- Formalni matematički sistem za prikazivanje brojeva
- Skup simbola i sintaksna pravila
- Omogućava da pomoću simbola i pravila prikažemo svaki prirodan broj i 0

1. Nepozicioni

Svojstvo cifre ne zavisi od pozicije na kojoj se nalazi

Primer: Rimski brojevi

2. Pozicioni ili težinski

Pozicioni brojni sistemi su oni u kojima se težina cifre (njen udeo u celokupnoj vrednosti broja) određuje na osnovu njene pozicije u broju (što veća pozicija to je veći i udeo u vrednosti broja)

- Sa osnovom
- Bez osnove

- \Box A = {c1, c2, c3, ., cb}
- A skup cifara brojnog sistema
- b osnova brojnog sistema, broj cifara tog brojnog sistema
- Osnova naziv brojnog sistema
 - 2 binarni
 - 8 oktalni
 - 10 decimalni
 - 16 heksadecimalni

Naziv	Osnova	Cifre
binarni	2	0,1
oktalni	8	0, 1, 2, 3, 4, 5, 6, 7
decimalni	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
heksadecimalni	16	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F

Reprezentacija celog broja

□ Radix - reprezentacija celog broja

$$B = \sum_{i=0}^{n-1} a_i b^i$$

- lacksquare \mathcal{A}_i je cifra brojnog sistema
- lacksquare je osnovica brojnog sistema
- \mathbf{n} je broj cifara celog broja

Reprezentacija razlomljenog broja

Radix - reprezentacija razlomljenog broja

$$B = \sum_{i=-m}^{n-1} a_i b^i$$

- $\square a_i$ je cifra brojnog sistema
- $\square b$ je osnovica brojnog sistema
- \square *n* je broj cifara celobrojnog dela broja *B*
- \square_m je broj cifara razlomljenog dela broja

Reprezentacija razlomljenog broja

Radix - reprezentacija razlomljenog broja

$$B = \sum_{i=-m}^{n-1} a_i b^i = \sum_{i=0}^{n-1} a_i b^i + \sum_{i=-m}^{-1} a_i b^i$$
 Celobrojni deo

Pozicija cifre

Pozicija cifre = težina u izražavanju količinskih svojstava

Decimalni brojni sistem

Binarni brojni sistem

Pretvaranje zapisa

- □ Iz brojnog sistema sa osnovom b u dekadski brojni sistem
 - Sve cifre se pretvore u dekadski zapis
 - Osnova se prikaže u dekadskom zapisu

$$(101011)_2 = 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 43$$

 $(143)_7 = 1*7^2 + 4*7^1 + 3*7^0 = 80$
 $(123)_{16} = 1*16^2 + 2*16^1 + 3*16^0 = 291$

Primer 1.

- □ Prevođenje iz osnova 2, 16, 13 i 8 u osnovu 10:
 - **(1101)**₂
 - **(1101)**₁₆
 - (F9A)₁₆
 - \blacksquare (642)₁₃
 - **■** (642)₈

Primer 1.

- □ Prevođenje iz osnova 2, 16, 13 i 8 u osnovu 10:
 - $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (13)_{10}$
 - $(1101)_{16} = 1*16^3 + 1*16^2 + 0*16^1 + 1*16^0 = 4096 + 256 + 1 = (4353)_{10}$
 - $(F9A)_{16} = F*16^2 + 9*16^1 + A*16^0 = 15*16^2 + 9*16^1 + 10*16^0 = (3994)_{10}$
 - \blacksquare (642)₁₃ =6*13²+4*13¹+2*13⁰=(1068)₁₀
 - \blacksquare (642)₈= 6*8²+4*8¹+2*8⁰=(418)₁₀

Primer 2.

- Koji je dekadni ekvivalent binarnog broja 1011011?
 - $(1011011)_2 = 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2$ $+ 1 \times 2^1 + 1 \times 2^0 = 64 + 16 + 8 + 2 + 1 = (91)_{10}$

Rad sa realnim brojevima

- Kada radimo sa realnim brojevima možemo posebno posmatrati ceo deo broja i razlomljeni deo broja.
 - $(0,1101)_2 = 0*2^0+1*2^{-1}+1*2^{-2}+0*2^{-3}+1*2^{-4}=(0,8125)_{10}$
 - $(1,01)_2 = 1*2^0+0*2^{-1}+1*2^{-2} = 1*2^0+0*2^{-1}+\frac{1}{2^2}$ =1,25

Primer 3.

- Prebacite sledeće brojeve u dekadni brojni sistem (indeks predstavlja osnovu u kojoj su brojevi zapisani)
 - \blacksquare (10111,01)₂
 - \blacksquare (ACA,5)₁₆
 - \blacksquare (734,25)₈

Primer 3.

- □ Prebacite sledeće brojeve u dekadni brojni sistem (indeks predstavlja osnovu u kojoj su brojevi zapisani)
 - $(10111,01)_2 = 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} = 16 + 4 + 2 + 1 + \frac{1}{2^2} = (23,25)_{10}$
 - $(ACA,5)_{16} = A*16^{2} + C*16^{1} + A*16^{0} + 5*16^{-1}$ $= 10*16^{2} + 12*16^{1} + 10*16^{0} + 5*16^{-1}$ $= (2762,3125)_{10}$
 - $(734,28)_8 = 7*8^2 + 3*8^1 + 4*8^0 + 2*8^{-1} + 5*8^{-2}$ $= (476,328125)_{10}$

Pretvaranje zapisa

Iz dekadskog brojnog sistema u brojni sistem sa osnovom *b*

- ☐ Pretvaranje celobrojnog dela broja
 - Vrši se uzastopno deljenje dekadske vrednosti broja, sa brojem *b*, koji predstavlja osnovicu brojnog sistema u koji se pretvara broj *B*
 - Ostaci pri deljenju, predstavljaju dekadske vrednosti cifara broja u brojnom sistemu sa osnovom *b*
 - \blacksquare Dekadska vrednost ostatka, pretvara se u cifru brojnog sistema sa osnovom b
 - Postupak se završava kada je rezultat deljenja jednak nuli
 - Broj, u brojnom sistemu sa osnovom *b*, dobija se kao niz cifara koje predstavljaju ostatke pri uzastopnom deljenju, pri čemu niz počinje od poslednjeg dobijenog ostatka, a završava se sa prvim ostatkom

Pretvaranje zapisa

Primer 4.

- □ Prevođenje iz dekadnog u binarni brojni sistem
 - $(143)_{10} = (?)_2$

143	:2
71	1
35	1
17	1
8	1
4	0
2	0
1	0
0	1

 $(143)_{10} = (10001111)_2$

Primer 6.

Prevođenje iz dekadnog u heksadekadni brojni sistem $(181)_{10} = (?)_{16}$

181	:16
11	5
0	11(B)

heksadekadna cifra B

$$(181)_{10} = (B5)_{16}$$

Primer 7.

- a. Odredite binarnu reprezentaciju broja: $(126)_{10}$
- b. Odredite oktalnu prezentaciju broja: $(67)_{10}$,
- c. Odredite heksadekadnu prezentaciju broja: $(332)_{10}$

Primer 7a.

$$(126)_{10} = (?)_2$$

126	:2
63	0
31	1
15	1
7	1
3	1
1	1
0	1

Binarna reprezentacija broja

$$(126)_{10} = (11111110)_2$$

Primer 7b.

\Box (67)₁₀=(?)₈

67	:8
8	3
1	0
0	1

Oktalna reprezentacija broja

$$(67)_{10} = (103)_8$$

Primer 7c.

\square (332)₁₀=(?)₁₆

332	:16
20	12(C)
1	4
0	1

Heksadekadna reprezentacija broja

$$(332)_{10} = (14C)_{16}$$