

$$S_0(\infty) = \frac{S_L}{0} \frac{S_1}{0} \frac{S_0}{0}$$

 $S_1(011) = 001$

		INF	UT		OUTPUT					
	رک	١٤,	5.	Q	×	Ŋ	7	٨2	٨ı	00
Stateo	Ó	0	0	0	0	0	0	0	0	0
	0	9	0	1	0	0	ပ	O	0	1
State	٥	ဝ	1	0	0	t	4	Q	0	1
	O	D	1	1	0	L	1	0	1	0
State ₂	0	ι	0	0	1	1	1	0	(0
	9	l	0	1	1	1_	1	g	ı	ſ
States	O	(١	O	0	t	٥	0	(1
	0	ı	1	(0	ι	О	1	Ø	0
Statey	1	O	0	D	Ø	0	1	1	0	0
	1	0	0	1	9	0	ı	1	0	1
States	1	0	l	0	1	0	1	1_	Ø	1
	1	O	1	(1	0	1	1	1	0
State 6	1	1_	Ø	٥	1	0	0	1	1	0
	1	1	Ø	ι	٢	0	0	0	0	ာ
Empty	۲	1	1	0	^	*	~	_	~	
	1	1	1	1	^	X	*	~	*	~

Step 5:

for it

for z:

$$S_2S_1 \setminus S_0 = 000 \mid 11 \mid 1000 \mid 10$$

5251/500/00/01/11/10

$$n_{2} = S_{1}S_{0}a + S_{2}a^{1} + S_{2}S_{1}^{2}$$

$$= S_{2}(S_{1}^{2} + a^{2}) + S_{1}S_{0}a$$

fo

٥٢	U° ;					
S	51/500	00	01	11	(0	
	00		1		1	3 50°
	01		1		1	
	1 (X	X	
	10		1		11	

$$n_1 = S_2 S_1 S_0' + S_1 S_0' \alpha' + S_1 S_0 \alpha' + S_1 S_0$$

$$\int_{0}^{\infty} = S_{1}S_{1}S_{0}^{2}\alpha + S_{2}^{2}S_{0}^{2}\alpha + S_{0}\alpha^{2}$$

$$= S_{0}^{2}\alpha \left(S_{2}S_{1} + S_{2}^{2}\right) + S_{0}\alpha^{2}$$

$$= S_{0}^{2}\alpha \left(S_{2} \text{ Nand } S_{1}\right) + S_{0}^{2}\alpha^{2}$$

$$= S_{0}^{2}\alpha \left(S_{2} \text{ Nand } S_{1}\right) + S_{0}^{2}\alpha^{2}$$

