

Dual Operational Amplifiers

Check for Samples: LM158, LM258, LM258A, LM358, LM358A, LM2904, LM2904V

FEATURES

- Wide Supply Ranges
 - Single Supply: 3 V to 32 V (26 V for LM2904)
 - Dual Supplies: ±1.5 V to ±16 V (±13 V for LM2904)
- Low Supply-Current Drain, Independent of Supply Voltage: 0.7 mA Typ
- Wide Unity Gain Bandwidth: 0.7MHz
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
- Low Input Bias and Offset Parameters
 - Input Offset Voltage: 3 mV Typ
 A Versions: 2 mV Typ
 - Input Offset Current: 2 nA Typ
 - Input Bias Current: 20 nA Typ
 A Versions: 15 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32 V (26 V for LM2904)
- Open-Loop Differential Voltage Gain: 100dB Typ
- Internal Frequency Compensation
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

LM158, LM158A...JG Package LM258, LM258A...D, DGK, or P Package LM358...D, DGK, P, PS, or PW Package LM358A...D, DGK, P, or PW Package LM2904...D, DGK, P, PS, or PW Package (Top View)

DESCRIPTION

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2904), and $V_{\rm CC}$ is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

LM158, LM158A . . . FK Package (Top View)

NC - No internal connection

SLOS068S - JUNE 1976 - REVISED MAY 2013

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Symbol (Each Amplifier)

Schematic (Each Amplifier)

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		LM158, LM158A LM258, LM258A LM358, LM358A LM2904V	LM2904	UNIT
Supply voltage, V _{CC} ⁽²⁾		±16 or 32	±13 or 26	V
Differential input voltage, V _{ID} ⁽³⁾		±32	±26	V
Input voltage, V _I (either input)		-0.3 to 32	-0.3 to 26	V
Duration of output short circuit (one amplifier) to ground at ((or below) $T_A = 25^{\circ}C, V_{CC} \le 15 V^{(4)}$	Unlimited	Unlimited	
	D package	97	97	
	DGK package	172	172	
Package thermal impedance, $\theta_{JA}^{(4)(5)}$	P package	85	85	°C/W
	PS package	95	95	
	PW package	149	149	
	D package	72.2		
Package thermal impedance, θ_{JC} $^{(6)(7)}$	FK package	5.61		°C/W
	JG package	14.5		
	LM158, LM158A	-55 to 125		
Or continue for a circle or continue or a co	LM258, LM258A	-25 to 85		°C
Operating free air temperature range. T _A	LM358, LM358A	0 to 70		
	LM2904	-40 to 125	-40 to 125	
Operating virtual junction temperature, T _J		150	150	°C
Case temperature for 60 seconds	FK package	260		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300	300	°C
Storage temperature range, T _{stq}		-65 to 150	-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.

Differential voltages are at IN+, with respect to IN-.

Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) - T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(7) The package thermal impedance is calculated in accordance with MIL-STD-883.

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient (5) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V

SLOS068S - JUNE 1976-REVISED MAY 2013

Electrical Characteristics

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DARAMETER	TEST SOME	NITIONO(1)	T _A ⁽²⁾	LM ²	158 LM258			LM358		LINUT
	PARAMETER	TEST CONE	DITIONS	I A ⁽²⁾	MIN	TYP(3)	MAX	MIN	TYP(3)	MAX	UNIT
	land offert values	V _{CC} = 5 V to MAX,	V _{IC} = V _{ICR} min,	25°C		3	5		3	7	\/
V _{IO}	Input offset voltage	V _O = 1.4 V		Full range			7			9	mV
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7			7		μV/°C
	land that were	V 44V		25°C		2	30		2	50	- 0
I _{IO}	Input offset current	V _O = 1.4 V		Full range			100			150	nA
αl _{IO}	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
1	Input bias current	V _O = 1.4 V		25°C		-20	-150		-20	-250	nA
I _{IB}	input bias current	V _O = 1.4 V		Full range			-300			-500	IIA
V	Common-mode input voltage range	V - F.V.+o MAY		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			٧
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} – 2			0 to V _{CC} - 2			V
		$R_L \ge 2 k\Omega$		25°C	V _{CC} - 1.5			V _{CC} - 1.5			
V	High level autout valtage	R _L ≥ 10 kΩ		25°C							V
V _{OH}	High-level output voltage	V NAAV	$R_L = 2 k\Omega$	Full range	26			26			V
		V _{CC} = MAX	R _L ≥ 10 kΩ	Full range	27	28		27	28		
V_{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
	Large-signal differential voltage	V _{CC} = 15 V		25°C	50	100		25	100		
A _{VD}	amplification	$V_O = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	25			15			V/mV
CMRR	Common-mode rejection ratio	V_{CC} = 5 V to MAX, V_{IC} = $V_{ICR(min)}$		25°C	70	80		65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	V _{CC} = 5 V to MAX		25°C	65	100		65	100		dB
V_{O1}/V_{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz	<u>'</u>	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30		-20	-30		
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			mA
I_{O}	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		IIIA
		$V_{ID} = -1 V,$ $V_{O} = 15 V$	Sink	Full range	5			5			
		$V_{ID} = -1 \text{ V}, V_{O} = 200 \text{ mV}$		25°C	12	30		12	30		μΑ
I _{os}	Short-circuit output current	V_{CC} at 5 V, V_{O} = 0, GND at -5 V		25°C		±40	±60		±40	±60	mA
		V _O = 2.5 V, No load	t	Full range		0.7	1.2		0.7	1.2	
I _{CC}	Supply current (two amplifiers)	V _{CC} = MAX, V _O = 0 No load	.5 V _{CC} ,	Full range		1	2		1	2	mA

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.

(2) Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, and 0°C to 70°C for LM358, and -40°C to 125°C for LM2904.

(3) All typical values are at T_A = 25°C

Electrical Characteristics

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDIT	TIONS(1)	T _A ⁽²⁾	LN	12904		UNIT	
	PARAMETER	IEST CONDI	IION5 ⁽¹⁾	I _A (-)	MIN	TYP(3)	MAX	UNII	
			Non-A-suffix	25°C		3	7		
,	land effect of the se	$V_{CC} = 5 \text{ V to MAX},$	devices	Full range			10	>/	
/ _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		25°C		1	2	mV	
			A-suffix devices	Full range			4		
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		7		μV/°C	
				25°C		2	50		
		Non-V device		Full range			300		
Ю	Input offset current	V _O = 1.4 V		25°C		2	50	nA	
			V-suffix device	Full range			150		
αl _{IO}	Average temperature coefficient of input offset current			Full range		10		pA/°C	
				25°C		-20	-250		
I _{IB}	Input bias current	V _O = 1.4 V		Full range			-500	nA	
				25°C	0 to V _{CC} – 1.5				
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} – 2			V	
		R _L ≥ 10 kΩ		25°C	V _{CC} - 1.5				
		V _{CC} = MAX,	$R_L = 2 k\Omega$	Full range	22				
OH High-level	High-level output voltage	Non-V device	R _L ≥ 10 kΩ	Full range	23	24		V	
	ingi ioroi oapat rollago	V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26				
		V-suffix device	R _L ≥ 10 kΩ	Full range	27	28			
V _{OL}	Low-level output voltage	R₁ ≤ 10 kΩ		Full range		5	20	mV	
		V _{CC} = 15 V,		25°C	25	100			
A _{VD}	Large-signal differential voltage amplification	$V_O = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	15			V/mV	
OMBB	Occurred and a relication action	V _{CC} = 5V to MAX,	Non-V device	25°C	50	80		-10	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$	V-suffix device	25°C	65	80		dB	
K _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	V _{CC} = 5 V to MAX		25°C	65	100		dB	
V ₀₁ / V ₀₂	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB	
		V _{CC} = 15 V,		25°C	-20	-30			
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10				
	Output current	V _{CC} = 15 V,		25°C	10	20		mA	
0		$V_{ID} = -1 V,$ $V_{O} = 15 V$	Sink	Full range	5				
		$V_{ID} = -1 \text{ V}, V_{O} = 200 \text{ mV}$	Non-V device	25°C		30			
		v _{ID} = -1 v, v _O = 200 mv	V-suffix device	25°C	12	40		μΑ	
os	Short-circuit output current	V _{CC} at 5 V, V _O = 0, GND at	-5 V	25°C		±40	±60	mA	
	Ourselve surrent (four executions)	V _O = 2.5 V, No load		Full range		0.7	1.2		
CC	Supply current (four amplifiers)	$V_{CC} = MAX, V_O = 0.5 V_{CC}, N$	No load	Full range		1	2	mA	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 32 V for LM2902V. Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, 0°C to 70°C for LM358, and –40°C to 125°C for LM2904.

⁽³⁾ All typical values are at $T_A = 25$ °C.

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V

SLOS068S - JUNE 1976-REVISED MAY 2013

Electrical Characteristics

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	ADAMETED	TEST SON	DITIONS(1)	T (1)	LI	V158A			LM258A		UNIT	
۲	PARAMETER	TEST CON	DITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNII	
		V _{CC} = 5 V to 30 \	/,	25°C			2		2	3		
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		Full range			4			4	mV	
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7	15 ⁽³⁾		7	15	μΑ/°C	
I _{IO}	Input offset current	V _O = 1.4 V		25°C		2	10		2	15	nA	
IO	input onset current	V0 - 1.4 V		Full range			30			30	ПА	
αI_{IO}	Average temperature coefficient of input offset current			Full range		10	200		10	200	pA/°C	
I _{IB}	Input bias current	V _O = 1.4 V		25°C		-15	-50		-15	-80	nA	
ΊΒ	input bias current	V0 - 1.4 V		Full range			-100			-100	ПА	
V	Common-mode	V _{CC} = 30 V		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V	
V_{ICR}	input voltage range	V _{CC} = 30 V		Full range	0 to V _{CC} – 2			0 to $V_{CC} - 2$			V	
		out $R_{L} \ge 2 k\Omega$ $V_{CC} = 30 \text{ V}$ $R_{L} = 2k\Omega$		25°C	V _{CC} - 1.5			V _{CC} – 1.5			-	
V_{OH}	High-level output voltage			Full range	26			26			V	
		V _{CC} = 30 V	R _L ≥ 10kΩ		27	28		27	28			
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV	
^	Large-signal	V _{CC} = 15 V, V _O =	1 V to 11 V,	25°C	50	100		50	100		V/mV	
A_{VD}	differential voltage amplification	$R_L \ge 2 k\Omega$		Full range	25			25			V/IIIV	
CMRR	Common-mode rejection ratio			25°C	70	80		70	80		dB	
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_D / \Delta V_{IO})$			25°C	65	100		65	100		dB	
$V_{\rm O1}/V_{\rm O2}$	Crosstalk attenuation	f = 1 kHz to 20 kl	Hz	25°C		120			120		dB	
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60		
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			A	
Io	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		mA	
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5				
		$V_{ID} = -1 V, V_O =$	200 mV	25°C	12	30		12	30		μΑ	
los	Short-circuit output current	V _{CC} at 5 V, GND at –5 V, V _O = 0		25°C		±40	±60		±40	±60	mA	
	Cumply assessed #	V _O = 2.5 V, No Io	ad	Full range		0.7	1.2		0.7	1.2		
I _{CC}	Supply current (four amplifiers)	Voc = MAX V Vo = 0.5 V		Full range		1	2		1	2	mA	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

 ⁽²⁾ All typical values are at T_A = 25°C.
 (3) On products compliant to MIL-PRF-38535, this parameter is not production tested.

Electrical Characteristics

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST SOL	IDITIONS(1)	T (2)	LM	358A		
	PARAMETER	TEST COM	NDITIONS ⁽¹⁾	T _A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	UNIT
		V _{CC} = 5 V to 30 V,		25°C		2	3	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		Full range			5	mV
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		7	20	μΑ/°C
	lanut affact august	V _O = 1.4 V		25°C		2	30	nA
I _{IO}	Input offset current	V _O = 1.4 V		Full range			75	nA
αl _{IO}	Average temperature coefficient of input offset current			Full range		10	300	pA/°C
	Input bias current	V _O = 1.4 V		25°C		-15	-100	nA
I _{IB}	input bias current	V _O = 1.4 V		Full range			-200	nA
V _{ICR}	Common-mode input	V _{CC} = 30 V		25°C	$V_{CC} - 1.5$			V
VICR	voltage range	V _{CC} = 30 V		Full range	$_{\text{CC}}$ - 2			V
		$R_L \ge 2 k\Omega$		25°C	V _{CC} - 1.5			
V _{OH}	High-level output voltage	V _{CC} = 30 V	$R_L=2k\Omega$	Full range	Full range 26			V
		V _{CC} = 30 V	R _L ≥ 10kΩ	Full range	27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20	mV
A _{VD}	Large-signal differential	V _{CC} = 15 V, V _O = 1 V	to 11 V,	25°C	25	100		V/mV
7.00	voltage amplification	$R_L \ge 2 k\Omega$		Full range	15			¥7111¥
CMRR	Common-mode rejection ratio			25°C	65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$			25°C	65	100		dB
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			mA
Io	Output current	V _{CC} = 15 V,		25°C	10	20		IIIA
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			
		V _{ID} = -1 V, V _O = 200 mV		25°C		30		μΑ
Ios	Short-circuit output current	V _{CC} at 5 V, GND at –5 V, V _O = 0		25°C		±40	±60	mA
	Owner has a second of the second	V _O = 2.5 V, No load		Full range		0.7	1.2	
I _{cc}	Supply current (four amplifiers)	$V_{CC} = MAX V, V_{O} = 0$ No load	0.5 V,	Full range		1	2	mA

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

Operating Conditions, $V_{CC} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	, 33	· 1		
	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V}$ (see Figure 1)	0.3	V/µs
B ₁	Unity-gain bandwidth	$R_L = 1 M\Omega$, $C_L = 20 pF$ (see Figure 1Figure 1)	0.7	MHz
V_n	Equivalent input noise voltage	$R_S = 100 \Omega$, $V_I = 0 V$, $f = 1 kHz$ (see Figure 2)	40	nV/√Hz

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others. (3) All typical values are at $T_A = 25^{\circ}C$.

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit

Typical Characteristics

Figure 3.

Figure 6.

Figure 7. Min & Max Gain Over Temperature Range

Figure 8.

Typical Characteristics (continued)

Figure 9.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

SLOS068S - JUNE 1976-REVISED MAY 2013

Typical Characteristics (continued)

Figure 15. Figure 16.

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068S – JUNE 1976–REVISED MAY 2013

REVISION HISTORY

CI	hanges from Revision R (July 2010) to Revision S	Page
•	Converted this data sheet from the QS format to DocZone using the PDF on the web.	1
•	Updated Features.	1
•	Added ESD warning.	2
•	Deleted Ordering Information table.	2
•	Added Package thermal impedance information, θ _{JC} for D package.	3
•	Added Typical Characteristics Section	9

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-87710012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Sample
5962-8771001PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771001PA LM158	Sample
5962-87710022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Sample
5962-8771002PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Sample
LM158AFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
LM158AJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LM158AJG	Samples
LM158AJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
LM158JG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LM158JG	Samples
LM158JGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771001PA LM158	Sample
LM258AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-25 to 85	(M3L ~ M3P ~ M3S ~ M3U)	Sample
LM258ADGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	(M3L ~ M3P ~ M3S ~ M3U)	Samples
LM258ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
LM258ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Sample
LM258ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Sample
LM258AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Sample
LM258APE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Sample
LM258D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-25 to 85	(M2L ~ M2P ~ M2S ~ M2U)	Sample
LM258DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	(M2L ~ M2P ~ M2S ~ M2U)	Sample
LM258DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DRE4	ACTIVE	SOIC	D	8		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Sample
LM258P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258P	Sample
LM258PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258P	Sample
LM2904AVQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Sample

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(MBL ~ MBP ~ MBS ~ MBU)	Samples
LM2904DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(MBL ~ MBP ~ MBS ~ MBU)	Samples
LM2904DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	-40 to 125		
LM2904PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904QD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LM2904QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	-40 to 125		
LM2904VQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM358AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(M6L ~ M6P ~ M6S ~ M6U)	Sample
LM358ADGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	(M6L ~ M6P ~ M6S ~ M6U)	Sample
LM358ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	LM358A	Sample
LM358ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Sample
LM358ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Sample

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
LM358AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(M5L ~ M5P ~ M5S ~ M5U)	Samples
LM358DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	(M5L ~ M5P ~ M5S ~ M5U)	Samples
LM358DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	LM358P	Samples

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM358PE3	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	LM358P	Samples
LM358PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LM358P	Samples
LM358PSLE	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI	0 to 70		
LM358PSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		
LM358PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

9-Mar-2014

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM258A, LM2904:

Automotive: LM2904-Q1

Enhanced Product: LM258A-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

11-Feb-2014

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

11-Feb-2014

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

11-Feb-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM258ADGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM258ADR	SOIC	D	8	2500	367.0	367.0	35.0
LM258ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM258ADRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM258ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM258DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM258DR	SOIC	D	8	2500	367.0	367.0	35.0
LM258DR	SOIC	D	8	2500	364.0	364.0	27.0
LM258DR	SOIC	D	8	2500	340.5	338.1	20.6
LM258DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM258DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM2904AVQPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904AVQPWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM2904DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM2904DR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904DR	SOIC	D	8	2500	367.0	367.0	35.0
LM2904DRG3	SOIC	D	8	2500	364.0	364.0	27.0

PACKAGE MATERIALS INFORMATION

11-Feb-2014

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2904DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2904DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM2904PSR	SO	PS	8	2000	367.0	367.0	38.0
LM2904PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904QDR	SOIC	D	8	2500	367.0	367.0	35.0
LM2904VQPWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358ADGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM358ADR	SOIC	D	8	2500	364.0	364.0	27.0
LM358ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM358ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM358ADRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM358APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358APWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM358DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358DR	SOIC	D	8	2500	367.0	367.0	35.0
LM358DR	SOIC	D	8	2500	340.5	338.1	20.6
LM358DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM358DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM358DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM358PSR	SO	PS	8	2000	367.0	367.0	38.0
LM358PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

