EI338 Computer System Engineering Homework 12

Zhou Litao 518030910407 F1803016

December 14, 2020, Fall Semester

Exercise 1 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)?

Solution. See Table 1, for every entry, the first number indicates the remaining space of partition and the second number indicates the original size of partition. \Box

	115 KB	500 KB	358 KB	200 KB	375 KB
First-fit	185/300 KB	100/600 KB	392/750 KB	150/350 KB	17/750 KB
Best-fit	10/115KB	100/600 KB	392/750 KB	0/200 KB	17/750 KB
Worst-fit	635/750 KB	135/750 KB	242/600 KB	$150/350~\mathrm{KB}$	FAIL

Table 1: Exercise 1

Exercise 2 Assuming a 1-KB page size, what are the page numbers and offsets for the following address references (provided as decimal numbers):

- a. 3085
- b. 42095
- c. 215201
- d. 650000
- e. 2000001

Solution. Assume that the addresses are given in terms of bytes. The results are given in decimal number.

- a. Page number: 3, Offset: 13
- b. Page number: 41, Offset: 111
- c. Page number: 210, Offset: 161
- d. Page number: 634, Offset: 784
- e. Page number: 1953, Offset: 129

Exercise 3 Consider a logical address space of 256 pages with a 4-KB page size, mapped onto a physical memory of 64 frames.

- a. How many bits are required in the logical address?
- b. How many bits are required in the physical address?

Solution.

- 1. Logical address requires $\log 256 + \log(4 \cdot 1024) = 20$ bits.
- 2. Physical address requires $\log 64 + \log(4 \cdot 1024) = 18$ bits.

Exercise 4 Consider a computer system with a 32-bit logical address and 4-KB page size. The system supports up to 512 MB of physical memory. How many entries are there in each of the following?

- a. A conventional, single-level page table
- b. An inverted page table

Solution. Number of pages is $2^{32-\log(4\cdot1024)}=2^{20}$, and the number of frames is $512MB/4KB=2^{17}$.

- 1. Number of entries are equal to number of pages 2^{20}
- 2. Number of entries are equal to number of frames 2^{17} .