Лабораторная работа № 6

Решение моделей в непрерывном и дискретном времени

Беличева Дарья Михайловна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	24
Список литературы		25

Список иллюстраций

4.1	Модель экспоненциального роста	7
4.2	Система Лоренца	8
4.3	Модель Лотки-Вольтерры	9
4.4	модель Мальтуса	10
4.5	модель Мальтуса	11
4.6	Логистическая модель роста популяции	12
4.7	Логистическая модель роста популяции	13
4.8	SIR-модель	14
4.9	SEIR-модель	16
4.10	Дискретная модель Лотки-Вольтерры	17
4.11	Модель отбора на основе конкурентных отношений	18
4.12	Модель отбора на основе конкурентных отношений	19
4.13	Модель консервативного гармонического осциллятора	20
4.14	Модель консервативного гармонического осциллятора	21
4.15	Модель свободных колебаний гармонического осциллятора	22
4.16	Модель свободных колебаний гармонического осциллятора	23

1 Цель работы

Основной целью работы является освоение специализированных пакетов для решения задач в непрерывном и дискретном времени.

2 Задание

- 1. Используя JupyterLab, повторите примерыи. При этом дополните графики обозначениями осей координат, легендой с названиями траекторий, названиями графиков и т.п.
- 2. Выполните задания для самостоятельной работы.

3 Теоретическое введение

Julia – высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений [1]. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia [2].

4 Выполнение лабораторной работы

Выполним примеры из лабораторной работы для знакомства с работой с различными моделями и способами их задания решения (рис. 4.1-4.3).

Рис. 4.1: Модель экспоненциального роста

Рис. 4.2: Система Лоренца

Рис. 4.3: Модель Лотки-Вольтерры

Далее перейдем к заданиям для самостоятельного выполнения.

Реализуем и проанализируем модель роста численности изолированной популяции(модель Мальтуса):

$$\dot{x} = ax$$
, $a = b - c$,

где x(t) – численность изолированной популяции в момент времени t,a – ко-

эффициент роста популяции, b – коэффициент рождаемости, c – коэффициент смертности. Построим соответствующие графики (в том числе с анимацией) (рис. 4.4-4.5).

Рис. 4.4: модель Мальтуса

Рис. 4.5: модель Мальтуса

Реализуем и проанализируем логистическую модель роста популяции:

$$\dot{x} = rx(1 - \frac{x}{k}), \quad r > 0, \quad k > 0,$$

где r – коэффициент роста популяции, k – потенциальная ёмкость экологической системы (предельное значение численности популяции). Построим соответствующие графики (в том числе с анимацией) (рис. 4.6-4.7).

```
f(u,p,t) = r*u*(1 - u/ k)
 r = 0.55

k = 1000
x = 1000

u0 = 10

tspan = (0.0, 50.0)

prob = ODEProblem(f, u0, tspan)

sol = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 22-element Vector{Float64}:
0.0
0.1129299429223018
0.5044961282126377
1.0903125799504387
1.7839293973166495
2.643539021309861
3.6397601946043756
4.789434066161398
6.0922058728709745
7.576349230884012
9.364736511187042
11.281451346133972
13.467168491780498
15.433790384213031
17.77791217750905
plot(sol, xlabel="Bpems", ylabel="
 plot(sol, xlabel="Время", ylabel="Численность популяции",
title = "Логистическая модель роста популяции", legend=false, c = "indigo", linewidth = 3)
                                 Логистическая модель роста популяции
        1000
 Численность популяции
           750
         500
         250
                                                   10
                                                                                     20
                                                                                                                        30
                                                                                                                                                          40
                                                                                                                                                                                           50
                                                                                                Время
```

Рис. 4.6: Логистическая модель роста популяции

Рис. 4.7: Логистическая модель роста популяции

Реализуем и проанализируем логистическую модель эпидемии Кермака–Маккендрика (SIR-модель):

$$\begin{cases} \dot{S} = -\beta IS, \\ \dot{I} = \beta IS - \gamma I, \\ \dot{R} = \gamma I, \end{cases}$$

где S – численность восприимчивой популяции, I – численность инфицированных, R – численность удаленной популяции (в результате смерти или выздоровления), и N — это сумма этих трёх, а β и γ - это коэффициенты заболеваемости и выздоровления соответственно (рис. 4.8).

```
35]: function SIR(u,p,t)
(S,I,R) = u
(β, γ) = p
N = S + I + R
                                                     = -(β*1*5)/N
= (β*I*S)/N - γ*I
                                           return [dS, dI, dR]
  35]: SIR (generic function with 1 method)
                        tmax = 40.00, tmax) u0 = [990.0,10.0,0.0]; # S, I, R p = [0.3,0.1]; # B, C, \gamma prob_ode = 0DFroblem(SIR, u0, tspan, p) sol_ode = solve(prob_ode, dt = \deltat)
                          retcode: Success
Interpolation: 3rd order Hermite
t: 14-element Vector{Float64}:
                          14

0.0

0.1

0.524012849919981

1.5797318705617496

3.0146765829681845

4.848733720452999

161893101958041
                                        .161893161958041
.969614706472615
.3620159027434
.423961725880634
.29132809612661
.393697320043366
.28097481041046
                            33.2097/81041040
48.0
21. 14-element Vector{Float64}}:
[998.0, 10.0, 0.0]
[989.7001011274347, 10.198907523862736, 0.10099134870264877]
[988.1689263140435, 11.213979704224312, 0.6170939817223249]
[984.5137609696604, 13.633883191370936, 18.52355839927681]
[997.8700049263745, 18.02099471198377, 4.109400861641934]
[996.3134885735213, 25.614298790945167, 8.072212635533628]
[945.0369179294822, 39.469435887225025, 15.49364518329287]
[995.0372406390573, 65.05316697321558, 29.90959233772631]
[828.727192396451, 112.27355092177601, 59.4525578182318]
[690.2022476515697, 189.5577715943861, 120.23998075404435]
[489.18726842758895, 275.8283861015127, 234.9843454708984]
[311.00527126973995, 303.0318711679286, 385.9628576222816]
[187.9541260931357, 258.21724677781435, 553.8286771299501]
[121.03007160729575, 178.45741939269482, 700.5125090000007]
                     plot(sol_ode, title = "SIR модель", label = ["S" "I" "R"], linewidth = 3)
                                                                                                                                                              SIR модель
371:
```

Рис. 4.8: SIR-модель

Как расширение модели SIR (Susceptible-Infected-Removed) по результатам эпидемии испанки была предложена модель SEIR (Susceptible-Exposed-Infected-Removed) (рис. 4.9).

$$\begin{cases} \dot{S} = -\frac{\beta}{N}IS, \\ \dot{E} = \frac{\beta}{N}IS - \delta E, \\ \dot{I} = \delta E - \gamma I, \\ \dot{R} = \gamma I, \end{cases}$$

Рис. 4.9: SEIR-модель

Для дискретной модели Лотки-Вольтерры:

$$\begin{cases} X_1(t+1) = aX_1(t)(1-X_1(t)) - X_1(t)X_2(t), \\ X_2(t+1) = -cX_2(t) - dX_1(t)X_2(t). \end{cases}$$

с начальными данными a=2, c=1, d=5 найдем точку равновесия. Получим

и сравним аналитическое и численное решения (рис. 4.10).

Рис. 4.10: Дискретная модель Лотки-Вольтерры

Реализуем на языке Julia модель отбора на основе конкурентных отношений:

$$\begin{cases} \dot{x} = \alpha x - \beta x y, \\ \dot{y} = \alpha y - \beta x y, \end{cases}$$

Построим соответствующие графики (в том числе с анимацией) и фазовый портрет (рис. 4.11-4.12).

Рис. 4.11: Модель отбора на основе конкурентных отношений

Рис. 4.12: Модель отбора на основе конкурентных отношений

Реализуем на языке Julia модель консервативного гармонического осциллятора:

$$\ddot{x} + \omega_0^2 = 0, x(t_0) = x_0, \dot{x}(t_0) = y_0.$$

Построим соответствующие графики (в том числе с анимацией) и фазовый портрет (рис. 4.13-4.14).

Рис. 4.13: Модель консервативного гармонического осциллятора

Рис. 4.14: Модель консервативного гармонического осциллятора

Реализуем на языке Julia модель свободных колебаний гармонического осциллятора:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 = 0, x(t_0) = x_0, \dot{x}(t_0) = y_0.$$

Построим соответствующие графики (в том числе с анимацией) и фазовый портрет (рис. 4.15-4.16).

Рис. 4.15: Модель свободных колебаний гармонического осциллятора

Рис. 4.16: Модель свободных колебаний гармонического осциллятора

5 Выводы

В результате выполнения данной лабораторной работы я освоила специализированные пакеты для решения задач в непрерывном и дискретном времени.

Список литературы

- 1. JuliaLang [Электронный ресурс]. 2024 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 11.10.2024).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2024 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 11.10.2024).