Exercise 1.5.14

If $N_1 \triangleleft G_1$, $N_2 \triangleleft G_2$, then $(N_1 \times N_2) \triangleleft (G_1 \times G_2)$ and $(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2)$.

Proof. Let $(n_1, n_2) \in N_1 \times N_2$ and $(g_1, g_2) \in G_1 \times G_2$. Then

$$(g_1, g_2)(n_1, n_2)(g_1, g_2)^{-1} = (g_1 n_1 g_1^{-1}, g_2 n_2 g_2^{-1}) \in N_1 \times N_2$$

since $N_i \triangleleft G_i$ for i = 1, 2. Thus $N_1 \times N_2 \triangleleft G_1 \times G_2$.

Now define $\varphi: G_1 \times G_2 \to (G_1/N_1) \times (G_2/N_2)$ by $\varphi(g_1,g_2) = (g_1N_1,g_2N_2)$. This is a homomorphism since

$$\varphi((g_1, g_2)(h_1, h_2)) = \varphi(g_1 h_1, g_2 h_2) = (g_1 h_1 N_1, g_2 h_2 N_2)$$
$$= (g_1 N_1, g_2 N_2)(h_1 N_1, h_2 N_2) = \varphi(g_1, g_2)\varphi(h_1, h_2)$$

for all $(g_i, h_i) \in G_i$, i = 1, 2. It is surjective since for any $(g'_1N_1, g'_2N_2) \in (G/N_i)$ we have $\varphi(g'_1, g'_2) = (g'_1N_i, g'_2N_i)$. Finally,

$$\ker(\varphi) = \{(g_1, g_2) : (g_1 N_i, g_2 N_i) = (N_i, N_i)\} = \{(g_1, g_2) : g_1 \in N_1, g_2 \in N_2\} = N_1 \times N_2$$

Thus by the First Isomorphism Theorem,

$$(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2)$$

as desired.

1.6.11

Find all normal subgroups of D_n .

For notation, let a be a rotation of order n and b be a reflection of order 2. Then $D_n = \langle a, b : a^n = e, b^2 = e, bab = a^{-1} \rangle$. If n is odd then we have that $\langle a^i \rangle \triangleleft D_n$ for all i dividing n, and these are the only normal subgroups. If n is even then we have that $\langle a^i \rangle \triangleleft D_n$ for all i dividing n, as well as $\langle a^2, b \rangle \triangleleft D_n$ and $\langle a^2, ab \rangle \triangleleft D_n$, and these are the only normal subgroups. This is because the rotations form a cyclic subgroup which is normal, and the conjugacy classes of reflections depend on the parity of n.

1.8.2

Give an example of groups H_i, K_j such that $H_1 \times H_2 \cong K_1 \times K_2$ and no H_i is isomorphic to any K_j .

Consider $H_1 = \mathbb{Z}_4, H_2 = \mathbb{Z}_3, K_1 = \mathbb{Z}_6, K_2 = \mathbb{Z}_2$. Then $H_1 \times H_2 \cong \mathbb{Z}_{12} \cong K_1 \times K_2$, but no H_i is isomorphic to any K_j .

1.8.3

Let G be an (additive) abelian group with subgroups H and K. Show that $G \cong H \oplus K$ if and only if there are homomorphisms $H \stackrel{\pi_1}{\hookrightarrow}_{\iota_1} G \stackrel{\pi_2}{\hookrightarrow}_{\iota_2} K$ such that $\pi_1 \iota_1 = 1_H, \pi_2 \iota_2 = 1_K, \pi_1 \iota_2 = 0$, and $\pi_2 \iota_1 = 0$, where 0 is the map sending every element onto the zero (identity) element, and $\iota_1 \pi_1(x) + \iota_2 \pi_2(x) = x$ for all $x \in G$.

Proof. (\Rightarrow) Suppose $G \cong H \oplus K$. Then every $g \in G$ can be uniquely written as g = h + k for some $h \in H, k \in K$. Define $\pi_1 : G \to H$ by $\pi_1(g) = h$ and $\pi_2 : G \to K$ by $\pi_2(g) = k$. Also define $\iota_1 : H \to G$ by $\iota_1(h) = h + 0_K$ and $\iota_2 : K \to G$ by $\iota_2(k) = 0_H + k$. Then for any $h \in H, k \in K, g \in G$ we have

$$\pi_1 \iota_1(h) = \pi_1(h + 0_K) = h, \qquad \qquad \pi_2 \iota_2(k) = \pi_2(0_H + k) = k,$$

$$\pi_1 \iota_2(k) = \pi_1(0_H + k) = 0_H, \qquad \qquad \pi_2 \iota_1(h) = \pi_2(h + 0_K) = 0_K,$$

$$\iota_1 \pi_1(g) + \iota_2 \pi_2(g) = (h + 0_K) + (0_H + k) = h + k = g.$$

Thus the desired homomorphisms exist.

 (\Leftarrow) Suppose the homomorphisms π_i, ι_i exist as described. Then for any $g \in G$, we have

$$g = \iota_1 \pi_1(g) + \iota_2 \pi_2(g)$$

where $\iota_1\pi_1(g) \in H$ and $\iota_2\pi_2(g) \in K$. Thus every element of G can be written as a sum of an element of H and an element of K. Now suppose h + k = h' + k' for some $h, h' \in H$ and $k, k' \in K$. Then

$$h + k = h' + k'$$

$$\iota_1 \pi_1(h+k) + \iota_2 \pi_2(h+k) = \iota_1 \pi_1(h'+k') + \iota_2 \pi_2(h'+k')$$

$$\iota_1(\pi_1(h) + \pi_1(k)) + \iota_2(\pi_2(h) + \pi_2(k)) = \iota_1(\pi_1(h') + \pi_1(k')) + \iota_2(\pi_2(h') + \pi_2(k'))$$

$$\iota_1(\pi_1(h) + 0_H) + \iota_2(0_K + \pi_2(k)) = \iota_1(\pi_1(h') + 0_H) + \iota_2(0_K + \pi_2(k'))$$

$$\iota_1 \pi_1(h) + \iota_2 \pi_2(k) = \iota_1 \pi_1(h') + \iota_2 \pi_2(k')$$

$$h + k = h' + k'$$

Thus the representation of elements in G as sums of elements from H and K is unique, and $G \cong H \oplus K$.

1.8.5

Let G, H be finite cyclic groups. Then $G \times H$ is cyclic if and only if (|G|, |H|) = 1.

Proof. (\Rightarrow) Suppose $G \times H$ is cyclic. Then there exists some $(g,h) \in G \times H$ such that $\langle (g,h) \rangle = G \times H$. Thus $|\langle (g,h) \rangle| = |G \times H| = |G||H|$. But $|\langle (g,h) \rangle| = \text{lcm}(|g|,|h|)$, so lcm(|g|,|h|) = |G||H|. Since |g| divides |G| and |h| divides |H|, we have that lcm(|g|,|h|) divides lcm(|G|,|H|). Thus lcm(|G|,|H|) must be equal to |G||H|, which implies that (|G|,|H|) = 1.

 (\Leftarrow) Suppose (|G|,|H|)=1. Let g be a generator of G and h be a generator of H. Then consider the element $(g,h)\in G\times H$. We have that |(g,h)|=lcm(|g|,|h|)=lcm(|G|,|H|)=|G||H| since (|G|,|H|)=1. Thus $|(g,h)|=|G\times H|$, so $\langle (g,h)\rangle=G\times H$ and $G\times H$ is cyclic.

1.8.9

If a group G is the (internal) direct product of its subgroups H, K, then $H \cong G/K$ and $G/H \cong K$.

Proof. Let $\pi:G\to G/H$ be the natural projection. Then $\ker(\pi)=H$, so by the first isomorphism theorem we have $G/H\cong\pi(G)$. But $\pi(G)=\{gH\mid g\in G\}=\{gH\mid g\in H\}\cup\{gH\mid g\in K\}=H\cup K$. Thus $G/H\cong H\cup K$. But since $H\cap K=\{e\}$ and every element of G can be uniquely written as hk for some $h\in H, k\in K$, we have that $H\cup K\cong K$. Thus $G/H\cong K$. Similarly, let $\rho:G\to G/K$ be the natural projection. Then $\ker(\rho)=K$, so by the first isomorphism theorem we have $G/K\cong\rho(G)$. But $\rho(G)=\{gK\mid g\in G\}=\{gK\mid g\in H\}\cup\{gK\mid g\in K\}=H\cup K$. Thus $G/K\cong H\cup K$. But since $H\cap K=\{e\}$ and every element of G can be uniquely written as hk for some $h\in H, k\in K$, we have that $H\cup K\cong H$. Thus $G/K\cong H$.

Every nonidentity element in a free group F has infinite order.

Proof. Let F be a free group on the set X. Then every nonidentity element of F can be uniquely written as a reduced word in the elements of X and their inverses. Suppose $w \in F$ is a nonidentity element. Then $w = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ where $x_i \in X$, $a_i \in \mathbb{Z} \setminus \{0\}$, and $x_i \neq x_{i+1}$ for all $1 \leq i < n$. Then for any integer m > 0, we have

$$w^m = (x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n})^m = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \cdots x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

which is a reduced word since $x_n \neq x_1$. Thus w^m is not the identity element for any integer m > 0. Similarly, for any integer m < 0, we have

$$w^m = (x_n^{-a_n} x_{n-1}^{-a_{n-1}} \cdots x_1^{-a_1})^{-m} = x_n^{-a_n} x_{n-1}^{-a_{n-1}} \cdots x_1^{-a_1} x_n^{-a_n} x_{n-1}^{-a_{n-1}} \cdots x_1^{-a_1} \cdots x_n^{-a_n} x_{n-1}^{-a_{n-1}} \cdots x_1^{-a_1} x_n^{-a_{n-1}} \cdots x_n^{-a_n} x_n^{-a$$

which is also a reduced word since $x_1 \neq x_n$. Thus w^m is not the identity element for any integer m < 0. Therefore, the only integer m such that w^m is the identity element is m = 0, so w has infinite order. Thus every nonidentity element in a free group has infinite order.

1.9.4

Let F be the free group on the set X, and let $Y \subset X$. If H is the smallest normal subgroup of F containing Y, then F/H is a free group.

Proof. Let F be the free group on the set X, and let $Y \subset X$. Let H be the smallest normal subgroup of F containing Y. Then H is the normal closure of Y in F, which is the intersection of all normal subgroups of F containing Y. Thus H is generated by all conjugates of elements of Y in F.

Now consider the quotient group F/H. The elements of F/H are the cosets of H in F, which can be represented as gH for some $g \in F$. Since H is normal in F, the group operation on F/H is well-defined.

To show that F/H is a free group, we need to show that it has a basis, i.e., a set of elements such that every element of the group can be uniquely expressed as a reduced word in these elements and their inverses.

Let $Z = X \setminus Y$. Then every element of F/H can be uniquely expressed as a reduced word in the elements of Z and their inverses. This is because any element of Y is in H, so it becomes the identity element in the quotient group. Thus, the only elements that remain are those from Z.

Therefore, the set Z forms a basis for the free group F/H, and hence, we conclude that F/H is indeed a free group. \Box