

Отчёт по второму заданию по курсу Алгоритмика «Построение минимального покрывающего графа»

Аят Оспанов617 гр., ММП, ВМК МГУ, Москва 21 ноября 2017 г.

Содержание

1	Постановка задачи	1
2	Описание метода решения	1
	2.1 Алгоритм MST-Kruskal	2
	2.2 Оценка времени	2
3	Эксперименты	2
4	Реализация программы	2

1 Постановка задачи

Имеется связный неориентированный граф G=(V,E), где V — множество городов России, E — множество ребер, образованных всеми парами городов. Для каждого ребра $(u,v)\in E$ известна длина в километрах. Граф представлен в виде списка троек (город, город, расстояние).

В графе G нужно выделить связный подграф $T=(V,E'), E'\subset E$, общая длина которого минимальна. Поскольку подграф T ациклический и связный, он является деревом. Это дерево называется минимальным покрывающим деревом графа G.

2 Описание метода решения

В качестве алгоритма, находящего минимальное покрывающее дерево был реализован алгоритм Крускала, описанный в [1, стр. 668-670]. Идея алгоритма:

- В самом начале каждая вершина образует дерево
- Далее пытаемся объединить вершины в деревья самым минимальным ребром
- Если ребро соединяет две вершины из разных деревьев, то сливаем их в одно дерево

2.1 Алгоритм MST-Kruskal

```
A=\emptyset for каждой вершины v\in V do Make-Set(v) end for Отсортировать ребра в неуменьшающемся порядке по весу for каждого ребра (u,v)\in E do if Find-Set(u)\neq {\rm Find-Set}(v) then A=A\cup (u,v) Union(u,v) end if end for
```

2.2 Оценка времени

Сортировка ребер занимет время $O(E \log E)$. Работа с непересекающимися множествами [1, раздел 21.3] требует времени $O((V+E)\alpha(V))$, где α – медленно растущая фунция. Т.к. G – связный граф, то справедливо соотношение $|E| \geq |V| - 1$. Т.о. работа над непересекающимися множествами требуют времени $O(E\alpha(V))$. Кроме того, т.к. $\alpha(|V|) = O(\log V) = O(\log E)$, общее время работы метода равняется $O(E \log E)$. Также учитывая, что $|E| < |V|^2$, время работы можно записать как $O(E \log V)$.

3 Эксперименты

Для проведения экспериментов были сгенерированы полносвязные графы с количеством вершин 500, 1000, . . . , 5000, с шагом 500. В итоге были замерены время работы и построены графики теоретического времени и фактического. В результате асимптотика времени работы совпало с теоретической оценкой до некоторой константы (Рис. 1а). Подобрав константу, можно видеть, что время работы совпадает (Рис. 1b).

4 Реализация программы

Программа была реализована по алгоритмам, данных в книге [1, разделы 21.3, 23.2]. Также для удобства были написаны классы Edge и Graph. Edge – реализация ребра, которая имеет операцию сравнения по весу. Graph – реализация графа: умеет считывать с файла и записывать в файл граф.

```
Компиляция: g++ main.cpp utils.cpp -o kruskal
```

Вход программы: файл содержащий список ребер построчно в формате:

город город расстояние

Рис. 1: Время работы программы

Выход программы: файл output.txt. Первая строка файла – общая длина ребер покрывающего дерева, далее – ребра формате «город (номер) – город (номер)».

Запуск: ./kruskal <путь до файла с данными>.

Например ./kruskal data/cities.txt

Список литературы

[1] Кормен Т.Х. и др. Алгоритмы: построение и анализ, 3-е изд., Москва, «И. Д. Вильямс», 2016.-1328 с.