RESTRICTED 內部文件 93 Math. I

	RESTRICTED 内部	义仕	13 Marie, I
•	Solution	Marks	Remarks
,1.	(a) The simple interest = \$1.5	1A	
	(b) $h = 64.3$	1A	Any figure roundable to 64.3
	(c) $x = \frac{21}{5}$ (= 4.2)	1A	
	(d) (i) $x + 2y$ is greatest at (1, 4) $(x + 2y)$ is least at (0, -3)	1A	١
, ÷3	(ii) $x + 2y$ is least at $(0, -3)$ The greatest value is 9.	1A	Accept answers
1.,	The greatest value is 9. $(1, 4) \dots 9$	1A	showing in reasonable order
	The least value is -6. $(y, \circ) \cdots y$	1A 7	[] 《早好粮写之俗》。 [
2.	(a) $f(3) = 5$ (0, -1) 6 (2)	1A	所特
	(a) $f(3) = 5$ (c) $(0, -1) = 6$ (d) $(0, -1) = 6$ (e) $(0, -1) = 6$ (f) $(0, -1) =$	1A	
	(c) $\frac{1}{x-1} - \frac{1}{x+1} = \frac{2}{x^2-1} \left(= \frac{2}{(x-1)(x+1)} \right)$	1A	
	(d) The remainder is 2.	1A	
-	(e) H.C.F. = $2xy^2$		
	L.C.M. = $12x^2y^3z$ (or $2^2 \cdot 3x^2y^3z$)	1A+1A	
	(f) $r = 1$, $s = -2$	1A+1A	· · · · · ·
•	(g) $\frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{2}$	_1A	
	V 3	9	,
3.	$\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = \frac{3}{2}$ $\frac{\sin\theta + \cos\theta}{\sin\theta} = \frac{3}{2}$ $\frac{\sin\theta + \cos\theta}{\sin\theta} = \frac{3}{2}$		
	$2\sin\theta + 2\cos\theta = 3\sin\theta - 3\cos\theta \qquad \qquad \omega v \qquad \omega v$		
	$\sin\theta = 5\cos\theta$	1A	
	$\therefore \tan \theta = 5$	1M	
	8 = 78.7° or 259° (を第一個内は一分)	1A+1A	roundable to 78.7°, 259°
-	17) radia & \$ \$ \$ 1 mg.	-4	deduct 1A for each excess answer
	Remark		
	$sin\theta = 5cos\theta$ (same as above)	1A	
	$\sin^2\theta = 25\cos^2\theta$		
	$\sin^2\theta = 25(1 - \sin^2\theta) + \frac{1}{2} + $	ĨM	
	$\sin^2\theta = 25 (1 - \sin^2\theta)$ $\sin^2\theta = \frac{25}{26}$ $\sin^2\theta = \frac{25}{26}$		
	(i) If $\sin \theta = \sqrt{\frac{25}{26}}$, $\theta = 78.7^{\circ}$ or 101° (rej.)	Ž 1A	
	(ii) If $\sin \theta = -\sqrt{\frac{25}{26}}$, $\theta = 259^{\circ}$ or 281° (rej.)	1A	
3-0	E-Maths I		Р.
	·		-

RESTRICTED 内部文件

•	NES I NICTED 内部	义什	
-	Solution	Marks	Remarks
$4. x^2$	-x-2<0		
(x -	+1)(x-2)<0	1A	for factorization or accept as x=-1,2
٠	-1 < x < 2	2A	deduct 1A for any equal sign, accept
	ting $x = y - 100$, we have $w(y^{-1}vv^{+1})(y^{-1}vv^{-1}) < v^{-1}vv^{-1}$	1M	graphical solution
	99 < y < 102		養病 312 g
••	33 () (102	2A	
		6	
5. (a)	$9^x = \sqrt{3}$		
	$9^{x} = 3^{\frac{1}{2}}$ (or $3^{2x} = \sqrt{3}$, $9^{2x} = 3$ etc.) $9^{\frac{1}{7}} = \sqrt{3}$	1A	
- 44	$2x = \frac{1}{2}$	1M	equating index with
	$\therefore x = \frac{1}{4}$		the same base
	4	(3)1A	
	OR Taking logarithms		
	$x\log 9 = \log \sqrt{3}$	1м	
	$x = \frac{\log\sqrt{3}}{\log 9}$		
		1A	
	= 0.25	1A	
(b)	$x\left(\frac{x^{-1}}{y^2}\right)^{-3} = x\left(\frac{1}{xy^2}\right)^{-3}$		
	$= x(xy^2)^3$		
	$= x(x^3y^6)$		
	$= x^4 y^6$	2M+1A	114.6
		ZMTIA	1M for correct use of the formula $a^{-n} = \frac{1}{a^n}$
			a n 1M for correct use of the formula
		2) 6	$(a^m)^n = a^{mn}$
		3/	
			•
	s - 1		
3-CE-Mat	chs I		
		1	P.2

RESTRICTED 内部文件							
	Solution	Marks	Remarks				
	$= \frac{m}{2}$ $\frac{500}{2} (= 250)$ $\frac{m}{2} = \frac{m}{2}$ $\frac{m}{2} = \frac{m}{2}$	1A 1A					
	rea of the picture = $\alpha\beta$ = 250 The perimeter = $2(\alpha + \beta)$	1A					
(ii)	$= 2\left(\frac{m}{2}\right) = m$ The area of the border $= (\alpha + 4)(\beta + 4) - \alpha\beta$	1A 1A+ 1M ~	(α + 4) (β + 4)				
•	$= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$	IM ~	$(\alpha + \frac{1}{4})(\beta + \frac{1}{4})$ subtracting answer in (a)				
	$= 4(\frac{m}{2}) + 16$ $= 2m + 16$) <u>-1A</u>					
	OR $= 2[2(\beta + 4) + 2\alpha]$ $= 4(\alpha + \beta) + 16$	1M+1A	1M for summation of areas				
	= 2m + 16	1A					
7.	180 160 140 140 120 80 60 40		accept plotting the points with error ±0.5 line segment from score 0 to score 9.5 is optional				
	0 10 17 20 23 30 36 40 50 60						
93-CE-Maths I	Score (less than)		P.3				

R	FST	ΓRI	CI	FD	内部	了文件
					r 301	<i></i>

•	. So	lution		Marks	Remarks
. (a) Cummulative Frequen	cy Table			
•	Score (less than)	Cummulative Frequency		· ·	
	9.5	20			
	19.5	60			
	29.5	120			
	39.5	170			
	49.5	190			
	59.5	200			,
				1A+1A	1A for any 3 correct
					must be line segments
(b) (i) Cummulative f	requency polygon.		1M+1A	1M for following the
	The upper qua	rtile = 36 (or 35)	•		data in (a)
	The lower qua				上重加多的人工学科科
		quartile range = 36 - 17 =	19	1M+1 /	ľ
~					1M for using the 259 $N+1$
		و			or $(\frac{N+1}{4})$ th value,
		•			etc.
	(ii) If the pass p	ercentage is set at 60%,			
	the number of	students failed would be			C 80.
	200 x (1 - 60%) = 80 No. of itsherts pack	al. 120.		
	200 % (1 000	, = 00		1M	Lor horizontal line through 80 on the
	The page goo	e should be 23			graph
	The pass scor	e anould be 23	·	1A	
	· ·			6	
		14	<i>a</i> •	<u> </u>	
(c) Mean = 26.5 ($4 \times a($)	H volue).	i	1A	Working steps are
	Standard deviation	= $\sqrt{166}$ (= 12.9)		,,	not required
		V100 (= 12.5)	i	1A	r.t. 12.9
				2	
				<u></u>	
- (d) The new mean is inc	reased by 20,	:	1M	or exact answer
	i.e. $Mean = 26.5$	+ 20 = 46.5			
	The new standard de	viation i <u>s unchange</u> d		ім	or exact answer
		iation = $\sqrt{166}$ (= 12.9)			
		7100 (= 12.5)			
		•		2	,
				ļ 	
	•				
			,		
					5.3
			į		·
				-	

		Solution	Marks	Remarks			
8.	(a)	The slope of $L_1 = \frac{2-7}{10-0} \left(= -\frac{1}{2} \right)$	1A				
		The equation of L_1 is $y - 7 = -\frac{1}{2}(x - 0)$	A(0	0.70			
		i.e. $y = -\frac{1}{2}x + 7$		1			
		(or $x + 2y - 14 = 0$, $5x + 10y - 70 = 0$, etc.)	1A -2	$ \begin{array}{c c} B & B(10, 2) \\ \hline C(4, 0) & C(4, 0) \end{array} $			
	(b)	Slope of $L_1 = -\frac{1}{2}$		$(x-4)^2 \cdot y^2$			
		As $L_2 \perp L_1$, slope of $L_2 = 2$	אג				
		The equation of L_2 is					
		y - 0 = 2(x - 4)					
		i.e. $y = 2x - 8$ (or $2x - y - 8 = 0$, etc.)	1A	•			
_		Solving $\begin{cases} y = -\frac{1}{2}x + 7 \\ y = 2x - 8 \end{cases}$					
		$2x - 8 = -\frac{1}{2}x + 7$	1M	ではいません into 1			
		The coordinates of D are $x = 6$, $y = 4$ (or $D = (6, 4)$)	1A	{ unknown			
		(2) '1				
	(c)	As $AP : PB = k : 1$, the coordinates of P are given by		1			
		$x = \frac{10k}{1+k}$, $y = \frac{2k+7}{1+k}$	1A+1A				
		Substituting in the equation of the circle,					
		$\left(\frac{10k}{1+k}-4\right)^2+\left(\frac{2k+7}{1+k}\right)^2=30$	1M				
_		$(6k-4)^2 + (2k+7)^2 = 30(k+1)^2$					
		$10k^2 - 80k + 35 = 0$					
		$2k^2 - 16k + 7 = 0$ (*) $4 \pm \frac{1}{2} \sqrt{2}$	1				
		$k = \frac{16 \pm \sqrt{16^2 - 4 \times 2 \times 7}}{4} = \frac{8 \pm 5\sqrt{2}}{2} (7.54 \text{ or } 0.464)$	1A	accept $\frac{16 \pm \sqrt{200}}{4}$			
	-	As <i>P</i> lies on <i>AD</i> , $\frac{AP}{PB} = \frac{8 - 5\sqrt{2}}{2}$ (0.464)	1M	choosing the smaller one from 2 positive			
			-6-	values			

	RESTRICTED 内部文件							
-			Sc	plution	Marks	Remarks		
9.	(a)	(i)		ector $OACB = \frac{1}{2} r^2 \alpha$	1A	, , , , ,		
		(ii)		$= \frac{1}{2} r^2 \sin \alpha \ (\text{or} \ r^2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2})$		(opa		
			∴ area of t	he segment ACB				
		/444	$= \frac{1}{2}r^2\alpha -$	the segment ACB $\frac{1}{2}r^2\sin\alpha \text{ (or } \frac{1}{2}r^2\alpha - r^2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$	1M+12	A B		
		(+ + + +	·	the circle in the ratio 4:1				
			$\frac{1}{2}r^2\alpha - \frac{1}{2}r^2s$		1M	correct use of the		
			$\therefore \sin \alpha = \alpha$	$-\frac{2\pi}{5}$	1	ratio 4:1		
			Remark					
			$\frac{1}{2}r^2(2\pi-\alpha)$	$\frac{+\frac{1}{2}r^2\sin\alpha}{r^2\sin\alpha} = 4$				
			$\frac{1}{2}r^2\alpha - \frac{1}{2}$	$r^2 \sin \alpha$ = 4	1M			
			$\pi r^2 - \frac{1}{2}r^2\alpha +$	$\frac{1}{2}r^2\sin\alpha = 2r^2\alpha - 2r^2\sin\alpha$				
			$\therefore \sin\alpha = \alpha$	$-\frac{2\pi}{5}$	18			
.—		(iv)	Let $f(\alpha) = \sin \alpha$	$\alpha - \alpha + \frac{2\pi}{}$				
				,		or $f(\alpha) = \alpha - \sin \alpha - \frac{2\pi}{5}$		
			$f(2.1) \approx 0.019$ $f(2.2) \approx -0.13$	8) > 0 $\begin{cases} f(0.1) & (-7) \\ f(0.1) & (-7) \end{cases}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
•				as a root between 2.1 and 2.2.		1(2.2) / 0		
		_(v)	- (, o	as a root between 2.1 and 2.2.	1	for showing opposite signs		
			nterval	Mid-value α_i $f(\alpha_i)$				
		2.1 <	α < 2.2		1M+1A	Testing sign at mid-value		
		2.1 <	$\alpha < 2.15 \\ \alpha < 2.125$	2.125 -ve (-0.018) 2.1125 +ve (0.00097)	1M -	> Correct choice of next		
	2.1	125 <	α < 2.125 α < 2.11875 α < 2.115625	2.115/5 -ve (-0.0085) 2.115625 -ve (-0.0038)		interval Accept using smaller or		
l	2.1	125 \	u < 2.115625	2.1140625 -ve (-0.0014) રિત ભારત		larger starting intervals		
	2.1	125 <	α < 2.1140625		1			
			$\alpha \approx 2.11 \ ($		1 A	Check whether it is bounded by the		
- ,			. •	. 1		last interval		
	(b)	As the	Curved sunface		10			
	(~)			e has uniform height, surface areas of the two parts				
		= rati	o of the corres	sponding arc lengths.				
			$(\tau - \alpha) : r\alpha$	DR (2η-d): α	124	CR YX ((Th- N)		
		$= 2\pi$	2.11:2.11	· · · · · · · · · · · · · · · · · · ·	1 4 ~ (
		≈ 1.98	: 1		1A 4	广报及15位置了能影响 r.t. 1.98		
	•				2			
		OR L	et the height b	e h .				
			ratio requir	$ed = r(2\pi - \alpha)h : r\alpha h$	11			
				= ··· ≈ 1.98 : 1	1A			
3-CE	E-Mat	hs I						
					ł	PA		

	RESIRICIED 内部	义任	
	Solution	Marks	Remarks
). (a)	The annual food production in		
	(i) the 3rd year = $8 + 1 \times 2$		
	= 10 (of 10 (millim torbes))	1A	$u-1$ for 10×10^6 eV 10×10^6 million
	(ii) the nth year = $8 + (n-1) \frac{n + 1 + 1}{(n \cdot llim \cdot lonnes)}$	>1A	tonnes
	= 7 + n		
(b)	The total food production in the first 25 years		
()	$= \frac{25}{2} [2 \times 8 + (25 - 1)i] \qquad \text{or} \frac{15}{2} \left[8 + 8 + (25 - 1)i \right]$	1A	
	= 500	1A	
		2	
(c)	The population of the country at the end of		
	(i) the 3rd year = $2 \times (1 + 6\%)^2$		•
	= 2.25 million	1A	r.t. 2.25
	(ii) the <i>n</i> th year = $2 \times (1 + 6\%)^{n-1}$ million (or $2 \times 1.06^{n-1}$ million)	1A	
		2	
(d)	For the population to be doubled,		
•	(> 作列) 2 × (1 + 6%) " = 4	1M	accept "answer of c(ii) = 4"
	Taking logarithm $n \log 1.06 = \log 2$	1M	for taking lograithm
1	$\begin{cases} n = \frac{\log 2}{\log 1.06} = 11.9 \end{cases}$		
(H6%)	The minimum number of years for the population to be doubled is 12 years.	1A	accept values r.t. 11.9
51. ist		3	
(e)	The annual food production per capita of the 100th year	ar	
14	$=\frac{7+100}{}$	1M+1A	1M for substituting
日日本報 電電 17	7 = 0.167		$n=100$ to $\frac{\text{ans.of(a)(iii}}{\text{ans.of(c)(iii}}$
7	< 0.2		
	: the country will face a food shortage problem.	1M	corresponding logical conclusion
		3	
			,
-			·

93-CE-Maths I

P.7

RESTRICTED 內部文件 Solution Marks Remarks 11. (a) Join AB . $\angle ABD = 90^{\circ}$ / in a semicircle 1 accept "semicircle" or "diameter" The day see 4-1 and $\angle AQP =$ (Given) 900 1 国L智慧 TP1 $\angle ABD + \angle AQP =$ 180° 1 is a cyclic quadrilateral. (Opp. 2s supp.) A , Q , P , B are concyclic. 3 (b) (i) Join CD . Using the same argument as in (a), it can be shown that PQDC is a cyclic quadrilateral. $\angle PQC =$ (is in the same segment) 1 LPDC (or LBDC) Now consider the cyclic quadrilateral ADCB . $\angle BDC =$ (Ls in the same segment) 1 LBAC (or LBAP) **AQPB** is a cyclic quadrilateral, $\angle BAP =$ (Is in the same segment) 1 $\angle BQP$ (or θ) $\angle BQC = \angle BQP + \angle POC$ In terms of θ , $\angle BQC =$ 1 2θ (ii) Consider the given semi-circle. $\angle BOC = 2 \times \angle BAC \mid \angle$ at centre = twice \angle at 0^{ce} 1 accept "∠ at centre" or "0 is the centre" $\angle BAC = \theta$ (Proved) But $\angle BOC =$ 20 1 6 (C) Solution: Consider the quadrilateral AQPB . $\angle PBQ (= \angle PAQ) = \Phi$ 1 But in the given semi-circle, $\angle CBD (= \angle CAD) = \Phi$ 1 1 in 1 in $\angle CBQ = \angle CBD + \angle PBO$ 吴岱鹭 沒年登 生儿 21 t $= 2\phi$ 有有分分 OR $\angle BQC = \angle BOC$ B, O, Q, C are concyclic Hence $\angle CBQ = \angle COQ$ 1 $= 2 \angle CAD$ **=** 2φ 1 93-CE-Maths I P.8

<u> </u>		RESTRICTED 内部		
		Solution	Marks	Remarks
12. (a)	(i)	As PQ is perpendicular to the plane ABQ		
		$\tan 45^{\circ} = \frac{PQ}{AQ} \text{ and } \tan 60^{\circ} = \frac{PQ}{BQ}$	1A	for either
		$\therefore AQ = \frac{h}{\tan 45^{\circ}} = h \text{ metres}$	1A	
		$BQ = \frac{h}{\tan 60^{\circ}} = \frac{h}{\sqrt{3}} \text{ metres (or 0.577h)}$	1A	r.t. 0.577
	(ii)	Consider AABQ .		
•		By the cosine rule,		
		$AB^2 = AQ^2 + BQ^2 - 2AQ \cdot BQ \cos \angle AQB$		
		$100^2 = h^2 + \left(\frac{h}{\sqrt{3}}\right)^2 - 2(h)\left(\frac{h}{\sqrt{3}}\right) \cos 80^\circ$	1M+1A	
		$= 1.13282h^2$		
		h = 94.0 (93.9549)	1A	r.t. 94.0
		Consider AABQ again.		
		By the sine rule, $\frac{BQ}{\sin \ell QAB} = \frac{AB}{\sin \ell AQB}$		
		$\frac{93.9549}{\sqrt{3}} = \frac{100}{\sin 2QAB} = \frac{100}{\sin 80^{\circ}}$	1M	
		$\sin \angle QAB = \frac{93.9549 \times \frac{1}{\sqrt{3}} \sin 80^{\circ}}{100} = 0.5342$		÷ .
		$\angle QAB = 32.3^{\circ} (32.2902^{\circ})$	1A 8	r.t. 32.3 accept 32°15'-32°21'
		OR		
		•••		
		By the cosine rule,		
		$QB^2 = AQ^2 + AB^2 - 2(AQ)(AB)\cos \angle QAB$		
		$\left(\frac{93.9549}{\sqrt{3}}\right)^2 = 93.9549^2 + 100^2 - 2 \times 93.9549 \times 100 \text{co}$	s <i>LQAB</i>	:
			1M	
		$\cos \angle QAB = 0.8454$		
		<i>LQAB</i> = 32.3°	1A	

R	ES	T	21	CT	E	DI	内	部	文	件
_				_					_	

	Solution		Marks	Remarks
(b)	Consider APQR.			
÷	$\tan 50^{\circ} = \frac{h}{QR}$		1M	
	$\therefore QR = \frac{h}{\tan 50^{\circ}} \text{ metres}$:	
	Consider $\triangle AQR$.			
-	By the sine rule, $\frac{QR}{\sin \angle QAR} = \frac{AQ}{\sin \angle ARQ}$			
	$\frac{h}{\tan 50^{\circ}} = \frac{h}{\sin 2.2902^{\circ}} = \frac{h}{\sin 2RQ}$			
			1M	
	$\angle ARQ = \sin^{-1}(\sin 32.2902^{\circ} \tan 50^{\circ})$			
	$= \sin^{-1} 0.636644$			
	= 140.45796° (as it is obtuse) $\therefore \angle AQR = 180^{\circ} - 140.45796^{\circ} - 32.2902^{\circ}$		1A	r.t. 140-141
	= 7.2518°			
	Using the sine rule again.			
	$AR = \frac{AQ\sin 7.2518^{\circ}}{\sin 140.45796^{\circ}}$			٠.
	= 18.6 m		1A	r.t. 18.4-18.7
			4	
	p			
	t metres	UR =	AQ2+A1	(93.954) HAR (1)
		AR	- 160	-2x(PS. Ps.4) ARC
	80	107.	130.	8 AR 126 11.11=0.
	40 80.1	MR	= 18.64	or AR=140.8
	32.1 100 m R			or AR = 140.8 HR = 18.6 (18)
	A			

P.10

93-CE-Maths I

	· • ,	<u>'</u>	KESIKICIED 内部	义什	
	* * *		Solution	Marks	Remarks
13.	(a)	(i)	The prob. that the elections in the Tuen Mun and Yuen Long constituencies would both be won by the Democrats	·	
			= 0.65 × 0.45 = 0.2925	1A 1A	r.t. 0.293 accept $\frac{117}{400}$ or $\frac{2925}{10000}$
		(ii)	The prob. that the elections in the two constituencies would both be won by the Liberal	•	400 10000
			$= (0.25 + 0.1) \times 0.55$ $= 0.1925$	1A	
			the probability that the elections in the two constituencies would both be won by the same party		
			= 0.2925 + 0.1925 = 0.485	1M 1A	r.t. 0.485-0.486
			•	5	accept $\frac{97}{200}$ or $\frac{485}{1000}$
	(b)	(i)	The probability that a vote came from the Tuen constituency and was for 'The Democrats'	nun	Candidate No. of
. —			$= \frac{40000 \times 70\%}{60000} \text{ (or } \frac{28000}{60000}\text{)}$	IA	A 28000 B 8000
			$= \frac{7}{15} \text{ (or 0.467)}$ The probability that both votes came from the T		C 4000 P 8000 Q 12000
			Mun constituency and were for 'The Democrats'	uen	
			$= \left(\frac{7}{15}\right)^2$ $= \frac{49}{225} \text{ (or 0.218)}$	1M 1A	r.t. 0.+18.
		(ii)	The probability that a vote was for 'The Democratical Control of the Control of t		(. 0.0.7)
			$= \frac{40000 \times 70\% + 20000 \times 40\%}{60000} \left(\text{or } \frac{28000 + 8000}{60000} \right)$	1A	•
٠			$=\frac{3}{5}$ (or 0.6)		Livore from
			The probability that both votes were for 'The Democrats'.) P
			$=\left(\frac{3}{5}\right)^2 = \frac{9}{25}$ (or 0.36)	1A.	beare born
		(iii)	The probability that a vote was for 'The Libera'	s'	
			$= \frac{8000 + 4000 + 12000}{60000} \text{ (or } 1 - \frac{3}{5}\text{)}$ $= \frac{24000}{60000} = \frac{2}{5}$		
	,		The probability that both votes were for different	ent part	ies
			$= 1 - (\frac{3}{5})^2 - (\frac{2}{5})^2 \qquad \text{or} 2 \times \frac{5}{5} \times \frac{3}{5}$	1A	
			$= \frac{12}{25} \text{ (or 0.48)}$	1 <u>A</u>	
				·	