-3-

AMENDMENTS TO THE CLAIMS

- 1. and 2. (cancelled)
- 3. (currently amended) A method of claim [[2]] $\underline{21}$ wherein Z^1 and Z^2 are each R^7 -phenyl.
- 4. (previously presented) A method of claim 3 wherein \mathbb{R}^7 is selected from the group consisting of (C_1-C_6) alkyl and halo.
- 5. and 6. (canceled)
- 7. (currently amended) A method of claim [[19]] $\underline{21}$ wherein X^1 is R^7 -aryl and [[and]] X^2 is OH or [[-NC(O) R^{21}]] -NHC(O) R^{21} .
- 8. (previously presented) A method of claim 7 wherein X^1 is R^7 -phenyl.
- 9. and 20. (canceled)
- 21. (new) A method of treating cough comprising administering a combination of an effective amount of an ORL-1 agonist of the formula

or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

 X^1 is R^5 -(C_1 - C_{12})alkyl, R^6 -(C_3 - C_{12})cycloalkyl, R^7 -aryl, R^8 -heteroaryl or R^{10} -(C_3 - C_7)heterocycloalkyl;

 X^2 is -CHO, -CN, -NHC(=NR²⁶)NHR²⁶, -CH(=NOR²⁶), -NHOR²⁶, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁷-aryl(C₁-C₆)alkenyl, R⁷-aryl(C₁-C₆)-alkynyl, -(CH₂) $_{\nu}$ CONR¹⁴R¹⁵, -(CH₂) $_{\nu}$ NR²¹R²² or -(CH₂) $_{\nu}$ NHC(O)R²¹, wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2;

4-

R¹ and R³ are each hydrogen;

R² and R⁴ together form an alkylene bridge of 1 to 3 carbon atoms;

 R^5 is 1 to 3 substituents independently selected from the group consisting of H, R^7 -aryl, R^6 -(C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^{10} -(C_3 - C_7)heterocycloalkyl, - $NR^{19}R^{20}$, - OR^{13} and - $S(O)_{0-2}R^{13}$;

 R^6 is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R^7 -aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

 $R^7 \text{ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, } (C_1-C_6)alkyl, R^{25}-aryl, (C_3-C_{12})cycloalkyl, -CN, -CF_3, -OR^{19}, -(C_1-C_6)alkyl-OR^{19}, -OCF_3, -NR^{19}R^{20}, -(C_1-C_6)alkyl-NR^{19}R^{20}, -NHSO_2R^{19}, -SO_2N(R^{26})_2, -SO_2R^{19}, -SOR^{19}, -SR^{19}, -NO_2, -CONR^{19}R^{20}, -NR^{20}COR^{19}, -COR^{19}, -COCF_3, -OCOR^{19}, -OCO_2R^{19}, -COOR^{19}, -(C_1-C_6)alkyl-NHCOOC(CH_3)_3, -(C_1-C_6)alkyl-NHCOCF_3, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHCOCF_3, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl, -(C_1-C_6)alkyl-NHSO_2-(C_1-C_6)alkyl-NHSO$

NHCONH-(C₁-C₆)-alkyl or $^{-(CH_2)_f-N_c}$) N-R¹⁹, wherein f is 0 to 6; or R⁷ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

R⁸ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C_1-C_6) alkyl, R^{25} -aryl, (C_3-C_{12}) cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCOR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;

 R^9 is hydrogen, (C1-C6)alkyl, halo, -OR 19 , -NR $^{19}R^{20}$, -NHCN, -SR 19 or -(C1-C6)alkyl-NR $^{19}R^{20}$;

R¹⁰ is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{13} is H, (C₁-C₆)alkyl, R^7 -aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;

-5-

R¹⁴ and R¹⁵ are independently selected from the group consisting of H, R⁵-

 $-(CH_2)_q$ -C-N) a . wherein q and a are as defined (C₁-C₆)alkyl, R⁷-aryl and above;

R¹⁹ and R²⁰ are independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_3-C_{12}) cycloalkyl, aryl and aryl (C_1-C_6) alkyl;

R²¹ and R²² are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl, (C₃-C₇)heterocycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, R⁷-aryl, R^7 -aryl(C_1 - C_6)alkyl, R^8 -heteroaryl(C_1 - C_{12})alkyl, -(C_1 - C_6)alkyl- OR^{19} , $-(C_1-C_6) \\ alkyl-NR^{19}R^{20}, -(C_1-C_6) \\ alkyl-SR^{19}, -(C_1-C_6) \\ alkyl-NR^{18} - (C_1-C_6) \\ alkyl-O-(C_1-C_6) \\ a$ C_6)alkyl and -(C_1 - C_6)alkyl-NR¹⁸-(C_1 - C_6)alkyl-NR¹⁸-(C_1 - C_6)alkyl;

R¹⁸ is hydrogen or (C₁-C₆)alkyl;

 Z^1 is R^7 -aryl; Z^2 is R^7 -aryl; Z^3 is hydrogen or (C_1-C_6) alkyl;

R²⁵ is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

R²⁶ is independently selected from the group consisting of H, (C₁-C₆)alkyl and R²⁵-C₆H₄-CH₂-;

 R^{27} is H, (C_1-C_6) alkyl, R^7 -aryl (C_1-C_6) alkyl, or (C_3-C_{12}) cycloalkyl; and an effective amount of second agent for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, ß-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, antitussives, expectorants, NK1, NK2 and NK3 tachykinin receptor antagonists, and GABA_B agonists.

22. (new) A pharmaceutical composition comprising: a therapeutically effective amount of a nociceptin receptor ORL-1 agonist of the formula

 R^1 R^2 R^3 R^4 R^2 R^3 R^4

or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

 X^1 is R^5 -(C_1 - C_{12})alkyl, R^6 -(C_3 - C_{12})cycloalkyl, R^7 -aryl, R^8 -heteroaryl or R^{10} -(C_3 - C_7)heterocycloalkyl;

 $\begin{array}{c} X^2 \text{ is -CHO, -CN, -NHC}(=NR^{26}) \overset{.}{N}HR^{26}, \text{ -CH}(=NOR^{26}), \text{ -NHOR}^{26}, R^7 \text{-aryl}, \\ R^7 \text{-aryl}(C_1 \text{-} C_6) \text{alkyl, } R^7 \text{-aryl}(C_1 \text{-} C_6) \text{alkenyl, } R^7 \text{-aryl}(C_1 \text{-} C_6) \text{-alkynyl, -(CH}_2)_v OR^{13}, \\ -(CH_2)_v COOR^{27}, -(CH_2)_v CONR^{14}R^{15}, -(CH_2)_v NR^{21}R^{22} \text{ or -(CH}_2)_v NHC}(O)R^{21}, \\ \text{wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2;} \end{array}$

R1 and R3 are each hydrogen;

R² and R⁴ together form an alkylene bridge of 1 to 3 carbon atoms;

 R^5 is 1 to 3 substituents independently selected from the group consisting of H, R^7 -aryl, R^6 -(C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^{10} -(C_3 - C_7)heterocycloalkyl, - $NR^{19}R^{20}$, - OR^{13} and - $S(O)_{0-2}R^{13}$;

 R^6 is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R^7 -aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

R7 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C_1-C_6) alkyl, R^{25} -aryl, (C_3-C_{12}) cycloalkyl, -CN, $-CF_3$, $-OR^{19}$, $-(C_1-C_6)$ alkyl- OR^{19} , $-OCF_3$, $-NR^{19}R^{20}$, $-(C_1-C_6)$ alkyl- $NR^{19}R^{20}$, $-NHSO_2R^{19}$, $-SO_2N(R^{26})_2$, $-SO_2R^{19}$, $-SOR^{19}$, $-SR^{19}$, $-NO_2$, $-CONR^{19}R^{20}$, $-NR^{20}COR^{19}$, $-COR^{19}$, $-COCF_3$, $-OCOR^{19}$, $-COOR^{19}$, $-(C_1-C_6)$ alkyl- $-NHCOOC(CH_3)_3$, $-(C_1-C_6)$ alkyl- $-NHCOCF_3$, $-(C_1-C_6)$ alkyl- $-(C_1-C_6)$

NHCONH-(C₁-C₆)-alkyl or $^{-(CH_2)_f-N}$ $^{N-R^{19}}$, wherein f is 0 to 6; or R^7 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

R⁸ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCOR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;

 R^9 is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NHČN, -SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{10} is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{13} is H, (C₁-C₆)alkyl, R^7 -aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;

R14 and R15 are independently selected from the group consisting of H, R5-

 $-(CH_2)_q-C-N$ a (C_1-C_6) alkyl, R^7 -aryl and (C_1-C_6) alkyl, R^7 -aryl and (C_1-C_6) alkyl, (C_1-C_6) alkyl,

 R^{19} and R^{20} are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;

R²¹ and R²² are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl, (C₁-C₆)alkyl, (C₃-C₇)heterocycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁸-heteroaryl(C₁-C₁₂)alkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -(C₁-C₆)alkyl-SR¹⁹, -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl and -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl;

R¹⁸ is hydrogen or (C₁-C₆)alkyl;

 Z^1 is R^7 -aryl; Z^2 is R^7 -aryl; Z^3 is hydrogen or $(C_1$ - $C_6)$ alkyl;

 R^{25} is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

 R^{26} is independently selected from the group consisting of H, (C₁-C₆)alkyl and R^{25} -C₆H₄-CH₂-;

-8-

 R^{27} is H, $(C_1\text{-}C_6)$ alkyl, R^7 -aryl $(C_1\text{-}C_6)$ alkyl, or $(C_3\text{-}C_{12})$ cycloalkyl; and a therapeutically effective amount of a second agent selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H_3 inhibitors, B-adrenergic receptor agonists, xanthine derivatives, α -adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK_1 , NK_2 and NK_3 tachykinin receptor antagonists, and $GABA_B$ agonists; and a pharmaceutically acceptable carrier.