Mutassuk meg, hogy az alábbi párhuzamos program egy valós szám természetes számadik hatványát állítja elő.

A = (x:
$$\mathbb{R}$$
, n: \mathbb{N} , z: \mathbb{R})
B = (x': \mathbb{R} , n': \mathbb{N})
Q = (x=x' \wedge n=n')
R = (z = x'n')

z := 1	
n ≠ 0	n ≠ 0
paratlan(n)	páros(n)
n, z:=n−1, z·x	x, n:= x·x, n/2

Annotáció:

Közbülső állítás: $Q' = (Q \land z=1)$

Ágak elő- és utófeltételei: $Q_1 = Q_2 = P$ $R_1 = R_2 = (R \land n = 0)$

Közös invariáns és termináló függvény: $P = (z \cdot x^n = x'^{n'})$ t = n. Ciklusmagok utasításainak előfeltételei: $pre(A_1) = (P \land n \neq 0)$ $pre(A_2) = P$

Kérdések:

- 1. Nem volna elég a várakozó utasítások helyett elágazást használni? Nem, mert az elágazás megszakítható a feltétel kiértékelése után, és ilyenkor a másik ág interferrálása miatt a feltétel érvényét veszítheti. Ez gondot okozna a 2. ágnál, ahol muszáj az n értékének párosnak lenni ahhoz, hogy az n felezése után fenn álljon a P.
- 2. Miért nem szerepel pre(A₂)-ben az n≠0, hiszen amikor a 2. ág ciklusmagjába lép a vezérlés, akkor fenn áll a P∧n≠0? Azért, mert amikor a ciklusmagba lép a vezérlés, akkor ez az ág itt megszakítható, és az 1. ág n:=n-1 értékadása el tudja "rontani" az n≠0 feltételt. (Ez az interferencia vizsgálat során kiderülne.) A P-t viszont nem rontja el az 1. ág, másrészt a P következik a ciklusmagba lépés P ∧ n≠0 feltételéből.
- 3. Miért nem használunk egy **if** n≠0 **then** x,n:= x·x,n/2 **fi** elágazást az A₂ várakozó utasítás törzsében, hiszen az előzőek szerint lehetséges, hogy itt már n=0 áll fenn, és ekkor felesleges még egyszer utoljára az x,n:=x·x,n/2 értékadást végrehajtani? Mert ennek az eredményre, azaz a z változóra úgysincsen hatása, futási időben sem jelent veszteséget.

```
Kell (ST miatt): Q \Rightarrow lf(S, R)

Elég (SzLSz miatt):

1. Q \Rightarrow lf(z := 1, Q') = (igaz \land Q'^{z \leftarrow 1}) = (Q \land 1 = 1) \checkmark

2. Q' \Rightarrow lf(PAR, R)

Elég (PLSz miatt):

be: Q' \Rightarrow Q_1 \land Q_2 = (z \cdot x^n = x'^{n'}) \checkmark (mert z = 1, x = x' \text{ és } n = n')

ki: R_1 \land R_2 \Rightarrow R \checkmark

1.ág: Q_1 \Rightarrow lf(S_1, R_1) lásd alább

2.ág: Q_2 \Rightarrow lf(S_2, R_2) lásd alább

Interferencia-mentes lásd később

Holtpont-mentes
```

1.ág: $Q_1 \Longrightarrow If(S_1, R_1)$

Elég (CLSz miatt):

- i. $Q_1 \Longrightarrow P \checkmark$
- ii. $P \Longrightarrow n \neq 0 \lor n = 0 \checkmark$
- iii. $P \wedge n=0 \Longrightarrow R_1 \checkmark (mert ekkor: z \cdot x^0 = x'^{n'}, azaz z = x'^{n'})$
- iv. $P \land n \neq 0 \implies t > 0 = (n > 0) \checkmark (mert n \neq 0 \text{ és } n:\mathbb{N})$
- v. $P \land n \neq 0 \land t = t_0 \Longrightarrow If(A_1, t < t_0)$

Elég (VLSz miatt):

- a) $P \land n \neq 0 \land t = t_0 \Longrightarrow ptl(n) \lor \neg ptl(n) \checkmark$
- b) $P \land n \neq 0 \land t = t_0 \land ptl(n) \Longrightarrow |f(n,z:=n-1,z\cdot x, t < t_0) =$ = $(n \geq 1 \land (n < t_0)^{n,z \leftarrow n-1,z\cdot x}) = (n \geq 1 \land n-1 < t_0) \checkmark$ (mert $n \neq 0$ miatt $n \geq 1$, és $n-1 < n=t=t_0$)
- vi. $P \wedge n \neq 0 \Longrightarrow If(A_1, P)$

Elég (VLSz miatt):

- a) $P \wedge n \neq 0 \implies ptl(n) \vee \neg ptl(n) \checkmark$
- b) $P \wedge n \neq 0 \wedge ptl(n) \Longrightarrow lf(n,z:=n-1,z\cdot x, P) = (n \geq 1 \wedge P^{n,z \leftarrow n-1,z\cdot x}) =$ = $(n \geq 1 \wedge z \cdot x \cdot x^{n-1} = x'^{n'}) = (n \geq 1 \wedge z \cdot x^{n} = x'^{n'}) = (n \geq 1 \wedge P) \checkmark$ (mert $n \neq 0$ miatt $n \geq 1$, és $z \cdot x \cdot x^{n-1} = z \cdot x^{n}$)

2.ág: $\underline{Q}_2 \Longrightarrow lf(S_2, R_2)$

Elég (CLSz miatt):

- i. $Q_2 \Longrightarrow P \checkmark$
- ii. $P \Longrightarrow n \neq 0 \lor n = 0 \checkmark$
- iii. $P \wedge n=0 \Longrightarrow R_2 \checkmark (mert ekkor: z \cdot x^0 = x'^{n'}, azaz z = x'^{n'})$
- iv. $P \land n \neq 0 \implies t > 0 = (n > 0) \checkmark (mert n \neq 0 \text{ és n:} \mathbb{N})$
- v. $P \wedge n \neq 0 \wedge t = t_0 \Longrightarrow If(A_2, t < t_0)$

Elég (VLSz miatt):

- a) $P \land n \neq 0 \land t = t_0 \implies ps(n) \lor \neg ps(n) \checkmark$
- b) $P \wedge n \neq 0 \wedge t = t_0 \wedge ps(n) \Longrightarrow lf(x,z:=x\cdot x,n/2, t< t_0) = (n< t_0)^{x,n \leftarrow x\cdot x,n/2} = (n/2 < t_0) \checkmark$

(mert n≠0 miatt n/2<n és n=t=t₀)

vi. $P \wedge n \neq 0 \Longrightarrow P \Longrightarrow lf(A_2, P)$

Elég (VLSz miatt):

- a) $P \Longrightarrow ps(n) \vee \neg ps(n) \checkmark$
- b) $P \wedge ps(n) \Longrightarrow lf(x,z:=x\cdot x,n/2, P) = P^{x,n\leftarrow x\cdot x,n/2} =$ = $(z \cdot (x\cdot x)^{n/2} = x'^{n'}) = (z \cdot x^n = x'^{n'}) = P \checkmark$ (mert ps(n) miatt $n/2 \in \mathbb{N}$ és ezért $(x\cdot x)^{n/2} = x^n$)

Egy ciklus interferencia-vizsgálatához külön igazoljuk a ciklusinvariáns megőrzését kifejező $(P \land \pi \Longrightarrow lf(S_0, P))$ és a ciklus leállását biztosító $(P \land \pi \land t=t_0 \Longrightarrow lf(S_0, t<t_0))$ kritériumokat. Az S_0 ciklusmag több helyen is megszakítható, ha máshol nem, a legelején, a ciklusfeltétel kiértékelése után biztosan. Ezért az annotáció a ciklusmag minden megszakítási pontjához megadja a következő lépés előfeltételét, amely eltérhet az előző lépés utófeltételétől: elég, ha csak következik abból. (Például a $P \land n \neq 0$ -ből következik a $pre(A_2)=P$.) Ezt a ciklusinvariáns megőrzésének igazolásánál figyelembe kell venni. (A $P \land n \neq 0 \Longrightarrow lf(A_2,P)$ állítás helyett a $P \Longrightarrow lf(A_2,P)$ állítást kell igazolni.) Az interferencia-vizsgálatnak az egyes lépések előfeltételeire, valamint a ciklusmag utófeltételére kell majd irányulnia.

A leállást biztosító kritérium interferencia-vizsgálatánál viszont csak azt kell megmutatni, hogy egy párhuzamos kritikus utasítás nem képes a t értékét növelni, azaz nem dolgozik a ciklus terminálása ellen.

```
Interferencia-mentesség:
A_1 \sim Q_2, R_2, P, t=t_0
        1. Q_2 \wedge pre(A_1) \Longrightarrow lf(A_1, Q_2)
                   Elég (VLSz miatt):
                    a) Q_2 \wedge P \wedge n \neq 0 \implies ptl(n) \vee \neg ptl(n) \checkmark
                    b) Q_2 \wedge P \wedge n \neq 0 \wedge ptl(n) \Longrightarrow lf(n,z:=n-1,z\cdot x, Q_2) = (n \geq 1 \wedge Q_2^{n,z \leftarrow n-1,z\cdot x}) =
                              = (n \ge 1 \land z \cdot x \cdot x^{n-1} = x'^{n'}) = (n \ge 1 \land z \cdot x^n = x'^{n'}) = (n \ge 1 \land Q_2)
                                      (mert n≠0 miatt n≥1)
        2. R_2 \wedge pre(A_1) \Longrightarrow lf(A_1, R_2)
                    Elég (VLSz miatt):
                    a) R_2 \wedge P \wedge n \neq 0 \implies ptl(n) \vee \neg ptl(n) \checkmark
                    b) R_2 \wedge P \wedge n \neq 0 \wedge ptl(n) \Longrightarrow lf(n,z:=n-1,z\cdot x, R_2) \checkmark
                              (mert a premissza hamis, hiszen n≠0 de R<sub>2</sub> miatt n=0 is fen áll)
        3. P \wedge pre(A<sub>1</sub>) \Longrightarrow lf(A<sub>1</sub>, P)
                    Elég (VLSz miatt):
                    a) P \wedge P \wedge n \neq 0 \implies ptl(n) \vee \neg ptl(n) \checkmark
                    b) P \land P \land n \neq 0 \land ptl(n) \Longrightarrow lf(n,z:=n-1,z\cdot x, P) = (n \geq 1 \land P^{n,z \leftarrow n-1,z\cdot x}) =
                              = (n \ge 1 \land z \cdot x \cdot x^{n-1} = x'^{n'}) = (n \ge 1 \land z \cdot x^n = x'^{n'}) = (n \ge 1 \land P)
                                      (mert n\neq 0 miatt n\geq 1)
        4. \underline{\mathsf{t}}=\mathsf{t}_0 \land \mathsf{pre}(\mathsf{A}_1) \Longrightarrow \mathsf{lf}(\mathsf{A}_1, \mathsf{t} \leq \mathsf{t}_0)
                    Elég (VLSz miatt):
                    a) t=t_0 \land P \land n\neq 0 \implies ptl(n) \lor \neg ptl(n) \checkmark
                    b) t=t_0 \land P \land n\neq 0 \land ptl(n) \Longrightarrow lf(n,z:=n-1,z\cdot x, t\leq t_0) = (n\geq 1 \land (t\leq t_0)^{n,z\leftarrow n-1,z\cdot x}) =
```

= $(n \ge 1 \land n-1 \le t_0)$ √ (mert n≠0 miatt n≥1, és n-1<n=t=t₀)

```
A_2 \sim Q_1, R_1, P, t=t_0
         5. Q_1 \wedge pre(A_2) \Longrightarrow lf(A_2, Q_1)
                   Elég (VLSz miatt):
                   a) Q_1 \wedge P \Longrightarrow ps(n) \vee \neg ps(n) \checkmark
                   b) Q_1 \wedge P \wedge ps(n) \Longrightarrow lf(x,z:=x\cdot x,n/2,Q_1) = (igaz \wedge Q_1^{x,n\leftarrow x\cdot x,n/2}) =
                              = (z \cdot (x \cdot x)^{n/2} = x'^{n'}) = (z \cdot x^n = x'^{n'}) = Q_1 \checkmark
                                      (mert ps(n) miatt n/2 \in \mathbb{N} és ezért (x \cdot x)^{n/2} = x^n)
         6. R_1 \wedge pre(A_2) \Longrightarrow lf(A_2, R_1)
                   Elég (VLSz miatt):
                   a) R_1 \wedge P \Longrightarrow ps(n) \vee \neg ps(n) \checkmark
                   b) R_1 \wedge P \wedge ps(n) \Longrightarrow |f(x,z)=x\cdot x,n/2, R_1| = (igaz \wedge R_1^{x,n\leftarrow x\cdot x,n/2}) = (z=x'^n \wedge n/2=0) \checkmark
                                     (mert egyrészt R_1 miatt z = x'^{n'}, másrészt R_1 miatt n=0, ezért n/2=0)
          7. P \wedge pre(A<sub>2</sub>) \Longrightarrow lf(A<sub>2</sub>, P)
                   Elég (VLSz miatt):
                   a) P \wedge P \Longrightarrow ps(n) \vee \neg ps(n) \checkmark
                   b) P \wedge P \wedge ps(n) \Longrightarrow lf(x,z:=x\cdot x,n/2,P) = (igaz \wedge P^{x,n\leftarrow x\cdot x,n/2}) = (z\cdot (x\cdot x)^{n/2} = x'^{n'}) =
                              = (z \cdot x^n = x'^{n'}) = P \checkmark (mert ps(n) miatt n/2 \in \mathbb{N} \text{ és ezért } (x \cdot x)^{n/2} = x^n)
         8. t=t_0 \land pre(A_2) \Longrightarrow lf(A_2, t \le t_0)
                   Elég (VLSz miatt):
                   a) t=t_0 \land P \Longrightarrow ps(n) \lor \neg ps(n) \checkmark
                   b) t=t_0 \land P \land ps(n) \Longrightarrow |f(x,z:=x\cdot x,n/2,t\leq t_0)| = (igaz \land (t\leq t_0)^{x,n\leftarrow x\cdot x,n/2}) = (igaz \land (t\leq t_0)^{x,n\leftarrow x\cdot x,n/2})
```

Holtpont-mentesség:

Három féleképpen alakulhat ki a párhuzamos blokkban holtpont:

1. Mindkét ág blokkolt a várakozó utasítás őrfeltételénél:

```
pre(A_1) \land \neg ptl(n) \land pre(A_2) \land \neg ps(n) =

P \land n \neq 0 \land \neg ptl(n) \land P \land \neg ps(n) ez ellentmondás
```

2. Baloldali ág blokkolt a várakozó utasítás őrfeltételénél, jobboldali ág befejeződött:

$$pre(A_1) \land \neg ptl(n) \land R_2 =$$

 $P \land n \neq 0 \land \neg ptl(n) \land R \land n = 0$ ez ellentmondás

3. Baloldali ág befejeződött, jobboldali ág blokkolt a várakozó utasítás őrfeltételénél:

$$R_1 \wedge pre(A_2) \wedge \neg ps(n) =$$

 $R \wedge n=0 \wedge P \wedge \neg ps(n)$ ez ellentmondás

Mindhárom feltétel hamis, így az összevagyoltjuk is az, tehát a program holtpontmentes.

A párhuzamos blokk annotációjánál bevezetett R_{i} -k n=0 feltételére sem a kilépési kritériumnak, sem az ágak helyességének bizonyításánál nem lenne szükség, de a holtpont-mentességhez, és az interferencia-mentességhez szükséges.