Intervalos de confianza

- 1. Suponga que la variable aleatoria Y es una observación de una distribución normal con media μ desconocida y varianza 1. Encuentre un
 - a) intervalo de confianza de 95 % para μ ,
 - b) límite de confianza superior de 95 % para μ ,
 - c) límite de confianza inferior de 95 % para μ .
- 2. Sea $Y_1, Y_2, ..., Y_n$ una muestra aleatoria de tamaño n de una población con distribución uniforme en el intervalo $(0, \theta)$. Sean $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$ y $U = (1/\theta)Y_{(n)}$.
 - a) Demuestre que U tiene función de distribución.

$$F_U(u) = \begin{cases} 0, & u < 0, \\ u^n & 0 \le u \le 1, \\ 1, & u > 1. \end{cases}$$

- b) Usando U como cantidad pivote, encuentre un límite de confianza inferior de 95 % para θ .
- 3. Suponga que Y está distribuida normalmente con media 0 y varianza σ^2 desconocida. Entonces Y^2/σ^2 tiene una distribución χ^2 con grado de libertad 1. Use la cantidad pivote Y^2/σ^2 para hallar un
 - a) intervalo de confianza de 95 % para σ^2
 - b) límite de confianza superior de 95 % para σ^2
 - c) límite de confianza inferior de 95 % para σ^2
- 4. Suponga que Y tiene la siguiente función de densidad de probabilidad

$$f_Y(y) = \begin{cases} \frac{2(\theta - y)}{\theta^2}, & 0 < y < \theta \\ 0, & \text{en cualquier otro punto} \end{cases}$$

a) Demuestre que Y tiene función de distribución

$$F_Y(y) = \begin{cases} 0, & y \le 0\\ \frac{2y}{\theta} - \frac{y^2}{\theta^2}, & 0 < y < \theta\\ 1, & y \ge \theta \end{cases}$$

- b) Demuestre que Y/θ es una cantidad pivote.
- c) Use la cantidad pivote del inciso b
 para hallar un límite de confianza inferior de 90 % para θ .
- 5. Suponga que Y es una sola observación de una distribución exponencial con media θ .
 - a) Use el método de las funciones generadoras de momento para demostrar que $2Y/\theta$ es una cantidad pivote y tiene una distribución χ^2 con 2 grados de libertad.
 - b) Use la cantidad pivote $2Y/\theta$ para deducir un intervalo de confianza de 90 % para θ .