${ m IBB31103} \mid { m ISB46703} \mid { m Introduction \ to/Principles \ of \ Artificial \ Intelligence}$

Universiti Kuala Lumpur February 2023 Dr. Faiz

Group Mini Project

Weight: 15% Due: 9 June 2023

1 Introduction

The objective of this group assignment is to apply Support Vector Machine (SVM) binary classification techniques on a car insurance claim dataset to predict whether a customer will file an insurance claim or not based on given features. This assignment will cover basic exploratory data analysis, data visualization, data preprocessing, model evaluation, and parameter tuning for the SVM model.

1.1 Goal

Your final goal is to predict whether the policy holder will file a claim in the next 6 months or not.

2 Dataset

The dataset used for this assignment is a car insurance claim dataset containing policy-holders attributes like policy tenure, age of the car, age of the car owner, the population density of the city, make and model of the car, power, engine type, etc, and the target variable indicating whether the policyholder files a claim in the next 6 months or not.

Dataset download link: https://bit.ly/3BWSxua

Variable	Description
policy_id	Unique identifier of the policyholder
policy_tenure	Time period of the policy
age_of_car	Normalised age of the car in years
age_of_policyholder	Normalised age of policyholder in years
area_cluster	Area cluster of the policyholder
population density	Population density of the city (Policyholder
	City)
make	Encoded Manufacturer/company of the car
segment	Segment of the car (A/B1/B2/C1/C2)
model	Encoded name of the car

fuel_type Type of fuel used by the car Maximum Torque generated by the car max_torque (Nm@rpm) Maximum Power generated by the car max_power (bhp@rpm) Type of engine used in the car engine_type airbags Number of airbags installed in the car is_esc Boolean flag indicating whether Electronic Stability Control (ESC) is present in the car or not. is_adjustable_steering Boolean flag indicating whether the steering wheel of the car is adjustable or not. Boolean flag indicating whether Tyre Presis_tpms sure Monitoring System (TPMS) is present in the car or not. Boolean flag indicating whether parking senis_parking_sensors sors are present in the car or not. Boolean flag indicating whether the parking is_parking_camera camera is present in the car or not. Type of brakes used in the rear of the car. rear_brakes_type Engine displacement of the car (cc). engine_displacement Number of cylinders present in the engine of cylinder the car. Transmission type of the car. transmission_type Number of gears in the car. gear_box steering_type Type of the power steering present in the car. turning_radius The space a vehicle needs to make a certain turn (Meters). Length of the car (Millimetre). length width Width of the car (Millimetre). Height of the car (Millimetre). height gross_weight The maximum allowable weight of the fullyloaded car, including passengers, cargo and equipment (Kg). Boolean flag indicating whether front fog is_front_fog_lights lights are available in the car or not. Boolean flag indicating whether the rear is_rear_window_wiper window wiper is available in the car or not. Boolean flag indicating whether the rear is_rear_window_washer window washer is available in the car or not. is_rear_window_defogger Boolean flag indicating whether rear window defogger is available in the car or not. Boolean flag indicating whether the brake is_brake_assist assistance feature is available in the car or Boolean flag indicating whether a power is_power_door_lock door lock is available in the car or not.

is_central_locking	Boolean flag indicating whether the central locking feature is available in the car or not.
is_power_steering	Boolean flag indicating whether power steering is available in the car or not.
is_driver_seat_height_adjustable	Boolean flag indicating whether the height of the driver seat is adjustable or not.
<pre>is_day_night_rear_view_mirror</pre>	Boolean flag indicating whether day and night rearview mirror is present in the car or not.
is_ecw	Boolean flag indicating whether Engine Check Warning (ECW) is available in the car or not.
is_speed_alert	Boolean flag indicating whether the speed alert system is available in the car or not.
ncap_rating	Safety rating given by NCAP (out of 5)
is_claim	Outcome: Boolean flag indicating whether the policyholder file a claim in the next 6 months or not.

Table 1: Car policyholder dataset.

The dataset consists of a combination of attributes with different data types. Some of the attributes, such as fuel_type and segment, are categorical, while others, like max_torque and cylinder, are numeric. The dataset contains a total of 97,655 examples, and each example is described by 44 features.

3 Instructions

3.1 Exploratory Data Analysis [10 points]

- 1. Load the car policyholder claim dataset.
- 2. Perform basic exploratory data analysis to gain insights into the dataset.
- 3. Analyse the distribution of features, identify any missing values, and handle them appropriately.
- 4. Explore relationships between features and the claim status (is_claim).
- 5. Interpret the findings and discuss any patterns or trends observed.

3.2 Data Visualisation [10 points]

- 1. Create visualisations to explore relationships between features and the claim status.
- 2. Use appropriate plots and charts to illustrate the patterns and trends in the data.
- 3. Analyse the impact of different features on the likelihood of filing an insurance claim.

3.3 Data Preprocessing [15 points]

1. Perform necessary preprocessing steps such as handling missing (NaN) values, encoding categorical variables, and scaling numeric features by computing its z-score:

$$z = \frac{x - \mu}{\delta}$$

2. Split the dataset into training and testing sets (70:30 ratio) using train_test_split() function.

3.4 Modelling [10 points]

- 1. Import the necessary libraries for SVM binary classification.
- 2. Create an SVM classifier using an appropriate kernel function.
- 3. Fit the classifier to the training data.

3.5 Model Evaluation [20 points]

- 1. Predict the claim status using the trained SVM model on the testing data.
- 2. Evaluate the performance of the model using the following evaluation metrics:
 - Accuracy
 - Precision
 - Recall
 - F1-score.
- 3. Interpret the results and discuss the model's effectiveness in predicting car insurance claims.

3.6 Parameter Tuning [25 points]

- 1. Perform hyperparameter tuning on the SVM model to improve its performance.
- 2. Use grid search to find the optimal values for hyperparameters.
- 3. Re-train the SVM model with the tuned hyperparameters.
- 4. Evaluate the tuned model and compare its performance with the initial model.

3.7 Conclusion and Discussion [10 points]

- 1. Summarise the findings of the assignment, including the initial model's performance and the impact of hyperparameter tuning on the SVM model.
- 2. Discuss the limitations of the study and suggest potential improvements.
- 3. Reflect on the importance and relevance of SVM binary classification in predicting car policyholder claim status.

4 Groupwork Policy

Each group member should actively participate in all stages of the assignment, including exploratory data analysis, data visualization, data preprocessing, model creation, evaluation, parameter tuning, and conclusion. Collaboration, division of tasks, and effective communication within the group are essential for successful completion of the assignment.

5 Presentation

Each group will present their findings, including an overview of the dataset, exploratory data analysis, data visualisation, data pre-processing steps, model creation, evaluation results, parameter tuning process, and final conclusions. Visual aids, such as charts and graphs, are encouraged to enhance the clarity of the presentation.

6 Submission

Submit the following materials:

- Jupyter Notebook or code files used for data analysis and modeling via VLE.
- Presentation slides summarising the key findings and insights from the assignment.