Artificial Intelligence

wu

$\mathrm{June}\ 19,\ 2019$

Contents

1	Infe	erence and Reasoning	2			
	1.1	Propositional logic	2			
	1.2	Predicate logic	2			
	1.3	First Order Inductive Learner	2			
2	Statistical learning and modeling					
	2.1	Machine Learning: the concept	2			
		2.1.1 Example and concept	2			
		2.1.2 supervised learning: important concepts	3			
	2.2	example: polynomial curve fitting	3			
	2.3	probability theory review and notation	3			
	2.4	information theory	6			
	2.5	model selection	6			
	2.6	decision theory	6			
3	Statistical learning and modeling - Supervised learning					
	3.1	Basic concepts	6			
	3.2	discriminant functions	8			
		3.2.1 Two classes	8			
		3.2.2 K-class	8			
		3.2.3 Learning the parameters of linear discriminant functions	8			
	3.3	probalibilistic generative models	10			
	3.4	probabilistic discriminative models	12			
	3.5	Boosting	12			
	J.J	3.5.1 AdaBoost	12			

4	uns	upervised learning - clustering em and PCA	12
	4.1	K-means clustering	12
	4.2	Mixtures of Gaussians	12
	4.3	An alternative view of EM	14
		4.3.1 the general EM algorithm	14
5	rein	forcement learning	15
6	wef		15
	6.1	wfe	15
1	In	aference and Reasoning	
1.	1 F	Propositional logic	
1.	2 F	Predicate logic	
1.	3 F	First Order Inductive Learner	
		edge graph: node = entity, edge = relation. triplet (head entity, tail entity)	ity,
2	St	catistical learning and modeling	
2.	1 N	Machine Learning: the concept	
2.	1.1	Example and concept	
Su	co	rised learning problems applications in which the training date amprises examples of the input vectors along with their corresponding trace vectors are known	
	cla	assification and regression	
Uı	_	ervised learning problems the training data consists of a set put vectors X without any corresponding target values	of
	$\mathrm{d}\epsilon$	ensity estimation, clustering, hidden markov models	
Re	gi	rcement learning problem finding suitable actions to take in ven situation in order to maximize a reward. Here the learning gorithm is not given examples of optimal outputs, in contrast	ing

supervised learning, but must instead discover them by a process of

trial and error. A general feature of reinforcement learning is the trade-off between exploration and exploitation

types of machine learning

- supervised learning
 - classification: the output is categorical or nominal variable
 - regression: the output is read-valued variable
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- deep learning

2.1.2 supervised learning: important concepts

- Data: labeled instances $< x_i, y >$
- features: attribute-value pairs which characterize each ${m x}$
- learning a discrete function: classification
- learning a continuous function: regression

Classification - A two-step process

- model construction
- · model usage

regression

• Example: price of a used car

 \boldsymbol{x} : car attributes. $\boldsymbol{y} = g(\boldsymbol{x} \mid \boldsymbol{\theta})$: price. g: model. $\boldsymbol{\theta}$ parameter set.

2.2example: polynomial curve fitting

2.3 probability theory review and notation

rules of probability

- sum rule $p(X) = \sum_{Y} p(X, Y)$
- product rule p(X,Y) = p(Y|X)p(X)

Bayes' Theorem: $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$. Using sum rule $p(X) = \sum_{Y} p(X|Y)p(Y)$ probability densities.

$$p(x \in (a,b)) = \int_{a}^{b} p(x)dx$$
$$P(z) = \int_{-\infty}^{z} p(x)dx$$
$$\int_{-\infty}^{\infty} p(x)dx = 1 \quad p(x) \le 0$$

expectation $\mathbb{E}[f] = \begin{cases} \sum_{x} p(x) f(x) & \text{discrete variables} \\ \int_{x} p(x) f(x) dx & \text{continuous variables} \end{cases}$. In either cases, $\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$. conditional expectation: $\mathbb{E}_x[f|y] = \sum_{x} p(x|y) f(x)$.

The **variance** of f(x) is

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^{2}]$$

$$= \mathbb{E}[f(x)^{2} - 2f(x)\mathbb{E}[f(x)] + \mathbb{E}[f(x)]^{2}]$$

$$= \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

The **covariance** is

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

the variance of the sum of two independent random variables is the sum of variance. Given

X	probability
x_1	p_1
x_n	p_n
3.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

$$\begin{array}{c|c} Y & \text{probability} \\ \hline y_1 & q_1 \\ \dots & \dots \\ y_m & q_m \end{array}$$

$$var(X + Y) = var(X) + var(Y)$$

In case of two vectors of random variables \boldsymbol{x} and \boldsymbol{y} , the covariance is a matrix

$$cov[\boldsymbol{x}, \boldsymbol{y}] = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}[(\boldsymbol{x} - \mathbb{E}[\boldsymbol{x}])(\boldsymbol{y}^T - \mathbb{E}[\boldsymbol{y}^T])]$$
$$= \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}[\boldsymbol{x}\boldsymbol{y}^T] - \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{y}^T]$$

Bayesian probabilities: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$. For a data set $\mathcal{D} = \{t_1, \ldots, t_n\}$ and assumption w, $p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$. p(w) is **prior probability**, $p(\mathcal{D}|w)$ is **likelihood** (the probability \mathcal{D} happens). Hence

posterior∝likelihood × prior

Gaussian distribution.

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

 μ is called mean, σ^2 is called variance, σ standard deviation, $\beta=1/\sigma^2$ precision

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x dx = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

For D-dimensional vector x of continuous variables

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right\}$$

To determine values for the unknown parameters given μ and σ^2 by maximizing the likelihood function. Use log.

$$P(\boldsymbol{X}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

$$\Rightarrow \ln P(\boldsymbol{X}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

Hence
$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
, $\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$ by partial derivative.

Maximum likelihood estimator for mean is unbiased, that is, $\mathbb{E}(\mu_{ML}) = \mu$. Maximum likelihood estimator for variance is biased. $\mathbb{E}(\sigma_{ML}^2) = \mathbb{E}(x^2) - \mathbb{E}(\mu_{ML}^2) = \frac{N-1}{N}\sigma_x^2$

2.4 information theory

entropy: measuring uncertainty of a random variable X. $H(X) = H(p) = -\sum_{x \in \Omega} p(x) \log p(x)$ where Ω is all possible values and define $0 \log 0 = 0$, $\log = \log_2$

$$H(X) = \sum_{x \in \Omega} p(x) \log_2 \frac{1}{p(x)} = E(\log_2 \frac{1}{p(x)}). \text{ And "information of } x" = "\# \text{bits to code } x" = -\log p(x)$$

Kullback-Leibler divergence: comparing two distributions

2.5 model selection

cross-validation

split training data into **training set** and **validation set**. Train different models on training set and choose model with minimum error on validation set.

2.6 decision theory

Suppose we have an input vector x together with a corresponding vector t of target variables and our goal is to predict t given new value for x. The joint probability distribution p(x,t) provides a complete summary of the uncertainty with these variables

3 Statistical learning and modeling - Supervised learning

3.1 Basic concepts

- Linearly separable
 - decision regions:
 input space is divided into several regions
 - decision boundaries:
 - * under linear models, it's a linear function
 - * (D-1)-dimensional hyper-plane within the D-dimensional input space

· representation of class labels

- Two classes K=2
- K classes
 - * 1-of-K coding scheme $t = (0, 0, 1, 0, 0)^T$
- Predict discrete class labels
 - * linear model prediction $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ w: weight vector, w₀ bias/threshold
 - * nonlinear function $f(.): R \to (0,1)$
 - * generalized linear models $y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$ f:activation function
 - * dicision surface $y(\mathbf{x}) = \text{constant} \rightarrow \mathbf{w}^T \mathbf{x} + w_0 = \text{constant}$

• Three classification approaches

- discriminant function
 - * least squares approach
 - * fisher's linear discriminant

- * the perceptron algorithm of rosenblatt
- use discriminant functions directly and don't compute probabili-

Given discriminant functions $f_1(\mathbf{x}), \dots, f_K(\mathbf{x})$. Classify \mathbf{x} as class C_k iff $f_k(\boldsymbol{x}) > f_j(\boldsymbol{x}), \forall j \neq k$

- * least-squares approach: making the model predictions as close as possible to a set of target values
- * fisher's linear discriminant: maximum class separation in the ouput space
- * the perceptron algorithm of rosenblatt
- generative approach
 - * model the class-conditional densities and the class priors
 - * compute posterior probabilities through Bayes's theorem

compute posterior probabilities through Bayes's theorem
$$\underbrace{p(\mathcal{C}_k|\boldsymbol{x})}_{\text{class conditional density class prior}} = \underbrace{\frac{p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\boldsymbol{x})}}_{p(\boldsymbol{x})} = \underbrace{\frac{p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\boldsymbol{x}|\mathcal{C}_j)p(\mathcal{C}_j)}}_{\text{posterior for class}}$$

3.2 discriminant functions

Two classes 3.2.1

- Linear discriminant function $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$
 - Dicision surface $\Omega: y(\boldsymbol{x}) = 0$
 - the normal distant from the origin to the dicision surface $\frac{\boldsymbol{w}^T\boldsymbol{x}}{\|\boldsymbol{w}\|}$
 - if x_A, x_B lie on the decision surface $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$, then $\boldsymbol{w}^T(\boldsymbol{x}_A - \boldsymbol{x}_B) = 0$. hence w is orthogonal to every vector lying within . $\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$ is the normal vector of
 - $-\boldsymbol{x} = \boldsymbol{x}_{\perp} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$ hence $r = \frac{y(\boldsymbol{x})}{\|\boldsymbol{w}\|}$. $y(\boldsymbol{x}_{\perp}) = 0 \rightarrow \boldsymbol{w}^T \boldsymbol{x} = -w_0 + r \frac{\boldsymbol{w}^T \boldsymbol{w}}{\|\boldsymbol{w}\|}$
 - $-\tilde{\boldsymbol{w}} = (w_0, \boldsymbol{w}), \tilde{\boldsymbol{x}} = (x_0, \boldsymbol{x}), y(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^T \tilde{\boldsymbol{x}}$

3.2.2 K-class

- One-versus-the-rest classifier K 1 classifiers each of which solves a two-class problem
- One-versus-one classifier K(K-1)/2 binary discriminant functions

- single K-class discriminant comprising K linear functions $y_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_{k_0}$
 - assigning a point x to class C_k if $y_k(x > y_j(x))$ for all jk
 - dicision boundary between class C_k, C_j is given $y_k(\boldsymbol{x}) = y_j(\boldsymbol{x}) \rightarrow (\boldsymbol{w}_k \boldsymbol{w}_j)^T \boldsymbol{x} + (w_{k_0} w_{j_0}) = 0$
 - $-\mathcal{R}_k$ is singly connected convex
 - $-\hat{x} = \lambda x_A + (1 \lambda)x_B$ where $0 \le \lambda \le 1$, $y_k(\hat{x}) = \lambda y_k(x_A) + (1 \lambda)y_k(x_B)$ and hence \hat{x} also lies inside \mathcal{R}_k

3.2.3 Learning the parameters of linear discriminant functions

1. Linear basis function models linear regression: $y(\boldsymbol{x}, \boldsymbol{w}) = w_0 + w_1 x_1 + \cdots + w_D x_D = \boldsymbol{w}^T \boldsymbol{x}$.

For nonlinear functions
$$\phi_j$$
, $y(\boldsymbol{x}, \boldsymbol{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x})$
where $\phi_j(\boldsymbol{x})$ are basis functions

2. parameter optimization via maximum likelihood

Assume target variable t is given by a deterministic function $y(\boldsymbol{x}, \boldsymbol{w})$ with additive Gaussian noice so that $t = y(\boldsymbol{x}, \boldsymbol{w}) + \epsilon$ where ϵ is a zero mean Gaussian random variable with precision β , hence we can write

$$p(t|\boldsymbol{x}, \boldsymbol{w}, \beta) = \mathcal{N}(t|y(\boldsymbol{x}, \boldsymbol{w}), \beta^{-1})$$

and
$$\mathbb{E}(t|\boldsymbol{x}) = \int t p(t|\boldsymbol{x}) dt = y(\boldsymbol{x}, \boldsymbol{w})$$

For data set
$$\boldsymbol{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\}, \boldsymbol{t} = (t_1, \dots, t_n)^T$$
, $p(\boldsymbol{t}|\boldsymbol{X}, \boldsymbol{w}, \beta) = \prod_{n=1}^N \mathcal{N}(t_n|\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n), \beta^{-1})$

$$\ln p(\boldsymbol{t}|\boldsymbol{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n), \beta^{-1}) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\boldsymbol{w})$$

$$E_D(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n) \right\}^2 = \frac{1}{2} \|t - \Phi \boldsymbol{w}\| \text{ is sum-of-squares error function}$$

solve \boldsymbol{w} by maximum likelihood.

$$\nabla \ln p(\boldsymbol{t}|\boldsymbol{w},\beta) = \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n) \right\} \phi(\boldsymbol{x}_n)^T$$

$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\boldsymbol{x}_n)^T - \boldsymbol{w}^T (\sum_{n=1}^{N} \boldsymbol{\phi}(\boldsymbol{x}_n) \boldsymbol{\phi}(\boldsymbol{x}_n)^T)$$

Hence we get

$$\boldsymbol{w}_{ML} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{t}$$

 Φ is design matrix.

$$\Phi = egin{pmatrix} \phi_0(oldsymbol{x}_1) & \phi_1(oldsymbol{x}_1) & \dots & \phi_{M-1}(oldsymbol{x}_1) \ \phi_0(oldsymbol{x}_2) & \phi_1(oldsymbol{x}_2) & \dots & \phi_{M-1}(oldsymbol{x}_2) \ dots & dots & \ddots & dots \ \phi_0(oldsymbol{x}_N) & \phi_1(oldsymbol{x}_N) & \dots & \phi_{M-1}(oldsymbol{x}_N) \end{pmatrix}$$

For bias parameter w_0 . $E_D(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - w_0 - \sum_{j=1}^{M-1} w_j \phi_j(\boldsymbol{x}_n)\}^2$.

Hence
$$w_0 = \bar{t} - \sum_{j=1}^{M-1} w_j \bar{\phi_j}, \ \bar{t} = \frac{1}{N} \sum_{n=1}^{N} t_n, \ \bar{\phi_j} = \frac{1}{N} \sum_{n=1}^{N} \phi_j(\boldsymbol{x}_n).$$

$$frac N2\beta = E_D(\boldsymbol{w}). \ \frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}_{ML}^T \boldsymbol{\phi}(\boldsymbol{x}_n) \right\}^2$$

3. Least-squares approach

- Problem
 - Each class C_k is described by its own linear model $y_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_{k0}$
 - group together: $y(\boldsymbol{x}) = \widetilde{\boldsymbol{W}}^T \tilde{\boldsymbol{x}}, \ \tilde{\boldsymbol{w}}_k = (w_{k0}, \boldsymbol{w}_k^T)^T, \ \tilde{\boldsymbol{x}} = (1, \boldsymbol{x}^T)^T$
- Learning

- minimizing SSE function sum-of-squares
$$SSE = \sum_{i=1}^{n} (y_i - f(x_i))^2 E_D(\widetilde{\boldsymbol{W}}) = 1/2 \text{Tr} \{ (\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T})^T (\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T}) \}$$

 $\widetilde{\boldsymbol{W}} = (\widetilde{\boldsymbol{X}}^T \widetilde{\boldsymbol{X}})^{-1} \widetilde{\boldsymbol{X}}^T \boldsymbol{T}$

4. fisher's linear discriminant

from the view of dimensionality reduction $y \ge -w_0$ as class \mathcal{C}_1

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n \xrightarrow{y = \boldsymbol{w}^T \boldsymbol{x}} m_2 - m_1 = \boldsymbol{w}^T (\boldsymbol{m}_2 - \boldsymbol{m}_1)$$

5. the perceptron algorithm of rosenblatt

3.3 probalibilistic generative models

A probabilistic view of classification from simple assumptions about the distribution of the data

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a)$$

where

$$a = \ln \frac{p(\boldsymbol{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

and $\sigma(a)$ is the **logistic sigmoid** function defined by

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

and $\sigma(-a) = 1 - \sigma(a)$, its inverse is **logit** function

$$a = \ln(\frac{\sigma}{1 - \sigma})$$

For case of K>2 classes, we have the following **multi-class generalization**

$$p(\mathcal{C}_k|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\boldsymbol{x}|\mathcal{C}_j)p(\mathcal{C}_j)} = \frac{\exp(a_k)}{\sum_j \exp(a_j)}, a_k = \ln\left[p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)\right]$$

The **normalized exponential** is known as the **softmax function** as it represents a *smoothed version of the max function*

if
$$a_k \ll a_j, \forall j \neq k$$
, then $p(\mathcal{C}_k|\mathbf{x}) \approx 1, p(\mathcal{C}_j|\mathbf{x}) \approx 0$

For continuous inputs, assume

$$p(\boldsymbol{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)\right\}$$

1. 2 classes

$$p(\mathcal{C}_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0)$$

$$\boldsymbol{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

2. K classes

$$a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

$$\mathbf{w}_k = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k$$

$$w_{k0} = -\frac{1}{2} \boldsymbol{\mu}_k^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln p(\mathcal{C}_k)$$

3.4 probabilistic discriminative models

3.5 Boosting

Originally designed for classification problems.

Motivation: a procedure that combines the outputs of many "weak" classifiers to produce a strong/accurate classifier

3.5.1 AdaBoost

4 unsupervised learning - clustering em and PCA

4.1 K-means clustering

• Distortion measure
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|^2$$

4.2 Mixtures of Gaussians

• Definition:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \quad \sum_{k=1}^{k} \pi_k = 1 \quad 0 \leqslant \pi_k \leqslant 1$$

• introduce a K-dimensional binary random variable $\boldsymbol{z} = (z_1, \dots, z_k)^T$

$$z_k \in \{0, 1\}$$
 $\sum_k z_k = 1$ $p(z_k = 1) = \pi_k$

Hence $p(z) = \prod_{k=1}^{K} \pi_k^{z_k}$, z is **latent variable** (inferred from other observed variables)

If
$$p(\boldsymbol{x}|z_k = 1) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$
, then $p(\boldsymbol{x}|\boldsymbol{z}) = \prod_{k=1}^K \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

• equivalent formulation of the Gaussian mixture.

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) = \sum_{\boldsymbol{z}} \prod_{k=1}^{K} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{k}}$$

$$= \sum_{j=1}^{K} \prod_{k=1}^{K} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{I_{kj}} \quad I_{kj} = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{otherwise} \end{cases}$$

$$= \sum_{j=1}^{K} \pi_{j} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

responsibility:

$$\gamma(z_k) = p(z_k = 1 | \boldsymbol{x}) = \frac{p(z_k = 1)p(\boldsymbol{x}|z_k = 1)}{\sum_{j=1}^K p(z_j = 1)p(\boldsymbol{x}|z_j = 1)} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})}{\sum_{j=1}^K \pi_j \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_j \boldsymbol{\Sigma}_j)}$$

Expectation-Maximization algorithm for GMM. $p(\boldsymbol{X}|) = \prod p(\boldsymbol{x}) \ln p(\boldsymbol{X}|\pi, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$

1. E step

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\Sigma_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

2. M step

• solve μ_k

$$\frac{\partial \ln p(\boldsymbol{X}|\pi, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} = 0$$

$$0 = -\frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\Sigma_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x}_n - \boldsymbol{\mu}_k)$$

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \boldsymbol{x}_n$$

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

• solve Σ_k

$$\frac{\partial \ln p(\boldsymbol{X}|\pi, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}_k} = 0$$

$$\boldsymbol{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T$$

EM for Gaussian Mixtures

- 1. initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- 2. E step
- 3. M step
- 4. evaluate the log likelihood

$$\ln p(\boldsymbol{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \Sigma_{n=1}^{N} \ln \left\{ \Sigma_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

and check for convergence of either the parameters or the log likelihood. If the convergence criterion is not satisfied return to step 2

4.3 An alternative view of EM

4.3.1 the general EM algorithm

The log likelihood of a discrete latent variables model

$$\ln p(\boldsymbol{X}|\boldsymbol{\theta}) = \ln \left\{ \Sigma_{\boldsymbol{Z}} p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta}) \right\}$$

the goal of EM algorithm is to find maximum likelihood solution for models having latent variables

For the complete data set $\{X, Z\}$, the likelihood function

$$\ln p(\boldsymbol{X}|\boldsymbol{\theta}) \Longrightarrow \ln p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\theta})$$

For the incomplete data set $\{X\}$, we adopt the following steps to find

maximum likelihood solution

5 reinforcement learning

- 6 wef
- 6.1 wfe

K-means