

FACULTAD DE CIENCIAS ÁLGEBRA LINEAL 1

Tarea 07

Semestre 2024 - 1

Profesora:

Mindy Yaneli Huerta Pérez

Ayudantes:

Elizabeth Chalnique Ríos Alvarado Gilbert Raúl Avendaño Aguilar Aldair Reyes Gónzalez

Alumnos:

Paul César Cabañas Segura Marco Silva Huerta José Luis Cruz Mayen

24 de Noviembre de 2023

Ejercicio 1

Considérense las siguientes bases de \mathbb{R}^3

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$\gamma = \{(1,0,1), (2,1,2), (1,2,2)\}$$

Y la transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x, y, z) = (2x, x + y, y + z)

- 1. Encuentra la matriz de cambio de coordenadas de la base β y γ Solución:
- 2. Encuentra la matriz de cambio de coordenadas de la base γ y β Solución :
- 3. Comprueba que $[T]_{\gamma}=Q^{-1}\left[T\right]_{\beta}Q$ Solución:

Ejercicio 2

Considera la transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^2$ dada por T(x,y,z)=(2x-y,3y-z) Considérense las siguientes bases de \mathbb{R}^3 y \mathbb{R}^2

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$\beta' = \{(1,3,2), (0,1,2), (1,0,1)\}$$

$$\gamma = \{(1,1), (2,1)\}$$

$$\gamma' = \{(3,1), (1,4)\}$$

1. Encuentra las matrices de cambios de coordenadas

Solución:

2. Calcula las bases duales de β y γ

Solución:

3. Dada T^t la función transpuesta de T, comprueba que $[T^t]_{\gamma*}^{\beta*} = \left([T]_{\beta}^{\gamma}\right)^t$ Solución:

Ejercicio 3

1. Encuentra la base dual de \mathbb{R}^2 , $\beta = \{(1,2),(3,4)\}$

Solución:

La base dual de un espacio vectorial es un conjunto de formas lineales (funciones lineales que toman vectores y devuelven escalares) que actúan sobre los vectores de la base original. Para una base $\beta = \{v_1, v_2\}$ en \mathbb{R}^2 , la base dual $\beta^* = \{f_1, f_2\}$ se define tal que $f_i(v_j) = \delta_{ij}$, donde δ_{ij} es la delta de Kronecker que es 1 si i = j y 0 en caso contrario.

Para nuestra base $\beta = \{(1,2),(3,4)\}$ podemos encontrar la base dual resolviendo el sistema de ecuaciones lineales para $f_i(v_j) = \delta_{ij}$.

$$f_1((1,2)) = 1$$

$$f_1((3,4)) = 0$$

$$f_2((1,2)) = 0$$

$$f_2((3,4)) = 1$$

Resolviendo este sistema, obtenemos la base dual

$$\beta^* = \{(2, -1), \left(\frac{-3}{2}, 1\right)\}$$

2. Encuentra la base β de $V=P_1(\mathbb{R})$ cuya base dual es $\beta^*=\{f_1,f_2\}$, siendo $f_1[p(x)]=\int_0^1 p(x)\,dx$ y $f_2[p(x)]=\int_0^2 p(x)\,dx$

Solución: