Contents

10 Section2

10.1 thm

1	ubun																										1
		run cp.sh		•	•		•		•		•		•	•	•	•			•	•	•	•	•	•	•	•	1 1
	1.2	ср.зп		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
2	字串																										1
	2.1	最長迴文子									•					•					•	•	•	•		•	1
	2.2	KMP		٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	1
3	STL																										2
	3.1	BIT																									2
	3.2	deque		٠					٠	٠		٠			٠		٠							٠	٠		2
	3.3	map unordered_u	 man	•	•		•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	2
	3.5	set																									3
	3.6	multiset																									3
	3.7	unordered_	set																								3
	3.8	單調隊列									٠	٠					٠							٠			3
4	sort																										3
	4.1	大數排序																									3
_																											
5	math 5.1	質數與因數																									4 4
	5.2	快速冪 .																									4
	5.3	歐拉函數																									5
	5.4	atan																									5
	5.5	大步小步		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	5
6	algo	rithm																									5
	6.1	basic																									5
	6.2																										6
	6.3	三分搜 .		٠	•		٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	6 6
	6.5	prefix sum 差分						•							•	•			•	•	•	•	•		•	•	6
	6.6	greedy .																									7
	6.7	floyd wars	hall																								8
	6.8	dinic							٠					٠			٠							٠			9
	6.9	Nim Game SPFA		٠	•		•	•	•	٠	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	9 10
															•	•						•	•		•	•	10
		SCC Tarjan																									10
		SCC Kosara	-																								11
		Articulation 最小樹狀圖	onPo				•			•		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	11
		二分圖最大	匹配			•	•			٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12 14
		Astar								Ċ					Ċ												14
		JosephusPr	oble	m																							15
	6.19										٠	٠					٠							٠			15
		LCA 倍增法 LCA 樹壓平	₽M∩	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	•	•	16 16
																											17
	6.23	莫隊																									18
7	Data	Structure																									19
′	7.1	ChthollyTr	ee																								19
	7.2	線段樹 1D																									19
	7.3	線段樹 2D																									20
	7.4 7.5	Trie 權值線段樹																									21
	7.5	惟旧称权彻	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
8	geom	etry																									22
	8.1	intersection																									22
	8.2	半平面相交 凸包																									22
	0.3	пе		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
9	DP																										24
	9.1	以價值為主																									24
	9.2	抽屜 Barcode .																									24 24
	9.3	Deque 最大																									25
	9.5	LCS 和 LIS																									25
	9.6	RangeDP .																									25
	9.7	stringDP															•		•	•							25
	9.8	TreeDP 有約																									25 26
		WeightedLI																									26
		dplist .																									27

1 ubuntu

1.1 run

```
1 ~ $ bash cp.sh PA
```

1.2 cp.sh

```
1 #!/bin/bash
2
  clear
  g++ $1.cpp -DDBG -o $1
if [[ "$?" == "0" ]]; then
3
            echo Running
            ./$1 < $1.in > $1.out
6
7
            echo END
8 fi
```

字串

最長迴文子字串 2.1

```
1 #include <bits/stdc++.h>
     #define T(x) ((x)%2 ? s[(x)/2] : '.')
     using namespace std;
   5
     string s;
   6
     int n;
     int ex(int 1,int r){
   9
        int i=0;
        while(l-i>=0&&r+i<n&&T(l-i)==T(r+i)) i++;</pre>
  10
  11
        return i;
10 12 }
10 13
11 14 int main(){
11 15
        cin>>s;
12 16
        n=2*s.size()+1;
14 17
        int mx = 0;
        int center=0;
  18
  19
        vector<int> r(n);
  20
        int ans=1;
  21
        r[0]=1;
        for(int i=1;i<n;i++){</pre>
  22
  23
          int ii=center-(i-center);
  24
          int len=mx-i+1;
19 25
          if(i>mx){
  26
            r[i]=ex(i,i);
            center=i;
19 27
20 28
            mx=i+r[i]-1;
          }
  29
  30
          else if(r[ii]==len){
            r[i]=len+ex(i-len,i+len);
   31
  32
            center=i;
  33
            mx=i+r[i]-1;
  34
          }
   35
          else r[i]=min(r[ii],len);
  36
          ans=max(ans,r[i]);
24 37
24 38
        cout << ans -1 << " \ n ";
24 39
        return 0;
25 40
```

2.2 KMP

37

```
1 #define maxn 1000005
  int nextArr[maxn];
3
  void getNextArr(const string& str) {
      nextArr[0] = 0;
```

```
n: 元素插入次數
     int prefixLen = 0;
                                                   17
     for (int i = 1; i < str.size(); ++i) {</pre>
                                                        val: 插入的元素值
6
                                                   18
7
         prefixLen = nextArr[i - 1];
                                                   19 dq.erase()
         //如果不一樣就在之前算過的prefix中搜有沒有更短的前
                                                        //刪除元素,需要使用迭代器指定刪除的元素或位置,
8
         while (prefixLen > 0 && str[prefixLen] !=
9
                                                                   //同時也會返回指向刪除元素下一元素的迭代器。
                                                   20
            str[i])
                                                                   //清空整個 deque 佇列。
                                                   21 dq.clear()
10
            prefixLen = nextArr[prefixLen - 1];
                                                                   //檢查 deque 的尺寸
                                                   22 dq.size()
         //一樣就繼承之前的前後綴長度+1
11
                                                   23 dq.empty()
                                                                   //如果 deque 佇列為空返回 1;
         if (str[prefixLen] == str[i])
12
                                                                   //若是存在任何元素,則返回0
                                                   24
            ++prefixLen;
13
                                                                   //返回一個指向 deque 開頭的迭代器
                                                   25 da.begin()
         nextArr[i] = prefixLen;
14
                                                   26 dq.end()
                                                                   //指向 deque 結尾,
15
                                                                   //不是最後一個元素,
                                                   27
16
     for (int i = 0; i < str.size() - 1; ++i) {</pre>
17
         vis[nextArr[i]] = true;
                                                                   //而是最後一個元素的下一個位置
                                                   28
18
19 }
```

3 STL

3.1 BIT

```
1 template <class T> class BIT {
2 private:
3
    int size;
    vector<T> bit;
    vector<T> arr;
  public:
7
    BIT(int sz=0): size(sz), bit(sz+1), arr(sz) {}
8
9
    /** Sets the value at index idx to val. */
10
11
    void set(int idx, T val) {
           add(idx, val - arr[idx]);
12
13
14
15
     /** Adds val to the element at index idx. */
16
    void add(int idx, T val) {
      arr[idx] += val;
17
18
       for (++idx; idx<=size; idx+=(idx & -idx))</pre>
               bit[idx] += val;
19
20
21
     /** @return The sum of all values in [0, idx]. */
22
23
    T pre_sum(int idx) {
      T total = 0;
24
25
       for (++idx; idx>0; idx-=(idx & -idx))
26
               total += bit[idx];
27
       return total;
28
    }
29 };
```

3.2 deque

```
1 deque 是 C++ 標準模板函式庫
2
     (Standard Template Library, STL)
     中的雙向佇列容器(Double-ended Queue),
3
     跟 vector 相似,不過在 vector
        中若是要添加新元素至開端,
     其時間複雜度為 O(N), 但在 deque 中則是 O(1)。
5
     同樣也能在我們需要儲存更多元素的時候自動擴展空間,
6
     讓我們不必煩惱佇列長度的問題。
7
8 dq.push_back() //在 deque 的最尾端新增元素
9 dq.push_front() //在 deque 的開頭新增元素
10 dq.pop_back()
             //移除 deque 最尾端的元素
11 dq.pop_front() //移除 deque 最開頭的元素
12 dq.back()
              //取出 deque 最尾端的元素
              //回傳 deque 最開頭的元素
13 dq.front()
14 dq.insert()
15 dq.insert(position, n, val)
    position: 插入元素的 index 值
```

3.3 map

```
1 map: 存放 key-value pairs 的映射資料結構,
       會按 key 由小到大排序。
2
  元素存取
3
  operator[]:存取指定的[i]元素的資料
6
  迭代器
7
  begin():回傳指向map頭部元素的迭代器
  end():回傳指向map末尾的迭代器
  rbegin():回傳一個指向map尾部的反向迭代器
10
  rend():回傳一個指向map頭部的反向迭代器
12 遍歷整個map時,利用iterator操作:
13 取key:it->first 或 (*it).first
  取value:it->second 或 (*it).second
14
16 容量
17 empty():檢查容器是否為空,空則回傳true
18 size():回傳元素數量
  max_size():回傳可以容納的最大元素個數
20
21 | 修改器
22 clear():刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
25
  swap():交換兩個map
26
27
  count():回傳指定元素出現的次數
28
  find(): 查找一個元素
30
  //實作範例
31
32 #include <bits/stdc++.h>
33 using namespace std;
  int main(){
34
35
      //declaration container and iterator
36
     map<string, string> mp;
37
      map<string, string>::iterator iter;
38
     map<string, string>::reverse_iterator iter_r;
39
      //insert element
40
      mp.insert(pair<string, string>
41
42
             ("r000", "student_zero"));
     mp["r123"] = "student_first";
43
     mp["r456"] = "student_second";
44
45
      //traversal
46
47
      for(iter=mp.begin();iter!=mp.end();iter++)
         cout<<iter->first<<"
48
49
                    <<iter->second<<endl;
50
      for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
         cout << iter_r -> first << "
51
             "<<iter_r->second<<endl;
52
53
      //find and erase the element
      iter=mp.find("r123");
54
      mp.erase(iter);
```

3.4 unordered_map

```
1 | unordered_map: 存放 key-value pairs2 | 的「無序」映射資料結構。3 | 用法與map相同
```

3.5 set

```
1 set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
4
     x = *st.begin();
5
             // set中的第一個元素(最小的元素)。
6
     x = *st.rbegin();
            // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
     st.empty() 回傳true
10
     st.size() 回傳零
11
12
  常用來搭配的member function:
13
     st.count(x);
14
15
     auto it = st.find(x);
         // binary search, O(log(N))
16
     auto it = st.lower_bound(x);
17
18
         // binary search, O(log(N))
     auto it = st.upper_bound(x);
19
20
         // binary search, O(log(N))
```

3.6 multiset

```
      1 與 set 用法雷同,但會保留重複的元素。

      2 資料由小到大排序。

      3 宣告:

      4 multiset<int> st;

      5 刪除資料:

      6 st.erase(val);

      7 //會刪除所有值為 val 的元素。

      8 st.erase(st.find(val));

      9 //只刪除第一個值為 val 的元素。
```

3.7 unordered_set

```
1unordered_set的實作方式通常是用雜湊表(hash table),2資料插入和查詢的時間複雜度很低,為常數級別0(1),3相對的代價是消耗較多的記憶體,空間複雜度較高,4無自動排序功能。5unordered_set判斷元素是否存在7unordered_setjunordered_set;8myunordered_set.insert(2);9myunordered_set.insert(4);10myunordered_set.insert(6);11cout< myunordered_set.count(4)</td>< "\n"; // 0</td>
```

3.8 單調隊列

```
1 // 單調隊列
  "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
6
  給出一個長度為 n 的數組,
  輸出每 k 個連續的數中的最大值和最小值。
  #include <bits/stdc++.h>
  #define maxn 1000100
10
11
  using namespace std;
  int q[maxn], a[maxn];
12
13 int n, k;
14
15
  void getmin() {
16
       // 得到這個隊列裡的最小值,直接找到最後的就行了
17
      int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
19
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
           q[++tail]=i;
20
21
       for(int i=k; i<=n;i++) {</pre>
22
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
23
24
           q[++tail]=i;
           while(q[head]<=i-k) head++;</pre>
25
26
           cout << a[q[head]] << " ";
27
28
       cout << end1;
29
  }
30
  void getmax() { // 和上面同理
31
      int head=0,tail=0;
32
       for(int i=1;i<k;i++) {</pre>
33
34
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
35
           q[++tail]=i;
36
37
      for(int i=k:i<=n:i++) {</pre>
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
38
39
           q[++tail]=i;
40
           while(q[head]<=i-k) head++;</pre>
41
           cout << a [q[head]] << " ";
      }
42
      cout << end1;</pre>
43
44
  }
45
46
  int main(){
      cin>>n>>k; //每k個連續的數
47
48
      for(int i=1;i<=n;i++) cin>>a[i];
49
       getmin();
50
       getmax();
51
       return 0;
52 }
```

4 sort

4.1 大數排序

```
1 #python 大數排序
  while True:
3
    try:
     n = int(input())
                              # 有幾筆數字需要排序
6
     arr = []
                              # 建立空串列
     for i in range(n):
7
       arr.append(int(input())) # 依序將數字存入串列
8
      arr.sort()
                              # 串列排序
9
      for i in arr:
10
       print(i)
                           # 依序印出串列中每個項目
11
12
    except:
     break
```

5 math

5.1 質數與因數

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
5 for(int i=2;i*i<=n;i++){
6
       if(isprime[i])
7
           for(int j=i*i;j<=n;j+=i) isprime[j]=0;</pre>
8 }
9
10|歐拉篩0(n)
11 #define MAXN 47000 //sqrt(2^31)=46,340...
12 bool isPrime[MAXN];
13 int prime[MAXN];
14 int primeSize=0;
15 void getPrimes(){
       memset(isPrime, true, sizeof(isPrime));
16
       isPrime[0]=isPrime[1]=false;
17
       for(int i=2;i<MAXN;i++){</pre>
18
           if(isPrime[i]) prime[primeSize++]=i;
19
20
           for(int
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
                if(i%prime[j]==0) break;
22
23
           }
24
       }
25
  }
26
27
   最大公因數 O(log(min(a,b)))
  int GCD(int a, int b){
28
       if(b==0) return a;
29
       return GCD(b,a%b);
30
31 }
32
33 質因數分解
  void primeFactorization(int n){
34
       for(int i=0;i<(int)p.size();++i){</pre>
35
           if(p[i]*p[i]>n) break;
36
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
           while(n%p[i]==0) n/=p[i];
39
40
       if(n!=1) cout << n << ' ';
41
       cout << '\n';
42
43 }
44
45 擴展歐幾里得算法
46 //ax+by=GCD(a,b)
47 #include <bits/stdc++.h>
48 using namespace std;
49
50
  int ext_euc(int a, int b, int &x, int &y){
51
       if(b==0){
52
           x=1. v=0:
53
           return a;
       }
54
55
       int d=ext_euc(b,a%b,y,x);
       y-=a/b*x;
56
57
       return d;
58 }
59
  int main(){
60
61
       int a,b,x,y;
62
       cin>>a>>b;
63
       ext_euc(a,b,x,y);
       cout << x << ' '<< y << end1;
64
65
       return 0;
66 }
67
68
69
70|歌德巴赫猜想
```

```
71 solution : 把偶數 N (6≤N≤10^6) 寫成兩個質數的和。
72 #include <iostream>
73 using namespace std;
74 #define N 20000000
75
   int ox[N],p[N],pr;
76
   void PrimeTable(){
77
       ox[0]=ox[1]=1;
78
       pr=0;
       for(int i=2;i<N;i++){</pre>
79
           if(!ox[i]) p[pr++]=i;
80
81
           for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
               ox[i*p[j]]=1;
83
       }
   }
84
85
   int main(){
86
87
       PrimeTable();
88
       int n;
89
       while(cin>>n,n){
90
           int x;
           for(x=1;;x+=2)
91
92
               if(!ox[x]&&!ox[n-x]) break;
93
           printf("%d = %d + %d\n",n,x,n-x);
94
       }
95
   }
96
   problem : 給定整數 N,
97
           求 N 最少可以拆成多少個質數的和。
   如果 N 是質數,則答案為 1。
98
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
   如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
   其他狀況答案為 3 (弱歌德巴赫猜想)。
101
   #include < bits / stdc ++ . h>
102
   using namespace std;
104
   bool isPrime(int n){
105
       for(int i=2;i<n;++i){</pre>
106
107
           if(i*i>n) return true;
108
           if(n%i==0) return false;
109
110
       return true;
111 }
112
113
   int main(){
114
       int n:
       cin>>n;
115
       if(isPrime(n)) cout<<"1\n";</pre>
116
117
       else if(n%2==0||isPrime(n-2)) cout<< "2\n";</pre>
       else cout << "3\n";</pre>
118
119 }
```

5.2 快速冪

```
1 計算a^b
  #include < iostream >
  #define ll long long
  using namespace std;
6
  const 11 MOD=1000000007;
  11 fp(ll a, ll b) {
8
       int ans=1;
9
       while(b>0){
10
            if(b&1) ans=ans*a%MOD;
            a=a*a%MOD:
11
            b>>=1;
12
       }
13
14
       return ans:
15 }
16
17
  int main() {
18
    int a,b;
19
     cin>>a>>b;
     cout << fp(a,b);</pre>
20
21 }
```

5.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
3
  int phi(){
4
      int ans=n;
      for(int i=2;i*i<=n;i++)</pre>
5
          if(n%i==0){
7
               ans=ans-ans/i;
               while(n%i==0) n/=i;
8
          }
9
10
      if(n>1) ans=ans-ans/n;
11
      return ans;
12 }
```

5.4 atan

```
1 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
2
3
  回覆值
4
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
7
    如果 atan2() 函數的兩個引數都是零,
    則函數會將 errno 設為 EDOM,並傳回值 0。
8
9
10 範例
11 #include <math.h>
12 #include <stdio.h>
13
14
  int main(void){
      double a,b,c,d;
15
16
17
      c = 0.45:
      d=0.23;
18
19
      a=atan(c);
20
21
      b=atan2(c,d);
22
23
      printf("atan(%lf)=%lf/n",c,a);
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
24
25
26 }
27
28
29 atan (0.450000) = 0.422854
30 atan2 (0.450000, 0.230000) = 1.098299
31 */
```

5.5 大步小步

```
題章
1
2 給定 B,N,P,求出 L 滿足 B^L N(mod P)。
3
4
 餘數的循環節長度必定為 P 的因數,因此
5
    B^0 B^P,B^1 B^(P+1), ...,
6 也就是說如果有解則 L<N,枚舉0,1,2,L-1
     能得到結果,但會超時。
8 將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
9 設 m=√P 能保證最多枚舉 2√P 次 。
10
11 B^(mx+y) N(mod P)
 B^(mx)B^y N(mod P)
12
13 B^y N(B^(-m))^x \pmod{P}
14
16 再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
17 這種算法稱為大步小步演算法,
18 大步指的是枚舉 x (一次跨 m 步),
```

```
19 小步指的是枚舉 y (一次跨 1 步)。
20
21
     複雜度分析
22 利用 map/unorder_map 存放 B^0,B^1,B^2,…,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
25
26
27
  #include <bits/stdc++.h>
28
  using namespace std;
29
  using LL = long long;
31
  LL B, N, P;
  LL fpow(LL a,LL b,LL c){
33
      LL res=1;
34
35
       for(;b;b >>=1){
36
           if(b&1)
               res=(res*a)%c;
37
           a=(a*a)%c;
38
39
      }
40
       return res;
41
  }
42
  LL BSGS(LL a, LL b, LL p){
43
44
       a%=p,b%=p;
45
       if(a==0)
46
           return b==0?1:-1;
47
       if(b==1)
48
           return 0;
       map<LL, LL> tb;
49
       LL sq=ceil(sqrt(p-1));
50
51
       LL inv=fpow(a,p-sq-1,p);
52
       tb[1]=sq;
       for(LL i=1, tmp=1; i < sq; ++i){</pre>
53
           tmp=(tmp*a)%p;
54
           if(!tb.count(tmp))
55
               tb[tmp]=i;
56
57
       for(LL i=0;i<sq;++i){</pre>
58
59
           if(tb.count(b)){
60
               LL res=tb[b];
61
               return i*sq+(res==sq?0:res);
62
63
           b=(b*inv)%p;
      }
64
65
       return -1;
  }
66
67
68
  int main(){
69
       ios::sync_with_stdio(false);
       cin.tie(0),cout.tie(0);
70
71
       while(cin>>P>>B>>N){
           LL ans=BSGS(B,N,P);
72
73
           if(ans==-1)
74
               cout << "no solution \n";</pre>
75
76
               cout <<ans << '\n';
77
      }
78 }
```

6 algorithm

6.1 basic

```
1 min_element: 找尋最小元素
2 min_element(first, last)
3 max_element: 找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
7 sort(first, last, cmp):可自行定義比較運算子 cmp。
8 find:尋找元素。
```

```
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
            如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
            如果不存在,則回傳 last 。
14
15 upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
                如果存在回傳 true,反之回傳 false。
20
21 prev_permutation(first, last)
```

6.2 二分搜

```
1 int binary_search(int target) {
\left| 2 \right| // For range [ok, ng) or (ng, ok], "ok" is for the
3 | \ / \ | index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
5 // For first lower_bound, ok=maxn and ng=-1,
6 // for last lower_bound, ok = -1 and ng = maxn
7 // (the "check" funtion
8 // should be changed depending on it.)
      while(abs(ok - ng) > 1) {
          int mid = (ok + ng) >> 1;
10
          if(check(mid)) ok = mid;
11
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
18 // [ok, mid) and [mid, ng) and than choose
19 // the second one.
20
      }
      return ok;
21
22 }
23
24 lower_bound(arr, arr + n, k);
                                  //最左邊 ≥ k 的位置
                                  //最左邊 > k 的位置
25 upper_bound(arr, arr + n, k);
26 upper_bound(arr, arr + n, k) - 1; //最右邊 ≤ k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
28 (lower_bound, upper_bound)
                                  //等於 k 的範圍
29 equal_range(arr, arr+n, k);
```

6.3 三分搜

```
題意
2 給定兩射線方向和速度,問兩射線最近距離。
3
    題解
5 | 假設 F(t) 為兩射線在時間 t 的距離, F(t) 為二次函數,
6 可用三分搜找二次函數最小值。
8 #include <bits/stdc++.h>
9 using namespace std;
10
11
  struct Point{
12
      double x, y, z;
      Point() {}
13
      Point(double _x,double _y,double _z):
14
15
         x(_x),y(_y),z(_z){}
16
      friend istream& operator>>(istream& is, Point& p)
17
         is >> p.x >> p.y >> p.z;
18
         return is;
19
      }
20
      Point operator+(const Point &rhs) const{
21
          return Point(x+rhs.x,y+rhs.y,z+rhs.z);
22
```

```
23
       Point operator - (const Point &rhs) const{
           return Point(x-rhs.x,y-rhs.y,z-rhs.z);
24
25
26
       Point operator*(const double &d) const{
27
           return Point(x*d,y*d,z*d);
28
       Point operator/(const double &d) const{
29
30
           return Point(x/d,y/d,z/d);
31
32
       double dist(const Point &rhs) const{
33
           double res = 0;
           res+=(x-rhs.x)*(x-rhs.x);
34
           res+=(y-rhs.y)*(y-rhs.y);
35
           res+=(z-rhs.z)*(z-rhs.z);
36
37
           return res;
       }
38
39 };
40
41
  int main(){
42
       ios::sync_with_stdio(false);
43
       cin.tie(0),cout.tie(0);
       int T;
45
       cin>>T;
       for(int ti=1;ti<=T;++ti){</pre>
46
47
           double time;
48
           Point x1, y1, d1, x2, y2, d2;
           cin >> time >> x1 >> y1 >> x2 >> y2;
50
           d1=(y1-x1)/time;
51
           d2=(y2-x2)/time;
52
           double L=0,R=1e8,m1,m2,f1,f2;
           double ans = x1.dist(x2);
53
           while(abs(L-R)>1e-10){
55
                m1 = (L+R)/2:
56
                m2=(m1+R)/2;
57
                f1=((d1*m1)+x1).dist((d2*m1)+x2);
58
                f2=((d1*m2)+x1).dist((d2*m2)+x2);
59
                ans = min(ans, min(f1, f2));
                if(f1<f2) R=m2;
60
                else L=m1;
           }
62
           cout << "Case "<<ti << ": ";
63
64
           cout<<fixed<<setprecision(4)<<sqrt(ans)<<'\n';</pre>
       }
65
```

6.4 prefix sum

```
1 // 前綴和
  陣列前n項的和。
  b[i]=a[0]+a[1]+a[2]+ ··· +a[i]
  區間和 [l, r]:b[r]-b[1-1] (要保留b[1]所以-1)
  #include <bits/stdc++.h>
  using namespace std;
  int main(){
      int n;
      cin>>n;
10
11
      int a[n],b[n];
      for(int i=0;i<n;i++) cin>>a[i];
12
13
      b[0]=a[0];
      for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
15
      for(int i=0;i<n;i++) cout<<b[i]<< ' ';</pre>
16
       cout << '\n';
17
      int l.r:
18
       cin>>l>>r:
19
       cout <<b[r]-b[l-1]; //區間和
```

6.5 差分

```
1 / / 差分
2 | 用途:在區間 [1, r] 加上一個數字v。
3 | b[1] += v; (b[0~1] 加上v)
```

```
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5|給的 a[] 是前綴和數列,建構 b[],
6|因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7 所以 b[i] = a[i] - a[i-1]。
8|在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 | 這樣一來, b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
  // a: 前綴和數列, b: 差分數列
15
16 int main(){
      int n, 1, r, v;
17
      cin >> n;
18
19
      for(int i=1; i<=n; i++){</pre>
20
          cin >> a[i];
          b[i] = a[i] - a[i-1]; //建構差分數列
21
22
23
      cin >> 1 >> r >> v;
      b[1] += v;
24
      b[r+1] -= v;
25
26
      for(int i=1; i<=n; i++){</pre>
27
          b[i] += b[i-1];
28
29
          cout << b[i] << ' ';
30
      }
31 | }
```

6.6 greedy

```
1 // 貪心
3 採取在目前狀態下最好或最佳(即最有利)的選擇。
5 但不保證能獲得最後(全域)最佳解,
6 提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
  確認無誤再實作。
9
10 刪數字問題
11 //problem
  給定一個數字 N(≤10^100),需要刪除 K 個數字,
  請問刪除 K 個數字後最小的數字為何?
13
14
15
16 | 刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
  扣除高位數的影響較扣除低位數的大。
17
18
19
  //code
20
  int main(){
21
     string s;
22
     int k;
23
     cin>>s>>k;
     for(int i=0;i<k;++i){</pre>
24
25
         if((int)s.size()==0) break;
         int pos =(int)s.size()-1;
26
27
         for(int j=0;j<(int)s.size()-1;++j){</pre>
28
            if(s[j]>s[j+1]){
29
               pos=i:
36
               break;
            }
31
        }
32
33
        s.erase(pos,1);
34
35
     while((int)s.size()>0&&s[0]=='0')
        s.erase(0,1);
36
     if((int)s.size()) cout<<s<'\n';</pre>
37
     else cout << 0 << '\n';
38
39 }
40
41
42 最小區間覆蓋長度
```

```
43 //problem
44 給定 n 條線段區間為 [Li, Ri],
   請問最少要選幾個區間才能完全覆蓋 [0,S]?
45
46
   //solution
49 對於當前區間 [Li, Ri],要從左界 >Ri 的所有區間中,
   找到有著最大的右界的區間,連接當前區間。
52
   //problem
   長度 n 的直線中有數個加熱器,
53
   在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
55
   問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
56
57
58 對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,
   更新已加熱範圍,重複上述動作繼續尋找加熱器。
59
60
61
   //code
62
   int main(){
63
      int n, r;
      int a[1005];
64
65
      cin>>n>>r;
      for(int i=1;i<=n;++i) cin>>a[i];
66
67
      int i=1, ans=0;
68
      while(i<=n){
69
          int R=min(i+r-1,n),L=max(i-r+1,0)
70
          int nextR=-1;
          for(int j=R; j>=L; -- j){
71
72
              if(a[j]){
73
                 nextR=j;
                 break;
75
             }
76
77
          if(nextR==-1){
78
             ans=-1:
              break;
          }
80
          ++ans;
82
          i=nextR+r;
83
      cout <<ans << '\n';
85
   }
86
87
88 最多不重疊區間
   //problem
90 給你 n 條線段區間為 [Li, Ri],
   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
92
93
   //solution
   依照右界由小到大排序,
94
   每次取到一個不重疊的線段,答案 +1。
95
97
   //code
   struct Line{
99
      int L.R:
100
      bool operator<(const Line &rhs)const{</pre>
           return R<rhs.R;</pre>
101
102
  };
103
104
   int main(){
105
106
      int t;
      cin>>t:
107
      Line a[30];
108
      while(t--){
109
          int n=0:
110
111
          while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
              ++n;
112
113
          sort(a,a+n);
          int ans=1,R=a[0].R;
114
          for(int i=1;i<n;i++){</pre>
115
116
              if(a[i].L>=R){
117
                 ++ans:
```

R=a[i].R;

```
119
              }
                                                        194
                                                                   ++n;
                                                        195
                                                               sort(a.a+n):
120
           cout << ans << '\n';
                                                               int sumT=0, ans=n;
121
                                                        196
                                                               for(int i=0;i<n;++i){</pre>
122
      }
                                                        197
123
  }
                                                        198
                                                                   pq.push(a[i].t);
124
                                                        199
                                                                   sumT+=a[i].t;
                                                                   if(a[i].d<sumT){</pre>
125
                                                        200
126 最小化最大延遲問題
                                                        201
                                                                       int x=pq.top();
  //problem
                                                        202
                                                                       pq.pop();
                                                                       sumT -=x;
                                                        203
128 | 給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                        204
                                                                       --ans;
129 期限是 Di, 第 i 項工作延遲的時間為 Li=max(0, Fi-Di),
                                                                   }
                                                        205
   原本Fi 為第 i 項工作的完成時間,
                                                               }
                                                        206
   求一種工作排序使 maxLi 最小。
131
                                                               cout << ans << '\n';
                                                        207
132
                                                        208
133
   //solution
                                                        209
   按照到期時間從早到晚處理。
134
                                                        210 任務調度問題
135
                                                        211
                                                           //problem
   //code
136
                                                        212 給定 N 項工作,每項工作的需要處理時長為 Ti,
137
   struct Work{
                                                           期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
138
      int t. d:
                                                        214
                                                           請問最少會受到多少單位懲罰。
       bool operator<(const Work &rhs)const{</pre>
139
                                                        215
          return d<rhs.d:
140
                                                           //solution
                                                        216
141
                                                           依照懲罰由大到小排序,
                                                        217
142
  };
                                                           每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
143
   int main(){
                                                           如果有空閒就放進去,否則延後執行。
144
                                                        219
      int n;
145
                                                        220
146
       Work a[10000];
                                                           //problem
                                                        221
      cin>>n;
147
                                                        222 給定 N 項工作,每項工作的需要處理時長為 Ti,
148
       for(int i=0;i<n;++i)</pre>
                                                           期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
149
          cin>>a[i].t>>a[i].d;
                                                               單位獎勵,
      sort(a.a+n):
150
                                                           請問最多會獲得多少單位獎勵。
                                                        224
      int maxL=0, sumT=0;
151
                                                        225
      for(int i=0;i<n;++i){</pre>
152
                                                        226
                                                           //solution
153
           sumT+=a[i].t;
                                                           和上題相似,這題變成依照獎勵由大到小排序。
                                                        227
154
          maxL=max(maxL,sumT-a[i].d);
                                                        228
155
                                                        229
                                                           //code
156
      cout << maxL << '\n';</pre>
                                                           struct Work{
                                                        230
157
  }
                                                        231
                                                               int d,p;
158
                                                               bool operator < (const Work &rhs)const{</pre>
                                                        232
159
                                                        233
                                                                   return p>rhs.p;
160 最少延遲數量問題
                                                        234
                                                                   }
   //problem
161
                                                           };
                                                        235
162 給定 N 個工作,每個工作的需要處理時長為 Ti,
                                                        236
   期限是 Di,求一種工作排序使得逾期工作數量最小。
163
                                                           int main(){
                                                        237
164
                                                        238
                                                               int n;
165
   //solution
                                                        239
                                                               Work a[100005];
   期限越早到期的工作越先做。將工作依照到期時間從早到晚排序40
166
                                                               bitset < 100005 > ok;
   依序放入工作列表中,如果發現有工作預期
167
                                                               while(cin>>n){
                                                        241
   就從目前選擇的工作中,移除耗時最長的工作。
168
                                                                   ok.reset();
                                                        242
                                                                   for(int i=0;i<n;++i)</pre>
169
                                                        243
170
   上述方法為 Moore-Hodgson s Algorithm。
                                                        244
                                                                       cin>>a[i].d>>a[i].p;
                                                        245
                                                                   sort(a,a+n);
171
                                                        246
                                                                   int ans=0;
                                                                   for(int i=0;i<n;++i){</pre>
                                                        247
   給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
                                                                       int j=a[i].d;
                                                        248
174
                                                                       while(j--)
175
   //solution
                                                        249
                                                        250
                                                                           if(!ok[j]){
   和最少延遲數量問題是相同的問題,只要將題敘做轉換。
176
                                                        251
                                                                               ans+=a[i].p;
   工作處裡時長 → 烏龜重量
                                                                               ok[j]=true;
                                                        252
   工作期限 → 烏龜可承受重量
178
                                                        253
                                                                               break;
   多少工作不延期 → 可以疊幾隻烏龜
179
                                                                           }
                                                        254
180
                                                        255
181
   //code
                                                                   cout << ans << '\n';
                                                        256
182
   struct Work{
                                                        257
                                                               }
183
      int t, d;
                                                        258 }
184
       bool operator < (const Work &rhs)const{</pre>
185
          return d<rhs.d:
          }
186
                                                                 floyd warshall
                                                           6.7
187
  };
188
189
   int main(){
                                                          1 int w[n][n];
190
      int n=0;
                                                           int d[n][n];
      Work a[10000];
191
```

priority_queue<int> pq;

while(cin>>a[n].t>>a[n].d)

192

193

int p[n][n];

// 由i點到j點的路徑,其中繼點為 p[i][j]。

```
6 void floyd_warshall(){
                              1/0(V^3)
    for(int i=0;i<n;i++)</pre>
8
      for(int j=0;j<n;j++){</pre>
q
        d[i][j]=w[i][j];
                        // 預設為沒有中繼點
10
        p[i][j]=-1;
11
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
12
    for(int k=0;k<n;k++)</pre>
13
      for(int i=0;i<n;i++)</pre>
14
15
        for(int j=0;j<n;j++)</pre>
          if(d[i][k]+d[k][j]<d[i][j]){</pre>
16
17
            d[i][j]=d[i][k]+d[k][j];
            p[i][j]=k; // 由 i 點走到 j 點經過了 k 點
18
19
20 }
21
22 // 這支函式並不會印出起點和終點,必須另行印出。
23 void find_path(int s,int t){ // 印出最短路徑
   if(p[s][t]==-1) return; // 沒有中繼點就結束
24
                           // 前半段最短路徑
    find_path(s,p[s][t]);
25
    cout << p[s][t];
                          // 中繼點
26
    find_path(p[s][t],t); // 後半段最短路徑
27
28 }
```

6.8 dinic

```
1 const int maxn = 1e5 + 10;
2 const int inf = 0x3f3f3f3f3f;
3
4
  struct Edge {
5
       int s, t, cap, flow;
6 };
7
8 int n, m, S, T;
  int level[maxn], dfs_idx[maxn];
9
10 vector < Edge > E;
11 vector < vector < int >> G;
12
13
  void init() {
14
       S = 0;
       T = n + m;
15
       E.clear();
16
17
       G.assign(maxn, vector<int>());
18 }
19
  void addEdge(int s, int t, int cap) {
20
21
       E.push_back({s, t, cap, 0});
       E.push_back({t, s, 0, 0});
22
23
       G[s].push_back(E.size()-2);
24
       G[t].push_back(E.size()-1);
25 }
26
  bool bfs() {
27
28
       queue < int > q({S});
29
       memset(level, -1, sizeof(level));
30
31
       level[S] = 0;
32
33
       while(!q.empty()) {
           int cur = q.front();
34
35
           q.pop();
36
37
           for(int i : G[cur]) {
38
                Edge e = E[i];
                if(level[e.t]==-1 && e.cap>e.flow) {
39
40
                    level[e.t] = level[e.s] + 1;
41
                    q.push(e.t);
42
                }
43
           }
       }
44
45
       return ~level[T];
46 }
47
48
  int dfs(int cur, int lim) {
       if(cur==T || lim==0) return lim;
49
```

51 int result = 0: for(int& i=dfs_idx[cur]; i<G[cur].size() && lim;</pre> 52 i++) { 53 Edge& e = E[G[cur][i]]; if(level[e.s]+1 != level[e.t]) continue; 54 55 56 int flow = dfs(e.t, min(lim, e.cap-e.flow)); 57 if(flow <= 0) continue;</pre> 58 59 e.flow += flow; result += flow; 60 61 E[G[cur][i]^1].flow -= flow; lim -= flow; 62 63 } 64 return result; 65 } 66 int dinic() { $// O((V^2)E)$ 67 68 int result = 0; while(bfs()) { 69 70 memset(dfs_idx, 0, sizeof(dfs_idx)); 71 result += dfs(S, inf); 72 73 return result; 74 }

6.9 Nim Game

```
1 | //兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
 2 //但不能同時在兩堆取銅板,直到最後,
 3 //將銅板拿光的人贏得此遊戲。
  #include <bits/stdc++.h>
5
  #define maxn 23+5
 6
  using namespace std;
  int SG[maxn];
9
10
  int visited[1000+5];
11
  int pile[maxn], ans;
12
  void calculateSG(){
13
14
       SG[0]=0;
15
       for(int i=1;i<=maxn;i++){</pre>
16
           int cur=0;
           for(int j=0; j<i; j++)</pre>
17
18
                for(int k=0; k<=j; k++)</pre>
                    visited[SG[j]^SG[k]]=i;
19
20
           while(visited[cur]==i) cur++;
21
           SG[i]=cur;
22
       }
23 }
24
25
  int main(){
26
       calculateSG();
27
       int Case=0,n;
28
       while(cin>>n,n){
29
         ans=0;
30
         for(int i=1;i<=n;i++) cin>>pile[i];
         for(int i=1;i<=n;i++)</pre>
31
32
           if(pile[i]&1) ans^=SG[n-i];
         cout << "Game "<<++Case << ": ";
33
34
         if(!ans) cout<<"-1 -1 -1\n";
35
           bool flag=0;
36
37
           for(int i=1;i<=n;i++){</pre>
              if(pile[i]){
38
39
                for(int j=i+1; j<=n; j++){</pre>
40
                  for(int k=j;k<=n;k++){</pre>
41
                    if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
42
                       cout << i - 1 << " " << j - 1 << " " << k - 1 << endl;
43
                       flag=1;
44
                      break;
45
                    }
                 }
46
```

```
47
                   if(flag) break;
48
49
                if(flag) break;
50
51
52
         }
       }
53
54
       return 0;
55 }
56
57 /*
58
   input
59 4 1 0 1 100
     1 0 5
60 3
61
62 0
63 output
64 Game 1: 0 2 3
65 Game 2: 0 1 1
66 Game 3: -1 -1 -1
67 */
```

6.10 SPFA

```
1 struct Edge
2
  {
3
       int t;
       long long w;
5
       Edge(){};
6
       Edge(int _t, long long _w) : t(_t), w(_w) {}
7
  };
8
9 bool SPFA(int st) // 平均O(V + E) 最糟O(VE)
10 {
11
       vector<int> cnt(n, 0);
       bitset<MXV> inq(0);
12
13
       queue < int > q;
       q.push(st);
14
15
       dis[st] = 0;
16
       inq[st] = true;
17
       while (!q.empty())
18
           int cur = q.front();
19
20
           q.pop();
           inq[cur] = false;
21
            for (auto &e : G[cur])
22
23
           {
                if (dis[e.t] <= dis[cur] + e.w)</pre>
24
25
                    continue;
                dis[e.t] = dis[cur] + e.w;
26
27
                if (inq[e.t])
28
                    continue:
29
                ++cnt[e.t];
30
                if (cnt[e.t] > n)
                    return false; // negtive cycle
31
32
                inq[e.t] = true;
33
                q.push(e.t);
           }
34
35
       }
36
       return true;
37 }
```

6.11 dijkstra

```
1 #include < bits / stdc ++ . h >
2 #define maxn 50000+5
3 #define INF 0x3f3f3f3f
4 using namespace std;
5
6 struct edge{
7  int v,w;
8 };
9
```

```
10
  struct Item{
       int u.dis:
11
12
       bool operator<(const Item &rhs)const{</pre>
13
            return dis>rhs.dis;
14
15
  };
16
17
  vector<edge> G[maxn];
  int dist[maxn];
18
19
20
  void dijkstra(int s){ // O((V + E)log(E))
       memset(dist,INF,sizeof(dist));
21
22
       dist[s]=0;
       priority_queue<Item> pq;
23
24
       pq.push({s,0});
25
       while(!pq.empty()){
26
            Item now=pq.top();
27
            pq.pop();
            if(now.dis>dist[now.u]) continue;
28
29
            for(edge e:G[now.u]){
                if(dist[e.v]>dist[now.u]+e.w){
30
31
                     dist[e.v]=dist[now.u]+e.w;
32
                     pq.push({e.v,dist[e.v]});
33
34
            }
       }
35
  }
36
37
38
  int main(){
39
       int t, cas=1;
       cin>>t:
40
41
       while(t--){
42
            int n,m,s,t;
43
            cin>>n>>m>>s>>t;
44
            for(int i=0;i<=n;i++) G[i].clear();</pre>
45
            int u.v.w:
46
            for(int i=0;i<m;i++){</pre>
47
                cin>>u>>v>>w;
48
                G[u].push_back({v,w});
49
                G[v].push_back({u,w});
50
51
            dijkstra(s);
            cout << "Case #"<<cas++<<": ";
52
53
            if(dist[t]==INF) cout << "unreachable \n";</pre>
            else cout<<dist[t]<<endl;</pre>
54
55
       }
56 }
```

6.12 SCC Tarjan

```
1 #include <cstdio>
  #include <vector>
  #include <cstring>
  #include <stack>
  #include <algorithm>
6 using namespace std;
  /*單純考SCC,每個SCC中找成本最小的蓋,如果有多個一樣小的要數出來
  #define maxn 100005
  #define MOD 1000000007
10 long long cost[maxn];
11 vector < vector < int >> G;
12 int SCC = 0;
13
  stack<int> sk;
  int dfn[maxn];
15 int low[maxn];
16 bool inStack[maxn];
  int dfsTime = 1;
17
18
  long long totalCost = 0;
19
  long long ways = 1;
  void dfs(int u)
20
21
      dfn[u] = low[u] = dfsTime;
22
23
      ++dfsTime;
24
      sk.push(u);
25
      inStack[u] = true;
```

```
26
       for (int v: G[u])
27
       {
28
            if (dfn[v] == 0)
29
            {
30
                 dfs(v);
31
                 low[u] = min(low[u], low[v]);
            }
32
33
            else if (inStack[v])
34
            {
                 //屬於同個SCC且是我的back edge
35
                 low[u] = min(low[u], dfn[v]);
36
            }
37
       }
38
       //如果是scc
39
40
       if (dfn[u] == low[u])
41
42
            long long minCost = 0x3f3f3f3f;
43
            int currWays = 0;
44
            ++SCC;
45
            while (1)
            {
46
47
                 int v = sk.top();
                 inStack[v] = 0;
48
49
                 sk.pop();
50
                 if (minCost > cost[v])
51
                {
52
                     minCost = cost[v];
                     currWays = 1;
53
                 }
                 else if (minCost == cost[v])
55
56
                {
57
                     ++currWays;
                 }
58
59
                 if (v == u)
60
                     break:
61
62
            totalCost += minCost;
            ways = (ways * currWays) % MOD;
63
64
65 }
  int main()
66
67 | {
68
       int n;
       scanf("%d", &n);
69
       for (int i = 1; i <= n; ++i)
    scanf("%11d", &cost[i]);</pre>
70
71
       G.assign(n + 5, vector<int>());
72
73
       int m;
       scanf("%d", &m);
74
75
       int u, v;
76
       for (int i = 0; i < m; ++i)
77
            scanf("%d %d", &u, &v);
78
            G[u].emplace_back(v);
79
80
81
       for (int i = 1; i <= n; ++i)</pre>
82
83
            if (dfn[i] == 0)
84
85
                 dfs(i);
86
87
88
       printf("%11d %11d\n", totalCost, ways % MOD);
89
       return 0;
90 }
```

6.13 SCC Kosaraju

```
1 //做兩次dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是dfs離開的節點
4 void dfs1(int u) {
    vis[u] = true;
6 for (int v : g[u])
7 if (!vis[v]) dfs1(v);
```

```
8
       s.push_back(u);
9 }
10
  void dfs2(int u) {
11
12
       group[u] = sccCnt;
13
       for (int v : g2[u])
           if (!group[v]) dfs2(v);
14
15 }
16
  void kosaraju() {
17
18
       sccCnt = 0;
       for (int i = 1; i \le n; ++i)
19
20
           if (!vis[i]) dfs1(i);
       for (int i = n; i >= 1; --i)
21
22
           if (!group[s[i]]) {
23
                ++sccCnt:
24
                dfs2(s[i]);
           }
25
26 }
```

6.14 ArticulationPoints Tarjan

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
  vector<vector<int>> G;
4
  int N;
5
6 int timer;
7 bool visited[105];
8| int visTime[105]; // 第一次visit的時間
  int low[105];
9
  // 最小能回到的父節點(不能是自己的parent)的visTime
10
11 int res;
12
  //求割點數量
  void tarjan(int u, int parent) {
13
14
       int child = 0;
15
      bool isCut = false;
16
       visited[u] = true;
17
       visTime[u] = low[u] = ++timer;
       for (int v: G[u]) {
18
19
           if (!visited[v]) {
20
               ++child;
               tarjan(v, u);
21
22
               low[u] = min(low[u], low[v]);
               if (parent != -1 && low[v] >= visTime[u])
23
24
                   isCut = true;
25
           else if (v != parent)
26
27
               low[u] = min(low[u], visTime[v]);
28
       //If u is root of DFS tree->有兩個以上的children
29
30
       if (parent == -1 && child >= 2)
           isCut = true;
31
32
       if (isCut)
33
           ++res;
34 }
35
36
  int main()
37
       char input[105];
38
39
       char* token;
       while (scanf("%d", &N) != EOF && N)
40
41
       {
42
           G.assign(105, vector<int>());
           memset(visited, false, sizeof(visited));
43
           memset(low, 0, sizeof(low));
45
           memset(visTime, 0, sizeof(visited));
46
           timer = 0;
47
           res = 0;
48
           getchar(); // for \n
49
           while (fgets(input, 105, stdin))
50
51
               if (input[0] == '0')
52
                   break:
               int size = strlen(input);
53
```

```
input[size - 1] = ' \setminus \emptyset';
54
55
                  --size:
                  token = strtok(input, " ");
56
                  int u = atoi(token);
57
58
                 int v;
                  while (token = strtok(NULL, " "))
59
60
61
                      v = atoi(token);
                      G[u].emplace_back(v);
62
63
                      G[v].emplace_back(u);
64
                 }
65
            tarjan(1, -1);
66
            printf("%d \setminus n", res);
67
68
69
       return 0;
70 }
```

6.15 最小樹狀圖

```
1
2|有向圖上的最小生成樹 (Directed Minimum Spanning Tree)
3 稱為最小樹形圖。
5 const int maxn = 60 + 10;
6
  const int inf = 0x3f3f3f3f;
8 struct Edge {
9
      int s, t, cap, cost;
10|}; // cap 為頻寬 (optional)
11
12 int n, m, c;
13 int inEdge[maxn], idx[maxn], pre[maxn], vis[maxn];
14
15 // 對於每個點,選擇對它入度最小的那條邊
16 // 找環,如果沒有則 return:
17 // 進行縮環並更新其他點到環的距離。
18 int dirMST(vector<Edge> edges, int low) {
      int result = 0, root = 0, N = n;
19
20
      while(true) {
21
          memset(inEdge, 0x3f, sizeof(inEdge));
22
23
24
          // 找所有點的 in edge 放進 inEdge
          // optional: low 為最小 cap 限制
25
26
          for(const Edge& e : edges) {
27
              if(e.cap < low) continue;</pre>
28
              if(e.s!=e.t && e.cost<inEdge[e.t]) {</pre>
29
                  inEdge[e.t] = e.cost;
                  pre[e.t] = e.s;
30
31
              }
          }
32
33
          for(int i=0; i<N; i++) {</pre>
34
              if(i!=root && inEdge[i]==inf)
35
36
                  return -1; //除了root 還有點沒有in edge
          }
37
38
39
          int seq = inEdge[root] = 0;
          memset(idx, -1, sizeof(idx));
40
41
          memset(vis, -1, sizeof(vis));
42
43
          // 找所有的 cycle,一起編號為 seq
          for(int i=0; i<N; i++) {</pre>
44
              result += inEdge[i];
45
              int cur = i;
46
47
              while(vis[cur]!=i && idx[cur]==-1) {
48
                  if(cur == root) break;
                  vis[cur] = i;
49
                  cur = pre[cur];
50
51
              }
52
              if(cur!=root && idx[cur]==-1) {
                  for(int j=pre[cur]; j!=cur; j=pre[j])
53
                      idx[j] = seq;
54
```

```
55
             idx[cur] = seq++;
          }
56
57
        }
58
59
        if(seq == 0) return result; // 沒有 cycle
60
        for(int i=0; i<N; i++)</pre>
61
           // 沒有被縮點的點
62
           if(idx[i] == -1) idx[i] = seq++;
63
64
65
        // 縮點並重新編號
        for(Edge& e : edges) {
66
           if(idx[e.s] != idx[e.t])
67
             e.cost -= inEdge[e.t];
68
69
           e.s = idx[e.s];
70
          e.t = idx[e.t];
71
        }
72
        N = seq;
        root = idx[root];
73
74
     }
75
  }
76
77
  ______
78
   Tarian 的DMST 演算法
79
80 Tarian 提出了一種能夠在
81 0 (m+nlog n)時間內解決最小樹形圖問題的演算法。
83
84 Tarjan 的演算法分為收縮與伸展兩個過程。
85 接下來先介紹收縮的過程。
  我們要假設輸入的圖是滿足強連通的,
  如果不滿足那就加入 O(n) 條邊使其滿足,
  並且這些邊的邊權是無窮大的。
89
90 我們需要一個堆存儲結點的入邊編號,入邊權值,
91 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
92 這裡採用左偏樹 與並查集實現。
93 演算法的每一步都選擇一個任意結點v,
  需要保證v不是根節點,並且在堆中沒有它的入邊。
94
  再將v的最小入邊加入到堆中,
95
96 如果新加入的這條邊使堆中的邊形成了環,
  那麼將構成環的那些結點收縮,
97
98 我們不妨將這些已經收縮的結點命名為超級結點,
  再繼續這個過程,如果所有的頂點都縮成了超級結點,
99
100 那麼收縮過程就結束了。
101 整個收縮過程結束後會得到一棵收縮樹,
  之後就會對它進行伸展操作。
102
103
  堆中的邊總是會形成一條路徑v0 <- v1<- ... <- vk,
104
  由於圖是強連通的,這個路徑必然存在,
105
  並且其中的 vi 可能是最初的單一結點,
106
107
  也可能是壓縮後的超級結點。
108
  最初有 v0=a,其中 a 是圖中任意的一個結點,
109
  每次都選擇一條最小入邊 vk <- u,
110
111 | 如果 u 不是v0, v1,..., vk中的一個結點,
112  那麼就將結點擴展到 v k+1=u。
113 如果 u 是他們其中的一個結點 vi,
114 那麼就找到了一個關於 vi <- ... <- vk <- vi的環,
115 再將他們收縮為一個超級結點c。
116
117 | 向隊列 P 中放入所有的結點或超級結點,
118 並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
119
120 選擇 a 的最小入邊,保證不存在自環,
121 並找到另一頭的結點 b。
122  如果結點b沒有被記錄過說明未形成環,
  令 a <- b,繼續目前操作尋找環。
123
124
125 如果 b 被記錄過了,就表示出現了環。
126 | 總結點數加一,並將環上的所有結點重新編號,對堆進行合併,
```

```
127 以及結點/超級結點的總權值的更新。
                                                               204
                                                                         Heap *u = q.front();
                                                               205
128 更新權值操作就是將環上所有結點的入邊都收集起來,
                                                                         q.pop();
                                                                         Heap *v = q.front();
                                                               206
   並減去環上入邊的邊權。
129
                                                               207
                                                                         q.pop();
130
                                                               208
                                                                         q.push(merge(u, v));
131 typedef long long ll;
                                                               209
132 #define maxn 102
                                                               210
                                                                      Q[i] = q.front();
133 #define INF 0x3f3f3f3f
                                                               211
                                                                    }
134
                                                                     mark[1] = true;
                                                               212
135 struct UnionFind {
                                                               213
                                                                     for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
     int fa[maxn << 1];</pre>
136
                                                                       //尋找最小入邊以及其端點,保證無環
                                                               214
     UnionFind() { memset(fa, 0, sizeof(fa)); }
137
138
     void clear(int n) {
                                                               215
                                                                       do {
                                                                         ed[a] = extract(Q[a]);
139
       memset(fa + 1, 0, sizeof(int) * n);
                                                               216
                                                               217
                                                                         a = id[ed[a]->u];
140
                                                                       } while (a == b && Q[a]);
141
     int find(int x) {
                                                               218
       return fa[x] ? fa[x] = find(fa[x]) : x;
                                                                       if (a == b) break;
                                                               219
142
                                                                       if (!mark[a]) continue;
                                                               220
143
                                                                       //對發現的環進行收縮,以及環內的節點重新編號,
     int operator[](int x) { return find(x); }
144
                                                               221
145 };
                                                                       //總權值更新
                                                               222
146
                                                                       for (a = b, n++; a != n; a = p) {
                                                               223
147
   struct Edge {
                                                               224
                                                                         id.fa[a] = fa[a] = n;
148
     int u, v, w, w0;
                                                               225
                                                                         if (Q[a]) Q[a]->constant -= ed[a]->w;
149 }:
                                                               226
                                                                         Q[n] = merge(Q[n], Q[a]);
150
                                                                         p = id[ed[a]->u];
                                                               227
151 struct Heap {
                                                               228
                                                                         nxt[p == n ? b : p] = a;
     Edge *e;
152
                                                               229
                                                                      }
153
     int rk, constant;
                                                                    }
                                                               230
     Heap *lch, *rch;
154
                                                               231 }
155
                                                               232
156
     Heap(Edge *_e):
                                                               233 ll expand(int x, int r);
157
       e(_e), rk(1), constant(0), lch(NULL), rch(NULL){}
                                                               234 | 11 expand_iter(int x) {
158
                                                               235
                                                                    11 r = 0;
     void push() {
159
                                                               236
                                                                     for(int u=nxt[x];u!=x;u=nxt[u]){
       if (lch) lch->constant += constant;
160
                                                                       if (ed[u]->w0 >= INF)
                                                               237
       if (rch) rch->constant += constant;
161
                                                               238
                                                                         return INF:
162
       e->w += constant;
                                                                       else
                                                               239
       constant = 0;
163
                                                               240
                                                                         r += expand(ed[u]->v,u)+ed[u]->w0;
164
                                                               241
                                                                    }
165 };
                                                               242
                                                                    return r;
166
                                                               243 }
167
   Heap *merge(Heap *x, Heap *y) {
                                                               244
168
     if (!x) return y;
                                                               245
                                                                  11 expand(int x, int t) {
     if (!y) return x;
169
                                                               246
                                                                    11 r = 0;
170
     if(x->e->w + x->constant > y->e->w + y->constant)
                                                                    for (; x != t; x = fa[x]) {
                                                               247
       swap(x, y);
171
                                                               248
                                                                      r += expand_iter(x);
172
     x->push();
                                                                      if (r >= INF) return INF;
                                                               249
173
     x - rch = merge(x - rch, y);
                                                                    }
                                                               250
174
     if (!x->lch || x->lch->rk < x->rch->rk)
                                                               251
                                                                     return r;
175
       swap(x->1ch, x->rch);
                                                               252
176
     if (x->rch)
                                                               253
       x - rk = x - rch - rk + 1;
177
                                                               254
                                                                  void link(int u, int v, int w) {
     else.
178
                                                                    in[v].push_back({u, v, w, w});
                                                               255
179
       x - rk = 1;
                                                               256 }
180
     return x;
                                                               257
181 }
                                                               258 int main() {
182
                                                               259
                                                                    int rt:
183 Edge *extract(Heap *&x) {
                                                               260
                                                                     scanf("%d %d %d", &n, &m, &rt);
     Edge *r = x -> e;
184
                                                                    for (int i = 0; i < m; i++) {</pre>
                                                               261
185
     x - push();
                                                               262
                                                                       int u, v, w;
186
     x = merge(x->lch, x->rch);
                                                                       scanf("%d %d %d", &u, &v, &w);
                                                               263
187
     return r;
                                                               264
                                                                      link(u, v, w);
188 }
                                                               265
189
                                                                     //保證強連通
                                                               266
190 vector < Edge > in[maxn];
                                                                     for (int i = 1; i <= n; i++)</pre>
                                                               267
191
   int n, m, fa[maxn << 1], nxt[maxn << 1];</pre>
                                                                      link(i > 1 ? i - 1 : n, i, INF);
                                                               268
192 Edge *ed[maxn << 1];
                                                               269
                                                                     contract();
193 | Heap *Q[maxn << 1];
                                                               270
                                                                     11 ans = expand(rt, n);
194 UnionFind id;
                                                               271
                                                                    if (ans >= INF)
195
                                                                      puts("-1");
                                                               272
196
   void contract() {
                                                               273
                                                                     else
     bool mark[maxn << 1];</pre>
197
                                                               274
                                                                      printf("%11d\n", ans);
     //將圖上的每一個節點與其相連的那些節點進行記錄
198
                                                               275
                                                                     return 0;
     for (int i = 1; i <= n; i++) {
199
                                                               276
       queue<Heap *> q;
200
       for (int j = 0; j < in[i].size(); j++)</pre>
201
202
         q.push(new Heap(&in[i][j]));
```

while (q.size() > 1) {

63

pq.push({s, 0, h[s]});

while (!pq.empty()) {

二分圖最大匹配 6.16

```
1 #include <iostream>
  #include <string>
3 #include <cmath>
4 #include <cstring>
5 #include <vector>
6 using namespace std;
7| /* 核心: 最大點獨立集 = |V| -
       /最大匹配數/,用匈牙利演算法找出最大匹配數 */
8
9
  struct Student {
      int height:
10
11
       char sex;
12
       string musicStyle;
13
       string sport:
14
       bool canMatch(const Student& other) {
           return ((abs(this->height - other.height) <=</pre>
15
               40) && (this->musicStyle ==
               other.musicStyle)
16
               && (this->sport != other.sport));
17
18
       friend istream& operator >> (istream& input,
           Student& student);
19 };
  vector<Student> boys;
20
21 vector < Student > girls;
22 vector<vector<int>> G;
23 bool used[505];
24 int p[505]; //pair of boys and girls -> p[j] = i
       代表i男生連到i女生
25 istream& operator >> (istream& input, Student&
       student) {
26
       input >> student.height >> student.sex >>
           student.musicStyle >> student.sport;
       return input:
27
28
  }
  bool match(int i) {
29
       for (int j: G[i]) {
30
31
           if (!used[j]) {
               used[j] = true;
32
               if (p[j] == -1 || match(p[j])) {
33
                   p[j] = i;
34
35
                   return true;
36
               }
37
           }
38
       return false;
39
40 }
  void maxMatch(int n) {
41
42
       memset(p, -1, sizeof(p));
43
       int res = 0;
       for (int i = 0; i < boys.size(); ++i) {</pre>
44
45
           memset(used, false, sizeof(used));
           if (match(i))
46
47
               ++res:
48
49
       cout << n - res << '\n';
50 }
  int main() {
51
52
       int t, n;
       scanf("%d", &t);
53
       while (t--) {
54
55
           scanf("%d", &n);
           boys.clear();
56
57
           girls.clear();
           G.assign(n + 5, vector<int>());
58
59
           Student student;
           for (int i = 0; i < n; ++i) {
60
61
               cin >> student;
               if (student.sex == 'M')
62
                   boys.emplace_back(student);
63
64
65
                   girls.emplace_back(student);
66
67
           for (int i = 0; i < boys.size(); ++i) {</pre>
               for (int j = 0; j < girls.size(); ++j) {</pre>
68
```

```
G[i].emplace_back(j);
70
71
                      }
                 }
72
73
74
            maxMatch(n);
75
       }
76
        return 0:
77 }
```

if (boys[i].canMatch(girls[j])) {

```
6.17 Astar
1 #include <cstdio>
  #include <cstring>
  #include <vector>
  #include <queue>
4
5
  #include <algorithm>
6
  using namespace std;
7
  /*
      A*求 k 短 路
8
9
      f(x) = g(x) + h(x)
10
      g(x) 是實際cost
11
      h(x) 是估計cost
       在此h(x)用所有點到終點的最短距離
12
       則當用Astar找點
13
       當該點cnt[u] == k時即得到該點的第k短路
14
15
  */
  #define maxn 105
16
  struct Edge {
17
18
      int u, v, w;
19 }:
  struct Item_pqH {
20
21
      int u, w;
      bool operator <(const Item_pqH& other) const {</pre>
22
23
           return this->w > other.w;
24
25
  };
26
  struct Item_astar {
      int u, g, f;
27
      bool operator <(const Item_astar& other) const {</pre>
28
29
           return this->f > other.f;
30
31 };
32 vector < vector < Edge >> G:
33 //反向圖,用於建h(u)
34 vector<vector<Edge>> invertG;
35 int h[maxn];
36
  bool visited[maxn];
37 int cnt[maxn];
  //用反向圖去求出每一點到終點的最短距離,並以此當作h(u)
38
  void dijkstra(int s, int t)
39
40
  {
41
       memset(visited, 0, sizeof(visited));
42
       priority_queue<Item_pqH> pq;
43
      pq.push({s, 0});
44
      h[s] = 0;
45
       while (!pq.empty()) {
46
           Item_pqH curr = pq.top();
47
           pq.pop();
48
           visited[curr.u] = true;
49
           for (Edge& edge: invertG[curr.u]) {
50
               if (!visited[edge.v]) {
51
                   if (h[edge.v] > h[curr.u] + edge.w) {
52
                       h[edge.v] = h[curr.u] + edge.w;
                       pq.push({edge.v, h[edge.v]});
53
                   }
               }
55
56
          }
57
      }
58 }
59
  int Astar(int s, int t, int k) {
60
       memset(cnt, 0, sizeof(cnt));
61
       priority_queue < Item_astar > pq;
```

```
64
           Item_astar curr = pq.top();
           pq.pop();
65
66
           ++cnt[curr.u];
           //終點出現k次,此時即可得k短路
67
68
           if (cnt[t] == k)
69
               return curr.g;
           for (Edge& edge: G[curr.u]) {
70
71
               if (cnt[edge.v] < k) {</pre>
72
                    pq.push({edge.v, curr.g + edge.w,
                        curr.g + edge.w + h[edge.v]});
73
           }
74
      }
75
76
       return -1;
77
  }
78
  int main() {
79
       int n, m;
80
       while (scanf("%d %d", &n, &m) && (n != 0 && m !=
           0)){
81
           G.assign(n + 5, vector < Edge > ());
82
           invertG.assign(n + 5, vector<Edge>());
83
           int s, t, k;
           scanf("%d %d %d", &s, &t, &k);
84
85
           int u, v, w;
           for (int i = 0; i < m; ++i) {
86
87
                scanf("%d %d %d", &u, &v, &w);
               G[u].emplace_back(Edge{u, v, w});
88
89
                invertG[v].emplace_back(Edge{v, u, w});
           }
90
91
           memset(h, 0x3f, sizeof(h));
92
           dijkstra(t, s);
           printf("%d\n", Astar(s, t, k));
93
94
95
       return 0;
96 }
```

6.18 Josephus Problem

```
1 #include <cstdio>
2 //JosephusProblem,只是規定要先砍1號
3 // 所以當作有n - 1個人,目標的13順移成12
4 //再者從0開始比較好算,所以目標12順移成11
5 int getWinner(int n, int k)
6 {
7
      int winner = 0;
      for (int i = 1; i <= n; ++i)
8
9
          winner = (winner + k) % i;
10
      return winner;
11 }
12 int main()
13 {
14
      int n;
      while (scanf("%d", &n) != EOF && n)
15
16
      {
17
          for (int k = 1; k \le n; ++k)
18
19
              if (getWinner(n, k) == 11)
20
21
              {
22
                  printf("%d \ n", k);
23
                  break;
24
25
          }
26
27
      return 0;
28 }
```

6.19 KM

```
1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 using namespace std;
```

```
5 /*題意:
      給定一個W矩陣,現在分成row、column兩個1維陣列
6
      W[i][j]=k即代表column[i] + row[j]要>=k
7
      求row[] 與 column[]的所有值在滿足矩陣w的要求之下
8
      row[] + column[]所有元素相加起來要最小
9
      利用KM求二分圖最大權匹配
10
      Lx -> vertex labeling of X
11
12
      Ly -> vertex labeling of y
13
      一開始Lx[i] = max(W[i][j]), Ly = 0
      Lx[i] + Ly[j] >= W[i][j]
14
      要最小化全部的(Lx[i] + Ly[j])加總
15
      不斷的調整vertex
16
          labeling去找到一條交錯邊皆滿足Lx[i] + Ly[j]
          == W[i][i]的增廣路
      最後會得到正確的二分圖完美匹配中的最大權分配(先滿足最多匹配
17
      意義是將最大化所有匹配邊權重和的問題改成最小化所有點的權重和
18
19
  #define maxn 505
  int W[maxn][maxn];
20
21 int Lx[maxn], Ly[maxn];
22 bool S[maxn], T[maxn];
  //L[i] = j -> S_i配給T_j, -1 for 還沒匹配
24
  int L[maxn]:
25
  int n;
  bool match(int i) {
26
27
      S[i] = true;
28
      for (int j = 0; j < n; ++j) {
         // KM重點
29
30
         // Lx + Ly >= selected_edge(x, y)
         // 要想辦法降低Lx + Ly
31
          // 所以選Lx + Ly == selected_edge(x, y)
32
         if (Lx[i] + Ly[j] == W[i][j] && !T[j]) {
33
             T[j] = true;
34
35
             if ((L[j] == -1) || match(L[j])) {
36
                 L[j] = i;
37
                 return true;
38
             }
39
         }
      }
40
41
      return false;
42 }
43 // 修改二分圖上的交錯路徑上點的權重
44 // 此舉是在通過調整 vertex
      labeling看看能不能產生出新的增廣路(KM的增廣路要求Lx[i]
      + Ly[j] == W[i][j])
45 // 在這裡優先從最小的 diff調調看,才能保證最大權重匹配
  void update()
46
47
  {
      int diff = 0x3f3f3f3f;
48
      for (int i = 0; i < n; ++i) {
49
50
         if (S[i]) {
51
             for (int j = 0; j < n; ++j) {
                 if (!T[j])
52
                     diff = min(diff, Lx[i] + Ly[j] -
53
                        W[i][j]);
55
         }
56
57
      for (int i = 0; i < n; ++i) {
         if (S[i]) Lx[i] -= diff;
58
59
         if (T[i]) Ly[i] += diff;
      }
60
  }
61
62
  void KM()
63
  {
      for (int i = 0; i < n; ++i) {
64
         L[i] = -1;
65
66
         Lx[i] = Ly[i] = 0;
         for (int j = 0; j < n; ++j)
67
             Lx[i] = max(Lx[i], W[i][j]);
68
69
70
      for (int i = 0; i < n; ++i) {
         while(1) {
71
72
             memset(S, false, sizeof(S));
             memset(T, false, sizeof(T));
73
74
             if (match(i))
```

```
75
                     break;
76
                 else
77
                     update(); //去調整 vertex
                          labeling以增加增廣路徑
            }
78
79
80
   }
81
   int main()
82 {
83
        while (scanf("%d", &n) != EOF) {
            for (int i = 0; i < n; ++i)
84
85
                 for (int j = 0; j < n; ++j)
                     scanf("%d", &W[i][j]);
86
            KM();
87
88
            int res = 0;
            for (int i = 0; i < n; ++i) {</pre>
89
                 if (i != 0)
90
                     printf(" %d", Lx[i]);
91
92
93
                     printf("%d", Lx[i]);
                 res += Lx[i];
94
95
            }
            puts("");
96
            for (int i = 0; i < n; ++i) {
97
98
                 if (i != 0)
                     printf(" %d", Ly[i]);
99
100
                     printf("%d", Ly[i]);
101
102
                 res += Ly[i];
            }
103
104
            puts("");
105
            printf("%d\n", res);
106
107
        return 0;
108 }
```

6.20 LCA 倍增法

34 }

```
1|#include <cstdio>
2 #include <vector>
3 #include <cstdlib>
4 using namespace std;
5 | //倍增法預處理0(nlogn),查詢0(logn),利用1ca找樹上任兩點距
6 #define maxn 100005
7 struct Edge
8 {
9
    int u, v, w;
10 };
11 vector<vector<Edge>> G; // tree
12 int fa[maxn][31]; //fa[u][i] -> u的第2^i個祖先
13 long long dis[maxn][31];
14 int dep[maxn]; //深度
15 void dfs(int u, int p) //預處理fa
16 | {
      fa[u][0] = p; //因為u的第2^0 = 1的祖先就是p
17
18
      dep[u] = dep[p] + 1;
19
      //第2^{1}的祖先是 (第2^{1}(i - 1)個祖先)的第2^{1}(i - 1)
          1)的祖先
20
      //ex: 第8個祖先是 (第4個祖先)的第4個祖先
21
      for (int i = 1; i < 31; ++i)
22
      {
          fa[u][i] = fa[fa[u][i - 1]][i - 1];
23
          dis[u][i] = dis[fa[u][i - 1]][i - 1] +
24
              dis[u][i - 1];
      }
25
      //遍歷子節點
26
27
      for (Edge& edge: G[u])
28
          if (edge.v == p)
29
30
              continue:
          dis[edge.v][0] = edge.w;
31
32
          dfs(edge.v, u);
33
      }
```

```
35 long long lca(int x, int y)
      //此函數是找1ca同時計算x、y的距離 -> dis(x, 1ca)
      + dis(lca, y)
36 {
      //讓y比x深
37
38
      if (dep[x] > dep[y])
          swap(x, y);
39
40
      int deltaDep = dep[y] - dep[x];
      long long res = 0;
41
42
43
      //讓y與x在同一個深度
      for (int i = 0; deltaDep != 0; ++i, deltaDep >>=
44
          1)
45
          if (deltaDep & 1)
46
              res += dis[y][i], y = fa[y][i];
47
48
      if (y == x) //x = y -> x \ y彼此是彼此的祖先
49
          return res;
50
51
      //往上找,一起跳,但x、y不能重疊
      for (int i = 30; i \ge 0 && y != x; --i)
52
53
54
          if (fa[x][i] != fa[y][i])
55
56
               res += dis[x][i] + dis[y][i];
              x = fa[x][i];
57
58
              y = fa[y][i];
          }
59
60
      }
      // 最後發現不能跳了,此時x的第2^0 =
61
           1個祖先(或說y的第2^{0} = 1的祖先)即為x \times y的1ca
      res += dis[x][0] + dis[y][0];
62
63
      return res;
64
  }
65
  int main()
66
  {
67
    int n, q;
    while (~scanf("%d", &n) && n)
68
69
70
      int v, w;
71
      G.assign(n + 5, vector < Edge > ());
72
          for (int i = 1; i <= n - 1; ++i)
73
74
        scanf("%d %d", &v, &w);
        G[i + 1].push_back({i + 1, v + 1, w});
76
        G[v + 1].push_back({v + 1, i + 1, w});
77
78
          dfs(1, 0);
79
          scanf("%d", &q);
          int u;
80
81
          while (q--)
82
               scanf("%d %d", &u, &v);
83
               printf("%11d%c", lca(u + 1, v + 1), (q) ?
84
                   ' ' : '\n');
85
    }
86
    return 0;
88 }
```

6.21 LCA 樹壓平 RMO

```
1 #include <cstdio>
2 #include <vector>
3 #include <cstdlib>
4 using namespace std;
5 //樹壓平求LCA RMQ(sparse table
     0(nlogn)建立,0(1)查詢),求任意兩點距離,
6 | //如果用笛卡兒樹可以壓到 O(n)建立, O(1)查詢
7 //理論上可以過,但遇到直鏈的 case dfs深度會 stack
     overflow
  #define maxn 100005
9
  struct Edge
10 {
```

```
11
   int u, v, w;
                                                              84
                                                                     calLog();
12 };
                                                                   while (~scanf("%d", &n) && n)
                                                              85
13 int dep[maxn];
                                                              86
                                                                     int v, w;
14 int pos[maxn];
                                                              87
15 long long dis[maxn];
                                                              88
                                                                     G.assign(n + 5, vector < Edge > ());
                                                                     tp = 0;
16 int st[maxn * 2][32]; //sparse table
                                                              89
17 int realLCA[maxn * 2][32];
                                                                         for (int i = 1; i <= n - 1; ++i)
                                                              90
       //最小深度對應的節點,及真正的LCA
                                                              91
                                                                       scanf("%d %d", &v, &w);
18 int Log[maxn]; //取代std::log2
                                                              92
                                                              93
                                                                       G[i].push_back({i, v, w});
19 int tp; // timestamp
                                                              94
                                                                       G[v].push_back({v, i, w});
20
  vector<vector<Edge>> G; // tree
                                                              95
21
  void calLog()
                                                              96
22 {
                                                                         dfs(0, -1);
                                                              97
23
    Log[1] = 0;
                                                              98
                                                                         buildST();
    Log[2] = 1;
24
25
    for (int i = 3; i < maxn; ++i)</pre>
                                                              99
                                                                         scanf("%d", &q);
                                                             100
26
                                                             101
                                                                         int u;
27
      Log[i] = Log[i / 2] + 1;
                                                                         while (q--)
28
    }
                                                             102
                                                             103
29 }
                                                                             scanf("%d %d", &u, &v);
  void buildST()
                                                             104
30
                                                                             printf("%11d%c", getDis(u, v), (q) ? ' '
                                                             105
31
                                                                                  : '\n');
32
    for (int j = 0; Log[tp]; ++j)
                                                             106
33
                                                             107
                                                                   }
      for (int i = 0; i + (1 << j) - 1 < tp; ++i)
34
35
                                                             108
                                                                   return 0;
                                                             109 }
         if (st[i - 1][j] < st[i - 1][j + (1 << i - 1)])</pre>
36
37
38
           st[i][j] = st[i - 1][j];
39
           realLCA[i][j] = realLCA[i - 1][j];
                                                                6.22 MCMF
40
        }
41
        else
                                                               1 #include <cstdio>
42
           st[i][j] = st[i - 1][j + (1 << i - 1)];
                                                                #include <vector>
43
                                                                #include <cstring>
44
           realLCA[i][j] = realLCA[i - 1][j + (1 << i -
                                                                #include <queue>
               1)];
45
                                                                using namespace std;
      }
                                                                #define maxn 225
46
                                                                #define INF 0x3f3f3f3f
47
    }
  } // O(nlogn)
                                                               8
                                                                struct Edge
48
49 int query(int 1, int r) // [1, r] min
                                                              9
                                                                {
                                                              10
                                                                     int u, v, cap, flow, cost;
       depth即為1ca的深度
                                                              11 };
50 {
                                                              12
                                                                //node size, edge size, source, target
51
    int k = Log[r - 1 + 1];
                                                              13 int n, m, s, t;
    if (st[1][k] < st[r - (1 << k) + 1][k])
52
                                                              14 vector < vector < int >> G;
53
      return realLCA[1][k];
                                                              15 vector < Edge > edges;
54
     else
                                                              16 //SPFA用
55
      return realLCA[r - (1 << k) + 1][k];</pre>
                                                              17 bool inqueue[maxn];
56 }
                                                                //SPFA用的dis[]
  void dfs(int u, int p) //euler tour
57
                                                              19 long long dis[maxn];
58
    pos[u] = tp;
                                                              20 //maxFlow一路扣回去時要知道 parent
59
    st[tp][0] = dep[u];
                                                              21 //<注> 在這題因為G[][]中存的是edgeIndex in edges[]
60
61
    realLCA[tp][0] = dep[u];
                                                              22
62
    ++tp:
                                                                     所以parent存的也是對應edges[]中的edgeIndex(主要是方便)
63
    for (int i = 0; i < G[u].size(); ++i)</pre>
                                                              23 int parent[maxn];
64
                                                              24 //maxFlow時需要紀錄到node u時的bottleneck
      Edge& edge = G[u][i];
65
                                                              25 //同時也代表著u該次流出去的量
66
      if (edge.v == p)
                                                              26 long long outFlow[maxn];
67
         continue;
                                                              27
                                                                void addEdge(int u, int v, int cap, int cost)
68
       dep[edge.v] = dep[u] + 1;
                                                              28
                                                                {
      dis[edge.v] = dis[edge.u] + edge.w;
69
                                                              29
                                                                     edges.emplace_back(Edge{u, v, cap, 0, cost});
70
       dfs(edge.v, u);
                                                              30
                                                                     edges.emplace_back(Edge{v, u, 0, 0, -cost});
       st[tp++][0] = dep[u];
71
                                                              31
                                                                     m = edges.size();
72
                                                                     G[u].emplace_back(m - 2);
                                                              32
73 }
                                                                     G[v].emplace_back(m - 1);
                                                              33
74 long long getDis(int u, int v)
75 {
                                                                //一邊求最短路的同時一邊MaxFLow
76
    if (pos[u] > pos[v])
                                                              36 bool SPFA(long long& maxFlow, long long& minCost)
77
      swap(u, v);
                                                              37
78
    int lca = query(pos[u], pos[v]);
                                                              38
                                                                     // memset(outFlow, 0x3f, sizeof(outFlow));
    return dis[u] + dis[v] - 2 * dis[query(pos[u],
79
                                                                     memset(dis, 0x3f, sizeof(dis));
                                                              39
         pos[v])];
                                                                     memset(inqueue, false, sizeof(inqueue));
                                                              40
80 }
                                                              41
                                                                     queue < int > q;
81
  int main()
                                                              42
                                                                     q.push(s);
82 {
                                                              43
                                                                     dis[s] = 0;
    int n, q;
                                                                     inqueue[s] = true;
                                                              44
```

```
45
       outFlow[s] = INF;
                                                             116
       while (!q.empty())
                                                                         printf("Case %d: %11d\n", Case, -MCMF());
                                                             117
46
47
                                                             118
                                                                    }
48
           int u = q.front();
                                                             119
                                                                     return 0;
49
           q.pop();
                                                             120 }
50
           inqueue[u] = false;
           for (const int edgeIndex: G[u])
51
52
                                                                        莫隊
                                                                6.23
                const Edge& edge = edges[edgeIndex];
53
54
                if ((edge.cap > edge.flow) &&
                    (dis[edge.v] > dis[u] + edge.cost))
                                                              1 #include <cstdio>
                                                                #include <cmath>
55
               {
                    dis[edge.v] = dis[u] + edge.cost;
                                                                #include <algorithm>
56
                    parent[edge.v] = edgeIndex;
57
                                                              4
                                                                using namespace std;
58
                    outFlow[edge.v] = min(outFlow[u],
                                                              5
                        (long long)(edge.cap -
                                                                     利用 prefix前 綴 XOR和
                                                              6
                        edge.flow));
                                                                     如果要求[x, y]的XOR和只要回答prefix[y] ^ prefix[x
                                                              7
59
                    if (!inqueue[edge.v])
                                                                         - 1]即可在0(1)回答
                    {
60
                                                                     同時維護 cnt [i]代表 [x, y] XOR和 == i的個數
                                                              8
                        q.push(edge.v);
61
                                                                     如此我們知道[1, r]可以快速知道[1 - 1, r], [1 + 1,
                                                              9
                        inqueue[edge.v] = true;
62
                                                                         r], [1, r - 1], [1, r + 1]的答案
                    }
63
                                                                     就符合Mo's algorithm的思維O(N * sqrt(n))
                                                              10
               }
64
                                                                     每次轉移為0(1)
           }
                                                              11
65
                                                                     具體轉移方法在下面
66
                                                              12
67
       //如果 dis[t] > 0代表根本不賺還倒賠
                                                              13
                                                                */
       if (dis[t] > 0)
                                                              14 #define maxn 100005
68
           return false;
69
                                                                //在此prefix[i]是[1, i]的XOR和
       maxFlow += outFlow[t];
70
                                                                int prefix[maxn];
                                                                //log_2(1000000) =
71
       minCost += dis[t] * outFlow[t];
                                                              17
72
       //一路更新回去這次最短路流完後要維護的MaxFlow演算法相關
                                                                     19.931568569324174087221916576937...
                                                                //所以開到1 << 20
73
       int curr = t;
                                                              18
74
       while (curr != s)
                                                                //cnt[i]代表的是有符合nums[x, y] such that nums[x] ^
75
                                                                     nums[x + 1] ^ ... ^ nums[y] == i
           edges[parent[curr]].flow += outFlow[t];
76
                                                                //的個數
                                                              20
77
           edges[parent[curr] ^ 1].flow -= outFlow[t];
                                                              21 long long cnt[1 << 20];
78
           curr = edges[parent[curr]].u;
                                                              22 //塊大小 -> sqrt(n)
79
       }
                                                                int sqrtQ;
                                                              23
80
       return true;
                                                              24
                                                                struct Query
81 }
                                                                {
                                                              25
82
   long long MCMF()
                                                              26
                                                                     int 1, r, id;
83
  {
                                                                    bool operator < (const Query& other) const</pre>
                                                              27
       long long maxFlow = 0;
84
                                                              28
85
       long long minCost = 0;
                                                              29
                                                                         if (this->l / sqrtQ != other.l / sqrtQ)
       while (SPFA(maxFlow, minCost))
86
                                                                             return this->1 < other.1;</pre>
                                                              30
87
                                                                         //奇偶排序(優化)
                                                              31
88
       return minCost;
                                                                         if (this->1 / sqrtQ & 1)
                                                              32
89 }
                                                              33
                                                                             return this->r < other.r;</pre>
90 int main()
                                                              34
                                                                         return this->r > other.r;
91
  {
                                                              35
                                                                    }
92
       int T;
                                                              36 };
       scanf("%d", &T);
93
                                                              37 Query querys[maxn];
94
       for (int Case = 1; Case <= T; ++Case)</pre>
                                                              38 long long ans[maxn];
95
                                                              39
                                                                long long res = 0;
           //總共幾個月, 囤貨成本
96
                                                              40
                                                                int k;
97
           int M. I:
                                                                void add(int x)
                                                              41
98
           scanf("%d %d", &M, &I);
                                                              42
                                                                {
99
           //node size
                                                              43
                                                                    res += cnt[k ^ prefix[x]];
100
           n = M + M + 2;
                                                              44
                                                                     ++cnt[prefix[x]];
           G.assign(n + 5, vector<int>());
101
                                                              45 }
102
           edges.clear();
                                                                void sub(int x)
                                                              46
103
           s = 0;
                                                              47
                                                                {
           t = M + M + 1;
104
                                                              48
                                                                     --cnt[prefix[x]];
           for (int i = 1; i <= M; ++i)
105
                                                                     res -= cnt[k ^ prefix[x]];
                                                              49
           {
106
                                                                }
                                                              50
107
                int produceCost, produceMax, sellPrice,
                                                                int main() {
                    sellMax, inventoryMonth;
                                                              52
                                                                    int n, m;
                scanf("%d %d %d %d %d", &produceCost,
108
                                                                     scanf("%d %d %d", &n, &m, &k);
                                                              53
                    &produceMax, &sellPrice, &sellMax,
                                                              54
                                                                     sqrtQ = sqrt(n);
                    &inventoryMonth);
                                                                    for (int i = 1; i <= n; ++i) {
                                                              55
109
                addEdge(s, i, produceMax, produceCost);
                                                              56
                                                                         scanf("%d", &prefix[i]);
110
                addEdge(M + i, t, sellMax, -sellPrice);
                                                                         prefix[i] ^= prefix[i - 1];
                                                              57
               for (int j = 0; j <= inventoryMonth; ++j)</pre>
111
                                                              58
112
               {
                                                              59
                                                                     for (int i = 1; i <= m; ++i) {
                    if (i + j \le M)
113
                                                                         scanf("%d %d", &querys[i].1, &querys[i].r);
                                                              60
114
                        addEdge(i, M + i + j, INF, I * j);
                                                                         //減1是因為prefix[i]是[1,
                                                              61
               }
115
                                                                             i]的前綴XOR和,所以題目問[1,
```

```
//begin到end全部刪掉
               r]我們要回答[1 - 1, r]的答案
                                                            34
           --querys[i].1;
                                                            35
                                                                   chthollyTree.erase(begin, end);
62
           querys[i].id = i;
63
                                                            36
                                                                   //填回去[1, r]的區間
      }
64
                                                            37
                                                                   chthollyTree.insert(Node(1, r, val));
65
      sort(querys + 1, querys + m + 1);
                                                            38 }
66
      int 1 = 1, r = 0;
                                                            39
                                                              //區間加值(直接一個個區間去加)
      for (int i = 1; i <= m; ++i) {</pre>
67
                                                            40
                                                              void add(long long l, long long r, long long val) {
68
          while (1 < querys[i].1) {</pre>
                                                            41
                                                                   set<Node>::iterator end = split(r + 1);
              sub(1);
69
                                                            42
                                                                   set < Node >::iterator begin = split(1);
70
               ++1:
                                                            43
                                                                   for (set<Node>::iterator it = begin; it != end;
71
          }
                                                                       ++it)
          while (1 > querys[i].1) {
72
                                                            44
                                                                       it->val += val;
73
               --1;
                                                            45 }
              add(1);
74
                                                              //查詢區間第k小 -> 直接把每個區間丟去 vector排序
                                                            46
75
                                                            47
                                                              long long getKthSmallest(long long l, long long r,
          while (r < querys[i].r) {</pre>
76
                                                                   long long k) {
77
              ++r:
                                                            48
                                                                   set<Node>::iterator end = split(r + 1);
78
              add(r);
                                                            49
                                                                   set<Node>::iterator begin = split(1);
79
                                                                   //pair -> first: val, second: 區間長度
                                                            50
80
           while (r > querys[i].r) {
                                                                   vector<pair<long long, long long>> vec;
                                                            51
81
              sub(r);
                                                            52
                                                                   for (set<Node>::iterator it = begin; it != end;
82
               --r;
                                                                       ++it) {
          }
83
                                                                       vec.push_back({it->val, it->r - it->l + 1});
                                                            53
          ans[querys[i].id] = res;
84
                                                            54
85
                                                            55
                                                                  sort(vec.begin(), vec.end());
      for (int i = 1; i \le m; ++i){
86
                                                            56
                                                                   for (const pair<long long, long long>& p: vec) {
          printf("%11d\n", ans[i]);
87
                                                            57
                                                                      k -= p.second;
      }
88
                                                            58
                                                                      if (k <= 0)
89
      return 0:
                                                            59
                                                                           return p.first;
90 }
                                                            60
                                                                   //不應該跑到這
                                                            61
                                                            62
                                                                   return -1;
                                                            63 }
       DataStructure
                                                              //快速冪
                                                            64
                                                            65
                                                              long long qpow(long long x, long long n, long long
                                                                   mod) {
  7.1 ChthollyTree
                                                                  long long res = 1;
                                                            66
                                                            67
                                                                   x \% = mod;
1 //重點:要求輸入資料隨機,否則可能被卡時間
                                                                   while (n)
                                                            68
2
  struct Node {
                                                            69
                                                                  {
3
      long long 1, r;
                                                            70
                                                                       if (n & 1)
      mutable long long val;
                                                            71
                                                                          res = res * x % mod;
      Node(long long 1, long long r, long long val)
                                                            72
                                                                       n >>= 1;
6
           : l(l), r(r), val(val){}
                                                            73
                                                                       x = x * x % mod;
      bool operator < (const Node& other) const{</pre>
7
                                                            74
          return this->1 < other.1;</pre>
                                                            75
8
                                                                   return res;
      }
                                                            76 }
9
                                                              //區間n次方和
10 };
11 | set < Node > chthollyTree;
                                                            78 long long sumOfPow(long long 1, long long r, long
12 //將[1, r] 拆成 [1, pos - 1], [pos, r]
                                                                   long n, long long mod) \{
13 set < Node >::iterator split(long long pos) {
                                                            79
                                                                   long long total = 0;
                                                                   set<Node>::iterator end = split(r + 1);
      //找第一個左端點大於等於pos的區間
                                                            80
14
                                                                   set<Node>::iterator begin = split(1);
      set<Node>::iterator it =
15
                                                            82
                                                                   for (set<Node>::iterator it = begin; it != end;
           chthollyTree.lower_bound(Node(pos, 0, 0));
                                                                       ++it)
      //運氣很好直接找到左端點是pos的區間
16
                                                            83
17
      if (it != chthollyTree.end() && it->l == pos)
                                                                       total = (total + qpow(it->val, n, mod) *
                                                            84
18
           return it:
                                                                           (it->r - it->l + 1)) \% mod;
      //到 這 邊 代 表 找 到 的 是 第 一 個 左 端 點 大 於 pos 的 區 間
19
                                                                  }
                                                            85
20
                                                                  return total;
          1即可找到左端點等於pos的區間(不會是別的,因為沒
      --it;
21
22
      long long l = it->l, r = it->r;
23
      long long val = it->val;
24
      chthollyTree.erase(it);
                                                              7.2 線段樹 1D
25
      chthollyTree.insert(Node(1, pos - 1, val));
26
      //回傳左端點是pos的區間iterator
                                                            1 #define MAXN 1000
27
      return chthollyTree.insert(Node(pos, r,
           val)).first;
                                                            2 int data[MAXN]; //原數據
28 }
                                                            3 int st[4 * MAXN]; //線段樹
29 //區間賦值
                                                              int tag[4 * MAXN]; //懶標
30 void assign(long long 1, long long r, long long val) {
```

9

10 }

end與begin的順序不能調換,因為end的split可能會改變 // 隨題目改變sum、max、min

inline int pull(int 1, int r) {

return st[1] + st[r];

// 1、r是左右樹的 index

31

32

33

//<注意>

split(1);

//因為 end可以在原本 begin的區間中

set<Node>::iterator end = split(r + 1), begin =

```
11
12 void build(int 1, int r, int i) {
13 // 在[1, r]區間建樹,目前根的index為i
      if (1 == r) {
14
          st[i] = data[1];
15
16
          return;
17
      int mid = 1 + ((r - 1) >> 1);
18
19
      build(1, mid, i * 2);
      build(mid + 1, r, i * 2 + 1);
20
21
      st[i] = pull(i * 2, i * 2 + 1);
22 }
23
24 int query(int ql, int qr, int l, int r, int i) {
  // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
25
      if (ql <= 1 && r <= qr)</pre>
26
27
          return st[i];
      int mid = 1 + ((r - 1) >> 1);
28
29
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
30
31
          st[i * 2] += tag[i] * (mid - 1 + 1);
          st[i * 2 + 1] += tag[i] * (r - mid);
32
          tag[i * 2] += tag[i];//下傳懶標至左節點
33
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
34
35
          tag[i] = 0;
36
37
      int sum = 0;
38
      if (ql <= mid)</pre>
          sum += query(ql, qr, l, mid, i * 2);
39
40
      if (qr > mid)
41
          sum += query(q1, qr, mid + 1, r, i*2+1);
42
      return sum;
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
  // c是變化量
47
      if (ql <= 1 && r <= qr) {</pre>
48
49
          st[i] += (r - 1 + 1) * c;
               //求和,此需乘上區間長度
50
          tag[i] += c;
51
          return;
      }
52
      int mid = 1 + ((r - 1) >> 1);
53
54
      if (tag[i] && l != r) {
55
          //如果當前懶標有值則更新左右節點
          st[i * 2] += tag[i] * (mid - 1 + 1);
56
57
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
58
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
59
          tag[i] = 0;
60
61
62
      if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
      if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
63
64
      st[i] = pull(i * 2, i * 2 + 1);
65 }
66 //如果是直接改值而不是加值,query與update中的tag與st的
67 //改值從+=改成=
```

7.3 線段樹 2D

```
1 #include <cstdio>
2 #include <algorithm>
3 using namespace std;
4 //純2D segment tree 區間查詢單點修改最大最小值
5 #define maxn 2005 //500 * 4 + 5
6 int maxST[maxn][maxn], minST[maxn][maxn];
7 int N;
8 void modifyY(int index, int 1, int r, int val, int
      yPos, int xIndex, bool xIsLeaf)
9 {
10
      if (1 == r)
11
      {
          if (xIsLeaf)
12
```

```
13
           {
               maxST[xIndex][index] =
14
                    minST[xIndex][index] = val;
15
                return:
16
           }
17
           maxST[xIndex][index] = max(maxST[xIndex *
                2][index], maxST[xIndex * 2 + 1][index]);
18
           minST[xIndex][index] = min(minST[xIndex *
                2][index], minST[xIndex * 2 + 1][index]);
19
       }
20
       else
21
       {
22
           int mid = (1 + r) / 2;
           if (yPos <= mid)</pre>
23
24
                modifyY(index * 2, 1, mid, val, yPos,
                    xIndex, xIsLeaf);
25
           else
26
                modifyY(index * 2 + 1, mid + 1, r, val,
                    yPos, xIndex, xIsLeaf);
27
           maxST[xIndex][index] =
28
                max(maxST[xIndex][index * 2],
                maxST[xIndex][index * 2 + 1]);
           minST[xIndex][index] =
29
                min(minST[xIndex][index * 2],
                minST[xIndex][index * 2 + 1]);
30
31 }
  void modifyX(int index, int 1, int r, int val, int
32
       xPos, int yPos)
33 {
34
       if (1 == r)
35
       {
36
           modifyY(1, 1, N, val, yPos, index, true);
       }
37
38
       else
39
       {
           int mid = (1 + r) / 2;
40
           if (xPos <= mid)</pre>
41
                modifyX(index * 2, 1, mid, val, xPos,
42
                    yPos);
           else
43
                modifyX(index * 2 + 1, mid + 1, r, val,
44
                    xPos, yPos);
45
           modifyY(1, 1, N, val, yPos, index, false);
46
       }
47 }
  void queryY(int index, int 1, int r, int yql, int
48
       yqr, int xIndex, int& vmax, int &vmin)
49
  {
50
       if (yql <= 1 && r <= yqr)</pre>
51
       {
           vmax = max(vmax, maxST[xIndex][index]);
52
           vmin = min(vmin, minST[xIndex][index]);
53
       }
54
55
       else
       {
56
57
           int mid = (1 + r) / 2;
58
           if (yql <= mid)</pre>
                queryY(index * 2, 1, mid, yql, yqr,
59
                    xIndex, vmax, vmin);
           if (mid < yqr)</pre>
60
61
                queryY(index * 2 + 1, mid + 1, r, yql,
                    yqr, xIndex, vmax, vmin);
62
63 }
  void queryX(int index, int 1, int r, int xql, int
64
       xqr, int yql, int yqr, int& vmax, int& vmin)
65
  {
66
       if (xql <= 1 && r <= xqr)</pre>
67
       {
68
           queryY(1, 1, N, yql, yqr, index, vmax, vmin);
       }
69
70
       else
71
       {
72
           int mid = (1 + r) / 2;
73
           if (xql <= mid)</pre>
```

```
74
                  queryX(index * 2, 1, mid, xql, xqr, yql,
                                                                      26
                      yqr, vmax, vmin);
                                                                      27
             if (mid < xqr)</pre>
                                                                      28
75
                  queryX(index * 2 + 1, mid + 1, r, xql,
76
                                                                      29
                      xqr, yql, yqr, vmax, vmin);
                                                                      30
77
        }
                                                                      31
78 }
                                                                      32
79 int main()
                                                                      33
80 | {
                                                                      34
        while (scanf("%d", &N) != EOF)
81
                                                                      35
82
                                                                      36
                                                                      37
             int val;
83
             for (int i = 1; i <= N; ++i)
                                                                      38
84
85
             {
                                                                      39
86
                  for (int j = 1; j \le N; ++j)
                                                                      40
87
                  {
                                                                      41
                      scanf("%d", &val);
88
89
                      modifyX(1, 1, N, val, i, j);
                                                                      43
                  }
                                                                      44
90
91
             }
                                                                      45
92
             int q;
                                                                      46
93
             int vmax, vmin;
                                                                      47
94
             int xql, xqr, yql, yqr;
                                                                      48
                                                                      49
95
             char op;
             scanf("%d", &q);
96
                                                                      50
             while (q--)
97
                                                                      51
98
                                                                      52
99
                  getchar(); //for \n
                                                                      53
                 scanf("%c", &op);
if (op == 'q')
100
                                                                      54
101
                                                                      55
                  {
                                                                      56
102
103
                      scanf("%d %d %d %d", &xql, &yql,
                                                                      57
                           &xqr, &yqr);
                                                                      58
                      vmax = -0x3f3f3f3f;
                                                                      59
104
                      vmin = 0x3f3f3f3f;
105
                                                                      60
                      queryX(1, 1, N, xql, xqr, yql, yqr,
                                                                      61
106
                           vmax, vmin);
                                                                      62
                      printf("%d %d\n", vmax, vmin);
                                                                      63
107
                 }
108
                                                                      64
109
                  else
                                                                      65
                  {
110
                                                                      66
111
                      scanf("%d %d %d", &xql, &yql, &val);
                                                                      67
112
                      modifyX(1, 1, N, val, xql, yql);
                                                                      68
113
                                                                      69
             }
114
                                                                      70
115
        }
                                                                      71
116
        return 0;
                                                                      72
117 }
                                                                      73
```

7.4 Trie

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4
  const int maxn = 300000 + 10;
  const int mod = 20071027;
5
7 int dp[maxn];
8 int mp[4000*100 + 10][26];
9
  char str[maxn];
10
11
  struct Trie {
12
       int seq;
13
       int val[maxn];
14
       Trie() {
15
16
            seq = 0;
            memset(val, 0, sizeof(val));
17
            memset(mp, 0, sizeof(mp));
18
19
       }
20
       void insert(char* s, int len) {
21
22
            int r = 0;
            for(int i=0; i<len; i++) {
   int c = s[i] - 'a';</pre>
23
24
                if(!mp[r][c]) mp[r][c] = ++seq;
25
```

7.5 權值線段樹

75

```
1 #include <iostream>
  #include <cstring>
  #include <algorithm>
4 using namespace std;
5 //權值線段樹 + 離散化 解決區間第k小問題
6 //其他網路上的解法: 2個 heap, Treap, AVL tree
  #define maxn 30005
8 int nums[maxn];
9
  int getArr[maxn];
10
  int id[maxn];
11| int st[maxn << 2];</pre>
12
  void update(int index, int 1, int r, int qx)
  {
13
14
       if (1 == r)
15
      {
           ++st[index];
16
17
           return;
18
      }
19
20
      int mid = (1 + r) / 2;
      if (qx <= mid)</pre>
21
```

```
r = mp[r][c];
          }
           val[r] = len;
           return;
      int find(int idx, int len) {
           int result = 0;
           for(int r=0; idx<len; idx++) {</pre>
               int c = str[idx] - 'a';
              if(!(r = mp[r][c])) return result;
               if(val[r])
                   result = (result + dp[idx + 1]) % mod;
           return result;
      }
42 };
  int main() {
      int n, tc = 1;
      while(~scanf("%s%d", str, &n)) {
          Trie tr;
           int len = strlen(str);
           char word[100+10];
           memset(dp, 0, sizeof(dp));
          dp[len] = 1;
           while(n--) {
              scanf("%s", word);
               tr.insert(word, strlen(word));
          }
           for(int i=len-1; i>=0; i--)
              dp[i] = tr.find(i, len);
           printf("Case %d: %d\n", tc++, dp[0]);
      }
      return 0;
  }
  /*******
   ****Input***
   * abcd
   * 4
   * a b cd ab
   ******
   ****Output***
74
   * Case 1: 2
```

```
update(index * 2, 1, mid, qx);
22
23
24
           update(index * 2 + 1, mid + 1, r, qx);
       st[index] = st[index * 2] + st[index * 2 + 1];
25
26 }
27 //找區間第 k個小的
28 int query(int index, int 1, int r, int k)
29 {
       if (1 == r)
30
           return id[1];
31
       int mid = (1 + r) / 2;
32
33
       //k比左子樹小
34
       if (k <= st[index * 2])</pre>
           return query(index * 2, 1, mid, k);
35
36
37
           return query(index * 2 + 1, mid + 1, r, k -
                st[index * 2]);
38 }
39 int main()
40 {
       int t;
41
       cin >> t;
42
       bool first = true;
43
44
       while (t--)
45
           if (first)
46
47
               first = false;
48
           else
               puts("");
49
50
           memset(st, 0, sizeof(st));
51
           int m, n;
52
           cin >> m >> n;
53
           for (int i = 1; i <= m; ++i)</pre>
           {
54
                cin >> nums[i];
55
                id[i] = nums[i];
56
           }
57
           for (int i = 0; i < n; ++i)
58
59
                cin >> getArr[i];
60
           //離 散 化
           //防止m == 0
61
           if (m)
62
63
                sort(id + 1, id + m + 1);
           int stSize = unique(id + 1, id + m + 1) - (id
64
                + 1);
65
           for (int i = 1; i <= m; ++i)
           {
66
67
                nums[i] = lower_bound(id + 1, id + stSize
                   + 1, nums[i]) - id;
68
           int addCount = 0;
69
70
           int getCount = 0;
71
           int k = 1;
           while (getCount < n)</pre>
72
73
           {
               if (getArr[getCount] == addCount)
74
75
                    printf("%d\n", query(1, 1, stSize,
76
                       k));
77
                    ++getCount;
78
               }
79
80
                else
81
                {
82
                    update(1, 1, stSize, nums[addCount +
                        11):
                    ++addCount;
83
84
               }
           }
85
86
       }
87
       return 0;
88 }
```

8 geometry

8.1 intersection

```
1 using LL = long long;
3
  struct Point2D {
      LL x, y;
5
  };
6
  struct Line2D {
8
      Point2D s, e;
                               // L: ax + by = c
9
      LL a, b, c;
      Line2D(Point2D s, Point2D e): s(s), e(e) {
10
          a = e.y - s.y;
11
          b = s.x - e.x;
12
13
          c = a * s.x + b * s.y;
14
      }
15
  };
16
  // 用克拉馬公式求二元一次解
17
18
  Point2D intersection2D(Line2D 11, Line2D 12) {
      LL D = 11.a * 12.b - 12.a * 11.b;
19
      LL Dx = 11.c * 12.b - 12.c * 11.b;
20
21
      LL Dy = 11.a * 12.c - 12.a * 11.c;
22
                        // intersection
23
       if(D) {
           double x = 1.0 * Dx / D;
24
25
           double y = 1.0 * Dy / D;
26
      } else {
27
          if(Dx || Dy) // Parallel lines
28
                       // Same line
29
      }
30
```

8.2 半平面相交

```
1 // Q: 給定一張凸包(已排序的點),
  // 找出圖中離凸包外最遠的距離
2
3
  const int maxn = 100 + 10;
5
  const double eps = 1e-7;
7
  struct Vector {
      double x. v:
8
9
      Vector(double x=0.0, double y=0.0): x(x), y(y) {}
10
11
       Vector operator+(Vector v) {
          return Vector(x+v.x, y+v.y);
12
13
14
       Vector operator - (Vector v) {
15
          return Vector(x-v.x, y-v.y);
16
      Vector operator*(double val) {
17
          return Vector(x*val, y*val);
18
19
       double dot(Vector v) { return x*v.x + y*v.y; }
20
21
       double cross(Vector v) { return x*v.y - y*v.x; }
       double length() { return sqrt(dot(*this)); }
22
23
       Vector unit_normal_vector() {
24
           double len = length();
25
           return Vector(-y/len, x/len);
26
27 };
28
  using Point = Vector;
29
30
31
  struct Line {
      Point p;
32
33
      Vector v;
       double ang;
34
      Line(Point p=\{\}, Vector v=\{\}): p(p), v(v) \{
35
36
           ang = atan2(v.y, v.x);
37
```

```
38
       bool operator<(const Line& 1) const {</pre>
            return ang < 1.ang;</pre>
39
40
       Point intersection(Line 1) {
41
42
            Vector u = p - 1.p;
43
            double t = 1.v.cross(u) / v.cross(1.v);
            return p + v*t;
44
45
46 | };
47
48 int n, m;
                           // 要判斷的直線
49 Line narrow[maxn];
                           // 能形成半平面交的凸包邊界點
50 Point poly[maxn];
51
52 // return true if point p is on the left of line 1
53 bool onLeft(Point p, Line 1) {
54
       return 1.v.cross(p-1.p) > 0;
55 }
56
57
   int halfplaneIntersection() {
       int 1, r;
58
                                // 排序後的向量隊列
59
       Line L[maxn]:
                               // s[i] 跟 s[i-1] 的交點
60
       Point P[maxn]:
61
       L[l=r=0] = narrow[0]; // notice: narrow is sorted
62
       for(int i=1; i<n; i++) {</pre>
63
            while(l<r && !onLeft(P[r-1], narrow[i])) r--;</pre>
64
65
            while(l<r && !onLeft(P[l], narrow[i])) l++;</pre>
66
            L[++r] = narrow[i]:
67
68
            if(1 < r) P[r-1] = L[r-1].intersection(L[r]);
69
       }
70
71
        while(l<r && !onLeft(P[r-1], L[1])) r--;</pre>
       if(r-l <= 1) return 0;
72
73
74
       P[r] = L[r].intersection(L[1]);
75
76
       int m=0;
77
       for(int i=1; i<=r; i++) {</pre>
78
            poly[m++] = P[i];
79
80
81
       return m;
82 }
83
84 Point pt[maxn];
85 Vector vec[maxn];
   Vector normal[maxn];// normal[i] = vec[i] 的單位法向量
86
87
   double bsearch(double 1=0.0, double r=1e4) {
88
89
       if(abs(r-1) < 1e-7) return 1;
90
91
        double mid = (1 + r) / 2;
92
93
        for(int i=0; i<n; i++) {</pre>
94
            narrow[i] = Line(pt[i]+normal[i]*mid, vec[i]);
95
96
       if(halfplaneIntersection())
97
98
            return bsearch(mid, r);
99
        else return bsearch(1, mid);
100
101
   int main() {
102
        while(~scanf("%d", &n) && n) {
103
104
            for(int i=0; i<n; i++) {</pre>
105
                double x, y;
                scanf("%1f%1f", &x, &y);
106
                pt[i] = {x, y};
107
108
            for(int i=0; i<n; i++) {</pre>
109
110
                vec[i] = pt[(i+1)%n] - pt[i];
111
                normal[i] = vec[i].unit_normal_vector();
112
113
            printf("%.61f\n", bsearch());
114
```

```
115 }
116 return 0;
117 }
```

8.3 凸包

```
1 // O: 平面上給定多個區域,由多個座標點所形成,再給定
  // 多點(x,y),判斷有落點的區域(destroyed)的面積總和。
  #include <bits/stdc++.h>
  using namespace std;
  const int maxn = 500 + 10:
6
  const int maxCoordinate = 500 + 10;
9
  struct Point {
10
       int x, y;
11
  };
12
13
  int n;
14
  bool destroyed[maxn];
15
  Point arr[maxn];
  vector < Point > polygons[maxn];
16
17
  void scanAndSortPoints() {
18
19
       int minX = maxCoordinate, minY = maxCoordinate;
20
       for(int i=0; i<n; i++) {</pre>
21
           int x, y;
22
           scanf("%d%d", &x, &y);
           arr[i] = (Point)\{x, y\};
23
24
           if(y < minY || (y == minY && x < minX)) {</pre>
           If there are floating points, use:
25
26
         if(y<minY || (abs(y-minY)<eps && x<minX)) {</pre>
27
               minX = x, minY = y;
28
           }
29
       sort(arr, arr+n, [minX, minY](Point& a, Point& b){
30
           double theta1 = atan2(a.y - minY, a.x - minX);
31
           double theta2 = atan2(b.y - minY, b.x - minX);
32
33
           return theta1 < theta2;</pre>
34
       });
35
       return;
36 }
37
38
      returns cross product of u(AB) \times v(AC)
39
  int cross(Point& A, Point& B, Point& C) {
       int u[2] = {B.x - A.x, B.y - A.y};
40
       int v[2] = \{C.x - A.x, C.y - A.y\};
       return (u[0] * v[1]) - (u[1] * v[0]);
42
43
  }
44
  // size of arr = n >= 3
45
  // st = the stack using vector, m = index of the top
47
  vector<Point> convex_hull() {
       vector<Point> st(arr, arr+3);
49
       for(int i=3, m=2; i<n; i++, m++) {</pre>
           while(m >= 2) {
50
51
               if(cross(st[m], st[m-1], arr[i]) < 0)</pre>
52
                   break:
53
               st.pop_back();
54
               m - -;
55
           }
56
           st.push_back(arr[i]);
57
58
       return st;
59 }
60
  bool inPolygon(vector<Point>& vec, Point p) {
61
62
       vec.push_back(vec[0]);
63
       for(int i=1; i<vec.size(); i++) {</pre>
           if(cross(vec[i-1], vec[i], p) < 0) {</pre>
64
               vec.pop_back();
66
               return false;
67
68
      vec.pop_back();
69
```

23

```
70
        return true:
71 }
72
73
           1 | x1
                     x 2
                         x 3
                                x 4
                                      x 5
                                                   xn |
           - |
74
                       Х
                                   Χ
                  Х
                             Х
                                            ... x
75
           2 | y1
                     y2 y3 y4 y5
                                                   yn |
   double calculateArea(vector < Point > & v) {
76
77
        v.push_back(v[0]);
                                       // make v \Gamma n I = v \Gamma 0 I
        double result = 0.0;
78
        for(int i=1; i<v.size(); i++)</pre>
79
80
            result += v[i-1].x*v[i].y - v[i-1].y*v[i].x;
        v.pop_back();
81
        return result / 2.0;
82
83 }
84
   int main() {
85
        int p = 0;
86
        while(~scanf("%d", &n) && (n != -1)) {
87
            scanAndSortPoints();
88
89
            polygons[p++] = convex_hull();
        }
90
91
        int x, y;
92
        double result = 0.0;
93
        while(~scanf("%d%d", &x, &y)) {
94
            for(int i=0; i<p; i++) {</pre>
95
                 if(inPolygon(polygons[i], (Point){x, y}))
96
97
                     destroyed[i] = true;
            }
98
99
        for(int i=0; i<p; i++) {</pre>
100
101
            if(destroyed[i])
                 result += calculateArea(polygons[i]);
102
103
        printf("%.21f\n", result);
104
105
        return 0;
106 }
```

9 DP

9.1 以價值為主的背包

1 / * w 變得太大所以一般的 0 1 背包解法變得不可能

```
觀察題目w變成10^9
2
    而 v_i 變 成 10^3
3
4
    N不變 10^2
    試著湊湊看dp狀態
5
    dp[maxn][maxv]是可接受的複雜度
6
    剩下的是轉移式,轉移式變成
7
    dp[i][j] = w \rightarrow
         當目前只考慮到第i個商品時,達到獲利j時最少的weight總
    所以答案是dp[n][1 \sim maxv]找價值最大且裝的下的*/
9
10 #define maxn 105
11 #define maxv 100005
12 long long dp[maxn][maxv];
                                                            7
13 long long weight[maxn];
                                                            8
14 long long v[maxn];
15 int main() {
                                                            9
                                                            10
16
      int n;
17
      long long w;
                                                            11
      scanf("%d %11d", &n, &w);
18
                                                            12
                                                            13
      for (int i = 1; i <= n; ++i) {</pre>
19
20
           scanf("%11d %11d", &weight[i], &v[i]);
                                                            14
21
22
      memset(dp, 0x3f, sizeof(dp));
                                                            15
23
      dp[0][0] = 0;
                                                            16
      for (int i = 1; i <= n; ++i) {</pre>
                                                            17
24
25
           for (int j = 0; j <= maxv; ++j) {</pre>
              if (j - v[i] >= 0)
26
                                                            19
27
                   dp[i][j] = dp[i - 1][j - v[i]] +
                                                            20
                       weight[i];
                                                            21
               dp[i][j] = min(dp[i - 1][j], dp[i][j]);
28
```

```
29
            }
30
       long long res = 0;
31
       for (int j = maxv - 1; j >= 0; --j) {
32
33
            if (dp[n][j] <= w) {</pre>
34
                 res = j;
                 break;
35
36
            }
37
       }
       printf("%11d\n", res);
38
39
       return 0;
40 }
```

9.2 抽屜

```
1 // dp[n][s][t] n: 幾個抽屜 s: 幾個是安全的 t: (0 or
      1) 最上面的抽屜是U or L
  // 分兩種 case
  // case 1: dp[n][s][0] = dp[n - 1][s + 1][1] + dp[n - 1][s + 1][1]
      1][s][0]
4 // 此時最上面放U,則
5 // dp[n - 1][s + 1][1]: 現在要放的U會導致底下n -
      1個抽屜最上面L變不安全,為了得到n個抽屜s個安全,所以要s
6 // dp[n - 1][s][0]: n -
      1個抽屜有s個安全,現在在其上面再放一個U不影響s的數量
  // case 2: dp[n][s][1] = dp[n - 1][s - 1][1] + dp[n - 1][s - 1][1]
      1][s - 1][0]
  // 在最上面放L,底下n-1個抽屜有s-
      1個安全,無論上方是U、L皆不影響
9 long long dp[70][70][2];
10 // 初始條件
11 | dp[1][0][0] = dp[1][1][1] = 1;
12 for (int i = 2; i \le 66; ++i){
      // i個抽屜0個安全且上方0 = (底下i -
13
         1個抽屜且1個安全且最上面L) + (底下n -
         1個抽屜0個安全且最上方為0)
     dp[i][0][0] = dp[i - 1][1][1] + dp[i - 1][0][0];
14
15
      for (int j = 1; j <= i; ++j) {</pre>
         dp[i][j][0] = dp[i - 1][j + 1][1] + dp[i -
16
             1][j][0];
         dp[i][j][1] = dp[i - 1][j - 1][1] + dp[i -
17
             1][j - 1][0];
18
     }
19 }
20 //答案在 dp[n][s][0] + dp[n][s][1]);
```

9.3 Barcode

```
int N, K, M;
  long long dp[55][55];
  // n -> 目前剩多少units
  // k -> 目前剩多少bars
  // m -> 1 bar最多多少units
  long long dfs(int n, int k) {
      if (k == 1) {
          return (n <= M);</pre>
      if (dp[n][k] != -1)
          return dp[n][k];
      long long result = 0;
      for (int i = 1; i < min(M + 1, n); ++i) { // <
          min(M + 1, n)是因為n不能==0
          result += dfs(n - i, k - 1);
      }
      return dp[n][k] = result;
18 }
  int main() {
      while (scanf("%d %d %d", &N, &K, &M) != EOF) {
          memset(dp, -1, sizeof(dp));
          printf("%11d\n", dfs(N, K));
```

```
cost = min(cost, solve(i, m) + solve(m, j) +
25 }
                                                                              cuts[j] - cuts[i]);
                                                                     }
                                                              14
                                                              15
                                                                     return dp[i][j] = cost;
                                                                 }
  9.4 Deque 最大差距
                                                              16
                                                              17
                                                                 int main() {
                                                              18
                                                                     int 1;
1 / * 定義 dp [1][r]是1 ~ r 時與先手最大差異值
                                                              19
                                                                     while (scanf("%d", &1) != EOF && 1){
                                                              20
    Deque可以拿頭尾
                                                              21
                                                                          scanf("%d", &n);
    所以轉移式中dp[1][r]與dp[1 + 1][r]、dp[1][r - 1]有關
3
                                                                          for (int i = 1; i <= n; ++i)
                                                              22
     轉移式:
                                                              23
                                                                              scanf("%d", &cuts[i]);
     dp[1][r] = max{a[1] - solve(1 + 1, r), a[r] -}
                                                              24
                                                                          cuts[0] = 0;
         solve(1, r - 1)
                                                                          cuts[n + 1] = 1;
     裡面用減的主要是因為求的是相減且會一直換手,所以正負正
                                                                          memset(dp, -1, sizeof(dp));
7 #define maxn 3005
                                                              27
                                                                          printf("The minimum cutting is %d.\n",
8 bool vis[maxn][maxn];
                                                                              solve(0, n + 1));
9 long long dp[maxn][maxn];
                                                                     }
                                                              28
10 long long a[maxn];
                                                              29
                                                                     return 0;
11
  long long solve(int 1, int r) {
                                                              30 }
      if (1 > r)
12
           return 0;
13
14
       if (vis[1][r])
           return dp[l][r];
15
                                                                       stringDP
                                                                 9.7
16
       vis[l][r] = true;
       long long res = a[l] - solve(l + 1, r);
17
                                                                    • Edit distance
       res = max(res, a[r] - solve(1, r - 1));
18
                                                                          S_1 最少需要經過幾次增、刪或換字變成 S_2
       return dp[1][r] = res;
19
20 }
21 | int main() {
                                                                                          dp[i-1][j-1]
                                                                                   \min \left\{ \begin{array}{c} dp[i][j-1] \\ dp[i-1][j] \\ dp[i-1][j] \end{array} \right.
22
23
       printf("%11d\n", solve(1, n));
24 }
```

9.5 LCS 和 LIS

23

24

}

return 0:

```
1 //最長共同子序列(LCS)
2 給定兩序列 A,B , 求最長的序列 C ,
  C 同時為 A,B 的子序列。
5 //最長遞增子序列 (LIS)
 給你一個序列 A , 求最長的序列 B ,
   B 是一個(非)嚴格遞增序列,且為 A 的子序列。
8
9 //LCS 和 LIS 題目轉換
10 LIS 轉成 LCS
    1. A 為原序列, B=sort(A)
11
    2. 對 A,B 做 LCS
12
13 LCS 轉成 LIS
    1. A, B 為原本的兩序列
14
    2. 最 A 序列作編號轉換,將轉換規則套用在 B
15
    3. 對 B 做 LIS
16
    4. 重複的數字在編號轉換時後要變成不同的數字,
17
      越早出現的數字要越小
18
    5. 如果有數字在 B 裡面而不在 A 裡面,
19
      直接忽略這個數字不做轉換即可
20
```

9.6 RangeDP

```
1 //區間 dp
2 int dp[55][55]; // dp[i][j] -> [i,
      j]切割區間中最小的 cost
3 int cuts[55];
  int solve(int i, int j) {
      if (dp[i][j] != -1)
          return dp[i][j];
      //代表沒有其他切法,只能是 cuts[j] - cuts[i]
7
8
      if (i == j - 1)
9
          return dp[i][j] = 0;
10
      int cost = 0x3f3f3f3f;
      for (int m = i + 1; m < j; ++m) {
```

$$dp[i][j] = \left\{ \begin{array}{cccc} i+1 & \text{if} & j=-1\\ j+1 & \text{if} & i=-1\\ dp[i-1][j-1] & \text{if} & S_1[i] = S_2[j]\\ dp[i-1][j-1] & dp[i-1][j]\\ dp[i-1][j-1] \end{array} \right\} + 1 \quad \text{if} \quad S_1[i] \neq S_2[j]$$

· Longest Palindromic Subsequence

//枚舉區間中間切點

$$dp[l][r] = \left\{ \begin{array}{ccc} 1 & \text{if} & l = r \\ dp[l+1][r-1] & \text{if} & S[l] = S[r] \\ \max\{dp[l+1][r], dp[l][r-1]\} & \text{if} & S[l] \neq S[r] \end{array} \right.$$

TreeDP 有幾個 path 長度為 k

```
1 #define maxn 50005
2 #define maxk 505
  //dp[u][u的child且距離u長度k的數量]
  long long dp[maxn][maxk];
  vector<vector<int>> G;
  int n. k:
7
  long long res = 0;
8
  void dfs(int u, int p) {
     //u自己
     dp[u][0] = 1;
10
11
     for (int v: G[u]) {
12
         if (v == p)
13
            continue;
         dfs(v, u);
14
15
         for (int i = 1; i <= k; ++i) {</pre>
            //子樹v距離i - 1的等於對於u來說距離i的
16
            dp[u][i] += dp[v][i - 1];
17
18
19
     }
     //統計在u子樹中距離u為k的數量
20
21
     res += dp[u][k];
     //統計橫跨u但還是在u的子樹中合計長度為k的:
22
23
     //考慮u有一子節點v,在v子樹中距離v長度為x的
     //以及不在v子樹但在u子樹中(這樣才會是橫跨u)且距離u長度為k
         - x - 1的
25
     //共有0.5 * (dp[v][x] * (dp[u][k - x - 1] -
         dp[v][k - x - 2]))
     //以上算式是重點,可使複雜度下降,否則枚舉一定超時
26
     //其中 dp[u][k - x - 1]是所有u子樹中距離u為k - x
27
         - 1的節點
28
     // - dp[v][k - x -
         2]是因為我們不要v子樹的節點且距離u為k - x -
         1的(要v子樹以外的),
```

```
//那些點有 dp [ v ] [ k - x - 2 ] , 最後 0 . 5 是 由於 計 算 中 i
29
           -> j以及j -> i(i、j是不同節點)
       //都會被算一遍,所以要 * 0.5
30
       long long cnt = 0;
31
       for (int v: G[u]) {
32
           if (v == p)
33
34
               continue;
35
           for (int x = 0; x \le k - 2; ++x) {
               cnt += dp[v][x] * (dp[u][k - x - 1] -
36
                   dp[v][k - x - 2]);
           }
37
38
39
       res += cnt / 2;
40 }
41 int main() {
       scanf("%d %d", &n, &k);
42
       G.assign(n + 5, vector<int>());
43
       int u, v;
44
       for (int i = 1; i < n; ++i) {
45
46
           scanf("%d %d", &u, &v);
           G[u].emplace_back(v);
47
48
           G[v].emplace_back(u);
49
50
       dfs(1, -1);
       printf("%11d\n", res);
51
52
       return 0:
53 }
```

9.9 TreeDP reroot

```
2 Re-root 經典題
3 1. 選 0 作 為 root
4 2. 以 0 為 root 去 求 出 所 有 節 點 的 subtree Size
5 3. 觀察到 re-root後的關係式
6 配合思考圖片
7 f(0)與f(2)的關係
8 | f(2) = f(0) + a - b
9| a = n - b, (subtree(2)以外的節點)
10 b = subtreeSize(2), (subtree(2))
|11| 所以 f(n) 是 n 為 root 到所有點的距離
|f(2)| = f(0) + n - 2 * subtreeSize(2)
14 f(child) = f(parent) + n - 2 * subtreeSize(child)
15 流程
      1. root = 0去求各項subtreeSize
16
17
      2. 求f(root)
      3. 以f(0)去求出re-root後的所有f(v), v != 0
18
19 整體來說
20 暴力解 O(n ^ 2)
21 re-root dp on tree O(n + n + n) \rightarrow O(n)
22 */
23 class Solution {
24 public:
      vector<int> sumOfDistancesInTree(int n,
25
          vector<vector<int>>& edges) {
26
          this->res.assign(n, 0);
27
          G.assign(n + 5, vector<int>());
28
          for (vector<int>& edge: edges) {
29
              G[edge[0]].emplace_back(edge[1]);
30
              G[edge[1]].emplace_back(edge[0]);
          }
31
32
          memset(this->visited, 0,
              sizeof(this->visited));
33
          this -> dfs(0);
34
          memset(this->visited, 0,
              sizeof(this->visited));
35
          this->res[0] = this->dfs2(0, 0);
          memset(this->visited, 0,
36
              sizeof(this->visited));
37
          this->dfs3(0, n);
38
          return this->res;
39
      }
40 private:
```

```
41
       vector<vector<int>> G;
42
      bool visited[30005]:
43
       int subtreeSize[30005];
44
       vector<int> res;
       //求 subtreeSize
45
46
       int dfs(int u) {
47
           this->visited[u] = true;
48
           for (int v: this->G[u]) {
               if (!this->visited[v]) {
49
                    this->subtreeSize[u] += this->dfs(v);
50
           }
52
           //自己
53
54
           this -> subtreeSize[u] += 1;
55
           return this->subtreeSize[u];
56
      }
57
       //求 res [0], 0到所有點的距離
58
       int dfs2(int u, int dis) {
           this->visited[u] = true;
59
60
           int sum = 0;
61
           for (int v: this->G[u]) {
62
               if (!visited[v]) {
                    sum += this -> dfs2(v, dis + 1);
63
64
65
66
           //要加上自己的距離
67
           return sum + dis;
68
69
       //算出所有的 res
70
       void dfs3(int u, int n) {
71
           this->visited[u] = true;
72
           for (int v: this->G[u]) {
73
               if (!visited[v]) {
74
                    this->res[v] = this->res[u] + n - 2 *
                        this -> subtreeSize[v];
75
                    this->dfs3(v, n);
76
               }
77
           }
78
       }
79 };
```

9.10 WeightedLIS

```
1 / / 概念基本上與LIS相同,但不能用greedy的LIS,所以只能用dp版LIS
    但有個問題是dp版要0(n^2)
    n最大200000一定超時,所以這題要改一下dp的LIS
3
4
    在DP版中有一層迴圈是要往前搜height[j] < height[i](j
        in 1 ~ i - 1)的然後挑B[j]最大的
    這 for loop造成 O(n ^ 2)
5
    注意到子問題是在1~i-1中挑出B[j]最大的
6
    這一步可以用線段樹優化
7
    所以最後可以在O(nlogn)完成*/
  #define maxn 200005
10 long long dp[maxn];
11 long long height[maxn];
12 long long B[maxn];
  long long st[maxn << 2];</pre>
13
14
  void update(int p, int index, int 1, int r, long long
      v) {
15
      if (1 == r) {
16
         st[index] = v;
17
         return:
18
      int mid = (1 + r) >> 1;
19
      if (p <= mid)</pre>
20
         update(p, (index << 1), 1, mid, v);
21
22
23
          update(p, (index << 1) + 1, mid + 1, r, v);
      st[index] = max(st[index << 1], st[(index << 1) +
24
          1]);
25 }
26
  long long query(int index, int 1, int r, int q1, int
27
      if (ql <= 1 && r <= qr)</pre>
```

41 |

42 |

```
28
           return st[index];
       int mid = (1 + r) >> 1;
29
30
       long long res = -1;
31
       if (ql <= mid)</pre>
32
           res = max(res, query(index << 1, 1, mid, q1,</pre>
                qr));
       if (mid < qr)</pre>
33
            res = max(res, query((index << 1) + 1, mid +
34
                1, r, ql, qr));
35
       return res;
36 }
37 int main() {
38
       int n;
       scanf("%d", &n);
39
40
       for (int i = 1; i <= n; ++i)</pre>
           scanf("%11d", &height[i]);
41
42
       for (int i = 1; i \le n; ++i)
           scanf("%11d", &B[i]);
43
       long long res = B[1];
44
45
       update(height[1], 1, 1, n, B[1]);
       for (int i = 2; i <= n; ++i) {</pre>
46
           long long temp;
47
           if (height[i] - 1 >= 1)
48
                temp = B[i] + query(1, 1, n, 1, height[i]
49
                    - 1);
           else
50
51
                temp = B[i];
           update(height[i], 1, 1, n, temp);
52
53
           res = max(res, temp);
54
       printf("%11d\n", res);
55
56
       return 0;
57 }
```

9.11 dplist

43			' :	' 	
44	1 1	1	l		
45	1 1	1	l	l	l I
46					
47 48	1 1	I I	l I	l I	
49			 	 	
50	1 1	1	I		1 1
51	i i	İ	I		i i
52					
53	!!!	1	<u> </u>		
54 55		 	 	 	
56	1 1	1	I	I	
57	i i	i	I		i i
58					
59	1 1	1	l		
60	1 1	1	l		l l
61 62	1 1		 I	 I	
63	i i	i	! 	I 	
64		· 			
65	1	1	I	I	l l
66	1	I	l	l	l I
67 68	I I		· I	· I	
69			' 	' 	·
70		· 			
71	1	1	I	I	l l
72	1 1	I	l	l	l I
73 74	1 1		· I		
75		1	 	l I	
76			' 	' 	
77	1 1	1	I	l	Ι Ι
78	1 1	1	l	l	l I
79	1 1				
80 81		1	 	l I	
82					
83	1 1	I	I	l	Ι Ι
84	1 1	1	l		I I
85				·	
86 87	1 1	1	 	 	
88				 	
89	1 1	1	I	l	1
90	1 1	1	l		I I
91				·	
92 93		I I	 	l I	
94	ı l		' 	' 	
95	1 1	Ι	I	I	Ι Ι
96	1	1	l	l	ı İ
97			·	· ·	
98 99		I I	l I	l I	
100				 	
101	1 1	1	I	l	l I
102	1	1	l		
103			· I	· I	
104 105			 	l I	
106	ı I		' 		
107	1 1	1	I	I	Ι Ι
108	1	1	l	l	ı İ
109			·		
110 111		1	 	 	
1112	I I		I 	 	ı l
113	1 1	Ι	I	I	
114	1 1	1	I	I	ı i
115			·	·	
116		1	 -	 -	
117	1 1	I	I	I	ı l

3							195	1 1	ı		ı	
)		1	I	I	I	I	195			 	 	
		i	i	İ	İ	İ	197	1 1		I	l	I
							198	1 1		l	l	I
		!	!	!	<u> </u>	!	199				·	
l		1	I	I	I	I	200					!
			1				201 202		 	 	 	
		i	i i	i I	! 	! 	203	1 1		I	I	ı
•							204	i i		i I		i
		1	I	I	I	I	205					
		1	I	1	I	1	206	1 1		l		I
							207	1 1		l		I
		!	!	!	!	!	208					
		I	I	I	I	I	209					
							210 211		 	 	 	
		1	I I	I I	 	I I	211	1		ı	I	ı
			' 				213	i i	 	! 	! 	i
		1	I	I	I	I	214					
		1	I	I	I	I	215	1 1		l	l	I
							216	1 1		I	I	I
		1	1	I	I	I	217			·	·	
		I	I	I	I	I	218	1		ļ	l	!
			 I	 I	· I	 I	219			 	l 	l
		I I	I I	I I	I I	I I	220 221	1		· I	· I	 I
			I 	ı 	I 	I 	221	1 1	 	1 	ı İ	ı İ
Į		ı	I	ı	I	I	223			' 		
		İ	i	İ	I	İ	224			I	I	I
							225	ı i		I	l	I
		1	1	I	I	I	226					
		1	I	I	I	I	227			l		I
							228			l		I
				1	 	1	229					
		 	l 	 	 	 	230 231	1 1		l I	 	! !
		ı	I	ı	I	ı	232					'
		i	i	i	I	i	233	1 1		I		I
							234	i i		I		İ
		1	I	1	I	1	235					
		1	I	I	I	I	236			l		I
							237			l		I
				1	 	1	238					
			I 	 	 	 	239 240	1 1		 	l I	
		ı	I	ı	I	ı	241					
		i	i	İ	I	İ	242			I	I	I
							243	I i		I	I	I
		1	1	1	I	1	244					
		1	I	I	I	I	245			!	l	!
				 !	 I	 !	246		 	 	l 	I
		I I	I I	I I	I I	I I	247			· I	· I	 I
			I 	ı 	I 	I 	248 249	1 1	 	1 	ı İ	ı İ
		1	I	I	I	I	250					
		İ	Ī	İ	İ	İ	251	1 1		I	I	I
							252	1 1		I	I	I
		1	1	I	I	I	253				·	
		1	I	I	I	I	254			!	l	!
							255	1 1		I	I	I
Ì		1	1	I I	[I I	256			· I	· I	 1
		l 	I 	I 	l 	I 	257 258	1	 	I I	l I	I I
1		1	I	I	I	I	258	ı		I 	 	I
1		i	i				260			I	I	I
•							261	·				I
I		1	1	I	I	I	262					
		1	1	1	I	1	263	1 1		l	l	I
							264	1 1		I	I	I
		1		1	ļ	1	265			·		
Ì		 	I 	I 	l 	I	266	1		 	 	[
		1			· · · · · · · · · · · · ·		267 268			I 	 	I
ı		1	!	!		1	269			ı	I	ı
		1			I	1						
		 	l 	l 	 	 	270	j i		i I	' 	i İ

1												
272 273				1	 	349 350	1		· I		 I	
274						- 351		! 	l 	 	l 	
275	1 1	1	I	I	I	352			' 		' 	
276	i i	ĺ	Ì	ĺ	ĺ	353	1	I				l I
277						- 354	1	I				I I
278	!!!	ļ			!	355						
279 280			 	 	l 	356 - 357	1	 	l I		l I	
281	1 1	1	I	I	I	357		 	 	 	 	l I
282	i i	i	i	i	i	359	1	I		1		l I
283						- 360	Ì	Ī				l İ
284	1	1		1	I	361						
285	1 1	I	1	I	l	362	!	!	 -		 -	!!!
286 287	1 1				 !	- 363 364		l 	 	 	 	l I
288		1	I I	 	I I	365	ı	ı	I	ı	I	1 1
289		'				- 366	i	i	! 	! 	! 	' '
290	1 1	1	1	I	I] 367						
291	1	1	1	I	I] 368	1	I				
292						- 369	1	I				I I
293	!!!					370						
294 295		 	 	 	 	371 - 372	1	 	l I		l I	
296	1 1	1	1	ı	ı	372		 	 		 	
297	i i	i	i	i	i i	374	1	I	I		I	
298						- 375	1	I	I		I	ı i
299	1	I		1	I	376						
300	1 1	I		I	I	377	!	!				!!!
301 302	1 1				 I	- 378 379		 	 	 	 	
303		i			! 	380	1	ı	I	ı	I	
304				' 		- 381	i	i I	' 	! 	' 	i i
305	1	1	1	I	I] 382						
306	1	1		1	I	383	1	1				1 1
307						- 384	I	I				l I
308		l			 	385			· I		· ı	
309 310		 	 	 	I 	386 - 387	1	I I	 		 	! ! ! !
311	1 1	1	I	I	I	388					' 	
312	i i	i	i	i	İ	389	1	I	l		l	
313						- 390	1	1				l I
314	!!!	ļ .	!	!	!	391			·		·	
315 316		 	 	 	 	392 - 393	1	 	 	 	 	
317	1 1	1	ı	I	ı	393		 	 	 	 	l I
318	i i	i	i	i	I	395	1	I				1 1
319						- 396	1	I				l I
320	1	1		1	I	397						
321	1 1	I	I	I	I	398	ļ					
322 323	1 1				 I	- 399 400		 	 	 	 	
324		i			! 	401	1	ı	I	ı	I	
325		·	· 			- 402	i	I				. '
326	1 1	1	1	I	I	403						
327	1 1	I	1	I	I	404	1	!	l		l	
328	1 '	·			 I	- 405 I 406	1	I	l 	l 	l 	I I
329 330	1 1	l I	1	I I	I I	406 407	1		 I			
331						- 408	i			· 		. ! !
332	1 1	1	1	I	I	409						
333	1	1	1	I	I	410	1	I	l	l	l	l l
334						- 411	1	I	I	l	I	l I
335		l I		1	[412			· ı		· I	
336 337	ı l	 	I	I 	I 	413 - 414	 	i I	l I	l 	l I	ı İ I İ
338	1	I	I		ı	415	' 		' :		' :	·
339	i i	i	i	i	İ	416	1	I	I		I	
340						- 417	1	I	I		I	ı i
341	1 1	<u> </u>	1	1	I	418			·	·		
342	I I	l	1	I	I 	419	1		 -		 -	
343 344		I	I	·		- 420 421	I 	I 	I 	 	I 	ı l
344		l I	1	1	! 	421	1	I	I	_ .	I	
346			· 			- 423	i	I				. ,
347	1 1	1	1	1	I	424						
348	1 1	I	1	I	I	425	1	I	I	l	I	l I

426	1 1	I I I	l I	503	I	I	I	l	I	1 1
427				504	1	I		l	I	1 1
428 429			l I	505 506	1	I	I	1		I I
430		· 		507	i	i	i	İ	i İ	i i
431 432			 	508 509	I	 I	· I	 I	 I	
433				510	i I	i I	! 	 	! 	, ,
434	!!!	!!!!		511			·	·		
435 436			 	512 513	1	 	 		 	
437	1 1 1	I I I	l I	514			' 	' 	' 	
438	1 1		l I	515	!	!	l		!	!!!
439 440		 		516 517		 	 	 	 	
441	i i	i i	i i	518	1	I	l	l	I	1 1
442				519	1	I	l		I	1 1
443 444			 	520 521	1	 I	 I	 I	 I	
445			· 	522	i	i	i i	İ	i I	i i
446	!!!			523			·			
447 448			 	524 525	1	 	l 	 	! 	
449	1 1		l l	526	· 	· 				·
450 451			l I	527 528	1		 -	1		
452		1 1	l l	529			 	 	I 	
453	i i	i i	l l	530	1	I	l	l	l	1 1
454 455		 I I I		531 532		 	 	 	 	
456				533	1	I	I	l	I	1 1
457				534	1	I	l	l	l	1 1
458 459			 	535 536	I	 I	· I	 I	 I	I I
460				537	i	İ	' 	 	İ	i i
461	!!!			538						
462 463			 	539 540	1	 	l I	<u> </u>	 	
464	1 1	I I I	l l	541			' 			
465	1 1		l l	542	1	1			ļ	
466 467		I I I		543 544	I 	 	 	 :	 	I I
468	i i i	i i	i i	545	1	I	I	l	I	1
469 470	1 1	 I I I		546 547		l 	l 	 	l 	
471				548	1	I	l	l	I	1 1
472				549	İ	Ī	l		l	i i
473 474			 	550 551	1	 I	· I	· I	 I	I I
475			· 	552	i	İ	' 	 	İ	i i
476	!!!			553						
477 478			 	554 555	1	I I	l I] 	l I	
479	1 1	I I I	l l	556						
480 481			 	557 558	1	[[-	
482	1 1		I I	559						ı l
483	l i	ı ı	ı i	560	Į.	I	l		ļ	ļ ļ
484 485		 		561 562	I	l 	 	 	l 	ı l
486	i i i		. ' I I	563	1	I	I	l	I	1 1
487				564	1	1	l :	l 	l 	l I
488 489			l I I I	565 566	1	I	· I	· I	 I	I I
490		·		567	İ	İ	l	l	l	i i
491				568		 I	· I	· I		
492 493		ı l l	ı l 	569 570		! 	1 	 	1 	ı l l
494	i i	!!!!	l I	571						
495 496			l 	572 573	1	[[-	
496	1 1 1	I I I	I I	574			ı 			ı l
498	l i	I I İ	ı i	575	!	I	l		l	<u> </u>
499 500		 	 	576 577	I	l 	 	 	l 	I
501	i i i		, ' 	578	I	I	I	I	I	1 1
502				579	1	I	I	l	I	1 1

580							- 657	1 1	ı	1		
580		1		1	1	1	658				ı 	
582	I	I	I	I	I	I	659	1 1	l	1	I	
583 584	 I		 I	 . I		I	- 660 661		 	 	 	_
585	i	i	i	i	i	<u> </u>	662	1 1	l	I	I	
586							- 663	1 1	l	I	l	
587 588							664 665	I I		 I	 I	-
589			' 		' 		- 666		 	 	! 	
590	1	1	1	1	1	I	667					-
591	I	I	I	I	I	I	668				ļ	
592 593	1					1	- 669 670	I I	 	I 	 	_
594	i	i	i	i	İ	i	671	1 1	l	1	I	
595							672	1 1		1	I	
596 597	1	i i		1	1	 	673 674	1 1		I	 I	-
598	· 			·	· 	· 	675	i i	İ	i	i İ	
599		l l	ļ .	1	1		676					-
600 601	l 		 		 	l 	677 - 678		 	 	l I	
602	I	I	1	1	1	1	679					-
603							680				 -	
604 605	1			1		1	- 681 682	ı	 	I 	I 	_
606	i	i	i	i	i	i	683	1 1	l	I	I	
607							684		l :	I	l 	
608 609	I I	l I	I	I I	1	I I	685 686			I	 I	-
610	· 			· ·			- 687	i i	i İ	i		
611	1	1	1	1	1		688				 I	-
612 613	I 	 	 	 	l 	I 	689 - 690		[I 	I 	
614	I	1	1	1	1	I	691					-
615							692		 -		l	
616 617	1	l		1	1		- 693 694	ı	 	I 	I 	_
618	i	i	i	i	i	i	695	1 1	l	I	I	
619	 I						696		 		l 	
620 621		I I		1	1	! 	697 698				 	-
622		· · ·		· 	·		- 699	i i	l	İ	İ	
623 624	1			1	1		700 701			 I	 I	-
625						ı 	- 701 - 702		! 		' 	
626	I	1	1	1	1	I	703	·				-
627 628	l 		 		 	 	704 - 705		[
629	I	1	1	1	1	I	705				 	_
630	I	İ	1	1	1	I	707	1 1	ļ	I	l	
631 632	 I		 I	 . I		 I	- 708 709		l 	I 	l 	_
633	i	i	i	i	i	İ	710	1 1	l	I	l	
634							- 711	1 1	l	I	l	
635 636	I I	l I	I	1	1	I I	712 713		 I	 I	 I	-
637	<u>.</u>			· 		· 	714	i i	İ	i		
638	ļ.	ļ	1	1	!		715				 '	-
639 640	I 	 	 	 		I 	716 - 717		! !	I I	 	
641	I	1	1	1	1	I	718					-
642	1	I	 	1	1	I	719	!		1		
643 644	I		 	 		I	- 720 721		 	I 	I 	_
645	i	i	i	i	i	i	722	1 1	I	I	I	
646	 I						723		 		l 	
647 648		I I		1	1	! 	724 725		 		 	-
649	· 			· 			726	i i	İ	i	i I	
650		ļ	1	1	1		727					-
651 652	I 	 	 	 		I 	728 729		! !	I 	I I	
653	I	1	1	1	1	I	730					-
654	1	I	1	1	I	1	731	!!!		1	ļ	
655 656	 I		 I		 	I	- 732 733	ı	 	I 	l 	
000	1	1	1	1	1	1	, ,,,,,					

704													
734 735			l I	1	 	811 812	1		 I		· I	 I I	
736	·					813	i	i	ĺ		i İ	i i	
737	1 1	1	1	1		814			·		·		
738 739			 			815 - 816		 	 		 	 	
740	1 1	1	ı	1	1 1	817		 			 		
741	i i	i	İ	İ	i i	818	1	I			l	l I	
742						- 819	1	I	l		l	l I	
743 744		l I	1	1	1 1	820 821	1	 I	 I		· · · · · · · · · · · · ·		
745			' 			- 822	i	İ	! 		' 	I I	
746	1 1	1	1	1	1 1	823							
747	1 1	I	I	I	1	824						<u> </u>	
748 749	1 1		 I	1	I I	- 825 826		 	 	 	 	l l	
750	i i	i	i	i		827	1	I			I	I I	
751						- 828	1	I	l		l	l I	
752 753	!!!		1	1		829			· ·				
754	· · · · · · · · · · · · · · · · · · ·		 		I .	830 - 831	1	 	 		l I	l I I I	
755	1 1	1	1	I	1 1	832							
756	1 1	I	1	1	1 1	833	1	I	l		l		
757 758			 I	1		- 834 835		 	 	 	 	l I	
759	1 1	i i		i	 	836	1	I	1		I	l I	
760	·					- 837	i	İ	İ		İ	i i	
761	!!!	l i	!	1]	838							
762 763		 	 		 	839 - 840	1	 	 		l I	 	
764	1 1	1	1	I	1 1	841			' :		' 	·	
765	1 1	1	1	1	1 !	842	1	I	l		l	l I	
766						- 843	1	I			I	l l	
767 768	1 1	l I	 	1	1	844 845	1	 I				I I	
769	·					- 846	i	i	ĺ		i İ	i i	
770	1 1	1	1	1		847			·		·		
771 772			 			848 - 849							
773	1 1	I	1	I	1	850		 	 :		 		
774	i i	i	i	İ	i i	851	1	I			l	l I	
775						852	1	I			l	l I	
776 777		l I	1	1	 	853 854	1	 I	 I	 	· · · · · · · · · · · · ·		
778						855	i	İ	<u> </u> 		' 	i i	
779	1 1	1	1	1		856			·	·	·		
780 781			 			857 - 858		 	 		 	 	
782	1 1	1	ı	1	1 1	859		 			 		
783	i i	i	İ	İ	i i	860	1	I			l	l I	
784						- 861	I	I			l	l I	
785 786		l I	1	1	I I	862 863	1	 I	· I			I I	
787	·					864	i	i İ			i İ	i i	
788	!!!	l	!	!	! !	865						 	
789 790	ı	 	 	I	I	866 867	I	I I	[l I	I I '	
791	1 1	1	1	I		868				· ·		, I	
792	ı i	İ	1	I	I i	869	1	I	l		I		
793						870		 	 		l 	l I	
794 795	1 1	l I	1	1	1 1	871 872	1		1		I	I I	
796	·					873	i	i İ			i İ	i i	
797	1 1	<u>l</u>	1	1		874			·	. .	·		
798 799			 			875 - 876		 	 		 	 	
800		1	1	1		877		' 			' 	ı l	
801	i i	i	Ì	İ	i i	878	1	I	l		I	l I	
802						- 879	1	I	l			l I	
803 804		 	1	I	1	880 881	1	 I	· I	. I	· I	 '	
805						- 882	İ					. ! 	
806	<u> </u>	1	1	Į.		883						<u>-</u>	
807	1 1	I	1	1	1 1	884	1	1					
808 809	I I	 		1		- 885 886	I	I 	 :	 :	 	ı l	
810		i	i	i	i	887	I	I	l		I	l I	
'						'							

Section	888	ı	I	I	I	I	I	J 965	1	I	I		I	I I	I
	889	- I	 I	 I	· I	· I		- 966 I 967		l]
1		i	' 	i I	' 	! 	' 		Ι	I	I	l	I	I I	1
1		-	 						1	I	I	l	I	l I	l
1			 	! 	! 	l 	 		1	 	I		 	I I	
1		-	 						1	I	I	l	l	1 1	l
1		1	 	 	 	 	 		1	 I	 I	· I	 I	 I I	I
900	898	-	 	· 				- 975	i	i	İ	İ	İ	i i	l
902			 	 	 	 	 		I	 I	 I	 I		 I I	
903		-	 					- 978	i	i	İ		! 	i i	ĺ
984			 -		 -	 	 -		I	 I	· ·	· I		 I I	
986 983		-	 ı 			 				! 	i I	 	! 	' '	ĺ
982			l	I	ļ		l								
988		-	 I 	 	 	 	I 		1	! 	! 	 	 	 	ĺ
910 987 987 987 987 991 991 993 993 993 994 995		!	ļ	I	!	l	ļ	985							
911		-	 	 	 	 	 		1	 	 	 	 	 	l
933	911	I	I	I	I	I	I	988	· 					· 	-
915		-	 	 	 	 	l 		I	 	 		 	 	j i
970		I	I	I	I	I	I	991							-
917 996			 l 	l 	l 	l 	l 		1	1		1	 -] I
998		ı	I	I	I	l	I				 	 	 		-
		1	 l 	I	l 	l 	l 		1	I	I		 -		
		Ī	 	I	I	I				 	 	 	 	 	-
1 1 1000 1 1 1 1 1 1	921	Ì	l	Ī	l	l	l		ļ.	Į.	l		l	!!!	1
1		-	 I	 	 I	· I	 I		I 	 	 	 	 	 	-
1	924	İ	İ	İ	İ	İ	İ	1001	1	I	I	l	l		l
		- I	 I	 I	 I	· I	 I		l 	 	 	 	 	 	-
	927	i	i İ	i	i İ	İ	i İ	1004	ļ	I	I	l	I		l
938		-	 I	 I	 I	· I	 I			 	 	 	 	 	-
1	930	i	i	i	i	İ	i	1007	1	I	I	I	I	l I	i
934		- I	 I	 I	· I	· I	 I		l 	l 	 	 	 	 	 -
936	933	i	I	i	I	i I	I	1010	1	I	I	l	I	1 1	ĺ
936		- I	 I	 I	· I	 I	 I		l 	l 	 	 	 	 	 -
938		i	İ	i	İ	! 	İ	1013	1	I	I	l	I	1 1	ĺ
939		- I	 I	 I	· I	· I				l]
941		i	! 	! 	! 	! 	! 		Ι	I	I	l	I	I I	1
942		-	 		·	· ı			1	I	l 	 	l 	l I	1
943			! 	! 	! 	! 	! 		1	1	I	 	 		ı
945		-	 I		· ·	 I	 I	- 1020			l 		l]
946			1 	1 	1 	ı 	1 			 	 	 	 		l
948	946	-	 			·		- 1023	1	I	I	l	I	ı i	ļ
949		I	I 	! 	I 	I 	I 		I	 I	 I	· 		 	
951	949	-	 					- 1026	İ	İ	İ	ĺ	İ	i i	l
952		1	 	 	 	 	 		I	 I	 I	· I		 I I	
954	952	-	 					- 1029	i	İ	İ		i I	i i	ĺ
955		1	l I	[[] 	l I		I	 I	 I	· I	 I	 '	I
957	955	-	 ' 				' 	- 1032		İ	i I			. ! 	ĺ
958			 	[I	 I	· ·	 I		 I '	
959 1036		-	 ı 		 	ı 	ı 			! 	! 	! 	! 	, I I I	
961 1038			 	1	 	 	 	1036		 I	 I	 I		 ! '	
962 1039 963 1040		-	 I 	I 	I 	I 	I 			1 	! 	! 	1 	ı 	İ
	962		l	1	l	<u> </u>	l	1039			·				
		-	 I 	I 	I 	I 	I 			1 	! 	! 	1 	ı 	İ

1042							- 1119	1	I	l	l	l I
1043 1044	1		 	 	[1120 1121		 I	· I	· I	 I I
1045						' 	1122	li i	i	! 	! 	' '
1046 1047			 	 	[-	1123 1124	 I		· I	· I	I
1048							1125	i i	i	 	i I	i i
1049 1050	1	 	 	 	[[1126 1127	 		· I	· I	I
1051							1128	i i	i	 	i I	i i
1052 1053	1	 	 	 	[1129 1130	 		· I	· I	I I
1054						' 	- 1131	i i	i	İ	İ	i i
1055 1056	1	 	 	 	 	 	1132 1133	 I	I	· I	· I	I I
1057		· 					1134	i i	i	İ	İ	i i
1058 1059	1	 	 	 	 	 	1135 1136	 	I	· I	· I	I I
1060	·						- 1137	i i	i	İ	İ	i i
1061 1062	1	 	 	 	 	 	1138 1139		I	· I	· I	I I
1063	:						1140	i i	i	İ	İ	i i
1064 1065	1	 	 	 	 	 	1141 1142			· I	· I	I I
1066							1143	i i	İ	l	l	l I
1067 1068	1	 	 	 	 	I 	1144 1145			· 	· 	l
1069 1070						·	1146	1 1	1	I	I	1 1
1070	1	 	 	 	1 	I 	1147 1148		1	· 	· 	l
1072 1073			 I	 I			- 1149 1150		I	l 	l 	l l
1073			! 	! 	! 	! 	1150	1 1	1	l	l	l I
1075 1076		 I	 I	 I	 I	 I	- 1152 1153		1	 	 	l I
1077	İ		İ	İ	İ	l I	1154	1 1	1	I	I	l I
1078 1079	I		 I	 I	 I	 I	- 1155 1156		 	 	 	l I
1080	i	i	İ	İ	i	İ	1157	i i	1	I	I	
1081 1082	I	I	 I	 I	 I	 I	- 1158 1159		 	 	 	
1083	İ	İ	İ	İ	İ	İ	1160	!!!	!	l	l	!!!
1084 1085		I	 	 	 	· 	- 1161 1162		 	 	 	
1086 1087	1	l	l 	l 	l	l 	1163 - 1164		1	 -	 -	
1088	1	I	I	I	I	I	1165			 	 	
1089 1090		l 	 	 	 	 	1166 - 1167		1	 	 	
1091	1	I	I	I	I	I	1168					
1092 1093		l 	l 	l 	 	 	1169 - 1170		1	 	 	
1094	I	I	l	l	I	I	1171	<u> </u>	<u>.</u>			: :
1095 1096	I	I 	l 	l 	I 	 	1172 - 1173		 	 	 	ı 1 I I
1097	1	I	I	I	1	l	1174			· I	·	
1098 1099			I 	I 	I 	 	1175 - 1176			1 	ı 	, 1
1100 1101	1	 	 	 	[1177 1178			 I	· I	 I I
1102			' 		· 	' 	1179	i	İ		i I	. 1 I I
1103 1104	1	 	 	 	[-	1180 1181			· I	· I	 I I
1105							1182	i	i	i I	İ	i i
1106 1107	I	 	 	 	 	 	1183 1184	 	I	· I	· I	
1108	· 						1185	i	i	i	i	i i
1109 1110	1	 	 	 	I 	I 	1186 1187	 	I	· I	· I	
1111							- 1188	li i	İ	l	l	i i
1112 1113		 	 	 	! 	I 	1189 1190			· 	· 	I I
1114			 I	 I		· I	- 1191			<u> </u>	<u> </u>	i
1115 1116	1	! 	! 	! 	! 	! 	1192 1193		1	 	 	I I
1117			 I	 I		 I	1194	1 1		 	 	
1118	I	I	l	I	I	I	1195					

1196	!	!		<u> </u>	<u> </u>	<u> </u>	1273							
1197 1198	 	 	l 	 	 	 	1274 - 1275	1				l I	 	
1199	1	1	ı	ı	ı	ı	1275					 		
1200	i	i	İ	! 	! 	! 	1277	I			l	I	1 1	
1201	· 	· 	· 				- 1278	i	i	i	İ		i i	
1202	1	1	1	l	l	l	l 1279							
1203	1	1		l	l	l	1280	1					1 1	
1204							- 1281	I					I I	
1205 1206	1	1					1282 1283	1						
1200	·	 	I 	 	 	 	- 1284	1	 	 		l I	 	
1207	1	1	ı	ı	ı	ı	1285				 	 		
1209	i	i	i	i I	İ	İ	1286	1			l	I	1 1	
1210							- 1287	İ	İ	İ	ĺ	I	i i	
1211	1	1	1	l	l	l	l 1288							
1212	1	1	1	l	l	l	1289	!					!!!	
1213							- 1290	I					1 1	
1214 1215	1	1	 	 	 	 	1291 1292	1	I	I				
1216		' 					- 1293	i			 	! 	i i	
1217	I	I	I	I	I	I	l 1294							
1218	Ì	Ì	ĺ	l	l	l	1295	1					1	
1219							- 1296	1					1 1	
1220	!	!	!	ļ	ļ	ļ	1297							
1221 1222		 	 	 	 	 	1298 - 1299					 		
1223	1	1	1	 I			1300	I	 	 :	 	l 	I I	
1224	i	i	i	' 	' 	' 	1301	I			l	I	1 1	
1225	· 	· 	· 				- 1302	i	i	i	İ		i i	
1226	1	1	1	l	l	l	J 1303							
1227	I	1	I	l	l	l	1304	1						
1228				·			- 1305	I						
1229 1230	1	1	 	 	 	 	1306 1307	1	I	I	I		I I	
1231				' 			- 1308	i				' 	i i	
1232	1	1	I	l	l	l	1309							
1233	I	1	1	l	l	l	1310	1			l			
1234				· · ·			- 1311			 	 	 	l l	
1235 1236	1	1	 	 	 	 	1312 1313	1	I	I				
1237		' 	' 	' 	' 	' 	- 1314	i				' 	i i	
1238	I	I	I	I	I	I	J 1315							
1239	1	1	1	l	l	l	J 1316	1				l	1 1	
1240					·	· ·	- 1317	1						
1241	1	1					1318	1						
1242 1243		 		 	 	 	1319 - 1320	1			l 	I I	1 I	
1244	1	1	I	I	I	I	1321	·						
1245	1	1	1	l	l	l	1322	1					1	
1246							- 1323	1					1 1	
1247	!	!		<u> </u>	<u> </u>	<u> </u>	1324							
1248 1249		 	l 	 	 	 	1325 - 1326	1				 	 	
1250	1	1	1	I	I	1	1326					ı 	ı l	
1251	İ	i	i				1328	1				I		
1252							- 1329	1	l	l	l	I	l Ì	
1253	ļ.	!	!	ļ ·	ļ ·	ļ ·	1330		·		·			
1254			 	 	 	 	1331	1			1	 -	ļ .	
1255 1256	1	1	·	· I	· I	· I	- 1332 1333	I	 	 	 	I 	ı l	
1257	i	i		! 	! 	! 	1334	ı			l	I	1 1	
1258				, 			- 1335	i					i i	
1259	1	1	1	l	l	l	J 1336							
1260	1	1	1	l	l	l	1337	1					1 1	
1261					·	·	- 1338	I				l	1 1	
1262	1	1	1	 -	 -	 -	1339	1				 I	 '	
1263 1264	I	 	I 	I 	I 	I 	1340 - 1341	I I	 	 	l 	I I	: '	
1265	I	I	I	I	I	I	1341	'			' 	' 	, , 	
1266	Ì	İ	İ				1343	1				I		
1267							- 1344	1	l	l	l	I	l Ì	
1268	1	1		ļ	ļ	ļ	1345							
1269 1270	1	 	 	 	l 	l 	1346	1] 	 	[
1270	1	1	1	I	I	I	- 1347 1348	I 	 	 	 :	I 	ı l	
1272		i	i				1349	I			l	I		
'							'						·	

	3011							CO						
1350	Li	1	ı	ı	ı	ı	142	27 1	ı	I	I	I	1 1	ı
1351			· 				- 142	28	İ	i	I	İ	i i	ĺ
1352	<u> </u>	1	!	!	!	!	142							
1353 1354		 	 	 	 	 	143 - 143		 	 	 	 		1
1355	1	1	I	I	I	I	143							-
1356	1	1	I	1	I	1	143	33	I	1	l	l	1 1	l
1357							- 143		I	1	l	I	1 1	1
1358 1359		I I	 	 	 	 	143 143		 I	I	· I		I I	
1360			<u></u>			' 	- 143		İ	i i	İ	i I	i i	ĺ
1361	1	1	1	I	I	I	143				·			
1362 1363		 		 	 	 	143 - 144] I
1364	1	1	1	I		I	144		 	 	 	 		-
1365	l i	i	i	i	i	i	144		I	1	l	l	1 1	ĺ
1366	 .						- 144		I	I	I	I	1 1	l
1367 1368		1	 	 	 	 	144 144		 I					
1369							- 144		İ	' 		' 	' '	ĺ
1370	1	1	I	I	I	I	144	17						-
1371	1	1		I	I	I	144		[<u> </u>			1
1372 1373			1		 I	 I	- 144 145		 	 	 	 	 	-
1374	li	i	i	I	İ	I	145		I	I	I	I	1 1	1
1375							- 145		I	1	l	l	1 1	l
1376 1377							145 145		 I		 I	 I	 I I	
1378	 	 				 	- 145		! 	 	! 	l I		İ
1379	1	1	I	I	I	I	145							-
1380	1	1	I	I	I	I	145		!	!	!	l	!!!	1
1381 1382						 I	- 145 145		 	 	 	 	 	
1383	li	i	 	! 	! 	! 	146		I	I	I	I	1 1	ı
1384							- 146	51	ĺ	Ī	ĺ	l	i i	l
1385		1					146							
1386 1387		 	l 	 	 	 	146 - 146		l I	 	l I	l I		l
1388	1	1	I	I	I	I	146				' 	' 		-
1389	1	1	I	I	I	I	146		I	1	l ·	l		1
1390 1391		 I	 I	 I	 I	 I	- 146 146		l 	 	 	 	 	1
1392		i	 	! 	! 	! 	146		I	1	I	I	1 1	
1393						· 	- 147	70	İ	İ	İ	İ	i i	l
1394		1		1	<u> </u>	1	147							
1395 1396	 	 	l 	 	l 	 	147 - 147		 	 	 	 		l
1397	1	1	I	I	I	I	147							-
1398	1	1	I	I	I	I	147		l	1	<u> </u>	l		l
1399 1400	1	 I	 I	 I	 I	 I	- 147 147		 	 	 	 	 	1
1401	li	i	i	i İ	i İ	i I	147		I	I	I	I	1 1	ı
1402							- 147	79	Ī	Ī	l	l	i i	l
1403		I		1	1	1	148		 1					
1404 1405	 	 	l 	I 	I 	 	148 - 148		I I	 	l I	l I		ĺ
1406	1	1	I	I	I	I	148							-
1407	1	1	I	I	I	I	148		l	!	ļ ·	l		1
1408 1409		 I	 I	 I	 I	 I	- 148 148		l 	I	l 	l 	ı l	1
1410		i	İ				148		I	1	I	_	I	1
1411						· 	- 148	38 I	İ	İ	İ	i İ	i i	l
1412		1	1	!	ļ	1	148							
1413 1414		 	I 	I 	l 	I 	149 - 149		I I	I I	I I	l 		i
1415	1	1	I	I	I	I	149						·	-
1416	1	1	I	I	I	I	149	93	l	I	l	l	1	l
1417				 I	 I	 I	- 149		 	 	 	 	 	1
1418 1419		1	1	I I	! 	I I	149 149				 	 		ı
1420							- 149		I	i	I		i i	i
1421		Į.	!	Į.	Į.	Į.	149							
1422 1423	 	 	I 	I	l 	I 	149 - 150		l I	I I	l I	 		ı
1424	1	1	I	I	I	I	150						 	-
1425	1	1	I	I	I	I	150	92	l	I	l	I		l
1426							- 150	93 1	I	I	l	I	1 1	l

1504					
1505				1	
1506				! !	: :
1507	'			 	
1507					
1509	1			ı	1
1510					
1511	! !!			l	!!!
1512	1 1				l I
1513					
1514	1 1			l	l I
1515		I			l l
1516					
1517					l I
1518					l l
1519					
1520	1 1	1			l I
1521	lı ı ı			l I	l I
1522					
1523				l I	I I
1524	li i i	i			i i
1525	·		:	:	
1526	I I I			l I	
1527	li i i	i	i	i	i i
1528					
1529				ı	
1530	li i i				i i
1531	'	·	· 		
1532				1	
1533				 	
1534				 	ı
1534		·			

10 Section2

10.1 thm

- · 中文測試
- $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
- $\int_0^\infty e^{-x} dx$
- $\cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$