(a)
$$N=21$$
, $d=\frac{1}{N}$. To steer to $O_T: W(O_T) = \frac{1}{N} V(O_T)$

-see plots

(b) The HPBW is given by (2.136) for angles from 90° down to the scan limit where $\Theta_L = 0$.

This occurs at

 $\Theta_{T} = \cos^{-1} \left[\cos \left(\Theta_{L} = 0 \right) - 0.450 \frac{\lambda}{Nd} \right]$

 $= \cos^{-1} \left[1 - 0.450 \frac{2}{21} \right] = 16.8^{\circ}$ for an problem

Then there is no HPBW until we reach endfire $0_{7}=0$, where the HPBW is given by (2.138).

for an steering angles, we have

<u>Θτ</u> <u>θμ</u> 0° 33.6700°

not defined (not defined for 0<07<16.80)

300 * 9,94820

60° 5.6755°

900 4.91260

Problem 2.4.1, N = 21, θ_{T} = 15 (deg)

Problem 2.4.1, N = 21, $\theta_T = 60$ (deg)

Problem 2.4.1, N = 21, $\theta_T = 90$ (deg)

