

С твердым бесцветным кристаллическим веществом Х провели ряд опытов. Для этого навески этого вещества помещали в лодочку внутрь трубчатой печи (см. рисунок), в которой постепенно повышали температуру, доводя ее до указанной. Затем печь охлаждали в инертной атмосфере, лодочку вынимали и фиксировали изменение массы. В ходе описанных опытов материал лодочки никак не изменяется. Было проведено 6 опытов, отличающихся газовой атмосферой внутри печи и максимальной температурой нагрева. В опыте 4 в печь в токе нагретого инертного газа подавали пары серы. Результаты опытов сведены в таблицу:

No		изменение		Наблюдения		
опыта	условия	массы, %	остаток в лодочке	Зона 1	Зона 2	
	C	-100		коричневые	оранжевые	
	1	-100	_	кристаллы	кристаллы	
	0		парти ій		тёмно-серые	
	0		черный	_	кристаллы	
	Н	-88.2	oon III		тёмно-серые	
	- 11	-00.2	серый	_	кристаллы	
					тёмно-серые и	
	Α	-81.4	черный	_	жёлтые	
	r				кристаллы	
	HF,		6		тёмно-серые	
	800°C		белый	_	кристаллы	
	Ar, 200°C	-34.6	белый*	-	_	

^{*} при сгорании в кислороде газа на выходе из реактора образуется смесь веществ, часть из которых поглощается раствором $Ca(OH)_2$.

Вопросы:

- 1. Определите состав соединений, остающихся в лодочке после проведения опытов 2-6, состав коричневых кристаллов в опыте 1, а также вещество **X**. Ответ подтвердите расчётами.
- **2.** Запишите уравнения реакций, протекающих в опытах 1 6.
- 3. Запишите уравнения реакций, последовательно происходящих в водном растворе вещества Х при постепенном добавлении хлорной воды. Какова будет окраска конечного раствора?

Решение задачи 10-3

1. Проанализируем условие задачи. Вещество X при реакции с водородом (опыт 3) дает твердое вещество (обозначим его Y), а при реакции в парах серы (опыт 4) – твердое вещество Z. Из 100 г X образуется 11.8 г Y и 18.6 г Z. Разумно предположить, что вещество Y – это металл, а Z – его сульфид. Причем количество вещества металла M в этих порциях Y и Z равны. Таким образом, представив формулу сульфида как MS_{n/2}, запишем

 $m(\mathbf{M})/m(\mathbf{M}S_{n/2}) = (100 - 88.2)/(100 - 81.4) = M/(M + 16 \cdot \mathbf{n}/2)$, где M – молярная масса металла \mathbf{M} .

Получаем $M = (27.8 \pm 0.4) \cdot n$. Погрешность 0.4 получается из потери массы, округленной до третьей значащей цифры (по данным условия).

$$n = 1, M = 27.4 \div 28.2 \ г/моль$$
 $n = 2, M = 54.8 \div 56.4 \ г/моль (M — Мп или Fe)$
 $n = 3, M = 82.2 \div 84.6 \ г/моль (M — Kr)$
 $n = 4, M = 109.6 \div 112.8 \ г/моль (M — Cd)$

Kr и Cd не подходят. Можно рассмотреть Mn и Fe, при хлорировании (*опыт 1*) образуется летучий хлорид, что характерно для железа (FeCl₃), но не характерно для марганца.

$$Y - Fe, Z - FeS$$

Можно предположить, что в опыте 6 при небольшом нагревании в инертной атмосфере \mathbf{X} разлагается на координированный растворитель и твердый остаток. Найдем количество вещества железа, полученного в опыте 3 из $100 \, \Gamma \, \mathbf{X}$: $\mathbf{n}(\mathrm{Fe}) = 11.8 \, / \, 56 = 0.211 \, \mathrm{моль}$.

$$M(\mathbf{X}) = 100 / 0.211 = 474.6 \pm 2$$
 г/моль

Тогда молярная масса остатка в опыте 6 равна:

$$M$$
(остатка) = 474.6 · (100 – 34.6) / 100 = 310.4 ± 1.2 г/моль.

(310-56) / 2=127 г/моль, что соответствует йоду. Остаток в опыте 6 — это иодид железа(II). При нагревании в атмосфере аргона при низкой температуре можно ожидать отщепления молекул растворителя, входящих в состав сольвата. Предполагая, что при этом образуется иодид железа(II) рассчитаем молярную массу n отщепившихся молекул растворителя (L):

$$n \cdot M(\mathbf{L}) = \frac{\omega}{100 - \omega} M(\text{FeI}_2) = \frac{34.6}{100 - 34.6} 309.7 = 163.8 \ \Gamma/_{\text{МОЛЬ}}$$

n	2	3	4	5	6	7	8	9
$M(\mathbf{L})$, г/моль	81.9	54.6	41.0	32.8	27.3	23.4	20.5	18.2
M(L) - 14 - 12	55.9	28.6	15.0	6.8	1.3			

Согласно условию при сгорании **L** образуется смесь газов, только часть из которых поглощается раствором $Ca(OH)_2$. Это позволяет отбросить воду (n = 9), и предположить наличие атомов азота и углерода в молекуле **L**. После вычитания молярной массы углерода и азота при n = 4 остаётся целое число соответствующее CH_3 . Соответственно, **L** – это ацетонитрил CH_3CN .

$$X - FeI_2(CH_3CN)_4$$

Молярная масса продукта в опыте 2 на 1 железо: $474 \cdot (1 - 0.837) = 77.26$ г/моль.

$$77.26 - 56 = 21.26$$

$$21.26 / 16 = 1.33$$

$$n(Fe): n(O) = 1: 1.33 = 3:4$$

Остаток в опыте 2 – это оксид железа(II, III) Fe₃O₄.

Аналогично в опыте 5 получаем фторид железа(II) FeF₂.

2. Во всех опытах на первой стадии происходит разложение комплекса, которое можно выделить в отдельную реакцию:

Опыт 6:
$$FeI_2(CH_3CN)_4 = FeI_2 + 4CH_3CN$$

Опыт 1:
$$2FeI_2 + 3CI_2 = 2FeCI_3 + 2I_2$$

в холодной части прибора избыток хлора реагирует с иодом: $3Cl_2 + I_2 = 2ICl_3$

или 2
$$FeI_2(CH_3CN)_4 + 9 Cl_2 = 2FeCl_3 + 8CH_3CN + 4ICl_3$$

Опыт 2:
$$3\text{FeI}_2 + 2\text{O}_2 = \text{Fe}_3\text{O}_4 + 3\text{I}_2$$

Опыт 3: $FeI_2 + H_2 = Fe + 2HI$. При данных условиях HI частично разлагается. В этом случае уравнение записывается в виде: $FeI_2 = Fe + I_2$. (оцениваются оба варианта записи уравнения)

Опыт 4:
$$FeI_2 + S = FeS + I_2$$

Так как на вход подаются пары серы, жёлтые кристаллы в холодной части – это элементарная сера.

Опыт 5:
$$FeI_2 + 2HF = FeF_2 + I_2 + H_2$$

3. При добавлении хлорной воды:

$$2FeI_2(CH_3CN)_4 + 3CI_2 = 2FeCI_3 + 2I_2 + 8CH_3CN$$

$$I_2 + 5CI_2 + 6H_2O = 2HIO_3 + 10HCI$$

Окраска конечного раствора желтая.

Система оценивания:

1.	Установление железа – 2 балла	10 баллов
	Состав железосодержащих продуктов в опытах $1-6$ — по 1	
	баллу	
	Полный состав $X - 2$ балла	
2.	Уравнения реакций в опыте 1 – 2 балла	7 баллов

	Уравнения реакций в опытах 2 – 6 – по 1 баллу		
3.	Уравнения реакций – по 1 баллу	3 балла	
	Окраска конечного раствора – 1 балл		
	ИТОГО: 20 баллов		