What is claimed is:

1. A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{11} & R_3 & R_4 \\ R_{10} & R_4 & R_5 \end{bmatrix}$$
 nX^p

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

- 2. The method of claim 1, wherein R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H.; X^p is CI; m is 1; and n is 1.
 - 3. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -phenyl.
- 4. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.

- 5. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methoxyphenyl.
 - 6. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.
 - 7. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
- 8. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trimethoxyphenyl.
- 9. The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trifluorophenyl.
- 10. The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^- ; m is 1; and n is 1.
- 11. The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl^- ; m is 1; and n is 1.
- 12. The method of claim 1, wherein R₁, R₄, R₇ and R₁₀ are each -4-(N-methyl)pyridinium; R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H; X^p is Cl⁻; m is 5; and n is 5.
- 13. The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfanatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is +3; and n is 3.
- 14. A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

 R_{1} - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo;

X is a counter-anion; and a pharmaceutically acceptable carrier.

- 15. The method of claim 14, wherein R_1 - R_4 are each -H; and X is Cl⁻.
- 16. The method of claim 15, wherein R_5 - R_{12} are each -H.
- 17. The method of claim 15, wherein R_5 , R_7 - R_9 and R_{11} - R_{12} are each -H; and R_6 and R_{10} are each -Cl.
- 18. The method of claim 15, wherein R_5 , R_7 , R_9 and R_{10} are each -H; and R_6 , R_8 , R_{10} and R_{12} are each -Cl.
- 19. A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{matrix} O \\ -C \end{matrix}$$
 or $\begin{matrix} O \\ -S \end{matrix}$

 $R_{13} \ and \ R_{14} \ are each$ -H or -halo;

X is a counter-anion; and

a pharmaceutically acceptable carrier.

20. The method of claim 19, wherein

Y is
$$X = \frac{O}{-C}$$
; and

X is Cl.

- 21. The method of claim 20, wherein R_1 - R_{12} are each -H.
- 22. The method of claim 20, wherein R_1 - R_4 are each -methyl; and R_5 - R_{12} are each -H.
- 23. The method of claim 20, wherein R_1 and R_4 - R_{12} are each -H; and R_2 and R_3 are each -phenyl.
- 24. The method of claim 20, wherein R_1 and R_4 are absent; R_2 and R_3 together form R_{13} R_{14} ; and

R₅-R₁₂ are each -H.

25. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{11} & R_3 & R_4 \\ R_{10} & Au & R_4 \\ R_9 & R_8 & R_7 & R_6 \end{bmatrix}^{\mathsf{m}}$$

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

- 26. The method of claim 25, wherein R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H.; X^p is CI; m is 1; and n is 1.
 - 27. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -phenyl.
- 28. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.
- 29. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methoxyphenyl.
- 30. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.

- 31. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
- 32. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trimethoxyphenyl.
- 33. The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trifluorophenyl.
- 34. The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^- ; m is 1; and n is 1.
- 35. The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl^- ; m is 1; and n is 1.
- 36. The method of claim 25, wherein R₁, R₄, R₇ and R₁₀ are each -4-(N-methyl)pyridinium; R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H; X^p is Cl⁻; m is 5; and n is 5.
- 37. The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfanatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is =3; and n is 5.
- 38. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

 R_1 - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo;

X is a counter-anion; and a pharmaceutically acceptable carrier.

- 39. The method of claim 38, wherein R_1 , R_1 ', R_2 and R_2 ' are each -H; and X is C1'.
 - 40. The method of claim 39, wherein R_3 - R_{10} are each -H.
- 41. The method of claim 38, wherein R_3 , R_5 - R_7 and R_9 - R_{10} are each -H; and R_4 and R_8 are each -Cl.
- 42. The method of claim 38, wherein R_3 , R_5 , R_7 and R_9 are each -H; and R_4 , R_6 , R_8 and R_{10} are each -Cl.
- 43. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 \\ -C \end{bmatrix}$$
 or $\begin{bmatrix} 0 \\ -S \\ 0 \end{bmatrix}$;

R₁₃ and R₁₄ are each -H or -halo;

X is a counter-anion; and

a pharmaceutically acceptable carrier.

44. The method of claim 43, wherein

Y is
$$X = \frac{O}{-C}$$
; and

X is Cl⁻.

- 45. The method of claim 44, wherein R_1 - R_{12} are each -H.
- 46. The method of claim 44, wherein R_1 - R_4 are each -methyl; and R_5 - R_{12} are each -H.
- 47. The method of claim 44, wherein R_1 and R_4 - R_{12} are each --H; and R_2 and R_3 are each -phenyl.
- 48. The method of claim 44, wherein R_1 and R_4 are absent; R_2 and R_3 together form R_{13} R_{14} ; and

R₅-R₁₂ are each -H.

49. A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{11} & R_3 & R_4 \\ R_{10} & Au & R_4 \\ R_9 & R_8 & R_7 & R_6 \end{bmatrix}^{\mathsf{m}}$$

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion; m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

- 50. The composition of claim 49 further comprising 3'-azido-2',3'-dideoxythymidine.
- 51. A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_{1} - R_{12} are each independently -H, -halo, -(C_{1} - C_{6})alkyl or -O(C_{1} - C_{6})alkyl which may be substituted with one or more -O(C_{1} - C_{6})alkyl or -halo;

X is a counter-anion; and

- 52. The composition of claim 51 further comprising 3'-azido-2',3'-dideoxythymidine.
- 53. A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
;

R₁₃ and R₁₄ are each -H or -halo;

X is a counter-anion; and

- 54. The composition of claim 53 further comprising 3'-azido-2',3'-dideoxythymidine.
- 55. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 50.
- 56. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 52.
- 57. A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 54.

58. A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{11} & R_2 & R_3 \\ R_{10} & R_4 & R_4 \\ R_9 & R_7 & R_6 \end{bmatrix}$$
 nX^p

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3; and

n is equal to the absolute value of m/p.

- 59. The complex of claim 58, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.
 - 60. A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

 R_{1} - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; and

X is a counter-anion.

- 61. The complex of claim 60, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.
 - 62. A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{2} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 & \text{or } -\frac{11}{8} \\ -\frac{11}{6} \end{bmatrix}$$
;

 R_{13} and R_{14} are each -H or -halo; and X is a counter-anion.

63. The complex of claim 62, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.