Caltech

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 8:

Hidden Markov Models

Sequence Prediction (POS Tagging)

- x = "Fish Sleep"
- y = (N, V)
- x = "The Dog Ate My Homework"
- y = (D, N, V, D, N)
- x = "The Fox Jumped Over The Fence"
- y = (D, N, V, P, D, N)

Challenges

- Multivariable Output
 - Make multiple predictions simultaneously

- Variable Length Input/Output
 - Sentence lengths not fixed

Multivariate Outputs

- x = "Fish Sleep"
- y = (N, V)

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

Multiclass prediction:

Replicate Weights:

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix} b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{bmatrix}$$

Score All Classes:

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix} b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{bmatrix} \qquad f(x \mid w, b) = \begin{bmatrix} w_1^T x - b_1 \\ w_2^T x - b_2 \\ \vdots \\ w_K^T x - b_K \end{bmatrix} \qquad \arg\max_{k} \begin{bmatrix} w_1^T x - b_1 \\ w_2^T x - b_2 \\ \vdots \\ w_K^T x - b_K \end{bmatrix}$$

Predict via Largest Score:

$$\underset{k}{\operatorname{argmax}} \begin{bmatrix} w_1^T x - b_1 \\ w_2^T x - b_2 \\ \vdots \\ w_K^T x - b_K \end{bmatrix}$$

How many classes?

Multiclass Prediction

- x = "Fish Sleep"
- y = (N, V)

- Multiclass prediction:
 - All possible length-M sequences as different class
 - (D, D), (D, N), (D, V), (D, Adj), (D, Adv), (D, Pr) (N, D), (N, N), (N, V), (N, Adj), (N, Adv), ...
- L^M classes!
 - Length 2: $6^2 = 36!$

Multiclass Prediction

POS Tags: x = "Fish Sleep" Det, Noun, Verb, Adj, Adv, Prep • y = (N, V)1 = 6SS Exponential Explosion in #Classes! (Not Tractable for Sequence Prediction) - Length 2: $6^2 = 36!$

Why is Naïve Multiclass Intractable?

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- (D, D, D), (D, D, N), (D, D, V), (D, D, Adj), (D, D, Adv), (D, D, Pr)
- (D, N, D), (D, N, N), (D, N, V), (D, N, Adj), (D, N, Adv), (D, N, Pr)
- (D, V, D), (D, V, N), (D, V, V), (D, V, Adj), (D, V, Adv), (D, V, Pr)
- **—** ...
- (N, D, D), (N, D, N), (N, D, V), (N, D, Adj), (N, D, Adv), (N, D, Pr)
- (N, N, D), (N, N, N), (N, N, V), (N, N, Adj), (N, N, Adv), (N, N, Pr)
- **—** ...

Why is Naïve Multiclass Intractable?

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

— (D, D, D), (D, D, N), (D, D, V), (D, D, Adj), (D, D, Adv), (D, D, Pr)

Treats Every Combination As Different Class (Learn model for each combination)

Exponentially Large Representation!
(Exponential Time to Consider Every Class)
(Exponential Storage)

Independent Classification

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- Treat each word independently (assumption)
 - Independent multiclass prediction per word
 - Predict for x="I" independently
 - Predict for x="fish" independently
 - Predict for x="often" independently
 - Concatenate predictions.

Independent Classification

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- Treat each word independently (assumption)
 - Independent multiclass prediction per word

#Classes = #POS Tags (6 in our example)

Solvable using standard multiclass prediction.

Independent Classification

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- Treat each word independently
 - Independent multiclass prediction per word

P(y x)	x=" "	x="fish"	x="often"
y="Det"	0.0	0.0	0.0
y="Noun"	1.0	0.75	0.0
y="Verb"	0.0	0.25	0.0
y="Adj"	0.0	0.0	0.4
y="Adv"	0.0	0.0	0.6
y="Prep"	0.0	0.0	0.0

Prediction: (N, N, Adv)

Correct: (N, V, Adv)

Why the mistake?

Context Between Words

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- Independent Predictions Ignore Word Pairs
 - In Isolation:
 - "Fish" is more likely to be a Noun
 - But Conditioned on Following a (pro)Noun...
 - "Fish" is more likely to be a Verb!
 - "1st Order" Dependence (Model All Pairs)
 - 2nd Order Considers All Triplets
 - Arbitrary Order = Exponential Size (Naïve Multiclass)

- $x = (x^1, x^2, x^4, x^4, ..., x^M)$ (sequence of words)
- $y = (y^1, y^2, y^3, y^4, ..., y^M)$ (sequence of POS tags)
- $P(x^i | y^i)$ Probability of state y^i generating x^i
- $P(y^{i+1}|y^i)$ Probability of state y^i transitioning to y^{i+1}
- $P(y^1|y^0)$ y⁰ is defined to be the Start state
- $P(End|y^{M})$ Prior probability of y^{M} being the final state
 - Not always used

Graphical Model Representation

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$
"Joint Distribution"

Optional

- $P(x^i | y^i)$ Probability of state y^i generating x^i
- $P(y^{i+1}|y^i)$ Probability of state y^i transitioning to y^{i+1}
- $P(y^1|y^0)$ y0 is defined to be the Start state
- $P(End|y^{M})$ Prior probability of y^{M} being the final state
 - Not always used

$$P(x \mid y) = \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

Given a POS Tag Sequence y:

Can compute each P(xⁱ|y) independently!

(xⁱ conditionally independent given yⁱ)

"Conditional Distribution on x given y"

• $P(x^i|y^i)$

Probability of state yi generating xi

• $P(y^{i+1}|y^i)$

Probability of state yi transitioning to yi+1

• $P(y^1|y^0)$

- y⁰ is defined to be the Start state
- P(End|y^M)
- Prior probability of y^M being the final state
- Not always used

```
Additional Complexity of (#POS Tags)<sup>2</sup>

Models All State-State Pairs (all POS Tag-Tag pairs)

Models All State-Observation Pairs (all Tag-Word pairs)

Same Complexity as Independent Multiclass

• P(x<sup>i</sup> | y<sup>i</sup>) Probability of state y<sup>i</sup> generating x<sup>i</sup>
```

- $P(y^{i+1}|y^i)$ Probability of state y^i transitioning to y^{i+1}
- $P(y^1|y^0)$ y^0 is defined to be the Start state
- $P(End|y^{M})$ Prior probability of y^{M} being the final state
 - Not always used

Relationship to Naïve Bayes

Reduces to a sequence of disjoint Naïve Bayes models (if we ignore transition probabilities)

P (word | state/tag)

- Two-word language: "fish" and "sleep"
- Two-tag language: "Noun" and "Verb"

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Given Tag Sequence y:

```
P("fish sleep" | (N,V)) = 0.8*0.5
P("fish fish" | (N,V)) = 0.8*0.5
P("sleep fish" | (V,V)) = 0.8*0.5
P("sleep sleep" | (N,N)) = 0.2*0.5
```

Sampling

- HMMs are "generative" models
 - Models joint distribution P(x,y)
 - Can generate samples from this distribution
 - First consider conditional distribution P(x|y)

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Given Tag Sequence y = (N,V):

Sample each word independently: Sample $P(x^1 | N)$ (0.8 Fish, 0.2 Sleep) Sample $P(x^2 | V)$ (0.5 Fish, 0.5 Sleep)

— What about sampling from P(x,y)?

Forward Sampling of P(y,x)

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Initialize $y^0 = Start$ Initialize i = 0

- 1. i = i + 1
- 2. Sample y^i from $P(y^i|y^{i-1})$
- 3. If $y^i == End$: Quit
- 4. Sample x^i from $P(x^i|y^i)$
- 5. Goto Step 1

Exploits Conditional Ind. Requires P(End|yi)

Forward Sampling of P(y,x|L)

$$P(x,y|M) = P(End|y^{M}) \prod_{i=1}^{M} P(y^{i}|y^{i-1}) \prod_{i=1}^{M} P(x^{i}|y^{i})$$

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Initialize $y^0 = Start$ Initialize i = 0

- 1. i = i + 1
- 2. If(i == M): Quit
- 3. Sample y^i from $P(y^i|y^{i-1})$
- 4. Sample x^i from $P(x^i|y^i)$
- 5. Goto Step 1

Exploits Conditional Ind. Assumes no P(End|yi)

$$P(x^{k+1:M}, y^{k+1:M} \mid x^{1:k}, y^{1:k}) = P(x^{k+1:M}, y^{k+1:M} \mid y^{k})$$

"Memory-less Model" – only needs yk to model rest of sequence

- $P(x^i | y^i)$ Probability of state y^i generating x^i
- $P(y^{i+1}|y^i)$ Probability of state y^i transitioning to y^{i+1}
- $P(y^1|y^0)$ y0 is defined to be the Start state
- $P(End|y^{M})$ Prior probability of y^{M} being the final state
 - Not always used

Viterbi Algorithm

Most Common Prediction Problem

Given input sentence, predict POS Tag seq.

$$\underset{y}{\operatorname{argmax}} P(y \mid x)$$

- Naïve approach:
 - Try all possible y's
 - Choose one with highest probability
 - Exponential time: L^M possible y's

Bayes's Rule

$$\underset{y}{\operatorname{argmax}} P(y \mid x) = \underset{y}{\operatorname{argmax}} \frac{P(y, x)}{P(x)}$$
$$= \underset{y}{\operatorname{argmax}} P(y, x)$$
$$= \underset{y}{\operatorname{argmax}} P(x \mid y) P(y)$$

$$P(x \mid y) = \prod_{i=1}^{L} P(x^{i} \mid y^{i})$$

$$P(y) = P(End \mid y^{L}) \prod_{i=1}^{L} P(y^{i} \mid y^{i-1})$$

$$\underset{y}{\operatorname{argmax}} P(y, x) = \underset{y}{\operatorname{argmax}} \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

$$= \underset{y}{\operatorname{argmax}} \underset{y^{1:M-1}}{\operatorname{argmax}} \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

$$= \underset{y}{\operatorname{argmax}} \underset{y^{1:M-1}}{\operatorname{argmax}} P(y^{M} \mid y^{M-1}) P(x^{M} \mid y^{M}) P(y^{1:M-1} \mid x^{1:M-1})$$

$$P(y^{1:k} \mid x^{1:k}) = P(x^{1:k} \mid y^{1:k})P(y^{1:k}) \qquad P(x^{1:k} \mid y^{1:k}) = \prod_{i=1}^{k} P(x^{i} \mid y^{i})$$

$$P(y^{1:k}) = \prod_{i=1}^{k} P(y^{i+1} \mid y^{i})$$

Exploit Memory-less Property: The choice of y^L only depends on y^{1:M-1} via P(y^M|y^{M-1})!

Dynamic Programming

- Input: $x = (x^1, x^2, x^3, ..., x^M)$
- **Computed:** best length-k prefix ending in each Tag:
 - Examples:

$$\hat{Y}^{k}(V) = \left(\underset{y^{1:k-1}}{\operatorname{argmax}} P(y^{1:k-1} \oplus V, x^{1:k})\right) \oplus V \qquad \hat{Y}^{k}(N) = \left(\underset{y^{1:k-1}}{\operatorname{argmax}} P(y^{1:k-1} \oplus N, x^{1:k})\right) \oplus N$$
Sequence Concatenation
$$\hat{Y}^{k+1}(V) = \left(\underset{y^{1:k} \in \left\{\hat{Y}^{k}(T)\right\}_{T}}{\operatorname{argmax}} P(y^{1:k} \oplus V, x^{1:k+1})\right) \oplus V$$

$$\hat{Y}^{k+1}(V) = \left(\underset{y^{1:k} \in \{\hat{Y}^{k}(T)\}_{T}}{\operatorname{argmax}} P(y^{1:k} \oplus V, x^{1:k+1}) \right) \oplus V$$

Pre-computed

Recursive Definition!

Solve:
$$\hat{Y}^2(V) = \left(\underset{y^1 \in \{\hat{Y}^1(T)\}_T}{\operatorname{argmax}} P(y^1, x^1) P(y^2 = V \mid y^1) P(x^2 \mid y^2 = V) \right) \oplus V$$

 $\hat{Y}^1(Z)$ is just Z

Solve:
$$\hat{Y}^2(V) = \left(\underset{y^1 \in \{\hat{Y}^1(T)\}_T}{\operatorname{argmax}} P(y^1, x^1) P(y^2 = V \mid y^1) P(x^2 \mid y^2 = V) \right) \oplus V$$

 $\hat{Y}^1(Z)$ is just Z

Ex:
$$\hat{Y}^2(V) = (N, V)$$

Solve:
$$\hat{Y}^3(V) = \left(\underset{y^{1:2} \in \{\hat{Y}^2(T)\}_T}{\operatorname{argmax}} P(y^{1:2}, x^{1:2}) P(y^3 = V \mid y^2) P(x^3 \mid y^3 = V)\right) \oplus V$$

Store each $\hat{Y}^2(Z) \& P(\hat{Y}^2(Z), x^{1:2})$

Ex:
$$\hat{Y}^2(V) = (N, V)$$

Solve:
$$\hat{Y}^3(V) = \left(\underset{y^{1:2} \in \{\hat{Y}^2(T)\}_T}{\operatorname{argmax}} P(y^{1:2}, x^{1:2}) P(y^3 = V \mid y^2) P(x^3 \mid y^3 = V)\right) \oplus V$$

Store each $\hat{Y}^2(Z) \& P(\hat{Y}^2(Z), x^{1:2})$

Claim: Only need to check solutions of $\hat{Y}^2(Z)$, Z=V,D,N

Ex:
$$\hat{Y}^2(V) = (N, V)$$

Solve:
$$\hat{Y}^3(V) = \left(\underset{y^{1:2} \in \{\hat{Y}^2(T)\}_T}{\operatorname{argmax}} P(y^{1:2}, x^{1:2}) P(y^3 = V \mid y^2) P(x^3 \mid y^3 = V)\right) \oplus V$$

Store each $\hat{Y}^2(Z) \& P(\hat{Y}^2(Z), x^{1:2})$

Claim: Only need to check solutions of $\hat{Y}^2(Z)$, Z=V,D,N

$$\hat{Y}^{M}(V) = \left(\underset{y^{1:M-1} \in \{\hat{Y}^{M-1}(T)\}_{T}}{\operatorname{argmax}} P(y^{1:M-1}, x^{1:M-1}) P(y^{M} = V \mid y^{M-1}) P(x^{M} \mid y^{M} = V) P(End \mid y^{M} = V)\right) \oplus V$$
Optional

Store each $\hat{Y}^2(Z) \& P(\hat{Y}^2(Z), x^{1:2})$

Store each $\hat{Y}^3(Z) \& P(\hat{Y}^3(Z), x^{1:3})$

Ex:
$$\hat{Y}^2(V) = (N, V)$$

Ex:
$$\hat{Y}^3(V) = (D, N, V)$$

Viterbi Algorithm

• Solve:
$$\underset{y}{\operatorname{argmax}} P(y \mid x) = \underset{y}{\operatorname{argmax}} \frac{P(y, x)}{P(x)}$$

$$= \underset{y}{\operatorname{argmax}} P(y, x)$$

$$= \underset{y}{\operatorname{argmax}} P(x \mid y) P(y)$$

- For k=1..M
 - Iteratively solve for each $\hat{Y}^k(Z)$
 - Z looping over every POS tag.
- Predict best Ŷ^M(Z)
- Also known as Mean A Posteriori (MAP) inference

Numerical Example

x= (Fish Sleep)

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

start 1
verb 0
noun 0
end 0

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Token 1: fish

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Token 1: fish

	U	1
start	1	0
verb	0	.1
noun	0	.64
end	0	0

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Token 3: end

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Viterbi Algorithm (w/ Log Probabilities)

• Solve:
$$\underset{y}{\operatorname{argmax}} P(y \mid x) = \underset{y}{\operatorname{argmax}} \frac{P(y, x)}{P(x)}$$

$$= \underset{y}{\operatorname{argmax}} P(y, x)$$

$$= \underset{y}{\operatorname{argmax}} \log P(x \mid y) + \log P(y)$$

- For k=1..M
 - Iteratively solve for each $log(\hat{Y}^k(Z))$
 - Z looping over every POS tag.
- Predict best log(Ŷ^M(Z))
 - Log(Ŷ^M(Z)) accumulates additively, not multiplicatively

Recap: Independent Classification

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

- Treat each word independently
 - Independent multiclass prediction per word

P(y x)	x=" "	x="fish"	x="often"
y="Det"	0.0	0.0	0.0
y="Noun"	1.0	0.75	0.0
y="Verb"	0.0	0.25	0.0
y="Adj"	0.0	0.0	0.4
y="Adv"	0.0	0.0	0.6
y="Prep"	0.0	0.0	0.0

Prediction: (N, N, Adv)

Correct: (N, V, Adv)

Mistake due to not modeling multiple words.

Recap: Viterbi

- Models pairwise transitions between states
 - Pairwise transitions between POS Tags
 - "1st order" model

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

x="I fish often"

Independent: (N, N, Adv)

HMM Viterbi: (N, V, Adv)

*Assuming we defined P(x,y) properly

Training HMMs

Supervised Training

Given:

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^{N}$$
 Word Sequence (Sentence)

Goal: Estimate P(x,y) using S

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

Maximum Likelihood!

Aside: Matrix Formulation

Define Transition Matrix: A

$$- A_{ab} = P(y^{i+1}=a|y^i=b) \text{ or } -Log(P(y^{i+1}=a|y^i=b))$$

P(y ^{next} y)	y="Noun"	y="Verb"
y ^{next} ="Noun"	0.09	0.667
y ^{next} ="Verb"	0.91	0.333

Observation Matrix: O

$$- O_{wz} = P(x^i=w|y^i=z) \text{ or } -Log(P(x^i=w|y^i=z))$$

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Aside: Matrix Formulation

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

$$P(x,y) = P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

$$= A_{End,y^{M}} \prod_{i=1}^{M} A_{y^{i},y^{i-1}} \prod_{i=1}^{M} O_{x^{i},y^{i}}$$

$$-\log(P(x,y)) = \tilde{A}_{End,y^{M}} + \sum_{i=1}^{M} \tilde{A}_{y^{i},y^{i-1}} + \sum_{i=1}^{M} \tilde{O}_{x^{i},y^{i}}$$

Log prob. formulation

Each entry of \tilde{A} is define as $-\log(A)$

Maximum Likelihood

$$\underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(x,y) = \underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

Estimate each component separately:

$$A_{ab} = \frac{\sum_{j=1}^{N} \sum_{i=0}^{M_{j}} 1_{\left[\left(y_{j}^{i+1}=a\right) \land \left(y_{j}^{i}=b\right)\right]}}{\sum_{j=1}^{N} \sum_{i=0}^{M_{j}} 1_{\left[\left(x_{j}^{i}=w\right) \land \left(y_{j}^{i}=z\right)\right]}}$$

$$O_{wz} = \frac{\sum_{j=1}^{N} \sum_{i=1}^{M_{j}} 1_{\left[\left(x_{j}^{i}=w\right) \land \left(y_{j}^{i}=z\right)\right]}}{\sum_{j=1}^{N} \sum_{i=1}^{M_{j}} 1_{\left[y_{j}^{i}=z\right]}}$$

(Derived via minimizing neg. log likelihood)

Recap: Supervised Training

$$\underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(x,y) = \underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

- Maximum Likelihood Training
 - Counting statistics
 - Super easy!
 - Why?

What about unsupervised case?

Recap: Supervised Training

$$\underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(x,y) = \underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

- Maximum Likelihood Training
 - Counting statistics
 - Super easy!
 - Why?

What about unsupervised case?

Conditional Independence Assumptions

$$\underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(x,y) = \underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

- Everything decomposes to products of pairs
 - I.e., P(yⁱ⁺¹=a|yⁱ=b) doesn't depend on anything else
- Can just estimate frequencies:
 - How often yⁱ⁺¹=a when yⁱ=b over training set
 - Note that P(yⁱ⁺¹=a|yⁱ=b) is a common model across all locations of all sequences.

Conditional Independence Assumptions

$$\underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(x,y) = \underset{A,O}{\operatorname{argmax}} \prod_{(x,y) \in S} P(End \mid y^{M}) \prod_{i=1}^{M} P(y^{i} \mid y^{i-1}) \prod_{i=1}^{M} P(x^{i} \mid y^{i})$$

Parameters:

Transitions A: #Tags²

Observations O: #Words x #Tags

Avoids directly model word/word pairings

#Tags = 10s

#Words = 10000s

Unsupervised Training

- What about if no y's?
 - Just a training set of sentences

$$S = \left\{x_i\right\}_{i=1}^{N}$$
Word Sequence (Sentence)

- Still want to estimate P(x,y)
 - How?
 - Why?

$$\arg \max \prod_{i} P(x_i) = \arg \max \prod_{i} \sum_{y} P(x_i, y)$$

Unsupervised Training

- What about if no y's?
 - Just a training set of sentences

$$S = \left\{x_i\right\}_{i=1}^{N}$$
Word Sequence (Sentence)

- Still want to estimate P(x,y)
 - How?
 - Why?

$$\arg \max \prod_{i} P(x_i) = \arg \max \prod_{i} \sum_{y} P(x_i, y)$$

Why Unsupervised Training?

- Supervised Data hard to acquire
 - Require annotating POS tags
- Unsupervised Data plentiful
 - Just grab some text!
- Might just work for POS Tagging!
 - Learn y's that correspond to POS Tags
- Can be used for other tasks
 - Detect outlier sentences (sentences with low prob.)
 - Sampling new sentences.

EM Algorithm (Baum-Welch)

- If we had y's \rightarrow max likelihood.
- Chicken vs Egg!
- If we had (A,O) → predict y's
- 1. Initialize A and O arbitrarily

- **Expectation Step**
- 2. Predict prob. of y's for each training x
- 3. Use y's to estimate new (A,O) Maximization Step
- 4. Repeat back to Step 1 until convergence

Expectation Step

- Given (A,O)
- For training $x=(x^1,...,x^M)$
 - Predict $P(y^i)$ for each $y=(y^1,...y^M)$

	X ¹	x ²	 X ^L
P(y ⁱ =Noun)	0.5	0.4	 0.05
P(y ⁱ =Det)	0.4	0.6	 0.25
P(y ⁱ =Verb)	0.1	0.0	 0.7

- Encodes current model's beliefs about y
- "Marginal Distribution" of each yⁱ

Recall: Matrix Formulation

Define Transition Matrix: A

$$- A_{ab} = P(y^{i+1}=a|y^i=b) \text{ or } -Log(P(y^{i+1}=a|y^i=b))$$

P(y ^{next} y)	y="Noun"	y="Verb"
y ^{next} ="Noun"	0.09	0.667
y ^{next} ="Verb"	0.91	0.333

Observation Matrix: O

$$- O_{wz} = P(x^i=w | y^i=z) \text{ or } -Log(P(x^i=w | y^i=z))$$

P(x y)	y="Noun"	y="Verb"
x="fish"	0.8	0.5
x="sleep"	0.2	0.5

Maximization Step

Max. Likelihood over Marginal Distribution

Supervised:
$$A_{ab} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{i=0}^{M_{j}}1_{\left[\left(y_{j}^{i+1}=a\right)\wedge\left(y_{j}^{i}=b\right)\right]}}{\sum\limits_{j=1}^{N}\sum\limits_{i=0}^{M_{j}}1_{\left[y_{j}^{i}=b\right]}}$$

$$O_{wz} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[\left(x_{j}^{i}=w\right)\wedge\left(y_{j}^{i}=z\right)\right]}}{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[y_{j}^{i}=z\right]}}$$
Marginals
$$O_{wz} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[y_{j}^{i}=z\right]}}{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[x_{j}^{i}=w\right]}P(y_{j}^{i}=z)}$$
Unsupervised: $A_{ab} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{i=0}^{M_{j}}P(y_{j}^{i}=b)}{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[x_{j}^{i}=w\right]}P(y_{j}^{i}=z)}$
Marginals
$$O_{wz} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}1_{\left[x_{j}^{i}=w\right]}P(y_{j}^{i}=z)}{\sum\limits_{j=1}^{N}\sum\limits_{i=1}^{M_{j}}P(y_{j}^{i}=z)}$$
Marginals

Computing Marginals

(Forward-Backward Algorithm)

Solving E-Step, requires compute marginals

	x ¹	x ²	•••	X ^L
P(y ⁱ =Noun)	0.5	0.4		0.05
P(y ⁱ =Det)	0.4	0.6		0.25
P(y ⁱ =Verb)	0.1	0.0		0.7

- Can solve using Dynamic Programming!
 - Similar to Viterbi

Notation

Probability of observing prefix $x^{1:i}$ and having the i-th state be $y^i=Z$

$$\alpha_z(i) = P(x^{1:i}, y^i = Z \mid A, O)$$

Probability of observing suffix xi+1:M given the i-th state being yi=Z

$$\beta_{z}(i) = P(x^{i+1:M} \mid y^{i} = Z, A, O)$$

Computing Marginals = Combining the Two Terms

$$P(y^{i} = z \mid x) = \frac{a_{z}(i)\beta_{z}(i)}{\sum_{z'} a_{z'}(i)\beta_{z'}(i)}$$

Notation

Probability of observing prefix $x^{1:i}$ and having the i-th state be $y^i=Z$

$$\alpha_{z}(i) = P(x^{1:i}, y^{i} = Z \mid A, O)$$

Probability of observing suffix xi+1:M given the i-th state being yi=Z

$$\beta_{z}(i) = P(x^{i+1:M} \mid y^{i} = Z, A, O)$$

Computing Marginals = Combining the Two Terms

$$P(y^{i} = b, y^{i-1} = a \mid x) = \frac{a_{a}(i-1)P(y^{i} = b \mid y^{i-1} = a)P(x^{i} \mid y^{i} = b)\beta_{b}(i)}{\sum_{a',b'} a_{a'}(i-1)P(y^{i} = b' \mid y^{i-1} = a')P(x^{i} \mid y^{i} = b')\beta_{b'}(i)}$$

Forward (sub-)Algorithm

- Solve for every: $\alpha_z(i) = P(x^{1:i}, y^i = Z \mid A, O)$
- Naively:

Exponential Time!

$$\alpha_z(i) = P(x^{1:i}, y^i = Z \mid A, O) = \sum_{y^{1:i-1}} P(x^{1:i}, y^i = Z, y^{1:i-1} \mid A, O)$$

Can be computed recursively (like Viterbi)

$$\alpha_z(1) = P(y^1 = z | y^0)P(x^1 | y^1 = z) = O_{x^1, z}A_{z, start}$$

$$\alpha_z(i+1) = O_{x^{i+1},z} \sum_{j=1}^{L} \alpha_j(i) A_{z,j}$$

Viterbi effectively replaces sum with max

Backward (sub-)Algorithm

- Solve for every: $\beta_z(i) = P(x^{i+1:M} \mid y^i = Z, A, O)$
- Naively:

Exponential Time!

$$\beta_z(i) = P(x^{i+1:M} \mid y^i = Z, A, O) = \sum_{y^{i+1:L}} P(x^{i+1:M}, y^{i+1:M} \mid y^i = Z, A, O)$$

Can be computed recursively (like Viterbi)

$$\beta_z(L) = 1$$

$$\beta_z(i) = \sum_{j=1}^{L} \beta_j(i+1) A_{j,z} O_{x^{i+1},j}$$

Forward-Backward Algorithm

Runs Forward

$$\alpha_z(i) = P(x^{1:i}, y^i = Z \mid A, O)$$

Runs Backward

$$\beta_z(i) = P(x^{i+1:M} \mid y^i = Z, A, O)$$

- For each training x=(x¹,...,x^M)
 - Computes each $P(y^i)$ for $y=(y^1,...,y^M)$

$$P(y^{i} = z \mid x) = \frac{a_{z}(i)\beta_{z}(i)}{\sum_{z'} a_{z'}(i)\beta_{z'}(i)}$$

Recap: Unsupervised Training

• Train using only word sequences: $S = \{x_i\}_{i=1}^N$ Word Sequence (Sentence)

- y's are "hidden states"
 - All pairwise transitions are through y's
 - Hence hidden Markov Model
- Train using EM algorithm
 - Converge to local optimum

Initialization

- How to choose #hidden states?
 - By hand
 - Cross Validation
 - P(x) on validation data
 - Can compute P(x) via forward algorithm:

$$P(x) = \sum_{y} P(x, y) = \sum_{z} \alpha_{z}(M) P(End \mid y^{M} = z)$$

Recap: Sequence Prediction & HMMs

Models pairwise dependences in sequences

x="I fish often"

POS Tags:

Det, Noun, Verb, Adj, Adv, Prep

Independent: (N, N, Adv)

HMM Viterbi: (N, V, Adv)

- Compact: only model pairwise between y's
- Main Limitation: Lots of independence assumptions
 - Poor predictive accuracy

Next Week

- Conditional Random Fields
 - Sequential version of logistic regression
 - Removes many independence assumptions
 - More accurate in practice
 - Can only be trained in supervised setting

- Recitation Tonight:
 - Recap of Viterbi and Forward/Backward