Monthly Report

Zhang Qi

School of Automation, Huazhong University of Science and Technology, Wuhan, China.

Outlines

Introduction of Simulation Platform

Simulation of State Controller

Simulation of Optimal Defense Strategy Generator

Simulation of Real-Time Capability

Task Planning

Introduction of Simulation

Platform

The Structure of Chemical Reactor Control System

The simplified chemical reactor control system is shown in the following figure.

Symbol	Description	Launch Condition
a_1	network scanning of the Ethernet in the management layer	-
a_2	vulnerability scanning of the devices in the management layer	launch of a_1
a_3	buffer overflow attack on the web server	launch of a_2
a_4	brute force attack on the web server	launch of a_2
a_5	brute force attack on the personal computer 1	launch of a_2
a_6	brute force attack on the personal computer 2	launch of a_2
a_7	brute force attack on the personal computer 3	launch of a_2
a_8	network scanning of the industrial Ethernet 1 in the control layer	launch of a_3 , a_4 , a_5 , a_6 , a_7

Symbol	Description	Launch Condition
a_9	vulnerability scanning of the devices in the industrial Ethernet 1	launch of a_8
a_{10}	buffer overflow attack on the data server 1	launch of a_9
a_{11}	brute force attack on the data server 1	launch of a_9
a_{12}	brute force attack on the engineer station 1	launch of a_9
a_{13}	network scanning of the industrial Ethernet 2 in the control layer	launch of a_3 , a_4 , a_5 , a_6 , a_7
a_{14}	vulnerability scanning of the devices in the industrial Ethernet 2	launch of a_{13}
a_{15}	buffer overflow attack on the data server 2	launch of a_{14}
a_{16}	brute force attack on the data server 2	launch of a_{14}

Symbol	Description	Launch Condition
a_{17}	brute force attack on the engineer station 2	launch of a_{14}
a_{18}	network scanning of the industrial Ethernet 3 in the control layer	launch of a ₃ , a ₄ , a ₅ , a ₆ , a ₇
a_{19}	vulnerability scanning of the devices in the industrial Ethernet 3	launch of a_{18}
a_{20}	buffer overflow attack on the data server 3	launch of a_{19}
a_{21}	brute force attack on the data server 3	launch of a_{19}
a_{22}	brute force attack on the engineer station 3	launch of a_{19}
a_{23}	DoS attack on PLC1	launch of a_{10} , a_{11} , a_{12}
a_{24}	DoS attack on PLC2	launch of a_{10} , a_{11} , a_{12}

Symbol	Description	Launch Condition
a_{25}	DoS attack on PLC3	launch of a_{10} , a_{11} , a_{12}
a_{26}	DoS attack on PLC4	launch of a_{10} , a_{11} , a_{12}
a_{27}	DoS attack on PLC5	launch of a_{15} , a_{16} , a_{17}
a_{28}	DoS attack on PLC6	launch of a_{15} , a_{16} , a_{17}
a_{29}	DoS attack on PLC7	launch of a_{15} , a_{16} , a_{17}
a ₃₀	DoS attack on PLC8	launch of a_{15} , a_{16} , a_{17}
a ₃₁	DoS attack on PLC9	launch of a ₂₀ , a ₂₁ , a ₂₂
a ₃₂	DoS attack on PLC10	launch of a_{20} , a_{21} , a_{22}

Symbol	Description	Launch Condition
a_{33}	DoS attack on PLC11	launch of a_{20} , a_{21} , a_{22}
a_{34}	DoS attack on PLC12	launch of a ₂₀ , a ₂₁ , a ₂₂
a_{35}	man-in-the-middle attack on PLC1	launch of a_{12}
a ₃₆	man-in-the-middle attack on PLC2	launch of a_{12}
a ₃₇	man-in-the-middle attack on PLC3	launch of a_{12}
a ₃₈	man-in-the-middle attack on PLC4	launch of a_{12}
a_{39}	man-in-the-middle attack on PLC5	launch of a_{17}
a_{40}	man-in-the-middle attack on PLC6	launch of a_{17}

The potential attacks are shown as follows.

a_{41} man-in-the-middle attack on PLC7 launch of a_{17} a_{42} man-in-the-middle attack on PLC8 launch of a_{17} a_{43} man-in-the-middle attack on PLC9 launch of a_{22} a_{44} man-in-the-middle attack on PLC10 launch of a_{22} a_{45} man-in-the-middle attack on PLC11 launch of a_{22} a_{46} man-in-the-middle attack on PLC12 launch of a_{22}	Symbol	Description	Launch Condition
a_{43} man-in-the-middle attack on PLC9 launch of a_{22} a_{44} man-in-the-middle attack on PLC10 launch of a_{22} a_{45} man-in-the-middle attack on PLC11 launch of a_{22}	a_{41}	man-in-the-middle attack on PLC7	launch of a_{17}
a_{44} man-in-the-middle attack on PLC10 launch of a_{22} a_{45} man-in-the-middle attack on PLC11 launch of a_{22}	a_{42}	man-in-the-middle attack on PLC8	launch of a_{17}
a_{45} man-in-the-middle attack on PLC11 launch of a_{22}	a_{43}	man-in-the-middle attack on PLC9	launch of a_{22}
	a_{44}	man-in-the-middle attack on PLC10	launch of a_{22}
a_{46} man-in-the-middle attack on PLC12 launch of a_{22}	a_{45}	man-in-the-middle attack on PLC11	launch of a_{22}
	a ₄₆	man-in-the-middle attack on PLC12	launch of a_{22}

2

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_1	distillation	failure of f_2 , f_3
f_2	the temperature control function of distillation column	failure of f_4 , f_6 , f_7 , f_8
	the pressure control function of distillation column	failure of f_5 , f_7 , f_9
f_4	the traffic control function of V1	launch of a_{23} , a_{35}
f_5	the traffic control function of V2	launch of a_{26} , a_{38}
f_6	the traffic control function of V3	launch of a_{26} , a_{38}
f_7	the switch control function of S1	launch of a_{24} , a_{36}
f ₈	the temperature sensation function of dis- tillation column	launch of a_{25} , a_{37}

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_9	the pressure sensation function of distillation column	launch of a_{25} , a_{37}
f_{10}	heating	failure of f_{11} , f_{12} , f_{13}
f ₁₁	the temperature control function of reactor 1	failure of f_{14} , f_{15} , f_{16} , f_{18} , f_{19}
f_{12}	the pressure control function of reactor 1	failure of f_{17} , f_{18} , f_{20}
f_{13}	the level control function of reactor 1	failure of f_{14} , f_{15} , f_{16} , f_{21}
f_{14}	the traffic control function of V4	launch of a_{27} , a_{39}
f_{15}	the traffic control function of V5	launch of a_{27} , a_{39}
f_{16}	the traffic control function of V7	launch of a_{30} , a_{42}

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_{17}	the pressure reducing function of reactor 1	launch of a_{30} , a_{42}
f_{18}	the switch control function of S2	launch of a_{28} , a_{40}
f_{19}	the temperature sensation function of reactor 1	launch of a_{29} , a_{41}
f_{20}	the pressure sensation function of reactor 1	launch of a_{29} , a_{41}
f_{21}	the level sensation function of reactor 1	launch of a_{29} , a_{41}
f_{22}	mixing & heating	failure of f_{23} , f_{24} , f_{25} , f_{26}
f_{23}	the temperature control function of reactor 2	failure of f_{27} , f_{30} , f_{31} , f_{33}
f_{24}	the pressure control function of reactor 2	failure of f_{28} , f_{32} , f_{33}

3

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_{25}	the mixing function of reactor 2	launch of a_{32} , a_{44}
f_{26}	the level control function of reactor 2	failure of f_{29} , f_{30} , f_{31}
f_{27}	the temperature sensation function of reactor 2	launch of a_{33} , a_{45}
f_{28}	the pressure sensation function of reactor 2	launch of a_{34} , a_{46}
f_{29}	the level sensation function of reactor 2	launch of a_{33} , a_{45}
f_{30}	the traffic control function of V6	launch of a_{31} , a_{43}
f_{31}	the traffic control function of V10	launch of a_{34} , a_{46}
f ₃₂	the pressure reducing function of reactor 2	launch of a_{34} , a_{46}

3

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_{33}	the switch control function of S3	launch of a_{32} , a_{44}
f_{34}	production scheduling	failure of f_{35} , f_{36} , f_{37} , f_{41} , f_{42} , f_{43}
f ₃₅	the production scheduling function pro- vided by personal computer 1	failure of f_{38} , f_{39} , f_{40}
f ₃₆	the production scheduling function pro- vided by personal computer 2	failure of f_{38} , f_{39} , f_{40}
f ₃₇	the production scheduling function provided by personal computer 3	failure of f ₃₈ , f ₃₉ , f ₄₀
f_{38}	the data service of industrial Ethernet 1	some security strategies
f ₃₉	the data service of industrial Ethernet 2	some security strategies
f40	the data service of industrial Ethernet 3	some security strategies

The system functions are shown as follows.

Symbol	Description	Failure Condition
f_{41}	the configuration of PLCs of distillation column	some security strategies
f_{42}	the configuration of PLCs of reactor 1	some security strategies
f_{43}	the configuration of PLCs of reactor 2	some security strategies

3

Incident Analysis

The potential hazardous incidents are shown as follows.

Symbol	Description	Location	Inducement
e_1	pressure anomaly	distillation column	failure of f_3
e_2	temperature anomaly	distillation column	failure of f_2
e_3	traffic of anomaly	distillation column	failure of f_4 , f_6
e_4	excessive pressure	reactor 1	failure of f_{12}
e_5	low pressure	reactor 1	failure of f_{12}
e_6	temperature anomaly	reactor 1	failure of f_{11}
e_7	excessive liquid level	reactor 1	failure of f_{13}
e ₈	low liquid level	reactor 1	failure of f_{13}

Incident Analysis

The potential hazardous incidents are shown as follows.

Symbol	Description	Location	Inducement
e_9	explosion	reactor 1	occurrence of e_4
e_{10}	heater dry fired	occurrence of e_8	
e_{11}	liquid overflow	reactor 1	occurrence of e_7
e_{12}	excessive pressure	reactor 2	failure of f_{24}
e_{13}	low pressure	reactor 2	failure of f_{24}
e_{14}	temperature anomaly	reactor 2	failure of f_{23}
e_{15}	excessive liquid level	reactor 2	failure of f_{26}
e_{16}	low liquid level	reactor 2	failure of f_{26}

Incident Analysis

The potential hazardous incidents are shown as follows.

Symbol	Description	Location	Inducement
e_{17}	explosion	reactor 2	occurrence of $\it e_{12}$
e_{18}	heater dry fired	reactor 2	occurrence of e_{16}
e_{19}	liquid overflow	reactor 2	occurrence of e_{15}
e_{20}	blender stop	reactor 2	failure of f_{25}
e_{21}	out of control	distillation column	failure of f_{41}
e_{22}	out of control	reactor 1	failure of f_{42}
e_{23}	out of control	reactor 2	failure of f_{43}
e_{24}	production scheduling error	control layer	failure of f_{34}

Asset Analysis

The system assets are shown as follows.

Symbol	Description	Value(\$)	Hazardous Incident
z_1	semi-product s01 and s02	30,000	$e_1, e_2, e_3, e_{21}, e_{24}$
z_2	product s03	60,000	$e_5, e_6, e_9, e_{11}, e_{22}, e_{24}$
z_3	product s04	70,000	e_{13} , e_{14} , e_{17} , e_{20} , e_{23} , e_{24}
z_4	tank and sensors of reactor 1	200,000	<i>e</i> 9
z_5	heater of reactor 1	40,000	e_9, e_{10}
z_6	tank, sensors and blender of reactor 2	300,000	e_{17}
z_7	heater of reactor 2	50,000	e_{17}, e_{18}
z ₈	staff 1-4	800,000	e ₉ , e ₁₁

Asset Analysis

The system assets are shown as follows.

Symbol	Description	Value(\$)	Hazardous Incident
z_9	staff 5-9	100,000	e_{17}, e_{19}
z_{10}	river and solid	900,000	$e_9, e_{11}, e_{17}, e_{19}$
z_{11}	air	400,000	e9, e ₁₇

- a₁ network scanning of the Ethernet in the management layer
- as vulnerability scanning of the devices in the management layer
- a_3 buffer overflow attack on the web server
- a4 brute force attack on the web server
- a₅ brute force attack on the personal computer 1
- a₆ brute force attack on the personal computer 2
- a_7 brute force attack on the personal computer 3 a_8 — network scanning of the industrial Ethernet 1 in the control layer
- an vulnerability scanning of the devices in the industrial Ethernet 1
- ara buffer overflow attack on the data server 1
- a11 brute force attack on the data server 1
- a_{12} brute force attack on the engineer station 1
- a_{13} network scanning of the industrial Ethernet 2 in the control layer
- a_{14} vulnerability scanning of the devices in the industrial Ethernet 2
- a₁₅ buffer overflow attack on the data server 2
- $a_{16}\,-\,$ brute force attack on the data server 2
- a_{17} brute force attack on the engineer station 2
- a_{18} network scanning of the industrial Ethernet 3 in the control layer a_{19} – vulnerability scanning of the devices in the industrial Ethernet 3
- an buffer overflow attack on the data server 3
- 621 brute force attack on the data server 3
- a22 brute force attack on the engineer station 3
- a23 DoS attack on PLC1
- a24 DoS attack on PLC2
- a25 DoS attack on PLC3
- a26 DoS attack on PLC4
- a₂₇ DoS attack on PLC5
- a2s DoS attack on PLC6
- a₂₉ DoS attack on PLC7
- a₃₀ DoS attack on PLC8
- a₃₁ DoS attack on PLC9

- a₁₂ DoS attack on PLC10
- a33 DoS attack on PLC11
- a34 DoS attack on PLC12
- e₃₅ man-in-the-middle attack on PLC1
- gue man-in-the-middle attack on PLC2
- gyz man-in-the-middle attack on PLC3
- ese = man-in-the-middle attack on PLC4
- ess = man-in-the-middle attack on PLCS
- an man-in-the-middle attack on PLC6
- gu man-in-the-middle attack on PLC7
- a41 man-in-the-middle attack on PL
- a_{42} man-in-the-middle attack on PLC8 a_{43} – man-in-the-middle attack on PLC9
- ag man-in-the-initide attack on FEC:
- a_{44} man-in-the-middle attack on PLC10
- a₄₅ man-in-the-middle attack on PLC11
- a₄₆ man-in-the-middle attack on PLC12
- f_1 distillation
- f₂ the temperature control function of distillation column
- f_3 the pressure control function of distillation column
- f_4 the traffic control function of V1
- f_5 the traffic control function of V2 f_6 – the traffic control function of V3
- f₇ the switch control function of S1
- fs the temperature sensation function of distillation column
- fo the pressure sensation function of distillation column
- f₁₀ heating
- f₁₁ the temperature control function of reactor 1
- f_{12} the pressure control function of reactor 1
- f_{13} the level control function of reactor 1
- f₁₄ the traffic control function of V4
- J₁₄ the traffic control function of v
- f_{15} the traffic control function of V5 f_{16} – the traffic control function of V7

- f_{17} the pressure reducing function of reactor 1
- fix the switch control function of S2
- f_{10} the temperature sensation function of reactor 1
- f_{20} the pressure sensation function of reactor 1
- f_{21} the level sensation function of reactor 1
- f₂₂ mixing and heating
- f₂₃ the temperature control function of reactor 2
- f₂₄ the pressure control function of reactor 2
- for the mixing function of reactor 2
- fns the level control function of reactor 2
- f_{27} the temperature sensation function of reactor 2
- f₂₈ the pressure sensation function of reactor 2
- from the level sensation function of reactor 2
- for the traffic control function of V6
- f₃₁ the traffic control function of V10
- f_{32} the pressure reducing function of reactor 2
- f_{33} the switch control function of S3
- f_{34} production scheduling f_{35} – the production scheduling function provided by personal computer 1
- f_{bc} the production scheduling function provided by personal computer 2
- fig = the production scheduling function provided by personal computer 3
- fas the data service of industrial Ethernet 1
- f_{39} the data service of industrial Ethernet 2
- for the data service of industrial Ethernet 3
- f₄₁ the configuration of PLCs of distillation column
- f₄₂ the configuration of PLCs of reactor 1
- f₄₃ the configuration of PLCs of reactor 2
- e_1 pressure anomaly @ distillation column
- e_2 temperature anomaly @ distillation column
- e3 traffic of anomaly @ distillation column
- c_4 excessive pressure @ reactor 1

- es low pressure @ reactor 1
- cc temperature anomaly @ reactor 1
- c_r − excessive liquid level @ reactor 1
- es low liquid level @ reactor 1
- co explosion @ reactor 1
- c10 heater dry fired @ reactor 1
- c11 liquid overflow @ reactor 1
- c12 excessive pressure @ reactor 2
- cus low pressure @ reactor 2
- c14 temperature anomaly @ reactor 2
- c15 excessive liquid level @ reactor 2
- c16 low liquid level @ reactor 2
- c17 explosion@reactor2
- c_{18} heater dry fired @ reactor 2
- c19 liquid overflow@reactor 2 e_{xx} - blender stop @ reactor 2
- c21 out of control @ distillation column
- c₁₁ − out of control @ reactor 1
- e23 out of control @ reactor 2
- e₃₄ − production scheduling error @ control layer
- z1 semi-product s01 and s02
- z_2 product s03
- z3 product s04
- z₁ tank and sensors of reactor 1
- 2s heater of reactor 1
- ≈ = tank sensors and blender of reactor ?
- z₇ heater of reactor 2
- zs staff 1-4
- 20 staff 5-9 to = river and solid
- $z_{11} air$

Process Model

The process model is shown in the following figure.

Symbol	Description	Symbol	Description	Value(\$)
p_1	distillation	s_1	semi-product 1	10,000
p_2	heating	s_2	semi-product 2	20,000
p_3	mixing & heating	s_3	product 1	50,000
		s_4	product 2	70,000

,

Security Strategies

The security strategies are shown as follows.

Symbol	Description	Prevented Attacks	Invalidated Functions
m_1	shut down the web server	a_3, a_4	_
m_2	shut down the personal computer 1	a_5	f ₃₅
m_3	shut down the personal computer 2	a_6	f ₃₆
m_4	shut down the personal computer 3	a_7	f ₃₇
m_5	disconnect the security gateway 1	a_8	f38
m_6	shut down the data server 1	a_{10} , a_{11}	f ₃₈
m_7	shut down the engineer station 1	a_{12}	f_{41}
m_8	encrypt the data amongst the PLC 1-4	$a_{35}, a_{36}, a_{37}, a_{38}$	-

Security Strategies

The security strategies are shown as follows.

Symbol	Description	Prevented Attacks	Invalidated Functions
m_9	disconnect the security gateway 2	a_{13}	f ₃₉
m_{10}	shut down the data server 2	a_{15} , a_{16}	f ₃₉
m_{11}	shut down the engineer station 2	a_{17}	f_{42}
m_{12}	encrypt the data amongst the PLC 5-8	<i>a</i> 39, <i>a</i> 40, <i>a</i> 41, <i>a</i> 42	_
m_{13}	disconnect the security gateway 3	a_{18}	f_{40}
m_{14}	shut down the data server 3	a_{20}, a_{21}	f_{40}
m_{15}	shut down the engineer station 3	a_{22}	f_{43}
m_{16}	encrypt the data amongst the PLC 9-12	a43, a44, a45, a46	_

Recovery Strategies

The recovery strategies are shown as follows.

Symbol	Description	Recovered Functions	Cost(\$)
n_1	reboot PLC1	f_4	9,000
n_2	reboot PLC2	f ₇	9,000
n_3	reboot PLC3	f ₈ , f ₉	10,000
n_4	reboot PLC4	f_5, f_6	15,000
n_5	reboot PLC5	f_{14}, f_{15}	8,000
n_6	reboot PLC6	f_{18}	10,000
n_7	reboot PLC7	f_{19}, f_{20}, f_{21}	2,000
n_8	reboot PLC8	f_{16}, f_{17}	13,000

Recovery Strategies

The recovery strategies are shown as follows.

Symbol	Description	Recovered Functions	Cost(\$)
n_9	reboot PLC9	f_{30}	14,000
n_{10}	reboot PLC10	f ₂₅ , f ₃₃	7,500
n_{11}	reboot PLC11	f ₂₇ , f ₂₈ , f ₂₉	14,000
n_{12}	reboot PLC12	f ₃₁ , f ₃₂	11,000

9

Simulation of State

Controller

Definition of System State

The state space of this chemical reactor control system is defined as

$$\mathbf{F} = (F_1, F_{10}, F_{22}, F_{34}),$$

where

$$F_i = \left\{ \begin{array}{ll} 0, & \text{the system function } f_i \text{ runs normally,} \\ 1, & \text{otherwise.} \end{array} \right.$$

Symbol	Description		System States														
f_1	distillation	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
f_{10}	heating	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
f_{22}	mixing & heating	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
f_{34}	production scheduling	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Is the System State Feasible?		\checkmark	×	×	×	×	×	×	×	×	\checkmark	×	\checkmark	×	\checkmark	×	

Notes:

[&]quot;√" means system state is feasible;

[&]quot;×" means system state is unfeasible.

Attack Scenario and Evidence List

The attack scenario and the evidence list is shown as follows.

Step	Description	Time	Evidence
1	network scanning of the Ethernet in the management layer is launched	30	$a_1 = T$
2	vulnerability scanning of the devices in the management layer is launched	40	$a_2 = T$
3	buffer overflow attack on the web server is launched	74	$a_3 = T$
4	network scanning of the industrial Ethernet 2 in the control layer is launched	102	$a_{13} = T$
5	vulnerability scanning of the devices in the industrial Ethernet 2 is launched	111	$a_{14} = T$
6	brute force attack on the data server 2 is launched	140	$a_{16} = T$
7	DoS attack on PLC5 is launched	172	$a_{27} = T$
8	the traffic control function of V4 is failed	180	$f_{14} = T$
9	the level control function of reactor 1 is failed	190	$f_{13} = T$

Simulation Result and Analysis

The curve of the cybersecurity risk is shown in following figure.

Simulation Result and Analysis

The results of system control are shown as follows.

Evidence List		Optimal System State							
Lyiderice List	f_1	f_{10}	f_{22}	f_{34}					
_	1	1	1	1					
a_1	1	1	1	1					
a_1 , a_2	1	1	1	1					
a_1 , a_2 , a_3	1	1	1	1					
a_1 , a_2 , a_3 , a_{13}	1	1	1	1					
a_1 , a_2 , a_3 , a_{13} , a_{14}	1	1	1	1					
a_1 , a_2 , a_3 , a_{13} , a_{14} , a_{16}	1	1	1	1					
a_1 , a_2 , a_3 , a_{13} , a_{14} , a_{16} , a_{27}	1	1	1	1					
a_1 , a_2 , a_3 , a_{13} , a_{14} , a_{16} , a_{27} , f_{14}	1	0	0	1					
a_1 , a_2 , a_3 , a_{13} , a_{14} , a_{16} , a_{27} , f_{14} , f_{13}	0	0	0	0					

Defense Strategy Generator

Simulation of Optimal

Decision-Making Detail 1

If the evidence list is (a_1, a_2) , the detail of the decision-making is shown as follows.

Payoff Attack Matrix of Defense System Attack Strategy Defense Strategy	g buffer overflow attack a on the web server	a^{4} brute force attack on the web server	brute force attack on a the personal computer 1	brute force attack on a the personal computer 2	brute force attack on the personal computer 3	Distribution of defense System's Mixed Strategy Probability
m_1 shut down the web server	$2.12 \\ \cdot 10^{2}$	$2.12 \\ \cdot 10^{2}$	-6.69 $\cdot 10^{2}$	-6.69 ·10 ²	-6.69 $\cdot 10^{2}$	100%
- do nothing	-1.02 $\cdot 10^{3}$	-9.59 $\cdot 10^{2}$	-8.87 $\cdot 10^{2}$	-9.43 $\cdot 10^{2}$	-8.78 $\cdot 10^{2}$	0%
Distribution of At- tacker's Mixed Strategy Probability	0%	0%	33%	35%	32%	

Decision-Making Detail 2

If the evidence list is $(a_1, a_2, a_3, a_8, a_9, a_{10}, a_{25}, f_8)$, the detail of the decision-making is shown as follows.

Payoff Matrix of Defense System Defense Strategy	a brute force attack on the web server	brute force attack on a the personal com- puter 1	brute force attack on a the personal com- puter 2	brute force attack on the personal computer 3	brute force attack on the data server 1	brute force attack on the engineer station 1	network scanning of the industrial Ethernet a 2 in the control layer	a network scanning of the industrial Ethernet a 3 in the control layer	DoS attack on PLC1	DoS attack on PLC2	DoS attack on PLC4	Distribution of defense System's Mixed Strategy Probability
m_1 shut down the web server n_3 reboot PLC3	-9.10 ·10³	-9.24 ·10³	-9.24 ·10³	-9.24 ·10³	-9.10 ·10³	-9.32 ·10 ³	-1.43 ·10 ⁴	-1.25 $\cdot 10^{4}$	−9.31 ·10³	−9.16 ·10³	−9.34 ·10³	0%
m_1 shut down the web server	8.09 ·10 ²	6.64 ·10 ²	6.64 ·10 ²	6.64 ·10 ²	8.09 ·10 ²	5.83 ·10 ²	-4.42 $\cdot 10^{3}$	-2.64 $\cdot 10^{3}$	5.95 ·10 ²	7.37 ·10 ²	5.55 $\cdot 10^{2}$	100%
n ₃ reboot PLC3	-1.11 $_{\cdot 10^4}$	-1.06 ·10 ⁴	-1.10 ·10 ⁴	-1.04 ·10 ⁴	−9.90 ·10³	-1.01 ·10 ⁴	-1.48 ·10 ⁴	-1.33 $\cdot 10^{4}$	-1.01 $\cdot 10^{4}$	−9.97 ·10³	-1.02 $\cdot 10^{4}$	0%
 do nothingi 	$-1.11 \\ _{\cdot 10^3}$	-5.82 $\cdot 10^{2}$	-1.02 $\cdot 10^{3}$	-4.01 $\cdot 10^{2}$	9.53 ·10 ¹	-1.34 $\cdot 10^{2}$	-4.80 $\cdot 10^{3}$	-3.26 $\cdot 10^{3}$	-1.15 $\cdot 10^{2}$	2.82 ·10 ¹	-1.54 $\cdot 10^{2}$	0%
Distribution of At- tacker's Mixed Strategy Probability	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	

Decision-Making Detail 3

New, the cost of recovery strategy n_3 is reduced to 0, the detail of the decision-making is shown as follows.

Payoff Attack Matrix of Defense System Defense Strategy	brute force attack on the web server	brute force attack on the personal computer 1	brute force attack on a the personal com- puter 2	brute force attack on the personal com- puter3	a the data server 1	brute force attack on the engineer station 1	network scanning of the industrial Ethernet a 2 in the control layer	network scanning of the industrial Ethernet d 3 in the control layer	23 DoS attack on PLC1	DoS attack on PLC2	DoS attack on PLC4	Distribution of defense System's Mixed Strategy Probability
m_1 shut down the web server n_3 reboot PLC3	9.05 ·10 ²	7.59 ·10 ²	7.59 ·10 ²	7.59 ·10 ²	9.05 ·10²	6.76 ·10²	-4.33 ·10 ³	-2.54 $\cdot 10^{3}$	6.94 ·10 ²	8.38 ·10 ²	6.56 ·10 ²	100%
m_1 shut down the web server	8.09 ·10 ²	6.64 ·10 ²	6.64 ·10 ²	6.64 ·10 ²	8.09 ·10 ²	5.83 ·10 ²	-4.42 $\cdot 10^{3}$	-2.64 $\cdot 10^{3}$	5.95 ·10 ²	7.37 ·10 ²	5.55 $\cdot 10^{2}$	0%
n_3 reboot PLC3	$-1.11 \\ _{\cdot 10^3}$	-5.82 $\cdot 10^{2}$	-1.02 $\cdot 10^{3}$	-4.01 $\cdot 10^{2}$	9.53 ·10¹	-1.34 $\cdot 10^{2}$	-4.80 $\cdot 10^{3}$	-3.26 $\cdot 10^{3}$	-1.15 $\cdot 10^{2}$	2.82 ·10 ¹	-1.54 $\cdot 10^{2}$	0%
 do nothing 	$-1.11 \\ _{\cdot 10^3}$	-5.82 $\cdot 10^{2}$	-1.02 $\cdot 10^{3}$	-4.01 $\cdot 10^{2}$	9.53 ·10 ¹	-1.34 $\cdot 10^{2}$	-4.80 $\cdot 10^{3}$	-3.26 $\cdot 10^{3}$	-1.15 $\cdot 10^{2}$	2.82 ·10 ¹	-1.54 $\cdot 10^{2}$	0%
Distribution of At- tacker's Mixed Strategy Probability	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	

Simulation of Real-Time

Capability

Result of Real-Time Simulation

The evidence list is $(a_1, a_2, a_3, a_8, a_9, a_{10}, a_{25}, f_8)$, the distribution of computing time is shown in the following figure.

Result of Scalability Simulation

A variety of evidence lists are input into the decision-making system. For each evidence list, the decision-making process is repeated 200 times.

The computing time of all decision-making processes is recorded, and the key parameters are shown as follows.

Evidence List	Strategy Profile	Computing Time (s)					
	Number	Minimum	Average	Maximum			
a_1	$1 \times 1 = 1$	0.990514	1.124408	1.236192			
f_8 , f_7	$1 \times 4 = 4$	3.264095	3.409352	3.533821			
a_1 , a_2	$5 \times 2 = 10$	7.706280	7.943903	8.120606			
a_1 , a_2 , a_3	$7 \times 2 = 14$	10.692101	10.994853	11.240887			
a_1 , a_2 , a_3 , a_8 , a_9 , a_{10} , a_{25}	$11 \times 2 = 22$	16.649827	16.965763	17.374881			
a_1 , a_2 , a_3 , a_8 , a_9 , a_{10}	$12 \times 2 = 24$	18.156836	18.508226	18.982261			
a_1 , a_2 , a_3 , a_8 , a_9 , a_{10} , a_{25} , f_8	$11 \times 4 = 44$	33.360343	33.861009	34.441684			
a_1 , a_2 , a_3 , a_8 , a_9 , a_{10} , a_{25} , f_8 , f_7	$11 \times 8 = 88$	66.715091	67.676804	68.892430			

Result of Scalability Simulation

A variety of evidence lists are input into the decision-making system. For each evidence list, the decision-making process is repeated 200 times.

The relationship between strategy profile number and computing time is shown in the following figure.

Task Planning

Task Planning

- · Finish the outline of the 4th paper.
- · Finish the first two sections of the 4th paper.