Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Барсуков Егор Вячеславович

Оптимальные планы для оценивания производных в полиномиальной регрессионной модели без свободного члена

Отчет о научно-исследовательской работе

Научный руководитель: д.ф.-м.н., профессор В.Б. Мелас

Оглавление

Введение	
Глава 1. Общие сведения	Ę
1.1. Определения	ŀ
1.2. Теорема Элвинга	6
1.3. Явная формула для весов оптимального плана	(
Глава 2. План для нахождения производной на промежутке $[0,d]$	7
Глава 3. Численное нахождение оптимальных планов	1(

Введение

Рассмотрим регрессионную модель

$$y_j = \theta^{\top} f_j(x_j) + \varepsilon_j, \quad j = 1 \dots N, \, x_j \in \mathcal{X},$$
 (1)

где N — количество экспериментов, $\mathcal{X} \subset \mathbb{R}$, $f(x) = (f_1(x), \dots, f_n(x))^{\top}$ — регрессионная функция, $\theta = (\theta_1, \dots, \theta_n)^{\top}$ — неизвестные параметры, ε_i — некоррелированные ошибки наблюдения. При этом $\mathrm{E}[\varepsilon_i] = 0$, $\mathrm{D}[\varepsilon_i] = \sigma^2$.

Для улучшения в каком-либо смысле некоторых оценок по данной модели при минимизации N строят nланы эксперимента, т.е. наборы точек $x_i \in \mathcal{X}$ в каждой из которых должно быть произведено n_i экспериментов так, что $\sum_i^N n_i = N$. В каком именно смысле будет улучшена оценка зависит от одного из множества критериев оптимальности. В этой работе будут рассматриваться c-оптимальные планы эксперимента, определение которым будет дано далее.

В работе будут рассматриваться полиномиальные регрессионные модели, т.е. $f_i(x) = x^{k_i}$. Такие модели были хорошо изучены и для многих случаев были построены явные аналитические решения. Множество работ были посвящены нахождению D-оптимальных планов [?,?,?,?]. Также существуют для такой модели явные решения для нахождения E-оптимальных планов [?,?,?,?].

С-оптимальным планом эксперимента является план минимизирующий дисперсию значения скалярного произведения θ и c для заданного $c \in \mathbb{R}^n$. В общем случае нахождение c-оптимальных планов может быть достаточно сложно. Некоторые решения c очень маленьким количеством неизвестных параметров описаны опираясь на использование теоремы Элвинга [?].

Часто рассматриваются задача нахождения оптимального плана при c = f(z) для произвольного z — задача экстраполяции и c = f'(z) — задача оценки производной, они были решены в общем виде для обычной полиномиальной регрессии вида $f(x) = (1, x, \ldots, x^n)^\top$ [?, ?].

В этой работе рассмотрен случай нахождения нахождения плана для оценивания производной при полиномиальной модели без свободного члена при $\mathcal{X}=[0,d]$. Этот случай существенно отличается от $\mathcal{X}=[-1,1]$, который был рассмотрен в [?]. Также был значительно улучшен алгоритм численного нахождения c-оптимальных планов

эксперимента для произвольного c.

Глава 1

Общие сведения

1.1. Определения

Согласно [?] непрерывным планом эксперимента в регрессионной модели (1) будем называть дискретную вероятностную меру

$$\xi = \begin{pmatrix} x_1 & \dots & x_m \\ \omega_1 & \dots & \omega_m \end{pmatrix}, \quad x_i \in \mathcal{X}.$$

Для проведения N измерений с таким планом эксперимента необходимо провести $n_i \approx N\omega_i$ измерений в точке x_i таким образом, чтобы $\sum_i^m n_i = N$.

Для непрерывного плана эксперимента определим информационную матрицу следующим образом

$$M(\xi) = \int_{\mathcal{X}} f(x) f^{\top}(x) \xi(dt).$$

Определение 1. c-оптимальным планом для некоторого вектора c называется план эксперимента ξ минимизирующий следующую функцию

$$\Phi(\xi) = \begin{cases} c^\top M(\xi)^- c, & \text{если существует } v, \text{ такой, что } c = M(\xi) v \\ +\infty, & \text{иначе} \end{cases},$$

где $M(\xi)^-$ — матрица, обобщенно обратная к информационной матрице плана ξ . План называется допустимым, если существует такое v, что $c=M(\xi)v$.

Как было отмечено в введении, c-оптимальный план минимизирует дисперсию несмещенной МНК оценки $c^{\top}\hat{\theta}$ линейной комбинации $c^{\top}\theta$ [?].

Определение 2. Если c = f(z) для некоторого $z \in \mathbb{R}$, то соответствующий c-оптимальный план называется onmumanbhom nnahom skempanonsuuu в точке z.

Определение 3. Если c = f'(z) для некоторого $z \in \mathbb{R}$, то соответствующий c-оптимальный план называется *оптимальным планом для оценки производной* в точке z.

1.2. Теорема Элвинга

Для решения задачи нахождения с-оптимальных планов в множестве случаев (в том числе в данной работе) используется теорема Элвинга, являющаяся геометрически интерпретируемым критерием с-оптимальности плана эксперимента.

Теорема 1. (Элвинга) [?] Допустимый план ξ^* с носителем $x_1, \ldots, x_m \in \mathcal{X}$ и весами $\omega_1, \ldots, \omega_m$ является c-оптимальным тогда и только тогда, когда существует $p \in \mathbb{R}^k$ и константа h такие, что выполняются следующие условия:

$$|p^{\mathsf{T}}f(x_i)| = 1 \qquad i = 1..m \leqslant n \tag{1.1a}$$

$$|p^{\top}f(x)| \leqslant 1$$
 $x \in \mathcal{X}$ (1.1b)

$$c = h \sum_{i=1}^{m} \omega_i f(x_i) p^{\mathsf{T}} f(x_i). \tag{1.1c}$$

Кроме того

$$h^2 = c^{\mathsf{T}} M^-(\xi^*) c$$

Функция $p^{\top}f(x_i)$ в определениях теоремы Элвинга называют *экстремальным мно-гочленом*.

1.3. Явная формула для весов оптимального плана

Теорема 2. Оптимальный план для оценивания производной полиномиальной модели без свободного члена с опорными точками t_1^*, \ldots, t_m^* , где m = n или m = n - 1 имеет веса вычисленные по следующей формуле:

$$\omega_i = \frac{|L_i'(z)|}{\sum_{i=1}^m |L_i'(z)|},\tag{1.2}$$

где L_i задается следующим образом

$$L_i(x) = \frac{x \prod_{l=1}^{n} (x - t_l^*)}{t_i^* \prod_{l \neq i}^{n} (t_i^* - t_l^*)},$$

то есть является i-ым базисным многочленом Лагранжа без нулевого члена построенным по точкам t_1^*, \ldots, t_m^* .

Глава 2

План для нахождения производной на промежутке

[0,d]

Построим полином без свободного члена $S_n(x)$ степени n, не превосходящий по модули единицу на промежутке [0,1], и достигающий её в n точках. Пусть $T_n(x)$ — многочлен Чебышёва степени n. Тогда по свойствам многочленов Чебышёва T_n не превосходит по модулю единицу на промежутке [-1,1] и достигает её в n+1 точках, в том числе в точках -1 и 1. Известно, что корни T_n имеют следующий вид

$$x_i = \cos\left(\frac{\pi(i+1/2)}{n}\right), \quad i = 0, \dots, n-1.$$

Если мы возьмём самый маленький корень $x_{\min} = -\cos\frac{\pi}{2n}$ и положим $\widehat{S}_n(x) = T_n(x+x_{\min})$, то \widehat{S}_n будет являться полиномом степени n с нулевым свободным членом, так как $\widehat{S}_n(0) = 0$ по построению. При этом $\left|\widehat{S}_n(x)\right| \leqslant 1$ для x на промежутке $[0,1+\cos\left(\frac{\pi}{2n}\right)]$, при этом в этом промежутке абсолютная величина достигает единицы n раз в силу того, что левый край не равен 1.

Для того, чтобы привести промежуток к виду [0,1] достаточно добавить множитель $1+\cos\frac{\pi}{2n}$ к x в левой части определения $\widehat{S_n}$. После этого получается многочлен, удовлетворяющий всем требуемым свойствам

$$S_n(x) = T_n \left(x \left(1 + \cos \frac{\pi}{2n} \right) - \cos \frac{\pi}{2n} \right).$$

Для более общего случая в виде промежутка [0,d] требуемый многочлен (обозначим его S_n^d) можно выразить из $S_n(x)$ как $S_n^d(x) = S_n\left(\frac{x}{d}\right)$.

Исходя из данного построения и известных экстремальных точек многочлена Чебышёва, можно легко выразить экстремальные точки S_n . Обозначим их как $s_{i,n}$, тогда

$$s_{i,n} = \frac{\cos\frac{(n-i)\pi}{n} + \cos\frac{\pi}{2n}}{1 + \cos\frac{\pi}{2n}}, \quad i = 1, \dots, n$$

при этом

$$0 < s_{1,n} < \ldots < s_{n,n}$$

И

$$S_n(s_{i,n}) = (-1)^{n+i}, \quad i = 1, \dots, n$$

Построим базисные полиномы Лагранжа степени n без нулевого члена по точкам $\{s_{i,n}\}_{i=1}^n$

$$L_i(x) = \frac{x \prod_{l=1}^{n} (x - s_{l,n})}{s_{i,n} \prod_{l \neq i}^{n} (s_{i,n} - s_{l,n})}$$

Так как теорема 4 о весах оптимального плана в случае полиномиальной модели работает для любых промежутков, то для нахождения весов можно использовать её.

$$\omega_i = \frac{|L_i'(z)|}{\sum_{j=1}^n |L_j'(z)|}$$

В силу свойств многочленов Чебышёва $S_n(x)$ и $-S_n(x)$ — единственные многочлены степени n без нулевого члена, которые удовлетворяют свойствам 1-2 теоремы Элвинга, поэтому осталось проверить для только свойство 3. Для этого введем обозначения $F = \left(s_{j,n}^i\right)_{i,j=1}^n$, $h = \sum_{j=1}^n \left|L_j'(z)\right|$ и $\beta = (|L_i'(z)| (-1)^{i+n})_{i=1}^n$. Так как $s_{j,n}$ при $i=1,\ldots,n$ являются экстремальными точками многочлена S_n и при этом $S_n(s_{j,n}) = (-1)^{j+n}$, то выполнение равенства

$$f'(z) = hF\beta \tag{2.1}$$

при $\omega_i\geqslant 0,\,i=1,\ldots,n$ и $\sum_{i=1}^n\omega_i=1$ эквивалентно выполнению условия 3 теоремы Элвинга для нахождения оптимального плана оценки производной в точке z.

Так как равенство $F^{-1}F=I_n$, где I_n — единичная матрица размера n, можно переписать, как систему равенств

$$e_i^{\mathsf{T}} F^{-1} f(s_{j,n}) = \delta_{ij}, \quad i, j = 1, \dots, n,$$
 (2.2)

где δ_{ij} — дельта Кронекера, а e_i — i-ый единичный вектор. Поскольку в левой части равенств (2.2) содержатся многочлены без нулевого коэффициента степени не больше n вычисленные в точках $s_{j,n},\ j=1,\ldots,n,$ а для каждого i существует только одно j, такое, что $\delta_{ij}\neq 0$, то они определяют все базисные многочлены Лагранжа без нулевого члена степени n вычисленные в точках $s_{j,n},\ j=1,\ldots,n,$ таким образом

$$e_i^{\mathsf{T}} F^{-1} f(z) = L_i(z), \quad i, j = 1, \dots, n.$$
 (2.3)

Если в предыдущем выражении вычислить производную по z и переписать полученное выражение в векторной форме получим

$$f'(z) = F(L'_1(z), \dots, L'_n(z))^{\top}.$$
 (2.4)

Приравняв правые части (2.5) и (2.1) и домножив равенство на F^{-1} слева, получаем, что

$$h\beta = (L'_1(z), \dots, L'_n(z))^{\mathsf{T}},$$
 (2.5)

что с учетом введенных ранее обозначений влечет, что $\operatorname{sign}(L_i'(z)) = \operatorname{sign}((-1)^{i+n}),$ $i=1,\ldots,n$ или, вспомнив, что экстремальным многочленом также может быть -S(x), $\operatorname{sign}(L_i'(z)) = \operatorname{sign}((-1)^{i+n+1}), \ i=1,\ldots,n.$

Таким образом для того, чтобы доказать, что оптимальный план находится в точках $(s_{i,n})_{i=1}^n$, $i=1,\ldots,n$ с указными ранее весами, осталось доказать равенство знаков $L_i'(z)$ и $\pm S_n(s_{i,n})$. Но так как знаки экстремальных точек многочлена S_n чередуются, достаточно показать при каких z выражения $(-1)^i L_i'(z)$ для имеет одинаковый знак для $i=1,\ldots,n$.

Обозначим корни многочлена L_i' как $u_{i,1},\ldots,u_{i,n-1},\,i=1,\ldots,n$. Так как для L_i и L_j выполняются требования леммы 2 для любых i и j таких что i < j, то последовательно применяя ее для всех базисных многочленов получаем, что

$$u_{n,1} < u_{n-1,1} < \dots < u_{1,1} < u_{n,2} < u_{n-1,2} < \dots < u_{1,2} < \dots < u_{1,n-1}.$$
 (2.6)

Можно видеть, что, так как все узловые точки больше нуля, знак многочлена $L_i(z)$ при $z \to -\infty$ будет равен $(-1)^{n+i+1}$. В то же время знак $L_i'(z)$ будет противоположным $L_i(z)$ так как меняется четность многочлена и при этом не меняется знак при старшем коэффициенте, то есть $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{n+i})$ при $z \to -\infty$. И, следовательно, $\mathrm{sign}((-1)^i L_i'(z)) = \mathrm{sign}((-1)^{n+2i}) = \mathrm{sign}((-1)^n)$ при $z \to -\infty$, то есть $\mathrm{sign}((-1)^i L_i'(z))$ не зависит от i и имеет постоянный знак для любых i, что означает, что при $z \in (-\infty, u_{n,1})$ третье условие теоремы Элвинга выполняется и план является оптимальным.

Осталось изучить как ведут себя знаки $\operatorname{sign}((-1)^i L_i'(z))$ на остальных промежутках. На промежутках $[u_{j,1}, u_{j,n-1}]$ каждый базисный многочлен меняет свой знак ровно 1 раз и на этих промежутках знаки производных не совпадают со знаками экстремального многочлена, а на промежутках $(u_{j,n-1}, u_{j-1,1})$ нет ни одного корня и поэтому $\operatorname{sign}((-1)^i L_i'(z)) = \operatorname{sign}((-1)^{n+j}$ при $z \in (u_{j,n-1}, u_{j-1,1})$, что также подтверждает третье условие теоремы Элвинга и показывает, что показанный план оптимален для $j=1,\ldots n-1$.

На промежутке $(-\infty, u_{1,n-1})$ каждый базисный многочлен поменял свой знак одинаковое количество раз, а так как при $z \to -\infty$ условие выполнялось, то при $z \in (u_{1,n-1}, +\infty)$ план также является оптимальным.

Глава 3

Численное нахождение оптимальных планов