{-10}	8.80×10^{-11}	6.70×10^{-03}	$2.15 \times 10^{-11} e^{110.7}$ 1.20×10^{-10}	1.31×10^{-10}	3.50×10^{-11}	9.00×10 2.20×10^{-10}	$1.63 \times 10^{-10} e^{60./T}$	$4.70 \times 10^{-11} e^{63./T}$	8.00×10^{-2} 1.00×10^{-30} 2.00×10^{-12}	1.30×10 ⁺⁰⁰	1.00×10 $6.10 \times 10^{-26} \text{T}^{-2.00}$ 6.00×10^{-16}	$2.80 \times 10^{-12} e^{-1800./T}$	$4.74 \times 10^{-11} \mathrm{T}^{0.12} \mathrm{e}^{81./T}$	$9.40 \times 10^{-08} \mathrm{T}^{-1.19} \mathrm{e}^{-435./T}$	$2.94 \times 10^{-09} \mathrm{T}^{-1.58} \mathrm{e}^{-60./T}$	$2.33 \times 10^{-08} \mathrm{T}^{-1.54} \mathrm{e}^{-60./T}$	3.49×10^{-11} 1.76×7	3.00×10^{-11}
11																																	
			Н		Ή	:						Н		;	Ξ																		
		5	+	5 ⁷ _	+	-	$ m CH_2$	H ₃		.5		+	$^{ m CH}_2$		+	H	۸ ,	2	$^{ m H_3}$		2.2	H _O	Ó		7				$ m CH_2$	2	_5.	'2 'H',	$ ext{CH}_2$
		+ H ₂			+ H H	CH CH	$+$ $^3\mathrm{CH}_2$ + H	-		+ + H	но			00				H +			+ + H ₂		00 +		$+$ h ν		H +					+ ^H ₂ + CH ₃	
Reaction		C_4N_2 + OH	+ ##	HCO +	H ₂ CO + H	CO + CH	CO + +	+	CH ₂ CHO +		CO + OH	+ 00 + +	- +	HCHO + CO	HCO + CO +	CH_2CO +	$O(^{3}P) + O(^{3}P)$	O(°P) + OH +	+ HO	+ -	H2CO +	+ HO	$O(^{3}P) + O(^{3}P)$	CO ₂	$O(^{1}D)$ +	1120	H ₂ O +	H_2 CO +	H_2O +	H_2 CO +	CHOH +	H,0 +	+ + 00
Reaction		+	+ ## ++	HCO +	+ # # + +	CO + CH	+ +	HCO +	CHO +	+ +	CO + OH	+ 00 + +	+ - CO ₂	→ HCHO + CO	↑ HCO + CH; ↑ CO; + CH;	$\rightarrow CH_2CO +$	$\rightarrow O(^{3}P) +$	+ +	+ HO	CH ₂ OH +	+ +	+ HO	$O(^{3}P) + O(^{3}P)$	\downarrow $^{\rm CO}_2$	+		+	+	H_2O +	H_2 CO +	CHOH +	H,0 +	+
Reaction		C_4N_2 + OH	+ + H + + + + + + + + + + + + + + + + +	+ HCO +	H ₂ CO + H	→ CO + CH	CO + +	+ HCO +	→ CH ₂ CHO +	CH ₂ CO + +	+ CO + OH + OH	+ HE CO	+ - CO ₂	→ HCHO + CO	HCO + CO +	$\rightarrow CH_2CO +$	$\rightarrow O(^{3}P) +$	O(°P) + OH +	+ HO ←	CH ₂ OH +	↑ H2 CO + + CH2 CO + +	+ HO	\downarrow O(³ P) +	D ↑	$\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ & & & & $		H ₂ O +	\rightarrow H ₂ CO +	\rightarrow H ₂ O +	\rightarrow H ₂ CO +	+ CHOH +	H,0 +	+ + OO ↑
Reaction		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 3CH ₂ → CO + H + + 3CH ₂ → CO + H ₃	$+$ $^{3}\text{CH}_{2}$ \rightarrow HCO $+$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ C_2H \rightarrow CO $+$ CH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ C_2H_4 \rightarrow $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$+ C_2H_4 \rightarrow CH_2CHO +$	$\begin{array}{ccccc} + & C_2H_4 & \rightarrow & CH_2CO & + \\ + & HCO & \rightarrow & CO_2 & + \end{array}$	$+$ HCO \rightarrow CO $+$ OH	+ HOO + OO ↑ OOOH +	$+$ $CH_2CO \rightarrow CO_2 +$	$+ CH_2^{-}CO \rightarrow HCHO + CO$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ CH_3CO \rightarrow CH_2CO $+$	$+ \frac{O(^{3}P)}{(^{3}P)} +$	$\begin{array}{cccc} + & N_2 & \downarrow & O(^3P) & + \\ + & H_2 & \downarrow & OH & + \end{array}$	$+$ CH ₄ \rightarrow OH $+$	$+ CH_4 \rightarrow CH_2OH + C$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ H_2^2 \rightarrow OH $+$	+ CO $+$ CO	D ↑ +	$+ O(^{1}D) + O(^{1}D$	†	\rightarrow H ₂ O +	$^{3}CH_{2} \rightarrow H_{2}CO +$	$CH_3 \rightarrow H_2O +$	$CH_3 \rightarrow H_2CO +$	CH ₃ → CHOH +	+ ChOn + + + O + +	$+ C_2H \rightarrow CO +$
Reaction		$\begin{array}{cccc} H & \rightarrow & C_4 N_2 & + \\ H & \rightarrow & OH \end{array}$	3 CH ₂ \rightarrow CO + H + 3 CH ₂ \rightarrow CO + H + 4	$+$ $^{3}\text{CH}_{2}$ \rightarrow HCO $+$	$CH_3 \rightarrow H_2CO + H$ $CH_1 \rightarrow CCO + H_1 + H_2$	$+$ C_2H \rightarrow CO $+$ CH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ C_2H_4 \rightarrow $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$+ C_2H_4 \rightarrow CH_2CHO +$	$\begin{array}{ccccc} + & C_2H_4 & \rightarrow & CH_2CO & + \\ + & HCO & \rightarrow & CO_2 & + \end{array}$	$+$ HCO \rightarrow CO $+$ OH	+ + + + + + + + + + + + + + + + + + +	$+$ $CH_2CO \rightarrow CO_2 +$	$+$ CH_2 CO \rightarrow HCHO $+$ CO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ CH_3CO \rightarrow CH_2CO $+$	$+ \frac{O(^{3}P)}{(^{3}P)} +$	$\begin{array}{cccc} + & N_2 & \downarrow & O(^3P) & + \\ + & H_2 & \downarrow & OH & + \end{array}$	$+$ CH ₄ \rightarrow OH $+$	$CH_4 \rightarrow CH_2OH +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ H_2^2 \rightarrow OH $+$	+ CO $+$ CO	D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	↑	$+$ H_2 \rightarrow H_2O $+$	$+$ $^{3}CH_{2}$ \rightarrow $H_{2}CO$ $+$	$+$ CH ₃ \rightarrow H ₂ O $+$	$+$ CH ₃ \rightarrow H ₂ CO $+$	+ CH ₃ → CHOH +	CH_3 \downarrow $CHOH$ $+$ CH_4 \downarrow	$+ C_2H \rightarrow CO +$
Type Reaction		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O(^{3}P) + ^{3}CH_{2} \rightarrow CO + H + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O((^3P) + C_2H_4 \rightarrow HCO +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O({}^{\circ}P) + C_{2}H_{4} \rightarrow CH_{2}CO + \\ O({}^{3}P) + HCO \rightarrow CO$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ O(^3P) + CH_2CO \rightarrow CO_2 +$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O(^3P)$ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O(1D) + Cn_4 \rightarrow n_2 CO + O(1D) + C_2 H_4 \rightarrow CH_3 CO + O(1D)$	$\mid O(^{1}D) + H_{2}^{2}O \rightarrow OH^{2} + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 ↑ + (q_)o	$+ O(^{1}D) + O(^{1}D$	+ + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mid OH + 3 CH ₂ \rightarrow H ₂ CO +	$ $ OH + CH ₃ \rightarrow H ₂ O +	\mid OH + CH ₃ \rightarrow H ₂ CO +	$OH + CH_3 \rightarrow CHOH +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ref.										[6]	참	참,	rk	사	Work			Work		Work								4	선 건												55]	[2]	
	[34]	[143]	[143]	[143]	[143]	Ξ	Ξ	[1]	Ξ	[148],[149]	ThisWork	ThisWork	ThisWork	This Work	[1] This Work	- (-)	3	[1],ThisWork		[1],ThisWork		[1]	[34]	[34]	[34]	[150]	[150]	[151] This Work	This Work	Ξ	Ξ	Ξ	[152]	[152]	[152]	[152]	[132]	ΞΞ	[153]	Ξ	[154],[155]	$\begin{bmatrix} 154 \end{bmatrix}$, $\begin{bmatrix} 15 \end{bmatrix}$	[04]
T range	300-2500	228-1400	200-300	200-300	200-300	296-1000	296-1000	296-1000	296-1000	50-296	20-300	20-300	20-300	20-300	295-451 300-800		0	200-1000		300-350		298-2500	300-2500	300-2500	300 - 2500	300-3000	300-3000	- 30 300	20-300	298	298	298	300-2500	300-2500	300-2500	300-2500	280-2000	280-2000		298-2000	298	298 300-2500	0007-000
면																0.40		09.0		0	0.00																						_
k	3.00×10^{-11}	Tabulated Tabulated	$7.66 \times 10^{-12} e^{-1020./T}$	$1.63\! imes\!10^{-06}\mathrm{T}^{6.10}$ Tabulated	$5.50 \times 10^{-12} e^{125./T}$	$1.68 \times 10^{-12} e^{510./T}$	$1.04 \times 10^{-12} e^{510./T}$	$5.60 \times 10^{-14} e^{510./T}$	$2.80 \times 10^{-14} e^{510./T}$	$7.72 \times 10^{-08} \mathrm{T^{-1.31}e^{-40.7}}$	$9.46 \times 10^{-08} \mathrm{T}^{-1.19} \mathrm{e}^{-67./T}$	$2.60 \times 10^{-0.8} T^{-1.91} e^{-38.7}$	$2.21 \times 10^{-0.1}$ L $10^{-0.0}$ L $10^{-0.$	$3.47 \times 10^{-0.0}$ T -2.00 /T	1.90×10 == ================================	$2.00 \times 10^{-35} \mathrm{T}^{0.20}$	3.00×10^{-21}	$6.30 \times 10^{-24} \mathrm{T}^{-2.50}$	3.75×10^{-17}	$3.10 \times 10^{-16} \mathrm{T}^{1.05} \mathrm{e}^{-1300./T}$	5.90×10 1.10×10-28	1.50×10^{-10}	3.00×10^{-11}	2.00×10^{-10}	1.00×10^{-10}	$6.21 \times 10^{-10} \text{T}^{-0.32} \text{e}^{386./T}$	$1.23 \times 10^{-10} \mathrm{T}^{-0.32} \mathrm{e}^{380.7}$	1.00×10 = 0	1.00×10^{-10}	2.03×10^{-11}	2.03×10^{-11}	1.74×10^{-11}	4.00×10^{-11}	2.00×10^{-12}	4.00×10 ⁻¹²	6.00×10 == 3.00×10=11	2.00 × 10 ⁻¹⁰	1.76×10^{-11}	1.00×10^{-10}	$5.40 \times 10^{-14} \mathrm{T}^{0.85} \mathrm{e}^{-1430./T}$	1.90×10^{-11}	3.60×10^{-11} 3.00×10^{-11}	3.00 × 10
	C_2H_2	ı	C_2H_5	H	Н,О	CO	CH_3	HCO	H_2O	Н	$ m CH_3$	$_{ ilde{ ilde{H}}_{2}}^{ ext{H}_{2}}$	$^{ m H_2}$	$^{ m H_2}_{ m 2}$	C_2H_2							H,	$C ilde{H}_3$	$\mathrm{CH}_4^{ec{}}$	C_2H_2	Н		C_2H_2+H	II II	H,	${ m H}_2^{\it L}$	CH_3	C_2H_4	$_{ m CH_3}$	$_{ m CH_4}$	C_2H_2	C3H3	$^3\mathrm{CH}_{_3}$	$C_{2}H_{4}$	$^{-2}_{ m CH_3}$	$_{\widetilde{\Omega}}^{2}$	CH ₃	Сп ₃
	+		+	+	+	+	+	+	+	+	+	+	+	+ -	+							+	+	+	+	+	+ -	+ -	+ +	+	+	+	+	+ -	+ -	+ -	+ +	- +	+	+	+	+ +	+
Reaction	O(³ P)	CH_3CO	H,0	CÕ2 HOCO	HCO	CH_2OH	CO_2^-	НСНО	HCCO	${ m H_2CO}$	НО	H_2 CO	СНОН	СНОН	HCO)	()	HCCO		${ m CH_3CO}$		CO	CO	CO	CO	CH_2CO	CO		CH, CHO	H, CO	стон	НО	НО	H_2 CO	H2CO	$^{ m H_2CO}_{ m H}$	E C	000	CO	CO	CH_2CO	HCO	CH ₂ CO
P. B.	1	1 1	↑	1 1	^ ↑	\uparrow	\uparrow	\uparrow	\uparrow	↑	†	†	↑	†	1			↑		\uparrow		↑	↑	\uparrow	\uparrow	\uparrow	\uparrow	1	1	· ↑	†	\uparrow	\uparrow	↑	↑ ′	^ ^	1	^ ↑	†	\uparrow	\uparrow	1 1	1
	C_2H	$C_2^H_2$	C_2H_6	, ,000	H,CO	$\check{\operatorname{CH_2CO}}$	$CH_2^{-}CO$	CH_2CO	CH_2CO	CH,	$^{1}\mathrm{CH}_{2}^{2}$	$^{^{1}\mathrm{CH}_{2}}_{^{1}\widetilde{\odot}\widetilde{\odot}}$	$^{^{1}\mathrm{CH}_{2}}_{^{1}}$	$^{1}\mathrm{CH}_{2}^{2}$	$\mathbb{C}_{2}^{\mathrm{H}}$;	į	E S		$ m CH_3$		Н	$^3\mathrm{CH}_2$	$\mathrm{CH}_3^{\mathcal{L}}$	C_2H	СН	CH S	$\mathbb{C}_2^{\mathrm{H}}$	CH.	E H	Н	H	$^3{ m CH}_2$	$^{^{\circ}\mathrm{CH}_{2}}_{^{\circ}}$	$_{ m CH_3}^{ m CH_3}$	Z C	H ₂ H	:	CH,	H	н:	H 3CH	CH2
	+	++	- +	+ +	+	+	+	+	+	+	+	+	+	+ -	+ +	-		+		+		+	+	+	+	+	+ -	+ +				+ H		+ ·	+ - I I	+ -	+ +	+		+	+	+ +	⊦
	НО	НОН	HO	НО	OH	НО	НО	НО	НО	$\rm H_2O$	${ m H}_2{ m O}$	H ₂ O	H_2°	H ₂ O	Z C)	(3		CO		НСО	НСО	НСО	HCO	${ m H_2CO}$	H ₂ CO		CHOH	CHOOH	$CH_2^{2}O$	CH_2O	CH_2OH	CH_2O	CH ₂ O	CH 20	H C C C C	HCCO	HCCO	CH_2C	CH ₃ C	CH ₃ CO	U113 C t Page
Type	2	9 9	0 0	മയ	0 0	2	2	2	7	2	2	7	.7	01 0	27 7			4		4		7	2	2	2	7	0.0	71 0	1 0	1 (2)	2	2	7	27 (.7 0	20 0	4 6	1 (1)	2	2	7	C1 C	on Nex
	R_n528b	R. 530	R _n 531	R. 532a	R _n 533	R_n 534a	\mathbb{R}_n 534b	R_n534c	\mathbb{R}_n 534d	$R_n 535$	\mathbb{R}_n 536a	\mathbb{R}_n 536b	R_n 536c	R _n 536d	R. 538		i c	K_n 539		$R_n 540$		R _n 541	R_n 542	$\mathbb{R}_n^{\tilde{n}}$ 543	\mathbb{R}_n 544	\mathbb{R}_n 545a	\mathbb{R}_n 545b	K _n 546	R. 548	R _n 549a	$R_n^{"}549b$	R_n 549c	R_n550a	R _n 550b	R_n 551	K_n 552a D $EE9b$	R_{15539}	R. 553b	R_n554	R_n555	R _n 556a	R _n 556b B 557	$R_n^{334} \mid 2 \mid CH_3^{3}C_1$ Continued on Next Page

Ref.	[156] [157] [157]	[34] [158] [1]	[1] [1], est. (Atom Number)	[159] [118] [89]	[160],[1] [160],[1]	[160],[1] [160],[1]	[160],[1] [153] [150]	[153] [1]	[1] [161]	[1],[162]	[163],est.(AtomNumber)	[68]	[164] [153]	[89]	[1] [112]	[112]	[153] [112]	[112]	[112] [112]	[153]	ThisWork	[112]	[112]	[112] [153]	[68]
T range	298 298 298	300-1500 295 296-3500	296-3500 230-750	298-2000 200-2500 10-300	13-708 13-708	13-708	13-708	- 290-1000	290-1000 298-2500	295-450	196-298	10-300	10-280	10-300	300-400	300-400	298	298	298 298)	20-300	298 298	298	298	10-300
ĘŦ,		0.40	0.40								0.40														
k	$\begin{vmatrix} 5.43 \times 10^{-11} \\ 1.01 \times 10^{-11} \\ 6.97 \times 10^{-11} \end{vmatrix}$	$\begin{array}{c} 1.00\times10^{-30} \\ 2.00\times10^{-11} \\ 3.00\times10^{-11} \\ 8.31\times10^{-11} \\ 5.30\times10^{-17} \\ T^{1.51}_{\rm e}^{360./T} \end{array}$	$\begin{array}{c} 5.30 \times 10^{-17} \mathrm{T}^{1.51} \mathrm{e}^{360./T} \\ 1.00 \times 10^{-10} \\ 4.23 \times 10^{-30} \mathrm{T}^{-0.77} \\ 1.00 \times 10^{-13} \end{array}$	$\begin{array}{c} 3.01\!\times\!10^{-11} e^{-500./T} \\ 1.53\!\times\!10^{-05} \mathrm{T}^{-1.86} e^{-399./T} \\ 1.00\!\times\!10^{-10} \end{array}$	$\begin{array}{c} 2.40 \times 10^{-10} \mathrm{T}^{-0.13} \\ 5.57 \times 10^{-11} \mathrm{T}^{-0.13} \end{array}$	$2.79 \times 10^{-11} \text{T}^{-0.13}$ $2.09 \times 10^{-11} \text{T}^{-0.13}$	$3.48 \times 10^{-2} \text{ J}$ 3.80×10^{-11}	$5.04 \times 10^{-12} e^{500./T}$	$5.60 \times 10^{-13} e^{500./T}$ $2.44 \times 10^{-13} T^{0.76} e^{-175./T}$	$7.70 \times 10^{-11} e^{-287./T}$	1.00×10^{-10} 5 46×10^{-33} 2 2 2	1.00×10^{-13} $5.00 \times 10^{-11} e^{-6./T}$	1.00×10^{-10} 1.00×10^{-10}	$1.25 \times 10^{-10} \mathrm{T}^{-0.20} \mathrm{e}^{-20./T}$	$1.65 \times 10^{-12} e^{-260./T}$	$1.65 \times 10^{-12} e^{-260./T}$	4.50×10^{-11} 1.30×10^{-11}	1.30×10^{-11}	1.30×10^{-11} 1.90×10^{-12}	4.00×10^{-11}	1.00×10^{-10}	3.50×10^{-2} 2.00×10^{-11}	2.00×10^{-11}	2.00×10^{-11} 5.00×10^{-11}	6.60×10^{-11}
			н																						
	$^{\mathrm{C_2H_6}}_{\mathrm{CH_4}}$	${\rm C_2H_2}\atop{\rm H_2}\atop{\rm CO}$	+ 00	$^{ m H_2}_{ m NM}$	HCN H	H Z	$^{\mathrm{CN}}_{^{3}\mathrm{CH}_{2}}$	цн	$_{\mathrm{CH}}^{\mathrm{HCN}}$	HCN	;	H	H HCN	Z Z	$O(^3P)$	$O(^{1}D)$	H NH	Н	$^{ m H}_2$	Е	HCN	S g	Z	$_{ m H}^{ m N}$	H
	++	+ + +	+	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	-	+	+ +	+ -	+ +	+	+ +	+	+ +	+ +	+ -	+ +	+	+ +	- +
Reaction	CO CH ₂ CO CH ₃ COCH ₃	$\mathrm{CH_2CO} \\ \mathrm{CH_3CHO} \\ \mathrm{HCO}$	CO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$O(^3P)$ NCO	CO HCO	NON	HNCO	ON ON	CO	NO	NO	NCO CO	$O(^3P)$) Z	Z	ON	HNO	OZ Z	HNCO	НО	$O(^3P)$	$O(^1D)$	$O(^{1}S)$	NO
Re	$\uparrow \uparrow \uparrow$	$\uparrow\uparrow\uparrow$	\uparrow \uparrow	$\uparrow\uparrow\uparrow$	\uparrow \uparrow	↑ ↑	↑ ↑	↑ ↑	↑ ↑	1	†	↑	↑ ↑	↑ 1	1	↑	↑ ↑	†	1 1	↑	†	↑ ↑	†	↑ ↑	· ↑
	CH ₃ CH ₃ CH ₃	${\rm C_2H}\atop {\rm H}\atop {\rm CH}$	CH	HNO NCO NCO	NO NO	0 0 0 2 N 3	ONH	ON ON	NO HNO	ON	$O(^3P)$	ОН	HCO HCCO	ONO	$O(^3P)$	$O(^3P)$	ОН	H_2^{20}	H ₂ O	$_{ m H_2CO}$	СНОН	NO 2	ON	NO HNO	$O(^3P)$
	+++	0 -2 C単2 +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+ +		+ +		+ +		+ +			+ +		+ +	+
	CH ₃ CO CH ₃ CO CH ₃ CO	CH ₃ CO + HOCH ₂ CH ₂ CO ₂ +	CO ₂	нно	СН	CH CH	######################################	$^{^3\mathrm{CH}_2}$	$^{^3}\mathrm{CH}_2^{^2}$	C_2H	Z	Z	ZZ	ZZ	$N(^2D)$	$N(^2D)$	N(² D) N(² D)	$N(^2D)$	$N^{(2}_{D}$	$N(^2D)$	N(ZD)	$N^{(2)}_{(2D)}$	$N(^2D)$	$N^{(2}_{D}$	$\begin{vmatrix} \mathbf{R}_n 586 \\ \mathbf{Continued on Next Page} \end{vmatrix}$
be		000		0 0 0	2 2	220	2 2 2	2 23	0 0	2 0	1 4	2	2 2	01 0	1 01	2	21 23	1 21	21 2	1 21	0.0	7 C1	2	01 01	1 2 1 Z Z
Type	224	******	C4 4.																						_

T range Ref.	300-2000 [1]	300-2000 [1]	75 [117],[1]				[1], est.(N+O3P)			300-2000 [1]	600-2200 [1]	600-2200 [1]	600-2200 $ [1]$	300-5000 [165]	200-300 [143]	200-300 [143]			1250-3000 [1]	1250-3000	500-2500 [122]	297-673 [166]	[123], est. (AtomNumber)					200-300 [143]	[153]	[153]	[153]	[135]			300-2000 [1]	300-2000 [1]	300-2700 [1]	
	300	300	53-375	53-375	10-300	10-300	200			300	009	009	009	300	200	200	10-300	10-300	125	125	500	297	99-450	_		200	200	200	_	•	_	296	298	10-300	300	300	300	300
Fc				-				0.40															-	0.40														
k	4.00×10^{-11}	4.00×10^{-11}	$4.56 \times 10^{-11} \mathrm{T}^{-0.30} \mathrm{e}^{0./T}$	$1.82 \times 10^{-10} \mathrm{T}^{-0.30} \mathrm{e}^{0./T}$	$1.11 \times 10^{-10} \mathrm{T}^{-0.10}$	$1.24 \times 10^{-11} \mathrm{T}^{-0.10}$	$3.10 \times 10^{-11} \mathrm{T}^{0.20}$	$5.46 \times 10^{-33} e^{155./T}$	1.00×10^{-13}	$4.20\times10^{-20}\mathrm{T}^{2.30}\mathrm{e}^{140./T}$	$8.55 \times 10^{-09} \mathrm{T}^{-1.20} \mathrm{e}^{106./T}$	$1.43 \times 10^{-09} \mathrm{T}^{-1.20} \mathrm{e}^{106./T}$	$1.43 \times 10^{-09} \mathrm{T}^{-1.20} \mathrm{e}^{106./T}$	$ 6.02\times10^{-17}\mathrm{T}^{1.63}\mathrm{e}^{630./T}$	2.50×10^{-10}	$1.70 \times 10^{-12} e^{-710./T}$	7.50×10^{-12}	4.25×10^{-11}	6.70×10^{-11}	$1.00 \times 10^{-11} e^{-1000./T}$	1.00×10^{-10}	$2.81\times10^{-19}\mathrm{T}^{2.72}\mathrm{e}^{718./T}$	$2.04 \times 10^{-10} \mathrm{T}^{-0.30}$	$4.24 \times 10^{-25} \mathrm{T}^{-2.10}$	2.00×10 11	3.00×10^{-11}	3.01×10^{-11}	$1.20 \times 10^{-13} e^{-400./T}$	4.00×10^{-11}	1.00×10^{-11}	5.00×10^{-11}	7.70×10^{-12}	6.00×10^{-12}	1.00×10^{-10}	$8.00 \times 10^{-11} e^{-350./T}$	$2.00 \times 10^{-11} e^{-350./T}$	$1.20 \times 10^{-05} \mathrm{T}^{-2.08} \mathrm{e}^{-441./T}$	9 90 V 10 - 07 T - 1.93 5 - 400. / T
												Η																										
	H_2	H	N,	' н	Н	HN				NH3	N,	, N	N ₂ H	NH_3	$^{ m NH}_2$	$_{ m NH}$	ı Z	$N(^2D)$	Н	HCN	HCN	HCN				HCN	CN_2		HCN	HNC	Н		CN	C_2N	9	HCN	N,	7 2
	+	+	+	+	+	+				+	+	+	+	+	+	+	+	+	+	+	+	+				+	+		+	+	+		+	+	+	+	+	-
Reaction	NO	HNO	НО	N_2O	ONH	ОН	NH,OH	1		$O(^{3}P)$	Н,О	OH	НО	NO	ОН	Н,О	ÇÕ	CO	NCO	$O(^{3}P)$	CO	HCO	ONCN			NO	CO		НО	НО	HNCO		CO	CO	HNCO	CO ₂	co,	٠,
Re	↑	↑	↑	↑	↑	↑	↑			↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	†			↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	1
	НО	ОН	NO	NO	$O(^{3}P)$	$O(^3P)$	OH			ОН	NO	NO	ON	ONH	$O(^{1}D)$	ЮН	$O(^3P)$	$O(^3P)$	НО	НО	HCO	$H_{2}CO$	N.O.			ONH	NCO	ЮН	$O(^{3}P)$	$O(^3P)$	$O(^3P)$	НО	$O(^3P)$	$O(^3P)$	ON	NO	NO	ON
	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+
	HN	HZ	HZ	HN	NH2	NH2	NH,			NH,	NH,	NH,	NH2	NH2	NH3	NH	CN	CN	CN	CN	CN	CN	CN			Z O	Z O	HCN	H ₂ CN	H ₂ CN	H2CN	H_2^{CN}	G_2^{\prime} N	Z Z	HČCO	HCCO	NCO	O D N
Type	2	2	2	2	2	2	4			2	2	2	2	2	2	2	2	2	2	2	2	2	4			2	7	2	2	2	2	2	2	2	2	2	2	c
	R_n587a	R_n587b	R_n588a	R_n588b	R_n589a	R_n589b	R_n590a			R_n590b	R_n 591a	R_n 591b	R_n591c	R_n592	R_n593	R_n 594	R_n595a	R_n595b	R_n596a	R_n596b	R_n597	R_n598	R_n599			R_n600	\mathbb{R}_n601	${ m R}_n602$	$\mathrm{R}_n603\mathrm{a}$	R_n603b	R_n603c	R_n604	R_n605	$R_{n}606$	$\mathbf{R}_n607\mathbf{a}$	$\mathbf{R}_n607\mathrm{b}$	R_n608a	B 608h

Tabulated values for reaction $R_n 8$: $H + C_2 H_3 \rightarrow C_2 H_4 / C_2 H_2 + H_2$.

torr	mbar	C_2H_4	$C_2H_2 + H_2$
1	1.315789474	2.298×10^{-17}	2.44×10^{-10}
2	2.631578947	2.464×10^{-17}	2.44×10^{-10}
5	6.578947368	2.797×10^{-17}	2.44×10^{-10}
10	13.15789474	3.09×10^{-17}	2.44×10^{-10}
20	26.31578947	1.084×10^{-16}	2.44×10^{-10}
50	65.78947368	5.692×10^{-14}	2.44×10^{-10}
100	131.5789474	1.50002×10^{-12}	2.43×10^{-10}
200	263.1578947	1.22×10^{-11}	2.32×10^{-10}
500	657.8947368	5.65×10^{-11}	1.88×10^{-10}
1000	1315.789474	1.01×10^{-10}	1.434×10^{-10}
$2.00 \times 10^{+03}$	2631.578947	1.39×10^{-10}	1.061×10^{-10}
$5.00 \times 10^{+03}$	6578.947368	1.69×10^{-10}	7.62×10^{-11}
$1.00 \times 10^{+04}$	13157.89474	1.8×10^{-10}	6.46×10^{-11}

References

- D. Baulch, C. Bowman, C. Cobos, R. Cox, T. Just, J. Kerr, M. Pilling, D. Stocker, J. Troe, W. Tsang, R. Walker, J. Warnatz, Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data 34 (2005) 757–1397.
- [2] R. van Harrevelt, M. van Hemert, G. Schatz, The CH + H reaction studied with quantum-mechanical and classical trajectory calculations, J. Chem. Phys. 116 (2002) 6002–6011.
- [3] D. Fulle, H. Hippler, The temperature and pressure dependence of the reaction $CH+H_2\Leftrightarrow CH_3\Leftrightarrow CH_2+H$, J. Chem. Phys. 106 (1997) 8691–8698.
- [4] J. Peeters, W. Boullart, I. Langhans, Branching ratio of the C₂H₂ + O reaction at 290 K from kinetic modelling of relative methylene concentration versus time profiles in C₂H₂/O/H systems, Int. J. Chem. Kin. 26 (1994) 869–886.
- [5] V. Vuitton, R. Yelle, P. Lavvas, S. Klippenstein, Rapid association reactions at low pressure: Impact on the formation of hydrocarbons on Titan, Astrophys. J. 744 (2012) #11.
- [6] L. Harding, Y. Georgievskii, S. Klippenstein, Predictive theory for hydrogen atoms Hydrocarbon radical association kinetics, J. Phys. Chem. A 109 (2005) 4646–4656.
- [7] L. Harding, S. Klippenstein, Y. Georgievskii, On the combination reactions of hydrogen atoms with resonance-stabilized hydrocarbon radicals, J. Phys. Chem. A 111 (2007) 3789–3801.
- [8] L. Harding, R. Guadagnini, G. Schatz, Theoretical studies of the reactions $H + CH \rightarrow C + H_2$ and $C + H_2 \rightarrow CH_2$ using an ab initio global ground-state potential surface for CH_2 , J. Phys. Chem. 97 (1993) 5472–5481.
- [9] I. Smith, E. Herbst, Q. Chang, Rapid neutral-neutral reactions at low temperatures: A new network and first results for TMC-1, Mon. Not. R. Astron. Soc. 350 (2004) 323–330.
- [10] D. Chastaing, P. James, I. Sims, I. Smith, Neutral-neutral reactions at the temperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon C(³P), with O₂, C₂H₂, C₂H₄ and C₃H₆ down to 15 K, Phys. Chem. Chem. Phys. 1 (1999) 2247–2256.
- [11] D. Chastaing, S. Le Picard, I. Sims, I. Smith, Rate coefficients for the reactions of $C(^3P_J)$ atoms with C_2H_2 , C_2H_4 , $CH_3C\equiv CH$ and $H_2C=C=CH_2$ at temperatures down to 15 K, Astron. Astrophys. 365 (2001) 241–247.

- [12] M. Costes, P. Halvick, K. Hickson, N. Daugey, C. Naulin, Non-threshold, threshold, and nonadiabatic behavior of the key interstellar $C+C_2H_2$ reaction, Astrophys. J. 703 (2009) 1179–1187.
- [13] A. Bergeat, J. Loison, Reaction of carbon atoms, C(2p², ³P) with C₂H₂, C₂H₄ and C₆H₆: Overall rate constant and relative atomic hydrogen production, Phys. Chem. Chem. Phys. 3 (2001) 2038–2042.
- [14] J.-C. Loison, A. Bergeat, Reaction of carbon atoms, $C(2p^2, ^3P)$ with C_3H_4 (allene and methylacetylene), C_3H_6 (propylene) and C_4H_8 (trans-butene): Overall rate constants and atomic hydrogen branching ratios, Phys. Chem. Chem. Phys. 6 (2004) 5396–5401.
- [15] C. Naulin, N. Daugey, K. Hickson, M. Costes, Dynamics of the reactions of C(³P_J) atoms with ethylene, allene, and methylacetylene at low energy revealed by Doppler-Fizeau spectroscopy, J. Phys. Chem. A 113 (2009) 14447–14457.
- [16] M. Capron, J. Bourgalais, R. Abhinavam Kailasanathan, D. Osborn, S. Le Picard, F. Goulay, Flow tube studies of the C(³P) reactions with ethylene and propylene, Phys. Chem. Chem. Phys. 17 (2015) 23833–23846.
- [17] D. Parker, F. Zhang, Y. Kim, R. Kaiser, On the formation of resonantly stabilized C₅H₃ radicals A crossed beam and ab initio study of the reaction of ground state carbon atoms with vinylacetylene, J. Phys. Chem. A 115 (2011) 593–601.
- [18] D. Husain, A. Ioannou, Reactions of ground-state atomic carbon, C[2p² (³P_J)], with dienes and divnes by time-resolved atomic resonance absorption spectroscopy in the vacuum ultraviolet, J. Chem. Soc. Faraday Trans. 93 (1997) 3625–3629.
- [19] I. Hahndorf, H. Lee, A. Mebel, S. Lin, Y. Lee, R. Kaiser, A combined crossed beam and ab initio investigation on the reaction of carbon species with C_4H_6 isomers. I. The 1,3-butadiene molecule, H_2 CCHCHCH₂ (X^1A'), J. Chem. Phys. 113 (2000) 9622–9636.
- [20] N. Haider, D. Husain, Absolute rate data for the reactions of ground-state atomic carbon, $C[^2p_2(^3P_J)]$, with alkenes investigated by time-resolved atomic resonance absorption spectroscopy in the vacuum ultraviolet, J. Chem. Soc., Faraday Trans. 89 (1993) 7–14.
- [21] R. Brownsword, I. Sims, I. Smith, D. Stewart, A. Canosa, B. Rowe, The radiative association of CH with H₂: A mechanism for formation of CH₃ in interstellar clouds, Astrophys. J. 485 (1997) 195.
- [22] R. Brownsword, A. Canosa, B. Rowe, I. Sims, I. Smith, D. Stewart, A. Symonds, D. Travers, Kinetics over a wide range of temperature (13-744 K): Rate constants for the reactions of $CH(\nu=0)$ with H_2 and D_2 and for the removal of $CH(\nu=1)$ by H_2 and D_2 , J. Chem. Phys. 106 (1997) 7662–7677.
- [23] A. Canosa, I. Sims, D. Travers, I. Smith, B. Rowe, Reactions of the methylidine radical with CH₄, C₂H₂, C₂H₄, C₂H₆, and but-1-ene studied between 23 and 295 K with a CRESU apparatus, Astron. Astrophys. 323 (1997) 644–651.
- [24] L. Vereecken, J. Peeters, Detailed microvariational RRKM master equation analysis of the product distribution of the C_2H_2 + $CH(X^2\Pi)$ reaction over extended temperature and pressure ranges, J. Phys. Chem. A 103 (1999) 5523–5533.
- [25] K. McKee, M. Blitz, K. Hughes, M. Pilling, H.-B. Qian, A. Taylor, P. W. Seakins, H atom branching ratios from the reactions of CH with C₂H₂, C₂H₄, C₂H₆, and neo-C₅H₁₂ at room temperature and 25 Torr, J. Phys. Chem. A 107 (2003) 5710–5716.
- [26] F. Goulay, A. Trevitt, G. Meloni, T. Selby, D. Osborn, C. Taatjes, L. Vereecken, S. Leone, Cyclic versus linear isomers produced by reaction of the methylidyne radical (CH) with small unsaturated hydrocarbons, J. Am. Chem. Soc. 131 (2009) 993–1005.
- [27] N. Daugey, P. Caubet, B. Retail, M. Costes, A. Bergeat, G. Dorthe, Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures, Phys. Chem. Chem. Phys. 7 (2005) 2921–2927.

- [28] J.-C. Loison, A. Bergeat, Rate constants and the H atom branching ratio of the reactions of the methylidyne $CH(X^2\Pi)$ radical with C_2H_2 , C_2H_4 , C_3H_4 (methylacetylene and allene), C_3H_6 (propene) and C_4H_8 (trans-butene), Phys. Chem. Chem. Phys. 11 (2009) 655–664.
- [29] A. Trevitt, M. Prendergast, F. Goulay, J. Savee, D. Osborn, C. Taatjes, S. Leone, Product branching fractions of the CH + propene reaction from synchrotron photoionization mass spectrometry, J. Phys. Chem. A 117 (2013) 6450–6457.
- [30] J.-C. Loison, A. Bergeat, F. Caralp, Y. Hannachi, Rate constants and H atom branching ratios of the gas-phase reactions of methylidyne CH(X²Π) radical with a series of alkanes, J. Phys. Chem. A 110 (2006) 13500–13506.
- [31] J. Ribeiro, A. Mebel, Reaction mechanism and product branching ratios of the $CH + C_3H_8$ reaction: A theoretical study, J. Phys. Chem. A 118 (2014) 9080–9086.
- [32] M. Jacox, Vibrational and electronic energy levels of polyatomic transient molecules. Supplement B, J. Phys. Chem. Ref. Data 32 (2003) #1.
- [33] K. Gannon, M. Blitz, M. Pilling, P. Seakins, S. Klippenstein, L. Harding, Kinetics and product branching ratios of the reaction of ¹CH₂ with H₂ and D₂, J. Phys. Chem. A 112 (2008) 9575–9583.
- [34] W. Tsang, R. Hampson, Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data 15 (1986) 1087–1279.
- [35] K. Gannon, M. Blitz, C.-H. Liang, M. Pilling, P. Seakins, D. Glowacki, J. Harvey, An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of ¹CH₂ with acetylene and ethene: implications for the chemistry of the giant planets, Faraday Discuss. 147 (2010) 173–188.
- [36] K. Gannon, M. Blitz, C. Liang, M. Pilling, P. Seakins, D. Glowacki, Temperature dependent kinetics (195-798 K) and H atom yields (298-498 K) from reactions of ¹CH₂ with acetylene, ethene, and propene, J. Phys. Chem. A 114 (2010) 9413–9424.
- [37] D. Baulch, C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling, J. Troe, R. Walker, J. Warnatz, Evaluated kinetic data for combustion modeling, J. Phys. Chem. Ref. Data 21 (1992) 411–734.
- [38] R. Wagener, Influence of temperature on the removal rates of methylene (a¹A₁) by inert gases and hydrocarbons, Z. Naturforsch. A 45 (1990) 649–56.
- [39] F. Hayes, G. Gutsche, W. Lawrance, W. Staker, K. King, Singlet methylene removal by saturated and unsaturated hydrocarbons, Combust. Flame 100 (1995) 653–660.
- [40] D. Polino, S. Klippenstein, L. Harding, Y. Georgievskii, Predictive theory for the addition and insertion kinetics of ¹CH₂ reacting with unsaturated hydrocarbons, J. Phys. Chem. A 117 (2013) 12677–12692.
- [41] A. Langford, H. Petek, C. Moore, Collisionnal removal of $\mathrm{CH}_2(^1\mathrm{A}_1)$: Absolute rate constants for atomic and molecular collisional partners at 295 K, J. Chem. Phys. 78 (1983) 6650–6659.
- [42] A. Jasper, S. Klippenstein, L. Harding, Secondary kinetics of methanol decomposition: Theoretical rate coefficients for ${}^{3}\mathrm{CH}_{2}$ + OH, ${}^{3}\mathrm{CH}_{2}$ + ${}^{3}\mathrm{CH}_{2}$, and ${}^{3}\mathrm{CH}_{2}$ + CH₃, J. Phys. Chem. A 111 (2007) 8699–8707.
- [43] S. Stoliarov, V. Knyazev, I. Slagle, Experimental study of the reaction between vinyl and methyl radicals in the gas phase. Temperature and pressure dependence of overall rate constants and product yields, J. Phys. Chem. A 104 (2000) 9687–9697.
- [44] V. Knyazev, I. Slagle, Kinetics of the reactions of allyl and propargyl radicals with CH₃, J. Phys. Chem. A 105 (2001) 3196–3204.

- [45] S. Klippenstein, Y. Georgievskii, L. Harding, Predictive theory for the combination kinetics of two alkyl radicals, Phys. Chem. Chem. Phys. 8 (2006) 1133–1147.
- [46] M. Nakajima, A. Matsugi, A. Miyoshi, Mechanism and kinetic isotope effect of the reaction of $C_2(X^1\Sigma_q^+)$ radicals with H_2 and D_2 , J. Phys. Chem. A 113 (2009) 8963–8970.
- [47] A. Páramo, A. Canosa, S. Le Picard, I. Sims, Rate coefficients for the reactions of $C_2(a^3\Pi_u)$ and $C_2(X^1\Sigma_g^+)$ with various hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆, and C₃H₈): A gas-phase experimental study over the temperature range 24-300 K, J. Phys. Chem. A 112 (2008) 9591–9600.
- [48] X. Gu, Y. Guo, A. Mebel, R. Kaiser, Chemical dynamics of the formation of the 1,3-butadiynyl radical $(C_4H(X^2\Sigma^+))$ and its isotopomers, J. Phys. Chem. A 110 (2006) 11265–11278.
- [49] F. Leonori, R. Petrucci, K. Hickson, E. Segoloni, N. Balucani, S. Le Picard, P. Foggi, P. Casavecchia, Crossed molecular beam study of gas phase reactions relevant to the chemistry of planetary atmospheres: the case of C₂ + C₂H₂, Planet. Space Sci. 56 (2008) 1658–1673.
- [50] A. Mebel, V. Kislov, R. Kaiser, Ab initio/Rice-Ramsperger-Kassel-Marcus study of the singlet C_4H_4 potential energy surface and of the reactions of $C_2(X^1\Sigma_g^+)$ with $C_2H_4(X^1A_g^1)$ and $C(^1D)$ with C_3H_4 (allene and methylacetylene), J. Phys. Chem. A 125 (2006) #133113.
- [51] X. Gu, Y. Guo, F. Zhang, A. Mebel, R. Kaiser, A crossed molecular beams study on the formation and energetics of the resonantly stabilized free i-C₄H₃(X²A') radical and its isotopomers, Chem. Phys. 335 (2007) 95–108.
- [52] N. Daugey, P. Caubet, A. Bergeat, M. Costes, K. Hickson, Reaction kinetics to low temperatures. Dicarbon + acetylene, methylacetylene, allene and propene from 77 ≤ T ≤ 296 K, Phys. Chem. Chem. Phys. 10 (2008) 729–737.
- [53] Y. Guo, X. Gu, N. Balucani, R. Kaiser, Formation of the 2,4-pentadiynyl-1 radical (H₂CCCCCH, X²B₁) in the crossed beams reaction of dicarbon molecules with methylacetylene, J. Phys. Chem. A 110 (2006) 6245–6249.
- [54] A. Mebel, V. Kislov, R. Kaiser, Potential energy surface and product branching ratios for the reaction of dicarbon $C_2(X^1\Sigma_g^+)$, with methylacetylene, $CH_3CCH(X^1A_1)$: an ab initio/RRKM study, J. Phys. Chem. A 110 (2006) 2421–2433.
- [55] Y. Guo, X. Gu, F. Zhang, A. Mebel, R. Kaiser, Unimolecular decomposition of chemically activated pentatetraene (H₂CCCCCH₂) intermediates: A crossed beams study of dicarbon molecule reactions with allene, J. Phys. Chem. A 110 (2006) 10699–10707.
- [56] B. Dangi, S. Maity, R. Kaiser, A. Mebel, A combined crossed beam and ab initio investigation of the gas phase reaction of dicarbon molecules (C_2 ; $X^1\Sigma_g^+/a^3\Pi_u$) with propene (C_3H_6 ; X^1A'): Identification of the resonantly stabilized free radicals 1- and 3-vinylpropargyl, J. Phys. Chem. A 117 (2013) 11783–11793.
- [57] D. Chastaing, P. James, I. Sims, I. Smith, Neutral-neutral reactions at the temperatures of interstellar clouds. Rate coefficients for reactions of C₂H radicals with O₂, C₂H₂, C₂H₄ and C₃H₆ down to 15 K., Faraday Discuss. 109 (1998) 165–181.
- [58] B. Opansky, S. Leone, Rate coefficients of C_2H with C_2H_4 , C_2H_6 , and H_2 from 150 to 359 K, J. Phys. Chem. 100 (1996) 19904–19910.
- [59] T. Kovács, M. Blitz, P. Seakins, H-atom yields from the photolysis of acetylene and from the reaction of C₂H with H₂, C₂H₂, and C₂H₄, J. Phys. Chem. A 114 (2010) 4735–4741.
- [60] J. Bouwman, F. Goulay, S. Leone, K. Wilson, Bimolecular rate constant and product banching ratio measurements for the reaction of $\rm C_2H$ with ethene and propene at 79 K, J. Phys. Chem. A 116 (2012) 3907–3917.

- [61] D. Carty, V. Le Page, I. Sims, I. Smith, Low temperature rate coefficients for the reactions of CN and C₂H radicals with allene and methyl acetylene, Chem. Phys. Lett. 344 (2001) 310–316.
- [62] F. Goulay, D. Osborn, C. Taatjes, P. Zou, G. Meloni, S. Leone, Direct detection of polyynes formation from the reaction of ethynyl radical (C₂H) with propyne (CH₃-C≡CH) and allene (CH₂=C=CH₂), Phys. Chem. Chem. Phys. 9 (2007) 4291–4300.
- [63] F. Goulay, S. Soorkia, G. Meloni, D. Osborn, C. Taatjes, S. Leone, Detection of pentatetraene by reaction of the ethynyl radical (C₂H) with allene (CH₂=C=CH₂) at room temperature, Phys. Chem. Chem. Phys. 13 (2011) 20820–20827.
- [64] A. Vakhtin, D. Heard, I. Smith, S. Leone, Kinetics of C_2H radical reactions with ethene, propene and 1-butene measured in a pulsed Laval nozzle apparatus at T=103 and 296 K, Chem. Phys. Lett. 348 (2001) 21–26.
- [65] D. Woon, J.-Y. Park, Modeling chemical growth processes in Titan's atmosphere. 2. Theoretical study of reactions between C₂H and ethene, propene, 1-butene, 2-butene, isobutene, trimethylethene, and tetramethylethene, Icarus 202 (2009) 642–655.
- [66] J. Murphy, A. Vakhtin, S. Leone, Laboratory kinetics of C₂H radical reactions with ethane, propane, and n-butane at T = 96-296 K: Implications for Titan, Icarus 163 (2003) 175–181.
- [67] S. Cheikh Sid Ely, Réactivité des molécules organiques à très basses températures (22 300 K) pour la modélisation des milieux extra-terrestres froids, Ph.D. thesis, Université de Rennes 1 (2012).
- [68] X. Gu, Y. Kim, R. Kaiser, A. Mebel, M.-C. Liang, Y. Yung, Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere, PNAS 106 (2009) 16078–16083.
- [69] F. Zhang, D. Parker, Y. Kim, R. Kaiser, A. Mebel, On the formation of ortho-benzyne (o-C₆H₄) under single collision conditions and its role in interstellar chemistry, Astrophys. J. 728 (2011) 141–150.
- [70] B. Nizamov, S. Leone, Kinetics of C₂H reactions with hydrocarbons and nitriles in the 104-296 K temperature range, J. Phys. Chem. A 108 (2004) 1746–1752.
- [71] B. Jones, F. Zhang, R. Kaiser, A. Jamal, A. Mebel, M. Cordiner, S. Charnley, Formation of benzene in the interstellar medium, P. Natl. Acad. Sci. USA 108 (2011) 452–457.
- [72] J. Bouwman, M. Fournier, I. Sims, S. Leone, K. Wilson, Reaction rate and isomer-specific product branching ratios of $C_2H + C_4H_8$: 1-butene, cis-2-butene, trans-2-butene, and isobutene at 79 K, J. Phys. Chem. A 117 (2013) 5093–5105.
- [73] F. Goulay, S. Leone, Low-temperature rate coefficients for the reaction of ethynyl radical (C_2H) with benzene, J. Phys. Chem. A 110 (2006) 1875–1880.
- [74] H. Ismail, P. Abel, W. Green, A. Fahr, L. Jusinski, A. Knepp, J. Zádor, G. Meloni, T. Selby, D. Osborn, C. Taatjes, Temperature-dependent kinetics of the vinyl radical (C₂H₃) self-reaction, J. Phys. Chem. A 113 (2009) 1278–1286.
- [75] A. Fahr, A. Laufer, R. Klein, W. Braun, Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms, J. Phys. Chem. 95 (1991) 3218–3224.
- [76] A. Laufer, A. Fahr, Reactions and kinetics of unsaturated C₂ hydrocarbon radicals, Chem. Rev. 104 (2004) 2813–2832.
- [77] W. Tsang, Chemical kinetic database for combustion chemistry part V: propene, J. Phys. Chem. Ref. Data 20 (1991) 221–274.
- [78] W. Tsang, Chemical kinetic database for combustion chemistry part III: propane, J. Phys. Chem. Ref. Data 17 (1988) 887.

- [79] D. Baulch, C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, R. Walker, J. Warnatz, Evaluated kinetic data for combustion modeling: Supplement I, J. Phys. Chem. Ref. Data 23 (1994) 847–1033.
- [80] C. Berteloite, S. Le Picard, P. Birza, M.-C. Gazeau, A. Canosa, Y. Bénilan, I. Sims, Low temperature (39-298 K) kinetics study of the reactions of the C₄H radical with various hydrocarbons observed in Titan's atmosphere, Icarus 194 (2008) 746-757.
- [81] C. Berteloite, S. Le Picard, N. Balucani, A. Canosa, I. Sims, Low temperature rate coefficients for reactions of the butadiynyl radical, C_4H , with various hydrocarbons. Part I: reactions with alkanes $(CH_4, C_2H_6, C_3H_8, C_4H_{10})$, Phys. Chem. Chem. Phys. 12 (2010) 3666–3676.
- [82] C. Berteloite, S. Le Picard, N. Balucani, A. Canosa, I. Sims, Low temperature rate coefficients for reactions of the butadiynyl radical, C₄H, with various hydrocarbons. Part II: reactions with alkenes (ethylene, propene, 1-butene), dienes (allene, 1,3-butadiene) and alkynes (acetylene, propyne and 1butyne), Phys. Chem. Chem. Phys. 12 (2010) 3677–3689.
- [83] A. Landera, S. Krishtal, V. Kislov, A. Mebel, R. Kaiser, Theoretical study of the C_6H_3 potential energy surface and rate constants and product branching ratios of the $C_2H(^2\Sigma^+)+C_4H_2(^1\Sigma_g^+)$ and $C_4H(^2\Sigma^+)+C_2H_2(^1\Sigma_g^+)$ reactions, J. Chem. Phys. 128 (2008) #214301.
- [84] J. Park, S. Gheyas, M. Lin, Kinetics of C_6H_5 radical reactions with 2-methylpropane, 2,3-dimethylbutane and 2,3,4-trimethylpentane, Int. J. Chem. Kin. 31 (1999) 645–653.
- [85] K. Luther, K. Oum, K. Sekiguchi, J. Troe, Recombination of benzyl radicals: dependence on the bath gas, temperature, and pressure, Phys. Chem. Chem. Phys. 6 (2004) 4133–4141.
- [86] J. Espinosa-Garcia, J. Corchado, Variational transition-state theory calculation using the direct dynamics method: $NH_3 + H \rightarrow NH_2 + H_2$ reaction, J. Chem. Phys. 101 (1994) 1333–1342.
- [87] G. Vaghjiani, Laser photolysis studies of hydrazine vapor: 193 and 222 nm H-atom primary quantum yields at 296 K, and the kinetics of H + $\rm N_2H_4$ reaction over the temperature range 222-657 K, Int. J. Chem. Kin. 27 (1995) 777–790.
- [88] Q. Zhang, R. Zhang, K. Chan, I. Bello, Ab initio and variational transition state approach to β -C₃N₄ formation: Kinetics for the reaction of CH₃NH₂ with H, J. Phys. Chem. A 109 (2005) 9112–9117.
- [89] V. Wakelam, J.-C. Loison, E. Herbst, B. Pavone, A. Bergeat, K. Béroff, M. Chabot, A. Faure, D. Galli, W. Geppert, D. Gerlich, P. Gratier, N. Harada, K. Hickson, P. Honvault, S. Klippenstein, S. Le Picard, G. Nyman, M. Ruaud, S. Schlemmer, I. Sims, D. Talbi, J. Tennyson, R. Wester, The 2014 KIDA network for interstellar chemistry, Astrophys. J. Suppl. Ser. 217 (2015) #20.
- [90] S. Zabarnick, J. Fleming, M. Lin, Direct measurement of rate constants for the reactions of CH and CD with HCN and DCN, Chem. Phys. 150 (1991) 109–115.
- [91] E. Hébrard, M. Dobrijevic, J. Loison, A. Bergeat, K. Hickson, Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan's upper atmosphere, Astron. Astrophys. 541 (2012) #A21.
- [92] S. Zabarnick, J. Fleming, M. Lin, Kinetics of methylidyne (CH X ²Π) radical reactions with ammonia and methylamines, Chem. Phys. 132 (1989) 407–411.
- [93] Q. Li, X. Zhang, Direct dynamics study on the hydrogen abstraction reactions $N_2H_4+R \rightarrow N_2H_3+RH$ ($R=NH_2,CH_3$), J. Chem. Phys. 125 (2006) #064304.
- [94] S. Petrie, Reactivity of HNC with small hydrocarbon radicals, J. Phys. Chem. A 106 (2002) 11181–11189.
- [95] S. Petrie, Y. Osamura, NCCN and NCCCCN formation in Titan's atmosphere: 2. HNC as a viable precursor, J. Phys. Chem. A 108 (2004) 3623–3631.

- [96] X. Gu, R. Kaiser, A. Mebel, V. Kislov, S. Klippenstein, L. Harding, M.-C. Liang, Y. Yung, A crossed molecular beams study on the formation of the exotic cyanoethynyl radical in Titan's atmosphere, Astrophys. J. 701 (2009) 1797–1803.
- [97] B. Nizamov, S. Leone, Rate coefficients and kinetic isotope effect for the C₂H reactions with NH₃ and ND₃ in the 104-294 K temperature range, J. Phys. Chem. A 108 (2004) 3766–3771.
- [98] R. Hoobler, S. Leone, Rate coefficients for reactions of ethynyl radical (C₂H) with HCN and CH₃CN: Implications for the formation of complex nitriles on Titan, J. Geophys. Res. 102 (1997) 28717–28723.
- [99] Z.-X. Zhao, J.-Y. Liu, L. Wang, H. Zhang, C.-Y. Hou, C.-C. Sun, A study of the hydrogen abstraction reactions of C₂H radical with CH₃CN, C₂H₅CN, and C₃H₇CN by dual-level generalized transition state theory, J. Phys. Chem. A 112 (2008) 8455–8463.
- [100] R. Brown, A measurement of the rate of the reaction N + H + M \rightarrow NH + M, Int. J. Chem. Kinet. 5 (1973) 663–667.
- [101] G. Marston, F. Nesbitt, L. Stief, Branching ratios in the atomic nitrogen + methyl reaction: formation of the methylene amidogen (H₂CN) radical, J. Chem. Phys. 91 (1989) 3483–3491.
- [102] G. Marston, F. Nesbitt, D. Nava, W. Payne, L. Stief, Temperature dependence of the reaction of nitrogen atoms with methyl radicals, J. Phys. Chem. 93 (1989) 5769–5774.
- [103] O. Dutuit, N. Carrasco, R. Thissen, V. Vuitton, C. Alcaraz, P. Pernot, N. Balucani, P. Casavecchia, A. Canosa, S. Le Picard, J.-C. Loison, Z. Herman, J. Žabka, D. Ascenzi, P. Tosi, P. Franceschi, S. Price, P. Lavvas, Critical review of N, N⁺, N₂⁺, N⁺⁺ and N₂⁺⁺ main production processes and reactions of relevance to Titan's atmosphere, Astrophys. J. Suppl. Ser. 204 (2013) #20.
- [104] J. Loison, K. Hickson, Ab initio study of the C+HNC, N+C₂H, H+C₂N and H+CNC reactions, Chem. Phys. Lett. 635 (2015) 174–179.
- [105] W. Payne, P. Monks, F. Nesbitt, L. Stief, The reaction between N(⁴S) and C₂H₃: Rate constant and primary reaction channels, J. Chem. Phys. 104 (1996) 9808–9815.
- [106] L. Stief, F. Nesbitt, W. Payne, S. Kuo, W. Tao, R. Klemm, Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical, J. Chem. Phys. 102 (1995) 5309–5316.
- [107] M. Clyne, D. Stedman, Rate of recombination of nitrogen atoms, J. Phys. Chem. 71 (1967) 3071–3073.
- [108] J. Daranlot, U. Hincelin, A. Bergeat, M. Costes, J.-C. Loison, V. Wakelam, K. Hickson, Elemental nitrogen partitioning in dense interstellar clouds, PNAS 109 (2012) 10233–10238.
- [109] G. Marston, L. Stief, Structure, spectroscopy and kinetics of the methylene amidogen (H₂CN) radical, Research on Chemical Intermediates 12 (1989) 161–186.
- [110] F. Nesbitt, G. Marston, L. Stief, Kinetic studies of the reactions of methyleneaminylium and dideuteromethyleneaminylium radicals with nitrogen and hydrogen atoms, J. Phys. Chem. 94 (1990) 4946–4951.
- [111] H. Okabe, Photochemistry of Small Molecules, 1st Edition, Vol. 1, John Wiley & Sons, New York, 1978.
- [112] J. T. Herron, Evaluated chemical kinetics data for reactions of $N(^2D)$, $N(^2P)$ and $N_2(A\ ^3\Sigma_u^+)$ in the gas phase., J. Phys. Chem. Ref. Data 28 (1999) 1453–1483.
- [113] K. Sato, K. Misawa, Y. Kobayashi, M. Matsui, S. Tsunashima, K. Kurosaki, T. Takayanagi, Measurements of thermal rate constants for the reactions of N(²D, ²P) with C₂H₄ and C₂D₄ between 225 and 292 K, J. Phys. Chem. A 103 (1999) 8650–8656.

- [114] N. Balucani, D. Skouteris, F. Leonori, R. Petrucci, M. Hamberg, W. Geppert, P. Casavecchia, Combined crossed beam and theoretical studies of the $N(^2D) + C_2H_4$ reaction and implications for atmospheric models of Titan, J. Phys. Chem. A 116 (2012) 10467–10479.
- [115] N. Balucani, F. Leonori, R. Petrucci, M. Stazi, D. Skouteris, M. Rosi, P. Casavecchia, Formation of nitriles and imines in the atmosphere of Titan: Combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(²D) with ethane, Faraday Discuss. 147 (2010) 1–28.
- [116] L. Adam, W. Hack, H. Zhu, Z. Qu, R. Schinke, Experimental and theoretical investigation of the reaction NH($X^3\Sigma^-$) + H(2S) \rightarrow N(4S) + H₂($X^1\Sigma^+_q$), J. Chem. Phys. 122 (2005) 114301–114307.
- [117] C. Mullen, M. Smith, Low temperature $NH(X^3\Sigma^-)$ radical reactions with NO, saturated, and unsaturated hydrocarbons studied in a pulsed supersonic Laval nozzle flow reactor between 53 and 188 K, J. Phys. Chem. A 109 (2005) 1391–1399.
- [118] S. Klippenstein, L. Harding, B. Ruscic, R. Sivaramakrishnan, N. Srinivasan, M.-C. Su, J. Michael, Thermal decomposition of NH₂OH and subsequent reactions: Ab initio transition state theory and reflected shock tube experiments, J. Phys. Chem. A 113 (2009) 10241–10259.
- [119] J. Jodkowski, E. Ratajczak, K. Fagerström, A. Lund, N. Stothard, R. Humpfer, H.-H. Grotheer, Kinetics of the cross reaction between amidogen and methyl radicals, Chem. Phys. Lett. 240 (1995) 63–71.
- [120] R. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst, J. Cui, Formation of NH₃ and CH₂NH in Titan's upper atmosphere, Faraday Discuss. 147 (2010) 31–49.
- [121] M. Gehring, K. Hoyermann, H. Wagner, J. Wolfrum, Reaction of atomic hydrogen with hydrazine, Ber. Bunsenges. Phys. Chem. 75 (1971) 1287–1294.
- [122] W. Tsang, Chemical kinetic database for propellant combustion. II. Reactions involving CN, NCO, and HNCO, J. Phys. Chem. Ref. Data 21 (1992) 753–791.
- [123] I. Sims, J.-L. Queffelec, D. Travers, B. Rowe, L. Herbert, J. Karthauser, I. Smith, Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures, Chem. Phys. Lett. 211 (1993) 461–468.
- [124] K. Gannon, D. Glowacki, M. Blitz, K. Hughes, M. Pilling, P. Seakins, H atom yields from the reactions of CN radicals with C_2H_2 , C_2H_4 , C_3H_6 , trans-2- C_4H_8 , and iso- C_4H_8 , J. Phys. Chem. A 111 (2007) 6679–6692.
- [125] N. Balucani, O. Asvany, R. Kaiser, Y. Osamura, Formation of three C_4H_3N isomers from the reaction of CN $(X^2\Sigma^+)$ with allene, H_2CCCH_2 (X^1A_1) , and methylacetylene, CH_3CCH (X^1A_1) : A combined crossed beam and ab initio study, J. Phys. Chem. A 106 (2002) 4301–4311.
- [126] S. Morales, S. Le Picard, A. Canosa, I. Sims, Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: Reactions of the CN radical, Faraday Discuss. 147 (2010) 155–171.
- [127] A. Trevitt, S. Soorkia, J. Savee, T. Selby, D. Osborn, C. Taatjes, S. Leone, Branching fractions of the CN + C₃H₆ reaction using synchrotron photoionization mass spectrometry: Evidence for the 3-cyanopropene product, J. Phys. Chem. A 115 (2011) 13467–13473.
- [128] D. Yang, T. Yu, N. Wang, M. Lin, Temperature dependence of cyanogen radical reactions with selected alkanes: CN reactivities towards primary, secondary and tertiary C-H bonds, Chem. Phys. 160 (1992) 307–315.
- [129] K. Fukuzawa, Y. Osamura, H. I. Schaefer, Are neutral-neutral reactions effective for the carbon-chain growth of cyanopolyynes and polyacetylenes in interstellar space?, Astrophys. J. 505 (1998) 278–285.

- [130] D. Yang, T. Yu, N. Wang, M. Lin, CN radical reactions with selected olefins in the temperature range 174-740 K, Chem. Phys. 160 (1992) 317–325.
- [131] S. Morales, C. Bennett, S. Le Picard, A. Canosa, I. Sims, B. Sun, P. Chen, A. Chang, V. Kislov, A. Mebel, X. Gu, F. Zhang, P. Maksyutenko, R. Kaiser, A crossed molecular beam, low-temperature kinetics, and theoretical investigation of the reaction of the cyano radical (CN) with 1,3-butadiene (C₄H₆). A route to complex nitrogen-bearing molecules in low-temperature extraterrestrial environments, Astrophys. J. 742 (2011) #26.
- [132] S. Zabarnick, M. Lin, Kinetics of CN(X $^2\Sigma^+$) radical reactions with HCN, BrCN and CH $_3$ CN, Chem. Phys. 134 (1989) 185–191.
- [133] S. Cheikh Sid Ely, S. Morales, J.-C. Guillemin, S. Klippenstein, I. Sims, Low temperature rate coefficients for the reaction CN + HC₃N, J. Phys. Chem. A 117 (2013) 12155–12164.
- [134] M. Butterfield, T. Yu, M. Lin, Kinetics of CN reactions with allene, butadiene, propylene and acrylonitrile, Chem. Phys. 169 (1993) 129–134.
- [135] B. Nizamov, P. Dagdigian, Spectroscopic and kinetic investigation of methylene amidogen by cavity ring-down spectroscopy, J. Phys. Chem. A 107 (2003) 2256–2263.
- [136] J. Woodall, M. Agúndez, A. Markwick-Kemper, T. Millar, The UMIST database for astrochemistry 2006, Astron. Astrophys. 466 (2007) 1197–1204.
- [137] Z. Zhu, M. Ji, S. Zhang, Y. Chen, Temperature-dependent kinetics of the reactions of the CCN ($\rm X^2\Pi$) radical with $\rm C_2H_2$ and $\rm C_2H_4$, in: The 235th ACS National Meeting, New Orleans, LA, 2008, p. PHYS 311.
- [138] Z. Zhu, Z. Zhang, C. Huang, L. Pei, C. Chen, Y. Chen, Kinetics of CCN radical reactions with a series of normal alkanes, J. Phys. Chem. A 107 (2003) 10288–10291.
- [139] Y. Osamura, S. Petrie, NCCN and NCCCCN formation in Titan's atmosphere: 1. Competing reactions of precursor $HCCN(^3A")$ with $H(^2S)$ and $CH_3(^2A')$, J. Phys. Chem. A 108 (2004) 3615–3622.
- [140] M. Fournier, Reactivity of C_3N and C_2H at low temperature: applications for the Interstellar Medium and Titan, Ph.D. thesis, Université de Rennes 1 (2014).
- [141] S.-M. Svensson, M. Gustafsson, G. Nyman, Formation of the hydroxyl radical by radiative association, J. Phys. Chem. A 119 (2015) 12263–12269.
- [142] S. Sander, R. Friedl, D. Golden, M. Kurylo, G. Moortgat, H. Keller-Rudek, P. Wine, A. Ravishankara, C. Kolb, M. Molina, B. Finlayson-Pitts, R. Huie, V. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15 (2006).
- [143] S. Sander, R. Friedl, J. Barker, D. Golden, M. Kurylo, P. Wine, J. Abbatt, J. Burkholder, C. Kolb, G. Moortgat, R. Huie, V. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 17 (2011).
- [144] O. Kajimoto, T. Fueno, Relative rate constants of O(¹D₂)-olefin reactions, Chem. Phys. Lett. 64 (1979) 445–447.
- [145] J. Davidson, H. Schiff, T. Brown, C. Howard, Temperature dependence of the deactivation of O(¹D) by CO from 113-333 K, J. Chem. Phys. 69 (1978) 1216–1217.
- [146] J. Tully, Reactions of O(¹D) with atmospheric molecules, J. Chem. Phys. 62 (1975) 1893–1898.
- [147] I. Koyano, T. Wauchop, K. Welge, Relative efficiencies of O(¹S) production from photodissociation of CO₂ between 1080 and 1160 Å, J. Chem. Phys. 63 (1975) 110–112.
- [148] K. Hickson, J.-C. Loison, P. Caubet, Unusual low temperature reactivity of water. The CH + $\rm H_2O$ reaction as a source of interstellar formaldehyde?, J. Phys. Chem. Lett. 4 (2013) 2843–2846.

- [149] A. Bergeat, K. Hickson, N. Daugey, P. Caubet, M. Costes, A low temperature investigation of the N(⁴S°) + NO reaction, Phys. Chem. Chem. Phys. 11 (2009) 8149–8155.
- [150] H. Nguyen, H. Nguyen, T.-N. Nguyen, H. Hoang, L. Vereecken, Theoretical study on the reaction of the methylidyne radical, $CH(X^2\Pi)$, with formaldehyde, CH_2O , J. Phys. Chem. A 118 (2014) 8861–8871.
- [151] H. Dong, Y.-H. Ding, C.-C. Sun, C_2H+H_2CO : A new route for formal dehyde removal, J. Chem. Phys. 122 (2005) #204321.
- [152] W. Tsang, Chemical kinetic database for combustion chemistry part II: methanol, J. Phys. Chem. Ref. Data 16 (1987) 471.
- [153] M. Dobrijevic, E. Hébrard, J. Loison, K. Hickson, Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan's atmosphere, Icarus 228 (2014) 324–346.
- [154] M. Bartels, J. Edelbuttel-Einhaus, K. Hoyermann, The detection of CH₃CO, C₂H₅, and CH₃CHO by REMPI/mass spectrometry and the application to the study of the reactions H + CH₃CO and O + CH₃CO, Symp. Int. Combust. Proc. 23 (1991) 131–138.
- [155] K. Ohmori, A. Miyoshi, H. Matsui, N. Washida, Studies on the reaction of acetaldehyde and acetyl radicals with atomic hydrogen, J. Phys. Chem. 94 (1990) 3253–3255.
- [156] H. Adachi, N. Basco, D. James, The acetyl radicals CH₃CO and CD₃CO studied by flash photolysis and kinetic spectroscopy, Int. J. Chem. Kin. 13 (1981) 1251–1276.
- [157] E. Hassinen, K. Kalliorinne, J. Koskikallio, Kinetics of reactions between methyl and acetyl radicals in gas phase produced by flash photolysis of acetic anhydride, Int. J. Chem. Kin. 22 (1990) 741–745.
- [158] M. Bartels, K. Hoyermann, R. Sievert, Elementary reactions in the oxidation of ethylene: the reaction of OH radicals with ethylene and the reaction of $\mathrm{C_2H_4OH}$ radicals with H atoms, Symp. Int. Combust. Proc. 19 (1982) 61.
- [159] W. Tsang, J. Herron, Chemical kinetic database for propellant combustion. I. Reactions involving NO, NO₂, HNO, HNO₂, HCN and N₂O, J. Phys. Chem. Ref. Data 20 (1991) 609–663.
- [160] P. Bocherel, L. Herbert, B. Rowe, I. Sims, I. Smith, D. Travers, Ultralow-temperature kinetics of $CH(X^2\Pi)$ reactions: Rate coefficients for reactions with O_2 and NO (T = 13-708 K), and with NH_3 (T = 23-295 K), J. Phys. Chem. 100 (1996) 3063–3069.
- [161] Y. Choi, M. Lin, Kinetics and mechanisms for reactions of HNO with CH_3 and $\mathrm{C}_6\mathrm{H}_5$ studied by quantum-chemical and statistical-theory calculations, Inter. J. Chem. Kin. 37 (2005) 261–274.
- [162] W. Feng, J. Hershberger, Experimental and theoretical study of the product channels of the $\rm C_2H+NO$ reaction, J. Phys. Chem. A 117 (2013) 3585–3592.
- [163] I. Campbell, C. Gray, Rate constants for O(³P) recombination and association with N(⁴S), Chem. Phys. Lett. 18 (1973) 607–609.
- [164] V. Wakelam, E. Herbst, J.-C. Loison, I. Smith, V. Chandrasekaran, B. Pavone, N. Adams, M.-C. Bacchus-Montabonel, A. Bergeat, K. Béroff, V. Bierbaum, M. Chabot, A. Dalgarno, E. van Dishoeck, A. Faure, W. Geppert, D. Gerlich, D. Galli, E. Hébrard, F. Hersant, K. Hickson, P. Honvault, S. Klippenstein, S. Le Picard, G. Nyman, P. Pernot, S. Schlemmer, F. Selsis, I. Sims, D. Talbi, J. Tennyson, J. Troe, R. Wester, L. Wiesenfeld, A kinetic database for astrochemistry (KIDA), Astrophys. J. Suppl. Ser. 199 (2012) #21.
- [165] A. Mebel, E. Diau, M. Lin, K. Morokuma, Theoretical rate constants for the NH $_3$ + NO $_x$ \rightarrow NH $_2$ + HNO $_x$ (x = 1, 2) reactions by ab initio MO/VTST calculations, J. Phys. Chem. 100 (1996) 7517–7525.
- [166] T. Yu, M. Lin, Kinetics of phenyl radical reactions studied by the "cavity-ring-down" method, J. Am. Chem. Soc. 115 (1993) 4371–4372.

Table B.16: Positive ion reaction list.

Ref.	[1]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[3]	[3]	[3]	[6]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[4]		Su-Chesnavich	<u>[3</u>	2 2	<u> </u>	[2]	Su-Chesnavich	[3]	[3]	[3]	[2]	[4]	[2]	Su-Chesnavich	Su-Chesnavich	[4]	[2]	[2]	[4]	
k	$4.20 \times 10^{-13} e^{-850.0/T}$	1.30×10^{-16}	$\frac{1.00 \times 10^{-10}}{3.00 \times 10^{-25}}$	3.40×10^{-09}	7.47×10^{-10}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.80×10^{-10}	2.94×10^{-09}	9.80×10^{-10}	2.35×10^{-10}	1.41×10^{-09}	2.82×10^{-09}	2.35×10^{-10}	$1.50 \times 10^{-09} (300/T)^{0.50}$	$7.50 \times 10^{-10} (300/T)^{0.50}$	$7.50 \times 10^{-10} (300/T)^{0.50}$	$\begin{array}{c} 2.00 \times 10^{-09} \\ \end{array}$	2.00×10^{-03}	$\left(\begin{array}{cc} 2.36 \times 10^{-09} (300/\text{T})^{0.50} \\ \end{array}\right)$	$2.36\times10^{-09}(300/T)^{0.50}$	2.00×10^{-09}	2.00×10^{-09}	$2.92\times10^{-09}(300/\mathrm{T})^{0.50}$	$\left \begin{array}{cc} 2.92{\times}10^{-09}(300/\mathrm{T})^{0.50} \end{array}\right $	2.00×10^{-09}	2.00×10^{-09}	4.94×10^{-09}	1.10×10^{-3}	1.40×10^{-33}	2.60×10 = (300/T)===	2.50×10 (300/ 1) 8.40×10^{-09}	$ 6.00 \times 10^{-10} $	3.00×10^{-09}	2.45×10^{-08}	$7.50 \times 10^{-09} (300/\text{T})^{0.50}$	$7.50 \times 10^{-09} (300/T)^{0.50}$	$1.85 \times 10^{-08} (300/\mathrm{T})^{0.50}$	$4.00 \times 10^{-08} (300/T)^{0.50}$	$\begin{vmatrix} 3.75 \times 10^{-10} \\ 1.0 & 1.0 \end{vmatrix}$	$ 6.90 \times 10^{-09}$	7.86×10=09	7.86×10^{-09}	3.80×10^{-39}	6.40×10^{-10}	2.00×10 00 1.14×10-10	1.14×10	
									Н		Н	H_2																																			
									+		+		7																				N.				HC_3N					H_2	чР)				
	Ф	hv		H_2	Η	Ξ	H	H_2	H_2	H_2	H_2	H_2	CH_4	Η	H_2	H_2	Η	H_2	H	H_2	Η	H_2	Η	H_2	Η	H_2	Ξ;	Ξ;	Н2	4 5	H H	H	HCN	Η	H_2	H	НС	Η	Η;	Ξ;	Ξ;	H_2	ວັ:	$_{1}^{\mathrm{H}_{2}}$	= =	٦	
	+	+		+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+ -			+ +		+	+	+	+	+	+	+	+	+	+ -	+	+ -	+ -	+	
Reaction	$^{+}\mathrm{OOH}$	$\mathrm{H_{3}}^{+}$	H3+	CH_{3}^{+}	CH_4^+	${ m C_2H_2}^+$	$\mathrm{C_2H_4}^+$	${ m C_2H_3}^+$	${ m C_2H_2}^+$	$C_2^-H_5^-+$	$C_2H_4^+$	$C_2^- H_3^- +$	$\mathrm{CH_3}^+$	$C_3H_4^+$	$c-C_3H_3^+$	$1-C_3H_3^+$	$\mathrm{C_4H_2}^+$	$\mathrm{C_4H^+}$	$\mathrm{C_5H_4}^+$	$C_5H_3^+$	$\mathrm{C_6H_2}^+$	C_6H^+	$C_7H_4^+$	$C_7 H_3^+$	$C_8H_2^+$	C_8H^+	NH3	HCN-	HCNH+	CH3NH2	Ch2Nh2	HC,NH+	CH_3^{2+}	HC_3N^+	HC3NH+	$C_3H_3N^+$	CH_3^+	HC_5N^+	+0	$^{\mathrm{H}_{2}\mathrm{O}^{+}}_{\widetilde{\mathfrak{c}}\widetilde{\mathfrak{c}}}$	CH_2O^+	HCO+	HCO+	+ + H :	+ 13.	CH ₂	
I	↑	†	\uparrow	\uparrow	†	\uparrow	↑	\uparrow	\uparrow	\uparrow	†	†	†	\uparrow	†	↑	†	↑	↑	†	†	\uparrow	\uparrow	\uparrow	\uparrow	↑	↑	↑	↑	†	↑ ↑	· ↑	↑	↑	\uparrow	†	\uparrow	†	↑	↑	↑	↑	↑	↑	†	†	
	$O(^3P)$	Н,	$ m H_2^2$	CH_4	CH_4	$\mathrm{C_2H_2}$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_6}$	$\mathrm{C_2H_6}$	$C_2^{H_6}$	C_2H_6	CH_3CCH	CH_3CCH	$\rm CH_3CCH$	$\mathrm{C_4H_2}$	$\mathrm{C_4H_2}$	$\mathrm{C}_5\mathrm{H}_4$	$\mathrm{C_5H_4}$	$\mathrm{C_6H_2}$	C_6H_2	C_7H_4	$\mathrm{C_7H_4}$	C_8H_2	C_8H_2	NH3	HCN	CH_2NH	CH ₃ NH ₂	CH3NH2 CH2CN	CHOCN	$CH_3^{2}CN$	HC_3N	C_3H_3N	$\mathrm{C_3H_3N}$	$\mathrm{C_4H_3N}$	$HC_{5}N$	$O(^3P)$	$_{120}^{H_2O}$	$_{\rm H_2CO}^{ m H_2CO}$	H_2^{CO}	$\frac{\text{CO}_2}{\text{CO}_2}$	н:	$^{ m H}_2$	Сп ₄	
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+ -	+	+ -	+ -	+	
	CH	+ H	+ H	H+	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ H	+ - H	+ + H :	- + I ;	+ + H =	- + E :	+	+	+H	+ H	+ H	+ H	+ H	+ H	+ + H	+ + H :	+ + H :	⊦ + ¤ ;	⊦ ⁺ ≖ ;	H ₂ +	H ₂ +	Раge)
Type	2	2	33	2	2	2	7	2	7	2	2	2	2	7	2	2	7	7	2	2	2	7	2	2	2	7	2	:N (20 0	71 0	4 C	1 (2)	2	2	7	2	2	7	7	2	2 0	21 (27 (0.0	27 (n Next	
	\mathbf{R}_{cn} 1	R_{cn} 2a	R_{cn}^{2} 2b	$\mathbb{R}_{cn}3a$	$R_{cn}3b$	$R_{cn}4$	$R_{cn}5a$	$R_{cn}5b$	$R_{cn}5c$	\mathbf{R}_{cn} 6a	\mathbf{R}_{cn} 6b	R_{cn} 6c	\mathbf{R}_{cn} 6d	\mathbf{R}_{cn} 7a	\mathbf{R}_{cn} 7b	\mathbf{R}_{cn} 7c	\mathbb{R}_{cn} 8a	$R_{cn}8b$	$R_{cn}9a$	R_{cn} 9b	$R_{cn}10a$	$R_{cn}10b$	R_{cn} 11a	R_{cn} 11b	$R_{cn}12a$	$R_{cn}12b$	\mathbb{R}_{cn} 13	\mathbf{R}_{cn} 14	$R_{cn}15$	\mathbf{K}_{cn} lba	R_{cn} 17a	R_{cn} 17b	$R_{cn}17c$	$R_{cn}18$	$R_{cn}19a$	$R_{cn}19b$	$R_{cn}20$	$R_{cn}21$	$R_{cn}22$	\mathbb{R}_{cn} 23	$R_{cn}24a$	$R_{cn}24b$	$R_{cn}25$	$R_{cn}26$	$\mathbf{K}_{cn}Z'$	$ \begin{array}{c c} $	

+ ++ ++++		CC			CC2244 CC2244 CC2244 CC24 CC244 CC244 CC244 CC244 CC244 CC244 CC244 CC244 CC244 CC244 CC24
н нн нн н + + + + + + + + + + + + + + +			+++++++++++++++++++++++++++++++++++++++	C C C C C C C C C C C C C C C C C C C	+ + + + + + + + + + + + + + + + + + +
## #### ++ ++++				C C C C C C C C C C C C C C C C C C C	+ + + + + + + + + + + + + + + + + + +
## ++++ ## ####				C C C C C C C C C C C C C C C C C C C	+ + + + + + + + + + + + + + + + + + +
## ++++ ## ####				C C H + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
·+ ++++			+++++++++++++	C ₂ H ₃ , C ₂ H ₄ , C ₂ H ₅ , C ₂ H ₅ , C ₂ H ₅ , H ₂ O ₄ H ₂ O ₄ H ₃ O ₄ H ₄ O ₄ H ₅ O ₆ H ₇ O ₇ H ₇ O ₇ C ₇ H ₇ H ₇ O ₇	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
++++			+++++++++++++++++++++++++++++++++++++++	C2H6+ C2H3+++++ C2H3+++++++ C2H3++++++++++++++++++++++++++++++++++++	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
표 표 ^권 표 ^권 + + + +			++++++++++++	C2H6+ C2H2++++ C2H3+++++++ NH2++++++++++++ H2O++++++++++++++++++++++	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
#### + + +			+++++++++++	C ₂ H ₄ + C ₂ H ₄ + C ₂ H ₃ + NH+ NH+ NH+ NH+ NH+ H ₃ O ₊ H ₂ O ₊ H ₃ O ₊ H ₄ O ₊ H ₅ O ₊ H ₅ O ₊ H ₆ O ₊ H ₇ O ₊ H ₇ O ₊ H ₈ O ₊ C ₂ H ₃ + C ₃ H ₄ + C ₄ H ₄ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+ + H H			++++++++++	C ₂ H ₃ + NH+2 NH+2 NH+2 NH+3 HCN+ H2O+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ CH ₂ O+ HCO+ CC ₂ H ₃ + H ₃ O+ HCO+ CC ₂ H ₃ + H ₃ O+ HCO+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+ , H			+++++++++++++++++++++++++++++++++++++++	C2H2+ NH+2 NH+3+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
,			+++++++++++++++++++++++++++++++++++++++	NH+7 NH+7 NH3+7 N2H+7 H2O+7 H2O+7 HCO+1 HC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	HH22HH22HH23HH23HH23HH23HH33HH33HH33HH3		+++++++	NH3+ HCN+ H2O+ H2O+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ HCO+ HC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H ₂ H ₂ H ₃ H ₄ H ₃ H ₄ H ₃ H ₄ H ₅		+++++++	HCN+ N ₂ H++++ H ₃ O++++++ H ₂ O+++++++ CH ₂ O++++++++ HCO++++++++++++++++++++++++++++++++++++	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	н ² н н н н н н н н н н н н н н н н н н н		++++++	N ₂ H ⁺ H ₃ O ⁺ H ₂ O ⁺ H ₃ O ⁺ H ₄ O ⁺ H ₅ O ⁺ H ₆ O ⁺ H ₇ O ⁺ H ₇ O ⁺ H ₇ O ⁺ H ₈ O ⁺ H ₈ O ⁺ H ₈ O ⁺ H ₈ O ⁺ H ₉	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H Н Н 2 Н 2 Н 2 Н 2 Н 2 Н 2		+++++	H ₃ O ₊ H ₂ O ₊ H ₃ H ₅ H ₅ H ₇	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H 2 Н 2 Н 3 Н 3 Н 3		++++	H ₂ O ₊ HCO ₊ H ₂ H ₃ H ₅ H ₇ H ₇ H ₈ H ₉	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	HH2 HH2	-++++		H2O+ CH ₂ O+ HCO+ HCO+ H ₅ + H ₅ + C ₂ H ₃ + C ₂ H ₃ + C ₂ H ₃ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	HH2 HH2	++++		CH ₂ O ₊ HCO ₊ HCO ₊ H ₅ + C ₂ H ₃ + C ₂ H ₃ + C ₂ H ₃ + C ₂ H ₃ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Н ₂ н н ₂ н	+++ ++++		CH ₂ O ₊ HCO ₊ OCOH ⁺ H ₅ H ₇ C ₂ H ₃	$\begin{array}{cccc} & CH_2O_+ \\ & CH_2O_+ \\ & + CO_+ \\$
	$ \begin{array}{ccc} H_2 \\ H_3 \end{array} $	++ ++++		HCO+ 0 CO H+ H ₅ + CH ₅ + C ₂ H ₃ + C ₂ H ₃ + C ₂ H ₃ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H +	H ₂ H ₂	+ ++++		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H ₂ H ₂	++++		COH; + CO	+ + + + + + + + + + + + + + + + + + +
	$\begin{array}{c} H_2 \\ H_2 \\ H_2 \end{array}$	++++		CH ₅ + C ₂ H ₃ + C ₂ H ₃ + C ₃ H ₅ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.000.10-30	$\begin{array}{c} H_2 \\ H_2 \\ H_2 \end{array}$	++++		$C_{2}^{H_{5}} + C_{2}^{H_{3}} + C_{2}^{H_{3}} + C_{3}^{H_{5}} + C_{3}^{H_{5}$	$\begin{array}{c} \mathrm{CH}_{5} + \\ \mathrm{C2H}_{3} + \\ \mathrm{C2H}_{3} + \\ \mathrm{C2H}_{3} + \\ \mathrm{C2H}_{5} + \\ $
	H_2 H_2	++++		$C_{2}^{H_{3}}$ $C_{2}^{H_{3}}$ $C_{3}^{H_{4}}$ $C_{3}^{H_{5}}$ $C_{3}^{H_{5}}$	+ + + + + + + + + + + + + + + +
	H_2	+++		C ₂ H ₃ + C ₂ H ₃ + C ₃ H ₂ +	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	H_2^2	+ +		$C_2^H_3^+$	C ₂ H ₃ + C ₂ H ₃ + C ₂ H ₃ +
H +	7	+		$C_2H_5^+$	$\downarrow \qquad C_2H_5 + \\ C_2H_5 + \\ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow $
1	Ξ	-		560	(2115
p	7	-		+ = = = = = = = = = = = = = = = = = = =	
+ 112	112	-		C2115	(2115
	$^{\rm H}_2$	+			C_3H_5
CH_4 9.00×10^{-10}	CH	+			† C,H, +
+	Ξ	+	Τ.	Τ.	+ = 1
112	17			(313 1 + 3	(3113
+ H ₂	S	+			\downarrow $C_2H_3^{\perp}$
+ H ₂	Η,	+			$C_3H_5^+$
1	Ή	+			+ H T
	7 1			+ 12	+ 11 7
	2	+		Ç4 ⊓3 1 13	→ C4 II3
	Н	+			↑ C ₅ H ₅
	H_2	+			$C_6H_3^+$
	Η,	+			\rightarrow $C_6H_7^+$
	Ĭ	+			+ 'H'-'D'
	Z I	- +		+ E	+ # Z
-	112	۰ -		C7119 + 11 +	+ 11 0
+ H ₂	H_2	+			→ C ₇ H ₇
H_2	S	+			\downarrow $C_6H_5^+$
	H_2	+			↑ C ₈ H ₃ +
	H	+	•	•	+,'HZ ↑
	Ī	. +	+H	+H	+HNCH 1
	112	+ -		HOME +	- IICIVII +
	H_2	+	· .		→ CH ₃ NH ₃ +
	H,	+			+ CH°NH°+
H +	Έ	+			+ CH, NH, +
211	7 7		711 + 112		711 + 12
+ H ₂	I)	+	CH3. +	† CH3. +	$CH_3NH_2 \rightarrow CH_3$ +

Ref.	<u> </u>		<u>[2]</u>
Я	8.90×10^{-09} 9.80×10^{-09} 8.19×10^{-09} 8.19×10^{-09} 9.10×10^{-09} 1.00×10^{-09} 1.10×10^{-09}	2.10×10 ⁻²³ 3.64×10 ⁻¹⁰ 9.364×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 7.50×10 ⁻¹¹ 4.35×10 ⁻¹⁰ 7.55×10 ⁻¹¹ 4.35×10 ⁻¹⁰ 1.16×10 ⁻¹⁰ 2.31×10 ⁻¹⁰ 2.31×10 ⁻¹⁰ 2.31×10 ⁻¹⁰ 1.16×10 ⁻¹⁰ 1.16×10 ⁻¹⁰ 1.170×10 ⁻¹⁰ 2.31×10 ⁻¹⁰ 1.175×10 ⁻¹⁰ 1.75×10 ⁻¹⁰ 2.80×10 ⁻¹⁰ 2.10×10 ⁻¹⁰ 2.10×10 ⁻¹⁰ 3.00×10 ⁻¹⁰ 2.10×10 ⁻¹⁰ 2.10×10 ⁻¹⁰ 3.00×10 ⁻¹⁰	6.30×10^{-10}
	H ₂	н н	
	+ +	+ ++ +	
	H H H H H H H H H H H H H H H H H H H	н н н н н н н н н н н н н н н н н н н	${ m C_2^2H_5}$
	H H H O H H H H H H H H H H H H H H H	H H H D O H H H H D D M D H H H D D O O O H D D O O O O O O O O	· +
		+ + + + + +	,
Reaction	C ₂ H ₃ NH ⁺ HC ₃ NH ⁺ C ₃ H ₃ NH ⁺ HCNH ⁺ C ₃ H ₆ NH ⁺ C ₄ H ₃ NH ⁺ HC ₆ NH ⁺ N ₂ H ⁺ C ₄ H ₃ NH ⁺ HC ₆ NH ⁺ N ₂ H ⁺ C ₄ H ₃ O ⁺ H ₂ O ⁺ H ₃ O ⁺ H ₂ O ⁺ C ₄ C ₄ C ₄ C ₄ C ₄ C ₄ C ₆ C ₄ C ₆ C ₆ C ₇		$C_2H_3^+$
1	*****	1111111111111	\uparrow
	CH ₃ CN HC ₃ N C ₃ H ₃ N C ₃ H ₅ N C ₃ H ₆ N C ₃ H ₆ N N ₂ C ₃ N ₂ O(3P) O(3P) O(3P) H ₂ O CO CO CO CO CO CO CO CO CO C	CH 4 CO 14 CO 16 CO 16 CO 16 CO 16 CO 16 CO 17 C	C_3H_8
	++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+
		tttttttttttttttttttttttttttttttttttt	C^+
Type	000000000000000000000000000000000000000		2 in Next
	Rcn 59 Rcn 60 Rcn 61a Rcn 61b Rcn 61b Rcn 62 Rcn 63 Rcn 65 Rcn 65 Rcn 66 Rcn 67 Rcn 67 Rcn 67 Rcn 67 Rcn 67 Rcn 67 Rcn 70 Rcn 70 Rcn 70 Rcn 71 Rcn 72 Rcn 73 Rcn 73 Rcn 73	Ren 74a Ren 74b Ren 76b Ren 76c Ren 76c Ren 76c Ren 76c Ren 76c Ren 77c Ren 78c Ren 79c Ren 79c Ren 79c Ren 79c Ren 79c Ren 79c Ren 80c Ren 80c Ren 80c Ren 80c	$R_{cn} = 1$ $R_{$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	+++++		C_3H_8	1 1	$C_3H_7^+$	+	HO					-	
to to to to to to to to to					+					$ 5.40\times10^{-10}$		2	
to to to to to to to to to			${ m C_3H_8}$			+	CH_4	+	Н	3.60×10^{-10}		[2]	
to to to to to to to	+++		$\mathrm{C_3H_8}$		$C_3H_8^+$	+	Ö			1.80×10^{-10}		[2]	
1	+ +		,3 H ₈	↑ ·	$C_4^{ m H_5^+}$	+ -	$^{ m H}_2$	+	I	9.00×10 ⁻¹¹		<u>7</u> 2	
	_		C4 II2	1	+ T = T = T = T = T = T = T = T = T = T =	+ +	4 C			1.45×10		<u> </u>	
	+ ·		C_4H_2		C, H ⁺	- +	C'H			1.45×10^{-10}		[2	
	+ C+		$^{1}_{5}\mathrm{H}_{4}^{2}$	↑	$C_5^{\prime}H_3^{+}$	+	Ğ.			4.93×10^{-10}	$4.93 \times 10^{-10} (300/T)^{0.50}$	3 (5	
	+ C+		C_5H_4	↑	$C_6H_2^+$	+	H_2			$ 4.93\times10^{-10}$	$4.93 \times 10^{-10} (300/T)^{0.50}$	[3]	
	+ C+		C_5H_4	↑	$C_6^{'}H_3^{-+}$	+	'н			$ 4.93\times10^{-10}$	$(300/T)^{0.50}$	[2]	
	+ C+		$C_6^{'}H_2^{'}$	↑	C_+ C	+	H_2			$ 1.20 \times 10^{-09}$	1.20×10^{-09}	[2]	
	+ C+		'gH'	↑	$C_7^{\prime}H^+$	+	Ή.			1.20×10^{-09}		[3]	
\circ	+ C+		C_7H_1	↑	C, H, +	+	CH			9.00×10^{-10}	$9.00 \times 10^{-10} (300/T)^{0.50}$	<u> </u>	
\circ	+ ·		C, H,	1	C, H, +	+	H			9,00×10 ⁻¹⁰	$9.00 \times 10^{-10} (300/T)^{0.50}$	[2	
_	+5		Δ. H. 4	1	C8 - 2 C H +	- +	בי			161×10-09		<u> </u>	
	 - -		9,,9		+ II C		ן כ			4.08 \ 10 - 10			
, (+ -		91190	†	C5113	+ -	C ₂ H3			4.00×10		<u></u>	
_	+		C_6H_6	↑	C_7H_5	+	H			2.40×10 10		6	
\cup	+ C+		$\mathrm{C_6H_6}$	↑	$c-C_3H_3^+$	+	$\mathrm{C_4H_3}$			1.44×10^{-10}		[6]	
\circ	C+ +		C_8H_2	↑	$CXHYNZ^{+}$	+	H_2			1.20×10^{-09}		[2]	
\circ	+ C+		's H's	↑	CXHXNZ+	+	Έ,			1.20×10^{-09}		3	
0	C+ +	_	NH.	↑	H,+	+	Ö			7.36×10^{-10}			
0	+ ·	_	NH.	↑	HCN+	+	H			1.15×10^{-10}		[4	
' _	+5	. ~	NH.	1	HUUH+	- +	7 1			1.45×10 ⁻⁰⁹		[2	
	- + - +	, ,	HCN HCN	. 1	+12	- +	: =			9.05×10 ⁻⁰⁹		E ©	
, (+ -		TI NII		757	-	1 1	-	Þ	9.90.10-11		7 5	
) (+ -			<u> </u>	CH3	+ -		+	5	0.20×10 0.60×10-11		Ŧ. Z	
) (+ -			<u> </u>	HCINH:	+ -	5 5			9.00×10 8.64×10 ⁻ 10		<u> </u>	
_ (+ -			<u> </u>	CH2NH2	+ -	5 5			0.04×10 0.04×10		<u> </u>	
	+ - - +		CII3IVII2	٠ ١	CII3INII2	-) =			5.21 × 10 − 09		Ŧ.Œ	
) (+ -	<u>ـ</u> ــر		٠ -	+ C31VII	-	1 1			9.500.10		<u>v</u> [
) (+ -		103E	<u> </u>		+ -				2.73×10 9.65×10-09		<u>v</u> [
	- +		HC3N	<u></u>	Cart Zt+	+ -	S 5			3.85×10 3		<u>N</u> [
_ (+ -		S S	↑	C ₂ N -	+ -	. C.			1.10×10 1.20 1.0-09		7 2	
٠ ر	- + ·	. '	HC3N	↑	C ₄ N;	+	ı,			1.26×10 °°°			,
_ (÷ ;		C_3H_3N	↑	C3H2. ≘ :: +	+ -	H CE			9.84×10 = 9.84×10		[10],[11]	T 7
_ (- +		C_3H_3N	↑	$C = C_3 H_3^{-1}$	+	Z C			1.80×10 °5		[10],[11]	
_ (+ ·		C_3H_3N	↑	HC4NH	+ -	Ξ.			1.19×10 35		[10],[11]	77
_	+		3 H3 N	↑	C_4H_3N	+	μv			1.23×10	0	[11],[11]	Ī
\cup	+ C+		$\mathrm{C_4H_3N}$	↑	$\mathrm{C_2H_3}^+$	+	C_3^{N}			2.90×10^{-09}	$2.90 \times 10^{-09} (300/\text{T})^{0.50}$	[3]	
\cup	+ C+		$^{4}_{4}\mathrm{H}_{3}\mathrm{N}$	↑	$\mathrm{C_4H_3}^+$	+	CN			$ 2.90 \times 10^{-09}$	$2.90 \times 10^{-09} (300/\text{T})^{0.50}$	[3]	
\cup	+ C+	<u>.</u>	HC_5N	↑	HC_5N^+	+	Ö			4.36×10^{-09}		[12]	
\cup			HC_5N	↑	C_6N^+	+	Н			2.35×10^{-09}		[12]	
\circ	C+ +		$^{2}_{2}N_{2}$	↑	CNC+	+	CN			2.09×10^{-10}		[2]	
\cup	+ C+		, N,	↑	C_2N^+	+	CN			$ 1.69\times10^{-09}$		[2]	
\cup	+ C+		H ₂ O	↑	H ₂ O ⁺	+	C			2.40×10^{-10}		[2]	
\cup	+ C+		H,0	↑	$H\bar{C}O^{+}$	+	Н			2.16×10^{-09}		2	
\circ	+ C+		[,co	↑	CH,	+	CO			$ 2.27\times10^{-09}$		4	
\circ			[,co	↑	$^{ m HC ilde{O}^+}$	+	CH			8.40×10^{-10}		4	
0	+ C+		$_{ m H_2^{\prime}CO}$	↑	CH_2O^+	+	Ö			1.09×10^{-09}		4	
0	+ ·		co,	↑	CO [‡]	+	CO			9.90×10^{-10}		[4	
\circ	+ C+		co,	↑	CO,+	+	Ö			1.10×10^{-10}		4	
Pag-	Page		ı		ı					-		· -	

Ref.	[13],[14]	[2],[13]	[2]	2 2	7 6	<u> </u>	[2]	[4]	[4]	[4]	[2]	[2]	[2]	[4]		7 4	[2]		[4]	[7]	[2]	<u> </u>	<u> </u>	2 5	[4	<u> </u>	<u></u>	[4]	[15]	[2]	[5]		<u>7</u>	7 2	7 6	1 2	T T	[2]	[1]	<u> </u>	[]	[16]	[2]	[16]	[2]	3	<u> </u>	
k	$7.84 \times 10^{-10} (300/T)^{0.22}$	1.20×10^{-09}	1.43×10^{-10}	1.09×10^{-09}	0.50×10 3.40×10 ⁻⁰⁹	2.50×10^{-09}	1.90×10^{-10}	1.84×10^{-09}	4.59×10^{-10}	4.05×10^{-10}	2.10×10^{-09}	4.20×10^{-10}	2.80×10^{-10}	1.15×10^{-09}	2.30×10^{-10}	9.20×10^{-10}	1.00×10 ⁻¹⁰	5.30×10 ⁻²⁹	1.75×10^{-10}	1.75×10^{-10}	1.45×10^{-09}	7.25×10^{-10}	7.25 < 10 - 10	7.00×10 ⁻¹²	9.60×10 ⁻¹⁰	9.60×10^{-10}	9.60×10^{-10}	3.20×10^{-10}	1.27×10^{-09}	1.16×10^{-09}	9.10×10^{-10}	3.90×10^{-19}	2.50×10 3	2.60×10 1.10×10-1	1.10×10	8.78×10 ⁻¹⁰	1.78×10^{-09}	1.80×10^{-09}	1.15×10^{-09}	7.35×10^{-10}	2.10×10^{-10}	2.58×10^{-09}	4.10×10^{-09}	3.12×10^{-09}	1.00×10^{-10}	1.40×10^{-28}	2.05×10^{-3}	214
		7	2 + H	2				2	H			Н,	1	3CH,	CH Z					00	H,	7				³ CH ₂	4		CO		$_{ m H_2}$				2				CH,	3CH,	CH Z		CH					_
	+ H,		+ H ₂	+ H ₂			H H	H +	+ CH	C +	C +		H +	° +		+	-		+	+	. #			_				+ H	O +	H +	Ξ+	田; +	Ξ +		H H			· +			+		+	H +			工 十	
Reaction	+ C+		$C_2H_2^+$			+Z	CN+	HCNH+	NH3+	NH ₄ +	HCNH+	C ₂ N ⁺	HC ₂ N ⁺	CH,NH,+	CH, NH, +	CH, NH, +	Adduct N+		+00	+H	HCO+	CH2O+	H (HCO+	CH, +	+ OOH	CH_2OH^+	$CH_2^{-}CO^{+}$	HCO+	CH_3^+	$C_2H_4^+$	$\mathrm{C_2H_5}^+$	$c = C_3 H_3^{-1}$		_	+ HN	CH,NH,+	HC,NH	CH ₂ NH ₂ +	CH3NH3+	CH, NH, +	C, H, NH ⁺	HC ₃ NH ⁺	$C_4H_5NH^+$	$\mathrm{CH_2}^{+}\mathrm{N_2}$		CH ₂ OH	(112(
	1	↑	\uparrow	↑	1		\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	↑	↑	iH,	H, ↑	↑ H°	↑ ↑		†		· ↑	1	` 1	1	^	· ↑	↑ •	↑	\uparrow	\uparrow	\uparrow	↑	↑	↑ ⁻	1	1	^ ↑	↑	` ↑ ° HI	H.	H; ↑	†	↑ -	↑ 2	\uparrow		1 1	•
	н	H_2	CH_4	$_{4}^{\mathrm{CH}_{4}}$	7 4 1 1	C, H,	'z	NH_3	NH_3	$^{ m NH}_{ m 3}$	HCN	HCN	HCN	CH, NH,	CHSNH	CHUNH	Z	N	$O(^3P)$	$O(^{3}P)$	H _o O	H ₂ O	H ₂ O	7 C	H,CO	H,CC	H,CC	$ m H_2^{ m CO}$	CO_2	H_2	CH_4	$_{^{\prime}}^{\mathrm{CH}_{4}}$	C_2H_2	C ₂ H ₆	z 2	i Z	NH.	HCN	CHONH	CH, NH,	CHS	CH3CN	HC_3N	C_3H_5N	, Z	;	C T)
	+	+	+	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	- +	-	+	+	+	- +	- +	+ +	- +	+	+	+	+	+	+	+	+ -	+ -	+ +	+ +	- +	+	- +	- +	+	+	+	+	+		+ +	-
	CH ₊	CH+	CH ₊	CH+	+ 5	CH ⁺	CH+	$_{ m CH^+}$	CH+	$_{ m CH^+}$	CH+	$_{ m CH^+}$	$_{ m CH^+}$	$_{ m CH^+}$	$_{ m CH^+}$	+HO	CH+		CH+	CH+	CH+	+HO	+ HO	+ HO	+HO	CH ₊	CH ₊	CH ₊	CH+	CH_{2}^{+}	CH_{2}^{+}	CH_{2}^{+}	CH ₂ -	CH2-	CH2+	CH +	CH ₂ +	CH2+	CH ₂ +	CH,	CH2+	CH,	CH_2^{+}	CH, +	$ CH_2^{4+}$	+	+, -	Page
Type	2	2	7	01 0	4 C	1 (1	2	2	2	2	2	2	2	2	2	2	ı ec		2	2	2	ı c	10	10	1 0	1 (7)	2	2	2	2	7	2	.71 (71 0	v c	1 c	1 (1	2	1 67	1 (2)	2	2	2	2	65	(71 67	n Next
	R_{cn} 100	R_{cn} 101	$R_{cn}102a$	$R_{cn}102b$	R_{cn}_{102}	R_{cn} 104	$R_{cn} 105$	$R_{cn}106a$	R_{cn} 106b	$R_{cn}106c$	$R_{cn}107a$	R_{cn} 107b	R_{cn} 107c	R _{cn} 108a	R _{cn} 108b	B. 108c	Ren 109		Res 110a	B. 110b	Ren 111a	Ren 111h	R 1116	R. 112	Ren 113a	R _{cn} 113b	R_{cn} 113c	R_{cn} 113d	R_{cn} 114	R_{cn} 115	R_{cn} 116a	R_{cn} 116b	\mathbf{R}_{cn} 117	K _{cn} 118	Γ_{cn}^{119a}	Len 1190	Ren 120b	Ren 121	Ren 122a	Ren 122b	R _{cn} 122c	R_{cn} 123	R_{cn} 124	R_{cn} 125	\mathbb{R}_{cn}^{2} 126	1	$R_{cn}127$	Continued on Next Page

Ref.	[4] [4] [15] [3]	22 22 22 22 22 22 22 22 22 23 11 11 11 11 11 11 11 11 11 11 11	223442 223444 222 223444
k	(300/T) ^{2.30} e ^{-30.0} /T		$\begin{array}{c} 1.50 \times 10^{-10} \\ 1.20 \times 10^{-10} \\ 3.35 \times 10^{-11} \\ 3.35 \times 10^{-11} \\ 2.63 \times 10^{-10} \\ 2.63 \times 10^{-10} \\ 1.49 \times 10^{-09} \\ 1.00 \times 10^{-10} \\ 1.52 \times 10^{-23} \\ 1.50 \times 10^{-23} \\ 1.52 \times 10^{-23} \\ 1.50 \times 10^{-23} \\ 1.52 \times 10^{-23} \\ 1.50 \times 10^{-23} \\ 1.52 \times 10^{-23} \\ 1.52 \times 10^{-23} \\ 1.50 \times 10^{-23} \\ 1.52 $
		д ² д ² + +	
	CH ₃ H ₂ H CO hv	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	by H ₂ H ₂ H ₂ H ₂ hy CH ₄ CH ₃ HCN HCN HCN
	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
Reaction	HCO+ CH ₂ CO+ CH ₃ CO+ CH ₂ O+ CH ₅ + CH ₅ +	C C C C C C C C C C C C C C C C C C C	C, H ₉ + CXHYNZ+ HCN+ NH ₄ + CH ₂ NH ₂ + CH ₃ NH ₃ + C ₂ H ₃ NH+ C ₂ H ₃ NH+ CH ₂ NH+ CH ₃ NH+ CH ₄ NH+ C
I	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	\uparrow	↑↑↑↑↑↑↑ ↑ ↑ ↑ ↑ ↑
	H ₂ CO H ₂ CO H ₂ CO CO ₂ H ₂	CCH CCH CCH CCH CCH CCH CCH CCH CCH CCH	C6,H ₆ C8,H ₂ C8,H ₂ C8,H ₃ CN
	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
	CH2++++++++++++++++++++++++++++++++++++		CG C
Type	000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	н М зар зарара зарарара Ко
	$R_{cn} 129a$ $R_{cn} 129b$ $R_{cn} 129c$ $R_{cn} 130$ $R_{cn} 131a$ $R_{cn} 131b$	Ren 132 Ren 133 Ren 134a Ren 134b Ren 134b Ren 135a Ren 135a Ren 135a Ren 135a Ren 135a Ren 136a Ren 136b Ren 136c Ren 136c Ren 136c Ren 136c Ren 136c Ren 140c Ren 140c Ren 140c Ren 140c Ren 140c Ren 140c	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Ref.	[2]	[18]	[18]	[18]	[18]	[18]	[18]	[8]	[17]	[17]	[17]	[17]	[17]	[2]	[5]	[17]	[17]	[2]	3	<u> </u>	<u> </u>	[19]	[2]	[3]	4	[4] [20]	[21],[13]	[22],[13]	<u> </u>	[2]	2 2	<u> </u>	[2]
k	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.32×10 ⁻⁰⁹	$\begin{array}{c} 5.40 \times 10^{-10} \\ 2.70 \times 10^{-10} \end{array}$	2.70×10^{-10}	1.00×10^{-10}	1.30×10 1.00×10^{-10} 2.75×10^{-24}	1.00×10^{-10}	7.50×10^{-29} 2.55×10^{-09}	3.35×10^{-11}	3.35×10^{-11}	1.12×10 2.90×10^{-10}	1.43×10^{-09}	1.56×10^{-10}	1.78×10^{-10}	5.42×10^{-10}	5.69×10^{-10}	2.44×10^{-10}	1.36×10 1.00×10^{-10}	5.40×10^{-29}	1.80×10^{-11} 1.00×10^{-10}	8.00×10^{-24}	4.10×10^{-10}	2.00×10 1.00×10^{-10}	0.00×10 $1.20 \times 10^{-13} (300/T)^{1.30}$ 1.00×10^{-10}	2.30×10^{-27}	$\begin{array}{c c} 1.30 \times 10^{-09} \\ 7.00 \times 10^{-14} \end{array}$	5.00×10^{-10}	$3.30 \times 10^{-11} (300/T)^{1.12}$	1.14×10^{-09}	1.12×10^{-09}	1.63×10^{-10}	2.60×10^{-10}	6.00×10^{-11}
					$+$ H_2																										H +		H +
		C_2H_2	CH3CN HCN	$^3\mathrm{CH}_2$	HCN	CH_4			CH_3CN	C_3H_5	CH3CCH	$_{ m CH_3}^{ m CZ^{rrg}}$	$^3\mathrm{CH}_2$	hv	$_{ m CH}^{ m TA}$	CH_3	$^{^3\mathrm{CH}_2}$	νu	201	hv		H_2	ΔII	hv		CH_4	H ₂	н	CH,	$_3$	$^{ m H_2}_{ m CH}$	CH,	Н,
			+ +	+	+	+			+	+ -	+ +	+	+	+ +	- +	+		+		+ +		+ -	+	+		+ +	+	+ -	+ +	+	+ +	- +	+
Reaction	$\mathrm{C_4H_3NH^+}$	$C_2H_3NH^+$	C ₂ H ₃ + C ₃ H ₄ +	$C_3^{\prime}H_3^{\prime}NH^+$	$c-C_3H_3^+$	$\mathrm{HC_3NH^+}$	$\mathrm{C_4H_5NH^+}$	CXHYNZ ⁺	$C_3H_5^+$	$C_2H_3N^+$	C ₂ H ₃ NH C ₂ H, N+	$C_4^{H_5}N^+$	$C_4H_5NH^+$	C ₅ H ₇ NH C H NH ⁺	C, H, NH ⁺	$C_5H_5N^+$	C ₅ H ₅ NH ⁺	$C_6H_7^{-1}H_2$	+1111/1011	$C_3 H_3 N_2^+$		HCO+	Adduct +	CH ₃ CO ⁺	CH ₃ CO	HCO+	CH ₃ ⁺	CH ₅ +	CHI,+	$C_2^{-1}H_3^+$	$^{c-C_{3}H_{3}^{+}}$	C,H, +	C, H, +
	↑	\uparrow	↑ ↑	↑	\uparrow	\uparrow	\uparrow	1	· ↑	†	1	†	\uparrow	1	` †	\uparrow	↑	↑ ↑		1 1		↑ 1	1	↑	1	1 1	†		↑ ↑		1 1	` †	1
	HC_3N	C_3H_3N	C3H3N C3H3N	C_3H_3N	C_3H_3N	C_3H_3N	C_3H_3N	N.H.D	$C_4^{H_5}N$	C_4H_5N	C4 H5 N	$C_4^{H_5}$ C_4	C_4H_5N	CAHSN HCR	C, H, N	C_5H_5N	C ₅ H ₅ Z	Z P	2	ZZZZ	(2172	$O(^3P)$	$H_2^{\circ}O$	9 6	2	H_2 CO	H	$^{ m H_2}_{ m CH}$	CH4 CHH,	$\mathrm{C_2^2H_2}$	C_2H_2	C_2^{114}	CH,
	+	+	+ +	+	+	+	+	+	+	+ -	+ +	- +	+	+ +	- +	+	+ -	+ +	-	+ + +	-	+ -	+ +	+ -	+	+ +	+	+ -	+ +	+	+ +	- +	+
	CH ₃ +	CH3+	CH3+ CH3+	CH3+	CH_3^+	CH_3^+	CH_3^+	CH,+	CH_3^+	CH ₃ +	CH.,+	CH ₃ +	CH3+	+, - CH CH CH CH	CH ₃ +	CH_3^{+}	CH3+	CH3+ CH3+	+ 115	+ ₂ + ₃		CH ₃ +	CH ₃ +	CH3+	CII3	CH3+ CH3+N3	CH_4^+	CH ₄ +	CH ₄ +	CH_4^4	CH ₄ +	CH ₄ +	CH,+
Type	3	2	0 0	2	3	က	3	2	1 21	2 0	7 0	1 (2)	7		1 21	2	0.0	7 00	c	1 C1 C	•	2 5	9 65	2 0	၀	2 2	1 2	0.0	N 61	2	01 0	1 (7)	2
	R_{cn} 147d	R_{cn} 148a	$R_{cn}148b$ $R_{cn}148c$	R_{cn} 148d	\mathbf{R}_{cn} 148e	R_{cn} 148f	$R_{cn}148g$	B.c. 149	R_{cn} 150a	R_{cn} 150b	\mathbf{R}_{cn} 150d	R_{cn} 150e	R_{cn} 150f	R_{cn} 150g	R_{cn} 152a	\mathbf{R}_{cn} 152b	\mathbb{R}_{cn} 152c	R_{cn} 152d R_{cn} 153	Д	$R_{cn} = 154b$ R = 154c	or or user	R _{cn} 155	R_{cn} 156b	R_{cn} 157a	\mathbf{n}_{cn} 13 (D	$R_{cn}158$	R_{cn} 160	$R_{cn}161$	R_{cn} 162 R_{cn} 163a	R_{cn} 163b	$R_{cn}163c$	R_{cn} 164b	R _{cn} 164c

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_5^+ + CH_5^-	${ m C_3H_5}$ ${ m NH_2}$ ${ m CH_3}$	1.00×10^{-09}	60-01	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_5^+ + + NH_4^+ + +	$\stackrel{ m NH}{\sim}_2$ CH,	0		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + 'NH'	CH,	1×00.9	6.00×10^{-11}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1.35×10^{-09}	60-01	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{ m HH_3}^+$ +	CH_4	$ 1.59 \times 10^{-09}$	60-01	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCNH ⁺ +	$ m CH_3$	3.23×10^{-09}	60-07	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2H_3NH^+$ +	Н	6.60×10^{-11}	$[0^{-11}]$	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_3NH_2^+$ +		1.32×10^{-09}	60_0	[23],[24],[25]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2NH_2^+$ +	CH_4 + H	8.80×10 ⁻¹⁰	01-01	[23],[24],[25]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2H_3NH^{\mp}$ +	$_{ m CH_3}$	3.92×10^{-39}	66_0	[26]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+	$ m CH_3$	2.50×10^{-3}	60_0	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+}_{3}O_{+}^{+}$ +	$ m CH_3$	$ 2.50 \times 10^{-09}$	60_0	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCO ₊ +	CH_3	1.04×10^{-09}	60-07	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_3CO^+ +	Н	4.32×10^{-11}	10-11	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH,0+ +	CH_4	1.62×10^{-09}	60-0	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_0OH^+ +	CH,	$ 1.98 \times 10^{-09}$	60-0	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OCOH+ +	CH.	9.90×10 ⁻¹⁰	0^{-10}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ CE HO	OH.	1 00 < 10 = 11	0-11	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH3CO		3.30×10-11	0-11	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	On4.	п2	2.30×1	0-10	[57],[13]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{\mathrm{C}_{2}\mathrm{H}_{6}^{+}}$ +	$_{ m H_2}$	5.00×10 ⁻¹⁹	6. – 0.	<u>∞</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_5^+CH_4$		$ 1.00 \times 10^{-10}$	$^{10-10}$	[28]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.00×1	$8.00 \times 10^{-30} (300/T)^{3.50}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C,H,+ +	CH,	$ 1.48 \times 10^{-09}$	60-0	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.H.+ +	CH,	1.50×10^{-09}	60-0	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CH, + H,		0-10	[3]
C2.16 C3.16 C4.27 C5.16 C6.18 C6.18 C6.18 C6.18 C6.18 C6.18 C7.18 C6.18 C7.18		-		60-0	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CXHVNZ+	0114	9.00×10 ⁻⁰⁹	60-0	<u>.</u> .
C C C C C C C C C C C C C C C C C C C	+ H - D	HO	1.60<10 ⁻⁰⁹	60-0	[4]
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	+21/2	O114	9.00<10 ⁻⁰⁹	60-0	[5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- + H C	חט	1.00<10-09	60-0	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3119 - +	CII4	1.00×10	0-09	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CII.4	3.00.10-09	0-09	C.: Chomes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cn ₄	9.00×10	0-09	zu-Cnesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cn ₄	2.20×1	0-03	Langevin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$_{ m CH_4}$	2.00×10 = 2.00×1	50 0	[29]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₅ +	$_{\text{CH}_4}$	3.60×10 °3	60 O	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{\mathrm{C}_{7}\mathrm{H}_{9}^{+}}_{1}$ +	$ m CH_4$	2.30×10^{-93}	60_0	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_8H_3^+$ +	CH_4	2.60×10^{-09}	60-07	Langevin
$\begin{array}{c} + + + \\ + \\ + + \\ + \\ + + \\ + \\ + + \\$	$^{+}$ $^{+}$ $^{+}$	CH_4	2.40×10^{-09}	60-07	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCNH ⁺ +	CH_4	$ 5.80 \times 10^{-09}$	60-01	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCNH ⁺ +	CH_{J}	$ 6.00\times10^{-09}$	60-0	Su-Chesnavich
$\begin{array}{c} \mathrm{CH}_{3}^{1}\mathrm{NH}_{2} \\ \mathrm{CH}_{3}^{2}\mathrm{NH}_{2} \\ \mathrm{CH}_{3}\mathrm{CN} \\ \mathrm{CH}_{3}\mathrm{CN} \\ \mathrm{CH}_{3}\mathrm{H}_{3}\mathrm{N} \\ \mathrm{CH}_{3}\mathrm{H}_{5}\mathrm{N} \\ \mathrm{CH}_{4}\mathrm{H}_{5}\mathrm{N} \\ \mathrm{CH}_{5}\mathrm{C}\mathrm{N} \end{array}$	CH,NH,+ +	CH,	$ 4.20\times10^{-09}$	60-0	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + HN HO	CH.	2.25×10 ⁻⁰⁹	60-0	[30]
$\begin{array}{c} (A_{3}^{1}C_{3$	C H NH+	CH4	4 90 < 10 - 09	60-0	[26]
+ + + + + + + + + + + + + + + + + + +	C21131111 +	CII4	4.90 / 1	0-03	[62]
	HC ₃ NH +	CH_4	4.50×10 °3	S 01	[7]
$\begin{array}{c} + & C_3H_5N \\ C_4H_5N \\ + & C_4H_5N \\ + & C_4H_5N \\ + & + & + & + \\ + & + & + & + \\ + & + &$	$C_3H_3NH^+$ +	$ m CH_4$	7.00×10^{-03}	60_0	Su-Chesnavich
$ \begin{array}{cccc} C_4 H_3 N & & \downarrow \\ + & C_4 H_5 N & \downarrow \\ + & H C_5 N & \downarrow \\ \end{array} $	$C_3H_5NH^+$ +	CH_4	7.20×10^{-09}	60-07	Su-Chesnavich
$\begin{array}{cccc} + & C_4 + B_5 N & \rightarrow \\ + & H C_5 N & \rightarrow \\ \end{array}$	$C_AH_2NH^+$ +	CH_A	8.20×10^{-09}	60-01	Su-Chesnavich
+ HC ₅ N →	$C_AH_5NH^+$ +	CH_4	$ 6.60\times10^{-09}$	60-0	Su-Chesnavich
	HC, NH+ +	CH_A	7.60×10^{-09}	60-0	Su-Chesnavich
$CH_r^+ + C_r^+H_r^+N \rightarrow C_r^-$	C, H, NH ⁺ +	CH_4	$ 4.40 \times 10^{-09}$	60-0	Su-Chesnavich
+ C,H,N →	C, H, NH ⁺ +	CH,	1,00×10 ⁻⁰⁸	80-08	Su-Chesnavich
		4	-		5

	Type					Reaction					×	Ref.
B 202	2	- CH. +	+	C.H.N	1	C. H. NH ⁺	+	CH.			3.00×10 ⁻⁰⁹	Su-Chesnavich
R_{cn} 208	ı က	CH_5^+	+	Z Z	†	$CH_5^+N_2$	-	7			1.00×10^{-10}	[31]
B. 209	2	CH. +	+	,H,N	1	+ 'H'N	+	CH,			1.00×10 1.40×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn} 210a$	1 (2)	CH, +	+	$O(^{3}P)$	· ↑	$^{+2.15}_{+0}_{+}$	+	$^3\mathrm{CH},$			2.35×10^{-10}	[4]
$R_{cn}210b$	2	CH_5^+	+	$O(^3P)$	↑	$ m CH_2OH^+$	+	$_{1}^{2}$			4.80×10^{-12}	[4]
$R_{cn}211$	2	$ CH_5^+ $	+	$_{ m H_2O}$	\uparrow	$\mathrm{H_{3}O^{+}}$	+	CH_4			3.70×10^{-09}	[2]
$R_{cn}212$	7	CH_{5}^{+}	+	00	\uparrow	HCO+	+	CH_4			9.90×10^{-10}	[5]
$R_{cn}213$	7	CH_5^+	+	${ m H}_2{ m CO}$	\uparrow	CH_2OH^+	+	CH_4			4.50×10^{-09}	[4]
$R_{cn}214$	2	CH_{5}^{+}	+	CO_2	\uparrow	OCOH+	+	CH_4			3.25×10 ⁻¹¹	_
$R_{cn}215$	7	$CH_5^+CH_4$	+	$_{2}^{\mathrm{N}}$	\uparrow	$^{ m CH}_{ m 2}^+$	+	CH_4	+	$^{\mathrm{N}}_{^{2}}$	$1.40 \times 10^{-08} (300/T)^{3.50} e^{-2230.0/T}$	_
\mathbb{R}_{cn} 216	7	$CH_5^+N_2$	+	Z Z	\uparrow	CH ₂ ⁺	+	$^{2}_{2}$	+	$^{ m N}_{2}$	3.00×10^{-14}	[31]
$R_{cn}217$	C1 (C_2H^+	+ -	$^{ m H_2}_{ m SH}$	↑	$C_2H_2^+$	+ -	Η			1.24×10^{-09}	<u> </u>
$R_{cn}218a$	C1 (C_2H^+	+ -	$_{ m CH}^4$	↑	$\mathrm{C_2H_2}^+$	+ -	$_{\rm CH_3}$			3.74×10^{-19}	[2]
K _{cn} 218b	N C	C2H	+ -	CH ₄	↑ ′	C-C3H3	+ -	п			3.74×10^{-10}	[7]
Ren 218d	4 0	C211	+ +	CH.	1	C3114 CH1+	+	=			$\begin{array}{c} 1.32 \times 10 \\ 2.20 \times 10^{-10} \end{array}$	<u></u>
R ₂₇₇ 219	1 6	C2H+	- +	C, H,	1	C3.H5 H.H.C	+	Ξ			1.85×10 ⁻⁰⁹	2 2
R _{cn} 220a	1 (2)	C2H+ C3H+	- +	C2H2	` ↑	C4 H2+	- +	н́			8.30×10 ⁻¹⁰	ī [N
R_{cn} 220b	2	$C_{\rm H}^{2}$	+	$_{\mathrm{C,H_{4}}}^{2}$	↑	$C_4^{\mathrm{H},+}$	+	H,	+	н	1.70×10^{-10}	[2]
R_{cn} 221a	2	C_2H^+	+	$\mathrm{C_2^{ ilde{-}}H_6^{ ilde{-}}}$	↑	$c - C_3 H_3 +$	+	$ ext{CH}_4$			9.10×10^{-10}	[2]
R_{cn} 221b	2	$C_2^H^+$	+	$\mathrm{C_2^-H_6^\circ}$	↑	$C_4H_4^{+}$	+	$_{ m H}^{2}$	+	Н	3.00×10^{-11}	[2]
$R_{cn}221c$	2	C_2H^+	+	$\mathrm{C_2^-H_6^-}$	\uparrow	$C_4^H_5^+$	+	H_2^-			6.00×10^{-11}	[2]
$R_{cn}222$	2	C_2H^+	+	$\mathrm{C_3H_8}$	\uparrow	$CXHYNZ^{+}$					4.00×10^{-09}	[2]
R_{cn} 223	7	C_2H^+	+	Z	\uparrow	CH+	+	CN			9.50×10^{-11}	[2]
R_{cn} 224a	7	C_2H^+	+	$_{ m NH_3}$	\uparrow	$^{ m NH_4}^+$	+	$^{2}_{\text{C}}$			1.63×10^{-09}	Su-Chesnavich
R_{cn} 224b	7	C_2H^+	+	NH3	↑	$^{\mathrm{HC}_{2}\mathrm{NH}^{+}}_{\widetilde{}}$	+	$_{1}^{\mathrm{H}_{2}}$			1.63×10^{-09}	Su-Chesnavich
R_{cn} 225a	01 0	C ₂ H ⁺	+ -	HCN	† ′	$C_2H_2^+$	+ -	Z C			5.40×10^{-10}	2 [2]
R 2250	4 C	C 2 H	+ +	H D C	1	+Z CH	+ +	⊒ ⁷			9.43×10 1.91×10-09	<u>7</u> [c
R 226	4 0	C21+	+ +	CHO	1	C. H. N+	+ +	= =			1.21×10 3.64×10 ⁻⁰⁹	[2]
R _{cn} 227a	1 (3)	C2H+ C3H+	- +	HC.N	` †	C4 H+	+	HCN			7.60×10^{-10}	[2]
R_{cn} 227b	2	$C_2^{\dagger}H^+$	+	HC_3^N	↑	$C_4^{\dagger}H_2^{}$	+	CN			4.56×10^{-10}	[2]
$R_{cn}227c$	2	C_2H^+	+	HC_3N	\uparrow	HC_3NH^+	+	C_2^2			1.41×10^{-09}	[2]
\mathbb{R}_{cn} 227d	27	C_2H^+	+	HC ₃ N	↑	HC_5N^+	+	; H			1.18×10^{-09}	[2]
R _{cn} 228	.71 .0	C2H	+ -	C_3H_3N	↑ 1	HC3NH-	+ -	C_2H_2			4.80×10^{-2}	[10],[11]
Ren 229b	1 (1	C.H.+	+ +	$O(^{1}_{3})$	↑ ↑	CH+	+ +	COO			8.25×10^{-11}	<u>F</u>
R _{cn} 229c	1 (2)	C,H+	+	$O(^{3}P)$	· ↑	HCO+	+	0 0			8.25×10^{-11}	[4]
R_{cn} 229d	2	$\mathrm{C_2^{ ilde{2}}H^+}$	+	$O(^3P)$	↑	+OO	+	CH			8.25×10^{-11}	[4]
$R_{cn}230$	2	C_2H^+	+	${ m H_2O}$	\uparrow	CH_2CO^+	+	Н			3.66×10^{-09}	Su-Chesnavich
R_{cn} 231	7	C_2H^+	+	${ m H_2CO}$	\uparrow	CH_2OH^+	+	$^{2}_{\text{C}}$			4.17×10^{-09}	Su-Chesnavich
R_{cn} 232a	0.0	$C_{2}H_{2}^{+}+$	+ -	$^{ m H}_2$	↑	$C_2H_3^+$	+	н			1.00×10^{-11}	[2]
K_{cn} 232b	ກ	C_2H_2	+	$^{ m H}_2$	↑	C_2H_4					1.00×10^{-2} 1.30×10^{-27}	[2]
$R_{cn}233a$	2	$C_2H_2^+$	+	CH_4	\uparrow	$C_3H_4^+$	+	H_2			1.87×10^{-10}	[2]
R_{cn} 233b	70	$C_2^H_2^+$	+	$_{ m CH}^{-1}_{ m 4}$	\uparrow	C3H2+	+ -	н			$\begin{array}{c c} 7.03 \times 10^{-10} \\ \hline \end{array}$	[2]
$R_{cn}234a$	01 ($C_2^{H_2^+}$	+ -	C_2H_2	† 1	C_4^{H}	+ -	$^{ m H_2}_{ m II}$			4.48×10-10	
R _{cn} 234D B 934C	71 00	C2H2+	+ +	C ₂ H ₂	1	C4 H3 +	+	4			$\begin{vmatrix} 9.52 \times 10 \\ 1.00 \times 10^{-10} \end{vmatrix}$	7 6
Continued on Next Page	n Next	Page	-	(2++2		Q4 **4						<u>.</u>

Ref.	<u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>	[10];[11] [10];[11] [10];[11] [10];[11] [33]
ĸ	1.60×10 ⁻²⁶ 4.14×10 ⁻¹⁰ 6.49×10 ⁻¹⁰ 1.24×10 ⁻¹⁰ 1.38×10 ⁻¹¹ 1.38×10 ⁻¹¹ 1.38×10 ⁻¹¹ 1.38×10 ⁻¹¹ 1.24×10 ⁻¹⁰ 1.30×10 ⁻¹⁰ 1.50×10 ⁻¹⁰ 1.60×10 ⁻¹⁰ 1.60×10 ⁻¹⁰ 1.30×10 ⁻¹⁰ 1.06×10 ⁻¹⁰ 1.06×10 ⁻¹⁰ 1.00×10 ⁻¹⁰ 1.00×	$\begin{array}{c} 2.30\times10^{-26} \\ 6.45\times10^{-10} \\ 2.36\times10^{-09} \\ 6.45\times10^{-10} \\ 6.45\times10^{-10} \\ 4.20\times10^{-09} \\ 1.00\times10^{-10} \end{array}$
	C C C C C C C C C C C C C C C C C C C	CH_2CN C_2H_2 C_2H bv $column{2}{c}$ $column{2}{c}$ $column{2}{c}$ $column{2}{c}$ $column{2}{c}$
Reaction	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	CCH CCH CCH CCH CCH CCH CCH CCCH CCCH	+++++
Type		2 2 2 2 4 0 0 Next P

	Type					Reaction			k	Ref.
R. 252b	2	C,H,+	+	O(³ P)	1	HC,0+	+	Н	1.00×10^{-10}	[19]
$R_{cn}253$	2	C_2^L	+	H,O	↑	$\mathrm{H_3} ildo{0}^+$	+	C,H	2.20×10^{-10}	[2]
R. 254	2	C,H,+	+	ÇÕ	↑	C,H,CO^+	+	hy	2.30×10^{-14}	[2]
B _{cm} 255	2	C.H. +	+	H,CO	1	CH ₂ O+	+	C,H,	4.13×10^{-09}	Su-Chesnavich
R _{cn} 256	2	$C_{\rm s.H.}^2$	+	H	↑	C, H, +	+	H	6.80×10^{-11}	[2]
$R_{cn}257$	က	$C_2^{H_3^+}$	+	Н	↑	$C_2^H_5^+$		A	1.00×10^{-10}	[2]
		o 1		ı		0			2.00×10^{-29}	
$R_{cn}258a$	2	C, H, +	+	CH_A	↑	$C_3H_r^+$	+	H ₃	1.90×10^{-10}	[2]
$\mathbf{R}_{cn}258\mathbf{b}$	က	$C_2^{ ilde{1}}H_3^{ ilde{+}}$	+	$\mathrm{CH}_4^{\climate{1}}$	↑	$C_3^{\dagger}H_7^{\dagger}$		1	1.00×10^{-10}	[2]
									3.00×10^{-28}	
$R_{cn}259a$	2	$C_2H_3^+$	+	$\mathrm{C_2H_2}$	↑	$C_4H_3^+$	+	H ₂	2.40×10^{-10}	[2]
$R_{cn}259b$	က	${ m C_2H_3}^{+}$	+	$\mathrm{C_2H_2}$	↑	$\mathrm{C_4H_5}^+$			1.00×10^{-10}	[2]
		+		;		+			2.98×10^{-29}	
$R_{cn}260a$	7	$^{\mathrm{C_2H_3^+}}_{\widetilde{\sim}}$	+	$^{\mathrm{C_2H_4}}_{\widetilde{c}_{11}}$	↑	$C_2H_5^+$	+	C_2H_2	8.20×10^{-19}	[2]
$R_{cn}260b$	n	$\mathrm{C_2H_3}^{-}$	+	$\mathrm{C_2H_4}$	↑	$C_4H_7^+$			1.00×10 ⁻ ±5	[2]
		+		;		+		į	9.00×10 =:	
$R_{cn}261a$	7	$\mathrm{C_2H_3}^{+}$	+	$\mathrm{C_2H_6}$	↑	$\mathrm{C_2H_5}^{+}$	+	C_2H_4	2.91×10^{-10}	[2]
$R_{cn}261b$	2	$C_2H_3^+$	+	$\mathrm{C_2H_6}$	↑	$C_3H_5^+$	+	CH_4	2.48×10^{-10}	[2]
$R_{cn}261c$	2	$C_{2}H_{3}^{+}+$	+	$C_{2}H_{\kappa}$	↑	$C_4H_7^+$	+	H ₂	8.06×10^{-11}	[2]
R. 262	2	C,H,+	+	CH, CCH	↑	C,H,+	+	C,H,	1.50×10^{-09}	[2]
B. 263	2	C, H, +	+	C, H	1	+ H.	+	OH.	8.70×10^{-10}	2[2
D 9640	1 0	\(\frac{1}{2}\);		03.r.6 7		7 4 1.15		7 1	0.500.10-10	Ī [
R _{cn} 204a	71 0	C ₂ H ₃	+ -	C3Hg	<u></u>	C3H7	+ -	C ₂ H ₄	9.50×10	7 3
K_{cn} 204D	71	C ₂ H ₃ .	+	C3 Hg	↑	C4H7	+	CH ₄	5.00×10 =-	[7]
$R_{cn}265a$	7	$\mathrm{C_2H_3}^{+}$	+	$\mathrm{C_4H_2}$	↑	$\mathrm{C_4H_3}^+$	+	C_2H_2	3.00×10^{-10}	[3]
$R_{cn}265b$	2	${ m C_2H_3}^+$	+	$\mathrm{C_4H_2}$	↑	$C_6H_3^+$	+	H_2	3.00×10^{-10}	[3]
R _{cn} 265c	2	$C_2^-H_3^-+$	+	$C_4^H_2$	↑	$C_6H_4^+$	+	н	3.00×10^{-10}	[3]
R_{cn} 266a	2	C,H,+	+	$C_{6}H_{5}^{-}$	↑	C,H,+	+	C ₂ H ₂	3.00×10^{-10}	[3]
$R_{cn}266b$	2	$C_2H_3^+$	+	C_6H_2	†	$C_8H_3^+$	+	H ₂ -	3.00×10^{-10}	[3]
R _{cn} 266c	2	C,H,+	+	$C_{6}^{\prime}H_{5}^{\prime}$	↑	$CXHYNZ^{+}$	+	- H	3.00×10^{-10}	[2]
Ren 267	2	C,H,+	+	$C_{e}^{\prime}H_{e}^{\prime}$	↑	$C_c H_{\tau}^+$	+	C,H,	1.60×10^{-09}	[29]
B. 268a	2	C, H, +	+	° Z	1	+Z°CH	+	7 ⁷ H	1.98×10^{-11}	[2]
Ren 268b	1 6	C2 H2 +	- +	; Z	1	HC,NH+	- +	Н	2.20×10^{-12}	[2]
B 269	١٥	+ H C	- +	HN	1	+ HN	- +	# ! C	9.48~10-09	
R ₂₂ 270	1 0	C2 H3	- +	HON HON	1	HCNH+	- +	(2112 C.H.	2.30×10 ⁻⁰⁹	[2]
B 971	10	C2113 C H +	- +	N CH	` 1	HC NH+	- +	(2112 C H	3.80×10-09	[6]
R 272a	۱ د	C2113	- +	Z H -C	1	C. H. NH+	- +	(2112 C-H-	3.55×10 ⁻⁰⁹	[2]
R 272h	۱ د	C2113	- +	Carract T Z Z	1	Caratrii C. H. NH+	- +	(2112 by	8 80 × 10 ⁻ 10	[10] [11]
Ecn 21 25	1 0	C2113 T +	- +	C31137 C H Z	` 1	CS IIS VIII +	- +	μ i C	160<10-09	[16]
P 9745	1 C	+ 5 (2 13 2	- +	(31.22 (31.22 (31.22)	` 1	(3112111 7 N H+	- +	(2112 7 H	F FO > 10 - 10	[5]
D. 0741	4 0	C ₂ 113	+ -	7212	١.	(21/211 A 11 1 1 1 1 1	+	(2112	3.50×10	N 6
$\mathbf{R}_{cn}Z$ 74b	n	C_2H_3	+	$C_2 N_2$	↑	AdductN			1.00×10 ± 5	<u> </u>
1		+		(38)		+)	1.30×10^{-2}	3
$R_{cn}275a$	2	$^{\mathrm{C_2H_3^+}}_{^{-1}}$	+	O(3P)	↑	$ m CH_3^+$	+	ÇQ	5.00×10^{-12}	[19]
$R_{cn}275b$	2	$\mathrm{C_2H_3}^+$	+	O(3P)	↑	$CH_2CO_1^+$	+	Н	8.50×10^{-11}	[19]
$R_{cn}275c$	2	$\mathrm{C_2H_3}^+$	+	O(3P)	↑	CH_3CO^+	+	hv	1.00×10^{-11}	[19]
$R_{cn}276$	2	$C_2H_3^+$	+	$_{12}^{\rm O}$	†	$^{+}O_{+}^{+}$	+	C_2H_2	1.11×10^{-09}	[5]
$R_{cn}277$	2	$\mathrm{C_2H_3}^{+}$	+	CO	↑	$\mathrm{C_2H_3CO^+}$			5.00×10 ⁻¹⁹	[2]
$R_{cn}278$	7	$C_2H_4^+$	+	н	↑	$C_2H_3^+$	+	H ₂	3.00×10^{-10}	[2]
$R_{cn}279$	0 0	$^{\mathrm{C_2H_4^+}}_{2^{\mathrm{H}_4^+}}$	+ -	$_{ m CH_3}^{ m CH_3}$	↑	$_{cH_3}^{CH_3}$	+	C_2H_4	1.00×10^{-3}	<u>∞</u> 3
\mathbf{K}_{cn} 280	n	$\mathrm{C_2H_4}^{\dagger}$	+	CH_4	↑	Adduct			1.00×10 = 29	8
Continued on Next Page	Novt F	اع می در						_	1:00 × 10	_
Communea	T ACONT II	48c								

Ref.	[2] [2]	8888	<u> </u>	ভব ভছবৰ:	4 2 2 2 2 E E E E E E E E E E E E E E E	[1.9] [1.9] [2.2] [2.2]	<u>88 88 8788 </u>
k	0-10 0-10 0-10 0-27	0-11 0-10 0-11 0-10 1-26	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0-10 0-10 0-26 0-10 0-10 0-10	0-09 0-10 0-10 0-09 0-09 0-10 1-09	0-11 0-11 0-11 0-11 0-11 0-10 0-10	$^{5.00 \times 10^{-10}}_{5.00 \times 10^{-10}}$ $^{5.00 \times 10^{-10}}_{5.00 \times 10^{-10}}$ $^{1.40 \times 10^{-30}}_{5.84 \times 10^{-10}}$ $^{1.22 \times 10^{-10}}_{5.50 \times 10^{-24}}$
	$\begin{array}{c c} 6.47 \times 10^{-10} \\ 1.93 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 3.10 \times 10^{-27} \end{array}$	4.74×10 ⁻¹¹ 4.74×10 ⁻¹¹ 7.03×10 ⁻¹⁰ 4.74×10 ⁻¹¹ 1.00×10 ⁻¹⁰ 6.30×10 ⁻²⁶	8.30×10 - 3 3.60×10 - 13 4.79×10 - 10 3.30×10 - 10 5.50×10 - 10 1.17×10 - 10 1.30×10 - 11 6.60×10 - 10 5.40×10 - 10 5.50×10 - 10 6.60×10 - 10 5.00×10 - 10 6.60×10 - 10 6.6	5.00×10 ⁻¹⁰ 1.00×10 ⁻¹⁰ 6.80×10 ⁻²⁶ 5.00×10 ⁻¹⁰ 5.00×10 ⁻¹⁰ 3.00×10 ⁻¹⁰ 1.24×10 ⁻¹⁰	1.94×10 ⁻⁰³ 1.00×10 ⁻¹³ 1.90×10 ⁻²⁷ 1.90×10 ⁻¹³ 2.85×10 ⁻¹⁰ 2.25×10 ⁻¹⁰ 4.50×10 ⁻¹⁰	2.40×10-11 2.40×10-11 1.20×10-11 1.20×10-11 1.00×10-11 1.00×10-10	5.00×10 ⁻¹⁰ 9.00×10 ⁻¹⁴ 1.00×10 ⁻¹⁰ 1.40×10 ⁻³⁰ 6.84×10 ⁻¹¹ 1.22×10 ⁻¹⁰ 1.00×10 ⁻¹⁰
						H +	
	CH ₃	$_{\mathrm{CH}_{3}}^{\mathrm{CH}_{4}}$	CH ₄ CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₄ CC ₂ CC ₂ CC ₂ CC ₂ CC ₃ CCC ₃ CCCC ₃ CCCCCCCCCC	$egin{array}{c} H_2 \\ CH_3 \\ H_2 \\ C_2H_4 \end{array}$	$\begin{array}{cccc} {\rm C}_2{\rm H}_3 & {\rm C}_2{\rm H}_$	CH ₃ H ₂ H ₂ H ₂	$\mathrm{CH}_4\\\mathrm{H}_2\\\mathrm{CH}_4\\\mathrm{H}_2$
	+ +	+ + +	+++++++++	+ ++++	+ +++++	-++++	++ ++
Reaction	$c-C_3H_3^+$ $C_4H_5^+$ $C_4H_6^+$	$\begin{array}{c} {\rm C_3H_4^+} + \\ {\rm C_3H_5^+} + \\ {\rm C_4H_7^+} + \\ {\rm C_4H_8^+} \end{array}$	00000000000000000000000000000000000000	$\begin{array}{c} {\rm C_6H_4^+} \\ {\rm C_6H_6^+} \\ {\rm C_5H_3^+} \\ {\rm CXHYNZ^+} \\ {\rm C_2H_3N^+} \\ {\rm NH_3^+} \\ {\rm NH_3^+} \end{array}$	NH ₄ + C ₃ H ₅ N+ C ₄ H ₅ N+ C ₂ H ₃ NH+ C ₂ H ₃ NH+ HC ₃ NH+ C ₅ H ₃ NH+ C ₅ H ₃ NH+ C ₃ H ₅ NH+ C ₄ H ₃ NH+ C ₄ H ₅ NH+	$\begin{array}{c} & \text{HCO}^{+} \\ \text{CH}_{2}\text{O}^{+} \\ \text{CH}_{2}\text{CO}^{+} \\ \text{CH}_{3}\text{CO}^{+} \\ \text{C}_{2}\text{H}_{4}^{+} \\ \text{C}_{2}\text{H}_{7}^{+} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow$ $\uparrow\uparrow\uparrow\uparrow$	↑↑ ↑↑↑↑	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$ $\uparrow\uparrow\uparrow$
	$C_2H_2\\C_2H_2\\C_2H_2$	$C_{2}H_{4}$ $C_{2}H_{4}$ $C_{2}H_{4}$ $C_{2}H_{4}$	C2H6 C2H6 C2H6 CH3CCH CH3CCH C3H6 C3H6 C3H6 C3H8 C3H8	C ₄ H ₂ C ₄ H ₂ C ₆ H ₂ C ₆ H ₂ N H ₃	NH ₃ HCN CH ₃ NH ₂ CH ₃ CN HC ₃ N HC ₃ N C ₃ H ₅ N	$0({}^{3}P)$ $0({}^{3}P)$ $0({}^{3}P)$ $0({}^{3}P)$ $0({}^{3}P)$ H	CH ₃ CH ₄ CH ₄ C ₂ H ₂ C ₂ H ₂ C ₂ H ₂
	+++	+ + + +	+++++++++	++ ++++	++ +++++	+++++	+++++
	$\begin{array}{c c} C_2 H_4^+ \\ C_2 H_4^+ \\ C_2 H_4^+ \end{array}$	$\begin{array}{c} C_2 H_4 + \\ C_2 H_4 + \\ C_2 H_4 + \\ C_2 H_4 + \end{array}$		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		C2H4+++ C2H4++++ C2H4+++++ C2H5+++++++ C2H5++++++++++++++++++++++++++++++++++++	C ₂ H ₅ + C ₂ H ₅ +
Type	3 2 2	3000	0000000000			1000000	2 2 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	$\begin{array}{c} \mathbf{R}_{cn} 281\mathbf{a} \\ \mathbf{R}_{cn} 281\mathbf{b} \\ \mathbf{R}_{cn} 281\mathbf{c} \end{array}$	$R_{cn}^{}282a \ R_{cn}^{}282b \ R_{cn}^{}282c \ R_{cn}^{}282c \ R_{cn}^{}282d$	Rcn 283a Rcn 283b Rcn 284a Rcn 284b Rcn 284c Rcn 285a Rcn 285b Rcn 285b Rcn 286b Rcn 286b	R _{cn} 287b R _{cn} 287c R _{cn} 288a R _{cn} 288b R _{cn} 289 R _{cn} 289	$R_{cn} 290b$ $R_{cn} 291$ $R_{cn} 292$ $R_{cn} 293$ $R_{cn} 294a$ $R_{cn} 294b$ $R_{cn} 294b$ $R_{cn} 294$	R _{cn} 296b R _{cn} 296c R _{cn} 296d R _{cn} 296e R _{cn} 297	Ren 299 2 C2H5 Ren 300a 2 C2H5 Ren 301b 2 C2H5 Ren 301a 2 C2H5 Ren 301b 3 C2H5 Ren 301c 3 C2H5 Continued on Next Page

٢	Rei.	[2]	<u>4</u>	[2]	[2]	[3]	[2]	Langevin Su-Chesnavich	Su-Cheshavion	[-] Langevin	Su-Chesnavich	Langevin	[35]	Su-Chesnavich	Su-Chesnavich	Langevin	[4]	[2]	Su-Chesnavich	33	[33]	[33] [33]	[69]	<u>4</u> <u>C</u>	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich	[12]	Su-Chesnavich	Su-Chesnavich	[31]	i	Su-Chesnavich	[2]	3	[2] [4	[*] [36]	50	[28] [31]		<u>8</u> <u>8</u>	
	S.	3.55×10 ⁻¹⁰	1.00×10 1.34×10^{-25}	5.46×10^{-12}	3.35×10^{-11}	$1.26 \times 10^{-0.9}$	1.40×10 = 5	1.40×10 = 1 1.60×10=09	6.30×10 ⁻¹⁰	1.50×10 ⁻⁰⁹	2.50×10 ⁻⁰⁹	1.80×10 ⁻⁰⁹	2.90×10^{-10}	2.90×10^{-09}	1.90×10^{-09}	2.10×10^{-09}	2.09×10^{-09}	2.70×10^{-09}	5.20×10^{-09}	2.57×10 ⁻⁰³	1.35×10 = 0	1.52×10 3	3.80×10	3.55×10 ⁻⁰⁹	5.80×10^{-09}	6.00×10^{-09}	6.70×10^{-09}	5.40×10^{-09}	4.70×10 ⁻⁰³	3.60×10 ⁻ c3	8.10×10 2.40×10 ⁻⁰⁹	1.00×10^{-10}	1.00×10^{-27}	1.20×10 ⁻⁰³	1.00×10^{-10}	2.00×10^{-24}	1.86×10 ~ 3 10×10=09	1.00×10^{-10}	1.00×10^{-25}	$1.00 \times 10^{-39} (300/T)^{5.19} e^{-100.50}$ 1.00×10^{-14}	1.00×10^{-10}	1.00×10^{-3} 1.00×10^{-10}	1.00×10^{-29}
																																								z z z + +			
		CH_4		CH_4	${ m H}_2$	C_2H_4	CH ₄	C ₂ H ₄	C2114	C2116	C.H.	C,H,	C_2H_4	$C_2^{ ilde{L}}H_4^{ ilde{L}}$	$C_2^H_4$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_4}$	$\mathrm{C_2H_4}$	$\mathrm{C}_2\mathrm{H}_4$	pv I	C ₂ H ₄	בן ב	C2114	C_{2}^{2114}	$\mathrm{C_2^2H_4^4}$	$C_2^-H_4^-$	C_2H_4	C_2H_4	C_2H_4	C2H4	7.74	1	$C_2^{H_4}$	C2H4	;	C ₂ H ₄	02114	į	$_{\rm N}^{\rm CH_4}$	$^{ m H}_{2}^{ m z}$	$\mathrm{C_2H_6}$	
		+		+	+	+ -	+ -	+ +	+ +	- +	- +	+	+	+	+	+	+	+	+	+ -			+ +	+ +	- +	+	+	+	+ -	+ -	+ +	-		+ -	+	-	+ +	H		+ +	+	+	
	Reaction	C ₃ H ₅ +	04119	$C_3H_7^+$	$\mathrm{C_4H_9}^+$	$C_3H_5^+$	C ₄ H ₅ -	C3H2 H +	C3 H2+	C, H, +	C, H, +	C, H, +	$C_6H_7^{++}$	$C_7^{'}H_5^{'+}$	$C_7H_9^+$	$C_8H_3^+$	$^{ m NH_4}^{+}$	HCNH+	HCNH+	$CH_2NH_2^+$	C3H7NH -	CH3NH3	C3H9NH CH NH+	HC, NH ⁺	$C_3H_3NH^+$	$C_3^{\prime}H_5^{\prime}NH^+$	$C_4^{\dagger}H_3^{\dagger}NH^+$	$C_4H_5NH^+$	HC ₅ NH ⁺	C ₅ H ₅ NH ⁺	C, H, NH+	$C_2^{H_5} + N_2$. H	N ₂ H ₅ +	Adduct N ⁺	+	H3O-H4	Adduct +	+	C2H5+ C3H5+	$C_2^H_2^+$	$^{ m CH_3^+}_{ m Adduct}^+$	
	_	1 1	1	\uparrow	\uparrow	↑	†	1	1	1	1	· ↑	↑	\uparrow	\uparrow	\uparrow	↑	\uparrow	↑	↑	†	†	1	1	†	↑	†	\uparrow	↑	^	1	· ↑		↑ ′	1		1	1		↑ ↑	\uparrow	↑ ↑	
		C_2H_4	C ₂ 114	$\mathrm{C_2H_6}$	$\mathrm{C_2H_6}$	CH ₃ CCH	CH3CCH	CH ₂ CCH ₂ CH ₁	C3116	C.H.	C, H,	C.H.	$C_{\rm eH_6}$	$C_7^{'}H_4^{'}$	C_7H_8	C_8H_2	$_{ m NH_3}$	HCN	HNC	CH_2NH	CH2NH	CH3NH2	CH3NH2 OH ON	HO.S.CH	C_3H_3N	$C_3^{\prime}H_5^{\prime}N$	$C_4^{H_3}N$	C_4H_5N	HC ₅ N	C ₅ H ₅ N	C ₆ 1131N	Z (e	;	N ₂ H ₄	C_{2}^{2}	(H ₂ O	CO ₂	;	ς Z Z	7 H	$_{ m CH_3}$ $_{ m CH_4}$	
		+ +	+	+	+	+ -	+ -	+ +	+ +	- +	- +	+	+	+	+	+	+	+	+	+ -	+ -	+ -	+ +	+ +	- +	+	+	+	+ -	+ -	+ +	+		+ -	+ +	-	+ +	+ +			+	+ +	
		$C_2H_5^+$	C ₂ 115	$C_2H_5^+$	$C_2H_5^+$	$C_2H_5^+$	+2- C2H2-	C2H2+	C2 H2	C2H; +	C2H; +	C2Hr. +	C2H5+	$C_2^{H_5^+}$	$C_2^H_5^+$	$C_2H_5^+$	$C_2H_5^+$	$C_2H_5^+$	$C_2H_5^+$	$C_2H_5^+$	+2- 12- 12- 12- 12- 13- 14- 13- 14- 14- 14- 14- 14- 14- 14- 14- 14- 14	C2H2	C2H2+	C ₂ H ₅ +	C2 H5 +	$C_2^{H_5^+}$	$C_2^H_5^+$	$C_2H_5^+$	$C_2H_5^+$	C ₂ H ₅ -	C ₂ H ₅	$^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{}}}}}}}}$	- - - -	$C_2^{H_5}+$	$C_{2}^{H_{5}}$	+	C2H2+	$C_{2}H_{5}^{+}$	+	$C_2H_5^+CH_4^-$ $C_3H_5^+N_5^-$	$C_2H_6^+$	${f C_2 H_6^+}^+$	Page
E	Type	2 6	°	2	7	2 0	27 0	21 0	4 0	1 8	1 (2)	ı (N	2	2	2	2	7	7	2	01 0	27 0	27 0	4 C	4 0.	1 (1	2	2	7	21 0	.7 (4 0	ı က		01 0	4 m	c	21 0	1 m	(21 23	7	0. 0.	n Next
		$R_{cn}302a$	Ren 302D	$R_{cn}303a$	$R_{cn}303b$	$R_{cn}304a$	\mathbf{K}_{cn} 304b	$\mathbf{R}_{cn}305$	R_{cn} 307	Ben 308	Ren 309	R_{cn} 310	$R_{cn}311$	$R_{cn}312$	\mathbb{R}_{cn} 313	$R_{cn}314$	$R_{cn}315$	$R_{cn}316$	$R_{cn}317$	$R_{cn}318a$	\mathbf{K}_{cn} 318b	$K_{cn}319a$	R 390	Ren 321	R_{cn} 322	$R_{cn}323$	$R_{cn}324$	$R_{cn}325$	$R_{cn}326$	$R_{cn}327$	Ren 329	$R_{cn}330$		$R_{cn}331$	R_{cn} 332b	Ç	\mathbb{R}_{cn} 333	$R_{cn} 335$	6	$R_{cn}336$ $R_{cn}337$	$R_{cn}338$	$R_{cn} 339 \\ R_{cn} 340$	Continued on Next Page

Ref.	888555333555555 3888555333555555	[39] [40] [41] [41] [42] [42] [42] [42]	<u> </u>	2
k	2.47×10^{-10} 9.10×10^{-10} 1.43×10^{-10} 1.15×10^{-10} 1.15×10^{-09} 1.10×10^{-11} 1.10×10^{-11} 1.14×10^{-09} 1.14×10^{-09} 1.00×10^{-11} 2.95×10^{-09} 1.00×10^{-10} 1.00×10^{-10}	1.00×10^{-10} 1.00×10^{-10} 1.80×10^{-09} 1.98×10^{-09} 2.20×10^{-10} 9.00×10^{-11} $1.40 \times 10^{-11} (300/T)^{1.05}$ $1.15 \times 10^{-11} (300/T)^{1.10}$ $1.15 \times 10^{-11} (300/T)^{1.10}$ $1.15 \times 10^{-11} (300/T)^{1.10}$ 1.10×10^{-10}	7.83×10^{-10} 8.70×10^{-10} 1.00×10^{-11} 3.70×10^{-26} 8.40×10^{-10} 9.02×10^{-10} 4.75×10^{-10} 1.00×10^{-10} 6.80×10^{-26}	1.40×10^{-0} 1.40×10^{-0} 1.40×10^{-0} 1.20×10^{-1} 8.80×10^{-1} 1.02×10^{-1}
		+ - -		
	C2H3 CH3 CCH4 CCH4 CC2H6 C2H6 C2H6 C2H7 CC2H6 CC2H6	$\begin{array}{c} \mathrm{NH_3} \\ \mathrm{C_2H_6} \\ \mathrm{C_2H_6} \\ \mathrm{CH_4} \\ \mathrm{CH_4} \\ \mathrm{H} \\ \mathrm{hv} \\ \mathrm{hv} \end{array}$	$C_{2}H_{2}$ H_{2} H $C_{2}H_{2}$ H_{2}	ССССССССССССССССССССССССССССССССССССС
	++++++++++	+++++++	++ +++	++++ ++++++++
Reaction	$\begin{array}{c} c_2 H_5^+ \\ c_3 H_5^+ \\ c_4 H_7^+ \\ c_4 H_7^+ \\ c_2 H_4^+ \\ c_3 H_8^+ \\ c_3 H_8^+ \\ c_3 H_8^+ \\ N H_3^+ \\ H CN H^+ \\ C_3 H_5^- N H^+ \\ c_2 H_6^+ \end{array}$	$\begin{array}{c} C_2 H_6^+ \\ N H_4^+ \\ N G_2^- \\ C_2 H_3^- \\ C_3 H_2^- \\ C_3 H_2^- \\ C_3 H_3^- \\ C_3$	C ₂ H ₃ + C ₄ H ₅ + C ₅ H ₅ + C ₆ C ₃ H ₃ + C ₆ C ₃ H ₃ + C ₆ H ₅ + C ₆ H ₆ + C ₇ H ₇ + C ₈ H ₈	C ₄ H ₃ + C ₄ H ₃ + C ₄ H ₄ + C ₄ H ₄ + C ₄ H ₃ + C ₄ H ₃ + C ₅ H ₄ + C ₅ H
	\uparrow	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$ $\uparrow\uparrow\uparrow$	\uparrow
	C ₂ H ₂ C ₂ H ₂ C ₂ H ₂ C ₂ H ₆ C ₂ H ₆ C ₂ H ₆ NH ₃ NH ₃ HCN HCN HCN CCN HCO CCN HCO CCN CCN CCN CCN CCN CCN CCN CCN CCN C	$\begin{array}{c} N H_2 \\ N H_3 \\ H C N \\ N_2 \\ N_2 \\ H_2 \\ H_2 \\ H_2 \\ H_2 \end{array}$	CH4 CH4 CH4 CC2H2 C2H4 C2H4	CH ₃ CCH CH ₂ CCH ₂ C ₃ H ₆ C ₃ H ₆ C ₃ H ₈ C ₄ H ₂ C ₄ H ₂ C ₄ H ₂ N N N NH ₃ N NH ₃ N NH ₃ N NH ₃ H CN H CN H CN
	+++++++++++++	++++++++	+++++++	+++++++++++++++
	C C C C C C C C C C C C C C C C C C C	C2H+ C2H7+ C2H7+ C2H7+ C3H+ C3H+ C3H+	С. 3. H. H. H. H. H. H. H. H. C. C. S. H. H. H. H. C. C. S. H. H. H. H. C. S. H.	C. C
Type	00000000000000	000000000		Next
	Ren 341a Ren 341b Ren 341c Ren 342 Ren 343a Ren 344a Ren 345a Ren 345a Ren 345a Ren 345a Ren 345 Ren 346 Ren 345	Ren 350 Ren 351 Ren 352a Ren 352b Ren 353 Ren 354b Ren 354b Ren 354c	Ren 355a Ren 355b Ren 355c Ren 356 Ren 357a Ren 357b Ren 357b	Ren 358 C3H Ren 359 C3H Ren 360a C3H Ren 360b C3H Ren 361 C3H Ren 362a C3H Ren 362b C3H Ren 363a C3H Ren 363b C3H Ren 364b C3H Ren 364c C3H Ren 364c C3H Ren 365d C3H Ren 365a C3H Ren 365b C3H Ren 365b C3H Continued on Next Page.

	Type					Reaction				k	Ref.
$R_{cn}365c$	6	C ₃ H ⁺	+	HCN	1	HC_4NH^+			1.00×10^{-10}		[2]
		,							8.80×10^{-26}		
R_{cn} 366a	70	C_{3H}^{+}	+	CH_3CN	\uparrow	$C_2H_3^+$	+	HC ₃ N	6.00×10^{-10}		[2]
R_{cn} 366b B 366c	21 00	+ + C C	+ +	CH ₃ CN	1	C ₂ H ₃ NH+ HC NH+	+ +	C.C.	4.50×10^{-19}		2 2
R _{cm} 366d	1 0	C,H+	- +	CH, CN	` †	C, H, NH+	-	(2112	9.00×10 ⁻¹⁰		2 [2
R _{cn} 367	2	C,H+	+	HC ₃ N	†	HC ₆ NH ⁺	+	hv	1.25×10^{-09}		[2]
$R_{cn}368$	2	C_3^{H+}	+	$\mathrm{C_3}\overset{\circ}{\mathrm{H_3}}\mathrm{N}$	\uparrow	$C_6 \overset{\circ}{H_3} NH^+$	+	hv	4.50×10^{-09}		[10],[11]
R_{cn} 369	2	C_3^{H+}	+	C_2^N	↑	$HC_5N_2^+$	+	hv	4.40×10^{-10}		[2]
$R_{cn}370a$	2	C_3^{H+}	+	$ m H_2^{-}O_{-}^{-}$	\uparrow	HCO+	+	C_2H_2	4.50×10^{-10}		[2]
\mathbb{R}_{cn} 370b	7	$C_{3}H^{+}$	+	$_{\widetilde{\Omega}}^{2}$ O	\uparrow	$C_2H_3^+$	+	00	4.50×10^{-10}		[2]
$\mathbb{R}_{cn}371$	n	C_3H^+	+	00	↑	$\mathbf{Adduct}^{\intercal}$			1.00×10^{-13}		[2]
B 372a	6	+H+	+	H, CO	1	+ H +	+	CC	5.90×10^{-10}		[43]
Ren 372b	1 0	+H, C,H+	- +	H ₂ CO	` †	1-C,H,+	- +	000	5.00×10^{-10}		[43]
R _{cn} 373	2	C3H,+	+	$_{ m CH_4}^{ m 22}$	†	c-C ₃ H ₃ +	+	CH3	5.50×10^{-10}		[2]
$R_{cn}374$	2	$C_3H_5^+$	+	C_2H_2	↑	$C_5H_3^{+}$	+	, H	9.00×10^{-10}		[2]
$R_{cn}375a$	2	$C_3^{H_2^+}$	+	$\mathrm{C_2H_4}$	†	$^{\mathrm{c}-\mathrm{C_3H_3}^+}$	+	C_2H_3	2.75×10^{-10}		[2]
$R_{cn}375b$	2	$C_3^{H_2^+}$	+	$\mathrm{C_2^-H_4^-}$	\uparrow	$C_3H_4^+$	+	$C_2^-H_2^-$	6.60×10^{-10}		[2]
$R_{cn}375c$	7	$C_3H_2^+$	+	$\mathrm{C_2H_4}$	\uparrow	$C_5H_5^+$	+	н	2.75×10^{-10}		[2]
$R_{cn}376a$	2	$C_3H_2^+$	+	CH_3CCH	\uparrow	$\mathrm{C_4H_2}^+$	+	C_2H_4	1.17×10^{-10}		[2]
\mathbf{R}_{cn} 376b	2	$C_3H_2^+$	+	CH_3CCH	\uparrow	$\mathrm{C_4H_3}^+$	+	C_2H_3	1.56×10^{-10}		[2]
$R_{cn}376c$	2	$C_3H_2^+$	+	CH_3CCH	\uparrow	$\mathrm{C_4H_4}^+$	+	C_2H_2	5.33×10^{-10}		[2]
\mathbb{R}_{cn} 376d	7	$C_3H_2^+$	+	CH_3CCH	†	${ m C_5H_3}^+$	+	CH ₃	2.34×10^{-10}		[2]
$R_{cn}376e$	2	$\mathrm{C_{3}H_{2}^{+}}$	+	CH_3CCH	†	$C_6H_5^+$	+	H	2.60×10^{-10}		[3]
$R_{cn}377a$	7	$C_3H_2^+$	+	CH_2CCH_2	†	$\mathrm{C_4H_2}^+$	+	$\overset{ ext{C}_2H_4}{\widetilde{\sim}}$	5.60×10^{-11}		[4]
$R_{cn}377b$	20 0	C3H2+	+ -	CH_2CCH_2	†	C ₄ H ₃ +	+ -	$C_{2H_3}^{C_{1H_3}}$	1.96×10^{-19}		[4]
R _{cn} 377c	27 0	C3H5-	+ -	CH2CCH2	↑ ′	C ₄ H ₄ -	+ -	C_2H_2	7.00×10^{-19}		[4]
R 377e	4 0	C3H2 H +	+ +	CH ₂ CCH ₂	1	C5H3+	+ +	Ch3 H	$\frac{1.26 \times 10}{2.94 \times 10^{-10}}$		[4]
Ren 378a	1 2	C.H. +	+ +	C.H.	1	C-C, H, +	+ +	C.H.	1.50×10^{-10}		[4]
Ren 378b	1 (2)	C3H2+	- +	C_3H_c	· ↑	C, H, +	- +	C3115 C3H,	1.50×10^{-10}		<u> </u>
$R_{cn}378c$	2	$C_3^{H_2^+}$	+	C_3H_6	↑	$C_5H_5^+$	+	CH_3	2.50×10^{-10}		[2]
$R_{cn}378d$	2	$C_3H_2^+$	+	$\mathrm{C_3^{-}H_6^{-}}$	\uparrow	$C_6H_7^+$	+	н	4.50×10^{-10}		[2]
$R_{cn}379a$	2	$ \mathrm{C_3H_2}^+$	+	$\mathrm{C_3H_8}$	\uparrow	$^{c-C_{3}H_{3}^{+}}$	+	C_3H_7	3.60×10^{-10}		[2]
R_{cn} 379b	2	$C_3H_2^+$	+	C_3H_8	†	$C_3H_7^+$	+	C_3H_3	5.40×10^{-10}		[2]
K _{cn} 379c	27 00	C3H2-	+ -	C3H8	↑ ′	C4H6-	+ -	C_2H_4	6.00×10^{-11}		2 2
Ren 379e	1 21	C,H,+	+ +	C.H.	↑	C, H, +	+ +	CH.	1.20×10^{-10}		2 2
$R_{cn}380a$	2	C,H,+	+	$C_A^{\prime}H_{ m 3}^{\prime}$	↑	$C_7^{'}H_2^{'+}$	+	, H	3.00×10^{-10}		3
$R_{cn}380b$	2	$C_3^{H_2^+}$	+	$\mathrm{C_4^{\dagger}H_2^{\dagger}}$	\uparrow	$C_7^{\dagger}H_2^{\dagger}^{+}$	+	H_2	3.00×10^{-10}		[3]
$R_{cn}381a$	2	$C_3H_2^+$	+	$\mathrm{C_6H_2}$	\uparrow	CXHYNZ ⁺	+	Н	3.00×10^{-10}		[3]
$R_{cn}381b$	2	$ \mathrm{C_3H_2}^+ $	+	$\mathrm{C_6H_2}$	\uparrow	$CXHYNZ^{+}$	+	$_{ m H_2}$	3.00×10^{-10}		[3]
$R_{cn}382a$	2	$C_3H_2^+$	+	Z ¦	†	$C_2H_2^+$	+	CN	3.74×10^{-11}		[2]
R_{cn} 382b	21 0	$\begin{array}{c} { m C_3H_2}^+ \\ { m G_3H_2}^+ \end{array}$	+ -	Z	†	HCNH+	+ -	, , ,	6.60×10^{-12}		[2]
R_{cn} 383a	20 0	C3H2-	+ -	NH3	†	NH4	+ -	Can	4.60×10^{-19}		[43]
K _{cn} 383b	2) (2)	C3H2-	+ -	NH3	↑ 1	CH ₂ NH -	+ -	C ₂ H ₂	1.15×10^{-19}		[43]
R_{cn} 383d	1 (1	C3H2 C3H3+	+	$_{ m NH_3}^{ m NH_3}$	†	C_2H_5 $C_3H_3NH^+$	+	N H	1.38×10^{-09}		[43]
R_{cn} 383e	2	$C_3H_2^+$	+	$_3^{ m NH}_3^{ m S}$	↑	$C_3^{ m H_5^2N^+}$	+	hv	2.30×10^{-10}		[43]
Continued on Next Page	Next.	Page									

Ref.	[2]	[-]	[43]	[43]	[43]	[43]	[43]	[44]	[10],[11]	[2]	[2]	5		23	7	[2]	[2]	[2]	[2]	[2]		[45],[46]	[45],[46]	[44]	[44]	[44]	[44] [2]		138	[18]		[2]	[18]	2	-	[2]	[2]	[10],[11]	[33]	[47]	[47]	[44]	[44]	[19]	[19]	[18]	[19]
k	$ 1.60 \times 10^{-10}$	5.00×10 ⁻¹¹	5.00×10^{-11}	9.00×10^{-10}	3.00×10^{-10}	3.00×10^{-10}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.80×10^{-11}	$\begin{array}{c c} 5.00 \times 10^{-11} \end{array}$	2.10×10^{-10}	1.00×10 ⁻¹⁰	Z:30×10 FE0×10-10	5.50×10 ⁻¹⁰	1.00×10 ⁻¹⁰	2.20×10^{-26}	8.04×10^{-10}	3.96×10^{-10}	$ 3.36\times10^{-10}$	1.06×10^{-09}	1.00×10^{-10}	$\begin{array}{c c} 6.20 \times 10^{-26} \\ \hline -\hat{z}\hat{z} & \hat{z} = 10 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00×10^{-10}	8.17×10-19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.23×10 ⁻ 10	7.20×10 5.80×10 ⁻¹¹	1.80×10 ⁻¹⁰	1.20×10 ⁻¹⁰	1.00×10^{-10}	5.00×10^{-24}	1.00×10 ⁻¹⁰	4.90×10 1.60×10^{-10}	1.00×10 ⁻¹⁰	3.40×10^{-25}	9.00×10^{-10}	3.50×10^{-12}	2.00×10^{-09}	3.00×10^{-10}	1.18×10^{-10}	2.24×10^{-11}	1.76×10^{-09}	4.40×10^{-10}	$ 4.50\times10^{-11}$	2.25×10^{-11}	4.50×10 ==	3.75×10 **
		C.H.	HCN	hv	HCO	HCO	$\mathrm{C_2H_2}$		hv	$\mathrm{C_2H_2}$		Þ	112 hv	i		CH_3CCH	$\mathrm{C_2H_4}$	$\mathrm{C_4H_2}$	$\mathrm{C_2H_2}$		ì	$ m C_2H_2$	$^{ m H_2}$	hv 211 2211	CH ₃ CCH		п2 + п	$\Omega_{\rm e}^{2}$	(3112 (2,H,	(24							hv	hv	hv	hv	C_3H_3	hv	C_3H_2	Н	$_{2}^{\mathrm{H}_{2}}$	CO	COH
Reaction	\rightarrow CXHYNZ ⁺	+ +HN.CH +	Cr.H, + + +	\downarrow $C_6H_5N^+$ +	$\rightarrow c - C_3 H_3^+ +$	\rightarrow $^{1-\text{C}_3\text{H}_3^+}$ +	\rightarrow CH ₂ CO ⁺ +	\rightarrow CXHYNZ ⁺	\rightarrow $C_6H_5NH^+$ +	$\rightarrow c - C_3 H_3^+ +$	\rightarrow $C_5H_5^+$	+	C ₅ H ₅ + +	C.H.+	0	$\rightarrow C_3H_7^+ +$	\rightarrow C ₄ H ₇ ⁺ +	$\rightarrow c - C_3 H_3^+ +$		\rightarrow $C_7H_5^+$	+	\rightarrow $C_7H_7^+$ +	_	$Adduct^{+}$	$C_7H_7^+$	CXHYNZ+	+ CAHINZ: +		→ HCNH+ +	+	-	\rightarrow $C_4H_3NH^+$	→ CXHYNZ ⁺		o	\rightarrow CXHYNZ ⁺	\rightarrow $C_6H_3NH^+$ +		$C_6H_7NH^+$	$C_7H_7NH^+$		$AdductN^+$	\rightarrow C ₅ H ₅ NH ⁺ +	+	$^{\mathrm{HC}_{3}\mathrm{O}^{+}}_{\mathrm{C}_{3}\mathrm{O}^{+}}$	↓ C ₂ H ₃ +	†
	+ HCN		C3H3N				+	+	+	+	$+$ C_2H_2	-	+ C ₂ H ₄			$+$ C_3H_8	+	+	+	$+$ C_4H_2		+	+	+ -	$+$ C_7H_8	+ -		+ +				+ HCN		+ CH ₂ CN		+	+	+	+	+	+	+		+	$+ \frac{O(^{3}P)}{O(^{3}P)}$		(A) (C) +
Type	_		$\frac{1}{2}$ C ₃ H ₂ ⁺									_	2 1-C ₃ H ₂ +					$2 1-C_3H_3^+$			_	<u>-</u>		<u> </u>		$\frac{2}{1-C_3H_3^3}$	2 I-C3H3					$3 1-C_3H_3^+$	2 1-C,H,+	3 1-C ₃ H ₃ +	0	_									$\frac{2}{1-C_3H_3^+}$	$\frac{2}{1 - \frac{1}{3} + \frac{1}{3}}$	
	R _{cn} 384	B 385a	R _{cn} 385b	$R_{cn}385c$	$R_{cn}386a$	$R_{cn}386b$	$R_{cn}386c$	$R_{cn}387$	$R_{cn}388$	$R_{cn}389a$	R_{cn} 389b	D 2000s	Ren 390h	R _{cn} 391		$R_{cn}392a$	$R_{cn}392b$	$R_{cn}393a$	$R_{cn}393b$	$R_{cn}393c$		R_{cn} 394a	$R_{cn}394b$	R_{cn} 395a	R_{cn} 395b	\mathbf{R}_{cn} 395c	R 396	R 2397a	R _{cn} 397b	$R_{cn}397c$		$R_{cn}398$	B. 399a	R _{cn} 399b		$\mathbb{R}_{cn}400a$	$\mathbb{R}_{cn}400\mathrm{b}$	$R_{cn}401$	$R_{cn}402$	$R_{cn}403a$	$R_{cn}403b$	$\mathbb{R}_{cn}404a$	$\mathbb{R}_{cn}404\mathrm{b}$	$R_{cn}405a$	$R_{cn}405b$	$\mathbf{R}_{cn}405c$	R.c. 405d

Ţ	Type					Reaction					k	Ref.	П
- 700	-	+	-			+0 11	-	1		1 9 90 10 – 12		[0]	ı
$K_{cn}40ba$.7	I-C ₃ H ₃	+	$^{ m H}_2^{ m C}$	↑	H ₃ O.	+	C_3H_2		3.20×10		[7]	
$R_{cn}406b$	7	$^{\mathrm{l-C_3H_3^+}}$	+	$_{ m H_2O}$	↑	$\mathrm{C_2H_3CO^+}$	+	${ m H}_2$		2.40×10^{-12}		[2]	
$R_{cn} 406c$	2	1-C,H,+	+	Н,О	†	C, H, CO+	+	hv		2.40×10^{-12}		[2]	
B 407	٠	+, H, H,	+	H, CO	1	+ ات ات	+	5		1.00×10-09		. 2	
1.cm 10.	1 0	+3313		11200		+ 12 - 2) :		9 00 110 - 11		[[]	
$R_{cn}40\delta$	7 (C3∏4 : 4	+ -	;	↑	C-C3H3	+ -	п2		3.00×10 , 20 10-10		7	
$\kappa_{cn}409a$.71	C_3H_4	+	C_2H_2	↑	C_5H_5	+	I,		4.20×10 ±		[7]	
$R_{cn}409b$	3	$\mathrm{C_3H_4}^+$	+	$\mathrm{C_2H_2}$	↑	$C_5H_6^+$				1.00×10^{-10}		[3]	
		•		1))				3.30×10^{-26}			
D 410°	c	+ = 7	-	٦ ر	1	+	+	Ę		0.13~10-11		[6]	
I'cn #10a	1 (C3114 ≃ :: 4	+	C2114	1	C4 II5 ≃ II 5	+	C113		9.13 10		<u>4</u>	
$\kappa_{cn}410b$.71	C_3H_4	+	C_2H_4	↑	C_5H_7	+	I.		7.39×10		[7]	
$R_{cn}410c$	3	C,H,+	+	C,H	↑	C, H,				1.00×10^{-10}		[2]	
		*		#		0				8.40×10-27			
;		+		1100		+				1.0010-10		3	
κ_{cn} 411a	.71	C3H4	+	CH ₃ CCH	↑	C ₃ H ₅	+	C_3H_3		1.98×10		<u>N</u>	
$R_{cn}411b$	2	C,H,+	+	CH,CCH	↑	C,H,+	+	C,H		2.20×10^{-11}		[2]	
4112		, t		122		* t		* I		0.000.10-11] [
Γ_{cn}^{4110}	7	C3⊓4 .	+	Cn3 CCn3	†	C4 П6	+	$C_2\Pi_2$		2.20×10		[7]	
$R_{cn}411d$	7	$C_3H_4^+$	+	CH,CCH	†	C, H, +	+	CH,		2.20×10^{-11}		[2]	
D /1110	c	, + + - -	+	HOO HO	1	ر ا ا ا	Н	, ⊐	Ξ	8 80 > 10 - 11		[5]	
n _{cn} 411e	4 (C3114	+ -	CII3CCII	1	C ₆ 11 ₅	+ -	112	+	6.60 1.0 1.0		7 [
$\mathbf{K}_{cn}4111$.71	C_3H_4	+	CH3CCH	↑	C_6H_7	+	I.		7.48×10		[7]	
B. 412a	2	+.H.C	+	CHOCCHO	1	+ H. T	+	C,H		5.50×10^{-11}		[4]	
4101		+ 11 +		211002110		+ 1 7		4120		1100111		[2]	
κ_{cn} 4120	7	C3 H4 .	+	CH2CCH2	↑	C4 H6 .	+	C_2H_2		1.10×10		[4]	
$R_{cn}412c$	2	$C_3H_4^+$	+	CH,CCH,	↑	C, H, +	+	CH_{3}		1.10×10^{-11}		[4]	
D 4193	•	ر تا +	-	לה לל הל	-	+ ت ت	-	,	-	7.70~10-11] [
Γ_{cn} 4120	7	C3 T4	+	CH2CCH2	1	C6 II 5	+	Π_2	+	1.10×10		[4]	
$R_{cn}412e$	7	$\mathrm{C_3H_4}^+$	+	CH, CCH,	↑	$C_6H_7^+$	+	Ξ		$ 9.57\times10^{-10}$		4	
R 413	٠	ر ا ا	+	٠ ت ت	1	+ = =	+	Ξ.		1 00 > 10 - 09		[5]	
Incn#10	4 (C3114 □ :: +	+	_311 ₆	1	C4116	+	C2114		1.00 1.0		7	
$R_{cn}414$.71	$C_3H_4^-$	+	C_3H_8	↑	CXHYNZ				1.20×10^{-10}		[2]	
$R_{cn}415a$	2	C,H,+	+	C_AH	†	C, H, +	+	C,H		1.26×10^{-10}		[7]	
B 415h		ر 4 تا 4	- +	7 H	1	ر 4 تا 4 تا	- +	77-H		1.67~10-09		[]	
Itcn 4100	1 (C3114 ≃ :: 4	-	O4 112 ⊘ 113	1	C7115 ≃ 11 4	H	11		1.01 \ 1.0		4 3	
$\kappa_{cn}415c$		C_3H_4	+	C_4H_2	↑	C_7H_6				1.00×10		[2]	
										1.00×10^{-26}			
R 416a	6	+ 1 -	+	Z	1	+N-H-C	+	Ξ		1 00×10 ⁻¹⁰		[3]	
D 416b		+ II C		. 2		13 AH+		: =		1 00 1 10 - 10		2 2	
Iten 417	1 0	3114	-	1114	١.	11035411	-	112		0.100.10-10		[5]	
$\kappa_{cn}41/a$.7	C3H4 .	+	$^{ m NH_3}$	↑	NH3	+	CH3CCH	_	2.10×10 ==		[48]	
$R_{cn}417b$	2	$\mathrm{C_3H_4^+}$	+	$_{ m NH_3}$	↑	$^{+}_{4}$	+	$\mathrm{C_{3}H_{3}}$		1.29×10^{-09}		[48]	
$R_{cn}418a$	2	C,H,+	+	HC,N	↑	HC_2NH^+	+	C_3H_3		1.80×10^{-10}		[2]	
R 418h	c:	ے'۔ اللہ	+	Z	1	+N H		0		1 00×10 ⁻¹⁰		2	
2011	,	<3 4	-	3,1						4 20 ~ 10 - 26		<u>. </u>	
		+		;		+1117		;		4.50 × 10		[00]	
\mathbf{K}_{cn} 419a	7	C3H4	+	C ₃ H ₅ N	↑	C3H5INH	+	C_3H_3		3.71×10 ==		[55]	
$R_{cn}419b$	7	$\mathrm{C_3H_4^{-1}}$	+	C_3H_5N	↑	$C_6H_9N^+$	+	hv		1.95×10^{-10}		[33]	
$R_{cn}420a$	2	$C_3H_5^+$	+	Н	↑	C, H, +	+	CH_4		5.00×10^{-13}		[2]	
B. 420b	2	ر H, +	+	н	↑	٦. H. H.	+	CH,		9.50×10^{-12}		[2]	
R 491		+ H C	- +	: 1		C213	- +	br.		1.00×10-13		[2]	
1\cn 400	1 0	C3112	-	11.2		(3117	+ -	, II,		0.000.10-10		[#3]	
$R_{cn}422a$.7	C_3H_5	+	C_2H_2	↑	C_5H_5	+	H_2		3.80×10 ±3		[7]	
$R_{cn}422b$	3	$C_3H_5^+$	+	$\mathrm{C_2H_2}$	↑	$C_5H_7^+$				1.00×10^{-10}		[2]	
		,		1						3.20×10^{-26}		•	
$R_{cn}423a$	2	C, H, +	+	C_sH_s	↑	C, H, +	+	Н		8.90×10^{-11}		[2]	
R _{cn} 423b	65	C,H,+	+	$C_{\rm s.H.}^2$	↑	C, H, +		4		1.00×10^{-10}		[2]	
		G 6 .		ħ7-		B 0 .				1.80×10^{-23}			
B 424a	6	+ H C	+	HUU HU	1	+ H C	+	Ħ		3.50×10 ⁻¹⁰		[5]	
R_{cn} 424b	1 m	C3H; +	- +	CH3CCH	` †	C, H, +	-	2		1.00×10^{-10}		<u> 2</u> <u>2</u>	
		0		o		n 0				6.80×10^{-26}			
Continued on Next Page	Next F	эасе								_		_	
	1												

Ref.	[2]	<u>aaaa</u>	[2] [2]	[50] [50] [50]	[50] [48] [2] [2]	[33] [33]	[33] [2]	[51]	2 Z Z Z Z Z Z	[2]	<u> </u>
k	1.00×10^{-09} 1.00×10^{-10} 1.00×10^{-26}	0.40×10^{-10} 3.90×10^{-10} 2.82×10^{-11} 5.17×10^{-11} 1.10×10^{-10}	0.20×10 1.50×10^{-10} 1.00×10^{-10}	0.30×10^{-0} 1.103×10^{-0} 1.15×10^{-1} 1.04×10^{-0} 2.18×10^{-1}	1.88×10^{-10} 9.00×10^{-10} 5.00×10^{-12} 1.00×10^{-10}	1.75×10^{-09} 7.50×10^{-10} 7.60×10^{-10}	4.75×10^{-2} 6.65×10^{-10} 3.80×10^{-10} 1.00×10^{-10} 0.50×10^{-20}	1.00×10^{-09} 1.00×10^{-10} 1.00×10^{-25}	$\begin{array}{c} 2.68 \times 10^{-09} \\ 2.68 \times 10^{-09} \\ 1.44 \times 10^{-09} \\ 8.04 \times 10^{-11} \\ 5.90 \times 10^{-10} \\ 1.100 \times 10^{-10} \end{array}$	1.80×10^{-10} 1.00×10^{-10} 4.0×10^{-26}	2.70×10^{-10} 2.80×10^{-10} 2.80×10^{-10} 4.20×10^{-10} 5.70×10^{-10} 3.00×10^{-10} 1.30×10^{-10} 1.60×10^{-10} 2.40×10^{-10}
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CH	СН	CH ₃ CCH	нос		
	+ C ₂ H ₄	+ C ₃ H ₆ + C ₂ H ₆ + C ₂ H ₄	$+$ C_2H_2	+ + + C ₂ E			+ C ₃ H ₆ + hv + CH ₃ C	+ CH ₂	+ CH ₃ (+ CH ₃ (+ CH ₃) + H CH ₃	+ CH ₃	C2H, C2H, C2H, C2H, C2H, C3H, C3H, C3H, C3H, C3H, C3H, C3H, C3
Reaction	$C_4H_7^+ + C_6H_{11}^+$	$C_{3}H_{7}^{+}$ $C_{4}H_{7}^{+}$ $C_{4}H_{9}^{+}$ $C_{6}H_{13}^{+}$	$^{\mathrm{C_5H_5}}_{\mathrm{C_7H_7}}{}^{+}$	$C_7H_7^+$ $C_6H_7^+$ $CXHYNZ^+$ $CXHY_1$	$egin{array}{ccc} C_7 H_7^{"+} & & & \\ NH_4^{"+} & & & \\ C_4 H_5 NH^+ & & & \\ C_4 H_5 NH^+ & & & \\ \end{array}$	$CH_{2}NH_{2}^{+}$ $C_{4}H_{7}NH_{+}^{+}$ $CH_{3}NH_{3}^{+}$	$C_{4}^{2}NH_{2}^{2}$ $C_{4}^{2}H_{9}NH^{+}$ $HC_{3}NH^{+}$ $C_{6}H_{5}NH^{+}$	$\mathrm{C_3H_3NH}^+\\\mathrm{C_6H_7NH}^+$	$\begin{array}{c} {\rm C_3H_5NH}^+ \\ {\rm C_6H_9NH}^+ \\ {\rm C_4H_5}^+ \\ {\rm C_5H_7}^+ \\ {\rm C_5H_7}^+ \\ {\rm C_5H_8}^+ \end{array}$	${^{\mathrm{C}}_{4}}^{\mathrm{H}_{7}}^{+}$ ${^{\mathrm{C}}_{5}}^{\mathrm{H}_{10}}^{+}$	$\begin{array}{c} C_3H_7^+ \\ C_4H_7^+ \\ C_4H_8^+ \\ C_5H_9^- \\ C_5H_9^+ \\ C_5H_9^+ \\ C_8H_8^+ \\ C_8H_8^+ \\ C_9H_3^+ \\ C_9H_3^+ \\ C_9H_8^- \\ C_9H_8^- \\ C_9H_6^- \\ C_9H_6^- \\ \end{array}$
I	↑ ↑	$\uparrow\uparrow\uparrow\uparrow$	\uparrow \uparrow	$\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow$	↑ ↑ ↑	$\uparrow\uparrow\uparrow\uparrow$	↑ ↑	$\uparrow\uparrow\uparrow\uparrow\uparrow$	↑ ↑	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$
	$\substack{\text{C}_3\text{H}_6\\\text{C}_3\text{H}_6}$	С С С С С В В В В В В В В В В В В В В В	$\mathrm{C_4H_2}\\\mathrm{C_4H_2}$	C ₆ H ₆ C ₆ H ₆ C ₇ H ₈	$C_7^{\prime}H_8^{\prime}$ NH_3^{\prime} HCN	CH_2NH CH_2NH CH_3NH_2 CH_3NH_2	CH_3NH_2 CH_3NH_2 HC_3N HC_3N	$\begin{array}{c} C_3 H_3 N \\ C_3 H_3 N \end{array}$	C ₃ H ₅ N C ₃ H ₅ N C ₂ H ₂ C ₂ H ₂ C ₂ H ₂	$\mathrm{C_2H_4}\\\mathrm{C_2H_4}$	C ₃ H ₆ N H ₃ N H ₃ N C ₃ H C N H C N H C N H C N
	+ +	++++	+ +	++++	++++	+++-	++++	+ +	+++++	+ +	+++++++++
	$\begin{array}{c} C_3H_5^+ \\ C_3H_5^+ \end{array}$	C3H2++++ C3H2-C3H2-C3H2-C3H2-C3H2-C3H2-C3H2-C3H2-	$C_{3}H_{5}^{+}$ $C_{3}H_{5}^{+}$	C C R H H C C C C C C C C C C C C C C C	C3H2 H2H2 C3H2 C3H2 C3H2 C3H2 C3H2 C3H2	C ₃ H ₅ + C ₃ H ₅ + C ₃ H ₅ +	C ₃ H ₂ + C ₃ H ₂ + C ₃ H ₂ + C ₃ H ₂ +	$C_3H_5^+$ $C_3H_5^+$	C3H2++ C3H6+++ C3H6+C3H6 C3H6+++	$C_{3}H_{6}^{+}$ $C_{3}H_{6}^{+}$	-+++++++++++++++++++++++++++++++++++++
Type	3.2	2000	3.13	0000	0000	0000	2000	03.12	ପରର୍ଗର	3 13	$egin{array}{c} X & X & X & X & X & X & X & X & X & X $
	R_{cn} 425a R_{cn} 425b	R_{cn} 426a R_{cn} 426b R_{cn} 426c R_{cn} 426c	${ m R}_{cn}427{ m a}$ ${ m R}_{cn}427{ m b}$	R_{cn} 428a R_{cn} 428b R_{cn} 429a R_{cn} 429b	$R_{cn} 429c$ $R_{cn} 430$ $R_{cn} 431a$ $R_{cn} 431b$	$R_{cn}432a$ $R_{cn}432b$ $R_{cn}433a$	$K_{cn}433D$ $R_{cn}433c$ $R_{cn}434a$ $R_{cn}434b$	$R_{cn}435a$ $R_{cn}435b$	R_{cn} 436a R_{cn} 436b R_{cn} 437a R_{cn} 437b R_{cn} 437c	$R_{cn}438a$ $R_{cn}438b$	Ren 439a 2 C3 H Ren 439b 2 C3 H Ren 439c 2 C3 H Ren 439d 2 C3 H Ren 440a 2 C3 H Ren 440b 2 C3 H Ren 441c 2 C3 H Ren 441a 2 C3 H Ren 441b 2 C3 H Continuod on Next Page C3 H

Ref.	[53]	[2] [2] [40]	[30]	[53] [31] [54] [73]	<u> </u>	<u> </u>	<u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	<u>8888</u>	<u>8888</u>	[55] [2] [2] [2]	[2]	[33]
k	$\begin{array}{c c} 1.00 \times 10^{-10} \\ 1.00 \times 10^{-27} \end{array}$	1.00×10^{-09} 4.50×10^{-10} 1.20×10^{-10} 1.71×10^{-09}	$\begin{array}{c} 1.00 \times 10^{-27} \\ 1.65 \times 10^{-09} \\ 1.00 \times 10^{-10} \end{array}$	1.00×10 4.00×10^{-09} 6.00×10^{-11} 1.00×10^{-10} $5.00 \times 10^{-14} (3.00 / Tr)^{1.50}$	$\begin{array}{c} 1.65 \times 10^{-10} \\ 1.16 \times 10^{-09} \\ 1.50 \times 10^{-09} \\ 7.50 \times 10^{-10} \end{array}$	7.50×10^{-10} 6.45×10^{-10} 1.60×10^{-09} 7.00×10^{-11}	5.00×10^{-12} 1.40×10^{-11} 2.66×10^{-10} 2.00×10^{-10} 2.30×10^{-23}	7.05×10^{-10} 7.50×10^{-10} 7.20×10^{-10} 7.20×10^{-10} 7.00×10^{-10}	0.30×10^{-10} 0.30×10^{-10} 0.117×10^{-09} 0.00×10^{-10} 0.00×10^{-10}	3.00×10 1.46×10^{-09} 1.71×10^{-10} 9.50×10^{-12} 1.00×10^{-10}	2.00×10^{-1} 1.70×10^{-09} 1.00×10^{-10} 2.50×10^{-26}	3.60×10^{-09} $3.60 \times 10^{-12} (300/T)^{2.50}$
				+ + +								
		CH_4 C_2H_4 C_3H_8 C_3H_6	$\mathrm{C_3H_6}$	CH_4 N_2 NH_3 C_3H_8 b_Y	$egin{array}{c} \Xi \ H \ H \ C_2 H_2 \end{array}$	ннна.	h h	$\begin{array}{c} \mathrm{C_2H_2} \\ \mathrm{H_2} \\ \mathrm{H} \end{array}$	${\rm C_2H_2}\atop{\rm H}\\{\rm C_2H_2}$	$C_4H_2\\HCN\\H\\C_3$	hv	hv hv
		++++	+	+++++	++++	++++	+ + +	+ + +	+ + +	++++	+	+ +
Reaction	$\mathrm{C_3H_7}^+\mathrm{CH_4}$	$C_4 H_9^+ + C_4 H_9^+ + C_3 H_7^+ + NH_4^+ + C_3 H_7^+ + C_3 H_7^+ + C_4 H_8^+ + C_5 H_8^+ + C_5 H_8^- + C_5 H_8$	$C_{4}^{H7}M_{3}^{H}$ $C_{3}^{H7}N_{2}^{H}$	C ₃ H ₇ + C ₃ H ₇ + C ₃ H ₄ + NH ₄ +	C_{4}^{4}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}^{4}H_{4}^{+} + C_{6}^{4}H_{4}^{+} + C_{6}^{$	$C_4H_4^+ + C_6H_4^+ + C_6H_5^- + C_6H_6^-$	${f C_5 H_4^+} + {f C_7 H_5^+} + {f C_6 H_2^+} + {f C_6 H_2^+} + {f Adduct}^+$	$C_{6}H_{6}^{+}$ $C_{3}H_{+}^{+}$ $HC_{4}N_{+}^{+}$ $HCNH_{+}^{+}$ $C_{5}H_{3}N_{+}^{+}$	$C_7 H_3 N^+ C_7 H_3 N^+$	$C_7H_7N^+$ AdductN ⁺
	↑	$\uparrow\uparrow\uparrow\uparrow\uparrow$	^ † †	$\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow$	\uparrow \uparrow \uparrow \uparrow	$\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow\uparrow$	\uparrow \uparrow	\uparrow \uparrow
	CH_4	C ₂ H ₆ C ₃ H ₆ C ₃ H ₈ NH ₃	${\rm CH_3NH_2}\atop{\rm N_2}$	N_2 N_2 NH_2 NH_3	$egin{array}{c} H_2 \ \mathrm{CH}_4 \ \mathrm{C}_2 H_2 \ \mathrm{C}_2 H_4 \end{array}$	$\mathrm{C_2H_4}$ $\mathrm{CH_3CCH}$ $\mathrm{C_4H_2}$ H	$^{ m H}_2^{ m C}_2^{ m H}_2^{ m C}_2^{ m H}_2^{ m C}_2^{ m H}_2^{ m C}_2^{ m H}_2^{ m C}$	C_2H_4 C_2H_4 C_2H_4 C_2H_4	$\mathrm{CH_3CCH}$ $\mathrm{CH_3CCH}$ $\mathrm{C_4H_2}$ $\mathrm{C_4H_2}$	$C_6H_6\\N\\N\\N\\N\\HCN$	HC_3N HC_3N	${ m C_3H_5N} \ { m HC_5N}$
	+	++++		+++++	++++	++++	++++	+ + + +	++++	+++++	+ +	+ +
	$C_3H_7^+$	C3H7+ C3H7+ C3H7+ C3H7+ C3H7+	$G_{3}H_{7}^{+}$ $G_{3}H_{7}^{+}$	C ₃ H ₇ + CH ₄ C ₃ H ₇ + N ₂ C ₃ H ₉ + C ₃ H ₉ + C ₃ H ₉ +	C ₄ HH+ C ₄ HH+ C ₄ HH+	$\begin{array}{c} C_4H+\\ C_4H+\\ C_4H+\\ C_4H+\\ \end{array}$	C ₄ H ₂ + C ₄ H ₂ + C ₄ H ₂ + C ₄ H ₂ +	$C_4H_2^2 + C_4H_2^2 $	$C_4H_2^+ + C_4H_2^2 $	${\rm C}_{4}^{\rm H}{\rm H}_{2}^{\rm C}+\\ {\rm C}_{4}^{\rm H}{\rm C}_{2}^{\rm C}+\\ {\rm C}_{4}^{\rm C}+\\ {\rm C}_{$	$C_4 H_2^+$ $C_4 H_2^+$	$\begin{bmatrix} \mathrm{C}_4\mathrm{H}_2^+ \\ \mathrm{C}_4\mathrm{H}_2^+ \end{bmatrix}$
Type	3	00000	0 0 0	00000	10000	00000	2000	0 0 0 0	0000	00000	3.2	2 2 Next
	$R_{cn}443$	R_{cn} 444 R_{cn} 445 R_{cn} 446 R_{cn} 447 R_{cn} 447 R_{cn}	$ ho_{cn}$ 449 $ ho_{cn}$ 450	$R_{cn}451$ $R_{cn}452$ $R_{cn}453$ $R_{cn}454$ $R_{cn}454$	R_{cn} 456 R_{cn} 457 R_{cn} 458 R_{cn} 459a	R_{cn} 459b R_{cn} 460 R_{cn} 461 R_{cn} 462	$egin{array}{c} R_{cn} 463 \ R_{cn} 464a \ R_{cn} 464b \ R_{cn} 464c \end{array}$	${f R}_{cn}$ 465a ${f R}_{cn}$ 465b ${f R}_{cn}$ 465c ${f R}_{cn}$ 465c	${f R}_{cn}466a$ ${f R}_{cn}466b$ ${f R}_{cn}467a$ ${f R}_{cn}467a$	$R_{cn}468$ $R_{cn}469a$ $R_{cn}469b$ $R_{cn}469c$ $R_{cn}469c$	$ m R_{cn}471a$ $ m R_{cn}471b$	$ \begin{array}{c c} R_{cn}472 & 2 & C_4H_2\\ R_{cn}473 & 2 & C_4H_2\\ Continued on Next Page $

Ref.	[56] [56] [2] [18]	<u></u>	[2]	<u> </u>	[55], [57] [48] [33] [33] [33] [33]	[56] [23] [2]	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
k	$\begin{array}{c} 1.26 \times 10^{-09} \\ 4.42 \times 10^{-10} \\ 2.00 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 3.00 \times 10^{-27} \end{array}$	$\begin{array}{c} 0.20 \times 10 \\ 0.00 \times 10^{-14} \\ 2.20 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 0.50 \times 10^{-24} \end{array}$	$\begin{array}{c} 2.20 \times 10^{-10} \\ 1.20 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 4.50 \times 10^{-26} \end{array}$	$\begin{array}{c} 4.30 \times 10 \\ 1.40 \times 10^{-09} \\ 7.40 \times 10^{-10} \\ 1.00 \times 10^{-26} \\ 6.70 \times 10^{-26} \end{array}$	$\begin{array}{c} 8.70 \times 10^{-2} \\ 1.30 \times 10^{-09} \\ 9.90 \times 10^{-10} \\ 1.92 \times 10^{-10} \\ 4.80 \times 10^{-10} \\ 1.30 \times 10^{-09} \\ 5.00 \times 10^{-10} \\ 2.00 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ \end{array}$	1.59×10 1.53×10^{-09} 1.55×10^{-11} 1.90×10^{-10} 1.00×10^{-10}	1.00×10 = 2 1.20×10 ⁻¹¹ 9.00×10 ⁻¹¹ 1.80×10 ⁻¹¹ 5.00×10 ⁻¹⁰ 6.96×10 ⁻¹⁰ 6.96×10 ⁻¹⁰ 6.60×10 ⁻¹⁰ 3.20×10 ⁻¹⁰ 4.37×10 ⁻¹¹ 7.88×10 ⁻¹⁰ 4.96×10 ⁻¹⁰ 1.75×10 ⁻¹⁰ 1.60×10 ⁻¹⁰ 1.50×10 ⁻¹⁰ 1.50×10 ⁻¹⁰ 1.50×10 ⁻¹⁰ 1.00×10 ⁻¹¹ 1.00×10 ⁻¹⁰
					+ H ₂		
	$\mathrm{C_4H_2}\\\mathrm{C_4H}$	hv hv	H_2	$\mathrm{C_2H_2} \\ \mathrm{C_2H_2}$	C_4H_2 C_4H_2 C_4H_2 hv C_4H_2 C_4H_2 hv	$\mathrm{C_4H_2} \\ \mathrm{C_4H_3}$	$ H_{2} $ $ H_{2} $ $ H_{2} $ $ H_{3} $ $ H_{2} $
	+ +	+ +	+	+ +	++++++	+ +	++++++ ++++++++++++++++++++++++++++++++
Reaction	$C_5H_5N^+$ $C_5H_5NH^+$ C_5H_5NN+ $CXHYNZ^+$ $Adduct^+$	$C_4H_4^+$ $C_6H_5^+$ $C_6H_5^-$	$^{\mathrm{C}_{6}\mathrm{H}_{5}^{+}}_{\mathrm{C}_{6}\mathrm{H}_{7}^{+}}$	$C_5H_5^+$ $C_6H_3^+$ Adduct	$\begin{array}{c} C_{6}H_{7}^{+} \\ NH_{4}^{+} \\ CH_{2}NH_{2}^{+} \\ CG_{2}H_{5}NH_{2}^{+} \\ CG_{3}NH_{3}^{+} \\ CG_{2}NH_{3}^{+} \\ CG_{5}H_{7}NH_{3}^{+} \\ C_{5}H_{7}NH_{7}^{+} \\ \end{array}$	${ m C_5H_5NH^+} \ { m C_5H_5N^+} \ { m CXHYNZ^+} \ { m CXHYNZ^+} \ { m CXHYNZ^+} \ { m C_4H_3^{+}CO}$	$\begin{array}{c} C_{6}H_{4}^{+} \\ C_{6}H_{5}^{+} \\ C_{6}H_{5}^{+} \\ C_{6}H_{5}^{+} \\ C_{7}H_{7}^{+} \\ C_{8}H_{4}^{+} \\ C_{8}H_{4}^{+} \\ C_{8}H_{4}^{+} \\ C_{8}H_{5}^{+} \\ C_{8}H_{5}^{+} \\ C_{8}H_{5}^{+} \\ C_{6}H_{5}^{+} \\ C_{6}H_{7}^{+} \\$
	$\uparrow\uparrow\uparrow\uparrow$	\uparrow \uparrow \uparrow	\uparrow \uparrow	\uparrow \uparrow \uparrow	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow$	11111111111111111
	$C_5 H_5 N \\ C_5 H_5 N \\ C_5 H_5 N \\ C_2 N_2 \\ CO$	H $\mathrm{C_2H_2}$ $\mathrm{C_2H_2}$	$\mathrm{C_2H_4}\\\mathrm{C_2H_4}$	$\mathrm{CH_3CCH} \atop \mathrm{C_4H_2} \atop \mathrm{C_4H_2}$	C ₆ H ₆ NH ₃ CH ₂ NH CH ₂ NH CH ₂ NH CH ₃ NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ HC ₃ N	$C_5H_5N \\ C_5H_5N \\ C_2N_2 \\ CO$	C2H2 C2H2 C2H3 CH3CCH CH3CCH C4H2 C4H2 C6H6 NH3 NH3 NH3 C6H5 C6H5 C2H2 C2H2 C2H2 C2H2 C2H2 C2H2 C2H2 C2
	++++	+ + +	+ +	+++	+++++++	++++	+++++++++++++++++++++++++++++++++++++++
	$\begin{array}{c} C_4H_2^{+} + \\ C_4H_2^{+} + \\ C_4H_2^{+} + \\ C_4H_2^{+} \end{array}$	$C_4H_3^+ + C_4H_3^+ + C_4H_3^-$	$C_4 H_3^+$ $C_4 H_3^+$	$C_4H_3 + C_4H_3 + C_5H_3 + C_5H_5 + C_5H_5 + C_5H_5 + C_5H_5 + C_5H_5 + C$	2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	C ₄ H ₃ + C ₄ H ₃ + C ₄ H ₃ + C ₄ H ₃ +	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Туре	0000	2 2 2 2	3.23	0.00	00000000	0 0 0 0	$^{ m N}_{ m com}$
	${f R}_{cn} 474{f a}$ ${f R}_{cn} 475$ ${f R}_{cn} 475$ ${f R}_{cn} 476$	$\begin{array}{c} \mathbf{R}_{cn} 477 \\ \mathbf{R}_{cn} 478\mathbf{a} \\ \mathbf{R}_{cn} 478\mathbf{b} \end{array}$	${ m R}_{cn}479a$ ${ m R}_{cn}479b$	$R_{cn} 480$ $R_{cn} 481a$ $R_{cn} 481b$	R _{cn} 482 R _{cn} 483 R _{cn} 484a R _{cn} 484b R _{cn} 485a R _{cn} 485b R _{cn} 485b	${f R}_{cn}487a$ ${f R}_{cn}487b$ ${f R}_{cn}488$ ${f R}_{cn}489$	Rcn 490a 2 C4H Rcn 490b 2 C4H Rcn 490c 2 C4H Rcn 491a 2 C4H Rcn 491b 2 C4H Rcn 492a 2 C4H Rcn 493b 2 C4H Rcn 494a 2 C4H Rcn 495a 2 C4H Rcn 495b 2 C4H Rcn 495c 2 C4H Rcn 496b 2 C4H Rcn 496b 3 C4H Rcn 496b 3 C4H Rcn 496b 3 C4H Rcn 496b 2 C4H Rcn 496b 3 C4H Rcn 496b 2 C4H

Ref.	(48 <u>8</u>)	[2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	(*) Su-Chesnavich [4] [3] [4] [4] [4]	<u> </u>	[55, [60], [61] [55, [60], [61] [55, [60], [61] [55, [60], [61] [3] [4] [4] [2] [2] [2]
k	1.00×10 ⁻¹⁰ 4.70×10 ⁻¹⁰ 8.50×10 ⁻¹⁰ 1.50×10 ⁻¹⁰ 1.00×10 ⁻¹⁰	$\begin{array}{c} 1.40 \times 10^{-24} \\ 1.50 \times 10^{-10} \\ 5.20 \times 10^{-11} \\ 2.00 \times 10^{-10} \\ 2.00 \times 10^{-10} \\ 2.00 \times 10^{-10} \\ 1.57 \times 10^{-09} \\ 3.20 \times 10^{-11} \\ 1.31 \times 10^{-09} \end{array}$	4.51×10 4.53×10^{-09} 1.00×10^{-17} 1.50×10^{-10} 3.50×10^{-10} $1.00 \times 10^{-13} (300/T)^{2.00}$ 2.00×10^{-11} 2.30×10^{-10} 8.00×10^{-10}	2.00×10^{-10} 2.00×10^{-10} 3.00×10^{-10} 5.00×10^{-10} 5.00×10^{-10} 6.14×10^{-10} 6.00×10^{-10} 1.00×10^{-10} 1.00×10^{-10} 2.00×10^{-10} 8.10×10^{-10} 1.90×10^{-10} 2.41×10^{-10} 2.41×10^{-10}	4.80×10^{-11} 5.70×10^{-10} 5.70×10^{-10} 6.70×10^{-10} 1.00×10^{-10} 6.00×10^{-27} 7.33×10^{-11} 7.33×10^{-11}
		+ H ₂			
	\mathbf{H} $\mathbf{C}_4\mathbf{H}_4$ \mathbf{CH}_3 \mathbf{H}	$egin{array}{c} H_2 \\ C_4 H_6 \\ H_2 \\ H_2 \\ C_4 H_8 \\ hv \\ H_2 \\ C_4 H_8 \\ hv \\ H_2 \\ C_4 \\ H_8 \\ H_8 \\ C_4 \\ H_8 \\ C_4 \\ H_8 \\ C_4 \\ C_5 \\ C_5 \\ C_6 \\ C_$		С С С С С С С С С С С С С С С С С С С	C ₅ H ₄ C ₅ H ₃ C ₅ H ₄ C ₅ H ₂ C ₂ H ₃ C ₂ H ₃ C ₂ H ₃ C ₂ H ₃
	++++	++++++	++++++++		++++ ++++ +++
Reaction	C ₄ H ₃ NH ⁺ NH ₄ + C ₆ H ₇ + C ₇ H ₉ + C ₇ H ₉ +	C ₇ H ₉ + C ₂ H ₃ NH+ C ₆ H ₉ + C ₆ H ₁ 1 NH ₄ + C ₄ H ₁₁ NH+ C ₄ H ₁₁ NH+	C. C	C644 C743 C743 C744 C744 C744 CXHYNZ	$C_{6}H_{5}^{+}$ $C_{6}H_{6}^{+}$ $C_{6}H_{6}^{+}$ $C_{7}H_{7}^{+}$ $CXHYNZ^{+}$ $Adduct^{+}$ $C_{6}H_{6}^{+}$ $C_{6}H_{6}^{+}$ $C_{7}H_{9}^{+}$ $C_{7}H_{9}^{+}$ $C_{7}H_{7}^{+}$ $C_{7}H_{7}^{+}$
	$\uparrow\uparrow\uparrow\uparrow\uparrow$	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·	\uparrow
	N NH ₃ CH ₃ CCH CH ₃ CCH	CH ₃ CCH CH ₃ CN C ₂ H ₄ C ₂ H ₄ NH ₃ NH ₃	CL3.VII.2 H VC C2.H 2 C2.H 2 C4.H 2 C4.H 2 CC.H CO CO CH CO CO CO	CH 4	C, H, C, H, C, H, C, H, C, H, C, C, C, H, C,
	+++++	+++++	++++++++	-++++++++++++	++++++++++++++
	C ₄ H ₅ C ₄ H ₅ C ₄ H ₅ C ₄ H ₆ C ₄ C ₄ H ₆ C ₄ C ₄ C ₆ C ₆ C ₇	C4H7+ C4H7+ C4H9+	**************************************	,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+	Next Page
Type	00000				
	R_{cn} 500 R_{cn} 501 R_{cn} 502 R_{cn} 502 R_{cn} 503 R_{cn} 503	R., 504 R., 505 R., 506 R., 506 R., 506 R., 507 R., 507	Ren 509 Ren 509 Ren 511a Ren 511b Ren 512 Ren 513 Ren 513 Ren 513 Ren 513	Ren 5106 Ren 5176 Ren 5176 Ren 5177 Ren 5188 Ren 5189 Ren 5200 Ren 5200 Ren 521 Ren 5222 Ren 5224 Ren 5234 Ren 5234	Ren 524a Ren 524b Ren 524c Ren 524c Ren 524e Ren 526 Ren 526 Ren 526 Ren 526 Ren 526 Ren 520 Ren 520 Ren 529 Ren 529c Continued on

Ref.	[3]	2]	[33]	33]	[33]	[33]		7	30]	[20]	3]	. 2	3.	[3]	3]	[3]	62] 33]	2]	[2]	•	[62]	[7	5]	[2]	[64]	64] 31	<u>[7</u>]	2]	[2]	2.5	2.5	7		7 ~	2 2	2]	2]	4]	4],	2 2	•
k	$ \begin{array}{c c} 1.00 \times 10^{-10} & [3] \\ 3.50 \times 10^{-11} & [48] \end{array} $					2.50×10 :: [3: 7.00×10 ⁻¹⁰ [7]										$(300/T)^{0.90}$	1.26×10 *** [6: 1.90×10 ⁻¹⁰ [6:					1.00×10 ± [2]				1.41×10				1.02×10^{-10} 6.80×10^{-11}		3.40×10^{-26}				1.15×10^{-11}	$\begin{array}{c c} 1.00 \times 10^{-10} \\ 5.30 \times 10^{-24} \end{array}$			$1.00 \times 10^{-0.9}$ 1.00×10^{-10} [2]	
	H ₂	5114 hv	$\mathrm{C}_5\mathrm{H}_4$		$_{1}^{C_{5}H_{4}}+_{H_{2}}$	hv	IIV		C, H.,	CEH10	H	Н	Н2	hv	H_2	$^{ m H_2}_{\simeq}$	C ₆ H ₂ HCN	hv					hv	hv	hv	H ₂	IIV H,	Н	hv ~	$\mathrm{C_2H_2}$ H-	2	15	CH4 Chr	C2.114 C2.H3	$_2$ $_2$	ТН		C_2H_2	H	$\mathrm{C_2H_2}$	
Reaction	$\downarrow C_5 H_3 N^+ + \\ \downarrow N H^+ + + + \\ \downarrow N H^+ + \\ $	$ m ^{C}_{6}H_{5}NH^{+}$	$CH_2NH_2^+$	CH ₃ NH ₃ +	CH ₃ NH ₂			,	+ +, HN ↑	CH, NH, +	_		$C_7^+ H_4^{-+}$	\rightarrow Adduct ⁺ +		$CXHYNZ^{+}$	+ + 	Adduct +		-	→ CXHYNZ ⁺	→ AdductN	\rightarrow $C_6H_5^+$ +	Adduct+	Adduct ⁺	- .7	\downarrow $C_6H_7^+$ + $+$ $+$	^{+}Z		$\downarrow C_6H_7$ + $\downarrow CXHYNZ^+$ +	·	+	↑ ↑ ↑ †	C,H,+	$CXHYNZ^+$	-	\rightarrow Adduct ⁺	\rightarrow C ₇ H ₇ ⁺ +	CXHYNZ+	\rightarrow CXHYNZ ⁺ + Adduct ⁺	
	N N	HCN +				$+$ CH_3NH_2		+ Спзсси	+ NH,							+ CH ₃ CCH	С ⁶ Н ⁶			1		+ HCN	H +			+ C ₆ H ₆	+ n ₂ + CH,			$+$ C_2H_4	$+ \frac{c_{2}^{2}}{C_{2}}$		+ C ₂ H ₆		+ CH ₃ CCH	-		+ CH,CCH,		$+ \mathrm{C_4H_2} \\ + \mathrm{C_4H_3}$	1
$_{\mathrm{Type}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C ₅ H ₂ -			2 C. H								$\begin{array}{c} 2 \\ C_6 H_2 \\ C_1 H_1 \end{array}$				$\begin{array}{ccc} 2 & C_6 H_3^+ \\ C_6 H_3^- \end{array}$									$\begin{array}{c} 2 \\ C_6 \\ H_5 \end{array}$	$\frac{1}{3}$ $C_6H_5^+$					$2 \qquad C_6 H_5^+$		$2 C_{\rm cH_5}^+$		$\begin{array}{ccc} 2 & C_6H_5 + \\ 3 & C_6H_5 + \end{array}$	
	$R_{cn}530$	$R_{cn}532$	$R_{cn}533$	R_{cn} 534a	R_{cn} 534b	\mathbf{R}_{cn} 534c \mathbf{R}	Γ_{cn}	κ_{cn} 555D	B. 536	Rcn 537	$R_{cn}538$	$R_{cn}539a$	$R_{cn}539b$	$\mathbf{R}_{cn}540$	$R_{cn}541$	$R_{cn}542$	K_{cn} 543 R 544	Rcn 545	$R_{cn}546$		R_{cn} 547	\mathbf{K}_{cn} 548	R_{cn} 549	$R_{cn}550$	$R_{cn}551a$	$R_{cn}551b$	Γ_{cn} 553 Γ_{cn}	R_{cn} 554a	R_{cn} 554b	$R_{cn}555a$ B $555h$	$R_{cn}555c$	n n	R_{cn} 556b	R _{cn} 557a	$R_{cn}557b$	\mathbf{R}_{cn} 557c	\mathbf{R}_{cn} 557d	R_{cn} 558a	\mathbf{R}_{cn} 558b	\mathbf{R}_{cn} 559a \mathbf{R}_{cn} 559b	

Ref.	[65]	[65]	[65]	[03] [62]	[65]	[2]	[48]	[48]	[48]	[2]		[19]	[19]	[7]	[2]	7 3	[7]	7 3	[Z] G	[2]	[5]	50	[00]	[40]	<u></u>	<u> </u>	<u> </u>	<u>.</u>	3]	<u></u> <u></u>	[3]	[3]	[3]	[3]	[7]	7 5	7	[67]	[2]	[89]	[33]	[33]	[33]	[69]	[3]	[3]	[// [//]
k	8.46×10^{-11}	5.17×10^{-11}	2.30×10 ⁻¹⁹	2.33×10 1.41×10^{-11}	2.82×10^{-11}	3.70×10^{-11}	7.49×10^{-11}	4.78×10^{-11}	8.53×10^{-11}	1.00×10^{-10}	9.60×10^{-29}	6.00×10^{-11}	4.00×10^{-2}	1.00×10 = 5	0.20×10 9.50×10-10	Z.5U×10 7.5010-10	5.00×10 ==	1.33×10	7.00×10 ==	9.70×10 ==	1.00×10^{-10}	3.00 × 10	4.70×10^{-2}	7:20×10 1:00×10 ⁻¹⁰	1.90×10 1.00×10 ⁻¹⁷	2.00×10 ⁻¹⁰	1.00×10 ⁻⁰⁹	7.00×10^{-10}	3.00×10^{-10}	1.00×10^{-09}	2.00×10^{-10}	2.00×10^{-10}	1.00×10^{-10}	1.00×10^{-10}	2.00×10 ±3	1.40×10 1.00×10-10	1.00×10 7 90×10 ⁻²⁴	7.00×10 ⁻¹¹	1.00×10^{-09}	1.60×10^{-10}	3.40×10^{-11}	1.62×10^{-11}	1.80×10^{-12}	1.70×10^{-10}	1.00×10^{-09}	1.00×10^{-09}	4.16×10 ~~e ~~~
	hv hv	Н -		C ₂ H ₂					hv hv				- C ₃ H ₂ O				NO .			C2H4			Cene						. Н.							nv -			hv					н .			II.
Reaction	\rightarrow Adduct ⁺ +	\rightarrow CXHYNZ ⁺ +	CXHYNZ+	→ CAHINZ: +	CXHYNZ ⁺	C _r H ₄ +		$\rightarrow C_6H_7N^+ +$	$\rightarrow C_6H_7NH^+ +$	\rightarrow AdductN ⁺			C-C ₃ H ₃	→ Adduct	+ 5		Adduct .		+3H	C ₇ H ₇ .	→ Adduct ⁺		C3H5. +		- H - C	0 -4 N -2 1 - 4	CXHYNZ ⁺	$CXHYNZ^+$		→ CXHYNZ ⁺ +	\rightarrow HC ₇ N ⁺ +		\downarrow $C_7H_3N^+$ +		,	→ Adduct + +	→ Adduct	+ CXHVNZ+		+	\rightarrow CH ₂ NH ₂ ⁺ +	\downarrow CH ₃ NH ₃ ⁺ +	\rightarrow Adduct ^{\dagger} +	+2	$C_8H_2^+$	\rightarrow CXHYNZ ⁺ +	+ - HN
	+ C ₆ H ₆			9H9C) Z				+ HCN		+ O(³ F)		+ H ₂ O		; ; ;		z 2 + -			+ CH ₃ CCH		+ CH ₂ CCH ₂ + NH	H H		+ +			+ C,H,	$+$ C_2H_4							+ Cn ₃ CCn	+ C, H,	+ C ₄ H ₃							+ CH ₄	+ H ₂
Type		$\begin{array}{c c} 2 & C_6H_5^+ \end{array}$										$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2 C ₆ H ₆ +				2 C ₆ H ₇	2 tr 9 c																						$\begin{array}{c c} 2 & C_8H_2^+ \\ \end{array}$	2 N · Next Page
T	$R_{cn}560a$	\mathbb{R}_{cn} 560b	$R_{cn}560c$	R_{cn} 560a	R _{cn} 560f	$R_{cn}561$	$R_{cn}562a$	R_{cn} 562b	$R_{cn}562c$	\mathbb{R}_{cn} 563		R_{cn} 564a	\mathbf{R}_{cn} 564b	K_{cn} 565	D	R _{cn} 300	Ren 30 /	L _{cn} 5008	\mathbf{K}_{cn} 5685	\mathbf{K}_{cn} 509a	R_{cn} 569b	1	\mathcal{R}_{cn} 570 B 571	Itcn 511	R 573	R 574	R_{cn} 575	R_{cn} 576a	R_{cn} 576b	$R_{cn}577$	$R_{cn}578$	$R_{cn}579$	$R_{cn}580$	\mathbf{R}_{cn} 581	R _{cn} 582	К _{сп} 583а D 583b	Γ_{cn} 303D	B 584	R _{cn} 585	$R_{cn}586$	$R_{cn}587$	$R_{cn}588a$	$R_{cn}588b$	$R_{cn}589$	$R_{cn}590$	\mathbb{R}_{cn} 591	K_{cn} 592 2 N Continued on Next Page

	Type					Reaction						k	Ref.
B 5035	c	+N	+	HJ	1	+ #2	+	HN			5,00 > 10 - 10		[71]
R 503b	40	+ 2	+ +	CH ₄	1	HCNH+	+ +	H			3.00×10^{-10}		[71]
11cn 5350	4 0	+ 2	- +	CH4	1	HCN+	- +	112	Н	Ħ	3.30×10		[71]
11cn 593C	۱ د	+ 2 2	+ +	CII4	1	+ #5	+ +	Z Z	+	1	E.00×10-11		[71]
11cn 5930	4 0	+ 2	- +	CII4	1	CII.4 H H	⊢ ⊣	Z Z			3.00×10 a a4×10 ⁻¹⁰		[71]
Lcn 53 422 B 594h	10	+ 2	- +	C2112	` 1	CNC+	- +	; =			9.13×10-10		[71]
R _{cn} 594c	1 (7)	+ Z Z	- +	C_2H_2	· ↑	HC,N+	- +	Z H			2.13×10^{-10}		[71]
R _{cn} 595a	2	+ Z	+	C_3H_4	↑	$C_3 ilde{H}_3^+$	+	NH,			1.90×10^{-10}		[71]
$R_{cn}595b$	2	+ Z	+	$\mathrm{C_{2}H_{4}^{2}}$	↑	$C_2^{\prime}H_3^{\prime}^+$	+	HN			5.06×10^{-10}		[71]
$R_{cn}595c$	2	+ Z	+	$C_2^{2}H_4^{4}$	\uparrow	$C_2^{\prime}H_4^{\prime+}$	+	Z			6.00×10^{-10}		[71]
\mathbf{R}_{cn} 595d	2	+ Z	+	$\mathrm{C_2^2H_4^4}$	↑	HCN+	+	CH_3			3.16×10^{-11}		[71]
$R_{cn}595e$	2	+ Z	+	$\mathrm{C_2^-H_4^-}$	\uparrow	HCNH+	+	$^3\mathrm{CH}_2$			1.58×10^{-10}		[71]
$R_{cn}595f$	2	+ Z	+	$\mathrm{C_2^-H_4^-}$	\uparrow	HC_2N^+	+	$_{ m H}^{2}$	+	Н	1.58×10^{-11}		[71]
$R_{cn}595g$	2	+ Z	+	$\mathrm{C_2H_4}$	\uparrow	HC_2NH^+	+	H_2			7.90×10^{-11}		[71]
R_{cn} 596a	2	+ Z	+	$\mathrm{C_2H_6}$	\uparrow	$C_2H_5^+$	+	HN			1.60×10^{-10}		[71]
$R_{cn}596b$	2	+ Z	+	$\mathrm{C_2H_6}$	\uparrow	$C_2H_4^+$	+	NH_2			8.80×10^{-10}		[71]
$R_{cn}596c$	7	+ Z	+	$\mathrm{C_2H_6}$	\uparrow	$C_2H_3^+$	+	$_{ m NH_3}$			4.00×10^{-10}		[71]
R_{cn} 596d	2	+ Z	+	$\mathrm{C_2H_6}$	\uparrow	HCNH+	+	CH_4			1.60×10^{-10}		[71]
$R_{cn}597a$	2	+ Z	+	CH_3CCH	\uparrow	$C_2H_2^+$	+	$\mathrm{H}_2\mathrm{CN}$			1.20×10^{-10}		[72]
$R_{cn}597b$	2	+ Z	+	CH_3CCH	\uparrow	$\mathrm{C_2H_4}^+$	+	CN			1.40×10^{-10}		[72]
$R_{cn}597c$	2	+ Z	+	CH_3CCH	↑	$C_3H_2^+$	+	NH_2			6.00×10^{-11}		[72]
\mathbf{R}_{cn} 597d	2	+ Z	+	CH_3CCH	↑	$^{1-\mathrm{C_{3}H_{3}}^{+}}$	+	z	+	Н	4.35×10^{-10}		[72]
$R_{cn}597e$	2	+ Z	+	CH_3CCH	↑	$c-C_3H_3^+$	+	z	+	Н	4.35×10^{-10}		[72]
\mathbf{R}_{cn} 597f	2	+ Z	+	CH_3CCH	↑	$^{1-\mathrm{C_{3}H_{3}}^{+}}$	+	HN			1.15×10^{-10}		[72]
$R_{cn}597g$	2	+ Z	+	CH_3CCH	\uparrow	$c-C_3H_3^+$	+	HN			1.15×10^{-10}		[72]
R_{cn} 597h	7	+ Z	+	CH_3CCH	\uparrow	$C_3H_4^+$	+	z			7.00×10^{-11}		[72]
$R_{cn}597i$	7	+ Z	+	CH_3 CCH	\uparrow	$C_3^{\dagger}H_4^{\dagger}$	+	$N(^2D)$			2.10×10^{-10}		[72]
$R_{cn}597j$	2	+ - Z :	+	CH_3CCH	↑	$\mathrm{HC_2NH}^+$	+	$^{^3\mathrm{CH}_2}$			1.00×10^{-10}		[72]
$R_{cn}597k$	2	+ + Z :	+	CH3CCH	†	$C_2H_3N^+$	+	CH			4.00×10^{-11}		[72]
R_{cn} 5971	ପ	+ + Z 2	+ -	CH ₃ CCH	↑	$\mathrm{C_2H_3NH}^+$	+ -	0 :			1.00×10^{-10}		[72]
K _{cn} 59 / m	N C	- + Z Z	+ -	CH3CCH	↑ ′	11C3N11	+ -	n ₂	-	H	6.00×10 8.00×10 ⁻¹¹		[72]
R 508h	40	+ 2	+ +	C3H6 CH	1	C2H2 H +	+ +		+ +	CH	8.00×10 9.00×10 ⁻¹⁰		[72]
Ren 598c	1 2	+ Z Z	- +	C_3H_6	· ↑	C2 H. +	- +	H	-	E	1.60×10^{-10}		[2]
$R_{cn}598d$	2	+ Z	+	C_3H_6	↑	$\mathrm{C_2^2H_5^+}^+$	+	HCN			4.00×10^{-11}		[72]
$R_{cn}598e$	2	+ Z	+	$\mathrm{C_3H_6}$	\uparrow	$1-\tilde{\text{C}_3\text{H}_3}^+$	+	z	+	H_3	2.00×10^{-11}		[72]
$R_{cn}598f$	7	+ - Z	+	$\mathrm{C_3H_6}$	↑	$^{\mathrm{c-C_3H_3}^+}$	+	Z	+	$_{\rm H_3}$	2.00×10^{-11}		[72]
R _{cn} 598g	21 0	+ + Z 2	+ -	C_3H_6	↑	$^{\mathrm{I-C_3H_3}^+}$	+ -	HZ Z	+ -	$^{ m H_2}_{ m H_2}$	1.40×10^{-19}		[72]
K _{cn} 598h	71 0	- + Z Z	+ -	C3He	↑ ^	C-C3H3.	+ -	ц 2 2	+ -	п2	1.40×10 ==		[72]
R _{cn} 5981	7 0	· +	+ +	$C_{3}^{H_6}$	1	C3H4 +	+ +	z 2	+ +	Π_2	8.00×10 9.60×10 ⁻¹⁰		[72]
Ren 598k	1 (2)	+ ; Z	- +	C_3H_6	` ↑	C3H, +	- +	$N(^2D)$	- +	I H	1.60×10^{-10}		[72]
R _{cn} 5981	1 67	+ Z	+	C_3H_6	· ↑	C3H5 +	- +	HN	-	:	6.00×10^{-11}		[72]
R_{cn} 598m	2	+ 'Z	+	$\mathrm{C_{3}H_{6}^{2}}$	↑	C3H6+	+	Z			4.00×10^{-11}		[72]
$R_{cn}598n$	2	+ Z	+	$\mathrm{C_3H_6}$	↑	$C_3^{H_6^+}$	+	$N(^2D)$			6.00×10^{-10}		[72]
R_{cn} 599a	2	+ Z	+	$C_3^{\circ}H_8^{\circ}$	\uparrow	$C_2^H_3^+$	+	HN	+	CH_4	2.40×10^{-10}		[72]
$R_{cn}599b$	2	+ Z	+	C_3H_8	\uparrow	$C_2H_4^+$	+	z	+	CH_4	1.80×10^{-10}		[72]
R_{cn} 599c	2	+ Z	+	$\mathrm{C_3H_8}$	\uparrow	$\mathrm{C_2H_4}^+$	+	$N(^2D)$	+	CH_4	3.00×10^{-10}		[72]
R_{cn} 599d	2	+ - Z :	+	C_3H_8	†	$C_2H_4^+$	+	HZ :	+	$_{ m CH_3}$	2.00×10^{-11}		[72]
$R_{cn}599e \mid 2 \mid N^{+}$ Continued on Next Page.	n Next	N∓ Page	+	$\mathrm{C_{3}H_{8}}$	↑	$C_2H_5^-$	+	Z	+	$ m CH_3$	7.20×10 ⁻¹⁵	_	[72]
		,											

	Type					Reaction					k	Ref.	
R., 599f	2	+ N	+	C, H,	1	C,H,+	+	z	+	H,	6.00×10 ⁻¹¹	[72]	
$R_{cn}599g$	2	+ Z	+	$\mathrm{C_3^3H_8^2}$	\uparrow	$C_3^H_5^+$	+	NH	+	$^{\circ}_{ m H_2}$	1.60×10^{-10}	[72]	
R_{cn} 599h	2	+ Z	+	$\mathrm{C_3H_8}$	\uparrow	$\mathrm{C_3H_6}^+$	+	z	+	H_2	6.00×10^{-11}	[72]	
R_{cn} 599i	2	+ - Z	+	C_3H_8	†	$\mathrm{C_3H_6}^+$	+	$N(^2D)$	+	H_2	4.00×10^{-11}	[72]	
R_{cn} 599j	2	+ + Z;	+ -	$C_{3}^{H_8}$	†	$C_3H_7^+$	+ -	Z S	+ -	н:	1.00×10^{-10}	[72]	
R _{cn} 599k	.7 (- + Z 2	+ -	CHR CHR	↑	C3H7-	+ -	N(-D)	+	H	4.00×10^{-11}		
R_{cn} 5991 B 500m	7 0	- + Z Z	+ +	2 E E E E	1	C3H7	+ +	NH			4.00×10 == 4.00×10 == 11	[72]	
$R_{cn}600a$	1 (1	+ Z Z	- +	C_{μ}^{3}	\	C. H. +	- +	a ž z			1.85×10^{-09}	[73]	
$R_{cn}600b$	2	+ Z	+	$C_{\rm e}^{\rm H_6}$	1	$C_5H_4^+$	+	HCN	+	Н	1.82×10^{-10}	[73]	
$R_{cn}600c$	2	+ Z	+	$C_{6}H_{6}$	†	$c = C_3 H_3 +$	+	C_3H_3N			5.72×10^{-10}	[73]	
$\mathbf{R}_{cn}601a$	2	+ Z	+	$\mathrm{C_7^{\circ}H_8^{\circ}}$	\uparrow	$C_7H_7^{+}$	+	HN			1.80×10^{-09}	[74]	
$R_{cn}601b$	2	+ Z	+	$\mathrm{C_7H_8}$	↑	$C_6H_6^+$	+	$\mathrm{H}_2\mathrm{CN}$			1.54×10^{-10}	[74]	
$R_{cn}601c$	2	+ Z	+	$\mathrm{C_7H_8}$	\uparrow	$\mathrm{C_5H_5}^+$	+	CH_3CN			1.10×10^{-10}	[74]	
\mathbb{R}_{cn} 601d	2	+ + Z ;	+	$^{ ext{C}_7 ext{H}_8}_{\widetilde{lpha}}$	↑	$\mathrm{C_4H_4}^+$	+	C_3H_4N			4.40×10^{-11}	[74]	
$R_{cn}601e$	01 0	+ + Z 2	+ -	$^{ m C_7H_8}_{ m Mir}$	↑	$^{\mathrm{c-C_3H_3}}_{\star}$	+ -	C_4H_5N			8.80×10 ⁻¹¹	[74]	
\mathbf{R}_{cn} 602a	77 (- + Z 2	+ -	NH3	<u> </u>	NH2 HII +	+ -	I Z Z			4.70×10 ==	<u>4</u> . 2	
R_{cn} 602b B 603c	71 0	- + Z Z	+ +	NH3	1	N II 3 -	+ +	2 1			1.67×10^{-2}	[4]	
R_{cn} 603a	4 0	+ 2 2	+ +	HCN HCN	1	HCN+	+ +	N 2			2.12×10 2.40×10 ⁻⁰⁹	[4]	
R_{en} 603b	1 21	+ ; Z	+	HCN	· ↑	CH+	+	ž			1.29×10^{-09}	<u> </u>	
$R_{cn}604a$	2	+ Z	+	CH3NH3	↑	CH ₃ NH ₃ ⁺	+	'z			1.54×10^{-10}	[75]	
R_{cn} 604b	2	+ Z	+	CH_3NH_2	†	$CH_2^{2}NH_2^{2+}$	+	Z	+	Н	1.59×10^{-09}	[75]	
$R_{cn}604c$	2	+ Z	+	$\mathrm{CH_3^3NH_2^2}$	↑	$\mathrm{CH}_2^{\mathrm{NH}^{\frac{3}{4}}}$	+	Z	+	H_2	1.79×10^{-10}	[75]	
\mathbf{R}_{cn} 604d	5	+ Z	+	$\mathrm{CH_3^-NH_2^-}$	\uparrow	HCNH+	+	Z	+	${ m H_3}^-$	4.61×10^{-10}	[22]	
$R_{cn}604e$	2	+ Z	+	$\mathrm{CH_3NH_2}$	↑	CH_3^+	+	NH_2	+	Z	1.79×10^{-10}	[22]	
\mathbb{R}_{cn} 605a	7	+ - Z	+	CH ₃ CN	↑	$C_2H_3N^+$	+	z			5.00×10^{-10}	[2]	
$R_{cn}605b$	01 0	+ + Z 2	+ -	CH ₃ CN	↑	HC_2NH^+	+ -	H N	-		3.00×10^{-10}	<u> </u>	
K_{cn} 605c	27 6	- + Z Z	+ -	CH3CN	† 1	C ₂ H ₂ -	+ -	N ₂	+	Į.	1.00×10 1.00×10 ⁻¹⁰	<u> </u>	
$R_{cn}606a$	4 6	+ Z Z	+ +	HO, Z	1	+H-C	+ +	N. N.			1.60×10 ⁻⁰⁹	2 2	
R_{en} 606b	1 (2)	+ ; Z	+	HC ₃ N	· ↑	HC,N+	+	ZZ			2.65×10^{-09}	<u> </u>	
$R_{cn}607a$	2	+ Z	+	$C_3 \ddot{H}_3 N$	↑	$\mathrm{C_3} \ddot{\mathrm{H_3}} \mathrm{N^+}$	+	z			3.50×10^{-10}	[2]	
$R_{cn}607b$	7	+ Z	+	C_3H_3N	\uparrow	HC_3NH^+	+	NH			1.50×10^{-10}	[2]	
$R_{cn}607c$	2	+ - Z	+	C_3H_3N	\uparrow	HC_2N^+	+	H_2CN			1.30×10^{-10}	[2]	
\mathbb{R}_{cn} 607d	01 0	+ + Z 2	+ -	C ₃ H ₃ N	† -	C-C3H3+	+ -	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1.20×10^{-10}	<u>2</u> 2	
Ren 607f	4 6	+ Z Z	+ +	Caran Caran	1	+ H C	+ +	Z CH3 Z Z	+	CH	1.20×10^{-10}	<u> </u>	
$R_{cn}608a$	2	+ Z	+	$C_3^{'}H_5^{'}N$	↑	N + 2	+	$C_3^{ m H_5}$			2.31×10^{-09}	[33]	
$R_{cn}608b$	5	+ Z	+	C_3H_5N	\uparrow	$^{1-{ m C}_{3}{ m H}_{3}{}^{+}}$	+	$^{ m N}_{^2}$	+	H_2	4.20×10^{-10}	[33]	
$R_{cn}608c$	7	+ + Z ;	+	C_3H_5N	↑	$^{\mathrm{c-C_3H_3}^+}$	+	Z S	+	${ m H}_2$	4.20×10^{-10}	[33]	
\mathbb{R}_{cn} 608d	7	⊦ + Z ;	+	C_3H_5N	↑	$C_3H_3NH^+$	+	HN		;	1.05×10^{-09}		
\mathbb{R}_{cn} 609a	.7 0	+ + Z 2	+ -	C ₄ H ₅ N	†	I-C ₃ H ₃ +	+ -	H ₂ CN	+ -	Z 2	1.23×10^{-19}	[73]	
R 609c	4 0	+ 2 2	+ +	C ₄ H ₅ N	1	HC 013	+ +	N N	+ +	μ 2 C	1.23×10 9.45×10^{-10}	[79]	
Ren 609d	1 (1	+ Z Z	- +	C, H, N	^	C, H, +	- +	HCN	- +) Z	2.10×10^{-10}	[73]	
R_{cn} 609e	7	+ Z	+	C_4^{+1}	†	$^{-3}_{ m AC_2NH}^{-4}$	+	CH_3CN			2.10×10^{-10}	[73]	
\mathbb{R}_{cn} 609f	7	+ Z	+	$C_4^{\dagger}H_5^{\dagger}N$	\uparrow	$\mathrm{C_3 ilde{H_5}}^+$	+	CN	+	Z	1.40×10^{-10}	[73]	
$\mathbb{R}_{cn}609\mathrm{g}$	2 (+ + Z 2	+ -	C_4H_5N	†	$C_2H_3N_7^+$	+ -	C_2H_2	+ ·	Z Z	1.40×10^{-10}	[73]	
$R_{cn}609h$ 2 Continued on Next	2 n Next I	N ⁻ Page	+	C_4H_5N	↑	$\mathrm{C_4H_4}^+$	+	H N	+	Z	$ 2.63\times10^{-19}$	[73]	

	Type					Reaction				k	Ref.	
R_{cn} 609i	2	+ Z	+	C_4H_5N	1	HC3NH+	+	CH2NH		2.63×10^{-10}	[73]	
$R_{cn}609j$	2	+ Z	+	$C_4^H_5^N$	†	$C_4 H_5^+$	+	$^{\rm Z}$		2.63×10^{-10}	[73]	
$R_{cn}609k$	2	+ Z	+	C_4H_5N	↑	$C_3H_3N^+$	+	$H_2^{-}CN$		2.63×10^{-10}	[73]	
R_{cn} 6091	2	+ Z	+	C,H,N	†	C, H, NH+	+	HCN		5.60×10^{-10}	[73]	
R_{cn} 609m	2	+ Z	+	$C_4^{\dagger}H_5^{\prime}N$	†	$C_4^{\prime}H_3^{\prime}NH^+$	+	HN		2.80×10^{-10}	[73]	
$R_{cn}609n$	2	+ Z	+	C,H,N	↑	$C_AH_N^+$	+	Z		$ 4.20\times10^{-10}$	[73]	
$\mathbb{R}_{cn}610a$	2	+ Z	+	HC_5N	↑	HC_5N^+	+	Z		3.15×10^{-09}	[12]	
$R_{cn}610b$	2	+ Z	+	HC_5N	↑	C_5H^+	+	N_2		3.15×10^{-09}	[12]	
\mathbf{R}_{cn} 611a	5	+ Z	+	C_5H_5N	\uparrow	$C_4^{\dagger}H_4^{\dagger}$	+	HCN	z +	1.84×10^{-09}	[92]	
$R_{cn}611b$	2	+ Z	+	C_5H_5N	\uparrow	$C_5H_5^-N^+$	+	Z		1.56×10^{-09}	[46]	
$R_{cn}612$	3	+ Z	+	N N	†	- - - Z				1.00×10^{-10}	[77],[2]	
				ı		,				$ 4.00\times10^{-29}(300/\mathrm{T})^{1.84}$	-	
$R_{cn}613a$	2	+ Z	+	C_2N_2	\uparrow	$C_2N_2^+$	+	Z		3.40×10^{-10}	[2]	
$R_{cn}613b$	2	+ Z	+	$C_2^{N_2}$	†	$C_2^{-}N_7^+$	+	$_{2}^{N}$		1.36×10^{-09}	[2]	
$R_{cn}614$	2	+ Z	+	$O(^3\overline{P})$	†	÷0	+	z		$ 4.50\times10^{-12}$	[82]	
$R_{cn}615$	2	+ Z	+	H_2O	\uparrow	$\mathrm{H_2O^+}$	+	Z		2.70×10^{-09}	[2]	
$R_{cn}616a$	2	+ Z	+	ÇŌ	↑	C+	+	NO		5.60×10^{-12}		
$R_{cn}616b$	2	+ Z	+	CO	\uparrow	+OO	+	z		4.93×10^{-10}	[2]	
$R_{cn}616c$	2	+ Z	+	CO	\uparrow	+ON	+	C		$ 6.16\times10^{-11}$	[2]	
$R_{cn}617a$	2	+ Z	+	${ m H_2CO}$	↑	HCO^{+}	+	HN		7.25×10^{-10}	[4]	
$R_{cn}617b$	2	+ Z	+	${ m H_2^{CO}}$	\uparrow	${ m CH_2O^+}$	+	Z		1.89×10^{-09}	[4]	
$R_{cn}617c$	2	+ Z	+	$H_2^{-}CO$	↑	+ON	+	3 CH $_2$		2.90×10^{-10}	[4]	
$R_{cn}618a$	2	+ Z	+	$\tilde{co_2}$	↑	CO+	+	ON		2.02×10^{-10}	<u>-</u>	
$R_{cn}618b$	2	+ Z	+	co,	↑	CO,+	+	Z		9.18×10^{-10}	[4]	
$R_{cn}619a$	2	+HN	+	H ₂	†	$^{\mathrm{H}_{3}+}$	+	Z		1.85×10^{-10}	[2]	
$R_{cn}619b$	2	+HN	+	$_{ m H_2}$	†	NH2+	+	Н		1.05×10^{-09}	[2]	
$R_{cn}620a$	2	$^{+}\mathrm{NH}^{+}$	+	$ m CH_4$	\uparrow	CH_5^+	+	Z		9.60×10^{-11}	[2]	
$R_{cn}620b$	2	+HN	+	CH_4	\uparrow	NH_2^+	+	CH_3		1.92×10^{-10}	[2]	
$R_{cn}620c$	2	+HN	+	CH_4	\uparrow	HCNH+	+	H_2	H +	6.72×10^{-10}	[2]	
\mathbb{R}_{cn} 621a	2	+HN	+	$\mathrm{C_2H_4}$	\uparrow	$C_2H_2^+$	+	$^{ m NH}_3$		1.50×10^{-10}	[2]	
$\mathbb{R}_{cn}621b$	7	+ + HZ ;	+	C_2H_4	↑	$^{\mathrm{C_2H_3}}_{2}$	+	$_{2}^{\mathrm{NH}_{2}}$		3.75×10^{-10}	[2]	
\mathcal{K}_{cn} 621c	.7 0	- + HZ Z	+ -	C_2H_4	†	C ₂ H ₄	+ -	I I		3.75×10 = 5	<u> </u>	
R_{cn} 621a	40	+ 11 12 21 22	+ +	C ₂ H ₄	1	CH NH+	+ +	3 3 7 H.		3.00×10 1.50×10 ⁻¹⁰	2 2	
R _{cn} 621f	. 2	+ HZ	+	C2H4	· ↑	C.H.N+	- +	Н,		1.50×10 ⁻¹⁰	<u> </u>	
$R_{cn}622a$	2	+HN	+	CH_3CCH	†	CH_2NH^+	+	C_2^{-1}		1.09×10^{-10}	[48]	
$R_{cn}622b$	2	+HN	+	CH_3CCH	†	$CH_2^-NH_2^+$	+	C_2^H		9.07×10^{-11}	[48]	
$R_{cn}622c$	2	+HZ	+	CH_3CCH	\uparrow	$c-C_3H_3^+$	+	NH_2		1.59×10^{-10}	[48]	
\mathbf{R}_{cn} 622d	2	+ HZ	+	CH_3CCH	↑	HC_2N^+	+	CH_4		1.59×10^{-10}	[48]	
$R_{cn}622e$	27	+ HZ	+	CH ₃ CCH	↑	$C_3H_4^+$	+	HZ :		1.27×10^{-10}	[48]	
$R_{cn}622f$	C7 (+ + HZ	+ -	CH ₃ CCH	↑	HC_2NH^+	+ -	$_{ m CH}^{ m CH}_{ m 3}$		1.27×10^{-10}	[48]	
$R_{cn}622g$.71	- + H I	+ -	CH3CCH	↑	C3H2	+ -	Z &		6.35×10 ::	[48]	
R_{cn} 622h		- +12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	+ -	CH ₃ CCH	^	C ₂ H ₃ N +	+ -	CH ₂		6.35×10 1.30×10 ⁻⁰⁹	[48]	
D 6945	4 0	+ 1 2	+ -	1 2	1	+ Z Z	+ +	I N		1.50×10 1.80×10-09	<u>6</u>	
R 624h	4 0	+ H.V.	+ +	NH.	1	HN HN	+ +	; ;		6.00×10 ⁻¹⁰	[±]	
$R_{cn}625$	1 (1	+ H H Z	+	HCN	` ↑	HCNH+	- +	z		6.04×10^{-09}	Su-Chesnavich	ich
$R_{cn}626a$	2	$^{+}\mathrm{NH^{+}}$	+	CH_3NH_2	↑	$HCNH^{+}$	+	$_{ m NH_3}$	H +	4.20×10^{-10}	[4]	
$R_{cn}626b$	2	+HN	+	$CH_3^-NH_2^-$	\uparrow	CH_2NH^+	+	$^{ m NH}_3$		1.05×10^{-10}	[4]	
$R_{cn}626c$ 2 NH ⁺ Continued on Next Page	2 Next	NH ⁺ Page	+	$\mathrm{CH_3NH_2}$	↑	${ m CH_2NH_2}^+$	+	NH_2		$ 9.45 \times 10^{-10}$	[4]	

Number CHAPMA C	Type					Reaction			k	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+HN	+	CH°NH°	↑	CH3NH3+	+	HN	$ 4.20\times10^{-10}$	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+HN	+	CH_3NH_2	↑	$CH_3NH_3^+$	+	Z	4.20×10^{-10}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+HZ	+	Z	↑	N_2H^+	+	Z	6.50×10^{-10}	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	+ - H Z	+	$_{\rm H_2O}$	\uparrow	$^{+3}O^{+}$	+	Z	1.05×10^{-09}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	+ - H Z	+	${ m H}_2{ m O}$	↑	${ m H_2O^+_1}$	+	HZ	1.05×10^{-3}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ 1 (+ + T Z	+ -	$^{ m H_2O}_{ m H_2O}$	↑	NH2+	+ -	OH O.353	8.75×10 ⁻¹⁹	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- + I I Z Z	+ -	H ₂ C	^ ·	- FIN	+ -	O(-F)	1.75×10 = 0	7 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N C	+ + 1 1 2 2 2	+ -) ₂ C	† 1	+001	+ -	п ₂	3.50×10 F 50×10-10	2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vi (+	+ -	9 6	1	+001	+ -	I	0.38×10 441×10-10	2 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N /	- 1111	+ -		↑	HCO:	+ -	Z	4.41×10	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	H H	+	H_2CO	↑	HCO+	+	$^{ m NH}_2$	1.82×10^{-39}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	+ HZ	+	$\mathrm{H}_2\mathrm{CO}$	↑	$ m CH_2O^{+}$	+	HN	$ 9.90 \times 10^{-19}$	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	+ HZ	+	${ m H_2CO}$	\uparrow	$ m CH_2OH^+$	+	Z	4.95×10^{-10}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	+HZ	+	CO_2	\uparrow	0 COH $^{+}$	+	Z	3.85×10^{-10}	[79],[80]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	+HZ	+	CO,	↑	+ON	+	HCO	3.30×10^{-10}	[79],[80]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+HN	+	co,	\uparrow	HNO+	+	CO	3.85×10^{-10}	[79],[80]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	+ HN	+	, H	1	H,+	+	Ξ	1.95×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ^	+ HN	- +	2 H	1	+ HN	- +	H. H.	9.50 < 10 - 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a c	MII +		41.0		+		NII.	2:20×10 4 50×10=10	1 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	INIT2	+ -	C2H4	1	C2H4 H +	+ -	1112	4.3U × 1.0	7 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	$^{'}_{2}$	+	$\mathrm{C_2H_4}$	↑	C_2H_5	+	HZ.	$ 3.00\times10^{-13}$	[7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~1	$^{ m NH_2}^+$	+	$\mathrm{C}_2\mathrm{H}_4$	\uparrow	${ m CH_2NH_2}^+$	+	$^{^3\mathrm{CH}_2}$	$ 4.50\times10^{-10}$	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	HN,	+	C, H_{J}	1	$C_{2}H_{5}N^{+}$	+	Н	3.00×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	H,+	+	CH, CCH	1	,+, H, T,	+	NH.	1.44×10 ⁻¹⁰	2 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ^	+ HN	- +	HUU HU	. 1	HC NH+	- +	HU	1.44 < 10 - 10	[20]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N112	+ -		<u> </u>	11C2IVII	+ -	C114	1.44×10 1.44×10	[40]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NH ₂	+	CH3CCH	↑ 	C3H5	+		1.44×10 = 0	[48]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{ m NH}_{2}^{+}$	+	CH ₃ CCH	↑ _	$\mathrm{C_2H_3N^+}$	+	+	1.44×10^{-19}	[48]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{ m NH}_{2}^{+}$	+	CH_3CCH	↑ _	$C_3H_3NH^+$	+	${ m H}_2$	2.03×10^{-10}	[48]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{ m NH_2}^+$	+	Z	\uparrow	$^{ m N}_{ m 2H^+}$	+	Н	9.10×10^{-11}	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	NH,+	+	$_{ m NH_3}$	↑	NH3+	+	$_{ m NH_2}$	1.15×10^{-09}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	HZ,+	+	NH.	↑	+, HN	+	HZ	1.15×10^{-09}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	+ .HZ	+	NUH	1	HCNH+	+	HZ	5.94×10 ⁻⁰⁹	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+ NH N	- +	OH NH	1	+ HN	- +	HN HU	1.59×10-10	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NE +		OH3MH2		711.4 711 NIU +		VII2IVII	2 80×10-10	[F]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MII.2 MII. +	⊦ -	CII3MII2	١ ٠	CII2IVII2		MILI MILI	3.80×10 1.01×10=09	ŦΞ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NH2	+	CH3NH2	↑	CH3NH2	+	NH2	1.01×10	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NH ₂	+	CH_3NH_2	↑	13	+	HN	$ 3.80 \times 10^{-13}$	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-\mathrm{NH}_{2}^{+}$	+	${ m H}_2{ m O}$	↑	NH3+	+	НО	8.70×10^{-11}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{ m NH}_{2}^{+}$	+	$\rm H_2O$	\uparrow	$^{ m +}$	+	$O(^3P)$	1.16×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NH,	+	Н,О	\uparrow	H ₂ O ⁺	+	HN	$ 2.73\times10^{-09}$	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H.H.	+	H,CO	1	+ HN	+	HCO	5.60×10^{-10}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+ HN	- +		1	CH OH+	- +	HN	9.94×10-09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1117 1117 +		11200		- TI + TI		1111	0.000.10-13	F 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		INII3	+	П ₂	↑	1 TIT 4	+		2.00×10	[0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	NH3	+	CH_4	↑	1	+	$_{ m CH_3}$	$ 4.80 \times 10^{-13}$	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	⊢ NH3 -	+	$\mathrm{C_2H_4}$	↑	$^{+}_{4}^{+}$	+	$\mathrm{C_2H_3}$	1.40×10^{-3}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ 1	NH3+	+	$_{ m NH_3}$	\uparrow		+	NH_2	2.10×10^{-09}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^ 1	NH3+	+	CH_3NH_2	\uparrow	${ m CH_3NH_2}^+$	+	$_{ m NH_3}$	9.00×10^{-10}	[4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	NH3+	+	CH, NH,	\uparrow	$CH_3^-NH_3^{-+}$	+	NH,	6.30×10^{-10}	[4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	NH,	+	CH, NH,	↑	NH, +	+	CH,NH,	2.70×10^{-10}	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	, HZ	+	C, H, C	1	C, H, N+	+	NHS	3.60×10 ⁻⁰⁹	[92]
$^{+}$ + $^{+}$ $^{+}$ + $^{+}$ + $^{+}$ HCO $^{-}$ 8.000×10 ⁻¹⁰	. ~	+ HZ	- +	H.O.	1	+ HN	- +	OH.	2.50×10 ⁻¹⁰	[2]
1 12 CO 1 1114 + 11 CO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ^	NE +	-	1120	<u> </u>	NII.4	-		\$ 00×10-10	1
	ext	Page.	-	2.5		*** **	-			[+]

R. 61	Type					Reaction					k	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$ NH_4^+$	+	$_{ m NH_3}$	↑	$AdductN^+$	+	hv			3.00×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	NH ⁷ +	+	$\mathrm{CH}_{3}^{\mathrm{NH}_{2}}$	†	$\mathrm{CH_3NH_3}^+$	+	$^{ m NH_3}$			2.00×10^{-09}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	NH ⁺	+	C_5H_5N	↑	$C_5 H_5 NH^+$	+	$^{ m NH}_{ m 3}$			3.50×10^{-09}	[92]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	Н	↑	H+	+	CN			6.40×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	${ m H}_2$	†	HCN^+	+	Η			8.00×10^{-10}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	H_2	†	HNC+	+	Н			8.00×10^{-10}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH_4	↑	CH_3^+	+	HCN			5.00×10^{-10}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH_{A}	†	CH ⁷ +	+	CN			1.50×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	$_{ m CH}^{ m T}$	†	HCN+	+	CH,			1.50×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH,	†	HCNH+	+	3 CH,			1.00×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 6	+N5	- +	CH.	1	HC NH+	- +	H.			1.00×10 ⁻¹⁰	[6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	+125		λ.τ. ζ Τ. Τ.		+ 12 12 12 12 12 12 12 12 12 12 12 12 12		2 2			s 00 × 10 – 10	[[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	۹ (+ 2	-	72112	1	(2112 117 N+	+ -				0.00×10	7 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71 (CN-	+ -	C_2H_2	†	HC3IN	+ -	= {			Z.UU X.IU ==	[7]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	 CN C	+	C_2H_4	↑	C_2H_4	+	CN			9.10×10 ±	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	$\mathrm{C_2H_4}$	†	HCN+	+	$\mathrm{C_{2}H_{3}}$			3.25×10^{-10}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	$\mathrm{C_2H_4}$	↑	HC_3NH^+	+	H_2			6.50×10^{-11}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C_2H_6	↑	$\mathrm{C_{2}H_{3}^{+}}$	+	HCN	+	Н,	2.85×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+NO	+	Ğ.H.	1	,+, E,E,C	+	NUH	+	· =	1.23×10^{-09}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ıc	+NO	- +	C2116	1	C2114	- +	NOH	-	:	3.80×10 ⁻¹⁰	[6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	+145		2716		2112					3:00×10 101:10=10	1 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 (t cin	+ -	C4H2	↑	C4 H2	+ -				7.27 × 10 ==	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7	CN CCN	+	C_4H_2	↑	HC ₅ N	+	I			2.42×10 ±	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	Z	↑	N + 2	+	Ö			6.10×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	$_{ m NH_3}$	†	NH,+	+	HCN			1.00×10^{-10}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	NH.	↑	NH, +	+	NO			1.20×10^{-09}	[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 6	+N5	- +	NH	1	+NUH	- +	HN			4.00×10 ⁻¹⁰	[7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	+25		NH3	. 1	HCMH+		NHZ			3.00~10-10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 C	+ 2	+ -	1173 1173	†	HCM+	+ -	1 2			3.00×10 3.34×10=09	[]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VI (t d	+ -	HON	†	+ 101	+ -				2.24×10	7 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.71	CN	+	HCN	↑	C_2N_2	+	Ξ;			4.59×10 ±	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	CN	+	CH_3CN	↑	$\mathrm{C_2H_3N^+}$	+	CN			1.70×10^{-99}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH_3CN	†	$\mathrm{HC_2NH}^+$	+	HCN			6.80×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH_3CN	†	CH_3^+	+	C_2N_2			6.80×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	CH_3CN	†	$C_2H_3^+$	+	CN_2			3.40×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	HC_3N	†	C_3N^+	+	HCN			9.20×10^{-10}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	HC_3N	†	HC_3N^+	+	CN			3.68×10^{-09}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C_3H_3N	↑	$^{\mathrm{c-C_3H_3}}$	+	N_2	+	Ŋ	7.20×10^{-10}	[10],[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C_3H_3N	†	$C_3H_3^{-}N^{+}$	+	CN			1.69×10^{-09}	[10],[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C_3H_3N	↑	$C_2N_2H^+$	+	C_2H_2			1.69×10^{-09}	[10],[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C_3H_3N	↑	Adduct N ⁺	+	hv			4.05×10^{-10}	[10],[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C,N,	†	C_2N^+	+	CN,			5.25×10^{-11}	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	C,Z	†	C,Z,+	+	CN.			1.63×10^{-09}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	Z,	↑	C, N+	+	ž			8.75×10^{-11}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	H,O,	↑	H ₂ O+	+	QN.			3.20×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	H,O	†	HCN+	+	ОН			1.60×10^{-09}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CN+	+	H,O	†	HCNH+	+	$O(^3P)$			4.80×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+NO	+	H,O	1	HCO+	+	HN			1.60×10^{-10}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	۱ ۵	+25	- +	H.O.	1	HNCO+	- +	Ξ.			6.40×10 ⁻¹⁰	[6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	+20	- +) C C	1	+00	- +	Z			4 40×10 ⁻¹⁰	[6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	+25	- +	CO H	` 1	+C H2	- +	5 5			2.757.10 2.07~10 ⁻⁰⁹	Su-Chosmanich
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	4 0	+ 20	+ +	H CO	1	HCO+	+ +				2.01×10 3.07×10 ⁻⁰⁹	Su-Chesnavich
	4 0	+N2H	+ +	H	\ 1	+ + 1	+ +				2.01×10 3.70×10−11	59]
	n Next	Page	-				-)				[.] —

Type					Reaction			k	Ref.
+	$+$ H_2	H_2		\uparrow	HCNH+	+	Н	8.80×10^{-10}	[2]
HCN ⁺ + CH ₄	+ CH ₄	CH ₄		†	$C_2H_3^+$	+ -	$_{ m OH}^2$	1.27×10^{-10}	[2]
HCN+ + CH4	+ + CH ₄	CH AH		1	HCINH.	+ +	HON HON	1.14×10^{-1} 1.15×10^{-09}	2 2
- +	$+$ C_2H_2	C_2H_2		†	$^{(22}_{2.H_3}$ +	- +	CN	2.03×10 ⁻¹⁰	[2]
HCN+ + C ₂ H ₂	$+$ C_2H_2	C_2H_2		\uparrow	HC3NH+	+ -	н:	1.35×10^{-10}	[2]
HCN- HCN+ + NH- HCN+	Z Z Z	z Z		1	-+- NH -	+ +	N ₂ HON	2.20×10 = 5 1 68×10 ⁻⁰⁹	[2]
- +	+ - NH2	NH,		` †	NH, +	- +	CN	1.40×10^{-10}	£] <u>4</u>
+	$+$ $^{\mathrm{NH}_{3}}$	$^{ m NH}_3$		↑	HCNH+	+	NH_2	8.40×10^{-10}	[4]
+	+ HCN	HCN		\uparrow	HCNH+	+	CN	1.45×10^{-09}	[2]
HCN+ + HC3N	HC3N	HC3N		↑ ′	HC ₃ N+	+ -	HCN	2.39×10^{-3} 3.31×10^{-09}	[2]
+ +	+ C.H.N	C.H.N		↑	$C_{2}H_{2}N^{+}$	+ +	HCN	2.76×10^{-09}	[2] [10],[11]
+	$+$ $C_3^{3}H_3^{3}N$	$C_3^{\prime}H_3^{\prime}N$		\uparrow	$C_3^{\prime}H_3^{\prime}NH^+$	+	CN	1.84×10^{-09}	[10],[11]
+	$+$ $C_2^{\circ}N_2^{\circ}$	$C_2^N_2$		\uparrow	$C_2^N_2^H^+$	+	CN	1.10×10^{-09}	[2]
+	$+$ H_2O	$_{\rm H_2O}$		↑	$\mathrm{H_{3}O^{+}}$	+	CN	1.80×10^{-09}	[5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ H_2O	H ₂ O		↑	H_2O^+	+ -	HCN	1.80×10^{-09}	2
+ +	+ +	H ₂ C		1	HCOPH HCO+H	+ +	I Z	1.80×10 = . 1.38×10=10	2 2
- +) - +	000		` †	+CNH	- +		3.22×10^{-10}	[2]
- +	+ H°CO	Н,СО		†	CH ₂ OH ⁺	- +	O'CN	4.09×10^{-09}	Su-Chesnavich
+	+ CO ₂	coْءِ		\uparrow	$OCOH^+$	+	CN	2.10×10^{-10}	[4]
+	$+ co_{2}^{2}$	$CO_2^{}$		\uparrow	HNC^+	+	CO2	2.90×10^{-10}	[4]
+	+ H ₂	H_2		\uparrow	HCNH+	+	Н	7.00×10^{-10}	[2]
+	$+$ CH_4	CH_4		\uparrow	HCNH+	+	CH_3	1.10×10^{-09}	[5]
$ HNC^+ + C_2H_2$	$+$ C_2H_2	$\widetilde{\mathrm{C}}_{2}\mathrm{H}_{2}$		†	$C_2H_2^+$	+	HCN	6.00×10^{-10}	[3]
+ -	$+$ C_2H_2	C_2H_2		↑	HC ₃ NH+	+ -	H.	9.00×10-10	
HNC- + NH3	H NH3	NH3 H C N		1	NH3 - HONIH+	+ +	Z Z Z	3.23×10 ====================================	Su-Chesnavich
+ +	+ + C.H.N	Z H		1	C. H. N+	+ +	NUL	9.13×10 2.76×10 ⁻⁰⁹	5u-Cirestiav icii [10] [11]
HNC+ + C ₃ H ₃ N	+ C,H,N	CH'N		· ↑	C, H, NH+	- +	CZ	1.84×10^{-09}	[10],[11]
+	$+$ $H_2^{\circ}O_3^{\circ}$	$H_2^{\circ}O_3^{\circ}$		↑	$_{\rm H_3O^+_3}$	+	CN	3.61×10^{-09}	Su-Chesnavich
+	$+$ H_2^{CO}	${ m H_2CO}$		\uparrow	$\rm CH_2OH^+$	+	CN	4.09×10^{-09}	Su-Chesnavich
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+$ CH_3 $+$ CH_4	$_{ m CH_3}$		↑ ↑	$\mathrm{C_2H_3NH^+}$ $\mathrm{HCNH^+CH_4}$	+	н	$1.05 \times 10^{-10} (300/\mathrm{T})^{2.02} \mathrm{e}^{-84.5/T} 1.00 \times 10^{-10}$	${ m This Work} \ [81]$
								$1.00 \times 10^{-27} (300/T)^{3.00}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${ m C_2H_2} { m C_2H_2}$		\uparrow \uparrow	$C_3H_3NH^+$ $C_3H_3NH^+$	+	hv	1.50×10^{-15} 1.00×10^{-10}	[82],[83] [77],[84]
-		=			+			$4.00 \times 10^{-28} (300/\mathrm{T})^{3.00}$	[3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_2H_4		↑	C ₃ H ₅ NH			1.00×10 =- 7.00×10 ⁻²⁷	[2]
$ HCNH^+ + C_2H_6 $		$\mathrm{C_2H_6}$		†	$AdductN^+$			1.00×10^{-10}	[85]
HUU + +HNUH		HOOH		1	+ H	+	NUH	$5.00 \times 10^{-1} (300/1)^{}$	Su-Chesnavich
+ +		CH, CCH		†	C3H; +	+ +	HCN	1.40×10^{-09}	Langevin
+	-	$\mathrm{C_3} ilde{\mathrm{H}}_6$	4	\uparrow	$C_3^{\prime}H_7^{\prime+}$	+	HCN	1.60×10^{-09}	Su-Chesnavich
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_4H_2		↑	$C_4H_3^+$	+ -	HCN	1.80×10 ⁻⁰⁹	[2]
+ +		C5 H		1	C ₅ H ₅ +	+ +	HON	2.50×10 1.80×10-09	Su-Chesnavich Langevin
	7-0-	7-0-			50-				0

Ty	Type					Reaction				k	Ref.	
B 703	9	HCNH+	+	Η	1	+ # 5	+	HCN		1 70 > 10 - 09	T. Jangarin	
-	4 c		⊦ ⊣	91190 H D	1	C H +	⊢ +	HON		2 90 < 10 - 09	Su-Chesnavich	vich
	4 C	+	⊢ +	C-H-	1	C-H-+	+ +	HOH		1 90×10	Su-Chesnavich	vich
	1 c		- +	C7118	1	+ H C	- +	HON		9.50×10	Langarin	TOTA
	10		- +	OB 112	` 1	C8113 NH +	- +	HON		9.30<10	[4]	
	10	_	- +	E I	` 1	+ H N	- +	HOH		1.50×10	Su-Chesnavich	wich
	1 c			CH NH	1	CH NH +	- +	NOH NOH		2.50×10	[33]	TOT A
	4 C	+	⊢ ⊣	CH ₂ MH	1	CH2M12	- -	HON		2.10×10	[33]	
	4 m		+ +	CII3IVII2 HCN	1	Adduct N+	+	HCI		2.00×10 1.00×10 ⁻¹⁰	[30]	
			-							1.00×10 ⁻²⁵		
B 719	0	+HNOH	+	CNH	1	HCNH+	+	NUH		5.20×10 ⁻⁰⁹	Su-Chesnavich	vich
	10		- +	OH CN	` 1	H NH+	- +	HCN		3.80<10-09	[6]	
	1 c	+		HC N	1	HC NH+	- +	HON		3.40×10-09	ī c	
	10		⊢ ⊣	I Car	1	C H NH+	⊢ ⊣	HOLK HOLK HOLK HOLK HOLK HOLK HOLK HOLK		7 50 × 10 − 09	[4]	
91	۱ (+ -	(31131) C311311				II CI		4.00×10	[10],[11]	
	7 (+ -	C3H5N	↑	C ₃ H ₅ NH	+ -	HCN		4.20×10	[33]	:
	21 (- +	+ -	C_4H_3N	↑	$C_4H_3NH^+$	+ -	HCN		6.80×10^{-3}	Su-Chesnavich	vich
	71		+	C_4H_5N	↑	C4 H5 NH	+	HCN		5.50×10 3	Su-Chesnavich	vich
	2		+	HC_5N	↑	HC_5NH^{+}	+	HCN		$ 4.80\times10^{-59}$	[12]	
	7		+	C_5H_5N	↑	$C_5H_5NH^+$	+	HCN		3.60×10^{-09}	Su-Chesnavich	vich
	7		+	C_6H_3N	↑	$C_6H_3NH_4^+$	+	HCN		8.20×10^{-09}	Su-Chesnavich	vich
_	7	+ -	+	C_6H_7N	↑	$C_6H_7NH^+$	+	HCN		2.40×10^{-09}	Su-Chesnavich	vich
$R_{cn}723$ 3	3	HCNH+	+	$^{\mathrm{Z}}_{^{2}}$	↑	$HCNH^{+}N_{2}$				1.00×10^{-10}	[81]	
										$ 1.00\times10^{-27}(300/T)^{3.00}$		
R _{cn} 724 2	2	HCNH+	+	Н,О	↑	$^{+}O^{+}$	+	HCN		8.80×10^{-13}	[2]	
	2		+	H,CO	↑	CH,OH^+	+	HCN		2.10×10^{-09}	[4]	
	2		+	$C_{ m H}^{2}$	↑	$C_s \tilde{H}_s NH^+$	+	CH,		1.00×10^{-09}	[81]	
	2		+	Z	↑	HCNH+	+	CH, +	Z	9.10×10^{-14}	[88]	
_	2		+	$C_{2}^{2}H_{3}$	↑	$C_3H_3NH^+$	+		1	1.00×10^{-09}	[81]	
	2		+	$C_{3}^{2}H_{6}^{2}$	↑	$C_3^{\prime}H_7^{\prime}NH^+$	+	z,		1.00×10^{-09}	[87]	
	2		+	Z	↑	HCNH+	+	+ '2'	Z	2.80×10^{-14}	[86]	
- d	2		+	$C_{ m H_4}$	↑	HCNH^+	+		4	2.40×10^{-10}	[88]	
	2		+	C,H,	↑	C, H, +	+	NH,		2.40×10^{-10}		
	2		+	$C_{3}^{L}H_{4}^{\dagger}$	↑	C, H, NH+	+	, H		7.20×10^{-10}	88	
	2		+	$C_3^{\prime}H_6^{\prime}$	↑	C, H, NH+	+	CH_3		1.20×10^{-09}	[88]	
	2		+	$C_{6}^{\prime}H_{6}^{\prime}$	↑	$C_6H_7^+$	+	H_2 CN		4.80×10^{-10}	[88]	
	2		+	$C_6^{'}H_6^{'}$	↑	$CXHYNZ^{+}$	+	'н		7.20×10^{-10}	[88]	
$R_{cn}734$ 2	2		+	$_{ m NH_3}$	↑	$CXHYNZ^{+}$				1.20×10^{-09}	[88]	
	2		+	$\mathrm{CH_3NH_2}$	↑	$CH_3NH_3^+$	+	$\mathrm{H}_2\mathrm{CN}$		1.20×10^{-09}	[68]	
	7		+	H_2 CO	↑	HCNH+	+	CH_3O		1.00×10^{-09}	[88]	
	7		+	$_{ m NH_3}$	↑	NH4+	+	CH_2NH		1.10×10^{-10}	[48]	
$R_{cn}738$ 2	2		+	CH_3NH_2	↑	$CH_3NH_3^+$	+	HCN +	H_2	1.80×10^{-09}	[4]	
$R_{cn}739$ 2	2		+	$_{ m NH_3}$	↑	$^{ m +}_4^{ m +}$	+	$\mathrm{CH_2NH_2}$		2.30×10^{-09}	[06]	
	2	$^{+2}_{2}$	+	$CH_3^-NH_2^-$	↑	$CH_3^{-}NH_3^{-}$	+	$\mathrm{CH_2^-NH_2^-}$		1.90×10^{-09}	[4]	
	7	1	+	$_{ m H_2}$	↑	HCNH+	+			8.10×10^{-10}	[2]	
$R_{cn}741b$ 2	2		+	${ m H}_2^-$	†	$\mathrm{HC_2NH}^+$	+	hv		9.00×10^{-11}	[2]	
	2		+	$ ext{CH}_4$	↑	$C_2\tilde{H_3}^+$	+	HCN		4.20×10^{-10}	[2]	
	2		+	$\mathrm{CH}_4^{}$	\uparrow	HCNH+	+	C_2H_2		7.00×10^{-11}	[2]	
	2		+	CH_4	\uparrow	$^{\mathrm{HC_3NH}_+}$	+	H_2		2.10×10^{-10}	[2]	
	7		+	C_2H_2	↑	C_3H^+	+	HCN		1.47×10^{-09}	[2]	
$\frac{\mathrm{R}_{cn}743\mathrm{b}}{\widetilde{\Omega}}$	2 .	+	+	$\mathrm{C_2H_2}$	↑	HCNH+	+	င္ဒီ		$ 1.28\times10^{-10}$	[2]	
Continued on Next Page	Vext F	age										

Ref.	88888	<u> </u>	[2] [10], [11] [16], [11] [2] [4] [4] [4]	4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6	[4] [2] [10],[11] [2] [2]
k	$\begin{array}{c} 1.30 \times 10^{-10} \\ 6.50 \times 10^{-10} \\ 3.90 \times 10^{-10} \\ 1.30 \times 10^{-10} \\ 1.20 \times 10^{-10} \\ 3.00 \times 10^{-10} \end{array}$	3.60×10 3.60×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 7.80×10 ⁻¹⁰ 2.60×10 ⁻¹⁰ 2.60×10 ⁻¹⁰ 1.90×10 ⁻¹⁰ 1.00×10 ⁻¹⁰ 4.30×10 ⁻²⁶	4.10×10 ⁻⁰ 9 1.80×10 ⁻⁰ 9 1.80×10 ⁻⁰ 9 2.05×10 ⁻⁰ 9 1.30×10 ⁻¹ 0 1.50×10 ⁻¹ 0 2.10×10 ⁻¹² 2.10×10 ⁻¹² 7.36×10 ⁻¹ 0	6.40×10 ⁻¹¹ 1.30×10 ⁻¹⁰ 1.95×10 ⁻¹⁰ 6.50×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 3.00×10 ⁻¹⁰ 1.80×10 ⁻¹⁰ 1.20×10 ⁻¹⁰ 1.80×10 ⁻¹⁰ 2.60×10 ⁻¹⁰	4.30×10^{-09} 3.30×10^{-09} 1.80×10^{-09} 1.75×10^{-11} 5.25×10^{-11}
		H 2		г н 	
	C ₂ N C ₂ H ₂ HCN H ₂ CH ₃ CN HC ₃ N	$\begin{array}{c} 1 C_2 N \\ 1 C_2 N \\ 1 C_2 N_4 \\ 1 C_2 N \\ 1 C_2 N \\ 1 C_4 N_2 \\ 1 C_5 N \end{array}$	$\begin{array}{ccc} C_2 N_2 \\ C_2 N_2 \\ C_2 N_2 \\ C_2 N_3 \\ CO \\ C$	$\begin{array}{c} C_3 \\ C_2 N \\ C_2 N \\ C_2 L_2 \\ C_3 L_2 \\ C_3 L_2 \\ C_3 L_3 \\ C_2 N \\ C_2 L_4 \\ C_2 N \\ C_3 N \\ C_2 N \\ C_2 N \\ C_3 N \\ C_4 N \\ C_5 N \\ C_5 N \\ C_6 N \\ C_6 N \\ C_7 N \\ C_8 N \\ C$	C C N C C N C C N N C C N N N N N N N N
	+++++	++++++		+++++++++++++++++	+++++
Reaction	$C_{2}H_{4}^{+}$ $HC_{2}NH_{+}$ $C_{-}C_{3}H_{3}^{+}$ $HC_{4}NH_{+}$ $C_{2}H_{3}^{+}$ $C_{2}H_{3}^{+}$ $C_{3}H_{3}^{+}$	C-C ₃ H ₅ C ₃ H ₅ C ₃ H ₅ HC ₂ NH C ₅ H ⁺ C ₄ H ₂ C ₂ N ⁺ HCNH Adduct N ⁺	C ₂ H ₃ + c - C ₃ H ₃ + l - C ₃ H ₃ + CXHYNZ + HCNH + HCO + C ₂ H ₃ + C ₃ H ₃ + C ₂ H ₃ + C ₂ H ₃ + C ₃ H ₄ + C ₃	C ₂ H ₄ + C ₋ C ₃ H ₃ + C ₋ C ₃ H ₃ + C ₋ C ₃ H ₃ + C ₂ H ₄ + C ₂ H ₃ + C ₂ H ₄ + C ₃ H ₄ +	$\begin{array}{c} {\rm C_2H_3^+} \\ {\rm C_3H_4^+} \\ {\rm c-C_3H_3^+} \\ {\rm I-C_3H_3^+} \\ {\rm HC_2N_4^+} \\ {\rm HC_0^+} \end{array}$
	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$
	C2H4 C2L4 C2H4 C2H6 C3H6 C3H6 C3H6 C3H6 C3H6 C3H6 C3H6 C3	$\begin{array}{c} C_2 & C_3 \\ C_2 & C_4 \\ C_2 & C_4 \\ C_4 & C_4 \\ C_5 & C_4 \\ C_6 & C_4 \\ C_6 & C_4 \\ C_6 & C_6 \\$	CH ₃ CN C ₃ H ₃ N C ₃ H ₃ N C ₃ H ₅ N H ₂ O H ₂ O CH ₄	C C C C C C C C C C C C C C C C C C C	CH ₃ CN HC ₃ N C ₃ H ₃ N C ₃ H ₃ N H ₂ O H ₂ O
	+++++	+++++++	+++++++	+++++++++++++++	+++++
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		C C C C C C C C C C C C C C C C C C C		CNC+ CNC+ CNC+ CNC+ CNC+ CNC+
Type	000000		000000000	200000000000000000000000000000000000000	000000
	R _{cn} 744a R _{cn} 744b R _{cn} 744c R _{cn} 744d R _{cn} 745a R _{cn} 745b	Ren 745c Ren 745d Ren 745d Ren 746a Ren 746b Ren 746c Ren 746c Ren 746	Rcn 749 Rcn 750a Rcn 750b Rcn 751 Rcn 752 Rcn 752a Rcn 752b Rcn 753a Rcn 753b	Ren 754b Ren 755a Ren 755b Ren 755c Ren 756a Ren 756a Ren 756c Ren 757a Ren 757a Ren 757b	R _{cn} 760 R _{cn} 761 R _{cn} 762a R _{cn} 762b R _{cn} 763b R _{cn} 763b

Ref.		[10],[11]	[10],[11]	[10],[11]	[16]	[16]	[63]	[63]	[[E	<u> </u>	[94]	[66]	[92]	Su-Chesnavich	[33]	[33]	[2]	C. Chosnarich		[00]	[20]	7 3	[7]	2	[2]	[2]	[2]	[2]	[3]	[2]	[2]	[2]	<u> </u>	[2]	<u> </u>	[2]	[11]	[2]	[2]	[2]	[2]	[2]	[2]	[2]		[16]	[2]	[2]	500	[2],[38]	[2]	[10],[11]	Su-Chesnavich	
k	0	2.18×10^{-10}	2.18×10^{-10}	4.35×10^{-10}	1.78×10^{-09}	9.50×10^{-10}	$ 5.70 \times 10^{-10}$	1.70×10 ⁻⁰⁹	8.00<10-13	1.06 . 1.0 = 0.9	1.96×10 3	8.40×10^{-13}	1.26×10^{-13}	$ 2.90 \times 10^{-09}$	$ 2.50 \times 10^{-09}$	1.80<10-09	8.00<10-13	5.30×10 ⁻⁰⁹	3.20×10 4.00×10=09	4.09×10 9.15×10-10	6.10×10	8.19×10 6.10∴10=11	9.10×10 ==	1.65×10^{-12}	2.80×10^{-12}	2.28×10^{-10}	2.28×10^{-10}	2.91×10^{-10}	8.30×10^{-11}	5.12×10^{-10}	1.28×10^{-10}	5.36×10^{-10}	1.34×10^{-10}	8.90×10 ⁻¹⁰	1.44×10^{-10}	9.60×10^{-11}	1.70×10^{-09}	3.90×10^{-10}	2.60×10^{-10}	6.50×10^{-10}	1.17×10^{-09}	6.50×10^{-11}	6.50×10^{-11}	1.00×10^{-10}	1.20×10^{-22}	3.70×10^{-09}	6.70×10^{-10}	1.00×10^{-10}	5.50×10^{-2}	1.00×10^{-10}	8.70×10 ⁻ 13	2.00×10 = 11	0.00×10 4 60×10 ⁻⁰⁹	- HOOH -
		+ HCN	$+ C_2H_3$	+ hv			H +	H CH,	+ bx		+ CH ₂ CN	+ hv	+ CN	+ CH ₃ CN	+ CH,CN	3	- b**	NO HO		- C113 C1V						$+$ C_2H_2	+ CN	+ CH ₃	+ HCN	+ HCN		+ HC.N	+ C.H.		HCN.	s Z	+ HČ,N	+ C ₃ N	°H +	+ hv	+ HCN	Н +	+ hv				+ OH		;	н,		+ AC3N	ν Α.Ω.Η + +	(3*.
Reaction		\rightarrow $C_4H_3N^+$ -	→ CXHYNZ ⁺ -		\rightarrow CXHYNZ ⁺	\rightarrow CXHXNZ ⁺	→ C,H,NH+	CH°NH+	CXHVNZ+ -			↑ C ₃ H ₃ NO ↑	$^+$ CH $_3$ CO $^+$ $^-$	- + HN +	→ CH,NH,+	+ HN HO 1	Adding N+	HAN H C		- Cansinii Adamatni	- Adducer	TIC3N			'	'	'				+ C,H,+	\downarrow $C_{3}H_{4}^{++}$	+	·	CoN+		+ NH2+	·	→ C ₄ N ₂ H ⁺ -	+	+ HC ₅ N ⁺ .	\rightarrow CXHYNZ ⁺ -	\rightarrow AdductN ⁺ -	\rightarrow AdductN ⁺		\rightarrow CXH YNZ^+		\rightarrow AdductN ⁺	÷		$C_7H_3^3NH^+$	NH ₄		*****
			$+$ C_3H_3N			+ C,H,N		CH.	CH.CN		+ CH ₃ CN		00 +	+ NH ₃						. (3H5) 					$+$ H_2	+ CH ₄ .	+ CH ₄ .		+ CH ₄ .		+ C ₂ H ₂		+ C ₂ H ₄			z +		+ HCN +					+ HC ₃ N	+ HC3N		$+ C_3H_5N$	+ H ₂ O	CO		+ C ₂ H ₄	$C_4^{\mathrm{H}_2}$	EHZ EZ		
	+				+									+								C3IN			$ HC_3N^+$																					HC ₃ N ⁺						HC3NH-		1
Type												_											-	-	•				_	_	_					b 2		- C			_						2					-	7 6	_
	1	\mathbf{R}_{cn} 764b	R_{cn} 764c	R_{cn} 764d	R_{cn} 765	R_{cn} 766	Ben 767	B 768	R 760a	1,cn 1030	\mathbf{R}_{cn} 769b	κ_{cn} 770a	R_{cn} 770b	R_{cn} 771	B. 772	R 773	D 774	D 775	D 776	D 7764	1,cn 1100	Ren (1 (a	Ken (f f b	R_{cn} 778a	\mathbf{R}_{cn} 778b	\mathbf{R}_{cn} 779a	R_{cn} 779b	$R_{cn}779c$	$R_{cn}779d$	R_{cn} 780a	R _{cn} 780b	R_{cn} 781a	R., 781b	R., 782	R., 783a	R_{cn} 783b	$R_{cn}784$	R_{cn} 785a	R_{cn} 785b	R_{cn} 785c	R_{cn} 786a	$R_{cn}786b$	$R_{cn}786c$	\mathbf{R}_{cn} 786d		\mathbf{R}_{cn} 787	$R_{cn}788$	$\mathbf{R}_{cn} 789$	į	$R_{cn} 790$	R_{cn} 791	R_{cn} 792	R_{cn} (93)	- 2.22

Ref.	[33]	[33]	Su-Chesnavich	[2]	[2]	Su-Chesnavich	[16]	$\begin{bmatrix} 12 \end{bmatrix}$	<u>N</u> 3	<u>Z</u>	2 2	<u>4</u> [7 6	7 6	[]	[2]	[4]	[4]	<u>N</u> [<u></u>	<u> </u>	[18]	[18]	[2]	[2]	[2]	[10],[11]	[10],[11]	[10],[11]	[10],[11]	. 033 . 333	[10],[11]	[10],[11]	[18]	Su-Chesnavich	[16]	[10],[11]	Su-Chesnavich	Su-Chesnavich	<u>8</u>	2 3	o	[6]	[96].[97]
k	240×10 ⁻⁰⁹	1.60×10 ⁻⁰⁹	5.10×10 ⁻⁰⁹	1.28×10^{-09}	3.20×10^{-10}	$ 5.00\times10^{-09}$	1.90×10^{-09}	3.90×10 ⁻³	1.20×10 12	1.82×10 ==	6.50×10 = 1 30×10-12	7.44 0.10 - 11	7.44×10	2.56×10 ⁻¹⁰	1.95×10^{-10}	1.49×10^{-10}	$ 1.25\times10^{-10}$	6.46×10^{-11}	1.71×10^{-11}	3.80×10 ⁻¹¹	$\frac{6.27 \times 10^{-11}}{6.27 \times 10^{-11}}$	1.81×10^{-09}	9.50×10^{-11}	1.43×10^{-10}	6.51×10^{-11}	Z:10×10 7:00×10 ⁻¹²	1.10×10^{-10}	9.90×10^{-11}	1.70×10^{-09}	3.40×10^{-11}	2.40×10 ° ° ° 1 70×10−09	1.00×10^{-10}	9.00×10^{-11}	1.00×10^{-10}	1.23×10 5.00×10 ⁻⁰⁹	1.20×10^{-09}	1.80×10^{-11}	3.10×10^{-09}	2.80×10^{-09}	1.00×10 5	1.00×10 00 1.00×10=09	1.50×10 1.50×10 ⁻⁰⁹	3.00×10^{-11}	6.75×10^{-11}
	N CH	HC ₂ N	HC.N	HC3N	HCN	HC_3N		$^{ m HC_3N}_{ m HC_3N}$; ;	C_2H_4	CH ₃	70 110	CH ₂ CN	H.C.	$^{-2}$ $^{-3}$ $^{-3}$ $^{+}$ $^{+}$ $^{+}$	H	C_3H_3N	Z	H ₂ + Н	п ₂ Н	hv	C_3H_2N	HCN	HCN	н.	Z H AT U	C_3H_3N C_3H_3N	0 0	C_3H_3N	hv	C3H3N	C3H3N	hv		C, H, N	533 hv	Н	$\mathrm{C_3H_5N}$	C_3H_5N	H.	п	I H	Н,	$C_2^{\star}H_3$
Reaction	CH-NH +	CH ₂ NH ₂ ⁺ +	C.H. NH ⁺ +	C,H,NH++	$C_5H_3NH^+$ +	$C_3H_5NH^+$ +	CXHYNZ+	HC ₅ NH ⁺ +	C ₃ H ₃ NH - +		C3H3NH-		+ + + + + + + + + + + + + + + + + + +		'	$C_5 \widetilde{H}_3 NH^+ +$	·		$C_4N_2H^+$ +	CXHYNZ+ +	AdductN ⁺ +	$C_3H_3NH^+$ +		CH ₃ COH ⁺ +	$C_3H_4^{1}NO^{+} + C_3H_4^{1}NO^{+}$	C3.115.14C	C ₇ H ₀ +	+			CH ₂ NH ₂ +			${ m Adduct}{ m N}^+$	C. H. NH ⁺ +	·	CXHYNZ ⁺ +	Ċ	CH ₂ NH ₂ ⁺ +		C ₄ H ₃ N - +	HC, N+ +	_	·
	CH-NH	CH ₂ NH ₂ →	CH ₃ CN →	C, H, N →	C ₃ H ₃ N →	'	C ₃ H ₅ N	HC ₅ N ↑	H ₂	CH ₄	CH ₄	C114	72 112 ↑	C ₂ H ₂	C_2H_3	$C_2^{\dagger}H_2^{\dagger}$ \rightarrow	$^{ m NH}_3$ $^+$	NH ₃	HCN	HCN HCN	HCN +	C ₃ H ₃ N →	C_3H_3N \downarrow	H ₂ O →	H ₂ O ↑	125 CO	C ₇ H _o ↑ ↑	$C_7^{\prime}H_8^{\circ}$	NH ₃ →	HCN +	CH ₂ NH CH-NH-	CH ₃ CN →	CH ₃ CN →	C_3H_3N \downarrow	↑ The Co	C ₃ H ₅ N	$H_2^{\bullet}O_{\bullet} \rightarrow$	$^{ m VH}_3$ $^{ m }$	HN	H ₂ ↑	H ₂	1175	CH ₃ →	CH, ↑
	HC_NH+	+	HC ₃ NH ⁺ +					HC ₃ NH ⁺ +			C3H3N-			C31131N+		$C_{3}H_{3}N^{+} +$				C3H3N+ C3H3N+		$C_3H_3N^+$ +	$C_3H_3^3N_+^+$ +		$C_3H_3N^+$ +		+			$C_3H_3NH^+$ +	C ₃ H ₃ NH + +	C. H. NH ⁺ +		$C_3H_3NH^+$ +	C, H, NH ⁺ +				+			C, N++++		
Type	B 795								-		$R_{cn}802b$ 2 B $802c$ 2		Lcn 803h 2							R_{cn} 805c 2					$R_{cn}807b$ 2		$\frac{1}{R_{cn}}$ 809a 2				$R_{cn}812$ 2 $R_{cn}813$ 2			$R_{cn}815$ 3	B. 816a. 2	$R_{cn}816b$ 2						R _{cn} 823 2		

	Type					Reaction					k	Ref.	
B. 824d	2	- C, N+	+	CH.	1	HC, N+	+	CH.			2.77×10^{-10}	[196].[97]	
Ren 824e	1 2	+Z, 'O	+	CH,	· ↑	C, H, +	- +	HCN			3.75×10^{-11}	[69],[63]	
R 824f	۱ ۵	+Z-50	- +	CH.	1	(5113 H-H-	- +	Z			5.25×10^{-11}	[26] [96]	
Ren 824g	2	+Z, C	+	CH,	1	CH, t	- +	Z,CH			1.73×10^{-10}	[66] [67]	
Rcn 824h	1 2	+ Z, D	+	CH,	· ↑	C.H.	+	HC, Z			5.25×10^{-11}	[59],[5]	
Ren 825a	2	+ Z, O	+	HCN HCN	1	HC, N+	+	CN NN			2.54×10^{-10}	[68]	
Ren 825b	2	+Z, C	+	HCN	1	+ «Z	- +	H			5.36×10^{-10}	86	
Ren 825c	2	, Z, Z,	+	HCN	1	C. N. H+	+	hv			1.50×10^{-10}	[86]	
R_{cn} 826	2	HC,N+	+	Н,	†	HC, NH+	+	Н			5.00×10^{-12}	[2]	
Rcn 827a	2	HC,N+	+	$G_{ m H}^{\prime}$	↑	HC, NH+	+	C,H,			9.00×10^{-10}	[2]	
Ren 827b	1 21	HC, N+	+	C_{2}^{14}	· ↑	C, H, N+	- +	623 H,			6.00×10^{-11}		
Rcn 827c	1 (7)	HC,N+	+	C,H,	†	AdductN ⁺	+	hv v			2.40×10^{-10}	[2]	
B 28	2	+N.UH	+	C.H.	1	Adduct.N+	+	hv			1.00×10 ⁻⁰⁹		
Ren 829	1 0	+N.TH	- +	HC.N	1	Adduct N+	- +	hv			5.00×10^{-10}	<u> </u>	
B 830	١٥	+N H	- +	H (3:	1	+HN H	- +	h			9 50 > 10 - 10	(HTRDTH)	_
R 831	10	7. H. C.	- +	: 2	1	CS HS INH+	- +	H CH			$\frac{133 \times 10^{-10}}{133 \times 10^{-10}}$	est (C6H6D+N)	î (;
R 832	10	Z-12-Z-12-Z-12-Z-12-Z-12-Z-12-Z-12-Z-12	- +	ıΉ	` 1	HC N+	- +	i I			150×10 ⁻⁰⁹	[3]	
11cn002	1 c	1717	-	112	`	110711	-				F.00×10-12	<u> </u>	
L _{cn} 053	71 (- HC712	+ -	п2	†	11-41-11	+ -	E 2			5.00×10	<u>o</u> [
Ren 034	7 (N 2	+	= ;	↑		+	N 2			1.00×10	[2]	
$R_{cn}835a$	7	Z S	+	H_2	↑	$^{2}H^{+}$	+	H			1.29×10^{-39}	[71]	
$R_{cn}835b$	2	Z 2	+	H_2	†	$\mathrm{H_2}^+$	+	Z N			1.30×10^{-11}	[71]	
$R_{cn}836a$	2	, 'S	+	CH_4	↑	CH ₃ +	+	$^{\mathrm{N}}$	+	Н	8.16×10^{-10}	[71],[99]	
R _{cn} 836b	2	+ 'C	+	$_{ m CH}_{ m J}$	↑	CH, +	+	Z	+	Н,	3.12×10^{-10}	[71],[99]	
B., 836c	2	+ Z	+	CH.	1	+ H.Z	+	CH.		N	7.20×10^{-11}	[21].[33]	
Ren 837a	. 6	+ : Z	+	F. C.	1	+, H, C	- +	z Z			9.40×10^{-10}	[2]	
R 837b	10	+ Z Z	- +	C2112	1	Z T Z	- +	Ξ. Δ			6.00×10 ⁻¹¹	[2]	
Lcn 83.83	۱ د	+ 2 2	+ +	C ₂ H ₂	1	+ H	+ +	Z Z	+	1	8.71×10^{-10}	[71]	
P 838h	10	,+ ,+	- +	C2114	` 1	C2113 T +	- +	⁰¹ Z	- +		2 99 < 10 - 10	[2]	
R 838c	1 C.	+ Z Z	+ +	C ₂ H ₄	1	N H +	+ +	C.H.	+	-1.2	1.30×10^{-10}	[21]	
R 839a	ا د	+ Z Z	- +	C. H.	1	+ H - C	- +	Z Z Z	+	π	1.89×10 ⁻¹⁰	[2]	
R 839b	1 0	+ 2 2	- +	C2H6	1	C2H2+	- +	8 Z	- +		351×10^{-10}	[4]	
D 830c	۱ .	+ 2 2	-	7211 ₆	`	C2114 7 11 +	-	0 Z Z	-	112 H	3.31×10 4.16×10−10	[,1]	
D 0204	v c	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	+ -	72H6	†	C ₂ H ₃	+ -	0 Z Z	+ -	П3	4.10×10 9.94×10−10	[(1]	
Len 339a	۱ د	+ 2 2	+ +	C ₂ H ₆	1	C2112	+ +	0 Z Z	+ +	7.4 CH	$\frac{2.34 \times 10}{1.04 \times 10^{-10}}$	[71]	
1.cm 030f	1 0	4 7 7	- +	7.5±1.6 7.5±1.6	` 1	+ T = +	- +	81 Z		37H	130~10-11	[4-]	
Len 8391 B 8405	۱ .	7 Z Z	+ +	C_{2}^{C}	1	CII4 H +	+ +	0 Z Z	-	Н	1.30×10^{-10}	[,1]	
Len 840k	1 0	+ 2 Z	- +	3.13 7 13.18	1	(3112 7	- +	7 Z		113 7 H	3.00×10^{-10}	[4]	
R 840c	10	+ 2 2	- +	C3118	1	C2H2+	- +	8 Z	- +	CH.	9.30×10^{-10}	[4]	
R 840d	10	+ Z Z	- +	8 H	1	C2114 C H +	- +	ZZ	- +	CH.	5.20×10^{-10}	[2]	
Ecno104	10	+ 2 2	- +	S II C	1	C2113	- +	. Z	-	2	1 09 < 10 - 10	[100]	
n _{cn} o414	۹ (+ 2 2	- +	9 19 2	١ ٠	+ 11 5	-	2 7	-	Ė	1.32×10 3.64×10=10	[100]	
D 8410	۷ ۵	1 2 4 X	+ -	9 1 9 7	1	Cens	+ -	0 Z Z	+ -		6.094×10^{-11}	[100]	
n _{cn} o41c	4 0	+ 2 2	+ -	9 19 2	†	C6H4 CH4	+ -	2 7	+ -	112	0.40×10 9.60::10=11	[100]	
K_{cn} 841d	.7 0	- Z Z	+ -	Sen En	†	+, - ; H ; H ; C	+ -	7 Z Z	+ -	CH3	3.20×10 ==	[100]	
K_{cn} 841e	.7	N 7	+	C ₆ H ₆	↑	C4H4	+	N 2	+	C ₂ H ₂	6.56×10 = 2	[100]	
R_{cn} 841f	7	Z	+	C_6H_6	↑	$^{\mathrm{c-C_3H_3}}$	+	8 Z	+	C_3H_3	$2.72{\times}10^{-19}$	[100]	
$R_{cn}842a$	7	Z -2	+	$\mathrm{C_7H_8}$	↑	$^{\mathrm{C}_{7}\mathrm{H}_{7}^{+}}$	+	$^{\rm z}$	+	Н	1.62×10^{-09}	[74]	
$R_{cn}842b$	2	N + 2	+	$\mathrm{C_7H_8}$	†	$C_6H_5^+$	+	2	+	CH_3	9.50×10^{-11}	[74]	
$R_{cn}842c$	7	+ Z	+	$\mathrm{C_7H_8}$	†	$C_5 H_6^+$	+	Z	+	C_2H_2	3.80×10^{-11}	[74]	
$R_{cn}842d$ 2 N_2^{-+}	7	N ₂ +	+	$\mathrm{C_7H_8}$	†	$C_4H_4^+$	+	Z	+	CH ₃ CCH	9.50×10^{-11}	[74]	
$R_{cn}842e$	2	N_2^+	+	${ m C_7H_8}$	†	$c-C_3H_3^+$	+	$_{2}^{\mathrm{N}}$	+	C_4H_5	5.70×10^{-11}	[74]	
Continued or	ı Next	Page											

Ref.	[2]	[4]	[Z]	[75]	[75]	[75]	[2]	[2]	[2]	[2]	[51]	[51]	[51]	[51]	[51]	[33]	[33]	[33]	[73]	[73]	[73]	[73]	[73]	[73]	[73]	[73]	[12]	[22]	[92]	[92]	[77],[2]	[6]	<u>1</u> 4	<u>[</u> 4	[2]	[2]	[2]	[4]	4.3	[4]	<u></u>	[01]	[2]	[2]	[2]	[7]
k	1.00×10^{-11}	1.95×10^{-09}	3.90×10^{-10}	6.10×10 ii	8.17×10 2.58×10=10	8.54×10^{-11}	3.15×10^{-10}	1.36×10^{-09}	4.20×10^{-10}	3.50×10^{-09}	1.00×10^{-10}	3.00×10^{-10}	3.50×10^{-10}	5.00×10^{-11}	2.00×10^{-10}	2.21×10^{-09}	6.80×10^{-10}	5.10×10^{-10}	2.85×10^{-10}	2.85×10^{-10}	5.70×10^{-10}	1.95×10^{-10}	1.95×10^{-10}	4.05×10^{-19}	4.05×10 ±3	3.75×10^{-10}	4.80×10 ⁻⁰⁹	2.35×10^{-09}	1.76×10^{-10}	1.76×10^{-10}	1.00×10^{-10}	8.00×10^{-10} 9.30×10^{-10}	9.80×10^{-12}	1.30×10^{-10}	1.90×10^{-09}	5.04×10^{-10}	7.30×10^{-11}	2.52×10^{-09}	3.77×10^{-19}	8.00×10 ±3	5.10×10 1.00×10-10	1.00×10 4.00×10^{-30}	8.90×10^{-10}	1.40×10^{-09}	1.00×10^{-09}	1.13×10 ~
				11					- H ₂	1		- HCN		- H ₂		Н -	N ₂						- C ₂ H ₃		- C ₂ H ₂	н .		_ N,		N ₂																- Н2
	$_2^{ m N}$	Z	$^{2}_{2}$		Z Z	- +	Z		N ₂ +	Z	N_2 +		N_2 +		C_3H_2N	N_2 +	$CH_2CN +$						N_2	Z Z	N 2 2 + +	Z Z	8 C	Z	CN +	C_2H_2 +		2	0 0 Z Z		$_{2}^{\mathrm{N}}$		$_{2}^{\mathrm{Z}}$	N_2H	$_{2}^{2}$	8 Z	20				$^{\circ}_{z}$	
Reaction	+ +N	HN3+ + +	HCN+ + +	CH3NH2 + +	H2NH2 H NH+	CH ₃ ⁺ + +	, H ₃ N ⁺ +	HC ₂ NH ⁺ +	C_2N^+ +	$HC_3^{\dagger}N^+$ +	$C_2H_3^+$ +	$C_2H_2^+$ +	C_3NH^+ +	$HC_3^-N^+$ +	N_2H^+ +	$C_3H_3NH^+$ +	CH_3^+ +	$_{2}^{H_{2}^{+}}$ +	$^{1-C_{3}H_{3}^{+}}$ +	+	HC_2N^+ +		HC_2NH^+ +	3H5+ +		$C_4H_3NH - + C_4H_3NH - + C_4H_3NH - + C_4H_3NH - C_5H_3NH - C_5$		C ₄ H ₄ + +	$C_4^{\dagger}H_5^{\dagger+}$ +	$C_3H_3N^+$ +	+ 4		+ + O+ O+		+ + + + + +	N_2H^+ +			CH_2O^+ +	CO: +	3. + 24ot N+	aancein .			$C_2H_5^+$	
Res	\ \ \ \	Z ↑	↑	↑ ⁻	1	^	↑	H ↑	H ↑	H ↑	O	○↑	Η ↑	H ↑	z ↑		Δ↑	Ο	<u>-</u> ↑		□ ↑	Ο ↑	Η ↑	Ο (↑	_	† 1			○↑	O↑	z ↑		0 0	z ↑	H ↑	z ↑	O					₹	Δ	□↑		↑
	Z	NH_3	HCN	CH_3NH_2	CH3NH2 CH NH	CH,NH,	CH,CN	CH_3^3CN	$CH_3^{2}CN$	HC_3^N	C_3H_3N	C_3H_3N	$C_3^{\dagger}H_3^{\dagger}N$	C_3H_3N	C_3H_3N	C_3H_5N	C_3H_5N	C_3H_5N	$\mathrm{C_4H_5N}$	C_4H_5N	C_4H_5N	C_4H_5N	C_4H_5N	C_4H_5N	C_4H_5N	C ₄ H ₅ N	HO, N	C, H, N	C_5H_5N	C_5H_5N	$^{ m Z}_{^{2}}$	2	$O(^{3}P)$	$O(^3P)$	H_2^{O}	${ m H}_2{ m O}$	CO	$\mathrm{H_2CO}$	H_2^{CO}	c C C	П2	п	CH_4	$\mathrm{C_2H_2}$	$\mathrm{C_{2}H_{4}^{2}}$	$C_2\Pi_6$
	+	+	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ :	+ +	- +	- +	+	+	+	+	+ +	+		+				+ -	+ -	+			+ -	+
Type		2 N Z 2 +														_														2 N 2 +			+ Z Z			$\frac{2}{N_2}$				Z Z Z					2 N ₂ H ⁺	ext P
	$R_{cn}843$	$R_{cn}844$	\mathbb{R}_{cn} 845	R_{cn} 846a	\mathbf{R}_{cn} 8466	R_{cn} 846d	R _{cn} 847a	$R_{cn}847b$	R _{cn} 847c	$R_{cn}848$	$R_{cn}849a$	$R_{cn}849b$	$R_{cn}849c$	\mathbb{R}_{cn} 849d	$R_{cn}849e$	\mathbb{R}_{cn} 850a	$R_{cn}850b$	$R_{cn}850c$	$R_{cn}851a$	$R_{cn}851b$	$R_{cn}851c$	\mathbb{R}_{cn} 851d	$R_{cn}851e$	R_{cn} 851f	R _{cn} 851g	R_{cn} 851h R 851i	Ren 852	Ren 853a	$R_{cn}853b$	$R_{cn}853c$	\mathbb{R}_{cn} 854	α π π	Ren 856a	R _{cn} 856b	$R_{cn}857a$	$R_{cn}857b$	$R_{cn}858$	$R_{cn}859a$	\mathbb{R}_{cn} 859b	\mathbf{R}_{cn} 860	K _{cn} 801a	Ren SOID	$R_{cn}862$	$R_{cn}863$	$\mathbb{R}_{cn}864$	K_{cn} 865a Continued or

Ref.	[2]	<u> </u>	[2]	2	1 <u>Ic</u>	2 2	[4]	[2]	[5]	2 [<u>5</u>	[7]	[2]	[4]	[2]	[2]	[4]	[4]	7 2	[2]	[7]	[7]	[2]	[2]	[2]	[3]	2 2	[7]	[2]	[+0+]	[2]	[2]	[102]	[102]	¥. [4	[4]	[22]	[22]	[77]	[22]	[77]	[80]		-
k	1.69×10^{-10} 1.50×10^{-09}	1.40×10^{-09}	7.70×10^{-10}	6.30×10^{-19} 1.10×10^{-09}	1.50×10 ⁻⁰⁹	1.30×10^{-09}	2.30×10^{-09}	3.20×10^{-09}	4.10×10^{-09}	4.20×10^{-3}	1.50×10-03	1.00×10 4.00×10 ⁻³⁰	1.20×10^{-09}	1.40×10^{-10}	2.60×10^{-09}	8.80×10^{-10}	3.30×10 ⁻ 03	1.07×10 ⁻⁰³	4.90×10	1.24×10^{-10}	8.80×10 1.00×10 ⁻¹⁰	7.00×10^{-11}	3.00×10^{-11}	1.08×10^{-09}	1.20×10^{-10}	5.40×10^{-10}	2.02×10=03	1.35×10 = 0	1.60×10^{-3}	2.20×10^{-24}	2.34×10^{-10}	2.37×10^{-09}	7.20×10^{-11}	4.08×10 = 5	8.00×10 5.10×10−10	5.51×10^{-11}	2.90×10^{-12}	1.08×10^{-09}	6.00×10^{-11}	6.00×10^{-11}	1.10×10^{-09}	6.70×10^{-2} 1.00×10^{-10}	7.00×10^{-29}	
			$+$ H_2																																	+ H,			$+$ H_2					
	+ + X X X X X	Z Z		z z + +			+ Z				+ N		, Z	Z +			z ;	αZ Z C		z = + -	2 2 2 4	H H				$+$ $C_2^2N_2$			$+$ C_2N_2		$+$ C_2N_2				C ₂ N ₂							α Ζ		
Reaction								+ H	_		$C_3H_3NH^+$	Adductin	C, N, H ⁺	OH+,			-	OCOH+			C21/211		C ₄ N ₂ + 5					HC3N3	AC3N -	N Too Brown	H_2O^+		4	-	C2H5 H-O+						$C_2H_4^+$			
Re	↑ ↑	· ↑	<u></u>	1			†	†	†	↑	^ ^	<u></u>	↑		↑	↑	<u> </u>				1	1	· ↑	†	†	↑	↑	†	1		↑	<u></u>			1			†	↑	†		- ↑ ↑		
	$\mathrm{C_2H_6}$	$\mathrm{CH_2CCH_2}$	$\mathrm{C_3H_6}$	C ₃ H ₆	C, H,	C_7H_8	$^{ m NH}_3$	HCN	CH ₃ CN	HC ₃ N	C_3H_3N	IN 2	C,N,	$O(^3\tilde{P})$	H_2O	CO	H_2^{CO}	$^{\circ}_{1}$	- -		Π ₂	$C_2^{-11_2}$	$_{ m C_2H_2}^{ m C_2H_2}$	$\mathrm{C_4^{ ilde{4}}H_2^{ ilde{2}}}$	$\mathrm{C_4H_2}$	HCN	HCN	HCN	E C C C C C C C C C C C C C C C C C C C	(212	${ m H}_2{ m O}$	${ m H_2O}$	C_2H_2	$C_2^{H_2}$	C2H4	CH,	CH,	C_2H_2	$\mathrm{C_2^{-}H_2^{-}}$	$\mathrm{C_2H_2}$	C_2H_4	N CO)	
	+ +	+	+	+ +	- +	+	+	+	+	+	+ -	+	+	+	+	+	+	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+ -	+ -	+ +	-	+	+	+ -	+ -	+ +	- +	+	+	+	+	+ -	+ +	-	
	N ₂ H+	N_2H^+	N_2H^+	Z Z	N211 N2H+	+ H ² N	$N_2^{ m H}^+$	N_2H^+	N2H+	+ + 1 2	N 2 H +	. LI 2 LI	H+H°N	$N_2^{L}H^+$	N_2H^+	N ₂ H+	+ + 1 2	+ H 2 Z Z	+ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	+ Z Z Z C	727 727 727	C C C C C C C C C C C C C C C C C C C	C2 N2 +	$C_2^{N_2^+}$	$C_2N_2^+$	$C_2N_2^+$	C_2^2	C ₂ N ₂ C ₃ N ₃ N ₄ N ₅	C ₂ N ₂ C	(21/2	$C_2N_2^+$	$C_2N_2^+$	$C_2N_2H^+$	C ₂ N ₂ H -	C2 N2 H	N (2 1.2 1.2 1.2 N	,+ ; Z	+ Z	+ - Z	+ _e -	+	+ Z Z	n	Page
Type	2 2	1 (3)	7	21 6	1 0	. 23	7	7	7	27 (01 0	o	2	2	2	7	27 (.71 .0	v c	20 00	4 0	10	. 23	7	7	7	01 0		27 07		2	73	01 0	N C	40	1 (2)	. 61	7	2	7	01 0	77 67)	n Next
	R _{cn} 865b	$R_{cn}867$	$R_{cn}868a$	R_{cn} 868b B 869	R. 870	R_{cn} 871	$R_{cn}872$	$R_{cn}873$	$R_{cn}874$	$R_{cn}875$	$R_{cn}876$	Renoil	$R_{cn}878$	$R_{cn}879$	$R_{cn}880$	$R_{cn}881$	$R_{cn}882$	R _{cn} 883	L _{cn} 884a	K _{cn} 884b	R 886a	Ren 886h	R _{cn} 886c	$R_{cn}887a$	$R_{cn}887b$	$R_{cn}888a$	$R_{cn}888b$	K _{cn} 888c	R _{cn} 889	Couost	$R_{cn}891a$	$R_{cn}891b$	$R_{cn}892a$	K _{cn} 892b	R.:. 894	Ren 895a	R _{cn} 895b	R_{cn} 896a	$R_{cn}896b$	$R_{cn}896c$	$R_{cn}897$	R _{cn} 898	200213	Continued on Next Page

Ref.	[2]	2 2	[2]	[2]	2] 2	[2]	[2]	[3]	[80]	£. []	[103]	[103]	[103]	[103]	[104]	[103]	[103]	[100]	[74]	[74]	[103]	[105]	[105]	[80]	[80]	[80]	[103]	[106],[4]	[4]	[80]	[107],[4]	[4]	[4]	[108]	[108]	[108]	[108]	[4]	[4]	[4]
k	1.00×10^{-12}	1.10×10 9.20×10^{-10}	1.10×10^{-09}	1.74×10^{-10}	1.07×10 1.22×10^{-10}	6.71×10^{-10}	4.27×10^{-10}	$2.60 \times 10^{-0.9}$	5.00×10^{-10} 6.40 \times 10 - 10	1.62×10^{-09}	8.80×10^{-10}	2.20×10^{-10}	7.00×10^{-11}	Z.IUXIU == 1.13×10=09	1.12×10 6.20×10^{-11}	1.19×10^{-09}	5.10×10^{-10}	1.90×10 =- 1.10×10=10	1.10×10 2.05×10 ⁻⁰⁹	4.40×10^{-11}	1.10×10^{-09}	5.00×10^{-11}	1.13×10^{-3} 1.33×10^{-9}	1.26×10^{-10}	1.66×10^{-09}	3.15×10^{-10}	2.34×10^{-09}	$1.85 \times 10^{-12} (300/\mathrm{T})^{1.37} \mathrm{e}^{-28.6/T}$	2.60×10^{-09}	2.10×10^{-2} 1.40×10^{-09}	$1.65 \times 10^{-12} (300/T)^{1.37} e^{-12.1/T}$	9.70×10^{-10}	1.89×10 1.26×10 ⁻⁰⁹	1.60×10^{-10}	1.04×10^{-09}	3.20×10^{-10}	4.80×10^{-11}	9.20×10^{-10}	9.20×10^{-10}	2.40×10^{-10}
	Н 2				п ₂			Z Z																											$ m H_2$					_
	+ -	+ +		\mathbb{Z}^{2}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{z}_{2}^{Z}		2 Z	N_2 + $O(^3P)$	(T) H	$O(^3P)$	ЙOH	$O(^3P)$		$O(^3P)$	$H_2^{-}O$	OH (435)	$O({}^{-}F)$	O(r) OH	H,CO	$O(^3P)$	$O(^3P)$	Z	$O(^3P)$	OH	H_2O	NO ON	7	$O(^3P)$	O(-F) OH	$O(^3P)$	H (48)	3CH,	${ m C_2H_4}$	HO HO	$_{0}^{\mathrm{H}_{2}}$	OH O(³ P)	OH OH	$O(^3P)$	O(°P)
	+ -	+ +		+ -	+ +				+ +			+			+ +	+	+ -	+ -	+ +	+	+	+	+ +	+ +	+	+ -	+ +	+	+ -	+ +		+ -	+ +				+ +		+	+
Reaction	N ₂ H+	C.H.,+	$\mathrm{C_2^2H_4^+}^+$	$C_2^{H_5}$	C2H2+	$C_2^{'}H_5^{'+}$	$C_2H_4^+$	HCN+	+ CO+ H+	+HO	CH_4^+	CH_3^{+}	$C_2H_4^+$	C2H3+	C ₂ H ₂ + C ₃ H ₃ +	$\mathrm{C_2^-H_4^-}^+$	$C_2^{H_5}$	C ₆ H ₆ +	C-H-+	$C_{\rm H_s}^{\rm CT}$	NH3+	HCN+	HCO+	CH ₂ NH ₃ +	$CH_2^{2}NH_2^{2}+$	CH ₂ NH+	C, H, +	+ON	$^{\mathrm{H}_{2}\mathrm{O}^{+}}_{\mathrm{OH}}$	HCO+	+ON	$^{\mathrm{H}_{2}\mathrm{O}^{+}}_{\mathrm{OH}}$	CH ₅ ·	H ₃ O+	$\mathrm{C_2H_4}^+$	$C_2^{H_5}$	$C_2^{H_6^+}$	O2 117 NH3+	NH_4^+	$^{ m N}_{^{2} m H}{}^{+}$
	↑ 1	↑ ↑	\uparrow	↑ ′	↑ ↑	↑	\uparrow	↑	1	^	\uparrow	\uparrow	↑	<u> </u>	↑ ↑	\uparrow	↑	^	1	· ↑	\uparrow	\uparrow	1	↑ ↑	\uparrow	↑ 1	↑ ↑	\uparrow	↑	↑ ↑	†	↑	↑ ↑	†	\uparrow	↑	1	1 1	\uparrow	↑
	H ₂	C,H,	$\mathrm{C_2^{-}H_4^{-}}$	$C_2^{H_6}$	C2H°	$\mathrm{C_{3}H_{8}^{2}}$	C_3H_8	HCN	00 H	H,	$ ext{CH}_4$	CH_4	C_2H_4	C ₂ H ₄	C2H4 C,H,	$\mathrm{C_2^-H_6^-}$	$C_2^{\mathrm{H}_6}$	Сене Сене	C ₇ H ₈	C_7H_8	$^{ m NH_3}$	HCN	HCN	CH, NH,	$\mathrm{CH_3^3NH_2^2}$	CH_3NH_2	CH, CN	, z	$^{ m H}_{ m 2O}$	H,CO	ON	$^{ m H_2}_{ m 2}$	CH.	$_{ m C_2H_6}$	$\mathrm{C_2^-H_6^-}$	C_2H_6	C ₂ H _e	(2116 NH.	$^{ m NH}_3$	N Z
	+ -	+ +	+	+ -	+ +	+	+	+	+ +	+	+	+	+ -	+ -	+ +	+	+ -	+ -	+ +	+	+	+	+ +	+ +	+	+ -	+ +	+	+ -	+ +	+	+ -	+ +	+	+	+ -	+ +	+ +	+	+
	Z Z + + + +	Z Z + z	X + 4	Z 2	Z Z + +	, Z	Z ;	Z ;	Z C	+0	+0	+0	+ +	+	+0	+0	+ +0	+	+	+0	+0	+ 0	+ + o c	+	+0	+ +	+	+0	+ +0	+	+0	+HO	+ HO	+HO	HOH+	+HO	OH +	+ HO	+HO	OH ⁺ Page
Type	2.0	4 61	2	67 6	v 0	7	2	2	61 6	1 (1	2	7	27 0	71 0	4 61	2	70	71 0	4 0	1 23	2	2	C1 C	1 (1	2	C1 C	4 64	2	2 0	N 61	2	27 0	7 8	1 73	7	70	21 6	1 (1	2	$_{\rm n}^2$
	$R_{cn}900$	R_{cn} 902	R_{cn} 903	R_{cn} 904a	R_{cn} 905a	R_{cn} 905b	$R_{cn}905c$	R_{cn} 906	$R_{cn}907$	R _{cn} 909	\mathbb{R}_{cn} 910a	$R_{cn}910b$	$R_{cn}911a$	R_{cn} 911b	R_{cn} 912	R_{cn} 913a	R_{cn} 913b	$R_{cn}914$	R_{cr} 915b	R_{cn} 915c	R_{cn} 916	$R_{cn}917a$	$R_{cn}917b$	R _{cn} 918a	R_{cn} 918b	$R_{cn}918c$	R_{cn} 919b	R_{cn} 920	R_{cn} 921	R_{cn} 922b	R_{cn} 923	R_{cn} 924	R_{cn} 925b	R_{cn} 926a	R_{cn} 926b	R_{cn} 926c	R_{cn} 926d B 936e	R_{cn} 927a	$R_{cn}927b$	$R_{cn}928$ 2 OH ⁺ Continued on Next Page

Ref.	[109]	[109] [4]	[110]	[110]	[4]	<u>N</u> 2	7 6	7 6	7	<u>Z</u> <u>Z</u>	<u>Z</u>	7	7		[2]	[4]	[4]	[2]	[2]	<u>N</u>	[2]	[2]	1 <u>2</u>	[=]	[-] [4]	[2]	3	[7]	[2]	[2]	[2]	[2]	[4]	[33]	[33]	<u>7</u>	2 3	<u>N</u> [[5]	[63] [19]	[2]	[7]	[4]	[5]	77 2	[7]
Ж	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 1.30 \times 10 \\ 8.40 \times 10^{-10} \end{array}$	7.44×10^{-10}	1.12×10^{-09}	8.15×10^{-10}	7.60×10-10	1.12×10 ==	1.90×10 1.50×10-09	1.50×10 1.50×10=09	1.33×10 33	1.92×10 = 5	1.60×10 ±	6.40×10 ==	1.12×10^{-13}	2.80×10^{-11}	2.21×10^{-33}	9.45×10^{-19}	1.05×10 ⁻⁰³	1.05×10 ⁻⁰³	1.00×10 ± 5	1.13×10 1.00×10 ⁻⁰⁹	1.85×10 ⁻⁰⁹	4.25×10^{-10}	1.41×10 ⁻⁰⁹	6.62×10^{-10}	1.00×10^{-10}	8.00×10^{-28}	1.00×10 ±0	1.80×10 ⁻⁰⁹	1.40×10^{-09}	1.70×10^{-09}	1.10×10^{-09}	2.23×10^{-09}	3.00×10^{-09}	2.10×10^{-09}	3.80×10 ⁻ 3	4.50×10 55	3.90×10 7.10×10-09	5.10×10 == 4.60×10=09	4.6U×10 5.60×10-09	3.80×10 1.00×10 ⁻¹⁰	3.40×10^{-27}	3.00×10^{-09}	$\begin{vmatrix} 4.00 \times 10^{-10} \\ -2.00 \times 10^{-10} \end{vmatrix}$	7.28×10^{-13}	0.72×10
	OH (ag/30)	$O(\frac{F}{P})$	OH							C_2H_5	H ₂ O +	$^{ m H}_2^{ m O}$						-	CN		НО				oH OH				O.H.	H ₂ O										H ₂ C	112		. H ₂ O		# #	п.
Reaction	$+$ H_2O^+ $+$	+ + HCO+ + +		$CH_2^{-}OH^{+}$	+ON	H ₃ O+	. + D: = U: =	C ₂ H ₂ +	C2H4.	_ + O ;; U ;;	$C_2H_4^+$	C ₂ H ₅ -	$C_2H_6^-$	HNO	L C	$^{ m H}_3^+$		+ HCNH + +	+ H ₃ O ⁺ +	→ AdductN	+ H+H+ N-D	H2O+	HCO+	CH ₂ O+	$ m CH_2OH^+$	→ CH ₃ CHOH ⁺		→ Adduct	+ C ₃ H ₅ + +	↑	\uparrow	$\rightarrow C_4H_3^+ +$	-	$\mathrm{CH_2NH_2}^+$	CH ₃ NH ₃ +	HCNH+	$C_2H_3NH^{-1}$	HC ₃ NH ⁺		→ C3H5NH → + HO NH+ +		on part	CH_2OH^+		+ + + + + + + + + + + + + + + + + + +	- 200
	+ H ₂ O	+ +	+ H,CO		ON +	+ H ₂	- + CH ₄	- + C ₂ H ₂	+ C ₂ H ₄	+ C ₂ H ₆	+ C ₂ H ₆	$+$ C_2H_6	+ C ₂ H ₆				+ NH ³	+ HCN	+ HCN	+ N ₂	+ N.C	+ H ₂ O						$+$ C_2H_4	+ CH ₂ CCH	Ī					$+$ CH_3NH_2			+ + HC ₃ N		+ C3H5N		1120	$+$ H_2 CO		+ H ₂	+ H ₂
Type	2 OH ⁺									2 H ₂ O+		2 H ₂ O+			2 $^{+}$ 2 $^{-}$				$\frac{2}{6}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$			2 H ₂ O ⁺			2 H ₂ O ⁺			3 H ₃ O	2 H ₂ O ⁺						2 $^{+3}O_{+}^{+}$			H ³ O ⁺			113O+ 113O+		2 H ₃ O ⁺		CO CO	xt P
	$R_{cn}929a$	\mathbf{R}_{cn} 9290 \mathbf{R}_{cr} 930	$R_{cn}931a$	$\mathbf{R}_{cn}931\mathbf{b}$	R_{cn} 932	R_{cn} 933	R_{cn} 934	R_{cn} 935 D	R_{cn} 930	\mathbf{R}_{cn} 937a	K _{cn} 937b	\mathbf{R}_{cn} 937c	\mathbf{R}_{cn} 937d	R_{cn} 938a	R_{cn} 938b	R_{cn} 939a	R_{cn} 939b	$R_{cn}940a$	\mathbb{R}_{cn} 940b	\mathbf{R}_{cn} 941	B 942	Ren 943	R _{cm} 944	R _{cn} 945a	R_{cn} 945b	R_{cn} 946	į	\mathbf{K}_{cn} 94' ℓ	R_{cn} 948	R_{cn} 949	\mathbf{R}_{cn} 950	\mathbf{R}_{cn} 951	$R_{cn}952$	\mathbf{R}_{cn} 953	\mathbb{R}_{cn} 954	R_{cn} 955	\mathbf{R}_{cn} 956	\mathbf{R}_{cn} 957	R_{cn} 958	\mathbf{R}_{cn} 959 \mathbf{R} 960	\mathbb{R}_{-} 961	1 cou co 1	$\mathbf{R}_{cn}962$	\mathbb{R}_{cn} 963	\mathbf{R}_{cn} 964a	K_{cn} 904D Continued α

	+	+
	++	+++
	+ +	+ +
+	$^{+}$ $^{+}$ $^{+}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$	+ +
0	+ HCO + H°CC	+ +
+		+
+	0 + +	+ +
	+ +	+ +
	+ +	+ +
	+ -	$\rightarrow C_2H_3N^+ + C_2H_3N^+$
	OOD + +	+ +
+		$\downarrow C_2 H_2^+ + \\ \downarrow C_2 H_2^- + \\ \downarrow C_2 H_$
	H	H
	OO +	+
		+
	CDH +	
	+	CH ₂ O ⁺ +
		112
	+ +	+ +
	+	NH ₄ + + +
	++	\downarrow HCNH+ + \downarrow C. H. NH+ +
	- +	HC ₃ NH ⁺ +
	+	\rightarrow H ₂ O ⁺ +
	00 + +	+ +
	0	→ HCO+CO
	+	++1
	+ +	+ +
		CH ₅ +++
		N_2H^+ +
	OD + +	+ +
	+ +	CH_3 CHOH ⁺ +
<u>o</u>	$+$ H_2 CO	+

	Type					Reaction				Я	Ref.
1		+				+		(00	-
$R_{cn}995b$	27	$ m CH_2O^{+}$	+	$^{ m NH_3}$	↑	$^{ m H}_4$	+	HCO		1.26×10^{-33}	[4]
$R_{cn}996$	2	CH,0+	+	HCN	†	HCNH+	+	HCO		1.40×10^{-09}	[4]
B 2 997	2	CH2O+	+	Н	1	H ₂ O+	+	HCO		2.10×10 ⁻⁰⁹	[4]
D 000	1 0	CII.2 O +		220		711				3 30 3 10 - 09	
n _{cn} 330	4	CH2O.	+	12CO	↑	Сп ₂ Оп .	+	0011		3.20 X 10	[4]
$R_{cn}999$	7	$CH_2OH_1^{\top}$	+	$\mathrm{C_4H_2}$	↑	$\mathrm{C_4H_3}^+$	+	$_{ m H_2CO}$		$ 9.30 \times 10^{-19}$	[2]
$R_{cn}1000$	7	CH_2OH^+	+	$_{ m NH_3}$	†	$^{+}_{4}$	+	H_2 CO		2.05×10^{-09}	[4]
$R_{cn}1001$	2	CH ₂ OH ⁺	+	HCN	↑	HCNH+	+	H,CO		1.30×10^{-09}	[2]
$R_{cn} 1002$	2	CH,OH+	+	О'Н	†	$^{+}O^{+}$	+	H,CO		2.30×10^{-10}	[2]
B. 1003a	2	CH2CO+		NH,	1	CH, NH, +	+	Ç.		4.40×10^{-10}	[06]
D 1003b	1 0	CH2CO+		NH.		NH +		CNETT		4.40~10-10	[00]
Lcn 1003D	4 (CII2CO	۰ ـ	INIT3	1	1114	+ ·	ONEO T		4.40 × 10	[06]
$R_{cn} 1004$.7	CH ₃ CHOH .	+	NH3	↑	NH4	+	CH3CHO		1.80×10 5	[112]
$R_{cn}1005a$	7	CH ₃ CHOH ₊	+	CH_3CN	↑	$C_2H_3NH^+$	+	CH_3CHO		3.01×10^{-03}	[112]
$R_{cn}1005b$	2	CH ₃ CHOH ⁺	+	CH_3CN	†	$C_4H_8NO^+$	+	hv		1.92×10^{-10}	[112]
R. 1006a	2	-, +, CO ₂ +	+	ЭН	1	, +H	+	CO°		5.53×10^{-11}	[4]
B 1006h	6	+		н	1	HCO+	+	` C		9 70×10 ⁻¹⁰	[7]
Ech 1005	10	+		: 1	1	HODO	- +			6.50~10-10	I =
Lcn 1001	4 (,	۰ ـ	112	1	+15	+ ·			0.20 × 10	F]
\mathbf{K}_{cn} 1008a	7		+	CH4	†	CH4	+	CCS		2.63×10 ==	[4]
$R_{cn}1008b$	2	CO ₂ +	+	CH_4	↑	+HOOO	+	$_{ m CH_3}$		7.88×10 ⁻¹⁰	[4]
$R_{cn}1009$	2	CO ₂ +	+	C_2H_2	†	$C_2H_2^+$	+	CO3		5.60×10^{-10}	[113]
$R_{cn} 1010a$	2	CO2+	+	$C_{5}H_{4}^{-}$	↑	$C_{3}H_{4}^{+}$	+	co,		3.07×10^{-10}	[113]
B 1010b	6	, +, CO +,		, H. C.	1	+, H, H,	+	-t	н	1.88×10 ⁻¹⁰	[113]
1010-	1 0	+ 0 0		C ₂ 114		, contract + contract		200	=======================================	4 05 10 10	[119]
\mathbf{R}_{cn} 1010c	7 (+ -	$C_2\Pi_4$	↑	C2H2.	+ -	CC2 +	п2	4.95×10	[113]
$R_{cn}1011a$	2	CO ₂ ·	+	$\mathrm{C_2H_6}$	↑	$\mathrm{C_2H_5}^{+}$	+	CO_2 +	H	2.50×10^{-13}	[113]
$R_{cn}1011b$	2	CO ₂ +	+	$\mathrm{C_2H_6}$	†	$C_2H_4^+$	+	CO ₂ +	H_2	5.30×10^{-10}	[113]
$R_{cn} 1012a$	2	CO2+	+	$C_{3}^{-}H_{6}^{-}$	†	C'H'+	+	co,	ı	6.51×10^{-11}	[113]
B 1012h	2	, + , -	4	SH, C	1	, H, H	+	† "C"	Ξ	6.32×10 ⁻¹⁰	[113]
B 1019c	10	+		9 H C	1	+ H C	- +	200	: 1	1.77~10-10	[113]
10101	1 0	+2000		3116		(3114		200	112 H - H	2.70 × 10 − 11	[113]
Len 1012a	4 (, 200 + 200 +	.	C3.11 ₆	†	C-C3H3	+ -	202	+ -	2.79×10	[011]
\mathbf{R}_{cn} 1012e	7 (CC2 # 505	+ -	$C_3^{\mathrm{H}_6}$	↑	I−C ₃ H ₃ .	+	CO ₂ +	Н2 + Н	2.79×10 ==	[113]
R_{cn} 1013a	.7	COS	+	C_3H_8	↑	C_3H_7	+	CO_2 +	H :	9.36×10 11	[113]
\mathbb{R}_{cn} 1013b	7	CO ₂ +	+	$\mathrm{C_3H_8}$	↑	$\mathrm{C_3H_6}^{\top}$	+	CO_2 +	${ m H}_2$	2.34×10^{-11}	[113]
$R_{cn} 1013c$	2	CO ₂ +	+	$\mathrm{C_{3}H_{8}}$	↑	$\mathrm{C_3H_5}^{+}$	+	CO_2 +	$\mathrm{H_2} + \mathrm{H}$	2.34×10^{-11}	[113]
$R_{cn}1013d$	2	CO ₂ +	+	$\mathrm{C_3H_8}$	↑	$C_2H_5^+$	+	CO_2 +	CH_3	5.46×10^{-10}	[113]
$R_{cn} 1013e$	2	CO ₂ +	+	$\mathrm{C_3H_8}$	†	$C_2H_4^+$	+	CO_2 +	CH_4	9.36×10^{-11}	[113]
R_{cn} 1014a	2	CO,+	+	C_4H_{10}	↑	$C_4 H_a^+$	+	CO ₂ +	Н	7.00×10^{-11}	[114]
R_{cn} 1014b	2	CO2+	+	C_4H_{10}	†	C,H,+	+	CO, +	CH_3	5.30×10^{-10}	[114]
$R_{cn} 1014c$	2	CO2+	+	C_4H_{10}	↑	C,H,+	+	CO, +	$_{ m CH_3}$	9.00×10^{-11}	[114]
R _{cn} 1014d	2	CO2+	+	C,H;	↑	C,H,+	+	CO2 +	$CH_A + H$	3.10×10^{-10}	[114]
R _{cm} 1015	2	CO2+	+	a *z	↑	c,+00	+	ON		3.40×10^{-10}	[115]
B. 1016	ı c	CO2+	- 4	NH.	1	+ HN	- +	000		1.90×10 ⁻⁰⁹	[5]
B. 1017a	۱ ۵	+ 00	- 4	N.C.H	1	HUN+	- +	202		8 10×10 ⁻¹⁰	[1]
D 1017b	1 0	+		HON		HODO H+		2 0		0.00 < 10 - 11	[116]
D 1010	4 C	, 200	-		1	+00	+ -	3 6		9.00×10 1.00×10=12	[110]
D 1010	۱ د	+ 200	- -		1	+012		2 0		1.33~10-10	[4]
Lcn 1030	۱ (- 1200 - 1100	Ļ -		1	+	-	200		7.50 10 = 10	[-]
R _{cn} 1020	7 (. +HOOO	+ -	Сп ₄	1	CH.22	+ -	0 C		7.20×10	[4]
R_{cn}^{-1021}	27 (- HOOO	+ -	C_2H_2	†	C ₂ H ₃	+ -	202		1.37×10 00 4.10:10=09	[118]
$R_{cn} 1022$	71 0	+#000	+ -	CH ₃ CN	<u> </u>	C ₂ H ₃ NH	+ -	200		4.10×10	[119]
$R_{cn} 1023$	4 c	+HOOO	+ -	N20	1	HONH	+ +	200		2.65×10 1.00×10-10	[4] [130]
$R_{cn} 1024$	4 C		+ -	NO.	1	+ H - C	+ +	2 C		1.00×10 1.43×10 ⁻⁰⁹	[140] [7]
Continued on Next Page	Next F	age	_	99		9++9)	-)			[+]

	Type		Reaction		k	Ref.
$_{in}1026$	2 NO ⁺	$+ CH_3NH_2$	\rightarrow $CH_3NH_2^+$ -	ON +	8.20×10^{-10}	[4]

- D. Baulch, C. Bowman, C. Cobos, R. Cox, T. Just, J. Kerr, M. Pilling, D. Stocker, J. Troe, W. Tsang, R. Walker, J. Warnatz, Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data 34 (2005) 757–1397.
- [2] M. McEwan, V. Anicich, Titan's ion chemistry: A laboratory perspective, Mass Spectrom. Rev. 26 (2007) 281–319.
- [3] V. Wakelam, J.-C. Loison, E. Herbst, B. Pavone, A. Bergeat, K. Béroff, M. Chabot, A. Faure, D. Galli, W. Geppert, D. Gerlich, P. Gratier, N. Harada, K. Hickson, P. Honvault, S. Klippenstein, S. Le Picard, G. Nyman, M. Ruaud, S. Schlemmer, I. Sims, D. Talbi, J. Tennyson, R. Wester, The 2014 KIDA network for interstellar chemistry, Astrophys. J. Suppl. Ser. 217 (2015) #20.
- [4] V. Anicich, Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds, J. Phys. Chem. Ref. Data 22 (1993) 1469–1569.
- [5] D. Milligan, P. Wilson, C. Freeman, M. Meot-Ner, M. McEwan, Dissociative proton transfer reactions of H₃⁺, N₂H⁺, and H₃O⁺ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications, J. Phys. Chem. A 106 (2002) 9745–9755.
- [6] H. Wincel, R. Fokkens, N. Nibbering, On the structure and isomerization/dissociation reactions of C₃H₆N⁺ generated by methylation of acetonitrile in the gas phase, Int. J. Mass Spectrom. Ion Processes 91 (1989) 339–355.
- [7] D. Milligan, M. McEwan, H_3^+ + O: an experimental study, Chem. Phys. Lett. 319 (2000) 482–485.
- [8] L. Capone, R. Whitten, J. Dubach, S. Prasad, W. Huntress Jr., The lower ionosphere of Titan, Icarus 28 (1976) 367–378.
- [9] D. Bohme, A. Raksit, H. Schiff, Reactions of ¹²C⁺ with hydrocarbons at 296 K: carbon-carbon bond formation, Chem. Phys. Lett. 93 (1982) 592–597.
- [10] S. Petrie, T. Chirnside, C. Freeman, M. McEwan, The ion/molecule chemistry of CH₂CHCN, Int. J. Mass Spectrom. 107 (1991) 319–331.
- [11] S. Petrie, C. Freeman, M. McEwan, The ion-molecule chemistry of acrylonitrile: Astrochemical implications, Mon. Not. R. Astron. Soc. 257 (1992) 438–444.
- [12] S. Edwards, C. Freeman, M. McEwan, Some ion chemistry of HC_5N , Int. J. Mass Spectrom. 279 (2009) 82–86.
- [13] D. Gerlich, G. Borodi, A. Luca, C. Mogo, M. Smith, Reactions between cold CH_x^+ and slow H and H_2 , Z. Phys. Chem. 225 (2011) 475–492.
- [14] R. Plašil, T. Mehner, P. Dohnal, T. Kotrik, J. Glosík, D. Gerlich, Reactions of cold trapped CH⁺ ions with slow H atoms, Astrophys. J. 737 (2011) #60.
- [15] J. Glosík, D. Smith, P. Spanel, W. Freysinger, W. Lindinger, SIFDT studies of the reactions of $\rm C^+$, $\rm CH^+$ and $\rm CH_2^+$ with HCl and $\rm CO_2$, and $\rm CH_3^+$ with HCl, Int. J. Mass Spectrom. Ion Processes 129 (1993) 131–143.
- [16] J. Franklin, Y. Wada, P. Natalis, P. Hierl, Ion-molecule reactions in acetonitrile and propionitrile, J. Phys. Chem. 70 (1966) 2353–2361.
- [17] L. Fondren, N. Adams, L. Stavish, Gas phase reactions of CH₃⁺ with a series of homo- and heterocyclic molecules, J. Phys. Chem. A 113 (2009) 592–598.

- [18] V. Anicich, M. McEwan, Ion-molecule chemistry in Titan's ionosphere, Planet. Space Sci. 45 (1997) 897–921.
- [19] G. Scott, D. Milligan, D. Fairley, C. Freeman, M. McEwan, A selected ion flow tube study of the reactions of smalll $C_m H_n^+$ ions with O atoms, J. Chem. Phys. 112 (2000) 4959–4965.
- [20] D. Albritton, Ion-neutral reaction rate constants measured in flow reactors through 1977, At. Data Nucl. Data Tables 22 (1978) 1–101.
- [21] D. Gerlich, M. Smith, Laboratory astrochemistry: Studying molecules under inter- and circumstellar conditions, Phys. Scr. 73 (2006) C25–C31.
- [22] O. Asvany, I. Savić, S. Schlemmer, D. Gerlich, Variable temperature ion trap studies of CH₄⁺ + H₂, HD and D₂: negative temperature dependence and significant isotope effect, Chem. Phys. 298 (2004) 97–105
- [23] N. Adams, D. Smith, Reactions of CH_n^+ ions with molecules at 300 K, Chem. Phys. Lett. 54 (1978) 530–534.
- [24] D. Smith, N. Adams, Binary and ternary reacions of CH₃⁺ ions with several molecules at thermal energies, Chem. Phys. Lett. 54 (1978) 535–540.
- [25] D. Smith, N. Adams, Molecular synthesis in interstellar clouds: radiative association reactions of CH₃⁺ ions, Chem. Phys. Lett. 220 (1978) L87–L92.
- [26] A. Blair, A. Harrison, Bimolecular reactions of trapped ions. VI. Ion-molecule reactions involving ${\rm CH_5}^+$ and ${\rm C_2H_5}^+$, Can. J. Chem. 51 (1973) 1645–1654.
- [27] D. Gerlich, G. Borodi, Buffer gas cooling of polyatomic ions in rf multi-electrode traps, Faraday Discuss. 142 (2009) 57–72.
- [28] S. Dheandhanoo, R. Johnsen, M. Biondi, Measured ion-molecule reaction rates for modelling Titan's atmosphere, Planet. Space Sci. 32 (1984) 1301–1305.
- [29] P. Spanel, D. Smith, M. Henchman, The reactions of some interstellar ions with benzene, cyclopropane and cyclohexane, Int. J. Mass Spectrom. Ion Processes 141 (1995) 117–126.
- [30] T. Su, M. Bowers, Ion-polar molecule collisions: the effect of ion size on ion-polar molecule rate constants; the parameterization of the average-dipole-orientation theory, Int. J. Mass Spectrom. Ion Processes 12 (1973) 347–356.
- [31] C. Speller, J. Vacher, E. Duc, M. Fitaire, Mass spectrometric study of three-body ion-molecule clustering reactions of $C_pH_q^+$ ions with N_2 or CH_4 in N_2 - CH_4 mixtures, Planet. Space Sci. 43 (1995) 33–39.
- [32] P. Rudolph, C. Melton, Ion-molecule charge transfer reactions in the alpha radiolysis of various hydrocarbons in a mass spectrometer, J. Chem. Phys. 32 (1960) 586–588.
- [33] S. Edwards, C. Freeman, M. McEwan, The ion chemistry of methylenimine and propionitrile and their relevance to Titan, Int. J. Mass Spectrom. 272 (2008) 86–90.
- [34] A. Petrank, M. Iraqi, I. Dotan, C. Lifshitz, Proton transfer reactions of C₂H₄⁺: the bond energy D(C₂H₃-H), Int. J. Mass Spectrom. Ion Processes 117 (1992) 223–236.
- [35] J. Žabka, M. Polášek, D. Ascenzi, P. Tosi, J. Roithová, D. Schröder, Reactivity of C₂H₅⁺ with benzene: Formation of ethylbenzenium ions and implications for Titan's ionospheric chemistry, J. Phys. Chem. A 113 (2009) 11153–11160.

- [36] K. Hiraoka, T. Shoda, I. Kudaka, S. Fujimaki, S. Mizuse, S. Yamabe, H. Wasada, Y. Wasada-Tsutsui, Gas phase study of the clustering reactions of $C_2H_5^+$, $s-C_3H_7^+$, and $t-C_4H_9^+$ with CO_2 and N_2O : Isomeric structure of $C_2H_5^+$, $C_2H_5^+$ (CO_2) $_n$, and $C_2H_5^+$ (N_2O_3) $_n$, J. Phys. Chem. A 107 (2003) 775–781.
- [37] W. Huntress, Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition, Astrophys. J. Suppl. Ser. 33 (1977) 495–514.
- [38] G. Molina-Cuberos, J. López-Moreno, R. Rodrigo, L. Lara, Chemistry of the galactic cosmic ray induced ionosphere of Titan, J. Geophys. Res. 104 (1999) 21997–22024.
- [39] L. Capone, J. Dubach, R. Whitten, S. Prasad, Cosmic ray ionization of the Jovian atmosphere, Icarus 39 (1979) 433–449.
- [40] R. Hemsworth, J. Payzant, H. Schiff, D. Bohme, Rate constants at 297°K for proton transfer reactions with NH₃. Comparisons with classical theories and exothermicity, Chem. Phys. Lett. 26 (1974) 417–421.
- [41] G. Mackay, G. Vlachos, D. Bohme, H. Schiff, Studies of reactions involving $C_2H_x^+$ ions with HCN using a modified selected ion flow tube, Int. J. Mass Spectrom. 36 (1980) 259–270.
- [42] I. Savić, D. Gerlich, Temperature variable ion trap studies of $C_3H_n^+$ with H_2 and HD, Phys. Chem. Phys. 7 (2005) 1026–1035.
- [43] S. Prodnuk, S. Gronert, V. Bierbaum, C. DePuy, Gas-phase reactions of $C_3H_n^+$ ions, Org. Mass Spectrom. 27 (1992) 416–422.
- [44] N. Adams, L. Mathews, D. Osborne Jr., Laboratory chemistry relevant to understanding and modeling the ionosphere of Titan, Faraday Discuss. 147 (2010) 323–335.
- [45] K. Smyth, S. Lias, P. Ausloos, Can $C_3H_3^+$ be an important soot precursor, in: Chemical and Physical Processes in Combustion, 1981, pp. 187–190.
- [46] K. Smyth, S. Lias, P. Ausloos, The ion-molecule chemistry of $C_3H_3^+$ and the implications for soot formation, Combust. Sci. Technol. 28 (1982) 147–154.
- [47] L. Mathews, N. Adams, Experimental study of the gas phase chemistry of C₃H₃⁺ with several cyclic molecules, Int. J. Mass Spectrom. 299 (2011) 139–144.
- [48] L. Operti, R. Rabezzana, F. Turco, G. Vaglio, Gas-phase ion chemistry of the propyne/ammonia and silane/propyne/ammonia systems, Int. J. Mass Spectrom. 232 (2004) 139–146.
- [49] Z. Lin, D. Talbi, E. Roueff, E. Herbst, N. Wehres, C. Cole, Z. Yang, T. Snow, V. Bierbaum, Can interstellar propene (CH₃CHCH₂) be formed via gas-phase reactions?, Astrophys. J. 765 (2013) #80.
- [50] R. Houriet, T. Elwood, J. Futrell, A tandem ion cyclotron resonance study of the reactions of allyl ions with benzene and substituted benzene, J. Am. Chem. Soc. 100 (1978) 2320–2324.
- [51] M. McEwan, G. Scott, V. Anicich, Ion-molecule reactions relevant to Titan's ionosphere, Int. J. Mass Spectrom. 172 (1998) 209–219.
- [52] S. Lias, T. Buckley, Structures and reactions of $\mathrm{C_3H_6}^+$ ions generated in cyclopropane, Int. J. Mass Spectrom. Ion Processes 56 (1984) 123–137.
- [53] J. Vacher, E. Le Duc, M. Fitaire, Ion-molecule clustering reactions of HCNH⁺ ion with N₂ and/or CH₄ in N₂-CH₄ mixtures, Planet. Space Sci. 45 (1997) 1407–1416.
- [54] L. Capone, J. Dubach, R. Whitten, S. Prasad, K. Santhanam, Cosmic ray synthesis of organic molecules in Titan's atmosphere, Icarus 44 (1980) 72–84.

- [55] C. Lifshitz, M. Weiss, Ion-molecule reactions in aromatic systems. II. Trapped ion mass spectrometry of benzene, Int. J. Mass Spectrom. Ion Processes 34 (1980) 311–315.
- [56] C. Jiao, C. J. DeJoseph, R. Lee, A. Garscadden, Kinetics of electron impact ionization and ion-molecule reactions of pyridine, Int. J. Mass Spectrom. 257 (2006) 34–40.
- [57] C. Deakyne, M. Meot-Ner, T. Buckley, R. Metz, Proton affinities of diacetylene, cyanoacetylene, and cyanogen, J. Chem. Phys. 86 (1987) 2334–2342.
- [58] C. Lifshitz, D. Gibson, K. Levsen, I. Dotan, The gas-phase chemistry of C₄H₄⁺, Int. J. Mass Spectrom. Ion Processes 40 (1981) 157–165.
- [59] J. Burt, J. Dunn, M. McEwan, M. Sutton, A. Roche, H. Schiff, Some ion-molecule reactions of H₃⁺ and the proton affinity of H₂, J. Chem. Phys. 52 (1970) 6062–6075.
- [60] F. Ozturk, G. Baykut, M. Moini, J. Eyler, Reactions of C₃H₃⁺ with acetylene and diacetylene in the gas phase, J. Phys. Chem. 91 (1987) 4360–4364.
- [61] F. Ozturk, M. Moini, F. Brill, J. Eyler, T. Buckley, S. Lias, P. Ausloos, Reactions of $C_5H_3^+$ and $C_5H_5^+$ ions with acetylene and diacetylene, J. Phys. Chem. 93 (1989) 4038–4044.
- [62] C. Lifshitz, M. Weiss, Ion-molecule reactions in alkynes. Trapped-ion mass spectrometry of 1,5-hexadiyne, Int. J. Mass Spectrom. Ion Processes 35 (1980) 73–81.
- [63] G. Scott, D. Fairley, C. Freeman, M. McEwan, $C_m H_n^+$ reactions with atomic and molecular nitrogen: an experimental study, J. Phys. Chem. A 103 (1999) 1073–1077.
- [64] C. Lifshitz, B. Reuben, Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene, J. Chem. Phys. 50 (1969) 951–960.
- [65] C. Lifshitz, D. Gibson, K. Levsen, Structure of the gas-phase ion C₆H₅⁺, Int. J. Mass Spectrom. Ion Processes 35 (1980) 365–370.
- [66] S. Lias, P. Ausloos, Structures of $C_6H_7^+$ ions formed in unimolecular and bimolecular reactions, J. Chem. Phys. 82 (1985) 3613–3624.
- [67] P. Ausloos, J.-A. Jackson, S. Lias, Reactions of benzyl ions with alkanes, alkenes, and aromatic compounds, Int. J. Mass Spectrom. Ion Processes 33 (1980) 269–283.
- [68] J. Bartmess, Gas-phase ion chemistry of 5-methylene-1,3-cyclohexadiene (o-isotoluene) and 3-methylene-1,4-cyclohexadiene (p-isotoluene), J. Am. Chem. Soc. 104 (1982) 335–337.
- [69] Y. Pithawalla, M. Meot-Ner, J. Gao, M. El Shall, V. Baranov, D. Bohme, Gas-phase oligomerization of propene initiated by benzene radical cation, J. Phys. Chem. A 105 (2001) 3908–3916.
- [70] J. B. Marquette, C. Rebrion, B. R. Rowe, Reactions of N⁺(³P) ions with normal, para, and deuterated hydrogens at low temperatures, J. Chem. Phys. 89 (1988) 2041–2047.
- [71] O. Dutuit, N. Carrasco, R. Thissen, V. Vuitton, C. Alcaraz, P. Pernot, N. Balucani, P. Casavecchia, A. Canosa, S. Le Picard, J.-C. Loison, Z. Herman, J. Žabka, D. Ascenzi, P. Tosi, P. Franceschi, S. Price, P. Lavvas, Critical review of N, N⁺, N₂⁺, N⁺⁺ and N₂⁺⁺ main production processes and reactions of relevance to Titan's atmosphere, Astrophys. J. Suppl. Ser. 204 (2013) #20.
- [72] K. Dryahina, B. Cunha de Miranda, P. Španěl, J. Žabka, C. Alcaraz, Z. Herman, Selected ion flow tube study of ion-molecule reactions of N⁺(³P) and Kr⁺ with C₃ hydrocarbons propane, propene, and propyne, J. Phys. Chem. A 115 (2011) 7310–7315.
- [73] L. Stavish, L. Fondren, N. Adams, Reactions of N⁺ and N₂⁺ with several cyclic molecules studied using a selected ion flow tube, Int. J. Mass Spectrom. 281 (2009) 103–107.

- [74] S. Arnold, I. Dotan, S. Willliams, A. Viggiano, R. Morris, Selected ion flow tube studies of air plasma cations reacting with alkylbenzenes, J. Phys. Chem. A 104 (2000) 928–934.
- [75] D. Jackson, N. Stibrich, N. Adams, L. Babcock, A selected ion flow tube study of the reactions of a sequence of ions with amines, Int. J. Mass Spectrom. 243 (2005) 115–120.
- [76] L. Fondren, J. McLain, D. Jackson, N. Adams, L. Babcock, Studies of reactions of a series of ions with nitrogen containing heterocyclic molecules using a selected ion flow tube, Int. J. Mass Spectrom. 265 (2007) 60–67.
- [77] V. Anicich, D. Milligan, D. Fairley, M. McEwan, Termolecular ion-molecule reactions in Titan's atmosphere. I: Principal ions with principal neutrals, Icarus 146 (2000) 118–124.
- [78] J. Rutherford, R. Neynaber, D. Vroom, Measurements of selected charge transfer processes at low energies: Final report for period November 1977-November 1978 (contract No. DNA 001-77-C-0202), Defense Nuclear Agency Report DNA 4695F, IRT Corporation (November, 1978 1978).
- [79] N. Adams, D. Smith, J. Paulson, An experimental survey of the reactions of NH_n^+ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K, J. Chem. Phys. 72 (1980) 288–297.
- [80] D. Smith, N. Adams, T. Miller, A laboratory study of the reactions of N^+ , N_2^+ , N_3^+ , N_4^+ , O^+ , O_2^+ , and NO^+ ions with several molecules at 300 K, J. Chem. Phys. 69 (1978) 308–318.
- [81] L. Capone, S. Prasad, W. Huntress, R. Whitten, J. Dubach, K. Santhanam, Formation of organic molecules on Titan, Nature 293 (1981) 45–46.
- [82] E. Herbst, D. Smith, N. Adams, B. McIntosh, Association reactions. Theoretical shortcomings, J. Chem. Soc., Faraday Trans. 2 85 (1989) 1655–1664.
- [83] N. Demarais, Z. Yang, T. Snow, V. Bierbaum, Chemistry of HCNH⁺: mechanisms, structures, and relevance to Titan's atmosphere, Struct. Chem. 24 (2013) 1957–1963.
- [84] D. Milligan, C. Freeman, R. Maclagan, M. McEwan, P. Wilson, V. Anicich, Termolecular ion-molecular reactions in Titan's atmosphere. II: The structure of the associato adducts of $HCNH^+$ with C_2H_2 and C_2H_4 , J. Am. Soc. Mass Spectrom. 12 (2001) 557–564.
- [85] G. Molina-Cuberos, K. Schwingenschuh, J. López-Moreno, R. Rodrigo, L. Lara, V. Anicich, Nitriles produced by ion chemistry in the lower ionosphere of Titan, J. Geophys. Res. 107 (2002) #5099.
- [86] J. Vacher, E. Le Duc, M. Fitaire, Titan's atmosphere: possible clustering reactions of $HCNH^+$, $HCNH^+(N_2)$ and $HCNH^+(CH_4)$ ions with acetylene, Planet. Space Sci. 47 (1999) 151–162.
- [87] J. Vacher, E. Le Duc, M. Fitaire, Clustering reactions of HCNH⁺, HCNH⁺(N₂) and HCNH⁺(CH₄) with ethane: application to Titan atmosphere, Planet. Space Sci. 48 (2000) 237–247.
- [88] J. Chamot-Rooke, P. Mourgues, G. van der Rest, H. Audier, Ambident reactivity and characterization of small ionized carbenes, Int. J. Mass Spectrom. 226 (2003) 249–269.
- [89] T. Zielinska, H. Wincel, Ion-molecule reactions in methylamine and methylamine-ammonia systems, Nukleonika 15 (1970) 26–36.
- [90] M. Iraqi, C. Lifshitz, B. Reuben, Reaction of ketene ions with ammonia, J. Phys. Chem. 95 (1991) 7742–7746.
- [91] S. Dheandhanoo, L. Forte, A. Fox, D. Bohme, Ion-molecule reactions with carbon chain molecules: reactions with diacetylene and the diacetylene cation, Can. J. Chem. 64 (1986) 641–648.
- [92] T. Martin, C. Melton, Hydrogen atom abstraction reactions by cyanide ion-radicals, J. Chem. Phys. 32 (1960) 700–704.

- [93] J. Fisher, T. McMahon, Determination of rate constants for low pressure association reactions by Fourier transform-ion cyclotron resonance spectrometry, Int. J. Mass Spectrom. Ion Processes 100 (1990) 701–717.
- [94] S. Gupta, E. Jones, A. Harrison, J. J. Myher, Reactions of thermal energy ions. VI. Hydrogen-transfer ion-molecule reactions involving polar molecules, Can. J. Chem. 45 (1967) 3107–3117.
- [95] H. Wincel, S. Wlodek, D. Bohme, Acetonitrile in gas-phase ion/molecule chemistry, Int. J. Mass Spectrom. Ion Processes 84 (1988) 69–87.
- [96] D. Parent, Reactions of C_nN^+ with methane and the implications for interstellar chemistry, Astrophys. J. 347 (1989) 1183–1186.
- [97] D. Parent, Reactions of the carbene ions C_nN^+ with labeled methane: mechanistic interpretation, J. Am. Chem. Soc. 112 (1990) 5966–5973.
- [98] D. Parent, S. McElvany, Investigations of small carbon cluster ion structures by reactions with HCN, J. Am. Chem. Soc. 111 (1989) 2393–2401.
- [99] Y. Xu, Y. Chang, Z. Lu, C. Ng, Absolute integral cross sections and product branching ratios for the vibrationally selected ion-molecule reactions: $N_2^+(X^2\Sigma_g^+;\nu^+=0-2)+CH_4$, Astrophys. J. 769 (2013) #72.
- [100] S. Arnold, S. Williams, I. Dotan, A. Midey, R. Morris, A. Viggiano, Flow tube studies of benzene charge transfer reactions from 250 to 1400 K, J. Phys. Chem. A 103 (1999) 8421–8432.
- [101] M. McEwan, V. Anicich, A low-pressure study of C_2N_2 ion chemistry, J. Phys. Chem. 99 (1995) 12204–12208.
- [102] D. Milligan, D. Fairley, M. Meot-Ner, M. McEwan, Proton affinity of cyanogen and association reactions of $C_2N_2H^+$ and $C_2N_2CH_3^+$, Int. J. Mass Spectrom. Ion Processes 179/180 (1998) 285–291.
- [103] D. Smith, P. Spanel, C. Mayhew, A selected ion-flow tube study of the reactions of O⁺, H⁺ and HeH⁺ with several molecular gases at 300 K, Int. J. Mass Spectrom. Ion Processes 117 (1992) 457–473.
- [104] K. Fukuzawa, T. Matsushita, K. Morokuma, D. Levandier, Y. Chiu, R. Dressler, E. Murad, A. Midey, S. Williams, A. Viggiano, An ab initio and experimental study of vibrational effects in low energy O⁺ + C₂H₂ charge-transfer collisions, J. Chem. Phys. 115 (2001) 3184–3194.
- [105] M. Bastian, R. Dressler, E. Murad, S. Arnold, A. Viggiano, Detailed study of the dynamics of the O⁺(⁴S) + HCN reaction: a case study of ion-molecule reactions in the spacecraft environment, J. Chem. Soc., Faraday Trans. 92 (1996) 2659–2670.
- [106] J.-L. Le Garrec, S. Carles, T. Speck, J. Mitchell, B. Rowe, E. Ferguson, The ion-molecule reaction of O^+ with N_2 measured down to 23 K, Chem. Phys. Lett. 372 (2003) 485–488.
- [107] J. LeGarrec, V. Lepage, B. Rowe, E. Ferguson, The temperature dependence of the rate constant for $O^+ + NO \rightarrow NO^+ + O$ from 23 to 3000 K, Chem. Phys. Lett. 270 (1997) 66–70.
- [108] G. Mackay, H. Schiff, D. Bohme, A room-temperature study of the kinetics and energetics for the protonation of ethane, Can. J. Chem. 59 (1981) 1771–1778.
- [109] J. Huntress, W.T., J. Pinizzotto, R.F., Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane, J. Chem. Phys. 59 (1973) 4742–4756.
- [110] Z. Karpas, J. Huntress, W.T., Reactions of OH^+ and H_2O^+ ions with some diatomic and simple polyatomic molecules, Chem. Phys. Lett. 59 (1978) 87–89.
- [111] J. Melko, S. Ard, R. Johnson, N. Shuman, H. Guo, A. Viggiano, Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO⁺ with CH₄ and CD₄, J. Phys. Chem. A 118 (2014) 8141–8146.

- [112] P. Wilson, M. McEwan, M. Meot-Ner, Reactions of $\mathrm{CH_3OCH_2}^+$ with nitrogen bases: a mechanism for the formation of protonated imines, Int. J. Mass Spectrom. Ion Processes 132 (1994) 149–152.
- [113] M. Tsuji, K. Matsumura, T. Funatsu, Y. Nishimura, H. Obase, Ion/molecule reactions of CO₂⁺ with simple aliphatic hydrocarbons at thermal energy, Int. J. Mass Spectrom. Ion Processes 135 (1994) 165–180.
- [114] M. Tsuji, K. Matsumura, T. Funatsu, Y. Nishimura, H. Obase, S. Kagawa, Y. Kanetaka, Ion-molecule reactions of $\mathrm{CO_2}^+$ with butane and isobutane at thermal energy, B. Chem. Soc. Jpn. 66 (1993) 2864–2870.
- [115] G. Scott, D. Fairley, C. Freeman, M. McEwan, V. Anicich, Gas-phase reactions of some positive ions with atomic and molecular nitrogen, J. Chem. Phys. 109 (1998) 9010–9014.
- [116] M. McEwan, V. Anicich, J. Huntress, W.T., An ICR investigation of ion-molecule reactions of HCN, Int. J. Mass Spectrom. Ion Processes 37 (1981) 273–281.
- [117] R. Shul, R. Passarella, J. DiFazio, L.T., R. Keesee, J. Castleman, A.W., Ion-molecule reactions involving $\rm H_3O^+, H_2O^+, and OH^+$ at thermal energy, J. Phys. Chem. 92 (1988) 4947–4951.
- [118] G. Mackay, K. Tanaka, D. Bohme, Rate constants at 297 K for proton-transfer reactions with C_2H_2 : An assessment of the average quadrupole orientation theory, Int. J. Mass Spectrom. 24 (1977) 125–136.
- [119] G. Mackay, D. Betowski, J. Payzant, H. Schiff, D. Bohme, Rate constants at 297 K for proton-transfer reactions with HCN and CH₃CN. Comparisons with classical theories and exothermicity, J. Phys. Chem. 80 (1976) 2919–2922.
- [120] A. Roche, M. Sutton, D. Bohme, H. Schiff, Determination of proton affinity from the kinetics of proton transfer reactions. I. Relative proton affinities, J. Chem. Phys. 55 (1971) 5480–5484.

Table B.17: Thermal electron reaction list (electron recombination)

Ref.	[1]	[2]	<u> </u>		[4]	[1]	[1]	[5]	[9]	[2]	[2]	[2]	est.(clusters)	[8],[9]	<u> </u>	[0],[g] [8] [0]	[5],[5] est (clusters)	[10]	[10]	[10]	[10]	[10]	[11],[12]	[11],[12]	[11],[12]	[11],[12]	[11],[12]	[13]	est.(clusters)	$\begin{bmatrix} 14 \\ 1 \end{bmatrix}$	[14]	[1.7] [4],[15]	[4],[15]	[4],[15]	[4],[15]	[4],[15]	[16]	[16]	[16]	[16]	[16]	[16]	[14]	$\begin{bmatrix} 14 \end{bmatrix}$	[14]	[14]
k	$ 3.50 \times 10^{-12} (300/T)^{0.70} $	$4.67 \times 10^{-12} (300/T)^{0.60}$	$3.50 \times 10^{-12} (300/T)^{0.70}$	$3.40 \times 10^{-12} (300/T)^{0.63}$	$1.60 \times 10^{-08} (300/T)^{0.43}$	$4.36 \times 10^{-08} (300/T)^{0.52}$	$2.34 \times 10^{-08} (300/T)^{0.52}$	$4.00 \times 10^{-06} (300/T)^{0.70}$	$1.00 \times 10^{-07} (300/T)^{0.37}$	$4.03 \times 10^{-07} (300/T)^{0.60}$	$1.60 \times 10^{-07} (300/T)^{0.60}$	$7.68 \times 10^{-08} (300/T)^{0.60}$	$5.00 \times 10^{-98} (300/T)^{0.79}$	$1.28 \times 10^{-3} (300/1)^{0.33}$	9.60×10 = (300/T) = = = = = = = = = = = = = = = = = = =	$0.12 \times 10^{-08} (300/1)$	5.00×10 ⁻⁰⁶ (300/T) ^{0.70}	$8.72 \times 10^{-07} (300/T)^{0.66}$	$3.93 \times 10^{-07} (300/T)^{0.66}$	$3.08 \times 10^{-07} (300/T)^{0.66}$	$1.03 \times 10^{-07} (300/T)^{0.66}$			$1.87 \times 10^{-07} (300/T)^{0.72}$	$5.34 \times 10^{-08} (300/T)^{0.72}$	$5.23 \times 10^{-08} (300/T)^{0.72}$	$3.60 \times 10^{-08} (300/T)^{0.72}$	$4.00 \times 10^{-06} (300/T)^{0.70}$	$4.00 \times 10^{-06} (300/T)^{0.70}$	$1.16 \times 10^{-07} (300/T)^{0.76}$	4.86×10 ⁻⁰⁸ (300/T) ^{0.76}	$1.35 \times 10^{-07} (300/T)^{0.50}$	$8.10 \times 10^{-08} (300/T)^{0.50}$	$3.51 \times 10^{-08} (300/T)^{0.50}$	$1.35 \times 10^{-08} (300/T)^{0.50}$	$5.40 \times 10^{-09} (300/T)^{0.50}$	2.95×10 ⁻⁰ (300/T) 0.34	$1.45 \times 10^{-0} (300/T)^{0.34}$	3.00×10 ⁻³ (300/T) ³³⁴	$1.50 \times 10^{-08} (300/T)^{0.84}$	$1.50 \times 10^{-0.0}(300/\text{T})^{0.04}$	$3.00 \times 10^{-0.9} (300/\text{T})^{0.84}$	$3.70 \times 10^{-0.7} (300/T)^{0.76}$	$6.16 \times 10^{-08} (300/T)^{0.76}$	$5.60 \times 10^{-33} (300/T)^{0.19}$	3.30×10 (300/1)
						Η		Η		Н				;	===	4		Η	Η			H_2	Ή	Η			H_2	Η	Η		Ξ	:	Н				I			Η		;	Η	=	Ξ	
						+		+		+					+ -	+		+	+			+	+	+			+	+	+		+	-	+				+			+			+	-	+	
					Η	Н	Η	H_2	Ö	Η	Ξ	H_2	Z ;	Ξ:	п	= =	2 Z	ΞH	H	[™] H	H_2	H_2^-	Ή.	H_2	Η	H_2	H_2	CH_4	CH_4	ΗC	ט כ	ЭН	Η	$_{ m CH}$	O	H_2	Ξ;	Ξ;	H ₂	H_2	CH	<i>ن</i> ا	н:	Ξ;	H ₂	n ₂
					+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+ -	+	+	+	+	+ -	+ -	+ +	+
Reaction	Н	Ü	Z	$O(^{3}P)$	H	Н	H_2	H_2	H	C	CH	D.	$^{^3 m CH}_2$	$^{^{\circ}\mathrm{CH}_{2}}$	J (# E	CH CH	3CH,	CH 7	CH_3	$^3\mathrm{CH}_2$	ں ن	CH_3	$^3\mathrm{CH}_2$	CH_4	CH_3	CH	CH_4	HNC	Z Z	5 C	C,H	°, °	CH	$^3\mathrm{CH}_2$	C_2	$C_2^{\rm H}$	$^{\mathrm{C_2H_2}}_{\widetilde{\Omega}}$	C_2H	, C	$^{\circ}\mathrm{CH}_{2}$	$_{ ilde{c}_{13}}^{ ext{CH}_{3}}$	$^{\mathrm{C_2H_2}}_{\widetilde{\Omega}}$	C_2H_3	C ₂ H	C ₂ H ₂
	1	1	1	↑	↑	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	↑	↑	↑	↑ 1	1	1	†	↑	↑	↑	↑	↑	\uparrow	\uparrow	\uparrow	\uparrow	↑	↑	↑ ′	1	†	↑	\uparrow	\uparrow	↑	↑	↑	↑	↑	↑	↑	\uparrow	↑	1	↑
	e	u u	е	е	е	е	е	е	е	е	е	е	е	Ф	Ф (ם מ	۵ د	o 0	е	е	е	е	е	е	е	е	е	е	е	e (ם מ) 0	е	е	е	е	е	Ф	е	е	Ф	е	Ф	Ф	o 0	D
	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	- +	+	+	+	+	+	+ -	+	+	+	+	+	+ -	+ +	+
	H+	† C	+ Z	+0	H ₂ +	H ₃ +	H3+	H ₅ +	CH ₊	CH_{2}^{+}	CH_{2}^{+}	CH_2^+	$CH_2^+N_2$	CH3-	+, - CH CH	+ + - -	CH + N	CH, +	CH, +	$CH_4^{\frac{4}{4}+}$	$CH_4^{\frac{1}{4}+}$	CH_4^{++}	CH_5^+	CH ₂ ⁺	CH_5^+	CH ₅ ⁺	$ CH_5^+$	$ \mathrm{CH_5}^+_{\mathrm{CH}_4}$	CH2 HNC	C ₂ H+	C2H+	C.H., +	$C_2H_2^+$	$C_2^H_2^+$	$C_2H_2^+$	$C_2H_2^+$	$C_2H_3^+$	$C_2H_3^+$	$C_2H_3^+$	$C_2H_3^+$	$C_2H_3^+$	$C_2H_3^+$	$C_2H_4^+$	$C_2H_4^+$	$C_2H_4^+$	С2 ^Н 4 t Page
Type	4	4	4	4	4	4	4	4	4	4	4	4	4.	4,	4 -	1 4	4 4	4	4	4	4	4	4	4	4	4	4	4	4	4 -	1 4	4	4	4	4	4	4	4.	4	4	4	4	4,	4 -	4 <	on Next
	$R_{ex}1$	R.,2	R_{er}^{-1}	$R_{er}4$	$R_{er}5$	$R_{er}6a$	$R_{er}6b$	R_{er} 7	$R_{er}8$	$R_{er}9a$	$R_{er}9b$	$R_{er}9c$	\mathbb{R}_{er} 10	R_{er} 11a	\mathbf{Ke}_r 11b	R 11d	Rerita	$R_{er}13a$	$R_{er}13b$	$R_{er}13c$	R_{er} 13d	$R_{er}13e$	$R_{er}14a$	$R_{er}14b$	$R_{er}14c$	\mathbf{R}_{er} 14d	$R_{er}14e$	$R_{er}15$	$\mathrm{R}_{er}16$	Rer 17a	Rer 17c	$R_{er}18a$	R_{er} 18b	$R_{er}18c$	$R_{er}18d$	$\mathrm{R}_{er}18e$	$R_{er}19a$	$R_{er}19b$	$R_{er}19c$	$R_{er}19d$	$R_{er}19e$	R_{er} 19f	$R_{er}20a$	$R_{er}20b$	Rer 20c	Continued on Next

CC2DTH A A A A A A A A A A A A A A A A A A A		$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	3CH						
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		$\uparrow\uparrow\uparrow\uparrow\uparrow$	CTTO	+	3 CH,		-	$2.24 \times 10^{-08} (300/T)^{0.76}$	[14]
C C C C C C C C C C C C C C C C C C C		$\uparrow\uparrow\uparrow\uparrow\uparrow$	CH.	+	CH			$1.12 \times 10^{-08} (300/T)^{0.76}$	[14]
C C C C C C C C C C C C C C C C C C C		\uparrow \uparrow \uparrow	CH,	+	Ö			$5.60 \times 10^{-09} (300/T)^{0.76}$	[14]
C C C C C C C C C C C C C C C C C C C		↑ ↑	C, H,	+	H	+	_	$3.55 \times 10^{-07} (300/T)^{1.20}$	[17].[18]
C C C C C C C C C C C C C C C C C C C		· ↑	"H"	+			_	$3.33 \times 10^{-07} (300/T)^{1.20}$	[17][18]
C2H5 C2H5 C2H5 C2H6 C2H6 C2H6 C2H6 C2H6 C2H6 C3H7 C3H7	-+++++++++++++		CZ-r3 CH.	- +	3 CH,		:	$2.08 \times 10^{-07} (300/T)^{1.20}$	[17].[18]
C2DH6++++++++++++++++++++++++++++++++++++	-+++++++++++	1	ت ا	+	, H	+	Ξ	$\frac{1.59 \times 10^{-07}(300/T)^{1.20}}{1.59 \times 10^{-07}}$	[17] [18]
C2H25 C2H45 C2H66 C2H66 C2H66 C2H66 C2H66 C2H66 C3H666 C3H66		1	C2H2	- +	Z H	-	:	$1.47 \times 10^{-07} (300/T)^{1.20}$	[17].[18]
C C C C C C C C C C C C C C C C C C C	. + + + + + + + + + + + + + +	1	C2H4	+	CHU	+	Ξ	4.00×10 ⁻⁰⁶ (300/T) ^{0.70}	[13]
C C C C C C C C C C C C C C C C C C C		1	C214	+				4.60×10 ⁻⁰⁷ (300/T) ^{0.70}	est. (eq.(E,14)).[19]
C C C C C C C C C C C C C C C C C C C		1	C.H.	+	Ι Ξ			3.00×10 ⁻⁰⁷ (300/T) ^{0.70}	est. (eq.(E/14)).[19]
C C C C C C C C C C C C C C C C C C C		1	CZIIS	- +	: =			8 00 × 10 -08 (300 /T) 0.70	est (eq.(E14)) [19]
C2H6+ C2H6+ C2H6+ C2H6+ C3H6+ C3H7+		1	CH.	- +	Z H			8 00×10 ⁻⁰⁸ (300/T) ^{0.70}	est (eq (E14)) [19]
C2H6+ C2H6+ C2H6+ C2H6+ C2H6+ C3H7+ C-C3H3+		1	CH.	- +	3CH			4 00×10 ⁻⁰⁸ (300/T) ^{0.70}	est (eq (E14)) [19]
C2H6 C2H7+ C2H7+ C2H7+ C2H7+ C3H7+ C3H7+ C3H2+ C3H2+ C3H2+ C3H3+ C-C3H		1	C.H.	- +		+	Ξ	3.00×10 ⁻⁰⁸ (300/T) ^{0.70}	est. (eq. (E14)) [19]
C2H77 C2H77 C2H77 C2H77 C3H77 C3H77 C3H77 C3H77 C6C3H3 C6C3H3 C7C3 C7C		1	C2H3	- +				5.00×10 ⁻⁰⁷ (300/T) ^{0.70}	est (eq (E14)) est (products)
C2H+++C2G3H3+++C3H3+++++++++++++++++++++++++++++		` 1	CH.	- +	Ξ			5.00×10 ⁻⁰⁷ (300/T) ^{0.70}	est (ea (E14)) est (products)
C C C C C C C C C C C C C C C C C C C		`	C114	-			-	4.00×10 ⁻⁰⁶ (300/T) ^{0.70}	[13]
C33H3++++++++++++++++++++++++++++++++++		<u> </u>	$C_2\Pi_6$	+ -		+		4.00×10 (300/1)	[10] + ((E14)) [00]
C3HH+++++++++++++++++++++++++++++++++++		†	, _C	+ -	: C			$4.00 \times 10^{-0.7} (300/1)^{2.12}$	
C3H C3H C3H C3H C3H C3H C3H C3H C3H C3H		↑	ر ا ا	+	I i			$3.97 \times 10^{-3} (300/T)^{3.13}$	∹,
C3H2 C3H2 C3H2 C3H2 C3H2 C3H2 C-C3H2 C-C3H3		↑	C_2H	+	C			1.87×10^{-9} (300/T)	<u> </u>
C3H2 C3H2 C3H2 C3H2 C3H2 C3H2 C3H2 C3H3 C-C3		†	C_2	+	CH			$1.56 \times 10^{-98} (300/T)^{0.79}$	est.(eq.(E14)),[21],[22]
C3H2+2+4	•	↑	C_3H	+	Η			$3.66 \times 10^{-0.7} (300/T)^{0.70}$	$\operatorname{est.}(\operatorname{eq.}(\mathrm{E}14)),[21],[22]$
ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ	e +	↑	°Z	+	H_2			$1.94 \times 10^{-0.7} (300/T)^{0.70}$	_
प प प प प प प	e +	↑	°Z	+	н	+	ш	$1.40 \times 10^{-0.7} (300/T)^{0.70}$	
4 4 4 4 4 4 4	e +	↑	C_2H_2	+	Ö			$7.71 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[21],[22]
* * * * * * *	e +	↑	C_2H	+	CH ,			$1.43 \times 10^{-08} (300/T)^{0.79}$	est.(eq.(E14)),[21],[22]
* * * * * *	e +	↑	$^{\rm C}_{\rm 2}$	+	$^{^3\mathrm{CH}_2}$			$8.56 \times 10^{-09} (300/T)^{0.70}$	est.(eq.(E14)),[21],[22]
4 4 4 4	e +	↑	C_3H	+	Ξ	+	Ξ	4.00×10^{-9} (300/T)	[23],[19]
4 4 4	e +	†	$\mathrm{C_3H_2}$	+	Н			$2.88 \times 10^{-07} (300/T)^{1.00}$	[23],[19]
4 4	e +	↑	C_3H	+	H_2			$4.80 \times 10^{-08} (300/T)^{1.00}$	[23],[19]
4	e +	↑	C_2H_2	+	CH			$2.40 \times 10^{-08} (300/T)^{1.00}$	[23],[19]
	e +	↑	C_2H	+	$^3\mathrm{CH}_2$			$2.40 \times 10^{-08} (300/T)^{1.00}$	[23],[19]
4	e +	†	C_2^2	+	CH_3			$1.60 \times 10^{-08} (300/T)^{1.00}$	[23],[19]
4	e +	†	C_3H	+	Ξ	+	H	$5.75 \times 10^{-08} (300/T)^{1.00}$	[23],[19]
4	e +	†	$\mathrm{C_3H_2}$	+	Н		_	$4.15\times10^{-08}(300/T)^{1.00}$	[23],[19]
4	e +	\uparrow	C_3H	+	H_2		_	$6.90 \times 10^{-09} (300/T)^{1.00}$	[23],[19]
4	e +	\uparrow	$\mathrm{C_2H_2}$	+	CH		_	$3.45 \times 10^{-09} (300/T)^{1.00}$	[23],[19]
$4 1-C_3H_3^+$	e +	↑	C_2H	+	$^3\mathrm{CH}_2$			$3.45 \times 10^{-09} (300/T)^{1.00}$	[23],[19]
$4 1 - C_3 H_3^+$	e +	†	C_2^2	+	CH_3			$2.30 \times 10^{-09} (300/T)^{1.00}$	[23],[19]
4	e +	†	$\mathrm{C_3H_3}$	+	H			$2.57 \times 10^{-06} (300/T)^{0.67}$	[24]
$4 C_3H_4^+$	e +	↑	C_2H_2	+	$^{^3}\mathrm{CH}_2$			$1.77 \times 10^{-0.7} (300/T)^{0.67}$	[24]
$4 C_3H_4^+$	e +	↑	$\mathrm{C_2H_3}$	+	CH			$2.95 \times 10^{-98} (300/T)^{0.97}$	[24]
$4 C_3H_4^+$	e +	↑	C_2H	+	$_{ m CH_3}$			$2.95 \times 10^{-08} (300/T)^{0.87}$	[24]
$4 - C_3H_5^+$	e +	†	$\mathrm{C_3H_3}$	+	Н	+	— ¤	$5.60 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$4 C_3H_5^+$	e +	↑	CH_3CCH	+	Η			$2.70 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[19]
	e +	↑	C_3H_3	+	H_2			$4.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$4 C_{3}H_{5}^{+}$	e +	†	C_3H_2	+		+	н	$3.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$R_{er}32e$ 4 $C_3H_5^{-+}$ -	e +	†	C_2H	+	CH_4			$3.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$R_{er}32f$ 4 $C_3H_5^++$ -	e +	↑	$C_{\mathbf{H}}$	+	CH,			$3.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]

	E					17.					-1	3- (1
	1 ype				1	reaction					ž.	nei.
$R_{er}32g$	4	$C_3H_5^+$	+	е	†	$\mathrm{C_2H_4}$	+	$^{\circ}$			$2.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$R_{er}32h$	4	$ $ $C_3H_5^+$	+	е	↑	$\mathrm{C_2H_3}$	+	$^3\mathrm{CH}_2$			$2.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[19]
$R_{er}33a$	4	$C_{3}H_{6}^{+}$	+	е	\uparrow	CH_3CCH	+	H	+	—	$4.40 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}33b$	4	$C_3H_6^+$	+	е	†	$\mathrm{C_3H_5}$	+	H			$2.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}33c$	4	$C_3H_6^+$	+	е	\uparrow	$\mathrm{C_2H_4}$	+	$^3\mathrm{CH}_2$			$1.20 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
R_{er} 33d	4	$C_3H_6^+$	+	е	†	C_2H_3	+	CH_3			$1.20 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}33e$	4	$C_3H_6^+$	+	е	†	$\mathrm{C_2H_5}$	+	CH			$8.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}33f$	4,	$C_3H_6^+$	+ -	Ф	\uparrow	C_3H_3	+ -	$^{ m H_2}_{ m H_2}$	+	Ξ	$3.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
Rer33g	4 -	C3He-	+ -	Ф	↑	CH ₃ CCH	+ -	$^{ m H}_2$			$3.00 \times 10^{-33} (300/T)^{3.19}$	est.(eq.(E14)),[21],[19]
\mathbf{K}_{er} 34a \mathbf{P}	4 -	C3H7-	+ -	e (†	C3H ₆	+ -	H C	_		8.36×10 ·· (300/T) ··· 3 · 50 · 710 - 07 / 300 / TT) 0.68	[25] [9E]
Rer 34D	4 -	C3117	+ -	o († ′	C ₂ H ₃	+ -		+		3.50×10 1.14×10-07(300/T)0.68	[25] [35]
Rer 34c	4 -	C3117	+ -	v	1	C3H2	+ +	172	-		1.14×10 1.14×10-07(300/T)0.68	[25] [35]
R 340	# <	C3H7 C H +	+ +	ט מ	1	C3H2	+ +	ı U	+ +	===	1.14×10 (300/1) 1.05×10 ⁻⁰⁷ (300/T) ^{0.68}	[22] [25]
Rer 34f	4	C3H2+	+ +	ט ט	↑	C_2H_2	+ +	CH,	+ +	 H	$1.05 \times 10^{-07} (300/T)^{0.68}$	25
Rer 34g	4	C3H7+	+	ο ο	· ↑	CH, CCH	+	H,	- +	Z H	$1.71 \times 10^{-07} (300/T)^{0.68}$	[13] [25]
$R_{er}34h$	4	C3H,+	+	е	↑	$\mathrm{C}_2\mathrm{H}_4$	+	$_{ m CH_3}$			$3.80 \times 10^{-08} (300/T)^{0.68}$	[25]
$R_{er}34i$	4	$C_3H_7^+$	+	е	†	$\mathrm{C_2H_4}$	+	$^3\mathrm{CH}_2$	+	н	$3.80 \times 10^{-08} (300/T)^{0.68}$	[25]
$R_{er}35a$	4	C ₃ H ₈ ⁺	+	е	†	$\mathrm{C_3H_6}$	+	H	+	ш	$4.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}35b$	4	$C_3H_8^+$	+	е	†	C_3H_7	+	H			$2.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}35c$	4	$C_3H_8^+$	+	е	↑	$\mathrm{C_2H_6}$	+	$^3\mathrm{CH}_2$			$1.60 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
R_{er} 35d	4	$C_{3}H_{8}^{+}$	+	е	†	$\mathrm{C_2H_5}$	+	CH_3			$1.60 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}35e$	4	$C_3H_8^+$	+	е	†	$\mathrm{C_{3}H_{6}}$	+	H_2			$4.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[21],[19]
$R_{er}35f$	4 -	$C_3H_8^+$	+ -	е	↑	C_3H_5	+ -	$^{ m H}_2$	+	Ξ	$3.00 \times 10^{-98} (300/T)^{0.79}$	est.(eq.(E14)),[21],[19]
Ker36a	4 -	C3H9-	+ -	е	†	C3H8	+ -	μį			$5.00 \times 10^{-3} (300/T)^{2.12}$	est.(eq.(E14)),est.(products)
\mathbf{K}_{er} 36b	4 -	C3H°-	+ -	e (↑ 1	C_2H_6	+ -	CH3			5.00×10 ° (300/T) ° · · ° 3 ° · · ° ° · ° ° ° ° ° ° ° ° °	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E14})),\operatorname{est.}(\operatorname{products})$
R 37h	# -	C4H +H+	+ +	ט מ	1	Σ Ε	+ +	٦ C			3.30×10 3.33×10 ⁻⁰⁷ (300/T) ^{0.70}	est.(eq.(E.14)),[20],[22] $est.(eq.(E.14)),[26],[22]$
Rer 37c	4 4	C4H+	+ +	ם ע	↑ ↑	C C	+ +	00	+	Ξ	$1.53 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[20],[22]
Rer 37d	4	C_4^{H+}	+	e	†	C_3^H	+	Ö			$7.26 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[26],[22]
$R_{er}38a$	4	C_4^H	+	Ф	↑	$C_4^{\prime}H$	+	Н			$8.62 \times 10^{-07} (300/T)^{0.79}$	[27],[26]
$R_{er}38b$	4	$C_4H_2^+$	+	е	\uparrow	C_2H	+	$\mathrm{C_2H}$			$1.95 \times 10^{-07} (300/T)^{0.79}$	[27],[26]
$R_{er}38c$	4.	$C_4H_2^+$	+	е	\uparrow	C_3H	+	CH			$4.40 \times 10^{-08} (300/T)^{0.79}$	[27],[26]
Rer 39a	4 -	$C_4H_3^+$	+ -	е	†	$^{\mathrm{C_4H_2}}_{\mathfrak{A}}$	+ -	; ; ;			4.75×10^{-9} , $(300/T)^{0.19}$	[28],[26]
Ker 39b	4 -	C4H3-	+ -	e (↑ ′	C_2H_2	+ -	I L			$1.10 \times 10^{-0.0} (300/T)^{0.70}$	[28],[26] [38] [38]
Rer 40	4	C,H,+CO		ט ט	↑ ↑	$C_1^3H_2^2$	+ +	000			$5.00 \times 10^{-06} (300/T)^{0.70}$	[ze],[ze]
$ m R_{er}41a$	4	$C_4^{\dagger}H_4^{\dagger}+$	+	Ф	↑	$\mathrm{C_4H_3}$	+	Н			$9.96 \times 10^{-07} (300/T)^{1.10}$	[29],[26]
$R_{er}41b$	4	$C_4^H_4^+$	+	е	\uparrow	$C_2^{\dagger}H_2^{\dagger}$	+	$\mathrm{C}_2\mathrm{H}_2$			$2.22 \times 10^{-07} (300/T)^{1.10}$	[29],[26]
$R_{er}41c$	4	$C_4H_4^+$	+	е	†	$\mathrm{C_3H_3}$	+	$_{ m CH}$			$8.19 \times 10^{-08} (300/T)^{1.10}$	[29],[26]
$R_{er}42a$	4,	$C_4H_5^+$	+ -	Ф	↑	$^{\mathrm{C}_{4}\mathrm{H}_{2}}_{\mathfrak{A}}$	+ -	$^{ m H_2}_{ m H_2}$	+	Ξ	$3.77 \times 10^{-0.7} (300/T)^{0.70}$	[30],[26]
$R_{er}42b$	4 <	C4H5 +	+ +	o o	1	C2H3 CH CCH	+ +	C_2H_2			$3.67 \times 10^{-1} (300/1)^{-1.2}$	[30],[26] [30] [26]
Rer 43a	4	C,H,+	- +	ט ט	` ↑	C,H,	- +	H G			$5.89 \times 10^{-07} (300/T)^{0.70}$	[59], [29] est. $(eq.(E14)). [26]$
$R_{er}43b$	4	$C_4^{\dagger}H_6^{\dagger}+$	+	Ф	↑	$\mathrm{C_{2}H_{4}}$	+	C_2^L			$3.21 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),[26]
$R_{er}43c$	4	$C_4^{H_6^+}$	+	е	\uparrow	$ m car{H}_3 ccH$	+	$^3ar{\mathrm{CH}_2}$			$9.00 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),[26]
$R_{er}44a$	4	$C_4H_7^+$	+	Ф	\uparrow	CH_3CCH	+	$_{ m CH}_{ m 3}$			$6.56 \times 10^{-07} (300/T)^{0.70}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),[26]$
$R_{er}44b$	4 -	$C_4H_7^+$	+ -	е	†	$\mathrm{C_4H_2}$	+ -	$^{ m H_2}_{ m I}$	+	H3	$1.98 \times 10^{-0.} (300/T)^{0.0}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),[26]$
$\mathbf{R}_{er}44c$	4 -	C4H7	+ -	o (↑ ′	C_2H_4	+ -	C ₂ H ₃			$1.47 \times 10^{-0.0}(300/T)^{0.00}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E14})),[26]$
Continued on Next	no Next	С ₄ п ₈ t Page	F	ט	1	CH ₃ CCH	F	V114		_	0.30 (1.000) 1)	est.(eq.(בבב)),(eq.

	E					Reaction			-2	Rof
	T y be					reaction			ž	TOT:
$R_{er}45b$	4	$C_4H_8^+$	+	е	\uparrow	$\mathrm{C_4H_6}$	+	${ m H}_2$	$3.05\times10^{-07}(300/T)^{0.70}$	est.(eq.(E14)), [26]
$R_{er}45c$	4	$C_4H_8^+$	+	О	↑	$\mathrm{C_2H_4}$	+	$\mathrm{C_2H_4}$	$ 6.10\times10^{-08}(300/T)^{0.70} $	est.(eq.(E14)), [26]
$R_{er}46a$	4	C4H2+	+	Ф	↑	$C_4^{\dagger}H_8^{\dagger}$	+	, 'H	$3.34 \times 10^{-07} (300/T)^{0.59}$	[31],[26]
$R_{er}46b$	4	$C_4H_9^+$	+	ө	\uparrow	C_3H_6	+	$ m CH_3$	$2.38 \times 10^{-07} (300/T)^{0.59}$	[31],[26]
$R_{er}46c$	4	$C_4H_9^+$	+	9	†	C_2H_6	+	C_2H_3	$8.70 \times 10^{-09} (300/T)^{0.59}$	[31],[26]
$R_{er}47a$	4	C_5H^+	+	ө	\uparrow	'ညီ	+	H	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}47b$	4	C_5H^+	+	Ф	\uparrow	C_4^H	+	C	$2.50\times10^{-07}(300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}47c$	4	C_5H^+	+	Ф	\uparrow	ِ ر	+	C_2H	$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}48$	4	$C_5H_2^+$	+	Ф	\uparrow	C_5H	+	Н	$1.00 \times 10^{-06} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}49$	4	$C_5H_3^+$	+	Ф	\uparrow	C_5H_2	+	Н	$0.00 \times 10^{-07} (300/T)^{0.70}$	[32],est.(products)
$R_{er}50$	4	$C_5H_4^+$	+	е	↑	$C_5^{-}H_3^{-}$	+	Н	$1.00 \times 10^{-06} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}51a$	4	C ₅ H ₅ ⁺	+	Ф	↑	C_5H_4	+	H	$5.00 \times 10^{-07} (300/T)^{0.70}$	$ \operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),[1] $
Rer 51b	4	C,H,+	+	Ф	↑	C_3H_3	+	С,Н,	$2.50\times10^{-07}(300/T)^{0.70}$	$= \operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),[1]$
Rer51c	4	C,H,+	+	٥	↑	C,H,	+	$_{ m CH_{ m o}}^{ m Z}$	$2.50\times10^{-07}(300/T)^{0.70}$	$ \operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),[1] $
B. 52a	4	, H, H	+	Œ	1	C, H,	+	° H	$ 4.50 \times 10^{-07} (300/T)^{0.70}$	[29].est.(products)
B 2.52h	4	+ H T	- +	0	1	C,H,	- +	CH.	$2.25 \times 10^{-07} (300/T)^{0.70}$	[29] est (products)
R 50c		+ H C	- +	0	` 1	(4±13 ∩ H	- +	C T	9.95×10 ⁻⁰⁷ (300/T) ^{0.70}	[20] est (products)
E T 2	. 4	+ H C	- +	0	` 1	C3H2	- +	С2::	5.00 < 10 = 07 (300 / T) 0.70	est (ea (E14)) est (products)
R 53h	۲ ٦	C H +	- +	ه د	` 1	C5116	- +	3CH.	9.50×10 ⁻⁰⁷ (300/T) ^{0.70}	est (eq.(E14)) est (products)
R 53	۲ ٦	C H +	- +	ه د	` 1	CH. CCH	- +	C H 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	est (eq.(E14)) est (products)
D 540	# ~	C ₅ H ₇	+ -	ט כ	1	CH3 CH	+ +	C2113	5.00×10 (300/1) 5.00×10-07(300/T)0.70	cst.(cq.(E14));cst.(products)
ner 04a	# -	C2118	+ -	י ע	1	Cs II 7	+ -	= E	3.00×10 3.50×10=07(300/T)	est.(eq.(E14)),est.(products)
Rer 34D	4 -	12H8	+ -	٥	†	C ₄ H ₅	+ -	CH3	2.50×10 - (300/1)	est.(eq.(E14)),est.(products)
Ker 54c	4.	C.5.H.	+	e	↑	C3H2	+	C_2H_3	2.50×10 ·· (300/T) ····	est.(eq.(E14)),est.(products)
Rer55a	4,	$C_5 H_9^+$	+	Ф	↑	$C_{5}H_{8}$	+	Η	$4.75 \times 10^{-3.1} (300/1)^{3.13}$	[30], est. (products)
Rer 55b	4	$C_5H_9^-$	+	Ф	↑	C_4H_6	+	$_{\widetilde{c}}^{\mathrm{CH}_{3}}$	$1.58 \times 10^{-3.1} (300/T)^{3.13}$	[30], est. (products)
Rer 55c	4.	$C_5H_9^+$	+	О	↑	C_3H_6	+	C_2H_3	$1.58 \times 10^{-3} (300/T)^{3.19}$	[30], est. (products)
Rer55d	4.	$C_5 H_9^+$	+	Ф	↑	CH3CCH	+	$_{2}^{\mathrm{C_{2}H_{5}}}$	$1.58 \times 10^{-3} (300/T)^{3.13}$	[30], est. (products)
R_{er} 56a	4.	$C_5H_{10}^+$	+ -	О	↑	C_5H_9	+ -	н і	$5.00 \times 10^{-0.7} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
Ker50b	4.	C ₅ H ₁₀	+ -	O	↑	C ₄ H ₇	+ -	CH3	$1.67 \times 10^{-10} (300/T)^{-10}$	est.(eq.(E14)),est.(products)
Rer 56c	4,	C ₅ H ₁₀ +	+ -	Ф	↑	C_3H_7	+ -	C_2H_3	$1.67 \times 10^{-0.1} (300/1)^{0.10}$	est.(eq.(E14)),est.(products)
Rer56d	4 -	C ₅ H ₁₀ +	+ -	Ф	†	C3H2	+ -	C_2H_5	1.67×10 ° (300/T) ° · · ·	est.(eq.(E14)),est.(products)
Rer57a	4 -	C ₅ H ₁₁ -	+ -	Ф	†	C_{5} H $_{10}$	+ -	37: 37:	$3.60 \times 10^{-3.8} (300/T)^{2.13}$	[33],est.(products)
Ker57b	4 -	C2H11	+ -	0	†	C ₄ H ₉	+ -	$_{ m CH}^{ m CH}_{ m 2}$	9.00×10 ° (300/T) ° · · ·	[33], est. (products)
Rer 3 / C	4 -	C2H11	+ -	Θ.	†	C ₄ H ₈	+ -	CH3	9.00×10 - (300/1)	[33],est.(products)
Rerold	4 4	C5H111	+ -	Φ .	<u> </u>	C3H7	+ -	C ₂ H ₄	9.00×10 - (300/1)	[33],est.(products)
Rerole D Eco	4 4	C ₅ H ₁₁	+ -	o (<u> </u>	С ^{3 н} е	+ -	C_2H_5	9.00×10 ⁻⁰⁷ (300/1)	[33],est.(products)
nerooa D reh	1 7	+ 19 0	+ -	ט פ	† ′	ع د	+ -	5 C	9.00×10 (300/1)	est.(eq.(E14)),est.(products)
Renogn	† 4	+H- C-H+	+ +	ם ע	1	Ω ₄ π	+ +	$C_2^{\rm H}$	$2.50 \times 10^{-07} (300/1)$	(E_1, E_1, E_1) , esc. (Froducts)
Ber 59a	4	C.H.	+	0	1	C,H	+	Z H	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)).est.(products)
Rer 59h	4	C.H. +	- +	0	1	Ξ°C	+	H Ü	$5.00 \times 10^{-07} (300/T)^{0.70}$	est. (eq. (E14)) est. (products)
Rer.60a	4	C.H., +	+	0	†	C,H,	+	Z H	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)).est.(products)
$R_{er}60b$	4	C.H.,+	+	٥	↑	C_1H_3	+	С,Н	$ 5.00\times10^{-07}(300/T)^{0.70} $	est.(eq.(E14)).est.(products)
$R_{er}61$	4	C,H,+	+	Ф	↑	$C_{6}^{4}H_{3}^{2}$	+	, H	$1.10 \times 10^{-06} (300/T)^{0.70}$	[30],est.(products)
$R_{er}62$	4	C,H,+	+	О	↑	$C_{ m cH_4}$	+	Н	$1.10 \times 10^{-06} (300/T)^{0.70}$	[30],est.(products)
Rer 63	4	C,H,+	+	О	↑	$C_{ m cH_5}$	+	Н	$1.30 \times 10^{-06} (300/T)^{0.69}$	[34]
$R_{er}64$	4	$C_{6}H_{7}^{+}$	+	О	↑	$C_6^{'}H_6^{'}$	+	Н	$2.00 \times 10^{-06} (300/T)^{0.83}$	[34]
$R_{er}65a$	4	$C_6^{ m H_9}^+$	+	е	↑	$C_6^{'}H_8^{'}$	+	Н	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}65b$	4	$C_6^{ m H_9^{+}}$	+	Ф	\uparrow	$C_5^{\dagger}H_6^{\dagger}$	+	CH_3	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}65c$	4	$C_6H_9^+$	+	е	\uparrow	$\mathrm{C_4H_6}$	+	$\mathrm{C_2H_3}$	$1.67 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
Continued on Next Page.	on Next	Page								

L.	$_{\mathrm{Type}}$					Reaction			k	Ref.
$\mathrm{R}_{er}65\mathrm{d}$	4	$ C_6 H_9^+ $	+	е	↑	$\mathrm{C}_4\mathrm{H}_5$	+	$\mathrm{C_2H_4}$	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}66a$	4	$C_6H_{11}^+$	+	е	†	$\mathrm{C_6H_{10}}$	+	Н	$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}66b$	4	$\mathrm{C_6H_{11}}^+$	+	Ф	↑	C_5H_8	+	$_{ m CH}_{ m 3}$	$1.25 \times 10^{-97} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}66c$	4	$C_6H_{11}^{\perp}$	+	е	↑	$\mathrm{C_4H_8}$	+	$\mathrm{C_2H_3}$	$1.25 \times 10^{-9} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}66d$	4	$C_6H_{11}^{-1}$	+	е	↑	$\mathrm{C_4H_6}$	+	$\mathrm{C_2H_5}$	$1.25 \times 10^{-97} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}66e$	4	$C_6H_{11}^+$	+	Э	↑	$\mathrm{C_3H_7}$	+	CH_3CCH	$1.25 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}67a$	4	$C_6H_{13}^+$	+	е	†	$\mathrm{C_6H_{12}}$	+	Η·	$6.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}67b$	4	$C_{6}H_{13}^{+}$	+	е	†	$\mathrm{C_5H_{11}}$	+	$^{^3\mathrm{CH}_2}$	$ 1.63\times10^{-0.7}(300/T)^{0.70} $	est.(eq.(E14)),est.(products)
$R_{er}67c$	4	$C_6H_{13}^+$	+	е	\uparrow	$\mathrm{C_5H_{10}}$	+	CH_3	$1.63 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$ m R_{er}67d$	4	$C_6H_{13}^+$	+	е	\uparrow	$\mathrm{C_4H_9}$	+	$\mathrm{C_2H_4}$	$1.63 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}67e$	4	$C_{6}H_{13}^{-+}$	+	е	†	C_3H_7	+	$\mathrm{C_3H_6}$	$1.63 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}68a$	4	C2+	+	е	\uparrow	C_4	+	dz	$1.60 \times 10^{-06} (300/T)^{0.30}$	[1]
$R_{er}68b$	4	C2+	+	е	†	D _{rz}	+	C_2	$ 4.00\times10^{-07}(300/T)^{0.30} $	[1]
$R_{er}69a$	4	C_7H^+	+	е	†	C,	+	Н	$ 5.00\times10^{-07}(300/\mathrm{T})^{0.70} $	est.(eq.(E14)),est.(products)
$R_{er}69b$	4	C_7H^+	+	е	†	$C_{\rm H}$	+	C	$ 1.67 \times 10^{-07} (300/T)^{0.70} $	est.(eq.(E14)),est.(products)
Rer 69c	4	$C_7^+H^+$	+	е	\uparrow	C_4^H	+	' '	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_r69d	4	C,H+	+	9	↑	້ ບ້	+	C,H	$ 1.67 \times 10^{-07} (300/\text{T})^{0.70} $	est.(eq.(E14)),est.(products)
Rez. 70a	4	C,H,+	+	O	1	C,H	+	⁷ H	$ 5.00 \times 10^{-07} (300/\text{T})^{0.70} $	est.(eq.(E14)),est.(products)
B 270h	4	+ H Z	+	٥	1	ا ک	+	3CH,	$1.67 \times 10^{-07} (300/\text{T})^{0.70}$	est. (eq. (E14)) est. (products)
B 70c	٠ -	+ # 5	- +) (1	ع (و	- +	2 2	1 67 > 10 - 07 (300 / T) 0.70	cet (or (F14)) set (products)
Ler 10c	۲ -	C7112 C H +	- +	ه د	1	C ₅₁₁₂	- +	ດ ດ	1.51×10 (500/1) 1.67×10-07(300/T)0.70	ost (og (E14)) ost (products)
Iterioa D 71s	۲ -	711 ₂		ט מ		C3112	+ -	⁷ 4 □	E 00 × 10 - 07 (300 / T) 0.70	cst.(eq.(E14));est.(products)
711	# ~	7113	-	ט ע	1	C7112	-	30H	1.67×10-07(300/T)	est.(eq.(E14)),est.(pioducts)
Rer (1D)	# ~	C4H3+	+ -	ט מ	1	, L	+ -	CH ₂	1.67 × 10 − 07 (300 / 11)	est.(eq.(E14)),est.(products
717 717	† -	C ₇ H ₃	+ -	י ע	1	C2 II 2	+ -	C ₂ H	1.61 × 10 (300 / 1)	est.(eq.(E14)),est.(products)
Rer / 1d	4 -	+, -	+ -	0	†	Z 7 T ∓	+ -	C_3H_2	1.67 ×10 ·· (300/T) ··· · · · · · · · · · · · · · · · · ·	est.(eq.(E14)),est.(products,
Rer 72	4,	C ₇ H ₄ -	+ -	Ф	↑	C_7H_3	+ -	H I	$1.00 \times 10^{-0.0} (300/T)^{0.00}$	est.(eq.(E14)),est.(products,
$R_{er}73$	4	C_7H_5	+	ө	↑	C_7H_4	+	I :	$7.00 \times 10^{-31} (300/T)^{3.13}$	[32],est.(products)
R_{er} 74a	4	$C_7H_{6^+}$	+	е	↑	$_{C_7H_5}$	+	H	5.00×10^{-3} (300/T) 3.00×10^{-3}	est.(eq.(E14)),est.(products)
$R_{er}74b$	4	$^{ m C_7H_{6^+}}$	+	е	†	C_6H_3	+	$ m CH_3$	$1.67 \times 10^{-91} (300/T)^{9.19}$	est.(eq.(E14)),est.(products)
$R_{er}74c$	4	$C_7H_{67}^{+}$	+	Ф	†	C_5H_5	+	C_2H	$1.67 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
\mathbb{R}_{er} 74d	4	$C_7H_6^+$	+	Ф	†	$\mathrm{C_4H_3}$	+	$\mathrm{C_3H_3}$	$1.67 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 75a	4	$C_7H_7^+$	+	е	↑	$\mathrm{C_7H_6}$	+	н	$1.60 \times 10^{-07} (300/T)^{0.70}$	[35],est.(products)
$R_{er}75b$	4	$C_7H_7^+$	+	е	↑	$\mathrm{C_6H_5}$	+	$^3\mathrm{CH}_2$	$1.60 \times 10^{-07} (300/T)^{0.70}$	[35],est.(products)
R_{er} 76a	4	$C_7H_8^+$	+	е	\uparrow	$\mathrm{C_7H_7}$	+	Н	$3.00 \times 10^{-07} (300/T)^{0.70}$	[35],est.(products)
$R_{er}76b$	4	$C_7H_8^+$	+	е	†	$\mathrm{C_6H_5}$	+	CH_3	$3.00 \times 10^{-07} (300/T)^{0.70}$	[35],est.(products)
$R_{er}77a$	4	$C_7H_9^+$	+	е	†	C_7H_8	+	Н	$ 1.90\times10^{-07}(300/T)^{0.70} $	[36],est.(products)
$R_{er}77b$	4	C,H,+	+	Ф	†	$C_{6H_{5}}$	+	CH_4	$1.90 \times 10^{-07} (300/T)^{0.70}$	[36],est.(products)
$R_{er}78a$	4	C_8H^+	+	е	\uparrow	స్త	+	Н	$ 5.00 \times 10^{-07} (300/\mathrm{T})^{0.70} $	est.(eq.(E14)),est.(products)
$R_{er}78b$	4	C_8H^+	+	е	\uparrow	C_6H	+	C_2	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}78c$	4	C_8H^+	+	е	↑	Çe	+	$\mathrm{C_2H}$	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}78d$	4	C_8H^+	+	е	†	$\mathrm{C}_4\mathrm{H}$	+	C_4	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}79a$	4	$C_8H_2^+$	+	е	†	C_8H	+	Н	$ 5.00\times10^{-07}(300/T)^{0.70} $	est.(eq.(E14)),est.(products)
$R_{er}79b$	4	$C_8H_2^+$	+	е	\uparrow	C_6H	+	C_2H	$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 79c	4	$C_8H_2^+$	+	е	↑	C_4H	+	C_4H	$ 2.50\times10^{-07}(300/T)^{0.70} $	est.(eq.(E14)),est.(products)
$R_{er}80a$	4	C ₈ H ₃ +	+	е	†	$C_8^H_2$	+	Н	$ 5.00\times10^{-07}(300/T)^{0.70} $	est.(eq.(E14)),est.(products)
Rer 80b	4	C ₈ H ₃ ⁺	+	е	†	$C_{6}^{'}H_{2}^{'}$	+	C_2H	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}80c$	4	C ₈ H ₃ +	+	Ф	†	$C_{6}^{\prime}H_{2}^{\prime}$	+	$ ext{C}_2^{oldsymbol{-}} ext{H}_2$	$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}80d$	4	C ₈ H ₃ ⁺	+	Ф	†	$C_4^{'}H_2^{}$	+	$C_4^{-}H$	$1.67 \times 10^{-07} (300/T)^{0.70}$	est. (eq.(E14)), est. (products)
$R_{er}81$	4	NH+,	+	е	†	' Z	+	· H	$ 4.30\times10^{-08}(300/T)^{0.50} $	[4]
									()	

	E					Donotion					۵	Dof
	1 y Dc					reaction.					2	1001.
$R_{er}82b$	4	$^{ m NH}_{ m 2}^{+}$	+	е	\uparrow	HN	+	Н			$1.29 \times 10^{-07} (300/T)^{0.50}$	[4],[37]
$R_{er}83$	4	NH3+	+	е	†	NH_2	+	Ξ			$3.10 \times 10^{-0.7} (300/T)^{0.50}$	[4],est.(products)
$\mathrm{R}_{er}84\mathrm{a}$	4	$^{ m HH}_4^+$	+	е	†	NH_3	+	Η			$1.15 \times 10^{-06} (300/T)^{0.60}$	[38],[39]
$R_{er}84b$	4	$^{+}$	+	е	\uparrow	NH_2	+	Η	+	Ή	$1.76 \times 10^{-07} (300/T)^{0.60}$	[38],[39]
$\mathrm{Re}_r 84\mathrm{c}$	4.	NH+	+	е	†	NH_2	+	$_{\widetilde{A}}^{\mathrm{H}_{2}}$			$2.70 \times 10^{-08} (300/T)^{0.60}$	[38],[39]
Ker85a	4 4	+ - Z Z C	+ -	e (↑ ′	(J-)N	+ -	ט כ			$3.26 \times 10^{-0.8} (300/T)^{0.55}$	[40]
R86	1 4	HCN+	+ +	ט מ	1	Z C	+ +) =			$1.30 \times 10^{-07} (300/1)$ $3.90 \times 10^{-07} (300/T)^{0.96}$	[40] [41] est (products)
Rer 87	4	HNC+	- +) 0	· ↑	CN	+	ΞH			$1.82 \times 10^{-07} (300/T)^{0.96}$	[41], est. (products)
$R_{er}88a$	4	HCNH+	+	е	↑	HCN	+	Н			$9.62 \times 10^{-08} (300/T)^{0.65}$	
$R_{er}88b$	4	HCNH+	+	е	\uparrow	HNC	+	Н			$9.62 \times 10^{-08} (300/T)^{0.65}$	[1]
$R_{er}88c$	4	HCNH+	+	е	\uparrow	CN	+	Ξį	+	Ξ	$9.06 \times 10^{-08} (300/T)^{0.65}$	
\mathbf{R}_{er} 88d	4 -	HCNH+	+ -	е	↑	CN	+ -	H ₂		=	$9.06 \times 10^{-3} (300/T)^{0.03}$	
Rer 89	4 <	HCNH-CH4+	1 +	o o	1	HCN	+ +	Z Z	+ +	==	5.00×10 ⁻⁰⁶	est.(clusters)
Rer 91	1 4	CH,NH+	- +	ט ט	\	H,CN	- +	H Z	-	1	$8.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)).est.(products)
$R_{er}92a$	4	$CH_2^{2}NH_2^{+}$	+	е	\uparrow	$ ext{CH}_2 ext{NH}$	+	Н			$7.00 \times 10^{-07} (300/T)^{0.70}$	[42]
$R_{er}92b$	4	$CH_2NH_2^+$	+	е	\uparrow	$_{ m NH}_{ m 2}$	+	$^3\mathrm{CH}_2$	2		•	[42]
$R_{er}92c$	4.	$CH_2NH_2^+$	+	е	↑	HCN	+	н:	+	H_2		[42]
$R_{er}93a$	4.	$CH_3NH_2^+$	+	е	↑	$\mathrm{CH}_2\mathrm{NH}_2$	+	Ηį			5.00×10^{-9} (300/T) 6.00	est.(eq.(E14)),est.(products)
\mathbf{R}_{er} 93b	4 -	CH ₃ NH ₂	+ -	е	↑	NH ₂	+ -	CH3			5.00×10 ° (300/T) °··· ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	est.(eq.(E14)),est.(products)
\mathbf{R}_{er} 94a	4,	CH ₃ NH ₃ +	+ -	Ф	↑	CH_3NH_2	+ -	ΞĖ			$7.00 \times 10^{-3} (300/T)^{3.13}$	[28], est. (products)
\mathbf{R}_{er} 94b	4.	CH3NH3	+ -	о (↑ 1	E Z	+ -	CH			7.00×10 ° (300/T) ° · · ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	[28], est. (products)
R_{er} 958	4 4	+525	+ +	ט מ	1	<u> </u>	+ +) Z			3.80×10 $(300/1)$ $2.00 \times 10^{-08} (300/T)^{0.60}$	
$R_{er}96a$	4	C ₂ N ₊	- +	• •	· ↑	N O S	+	Ö			$3.80 \times 10^{-07} (300/T)^{0.60}$	$_{\rm est.(CNC+)}^{\rm cr}$
$R_{er}96b$	4	$C_2^LN^+$	+	Ф	↑	C_2	+	Z			$2.00 \times 10^{-08} (300/T)^{0.60}$	est.(CNC+)
$\mathrm{R}_{er}97\mathrm{a}$	4	HC_2N^+	+	е	\uparrow	$G_2^{\prime}N$	+	Н			$3.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$ m R_{er}97b$	4.	HC_2N^+	+	е	↑	CH	+	CN:			$3.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}98$	4 -	HC ₂ NH ⁺	+ -	о .	↑	HC ₂ N	+ -	I :			8.00×10−°′′(300/T)°°′′°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	est.(eq.(E14)),est.(products)
R_{er} 99a R_{er} 99b	4 4	C2H3N+	+ +	o 0	↑ ↑	CH2 CN2 CN2	+ +	H CH			$5.00 \times 10^{-07} (300/T)^{0.70}$	est $(eq.(E14))$, est $(products)$
$R_{er}100a$	4	C,H,NH+	+	• e	· ↑	CH, CN	+	H			$2.67 \times 10^{-07} (300/T)^{0.69}$	[43],[44]
$R_{er}100b$	4	$C_2^{\dagger}H_3^{\dagger}NH^{+}$	+	е	\uparrow	$CH_2^{\prime}CN$	+	Η	+	Η	$2.67 \times 10^{-07} (300/T)^{0.69}$	[43],[44]
$R_{er}100c$	4.	$C_2H_3NH^+$	+ -	е	↑	HNC	+ -	$_{321}^{\mathrm{CH}_{3}}$;	$1.38 \times 10^{-0.7} (300/T)^{0.69}$	[43],[44]
\mathbf{R}_{er} 100d	4.	C ₂ H ₃ NH -	+ -	о (↑ 1	HCN	+ -	$^{^{\circ}}_{\text{CH}_2}$	+	I,	1.38×10 ° (300/T) ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	[43], [44]
Rer 101a	1 4	C2H5N C,H;N+	+ +	ט ע	1	C ₂ H ₄ N NH	+ +	C, H,	,		$5.00 \times 10^{-07} (300/T)^{0.70}$	est. $(eq.(E14))$, est. $(products)$
R_{er} 102	4	C21+2+2	+	• •	†	CN	+	35	n		$6.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$\mathbf{R}_{er}103\mathbf{a}$	4	HC ₃ N ⁺	+	Ф	\uparrow	C_3N	+	Ή			$6.60 \times 10^{-07} (300/T)^{0.60}$	[45],[46]
$R_{er}103b$	4	HC_3N^+	+	е	\uparrow	CN	+	C_2H			$3.60 \times 10^{-07} (300/T)^{0.60}$	[45],[46]
$R_{er}103c$	4	HC ₃ N+	+	е	\uparrow	ON S	+	$^{\circ}_{\rm C}$	+	Ξ;	$3.60 \times 10^{-0.7} (300/T)^{0.60}$	[45],[46]
R _{er} 103d	4 -	HC3N	+ +	e 0	↑ 1	Z Z Z Z Z Z	+ -	ט כ	+	I,	$6.00 \times 10^{-08} (300/T)^{0.00}$	[45],[46] [45] [48]
R. 103f	† 4	HC3N+	+ +	ט ע	1	Z Z Z	+ +) E			$3.00 \times 10^{-08} (300/1)$	[40],[40] [45],[46]
R_{er} 104a	4	HC3NH+	- +	• •	· ↑	HC ₃ N	+	Н			$7.80 \times 10^{-07} (300/T)^{0.58}$	[45],[46]
\mathbf{R}_{er} 104b	4	HC3NH+	+	е	\uparrow	CN	+	C_2H_2	2		$7.20\times10^{-07}(300/T)^{0.58}$	[45],[46]
$R_{er}105a$	4	$C_3H_3N^+$	+	е	\uparrow	C_3H_2N	+	Η			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}105b$	4 -	$C_3H_3N^+$	+ -	е	↑	Z Z Z Z	+ -	C_2H_3	e		$5.00 \times 10^{-0.7} (300/T)^{0.70}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),\operatorname{est.}(\operatorname{products})$
R. 106h	4 4	C3H3NH CH NH+	+ +	a a	1	C3H3N HCN	+ +	ם ב	+	Ξ	$9.00 \times 10^{-300/1}$	[43],[41] [43] [47]
Continued on Next Page.	on Nex	t Page	-)			-	2	-	:		[+-];[-+]

	$_{\mathrm{Type}}$. 7	Reaction				k	Ref.
Rer 106c	4	$C_3H_3NH^+$	+	е	1	HNC	+	C_2H_3		$4.50 \times 10^{-07} (300/T)^{0.80}$	[43],[47]
$R_{er}107a$	4	$C_3H_5N^+$	+	е	\uparrow	$\mathrm{C_3H_4N}$	+	, н		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}107b$	4	$C_3H_5N^+$	+	е	\uparrow	C_2H_2N	+	$_{\stackrel{\circ}{=}}^{\text{CH}_3}$		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}107c$	4	$C_3H_5N^+$	+	Ф	↑	CN	+	$^{ m C_2H_5}_{ m}$		$2.50 \times 10^{-9} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
Ker 108a B 108b	4 -	C3H5NH-	+ +	0 0	1	C3H5N CH CN	+ +	H H U	=	$6.45 \times 10^{-31} (300/T)^{0.19}$ $6.45 \times 10^{-07} (300/T)^{0.76}$	84 Z 8 Z
R 108c	# -	C3II5INII C H NH+	+ +	ט מ	1	HNC	+ +	CII3	===	9.49×10 -07 (300/T)	[40] [48]
Rer 109a	4	C.H.NH+	+	ט ט	\	C.H.N	- +	H		$5.00 \times 10^{-07} (300/T)^{0.70}$	$\begin{bmatrix} \pm 2 \end{bmatrix}$ est. $(eq.(E14))$.est. $(products)$
Rer 109b	4	C ₂ H ₇ NH ⁺	+	e	†	C,H,N	+	CH,		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 109c	4	$C_3H_7^\prime NH^+$	+	Ф	\uparrow	N_{H_3}	+	$\mathrm{C_3}\overset{\mathrm{H}}{\mathrm{H}_5}$		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}110a$	4	$C_3H_9NH^+$	+	е	↑	C_3H_9N	+	H		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}110b$	4	$C_3H_9NH^+$	+	Ф	\uparrow	C_2H_7N	+	CH_3		$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}110c$	4	$C_3H_9NH^+$	+	е	\uparrow	$\mathrm{CH_3}\mathrm{NH_2}$	+	$\mathrm{C_2H_5}$		$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}110d$	4	$C_3H_9NH^+$	+	е	\uparrow	$^{ m NH_3}$	+	$\mathrm{C_3H_7}$		$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}111a$	4	C_4N^+	+	Ф	↑	C_3^{N}	+	Ö		$4.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}111b$	4	C_4N^+	+	Ф	\uparrow	CN	+	ȳ		$4.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}112a$	4	HC_4N^+	+	е	↑	$^{\mathrm{C}_{4}\mathrm{N}}$	+	Н		$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}112b$	4	$^{+}C_4N^+$	+	е	↑	C_3^{N}	+	CH		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}112c$	4	HC_4N^+	+	е	↑	CN	+	C_3H		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}113a$	4	$\mathrm{HC_4NH}^+$	+	е	↑	$\mathrm{HC}_4\mathrm{N}$	+	Η̈́		$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}113b$	4	$\mathrm{HC_4NH}^+$	+	е	↑	C_3^{N}	+	$^{^3\mathrm{CH}_2}$		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}113c$	4	$\mathrm{HC_4NH}^+$	+	е	↑	CN	+	$\mathrm{C_3H_2}$		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}114a$	4	$C_4H_3N^+$	+	Ф	↑	C_4H_2N	+	Н		5.00×10^{-9} (300/T)	est.(eq.(E14)),est.(products
$R_{er}114b$	4.	$C_4H_3N_7$	+ -	e	†	C ₃ N	+ -	$_{ m CH_3}^{ m CH_3}$		$2.50 \times 10^{-0.7} (300/T)^{0.79}$	est.(eq.(E14)),est.(products
\mathbf{K}_{er} 114c	4 -	C ₄ H ₃ N -	+ -	e	†	CIN	+ -	i ÇaHı		2.50×10 ° (300/T) ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	est.(eq.(E14)),est.(products
Ker 115a	4 -	C ₄ H ₃ NH -	+ -	e (†	CH ₃ C ₃ N	+ -	H C		5.00×10 °: (300/T) °:: °	est.(eq.(E14)),est.(products
Rer 1150	# -	C4113INII 7 H NH+	+ -	ט מ	1	HC3IV	+ +	CII3		2.30×10 3 50×10 ⁻⁰⁷ (300/T) ^{0.70}	est.(eq.(E14)),est.(piouucts)
Rer 116a	1 4	C.H.N+	+ +	ט ע	1	Z.H.Z	+ +	С3113 Н		$5.00 \times 10^{-07} (300/T)^{0.70}$	est (eq.(E14)),est (products
Rer 116b	4	C,H,N+	+	0	1	CN CN	+	C,H,		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)).est.(products
R_{er} 116c	4	C4HEN+	+	o	↑	C, H, N	+	CH.		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 117	4	C4H2NH+	+	0	†	C, H, N	+	E H		$4.00 \times 10^{-07} (300/T)^{0.70}$	[36].est.(products)
$R_{er}118a$	4	$C_4^{4}H_7^5NH^+$	+	е	↑	$C_4^{4}H_7^{5}N$	+	Н		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}118b$	4	$C_4H_7NH^+$	+	е	↑	HCN	+	C_3H_7		$8.33 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}118c$	4	$C_4H_7NH^+$	+	е	↑	HNC	+	$C_3^{'}H_7^{'}$		$8.33 \times 10^{-08} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}118d$	4	$C_4H_7NH^+$	+	9	\uparrow	CH_3CN	+	$C_2^{H_5}$		$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}118e$	4	$C_4H_7NH^+$	+	е	\uparrow	C_3H_5N	+	CH_3		$1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}119a$	4	$C_4H_9NH^+$	+	е	\uparrow	$\mathrm{C_4H_9N}$	+	Н		$1.35 \times 10^{-06} (300/T)^{0.70}$	[36],est.(products)
$R_{er}119b$	4	$C_4H_9NH^+$	+	е	↑	C_3H_7N	+	$_{\stackrel{\circ}{=}}^{\text{CH}_3}$		$4.51 \times 10^{-0.7} (300/T)^{0.70}$	[36], est. (products)
$R_{er}119c$	4	$C_4H_9NH^+$	+	Ф	↑	C_2H_5N	+	C_2H_5		4.51×10^{-9} (300/T)	[36], est. (products)
\mathbb{R}_{er} 119d	4.	$C_4H_9NH^+$	+ -	е	↑	NH3	+ -	$_{ ext{C}_4 ext{H}_7}^{ ext{C}_4 ext{H}_7}$		$4.51 \times 10^{-0.} (300/T)^{0.70}$	[36], est. (products)
Rer 120a	4 -	C2N -	+ -	e	↑	Z.S.	+ -	, c		5.00×10 (300/T)	[49], est. (products)
$R_{er}120b$	4 -	C2 +	+ -	e	↑	CN	+ -	္ :		$5.00 \times 10^{-3} (300/T)^{3.13}$	[49], est. (products)
Ker 121a	4 -	H C 2 Z -	+ -	o (^ ^	z z	+ -	I J I		$5.00 \times 10^{-0.0}(300/1)^{0.00}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),\operatorname{est.}(\operatorname{products})$
R 1916	# -	HC 21 HC N+	+ +	ט מ	1	\[\frac{1}{2}\]	+ +	$C_{2\Pi}^{C}$		2.30×10 2.50×10 ⁻⁰⁷ (300/T) ^{0.70}	est.(eq.(E14)),est.(piouucts)
R 122a	t 4	HC NH+	+ +	ם ע	1	Z	+ +	H		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)), est.(products)
Rer 122b	4 4	HC, NH+	- +	ט פ	` ↑	Z Z	+	C H,		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(F14)),est.(products)
Rer 122c	4	HC, NH+	+	• •	†	CN	+	C_4^{-1}		$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}123a$	4	$C_5H_3N^+$	+	е	↑	C_5H_2N	+	H H		$5.00 \times 10^{-07} (300/\mathrm{T})^{0.70}$	est.(eq.(E14)),est.(products
	-					1				010	

	$_{\mathrm{Type}}$					Reaction			×	Ref.
Rer 123c	4	C ₅ H ₃ N ⁺	+	е	1	C_2N	+	C_3H_3	$ 1.67 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}123d$	4	$C_5H_3^2N^+$	+	е	\uparrow	z	+	$C_5^{ m H}_3^{ m c}$	$1.67 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}124a$	4	$C_5H_3NH^+$	+	е	↑	C_5H_3N	+	Н	$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R _{er} 124b	4.	$C_5H_3NH^+$	+	Ф	↑	HC_4N	+	CH3	$1.25 \times 10^{-3} (300/\text{T})^{3.19}$	est.(eq.(E14)),est.(products)
Rer 124c	4 -	C ₅ H ₃ NH-	+ -	е	↑	C ₅ H ₃ N	+ -	:)	$1.25 \times 10^{-0.00}$ (300/T) $\frac{1.25 \times 10^{-0.00}}{1.000}$	est.(eq.(E14)),est.(products)
Rer 124a	4 -	C ₅ H ₃ NH	+ -	Θ.	†	HC ₂ N	+ -	C3H3	$1.25 \times 10^{-1} (300/1)^{-1}$	est.(eq.(E14)),est.(products
Rer 124e	# ₹	C2H3NH C2H3NH	+ -	e (1	Z Z Z	+ +	C4 H3	$1.23 \times 10^{-0.00} (300/1)^{-0.00}$	est. (eq.(E.14)), est. (products)
Ner 1234	# ~	C ₅ H ₅ N	+ -	ט ט	1	C ₅ H ₄ N	+ -	7 2	9.00×10 (300/1)	est.(eq.(E14)),est.(products
R 1950	# ~	7 2 H 2 H	+ +	ט פ	1	Canain	+ +	C ₂ H ₃	$\begin{array}{c} 2.30 \times 10 \\ 2.50 \times 10^{-07} (300/1) \end{array}$	est.(eq.(E14)),est.(products)
1. 1.96	# ~	CSHSN CH VIII+	+ +	ט כ	1	ב ב ב	+ +	C4 115	8 00×10 ⁻⁰⁷ (300/T)	[50] [36] oct (products)
R 127a	# 4	Canality CH NH+	+ +	ם ע	1	C ₅ H ₅ N	+ +	= =	$\begin{array}{c} 8.90 \times 10 \\ 8.90 \times 10 \\ \hline \end{array}$	[50],[50],est.(products) est (eg (E14)) est (products)
R 197h	† 7	C H NH+	- +	٥ (` 1	C ₅ H77	- +	ΞÜ	$5.00 \times 10^{-07} (300/\pm)$	csu:(cq:(E14)),csu:(Froducts)
Rer 128a	4	C.N+	- +	0	<u></u>	C, N	- +	E C	$3.33 \times 10^{-07} (300/\text{T})^{0.70}$	est.(eq.(E14)).est.(products
Rer 128b	4	+ - - - - - -	+	Œ	1	z Z	+	o C	$3.33 \times 10^{-07} (300/T)^{0.70}$	est.(eg.(E14)).est.(products
Rer 128c	4	+ Z O	+	ο ο	· ↑	, N O	+	ో చ	$3.33 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
Rer 129	4	HC,NH+	+	е	1	HC, N	+	Н	$1.00\times10^{-06}(300/T)^{0.70}$	st.(eq.(E14)),est.(products
$R_{er}130a$	4	C ₆ H ₃ NH ⁺	+	е	†	$CH_3^{\prime}C_5N$	+	Н	$ 5.00\times10^{-07}(300/T)^{0.70}$	st.(eq.(E14)),est.(products)
Rer 130b	4	ChynH+	+	е	↑	O N	+	CH_4	$2.50 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}130c$	4	C ₆ H ₃ NH ⁺	+	е	↑	CN	+	$C_5 H_4$	$2.50 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products
R_{er} 131a	4	C ₆ H ₅ NH ⁺	+	е	↑	C_5H_3N	+	CH_3	$5.00\times10^{-07}(300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}131b$	4	$C_6H_5NH^+$	+	е	\uparrow	C_6H_5N	+	Н	$1.25 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}131c$	4	$C_6H_5NH^+$	+	е	\uparrow	$\mathrm{HC}_4\mathrm{N}$	+	$\mathrm{C_2H_5}$	$1.25\times10^{-07}(300/T)^{0.70}$	st.(eq.(E14)),est.(products)
Rer 131d	4	C ₆ H ₅ NH ⁺	+	е	↑	HCCN	+	$\mathrm{C_4H_5}$	$1.25 \times 10^{-07} (300/\text{T})^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}131e$	4	$C_6H_5NH^+$	+	е	↑	CN	+	${ m C_5H_6}$	$1.25 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products
$R_{er}132a$	4	$C_6H_7N^+$	+	е	↑	C_6H_6N	+	H	$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R _{er} 132b	4.	$C_6H_7N^+$	+	ө	↑	C_5H_4N	+	$_{\widetilde{c}_{13}}^{\mathrm{CH}_{3}}$	$1.67 \times 10^{-31} (300/1)^{3.13}$	est.(eq.(E14)),est.(products)
Rer 132c	4 -	C ₆ H ₇ N ⁺	+ -	Φ .	†	C_3H_2N	+ -	C3H2	$1.67 \times 10^{-0.1} (300/T)^{0.19}$	est.(eq.(E14)),est.(products
Rer 132	# ₹	C6H7N	+ -	י ע	<u> </u>	2 5	+ -	C ₅ II ₇	1.01 × 10 (300/ 1)	est.(eq.(E14)),est.(products)
Rer 133	7 -	C6H7NH	+ -	e •	<u> </u>	C ₂ H ₂ N	+ -	CH3	$1.00 \times 10^{-1} (300/1)^{-1}$	est.(eq.(E14)),est.(products,
Ner 1948	1 +	+2 19 19 19 19 19	+ -	D (†	18 19 19 19 19	+ -	u 5	3.00×10 $(300/1)$	est.(eq.(E14)),est.(products
Rer 134D	# -	+V6H9)	+ -	ט פ	1	7.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	+ -	CH3	1.23×10 (300/1) 1.25 × 10 - 07 (300 / π)0.70	est.(eq.(E14)),est.(products)
Rer 134d	4 4	+N°H°C	- +	ט מ	` ↑	C4 H47	- +	C2H2	$(1.25 \times 10^{-07} (300/T)^{0.70})$	csu:(cq:(E14)),csu:(F16aucus est (eq.(E14)) est (products
Rer 134e	4	+N°H°D	+	o	· ↑	ON C	+	C, H,	$1.25 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 135a	4	C.H.NH+	+	ο ο	· ↑	C.H.N	+	fc2 H	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 135b	4	CHONH+	+	е	1	C,H2N	+	CH,	$ 5.00\times10^{-07}(300/T)^{0.70}$	st.(eq.(E14)),est.(products
R_{er} 136a	4	C ₂ N ⁺	+	е	†	, Z,	+	໌່ບ	$3.33 \times 10^{-07} (300/\text{T})^{0.70}$	st.(eq.(E14)),est.(products)
Rer 136b	4	C,N+	+	е	↑	C.S	+	Ğ,	$3.33 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
Rer 136c	4	C ₇ N+	+	е	↑	CN	+	້ບຶ	$3.33 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}137a$	4	HC ₇ N ⁺	+	е	†	C_7N	+	Н	$ 5.00\times10^{-07}(300/\mathrm{T})^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}137b$	4	HC_7N^+	+	е	\uparrow	C_5N	+	C_2H	$1.67 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}137c$	4	HC ₇ N ⁺	+	е	\uparrow	C_3N	+	$\mathrm{C_4H}$	$1.67 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
R_{er} 137d	4	HC ₇ N ⁺	+	е	\uparrow	CN	+	C_6H	$1.67 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}138$	4	HC ₇ NH ⁺	+	е	↑	HC_7N	+	Н	$1.00 \times 10^{-09} (300/T)^{0.79}$	st.(eq.(E14)),est.(products)
$R_{er}139a$	4	$C_7H_3N_7^+$	+	е	↑	C_7H_2N	+	Н	$ 5.00\times10^{-0.7}(300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}139b$	4	$C_7H_3N^+$	+	е	\uparrow	C_6N	+	CH_3	$1.25 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}139c$	4	$C_7H_3N_1^+$	+	е	\uparrow	C_4N	+	$\mathrm{C_3H_3}$	$1.25 \times 10^{-07} (300/T)^{0.70}$	st.(eq.(E14)),est.(products)
$R_{er}139d$	4	$C_7H_3N^+$	+	е	↑	C_2	+	C_5H_3	$1.25 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}139e$	4	$C_7H_3N^+$	+	е	↑	CN	+	$\mathrm{C_6H_3}$	$1.25 \times 10^{-9} (300/T)^{9.79}$	est.(eq.(E14)),est.(products)
- 07 -	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							/ (1)	

	Type				E E	Reaction					k	Ref.
$R_{er}140b$	4	$C_7H_3NH^+$	+	Ф	↑	HC_6N	+	CH_3		_	$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 141a	4	$C_7H_7N^+$	+	е	↑	$C_7\widetilde{H}_6N$	+	Н			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}141b$	4	$C_7H_7N^+$	+	е	↑	C_6H_4N	+	CH_3			$1.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}141c$	4	$C_7H_7N^+$	+	Ф	†	C_5H_2N	+	C_2H_5			$1.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 141d	4	$C_7H_7N^+$	+	е	↑	C_4N	+	C_2H_7			$1.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 141e	4	$C_7H_7N^+$	+	е	↑	C_2N		C_4H_7			$1.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 141f	4	$C_7H_7N^+$	+	е	\uparrow	Z	+	$\mathrm{C_7H_7}$			$1.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}142a$	4	$C_7H_7NH^+$	+	е	↑	C_7H_7N		H			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}142b$	4	$C_7H_7NH^+$	+	е	↑	C_6H_5N	+	CH_3			$1.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}142c$	4	C ₇ H ₇ NH ⁺	+	е	↑	C_5H_3N		C_2H_5			$1.00 \times 10^{-9} (300/T)^{0.19}$	est.(eq.(E14)),est.(products)
$R_{er}142d$	4	$C_7H_7NH^+$	+	Ф	↑	$\mathrm{HC}_4\mathrm{N}$	+	C_3H_7			$1.00 \times 10^{-97} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}142e$	4	$C_7H_7NH^+$	+	е	↑	HCCN	+	C_5H_7			$1.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}142f$	4	$C_7H_7NH^+$	+	е	↑	N.	+	C_{6H_8}			$1.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}143a$	4	N ₂ +	+	е	↑	$N(^{2}D)$		N(2D)			$1.14 \times 10^{-07} (300/T)^{0.39}$	[51],[52]
$R_{er}143b$	4	Z +	+	е	↑	Z		N(2D)			$1.06 \times 10^{-0.7} (300/T)^{0.39}$	[51],[52]
$R_{er}144a$	4	$^2\mathrm{H}^+$	+	Ф	↑	$_{2}^{N}$	+	H.			$2.47 \times 10^{-0.}(300/T)^{0.84}$	[1]
$R_{er}144b$	4	$^{2}\mathrm{H}^{+}$	+	е	↑	HN		z			$1.30 \times 10^{-08} (300/T)^{0.84}$	[1]
R_{er} 145a	4	$N_2H_5^+$	+	е	†	$ m N_2H_4$		н			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}145b$	4	$N_2H_5^+$	+	Ф	†	$^{ m NH}_3$	+	NH_2			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}146$	4	$C_2N_2^+$	+	Ф	↑	CN	+	CN			$6.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}147a$	4	$C_2N_2H^+$	+	е	↑	C_2N_2	+	Н			$4.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}147b$	4	$C_2^N_2^H^+$	+	е	↑	HCN	+	CN			$2.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}147c$	4	$C_2N_2H^+$	+	е	↑	HNC	+	CN			$2.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}148$	4	$C_4N_2^+$	+	Ф	†	C_3N	-	CN			$1.00 \times 10^{-06} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}149a$	4	$C_4^N_2^H^+$	+	е	↑	$C_4^{-}N_2^{-}$	+	н			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}149b$	4	$C_4^N_2^H^+$	+	е	\uparrow	HC_3N	+	CN			$2.50 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}149c$	4	$C_4N_2H^+$	+	е	\uparrow	C_3N	+	HCN			$1.25 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 149d	4	$C_4N_2H^+$	+	е	\uparrow	C_3N		HNC			$1.25 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}150a$	4	$C_6N_2^+$	+	е	↑	C_5N		CN			$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}150b$	4	C_6N_2	+	е	↑	C ₃ Z		Z C3			5.00×10^{-9} , $(300/T)^{9.79}$	est.(eq.(E14)),est.(products)
Rer 151a	4,	$C_6N_2H^+$	+ -	е	↑	C_6N_2		Ξ,			$5.00 \times 10^{-3} (300/T)^{2.79}$	est.(eq.(E14)),est.(products)
Ker 151b	4 -	C_6N_2H	+ -	Ф	↑	HC.		CC			$1.67 \times 10^{-3.0}(300/1)^{2.13}$	est.(eq.(E14)),est.(products)
R_{er} 151c	4 -	$C_6N_2H^+$	+ -	е е	†	Z Z		HCN			$8.33 \times 10^{-98} (300/T)^{9.79}$	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E}14)),\operatorname{est.}(\operatorname{products})$
Rer 151a	4 -	C6N2H+	+ -	a (<u> </u>	I Cal					8.33×10 (300/1) 1.67×10=07(300/TE)0.70	$\operatorname{est.}(\operatorname{eq.}(\operatorname{E14})),\operatorname{est.}(\operatorname{products})$
D 153	4 -	C61211	+ -	ט פ	†	Z (3 Z	+ -	Z (3 Z			$1.07 \times 10^{-06} (300/1)$ 5 00 $\times 10^{-06} (300/1)^{0.70}$	est.(eq.(L14)),est.(products)
D 152	# -	+3	-	ט מ	\	N 2	- -	3 2			3.00×10 5.00×10 ⁻⁰⁶ (300/T) ^{0.70}	est.(clusters)
R154	* 4	4+ 4+	+ +	ם ע	1	$O(^3P)$	F	22			$3.00 \times 10^{-12} (300/1)$	est. (clusters) [53]
Rer 155	. 4	+HO	- +	o	` ↑	$O(^3P)$	+	Н			$3.75 \times 10^{-08} (300/T)^{0.50}$	[59] [54].[4]
R_{er} 156a	4	$^{+}\mathrm{O}^{+}$	+	е	↑	OH	+	н			$8.60 \times 10^{-08} (300/T)^{0.50}$	[55]
$R_{er}156b$	4	$ ext{H}_2^{ ilde{2}} ext{O}^+$	+	е	↑	$O(^{3}P)$		H_2			$3.87 \times 10^{-08} (300/T)^{0.50}$	[55]
$R_{er}156c$	4	$ ext{H}_2^{ ilde{}} ext{O}^+$	+	е	↑	$O(^3P)$, H		н	$3.05 \times 10^{-07} (300/T)^{0.50}$	[55]
$R_{er}157a$	4	$ m H_3^2O^+$	+	е	\uparrow	НО		н	+	—	$5.09 \times 10^{-07} (300/T)^{0.83}$	[56]
$R_{er}157b$	4	$^{+}$ O $^{+}$	+	е	†	${ m H}_2{ m O}$		н			$1.37 \times 10^{-07} (300/T)^{0.83}$	[56]
$R_{er}157c$	4	$^{\mathrm{H}_{3}\mathrm{O}^{+}}_{}$	+	е	†	OH (3-)		$^{ m H_2}_{ m 2}$			$8.36 \times 10^{-98} (300/T)^{0.83}$	[56]
R_{er} 157d	4 -	H ₃ O+	+ -	e	↑	$O(^3P)$		$^{ m H}_2$	+	 I	$3.04 \times 10^{-93} (300/T)^{0.83}$	[56] [13]
Rer 158a P 158b	4 -	+ 5	+ -	a 0	1	O(F)		כ כ			$2.50 \times 10^{-300} / 1)^{-3}$	[57]
R 150	1, -	+ CC + CC	+ +	ט מ	1	(a) (b)	+ +) 2			2.48×10 (300/1) 5.00×10 ⁻⁰⁶ (300/T) ^{0.70}	[94] set (clustere)
Rer 150	4 4	HCO+	+ +	ט ט	↑	000		H ₂			$1.56 \times 10^{-07} (300/T)^{1.20}$	(58].[59]
$R_{er}160b$	4	HCO+	+	• e	· ↑	HO		ن ا			$1.19 \times 10^{-08} (300/T)^{1.20}$	[53],[59]
Continued on Next	n Next									-	-	

										ν	
$R_{er}160c$	4	^{+}OOH	+	е	↑	СН	+	$O(^3P)$		$ 1.70 \times 10^{-09} (300/T)^{1.20} $	[58],[59]
Rer 161	4	$\mathrm{HCO}^{+}\mathrm{H}_{2}$	+	е	\uparrow	НСО	+	$_{ m H_2}$		$5.00 \times 10^{-06} (300/T)^{0.70}$	est.(clusters)
$R_{er}162$	4	HCO^+CO	+	е	\uparrow	HCO	+	CO		$5.00 \times 10^{-06} (300/T)^{0.70}$	est.(clusters)
Rer 163a	4	HOC^{+}	+	е	†	CO	+	Н		$1.56 \times 10^{-07} (300/T)^{1.20}$	est.(HCO+)
$R_{er}163b$	4	$^{+}$ OOH	+	е	†	НО	+	Ö		$1.19 \times 10^{-08} (300/T)^{1.20}$	est.(HCO+)
Rer 163c	4	$^{+}$ OOH	+	е	†	$_{ m CH}$	+	$O(^3P)$		$1.70 \times 10^{-09} (300/T)^{1.20}$	est.(HCO+)
$R_{er}164a$	4	$ m CH_2O^+$	+	е	\uparrow	CO	+	+ H	Η	$2.50 \times 10^{-07} (300/T)^{0.70}$	[1]
Rer 164b	4	CH_2O^+	+	е	↑	HCO	+	Н		$1.50 \times 10^{-07} (300/\mathrm{T})^{0.70}$	[1]
Rer 164c	4	$CH_2^-O^+$	+	е	†	CO	+	H_2		$7.50 \times 10^{-08} (300/T)^{0.70}$	[1]
Rer 164d	4	$CH_2^{-}O^{+}$	+	е	†	$^3\mathrm{CH}_2$	+	$O(^3P)$		$2.50 \times 10^{-08} (300/T)^{0.70}$	[1]
Rer 165a	4	${ m CH_2OH^+}$	+	е	\uparrow	HCO	+	+ H	Η	$6.44 \times 10^{-07} (300/T)^{0.78}$	[60]
Rer 165b	4	$\mathrm{CH_2OH}^+$	+	е	†	НО	+	$^3\mathrm{CH}_2$		$4.20 \times 10^{-08} (300/T)^{0.78}$	[09]
Rer 165c	4	$\mathrm{CH}_2^-\mathrm{OH}^+$	+	е	†	$\mathrm{H}_2\mathrm{O}$	+	CH		$1.40 \times 10^{-08} (300/\mathrm{T})^{0.78}$	[60]
$R_{er}166$	4	HC_2O^+	+	е	†	ONEUT	+	Н		$6.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 167	4	CH_2CO^+	+	е	\uparrow	ONEUT	+	Н		$8.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
Rer 168a	4	CH_3CO^+	+	Ф	†	ONEUT	+	Н		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}168b$	4	CH_3CO^+	+	е	†	$ m CH_3$	+	CO		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}169a$	4	CH_3COH^+	+	е	↑	$_{\rm H_2O}$	+	$\mathrm{C_2H_2}$		$5.40 \times 10^{-07} (300/T)^{0.70}$	[61]
$R_{er}169b$	4	CH_3COH^+	+	е	↑	${ m H_2CO}$	+	$^3\mathrm{CH}_2$		$5.40 \times 10^{-07} (300/T)^{0.70}$	[61]
Rer 169c	4	CH_3COH^+	+	е	\uparrow	CH_2CO	+	+ H	Η	$4.20 \times 10^{-07} (300/T)^{0.70}$	[61]
$R_{er}170a$	4	CH_3CHOH^++	+	е	↑	CH_3CHO	+	Н		$5.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}170b$	4	CH_3CHOH^++	+	е	↑	H_2 CO	+	$_{ m CH_3}$		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}170c$	4	CH_3CHOH	+	е	↑	НО	+	$\mathrm{C_2H_4}$		$2.50 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
R_{er} 171	4	HC_3O^+ +	+	е	↑	ONEUT	+	H		$8.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}172a$	4	$\mathrm{C_2H_2CO}^+$	+	е	†	ONEUT	+	Н		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}172b$	4	$C_2H_2CO^+$	+	е	↑	$\mathrm{C_2H_2}$	+	CO		$5.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}173a$	4	$\mathrm{C_2H_3CO}^+$	+	е	↑	ONEUT	+	Н		$1.00 \times 10^{-0.7} (300/T)^{0.770}$	est.(eq.(E14)),est.(products)
$R_{er}173b$	4	$C_2H_3CO^+$	+	е	↑	НСО	+	$\mathrm{C_2H_2}$		$9.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}174$	4	CO2+	+	Ф	↑	CO	+	0		$4.20 \times 10^{-0.7} (300/T)^{0.73}$	[62]
$R_{er}175a$	4	OCOH	+	е	↑	00	+	+	I	8.16×10 ⁻³ (300/T) ^{3:34}	[63]
$R_{er}175b$	4.	OCOH+	+	е	↑	00	+	НО		$3.24 \times 10^{-0.0} (300/T)^{0.04}$	[63]
$R_{er}175c$	4	OCOH	+	е	↑	COS	+	H		$6.00 \times 10^{-33} (300/T)^{0.94}$	[63]
$R_{er}176a$	4	+ON	+	е	↑	$O(^3P)$	+	$N(^{2}D)$		$3.19 \times 10^{-0.7} (300/T)^{0.73}$	[64],[65]
$R_{er}176b$	4	+ON	+	е	↑	$O(^{\circ}P)$	+	Z		$1.01 \times 10^{-0.7} (300/T)^{0.75}$	[64],[65]
$R_{er}177$	4	+ONH	+	е	†	ON	+	Н		$4.00 \times 10^{-07} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
\mathbb{R}_{er} 178	4	NCO+	+	е	↑	CO	+	Z		$4.00 \times 10^{-0.7} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}179$	4	HNCO+	+	е	↑	CO	+	HZ		$6.00 \times 10^{-0.7} (300/T)^{0.70}$	est.(eq.(E14)),est.(products)
$R_{er}180$	4	$C_x H_y N_{\tilde{z}}^+$	+	e	↑	NEUT				$1.00 \times 10^{-98} (300/T)^{0.79}$	est.(eq.(E14)),est.(products)
$R_{er}181$	4	Adduct ⁺	+	е	↑	NEUT				$5.00 \times 10^{-98} (300/T)^{0.79}$	est.(clusters)
$R_{er}182$	4	+N+211774	+	c	1	TITI				F OU > 10 - 06 / 300 / Tr > 0.70	+ (-1

- V. Wakelam, J.-C. Loison, E. Herbst, B. Pavone, A. Bergeat, K. Béroff, M. Chabot, A. Faure, D. Galli, W. Geppert, D. Gerlich, P. Gratier, N. Harada, K. Hickson, P. Honvault, S. Klippenstein, S. Le Picard, G. Nyman, M. Ruaud, S. Schlemmer, I. Sims, D. Talbi, J. Tennyson, R. Wester, The 2014 KIDA network for interstellar chemistry, Astrophys. J. Suppl. Ser. 217 (2015) #20.
- [2] S. Nahar, A. Pradhan, Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and nitrogen, Astrophys. J. Suppl. Ser. 111 (1997) 339–355.
- [3] O. Dutuit, N. Carrasco, R. Thissen, V. Vuitton, C. Alcaraz, P. Pernot, N. Balucani, P. Casavecchia, A. Canosa, S. Le Picard, J.-C. Loison, Z. Herman, J. Žabka, D. Ascenzi, P. Tosi, P. Franceschi, S. Price, P. Lavvas, Critical review of N, N⁺, N₂⁺, N⁺⁺ and N₂⁺⁺ main production processes and reactions of relevance to Titan's atmosphere, Astrophys. J. Suppl. Ser. 204 (2013) #20.
- [4] J. Mitchell, The dissociative recombination of molecular ions, Phys. Rep. 186 (1990) 215–248.
- [5] R. Johnsen, M. Biondi, Measurements of positive ion conversion and removal reactions relating to the Jovian ionosphere, Icarus 23 (1974) 139–143.
- [6] Z. Amitay, D. Zajfman, P. Forck, U. Hechtfischer, B. Seidel, M. Grieser, D. Habs, R. Repnow, D. Schwalm, A. Wolf, Dissociative recombination of CH⁺: Cross section and final states, Phys. Rev. A 54 (1996) 4032–4050.
- [7] Å. Larson, A. Le Padellec, J. Semaniak, C. Strömholm, M. Larsson, S. Rosén, R. Peverall, H. Danared, N. Djuric, G. Dunn, S. Datz, Branching fractions in dissociative recombination of CH₂⁺, Astrophys. J. 505 (1998) 459–465.
- [8] C. Sheehan, J.-P. St.-Maurice, Dissociative recombination of the methane family ions: Rate coefficients and implications, Adv. Space Res. 33 (2004) 216–220.
- [9] L. Vejby-Christensen, L. Andersen, O. Heber, D. Kella, H. Pedersen, H. Schmidt, D. Zajfman, Complete branching ratios for the dissociative recombination of H₂O⁺, H₃O⁺, and CH₃⁺, Astrophys. J. 483 (1997) 531–540.
- [10] R. Thomas, I. Kashperka, E. Vigren, W. Geppert, M. Hamberg, M. Larsson, M. af Ugglas, V. Zhaunerchyk, Dissociative recombination of $\mathrm{CH_4}^+$, J. Phys. Chem. A 117 (2013) 9999–10005.
- [11] M. Kamińska, V. Zhaunerchyk, E. Vigren, M. Danielsson, M. Hamberg, W. Geppert, M. Larsson, S. Rosén, R. Thomas, J. Semaniak, Dissociative recombination of CH₅⁺ and CD₅⁺: Measurement of the product branching fractions and the absolute cross sections, and the breakup dynamics in the CH₃ + H + H product channel, Phys. Rev. A 81 (2010) #062701.
- [12] J. Semaniak, Å. Larson, A. Le Padellec, J. Semaniak, C. Strömholm, M. Larsson, S. Rosén, R. Peverall, H. Danared, N. Djuric, G. Dunn, S. Datz, Dissociative recombination and excitation of CH₅⁺: Absolute cross sections and branching fractions, Astrophys. J. 498 (1998) 886–895.
- [13] L. Capone, R. Whitten, J. Dubach, S. Prasad, W. Huntress Jr., The lower ionosphere of Titan, Icarus 28 (1976) 367–378.
- [14] A. Ehlerding, F. Hellberg, R. Thomas, S. Kalhori, A. Viggiano, S. Arnold, M. Larsson, M. af Ugglas, Dissociative recombination of C₂H⁺ and C₂H₄⁺: Absolute cross sections and product branching ratios, Phys. Chem. Chem. Phys. 6 (2004) 949–954.
- [15] A. Derkatch, A. Al-Khalili, L. Vikor, A. Neau, W. Shi, H. Danared, M. af Ugglas, M. Larsson, Branching ratios in dissociative recombination of the $\mathrm{C_2H_2}^+$ molecular ion, J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 3391–3398.

- [16] S. Kalhori, A. Viggiano, S. Arnold, S. Rosén, J. Semaniak, A. Derkatch, M. af Ugglas, M. Larsson, Dissociative recombination of C₂H₃⁺, Astron. Astrophys. 391 (2002) 1159–1165.
- [17] J. McLain, V. Poterya, C. Molek, L. Babcock, N. Adams, Flowing afterglow studies of the temperature dependencies for dissociative recombination of ${\rm O_2}^+$, ${\rm CH_5}^+$, ${\rm C_2H_5}^+$, and ${\rm C_6H_7}^+$ with electrons, J. Phys. Chem. A 108 (2004) 6704–6708.
- [18] W. Geppert, A. Ehlerding, F. Hellberg, S. Kalhori, R. Thomas, O. Novotny, S. Arnold, T. Miller, A. Viggiano, M. Larsson, First observation of four-body breakup in electron recombination: ${\rm C_2D_5}^+$, Phys. Rev. Lett. 93 (2004) #153201.
- [19] R. Janev, D. Reiter, Collision processes of C_{2,3}H_y and C_{2,3}H_y⁺ hydrocarbons with electrons and protons, Phys. Plasmas 11 (2004) 780–829.
- [20] O. Heber, K. Seiersen, H. Bluhme, A. Svendsen, L. Andersen, L. Maunoury, Dissociative recombination of small carbon cluster cations, Phys. Rev. A 73 (2006) 022712.
- [21] G. Angelova, O. Novotny, J. Mitchell, C. Rebrion-Rowe, J. Le Garrec, H. Bluhme, A. Svendsen, L. Andersen, Branching ratios for the dissociative recombinaion of hydrocarbon ions III: the cases of $C_3H_n^+$ (n = 1-8), Int. J. Mass Spectrom. 235 (2004) 7–13.
- [22] M. Chabot, K. Béroff, P. Gratier, A. Jallat, V. Wakelam, Reactions forming $C_{n=2,10}^{(0,+)}$, $C_{n=2,4}H^{(0,+)}$, and $C_3H_2^{(0,+)}$ in the gas phase: Semiempirical branching ratios, Astrophys. J. 771 (2013) #90.
- [23] J. McLain, V. Poterya, C. Molek, D. Jackson, L. Babcock, N. Adams, $C_3H_3^+$ isomers: Temperature dependencies of production in the H_3^+ reaction with allene and loss by dissociative recombination with electrons, J. Phys. Chem. A 109 (2005) 5119–5123.
- [24] W. Geppert, R. Thomas, A. Ehlerding, F. Hellberg, F. Österdahl, M. af Ugglas, M. Larsson, Dissociative recombination of $\mathrm{C_3H_4}^+$: preferential formation of the $\mathrm{C_3H_3}$ radical, Int. J. Mass Spectrom. 237 (2004) 25–32
- [25] A. Ehlerding, S. Arnold, A. Viggiano, S. Kalhori, J. Semaniak, A. Derkatch, S. Rosén, M. af Ugglas, M. Larsson, Rates and products of the dissociative recombination of C₃H₇⁺ in low-energy electron collisions, J. Phys. Chem. A 107 (2003) 2179–2184.
- [26] G. Angelova, O. Novotny, J. Mitchell, C. Rebrion-Rowe, J. Le Garrec, H. Bluhme, K. Seiersen, L. Andersen, Branching ratios for the dissociative recombinaion of hydrocarbon ions II. The cases of $C_4H_n^+$ (n = 1-9), Int. J. Mass Spectrom. 232 (2004) 195–203.
- [27] M. Danielsson, M. Hamberg, V. Zhaunerchyk, A. Ehlerding, M. Kamińska, F. Hellberg, R. Thomas, F. Österdahl, M. af Ugglas, A. Källberg, A. Simonsson, A. Paál, M. Larsson, W. Geppert, The cross-section and branching fractions for dissociative recombination of the diacetylene cation $\mathrm{C_4D_2}^+$, Int. J. Mass Spectrom. 273 (2008) 111–116.
- [28] N. Adams, D. Smith, Laboratory studies of dissociative recombination and mutual neutralization and their relevance to interstellar chemistry, in: T. Millar, D. Williams (Eds.), Rate coefficients in astrochemistry, Kluwer Academic Publishers, 1988, pp. 173–192.
- [29] J. Fournier, N. Shuman, J. Melko, S. Ard, A. Viggiano, A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: $\mathrm{CO_2}^+, \mathrm{CF_3}^+, \mathrm{N_2O}^+, \mathrm{C_7H_8}^+, \mathrm{C_7H_7}^+, \mathrm{C_6H_6}^+, \mathrm{C_6H_5}^+, \mathrm{C_5H_6}^+, \mathrm{C_4H_4}^+, \mathrm{and} \; \mathrm{C_3H_3}^+, \mathrm{J.} \; \mathrm{Chem. \; Phys. \; 138 \; (2013) \; \#154201.}$
- [30] C. Rebrion-Rowe, L. Lehfaoui, B. Rowe, J. Mitchell, The dissociative recombination of hydrocarbon ions. II. Alkene and alkyne derived species, J. Chem. Phys. 108 (1998) 7185–7189.
- [31] M. Larsson, A. Ehlerding, W. Geppert, F. Hellberg, S. Kalhori, R. Thomas, N. Djuric, F. Österdahl, G. Angelova, J. Semaniak, O. Novotny, S. Arnold, A. Viggiano, Rate constants and branching ratios for the dissociative recombination of $\mathrm{C_3D_7}^+$ and $\mathrm{C_4D_9}^+$, J. Chem. Phys. 122 (2005) 156101–156103.

- [32] H. Abouelaziz, J. Gomet, D. Pasquerault, B. Rowe, J. Mitchell, Measurements of $C_3H_3^+$, $C_5H_3^+$, $C_6H_6^+$, $C_7H_5^+$, and $C_{10}H_8^+$ dissociative recombination rate coefficients, J. Chem. Phys. 99 (1993) 237–243.
- [33] L. Lehfaoui, C. Rebrion-Rowe, S. Laubé, J. Mitchell, B. Rowe, The dissociative recombination of hydrocarbon ions. I. Light alkanes, J. Chem. Phys. 106 (1997) 5406–5412.
- [34] M. Hamberg, E. Vigren, R. Thomas, V. Zhaunerchyk, M. Zhang, S. Trippel, M. Kamińska, I. Kashperka, M. af Ugglas, A. Källberg, A. Simonsson, A. Paál, J. Semaniak, M. Larsson, W. Geppert, Experimental studies of the dissociative recombination processes for the C₆D₆⁺ and C₆D₇⁺ ions, in: C. Joblin, A. Tielens (Eds.), PAHs and the Universe, Vol. 46, EAS Publications Series, 2011, pp. 241–249.
- [35] C. Rebrion-Rowe, T. Mostefaoui, S. Laubé, J. Mitchell, The dissociative recombination of hydrocarbon ions. III. Methyl-substituted benzene ring compounds, J. Chem. Phys. 113 (2000) 3039–3045.
- [36] D. J. Osborne, P. Lawson, N. Adams, Flowing afterglow studies of dissociative electron-ion recombination for a series of single ring compounds at room temperature, Int. J. Mass Spectrom. 305 (2011) 35–39.
- [37] R. Thomas, F. Hellberg, A. Neau, S. Rosén, M. Larsson, C. Vane, M. Bannister, S. Datz, A. Petrignani, W. van der Zande, Three-body fragmentation dynamics of amidogen and methylene radicals via dissociative recombination, Phys. Rev. A 71 (2005) 032711.
- [38] E. Alge, N. Adams, D. Smith, Measurements of the dissociative recombination coefficients of O₂⁺, NO⁺ and NH₄⁺ in the temperature range 200-600 K, J. Phys. B: At. Mol. Phys. 16 (1983) 1433–1444.
- [39] J. Öjekull, P. Andersson, M. Någård, J. Pettersson, A. Derkatch, A. Neau, S. Rosén, R. Thomas, M. Larsson, F. Österdahl, J. Semaniak, H. Danared, A. Källberg, M. af Ugglas, N. Marković, Dissociative recombination of NH₄⁺ and ND₄⁺ ions: Storage ring experiments and ab initio molecular dynamics, J. Chem. Phys. 120 (2004) 7391–7399.
- [40] A. Le Padellec, J. Mitchell, A. Al-Khalili, H. Danared, A. Källberg, Å. Larson, S. Rosén, M. af Ugglas, L. Vikor, M. Larsson, Storage ring measurements of the dissociative recombination and excitation of the cyanogen ion CN⁺ (X ¹Σ⁺ and a ³Π, ν=0), J. Chem. Phys. 110 (1999) 890–901.
- [41] C. Sheehan, A. Le Padellec, W. Lennard, D. Talbi, J. Mitchell, Merged beam measurement of the dissociative recombination of HCN⁺ and HNC⁺, J. Phys. B At. Mol. Opt. Phys. 32 (1999) 3347–3360.
- [42] R. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst, J. Cui, Formation of NH₃ and CH₂NH in Titan's upper atmosphere, Faraday Discuss. 147 (2010) 31–49. doi:10.1039/C004787M.
- [43] W. Geppert, E. Vigren, M. Hamberg, V. Zhaunerchyk, R. Thomas, M. Kamińska, T. Millar, J. Semaniak, H. Roberts, F. Hellberg, F. Österdahl, A. Ehlerding, M. Larsson, Formation of biomolecule precursors in space, J. Phys.: Conf. Ser. 88 (2007) #012068.
- [44] E. Vigren, M. Kamińska, M. Hamberg, V. Zhaunerchyk, R. Thomas, M. Danielsson, J. Semaniak, P. Andersson, M. Larsson, W. Geppert, Dissociative recombination of fully deuterated protonated acetonitrile, CD₃CND⁺: product branching fractions, absolute cross section and thermal rate coefficient, Phys. Chem. Chem. Phys. 10 (2008) 4014–4019.
- [45] W. Geppert, A. Ehlerding, F. Hellberg, J. Semaniak, F. Österdahl, M. Kamińska, A. Al-Khalili, V. Zhaunerchyk, R. Thomas, M. af Ugglas, A. Källberg, A. Simonsson, M. Larsson, Dissociative recombination of nitrile ions: DCCCN⁺ and DCCCND⁺, Astrophys. J. 613 (2004) 1302–1309.
- [46] E. Vigren, J. Semaniak, M. Hamberg, V. Zhaunerchyk, M. Kamińska, R. Thomas, M. af Ugglas, M. Larsson, W. Geppert, Dissociative recombination of nitrile ions with implications for Titan's upper atmosphere, Planet. Space Sci. 60 (2012) 102–106.

- [47] E. Vigren, M. Hamberg, V. Zhaunerchyk, M. Kamińska, R. Thomas, M. Larsson, T. Millar, C. Walsh, W. Geppert, The dissociative recombination of protonated acrylonitrile, CH₂CHCNH⁺, with implications for the nitrile chemistry in dark molecular clouds and the upper atmosphere of Titan, Astrophys. J. 695 (2009) 317–324.
- [48] E. Vigren, M. Hamberg, V. Zhaunerchyk, M. Kamińska, R. Thomas, S. Trippel, R. Wester, M. Zhang, I. Kashperka, M. af Ugglas, J. Semaniak, M. Larsson, W. Geppert, Dissociative recombination of protonated propionitrile, CH₃CH₂CNH⁺: Implications for Titan's upper atmosphere, Astrophys. J. 722 (2010) 847–850.
- [49] E. Herbst, C. Leung, Gas phase production of complex hydrocarbons, cyanopolyynes, and related compounds in dense interstellar clouds, Astrophys. J. Suppl. Ser. 69 (1989) 271–300.
- [50] N. Adams, L. Mathews, D. Osborne Jr., Laboratory chemistry relevant to understanding and modeling the ionosphere of Titan, Faraday Discuss. 147 (2010) 323–335.
- [51] C. Sheehan, J.-P. St.-Maurice, Dissociative recombination of N₂⁺, O₂⁺, and NO⁺: Rate coefficients for ground state and vibrationally excited ions, J. Geophys. Res. 109 (2004) A03302.
- [52] J. Peterson, A. Le Padellec, H. Danared, G. Dunn, M. Larsson, Å. Larson, R. Peverall, C. Strömholm, S. Rosén, M. af Ugglas, W. van der Zande, Dissociative recombination and excitation of N₂⁺: Cross sections and product branching ratios, J. Chem. Phys. 108 (1998) 1978–1988.
- [53] S. Nahar, Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. II. Oxygen ions, Astrophys. J. Suppl. Ser. 120 (1999) 131–145.
- [54] P. Mul, J. McGowan, P. Defrance, J. Mitchell, Merged electron-ion beam experiments: V. Dissociative recombination of OH^+ , H_2O^+ , H_3O^+ and D_3O^+ , J. Phys. B: At. Mol. Phys. 16 (1983) 3099–3107.
- [55] S. Rosén, A. Derkatch, J. Semaniak, A. Neau, A. Al-Khalili, A. Le Padellec, L. Vikor, R. Thomas, H. Danared, M. af Ugglas, M. Larsson, Recombination of simple molecular ions studied in storage ring: dissociative recombination of H₂O⁺, Faraday Discuss. 115 (2000) 295–302.
- [56] A. Neau, A. Al-Khalili, S. Rosén, A. Le Padellec, A. Derkatch, W. Shi, L. Vikor, M. Larsson, J. Semaniak, R. Thomas, M. Någård, K. Andersson, H. Danared, M. af Ugglas, Dissociative recombination of D₃O⁺ and H₃O⁺: Absolute cross sections and branching ratios, J. Chem. Phys. 113 (2000) 1762–1770.
- [57] S. Rosén, R. Peverall, M. Larsson, A. Le Padellec, J. Semaniak, Å. Larson, C. Strömholm, W. van der Zande, H. Danared, G. Dunn, Absolute cross sections and final-state distributions for dissociative recombination and excitation of CO⁺ (ν=0) using an ion storage ring, Phys. Rev. A 57 (1998) 4462–4451.
- [58] A. Le Padellec, C. Sheehan, D. Talbi, J. Mitchell, A merged-beam study of the dissociative recombination of HCO⁺, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 319–327.
- [59] W. Geppert, R. Thomas, A. Ehlerding, F. Hellberg, F. Österdahl, M. Hamberg, J. Semaniak, V. Zhaunerchyk, M. Kamińska, A. Källberg, A. Paál, M. Larsson, Dissociative recombination branching ratios and their influence on interstellar clouds, J. Phys.: Conf. Ser. 4 (2005) 26–31.
- [60] M. Hamberg, W. Geppert, R. Thomas, V. Zhaunerchyk, F. Österdahl, A. Ehlerding, M. Kamińska, J. Semaniak, M. af Ugglas, A. Källberg, A. Paál, A. Simonsson, M. Larsson, Experimental determination of dissociative recombination reaction pathways and absolute reaction cross-sections of CH₂OH⁺, CD₂OD⁺ and CD₂OD₂⁺, Mol. Phys. 105 (2007) 899–906.
- [61] E. Vigren, M. Hamberg, V. Zhaunerchyk, M. Kamińska, R. Thomas, S. Trippel, M. Zhang, I. Kashperka, M. af Ugglas, C. Walsh, R. Wester, J. Semaniak, M. Larsson, W. Geppert, Dissociative recombination of the acetaldehyde cation, CH₃CHO⁺, Phys. Chem. Chem. Phys. 12 (2010) 11670–11673.
- [62] A. Viggiano, A. Ehlerding, S. Arnold, M. Larsson, Dissociative recombination of hydrocarbon ions, J. Phys. Conf. Ser. 4 (2005) 191–197.

- [63] W. Geppert, R. Thomas, A. Ehlerding, J. Semaniak, F. Österdahl, M. af Ugglas, N. Djurić, A. Paál, M. Larsson, Extraordinary branching ratios in astrophysically important dissociative recombination reactions, Faraday Discuss. 127 (2004) 425–437.
- [64] J. Dulaney, M. Biondi, R. Johnsen, Electron temperature dependence of the recombination of electrons with NO⁺ ions, Phys. Rev. A 36 (1987) 1342–1350.
- [65] D. Kley, G. Lawrence, E. Stone, The yield of $N(^2D)$ atoms in the dissociative recombination of NO^+ , J. Chem. Phys. 66 (1977) 4157–4165.

Table B.18: Negative ion reaction list.

Ref.	[11]	. [+]	Langevin	Langevin	[2]	Su-Chesnavich	Su-Chesnavich	SuCheenavioh	Su-Cheshavion	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich	[9] [4]	[9],[4] -	Langevin	Langevin	[2]	Su-Chesnavich	Su-Chesnavich	[3],[4]	Langevin	<u>[</u>	Su-Chesnavich	Su-Chesnavich	Su-Chesnaxich	[3] [4]	[][[]	Su-Chesnavich	Su-Chesnavich	Su-Chesnavich			Su-Chesnavich	Su-Chesnavich	[2]	<u> </u>	[6]	Langevin	Langevin	[10]	Su-Chesnavich	Su-Chesnavich	[11]	[11]	Su-Chesnavich	Su-Chesnavich
k	3 10 > 10 = 09	01 < 01 0	6.40×10 5	6.30×10^{-09}	1.50×10^{-08}	2.40×10^{-08}	3.10×10 ⁻⁰⁸	6.30<10-09	1000.10	7.20×10 55	8.90×10^{-03}	6.10×10^{-09}	7.00×10^{-09}	8 60×10 ⁻⁰⁹	1.00×10-12	1.00×10 1.00×10	1.50×10 55	$2.30 \times 10^{-0.9}$	3.90×10^{-09}	5.80×10^{-09}	7.00×10^{-09}	1.00×10^{-12}	1.80×10^{-09}	6.00×10^{-12}	4.50×10 ⁻⁰⁹	4.80×10^{-09}	5 60×10 ⁻⁰⁹	1.00×10 ⁻¹²	1 00 < 10 - 11	4.30×10 ⁻⁰⁹	4.30×10^{-09}	5.00×10^{-09}	1.00×10^{-12}	$4.30\times10^{-09}(300/T)^{0.12}$	6.90×10^{-09}	5.40×10^{-09}	3.00×10^{-11}	1.00×10^{-10}	$1.76 \times 10^{-09} e^{-289.0/T}$	$1.60 \times 10^{-09} e^{-289.0/T}$	$1.60 \times 10^{-09} e^{-289.0/T}$	3.70×10 ⁻⁰⁹	6.80×10 ⁻⁰⁹	8 40 < 10 - 09	9.90×10 ⁻⁰⁹	3.50×10 ⁻⁰⁹	6.70×10^{-09}	8.20×10^{-09}
	Ή.		+ H ₂	$+$ H_2	+ H,	+ H,	7 H	- +	- + CII3	+ CH3	$+$ $^{\mathrm{CH}_{3}}$	+ CH,	+ CH.	+ CH.		++	$+$ C_2H_2	$+$ C_2H_2	$+$ C_2H_2	$+$ C_2H_2	+ C,H,	+ H,	+ C ₄ H,	+ C ₂ H	+ - C.H.	+ C,H	+ C.H.	4112	Η -	+ - C ₅ H,	$+$ C_cH_3	+ C _e H ₃	7	+ HCN	+ HCN	+ HC ₃ N	H +	+ CH ₃	HO +	HO +	HO +	HO +	HO +	HO +	H H	+ H ₂ O	+ H ₂ O	+ H,0
Reaction	_H		\downarrow C_4 Π	_H ² O ↑	_ CN_	_ C ₂ N	_Z,C			C3.N	\ C ₂ Z \	_ CN	_ Z C	- Z - 1	7(217	C4H	C ₄ H	$^+$ $^{\mathrm{C_6H^-}}$	\uparrow	\downarrow C_3N^-	C'N_	→ CeH_	C ₆ H [−]	CN	. ↑		- Z (3)	C ₅ H. N −	×	ZS ↑	C ₂ N_	_ C.S.	\downarrow $C_x^H H_u N_x^-$	` C³N° ↑	C _s N_	C'N_	_HO ←	_HO ←	C,H⁻	H_ ↑ C'H_		_NO	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- N - 1			C _s N_	C, C, N_
	+ H.C.		$+$ C_4H_2	$+$ C_6H_2	+ HCN	+ HC ₂ N	HC.N.	HC2I		$+$ HC_3N	$+$ HC_5N	+ HCN	+ HC ₂ N	HC. A	192	- C ₂ H ₂	$+$ C_4 H_2	$+$ C_6H_2	+ HCN	$+$ HC_3N	+ HC,N	+ C,H,	$+$ $C_6^LH_3$, , +	NOH +	HC.N	HC. N	+ +	Z Z Z Z	- +	+ HC ₂ N	HC,N	+ HCN	+ HC ₂ N	+ HC ₅ N	+ HC,N	+ H,	$+$ $\tilde{\mathrm{CH}_4}$	+ C,H,	+ C'H'	+ C.H.	100H +	10.2 HC.2 +	HC31	H T H	+ C ₂ 11 ₂ + HCN	+ HC ₂ N	+ HC, N
Type	_H 6	_	Н 	2 $^{-}$ $^{-}$	2 $^{-}$ $^{-}$	2 H ⁻	2 H_	- HZ	OII2	2 $^{\circ}$ CH 2	2 $^{-}$ $^{\mathrm{CH}_{2}^{-}}$	2 CH ₃	2 CH3-	O.H	CIT3	7 C C S H	c_{2}^{H}	2 $^{-}$ $^{\mathrm{C}_{2}\mathrm{H}^{-}}$	2 $C_{2}H^{-}$	2 $C_{2}H^{-}$	$_{2}$ $C_{5}H^{-}$	2 $C_{\Lambda}^{-}H^{-}$	2 C_4^{-}	2 C,H ⁻	2 C.H.	2 C,H ⁻	- H_	2 C ₄ H	-H	-H-C	$\frac{1}{2}$ C_6H^-	2 $C_{\rm c}^{\prime}{ m H}^{-}$	2 CN_	2 CN $^{-}$	2 $^{-}$ $^{-}$ $^{-}$	C_3N^-	2 0 -	2 0_	2 0-	2 O_	2 O_	2 0_	0 0) C	-HO 6	2 OH-	2 OH ⁻	2 OH ⁻
	- E	Lant	$K_{an}Z$	$R_{an}3$	$R_{an}4$	$R_{an}5$	B. 6	D T	Lan	$K_{an} \otimes$	$R_{an}9$	\mathbb{R}_{an} 10	R. 11	R 12	1tan 12	Lan 13	$R_{an}14$	$R_{an}15$	$R_{an}16$	$R_{an}17$	$R_{an}18$	$R_{an}19$	$R_{an}20$	R _{sn} 21	B. 22	Ran 23	R 24	R 25	B 26	R 27	Ran 28	R _{an} 29	$R_{an}30$	\mathbf{R}_{an} 31	$R_{an}32$	R_{an} 33	$R_{an}34$	$R_{an}35$	$R_{an}36$	Ran 37	B. 38	B. 39	R ₂₂ 40	B 41	1tan ±1 B 42	R = 43	Ran 44	$R_{an}45$

- O. Martinez, Z. Yang, N. Demarais, T. Snow, V. Bierbaum, Gas-phase reactions of hydride anion, H⁻, Astrophys. J. 720 (2010) 173–177, doi:10.1088/0004-637X/720/1/173.
- [2] G. Mackay, D. Betowski, J. Payzant, H. Schiff, D. Bohme, Rate constants at 297 K for proton-transfer reactions with HCN and CH₃CN. Comparisons with classical theories and exothermicity, J. Phys. Chem. 80 (1976) 2919–2922.
- [3] K. De Bleecker, A. Bogaerts, W. Goedheer, Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges, Phys. Rev. E 73 (2006) 026405.
- [4] A. Howling, L. Sansonnens, J.-L. Dorier, C. Hollenstein, Time-resolved measurements of highly polymerized negative ions in radio frequency silane plasma deposition experiments, J. Appl. Phys. 75 (1994) 1340–1353.
- [5] B. Eichelberger, T. Snow, C. Barckholtz, V. Bierbaum, Reactions of H, N, and O atoms with carbon chain anions of interstellar interest: An experimental study, Astrophys. J. 667 (2007) 1283–1289.
- [6] L. Biennier, S. Carles, D. Cordier, J.-C. Guillemin, S. Le Picard, A. Faure, Low temperature reaction kinetics of CN⁻ + HC₃N and implications for the growth of anions in Titan's atmosphere, Icarus 227 (2014) 123–131.
- [7] V. Wakelam, J.-C. Loison, E. Herbst, B. Pavone, A. Bergeat, K. Béroff, M. Chabot, A. Faure, D. Galli, W. Geppert, D. Gerlich, P. Gratier, N. Harada, K. Hickson, P. Honvault, S. Klippenstein, S. Le Picard, G. Nyman, M. Ruaud, S. Schlemmer, I. Sims, D. Talbi, J. Tennyson, R. Wester, The 2014 KIDA network for interstellar chemistry, Astrophys. J. Suppl. Ser. 217 (2015) #20.
- [8] D. Bohme, F. Fehsenfeld, Thermal reactions of O- ions with saturated hydrocarbon molecules, Can. J. Chem. 47 (14) (1969) 2717–2719.
- [9] A. Viggiano, J. Paulson, Temperature dependence of associative detachment reactions, J. Chem. Phys. 79 (1983) 2241–2245, 10.1063/1.446073.
- [10] D. Bohme, The kinetics and energetics of proton transfer, in: P. Ausloos (Ed.), Interaction between ions and molecules, Plenum Press, New York, N.Y. USA, 1975, pp. 489–504.
- [11] A. Raksit, D. Bohme, An experimental study of the influence of hydration on the reactivity of the hydroxide anion in the gas phase at room temperature, Can. J. Chem. 61 (7) (1983) 1683–1689.

Table B.19: Associative detachment reaction list.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Type				Reaction	ion	ı		k	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{ad1}	2	_H_	+	Н	↑	H_2	+	е	5.50×10^{-09}	[1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}2$	2	_H_	+	CH_3	↑	$ m Car{H}_4$	+	е	5.50×10^{-09}	est.(H- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad3}	2	_H_	+	Z	†	HN	+	9	1.00×10^{-09}	[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{ad4}	2	$ m CH_2^-$	+	Н	†	$ m CH_3$	+	е	1.80×10^{-09}	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}5$	2	$ m CH_2^-$	+	CH_3	†	$\mathrm{C_2H_5}$	+	е	1.80×10^{-09}	est.(CH2- + H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}6$	2	$^{ m CH}_2^{ m -}$	+	Z	↑	$H_2^{-}CN$	+	е	1.80×10^{-09}	est.(CH2- + H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad} 7	2	$^{ m CH}_{ m 3}^{-}$	+	Н	↑	$ m CH_4$	+	е	1.80×10^{-09}	[3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad8}	2	$^{ m CH_3^{-}}$	+	CH_3	↑	$\mathrm{C_2}_{\mathrm{H_6}}$	+	е	1.80×10^{-09}	$\operatorname{est.}(\operatorname{CH3-} + \operatorname{H})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{ad9}	2	$^{ m CH_3^{-}}$	+	Z	↑	$\widetilde{\mathrm{CH}_2\mathrm{NH}}$	+	е	1.80×10^{-09}	est.(CH3- + H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad} 10	2	$ m C_2 ilde{H}^-$	+	Н	↑	$\mathrm{C_2}ar{\mathrm{H_2}}$	+	е		[4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad} 11	2	${ m C_2^-H^-}$	+	CH_3	†	CH_3CCH	+	е	0	$ \operatorname{est.}(\operatorname{C2H-} + \operatorname{H}) $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}12$	2	C_2H^-	+	Z	†	HC_2N	+	е		[5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}13$	2	C_4H^-	+	Н	†	$\mathrm{C_4H_2}$	+	е		[4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}14$	2	$C_4^{ m H}^-$	+	CH_3	\uparrow	C_5H_4	+	е		est.(C4H- + H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}15$	2	$^{\rm C_6H^-}$	+	Н	†	C_6H_2	+	е		[4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}16$	2	$^{ m C_6 H^-}$	+	CH_3	†	$\mathrm{C_7H_4}$	+	е		$ \operatorname{est.}(\operatorname{C6H-} + \operatorname{H}) $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}17$	2	CN_	+	Н	↑	HCN	+	е		[9]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}_{ad} 18	2	CN_	+	CH_3	↑	CH_3CN	+	е	6.30×10^{-10}	est.(CN- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}19$	2	C_3N^-	+	Н	\uparrow	HC_3N	+	е	5.40×10^{-10}	[7],[6]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}20$	2	C_3N^-	+	CH_3	↑	CH_3C_3N	+	е	5.40×10^{-10}	est.(C3N- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}21$	2	C ₅ N_	+	Н	↑	HC_5N	+	е		[9]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}22$	2	C_5N^-	+	CH_3	↑	$\mathrm{CH_3C_5N}$	+	е		est.(C5N- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}23$	2	$C_x H_y N_z^-$	+	Н	↑	NEUT	+	е		[3]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}24$	2	$C_x H_y N_z^-$	+	CH_3	†	NEUT	+	е		est.(CXHYNZ- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}25$	2	$C_x H_y N_z^-$	+	Z	†	NEUT	+	е		est.(CXHYNZ- + H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}26$	2	_0_	+	Н	\uparrow	ОН	+	е		[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}27$	2	_0_	+	CH_3	\uparrow	CH_2OH	+	е		est.(O- + H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}28$	2	_0_	+	C_2H_2	†	CH_2CO	+	е	$1.10 \times 10^{-09} (300/T)^{0.39}$	[8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{ad}29$	2	_0_	+	Z	†	NO	+	е	2.20×10^{-10}	[6]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}30$	2	_0_	+	CO	↑	CO_2	+	е	7.30×10^{-10}	[10]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{R}_{ad}31$	2	_HO	+	Н	↑	${ m H_2O}$	+	е	1.40×10^{-09}	[11]
2 OH− + N + e	$R_{ad}32$	2	_HO	+	CH_3	†	CH_3OH	+	е	1.40×10^{-09}	est.(OH- + H)
	$R_{ad}33$	2	_HO	+	Z	↑	ONH	+	e	$ 1.40\times10^{-09} $	est.(OH- + H)

- [1] D. Gerlich, P. Jusku, Š. Roučka, I. Zymak, R. Plašil, J. Glosík, Ion trap studies of $H^- + H \rightarrow H_2 + e^-$ between 10 and 135 K, Astrophys. J. 749 (2012) #22.
- [2] S. Prasad, W. Huntress Jr., A model for gas phase chemistry in interstellar clouds: I. The basic model, library of chemical reactions, and chemistry among C, N, and O compounds, Astrophys. J. Suppl. Ser. 43 (1980) 1–35.
- [3] N. Adams, Gas phase ionic reactions, in: G. Drake (Ed.), Atomic, molecular & optical physics handbook, American Institute of Physics, Woodbury, New York, 1996, pp. 441–451.
- [4] C. Barckholtz, T. Snow, V. Bierbaum, Reactions of C_n^- and C_nH^- with atomic and molecular hydrogen, Astrophys. J. 547 (2001) L171–L174.
- [5] B. Eichelberger, T. Snow, C. Barckholtz, V. Bierbaum, Reactions of H, N, and O atoms with carbon chain anions of interstellar interest: An experimental study, Astrophys. J. 667 (2007) 1283–1289.
- [6] Z. Yang, C. Cole, O. J. Martinez, M. Carpenter, T. Snow, V. Bierbaum, Experimental and theoretical studies of reactions between H atoms and nitrogen-containing carbanions, Astrophys. J. 739 (2011) #19.
- [7] T. Snow, M. Stepanovic, N. Betts, B. Eichelberger, O. Martinez, V. Bierbaum, Formation of gas-phase glycine and cyanoacetylene via associative detachment reactions, Astrobiology 9 (10) (2009) 1001–1005, doi:10.1089/ast.2008.0277.
- [8] A. Viggiano, J. Paulson, Temperature dependence of associative detachment reactions, J. Chem. Phys. 79 (1983) 2241–2245, 10.1063/1.446073.
- [9] E. Ferguson, Rate constants of thermal energy binary ion-molecule reactions of aeronomic interest, At. Data Nucl. Data Tables 12 (2) (1973) 159–178.
- [10] D. Parkes, Oxygen negative ion reactions with carbon dioxide and carbon monoxide. Part 1, J. Chem. Soc., Faraday Trans. 1 68 (1972) 627–640.
- [11] C. Howard, F. Fehsenfeld, M. McFarland, Negative ion-molecule reactions with atomic hydrogen in the gas phase at 296 K, J. Chem. Phys. 60 (1974) 5086–5089, 10.1063/1.1681027.

Table B.20: Positive + negative ion reaction list.

Ref.	[1],[2]	[1],[2]	[1],[2]	[3]	3	3	3	3	3	[3]	3	[2]	3	33	33	33	[3]	33	3	3	[3]	3	[3]	[3]	3	[3]	[3]	[3]	[3]	[3]	[1],[2]	[1], [2]	[1],[2]	[3]	[3]	[3]
κ	$1.00 \times 10^{-07} (300/T)^{1.00}$	$1.00 \times 10^{-07} (300/T)^{1.00}$	$1.00 \times 10^{-07} (300/T)^{1.00}$	$1.10 \times 10^{-07} (300/T)^{0.90}$	$9.60 \times 10^{-08} (300/T)^{0.90}$	$9.70 \times 10^{-08} (300/T)^{0.90}$	$1.40 \times 10^{-07} (300/T)^{0.90}$	$1.20 \times 10^{-07} (300/T)^{0.90}$	$1.20 \times 10^{-07} (300/T)^{0.90}$	$7.60 \times 10^{-08} (300/T)^{0.90}$	$6.60 \times 10^{-08} (300/T)^{0.90}$	$6.70 \times 10^{-08} (300/T)^{0.90}$	$6.70 \times 10^{-08} (300/T)^{0.90}$	$5.60 \times 10^{-08} (300/T)^{0.90}$	$5.60 \times 10^{-08} (300/T)^{0.90}$	$6.30 \times 10^{-08} (300/T)^{0.90}$	$5.20 \times 10^{-08} (300/T)^{0.90}$	$5.20 \times 10^{-08} (300/T)^{0.90}$	$2.60 \times 10^{-07} (300/T)^{1.10}$	300	300,	300	$5.40 \times 10^{-08} (300/T)^{0.90}$	$5.40 \times 10^{-08} (300/T)^{0.90}$	$6.20 \times 10^{-08} (300/T)^{0.90}$	$5.00 \times 10^{-08} (300/T)^{0.90}$	$5.10 \times 10^{-08} (300/T)^{0.90}$	$1.00 \times 10^{-07} (300/T)^{1.00}$	$1.00 \times 10^{-07} (300/T)^{1.00}$	$1.00 \times 10^{-07} (300/T)^{1.00}$	$2.70 \times 10^{-07} (300/T)^{1.10}$		$2.70 \times 10^{-07} (300/T)^{1.10}$			
	Н	Ξ	Ξ	Ξ	Ξ	Η	Η	Ξ	Н	H	Ξ	Ξ	н	Ξ	Ξ	Ξ	Ξ	Ξ	Η	Ξ	Η	Η	Η	Η	Η	Η	Ξ	H	H	H	H	I	Ξ	H	I	H
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	CH_4	C_2H_4	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	C_2H_4	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN	CH_4	$\mathrm{C_2H_4}$	HCN
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
uc	Н	Н	Н	$^3\mathrm{CH}_2$	$^3\mathrm{CH}_2^-$	3 CH $_2$	$_{ m CH_3}$	CH_3	$_{ m CH_3}$	C_2H	C_2^{H}	$C_2^{-}H$	C_4^{H}	C_4H	$C_4^{ m H}$	C_6H	$C_{6}H$	$C_{6}^{-}H$	CN	CN	CN	C_3N	C_3	C_3N	C_5N	C_5N	C_5N	NEUT	NEUT	NEUT	$O(^3P)$	$O(^3P)$	$O(^3P)$	ОН	ОН	ОН
Reaction	↑	†	†	†	†	†	\uparrow	†	↑	↑	†	†	↑	†	†	†	†	†	\uparrow	†	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	†	†	\uparrow	\uparrow	†	†	†	†	\uparrow
F	+ CH ₅ +	$+ C_2 H_5^+$	+ HCNH+	+ CH ₅ +	$+ C_2 \widetilde{H}_5^+$	+ HCNH+	+ CH ₅ +	+ C ₂ H ₅ +	+ HČNH+	+ CH ₅ +	$+ C_2 \widetilde{H}_5^+$	+ HCNH+	+ CH ₅ +	$+ C_2 H_5^+$	+ HCNH+	+ CH ₅ +	$+ C_2H_5^+$	+ HCNH+	+ CH ₅ +	$+ C_2 H_5^+$	+ HCNH+	+ CH ₅ +	+ C ₂ H ₅ +	+ HCNH+	+ CH ₅ +	+ C ₂ H ₅ ⁺	+ HCNH+	+ CH ₅ +	$+ C_2 H_5^+$	+ HCNH+	+ CH ₅ ⁺	$+ C_2H_5^+$	+ HCNH+	+ CH ₅ +	$+ C_2 H_5^+$	+ HCNH+
	ľ		'	'	'				'		'	'								'	'		'	'		'	'	'	'	'	'	'		'		'
	H	_H_	_H_	$ $ CH_2^-	CH_2^-	$ CH_2^- $	CH_3^-	CH_3^-	CH_3^-	$C_2 \breve{\mathrm{H}}^-$	$C_2^H^-$	$ \text{ C}_2^{-} \text{H}^{-} $	$C_4^{-}H^{-}$	C_4H^-	$C_4^{ m H}^-$	$C_{\rm eH^-}$	$C_{6}H^{-}$	$C_{ m e}H^-$	CN_	$^{-}$ N $^{-}$	$^{-}$ N $^{-}$	C_3N^-	C ₃ N	C_3N^-	C ₅ N	C_5N^-	C ₅ N_	$C_x H_y N_z^+$	$C_x H_y N_z^+$	$C_x H_y N_z^+$	_0_	_0	_0	_HO	_HO	_HO
$_{\mathrm{Type}}$	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	2	2	7	2	7	2	2
	\mathbf{R}_{ir} 1	R_{ir}^{2}	R_{ir3}	R_{ir4}	$R_{ir}5$	$R_{ir}6$	$R_{ir}7$	$R_{ir}8$	$R_{ir}9$	$R_{ir}10$	$R_{ir}11$	$R_{ir}12$	$R_{ir}13$	$R_{ir}14$	$R_{ir}15$	$R_{ir}16$	$R_{ir}17$	$R_{ir}18$	$R_{ir}19$	$R_{ir}20$	$R_{ir}21$	$R_{ir}22$	$R_{ir}23$	$R_{ir}24$	$R_{ir}25$	$R_{ir}26$	$R_{ir}27$	$R_{ir}28$	$R_{ir}29$	$R_{ir}30$	$R_{ir}31$	$R_{ir}32$	$R_{ir}33$	$R_{ir}34$	$R_{ir}35$	$\mathbb{R}_{ir}36$

- [1] A. Hickman, Approximate scaling formula for ion-ion mutual neutralization rates, J. Chem. Phys. 70 (1979) 4872–4878.
- [2] D. Smith, M. Church, T. Miller, Mutual neutralization of simple and clustered positive and negative ions, J. Chem. Phys. 68 (3) (1978) 1224–1229.
- [3] T. Miller, N. Shuman, A. Viggiano, Behavior of rate coefficients for ion-ion mutual neutralization, 300-550 K, J. Chem. Phys. 136 (2012) #204306, doi:10.1063/1.4720499.