WHAT IS CLAIMED IS:

1	1. All illeflace between a master and one or more slave modules comprising:
2	a master;
3	a slave having a set of addressable registers including egress mailbox registers,
4	ingress mailbox registers, and indirect access address registers;
5	a direct memory access (DMA) engine coupled to the master by a first bus and
6	to the slave by a second bus, with the second bus comprising:
7	a set of bi-directional data lines for transmitting data between the slave and the
8	DMA engine;
9	a set of master address lines for transmitting address data from the DMA
10	engine to the slave;
11	a master data strobe for strobing data;
12	a master read/write signal for indicating whether data is to be read from or
13	written to the slave;
14	a set of slave select signals for selecting one of a plurality of slaves connected
15	to the second bus;
16	a slave wait signal asserted by a slave to delay a data transfer;
17	a slave reset signal,
18	a clock output signal, and
19	a clock input signal;
20	where the DMA engine performs direct data transfers to the slave by asserting
21	a slave select signal to the slave and transferring data over the set of bi-directional data lines
22	to the slave egress or ingress data registers and performs indirect data transfers to slave
23	memory by writing address data over the set of bi-directional data lines to the indirect address
24	register of the slave and where the slave utilizes its own memory map and the address data to
25	transfer data between a location indicated by the address data and the DMA engine.
1	2. The interface of claim 1 where the DMA engine negotiates with a slave to
2	implement either an asynchronous, synchronous, or source synchronous data transfer.
1	3. The interface of claim 1 where the DMA engine negotiates with all slaves
2	during reset to determine the maximum bus width available to transfer data.

4. The interface of claim 1 where:

the slave includes status register and message signal interrupt (MSI) register; and

where the slave asserts a bit in the status register to indicate it is ready for a transaction and where the DMA engine asserts a bit in the MSI register to indicate when a transaction is complete.

1	5. A method for allowing a DMA engine to provide access to a plurality of
2	slave devices to multiple masters, the protocol, implemented by hardware and software on the
3	DMA engine, the master, and the slave devices, comprising the steps of:
4	to implement a direct message transfer to a slave device:
5	accessing a slave status register to read a direct message ready status bit which
6	is set when the slave is ready to transfer data;
7	transferring message data using the DMA engine and a slave mailbox register
8	if the direct message ready status bit is set;
9	setting an message transfer complete status interrupt at the slave to indicate
10	when the transfer of the message is complete; and
11	to implement an indirect data transfer to the memory space of a slave device:
12	accessing a slave status register to read an indirect message ready status bit
13	which is set when the slave is ready to transfer data;
14	transferring address data using the DMA engine and slave indirect address
15	mailbox register if the indirect message ready status bit is set;
16	setting an indirect transfer message interrupt bit at the slave to initiate the
17	indirect transfer;
18	transferring message data between the DMA engine and slave mailbox
19	registers if the indirect message ready status bit is set, where the slave utilizes its own
20	memory map and the address data to transfer data between a location indicated by the address
21	data and the DMA engine; and
22	setting an message transfer complete status interrupt at the slave to indicate
23	when the transfer of the message is complete.
1	6. The method of claim 5 further comprising the step of:
2	negotiating with all the slaves to implement either an asynchronous,
3	synchronous, or source synchronous data transfer.

1	7. The method of claim 5 further comprising the step of:
2	starting the bus upon reset at a fixed bus-width and then negotiating with all
3	the slaves to implement acceptable bus bit-width.
1	8. A system for allowing a DMA engine to provide access to a plurality of
2	slave devices to multiple masters, the protocol, implemented by hardware and software on the
3	DMA engine, the master, and the slave devices, said system comprising:
4	means for implementing a direct message transfer to a slave device including:
5	means for accessing a slave status register to read a direct message ready
6	status bit which is set when the slave is ready to transfer data;
7	means for transferring message data using the DMA engine and a slave
8	mailbox register if the direct message ready status bit is set;
9	means for setting an message transfer complete status interrupt at the slave to
10	indicate when the transfer of the message is complete; and
11	means for implement an indirect data transfer to the memory space of a slave
12	device including:
13	means for accessing a slave status register to read an indirect message ready
14	status bit which is set when the slave is ready to transfer data;
15	means for transferring address data using the DMA engine and slave indirect
16	address mailbox register if the indirect message ready status bit is set;
17	means for setting an indirect transfer message interrupt bit at the slave to
18	initiate the indirect transfer;
19	means for transferring message data between the DMA engine and slave
20	mailbox registers if the indirect message ready status bit is set, where the slave utilizes its
21	own memory map and the address data to transfer data between a location indicated by the
22	address data and the DMA engine; and
23	means for setting an message transfer complete status interrupt at the slave to
24	indicate when the transfer of the message is complete.
1	9. The system of claim 8 further comprising:
2	means for negotiating with all the slaves to implement either an asynchronous,
3	synchronous, or source synchronous data transfer.
1	10. The system of claim 8 further comprising:

10. The system of claim 8 further comprising:

- 2 means for starting the bus upon reset at a fixed bus-width and then negotiating
- 3 with all the slaves to implement acceptable bus bit-width.