Tests de primalité : théorie et pratique

Rutger Noot

IRMA Université de Strasbourg et CNRS

Le 19 janvier 2011 — IREM Strasbourg

Tests de primalité : théorie et pratique $\[\]$ Introduction

└ Nombres premiers

Mais...

Qu'en est-il pour

 $2^{127} - 1 = 170141183460469231731687303715884105727$?

Tests de primalité : théorie et pratique

Introduction

└ Nombres premiers

Nombres premiers

Definition

Un nombre premier est un entier naturel p>1 ayant exactement deux diviseurs (positifs) : 1 et p.

Un nombre composé est un entier naturel n > 1 qui n'est pas premier.

Exemples

Les nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 et 97

Tests de primalité : théorie et pratique

Introduction

Lests de primalité

Comment reconnaître un nombre premier?

- On cherche un algorithme pour tester la primalité d'un entier n > 1.
- ► Et on s'intéresse à la complexité de l'algorithme, c'est-à-dire le nombre d'opérations nécessaires pour accomplir le test.

Tests de primalité : théorie et pratique — Premier algorithme

Observations élémentaires

L'algorithme élémentaire

Premier algorithme

```
entrée n>1 entier pour k = 2,..., \sqrt{n} faire { r = reste de la division euclidienne de n par k si r == 0 alors sortie « n est composé » } sortie « n est premier »
```

Le crible d'Ératosthène

est une généralisation de cet algorithme permettant de déterminer tous les nombres premiers $\leq n$.

Tests de primalité : théorie et pratique

La théorie de la complexité

La classe P

La classe P

- Notons N(ℓ) le nombre d'opérations exécutées par l'algorithme en fonction de la longueur ℓ des données.
- La complexité est polynomiale s'il existe k > 0 tel que

$$N(\ell) = O(\ell^k),$$

autrement dit s'il existe C > 0 tel que $N(\ell) \le C\ell^k$.

▶ On note *P* la classe des problèmes pouvant être résolus par un algorithme de complexité polynomiale.

Tests de primalité : théorie et pratique

Premier algorithme

La complexité

La complexité de l'algorithme élémentaire

- La complexité d'un algorithme s'apprécie en fonction de la longueur des données!
- ▶ Pour un entier n, écrit en base 2, cette longueur vaut $\log_2(n)$.
- L'algorithme évident effectue (jusqu'à)

$$\sqrt{n} = \sqrt{2}^{\log_2(n)}$$

divisions euclidiennes de nombres de longueur $log_2(n)$,

▶ la complexité est donc exponentielle.

Tests de primalité : théorie et pratique

La théorie de la complexité

La classe NP

Retour sur l'algorithme élémentaire

- ▶ L'algorithme parcourt l'ensemble des nombres $2, ..., \sqrt{n}$ à la recherche d'une preuve que n est composé; en théorie de la complexité une telle preuve est appelé un certificat.
- ▶ Si un certificat (un diviseur de *n*) est donné, la vérification que *n* est composé s'effectue en temps polynomial.
- ► On dispose d'un test de classe *NP* pour déterminer si *n* est composé.
- ► Cela ne veut pas dire qu'il existe un test de primalité de classe NP!
- ► En effet, un seul certificat ne suffit pas pour prouver la primalité de *n*.

La théorie de la complexité

La classe NP

La fréquence des certificats

- ▶ Si *n* est composé, alors il existe un diviseur compris entre 2 et \sqrt{n} .
- ► Si *n* est un produit de deux nombres premiers, il n'existe qu'un seul certificat dans cet intervalle.
- Même si n a beaucoup de facteurs premiers, le nombre de certificats en toujours $< \log_2(n)$.
- ► La rareté des certificats rend l'algorithme inapplicable pour les grands nombres.

Tests de primalité : théorie et pratique

Vers des algorithmes plus efficaces

Calcul dans $\mathbb{Z}/n\mathbb{Z}$

Propriétés de $\mathbb{Z}/n\mathbb{Z}^{\times}$

Proposition

Si $k \in \mathbb{Z}$, alors $\bar{k} \in \mathbb{Z}/n\mathbb{Z}^{\times}$ si et seulement si $\operatorname{pgcd}(k, n) = 1$.

Définition

L'indicatrice d'Euler φ est définie par $\varphi(n)$ = ordre de $\mathbb{Z}/n\mathbb{Z}^{\times}$.

Formule pour $\varphi(n)$

De la proposition on déduit facilement que si n se factorise comme $n = \prod p_i^{e_i}$ avec les p_i des nombres premiers distincts et $e_i \geq 1$, alors

$$\varphi(n) = \prod p_i^{e_i-1}(p_i-1).$$

Tests de primalité : théorie et pratique

Vers des algorithmes plus efficaces

Calcul dans $\mathbb{Z}/n\mathbb{Z}$

Utilisation de l'anneau $\mathbb{Z}/n\mathbb{Z}$

Les classes modulo *n*

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes de congruence modulo n des entiers. L'addition et la multiplication de \mathbb{Z} définissent des opérations d'addition et de multiplication sur $\mathbb{Z}/n\mathbb{Z}$, munissant cet ensemble de la structure d'anneau (commutatif et unitaire).

Les unités

Soit $\mathbb{Z}/n\mathbb{Z}^{\times}$ l'ensemble des unités de $\mathbb{Z}/n\mathbb{Z}$, c'est à dire les éléments $\alpha \in \mathbb{Z}/n\mathbb{Z}$ pour lesquels il existe β avec $\alpha\beta = \overline{1}$. $\mathbb{Z}/n\mathbb{Z}^{\times}$ est un groupe pour la multiplication.

Le petit théorème de Fermat

Théorème (Fermat)

Si p est premier alors pour tout $\alpha \in \mathbb{Z}/p\mathbb{Z}$ avec $\alpha \neq \bar{0}$ on a

$$\alpha^{p-1} = \overline{1}.$$

Compléments

- ▶ Pour la démonstration on peut utiliser le fait que $\mathbb{Z}/p\mathbb{Z}^{\times}$ est un groupe d'ordre p-1 et que l'ordre de α dans ce groupe divise donc p-1.
- ▶ Plus précisément, $\mathbb{Z}/p\mathbb{Z}^{\times}$ est un groupe cyclique, il existe donc un élément d'ordre p-1.
- ▶ Pour tout $n \ge 2$, on a $\alpha^{\varphi(n)} = 1$ pour tout $\alpha \in \mathbb{Z}/n\mathbb{Z}^{\times}$.

└Vers des algorithmes plus efficaces

Application aux tests de primalité

Application aux tests de primalité

Le groupe $\mathbb{Z}/p\mathbb{Z}^{\times}$ est cyclique. Cela implique que les seules classes $\beta \in \mathbb{Z}/p\mathbb{Z}^{\times}$ avec $\beta^2 = \overline{1}$ sont $\overline{1}$ et $-\overline{1}$, d'où :

Corollaire

Soit p > 2 un nombre premier et soient s, t tels que $p - 1 = 2^s t$ avec t impair.

Pour tout a non divisible par p on a alors

```
\begin{cases} a^t \equiv 1 \pmod{n} \\ ou \\ il \ existe \ i \ avec \ 0 \le i \le s-1 \ tel \ que \ a^{2^i t} \equiv -1 \pmod{n} \end{cases}
```

Tests de primalité : théorie et pratique

└Vers des algorithmes plus efficaces

Application aux tests de primalité

Propriétés de l'algorithme de Miller-Rabin

Corollaire

Si l'algorithme sort avec n est composé alors n est un nombre composé.

Le nombre a est alors un certificat.

Théorème

Si n est un nombre composé impair, alors le nombre de certificats $a \in \mathbb{Z}/n\mathbb{Z}^{\times}$ pour le test de Miller–Rabin est $\geq \frac{3}{4}\varphi(n)$.

Remarque

En utilisant une variante de l'hypothèse de Riemann, on peut montrer que le premier certificat est $\leq \log_2 n$.

Tests de primalité : théorie et pratique

Vers des algorithmes plus efficaces

Application aux tests de primalité

Le test de Miller-Rabin (1976)

```
entrée n entier impair
calculer s, t entiers avec t impair et n-1=2<sup>s</sup>t
choisir un entier a dans [2,n-2]
b=a<sup>t</sup> mod n
si (b == 1 ou b == -1) alors
sortie « n est pseudopremier fort »
pour j = 1,...,s-1 faire
{
  b=b<sup>2</sup> mod n
  si b == -1 alors
    sortie « n est pseudopremier fort »
}
sortie « n est composé »
```

Tests de primalité : théorie et pratique

└Vers des algorithmes plus efficaces

Application aux tests de primalité

Avantages

- ▶ Les certificats sont fréquents et
- on peut répéter l'application de l'algorithme pour augmenter ces chances d'en trouver.
- Pour un pseudopremier fort ayant résité à k itérations de l'algorithme, la probabilité d'être composé est $< 4^{-k}$.
- L'algorithme arrive donc très rapidement à détecter un nombre composé avec une marge d'erreur très faible,
- mais non-nulle!
- L'hypothèse de Riemann étendue implique qu'un certificat peut être trouvé en temps polynomial.

└Vers des algorithmes plus efficaces

Application aux tests de primalité

Inconvénients

- ► Conjecturalement, la recherche d'un certificat se fait en temps polynomiale,
- ▶ mais on ne sait pas le prouver inconditionnellement.
- L'algorithme est donc toujours un test d'être composé, de classe *NP*.
- ▶ mais conjecturalement un test de primalité de classe *P*.

Toutefois...

La majorité des nombres premiers vendus dans le commerce ne sont que des pseudopremiers forts.

Tests de primalité : théorie et pratique

Vers des algorithmes plus efficaces

Un test de primalité de classe NP

Un test de primalité de classe NP

Un certificat récursif

D'après le théorème de Lucas, les données suivantes forment un certificat de primalité pour *p* :

- ▶ La liste des facteurs premiers q_i de p-1,
- un entier a vérifiant les deux dernières conditions du théorème et
- \triangleright un tel certificat pour chaque q_i .

Théorème (Pratt, 1975)

Un tel certificat fait intervenir au plus $log_2(n)$ nombres premiers. La vérification d'un certificat est de complexité polynomiale.

Tests de primalité : théorie et pratique

└Vers des algorithmes plus efficaces

Un test de primalité de classe NP

Tester la primalité

Un certificat pour prouver la primalité?

Tous les algorithmes précédents sont basé sur des certificats prouvant qu'un nombre n est composé.

Nous n'avons toujours pas de test de primalité de classe NP!

Théorème (Lucas, 1876)

Un entier p > 1 est un nombre premier si et seulement si il existe un entier a tel que

$$\left\{ \begin{array}{l} a^{p-1} \equiv 1 \pmod p \\ et \\ a^{(p-1)/q} \not\equiv 1 \pmod p \right. \ \ \textit{pour tout diviseur premier } q \mid p-1. \end{array} \right.$$

Tests de primalité : théorie et pratique

-Avancées récentes

Un algorithme de classe P

Utilisation de polynômes

Polynômes à coefficients dans $\mathbb{Z}/n\mathbb{Z}$

Comme $\mathbb{Z}/n\mathbb{Z}$ est un anneau, on peut considérer des polynômes à coefficients dans $\mathbb{Z}/n\mathbb{Z}$:

$$\mathbb{Z}/n\mathbb{Z}[X] = \left\{\sum_{i=0}^d a_i X^i \middle| d \geq 0 \; ext{entier}, a_i \in \mathbb{Z}/n\mathbb{Z}
ight\}.$$

Lemme

Soient n, a des entiers avec $n \ge 2$ et pgcd(n, a) = 1 alors n est premier si et seulement si

$$(X+a)^n \equiv X^n + a \pmod{n}$$
.

-Avancées récentes

Un algorithme de classe P

Le théorème d'Agrawal, Kayal, Saxena

Théorème (Agrawal, Kayal et Saxena, 2004)

Soient n > 1 un entier impair et r > 1 un entier. Supposons que

- ▶ I'ordre de n dans $\mathbb{Z}/r\mathbb{Z}^{\times}$ est $> (\log_2(n))^2$,
- ightharpoonup n n'est divisible par aucun nombre premier p \leq r et
- $(X+a)^n = X^n + a \pmod{X^r 1, n} \text{ pour tout } a \in [1, r].$

Alors n est une puissance d'un nombre premier.

Réciproque

Le lemme implique que si n est premier alors la 3ème condition est vérifiée pour tout r.

Tests de primalité : théorie et pratique

L Avancées récentes

Le "elliptic curve primality proving algorithm"

La pratique

- ▶ La complexité prouvé de l'algorithme d'AKS est actuellement $O((\log_2(n))^{12+\varepsilon})$.
- ▶ Pour des valeurs de *n* accessibles en pratique, il existe des algorithmes plus efficaces.

Tests de primalité : théorie et pratique

-Avancées récentes

Un algorithme de classe P

La fin de l'histoire?

La démonstration du théorème

est remarquablement élémentaire, elle utilise du calcul dans des quotients de $\mathbb{Z}/n\mathbb{Z}[X]$ et un peu de théorie de groupes.

Un algorithme de complexité polynomiale!

En outre, le lemme suivant implique que le théorème donne lieu à un test de primalité en temps polynomial.

Lemme (A, K, S)

Il existe un r satisfaisant les deux premières conditions du théorème et qui est $O((\log_2(n))^5)$.

Tests de primalité : théorie et pratique

LAvancées récentes

Le "elliptic curve primality proving algorithm"

Retour sur l'idée de Lucas

Théorème (Lucas)

Un entier p > 1 est un nombre premier si et seulement si il existe un entier a tel que

$$\left\{ \begin{array}{l} a^{p-1} \equiv 1 \pmod p \\ et \\ a^{(p-1)/q} \not\equiv 1 \pmod p \right. \ \ \textit{pour tout diviseur premier } q \mid p-1. \end{array} \right.$$

- ▶ Un certificat a est facile à trouver, mais
- ightharpoonup pour avoir une preuve de primalité il faut factoriser p-1.

-Avancées récentes

Le "elliptic curve primality proving algorithm"

Pourquoi p-1?

- ▶ p-1 est l'ordre du groupe $\mathbb{Z}/p\mathbb{Z}^{\times}$ pour p premier.
- ► Ce groupe est cyclique, la structure est très simple.

Tests de primalité : théorie et pratique

L Avancées récentes

Le "elliptic curve primality proving algorithm"

Deux théorèmes de structure

Théorème (Cassels)

Si E est une courbe elliptique et p un nombre premier. Alors $E(\mathbb{Z}/p\mathbb{Z})$ est un groupe commutatif fini.

Ce groupe est cyclique ou c'est le produit de deux groupes cycliques.

Théorème (Hasse)

Sous les conditions du théorème de Cassels, l'ordre du groupe $E(\mathbb{Z}/p\mathbb{Z})$ est compris entre $p+1-2\sqrt{p}$ et $p+1+2\sqrt{p}$.

On dispose d'algorithmes efficaces pour calculer l'ordre de ce groupe.

Tests de primalité : théorie et pratique

-Avancées récentes

Le "elliptic curve primality proving algorithm"

Courbes elliptiques

Au cas où p-1 est difficile à factoriser, on utilise d'autres groupes algébriques sur $\mathbb{Z}/p\mathbb{Z}$: les courbes elliptiques, données par des équations du type

$$y^2 = x^3 + ax + b \tag{*}$$

(sauf si on considère p = 2, 3),

- ▶ à laquelle il faut rajouter un point « à l'infini » O.
- ► Un courbe elliptique est également munie d'une loi de groupe algébrique.
- ▶ Pour p premier on note $E(\mathbb{Z}/p\mathbb{Z})$ l'ensemble des solutions de l'équation (\star) (et le point O) dans $\mathbb{Z}/p\mathbb{Z}$, muni de sa structure de groupe.

Tests de primalité : théorie et pratique

-Avancées récentes

Le "elliptic curve primality proving algorithm"

Stratégie de l'algorithme ECPP de Goldwasser-Kilian (elliptic curve primality proving)

Procédure pour prouver la primalité de n

- ► Trouver une courbe elliptique E tel que l'ordre de $E(\mathbb{Z}/n\mathbb{Z})$ contient un grand facteur premier $s > (\sqrt[4]{n} + 1)^2$.
- ► Trouver un point $P \in E(\mathbb{Z}/n\mathbb{Z})$ d'ordre s. (Un tel P est facile à trouver.)
- S'assurer que P ≠ O dans E(Z/pZ) pour p un facteur premier éventuel de n.
 (Calculer les pgcd de n avec les coefficients de s · P.)
- ▶ Si n est composé, il y a un facteur premier $p < \sqrt{n}$, et le fait que $E(\mathbb{Z}/p\mathbb{Z})$ est d'ordre $\geq s$ contredit alors le théorème de Hasse.

-Avancées récentes

Le "elliptic curve primality proving algorithm"

Le point clé

- ▶ L'étape difficile est de trouver la courbe *E* de la première étape.
- ▶ On se sert de la puissance de la géométrie arithmétique et de la théorie des nombres.
- ▶ en particulier la théorie de la multiplication complexe.

Tests de primalité : théorie et pratique

└ Conclusion

En résumé

- ▶ Il existe un test de primalité de complexité polynomiale.
- ► En pratique, la méthode des courbes elliptiques est plus rapide.
- ► En utilisation courante, le test de pseudoprimalité forte est suffisant.
- ▶ Dans des cas particuliers, des méthodes particulières peuvent être utilisées.

Tests de primalité : théorie et pratique

-Avancées récentes

Le "elliptic curve primality proving algorithm"

Quelques records

Nombres premiers ordinaires

 $p = 4405^{2638} + 2638^{4405}$ (15 071 chiffres décimaux), prouvé en 2004 avec ECPP.

Cas particuliers

Les plus grands nombres premiers prouvés sont des nombres de Mersenne, de la forme $p = 2^q - 1$ pour q premier.

On utilise des méthodes adaptées à la forme particulière de p. E. Lucas a prouvé la primalité de $2^{127}-1$ à la main, ce qui lui a pris 19 ans.

Le record actuel correspond à $q=43\,112\,609$ (p est un nombre de 12 978 189 chiffres décimaux).

Tests de primalité : théorie et pratique

└ Conclusion

Littérature

M. Agrawal, N. Kayal, et N. Saxena.
 PRIMES is in P.
 Ann. of Math. 160, 2 (2004), 781–793.

▶ R. Crandall et C. Pomerance.

Prime numbers.

Springer-Verlag, New York, 2001.

R. Schoof.

Four primality testing algorithms.

Dans Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ. 44, pages 101–126. Cambridge Univ. Press, Cambridge, 2008.