Learn Me a Haskell

Jacob Bishop

2023-07-01

1 INTRODUCTION 2

1 Introduction

2 Starting Out

第一个函数

在 ./test/ 文件夹下创建一个 baby.hs 的文件,写入:

```
doubleMe x = x + x
```

使用 ghci 加载该文件(在本项目根目录时使用:1 tests/baby):

```
ghci>:l baby
[1 of 1] Compiling Main (baby.hs, interpreted)
3 Ok, modules loaded: Main.
4 ghci> doubleMe 9
5 18
6 ghci> doubleMe 8.3
7 16.6
```

一个带有 if 的函数:

```
doubleSmallNumber x =
   if x > 100
   then x
   else x * 2
```

Haskell 中的 if 声明是一个 表达式,那么 else 是强制性的,因为表达式一定要有所返回。因此加上述函数可以改写为:

```
doubleSmallNumber' x = (if x > 100 then x else x * 2) + 1
```

这里的 ' 符号是 Haskell 中的有效字符,且在 Haskell 中并没有特殊的意义,因此可以用作于函数名。通常情况下,使用 ' 代表着一个函数(非懒加载的函数)的严格版本,或是一个有细微变化的函数或者变量。又因为 ' 是一个有效字符,那么可以创建以下函数:

```
conanO'Brien = "It's a-me, Conan O'Brien!"
```

这里又有两点值得注意的地方。首先,函数名不能以大写开头,稍后会进行说明;其次,该函数并没有任何入参。当一个函数没有入参,我们通常称其为一个 定义 definition,因为一旦定义了它便不能修改其名称,以及其返回。

list 的介绍

Haskell 中的 list 是 同质的 homogenous 数据结构。

Note

在 GHCI 中可以使用 let 关键字定义一个名称。换言之,GHCI 中的 let a=1 等同于脚本中的 a=1 。

通常使用 ++ 操作符将两个数组进行合并:

```
ghci> [1,2,3,4] ++ [9,10,11,12]
[1,2,3,4,9,10,11,12]
ghci> "hello" ++ " " ++ "world"

"hello world"
ghci> ['w','o'] ++ ['o','t']
"woot"
```

可以使用: 操作符将元素直接添加至数组头部:

```
1 ghci> 'A':" SMALL CAT"
2 "A SMALL CAT"
3 ghci> 5:[1,2,3,4,5]
4 [5,1,2,3,4,5]
```

实际上, [1, 2, 3] 是 1:2:3:[] 的语法糖, 其中 [] 为一个空数组。如果头部追加 3, [] 就变成了 [3], 再次进行头部追加 2,则变为 [2, 3],以此类推。

如果希望通过索引获取数组中的元素,那么可以使用!! 操作符:

```
ghci> "Steve Buscemi" !! 6
by 'B'
ghci> [9.4,33.2,96.2,11.2,23.25] !! 1
33.2
```

超出索引时则会报错。

数组还可以通过操作符 〈 , <= , == , > 以及 >= 操作符来进行比较,而比较的方式则是顺序比较。当进行头部比较元素相等时,再进行下一个元素进行比较。

数组的四种基础操作 head, tail, last 以及 init:

```
ghci > head [5,4,3,2,1]

ghci > tail [5,4,3,2,1]

[4,3,2,1]

ghci > last [5,4,3,2,1]

ghci > init [5,4,3,2,1]

[5,4,3,2]
```

当使用上述四种操作时,需要注意是否应用于空数组,这样的错误在编译期并不能被发现。 其它的操作:

- 1. length 获取数组长度;
- 2. null 检查数组是否为空;
- 3. reverse 翻转数组;
- 4. take 获取数组的头几个元素的数组;

- 5. drop 移除数组的头几个元素,并返回剩余元素的数组;
- 6. maximum 获取最大值;
- 7. minimum 获取最小值;
- 8. sum 求和;
- 9. product 求积;
- 10. elem 元素是否存在于数组中。

```
ghci > length [5,4,3,2,1]
1
2
   ghci > null [1,2,3]
   ghci> null []
6
    ghci> reverse [5,4,3,2,1]
9
    [1,2,3,4,5]
10
11
    ghci > take 3 [5,4,3,2,1]
12
    [5,4,3]
13
    ghci> take 1 [3,9,3]
14
15
   ghci > take 5 [1,2]
   ghci > take 0 [6,6,6]
18
19
20
    ghci > drop 3 [8,4,2,1,5,6]
21
    [1,5,6]
23
    ghci > drop 0 [1,2,3,4]
    [1,2,3,4]
24
    ghci> drop 100 [1,2,3,4]
25
26
27
    ghci > minimum [8,4,2,1,5,6]
28
29
    ghci > maximum [1,9,2,3,4]
30
31
32
    ghci> sum [5,2,1,6,3,2,5,7]
33
35
    ghci> product [6,2,1,2]
36
ghci > product [1,2,5,6,7,9,2,0]
```

Texas 排列

```
1  ghci> [1..20]
2  [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
3  ghci> ['a'..'z']
4  "abcdefghijklmnopqrstuvwxyz"
5  ghci> ['K'..'Z']
6  "KLMNOPQRSTUVWXYZ"
```

带有 step 的排列:

```
ghci> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
ghci> [3,6..20]
[3,6,9,12,15,18]
```

而对于浮点数的排列需要注意精度问题:

```
ghci> [0.1, 0.3 .. 1]
[0.1,0.3,0.5,0.7,0.899999999999999999999999999999]
```

以下是若干用于生产无限长度数组的函数:

cycle 循环周期:

```
ghci> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]
ghci> take 12 (cycle "LOL ")
"LOL LOL LOL "
```

repeat 重复:

```
ghci> take 10 (repeat 5)
[5,5,5,5,5,5,5,5,5]
```

另外就是 replicate 函数可以重复单个元素:

```
ghci> replicate 3 10
[10,10,10]
```

列表表达式

数学里的 集合表达式 set comprehensions 例如 $S=2\cdot x|x\in\mathbb{N},x\leq 10$; Haskell 中的列表表达式,例如 1 至 10 数组中每个元素乘以 2:

```
ghci> [x*2 | x <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]
```

为列表表达式添加条件(或称谓语 predicate):

```
ghci> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

ghci> [x | x <- [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]
```

将列表表达式置于一个函数中便于复用:

```
ghci> boomBangs xs = [ if x < 10 then "BOOM!" else "BANG!" | x <- xs, odd x]
ghci> boomBangs [7..13]
["BOOM!","BOOM!","BANG!","BANG!"]
```

多个谓语也是可以的:

```
ghci> [ x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20]
```

除此之外,还可以处理若干数组:

```
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110]
```

当然也可以加上谓语:

```
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]
[55,80,100,110]
```

那么对于字符串也可以使用列表表达式:

```
ghci> let nouns = ["hobo", "frog", "pope"]

ghci> let adjectives = ["lazy", "grouchy", "scheming"]

ghci> [adjective ++ " " ++ noun | adjective <- adjectives, noun <- nouns]

["lazy hobo", "lazy frog", "lazy pope", "grouchy hobo", "grouchy frog",

"grouchy pope", "scheming hobo", "scheming frog", "scheming pope"]
```

现在让我们编写一个自己的 length,命名 length'(这里的_ 意为无需使用的变量):

```
1 length' xs = sum [1 | _ <- xs]
```

由于字符串是数组,因此我们可以使用列表表达式处理并生产字符串。以下是一个移除所有字符但保留大写字符的函数:

```
removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']]
removeUppercase st = [ c | c <- st, c `notElem` ['A'..'Z']]
```

元组

在某种程度上,元组类似于数组 – 存储若干值至单个变量上。然而有一些基础的差异:数组长度可以无限,元组长度固定;数组中元素类型是同质的,而元组则可以是异质的 heterogenous。对于对元组(当且仅当包含两个元素)有以下操作:

fst 获取对元组的第一个元素:

```
ghci> fst (8,11)
8
ghci> fst ("Wow", False)
"Wow"
```

snd 获取对元组的第二个元素:

```
ghci> snd (8,11)
11
ghci> snd ("Wow", False)
4 False
```

另外一个有意思的函数则是 zip,它可以将两个数组按对拼接成对元组的数组

```
ghci> zip [1,2,3,4,5] [5,5,5,5,5]
[(1,5),(2,5),(3,5),(4,5),(5,5)]
ghci> zip [1 .. 5] ["one", "two", "three", "four", "five"]
[(1,"one"),(2,"two"),(3,"three"),(4,"four"),(5,"five")]
```

当两个数组的长度不一时, zip 则按最短的那个进行对齐,长的数组剩余部分则被丢弃,这是因为 Haskell 是懒加载的缘故。

```
ghci> zip [5,3,2,6,2,7,2,5,4,6,6] ["im","a","turtle"]
[(5,"im"),(3,"a"),(2,"turtle")]
ghci> zip [1..] ["apple", "orange", "cherry", "mango"]
[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]
```

3 Types and Typeclasses

相信类型

通过:t 命令可以得知类型:

```
ghci>:t 'a'
'a' :: Char
ghci>:t True
True :: Bool
ghci>:t "HELLO!"
"HELLO!" :: [Char]
ghci>:t (True, 'a')
(True, 'a') :: (Bool, Char)
ghci>:t 4 == 5
10 4 == 5 :: Bool
```

函数同样拥有类型:

```
ghci> :t doubleSmallNumber
doubleSmallNumber :: (Ord a, Num a) => a -> a
```

而对于有多个入参的函数而言:

```
ghci> addThree x y z = x + y + z
ghci> :t addThree
addThree :: Num a => a -> a -> a
```

参数由 -> 符分开,并且入参与返回的类型并无差异,之后我们讨论到为什么是由 -> 分割而不是 Int, Int, Int -> Int 或者其他样式的类型。

接下来是一些常规的类型:

Int: 对于 32 位的机器而言最大值大概是 2147483647 而最小值则是 2147483647。

Integer:同样也是整数,只不过范围会大很多,而 Int 则更高效率。

Float: 单精度。 Double: 双精度。 Bool: 布尔值。 Char: 字符。

类型变量

那么 head 函数的类型是什么呢?

```
ghci>:t head
head:: [a] -> a
```

这里的 a 则是一个 **类型变量 type variable**,这意味着 a 可以是任意类型。这非常像 其他语言的泛型,但唯有在 Haskell 中它更为强大,因为它允许我们可以轻易的编写通用的函

数,且不使用任何特定的行为的类型。带有类型变量的函数也被称为 **多态函数 polymorphic** functions。

Typeclasses 101

typeclass 类似于一个接口用于定义一些行为。如果一个类型是 typeclass 的一部分,这就意味着它支持并且实现了 typeclass 中所描述的行为。

那么 == 函数的类型签名是什么呢?

```
ghci> :t (==)
2 (==) :: Eq a => a -> a -> Bool
```

Note

== 操作符是一个函数, +, *, -, / 以及其它的操作符也都是。如果一个函数只包含特殊字符,那么默认情况下它被认做是一个中缀函数。如果想要检查它的类型,将其传递给另一个函数或作为前缀函数调用它,那么则需要用括号将其包围。

这里有趣的是 => 符号,在该符号之前的被称为一个 **类约束** class constraint。那么上述的类型声明可以被这么理解:等式函数接受任意两个相同类型的值,并返回一个 Bool,而这两个值必须是 Eq 类的成员(即类约束)。

Eq typeclass 提供了一个用于测试是否相等的接口。

而 elem 函数则拥有 (Eq a) => a -> [a] -> Bool 这样的类型,因为其在数组中使用了 == 用于检查元素是否为期望的值。

一些基础的 typeclasses:

Eq 如上所述。

Ord 覆盖了所有标准的比较函数例如 > , < , >= 以及 <= 。compare 函数接受两个同类型的 Ord 成员,并返回一个 ordering。Ordering 是一个可作为 GT , LT 或是 EQ 的类型,分别意为 大于,小于以及等于。

Show 可以表示为字符串。

Read 有点类似于 Show 相反的 typeclass, read 函数接受一个字符串并返回一个 Read 的成员。

```
ghci> read "True" || False
True
ghci> read "8.2" + 3.8

12.0
ghci> read "5" - 2
3
ghci> read "[1,2,3,4]" ++ [3]
[1,2,3,4,3]
```

但是如果尝试一下 read "4" 呢?

```
ghci> read "4"

cinteractive>:1:0:

Ambiguous type variable `a' in the constraint:

Read a' arising from a use of `read' at <interactive>:1:0-7

Probable fix: add a type signature that fixes these type variable(s)
```

这里 GHCI 告知它并不知道想要返回什么,通过检查 read 的类型签名:

```
ghci>:t read
read :: Read a => String -> a
```

也就是说其返回的是 Read 所约束的类型,那么如果在之后没有使用到它,则没有办法知晓其类型。我们可以显式的使用**类型注解**,即在表达式后面加上 :: 与指定的一个类型:

```
ghci> read "5" :: Int

ghci> read "5" :: Float

solution
for since the since the
```

大多数表达式可以被编译器推导出其类型,但是有时编译器并不知道返回值的类型,例如 read "5" 时该为 Int 还是 Float。那么为了知道其类型,Haskell 会解析 read "5"。然而 Haskell 是一个静态类型语言,因此它需要在代码编译前知道所有类型。

Enum 成员是序列化的有序类型 — 它们可被枚举。Enum typeclass 的主要优势是可以使用在列表区间;它们也同样定义了 successors 与 predecessors,即可使用 succ 以及 pred 函数。在这个类中的类型有:(),Bool Char,Ordering,Int,Integer,Float 以及 Double.

Bounded 成员拥有上下界:

```
1   ghci> minBound :: Int
2   -2147483648
3   ghci> maxBound :: Char
4   '\1114111'
5   ghci> maxBound :: Bool
6   True
7   ghci> minBound :: Bool
8   False
```

元组的成员如果为 Bounded 的一部分,那么元组也是:

```
ghci> maxBound :: (Bool, Int, Char)
(True,2147483647,'\1114111')
```

Num 是一个数值类:

```
1  ghci> :t 20
2  20 :: (Num t) => t
3  ghci> 20 :: Int
4  20
5  ghci> 20 :: Integer
6  20
7  ghci> 20 :: Float
8  20.0
9  ghci> 20 :: Double
10  20.0
```

这些类型都在 Num typeclass 内。如果检查 * 的类型,将会看到:

```
ghci> :t (*)
(*) :: (Num a) => a -> a
```

Integral 同样也是数值 typeclass。

Floating 包含 Float 与 Double。

fromIntegral 是一个处理数值的常用函数,而其类型为 fromIntegral :: (Num b, Integral a) => a -> b $_{\circ}$

4 Syntax in Functions

模式匹配

一个简单案例:

```
sayMe :: (Integral a) => a -> String
sayMe 1 = "One!"
sayMe 2 = "Two!"
sayMe 3 = "Three!"
sayMe 4 = "Four!"
sayMe 5 = "Five!"
sayMe x = "Not between 1 and 5"
```

一个递归案例:

```
factorial :: (Integral a) => a ->
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

模式匹配也可以失败:

```
charName :: Char -> String
charName 'a' = "Albert"
charName 'b' = "Broseph"
charName 'c' = "Cecil"
```

当输入并不是期望时:

```
ghci> charName 'a'

"Albert"

ghci> charName 'b'

"Broseph"

ghci> charName 'h'

"*** Exception: tut.hs:(53,0)-(55,21): Non-exhaustive patterns in function charName
```

即出现了非穷尽的匹配,因此我们总是需要捕获所有模式。

模式匹配也可用作于元组:

```
addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors a b = (fst a + fst b, snd a + snd b)
```

模式匹配也可作用于列表表达式:

```
ghci> let xs = [(1,3), (4,3), (2,4), (5,3), (5,6), (3,1)]
ghci> [a+b | (a,b) <- xs]
[4,7,6,8,11,4]</pre>
```

Note

x:xs 模式的使用很常见,特别是递归函数。但是包含:的模式只匹配长度为1或更多的数组。

如果希望获取前三个元素以及数组剩余元素,那么可以使用 x:y:z:zs,那么这样仅匹配有三个或以上的元素的数组。

其它案例:

```
tell :: (Show a) => [a] -> String
tell [] = "The list is empty"
tell (x:[]) = "The list has one element: " ++ show x
tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and " ++ show y
tell (x:y:_) = "This list is long. The first two elements are: " ++ show x ++ " and " ++ show
y
```

该函数是安全的,因为它考虑到了空数组,以及若干元素数组的情况。

之前通过列表表达式编写了 length 函数,现在可以通过模式匹配再加上递归的方式实现一遍:

```
length' :: (Num b) => [a] -> b
length' [] = 0
length' (_ : xs) = 1 + length' xs
```

接下来是实现 sum:

```
1  sum' :: (Num a) => [a] -> a
2  sum' [] = 0
3  sum' (x:xs) = x + sum' xs
```

同样还有一种被称为 as 模式的,即在模式前添加名称以及 @ 符号,例如 xs@(x:y:ys),该模式将匹配 x:y:ys,同时用户可以轻易的通过 xs 来获取整个数组,而无需重复使用 x:y:ys 进行表达:

```
capital :: String -> String
capital "" = "Empty string, whoops!"
capital all@(x : xs) = "The first letter of " ++ all ++ " is " ++ [x]
```

最后,用户在模式匹配中不能使用 ++ 符号。

守护!

守护是一种检测值的某些属性是否为真,看上去像是 if 语句,但是其可读性更强:

```
bmiTell :: (RealFloat a) => a -> String
bmiTell bmi

| bmi <= 18.5 = "You're underweight, you emo, you!"</pre>
```

```
| bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"
| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"
```

守护是由管道符并接着一个函数名以及函数参数进行定义的。守护本质上就是一个布尔表达式,如果为 True ,那么其关联的函数体被执行;如果为 False ,那么检查则会移至下一个守护,以此类推。

大多数时候最后一个守护是 otherwise , 其被简单的定义为 otherwise = True 并捕获所有情况。

当然我们可以使用任意参数的函数来守护:

```
bmiTell' :: (RealFloat a) => a -> a -> String
bmiTell' weight height

weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"

weight / height ^ 2 <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"

weight / height ^ 2 <= 30.0 = "You're fat! Lose some weight, fatty!"

otherwise = "You're a whale, congratulations!"</pre>
```

另外我们可以实现自己的 max 与 compare 函数:

Note

我们不仅可以通过引号来调用函数,也可以使用引号来定义他们,有时这样会更加便于阅读。

Where!?

上一节的 bmiTell' 函数中的 weight / height ^ 2 被重复了三遍,可以只计算一次并通过名称来绑定计算结果:

```
bmiTell'' :: (RealFloat a) => a -> a -> String
bmiTell'' weight height

| bmi <= 18.5 = "You're underweight, you emo, you!"
| bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"
| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"</pre>
```

```
6  | otherwise = "You're a whale, congratulations!"
7  where
8  bmi = weight / height ^ 2
```

我们在守护的结尾添加了 where 并定义了 bmi 这个名称,这里定义的名称对整个守护可见,这样就无需再重复同样代码了。那么我们可以进行更多的定义:

```
bmiTell''' :: (RealFloat a) => a -> a -> String
bmiTell''' weight height

| bmi <= skinny = "You're underweight, you emo, you!"
| bmi <= normal = "You're supposedly normal. Pffft, I bet you're ugly!"
| bmi <= fat = "You're fat! Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"

where
bmi = weight / height ^ 2
skinny = 18.5
normal = 25.0
fat = 30.0</pre>
```

当然我们可以通过模式匹配来进行变量绑定!上面 where 中的代码可以改写为:

```
where
bmi = weight / height ^ 2
(skinny, normal, fat) = (18.5, 25.0, 30.0)
```

现在让我们编写另一个相当简单的函数用作获取名字首字母:

```
initials :: String -> String -> String
initials first_name last_name = [f] ++ ". " ++ [1] ++ "."

where
(f : _) = first_name
(1 : _) = last_name
```

我们可以直接将模式匹配应用于函数参数。

另外,正如我们可以在 where 块中定义约束,我们也可以定义函数:

```
calcBmis :: (RealFloat a) => [(a, a)] -> [a]
calcBmis xs = [bmi w h | (w, h) <- xs]
where
bmi weight height = weight / height ^ 2</pre>
```

where 绑定也可以是嵌套的,这在编写函数中很常见: 定义一些辅助函数在函数 where 子句,然后这些函数的辅助函数又在其自身的 where 子句中。

Let 的用法

与 where 绑定很相似的是 let 绑定。前者是一个语法构造器用于在函数的尾部进行变量 绑定,这些变量可供整个函数使用,包括守护;而后者则是在任意处绑定一个变量,其自身为 表达式,不过只在作用域生效,因此不能被守护中访问。与 Haskell 其他任意的构造一样,let 绑定也可使用模式匹配:

```
cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
let sideArea = 2 * pi * r * h
topArea = pi * r ^ 2
in sideArea + 2 * topArea
```

这里的结构是 let <bindings> in <expression> 。在 *let* 中定义的名称可以在 *in* 之后的表达式中访问。这里同样要注意缩进。现在看来 let 仅仅将绑定提前,与 where 的作用无异。

不同点在于 let 绑定是表达式自身,而 where 仅为语法构造。还记得之前提到过的 if else 语句是表达式,可以在任意处构造:

```
ghci> [if 5 > 3 then "Woo" else "Boo", if 'a' > 'b' then "Foo" else "Bar"]
["Woo", "Bar"]
ghci> 4 * (if 10 > 5 then 10 else 0) + 2
4 42
```

那么 let 绑定也可以:

```
ghci> 4 * (let a = 9 in a + 1) + 2
2 42
```

同样可以在当前作用域引入函数:

```
ghci> [let square x = x * x in (square 5, square 3, square 2)]
[(25,9,4)]
```

如果想要绑定若干变量,我们显然不能再列上对齐它们。这就是为什么需要用分号进行分隔:

```
ghci> (let a = 100; b = 200; c = 300 in a*b*c, let foo="Hey"; bar = "there!" in foo ++ bar)

(6000000, "Hey there!")
```

正如之前提到的,可以将模式匹配应用于 let 绑定:

```
ghci> (let (a,b,c) = (1,2,3) in a+b+c) * 100
2 600
```

当然也可以将 let 绑定置入列表表达式中:

```
calcBmis' :: (RealFloat a) => [(a, a)] -> [a]
calcBmis' xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]
```

将 let 置入列表表达式中类似于一个子句,不过它不会对列表进行筛选,而仅仅绑定名称。 该名称可被列表表达式的输出函数可见(即在符号 I 前的部分),以及所有的子句,以及绑定 后的部分。因此我们可以让函数继续进行筛选:

```
calcBmis'' :: (RealFloat a) => [(a, a)] -> [a]
calcBmis'' xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2, bmi >= 25.0]
```

我们不能在(w, h) <- xs 中使用 bmi, 因为它在 let 绑定之前。

在列表表达式中使用 let 绑定可以省略 in 的那部分,这是因为名称的可视范围已经被预定义好了。不过我们还是可以在一个子句中使用 let in 绑定,该名称仅可在该子句中可见。在 GHCi 中定义函数与常数时,in 部分同样也可以省略。如果这么做了,那么该名称可以被整个交互过程中可见。

```
ghci> let zoot x y z = x * y + z
ghci> zoot 3 9 2

ghci> let boot x y z = x * y + z in boot 3 4 2

14
6 ghci> boot
7 <interactive>:1:0: Not in scope: `boot'
```

Case 表达式

以下两端代码表达的是同样一件事,它们互为可替换的。

```
head' :: [a] -> a
head' [] = error "No head for empty lists!"
head' (x:_) = x

head' :: [a] -> a
head' xs = case xs of [] -> error "No head for empty lists!"

(x:_) -> x
```

正如所见的那样, case 表达式的语法特别简单:

```
case expression of pattern -> result
pattern -> result
pattern -> result
...
```

expression 与模式匹配。模式匹配的行为正如预期那样:首个匹配上表达式的那个模式将被使用。如果直到最后都没有合适的模式被找到,那么将会抛出运行时错误。

函数参数的模式匹配只能在定义函数时完成,而 case 表达式则可以在任意处使用。例如:

```
describeList :: [a] -> String
describeList xs =

"The list is " ++ case xs of
[] -> "empty."

[x] -> "a singleton list."

xs -> "a longer list."
```

case 表达式可以对表达式中间的模型内容进行模式匹配。函数定义中的模式匹配是 case 表达式的语法糖,因此我们也可以这样定义:

19

```
describeList':: [a] -> String
describeList' xs = "The list is " ++ what xs

where
what [] = "empty."
what [x] = "a singleton list."
what xs = "a longer list."
```

5 Recursion

你好递归!

递归对于 Haskell 而言很重要,因为不同于其他命令式语言,Haskell 中的计算是通过声明某物,而不是声明如何获取。这就是为什么 Haskell 中没有 while 循环以及 for 循环,取而代之的则是递归。

Maximum

maximum 函数接受一组可排序的列表(例如 Ord typeclass 的实例),并返回它们之间最大的那个。

现在让我们看一下如何递归的实现这个函数。我们首先可以确立一个边界条件,同时声明该列表的最大值等同于列表中的唯一元素,接着声明如果头大于尾时长列表的头是最大值,如果尾更大那么继续上述过程:

如上所示,模式匹配与递归非常的相配! 大多数命令式语言并没有模式匹配,因此需要编写一堆 if else 声明来测试边界条件。而 Haskell 中仅需令它们成为模版。这里使用了 where 绑定来定义 maxTail 作为列表尾的最大值。

更多的递归函数

让我们使用递归再来实现一些函数。首先是 replicate ,接受一个 Int 以及一些元素,返回一个列表拥有若干重复的元素。

这里使用守护而不是模式是因为需要测试一个布尔值条件。

Note

Num 并不是 Ord 的子类,也就是说一个数值的组成并不依赖于排序。这就是为什么在做加 法或减法或比较时,需要同时指定 Num 与 Ord 的类约束。

接下来是实现 take:

注意这里使用了 _ 来匹配列表,因为我们并不关心列表里面的情况;同时,我们使用了一个守护,但是并没有 otherwise 部分,这意味着如果 n 大于 0 的情况下,匹配将会失败并跳转到下一个匹配。第二个匹配指明如果尝试从空列表中提取任何元素,返回空列表。第三个模式将一个列表分割成一个头与一个尾,接着将从一个列表中获取 n 个元素相等于拥有 n 头与一个尾视作一个列表获取 n 1 元素。

接下来是 reverse 函数:

```
reverse':: [a] -> [a]
reverse' [] = []
reverse' (x : xs) = reverse' xs ++ [x]
```

由于 Haskell 支持无线列表, reverse 并没有一个真正的边界检查, 但是如果不这么做, 那么则会一直计算下去或者生产出一个无限的数据结构, 类似于无限列表。无限列表的好处是我们可以在任意处进行截断。然后是 repeat 函数, 其返回一个无限列表:

```
repeat'::a -> [a]
repeat' x = x:repeat' x
接下来是 zip 函数:

zip'::[a] -> [b] -> [(a, b)]
zip'_[] = []
zip'[]_ = []
zip'(x:xs)(y:ys) = (x, y):zip'xs ys
最后一个是 elem 函数:
```

快排!

这里是主要算法:排序列表是这样的一个列表,它包含所有小于(或等于)前面的列表头的值(这些值都是排序过的),然后是中间的列表头然后是所有大于列表头的值(它们也是排序过的)。注意定义中两次提到了排序,那么我们将进行两次递归!同样也注意我们使用的是动词 is 在算法中进行定义,而不是做这个,做那个,再做另一个... 这就是函数式编程的魅力:

```
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =

let
smallerSorted = quicksort [a | a <-xs, a <= x]
biggerSorted = quicksort [a|a<- xs, a>x]
in
smallerSorted ++ [x] ++ biggerSorted
```

测试:

```
ghci> quicksort [10,2,5,3,1,6,7,4,2,3,4,8,9]
[1,2,2,3,3,4,4,5,6,7,8,9,10]
ghci> quicksort "the quick brown fox jumps over the lazy dog"

" abcdeeefghhijklmnoooopqrrsttuuvwxyz"
```


6 Higher Order Functions

柯里化函数

在 Haskell 中每个函数实质上仅接受一个参数。那么迄今为止定义的那么多函数是怎么接受多个参数的呢? 这是就是**柯里化函数 curried functions**。

```
1 ghci> max 4 5
2 5
3 ghci> (max 4) 5
4 5
```

两个参数间用空格间隔就是简单的**函数应用 function application**。空格类似于一个操作符,其拥有最高的优先级。例如 max ,其签名为 max :: (Ord a) => a -> a ,可以被重写为 max :: (Ord a) => a -> (a -> a),可以这么理解: max 接受一个 a 并返回(即 ->)一个函数,该函数接受一个 a 并返回一个 a 。这就是为什么返回值类型以及函数的参数都是由箭头符进行分隔的。

那么这样做有什么便利?简单来说如果调用一个仅几个参数的函数,我们得到的是一个**部**分应用 partially applied 的函数,即一个函数接受的参数与留下未填的参数一样多。

来观测一个简单的函数:

```
multThree :: (Num a) => a -> a -> a
multThree x y z = x * y * z
```

当使用 multThree 3 5 9 或者 ((multThree 3) 5) 9 时到底发生了什么? 首先, 3 应用至 multThree, 因为它们由空格进行了分隔(最高优先级)。这就创建了一个接受一个参数的函数,并返回了一个函数。接下来 5 被应用至该函数,以此类推。记住我们的函数类型同样也可以重写成 multThree::(Num a) => a -> (a -> a))。接下来观察:

```
ghci> let multTwoWithNine = multThree 9
ghci> multTwoWithNine 2 3

54
ghci> let multWithEighteen = multTwoWithNine 2
ghci> multWithEighteen 10

180
```

调用函数时输入不足的参数,实际上实在创造新的函数。那么如果希望创建一个函数接受一个值并将其与 100 进行比较呢?

```
compareWithHundred :: (Num a, Ord a) => a -> Ordering
compareWithHundred x = compare 100 x
```

如果带着 99 调用它,返回一个 GT。注意 x 同时位于等式的右侧。那么调用 compare 100 返回的是什么呢?它返回一个接受一个数值参数并将其与 100 进行比较的函数。现在将其重写:

```
compareWithHundred :: (Num a, Ord a) => a -> Ordering
compareWithHundred = compare 100
```

类型声明仍然相同,因为 compare 100 返回一个函数。compare 的类型是 (Ord a) -> a -> (a -> Ordering),带着 100 调用它返回一个 (Num a, Ord a) => a -> Ordering。这里额外的类约束溜走了,这是因为 100 同样也是 Num 类的一部分。

中缀函数同样可以通过使用分割被部分应用。要分割中缀函数,只需将其用圆括号括起来,并只在一侧提供参数:

```
divideByTen :: (Floating a) => a -> a
divideByTen = (/10)
```

调用 divideByTen 200 等同于 200 / 10 , 等同于 (/10) 200 。

那么如果在 GHCI 中尝试 multThree 3 4 而不是通过 *let* 将其与名称绑定,或是将其传递至另一个函数呢?

```
ghci> multThree 3 4

<interactive>:1:0:

No instance for (Show (t -> t))

arising from a use of `print' at <interactive>:1:0-12

Possible fix: add an instance declaration for (Show (t -> t))

In the expression: print it

In a 'do' expression: print it
```

GHCI 会提示我们表达式生成了一个类型为 a -> a 的函数,但是并不知道该如何将其打印至屏幕。函数并不是 Show typeclass 的实例,因此我们并不会得到一个函数的展示。

一些高级是在于顺序

函数可以接受函数作为其参数,也可以返回函数。

```
applyTwice :: (a -> a) -> a -> a

applyTwice f x = f (f x)
```

首先注意的是类型声明。之前我们是不需要圆括号的,因为 -> 是自然地右结合。然而在这里却是强制性的,它们表明了第一个参数是一个接受某物并返回某物的函数,第二个参数同上所述。我们可以用柯里化函数的方式来进行解读,不过为了避免头疼,我们仅需要说该函数接受两个参数并返回一个值。这里第一个参数是一个函数(即类型 a -> a),而第二个参数则是a。

函数体非常的简单,仅需要使用参数 $\mathbf f$ 作为一个函数,通过一个空格将 $\mathbf x$ 应用至其,接着再应用一次 $\mathbf f$ 。

```
ghci> applyTwice (+3) 10

16

ghci> applyTwice (++ " HAHA") "HEY"

"HEY HAHA HAHA"

ghci> applyTwice ("HAHA " ++) "HEY"

"HAHA HAHA HEY"
```

```
7 ghci> applyTwice (multThree 2 2) 9
8 144
9 ghci> applyTwice (3:) [1]
10 [3,3,1]
```

可以看到单个高阶函数可以被用以多种用途。而在命令式编程中,通常使用的是 for 循环、while 循环、将某物设置为一个变量、检查其状态等等,为了达到某些行为,还需要用接口将其封装,类似于函数;而函数式编程则使用高阶函数来抽象出相同的模式。

现在让我们实现一个名为 flip 的标准库已经存在的函数,其接受一个函数并返回一个类似于原来函数的函数,仅前两个参数被翻转。简单的实现:

```
filp' :: (a -> b -> c) -> (b -> a -> c)
filp' f = g
where
g x y = f y x
```

观察类型声明,flip'接受一个函数,该函数接受一个 a 与 b ,并返回一个函数,该返回的函数接受一个 b 与 a 。然而默认情况下函数是柯里化的,第二个圆括号是没有必要的,因为 -> 默认是右结合的。(a -> b -> c) -> (b -> a -> c) 等同于 (a -> b -> c) -> (b -> a -> c 。我们可以用更简单方式来定义该函数:

```
filp'' :: (a -> b -> c) -> b -> a -> c
filp'' f y x = f x y
```

这里我们利用了函数都是柯里化的便利。当不带参数 y 与 x 时调用 flip'' f 时,它将返回一个 f ,该函数接受两个参数,只不过它们的位置是翻转的。

```
ghci> flip' zip [1,2,3,4,5] "hello"
[('h',1),('e',2),('l',3),('l',4),('o',5)]
ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]
[5,4,3,2,1]
```

7 MODULES 27

7 Modules

8 Making Our Own Types and Typeclasses

9 Input and Output

10 Functionally Solving Problems

11 Functors, Applicative Functors and Monoids

12 A Fistful of Monads

13 For a Few Monads More

14 ZIPPERS 34

14 Zippers