CONDENSED HETER YCLIC DERIVATIVE

Best Available

Patent number:

JP5140149

Publication date:

1993-06-08

Inventor:

GOTO GIICHI; others: 02

Applicant:

TAKEDA CHEM IND LTD

Classification:

- international:

C07D401/06; A61K31/445; A61K31/55; C07D405/06;

C07D409/06

- european:

Application number: JP19910305062 19911120

Priority number(s):

Also published as:

EP0487071 (A1) US5273974 (A1) IE914053 (A1) HU211130 (A9) FI982436 (A)

more >>

Abstract of JP5140149

PURPOSE: To obtain a new compound, especially useful for prevention and treatment for geriatric dementia, Alzheimer syndrome, etc., as a choline esterase inhibitor.

CONSTITUTION:A compound of formula I [X is R<1>N (R<1> is H, hydrocarbon or acyl), O or S; R<2> is H or hydrocarbon; ring A is benzene ring; K is 0-3; (m) is 1-8; (n) is 1-6], e.g. 8-[1-oxo-3-[1-(phenylmethyl) piperidin-4-yl]propyl]-2,3,4,5- tetrahydro-1H-1-benzazepin. The compound of formula I is obtained by reacting a compound of formula II with a compound of formula III (Y is eliminable group; Z is protecting group of amino) and then deprotecting an amino group. The compound exhibits strong choline esterase inhibiting activity by acting on a central nerve system.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

THIS PAGE BLANK (USPTO)

最終頁に続く

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-140149

(43)公開日 平成5年(1993)6月8日

(51) Int.Cl. ⁵ C 0 7 D 401/06	識別記号	庁内整理番号 8829-4C	F I	技術表示箇所			
A 6 1 K 31/445	AAM	7252-4C					
31/55	AED	7252-4C	•				
C 0 7 D 405/06	2 1 1	8829-4C					
409/06	2 1 1	8829-4C					
			1	審査請求 未請求 請求項の数10(全 76 頁)			
-(21)出願番号	特願平3-305062		(71)出願人	000002934			
				武田薬品工業株式会社			
(22)出願日	平成3年(1991)11	月20日		大阪府大阪市中央区道修町四丁目1番1号			
•			(72)発明者	後藤義一			
(31)優先権主張番号	特顯平2-319897			大阪府豊能郡豊能町光風台5丁目6番地の			
(32)優先日	平 2 (1990)11月22	:日		11			
(33)優先権主張国	日本(JP)		(72)発明者	宮本 政臣			
(31)優先権主張番号	特願平3-70286			兵庫県宝塚市中山五月台7丁目2番504号			
(32)優先日	平3 (1991) 1月14	B	(72)発明者	石原 雄二			
(33)優先権主張国	日本(JP)			兵庫県伊丹市山田宇野畑14番地の8			
(31)優先権主張番号	特願平3-209358		(74)代理人	弁理士 岩田 弘 (外4名)			
(32)優先日	平3 (1991) 8月21	. 日		•			

(54) 【発明の名称】 縮合複素環誘導体

(57) 【要約】

【構成】一般式

(33)優先権主張国

【化1】

$$(CH_2)_1 \qquad A \qquad C - (CH_2)_1 \qquad N - R^2$$

日本(JP)

- 〔式中、XはR¹-N<(R¹は水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよいアシル基を示す),酸素原子または硫黄原子を示し、R²は水素原子または置換基を有していてもよい炭化水素基を示し、環Aは置換基を有していてもよいペンゼン環を、kは0~3の整数を、mは1~8の整数を、nは1~6の整数を示す。〕で表わされる縮合複素環誘導体、その塩、製造法及び剤。

【効果】目的化合物は、コリンエステラーゼ阻害剤、特に老年期痴呆、アルツハイマー病等における治療、予防薬として有用である。

【特許請求の範囲】 【請求項1】式 *【化1】

〔式中、XはR¹-N<(R¹は水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよいアシル基を示す)、酸素原子または硫黄原子を示し、R²は水素原子または置換基を有していてもよい炭化水素基を示し、環Aは置換基を有していてもよいベンゼン環を、kは0~3の整数を、mは1~8の整数を、nは1~6の整数を示す。〕で表わされる縮合複素環誘導体またはその塩。

【請求項2】 XがR¹-N<(R¹ は請求項1記載と同意 義を示す)である請求項1記載の化合物。

【請求項3】 kが0、mが2~7の整数である請求項2※

※記載の化合物。

ていてもよい炭化水素基または置換基を有していてもよ 【請求項 4】 R^2 が水素原子、または C_{1-4} アルキル、ハいアシル基を示す)、酸素原子または硫黄原子を示し、 ロゲン、ニトロもしくは C_{1-4} アルコキシで置換されて R^2 は水素原子または置換基を有していてもよい炭化水 10 いてもよい C_{7-10} アラルキル基、k が $0 \sim 2$ の整数、n 素基を示し、環Aは置換基を有していてもよいベンゼン が $1 \sim 3$ の整数である請求項 1 記載の化合物。

【請求項 5】 R^1 が水素原子、直鎖状もしくは分枝状 C_{1-7} アルキル基、 C_{7-10} アラルキル基または C_{2-8} アルキールカルボニル基である請求項 4 記載の化合物。

【請求項6】

[4:2]

 $[R^3$ は水素原子または C_{1-3} アルキル基を示す]、

nが2、 R^2 がベンジル基である請求項1記載の化合物。

【請求項7】8- [1-オキソ-3-[1-(フェニルメチル) ピペリジン-4-イル] プロピル] -2,3,4,5-テトラヒドロ-1H-1-ベンズアゼピンまたはそのフマル酸塩である請求項1記載の化合物。

【請求項8】式

【化3】

[式中、X、環A, kおよびmは請求項1記載と同意義を示す。] で表わされる化合物と、式

[化4]

$$\begin{array}{c}
0 \\
Y - C - (CH_2)n - N - Z
\end{array} (II)$$

[式中、Yは脱離基を、2はアミノ基の保護基を、nは より詳しくはコリンエ $1\sim 6$ の整数を示す。] で表わされる化合物またはその 呆、アルツハイマー病 塩とを反応させた後、脱保護反応に付し、さらに必要に 50 防剤として有用である。

応じて、

- 30 i) R²が水素原子である生成物(I)またはその塩と式 R²'-Y[式中、R²'は置換基を有していてもよい炭 化水素基を、Yは前記と同意義を示す。]で表わされる 化合物とを反応させる、または(および)
 - ii) XがH-N<である生成物(I)またはその塩と式R
 ''-Y [式中、R''は置換基を有していてもよい炭化 水素基または置換基を有していてもよいアシル基を、Y は前記と同意義を示す。] で表わされる化合物とを反応 させることからなる請求項1記載の化合物(I) または その塩の製造法。
- 40 【請求項9】請求項1記載の化合物(I)またはその塩を含有するコリンエステラーゼ阻害剤。

【請求項10】老年期痴呆症治療・予防剤として用いられる請求項9記載のコリンエステラーゼ阻害剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、新規な縮合複素環誘導体及びその塩に関する。この発明の化合物は、医薬、より詳しくはコリンエステラーゼ阻害剤、特に老年期痴呆、アルツハイマー病等における老年期痴呆症治療・予防剤として有用である。

[0002]

【従来の技術】社会の高齢化が進む中で、種々の老年期 痴呆治療・予防作用を有する化合物が提案されている。 その中にあって、コリンエステラーゼ阻害剤である天然 物のフィゾスチグミンに老年期痴呆症治療・予防作用が 見い出されている(International Journal of Clinical Pharmacology, Therapy and Toxicology, Vol. 29, No. 1, p. 23-37(1991)等)。しかし、フィゾ スチグミンは、作用持続時間が短い、毒性が強いなどの 欠点を有している。一方、合成品として、種々の異項環 10 化合物が提案されている。例えば、EP-A-O, 37 8, 207、特開昭62-234065号、特開昭64 - 79151号及び特開平2-169569号には含窒 素異項環を有するコリンエステラーゼ阻害剤が記載され*

* ており、また特開昭52-72829号及び特開昭55 -9070号には上記コリンエステラーゼ阻害剤と化学 構造が類似する抗うつ剤または抗不安剤が記載されてい

[0003] 詳しくは、EP-A-O, 378, 207 には、式

【化5】

$$B = A - \left[(CH_2)n - N \left(\frac{R_2}{R_3} \right) \right]_p$$

[式中、Bは置換されていてもよい飽和又は不飽和の5 ~7員アザ複素環状基を示し、Aは結合手又は炭化水素 残基、オキソ基若しくはヒドロキシ基で置換さ 【化61

れていてもよいアルキレン基又はアルケニレン基を示し、....... は単結合若し

くは二重結合を示し(但し、Aが結合手を表す時は:::::: は単結合を表す)、

R₂, R₂はそれぞれ独立して水素原子若しくは置換基を 有していてもよい炭化水素残基を示すか(但し、同時に 状アミノ基を形成していてもよく、nは0,1又は2を 示し、pは1又は2を示す]で表わされる環状アミン化 合物およびその塩、具体的には下記の化合物

【化7】

は、式

[化8]

$$R^1 - X - A - R^2$$

[式中、R1は置換若しくは無置換のベンゼン、ピリジ ン、ピラジン、インドール、アントラキノン、キノリ ン、置換若しくは無置換のフタールイミド、ホモフター ルイミド、ピリジンカルボン酸イミド、ピリジンーN-※

※オキサイド、ピラジンジカルポン酸イミド、ナフタレン ジカルボン酸イミド、置換若しくは無置換のキナゾリン 水素原子ではない)又は、隣接する窒素原子とともに環 20 ジオン、1,8-ナフタールイミド、ビシクロ〔2.2. 2) オクト-5-エン-2,3-ジカルポン酸イミド、 ピロメリルイミドから選ばれるものから誘導される一価 の基を意味する。

【0004】Xは式-(CH₂)a-(式中、mは0~7の 整数を示す)で示される基、式-O(CH2)n-で示され る基、式-S(CH₂) - で示される基、式-NH(C H₂)。- で示される基、式-SO₂ NH(CH₂)。- で示さ れる基、式-NH-CO-(CH2)。-で示される基、式 -NH(CH₂)₁-CO-で示される基、式-COO(C などが記載されている。特開昭62-234065号に 30 H₂)。- で示される基、式- CH₂ NH(CH₂)。- で示さ れる基、式-CO-NR3-(CH2)。- で示される基 (Xの定義中、これまでの式でnはいずれも1~7の整 数を意味し、R3は低級アルキル又はペンジル基を意味 する)、式-O-CH2 CH2 CH(CH3)-で示される 基、式-O-CH(CH₃)CH₂CH₂-で示される基、 式-O-CH2CH2CH=で示される基、又は式-O-CH₂ CH(OH) CH₂ - で示される基を意味する。 【化9】

> ⟩- で示される基、式 → N- で示される基、 式 ⇒ N- で示される基、式 -- で示される基を意味する。

【0005】R2は水素原子、低級アルキル基、置換若 しくは無置換のペンジル基、置換若しくは無置換のペン

ゾイル基、ピリジル基、2-ハイドロキシエチル基、ピ 【化10】

リジルメチル基、又は式 Z CH- (式中、Zはハロゲン原子を意味

する)で表わされる基を意味する。]

で表わされるピペリジン誘導体又はその薬理的に許容で きる塩、具体的には、下記の化合物

【化11】

などが記載されている。特開昭64-79151号及び 特開平02-169569号には、一般式

【化12】

[式中、Jは(a) 置換若しくは無置換の次に示す基;①フェニル基、②ピリジル基、③ピラジル基、④キノリル 20 基、⑤シクロヘキシル基、⑥キノキサリル基又は⑦フリル基、(b)フェニル基が置換されていてもよい次の群から選択された一価又は二価の基;①インダニル、②インダノニル、③インデニル、④インデノニル、⑤インダンジオニル、⑥テトラロニル、⑦ベンズスペロニル、⑧インダノリル、⑨式

【化13】

(c)環状アミド化合物から誘導される一価の基、(d)低級アルキル基、又は(e)式 $R^1-CH=CH-($ 式中、 R^1 は水素原子又は低級アルコキシカルポニル基を意味する)で示される基を意味する。

【0006】Bは式 $-(C(R^2)H)$ 。-で示される基、式 $-CO-(C(R^2)H)$ 。-で示される基、式 $-NR^2-(C(R^2)H)$ 。-(式中、 R^2 は水素原子、低級アルキル基、アシル基、低級アルキルスルホニル基、置換されていてもよいフェニル基又はベンジル基を意味する)で示される基、式 $-CO-NR^4-(C(R^2)H)$ 。-(式中、 R^4 は*40

*水素原子、低級アルキル基又はフェニル基を意味する) で示される基、式-CH=CH-(C(R1)H)。-で示さ れる基、式-O-COO-(C(R2)H)」-で示される 基、式-O-CO-NH-(C(R2)H)。-で示される 10 基、式-NH-CO-(C(R2)H)。-で示される基、式 -CH₂-CO-NH-(C(R²)H)₃-で示される基、式-CO-NH-(C(R2)H)。-で示される基、式-C (OH)H-(C(R²)H)。-で示される基(以上の式中、 nは0又は1~10の整数を意味する。R²は式-(C (R2)H)。-で示されるアルキレン基が置換基を持たな いか、又は 1つ又は1つ以上のメチル基を有している ような形で水素原子又はメチル基を意味する。)、式= (CH-CH=CH)₁-(式中、bは1~3の整数を意 味する)で示される基、式=CH-(CH2)。- (式中、 cは0又は1~9の整数を意味する)で示される基、式 =(CH-CH)₄=(式中、dは0又は1~5の整数を 意 味する)で示される基、式-CO-CH=CH-C H2-で示される基、式-C O-CH2-C(OH)H-CH₂ - で示される基、式 - C(CH₂)H - CO - NH -CH₂-で示される基、式-CH=CH-CO-NH -(CH2)2-で示される 基、式-NH-で示される 基、式一〇一で示される基、式一S一で示される基、ジ アルキルアミノアルキルカルボニル基又は低級アルコキ シカルポニル基を意味する。Tは窒素原子又は炭素原子 を意味する。Qは窒素原子、炭素原子又は式>N→Oで 示される基を意味する。Kは水素原子、置換若しくは無 置換のフェニル基、フェニル基が置換されてもよいアリ ールアルキル基、フェニル基が置換されていてもよいシ ンナミル基、低級アルキル基、ピリジルメチル基、シク ロアルキルアルキル基、アダマンタンメチル基、フリル メチル基、シクロアルキル基、低級アルコキシカルボニ ル基又はアシル基を意味する。 q は1~3 の整数を意味 する。

6

【化14】

式中、 は単結合若しくは二重結合を意味する。]

で表される環状アミン誘導体及びその薬理学的に許容できる塩、具体的には下記の化合物

【化15】

50

などが記載されている。

【0007】特開昭52-72829号には、特にセロトニン作動性系機能障害によって生ずる病気状態に使用される、薬剤学的に許容可能な担体及び一般式、

【化16】

$$X \longrightarrow A - (CH_2)n \longrightarrow N - H$$

(式中、Rは水素原子、炭素原子1ないし4個を含有するアルキル基又はアルキル部分が炭素原子1若しくは2*

*個含有するアラルキル基を表わし、Xは水素原子又はハロゲン原了、それぞれの基が炭素原了1ないし4個を有することができるアルキル、アルコキシ、又はアルキルチオ基、トリフルオロメチル、ニトロ、ヒドロキシ又は置換されていないアミノ基又は1個若しくは2個のアルキル基又はアシル又はアルキルスルホニル基で置換されているアミノ基を表わし、Aは基一CO-又は基一CH2-を表わし、そしてnは0、1又は2である)の化合物又はそれの薬剤学的に許容される塩のいずれかを含有する薬剤学的組成物が記載されており、特開昭55-9070号には、一般式

【化17】

[0009]

$$X = \frac{1}{R} A - (CH_2)_2 - \frac{1}{R} A - (CH_$$

(式中、Rは水素原子、炭素原子 $1\sim4$ 個を有するアルキル基又はアルキル基が炭素原子 $1\sim2$ 個を有するアラルキル基であり、Xは水素原子あるいはハロゲン原子、アルキル基、アルコキシ基又はアルキル基が炭素原子 $1\sim4$ 個を有するアルキルチオ基であり、Aは $-CO-又は<math>-CH_2$ -であり、nは1又は2である)を有するインドール誘導体に構成される、 3 H-ジアゼパムの受容部に親和性を有する医薬活性化合物が記載されている。

[00081

【発明が解決しようとする課題】しかし、老年期痴呆症※

構造の縮合複素環基を有する新規化合物が予想外にも優れた老年期痴呆症治療・予防作用を有していることを見出したことにより完成され、詳しくは(1)式 【化18】

※が増加する今日では、老年期痴呆症治療・予防作用を有

た老年期痴呆症治療・予防剤の開発が望まれている。

することが知られている公知の化合物に比べて、より強

い作用を有し、作用時間が長く、しかも毒性が弱い優れ

【課題を解決するための手段】本発明は、特異的な化学

[式中、Xは R^1 -N< (R^1 は水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよいアシル基を示す)、酸素原子または硫黄原子を示し、 R^2 は水素原子または置換基を有していてもよい炭化水素基を示し、環Aは置換基を有していてもよいベンゼン環を、kは0~3 の整数を、mは1~8 の整数を、nは1~6 の整数を示す。)で表わされる縮合複素環誘導体またはその塩、(2) Xが R^1 -N< (R^1 は前記と同意義を示す)である(1)記載の化合物、(3) kが0、mが2

~7の整数である(2)記載の化合物、(4) R^2 が水素原子、または C_{1-4} アルキル、ハロゲン、ニトロもしくは C_{1-4} アルコキシで置換されていてもよい C_{7-10} アラルキル基、kが0~2の整数、nが1~3の整数である(1)記載の化合物、(5) R^1 が水素原子、直鎖状もしくは分枝状 C_{1-7} アルキル基、 C_{7-10} アラルキル基または C_{2-8} アルキルカルボニル基である(4)記載の化合物、(6)

【化19】

[R³は水素原子またはC₁₋₃アルキル基を示す]、

nが2、R²がベンジル基である(1)記載の化合物、 **ピペリジン-4-イル**] プロピル] -2,3,4,5-テ トラヒドロー1H-1-ベンズアゼピンまたはそのフマ ル酸塩である請求項1記載の化合物、(8)化合物(I)ま たはその塩の製造法、(9)化合物(1)またはその塩を含 有するコリンエステラーゼ阻害剤および(10)化合物(1) またはその塩を含有する老年期痴呆症治療・予防剤に関

【0010】この発明の化合物(1)またはその塩は、ベ ンゼン環に縮合したヘテロ原子(酸素,硫黄または窒 素)含有複素環が飽和環であることおよびベンゼン環A の炭素原子に置換分

【化20】

$$-CO(CH_2)n-N-R^{\frac{1}{2}}$$

が結合していることに化学構造上の特徴を有する新規な 化合物であって、この特徴に基づいて優れた老年期痴呆 症治療・予防作用を示す。前記式(I)において、R1 およびR²で示される「置換基を有していてもよい炭化 水素基」の「炭化水素基」としては、たとえば、鎖状、 環状、飽和、不飽和さらにはそれらの種々の組み合わせ からなる炭化水素基が用いられる。鎖状飽和炭化水素基 としては、たとえば、直鎖状もしくは分枝状のC1~11 のアルキル基(例えば、メチル、エチル、n-プロピ ル, iープロピル, nープチル, iープチル, tertープ チル, n-ペンチル, n-ヘキシル) が用いられる。

【0011】鎖状不飽和炭化水素基としては、直鎖状も しくは分枝状のC2-4のアルケニル基(例えば、ビニ ル, アリル, 2-プテニル) およびC2-4のアルキニル 基(例、プロパルギル、2-プチニル)が用いられる。 環状飽和炭化水素基としては、Ca-1の単環シクロアル キル基(例えば、シクロブチル、シクロペンチル、シク ロヘキシル) およびC8-14 の架橋環式飽和炭化水素基 (例えば、ビシクロ[3.2.1] オクト-2-イル、ビ シクロ [3.3.1] ノン-2-イル, アダマンタン-1 ーイル)が用いられる。環状不飽和炭化水素基として は、フェニル基、ナフチル基などが用いられる。また、 R^1 および R^2 で示される「置換基を有していてもよい炭 50 有していてもよい置換基としては、例えばハロゲン原子

化水素基」の「炭化水素基」としては、上に例示した鎖 状、環状、飽和、不飽和の炭化水素基の種々の組み合わ せからなる炭化水素基でもよく、例えば、C7-18アラル キル(例えば、フェニルメチル、フェニルエチル、フェ ニルプロピル, フェニルプチル, フェニルペンチル, フ ェニルヘキシル, α-ナフチルメチルなどのフェニルー ル), C₈₋₁₈ アリルアルケニル (例えば、スチリル, シ ンナミル、4-フェニル-2-プテニル、4-フェニル -3-プテニルなどのフェニル-C2-12アルケニル), Cs-18 アリルアルキニル (例えば、フェニルエチニル、 3-フェニル-2-プロピニル、3-フェニル-1-プ ロピニルなどのフェニル-C2-12アルキニル), Ca-7 シクロアルキルーC1-6アルキル(例えば、シクロプロ ピルメチル、シクロプチルメチル、シクロペンチルメチ ル,シクロヘキシルメチル,シクロヘプチルメチル,シ クロプロピルエチル、シクロプチルエチル、シクロペン **チルエチル**,シクロヘキシルエチル,シクロヘプチルエ チル,シクロプロピルプチル,シクロプチルプチル,シ クロペンチルプチル, シクロヘキシルプチル, シクロヘ プチルプチル、シクロプロピルペンチル、シクロプチル ペンチル、シクロペンチルペンチル、シクロヘキシルペ ンチル、シクロヘプチルペンチル、シクロプロピルヘキ シル、シクロプチルヘキシル、シクロペンチルヘキシ ル,シクロヘキシルヘキシル,シクロヘプチルヘキシ ル)等が用いられる。

【0012】R1で表わされる「置換基を有していても よい炭化水素基」の「炭化水素基」としては、直鎖状も しくは分枝状C1-7アルキル基(例えば、メチル、エチ ル, n-プロピル, i-プロピル, n-ブチル, i-ブ チル, tretープチル, nーペンチル, nーヘキシル) ま たはC7-10アラルキル基(例えば、フェニルメチル、フ ェニルエチル, フェニルプロピル) などが好ましい。R 2で表わされる「置換基を有していてもよい炭化水素 基」の「炭化水素基」としてはC7-10アラルキル (例え ば、フェニルメチル、フェニルエチル、フェニルプロピ ル)などが好ましい。R¹, R²で表わされる上記したよ うな鎖状飽和、鎖状不飽和および環状飽和炭化水素基が

(例えば、フルオロ, クロル, プロム, ヨード)、ニト ロ基、シアノ基、ヒドロキシ基、C1-4アルコキシ基 (例えば、メトキシ, エトキシ, プロピルオキシ, プチ ルオキシ, イソプロピルオキシ)、C1-4アルキルチオ 基(例えば、メチルチオ,エチルチ オ,プロピルチ オ)、アミノ基、モノまたはジC1-4アルキル置換アミ ノ基(例 えば、メチルアミノ, エチルアミノ, プロピ ルアミノ、ジメチルアミノ、ジエチルアミノ)、環状ア ミノ基 (例えば、ピロリジノ, ピペリジノ, モルホリ ノ)、C1-4アルキルカルポニルアミノ基(例えば、ア セチルアミノ, プロピオニルア ミノ, プチリルアミ ノ)、C1-4アルキルスルホニルアミノ基(例えば、メ チル スルホニルアミノ, エチルスルホニルアミノ)、 -C1-4アルコキシカルボニル基 (例えば、メトキシカル ボニル, エトキシカルボニル, プロポキシカルボニ ル)、ヒドロキシカルボニル基、C1-6アルキルカルボ ニル基 (例えば、メチルカル ボニル, エチルカルボニ ル、プロピルカルポニル)、カルバモイル基、モノまた はジC1-4アルキル置換カルパモイル基(例えば、メチ ルカルパモイル, エチル カルパモイル)、C1-6アルキ ルスルホニル基 (例えば、メチルスルホニル, エ チル スルホニル, プロピルスルホニル) 等から選ばれた1な いし5個が用いられる。

【0013】前記式(I) において環Aで表わされる 「置換基を有していてもよいベンゼン環」の置換基、R 1, R²で表わされる環状不飽和炭化水素基の置換基とし ては、例えば、C1-4アルキル基(例えば、メチル,エ チル、プロピル、プチル)、ハロゲン原子(例えば、フ ルオロ、クロル、プロム、ヨード)、ニトロ基、シアノ 基、ヒドロキシ基、C1-4アルコキシ基(例えば、メト キシ、エトキシ、プロピルオキシ、ブチルオキシ、イソ プロピルオキシ)、C1-4アルキルチオ基(例えば、メ チルチオ, エチルチオ, プロピルチオ, イソプロピルチ オ, プチルチオ)、アミノ基、モノまたはジC1-4アル キル置換アミノ基(例えば、メチルアミノ、エチルアミ ノ,プロピルアミノ,ジメチルアミノ,ジエチルアミ ノ)、環状アミノ基(例えば、ピロリジノ, ピペリジ _ノ, モルホリノ) 、C1-4アルキルカルボ ニルアミノ基 (例えば、アセチルアミノ, プロピオニルアミノ, プチ リルアミノ)、アミノカルポニルオキシ基、モノまたは 40 ジC1-4アルキル置換アミノカルボ ニルオキシ基(例え は、メチルアミノカルボニルオキシ、エチルアミノカル ボニルオキシ,ジメチルアミノカルボニルオキシ,ジエ チルアミノカルポニルオキシ)、C1-4アルキルスルホ ニルアミノ基(例えば、メチルスルホニルアミノ、エ **チルスルホニルアミノ,プロピルスルホニルアミノ)、** C1-4 アルコキシカルボ ニル基 (例えばメトキシカルボ ニル、エトキシカルポニル、プロポキシカルポニル、イ ソプトキシカルポニル)、ヒドロキシカルポニル基、C 1-8 アルキルカル ボニル基 (例えば、メチルカルボニ 50

ル、エチルカルボニル、プチルカルボニル、シクロヘキ シルカルボニル), カルパモイル基, モノまたはジC 1-4アルキル世 換カルパモイル基(例えば、メチルカル バモイル、エチルカルバモイル、プロピルカルバモイ ル、プチルカルパモイル、ジエチルカルパモイル、ジブ チルカルパモイル)、C1-8アルキルスルホニル基(例 えば、メチルスルホニル、エチルス ルホニル、プロピ ルスルホニル、シクロペンチルスルホニル、シクロヘキ シルスルホニル)、1-4個の置換基を有していてもよ 10 いフェニル、ナフチル、フェノキシ、ベンゾイル、フェ ノキシカルポニル、フェニルC1-4アルキルカルパモイ ル、フェニルカルパモイル、フェニルC1-4アルキルカ ルボニルアミノ、ベンゾ イルアミノ、フェニルC1-4ア ルキルスルホニル、フェニルスルホニル、フェニ ルC 1-4 アルキルスルフィニル、フェニルC1-4 アルキルスル ホニルアミノまたはフェニルスルホニルアミノ基(それ ぞれのフェニル基またはナフチル基における置換基とし ては、例えばメチル, エチル, プロピル, プチル, イソ プロピルなどのC1-4アルキル基、メトキシ, エトキ `シ, n-プロピルオキシ, i-プロピル オキシ, n-プチルオキシなどのC1-4アルコキシ基、クロル、プロ ム, ヨード などのハロゲン原子、水酸基、ペンジルオ キシ基、アミノ基、上記のごときモノまたはジC1-4ア ルキル置換アミノ基、ニトロ基、上配のごときC1-4ア ルキルカルボニル基などが用いられる。)などが用いら れる。これら芳香族基の置換の数は1~3個程度が適当 である。

【0014】R¹, R²で表わされる「鎖状、環状、飽 和、不飽和炭化水素基の種々の組み合わせからなる炭化 水素基」の置換基としては、例えば、C1-4アルキル基 (例えば、メチル, エチル, プロピル, プチル)、ハロ ゲン原子(例えば、フルオロ、クロル、プロム、ヨー ド)、ニトロ基、シアノ基、ヒドロキシ基、C1-4アル コキシ基 (例えば、メトキシ, エトキシ, プロピルオキ シ, プチルオキシ, イソプロピルオキシ)、C1-4アル キルチオ基(例えば、メチルチオ、エチルチオ、プロピ ルチオ、イソプロピルチオ、プチルチオ)、アミノ基、 モノまたはジC1-4アルキル置換アミノ基(例えば、 メチルアミノ, エチルアミノ, プロピルアミノ, ジメチ ルアミノ、ジエチルアミノ)、環状アミノ基(例えば、 ピロリジノ, ピペリジノ, モルホリノ)、C1-4アルキ ルカルボニルアミノ基(例えば、アセチルアミノ、プロ ピオニルアミノ, プチリルアミノ)、アミノカルボニル オキシ基、モノまたはジC1-4アルキル置換アミノカル ボニルオキシ基(例えば、メチルアミノカルボニルオキ シ、エチルアミノカルポニルオキシ、ジメチルアミノカ ルボニルオキシ、ジエチルアミノカルボニルオキシ)、 C1-4 アルキルスルホニルアミノ基(例えば、メチルス ルホニルアミノ、エチルスルホニルアミノ、プロピルス ルホニルアミノ)、C1-4アルコキシカルポニル基(例

えばメトキシカルボニル, エトキシカルボニル, プロポ キシカルポニル, イソプトキシカルポニル)、ヒドロキ シカルボニル基、C1-6アルキルカルボニル基(例え ば、メチルカルポニル, エチルカルボニル, プチルカル ポニル,シクロヘキシルカルポニル),カルバモイル 基,モノまたはジC1-4アルキル置換カルパモイル基 (例えば、メチルカルパモイル, エチルカルパモイル, プロピルカルバモイル, プチルカルバモイル, ジエチル カルパモイル, ジプチルカルパモイル)、C1-6アルキ ルスルホニル基 (例えば、メチルスルホニル, エチルス 10 ルホニル、プロピルスルホニル、シクロペンチルスルホ ニル,シクロヘキシルスルホニル)、1-4個の置換基 を有していてもよいフェニル、ナフチル、フェノキシ、 ペンゾイル、フェノキシカルボニル、フェニルC1-4ア ルキルカルパモイル、フェニルカルパモイル、フェニル C1-4 アルキルカルボニルアミノ、ペンゾイルアミノ、 フェニル C1-4 アルキルスルホニル、フェニルスルホニ ル、フェニルC1-4アルキルスルフィニル、フェニルC 1-4 アルキルスルホニルアミノまたはフェニルスルホニ ルアミノ基(それぞれのフェニル基またはナフチル基に 20 おける置換基としては、例えばメチル、エチル、プロピ ル,プチル,イソプロピルなどのC1-4アルキル基、メ トキシ、 エトキシ、n-プロピルオキシ、i-プロピ ルオキシ, n-プチルオキシなどのC1-4アルコキシ 基、クロル、プロム、ヨードなどのハロゲン原子、水酸 基、ベ ンジルオキシ基、アミノ基、上記のごときモノ またはジC1-4アルキル置換アミ ノ基、ニトロ基、上記 のごときC1-4アルキルカルポニル基などが用いられ る。) などが用いられる。これらの芳香族基の置換の数 は1~5個程度が適当である。

【0015】R1で示される「置換基を有していてもよ いアシル基」の「アシル基」としては、カルボン酸アシ ル基(例えばホルミルや、アセチル、プロピオニル、ブ チリル、ベンゾイルなどのC2-8アルキルカルボニルま たはフェニルカルボニル)、スルホン酸アシル基(例え ばメタンスルホニル, エタンスルホニル, プロパンスル ホニル、ベンゼンスルホニル、p-トルエンスルホニル などのC1-7アルキルスルホニルまたはフェニルスルホ ニル)、ホスホン酸アシル基(例えばメタンホスホニ ル、エタンホスホニル、プロパンホスホニル、ペンゼン スルホニルなどのC1-7アルキルホスホニルまたはフェ ニルホスホニル), 置換オキシカルボニル基(例えば、 メチルオキシカルボニル、第三プチルオキシカルボニ ル,ペンジルオキシカルポニルなどのC2-8アルキルオ キシカルポニル又はCr-8アラルキルオキシーカルポニ ル) が用いられる。なかでも、C2-8アルキルカルポニ ルが好ましい。これらアシル基が有していてもよい置換 基としては、ハロゲン原子(例えば、フルオロ、クロ ル,プロム、ヨード)、アミノ基、炭素数1-6のアル

キシル) を有する1級または2級アミノ基、C1-4アル コキシ基(例えば、メトキシ, エトキシ, プロポキシ) などが用いられ、これらの基を1~3個好ましくは1~

14

2個有していてもよい。 【0016】式(I)の化合物の好ましい実施銀様を以 下に述べる。Xとしては、R1-N<が好ましく、なか でもR1が水素原子、直鎖状もしくは分枝状C1-3アルキ ル基(例えば、メチル、エチル、nープロピル、iープ ロピル)、ペンジル、フェニル、C2-4アルキルカルボ ニル(例えば、アセチル、プロピオニル、プチリル)、 ベンゾイル、C2-4アルキルオキシカルボニル (例え は、メトキシカルボニル, エトキシカルポニル) などの 場合がより好ましい。R2としては、無置換あるいは1-ないし2個のハロゲン原子(例えば、フルオロ、クロ ル)、メチル、ニトロおよび/またはメトキシで置換さ れた、ペンジルまたはα-ナフチルメチル基が好まし く、特に無置換ベンジル基が好ましい。環A上の置換基

としては、フルオロ、クロル、トリフルオロメチル、メ

チル、メトキシなどが好ましく、特にフルオロが好まし

い。 k及びmとしては、 kとmの和 (k+m) が2~6

【化21】

の整数のとき、すなわち

が5~9員環を形成する場合が好ましい。さらにk, m の組み合わせとしては、kが0のときmとしては2, 3, 4または5が、kが1のときmとしては1, 2また 30 は3が、またkが2のときはmは2が好ましい。すなわ ち、

$$(\text{CH}_2)_{\text{R}}$$

$$(\text{CH}_2)_{\text{R}}$$

$$(\text{X} = \text{R}^1 - \text{N} <)$$

で表される含窒素縮合複素環としては、2,3-ジヒド ロー1H-インドール、1, 2, 3, 4-テトラヒドロ キノリン、2, 3, 4, 5-テトラヒドロ-1H-1-ペンズアゼピン、2,3-ジヒドロ-1H-イソインド ール、1, 2, 3, 4-テトラヒドロイソキノリン、 2, 3, 4, 5-テトラヒドロ-1H-2-ベンズアゼ ピン、2, 3, 4, 5-テトラヒドロ-1H-3-ベン ズアゼピン、1, 2, 3, 4, 5, 6-ヘキサヒドロー 1ーペンズアゾシン、1, 2, 3, 4, 5, 6-ヘキサ ヒドロー2ーベンズアゾシン、1, 2, 3, 4, 5, 6 -ヘキサヒドロ-3-ペンズアゾシン、2、3、4、 5, 6, 7-ヘキサヒドロー1H-1-ベンズアゾニ ン、2, 3, 4, 5, 6, 7-ヘキサヒドロ-1H-2 キル基(例えば、メチル,エチル,プロピルあるいはへ 50 -ベンズアゾニン、2, 3, 4, 5, 6, 7-ヘキサヒ

ドロー1H-3-ベンズアゾニン、2, 3, 4, 5, 6, 7-ヘキサヒドロ-1H-4-ペンズアゾニンが好 ましい。

[0017]

[化23]

$$X = O$$

ロベンゾフラン、1、3-ジヒドロイソベンゾフラン、 3, 4-ジヒドロー2H-1-ベンゾピラン、3, 4-ジヒドロー1H-2-ベンゾピラン、2, 3, 4, 5-テトラヒドロー1ーベンゾオキセピン、1,3,4,5 ーテトラヒドロー2ーベンゾオキセピン、1, 2, 4, 5-テトラヒドロ-3-ペンソオキセピン、3,4, 5, 6-テトラヒドロ-2H-1-ペンゾオキソシン、 3, 4, 5, 6-テトラヒドロー1H-2-ペンゾオキ ソシン、1, 4, 5, 6ーテトラヒドロー2H-3ーペ ンソオキソシン、2, 3, 4, 5, 6, 7-ヘキサヒド 20 5, 6, 7-ヘキサヒドロ-3-ベンゾチオニン、1, ロー1ーペンゾオキソニン、1,3,4,5,6,7-ヘキサヒドロー2ーペンゾオキソニン、1, 2, 4, 5, 6, 7-ヘキサヒドロー3-ベンゾオキソニン、 1, 2, 3, 5, 6, 7-ヘキサヒドロー4-ベンゾオ*

*キソニンなどが好ましい。

【化24】

$$(CH_2)_{\text{fi}}$$

$$(X = S)$$

16

で表される含硫黄縮合複素環としては、2,3-ジヒド ロ [b] チオフェン、1, 3 – ジヒドロベンゾ [c] チ オフェン、3、4-ジヒドロ-2H-1-ペンゾチオピ で表される含酸素縮合複素環としては、2, 3-ジヒド 10 ラン、3, 4-ジヒドロ-1H-2-ベンゾチオピラン、2,3,4,5ーテトラヒドロー1ーベンゾチエピ ン、1,3,4,5-テトラヒドロ-2-ベンゾチエピ ン、1, 2, 4, 5ーテトラヒドロー3ーベンゾチエピ ン、3,4,5,6ーテトラヒドロー2H-1ーベンゾ チオシン、3,4,5,6-テトラヒドロー1H-2-ペンゾチオシン、1, 4, 5, 6-テトラヒドロー2H -3-ペンゾチオシン、2,3,4,5,6,7-ヘキ サヒドロー1ーベンゾチオニン、1,3,4,5,6, 7-ヘキサヒドロ-2-ペンゾチオニン、1, 2, 4, 2, 3, 5, 6, 7-ヘキサヒドロー4ーペンゾチオニ ンなどが好ましい。

【化25】

の好ましい縮合複素環としては、たとえば式

[式中、R3 は水素原子またはC1-3アルキル基を示 す。〕で表わされる含窒素縮合複素環などである。上記 式中、R®で示されるC1-aアルキル基はメチル、エチ ル, プロピル, i-プロピルである。nは、1、2また

または

は3、特に2が好ましい。より具体的には、式(I)の 化合物に属する下記の化合物およびその塩が好ましい。 [0018] 【表1】

17

$$(CH_2)m^2$$
 X^3
 $C^ (CH_2)\pi$
 $N-R^2$

	No.	m'	n	χι	Χ²	χ³	R1	R²
•	1	1	2	H	H	Н	H	CH₂Ph
	2	1	2	Ħ	H	H	CH ₃	CH ₂ Ph
	3	l	2	H	H	H	C ₂ H ₅	CH ₂ Ph
	4	l	2	H	H	H	CH₂Ph	CH₂Ph
	5	1	2	H	H	H	COCH ₃	CH₂Ph
	6	1	2	H	H	H	COPh	CH ₂ Ph
	7	1	2	CH ₃	н	H	CH ₃	CH₂Ph
	8	l	2	H	F	CH ₃	CH ₃	CH₂Ph
	9	1	2	H	Cl	H	CH ₃	CH ₂ Ph
	10	1	2	CH3	OCH 3	H	CH ₃	CH₂Ph
	11	1	2	OCH 3	F	H	CH ₃	CH₂Ph
	12	l	2	F	F	H	CH ₃	CH₂Ph
	13	1	2	OCH 3	C1	H	CH ₃	CH₃Ph
	14	1	2	F	F	OCH ₃	CH ₃	CH₂Ph
	15	1	2	Cl	СНз	F	CH ₃	CH ₂ Ph
	16	1	2	H	H	H	CH ₃	CH₂CH₂Ph
	17	1	2	H	H	H	CH ₃	CH₂-Q _F

[0019] [表2]

					(11)		
19 No.	m'	n	X¹	X²	X ³	R1	20 R²
18		2	H	Н	H	CH ₂ Ph	CH ₂ -
19	1	2	Н	Н	H	H	CH ₃ -F
20	1	2	H	Н	H	H	CH ₂
21	1	2	н	H	H	CH3	CH ₂ —Cl
22	1	2	H	Н	H	CH ₃	CH2-OCH3
23	1	2	H	H	H	CH ₃	CH2-CH3
24	1	2	CF ₃	F	H	H	CH₂-⟨Q
25	1	2	C1	H	H	H	CH₂-Q r
26	1	2	OCH 3	F	CH,	CH,	CH₂Q_r
27	1	2	H	F	Cl	CH3	CH2-{Q_r^r
28	1	2	CH ₃	H	H	H	CH ₂ -F
29	1	2	Cl	H	H	Ħ	CHz-CD-OCH3
30	1	2	CH ₃	H	H	CH ₃	CH ₂ —OCH ₃
31	1	2	F	H	Cl	CH ₃	CH³-←OCH²
32	1	2	OCH ₃	CI	H	CH ₃	CH ₂ -C
33	1	2	OCH ₃	H	H	CH3	CH₂-QF
34	1	1	H	H	H	H	CH₂Ph Î
35	1	1	H	Н	H	CH ₃	CH₂Ph
36	1	3	H	H	H	H	CH₂Ph
37	1	3	H	H	H	CH ₃	CH₂Ph
38	0	2	Н	H	H	H	CH₂Ph
39	0	2	Н	H	H	CH ₃	CH ₂ Ph
40	0	2	H	H	H	C ₂ H ₅	CH ₂ Ph

[0020] [表3]

21					(,		00
No.	m'	n	X1	X²	Хз	R1	22 R ^z
41	0	2	H	H	H	CH₂Ph	CH ₂ Ph
42	0	2	H	Н	H	COCH ₃	CH ₂ Ph
43	0	2	H	H	H	COPh	CH ₂ Ph
44	0	2	F	H	H	CH3	CH ₂ Ph
45	0	2	F	H	CH ₃	CH ₃	CH₂Ph
46	0	2	CH ₃	Н	H	CH ₃	CH ₂ Ph
47	0	2	OCH 3	H	H	CH ₃	CH ₂ Ph
48	0	2	Cl	H	H	CH ₃	CH₂Ph
49	0	2	OCH 3	Cl	H	CH ₃	CH ₂ Ph
5 0	0	2	F	H	OCH ₃	CH ₃	CH₂Ph
51	0	2	Cl	CH ₃	F	CH ₃	CH ₂ Ph
52	0	2	H	Н	H	Н	CH₂-⟨◯ _E
53	0	2	H	Н	H	CH ₃	CH ₂ -C
54	0	2	H	H	H	CH ₂ Ph	CH ₂ -CH ₂
55	0	2	H	H	H	H	CH ₂ -C ₁
56	0	2	H	H	H	CH3	CH ₂ -Cl
57	0	2	H	H	H	CH ₂ Ph	CH ₂ —C1
58	0	2	H	H	H	H	CH ₂ -CF
59	0	2	H	H	H	H	CH ₂
60	0	2	H	H	H	CH ₃	CH₂-CH₃
61	0	2	F	H	H	H	CH₂-⟨□
62	0	2	Cl	H	H	H	CH2-C
63	0	2	H	H	CH ₃	CH ₃	CH₂-QF

[0021] [表4]

						(13)			
<i>23</i> No.	m,	n	χι		Χ²	X3	R¹	R²	24
64	0	2	F		<u></u> Н	Cl	CH ₃	CH ₂ -	
65	0	2	F		H	H	H	CH ₂ -	-004
66	0	2	C1		H	Н	H		-OCH ₃
		2	Н		H	CH3	CH ₃	CH ₂ —C	
67	0	2	n F		E.	CI	CH ₃		
68	0							CH ₂ -CH ₂ -	Cı
69	0	2	OCE		CH,	H	CE ₃		F
70	2	2	H		H	H	H	CH ₂ Ph	
71	2	2	H		H	H	CH ₃	CH ₂ Ph	
72	2	2	H		Н	Н	C ₂ H ₅	CH ₂ Ph	
73	2	2	F		H	H	H	CH ₂ Ph	
74	2	2	F		H	Ħ	CH ₃	CH ₂ Ph	
75	2	2	F		H	B	CH ₂ Ph	CH₂Ph	
76	2	2	F		H	Cl	CH3	CH ₂ Ph	
77	2	2	F		H	CH ₃	CH,	CH₂Ph	
78	2	2	CH:	ì	H	• Н	CH ₃	CH₂Ph	
79	2	2	OCI	[3	H	H	CH ₃	CH₃Ph	
80	2	2	Cl		H	H	CH ₃	CH₂Ph	
81	2	2	OCI	1 ₃ (CI	H	CH ₃	CH₂Ph	
82	2	2	F		H	OCH ₃	CH₃	CH₂Ph	
83	2	2	C1	(CH3	F	CH₃	CH₂Ph	
84	2	2	H		H	H	H	CH ₂ -	E .
85	2	2	Н		H	H	CH₃	CH ₂	r r
86	2	2	Н		H	H	CH₂Ph	CH₂-⟨	r F
No.	. 1	n' 1	n l	Ç1	X²	Χa	【表5】 R ¹	R²	-
87	2	2 :	2 1	Ŧ	Н	H	H	CH 2-	⊢F
88	1	l :	2 1	H	H	H	CH ²	H	
89]	l :	2 1	H	H	H	H	C ₂ H ₅	

[0023]

-[0022]

【表6】

25

R ¹
X,
(CH₂)m X³ X²

No.	13	n	X1	Χ²	Хз	R1	R²
90	1	2	H	Н	H	H	CH₂Ph
91	i	2	H	H	H	CH ₃	CH ₂ Ph
92	1	2	H	Н	H	C_2H_5	CH ₂ Ph
93	1	2	H	Н	H	CH _z Ph	CH ₂ Ph
94	1	2	H	H	Ħ	COCH3	CH₂Ph
95	1	2	H	H	H	COPh	CH ₂ Ph
96	1	2	H	F	H	CH ₃	CH ₂ Ph
97	1	2	H	F	СНз	CH ₃	CH ₂ Ph
98	1	2	H	OCH ₃	OCH ₃	CH ₃	CH ₂ Ph
99	1	2	H	F	CI	CH ₃	
100	1	2	H	F	H	H	CH z-Q F
101	1	2	Cl	F	Н	H	CH2-Q
102	1	2	H	Cl	CH ₃	CH ₃	CH₂-⟨Ų
103	1	2	H	OCH ₃	H	СНз	CH ₂ -C _r
104	1	1	Ĥ	Н	H	H	CH₂Ph r
105	1	1	H	Н	H	CH ₃	CH ₂ Ph
106	1	3	Н	H	H	H	CH₂Ph
107	1	3	Н	Н	H	CH ₃ 【表7】	CH₂Ph

[0024]

					_ /			_
<i>2</i> 7 No.	m,	n	Χı	X²	Хз	R¹	R²	2
108	0	2	H	В	Н	Н	CH ₂ Ph	
109	0	2	H	H	H	CH 3	CH ₂ Ph	
110	0	2	H	H	H	C ₂ H ₅	CH ₂ Ph	
111	0	2	H	H	H	CH ₂ Ph	CH ₂ Ph	
112	0	2	H	H	H	COCH ₃	CH ₂ Ph	
113	0	2	H	H	H	COPh	CH ₂ Ph	
114	0	2	H	F	H	CH 3	CH ₂ Ph	
115	0	2	H	F	СНз	CH ₃	CH₂Ph	
116	0	2	H	F	H	CH ₃		
117	2	2	H	OCH ₃	Н.	CH ₃	CH₂Ph r	
118	2	2	H	CH ₃	H	CH ₃	CH₂Ph	
119	2	2	H	Н	H	H		
120	2	2	H	H	H	CH ₃	CH₂-Q°	
121	2	2	H	H	H	CH ₂ Ph	CH Z	
122	2	2	H	F	H	СН 3	CH2-∕Q ^r F	
							r	

【0025】 【表8】

29

	(CH ₂)n N-R ²
(CH ₂)m' X ² X ²	

No.	m'	n	χι	Χ³	Χ³	R1	R ²
123	l	2	H	H	Н	H	CH ₂ Ph
124	1	2	H	H	H	CH ₃	CH ₂ Ph
125	1	2	H	Н	H	C _z H ₅	CH ₂ Ph
126	l	2	H	H	H	CH ₂ Ph	CH ₂ Ph
127	1	2	H	H	H	COCH ₃	CH ₂ Ph
128	l	2	H	H	H	COPh	CH ₂ Ph
129	1	2	H	H	СНз	CH ₃	CH ₂ Ph
130	1	2	H	F	CH ₃	CH ₃	CH ₂ Ph
131	1	2	F	H	F	CH ₃	CH ₂ Ph
132	1	2	H	OCH ₃	OCH ₃	CH ₃	CH ₂ Ph
133	1	2	OCH ₃	H	H	CH ₃	CH₂Ph
134	1	2	H	F	F	CH ₃	CH₂Ph
135	1	2	OCH 3	Cl	Н	CH ₃	CH ₂ Ph
136	1	2	F	H	OCH ₃	CH ₃	CH₂Ph
137	1	2	CI	CH ₃	F	CH ₃	CH₂Ph
138	1	2	H	H	H	CH ₃	CH ₂ CH ₂ Ph
139	1	2	H	Н	H	CH ₃	CH ≠Q _F

【89】

					(11)			
<i>31</i> No.	m'	n	X1	Χ²	χ³	R1	R²	32
140	1	2	H	Н	H	CH ₂ Ph	CH ₂ -C	_
141	ĺ	2	H	H	H	H	CH ₂	F
142	1	2	H	H	H	H	CH ₂	
143	1	2	H	H	H	CH ₃	CH ₂ -CH	C 1
144	1	2	H	H	H	CH ₃	CH 2-O-	OCH 3
145	1	2	H	Ħ	H	CH ₃	CH ₂ -O-	CH ₃
146	1	2	H	Н	CH ₃	H		
147	1	2	Cl	H	H	H	CH₂-⟨◯	7
148	1	2	H	H .	CH ₃	CH ₃	CH 2-C	
149	1	2	H	F	Ci	CH ₃	CH z-⟨Q	7
150	1	2	F	H	CH ₃	H	CH ² -⟨◯,	F
151	1	2	Cl	H	F	H	CH z-⟨◯⟩-	OCH 3
152	1	2	H	H	CH ₃	CH ₃	CH ₂ -C	OCH 3
153	1	2	F	Н	Cl	СH _з	CH ₂ -C	OCH3
154	1	2	H	H	H	CH ₃	Н	
155	1	2	H	H	H	CH ₂ Ph	Н	
156	1	1	H	H	H	H	CH₂Ph	
157	1	1	H	H	H	CH ₃	CH₂Ph	
158	1	3	Н	H	H .	H	CH₂Ph	
159	1	3	H	H	H	CH ₃	CH₂Ph	
160	0	2	H	H	H	H	CH₂Ph	
161	0	2	H	H	H	CH ₃	CH ₂ Ph	
162	0	2	H	H	H	C ₂ H ₅	CH ₂ Ph	

【0027】 【表10】

<i>33</i>								3
No.	m'	n	Χι	Χ²	Хз	\mathbb{R}^1	R²	
163	0	2	H	H	H	CH₂Ph	CH ₂ Ph	
164	0	2	H	H	H	COCH ₃	CH ₂ Ph	
165	0	2	H	H	H	COPh	CH ₂ Ph	
166	0	2	H	F	Ħ	CH ₃	CH ₂ Ph	
167	0	2	H	F	CH ₃	CH ₃	CH ₂ Ph	
168	0	2	CH ₃	H	H	CH ₃	CH ₂ Ph	
169	0	2	H	OCH 3	Н	CH ₃	CH₂Ph	
170	0	2	H	CI	H	CH ₃	CH ₂ Ph	
171	0	2	OCH ₃	Cl	H	CH3	CH ₂ Ph	
172	0	2	H	F	OCH ₃	CH ₃	CH₂Ph	
173	0	2	C1	CH ₃	F	CH ₃	CH₂Ph	
174	0	2	H	H	H	H	CH₂-QF	
175	0	2	H	H	H	CH ₃	CH ₂	
176	0	2	Н	H	H	CH ₂ Ph	CH ₂ -C	
177	0	2	H	H	H	H	CH₂-⟨○-Ci	l
178	0	2	H	H	H	CH ₃	CH ₂ -C-C	ĺ
179	0	2	H	. Н	H	CH₂Ph	CH ₂ -C ₁	l
180	0	2	H	Н	H	H	$\mathtt{CH}_{\mathbf{z}} \!$	
181	0	2	H	H	H	H	CH ₂	
182	0	2	H	H	H	CH ₃	CH ₂ -CH	[3
183	0	2	H	F	H	H	CH₂-⟨C	
184	0	2	B	CI	H	H	CH ₂ -CH ₂	
185	0	2	H	F	CH ₃	CH ₃	CH ₂ -C _F CH ₂ -C _F CH ₂ -C _F	
							•	

[0028] [表11]

					(19)		_
<i>35</i> No.	m'	n	Xι	X²	Хз	\mathbb{R}^1	<i>36</i> R²
186	0	2	F	F	Н	CH ₃	CH ₂ -
187	0	2	F	Н	H	, H	CH2-CH3
188	0	2	CI	C 1	H	H	CH ₂ —OCH ₂
189	0	2	H	F	CH ₃	CH ₃	CH ₂ -Cl
190	0	2	F	F	H	CH 3	CH ₂ —C1
191	0	2	H	H	H	CH ₃	H
192	- 2	2	H	H	H	H	CH₂Ph
DN-4	218	}					
193	2	2	H	Н	H	CH ₃	CH₂Ph
194	2	2	H	H	H	C ₂ H ₅	CH ₂ Ph
195	2	2	H	H	F	H	CH₂Ph
196	2	2	H	H	CI	CH3	CH ₂ Ph
197	2	2	F	H	CH ₃	CH ₂ Ph	CH₂Ph
198	2	2	F	H	C1	CH ₃	CH₂Ph
199	2	2	H	H	CH ₃	CH ₃	CH₂Pħ
200	2	2	CH ₃	H	H	CH ₃	CH₂Ph
201	2	2	OCH 3	H	CH ₃	CH ₃	CH₂Ph
202	2	2	Cl	H	CH ₃	CH₃	CH₂Ph
203	2	2	OCH 3	Ci	CH ₃	CH ₃	CH ₂ Ph
204	2	2	F	H	OCH ₃	CH₃	CH ₂ Ph
205	2	.2	C1	CH ₃	F	CH 3	CH ₂ Ph
206	2	2	H	H	H	H	CH2-C
207	2	2	Н	H	H	CH ₃	CH ₂ —CF
208	2	2	H	H	H	CH ₂ Ph	CH ₂ -C

- [0029] [表12]

(20)

特開平5-140149

<i>37</i>							<i>38</i>
No.	m'	n	X1	X²	X3	R1	R²
209	2	2	Н	Н	СН₃	H	CH3-Q-F
210	1	2	H	H	Ħ	CH ₃	CH ₃
211	1	2	H	H	H	C ₂ H ₅	C ₂ H ₅

[0030]

$$R^{1-N} \xrightarrow{\text{CCH}_{2}} n \xrightarrow{\text{X}^{1}} X^{2}$$

$$C \xrightarrow{\text{CCH}_{2}} n \xrightarrow{\text{N-R}^{2}} N - R^{2}$$

No.	k m n	Χ¹	Χ²	Χ³	R¹	R²
213	1 2 2	H	H	H	Н	CH ₂ Ph
214	1 2 2	H	H	H	CH ₃	CH₂Ph
215	1 2 2	H	H	H	C_2H_5	CH₂Ph
216	1 2 2	H	Н	H	CH _z Ph	CH₂Ph
217	1 2 2	H	H	H	COCH ₃	CH₂Ph
218	1 2 2	H	H	H	COPh	CH₂Ph
219	1 2 2	H	F	H	CH ₃	CH ₂ Ph
220	1 2 2	H	F	CH ₃	CH ₃	CH _z Ph
221	1 2 2	CH ₃	Cl	H	CH ₃	CH₂Ph
222	1 2 2	H	OCH ₃	H	CH ₃	CH₂Ph
223	1 2 2	OCH ₃	F	H	CH ₃	CH ₂ Ph
224	1 2 2	F	F	H	CH ₃	CH ₂ Ph
225	1 2 2	C1	Cl	Н	CH ₃	CH₂Ph
226	1 2 2	F	F	OCH ₃	CH ₃	CH ₂ Ph
227	1 2 2	C1	CH ₃	F	CH ₃	CH ₂ Ph
228	1 2 2	H	H	H	CH ₃	CH2CH2Ph
229	1 2 2	Н	H	H	CH₃	CH₂∕Q _F
						_

[0031]

50 【表14】

		(01)		
X 1	X²	Χ³	\mathbb{R}^1	40 R²
H	Н	Н	CH₂Ph	CH ₂ -C
H	Н	H	H	CH ₂ —F
H	Н	H	H	CH ₂
H	H	н	CH ₃	CH _z -C1
H	H	H	CH ₃	CH ₂ —OCH ₃
H	H	H	CH ₃	CH2-CH3
CF 3	F	H	H	CH₂-⟨◯ _r
Cl	Cl	H	H	CH₂-⟨◯ _F
H	F	CH 3	CH ₃	CH₂-⟨C) _r
Ħ	F	C1	CH ₃	CH₂-⟨Q'r
CH₃	H	H	H	CH₂-⟨SF
Cl	C1	H	Н	CH ₂ -COCH ₃
H	F	CH ₃	CH ₃	CH2-CH3
F	OCH ₃	C1	CH ₃	CH ₂ —OCH ₃
H	H	H	CH₂Ph	H
H	H	H	CH ₃	Н
H	H	H	H	CH₂Ph
H	H	H	CH₃	CH ₂ Ph
H	H	H	Н	CH ₂ Ph
H	Ħ	H	CH ₃	CH₂Ph
	B	H	H	CH ₂ Ph
	H	Н		CH₂Ph
H	H	H	C ₂ H ₅	CH₂Ph
	H H H H CF ₃ Cl H CH ₃ Cl H H H H H	H H H H H H H H H H H H H H CFs F C1 C1 H F CH3 H C1 C1 H F H H H H H H H H H H H H H H H H	X¹ X² X³ H H H H H H H H H H H H H H H C1 C1 H H F CH₃ H F CH₃ H F CH₃ F OCH₃ C1 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H	X¹ X² X³ R¹ H H H H H H H H H H H H H H H CH₃ H H H CH₃ CF₃ F H H CI CI CH₃ CH₃ H F CH₃ CH₃ CH₃ H H H H F CH₃ CH₃ F OCH₃ C1 CH₃ F OCH₃ C1 CH₃ H H H H H H H CH₃ H H H CH₃ H H H H H H H H H H H H H H H H H H H H <tr< td=""></tr<>

[0032]

【表15】

41						4
No. k m n	X ¹	Χ²	Χ³	\mathbb{R}^1	R²	
253 1 3 2	Н	Н	Н	CH₂Ph	CH ₂ Ph	
254 1 3 2	H	H	H	COCH ₃	CH ₂ Ph	
255 1 3 2	H	H	H	COPh	CH₂Ph	
256 1 3 2	CH3	H	H	CH ₃	CH ₂ Ph	
257 1 3 2	CH ₃	Н	CH ₃	CH 3	CH ₂ Ph	
258 1 3 2	F	F	H	CH ₃	CH ₂ Ph	
259 1 3 2	OCH ₃	H	H	CH3	CH₂Ph	
260 1 3 2	CI	Н	H	CH ₃	CH₂Ph	
261 1 3 2	OCH ₃	C1	H	CH ₃	CH ₂ Ph	
262 1 3 2	F	H	OCH ₃	CH ₃	CH₂Ph	
263 1 3 2	C1	СНз	F	CH ₃	CH ₂ Ph	
264 1 3 2	H	H	H	H	CH₂-CH₂-F	
265 1 3 2	H	H	H	CH ₃	CH ₂ -C	
266 1 3 2	H	H	H	CH₂Ph	CH ₂ -CF	
267 1 3 2	H	H	H	H	CH _z -C ₁	i
268 1 3 2	H	H	H	CH ₃	CH_2 — C_1	L
269 1 3 2	H	H	H	CH ₂ Ph	CH ₂ C C I	L
270 1 3 2	H	H	H	Н	$CH_2 \longrightarrow F$	
271 1 3 2	H	H	H	H	CH ₂	
272 1 3 2	Н .	H	H	CH ₃	CH ₂ -CH	3
273 1 3 2	F	H	H	H	CH ₂ CH ₂ F CH ₂ CH ₂ F	
274 1 3 2	C1	H	H	H	CH ₂	
275 1 3 2	CH ₃	H	OH	CH ₃	CH3-CH2	
					-	

【0033】 【表16】

			(23)			
<i>43</i> No. k m n	X 1	X²	Хз	R1	R²	44
276 1 3 2	F	Н	Cl	CH a	СН 4	
277 1 3 2	F	Н	H	H	CH ₂	OCH 3
278 1 3 2	Cl	Н	H	H	CH ₂ —	OCE 3
279 1 3 2	CH ₃	Н	H	CH ₃	CH 2-	C1
280 1 3 2	F	H	Cl	CH ₃	CH ₂	Cl
281 1 3 2	CH ₃	OCH ₃	H	CH ₃	H	
282 1 1 2	H	H	H	H	CH₂Ph	
283 1 1 2	Н	H	H	CH ₃	CH₂Ph	
284 1 1 2	H	H	H	C ₂ H ₅	CH₂Ph	
285 2 2 2	H	H	H	H	CH₂Ph	
286 2 2 2	Н	H	H	CH3	CH₂Ph	
DN-5817						
287 2 2 2	Н	H	H	CH₂Ph	CH ₂ Ph	
288 2 2 2	F	H	C1	CH ₃	CH ₂ Ph	
289 2 2 2	F	H	CH ₃	CH ₃	CH₂Ph	
290 2 2 2	CH ₃	H	H	CH ₃	CH ₂ Ph	
291 2 2 2	OCH ₃	H	H	CH ₃	CH ₂ Ph	
292 2 2 2	C1	H	Н	СНз	CH₂Ph	
293 2 2 2	OCH ₃	Cl	H .	CH ₃	CH₂Ph	
294 2 2 2	F	H	OCH ₃	CH₃	CH₂Ph	
295 2 2 2	Cl	CH ₃	F	CH ₃	CH₂Ph	
296 2 2 2	H	H	H	H	CH ₂	F
297 2 2 2	H	H	H	CH ₃	CH ₂ —()	F
298 2 2 2	H	H	H	CH₂Ph	CH ₂ —	F
				【表17】		
No. k m n	X1	Χ²	Х³	R¹	R²	
299 2 2 2	H	Н	Н	H	H	
300 1 2 2	H	Н	H	CH ₃	H	
301 1 2 2	H	Н	H	H	C ₂ H ₅	

[0035]

[0034]

【表18】

$$R^{1-N}(CH_{2})_{m} \xrightarrow{X^{1}} C^{-}(CH_{2})_{n} \xrightarrow{N-R^{2}} N^{2}$$

No.k	m	n	Χ¹	χ²	X3	R1	R²
302 1	2	2	H	Н	Н	Н	CH ₂ Ph
303 1	2	2	H	H	H	СНз	CH ₂ Ph
304 1	2	2	H	H	H	C ₂ H ₆	CH 2Ph
305 1	2	2	H	H	H	CH₂Ph	CH ₂ Ph
306 1	2	2	H	H	H	COCH ₃	CH₂Ph
307 1	2	2	H	H	H	COPh	CH ₂ Ph
308 1	2	2	H	H	СНз	CH ₃	CH₂Ph
309 1	2	2	F	Н	СНэ	CH ₃	CH ₂ Ph
310 1	2	2	H	H	F	CH ₃	CH ₂ Ph
311 I	2	2	H	OCH ₃	OCH ₃	CH ₃	CH ₂ Ph
312 1	2	2	OCH 3	H	СНз	CH ₃	CH ₂ Ph
313 1	2	2	H	H	CI	CH ₃	CH₂Ph
314 1	2	2	H	Cl	СНа	CH,	CH ₂ Ph
315 1	2	2	H	F	OCH ₃	CH ₃	CH ₂ Ph
316 1	2	2	C1	CH ₃	F	CH ₃	CH ₂ Ph
317 1	2	2	H	H	H	CH ₃	CH ₂ CH ₂ Ph
318 1	2	2	H	H	H	CH ₃	CH₂-Q _F

【0036】 【表19】

		_			\-	,		•
47							51	48
No.	l	m	n	X1	X²	X ₃	R ¹	R ²
319	1	2	2	H	H	H	CH ₂ Ph	CH₂
320	l	2	2	H	H	H	Н	CH ₂ ——F
321	1	2	2	H	H	H	H	CH ₂
322	1	2	2	H	H	H	CH ₃	CH ₂ -C ₁
323	1	2	2	H	H	H	CH ₃	CH ₂ (CH ₃
324	:	2	2	H	H	H	CH ₃	CH 2-CH 3
325	ì	2	2	H	H	CF ₃	H	CH ₂ -C
326	1	2	2	H	H	C1	H	CH ₂ -CF
327	1	2	2	H	H	CH ₃	CH ₃	CH 2-
328	1	2	2	H	F	C1	CH ₃	CH ₂ -C _F
329	1	2	2	F	H	CH ₃	H	CH ₂ ——F
330	1	2	2	Cl	H	CH ₃	H	CH3-CH3
331	1	2	2	H	H	CH ₃	CH ₃	CH₂-⟨◯-OCH3
332	1	2	2	H	F	C1	CH ₃	CH2-CH3
333	1	2	2	H	CI	CH ₃	CH3	CH₂
334	1	2	2	NO ₂	OCH ₃	OCH ₃	CH ₃	сн₂-{С}-
335	1	2	1	Ħ	H	H	Ħ	CH ₂ Ph
336	1	2	1	H	H	H	CH ₃	CH₂Ph
337	1	2	3	H	H	H	H	CH₂Ph
338	1	3	3	H	H	H	CH ₃	CH₂Ph
339	1	3	2	H	H	H	H	CH₂Ph
340	1	3	2	H	H	H	CH3	CH ₂ Ph
341	1	3	2	H	H	H	C ₂ H ₅	CH₂Ph

【820】

49								50
No.	1	m	n	X1	Χ²	Χ³	R1	R ²
342	1	3	2	Н	Н	Н	CH ₂ Ph	CH ₂ Ph
343	1	3	2	H	H	H	COCH ₃	CH ₂ Ph
344	1	3	2	Н	H	H	COPh	CH ₂ Ph
345	1	3	2	H	H	CH ₃	CH ₃	CH ₂ Ph
346	1	3	2	H	F	CH ₃	CH3	CH ₂ Ph
347	1	3	2	F	H	CH3	CH ₃	CH ₂ Ph
34 8	1	3	2	H	H	OCH ₃	CH ₃	CH ₂ Ph
349	l	3	2	H	H	Cl ·	СН₃	CH₂Ph
350	1	3	2	H	C1	F	CH ₃	CH ₂ Ph
351	1	3	2	H	CH ₃	OCH ₃	CH ₃	CH₂Ph
352	1	3	2	C1	СНз	F	CH ₃	CH ₂ Ph
353	1	3	2	H	H	H	H	CH #
354	1	3	2	H	H	H	CH ₃	CH T
355	1	3	2	H	H	H	CH₂Ph	CH ₂ -Q ^r _F
356	1	3	2	H	H	H	H	CH ₂ -C ₁
357	1	3	2	H	H	Ĥ	CH ₃	CH₃C1
358	1	3	2	H	H	H.	CH ₂ Ph	CH ₂ -C1
359	1	3	2	H	H	H	H	CH ₂ -CF
360	1	3	2	H	H	H	H	CH ₂
361	1	3	2	H	H	H	CH ₃	CH ₂ -CH ₃
362	1	3	2	H	H	F	H	CH₂-CD _F
363	1	3	2	H	H	Cl	H	CH ₂ -C
364	1	3	2	H	H	CH ₃	CH ₃	CH ₂ -CH ₂

[0038] [表21]

	•				(2	27)			4
51									<i>52</i>
No.	l	m	מ	X1	X²	X ₃	R¹	R ²	_
365	1	3	2	H	H	C1	CH₃	CH 2-C	E.
366	1	3	2	H	H	OCH ₃	H	CH ₂	OCH ₃
367	1	3	2	SCH ₃	H	CH3	Н	CH ₂	OCH 3
368	1	3	2	H	CH3	CH ₃	CH3		-C1
369	1	3	2	H	H	Cl	CH ₃	CH ₂ -C	-C1
370		3	2	H	OCH 3	OCH ₃	CH ₃	CH ₂ -C	E.
371	1	2	2	H	H	H	H	H	r
372	1	2	2	H	H	H	СН₃	H	
37 3	1	2	2	H	H	H	C ₂ H ₅	H	
374	1	2	2	H	H	H	H	CH2	
375	1	2	2	H	H	Н	CH ₃	CH3	
376	1	2	2	H	H	H	CH ₂ Ph	CH3	
377	1	3	2	H	H	H	CH ₃	H	
378	1	3	2	H	H	CH ₃	CH ₃	H	
379	1	3	2	H	H	F	CH ₃	H	
380	1	3	2	OCH 3	Н	CH3	CH ₃	CH ₃	
381	1	3	2	H	H	OCH ₃	CE 3	CH ₃	

【0039】 【表22】 (28)

特開平5-140149

【0040】 【表23】

$$R^{1-N}$$
 $(CH_2)_{m}$
 X^{1}
 $(CH_2)_{m}$
 X^{2}
 $(CH_2)_{2}$
 $(CH_2)_{2}$
 $(CH_2)_{2}$
 $(CH_2)_{3}$
 $(CH_2)_{4}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$
 $(CH_2)_{5}$

No.	k	m	X1	Χ²	Χ³	R¹	R²
387	0	5	H	H	H	Н	CH ₂ Ph
388	0	5	H	H	H	CH ₃	CH₂Ph
389	0	5	H	H	H	C2H5	CH₂Ph
390	0	5	H	H	H	CH₂Ph	CH₂Ph
391	0	5	H	H	H	COCH ₃	CH ₂ Ph
392	0	5	H	H	H	COPh	CH ₂ Ph
393	0	5	H	H	H	H	H
394	0	5	H	H	H	Н	CH ₂ -C ₁ C ₁
395	0	5	CH ₃	H	Cl	CH ₃	CH ₂ -CH ₃
396	0	5	F	H	OCH3	CH ₃	CH ₂ Ph
397	1	4	H	H	H	H	CH₂Ph
398	1	4	H	H	Ħ	CH ₃	CH₂Ph
399	1	4	H	H	H	C_2H_5	CH₂Ph
400	1	4	H	H	H	CH₂Ph	CH₂Ph
401	1	4	H	Ħ	н .	COCH ₃	CH ₂ Ph
402	1	4	H	H	H	COPh	CH ₂ Ph
403	1	4	CH ₃	H	CH ₃	H	CH ₂ -OCH ₃
404	1	4	CI	Н	H	н	CH ₂ Ph
405	1	4	CH ₃	H	F	CH ₃	CH₂-⟨◯
406	1	4	F	H	OCH 3	CH ₃	CH₂Ph F
407	2	3	H	Н	н	Н	CH₂Ph
					40	【表24】	

[0041]

	57					(00)			58
	No.	k	m	X1	Χ²	Χz	\mathbb{R}^1	R²	90
•	408	2	3	H	H	H	СНз	CH₂Ph	
	409	2	3	H	H	H	C ₂ H ₅	CH₂Ph	
	410	2	3	H	H	H	CH₂Ph	CH ₂ Ph	
	411	2	3	H	H	H	COCH ₃	CH ₂ Ph	
	412	2	3	H	H	H	СОРЬ	CH ₂ Ph	
	413	2	3	CH ₃	H	СНз	H	CH ₂ -	
	414	2	3	Cl	H	H	H	CH ₂ Ph	
	415	2	3	CH ₃	Н	F	CH,	CH ₂ -Ch	
	416	2	3	F	H	OCH ₃	CH3	CH ₂ Ph	
	417	3	2	Н	H	H	H	CH₂Ph	
	418	3	2	H	H	H	CH ₃	CH ₂ Ph	
	419	3	2	H	H	H	C ₂ H ₅	CH₂Ph	
	420	3	2	H	H	H	CH₂Ph	CH₂Ph	
	421	3	2	H	H	H	COCH	CH ₂ Ph	
	422	3	2	H	H	H	COPh	CH₂Ph	
	423	3	2	CH ₃	H	CH ₃	Н	СН₃-Ф	
	424	3	2	Cl	Н	H	H	CH ₂ Ph	
	425	3	2	CH₃	Н	F	CH₃	CH ₂ -C	
	426	3	2	F	H	OCH ₃	CH ₃	CH ₂ Ph	
	427	0	6	H	H	H	H	CH ₂ Ph	
	428	0	6	H	H	H	CH ₃	CH₂Ph	
	429	0	6	H	H	H	C ₂ H ₅	CH₂Ph	
	430	0	6	H	H	H	CH₂Ph	CH ₂ Ph	
	431	0	6	H	H	H	COCH 3	CH ₂ Ph	
	432	0	6	H	H	H	COPh	CH₂Ph	
	433	0	6	H	H	Cl	Н	CH ₂ -C	

[0042] [表25]

					(31)		
<i>59</i> No.	k	TL.	X1	Χ²	Χ³	\mathbb{R}^1	<i>60</i> R²
434	0	 -	н	 H	Н	Н	CH ₂ -C1
435	0	6	CH ₃	H	F	CH ₃	CH₂-⟨◯⟩
400	v	Ü	0113	••	•	•	\Box
436	0	6	F	H	OCH ₃	CH ₃	CH ₂ Ph
437	1	5	H	Н	H	H	CH₂Ph
438	ì	5	H	Н	Н	CH ₃	CH ₂ Ph
439	1	5	H	Н	H	C ₂ H ₅	CH₂Ph
440	1	5	H	Ħ	H	CH₂Ph	CH ₂ Ph
441	l	5	H	H	H	COCH ₃	CH₂Ph
442	1	5	H	H	H	COPh	CH₂Ph
443	1	5	H	H	CI	H	CH ₂ -C
444	1	5	H	H	CH 3	H	CH ₂ Ph
445	1	5	CH ₃	H	F	CH ₃	CH ₂ -CH ₃
446	1	5	F	H	OCH ₃	CH ₃	CH ₂ Ph
457	2	4	H	H	H	H	CH ₂ Ph
45 8	2	4	H	H	H	CH ₃	CH₂Ph
459	2	4	H	H	H	C2H5	CH₂Ph
460	2	4	H	H	H	CH₂Ph	CH₂Ph
461	2	4	H	H	H	COCH 3	CH ₂ Ph
462	2	4	H	H	H	COPh	CH₂Ph
463	2	4	CH ₃	H	CH ₃	H	CH₂-⟨ CN
464	2	4	C1	H	H	H	CH₂Ph
465	2	4	CH ₃	H	F	CH ₃	CH₂-⟨CF₃
466	2	4	F	H	OCH ₃		CH₂Ph
467		3	H	H	H	H	CH₂Ph
468		3	H	H	H.	CH ₃	CH₂Ph
469	3	3	H	H	H	C ₂ H ₅	CH ₂ Ph

[0043] [表26]

	_	_	
- 7	-2	7	١,

特開平5-14014	特開力	F 5	- 1	l 4	0	1	4	Ç
------------	-----	------------	-----	-----	---	---	---	---

61							<i>62</i>
No.	k	m	X1	X²	Χ³	R ¹	R²
470	3	3	H	Н	H	CH₂Ph	CH₂Ph
471	3	3	H	Ħ	H	COCH ₃	CH ₂ Ph
472	3	3	H	H	H	COPh	CH₂Ph
473	3	3	H	H	Н	H	CH ₂ -CF
474	3	3	8	H	H	H	CH2CH2-
475	3	3	CH ₃	H	F	CH ₃	CH ₂ -
476	3	3	F	H	ОСН3	CH ₃	CH₂Ph
					₹.	長27】	

[0044]

-652-

$$R^{1-N}$$
 $(CH_2)_{m}$
 X^{1}
 $(CH_2)_{m}$
 X^{2}
 $(CH_2)_{2}$
 $(CH_2)_{2}$
 $(CH_2)_{3}$
 $(CH_3)_{4}$

No.	k	m	X1	Χ²	Χa	R1	R ²
477	0	5	Н	Н	- Н	Н	CH₂Ph
478	0	5	H	H	H	CH ₃	CH₂Ph
479	0	5	H	Н	H	C ₂ H ₅	CH₂Pħ
480	0	5	H	H	H	CH ₂ Ph	CH₂Ph
481	0	5	H	H	H	COCH ₃	CH₂Ph
482	0	5	B .	H	H	COPh	CH₂Ph
483	0	5	H	H	H	H	CH2-C1
484	0	5	H	H	H	Н	CH ₂ -CNH ₂
485	0	5	CH ₃	Н	Cl	CH ₃	CH ₂ -CNH ₂ NHAc
486	0	5	F	H	OCH3	CH ₃	CH ₂ Ph
487	1	4	H	H	H	H	CH ₂ Ph
488	1	4	Н	Н	H	CH ₃	CH₂Ph
489	1	4	H	H	H	C ₂ H ₅	CH ₂ Ph
490	1	4	H	H	H	CH ₂ Ph	CH ₂ Ph
501	. 1	4	H	H	H ·	COCH ₃	CH ₂ Ph
502	1	4	H	Н	H	COPh	CH ₂ Ph
503	1	4	CH3	H	CH ₃	H	CH ₂ -CH ₂ SO ₂ CH ₃
504	1	4	C1	H	H	H	CH ₂ Ph
505	1	4	CH ₃	Н	F	CH ₃	CH2-ONHCOCF
506 ¹	1	4	F	H	OCH ₃	СНэ	CH₂Ph NHCOCK
507	0	6	H	Н	H <i>40</i>	H 【表 2 8 】	CH₂Ph

--653---

[0045]

66

	00							00
	No.	k	m	Χ¹	Χ²	Χ³	R1	R ²
	508	0	6	Н	H	Н	CH ₃	CH ₂ Ph
	509	0	6	H	H	H	C ₂ H ₅	CH₂Ph
	510	0	6	H	H	H	CH ₂ Ph	CH₂Ph
	511	0	6	H	H	H	COCH ₃	CH _z Ph
	512	0	6	Ħ	H	H	COPh	CH ₂ Ph
	513	0	6	H	H	C1	H	CH ₂ -
	514	0	6	H	H	H	H	CH ₂ -COCH ₃
	515	0	6	CH ₃	Н	F	CH ₃	CH ₂ -OH
	516	0	6	F	Н	OCH ₃	CH ₃	CH ₂ Ph COPh
	517	1	5	H	H	H	H	CH ₂ Ph
	518	1	5	H	R	H	CH ₃	CH₂Ph
	519	1	5	H	H	H	C ₂ H ₅	CH ₂ Ph
	520	1	5	H	H	H	CH ₂ Ph	CH ₂ Ph
	521	1	5	H	H	-Н	COCH ₃	CH ₂ Ph
	522	1	5	H	H	H	COPh	CH ₂ Ph
	523	1	5	Ħ	Ħ	Cl	Н	CH ₂ -C
	524	1	5	H	H	CH ₃	Н	CH ₂ Ph C ₂ H ₅
	525	1	5	CH ₃	H	F	CH ₃	CH₂-⟨◯ Ph
	526	1	5	F	H	OCH ₃	CH ₃	CH₂Ph Pn
	527	2	4	H	H	H	H	CH₂Ph
	528	2	4	H	H	H	CH ₃	CH ₂ Ph
	529	2	4	H	H	H	C ₂ H ₅	CH₂Ph
	530	2	4	H	H	H	CH ₂ Ph	CH ₂ Ph
	53 1	2	4	H	Н	H	COCH 3	CH₂Ph
	532	2	4	H	H	H	COPh	CH ₂ Ph
[0046]	No.	k	m	χı	X²	40 X³	【表29】 R¹	R²
•	533	2	4	CH ₃	H	CH ₃	H	CH ₂ -
	534	2	4	Cl	H	H	H	CH ₂ Ph
	535	2	4	CH ₃	H	F	CH ₃	CH ₂ -
[0047]	536	2	4	F	H		CH ₃ 【表30】	CH₂Ph

67	•
0 (CH ₂) ₂ N-R	-
(CH ₂) (X1	
R¹-N X²	
`(CH₂)m	

No.	k	m	X1	X²	X3	R1	R ²
537	1	1	H	H	H	H	CH₂Ph
538	1	1	H	Ħ	H	CH3	CH₂Ph
539	1	1	H	H	CH ₃	H	CH₂Ph
540	1	1	H	H	C1	H	CH ₂ Ph
541	1	1	H	H	H	COCH ₃	CH ₂ Ph
542	1	1	H	H	OCH ₃	CH ₃	CH ₂ Ph
543	1	1	H	H	C1	B	H
544	1	2	H	H	C1	H	CH ₂ Ph
545	l	2	H	H	CH ₃	H	CH ₂ Ph
546	1	2	CH,	H	F	CH 3	CH ₂ Ph
547	1	2	F	H	OCH ₃	C ₂ H ₅	CH ₂ Ph
548	1	2	H	Ħ	CH ₃	H	H
549	2	1	H	H	Cl	H	CH₂Ph
550	2	1	H	H	СН₃	H	CH₂Ph
551	2	1	CH 3	Н	F	CH 3	CH ₂ Ph
552	2	1	F	H	COCH ₃	C_2H_5	CH₂Ph
553	2	1	H	H	Cl	H	H
554	1	3	H	H	H	H	CH₂Ph
555	1	3	H	H	CH ₃	H	CH₂Ph
556	1	3	H	H	CI	H	CH ₂ Ph
557	1	3	H	H	H	CH ₃	CH ₂ Ph
5 58	2	2	Н	H	H	H	CH ₂ Ph

[0048] [表31]

69								70
No.	k	m	X1	X²	X3	R^1	R²	,,
559	2	2	H	Н	CH ₃	Н	CH₂Ph	
560	2	2	H	H	Cl	H	CH₂Ph	
561	2	2	H	H	H	CH ₂	CH ₂ Ph	
562	3	1	H	H	H	H	CH₂Ph	
563	3	l	B	H	CH ₃	H	CH ₂ Ph	
564	3	1	H	H	C1	H	CH ₂ Ph	
565	3	1	H	H	H	CH ₃	CH ₂ Ph	
566	0	5	H	Н	H	H	CH ₂ Ph	
567	0	5	H	H	CH ₃	н	CH₂Ph	
568	0	5	H	H	Cl	H	CH₂Ph	
569	0	5	H	H	H	CH3	CH₂Ph	
570	1	4	H	H	H	H	CH₂Ph	
571	1	4	H	H	CH ₃	H	CH ₂ Ph	
572	1	4	H	H	CI	H	CH₂Ph	
573	1	4	H	H	H	CH ₃	CH₂Ph	
574	2	3	H	H	H	Н	CH_gPh	
575	2	3	H	H	CH ₃	Н	CH₂Ph	
576	2	3	H	H	CI	Н	CH₂Ph	
577	2	3	Ħ	H	H	CH ₃	CH₂Ph	
578	3	2	H	H	H	Н	CH₂Ph	
579	3	2	H	H	CH ₃	Н	CH ₂ Ph	
580	3	2	H	H	C1	Н	CH₂Ph	
581	3	2	H	H	H	CH₃	CH₂Ph	
582	0	6	H	H	H	В	CH ₂ Ph	
583	0	6	H	H	CH ₃	H	CH ₂ Ph	
584	0	6	H	H	C1	H	CH₂Ph	
585	0	6	H	H	H	CH ₃	CH₂Ph	

[0049] 【表32】

71					•			72
No.	k	m	X 1	X²	Хз	R¹	R ²	
586	1	5	H	H	Н	H	CH₂Ph	
587	1	5	. Н	H	CH3	H	CH₂Ph	
588	ì	5	H	H	Cl	H	CH₂Ph	
589	i	5	H	H	H	CH _s	CH₂Ph	
590	2	4	H	Н	H	H	CH ₂ Ph	
591	2	4	H	H	CH ₃	H	CH ₂ Ph	
592	2	4	H	H	C1	H	CH ₂ Ph	
593	2	4	H	H	H	CH ₃	CH ₂ Ph	
594	3	3	H	H	H	Н	CH ₂ Ph	
595	3	3	H	H	CH ₃	Н .	CH ₂ Ph	
596	3	3	H	H	C1	H	CH ₂ Ph	
597	3	3	H	H	H	CH ₃	CH ₂ Ph	
					20	[書33]		

[0050]

-657-

73

 $R^{1-N} \xrightarrow{(CH_2)_{tt}} X^{2} \times X^{3}$ $(CH_2)_{tt} \times (CH_2)_{2} \xrightarrow{(CH_2)_{2}} N-R^{2}$

No.	k	m	X1	Χa	Χ³	R1	R _s
598	0	2	CH ₃	H	Н	Н	CH₂Ph
599	0	2	CI	H	H	H	CH ₂ Ph
600	0	2	H	H	H	COCH ₃	CH_zPh
601	0	2	OCH ₃	Н	H	CH ₃	CH ₂ Ph
602	0	2	СНэ	Н	H	H	H
603	0	3	Ħ	H	H	H	CH ₂ Ph
604	0	3	H	H	H	CH ₃	CH ₂ Ph
605	0	3	CH ₃	H	H	CH ₃	CH ₂ Ph
606	0	3	OCH ₃	H	H	H	CH ₂ Ph
607	0	3	H	H	H	H	Ė
608	0	5	Cl	H	H	H	CH₂Ph
609	0	5	H	Ħ	H	H	CH ₂ Ph
610	0	5	CH ₃	H	H	CH ₃	CH ₂ Ph
611	0	5	OCH 3	Ħ	Ħ	Ħ	CH ₂ Ph
612	0	5	H	Ħ	H	H	H
613	1	4	H	H	B	H	CH ₂ Ph
614	1	4	CH _s	H	H	H	CH₂Ph
615	1	4	OCH ₃	H	H	Н	CH₂Ph
616	1	4	H	H	H	CH ₃	CH ₂ Ph
617	0	6	H	H	H	H	CH ₂ Ph
618	0	6	CH ₃	H	H	H	CH ₂ Ph
619	0	6	CÍ	H	H	Н	CH₂Pħ

【0051】 【表34】

75								76
No.	k	m	X1	X²	Χ³	R ¹	R ²	
620	0	6	H	H	H	CH ₃	CH₂Ph	
621	0	6	H	H	H	H	CH₂Ph	
622	0	6	H	H	H	CH ₂ Ph	CH₂Ph	
623	0	6	H	H	Н	C ₂ H ₅	CH ₂ Ph	
624	0	6	Ħ	H	Н	COPh	CH₂Ph	
625	0	6	H	H	H	COCH ₃	CH ₂ Ph	
626	0	6	H	H	H	COPh	CH _z Ph	
627	0	6	F	H	H	CH ₃	CH₂Ph	
628	0	6	F	H	CH ₃	H	CH₂Ph	
629	0	6	CH ₃	H	H	H	H	
630	1	5	H	H	H	H	CH₂Ph	
631	1	5	CH3	H	H	H	CH₂Ph	
632	1	5	C1	H	H	H	CH ₂ Ph	
633	1	5	H	H	H	CH ₃	CH₂Ph	
634	2	4	H	H	H	H	CH₂Ph	
635	2	4	CH ₃	H	H	H	CH₂Ph	
636	2	.4	OCH ₃	H	H	H	CH ₂ Ph	
637	2	4	H	H	H	CH ₃	CH₂Ph	
					{	【表35】		

[0052]

--659--

77

(CH ₂), X (CH ₂)m	Xı	0 X ²	(CH ₂) ₂ -	N-R ²
(CH ₂)m	Х́з			

No.	X	k	m	X1	X2	Χs	R²
638	0	0	2	H	Н	H	CH ₂ Ph
639	0	0	2	H	H	CH ₃	CH₂Ph
640	0	0	2	H	H	H	Н
641	0	1	l	H	H	H	CH ₂ Ph
642	0	1	i	H	H	CH ₃	CH _z Ph
643	0	1	1	H	H	OCH ₃	CH ₂ Ph
644	0	0	3	H	Ħ	H	CH ₂ Ph
645	0	0	3	H	H	C1	CH₂Ph
646	0	0	3	Ħ	H	OCH ₃	CH ₂ Ph
647	0	1	2	Н	H	C ₂ H ₅	CH₂Ph
648	0	1	2	H	H	H	H
649	0	1	2	H	CH _a	H	CH ₂
650	0	2	1	H	H	H	CH ₂ Ph
651	0	2	1	H	H	CH ₃	CH ₂ Ph
652	0	2	1	H	Ħ	C ₂ H ₅	CH₂Ph
653	0	0	4	H	H	H	H
654	0	0	4	H	H	H	CH₂Ph
655	0	0	4	H	H	СНз	CH ₂ Ph
656	0	1	3	H	H	H	CH₂Ph
657	0	1	3	H	H	СНэ	CH₂Ph
658	0	1	3	H	H	H	CH ₃
659	0	2	2	H	CH ₃	H	CH₂Ph

[0053] [表36]

79								80
No.	X	k	m	X1	X²	X3	R ²	
660	0	2	2	H	Н	Н	CH ₂ Ph	
661	0	2	2	H	H	OH	CH ₂ Ph	
662	0	3	1	H	H	H	CH ₂ Ph	
663	0	3	1	H	H	F	CHzPh	
664	0	3	1	H	OH	Cl	CH _z Ph	
665	0	0	5	H	H	CH ₃	CH ₂ Ph	
666	0	0	5	H	H	H	CH₂Ph	
667	0	1	4	H	OCH ₃	H	CH ₂ Ph	
668	0	1	4	Ħ	H	H	CH ₂ Ph	
669	0	2	3	H	H	H	CH₂Ph	
670	0	2	3	Ħ	H	OH	CH₂Ph	
671	0	3	2	H	CH ₃	H	CH ₂ Ph	
672	0	3	2	H	CI	CH ₃	CH₂Ph	
673	0	0	6	H	Ħ	H	CH ₂ Ph	
674	0	0	6	H	H	H	H	
675	0	1	5	OH	H	H	CH₂Ph	
676	0	1	5	H	H	H	CH ₂ Ph	
677	0	2	4	H	H ·	CH ₃	CH₂Ph	
678	0	2	4	H	H .	H	CH₂Plı	
679	0	3	3	H	CH ₃	H	CH ₂ Ph	
680	0	3	3	H	H	H	CH₂Ph	
681	S	0	2	H	H	H	CH₂Ph	
682	S	0	2	H	H	CH ₃	CH₂Ph	
683	S	0	2	H	H	H	Н	
684	S	1	1	H	H	H	CH₂Ph	
685	S	1	1	H	H	CH ₃	CH₂Ph	
686	S	1	1	H	H	OCH ₃	CH ₂ Ph	

[0054] [表37]

(42)

特開平5-140149

81							82
No.	X	k	m	X1	X²	X3	R ²
687	S	0	3	H	H	H	CH₂Ph
688	S	0	3	H	H	Cl	CH _z Ph
689	S	0	3	H	H	OCH ₃	CH₂Ph
690	S	1	2	H	H	C ₂ H ₅	CH ₂ Ph
691	S	1	2	H	H	H	H
692	S	1	2	H	СНз	H	$CH = CH - \bigcirc$
693	S	2	1	H	H	H	CH ₂ Ph
694	\$	2	1	H	H	CH 3	CH₂Ph
695	S	2	1	H	H	C_2H_5	CH₂Ph
696	S	0	4	H	H	H	H
697	S	0	4	H	H	H	CH₂Ph
698	S	0	4	H	H	CH ₃	CH₂Ph
699	S	1	3	H	H	H	CH₂Ph
700	S	1	3	H	H	CH ₃	CH₂Ph
701	S	1	3	H	H	H	СНз
702	S	2	2	H	CH ₃	H	CH ₂ Ph
703	S	2	2	H	H	H	CH ₂ Ph
704	S	2	2	H	H	OH	CH ₂ Ph
705	S	3	1	H	H	H	CH₂Ph
706	S	3	1	H	H	F	CH₂Ph
707	S	3	1	H	HO	Cl	CH₂Ph
708	S	0	5	H	Н	CH ₃	CH₂Ph
709	S	0	5	H	H	H	CH ₂ Ph
710	S	1	4	H	OCH 3	H	CH₂Ph
711	S	1	4	H		Ħ	CH₂Ph
712	S	2	3	H	H	H	CH₂Ph
713	S	2	3	H	H	OH	CH₂Ph

[0055] [表38]

特開平5-140149

<i>83</i> No.	X	k	m	X1	X²	X3	84 R²	!
714	s	3	2	Н	CH₃	Н	CH₂Ph	_
715	s	3	2	H	Cl	CH3	CH₂Ph	
716	s	0	6	Н	H	H	CH ₂ Ph	
717	s	0	6	H	Н	H	H.	
718	S	1	5	OH	Н	H	CH₂Ph	
719	s	1	5	H	H	H	CH₂Ph	
720	S	2	4	H	H .	CH ₃	CH_zPh	
72 1	S	2	4	H	H	H	CH ₂ Ph	
722	S	3	3	H	CH ₃	H	CH₂Ph	
723	S	3	3	H	H	H	CH₂Ph	

(43)

 X^1 $(CH_2)_{1}$ X^2 $(CH_2)_{2}$ $(CH_2)_{2}$ $(CH_2)_{2}$ $(CH_2)_{2}$ $(CH_2)_{3}$ $(CH_2)_{4}$

No.	X	k	n	X1	X²	Χ³	R²
724	0	0	2	H	Н	Н	CH₂Ph
725	0	0	2	CH ₃	H	Н	CH₂Ph
726	0	0	2	Н	H	H	H
727	0	0	3	H	H	H	CH ₂ Ph
728	0	0	3	OCH₃	H	CH ₃	CH ₂ Ph
729	0	0	3	OH	H	OCH ₃	CH_zPh
730	0	0	4	H	H	Ħ	CH₂Ph
73 1	0	0	4	C1	H	H	CH ₂ Ph
732	0	0	4	F	H	H	CH₂Ph
733	0	1	4	H	H	H	CH ₂ Ph
734	0	1	4	CH ₃	Cl	H ·	CH ₂ Ph
735	0	0	5	H.	H	H	CH₂Ph
736	0	0	5	H	CH ₃	H	CH₂Ph
737	0	2	4 -	OH	H	H	CH₂Ph
738	0	2	4	H	H	H	CH₂Ph
739	0	1	5	H	H	H	CH ₂ Ph
740	0	0	6	H	H	H	CH₂Ph
741	S	0	2	H	H	H	CH ₂ Ph
742	S	0	2	CH ₃	H	H	CH₂Ph
743	S	0	2	H	H	H	H
744	S	0	3	Н	H	Н	CH ₂ Ph
745	S	0	3	OCH ₃	H	CH ₃	CH ₂ Ph

【0057】 【表40】

87								88
No.	X	k	m	X1	Χ²	Х3	R ²	
746	S	0	3	ОН	Н	OCH ₃	CH ₂ Ph	
747	S	0	4	H	H	H	CH ₂ Ph	
748	S	0	4	C1	H	H	CH₂Ph	
749	S	0	4	F	H	H	C H₂ Ph	
750	S	1	4	H	H	H	CH₂Ph	
751	s	1	4	CH ₃	Cl	H	CH₂Ph	
752	s	0	5	H	H	H	CH₂Ph	
75 3	S	0	5	Н	CH ₃	Н	CH₃Ph	
754	s	2	4	OH	H	Н	CH ₂ Ph	
755	S	2	4	Н	H	H	CH₂Ph	
756	S	1	5	H	H	H	CH ₂ Ph	
757	S	0	6	H	H	H	CH ₂ Ph	
					20	【表41】		

[0058]

89

$$(CH_2)_{x}$$

$$(CH_2)_{m}$$

$$X^{1}$$

$$(CH_2)_{m}$$

$$X^{3}$$

No.	X	k	E	X1	Χ²	X s	R ²
758	0	0	2	·H	Н	Н	CH₂Ph
759	0	0	2	H	H	H	CH ₂ Ph
760	0	1	i	H	H	H	CH ₂ Ph
761	0	1	1	OCH ₃	H	CH ₃	CH ₂ Ph
762	0	0	3	H	H	H	CH ₂ Ph
76 3	0	0	3	H	H	Cl	CH ₂ Ph
764	0	1	2	H	H	H	CH ₂ Ph
765	0	1	2	H	CI	СНз	CH ₂ Ph
766	0	2	1	H	H	H	CH ₂ Ph
767	0	2	1	H	CH ₃	H	CH ₂ Ph
768	0	0	4	H	H	OH	CH₂Ph
769	0	0	4	E	H	H	CH₂Ph
770	0	i	3	H	H	H	CH₂Ph
77 1	0	1	3	H	H	C1	CH₂Ph
772	0	2	2	H	Ħ	H	CH ₂ Ph
773	0	2	2	OCH ₃	H	CH ₃	CH₂Ph
774	0	3	1	H	H	H	CH ₂ Ph
775	0	3	1	H	H	C1	CH₂Ph
776	0	0	5	Н	H	H	CH₂Ph
777	0	0	5	Н	CI	CH ₃	СН₂Рһ
778	0	1	4	H	H	H	CH ₂ Ph
779	0	1	4	H	СНз	Н	CH ₂ Ph

[0059] [表42]

91								92
No.	X	k	m	X ¹	X²	Χ³	R²	
780	0	. 2	3	H	Н	ОН	CH₂Ph	
781	0	2	3	H	H	H	CH₂Ph	
782	0	3	2	H	H	H	CH ₂ Ph	
783	0	3	2	H	H	F	CH _z Ph	
784	0	0	6	H	H	H	CH₂Ph	
785	0	0	6	H	C1	CH _s	CH ₂ Ph	
786	0	1	5	H	H	H	CH₂Ph	
787	0	1	5	H	СНз	H	CH₂Ph	
788	0	2	4	H	H	OH	CH₂Ph	
789	0	2	4	Ħ	H	H	CH ₂ Ph	
790	0	3	3	H	H	H	CH₂Ph	
791	0	3	3	Ħ	H	F	CH ₂ Ph	
792	S	0	3	Н	H	Н	CH₂Ph	
793	S	0	2	H	H	H	CH₂Ph	
794	S	1	1	H	H	H	CH ₂ Ph	
795	S	. 1	1	OCH ₃	H	CH3	CH ₂ Ph	
796	S	0	3	H	H	Н	CH₂Ph	
797	S	0	3	H	H	C1	CH₂Ph	
798	S	1	2	H	H .	Н	CH₂Ph	
799	S	1	2	H	Cl	CH ₃	CH₂Ph	
800	S	2	1	H	H	H	CH₂Ph	
801	S	2	1	H	CH ₃	H	CH ₂ Ph	
802	S	0	4	H	Н	OH	CH ₂ Ph	
803	S	0	4	H	Н	H	CH ₂ Ph	
804	S	1	3	H	H	H	CH₂Ph	
805	S	1	3	H	H	C1	CH₂Ph	
806	S	2	2	H	H	H	CH₂Ph	

[0060] (表43]

特開平5-140149

	93					••			0.4
	No.	X	k	m	X1	X²	Χa	R²	94
-	807	s	2	2	OCH ₃	Н	CH ₃	CH₂Ph	
	808	S	3	1	Н	H	H	CHzPh	
	809	S	3	1	H	Н	CI	CH ₂ Ph	
	810	S	0	5	H	H	H	CH ₂ Ph	
	811	S	0	5	H	C1	CH ₃	CH ₂ Ph	
	812	S	1	4	H	H	H	CH₂Ph	
	813	S	1	4	H	СНз	H	CH₂Ph	
	814	S	2	3	H	H	HO	CH₂Ph	
	815	S	2	3	H	H	H	CH₂Ph	
	816	S	3	2	H	H	H	CH₂Ph	
	817	S	3	2	H	H	F	CH₂Ph	
	818	S	0	6	H	H	H	CH₃Ph	
	819	S	0	6	H	CI	СН₃	CH₂Ph	
	820	S	1	5	H	H	H	CH₂Ph	
	821	S	1	5	H	CH ₃	H	CH₂Ph	
į	822	S	2	4	H	H	OH	CH₂Ph	
i	823	S	2	4	H	H	H	CH₂Ph	
;	824	S	3	3	H	H	H	CH ₂ Ph	
;	825	S	3	3	Н	H	F	CH _z Ph	

[0061] [表44]

 X^{1} $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{2}$ $(CH_{2})_{2}$ $(CH_{2})_{2}$

No.	X	k	m	X1	X²	X3	R ²
826	0	0	2	Н	Н	Н	CH₂Ph
827	٠0	0	2	CH ₃	H	H	CH₂Ph
828	0	0	3	H	H	H	CH ₂ Ph
829	0	0	3	OCH ₃	H	CH ₃	CH₂Ph
830	0	0	4	H	Н	H	CH₂Ph
831	0	0	4	C1	H	H	CH₂Ph
832	0	1	4	H	H	H	CH ₂ Ph
833	0	1	4	OH	C1	.Н	CH ₂ Ph
834	0	0	5	H	H	H	CH₂Ph
835	0	0	5	Н	CH ₃	H	CH ₂ Ph
836	0	2	4	OCH 3	H	OH	CH₂Ph
837	0	2	4	H	H	H	CH₂Ph
838	0	1	5	H	H	H	CH₂Ph
839	0	0	6	H	H	H	CH₃Ph
840	S	0	2	H	H	H	CH₃Ph
841	S	0	2	OCH ₃	H	H	CH ₂ Ph
842	S	0	3	H	H	H	CH ₂ Ph
843	S	0	3	OCH ₃	H	CH3	CH ₂ Ph
844	S	0	4	H	H	H	CH₂Ph
845	s	0	4	F	H	H	CH ₂ Ph
846	S	1	4	H	H	H	CH₂Ph
847	S	1	4	CH ₃	Cl	H	CH₂Ph

[0062]

-669-

【表45】

97							98
No.	X	k	m	X1	X²	X3	R²
848	S	0	5	H	H	Н	CH ₂ Ph
849	S	0	5	H	CH ₃	H	CH ₂ Ph
850	S	2	4	H	H	H	CH ₂ Ph
851	s	2	4	CH ₃	H	H	CH ₂ Ph
852	S	1	5	H	H	H	CH ₂ Ph
853	S	0	6	H	H	H	CH ₂ Ph

【0063】この発明の化合物(1)の塩としては、とり わけ生理学的に許容される酸付加塩が好ましい。それら の塩としては、例えば無機酸(例えば、塩酸、リン酸、 臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、 酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コ ハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香 酸、メタンスルホン酸、ベンゼンスルホン酸)との塩が 用いられる。さらに、この発明の化合物(I)が-COO Hなどの酸性基を有している場合、化合物(I)は、無機 20 塩基(例えば、ナトリウム、カリウム、カルシウム、マ グネシウム、アンモニア)または有機塩基(例えばトリ エチルアミン)と塩を形成してもよい。

【0064】次に、この発明の化合物(I)またはその塩 の製造法について述べる。以下の製法説明は、化合物 (1)の自体のみならず、上述したその塩にも適用される が、以下の説明では単に化合物(1)と略称する。式

[式中、Yは脱離基を、2はアミノ基の保護基を、nは 前記と同意義を示す。〕で表わされる化合物またはその 塩と、式

$$\chi_{\text{(CH2)m}}^{\text{(CH2)m}}$$
(III)

[式中の各記号は前記と同意義を示す。] で表わされる 化合物とを反応させ、得られる式 【化28】

$$X \xrightarrow{(CH_2)_{R}} C \xrightarrow{|||} C \xrightarrow{(CH_2)_{R}} N - Z \qquad (IV)$$

[式中の各記号は前記と同意義を示す。] の化合物また はその塩を脱保護反応に付すことにより目的化合物 (I) のうち、R²が水素原子である化合物を製造する ことができる。Yは脱離基を示し、脱離基としてはたと えばクロル、プロム、ヨード等のハロゲン原子等が用い られる。Yの好ましい例はクロルである。Zはアミノ基 の保護基を示し、この様な保護基としてはたとえばホル ミル、アセチル、ペンゾイル、メトキシカルボニル、エ トキシカルボニル、t-ブトキシカルボニル、ペンジル 40 オキシカルボニル等のペプチド化学分野で一般的に用い られるアミノ基の保護基が用いられる。2の好ましい例 は、アセチル、ベンゾイルである。

【0065】ここで、式(II)の化合物またはその塩は、 それ自体公知の方法あるいはそれに準じる方法により製 造することができる。例えば、ケミカルファルマシュー ティカル プリティン (Chem. Pharm. Bull.) 34, 3747 -3761(1986)に記載の方法に従って製造することができ る。式(III)の化合物は、それ自体公知の方法あるい

ば、ジャーナル オブ ジ オーガニック ケミストリ - (J. Org. Chem.) 34, 2235 (1969), ジャ ーナル オブ ジオーガニック ケミストリー (J. Or g. Chem.) 54, 5574 (1989), テトラヘドロ ンレターズ (Tetrahedron Lett.) 35, 3023 (1 977), プリティン オプ ザ ケミカル ソサイテ ィー オブ ジャパン (Bull. Chem. Soc. Jpn.) 5 6,2300(1983)などに記載の方法に従って製 造することができる。

【0066】この発明の化合物 (II) 及び(IV)の塩とし ては、とりわけ生理学的に許容される酸付加塩が好まし い。それらの塩としては、例えば無機酸(例えば、塩 酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機 酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マ レイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚 酸、安息香酸、メタンスルホン酸、ベンゼンスルホン 酸)との塩が用いられる。式(II)の化合物またはその塩 (式(I)で述べたごとき塩)と、式(III)の化合物との はそれに準じる方法により製造することができる。例え 50 反応は、例えば、式(II)の化合物またはその塩と式(II

1)の化合物を、溶媒を用いずに、または溶媒中、必要に より酸等の存在下、反応させることによって行うことが できる。酸としては、いわゆるルイス酸(例えば塩化ア ルミニウム、塩化亜鉛、塩化チタン)が用いられる。上 記酸の使用量としては、式(II)の化合物またはその 塩1モルに対し、通常1~10モル、好ましくは2~1 0モル量である。溶媒としては、反応を妨げないかぎ り、化学反応において、一般に使用される溶媒ならいず れでもよく、例えばジクロロメタン、ジクロロエタン、 度は通常-30°C~15 0°C程度、好ましくは20 °C~100°C程度である。反応時間は通常0.5~7 2時間である。式(III)の化合物の使用量は、式(II)の 「化合物またはその塩1 モルに対し、通常約1~20モ ル、好ましくは約1~5モル量である。上記の反応で、 _式(II)中の基

【化29】

$$\begin{array}{c|c}
O \\
-C - (C H_2)n - N - Z
\end{array}$$

が式 (III)の化合物に導入される位置はA環の置換可能 な位置のいずれにも導入されるが、例えば、式(III)の 化合物の骨格が1,2,3,4-テトラヒドロキノリン (但し環Aは無置換)の場合に、主に6位に導入され る。しかし、他の位置(5位、7位、8位)へ導入され た化合物も生成、分離することができる。かくして得ら れる化合物(IV)またはその塩は、公知の手段たとえば濃 縮、液性変換、転溶、溶媒抽出、分留、蒸留、結晶化、 再結晶、クロマトグラフィー等で単離、精製することが 30 できるが、単離することなく反応混合物のまま次の工程 の原料として供されてもよい。

【0067】式(IV)の化合物またはその塩の脱保護反応 は、式(IV)の化合物またはその塩を、酸または塩基で処 理することにより行なうことができる。すなわち、式(I V)の化合物またはその塩は、鉱酸(例えば硝酸,塩酸, - 臭化水素酸,ヨウ素酸,硫酸)またはアルカリ金属水酸 化物(例えば、水酸化ナトリウム、水酸化カリウム、水 酸化パリウム, 水酸化リチウム) の水溶液中、10°~ 150°C、好ましくは50°~100°Cに保持され る。酸又は塩基の使用量は、式(IV)の化合物またはその 塩に対し、通常1~100当量、好ましくは1~40当 量である。酸および塩基の強さとしては、通常約1~1 0規定、好ましくは4~10規定である。反応時間は、 反応温度にもよるが、通常1時間から24時間、好まし くは2時間から10時間程度である。かくして得られる 化合物(I)($R^2 = H$) またはその塩は、公知の手段た とえば濃縮、液性変換、転溶、溶媒抽出、分留、蒸留、 結晶化、再結晶、クロマトグラフィー等で単離、精製す

ることができるが、単離することなく反応混合物のまま 次の工程の原料として供されてもよい。R²が水素原子 以外の基である化合物(1)またはその塩は、例えば化合 物 (I) (R³=H) またはその塩と式

 $R^2' - Y$.(V)

[式中、R21は置換基を有していてもよい炭化水素基を 示し、Yは脱離基を示す。] で表わされる化合物とを反 広させることによって製造することができる。Yの脱離 基とは、例えばハロゲン原子(例えば、クロル、プロ ニトロペンゼン、二硫化炭素などが用いられる。反応温 10 ム、ヨード)、C1-8アルキルスルホニルオキシ(例え ば、メタンスルホニルオキシ、エタンスルホニルオキ シ)、C₈₋₁₀アリールスルホニルオキシ(例えばベンゼ ンスルホニルオキシ、p-トルエンスルホニルオキシ) などが含まれる。特にハロゲン原子が好ましい。

> 【0068】化合物(I:R2=H)またはその塩と化合 物(V)との反応は、溶媒を用いてまたは用いないで、ま た必要に応じて塩基の存在下に行われる。塩基として は、たとえば炭酸ナトリウム、炭酸カリウム、炭酸リチ ウム、水酸化ナトリウム、水酸化カリウム、ナトリウム 20 メトキシド、ナトリウムエトキシド、水素化ナトリウム などの無機塩基やピリジン、4-ジメチルアミノピリジ ン、トリエチルアミンなどの有機塩基が用いられる。溶 媒を使用する場合、該溶媒としてはたとえばメタノー ル、エタノール、プロパノール、イソプロパノール、n -プタノール、t-プタノールなどの低級アルコール 類、ジオキサン、エーテル、テトラヒドロフランなどの エーテル類、トルエン、ペンゼン、キシレンなどの芳香 族炭化水素類、ジメチルホルムアミド、ジメチルアセト アミド、ヘキサメチルホスホノトリアミドなどのアミド 類、酢酸エチル、酢酸プチルなどのエステル類などの反 応の進行を阻害しない溶媒が使用される。本反応は冷却 下(約0°C~10°C)、室温下(約10°C~40° C) あるいは過熱下(約40°C~120°C)で行うこ とができ、反応時間は、通常、10分~48時間、好ま しくは2~16時間である。また使用する化合物(V)の 量は、通常、化合物(I;R2=H)またはその塩に対 して好ましくは0.3~5.0倍モルである。塩基を使用 する場合の塩基の使用量は、通常、化合物(I;R²= H) またはその塩に対して、約当モル量から過剰量、好 ましくは、1.1~5倍モル量用いられる。

【0069】さらに本反応は所望によりヨウ化化合物、 たとえばヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リ チウムなどの存在下に反応を促進させてもよい。これら のヨウ化合物の存在下で反応を行なう場合、その使用量 は、化合物(V)に対し、通常1~5倍モル当量で好まし くは1.1~1.5倍モル量である。さらに、化合物(I) は、式

【化30】

102

HN
$$(CH_2)_k$$
 A $C-(CH_2)_n$ $N-R^2$ (VI)

【式中、k、m、n、環A、R²'は前記と同意義を示す。】で表わされる化合物またはその塩と式R¹'-Y(VII)

[式中、R1'は置換基を有していてもよい炭化水素基ま たは置換基を有していてもよいアシル基を示し、Yは前 記と同意義を示す。] で表わされる化合物とを、たとえ 10 ば化合物($I; R^2 = H$) またはその塩と式(V)で表わ される化合物との反応と同様の条件で、反応させること によっても製造することができる。ここで、式 (VI) の 化合物またはその塩は、化合物(I:R²≠H) または その塩のうちR¹がアシル基である化合物を、酸又は塩 基で加水分解することにより製造することができる。こ の反応は、式(IV)で表わされる化合物またはその塩を脱 保護する方法と同様の方法に従って行なうことができ る。さらに、化合物(I)は、その他公知方法またはそれ に準じる方法により製造することもできる。例えば、2 がカルボン酸アシル基である化合物(IV)を還元すること によって化合物(I)を製造することができる。本反応に おいては、必要に応じて化合物(IV)の官能基(例えば、 ケトン)を保護、脱保護することが好ましい。

【0070】かくして得られる化合物(1)は、遊離体の 場合常法に従って塩にすることができ、また塩を形成し ている場合常法に従って遊離体あるいは他の塩に変換す ることもできる。得られる化合物(1)またはその塩は、 前述のごとき公知の手段により単離、精製することがで きる。この発明の化合物(I)またはその塩は、哺乳動物 30 の中枢神経系に作用し、強いコリンエステラーゼ阻害活 性を有し、人または動物(例えば、マウス)における各 種健忘誘発作用に対し優れた抗健忘作用を示す。この発 明の化合物(I)またはその塩は、フィゾスチグミンと比 較して、中枢神経に対する作用と末梢神経に対する作用 との分離が極めてよく、抗健忘作用を示す用量では、痙 攀作用、流涎作用、下痢などの末梢神経作用は無いか、 もしくは極めて軽微で、作用持続時間が長く、毒性が低 い特徴を有する、また経口投与により著効を奏する。こ の発明の化合物(I)またはその塩の急性毒性(L Dso) は100mg/kg以上である。従ってこの発明 化合物は、人を含む哺乳動物の脳機能改善薬として有用 である。この発明の化合物の有用な対象疾病名として は、たとえば老年性痴呆、アルツハイマー病、ハンチン トン舞踏病、運動過多病、躁病などが挙げられ、この発 明の化合物は、前記の疾病の予防または治療に用いるこ とができる。この発明の化合物は、通常、医薬的に受容 な担体または賦形剤とともに製剤化して、ヒトを含む哺 乳動物に経口的、もしくは非経口的に投与し得る。製剤 の剤型としては、経口用製剤(例えば、粉末剤、錠剤、

顆粒剤、カプセル剤)ならびに非経口用製剤(例えば、 坐剤、注射剤)の何れかであってもよい。これらの製剤 は、それ自体公知の方法を用いて作ることができる。投 与量は対象疾患の種類、症状などにより差異はあるが、 一般的に成人においては、経口投与の場合、一日につき 約0.01 $mg\sim$ 100mg、好ましくは0.1 \sim 30mg、よ り好ましくは0.3 \sim 10mgである。

[0071]

【実施例】以下において、実施例、参考例、製剤例およ・ び実験例によりこの発明をより具体的にするが、この発 明はこれらに限定されるものではない。実験例、参考例 のカラムクロマトグラフィにおける溶出は、特記しない 場合はTLC(Thin Layer Chromatography、薄層クロ マトグラフィ)による観察下に行われた。TLC観察に おいては、TLCプレートとしてメルク(Merck) 社製の60F254を、展開溶媒としてカラムクロマトグ ラフィで溶出溶媒として用いられた溶媒を、検出法とし TUV検出器を採用した。また、TLCプレート上のス ポットに48%HBrを噴霧し、過熱して加水分解した 後にニンヒドリン (minhydrin) 試薬を噴霧し、再び過 熱して赤~赤紫色に変わる現象も検出法として併用して 目的物を含む溶出分画を確認し、集めた。特配しない限 りカラム用シリカゲルはメルク社製のキーゼルゲル60 (70~230メッシュ)を用いた。なお、"常温"あ るいは"室温"とあるのは通常約5°Cから40°Cを意 味し、常圧とあるのは、一気圧近辺を意味する。また、 特記しない限り%は重量百分率を示す。

【0072】参考例1

1-アセチル-6-[3-(1-アセチルピペリジン-4-イル) -1-オキソプロピル] -1, 2, 3, 4-テトラヒドロキノリン

【化31】

(1) β - (ピリジン-4-イル) アクリル酸エチルエステル33gを酢酸300mlに溶かし、酸化白金を触媒とし、70-80°C、 常圧で接触還元した。無水酢酸40mlを加えた後、触媒をろ去し、溶媒を減圧留去した。残渣を水に溶かし、炭酸カリウムで中和し、生成物をジクロロメタンで抽出した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、オイル状化合物44.8gを得た。

(2) オイル状化合物 4 2.9gをメタノール 2 0 0mlに溶 50 かし、水酸化カリウム 1 2.7gを水 2 0mlに溶かした溶

得た。

液を加え、50° Cで 1.5 時間,室温で 12 時間撹拌した。濃塩酸で中和し、溶媒を留去した後、メタノールを加え不溶物を遮去し、ろ液を濃縮して得られる粗結晶をろ取し、3-(1- アセチルピペリジン -4- イル)プロピオン酸 27g (融点 201-206° C) を得た。

103

(3) 3 - (1-アセチルピペリジン-4-イル)プロピオン酸3.8gを氷冷下、少量ずつ塩化チオニル20mlに加える。5分撹拌後、過剰の塩化チオニルを留去し、残った固体に二硫化炭素15gおよび1-アセチル-1,2,3,4-テトラヒドロキノリン3.1gを加え、無水塩10化アルミニウム10.7gを室温で徐々に加えた。2時間加熱還流した後、反応物を氷水に注ぎ、ジクロロメタンで抽出した。抽出液を無水硫酸ナトリウムで乾燥後、溶媒を留去して得られる残渣を、クロマトグラフィー(展*

(1) 参考例 1 - (2) で得た 3 - (1-アセチルピペリジン-4-イル) プロピオン酸 2 6gを氷冷下、少量ずつ塩化チオニル 1 0 0 mlに加える。5 分間撹拌後、過剰の塩化チオニルを留去し、残った固体をジエチルエーテルで洗浄して 3 - (1-アセチルピペリジン-4-イル)プロピオン酸クロリド 2 6.4gを淡黄色粉末として得た。

(2) 1-アセチル-1,2,3,4-テトラヒドロキノリン42.5gと二硫化炭素30m1の混合物に、まず無水塩化アルミニウム71g、続いて3-(1-アセチルピ 30ペリジン-4-イル)プロピオン酸クロリド26.4gを室温で加えた。室温で16時間撹拌した後、反応物を参考例1-(3)と同様に処理して、1-アセチルー6-(3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル〕-1,2,3,4-テトラヒドロキノリン(A)と1-アセチルー7-(3-(1-アセチルピペリジン-4-イル)-1+オキソプロピル〕-1,2,3,4-テトラヒドロキノリン(B)の混合物25gを淡黄色油状物として得た。

元素分析値 C21 H28 N2 O3 として

計算値 : C70.76; H7.92; N7.86

実験値 : C70.81;H7.69;N7.83

【0074】参考例3

1-アセチル-5-(3-(1-アセチルピペリジン-4-イル) -1-オキソプロピル)-2, 3-ジヒドロ

104 ★開溶媒;酢酸エチルーメタノール=40:1 (V/ V)) により精製することにより、無色油状物1.4gを

元素分析値 C21 H28 N2 O3 として

計算值 : C70.76; H7.92; N7.86

実験値 : C70.68; H7.80; N7.64

【0073】参考例2

[化32]

- 1 H-インドール

【化33】

1-アセチルー 2, 3-ジヒドロー 1 H-インドール 2 4 g を用いて参考例 2- (2) と同様の操作を行なうことに より得られた固体をジクロロメタンージエチルエーテル から再結晶して、融点 1 4 8 - 1 4 9 $^\circ$ C 0 m 色結晶 2 6 g を得た。

元素分析値 C20 H26 N2 O3 として

計算値 : C70.15;H7.65;N8.18 実験値 : C69.97;H7.71;N7.98

【0075】参考例4

1-アセチル-8-[3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-2,3,4,5-テ 40 トラヒドロ-1H-1-ベンズアゼピン(A)および1-アセチル-7-[3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-2,3,4,5-テトラヒドロ-1H-1-ベンズアゼピン(B)

【化34】

1-アセチルー2,3,4,5ーテトラヒドロー1 H-1 ーベンズアゼピン8.7 gを用いて参考例2ー(2)と同様の操作を行うことにより得られた固体をジクロロメタンージエチルエーテルから再結晶して、表題化合物A 10 6.5 gを融点133-1340 の無色結晶として得た。

元素分析値 C22 H30 N2 O3 として

計算值 : C71.32;H8.16;N7.56

実験値 : C71.10; H8.21; N7.61

また、再結晶母液をカラムクロマトグラフィー(展開溶媒;酢酸エチルーメタノール=100:1)により精製して、表題化合物B0.3gを淡黄色油状物として得た。

元素分析値 C22 H30 N2 O3 として

計算値 : C71.32;H8.16;N7.56

実験値 : C71.13; H8.04; N7.43

【0076】参考例5

8 - [3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-2,3,4,5-テトラヒドロ-1H-1-ベンズアゼピン

【化35】

実施例17で得た化合物2.2gを用いて実施例7-(1)と同様にして、融点86-88℃の無色結晶2. 15gを得た。

元素分析値 C20 H28 N2 O2 として

計算値 : C73.14;H8.59;N8.53 実験値 : C72.91;H8.38;N8.47

【0077】参考例6

10 5-[3-(1-アセチルピペリジン-4-イル)-1 -オキソプロピル]-1-エチル-2,3-ジヒドロ-1H-インドール

【化36】

20 実施例14-(1)で得た5-[3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-2,3-ジヒドロ-1H-インドール0.8g, ヨウ化エチル2.1gと炭酸カリウム0.5gのエタノール10ml溶液を24時間加熱還流した。固体及び溶媒を留去して得られる残渣をカラムクロマトグラフィー(展開溶媒;酢酸エチル-メタノール=20:1)により精製して、表題化合物0.85gを淡黄色油状物として得た。

元素分析値 C20 H28 N2 O2 として

計算値 : C73.14; H8.59; N8.53 30 実験値 : C73.03; H8.54; N8.56

【0078】参考例7

実施例14-(1) または参考例5で得た化合物を用いて、参考例6と同様にして〔表46〕に示す化合物を油 状物として得た。

[0079]

【表46】

二字八化店

					兀莱分析但						
化合物					計算值						
番号	k'	m'	R¹	分子式	(実験値)						
					C H N						
1	2	0	C ₃ H ₇	C21H30N2O2	73. 65 8. 83 8. 18						
					(73. 46 8. 85 7. 99)						
2	2	0	C_4H_9	$C_{22}H_{32}N_2O_2$	74. 12 9. 05 7 . 86						
					(74. 03 9. 02 7. 61)						
3	2	0	C ₅ H _{1 1}	$C_{23}H_{34}N_2O_2$	74. 56 9. 25 7. 56						
					(74. 51 9. 09 7. 45)						
4	2	0	CH ₂ CH ₂ Ph	$C_{26}H_{32}N_2O_2$	77. 19 7. 97 6. 93						
					(77. 12 8. 02 6. 86)						
5	0	4	CH3	$C_{21}H_{30}N_{2}O_{2}$	73. 65 8. 83 8. 18						
					(73. 55 8. 73 8. 16)						
6	0	4	C2H5	$C_{22}H_{32}N_2O_2$	74. 12 9. 05 7. 86						
					(74.01 8.96 7.75)						
7	0	4	C ₃ H ₇	$C_{23}H_{34}N_2O_2$	74. 56 9. 25 7. 56						
	1				(74. 37 9. 11 7. 43)						

【0080】参考例8 5-[3-(1-アセチルピペリジン-4-イル)-1 -オキソプロピル]-2,3-ジヒドロペンゾフラン 【化37】

3- (1-アセチルピペリジン-4-イル)プロピオン酸クロライド9.65g(44mmol)および2,3-ジヒドロペンソフラン10.65g(89mmol)を1,2-ジクロロエタン200mlに加えた。ついで塩化アルミニウム12.82g(96mmol)を少しずつ加え、その後室温で3時間撹拌した。反応液を氷水に加え、塩化メチレンで抽出した。合わせた有機層を水で洗い、無水硫酸ナトリウムで乾燥させ、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーで精製し(酢酸エチ

ル)、5-[3-(1-アセチルピペリジン-4-1ル)-1-オキソプロピル]-2,3-ジヒドロペンゾフラン(3)10.47g(78%)を得た。さらにジクロロメタンージエチルエーテルで再結晶することにより、無色針状結晶を得た。

融点 93-95℃

元素分析値 C18 H23 NO3 として

40 計算値 : C71.73;H7.69;N4.65

実験値 : C71.57;H7.77;N4.58

【0081】参考例9

3-(1-ペンゾイルピペリジン-4-イル) プロピオン酸

【化38】

トリウムで乾燥させ、溶媒を留去した。残留物をシリカ (1) β - (ピリジン - 4 - イル) アクリル酸エチルエス ゲルカラムクロマトグラフィーで精製し (酢酸エチ 50 テル1 2gを酢酸 1 0 0ml に溶解し、酸化白金 1 g を触媒

とし、70-80℃、常圧で接触還元した。触媒をろ去し、溶媒を減圧下留去した後、ジオキサン100mlに溶解した。炭酸水素ナトリウム12gの水溶液100mlを上記ジオキサン溶液に加え、室温で20分撹拌した。塩化ペンゾイル8mlを室温で滴下、2時間撹拌した後、生成物をジクロロメタンで抽出した。無水硫酸ナトリウムで乾燥後、溶媒を留去して、3-(1-ベンゾイルピペリジン-4-イル)プロピオン酸エチルエステル17.5gを淡黄色油状物として得た。

(2) (1)で得た化合物 1 7 g を実施例 1 - (2) と同様 10 の操作を行うことにより、表題化合物 1 5 g を融点 1 5 3 - 1 5 5 ℃の無色結晶として得た。

元素分析値 C15 H19 NO3 として

計算值: C68.94; H7.33; N5.36

実験値 : C68.71;H7.44;N5.20

【0082】参考例10

3 - メトキシカルボニル-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン

【化39】

水酸化ナトリウム4.13g(0.10モル)を水150 mlに溶かし、2,3,4,5ーテトラヒドロー1H-3ーベンズアゼピン15.27g(10.4ミリモル)を加えた。反応液を氷冷し、クロロギ酸メチル7.9ml(0.10モル)を滴下した。室温で2.5時間撹拌した後、ジクロロメタンで抽出した。無水硫酸ナトリウムで乾燥し、溶媒を留去すると、無色結晶の3ーメトキシカルボニル-2,3,4,5ーテトラヒドロー1H-3ーベンズ30アゼピン20.46g(96%)が得られた。ジエチルエーテル-n-ヘキサンで再結晶すると無色針状結晶が得られた。

融点 53-54℃

元素分析値 C12 H15 NO2 として

計算値 : C70.22; H7.37; N6.82 実験値 : C70.02; H7.41; N6.68

【0083】参考例11

3-メトキシカルボニル-7-[3-(1-ベンゾイル ピペリジン-4-イル)-1-オキソプロピル]-2, 3,4,5-テトラヒドロ-1H-3-ベンズアゼピン 【化40】

水冷下,参考例10で得た3-(1-ベンゾイルピペリ ジン-4-イル)プロピオン酸 1.08g(4.1ミリ モル)に塩化チオニル1.5mlを滴下した。0℃で40 *50* 110

分間撹拌した後、塩化チオニルを留去した。残渣を1,2-ジクロロエタン20mlに溶かし、参考例9で得た3-メトキシカルボニル-2,3,4,5-テトラヒドロー1H-3-ベンズアゼピン0.81g(3.9ミリモル)を加えた。さらに、塩化アルミニウム1.75g(13.1ミリモル)を少しずつ加えた。室温で1時間撹拌後、反応液を氷水に注いだ。ジクロロメタンで抽出し、合わせた有機層を水で1回洗い、無水硫酸ナトリウムで乾燥後、溶媒を留去した。シリカゲルカラムクロマトグラフィーで精製すると3-メトキシカルボニル-7-[3-(1-ベンゾイルピベリジン-4-イル)1-オキソプロピル]-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン1.46g(83%)を得た。酢酸エチール-n-ヘキサンから再結晶して無色針状結晶を得た。

融点 120-123℃

元素分析値 C27 H32 N2 O4 として

計算値 : C72.30; H7.19; N6.25 実験値 : C71.99; H7.22; N6.12

【0084】参考例12

6 - [3 - (1 - アセチルピペリジン-4 - イル) - 1- オキソプロピル] - 3,4 - ジヒドロ-2H-1-ベンゾチオピラン

【化41】

3,4-ジヒドロ-2H-1-ベンゾチオピラン1.5 g と3-(1-アセチルピペリジン-4-イル)プロピオン酸クロライド2.18gを1,2-ジクロロエタン20 mlに加えた。ついで塩化アルミニウム3.2gを10~15℃で少しずつ加えた。その後、反応液を室温で2時間撹拌し、さらに2時間加熱還流した。反応液を氷水に加え、ジクロロメタンで抽出した。合わせた有機層を水で洗い、無水硫酸ナトリウムで乾燥させ、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)により精製して、表題化合物2.7gを淡黄色油状物として得た。

元素分析値 C19 H25 NO2 Sとして

計算値 : C68.85; H7.60; N4.23 実験値 : C68.66; H7.62; N4.13

【0085】参考例13

2-アセチル-8-クロロ-1,2,3,4-テトラヒド ロイソキノリン

【化42】

111

8-クロロ-1,2,3,4-テトラヒドロイソキノリン 塩酸塩 2 8.6 g とジクロロメタン 1 4 0 ml の混合物 に、1 N水酸化ナトリウム水溶液と炭酸水素ナトリウム 17.6gを加えた。その溶液に5℃で、無水酢酸14. 5 mlを滴下し、1時間室温で撹拌した。有機層を分離 し、水層をジクロロメタンで抽出した。合わせた有機層 を水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去 して、表題化合物29.1gを淡赤色油状物として得

C11H12CINOとして 元素分析值

計算値 : C63.01;H5.77;N6.68

実験値 : C62.82; H5.86; N6.56

[0086] 参考例14

2-アセチル-5-[3-(1-ペンゾイルピペリジン -4-イル)-1-オキソプロピル]-8-クロロー 1,2,3,4-テトラヒドロイソキノリン

[化43]

$$Ac - N \longrightarrow C1$$

$$O \longrightarrow CH_2CH_2 \longrightarrow N - C \longrightarrow C$$

参考例13で得られた化合物21.0gを用いて、参考 例11と同様にして表題化合物9.2gを淡黄色油状物 として得た。

C26 H29 CIN2 O3 として 元素分析値

計算値 : C68.94; H6.45; N6.18

2HC1

6- (1-オキソー3- (ピペリジン-4-イル) プロ ピル] -1,2,3,4-テトラヒドロキノリン1.3g, 炭酸カリウム 0.9gとエタソール10mlの混合物に、水 冷下、臭化ペンジル 0.7 4gのエタノール溶液 2 mlを滴 下した。室温で、2時間撹拌後、固体及び溶媒を留去し て得られる残渣を、カラムクロマトグラフィー(展開溶 *40* 媒;酢酸エチル-メタノール=20:1 (V/V))に かけ、目的物の入った溶液の溶媒を減圧で留去し、残渣 を4Nーメタノール性塩酸2.4回で処理して固体を得 た。メタノールーエーテルから再結晶して融点110-125°C(分解)の無色粉末1.55gを得た。

C24 H30 N2 O · 2 H C l 元素分析值

計算値 : C66.20; H7.41; N6.43

実験値 : C66.00; H7.35; N6.22

【0089】 実施例3

*実験値 : C68.83; H6.52; N6.04 【0087】 実施例1

6-[1-オキソー3-(ピペリジン-4-イル)プロ ピル] -1,2,3,4-テトラヒドロキノリン 【化44】

参考例1の1-アセチル-6-[3-(1-アセチルピ ペリジン-4-イル)-1-オキソプロピル]-1,2, 3.4-テトラヒドロキノリン1.3gと濃塩酸20mlの 混合物を16時間加熱還流した後、濃縮して得られる残 渣を水に溶解した。エーテルで洗浄した後、水層を10 %水酸化ナトリウム溶液を用いて、pH約10とし、ジ クロロメタンで抽出した。抽出液を無水硫酸ナトリウム で乾燥し、溶媒を減圧下留去して無色油状物 0.9gを得 20 た。

C17 H24 N2 Oとして 元素分析值

計算値 : C74.96; H8.88; N10.29

実験値 : C74.87; H8.68; N10.30

【0088】 実施例2

6- (1-オキソ-3- [1-(フェニルメチル)-ピ ペリジン-4-イル] プロピル] -1, 2, 3, 4-テト ラヒドロキノリン 2塩酸塩

【化45】

メチル) ピペリジン-4-イル) -1-オキソプロピ ル] -1,2,3,4-テトラヒドロキノリン 2塩酸塩 【化46】

実施例2の6-[1-オキソー3-[1-(フェニルメ チル) -ピペリジン- 4 -イル) プロピル) - 1, 2,3,4-テトラヒドロキノリン(フリー塩基)0.5gの N, N-ジメチルホルムアミド溶液5mlに水素化ナトリ ウム(オイルフリー)40gを徐々に加え、室温で1時 間撹拌した。その溶液に、氷冷下、臭化ベンジル0.2 1-(フェニルメチル)-6-[3-[1-(フェニル 50-2gを滴下し、6時間室温で撹拌した後、実施例2と同

様に処理して得られる残渣を、カラクロマトグラフィー(展開溶媒;酢酸エチルーメタノール=20:1 (V/V))で精製し、目的物の人った溶液の溶媒を減圧で留去して得られる油状物を、4N-メタノール性塩酸0.7mlで処理して固体を得た。エタノールーエーテルから再結晶して融点112-117°C (分解)の無色結晶0.28gを得た。

元素分析値 Cs1 H36 N2 O・2 HC I として

(化47) ・2HC1として * CH3 ・2HC1

実施例2で得た6-〔3-〔1-(フェニルメチル)ピ ペリジン-4-イル〕-1-オキソプロピル〕-1,2,3,4-テトラヒドロキノリン 2塩酸塩0.2gのN,N-ジメチルホルムアミド溶液3mlに水素化ナトリウム(オイルフリー)37mgを徐々に加え、室温で1時間撹拌し、ヨウ化メチル62mgを加えた。室温で6時間撹拌した後、水素化ナトリウム(オイルフリー)15mg,ク20ロ炭酸エチル40mlを順次加え、1時間撹拌した。反応液を氷水に注ぎ、ジクロロメタンで抽出、無水硫酸ナトリウムで乾燥し、溶媒を減圧で留去して残渣を得た。この残渣を、カラクロマトグラフィー(展開溶媒;酢酸エチル:メタノール=20:1(V/V))にかけ、目的物の入った溶液の溶媒を減圧下に留去することにより※

(A) O NH

参考例 2 で得た化合物 2 3 gを用いて実施例 1 と同様の操作を行なうことにより、6-(1-オキソ-3-(ピペリジン-4-イル)プロピル)-1, 2, 3, 4-テトラヒドロキノリン(A)と7-(1-オキソ-3-(ピペリジン-4-イル)プロピル)-1, 2, 3, 4-テトラヒドロキノリン(B)の混合物 16.9 gを淡黄色油状物として得た。

元素分析値 C17 H24 N2 Oとして

計算值: C74.96; H7.88; N10.29

※油状物を得た。この油状物を、4N-メタノール性塩酸 0.23mlで処理して、非結晶性粉末0.1gを得た。

114

1-メチルー6-〔3-〔1-(フェニルメチル) ピペ

リジン-4-イル〕-1-オキソプロピル〕-1.2.

*計算値 : C70.85;H7.29;N5.33

3,4-テトラヒドロキノリン 2塩酸塩

実験値 : C70.81; H7.12; N5.18

元素分析値 C25 H32 N2 O・2 HC1 として 計算値: C66.81; H7.62; N6.23 実験値: C66.83; H7.55; N6.09

【0091】 実施例5

【0090】 実施例4

20 6- (1-オキソ-3- (ピペリジン-4-イル) プロ ピル) -1, 2, 3, 4-テトラヒドロキノリン (A) および7- (1-オキソ-3- (ピペリジン-4-イ ル) プロピル) -1, 2, 3, 4-テトラヒドロキノリ ン (B)

【化48】

実験値 : C74.69;H8.90;N10.22 【0092】実施例6

6-〔1-オキソ-3-〔1-(フェニルメチル) ピペリジン-4-イル〕プロピル〕-1,2,3,4-テトラヒドロキノリン フマレート(A) および7-〔1-オキソ-3-〔1-(フェニルメチル) ピペリジン-4-イル〕プロピル〕-1,2,3,4-テトラヒドロキ40 ノリン フマレート(B)

(化49)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

元素分析値 C24 H30 N2 O・C4 H4 O4 として

計算値 : C70.27;H7.16;N5.85

実験値 : C70.01; H6.97; N5.98

さらに、残ったジエチルエーテル溶液の母液を濃縮して 得られる6-[1-オキソ-3-[1-(フェニルメチル) ピペリジン-4-イル) プロピル<math>]-1,2,3,*

(1) 実施例 5 で得た化合物 1 4.2gのジクロロメタン溶液 4 0 mlに無水酢酸 5.1gのジクロロメタン溶液 1 0 mlを、氷冷下、滴下した。室温で 1 0 分間撹拌した後、1 0 %水酸化ナトリウムで洗浄した後、無水硫酸ナトリウムで乾燥後溶媒を留去して 6 - 〔1 - オキソー3 - 〔1 - アセチルピペリジン-4-イル〕プロピル〕-1,2,3,4-テトラヒドロキノリンと7-〔1-オキソー3-〔1-アセチルピペリジン-4-イル〕プロピル〕-1,2,3,4-テトラヒドロキノリンの混合物 1 4.9gを無色油状物として得た。

(2) (1)で得られた油状物7.1gとリン酸トリメチル1.6gの混合物を190°Cで2時間加熱した。室温まで冷却した後、ジクロロメタン20ml、水酸化ナトリウム水溶液(NaOH/水=1.74g/11ml)を加えて、2時間加熱環流した。ジクロロメタン層を水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を留去して得られた残渣を、クロマトグラフィー(展開溶媒;酢酸エチル、スススールー20・1)で特別することにより、6

*4ーテトラヒドロキノリンの結晶0.7g (融点126 ~ 129 ℃) を1当量のフマル酸で処理してフマル酸塩 (A) 0.78g を、融点138-142 °C (分解) の 無色結晶として得た。

元素分析値 C24 H30 N2 O・C4 H4 O4 として

計算値 : C70.27; H7.16; N5.85

実験値 : C70.13; H7.13; N5.77

【0093】 実施例7

20 1-メチル-6- [1-オキソ-3-(ピペリジン-4-イル) プロピル] -1, 2, 3, 4-テトラヒドロキノリン(A) および1-メチル-7- [1-オキソ-3-(ピペリジン-4-イル) プロピル] -1, 2, 3, 4-テトラヒドロキノリン(B)

【化50】

- [3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-1-メチル-1, 2, 3, 4-テトラヒドロキノリンと<math>7-[3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-1-メチル-1, 2, 3, 4-テトラヒドロキノリンの混合物 <math>5.5gを淡黄色油状物として得た。

(3) (2)で得た油状物3.9gを用いて、実施例1と同様 40 の操作を行なうことにより、表題化合物の混合物3.2g を淡黄色油状物として得た。

元素分析値 C18 H26 N2 Oとして

計算値 : C75.48; H9.15; N9.78 実験値 : C75.21; H9.06; N9.82

【0094】実施例8

1-メチル-6-[1-オキソ-3-[1-(フェニルメチル) ピペリジン<math>-4-イル] プロピル) -1, 2, 3, 4-テトラヒドロキノリン フマレート (A) および1-メチル-7-[1-オキソ-3-[1-(フェニ

 $\mathcal{N}-$ メタノー $\mathcal{N}=$ 30:1) で精製することにより、6 50 ルメチル)ピペリジン-4-イル〕プロピル〕-1,

118

2, 3, 4-テトラヒドロキノリン フマレート (B)

$$\begin{array}{c|c}
CH_3 & O \\
\hline
N & & \\
HO_2C
\end{array}$$
(B)

実施例7で得た化合物3.1gを用いて実施例2と同様の 操作を行なうことにより表題化合物A、Bの混合物のフ リー塩基3.8gを得た。この混合物をクロマトグラフィ ー (展開溶媒;酢酸エチルーメタノール=50:1)に より精製して、1-メチル-6-〔1-オキソ-3-〔1-(フェニルメチル) ピペリジン-4-イル〕プロ ピル] -1, 2, 3, 4-テトラヒドロキノリン 1. 6g(無色油状物)と1-メチル-7-〔1-オキソー 3- (1-フェニルメチル) ピペリジン-4-イル) プ ロピル)-1,2,3,4-テトラヒドロキノリン1. 7g (無色油状物) を得た。1-メチル-6-〔1-オ キソー3-(1-(フェニルメチル)ピペリジン-4-イル〕プロピル〕-1,2,3,4-テトラヒドロキノ リン 1.6gをフマル酸1当量で処理してフマル酸塩 (A) 1.7gを融点170-172°C(分解)の無色 結晶として得た。

元素分析值 C25 H32 N2 O・C4 H4 O4 として 計算値 : C70.71; H7.37; N5.69

* 30 (A)

(1) 実施例7-(1)で得た化合物5.2g, 炭酸カリウム 3.0gとエタノール30mlの混合物に、水冷下、臭化ベ ンジル2.7gのエタノール溶液5mlを滴下した。室温で 2時間撹拌後、固体及び溶媒を留去して得られる残渣を クロマトグラフィー(展開溶媒;酢酸エチルーメタノー ル=20:1) により精製して、7-(3-(1-アセ チルピペリジン-4-イル)-1-オキソプロピル)-1- (フェニルメチル) -1, 2, 3, 4-テトラヒド ロキノリン 3.2g (無色油状物)を得るとともに、6 - (3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル) -1, 2, 3, 4-テトラヒドロキノ リン 1.8gを回収した。

*実験値 : C70.61; H7.24; N5.63 1-メチル-7-〔1-オキソ-3-〔1-フェニルメ チル) ピペリジン-4-イル] プロピル] -1, 2, 3, 4-テトラヒドロキノリン1.7gをフマル酸1当量 で処理して、フマル酸塩(B) 1.65gを融点143-144°C(分解)の無色結晶として得た。

C25 H32 N2 O・C4 H4 O4 として 元素分析值 計算値 : C70.71;H7.37;N5.69 実験値 : C70.54; H7.09; N5.77 【0095】実施例9

1- (フェニルメチル) -6- [1-オキソ-3-(ピ ペリジン-4-イル) プロピル]-1,2,3,4-テ トラヒドロキノリン (A) および1- (フェニルメチ ル) - 7 - 〔1 - オキソ - 3 - (ピペリジン - 4 - イ ル) プロピル] -1, 2, 3, 4-テトラヒドロキノリ ン (B)

【化52】

ン-4-イル)-1-オキソプロピル]-1,2,3, 4-テトラヒドロキノリン 1.8g、炭酸カリウム1. 03g, 臭化ペンジル1.96gとエタノール20mlの混 合物を5時間加熱還流した。固体及び溶媒を留去して得 られた残渣をクロマトグラフィー(展開溶媒;酢酸エチ ルーメタノール=20:1) により精製して、6-[3] (1-アセチルピペリジン-4-イル)-1-オキソ プロピル] - 1 - (フェニルメチル) - 1, 2, 3, 4-テトラヒドロキノリン2.1gを無色油状物として得 た。

(3) (1)で得た7-〔3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル]-1-(フェニルメ (2) (1)で回収した6-〔3-(1-アセチルピペリジ 50 チル)-1,2,3,4-テトラヒドロキノリン 3.

15gを用いて実施例1と同様にして、1-(フェニル メチル) - 7 - 〔1 - オキソ-3 - (ピペリジン-4 -イル)プロピル]-1,2,3,4-テトラヒドロキノ リン(B) 2.8gを淡黄色油状物として得た。

元素分析值 C24 Hao N2 Oとして

計算値 : C79.52; H8.34; N7.73

実験値 : C79.28; H8.21; N7.59 (4) (2)で得た6-[3-(1-アセチルピペリジン-4-イル)-1-オキソプロピル)-1-(フェニルメ チル) -1, 2, 3, 4-テトラヒドロキノリン1.9g 10 を用いて、実施例1と同様にして、1-(フェニルメチ ル) -6-[1-オキソ-3-(ピペリジン-4-イ*

*ル) プロピル] -1, 2, 3, 4-テトラヒドロキノリ

元素分析值 C24 H30 N2 Oとして

計算値 : C79.52; H8.34; N7.73 実験値 : C79.43; H8.16; N7.48

ン(A) 1.63gを淡黄色油状物として得た。

【0096】実施例10

1- (フェニルメチル) -6- [1-オキソ-3-[1 - (フェニルメチル) ピペリジン-4-イル] プロピ $[\mu]$ - 1, 2, 3, 4 - テトラヒドロキノリン フマレー ト

【化53】

実施例9-(4)で得た化合物1.5gを用いて実施例 20※計算値 : C73.92;H7.09;N4.93 2と同様の操作を行なうことにより1-(フェニルメチ ル) - 6 - [1 - オキソー3 - [1 - (フェニルメチ **ル)ピペリジン-4-イル] プロピル] -1,2,3,4** -テトラヒドロキノリン (フリー塩基) 1.6gを無色 油状物として得た。この油状物1.6gを1当量のフマ ル酸で処理することにより、フマル酸塩1.7gを融点 178~181℃(分解)の無色結晶として得た。

元素分析值 C31 H36 N2 O・C4 H4 O4 として 実験値 : C73.64;H7.22;N4.84

【0097】実施例11

1- (フェニルメチル) -7- [1-オキソ-3- [1 - (フェニルメチル) ピペリジン-4-イル] プロピ ル] -1,2,3,4-テトラヒドロキノリン フマレー

【化54】

Ж

実施例9-(3)で得た化合物2.75gを用いて実施 例2と同様の操作を行なうことにより1-(フェニルメ チル) - 7 - [1 - オキソー3 - [1 - (フェニルメチ ル) ピペリジン-4-イル] プロピル] -1,2,3,4 ーテトラヒドロキノリン (フリー塩基) 2.95gを無 色油状物として得た。この油状物2.95gを1当量の 40 フマル酸で処理して、フマル酸塩3.1gを融点180 ~182°C(分解)の無色結晶として得た。

元素分析値 Ca1 Ha6 N2 O・C4 H4 O4 として

計算値 : C73.92;H7.09;N4.93

実験値 : C73.72;H7.02;N4.86

【0098】実施例12

2,3-ジヒドロ-5-[1-オキソ-3-(ピペリジ ン-4-イル) プロピル] -1H-インドール

【化55】

参考例3で得た化合物10gを用いて実施例1と同様の 操作を行なうことにより得られた固体をジクロロメタン -ジエチルエーテルから再結晶して融点137~139 °Cの淡黄色結晶7.08gを得た。

元素分析値 C16 H22 N2 Oとして

計算値 : C74.38:H8.58:N10.84 実験値 : C74.11; H8.75; N10.67

【0099】 実施例13

ェニルメチル) ピペリジン-4-イル] プロピル] -1

50 H-インドール フマレート

122

【化56】

実施例12で得た化合物2gを用いて実施例2と同様の 操作を行なうことにより、表題化合物のフリー塩基2. 3gを融点81 \sim 82°Cの無色結晶として得た。この 10 結晶2.3gを1当量のフマル酸で処理することによ り、フマル酸塩2.6gを融点150~153°C(分 解) の無色結晶として得た。

元素分析値 C23 H28 N2 O・C4 H4 O4 として

*計算值 : C69.81; H6.94; N6.03 実験値 : C69.68; H6.71; N5.93

【0100】実施例14

2,3-ジヒドロー1-メチル-5-[1-オキソ-3 - [1-(フェニルメチル) ピペリジン-4-イル] プ ロピル] -1H-インドール フマレート 【化57】

(1) 実施例12で得た化合物3gを用いて実施例7-(1) と同様の操作を行なうことにより、5-「3-(1-アセチルピペリジン-4-イル)-1-オキソプ ロピル] -2, 3-ジヒドロ-1H-インドール3.1gを融点145~146°Cの無色結晶として得た。

元素分析値 C18 H24 N2 O2 として

計算値 : C71.97; H8.05; N9.33 実験値 : C71.92;H7.94;N9.11

- (2) (1)で得られた化合物 1.5 gを用いて、実施例 7-(2) と同様にして、5-[3-(1-アセチルピペリ 30 ジン-4-イル)-1-オキソプロピル]-2,3-ジ ヒドロー1-メチルー1H-インドール1.25gを無 色油状物として得た。
- (3) (2)で得た化合物 1.0 gを用いて実施例 1と同様の 操作を行なうことにより、2.3-ジヒドロ-1-メチ ルー5ー[1ーオキソー3ー(ピペリジンー4ーイル) プロピル-1H-インドール0.83gを淡黄色油状物 として得た。

※元素分析値 C17 H24 N2 Oとして

計算値 : C74.96; H8.88; N10.29 実験値 : C74.69; H8.79; N10.33 (4) (3)で得られた化合物 0.53 gを用いて実施例 2 と 同様の操作を行なうことにより、表題化合物のフリー塩 基0.51gを無色油状物として得た。この油状物0. 51gをフマル酸1当量で処理することにより、フマル 酸塩0.57gを融点147~151°C(分解)の無色 結晶として得た。

元素分析値 C24 H30 N2 O・C4 H4 O4 として 計算値 : C70.27; H7.16; N5.85 実験値: C70.06; H7.09; N5.80 【0101】実施例15

 $2, 3 - \forall \forall \forall \neg 5 - [1 - \exists + \forall - 3 - \lceil 1 - (\forall \neg 5)]$ ェニルメチル) ピペリジン-4-イル] プロピル] -1 - (フェニルメチル) - 1 H-インドール フマレート 【化58】

(1) 実施例14-(1) で得た化合物0.65gを用い て、実施例9-(2)と同様の操作を行なうことにより 5-[3-(1-アセチルピペリジン-4-イル)-1 -オキソプロピル] -2,3-ジヒドロ-1-(フェニ として得た。

(2) (1)で得られた化合物 0.76 gを用いて、実施例 1 と同様にして2,3-ジヒドロ-5-[1-オキソ-3 - (ピペリジン-4-イル) プロピル] -1- (フェニ ルメチル) -1 H -1 -1 -

124

として得た。

元素分析値 C23 H28 N2 Oとして

計算値 : C79.27;H8.10;N8.04 実験値 : C79.03;H8.05;N8.13

(3) (2)で得られた化合物 0.64gを用いて、実施例 2 と同様の操作を行なうことにより、表題化合物のフリー 塩基 0.66gを無色油状物として得た。この油状物 0.66gを1当量のフマル酸で処理して、フマル酸塩 0.75gを融点 153~156°C(分解)の無色結晶* *として得た。

元素分析値 C₅₀ H₅₄ N₂ O・C₄ H₄ O₄ として

計算値 : C73.62; H6.91; N5.05 実験値 : C73.65; H6.80; N5.00

【0102】 実施例16.

1-アセチル-6-[1-オキソ-3-[1-(フェニルメチル) ピペリジン<math>-4-イル] プロピル] -1,2,

3,4-テトラヒドロキノリン フマレート

【化59】

実施例6で得られた6-[1-オキソ-3-[1-(フェニルメチル) ピペリジン-4-イル] プロピル] - 1,2,3,4-テトラヒドロキノリン (フリー塩基) 0.5 g、無水酢酸 0.28 gとピリジン 0.22 gのジクロロメタン溶液 10 mlを2時間加熱湿流した後、溶媒及び過剰の試薬を減圧下で留去して得られる残渣をジクロロメタンに溶解し、10%水酸化ナトリウムで洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去して残渣を得た。この残渣をクロマトグラフィー(展開溶媒;酢酸エチルーエタノール=20:1)で精製して表題化合物のフリー塩基 0.45 gを無色油状物として得た。この油状物 0.45 gを1当量のフマル酸で処理することにより、フマル酸塩 0.53 gを非晶状粉末として得た。

元素分析値 C28 H32 N2 O2・C4 H4 O4 として

計算値 : C69.21; H6.97; N5.38

実験値 : C69.23; H6.87; N5.40

【0103】 実施例17

8 - [1-オキソ-3-(ピペリジン-4-イル) プロピル]-2,3,4,5-テトラヒドロ-1H-1-ベンズアゼピン

【化60】

参考例 4 で得た化合物 A 6 . 5 g を用いて実施例 1 と同様の操作を行うことにより得られた粘稠な油状物をヘキサンから結晶化して融点 1 0 4 - 1 0 7 $^{\circ}$ の淡黄色結晶 6 . 4 g を得た。

元素分析値 C18 H26 N2 Oとして

計算値 : C75.48;H9.15;N9.78 実験値 : C75.24;H9.09;N9.66

【0104】実施例18

参考例4,6,7で得た化合物を用いて、実施例1と同30 様の操作を行うことにより〔表47〕に示す化合物を油 状物として得た。

[0105]

【表47】

125

化合物 番号	k'	m'	R¹	分子式	元素分析值 計算値 (実験値)
				74 1 24	C H N
1	2	0	C ₂ H ₅	C ₁₈ H ₂₆ N ₂ O	75.48 9.15 9.78
					(75.22 9.17 9.69)
2	2	0	C ₃ H ₇	C19H28N2O	75.96 9.39 9.32
					(75.78 9.25 9.12)
3	2	0	C ₄ H ₃	$C_{20}H_{30}N_{2}O$	76.39 9.62 8.91
					(76.20 9.52 8.78)
4	2	0	C ₅ H ₁₁	C ₂₁ H ₃₂ N ₂ O	76.78 9.82 8.53
					(76.69 9.81 8.55)
5	2	0	CH2CH2Ph	$C_{24}H_{30}N_{2}O$	79.52 8.34 7.73
					(79.46 8.11 7.59)
6	0	4	СНз	$C_{19}H_{28}N_{2}O$	75.96 9.39 9.32
					(75.84 9.29 9.33)
7	0	4	C ₂ H ₅	$C_{20}H_{30}N_{2}O$	76.39 9.62 8.91
					(76.21 9.51 8.75)
8	0	4	C ₃ H ₇	C ₂₁ H ₃₂ N ₂ O	76.78 9.82 8.53
					(76.53 9.74 8.41)
9	4	0	Н	C18H28N2O	75.48 9.15 9.78
					(75.32 9.09 9.64)

[0106] 実施例19

物を得た。

実施例12,17あるいは18で得られた化合物を用い 40 【0107】 て、実施例13と同様にして〔表48~表51〕の化合 【表48】

	z	5. 66	5. 42)	5.66	5. 56)	5.66	5.61)	5.61	5.54)	5.61	5.57)
	元素分析值 計算值 (実験値) 兄	6. 93	6.93	6.93	6.77	6.93	6. 92	6. 26	6.27	6. 26	6.31
	で で で で の の の の の の の の の の の の の	68.00	(67.91	68.00	(67.71	68.00	(67.79	64.99	(64.85	64.99	(64.91
	分子式	CzeHsoN2O2	·C,H,0,*	C24H30N2O2	. •C4H404*	C24B30N2O2	·C.H404*	C28H27CIN2O	·C4H404*	CseHs7CIN20	-C4H404*
- R 2	麗(い)	169-171	(分解)	151-153	(分解)	101-103		159-161		157-159	
	R.	Q. HO	CII,0	CH,	, OCH	CH OCH.		Ça s	[]] 5	Q. H.	, 5
(CII ₂) 1' (CII ₂) m'	R	=		=		=		=		H	
- 184 - 184	' e	0		0		0		0		0	
	<u>,</u> ≍	2		2		2		7		2	
	化合物 番号	1		8		က		4		ည	

[0108]

40 【表49】

7	29
-	w

130	

	129	1											130	,	
4050	z	5.61	5.62)	5.82	5.74)	5.81	5.76)	10.68	10.47)	5.82	5.74)	5.69	5.54)	5.53	5.33)
元素分析值料金属	三 神間 (実験値) H	6.26	6.19	7.16	7.30	6.48	6.50	6.92	96.9	7.16	7.22	7.37	7.43	7.56	7.62
ij,	ပ	64.99	(64.83	70.27	(70.04	67.21	(67.03	70.21	(70.06	70.27	(69.98	70.71	(70.55	71.12	(71.00
	分子式	C23H27CIN20	**0*H*O-	C24H30N3O	********	C23H27FN20	**0*H*O*	C23H27N3O3		C24H30N2O	**0*H*O*	C2 sH3 2N2O	*C,H,O,*	C26H34N2O	*C,H,0,*
	(30)	146-148		160-163	(分解)	163-165	(分解)	114-116		143-145		155-157		91-93	
	R 2	CH ₂ -C1		CH ₂	CH.	CH ₂	, [-	CH ₂	NO.	CH,CH,Ph		CH2Ph		CH ₂ Ph	
	R.	æ		=		==		æ		=		C,IIs		C ₃ H ₇	
	`m	0		0		0		0		0		0		0	
	, *	2		2		2		2		2		2		2	
化合物	# 1 中 5	9		7		∞		6		10		=		12	

[0109]

40 【表50】

•	7	٠
1	.3	

元素分析值 計算値 分子式 (実験値) C H N	C27H36N20 71.5 7.74 5.38	•C4H404* (71.39 7.86 5.22)	C ₂₆ H ₃₈ N ₂ 0 71,88 7,92 5.24	-C4H404* (71.71 8.13 5.12)	_	•C4H404* (73.69 7.13 4.91)	C ₂₅ H ₃₂ N ₂ 0 70.71 7.37 5.69	•C4H404* (70.54 7.47 5.57)	C ₂₆ H ₈₄ N ₂ 0 71.12 7.56 5.53	•C4B404* (70.97 7.55 5.48)	C ₂₇ H ₃₆ N ₂ 0 71.51 7.74 5.38	•C4H404* (71.38 7.86 5.21)	C ₂₆ H ₃₈ N ₂ 0 71.88 7.92 5.24	(81 2 00 6 63 th) + O II O
夏 (2)	127-129		140-142		非結晶性	固体	173-174		100-102		84-87		98-100	•
В	CH ₂ Ph		CH ₂ Ph		CH 2Ph		CII ₂ Ph		CB Ph		CH 2Ph		CH ₂ Ph	
R.	C,B,		C_bH_{11}		CH2CH2Ph		Ħ		CH,		C_2H_5		C ₃ II,	
* =	0		0		0		4		4		4		4	
*	2		7		87		0		0		0		0	
化合物 番号	13		14		15		16		17		18		19	

[0110]

40 【表51】

を								Ë"	元素分析值計算值	
ī 神 5 中	*	-	` <u>-</u>	<u>~</u>	R. &	融点 (°C)	分子式	U U	(東京 (東京 (東京)	z
82	4	0	H		CH2Ph	117-120	C28H32N2O	70.71	7.37	5.69
					6.		**O*H*O*	(70.59	7.48	5.43)
21	0	4	H		GH.	156-160	CzeH31FN2O	68.22	6.91	5.49
					:		**0*H*O*	(67.88	6.95	5.27)
22	0	4	Ħ		CH.z.	152-158	C26H34N2O	71.12	7.56	5.53
					ļ		**0*H*O*	(71.15	7.76	5.29)
ឌ	0	4	Ħ			138-144	CzsH31ClN2O	60.09	69.9	5.32
) [**0*H*O*	(99.00	6.92	4.98)
24		4	Ħ		_ Ça a a a a	165-170	CzsH31FN2O	68.22	6.91	5.49
							**0"H*O.	(68.04	6.92	5.24)
52	0	4	×		CH ₂	158-163	C26H31FNBO	68.22	6.91	5.49
							C.H.O.	(67.99	6.82	5.39)

[0111]

40 【表52】

里施	// A								il.	元素分析值計算值		
Ø 12 0	5 中 5 中	<u> </u> **		-	R.	R.2	(Se)	分子式	• ජ ප	(実験値)	Z	
•	92	0	4	=		CH.	126-128	Cz6ffs4NzOz	68.94	7.33	5.36	
						0CH 8		·C4II404*	(68.80	7.51	5. 23)	
	27	0	な	=		Q. iii	116-117	C28H34N2O2	68.94	7, 33	5.36	
	•					CH ₃ 0		·C4H404*	(68, 83	7.43	5.24)	
	28	,0	4	=		CH ₂ COCH ₃	168-170	CasHs4N202	68.94	7.33	5.36	
]		.C4H404*	(68. 78	7.44	4.84)	
40	83	0	4	=		CH ₂	161-163	C26H31N3O3	64.79	6.56	7.82	
0.0						NO ₂		•C4H404*	(64.81	6.40	7. 66)	
皮を制	30	63	0	=		CH.	144-147	C28H27FN2O	67.21	6.48	5.81	
鼻旗酥				•		L		*C4H4O4*	(67.13	6.44	5. 73)	
3 0	31	67	0	Ħ			124-127	C23H27FN2O	67.21	6.48	5.81	
ni ict								*C4H4O4*	(67.09	6.51	5. 69)	
ロえ、	32	0	4	5	CH 2Ph	CH.Ph	171-173	C32H38N20	74, 20	7.26	4.81	
14								·C4H404*	(74. 08	7.33	4.85)	
時間環	* C,8,0, はフマル酸塩を示す。	147	マル部	塩を	亦す。							

【0112】実施例20 2,3-ジヒドロ-5-[1-オキソ-3-(ピペリジ ン-4-イル) プロピル] ベンゾフラン 塩酸塩 【化61】

5-[3-(1-アセチルピペリジン-4-イル)-1 -オキソプロビル] -2, 3 -ジヒドロベンゾフラン 5. 50 元素分析値 C_{10} H_{21} N_2 · HC 1 として

40 00gを濃塩酸30mlに加え、14時間還流した。放冷 後、希水酸化ナトリウム水溶液で塩基性にしたのち、塩 化メチレンで抽出した。合わせた有機層を無水硫酸ナト リウムで乾燥し、溶媒を留去して2,3-ジヒドロ-5 - [1-オキソー3-(ピペリジン-4-イル)プロピ ル] ベンゾフラン (<u>4</u>) 4.31g (100%) を得 た。得られた固体をメタノールに溶かし、塩化水素で処 理し、メタノールー酢酸エチルから再結晶し、無色針状 結晶を得た。

融点 203-205℃ (分解)

(70)

137

計算値 : C64.97; H7.50; N4.74 実験値 : C64.76; H7.64; N4.54

【0113】実施例21

2.3-ジヒドロ-5-[1-オキソ-3-(1-フェ ニルメチルピペリジン-4-イル)プロピル]ベンゾフ ラン 塩酸塩

【化62】

2.3-ジヒドロ-5-[1-オキソ-3-(ピペリジ ン-4-イル)プロピル]ペンプフラン1.52gを3 0 ml のテトラヒドロフラン-エタノール混合液 (50/ 50=v/v) に加え、ついで炭酸カリウム 1.06gを加えた。氷冷し、臭化ペンジル0.96gのエタノー ル溶液 (5ml) を滴した。室温で22時間撹拌した後、* *溶媒を留去し、水を加え、塩化メチレンで抽出した。合 わせた有機層を無水硫酸ナトリウムで乾燥し、溶媒を留 去した。残留物をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製し、2,3-ジヒドロ-5-[1 -オキソー3-(1-フェニルメチルピペリジン-4-イル) プロピル] ペンゾフラン1.13g(55%)を 得た。メタノールに溶かし、塩化水素で処理し、エタノ ールー酢酸エチルより再結晶して、無色針状結晶を得た

138

10 融点 143-144℃

(1/4水和物)

元素分析値 C23 H27 NO2・HC1・1/4H2Oとして 計算値 : C70.75; H7.36; N3.59

実験値 : C70.49; H7.26; N3.62

【0114】実施例22

7-[1-オキソー3-(1-フェニルメチルピペリジ] 2-4-4ル) プロピル] -2.3.4.5- テトラヒド ロー1H-3-ペンズアゼピン 2塩酸塩

【化63】

窒素雰囲気下、参考例11で得た3-メトキシカルポニ ルー7ー[3-(1-ベンゾイルピペリジン-4-イ (1) 1 - オキソプロピル(1) - 2, 3, 4, 5 - テトラヒド ロ-1H-3-ベンズアゼピン 0.48g(1.1ミリ モル)を乾燥したクロロホルム5mlに溶かし、ヨードト リメチルシラン 0.3 ml (2.1 ミリモル) を加え、50 ℃に加熱し、2.5時間撹拌した。放冷後、メタノール 0.4 ml (10ミリモル) を加え、希水酸化ナトリウム 水溶液及び、チオ硫酸ナトリウム水溶液を加え、ジクロ ロメタンで抽出した。無水硫酸ナトリウムで乾燥、溶媒 を留去した。残渣を乾燥したテトラヒドロフラン15回 に溶かし、水素化リチウムアルミニウム 0.13g (3.4ミリモル) を加え、5時間加熱還流した。水を 加え、固体を濾過し、ろ液を無水硫酸ナトリウムで乾 燥、溶媒を留去した。残渣をメタノールに溶かし、塩化 水素で処理し、溶媒を留去し、塩酸塩にした。さらにク ロム酸 0.3 g (3 ミリモル)、濃硫酸 0.3 mlを水-ア 40 セトン (1/1=v/v) 10mlに加え溶液を加え、2 4時間室温で撹拌した。反応液を水に注ぎ、希水酸化ナ※

※トリウム水溶液で塩基性にした後、ジクロロメタンで抽 出した。無水硫酸ナトリウムで乾燥し、溶媒を留去し た。残渣をアルミナカラムクロマトグラフィーで精製し て7- [1-オキソ-3-(1-フェニルメチルピペリ ジン-4-イル)プロピル]-2,3,4,5-テトラヒ ドロー1H-3-ペンズアゼピン 0.31g(76 %)を得た。メタノールにとかし、3規定メタノール性 塩酸で処理して2塩酸塩を非晶状粉末として得た。 元素分析値 C25 H32 N2O・2 HC1・2.5 H2Oと

計算値 : C60.72; H7.95; N5.66 実験値 : C60.85; H8.24; N5.51

【0115】実施例23

3-メチル-7-[1-オキソ-3-[1-(フェニル メチル) ピペリジン-4-イル] プロピル] -2,3, 4,5-テトラヒドロ-1H-3-ペンズアゼピン 2

塩酸塩 【化64】

して

参考例2で得た3-メトキシカルポニル-7-[3-(1-ベンゾイルピペリジン-4-イル) -1-オキソ プロピルigl| -2,3,4,5ーテトラヒドローigl| 1 igr| 1 igr| 1 igr| 1 igr| 1 igr| 1 igr| 2 igr| 3 igr| 4 igr| 5 igr| 5 igr| 5 igr| 6 igr| 6 igr| 7 igr

ベンズアゼピン 1.17g(2.6ミリモル)をトルエ ン40mlに溶かし、エチレングリコール7ml及びパラト

た。飽和炭酸水素ナトリウム水溶液を加え、ジエチルエ ーテルで抽出した。無水硫酸ナトリウムで乾燥し、溶媒 を留去した。シリカゲルカラムクロマトグラフィーで精 製し、7-[1-(1,3-ジオキソラン-2-イル) -3-(1-ベンゾイルピペリジン-4-イル)プロピ ル] -3-メトキシカルポニル-2,3,4,5-テトラ ヒドロ-1H-3-ベンズアゼピン 1.22g (94 %) を得た。さらに得られた7-[1-(1,3-ジオ キソラン-2-イル)-3-(1-ペンゾイルピペリジ ン-4-イル) プロピル] -3-メトキシカルボニルー 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピ ン 1.03g (2.1ミリモル) を乾燥したテトラヒド ロフラン15mlに溶かし、水素化リチウムアルミニウム -0.25g(6.5ミリモル)を加えた。反応液を3時間 加熱還流した。水を加え濾過後、ろ液を無水硫酸ナトリ ウムで乾燥し、溶媒を留去した。残渣をテトラヒドロフ ラン30mlに溶かし、1N-塩酸5.6mlを加え、14. 5時間室温で撹拌した。希水酸化ナトリウム水溶液で塩 基性にした後、ジクロロメタンで抽出した。無水硫酸ナ トリウムで乾燥し、溶媒を留去した。残渣をメタノール に溶かし塩化水素で処理して2塩酸塩にした後、エタノ ールー酢酸エチルより再結晶して、無色針状結晶0.6 5g(67%)を得た。

融点 190-193℃

元素分析値 C26 H34 N2 O・2 HC1・H2 Oとして

計算値 : C64.86;H7.95;N5.82

実験値 : C64.78; H7.90; N5.78

【0116】実施例24

2,3-ジヒドロ-6-[1-オキソ-3-(ピペリジ ン-4-イル)プロピル]-1H-インドール

【化65】

実施例24で得た化合物0.5gを用いて実施例13と 同様の操作を行うことにより、表題化合物 0.55gを 融点157-158℃の無色結晶として得た。

元素分析値 C23 H28 N2 O・C1 H1 O1 として 計算値 : C69.81; H6.94; N6.03 実験値 : C69.65; H6.87; N5.76

【0118】実施例26

9- [1-オキソ-3-(ピペリジン-4-イル)プロ ピル] -1,2,3,4,5,6-ヘキサヒドロ-1-ベン ズアゾシン

*(1) 2,3-ジヒドロ-1-トリフルオロアセチル-1 H-インドール25g, 3-(1-アセチルピペリジン -4-イル)プロピオン酸クロリド25gと二硫化炭素 120mlの混合物に無水塩化アルミニウム56gを室温 で加え、30時間加熱還流した。反応液を参考例1-(3) と同様に処理して、6-[3-(1-アセチルピ ペリジン-4-イル)-1-オキソプロピル]-2,3 **ージヒドロー 1-トリフルオロアセチルー1H-イン** ドールと5-[3-(1-アセチルピペリジン-4-イ 10 ル) -1-オキソプロピル] -2,3-ジヒドロ-1-トリフル オロアセチル-1H-インドールの混合物9. 0gを淡黄色油状物として得た。

(2) (1)で得た油状物を実施例1と同様に反応して得ら れる2,3-ジヒドロ-6-[1-オキソ-3-(ピペ リジン-4-イル)プロピル]-1H-インドール一塩 酸塩と2,3-ジヒドロ-5-[1-オキソ-3-(ピ ペリジン-4-イル) プロピル] -1 H-インドールニ 塩酸塩の混合物をメタノールー酢酸エチルによる再結晶 を2回行うことにより表題化合物の二塩酸塩2.5gを 融点146-148℃の無色粉末として得た。得られた 粉末を水に溶かし、10%水酸化ナトリウム溶液を用い て、pH約10とし、ジクロロメタンで抽出した。抽出 液を無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去し て表題化合物 1.8 gを淡黄色油状物として得た。

C18 H22 N2 Oとして 元素分析值

計算値 : C74.38; H8.58; N10.84 実験値 : C74.32; H8.66; N10.74

【0117】実施例25

2,3-ジヒドロ-6-[1-オキソ-3-[1-(フ 30 ェニルメチル) ピペリジン-4-イル] プロピル] -1 **H-インドール フマレート**

【化66】

1-エトキシカルポニル-1,2,3,4,5,6-ヘキサ ヒドロー1-ベンズアゾシンを用いて、参考例2-(2) と同様の操作を行うことにより得られた残渣を、

50 実施例1と同様の反応を行うことにより表題化合物を淡

黄色油状物として得た。

元素分析値 C19 H28 N2 Oとして

計算値 : C75.95; H9.39; N9.33 実験値 : C75.73:H9.38:N9.10

【0119】 実施例27

実施例26で得られた9-「1-オキソー3-(ピペリ ジン-4-イル) プロピル] -1,2,3,4,5,6-ヘ キサヒドロー1ーペンズアゾシンを用いて実施例13と 同様の操作を行うことにより、表題化合物を融点165 -166℃の無色結晶として得た。

元素分析値 C25 H34 N2 O・C4 H4 O4 として 計算値 : C71.12; H7.56; N5.53 実験値 : C70.98; H7.61; N5.42

【0120】 実施例28

1-アセチル-8-[1-オキソ-3-[1-(フェニ 20 H-1-ベンゾチオピラン 塩酸塩 ルメチル) ピペリジン-4-イル] プロピル] -2,3, 4,5-テトラヒドロ-1H-1-ベンズアゼピン

[化69]

実施例19化合物No.16で得られた化合物のフリー塩 基である8-[1-オキソー3-[1-(フェニルメチ ル) ピペリジン-4-イル] プロピル] -2,3,4,5-テトラヒドロー1H-1-ベンプアゼピン0.3gを用 いて、実施例16と同様の操作を行なうことにより、表 題化合物 0.21 gを融点115~116℃の無色粉末 として得た。

元素分析值 C27 H34 N2 O2 として

計算値 : C77.48; H8.19; N6.69

実験値 : C77.21;H7.98;N6.59

【0121】 実施例29

3,4-ジヒドロ-6-[1-オキソ-3-(ピペリジ ンー4-イル)プロピル]-2H-1-ベンゾチオピラ 40 ン 塩酸塩

【化70】

*9-[1-オキソ-3-[1-(フェニルメチル)ピペ リジン-4-イル] プロピル] -1,2,3,4,5,6-ヘキサヒドロー1-ペンズアゾシン フマレート

142

化681

参考例12で得られた化合物2.5gを用いて、実施例 1と同様の操作を行なうことにより、表題化合物 2.4 gを融点196~199℃の無色粉末として得た。

元素分析值 C17H23NOS・HCIとして 計算値 : C62.65; H7.42; N4.30 実験値 : C62.61; H7.33; N4.27

【0122】実施例30

3,4-ジヒドロ-6-[1-オキソ-3-[1-(フ ェニルメチル) ピペリジン-4-イル] プロピル] -2

【化71】

実施例29で得られた化合物0.83gを用いて、実施 例2と同様の操作を行なうことにより、表題化合物1. 0gを融点186~188℃の無色粉末として得た。

元素分析值 C24 H29 NOS・HCIとして 計算値 : C69.29; H7.27; N3.37

実験値 : C69.31; H7.22; N3.27

【0123】実施例31

8-[1-オキソ-3-(ピペリジン-4-イル)プロ ピル] -2,3,4,5-テトラヒドロ-1H-2-ベン ズアゼピン 2塩酸塩(A)および7-[1-オキソー3 -(ピペリジン-4-イル) プロピル] -2,3,4,5ーテトラヒドロー1H-2-ベンズアゼピン 2塩酸塩 (B)

【化72】

0 NH (B) •2HC1

元素分析値 C18 H26 N2 O・2 H C1 として 計算値: C60.17; H7.85; N7.80 実験値: C60.02; H7.93; N7.69 その再結晶母液から、表題化合物(B)を非結晶性粉末と

その再結晶母液から、表題化合物(B)を非結晶性粉末と して得た。

C18 H26 N2 O · 2 HC1 ELT *

(A)

実施例31で得られた化合物(A)1.5gを用いて、実施例2と同様にして表題化合物(A)0.5gおよび表題化合物(B)0.1gをそれぞれ非結晶性粉末として得た。

表題化合物(A)

元素分析值

元素分析値 C₃₂ H₃₈ N₂ O・2 H C I として 計算値 : C 7 1.23; H 7.46; N 5.19

実験値 : C71.02;H7.51;N5.10

表題化合物(B)

元素分析値 C₂₅ H₃₂ N₂ O・2 H C l として

計算値 : C66.81; H7.62; N6.23 実験値 : C66.72; H7.69; N6.01

【0125】 実施例33

8 - クロロ - 5 - [1 - オキソ - 3 - [1 - (フェニルメチル) ピペリジン - 4 - イル] プロピル] - 1, 2, 3, 4 - テトラヒドロイソキノリン <math>2 塩酸塩

【化74】

$$\begin{array}{c}
C1\\
HN \\
O \\
CH_2CH_2
\\
N-CH_2
\end{array}$$

参考例14で得られた化合物5.99g(13.22ミリモル)をメタノール198mlに溶かし、1N水酸化ナトリウム水溶液99mlを滴下後、60℃で5時間撹拌した。減圧下でメタノールを除去して得られた残渣をジク 50

*計算値 : C60.17;H7.85;N7.80 実験値 : C59.95;H7.98;N7.77

【0124】実施例32

8-[1-オキソー[1-(フェニルメチル) ピペリジン-4-イル] プロピル] -2-(フェニルメチル) -2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン 2塩酸塩(A)および8-[1-オキソー3-[1-(フェニルメチル) ピペリジン-4-イル] プロピル] -2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン 2塩酸塩(B)

【化73】

ロロメタンで抽出した。その抽出物を無水硫酸ナトリウ ムで乾燥後、溶媒を留去した。その残渣をシリカゲルカ ラムクロマトグラフィー(展開溶媒:酢酸エチルーメタ ノール=7:3 (Y/Y)) で精製することによって5-[3-(1-ベンゾイルピペリジン-4-イル)-1-オキソプロピル] -8-クロロ-1,2,3,4-テトラ 30 ヒドロイソキノリン2.59gを得た。得られた化合物 1.23g(3.0ミリモル)をメタノール10mlに溶か し、5℃下で4N-メタノール性塩酸0.75回lを添加 し、その溶媒を留去した。残りの油状物にトルエン60 ml, エチレングリコール8.24gおよびp-トルエン スルホン酸1水和物57mgを加え、2時間還流した。そ の反応物に飽和炭酸水素ナトリウムを加え、ジクロロメ タンで抽出した。その抽出物を無水硫酸ナトリウムで乾 燥後、減圧下で溶媒を留去した。その残渣をシリカゲル カラムクロマトグラフィー (展開溶媒;酢酸エチル:メ 40 タノール=7:3(V/V)) で精製することによって5-[2-[2-(1-ベンゾイルピベリジン-4-イル) エチル] -1,3-ジオキソラン-2-イル] -8-ク ロロー1,2,3,4ーテトラヒドロイソキノリン1.31 gを得た。得られた化合物455mg(1.0ミリモル) を乾燥テトラヒドロフラン10mlに溶かし、窒素雰囲気 下, 5℃でクロロトリメチルシラン172μ1 加えた 後、混合物を室温で1時間撹拌した。反応液に水素化り チウムアルミニウム190mgを加え、2.5時間還流し た。水を加え、固体を濾過し、濾液を無水硫酸ナトリウ ムで乾燥、溶媒を減圧下で留去した。残渣と1 N塩酸 5

mlをテトラヒドロフラン5mlに混合し、60℃で3時間加熱した。反応液を希水酸化ナトリウム水溶液で塩基性にした後、ジクロロメタンで抽出した。抽出物を無水硫酸ナトリウムで乾燥、溶媒を減圧下で留去して無色状オイル化合物200%を得た。その化合物を4N-メタノール性塩酸(2当量)で処理して表題化合物205mgを非結晶性粉末として得た。

元素分析値 C24H29C1N2O・2HC1として 計算値: C61.35; H6.65; N5.96 実験値: C61.42; H6.69; N5.91 【0126】製剤例1

(実施例2に従って得た化合物)1g(2)乳糖197g(3)トウモロコシ澱粉50g(4)ステアリン酸マグネシウム2g

(1),(2)および20gのトウモロコシ澱粉を混和し、15gのトウモロコシ澱粉と25mlの水から作ったペース 20トとともに顆粒化し、これに15gのトウモロコシ澱粉と(4)を加え、混合物を圧縮錠剤機で圧縮して、錠剤1錠当たり(1)0.5mgを含有する直径3mmで錠剤2000個を製造した。

【0127】製剤例2

 (実施例 2 に従って得た化合物)
 2 g

 (2)乳糖
 1 9 6 g

(3)トウモロコシ澱粉 5 0g (4)ステアリン酸マグネシウム 2g

(1),(2)および20gのトウモロコシ澱粉を混和し、15gのトウモロコシ澱粉と25mlの水から作ったペーストとともに顆粒化し、これに15gのトウモロコシ澱粉と(4)を加え、混合物を圧縮錠剤機で圧縮して、錠剤1錠当たり(1)1mgを含有する直径5mmで錠剤2000個を製造した。

【0128】製剤例3

(1) 8 - [1 - オキソ - 3 - [1 - (フェニルメチル)]ピペリジン-4 - 4 プロピル] -2] [3] [4] [5] [5]] [5] [

(実施例19,表50の化合物番号16の化合物)

1 g

(2)乳糖 1 9 7g

(3)トウモロコシ澱粉

0**g**

146

(4)ステアリン酸マグネシウム

2g

(1),(2)および20gのトウモロコシ酸粉を混和し、15gのトウモロコシ酸粉と25mlの水から作ったペーストとともに顆粒化し、これに15gのトウモロコシ酸粉と(4)を加え、混合物を圧縮錠剤機で圧縮して、錠剤1錠当たり(1)1.0mgを含有する直径3mmで錠剤1000個を製造した。

【0129】製剤例4

10 (1) 7 - (1 - オキソー3 - (1 - (フェニルメチル)ピペリジン-4-イル)プロピル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン 2塩酸塩

(実施例22の化合物)1g(2)乳糖197g(3)トウモロコシ澱粉50g(4)ステアリン酸マグネシウム2g

(1),(2)および20gのトウモロコシ澱粉を混和し、15gのトウモロコシ澱粉と25mlの水から作ったペーストとともに顆粒化し、これに15gのトウモロコシ澱粉と(4)を加え、混合物を圧縮錠剤機で圧縮して、錠剤1錠当たり(1)0.5mgを含有する直径3mmで錠剤2000個を製造した。

【0130】製剤例5

8-〔1-オキソー3-〔1-(フェニルメチル) ピペリジン-4-イル〕プロピル〕-2,3,4,5-テトラヒドロ-1H-1-ペンズアゼピン フマル酸塩(実施例19,表50の化合物番号16の化合物)2gおよびマンニトール1.25gを蒸留水500mlに溶解した後、0.1N-NaOHにてpHを5.6~7.0に調整30後、全量を1000mlとする。この溶液を0.2μmのフィルターで除菌濾過した。これを1ml用アンプル1000本に分注した。

【0131】 [実験例] この発明化合物のコリンエステラーゼ阻害作用を(acetyl-[³H]) - アセチルコリンを使用して検討した。すなわち、コリンエステラーゼ源として、ウィスター系雄性ラット大脳皮質ホモジネートのS1画分を用い、基質として(acetyl[³H]) - アセチルコリンを、また被検体として本発明化合物を添加し、30分間インキュベートの後に反応を止め、トルエン系40シンチレーターを加えて振とうし、反応により生成した[³H] - 酢酸をトルエン層に移行させて液体シンチレーションカウンターで計数することにより、コリンエステラーゼ活性を求めた。被検化合物のコリンエステラーゼ阻害活性は50%阻害濃度(IC50)で表わした。同じ方法によりフィゾスチグミンのコリンエステラーゼ作用も測定した。結果を〔表53〕に示す。

【0132】 【表53】

5

14	H	
	化合物	アセチルコリンエステラーゼ
	(実施例番号)	阻害活性 Ι C 50 (μ M)
į	2	0.014
	3	0.12
	4	0.010
	6 – A	0.054
	6 – B	0.054
ĺ	8 – A	0.024
	8 – B	0.036
Į	10	0.16
	13	0.020
i	14	0.010
	1 5	0.068
	16	0.014
	19-4	0.076
	19-5	0.059
	19-7	0.050
	19-8	0.016
	19-9	0.064
	19-11	0.011
	1.9 - 1.2	0.022
	19-13	0.029
	19-14	0.047
	19-15	0.028
	19-16	0.102
	19-17	0.081
	19-20	0.125
	19-21	0.145
i	21	0.028
	2 2	0.0076
	23 25	0.0065
	2 5 2 7	0.113 0.127
	フィゾチスグミン	0.127
	フィンテヘンミン	U. 4 4

上記結果から、この発明化合物はすぐれたコリンエステ ラーゼ阻害作用を有することがわかる。

[0133]

【発明の効果】この発明の化合物は、哺乳動物の中枢神

経系に作用し、強いコリンエステラーゼ阻害活性を有する。従って、たとえば老年痴呆、アルツハイマー病、ハンチントン舞踏病などの予防、治療に用いることができ、医薬として有用なものである。

(76)

フロントページの続き

(31)優先権主張番号 特顯平3-243768

(32) 優先日 平 3 (1991) 9 月24日

(33)優先権主張国 日本(JP)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)