倍角, 3倍角の公式

• $\sin(2\theta) = 2\sin\theta\cos\theta$

• $\cos(2\theta) = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$

• $\sin(3\theta) = \sin\theta - 4\sin^3\theta$

• $\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$

問題 1. 加法定理を使って、倍角、3倍角の公式を導きだしなさい $(\sin(2\theta) = \sin(\theta + \theta))$.

問題 **2.** $(\cos \theta + i \sin \theta)^2$, $(\cos \theta + i \sin \theta)^3$ を展開し、整理せよ (i は虚数単位、 $i^2 = -1$).

正接の加法定理

(1) $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

(2) $\tan(\alpha - \beta) =$

問題 **3.** 正接の加法定理を証明せよ $(\tan\theta \ \text{t} \sin\theta \ \text{c} \cos\theta \ \text{e}$ 用いて定義される. \sin , \cos に加法定理を適用し、その後で \tan の式に書き直せばよい).

- 和積公式 -

$$(1) \sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

 $(2) \sin A - \sin B =$

 $(3) \cos A - \cos B =$

 $(4) \cos A + \cos B =$

積和公式 -

(1) $\sin \alpha \cos \beta = \frac{1}{2} \left\{ \sin(\alpha + \beta) + \sin(\alpha + \beta) \right\}$

(2) $\sin \alpha \sin \beta =$

(3) $\cos \alpha \cos \beta =$

問題 4. 教科書 p.85 を参考にして、上の和積公式、積和公式を完成させよ。