Routing protocols – RIP vs OSPF

Projekt z Teorii Systemów w sieciach teleinformatycznych

Wykonanie: Mateusz Franków 259740, Maciej Ziulczyk 259685

Spis treści

1.	Wpr	owadzenie	4
	1.1.	Założenia projektu	4
	1.2.	Działanie RIP	4
	1.3.	Działanie OSPF	5
	1.4.	Główne różnice między RIP i OSPF	7
	1.5.	Sieć OSPF oraz RIP – Ustawienie protokołu routingu patrz pkt. 3.1	7
	Тор	ologia	7
	Połą	czenia	8
	Adre	esacja IP (IP Link Details) – Ustawienie adresacji patrz pkt. 3.2	9
	Adre	esacja IP (IP Router Address) – Ustawienie adresacji patrz pkt. 3.2	. 10
	Inte	rfejsy	. 11
	1.6.	Sieć OSPF oraz RIP 16 skoków– Ustawienie protokołu routingu patrz pkt. 3.1	. 11
	Тор	ologia	. 11
	Adre	esacja IP (IP Link Details) – Ustawienie adresacji patrz pkt. 3.2	. 12
2.	Wyr	iki scenariuszy	. 13
	2.1.	OSPF	. 13
	Faza	I. Inicjalizacja połączeń – Generowanie ruchu/wykresów patrz pkt. 3.3 i 3.4	. 13
	Faza	II. node_0 <-> node_7, trasa OSPF	. 14
	Faza	III. Awaria połączenie między node_0, a node_5 – Ustawianie Failure Recovery patrz pkt.	
	3.5 i	3.6	. 15
	2.2.	RIP	. 17
	Faza	I. Inicjalizacja połączeń – Generowanie ruchu/wykresów patrz pkt. 3.3 i 3.4	. 17
		II. node_0 <-> node_7, trasa RIP	
		III. Awaria połączenia między node_0 <-> node_5, trasa RIP – Ustawianie Failure Recover	
	•	z pkt. 3.5 i 3.6	
	2.3.2.4.	RIP 16xHOP	
2		figuracja Riverbed Modeler	
3.			
	3.1.	Ustawienie protokołu routingu	
	3.2.	Ustawianie automatycznej adresacji IPv4	
	3.3.	Generowanie ruchu	
	3.4.	Generowanie wykresów ruchu	
	3.5.	Failure Recovery	
	3.6.	Ustawienie czasu konwergencji	
	3.7.	Wyświetlanie trasy routingu	. 31

4.	Omo	świenie danych z symulacji	32
4.	1.	Inicjalizacja	32
4.	2.	Różnica tras	33
4.	3.	Awaria węzła oraz konwergencja	34
4.	4.	16 przeskoków	36
5.	Wni	oski	37

1. Wprowadzenie

1.1. Założenia projektu

Założeniem projektu jest przeprowadzenie symulacji w małej sieci teleinformatycznej w celu:

- Przedstawieniu różnic między protokołami routingu
- Symulacja awarii węzła/łącza oraz zachowanie protokołów
- Wykazanie, że najkrótsza droga nie zawsze jest najlepsza

Symulacja zostanie przeprowadzone przy pomocy programu Riverbed Modeler w wersji Academic Edition 17.5.

Protokoły routingu:

- RIP
- OSPF

1.2. Działanie RIP

RIP (Routing Information Protocol) to protokół bram wewnętrznych działający na podstawie wektora odległości (distance-vector), który wykorzystuje liczbę przeskoków jako metrykę routingu. Stosuje się go w systemach autonomicznych korzystających z protokołu IP. Protokół RIP jest otwartym standardem (RFC 1058 i STD 56). Protokół RIP cechuje się:

- Zapobiega pętli routingu wprowadzając liczbę przeskoków dozwolonych na ścieżce od źródła do miejsca docelowego, największa liczba przeskoków wynosi 15, organiczna to rozmiar sieci obsługiwanej przed ten protokół.
- Aktualizacje trasowania są rozgłaszane tylko do routerów sąsiednich
- Routery rozsyłają aktualizację ze swoją tablicą routingu co 30sekund, powoduje to wzmożenie ruchu w sieci
- Wykorzystuje protokół UDP jako protokół transportowy (port numer 520)
- Niskie wymagania sprzętowe, łatwy w konfiguracji

W większości sieci protokół RIP nie jest preferowanym protokołem routingu, jego czas na osiągnięcie zbieżności, a także jego skalowalność jest słaba w porównaniu z nowymi protokołami routingu(takimi jak EIGRP, OSPF). Jest on natomiast łatwy w konfiguracji i nie wymaga żadnych parametrów. Aktualnie istnieją trzy wersje protokołu RIP: RIPv1, RIPv2 i RIPng.

Routery używające RIP wykorzystują datagramy użytkowników na porcie 520. Komunikaty wymieniane pomiędzy routerami są enkapsulowane w segmencie UDP.

Nagłówek protokołu:

Opis nagłówka:

Polecenie – czy pakiet jest żądaniem uaktualnienia czy odpowiedzią na żądanie

Wersja – numer wersji protokołu RIP

Identyfikator rodziny adresów – identyfikacja rodziny adresów, do których należy adres w polu "adres IP"

Adres sieciowy- adres nadawcy lub adres z przysyłanej tabeli tras nadawcy

Metryka – długość do celu (ilość przeskoków)

Protokół RIP używa dwóch wiadomości:

- Poproś o wiadomość (Request Message) prośba skierowana do sąsiedniego routera, o wysłanie jego tablicy routingu
- Wiadomość odpowiadająca (Response Message) przesłanie tablicy routingu do proszącego o nią routera

1.3. Działanie OSPF

OSPF (*Open Shortest Path First*) to protokół routingu dynamicznego należącym do protokołów IGP (*Interior Gateway Protocol*), bramy wewnętrznej, czyli w sieci autonomicznej, najczęściej w obrębie jednej organizacji. Jego działanie opiera się na analizie stanu łącza, cechuje się:

- Metryki oraz koszty przejścia pakietów przez połączenia
- oszczędność pasma, przesyła uaktualnienia tras wysyłane są jedynie przy zmianie, nie regularnymi komunikatami
- szybka konwergencja, czyli zdolność do szybkiego wykrycia zmian w sieci
- struktura hierarchiczna, czyli podział na obszary wsparcie dla VLSM (Variable Length Subnet Mask)

Protokół OSPF tworzy hierarchiczną topologie sieci z podziałem na obszary z jednym centralnym (zerowym), który pośredniczy w wymianie tras między obszarami. Wykorzystuje on technikę zalewania (flooding) w celu przekazania informacji do sąsiednich routerów o zmianach w topologii.

Algorytm OSPF stanu łącza oblicza zmiany tras obszarów znajdujących się w routerze. Obliczanie metryki oraz kosztu odbywa się za pomocą danego wzoru:

Koszt = Referencyjna przepustowość / przepustowość interfejsu Przykład: Koszt = 100Mbps/ 100Mbps = 1

Koszt można również przypisać do interfejsu w celu ręcznego ustalenia jakiejś trasy. Po zakończeniu obliczeń dane trasy o najniższym sumarycznym koszcie dotarcia do celu umieszcza do tablicy routingu. Jeżeli istnieją dwie trasy do tego samego celu może zostać użyty load-balancing.

Router będący routerem brzegowym lub granicznym (ABR), czyli sąsiadujący z innym obszarem, utrzymuje i obsługuję dwie tabele routingu dla obydwu obszarów.

W obszarze wybiera się jeden router główny i zapasowy w celu przechowywania wszystkich tras, celem takiego działania jest ograniczenie zapytań o aktualizację tablicy routingu w sieci LAN, czyli zmniejszenia zużycia zasobów. Routery pobierają aktualizację tras wtedy gdy brakuje w jej własnej tablicy trasy do docelowej sieci. Router główny i zapasowy powinny się szacować większą wydajnością.

Sieć szkieletowa powinna być zaprojektowana w celu przeciwdziałania awarii oraz przeciążeń, protokół OSPF dobrze nadaje się do takich zastosowań ze względu na szybkie dostosowanie się w przypadku awarii, zaleca się aby jeden obszar niw przekraczał 50 routerów. OSPF umożliwia również tworzenie łączy wirtualnych w celu łączenia obszarów przez inny obszar w celu zapewnienia dostępności.

Routery wymieniają między sobą dużą liczbę informacji używając do tego komunikaty:

- hello nawiązywanie i utrzymywanie relacji sąsiedzkich,
- database descriptions opis przechowywanych baz danych,
- requests link-state żądanie informacji na temat stanów połączeń,
- updates link-state aktualizacja stanów połączeń,
- acknowledgments links-state potwierdzenia stanów połączeń.

W celu przeciwdziałania zalaniu sieci komunikatami tylko routery brzegowe wymieniają informację o trasach wewnątrz obszaru z innymi routerami brzegowymi. Obszar powinien się składać maksymalnie z 50 routerów.

1.4. Główne różnice między RIP i OSPF

	RIP	OSPF
Działanie routingu	Używa wektora routingu, czyli używa odległości lub skoków do określenia trasy	Routing stanu łącza, czyli analizuje różne dane na temat połączenia takie jak: koszt, prędkość
Tablica routingu	Router tworzy tablicę na podstawie danych z sąsiednich routerów, a następnie wysyła ją do sąsiednich urządzeń w stałym okresie czasu	Router tworzy tablicę routingu otrzymując informację z sąsiednich routerów, ale nigdy nie posiada pełnej tablicy
Liczba skoków	Maksymalnie 15	Brak ograniczenia
Czas konwergencji	Wolny	Szybki
Projektowanie	Płaskie	Hierarchiczne
Przeznaczenie	Małe sieci	Średnie i duże
Wymagane zasoby urządzenia (CPU, RAM)	Małe	Duże
Obciążenie sieci	Duże ze względu na przesyłanie pełnych tablic	Małe, wysyła tylko aktualizację

1.5. Sieć OSPF oraz RIP – Ustawienie protokołu routingu patrz pkt.

3.1

Topologia

Połączenia

Link Name	Standard	Intrerface Name	Node Name	Network Protocols
RTR1<->RTR2 100Mb/s	100BaseT	IF2	RTR1	IP
		IF2	RTR2	IP
RTR2<->RTR3 100Mb/s	100BaseT	IF3	RTR2	IP
		IF2	RTR3	IP
RTR3<->RTR5 100Mb/s	100BaseT	IF3	RTR3	IP
		IF2	RTR5	IP
RTR4<->RTR5 100Mb/s	100BaseT	IF2	RTR4	IP
		IF3	RTR5	IP
RTR5<->RTR7 100Mb/s	100BaseT	new_IF4	RTR5	IP
		IF3	RTR7	IP
RTR7<->RTR6 10Mb/s	10BaseT	IF2	RTR7	IP
		IF2	RTR6	IP
RTR1<->RTR6 100Mb/s	100BaseT	IF3	RTR1	IP
		IF3	RTR6	IP
RTR3<->RTR4 10Mb/s	10BaseT	new_IF4	RTR3	IP
		new_IF5	RTR4	IP
RTR4<->RTR7 10Mb/s	10BaseT	IF3	RTR4	IP
		new_IF4	RTR7	IP
RTR7<->RTR8 10Mb/s	10BaseT	new_IF5	RTR7	IP
		IF3	RTR8	IP
RTR5<->RTR8 10Mb/s	10BaseT	new_IF5	RTR5	IP
		new_IF4	RTR8	IP
RTR1<->RTR4 10Mb/s	10BaseT	new_IF4	RTR1	IP
		new_IF4	RTR4	IP

Adresacja IP (IP Link Details) – Ustawienie adresacji patrz pkt. 3.2

		Node A	Node A	Node A IP		Node B	Node B	Node B IP
Link Name	Node A	Vendor	Port	Address	Node B	Vendor	Port	Address
Logical Network.node_0 <-	Logical	Cisco			Logical	Cisco		
> node_5	Network.node_0	Systems	IF2	192.0.0.29/30	Network.node_5	Systems	IF2	192.0.0.30/30
Logical Network.node_5 <-	Logical	Cisco			Logical	Cisco		
> node_6	Network.node_5	Systems	IF3	192.0.0.33/30	Network.node_6	Systems	IF2	192.0.0.34/30
Logical Network.node_6 <-	Logical	Cisco			Logical	Cisco		
> node_7	Network.node_6	Systems	IF3	192.0.0.41/30	Network.node_7	Systems	IF2	192.0.0.42/30
Logical Network.node_7 <-	Logical	Cisco			Logical	Cisco		
> node_4	Network.node_7	Systems	IF3	192.0.0.38/30	Network.node_4	Systems	IF2	192.0.0.37/30
Logical Network.node_0 <-	Logical	Cisco			Logical	Cisco		
> node_1	Network.node_0	Systems	IF3	192.0.0.21/30	Network.node_1	Systems	IF2	192.0.0.22/30
Logical Network.node_5 <-	Logical	Cisco			Logical	Cisco		
> node_1	Network.node_5	Systems	new_IF4	192.0.0.26/30	Network.node_1	Systems	new_IF4	192.0.0.25/30
Logical Network.node_6 <-	Logical	Cisco			Logical	Cisco		
> node_2	Network.node_6	Systems	new_IF4	192.0.0.13/30	Network.node_2	Systems	IF3	192.0.0.14/30
Logical Network.node_1 <-	Logical	Cisco			Logical	Cisco		
> node_2	Network.node_1	Systems	IF3	192.0.0.2/30	Network.node_2	Systems	IF2	192.0.0.1/30
Logical Network.node_2 <-	Logical	Cisco			Logical	Cisco		
> node_3	Network.node_2	Systems	new_IF4	192.0.0.6/30	Network.node_3	Systems	IF3	192.0.0.5/30
Logical Network.node_4 <-	Logical	Cisco			Logical	Cisco		
> node_3	Network.node_4	Systems	IF3	192.0.0.9/30	Network.node_3	Systems	IF2	192.0.0.10/30
Logical Network.node_3 <-	Logical	Cisco			Logical	Cisco		
> node_7	Network.node_3	Systems	new_IF4	192.0.0.18/30	Network.node_7	Systems	new_IF4	192.0.0.17/30

Adresacja IP (IP Router Address) – Ustawienie adresacji patrz pkt. 3.2

Router Name	Interface Name	Is Connected?	IP Address
Logical Network.node_0	IF2	Yes	192.0.0.29/30
	IF3	Yes	192.0.0.21/30
Logical Network.node_1	IF2	Yes	192.0.0.22/30
	IF3	Yes	192.0.0.2/30
	new_IF4	Yes	192.0.0.25/30
Logical Network.node_2	IF2	Yes	192.0.0.1/30
	IF3	Yes	192.0.0.14/30
	new_IF4	Yes	192.0.0.6/30
Logical Network.node_3	IF2	Yes	192.0.0.10/30
	IF3	Yes	192.0.0.5/30
	new_IF4	Yes	192.0.0.18/30
Logical Network.node_4	IF2	Yes	192.0.0.37/30
	IF3	Yes	192.0.0.9/30
Logical Network.node_5	IF2	Yes	192.0.0.30/30
	IF3	Yes	192.0.0.33/30
	new_IF4	Yes	192.0.0.26/30
Logical Network.node_6	IF2	Yes	192.0.0.34/30
	IF3	Yes	192.0.0.41/30
	new_IF4	Yes	192.0.0.13/30
Logical Network.node_7	IF2	Yes	192.0.0.42/30
	IF3	Yes	192.0.0.38/30
	new_IF4	Yes	192.0.0.17/30

Interfejsy

Node	Interface	Delay (milliseconds)	Bandwidth in Mbps
Logical Network.node_0	IF2	1.0	10.0
	IF3	1.0	100.0
Logical Network.node_1	IF2	1.0	100.0
	IF3	1.0	100.0
	new_IF4	1.0	100.0
Logical Network.node_2	IF2	1.0	100.0
	IF3	1.0	100.0
	new_IF4	1.0	100.0
Logical Network.node_3	IF2	1.0	100.0
	IF3	1.0	100.0
	new_IF4	1.0	100.0
Logical Network.node_4	IF2	1.0	10.0
	IF3	1.0	100.0
Logical Network.node_5	IF2	1.0	10.0
	IF3	1.0	10.0
	new_IF4	1.0	100.0
Logical Network.node_6	IF2	1.0	10.0
	IF3	1.0	10.0
	new_IF4	1.0	100.0
Logical Network.node_7	IF2	1.0	10.0
	IF3	1.0	10.0
	new_IF4	1.0	100.0

1.6. Sieć OSPF oraz RIP 16 skoków – Ustawienie protokołu routingu patrz pkt. 3.1

Topologia

Adresacja IP (IP Link Details) – Ustawienie adresacji patrz pkt. 3.2

Link Name	Node A	Node A Vendor	Node A Port	Node A IP Address	Node B	Node B Vendor	Node B Port	Node B IP Address
node_0 <-> node_1	node_0	Cisco Systems	IF2	192.0.0.2/30	node_1	Cisco Systems	IF2	192.0.0.1/30
node_1 <-> node_2	node_1	Cisco Systems	IF3	192.0.0.6/30	node_2	Cisco Systems	IF2	192.0.0.5/30
node_2 <-> node_3	node_2	Cisco Systems	IF3	192.0.0.10/30	node_3	Cisco Systems	IF2	192.0.0.9/30
node_3 <-> node_4	node_3	Cisco Systems	IF3	192.0.0.14/30	node_4	Cisco Systems	IF2	192.0.0.13/30
node_4 <-> node_5	node_4	Cisco Systems	IF3	192.0.0.18/30	node_5	Cisco Systems	IF2	192.0.0.17/30
node_5 <-> node_6	node_5	Cisco Systems	IF3	192.0.0.22/30	node_6	Cisco Systems	IF2	192.0.0.21/30
node_6 <-> node_7	node_6	Cisco Systems	IF3	192.0.0.26/30	node_7	Cisco Systems	IF2	192.0.0.25/30
node_7 <-> node_8	node_7	Cisco Systems	IF3	192.0.0.30/30	node_8	Cisco Systems	IF2	192.0.0.29/30
node_8 <-> node_9	node_8	Cisco Systems	IF3	192.0.0.34/30	node_9	Cisco Systems	IF2	192.0.0.33/30
node_9 <-> node_10	node_9	Cisco Systems	IF3	192.0.0.38/30	node_10	Cisco Systems	IF2	192.0.0.37/30
node_10 <->								
node_11	node_10	Cisco Systems	IF3	192.0.0.42/30	node_11	Cisco Systems	IF2	192.0.0.41/30
node_11 <->								
node_12	node_11	Cisco Systems	IF3	192.0.0.46/30	node_12	Cisco Systems	IF2	192.0.0.45/30
node_12 <->		C' C	153	402.0.0.50/20		6 6	153	102.0.0.10/20
node_13	node_12	Cisco Systems	IF3	192.0.0.50/30	node_13	Cisco Systems	IF2	192.0.0.49/30
node_13 <-> node_14	node 13	Cisco Systems	IF3	192.0.0.54/30	node 14	Cisco Systems	IF2	192.0.0.53/30
node_14 <->	110ue_13	Cisco Systems	11.5	192.0.0.34/30	110ue_14	Cisco Systems	11 2	192.0.0.33/30
node 15	node_14	Cisco Systems	IF3	192.0.0.58/30	node 15	Cisco Systems	IF2	192.0.0.57/30
node_15 <->		,				/		, , , , , , , , , , , , , , , , , , , ,
node_16	node_15	Cisco Systems	IF3	192.0.0.61/30	node_16	Cisco Systems	IF2	192.0.0.62/30
node_16 <->								
node_17	node_16	Cisco Systems	IF3	192.0.0.66/30	node_17	Cisco Systems	IF2	192.0.0.65/30

2. Wyniki scenariuszy

2.1. OSPF

Faza I. Inicjalizacja połączeń – Generowanie ruchu/wykresów patrz pkt. 3.3 i 3.4

Rysunek 1. Ruch generowany przez OSPF (b/s)

Ilość danych (w bitach na sekundę) przesyłanych przez protokół OSPF po uruchomieniu systemu w celu utworzenia tablic routingu

Faza II. node_0 <-> node_7, trasa OSPF

Tabela 1. Skoki pakietów w OSPF

node_0 -> n	ode_7	node_7 -> no	node_7 -> node_0		
node_0	node_0 <-> node_5	node_7	node_3 <-> node_7		
node_5	node_5 <-> node_1	node_3	node_2 <-> node_3		
node_1	node_1 <-> node_2	node_2	node_1 <-> node_2		
node_2	node_6 <-> node_2	node_1	node_5 <-> node_1		
node_6	node_6 <-> node_7	node_5	node_0 <-> node_5		
node_7		node_0			

Rysunek 2. Trasa routingu w OSPF

Na rysunku przedstawiona jest trasa między routerami node _0 oraz node_7 (z i do) z wykorzystaniem protokołu OSPF.

W tabeli znajdują się po kolei skoki oraz połączenia wykorzystane do dotarcia do destynacji

Rysunek 3. Ruch generowany przez OSPF podczas awarii łącza 0 - 5

Na wykresie kolorem niebieskim oznaczono normalny ruch (bez awarii) generowany przez protokół OSPF, pierwsze 5 minut jest takie samo jak w fazie numer 1. Kolor czerwony oznacza ten sam ruch, ale wywołany awarią połączenia pomiędzy node_0, a node_5.

Czas konwergencji:

Rysunek 4. Czas konwergencji przy uruchomieniu oraz awarii OSPF

Wykres przedstawia czas potrzebny do uzyskania pełnej sprawności około 15 sekund (pierwsze dwie kropki oznaczone niebieskim kołem) oraz czas odzyskania sprawności po awarii połączenia około 10 sekund (kropka oznaczona czerwonym kolorem).

2.2. RIP

Faza I. Inicjalizacja połączeń – Generowanie ruchu/wykresów patrz pkt. 3.3 i 3.4

Rysunek 5. Ruch generowany przez RIP

Ilość danych (w bitach na sekundę) przesyłanych przez protokół RIP po uruchomieniu systemu w celu utworzenia tablic routingu.

Faza II. node_0 <-> node_7, trasa RIP

Tabela 2. Skoki w RIP

node_0 -> no	ode_7	node_7 -> no	node_7 -> node_0		
node_0	node_0 <-> node_5	node_7	node_6 <-> node_7		
node_5	node_5 <-> node_6	node_6	node_5 <-> node_6		
node_6	node_6 <-> node_7	node_5	node_0 <-> node_5		
node_7		node_0			

Rysunek 6. Trasa w RIP

Na rysunku przedstawiona jest trasa między routerami node _0 oraz node_7 (z i do) z wykorzystaniem protokołu OSPF.

W tabeli znajdują się po kolei skoki oraz połączenia wykorzystane do dotarcia do destynacji

Rysunek 7. Ruch generowany przez RIP podczas awarii łącz 0-5

Na wykresie kolorem niebieskim oznaczono normalny ruch (bez awarii) generowany przez protokół RIP, pierwsza minuta jest taka sama jak w fazie numer 1. Kolor czerwony oznacza ten sam ruch, ale wywołany awarią połączenia pomiędzy node_0, a node_5, jest on nie widoczny, czyli nic się nie zmieniło.

Czas konwergencji

Rysunek 8. Czas konwergencji podczas uruchomienia oraz awarii RIP

Wykres przedstawia czas potrzebny do uzyskania pełnej sprawności około 6 sekund (pierwsza kropka oznaczona niebieskim kołem)

2.3. OSPF 16xHOP

Rysunek 9. Trasa pakietu w OSPF

Zrzut przedstawia trasę pakietu od hosta (router) node_0 do destynacji (router) node_17, oraz wyniki połączń (okno po prawej), jak widać połączenie w protokole OSPF zakończyło się sukcesem.

2.4. RIP 16xHOP

Rysunek 10. Trasa pakietu w RIP

Zrzut przedstawia trasę pakietu od hosta (router) node_0 do destynacji (router) node_17, oraz wyniki połączń (okno po prawej), jak widać połączenie w protokole RIP dotarło najdalej do node_16 (15 skoków) połączenie do node_17 nie zakończyło się sukcesem ("No route to destination").

3. Konfiguracja Riverbed Modeler

3.1. Ustawienie protokołu routingu

1. Protocols -> IP -> Routing -> Configure Routing Protocols...

2. Wybieramy protokół w zależności od potrzeby

3.2. Ustawianie automatycznej adresacji IPv4

1. Protocols -> IP -> Addressing ->Auto-Assign IP Addresses...

2. Wybieramy IPv4 oraz wszystkie interfejsy

3.3. Generowanie ruchu

- 1. Wybieramy węzły z których chcemy utworzyć ruch
- 2. Traffic -> Create Traffic Flows -> IP Unicast...

3. Wybieramy "Full mesh between all nodes"

Node selection Full mesh between all nodes
Full mesh between all nodes
○ To all other nodes from: node_0
○ From all other nodes to: node_0
Intensity — Characteristics —
Packets/sec: 100 Description: Represents IP Unicast Traffic Flows
Bits/sec: 120000 Color: Set start time 13:50:50.000 May 15 2022
Duration (secs): 3600
Socket information
Destination IP address: Auto Assigned Source port: <not set=""></not>
Type of service: Unset Destination port: <not set=""></not>
Protocol: <not set=""></not>
<u>C</u> reate <u>Cancel</u>

3.4. Generowanie wykresów ruchu

1. Klikamy prawym klawiszem na scenariusz wybierając opcję Choose Individual DES Statistics

2. Ustawiamy parametry, które zbadać ma symulacja

Choose Results

3. Ikoną w górnym menu startujemy symulację

4. Ustawiamy parametry badane w symulacji

5. Klikamy run -> włącza się symulacja

6. Rozwijamy pasek DES->Results->View Results, znajdują się tam wyniki symulacji

3.5. Failure Recovery

1. Awaria wezła miedzy routerem "0", a "5"

2. Moment, w którym występuje błąd ustawiamy w okienku poniżej

3.6. Ustawienie czasu konwergencji

3.7. Wyświetlanie trasy routingu

- 1. Generowanie ruchu, patrz pkt. 3.3.
- 2. "Protocols" -> "IP" -> "Demands" -> "Display Routes for Configured Demands…"

3. Wybieramy trasę którą chcemy wyświetlić lub wyświetlamy wszystkie przez przycisk (żółty kolor)

4. Omówienie danych z symulacji

4.1. Inicjalizacja

Rysunek 11. Ruch generowany przez OSPF

Rysunek 13. Ruch generowany przez RIP

Protokół	RIP	OSPF
Ruch wysłany	1175 b/s	8400 b/s
Czas pełnej inicjalizacji	1 minuta	4 minuty

Protokół OSPF podczas inicjalizacji generuje większy ruch początkowy o około 7 kb/s oraz potrzebuje czasu, około 3 minut, na rozesłanie tablic routingu (strzałka 1.) i generuje ruch około 750 b/s. RIP natomiast cały ruch generuje w około minutę.

4.2. Różnica tras

Rysunek 13. Trasa w OSPF

Rysunek 125. Trasa w RIP

Tabela 3. Skoki w OSPF oraz RIP

node_0 -> node_7		node_7 -> node_0		node_0 -> node_7		node_7 -> node_0	
node_0	node_0 <-> node_5	node_7	node_3 <-> node_7	node_0	node_0 <-> node_5	node_7	node_6 <-> node_7
node_5	node_5 <-> node_1	node_3	node_2 <-> node_3	node_5	node_5 <-> node_6	node_6	node_5 <-> node_6
node_1	node_1 <-> node_2	node_2	node_1 <-> node_2	node_6	node_6 <-> node_7	node_5	node_0 <-> node_5
node_2	node_6 <-> node_2	node_1	node_5 <-> node_1	node_7		node_0	
node_6	node_6 <-> node_7	node_5	node_0 <-> node_5				
node_7		node_0					

Na tym porównaniu widać różnicę w sposobie wyboru trasy, RIP wybiera najkrótszą trasę czyli tylko 3 przeskoki nie zwracając uwagi na przepustowość czy koszt łącza. Trasa do i z powrotem jest identyczna. OSPF wyliczył metrykę na podstawie, której wskazał najbardziej optymalną trasę, która wymagała 5 skoków, ale uwzględniła przepustowości oraz koszt łącza. Droga do i z powrotem różnią się, nie są takie same jak w przypadku RIP.

4.3. Awaria węzła oraz konwergencja

Ruch generowany:

Rysunek 15. Ruch generowany podczas uruchomienia oraz awarii OSPF

Rysunek 16. Ruch generowany podczas uruchomienia oraz awarii RIP

W przypadku protokołu RIP inicjalizacja podczas awarii węzła jest niezauważalna. Natomiast protokół OSPF podczas awarii (10minuta) musiał ponownie zainicjować część połączeń, co widoczne jest na wykresie jako chwilowy wzrost ruchu w okolicy 10-tej minuty.

Czas konwergencji:

Rysunek 147. Czas konwergencji przy uruchomieniu oraz awarii OSPF

Rysunek 18. Czas konwergencji podczas uruchomienia oraz awarii RIP

Awaria została ustawiona dla tego samego połączenia, node_0 a node_5, czas konwergencji dla OSPF jest większy, ponieważ dla RIP nie ma żadnego czasu lub jest on całkowicie znikomy.

4.4. 16 przeskoków

Rysunek 19. Trasa w RIP Rysunek 20. Trasa w OSPF

Na powyższym porównaniu widać, że pakiety wysłane z node_0 do node_17 są odrzucane, jest to spowodowane tym, że protokół RIP dopuszcza jedynie 15 przeskoków. W przypadku protokołu OSPF, który nie jest ograniczony od ilości przeskoków, pakiety bez problemu docierają.

5. Wnioski

W przypadku tak małej sieci nie posiadającej więcej niż 15 skoków RIP może być dobrym rozwiązaniem, ale w przypadku rozwijającej się topologii ten protokół może być nie wystarczający, dodatkowo jeżeli zależy nam na większej przepustowości i minimalizacji kosztów łącza OSPF będzie dobrym wyborem. Różnica generowanego ruchu podczas inicjalizacji wynosząca kilobity na sekundę jest nie znaczna w obliczu dzisiejszych przepustowości.

W tym przykładzie nie wykorzystywana jest funkcjonalność strefowa w OSPF (powiązane jest to z wielkością sieci). Czas konwergencji jest również mniejszy dla RIP.

Naszym zdaniem używanie protokołu OSPF będzie lepsze ze względu na jego możliwości rozbudowy oraz wręcz nie zauważalne różnice w obciążeniu łącz. Po rozbudowie może okazać się, że wymagana będzie zmiana protokołu routingu co w przypadku większych sieci może być uciążliwe dla użytkownika oraz skomplikowane w implementacji.

Program Riverbed Modeler nie jest prostym narzędziem, a jego funkcjonalności są rozbudowane. Potrzeba czasu, aby go dobrze poznać, natomiast może być to warte wysiłku. Wersja programu, którą posiadamy nie zawiera nowych generacji urządzeń, w naszym projekcie użyte były Routery z roku w przybliżeniu 2012, oraz dla uproszczenia połączenia w technologii Ethernet 10Base-T oraz 100Base-T.