CEE432/CEE532/MAE541 Developing Software for Engineering Applications

Lecture 18: Planar Frame Analysis

Planar Frame Analysis

- Members are slender and prismatic (essentially one-dimensional).
- Joints can be rigid, frictionless pins or inbetween (typical connection).
- Loads can be applied to members or at joints.

Step 2: Element Equations

$$\mathbf{k}_{4\times4}'\mathbf{d}_{4\times1}' = \mathbf{f}_{4\times1}'$$

Typical Element

- Note local coordinate system
- 4 degrees-of-freedom

Direct Stiffness Method

Stiffness Coefficients

Element Stiffness Matrix (Bending)

$$\mathbf{k'}_{4\times4} = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ \\ -12 & -6L & 12 & -6L \end{bmatrix}$$

$$\begin{bmatrix} 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$

DE:
$$\frac{d^2w(x)}{dx^2} = \frac{M_z}{EI_z}$$

Strain Energy

$$\sigma_{x} = -\frac{M_{z}y}{I_{z}}$$

$$\sigma_{x} = E\varepsilon_{x}$$

$$U = \int_{V} U_0 dV = \int_{0}^{L} \int_{A} \frac{1}{2} \varepsilon \sigma dA dx = \frac{1}{2} \int_{0}^{L} EI \left(\frac{d^2 w}{dx^2}\right)^2 dx$$

Total Potential Energy

$$\Pi = \frac{1}{2} \int_{0}^{L} EI \left(\frac{d^{2}w}{dx^{2}} \right)^{2} dx - \int_{0}^{L} pw dx - \sum_{m} P_{m} w_{m} - \sum_{k} M_{k} \frac{dw}{dx}$$

Assumed displacement

$$w(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

End Conditions

$$w(x = 0) = w_1 \qquad w(x = L) = w_2$$

$$\frac{dw}{dx}(x = 0) = \theta_1 \qquad \frac{dw}{dx}(x = L) = \theta_2$$

Assumed displacement (note interpolation idea)

$$w(x) = \phi_1 w_1 + \phi_2 \theta_1 + \phi_3 w_2 + \phi_4 \theta_2$$

Shape Functions

$$\phi_{1} = 1 - \frac{3x^{2}}{L^{2}} + \frac{2x^{3}}{L^{3}} \qquad \phi_{3} = \frac{3x^{2}}{L^{2}} - \frac{2x^{3}}{L^{3}}$$

$$\phi_{2} = x - \frac{2x^{2}}{L} + \frac{x^{3}}{L^{2}} \qquad \phi_{4} = -\frac{x^{2}}{L} + \frac{x^{3}}{L^{2}}$$

Beam Element (Bending)

$$w(x) = \phi_1 w_1 + \phi_2 \theta_1 + \phi_3 w_2 + \phi_4 \theta_2$$

Differentiating Twice

$$\frac{d^2w}{dx^2} = \left[-\frac{6}{L^2} + \frac{12x}{L^3} \right] - \frac{4}{L} + \frac{6x}{L^2} \left[\frac{6}{L^2} - \frac{12x}{L^3} \right] - \frac{2}{L} + \frac{6x}{L^2} \right]_{1\times 4} \mathbf{d}_{4\times 1}$$

$$\frac{d^2w}{dx^2} = \mathbf{B}_{1\times 4} \mathbf{d}_{4\times 1}$$

Beam Stiffness (Bending)

$$U = \frac{1}{2} \int_{0}^{L} EI\left(\frac{d^{2}w}{dx^{2}}\right)^{2} dx$$

$$U = \frac{1}{2} \mathbf{d}^{\mathrm{T}} \left| \int_{0}^{L} \mathbf{B}^{T} E I \mathbf{B} dx \right| \mathbf{d}$$

$$U = \frac{1}{2} \mathbf{d}_{1\times 4}^{\mathbf{T}} \mathbf{k}_{4\times 4} \mathbf{d}_{4\times 1}$$

Strain Energy
$$U = \frac{1}{2} \int_{0}^{L} EI \left(\frac{d^{2}w}{dx^{2}} \right)^{2} dx$$

$$U = \frac{1}{2} \mathbf{d}^{T} \left[\int_{0}^{L} \mathbf{B}^{T} EI \mathbf{B} dx \right] \mathbf{d}$$

$$U = \frac{1}{2} \mathbf{d}^{T} \left[\int_{0}^{L} \mathbf{B}^{T} EI \mathbf{B} dx \right] \mathbf{d}$$

$$U = \frac{1}{2} \mathbf{d}^{T} \left[\int_{0}^{L} \mathbf{B}^{T} EI \mathbf{B} dx \right] \mathbf{d}$$

$$U = \frac{1}{2} \mathbf{d}^{T} \left[\int_{0}^{L} \mathbf{B}^{T} EI \mathbf{B} dx \right] \mathbf{d}$$
Same as Direct Stiffness Approach

Same as Direct Stiffness Approach Approach

Step 2: Element Equations

$$\mathbf{k}_{6\times6}'\mathbf{d}_{6\times1}' = \mathbf{f}_{6\times1}'$$

Element Stiffness Matrix (Axial + Bending)

$$\begin{vmatrix} \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \\ \end{vmatrix} \begin{vmatrix} u_1 \\ w_2 \\ w_2 \\ f_5 \\ f_6 \end{vmatrix}$$

Local-To-Global Transformation

Local-to-Global Transformation

Local axes
$$x' - axis : (l_{x'}, m_{x'}, n_{x'})$$

 $y' - axis : (l_{y'}, m_{y'}, n_{y'})$
 $z' - axis : (0, 0, 1)$
 $y' = z' \times x'$
 $(0i + 0j + 1k) \times (l_x i + m_{x'} j + 0k) = (-m_x i + l_x j + 0k)$

Local-to-Global Transformation

$$\begin{cases}
d_1' \\
d_2' \\
d_3' \\
d_4' \\
d_5' \\
d_6'
\end{cases} = \begin{bmatrix}
l & m & 0 & 0 & 0 & 0 \\
-m & l & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & l & m & 0 \\
0 & 0 & 0 & -m & l & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{cases}
d_1 \\
d_2 \\
d_3 \\
d_4 \\
d_5 \\
d_6
\end{cases}$$

$$\Rightarrow \mathbf{d}_{6\times 1}' = \mathbf{T}_{6\times 6} \mathbf{d}_{6\times 1}$$
(SN Pairs 2005 08)

Global-to-Local Transformation

Global-to-Local Transformation

$$\begin{cases}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6
\end{cases} = \begin{bmatrix}
l & -m & 0 & 0 & 0 & 0 \\
m & l & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & l & -m & 0 \\
0 & 0 & 0 & m & l & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{cases}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6
\end{cases}
\Rightarrow \mathbf{f}_{6\times l} = \mathbf{T}_{6\times 6}^{\mathbf{T}} \mathbf{f}_{6\times l}^{\prime}$$

Step 2: Element Equations

Local axes

$$\mathbf{k}_{6\times6}^{'}\mathbf{d}_{6\times1}^{'}=\mathbf{f}_{6\times1}^{'}$$

$$\mathbf{d}_{6\times 1}^{'} = \mathbf{T}_{6\times 6}\mathbf{d}_{6\times 1}$$

$$\mathbf{f}_{6\times 1} = \mathbf{T}_{6\times 6}^{\mathbf{T}} \mathbf{f}_{6\times 1}^{'}$$

Global axes

$$\mathbf{k}_{6\times6}^{'}\mathbf{T}_{6\times6}\mathbf{d}_{6\times1}=\mathbf{f}_{6\times1}^{'}$$

$$\mathbf{T}_{6\times 6}^{\mathbf{T}}\mathbf{k}_{6\times 6}^{'}\mathbf{T}_{6\times 6}\mathbf{d}_{6\times 1}=\mathbf{T}_{6\times 6}^{\mathbf{T}}\mathbf{f}_{6\times 1}^{'}$$

$$\mathbf{k}_{6\times6}\mathbf{d}_{6\times1}=\mathbf{f}_{6\times1}$$

Element Loads

Element Loads

Element Loads

Uniformly Distributed Loading, p(x) = p

$$q_i = \int_{0}^{L} p(x)\phi_i(x)dx = p\int_{0}^{L} \phi_i(x)dx \quad i = 1, 2, 3, 4$$

Substituting and integrating

$$\mathbf{q}_{6\times 1}' = \begin{bmatrix} 0, \frac{pL}{2}, \frac{pL^2}{12}, 0, \frac{pL}{2}, -\frac{pL^2}{12} \end{bmatrix}^{\mathbf{T}}$$

Algorithm: Element Loads

- Form $\mathbf{q}_{6\times 1}$
- Transform $\mathbf{q}_{6\times 1} = \mathbf{T}_{6\times 6}^{\mathbf{T}} \mathbf{q}_{6\times 1}'$
- Update $\mathbf{F} = \mathbf{F} + \mathbf{q}$
- Impose BC and solve KD = F.
- Compute element nodal forces

$$\mathbf{f}_{6\times1}^{'} = \mathbf{k}_{6\times6}^{'} \mathbf{T}_{6\times6} \mathbf{d}_{6\times1} - \mathbf{q}_{6\times1}^{'}$$

Element Equations

$$\begin{cases} f_{1}' \\ f_{2}' \\ f_{3}' \\ f_{4}' \\ f_{5}' \\ f_{6}' \end{cases} = \begin{cases} a \left[l(d_{1} - d_{4}) + m(d_{2} - d_{5}) \right] \\ b \left[l(d_{2} - d_{5}) - m(d_{1} - d_{4}) \right] + c(d_{3} + d_{6}) \\ c \left[l(d_{2} - d_{5}) - m(d_{1} - d_{4}) \right] + d(2d_{3} + d_{6}) \\ -a \left[l(d_{1} - d_{4}) + m(d_{2} - d_{5}) \right] \\ -b \left[l(d_{2} - d_{5}) - m(d_{1} - d_{4}) \right] - c(d_{3} + d_{6}) \\ c \left[l(d_{2} - d_{5}) - m(d_{1} - d_{4}) \right] + d(d_{3} + 2d_{6}) \end{cases}$$

$$a = \frac{AE}{L} \quad b = \frac{12EI}{L^{3}} \quad c = \frac{6EI}{L^{2}} \quad d = \frac{2EI}{L}$$

E = 200 GPa

 $A = 0.01 \text{ m}^2$

 $I = 0.0001 \text{ m}^4$

Element Stiffness Calculations

Element	(<i>l</i> , <i>m</i>)	(a, b, c, d)
1	(0, 1)	(2e8, 2.4e5, 1.2e6, 4e6)
2	(1, 0)	(4e8, 1.92e6, 2.8e6, 8e6)

Element 1: Element Load Calculations

$$\mathbf{q}'_{6\times 1} = \left\{0, \frac{pL}{2}, \frac{pL^2}{12}, 0, \frac{pL}{2}, -\frac{pL^2}{12}\right\}$$

Transform to global coordinate system

$$\mathbf{q}'_{6\times 1} = \{0,15000, -25000, 0,15000, 25000\}$$

Element 2: Element Load Calculations

$$\mathbf{q}_{6\times 1}' = \left\{ 0, \frac{Pb^2(L+2a)}{L^3}, \frac{Pab^2}{L^2}, 0, \frac{Pa^2(L+2b)}{L^3}, -\frac{Pa^2b}{L^2} \right\}$$

$$\mathbf{q}_{6\times 1}' = \left\{ 0, -3240, -3600, 0, -1760, 2400 \right\}$$

Element 1: Element Equations (global coord. system)

$$10^{5} \begin{bmatrix} 24 & 0 & -12 & -2.4 & 0 & -12 \\ 0 & 2000 & 0 & 0 & -2000 & 0 \\ -12 & 0 & 80 & 12 & 0 & 40 \\ -2.4 & 0 & 12 & 2.4 & 0 & 12 \\ 0 & -2000 & 0 & 0 & 2000 & 0 \\ -12 & 0 & 40 & 12 & 0 & 80 \end{bmatrix} \begin{bmatrix} D_{1} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{5} \\ D_{6} \end{bmatrix} = \begin{bmatrix} 15000 \\ 0 \\ -25000 \\ 0 \\ 25000 \end{bmatrix}$$

Element 2: Element Equations (global coord. system)

$$10^{5} \begin{bmatrix} 4000 & 0 & 0 & -4000 & 0 & 0 \\ 0 & 19.2 & 48 & 0 & -19.2 & 48 \\ 0 & 48 & 160 & 0 & -48 & 80 \\ -4000 & 0 & 0 & 4000 & 0 & 0 \\ 0 & -19.2 & -48 & 0 & 19.2 & -48 \\ 0 & 48 & 80 & 0 & -48 & 160 \end{bmatrix} \begin{bmatrix} D_{4} \\ D_{5} \\ D_{6} \\ D_{7} \\ D_{8} \\ D_{9} \end{bmatrix} = \begin{bmatrix} 0 \\ -3240 \\ -3600 \\ 0 \\ -1760 \\ 2400 \end{bmatrix}$$

Assembly and Imposition of EBC

$$10^{5} \begin{bmatrix} 4002.4 & 0 & 12 \\ 0 & 2019.2 & 48 \\ 12 & 48 & 240 \end{bmatrix} \begin{bmatrix} D_{4} \\ D_{5} \\ D_{6} \end{bmatrix} = \begin{bmatrix} 15000 \\ -3240 \\ 21400 \end{bmatrix}$$

$$D_4 = 3.48(10^{-5}) \, m$$

Solution

$$D_5 = -3.74(10^{-5}) \, m$$

$$D_4 = 3.48(10^{-5}) m$$

 $D_5 = -3.74(10^{-5}) m$
 $D_6 = 8.97(10^{-4}) rad$

Element Nodal Forces

$$\mathbf{d'}_{6\times 1} = \mathbf{T}_{6\times 6} \mathbf{d}_{6\times 1}$$

$$\mathbf{f'}_{6\times 1} = \mathbf{k'}_{6\times 6} \mathbf{d'}_{6\times 1} - \sum_{i} (\mathbf{q'}_{6\times 1})_{i}$$

Internal Hinge

Internal Hinge

Hinge at Start Node

Internal Hinge: Start Node

Expand Element Equations

$$\mathbf{f}_{6\times 1}' = \mathbf{k}_{6\times 6}' \mathbf{d}_{6\times 1}' - \mathbf{q}_{6\times 1}'$$

$$\frac{EI}{I^3} \left(6Lw_1' + 4L^2\theta_1' - 6Lw_2' + 2L^2\theta_2' \right) - q_3' = f_3'$$

Since

$$f_{3}' = 0$$

$$\theta_{1}' = \frac{3}{2L} \left(-w_{1}' + w_{2}' \right) - \frac{1}{2} \theta_{2}' + \frac{L}{4EL} q_{3}'$$

Internal Hinge: Start Node

$ \frac{AE}{L} $	0	0	$-\frac{AE}{L}$	0	0	$\left(u_1^{'}\right)$		$\left(egin{array}{c} q_1^{'} \end{array} ight)$		f_1
0	$\frac{3EI}{L^3}$	0	0	$-\frac{3EI}{L^3}$	$\frac{3EI}{L^2}$	w_1		$q_2 - \frac{3q_3}{2L}$		f_2
0	0	0	0	0	0	$\theta_{1}^{'}$		0		f_3
$-\frac{AE}{L}$	0	0	$\frac{AE}{L}$	0	0	$\begin{cases} u_2 \end{cases}$	> — <	$q_4^{'}$	> = {	$f_{4}^{'}$
0	$-\frac{3EI}{L^3}$	0	0	$\frac{3EI}{L^3}$	$-\frac{3EI}{L^2}$	w_2		$q_5' + \frac{3q_3'}{2L}$		f_5
0	$\frac{3EI}{L^2}$	0	0	$-\frac{3EI}{L^2}$	$\frac{3EI}{L}$	$\left[heta_{\!\scriptscriptstyle 2}^{'} ight]$		$\left(q_6^{'}-\frac{q_3^{'}}{2}\right)$		$\left[f_{6}^{'}\right]$

Internal Hinge: End Node

$$\begin{bmatrix} \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0 \\ 0 & \frac{3EI}{L^3} & \frac{3EI}{L^2} & 0 & -\frac{3EI}{L^3} & 0 \\ 0 & \frac{3EI}{L^2} & \frac{3EI}{L} & 0 & -\frac{3EI}{L^2} & 0 \\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & -\frac{3EI}{L^3} & -\frac{3EI}{L^2} & 0 & \frac{3EI}{L^3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{pmatrix} u_1 \\ w_1 \\ w_1 \\ 0 \\ -\frac{3q_6}{2L} \\ q_3 - \frac{q_6}{2L} \\ q_4 \\ w_2 \\ q_5 + \frac{3q_6}{2L} \\ f_5 \\ \end{bmatrix} \begin{cases} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ \end{bmatrix}$$

Internal Hinge: Both Nodes

Internal Hinge: Element Loads

Algorithm: Internal Hinge

- Form $\mathbf{q}_{6\times 1}$
- Transform $\mathbf{q}_{6\times 1} = \mathbf{T}_{6\times 6}^{\mathbf{T}} \mathbf{q}_{6\times 1}^{'}$
- Update $\mathbf{F} = \mathbf{F} + \mathbf{q}$
- Impose BC (zero out rotation) and solve
 KD = F

Algorithm: Internal Hinge

- Loop thro' all elements
- For element with hinge $\mathbf{d}'_{6\times 1} = \mathbf{T}_{6\times 6}\mathbf{d}_{6\times 1}$
- Recover hinge rotation
- Compute element nodal forces

$$\mathbf{f}_{6\times1}^{'} = \mathbf{k}_{6\times6}^{'} \mathbf{d}_{6\times1}^{'} - \mathbf{q}_{6\times1}^{'}$$

$$E = 200 \text{ GPa}$$

$$I = 10^{-4} \text{ m}^4$$

$$A - 1.0 \text{ m}^2$$

Element 1: Hinge at End Node

$$10^{4} \begin{bmatrix} 2(10^{6}) & 0 & 0 & -2(10^{6}) & 0 & 0 \\ 0 & 6 & 60 & 0 & -6 & 0 \\ 0 & 60 & 600 & 0 & -60 & 0 \\ -2(10^{6}) & 0 & 0 & 2(10^{6}) & 0 & 0 \\ 0 & -6 & -60 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} D_{1} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{5} \\ D_{61} \end{bmatrix} = \begin{bmatrix} 0 \\ -12500 \\ -25000 \\ 0 \\ -7500 \\ 0 \end{bmatrix}$$

Element 2: Hinge at Start Node

$$10^{4} \begin{bmatrix} 2(10^{6}) & 0 & 0 & -2(10^{6}) & 0 & 0 \\ 0 & 6 & 0 & 0 & -6 & 60 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -2(10^{6}) & 0 & 0 & 2(10^{6}) & 0 & 0 \\ 0 & -6 & 0 & 0 & 6 & -60 \\ 0 & 60 & 0 & 0 & -60 & 600 \end{bmatrix} \begin{bmatrix} D_{4} \\ D_{5} \\ D_{62} \\ D_{7} \\ D_{8} \\ D_{9} \end{bmatrix} = \begin{bmatrix} 0 \\ -7500 \\ 0 \\ -12500 \\ 25000 \end{bmatrix}$$

System Equations after imposing BCs

$$10^{4} \begin{bmatrix} 4(10^{6}) & 0 \\ 0 & 12 \end{bmatrix} \begin{bmatrix} D_{4} \\ D_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ -15000 \end{bmatrix}$$

Solution to KD = F

$$D_4 = 0$$
 $D_5 = -0.125 m$

Element 1: Hinge Rotation at End Node

$$\theta_{2}' = -0.01667 \, rad$$

Element 2: Hinge Rotation at Start Node

$$\theta_{1}' = 0.01667 \, rad$$

For each element compute and augment with appropriate hinge rotations

$$\mathbf{d}_{6\times 1}' = \mathbf{T}_{6\times 6}\mathbf{d}_{6\times 1}$$

Finally, for each element compute element nodal forces

$$\mathbf{f}_{6\times1}^{'} = \mathbf{k}_{6\times6}^{'} \mathbf{d}_{6\times1}^{'} - \mathbf{q}_{6\times1}^{'}$$

Element 1

$$\mathbf{f}_{6\times 1}' = \{0,20000 \, N, 100000 \, N - m, 0, 0, 0, 0\}$$

Element 2

$$\mathbf{f}_{6\times 1}' = \{0,0,0,0,20000 \, N, -100000 \, N - m\}$$

