

Fall 2023

Digital Engineering

Dr. Hatem Yousry

1

1

Agenda

- Combinational Circuits.
 - Binary Adder.
 - Half Adder.

Block diagram of a combinational circuit

- A combinational logic circuit is a circuit whose outputs only depend on the current state of its inputs. In mathematical terms, the each output is a function of the inputs.
- Combinational circuit is a circuit in which we **combine the different gates in the circuit,** for example encoder, decoder, multiplexer and demultiplexer.
- Some of the characteristics of combinational circuits are following
 - The **output** of combinational circuit at any instant of time, depends only on the levels present at input terminals.
 - The combinational circuit do **not use any memory**. The previous state of input does not have any effect on the present state of the circuit.
 - A combinational circuit can have an n number of inputs and m number of outputs

Output is function of input only

i.e. no feedback

When input changes, output may change (after a delay)

- Combinational circuits are used in a wide variety **applications** including calculators, digital measuring techniques, computers, digital processing, automatic control of machines, industrial processing, digital communications, etc.
- Combinational logic is used in computer circuits **to perform Boolean algebra on input signals and on stored data.**Practical computer circuits normally contain a mixture of combinational and sequential logic.

Analysis

- Given a circuit, find out its *function*
- Function may be expressed as:
 - Boolean function
 - Truth table

Design

- Given a desired function, determine its *circuit*
- Function may be expressed as:
 - Boolean function
 - Truth table

Sum

Carr

Reverse Engineering

- Get the Logic Operation.
- Define the inputs and outputs.
- Construct the truth table of the logic function.

• Use K-Map based on Minterm (SOP) to get the logic function.

• Design the Combinational Circuits.

Binary Adder

- The binary adder is a combinational circuit that can perform **summation of the input binary numbers**. The most common or basic arithmetic operation is **the addition of binary digits**.
- A combination circuit which performs the additions of two bits is a called a half adder while that performs the addition of three bits is a full adder.

Half Adder

• The Half adder is the simplest of all adder circuits. Half adder is a combinational arithmetic circuit that adds two numbers and produces a sum bit (S) and carry bit (C) both as the output. Let us consider two inputs bits A and B, then sum bit (S) is the X-OR of A and B and the carry bit (C) will be the AND of A and B. It is evident from the function of a half adder that it requires one X-OR gate and one AND gate for its construction. Let us first consider the addition of single bits.

Half Adder

	A	В	Sum	Carry
• $0 + 0 = 0$	0	0	0	0
• $0 + 1 = 1$	0	1	1	0
0 + 1 - 1	1	0	1	0
• $1 + 0 = 1$	1	1	0	1

	(A XC	OR B)		(A an	d B)
1	1	0	1	0	1
0	0	1	0	0	0
BA	0	1	BA	0	1
\ A	for Su	for Carry:			

- 1 + 1 = 10
- Here we perform two operations Sum and Carry, thus we need two **K-maps** one for each to derive the expression.
- Thus, the above equations can be written as

•
$$0 + 0 = 00$$

•
$$0 + 1 = 01$$

•
$$1 + 0 = 01$$

•
$$1 + 1 = 10$$

 $\Sigma m(2,3); K = AB' + A'B$

Here the output "1" of "10" becomes the carry-out.

Half Adder

• The "SUM" is the normal output and "CARRY" is the carryout. Though the half adder is the simplest adder circuit, it has a major disadvantage. A half adder can add only two input bits (A and B) and is not affected by the carry of the input.

• As a result, if the input that is given to a half adder has a carry, then it will be neglected and it adds only the bits A and B. But this results in **an incomplete binary addition** and hence it gets its name a half adder. The truth table of half adder is shown in the above table.

Truth Table

Input		Output		
Α	В	S	С	
0	0	0	0	
1	0	1	0	
0	1	1	0	
1	1	0	1	

Full Adder

- Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN.
- The **output carry** is designated as **C-OUT** and the normal output is designated as **S which is SUM**.
- A full adder logic is designed in such a manner that can take eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

Full Adder

- Logical Expression for SUM:
- = A' B' C-IN + A' B C-IN' + A B' C-IN' + A B C-IN
- = C-IN (A'B'+AB) + C-IN' (A'B+AB')
- = C-IN XOR (A XOR B)
- $\bullet = (1,2,4,7)$

Logical Expression for C-OUT:

•
$$=$$
 A' B C-IN + A B' C-IN + A B C-IN' + A B C-IN

• = A B + B C-IN + A C-IN

•
$$= (3,5,6,7)$$

Full Adder Truth Table:

	Inputs			puts
A	В	C-IN	Sum	C - Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder $\stackrel{A}{B}_{C-IN}$ $\stackrel{FA}{\Longrightarrow}$ $\stackrel{S}{\longleftarrow}$ $\stackrel{C-OUT}{\longleftarrow}$ + $\stackrel{C-IN}{\longleftarrow}$

Full Adder

- Adds 1-bit plus 1-bit plus 1-bit
- Produces Sum and Carry

	B '	B '	В	В
A'	то	m1	m3	<i>m</i> 2
\boldsymbol{A}	m4	m5	m7	т6
	<i>C</i> '	C	C	<i>C</i> '

A B C-IN	C S
0 0 0	0 0
0 0 1	0 1
0 1 0	0 1
0 1 1	1 0
1 0 0	0 1
1 0 1	1 0
1 1 0	1 0
1 1 1	1 1

				В	_
	0	1	0	1	
\overline{A}	1	0	1	0	S=(1,2,4,7)
		<i>C</i> -	IN B		N XOR (A XOR B)
	0	0		0	C = (3,5,6,7)
\boldsymbol{A}	0			1	· , , , , ,
		C-1	N		

AB + BC-IN + AC-IN

Implementation of Full Adder

S = AB' C-IN '+A'B C-IN '+A'B' C-IN +ABC-IN = $A \oplus B \oplus$ C-IN

$$C = AB + AC-IN+BC-IN$$

Implementation of Full Adder

• Implementation of Full Adder using **NAND** gates:

C-OUT= A' B C-IN + A B' C-IN + A B C-IN + A B C-IN

- Implementation of Full Adder using **NOR** gates:
- Total 9 NOR gates are required to implement a Full Adder.

Implementation of Full Adder using Half Adders

- 2 Half Adders and a OR gate is required to implement a Full Adder.
- With this logic circuit, two bits can be added together, taking a carry from the next lower order of magnitude, and sending a carry to the next higher order of magnitude.

Inputs			Out	puts
Α	В	CIN	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Implementation of Full Adder using Half Adders

- The above-mentioned adder is used to sum up to 2 bits together taking a carry from the next lower order of magnitude and sending a carry to the next higher order of magnitude.
- For a multi-bit operation, each bit must be represented by a full adder and all the bits must be added simultaneously.
- Thus, to add two 8-bit numbers, we need 8 full adders which can be formed by cascading two of the 4-bit blocks.
- The addition of two 4-bit numbers is shown.

Binary Adder

Thank You

Dr. Hatem Yousry @nctu.edu.eg

