General Topology - HW 3

SungBin Park, Physics, 20150462

October 26, 2018

Problem 1

- A. I'll first check the metric axioms.
 - (a) \bar{d} is a function

$$\bar{d}: X \times X \longrightarrow \mathbb{R}$$

and $\bar{d}(x, y) = \min\{d(x, y), 1\} \ge 0$

- (b) $\bar{d}(x,x) = d(x,x) = 0$ for all x. Conversely, if $\bar{d}(x,y) = 0$, then $\min\{d(x,y),1\} = 0 \Rightarrow d(x,y) = 0$ and x = y.
- (c) Symmetric: $\bar{d}(x,y) = \min\{d(x,y), 1\} = \min\{d(y,x), 1\} = \bar{d}(y,x)$.
- (d) $\bar{d}(x,y) + \bar{d}(y,z) = \min\{d(x,y),1\} + \min\{d(y,z),1\} = \min\{d(x,y) + d(y,z), d(x,y) + 1, d(y,z) + 1, 2\} \ge \min\{d(x,y) + d(y,z), 1\} \ge \min\{d(x,z), 1\} = \bar{d}(x,z)$

Therefore, \bar{d} is a metric.

- B. I'll first check the metric axioms.
 - (a) ρ is a function

$$\rho: X \times X \longrightarrow \mathbb{R}$$

and
$$\rho(x,y) = \frac{d(x,y)}{d(x,y)+1} \ge 0$$

- (b) $\rho(x,x) = \frac{d(x,x)}{d(x,x)+1} = 0$ for all x. Conversely, if $\rho(x,y) = 0$, then d(x,y) = 0 and x = y.
- (c) Symmetric: $\rho(x,y) = \frac{d(x,y)}{d(x,y)+1} = \frac{d(y,x)}{d(y,x)+1} = \rho(y,x)$.

$$\begin{array}{l} \text{(d)} \ \ \rho(x,y) + \rho(y,z) = \frac{d(x,y)}{d(x,y)+1} + \frac{d(y,z)}{d(y,z)+1} = 2 - \left(\frac{2+d(x,y)+d(y,z)}{d(x,y)d(y,z)+d(x,y)+d(y,z)+1}\right) \geq 2 - \left(\frac{2+d(x,y)+d(y,z)}{d(x,y)+d(y,z)+1}\right) = \\ 2 - \left(1 + \frac{1}{d(x,y)+d(y,z)+1}\right) \geq 2 - \left(1 + \frac{1}{d(x,z)+1}\right) = \rho(x,z) \end{array}$$

Therefore, ρ is a metric. Since f is bounded by 1 for $t \geq 0$, ρ is bounded metric.

Problem 2

Claim: $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$ in \mathbb{R}^{ω} .

Proof. Let $x \in \mathbb{R}^{\omega}$ and U be an open neighborhood of x in \mathbb{R}^{ω} . Since $p_i(U) = \mathbb{R}$ for all i but finitely many, let i_{\max} be a natural number such that $p_i(U) = \mathbb{R}$ for $i \geq i_{\max}$. Let $y \in R^{\infty}$ that $y_i = p_i(x)$ for $i < i_{\max}$ and y = 0 for elsewhere. Then, $y \in U$. This is true for all open neighborhood of x, so $x \in \mathbb{R}^{\infty}$.

Problem 3

Claim:
$$\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\infty} \cup \{(x_i) \in \mathbb{R}^{\omega} \mid \lim_{i \to \infty} x_i \to 0\}$$
 in \mathbb{R}^{ω} .

Proof. Let $x \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$ and U be an open neighborhood of x in \mathbb{R}^{ω} . Since $x \notin \mathbb{R}^{\infty}$, $x_i \neq 0$ for infinitely many i. Let the nonzero sequence $\{x_j\}$. Let $\limsup |x_j| \neq 0$, then there exists subsequence of $\{|x_j|\}$ such that converges to $c \in (0, \infty]$ and $B(x, \min\{c/2, 1\})$ is a open neighborhood of x disjoint with \mathbb{R}^{∞} .

Conversely, let $\limsup |x_j| = 0$, then $\lim_{j \to \infty} x_j = 0$ and for any $\epsilon > 0$, $B(x, \epsilon)$ contains 0 in ith coordinate for all i but finitely many. Let $i_{\text{max}} \in \mathbb{N}$ such that $0 \in p_i(B(x, \epsilon))$ for $i \geq i_{\text{max}}$. Then, $(y_i) \in \mathbb{R}^{\infty}$ such that $y_i = x_i$ for $i < i_{\max}$ and y = 0 for $i \ge i_{\max}$, so $(y_i) \in B(x, \epsilon)$. Therefore, $x \in \overline{R^{\infty}}$. Consequently, $\overline{R^{\infty}} = \mathbb{R}^{\infty} \cup \{(x_i) \in \mathbb{R}^{\omega} \mid \lim_{i \to \infty} x_i \to 0\}$.

Consequently,
$$\overline{R^{\infty}} = \mathbb{R}^{\infty} \cup \{(x_i) \in \mathbb{R}^{\omega} \mid \lim_{i \to \infty} x_i \to 0\}.$$

Problem 4

First, I'll show that D is a metric.

1. d is a function

$$D: X \times X \longrightarrow \mathbb{R}$$

and D(x,y) > 0

- 2. $D(x,x) = \sum_{i=1}^{n} d(x_i,x_i) = 0$ for all x. Conversely, if D(x,y) = 0, then $0 = D(x,y) \ge d(x_i,y_i) \ge 0$ for
- 3. Symmetric: $D(x,y) = \sum_{i=1}^{n} d(x_i, y_i) = \sum_{i=1}^{n} d(y_i, x_i) = D(y, x)$.

4.
$$D(x,y) + D(y,z) = \sum_{i=1}^{n} d(x_i, y_i) + d(y_i, z_i) \ge \sum_{i=1}^{n} d(x_i, z_i) = D(x, z)$$

Therefore, \bar{D} is a metric. Let $\mathcal{B} = \{B_1 \times B_2 \times \cdots \times B_n \subset \mathbb{R}^n | B_i \text{ is an open interval of } \mathbb{R} \}$ be a basis of \mathbb{R}^n . Let $x \in B \in \mathcal{B}$, then there exists $\epsilon > 0$ such that $B_d(x_i, \epsilon) \subset p_i(B)$ for all i for each $p_i(B)$ is an open neighborhood and there exists small $\epsilon_i > 0$ such that $B_d(x_i, \epsilon_i) \subset p_i(B)$ and we can set $\epsilon = \min\{\epsilon_i\}$. Therefore, $B_D(x, \epsilon) \subset B$ since for any $y \in B_D(x, \epsilon)$, $d(x_i, y_i) < \epsilon$.

Problem 5

Let d be a euclidean metric on \mathbb{R} and let \bar{d} be a bounded metric on \mathbb{R} as in problem 1 (A). Let \bar{d}_1 be a function on \mathbb{R}^2 such that

$$\bar{d}_1(x,y) = \begin{cases} \bar{d}(x_2, y_2) & \text{if } x_1 = y_1\\ 1 & \text{if } x_1 \neq y_1. \end{cases}$$

I'll show that \bar{d}_1 is a metric.

- 1. $\bar{d}_1(x,y) \geq 0$
- 2. $\bar{d}_1(x,x)=\bar{d}(x_2,x_2)=0$ for all x. Conversely, if $\bar{d}_1(x,y)=0$, then $x_1=y_1$ and $\bar{d}(x_2,y_2)=0$ implies $x_2 = y_2$. Therefore, x = y.
- 3. Symmetric: If $x_1 \neq y_1$, $\bar{d}_1(x,y) = 1 = \bar{d}_1(y,x)$. If $x_1 = y_1$, $\bar{d}_1(x,y) = \bar{d}(x_2,y_2) = \bar{d}(y_2,x_2) = \bar{d}_1(y,x)$.
- 4. If $x_1 \neq y_1$ or $y_1 \neq z_1$, $\bar{d}_1(x,y) + \bar{d}_1(y,z) \leq 1 \leq \bar{d}_1(x,z)$. Conversely, if $x_1 = y_1 = z_1$, $\bar{d}_1(x,y) + \bar{d}_1(y,z) = z_1$ $\bar{d}(x_2, y_2) + \bar{d}(y_2, z_2) = \leq \bar{d}(x_2, z_2) = \bar{d}_1(x, z)$

Therefore, \bar{d}_1 is a metric.

I need to show that \bar{d}_1 generate dictionary topology. In the last homework, we showed that the product topology on $\mathbb{R}^d \times \mathbb{R}$ is equal to the dictionary topology on \mathbb{R}^2 . Therefore, we can set the basis of dictionary topology on \mathbb{R}^2 be $\mathcal{B} = \{\{a\} \times (b,c) | a,b,c \in \mathbb{R}, -\infty < b < c < \infty\}$. For $x \in B = \{a\} \times (b,c) \in \mathcal{B}$, we can set $\epsilon = \min\{\frac{x_2-b}{2}, \frac{c-x_2}{2}\}$ so that $B_{\bar{d}_1}(x,\epsilon) \subset B$. Conversely, for any $y \in B_{\bar{d}_1}(x,\epsilon)$ for fixed ϵ , we can set $\delta = \min\{\frac{\epsilon-(y_2-x_2)}{4}, \frac{\epsilon-(x_2-y_2)}{4}\}$ so that $\{y_1\} \times (y-\delta,y+\delta) \subset B_{\bar{d}_1}(x,\epsilon)$. (For $\epsilon \leq 1$, this can be viewed as setting small interval in the interval, and for $\epsilon > 1$, we can arbitrary set $\delta > 0$ since $B_{\bar{d}_1}(x,\epsilon)$ is the whole set.)

Problem 6

Let V be an open set in Y. I'll show that $f^{-1}(V)$ is open in X.

Let $x_0 \in f^{-1}(V)$ and $y_0 = f(x_0) \in V$. Since V is an open set, there exists $\epsilon > 0$ such that $B(y_0, \epsilon) \subset V$. Let N be a natural number such that $|f_n(x) - f(x)| \le \epsilon/3$ for all $n \ge N$. Let $U = f_N^{-1}(B(y_0, \epsilon))$. Then U is an open set containing x_0 since $|f_N(x_0) - f(x_0)| = |f_N(x_0) - y_0| \le \epsilon$. If I show that U is contained in $f^{-1}(V)$, then it implies f is continuous function.

Let $x \in U$, I need to show that $f(x) \in V$ to show that $x \in f^{-1}(V)$, but $|f(x) - y_0| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \le \epsilon/3 + \epsilon/3 = \epsilon$. Therefore, $f(x) \in B(y_0, \epsilon) \subset V$ and $x \in f^{-1}(V)$. Consequently, f is a continuous function.

Problem 7

(⇒) Let a sequence $\{f_n\}$ of functions $f_n: Y \to \mathbb{R}$ converges uniformly to a function $f: Y \to \mathbb{R}$. Then, for any $\epsilon > 0$, there exists $N(\epsilon) \in \mathbb{N}$ as a function of ϵ such that $|f_n(y) - f(y)| < \epsilon$ for all $y \in Y$ for all $n \ge N$, so $\sup\{|f_n(y) - f(y)|\} \le \epsilon$ for all $n \ge N$ and it means $\rho(f_n - f) \le \epsilon$ for $n \ge N$ in the metric space (\mathbb{R}^Y, ρ) . Therefore, $\{f_n\}$ converges to f in the metric space (\mathbb{R}^Y, ρ) .

 (\Leftarrow) Let $\{f_n\}$ converges to f in the metric space (\mathbb{R}^Y, ρ) . Then for fixed $\epsilon > 0$, there exists N such that $\rho(f_n, f) = \sup\{|f_n(y) - f(y)|\} \le \epsilon/2$ for all $n \ge N$. It means $|f_n(y) - f(y)| \le \epsilon$ for all $y \in Y$ for all $n \ge N$. Therefore, the sequence $\{f_n\}$ converges uniformly to a function f.

Problem 8

- A. Since p(Imq) = Y, p is surjective. Let U be a open set in X. By the continuity of q, $q^{-1}(U)$ is open set in Y. Since $p \circ q = 1_Y$, $p(U) = p \circ q(q^{-1}(U)) = q^{-1}(U)$. Therefore p is open map with continuity, and p is quotient map.
- B. Let the retraction p. It is definitely surjective and continuous. For a set $V \subset A$, let $p^{-1}(V)$ is open in X. Then $p^{-1}(V) \cap A = p_A^{-1}(V) = V$, and by subspace topology, V is open in A. Therefore, p is quotient topology.

Problem 9

A. I'll write the equivalence class of \sim by $[(x,y)] = \{(z,w) \in \mathbb{R}^2 | z^2 + w^2 = x^2 + y^2 \}$. Let p(z,w) = [(z,w)] and \mathbb{R}^2 / \sim have quotient topology induced by p. Then, $p^{-1}[(z,1)] = g^{-1}(z)$ by the definition of p and q.

Let's define f([x,y]) = g(x,y) for the domain \mathbb{R}^2 / ∞ . I need to show that this is a well-defined function. The f definitely have function value for each element in \mathbb{R}^2 / ∞ . Let [(x,y)] = [(x',y')], then $x^2 + y^2 = x'^2 + y'^2$ and g(x,y) = g(x',y'). Also, the codomain of f is $[0,\infty)$. Therefore f is

well defined function. For $x^2 + y^2 \neq x'^2 + y'^2$, $g(x,y) \neq g(x',y')$ so $f([(x,y)]) \neq f([(x',y')])$. Also, for any $r \in [0, \infty)$, there exists $[(\sqrt{r}, 0)]$ such that $f([(\sqrt{r}, 0)]) = r$. Therefore f is bijective. For a basis (a,b) or [0,b), a < b, in $[0,\infty)$, considering the subspace topology as a subset of \mathbb{R} , $g^{-1}(U)$ is open set in \mathbb{R}^2 . (Recall that we already showed such function is continuous in previous HW.) If we compute $p \circ g^{-1}(U)$, $p \circ g^{-1}(U) = \bigcup_{z \in U} p \circ g^{-1}(z) = \bigcup_{z \in U} [(z,1)] = \bigcup_{z \in U} f^{-1}(z) = f^{-1}(U)$. Also, $g^{-1}(z) = p^{-1}([(z,1)])$, $g^{-1}(U) = p^{-1}(\bigcup_{z \in U} [(z,1)])$ and $p \circ g^{-1}(U)$ is open in \mathbb{R}^2 . Therefore, f is continuous.

B. Define h(r) = (r,0) for $r \geq 0$. Then, f(p(h(r))) = f(p(r,0)) = f([r,0)] = r. Therefore, $f \circ p \circ h = 0$ $1_{[0,\infty)}$. Also, h is continuous since for any basis $(a,b)\times(c,d)$, a< b, c< d of \mathbb{R}^2 ,

$$h^{-1}((a,b) \times (c,d)) = \begin{cases} \phi & \text{if } c \le 0 \le d \\ (a,b) & \text{if } c < d < 0 \text{ or } 0 < c < d. \end{cases}$$

Therefore, $p \circ h$ is continuous left inverse of f, so f is quotient map. Since f is bijective, $(f^{-1})^{-1} = f$. For any open set U in \mathbb{R}^2/\sim , there exists a set V in $[0,\infty)$ such that $f^{-1}(V)=U$ and V is open by the quotient map property of f. It implies f(U) = V, and f is bicontinuous. Therefore, f is homeomorphism.

Problem 10

Before starting, I'll prove a short lemma.

Lemma 1. $g: S^1 \times S^1 \to S^1$ by g(z, w) = zw is continuous function.

Proof. First, I'll give a metric topology on $\mathbb C$ with the usual topology d(z,w)=|z-w|. Seeing z=x+yi, w = s + ti and $|z - w| = (x - s)^2 + (t - y)^2$, the topological structure of \mathbb{C} is same as \mathbb{R}^2 with euclidean metric. Therefore, I'll see \mathbb{C} as \mathbb{R}^2 and $S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Let $h(x,y) = x^2 + y^2$, then $S^1 = h^{-1}(1)$, so S^1 is closed set in \mathbb{R}^2 .

Let $G: \mathbb{R}^4 \to \mathbb{R}^2$ by G(a, b, c, d) = (ac - bd, ad + bc), then G is continuous map by the previous homework. Since \mathbb{R}^4 with product topology has same topological structure with $\mathbb{R}^2 \times \mathbb{R}^2$ with product topology, replacing the domain of G by $\mathbb{R}^2 \times \mathbb{R}^2$ does not change the continuity. By the restricting the domain of $\mathbb{R}^2 \times \mathbb{R}^2$ by $S^1 \times S^1$ with subspace topology, we can get a continuous function $g': S^1 \times S^1 \to \mathbb{R}^2$ and since the codomain of g' can be restrict to S^1 , $g: S^1 \times S^1 \to S^1$ is continuous map. Since g((a,b),(c,d)) = (ac-bd,ad+bc)is the same as g(z, w) = zw with z = a + bi, w = c + di, it does not depend on the defining space of S^1 whether it is \mathbb{R}^2 or \mathbb{C} . Therefore, g is continuous.

Let $p: S^1 \times S^1 \to X^*$ quotient map generating quotient topology on X^* and define $g: S^1 \times S^1 \to S^1$ by g(z,w)=zw. Let f be $f:X^*\to S^1$ by f([(z,w)])=g(z,w). Then, f have function value for each element in X^* and $[(z,w)] = [(z',w')] \Rightarrow f([(z,w)]) = f([(z',w')])$. Therefore, it is well-defined. Also it is bijective

since f(z,1)=z and $[(z,w)]\neq [(z',w')]\Rightarrow f([(z,w)])\neq f([(z',w')])$. Second, I'll prove that $g^{-1}(z)=p^{-1}([(z,1)])$ for $z\in S^1$. Let $\alpha\in g^{-1}(z)$ s,t, $\alpha\in S^1\times S^1$, then $g(\alpha)=z$ and g(z)=[(z,1)]. Conversely, if $\alpha\in p^{-1}([(z,1)])$, then $g(\alpha)=[(z,1)]$ and for $\alpha=(a,b)$, ab=z, so $\alpha \in g^{-1}(z)$. Therefore $g^{-1}(z) = p^{-1}([(z,1)])$.

Since g is continuous by the lemma above, for any open set U in S^1 , then $g^{-1}(U)$ is open set in $S^1 \times S^1$. Since $g^{-1}(U) = \bigcup_{z \in U} g^{-1}(z)$, $p \circ g^{-1}(U) = \bigcup_{z \in U} p \circ g^{-1}(z) = \bigcup_{z \in U} [(z, 1)] = \bigcup_{z \in U} f^{-1}(z) = f^{-1}(U)$ and $g^{-1}(U) = \bigcup_{z \in U} g^{-1}(z) = \bigcup_{z \in U} p^{-1}([(z, 1)]) \Rightarrow p \circ g^{-1}(U)$ is open in X^* and therefore, f is continuous. Let's define $h: S^1 \to S^1 \times S^1$ by h(z) = (z, 1). Then, $f \circ p \circ h(z) = z$, so it is identity on S^1 . Therefore,

it is the same case as problem 9 B., and f is hemeomorphism. Consequently, X^* is hemeomorphic to S^1 .