MODELING COMPUTATION KERNELS WITH STAN

Hoël Jalmin Tutored by Arnaud Legrand and Tom Cornebize The 21th of June, 2019

INTRODUCTION

With the current need for high performance computing, and the hardware complexity:

- How to predict the duration of computations?
- How to quantify incertainty?

For this talk:

- 1. Brief presentation of the context
- 2. Introduction to Bayesian sampling through Stan
- 3. Examples of application

BACKGROUND ON HPC AND POLARIS RESEARCH

Modern context

- HPC systems use thousands of nodes, cache, hyperthreading, etc
 → makes it difficult to predict performance
- Some functions (like DGEMM in the BLAS library) are used everywhere, and called thousands of times in a program.

Previous work

- Simulating high performance programs to optimize them at a lesser cost
- Elaborated complex models within a few percent of reality but needed to evaluate and confirm them

BAYES MODEL

Model Let's say $y \sim \mathcal{N}(\alpha * x + \beta, \sigma)$

- α, β, σ : Model parameters
- · y: Dependent data (posterior)
- · x: Independent data

We observe some data and need to find model parameters

The vocabulary

- Posterior: The distribution of the parameters
- · Likelihood: A function of the parameters, the model
- Prior: Existing knowledge of the system, guesses on the parameters values (σ >0 per example)

A BAYESIAN SAMPLER, STAN

WITH A SIMPLE EXAMPLE

Using this data, we'll try to find the parameters that were used to generate it.

4/17

THE STAN MODEL

```
library(rstan)
modelString = "data { // the observations
   int<lower=1> N; // number of points
   vector[N] x;
   vector[N] y;
parameters { // what we want to find
   real beta;
   real alpha;
    real<lower=0> sigma; // indication: sigma cannot be negative
model {
   // We define our priors
   beta ~ normal(0, 10);
   alpha ~ normal(0, 10);
    sigma ~ normal(0, 10);
   // Then, our likelihood function
   v ~ normal(alpha*x + beta, sigma):
sm = stan_model(model_code = modelString)
```

LOOKING AT THE POSTERIOR

LOOKING AT THE GENERATED DATA

THE IMPORTANCE OF THE PRIORS

- · The priors are necessary to have convergence in the fit
- Non-informative prior vs informative (careful not to have a falsely informative one and introduce bias)
- A little bit of precision is better, but initialisation values can do the trick

THE DIFFERENT MODELS FOR DGEMM

SPATIAL AND TEMPORAL VARIABILITY

• DGEMM's duration depends on the matrix size, on the CPU used to run it, and on residual noise coming from the system.

THE POSSIBLE MODELS

(Source: Fast and Faithful Performance Prediction of MPI Applications: the HPL Case Study)

MODEL 1: A POLYNOMIAL MODEL WITH NOISE DEPENDING ON X

A redo of the last model presented before, using Stan. Like a linear model but with more parameters (in this case 10).

The model follows this:

duration
$$\sim \mathcal{N}(\alpha_1 * mnk + \alpha_2 * mn + \alpha_3 * mk + \alpha_4 * nk + \beta, \gamma_1 * mnk + \gamma_2 * mn + \gamma_3 * mk + \gamma_4 * nk + \delta)$$

THE GENERATED DATA

MODEL 2: A MODEL WITH PARAMETERS DEPENDING ON THE HOST

- Much like the previous model, but with different observations for each host
- Added a variable for the number of hosts, and used matrices instead of vectors for all the parameters.

For this model we have:

duration[i]
$$\sim \mathcal{N}(\alpha_1[i] * mnk + \alpha_2[i] * mn + \alpha_3[i] * mk + \alpha_4[i] * nk + \beta[i],$$

 $\gamma_1[i] * mnk + \gamma_2[i] * mn + \gamma_3[i] * mk + \gamma_4[i] * nk + \delta[i])$

POSTERIOR VISUALISATION

The posterior with models depending on the host shows a lot of difference between hosts (here we have 3 "average" CPU and a slow one):

POSTERIOR VISUALISATION

If we look at the means of the parameters' values for each host, we get a range of values in which most hosts are.

MODEL 3: A HIERARCHICAL LINEAR MODEL

- Useful to find the value of hyperparameters from which we get the parameters
- From this we could calculate new parameters for new CPUs
- Here μ_α and σ_α are the hyperparameters for α , and the same goes for the other parameters

$$\mu_{\alpha} \sim \mathcal{N}(\alpha_{-}\text{moy},\alpha_{-}\text{sd})$$
 with $\alpha_{-}\text{moy}$ and $\alpha_{-}\text{sd}$ the priors $\sigma_{\alpha} \sim \mathcal{N}(0,1)$
$$\alpha[i] \sim \mathcal{N}(\mu_{\alpha},\sigma_{\alpha})$$

$$duration[i] \sim \mathcal{N}(\alpha[i]*mnk + \beta[i],\gamma[i]*mnk + \delta[i])$$

CONCLUSION

My contribution

- Created several models to represent the performance of a computation kernel within a few percent of reality
- · Model adaptable to changes (addition/removal of CPUs)

Following up work

- Implementing this work in Simgrid research (other computation kernels, network communications, etc)
- · Novelty detection and non regression performance tests