## Лекция 5 Линейные модели классификации. Часть 2.

Кантонистова Е.О.

#### ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия:  $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- ullet Логистическая регрессия:  $a(x,w) = \sigma(w^Tx)$ ,

где 
$$\sigma(z) = \frac{1}{1+e^{-z}}$$
 - сигмоида (логистическая функция)

#### ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия:  $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- Логистическая регрессия:  $a(x, w) = \sigma(w^T x)$ ,

где  $\sigma(z) = \frac{1}{1+e^{-z}}$  - сигмоида (логистическая функция),

$$\sigma(z) \in (0;1)$$
.



Логистическая регрессия: 
$$a(x, w) = \frac{1}{1+e^{-wT}}$$

### вероятностный смысл

**Утверждение.** a(x,w) – вероятность того, что y=+1 на объекте x, т.е.

$$a(x, w) = P(y = +1|x; w)$$

Доказательство. Дальше в лекции.

#### РАЗДЕЛЯЮЩАЯ ГРАНИЦА

Предсказываем y = +1, если  $a(x, w) \ge 0.5$ .



$$a(x, w) = \sigma(w^T x) \ge 0.5$$
, если  $w^T x \ge 0$ .

Получаем, что

• 
$$y = +1$$
 при  $w^T x \ge 0$ 

• 
$$y = -1$$
 при  $w^T x < 0$ ,

т.е.  $w^T x = 0$  – разделяющая гиперплоскость.

## о логистическая регрессия

О Логистическая регрессия - это линейный классификатор!

#### ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Если взять квадратичную функцию потерь  $L(a,y)=(a-y)^2$ ,

то возникнут проблемы:

- $Q(a,X)=rac{1}{l}\sum_{i=1}^l \left(rac{1}{1+e^{-w^Tx}}-y
  ight)^2$  не выпуклая функция (можем не попасть в глобальный минимум при оптимизации)
- На совсем неправильном предсказании маленький штраф (пусть предсказали вероятность 0% на объекте класса y=+1, тогда штраф всего  $(1-0)^2=1$ )

#### ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Возьмем логистическую функцию потерь (log-loss):

$$Q(w) = -\sum_{i=1}^{l} ([y_i = +1] \cdot \log(a(x_i, w)) + [y_i = -1] \cdot \log(1 - a(x_i, w)))$$





## ЛОГИСТИЧЕСКАЯ ФУНКЦИЯ ПОТЕРЬ



- если a(x,w) = 1 и y = +1, то штраф L(a,y) = 0
- если  $a(x,w) \to 0$ , а y=+1, то штраф  $L(a,y) \to +\infty$



**Предположение:** В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

**Предположение:** В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

**Цель:** построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

**Предположение:** В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

**Цель:** построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

**Комментарий:** пока что мы будем решать задачу в общем виде, то есть у нас нет ограничений на вид алгоритма b(x) и на вид функции потерь L(y,b).

• Пусть объект x встречается в выборке n раз с ответами  $\{y_1, \dots, y_n\}$ . Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

• Пусть объект x встречается в выборке n раз с ответами  $\{y_1, \dots, y_n\}$ . Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По закону больших чисел при  $n o \infty$  получаем

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b)|x]$$

• Пусть объект x встречается в выборке n раз с ответами  $\{y_1, ..., y_n\}$ . Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По закону больших чисел при  $n o \infty$  получаем

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b)|x]$$

Отсюда получаем условие на функцию потерь:

$$\operatorname{argmin} E[L(y,b)|x] = p(y = +1|x)$$

### ФУНКЦИИ ПОТЕРЬ

#### Подходят:

**У** Квадратичная

$$L(y,z) = (y-z)^2$$

• Логистическая (log-loss)

$$L(y,z) = [y = +1] \cdot \log(b(x,w)) + [y = -1] \cdot \log(1 - b(x,w))$$

#### Не подходят:

• Модуль

$$L(y, z) = |y - z|$$

## № ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

## ¬ ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

Правдоподобие выборки:

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]}$$

## ФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_{b}$$

## рфункция потерь для обучения

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_{b}$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

## рфункция потерь для обучения

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_{b}$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

$$-\sum_{i=1}^{t} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

## рФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

$$-\sum_{i=1}^{t} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

**Вывод:** логистическая функция потерь корректно предсказывает вероятности.

## ВЫБОР АЛГОРИТМА b(x)

ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].

#### ВЫБОР АЛГОРИТМА b(x)

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять  $b(x) = \sigma(w^T x)$ , где  $\sigma$  любая монотонно неубывающая функция с областью значений [0,1].

### ВЫБОР АЛГОРИТМА b(x)

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять  $b(x) = \sigma(w^T x)$ , где  $\sigma$  любая монотонно неубывающая функция с областью значений [0,1].
- Возьмем *сигмоиду*:  $\sigma(z) = \frac{1}{1 + e^{-z}}$



## СМЫСЛ (w, x) В ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

- Логистическая регрессия в каждой точке x предсказывает вероятность того, что x принадлежит положительному классу p(y=+1|x).
- То есть  $p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$ . Отсюда можно выразить  $(w, x) = w^T x$ :

$$(w, x) = w^T x = \log \frac{p(y = +1|x)}{p(y = -1|x)}$$

## СМЫСЛ (w, x) В ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

- Логистическая регрессия в каждой точке x предсказывает вероятность того, что x принадлежит положительному классу p(y=+1|x).
- То есть  $p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$ . Отсюда можно выразить  $(w, x) = w^T x$ :

$$(w, x) = w^T x = \log \frac{p(y = +1|x)}{p(y = -1|x)}$$

• Величина  $\log \frac{p(y=+1|x)}{p(y=-1|x)}$  называется **логарифм отношения шансов (log odds)**. Из формулы видно, что величина может принимать любое значение.

## ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ ПОТЕРЬ

**Утверждение.** Логарифмическая функция потерь может быть записана в виде

$$L(b,X) = \sum_{i=1}^{l} \log(1 + e^{-y_i(w,x)})$$

#### Идея доказательства:

Подставляем явный вид сигмоиды в логарифмическую функцию потерь:

$$-\sum_{i=1}^{l} ([y_i = +1] \log \sigma(w^T x_i) + [y_i = -1] \log (1 - \sigma(w^T x_i))) \to \min_{w}$$



## > ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров  $w^*$ , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.



Цель метода опорных векторов (Support Vector Machine) –
 максимизировать ширину разделяющей полосы.



- $a(x) = sign((w, x) + w_0)$
- lacktriangle Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

- $a(x) = sign((w, x) + w_0)$
- $^{ullet}$  Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки  $x_0$  до разделяющей гиперплоскости, задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$



• Нормируем параметры w и  $w_0$  так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки  $x_0$  до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта  $x \in X$ :

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

## разделяющая полоса



#### ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

**Утверждение.** Данная оптимизационная задача имеет единственное решение.

# ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

ullet Существует хотя бы один объект  $x \in X$ , что  $y_i ig( (w, x_i) + w_0 ig) < 1$ 

# ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект  $x \in X$ , что  $y_i \big( (w, x_i) + w_0 \big) < 1$ 



## ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект  $x \in X$ , что  $y_i \big( (w, x_i) + w_0 \big) < 1$ 

Смягчим ограничения, введя штрафы  $\xi_i \ge 0$ :

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

# МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

#### О Хотим:

- ullet Минимизировать штрафы  $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ  $\frac{1}{||w||}$

# МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

#### Хотим:

- ullet Минимизировать штрафы  $\sum_{i=1}^{l} \xi_i$
- ullet Максимизировать отступ  $\frac{1}{||w||}$

Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

#### МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

# СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} (1) \\ y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l (2) \\ \xi_i \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) = 1 - M_i \\ \xi_i \ge 0 \end{cases}$$

# СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

# СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} (1) \\ y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l (2) \\ \xi_i \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

Получаем безусловную задачу оптимизации:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^{\infty} \max(0, 1 - y_i((w, x_i) + w_0)) \to \min_{w, w_0}$$

# » МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь  $L(M) = max(0,1-M) = (1-M)_+$  с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$



$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.











#### ь ТИПЫ ОБЪЕКТОВ В SVM

