2018 北京中考数学答案

一、选择题(本题共 16分,每小题 2分,在每小题列出的四个选项中,选出符合题目要求的一项)

1	2	3	4	5	6	7	8
А	В	D	С	С	A	В	D

二、填空题(本题共 16分,每小题 2分)

9	10	11	12	13	14	15	16
>	x ≥ 0	任意合理值即 可,例如 a=2,b=3,c=0	70	<u>10</u> 3	С	380	3

三、解答题(本题共 68分,第 17 - 22题,每小题 5分,第 23 - 26题,每小题 6分,第 27,28题,每小题 7分)解答应写出文字说明、演算步骤或证明过程 .

17. PA CQ

连接三角形两边中点的线段叫做三角形的中位线; 三角形的中位线平行于第三边; 两点确定一条直线

- 18. $2-\sqrt{2}$
- 19. -2 < x < 3
- 20. (1) $\triangle = (a + 2)^2 4a = a^2 + 4 > 0$

... 此方程有两个不相等的实数根

(2) :方程有两个相等的实数根

当 a =1,b =2 时,此方程为 $x^2 + 2x + 1 = 0$,解得 $x_1 = x_2 = -1$.

答案不唯一,满足条件即可。

21. (1) : AC 平分 ∠BAD

∴ ∠DAC =∠CAB

∵ AB // DC

$$\therefore AD = DC$$

$$AB = AD$$

$$AB = AD$$

$$\therefore$$
 DB \bot AC , OB = DB,OA = OC

$$AB = \sqrt{5}$$
, BD = 2

$$\therefore$$
 OE = $\frac{1}{2}$ AC = OA = 2

22. (1) 连接 OC,OD

PC,PD 为圆 O 切线,切点分别为 C、D

$$\therefore$$
 PD = PC, \angle OPD = \angle OPC

(2)

$$\therefore$$
 OA =OD =2 , OB =OC =2

$$\angle$$
AOD =80°, \angle BOC =40°

$$\therefore OP = \frac{4\sqrt{3}}{3}$$

- 23. (1) 把 A(4,1) 代入 $y = \frac{k}{x}$, 得 k = 4 .
 - (2) 当 b = -1 时 , $y = \frac{1}{4}x 1$, 依图像可知区域 W 内的整点个数为 3。

$$-\frac{5}{4} \le b \le -1, \frac{7}{4} < b \le \frac{11}{4}$$

- 24. (1) (答案不唯一) 3.00
 - (2)
 - (3)3.00,4.91,5.77
- 25. (1)78.75
 - (2) B 理由: A 课程成绩低于中位数排名靠后, B 课程成绩高于中位数排名靠前。

(3)
$$300 \times \frac{10 + 18 + 8}{60} = 180 \text{ }$$

26. (1) 依题意 , B (0,4): C (5,4)

(2) 把 A_(-1,0)带入抛物线得 b = -2a

抛物线为: $y = ax^2 - 2ax - 3a = a(x + 1)(x - 3)$

对称轴为 x =1

当图像过 B 点时 , -3a = 4, a = - 3

$$a < -\frac{4}{3}$$

a >0时,

图像过
$$c(5,4)$$
 , $a = \frac{1}{3}$,

$$a \ge \frac{1}{3}$$

抛物线顶点在线段 BC 上时,顶点为 (1,4)

将点 (1,4) 代入抛物线,得

$$4 = a - 2a - 3a$$

a = -1

综上,
$$a = -1$$
 或 $a < -\frac{4}{3}$ 或 $a \ge \frac{1}{3}$

27. (1)连接 DF

- :A 关于直线 DE 的对称点为 F
- \therefore AD = DF
- :正方形 ABCD

$$\therefore$$
 DC =DA =DF, \angle C = \angle A = \angle DFG =90°

又

- ∴ RtaDFG RtaDCG (LL)
- ∴GF =GC

(2) BH =
$$\sqrt{2}$$
 AE

(3) t = -4 或 $0 \le t \le 4 - 2\sqrt{2}$ 或 $t = 4 + 2\sqrt{2}$

- 27. 如图,在正方形 ABCD 中, E 是边 AB 上的一动点(不与点 A, B 重合),连接 DE, 点 A 关于直线 DE 的对称点为 F,连接 EF 并延长交 BC 于点 G,连接 DG,过点 E 作 EH \bot DE 交 DG 的延长线于点 H,连接 BH.
 - (1) 求证: GF = GC;
 - (2) 用等式表示线段 BH 与 AE 的数量关系, 并证明.

28. 对于平面直角坐标系 xOy 中的图形 M, N, 给出如下定义: P 为图形 M 上任意一点, Q 为图形 N 上任意一点,如果 P, Q 两点间的距离有最小值,那么称这个最小值为图形 M, N 间的"闭距离",记作 d(M,N).

已知点A(-2,6),B(-2,-2),C(6,-2).

- (1) 求 d(点 O, $\triangle ABC$);
- (2) 记函数 $y = kx(-1 \le x \le 1, k \ne 0)$ 的图象为图形 G. 若 $d(G, \triangle ABC) = 1,$ 直接写出k 的取值范围;
- (3) $\odot T$ 的圆心为 T(t,0), 半径为 1. 若 $d(\odot T, \triangle ABC) = 1$, 直接写出 t 的取值范围.