Last name $__$		
First name		

LARSON—MATH 610—CLASSROOM WORKSHEET 24 Projections in Inner Product Spaces.

Concepts & Notation

- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal complement, orthogonal projection.
- (Chp. 7) adjoint.
- 1. For a subspace U of an inner product space V, what is the *orthogonal projection* operator P_U ?
- 2. (Minimizing the distance to a subspace) Suppose U is a finite-dimensional subspace of V, $v \in V$, and $u \in U$. Then $||v P_U v|| \le ||v u||$. Furthermore, the inequality above is an equality if and only if $u = P_U v$.

Linear Functionals and Riesz Representation Theorem

3. What is a linear functional?

4. What is the Riesz Representation Theorem?

Adjoint Operators

5. Let V, W be finite-dimensional inner product spaces and $T \in \mathcal{L}(V, W)$. What is the adjoint T^* of T?

6. Why does the adjoint exist?

7. Find the adjoint T^* of $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_3)$.

8. (Claim) The adjoint of a linear map on an inner product space is linear.