

AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/2)

Paper 2

Specimen 2020

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

mathematical instruments

You may use a calculator

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer booklet.

Please write cle	arly, in bl	ock cap	oitals	s, to a	llow	cha	ract	er c	om	npu	ter	rec	ogı	nitic	n.			
Centre number				Can	didat	e nı	umb	er [
Surname																		
Forename(s)																		
Candidate signa	ature																 	 - /

Answer all questions in the spaces provided.

1 A sketch of the lines y = 2x and y = 6 is shown.

Work out the area of triangle OPQ.

[3 marks]

Answer ____ units²

2 A circle, centre (0, 0) has circumference 20π

Work out the equation of the circle.

P=πd

[2 marks]

P = 2011

d=20 r=10, r=100

Answer $\frac{36^2+9^2}{100}$

3 M is the midpoint of the line AB.

Work out the values of p and r.

Not drawn accurately

$$\rho: -\frac{2+7}{2} = x = \frac{5}{2} = 25$$

$$\int_{0}^{\infty} \frac{3+3c}{2} = -1 \quad 3+x=-2, \ x=5$$

$$p = 2$$
 $r = 5$

4 (a) Circle the solution of
$$-3x < -18$$

$$x > -6 \qquad \qquad x < -6$$

4 (b) Circle the solution of
$$x^2 \ge 16$$

$$x \geqslant -4$$
 or $x \geqslant 4$

 $x \geqslant -4$ or $x \leqslant 4$

$$x \leqslant -4$$
 or $x \leqslant 4$

5 Here is a sketch of y = f(x) where f(x) is a quadratic function. The graph intersects the x-axis at A (-1, 0) and B has a maximum point at (0.5, 6) Not drawn accurately 5 (a) Work out the coordinates of B. [1 mark] Answer (The equation f(x) = k has exactly **one** solution. 5 (b) Write down the value of k. [1 mark] Answer

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} s \\ -5 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -1 \\ t \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} s \\ -5 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} -1 \\ t \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix}$$

s, t and u are constants.

6 (a)

$$AB = C$$

Work out the values of s and t.

$$\begin{pmatrix} 4 & -1 \\ 7 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ + \end{pmatrix} \begin{pmatrix} 4s+5 \\ 7s-10 \end{pmatrix} = \begin{pmatrix} -1 \\ + \end{pmatrix}$$

6	(b)	AD =

Work out the value of u.

$$\begin{pmatrix} A - 1 \\ -7 2 \end{pmatrix} \begin{pmatrix} 2 \\ 7 \\ \nu \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$u = \underline{\hspace{1cm}}$$

7 Work out the equation of the straight line that is

parallel to the line
$$2y = x$$
, $y = \frac{x}{2}$, $y = \frac{1}{2}$)c

and

intersects the x-axis at (4, 0)

[3	marks	3]
	/	

Answer $\sqrt{\frac{5}{2}} - \frac{3c}{2} - 2$

8 (a) Work out $\frac{ab}{cd} \div \frac{bc}{ad}$

Give your answer as a single fraction in its simplest form.

 $= \frac{ab}{cd} \times \frac{ad}{bc} = \frac{a^2bd}{c^2bd} = \frac{a^2}{c^2}$

[2 marks]

Answer

8 (b) Work out
$$\frac{7}{2x^2} + \frac{4}{3x}$$

Give your answer as a single fraction in its simplest form.

[2 marks]

9 A, B and C are points on a circle, centre O.

Not drawn accurately

Work out the size of angle y.

[5 marks]

グンノ

180-62-57

2

Answer degrees

10	v –	$6x^9 + x^8$
10	У —	$2r^4$

 $\frac{6\times^{9}}{2\times^{9}} + \frac{\times^{8}}{2\times^{9}}$ $3\times^{5} + \frac{1}{2}\times^{9} \text{ then diff}$

Work out the value of $\frac{d^2y}{dx^2}$ when x = 0.5

[5 marks]

$$y = (6x^{9} + x^{8}) \times \frac{1}{2} \times \frac{9}{2}$$

$$\frac{-4320 \times 2.560 \times 6.5}{1000} = -4320 \times -560 \times = 0.5 = 1600$$

For sequence A, nth term = $\frac{n}{14n+30}$ 11

For sequence B,
$$n$$
th term = $\frac{2}{n}$

The kth term of sequence A equals the kth term of sequence B.

Work out the value of k.

You must show your working.

$$\frac{2}{k} = \frac{k}{14kt^3o}$$

$$2(14k+30) = k^2$$

- $k^2+28k+60=0$

$$(k-30)(k-2)=0$$

 $k=30,-2$, conort he reg so discord -2

12 This shape is made from two rectangles.

All dimensions are in centimetres.

Not drawn accurately

12 (a) The perimeter of the shape is 252 cm

Show that y = 126 - 45x

12 ((b)) The area of the shap	e is $A \text{ cm}^2$
1	\~	, The area of the onap	0 10 71 0111

Show that $A = 2520x - 450x^2$

A = (20x)(15x+y) + (15x)(10x)= 300 sc2 + 20xy + 150x2

[2 marks]

= 950x2+20x (126-95x)

= 450x2+2520xc-900x2

= 2520 x - 450 x2

12 (c) Use differentiation to work out the maximum value of *A* as *x* varies.

dy = 2520-900x

- x so only was and so win pt

2520-900 x = x

A = 2520 = 900 sc A = 2520 = 900 sc A = 7056 - 3528

>= 3528

13	$f(x) = 3x^2 + 6$	for all x
	$q(x) = \sqrt{x-5}$	r > 5

13 (a)	Work out the value of	gf(4)
--------	-----------------------	-------

= q(3x42+6) = q (98+6)	[2 marks]
= 54-5	
2 599	
² 7	

13 (b) Show that fg(x) can be written in the form a(x-a) where a is an integer.

= f (Jnc-5)	
56 -1 6	

[2 marks]

5	5(5c-5) +	6
G	32-15+6-5	}× -9

(x->)

14 Use the sine rule to work out the size of obtuse angle *x*.

Not drawn accurately

[3 marks]

$$\frac{\sin A}{a} = \frac{\sin (x)}{\sin (x)} = \frac{\sin (x)}{2y}$$

$$= 5 i^{-1} (0.(54...)$$

$$= 8.888$$

Answer C.89

degrees

Here is a sketch of the curve $y = ab^{-x}$ where a and b are positive constants. (0, 3) and (2, 0.48) lie on the curve.

Work out the values of a and b.

 $\frac{(0,3)}{(2,0.78)} \frac{3=ab^{-2}}{0.78=3\times b^{-2}}$

[4 marks]

$$a = \frac{3}{2.5}$$

$$b = \frac{3}{2.5}$$

16	Simplify	$8x^3 - 50x$
10	Simplify	${2x(6x^2-x-35)}$

Give your answer in the form $\frac{ax+b}{cx+d}$ where a, b, c and d are integers.

[5 marks]

2xc(2x-5)(3x+7) = (2x-5)(2x+5) = 2x+5 2xc(2x-5)(3x+7) = (2x-5)(3x+7) = 3x+4
3xc(2x-5)(3x+7) (3x+7) 3x+4
Answer

		-
17	By multiplying both sides of the equation by	× ²
11	by multiplying both sides of the equation by	х

$$2x^{\frac{3}{2}} - 3x^{\frac{1}{2}} = 7x^{-\frac{1}{2}}$$

for
$$x > 0$$

Give your answer to 3 significant figures.

You must show your working.

[4 marks]

[only for x70, 50 con just 5)

with no repetition	2 4 of any digit?	6 Start	7	8	ı
= 9 = 6	x3 x 7x1 22x 43x33x 912	72,1			
				/	P
	Answer				

19 $f(x) = 3x^3 - 2x^2 - 7x - 3x^2 - 7x - 7x - 3x^2 - 7x - 7$	19	f(x) = 3	$3x^3 - 2x^2$	-7x - 1
--	----	----------	---------------	---------

19 (a) Use the factor theorem to show that (3x + 1) is a factor of f(x).

[2 marks]

$$\frac{F(-\frac{1}{3}) = 3x - \frac{1}{24} - 2x + \frac{1}{3} - \frac{1}{3} - 2}{= -\frac{1}{3} - \frac{2}{3} + 2\frac{1}{3} - 2}$$

= 0

19 (b) Factorise f(x) fully.

[3 marks

$$= (3x+1)(x^2+bx-2)$$

$$= 3x^3+3bx^2-6x+x^2+bx-2$$

$$= 3x^3+(3b+1)x^2+(b-6)x-2$$

6-6=-7 6=-1 3b+1=-2

=
$$(3x+1)(x^2-x-2)$$

- $(3x+1)(x-2)(x+1)$

6--1

20 VABCD is a pyramid with a horizontal rectangular base ABCD.

V is directly above the centre of the base.

$$VA = VB = VC = VD = 10 \text{ cm}$$

$$AB = 8 \text{ cm}$$
 $BC = 6 \text{ cm}$

M is the midpoint of BC.

Work out the size of angle VMD.

$$a^{2}+b^{2}=c^{2}$$
 $0H=\sqrt{3^{2}+8^{2}}$

12-b2-a2

$$MV = \sqrt{10^2 - 3^2}$$

= $\sqrt{2}$

[5 marks]

M 573

 $\cos A = \frac{\sqrt{2} + \sqrt{2}}{2 \ln 2}$ $VM0 = \cos^{-1} \left(\frac{91 + 73 - 100}{2 \times \sqrt{91} \times \sqrt{7}} \right) = \cos^{-1} \left(\frac{69}{163.009} \right)$

Д	Answer	66.9	degrees

		1211221
?1	Show that $(2n+3)^3 + n^3$ is divisible by 9 for all integer values of n . $= \frac{(2n)^3 + 2(2n)^2(3) + 2(2n)(3)^2 + (3)^3 + n^3}{8n^3 + (2n+3)^2 + (2n+2)^2 + (2n+2$	[4 marks]
	$= \frac{8n + (2x+x)n + (2x2x1)n + 9+n}{9n^{3} + 24n^{2} + 36n + 9}$	

END OF QUESTIONS