Emotion Patterns in Music Playlists

Sara Giammusso¹² Mario Guerriero ¹²

 1 MSc student in Data Science Department, EURECOM, Télécom ParisTech, France 2 MSc student in Department of Control and Computer Engineering, Politecnico di Torino, Italy

Sixth Project meeting

- Introduction
- 2 Last Week Summary
- Feature Selection
- Playlists Classification
- Conclusion

- Introduction
- 2 Last Week Summary
- Feature Selection
- Playlists Classification
- Conclusion

Introduction

Previously On Sara&Mario Project..

We worked on feature engineering to see how we could improve our classifiers

Next steps:

- Make sure the POS tagger we are using is good
- Make some experiments with other datasets
- Keep working on feature engineering
- Start looking at playlists

- Introduction
- 2 Last Week Summary
- Feature Selection
- Playlists Classification
- Conclusion

POS Tagger Analysis

- We are using spaCy's built-in POS tagger
- There is no authoritative paper regarding its internal details
- Our experiments suggest that it is good for our purpose ¹
 - Each line is treated as a separate sentence
 - The tagger is smart enough to recognize less common words and abbreviations (very common in songs)

¹Please refer to the following Jupyter Notebook to know more about what we did on this topic: https://github.com/sgiammy/emotion-patterns-in-music-playlists/blob/master/src/POS_tagger_verification.ipynb

More on Feature Engineering

- We had built a big list of features in the past few weeks
- We concluded that we do not need all of them (of course)
- We got the best performances just by using a subset of 10 of them ²
 - WORD_COUNT, ECHOISMS, SELFISH_DEGREE, DUPLICATE_LINES, IS_TITLE_IN_LYRICS, VERB_PRESENT, VERB_PAST, VERB_FUTURE, ADJ_FREQUENCIES and PUNCT_FREQUENCIES

²For more information, please refer to https://github.com/sgiammy/emotion-patterns-in-music-playlists/blob/master/src/Advanced_Feature_Engineering.ipynb

MoodyLyrics + EmoInt

- We are very limited by MoodyLyrics ³
- EmoInt is made of tweets classified according to four emotions: anger, fear, joy and sadness
 - We have mapped anger to angry, joy to happy, sadness to sad and discarded fear
- We were able to increase our dataset by 2254 items
- No good results at the end

³https://github.com/sgiammy/emotion-patterns-in-music-playlists/blob/master/src/EmoInt.ipynb

- 1 Introduction
- 2 Last Week Summary
- Feature Selection
- 4 Playlists Classification
- Conclusion

Two More Features

We wanted to expand our model with two features

- Sentiment/Polarity
- Subjectivity

To achieve this goal we used TextBlob⁴

- Built on top of NLTK and Pattern
- Makes use of Pattern's analyzer to generate polarity and subjectivity

At the end we will have 12 features (311 in reality, because the lyrics content vector is expanded)

Obtained Results: ANN

Figure 1: 90.84% accuracy on MoodyLyrics

Figure 2: 50% accuracy on extra test

Obtained Results: Logistic Regression⁵

Figure 3: 80% accuracy on MoodyLyrics Figure 4: 55% accuracy on extra test

⁵We experimented with several probabilistic classifiers and Logistic Regression was the one giving the best results

- 1 Introduction
- 2 Last Week Summary
- Feature Selection
- Playlists Classification
- Conclusion

Which classification model?

We considered different approaches

- Give each song in the playlist an emotion label and choose using a majority rule
- Consider the text of all the songs in a playlist as belonging to a single song and classify it
- Compute an "emotion vector" for each song and average all of those vectors over the playlist ⁶
 - This is the one which makes more sense to us
 - It produces 4 playlist features (one per emotion) you may want to use in your recommendation system

Our Results⁷

500 400 300 200 100 0 happy angry sad relaxed

Figure 5: Playlists emotion distribution with ANN

Figure 6: Playlists emotion distribution with Logistic Regression

- Introduction
- 2 Last Week Summary
- Feature Selection
- Playlists Classification
- Conclusion

What's next?

- We can't evaluate our results
- Could you please test them inside your recommendation system?
- Can we start writing our report? (if yes, any hint?)
- ..

