ssignment Project Even U

Assignment Project Exam Help

https://eduassistpro.github.

Back To Solving Problems

The Rod Cutting Problem

Assignment roproject letter Help They will cut the rods into smaller pieces to sell on

- Eac
- whhttps://eduassistpro.github.

Is
$$p(3) + p(3) + p(3) + p(1) > p(4) + p(4) + p(2)$$
?

Instance of The Problem

https://eduassistpro.github.

Add WeChat edu_assist_pr

Then the answer for N = 10 is 32 $(1 \times 6 + 4 \times 1, \text{ or } 2 \times 5)$

Rod Cutting

Assignment Project Exam Help

https://eduassistpro.github.

```
Question
```

```
Given an array of prices P = [P_1, \dots, P_k] a k, how can RU de complete P hat edu assist P
```

Assignment, Paroject, Exam, Help

Possible https://eduassistpro.github.

- (Values can repeat in s)
- Com Add We Chat edu_assist_pr
- For all possible s
- Update current best R(N) as you go

Assignment Project Exam Help size 10

https://eduassistpro.github.

Question

How do you generate (only) sequences s t

At this point day be useful to think about reducing taps sist_pr solving one or more smaller subproblems.

Assignment 3 Project 7 Esxamp Help

Choosin

- https://eduassistpro.github.
- Then s is s_1 followed by $\langle s_2, \dots \rangle$ that sum to N

Can now see the druttly of the troblem: edu_assist_pr

- For each possible s_1
- Find all solutions for $N s_1$, and combine with s_1
- Base case: only sequence that sums to 0 is ()

Algorithms (580)

size Assignment Project Exam Help Re-evaluate overall design:

- Pic
- Ma https://eduassistpro.github.
- One option per value for s₁

A Simple Recursive Solution

```
Assignment Project Exam Help

if N == 0

r

els

thttps://eduassistpro.github

choices[i] = P[i] + SimpleRodCut(N-i, P)

return max(choices)

Add WeChat edu_assist_pro

choices collects total for each si
```

- max finds the maximum of the choices
- max finds the maximum of the choices

How does this run?

Simple Rod Cut — Reflection

WOW that was sloooooowww.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

```
Question
```

Solving R(0) takes $\Theta(1)$ time. What about R(N)?

Time for Simple Solution

Assignment Project Exam Help $T(0) = \Theta(1)$

https://eduassistpro.github.

 $Add^{(N)} = \Theta(2^N)$.

- The running time grows exponentially.
- This is not a practical solution.

or

Divide & Conquer?

Assignment Project Exam Help

https://eduassistpro.github.

New Strategy

What is there that we can take advantage of?

Assignment Project Exam Help

https://eduassistpro.github.

Dynamic Programming

Assignment Programming makes a space-time tradeoff Help

- Compute it once and save the answer in a table
- This is canttps://eduassistpro.github.

```
MemoisedRodCut(Input: N, P = [P_1, ..., for A = downorm We Chat edu_assist_preserved with the property of the property of
```

R is the table to be filled in

Memoisation

```
Assignment Project Exam Help
    if R[
    rhttps://eduassistpro.github.
choices[i] = P[i] + MemoiseAux(N-i, P, R)
    R[N] = max(choices)
    retuAdd WeChat edu_assist_pr
```

- If R[N] was already computed (R[N] > 0) it is returned immediately
- Otherwise we compute it, save it, and then return it
- Also called Top Down (set out to solve the biggest problem)

The 'Bottom Up' Method

We know which problems depend on which others

Assiven in emitte Problem Exam Help

```
Rinttps://eduassistpro.github.

choices = [0,...,0]

fAdd WeChatedu_assist_procedu_assist_procedure  
R[i] = max(choices)

return R[N]
```

• What is the running time?

Dynamic Programming

Assi gramming can be problem to the problem has optimal substructure Associated to a problem if the problem has optimal substructure.

The

A proble https://eduassistpro.github.

- the p

• an optimal solution uses optimal solutions to the s
In rod cutting the optimal edition at edu_assist_properties.

•
$$P[i] + R[N - i]$$
, where $1 \le i < N$

and each R[N-i] was an optimal solution for N-i.

Optimal Substructure

Aroblem's may appear to have primal substruct to when they de the left of the

In

out https://eduassistpro.github.

```
Input: graph G (V, E). hat edu_assist_pr
```

Input: vertices $u, v \in V$.

Output: the simple path from u to v containing the most edges

Optimal Substructure

A shortest path is composed of optimal solutions to subproblems

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

The shortest path from 1 to 2 (via x) is

- shortest path from 1 to x
- plus the shortest path from x to 2

Optimal Substructure

How about a longest path?

Assignment Project Exam Help

https://eduassistpro.github.

- Independent subproblem solutions do not make an optimal solution
- In an optimal solution the subproblems will interfere

Overlapping Subproblems

The second property we need when applying dynamic programming is

Assignment Project Exam Help

https://eduassistpro.github.

- The same problems are generated over and over
- The subproblems must still be independent
- The set of all subproblems is the subproblem space
- The smaller the subproblem space the quicker the (dynamic) algorithm