

CLAIMS

What is claimed is:

1. A method of inferring engine coolant temperature in cylinder head temperature sensor equipped vehicles comprising the steps of:

measuring the cylinder head temperature;

5 calculating the engine coolant temperature from the measured cylinder head temperature as a function of at least one vehicle operational state;

generating a signal for the calculated engine coolant temperature; and

10 sending the generated signal to a display.

2. A method according to claim 1, wherein the vehicle operational state is engine revolutions per minute.

15 3. A method according to claim 2, wherein the vehicle operational state is cylinder air charge temperature.

4. A method according to claim 1, wherein the vehicle operational states are both engine revolutions per minute
20 and cylinder air charge temperature.

5. A method according to claim 1, further including the step of filtering the calculated engine coolant temperature so as to prevent inaccurate display readings resulting from
25 sudden changes in vehicle operational states, the filter step performed prior to the step of generating a signal.

6. A method according to claim 5, further including the step of recording the difference between the measured
30 cylinder head temperature and the filtered engine coolant temperature.

7. A method according to claim 6, further including the
step of storing the recorded difference in keep alive
35 memory.

8. A method according to claim 7, further including the
steps of:

decaying the difference between the measured cylinder
40 head temperature and the filtered engine coolant
temperature as an exponential function of soak time upon
vehicle startup;

generating an initial, startup signal by subtracting
the measured cylinder head temperature from the last
45 recorded difference stored in keep alive memory; and
sending an initial, startup signal to the display.

9. A method of inferring engine coolant temperature in
cylinder head temperature sensor equipped vehicles
50 comprising the steps of:

measuring the cylinder head temperature;
calculating the engine coolant temperature from the
measured cylinder head temperature as a function of engine
revolutions per minute and cylinder air charge temperature;
55 generating a signal for the calculated engine coolant
temperature; and
sending the generated signal to a display.

10. A method according to claim 9, further including the
60 step of filtering the calculated engine coolant temperature
so as to prevent inaccurate display readings resulting from
sudden changes in revolutions per minute and air charge
temperature, the filtering step performed prior to the step
of generating a signal.

11. A method according to claim 10, further including the
step of recording the difference between the measured
70 cylinder head temperature and the filtered engine coolant
temperature.

12. A method according to claim 11, further including the
step of storing the recorded difference in keep alive
75 memory.

13. A method according to claim 12, further including the
steps of:

decaying the difference between the measured cylinder
80 head temperature and the filtered engine coolant
temperature as an exponential function of soak time upon
vehicle startup;

generating an initial, startup signal by subtracting
the measured cylinder head temperature from the last
85 recorded difference stored in keep alive memory; and
sending an initial, startup signal to the display.

14. A system for inferring engine coolant temperature in
cylinder head temperature sensor equipped vehicles
90 comprising:

a cylinder head temperature sensor; and
a controller for calculating the engine coolant
temperature from the measured cylinder head temperature as
a function of engine revolutions per minute and cylinder
95 air charge temperature, wherein the controller generates a
signal for the calculated engine coolant temperature and
sends the generated signal to a display.

15. A system according to claim 14, wherein the controller
105 further filters the calculated engine coolant temperature
so as to prevent inaccurate display readings resulting from
sudden changes in revolutions per minute and air charge
temperature, the filtering performed prior to generation of
the signal.

110

16. A system according to claim 15, wherein the controller
further records the difference between the measured
cylinder head temperature and the filtered engine coolant
temperature.

115

17. A system according to claim 16, wherein the controller
further stores the recorded difference in keep alive
memory.

120

18. A system according to claim 17, wherein the controller
further:

decays the difference between the measured cylinder
head temperature and the filtered engine coolant
temperature as an exponential function of soak time if
125 determined that the cylinder head temperature measurement
was taken at vehicle startup;

generates an initial, startup signal by subtracting
the measured cylinder head temperature from the last
recorded difference stored in keep alive memory; and

130

sends an initial, startup signal to the display.

00000000000000000000000000000000