

Summary of steps in a hypothesis test:

- Formulate H_0 and H_1
- ullet Find a test statistic T and get its null distribution
- ullet Compute $T_{
 m obs}$
- Use the null distribution to compute either the critical point or the p-value for the test.
 - State your conclusion. (in lay man terms 450). don't just say the is accepted in referenced.

Recall! p-value = P[T is as extreme or more extreme than Toes | the is true

If paralme s & , right Ho, but abought it It produce Y &.

One-sample tests for μ where $X \sim N(\mu, \sigma^2)$ Some specific tests

Case 1: z-test (known σ^2): $H_0: \mu = \mu_0$

Test statistic: 1 - 2 (h)

Trus:

In which of NOTE: When HO 13 From:

~ N(0,1) when to is X-M

- N(0,1) darshy

Critical point for the level α test:

One-sided alternative: $\frac{2}{4}$ w $-\frac{2}{4}$

Two-sided alternative:

Those critical points quaraute that P Frient to 1 to

1 TYPE I WILL

. 0

p-value:

下は、この下呼べいり、

1-pnrm(2005)	N(0,1) deavity N(0,1) deavity Sb.	500 6/12
omput	2 (2) S	
	22 To The Town of	0 /5002/
reject when 2015 >242 (2015 > 242 (2015 < -24	The Hard Hard Hard Hard Hard Hard Hard Hard	0 Felst) , (- F (2065 /)) ,
$\begin{array}{c c} H_1 \\ \mu \neq \mu_0 \\ \mu > \mu_0 \\ \mu < \mu_0 \end{array}$	J. M. M.	03
,	Computing	()

Case 2: t-test (unknown σ^2): $H_0: \mu = \mu_0$

Sample

Test statistic:
$$t = \frac{x - \mu_0}{\langle s(x) \rangle} = \frac{x - \mu_0}{s / \mu_0}$$

~ thy de. When the is 32 - Variance ay-X

Se (X)

Critical point for the level α test:

One-sided alternative: $t_{h-l,\kappa} \sim -t_{h-l,\kappa}$

Two-sided alternative: the start of

p-value:

Mm: F(x) = CDF of the dist.

computing p-value	$2(1 - F(t_{\rm obs}))$	$1-F(t_{ m obs})$	$F(t_{ m obs})$
p-value	$P(t \ge t_{\rm obs} H_0)$	$P(t \ge t_{ m obs} H_0)$	$P(t \le t_{ m obs} H_0)$
reject when	$ t_{\rm obs} \ge t_{n-1,\alpha/2}$	$t_{ m obs} \geq t_{n-1,lpha}$	$t_{ m obs} \le -t_{n-1,\alpha}$
H_1	$\mu \neq \mu_0$	$\mu > \mu_0$	$\mu < \mu_0$

- And during N (011) dursity

(B) 1-F(2) QUEMING N(01) < 1-F(2) ANIMIZE CAT

Frankle MSS Hary "3

Re call;

One-sample test for μ when X is nonnormal

Large-sample z-test: $H_0: (\mu = \mu_0)$

- Need large n but works for mean of any (non-normal) population
- Use the z-test with test statistic

$$Z = \frac{X - \mu_0}{\sqrt{N}}$$
 $L = \frac{X - \mu_0}{\sqrt{N}}$ $V(011)$ When $V(011)$ $V(011)$ $V(011)$ $V(011)$ $V(011)$ $V(011)$

- When n is large, the null distribution is approximately N(0,1) due to central limit theorem.
- This test has approximate level α .

- The large-sample z-test works because in this case $X \sim$ 40: P-Po. Bernoulli(p) and E(X) = p.
- Use the z-test with test statistic

72 N(OI) What N is last -> both was. se.(9) when Ho is fruit, F(17)/n /> 01/ to moc.

This test has approximate level α .

(M= \$6.075, 0\$=14) branton 29 90/12 20.14 X = time 4/w key strokes for the person who is trying to 17 in t-Int because population is wormed and sto of PDP. Is undeaturn. Ex 1: A long-time authorized user of a computer account takes keystrokes were recorded. These data had mean of 0.3 seconds user typed in the username and password, 15 times between z 0.2 seconds on average between keystrokes. One day, when a evidence of an unauthorized login attempt? Assume unmulty for time spo perpenses, and 5% loved of significances -> attempt is testables and standard deviation of (0.12) seconds. Do these data given LOVEL'SY. I'M. SINCE Produce < 0.05 3 rejust 10. 2 [1- \$t(13.2271, df=14)] = 0.006. unauthorised attempt 0.3 - 0.7 - 3.827 Ho: 10=0.23 5 VS H; 10 7 0.2 5 51/2/0