Maths Problem Set- Measure Theory

Keshav Choudhary

June 22, 2018

Exercise 1.3

- Consider $A \in \mathcal{G}_1 \implies A$ open on $\mathbb{R} \implies A^c$ is either closed on \mathbb{R} or semi-open on \mathbb{R} . So $A^c \notin \mathcal{G}_1$ as it is not a purely open interval. Hence \mathcal{G}_1 is not a σ algebra nor an algebra.
- Consider $A_n \in \mathcal{G}_2, n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} A_n \notin \mathcal{G}_2$ since \mathcal{G}_2 contains only sets which are finite unions of intervals of the form $(a,b], (-\infty,b], (a,\infty)$. Thus \mathcal{G}_2 is not a σ algebra. Now we check whether \mathcal{G}_2 is an algebra. It is clear that $\phi \in \mathcal{G}_2$. Now consider any interval of the form (a,b]. Then it's complement is of the form $(-\infty,a] \cup (b,\infty)$ which $\in \mathcal{G}_2$. Similarly for any interval of the form $(-\infty,b]$, its complement is of the form (b,∞) which $\in \mathcal{G}_2$. Thus, for all $A \in \mathcal{G}_2$, $A^c \in \mathcal{G}_2$. Now consider $A_n \in \mathcal{G}_2$ for $n \in \mathbb{N}$. Then $\bigcup_{n=1}^N A_n$ is also a finite union of disjoint intervals of the form $(-\infty,b],(a,b]$ and (a,∞) . Hence \mathcal{G}_2 is an algebra (but not a σ -algebra).
- Now consider $A_n \in \mathcal{G}_3, n \in \mathbb{N}$. The first two properties of an algebra hold in this case as they have already been proved above. Now consider $\bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{G}_3$ for $n \in \mathbb{N}$. The countable union $\bigcup_{n=1}^{\infty} A_n \in \mathcal{G}_3$ as it is contains countable unions of intervals of the form $(a, b], (-\infty, b]$ and (a, ∞) . Thus \mathcal{G}_3 is a σ algebra.

Exercise 1.7

Let \mathcal{A} be any σ -algebra. By definition of σ -algebra, $\phi \in \mathcal{A}$. Similarly, $X = \phi^c \in \mathcal{A}$ Thus $\{\phi, X\} \subset \mathcal{A}$. Now consider any $A \in \mathcal{A}$. Since \mathcal{A} is a σ -algebra on X, $A \subset X \Rightarrow A \in \mathcal{P}(X)$. Thus $\mathcal{A} \subset \mathcal{P}(X)$