Quaderno di Antonio Lorenzin del corso di

Geometria III

Analisi complessa Tenuto da Alessandro Perotti

FUNZIONI OLOMORFE

Siamo interessati a considerare delle funzioni $f: \mathbb{C} \to \mathbb{C}$. Si ricordi che si può identificare $\mathbb{C} \simeq \mathbb{R}^2$; tuttavia sostituire \mathbb{C} con \mathbb{R}^2 risulterebbe una banalizzazione per quanto andremo a fare. Considereremo funzioni "differenziabili". Tra le varie cose, si vedranno queste proprietà:

- 1. $\int_{\mathcal{R}} f(z) dz = 0$ con γ curva chiusa ed f differenziabile anche all'interno di questa forma.
- 2. f ha derivate di ogni ordine ($f \in C^{\infty}$).
- 3. Principio di identità: se f, g (differenziabili) coincidono su un disco, allora f = g ovunque.

Rivediamo i complessi. Consideriamo su \mathbb{R}^2 le coppie ordinate (a,b) e definiamo

$$(a,b) + (c,d) = (a+b,c+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$

Si verifica che \mathbb{C} così definito è tale che $(\mathbb{C}, +)$ è un gruppo abeliano, $(\mathbb{C} \setminus \{(0,0)\}, \cdot)$ è un gruppo abeliano, ove l'inverso è

$$(a,b)^{-1} = \left(\frac{a}{\sqrt{a^2 + b^2}}, -\frac{b}{\sqrt{a^2 + b^2}}\right)$$

mentre (1,0) è l'elemento neutro. Denotiamo (a,0)=:a, i=(0,1); si vede che $i^2=(-1,0)=-1$. Dunque (a,b)=(a,0)+(0,1)(b,0)=a+ib

è un altro modo per scrivere i numeri complessi. In generale, useremo z=a+ib, ove $a=\Re(z)$, $b=\Im(z)$ ed i è l'unità immaginaria. Il coniugato di z come è stato appena scritto è

$$\bar{z} := a - ib$$

Il modulo di z è

$$|z| = \sqrt{a^2 + b^2} = (z \overline{z})^{1/2}$$

L'inverso vale quindi $(z \neq 0)$

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

Ho le seguenti relazioni:

$$\Re(z) = \frac{z + \overline{z}}{2}, \ \Im(z) = \frac{z - \overline{z}}{2i}$$

Si osservi che per ogni $z, w \in \mathbb{C}$,

$$\overline{z+w} = \overline{z} + \overline{w}$$
, $\overline{zw} = \overline{z} \overline{w}$, $\overline{\overline{z}} = z$

Per il modulo,

$$|zw|=|z||w|, |z+w| \le |z|+|w|$$

In maniera naturale, si ha

$$max[|\Re(z)|, |\Im(z)|] \le |z| \le |\Re(z)| + |\Im(z)|$$

Ogni numero complesso si può scrivere in coordinate polari: preso $\rho = |z|$ e $a = \rho \cos \theta$, $b = \rho \sin \theta$ $z = a + ib = \rho(\cos \theta + i \sin \theta)$

 θ si dice argomento di z.

Indico con $e^{i\theta}$:= $\cos\theta + i\sin\theta$. Si verifica che $|e^{i\theta}|$ =1, quindi è un punto della circonferenza unitaria centrata nell'origine. Inoltre, $e^{i(\theta+2k\pi)}$ = $e^{i\theta}$ per $k\in\mathbb{Z}$. Posso scrivere z nella forma esponenziale:

$$z = 0e^{i\theta}$$

Possiamo osservare che $e^{i(\theta+\varphi)} = e^{i\theta}e^{i\varphi}$, infatti

$$e^{i(\theta+\varphi)} = \cos(\theta+\varphi) + i\sin(\theta+\varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi + i(\sin\theta\cos\varphi + \cos\theta\sin\varphi)$$

$$e^{i\theta}e^{i\varphi} = (\cos\theta + i\sin\theta)(\cos\varphi + i\sin\varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi + i(\sin\theta\cos\varphi + \cos\theta\sin\varphi)$$

Se $\alpha = a + ib \in \mathbb{C}$, allora considererò la seguente uguaglianza

$$e^{\alpha} := e^a e^{ib} = e^a (\cos b + i \sin b)$$

Da quanto detto, ricavo che, presi $\alpha = a + ib$, $\beta = c + id$,

$$e^{\alpha+\beta}=e^{\alpha}e^{\beta}$$

Se $\alpha \neq 0$, $\alpha \in \mathbb{C}$, allora per ogni $n \in \mathbb{N}$ esistono n radici n-esime di α , ovvero n numeri tali che elevati alla n siano uguali ad α . Prendo

$$z = \rho_z e^{i\varphi}, \quad \alpha = \rho e^{i\theta}$$

Voglio che $z^n = (\rho_z e^{i\varphi})^n = \rho_z^n e^{in\varphi} = \alpha = \rho e^{i\theta}$. Ciò vale se e solo se

$$\begin{cases} \rho_z^n = \rho \\ n \varphi = \theta + 2k \pi \end{cases}$$

Da cui ottengo il sistema seguente

$$\begin{cases} \rho_z = \sqrt[n]{\rho} \\ \varphi = \frac{\theta}{n} + \frac{2k\pi}{n} \end{cases}$$

per k = 0, ..., n-1.

1.1. Funzioni complesse, continuità e derivabilità.

Denoteremo solitamente con $\Omega \subset \mathbb{C}$ un aperto e $f : \Omega \to \mathbb{C}$ funzione. Posso considerarla

$$f(x,y)=u(x,y)+iv(x,y)$$

 $\operatorname{con} u, v: \Omega \to \mathbb{R} \text{ o come } f(z) \operatorname{per} z = x + iy \in \mathbb{C}.$

OSSERVAZIONE 1.1.1. f è continua se e solo se u e v sono continue.

DEFINIZIONE 1.1.1. $f:\Omega \rightarrow \mathbb{C}$ è differenziabile in $z \in \Omega$ se esiste (finito) il limite

$$\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} =: f'(z) \in \mathbb{C}$$

Equivalentemente, $f(z+h)-f(z)=f'(z)h+o(|h|) \cos f'(z) \in \mathbb{C}$.

ESEMPIO 1.1.1. Sia f(z)=z.

$$\frac{z+h-z}{h}=1$$

dunque f'(z)=1 per ogni $z\in\mathbb{C}$. f è quindi differenziabile in ogni punto di \mathbb{C} .

ESEMPIO 1.1.2. Sia $g(z) = \overline{z}$.

$$\frac{\overline{z+h}-\overline{z}}{h} = \frac{\overline{h}}{h} \rightarrow \begin{cases} 1 & h \in \mathbb{R} \\ -1 & h = ia \ (a \in \mathbb{R}) \end{cases}$$

Dunque g non è differenziabile in nessun punto.

DEFINIZIONE 1.1.2. Una funzione $f: \Omega \rightarrow \mathbb{C}$ è detta *olomorfa* se è differenziabile in ogni punto di Ω .

Alle volte si usa il termine *analitica* al posto di olomorfa.

OSSERVAZIONE 1.1.2. Valgono proprietà analoghe al caso reale: la somma, i prodotti, le composizioni di funzioni differenziabili sono funzioni differenziabili. Lo stesso vale, dove definiti, per i quozienti. Ad esempio,

Se $f(z) \neq 0$,

$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

$$\left(\frac{1}{f}\right)'(z) = -\frac{f'(z)}{f(z)^2}$$

ESEMPIO 1.1.3. Ogni polinomio $p(z)=a_nz^n+...+a_1z+a_0$ con $a_i\in\mathbb{C}$ è una funzione olomorfa su \mathbb{C} grazie ad esempio 1.1.1 ed osservazione 1.1.2.

Risulta naturale porsi la seguente domanda: se f = u + iv è differenziabile, cosa accade a $u \in v$?

PROPOSIZIONE 1.1.1. Sia $f:\Omega \to \mathbb{C}$. Sappiamo che f(z)=u(x,y)+iv(x,y) ove z=x+iy. f è differenziabile in z se e solo se u e v sono differenziabili in z e valgono le *equazioni di Cauchy-Riemann* in z:

$$u_x = v_y$$
, $u_y = -v_x$

DIMOSTRAZIONE.

1. Supponiamo che f sia differenziabile in z. Prendiamo $h=rv \text{ con } |v|=1 \text{ ed } r \in \mathbb{R}, r \geq 0.$

$$\lim_{r \to 0} \frac{f(z+rv)-f(z)}{rv} = f'(z)$$

è equivalente a dire che esiste

$$\lim_{r\to 0} \frac{f(z+rv)-f(z)}{r} = vf'(z) = D_v f(z)$$

per ogni |v|=1 fissato. Con v=1, otteniamo l'esistenza di

$$\lim_{r \to 0} \frac{f(z+r) - f(z)}{r} = D_1 f(z) = f'(z) = f_x(z) = u_x(z) + i v_x(z)$$

Prendiamo v=i. Allora esiste

$$\lim_{r \to 0} \frac{f(z+ri)-f(z)}{r} = D_i f(z) = i f'(z) = f_y(z) = u_y(z) + i v_y(z)$$

Perciò

$$\begin{cases} f'(z) = u_x(z) + i v_x(z) \\ i f'(z) = u_y(z) + i v_y(z) \end{cases}$$

Da cui si ottiene che $u_x(z)+iv_x(z)=-iu_y(z)+v_y(z)$. Ottengo quindi le equazioni di Cauchy-Riemann. Vediamo la differenziabilità di u e v. Sia h=a+ib. Allora

$$f(z+h)-f(z)=f'(z)h+o(|h|)=(u_x+iv_x)(a+ib)+o(|h|)=(u_xa-v_xb)+i(u_xb+v_xa)+o(|h|)$$

Da cui, dividendo in parte reale e parte complessa, si ottiene

$$u(x+a,y+b)-u(x,y)=u_xa-v_xb+o(|h|), v(x+a,y+b)-v(x,y)=u_xb+v_xa+o(|h|)$$

Dunque u e v sono differenziabili in (x, y) = z.

2. Siano u, v differenziabili soddisfacenti le equazioni di Cauchy-Riemann. Allora, se h=a+ib,

$$u(z+h)-u(z)=u_x a+u_y b+o(|h|)=u_x a-v_x b+o(|h|)$$

Analogamente,

$$v(z+h)-v(z)=v_x a+v_y b+o(|h|)=v_x a+u_x b+o(|h|)$$

Da queste due relazioni, si vede immediatamente che f è differenziabile; infatti

$$f(z+h)-f(z)=u(z+h)-u(z)+i(v(z+h)-v(z))=u_{x}a-v_{x}b+i(v_{x}a+u_{x}b)+o(|h|)=$$

$$=(u_{x}+iv_{x})(a+ib)+o(|h|)=(u_{x}+iv_{x})h+o(|h|)$$

OSSERVAZIONE 1.1.3. Dalla dimostrazione appena vista si evince che $f'(z) = f_x(z) = -i f_y(z)$.

Introduciamo questa notazione:

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

OSSERVAZIONE 1.1.4. $f:\Omega \rightarrow \mathbb{C}$ è olomorfa se e solo se

$$\frac{\partial f}{\partial \bar{z}} = 0$$

Infatti,

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} (f_x + i f_y) = \frac{1}{2} (f_x - f_x) = 0$$

poichè valgono CR (equazioni di Cauchy-Riemann). Per quanto riguarda il primo operatore, sempre con le stesse ipotesi,

$$\frac{\partial f}{\partial z} = \frac{1}{2} (f_x - if_y) = f_x = f'(z)$$

OSSERVAZIONE 1.1.5. Naturalmente, la funzione z che abbiamo visto in esempio 1.1.1, $\partial z/\partial z = 1$. Inoltre, vale che

$$\frac{\partial z^n}{\partial z} = n z^{n-1}$$

Proviamolo per induzione: il caso n=1 è appena stato affrontato. Supponiamo valga per n-1. Grazie a osservazione 1.1.2, sappiamo valere Leibnitz (derivata prodotto):

$$\frac{\partial z^{n}}{\partial z} = \frac{\partial (z z^{n-1})}{\partial z} = z \frac{\partial z^{n-1}}{\partial z} + z^{n-1} = z(n-1)z^{n-2} + z^{n-1} = nz^{n-1}$$

Sia $f = u + iv \in \mathcal{O}(\Omega)$, ove $\mathcal{O}(\Omega)$ è l' *insieme delle funzioni olomorfe* (in Ω). Supponiamo $u, v \in C^2(\Omega)$ (ippotesi in realtà non necessaria, come si vedrà più avanti). Allora, dato che valgono CR,

$$u_{xx} = v_{yx} = v_{xy} = -u_{yy}$$

Per cui,

$$u_{xx} + u_{yy} = 0$$

Questa equazione è il laplaciano di u: quindi $\Delta u = u_{xx} + u_{yy} = 0$ in Ω . Questo ci dice che u è *armonica* su Ω . Questo risultato si può vedere anche per v. Vale anche il viceversa.

PROPOSIZIONE 1.1.2. Sia Ω semplicemente connesso. Per ogni funzione armonica u su Ω (C^2) esiste (unica a meno di costanti additive reali) una funzione $v \in C^2(\Omega)$ tale che $f = u + iv \in \mathcal{O}(\Omega)$. La funzione v così presa viene detta *armonica coniugata*.

1.2. Serie di potenze

Sia $\Omega \subseteq \mathbb{C}$ aperto. Considero la successione $\{f_n(z)\}$ con $f_n: \Omega \to \mathbb{C}$.

DEFINIZIONE 1.2.1. $\{f_n(z)\} \rightarrow f$ se e solo se $\Re f_n(z) \rightarrow \Re f(z)$ e $\Im f_n(z) \rightarrow \Im f(z)$. Se $f_n(z) \rightarrow f(z)$ per ogni $z \in \Omega$, $\{f_n(z)\}$ converge puntualmente a f(z) su Ω . Se $\sup_{z \in \Omega} |f_n(z) - f(z)| \rightarrow 0$ per $n \rightarrow +\infty$, $\{f_n(z)\}$ converge uniformemente a f(z) in Ω .

Sia $\sum_{n=0}^{\infty} f_n(z)$, con $f_n: \Omega \to \mathbb{C}$, una serie di funzioni. Si consideri $s_n(z) = \sum_{k=0}^{n} f_k(z)$.

DEFINIZIONE 1.2.2. Se $\{s_n(z)\}$ converge a f(z) per ogni $z \in \Omega$, allora la serie è *puntualmente convergente* a f su Ω . Se la serie (reale) $\sum_{n=0}^{\infty} |f_n(z)|$ è convergente per ogni $z \in \Omega$, si dice che $\sum_{n=0}^{\infty} f_n(z)$ è assolutamente convergente su Ω . Se $\{s_n(z)\}$ converge uniformemente a f su Ω , allora la serie $\sum_n f_n(z)$ si dice convergente uniformemente a f su Ω .

L'assoluta convergenza implica che $\sum_n |\Re f_n(z)|$ e $\sum_n |\Im f_n(z)|$ sono convergenti; dunque $\sum_n f_n(z)$ è puntualmente convergente. Anche la convergenza uniforme implica quella puntuale.

TEOREMA 1.2.1: M-test di Weierstrass. Siano $M_n \in \mathbb{R}$ tali che $|f_n(z)| \le M_n$ per ogni $z \in \Omega$. Se

$$\sum_{n=0}^{\infty} M_n < \infty$$

allora $\sum_{n=0}^{\infty} f_n(\mathbf{z})$ converge assolutamente ed uniformemente in Ω .

DIMOSTRAZIONE. $\sum f_n(z)$ converge assolutamente per il criterio del confronto ($\sum_n |f_n| \le \sum_n M_n$). Sia

$$s(z) = \sum_{n=0}^{\infty} f_n(z),$$

che esiste dato che la serie converge puntualmente. Per ogni $z \in \Omega$

$$|s(z)-s_n(z)| = \left|\sum_{k=n+1}^{\infty} f_k(z)\right| \le \sum_{k=n+1}^{\infty} |f_k(z)| \le \sum_{k=n+1}^{\infty} M_k$$

Per ogni $\epsilon > 0$, esiste $N \in \mathbb{N}$ tale che $|s(z) - s_n(z)| < \epsilon$ per ogni $z \in \Omega$ ed n > N. La serie converge quindi uniformemente.

DEFINIZIONE 1.2.3. Se le ipotesi del teorema 1.2.1 sono soddisfatte, allora si dice che la serie *converge* totalmente su Ω .

Sarà utile avere in mente che $n^z := e^{z \log n} = e^{x \log n} e^{iy \log n}$.

ESEMPIO 1.2.1.

- 1. $\sum_{n=1}^{\infty} z^n/n^2$. Si vede che $|z^n/n^2| \le 1/n^2$ se $|z| \le 1$. Allora la serie converge uniformemente su $B_0(1)$, ovvero $\{|z| \le 1\}$.
- vero $\{|z| \le 1\}$. 2. $\sum_{n=1}^{\infty} 1/n^z$. $n^{-z} = e^{-x \log n} e^{-iy \log n}$. $|n^{-z}| = e^{-x \log n} \le e^{-s \log n} = n^{-s}$ ove s > 1. Dunque la serie è uniformemente convergente su $\{\Re z > s\}$. Questa serie è la *Zeta di Riemann*.

TEOREMA 1.2.2: di Hadamard. Sia $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ una *serie di potenze* con a_n , $z_0 \in \mathbb{C}$ e sia $R = (\limsup_{n \to +\infty} \sqrt[n]{|a_n|})^{-1}$

il *raggio di convergenza* .

- 1. La serie converge assolutamente nel disco $B_{z_0}(R)$ e non converge se $z \notin \overline{B_{z_0}(R)}$.
- 2. La serie converge uniformemente su $\overline{B_{z_0}(r)}$ con r < R

DIMOSTRAZIONE. Supponiamo $z_0=0$. Fissiamo 0 < r < R e r < t < R. Esiste $N \in \mathbb{N}$ tale che $\sqrt[n]{|a_n|} < t^{-1}$ per ogni $n \ge N$. Allora $|a_n z^n| < (r/t)^n$ se $|z| \le r$. Allora $\sum a_n z^n$ converge assolutamente ed uniformemente su $B_0(r)$. Se |z| > R, allora $|z|^{-1} < \limsup_n \sqrt[n]{|a_n|}$: dunque per ogni $N \in \mathbb{N}$ esiste n > N tale che $|z|^{-1} < \sqrt[n]{|a_n|}$. Allora esiste una sottosuccessione di $\{a_n z^n\}$ con $|a_n z^n| > |a_n|/|a_n| = 1$. Ne ricavo che $a_n z_n$ non converge a 0. Perciò la serie $\sum_n a_n z^n$ non può convergere.

ESEMPIO 1.2.2.

- 1. $\sum_{n=1}^{\infty} z^n/n$. Questa serie ha R=1, infatti $\sqrt[n]{1/n} \rightarrow 1$. Per cui il disco di convergenza è $B_0(1)$.
- 2. $\sum_{n=1}^{\infty} z^n / n!$. Qui $R = +\infty$.
- 3. Se la serie di potenze reale $\sum_{n=0}^{\infty} a_n(x-x_0)$ ha raggio di convergenza R>0, allora la serie di potenze complessa $\sum_n a_n(z-x_0)$ converge sul disco $B_{x_0}(R)$.
- 4. $\sum_{n=1}^{\infty} a_n z^n$, con

$$a_n = \begin{cases} 2^n & \text{se } n \text{ è primo} \\ 0 & \text{altrimenti} \end{cases}$$

Dunque si ha $\sqrt[n]{|a_n|} = 2$ se n è primo e 0 altrimenti. Perciò $R = (\limsup_n |a_n|^{1/n})^{-1} = 1/2$.

$$\sum_{n} a_{n} z^{n} = 4 z^{2} + 8 z^{3} + \dots$$

DEFINIZIONE 1.2.4. Data $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, la *serie derivata* è la serie

$$\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (z-z_0)^n$$

OSSERVAZIONE 1.2.1. La serie derivata ha lo stesso raggio di convergenza della serie di potenze. Infatti,

$$\sqrt[n]{(n+1)|a_{n+1}|} = ((n+1)|a_{n+1}|)^{1/n} = ((n+1)^{1/(n+1)}|a_{n+1}|^{1/(n+1)})^{(n+1)/n} = (n+1)^{1/n} (|a_{n+1}|^{1/(n+1)})^{(n+1)/n}$$

Considerando il lim sup , ho che

$$\sqrt[n]{(n+1)|a_{n+1}|} \rightarrow R^{-1}$$

Per cui ho dimostrato che le due serie hanno lo stesso raggio.

TEOREMA 1.2.3. Sia $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ una serie di potenze complessa con raggio R>0. Allora

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

è olomorfa nel disco $B_{z_0}(R)$ e $f'(z) = \sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$.

DIMOSTRAZIONE. Possiamo supporre $z_0=0$. Fissiamo un punto $z \in B_0(R)$ e sia $\delta > 0$ tale che $B_{z}(\delta) \subset B_{0}(R)$

Calcoliamo il rapporto incrementale ove h è tale che $z+h\in B_z(\delta)$, ovvero $|h|<\delta$.

$$\frac{f(z+h)-f(z)}{h} = \sum_{n=0}^{\infty} a_n \frac{(z+h)^n - z^n}{h} = \sum_{n=0}^{\infty} a_n \frac{[(z+h)/z]^n - 1}{[(z+h)/z] - 1} z^{n-1} =$$

$$= \sum_{n=1}^{\infty} a_n z^{n-1} \sum_{j=0}^{n-1} \left(\frac{z+h}{z}\right)^j = \sum_{n=1}^{\infty} a_n \sum_{j=0}^{n-1} z^{n-1-j} (z+h)^j$$

Sappiamo anche valere che $|z+h| \le |z| + |h| < |z| +$

$$\left| a_n \sum_{j=0}^{n-1} z^{n-1-j} (z+h)^j \right| \le |a_n| \sum_{j=0}^{n-1} |z|^{n-1-j} |z+h|^j \le |a_n| \sum_{j=0}^{n-1} (|z|+\delta)^{n-1} = |n a_n (|z|+\delta)^{n-1}|$$

Data stima la posso vedere come la derivata nel punto $z+z\delta/|z| \in \overline{B_z(\delta)}$, infatti

$$\left|z + \frac{z}{|z|}\delta\right| = |z| + \delta$$

 $\left|z+\frac{z}{|z|}\delta\right|=|z|+\delta$ La serie numerica $\sum_{n=1}^{\infty}n\,a_n(|z|+\delta)^{n-1}$ è assolutamente convergente, dato che la è serie derivata nel punto $z+z\delta/|z|$. Sono quindi soddisfatte le ipotesi per il test di Weierstrass: si ha che la serie

$$\sum_{n=1}^{\infty} a_n \sum_{j=0}^{n-1} z^{n-1-j} (z+h)^j$$

è uniformemente convergente per h con $|h| < \delta$

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \sum_{n=1}^{\infty} a_n \lim_{h \to 0} \sum_{j=0}^{n-1} z^{n-1-j} (z+h)^j = \sum_{n=1}^{\infty} a_n \sum_{j=0}^{n-1} z^{n-1} = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

1.3. Estensione complessa di alcune funzioni notevoli

DEFINIZIONE 1.3.1. Definiamo

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} \in \mathcal{O}(\mathbb{C})$$

Si vede subito che $(e^z)' = \sum_{n=0}^{\infty} nz^{n-1}/n! = e^z$.

Fissato $w \in \mathbb{C}$, definiamo $g_w(z) = e^{w-z} e^z \in \mathcal{O}(\mathbb{C})$. $g_w'(z) = -e^{w-z} e^z + e^{w-z} e^z = 0$, dunque la funzione è costante. In particolare, $g_w(z) = g_w(0) = e^w$. Sia $z = \beta$ e $w = \alpha + \beta$. Per cui vale, come ci aspettiamo, che $e^{\alpha+\beta} = e^{w} = q_{,,,}(z) = e^{w-z} e^{z} = e^{\alpha} e^{\beta}$

per ogni $\alpha, \beta \in \mathbb{C}$.

Prendiamo ora un numero $\theta \in \mathbb{R}$.

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{k=0}^{\infty} \frac{i^{2k}\theta^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{i^{2k+1}\theta^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-1)^k\theta^{2k}}{(2k)!} + i\left(\sum_{k=0}^{\infty} \frac{(-1)^k\theta^{2k+1}}{(2k+1)!}\right) = \cos\theta + i\sin\theta$$

Perciò, se z=x+iy, allora $e^z=e^{x+iy}=e^xe^{iy}=e^x(\cos y+i\sin y)$.

Da quanto visto, l'esponenziale e^z è periodico di periodo $2\pi i$: $e^{z+2k\pi i}=e^z$ per ogni $k\in\mathbb{Z}$.

L'immagine di e^z è $\mathbb{C}\setminus\{0\}$. Facciamo vedere che $e^z=\alpha$ ha sempre soluzione per $\alpha\in\mathbb{C}\setminus\{0\}$.

$$\alpha = |\alpha| e^{i \arg(\alpha)}$$

Devo trovare x tale che $e^x = |\alpha|$ ed y tale che $e^{iy} = e^{iarg(\alpha)}$. Prendo z = x + iy che soddisfa il sistema

$$\begin{cases} x = \ln |\alpha| \\ y = arg \, \alpha + 2k\pi \, (k \in \mathbb{Z}) \end{cases}$$

ESEMPIO 1.3.1. Sia $\alpha = -1 \in \mathbb{R}$. $arg(-1) = \pi$, $|\alpha| = 1$.

$$\begin{cases} x = \ln(1) = 0 \\ y = \pi + 2k\pi \end{cases}$$

Per cui $e^{i\pi} = -1$.

DEFINIZIONE 1.3.2. Definiamo

$$\sin z := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \in \mathcal{O}(\mathbb{C}), \quad \cos z := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \in \mathcal{O}(\mathbb{C})$$

Si vede che $e^{iz} = \cos z + i \sin z$ per ogni $z \in \mathbb{C}$, da cui

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

Da questo si vede subito che sin z, cos z sono periodiche di periodo 2π .

OSSERVAZIONE 1.3.1. sin z, cos z assumono tutti i valori complessi. Proviamolo per il coseno.

$$\cos z = \alpha$$

Questa equazione può essere rivista con l'esponenziale; quindi

$$e^{iz} + e^{-iz} = 2\alpha \Leftrightarrow e^{2iz} + 1 = 2\alpha e^{iz} \Leftrightarrow (e^{iz})^2 - 2\alpha e^{iz} + 1 = 0$$

Otteniamo quindi due soluzioni

$$e^{iz} = \begin{cases} \alpha_1 = \alpha - w_1 \\ \alpha_2 = \alpha + w_1 \end{cases}$$

con $w_1^2 = \alpha^2 - 1$. Si noti che α_1 e α_2 sono diversi da 0. $e^{iz} = \alpha_j$ (per j = 1, 2) con z = x + iy soddisfa

$$\begin{cases} y = -\ln|\alpha_j| \\ x = \arg \alpha_j + 2k\pi \end{cases}$$

Se $\alpha = 0$, y = 0. Quindi gli zeri di cos z sono sulla retta reale.

DEFINIZIONE 1.3.3. Si possono definire

$$\cosh(z) := \frac{e^z + e^{-z}}{2}, \quad \sinh(z) := \frac{e^z - e^{-z}}{2} \in \mathcal{O}(\mathbb{C})$$

Vogliamo definire il logaritmo complesso. Sappiamo che $e^z = \alpha \in \mathbb{C} \setminus \{0\}$ ha come soluzioni

$$z_k = \ln |\alpha| + i (arg \alpha + 2k\pi)$$

con $k \in \mathbb{Z}$. Consideriamo

$$\log z = \ln |z| + i \arg z$$

e vediamo se la definizione così posta può essere giusta ($arg z \in [0,2\pi)$). Questa funzione è discontinua: infatti, preso $z_1 \in \mathbb{R}$, ($\log z_1 = \ln |z_1|$) e z_2 che si avvicina a z_1 dalla circonferenza unitaria, i.e.

$$\log z_2 = \ln |z_2| + i \arg z \rightarrow \ln |z_1| + 2\pi i$$

Si ha che $\log z_2$ non tende a $\log z_1$. Possiamo togliere, ad esempio, $\log z$ è continua su $\mathbb{C} \setminus \{x \in \mathbb{R} \mid x \ge 0\}$. Ma non è l'unica scelta che si può fare.

DEFINIZIONE 1.3.4. Il logaritmo principale è la funzione

$$\text{Log}: \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\} \rightarrow \mathbb{C}, \text{Log}(z):=\ln|z|+i \operatorname{arg} z$$

con $arg z \in [-\pi, \pi)$ (in questo modo, se $x \in \mathbb{R}$, allora $\text{Log } x = \ln x$).

OSSERVAZIONE 1.3.2. Non sempre vale che $Log(z_1 z_2) = Log(z_1) + Log(z_2)$

Vediamo che Log $z \in \mathcal{O}(\mathbb{C} \setminus \{x \in \mathbb{R} \mid x \le 0\})$. Sia $\Omega = \{z \in \mathbb{C} \mid \Re z > 0\}$. Prendo $z = x + iy \in \Omega$

$$\operatorname{Log} z = \frac{1}{2} \ln (x^2 + y^2) + i \arctan \left(\frac{y}{x} \right)$$

Dunque ottengo

$$\begin{cases} u_x = \frac{x}{x^2 + y^2} & u_y = \frac{y}{x^2 + y^2} \\ v_x = \frac{-y}{x^2 + y^2} & v_y = \frac{x}{x^2 + y^2} \end{cases}$$

Valgono le equazioni di Cauchy-Riemann. Quindi il logaritmo principale è olomorfo su Ω e si ha

$$(\operatorname{Log} z)' = u_x + iv_x = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{z \, \overline{z}} = \frac{1}{z}$$

Se $z \in \mathbb{C} \setminus (\Omega \cup \{x \in \mathbb{R} \mid x \le 0\})$, esiste $\alpha (=\pm \pi/2)$ tale che $ze^{i\alpha} \in \Omega$.

$$\text{Log}(ze^{i\alpha}) = \ln|z| + i \arg(ze^{i\alpha}) = \ln|z| + i \arg z + i \alpha = \text{Log} z + i \alpha$$

Quindi si ha che

$$(\operatorname{Log} z)' = (\operatorname{Log} (ze^{i\alpha}))'e^{i\alpha} = \frac{1}{ze^{i\alpha}}e^{i\alpha} = \frac{1}{z}$$

DEFINIZIONE 1.3.5. Sia $a \in \mathbb{C}$ (fissato). Possiamo definire

1.
$$z^a := e^{a \log z} \in \mathcal{O}(\mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\})$$

2.
$$a^z := e^{z \log a} \in \mathcal{O}(\mathbb{C})$$
 se $a \notin \{x \in \mathbb{R} \mid x \le 0\}$

Per 1, possiamo vedere come esempio $z^{1/2} = \sqrt{z} := e^{(\text{Log } z)/2}$.

INTEGRAZIONE LUNGO CURVE

2.1. Integrazione

Supponiamo di avere $f:[a,b] \rightarrow \mathbb{C}$ continua. Posso scrivere che f=u+iv; definisco

$$\int_{a}^{b} f(t)dt := \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

PROPOSIZIONE 2.1.1.

1.
$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt \text{ per ogni } \lambda, \mu \in \mathbb{C}$$
2.
$$\int_{a}^{b} \Re f(t) dt = \Re \int_{a}^{b} f(t) dt, \quad \int_{a}^{b} \Im f(t) dt = \Im \int_{a}^{b} f(t) dt$$

2.
$$\int_{a}^{b} \Re f(t) dt = \Re \int_{a}^{b} f(t) dt, \quad \int_{a}^{b} \Im f(t) dt = \Im \int_{a}^{b} f(t) dt$$

$$3. \left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f(t)| dt$$

4. Se F è derivabile e F'=f, allora

$$\int_{b}^{b} f(t)dt = F(b) - F(a)$$

5. Se $\theta:[a,b] \rightarrow [c,d] \in \theta(a) = c$, $\theta(b) = d$ di classe C^1 con inversa di classe C^1 , $\int_{c}^{d} f(s) ds = \int_{a}^{b} f(\theta(t)) \theta'(t) dt$

$$\int_{a}^{d} f(s)ds = \int_{a}^{b} f(\theta(t))\theta'(t)dt$$

DIMOSTRAZIONE. Tutti i punti sono banalmente verificati tranne 3. Proviamolo. Definisco

$$w := \int_{a}^{b} f(t) dt$$

Suppongo $w \neq 0$; con w = 0 la tesi è ovvia. $w = |w| e^{i\theta}$; quindi $w e^{i\alpha} = w e^{-i\theta} \in \mathbb{R}_+$.

$$e^{i\alpha} \int_{a}^{b} f(t) dt = \int_{a}^{b} e^{i\alpha} f(t) dt = \Re \left(\int_{a}^{b} e^{i\alpha} f(t) dt \right)$$

Perciò

$$\left| \int_{a}^{b} f(t) dt \right| = \left| e^{i\alpha} \int_{a}^{b} f(t) dt \right| = \left| \Re \int_{a}^{b} e^{i\alpha} f(t) dt \right| = \Re \int_{a}^{b} e^{i\alpha} f(t) dt =$$

$$= \int_{a}^{b} \Re \left(e^{i\alpha} f(t) \right) dt \le \int_{a}^{b} \left| e^{i\alpha} f(t) \right| dt = \int_{a}^{b} \left| f(t) \right| dt$$

DEFINIZIONE 2.1.1. Una *curva regolare* in **C** è

$$\gamma: J=[a,b] \rightarrow \mathbb{C}$$

di classe C^1 con $\chi'(t) \neq 0$ per ogni $t \in J$. Più in generale, χ è una curva regolare a tratti se $\chi \in C^0$ su J e $\gamma \in C^1$ su J è stato tolto un numero finito di punti.

Un esempio di curva regolare è $\gamma(t) = re^{it}$ con $t \in [0,2\pi]$ e r > 0, infatti $\gamma'(t) = re^{it} \neq 0$.

DEFINIZIONE 2.1.2. Sia $\theta: \widetilde{J} = [c, d] \rightarrow J = [a, b]$ è C^1 con inversa di classe C^1 , $\theta(c) = a$ e $\theta(d) = b$. La curva

$$\widetilde{\gamma} := \gamma \circ \theta : \widetilde{J} \rightarrow \mathbb{C}$$

è detta *riparametrizzazione* di γ (che è una curva regolare $[a,b] \rightarrow \mathbb{C}$).

DEFINIZIONE 2.1.3. Siano γ una curva regolare $J \rightarrow \mathbb{C}$ e S una suddivisione di J = [a, b] del tipo $a = t_0 < t_1 < ... < t_n = b$

Allora

$$\ell(\gamma,S) := \sum_{i=1}^{n} |\gamma(t_i) - \gamma(t_{i-1})|$$

La lunghezza della curva fra $\gamma(a)$ e $\gamma(b)$ è

$$\ell(\gamma) := \sup_{S} \ell(\gamma, S)$$

Se γ è regolare, si può provare che

$$\ell(\gamma) = \int_{a}^{b} |\gamma'(t)| dt < \infty$$

DEFINIZIONE 2.1.4. Siamo $\gamma:[a,b] \to \mathbb{C}$ C^1 a tratti. Considero poi $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$

tale che $\gamma([a,b]) \subseteq \Omega$. Allora

$$\int_{\gamma} f(z)dz := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

OSSERVAZIONE 2.1.1. $\int_{\gamma} f(z) dz$ non dipende dalla parametrizzazione.

PROPOSIZIONE 2.1.2.

1.
$$\int_{\gamma} (\lambda f(z) + \mu g(z)) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz$$

2.
$$\Re \int_{Y} f(z) dz = \int_{Y} \Re f(z) dz$$
, $\Im \int_{Y} f(z) dz = \int_{Y} \Im f(z) dz$

3.
$$\left| \int_{\gamma} f(z) dz \right| \le \left(\max_{\gamma} |f| \right) \ell(\gamma)$$

4. Se esiste
$$F \in \mathcal{O}(\Omega)$$
 tale che $F' = f$ su Ω e $supp(\gamma) := \gamma([a,b]) \subseteq \Omega$, allora
$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

 $DIMOSTRAZIONE.\ Le\ prime\ due\ tesi\ derivano\ da\ proposizione\ 2.1.1.\ Per\ il\ punto\ 3,$

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{a}^{b} \left| f(\gamma(t)) \right| |\gamma'(t)| dt \leq \max_{\gamma} |f| \int_{a}^{b} |\gamma'(t)| \leq \left(\max_{\gamma} |f| \right) \mathcal{L}(\gamma)$$

Mostriamo il punto 4. Per farlo, vogliamo vedere che

$$\frac{d}{dt}(F \circ \gamma) = (F' \circ \gamma)\gamma' = (f \circ \gamma)\gamma'$$

Siano F = U + iV, $\gamma = \gamma_1 + i \gamma_2$.

$$\frac{d}{dt}(F\circ\gamma) = \frac{d}{dt}(U\circ\gamma + iV\circ\gamma) = (U_x\circ\gamma)\gamma'_1 + (U_y\circ\gamma)\gamma'_2 + i((V_x\circ\gamma)\gamma'_1 + (V_y\circ\gamma)\gamma'_2) = (F_x\circ\gamma)\gamma'_1 + (F_y\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)(\gamma'_1 + i\gamma'_2) = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_2 = (F'\circ\gamma)\gamma'_1 + i(F'\circ\gamma)\gamma'_1 + i(F'$$

A questo punto

$$\int_{\gamma} f(z) dz = \int_{a}^{b} (f \circ \gamma(t)) \gamma'(t) dt = \int_{a}^{b} \frac{d}{dt} (F \circ \gamma(t)) dt = F(\gamma(b)) - F(\gamma(a))$$

OSSERVAZIONE 2.1.2. Se γ è chiusa, ovvero è tale che $\gamma(a) = \gamma(b)$,

$$\int_{\mathcal{X}} f(z) dz = 0$$

per ogni $f = F' \operatorname{con} F \in \mathcal{O}(\Omega)$.

Useremo la seguente notazione: presa $\gamma:[a,b] \rightarrow \mathbb{C}$, definiamo

$$-\gamma : [a,b] \rightarrow \mathbb{C}$$
tale che $-\gamma(t) = \gamma(a+b-t)$. Perciò $-\gamma(a) = \gamma(b), -\gamma(b) = \gamma(a)$. Naturalmente,
$$\int_{-\gamma} f(z) \, dz = -\int_{\gamma} f(z) \, dz$$

Infatti

$$\int_{-\gamma}^{\infty} f(z)dz = \int_{a}^{b} f(\gamma(a+b-t))(-\gamma'(a+b-t))dt = \int_{b}^{a} f(\gamma(s))\gamma'(s)ds = -\int_{a}^{b} f(\gamma(s))\gamma'(s)ds$$
ove $s=a+b-t$.

ESEMPIO 2.1.1. Sia $f(z)=(z-a)^n$ ove $a \in \mathbb{C}$, $n \in \mathbb{N}$. Dato che

$$f(z) = \left(\frac{(z-a)^{n+1}}{n+1}\right)^{I}$$

Per ogni y chiusa, si ha

$$\int_{Y} (z-a)^n dz = 0$$

Se prendessimo $f(z)=(z-a)^n$ con $n \le -2$, la primitiva vale $(z-a)^{n+1}/(n+1)$. Anche qui, l'integrale di f vale 0 per ogni γ chiusa.

Presa $\gamma(t) = a + e^{it} \operatorname{con} t \in [0, 2\pi]$, calcoliamo

$$\int_{\gamma} \frac{dz}{(z-a)} = \int_{0}^{2\pi} i \frac{e^{it}}{e^{it}} dt = 2\pi i$$

Dunque l'integrale di $f(z)=(z-a)^n$ su una curva chiusa vale 0 per $n\in\mathbb{Z}\setminus\{-1\}$ ed $a\in\mathbb{C}$.

ESEMPIO 2.1.2. Considero $\gamma(t) = e^{it}$ con $t \in [0,2\pi]$ e calcolo

$$\int_{Y} \overline{z} \, dz = \int_{Y} \frac{dz}{z} = 2\pi i$$

grazie al fatto che su γ vale $\bar{z} = z^{-1}$.

2.2. Teorema di Cauchy locale

TEOREMA 2.2.1: Di Goursat. Sia $\Omega \subset \mathbb{C}$ aperto e R un rettangolo in Ω (con lati paralleli agli assi). Allora $\int_{\partial R} f(z) dz$

per ogni $f \in \mathcal{O}(\Omega)$.

DIMOSTRAZIONE. Chiamiamo, per $R' \subseteq \Omega$ rettangolo

$$\eta(R') = \left| \int_{\partial R'} f(z) dz \right|$$

Suddividiamo il rettangolo R in quattro rettangoli uguali come in figura.

Chiaramente l'integrale di f sul bordo di R è uguale alla somma degli integrali di f sui bordi dei quattro rettangoli, perché i lati comuni sono percorsi in verso opposto. Si ha perciò

$$\int_{\partial R} f(z) dz = \sum_{j=1}^{4} \int_{\partial R^{(j)}} f(z) dz$$

Esiste R_1 tale che $\eta(R_1) \ge \eta(R)/4$. Applichiamo lo stesso procedimento su questo R_1 . Avremo che esiste un R_2 tale che $\eta(R_2) \ge \eta(R_1)/4 \ge \eta(R)/16$. Otterremo la famiglia $\{R_n\}$ tale che $R_{n+1} \subseteq R_n$ ove

$$\eta(R_n) \ge \frac{\eta(R)}{4^n}$$

Prendiamo $z_n \in R_n$ e consideriamo la famiglia $\{z_n\}$, che converge ovviamente a $z^* \in \cap_n R_n$. Vale la stima $|z_n - z_m| \le diam(R_N)$

se $n, m \ge N$. f è derivabile in z^* , per cui per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che

$$|f(z)-f(z^*)-f'(z^*)(z-z^*)| < \epsilon |z-z^*|$$

per ogni z tale che $|z-z^*| < \delta$. Per n grande, $|z-z^*| < \delta$ per ogni $z \in R_n$.

$$\int_{\partial R_n} f(z) dz = \int_{\partial R_n} [f(z) - f(z^*) - f'(z^*)(z - z^*)] dz + \int_{\partial R_n} (f(z^*) + f'(z^*)(z - z^*)) dz =$$

$$= \int_{\partial R} [f(z) - f(z^*) - f'(z^*)(z - z^*)] dz$$

Vale perciò che

$$\eta(R_n) \leq \int_{\partial R_n} |f(z) - f(z^*) - f'(z^*)(z - z^*)| dz \leq \epsilon \operatorname{diam} R_n \cdot \ell(\partial R_n) \leq \epsilon \frac{\operatorname{diam} R}{2^n} \frac{\ell(\partial R)}{2^n} = \frac{\epsilon K}{4^n}$$

ove $K := diam R \cdot \ell(\partial R)$. Per cui,

$$\eta(R) \leq 4^n \eta(R_n) \leq \epsilon K$$

Per l'arbitrarietà di ϵ , posso concludere.

COROLLARIO 2.2.1: Teorema di Cauchy locale. Sia D un disco aperto di $\mathbb C$ e γ una curva chiusa in D. Allora

$$\int_{Y} f(z) dz = 0$$

per ogni $f \in \mathcal{O}(D)$.

DIMOSTRAZIONE. Sia

$$F := \int_{\partial R^{-}} f(w) dw = \int_{\partial R^{+}} f(w) dw$$

ove ∂R^- è il percorso rosso e ∂R^+ è il percorso verde. Esiste

$$\frac{F(z+h)-F(z)}{h}=f'(z)$$

Dunque, presa $\gamma(t) = z + ti \text{ con } t \in [0, r] \text{ e } f = u + iv$,

$$\frac{\partial F}{\partial y}(z) = \lim_{r \to 0} \frac{F(z+r) - F(z)}{r} = \lim_{r \to 0} \frac{1}{r} \int_{0}^{r} f(w) dw = \lim_{r \to 0} \frac{1}{r} \int_{0}^{r} f(z+ti) i dt = \lim_{r \to 0} \frac{1}{r} \int_{0}^{r} (u(z+ti)i - v(z+ti)) dt = \lim_{r \to 0} (u(z+t_0i)i - v(z+t_1i))$$

 $con t_0, t_1 \in [0, r]$. Quindi

$$\frac{\partial F}{\partial y}(z) = u(z)i - v(z) = if(z)$$

Analogamente, $\partial F(x)/\partial x = u(z) + iv(z) = f(z)$. Dunque

$$\frac{\partial F}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right) = \frac{1}{2} (f(z) - f(z)) = 0$$

Si ricava anche che

$$\frac{\partial F}{\partial z}(z) = f'(z) = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) = \frac{1}{2} (f(z) + f(z)) = f(z)$$

Dunque $F \in \mathcal{O}(D)$ e F' = f. Perciò $\int_{\mathcal{A}} f(z) dz = 0$.

COROLLARIO 2.2.2. Sia D un disco aperto, sia $f \in \mathcal{O}(D)$ e siano $\gamma_{1,} \gamma_{2}$ curve con lo stesso punto iniziale e lo stesso punto finale, il cui supporto è contenuto in D. Allora

$$\int_{Y_1} f(z) dz = \int_{Y_2} f(z) dz$$

Inoltre,

$$\int_{y_1 - y_2} f \, dz = 0 = \int_{y_1} f \, dz - \int_{y_2} f \, dz$$

ESEMPIO 2.2.1.

Considerata la figura, posso prendere $\{y_i\}$ famiglia di cui abbiamo rappresentato y_1 . Allora vale

$$0 = \sum_{i=1}^{4} \int_{\mathcal{Y}_i} \frac{dz}{z} = \int_{C} \frac{dz}{z} - \int_{\partial B_0(r)} \frac{dz}{z}$$

Ove C è l'ellisse e $B_0(r)$ il cerchio interno. Poichè

$$\int_{\partial B_0(r)} \frac{dz}{z} = 2\pi i$$

Allora anche l'altro integrale vale $2\pi i$.

TEOREMA 2.2.2. Sia D disco aperto. Siano $a_{\!\scriptscriptstyle 1},\ldots,a_{\scriptscriptstyle n}\in D$ e sia $f\in\mathcal{O}\big(D\setminus\{a_{\!\scriptscriptstyle 1},\ldots,a_{\!\scriptscriptstyle n}\}\big)$ tale che

$$\lim_{z \to a_i} (z - a_i) f(z) = 0$$

per ogni i . Allora

$$\int_{\partial R} f(z) dz = 0$$

per ogni rettangolo $R \subseteq D$ tale che $\partial R \cap \{a_1, ..., a_n\} = \emptyset$.

DIMOSTRAZIONE. Possiamo supporre che R contenga un solo punto a . Se considero un quadrato $Q \subseteq R$ che contiene a, poiché ∂R e ∂Q sono riconducibili l'uno all'altro (stesso tipo di archi),

$$\int_{\partial Q} f(z) dz = 0 \Rightarrow \int_{\partial R} f(z) dz = 0$$

 $\int\limits_{\partial Q} f(z)dz = 0 \Rightarrow \int\limits_{\partial R} f(z)dz = 0$ Per ipotesi, so che per ogni $\epsilon > 0$, esiste $\delta > 0$ tale che $|f(z)(z-a)| < \epsilon$ se $|z-a| < \delta$. Sia $Q \subset B_a(\delta)$.

$$\left| \int_{\partial O} f(z) dz \right| = \left| \int_{\partial O} f(z) (z - a) \frac{1}{z - a} dz \right| < \epsilon \max_{z \in \partial Q} \frac{1}{|z - a|} 4 \ell(Q) = \epsilon \left(\min_{z \in \partial Q} |z - a| \right)^{-1} 4 \ell(Q)$$

Dato che min|z-a| vale la metà del lato del quadrato, che è $\ell(Q)$, si ha

$$\left|\int_{\partial Q} f(z) dz\right| < 8\epsilon$$

COROLLARIO 2.2.3. Se γ è chiusa con $supp(\gamma) \subset D \setminus \{a_1, ..., a_n\}$, allora

$$\int_{\mathcal{X}} f(z) dz = 0$$

per ogni $f \in \mathcal{O}(D \setminus \{a_1, ..., a_n\})$ tale che $\lim_{z \to a_i} (z - a_i) f(z) = 0$ per ogni i = 1, ..., n.

DIMOSTRAZIONE. Si ricordi la costruzione fatta nel teorema di Cauchy locale, ove però invece di prendere il centro considero gli a_i . Grazie a teorema 2.2.2, la dimostrazione è analoga.

2.3. Indice di un punto rispetto a una curva

DEFINIZIONE 2.3.1. $\gamma:[a,b] \to \mathbb{C}$ curva chiusa. Sia $\Omega = \mathbb{C} \setminus \text{supp}(\gamma)$ (supp $(\gamma) = \gamma([a,b])$). L' indice di $z \in \Omega$ rispetto alla curva γ è

$$Ind_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w-z}$$

(esso viene detto anche winding number, indice di avvolgimento).

PROPOSIZIONE 2.3.1 $Ind_{y}(z) \in \mathbb{Z}$.

DIMOSTRAZIONE. Siano

$$g(s) := \int_{a}^{s} \frac{\gamma'(t)dt}{\gamma(t)-z}, \quad \varphi(s) := e^{g(s)}$$

Se mostriamo che $\varphi(b) = e^{g(b)} = 1$, allora

$$Ind_{\gamma}(z) = \frac{1}{2\pi i} 2k\pi i = k \in \mathbb{Z}$$

Si noti che

$$\varphi' = e^{g(s)} \frac{\gamma'}{\gamma - z} = \frac{\varphi \gamma'}{\gamma - z}$$

Per cui

$$\frac{\varphi'}{\gamma'} = \frac{\varphi}{\gamma - z}$$

Derivando nuovamente,

$$\left(\frac{\varphi}{\gamma-z}\right)' = \frac{\varphi'}{\gamma-z} - \frac{\varphi\gamma'}{(\gamma-z)^2} = \frac{\varphi'}{\gamma-z} - \frac{\varphi'}{\gamma'} \frac{\gamma'}{\gamma-z} = 0$$

Dunque, poichè $\varphi(a) = e^{g(a)} = e^0 = 1$,

$$\frac{\varphi(b)}{\gamma(b)-z} = \frac{\varphi(a)}{\gamma(a)-z} = \frac{1}{\gamma(a)-z}$$

Da cui $\varphi(b) = (\gamma(b) - z)/(\gamma(a) - z) = 1$ dato che γ è chiusa.

LEMMA 2.3.1. Siano $\Omega \subseteq \mathbb{C}$ aperto, γ curva chiusa con $supp(\gamma) \subseteq \Omega$ e $g:\Omega \to \mathbb{C}$ continua su $supp(\gamma)$ Allora

$$f(z) = \int_{y} \frac{g(w)}{w - z} dw$$

è olomorfa in $\Omega \setminus supp(\gamma)$.

DIMOSTRAZIONE. Facciamo anzitutto vedere che f è continua. Sia $z_0 \in \Omega \setminus supp(\gamma)$ e considero $B_{z_0}(\delta)$ (palla di centro z_0 e raggio δ , che è la distanza di z dalla curva) contenuta in $\Omega \setminus supp(\gamma)$. Prendiamo ora $z \in B_{z_0}(\delta/2)$. Chiaramente, se $w \in supp(\gamma)$, allora $|w-z| \ge \delta/2$.

$$\left| \frac{g(w)}{w - z} - \frac{g(w)}{w - z_0} \right| = \left| \frac{g(w)(z - z_0)}{(w - z)(w - z_0)} \right| \le \max_{w \in supp(y)} g(w) \frac{2}{\delta^2} |z - z_0|$$

Consideriamo ora f:

$$|f(z)-f(z_0)| = \left| \int_{\gamma} \left(\frac{g(w)}{w-z} - \frac{g(w)}{w-z_0} \right) dw \right| \leq \max_{\gamma} |g| \frac{2}{\delta^2} |z-z_0| \ell(\gamma) \stackrel{z \to z_0}{\to} 0$$

Dunque f è continua. Vediamo che f è olomorfa su $\Omega \setminus supp(\gamma)$. Sia r(z) il rapporto incrementale:

$$r(z) = \frac{f(z) - f(z_0)}{z - z_0} = \int_{\gamma} \left(\frac{g(w)}{w - z} - \frac{g(w)}{w - z_0} \right) \frac{1}{z - z_0} dw =$$

$$= \int_{\gamma} \frac{g(w)}{(w - z)(w - z_0)} dw$$

Si verifica che r è continua con la dimostrazione di f continua appena fatta prendendo al posto di g la funzione $g(w)/(w-z_0)$. Allora esiste

$$\lim_{z \to z_0} r(z) = \int_{\gamma} \frac{g(w)}{(w - z_0)^2} dw$$

Perciò f è differenziabile in z_0 : dunque f è olomorfa su $\Omega \setminus supp(\gamma)$.

COROLLARIO 2.3.1. $Ind_{\gamma}(z)$ è continua su $\Omega \setminus supp(\gamma)$.

COROLLARIO 2.3.2. $Ind_{\gamma}(z)$ è costante sulle componenti connesse di $\Omega \setminus supp(\gamma)$.

OSSERVAZIONE 2.3.1. $Ind_{\gamma}(z)=0$ sulla componente connessa illimitata di $\Omega \setminus supp(\gamma)$. Infatti,

$$|w-z| \ge ||w|-|z|$$

 $|w-z| \ge ||w|-|z||$ Dunque per ogni M>0 esiste R>0 tale che $|w-z| \ge M$ se $|z| \ge R$ per ogni $w \in supp(\gamma)$. Quindi

$$\left| \int_{\gamma} \frac{dw}{w - z} \right| \leq \frac{1}{M} \ell(\gamma)$$

per $|z| \ge R$. Ne ricavo che il valore assoluto dell'integrale tende a 0 per z che va $a + \infty$.

ESEMPIO 2.3.1. Sia $\gamma = \partial B_a(r)$. Allora, sapendo che $\operatorname{Ind}_{\gamma}(a) = 1$,

$$Ind_a(z) = \begin{cases} 1 & \text{se } |z-a| < r \\ 0 & \text{se } |z-a| > r \end{cases}$$

 $Ind_a(z) = \begin{cases} 1 & \text{se } |z-a| < r \\ 0 & \text{se } |z-a| > r \end{cases}$ Se γ_n è $\partial B_a(r)$ percorso n volte, $Ind_a(z) = n$ se |z-a| < r, 0 altrimenti. Ovviamente, $Ind_{-\gamma}(z) = -1$ con $|z-a| < r \in 0$ altrimenti.

ESEMPIO 2.3.2. Considero

Allora abbiamo

$$Ind_{\gamma} = \begin{cases} 0 & \text{su } C \\ 1 & \text{su } B \\ 2 & \text{su } A \end{cases}$$

ESEMPIO 2.3.3. Considero

Allora

$$Ind = \begin{cases} 0 & \text{su } C \\ 1 & \text{su } B \\ 0 & \text{su } A \end{cases}$$

2.4. Formula integrale e applicazioni

TEOREMA 2.4.1: Formula integrale di Cauchy (locale). Siano D un disco aperto, γ una curva chiusa con $supp(\gamma) \subset D$ e $f \in \mathcal{O}(D)$. Per ogni $z \in D \setminus supp(\gamma)$,

$$f(z) Ind_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dz$$

COROLLARIO 2.4.1. Se $Ind_{y}(z)=1$, allora

$$f(z) = \frac{1}{2\pi i} \int_{x} \frac{f(w)}{w - z}$$

DIMOSTRAZIONE di teorema 2.4.1. La funzione così definita

$$F(w) := \frac{f(w) - f(z)}{w - z}$$

è olomorfa su $D \setminus \{z\}$. Inoltre, si nota facilmente che

$$\lim_{w\to z} (w-z)F(w)=0$$

La funzione F soddisfa il teorema integrale di Cauchy. Dunque

$$0 = \int_{Y} F(w) dw = \int_{Y} \frac{f(w)}{w - z} dw - \int_{Y} \frac{f(z)}{w - z} dw = \int_{Y} \frac{f(w)}{w - z} dw - 2\pi i f(z) Ind_{Y}(z)$$

Da qui la tesi.

 $\begin{aligned} \text{OSSERVAZIONE 2.4.1. La formula integrale vale anche per } f \in \mathcal{O}\big(D \setminus \{a_1, ..., a_n\}\big) \text{ se} \\ supp (\gamma) \cap \{a_1, ..., a_n\} = \mathcal{B} \text{ , } \quad z \not\in \{a_1, ..., a_n\} \text{ , } \quad \lim_{w \to a_i} (w - a_i) f(w) = 0 \text{ per } i = 1, ..., n \end{aligned}$

ESEMPIO 2.4.1. Siano $\gamma = \partial B_a(r)$, $f \in \mathcal{O}(B_a(R))$ con R > r. Preso z = a, $Ind_{\gamma}(a) = 1$. Allora

$$f(a) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f(w)}{w - a} dw$$

Considerando $w=a+re^{it}$ per $t \in [0,2\pi]$, si ottiene

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a + re^{it})}{re^{it}} rie^{it} dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it}) dt$$

Dunque il valore di f nel centro è la media integrale di f su $\partial B_a(r)$. Vale anche per le funzioni armoniche, basta prendere le parti reali di questo risultato.

Vediamo alcune applicazioni della formula integrale.

Singolarità eliminabili

TEOREMA 2.4.2. Siano $\Omega \subseteq \mathbb{C}^2$ aperto, $a \in \Omega$ e $f \in \mathcal{O}(\Omega \setminus \{a\})$ tale che $\lim_{z \to a} (z-a) f(z) = 0$. Allora esiste $\widetilde{f} \in \mathcal{O}(\Omega)$ tale che $\widetilde{f} \mid_{\Omega \setminus \{a\}} = f$.

DIMOSTRAZIONE. Sia $\gamma = \partial B_a(r)$ con $\overline{B_a(r)} \subset \Omega$. Si definisca

$$g(z) := \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f(w)}{w-z} dw$$

per $z \in B_a(r)$. Si verifica che g è olomorfa e per la formula integrale g = f su $B_a(r) \setminus \{a\}$. Sia

$$\widetilde{f}(z) = \begin{cases} g(z) & z \in B_a(r) \\ f(z) & z \in \Omega \setminus \{a\} \end{cases}$$

Teorema di Weierstrass

TEOREMA 2.4.3. Sia $\Omega \subset \mathbb{C}$ aperto. Sia $f \in \mathcal{O}(\Omega)$ e $z \in \Omega$. Allora esiste un disco aperto $B_{z_0}(r)$ dove

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

con

$$a_n = \frac{1}{2\pi i} \int_{\partial B_s(r)} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

Ovvero, f è olomorfa se e solo se f è analitica.

DIMOSTRAZIONE. Sia $\gamma := \partial B_{z_0}(r)$. Per $z \in B_{z_0}(r)$,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z) + (z - z_0)} dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z_0 \left(1 - \frac{z - z_0}{w - z_0}\right)} dw$$

Si noti che $|(z-z_0)/(w-z_0)| \le r/r = 1$. Consideriamo la serie

$$\sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n$$

Essa è uniformemente convergente per $z \in \overline{B_{z_0}(t)}$ con 0 < t < r; infatti, se $|z - z_0| \le t$,

$$\left| \frac{z - z_0}{w - z_0} \right| \le \frac{t}{r} < 1$$

Dunque posso applicare l'm-test di Weierstrass usando la maggiorazione $\sum_n M_n$ con $M_n := (t/r)^n$. Ricavo quindi la tesi:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n dw = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} \right) (z - z_0)^n$$

COROLLARIO 2.4.2. Una funzione olomorfa è C^{∞} (questo perché le serie di potenze sono C^{∞}).

COROLLARIO 2.4.3. Vale che $f^{(n)}(z_0) = n! a_n$. Perciò

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\partial B_n(r)} \frac{f(w)}{(w-z_0)^{n+1}} dw$$

COROLLARIO 2.4.4: Stime di Cauchy. $B_{z_0}(r) \subset \Omega$. Sia $f \in \mathcal{O}(\Omega)$ e $M = \sup_{\partial B_{z_0}(r)} |f|$. Allora

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!\,M}{r^n}$$

DIMOSTRAZIONE.

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \int_{\partial B_{r}(r)} \frac{M}{r^{n+1}} dw \le \frac{n! M}{2\pi r^{n+1}} 2\pi r = \frac{n! M}{r^n}$$

Teorema di Liouville

TEOREMA 2.4.4. Se $f \in \mathcal{O}(\mathbb{C})$ è limitata, allora è costante.

DIMOSTRAZIONE. Vogliamo usare la stima di Cauchy. Per ogni r>0,

$$|f^{(n)}(0)| \leq \frac{n! \sup_{\partial B_{z_0}} |f|}{r^n}$$

Poichè f è limitata per ipotesi, esiste K tale che $|f| \le K$. Dunque

$$|f^{(n)}(0)| < \frac{n! K}{r^n}$$

Per l'arbitrarietà di r, ottengo che $|f^{(n)}(0)|=0$ per ogni $n \ge 1$. Quindi f(z)=f(0) per ogni z; la funzione è quindi costante.

COROLLARIO 2.4.5. Se $f \in \mathcal{O}(\mathbb{C})$ e la parte reale (o la parte immaginaria) di f è limitata, allora f è costante.

DIMOSTRAZIONE. $F(z)=e^{f(z)} \in \mathcal{O}(\mathbb{C})$. $|F(z)|=e^{\Re f(z)} \le M$ perché la parte reale è limitata. Per Liouville, F è costante. Da cui $0=(e^{f(z)})'=e^{f(z)}f'(z)$; dunque f'(z)=0. f è quindi costante.

Teorema fondamentale dell'algebra

TEOREMA 2.4.5. Ogni polinomio non costante a coefficienti complessi ha una radice, ovvero esiste $z_0 \in \mathbb{C}$ tale che $p(z_0)=0$.

DIMOSTRAZIONE. Supponiamo per assurdo $p(z)\neq 0$ per ogni $z\in\mathbb{C}$. Sia $f=1/p\in\mathcal{O}(\mathbb{C})$. Facciamo vedere che f è limitata in \mathbb{C} : consideriamo la funzione

$$h(z) := \frac{z^n}{p(z)}$$

con n = grado(p(z)) > 0. Allora

$$h(z) = \frac{z^{n}}{a_{n}z^{n} + \dots + a_{0}} = \frac{1}{a_{n} + \frac{a_{n-1}}{z} + \dots + \frac{a_{0}}{z^{n}}} \xrightarrow{|z| \to +\infty} \frac{1}{a_{n}}$$

Quindi $f(z)=1/p(z)=h(z)/z^n$ tende a 0 per $|z|\to +\infty$. Dunque, per ogni M>0 esiste R>0 tale che $|f(z)|\le M$

se $|z| \ge 2$. Perciò $|f(z)| \le max\{M, max_{B_0(R)}|f|\}$. Quindi per Liouville 1/p è costante. Ma ciò è assurdo poiché p non è costante.

Teorema di Morera

TEOREMA 2.4.6. Siano $\Omega \in \mathbb{C}$ aperto e $f \in C(\Omega)$ tale che

$$\int_{\partial R} f(z) dz = 0$$

per ogni rettangolo R contenuto in Ω , allora $f \in \mathcal{O}(\Omega)$.

DIMOSTRAZIONE. Sia $D \subseteq \Omega$ disco aperto. Si può costruire una primitiva olomorfa F di f in D (come per teorema di Cauchy, corollario 2.2.1). Per Weierstrass (teorema 2.4.3), F è analitica. Quindi F' = f è analitica, quindi olomorfa.

Si può vedere che se $f \in \mathcal{O}(\Omega)$, f = u + iv, allora per Cauchy-Riemann vale $\Delta u = u_{xx} + u_{yy} = 0$, dunque u è armonica.

Viceversa, sia u(x, y) reale di classe C^2 . Se $\Delta u = 0$ su un disco D, allora esiste un'armonica coniugata v su D, cioè tale che $f = u + iv \in \mathcal{O}(D)$.

Dimostrazione. Definiamo $g := u_x - iu_y$. Essa è olomorfa in D, infatti valgono CR:

$$\begin{cases} (u_x)_x = u_{xx} = (-u_y)_y = -u_{yy} \\ (u_x)_y = u_{xy} = -(-u_y)_x = u_{yx} = u_{xy} \end{cases}$$

grazie al fatto che u è armonica ($\Delta u = 0$) e al teorema di Schwarz ($u_{xy} = u_{yx}$, siamo nelle ipotesi). Allora g ha una primitiva olomorfa $h = \alpha + i\beta$ tale che h' = g.

$$h'=h_x=\alpha_x+i\beta_x=\alpha_x-i\alpha_y=g=u_x-iu_y$$

Quindi $(u-\alpha)_x=0$ e $(u-\alpha)_y=0$: posso scrivere che $u-\alpha=c\in\mathbb{R}$. A questo punto costruisco $f=h+c=u+i\beta$

che è naturalmente olomorfa nel disco per costruzione.

ESEMPIO 2.4.2. Questa dimostrazione è usata negli esercizi per trovare l'armonica coniugata. Presa

$$u=x^2-y^2+x+1$$

Allora $\Delta u = 2 - 2 = 0$. Posso prendere $g := 2x + 1 - i(-2y) = 2(x + iy) + 1 = 2z + 1 = (z^2 + z)'$. Ottengo $z^2 + z = (x + iy)^2 + (x + iy) = (x^2 - y^2 + x) + i(2xy + y)$

Dunque $f = z^2 + z + 1$ ha $\Re f = u$ e v = 2xy + y.

OSSERVAZIONE 2.4.2. L'armonica coniugata su D è unica a meno di costanti reali.

FORMULA INTEGRALE

3.1. Catene omologhe

Siano $\gamma_i: J \to \mathbb{C}$ curve di classe C^1 a tratti chiuse con $i=1,\ldots,n$. Una *catena* è una somma

$$\gamma = \sum_{i=1}^{n} m_i \gamma_i$$

ove $m_i \in \mathbb{Z}$. Possiamo quindi definire

$$\int_{\mathcal{Y}} f(z) dz := \sum_{i=1}^{n} m_{i} \int_{\mathcal{Y}_{i}} f(z) dz, \quad Ind_{\mathcal{Y}}(z) = \sum_{i=1}^{n} m_{i} Ind_{\mathcal{Y}_{i}}(z)$$

Chiaramente, Ind_{γ} sarà definito per ogni $z \in \mathbb{C} \setminus supp(\gamma)$, ove $supp(\gamma) = \bigcup_{i=1}^{n} supp(\gamma_i)$.

Date due catene γ e η , esse sono *omologhe* in Ω (con $\Omega \supset supp(\gamma) \cup supp(\eta)$) se $Ind_{\nu}(z) = Ind_{\nu}(z)$

per ogni $\mathbb{Z} \in \mathbb{C} \setminus \Omega$. Si dice che γ è *omologa* a 0 in Ω se $Ind_{\gamma}(z) = 0$ per ogni $z \in \mathbb{C} \setminus \Omega$. In simboli, si scrive rispettivamente $\gamma \sim_{\Omega} \eta$ e $\gamma \sim_{\Omega} 0$.

ESEMPIO 3.1.1. Prendiamo $\gamma = \gamma_1 - \gamma_2 \operatorname{con} \gamma_1, \gamma_2 \operatorname{come} \operatorname{in disegno}$

Allora $Ind_{\gamma}(z) = Ind_{\gamma_1}(z) - Ind_{\gamma_2}(z) = 1 - 1 = 0$, ovvero $\gamma \sim_{\Omega} 0$.

 ${\rm OSSERVAZIONE} \ 3.1.1. \ \gamma \sim_{\Omega} 0 \ {\rm coincide} \ {\rm con} \ [\gamma] = 0 \ {\rm in} \ H_1(\Omega) \ ({\rm come} \ {\rm definito} \ {\rm in} \ {\rm topologia} \ {\rm algebrica}).$

LEMMA 3.1.1. Siano $\Omega \subseteq \mathbb{C}$, $f \in \mathcal{O}(\mathbb{C})$. La funzione

$$g(z,w) := \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{se } w \neq z \\ f'(z) & \text{se } w = z \end{cases}$$

è continua su $\Omega \times \Omega$.

DIMOSTRAZIONE.

Se $z_0 \neq w_0$, allora g è continua in (z_0, w_0) . Dato $\epsilon > 0$, esiste $\delta > 0$ tale che

$$|f'(z)-f'(z_0)| \leq \epsilon$$

se $|x-x_0| \le \delta$. Supponiamo che $B_{z_0}(\delta) \subseteq \Omega$. Presi $z, w \in B_{z_0}(\delta)$ con $z \ne w$,

$$g(z,w)-g(z_0,z_0)=\frac{f(w)-f(z)}{w-z}-f'(z_0)=\frac{1}{w-z}(f(w)-f(z)-f'(z_0)(w-z))$$

Prendiamo

$$\chi(t) = (1-t)z + tw$$

con $t \in [0,1]$. Si ha

$$\int_{Y} f'(\xi) d\xi = f(w) - f(z)$$

D'altronde,

$$\int_{\gamma} f'(\xi) d\xi = \int_{0}^{1} f'(\gamma(t))(w-z) dt$$

Perciò

$$g(z,w)-g(z_0,z_0)=\int_0^1 f'(\gamma(t))dt-\int_0^1 f'(z_0)dt$$

Da questo,

$$|g(z,w)-g(z_0,z_0)| \le \epsilon$$

dato che $\gamma(t)$, $z_0 \in B_{z_0}(\delta)$.

Se $z = w \in B_{z_0}(\delta)$, allora $g(z,z) - g(z_0,z_0) = f'(z) - f'(z_0)$. Vale $|g(z,z) - g(z_0,z_0)| \le \epsilon$.

TEOREMA 3.1.1: Di Cauchy. Sia $\Omega \subset \mathbb{C}$ aperto. Sia γ una catena con $supp(\gamma) \subset \Omega$ e tale che $\gamma \sim_{\Omega} 0$. Se $f \in \mathcal{O}(\Omega)$, allora:

1. Teorema dell'integrale nullo. Vale

$$\int_{Y} f(z) dz = 0$$

2. Formula integrale. Se $z \in \mathbb{C} \setminus \Omega$, allora

$$f(z) \operatorname{Ind}_{y}(z) = \frac{1}{2\pi i} \int_{y} \frac{f(w)}{z - w} dw$$

ESEMPIO 3.1.2. Prendiamo $\gamma = \gamma_1 - \gamma_2$ con

$$\gamma_1(t) = 2e^{2\pi it}, \quad \gamma_2(t) = \frac{1}{2}e^{2\pi it}$$

Per $t \in [0,1]$. Voglio sfruttare teorema 3.1.1 per calcolare

$$\int_{\mathcal{Y}} \frac{dz}{z^2 - z}$$

 $\int_{\gamma} \frac{dz}{z^2-z}$ Si osservi che $\gamma \sim_{\mathbb{C}\setminus[0]} 0$, infatti $\mathit{Ind}_{\gamma}(0) = \mathit{Ind}_{\gamma_1}(0) - \mathit{Ind}_{\gamma_2}(0) = 1-1=0$. Inoltre,

$$\int_{\mathcal{Y}} \frac{dz}{z^2 - z} = \int_{\mathcal{Y}} \left(\frac{1}{z} \right) \frac{dz}{z - 1} = \int_{\mathcal{Y}} \frac{f(z)}{z - 1} dz$$

Si noti che $f(z)=1/z \in \mathcal{O}(\mathbb{C}\setminus\{0\})$. Vale che $Ind_{y_1}(1)=Ind_{y_2}(1)-Ind_{y_2}(1)=1$. Si ottiene quindi

$$\int_{X} \frac{dz}{z^2 - z} = 2\pi i f(1) = 2\pi i$$

DIMOSTRAZIONE di teorema 3.1.1. Definiamo $g: \Omega \times \Omega \rightarrow \mathbb{C}$ ponendo

$$g(z,w) := \begin{cases} \frac{f(w) - f(z)}{w - z} & w \neq z \\ f'(z) & w = z \end{cases}$$

Si verifica che $g \in C^0(\Omega \times \Omega)$ per lemma 3.1.1. Inoltre $g(z, w_0)$ è olomorfa su Ω per ogni $w_0 \in \Omega$ fissato. Sia $\Omega' = \{z \in \mathbb{C} \setminus \sup(\gamma) \mid \operatorname{Ind}_{\gamma}(z) = 0\}$. Inoltre $\gamma \sim_{\Omega} 0$ implica che $\operatorname{Ind}_{\gamma}(z) = 0$ per ogni $z \in \mathbb{C} \setminus \Omega$. Allora $\mathbb{C} \setminus \Omega \subseteq \Omega'$. Perciò $\mathbb{C} = \Omega \cup \Omega'$ (non è detto che Ω, Ω' siano disgiunti). Sia $h: \mathbb{C} \to \mathbb{C}$

$$h(z) = \begin{cases} \frac{1}{2\pi i} \int_{\gamma} g(z, w) dw & z \in \Omega \\ \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw & z \in \Omega' \end{cases}$$

h è ben definita: preso $z \in \Omega \cap \Omega'$, si noti che

$$\int_{\gamma} g(z,w) dw = \int_{\gamma} \frac{f(w) - f(z)}{w - z} dw = \int_{\gamma} \frac{f(w)}{w - z} dw - f(z) \int_{\gamma} \frac{dw}{w - z} =$$

$$= \int_{\gamma} \frac{f(w)}{w - z} dw - f(z) 2\pi i \operatorname{Ind}_{\gamma}(z) = \int_{\gamma} \frac{f(w)}{w - z}$$

Inoltre, Ω' è unione delle componenti connesse di $\mathbb{C} \setminus supp(\gamma)$ dove $Ind_{\gamma}(z)=0$; questo implica che Ω' è aperto. Posso dunque usare lemma 2.3.1 per affermare che $h \in \mathcal{O}(\Omega)$ grazi al fatto che f è continua. Vogliamo dimostrare che h è olomorfa anche in Ω tramite il teorema di Morera. Sia $R \subseteq \Omega$ un rettangolo.

$$\int_{\partial R} h(z) dz = \int_{\partial R} \left(\int_{Y} g(z, w) dw \right) dz = \int_{Y} \left(\int_{\partial R} g(z, w) dz \right) dw = 0$$

grazie al teorema di Fubini ed al teorema di Goursat. Perciò h è olomorfa in $D \supset R$ per ogni $D \subseteq \Omega$. Perciò h è olomorfa in Ω . $h \in \mathcal{O}(\mathbb{C})$.

Voglio ora dimostrare che è limitata per utilizzare il teorema di Liouville. Sia $z \in \Omega'$ con $|z| \gg 0$. Anzitutto,

$$|w-z| \ge |z|-|w|$$

Grazie a ciò,

$$|h(z)| = \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(w)}{w - z} dw \right| \le \max_{w \in \gamma} \left(\frac{|f(w)|}{|z| - |w|} \right) \ell(\gamma)$$

Se $z \in \Omega$, allora

$$|h(z)| \leq max \left[\max_{\Omega} |h|, \max_{B_0(R)} |h| \right]$$

Dunque h è limitata in $\mathbb C$ e tende a 0 per $|z| \to +\infty$. Grazie a Liouville, $h(z) \equiv 0$. Sia $z \in \Omega \setminus supp(\gamma)$. Da

$$0 = h(z) = \frac{1}{2\pi i} \int_{Y} g(z, w) dw = \frac{1}{2\pi i} \int_{Y} \frac{f(w)}{w - z} dw - f(z) Ind_{Y}(z)$$

si deduce che vale anche il punto 2. Per dimostrare 1 usiamo 2. Presa $F(w) := f(w)(w-z) \in \mathcal{O}(\Omega)$ per $z \in \Omega \setminus supp(\gamma)$ con F(z) = 0, si ha che

$$0 = F(z_0) Ind_{y}(z_0) = \frac{1}{2\pi i} \int_{y} \frac{f(w)(w-z)}{w-z} dw = \frac{1}{2\pi i} \int_{y} f(w) dw$$

COROLLARIO 3.1.1. Se $\gamma \sim_{\Omega} \eta$ allora

$$\int_{Y} f(z) dz = \int_{Y} f(z) dz$$

per ogni $f \in \mathcal{O}(\Omega)$.

DIMOSTRAZIONE. Poichè $\gamma - \eta \sim_{\Omega} 0$, vale

$$0 = \int_{y-n}^{y-n} f(z) dz = \int_{y}^{y} f(z) dz - \int_{y}^{y} f(z) dz$$

PROPOSIZIONE 3.1.1. Sia γ una catena in $\Omega \subset \mathbb{C}$ e $\gamma \sim_{\Omega} 0$. Siano $z_1, ..., z_n \in \Omega \setminus supp(\gamma)$ e D_i dischi centrati in z_i per i=1,...,n con $D_i \subset \Omega \setminus supp(\gamma)$ a due a due disgiunti. Presi $\gamma_i = \partial D_i$, $m_i = Ind_{\gamma}(z_i)$ per i=1,...,n e $\Omega' = \Omega \setminus \{z_1,...,z_n\}$, allora

$$\gamma \sim_{\Omega'} \sum_{i=1}^n m_i \gamma_i$$

DIMOSTRAZIONE. Se $z \notin \Omega$, allora $Ind_{\gamma}(z)=0$ perché $\gamma \sim_{\Omega} 0$ e $Ind_{\gamma_i}(z)=0$ perchè z non è nel bordo di γ_i . Se $z=z_i$, allora

$$Ind_{\sum m_i \gamma_i} = m_i = Ind_{\gamma}(z)$$

Da qui la tesi.

OSSERVAZIONE 3.1.1. Se γ è una curva chiusa semplice ($\gamma:[a,b] \rightarrow \mathbb{C}$, $\gamma(a) = \gamma(b)$ e $\gamma|_{[a,b]}$ è iniettiva) di classe C^1 a tratti, vale il *teorema della curva di Jordan*. Esso afferma che $\mathbb{C} \setminus supp(\gamma)$ ha esattamente due componenti connesse, una limitata ("interno di γ ") e una illimitata ("esterno di γ "), e $Ind_{\gamma}(z)$ vale 0 all'esterno di γ mentre vale 1 all'interno, se γ è orientata positivamente. Vale

$$\int_{\gamma} f(w)dw = 0, \quad f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$$

per ogni f olomorfa in un aperto contenente il supporto di γ .

3.2. Successioni di funzioni olomorfe

TEOREMA 3.2.1. $\Omega \subset \mathbb{C}$ aperto. Sia $\{f_n\}$ una successione di funzioni olomorfe su Ω con $f_n \to f$ uniformemente sui compatti di Ω . Allora $f \in \mathcal{O}(\Omega)$.

DIMOSTRAZIONE. $f \in C^0(\Omega)$ per la convergenza uniforme su ogni $R \subseteq \Omega$ rettangolo:

$$\int_{\partial R} f(z) dz = \int_{\partial R} \lim_{n \to \infty} f_n(z) dz = \lim_{n \to \infty} \int_{\partial R} f_n(z) dz = 0$$

Per Morera, $f \in \mathcal{O}(\Omega)$.

ESEMPIO 3.2.1. Presa $\zeta(z) := \sum_{n=1}^{+\infty} 1/n^z = \sum_{n=1}^{+\infty} e^{-z \log n}$, si verifica che essa è uniformemente convergente su $\{\Re z > 1\}$. Dunque $\zeta \in \mathcal{O}(\{\Re z > 1\})$ (in realtà, $\zeta \in \mathcal{O}(\mathbb{C} \setminus \{1\})$ e viene detta *zeta di Riemann*). Vale il seguente legame:

$$\zeta(z) = \prod_{p \text{ primo}} (1 - p^{-z})^{-1}.$$

3.3. Serie di Laurent

Vogliamo descrivere una serie del tipo $\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$. L'idea naturale è appunto quella di definirla come la somma

$$\sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{m=1}^{+\infty} \frac{a_{-m}}{\left(z-z_0\right)^m}$$

ove si può notare che la seconda sommatoria ha senso se $z \neq z_0$. Studiamo la connessione fra le serie di questa forma, dette di *Laurent*, e le funzioni olomorfe.

TEOREMA 3.3.1. Sia $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. Sia $f \in \mathcal{O}(\Omega)$ ove $\Omega \supset A$. Allora posso scrivere

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

Questa serie è uniformemente convergente in A con

$$a_n = \frac{1}{2\pi i} \int_{y_s} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

ove $\gamma_S = \partial B_{z_0}(S) \operatorname{con} r \leq S \leq R$.

DIMOSTRAZIONE. Si noti che $\Gamma = \gamma_R - \gamma_r \sim_{\Omega} 0$, ovvero si ha $Ind_{\Gamma}(z) = Ind_{\gamma_R}(z) - Ind_{\gamma_r}(z) = 0$ per ogni $z \notin \Omega$. Possiamo applicare la formula integrale di Cauchy: se $z \in \mathring{A}$,

$$f(z) = f(z) Ind_{\Gamma}(z) = \frac{1}{2\pi i} \int_{Y_0} \frac{f(w)}{w - z} dw - \frac{1}{2\pi i} \int_{Y} \frac{f(w)}{w - z} dw$$

Si noti che per Weierstrass

$$\frac{1}{2\pi i} \int_{\gamma_R} \frac{f(w)}{w - z} dw = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

L'altro termine vale invece

$$\frac{-1}{2\pi i} \int_{y_{r}} \frac{f(w)}{w-z} dw = \frac{-1}{2\pi i} \int_{y_{r}} \frac{f(w)}{(w-z_{0})-(z-z_{0})} dw = \frac{1}{2\pi i} \int_{y_{r}} \frac{f(w)}{(z-z_{0})\left(1-\frac{w-z_{0}}{z-z_{0}}\right)} dw = \frac{-1}{2\pi i} \int_{y_{r}} \frac{f(w)}{(z-z_{0})} dw$$

Dato che $|w-z_0/z-z_0| \le \frac{r}{r} = 1$,

$$= \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{z - z_0} \sum_{n=0}^{\infty} \left(\frac{w - z_0}{z - z_0} \right)^n dw = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\gamma_r} \frac{f(w)}{(w - z_0)^{-n}} dw \right) (z - z_0)^{-n-1}$$

Ponendo -n=m+1, quanto appena scritto si eguaglia con

$$\sum_{m=-1}^{-\infty} \left(\frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{(w-z_0)^{m+1}} \right) (z-z_0)^m$$

Si noti che possiamo rifare il ragionamento per una qualche $r \le S \le R$ dato che $\gamma_r - \gamma_S \sim_{\Omega} 0$; quindi l'integrale su una delle due curve equivale allo stesso integrale sull'altra curva.

3.4. Singolarità isolata

DEFINIZIONE 3.4.1. f ha una *singolarità isolata* in z_0 se $f \in \mathcal{O}(D \setminus \{z_0\})$ con D disco centrato in z_0 .

OSSERVAZIONE 3.4.1. Se

$$\lim_{z \to z_0} (z - z_0) f(z) = 0$$

allora z_0 è una *singolarità eliminabile* .

ESEMPIO 3.4.1. Sia $f(z) = (\cos z - 1)/z \in \mathcal{O}(\mathbb{C} \setminus \{0\})$. Si vede che

$$\cos z = \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k}}{(2k)!} = 1 - \frac{z^2}{2} + \dots = 1 + z^2 \left(\frac{-1}{2} + \dots \right) = 1 + z^2 g(z)$$

ove g(0)=-1/2. Dunque

$$\frac{\cos z - 1}{z} = z g(z)$$

L'estensione olomorfa di f è

$$\widetilde{f}(z) = \begin{cases} \frac{\cos z - 1}{z} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

ESEMPIO 3.4.2. Sia $h(z) = (\cos z - 1)/z^2$. Allora essa ha una singolarità eliminabile in 0; prendendo g(z) definita come in esempio 3.4.1, h(z) = g(z). Dunque l'estensione olomorfa è

$$\widetilde{h}(z) = \begin{cases} \frac{\cos z - 1}{z} & z \neq 0 \\ -\frac{1}{2} & z = 0 \end{cases}$$

In generale, se $f \in \mathcal{O}(D)$, la funzione

$$\frac{f(z)-f(z_0)}{z-z_0} \in \mathcal{O}(D \setminus \{z_0\})$$

ha singolarità eliminabile in z_0 .

Se $f \in \mathcal{O}(D \setminus \{z_0\})$, z_0 è eliminabile se e solo se i coefficienti a_n della serie di Laurent di centro z_0 sono nulli per ogni n < 0.

Infatti, presa z_0 singolarità eliminabile è chiaro che $|z-z_0||f(z)| \le M$ su D, da cui

$$|a_n| \le \frac{1}{2\pi} \int_{\gamma_s} \left| \frac{f(w)(w - z_0)}{(w - z_0)^{n+2}} \right| dw \le \frac{1}{2\pi} \frac{M}{S^{n+2}} 2\pi S = M S^{-n-1}$$

Se $n \le -2$, -n-1 > 0; ne ricavo che $|a_n| \to 0$ per $s \to 0$. Inoltre,

$$(z-z_0)f(z)=a_{-1}+a_0(z-z_0)+... \stackrel{z \to z_0}{\to} a_{-1}$$

Da cui ricavo che $a_n = 0$ per n < 0.

DEFINIZIONE 3.4.2. Sia $f \in \mathcal{O}(D \setminus \{z_0\})$ e supponiamo che z_0 non sia eliminabile. Se $a_{-m} \neq 0$ e $a_{-n} = 0$ per ogni n > m, allora si dice che z_0 è un *polo* di f di ordine m.

Questo avviene se e solo se $\lim_{z\to z_0} f(z)(z-z_0)^m$ esiste ed è non nullo; infatti,

$$(z-z_0)^m \sum_{-\infty}^{\infty} a_n (z-z_0)^n = \sum_n a_n (z-z_0)^{n+m}$$

Per cui

$$\lim_{z \to z_0} (z - z_0)^m f(z) = \sum_{n \le -m} \lim_{z \to z_0} a_n (z - z_0)^{n+m}$$

Inoltre, per ipotesi, $\lim_{z \to z_0} f(z)(z-z_0)^{m+1} = 0$, cioè $f(z)(z-z_0)^m$ ha singolarità eliminabile in z_0 . Se ne deduce che $a_n = 0$ per ogni $n \le -1 - m$ per quanto visto a pagina precedente.

ESEMPIO 3.4.3. Sia

$$f(z) = \frac{z}{(\cos z - 1)^2}$$

Questa funzione ha polo in 0 di ordine 3. Riconsiderata $z^2g(z)=\cos z-1$ come in esempio 3.4.1, allora

$$f(z) = \frac{z}{(z^2 g(z))^2} = \frac{1}{z^3 g^2(z)} = \frac{1}{z^3} \cdot \left(\frac{1}{g(z)}\right)^2$$

Dato che $g(0) \neq 0$, si vede subito che f ha un polo di ordine 3.

$$f(z) = \frac{1}{z^3} \left(\sum_{n \ge 0} b_n z^n \right) = \left(\frac{b_0}{z_3} + \frac{b_1}{z^2} + \frac{b_2}{z} \right) + \left(b_3 + b_4 z + \dots \right)$$

DEFINIZIONE 3.4.3. Sia $f \in \mathcal{O}(D)$ tale che $f(z_0)=0$. z_0 è uno zero di ordine m (m>0) se vale una delseguenti condizioni equivalenti:

1.
$$a_n = 0$$
, $n < m$, $a_m \ne 0$, ovvero $f(z) = (z - z_0)^m g(z) \cos g(z_0) \ne 0$
2. $f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0$ e $f^{(m)} \ne 0$

OSSERVAZIONE 3.4.2. Se f ha uno zero isolato di ordine m in z_0 , allora 1/f ha un polo di ordine m in z_0 e viceversa. Infatti, se

$$f(z) = (z - z_0)^m g(z)$$

con $g(z_0)\neq 0$, allora

$$\frac{1}{f(z)} = (z - z_0)^{-m} \frac{1}{g(z)}$$

DEFINIZIONE 3.4.4. $\Omega \subset \mathbb{C}$, $S \subset \Omega$ sottoinsieme discreto. Una funzione $f \in \mathcal{O}(\Omega \setminus S)$ tale che i punti di S siano poli per f, o singolarità eliminabili, si chiama *funzione meromorfa* su Ω .

DEFINIZIONE 3.4.5. z_0 è una *singolarità essenziale* di f se nello sviluppo di Laurent ci sono infiniti termini negativi.

ESEMPIO 3.4.4. Presa

$$f(z) = e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

Allora la funzione olomorfa su tutto C tolto lo 0

$$g(z) = e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} = \sum_{m=0}^{\infty} \frac{1}{(-m)!} z^m$$

Il punto 0 è una singolarità essenziale di $e^{\frac{1}{z}}$.

TEOREMA 3.4.1: Casorati-Weierstrass. Se z_0 è una singolarità essenziale di f e $f \in \mathcal{O}(D \setminus \{z_0\})$, allora $f(D \setminus \{z_0\})$

è un insieme denso in C.

DIMOSTRAZIONE. Supponiamo per assurdo che esista $\alpha \in \mathbb{C}$ tale che $|f(z) - \alpha| \ge \delta$ per ogni $z \in D \setminus \{z_0\}$. Allora la funzione

$$g(z) = \frac{1}{f(z) - \alpha}$$

è olomorfa in D tolto z_0 ed è limitata. Grazie a questo, z_0 è eliminabile per g(z). Dunque $g \in \mathcal{O}(D)$, ove per g si intende l'estensione di essa. Esistono $h(z_0) \neq 0$ olomorfa e $m \geq 0$ tali che

$$g(z)=(z-z_0)^m h(z)$$

Se m=0, cioè $g(z_0)\neq 0$, avremo che

$$f(z) - \alpha = \frac{1}{g(z)}$$

è olomorfa nell'intorno di z_0 , che è assurdo (z_0 sarebbe singolarità eliminabile per f). Se m>0, allora la funzione

$$\frac{1}{g(z)} = \frac{1}{(z-z_0)^m} \frac{1}{h(z)} = f(z) - \alpha$$

mi direbbe che f avrebbe un polo di ordine m. Dunque siamo giunti all'assurdo anche in questo caso.

COROLLARIO 3.4.1. Se $f \in \mathcal{O}(\mathbb{C})$, biunivoca, con $f^{-1} \in \mathcal{O}(\mathbb{C})$, allora f(z) = az + b

con a∈ \mathbb{C} \{0},b∈ \mathbb{C} .

DIMOSTRAZIONE. Supponiamo f(0)=0 (altrimenti si considera f-f(0)). Sia h(w)=f(1/w) che è ovviamente olomorfa in $\mathbb{C}\setminus\{0\}$. Vogliamo studiare che tipo di singolarità si ha in 0; in particolare, vogliamo verificare che w=0 non è singolarità essenziale di h. Per ipotesi, f^{-1} è continua, ovvero f è aperta. Sia δ un numero positivo e consideriamo $f(B_0(1/\delta))\supseteq \overline{B_0(c)}$. Si noti che se $|z|\ge 1/\delta$, allora |f(z)|>c. Dunque |h(w)|>c se $|w|=1/|z|\le \delta$. Dunque $h(B_0(\delta)\setminus\{0\})$ non è denso in $\mathbb C$ poichè 0 non soddisfa la condizione. Dunque h non ha singolarità essenziale in 0.

Possiamo scrivere che $f(z) = \sum_{n=1}^{\infty} a_n z^n$; allora $h(w) = \sum_{n=1}^{\infty} a_n w^{-n}$. Dato che h non ha singolarità essenziale in 0, esiste N tale che $a_n = 0$ per $n \ge N$. Quindi f(z) è un polinomio e, poiché f biunivoca, ha unica radice in z = 0. Dunque $f(z) = az^n$; se n fosse maggiore a 1, allora f non sarebbe iniettiva. Perciò n = 1 e f(z) = az (essendo f biunivoca, $a \ne 0$).

RESIDUI

4.1. Teorema dei residui

DEFINIZIONE 4.1.1. Sia $f \in \mathcal{O}(D \setminus \{z_0\})$. Allora posso scrivere data funzione con la serie di Laurent

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

 $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ Definiamo $a_{-1} = : Res_{z_0}(f)$ come il *residuo* di f in z_0 . Si ricordi che

$$a_{-1} = \frac{1}{2\pi i} \int_{Y} f(w) dw$$

ove γ è una circonferenza centrata in z_0 e contenuta in D.

TEOREMA 4.1.1: Dei residui. Siano $\Omega \subset \mathbb{C}$ e $f \in \mathcal{O}(\Omega \setminus \{z_1, ..., z_n\})$ con $z_1, ..., z_n \in \Omega$. Sia γ una catena in Ω tale che $\gamma \sim_{\Omega} 0$ con $z_i \notin supp(\gamma)$ per ogni i. Allora

$$\int_{\mathcal{Y}} f(z) dz = 2\pi i \sum_{i=1}^{n} Ind_{\mathcal{Y}}(z_i) Res_{z_i}(f)$$

DIMOSTRAZIONE. Sappiamo che, dalla dimostrazione del teorema di Cauchy,

$$\gamma \sim_{\Omega'} \sum_{i=1}^{n} Ind_{\gamma}(z_{i}) \gamma_{i}$$

ove $\Omega' = \Omega \setminus \{z_1, ..., z_n\}$. Allora

$$\int_{Y} f(z) dz = \sum_{i=1}^{n} Ind_{Y}(z_{i}) \int_{Y_{i}} f(z) dz = \sum_{i=1}^{n} Ind_{Y}(z_{i}) 2\pi i Res_{z_{i}}(f)$$

DEFINIZIONE 4.1.2. Un *intorno di* ∞ è un aperto di \mathbb{C} contenente il complementare di un disco chiuso.

DEFINIZIONE 4.1.3. Se f è olomorfa su un intorno di ∞ , f(1/w)=:g(w) è olomorfa in un intorno di 0. Si dice che f ha una *singolarità eliminabile, un polo o una singolarità essenziale in* ∞ se g ha lo stesso tipo di singolarità in 0.

DEFINIZIONE 4.1.4. Siano $f \in \mathcal{O}(\Omega)$ con Ω intorno di ∞ e g(w) = f(1/w) (olomorfa su $D \setminus \{0\}$). Allora,

$$Res_{\infty}(f) = Res_0 \left(-\frac{g(w)}{w^2} \right)$$

PROPOSIZIONE 4.1.1. Se γ è una circonferenza con $supp(\gamma) \subset \Omega$ e centro 0, allora

$$Res_{\infty}(f) = \frac{-1}{2\pi i} \int_{Y} f(z) dz$$

DIMOSTRAZIONE. Sia $\gamma(t) = Re^{it}$ con $t \in [0,2\pi]$. Allora

$$\int_{\mathcal{Y}} f(z) dz = \int_{0}^{2\pi} f \circ \gamma(t) \gamma'(t) dt = -\int_{0}^{2\pi} f \circ \gamma(t) \left(\frac{-\gamma(t)}{\gamma(t)^{2}} \right) \gamma(t)^{2} dt$$

Sia
$$\bar{\gamma}(t)$$
:=1/ $\gamma(t)$ =(1/ R) e^{-it} con $t \in [0,2\pi]$. Allora
$$\int_{\gamma} f(z) dz = -\int_{0}^{2\pi} f\left(\frac{1}{\bar{\gamma}(t)}\right) \bar{\gamma}'(t) \frac{1}{\bar{\gamma}(t)^{2}} dt = -\int_{0}^{2\pi} \frac{g(\bar{\gamma}(t))}{\bar{\gamma}(t)^{2}} \bar{\gamma}'(t) dt = \\
= -\int_{-\bar{\gamma}} \left(\frac{-g(w)}{w^{2}}\right) dw = -2\pi i \operatorname{Res}_{0}\left(\frac{-g(w)}{w^{2}}\right) = -2\pi i \operatorname{Res}_{\infty}(f)$$

Grazie alla proposizione appena provata, ed al teorema dei residui, si ottiene il seguente risultato.

COROLLARIO 4.1.1. Sia $f \in \mathcal{O}(\mathbb{C} \setminus \{z_1, ..., z_n\})$ e sia γ circonferenza centrata in 0 che include $z_1, ..., z_n$ che non appartengono al $supp(\gamma)$. Allora

$$Res_{\infty}(f) + \sum_{i=1}^{n} Res_{z_i}(f) = 0$$

4.2. Calcolo dei residui

PROPOSIZIONE 4.2.1. Se f ha un polo semplice (m=1) in z_0 e g è olomorfa nell'intorno di z_0 , allora

$$Res_{z_0}(fg) = (Res_{z_0}(f))g(z_0)$$

DIMOSTRAZIONE. Presa una certa h olomorfa, per ipotesi vale che

$$f(z) = \frac{a_{-1}}{z - z_0} + h(z)$$

Inoltre,

$$g(z) = g(z_0) + \sum_{n=1}^{\infty} b_n (z - z_0)^n$$

Per cui, per una certa *l* olomorfa, vale

$$f(z)g(z) = \frac{a_{-1}}{z - z_0}g(z_0) + l(z)$$

Dunque $Res_{z_0}(fg) = a_{-1}g(z_0)$.

ESEMPIO 4.2.1. Vogliamo calcolare $\mathit{Res}_{\scriptscriptstyle 1}(f)$ con

$$f(z) = \frac{z^2}{z^2 - 1} = \left(\frac{z^2}{z + 1}\right) \frac{1}{z - 1}$$

Grazie a proposizione 4.2.1, $Res_1(f)=1\cdot 1/(1+1)=1/2$. Calcoliamo ora $Res_{-1}(f)$:

$$Res_{-1}(f) = \left(\frac{z^2}{z-1}\right)|_{z=-1} Res_{-1}\left(\frac{1}{z+1}\right) = -\frac{1}{2}$$

Dunque, per corollario 4.1.1 si vede che $\mathit{Res}_{\scriptscriptstyle\infty}(f) = 0$. Vediamolo coi calcoli:

$$Res_{\infty}(f) = Res_{0} \left(\frac{-1/w^{2}}{1/w^{2} - 1} \frac{1}{w^{2}} \right) = Res_{0} \left(\frac{w^{2}}{w^{2} - 1} \right) = 0$$

COROLLARIO 4.2.1. Se f ha uno zero semplice all'infinito, cioè g(w)=f(1/w) ha uno zero semplice in 0, allora (nelle ipotesi di f olomorfa su un intorno di ∞)

$$Res_{\infty}(f) = -\lim_{z \to \infty} z f(z)$$

DIMOSTRAZIONE. Per ipotesi, $g(w)=a_1w+...=wh(w)$ con $a_1\neq 0$ ed h olomorfa con $h(0)\neq 0$.

$$Res_{\infty}(f) = Res_{0}\left(-\frac{g(w)}{w^{2}}\right) = Res_{0}\left(-\frac{h(w)}{w}\right) = Res_{0}\left(-\frac{1}{w}\right)h(0) = -h(0) = -\lim_{w \to 0} \frac{g(w)}{w} = -\lim_{z \to \infty} zf(z)$$

PROPOSIZIONE 4.2.2. Sia f olomorfa vicino a z_0 con z_0 zero semplice di f. Allora 1/f ha un polo semplice in z_0 con

$$\operatorname{Res}_{z_0}\left(\frac{1}{f}\right) = \frac{1}{f'(z_0)}$$

DIMOSTRAZIONE. $f(z)=(z-z_0)h(z)$, con h olomorfa tale che $h(z_0)\neq 0$. Ovviamente, $f'(z_0)=h(z_0)$, che è diverso da 0. Per ogni $z\neq z_0$,

$$\frac{1}{f(z)} = \frac{1}{z - z_0} \frac{1}{h(z)}$$

ove 1/h(z) è olomorfa vicino a z_0 . Allora

$$Res_{z_0} \left(\frac{1}{f} \right) = Res_{z_0} \left(\frac{1}{(z - z_0)} \right) \frac{1}{h(z_0)} = \frac{1}{f'(z_0)}$$

ESEMPIO 4.2.2. Sia $h(z)=1/\sin z$. Il seno in 0 ha uno zero semplice; infatti sin ' $z=\cos z$ ed il coseno è diverso da 0 per z=0. Dunque

$$Res_0(h(z)) = \frac{1}{(\cos z)_{z=0}} = 1$$

PROPOSIZIONE 4.2.3. Supponiamo che f abbia un polo di ordine m in $z_{\scriptscriptstyle 0}$. Allora

$$Res_{z_0} = \frac{1}{(m-1)!} \lim_{z \to z_0} \left[\left((z - z_0)^m f(z) \right)^{(m-1)} \right]$$

OSSERVAZIONE 4.2.1. Se m=1,

$$Res_{z_0}(f) = \lim_{z \to z_0} (z - z_0) f(z)$$

Se invece m=2,

$$Res_{z_0}(f) = \lim_{z \to z_0} [((z - z_0)^2 f(z))']$$

DIMOSTRAZIONE di proposizione 4.2.3. Per ipotesi, $f(z)=(z-z_0)^{-m}g(z)$ con g olomorfa vicino a z_0 . Dunque,

$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n, b_n = \frac{g^{(n)}(z_0)}{n!}$$

Per cui

$$f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^{n-m}$$

Da quanto appena scritto, si ricava

$$Res_{z_0}(f) = a_{-1} = b_{m-1} = \frac{g^{(m-1)}(z_0)}{(m-1)!}$$

Abbiamo quindi provato la tesi.

ESEMPIO 4.2.3. Consideriamo

$$h(z) = \frac{z^2}{(z+1)(z-1)^2}$$

Consideriamo z=1 polo doppio. Usando quanto appena provato, si ottiene

$$Res_1(h) = \lim_{z \to z_0} \left(\frac{z^2}{z+1} \right)' = \frac{2z(z+1) - z^2}{(z+1)^2} |_{z=1} = \frac{3}{4}$$

4.3. Applicazione agli integrali impropri

APPLICAZIONE 4.3.1. Sia f(x) una funzione integrale di cui vogliamo calcolare

$$\int_{-\infty}^{\infty} f(x) dx$$

Supponiamo che f sia la restrizione alla retta reale di una funzione f(z) olomorfa in un intorno di

$$S := \{z \in \mathbb{C} \mid \Im z \ge 0\}$$

eccetto in un numero (finito) di poli $z_1, ..., z_n \in S$. Supponiamo inoltre che

$$|f(z)| \leq \frac{K}{|z|^{1+a}}$$

per $|z| \rightarrow +\infty$ con a > 0. Allora

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{i=0}^{n} Res_{z_{i}}(f)$$

Si osservi che, fissati a<0 e b>0, gli integrali

$$\int_{-\infty}^{a} f(x) dx, \quad \int_{b}^{\infty} f(x) dx$$

sono convergenti perché $\left| f(x) \right| \le K/|x|^{1+a}$. Dunque esiste

$$\lim_{R \to +\infty} \int_{-R}^{R} f(x) dx = \int_{-\infty}^{\infty} f(x) dx$$

Consideriamo la curva che va da -R a R e poi ricollega R a -R con una semicirconferenza che contiene i punti z_i quando R è sufficientemente grande. Chiamiamo la semicirconferenza Γ_R e la parametrizzazione di [-R,R] come $\chi(x)$. Allora

$$\int_{-R}^{R} f(x) dx + \int_{\Gamma_{R}} f(z) dz = 2\pi i \sum_{i=1}^{n} Res_{z_{i}}(f)$$

Inoltre, per $R \rightarrow +\infty$, si ha

$$\left| \int_{\Gamma_{-}} f(z) dz \right| \leq \frac{K}{R^{1+a}} (\pi R) = \frac{K \pi}{R^{a}} \to 0$$

Quindi vale quanto affermato sopra.

ESEMPIO 4.3.1. Si consideri l'integrale

$$\int_{0}^{\infty} \frac{1}{(1+x^{2})^{2}} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(1+x^{2})^{2}} dx$$

Prendiamo $f(z)=1/(1+z^2)^2$. z=i è l'unico polo in $\{\Im z>0\}$. Dunque

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \operatorname{Res}_{i}(f)$$

Potendo scrivere

$$f(z) = \frac{1}{(z-i)^2} \frac{1}{(z+i)^2}$$

ove $1/(z+i)^2$ è ovviamente olomorfa in $\{\Im\,z>0\}$. Il polo è di ordine 2 e quindi per proposizione 4.2.3, si ha

$$Res_{i}(f) = \lim_{z \to i} ((z - i)^{2} f(z))' = \lim_{z \to i} \left(\frac{1}{(z + i)^{2}} \right)' = \frac{-2}{(z + i)^{3}} |_{z = i} = \frac{-2}{(2i)^{3}} = \frac{-2}{(-8i)} = \frac{1}{4i}$$

Da cui

$$\int_{0}^{\infty} \frac{1}{(1+x^{2})^{2}} dx = \frac{1}{2} 2\pi i \frac{1}{4i} = \frac{\pi}{4}$$

APPLICAZIONE 4.3.2. Sia f(x) con le stesse ipotesi precedenti (applicazione 4.3.1) ma con l'ipotesi

$$|f(z)| \leq \frac{K}{|z|}$$

per $|z| \rightarrow \infty$. Allora

$$\int_{-\infty}^{\infty} f(x)e^{ix}dx = 2\pi i \sum_{i=1}^{n} Res_{z_{i}}(f(z)e^{iz})$$

Se l'integrale di f esiste, poiché e^{ix} ha modulo 1, esiste anche l'integrale scritto qui sopra. Consideriamo A, B>0 ed il quadrato di vertici -B, A, A+iT, -B+iT parametrizzato in senso antiorario, ove T=A+B. Questo quadrato verrà denominato con Q. Sul lato superiore L^+ , presa $\gamma(x)=-x+iT$,

$$\left| \int_{L^{+}} f(z) e^{iz} dz \right| = \left| \int_{-A}^{B} f(-x + it) e^{-T - ix} dx \right| \le \frac{K}{T} e^{-T} T = K e^{-T} \stackrel{T \to \infty}{\longrightarrow} 0$$

Sul lato L_A , ed analogamente su L_B (lati verticali di Q), usando la parametrizzazione $\gamma(y) = A + iy$, si ha

$$\left| \int_{L_{A}} f(z) e^{iz} dz \right| = \left| \int_{0}^{T} f(A + iy) e^{-y + iA} i dy \right| \le \frac{K}{A} \int_{0}^{T} e^{-y} dy = \frac{K}{A} (-e^{-y})_{0}^{T} = \frac{K}{A} (1 - e^{-T})^{A,B \to \infty} 0$$

Perciò, quando $A, B \rightarrow \infty$,

$$\int_{-\infty}^{\infty} f(x)e^{ix} dx = 2\pi i \sum_{i=1}^{n} Res_{z_{i}}(f(z)e^{iz})$$

ESEMPIO 4.3.2. Voglio calcolare

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx =: I$$

Considero $f(z)=1/(1+z^2)$; allora

$$\Re\left(\frac{e^{iz}}{1+z^2}\right) = \frac{\cos x}{1+x^2}$$

Dunque $I = \Re \int_{-\infty}^{+\infty} f(x)e^{ix}dz = \Re (2\pi i Res_i(f(z)e^{iz}))$. Calcoliamo il residuo:

$$Res_i \left(\frac{e^{iz}}{1+z^2} \right) = \left(\frac{e^{iz}}{i+z} \right) |_{z=i} = \frac{e^{-1}}{2i}$$

Dunque

$$I = \Re\left(2\pi i \frac{e^{-1}}{2i}\right) = \frac{\pi}{e}$$

ESEMPIO 4.3.3. Un argomento molto legato a quanto stiamo facendo è quello che tratta le *trasformate di* Fourier, le quali, presa $f : \mathbb{R} \to \mathbb{R}$, hanno la forma

$$\hat{f}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{itx} dx$$

Con quanto visto, si può provare che se $\Phi(x)$ è la distribuzione normale, ovvero vale

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
,

allora

$$\hat{\Phi}(t) = \Phi(t)$$

Consideriamo a,b,t>0 costanti ed il rettangolo di vertici -a,b,b+it,-a+it. Sappiamo che

$$\hat{\Phi}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} e^{-\frac{x^2}{2}} dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\frac{-(x+it)^2}{2}} e^{-\frac{t^2}{2}} dx = \frac{e^{\frac{-t^2}{2}}}{2\pi} \int_{-\infty}^{\infty} e^{\frac{-(x+it)^2}{2}} dx$$

Considerato z=x+it, $f(z)=e^{-z^2/2}$, possiamo concludere.

ESEMPIO 4.3.4. Vogliamo calcolare

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$

La funzione complessa che prendiamo è $g(z)=e^{iz}/z$, che ha un polo semplice in 0. Consideriamo una semicirconferenza con centro l'origine e raggio ϵ ; consideriamo quindi il cammino lungo il quadrato Q di applicazione 4.3.2 ove fra $-\epsilon$, ϵ consideriamo la semicirconferenza detta sopra anziché il segmento reale $[-\epsilon$, $\epsilon]$ di modo da non considerare direttamente il polo. Chiamiamo questo nuovo cammino Q_{ϵ} . Vale il seguente risultato, che può tornare utile per questo esempio.

LEMMA 4.3.1: Di Jordan. Sia Ω aperto, $f \in \mathcal{O}(\Omega \setminus [z_0])$ tale che $\overline{B_{z_0}(\delta)} \subset \Omega$. Supponiamo che esista finito il limite

$$\lim_{z\to z_0}(z-z_0)f(z)=b$$

 $(z_0$ è un polo semplice o una singolarità eliminabile). Allora, chiamato $\gamma \tau$ l'arco di raggio τ che va dall'angolo θ_1 all'angolo θ_2 ,

$$\lim_{\tau \to 0} \int_{\gamma\tau} f(z) dz = i(\theta_2 - \theta_1) b$$

DIMOSTRAZIONE. f(z)=b/z+g(z) con g olomorfa in z_0 , che assumeremo uguale a 0 per semplicità. Dunque

$$\int_{\gamma\tau} f(z) dz = \int_{\gamma\tau} \frac{b}{z} dz + \int_{\gamma\tau} g(z) dz = \int_{\theta}^{\theta_2} \frac{b}{\tau e^{i\theta}} \tau i e^{i\theta} d\theta + \int_{\gamma\tau} g(z) dz = ib(\theta_2 - \theta_1) + \int_{\gamma\tau} g(z) dz$$

Dato che vale

$$\left| \int_{\gamma \tau} g(z) dz \right| \leq \max_{z \in \gamma \tau} |g(z)| \tau (\theta_2 - \theta_1) \stackrel{\tau \to 0}{\to} 0,$$

concludo.

Torniamo ora all'esempio 4.3.4. Chiamiamo γ_{ϵ} la semicirconferenza detta prima e sia T = A + B;

$$0 = \int_{\partial Q_{\epsilon}} \frac{e^{iz}}{z} dz = \int_{-B}^{-\epsilon} \frac{e^{iz}}{z} dz = \int_{\gamma_{\epsilon}} \frac{e^{iz}}{z} dz + \int_{\epsilon}^{A} \frac{e^{iz}}{z} dz + \int_{A}^{A+iT} \frac{e^{iz}}{z} dz + \int_{A+iT}^{-B+iT} \frac{e^{iz}}{z} dz + \int_{-B+iT}^{-B} \frac{e^{iz}}{z} dz$$

Quando facciamo tendere A, B a più infinito, ottengo

$$0 = \int_{-\infty}^{-\epsilon} \frac{\cos x + i \sin x}{x} dx + \int_{x} \frac{e^{iz}}{z} dz + \int_{\epsilon}^{\infty} \frac{\cos x + i \sin x}{x} dx + 0$$

per ogni $\epsilon > 0$. Si noti che $\cos x/x$ è una funzione dispari; quindi quanto appena scritto può essere riscritto così:

$$0 = i \int_{-\infty}^{\epsilon} \frac{\sin x}{x} dx + \int_{x} \frac{e^{iz}}{z} dz + i \int_{\epsilon}^{\infty} \frac{\sin x}{x} dx$$

Facendo il limite per $\epsilon \rightarrow 0$, per il lemma di Jordan (attenzione: $\theta_1 = \pi, \theta_2 = 0$), si ottiene

$$0 = i \int_{-\infty}^{\infty} \frac{\sin x}{x} dx + i(-\pi) \cdot 1$$

Per cui ricaviamo

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$$

APPLICAZIONE 4.3.3. Consideriamo gli integrali su $[0,2\pi]$ di funzioni trigonometriche. Sia

$$Q(x,y) = \frac{g(x,y)}{h(x,y)}$$

ove $g,h\in\mathbb{R}[x,y]$ con $h\neq 0$ su $\{x^2+y^2=1\}$. Una Q(x,y) così definita è detta *funzione razionale*. Vogliamo considerare in particolare $Q(\cos\theta,\sin\theta)$ su $S^1=\{z\in\mathbb{C}\mid |z|=1\}$, ove $z=e^{i\theta}=\cos\theta+i\sin\theta$. Se ne ricava

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z - z^{-1}}{2i}, \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + z^{-1}}{2}$$

Quindi prendiamo

$$f(z) = \frac{1}{iz} Q\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right)$$

che appartiene a $\mathcal{M}(\mathbb{C})$, ovvero è meromorfa. Applichiamo il teorema dei residui sulla circonferenza unitaria:

$$\int_{y=\partial B_0(1)} f(z) dz = 2 \pi i \sum_{i=0}^{n} Res_{z_i}(f)$$

ove $\{z_i\}$ sono i poli di f in $B_0(1)$. D'altra parte,

$$\int_{\mathcal{Y}} f(z) dz = \int_{0}^{2\pi} \frac{Q(\cos\theta, \sin\theta)}{i e^{i\theta}} i e^{i\theta} d\theta = \int_{0}^{2\pi} Q(\cos\theta, \sin\theta) d\theta$$

Dunque possiamo usare la formula

$$\int_{0}^{2\pi} Q(\cos\theta, \sin\theta) d\theta = 2\pi i \sum_{i=0}^{n} Res_{z_{i}}(f)$$

ESEMPIO 4.3.5. Calcoliamo

$$\int_{0}^{2\pi} \frac{d\theta}{3-\cos\theta}$$

Per farlo, dobbiamo prendere

$$f(z) = \frac{1}{iz} \frac{1}{3 - \frac{z + z^{-1}}{2}} = \frac{2}{iz\left(6 - z - \frac{1}{z}\right)} = \frac{2}{i(6z - z^2 - 1)} = \frac{2i}{z^2 - 6z + 1}$$

I poli sono $z_{1,2}=3\pm2\sqrt{2}$. Ci interessa solo il polo $z_1=3-2\sqrt{2}\in B_0(1)$. Allora

$$Res_{z_1}(f) = Res_{z_1}\left(\frac{2i}{z-z_1}\right) \cdot \left(\frac{1}{z-z_2}\right)|_{z=z_1} = 2i\frac{1}{z_1-z_2} = 2\frac{i}{-4\sqrt{2}} = -\frac{i}{2\sqrt{2}}$$

Da cui otteniamo che

$$\int_{0}^{2\pi} \frac{d\theta}{3 - \cos\theta} = 2\pi i \left(-\frac{i}{2\sqrt{2}} \right) = \frac{\pi}{\sqrt{2}}$$

ZERI DI FUNZIONI OLOMORFE

5.1. Principio di identità

TEOREMA 5.1.1. Siano $\Omega \subset \mathbb{C}$ aperto connesso, $f \in \mathcal{O}(\Omega)$ non identicamente nulla. Consideriamo $Z(f) = \{z \in \Omega \mid f(z) = 0\}$

Allora Z(f) non ha punti di accumulazione in Ω .

COROLLARIO 5.1.1: Principio di identità. Se f, $g \in \mathcal{O}(\Omega)$ sono tali che $f|_S = g|_S$ con S insieme con (almeno) un punto di accumulazione in Ω , allora $f \equiv g$.

DIMOSTRAZIONE di teorema 5.1.1. Supponiamo $Z(f) \neq \emptyset$. Sia $z_0 \in Z(f)$. Allora, per un certo m > 0, $f(z) = (z - z_0)^m g(z)$

con g olomorfa vicino a z_0 e $g(z_0)\neq 0$. Per continuità, $g(z)\neq 0$ in un intorno di z_0 . Dunque z_0 è uno zero isolato di f.

Sia A l'insieme dei punti di accumulazione di Z(f) in Ω . Ovviamente $A \subset Z(f)$, infatti se $Z(f) \ni z_n \to z$, allora $z \in A$ ed essendo limite di una successione di elementi di Z(f), f(z) = 0 e quindi $z \in Z(f)$. Ne ricavo che gli elementi di A sono gli zeri di f non isolati.

A è aperto: se z_1 è uno zero non isolato di f, allora f è identicamente nulla in un intorno di z_1 , che è quindi un intorno contenuto in A.

A chiuso: sia $z_n \in A$, $z_n \to z_0$. Allora $f(z_n) = 0$, quindi $f(z_0) = 0$. Allora z_0 è zero non isolato di f; $z_0 \in A$. Dato che Ω è connesso, o $A = \Omega$ o $A = \emptyset$. Dato che se $A = \Omega$, allora $f \equiv 0$, che non vale per ipotesi. Ricaviamo la tesi: $A = \emptyset$.

COROLLARIO 5.1.2. Sia $f \in \mathcal{O}(\Omega)$ non identicamente nulla. Allora

$$\frac{1}{f} \in \mathcal{M}(\Omega)$$

Analogamente, se f, $g \in \mathcal{O}(\Omega)$, allora $f/g \in \mathcal{M}(\Omega)$.

DEFINIZIONE 5.1.1. Siano $f \in \mathcal{M}(\Omega)$ e $z_0 \in \Omega$. Allora possiamo considerare $f(z) = (z - z_0)^m g(z)$ con g(z) olomorfa in un intorno di z_0 , $g(z_0) \neq 0$ e $m \in \mathbb{Z}$. Il numero

$$ord_{z_0}(f) := m$$

è l'ordine di f in z_0 .

5.2. Principio dell'argomento

TEOREMA 5.2.1: Principio dell'argomento. Consideriamo $\Omega \subset \mathbb{C}$, $f \in \mathcal{M}(\Omega)$, γ catena tale che $\gamma \sim_{\Omega} 0$. Se gli zeri e i poli di $f \in \Omega$, indicati con $\{z_i\}_{i=1,\dots,n}$, non appartengono al supporto di γ ($supp(\gamma)$), allora

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{i=1}^{n} Ind_{z_{i}}(\gamma) ord_{z_{i}}(f)$$

OSSERVAZIONE 5.2.1. Presa $\gamma:[a,b] \rightarrow \mathbb{C}$ curva chiusa, vale che

$$Ind_{\gamma}(0) = \frac{1}{2\pi i} \int_{\gamma}^{b} \frac{dw}{w} = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt = \frac{1}{2\pi i} \int_{a}^{b} (\text{Log}(\gamma(t)))' dt = \frac{1}{2\pi i} [\text{Log}(\gamma(t)) - \text{Log}(\gamma(t))] = \frac{1}{2\pi i} i [\text{arg}(\gamma(t)) - \text{arg}(\gamma(t))] = \frac{1}{2\pi i} \int_{a}^{b} \frac{\Delta arg(w)}{a} dt = \frac{1}{2\pi i} \int_{a}^{b} \frac{\Delta$$

Per l'integrale in teorema 5.2.1, avremo quindi che

$$Ind_{f \circ y}(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz = \frac{1}{2\pi} \int_{w \in f \circ y} \Delta \arg w$$

Da qui viene il nome del teorema.

DIMOSTRAZIONE. Mostriamo che $Res_{z_i}(f'/f) = ord_{z_i}(f)$. Anzitutto, $f'/f \in \mathcal{M}(\Omega)$; in particolare, vale $f'/f \in \mathcal{O}(\Omega')$ ove $\Omega' = \Omega \setminus \{z_1, ..., z_n\}$. Vicino a z_i , $f(z) = (z - z_i)^m g(z)$, con $m = ord_{z_i}(f)$, $g(z_i) \neq 0$, g olomorfa vicino a z_i . $f'(z) = m(z - z_i)^{m-1} g(z) + (z - z_i)^m g'(z)$. Per cui

$$\frac{f'(z)}{f(z)} = \frac{m}{z - z_i} + \frac{g'(z)}{g(z)}$$

con g'/g olomorfa vicino a z_i , ovviamente. Da questo, si ottiene che $Res_{z_i}(f'/f) = m$. Usiamo il teorema dei residui applicato a f'/f:

$$\int_{\mathcal{Y}} \frac{f'}{f} dz = 2 \pi i \sum_{i} \operatorname{Ind}_{\mathcal{Y}}(z_{i}) \operatorname{Res}_{z_{i}} \left(\frac{f'}{f} \right) = 2 \pi i \sum_{i} \operatorname{Ind}_{\mathcal{Y}}(z_{i}) \operatorname{ord}_{z_{i}}(f)$$

COROLLARIO 5.2.1. Sia $\Omega \subset \mathbb{C}$ aperto e γ una curva chiusa semplice in Ω tale che il suo interno sia contenuto in Ω . Supponiamo che $f \in \mathcal{M}(\Omega)$ abbia zeri e poli non appartenenti al supporto di γ . Allora

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N_0 - N_{\infty}$$

ove con N_0 e N_∞ indico il numero con molteplicità degli zeri e dei poli rispettivamente contenuti nell'interno di γ .

ESEMPIO 5.2.1. Prendiamo $f(z)=1/z^2$ con $\gamma(t)=e^{2\pi it}$ per $t \in [0,1]$. Allora con $f \circ \gamma(t)=e^{-4\pi it}$ percorro due volte la circonferenza in senso orario. La variazione totale dell'argomento è quindi

$$\Delta_{f \circ y} arg w = -4\pi$$

Inoltre,

$$\int_{Y} \frac{f'}{f} dz = \int_{Y} \left(\frac{-2}{z^{3}} \right) z^{2} dz = -2 \int_{Y} \frac{dz}{z} = -2 \cdot 2 \pi i = -4 \pi i$$

Abbiamo ottenuto quanto ci aspettavamo per osservazione 5.2.1. Anche il corollario 5.2.1 dà lo stesso risultato.

5.3. Teorema di Rouché

TEOREMA 5.3.1. Sia γ una curva chiusa semplice in $\Omega \subset \mathbb{C}$ con l'interno di γ contenuto in Ω . Siano f, g olomorfe in Ω tali che |f(z)-g(z)| < |f(z)| per ogni $z \in supp(\gamma)$. Allora $f \in g$ hanno lo stesso numero (con molteplicità) di zeri nell'interno di γ .

(Se valgono queste condizioni, $f \in g$ non si annullano sul supporto di γ).

DIMOSTRAZIONE. Sia $F(z)=g(z)/f(z)\in\mathcal{M}(\Omega)$. La disuguaglianza nell'enunciato ci dice che

$$|F(z)-1| = \left| \frac{g(z)}{f(z)} - 1 \right| = \left| \frac{g(z)-f(z)}{f(z)} \right| < 1$$

per ogni $z \in supp(\gamma)$. Perciò $F \circ \gamma$ è all'interno del disco centrato in 1 di raggio 1. Quindi $Ind_{F \circ \gamma}(0) = 0$ (0 sta nella componente illimitata di $\mathbb{C} \setminus supp(F \circ \gamma)$). Supponendo che $\gamma:[a,b] \to \mathbb{C}$,

$$0=2\pi i \operatorname{Ind}_{F\circ \gamma}(0)=\int_{F\circ \gamma}\frac{dw}{w}=\int_{a}^{b}\frac{F'(\gamma(t))}{F(\gamma(t))}\gamma'(t)dt=\int_{\gamma}\frac{F'(z)}{F(z)}dz$$

Calcoliamo la quantità integrata:

$$\frac{F'(z)}{F(z)} = \frac{g'f - gf'}{f^2} \frac{f}{g} = \frac{g'}{g} - \frac{f'}{f}$$

Perciò

$$0 = \int_{Y} \frac{F'(z)}{F(z)} dz = \int_{Y} \frac{g'(z)}{g(z)} dz - \int_{Y} \frac{f'(z)}{f(z)} dz = 2\pi i (N_0(g) - N_0(f))$$

Da qui la tesi.

ESEMPIO 5.3.1. Sia $p(z)=z^8-5z^3+z-2$. Voglio prendere il monomio che pesa di più nell'insieme dove mi trovo, che in questo caso è il disco centrato nell'origine di raggio unitario. Prendo $f(z)=-5z^3$:

$$|p(z)-f(z)|=|z^8+z-2| \le |z^8|+|z|+|-2|=4 < |f(z)|=5$$

Dunque p e f hanno lo stesso numero di zeri in $\{|z|<1\}$. Quindi p ha esattamente tre zeri in $\{|z|<1\}$. Chiamiamo $h(z)=z^8$. Vogliamo applicare Rouché con questa scelta. Per |z|=2,

$$|p(z)-h(z)| = |-5z^3+z-2| \le 5 \cdot 2^3+2+2=44 < |h(z)| = 256$$

Da questo, ricavo che p(z) ha tutti gli zeri, che sono 8 in $\{|z|<2\}$. Dai due calcoli, noto che p ha 5 zeri nella corona $\{1<|z|<2\}$.

OSSERVAZIONE 5.3.1. Il teorema di Rouché vale anche con la maggiorazione $|f(z)-g(z)| \le |f(z)|$ per ogni $z \in supp(\gamma)$ e $g(z) \ne 0$ per ogni $z \in supp(\gamma)$.

In questo caso nella dimostrazione ottengo $|F(z)-1| \le 1$, quindi γ può toccare la circonferenza; ma se così fosse avrei F(z)=0 per qualche $z \in supp(\gamma)$ e smentirei il fatto che $g(z) \ne 0$. Vale perciò la dimostrazione precedente.

ESEMPIO 5.3.2. Sia
$$g(z)=4z^5-z^3+z^2-2$$
. Prendo come $y:|z|=1$ e $f(z)=4z^5$. $|g(z)-f(z)|=|-z^3+z^2-2| \le 4=|f(z)|$

Dunque, se g(z) non si annulla su |z|=1, allora g(z) ha 5 (tutti) zeri in |z|<1. Prendiamo ora $B_0(1+\epsilon)$ e rifacciamo la stessa stima:

$$|g(z)-f(z)| \leq |-z^3| + |z^2| + |-2| = (1+\epsilon)^3 + (1+\epsilon)^2 + 2 < (1+\epsilon)^5 + (1+\epsilon)^5 + 2(1+\epsilon)^5 = 4(1+\epsilon)^5 = |f(z)|$$
 Dunque $g(z)$ ha 5 zeri in $B_0(1+\epsilon)$. Per l'arbitrarietà di ϵ , dati zeri sono in $\overline{B_0(1)}$.

ESEMPIO 5.3.3. Sia $g(z)=z^3-1$. Prendiamo $f(z)=z^3$. Allora, se |z|=1,

$$|g(z)-f(z)|=1\leq |f(z)|$$

Con lo stesso ragionamento di esempio 5.3.2, g ha tre zeri in $\overline{B_0(1)}$. Si osservi che in questo caso i 3 zeri sono proprio su $\partial B_0(1)$.

5.4. Comportamento locale e applicazioni

TEOREMA 5.4.1. Siano $\Omega \subset \mathbb{C}$ aperto, $f \in \mathcal{O}(\mathbb{C})$ e $z_0 \in \Omega$ tale che $ord_{z_0}(f) = m > 0$ (zero di ordine m). Per ogni $\epsilon > 0$ sufficientemente piccolo, esiste $\delta > 0$ tale che per ogni $w_0 \in B_0(\delta)$ l'equazione $f(z) = w_0$ ha m soluzioni in $B_{z_0}(\epsilon)$ (esse sono distinte se $w_0 \neq 0$).

DIMOSTRAZIONE. Scegliamo $\epsilon > 0$ tale che $B_{z_0}(\epsilon) \subset \Omega$, $f \neq 0$ su $\overline{B_{z_0}(\epsilon)} \setminus \{z_0\}$ e $f' \neq 0$ su $\overline{B_{z_0}(\epsilon)} \setminus \{z_0\}$. Sia $\delta = \min_{|z-z_0|=\epsilon} |f|$. Preso $|w_0| < \delta$ e considerata la funzione $g(z) = f(z) - w_0$, si ha

$$|f(z)-g(z)| = |w_0| < \delta \le |f(z)|$$

per ogni $z \in \partial B_{z_0}(\epsilon)$. Per Rouché, $f \in g$ hanno lo stesso numero di zeri in $B_{z_0}(\epsilon)$. Da questo, g ha m zeri in $B_{z_0}(\epsilon)$, ovvero $f(z) = w_0$ ha m soluzioni. Inoltre, $g' = f' \neq 0$ su $\overline{B_{z_0}(\epsilon)} \setminus \{z_0\}$: dunque gli zeri di g sono tutti semplici (se $w_0 \neq 0$), perciò le m soluzioni di $f(z) = w_0$ sono distinte.

COROLLARIO 5.4.1. Siano f olomorfa su Ω non costante e $z_0 \in \Omega$. Supponiamo che $f(z_0) = \alpha$ e $ord_{z_0}(f-\alpha) = m(>0)$

Allora per ogni $\epsilon > 0$ piccolo, esiste $\delta > 0$ tale che per ogni $w_0 \in B_{\alpha}(\delta)$ l'equazione $f(z) = w_0$ ha m soluzioni in $B_{z_0}(\epsilon)$ (distinte se $w_0 \neq \alpha$).

DIMOSTRAZIONE. Applico teorema 5.4.1 alla funzione $f-\alpha$.

COROLLARIO 5.4.2. Siano $f \in \mathcal{M}(\Omega)$ e $z_0 \in \Omega$ polo di f di ordine m. Per ogni ϵ piccolo esiste $\delta > 0$ tale che, per ogni w_0 con $|w_0| > 1/\delta$, l'equazione $f(z) = w_0$ ha m soluzioni in $B_{z_0}(\epsilon)$.

DIMOSTRAZIONE. Applico teorema 5.4.1 a 1/f.

Teorema della mappa aperta

TEOREMA 5.4.2. Sia $f \in \mathcal{O}(\Omega)$, Ω connesso e f non costante. Allora f è aperta.

DIMOSTRAZIONE. Sia $\alpha \in f(\Omega)$ e sia $f(z_0) = \alpha$. Siano $\epsilon > 0$ e $\delta > 0$ tali che se $w_0 \in B_{\alpha}(\delta)$, l'equazione $f(z) = w_0$ ha m soluzioni (per corollario 5.4.1). Quindi $B_{\alpha}(\delta) \subset f(\Omega)$; $f(\Omega)$ è aperto.

Principio del massimo

TEOREMA 5.4.3. Siano $\Omega \subset \mathbb{C}$ aperto connesso, $f \in \mathcal{O}(\Omega)$ non costante. Allora |f| non ha massimo in Ω .

DIMOSTRAZIONE. Sia $z_0 \in \Omega$. f non è costante in un intorno di z_0 per il principio di identità. Prendiamo $w_0 = f(z_0)$. Applicando il teorema della mappa aperta, esiste $B_{w_0}(\delta) \subseteq f(\Omega)$. Esistono punti in $B_{w_0}(\delta)$ di modulo maggiore di $|w_0|$. Allora z_0 non è punto di massimo per |f|. Per l'arbitrarietà, concludo.

COROLLARIO 5.4.3. Sia
$$\Omega$$
 connesso con $\overline{\Omega}$ compatta. Se $f \in \mathcal{O}(\Omega) \cap C^0(\overline{\Omega})$, allora
$$\max_{\overline{\Omega}} |f| = \max_{\partial \Omega} |f|$$

Teorema della mappa inversa

TEOREMA 5.4.4. Siano $f \in \mathcal{O}(\Omega)$ e $z_0 \in \Omega$ con $f'(z_0) \neq 0$. Allora esistono intorni aperti V di z_0 e W di $f(z_0)$ per cui la restrizione $f|_V : V \rightarrow W$ è invertibile e $f^{-1} : W \rightarrow V$ olomorfa.

DIMOSTRAZIONE. Sia $\alpha = f(z_0)$. Allora $f(z) - \alpha$ ha ordine 1 in z_0 (poiché $f'(z_0) \neq 0$). Allora possiamo applicare il corollario 5.4.1: $f(z) = w_0$ ha un'unica soluzione in $B_{z_0}(\epsilon)$ per ogni $w_0 \in B_{\alpha}(\delta)$. Siano

$$V = B_{\tau_{\alpha}}(\epsilon), W = B_{\alpha}(\delta)$$

Allora $f|_V: V \to W$ è biunivoca. Inoltre, $f|_V$ è aperta per il teorema 5.4.2 e perciò $(f|_V)^{-1}$ è continua. Siano w, $w_1 \in W$ e siano $z = f^{-1}(w)$ e $z_1 = f^{-1}(w_1)$. Si ha

$$\lim_{w \to w_1} \frac{f^{-1}(w) - f^{-1}(w_1)}{w - w_1} = \lim_{z \to z_1} \frac{z - z_1}{f(z) - f(z_1)} = \frac{1}{f'(z_1)} = \frac{1}{f'(f^{-1}(w_1))}$$

Abbiamo dunque dimostrato il teorema.

OSSERVAZIONE 5.4.1. Nel caso reale, la supposizione $f'(x) \neq 0$ è sufficiente ma non necessaria: possiamo invertirem ad esempio, $f(x) = x^3$ anche se f'(0) = 0.

Nel caso complesso, se $f'(z_0)=0$, allora non esiste f^{-1} vicino a z_0 : infatti, $f-f(z_0)$ ha ordine $m \ge 2$ e per corollario 5.4.2 f non è iniettiva vicino a z_0 . Ovvero, la condizione $f'(z_0) \ne 0$ è condizione necessaria.

Siano $a,b \in \mathbb{R}^2$ vettori non nulli. Possiamo considerare una funzione γ_a tale che $\gamma_a(0) = z_0$ e $\gamma_a'(0) = a$ e analogamente una funzione γ_b con $\gamma_b(0) = z_0$ e $\gamma_b'(0) = b$. Presa una funzione $f \in \mathcal{O}(\Omega)$, $z_0 \in \Omega$, allora $f \circ \gamma_a(0) = f(z_0) = f \circ \gamma_b(0)$

Presa f olomorfa, voglio vedere quando vale che l'angolo α fra a e b si preserva tramite f, ovvero l'angolo fra $(f \circ \gamma_b)'(0)$, $(f \circ \gamma_a)'(0)$ vale α .

DEFINIZIONE 5.4.1. $f \in conforme$ in z_0 se l'angolo fra $a \in b$ e l'angolo tra $(f \circ \gamma_a)'(0) \in (f \circ \gamma_b)'(0)$ sono uguali per ogni $a, b \in \mathbb{R}^2$ non nulli.

Siano f = u + iv, $\gamma_a(t) = (x(t), y(t))$. Allora $(f \circ \gamma_a)' = (u \circ \gamma_a)' + i(v \circ \gamma_a)' = (u_x x' + u_y y') + i(v_x x' + v_y y')$

Per cui, presa la matrice Jacobiana di f

$$J(f) = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

Abbiamo

$$(f \circ \gamma_a)' = J(f) \begin{bmatrix} x' \\ y' \end{bmatrix}$$

In particolare, per t=0,

$$J(f)a=J(f)\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}=(f\circ\gamma_a')(0)$$

Per cui f è conforme in z_0 se e solo se $J_{z_0}(f)$ preserva gli angoli.

TEOREMA 5.4.5. Sia f differenziabile in z_0 . f è conforme in z_0 se e solo se vale $f'(z_0) \neq 0$. Quindi se $f \in \mathcal{O}(\Omega)$ e $f' \neq 0$ su Ω , allora f è conforme su Ω .

DIMOSTRAZIONE (parziale). Supponiamo $f'(z_0) \neq 0$. Per Cauchy-Riemann,

$$J_{z_0}(f) = \begin{bmatrix} u_x & -v_x \\ v_x & u_x \end{bmatrix}$$

Da cui, $\det J_{z_0}(f) = u_x^2 + v_x^2 = |f'(z_0)|^2 > 0$. Prendo $r = \sqrt{u_x^2 + v_x^2} > 0$; quindi esiste θ per cui $(u_x, v_x) = (r \cos \theta, r \sin \theta)$

Dunque

$$J_{z_0}(f) = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} R_{\theta}$$

Da ciò, capiamo che $J_{z_0}(f)$ preserva gli angoli.