Algorithmen zur Division

- Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen
- in jedem Schritt wird Divisor b **testweise** vom aktuellen Rest r subtrahiert: $q_i = 1$, falls r = r b > 0 $q_i = 0$ und **Korrektur** durch r = r + b, falls r < 0
- Beispiel: $103_{10} / 9_{10} = 11_{10}$ mit Rest 4_{10}

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2 : Integer-Arithmetik

49

Algorithmen zur Division (Forts.)

- all gemein gilt: $a = q \cdot b + r$ mit Rest r < b
- im folgenden sei angenommen, daß *b* eine positive *n*-Bit Zahl und *a* eine positive 2*n*-Bit Zahl darstellen

$$\Rightarrow$$
 es muß gelten: 1) $a < 2^{n-1} \cdot b$ bzw. $q < 2^{n-1}$ (\Rightarrow Ausnahmebehandlung!)

- alle Divisionsalgorithmen führen in Schritt i folgende Operation aus: $r(i) = 2 \cdot r(i-1) q_{n-1} \cdot 2^n \cdot b$ mit i = 1,...,n und r(0) = a
- Es wird korrektes Ergebnis berechnet, da für Rest r = r(n) gilt:

$$r(n) = 2 \cdot r(n-1) - q_0 \cdot 2^n \cdot b$$

$$= 2 \cdot (2 \cdot r(n-2) - q_1 \cdot 2^n \cdot b) - q_0 \cdot 2^n \cdot b = \dots$$

$$= 2^n r(0) - (2^{n-1} q_{n-1} + \dots + 2q_1 + q_0) \cdot 2^n \cdot b$$
Somit folgt: $a = r(0) = q \cdot b - r(n)/2^n$

Algorithmen zur Division (Forts.)

- Algorithmus mit
 Wiederherstellung des Rests
 durch Addition
 (,,Restoring Division")
- statt einer 2n-Bit Addition $r = r + 2^n \cdot b$ genügt hier auch eine n-Bit Addition r' = r' + b, wenn r' die aktuellen höherwertigen n Bit von r darstellt

```
r = a
q = 0
for i = 0 to n-1 {
    shift left r by 1
    r = r - 2<sup>n</sup>b
    if (r >= 0)
        qbit = 1
    else
        qbit = 0
        r = r + 2<sup>n</sup>b
    q = 2q + qbit
}
```

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

51

Algorithmen zur Division (Forts.)

• Algorithmus mit **Bildung eines neuen Rests** nur in
dem Fall, daß die Differenz
nicht negativ ist
("Non-Performing Division")

```
r = a
q = 0
for i = 0 to n-1 {
    shift left r by 1
    tmp = r - 2<sup>n</sup>b
    if (tmp >= 0)
        qbit = 1
        r = tmp
    else
        qbit = 0
    q = 2q + qbit
}
```

Algorithmen zur Division (Forts.)

- Algorithmus mit Beibehaltung eines negativen Restes ("Non-Restoring Division")
- korrigierende Addition anstatt Subtraktion in den Folgeschritten, bis Partialrest r wieder positiv ist
- ggf. Korrektur bei negativem Rest erforderlich

```
r = a
q = 0
for i = 0 to n-1 {
  shift left r by 1
  if (r >= 0)
     r = r - 2^n b
  else
     r = r + 2^n b
  if (r >= 0)
      abit = 1
  else
      qbit = 0
  q = 2q + qbit
if (r < 0)
  r = r + 2^n b
  a = a - 1
```

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

53

Algorithmen zur Division (Forts.)

- zur Äquivalenz von "Restoring" und "Non-Restoring" Division:
 - ,,Restoring":

```
r(i) = 2 \cdot r(i-1) - 2^n \cdot b < 0 \implies r(i+1) = 2 \cdot r(i) - 2^n \cdot b = 4 \cdot r(i-1) - 2^n \cdot b
```

- "Non-Restoring":

$$r(i) = 2 \cdot r(i-1) - 2^n \cdot b < 0 \implies r(i+1) = 2 \cdot r(i) + 2^n \cdot b = 4 \cdot r(i-1) - 2^n \cdot b$$

- Aufwand: im Worst-Case Fall sind genau n-1 Nullen im Quotient q enthalten
 - "Restoring" Division:

n + n - 1 Additionen/Subtraktionen

- "Non-Performing" Division:
 - n Subtraktionen und n-1 Kopieroperationen
- "Non-Restoring" Division:
 - n Additionen/Subtraktionen (ggf. +1 Korrekturaddition)
- ⇒ "Non-Restoring" Division ist das schnellste Verfahren!

Implementierung:

- allgemeiner Aufbau eines Dividierers:
- Behandlung negativer Dividenden und Divisoren sehr umständlich:
 - es gibt kein Äquivalent zum Booth-Algorithmus!
 - i.a. Umwandlung in Vorzeichen und Betrag
- es gibt verschiedene Möglichkeiten, zur Beschleunigung der Division:

- Überspringen von k führenden Nullen im Rest r: schiebe Rest r um k
 Positionen nach links und setze die ersten k Bits von q auf 0
- simultane Generierung mehrerer Quotientenbits durch Subtraktion des Vielfachen von b
- parallele Subtraktionen sind jedoch nicht möglich!

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

Bildung des Divisors

Addierer

Bildung des Ouotienten

55

sequentieller Dividierer

 sequentielle Division ist direkt in Hardware implementierbar

mit

n-Bit Register b,2*n*-Bit Register r,*n*-Bit Addierer/Subtrahierer

- nach *n* Schritten steht Quotient in $r_{n-1} \dots r_0$, Rest in $r_{2n-1} \dots r_n$
- das Steuerwerk implementiert Algorithmus, z.B. gilt für "*Non-Restoring*" Division: $\overline{\text{add}}/\text{sub} := r_{2n-1}$ und $r_0 := \overline{r_{2n-1}}$
- Zeit: $n \cdot (\Delta_{Add} + 3\tau)$

paralleler Dividierer

- wiederholte Subtraktion auch durch **Felddividierer** (,,*array divider*") mit CSA-Addierern implementierbar:
- Zeit: $\Delta_{Add} + (n-1)8\tau + 5\tau$
- Aufbau einer Zelle:

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2 : Integer-Arithmetik

57

SRT-Dividierer

• benannt nach den Entwicklern Sweeny, Robertson und Tocher,

die diesen Algorithmus fast gleichzeitig vorstellten (1958)

 Algorithmus mit dreiwertiger Kodierung der Quotientenbits

$$q'_{i} \in \{\overline{1}, 0, 1\}$$
 bzw. $q'_{i} \in \{-1, 0, 1\}$:

- Quotient q wird somit redundant kodiert
- weniger Additionen und Subtraktionen als bei der "Non-Restoring" Division

SRT-Dividierer (Forts.)

- Problem: SRT-Dividierer benötigt je Schritt Vergleich von r sowohl mit $2^n b$ als auch mit $-2^n b$
- Lösung: der Divisor b wird zuvor durch Schiebeoperationen derart normalisiert, daß hinter dem Vorzeichenbit das erste Nachkommabit ≠ 0 ist, d.h. es gilt: ½ ≤ b < 1
- der Vergleich wird dann wie folgt angenähert:

Dividend a und Rest r sind hierbei auch Zahlen aus [0,1)

• aufgrund der redundanten Darstellung von *q* ist Ergebnis korrekt!

```
if (r >= 1/2)
    qbit = 1
    r = r - b
else if (r < -1/2)
    qbit = -1
    r = r + b
else
    qbit = 0</pre>
```

Rückwandlung von q in binär kodierte Zahl erforderlich!

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

59

SRT-Dividierer (Forts.)

- Zahl der erforderlichen Operationen ist datenabhängig!
- für einen *n*-Bit Dividenden benötigt SRT Algorithmus im Mittel nur *n*/2.67 Additionen
- weitere Beschleunigung durch simultane Generierung mehrerer Quotientenbits, d.h. je Schritt Bestimmung einer Quotientenziffer q_i ∈ { -α, -α+1, ..., -1, 0, 1, ..., α-1, α} (dies wird auch als Radix-2^α SRT Verfahren bezeichnet)
- Abschätzung von q_i erfolgt i.a. über in PLAs gespeicherten **Tabellen** in Abhängigkeit von den höherwertigen Bits des aktuellen Rests r und den höherwertigen Bits des Divisors b
- bei dem 1994 im Intel Pentium Prozessor entdeckten Bug waren 5 Einträge in einer solchen Tabelle falsch!

Rechnen bei eingeschränkter Präzision

- Integer-Rechenwerke sind optimiert für die Verwendung ganzer Zahlen, nicht für das Rechnen mit Festkommazahlen!
- prinzipiell werden reelle Zahlen x aus einer Anwendung mittels **Skalierung** auf ganze n-Bit Zahlen x' abgebildet, die als Festkommazahlen interpretiert werden: $x' = \lfloor 2^q \cdot x \rfloor$
- drei Fälle:
 - 1) fester beschränkter Wertebereich von $x: x \in [a, b]$ mit a < 0 \Rightarrow Zahl der Vorkommabitstellen: $s = \lceil \log_2(\max\{|a|,|b|\}) \rceil + 1$
 - fester beschränkter Wertebereich von $x: x \in [a, b]$ mit $a \ge 0$ 2) \Rightarrow Zahl der Vorkommabitstellen: $s = \lceil \log_2 |b| \rceil$
 - Wertebereich von x unbeschränkt, lediglich ein typischer Wert (z.B. 3) Startwert) $x_0 \neq 0$ ist bekannt \Rightarrow Zahl der Vorkommabitstellen: $s = \lceil \log_2 |x_0| \rceil + \alpha$ mit α abgeschätzt

Zahl der Nachkommabitstellen in allen drei Fällen: q = n - s

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm

Kapitel 2: Integer-Arithmetik

Rechnen bei eingeschränkter Präzision (Forts.)

- Probleme beim Rechnen mit Festkommazahlen:
 - Wahl eines guten Skalierungsfaktors 2^q , mit dem eine reelle Zahl x in eine Festkommazahl $x' = \lfloor x \cdot 2^q \rfloor$ umgerechnet werden kann
 - \Rightarrow Festkommazahl x' ist mit Quantisierungsfehler ε_x behaftet: $x' = x + \varepsilon_x$
 - ist Zahl der Vorkommastellen s zu klein, so ist die **Dynamik** zu niedrig: Wahrscheinlichkeit für Überlauf ist groß!
 - ist Zahl der Nachkommastellen q zu klein, so ist die **Präzision** zu gering: Genauigkeit kann insbesondere für iterative Verfahren unzureichend sein!
 - der aus dem Zweierkomplement resultierende asymmetrische Zahlenbereich ist insbesondere bei kleinen Wortbreiten n oft ungünstig
- betragsmäßig sehr kleine Festkommazahlen können mit einer negativen Vorkommastellenzahl s kodiert werden:

Beispiel: $n = 8, s = -4 \implies \text{Kodierung von } x \in [2^{-12}, 2^{-4} - 2^{-12}] \text{ möglich } !$

Fehlerfortpflanzung

- Seien ε_a und ε_b die Fehler, mit denen zwei Festkommavariablen a' und b' behaftet sind: $a' = a + \varepsilon_a$, $b' = b + \varepsilon_b$
- für die Addition a + b folgt: $a' + b' = a + \varepsilon_a + b + \varepsilon_b \implies \varepsilon_{a+b} = \varepsilon_a + \varepsilon_b$
- für die Multiplikation $a \cdot b$ folgt: $a' \cdot b' = a \cdot b + a \cdot \varepsilon_b + b \cdot \varepsilon_a + \varepsilon_a \cdot \varepsilon_b + \varepsilon_{\text{mult}}$ $\Rightarrow \varepsilon_{a \cdot b} \approx a \cdot \varepsilon_b + b \cdot \varepsilon_a + \varepsilon_{\text{mult}}$ (wobei $\varepsilon_{\text{mult}}$ ein bei Multiplikation entstehender Fehler ist, z.B. durch Bildung eines n-Bit Wertes aus einem 2n-Bit Produkt)
- bei Anwendung einer Funktion $y = \phi(x)$ gilt: $y' = \phi(x + \varepsilon_x) + \varepsilon_\phi \approx \phi(x) + \varepsilon_x \cdot \phi'(x) + \varepsilon_\phi \implies \varepsilon_{\phi(x)} \approx \varepsilon_x \cdot \phi'(x) + \varepsilon_\phi$
- bei einer Operation $y = \varphi(x_1, ..., x_k)$ gilt: $\varepsilon_{\varphi(x_1, ..., x_k)} \approx \sum_{j=1}^k \varepsilon_{x_j} \cdot \frac{\partial y}{\partial x_j} + \varepsilon_{\varphi}$

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2 : Integer-Arithmetik

63

Truncating vs. Rounding

- beim Rechnen mit Festkommazahlen müssen oft von einer m-Bit Zahl x mit q Nachkommabitstellen die niedrigstwertigen r Bits abgeschnitten werden, um eine n-Bit Zahl mit n < m zu erhalten
- im folgenden wird Gleichverteilung für x angenommen
- zwei Techniken:
 - 1) **Abschneiden** (,,*Truncating*"): Abschneiden der Bitpositionen x_{-q+r-1} , ..., x_{-q+1} , x_{-q} $\Rightarrow \varepsilon_x \in [-2^{-q+r} + 2^{-q}, 0]$, mittlerer Fehler: $E[\varepsilon_x] = -\frac{1}{2} \cdot (2^{-q+r} - 2^{-q})$
 - 2) **Runden** (,,*Rounding*"): Abschneiden der Bitpositionen x_{-q+r-1} , ..., x_{-q+1} , x_{-q} und Addition von 2^{-q+r} , falls $(x_{-q+r-1} \dots x_{-q+1} x_{-q})_2 \cdot 2^{-q} \ge 2^{-q+r-1}$, d.h. falls gilt: $x_{-q+r-1} = 1$ $\Rightarrow \varepsilon_x \in [-2^{-q+r-1} + 2^{-q}, 2^{-q+r-1}]$, mittlerer Fehler: $E[\varepsilon_x] = -\frac{1}{2} \cdot 2^{-q}$
- Runden ist stets vorzuziehen, wird bei Festkomma-Arithmetik
 i.a. aber nicht durch Hardware unterstützt!

Sättigung

- Eine andere Möglichkeit, aus einer *m*-Bit Festkommazahl eine *n*-Bit Zahl (mit *n* < *m*) zu erhalten, besteht im Abschneiden von *r* führenden *Vorkommabitstellen*
- Abschneiden der Bitpositionen x_{s-1}, x_{s-2}, ..., x_{s-r} ist fehlerfrei möglich, wenn gilt: x_{s-1} = x_{s-2} = ... = x_{s-r} = x_{s-r-1}
 ⇒ ε_x ∈ [-2^{s-1}, 2^{s-1}], d.h. der resultierende Fehler liegt in der gleichen Größenordnung wie die Zahl x!
- alternativ ist eine **Sättigung** (,,,*Saturation*") denkbar, wird von heutiger Integer Arithmetik-Hardware i.a. aber nicht unterstützt: Wenn eine der abgeschnittenen Bitpositionen $x_{s-2}, ..., x_{s-r}$ ungleich dem Vorzeichen x_{s-1} ist, so wird in $x_{s-r-1} ... x_0$ der größtmögliche darstellbare positive oder negative Wert generiert

$$\Rightarrow \epsilon_x \in [-2^{s-1} + 2^{s-r-1}, 2^{s-1} - 2^{s-r-1}]$$

• typische Anwendung: Addition zweier *n*-Bit Zahlen

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

65

Beispiel 1:

Berechnung von $x_j = \sum_{i=1}^{q} v_i \cdot m_{ij}$ mit 16-Bit Festkommazahlen:

Beispiel 2:

Berechnung von $m_{ij} = m_{ij} + v_i \cdot x_j$ mit 16-Bit Festkommazahlen :

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

67

Beispiel 3:

Berechnung von $m_{ij} = m_{ij} + \eta \cdot (v_i - m_{ij}) \cdot x_j$:

