Lucy Y. Pao Lecture 22 Page 1 ECEN 5458

Integral Control and Disturbance Estimation

- Integral control
- Bias Estimation (or internal model) control
 - Constant and sinusoidal disturbances

Comparison of compensator design methods

Lucy Y. Pao Lecture 22 ECEN 5458

Integral Control

Plant:
$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

 $y(k) = Hx(k)$

To implement integral control in this state-space system, we need to augment the state of the plant with x_i :

$$x_{I}(k+1) = x_{I}(k) + y(k) - r(k) = x_{I}(k) + Hx(k) - r(k)$$

Transfer Function from E to X_I

$$(z-1)X_I(z) = E(z) \implies \frac{X_I(z)}{E(z)} = \frac{1}{z-1}$$
 pole at $z = 1$

Augmented system:

Control law:

$$u(k) = -\begin{bmatrix} K_I & K \end{bmatrix} \begin{bmatrix} \begin{bmatrix} X_I(k) \end{bmatrix} \\ X(k) \end{bmatrix} + Nr(k)$$

Lucy Y. Pao Lecture 22 Page 4 ECEN 5458

Block Diagram

Lucy Y. Pao Lecture 22 Page 5

Overall System Transfer Function

ECEN 5458

In general, with integral control, the overall system transfer function is

$$\frac{Y(z)}{R(z)} = \eta \frac{\gamma(z)b(z)}{\alpha_e(z)\alpha_{c_1}(z)}$$

If
$$\mathbf{M} = \Gamma N$$
,
$$\frac{Y(z)}{R(z)} = \eta \frac{b(z)}{\alpha_{c_x}(z)}$$

Integral control can improve steady-state performance of the system. But it may cause worse transient performance. Lucy Y. Pao Lecture 22 Page 6

Bias Estimation (or Internal Model) Control

ECEN 5458

Plant model: $x(k+1) = \Phi x(k) + \Gamma u(k) + \Gamma_1 w(k)$

The idea is to augment the model of the system to include a model of disturbance or reference, and then cancel it out.

To approximate integral control (to lead to zero error due to a step or constant disturbance), the model to incorporate is:

$$\dot{w} = 0$$

To follow or reject a sinusoid signal, augment system with a more complex model:

$$\ddot{w} = -\omega_0^2 w$$
 ω_0 : frequency of oscillation

Lucy Y. Pao Lecture 22 Page 7

ECEN 5458

Generally, the disturbance can be modeled as:

$$\dot{\mathbf{x}}_d = \mathbf{F}_d \mathbf{x}_d$$
$$\mathbf{w} = \mathbf{H}_d \mathbf{x}_d$$

What are F_d and H_d for a constant disturbance?

What are F_d and H_d for a sinusoidal disturbance?

The discrete model of the disturbance is:

$$\mathbf{x}_d(k+1) = \Phi_d \mathbf{x}_d(k)$$

 $w(k) = \mathbf{H}_d \mathbf{x}_d(k)$ where $\Phi_d = e^{\mathbf{F}_d T}$

Augmented plant model:

$$\begin{bmatrix} \mathbf{x}(k+1) & \mathbf{I} & \mathbf{\Phi}_d & \mathbf{\Gamma}_1 \mathbf{H}_d & \mathbf{X}(k) & \mathbf{I} \\ \mathbf{X}_d(k+1) & \mathbf{\Phi}_d & \mathbf{I} & \mathbf{X}_d(k) & \mathbf{I} \end{bmatrix} + \begin{bmatrix} \mathbf{\Gamma} \mathbf{I} & \mathbf{I} \\ \mathbf{I} \mathbf{0} \end{bmatrix} u(k)$$

$$y = \begin{bmatrix} \mathbf{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(k) \\ \mathbf{x}_d(k) \end{bmatrix}$$

Lucy Y. Pao Lecture 22 Page 9 ECEN 5458

Then, we can design the compensator using state-space concepts:

State-feedback design:

- Design K for the n states x(k).
- Additional states \mathbf{x}_d are uncontrollable.

Estimator design:

- Design L_p for augmented state vector.

Lucy Y. Pao Lecture 22 Page 10 ECEN 5458

Block Diagram

Lucy Y. Pao Lecture 22 Page 11 ECEN 5458

Compensator Design Methods

Root Locus: Closed-loop poles constrained to move on a locus.

Bode: Design the compensator based on BW, PM, GM

 Often without even computing/knowing closed-loop poles

State-Space: Matrix calculations to place closed-loop poles (and zeros) at desired locations

- More general and powerful without specifying compensator poles and zeros
- More complex