

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo Diferencial e Integral

Professora: Juliana Aragão

Curso: Sistemas de Informação

Aula 5- Parte 5: Limites no Infinito

x	f(x)
0	-1
±1	0
±2	0,600000
±3	0,800000
±4	0,882353
±5	0,923077
±10	0,980198
±50	0,999200
±100	0,999800
±1000	0,999998

- Quanto maior o valor de x, mais próximos de 1 ficam os valores de f(x).
- Podemos tornar os valores de f(x) tão próximos de 1 quanto quisermos se tornarmos x suficientemente grande.

•
$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

Definição 1: Seja f uma função definida em algum intervalo (a, ∞) . Então

$$\lim_{x \to \infty} f(x) = L$$

significa que os valores de f(x) ficam arbitrariamente próximos de L tomando x suficientemente grande.

Definição 2: Seja f uma função definida em algum intervalo $(-\infty, a)$. Então

$$\lim_{x \to -\infty} f(x) = L$$

significa que os valores de f(x) ficam arbitrariamente próximos de L tomando x suficientemente grande em valor absoluto, mas com valores negativos.

Definição: A reta y = L é chamada assíntota horizontal da curva y = f(x) se

$$\lim_{x \to \pm \infty} f(x) = L$$

Teorema 1: Se r > 0 for um número racional, então

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

Se r > 0 for um número racional tal que x^r esteja definido para todo x, então

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

Exemplo 1:

Exemplo 2:

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

Exemplo 3:

$$\lim_{x \to \infty} \sqrt{x^2 + 1} - x$$

Exemplo 4:
$$\lim_{x\to\infty} e^x = \infty$$

$$\lim_{x\to -\infty}e^x=0$$

Exemplo 5:
$$\lim_{x \to \infty} \frac{e^x}{x^3} = \infty$$

$$\lim_{x \to \infty} \frac{x^3}{e^x} = 0$$

Exemplo 6: $\lim_{x\to\infty} \operatorname{sen} x$ não existe, da mesma forma $\lim_{x\to\infty} \cos x$ também não existe.

