Universidade Federal do Ceará – Campus de Russas

	$1^{\underline{a}}$ Questão-	
CÁLCULO 1	$2^{\underline{a}}$ Questão-	TOTAL
2020.2	3ª Questão-	
$2^{\underline{a}}$ AVALIAÇÃO	$4^{\underline{a}}$ Questão-	
07/04/2021	$5^{\underline{a}}$ Questão-	
	$6^{\underline{a}} \operatorname{Quest\~ao}$	
Nome legível		
Matrícula		

 $1^{\underline{a}}$ Questão (1pt) Dada a função $y = x^3 + x^2 + 4x$, calcule a derivada de sua função inversa no ponto $x_0 = -1$.

 $2^{\underline{a}}$ Questão (2pt) Obtenha a derivada de cada uma das seguintes funções:

a)
$$(1pt)$$
 $f(x) = cos(3x^2 + x + 5)$

b) (1pt)
$$h(x) = (e^x \cdot \cos x - x^2)^4$$

 $3^{\underline{a}}$ Questão (2pt) É dada a função $y = \frac{x^2}{x^2 + 1}$.

- a) (0,5pt) Determine a derivada.
- **b)** (0,5pt) Calcule $\lim_{x\to\infty} y$.
- c) (1pt) Determine os pontos do gráfico em que a tangente passa pela origem.

 $4^{\underline{a}}$ Questão (1,5pt) Se $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, calcule a_0 , a_1 , a_2 , a_3 e a_4 de modo que o gráfico de f passe pela origem, seja simétrico em relação ao eixo g (ou seja, g é uma função par) e tenha um ponto de inflexão em g (1, -1).

 $5^{\underline{a}}$ Questão (1,5pt) Um fio de comprimento L é cortado em dois pedaços, um dos quais formará um círculo e o outro, um quadrado. Como deve ser cortado o fio para que a soma das áreas do círculo e do quadrado seja mínima?

 $6^{\underline{a}}$ Questão (2pt) Determine as integrais dadas abaixo:

a)
$$(1pt) \int (\frac{x^3+1}{x^2}) dx$$
.

b) (1pt)
$$\int_0^1 (y^5 - 1)y \, dy$$
.