Regularization and Optuna

SYDE 599 Deep Learning F23

October 26, 2023

Assignments

- If there are Assignment 1 questions, you can ask after class
- Self-enroll groups available for Assignment 2 (2-3 students) and Assignment 3 /
 Presentation (4-5 students)
- Assignment 2 should be easily completed with only 2 people, groups from Assignment 1 can split into two groups
- Completing A2 should help you feel ready to use PyTorch for the project

Optuna

- Not installed by default in Google Colab, install with !pip install optuna
- Optuna documentation -> Key features tutorials

Key Optuna Terminology

- Study
 - Hyperparameter optimization session, consisting of a set of trials
- Trial
 - Process of evaluating an objective function once
 - Provides interface to get suggested parameters based on optimization algorithm
 - Considerations
 - Range of values
 - Log scale (e.g. learning rate, L2 penalty)
 - Discrete or continuous

suggest_categorical ()	Suggest a value for the categorical parameter.
<pre>suggest_discrete_uniform (name, low, high, q)</pre>	Suggest a value for the discrete parameter.
<pre>suggest_float (name, low, high, *[, step, log])</pre>	Suggest a value for the floating point parameter.
<pre>suggest_int (name, low, high[, step, log])</pre>	Suggest a value for the integer parameter.

WATERLOO

Week six activity PG. 4

Key Optuna Terminology

Objective

- Non-differentiable goal you want to optimize, e.g. maximize test accuracy on MNIST with a neural network
- Single function, input is a "trial" and output is your metric
- Suggest hyperparameters, construct model, perform training, and perform evaluation within the objective

Sampler

- Non-gradient based optimization method for (hyper)parameters
- Consider reporting reasons for sampler choice in the report

Optuna Objective for Deep Learning

```
def objective(trial):
 hps = suggest_hyperparameters(trial)
 model = create_model(hps)
 model = train_model(model, train_dataset, hps)
 metric = evaluate_model(model, test_dataset)
 return metric
```


Convolution in Torch

- Torch expects image tensors of shape (B, C, H, W)
- We have 5 parameters to worry about in convolution
 - in channels, out channels: How will the feature/channel dimension change?
 - kernel_size: Kernel is shape (k, k) typically
 - padding: How to deal with the edges? We almost always use "same" padding (or k//2) to have a better understanding of how shapes of tensors will change through the network
 - stride: Do we downsample by factor of s?

Shapes in Convolution

- Channels
 - (B, C_in, H, W) -> (B, C_out, H, W)
- Padding, kernel size
 - If we use "same", then H and W don't change
- Stride
 - $(B, C, H, W) \rightarrow (B, C, H//s, W//s)$
 - Keyword "same" doesn't work, must use padding=k//2 to ensure shapes change as expected
 - We typically downsample at certain points in the network, not often a hyperparameter

Regularization Activity

• Given this network that overfits, what should be done to improve its test performance?

Convolution Shapes Activity

Work through how convolution affects input/output shapes (time permitting)

