LANDING DISTANCE OF A COMMERCIAL FLIGHT

IDENTIFYING FACTORS IMAPCTING LANDING DISTANCE TO REDUCE THE RISK OF OVERRUNS

Ameya Jamgade | BANA6043

EXECUTIVE SUMMARY

This report provides an analysis and evaluation of flight landing data of commercial aircrafts to identify the nature and magnitude of factors affecting landing distance.

Two datasets (FAA1 and FAA2) containing flight landing information of commercial aircrafts Airbus and Boing were provided. The goal of this project was to conduct statistical analysis using SAS to study what factors and how they would impact the landing distance thereby mitigating risk of overruns.

The data preparation stage consisted of combining the two datasets to make handling data much easier. Duplicates were identified and removed from the combined dataset. Validations were performed to make sure that all the values were in accordance with the rules specified in the project document. Statistical analysis was performed on columns containing large number of missing values to check if any column can be removed completely. All missing values in every column were replaced by median value of non-missing values in that column respectively. Finally, all the outliers were flagged. The result consisted of 851 rows.

The statistical analysis process began with plotting graphs of response variable (*Landing Distance*) against each of the predictor variables. This helped in getting a basic understanding of connection (linear, exponential, no relation etc.) between the response variable Distance with remaining explanatory variables. In order to better understand the data and measure the strength and direction of association that exists between two variables, pairwise correlation of data was performed. *SpeedGround* and *SpeedAir* had slightly strong positive correlation between them.

Next step in the analysis was to measure the strength of the relationship between dependent variable (Distance) and a series of other changing variables using regression. Airbus was coded as 1 and Boing as o. P-values of all predictor variables were noted to single out those values which were statistically insignificant (*Duration, No. of passengers and Pitch*). These three variables were removed from the model and VIF was calculated for all variables to test multi-collinearity. Multi-collinearity was absent in thus generated model and high value of adjusted R² indicated goodness of model fit.

Final model thus obtained is as below,

Distance = -6954.39 - 498.24(Aircraft) + 36.06(Speed_Ground) + 52.99(Speed_Air) + 14.71(Height)

where Aircraft =1 for Airbus and Aircraft=0 for Boeing

The Landing distance was calculated for both Airbus and Boeing. To understand the distribution of the two values of Landing Distance better, a Box-Whiskers plot was created. From the box-plot, we see that both mean and median for Airbus are lower than those of Boeing are. In addition, the IQR range is higher for Boeing than that of Airbus. Since range of Landing Distance Airbus aircrafts is lower that Boeing, this indicates that the Airbus has higher risk of overruns. Boeing aircrafts give pilots more room about landing distance to prevent overruns.

PROJECT INFORMATION

Background: Flight landing.

Motivation: To reduce the risk of landing overrun.

Goal: To study what factors and how they would impact the landing distance of a commercial flight.

Data Provided: Two datasets FAA1&FAA2 were provided consisting of information about flight statistics of generic Boeing and Airbus aircrafts.

DATA PREPARATION PROCESS

Concatenation- After briefly examining the data, the two data sets were first COMBINED to form a single dataset. This would make handling data much easier. Since the data was different in both datasets, hence merging function was avoided.

Identifying and removing duplicate values- It is important to check if the combined data set has any duplicate values. It was found that there are 100 duplicate records. These were identified and removed to avoid erroneous results.

Counting missing values- Missing values in the dataset were identified by creating a separate column (count). This helped in identifying an initial estimate of the quality of data provided. Specific pointer was placed to avoid counting those rows that would have all columns with missing values.

Validations to check and prevent bad data- Specific validations were done to check if character and numeric rules were followed for specific columns. Hence, in the final dataset, all character columns have character values and all numeric columns have numeric values.

Operations on columns with large number of missing values- Statistical distributions of columns with many missing values was plotted to understand the nature of existing data in these columns. All such columns had specific type of distributions. Hence, a decision was made not to exclude these columns for future analysis.

Replacing missing values with median- An option was to replace missing values with o, but that would have rendered statistical analysis of the data incurred/biased. Hence, the most appropriate solution was to replacing missing values in all columns with median.

Identifying outliers- In order to see if each row contains any outliers that aren't in accordance with the conditions specified in metadata project document, a separate column was created.

Total number of rows in dataset after completing above operations= 851

DISCRIPTIVE STUDY

X-Y PLOTS

In order to study the relationship between Distance and other variables, simple X-Y plots were obtained. This helped in getting a basic understanding of connection between the response variable *Distance* with remaining explanatory variables. From these plots it can be seen that *Distance* v. *SpeedGround* has exponential distribution. Also *Distance* v. *SpeedAir* has a distorted linear distribution. All other plots have a lot of noise or there isn't any relationship. In order to test if there is any relationship among explanatory variables themselves, X-Y plots of some of these were also plotted. It can be seen that there is a relationship between *SpeedGround* v. *SpeedAir* (linear).

2. PAIRWISE CORRELATION

In order to better understand the data and measure the strength and direction of association that exists between two variables, pairwise correlation of data was performed. From the correlation table thus generated it can be seen that *Distance* has positive strong correlation with both *SpeedGround* and *SpeedAir*. Also *SpeedGround* and *SpeedAir* have slightly strong positive correlation between them. All other independent variables have correlation coefficient values close to o indicating that there isn't any correlation amongst themselves.

STATISTICAL MODELLING

REGRESSION ANALYSIS

The next step was to measure the strength of the relationship between dependent variable (*Distance*) and a series of other changing variables using regression. Airbus was coded as 1 and Boing as o.

Distance = -6942.74- 484.23(Aircraft) - 0.41(Duration) - 2.09 (No.ofPasg) + 36.59(Speed_Ground) + 52.98(Speed_Air) + 14.67(Height) + 32.98(Pitch)

Where Aircraft =1 for Airbus and Aircraft=0 for Boeing

MODEL EVALUATION

- a. p-values: Analyzing the output of regression it could be seen that the p-value for *Duration and No.* of passengers was greater for alpha=0.05. This indicated that they are not statistically significant. Both of these variables had negative coefficients indicating that they are negatively affecting the distance.
- b. Multi-collinearity: From the above analysis and previous analysis of relationship between *SpeedGround* and *SpeedAir*, the next step was to identify if there is any quantifiable relationship

between the independent variables. Variance Inflation Factor was calculated for all the variables. It could be seen that VIF values are approx. = 1 for all independent variables. This indicates that no multi-collinearity is affecting our model.

c. Final Model: Duration, No. of passengers and Pitch were removed from final model for being statistically insignificant. The final model has all independent variables with VIF=1 indicating multicollinearity is absent. The sign of independent variables did not change between the two models. Also, the adjusted $R^2 = 86\%$ indicates that this is a good model fit.

```
Distance = -6954.39 - 498.24(Aircraft) + 36.06(Speed_Ground) + 52.99(Speed_Air) + 14.71(Height)
```

d. Box-Plot: The Landing distance was calculated for both Airbus and Boeing. In order to better understand the distribution of the two values of Landing Distance, a box-plot was created. From the box-plot, we see that both mean and median for Airbus are lower than those of Boeing are. In addition, the IQR range is higher for Boeing than Airbus.

```
/*Importing file 1*/
PROC IMPORT OUT=FirstDataSet
                DATAFILE='~/Stat computing class/Stat Comp Project/FAA1' DBMS=xls REPLACE;
        SHEET="FAA1";
        GETNAMES=YES;
RUN:
/*Importing file 2*/
PROC IMPORT OUT=SecondDataSet
                DATAFILE='~/Stat computing class/Stat Comp Project/FAA2' DBMS=xls REPLACE;
        SHEET="FAA2":
        GETNAMES=YES;
RUN;
/*Appending both files into a single dataset*/
DATA FAA1FAA2COMBINED;
        SET FirstDataSet SecondDataSet;
RUN:
/*Summarizing the distribution of each variable*/
PROC MEANS DATA=FAA1FAA2COMBINED N MEAN MEDIAN STD RANGE NMISS;
        /*TITLE'SUMMARY STATS OF COMBINED UNCLEAN DATASET';*/
        VAR DURATION:
        VAR NO PASG;
        VAR SPEED GROUND;
        VAR SPEED AIR;
        VAR HEIGHT;
        VAR PITCH;
        VAR DISTANCE;
RUN;
/* Finding and removing duplicates from the combined set*/
PROC SORT data=FAA1FAA2COMBINED NODUPKEY;
        BY aircraft duration no pasg;
RUN;
```

```
DATA TEST1;
        SET FAA1FAA2COMBINED;
        /* Counting the missing values in all columns*/
        count=nmiss(OF DURATION NO PASG SPEED_GROUND SPEED_AIR HEIGHT PITCH DISTANCE);
        if count<7;</pre>
        /*To avoid choosing rows where all columns are blank*/
        /* Check to see if dataset contains any Invalid characters removing those values in final data set*/
        IF AIRCRAFT NOT IN ('BOEING' , 'AIRBUS');
        IF VERIFY(DURATION, '0123456789');
        IF VERIFY(NO_PASG, '0123456789');
        IF VERIFY(SPEED_GROUND, '0123456789');
        IF VERIFY(SPEED_AIR, '0123456789');
        IF VERIFY(HEIGHT, '0123456789');
        IF VERIFY(PITCH, '0123456789');
        IF VERIFY(DISTANCE, '0123456789');
RUN;
/* Since Duration and Speed_air contain alot of missing values
understanding the distribution of these two columns to decide whether to exclude these columns or not
PROC UNIVARIATE DATA=TEST1;
        VAR DURATION;
        HISTOGRAM DURATION / NORMAL;
        /* HISTOGRAM variables / <OPTIONS> */
        VAR SPEED_AIR;
        HISTOGRAM SPEED AIR / NORMAL;
        /* HISTOGRAM variables / <OPTIONS> */
Run;
/*Since the two columns have normal and right-skewed distribution, we cannot omit these.
Hence, replacing all missing values with MEDIAN*/
proc stdize data=TEST1 out=NEW1 MISSING=median reponly;
        VAR DURATION;
        VAR NO PASG;
        VAR SPEED_GROUND;
        VAR SPEED AIR;
        VAR HEIGHT;
        VAR PITCH;
        VAR DISTANCE;
run;
/* To check outliers for each columns with give specifications*/
DATA NEW2;
        SET NEW1;
        IF DURATION <=40 THEN
                Outlier='Present';
        else
                Outlier="Not present";
        IF SPEED_GROUND <=30 OR SPEED_GROUND>=140 THEN
                Outlier='Present';
        else
                Outlier="Not present";
        IF SPEED AIR <=30 OR SPEED AIR>=140 THEN
                Outlier='Present';
        else
```

```
Outlier="Not present";
        IF HEIGHT < 6 THEN
                Outlier='Present';
        else
                Outlier="Not present";
RUN;
DATA FINALCOMBINEDDATA;
        SET NEW2;
        /* Referencing to cancatinated data set*/
        /* Labelling all given columns*/
        LABEL AIRCRAFT='AIRCRAFT';
        LABEL DURATION='DURATION':
        LABEL NO_PASG='NO. OF PASSENGERS';
        LABEL SPEED GROUND='SPEED ON GROUND';
        LABEL SPEED_AIR='SPEED IN AIR';
        LABEL HEIGHT='HEIGHT';
        LABEL PITCH='PITCH';
        LABEL DISTANCE='DISTANCE';
RUN;
proc print data=FINALCOMBINEDDATA(obs=10);
        title 'FIRST 10 OBSERVATIONS OF DATASET';
RUN;
/*Summarizing the distribution of each variable*/
PROC MEANS DATA=FINALCOMBINEDDATA N MEAN MEDIAN STD RANGE NMISS;
        TITLE'SUMMARY STATS OF COMBINED DATASET AFTER COMPLETING DATA PREPARATION OPERATIONS';
        VAR DURATION;
        VAR NO PASG;
        VAR SPEED GROUND;
        VAR SPEED AIR;
        VAR HEIGHT;
        VAR PITCH;
        VAR DISTANCE;
RUN;
/*CODING AIRBUS=1 AND BOEING=0*/
DATA TESTING;
        SET finalcombineddata;
        LABEL CODING='AIRCRAFT';
        IF AIRCRAFT='airbus' THEN
                CODING=1;
        ELSE if AIRCRAFT='boeing' THEN
                CODING=0;
RUN;
/*PROC PRINT DATA= TESTING;
/* PLOTS OF LANDING DISTANCE WITH EACH OF OTHER VARIABLES*/
proc plot data=FINALCOMBINEDDATA;
        title 'BASIC PLOTS TO IDENTIFY ANY RELATIONSHIP AMONG VARIABLES';
        /*PLOT OF DEPENDENT VARIABLE WITH ALL OTHER VARIABLES*/
        plot DISTANCE*AIRCRAFT;
        plot DISTANCE*DURATION;
        plot DISTANCE*NO_PASG;
        plot DISTANCE*SPEED_GROUND;
        plot DISTANCE*SPEED AIR;
        plot DISTANCE*HEIGHT;
        plot DISTANCE*PITCH;
        /*PLOTTING DEPENDENT VARIABLES WITH EACH OTHER TO SEE IF THERE IS ANY CONNECTION*/
        plot SPEED GROUND*SPEED AIR;
```

```
/*plot HEIGHT*PITCH;
        plot DURATION*SPEED AIR;
        plot SPEED_GROUND*PITCH;
        plot HEIGHT*SPEED_AIR; */
        /* IDENTIFYING IF THERE IS ANY CORRELATION BETWEEN THE VARIABLES*/
proc corr data=FINALCOMBINEDDATA;
        var DISTANCE DURATION NO_PASG SPEED_GROUND SPEED_AIR HEIGHT PITCH;
        title 'PAIRWISE CORRELATION';
run;
/* Performing Regression analysis for all variables*/
PROC REG DATA=TESTING;
        MODEL DISTANCE=CODING DURATION NO PASG SPEED GROUND SPEED AIR HEIGHT PITCH /
        title 'REGRESSION ANALYSIS INCLUDING ALL VARIABLES';
        /* Performing Regression analysis for remaining variables to test multicollinearity*/
PROC REG DATA=TESTING;
        MODEL DISTANCE=CODING SPEED GROUND SPEED AIR HEIGHT / VIF;
        title 'REGRESSION ANALYSIS FOR REMAINING VARIABLES TO TEST MULTICOLLINEARITY';
DATA TESTINGNEW;
        SET TESTING;
        /*DO I=1 TO 851;*/
        LANDINGDISTANCE = -6954.39 - (498.24 * CODING) + (36.06 * Speed Ground) + (52.99*Speed Air) +
(14.71*Height);
        /*FIELD2 = -6954.39 + (36.06 * Speed_Ground) + (52.99*Speed_Air) + (14.71*Height);*/
        /*OUTPUT;
        END;*/
RUN;
title 'Box Plot ';
proc boxplot data=TESTINGNEW ;
   plot LANDINGDISTANCE*AIRCRAFT;
   inset min mean max stddev /
      header = 'Overall Statistics'
           = tm;
      pos
  insetgroup mean;
run;
PROC MEANS DATA=TESTINGNEW N MEAN MEDIAN STD RANGE;
        by descending coding;
        var LANDINGDISTANCE;
run;
```

	roced	

Variable	Label	N	Mean	Median	Std Dev	Range	N Miss
duration	duration	800	154.0065385	153.9480975	49.2592338	290.8575036	150
no_pasg	no_pasg	950	60.1652632	60.0000000	7.4900041	58.0000000	0
speed_ground	speed_ground	950	79.2849940	79.4129094	19.3364178	113.4829200	0
speed_air	speed_air	239	103.7304174	100.8916770	10.6051134	51.7220771	711
height	height	950	30.1392714	29.9044945	10.3593491	63.4922163	0
pitch	pitch	950	4.0192472	4.0153874	0.5260322	3.6423041	0
distance	distance	950	1548.82	1267.44	948.6812561	6498.97	0

The UNIVARIATE Procedure Variable: duration (duration)

Moments					
N	800	Sum Weights	800		
Mean	154.006538	Sum Observations	123205.231		
Std Deviation	49.2592338	Variance	2426.47211		
Skewness	0.12147943	Kurtosis	-0.0551851		
Uncorrected SS	20913162.3	Corrected SS	1938751.22		
Coeff Variation	31.9851574	Std Error Mean	1.74157691		

Basic Statistical Measures					
Location Variability					
Mean	154.0065	4.0065 Std Deviation 49.2592			
Median	153.9481	Variance	2426		
Mode	-	Range	290.85750		
		Interquartile Range	69.44330		

Tests for Location: Mu0=0							
Test	Statistic p Value						
Student's t	t 88.42936		Pr > t	<.0001			
Sign	M	400	Pr >= M	<.0001			
Signed Rank	s	160200	Pr >= S	<.0001			

Quantiles (Definition 5)			
Level	Quantile		
100% Max	305.6217		
99%	275.6969		
95%	234.1229		
90%	214.4738		
75% Q3	188.9179		
50% Median	153.9481		
25% Q1	119.4746		
10%	92.0313		
5%	74.4080		
1%	45.5691		
0% Min	14.7642		

Extreme Observations					
Lowe	Lowest		st		
Value	Obs	Value	Obs		
14.7642	452	289.320	420		
16.8935	23	293.230	850		
17.3755	453	298.522	851		
31.3910	454	302.967	421		
31.7017	24	305.622	422		

Missing Values						
Missing		Percent Of				
Value	Count	All Obs	Missing Obs			
	51	5.99	100.00			

Fitted Normal Distribution for duration (duration)

Parameters for Normal Distribution						
Parameter Symbol Estimate						
Mean	Mu	154.0065				
Std Dev	Sigma	49.25923				

Goodness-of-Fit Tests for Normal Distribution						
Test Statistic p Value						
Kolmogorov-Smirnov	D	0.02307107	Pr > D	>0.150		
Cramer-von Mises	W-Sq	0.05904902	Pr > W-Sq	>0.250		
Anderson-Darling	A-Sq	0.41681999	Pr > A-Sq	>0.250		

Quantiles for Normal Distribution					
	Qua	ntile			
Percent	Observed	Estimated			
1.0	45.5691	39.4124			
5.0	74.4080	72.9823			
10.0	92.0313	90.8783			
25.0	119.4746	120.7817			
50.0	153.9481	154.0065			
75.0	188.9179	187.2314			
90.0	214.4738	217.1348			
95.0	234.1229	235.0308			
99.0	275.6969	268.6007			

The UNIVARIATE Procedure Variable: speed_air (speed_air)

Moments					
N	212	Sum Weights	212		
Mean	103.899733	Sum Observations	22026.7433		
Std Deviation	10.4434468	Variance	109.06558		
Skewness	1.02447209	Kurtosis	0.71666251		
Uncorrected SS	2311585.58	Corrected SS	23012.8374		
Coeff Variation	10.0514664	Std Error Mean	0.71725887		

Basic Statistical Measures						
Location Variability						
Mean	103.8997	Std Deviation	10.44345			
Median	101.1070	Variance	109.06558			
Mode	92.1535	Range	51.72208			
		Interquartile Range	13.32165			

Note: The mode displayed is the smallest of 9 modes with a count of 2.

Te	Tests for Location: Mu0=0							
Test	Statistic p Value							
Student's t	t	144.8567	Pr > t	<.0001				
Sign	М	106	Pr >= M	<.0001				
Signed Rank	S	11289	Pr >= S	<.0001				

Quantiles (De	Quantiles (Definition 5)					
Level	Quantile					
100% Max	141.7249					
99%	132.9115					
95%	125.9869					
90%	119.4021					
75% Q3	109.5074					
50% Median	101.1070					
25% Q1	96.1857					
10%	92.7526					
5%	91.0725					
1%	90.3674					
0% Min	90.0029					

Extreme Observations						
Lowe	st	Highest				
Value	Value Obs		Obs			
90.0029	515	128.418	694			
90.1110	497	131.338	154			
90.3674	478	132.911	459			
90.4767	729	136.423	553			
90.5033	652	141.725	743			

Missing Values							
Missing		Percent Of					
Value	Count	All Obs	Missing Obs				
	639	75.09	100.00				

The UNIVARIATE Procedure Fitted Normal Distribution for speed_air (speed_air)

Parameters for Normal Distribution						
Parameter Symbol Estimate						
Mean	Mu	103.8997				
Std Dev	Sigma	10.44345				

Goodness-of-Fit Tests for Normal Distribution								
Test Statistic p Value								
Kolmogorov-Smirnov	D	0.11554382	Pr > D	<0.010				
Cramer-von Mises	W-Sq	0.73739925	Pr > W-Sq	<0.005				
Anderson-Darling	A-Sq	4.61829345	Pr > A-Sq	<0.005				

The UNIVARIATE Procedure Fitted Normal Distribution for speed_air (speed_air)

Parameters for Normal Distribution						
Parameter Symbol Estimate						
Mean	Mu	103.8997				
Std Dev	Sigma	10.44345				

Goodness-of-Fit Tests for Normal Distribution							
Test Statistic p Value							
Kolmogorov-Smirnov	D	0.11554382	Pr > D	<0.010			
Cramer-von Mises	W-Sq	0.73739925	Pr > W-Sq	<0.005			
Anderson-Darling	A-Sq	4.61829345	Pr > A-Sq	<0.005			

Quantiles for Normal Distribution						
	Qua	ntile				
Percent	Observed Estimated					
1.0	90.3674	79.6046				
5.0	91.0725	86.7218				
10.0	92.7526	90.5159				
25.0	96.1857	96.8557				
50.0	101.1070	103.8997				
75.0	109.5074	110.9437				
90.0	119.4021	117.2835				
95.0	125.9869	121.0777				
99.0	132.9115	128.1948				

FIRST 10 OBSERVATIONS OF DATASET

Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	distance	count	Outlier
1	airbus	153.94809754	46	40.801786477	101.10702128	24.400127629	3.9682093233	620.09051196	2	Not pre
2	airbus	153.94809754	48	61.570704648	101.10702128	21.785707448	4.3511947442	560.53392302	2	Not pre
3	airbus	153.94809754	50	84.219908138	101.10702128	32.542946798	3.318828622	1485.4400456	2	Not pre
4	airbus	153.94809754	51	62.484050366	101.10702128	26.53804471	3.8228939729	749.48028928	2	Not pre
5	airbus	153.94809754	52	73.761115944	101.10702128	9.688307724	3.3585464091	554.16098701	2	Not pre
6	airbus	153.94809754	54	83.071912777	101.10702128	37.317578277	3.4734612582	1338.6101651	2	Not pre
7	airbus	153.94809754	55	68.751529748	101.10702128	48.277120042	4.2626359629	1079.1170993	2	Not pre
8	airbus	153.94809754	56	86.528840828	101.10702128	40.94901507	3.7270256473	1437.6338566	2	Not pre
9	airbus	153.94809754	57	88.631154153	101.10702128	17.087228104	3.2746103159	1117.6839116	2	Not pre
10	airbus	153.94809754	58	101.09983213	101.46762268	42.952395762	4.2257015342	2688.9856974	1	Not pre

SUMMARY STATS OF COMBINED DATASET AFTER COMPLETING DATA PREPARATION OPERATIONS

The MEANS Procedure

Variable	Label	N	Mean	Median	Std Dev	Range	N Miss
duration	DURATION	851	154.0030362	153.9480975	47.7586011	290.8575036	0
no_pasg	NO. OF PASSENGERS	851	60.1551116	60.0000000	7.6013563	58.0000000	0
speed_ground	SPEED ON GROUND	851	79.4323592	79.4155233	19.2620326	113.4829200	0
speed_air	SPEED IN AIR	851	101.8027379	101.1070213	5.3417747	51.7220771	0
height	HEIGHT	851	30.0928884	30.0479902	10.3355585	63.4922163	0
pitch	PITCH	851	4.0160081	4.0209904	0.5243580	3.6423041	0
distance	DISTANCE	851	1543.26	1262.15	943.8219715	6498.97	0

BASIC PLOTS TO IDENTIFY ANY RELATIONSHIP AMONG VARIABLES

PAIRWISE CORRELATION

The CORR Procedure

7 Variables: distance duration no_pasg speed_ground speed_air height pitch

Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label	
distance	851	1543	943.82197	1313317	34.08078	6533	DISTANCE	
duration	851	154.00304	47.75880	131057	14.76421	305.62171	DURATION	
no_pasg	851	60.15511	7.60136	51192	29.00000	87.00000	NO. OF PASSENGERS	
speed_ground	851	79.43236	19.26203	67597	27.73572	141.21864	SPEED ON GROUND	
speed_air	851	101.80274	5.34177	86634	90.00286	141.72494	SPEED IN AIR	
height	851	30.09289	10.33556	25809	-3.54825	59.94596	HEIGHT	
pitch	851	4.01601	0.52438	3418	2.28448	5.92678	PITCH	

Pearson Correlation Coefficients, N = 851 Prob > r under H0: Rho=0								
	distance	duration	no_pasg	speed_ground	speed_air	height	pitch	
distance	1.00000	-0.05984	-0.01820	0.86322	0.62185	0.14211	0.09628	
DISTANCE		0.0811	0.5960	<.0001	<.0001	<.0001	0.0049	
duration	-0.05984	1.00000	-0.03256	-0.05870	0.01081	-0.00654	-0.03780	
DURATION	0.0811		0.3428	0.0870	0.7529	0.8490	0.2707	
no_pasg	-0.01820	-0.03256	1.00000	0.00413	-0.00178	0.00560	-0.00671	
NO. OF PASSENGERS	0.5960	0.3428		0.9041	0.9587	0.8705	0.8449	
speed_ground	0.86322	-0.05870	0.00413	1.00000	0.42909	-0.00990	-0.03301	
SPEED ON GROUND	<.0001	0.0870	0.9041		<.0001	0.7731	0.3361	
speed_air	0.62185	0.01081	-0.00178	0.42909	1.00000	-0.02244	0.01410	
SPEED IN AIR	<.0001	0.7529	0.9587	<.0001		0.5133	0.6814	
height	0.14211	-0.00654	0.00560	-0.00990	-0.02244	1.00000	0.01825	
HEIGHT	<.0001	0.8490	0.8705	0.7731	0.5133		0.5950	
pitch	0.09628	-0.03780	-0.00671	-0.03301	0.01410	0.01825	1.00000	
PITCH	0.0049	0.2707	0.8449	0.3361	0.6814	0.5950		

REGRESSION ANALYSIS INCLUDING ALL VARIABLES

The REG Procedure Model: MODEL1 Dependent Variable: distance DISTANCE

Number of Observations Rea	d 851
Number of Observations Use	d 851

Analysis of Variance								
Source DF Squares Square F Value Pr > F								
Model	7	694474705	99210672	1333.77	<.0001			
Error	843	62705222	74383					
Corrected Total	850	757179927						

Root MSE	272.73324	R-Square	0.9172
Dependent Mean	1543.26272	Adj R-Sq	0.9165
Coeff Var	17.67251		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation		
Intercept	Intercept	1	-6942.74772	217.26215	-31.96	<.0001	0		
CODING	AIRCRAFT	1	-484.23379	20.17205	-24.01	<.0001	1.16376		
duration	DURATION	1	-0.14642	0.19675	-0.74	0.4570	1.00900		
no_pasg	NO. OF PASSENGERS	1	-2.09658	1.23159	-1.70	0.0891	1.00151		
speed_ground	SPEED ON GROUND	1	36.59834	0.54008	67.76	<.0001	1.23672		
speed_air	SPEED IN AIR	1	52.98139	1.94279	27.27	<.0001	1.23074		
height	HEIGHT	1	14.67474	0.90584	16.20	<.0001	1.00164		
pitch	PITCH	1	32.98221	19.22629	1.72	0.0866	1.16142		

REGRESSION ANALYSIS FOR REMAINING VARIABLES TO TEST MULTICOLLINEARITY

The REG Procedure Model: MODEL1 Dependent Variable: distance DISTANCE

Number of Observations Read 851 Number of Observations Used 851

Analysis of Variance								
Source DF Squares Square F Value Pr > F								
Model	4	694000049	173500012	2323.22	<.0001			
Error	846	63179878	74681					
Corrected Total	850	757179927						

Root MSE	273.27771	R-Square	0.9166
Dependent Mean	1543.26272	Adj R-Sq	0.9162
Coeff Var	17.70779		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	
Intercept	Intercept	1	-6954.39003	186.96604	-37.20	<.0001	0	
CODING	AIRCRAFT	1	-498.24000	18.77074	-26.54	<.0001	1.00368	
speed_ground	SPEED ON GROUND	1	36.60053	0.53954	67.84	<.0001	1.22932	
speed_air	SPEED IN AIR	1	52.99147	1.94463	27.25	<.0001	1.22816	
height	HEIGHT	1	14.71379	0.90728	16.22	<.0001	1.00083	

Box Plot The MEANS Procedure AIRCRAFT=1 Analysis Variable : LANDINGDISTANCE N | Mean | Median | Std Dev | Range | 422 | 1275.04 | 1243.14 | 735.4092110 | 4988.51 AIRCRAFT=0 Analysis Variable : LANDINGDISTANCE N | Mean | Median | Std Dev | Range | 429 | 1721.42 | 1825.03 | 978.2415235 | 6232.41