

Trabajo Práctico 1

PROBLEMA 1

[71.14] Modelos y Optimización I Primer cuatrimestre 2022 Grupo 5

Integrantes

Mombru	Melanie	103882
Leloutre	Daniela	96783
Guglielmone	Lionel	96963

Índice

1.	Enunciado	2
2.	Análisis de la situación problemática	3
3.	Objetivo	4
4.	Hipótesis y supuestos	4
5.	Definición de variables y constantes	5
6.	Modelo de programación lineal	6
7.	Resolución por software	7
8.	Resolución gráfica	9
9.	Informe de la solución óptima obtenida	11

1. Enunciado

Una empresa de desarrollo de software se encuentra planificando la ejecución de proyectos para el próximo semestre. Los proyectos son de dos clases diferentes: locales y regionales. Los requisitos de los mismos (en cientos de horas de desarrollo) se encuentran en la siguiente tabla, junto con la disponibilidad:

Recurso	Locales	Regionales	Disponibilidad
Líder de Proyectos	2	4	140
Diseñador UI	2	6	220
Desarrollador Full Stack	16	20	1.000
Tester	4	2	200

Se está planificando la realización de hasta 45 proyectos en total, de los cuales al menos 20 proyectos deben ser locales y al menos 10 deben ser regionales.

La rentabilidad de los proyectos locales y regionales es de \$1.000.000 y \$3.000.000 respectivamente. ¿Qué es lo mejor que puede hacer la empresa?

NOTA: se debe modelizar utilizando dos variables reales continuas para poder realizar una resolución gráfica.

2. Análisis de la situación problemática

Se trata de un problema de planificacion a la produccion en la que se deben distribuir grupos de recursos humanos, cada grupo con una especialidad diferente, para diferentes proyectos, tal como se muestra en el siguiente diagrama:

Figura 1: Recursos humanos disponibles para la empresa y asignacion a proyectos de dos clases

3. Objetivo

DETERMINAR la cantidad de proyectos locales y de proyectos regionales que se deben ejecutar PARA maximizar la rentabilidad total DURANTE el proximo semestre.

4. Hipótesis y supuestos

- Los valores del tiempo son netos, i.e. no hay desperdicio de horas de trabajo
- Las personas que constituyen los recursos no se enferman ni sufren ningun otro tipo de indisposicion que antente contra su productividad ni contra su desempeño en las horas de trabajo
- Todos los especialistas dentro del recurso al que pertenecen son indistinguibles en cuanto a desempeño, performance, productividad y demás atributos
- Se puede utilizar o no el total de la disponibilidad de los recursos dentro del semestre
- No es posible conseguir recursos adicionales en ninguna de sus categorias ni antes, ni durante ni despues de haber sido definido los proyectos
- No existe la posibilidad de que se caigan los proyectos
- No hay secuencialidad en el uso de los recursos
- No hay inflación ni factores economicos o eventos en el mercado laboral que afecten la disponibilidad de los recursos ni la rentabilidad de las dos clases de proyectos
- No hay proyectos fallidos
- No se contemplan costos que no hayan sido mencionados tales como seguros de vida, costo de obra social, etcétera
- Cualquier otro recurso necesario para la conducción de los proyectos no es un factor limitante
- Se pueden vender fracciones de proyecto (divisibilidad)

5. Definición de variables y constantes

Variable	Descripción	Tipo	Unidad
P_L	cantidad de proyectos locales a ejecutar durante un semestre	continua	$rac{proyecto}{semestre}$
P_R	cantidad de proyectos regionales a ejecutar durante un semestre	continua	$rac{proyecto}{semestre}$

6. Modelo de programación lineal

• Función objetivo lineal

$$Z = \$1,000,000 * P_L + \$3,000,000 * P_R \to MAX$$
 (1)

- Restricciones
 - Disponibilidad de Líder de Proyectos

$$2\frac{hs}{proyecto} * P_L + 4\frac{hs}{proyecto} * P_R \le 140\frac{hs}{semestre}$$
 (2)

• Disponibilidad de Diseñador UI

$$2\frac{hs}{proyecto} * P_L + 6\frac{hs}{proyecto} * P_R \le 220\frac{hs}{semestre}$$
(3)

• Disponibilidad de Desarrollador Full Stack

$$16\frac{hs}{proyecto} * P_L + 20\frac{hs}{proyecto} * P_R \le 1000\frac{hs}{semestre}$$
 (4)

• Disponibilidad de Tester

$$4\frac{hs}{proyecto} * P_L + 2\frac{hs}{proyecto} * P_R \le 200 \frac{hs}{semestre}$$
 (5)

• Demanda máxima de proyectos totales

$$P_L + P_R \le 45 \frac{proyecto}{semestre} \tag{6}$$

• Demanda mínima de proyectos locales

$$P_L \ge 20 \frac{proyecto}{semestre} \tag{7}$$

• Demanda mínima de proyectos regionales

$$P_R \ge 10 \frac{proyecto}{semestre} \tag{8}$$

7. Resolución por software

```
/* Declaracion de variables */
var PL >= 0;
var PR >= 0;
/* Definicion del funcional */
maximize z: 1000000*PL+3000000*PR;
/* Restricciones */
/* Procesamiento de cada equipo */
s.t. dispLP: 2*PL + 4*PR <= 140;
s.t. dispDUI: 2*PL + 6*PR <= 220;
s.t. dispDFS: 16*PL + 20*PR <= 1000;
s.t. dispT: 4*PL + 2*PR <= 200;
/* Demandas maximas y minimas */
s.t. maxP: PR + PL \le 45;
s.t. minPL: PL >= 20;
s.t. minPR: PR >= 10;
end;
   Resultado:
    Problem:
                tp1
Rows:
Columns:
Non-zeros: 14
Status:
            OPTIMAL
Objective: z = 95000000 (MAXimum)
```

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	z	В	9.5e+07			
2	dispLP	NU	140		140	750000
3	dispDUI	В	190		220	
4	dispDFS	В	820		1000	
5	dispT	В	130		200	
6	maxP	В	45		45	
7	minPL	NL	20	20		-500000
8	minPR	В	25	10		

No.	Column name	St	Activity	Lower	bound	Upper bound	Marginal
1	PL	В	20		0		
2	PR	В	25		0		

 ${\tt Karush-Kuhn-Tucker\ optimality\ conditions:}$

End of output

8. Resolución gráfica

Figura 2: Resolución gráfica. El punto óptimo se encuentra en la posición (20,25) - todas las restricciones visibles

Figura 3: Código de restricciones por color

Como se puede ver en la Figura 2, hay un conjunto de restricciones que no acotan al polígono más allá de las siguientes tres ecuaciones:

- $P_L + P_R \le 45 \frac{proyecto}{semestre}$
- $P_L \ge 20 \frac{proyecto}{semestre}$
- $P_R \ge 10 \frac{proyecto}{semestre}$

Por lo tanto, dejando de lado el resto de las restricciones, se genera un nuevo gráfico con mayor legibilidad:

Figura 4: Resolución gráfica. El punto óptimo se encuentra en la posición (20,25) - simplificación de restricciones

9. Informe de la solución óptima obtenida

De acuerdo a los resultados obtenidos tanto por la solucion gráfica como por la solucion del software GLPK, se le recomienda al tomador de decisiones de la empresa que realicen 20 proyectos locales y 25 proyectos regionales durante el semestre. Siendo asi, se logra alcanzar una rentabilidad maxima de \$95,000,000.