Lecture 6: CS6250 Graphics & Visualization Data Representation for Visualization

- Dataset
- Cell types
- Attributes
- Types of Datasets
- Data Abstractions in General
- VTK specifics
- Examples

Dataset

What is a dataset?

CS6250 Lecture 6 -1- ©2013 David M. Chelberg

Cell Types

A dataset consists of one or more cells.

A cell is defined by two objects:

- A type
- An ordered list of points called a *connectivity list*

What specifies the geometry of the cell?

Cell Representation

CS6250 Lecture 6

A cell may be represented mathematically by using set theory. C_i is an ordered set of points:

-2-

$$C_i = \{p_1, p_2, \dots, p_n\}$$
 with $p_i \in P$

P is a set of *n*-dimensional points.

A cell uses a point when $p_i \in C_i$

The "use set" of a point p_i is the collection of all cells that contain p_i .

$$U(p_i) = \{C_i : p_i \in C_i\}$$

CS6250 Lecture 6

-3-

©2013 David M. Chelberg

CS6250 Lecture 6

-4-

©2013 David M. Chelberg

©2013 David M. Chelberg

Memory Representation of a Cell The topology is implicit based on the type of a cell. Let's look at an example: a triangle strip:			Cell Types: Vertex		
			Polyvertex		
			Line		
			Polyline		
			Triangle		
CS6250 Lecture 6	-5-	©2013 David M. Chelberg	CS6250 Lecture 6	-6-	©2013 David M. Chelberg
Triangle Strip			Polygon		
Quadrilateral					
Quadrinateral			Tetrahedron		
Pixel			Hexahedron		
			Voxel		
CS6250 Lecture 6	-7-	©2013 David M. Chelberg	CS6250 Lecture 6	-8-	©2013 David M. Chelberg

Additional Types

Let's look at some additional types that might be useful:

• Pyramid

Square base

• Wedge

Two non-parallel triangles connected by lines

• Quadratic quadrilateral

CS6250 Lecture 6

-9-

©2013 David M. Chelberg

CS6250 Lecture 6

Nonlinear Cells

-10-

Used primarily in numerical analysis. Provides better

curved geometry representations. Only quadratic

How can we render nonlinear primitives?

interpolation functions currently supported in VTK.

©2013 David M. Chelberg

Nonlinear Types (see pp. 129-130)

Quadratic Edge

Quadratic Triangle

Quadratic Tetrahedron

Quadratic Hexahedron

Attribute Data

What types of information need to be represented?

At what levels in structures would you want to attach attribute information?

CS6250 Lecture 6 -11- ©2013 David M. Chelberg CS6250 Lecture 6 -12- ©2013 David M. Chelberg