CHAPTER 8

Key Management

Generating Keys

- The security of an algorithm rest in the key
- If you are using a cryptographically weak process to generate keys, then your whole system is weak.
- In this case the cryptanalyst just cryptanalyze your key generation algorithm rather than your encryption algorithm.

Reduced keyspaces

- DES has a 56-bit key; thus 2⁵⁶ (10¹⁶) possible keys.
- However, Norton Discreet for MS-DOS(version 8.0 and earlier) only allows ASCII key, forcing the high order bit of each byte to be zero. The program also converts lowercase letters to uppercase resulting only 2⁴⁰ keys.
- This poor key generation procedures have made its DES ten thousand times easier to break than proper implementation.
- Table 1 shows the number of possible keys with various constraints on the input strings.
- Table 2 shows the time required for an exhaustive search through all of those keys, given a million attempts per second.

Reduced keyspaces Continue...

Table 1

Number of Possible keys of various Keyspaces

	4-Bytes	5-Bytes	6-Bytes	7-Bytes	8-Bytes
Lowercase letters [26]	460,000	1.2*10 ⁷	3.1*108	8.0*109	2.1*10 ¹¹
Lowercase letters and digits [36]	1,700,000	6.0*10 ⁷	2.2*109	7.8*10 ¹⁰	2.8*10 ¹²
Alphanumeric characters [62]	1.5*10 ⁷	9.2*108	5.7*10 ¹⁰	3.5*10 ¹²	2.2*10 ¹⁴
Printable characters [95]	8.1*10 ⁷	7.7*10 ⁹	7.4*10 ¹¹	7.0*10 ¹³	6.6*10 ¹⁵
ASCII characters [128]	2.7*108	3.4*10 ¹⁰	4.4*10 ¹²	5.6*10 ¹⁴	7.2*10 ¹⁶
8-bit ASCII characters [256]	4.3*109	1.1*10 ¹²	2.8*10 ¹⁴	7.2*10 ¹⁶	1.8*10 ¹⁹

Reduced keyspaces Continue...

Table 2

Exhaustive Search of various keyspaces (1 million attempts/s machine)

	4-Bytes	5-Bytes	6-Bytes	7-Bytes	8-Bytes
Lowercase letters [26]	0.5s	12s	5m	2.2h	2.4d
Lowercase letters and digits [36]	1.7s	1m	36m	22h	33d
Alphanumeric characters [62]	15s	15m	16h	41d	6.9y
Printable characters [95]	1.4m	2.1h	8.5d	2.2y	210y
ASCII characters [128]	4.5m	9.5h	51d	18y	2300y
8-bit ASCII characters [256]	1.2h	13d	8.9y	2300y	580,000y

Poor key choice

- When people choose their own keys, they generally choose poor ones.
- They like to choose "Abdullah" rather than "@67dh4&".
- Because "Abdullah" is easy to remember than "@67dh4&".
- A smart brute-force attack does not try all possible keys in numerical order; it tries the obvious keys first.
- This is called a dictionary attack, because the attacker uses a dictionary of common keys.
- Daniel Klein was able to crack 40 percent of the passwords on the average computer using this system.

Random keys

- Good keys are random-bit strings generated by some automatic process.
- If the key is 64-bits long, every possible 64-bit key must be equally likely.
- Generate the key bits from either a reliably random source or a cryptographically secure pseudo-random-bit generator.

Pass Phrases

- A better solution is to use an entire phrase instead of a word, and to convert that phrase into a key.
- These phrases are called pass phrases.
- A technique called key crunching converts the easy-toremember phrases into random keys.
- Use a one-way hash function to transform an arbitrarylength text string into pseudo-random-bit string.
- For example, the easy to remember text string: Rajshahi university is the 2nd largest university of Bangladesh, students are over 26000.
 - Might crunch into this 64-bit key: 23ht 5t6r yu76 980y

Transferring Keys

- The X9.17 standard specifies two types of keys:
 - 1. Key encryption keys: which encrypt other keys for distribution.
 - Data keys: which encrypt message keys.
- This two-tiered key concept is used a lot in the key distribution.
- Another solution to the distribution problem splits the key into several different parts and sends each of those parts over a different channel.
- One part could be sent over the telephone, one by mail, one by overnight delivery service, one by carrier pigeon, and so on.

Transferring Keys Continue...

- Alice sends Bob the key-encryption key securely, either by a face to face meeting or the splitting technique just discussed.
- Once Alice and Bob both have the key encryption key, Alice can send Bob daily data keys over the same communications channel.
- Alice encrypts each data key with the key encryption key.
- Since the amount of traffic being encrypted with the key encryption key is low, it does not have to be changed as often.

Key Distribution in Large Network

- Key encryption keys works well in small networks, but can quickly get cumbersome if the networks become large.
- Since every pair of users must exchanges keys, the total no. of key exchanges required in an n-person network is n(n-1)/2.
- Example: for 6 person required 15 key exchanges. For 1000 person required nearly 500,000 key exchanges.
- In these cases, creating a central server makes the operation much more efficient.

Verifying Keys

- When Bob receives a key, how does he know it came from Alice and not from someone pretending to be Alice?
- If Alice gives it to him when they are face-to-face, its easy.
- If Alice sends it via a trusted courier, then Bob has to trust the courier.
- If the key is encrypted with the key encryption key, then Bob has to trust the fact that only Alice has the key.
- If Alice uses a digital signature protocol to sign the key, Bob has to trust the public key database when he verifies that signature.
- Bob could also verifies Alice's key over the telephone.
- If it's a public key, he can safely recite it in public.
- If it's a private key, he can use a one way hash function to verify the key.

Updating Keys

- If you want to change key daily, an easier way is to generate a new key from the old key; this is sometimes called key updating.
- All it takes is a one-way function.
- Key updating works, but remember that the new key is only as secure as the old was.
- If Eve managed to get her hands on the old key, she can perform the updating function herself.

Storing Keys

- Users can either directly enter the 64-bit key or enter the key as a longer character string. The system then generates a 64bit key from the character string using a key crunching technique.
- Another solution is to store the key in a magnetic stripe card, plastic key with embedded ROM chip, or smart card.
- User can then enter the key by inserting the physical token into a special reader in his encryption box or attached to the computer terminal.
- Hard to remember key can be stored in encrypted form, using something similar to a key-encryption key. For example, an RSA private key could be encrypted with a DES key and stored on disk. To recover the RSA key, the user has to type in the DES key to a decryption program.

Lifetime of Keys

- No encryption key should be used for an indefinite period.
 There are several reasons for this.
- The longer a key is used, the greater the chance that it will be compromised.
- The longer a key is used, the greater the loss if the key is compromised.
- The longer a key is used. The greater the temptation for someone to spend the effort necessary to break it.
- It is generally more easier to do cryptanalysis with more ciphertext encrypted with the same key.

Destroying Keys

- Old key must be destroyed.
- If the key is written on paper, the paper should be shredded or burned.
- If the key is in a hardware EEPROM, the key should be overwritten multiple times.
- If the key is in a hardware EPROM or PROM, the chip should be smashed into tiny bits and scattered to the four winds.
- If the key is stored on a computer disk, the actual bits of the storage should be overwritten multiple times or the disk should be shredded.

Public Key Management

- Alice can get Bob's public key several ways.
 - 1. She can get it from Bob.
 - 2. She can get it from centralized database.
 - 3. She can get from her own private database.