crisp-dm-couriers

July 5, 2024

1 Trabajo Final de Máster

Máster en Data Science For Business

Estudiantes:

- Maria Jesús Quirós
- Jorge Luis Barquero Villagra

Tutor: Ramón Alberto Carrasco

2 CRISP-DM

3 Requisitos previos:

Para ejecutar el siguiente notebook se debe tener un ambiente de Python con las siguientes librerías instaladas.

Versión de Python 3.8.xx

- mysql-connector-python 8.4.0
- plotly 5.9.0
- mlxtend 0.23.1
- networkx 3.1
- fbprophet 1.1.5
- openpyxl 3.0.10
- nbformat 5.9.2

```
[]: # Imports para ejecución del notebook
import pandas as pd
import os as os
```

```
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np
import sqlite3
import plotly.io as pio
from mlxtend.frequent_patterns import association_rules
from mlxtend.frequent_patterns import apriori
from prophet import Prophet
# Variable global para administrar el directorio actual
parent dir = os.path.dirname(os.getcwd())
# Configuración para los renders de plotly
pio.renderers.default = 'notebook'
# Ubicación de base de datos
database_name = '/data/database/tfm_couriers.db'
# Exportar a PDF
exportar_pdf = True
# Funciones reutilizables
def SalvarEnBD(table name, data):
    conn = sqlite3.connect(parent dir + database name)
    # Convierte el DataFrame a una tabla SQL
   data.to sql(table name, conn, if exists='replace', index=False)
```

4 Business Understanding - listo

Un courier es una empresa o servicio especializado en la entrega rápida y eficiente de paquetes, documentos y otros tipos de envíos. A diferencia de los servicios postales tradicionales, los couriers suelen ofrecer una mayor velocidad, seguridad y confiabilidad en la entrega de sus envíos. Suelen caracterizarse porque sus servicios incluyen:

- Rapidez: Algunas empresas couriers pueden hacer entregas en el mismo día, al día siguiente o en un plazo muy corto, dependiendo de la urgencia del envío.
- Seguimiento: Los envíos por courier generalmente pueden ser rastreados en tiempo real, proporcionando información precisa sobre el estado y la ubicación del paquete.
- Seguridad: Los couriers a menudo ofrecen un manejo más cuidadoso de los envíos, con seguros y opciones de firma al recibir el paquete.
- Flexibilidad: Ofrecen una amplia gama de servicios, desde entregas locales y nacionales hasta envíos internacionales, adaptándose a las necesidades específicas de sus clientes.
- Servicio al cliente: Proporcionan atención personalizada y soluciones específicas para problemas o necesidades de envío.

Los couriers son utilizados tanto por particulares como por empresas que necesitan enviar documentos importantes, productos comprados en línea, muestras comerciales, y otros tipos de paquetes que requieren una entrega rápida y segura.

La empresa ExpediteX es una empresa dedicada a prestación de servicios logísticos de Courier y mensajería, que cuenta con 25 años de experiencia en el mercado. Sus servicios van desde la importación de productos en la modalidad de carga y paqueteo, distribución local y nacional a domicilio, hasta la asesoría para la importación y exportación, casillero internacional y asesoría de compras internacionales.

Por otro lado, SwiftShip cuenta con experiencia de 19 años en el manejo y traslado de paquetes y encomiendas, se caracterizan por trabajar directamente, sea, desde el recibimiento hasta la entrega de las mercancías es manejada por la empresa directamente (sin intermediarios).

Adicionalmente cuentan con 207 sucursales y/o puntos de recepción a nivel internacional en 50 países diferentes, entre ellos Estados Unidos, Canadá, Panamá, República Dominicana, Guatemala, Venezuela, Argentina, Brasil, Chile, Colombia, Ecuador, Perú, Uruguay, España, Italia, Portugal, Alemania y el resto de la Comunidad Europea.

Ambas empresas operan en un mercado muy competitivo, donde la eficiencia en la entrega, la cobertura geográfica y la calidad del servicio al cliente son factores clave para su éxito. Estas empresas ofrecen una variedad de servicios, que van desde la entrega de paquetes locales hasta el envío internacional, adaptándose a las necesidades de diferentes segmentos del mercado, como particulares y empresas.

La integración de tecnologías avanzadas, como el rastreo en tiempo real y la gestión automatizada de inventarios y compras juega un papel crucial en la optimización de los procesos logísticos, con lo que la incorporación de toma de la decisiones basadas en datos, tiene gran importancia en las empresas de courier, pues es crucial para optimizar sus operaciones, mejorar la satisfacción del cliente y aumentar la eficiencia en el manejo de envíos.

4.1 Objetivo General - listo

Desarrollar mediante la metodología CRISP-DM un análisis de datos sobre los procesos de importación de las empresas SwiftShip y ExpediteX de courier en Costa Rica durante el período 2021-2023, para la optimización de sus operaciones y mejora de la toma de decisiones estratégicas. Utilizando técnicas avanzadas de análisis de datos y las herramientas disponibles, se espera obtener al menos cinco recomendaciones concretas y presentar los hallazgos en un informe detallado en el plazo de cuatro meses.

4.2 Objetivos Específicos - listo

- Implementar un análisis de cesta (basket analysis) utilizando algoritmos de asociación para la identificación de los patrones más relevantes de compra y relaciones entre los productos adquiridos por los importadores que han utilizado los servicios de las empresas SwiftShip y ExpediteX de courier en Costa Rica. Utilizando los datos de transacciones de los últimos tres años, se espera la mejora en las estrategias de marketing y optimización del servicio. El análisis se lleva a cabo y los resultados se presentan en un informe detallado en un plazo de tres meses.
- Realizar un análisis de tendencias de las mercancías importadas utilizando técnicas de análisis de series temporales, para la identificación de patrones significativos y cambios importantes en la demanda de diferentes tipos de mercancías a lo largo del tiempo. Esto permitirá la anticipación de las necesidades logísticas y ajustes de estrategias de importación para la mejora de la eficiencia operativa. Dicho análisis se completará en un plazo de seis meses.

• Diseñar un conjunto de tres variables ingenieriles específicas para la implementación en las empresas SwiftShip y ExpediteX, para la optimización de los procesos de importación bajo la modalidad courier. Utilizando técnicas de análisis de datos y conocimientos de la industria, se espera la mejora de la eficiencia y efectividad de dichos procesos. Este diseño y la implementación de un plan piloto se completarán en un plazo de cinco meses.

4.3 Definiciones - listo

- Aduana: Unidad técnico-administrativa encargada de las gestiones aduaneras y del control de las entradas, la permanencia y la salida de las mercancías objeto del comercio internacional (Art. 13 LGA).
- Agente aduanero: Profesional auxiliar de la función pública aduanera autorizado por la DGA para actuar, en su carácter de persona natural en la presentación habitual de servicios a terceros, en los trámites, los regímenes y las operaciones aduaneras. (Art. 33, LGA)
- Auxiliar de la Función Pública: Personas físicas o jurídicas, públicas o privadas, que participen habitualmente ante el Servicio Nacional de Aduanas (SNA), en nombre propio o de terceros. (Art. 28 LGA).
- Bultos: Unidad utilizada para contener mercancías. Puede consistir en cajas, sacas, fardos, cilindros y demás formas de presentación de las mercancías, según su naturaleza (Ministerio de Hacienda, 2021).
- Código Sistema Arancelario Centroamericano (SAC): El Arancel Centroamericano de Importación está constituido por el Sistema Arancelario Centroamericano (SAC) y los correspondientes Derechos Arancelarios a la Importación (DAI). El código numérico del SAC está representado por diez dígitos que identifican: los dos primeros, al capítulo; los dos siguientes, a la partida; el tercer par, a la subpartida; y los cuatro últimos, a los incisos arancelarios. La identificación de las mercancías se hará siempre con los diez dígitos de dicho código numérico. (Estrategia Aduanera, s.f.)
- Código Sistema Armonizado (SA): El Sistema Armonizado (SA) es un código de clasificación de mercancías creado por la Organización Mundial de Aduanas (OMA) y está compuesto por 6 dígitos con aceptación en todo el mundo. Sirve para llevar un control en las mercancías de exportación e importación en cuanto a los impuestos internos, monitoreo de bienes, origen y materia constitutiva.
- Declarante: El importador o consignatario, en el caso de la importación de mercancías.
- Depositario Aduanero: Persona física o jurídica, pública o privada, auxiliar de la función pública aduanera autorizadas mediante concesión por la DGA, que custodian y conservan temporalmente y con suspensión del pago de tributos, mercancías objeto de comercio exterior, bajo la supervisión y el control de la autoridad aduanera. (Ministerio de Hacienda, 2021).
- Derechos Arancelarios a la Importación (DAI): Derechos Arancelarios a la Importación que son un porcentaje estipulado por tipo de mercancías y se calcula sobre el Valor Aduanero.
- Descripción o designación de la mercancía: Precisa identificación de las características de ésta, sea de manera concreta, detallada, que singulariza de tal forma el objeto a clasificar que no deja duda alguna sobre su tipificación. (Quirós, 2024).

- **DUA:** Documento Único Aduanero, declaración realizada mediante transmisión electrónica de datos, mediante la cual se indica el régimen aduanero y la modalidad que deberá aplicarse a las mercancías (Ministerio de Hacienda, 2021).
- Empresa de entrega rápida (EER): Personas físicas o jurídicas legalmente establecidas, autorizadas y registradas ante la DGA, cuyo giro o actividad principal es la prestación de servicios de transporte internacional expreso a terceros, de correspondencia, documentos y envíos de mercancías bajo la modalidad de entrega rápida. (Ministerio de Hacienda, 2021).
- Envíos de entrega rápida: Documentos y mercancías transportadas bajo sistemas de entrega rápida o courier, consignadas a terceros. (Ministerio de Hacienda, 2021).
- Factura Comercial: Documento expedido conforme a los usos y las costumbres comerciales, justificativo de un contrato de compraventa de mercancías o servicios extendido por el vendedor a nombre y cargo del comprador.
- Fecha: Fecha en que fue aceptado el DUA por el Sistema de Tecnología de Información para el Control Aduanero (TICA) de Costa Rica.
- Flete: Monto de flete desde el origen, o sea desde el momento en que se elabora el conocimiento de embarque original y se inicia el servicio de transporte hasta el puerto o lugar de importación. (Ministerio de Hacienda, 2021).
- Identificación (ID) Agente: Cédula de identidad física u jurídica del Agente Aduanero.
- Identificación (ID) Declarante: En el caso que nos ataque, el número de identificación de la empresa declarante ante el Ministerio de Hacienda.
- Identificación (ID) Localización: Número de identificación de la empresa donde está localizada la mercancía, en el caso de envíos de courier, suele referirse al Depositario Aduanero o Almacén fiscal.
- Importador: Empresario o empresa que se dedica a comprar productos a clientes del exterior para luego venderlos en el mercado local o para consumo o uso propio.
- Impuesto sobre el Valor Agregado (IVA): Según el artículo 1 de la Ley 9635, el impuesto sobre el valor agregado se establece en la venta de bienes y en la prestación de servicios, independientemente del medio por el que sean prestados, realizados en el territorio en Costa Rica.
- Impuestos Selectivo de Consumo (SC): Impuesto establecido sobre bienes y servicios específicos, por razones que dependen de cada Estado. Entre las razones más comunes para gravar un bien específico se encuentra, por ejemplo, el carácter indemnizatorio o el desincentivador que se pretende implementar sobre o por el consumo o realización de este. Así, es que las bebidas alcohólicas, el tabaco, y la marihuana
- Impuestos: Los Derechos o impuestos a la importación corresponden al monto de tributos que el fisco recauda debido al ingreso de una mercancía extranjera al comercio nacional. (Ministerio de Hacienda, 2024).
- **Ítem:** Línea del DUA donde se describe e indica la cantidad de las mercancías que se presentan para ser destinadas a un régimen aduanero determinado.
- Ley 6946: Tarifa de Ley N°6946, de un 1% aplicable sobre el valor aduanero.

- Localización: véase Depositario Aduanero.
- Medio o modo de transporte: Nave, aeronave, vagón ferroviario, vehículo automotor, o cualquier otro medio utilizado para el transporte de personas o mercancías. (Ministerio de Hacienda, 2021)
- Mercancía: Objeto susceptible de ser apropiado y, por ende, importado o exportado, clasificado conforme al arancel de aduanas.
- Modalidad: Cada régimen aduanero contará con modalidades según detalle, por ejemplo, la importación puede ser modalidad importación definitiva, temporal, courier, entre otras.
- Modelo: De las mercancías que se adquieren, por ejemplo en sitios web y se trasladan a Costa Rica, bajo la modalidad de courier.
- Nota técnica: requisitos no arancelarios o autorizaciones preestablecidos por la institución rectora mediante leyes y decretos, que avalan el ingreso o salida de las mercancías del o al territorio nacional. (Ministerio de Hacienda, 2021)
- País de adquisición: País en donde se adquirido el servicio o mercancía.
- País de origen: País de donde, según lo establecido en el Tratado de Libre Comercio, son originarias las mercancías o servicios.
- País de procedencia: País de donde procede la mercancía, que no necesariamente coincide con el país de origen o de adquisición.
- Peso bruto: El peso bruto es el peso total de un producto más su empaque o contenedor.
- Peso neto: El peso neto de un producto, sea únicamente el peso del producto en sí.
- Precio FOB: FOB es un término comercial que pertenece a los Incoterms, corresponde a las siglas en inglés de 'Free on board'. El Precio FOB se determina por: precio de la mercancía, el precio de embalaje y etiquetado, precio por transporte desde la planta de producción hasta el puerto de origen, el precio del seguro de la mercancía durante su traslado a puerto, gastos administrativos generados por la concesión de permisos o licencias, gastos derivados de las autoridades aduaneras, algunos gastos bancarios resultantes de pagos y transferencias internacionales y gastos portuarios, como uso de muelle, elevadores o estiba.
- **PROCOMER:** Promotora de Comercio Exterior de Costa Rica, pago de \$3 por cada declaración aduanera transmitida electrónicamente, para la institución.
- **Proveedor:** Persona física o jurídica que suministra profesionalmente un determinado bien o servicio a otros individuos o sociedades, como forma de actividad económica y a cambio de una contra prestación.
- Régimen: Diferentes destinaciones a que pueden quedar sujetas las mercancías que se encuentran bajo control aduanero (Art 109. LGA)
- Seguro: Protección de la carga desde que sale del depósito del vendedor hasta las bodegas del comprador, o según INCOTERM.
- Unidad de medida: Referencia convencional que se usa para medir la magnitud física de un determinado objeto, sustancia o fenómeno.

- Valor CIF: Representa el precio total de la mercancía, incluyendo el coste, del seguro y el flete hasta el puerto de destino acordado.
- Valor en Aduana: El valor de transacción, o precio realmente pagado o por pagar por las mercancías cuando éstas se venden para su exportación al país de importación.

5 Data Understanding – MJ LO REDACTA

La fase de comprensión de datos de CRISP-DM implica estudiar de cerca los datos disponibles de minería. Este paso es esencial para evitar problemas inesperados durante la siguiente fase (preparación de datos) que suele ser la fase más larga de un proyecto.

Como se señala, el proceso de data understanding es importante para establecer una base sólida para el análisis, permitiendo una comprensión profunda de la estructura y el contenido de la base de datos, que incluye elementos como DUA, Fecha DUA, Código SAC, cantidad, Valor FOB USD, Costo fleteUSD, Costo seguro USD, ValorCIFUSD, Valor en Aduana USD, Pesobrutoenlibras, DescripcindeMercanca, TotalIVAUSD, Total Ley 6946 USD, totalDAIUS, Total SC USD\$ y total de Impuestos. Con un enfoque en tres objetivos específicos: implementar un análisis de cesta utilizando algoritmos de asociación para identificar patrones de compra y relaciones entre productos, realizar un análisis de tendencias de las mercancías importadas mediante técnicas de series temporales para detectar patrones y cambios en la demanda, y diseñar variables ingenieriles para optimizar los procesos de importación. Esta fase inicial es fundamental para asegurar la calidad y la integridad del análisis subsecuente.

5.1 Carga de archivo de datos fuente

Se inicia con una carga del conjunto de datos, ubicado en la carpeta '/data/raw/' de nuestro directorio. Para evitar problemas de ubicación, se utiliza la variable parent_dir que representa el directorio padre de la solución. Esto se obtuvo al inicio de este notebook

```
[]: # Lectura del archivo de datos y almacenamiento en variable data
data = pd.read_excel (parent_dir + '/data/raw/data.xlsx',
sheet_name='UnifiedData')
# Se despliega los primeros registros de los datos
data.head()
```

```
[]:
                    DUA
                         Item del DUA
                                       Fecha DUA
                                                       Aduana
        005-2022-001495
                                     1 2022-01-03
                                                   SANTAMARIA
     1
        005-2022-001495
                                     2 2022-01-03
                                                   SANTAMARIA
     2 005-2022-001495
                                     3 2022-01-03
                                                   SANTAMARIA
     3
       005-2022-001495
                                     4 2022-01-03
                                                   SANTAMARIA
        005-2022-001495
                                     5 2022-01-03
                                                   SANTAMARIA
                                                                Proveedor
                       Regimen
                                     Modalidad Importador
        IMPORTACION DEFINITIVA
                                ENTREGA RAPIDA
                                                 SwiftShip
                                                            No disponible
     1
        IMPORTACION DEFINITIVA
                                ENTREGA RAPIDA
                                                 SwiftShip
                                                            No disponible
     2
       IMPORTACION DEFINITIVA
                                ENTREGA RAPIDA
                                                 SwiftShip
                                                            No disponible
       IMPORTACION DEFINITIVA
                                                 SwiftShip
                                                            No disponible
                                ENTREGA RAPIDA
```

4 IMPORTACION DEFINITIVA ENTREGA RAPIDA SwiftShip No disponible

```
Marca
                           Modelo
                                   ... Total IVA USD
                                                      % Ley 6946
   No disponible
0
                   No disponible
                                                6.45
                                                                1
   No disponible
                   No disponible
                                               92.12
                                                                1
1
2
  No disponible
                   No disponible
                                              86.12
                                                                1
 No disponible
                   No disponible
                                               51.21
3
                                                                1
4 No disponible
                   No disponible
                                               9.54
                                                                1
   Total Ley 6946 USD % DAI Total DAI USD COSTO por PROCOMER USD % S.C
0
                  0.43
                                        6.04
                                                                    3
                           14
                                                                           0
1
                  5.61
                           14
                                       78.49
                                                                    0
                                                                          10
2
                  5.76
                           14
                                       80.65
                                                                    0
                                                                           0
3
                  3.58
                            9
                                       32.23
                                                                    0
                                                                           0
4
                  0.64
                           14
                                        8.94
                                                                    0
                                                                           0
   Total SC USD Otros impuestos USD
                                        Total de Impuestos
0
            0.00
                                 0.11
                                                      16.03
                                 0.00
1
           63.91
                                                     240.13
2
            0.00
                                 0.00
                                                     172.53
3
            0.00
                                 0.00
                                                      87.02
4
            0.00
                                 0.00
                                                      19.12
```

[5 rows x 49 columns]

5.2 Lectura de catálogos

Se carga la información del catálogo hecho con base en el Sistema Armonizado (SA), es código según se indicó con anterioridad, es una clasificación de mercancías creado por la Organización Mundial de Aduanas (OMA) y está compuesto por 6 dígitos (Subpartidas) con aceptación en casi todo el mundo. Para efectos del proyecto, se utiliza la codificación a nivel de partida (4 dígitos) para facilitar el proceso de interpretación, sin que esto afecte la codificación original de la OMA.

```
[]: # Variable para administrar los datos de los catálogos
data_catalogo = pd.read_excel(parent_dir + '/data/raw/catalogo.xlsx',

⇒sheet_name='Catálogo')

# Despliegue de primeras filas del conjunto de datos
data_catalogo.head()
```

```
[]: Código Sistema Armonizado
0 9504
1 8516
2 3926
3 9506
4 9503
```

Descripción

- O VIDEOCONSOLAS Y MÁQUINAS ...
- 1 CALENTADORES ELÉCTRICOS DE AGUA DE CAL...
- 2 LAS DEMÁS MANUFACTURAS DE PLÁSTICO Y...
- 3 ARTÍCULOS Y MATERIAL PARA CULTURA FÍSI...
- 4 TRICICLOS, PATINETES, COCHES DE PEDAL Y JUGUET...

5.3 Descripción de valores en columnas de datos - Listo

Hacer una descripción de valores en columnas de datos en el proceso de data understanding es esencial para comprender el contenido y la estructura de los datos, identificar problemas de calidad, y detectar patrones y tendencias preliminares. Este análisis inicial permite validar hipótesis, preparar adecuadamente los datos para modelos y algoritmos posteriores, y asegurar una comunicación clara y documentada de los hallazgos. En el proyecto CRISP-DM para SwiftShip y ExpediteX, esto garantiza que las decisiones estratégicas se basen en datos precisos y bien entendidos.

- 1. **Año**: Año en que se realizaron las importaciones.
- 2. **DUA**: Documento Único Administrativo, identificador de la operación de importación.
- 3. Item: Número de ítem en la factura.
- 4. Fecha: Fecha de la operación de importación.
- 5. Aduana: Aduana por la que ingresaron los productos.
- 6. Regimen: Régimen aduanero bajo el cual se importaron los productos.
- 7. Modalidad: Modalidad de importación.
- 8. Importador: Empresa que importó los productos.
- 9. Proveedor: Proveedor de los productos importados.
- 10. Marca: Marca de los productos importados.
- 11. Modelo: Modelo de los productos importados.
- 12. Factura: Número de factura de la operación de importación.
- 13. Código SAC: Código del Sistema Armonizado de Designación y Codificación de Mercancías.
- 14. **Vía Transporte**: Vía por la que se transportaron los productos.
- 15. País de Origen: País de origen de los productos.
- 16. Pais de Procedencia: País de procedencia de los productos.
- 17. Pais de Adquisición: País donde se adquirieron los productos.
- 18. Cantidad Comercial: Cantidad de productos importados.
- 19. Unidad de Medida: Unidad de medida de los productos importados.
- 20. Volúmen Físico: Volumen físico de los productos importados.
- 21. Bultos: Cantidad de bultos en los que se transportaron los productos.
- 22. U\$S FOB: Valor FOB (Free On Board) de los productos en dólares estadounidenses.
- 23. U\$S FOB Unit.: Valor unitario FOB de los productos en dólares estadounidenses.
- 24. U\$S Flete: Costo del flete en dólares estadounidenses.
- 25. U\$S Seguro: Costo del seguro en dólares estadounidenses.
- 26. U\$S CIF: Valor CIF (Cost, Insurance and Freight) de los productos en dólares estadounidenses.
- 27. U\$S Unitario: Valor unitario de los productos en dólares estadounidenses.
- 28. Valor en Aduana U\$S: Valor en aduana de los productos en dólares estadounidenses.
- 29. **Kg netos**: Peso neto de los productos en kilogramos.
- 30. **Kg** brutos: Peso bruto de los productos en kilogramos.
- 31. Descripción de Mercancía: Descripción de los productos importados.

- 32. **ID Declarante**: Identificador del declarante.
- 33. Declarante: Nombre del declarante.
- 34. ID Agente: Identificador del agente de aduanas.
- 35. Agente: Nombre del agente de aduanas.
- 36. **ID Localización**: Identificador de la localización.
- 37. Localización: Localización de la operación de importación.
- 38. % IVA: Porcentaje del Impuesto al Valor Agregado.
- 39. IVA U\$S: Valor del IVA en dólares estadounidenses.
- 40. **% Ley 6946**: Porcentaje de la Ley 6946.
- 41. Ley 6946 U\$S: Valor de la Ley 6946 en dólares estadounidenses.
- 42. % DAI: Porcentaje del Derecho Arancelario de Importación.
- 43. DAI U\$S: Valor del DAI en dólares estadounidenses.
- 44. PROCOMER U\$S: Valor de PROCOMER en dólares estadounidenses.
- 45. % S.C: Porcentaje de S.C.
- 46. S.C. U\$S: Valor de S.C en dólares estadounidenses.
- 47. Otros Imp. U\$S: Otros impuestos en dólares estadounidenses.
- 48. Total de Impuestos: Total de impuestos de la operación de importación.
- 49. Proporción Pr FOB / impuestos: Proporción entre el valor FOB y los impuestos.
- 50. Proporción VA / impuestos: Proporción entre el valor en aduana y los impuestos.

5.4 Análisis Estadístico – Listo

Ayuda a entender cómo están distribuidos los datos en términos de frecuencia, media, mediana, moda, rangos y varianza, lo cual permite identificar patrones generales en las importaciones. Al analizar las tendencias a lo largo de los años, codificación de las mercancías importadas, países de origen y procedencia, y otros atributos, se pueden identificar patrones que ayuden a tomar decisiones estratégicas. Además, el análisis descriptivo permite detectar valores atípicos o inconsistencias en los datos, lo cual es crucial para asegurar la calidad y la integridad de la información. Identificar oportunidades para optimizar los procesos de importación, reducir costos y mejorar la eficiencia operativa también se facilita con este análisis. Asegurar que todas las importaciones cumplen con las regulaciones y requisitos legales, incluyendo la correcta aplicación de impuestos y aranceles, es fundamental para el cumplimiento normativo. Finalmente, un análisis descriptivo proporciona una base sólida para la planificación y la elaboración de pronósticos futuros, basados en el análisis de datos históricos.

[]:	# Métricas descriptivas de los datos
	<pre>data.describe(include='all')</pre>

[]:		DUA	Item del DUA	Fecha DUA \
	count	178434	178434.000000	178434
	unique	4176	NaN	NaN
	top	005-2023-732459	NaN	NaN
	freq	480	NaN	NaN
	mean	NaN	63.527013	2022-06-23 05:30:13.497427712
	min	NaN	1.000000	2021-01-04 00:00:00
	25%	NaN	12.000000	2021-08-05 00:00:00
	50%	NaN	46.000000	2022-04-06 00:00:00
	75%	NaN	100.000000	2023-05-17 00:00:00

max		NaN 48	30.000000		2023-12-2	8 00:00:00	
std		NaN 6	30.202672			NaN	
			- .				,
	Aduana		Regi		Modalidad		\
count	178434		178		178434	178434	
unique	1	TMDODELAGI	DEETNIE	1	2	2	
top	SANTAMARIA	IMPORTACIO			EGA RAPIDA	ExpediteX	
freq	178434		178		178357	143547	
mean	NaN			NaN 	NaN	NaN	
min	NaN			NaN	NaN	NaN	
25%	NaN			NaN	NaN	NaN	
50%	NaN			NaN	NaN	NaN	
75%	NaN			NaN	NaN	NaN	
max	NaN			NaN	NaN	NaN	
std	NaN			NaN	NaN	NaN	
	Proveed	or	Marca	Mode	elo … Tot	al IVA USD	\
count	1784		178434	1784		434.000000	`
unique	1101	12	16	110	22	NaN	
top	No disponib			o disponi		NaN	
freq	1783	-	178357	178;		NaN	
mean		aN	NaN		NT _ NT	6.062704	
mean min		aN	NaN		NT _ NT	0.002704	
					waw NaN		
25% 50%		aN an	NaN NaN		NT _ NT	0.250000	
50%		aN - N	NaN NaN			2.230000	
75%		aN - N	NaN N-N		NaN	5.790000	
max		aN	NaN			190.890000	
std	IN	aN	NaN	1	NaN	12.400669	
	% Ley 6946	Total Ley	6946 USD	% DAI	Total DAI	USD \	
count	178434.0	17843	34.000000	178434.0	178434.00	0000	
unique	8.0		NaN	11.0		NaN	
top	1.0		NaN	14.0		NaN	
freq	93314.0		NaN	56616.0		NaN	
mean	NaN		0.376309	NaN	3.50	1689	
min	NaN		0.000000	NaN	0.00	0000	
25%	NaN		0.000000	NaN	0.00	0000	
50%	NaN		0.140000	NaN	0.94		
75%	NaN		0.360000	NaN			
max	NaN	1	11.530000	NaN			
std	NaN		0.797761	NaN	8.44		
	COSTO por PR		% S.C			s impuestos	
count	178	434.000000	178434.0	178434.	000000	178434.00	
unique		NaN	16.0		NaN		NaN
top		NaN	0.0		NaN		NaN
freq		NaN	96091.0		NaN		NaN

mean	0.066882	NaN	0.812547	0.003029
min	0.000000	NaN	0.000000	0.000000
25%	0.000000	NaN	0.000000	0.000000
50%	0.000000	NaN	0.000000	0.000000
75%	0.000000	NaN	0.000000	0.000000
max	3.000000	NaN	242.510000	12.000000
std	0.442915	NaN	5.652555	0.065990

	Total	de	Impuestos
count		178	3434.00000
unique			NaN
top			NaN
freq			NaN
mean			10.82316
min			0.00000
25%			0.59000
50%			3.94000
75%			10.43000
max			476.31000
std			23.05286

[11 rows x 49 columns]

5.5 Verificación de valores nulos – listo

Este proceso implica identificar y manejar cualquier dato faltante en las columnas del dataset. Los valores nulos pueden distorsionar los resultados del análisis y los modelos predictivos, por lo que es fundamental tratarlos adecuadamente.

Para efectos de este estudio, no existen valores nulos en el conjunto de datos por lo que no es necesario tratarlos.

[]: # Revisión de valores faltantes data.isnull().sum()

[]:	DUA	0
	Item del DUA	0
	Fecha DUA	0
	Aduana	0
	Regimen	0
	Modalidad	0
	Importador	0
	Proveedor	0
	Marca	0
	Modelo	0
	Factura	0
	Código SAC	0
	Código Sistema Armonizado	0

Modo transporte	0
País de Origen	0
Pais de Procedencia	0
Pais de Adquisición	0
Cantidad	0
Unidad de Medida	0
Volúmen Físico	0
Cantidad de bultos	0
Valor FOB USD	0
Valor FOB USD por unidad Costo flete USD	0
Costo flete USD	0
Costo seguro USD	0
Valor CIF USD	0
Valor CIF USD unitario	0
Valor en Aduana USD	0
Peso neto Kg.	0
Peso bruto Kg.	0
Peso bruto en Lbs.	0
Descripción de Mercancía	0
ID Declarante	0
Declarante	0
ID Agente Aduanero	0
Agente aduanero	0
ID Localización	0
Localización	0
% IVA	0
Total IVA USD	0
% Ley 6946	0
Total Ley 6946 USD	0
% DAI	0
Total DAI USD	0
COSTO por PROCOMER USD	0
% S.C	0
Total SC USD	0
Otros impuestos USD	0
Total de Impuestos	0
dtype: int64	

5.6 Histogramas – listo

Los histogramas representados permiten visualizar la distribución de los datos, identificando patrones y tendencias temporales, tipos de productos más importados y rangos de valores comunes. Facilitan la detección de outliers y variaciones en costos y pesos, ayudando a analizar la eficiencia logística y el impacto económico de las importaciones. Esta representación visual es esencial para optimizar procesos y tomar decisiones estratégicas informadas.

Histograma de Fecha DUA

Histograma de Código Sistema Armonizado

Histograma de Valor FOB USD

Histograma de Costo flete USD

Histograma de Costo seguro USD

Histograma de Valor CIF USD

Histograma de Peso bruto en Lbs.

5.7 Comparativa de cantidades importadas por año

TODO: FALTA TEXTO

```
[]: data['Año'] = data['DUA'].str[4:8]
# Mover la columna Anno a la primera posición
año = data.pop('Año')
data.insert(0, 'Año', año)
data['Año'] = pd.to_datetime(data['Año'])

def create_pivot_table(data):
    pivot_df = data.pivot_table(index='Año', columns='Importador',
    values='Cantidad', aggfunc='sum').reset_index()
    plot_pivot_table(pivot_df)

def plot_pivot_table(pivot_df):
# Preparar los datos para Plotly
```

```
pivot_df_long = pivot_df.melt(id_vars='Año', var_name='Importador', u
 ⇔value_name='Cantidad')
    # Crear el gráfico de barras con Plotly
   fig = px.bar(pivot_df_long, x='Año', y='Cantidad', color='Importador',
 otitle='Cantidades Importadas por Cada Empresa Cada Año',
                 labels={'Cantidad': 'Cantidad Importada', 'Año': 'Año'}, u
 ⇔barmode='stack')
    # Mostrar el gráfico
   if (exportar_pdf == False):
        # Para generación de página web
       fig.show()
   else:
        # Para exportar en pdf
        image_bytes = pio.to_image(fig, format='png')
        display(Image(image_bytes))
create_pivot_table(data)
```

Cantidades Importadas por Cada Empresa Cada Año

5.8 Análisis de la cantidad de DUAs por Mes y Código SAC

Para realizar un análisis más detallado de la cantidad de DUAs por mes y código SAC, hemos utilizado Python y Plotly para crear un gráfico de barras interactivo. Este gráfico nos permite visualizar la distribución de la cantidad de DUAs para un importador específico en un año determinado.

Procedimiento

- Filtrado de datos: Primero, hemos filtrado los datos para seleccionar un año específico y un importador particular. En este caso, hemos seleccionado el año 2022 y el importador 'LIBERTY EXPRESS CORPORATE VC SOCIEDAD AN'.
- 2. **Agrupación de datos**: Luego, hemos agrupado los datos filtrados por mes y código SAC, contando la cantidad de DUAs en cada grupo.
- 3. Creación del gráfico de barras: Utilizando Plotly Express, hemos creado un gráfico de barras que muestra la cantidad de DUAs por mes y código SAC para el año e importador seleccionados. Cada barra representa la cantidad de DUAs asociadas a un código SAC específico en un mes determinado.

Interpretación

Este gráfico nos permite identificar patrones o tendencias en la distribución de la cantidad de DUAs para el importador seleccionado a lo largo del año 2022. Podemos observar qué tipos de productos (definidos por el código SAC) tienen una mayor o menor incidencia en diferentes meses del año, lo que puede proporcionar información útil para la planificación y la toma de decisiones estratégicas en la gestión de importaciones.

```
[]: # Asegurarse de que 'Mes' se extrae correctamente si 'Año' es una columna de
      ⇔tipo fecha
     data['Año'] = pd.to_datetime(data['Año'])
     data['Mes'] = data['Año'].dt.month
     # Agrupar los datos por año, importador, mes y Código SAC y contar la cantidadu
      ⊶de DUAs
     duas_por_año_importador_mes_sac = data.groupby([data['Año'].dt.year,_

¬'Importador', 'Mes', 'Código Sistema Armonizado']).size().
      →reset_index(name='Cantidad_DUAs')
     # Crear el gráfico para todos los importadores y años
     fig = px.bar(duas_por_año_importador_mes_sac, x='Mes', y='Cantidad_DUAs',_
      ⇔color='Código Sistema Armonizado',
                  facet_col='Año', facet_row='Importador',
                  labels={'Mes': 'Mes', 'Cantidad DUAs': 'Cantidad de DUAs', 'Código_
      →Sistema Armonizado': 'Código SA'},
                  width=800, height=600)
     # Actualizar el diseño del gráfico
```

Cantidad de DUAs por Mes y Código Sistema Armonizado para todos los importadores y

5.9 Top 20 DUAs por Valor CIF USD – CORREGIR

Top 20 DUAs por Valor CIF:

Este código permite visualizar las 20 principales operaciones de importación (DUAs) en términos del Valor CIF (Cost, Insurange y Freight). Al visualizar estos datos, se puede identificar cuáles son las operaciones de importación más valiosas.

```
[ ]: def plot_top_20_duas(data):
         Grafica las 20 principales DUAs por Valor CIF USD utilizando plotly.express.
         Parámetros:
         - data (pandas.DataFrame): El DataFrame de entrada que contiene los datos.
         # Obtener las 20 principales DUAs por cantidad
         top_20_duas = data['DUA'].value_counts().head(20).index
         # Filtrar los datos para incluir solo las DUAs seleccionadas
         filtered_data = data[data['DUA'].isin(top_20_duas)]
         # Agrupar los datos por DUA y sumar los valores de Valor FOB USD
         aggregated data = filtered_data.groupby('DUA')['Valor CIF USD'].sum().
      →reset_index()
         # Ordenar los datos por Valor FOB USD de forma descendente
         aggregated_data = aggregated_data.sort_values(by='Valor CIF USD', __
      →ascending=False)
         # Crear el gráfico de barras utilizando plotly express
         fig = px.bar(aggregated_data, x='DUA', y='Valor CIF USD',
                      labels={'DUA': 'DUA', 'Valor CIF USD': 'Valor CIF USD'},
                      title='Top 20 DUAs por Valor CIF USD')
         fig.update_layout(xaxis_tickangle=-90)
         # Mostrar el gráfico
         if (exportar_pdf == False):
             # Para generación de página web
             fig.show()
         else:
             # Para exportar en pdf
             image_bytes = pio.to_image(fig, format='png')
             display(Image(image_bytes))
    plot_top_20_duas(data)
```

Top 20 DUAs por Valor CIF USD

5.10 Dispersión de datos

U\$S CIF vs. Kg netos: Esta comparación puede ayudar a entender si hay alguna relación entre el costo de las mercancías y su peso neto. Podría ser útil para identificar si los productos más pesados tienden a ser más costosos o si existe alguna otra relación entre estas dos variables.

PENDIENTE DEFINIR SI ESTO NOS SIRVE

```
# Crear el gráfico de dispersión con diferentes colores basados en elu
importador y con información adicional al pasar el mouse sobre 'Descripciónu
de Mercancía'

fig = px.scatter(data, x='Peso bruto en Lbs.', y='Valor CIF USD',
color='Importador',

title='Valor CIF USD vs. Peso bruto en Lbs.',
hover_data={'Descripción de Mercancía': True})

# Mostrar el gráfico

if (exportar_pdf == False):
# Para generación de página web
```

```
fig.show()
else:
    # Para exportar en pdf
    image_bytes = pio.to_image(fig, format='png')
    display(Image(image_bytes))
#data.head()
```

Valor CIF USD vs. Peso bruto en Lbs.

6 Data Preparation

La preparación de datos es la etapa que involucra la limpieza, transformación y organización de los datos brutos para hacerlos aptos para el análisis.

Este proceso incluye la identificación y corrección de datos faltantes, duplicados o inconsistentes en las columnas clave: 'Fecha DUA', 'Código Sistema Armonizado', 'Valor FOB USD', 'Costo flete USD', 'Costo seguro USD', 'Valor CIF USD', y 'Peso bruto en Lbs.'. También implica la normalización y escalado de los valores para asegurar coherencia y precisión en el análisis posterior. La preparación adecuada de los datos garantiza que las inferencias y modelos construidos sean fiables y robustos, permitiendo una toma de decisiones estratégicas basada en datos limpios y bien estructurados.

```
[]: # Se cuenta con información de tres años completos
     distinct_values = data['Año'].unique()
     print(distinct_values)
    <DatetimeArray>
    ['2022-01-01 00:00:00', '2023-01-01 00:00:00', '2021-01-01 00:00:00']
    Length: 3, dtype: datetime64[ns]
[]: # Esto creo que se puede quitar
     print(data.columns)
    Index(['Año', 'DUA', 'Item del DUA', 'Fecha DUA', 'Aduana', 'Regimen',
           'Modalidad', 'Importador', 'Proveedor', 'Marca', 'Modelo', 'Factura',
           'Código SAC', 'Código Sistema Armonizado', 'Modo transporte',
           'País de Origen', 'Pais de Procedencia', 'Pais de Adquisición',
           'Cantidad', 'Unidad de Medida', 'Volúmen Físico', 'Cantidad de bultos',
           'Valor FOB USD', 'Valor FOB USD por unidad', 'Costo flete USD',
           'Costo seguro USD', 'Valor CIF USD', 'Valor CIF USD unitario',
           'Valor en Aduana USD', 'Peso neto Kg.', 'Peso bruto Kg.',
           'Peso bruto en Lbs.', 'Descripción de Mercancía', 'ID Declarante',
           'Declarante', 'ID Agente Aduanero', 'Agente aduanero',
           'ID Localización', 'Localización', '% IVA', 'Total IVA USD',
           '% Ley 6946', 'Total Ley 6946 USD', '% DAI', 'Total DAI USD',
           'COSTO por PROCOMER USD', '% S.C', 'Total SC USD',
           'Otros impuestos USD', 'Total de Impuestos', 'Mes'],
          dtype='object')
```

6.1 Ingeniería de variables

Se agregan dos variables al conjunto de datos para obtener información adicional durante el análisis

- Proporción de impuestos sobre el valor FOB: Incluir como ayuda esto al análisis
- Proporción de impuestso sobre el valor aduanero

```
[]: data['Proporción de impuestos sobre el valor FOB'] = (data['Total de⊔

→Impuestos'] * data["Valor FOB USD"]) / 100

data['Proporción de los impuestos sobre el valor aduanero'] = (data['Total de⊔

→Impuestos'] * data["Valor en Aduana USD"]) / 100
```

6.2 Unificación de datos

Se unifican ambas fuentes de datos en un solo archivo para darle tratamiento durante este proyecto. Esto se hace realizando un inner join entre ambos conjuntos de datos, y de esta manera poder contar con las descripciones para todas las partidas

```
[]: data = data.merge(data_catalogo, left_on='Código Sistema Armonizado', usinght_on='Código Sistema Armonizado')
data.head()
```

```
[]:
              Año
                                DUA
                                     Item del DUA Fecha DUA
                                                                   Aduana \
     0 2022-01-01 005-2022-001495
                                                1 2022-01-03
                                                              SANTAMARIA
     1 2022-01-01 005-2022-001500
                                               11 2022-01-03
                                                               SANTAMARIA
     2 2022-01-01 005-2022-001501
                                                8 2022-01-03
                                                               SANTAMARIA
                                                8 2022-01-24
     3 2022-01-01
                  005-2022-040801
                                                               SANTAMARIA
     4 2022-01-01 005-2022-040801
                                                9 2022-01-24 SANTAMARIA
                       Regimen
                                      Modalidad Importador
                                                                 Proveedor
        IMPORTACION DEFINITIVA
                                ENTREGA RAPIDA SwiftShip No disponible
     1
        IMPORTACION DEFINITIVA
                                 ENTREGA RAPIDA
                                                 SwiftShip
                                                             No disponible
     2
      IMPORTACION DEFINITIVA
                                                 SwiftShip
                                 ENTREGA RAPIDA
                                                             No disponible
     3 IMPORTACION DEFINITIVA
                                 ENTREGA RAPIDA
                                                 SwiftShip
                                                             No disponible
     4 IMPORTACION DEFINITIVA
                                ENTREGA RAPIDA
                                                 SwiftShip
                                                             No disponible
                       ... Total DAI USD COSTO por PROCOMER USD
        No disponible
                                   6.04
                                                              3
     0
        No disponible
                                 120.60
                                                              0
                                                                     0
     1
       No disponible
                                  57.90
                                                              0
                                                                     0
     2
        No disponible
                                   9.98
                                                              0
                                                                     0
     3
                                                              0
                                                                     0
       No disponible
                                  11.39
        Total SC USD Otros impuestos USD Total de Impuestos Mes
                 0.0
     0
                                     0.11
                                                        16.03
                 0.0
                                     0.00
                                                       257.99
     1
                                                                1
     2
                 0.0
                                     0.00
                                                       123.87
                                                                1
     3
                 0.0
                                     0.00
                                                        21.35
                                                                1
     4
                 0.0
                                     0.00
                                                        24.37
                                                                1
       Proporción de impuestos sobre el valor FOB
     0
                                          5.289900
     1
                                       2176.610032
     2
                                        495.467613
     3
                                         12.807865
     4
                                         17.059000
        Proporción de los impuestos sobre el valor aduanero \
     0
                                                  6.918548
     1
                                               2222.377458
     2
                                                512.301546
     3
                                                  15.220415
     4
                                                  19.834743
                                              Descripción
                                       MÁQUINAS
        VIDEOCONSOLAS
     0
                              Y
                                       MÁQUINAS
        VIDEOCONSOLAS
                              Y
                                       MÁQUINAS
      VIDEOCONSOLAS
                              Y
     3 VIDEOCONSOLAS
                              Y
                                       MÁQUINAS
```

4 VIDEOCONSOLAS Y MÁQUINAS ...

[5 rows x 54 columns]

6.3 Almacenamiento en base de datos — Agregar texto

Se almacena el conjunto de datos ya procesado en un motor de base de datos SQLite.

```
[]: # Connect to the SQLite database
# SalvarEnBD('FactDatosCouriers', data)
```

7 3. MODELADO

7.1 Basket Analysis utilizando el algoritmo Apriori

7.1.1 Paso 1: Preparación de los datos

En el primer paso del Basket Analysis, se preparan los datos para el análisis. Los datos deben estar en un formato específico para que el algoritmo Apriori pueda procesarlos. Este formato se conoce como "one-hot encoding".

En "one-hot encoding", cada fila de los datos representa una transacción (en nuestro caso, identificada por la columna 'DUA') y cada columna representa un artículo (identificado por la columna 'Código Sistema Armonizado'). Si un artículo específico está presente en una transacción, el valor en la celda correspondiente es 1, y si no está presente, el valor es 0.

Esto permite tener una representación binaria de nuestras transacciones, que es el formato requerido para el algoritmo Apriori.

```
.set_index('DUA'))
# Establecer el index

# One hot encoding
conjuntos_cesta = basket.applymap(codificar_unidades)
conjuntos_cesta.head()
```

[]:	Código Sistema Armonizado DUA	2508	2513	252	6 3	006	3402	34	:05 3	3406	3407	`\
	005-2021-000324	0	0		0	0	0		0	0	C)
	005-2021-000341	0	0		0	0	0		0	0	C)
	005-2021-002548	0	0		0	0	0		0	0	C)
	005-2021-002659	0	0		0	0	0		0	0	C)
	005-2021-002660	0	0		0	0	0		0	0	C)
	Código Sistema Armonizado DUA	3506	3701		9613	96	14 9	615	9616	96	317 \	
	005-2021-000324	0	0		0		0	0	()	1	
	005-2021-000341	0	0		0		0	0	(0	
	005-2021-002548	0	0	•••	0		0	0	()	0	
	005-2021-002659	0	0	•••	0		0	0	()	0	
	005-2021-002660	0	0		0		0	0	()	0	
	Código Sistema Armonizado DUA	9618	9619	962	0 9	701	9706					
	005-2021-000324	0	0		1	0	0					
	005-2021-000341	0	0		1	0	0					
	005-2021-002548	0	0		0	0	0					
	005-2021-002659	0	0		0	0	0					
	005-2021-002660	0	0		0	0	0					

[5 rows x 456 columns]

7.1.2 Paso 2: Generación de conjuntos de artículos frecuentes

El siguiente paso en el Basket Analysis es generar conjuntos de artículos frecuentes. Estos son conjuntos de artículos que aparecen juntos en las transacciones con más frecuencia que un umbral especificado. Para hacer esto, utilizamos la función apriori de la biblioteca mlxtend.

La función apriori toma dos argumentos principales: el DataFrame que contiene nuestros datos y un valor mínimo de soporte. El soporte es una medida de cuán frecuentemente aparece un conjunto de artículos en las transacciones. Al especificar un valor mínimo de soporte, le decimos a la función apriori que sólo queremos los conjuntos de artículos que aparecen en al menos ese porcentaje de las transacciones.

Para efectos de este estudio, se define el valor mínimo de soporte en 0.20

```
[]: support itemsets
0 0.217672 (3923)
1 0.297653 (3924)
2 0.511734 (3926)
3 0.210010 (4016)
4 0.534962 (4202)
```

7.1.3 Paso 3: Generación de las reglas

En este paso, generamos las reglas a partir de los conjuntos de ítems frecuentes. Estas reglas representan patrones en los datos donde la presencia de ciertos ítems en una transacción implica la presencia de otros ítems. Para hacer esto, utilizamos la función association_rules de la biblioteca mlxtend.

La función association_rules toma dos argumentos principales: el DataFrame de conjuntos de ítems frecuentes y una métrica para evaluar las reglas.

Se establece la métrica "Confidence" en un valor mínimo de 0.70

```
[]: # Generate the rules
rules = association_rules(conjuntos_frecuentes, metric="confidence", umin_threshold=0.70) ## Lo que indicó Ramón hay que documentarlo

# Display the first few rules
rules.head()
```

```
[]:
       antecedents consequents
                                antecedent support
                                                     consequent support
                                                                          support
            (3924)
                        (3926)
                                           0.297653
                                                               0.511734
                                                                         0.227969
     1
            (3924)
                        (4202)
                                           0.297653
                                                               0.534962 0.238266
     2
            (3924)
                        (4901)
                                                               0.358477
                                                                         0.209531
                                           0.297653
     3
            (3924)
                        (6404)
                                           0.297653
                                                               0.370450
                                                                         0.209531
     4
            (3924)
                        (9503)
                                           0.297653
                                                               0.623084 0.253113
        confidence
                        lift leverage conviction
                                                     zhangs_metric
     0
          0.765889 1.496655 0.075650
                                           2.085619
                                                          0.472478
          0.800483 1.496337 0.079033
                                           2.330817
                                                          0.472275
     1
     2
          0.703942 1.963702 0.102829
                                           2.166883
                                                          0.698740
     3
          0.703942 1.900234 0.099265
                                           2.126441
                                                          0.674523
          0.850362 1.364762 0.067650
                                           2.518851
                                                          0.380541
```

7.1.4 Paso 4: Análisis e Interpretación de las Reglas

Este fragmento de código se centra en ordenar y visualizar las reglas de asociación generadas a partir del conjunto de datos, específicamente ordenadas por su valor de 'lift' de manera descendente.

- Ordenamiento por Lift: El 'lift' es una métrica que mide la fuerza de una regla de asociación. Un 'lift' mayor que 1 indica que la regla tiene una asociación positiva fuerte, es decir, que los elementos de la regla ocurren juntos más frecuentemente de lo que se esperaría si fueran independientes. Ordenar las reglas por 'lift' de manera descendente permite enfocarse en las asociaciones más fuertes primero.
- Visualización de Reglas: Al mostrar las primeras reglas después de ordenarlas, se facilita la identificación rápida de las asociaciones más significativas. Esto es especialmente útil para tomar decisiones informadas basadas en patrones de datos.

Para facilitar la lectura se establecen las siguiente definiciones propias del algoritmo:

- Antecedente: Es el elemento o conjunto de elementos que se encuentra en la parte inicial de una regla de asociación. Representa la condición o el conjunto de condiciones que se evalúan para predecir la ocurrencia de otro elemento. En términos simples, el antecedente es lo que se tiene antes de aplicar la regla.
- Consecuente: Es el elemento o conjunto de elementos que se encuentra en la parte final de una regla de asociación. Representa el resultado o la conclusión que se deriva de la presencia del antecedente. El consecuente es lo que se espera que ocurra dado que se ha cumplido la condición establecida por el antecedente.

```
[]: # Ordenamos las reglas por lift en orden descendente, siquiendo consejo de D.
      \hookrightarrow Ram \acute{o}n
     reglas_ordenadas_por_lift = rules.sort_values('lift', ascending=False)
     # Mostramos las primeras reglas
     reglas ordenadas por lift.head()
[]:
                  antecedents
                                        consequents
                                                      antecedent support
     825
          (6404, 4901, 9503)
                                             (6403)
                                                                0.257184
     830
                                (6404, 4901, 9503)
                                                                0.236351
                        (6403)
                                       (6404, 4901)
     828
                 (6403, 9503)
                                                                0.229646
                                       (6403, 9503)
     829
                 (6404, 4901)
                                                                0.266284
          (4202, 6404, 3926)
                                       (4901, 8471)
                                                                 0.245929
     915
          consequent support
                                 support
                                           confidence
                                                            lift
                                                                   leverage
                                                                             conviction
     825
                     0.236351
                                0.200192
                                             0.778399
                                                        3.293406
                                                                   0.139406
                                                                                3.446048
                                0.200192
                                                        3.293406
                                                                  0.139406
     830
                     0.257184
                                             0.847011
                                                                                4.855361
     828
                     0.266284
                                0.200192
                                             0.871741
                                                        3.273734
                                                                   0.139041
                                                                                5.720602
     829
                                             0.751799
                                                        3.273734
                                                                                3.103747
                     0.229646
                                0.200192
                                                                   0.139041
     915
                     0.252155
                                0.200431
                                             0.814995
                                                        3.232117
                                                                  0.138419
                                                                                4.042298
          zhangs_metric
     825
                0.937464
```

```
830 0.911888
828 0.901583
829 0.946603
915 0.915836
```

Reglas de Asociación: Soporte vs. Confianza

Este gráfico de dispersión ilustra la relación entre el soporte y la confianza de las reglas de asociación derivadas del análisis de datos.

Permite comprender cómo diferentes productos importados se relacionan entre sí.

- Soporte: Refleja la frecuencia con la que aparece una combinación de productos (antecedente y consecuente) en el dataset. Un valor más alto indica que la regla es común, representado en el eje X del gráfico.
- Confianza: Indica la probabilidad de encontrar el consecuente dado el antecedente. Una mayor confianza sugiere una mayor verosimilitud de la regla, mostrada en el eje Y.
- Lift (Tamaño del punto): El tamaño de los puntos muestra el "lift" de cada regla, evaluando la fuerza de la asociación.

Este análisis permite identificar patrones de compra significativos y ajustar estrategias de importación. Reglas con alto soporte y confianza revelan fuertes relaciones entre productos, lo que puede ser crucial para decisiones de gestión de inventario y promociones cruzadas, alineándose con las tendencias actuales de importación.

```
[]: import networkx as nx import plotly.graph_objects as go # Create a graph
```

```
G = nx.Graph()
# Add nodes and edges from the rules DataFrame
for _, row in rules.iterrows():
    antecedents = ', '.join(str(item) for item in row['antecedents'])
    consequents = ', '.join(str(item) for item in row['consequents'])
    G.add_node(antecedents, type='antecedent')
    G.add node(consequents, type='consequent')
    G.add_edge(antecedents, consequents, weight=row['lift'])
# Adjust the spring layout with a larger k value for more separation
pos = nx.spring_layout(G, k=0.15) # Increase k to spread nodes further apart
# Create edge traces
edge_x = []
edge_y = []
for edge in G.edges():
    x0, y0 = pos[edge[0]]
    x1, y1 = pos[edge[1]]
    edge_x.extend([x0, x1, None])
    edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(x=edge_x, y=edge_y, line=dict(width=0.5, color='#888'),_
 ⇔hoverinfo='none', mode='lines')
# Create node traces
node_x = []
node_y = []
text = []
for node in G.nodes():
    x, y = pos[node]
    node_x.append(x)
    node_y.append(y)
    text.append(node)
node_trace = go.Scatter(x=node_x, y=node_y, text=text, mode='markers+text',__
 ⇔hoverinfo='text', marker=dict(showscale=True, colorscale='YlGnBu', size=10))
# Adjust the figure layout to make it taller and possibly wider
fig = go.Figure(data=[edge_trace, node_trace],
                layout=go.Layout(showlegend=False, hovermode='closest',
                                 margin=dict(b=0, l=0, r=0, t=0),
                                 xaxis=dict(showgrid=False, zeroline=False, __
 ⇔showticklabels=False),
                                 yaxis=dict(showgrid=False, zeroline=False,
 ⇔showticklabels=False),
```

```
height=800, # Increase height for a taller width=1400)) # Optional: Adjust width as needed

# Show the plot
fig.show(renderer = "notebook")
```

AQUI SERIA IMPORTANTE METER la info de las reglas más representativas

7.2 Análisis de series temporales

7.2.1 Paso 1: Preparación de los Datos para Análisis de Serie Temporal

En el primer paso de nuestro análisis de serie temporal, nos enfocamos en preparar los datos para su posterior exploración y modelado. Este proceso implica agrupar los datos según fechas específicas y sumar los valores asociados para cada grupo. El objetivo es obtener una visión clara de cómo se comporta la variable de interés ('Valor CIF USD') a lo largo del tiempo.

```
[]: grouped_data = data.groupby('Fecha DUA')['Valor CIF USD'].sum().reset_index() grouped_data.head()
```

```
[]: Fecha DUA Valor CIF USD
0 2021-01-04 7226.16
1 2021-01-05 16784.84
2 2021-01-06 12538.98
3 2021-01-07 6144.09
4 2021-01-08 6306.10
```

7.2.2 Paso 2: Preparación de Datos para Modelado con Prophet

Después de agrupar y sumar los datos en el paso anterior, el siguiente paso en nuestro análisis de serie temporal es preparar los datos específicamente para el modelado con la biblioteca Prophet de Facebook. Prophet espera que los nombres de las columnas de la serie temporal sean 'ds' para la fecha y 'y' para la variable que queremos predecir.

```
[]: df_prophet = grouped_data[['Fecha DUA', 'Valor CIF USD']].
      orename(columns={'Fecha DUA': 'ds', 'Valor CIF USD': 'y'})
[]: m = Prophet()
     m.fit(df_prophet)
    15:48:39 - cmdstanpy - INFO - Chain [1] start processing
    15:48:39 - cmdstanpy - INFO - Chain [1] done processing
[]: cprophet.forecaster.Prophet at 0x35da02550>
[]: future = m.make_future_dataframe(periods=90)
     future.tail()
[]:
                 ds
     689 2024-03-23
     690 2024-03-24
     691 2024-03-25
     692 2024-03-26
     693 2024-03-27
[]: forecast = m.predict(future)
     forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
[]:
                                     yhat_lower
                 ds
                             yhat
                                                   yhat_upper
     689 2024-03-23
                      5408.531618
                                   -5551.050477
                                                 16114.740938
     690 2024-03-24
                     11028.792346
                                     775.059439
                                                 22115.520772
     691 2024-03-25
                     23015.240779
                                   12315.077462
                                                 33420.564231
     692 2024-03-26
                     13026.895353
                                    1918.302041
                                                 24344.860588
     693 2024-03-27 13384.097071
                                    3087.091736
                                                 24227.905563
[]: fig1 = m.plot(forecast)
```


[]: fig2 = m.plot_components(forecast)


```
[]: from prophet.plot import plot_plotly, plot_components_plotly plot_plotly(m, forecast)
```

[]: plot_components_plotly(m, forecast)

/Users/jorgebarquero/anaconda3/envs/Enae_SeriesTemporales/lib/python3.8/site-packages/plotly/basedatatypes.py:2314: DeprecationWarning:

The append_trace method is deprecated and will be removed in a future version. Please use the add_trace method with the row and col parameters.

/Users/jorgebarquero/anaconda3/envs/Enae_SeriesTemporales/lib/python3.8/site-packages/plotly/basedatatypes.py:2314: DeprecationWarning:

The append_trace method is deprecated and will be removed in a future version. Please use the add_trace method with the row and col parameters.

/Users/jorgebarquero/anaconda3/envs/Enae_SeriesTemporales/lib/python3.8/site-packages/plotly/basedatatypes.py:2314: DeprecationWarning:

The append_trace method is deprecated and will be removed in a future version. Please use the add_trace method with the row and col parameters.

/Users/jorgebarquero/anaconda3/envs/Enae_SeriesTemporales/lib/python3.8/site-packages/plotly/basedatatypes.py:2314: DeprecationWarning:

The append_trace method is deprecated and will be removed in a future version. Please use the add_trace method with the row and col parameters.

/Users/jorgebarquero/anaconda3/envs/Enae_SeriesTemporales/lib/python3.8/site-packages/plotly/basedatatypes.py:2314: DeprecationWarning:

The append_trace method is deprecated and will be removed in a future version. Please use the add_trace method with the row and col parameters.

[]:

8 Evaluación

- 8.1 Evaluación del algoritmo de recomendación
- 8.2 Evaluación de análisis de series temporales

```
m.fit(pd.DataFrame({'ds': X_train, 'y': y_train}))

# Generate predictions for the testing data
future = pd.DataFrame({'ds': X_test})
forecast = m.predict(future)

# Calculate evaluation metrics
mse = mean_squared_error(y_test, forecast['yhat'])
rmse = np.sqrt(mse)
mae = np.mean(np.abs(y_test - forecast['yhat']))

print("Root Mean Squared Error (RMSE):", rmse)
print("Mean Absolute Error (MAE):", mae)
```

```
15:48:40 - cmdstanpy - INFO - Chain [1] start processing
15:48:40 - cmdstanpy - INFO - Chain [1] done processing
Root Mean Squared Error (RMSE): 10316.38561566022
Mean Absolute Error (MAE): 8536.758449511086
```

9 Deployment

[]:	
[]:	