${\bf Differential\ Equations\ Standards}$

Module C: How can we solve and apply linear constant coefficient ODEs?	
	Sketching trajectories. I can given a slope field, sketch a trajectory of a solution to a first order ODE Homogeneous constant coefficient. I can find the general solution to a homogeneous second order constant coefficient ODE.
□ □ C3.	Non-homogenous constant coefficient. I can find the general solution to a non-homogeneous second order constant coefficient ODE
\square \square C4.	IVPs. I can solve initial value problems for constant coefficient ODEs
□ □ C5.	Modeling motion in viscous fluids. I can model the motion of a falling object with linear drag
□ □ C6.	Modeling oscillators. I can model free mechanical oscillators with a second order ODE
Module	S: How can we solve and apply systems of linear ODEs?
□ □ S1.	Solving systems. I can solve systems of constant coefficient ODEs
□ □ S2.	Modeling interacting populations. I can model the populations of two interacting populations with a system of ODEs
□ □ S3.	
Module F: How can we solve and apply first order ODEs?	
□ □ F2. □ □ F3.	Separable ODEs. I can find the general solution to a separable first order ODE Autonomous ODEs. I can find and classify the equillibria of an autonomous first order ODE First order linear ODEs. I can find the general solution to a first order linear ODE
□ □ F4.	Exact ODES. I can find the general solution to an exact first order ODE
□ □ F5 .	Modeling motion. I can model the motion of an object with quadratic drag
$\textbf{Module N:} \ \text{How can we use numerical approximation methods to apply and solve unsolvable ODEs?}$	
□ □ N 1.	First Order Existence and Uniqueness. I can determine when a unique solution exists for a first order $\overline{\text{ODE}}$
□ □ N2 .	Second Order Linear Existence and Uniqueness. I can determine when a unique solution exists for a second order linear ODE
□ □ N 3.	Systems Existence and Uniqueness. I can determine when a unique solution exists for a system of first order ODEs
□ □ N4.	Euler's method for first order ODES. I can use Euler's method to find approximate solution to first order ODEs
□ □ N 5.	${\bf Euler's\ method\ for\ systems.}\ {\bf I}$ can use Euler's method to find approximate solutions to systems of first order ODEs
Module D: How can we solve and apply ODEs involving functions that are not continuous?	
□ □ D1 .	Laplace Transform. I can compute the Laplace transform of a function
\square \square D2.	Discontinuous ODEs. I can solve initial value problems for ODEs with discontinuous coefficients
□ □ D3 .	$ \begin{tabular}{ll} \textbf{Modeling non-smooth motion.} I can model the motion of an object undergoing discontinuous acceleration \\ \end{tabular} $
□ □ D4 .	Modeling non-smooth oscillators. I can model mechanical oscillators undergoing discontinuous acceleration