拼音输入法实验报告

《人工智能导论》第一次作业

任自厚

2022年3月18日

1 拼音输入算法

本次实验讨论的拼音输入算法,是接收合法且正确的全拼输入、输出单一的预测汉字字符串的离线算法。要实现拼音输入法,需要在给定一段拼音序列后,将每个拼音转换为汉字,使之连贯起来语法正确、语义通顺。

1.1 基于字的算法概述

在基于字的算法中,每个字被视为独立单元进行计算,而不考虑其与前后某些字可能组成的通用词等。基于字的算法优点在于模型简单、无需进行分词处理,同时又可以凭借庞大的语料库达到较优的预测效果。其劣势则在于对某些常用词的预测没有基于词的算法理想。

拼音 \rightarrow 汉字的映射为一对多的关系(不考虑多音字,或将多音字视为同形的不同汉字),故可以将拼音输入算法转化成如下问题: 给定候选汉字集 $w_{i,j}(1 \le i \le n)$,选择汉字序列 $w_1w_2 \dots w_n$,使得该序列得分 s 最高。

我们用每个字 $w_{i,i}$ 出现在i位置的概率计算序列得分:

$$s = P(w_1 w_2 \dots w_n) = \prod_{i=1}^n P(w_i | w_1 w_2 \dots w_{i-1})$$

为了便于计算,实际评价指标 d 为概率的负对数:

$$d = -\log s = \sum_{i=1}^{n} \log \frac{1}{P(w_i|w_1w_2\dots w_{i-1})}$$

此处 d 越小越好,故问题进一步转化为最短路问题:给定一个节点为字符的图(形如图 1),求起点(虚构字符 \land)到终点(虚构字符 \$)的最短路,并打印路径。

因此,只要对任意相邻节点给出良好的距离定义 d,即可求解汉字序列。这是一个动态规划算法。

考虑到汉语语法中,一个词的字数一般不超过 4 个,故基于字的算法也通常只考虑当前预测字 w_i 前方 $1 \sim 3$ 个字的影响。这样可以在保障准确率的前提下,降低网络复杂度、减少模型大小、提升计算速度。在本次实验中,我分别实现了基于字的二元、三元、四元模型。这些模型的差别仅在于节点距离的计算。算法推导与模型评价如下。

1.2 基于字的二元模型的算法

在字的二元模型下, $P(w_i|w_1w_2...w_{i-1}) = P(w_i|w_{i-1})$ 。特别的, $P(w_1) = P(w_1|\land)$, $P(\$) = P(\$|w_n)$ 。

图 1: 字符为节点的决策图

```
Input: nodes
Output: sentence
/* initialize layers with only beginning character
                                                                                                           */
layers \leftarrow [[( \land \land, 0, None)]];
/* dp from layer to layer, always choose currently minimum distance path */
\mathbf{for} \ \ candidates \ \ \mathbf{in} \ nodes \ \mathbf{do}
    layer \leftarrow [];
    \mathbf{for} \ \ \mathit{char} \ \ \mathbf{in} \ \mathit{candidates} \ \mathbf{do}
        dists \leftarrow [pred[1] + d(w, pred[0]) \text{ for } pred \text{ in } layers[-1]];
        layer.append((char, min(dists), argmin(dists)));
    layers.append(layer);
end
dists \leftarrow [pred[1] + d( \ '\$ \ ', pred[0]) \ \texttt{for} \ pred \ \texttt{in} \ layers[-1]];
layers.append([(char, min(dists), argmin(dists))]);
                                                                          // only ending character
/* trace backwards to get the final sentence
sentence \leftarrow ";
p\_index \leftarrow 0;
for layer in layers do
    sentence.addToBegin(layer[p\_index][0]);
   p\_index \leftarrow layer[p\_index][2];
end
```

Algorithm 1: DP to Sentence

根据以上公式,可知构建统计数据时,需要记录每个汉字 w 紧跟在另一个汉字 v 后面的频数 c(vw)、w 出现在句首、句尾的频数 $c(\wedge w)$, c(w\$)。并由此计算 P(w|v)=c(vw)/c(v)。句首、句尾处理类似。

特别的,我们需要考虑某一汉字组合从未出现在语料库中的情形,故引入平滑处理:

$$P_2(w_i) = \lambda \frac{c(w_{i-1}w_i)}{c(w_{i-1})} + (1 - \lambda) \frac{c(w_i)}{c_{\text{all}}}$$

所以实际上,二元模型是"一元"与"二元"的结合。对于从未在语料库中的生僻字,则将其赋予一个极小的非零概率 ϵ 。

1.3 基于字的三元、四元模型的算法

仿照二元模型,我们可以构建三元、四元模型:用单字频率、双字频率、三字频率(、四字频率)的加权和作为 $P(w_i|w_1...w_{i-1})$ 。具体公式如下:

$$\begin{split} P_3(w_i) &= \mu \frac{c(w_{i-2}w_{i-1}w_i)}{c(w_{i-2}w_{i-1})} + \lambda \frac{c(w_{i-1}w_i)}{c(w_{i-1})} + (1 - \lambda - \mu) \frac{c(w_i)}{c_{\text{all}}} \\ P_4(w_i) &= \nu \frac{c(w_{i-3}w_{i-2}w_{i-1}w_i)}{c(w_{i-3}w_{i-2}w_{i-1})} + \mu \frac{c(w_{i-2}w_{i-1}w_i)}{c(w_{i-2}w_{i-1})} + \lambda \frac{c(w_{i-1}w_i)}{c(w_{i-1})} + (1 - \lambda - \mu - \nu) \frac{c(w_i)}{c_{\text{all}}} \end{split}$$

当前缀长度不够时,这些模型会退化为二元模型。

2 拼音输入算法的 Python 实现

2.1 实验环境与数据

实验所用 Python 版本为 Python 3.9.5。为了更好展现统计及预测进度,程序使用了第三方库 tqdm 4.63.0。不过,该库非必要依赖,在导入失败时程序仍会正常执行,只不过缺少进度条显示与倒计时。

在运行四元模型的统计阶段时,由于需要维护一个庞大的词频表,程序对内存有一定要求。在 我的电脑(16G 内存)上,运行至该阶段时,物理内存已经无法满足需求,大量的虚存访问与页交 换严重降低了程序运行速度,以致我不得不在服务器上进行实验。

基本原始数据为课程助教提供的新浪新闻语料库(sina_news)和含有 500 条句子的测试集。 在下文,我们也会在维基百科语料库(wikipedia)和百科问答语料库(baike_qa)两个数据集上进 行词频统计,并仍在原测试集上给出测试效果。

2.2 Python 实现思路

本程序主要包括两部分: 语料库词频统计与拼音预测。为了易于扩展,语料库处理和拼音汉字网络计算均使用子类继承的方式。具体代码结构如下:

语料库处理类定义在 preprocess.py 中,基类为 DataProcessor,实现了读取语料库、提取特定条目中连续汉字文本的功能。该类还包含两个抽象方法 _analyse() 和 _calc_prob(),分别用于统计词频、计算频率。其有三个派生类 BiGramProcessor、TriGramProcessor、QuadGramProcessor,分别为二元、三元、四元语言模型进行词频统计。词频统计时,我放弃了所有频数为 1 的样本,因为这些样本大概率来自于词语连接部分,对模型精度无大幅提升、又会占据较大存储空间。

拼音汉字网络计算类定义在 graph.py 中,基类为 CharacterGraph,实现了上文所述动态规划算法。该算法会调用抽象方法 _dist() 计算节点距离。其有三个派生类 BiGramGraph、TriGramGraph、QuadGramGraph,分别加载二元、三元、四元语言模型进行计算与预测。

为了便于量化模型效果,还实现了评估脚本 validate.py,可统计字正确率和句正确率。

所有模型(词频统计)以 json 格式保存在 src/stat 目录下。为了压缩空间,所有频率值只保留 5 位有效数字。src/stat 目录下还包括 mapping.json 文件,定义了拼音到汉字的映射关系。实验用 到的所有模型文件均可从清华云盘下载。

程序入口为 run.py, 该脚本接收 4 个命令行参数, 使用方法如下:

python3 src/run.py \

- --task <stat|predict|val> \
- --model <bigram|trigram|quadgram> \
- --input /path/to/input/file \
- --output /path/to/output/file

其中, task 参数默认为 predict, model 参数默认为 bigram。若要执行模型构建(词频统计),task 选择 stat, input 传入语料库路径(支持文件夹或单文件),output 传入模型文件输出路径;若要运行输入法,task 选择 predict, input 传入拼音文件路径,output 传入输出文件路径,程序会自动加载 src/stat 目录下同名模型;若要统计准确率,task 选择 val, input 和 output 分别传入标准输出与程序输出文件路径(此时 model 参数无效)。

3 算法评价

3.1 参数评价

这里主要讨论上文出现的 λ, μ, ν 三个重要模型参数的取值。

我们已经通过预实验确定,词频表未命中时采用的微小非零词频分别为 $\epsilon_1=10^{-4},\epsilon_2=10^{-7},$ $\epsilon_3=10^{-6},\epsilon_4=10^{-5}$ 。这里 ϵ_i 表示查找的词为 i 元词。这部分实验内容不再赘述。

对于二元语法模型,参数只有一个平滑系数 λ 。实验尝试了若干个典型的 λ 值,并在准确率极大值附近加细试探,结果如表 1。从表中可以看出,在 $\lambda=0$ 时,二元退化为一元,节点之间互不影响,每个字都预测为字频最大者,效果不佳。另一方面,在 $\lambda\to 1$ 时,模型准确率也有所下降,这是由于语料库覆盖不全面,部分二元字词未能统计到。在 $\lambda=0.993$ 时,模型同时具有较好的字句准确率。

λ	0	0.8	0.85	0.9	0.95	0.99	0.993	0.999	1
character	0.5104	0.8411	0.8392	0.8432	0.8434	0.8446	0.8446	0.8425	0.8421
sentence	0.0060	0.3960	0.3920	0.4020	0.4060	0.4180	0.4200	0.4120	0.4120

表 1: 二元语法模型参数对准确率的影响

对于三元语法模型,存在两个参数 λ, μ ,分别控制二元、三元词频在距离贡献中的权重。实验在令 $1-\lambda-\mu=0.01$ 的前提下,尝试了若干个典型的参数取值,结果如表 2。可以看到,在 $\mu=0$ 时,三元退化为二元,准确率与二元模型相近。另一方面,在 $\mu\to 1$ 时,二元因素完全不做贡献,模型表现也较差。这可能是因为汉语中仍以二元词语居多,而仅靠三元词频统计很难较好的匹配出二元词组,有害于模型精度。在 $\lambda=0.39, \mu=0.60$ 时,模型同时具有较好的字句准确率。

(λ,μ)	(0.99, 0)	(0.69, 0.3)	(0.39, 0.6)	(0.09, 0.9)	(0, 0.99)
character	0.8398	0.8972	0.9080	0.9017	0.8075
sentence	0.4100	0.5720	0.6060	0.5840	0.3120

表 2: 三元语法模型参数对准确率的影响

对于四元语法模型,存在三个参数 λ,μ,ν ,分别控制二元、三元、四元词频在距离贡献中的权重。实验在令 $1-\lambda-\mu-\nu=0.01$ 的前提下,尝试了若干个典型的参数取值,结果如表 3。类似三元模型,四元模型也会在其控制参数 μ 较大时因样本不够全面而有损精度。在 $\lambda=0.29,\mu=0.50,\nu=0.20$ 时,模型同时具有较好的字句准确率。

(λ,μ, u)	(0.09, 0.4, 0.5)	(0.09, 0, 0.9)	(0.29,0.5,0.2)	(0.29, 0.2, 0.5)	(0.49, 0, 0.5)
character	0.9059	0.8658	0.9079	0.9015	0.8794
sentence	0.5980	0.4960	0.6060	0.5860	0.5560

表 3: 四元语法模型参数对准确率的影响

3.2 模型评价

我们从两个角度对模型进行评价: 预测准确率和预测成本。

预测准确率包括字准确率(character_accuracy)和句准确率(sentence_accuracy)。

在参数评价一节中,我们已经得到了各个模型较优的参数。表 4 横向比较了各个模型在准确率上的表现,可以看出三元模型相较二元有着较大的提升,而四元模型仅仅与三元持平。

accuracy	BiGram	TriGram	QuadGram
character	0.8446	0.9080	0.9079
sentence	0.4200	0.6060	0.6060

表 4: 各个模型准确率比较

为了更直观的体现各模型优劣,表 5 给出了两个预测样例。从第一个样例中,可以看出随着模型元数增加,模型对较长词语(如"得寸进尺"、"永不满足")的识别能力有所提升。而第二个样例则说明了,现有模型在多音字处理上表现较差。如果仅看预测语句,"买柜子"和"买车子"都是合法且通顺的语言,但输入拼音为"ju",不对应前面二者任何一个符合语义的读音。因此若要解决这个问题,就需要引入对多音字的辨析。由于目前的语料库并未提供汉字读音,这一工作暂时无法开展。

预测成本包括构建成本与预测时间,前者又可从时空两个维度进行评价。

前文已经提及,在运行至四元语法模型时,笔记本的 16G 内存已经无法支持程序高效运行;其实在三元模型下,程序对内存的消耗就已经非常显著了。由此可见,更多元的模型对内存空间有更严格的要求。

由于空间消耗不易测量,我们主要从运行时间的角度进行比较。表 6 是各个模型在 sina_news 语料库上的构建时间、加载模型时间以及测试集上的预测耗时。

综合以上各个指标,三元语法模型预测准确率高,且资源消耗在可接受范围内,是在当前数据 集下的更优解。

std	贪婪的人总是得寸进尺永不满足	我去给你买一个橘子
BiGram	贪婪的人从事的村金池用不满足	我去给你买一个 <mark>车</mark> 子
TriGram	贪婪的人总是得寸进尺用不满足	我去给你买一个 <mark>柜</mark> 子
${\bf QuadGram}$	贪婪的人总是得寸进尺永不满足	我去给你买一个 <mark>车</mark> 子

表 5: 预测样例

time (seconds)	BiGram	TriGram	QuadGram
stat task (sina_news)	306.46	821.40	1411.79
load model (sina_news)	1.21	12.12	39.75
predict task (500 sentences)	3.36	6.64	8.63

表 6: 各个模型时间消耗

3.3 语料库评价

本节旨在评价不同语料库统计出的词频模型对预测精度的影响。在这一阶段,我们使用三元语法模型,参数设置为 $\lambda=0.39, \mu=0.60$ 。

表 7 展示了不同语料库的规模大小、预测精度。可以看出,新闻语料库 sina_news 表现最好。这可能是因为新闻语言同时具备通俗、规范的性质。相较之下,维基百科语料库 wikipedia 的语言更为专业,术语较多,导致其在主要包括常用语的测试集上表现不佳;而问答语料库 baike_qa 的内容为用户生成,虽贴近生活,但存在语法不规范、语句杂乱的现象,影响了词频统计。

corpus (λ, μ)	sina_news (0.39, 0.60)	wikipedia (0.37, 0.62)	baike_qa (0.49, 0.50)
corpus size (compressed) (MB)	463.9	514.1	624.4
stat file size (MB)	322.5	343.5	325.7
character accuracy	0.9080	0.8698	0.8966
sentence accuracy	0.6060	0.4580	0.5760

表 7: 不同语料库构建出的模型比较