高等数学 I 习题课 05

数列与函数的极限

上海科技大学

2025.10.16

上海科技大学

Quiz

18:00 - 18:40

上海科技大学

高等数学 I 习题课 0!

2025.10.16

讨论

- 往年期中考卷的发布时间一般为考前 1-2 周,用以帮助进行自我检测、巩固练习.
- 提前在习题课讲解的优势有:
 - 逐步对考试祛魅,消除过度焦虑
 - 省去试卷评讲课,增加内容深度
- 缺点有:
 - 失去系统模拟完整考试流程机会
 - 若未先尝试解题就听讲解,会失去独立思考"是什么,为什么,怎么做"的机会
 - (解决办法:每次讲解以前都提前查看 slides 并花 10-20 分钟先做一遍题目)

4 D > 4 D > 4 E > 4 E > E 990

习题课 04 反馈

Figure: 课程质量 Figure: 课堂氛围

习题课 04 反馈

- 后续习题课会减少对于简单概念的讨论,重点关注复杂细节的处理、 解决问题的思路
- 比起计算技巧会更注重于分析方法

目录

- 1 数列的极限
 - 存在判别法
 - 区间套定理

② 函数的极限

6/30

目录

- ① 数列的极限
 - 存在判别法
 - 区间套定理

② 函数的极限

夹逼定理

$$z_n \le x_n \le y_n$$

且
$$\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n=A$$
,则有

$$\lim_{n \to \infty} x_n = A.$$

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩ ⟨□⟩

夹逼定理

求

$$\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right)$$

反例

求

$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{2n+1}{n^2}\right)$$

思路

- 欲求极限的数列形如 $\sum_{i=1}^{n} \frac{f(i)}{g(i)}$,且不便通分
- 使用极限的定义:需要先知道极限的值
- 使用极限的四则运算法则: 无穷个无穷小相加的值是不确定的
- 因此,考虑将 g(i) 放缩,将数列转化为容易计算的 $\frac{1}{g(n)}\sum_{i=1}^n f(i)$,再对其求极限. 如此,可分别得到原数列极限的上限与下限.
- 上下限相同 ⇒ 数列的极限 = 上限 = 下限

上海科技大学

高等数学 1 习题课 05

求

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 - 2}} - \frac{1}{\sqrt{n^2 - 3}} - \dots - \frac{1}{\sqrt{n^2 - n}} \right)$$

目录

- 数列的极限
 - 存在判别法
 - 区间套定理

函数的极限

区间套定理

若 $[a_{n+1},b_{n+1}] \subset [a_n,b_n], \forall n \in \mathbb{N}_+,$ 且有

$$\lim_{n \to \infty} (b_n - a_n) = 0,$$

则存在唯一实数 ξ , $\forall n \in \mathbb{N}_+$,有 $a_n \leq \xi \leq b_n$. 换言之,

$$\xi \in \bigcap_{n=1}^{\infty} [a_n, b_n].$$

思考

实数是如何定义的?

- 有理数: 两个互质的整数 p,q 之商
- 无理数:?

π 的表示

- 无理数都是"无限不循环小数",例如 $\pi, e, \sqrt{2}$.
- 尝试以小数形式表示 π:

$$\pi = 3.14159265358\dots$$

- 只要这个小数只被写出来了有限项,那么它就是一个有理数。
- 只有当 π 所对应的小数的所有项,无限项都被写出,它才表示 π .

尝试

- 让我们尝试用有理数慢慢接近 π.
- 只看整数部分, $\pi \in [3, 4]$.
- 我们可以怎样让这个区间以一个稳定的方式不断缩小?

尝试

- 计我们尝试用有理数慢慢接近 π.
- 只看整数部分, $\pi \in [3, 4]$.
- 二分,将[3,4]这个区间分成[3,3.5],[3.5,4]两个部分。
 - 如果 π 落在左半边,则继续对左半边进行细分;右半边同理.
 - 如果 π 同时落在两个区间内,那么它一定是两个区间所重合的那个 数 这个数是一个有理数 (为什么?)
- 如此,第 n 次二分后得到的区间大小是 2^{-n} .
- $\exists n \to \infty$? 区间的大小趋近于 0.

回到定义

若 $[a_{n+1},b_{n+1}] \subset [a_n,b_n], \forall n \in \mathbb{N}_+$,且有

$$\lim_{n \to \infty} (b_n - a_n) = 0,$$

则存在唯一实数 ξ , $\forall n \in \mathbb{N}_+$,有 $a_n < \xi < b_n$.

- $[a_{n+1}, b_{n+1}] \subset [a_n, b_n], \forall n \in \mathbb{N}_+$: 所取的区间长度不断缩小,且新 区间总是前一个区间的子集。
- $\lim_{n\to\infty} (b_n a_n) = 0$: 区间长度最终趋近于 0.

这样的**无穷个**区间套,共同定义着一个**实数**。

上海科技大学 高等数学 | 习题课 05 20 / 30

证明

不难发现,对于每一次取子区间,总有:

$$a_n \le a_{n+1} < \xi < b_{n+1} \le b_n$$

- $\{a_n\}$ 单调递增,且有上界 b_1 ;
- $\{b_n\}$ 单调递减,且有下界 a_1 ;

设
$$\lim_{n\to\infty} a_n = A$$
, $\lim_{n\to\infty} b_n = B$. $\lim_{n\to\infty} (b_n - a_n) = 0 \Leftrightarrow A = B$ 夹逼定理 $a_n < \xi < b_n$ 得证. \square

思考: 0.9 和 1 相等吗?

- 利用区间套定理
- \bullet $[a_1,b_1]=[0,1]$
- 此后不断将 a_n 增大至 0.9 的小数点后 n 位
- $a_n = 1 \frac{1}{10^n}, b_n = 1$
- 所逼近的数 0.9 = 1.

思考: 0.9 和 1 相等吗?

直观理解:

•
$$0.9$$
 等价于 $\lim_{n \to \infty} 0.999... = \lim_{n \to \infty} (1 - \frac{1}{10^n}) = 1$

上海科技大学

目录

- 1 数列的极限
 - 存在判别法
 - 区间套定理

② 函数的极限

思考

当我们讨论"极限"和"趋近于"时,我们在描述什么?

引

从数列的极限中,我们知道:

- 对 "无限趋近"、"极限",可以使用 ϵN 语言进行精确的表述.
- 含义:不论给定任意小的区间 $(A-\epsilon,A+\epsilon)$,都能找到数列中的某一项 a_N ,使得这一项之后的所有项都落在这个区间内. 当 ϵ 足够小, a_n 的值就几乎落在 A 这个点上.
- 核心是什么?
- 1. 任意小的区间; 2. 能够使所有后续项落在该区间的 N.

从 $n \to +\infty$ 开始

- ① 任意小的区间: $\forall \epsilon > 0, \dots, |f(x) A| < \epsilon$
- ② 能使所有后续函数值都满足该条件的 X: $\exists X \in D, \text{s.t.} \forall x > X, \dots$

连接起来:

$$\forall \epsilon > 0, \ \exists X \in D, \ \text{s.t.} \ \forall x > X, \ |f(x) - A| < \epsilon$$

推广到 $n \to -\infty$

$$+\infty: \quad \forall \epsilon > 0, \ \exists X \in D, \ \text{s.t.} \ \forall x > X, \ |f(x) - A| < \epsilon$$

$$-\infty: \quad \forall \epsilon > 0, \ \exists X \in D, \ \text{s.t.} \ \forall x < X, \ |f(x) - A| < \epsilon$$

推广到 $n \to \infty$

- 极限有唯一性. 若 $\lim_{x\to\infty}$ 存在,则极限应当同时存在于 $+\infty$ 和 $-\infty$ 处且相等.
- 为什么在数列极限中,只有 $n \to \infty$ 而没有特别标明 $+\infty$?
- 要求在正负无穷处取到同一极限值,那么值域应该是?

$$\lim_{x \to \infty} f(x)$$

设函数 f(x) 在 $(-\infty, -a) \cup (a, +\infty)$ (a > 0) 内有定义,若存在实数 $A, \forall \epsilon > 0, \exists X > 0 (X > a),$ 使得当 |x| > X 时,

$$|f(x) - A| < \epsilon,$$

则称当 x 趋向于无穷时,函数 f(x) 的极限为 A 或 f(x) 收敛于 A,记为

$$\lim_{x\to\infty}f(x)=A\quad \vec{\mathbf{x}}\quad f(x)\to A\ (x\to\infty)\quad \vec{\mathbf{x}}\quad f(\infty)=A$$

