感電案 2 分析參考

從事配電盤配線作業發生感電致死災害調查分析報告

重要提醒:本分析報告是基於所提供案例的有限資訊,並結合事故調查的專業方法論進行。部分內容為根據邏輯與經驗所做的合理假設,並會明確標示為 **(假設)**。一場實際、完整的事故調查,需要更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結論。

事故基本資料

• 行業分類: 機電、電信及電路設備安裝業 (4331)

災害類型: 感電 (13)

媒介物: 電力設備 (352)

• **罹災情形**: 死亡1人

• 事故時間: 民國 109 年 9 月 6 日,約 14 時 25 分許

• **事故地點:** 大雪山某工作區,配電室內南側配電盤前

事故摘要: 雇主邱oo僱用勞工劉oo進行配電盤拉線、配線作業。 當日下午 14時 25分許,劉員於南側配電盤前作業時突然發出「啊」一聲後倒地昏迷。 災害疑似劉員在未停電狀況下,右手不慎碰觸無熔絲開關之裸露帶電端子,左手同時觸碰配電盤金屬外殼,構成感電迴路所致,經送醫後宣告不治。

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序呈現,以視覺化方式釐清因果關係。

二. 時間序列表

此表以表格形式記錄事故發生的先後順序和相關條件,作為 ECFC 的輔助。

日期時間	事件描述	事實	主(P)/次	相關條件 1 (直接	相關條件 2 (條件 1 的
		/假	(S)事件	條件)	背景或前提)
		設	軸		
109/9/6	罹災者劉員於南側配	事實	Р	1. 於帶電電路或其	1. 未規劃安全的作業
14:00 許	電盤前,開始進行拉			鄰近處作業。	方法。
	線作業。			2. 雇主邱員在另一	2. 監督管理機制失
				處作業・未在旁直	效。 (假設)
				接監督。	
109/9/6	劉員右手不慎碰觸無	事實	Р	1. 未穿戴絕緣用防	1. 未要求或提供合適
14:25 許	熔絲開關之金屬裸露	/推		護具。	的個人防護具。 (假
	帶電端子。	经		2. 無熔絲開關處於	設)
				帶電狀態。	2. 未執行停電、上
				3. 端子處於裸露無	鎖、掛牌 (LOTO) 程
				絕緣防護狀態。	序。 (假設)
					3. 設備本質安全不
					足。 (假設)
109/9/6	劉員左手碰觸配電盤	事實	Р	人體成為電流導通	
14:25 許	金屬外殼・構成感電	/推		路徑。	
	迴路。	<u>\$\$</u>			
109/9/6	劉員發出「啊」一聲	事實	Р	因感電導致生理機	
14:25 許	後・倒地昏迷。			能嚴重受損。	
109/9/6	雇主邱員發現後通報	事實	S	啟動緊急應變。	緊急應變計畫可能不
14:25 後	119,將劉員送醫。				足或未演練。 (假設)
109/9/6	劉員經急救後,宣告	事實	Р	感電傷害過於嚴	
17:11	不治死亡。			重。	

三. 為何樹分析 (Why Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本原因。

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• **危害**: 裸露的低壓帶電體 (220V)

• 目標: 罹災者劉員

屏障類	屏障	屏障表	屏障失效原因	屏障如何影響事故 (失效的後
型		現 (事		果)
		故時狀		
		態)		
行政管	1. 停電、上鎖、	完全不	1. 未建立任何「作業前應	這是最致命的屏障失效。它
理 / 程	掛牌 (LOTO) 程	存在	停電」的強制規定。	讓危害源 (帶電體) 始終存
序性	序 (最關鍵屏障)		2. 管理階層 (雇主) 未認知	在,使得後續所有屏障的壓
			此為必要程序。	

				力劇增,是事故發生的前
				│ │提・
行政管	2. 工作許可與風	不存在	1. 未對此高風險作業進行	未能系統性地辨識出活線作
理 / 程	險評估		危害辨識與風險評估。	業的致命風險,因此也未能
序性			2. 認為是一般性作業,無	規劃任何對應的控制措施 (如
			須特別許可。	停電、防護具)。
個人防	3. 絕緣防護具	完全失	1. 罹災者未戴用。	人體直接接觸帶電體的最後
護具	(如絕緣手套)	效	2. 未被要求或強制使用。	一道防線被移除,導致電流
(PPE)			(假設)	直接通過心臟。
工程控	4. 帶電部分之絕	失效	無熔絲開關的端子處於裸露	增加了人員因誤觸而感電的
制 / 設	緣防護 (如端子		狀態,無任何護蓋或絕緣包	機率,降低了設備的本質安
備	護蓋)		覆。	全。
行政管	5. 現場作業監督	失效	雇主雖在附近但未直接監	監督的失效,讓不安全的行
理			督,未能察覺並制止罹災者	為得以持續進行,直到事故
			的不安全行為 (在活線旁未	發生。
			戴防護具作業)。	
行政管	6. 安全衛生教育	嚴重不	未能讓員工認知到「低壓電	導致罹災者可能因輕忽或無
理 / 程	訓練	足 (推	亦可致命」及「活線作業的	知,而將自己置於險境。
序性		斷)	必要防護」,訓練內容與成	
			效堪慮。 (假設)	

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與「理想的無事故狀況」、以識別導致事故的關鍵差異。

因素	事故狀況	先前、理想或未	差異 (變更)	效果評估 (差異對事故的
		發生事故狀況		影響)
		(假設)		
WHAT	在「帶電」的電路上	在「已斷電並上	作業的「條件」	這是最關鍵的差異。將一
(什麼)	進行配線作業。	鎖」的電路上進	由安全變為致	個可控的作業,變成了直
		行配線作業。	命。	接暴露於致命危害下的高
				風險活動。
HOW (如	「未使用」任何絕緣	「有使用」經檢	作業的「方法」	導致人員在直接接觸危害
何)	防護具或絕緣工具。	驗合格的絕緣手	省略了所有安全	時,沒有任何保護,感電
		套與絕緣工具。	保護措施。	成為必然結果。
WHO (何	一個「無人監督」的	一個在「合格人	作業的「監督狀	缺乏監督導致了不安全行
人)	勞工。	員監督下」作業	態」由有人監督	為 (方法上的差異) 的發生
		的勞工。	變為無人監督。	與未能及時制止。
WHERE	在一個「端子裸	在一個帶電部分	作業的「環境」	增加了人員無意中觸碰帶
(何地)	露」、具有高度接觸	已完全被遮蔽或	存在明顯的物理	電體的風險。
			性缺陷。	

風險的配電盤內作	隔離的盤內作	
業。	業。	

淮

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因 (組織與系統層面)
知識性錯誤	罹災者劉員在未停電、未穿戴防護	管理系統的根本缺陷: 公司完全沒
(Knowledge-based	具的情況下,於帶電的配電盤內作	有建立電氣作業安全管理制度,特別
mistake) 或 常規性違	業。	是「停電、上鎖、掛牌(LOTO)」此一
規 (Routine Violation)	此行為若出於不了解其致命性,則	核心安全程序。風險評估機制完全失
	為「知識性錯誤」。若明知故犯・	效。
	認為「以前都這樣做沒事」,則為	
	「常規性違規」。	
知識性錯誤	雇主邱員指派勞工從事高度危險的	* 安全文化與領導力失效: 雇主作
(Knowledge-based	活線作業,卻未提供任何安全防護	為現場最高負責人,其行為直接塑造
mistake)	措施與監督。顯示雇主對於低壓電	了「可以便宜行事、忽視安全」的負
	的危害認知不足,以及對於雇主應	面文化。其自身安全知識的匱乏,是
	盡之指揮監督與提供安全設備之法	導致整個安全管理系統崩潰的源頭。
	律責任的無知。	
		* 教育訓練的徹底失敗: 安全訓練
		若有執行・也顯然未能傳達核心的安
		全原則,導致從雇主到勞工都對此嚴
		重風險缺乏認知。

七. 根本原因分析與矯正改善措施

(一) 立即原因

- 不安全的狀況:
 - 1. 無熔絲開關在通電狀態下,其連接端子裸露。
- 不安全的行為:
 - 1. 勞工於低壓電路從事活線作業時,未使用絕緣防護具或絕緣工具。

(二) 根本原因

1. **致命性的管理系統缺陷—完全沒有電氣作業安全程序**: 最核心的根本原因是,該工程完全沒有建立「作業前應停電、上鎖、掛牌(LOTO)」的管理程序。允許勞工在未斷電的情況下從事配線作業,是直接導致此次事故的管理系統性崩潰。

- 2. **危害辨識與風險評估的完全失效:** 雇主未能辨識出在「低壓(220V)配電盤內作業」是一項高風險作業,也未評估感電的致命風險,因此未能規劃與執行任何有效的控制措施。
- 3. **現場監督與指揮責任的完全失效:** 雇主身為指揮者與監督者,卻未在現場監督 高風險作業的進行,亦未要求勞工採取任何防護措施,監督與指揮系統名存實 亡。
- 4. **安全認知與教育訓練的徹底失敗:** 從雇主到勞工,均嚴重缺乏對低壓感電危害的認知,也未接受正確、有效的電氣安全作業訓練,導致其採取了極度危險的作業方式。

(三) 矯正改善措施建議

- 制度層面 (最優先):
 - 1. 立即建立並嚴格執行「停電、上鎖、掛牌 (LOTO)」作業管制程序: 這是防止再發的最高原則。必須明文規定:所有電氣設備的維修、檢查、配線作業,在非經特定程序(如活線作業許可)批准下,一律必須先斷電、上鎖、掛牌,並由作業人員親自驗電確認無電後,方可施工。
 - 2. **建立「電氣作業風險評估與許可」制度**: 對於所有電氣相關作業,應由 合格人員進行風險評估。如因特殊狀況無法停電,必須填寫「活線作業 許可單」,詳列必要之控制措施(如絕緣屏障、個人防護具)並經負責人批 准後,才可在嚴格監督下進行。
 - 3. **明確化指揮監督責任**: 建立工作前安全分析 (JSA) 或工具箱會議 (TBT) 制度,要求作業前,指揮者必須向作業人員說明工作危害、安全步驟與 應變措施。高風險作業期間,監督人員必須在場監督。

人員層面:

- 1. **實施專項電氣安全教育訓練:** 立即將本次事故作為案例‧對全體員工進行專項安全訓練‧強力宣導「低壓電的致命性」與「LOTO 的重要性」, 建立全員「不驗電、不碰觸」的觀念。
- 2. **落實證照與能力資格查核**: 從事電氣作業人員應具備法定資格 (如乙級 室內配線技術士),並應定期進行能力評估與再訓練。

• 工程控制/設備層面:

- 1. **全面檢視並加裝盤內帶電體護蓋**: 對於所有配電盤內可能被碰觸的帶電 端子、匯流排等,應加裝絕緣護蓋或屏障,提升設備的本質安全。
- 2. **採購並強制使用合格的防護具與工具**: 應提供並強制要求人員使用經檢驗合格的絕緣手套、絕緣鞋、絕緣毯與絕緣手工具。