ECON 703, Fall 2007 Answer Key, HW6

1.

Let g(x) = f(x) - x, then g is continuous on [0,1]. $g(0)=f(0)-0 \ge 0$ (because $f(0) \in [0,1]$). $g(1)=f(1)-1 \le 0$ (because $f(1) \in [0,1]$).

If g(0) = 0, then 0 is a fixed point of f.

If g(1) = 1, then 1 is a fixed point of f.

Now consider that g(1) < 0 < g(0). We know that [0,1] is connected, and here g(x) is continuous, then by the Intermediate Value Theorem there exists $x_0 \in (0,1)$ s.t. g(x) = 0. Thus x_0 is a fixed point of f.

2.

Way1: Yes, f'(0) exists. By the mean value theorem, we have f(z) - f(0) = f'(w(z))z for some $w(z) \in (0, z)$. Hence $\frac{f(z) - f(0)}{z} = f'(w(z))$. Since $w(z) \to 0$ as $z \to 0$ and $\lim_{x \to 0} f'(x) = 3$, we see that $\lim_{x \to 0} \frac{f(z) - f(0)}{z} = 3$. Hence f'(0) exists and is equal to 3. Way2: $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \lim_{x \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to 0} \lim_{x \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to 0}$

3.

- (a) Since f is continuous and f(a) < 0 < f(b), by the Intermediate Value Theorem, there exists a $x^* \in (a,b)$ s.t. $f(x^*) = 0$. Furthermore, since f'(x) > 0 for all x, f is a strictly increasing function. Hence, x^* is the unique point which satisfies $f(x^*) = 0$.
- (b) x_{n+1} is the point where the tangent line at x_n hits the x-axis.
- (c) Since $x_{n+1} x_n = -\frac{f(x_n)}{f'(x_n)}$ and $f'(x_n) > 0$, we have $x_{n+1} x_n \le 0$ if we can show $f(x_n) \ge 0$. We know that $f(x^*) = 0$ and f'(x) > 0. So if $x_n \ge x^*$, then we will get $f(x_n) \ge 0$. We can use

induction to prove $x_n \ge x^*$.

We know that $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$. And $0 = f(x^*) = f(x_0) + f'(z)(x^* - x_0)$, so $x^* = x_0 - \frac{f(x_0)}{f'(z)}$. Because z is between x^* and x_0 , and $f''(x) \ge 0$, we have $f'(z) \le f'(x_0)$. Therefore, $x_1 \ge x^*$. Now suppose $x_n \ge x^*$. Again we have $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, and using Taylor expansion, we have $x^* = x_n - \frac{f(x_n)}{f'(z)}$, here z is between x^* and x_n . And again as $f'(z) \le f'(x_n)$, we get $x_{n+1} \ge x^*$.

Observe that the sequence $\{x_n\}$ is decreasing and bounded below by x^* , so it must have a limit. Denote this limit by x, then take limits on both sides of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, we will get $x = x - \frac{f(x)}{f'(x)}$. (here we used the fact that f is differentiable, then f is continuous. f' is differentiable, then f' is continuous. So $\lim_{x_n \to x} f(x_n) = f(x)$, and $\lim_{x_n \to x} f'(x_n) = f'(x)$) So f(x) = 0. By f'(x) > 0, we get $x = x^*$.

(d)Method 1: From part (c), we know that $x_{n+1} \ge x_0$. Now

$$x_{n+1} - x^* = x_n - \frac{f(x_n)}{f'(x_n)} - x^* = x_n - x^* - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - x^* - \frac{f'(x_n)(x_n - x^*) - \frac{1}{2}f''(z)(x_n - x^*)^2}{f'(x_n)} = \frac{f''(z)}{2f'(x_n)}(x_n - x^*)^2 \le \frac{M}{2c}(x_n - x^*)^2.$$

(Note, we have $f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(z)}{2}(x^* - x_n)^2$. So $f(x_n) = f'(x_n)(x_n - x^*) - \frac{f''(z)}{2}(x^* - x_n)^2$.

Method 2: By Taylor's Theorem, we have

$$f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(z_n)}{2}(x^* - x_n)^2.$$

Substituting $f(x^*) = 0$, dividing both sides by $f'(x_n)$ and using $x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)}$, we obtain the desired result.

(e) Observe that $\frac{f''(z_n)}{2f'(x_n)} \leq \frac{M}{2c} = A$. From (d), we have

$$(x_n - x^*) \le A(x_{n-1} - x^*)^2 \le A(A(x_{n-2} - x^*))^2 \le \dots \le \frac{1}{A}(A(x_0 - x^*))^{2n}$$

4.

Since g(x)=f(x)=0, we have the following equalities:

$$\frac{f(t)}{g(t)} = \frac{f(t) - f(x)}{g(t) - g(x)} = \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}}.$$

Take the limits as $t \to x$,

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}$$

(The reason we can take limit in the second equation is because that the limits of denominator and numerator both exist.) 5.

f'(x) exists at all points $x \in \mathbb{R}$: At points $x \neq 0$, f(x) is the product of two differentiable functions so f'(x) exists and is equal to $2x \sin \frac{1}{x} - \cos \frac{1}{x}$.

At x = 0, we have

$$\frac{x^2\sin\frac{1}{x}-0}{x-0}=x\sin\frac{1}{x}=x\sin\frac{1}{x}\leq x\to 0\ as\ x\to 0$$

. So f'(0) exists and is equal to 0.

f'(x) is not continuous at x = 0: Since $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, we have

$$f'(x) - f'(0) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$
.

We have shown above that $2x\sin\frac{1}{x}\to 0$ as $x\to 0$. But $\cos\frac{1}{x}$ does not converge. So f'(x)-f'(0) does not converge to 0 as $x\to 0$, and f'(x) is not continuous at x=0.