Машинное обучение, ФКН ВШЭ Домашнее задание №4

Задача 1. Пусть $x \in \mathbb{R}^d$, и значение каждого признака на объекте x независимо генерируется из равномерного распределения: $x_i \sim U[0,1], \ i=1,\ldots,d$. Будем считать, что объекты в выборке независимы, а $\mathbb{E}[y|x] = x^T x$. Найдите смещение константного алгоритма: $\mu(X)(x) = C = \mathrm{const.}$

Задача 2. Предположим, что объекты описываются единственным категориальным признаком, принимающим значения $x=1,\ldots,K$ с равной вероятностью, объекты независимы. Для каждой категории x определено истинное целевое значение f_x , а наблюдаемое целевое значение для объекта x определяется как $y=f_x+\varepsilon$, $\varepsilon \sim \mathcal{N}(0,\sigma^2)$. Алгоритм обучения $\mu(X)$ запоминает среднее значение для каждой категории следующим образом: $\hat{f}_x=\frac{1}{\ell}\sum_{i=1}^{\ell}[x_i=x]\,y_i$, а затем для объекта x выдаёт предсказание \hat{f}_x . Найдите смещение такого алгоритма.

Задача 3. Предположим, что мы решаем задачу бинарной классификации и что у нас есть три алгоритма $b_1(x)$, $b_2(x)$ и $b_3(x)$, каждый из которых ошибается с вероятностью p. Мы строим композицию взвешенным голосованием: алгоритмам присвоены значимости w_1 , w_2 и w_3 , и для вынесения вердикта суммируются значимости алгоритмов, проголосовавших за каждый из классов:

$$a_0 = \sum_{i=1}^{3} w_i [b_i(x) = 0],$$

$$a_1 = \sum_{i=1}^{3} w_i [b_i(x) = 1].$$

Объект x относится к классу, для которого такая сумма оказалась максимальной. Например, если первые два алгоритма голосуют за класс 0, а третий — за класс 1, то выбирается класс 0, если $w_1 + w_2 > w_3$, и класс 1 в противном случае. Какова вероятность ошибки такой композиции этих трех алгоритмов, если:

1.
$$w_1 = 0.2, w_2 = 0.3, w_3 = 0.2;$$

2.
$$w_1 = 0.2, w_2 = 0.5, w_3 = 0.2$$
?

Задача 4 (*). На лекции было показано, что для задачи регрессии случайный лес можно трактовать как метрический алгоритм со своеобразной функцией расстояния. Покажите, что аналогичное утверждение верно для задачи классификации, если считать, что в листьях дерева возвращаются вектора частот классов, композиция

подразумевает усреднение этих векторов, и на основе этого усредненного вектора принимается решение о классе объекта.