4D TO 3D REDUCTION OF SEIBERG DUALITY FOR SU(N) SUSY GAUGE THEORIES WITH ADJOINT MATTER: A PARTITION FUNCTION APPROACH

CARLO SANA

29 GIUGNO 2015

Università degli Studi di Milano-Bicocca Scuola di Scienze Dipartimento di Fisica "G. Occhialini"

Dualità strong/weak coupling

Dualità di Seiberg e di Kutasov-Schwimmer-Seiberg

Riduzione dimensionale 4D ightarrow 3D

Dualità strong/weak coupling

Dualità di Seiberg e di Kutasov-Schwimmer-Seiberg

Riduzione dimensionale 4D ightarrow 3D

Dualità strong/weak coupling

Dualità di Seiberg e di Kutasov-Schwimmer-Seiberg

Riduzione dimensionale $4D \rightarrow 3D$

Dualità strong/weak coupling

Dualità di Seiberg e di Kutasov-Schwimmer-Seiberg

Riduzione dimensionale 4D ightarrow 3D

DUALITÀ STRONG/WEAK COUPLING

QFT A STRONG COUPLING

Relatività speciale

+ = Teoria quantistica dei campi (QFT)

Meccanica Quantistica

Metodi **perturbativi** utilizzabili a **weak coupling**: sviluppi in serie nella costante di accoppiamento (e.g. carica elettrica)

Gruppo di rinormalizzazione

Le costanti di accoppiamento variano in funzione della scala di energia: la teoria a bassa energia può fluire a strong coupling (e.g. confinamento in QCD)

Nessuno strumento teorico per studiarne la dinamica. → QCD su reticolo

ESISTE UNO STRUMENTO TEORICO PER TRATTARE

TEORIE A STRONG COUPLING?

Dualità strong/weak coupling

Dualità: le due teorie sono fisicamente equivalenti

Legame fra le costanti di accoppiamento tra teorie duali:

$$g \sim \frac{1}{\tilde{q}} \longrightarrow \text{strong-weak coupling}$$

Si può calcolare una osservabile nella teoria fortemente accoppiata con tecniche perturbative ben note nella teoria duale.

Dualità strong/weak coupling

Dualità: le due teorie sono fisicamente equivalenti

Legame fra le costanti di accoppiamento tra teorie duali:

$$g \sim \frac{1}{\tilde{q}} \longrightarrow \text{strong-weak coupling}$$

Si può calcolare una osservabile nella teoria fortemente accoppiata con tecniche perturbative ben note nella teoria duale.

ESEMPI DI DUALITÀ STRONG-WEAK COUPLING

- · Dualità EM di Dirac
- · Dualità di Montonen-Olive
- · Dualità di Seiberg e generalizzazioni
- \cdot AdS/CFT \rightarrow gauge/gravity duality
- · S-duality in teorie di stringa

Le dualità di Seiberg sono una generalizzazione della dualità di Dirac per teorie di gauge non-abeliane con supersimmetria.

ESEMPI DI DUALITÀ STRONG-WEAK COUPLING

- · Dualità EM di Dirac
- · Dualità di Montonen-Olive
- · Dualità di Seiberg e generalizzazioni
- AdS/CFT → gauge/gravity duality
- · S-duality in teorie di stringa

Le dualità di Seiberg sono una generalizzazione della dualità di Dirac per teorie di gauge non-abeliane con supersimmetria.

DUALITÀ ELETTRICA-MAGNETICA DI DIRAC

Dualità di Dirac

Aggiungendo sorgenti per il campo magnetico J^μ_{mag} si ottiene una invarianza \mathbb{Z}_2 delle equazioni di maxwell sotto la trasformazione

$$\left(E^{i},B^{i}\right)\longrightarrow\left(B^{i},-E^{i}\right)\qquad\left(J_{el}^{\mu},J_{mag}^{\mu}\right)\longrightarrow\left(J_{mag}^{\mu},-J_{el}^{\mu}\right)\quad J^{\mu}=\left(\rho,J^{i}\right)$$

Dualità EM + Meccanica Quantistica: condizione di quantizzazione della carica elettrica

$$eg = 2\pi\hbar n$$

Carica elettrica e magnetica sono inversamente proporzionali.

primo esempio di dualità strong/weak coupling

DUALITÀ ELETTRICA-MAGNETICA DI DIRAC

Dualità di Dirac

Aggiungendo sorgenti per il campo magnetico J^μ_{mag} si ottiene una invarianza \mathbb{Z}_2 delle equazioni di maxwell sotto la trasformazione

$$\left(E^{i},B^{i}\right)\longrightarrow\left(B^{i},-E^{i}\right)\qquad\left(J_{el}^{\mu},J_{mag}^{\mu}\right)\longrightarrow\left(J_{mag}^{\mu},-J_{el}^{\mu}\right)\quad J^{\mu}=\left(\rho,J^{i}\right)$$

Dualità EM + Meccanica Quantistica: condizione di quantizzazione della carica elettrica

$$eg = 2\pi\hbar n$$

Carica elettrica e magnetica sono inversamente proporzionali.

primo esempio di dualità strong/weak coupling

DUALITÀ DI SEIBERG E DI KUTASOV-

SCHWIMMER-SEIBERG

CARATTERISTICHE GENERALI DELLA DUALITÀ DI SEIBERG

Dualità di Seiberg e Kutasov-Schwimmer-Seiberg (KSS)

Teoria elettrica \longleftrightarrow Teoria magnetica

QCD con supersimmetria minimale ($\mathcal{N}=1$) con gruppo SU(N). Dualità KSS ha un ulteriore campo di materia nell'aggiunta.

Uguali

Funzioni di correlazione Simmetrie Globali (fisiche) Struttura dei vuoti (susy)

Diverse

Particelle (mesoni) Costanti di accoppiamento Dinamica (numero di colori)

Dualità a basse energie — punto fisso superconforme ad alte energie descrivono sistemi diversi

CARATTERISTICHE GENERALI DELLA DUALITÀ DI SEIBERG

Dualità di Seiberg e Kutasov-Schwimmer-Seiberg (KSS)

Teoria elettrica \longleftrightarrow Teoria magnetica

QCD con supersimmetria minimale ($\mathcal{N}=1$) con gruppo SU(N). Dualità KSS ha un ulteriore campo di materia nell'aggiunta.

Uguali

Funzioni di correlazione Simmetrie Globali (fisiche) Struttura dei vuoti (susy)

Diverse

Particelle (mesoni) Costanti di accoppiamento Dinamica (numero di colori)

Dualità a basse energie — punto fisso superconforme ad alte energie descrivono sistemi diversi

dualità di seiberg in 3d

Simili a teorie 4D $\mathcal{N}=1$ ma con alcune differenze Differenze delle teorie di campo 3D $\mathcal{N}=2$

- · ulteriori simmetrie: in 4D no simmetria assiale e topologica
- diverso contenuto di materia: in 3D i gluoni hanno anche una partner scalare
- uno spazio dei moduli (vuoti supersimmetrici) con un branch aggiuntivo

É necessario far combaciare questi nuovi *branch* fra le due teorie

Insieme aggiuntivo di singoletti nella teoria magnetica

DUALITÀ DI SEIBERG IN 3D

Simili a teorie 4D $\mathcal{N}=1$ ma con alcune differenze Differenze delle teorie di campo 3D $\mathcal{N}=2$

- · ulteriori simmetrie: in 4D no simmetria assiale e topologica
- diverso contenuto di materia: in 3D i gluoni hanno anche una partner scalare
- uno spazio dei moduli (vuoti supersimmetrici) con un branch aggiuntivo

É necessario far combaciare questi nuovi *branch* fra le due teorie

Insieme aggiuntivo di singoletti nella teoria magnetica

RIDUZIONE DIMENSIONALE 4D ightarrow 3D

$4D \longrightarrow 3D$: METODO NÄIVE

Riduzione naturale: $r \rightarrow 0$

Si compattificano le teorie su un cerchio di raggio r:

$$\mathbb{R}^4 \longrightarrow \mathbb{R}^3 \times \mathbb{S}^1$$

Si ignora la dinamica sul cerchio e si manda $r \to 0$. Si ottengono due teorie che non sono duali fra loro

Riduzione corretta: r finito

La finitezza del cerchio modifica la dinamica e impone vincoli tipici della teorie 4D (anomalie), generati da un termine di superpotenziale η .

Si scende a energie $\ll \frac{1}{r}$: la dinamica sul cerchio si disaccoppia.

RIDUZIONE DUALITÀ KSS - TEORIA DEFORMATA

Si possono rimuovere questi vincoli con un particolare RG flow. Inoltre, si riesce a generare la simmetria assiale (assente in 4D).

Si è in grado di ridurre la dualità KSS con tecniche standard di QFT solo se si introduce una perturbazione al superpotenziale.

Con essa, si riesce a generare i singoletti necessari per far coincidere i vuoti.

RIDUZIONE DUALITÀ KSS - TEORIA SENZA DEFORMAZIONE

Per ottenere la dualità 3D standard si rimuove la deformazione. L'unico problema di questo passaggio è che non si ha modo di generare i singoletti.

Devo assumere che rimuovendo la deformazione ottengo comunque i singoletti corretti.

Non ci sono però giustificazioni teoriche a riguardo.

HO MODO DI VERIFICARE SE QUESTA INTUIZIONE È

CORRETTA?

RIDUZIONE DELLA DUALITÀ SULLA

FUNZIONE DI PARTIZIONE

INDICE SUPERCONFORME IN 4D E FUNZIONI DI PARTIZIONE IN 3D

Si calcola l'indice superconforme I_{el} & I_{mag} : è uguale per teorie duali. Esso conta i multipletti BPS corti su $\mathbb{R}^3 \times \mathbb{S}^1$, che una volta integrati i modi sul cerchio si riducono a stati sulla sfera 3D.

Infatti nel limite $r \to 0$ l'indice si riduce alla funzione di partizione della teoria in 3D con superpotenziale η .

Indice superconf. funzioni gamma ellittiche Γ_e Funz. di partiz. funzioni gamma iperboliche Γ_h

Identità matematiche: $\Gamma_e \stackrel{r \to 0}{\longrightarrow} \Gamma_h$

4D:
$$I_{el} = I_{mag}$$

 $r \rightarrow 0$ \downarrow \downarrow
3D: $Z_{el}^{\eta} = Z_{mag}^{\eta}$

La dualità in 4D impone che gli indici superconformi siano uguali

Le funzioni di partizione in 3D con superpotenziale η sono uguali

Per rimuovere i vincoli, si fa un RG flow simile a quanto fatto precedentemente, ma direttamente sulla funzione di partizione.

Si genera anche la simmetria <mark>assiale</mark>, richiesta per la dualità.

INDICI E FUNZIONI DI PARTIZIONE

La dualità in 4D impone che gli indici superconformi siano uguali

Le funzioni di partizione in 3D con superpotenziale η sono uguali

Per rimuovere i vincoli, si fa un RG flow simile a quanto fatto precedentemente, ma direttamente sulla funzione di partizione.

Si genera anche la simmetria assiale, richiesta per la dualità.

FLOW VERSO UNA TEORIA SENZA SUPERPOTENZIALE η

Lavorando direttamente sulla funzione di partizione non è necessario introdurre una deformazione, come è stato fatto precedentemente.

Singoletti

Utilizzando una identità matematica fra gamma iperboliche Γ_h si ottengono i singoletti corretti per la dualità.

Coincidono con quelli trovati in teoria di campo con la deformazione.

CONCLUSIONI

É stato verificato che la riduzione fatta precedentemente in letteratura, basata su un'assunzione non giustificata, è corretta, confermando così il legame fra le dualità di Seiberg in 4D e 3D in riduzione dimensionale.

Infine, l'identità fra le due funzioni di partizione $Z_{el}=Z_{mag}$ porta a una identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

CONCLUSIONI

É stato verificato che la riduzione fatta precedentemente in letteratura, basata su un'assunzione non giustificata, è corretta, confermando così il legame fra le dualità di Seiberg in 4D e 3D in riduzione dimensionale.

Infine, l'identità fra le due funzioni di partizione $Z_{el}=Z_{mag}$ porta a una identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

CONCLUSIONI

É stato verificato che la riduzione fatta precedentemente in letteratura, basata su un'assunzione non giustificata, è corretta, confermando così il legame fra le dualità di Seiberg in 4D e 3D in riduzione dimensionale.

Infine, l'identità fra le due funzioni di partizione $Z_{el} = Z_{mag}$ porta a una identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

BIBLIOGRAFIA

- N. Seiberg, Electric magnetic duality in supersymmetric non Abelian gauge theories, Nucl. Phys. **B435** (1995) 129–146, [hep-th/9411149].
- D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys.Lett. B354 (1995) 315–321, [hep-th/9505004].
- O. Aharony, IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys.Lett. **B404** (1997) 71–76, [hep-th/9703215].
- P. Agarwal, A. Amariti, A. Mariotti, and M. Siani, BPS states and their reductions, JHEP 1308 (2013) 011, [arXiv:1211.2808].
- H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 1306 (2013) 106, [arXiv:1302.3645].
- O. Aharony, S. S. Razamat, N. Seiberg, and B. Willett, 3d dualities from 4d dualities, JHEP 1307 (2013) 149, [arXiv:1305.3924].
- K. Nii, 3d duality with adjoint matter from 4d duality, JHEP **1502** (2015) 024, [arXiv:1409.3230].
- A. Amariti and C. Klare, A journey to 3d: exact relations for adjoint SQCD from dimensional reduction, arXiv:1409.8623.

FUNZIONE DI PARTIZIONE ELETTRICA

$$Z_{el}(\mu_{i},\nu_{i}) = \frac{1}{N_{c}!} \Gamma_{h}(\Delta_{X}\omega)^{N_{c}-1}$$

$$\int \prod_{i=1}^{N_{c}} \frac{d\sigma_{i}}{\sqrt{-\omega_{1}\omega_{2}}} \, \delta(\sum_{i} \sigma_{i}) \prod_{1 \leq i < j \leq N_{c}} \frac{\Gamma_{h}(\Delta_{X}\omega \pm (\sigma_{i} - \sigma_{j}))}{\Gamma_{h}(\pm (\sigma_{i} - \sigma_{j}))}$$

$$\prod_{a,b=1}^{N_{f}} \prod_{i=1}^{N_{c}} \Gamma_{h}(m_{a} + m_{b} + m_{A} + \sigma_{j}) \Gamma_{h}(-\tilde{m}_{a} - m_{b} + m_{A} - \sigma_{j})$$

FUNZIONE DI PARTIZIONE MAGNETICA

$$Z_{mag} = \frac{1}{(kN_f - N_c)!} \Gamma_h(\Delta_X \omega; \omega_1, \omega_2)^{kN_f - N_c - 1}$$

$$\left(\prod_{j=0}^{k-1} \prod_{a}^{N_f} \prod_{b}^{N_f} \Gamma_h(\mu_a + \nu_b + j\omega\Delta_X)\right)$$

$$\int \prod_{i=1}^{kN_f - N_c} \frac{d\sigma_i}{\omega_1 \omega_2} \int d\xi \, e^{\frac{\pi_i}{\omega_1 \omega_2} 2\xi(m_B N_c + \sum \sigma_i)} \prod_{i < j}^{kN_f - N_c} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm (\sigma_i - \sigma_j))}$$

$$\left(\prod_{a,b}^{N_f} \prod_{j=1}^{kN_f - N_c} \Gamma_h(-m_a - m_A + \omega(\Delta_X - \Delta_Q) + \tilde{\sigma}_j)\right)$$

$$\Gamma_h(+\tilde{m}_b - m_A + \omega(\Delta_X - \Delta_Q) - \tilde{\sigma}_j)$$

$$\prod_{j'=0}^{k-1} \Gamma_h(\pm \xi + \omega(N_f(1 - \Delta_Q) - \Delta_X(N_c - j')) - m_A N_f)$$