

CSE 4205 Digital Logic Design

Simplification of Boolean Functions

Course Teacher: Md. Hamjajul Ashmafee

Lecturer, CSE, IUT

Email: ashmafee@iut-dhaka.edu

The Map Method

- Complexity of the digital logic gates depends on the complexity of algebraic expression.
- Simplification truth table can be used but no specific rules
- Veitch / Karnaugh Map simple straightforward procedure
- Made of squares represent minterms

2 or 3 Variables Map

- There are 4 minterms for 2 variables and 8 minterms for 3 variables where variables are appeared in primed or not-primed form.
- Minterms are in binary sequence but in a sequence similar to the reflected code
- Only one bit changes in value from one adjacent column to the next
 - Any two adjacent squares in the map differ by only one variable

$$m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$$

• A *prime implicant* is a product term obtained by combining the maximum possible number of adjacent squares in the map. (number = 2^n)

2 or 3 Variables Map

Two variables K-map

Three variables K-map

Lecture 4 CSE 4205: Digital Logic Design

2 or 3 Variables Map...

$$F = x'yz + x'yz' + xy'z' + xy'z$$
$$F(x, y, z) = \Sigma(2, 3, 4, 5)$$

6

2 or 3 Variables Map...

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

Solve these?

$$F = x'yz + x'yz' + xy'z' + xy'z$$

$$F = A'C + A'B + AB'C + BC$$

4 Variables Map

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m ₁₅	m_{14}
m_8	m_9	m_{11}	m_{10}

(a)

\	\ yz	,		j		
wx		00	01	11	10	•
	·			m_3	m_2	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
						,
		m_4	m_5	m_7	m_6	П
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
	,					$ _{x}$
			m_{13}	m_{15}	m_{14}	
	11	wxy'z'	wxy'z	wxyz	wxyz'	
,,, J						IJ
w		m_8	m_9	m_{11}	m_{10}	
	10	m_8 $wx'y'z'$	wx'y'z	wx'yz	wx'yz'	
	-				,	
				ζ		
			(b)			

Remember:

1 square = 4 literals term

2 squares = 3 literals term

4 squares = 2 literals term

8 squares = 1 literal term

16 squares = 1

4 Variable Map

xy'z' + xyz' = xz'

Solve this:

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

5 or 6 Variables Map

5- variable Karnaugh map (Gray code)

POS & SOP Simplification

Last Class

NAND & NOR implementation

NAND and NOR are easier to implement

NAND implementation

Home Task

NOR Implementation

Home Task

Don't Care Condition

$$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$$
$$d(w, x, y, z) = \Sigma(0, 2, 5)$$

Lecture 4 CSE 4205: Digital Logic Design 14

The Tabular Method / Quine-McCluskey Method

 $F = \Sigma(0, 1, 2, 8, 10, 11, 14, 15)$

(a)	(b)	(c)
wxyz	wx yz	wx yz
0 0000 /	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8 -0 0 0 \	10, 11, 14, 15
8 1000 √	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 1 0 1 0 🗸	10, 11 1 0 1 - 🗸	
11 1 0 1 1 \/ 14 1 1 1 0 \/	10, 14 1 - 1 - \(\square \)	
15 1 1 1 1 🗸	11, 15 1 - 1 1 \langle 14, 15 1 1 1 - \langle	

$$F = w'x'y' + x'z' + wy$$

The Tabular Method (Alternative Way)

TABLE 3-6
Determination of Prime Implicants of Example 3-13 with Decimal Notation

(a)	(b)	(c)
0 \	0, 1 (1)	0, 2, 8, 10 (2, 8)
	0, 2 (2) √	0, 2, 8, 10 (2, 8)
1 🗸	0, 8 (8) √	
2 /		10, 11, 14, 15 (1, 4)
8 /	2, 10 (8) $\sqrt{}$	10, 11, 14, 15 (1, 4)
	8, 10 (2) \(
10 √		
	10, 11 (1)	
11 🗸	10, 14 (4)	
14 ✓	_	
	11, 15 (4)	
15 √	14, 15 (1) $\sqrt{}$	

The Tabular Method

Verification using K-map:

Lecture 4 CSE 4205: Digital Logic Design 17

Prime Implicants Determination

Another Example:

$$F(w, x, y, z) = \Sigma(1, 4, 6, 7, 8, 9, 10, 11, 15)$$

Determination of Prime Implicants for Example 3-14

(a)			(b)	(c)		
0001	1	√	1, 9	(8)	8, 9, 10, 11 (1, 2)	
0100	4	✓	4, 6	(2)	8, 9, 10, 11 (1, 2)	
1000	8	√	8, 9	(1) /	~	
			8, 10	(2) ✓		
0110	6	✓				
1001	9	✓	6, 7	(1)		
1010	10	✓	9, 11	(2) ✓		
			10, 11	(1) /		
0111	7	\checkmark				
1011	11	✓	7, 15	(8)		
			11, 15	(4)		
1111	15	/				

Prime Implicants Selections

Prime implicants						
Decimal	Binary W x y z	Term				
1, 9 (8)	- 0 0 1					
4, 6 (2)	0 1 - 0	x'y'2				
6, 7 (1)	0 1 1 -	w'xz				
7, 15 (8)	- 1 1 1	w'xy				
11, 15 (4)	1 - 1 1	xyz				
8, 9, 10, 11 (1, 2)	1 0	wyz wx'				

Prime Implicant Table for Example 3-15

		I	4	6	7	8	9	10	11	15
$\sqrt{x'y'z}$	1, 9	X					X			
$\sqrt{w'xz'}$	4, 6		\boldsymbol{X}	X			21			
w'xy	6, 7			X	X					
xyz	7, 15				X					v
wyz	11, 15					*			X	X X
√ wx′	8, 9, 10, 11				_	X	X	X	X	Λ
		\checkmark	✓	✓						

The Tabular Method

Verification using K-map:

$$F = x'y'z + w'xz' + wx' + xyz$$