

Mecânica Clássica

Ano letivo 2020/21 2º Semestre

Data: 26 de Maio 2021

Hora: 16h30

Duração: 1h 30m (+30m)

Cotação: I – 8 valores II - 7 valores III - 5 valores

I

1	~ .	/ \	
Assinale	e a opção correta	(X)	١.

1.	Uma espingarda é apontada horizontalmente em direção ao centro de um alvo a 100 m de distância. Se a bala atingir o alvo 10 cm abaixo do centro, qual era o valor da velocidade da bala à saída da espingarda? Nota: ignore a resistência do ar.
	700 m/s.
	500 m/s.
	300 m/s.
	333 m/s.
2.	Um avião tem uma velocidade de descolagem de 120 km/h. Que aceleração constante mínima é necessária para que o avião descole após percorrer uma distância de 240 m?
	$4,63 \text{ m/s}^2$.
	$3,63 \text{ m/s}^2.$
	$2,31 \text{ m/s}^2.$
	$5,55 \text{ m/s}^2$.
3.	Um objeto move-se numa trajetória circular com velocidade constante em módulo. O trabalho realizado pela força centrípeta é zero porque:
	o deslocamento para cada revolução é zero.
	a magnitude da aceleração é zero.
	não há atrito.
	a força média para cada revolução é zero.
	a força centrípeta é perpendicular à velocidade.

4. Um garfo de dois dentes com comprimento L=0.5 m roda em torno do ponto O com velocidade angular constante $\dot{\theta}=3$ rad/s. Nesse movimento o garfo empurra uma cavilha P ao longo da guia em espiral definida pela condição $r=0.4\times\theta$ m, onde θ vem em radianos. A velocidade da cavilha no instante em que deixa a ranhura do garfo, isto é, quando r=0.5 m é:

$$\vec{v} = 1.2 \, \hat{e}_r + 1.5 \, \hat{e}_\theta \, \, \, (\text{m/s})$$

$$\vec{v} = 1.5 \, \hat{e}_r + 1.2 \, \hat{e}_\theta \, (\text{m/s})$$

$$\vec{v} = 0.5 \, \hat{e}_r + 1.5 \, \hat{e}_\theta \, \, \, (\text{m/s})$$

$$\vec{v} = 1.5 \, \hat{e}_r + 0.5 \, \hat{e}_\theta \, \, (\text{m/s})$$

5. Como mostra a figura abaixo, o bloco 2 de massa m_2 desliza ao longo de uma mesa com coeficiente de atrito μ , enquanto o bloco 1 de massa m_1 cai. Os blocos estão ligados por um fio inextensível e sem massa que desliza pela gola de uma roldana, sem atrito. Os blocos partem do repouso. Quando o bloco 2 se deslocou uma distância d, o bloco 1 adquiriu uma velocidade v_1 e temos:

II

Considere o sistema representado na seguinte figura, em que um bloco de massa m = 6 kg está sobre uma superfície cónica A B C que tem uma inclinação $\theta = 30^{\circ}$. Despreze as forças de atrito.

- a) Represente todas as forças a atuar sobre o bloco.
- b) Assumindo que o bloco está em repouso, determine a tensão no fio.
- c) Assuma agora que o bloco roda em torno do eixo dos z com a velocidade angular
 ω necessária (mínima) para reduzir a reação normal da superfície cónica a zero.
 - i. Determine essa velocidade angular.
 - ii. Considere um referencial Ox'y'z' (coincidente com o referencial Oxyz no instante t=0s) que roda com a velocidade angular obtida na alínea anterior em torno do eixo dos z (o bloco está parado neste referencial). Determine o vetor aceleração de Coriolis e o vetor aceleração centrífuga no instante t = 0 s neste referencial. Nota: o vetor posição nesse instante é $\vec{r}(t$ = 0 s) = $L \times sin(30^\circ)$ $\hat{\imath}$.

Ш

Uma partícula de massa unitária move-se no espaço xy sob acção de duas forças: uma força \vec{F}_1 , de energia potencial $U_1(x,y) = x^2 + y$ e uma força dada por

$$\vec{F}_2 = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$$

- a) Determine a expressão da força correspondente à energia potencial $U_1(x,y)$.
- b) A força obtida na alínea anterior é conservativa? Justifique.
- c) Ache os pontos de equilíbrio para a força total.
- d) Determine a variação da energia cinética de uma partícula de massa 2 kg submetida às duas forças e que se desloca de B para C ao longo do percurso A.

Formulário

$$x = A\cos(\omega t + \phi_0)$$

$$x = Ae^{-rt}\cos(\omega t - \phi)$$

$$x = Ae^{-rt}\cos(\omega t - \phi)$$