Least-Squares

Stephen Boyd

EE103 Stanford University

October 30, 2014

Outline

Least-squares problem

Solution of least-squares problem

Least-squares data fitting

Least-squares classification

Least-squares problem

- suppose $m \times n$ matrix A is tall, so Ax = b is over-determined
- for most choices of b, there is no x that satisfies Ax = b
- ightharpoonup residual r = Ax b
- ▶ least-squares problem: choose x to minimize $||Ax b||^2$
- ▶ $||Ax b||^2$ is the *objective function*
- $ightharpoonup \hat{x}$ is a *solution* of least-squares problem if

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$

for any n-vector x

- idea: \hat{x} makes residual as small as possible, if not 0
- also called regression (in data fitting context)

Least-squares problem

- \hat{x} called *least-squares approximate solution* of Ax = b
- \hat{x} is sometimes called, very confusingly, 'the solution of Ax=b in the least-squares sense'
 - never say this
 - do not associate with people who say this

- \hat{x} need not (and usually does not) satisfy $A\hat{x} = b$
- lacktriangle but if \hat{x} does satisfy $A\hat{x}=b$, then it solves least-squares problem

Column interpretation

- ightharpoonup suppose a_1, \ldots, a_n are columns of A
- ▶ then

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

- so least-squares problem is to find a linear combination of columns of A that is closest to b
- ightharpoonup if \hat{x} is a solution of least-squares problem, the *m*-vector

$$A\hat{x} = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

is closest to b among all linear combinations of columns of A

Row interpretation

- ightharpoonup suppose $\tilde{a}_1^T,\ldots,\tilde{a}_m^T$ are rows of A
- lacktriangle residual components are $r_i = \tilde{a}_i^T x b_i$
- least-squares objective is

$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

the sum of squares of the residuals

- so least-squares minimizes sum of squares of residuals
 - solving Ax = b is making all residuals zero
 - least-squares attempts to make them all small

Outline

Least-squares problem

Solution of least-squares problem

Least-squares data fitting

Least-squares classification

Solution of least-squares problem

- ▶ we make one assumption: A has independent columns
- lacktriangle this implies that Gram matrix A^TA is invertible
- unique solution of least-squares problem is

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

• cf. $x = A^{-1}b$, solution of square invertible system Ax = b

Derivation via calculus

define

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i\right)^2$$

ightharpoonup solution \hat{x} satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get $\nabla f(x)_k = \left(2A^T(Ax-b)\right)_k$
- ▶ in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- so \hat{x} satisfies normal equations $(A^TA)\hat{x} = A^Tb$
- ▶ and therefore $\hat{x} = (A^T A)^{-1} A^T b$

Direct verification

- ▶ let $\hat{x} = (A^T A)^{-1} A^T b$, so $A^T (A\hat{x} b) = 0$
- ightharpoonup for any n-vector x we have

$$||Ax - b||^{2} = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(A(x - \hat{x}))^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

- so for any x, $||Ax b||^2 \ge ||A\hat{x} b||^2$
- \blacktriangleright if equality holds, $A(x-\hat{x})=0,$ which implies $x=\hat{x}$ since columns of A are independent

Computing least-squares approximate solutions

- ▶ compute QR factorization of A: A = QR ($2mn^2$ flops) (exists since columns of A are independent)
- to compute $\hat{x} = A^{\dagger}b = R^{-1}Q^Tb$
 - form $Q^T b$ (2mn flops)
 - compute $\hat{x} = R^{-1}(Q^T b)$ via back substitution $(n^2 \text{ flops})$
- ▶ total complexity 2mn² flops

- identical to algorithm for solving Ax = b for square invertible A
- lacktriangle but when A is tall, gives least-squares approximate solution

Outline

Least-squares problem

Solution of least-squares problem

Least-squares data fitting

Least-squares classification

Setup

lacktriangle we believe a scalar y and an n-vector x are related by model

$$y \approx f(x)$$

- ightharpoonup x is called the *independent variable*
- ▶ *y* is called the *outcome* or *response variable*
- ▶ $f: \mathbf{R}^n \to \mathbf{R}$ gives the relation between x and y
- lacktriangle often x is a feature vector, and y is something we want to predict
- lacktriangle we don't know f, which gives the 'true' relationship between x and y

Model

▶ choose $model\ \hat{f}: \mathbf{R}^n \to \mathbf{R}$, a guess or approximation of f, based on some observed data

$$(x_1,y_1),\ldots,(x_N,y_N)$$

called observations, examples, samples, or measurements

model form:

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- $f_i: \mathbf{R}^n \to \mathbf{R}$ are basis functions that we choose
- lacktriangledown $heta_i$ are model parameters that we choose
- $\hat{y}_i = \hat{f}(x_i)$ is (the model's) prediction of y_i
- we'd like $\hat{y}_i \approx y_i$, *i.e.*, model is consistent with observed data

Least-squares data fitting

- prediction error or residual is $r_i = \hat{y}_i y_i$
- express y, \hat{y} , and r as N-vectors
- ▶ **rms**(r) is RMS prediction error
- ▶ least-squares data fitting: choose θ_i to minimize RMS prediction error
- ▶ define $N \times p$ matrix A, $A_{ij} = \hat{f}_j(x_i)$ so $\hat{y} = A\theta$
- ▶ least-squares data fitting: choose θ to minimize $\|r\|^2 = \|A\theta y\|^2$
- $\hat{\theta} = (A^T A)^{-1} A^T y$ (if columns of A are independent)
- $lackbox \|A\hat{ heta}-y\|^2/N$ is minimum mean-square (fitting) error

Fitting a constant model

- ▶ simplest possible model: p=1, $\hat{f}_1(x)=1$, so model $\hat{f}(x)=\theta_1$ is a constant function
- ightharpoonup A = 1, so

$$\hat{\theta}_1 = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T y = (1/N) \mathbf{1}^T y = \mathbf{avg}(y)$$

- ▶ the mean of y is the least-square fit by a constant
- ▶ MMSE is $std(y)^2$; RMS error is std(y)
- more sophisticated models are judged against the constant model

Fitting univariate functions

- ightharpoonup when n=1, we seek to approximate a function $f: \mathbf{R} \to \mathbf{R}$
- lacktriangle we can plot the data (x_i,y_i) and the model function $\hat{y}=\hat{f}(x)$

Straight-line fit

- ▶ p = 2, with $f_1(x) = 1$, $f_2(x) = x$
- ▶ model has form $\hat{f}(x) = \theta_1 + \theta_2 x$
- ightharpoonup matrix A has form

$$A = \left[\begin{array}{cc} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{array} \right]$$

• can work out $\hat{\theta}_1$ and $\hat{\theta}_2$ explicitly:

$$\hat{f}(u) = \mathbf{avg}(y) + \rho \frac{\mathbf{std}(y)}{\mathbf{std}(x)} (u - \mathbf{avg}(x))$$

(but QR works fine ...)

Example

Polynomial fit

- $f_i(x) = x^{i-1}, \quad i = 1, \dots, p$
- ightharpoonup model is a polynomial of degree less than p

$$\hat{f}(x) = \theta_1 + \theta_2 x + \dots + \theta_p x^{p-1}$$

► A is a Vandermonde matrix

$$A = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{p-1} \\ 1 & x_2 & \cdots & x_2^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_N & \cdots & x_N^{p-1} \end{bmatrix}$$

Examples

- ightharpoonup N=20 data points
- fits of degree p-1=3, 5, and 10

Outline

Least-squares problem

Solution of least-squares problem

Least-squares data fitting

Least-squares classification

Least-squares classification

- ▶ like regression, but response has only two values, e.g., TRUE and FALSE
- ightharpoonup common encoding of the two values: $y_i = +1$ and $y_i = -1$
 - email spam detection
 - transaction fraud detection
 - document classification (say, politics or not)
- least-squares classification:
 - fit model \tilde{f} to encoded (± 1) y_i values
 - use model $\hat{f}(x) = \mathbf{sign}(\tilde{f}(x))$

(size of $\tilde{f}(x)$ is related to our confidence in the prediction)

Confusion matrix

- ▶ the pair (y, \hat{y}) has only 4 values:
 - True positive. y = +1 and $\hat{y} = +1$
 - True negative. y = -1 and $\hat{y} = -1$
 - False positive. y=-1 and $\hat{y}=+1$
 - False negative. y = +1 and $\hat{y} = -1$
- ▶ numbers of each is organized into confusion matrix, e.g.

	$\hat{y} = +1$	$\hat{y} = -1$	total
y = +1	95	32	127
y = -1	19	1120	1139
total	114	1152	1266

various error and prediction rates have names

Outline

Least-squares problem

Solution of least-squares problem

Least-squares data fitting

Least-squares classification

Validation

Generalization

basic idea:

- ▶ goal of model is *not* to predict outcome in the given data
- ▶ instead it is to predict the outcome on new, unseen data

- a model that makes reasonable predictions on new, unseen data has generalization ability
- a model that makes poor predictions on new, unseen data is said to suffer from over-fit

Validation

- a simple and effective method to guess if a model will generalize
 - split original data into a training set and a test set
 - ▶ typical splits: 80%/20%, 90%/10%
 - build ('train') model on training data set
 - then check the model's predictions on the test data set
 - ► (can also compare RMS prediction error on train and test data)
 - ▶ if they are similar, we can *guess* the model will generalize

Validation

- ▶ can be used to choose among different candidate models, e.g.
 - polynomials of different degrees
 - regression models with different sets of regressors
- we'd use one with low, or lowest, test error

Example

- polynomial models from 20 training points above
- evaluated below with 20 new test points

Example

▶ suggests degree 5 or 6 polynomial would be good choice