

IRAMY20UP60B **MOTION** Series 20A, 600V with Internal Shunt Resistor

Integrated Power Hybrid IC for Appliance Motor Drive Applications.

Description

International Rectifier's IRAMY20UP60B is a 20A, 600V Integrated Power Hybrid IC with Internal Shunt Resistor for Appliance Motor Drives applications such as air conditioning systems and compressor drivers as well as for light industrial application. IR's technology offers an extremely compact, high performance AC motor-driver in a single isolated package to simplify design.

This advanced HIC is a combination of IR's low $V_{\text{CE}(on)}$ Non Punch-Through IGBT technology and the industry benchmark 3-Phase high voltage, high speed driver in a fully isolated thermally enhanced package.

A built-in temperature monitor and over-current and over-temperature protections, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a newly developed single in line package (SiP3) with heatspreader for the power die along with full transfer mold structure minimizes PCB space and resolves isolation problems to heatsink. UL certified.

Features

- Integrated Gate Drivers
- Temperature Monitor and Protection
- Overcurrent shutdown
- Fully Isolated Package
- Low VCE (on) Non Punch Through IGBT Technology.
- Undervoltage lockout for all channels
- · Matched propagation delay for all channels
- 5V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Motor Power range 0.75~2.2kW / 85~253 Vac
- Isolation 2000V_{RMS} min
- UL Certificate Number: E252584

Absolute Maximum Ratings

Parameter	Description	Value	Units
V _{CES} / V _{RRM}	IGBT/Diode Blocking Voltage	600	V
V ⁺	Positive Bus Input Voltage	450	V
I_O @ T_C =25°C	RMS Phase Current (Note 1)	20	
I _O @ T _C =100°C	RMS Phase Current (Note 1)	10	Α
I_{O}	Pulsed RMS Phase Current (Note 2)	40	
F _{PWM}	PWM Carrier Frequency	20	kHz
P_D	Power dissipation per IGBT @ $T_C = 25$ °C	68	W
V _{ISO}	Isolation Voltage (1min)	2000	V_{RMS}
T _J (IGBT & Diodes)	Operating Junction temperature Range	-40 to +150	°C
T _J (Driver IC)	Operating Junction temperature Range -40 to +150		C
Т	Mounting torque Range (M4 screw)	0.7 to 1.17	Nm

Note 1: Sinusoidal Modulation at V $^+$ =400V, T $_J$ =150°C, F $_{PWM}$ =20kHz, Modulation Depth=0.8, PF=0.6, See Figure 3. Note 2: t $_P$ <100ms; T $_C$ =25°C; F $_{PWM}$ =20kHz. Limited by I $_{BUS-TTRIP}$, see Table "Inverter Section Electrical Characteristics"

Internal Electrical Schematic - IRAMY20UP60B

Absolute Maximum Ratings (Continued) All voltages are absolute referenced to COM/ I_{TRIP} .

Symbol	Parameter	Min	Max	Units	Conditions
I_{BDF}	Bootstrap Diode Peak Forward Current		4.5	Α	t _P = 10ms, T _J = 150°C, T _C =100°C
P _{BR Peak}	Bootstrap Resistor Peak Power (Single Pulse)		25.0	W	t_P =100 μ s, T_C =100 $^{\circ}$ C ESR / ERJ series
V _{S1,2,3}	High side floating supply offset voltage	V _{B1,2,3} - 25	V _{B1,2,3} +0.3	V	
V _{B1,2,3}	High side floating supply voltage	-0.3	600	٧	
V _{CC}	Low Side and logic fixed supply voltage	-0.3	20	V	
V _{IN}	Input voltage LIN, HIN, I _{Trip}	-0.3	Lower of (V _{SS} +15V) or V _{CC} +0.3V	V	

Inverter Section Electrical Characteristics @ T_J = 25°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{IN} =5V, I _C =250μA
$\Delta V_{(BR)CES}$ / ΔT	Temperature Coeff. Of Breakdown Voltage		0.3		V/°C	V _{IN} =5V, I _C =1.0mA (25°C - 150°C)
V _{CE(ON)}	Collector-to-Emitter Saturation		1.75	2.15	V	I _C =10A, V _{CC} =15V
V CE(ON)	Voltage		2.00	2.50	\ \ \	I _C =10A, V _{CC} =15V, T _J =125°C
T	Zero Gate Voltage Collector		5	80		V _{IN} =5V, V ⁺ =600V
I _{CES}	Current		80		μA	V _{IN} =5V, V ⁺ =600V, T _J =125°C
V _{FM}	Diada Farward Voltago Drop		1.9	2.6	V	I _C =10A
V FM	Diode Forward Voltage Drop		1.6	2.3	\ \ \	I _C =10A, T _J =125°C
V	Bootstrap Diode Forward Voltage			1.25	V	I _F =1A
V_{BDFM}	Drop			1.10	V	I _F =1A, T _J =125°C
R _{BR}	Bootstrap Resistor Value		22		Ω	T _J =25°C
$\Delta R_{BR}/R_{BR}$	Bootstrap Resistor Tolerance			±5	%	T _J =25°C
I _{BUS_TRIP}	Current Protection Threshold (positive going)	26		34	А	T _J =-40°C to 125°C See Fig. 2

Inverter Section Switching Characteristics @ T_J= 25°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
E _{ON}	Turn-On Switching Loss		320	460		I _C =10A, V ⁺ =400V	
E _{OFF}	Turn-Off Switching Loss		175	225	1	V _{CC} =15V, L=2mH	
E _{TOT}	Total Switching Loss		495	685	μĴ	Energy losses include "tail" and diode reverse recovery	
E _{REC}	Diode Reverse Recovery energy		35	70		diode reverse recovery	
t _{RR}	Diode Reverse Recovery time		95		ns	See CT1	
E _{ON}	Turn-On Switching Loss		520	680		I _C =10A, V ⁺ =400V	
E _{OFF}	Turn-off Switching Loss		305	385	1	V _{CC} =15V, L=2mH, T _J =125°C	
E _{TOT}	Total Switching Loss		825	1065	μĴ	Energy losses include "tail" and diode reverse recovery	
E _{REC}	Diode Reverse Recovery energy		50	100		uloue reverse recovery	
t _{RR}	Diode Reverse Recovery time		125		ns	See CT1	
Q_{G}	Turn-On IGBT Gate Charge		56	84	nC	I _C =15A, V ⁺ =400V, V _{GE} =15V	
RBSOA	Reverse Bias Safe Operating Area	FL	JLL SQUA	RE		T_J =150°C, I_C =10A, V_P =600V V^+ = 450V V_{CC} =+15V to 0V See CT3	
SCSOA	Short Circuit Safe Operating Area	10			μs	T_J =150°C, V_P =600V, V^+ = 360V, V_{CC} =+15V to 0V See CT2	
I _{CSC}	Short Circuit Collector Current		140		А	T_J =150°C, V_P =600V, t_{SC} <10 μ s V ⁺ = 360V, V_{GE} =15V V_{CC} =+15V to 0V See CT2	

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommende conditions. All voltages are absolute referenced to COM/I_{TRIP} . The V_S offset is tested with all supplies biased at 15V differential (Note 3)

Symbol	Definition	Min	Max	Units	
V _{B1,2,3}	High side floating supply voltage	V _S +12	V _S +20	V	
V _{S1,2,3}	High side floating supply offset voltage	Note 4	450	V	
V _{CC}	Low side and logic fixed supply voltage	12	20	V	
V _{ITRIP}	I _{TRIP} input voltage	V _{SS}	V _{SS} +5	V	
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	V	

Note 3: For more details, see IR21363 data sheet

Note 4: Logic operational for V_s from COM/ITRIP-5V to COM/ITRIP+600V. Logic state held for V_s from COM/ITRIP-5V to COM/ITRIP- V_{BS} .

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM/ I_{TRIP} and are applicable to all six channels. (Note 3)

Symbol	Definition	Min	Тур	Max	Units
V _{IH}	Logic "0" input voltage	3.0			٧
V _{IL}	Logic "1" input voltage			0.8	V
V _{CCUV+} , V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	10.6	11.1	11.6	٧
V _{CCUV-} , V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	10.4	10.9	11.4	٧
V _{CCUVH} , V _{BSUVH}	V _{CC} and V _{BS} supply undervoltage lock-out hysteresis		0.2		٧
$V_{IN,Clamp}$	Input Clamp Voltage (HIN, LIN, T/I_{TRIP}) I_{IN} =10 μ A	4.9	5.2	5.5	٧
I_{QBS}	Quiescent V _{BS} supply current V _{IN} =0V			165	μA
I_{QCC}	Quiescent V _{CC} supply current V _{IN} =0V			3.35	mA
I _{LK}	Offset Supply Leakage Current			60	μΑ
I _{IN+}	Input bias current V _{IN} =5V		200	300	μA
I _{IN-}	Input bias current V _{IN} =0V		100	220	μA
I _{TRIP+}	I _{TRIP} bias current V _{ITRIP} =5V		30	100	μA
I _{TRIP-}	I _{TRIP} bias current V _{ITRIP} =0V		0	1	μA
V(I _{TRIP})	I _{TRIP} threshold Voltage		490	540	mV
V(I _{TRIP} ,HYS)	I _{TRIP} Input Hysteresis		70		mV

Dynamic Electrical Characteristics

Driver only timing unless otherwise specified.)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
T _{ON}	Input to Output propagation turn-on delay time (see fig.11)		590		ns	V _{CC} =V _{BS} = 15V, I _C =10A, V ⁺ =400V
T _{OFF}	Input to Output propagation turn-off delay time (see fig. 11)		700		ns	V _{CC} -V _{BS} - 13V, 1 _C -10A, V -400V
T _{FLIN}	Input Filter time (HIN, LIN)	100	200		ns	V _{IN} =0 & V _{IN} =5V
T _{BLT-Trip}	I _{TRIP} Blancking Time	100	150		ns	V _{IN} =0 & V _{IN} =5V
D _T	Dead Time (V _{BS} =V _{DD} =15V)	220	290	360	ns	$V_{BS}=V_{CC}=15V$
M _T	Matching Propagation Delay Time (On & Off)		40	75	ns	$V_{CC} = V_{BS} = 15V$, external dead time > 400ns
T_{ITrip}	I _{Trip} to six switch to turn-off propagation delay (see fig. 2)			1.75	μs	V _{CC} =V _{BS} = 15V, I _C =10A, V ⁺ =400V
т	Post I_{Trip} to six switch to turn-off		7.7		mc	T _C = 25°C
T _{FLT-CLR}	clear time (see fig. 2)		6.7		ms	T _C = 100°C

Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
R _{th(J-C)}	Thermal resistance, per IGBT		1.6	1.8		Flat, greased surface. Heatsink	
R _{th(J-C)}	Thermal resistance, per Diode		2.2	3	°C/W	compound thermal conductivity	
R _{th(C-S)}	Thermal resistance, C-S		0.1			1W/mK	
C _D	Creepage Distance	3.5			mm	See outline Drawings	

Internal Current Sensing Resistor - Shunt Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
R _{Shunt}	Resistance	16.8	17.0	17.2	mΩ	T _C = 25°C
T _{Coeff}	Temperature Coefficient	0		200	ppm/°C	
P _{Shunt}	Power Dissipation			4.5	W	-40°C< T _C <100°C
T _{Range}	Temperature Range	-40		125	°C	

Internal NTC - Thermistor Characteristics

Parameter	Definition	Min	Тур	Max	Units	Conditions
R ₂₅	Resistance	97	100	103	kΩ	$T_C = 25^{\circ}C$
R ₁₂₅	Resistance	2.25	2.52	2.80	kΩ	T _C = 125°C
В	B-constant (25-50°C)	4165	4250	4335	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-40		125	°C	
Typ. Dissipation constant			1		mW/°C	T _C = 25°C

Input-Output Logic Level Table

I_{TRIP}	HIN1,2,3	LIN1,2,3	U,V,W
0	0	1	V ⁺
0	1	0	0
0	1	1	Χ
1	Χ	Χ	Χ

Sequence of events:

- 1-2) Current begins to rise
- 2) Current reaches I_{BUS_Trip} level 2-3) Current is higher than I_{BUS_Trip} for at least $6\mu s$. This value is the worst-case condition with very low over-current. In case of high current (short circuit), the actual delay will be smaller.
- 3-4) Delay between driver identification of over-current condition and disabling of all outputs
- 4) Current starts decreasing, eventually reaching 0
- 5) Current goes below I_{BUS_trip}, the driver starts its auto-reset sequence
 6) Driver is automatically reset and normal operation can resume (over-current condition must be removed
- by the time the drivers automatically resets itself)

Figure 2. I_{Trip} Timing Waveform

Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.

Module Pin-Out Description

Pin	Name	Description
1	V _{B1}	High Side Floating Supply Voltage 1
2	U, V _{S1}	Output 1 - High Side Floating Supply Offset Voltage
3	NA	none
4	V_{B2}	High Side Floating Supply voltage 2
5	V,V _{S2}	Output 2 - High Side Floating Supply Offset Voltage
6	NA	none
7	V_{B3}	High Side Floating Supply voltage 3
8	W,V _{S3}	Output 3 - High Side Floating Supply Offset Voltage
9	NA	none
10	V ⁺	Positive Bus Input Voltage
11	NA	none
12	V-	Negative Bus Input Voltage
13	$\overline{H_{IN1}}$	Logic Input High Side Gate Driver - Phase 1
14	H _{IN2}	Logic Input High Side Gate Driver - Phase 2
15	H _{IN3}	Logic Input High Side Gate Driver - Phase 3
16	L _{IN1}	Logic Input Low Side Gate Driver - Phase 1
17	L _{IN2}	Logic Input Low Side Gate Driver - Phase 2
18	L _{IN3}	Logic Input Low Side Gate Driver - Phase 3
19	Fault/T _{MON}	Temperature Monitor and Fault Function
20	I_{TRIP}	Current Monitor
21	V _{CC}	+15V Main Supply
22	V_{SS}	Negative Main Supply

Typical Application Connection IRAMY20UP60B

- 1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. In order to provide good decoupling between V_{CC} - V_{SS} and $V_{B1,2,3}$ - $V_{S1,2,3}$ terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically $0.1\mu\text{F}$, are strongly recommended.
- 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9. Bootstrap capacitor value must be selected to limit the power dissipation of the internal resistor in series with the V_{CC} . (see maximum ratings Table on page 3).
- 4. Current sense signal can be obtained from pin 20 and pin 22. Care should be taken to avoid having inverter current flowing through pin 22 to mantain required current measurement accuracy
- 5. After approx. 8ms the FAULT is reset. (see Dynamic Characteristics Table on page 5).
- 6. PWM generator must be disabled within Fault duration to guarantee shutdown of the system, overcurrent condition must be cleared before resuming operation.
- 7. Fault/Temp Monitor pin must be pulled-up to +5V.

Figure 3. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency V^+ =400V , T_J =150°C, Modulation Depth=0.8, PF=0.6

Figure 4. Maximum Sinusoidal Phase Current vs. Modulation Frequency V^+ =400V, T_J =150°C, T_C =100°C, Modulation Depth=0.8, PF=0.6

Figure 5. Total Power Losses vs. PWM Switching Frequency, Sinusoidal modulation V^+ =400V , T_1 =150°C, Modulation Depth=0.8, PF=0.6

Figure 6. Total Power Losses vs. Output Phase Current, Sinusoidal modulation $V_{BUS}{=}400V\ ,\ T_{J}{=}150^{\circ}C,\quad Modulation\ Depth=0.8,\ PF=0.6$

Figure 7. Maximum Allowable Case temperature vs. Output RMS Current per Phase

Figure 8. Estimated Maximum IGBT Junction Temperature vs. Thermistor Temperature

Figure 9. Thermistor Readout vs. Temperature (12kohm pull-up resistor, 5V) and Nominal Thermistor Resistance values vs. Temperature Table.

Figure 10. Recommended Bootstrap Capacitor Value vs. Switching Frequency

Figure 11. Switching Parameter Definitions

Figure 11a. Input to Output Propagation turn-on Delay Time

Figure 11b. Input to Output Propagation turn-off Delay Time

Figure 11c. Diode Reverse Recovery

Figure CT1. Switching Loss Circuit

Figure CT2. S.C.SOA Circuit

15

Figure CT3. R.B.SOA Circuit

Package Outline

Standard Pin leadforming option

For mounting instruction see AN-1049

Notes:

Dimensions in mm

- 1- Marking for pin 1 identification
- 2- Product Part Number
- 3- Lot and Date code marking
- 4- Convex only 0.15mm typical
- 5- Tollerances ±0.5mm, unless otherwise stated

Data and Specifications are subject to change without notice

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information 07/05

- 07/05

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRAMY20UP60B