Kromatično število Kneserjevih grafov Seminar

Žan Hafner Petrovski Fakulteta za matematiko in fiziko Oddelek za matematiko

12. maj 2017

1 Uvod

V teoriji grafov poznamo mnogo različnih tipov grafov. Razlikujemo jih glede na njihove specifične lastnosti. V tem seminarju se bomo ukvarjali s *Kneserjevimi grafi* oziroma podrobneje, s *kromatičnim številom* le-teh. Najprej podajmo nekaj glavnih definicij.

Definicija 1 Graf K(n,k), $n \ge k \ge 1$ in $n,k \in \mathbb{N}$, imenujemo **Kneserjev**, če je množica vozlišč V(n,k) družina vseh k-elementnih podmnožic množice $\{1,2,\ldots,n\}$. Dve vozlišči sta povezani natanko takrat, ko sta disjunktni.

Povejmo še, da za število vozlišč velja $|V(n,k)| = \binom{n}{k}$. V primeru, ko je n < 2k, imata vsaki dve k-elementni množici neprazen presek. Tak Kneserjev graf nima nobenih povezav, zato privzemimo, da velja n > 2k.

Definicija 2 Najmanjše število m, ki zadošča barvanju vozlišč grafa G, imenujemo **Kromatično število**. Označimo ga s $\chi(K(n,k))$.

Definicija 3 Preslikavo $c: V \to \{1, \ldots, m\}$, ki slika vozlišča grafa v množico barv, imenujemo **barvanje**. Ta preslikava zadošča pogoju, da sta vsaki dve sosednji vozlišči pobarvani z različnima barvama.

Kromatično število grafa G je torej najmanjše število barv, s katerimi lahko pobarvamo vozlišča grafa tako, da se nobeni dve sosednji vozlišči slikata v isto barvo. Množico vozliščV bi radi predstavili kot disjunktno unijo barvnih razredov $V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_{\chi(G)}$, teh pa želimo, da je najmanj. ??Za

vsak barvni razred velja, da imajo vsi njegovi elementi, torej k-elementne množice, neprazen presek.??

Vozlišča Kneserjevega grafa K(n,k) bomo razdelili na disjunktne množice $V=V_1\sqcup V_2\sqcup\ldots\sqcup V_{\chi(K(n,k))},$ kjer bo vsak V_i družina množic moči k z nepraznim presekom. Ker smo predpostavili, da je $n\geq 2k$, poenostavimo zapis in pišimo $n=2k+d, k\geq 1, d\geq 0$.

2 Kneserjeva domneva

Cilj tega seminarja je dokazati naslednji izrek:

Izrek 1 (Kneser) Za kromatično število Kneserjevega grafa velja

$$\chi(K(2k+d,k)) = d+2.$$

Preformulirajmo ta izrek v obliko problema obstoja na sledeč način:

Če družino podmnožic s k elementi množice $\{1, 2, \ldots, 2k + d\}$ razdelimo na d+1 razredov, $V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_{d+1}$, potem obstaja i, da V_i vsebuje par k-elementnih disjunktnih množic A in B.

Tako smo prišli do splošnejše različice izreka. Ta nam, še preden se poglobimo v sam dokaz, nudi drugačen pogled na zastavljen problem, saj ne omenja grafov. László Lovász je uvidel, da bistvo problema tiči v slavnem izreku o d-dimenzionalni enotski sferi S^d v \mathbb{R}^d , $S^d = \{x \in \mathbb{R} : |x| = 1\}$. Zapišimo še ta izrek.

Izrek 2 (Borsuk-Ulam) Za vsako zvezno preslikavo $f: S^d \to \mathbb{R}^d$, z d-sfere v d-prostor, obstajata antipodni točki x^* in $-x^*$, ki ju f slika v isto točko, torej $f(x^*) = f(-x^*)$.

Dokaz tega izreka lahko bralec najde v knjigi "Using the Borsuk-Ulam theorem" matematika Jirija Matouška, mi pa se bomo posvetili njegovi uporabi pri dokazu izreka Lyusternika in Shnirel'mana.

Izrek 3 (Lyusternik-Shnirel'man) Če je d-sfera S^d pokrita z d+1 množicami,

$$S^d = U_1 \cup U_2 \cup \ldots \cup U_d \cup U_{d+1},$$

tako, da so vse izmed prvih d množic U_1, U_2, \ldots, U_d bodisi odprte bodisi zaprte, potem ena izmed d+1 množic vsebuje par antipodnih točk x^* in $-x^*$.

Dokaz (s protislovjem in uporabo Borsuk-Ulamovega izreka): Naj bo pokritje $S^d = U_1 \cup U_2 \cup \ldots \cup U_d \cup U_{d+1}$ dano, kot je zapisano v izreku. Predpostavimo, da noben izmed U_i ne vsebuje dveh antipodnih točk. Definirajmo preslikavo $f: S^d \to \mathbb{R}^d$ na sledeč način:

$$f(x) := (d(x, U_1), d(x, U_2), \dots, d(x, U_d)).$$

Tu $d(x, U_i)$ označuje razdaljo med točko x in množico U_i . Ker je to zvezna funkcija na x, je tudi f zvezna. Torej lahko uporabimo Borsuk-Ulamov izrek, ki nam pove, da na domeni f, torej na S^d , obstajata antipodni točki x^* in $-x^*$ z lastnostjo $f(x^*) = f(-x^*)$. Ker po predpostavki U_{d+1} ne vsebuje antipodnih točk, sklepamo, da je vsaj en izmed x^* in $-x^*$ vsebovan v eni izmed množic U_i , recimo v U_k za $k \leq d$. Brez škode za splošnost lahko privzamemo, da je to x^* , torej $x^* \in U_k$. To pomeni, da je $d(x^*, U_k) = 0$, ključno pa je, da je zaradi lastnosti $f(x^*) = f(-x^*)$ tudi $d(-x^*, U_k) = 0$. Obravnavajmo najprej primer, ko je U_k zaprt. Potem iz $d(-x^*, U_k) = 0$ sledi, da je $-x^* \in U_k$, kar pa je protislovje s predpostavko, da noben izmed U_i ne vsebuje para antipodnih točk.

Če je U_k odprt, potem iz $d(-x^*, U_k) = 0$ sledi, da $-x^*$ leži v zaprtju U_k , torej v $\overline{U_k}$. Ta množica pa je

Literatura

[1] M. Aigner in G. M. Ziegler, *Proofs from THE BOOK*, 2. izdaja, Springer, Berlin–Heidelberg–New York, 2001.

[2]