Отчет по части II

Шаяхметов Аскар

Гипотезы:

- H_0 : данные из распределения skewnorm с параметром $\alpha=1$
- H_1 : данные из распределения student_t с параметром $\nu=3$

Параметры исследования:

- Тип графа: dist-граф с параметром d = 0.5
- Размеры выборок: n = 25, 100, 500
- Количество выборок на класс: 500

Исследуемые характеристики графов:

- $\Delta(G)$ максимальная степень вершины
- $\delta(G)$ минимальная степень вершины
- ullet c(G) количество компонент связности
- t(G) количество треугольников
- \bullet diam(G) диаметр графа
- $\lambda(G)$ рёберная связность
- $\omega(G)$ кликовое число

1 Результаты

1.1 Анализ важности характеристик

Анализ важности характеристик с использованием Random Forest показал следующие результаты:

Основные наблюдения:

- Для малых выборок (n=25) наиболее важной характеристикой является количество треугольников t(G) (42.5% важности)
- С ростом размера выборки важность максимальной степени $\Delta(G)$ увеличивается: от 17% при n=25 до 29.6% при n=500
- Минимальная степень $\delta(G)$ практически теряет значение с ростом n

1.2 Сравнение классификаторов

Для оценки качества классификации использовались следующие алгоритмы: Random Forest, Logistic Regression и Neural Network. Результаты представлены на графике:

Основные выводы по классификации:

- Для малых выборок (n=25) все классификаторы показывают умеренное (≈ 0.83) качество с высокой ошибкой первого рода ($\alpha > 0.14$)
- При n=100 качество классификации резко улучшается, ошибка первого рода снижается до уровня ($\alpha\approx0.01$)
- Для больших выборок (n=500) все классификаторы показывают практически идеальное качество

1.3 Анализ распределений характеристик

Гистограммы распределений характеристик графов показывают четкое разделение между гипотезами H_0 и H_1 для нектороых характеристик.

- ullet Максимальной степени $\Delta(G)$ разделение улучшается при увеличении n
- Количества треугольников t(G) четкое разделение для n=500
- Диаметра графа $\operatorname{diam}(G)$ приемлемое разделение
- Кликового числа $\omega(G)$ для n=500 хорошее разделение

С увеличением размера выборки разделение между распределениями становится более выраженным, что объясняет улучшение качества классификации.

2 Выводы

Анализ результатов показал следующее:

- Для n=25: ни один классификатор не удовлетворяет условию $\alpha \leq 0.05$
- Для n=100: лучший классификатор Random Forest с ошибкой первого рода $\alpha=0.008$ и мощностью 0.991
- Для n=500: лучший классификатор Neural Network (два скрытых слоя размерами 50 и 30) с ошибкой первого рода $\alpha=0.000$ и мощностью 0.999