MULTIPLE CHOICE QUESTIONS

Type I: Problems on Basic Definition:

1. Polar form of the complex number z = x + iy is

(1)

- (A) r $(\cos \theta + i \sin \theta)$
- (B) $r(\cos \theta i \sin \theta)$

(C) $(\cos \theta - i \sin \theta)$

- (D) $(\cos \theta + i \sin \theta)$
- 2. Exponential form of the complex number z = x + iy is

(1)

(B) $e^{i\theta}$

(C) re^{θ}

- (D) none of these
- Modulus of the complex number z = x + iy is

(1)

(A) $\sqrt{x^2 - y^2}$

(B) $\tan^{-1} \frac{y}{x}$

 $(x) \sqrt{x^2 + y^2}$

- (D) none of these
- 4. Argument of the complex number z = x + iy for x > 0, y > 0 is
- (1)

- $(A) \tan^{-1} \frac{y}{x}$
- (B) $\tan^{-1}\frac{x}{y}$
- (C) $\sqrt{x^2 + y^2}$
- (D) $\sqrt{x^2 y^2}$
- 5. If z = x + iy is the complex number then its complex conjugate z is equal to

(B) -x + iy

- (D) none of these
- 6. On Argand's diagram, complex number z = x + iy represents
- (1)

- (A) point on xoy-plane
- (B) line on xoy-plane
- (C) circle on xoy-plane
- (D) none of these
- 7. Two complex numbers z_1 and z_2 are comparable if

(1

- (A) z_1 and z_2 are real numbers
- (B) z_1 and z_2 are complex numbers
- (C) z_1 is complex number and z_2 is real number
- (D) z_1 is real number and z_2 is complex number

(1)

- 8. If z = x + i then arg (z) is equal to

(B) $\pi + \frac{\pi}{4}$

(C) $\pi - \frac{\pi}{4}$

(D) n

so the root

 $+ a^{2n} = 0$

ger.

(D)

