Chapitre 1 Loi de coulomb et champ électrostatique

Introduction

Rappelons qu'un atome est formé par noyau central autour duquel circulent des électrons qui sont chargés négativement. Ces électrons peuvent être arrachés de leur atome par différents moyens:

- Frottement
- Contact avec un autre corps déjà électrisé.
- Par compression (piézo-électricité)
- Chauffage (rayon cathodique).

Quand on frotte un corps A sur un autre B il y a transfert d'électricité de l'un vers l'autre, celui qui reçoit des électrons se charge d'électricité négative alors que celui qui en perd se charge d'électricité positive.

Puisque l'électrisation est un transfert d'électrons on peut la caractériser quantitativement par le nombre d'électrons perdus ou gagnés. Ce nombre mesure la charge électrique du corps électrisé.

L'unité SI de la charge est le coulomb (C), $e = 1,610^{-19}$ C est la charge élémentaire.

Particules	Symbole	Masse (kg)	Charge électrique (C)
Électron	e ⁻	9,1.10 ⁻³¹	-1,6.10 ⁻¹⁹
Proton	р	1,672.10 ⁻²⁷	1,6.10 ⁻¹⁹
Neutron	n	1,674.10 ⁻²⁷	0

Les propriétés de la charge électrique

- 1. **Quantification** : toute charge électrique est un multiple entier de la charge élémentaire
- 2. Conservation: la charge électrique totale d'un système isolé, c.-à-d. la somme algébrique des charges positives et négatives présentent à un instant quelconque reste toujours constante.

1. Loi de coulomb et champ électrostatique

1.1 Loi de coulomb

Considérons dans le vide deux charges électriques ponctuelles q₁ et q₂ au repos, par rapport à un référentiel R, placées respectivement en A et B et séparées d'une distance $r = \|\overrightarrow{AB}\|$. Pour un observateur lié à R l'interaction électrostatique entre ces deux charges est donnée par : $\overline{F_{1/2}} = \frac{1}{4\pi\epsilon_0} \frac{q_2 q_1}{r^2} \vec{u} \text{ Où}$

$$\overrightarrow{F_{1/2}} = \frac{1}{4\pi\varepsilon_0} \frac{q_2 q_1}{r^2} \overrightarrow{u}$$
 Où

 $\overline{F_{1/2}}$ est la force agissante sur la charge q_2 en B, \vec{u} est le vecteur unitaire dirigé de q_1 vers q_2 et ε_0 est le coefficient caractéristique du milieu qui est le vide : la permittivité du vide

$$\varepsilon_0 = 8,854 \ 187 \ 812 \ 8 \times \ 10^{-12} \ A^2 \ s^4 \ kg^{-1} \ m^{-3}.$$

$$\frac{1}{4\pi\varepsilon_0} = 9 \ 10^9 \ S. I$$

Cette équation exprime que :

- La force est radiale : dirigée selon la droite qui joint les deux charges
- Proportionnelle au produit des deux charges : répulsives s'elles sont de même signes $(q_1q_2>0)$ et attractives s'elles sont de signes opposés $(q_1q_2<0)$
- La force obéit au principe d'action et de réaction de la mécanique classique (caractère newtonien) : $\overrightarrow{F_{1/2}} = -\overrightarrow{F_{2/1}}$

1.1.1 Enoncé de la loi de coulomb

Deux charges électriques ponctuelles exercent l'une sur l'autre une force dirigée suivant la droite qui les joint, proportionnelle à chacune des deux charges électriques et inversement proportionnelle au carré de leur distance \mathbf{r} .

1.1.2 Principe de superposition

a- Distribution discrète de charges

Enoncé:

La force exercée par l'ensemble des charges $q_1, q_2 \dots q_n$ sur la charge q_0 est la somme vectorielle des forces exercées par ces charges comme si chacune d'elles existait seule.

$$\vec{F} = \vec{F}_{q1/q0} + \vec{F}_{q2/q0} + \vec{F}_{q3/q0} + \dots + \vec{F}_{qn/q0} = \sum_{i=1}^{i=n} \vec{F}_{qi/q0}$$

Où $\overrightarrow{F}_{qi/q0}$ est la force qu'exerce q_i sur q_0

b- Distribution continue de charges

La loi de coulomb est relative aux forces qui s'exercent entre charges ponctuelles. Nous étendrons son domaine d'application en adoptant l'hypothèse suivant qui complète la loi de Coulomb :

Hypothèse

Dans le vide, les forces exercées par deux corps électrisés l'un sur l'autre sont les résultantes de toutes les forces élémentaires exercées les unes sur les autres par les charges électriques réparties sur ces deux corps.

Distribution linéique de charges (λ)

La distribution linéique de charges est définie par une densité linéique de charges $\lambda = \frac{dq}{d\ell}$ où $d\ell$ est un élément de longueur élémentaire contenant la charge $dq = \lambda d\ell$ et la charge totale est $Q = \int dq = \int \lambda d\ell$. L'unité de λ est C/m.

- Calculons la force exercée par cette distribution sur la charge ponctuelle q'?
- 1- On découpe le fil de longueur λ en éléments de longueur assez petits $d\ell$ pour que la charge de chaque élément $dq = \lambda d\ell$ puisse être considérée comme ponctuelle.
- 2- Nous faisons la somme vectorielle des forces exercées par ces éléments de longueurs $d\ell$ sur la charge \mathbf{q} :

$$\overrightarrow{F} = \int \overrightarrow{dF} = rac{1}{4\piarepsilon_0} \int rac{q'dq}{r^2} \overrightarrow{u} = rac{q'}{4\piarepsilon_0} \int rac{\lambda\,d\ell}{r^2} \overrightarrow{u}$$

• Distribution surfacique de charges (σ)

La distribution surfacique de charges est définie par une densité surfacique de charges: $\sigma(x,y) = \frac{dq}{ds}$ où ds est un élément de surface élémentaire d'une surface S(ds = dxdy). La charge contenue dans ds est donnée par $dq = \sigma ds$ et la charge totale $Q = \iint_S \sigma ds$. L'unité de σ est C/m^2 .

- Calculons la force exercée par cette distribution sur une charge ponctuelle q'?
- 1- On découpe la surface S en éléments de surface assez petits ds pour que la charge de chaque élément de surface $dq = \sigma ds$ puisse être considérée comme ponctuelle.
- 2- Nous faisons la somme vectorielle des forces exercées par ces éléments de surfaces ds sur la charge q:

$$\vec{F} = \int \overrightarrow{dF} = \frac{1}{4\pi\epsilon_0} \int \frac{q' dq}{r^2} \vec{u} = \frac{q'}{4\pi\epsilon_0} \iint_S \frac{\sigma ds}{r^2} \vec{u}$$

• Distribution volumique de charges (ρ)

Elle est définie par une densité volumique de charges :

 $\rho(x,y) = \frac{dq}{d\tau}$ où $d\tau$ est un élément de volume élémentaire d'un volume V $(d\tau = dxdydz)$. La charge contenue dans $d\tau$ est donnée par $dq = \rho d\tau$ et la charge totale $Q = \iiint_V \rho dxdydz$. L'unité de ρ est C/m^3 .

- Calculons la force exercée par cette distribution sur la charge ponctuelle q'?
- 1- On découpe le volume V en éléments de volume assez petits $d\tau$ pour que la charge de chaque élément de volume $dq = \rho d\tau$ puisse être considérée comme ponctuelle
- 2- Nous faisons la somme vectorielle des forces exercées par ces éléments de volumes $d\tau$ sur la charge \mathbf{q} :

$$\overrightarrow{F} = \int \overrightarrow{dF} = \frac{1}{4\pi\epsilon_0} \int \frac{q'\,dq}{r^2} \overrightarrow{u} = \frac{q'}{4\pi\epsilon_0} \iiint_V \frac{\rho d\tau}{r^2} \overrightarrow{u}$$

2. Champ électrostatique

La présence d'une distribution de charges dans l'espace change les propriétés de cet espace en créant, à chaque point, un champ électrostatique. Alors au lieu de dire qu'une distribution de charges exerce une force sur une charge q, on dit que la charge q interagit avec le champ électrostatique produit par la distribution de charges.

Il en résulte de ce qui précède que toute charge q placée en un point où le champ électrostatique est \vec{E} , se trouve soumise à une force \vec{F} donnée par $\vec{F} = q\vec{E}$:

- Si q > 0 la force \vec{F} a le même sens que \vec{E}
- Si q < 0 la force \vec{F} a le sens opposé de \vec{E}

 $\vec{E} = \frac{\vec{F}}{q} [N/C]$, le champ électrostatique est par définition la force par unité de charges.

2.1 Champ électrostatique créé par une charge ponctuelle

Dans un référentiel R, en tout point M situé à la distance r d'une charge ponctuelle q immobile placée en O, il existe un champ électrostatique \vec{E} tel que : $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \vec{u}$

2.2 Champ créé par plusieurs charges ponctuelles

On applique le principe de superposition :

Enoncé:

Le champ électrostatique produit au point M par un ensemble de N charges q_i est la somme vectorielle des champs électrostatiques produits par chacune des charges prises isolément.

Le champ créé par la charge q_i au point M est : $\overrightarrow{E}_i = \frac{1}{4\pi \varepsilon_0} \frac{q_i}{r_i^2} \overrightarrow{u_i}$

Le champ électrostatique résultant est :

$$\vec{E} = \sum_{i=1}^{i=N} \vec{E}_i = \sum_{i=1}^{i=N} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_i^2} \vec{u}_i$$

Si l'on place une charge q au point M, elle sera soumise donc à la force :

$$\vec{F} = q\vec{E} = \sum_{i=1}^{i=N} \frac{1}{4\pi\varepsilon_0} \frac{qq_i}{r_i^2} \vec{u_i}$$

2.3 Champ créé par une distribution de charges continue

• Distribution linéique de charges

Les charges sont disposées sur une ligne Γ avec la densité linéique λ . Chaque élément $d\ell$ de la ligne, de centre P et quasi-ponctuel, porte la charge $dq = \lambda d\ell$ et crée le champ élémentaire \overrightarrow{dE} en M :

$$\overrightarrow{dE} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda \, d\ell}{r^2} \overrightarrow{u}$$

Le champ total en M est la somme (intégrale pour une sommation continue) de tous les champs élémentaires créés par les éléments $d\ell$ formant la ligne Γ .

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \int\limits_L \frac{\lambda \, d\boldsymbol{\ell}}{r^2} \vec{u}$$

• Distribution surfacique de charges

Les charges sont disposées sur une surface S avec la densité surfacique σ . Chaque élément ds de la surface, de centre P et quasi-ponctuel, porte la charge $dq = \sigma ds$ et crée le champ élémentaire \overrightarrow{dE} en M:

$$\overrightarrow{dE} = \frac{1}{4\pi\varepsilon_0} \frac{\sigma \, ds}{r^2} \overrightarrow{u}$$

Le champ total en M est la somme (intégrale pour une sommation continue) de tous les champs élémentaires créés par les éléments ds formant la surface S.

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \iint\limits_{S} \frac{\sigma \, ds}{r^2} \vec{u}$$

• Distribution volumique de charges

Les charges sont disposées sur un volume V avec la densité volumique ρ . Chaque élément $d\tau$ du volume, de centre P et quasi-ponctuel, porte la charge $dq = \rho d\tau$ et crée le champ élémentaire \overrightarrow{dE} en M :

$$\overrightarrow{dE} = \frac{1}{4\pi\varepsilon_0} \frac{\rho \ d\tau}{r^2} \overrightarrow{u}$$

Le champ total en M est la somme (intégrale pour une sommation continue) de tous les champs élémentaires créés par les éléments $d\tau$ formant le volume V.

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \iiint_V \frac{\rho \ d\tau}{r^2} \vec{u}$$

2.4 Circulation du vecteur champ électrique

Soit \mathcal{L} une courbe d'extrémités A et B. N et M sont deux points très voisins de cette courbe.

• Calculons la circulation élémentaire dC de \vec{E} , créé par une charge ponctuelle placée au point O, dans un déplacement élémentaire NM

On adopte les coordonnées polaires d'origine O et le vecteur déplacement élémentaire de N vers M s'écrit :

$$\overrightarrow{NM} = \overrightarrow{NP} + \overrightarrow{PM} = dr\overrightarrow{u_r} + rd\theta \overrightarrow{u_\theta}$$

On considère le champ comme uniforme entre N et M :

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \vec{u} \quad avec \ \vec{u} = \vec{u_r}$$

La circulation élémentaire dC du champ \vec{E} est calculée à partir du déplacement infinitésimal depuis N vers M :

$$dC = \overrightarrow{E}.\overrightarrow{NM} = \frac{q}{4\pi\varepsilon_0 r^2} \overrightarrow{u_r}. (dr\overrightarrow{u_r} + rd\theta \overrightarrow{u}_\theta)$$

$$d\mathcal{C} = \frac{q}{4\pi\epsilon_0 r^2} dr = -d(\frac{q}{4\pi\epsilon_0 r})$$

Pour exprimer la circulation totale C du champ $\stackrel{\rightarrow}{E}$ entre A et B, on ajoute toutes les circulations élémentaires dC du champ $\stackrel{\rightarrow}{E}$:

$$C = \int_A^B dC = \int_A^B -d\left(\frac{q}{4\pi\varepsilon_0 r}\right) = \frac{q}{4\pi\varepsilon_0 r_A} - \frac{q}{4\pi\varepsilon_0 r_B} = \varphi(r_A) - \varphi(r_B)$$

$$Où \varphi(r) = \frac{q}{4\pi\varepsilon_0 r}$$

Remarque:

La circulation de \vec{E} pour aller de A à B est indépendante du chemin suivi. Elle est égale à la différence des valeurs prises par la fonction $\varphi(r)$ pour les valeurs r_A et r_B correspondantes aux extrémités du déplacement.

2.5 Considérations de symétrie et d'invariance du champ électrostatique 2.5.1 Principe de Curie :

« Un phénomène physique possède au moins les éléments de symétrie de ses causes. »

Du fait que le champ soit créé par une distribution de charges, il contient des informations sur les causes qui lui ont donné naissance. Ainsi, si l'on connaît les propriétés de symétrie d'une distribution de charges, on pourra connaître celles du champ électrostatique associé. Ces propriétés sont fondamentales car elles permettent de simplifier considérablement le calcul du champ électrostatique.

2.5.2 Considérations de symétrie

a. Plans de symétrie

- Si la distribution de charges admet un plan de symétrie Π , alors en tout point de ce plan, le champ électrostatique est contenu dans ce plan.
- Si la distribution de charges admet deux plans de symétrie Π et Π' contenant le point M, alors la direction du champ électrostatique en M est celle de la droite d'intersection de ces deux plans.

Distribution de charges ayant deux plans de symétrie

b. Plan d'antisymétrie

• Si, par symétrie par rapport à un plan Π' , la distribution de charges change de signe, alors en tout point de ce plan, le champ électrostatique est perpendiculaire à Π'

Distribution de charges ayant un plan d'antisymétrie

2.5.3 Considérations d'invariance

a. Rotation autour d'un axe

• Considérons une distribution de charges et un point M de l'espace où le champ $\vec{\bf E}$ est défini. S'il existe un axe Δ tel qu'une rotation d'angle θ quelconque autour de Δ laisse la distribution de charges inchangée, alors la valeur de $E = ||\vec{\bf E}||$ en M ne dépend pas de l'angle θ .

Distribution cylindrique de charges et rotation

b. Translation selon une direction

• S'il existe une droite Δ telle que toute translation selon cette droite laisse la distribution de charge inchangée, alors le module de **E** en M ne dépend pas de la coordonnée d'espace associée à cette translation.

Distribution illimitée et translation

3. Potentiel électrostatique

• Potentiel électrostatique créé par une charge ponctuelle

Soit un point P et r sa distance à une charge q qui crée le champ électrostatique $\vec{\mathbf{E}}$. Posons :

$$V(P) = \frac{q}{4\pi\epsilon_0 r} + K$$
 où Kest une constante

V(P) est appelé potentiel électrostatique créé par la charge q au point P.

Remarques:

- La constante K peut être choisie arbitrairement car seule une différence de potentiel est mesurable.
- S'il n'y a pas de charges à l'infini, on pose $V(\infty) = 0$ alors K=0. Cela signifie que l'effet des charges tend vers 0 lorsque $r \to \infty$

• Potentiel créé par une distribution discrète de charges

En appliquant le principe de superposition, il vient que le potentiel créé par un ensemble de charges ponctuelles vaut la somme des potentiels créés par chacune des charges ponctuelles.

Le potentiel électrostatique V créé en un point M par un ensemble de n charges ponctuelles q_i placées en O_i (avec $r_i = O_i M$) vaut :

$$V(M) = \sum_{i=1}^{n} \frac{q_i}{4\pi\varepsilon_0 r_i} + K$$

• Potentiel créé par une distribution linéique de charges

Les charges sont disposées sur une ligne Γ avec la densité linéique λ . Chaque élément $d\ell$ de la ligne, de centre P et quasi-ponctuel, porte la charge $dq = \lambda d\ell$ et crée un potentiel élémentaire dV en un point M.

$$dV(M) = \frac{dq}{4\pi\varepsilon_0 r} + k = \frac{\lambda d\ell}{4\pi\varepsilon_0 r} + k$$

Le potentiel total en M est la somme (intégrale pour une sommation qui, ici, est continue) de tous les potentiels élémentaires dV créés par les éléments $d\ell$ de la ligne Γ .

$$V(M) = \int_{\Gamma} dV = \int_{\Gamma} \frac{\lambda d\ell}{4\pi\epsilon_0 r} + K$$

Potentiel créé par une distribution surfacique de charges

Les charges sont disposées sur une surface S avec la densité surfacique σ . Chaque élément ds de la surface, de centre P et quasi-ponctuel, porte la charge $dq = \sigma ds$ et crée un potentiel élémentaire dV en M :

$$dV(M) = \frac{dq}{4\pi\varepsilon_0 r} + k = \frac{\sigma ds}{4\pi\varepsilon_0 r} + k$$

Le potentiel total en M est la somme (intégrale pour une sommation continue) de tous les potentiels élémentaires :

$$V(M) = \iint_{S} dV = \iint_{S} \frac{\sigma ds}{4\pi\varepsilon_{0}r} + K$$

• Potentiel créé par une distribution volumique de charges

Les charges sont disposées sur un volume V avec la densité volumique ρ . Chaque élément $d\tau$ du volume, de centre P et quasi-ponctuel, porte la charge $dq = \rho d\tau$ et crée un potentiel élémentaire dV en M :

$$dV(M) = \frac{dq}{4\pi\varepsilon_0 r} + k = \frac{\rho d\tau}{4\pi\varepsilon_0 r} + k$$

Le champ total en M est la somme (intégrale pour une sommation continue) de tous les potentiels élémentaires.

$$V(M) = \iiint_{V} dV = \iiint_{V} \frac{dq}{4\pi\epsilon_{0}r} + K = \iiint_{V} \frac{\rho d\tau}{4\pi\epsilon_{0}r} + K$$

<u>Conclusion</u>: La fonction **Potentiel** définit un champ de scalaires qui permet de décrire l'espace électrique.

3.1 Circulation et différence de potentiel

Il résulte des définitions précédentes que la circulation du champ électrostatique peut s'écrire :

$$C = \int_{A}^{B} \overrightarrow{E} \cdot \overrightarrow{d\ell} = \frac{q}{4\pi\varepsilon_{0}r_{A}} - \frac{q}{4\pi\varepsilon_{0}r_{B}} = V(A) - V(B)$$

La circulation élémentaire : $dC = \vec{E} \cdot \vec{d\ell} = V - (V + dV) = -dV$

3.2 Travail de la force électrostatique appliquée à une charge ponctuelle

Soit une charge placée dans un champ électrostatique \vec{E} . La charge q est soumise à la force $\vec{F} = q\vec{E}$. Soit W le travail de cette force lorsque la charge se déplace de A à B:

$$W = \int_{AB} \vec{F} \cdot \vec{d\ell} = q \int_{AB} \vec{E} \cdot \vec{d\ell}$$

Or
$$\int_{AB} \vec{E} \cdot \vec{d\ell} = V(A) - V(B)$$
 et par suite $W = q(V(A) - V(B))$

Remarque

Le travail de la force électrostatique ne dépend pas du chemin suivi.

<u>Cas particulier</u>: Une charge unité placée au point A et déplaçons là à l'infini ; le travail de la force électrostatique est : $W=V_A-V_B=V_A-V_\infty=V_A$

Le potentiel en A est le travail fait par la force électrostatique sur une unité de charge positive qui se déplace de A vers l'infini.

3.3 Relation entre champ électrostatique et potentiel électrostatique

Passons d'un point N où le champ est \vec{E} et le potentiel est V au point M où le potentiel est V = V + dV par un déplacement $\vec{d\ell} = \vec{NM}$ de coordonnées (dx, dy, dz). La circulation de \vec{E} de N à M peut s'écrire de deux façons :

$$dC = \vec{E} \cdot \vec{d\ell} = E_x dx + E_y dy + E_z dz$$

$$dC = V(N) - V(M) = V - (V + dV) = -dV$$
(1)

Or dV est la différentielle totale de la fonction V(x, y, z) d'où :

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz \tag{2}$$

Des équations (1) et (2) on a :

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}dy, \quad E_z = -\frac{\partial V}{\partial z}dz$$

Cela s'exprime par :

$$\vec{E} = -\overrightarrow{grad} V = -\vec{\nabla}V$$

Rappels:

3.4 Ligne de champ et surface équipotentielle

a- Ligne de champ

On appelle ligne de champ toute ligne ayant la propriété d'être tangente en chacun de ses points à la direction du vecteur champ en ce point.

- Le sens d'une ligne de champ est celui de \vec{E} en chacun de ses points
- La circulation de \vec{E} calculée en suivant le sens de la ligne de champ est toujours positive :

 $dC = \vec{E} \cdot \vec{d\ell} = ||\vec{E}|| \cdot ||\vec{d\ell}|| > 0$ car les deux vecteurs son tangents et de même sens.

Par ailleurs dC = -dV donc:

« Le long d'une ligne de champ, le champ \vec{E} est dirigé vers les potentiels décroissants »

Conclusion:

- Une ligne de champ ne peut être fermée sur elle-même
- Une ligne de champ a un maximum de potentiel pour origine et un minimum pour extrémité

b- Tube de champ

On appelle tube de champ le canal formé par l'ensemble des lignes de champ passant par chacun des points d'un contour fermé.

c- Surface équipotentielle

Une surface équipotentielle est une surface (Σ) pour laquelle le potentiel V est le même en chacun de ses points. Elle est définie par l'équation :

$$V(x, y, z) = C^{ste}$$

Soit M un point d'une surface équipotentielle et M un point très proche de M' appartenant à S. On a : V(M') = V(M)

La circulation $dC = \vec{E} \cdot \overrightarrow{MM'} = -dV = 0$ alors : \vec{E} est orthogonal à $\overrightarrow{MM'}$ par conséquent :

- Le champ \vec{E} est orthogonal aux surfaces équipotentielles.
- Les lignes de champ sont en tous points orthogonales aux surfaces équipotentielles.

Lignes de champ pour deux charges : (a) (+q, -q) ; (b) (2q, -q) ; (c) (+q, +q). Tout plan contenant les charges est plan de symétrie.

4. Dipôle électrostatique

Définitions

a- Dipôle électrostatique

On appelle dipôle électrostatique, l'ensemble de deux charges opposées (-q) et (+q) ponctuelles, respectivement situées en A et B, la distance AB étant infiniment petite par rapport à la distance au point où l'on observe leurs effets ou l'on agit sur elles.

b- Moment électrique dipolaire

On appelle moment dipolaire le vecteur :

$$\overrightarrow{P} = q\overrightarrow{AB}$$

c- Dipôle rigide (permanent)

Nous appellerons dipôle rigide, un dipôle dont le moment dipolaire \vec{P} est de module indépendant du champ dans lequel il se trouve (AB est invariable).

d- dipôle induit

Soit un système de charges ne présentant pas de moment dipolaire en l'absence de champ électrique. Sous l'action d'un champ extérieur il y a création d'un dipôle par influence, son moment dipolaire est appelé moment dipolaire induit.

5. Flux d'un champ électrostatique à travers une surface

5.1 Flux à travers une surface élémentaire

Soit ds un élément de surface infinitésimal centré sur un point M et q une charge ponctuelle placée au point O à la distance r du point M. La charge q crée au point M le champ :

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{u}$$

Le champ peut être considéré comme uniforme sur la très faible étendue de l'élément de surface ds. Le vecteur surface est $\overrightarrow{ds} = ds \overrightarrow{n}$ où \overrightarrow{n} est le vecteur unitaire de la normale à l'élément de surface ds.

Le flux de \overrightarrow{E} à travers ds est :

$$d\emptyset = \overrightarrow{E}.\overrightarrow{ds} = \frac{q}{4\pi\varepsilon_0}\frac{\overrightarrow{u}.\overrightarrow{ds}}{r^2} = \frac{q}{4\pi\varepsilon_0}\frac{\cos\alpha\,ds}{r^2}$$

Par définition:

$$d\Omega = \frac{\overrightarrow{u}.\overrightarrow{ds}}{r^2} = \frac{\cos\alpha \ ds}{r^2}$$

est l'angle solide sous lequel on voit depuis O l'élément de surface ds.

D'où

$$d\emptyset = \frac{q}{4\pi\varepsilon_0}d\Omega$$

Le flux de \vec{E} à travers toute la surface S est :

$$\emptyset = \int_{\mathcal{S}} d\emptyset = \iint_{\mathcal{S}} \frac{q}{4\pi\varepsilon_0} d\Omega$$

5.2 Flux à travers une surface fermée

On découpe l'espace autour de (q) en cônes élémentaires ayant même sommet au point O:

La charge q est à l'extérieur de la surface fermée

Le cône de sommet O intersecte la surface S et définit deux surfaces élémentaires ds₁ et ds₂. Calculons le flux à travers ces deux éléments de surfaces :

à travers ds_1 :

$$d\phi_1 = \frac{q}{4\pi\varepsilon_0} \frac{\overrightarrow{u}.\overrightarrow{ds_1}}{r_1^2} = \frac{q}{4\pi\varepsilon_0} d\Omega$$

à travers ds_2 :

$$d\emptyset_2 = \frac{q}{4\pi\varepsilon_0} \frac{\overrightarrow{u}.\overrightarrow{ds_2}}{r_2^2} = -\frac{q}{4\pi\varepsilon_0} d\Omega$$

Ces deux flux sont de même intensité mais de signe opposé car les vecteurs surfaces sont orientés de l'intérieur vers l'extérieur et \vec{u} est alternativement entrant et sortant. Ainsi le flux total:

$$d\emptyset_t = d\emptyset_1 + d\emptyset_2 = 0$$

Toute la surface fermée S peut être décomposée de cette façon. Le flux total traversant cette surface S est alors nul.

Conclusion : Le flux total du champ électrostatique créé par une charge, à travers une surface fermée ne la contenant pas, est nul.

La charge q est à l'intérieur de la surface fermée

Considérons maintenant une surface fermée qui enveloppe la charge q. Chaque cône de sommet O intersecte la surface S en définissant une seule surface élémentaire ds. Calculons le flux à travers la surface ds:

$$d\emptyset = \frac{q}{4\pi\varepsilon_0} \frac{\vec{u}.\vec{ds}}{r^2} = \frac{q}{4\pi\varepsilon_0} d\Omega$$

Le flux total à travers la surface S est la somme des contributions apportées par chaque élément d'angle solide $d\Omega$; l'angle solide correspondant à toute la surface S est égal à 4π .

$$\emptyset = \int_{S} d\emptyset = \iint_{S} \frac{q}{4\pi\varepsilon_{0}} d\Omega = \frac{q}{4\pi\varepsilon_{0}} \iint_{S} d\Omega = \frac{q}{\varepsilon_{0}}$$

Conclusion : Le flux du champ électrostatique créé par une charge ponctuelle à travers une surface fermée la contenant est égal à : $\emptyset = \frac{q}{\epsilon_0}$

<u>Théorème de Gauss</u>: Le flux électrique sortant d'une surface fermée est égal au produit par $\frac{1}{\varepsilon_0}$ de la somme algébrique des charges intérieures :

$$\phi = \iint_{S} \vec{E} \cdot \vec{ds} = \frac{\sum q_i}{\varepsilon_0} \quad (1)$$

Remarques:

- Le flux est indépendant de la position des charges
- Le flux est indépendant des charges extérieures

5.3 Expression locale du théorème de Gauss

L'expression précédente du théorème de Gauss qui nécessite la connaissance du champ électrostatique en tout point de la surface fermée, caractérise donc une propriété non locale du champ. Toutefois, nous allons voir maintenant que cette propriété a son équivalent à l'échelle locale. Pour établir cette nouvelle formulation du théorème de Gauss, nous appliquerons à cette expression le théorème de **Green-Ostrogradsky**:

$$\emptyset = \iint_{S} \vec{E} \cdot \vec{ds} = \iiint_{V} div \vec{E} d\tau \qquad (2)$$

Dans cette expression V est le volume contenu dans la surface fermée S et $d\tau$ un élément infinitésimal de ce volume contenant la charge élémentaire $q_i = \rho d\tau$. La charge totale contenue dans le volume V est $Q = \iiint_V \rho d\tau$.

Alors le flux sortant de S est :

$$\emptyset = \frac{1}{\varepsilon_0} \iiint_{V} \rho d\tau = \frac{Q}{\varepsilon_0}$$
 (3)

Nous obtenons par identification des équations (2) et (3):

$$\iiint\limits_V div \, \overrightarrow{E} \, d\tau = \frac{Q}{\varepsilon_0} = \frac{1}{\varepsilon_0} \iiint\limits_V \rho d\tau$$

On peut donc en déduire la relation :

$$\overrightarrow{div} \, \overrightarrow{E(r)} = \frac{\rho(r)}{\varepsilon_0} \qquad (4)$$

L'équation (4) correspond à la formulation locale du théorème de Gauss. En chaque point de l'espace, la divergence du champ électrostatique ne dépend que de la densité de charge en ce même point.

5.4 Equation de Poisson et de Laplace

Au paragraphe précédent, nous avons établi la relation liant la divergence du champ électrostatique à la densité locale de charges et obtenu ainsi la forme locale du théorème de Gauss donnée par l'expression (4):

$$\overrightarrow{div}\overrightarrow{E(r)} = \frac{\rho(r)}{\varepsilon_0}$$

Par ailleurs, nous avons montré que le champ électrostatique dérive d'un potentiel électrostatique : $\vec{E} = -\overline{grad} V$ (5)

En éliminant le champ électrostatique \vec{E} entre ces deux relations, on obtient une nouvelle relation, dite « équation de Poisson » :

$$-div \, \overrightarrow{grad} \, V = \frac{\rho(r)}{\varepsilon_0}$$

$$-\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} V) = \frac{\rho(r)}{\varepsilon_0}$$

$$-\overrightarrow{\nabla}^2 V = \frac{\rho(r)}{\varepsilon_0}$$

$$\Delta V = -rac{
ho(r)}{arepsilon_0}$$
 (équation de Poisson)

L'expression $\overrightarrow{\nabla}$. $(\overrightarrow{\nabla}V)$ porte le nom de « laplacien de V » et se représente symboliquement par ΔV ou par $\overrightarrow{\nabla}^2 V$. En coordonnées cartésiennes par exemple, cette équation s'écrira :

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho(r)}{\varepsilon_0}$$

Remarque: C'est une équation aux dérivés partielles dont la résolution permet, théoriquement de calculer le potentiel et par suite le champ en tout point de l'espace lorsque l'on connaît la répartition $\rho(x, y, z)$ des charges électriques dans l'espace.

Dans les régions de l'espace présentant une densité de charges nulle, l'équation de Poisson se réduit à :

$$\Delta V = 0$$
 (Equation de Laplace)

6. Propriétés de continuité du champ électrostatique

6.1 Continuité de la composante tangentielle

Considérons le contour C présenté sur la figure suivante. Il est formé de deux segments de longueur finie (ab) et (cd) situés de part et d'autre de la surface, très près de celle-ci et de deux autres segments (ad) et (bc) pouvant être rendus aussi petits que l'on veut.

$$\oint_{C} \vec{E} \cdot \vec{dl} = \int_{a}^{b} \vec{E} \cdot \vec{dl} + \int_{b}^{c} \vec{E} \cdot \vec{dl} + \int_{c}^{d} \vec{E} \cdot \vec{dl} + \int_{c}^{d} \vec{E} \cdot \vec{dl} = 0$$

Les longueurs des segments (ad) et (bc) étant aussi petites que l'on veut ; les contributions de ces segments tendent vers 0. Sur les trajets (ab) et (cd), de même longueur mais parcourus en sens inverse, seule la composante tangentielle \vec{E}_t du champ contribue à la circulation :

$$\int_{a}^{b} \overrightarrow{E}_{1} \cdot \overrightarrow{dl} + \int_{c}^{d} \overrightarrow{E}_{2} \cdot \overrightarrow{dl} = \int_{a}^{b} \overrightarrow{E}_{1} \cdot \overrightarrow{dl} - \int_{a}^{b} \overrightarrow{E}_{2} \cdot \overrightarrow{dl} = 0$$

$$\int_{a}^{b} \overrightarrow{E}_{t}(1) \cdot \overrightarrow{dl} - \int_{a}^{b} \overrightarrow{E}_{t}(2) \cdot \overrightarrow{dl} = \int_{a}^{b} \left[\overrightarrow{E}_{t}(1) - \overrightarrow{E}_{t}(2) \right] \cdot \overrightarrow{dl} = 0$$

$$\overrightarrow{E}_{t}(1) = \overrightarrow{E}_{t}(2)$$

6.2 Discontinuité de la composante normale du champ

Considérons la surface enveloppe d'un cylindre plat dont les faces parallèles sont situées de part et d'autre de la surface plane chargée de la figure suivante :

Calculons le flux de \vec{E} à travers cette surface S. La hauteur du cylindre pouvant être arbitrairement petite, le flux à travers la surface latérale peut être rendu aussi petit que l'on veut et tendra vers 0 avec la hauteur. Les seules contributions au flux proviennent donc des surfaces du cylindre parallèles à la surface chargée. En appliquant le théorème de Gauss, nous obtenons .

$$\iint_{S_1} E_n(1) \overrightarrow{n} \cdot \overrightarrow{ds} + \iint_{S_2} E_n(2) \overrightarrow{n} \cdot \overrightarrow{ds} = \frac{Q_{int}}{\varepsilon_o}$$

$$\iint_{S_1} (E_n(1) - E_n(2)) ds = \frac{1}{\varepsilon_o} \iint_{S_2} \sigma ds$$

alors

$$E_n(1) - E_n(2) = \frac{\sigma}{\varepsilon_n}$$

Ainsi, à la traversée de la surface chargée, la composante normale du champ subit une discontinuité, proportionnelle à la densité surfacique de charges.

Synthèse:

On peut résumer les lois locales dans le vide de la manière suivante :

- $\vec{E} = -\overrightarrow{grad} V$
- $\overrightarrow{rot} \overrightarrow{E} = \overrightarrow{0}$
- Théorème de GAUSS : $div \vec{E} = \rho/\epsilon_o$
- Equation de POISSON : $\Delta V = -\rho/\epsilon_0$
- Equation de LAPLACE en absence de charge $\Delta V = 0$
- Conditions de passage entre deux distributions de charge:

$$\begin{cases} E_{1_t} - E_{2_t} = 0 \\ E_{1_n} - E_{2_n} = \sigma / \varepsilon_o \end{cases}$$