CHAPTER 2

EXERCISES 2.1

1.
$$\lim_{x \to 7} \frac{x^2 - 5}{x + 2} = \frac{49 - 5}{7 + 2} = \frac{44}{9}$$

2.
$$\lim_{x \to -2} \frac{x^3 + 8}{x + 5} = \frac{0}{3} = 0$$

3.
$$\lim_{x \to -5} \frac{x^2 + 3x + 2}{x^2 + 25} = \frac{25 - 15 + 2}{25 + 25} = \frac{6}{25}$$

4.
$$\lim_{x \to 0} \frac{x^2 + 3x}{3x^2 - 2x} = \lim_{x \to 0} \frac{x(x+3)}{x(3x-2)} = \lim_{x \to 0} \frac{x+3}{3x-2} = \frac{3}{-2} = -\frac{3}{2}$$

5.
$$\lim_{x \to 3^+} \frac{2x-3}{x^2-5} = \frac{6-3}{9-5} = \frac{3}{4}$$

6.
$$\lim_{x \to 2^{-}} \frac{2x-4}{3x+2} = \frac{0}{8} = 0$$

7.
$$\lim_{x \to 0^{-}} \frac{x^4 + 5x^3}{3x^4 - x^3} = \lim_{x \to 0^{-}} \frac{x^3(x+5)}{x^3(3x-1)} = \lim_{x \to 0^{-}} \frac{x+5}{3x-1} = \frac{5}{-1} = -5$$

8.
$$\lim_{x \to 2^+} \frac{x^2 + 2x + 4}{x - 3} = \frac{4 + 4 + 4}{-1} = -12$$

8.
$$\lim_{x \to 2^{+}} \frac{x^2 + 2x + 4}{x - 3} = \frac{4 + 4 + 4}{-1} = -12$$
9. $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$

10.
$$\lim_{x \to 3^+} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3^+} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3^+} (x + 3) = 6$$

11.
$$\lim_{x \to 5^{-}} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5^{-}} \frac{(x + 5)(x - 5)}{x - 5} = \lim_{x \to 5^{-}} (x + 5) = 10$$

12.
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{3 - x} = \lim_{x \to 3} \frac{(x - 3)(x + 1)}{3 - x} = \lim_{x \to 3} [-(x + 1)] = -4$$

13.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)^2}{x - 2} = \lim_{x \to 2} (x - 2) = 0$$

14.
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{(x - 2)^3}{(x - 2)^2} = \lim_{x \to 2} (x - 2) = 0$$

15.
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x - 2)(x - 3)}{(x - 1)(x - 2)} = \lim_{x \to 1} (x - 3) = -2$$

16.
$$\lim_{x\to 2} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2} = \lim_{x\to 2} \frac{(x-1)(x-2)(x-3)}{(x-1)(x-2)} = \lim_{x\to 2} (x-3) = -1$$

17.
$$\lim_{x \to 3^+} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2} = \frac{27 - 54 + 33 - 6}{9 - 9 + 2} = 0$$

18.
$$\lim_{x \to 3^{-}} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2} = \frac{27 - 54 + 33 - 6}{9 - 9 + 2} = 0$$

19.
$$\lim_{x \to 0} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2} = \frac{-6}{2} = -3$$

20.
$$\lim_{x \to -1} \frac{12x+5}{x^2-2x+1} = \frac{-7}{4} = -\frac{7}{4}$$

21.
$$\lim_{x \to 1} \sqrt{\frac{2-x}{2+x}} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$$

22.
$$\lim_{x\to 5} \frac{\sqrt{1-x^2}}{3x+2}$$
 does not exist

23.
$$\lim_{x\to 0} \frac{\tan x}{\sin x} = \lim_{x\to 0} \frac{\sin x}{\sin x \cos x} = \lim_{x\to 0} \frac{1}{\cos x} = 1$$
 24. $\lim_{x\to \pi/4} \frac{\sin x}{\tan x} = \frac{1/\sqrt{2}}{1} = \frac{1}{\sqrt{2}}$

24.
$$\lim_{x \to \pi/4} \frac{\sin x}{\tan x} = \frac{1/\sqrt{2}}{1} = \frac{1}{\sqrt{2}}$$

25.
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 2x} = \lim_{x \to 0} \frac{2 \sin 2x \cos 2x}{\sin 2x} = \lim_{x \to 0} (2 \cos 2x) = 2$$

26.
$$\lim_{x \to 0^+} \frac{\sin 6x}{\sin 3x} = \lim_{x \to 0^+} \frac{2\sin 3x \cos 3x}{\sin 3x} = \lim_{x \to 0^+} (2\cos 3x) = 2$$

27.
$$\lim_{x \to 0^+} \frac{\sin 2x}{\tan x} = \lim_{x \to 0^+} \frac{2 \sin x \cos x}{\sin x / \cos x} = \lim_{x \to 0^+} (2 \cos^2 x) = 2$$

28.
$$\lim_{x \to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} = \lim_{x \to 2} \frac{(\sqrt{x}+\sqrt{2})(\sqrt{x}-\sqrt{2})}{\sqrt{x}-\sqrt{2}} = \lim_{x \to 2} (\sqrt{x}+\sqrt{2}) = 2\sqrt{2}$$

29.
$$\lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+x}}{x} = \lim_{x \to 0} \left(\frac{\sqrt{1-x} - \sqrt{1+x} \sqrt{1-x} + \sqrt{1+x}}{x} \sqrt{1-x} + \sqrt{1+x} \right)$$
$$= \lim_{x \to 0} \frac{(1-x) - (1+x)}{x(\sqrt{1-x} + \sqrt{1+x})} = \lim_{x \to 0} \frac{-2}{\sqrt{1-x} + \sqrt{1+x}} = \frac{-2}{1+1} = -1$$

30.
$$\lim_{x \to 5^+} \frac{|x^2 - 25|}{x^2 - 25} = \lim_{x \to 5^+} \frac{x^2 - 25}{x^2 - 25} = \lim_{x \to 5^+} (1) = 1$$
 31. $\lim_{x \to 5^-} \frac{|x^2 - 25|}{x^2 - 25} = \lim_{x \to 5^-} \frac{-(x^2 - 25)}{x^2 - 25} = -1$

32. Since
$$\lim_{x\to 5^+} \frac{|x^2-25|}{x^2-25} = 1$$
 (Exercise 30) and $\lim_{x\to 5^-} \frac{|x^2-25|}{x^2-25} = \lim_{x\to 5^-} \frac{-(x^2-25)}{x^2-25} = \lim_{x\to 5^-} (-1) = -1$, it follows that the given limit does not exist.

33.
$$\lim_{x \to 0^{+}} \frac{\sqrt{x+2} - \sqrt{2}}{\sqrt{x}} = \lim_{x \to 0^{+}} \left(\frac{\sqrt{x+2} - \sqrt{2}}{\sqrt{x}} \frac{\sqrt{x+2} + \sqrt{2}}{\sqrt{x+2} + \sqrt{2}} \right) = \lim_{x \to 0^{+}} \frac{x+2-2}{\sqrt{x}(\sqrt{x+2} + \sqrt{2})}$$
$$= \lim_{x \to 0^{+}} \frac{\sqrt{x}}{\sqrt{x+2} + \sqrt{2}} = 0$$

34.
$$\lim_{x \to 0} \frac{1 - \sqrt{x^2 + 1}}{2x^2} = \lim_{x \to 0} \left[\frac{1 - \sqrt{x^2 + 1}}{2x^2} \frac{1 + \sqrt{x^2 + 1}}{1 + \sqrt{x^2 + 1}} \right] = \lim_{x \to 0} \frac{1 - (x^2 + 1)}{2x^2 (1 + \sqrt{x^2 + 1})}$$
$$= \lim_{x \to 0} \frac{-1}{2(1 + \sqrt{x^2 + 1})} = \frac{-1}{2(2)} = -\frac{1}{4}$$

35.
$$\lim_{x \to -2} \frac{x+2}{\sqrt{-x} - \sqrt{2}} = \lim_{x \to -2} \left(\frac{x+2}{\sqrt{-x} - \sqrt{2}} \frac{\sqrt{-x} + \sqrt{2}}{\sqrt{-x} + \sqrt{2}} \right) = \lim_{x \to -2} \frac{(x+2)(\sqrt{-x} + \sqrt{2})}{-x - 2}$$
$$= \lim_{x \to -2} \left[-(\sqrt{-x} + \sqrt{2}) \right] = -2\sqrt{2}$$

36.
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right]$$
$$= \lim_{x \to 0} \frac{(1+x) - (1-x)}{x \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = \frac{2}{1+1} = 1$$

37.
$$\lim_{x \to -2^{+}} \frac{\sqrt{x+3} - \sqrt{-x-1}}{\sqrt{x+2}} = \lim_{x \to -2^{+}} \left(\frac{\sqrt{x+3} - \sqrt{-x-1}}{\sqrt{x+2}} \frac{\sqrt{x+3} + \sqrt{-x-1}}{\sqrt{x+3} + \sqrt{-x-1}} \right)$$

$$= \lim_{x \to -2^{+}} \frac{(x+3) - (-x-1)}{\sqrt{x+2}(\sqrt{x+3} + \sqrt{-x-1})} = \lim_{x \to -2^{+}} \frac{2(x+2)}{\sqrt{x+2}(\sqrt{x+3} + \sqrt{-x-1})}$$

$$= \lim_{x \to -2^{+}} \frac{2\sqrt{x+2}}{\sqrt{x+3} + \sqrt{-x-1}} = 0$$

38.
$$\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2} = \lim_{x\to 0} \left[\frac{x}{\sqrt{x+4}-2} \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} \right] = \lim_{x\to 0} \frac{x(\sqrt{x+4}+2)}{(x+4)-4} = \lim_{x\to 0} (\sqrt{x+4}+2) = 4$$

39.
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{2+x} - \sqrt{2-x}} = \lim_{x \to 0} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{2+x} - \sqrt{2-x}} \frac{\sqrt{2+x} + \sqrt{2-x}}{\sqrt{2+x} + \sqrt{2-x}} \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$$
$$= \lim_{x \to 0} \frac{(1+x-1+x)(\sqrt{2+x} + \sqrt{2-x})}{(2+x-2+x)(\sqrt{1+x} + \sqrt{1-x})} = \lim_{x \to 0} \frac{\sqrt{2+x} + \sqrt{2-x}}{\sqrt{1+x} + \sqrt{1-x}} = \sqrt{2}$$

40.
$$\lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt{2x+1}}{\sqrt{3x+4} - \sqrt{2x+4}} = \lim_{x \to 0} \left(\frac{\sqrt{x+1} - \sqrt{2x+1}}{\sqrt{3x+4} - \sqrt{2x+4}} \frac{\sqrt{x+1} + \sqrt{2x+1}}{\sqrt{x+1} + \sqrt{2x+1}} \frac{\sqrt{3x+4} + \sqrt{2x+4}}{\sqrt{3x+4} + \sqrt{2x+4}} \right)$$
$$= \lim_{x \to 0} \frac{(x+1-2x-1)(\sqrt{3x+4} + \sqrt{2x+4})}{(3x+4-2x-4)(\sqrt{x+1} + \sqrt{2x+1})}$$
$$= \lim_{x \to 0} \left(-\frac{\sqrt{3x+4} + \sqrt{2x+4}}{\sqrt{x+1} + \sqrt{2x+1}} \right) = -2$$

41.
$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1} = \lim_{x \to 1} \left(\frac{\sqrt{x+3}-2}{x-1} \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2} \right) = \lim_{x \to 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{1}{\sqrt{x+3}+2} = \frac{1}{4}$$

42.
$$\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} \frac{(x + a)(x - a)}{x - a} = \lim_{x \to a} (x + a) = 2a$$

43.
$$\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to a} \frac{(x - a)(x^2 + ax + a^2)}{x - a} = \lim_{x \to a} (x^2 + ax + a^2) = 3a^2$$

44.
$$\lim_{x \to -a} \frac{x+a}{x^2 + ax - x - a} = \lim_{x \to -a} \frac{x+a}{(x+a)(x-1)} = \lim_{x \to -a} \frac{1}{x-1} = -\frac{1}{a+1}$$

45.
$$\lim_{x \to 0} \frac{\sin 2ax}{\sin ax} = \lim_{x \to 0} \frac{2\sin ax \cos ax}{\sin ax} = \lim_{x \to 0} (2\cos ax) = 2$$

46.
$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{(\sqrt{x} + \sqrt{a})(\sqrt{x} - \sqrt{a})} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

47.
$$\lim_{x \to 0^{+}} \frac{\sqrt{x+a} - \sqrt{a}}{\sqrt{x}} = \lim_{x \to 0^{+}} \left[\frac{\sqrt{x+a} - \sqrt{a}}{\sqrt{x}} \frac{\sqrt{x+a} + \sqrt{a}}{\sqrt{x+a} + \sqrt{a}} \right]$$
$$= \lim_{x \to 0^{+}} \frac{x+a-a}{\sqrt{x} \left(\sqrt{x+a} + \sqrt{a}\right)} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{\sqrt{x+a} + \sqrt{a}} = 0$$

48.
$$\lim_{x \to 0} \frac{\sqrt{a+x} - \sqrt{a-x}}{x} = \lim_{x \to 0} \left[\frac{\sqrt{a+x} - \sqrt{a-x}}{x} \frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}} \right]$$
$$= \lim_{x \to 0} \frac{(a+x) - (a-x)}{x \left(\sqrt{a+x} + \sqrt{a-x}\right)} = \lim_{x \to 0} \frac{2}{\sqrt{a+x} + \sqrt{a-x}} = \frac{2}{\sqrt{a} + \sqrt{a}} = \frac{1}{\sqrt{a}}$$

$$49. \lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{2x^2 + a^2}}{\sqrt{3x^2 + 4} - \sqrt{2x^2 + 4}} = \lim_{x \to 0} \left[\frac{\sqrt{x^2 + a^2} - \sqrt{2x^2 + a^2}}{\sqrt{3x^2 + 4} - \sqrt{2x^2 + 4}} \frac{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}} \right]$$

$$= \lim_{x \to 0} \left[\frac{(x^2 + a^2 - 2x^2 - a^2)(\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4})}{(3x^2 + 4 - 2x^2 - 4)(\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2})} \right]$$

$$= \lim_{x \to 0} \left[-\frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \right] = -\frac{2}{a}$$

50. Although the plot does not show it, there should be a hole in the graph at x = 0. The plot suggests that the limit is 1.

- **51.** Since $-1 \le \sin(1/x) \le 1$ for all x, it follows that $-|x| \le |x| \sin(1/x) \le |x|$. Since -|x| is always nonpositive and |x| is always nonnegative, we can say that $-|x| \le x \sin(1/x) \le |x|$. Because $\lim_{x\to 0} (-|x|) = \lim_{x\to 0} |x| = 0$, the squeeze theorem implies that $\lim_{x\to 0} x \sin(1/x) = 0$ also.
- **52.** Since $-1 \le \cos(3/x) \le 1$ for all x, it follows that $-x^4 \le x^4 \cos(3/x) \le x^4$. Because $\lim_{x\to 0} (-x^4) = \lim_{x\to 0} x^4 = 0$, the squeeze theorem implies that $\lim_{x\to 0} x^4 \cos(3/x) = 0$ also.
- 53. Left and right limits exist, but the "full" limit does not exist.
- **54.** This statement is false. For example, $x^2 < 2x^2$ for all $x \neq 0$, but $\lim_{x\to 0} x^2 = \lim_{x\to 0} 2x^2 = 0$.
- 55. If we use the stated result, then,

$$\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{1}{h} \{ (x+h-x)[(x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1}] \}$$

$$= \lim_{h \to 0} [(x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1}] = nx^{n-1}.$$

56.
$$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \left[\frac{\sqrt{x+h} - \sqrt{x}}{h} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right] = \lim_{h \to 0} \frac{(x+h) - x}{h (\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

57. A graph of the function is shown to the right. It indicates that the left-hand limit is -1, the right-hand limit is 1, and because these limits are different, the limit as $x \to 0$ does not exist. The function has no value at x = 0.

58. (a) Our calculator gave

\boldsymbol{x}	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
$(\sin x - x)/x^3$	-0.16658	-0.16667	-0.16667	-0.1667	-0.17	0.0	0.0

It would appear that the limit is 0.

(b) Plots of the function on the suggested intervals are shown below.

They suggest that the limit is approximately -0.17.

- **59.** The only way for this limit to exist is for $\lim_{x\to a} g(x) = L$.
- **60.** If we set z = -x, then $\lim_{x \to -a} f(x) = \lim_{z \to a} f(-z) = \lim_{z \to a} f(z) = L$.
- **61.** If we set z = -x, then $\lim_{x \to -a^-} f(x) = \lim_{z \to a^+} f(-z) = \lim_{z \to a^+} f(z) = L$.
- **62.** This limit cannot be determined.
- $\lim_{x \to -a} f(x) = \lim_{z \to a} f(-z) = \lim_{z \to a} [-f(z)] = -\lim_{z \to a} f(z) = -L.$ **63.** If we set z = -x, then
- **64.** If we set z = -x, then $\lim_{x \to -a^-} f(x) = \lim_{z \to a^+} f(-z) = \lim_{z \to a^+} [-f(z)] = -\lim_{z \to a^+} f(z) = -L$.
- **65.** There is not enough information to find $\lim_{x\to -a^+} f(x)$.
- **66.** The limit is 0 if F = 0; it does not exist if $F \neq 0$.
- 67. (a) Since $\lim_{x\to 0^+} e^{-1/x} = 0$, it follows that $\lim_{x\to 0^+} \frac{a+ce^{-1/x}}{b+de^{-1/x}} = \frac{a}{b}$. (b) If we multiply numerator and denominator by $e^{1/x}$ and use the fact that $\lim_{x\to 0^-} e^{1/x} = 0$, we obtain

$$\lim_{x \to 0^{-}} \frac{a + ce^{-1/x}}{b + de^{-1/x}} = \lim_{x \to 0^{-}} \frac{ae^{1/x} + c}{be^{1/x} + d} = \frac{c}{d}.$$

(c) The limit does not exist since left and right limits are not the same, unless a/b = c/d, in which case the limit is a/b.

EXERCISES 2.2

1.
$$\lim_{x\to 2^+} \frac{1}{x-2} = \infty$$

2.
$$\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$$

3.
$$\lim_{x\to 2} \frac{1}{x-2}$$
 does not exist since $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$ and $\lim_{x\to 2^+} \frac{1}{x-2} = \infty$

4.
$$\lim_{x \to 2^+} \frac{1}{(x-2)^2} = \infty$$

5.
$$\lim_{x\to 2^-} \frac{1}{(x-2)^2} = \infty$$

6.
$$\lim_{x\to 2} \frac{1}{(x-2)^2} = \infty$$

7.
$$\lim_{x \to 1} \frac{5x}{(x-1)^3}$$
 does not exist since $\lim_{x \to 1^-} \frac{5x}{(x-1)^3} = -\infty$ and $\lim_{x \to 1^+} \frac{5x}{(x-1)^3} = \infty$

8.
$$\lim_{x \to 1/2} \frac{6x^2 + 7x - 5}{2x - 1} = \lim_{x \to 1/2} \frac{(3x + 5)(2x - 1)}{2x - 1} = \lim_{x \to 1/2} (3x + 5) = \frac{13}{2}$$

9.
$$\lim_{x \to 1} \frac{2x+3}{x^2-2x+1} = \lim_{x \to 1} \frac{2x+3}{(x-1)^2} = \infty$$

10.
$$\lim_{x \to 2} \frac{x-2}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{x-2}{(x-2)^2} = \lim_{x \to 2} \frac{1}{x-2}$$

Since $\lim_{x\to 2^+} \frac{1}{x-2} = \infty$ and $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$, the given limit does not exist.

11. $\lim_{x\to 0} \csc x$ does not exist since $\lim_{x\to 0^-} \csc x = -\infty$ and $\lim_{x\to 0^+} \csc x = \infty$.

12.
$$\lim_{x \to \pi/4} \sec(x - \pi/4) = 1$$

13. This limit does not exist since $\lim_{x\to 3\pi/4^-} \sec(x-\pi/4) = \infty$ and $\lim_{x\to 3\pi/4^+} \sec(x-\pi/4) = -\infty$.

14.
$$\lim_{x\to 0^+} \cot x = \infty$$

15.
$$\lim_{x \to \pi/2^+} \tan x = -\infty$$

16.
$$\lim_{x \to \pi/2^{-}} \tan x = \infty$$

17. $\lim_{x\to 1} \frac{x^2-2x+1}{x^3-3x^2+3x-1} = \lim_{x\to 1} \frac{(x-1)^2}{(x-1)^3} = \lim_{x\to 1} \frac{1}{x-1}$ which does not exist since $\lim_{x\to 1^-} \frac{1}{x-1} = -\infty$ and $\lim_{n \to \infty} \frac{1}{n-1} = \infty$

18.
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x^2} = \lim_{x \to 0} \left[\frac{\sqrt{1+x}-1}{x^2} \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \right] = \lim_{x \to 0} \frac{(1+x)-1}{x^2(\sqrt{1+x}+1)} = \lim_{x \to 0} \frac{1}{x(\sqrt{1+x}+1)}$$

Since $\lim_{x\to 0^+} \frac{1}{x(\sqrt{x+1}+1)} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x(\sqrt{x+1}+1)} = -\infty$, the given limit does not exist.

$$\mathbf{19.} \quad \lim_{x \to 0} \frac{2x}{1 - \sqrt{x^2 + 1}} = \lim_{x \to 0} \left(\frac{2x}{1 - \sqrt{x^2 + 1}} \frac{1 + \sqrt{x^2 + 1}}{1 + \sqrt{x^2 + 1}} \right) = \lim_{x \to 0} \frac{2x(1 + \sqrt{x^2 + 1})}{1 - (x^2 + 1)} = \lim_{x \to 0} \frac{-2(1 + \sqrt{x^2 + 1})}{x}$$

This limit does not exist since $\lim_{x\to 0^-} \frac{-2(1+\sqrt{x^2+1})}{x} = \infty$ and $\lim_{x\to 0^+} \frac{-2(1+\sqrt{x^2+1})}{x} = -\infty$.

20. Since
$$\lim_{x \to 4^+} \frac{|4-x|}{x^2 - 8x + 16} = \lim_{x \to 4^+} \frac{x-4}{(x-4)^2} = \lim_{x \to 4^+} \frac{1}{x-4} = \infty$$

 $\lim_{x \to 4^{-}} \frac{|4-x|}{x^2 - 8x + 16} = \lim_{x \to 4^{-}} \frac{4-x}{(x-4)^2} = \lim_{x \to 4^{-}} \frac{-1}{x-4} = \infty$, the given limit does not exist.

21.
$$\lim_{x\to 0^+} \ln(4x) = -\infty$$

22.
$$\lim_{x\to 1}\frac{1}{\ln|x-1|}=0$$

23.
$$\lim_{x\to 0} e^{1/x}$$
 does not exist since $\lim_{x\to 0^+} e^{1/x} = \infty$. 24. $\lim_{x\to 0} e^{1/|x|} = \infty$

25.
$$\lim_{x \to a^{+}} \frac{x - a}{x^{2} - 2ax + a^{2}} = \lim_{x \to a^{+}} \frac{x - a}{(x - a)^{2}} = \lim_{x \to a^{+}} \frac{1}{x - a} = \infty$$

26.
$$\lim_{x \to a} \frac{|x-a|}{x^2 - 2ax + a^2} = \lim_{x \to a} \frac{|x-a|}{(x-a)^2} = \lim_{x \to a} \frac{1}{|x-a|} = \infty$$

27.
$$\lim_{x \to 0^{-}} \frac{\sqrt{a+x} - \sqrt{a}}{x^{2}} = \lim_{x \to 0^{-}} \left[\frac{\sqrt{a+x} - \sqrt{a}}{x^{2}} \frac{\sqrt{a+x} + \sqrt{a}}{\sqrt{a+x} + \sqrt{a}} \right]$$
$$= \lim_{x \to 0^{-}} \frac{a+x-a}{x^{2} \left(\sqrt{a+x} + \sqrt{a}\right)} = \lim_{x \to 0^{-}} \frac{1}{x \left(\sqrt{a+x} + \sqrt{a}\right)} = -\infty$$

- 28. Since $\lim_{x\to -a^-} e^{1/(|x|-a)} = \infty$ and $\lim_{x\to -a^+} e^{1/(|x|-a)} = 0$, the limit does not exist.
- 29. (a) The table suggests that the limit is 0.

\boldsymbol{x}	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10 ⁻⁵
$\overline{x^2}$	10^{-2}	10-4	10^{-6}	10^{-8}	10^{-10}
$\frac{-\ln x}{\ln x}$	-2.30	-4.61	-6.91	-9.21	-11.5
$x^2 \ln x$	-2.30×10^{-2}	-4.61×10^{-4}	-6.91×10^{-6}	-9.21×10^{-8}	-1.15×10^{-9}

x	10^{-6}	10^{-7}	10^{-8}	10^{-9}	10^{-10}
$\overline{x^2}$	10-12	10^{-14}	10^{-16}	10^{-18}	10^{-20}
$\frac{1 \ln x}{}$	-13.8	-16.1	-18.4	-20.7	-23.0
$x^2 \ln x$	-1.38×10^{-11}	-1.61×10^{-13}	-1.84×10^{-15}	-2.07×10^{-17}	-2.30×10^{-19}

(b) The graph of $x^2 \ln x$ to the right also suggests that the limit is 0.

30.

\boldsymbol{x}	1.0	0.1	0.05	0.01	0.005
x^{10}	1		9.77×10^{-14}		9.77×10^{-24}
$e^{1/x}$	2.72	2.20×10^{4}	4.85×10^{8}	2.69×10^{43}	7.23×10^{86}
$x^{10}e^{1/x}$	2.72	2.20×10^{-6}	4.74×10^{-5}	2.69×10^{23}	7.06×10^{63}

Thus, $\lim_{x \to 0^+} x^{10} e^{1/x} = \infty$.

EXERCISES 2.3

1.
$$\lim_{x \to \infty} \frac{x+1}{2x-1} = \lim_{x \to \infty} \frac{1+\frac{1}{x}}{2-\frac{1}{x}} = \frac{1}{2}$$

2.
$$\lim_{x \to \infty} \frac{1-x}{3+2x} = \lim_{x \to \infty} \frac{\frac{1}{x}-1}{\frac{3}{x}+2} = -\frac{1}{2}$$

3.
$$\lim_{x \to \infty} \frac{x^2 + 1}{2x^3 + 5} = \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{2x + \frac{5}{x^2}} = 0$$

4.
$$\lim_{x \to \infty} \frac{1 - 4x^3}{3 + 2x - x^2} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - 4x}{\frac{3}{x^2} + \frac{2}{x} - 1} = \infty$$

5.
$$\lim_{x \to -\infty} \frac{2 + x - x^2}{3 + 4x^2} = \lim_{x \to -\infty} \frac{\frac{2}{x^2} + \frac{1}{x} - 1}{\frac{3}{x^2} + 4} = -\frac{1}{4}$$
6.
$$\lim_{x \to -\infty} \frac{x^3 - 2x^2}{3x^3 + 4x^2} = \lim_{x \to -\infty} \frac{1 - \frac{2}{x}}{3 + \frac{4}{x}} = \frac{1}{3}$$

6.
$$\lim_{x \to -\infty} \frac{x^3 - 2x^2}{3x^3 + 4x^2} = \lim_{x \to -\infty} \frac{1 - \frac{2}{x}}{3 + \frac{4}{x}} = \frac{1}{3}$$

7.
$$\lim_{x \to -\infty} \frac{x^3 - 2x^2 + x + 1}{x^4 + 3x} = \lim_{x \to -\infty} \frac{1 - \frac{2}{x} + \frac{1}{x^2} + \frac{1}{x^3}}{x + \frac{3}{x^2}} = 0$$

8.
$$\lim_{x \to -\infty} \frac{x^3 - 2x^2 + x + 1}{x^2 - x + 1} = \lim_{x \to -\infty} \frac{x - 2 + \frac{1}{x} + \frac{1}{x^2}}{1 - \frac{1}{x} + \frac{1}{x^2}} = -\infty$$

9.
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{2x + 1} = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x^2}}}{2 + \frac{1}{x}} = \frac{1}{2}$$

10.
$$\lim_{x \to \infty} \frac{3x - 1}{\sqrt{5 + 4x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x}}{\sqrt{\frac{5}{x^2} + 4}} = \frac{3}{2}$$

11. This limit does not exist because the function is not defined for $x < -1/\sqrt{2}$.

12.
$$\lim_{x \to -\infty} \frac{\sqrt{1-2x}}{x+2} = \lim_{x \to -\infty} \frac{\frac{\sqrt{1-2x}}{\sqrt{-x}}}{\frac{x+2}{\sqrt{-x}}} = \lim_{x \to -\infty} \frac{\sqrt{-\frac{1}{x}+2}}{-\sqrt{-x}+\frac{2}{\sqrt{-x}}} = 0$$

13.
$$\lim_{x \to \infty} \sqrt{\frac{2+x}{x-2}} = \lim_{x \to \infty} \sqrt{\frac{\frac{2}{x}+1}{1-\frac{2}{x}}} = 1$$

14.
$$\lim_{x \to \infty} \frac{\sqrt{3+x}}{\sqrt{x}} = \lim_{x \to \infty} \sqrt{\frac{3}{x}+1} = 1$$

15.
$$\lim_{x \to \infty} (x^2 - x^3) = \lim_{x \to \infty} x^2 (1 - x) = -\infty$$
 16. $\lim_{x \to \infty} \left(x + \frac{1}{x} \right) = \infty$

$$16. \lim_{x \to \infty} \left(x + \frac{1}{x} \right) = \infty$$

17.
$$\lim_{x \to \infty} \frac{x}{\sqrt{x+5}} = \lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{1+\frac{5}{x}}} = \infty$$

18.
$$\lim_{x \to -\infty} \frac{x^2}{\sqrt{3-x}} = \lim_{x \to -\infty} \frac{\frac{x^2}{\sqrt{-x}}}{\frac{\sqrt{3-x}}{\sqrt{-x}}} = \lim_{x \to -\infty} \frac{-x\sqrt{-x}}{\sqrt{1-\frac{3}{x}}} = \infty$$

19.
$$\lim_{x \to -\infty} \frac{x}{\sqrt[3]{4+x^3}} = \lim_{x \to -\infty} \frac{1}{\sqrt[3]{\frac{4}{x^3}+1}} =$$

19.
$$\lim_{x \to -\infty} \frac{x}{\sqrt[3]{4 + x^3}} = \lim_{x \to -\infty} \frac{1}{\sqrt[3]{\frac{4}{x^3} + 1}} = 1$$
20. $\lim_{x \to \infty} \frac{3x}{\sqrt[3]{2 + 4x^3}} = \lim_{x \to \infty} \frac{3}{\sqrt[3]{\frac{2}{x^3} + 4}} = \frac{3}{\sqrt[3]{4}}$

$$\mathbf{21.} \quad \lim_{x \to \infty} \frac{1}{2x} \cos x = 0$$

$$22. \lim_{x \to -\infty} \frac{1}{2x} \cos x = 0$$

23.
$$\lim_{x \to \infty} \frac{\sin 4x}{x^2} = 0$$

$$24. \lim_{x\to\infty} \frac{\sin^2 x}{x} = 0$$

25.
$$\lim_{x\to-\infty} \tan x$$
 does not exist

26.
$$\lim_{x\to\infty}\frac{1}{x}\tan x$$
 does not exist

27.
$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to \infty} \left[(\sqrt{x^2 + 1} - x) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} \right] = \lim_{x \to \infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = 0$$

28.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 4} - x \right) = \lim_{x \to \infty} \left[\left(\sqrt{x^2 + 4} - x \right) \frac{\sqrt{x^2 + 4} + x}{\sqrt{x^2 + 4} + x} \right] = \lim_{x \to \infty} \left[\frac{(x^2 + 4) - x^2}{\sqrt{x^2 + 4} + x} \right] = 0$$

29.
$$\lim_{x \to \infty} (\sqrt{2x^2 + 1} - x) = \lim_{x \to \infty} \left[(\sqrt{2x^2 + 1} - x) \frac{\sqrt{2x^2 + 1} + x}{\sqrt{2x^2 + 1} + x} \right] = \lim_{x \to \infty} \frac{2x^2 + 1 - x^2}{\sqrt{2x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{x^2 + 1}{\sqrt{2x^2 + 1} + x} = \lim_{x \to \infty} \frac{x + \frac{1}{x}}{\sqrt{2 + \frac{1}{x^2} + 1}} = \infty$$

$$30. \lim_{x \to -\infty} \left(\sqrt{2x^2 + 1} - x \right) = \infty$$

31.
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 2}}{x + 4} = \lim_{x \to \infty} \frac{\sqrt{3 + \frac{2}{x^2}}}{1 + \frac{4}{x}} = \sqrt{3}$$

32.
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 7}}{2x + 3} = \lim_{x \to \infty} \frac{\sqrt{4 + \frac{7}{x^2}}}{2 + \frac{3}{x}} = 1$$

33.
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 2}}{x + 4} = \lim_{x \to -\infty} \frac{\frac{1}{x}\sqrt{3x^2 + 2}}{1 + \frac{4}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{3 + \frac{2}{x^2}}}{1 + \frac{4}{x}} = -\sqrt{3}$$

34.
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 7}}{2x + 3} = \lim_{x \to -\infty} \frac{\frac{\sqrt{4x^2 + 7}}{2x + 3}}{\frac{2x + 3}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{4 + \frac{7}{x^2}}}{2 + \frac{3}{x}} = -1$$

35.
$$\lim_{x \to \infty} (\sqrt{x^2 + 4} - \sqrt{x^2 - 1}) = \lim_{x \to \infty} \left[(\sqrt{x^2 + 4} - \sqrt{x^2 - 1}) \frac{\sqrt{x^2 + 4} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 4} + \sqrt{x^2 - 1}} \right]$$
$$= \lim_{x \to \infty} \frac{(x^2 + 4) - (x^2 - 1)}{\sqrt{x^2 + 4} + \sqrt{x^2 - 1}} = \lim_{x \to \infty} \frac{5}{\sqrt{x^2 + 4} + \sqrt{x^2 - 1}} = 0$$

36.
$$\lim_{x \to \infty} \left(\sqrt[3]{1+x} - \sqrt[3]{x} \right) = \lim_{x \to \infty} \left\{ \left[(1+x)^{1/3} - x^{1/3} \right] \frac{(1+x)^{2/3} + (1+x)^{1/3} x^{1/3} + x^{2/3}}{(1+x)^{2/3} + (1+x)^{1/3} x^{1/3} + x^{2/3}} \right\}$$
$$= \lim_{x \to \infty} \left[\frac{(1+x) - x}{(1+x)^{2/3} + (1+x)^{1/3} x^{1/3} + x^{2/3}} \right] = 0$$

37.
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} \left[(\sqrt{x^2 + x} - x) \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} \right] = \lim_{x \to \infty} \frac{(x^2 + x) - x^2}{\sqrt{x^2 + x} + x}$$
$$= \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2}$$

38.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x} - x \right) = \infty$$

39.
$$\lim_{x \to \infty} \frac{x^2 + ax - 2}{ax^2 + 5} = \lim_{x \to \infty} \frac{1 + \frac{a}{x} - \frac{2}{x^2}}{a + \frac{5}{x^2}} = \frac{1}{a}$$

40.
$$\lim_{x \to \infty} \frac{x}{\sqrt{ax^2 + 3x + 2}} = \lim_{x \to \infty} \frac{1}{\sqrt{a + \frac{3}{x} + \frac{2}{x^2}}} = \frac{1}{\sqrt{a}}$$

41.
$$\lim_{x \to \infty} (\sqrt{x^2 + ax} - x) = \lim_{x \to \infty} \left[(\sqrt{x^2 + ax} - x) \frac{\sqrt{x^2 + ax} + x}{\sqrt{x^2 + ax} + x} \right] = \lim_{x \to \infty} \frac{(x^2 + ax) - x^2}{\sqrt{x^2 + ax} + x}$$
$$= \lim_{x \to \infty} \frac{a}{\sqrt{1 + \frac{a}{x}} + 1} = \frac{a}{2}$$

42.
$$\lim_{x \to -\infty} \frac{\sqrt{ax^2 + 7}}{x - 3a} = \lim_{x \to -\infty} \frac{\frac{\sqrt{ax^2 + 7}}{x}}{\frac{x - 3a}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{a + \frac{7}{x^2}}}{1 - \frac{3a}{x}} = -\sqrt{a}$$

- 43. A vertical asymptote is x = -3/4. Since $\lim_{x \to \pm \infty} \frac{2-x}{3+4x} = -\frac{1}{4}$, the horizontal asymptote is y = -1/4. With f(x) expressed in the form $f(x) = -\frac{1}{4} + \frac{11/4}{4x+3}$, we can say that the for large negative x, f(x) < -1/4, and for large positive x, f(x) > -1/4. Hence, the graph approaches the horizontal asymptote from below as $x \to -\infty$ and from above as $x \to \infty$.
- 44. A vertical asymptote is x=5/2. Since $\lim_{x\to\pm\infty}\frac{x+3}{2x-5}=\frac{1}{2}$, the horizontal asymptote is y=1/2. With f(x) expressed in the form $f(x)=\frac{1}{2}+\frac{11/2}{2x-5}$, we can say that the for large negative x, f(x)<1/2, and for large positive x, f(x)>1/2. Hence, the graph approaches the horizontal asymptote from below as $x\to-\infty$ and from above as $x\to\infty$.
- 45. Since $\lim_{x\to\infty} \frac{3x-1}{\sqrt{5+2x^2}} = \lim_{x\to\infty} \frac{3-1/x}{\sqrt{5/x^2+2}} = \frac{3}{\sqrt{2}}$, $y=3/\sqrt{2}$ is a horizontal asymptote as $x\to\infty$. Since $\lim_{x\to-\infty} \frac{3x-1}{\sqrt{5+2x^2}} = \lim_{x\to-\infty} \frac{3-1/x}{-\sqrt{5/x^2+2}} = -\frac{3}{\sqrt{2}}$, $y=-3/\sqrt{2}$ is a horizontal asymptote as $x\to-\infty$. To determine whether the graph approaches $y=3/\sqrt{2}$ from above or below as $x\to\infty$, we write

$$f(x) = \frac{3x - 1}{\sqrt{5 + 2x^2}} = \sqrt{\frac{(3x - 1)^2}{5 + 2x^2}} = \sqrt{\frac{9x^2 - 6x + 1}{2x^2 + 5}} = \sqrt{\frac{9}{2} - \frac{6x + 43/2}{2x^2 + 5}}.$$

This shows that $f(x) < 3/\sqrt{2}$ for large x, and the graph therefore approaches the asymptote from below. Similarly, for large negative values of x, we express f(x) in the form $f(x) = -\sqrt{\frac{9}{2} - \frac{6x + 43/2}{2x^2 + 5}}$, and this shows that the graph of f(x) approaches $y = -3/\sqrt{2}$ from below as $x \to -\infty$.

46. A vertical asymptote is x=-3/2. Since $\lim_{x\to\infty}\frac{\sqrt{5x^2+7}}{2x+3}=\lim_{x\to\infty}\frac{\sqrt{5+7/x^2}}{2+3/x}=\frac{\sqrt{5}}{2}$, $y=\sqrt{5}/2$ is a horizontal asymptote as $x\to\infty$. Since $\lim_{x\to-\infty}\frac{\sqrt{5x^2+7}}{2x+3}=\lim_{x\to-\infty}\frac{-\sqrt{5+7/x^2}}{2+3/x}=-\frac{\sqrt{5}}{2}$, $y=-\sqrt{5}/2$ is a horizontal asymptote as $x\to-\infty$. To determine whether the graph approaches $y=\sqrt{5}/2$ from above or below as $x\to\infty$, we write

$$f(x) = \frac{\sqrt{5x^2 + 7}}{2x + 3} = \sqrt{\frac{5x^2 + 7}{(2x + 3)^2}} = \sqrt{\frac{5x^2 + 7}{4x^2 + 12x + 9}} = \sqrt{\frac{5}{4} - \frac{15x + 17/4}{4x^2 + 12x + 9}}.$$

This shows that $f(x) < \sqrt{5}/2$ for large x, and the graph therefore approaches the asymptote from below. Similarly, for large negative values of x, we express f(x) in the form $f(x) = -\sqrt{\frac{5}{4} - \frac{15x + 17/4}{4x^2 + 12x + 9}}$, and this shows that the graph of f(x) approaches $y = -\sqrt{5}/2$ from below as $x \to -\infty$.

- 47. Since $3 + 2x x^2 = (3 x)(1 + x)$, horizontal asymptotes are x = 3 and x = -1. With f(x) expressed in the form $f(x) = \frac{1 4x^3}{3 + 2x x^2} = 4x + 8 + \frac{28x + 23}{x^2 2x 3}$, we see that y = 4x + 8 is an oblique asymptote that is approached from above as $x \to \infty$, and from below as $x \to -\infty$.
- 48. Since $x^2 3x + 1 = 0$ for $x = (3 \pm \sqrt{9 4})/2 = (3 \pm \sqrt{5})/2$, vertical asymptotes occur at these values of x. With f(x) expressed in the form $f(x) = \frac{3x^3 + 2x 1}{1 3x + x^2} = 3x + 9 + \frac{26x 10}{x^2 3x + 1}$, we see that y = 3x + 9 is an oblique asymptote that is approached from above as $x \to \infty$, and from below as $x \to -\infty$.

49.
$$\lim_{x \to -\infty} \frac{\sqrt{ax^2 + bx + c}}{dx + e} = \lim_{x \to -\infty} \frac{\frac{1}{x}\sqrt{ax^2 + bx + c}}{d + \frac{e}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{a + \frac{b}{x} + \frac{c}{x^2}}}{d + \frac{e}{x}} = -\frac{\sqrt{a}}{d}$$

50. Clearly a and d must both be positive else neither square root is defined for large x. If we rationalize,

$$\lim_{x \to \infty} \left(\sqrt{ax^2 + bx + c} - \sqrt{dx^2 + ex + f} \right)$$

$$= \lim_{x \to \infty} \left[\left(\sqrt{ax^2 + bx + c} - \sqrt{dx^2 + ex + f} \right) \frac{\sqrt{ax^2 + bx + c} + \sqrt{dx^2 + ex + f}}{\sqrt{ax^2 + bx + c} + \sqrt{dx^2 + ex + f}} \right]$$

$$= \lim_{x \to \infty} \left[\frac{(ax^2 + bx + c) - (dx^2 + ex + f)}{\sqrt{ax^2 + bx + c} + \sqrt{dx^2 + ex + f}} \right].$$

For this limit to exist, we must have a = d. When this is the case, the limit becomes

$$\lim_{x \to \infty} \frac{(b-e)x + (c-f)}{\sqrt{ax^2 + bx + c} + \sqrt{ax^2 + ex + f}} = \lim_{x \to \infty} \frac{(b-e) + \frac{c-f}{x}}{\sqrt{a + \frac{b}{x} + \frac{c}{x^2}} + \sqrt{a + \frac{e}{x} + \frac{f}{x^2}}} = \frac{b-e}{2\sqrt{a}}.$$

EXERCISES 2.4

1. The function has an infinite discontinuity at x = -2.

2. For $x \neq -4$, $f(x) = \frac{(4-x)(4+x)}{x+4} = 4-x$. The graph of the function is therefore the straight line y = 4-x with the point at x = -4 deleted. The computer does not show the hole at the removable discontinuity x = -4.

5. The function has infinite discontinuities at x = 0, -2.

7. For
$$x \neq -1$$
, $f(x) = \frac{(3-x)(1+x)}{x+1} = 3-x$.

The graph of the function is therefore the straight line y = 3 - x with the point at x = -1 deleted. The computer does not show the hole at the removable discontinuity x = -1.

9. For
$$x \neq 2$$
, $f(x) = \frac{(x-2)(x^2+5)}{x-2} = x^2+5$. The graph of the function is therefore the

The graph of the function is therefore the parabola $y = x^2 + 5$ with the point at x = 2 deleted. The computer does not show the hole at the removable discontinuity x = 2.

4. The function has no discontinuities.

6. The function has no discontinuities.

8. For $x \neq 0, 1$, $f(x) = \frac{x(x+2)(x-1)}{x(x-1)} = x+2$.

The graph of the function is therefore the straight line y = x + 2 with the points at x = 0, 1 deleted. The computer does not show holes at the removable discontinuities x = 0, 1.

10. The tangent function has infinite discontinuities at $x = (2n+1)\pi/2$, where n is an integer.

11. The function has infinite discontinuities when $2x=\frac{(2n+1)\pi}{2}\Longrightarrow x=\frac{(2n+1)\pi}{4},$ where n is an integer.

- 13. The function has a removable discontinuity at x = 0. The computer does not show the hole at x = 0.
- 14. The function has infinite discontinuities at $x = \pm 3$.

15. The function has infinite discontinuities at $x = \pm 3$.

16. The function has a jump discontinuity at x = 3. The computer does not show the empty circles at x = 3.

17. The function has infinite discontinuities at $x = \pm 1$.

18. The function has infinite discontinuities at x = -1, 2.

19. For $x \neq 1$, $f(x) = \frac{(x-1)(x-2)}{(x-1)(x+5)} = \frac{x-2}{x+5}$. The graph of the function is therefore the curve y = (x-2)/(x+5) with the point at x=1 deleted. The computer does not show the hole at the removable discontinuity x=1. There is also an infinite discontinuity at x=-5.

21. The function has an infinite discontinuity at x = -4.

23. The function has infinite discontinuities at $x = 0, \pm 2$.

25. The function has an infinite discontinuity at x = 0.

27. The function is continuous for x > 1.

20. The function has infinite discontinuities at x = -1, 7.

22. The function has an infinite discontinuity at x = 1.

24. The function has infinite discontinuities at x = 0, -5.

26. The function has an infinite discontinuity at x = -5.

28. The function is continuous for x > -5.

- **29.** The function is continuous for x < 5.
- **30.** The function is continuous for x < -2 and $x \ge 3$.

31. Right- and left-limits as $x \to -3$ and $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts, we finish the graph as shown to the right.

32. Right- and left-limits as $x \to 3/4$ and $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts, we finish the graph as shown to the right.

33. First we factor the denominator $f(x) = \frac{x+2}{(x-5)(x+1)}$. Right- and left-limits as $x \to -1$ and $x \to 5$, and limits as $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts, we finish the graph as shown to the right.

34. First we factor the denominator $f(x) = \frac{1-x}{(2x-1)(x+3)}$. Right- and left-limits as $x \to -3$ and $x \to 1/2$, and limits as $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts, we finish the graph as shown to the right.

35. First we factor the denominator $f(x) = \frac{x^2 + x + 2}{(x - 3)^2}$. Right- and left-limits as $x \to 3$ lead to the vertical asymptote in the left drawing below. To take limits as $x \to \pm \infty$, we use long division to write f(x) in the form $f(x) = 1 + \frac{7x - 7}{x^2 - 6x + 9}$. Limits as $x \to \pm \infty$ lead to the horizontal asymptote in the same drawing. With a y-intercept equal to 2/9 and no x-intercept, we finish the graph as shown to the right.

36. First we factor numerator and denominator $f(x) = \frac{(x-4)(x+1)}{(3x+1)(x-5)}$. Right- and left-limits as $x \to -1/3$ and $x \to 5$ lead to the vertical asymptotes in the left drawing below. To take limits as $x \to \pm \infty$, we use long division to write f(x) in the form $f(x) = \frac{1}{3} + \frac{5x/3 - 7/3}{3x^2 - 14x - 5}$. Limits as $x \to \pm \infty$ lead to the horizontal asymptote in the same drawing. With x- and y-intercepts, we finish the graph as shown to the right.

37. First we factor the numerator $f(x) = \frac{(x-2)(x+1)}{3x+1}$. Right- and left-limits as $x \to -1/3$ lead to the vertical asymptote in the left drawing below. The graph has an oblique asymptote that we can identify with long division, $f(x) = \frac{x}{3} - \frac{4}{9} - \frac{14/9}{3x+1}$. The line y = x/3 - 4/9 is the oblique asymptote. With x-intercepts at -1 and 2, and y-intercept equal to -2, we finish the graph as shown to the right.

38. Right- and left-limits as $x \to 1$ lead to the vertical asymptote in the left drawing below. The graph has an oblique asymptote that we can identify with long division, $f(x) = -3x - 1 + \frac{6}{1-x}$. The line y = -3x - 1 is the oblique asymptote. With no x-intercepts, and y-intercept equal to 5, we finish the graph as shown to the right.

39. First we factor the denominator $f(x) = \frac{x^3}{(x-1)(x^2+x+1)}$. Right- and left-limits as $x \to 1$, and limits as $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts both at the origin, we finish the graph as shown to the right.

40. First we factor numerator and denominator $f(x) = \frac{(x-2)(x^2+x+4)}{(x-1)^3}$. Right- and left-limits as $x \to 1$ lead to the vertical asymptote in the left drawing below. To take limits as $x \to \pm \infty$, we use long division to write f(x) in the form $f(x) = 1 + \frac{2x^2-x-7}{x^3-3x^2+3x-1}$. Limits as $x \to \pm \infty$ lead to the horizontal asymptote in the same drawing. With x- and y-intercepts, we finish the graph as shown to the right.

41. First we factor numerator and denominator $f(x) = \frac{(x-2)(x-3)}{(x-4)(x^2+4x+16)}$. Right- and left-limits as $x \to 4$, and limits as $x \to \pm \infty$ lead to the vertical and horizontal asymptotes in the left drawing below. With x- and y-intercepts, we finish the graph as shown to the right.

42. First we factor the numerator and denominator $f(x) = \frac{(x-4)(x^2+4x+16)}{(x-2)(x-3)}$. Right- and left-limits as $x \to 2$ and $x \to 3$ lead to the vertical asymptotes in the left drawing below. The graph as an oblique asymptote that we can identify with long division, $f(x) = x + 5 + \frac{19x - 94}{x^2 - 5x + 6}$. The line y = x + 5 is the oblique asymptote. With x-intercept 4, and y-intercept equal to -32/3, we finish the graph as shown to the right.

- 43. Yes, since $f(0) = 0 = \lim_{x\to 0} f(x)$ (see Exercise 51 in Exercises 2.1).
- 44. No. If it were to have a discontinuity at $t = t_0$ as in the figure to the right, the particle would disappear at position x_0 and reappear instantaneously at position x_1 .

45. The graph of the function to the right was generated on a computer but the hole was added manually. It indicates that $\lim_{x\to 0} x^{-1} \sin x = 1$, and therefore the discontinuity is removable.

- **46.** If we set h = x a in the left side of 2.4a, then $f(a) = \lim_{x \to a} f(x) = \lim_{h \to a} f(a+h) = \lim_{h \to 0} f(a+h)$.
- 47. (a) The graph indicates that the function is discontinuous at x = 0.

- 48. (a) The function is discontinuous at x = n/10, where n is an integer.
 - (b) Let a positive number x be denoted by $z.abc \cdots$ where z is the integer part, and a, b, and c are the first three decimals. Then

- $f(z.abc\cdots) = (1/10)\lfloor za.bc\cdots \rfloor = \frac{1}{10}(za) = z.a.$
- **49.** The function $\lfloor 100x+1 \rfloor / 100$. For example, if x = -2.357, then $\lfloor 100(-2.357)+1 \rfloor / 100 = \lfloor -234.7 \rfloor / 100 = -235/100 = -2.35$.

- **50.** (a) The function is discontinuous at x = n + 1/2, where n is an integer.
 - (b) Let a positive number x be denoted by $z.a \cdots$ where z is the integer part, and a is the first decimal. Suppose that a is equal to 0, 1, 2, 3, or 4.

Suppose that a is equal to 0, 1, 2, 3, or 4. The integer part of x + 1/2 is z and the first decimal in the number x + 1/2 is 5, 6, 7, 8, or 9, and therefore $f(x) = \lfloor x + 1/2 \rfloor = z$. On the other hand, suppose that a is equal to 5, 6, 7, 8, or 9. Then the integer part of x + 1/2 is z + 1, and its first decimal is 0, 1, 2, 3, or 4. Hence, f(x) = |x + 1/2| = z + 1.

- **51.** (a) |10x + 1/2|/10 (b) |100x + 1/2|/100 (c) $|10^n x + 1/2|/10^n$
- **52.** There are no points at which the function is continuous since $\lim_{x\to a} f(x)$ does not exist for any a.
- **53.** The function is continuous only at x = 0.

EXERCISES 2.5

1.
$$f(x) = [1 - h(x)] + (2 - x)[h(x) - h(x - 2)] + 2h(x - 2)$$

= $1 + (1 - x)h(x) + xh(x - 2)$

3. $f(x) = \sin x [1 - h(x)] + (2 + 2\cos x)h(x)$ = $\sin x + (2 + 2\cos x - \sin x)h(x)$

5. f(x) = x[h(x) - h(x-1)] + (1-x)[h(x-1) - h(x-2)] = x h(x) + (1-2x)h(x-1) + (x-1)h(x-2)

4. f(x) = (x-2)[h(x+1) - h(x-3)] + (x-4)[h(x-3) - h(x-5)] = (x-2)h(x+1) - 2h(x-3) + (4-x)h(x-5)

6. $f(x) = \sin x [h(x) - h(x - \pi)]$ $+2 \sin (x - \pi) [h(x - \pi) - h(x - 2\pi)]$ $+3 \sin (x - 2\pi) [h(x - 2\pi) - h(x - 3\pi)]$ $+4 \sin (x - 3\pi) [h(x - 3\pi) - h(x - 4\pi)]$ $= \sin x [h(x) - h(x - \pi)]$ $-2 \sin x [h(x - \pi) - h(x - 2\pi)]$ $+3 \sin x [h(x - 2\pi) - h(x - 3\pi)]$ $-4 \sin x [h(x - 3\pi) - h(x - 4\pi)]$ $= \sin x [h(x) - 3h(x - \pi) + 5h(x - 2\pi)$ $-7h(x - 3\pi) + 4h(x - 4\pi)]$

- 7. -F[h(t) h(t-T)]
- 8. $10\sin 4t[h(t-1)-h(t-1-\pi)]$
- 9. $-50\delta(t-4)$
- **10.** [100 + 2(t-10)][h(t-10) h(t-60)] = (80 + 2t)[h(t-10) h(t-60)]
- **11.** $60[\delta(t) + \delta(t-10) + \delta(t-20) + \delta(t-30) + \delta(t-40) + \delta(t-50) + \delta(t-60)]$
- **12.** -(2mg/L)[h(x) h(x L/2)]
- **13.** $-F\delta(x-L/3)$
- **14.** $F_1\delta(x-x_1) F_2\delta(x-x_2)$
- **15.** -[3mg/(2L)][h(x-L/3)-h(x-L)]
- **16.** h(x-a) h(x-b) + h(x-c)
- 17. $h(t) h(t-1) + h(t-2) h(t-3) + h(t-4) \cdots$
- 18. Yes, except at x = a where h(x a)h(x b) is undefined whereas h(x b) = 0.
- 19.

20.

21.

23.

24.

25. The function is

$$[h(t) - h(t-1)] + 2[h(t-1) - h(t-2)] + 3[h(t-2) - h(t-3)] + 4h(t-3)$$

= $h(t) + h(t-1) + h(t-2) + h(t-3)$.

90

EXERCISES 2.6

- 1. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 1 so that $|(x+5)-6| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x-1, $|x-1| < \epsilon$. Thus, if we choose $0 < |x-1| < \epsilon$, then $|(x+5)-6| < \epsilon$; that is, we can make x+5 within ϵ of 6 by choosing x within ϵ of 1.
- 2. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 2 so that $|(2x-3)-1| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x-2,

$$|(2x-3)-1| = |2(x-2)| = 2|x-2|.$$

We must now choose x so that $2|x-2| < \epsilon$. But this will be true if $|x-2| < \epsilon/2$. In other words, if we choose x to satisfy $0 < |x-2| < \epsilon/2$, then

$$|(2x-3)-1|=2|x-2|<2\left(\frac{\epsilon}{2}\right)=\epsilon.$$

We have shown that we can make 2x-3 within ϵ of 1 by choosing x within $\epsilon/2$ of 2.

3. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 0 so that $|(x^2+3)-3| < \epsilon$. To do this, we rewrite the inequality in the form $|x|^2 < \epsilon$. But this will be true if $|x| < \sqrt{\epsilon}$. In other words, if we choose x to satisfy $0 < |x| < \sqrt{\epsilon}$, then

$$|(x^2+3)-3| = |x|^2 < (\sqrt{\epsilon})^2 = \epsilon.$$

We have shown that we can make $x^2 + 3$ within ϵ of 3 by choosing x within $\sqrt{\epsilon}$ of 0.

4. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 1 so that $|(x^2+4)-5| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x-1,

$$|(x^2+4)-5| = |(x-1)^2+2(x-1)|.$$

We must now choose x so that

$$|(x-1)^2 + 2(x-1)| < \epsilon.$$

Since $|(x-1)^2+2(x-1)| \leq |x-1|^2+2|x-1|$, the above inequality is satisfied if x is chosen so that

$$|x - 1|^2 + 2|x - 1| < \epsilon.$$

Suppose we set z = |x - 1|, and consider the parabola $Q(z) = z^2 + 2z - \epsilon$ in the figure. It crosses the z-axis when

z-axis when
$$z = \frac{-2 \pm \sqrt{4 + 4\epsilon}}{2} = -1 \pm \sqrt{1 + \epsilon}.$$

The graph shows that Q(z) < 0 whenever $0 < z < -1 + \sqrt{1 + \epsilon}$. In other words, if $0 < |x - 1| < \sqrt{1 + \epsilon} - 1$, then $|x - 1|^2 + 2|x - 1| < \epsilon$, and therefore $|(x - 1)^2 + 2(x - 1)| < \epsilon$.

5. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to -2 so that $|(3-x^2)+1| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x+2,

$$|(3-x^2)+1| = |x^2-4| = |(x+2)^2-4(x+2)|.$$

We must now choose x so that

$$|(x+2)^2 - 4(x+2)| < \epsilon.$$

Since $|(x+2)^2-4(x+2)| \le |x+2|^2+4|x+2|$, the above inequality is satisfied if x is chosen so that

$$|x+2|^2 + 4|x+2| < \epsilon.$$

Suppose we set z = |x + 2|, and consider the parabola $Q(z) = z^2 + 4z - \epsilon$ in the figure. It crosses the z-axis when

$$z = \frac{-4 \pm \sqrt{16 + 4\epsilon}}{2} = -2 \pm \sqrt{4 + \epsilon}.$$

The graph shows that Q(z) < 0 whenever $0 < z < -2 + \sqrt{4 + \epsilon}$. In other words, if $0 < |x+2| < \sqrt{4 + \epsilon} - 2$, then $|x+2|^2 + 4|x+2| < \epsilon$, and therefore $|(x+2)^2 - 4(x+2)| < \epsilon$.

6. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 3 so that $|(x^2 - 7x) + 12| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x - 3,

$$|(x^2 - 7x) + 12| = |x^2 - 7x + 12| = |(x - 3)^2 - (x - 3)|.$$

We must now choose x so that

$$|(x-3)^2 - (x-3)| < \epsilon.$$

Since $|(x-3)^2-(x-3)| \leq |x-3|^2+|x-3|$, the above inequality is satisfied if x is chosen so that

$$|x-3|^2 + |x-3| < \epsilon.$$

Suppose we set z = |x - 3|, and consider the parabola $Q(z) = z^2 + z - \epsilon$ in the figure. It crosses the z-axis when

$$z = \frac{-1 \pm \sqrt{1 + 4\epsilon}}{2}.$$

The graph shows that Q(z) < 0 whenever $0 < z < \left(-1 + \sqrt{1 + 4\epsilon}\right)/2$. In other words, if $0 < |x - 3| < \left(\sqrt{1 + 4\epsilon} - 1\right)/2$, then $|x - 3|^2 + |x - 3| < \epsilon$, and therefore $|(x - 3)^2 - (x - 3)| < \epsilon$.

7. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to -1 so that $|(x^2 - 3x + 4) - 8| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x + 1,

$$|(x^2 - 3x + 4) - 8| = |x^2 - 3x - 4| = |(x + 1)^2 - 5(x + 1)|.$$

We must now choose x so that

$$|(x+1)^2 - 5(x+1)| < \epsilon.$$

Since $|(x+1)^2 - 5(x+1)| \le |x+1|^2 + 5|x+1|$, the above inequality is satisfied if x is chosen so that

$$|x+1|^2 + 5|x+1| < \epsilon.$$

Suppose we set z = |x + 1|, and consider the parabola $Q(z) = z^2 + 5z - \epsilon$ in the figure. It crosses the z-axis when

$$z = \frac{-5 \pm \sqrt{25 + 4\epsilon}}{2}.$$

The graph shows that Q(z) < 0 whenever $0 < z < (-5 + \sqrt{25 + 4\epsilon})/2$. In other words, if $0 < |x+1| < (\sqrt{25 + 4\epsilon} - 5)/2$, then $|x+1|^2 + 5|x+1| < \epsilon$, and therefore $|(x+1)^2 + 5(x+1)| < \epsilon$.

8. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 1 so that $|(x^2 + 3x + 5) - 9| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x - 1,

$$|(x^2 + 3x + 5) - 9| = |x^2 + 3x - 4| = |(x - 1)^2 + 5(x - 1)|.$$

We must now choose x so that

$$|(x-1)^2 + 5(x-1)| < \epsilon.$$

Since $|(x-1)^2 + 5(x-1)| \le |x-1|^2 + 5|x-1|$, the above inequality is satisfied if x is chosen so that

$$|x-1|^2 + 5|x-1| < \epsilon.$$

Suppose we set z = |x - 1| and consider the parabola $Q(z) = z^2 + 5z - \epsilon$ in the figure. It crosses the z-axis when

$$z = \frac{-5 \pm \sqrt{25 + 4\epsilon}}{2}.$$

The graph shows that Q(z) < 0 whenever $0 < z < (\sqrt{25+4\epsilon}-5)/2$. In other words, if $0 < |x-1| < (\sqrt{25+4\epsilon}-5)/2$, then $|x-1|^2+5|x-1| < \epsilon$, and therefore $|(x-1)^2+5(x-1)| < \epsilon$.

9. Suppose $\epsilon > 0$ is given. We must show that we can choose x sufficiently close to 2 so that $|(x+2)/(x-1)-4| < \epsilon$. To do this, we rewrite the inequality with the x's in the combination x-2,

$$\left| \frac{x+2}{x-1} - 4 \right| = \left| \frac{-3x+6}{x-1} \right| = \frac{3|x-2|}{|(x-2)+1|}.$$

We must now choose x so that

$$\frac{3|x-2|}{|(x-2)+1|} < \epsilon.$$

Since $\frac{3|x-2|}{|(x-2)+1|} \le \frac{3|x-2|}{1-|x-2|}$, provided |x-2| < 1, the above inequality is satisfied if x is chosen so that

$$\frac{3|x-2|}{1-|x-2|}<\epsilon.$$

Suppose we set z=|x-2| and consider the curve $Q(z)=3z/(1-z)-\epsilon$ in the figure. It crosses the z-axis when $z=\epsilon/(3+\epsilon)$. The graph shows that Q(z)<0 whenever $0< z<\epsilon/(3+\epsilon)$. In other words, if $0<|x-2|<\epsilon/(3+\epsilon)$, then $3|x-2|/(1-|x-2|)<\epsilon$, and therefore $3|(x-2)/|(x-2)+1|<\epsilon$.

- 10. $\lim_{x\to a^+} f(x) = L$ if given any $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $a < x < a + \delta$.
- 11. $\lim_{x\to a^-} f(x) = L$ if given any $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $a \delta < x < a$.
- 12. $\lim_{x\to\infty} f(x) = L$ if given any $\epsilon > 0$, there exists an X > 0 such that $|f(x) L| < \epsilon$ whenever x > X.
- 13. $\lim_{x\to -\infty} f(x) = L$ if given any $\epsilon > 0$, there exists an X < 0 such that $|f(x) L| < \epsilon$ whenever x < X.
- 14. $\lim_{x\to a} f(x) = \infty$ if given any M > 0, there exists a $\delta > 0$ such that f(x) > M whenever $0 < |x-a| < \delta$.
- 15. $\lim_{x\to a} f(x) = -\infty$ if given any M < 0, there exists a $\delta > 0$ such that f(x) < M whenever $0 < |x-a| < \delta$.
- 16. $\lim_{x\to\infty} f(x) = \infty$ if given any M>0, there exists an X>0 such that f(x)>M whenever x>X.
- 17. $\lim_{x\to\infty} f(x) = -\infty$ if given any M<0, there exists an X>0 such that f(x)< M whenever x>X.
- 18. $\lim_{x \to -\infty} f(x) = \infty$ if given any M > 0, there exists an X < 0 such that f(x) > M whenever x < X.
- 19. $\lim_{x \to -\infty} f(x) = -\infty$ if given any M < 0, there exists an X < 0 such that f(x) < M whenever x < X.

- 20. Suppose to the contrary that f(x) has two limits L_1 and L_2 as x approaches a where $L_2 > L_1$ and $L_2 L_1 = \epsilon$. Since $\lim_{x \to a} f(x) = L_1$, there exists a δ_1 such that $|f(x) L_1| < \epsilon/3$ when $0 < |x a| < \delta_1$; that is, when x is in the interval $0 < |x a| < \delta_1$, the function is within $\epsilon/3$ of L_1 . On the other hand, since $\lim_{x \to a} f(x) = L_2$, there exists a δ_2 such that $|f(x) L_2| < \epsilon/3$ when $0 < |x a| < \delta_2$; that is, the function is within $\epsilon/3$ of L_2 in the interval $0 < |x a| < \delta_2$. But this is impossible because L_1 and L_2 are ϵ apart. Consequently, f(x) can have at most one limit as x approaches a.
- 21. We use the definition in Exercise 14: $\lim_{x\to 1} 1/(x-1)^2 = \infty$ if given any M>0, there exists a $\delta>0$ such that $1/(x-1)^2>M$ whenever $0<|x-1|<\delta$. The inequality $1/(x-1)^2>M\iff (x-1)^2<1/M\iff |x-1|<1/\sqrt{M}$. Consequently, if we choose $\delta=1/\sqrt{M}$, then whenever $0<|x-1|<\delta=1/\sqrt{M}$, we must have $1/(x-1)^2>M$.
- **22.** We use the definition in Exercise 15: $\lim_{x\to -2} \left[-1/(x+2)^2\right] = -\infty$ if given any number M<0, there exists a $\delta>0$ such that $-1/(x+2)^2< M$ whenever $0<|x+2|<\delta$. The inequality $-1/(x+2)^2< M \iff (x+2)^2<-1/M \iff |x+2|<1/\sqrt{-M}$. Consequently, if we choose $\delta=1/\sqrt{-M}$, then whenever $0<|x+2|<\delta=1/\sqrt{-M}$, we must have $-1/(x+2)^2< M$.
- 23. We use the definition in Exercise 16: $\lim_{x\to\infty} (x+5) = \infty$ if given any M>0, there exists an X>0 such that x+5>M whenever x>X. The inequality $x+5>M \iff x>M-5$. Consequently, if we choose X=M-5, then whenever x>X, we must have x+5>M.
- 24. We use the definition in Exercise 17: $\lim_{x\to\infty} (5-x^2) = -\infty$ if given any number M<0, there exists an X>0 such that $5-x^2 < M$ whenever x>X. The inequality $5-x^2 < M \iff x^2>5-M$, which for positive x implies that $x>\sqrt{5-M}$. Consequently, if we choose $X=\sqrt{5-M}$, then whenever x>X, we must have $5-x^2 < M$.
- **25.** We use the definition in Exercise 12: $\lim_{x\to\infty} (x+2)/(x-1) = 1$ if given any $\epsilon > 0$, there exists an X > 0 such that $|(x+2)/(x-1)-1| < \epsilon$ whenever x > X. The inequality $|(x+2)/(x-1)-1| < \epsilon \iff 3/|x-1| < \epsilon \iff |x-1| > 3/\epsilon$. This inequality is satisfied if $x > 1+3/\epsilon$. In other words, if we choose $X = 1+3/\epsilon$, then whenever x > X, $|(x+2)/(x-1)-1| < \epsilon$.
- 26. We use the definition in Exercise 13: $\lim_{x\to -\infty} (x+2)/(x-1) = 1$ if given any number $\epsilon > 0$, there exists an X < 0 such that $|(x+2)/(x-1)-1| < \epsilon$ whenever x < X. The inequality $|(x+2)/(x-1)-1| < \epsilon \iff 3/|x-1| < \epsilon \iff |x-1| > 3/\epsilon$. This inequality is satisfied if $x < 1-3/\epsilon$. In other words, if we choose $X = 1-3/\epsilon$, then whenever x < X, $|(x+2)/(x-1)-1| < \epsilon$.
- 27. We use the definition in Exercise 18: $\lim_{x\to -\infty} (5-x) = \infty$ if given any M>0, there exists an X<0 such that 5-x>M whenever x< X. The inequality $5-x>M \iff x<5-M$. Consequently, if we choose X=5-M, then whenever x< X, we must have 5-x>M.
- 28. We use the definition in Exercise 19: $\lim_{x\to-\infty} (3+x-x^2) = -\infty$ if given any number M<0, there exists an X<0 such that $3+x-x^2< M$ whenever x< X. The inequality $3+x-x^2< M \Longleftrightarrow M>-(x-1/2)^2+13/4 \Longleftrightarrow (x-1/2)^2>13/4-M \Longleftrightarrow |x-1/2|>\sqrt{13/4-M}$. This is satisfied for negative x if $x-1/2<-\sqrt{13/4-M}$, or, $x<1/2-\sqrt{13/4-M}$. Thus, if we choose $X=1/2-\sqrt{13/4-M}$, then whenever x< X, we must have $3+x-x^2< M$.
- **29.** Let $\epsilon = L$. Because $\lim_{x \to a} f(x) = L$, there exists a $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $0 < |x a| < \delta$. Thus, in the interval $I: 0 < |x a| < \delta$, we have $-\epsilon < f(x) L < \epsilon \iff L \epsilon < f(x) < L + \epsilon$. But with $\epsilon = L$, this implies that in I, 0 < f(x) < 2L.
- 30. No. A graph of the function $g(x) = x \sin(1/x)$ is shown to the right. It has limit 0 as $x \to 0$. If values at $x = 1/(n\pi)$ are redefined as 1, then all values of f(x) no longer approach 0 as x approaches 0. Every interval around x = 0 contains an infinity of points at which the value of f(x) is equal to 1.

31. Since $\lim_{x\to a} f(x) = F$, there exists a $\delta_1 > 0$ such that

$$|f(x) - F| < \epsilon/2$$
 whenever $0 < |x - a| < \delta_1$.

Since $\lim_{x\to a} g(x) = G$, there exists a $\delta_2 > 0$ such that

$$|g(x) - G| < \epsilon/2$$
 whenever $0 < |x - a| < \delta_2$.

It follows that whenever $0 < |x - a| < \delta$, where δ is the smaller of δ_1 and δ_2 ,

$$\left|\left[f(x)+g(x)\right]-(F+G)\right|=\left|\left[f(x)-F\right]+\left[g(x)-G\right]\right|\leq \left|f(x)-F\right|+\left|g(x)-G\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

32. Since $\lim_{x\to a} f(x) = F$, there exists a $\delta_1 > 0$ such that

$$|f(x) - F| < \epsilon/2$$
 whenever $0 < |x - a| < \delta_1$.

Since $\lim_{x\to a} g(x) = G$, there exists a $\delta_2 > 0$ such that

$$|g(x) - G| < \epsilon/2$$
 whenever $0 < |x - a| < \delta_2$.

It follows that whenever $0 < |x - a| < \delta$, where δ is the smaller of δ_1 and δ_2 ,

$$\left|\left[f(x)-g(x)\right]-(F-G)\right|=\left|\left[f(x)-F\right]-\left[g(x)-G\right]\right|\leq \left|f(x)-F\right|+\left|g(x)-G\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

33. Suppose c is any constant, and $\epsilon > 0$ is any given number. Since $\lim_{x \to a} f(x) = F$, there exists a $\delta > 0$ such that $|f(x) - F| < \epsilon/|c|$ whenever $0 < |x - a| < \delta$. Hence, whenever $0 < |x - a| < \delta$, we can say that

$$|cf(x) - cL| = |c||f(x) - L| < |c|\left(rac{\epsilon}{|c|}
ight) = \epsilon.$$

34. (a) |f(x)g(x) - FG| = |[f(x)g(x) - f(x)G] + [f(x)G - FG]| $\leq |f(x)g(x) - f(x)G| + |f(x)G - FG| = |f(x)||g(x) - G| + |G||f(x) - F|$

(b) If $\lim_{x\to a} f(x) = F$, it follows that $\lim_{x\to a} |f(x)| = |F|$. There must exist a δ_1 such that whenever $0 < |x-a| < \delta_1$,

$$||f(x)| - |F|| < 1$$
, or, $-1 < |f(x)| - |F| < 1$.

But then for such x, |f(x)| < |F| + 1.

Since $\lim_{x\to a} g(x) = G$, given any $\epsilon > 0$, there exists δ_2 such that when $0 < |x-a| < \delta_2$,

$$|g(x)-G|<\frac{\epsilon}{2(|F|+1)}.$$

Since $\lim_{x\to a} f(x) = F$, there exists δ_3 such that when $0 < |x-a| < \delta_3$,

$$|f(x) - F| < \frac{\epsilon}{2|G| + 1}.$$

(c) If we set δ equal to the minimum of δ_1 , δ_2 , and δ_3 , then for $0 < |x-a| < \delta$,

$$|f(x)g(x) - FG| \le |f(x)||g(x) - G| + |G||f(x) - F|$$
 (from part (a))

$$< |f(x)||g(x) - G| + (|G| + 1/2)|f(x) - F|$$

$$< (|F| + 1)\frac{\epsilon}{2(|F| + 1)} + \frac{1}{2}(2|G| + 1)\frac{\epsilon}{2|G| + 1}$$
 (from part (b))

$$= \epsilon.$$

35. (a)
$$\left| \frac{f(x)}{g(x)} - \frac{F}{G} \right| = \left| \frac{f(x)G - g(x)F}{g(x)G} \right| = \left| \frac{[f(x)G - FG] + [FG - g(x)F]}{g(x)G} \right|$$

$$\leq \frac{|f(x)G - FG| + |FG - g(x)F|}{|G||g(x)|} = \frac{|f(x) - F|}{|g(x)|} + \frac{|F||g(x) - G|}{|G||g(x)|}.$$

(b) Because $\lim_{x\to a} g(x) = G$, it follows that $\lim_{x\to a} |g(x)| = |G|$. Hence with $\epsilon = |G|/2$, there exists a $\delta_1 > 0$ such that whenever $0 < |x - a| < \delta_1$,

$$\left| \left| g(x) \right| - \left| G \right| \right| < \frac{\left| G \right|}{2} \quad \Longleftrightarrow \quad - \frac{\left| G \right|}{2} < \left| g(x) \right| - \left| G \right| < \frac{\left| G \right|}{2} \quad \Longleftrightarrow \quad \frac{\left| G \right|}{2} < \left| g(x) \right| < \frac{3 \left| G \right|}{2}.$$

Because $\lim_{x\to a} f(x) = F$, we can say that for any $\epsilon > 0$, there exists a $\delta_2 > 0$ such that whenever $0<|x-a|<\delta_2,$

$$|f(x) - F| < \frac{\epsilon |G|}{4}.$$

Because $\lim_{x\to a} g(x) = G$, we can say that for any $\epsilon > 0$, there exists a $\delta_3 > 0$ such that whenever $0<|x-a|<\delta_3,$

$$|g(x) - G| < \frac{\epsilon |G|^2}{4(|F|+1)}.$$

(c) It now follows that for $0 < |x-a| < \delta$ where δ is the smallest of δ_1 , δ_2 , and δ_3 ,

$$\left|\frac{f(x)}{g(x)} - \frac{F}{G}\right| < \frac{\epsilon|G|}{4} \frac{2}{|G|} + \frac{|F|+1}{|G|} \frac{2}{|G|} \frac{\epsilon|G|^2}{4(|F|+1)} = \epsilon.$$

This completes the proof.

REVIEW EXERCISES

1.
$$\lim_{x \to 1} \frac{x^2 - 2x}{x + 5} = \frac{1 - 2}{1 + 5} = -\frac{1}{6}$$

2.
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} \frac{(x + 1)(x - 1)}{x + 1} = \lim_{x \to -1} (x - 1) = -2$$

3.
$$\lim_{x \to -2} \frac{x^2 + 4x + 4}{x + 3} = 0$$

4.
$$\lim_{x \to \infty} \frac{x+5}{x-3} = \lim_{x \to \infty} \frac{1+\frac{5}{x}}{1-\frac{3}{x}} = 1$$

5.
$$\lim_{x \to -\infty} \frac{x^2 + 3x + 2}{2x^2 - 5} = \lim_{x \to -\infty} \frac{1 + \frac{3}{x} + \frac{2}{x^2}}{2 - \frac{5}{2}} = \frac{1}{2}$$
6.
$$\lim_{x \to -\infty} \frac{5 - x^3}{3 + 4x^3} = \lim_{x \to -\infty} \frac{\frac{5}{x^3} - 1}{\frac{3}{x} + 4} = -\frac{1}{4}$$

6.
$$\lim_{x \to -\infty} \frac{5 - x^3}{3 + 4x^3} = \lim_{x \to -\infty} \frac{\frac{5}{x^3} - 1}{\frac{3}{x^3} + 4} = -\frac{1}{4}$$

7.
$$\lim_{x \to \infty} \frac{3x^3 + 2x - 5}{x^2 + 5x} = \lim_{x \to \infty} \frac{3x + \frac{2}{x} - \frac{5}{x^2}}{1 + \frac{5}{x}} = \infty$$
8.
$$\lim_{x \to \infty} \frac{4 - 3x + x^2}{3 + 5x^3} = \lim_{x \to \infty} \frac{\frac{4}{x^2} - \frac{3}{x} + 1}{\frac{3}{x^2} + 5x} = 0$$

8.
$$\lim_{x \to \infty} \frac{4 - 3x + x^2}{3 + 5x^3} = \lim_{x \to \infty} \frac{\frac{4}{x^2} - \frac{3}{x} + 1}{\frac{3}{x^2} + 5x} = 0$$

9.
$$\lim_{x \to 2^+} \frac{x^2 - 2x}{x^2 + 2x} = 0$$

10.
$$\lim_{x \to 2^{-}} \frac{x^2 - 4x + 4}{x - 2} = \lim_{x \to 2^{-}} \frac{(x - 2)^2}{x - 2} = \lim_{x \to 2^{-}} (x - 2) = 0$$

11.
$$\lim_{x \to 0} \frac{x^2 + 2x}{3x - 2x^2} = \lim_{x \to 0} \frac{x + 2}{3 - 2x} = \frac{2}{3}$$

12.
$$\lim_{x\to 1} \frac{x^2+5x}{(x-1)^2} = \infty$$

13.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x} = 0$$

14.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{(\sqrt{x} - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

15.
$$\lim_{x \to 1/2} \frac{(2-4x)^3}{x(2x-1)^2} = \lim_{x \to 1/2} \frac{8(1-2x)}{x} = 0$$

16.
$$\lim_{x \to \infty} \frac{\cos 5x}{x} = 0$$

17. This limit does not exist.

18.
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 4}}{2x + 5} = \lim_{x \to -\infty} \frac{\frac{\sqrt{3x^2 + 4}}{x}}{\frac{2x + 5}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{3 + \frac{4}{x^2}}}{2 + \frac{5}{x}} = -\frac{\sqrt{3}}{2}$$

19.
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 4}}{2x + 5} = \lim_{x \to \infty} \frac{\sqrt{3 + \frac{4}{x^2}}}{2 + \frac{5}{x}} = \frac{\sqrt{3}}{2}$$

$$\mathbf{20.} \quad \lim_{x \to \infty} \left(\sqrt{2x+1} - \sqrt{3x-1} \right) = \lim_{x \to \infty} \left[\left(\sqrt{2x+1} - \sqrt{3x-1} \right) \frac{\sqrt{2x+1} + \sqrt{3x-1}}{\sqrt{2x+1} + \sqrt{3x-1}} \right] \\
= \lim_{x \to \infty} \frac{(2x+1) - (3x-1)}{\sqrt{2x+1} + \sqrt{3x-1}} = \lim_{x \to \infty} \frac{2 - x}{\sqrt{2x+1} + \sqrt{3x-1}} \\
= \lim_{x \to \infty} \frac{\frac{2 - x}{\sqrt{x}}}{\frac{\sqrt{2x+1} + \sqrt{3x-1}}{\sqrt{x}}} = \lim_{x \to \infty} \frac{\frac{2}{\sqrt{x}} - \sqrt{x}}{\sqrt{2} + \frac{1}{x} + \sqrt{3} - \frac{1}{x}} = -\infty$$

21. The limits $\lim_{x\to 2^+} f(x) = \infty$, $\lim_{x\to 2^-} f(x) = -\infty$, $\lim_{x\to \infty} f(x) = 0^+$, and $\lim_{x\to -\infty} f(x) = 0^-$ lead to the graph to the right. The discontinuity at x=2 is infinite.

22. The limits $\lim_{x\to 2^+} f(x) = \infty$, $\lim_{x\to 2^-} f(x) = -\infty$, $\lim_{x\to \infty} f(x) = 1^+$, and $\lim_{x\to \infty} f(x) = 1^-$ lead to the graph to the right. The discontinuity at x=2 is infinite.

23. We calculate $\lim_{x\to 2^+} f(x) = \infty$ and $\lim_{x\to 2^-} f(x) = -\infty$. From $f(x) = x + 2 + \frac{4}{x-2}$, we obtain the oblique asymptote y = x+2, approached from above as $x\to\infty$ and from below as $x\to-\infty$. These give the graph to the right. The discontinuity at x=2 is infinite.

24. For $x \neq 6$, f(x) = x + 6. Consequently, the graph is a straight line with the point at x = 6 removed. The discontinuity at x = 6 is removable.

25. The limits $\lim_{x \to 1^+} f(x) = \infty$, $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 1^+$, and $\lim_{x \to -\infty} f(x) = 1^-$ lead to the graph to the right. The discontinuity at x = 1 is infinite.

26. The limits $\lim_{x\to 1^+} f(x) = \infty$, $\lim_{x\to 1^-} f(x) = \infty$, $\lim_{x\to\infty} f(x) = 1^+$, and $\lim_{x\to -\infty} f(x) = 1^-$ lead to the graph to the right. The discontinuity at x=1 is infinite.

28. The limits $\lim_{x\to 1^+} f(x) = \infty$, $\lim_{x\to 1^-} f(x) = \infty$, $\lim_{x\to\infty} f(x) = 1^+$, and $\lim_{x\to -\infty} f(x) = -1^+$ lead to the graph to the right. The discontinuity at x=1 is infinite.

32. For $x \neq 1$, $f(x) = \frac{(x-1)^3}{(x-1)^2} = x-1$. The graph of the function is therefore the straight line y = x - 1 with the point at x = 1 deleted. The function has a removable discontinuity at x = 1.

33. The function can be expressed in the form

$$f(x) = x^{2}[1 - h(x)] + x[h(x) - h(x - 4)] + (5 - 2x)h(x - 4) = x^{2} + (x - x^{2})h(x) + (5 - 3x)h(x - 4).$$

34. The function can be expressed in the form

$$f(x) = (3+x^3)[1-h(x+1)] + (x^2+2)[h(x+1)-h(x-2)] + 4h(x-2)$$

= 3+x³-(x³-x²+1)h(x+1)+(2-x²)h(x-2).

35. The function is discontinuous at $x = \pm \sqrt{n}$, where n > 0 is an integer.

