UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 12. oktober 2011.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 6 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Tallet 201201_3 (representert i 3-tallsystemet) er det samme som det desimale tallet

A: 493

B: 501

C: 541

D: 545

✓E: 532

Oppgave 2. Skrevet i totallssystemet blir det heksadesimale tallet $d.2a_{16}$

✓ **A:** 1101.0010101₂

B: 1110.1011111₂

C: 1001.0011011₂

D: 1101.0010110₂

E: 1101.0001111₂

Oppgave 3. Desimaltallet 0.3 kan skrives i 3-tallsystemet som

A: $0.0220021 \cdots_3$ der sifrene 0021 gjentas uendelig mange ganger

B: 0.02201₃

C: 0.0220022₃

D: $0.022022022022 \cdots_3$ der sifrene 022 gjentas uendelig mange ganger

 $\sqrt{\mathbf{E}}$: 0.02200220022 · · · 3 der sifrene 0022 gjentas uendelig mange ganger

Oppgave 4. For hvilket grunntall β vil det rasjonale tallet 1/6 kunne representeres med en endelig sifferutvikling?

A: $\beta = 2$

B: $\beta = 4$

√**C**: β = 12

D: $\beta = 10$

E: $\beta = 7$

Oppgave 5. Kun ett av følgende utsagn er sant, hvilket?

A: Datamaskiner vil aldri gi avrundingsfeil så lenge vi bare bruker positive tall

B: Det er ingen grense for hvor store tall vi kan arbeide med på en gitt datamaskin

C: Med 64 bits heltall kan vi representere tall av størrelse helt opp til 2^{65}

 $\sqrt{\mathbf{D}}$: Vi kan representere større tall med 64 bits flyttall enn med 64 bits heltall

 $\mathbf{E} \text{: } \mathbf{B} \mathbf{\mathring{a}} \mathbf{de} \ 1/6 \ \mathrm{og} \ 1/7 \ \mathrm{kan}$ representeres med endelige sifferutviklinger i 60-tallsystemet

Oppgave 6. Tallet

$$\frac{5-\sqrt{5}}{5+\sqrt{5}}+\frac{\sqrt{5}}{2}$$

er det samme som

A: $\sqrt{5}$

B: $1 + \sqrt{5}$

C: $(\sqrt{5}-1)/(\sqrt{5}+1)$

D: 1

✓**E:** 3/2

Oppgave 7. En følge er definert ved $x_n = n^{1/3}/(1 + 2n^{1/3})$ for $n \ge 1$. Hva er minste øvre skranke for tallmengden gitt ved $\{x_n \mid n \ge 1\}$?

✓**A:** 1/2

B: er ikke definert

C: 0

D: 1

E: $2^{1/3}$

Oppgave 8. Hva er Taylor-polynomet av grad 3 om a = 0 for funksjonen $f(x) = x/(1+x^2)$?

A:
$$x - x^2$$

B:
$$x + x^2$$

C:
$$x + x^3$$

D:
$$x - x^2 + x^3$$

$$\checkmark \mathbf{E} : x - x^3$$

Oppgave 9. Hva er Taylor-polynomet av grad 2 om a = 0 for funksjonen $f(x) = e^{\sin x}$?

A:
$$1 + x + x^2$$

B:
$$1 - x + x^2/2$$

C:
$$1 + x$$

$$\sqrt{\mathbf{D}}: 1 + x + x^2/2$$

E:
$$1 - x + x^2/3$$

Oppgave 10. For hvilken verdi av c blir Taylor-polynomet av grad 3 om a = 0 for funksjonen $f(x) = (\sin x) - 2x/(c + x^2)$ lik $x^3/3$?

A:
$$c = 1$$

B:
$$c = 0$$

C:
$$c = -1$$

√D:
$$c = 2$$

E:
$$c = -2$$

Oppgave 11. La β være et naturlig tall som er større enn 1, og sett

$$A(\beta) = \sum_{i=0}^{\beta-1} i\beta^i.$$

For hvilken verdi av β vil $1000 \le A(\beta) \le 10000$?

A:
$$\beta = 3$$

B:
$$\beta = 4$$

$$\checkmark$$
 C: $\beta = 5$

D:
$$\beta = 6$$

E:
$$\beta = 7$$

Oppgave 12. Vi tilnærmer funksjonen $f(x) = xe^{-x}$ med sitt Taylorpolynom av grad n om a = 0. Hva er minste verdi av n som gjør den absolutte feilen i tilnærmingen mindre enn 0.01 for alle x i intervallet [0,1]?

A:
$$n = 1$$

B:
$$n = 3$$

✓ C:
$$n = 5$$

D:
$$n = 6$$

E:
$$n = 8$$

Oppgave 13. Hvilket av følgende uttrykk vil kunne gi stor relativ feil for minst en verdi av x når det beregnes på datamaskin ved hjelp av flyttall?

A:
$$x^4 + 2$$

B:
$$x^2 + x^4$$

C:
$$5x^2 + 1$$

D:
$$x/(1+x^2)$$

✓ **E**:
$$1/2 + \sin(-x^2)$$

Oppgave 14. Hvis vi interpolerer datasettet

med et polynom av grad 3 blir interpolanten

A:
$$2x - 3x(x-1)/2 - 3x(x-1)(x-2)/6$$

B:
$$2x - 3x(x-1) + 5x(x-1)(x-2)/6$$

C:
$$2x - 3x(x-2)/2 + x(x-1)(x-2)/6$$

$$\sqrt{\mathbf{D}}$$
: $2x - 3x(x-1)/2 + 5x(x-1)(x-2)/6$

E:
$$2x - 3x(x-1)/2 + 5x(x-1)(x-2)/3$$

Vi minner om at dividerte differanser tilfredstiller de to relasjonene

$$f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_1, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}, \quad k > 0$$

og
$$f[x] = f(x)$$
.

Oppgave 15. Differensligningen

$$x_{n+1} - 2x_n = a2^n, \ n \ge 0, \quad x_0 = 0$$

har løsningen $x_n = n2^n$. Hva er da a?

A:
$$a = 0$$

B:
$$a = 1$$

C:
$$a = -1$$

$$\sqrt{\mathbf{D}}$$
: $a=2$

E:
$$a = 3$$

Oppgave 16. En annenordens, homogen, differensligning med konstante koeffisienter har den generelle løsningen

$$x_n = C3^n + D2^{-n}.$$

Hva kan ligningen da være?

$$\checkmark$$
A: $2x_{n+2} - 7x_{n+1} + 3x_n = 0$

B:
$$2x_{n+2} + 5x_{n+1} - 3x_n = 0$$

C:
$$2x_{n+2} + 7x_{n+1} + 3x_n = 0$$

D:
$$2x_{n+2} - 7x_{n+1} - 3x_n = 0$$

E:
$$2x_{n+2} + 7x_{n+1} - 3x_n = 0$$

(Fortsettes på side 5.)

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdi,

$$x_{n+2} - 4x_{n+1} + 4x_n = 3^n$$
, $n \ge 0$, $x_0 = 1$, $x_1 = 0$.

Hva er løsningen?

$$\checkmark$$
 A: $x_n = 3^n - 3n2^{n-1}$

B:
$$x_n = 3^{n+1} - 2^{n+1}$$

C:
$$x_n = (n+2)3^n - (n+1)2^n$$

D:
$$x_n = 1 - n$$

E:
$$x_n = 3^n$$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - 3x_n = 1$$
, $n \ge 1$, $x_1 = 1$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: 0

 \mathbf{B} : n

C: -1/6

✓**D:** overflow

E: 2

Oppgave 19. Vi har differensligningen

$$9x_{n+2} - 3x_{n+1} - 2x_n = 0$$
, $x_0 = 1$, $x_1 = -1/3$

og simulerer denne med 64-bits flyttall. For store n vil da den beregnede løsningen \bar{x}_n domineres av

A: 1

B: 1/2

C: $(-1/3)^n$

√D: $(2/3)^n$

E: $(1/3)^n$

Oppgave 20. For hvert naturlig tall $n \ge 4$ lar vi P_n betegne påstanden P_n : $n! > 2^n$.

Et induksjonsbevis for at P_n er sann for alle naturlige tall $n \geq 4$ kan være som følger:

- 1. Vi ser lett at P_4 er sann.
- 2. Anta nå at vi har bevist at P_4, \ldots, P_k er sanne. For å fullføre induksjonsbeviset, må vi vise at P_{k+1} også er sann. Fra induksjonshypotesen vet vi at $k! > 2^k$ så

$$(k+1)! = (k+1)k! > (k+1)2^k > 2 \cdot 2^k = 2^{k+1}.$$

Altså er også P_{k+1} sann.

Hvilket av følgende utsagn er sant?

A: Påstanden P_n er sann for $n \ge 4$, men del 2 av induksjonsbeviset er feil

B: Påstanden P_n er ikke sann for alle $n \geq 4$, og del 2 av induksjonsbeviset er feil

C: Påstanden P_n er ikke sann for alle $n \geq 4$, og del 1 av induksjonsbeviset er feil

 $\sqrt{\mathbf{D}}$: Påstanden P_n er riktig for alle $n \ge 4$ og induksjonsbeviset er riktig

E: Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!