Fundamentals of Mathematics

Course Code: 23B31MA111

Lecture-1

CO₁

Module: Sets, Relations and Functions

Contents to be Covered

Contents

- 1. Introduction
- 2. Sets and their Representations
- 3. Types of Sets

References

1. Mathematics Textbook for Class XI, NCERT, 2019.

Introduction

• Concepts of set theory is being used in almost every branch of mathematics.

• Sets are used to define the concepts of relations and functions. The study of geometry, sequences, probability, etc. requires the knowledge of sets.

Sets and their Representations

A set is a well-defined collection of objects

- (i) Even natural numbers less than 10, i.e., 2, 4, 6, 8
- (ii) The rivers of India
- (iii) The vowels in the English alphabet, namely, a, e, i, o, u
- (iv) Prime factors of 210, viz. 2,3,5 and 7
- (v) The solution of the equation: $x^2 5x + 6 = 0$, viz, 2 and 3

We note that each of the above example is a well defined collection

Note:

- The collection of tall persons is not a set.
- The collection of good batsman of India is not a set.

We give below a few more examples of sets used particularly in mathematics, viz.

N: the set of all natural numbers

Z: the set of all integers

Q: the set of all rational numbers

R: the set of real numbers

Z⁺: the set of positive integers

Q+: the set of positive rational numbers, and

R⁺: the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout this text.

Representation of Sets

There are two methods of representing a set:

- Roster or tabular form
- (ii) Set-builder form.

In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces { }. For example, the set of all even positive integers less than 7 is described in roster form as {2, 4, 6}. Some more examples of representing a set in roster form are given below:

(a) The set of all natural numbers which divide 42 is {1, 2, 3, 6, 7, 14, 21, 42}.

We note that in roster form, the *order in which the elements are listed is immaterial*.

Thus, the above set can also be represented as $\{1, 3, 7, 21, 2, 6, 14, 42\}$.

It may also be noted that while writing the set in roster form an element is *not generally repeated*, i.e., all the elements are taken as distinct. For example, the set of letters forming the word 'SCHOOL' is { S, C, H, O, L} or {H, O, L, C, S}. Here, the order of listing elements has no relevance.

Set-builder form i.e., $\{x : P(x) \text{ is true}\}$

$$E_{X:} A = \{x: x \in \mathbb{N}, x < 4\} = \{1,2,3\}$$

(ii) In set-builder form, all the elements of a set possess a single common property which is not possessed by any element outside the set. For example, in the set {a, e, i, o, u}, all the elements possess a common property, namely, each of them is a vowel in the English alphabet, and no other letter possess this property. Denoting this set by V, we write

 $V = \{x : x \text{ is a vowel in English alphabet}\}\$

A = $\{x : x \text{ is a natural number and } 3 < x < 10\}$ is read as "the set of all x such that x is a natural number and x lies between 3 and 10. Hence, the numbers 4, 5, 6, 7, 8 and 9 are the elements of the set A.

Example 1 Write the solution set of the equation $x^2 + x - 2 = 0$ in roster form.

Example 2 Write the set $\{x : x \text{ is a positive integer and } x^2 < 40\}$ in the roster form.

Example 3 Write the set $A = \{1, 4, 9, 16, 25, ...\}$ in set-builder form.

Example 4 Write the set $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\}$ in the set-builder form.

Example 5 Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form :

- (i) {P, R, I, N, C, A, L} (a) {x: x is a positive integer and is a divisor of 18}
- (ii) $\{0\}$ (b) $\{x : x \text{ is an integer and } x^2 9 = 0\}$
- (iii) $\{1, 2, 3, 6, 9, 18\}$ (c) $\{x : x \text{ is an integer and } x + 1 = 1\}$
- (iv) $\{3, -3\}$ (d) $\{x : x \text{ is a letter of the word PRINCIPAL}\}$

Solution The given equation can be written as

$$(x-1)$$
 $(x+2) = 0$, i. e., $x = 1, -2$

Therefore, the solution set of the given equation can be written in roster form as $\{1, -2\}$.

Solution The required numbers are 1, 2, 3, 4, 5, 6. So, the given set in the roster form is $\{1, 2, 3, 4, 5, 6\}$.

Solution We may write the set A as

 $A = \{x : x \text{ is the square of a natural number}\}\$

Alternatively, we can write

$$A = \{x : x = n^2, \text{ where } n \in \mathbb{N}\}$$

Solution We see that each member in the given set has the numerator one less than the denominator. Also, the numerator begin from 1 and do not exceed 6. Hence, in the set-builder form the given set is

$$\left\{x: x = \frac{n}{n+1}, \text{ where } n \text{ is a natural number and } 1 \le n \le 6\right\}$$

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I are repeated, so (i) matches (d). Similarly, (ii) matches (c) as x + 1 = 1 implies x = 0. Also, 1, 2, 3, 6, 9, 18 are all divisors of 18 and so (iii) matches (a). Finally, $x^2 - 9 = 0$ implies x = 3, -3 and so (iv) matches (b).

TYPES OF SETS

The Empty Set

A set which does not contain any element is called the empty set or the null set or the void set.

Examples:

- Let A = {x : 1 < x < 2, x is a natural number}. Then A is the empty set, because there is no natural number between 1 and 2.
- (ii) B = {x : x²−2 = 0 and x is rational number}. Then B is the empty set because the equation x²−2 = 0 is not satisfied by any rational value of x.
- (iii) C = {x : x is an even prime number greater than 2}. Then C is the empty set, because 2 is the only even prime number.
- (iv) D = { x : x² = 4, x is odd }. Then D is the empty set, because the equation x² = 4 is not satisfied by any odd value of x.

Finite and Infinite Sets

- ➤ <u>Definition 1:</u> A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.
- *Definition 2:* By number of elements of a set S, we mean the number of distinct elements of the set called as cardinality of the set and we denote it by n(S).
 - If n(S) is a natural number, then S is non-empty finite set.

Consider some examples:

- (i) Let W be the set of the days of the week. Then W is finite.
- (ii) Let S be the set of solutions of the equation $x^2-16=0$. Then S is finite.
- (iii) Let G be the set of points on a line. Then G is infinite.

Ques: State which of the following sets are finite or infinite:

- (i) $\{x : x \in \mathbb{N} \text{ and } (x-1) (x-2) = 0\}$
- (ii) $\{x : x \in \mathbb{N} \text{ and } x^2 = 4\}$
- (iii) $\{x : x \in \mathbb{N} \text{ and } 2x 1 = 0\}$
- (iv) $\{x : x \in \mathbb{N} \text{ and } x \text{ is prime}\}$

Solution:

- (i) Given set = $\{1, 2\}$. Hence, it is finite.
- (ii) Given set = $\{2\}$. Hence, it is finite.
- (iii) Given set = ϕ . Hence, it is finite.
- (iv) The given set is the set of all prime numbers and since set of prime numbers is infinite. Hence the given set is infinite

Remark: In the roster form, it is not possible to write all the elements of an infinite set within braces { } because the numbers of elements of such a set is not finite.

So, we represent some infinite set in the roster form by writing a few elements which clearly indicate the structure of the set followed (or preceded) by three dots.

For example, $\{1, 2, 3 ...\}$ is the set of natural numbers, $\{1, 3, 5, 7, ...\}$ is the set of odd natural numbers, $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is the set of integers.

However, *all infinite sets cannot be described in the roster form*. *For example*, the set of real numbers cannot be described in this form, because the elements of this set do not follow any particular pattern.

Equal Sets

Two sets A and B are said to be equal if they have exactly the same elements i.e., if every element of A is also an element of B and if every element of B is also an element of A and we write A = B.

Otherwise, the sets are said to be unequal and we write $A \neq B$.

Examples:

- (i) Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 1, 4, 2\}$. Then A = B.
- (ii) Let A be the set of prime numbers less than 6 and P the set of prime factors of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of 30 and also these are less than 6.

> A set does not change if one or more elements of the set are repeated.

For example, the sets $A = \{1, 2, 3\}$ and $B = \{2, 2, 1, 3, 3\}$ are equal, since each element of A is in B and vice-versa. That is why we generally do not repeat any element in describing a set.

Ex: Find the pairs of equal sets, if any, give reasons:

A =
$$\{0\}$$
, B = $\{x : x > 15 \text{ and } x < 5\}$,

$$C = \{x : x - 5 = 0 \}, D = \{x : x^2 = 25\},\$$

 $E = \{x : x \text{ is an integral positive root of the equation } x^2 - 2x - 15 = 0\}.$

Solution Since $0 \in A$ and 0 does not belong to any of the sets B, C, D and E, it follows that, $A \neq B$, $A \neq C$, $A \neq D$, $A \neq E$.

Since $B = \phi$ but none of the other sets are empty. Therefore $B \neq C$, $B \neq D$ and $B \neq E$. Also $C = \{5\}$ but $-5 \in D$, hence $C \neq D$.

Since $E = \{5\}$, C = E. Further, $D = \{-5, 5\}$ and $E = \{5\}$, we find that, $D \neq E$. Thus, the only pair of equal sets is C and E.

Thank You...