数理逻辑 第九周作业 4月16日 周二

PB18151866 龚小航

习题 2.6、试证明:

- (1) P(x,c), $\exists x P(x,c)$, $\forall x P(x,c)$ 都不是逻辑有效的;
- (2) $P(x,c) \rightarrow P(x,c)$, $\exists x (P(x,c) \rightarrow P(x,c))$, $\forall x (P(x,c) \rightarrow P(x,c))$ 都是逻辑有效的;
- 解: (1) 只需要给出一个一阶结构 M,使得 $M \models p$ 不成立即可。

在一阶语言 $K_0(Y)$ 和它的一个一阶结构 $M = (D, F, P) = (N, \emptyset, \{<\})$ 中,考虑 $K_0(Y)$ 中的公式 P(x,c), $\exists x P(x,c)$, $\forall x P(x,c)$ 的解释:

令 $c^M = 0$ (c在M中解释为 0), $P^M = <$ (P在M中解释为二元关系 <):

- ① 公式 P(x,c) 在 M 中解释为 x < 0,即:自然数 x 小于 0 依一阶解释的定义,P(x,c)为真当且仅当对自然数d,使 $I_{x/d}\big(P(x,c)\big) = t$ 显然当d取任意自然数时 $I_{x/d}\big(P(x,c)\big) = f$.因此在M中P(x,c)是假的,因此M不是P(x,c)的模型
- ② 公式 $\exists x P(x,c)$ 在 M 中解释为 $\exists x < 0$,即:存在一个自然数x,x 小于 0 依一阶解释的定义, $\exists x P(x,c)$ 为真当且仅当有一个自然数d,变体解释 $I_{x/d}\big(P(x,c)\big) = t$ 显然当d取任意自然数时 $I_{x/d}\big(P(x,c)\big) = f$. 因此在M中 $\exists x P(x,c)$ 是假的,因此M不是 $\exists x P(x,c)$ 的模型
- ③ 公式 $\forall x P(x,c)$ 在 M 中解释为 $\forall x < 0$,即:对任意一个自然数x,x 小于 0 依一阶解释的定义, $\forall x P(x,c)$ 为真当且仅当对任意一个自然数d,变体解释 $I_{x/d}\big(P(x,c)\big)=t$ 显然当d=1时 $I_{x/d}\big(P(x,c)\big)=f$.因此在M中 $\forall x P(x,c)$ 是假的,因此M不是 $\forall x P(x,c)$ 的模型

综上,这三个公式对一阶结构M,都不是M有效的,因此 $M \models p$ 不成立。由逻辑有效的定义,这三个公式都不是逻辑有效的。

(2) 令公式 $p_1 = P(x,c)$ $p_2 = P(x,c) \rightarrow P(x,c)$

任意取一个一阶结构 M=(D,F,P),再任取一个一阶解释 I=(M,V,v),由一阶解释的良定义性,公式 p_1,p_2 都有唯一确定的真值。只需要证明 $M \vDash p$

- ① 公式 $P(x,c) \rightarrow P(x,c)$: 只需要对 $I(P(x,c)) = I(p_1)$ 赋值进行讨论即可:
 - $i) \stackrel{\text{d}}{=} I(P(x,c)) = I(p_1) = t \quad \forall f, \quad I(P(x,c) \rightarrow P(x,c)) = I(P(x,c)) \rightarrow I(P(x,c)) = t \rightarrow t = t$
 - ii) 当 $I(P(x,c)) = I(p_1) = f$ 时, $I(P(x,c) \to P(x,c)) = I(P(x,c)) \to I(P(x,c)) = f \to f = t$ 因此对任意的V,这个公式是M有效的。又由于M是任意的,因此这个公式是逻辑有效的。
- ② 公式 $\exists x (P(x,c) \rightarrow P(x,c))$: 取和①中同一个M,在上一步的基础上:

可以证明 $I(p_2) = t \implies I(\exists x p_2) = t$:

证: $I(p_2) = t$ \Rightarrow 对任意 $\mathbf{v} \in \mathbf{V}$ 及 \mathbf{v} 的任意 \mathbf{x} 变通 \mathbf{v}' ,都有 $|p_2|(v') = t$ $\Rightarrow \quad \text{存在} - \wedge \mathbf{v} \in \mathbf{V} \notin |\exists x p_2|(v) = t$ $\Rightarrow \quad I(\exists x p_2) = t$

因此对任意的V,这个公式是M有效的。又由于M是任意的,因此这个公式是逻辑有效的。

③ 公式 $\forall x (P(x,c) \rightarrow P(x,c))$: 取和①中同一个M,在上一步的基础上:

可以证明 $I(p_2) = t \implies I(\forall x p_2) = t$:

证: $I(p_2) = t$ \Rightarrow 对任意 $\mathbf{v} \in \mathbf{V}$ 及 \mathbf{v} 的任意 \mathbf{x} 变通 \mathbf{v}' ,都有 $|p_2|(v') = t$ \Rightarrow 对任意 $\mathbf{v} \in \mathbf{V}$ 都有 $|\forall x p_2|(v) = t$ \Rightarrow $I(\forall x p_2) = t$

因此对任意的V,这个公式是M有效的。又由于M是任意的,因此这个公式是逻辑有效的。

习题 2.7、试证明语义性质:对任何一阶结构M,任何 $p \in K(Y)$:

- (1) $M \models p \iff M \models \forall xp \iff M \models \forall p$ (UG 有效性)
- (2) 若 $M \models p$ 且 $M \models p \rightarrow q$, 则 $M \models q$ (MP 有效性)
- (3) 若 $\Gamma \subseteq \Gamma'$ 且 $\Gamma \models p$,则有 $\Gamma' \models p$ (语义后承单调性)

解: (1) $M \vDash p \iff M \vDash \forall xp$:

先证明 $|p|_M = t \iff |\forall xp|_M = t$:

- (⇒) $|p|_M = t$ ⇒ 对任意 $v \in V$ 及 v 的任一变通v', 有 |p|(v) = t ⇒ 对任意 $v \in V$, $|\forall xp|(v) = t$ ⇒ $|\forall xp|_M = t$
- (任) $|\forall xp|_M = t$ \Rightarrow 对任意 $v \in V$, 有 $|\forall xp|(v) = t$ \Rightarrow 对任意 $v \in V$, |p|(v) = t \Rightarrow $|p|_M = t$
- 证: $M \vDash p \iff$ 对于M的任意一个模型 M_1 , $|p|_{M_1} = t$ \Leftrightarrow 对于M的任意一个模型 M_1 , $|\forall xp|_{M_1} = t$ \Leftrightarrow $M \vDash \forall xp$

 $M \vDash p \iff M \vDash \forall p$:

证: $M \vDash p \iff$ 对于M的任意一个模型 M_1 , $|p|_{M_1} = t$ \Leftrightarrow 对于M的任意模型 M_1 , $|\forall p|_{M_1} = t$ \Leftrightarrow $M \vDash \forall p$

由以上几条,可以得出三个条件之间互相等价。

(2) 当 $M \models p$ 且 $M \models p \rightarrow q$ 时,有:

 $|p|_M=t \quad and \quad |p\to q|_M=t$ 任取 $v\in V$, 有 $|p|(v)=|p\to q|(v)=t$ $\Longrightarrow \quad |q|(v)=t$ 由M有效的定义,可知 $M\models q$

(3) 设V'是 Γ' 的任意一个赋值,由于 $\Gamma \subseteq \Gamma'$, $\Gamma' = \Gamma \cup \Gamma_1$ $V' = V \cup V_1$ 又因为 $\Gamma \vDash p$,所以对任意的 $v \in V$,|p|(v) = t 因此对任意的V', $|p|(v \cup v') = t$ \Rightarrow $\Gamma' \vDash p$