AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

- 1. (Canceled).
- 2. (Canceled).
- 3. (Canceled).
- 4. (Previously Presented) 5-Substituted-alkylaminopyrazole derivatives of formula (I):

$$R^{\circ}S(O)_{m}$$
 R^{1}
 $R^{5}-S(O)_{m}-A$
 R^{2}
 R^{3} (1)

wherein:

R1 is CN;

W is C-halogen or C-CH3;

R2 is hydrogen, halogen or CH3;

 $R^3 \text{ is } (C_1\text{-}C_3)\text{-haloalkyl, } (C_1\text{-}C_3)\text{-haloalkoxy or } S(O)_p \text{---} (C_1\text{-}C_3)\text{-haloalkyl; }$

R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, CO—(CH₂)_q—R⁷, CO₂R⁸, CO—(CH₂)_qR⁹, —CO—(C₁-C₄)-alkyl-(C₁-C₆)-alkoxy, —CO₂—(CH₂)_qR⁷, —CO₂—(CH₂)_q—R⁹, —CO₂—(C₃-C₇)-cycloalkyl, —CO₂—(C₁-C₈)-alkynyl, —CO₂—(C₃-C₆)-alkynyl, —CO₂—(C₃-C₆)-alkynyl,

- $\begin{aligned} & CONR^{10}R^{11}, -CH_2R^7, -CH_2R^9, OR^7, OR^8 \text{ or } OR^9; \text{ or } (C_1\text{-}C_6)\text{-alkyl which is substituted by one or more radicals selected from the group consisting of halogen, $(C_1\text{-}C_6)\text{-alkoxy}$, $(C_1\text{-}C_6)\text{-alkyl}$, $(C_1\text{-}C_6)\text{-alkyl}$, $(C_1\text{-}C_6)\text{-alkyl}$, $-O(C=O)$---($C_1\text{-}C_6)\text{-alkyl}$, $NR^{10}COR^{12}, NR^{10}R^{11}, CONR^{10}R^{11}, SO_2NR^{10}R^{11}, OH, CN, N_2, OR^7, NR^{10}SO_2R^8, COR^8$ and OR^9.} \end{aligned}$
- A is (C₁-C₁₂)-alkylene and (C₁-C₁₂)-haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C₃-C₈)-cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)-alkyl and halogen;
- R⁵ is H, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₇)cycloalkyl, —(CH₂)_qR⁷, —(CH₂)_qR⁹ or NR¹⁰R¹¹ provided that for the last mentioned radical m
 is 2; or is (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the
 group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₇)-cycloalkyl,
 S(O)_pR⁸, CN, NO₂, OH, COR¹⁰, NR¹⁰COR¹², NR¹⁰SO₂R⁸, CONR¹⁰R¹¹, NR¹⁰R¹¹, S(O)_pR⁷,
 S(O)_pR⁹, OR⁷, OR⁹ and CO₂R¹⁰;
- R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl or (C_7-C_6) -haloalkynyl;
- R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰OR¹¹, NR¹⁰OR¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;
- R8 is (C1-C6)-alkyl or (C1-C6)-haloalkyl;
- R⁹ is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)₃R⁸, OH and oxo;
- R^{10} and R^{12} are each independently H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkyl, (C_3-C_6) -cycloalkyl, (C_1-C_6) -alkyl- (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl,
- R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring

which is selected from O, S and N the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

R¹¹ and R¹⁴ are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl or — (C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

R¹³ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN. NO₂. S(O)₀R⁸ and NR¹¹R¹⁴;

R15 is R11 or -(CH2)0R13;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S; or a pesticidally acceptable salt thereof.

 (Previously Presented) 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 4, or pesticidally acceptable salts thereof, wherein:

R1 is CN:

W is C-halogen or C-CH₃;

R2 is hydrogen, halogen or CH3;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_n$ — (C_1C_3) -haloalkyl;

R4 is hydrogen, (C1-C6)-alkyl or COR8;

A is (C₁-C₁₂)-alkylene and (C₁-C₁₂)-haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C₃-C₈)-cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)-alkyl and halogen;

R⁵ is H, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, —(CH₂)_qR⁷, —(CH₂)_qR⁹ or NR¹⁰R¹¹ provided that for the last mentioned radical S(O)_m is SO₂; or is (C₁-C₆)-alkyl substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸,

- CN, NO₂, OH, COR¹⁰, NR¹⁰COR¹², NR¹⁰SO₂R⁸, CONR¹⁰R¹¹, NR¹⁰R¹¹, S(O)_pR⁷, S(O)_pR⁹, OR⁷, OR⁹ and CO₂R¹⁰:
- R⁶ is (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl or (C₂-C₆)-haloalkynyl;
- R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;
- R8 is (C1-C6)-alkyl or (C1-C6)-haloalkyl;
- R⁹ is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)₃R⁸, OH and oxo;
- R¹⁰ and R¹² are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkyl, (C₃-C₆)-alkynyl, (C₃-C₆)-cycloalkyl, —(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, —(CH₂)₀R¹³ or CH₂)₀R⁹; or
- R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₆)-haloalkyl;
- R¹¹ and R¹⁴ are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl or (C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;
- R¹³ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)₀R⁸ and NR¹¹R¹⁴;
- R^{15} is R^{11} or —(CH₂)₀ R^{13} ;
- m, n and p are each independently zero, one or two;
- q is zero or one; and
- each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

6. (Previously Presented) 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 4, or pesticidally acceptable salts thereof, wherein the symbols and indices in formula (I) have the following meanings:

R1 is CN:

R2 is chlorine:

R3 is CF3 or OCF3;

W is C-Cl;

R4 is hydrogen or (C1-C6)-alkyl;

R5 is (C1-C6)-alkyl;

R⁶ is CF₃:

A is (C2-C3)-alkylene

and m and n are each independently zero, one or two.

- 7. (Canceled).
- 8. (Canceled).
- 9. (Previously Presented) A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 4 to 6, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
- 10. (Canceled)