Introduction to the R-package rtmle

Thomas Alexander Gerds

Department of Biostatistics, University of Copenhagen

1 About

The R-package rtmle implements a class of targeted minimum loss estimators for the analysis of longitudinal register data. The functionality is similar to the established R-package ltmle with the following features and focus points:

- explicit handling of competing risks
- polypharmacy
- descriptive statistics
- diagnostic tools (not to be confused with model goodness of fit)
- subgroup analysis
- support for glmnet
- cheap bootstrap inference
- cross-fitting
- parallel computing

2 Data structures

We consider register data in the following format.

```
library(rtmle)
library(prodlim)
library(riskRegression)
library(data.table)
set.seed(118)
ld <- simulate_long_data(n = 10000,number_epochs = 20,beta = list(sum
    _A_on_Y = -.1,AO_on_Y = 0),register_format = TRUE)
ld</pre>
```

\$baseline_data

	id	sex	age
	<int></int>	<int></int>	<num></num>
1:	1	0	59.44409
2:	2	1	73.01360
3:	3	0	78.26086
4:	4	1	66.53408
5:	5	0	62.35921
9996:	9996	0	43.90035
9997:	9997	1	41.32339
9998:	9998	0	65.08893
9999:	9999	1	42.23665
10000:	10000	1	57.38959

\$timevar_data

\$timevar_data\$L

	id	date
	<int></int>	<num></num>
1:	1	0.00
2:	3	0.00
3:	5	0.00
4:	8	0.00
5:	14	0.00

5119: 9988 421.80 5120: 9992 355.43 5121: 9995 246.33

5122: 9998 377.86 5123: 9998 483.76

$timevar_data$

	id	date
	<int></int>	<num></num>
1:	1	0
2:	3	0
3:	5	0
4:	7	0
5:	9	0
E040.	OFOO	265

5249: 9590 365 5250: 9671 365 5251: 9694 365 5252: 9859 365 5253: 9984 730

\$outcome_data

<int> <num> 1: 1 1076.89 2: 3 50.49 6 140.84 3: 4: 7 402.61 11 481.58 5: ___ 3341: 9979 60.41 3342: 9990 31.30

id

date

3343: 9993 19.82 3344: 9998 609.26

3345: 9999 8.99

\$competing_data

id date
<int> <num>
1: 4 89.71
2: 8 91.81
3: 10 545.28
4: 13 446.94
5: 14 459.49

3360: 9987 30.28 3361: 9988 476.90 3362: 9994 311.22 3363: 9996 71.81 3364: 9997 179.60

\$censored_data

id date <int> <num> 1: 2 260.64 2: 5 6.32 9 209.74 3: 4: 25 298.93 5: 33 341.00 ---

3287: 9989 53.65 3288: 9991 392.38 3289: 9992 1046.23 3290: 9995 758.63 3291: 10000 140.10

3 Example

3.1 Initializing

Targeted minimum loss analysis of register data. Initialized to 3 time intervals (starting at time zero). The name of the subject id variable is 'id'. The outcome, competing risk and censoring variables are named 'Y', 'Dead', and 'Censored', respectively. TODO: The object contains no data yet. Add them with the functions 'add_{longdata}<-' and 'add_{data}<-'. TODO: The object contains no protocols. Add them with the function 'protocol<-'. TODO: The object contains no targets yet. Add them with the function 'target<-'.

3.2 Adding the data

Targeted minimum loss analysis of register data. Initialized to 3 time intervals (starting at time zero). The name of the subject id variable is 'id'. The outcome, competing risk and censoring variables are named 'Y', 'Dead', and 'Censored', respectively. TODO: The object contains no protocols. Add them with the function 'protocol<-'. TODO: The object contains no targets yet. Add them with the function 'target<-'.

3.3 Defining the protocols

```
protocol(x) <- list(name = "always A", treatment_variables = "A",
    intervention = 1)
protocol(x) <- list(name = "never A", treatment_variables = "A",
    intervention = 0)
x</pre>
```

Targeted minimum loss analysis of register data. Initialized to 3 time intervals (starting at time zero). The name of the subject id variable is 'id'. The outcome, competing risk and censoring variables are named 'Y', 'Dead', and 'Censored', respectively. TODO: The object contains no targets yet. Add them with the function 'target<-'.

3.4 Defining the targets

```
target(x) <- list(name = "Outcome_risk", strategy = "additive",
    estimator = "tmle", time_horizon = 3, protocols = c("always A","
    never A"))
target(x) <- list(name = "Outcome_risk_g", strategy = "additive",
    estimator = "g", time_horizon = 3, protocols = c("always A", "never A"))
x</pre>
```

Targeted minimum loss analysis of register data. Initialized to 3 time intervals (starting at time zero). The name of the subject id variable is 'id'. The outcome, competing risk and censoring variables are named 'Y', 'Dead', and 'Censored', respectively.

3.5 Sequential regression with and without TMLE update step

```
x <- long_to_wide(x,intervals = seq(0,2000,30.45*6))
prepare_data(x) <- list()
x <- run_rtmle(x,learn = "learn_glm")</pre>
```