Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended) A compound of formula

a *N*-oxide, a pharmaceutically acceptable addition salt, a quaternary amine **and or** a stereochemically isomeric form thereof, wherein ring A is phenyl;

 R^1 represents hydrogen; aryl; formyl; C_{1-6} alkylcarbonyl; C_{1-6} alkyl; C_{1-6} alkyloxycarbonyl; C_{1-6} alkyl substituted with formyl, C_{1-6} alkylcarbonyl, C_{1-6} alkyloxycarbonyl,

 $C_{1\text{-}6} alkyl carbonyloxy; \ or \ C_{1\text{-}6} alkyloxy C_{1\text{-}6} alkyl carbonyl \ optionally \ substituted \ with \\ C_{1\text{-}6} alkyloxy carbonyl;$

 X_1 represents a direct bond; -(CH₂)_{n3}- or -(CH₂)_{n4}- X_{1a} - X_{1b} -;

with n_3 representing an integer with value 1, 2, 3 or 4; with n_4 representing an integer with value 1 or 2; with X_{1a} representing O, C(=O) or NR⁵; and

with X_{1b} representing a direct bond or C_{1-2} alkyl;

R² represents C₃₋₇cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula

wherein -B-C- represents a bivalent radical of formula

 $-CH_2-CH_2-CH_2-$ (b-1);

 $-CH_2-CH_2-CH_2-CH_2-$ (b-2);

 $-X_3$ -CH₂-CH₂-(CH₂)_n- (b-3);

 $-X_3$ -CH₂-(CH₂)_n-X₃- (b-4);

 $-X_3$ -(CH₂)_n,-CH=CH- (b-5);

-CH=N- X_3 - (b-6);

with X₃ representing O or NR⁵;

n representing an integer with value 0, 1, 2 or 3;

Application No.: 10/565,065 **Office Action Dated:** July 11, 2007

n' representing an integer with value 0 or 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; $C_{1\text{-}6}$ alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, $C_{1\text{-}4}$ alkyloxy, $C_{1\text{-}4}$ alk

 $C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n,1}-R^8$ or

 $-NR^5$ -S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

 $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo-

 C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4}

 $C_{1\text{--}4}$ alkyloxycarbonyl, $C_{1\text{--}4}$ alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; $C_{1\text{--}6}$ alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl,

 C_{1-4} alkyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxy, NR^6R^7 , - $C(=O)-NR^6R^7$, - $NR^5-C(=O)-NR^6R^7$, - $S(=O)_{n1}-R^8$ or - $NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy, C_{1-4} alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

 $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$;

 $C_{1\text{-6}}$ alkylthio; polyhalo $C_{1\text{-6}}$ alkylthio; $C_{1\text{-6}}$ alkyloxycarbonyl; $C_{1\text{-6}}$ alkylcarbonyloxy; $C_{1\text{-6}}$ 6alkylcarbonyl; polyhalo $C_{1\text{-6}}$ alkylcarbonyl; cyano; carboxyl; aryloxy; arylthio; arylcarbonyl; aryl $C_{1\text{-4}}$ alkyl; aryl $C_{1\text{-4}}$ alkyloxy; NR^6R^7 ; $C(=O)NR^6R^7$; $-NR^5$ - $C(=O)-NR^5$; $-NR^5$ - $C(=O)_{n1}$ - $-R^8$; $-NR^5$ - $C(=O)_{n1}$ - $-R^8$; -S-CN;

-NR⁵-CN; oxazolyl optionally substituted with C₁₋₄alkyl; imidazolyl optionally substituted

with C_{1-4} alkyl; or ${}^{\text{-(CH}_2)_{n2}\text{-X}_4\text{-(CH}_2)_{n2}\text{-N}}$

with n2 representing an integer with value 0, 1, 2, 3 or 4; with X_4 representing O, NR^5 or a direct bond; with X_5 representing O, CH_2 , CHOH, $CH-N(R_5)_2$, NR^5 or $N-C(=O)-C_{1-4}$ alkyl;

 X_2 represents a direct bond; $-NR^1$ -; $-NR^1$ -(CH_2)_{n3}-; -O-; -O-(CH_2)_{n3}-; -C(=O)-; -C(=O)- (CH_2)_{n3}-; -C(=O)- NR^5 -(CH_2)_{n3}-; -C(=S)-; -S-; -S-; -S(=O)_{n1}-; -C(-S)_{n3}-;

PATENT

DOCKET NO.: JANS-0089 (PRD2065F-PCT-US)

Application No.: 10/565,065 **Office Action Dated:** July 11, 2007

R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

 C_{1-4} alkyloxy C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl, C_{1-4} alkyloxycarbonyl,

 $C_{1\text{--}4}$ alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; $C_{2\text{--}6}$ alkenyl or $C_{2\text{--}6}$ alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, $C_{1\text{--}4}$ alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

$$-C(=O)-NR^6R^7$$
, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$;

polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxyl, C_{1-4} alkyloxyl, C_{1-4} alkyloxyl, C_{1-4} alkyloxyl, C_{1-4} alkyloxyl,

 C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyloxy;

 $C_{1\text{-}6}$ alkylthio; polyhalo $C_{1\text{-}6}$ alkylthio; $C_{1\text{-}6}$ alkyloxycarbonyl; $C_{1\text{-}6}$ alkylcarbonyl; polyhalo $C_{1\text{-}6}$ alkylcarbonyl; cyano; carboxyl; NR^6R^7 ; $C(=O)NR^6R^7$;

 $-NR^5-C(=O)-NR^6R^7$; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$;

 $-NR^5-S(=O)_{n1}-R^8$; -S-CN;

-NR⁵-CN; or X_5 ; and in case R³ represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one oxo;

 R^4 represents hydrogen; halo; hydroxy; $C_{1\text{-4}}$ alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, $C_{1\text{-4}}$ alkyloxy, $C_{1\text{-4}}$ alkylcarbonyl, $C_{1\text{-4}}$ alkylcarbonyloxy, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or $-NR^5-S(=O)_{n1}-R^{11}$; $C_{2\text{-4}}$ alkenyl or $C_{2\text{-4}}$ alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, $C_{1\text{-4}}$ alkyloxy, $C_{1\text{-4}}$ alkyloxycarbonyl, $C_{1\text{-4}}$ alkyloxycarbonyl,

 $C_{1\text{-4}}$ alkylcarbonyloxy, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or $-NR^5-S(=O)_{n1}-R^{11}$; polyhalo $C_{1\text{-3}}$ alkyl; $C_{1\text{-4}}$ alkyloxy optionally substituted with carboxyl; polyhalo $C_{1\text{-3}}$ alkyloxy; $C_{1\text{-4}}$ alkylthio; polyhalo $C_{1\text{-3}}$ alkylthio;

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

 C_{1-4} alkyloxycarbonyl; C_{1-4} alkyloxycarbonyl; C_{1-4} alkyloxycarbonyl; polyhalo C_{1-4} alkyloxycarbonyl; nitro; cyano; carboxyl; NR^9R^{10} ; $C(=O)NR^9R^{10}$; $-NR^5-C(=O)-NR^9R^{10}$; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^{11}$; $-NR^5-S(=O)_{n1}-R^{11}$; -S-CN; or $-NR^5-CN$;

R⁵ represents hydrogen, C₁₋₄alkyl or C₂₋₄alkenyl;

 R^6 and R^7 each independently represent hydrogen; cyano; $C_{1\text{-}6}$ alkylcarbonyl optionally substituted with $C_{1\text{-}4}$ alkyloxy or carboxyl; $C_{1\text{-}6}$ alkyloxycarbonyl;

 C_{3-7} cycloalkylcarbonyl; adamantanylcarbonyl; C_{1-4} alkyloxy C_{1-4} alkyl;

 C_{1-4} alkyl substituted with C_{1-4} alkyl-NR⁵-; C_{1-6} alkyl optionally substituted with at least one substituent selected from halo, hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, polyhalo C_{1-4} alkyl,

$$C_{1\text{-4}}$$
alkyloxy $C_{1\text{-4}}$ alkyloxy, $NR^{6a}R^{7a}$, $C(=O)NR^{6a}R^{7a}$ or ; with X_6 representing O , CH_2 , $CHOH$, CH - $N(R_5)_2$, NR^5 or N - $C(=O)$ - $C_{1\text{-4}}$ alkyl;

R^{6a} and R^{7a} each independently represent hydrogen; C₁₋₄alkyl or C₁₋₄alkylcarbonyl;

 R^8 represents $C_{1\text{--}4}$ alkyl optionally substituted with hydroxy; polyhalo $C_{1\text{--}4}$ alkyl or NR^6R^7 ;

 R^9 and R^{10} each independently represent hydrogen; $C_{1\text{-}6}$ alkyl; cyano; $C_{1\text{-}6}$ alkylcarbonyl; $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyl; or $C_{1\text{-}4}$ alkyl substituted with $C_{1\text{-}4}$ alkyl- NR^5 -;

 R^{11} represents C_{1-4} alkyl or NR^9R^{10} ;

n1 represents an integer with value 1 or 2;

aryl represents phenyl or phenyl substituted with at least one substituent selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano, nitro, polyhaloC₁₋₆alkyl or polyhaloC₁₋₆alkyloxy.

2. (Original) A compound according to claim 1 wherein

R² represents C₃₋₇cycloalkyl; phenyl or a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

> -X₃-(CH₂)_{n'}-CH=CH- (b-5); with X₃ representing O or NR⁵; n representing an integer with value 0, 1, 2 or 3; n' representing an integer with value 0 or 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxyoxybonyl, C_{1-4} alkyloxybonyloxy, NR^6R^7 ,

 C_{1-6} alkyloxycarbonyl; C_{1-6} alkylcarbonyloxy; C_{1-6} alkylcarbonyl; polyhalo C_{1-6} alkylcarbonyl; cyano; carboxyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$; $-NR^5-S(=O)_{n1}-R^8$; -S-CN;

-(CH₂)_{n2}-X₄-(CH₂)_{n2}-N X_5

with n2 representing an integer with value 0, 1, 2, 3 or 4; with X_4 representing O, NR^5 or a direct bond; with X_5 representing O or NR^5 ;

 X_2 represents a direct bond; -NR¹-; -O-; -C(=O)-; -C(=S)-; -S-; -S(=O)_{n1}-; -(CH₂)_{n3}-; or -(CH₂)_{n4}- X_{1a} - X_{1b} -;

 R^3 represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R^3 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxyonyl, C_{1-4} alkyloxycarbonyl, C_{1-6} alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy,

 C_{1-4} alkylcarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with carboxyl;

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

polyhalo C_{1-6} alkyloxy; C_{1-6} alkylthio; polyhalo C_{1-6} alkylthio; C_{1-6} alkyloxycarbonyl; C_{1-6} alkylcarbonyloxy; C_{1-6} alkylcarbonyl; polyhalo C_{1-6} alkylcarbonyl; cyano; carboxyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-NR^5-C(=O)-NR^6R^7$; $-NR^5-C(=O)-R^5$;

$$-S(=O)_{n1}-R^8$$
; $-NR^5-S(=O)_{n1}-R^8$; $-S-CN$; $-NR^5-CN$; or $-(CH_2)_{n2}-X_4-(CH_2)_{n2}-X_5$; and in case R^3 represents a saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R^3 may also be substituted with at least one oxo;

 R^5 represents hydrogen or C_{1-4} alkyl;

or

 R^6 and R^7 each independently represent hydrogen; cyano; $C_{1\text{-}6}$ alkylcarbonyl; $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyl; $C_{1\text{-}4}$ alkyl substituted with $C_{1\text{-}4}$ alkyl- NR^5 -; $C_{1\text{-}6}$ alkyl optionally substituted with hydroxy, $C_{1\text{-}4}$ alkyloxy, $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyloxy, $NR^{6a}R^{7a}$, $C(=O)NR^{6a}R^{7a}$

R⁸ represents C₁₋₄alkyl, polyhaloC₁₋₄alkyl or NR⁶R⁷.

3. (Previously presented) A compound as claimed in claim 1 wherein R^1 represents hydrogen or $C_{1\text{-}6}$ alkyl; X_1 represents a direct bond or $-(CH_2)_{n3}$ -; R^2 represents $C_{3\text{-}7}$ cycloalkyl; phenyl; a 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

-CH₂-CH₂-CH₂- (b-1); -X₃-CH₂-(CH₂)_n-X₃- (b-4); -CH=N-X₃- (b-6);

with X₃ representing O or NR⁵;

n representing an integer with value 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent, in particular with 1 or 2 substituents selected from halo; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy, C_{1-4} alkyloxy, NR^6R^7 or $-C(=O)-NR^6R^7$; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkylthio; C_{1-6} alkyl-

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

oxycarbonyl; cyano; arylthio; aryloxy; arylcarbonyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-S(=O)_{n1}-R^8$; or imidazolyl optionally substituted with C_{1-4} alkyl; X_2 represents a direct bond; $-NR^1$ -; $-O-(CH_2)_{n3}$ -; -C(=O)-; $-C(=O)-NR^5$ -($CH_2)_{n3}$ -; $-(CH_2)_{n3}$ -; or $-S(=O)_{n1}-NR^5$ -($CH_2)_{n3}-NR^5$ -; R^3 represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R^3 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C_{1-6} alkyl; or NR^6R^7 ; and in case R^3 represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R^3 may also be substituted with at least one oxo; R^4 represents hydrogen; nitro or carboxyl; R^5 represents hydrogen; R^6 and R^7 each independently represent hydrogen; cyano; C_{1-6} alkylcarbonyl optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkyloxycarbonyl;

 $C_{1\text{-}6}$ alkylcarbonyl optionally substituted with $C_{1\text{-}4}$ alkyloxy; $C_{1\text{-}6}$ alkyloxycarbonyl; $C_{3\text{-}7}$ cycloalkylcarbonyl; adamantanylcarbonyl; or $C_{1\text{-}6}$ alkyl; R^8 represents NR^6R^7 ; n1 represents an integer with value 2; aryl represents phenyl.

4. (Previously presented) A compound as claimed in claim 1 wherein R^1 is hydrogen; X_1 is a direct bond or $-(CH_2)_{n3}$; R^2 is indanyl; 2,3-dihydro-1,4-benzodioxanyl; phenyl optionally being substituted with 1 or 2 substituents each independently being selected from C_{1-6} alkyl which may optionally be substituted with $hydroxy,\,cyano,\,C_{1\text{--}4}alkyloxy,\,C_{1\text{--}4}alkyloxyC_{1\text{--}4}alkyloxy,\,NR^6R^7\,\,or\,\,C(=O)NR^6R^7;\,C_{1\text{--}4}alkyloxy$ 6alkyloxy; halo; polyhaloC₁₋₆alkyl which may optionally be substituted with hydroxy, cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyloxy, NR^6R^7 or $C(=O)NR^6R^7$; cyano; NR^6R^7 ; $C(=O)NR^6R^7$; $-S(=O)_{n1}-R^8$; X_2 is direct bond; $-NR^1$ -; $-O-(CH_2)_{n3}$ -; -C(=O)-; -C(=O)-NR 5 -(CH $_2$) $_{n3}$ -; or -(CH $_2$) $_{n3}$ -; R 3 is tetrazolyl; piperazinyl; imidazolyl; oxazolyl; pyrimidinyl; thiazolyl; triazolyl; pyridyl; piperidinyl, pyrazinyl; pyrazolyl or morpholinyl; said rings representing R³ may optionally be substituted with one substitutent selected from C₁₋₆alkyl; NR⁶R⁷; hydroxy; halo; and in case R³ represents a saturated or a partially saturated ring system, said R³ may also be substituted with at least one oxo; R⁴ is hydrogen; R⁶ and R⁷ each independently represent hydrogen; cyano; C₁₋₆alkylcarbonyl optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkyloxycarbonyl; C_{3-7} cycloalkylcarbonyl; or C_{1-6} alkyl; R^8 represents NR^6R^7 .

5. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is linked to ring A in meta position compared to the NR¹ linker.

Application No.: 10/565,065 **Office Action Dated:** July 11, 2007

6. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is linked to ring A in para position compared to the NR¹ linker.

- 7. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is an optionally substituted saturated 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N.
- 8. (Previously presented) A compound as claimed in claim 1 wherein X_1 represents a direct bond.
- 9. (Previously presented) A compound as claimed in claim 1 wherein R^2 represents $C_{3\text{--}7}$ cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1) wherein said R^2 substituted is substituted with at least one substitutent selected from $C_{1\text{--}6}$ alkyl substituted with NR^6R^7 ; $C_{2\text{--}6}$ alkenyl or $C_{2\text{--}6}$ alkynyl, each substituted with NR^6R^7 ; polyhalo $C_{1\text{--}6}$ alkyl substituted with NR^6R^7 ; $C_{1\text{--}6}$ alkyloxy substituted with NR^6R^7 ; or NR^6R^7 .
- 10. (Previously presented) A compound as claimed in claim 1 wherein R^3 represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R^3 substituent is substituted with at least one substituent selected from C_{1-6} alkyl substituted with NR^6R^7 ; C_{2-6} alkenyl or C_{2-6} alkynyl, each substituted with NR^6R^7 ; C_{1-6} alkyloxy substituted with NR^6R^7 ; or NR^6R^7 .
- 11. (Previously presented) A compound as claimed in claim 1 wherein R^2 represents C_{3-7} cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1), wherein said R^2 substituent is substituted with at least one substituent selected from halo; polyhalo C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy-

 $C_{1\text{-4}}$ alkyloxy, $C_{1\text{-4}}$ alkylcarbonyl, $C_{1\text{-4}}$ alkyloxycarbonyl, $C_{1\text{-4}}$ alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo- $C_{1\text{-6}}$ alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, $C_{1\text{-4}}$ alkyloxy, $C_{1\text{-4}}$ alkyloxy

Application No.: 10/565,065 **Office Action Dated**: July 11, 200**7**

 $C_{1\text{-4}} alkyloxycarbonyl, C_{1\text{-4}} alkylcarbonyloxy, NR^6R^7, -C(=O)-NR^6R^7, -NR^5-C(=O)-NR^6R^7, -S(=O)_{n1}-R^8 \ or \ -NR^5-S(=O)_{n1}-R^8.$

12. (Currently Amended) A compound as claimed in claim 1 wherein the compound is selected from

2	1 - V		
X_1	R^2	X_2	R ³
db		2-db	N CH₃
	`ጚ፞ `´ `F		5('``
db		2-db	N CH ₃
db	^ا ر F	2-db	N—N H N N CH₃
db	OH	2-db	Y ₁ O
db	H CH ₃	2-db	\(\frac{1}{\sqrt{0}}\)
db	'\\\F	3-db	N—NH N N
db	NH ₂	2-db	\(\frac{1}{\chi_0}\)
db	Y, OH	3-NH	7/1 N

Application No.: 10/565,065 **Office Action Dated:** July 11, 200**7**

X_1	R^2	X_2	R ³
db	Ti	2-db	NH ₂
db	¬¬¬N	3-db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

a *N*-oxide, a pharmaceutically acceptable addition salt, a quaternary amine **and or** a stereochemically isomeric form thereof.

13. (Currently Amended) A compound as claimed in claim 1 wherein the compound is selected from

$$R^{3}-X_{2}-V$$

X_1	R ²	$-X_2$ - R^3
db	0_0 CH ₃	
db	¹¹, OH	کر N N CH ₃
db	¹¹į́ OH	¹¹¹ N OH
db	L'LOOH	N CH ₃
db	0, CH3	

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

X_1	\mathbb{R}^2	$-X_2-R^3$
db	O _{CH3}	"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	121 O N N CH3

a *N*-oxide, a pharmaceutically acceptable addition salt, a quaternary amine **and** <u>or</u> a stereochemically isomeric form thereof.

- 14. (Previously presented) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutical excipient.
- 15. (Previously presented/Withdrawn) A method for the prevention or the treatment of diseases mediated through GSK3 comprising administering a therapeutically effective amount of a compound as defined in claim 1 to a patient for the prevention or the treatment of diseases mediated through GSK3.
- 16. (Previously presented/Withdrawn) The method of claim 15 wherein the disease mediated through GSK3 is selected from the group consisting of bipolar disorder (in particular manic depression), diabetes, Alzheimer's disease, leukopenia, FTDP-17 (Frontotemporal dementia associated with Parkinson's disease), cortico-basal degeneration, progressive supranuclear palsy, multiple system atrophy, Pick's disease, Niemann Pick's disease type C, Dementia Pugilistica, dementia with tangles only, dementia with tangles and calcification, Downs syndrome, myotonic dystrophy, Parkinsonism-dementia complex of Guam, aids related dementia, Postencephalic Parkinsonism, prion diseases with tangles, subacute sclerosing panencephalitis, frontal lobe degeneration (FLD), argyrophilic grains disease, subacute sclerotizing panencephalitis (SSPE) (late complication of viral infections in the central nervous system), inflammatory diseases, depression, cancer, dermatological disorders, neuroprotection, schizophrenia, and pain.
- 17. (Previously presented/Withdrawn) The method of claim 16, wherein the GSK3 mediated disease is selected from the group consisting of Alzheimer's disease; diabetes; cancer; inflammatory diseases; bipolar disorder; depression; and pain.

Application No.: 10/565,065

Office Action Dated: July 11, 2007

PATENT

- 18. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 1.
- 19. (Previously presented/Withdrawn) A process for preparing a pharmaceutical composition comprising mixing a compound as claimed in claim 1 with a pharmaceutically acceptable carrier.
- 20. (Currently Amended/Withdrawn) A process for preparing a compound as claimed in claim 1, comprising
- a) cyclizing an intermediate of formula (Π) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R^1 to R^4 , X_1 and X_2 are as defined in claim 1;

b) cyclizing an intermediate of formula (II-a) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R^1 to R^3 , X_1 and X_2 are as defined in claim 1;

c) cyclizing an intermediate of formula (II-b) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

Application No.: 10/565,065 **Office Action Dated:** July 11, 2007

wherein ring A, R^1 , R^3 and R^4 , X_1 and X_2 are as defined in claim 1;

d) reacting an intermediate of formula (III) with an intermediate of formula (IV) in the presence of a suitable solvent,

wherein ring A, R^1 to R^4 , X_1 and X_2 are as defined in claim 1;

e) reacting an intermediate of formula (XV) with an intermediate of formula (XVI), wherein R^b represents hydrogen, C_{1-4} alkyl or cyano, and R^c represents hydrogen or C_{1-4} alkyl, in the presence of a suitable solvent and a suitable salt

wherein ring A, $R^1 R^2$, R^4 and X_1 are as defined in claim 1;

f) reacting an intermediate of formula (XV) with hydrazine in the presence of a suitable solvent,

Application No.: 10/565,065 **Office Action Dated**: July 11, 2007

$$\begin{array}{c} O \\ N \\ N \\ N \end{array}$$

$$\begin{array}{c} R^2 \\ X_1 \\ X_1 \\ N \end{array}$$

$$\begin{array}{c} A \\ N \\ N \end{array}$$

$$\begin{array}{c} N \\ N \\ N \end{array}$$

$$\begin{array}{c} R^2 \\ X_1 \\ N \\ N \end{array}$$

$$\begin{array}{c} N \\ N \\ N \end{array}$$

wherein ring A, $R^1 R^2$, R^4 and X_1 are as defined in claim 1;

g) reacting an intermediate of formula (III') with an intermediate of formula (IV) in the presence of a suitable solvent, and optionally in the presence of a suitable base,

wherein ring A, $R^1 R^2$, R^3 , R^4 , X_1 and X_2 are as defined in claim 1;

or, if desired, and optionally converting compounds of formula (I) into each other following art-known transformations, and further, if desired, optionally converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, optionally preparing stereochemically isomeric forms, quaternary amines or *N*-oxide forms thereof.