Prima esercitazione di Ricerca Operativa

Esercizio 1. Un'industria di lavorazione del marmo ha due stabilimenti dove produce lastre di marmo di tre diverse qualitá: bassa, media e alta. Per contratto, l'industria deve fornire a una ditta esterna almeno 40, 30 e 50 tonnellate di marmo di bassa, media e alta qualitá, rispettivamente. La seguente tabella riporta le caratteristiche di produzione nei due diversi stabilimenti:

Stabilimento	costo giornaliero (euro)	produzione (tonnellate/giorno)		
		bassa	media	alta
1	300	5	3	2
2	400	1	2	4

Scrivere un modello matematico che minimizzi i costi. Scrivere i comandi linprog. Trovare la soluzione ottima.

Esercizio 2. Si consideri il problema di trovare l'assegnamento di costo minimo i cui costi sono indicati in tabella:

	1	2	3	4
1	47	14	42	21
2	36	18	43	28
3	39	29	38	36
4	31	22	28	39

Scrivere il modello matematico. Scrivere i comandi linprog. Trovare la soluzione ottima.

Esercizio 3. Una compagnia petrolifera produce tre diversi tipi di carburante P, Q e R utilizzando greggio venezuelano (V) ed arabo (A). La tabella riporta le percentuali di greggio necessarie per produrre ogni tipo di carburante.

	Р	Q	R
V	0.4	0.2	0.3
A	0.3	0.4	0.2

Giornalmente l'industria ha a disposizione fino ad un massimo di 6000 e 9000 litri di V e A, rispettivamente. Inoltre, per esigenze di produzione, la produzione di carburante P, Q e R deve essere almeno di 2000, 1500 e 500 litri al giorno. Sapendo che il costo del greggio é rispettivamente di 2 e 1.5 Euro/L, scrivere il modello matematico che minimizza il costo. Scrivere i comandi linprog. Trovare la soluzione ottima.

Esercizio 4. Per i seguenti poliedri (vedi allegato) calcolare A,b della rappresentazione algebrica e gli insiemi V,E della rappresentazione di Weyl e, per ognuno di essi, trovare, se esiste, un vettore c tale che:

- a) esiste massimo finito;
- b) non esiste massimo finito;
- c) esiste minimo finito;
- d) non esiste minimo finito;
- e) la soluzione ottima non e' unica.

SOLUZIONI

Esercizio 1.

variabili decisionali:

 $x_1=$ giorni di lavoro nello stabilimento 1, $x_2=$ giorni di lavoro nello stabilimento 2

$$\text{modello:} \left\{ \begin{array}{l} \min 300\,x_1 + 400\,x_2 \\ 5\,x_1 + x_2 \geq 40 \\ 3\,x_1 + 2\,x_2 \geq 30 \\ 2\,x_1 + 4\,x_2 \geq 50 \\ x_1, x_2 \geq 0. \end{array} \right.$$

COMANDI DI MATLAB

c=[300 ; 400]

A=[-5 -1 ; -3 -2 ; -2 -4]

b=[-40 ; -30 ; -50]

Aeq=[]

beq=[]

1b=[0; 0]

ub=[]

Soluzione ottima x = (6.1111, 9.4444)

Esercizio 2.

La soluzione ottima é:

$$x = (0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)$$

Esercizio 3.

COMANDI DI MATLAB

c=[2 1.5]

A=[-0.4 -0.3; -0.2 -0.4; -0.3 -0.2]

b=[-2000; -1500; -500]

beq=[]

beq=[]

ub=[6000; 9000]

La soluzione ottima é: x = (3500, 2000)