Das Volumen des Körpers wird berechnet, der bei Rotation des Graphen von f mit $f(x) = x^2 + 1$; $x \in [0, 5]$ um die y-Achse entsteht.

Die Funktion f ist streng monoton wachsend auf dem Intervall [0, 5]. Daher existiert ihre Umkehrfunktion \overline{f} . Wegen f(0) = 1 und f(5) = 26 ist \overline{f} auf dem Intervall [1;26] definiert.

Eine Funktionsgleichung für \overline{f} ergibt sich durch Umstellen der Gleichung $y=x^2+1$ nach x. Wegen $x=\sqrt{y-1}$ ergibt sich $\overline{f}(y)=\sqrt{y-1}$.

Kann man auch gleich bei $x^2=y-1$ lassen.

Wegen Satz 2 ist das Integral $\pi \cdot \int_{1}^{26} (\sqrt{y-1})^2 dy$ zu berechnen. Es ergibt sich

$$\pi \cdot \int_{1}^{26} (\sqrt{y-1})^2 dy = \pi \cdot \int_{1}^{26} (y-1) dy = \left[\frac{y^2}{2} - y \right]_{1}^{26} = \left[(338 - 26) - \left(\frac{1}{2} - 1 \right) \right] = 311,5.$$

Der Körper hat ein Volumen von 311,5 VE.

20 a,c,d oHiMi

- Gegeben ist eine Funktion f auf einem Intervall. Berechnen Sie das Volumen des 20. Körpers, der durch Rotation des Graphen f um die y-Achse entsteht.

a) $f(x) = x^3$; [0;2] Beachte: Die gegebenen Intervalle beziehen

c) $f(x) = x^2 - 1$; [1; 3]

d)
$$f(x) = \frac{1}{\sqrt{x}}$$
; [1;2]

f)
$$f(x) = \sqrt{5x+1}$$
; [1;3]

Prüfen Sie, ob bei Rotation des Graphen von f um die x-Achse eine räumliche Punkt-21. menge entsteht, der ein Rauminhalt zugesprochen werden kann. oHiMi

a)
$$f(x) = \frac{1}{x}$$
; **(**0; 3]

b)
$$f(x) = \frac{1}{x}$$
, $[0,5;\infty]$

Prüfen Sie, ob bei Rotation des Graphen von f um die y-Achse eine räumliche Punkt-22. menge entsteht, der ein Rauminhalt zugesprochen werden kann.

a)
$$f(x) = \frac{1}{x}$$
; ([0;3]

b)
$$f(x) = \frac{1}{x}$$
; $[0,5; \infty]$

- Für jedes t > 0 ist die Funktion f_t mit $f_t(x) = \frac{2x^2 + tx + t}{x}$ $(x \neq 0)$ gegeben. 23.
 - a) Untersuchen Sie die Funktion f_t auf ihr Verhalten an der Polstelle und ermitteln Sie die Gleichung der schiefen Asymptote.
 - **b**) Untersuchen Sie f_t auf Extrema.
 - c) Zeichnen Sie den Graphen von f_1 im Intervall [-4;4].
 - d) Die Punktmenge zwischen dem Graphen von f_t , der schiefen Asymptote y_t und der Geraden $x = \sqrt{\frac{t}{2}}$ im ersten Quadranten rotiere um die x-Achse.

Prüfen Sie, ob bei dieser Rotation für jedes t eine räumliche Punktmenge mit endlichem Volumen entsteht.