103

Smooth maps and differentials

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Smooth maps on/to manifolds

 \mathcal{M} is an embedded submanifold of \mathcal{E} . Same for \mathcal{M}' in \mathcal{E}' .

What does it mean for $F: \mathcal{M} \to \mathcal{M}'$ to be smooth?

 $S^{d-1} = \left\{ \varkappa \in \mathbb{R}^{d} : H \varkappa H = 1 \right\}$ **Example:** $f: S^{d-1} \to \mathbf{R}$ defined by $f(x) = x^{\mathsf{T}} A x$

$$\bar{f}: \mathbb{R}^d \to \mathbb{R}$$
, $\bar{f}(x) = x^T A x$ is Amod $\bar{f}(x) = \bar{f}(x)$

$$f = \bar{f}(x)$$

restriction of F

Def.: $F: \mathcal{M} \to \mathcal{M}'$ is smooth if there exists a ngbhd U of \mathcal{M} in \mathcal{E} and a smooth map $\overline{F}: U \to \mathcal{E}'$ such that $F = \overline{F}|_{\mathcal{M}}$.

Fact: Composition preserves smoothness.

To prove *F* is smooth, it's enough to check locally (proof omitted):

Def.: $F: \mathcal{M} \to \mathcal{M}'$ is smooth at $x \in \mathcal{M}$ if it is smooth on a ngbhd of x.

Fact: If F is smooth at all $x \in \mathcal{M}$, then it is smooth on \mathcal{M} .

Differentials of maps on/to manifolds

For a smooth map $\overline{F}: \mathcal{E} \to \mathcal{E}'$, the differential at x is the linear map:

$$D\overline{F}(x) : \mathcal{E} \to \mathcal{E}'$$
Unua
$$D\overline{F}(x)[v] = \lim_{t \to 0} \frac{\overline{F}(x + tv) - \overline{F}(x)}{t}$$

Quid for a smooth $F: \mathcal{M} \to \mathcal{M}'$? Two perspectives:

Perspective 1: If $v \in T_{2e}\mathcal{U}$, there exists a

smooth curve c: R DM st. c(0)=x and c'ros=v.

FOC: R -M

Def.: The differential of F at x is the map DF(x): $T_x\mathcal{M} \to T_{F(x)}\mathcal{M}'$:

$$DF(x)[v] = \frac{\mathrm{d}}{\mathrm{d}t}(F \circ c) \bigg|_{t=0} = (F \circ c)'(0) = \lim_{t \to 0} \frac{F(c(t)) - F(c(0))}{t}$$

where *c* is a smooth curve on \mathcal{M} satisfying c(0) = x and c'(0) = v.

Perspective 2: Since $F: M \rightarrow M'$ is smooth, there exist

U (a yield of M in E) and $F: U \rightarrow E'$ s.t. a) F is smooth,

b) $F = F I_M$.

$$DF(x)[v] = (F \circ c)'(o) = (\overline{F} \circ c)'(o)$$

$$= DF(c(o))[c'(o)] = DF(x)[v].$$
Chain rule

Fact: $DF(x) = D\overline{F}(x)|_{T_x\mathcal{M}}$, where \overline{F} is any smooth extension of F around x. In particular, DF(x) is a linear map from $T_x\mathcal{M}$ to $T_{F(x)}\mathcal{M}'$.

Properties of smooth maps and differentials

Chain rule: If $F: \mathcal{M} \to \mathcal{M}'$ and $G: \mathcal{M}' \to \mathcal{M}''$ are smooth, then $G \circ F: \mathcal{M} \to \mathcal{M}''$ is smooth, and $D(G \circ F)(x)[v] = DG(F(x))[DF(x)[v]]$.

Linearity: If $F_1, F_2: \mathcal{M} \to \mathcal{E}'$ are smooth, for $a_1, a_2 \in \mathbf{R}$, then $F(x) = a_1 F_1(x) + a_2 F_2(x)$ is smooth, and $DF(x)[v] = a_1 DF_1(x)[v] + a_2 DF_2(x)[v]$.

Product rule: If $f: \mathcal{M} \to \mathbf{R}$ and $F: \mathcal{M} \to \mathcal{E}'$ are smooth, then G(x) = f(x)F(x) is smooth, and DG(x)[v] = Df(x)[v]F(x) + f(x)DF(x)[v].

Caveat about smooth extensions

Let $F: \mathcal{M} \to \mathcal{M}'$ with \mathcal{M} embedded in \mathcal{E} .

If F is smooth, we can smoothly extend it to a ngbhd of \mathcal{M} in \mathcal{E} . But it is *not* necessarily possible to smoothly extend F to all of \mathcal{E} .

Example: $\mathcal{E} = \mathbf{R}$, $\mathcal{M} = \mathbf{R} \setminus \{0\}$, $f: \mathcal{M} \to \mathbf{R}$: $x \mapsto f(x) = \text{sign}(x)$.

It is possible if \mathcal{M} is closed though (proof omitted):

Fact: If \mathcal{M} is closed in \mathcal{E} , $F: \mathcal{M} \to \mathcal{M}'$ is smooth if and only if there exists a smooth $\overline{F}: \mathcal{E} \to \mathcal{E}'$ such that $F = \overline{F}|_{\mathcal{M}}$.