Finite Automata Theory and Formal Languages

(Week 1, Lecture 1)

Google Classroom Code: 65rwjk6

Course Outline

Marks Distribution

	Frequency	Marks	Total
Quizzes	3	5	15
Assignments	3	5	15
Mid-Term	1	25	25
Mid-Term Viva	1	5	5
Final Exam	1	30	30
Final Viva	1	10	10

Automaton

- Something that works automatically.
- Plural: Automata.

Alphabets

- Finite non-empty set of symbols.
- Symbol: Σ
- Examples:
 - Binary alphabets: $\Sigma = \{0,1\}$
 - Lower-case letters: $\Sigma = \{a,b,c, ...,z\}$
 - $\Sigma = \{a,b\}$
 - $\Sigma = \{a,bc\}$
 - $\Sigma = \{a, bcd, 00, 1\}$

Strings

- String: Concatenation of finite alphabets set of sequence of symbols chosen from the given set of alphabets Σ.
 - $\Sigma = \{0,1\}, String s = 0100$
 - $\Sigma = \{a,bc\}$, String s=abc
 - $\Sigma = \{a,bcd,00,1\}$. String s=abcd00
- Empty/Null String
 - String with no symbols
 - Denoted by λ , Λ or \in

Length

- $\Sigma = \{0,1\}, s=0100, |s| = 4$
- $\Sigma = \{a,bc\}, s=abc, |s| = ?$
- $\Sigma = \{a,bcd,00,1\}. s=abcd00, |s| = ?$
- $|\lambda| = 0$

Reverse

- $\Sigma = \{0,1\}, s=0100, Rev(s) \text{ or } s^r = 0010$
- $\Sigma = \{a,bc\}, s=abc, s^r = ?$
- $\Sigma = \{a,bcd,00,1\}$. $s=abcd00, s^r = ?$

Concatenation

- w = abc, v = cde, u = a
- uv = acde
- vw = cdeabc
- $\circ \lambda w = w\lambda = w$
- |w| = 3, |v| = 3, |u| = 1
- |uv| = |u| + |v| = 1 + 3 = 4

- Substrings
 - String: abbababa
 - Substrings:
 - bba
 - ab
 - aba
 - bab
 - abab

- Prefix and Suffix
 - String: abbab

Prefix	Suffix
λ	abbab
a	bbab
ab	bab
abb	ab
abba	b
abbab	λ

Power

- $w^0 = \lambda$, $w^1 = w$, $w^2 = ww$, $w^3 = www$
- \circ s = ab
 - $s^0 = \lambda$
 - $s^2 = abab$
 - s³=ababab

- * Operation
 - Σ^* = Set of all possible strings from Σ
 - $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4 \cup ...$
 - Example: $\Sigma = \{a,b\}$
 - $\Sigma^0 = \lambda$
 - $\Sigma^1 = \{a, b\}$
 - $\Sigma^2 = \{aa, ab, ba, bb\}$
 - $\Sigma^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$
 - $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...\}$

- + Operation
 - Σ^+ = Set of all possible strings from Σ except λ
 - $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4 \cup \dots$
 - Example: $\Sigma = \{a,b\}$
 - $\Sigma^1 = \{a, b\}$
 - $\Sigma^2 = \{aa, ab, ba, bb\}$
 - $\Sigma^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$
 - $\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...\}$

Languages

- A subset of Σ*
- Example:

```
\circ \Sigma = \{a, b\}
```

- $\Sigma^* = {\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...}$
- Languages:

```
• {λ} Finite Language
```

- $\{\lambda, a, b, aa, ab\}$ Finite Language
- $\{\lambda, a, b, aa, ab, ...\}$ Infinite Language

Operations on Languages

- Usual set operations
 - {aa,ab} ∪ {a,aab} = {aa,ab,a,aab}
 - {aa,ab} ∩ {aa,abb,aab} = {aa}
 - {aa,ab,aaaa} {aa,abb,aab} = {ab,aaaa}
 - \circ L' = Σ^* L
- Concatenation
 - {a,ab,ba}{b,aa} = {ab,aaa,abb,abaa,bab,baaa}

Operations on Languages

Power

```
{a,b}<sup>0</sup> = λ
{a,b}<sup>1</sup> = {a,b}
{a,b}<sup>2</sup> = {a,b}{a,b} = {aa,ab,ba,bb}
{a,b}<sup>3</sup> = {a,b}{a,b}{a,b}
{aa,ab}<sup>1</sup> = {aa,ab}
{aa,ab}<sup>2</sup> = {aa,ab}{aa,ab} = {aaaa,aaab,abaa,abab}
```

Operations on Languages

- Star-Closure (Kleene *)
 - $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$
- Plus-Closure