

we can olse consider the following more formal definition of wear solution
Sormal definition of wear solution
$d\varphi: C_0^1(\mathbb{R}^2) = \{ \varphi(n, t) \mid \varphi(n, t) \in C'(\mathbb{R}^2) \}$
and $\varphi(x,t)=0$ outside a bounded
subjet of IR2}
C' functions with bounded (or conjuct
part of the domain where the function is non-zero
des: u(x,t/is called a wear solution
of PDE (1) if, $\forall \varphi(\chi, \xi) \in C_0^1(\mathbb{R}^2)$,
are then not infinitely many tump fail to finitely many tump fail to finitely many tump fail to functions that, softly, this at a discortanily?? - So (u cf + f(u) cf2) dx dt - Perhaps this infinity -> zero with regard to the set of tumps that do solvity the consumation but.
$-\int_{-\infty}^{\infty} u(x_0) \varphi(x_0) dx = 0$ Integration by part
-00 Integration by part
note: the relevant weak solutions
are piecewise C'
•

def: u(x,t/is called a weat solution of PDE (1) of, \forall $\varphi(x, \epsilon) \in Col(\mathbb{R}^2)$, $-\int_{0}^{\infty}\int_{-\infty}^{\infty}\left(u\varphi_{t}+f(u)\varphi_{x}\right)dxdt$ $-\infty$ $-\int_{-\infty}^{\infty} u(x_0) \varphi(x_0) dx = 0$ line with classical solutions: Consider IVP $\begin{cases} u \in f(u) = 0 \\ \Omega : (x, t) \in \mathbb{R} \times \mathbb{R}^+ \end{cases}$ $\begin{cases} u \in f(u) = u \in (x) \\ u \in f(u) = u \in (x) \end{cases}$ $\begin{cases} u \in f(u) = u \in (x) \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ $\begin{cases} u \in f(u) = 0 \\ u \in f(u) = 0 \end{cases}$ The SS que dredt + SS q g(u)n dredt=D

The property of the formation

The property of the prop $+ \int (\varphi u)|_{t=0}^{t=\infty} dsc + \int (\varphi g(u))|_{x=-\infty} dt = 0$ bump function evaluates $\forall \varphi$ to zero $-\int_{\infty}^{\infty} (\varphi_{t} u + \varphi_{n} g(u)) dx dt$ $-\int_{\infty}^{\infty} \varphi(x_{i0}) u(x_{i0}) dx = 0$ $\forall \varphi$