

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning

Christopher Manning

Introduction

- So far we've looked at "generative models"
 - Language models, Naive Bayes
- But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)
- Because:
 - They give high accuracy performance
 - They make it easy to incorporate lots of linguistically important features
 - They allow automatic building of language independent, retargetable NLP modules

Joint vs. Conditional Models

- We have some data {(d, c)} of paired observations
 d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):

P(c,d)

- All the classic StatNLP models:
 - n-gram models, Naive Bayes classifiers, hidden
 Markov models, probabilistic context-free grammars,
 IBM machine translation alignment models

Joint vs. Conditional Models

 Discriminative (conditional) models take the data as given, and put a probability over hidden structure given the data:

P(c|d)

- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden

Each node is a little classifier (conditional probability table) based on

incoming arcs c d_1 d_2 d_3

Naive Bayes

Generative

 $\begin{pmatrix} c \\ d_1 \end{pmatrix} \begin{pmatrix} d_2 \\ d_3 \end{pmatrix}$

Logistic Regression

Discriminative

Christopher Manning

Conditional vs. Joint Likelihood

- A joint model gives probabilities P(d,c) and tries to maximize this
 joint likelihood.
 - It turns out to be trivial to choose weights: just relative frequencies.
- A *conditional* model gives probabilities P(c|d). It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we'll see...)
 - More closely related to classification error.

Christopher Manning

Conditional models work well: Word Sense Disambiguation

Training Set	
Objective	Accuracy
Joint Like.	86.8
Cond. Like.	98.5

Test Set	
Objective	Accuracy
Joint Like.	73.6
Cond. Like.	76.1

- Even with exactly the same features, changing from joint to conditional estimation increases performance
- That is, we use the same smoothing, and the same word-class features, we just change the numbers (parameters)

(Klein and Manning 2002, using Senseval-1 Data)

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning