UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF EDUCATION

FINAL EXAMINATIONS FOR BACHELOR OF SCIENCE EDUCATION IN EDUCATION

YEAR III

SEMESTER I, 2022/2023

MTC 1103: DISCRETE MATHEMATICS

DATE: 22/7/2012 22nd 05 2023

TIME: 9:30 am - 12:30 pm

DURATION: 3 hours

Instructions

- 1. Carefully read through ALL the questions before attempting
- 2. Attempt FOUR questions
- 3. Indicate the numbers you have done on the front page in their order
- 4. Ensure that ONLY your Registration number is indicated on the front page

a) Using relevant examples, define the following terms as used in set theory

(i) Binary set [2 Marks]

(ii) Proper sub-set [2 Marks]

(iii) Summarize three methods of describing a set [3 Marks]

b) Suppose I discovered that my cat had an appetite for little lizards that live in the bushes of UMU. In one month, suppose he deposited the following in the computer classroom: six gray lizards, twelve lizards that had dropped their tails in an effort to escape capture, and fifteen lizards that he had chewed on a little. Only one of the lizards was gray, chewed on, and tailless; two were gray and tailless but not chewed on; two were gray and chewed on but not tailless. If there were a total of 24 lizards left in the computer classroom that month, and all of the lizards were at least one of "gray", "tailless", and "chewed on". Required:-

(i) Summarize the above information using set language [4 Marks]

(ii) Represent the above information in Venn diagrams [5 Marks]

Determine the number of lizards which were:-

i) Tailless only [3 Marks]

ii) Gray only [3 Marks]

iii) Chewed on only [3 Marks]

a) Define the following terms as used in propositional logic

(i) Simple sentence

[2 Marks]

(ii) Compound sentence

[2 Marks]

(iii) Logical equivalence

[2 Marks]

b) Draw truth tables for the following propositional logic functions

(i) PL: $((P \land Q) \rightarrow \neg R)$

[7 marks]

(ii) PL: \neg (P $\rightarrow \neg$ Q) V PL: (P \land Q)

[7 marks]

c) Which of the following statements are logically equivalent?

(i) PL: $((P \land Q) \rightarrow \neg R)$ and PL: $(P \rightarrow Q) \land (Q \rightarrow R)$.

[3 marks]

(ii) PL: $\neg (P \rightarrow \neg Q)$ and PL: $(P \land Q)$

[2 marks]

a) Given the following circuit below:-

Construct a truth table for the logical functions at point:-

c) Use De-Morgan's theorem to simplify the following Boolean expressions

(i)
$$\overline{A.B}$$
 [2 marks]

(ii)
$$\overline{A+B}$$
 [2 marks]

(iii)
$$\overline{A + \overline{BC}}$$
 [3 marks]

(iv)
$$\overline{AB + CD}$$
 [3 marks]

a) Define a binary relation R from set $Q = \{6, 7, 8\}$ to set $P = \{1, 2, 3, 4\}$

[6 marks]

b) Determine the number of relations in R

[3 marks]

c) Consider the following sub relations in R:-

$$R_1 = \{\; (a,\,b) \mid a \leq b \; ; \; R_2 = \{\; (a,\,b) \mid a > b \; ; \; R_3 = \{\; (a,\,b) \mid a = b - 2 \; \} \\ \text{and} \; R_4 = \{\; (a,\,b) \mid a = b + 1 \; \} \\ \text{and} \; R_4 =$$

Determine:-

(i) $R_1 \cap R_2$

[4 marks]

(ii) R₂ U R₄

[4 marks]

(iii) $R_3 - R_2$

[4 marks]

(iv) R2 A R4

[4 marks]

Question 5

a) Define the following terms

(i) A Boolean algebra

[3 Marks]

(ii) n - bit sequence

[3 Marks]

(iii) A logic gate

[3 Marks]

b) Suppose the input data consists of a 4 - bit sequence given by the following:

A = 1101 and B = 0101. Determine the following outputs:

(i) NOT gate

[2 Marks]

(ii) OR gate

[2 Marks]

(iii) AND gate

[2 Marks]

c) Construct circuits that produce the following out puts

(i)
$$(X + Y)X'$$

[5 Marks]

(ii)
$$X' \cdot (Y + Z)'$$

[5 Marks]

Question 6

a) Given the following sets:-

$$A = \{ \ x : x \in \mathbb{N} \leq 15 \ \}, \ P = \{2, \, 3, \, 4, \, 5, \, 6, \, 7\}, \ Q = \{0, \, 3, \, 6, \, 9, \, 12\} \ \text{and} \ R = \{2, \, 4, \, 6, \, 8\}.$$

Determine:-

(i) E

[3 marks]

(ii) PUQ

[2 marks]

(ii) P∩R

[2 marks]

(ii) A^C

[2 marks]

(iv) A - P

[3 marks]

(v) PΔQ

[3 marks]

(vi) P X R

[5 marks]

b) Explain any one application of sets in a real life situation

[5 marks]

END