Theory of Computation

L.EIC, 2nd Year

João M. P. Cardoso

Email:jmpc@acm.org

Outline

- ► Sets, Alphabets, Strings, Languages
- ► Languages and Problems
- Concepts about Finite Automata (FAs)
- ► Deterministic Finite Automata (DFAs)
- ► Notion of regular languages
- ► Operations with FAs

Alphabet and String

- ▶ **Alphabet** (Σ) is a non-empty finite set of symbols:
 - $\Sigma = \{0, 1\}$, binary alphabet
 - $\Sigma = \{a, b, ..., z\}$, set of lower-case letters
 - ► Set of ASCII chars
- String is a finite sequence of symbols over an alphabet
 - ▶ 01101 is a string over $\Sigma = \{0, 1\}$
 - Empty string (ε) has zero occurrences of symbols
 - ▶ Length of a string is the number of symbols over Σ : |01101| = 5, $|\varepsilon| = 0$
 - \triangleright Power of an alphabet Σ^k is the set of strings, with length k, over Σ
 - $\Sigma^0 = \{\epsilon\}$
 - ▶ If $\Sigma = \{0, 1\}$ then $\Sigma^1 = \{0, 1\}$, $\Sigma^2 = \{00, 01, 10, 11\}$, $\Sigma^3 = \{000, 001, ..., 111\}$
 - ▶ Distinction between $\Sigma = \{0, 1\}$, set of symbols, and $\Sigma^1 = \{0, 1\}$, set of strings

Language

▶ The set of all strings over an alphabet Σ is denoted as Σ^* , the Kleene-star closure on Σ (* is known as the Kleene-star)

- ▶ Language L over an alphabet Σ is the subset of Σ^* (L $\subseteq \Sigma^*$)
- Examples of Languages:
 - ▶ Language of the strings with n 0s, followed by n 1s, and n \geq 0:

```
> {ε, 01, 0011, 000111, ...}
```

Set of prime binary numbers

```
► {10, 11, 101, 111, 1011, ...}
```

► Empty language:

Language with only the empty string:

(3)

Problem

- Decide if a given string belongs to a language
 - ▶ Given $w \in \Sigma^*$ and $L \subset \Sigma^*$, $w \in L$?
- ▶ It is common to describe a language using a set constructor notation:
 - ► {w | w consists of an equal number of 0s and 1s}, i.e., Set of strings referred as w such that w....
 - ► {w | w is a program in C syntactically correct}
- Example: primality testing
 - $\mathbf{w} \in \mathbf{L}_{p}$? Where w is a string with the binary representation of a number and \mathbf{L}_{p} is the language that contains all the strings representing the prime numbers in binary

Language or a Problem?

- Problem in a common sense:
 - ▶ Request to calculate (e.g., calculator) or transform an input (e.g., compiler)
 - ► Usually, not a yes/no decision
- In the context of complexity study, defining a problem in terms of a language is adequate
 - It is of similar difficulty to either solve the decision or the problem
 - ► If it is as difficult as to decide if a string belongs to language L_X (set of valid strings in language X) than to translate programs in X to object code

If it was not, we could execute the translator, and then decide if the string belongs to L_X according to the success of the translator to produce object code. The problem of the decision would be easier which contradicts the supposition (proof by contradiction).

Language or a Problem?

- Languages and problems are essentially the same thing!
- ▶ Any **Problem** can be converted to a **Language**, and vice-versa:
 - ▶ Problem: Determine if a number is prime
 - ► Language: given L = {p : p is prime}, verify if a number belongs to L

Finite Automata (FAs)

Deterministic Finite Automaton

- ► a 5-tuple (Q, Σ , δ , q₀, F)
 - ▶ a finite set of states Q
 - ightharpoonup a finite set of input symbols called the alphabet Σ
 - ▶ a transition function δ : $Q \times \Sigma \rightarrow Q$
 - ▶ an initial or start state $q_0 \in Q$
 - ▶ a set of accept states $F \subseteq Q$
- ▶ Deterministic: \forall q ∈ Q, a∈ Σ : $|\delta(q, a)| \le 1$ (or = 1 for complete DFAs)

Language of a DFA

- ► The language of a DFA A = (Q, Σ , δ , q₀, F) is the set of all the strings accepted/recognized by the DFA A
 - ► Input string: a₁a₂... a_n
 - ► Initial state: q₀
 - First step: $\delta(q_0, a_1) = q_i$, $0 \le j \le n(Q)-1$
 - ► Step: $\delta(q_i, a_k) = q_i$, $0 \le i, j \le n(Q)-1$ and $2 \le k \le n$
 - ▶ If $\delta(q_i, a_n) \in F$, then the string is accepted

Defining a DFA: Example

▶ Recognizer of the binary strings that contain the substring 01

 $ightharpoonup L = \{x01y \mid x, y \text{ are empty strings or strings over the alphabet } \{0,1\} \}$

$$\Sigma = \{0,1\}$$

The same as: $L = \{x01y \mid x \text{ and } y \in \{0,1\}^*\}$

Defining a DFA: Example

- Recognizer of the binary strings that contain the substring 01
 - $\Sigma = \{0,1\}$
 - ▶ Q={ q_0 , q_1 , q_2 } has to memorize if it has already seen 01 (q_1), if the last one was 0 (q_2), or if didn't see nothing relevant (q_0)
 - ► Start state: q₀
 - ► Transition function:

$$\delta(q_0,1) = q_0 \quad \delta(q_0,0) = q_2 \quad \delta(q_2,0) = q_2 \quad \delta(q_2,1) = q_1 \quad \delta(q_1,0) = q_1 \quad \delta(q_1,1) = q_1$$

- ► Final states: {q₁}
- ▶ DFA **A** = (**Q**, Σ , δ , $\mathbf{q_0}$, **F**) = ({q₀, q₁, q₂}, {0,1}, δ , q₀, {q₁}) = ({q₀, q₁, q₂}, {0,1}, { δ (q₀,1) = q₀, δ (q₀,0) = q₂, δ (q₂,0) = q₂, δ (q₂,1) = q₁, δ (q₁,0) = q₁, δ (q₁,1) = q₁}, q₀, {q₁})

Transition (state) Diagrams

- ► The transition diagram of a DFA A = $(Q, \Sigma, \delta, q_0, F)$ is a graph
 - ► State in Q \Rightarrow node/vertex
 - $\triangleright \delta(q, a) = p$ where $q, p \in Q$ and $a \in \Sigma \implies$ edge from q to p with label a
 - ► Initial state ⇒ arrow with Start (it is ok to omit the "Start" label)
 - \triangleright States in F \Rightarrow double circle in the node

Transition Tables

- A transition table is the tabular representation of the δ function
 - \triangleright States \Rightarrow rows
 - ightharpoonup Inputs \Rightarrow columns
 - ► Initial State ⇒ arrow
 - ► Final States ⇒ *

Exercise 2

- ► Give a DFA that accepts the following language
 - ► L = { w | w has an even number of 0s and an even number of 1s}

Extended Transition Function $\hat{\delta}$

- Extended transition function, $\hat{\delta}(q, w) = p$
 - q: state
 - w: input string
 - p: reached state when we start in q and process w
- ► Inductive definition in |w|
 - ► Basis: $\hat{\delta}(q, \varepsilon) = q$
 - ► Induction: assuming **w=xa** then $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
 - ► If $\hat{\delta}$ (q, x) = p and δ (p, a) = r, to go from q to r, we go from q to p and then with a step to r
 - $\triangleright \hat{\delta}(q, w) = \delta(p, a)$

"The Language of a DFA consists of the set of strings formed by the sequences of symbols for all the paths from the start node to each accept/final node"

Language of a DFA

► Processing in the DFA that recognizes strings with even number of 0s and 1s for the input w = 110101 (use DFA of Exercise 2)

```
\begin{split} & \widehat{\delta}(q_0, \, \epsilon) = q_0 \\ & \widehat{\delta}(q_0, \, 1) = \delta(\widehat{\delta}(q_0, \, \epsilon), \, 1) = \delta(q_0, \, 1) = q_1 \\ & \widehat{\delta}(q_0, \, 11) = \delta(\widehat{\delta}(q_0, \, 1), \, 1) = \delta(q_1, \, 1) = q_0 \\ & \widehat{\delta}(q_0, \, 110101) = \delta(\widehat{\delta}(q_0, \, 11010), 1) = \delta(q_1, \, 1) = q_0 \end{split}
```

- Language of a DFA A = $(Q, \Sigma, \delta, q_0, F)$ is
 - $L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$
- ▶ If a language L is L(A) for a DFA A then it is a regular language

Exercise 3

► Give a DFA to recognize strings over the alphabet {0,1} with a '1' in the third from last position.

Operations over Finite Automata

- Example of a Cartesian (cross) product
- Discuss the possible applications of the Cartesian product between finite automata

- Example (see slides "Operations Over FAs"):
 - ▶ DFA1 that recognizes: $\{w \in \{0,1\}^* \mid n_1(w) \text{ is even}\}$
 - ▶ DFA2 that recognizes: {x01y | x and y are strings of 0's and 1's}
 - ▶ What can give the Cartesian product of the two DFAs?

Summary

- ► Deterministic Finite Automata (DFAs)
- ► Use of DFAs to recognize strings
- ► Use of DFAs to represent regular languages
- ▶ Product of DFAs