Regression and Optimization

Square Error (featurized):

$$L(w) = \frac{1}{n} \sum (y_i - w^\top \phi_j(x_i)^2) = \frac{1}{n} ||y - \Phi w||_2^2$$
 margin(w) = min_i y_i \langle w, x_i \rangle (min distance to x_i)

$$\nabla_w L(w) = \frac{2}{n} \Phi^\top (\Phi \hat{w} - y) \quad (\Phi^\top \Phi \text{ psd})$$
 Hard SVM: min_w ||w||₂ s.t. $\forall i$. $y_i w^\top x_i \ge 1$
Gradient Descent: $w^{t+1} = w^t - \eta \nabla_w L(w^t)$ Other Methods
Convergence: $||w^{t+1} - \hat{w}||_2^2 \le \rho^{t+1} ||w^0 - \hat{w}||_2^2$ kNN: Classify by k nearest neighbors classes.

 $\eta^*: \frac{2}{\lambda_{\min} + \lambda_{\max}}, \rho^*: 1 - \eta^* \lambda_{\min} = \frac{\kappa - 1}{\kappa + 1}, \kappa: \frac{\lambda_{\max}}{\lambda_{\min}}$ **Momentum:** $w^{t+1} = w^t + \Delta w^{t-1} - \eta \nabla L(w^t)$

SGD: $w^{t+1} = w^t - \eta \nabla L_{\mathscr{S}}(w^t), \mathscr{S} \subset [n]$

Model Selection

Empirical Risk: $L(\hat{f};D) = \frac{1}{n} \sum l(\hat{f}(x_i), y_i)$ **Exp. Estimation Err.:** $\mathbb{E}_X l(\hat{f}_D(x), f^*(x))$ **Gen. Err.:** $L(\hat{f}_D; \mathbb{P}_{X,Y}) = \mathbb{E}_{X,Y} l(\hat{f}_D(X), Y)$

Test Err.: $\frac{1}{|D_{\text{test}}|} \sum l(\hat{f}(x), y) \overset{\text{LLN}}{\rightarrow} L(\hat{f}; \mathbb{P}_{X,Y})$

For $\mathbb{E}[Gen. Err.]: D = D_{train} \uplus D_{val} \uplus D_{test}$ $D_{\rm val}$ is used for independent model selection.

K-Fold CV: $D_{\text{train}}, D_{\text{val}} \stackrel{\text{find}}{\rightarrow} \lambda, ... \stackrel{\text{use}}{\rightarrow} \hat{f}_{D_{\text{train}} \uplus D_{\text{val}}}$

Bias-Variance Tradeoff

 $\mathbb{E}[Gen. Err.] = Bias^2 + Variance + Noise$ $\mathbb{E}[L(\hat{f}_D; \mathbb{P}_{X,Y})] = \mathbb{E}_X[(\mathbb{E}_D[\hat{f}_D(X)] - f^*(X))^{2}]$ $+\mathbb{E}_X[\mathbb{E}_D[(\hat{f}_D(x)-\mathbb{E}_D[\hat{f}_D])^2]]+\sigma^2$.

Bias: Diff. of average model $\mathbb{E}_D[\hat{f}_D]$ to f^* . **Variance:** Diff. of some model \hat{f} to $\mathbb{E}_D[\hat{f}_D]$.

Regularization

Lasso: $\operatorname{argmin}(||y - Xw||_2^2 + \lambda ||w||_1) \quad \lambda \in \mathbb{R}$ **Ridge:** argmin($||y-Xw||_2^2 + \lambda ||w||_2^2$) $\lambda \in \mathbb{R}$ With closed form: $\hat{w} = (X^{\top}X + \lambda I^d)^{-1}X^{\top}y$. Thus $\lambda \nearrow \Longrightarrow$ bias \nearrow and variance \searrow .

Classification

Zero-One Loss: $l_{0-1}(\hat{f}(x), y) = \mathbb{I}_{\{y \neq \text{sign}\hat{f}(x)\}}$. \mathbf{a}_{0-1} : $l(\hat{y}, y) : c_{FP} \mathbb{I}_{\hat{y}=1, y=-1} + c_{FN} \mathbb{I}_{\hat{y}=-1, y=1}$ Prop. $l(\hat{f}(x), y) = g(y\hat{f}(x))$: • \(\sim \cdot • 0 if $y = \hat{y}$ • robust to noise • ¬*-Grad for $y \neq \hat{y}$ The final model is $\hat{f}(x) = \hat{\alpha}^{\top} [k(x_i, x)]_i$. **Exponential loss:** $g_{\text{exp}}(y\hat{f}(x)) = e^{-y\hat{f}(x)}$ (*)

Logistic Loss: $g_{\log}(y\hat{f}(x)) = \log(1 + e^{-y\hat{f}(x)})$ **Activation Function:** $\phi(x; w) = \phi(w^{\top}x)$

Linear loss: $g_{lin}(y\hat{f}(x)) = -y\hat{f}(x)$

Cross Entropy: $-\log(e^{f_y(x)}/\sum_{k=\text{class}}e^{f_k(x)})$ **Softmax:** $[\operatorname{softmax}(f(x))]_i = e^{f_i(x)} / \sum_k e^{f_k(x)}$

Logistic/Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$

Linear Classifiers $w^{T}x$ (with log. loss)

Hard SVM: $\min_{w} ||w||_2$ s.t. $\forall i. \ y_i w^{\top} x_i > 1$

Other Methods

with speed $\rho = ||I - \eta X^\top X||_{op}$ for $\eta \leq \frac{2}{\lambda_{max}}$. **Decision Trees:** Tree w/ rules $r_v(x) = \mathbb{I}_{\{x_i > t_i\}}$.

Hypothesis Testing

	y_{+1}	y_{-1}	$FNR = \frac{\#FN}{\#y=1}$
\hat{y}_{+1}	TP	FP/T _I	$FDR = \frac{\#FP}{\#y=1}$
\hat{y}_{-1}	FN/T _{II}		$Precision = \frac{\#TP}{\#\hat{y}=+1}$
$\overline{FPR} = \frac{\#FP}{\#y = -1}$			Recall/TPR = $\frac{\text{#TP}}{\text{#}y=+1}$
_			

 τ medium: FNR/FPR \downarrow ; τ big: FPR/TPR \downarrow **F1-Score:** $\frac{2}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$, want both large.

Generalizations (Gen. Err. = GE)

Worst-group GE: $\sup_{g \in G} \mathbb{E}^g_{(x,y)} \mathbb{I}_{\{y \neq \hat{y}\}}$ **Domain-shift GE:** Accurate on data $\sim D_{\text{test}}$. **Adversarially robust:** $\mathbb{E}_{(x,y)} \sup_{x' \in T(x)} \mathbb{I}_{\{y \neq \hat{y}\}}$

Kernel Trick

As $w \in \text{Im}(\Phi^{\top}) \Rightarrow w = \Phi^{\top}\alpha$; $K_{i,j} = k(x_i, x_j)$. Conditions for a valid kernel function *k*:

• k(x,z) = k(z,x) • K psd s.t. $\forall x. x^{\top} Kx \ge 0$ Want to find map ϕ s.t. $k(x,y) = \langle \phi(x), \phi(y) \rangle$.

Inner Product kernel: $k(x,z) = h(\langle x,z \rangle)$ **Poly ker.:** $k(x,z) = (c_{>0} + \langle x,z \rangle)^m$, $d_{\phi} = \begin{pmatrix} d+m \\ d \end{pmatrix}$

RFB kernel: $k(x,z) = \exp\left(\frac{||x-z||_2^{\alpha}}{\tau}\right)$ which is then given $\mu_{1:j}$, pick $\mu_j + 1 = x_i$ with prob.

Gaussian: $\alpha = 2$, **Laplacian**: $\alpha = 1$. $d_{\phi} = \infty$ **Kernel Composition:** • $k_1 + k_2 \cdot c \cdot k$ (c > 0)

• $k((x y), (x' y')) = k_1(x x') + k_2(y y')$

Neural Networks

• tanh: $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ • relu: $\max\{0, z\}$ • $\sigma(z)$ Universal Approx. Thm.: $\forall \varepsilon_{>0}, \exists$ neural network that approximates any function within ε .

Forward Propagation $W \in \mathbb{R}^{out \times in}$

 $\overline{\text{GD}} \rightarrow w || w_{MM} = \operatorname{argmax}_{||w||=1} \operatorname{margin}(w) \text{ w/} \overline{Input \ l.: } v^{(0)} = [x; 1] \text{ Output \ l.: } f = W^{(L)} v^{(L-1)}$ $\operatorname{margin}(w) = \min_{i} y_i \langle w, x_i \rangle$ (min distance to x_i) Hidden l.: $z^{(l)} = W^{(l)} v^{(l-1)} \& v^{(l)} = [\varphi(z^{(l)}); 1]$

Backward Propagation

Given from L+1, to compute, given from FP. $(\nabla_{\mathbf{W}^{(L)}} l)^{\top} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial W^{(L)}} = \frac{\partial l}{\partial f} v^{(L-1)}$ $(\nabla_{\mathbf{W}^{(L-1)}} l)^{\mathsf{T}} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}} = \dots v^{(L-2)}$ $(\nabla_{W^{(L-2)}}l)^{\top} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$

Where error $\delta^{(l)} = \varphi(z^{(l)}) \odot (W^{(l+1)\top} \delta^{(l_1)})$ and $\nabla_{W^{(l)}} l = \delta^{(l)} v^{(l-1)\top}$ to calc the gradient.

Overfitting and Robustness

To avoid 0, * grad. keep \mathbb{V} of activation const. τ decision instead of 0: τ small: TPR/FPR \uparrow ; Init W: tanh: $\mathcal{N}(\frac{1}{n_{in}} \text{ or } \frac{2}{n_{in}+n_{out}})$; relu: $\mathcal{N}(\frac{2}{n_{in}})$. **GD**: η piecewise const. \downarrow or w/ momentum. **AUROC:** Plot TPR(1-FNR)/FPR, with diff. τ **Prevent Overfitting**: • Dropout(Eval $\hat{w} = wp$) • Regularization • Normalization • Early Stop

CNN and other architectures

CNN-Formulas: Chan., Ker. size, m = #Ker.

- Dim: $f(W) \times f(H) \times m$, $f(i) = \frac{i+2P-K_i}{S} + 1$
- Params: $p = (K_W \cdot K_H \cdot C + 1) \cdot m$, $+1 \triangleq \text{Bias}$

Pooling Layers: Pool units to decrease width. **ResNet:** $v^{(l+1)} = v^{(l)} + r(v^{(l)})$ w/ skip conn.

Clustering / K-Means Problem

Problem.: Minimize $\sum \min_{i \in [k]} ||x_i - \mu_j||_2^2$ **Lloyd's heuristic:** 1. Init μ_i 2. Assign x_i to closest μ_i 3. Set μ_i as mean of assigned points. Conv. to local opt (exp.). $\mathcal{O}(nkd)$ per iter.

K-Means++: $\hat{\mu}_1 = \hat{x}_i$ with $i \sim \mathcal{U}\{1,\dots,n\}$, $\underline{1.\ \mu = \hat{\mu}_{\text{MLE}}}\ 2.\ \hat{w}_{\text{MLE}} = \text{argmin} \sum g_{\log}(y_i w^\top x_i)$ $p(i) \propto \min_{l \in [i]} ||x_i - \mu_l^{(0)}||_2^2$. $\mathcal{O}(\log k)$ opt. sol. Pick *k* by heuristics, regularization, etc.

Dimensionality Reduction

 $w^* = \operatorname{argmin}_{w,z,||w||_2=1} \sum_i ||x_i - wz_i||_2^2$ $z_i^* = w^\top x_i \implies w^* = \operatorname{argmin}_{||w||_2 = 1} w^\top \Sigma w$ With $\Sigma = \frac{1}{n} \sum_{i} x_{i} x_{i}^{\top}$ as the empirical covariance matrix (assuming $\mu = 0$). Solution given by Has correct uncertainty for big samples. If iid: principal CV of Σ . (= max. empirical var.) **PCA problem** (k > 1): $w \to W$ s.t. $W^{\top}W = I$, **GBC/QDA:** Same as GNB, less restrictive:

Repr. $z_i = W^{\top} x_i$. Recon. $\tilde{x}_i = WW^{\top} x_i$ **PCA via SVD:** $X = U\Sigma V^{\top} \rightarrow W = V_{\cdot,1:k}$

Kernelized PCA: With $w = \sum \alpha_i \phi(x_i)$ and $\operatorname{argmax}_{||w||=1} w^{\top} \Sigma w = \operatorname{argmax} w^{\top} X^{\top} X w \Longrightarrow$

 $\alpha^* = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$

With closed form solution (for any k): $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \text{ from } K = \sum_i \lambda_i v_i v_i^{\top}, \lambda_1 \geq ... \geq \lambda_n.$

 $\implies z_i = \sum_i \alpha_i^{(i)} k(x_i, x)$ as projection.

Autoencoder: $W^* = \operatorname{argmin} \sum ||x_i - f_W(x_i)||_2^2$ Thus $f(x; \theta) = f_{\text{dec}}(f_{\text{enc}}(x; \theta_{\text{enc}}); \theta_{\text{dec}})$ and if activation is identity and square loss \equiv PCA.

Probabilistic Modeling

Suppose we have access to \mathbb{P}_{XY} then opt. sol.: Reg, (SE): $\hat{f}(x) = \mathbb{E}[Y \mid X = x], Y = f^*(X) + \varepsilon$ $C_{\cdot 0-1}$: $\hat{f}(x) = \mathbb{P}_{Y|X}(Y \neq \operatorname{sgn} f(X)), y = \varepsilon y^*(x)$ Get $\mathbb{P}(Y \mid X)$ from $\mathbb{P}(X,Y)$, but not vice versa. **Naive** \mathbb{P}_{XY} **Est.:** Kernel density est./histogram

Parametric Models for \mathbb{P}_{XY}

Best of distribution family $\mathscr{P} = \{\mathbb{P}_{XY}; \theta \in \Theta\}$ **MLE:** Likelihood: $p(D; \theta) = \prod p(x_i; \theta)$ with its estimator $\theta_{\text{MLE}} = \operatorname{argmax} \log p(D; \theta)$.

Discriminative $p(x,y) = p(y \mid x; y) p(x; \pi)$

Ex. Reg. $X \sim \mathcal{N}(\mu, 1), \mathbb{P}_{Y|x:w} = \mathcal{N}(w^{\top}x, 1)$:

- 1. $\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum x_i$ as sample mean for \mathbb{P}_X .
- 2. $\hat{w}_{\text{MLE}} = \operatorname{argmin} \sum (y_i w^{\top} x_i)^2 \text{ for } \mathbb{P}_{Y|x:w}.$
- 3. $\hat{p}(x,y) = p(x; \hat{\mu}_{MLE}) \cdot p(y \mid x; \hat{w}_{MLE})$

Ex. Cl. $X \sim \mathcal{N}(\mu, 1), p(y \mid x; w) = \sigma(yw^{\top}x).$

Generative $p(x, y) = p(x \mid y; \gamma) p(y; \pi)$

Setup Ex. $Y \sim \operatorname{Cat}(\pi), \mathbb{P}_{X|y:\mu_{y},\Sigma_{y}} \sim \mathcal{N}(\mu_{y},\Sigma_{y})$ with $\pi \in \Pi, \Sigma_{\nu} \in S$ and $y \in \{1, 2\}$.

Gaus. Naïve Bayes: $\Sigma_{v} = \text{diag}[\sigma_{v,1}^{2}, ..., \sigma_{v,d}^{2}].$

1. $[\hat{\pi}]_j = \hat{p}_j = \frac{\#\{Y=j\}}{n}$ 2. $\hat{\mu}_y = \frac{1}{\#\{Y=y\}} \sum_{i:y_i=y} x_i$

3. $\hat{\sigma}_{y,k} = \frac{1}{\#\{Y=y\}} \sum_{i:y_i=y} (x_{i,k} - \mu_{y,k})^2$ w/ MLE. GNB performs better for small sample sizes. $\hat{y} = \operatorname{argmax} p(y \mid x) = \operatorname{argmax} p(y) \prod p(x_i \mid y).$

 $\hat{\Sigma}_{y} = \frac{1}{\#\{Y=y\}} \sum_{i:y_{i}=y} (x_{i} - \hat{\mu}_{y})(x_{i} - \hat{\mu}_{y})^{\top}.$

 $W = [v_1 | \dots | v_k]$ the *k*-first eigenvectors of Σ . **Linear Discriminant Analysis:** $\forall y : \sigma_v = \sigma$

Bayesian Modeling

 $\theta \sim \mathbb{P}_{\theta}$. Then $p(D) = \int p(D \mid \theta) p(\theta) d\theta$. $\gamma_{j}^{(t)} = p(Z = j \mid x, \Sigma, \mu, w) = \frac{w_{j} p(x_{i} \mid \Sigma_{j}, \mu_{j})}{\sum_{l} w_{l} p(x_{l} \mid \Sigma_{l}, \mu_{l})}$ **MAP:** Posterior: $p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d\theta}$ & **M-Step:** Fit cluster to weighted x_{i} (MLE): $\hat{\theta} = \operatorname{argmax} \log p(\theta \mid D) = \operatorname{argmax} \log p(D, \theta)$ **Ex.** Reg.: $y_i = w^{\top} x_i + \varepsilon_i$, $w \sim \mathcal{N}(0, \sigma_w^2 I_d)$, $\varepsilon \sim \mathcal{N}(0,1), \mathcal{P} = \{\mathbb{P}_{Y|X:w} = \mathcal{N}(\langle w, x \rangle, 1)\}.$ $\hat{w}_{\text{MAP}} = \operatorname{argmin} \frac{1}{2} ||y - Xw||_2^2 + \frac{1}{2\sigma^2} ||w||^2$ = ridge sol. If $p(w) = \frac{1}{7}e^{-\frac{||w||_1}{\sigma_w}}$ laplacian then $\frac{\text{CV for } j$, maximize log-likelihood on val set. Self-attention needs both sides to be the same $\frac{\text{Cov}(X,Y) > 0}{\text{Cov}(X,Y)} = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))^{\top})$ $\hat{w}_{\text{MAP}} = \operatorname{argmin} \frac{1}{2} ||y - Xw||_2^2 + \frac{1}{\sigma} ||w||_1$ which is the lasso sol. $\rightarrow \hat{\mathbb{P}}_{Y|X} = \mathbb{P}_{Y|X:\hat{\mathcal{W}}_{MAP}}$. **Bayes. Model Avg:** Gives distribution of f^* : $\hat{p}(y \mid x; D) = \hat{E}_{\theta \mid D} p(y \mid x; \theta)$

Decision Theory

 $=\int_{\Theta} p(y \mid x; \theta) \hat{p}(\theta \mid D) d\theta$

Decision rules $a: X \to A$, with A as action set. Find $a^*(x) = \operatorname{argmin} \hat{\mathbb{E}}[l(a(x), y) \mid X = x]$ Applications of decision theory w/ $\mathbb{P}(Y \mid X)$: • Reg. SE: $\hat{f}(x) = \operatorname{argmin}_a \hat{\mathbb{E}}[(Y-a)^2 \mid X=x]$ $=\hat{E}[Y \mid X=x] \bullet 0-1$: $\hat{y}(x) = \operatorname{argmax}_{y} \hat{p}(y \mid x)$ = argmin_a $\hat{E}[\mathbb{I}_{a\neq Y} \mid X=x] \bullet \text{a0-1: Boundary}$ $\pi(x)$ to $\pi(x) = \frac{c_{FN}}{c_{FP} + c_{FN}}$ • Abstention 0-1: with $A = \{-1, +1, r\}$ and $l(\hat{y}, y) = \mathbb{I}_{\hat{y} \neq y} \mathbb{I}_{\hat{y} \neq r} + c \mathbb{I}_{\hat{y} = r}$ obtain $\hat{y} = r$ if $c < \hat{p}(y = -1 \mid x) < 1 - c$.

Summary (Gen. Classification)

1. Est. p(y) 2. Est. $p(x \mid y)$ 3. Obtain $p(y \mid x)$ $\hat{y} = \operatorname{argmax}_{y} p(y \mid x)$ $= \operatorname{argmax}_{y} \log p(y) + \log p(x \mid y)$

Gaussian Mixture Models

We assume $p(x \mid \theta) = \sum_{i} w_{i} \mathcal{N}(x \mid \mu_{i}, \Sigma_{i})$ and thus the optimization problem is defined as $\operatorname{argmin} - \sum_{i} \log \sum_{i} w_{i} \mathcal{N}(x_{i} \mid \mu_{i}, \Sigma_{i})$ Fitting a GMM \equiv GBC without labels.

Hard-EM

E-Step: Predict most likely class for each x_i . $z_i^{(t)} = \operatorname{argmax}_z p(z \mid x_i, \theta^{t-1})$ = argmax_z $p(z \mid \boldsymbol{\theta}^{(t-1)}) p(x_i \mid z, \boldsymbol{\theta}^{(t-1)})$ M-Step: Compute MLE as for GBC.

Uniform w_i , identical spherical $\Sigma_j \Rightarrow$ k-means **Self-supervision:** Use next word as label.

Soft-EM

Ass. data iid. from $\mathbb{P}_{\cdot|\theta}$ with prior distribution **E-Step:** Calc cluster membership weights:

$$w_{j}^{(t)} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i}) \qquad \mu_{j}^{(t)} = \frac{\sum_{i=1}^{n} x_{i} \cdot \gamma_{j}^{(t)}(x_{i})}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$$
$$\Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{\top}}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$$

Hard-EM props. + variance $\rightarrow 0 \Rightarrow$ k-means.

EM for SSL

E-Step: For x_i with label y_i : $\gamma_i^{(t)}(x_i) = \mathbb{I}_{\{i=v_i\}}$. **GM Bayes Cl.:** 1. Est. \mathbb{P}_Y 2. Est. $p(x \mid y)$ via **predicted**. Then we can add masking, such • $\text{Tr}(A) = \sum_i \lambda_i \bullet \text{Tr}(XX^\top) = \sum_{i,j} X_{i,j}^2 = ||X||_2^2$ GMM 3. $p(y | x) = \frac{1}{5}p(y)p(x | y)$.

Density Est.: Anomaly detection/data impu- $m_{i,j} = -\infty$ if j > i, else 0). tation. Compare est. density of x_i against threshold τ (CV) \rightarrow control estimated FPR.

General EM

E: expected sufficient statistic, M: MLE

E-Step: Calculate the expected complete data uct attention, to remove 0-gradients. log-likelihood (function of θ):

$$Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{Z}[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$$

= $\sum_{i} \sum_{z_i} \gamma_{z_i}(x_i) \log p(x_i, z_i \mid \theta)$

W/ $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$, depends on $\theta^{(t-1)}$. $Z \in \mathbb{R}^{k \times (h \cdot d_v)}$. **M-Step:** Max. $\theta^{(t)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t-1)})$. In reality "tokens" are used instead of words Each EM-iteration increases data likelihood. **EM-Init:** w unif, μ k-m++, Σ spherical (S^2)

Degeneracy: Loss $\rightarrow -\infty$ as $\mu \rightarrow x$, $\sigma \rightarrow 0$.

Thus add v^2I to covariances (v by CV). Same Convexity: as adding a Wishart prior on Σ and calc. MAP. 0. $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda) f(y)$

Generative Modeling with NN

Model word $X_i \in [N]$ as categorical variable. 2. $D^2 f(x) \succeq 0$ (psd) $p(\text{Sentence}) = p(X_1, ..., X_m) \to N^m - 1 \text{ param.} \quad \bullet \quad \alpha f + \beta g, \alpha, \beta > 0 \text{ convex if } f, g \text{ convex.}$ Key idea: Estimate conditional distribution:

$$\mathbb{P}(X_t = x \mid X_{1:t-1} = x_{1:t-1})$$

$$\approx \mathbb{P}(X_t = x \mid X_{t-k:t-1} = x_{t-k:t-1}, \theta)$$

$$:= \operatorname{Cat}(x \mid \operatorname{softmax}(f(x_{t-k:t_1}, \theta)))$$

With f as NN with params θ . Use CE-Loss: $L(\theta) = \sum_{t} \log \mathbb{P}(X_{t} = x \mid X_{t-k:t-1} = X_{t-k:t-1}, \theta) \bullet \frac{\partial A}{\partial x} b^{\top} X x = A^{\top} b \bullet \frac{\partial}{\partial x} x^{\top} A x = (A + A^{\top}) x$

Simple transformer (decoder only)

Computational Model: $Z_0 = XW_e + W_p$ with $X = (x_{t-k}, ..., x_{t-1}) \in \mathbb{R}^{k \times N}$ and W_e is (learnable word embedding matrix), W_n is a (fixed) position embedding matrix, $Z_l = \text{transformer } \overline{\text{Covariances and PCA: } \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = \frac{1}{n} X^{\top} X.$ block and $P = \operatorname{softmax}(Z_n W_e^{\top})$.

directed graph. $z_i^{l+1} = \sum_{i=1:k} \text{score}_{i,i} v_i^l$. Score measures directed similarity of word i to j. If Cov(X,Y) > 0, then data: \nearrow , < 0: \checkmark . phrase. Each word has a "key" vector k_i , a $\mathbb{V}(WX) = W \mathbb{V}(X)W^{\top}$ "query" vector q_i and a "value" vector v_i all **Trace** Tr: • Linear • Tr(ABCD) = Tr(DABC) that only attend to preceding words (adding **Kernels: Valid**: $\bullet \frac{1}{1-xy} \bullet 2^{xy} \bullet e^{k(x,y)} \bullet \cos(x-y)$

$$score_{i,j} = q_i^{\top} k_j \propto \frac{\exp(q_i k_j^{\top} / \sqrt{d_k} + m_{i,j})}{\sum_{j'} \exp(q_i k_{j'}^{\top} / \sqrt{d_k} + m_{i,j'})}$$

 $Z' := \operatorname{softmax} \left(\frac{QK^{\top}}{\sqrt{d_{\nu}}} + M \right) V$ (SM rowwise) Right of \propto is the normalized scaled dot prod- $\hat{p}_{bin} = \frac{1}{N} \sum_{i=1}^{N} x_i \cdot \hat{\sigma}_{\mathcal{N}} = \frac{1}{n} \sum_{i=1}^{N} (x_i - \hat{\mu}_{\mathcal{N}})^2$

 $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_Z[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$ keys, values for each word (Q_h, K_h, V_h) each in $\mathbb{R}^{k \times d_{\nu}}$. Then concatenate to get single output

Equivalent to train a GBC with weighted data. (e.g. BPE: byte-pair encoding). Text generated from LLMs often is not directly useful, need "RL from Human Feedback".

Math Additions

1. $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$

• $f \circ g$ convex if f convex, g affine or f nondecreasing, g convex.

• $\max(f,g)$ convex if f,g convex.

Derivatives (Denom. lay.): $\bullet \frac{\partial}{\partial x} Ax = A^{\top}$

 $\bullet \frac{\partial}{\partial x} x^{\top} A = A \bullet \frac{\partial}{\partial x} \alpha = \vec{0} \bullet \frac{\partial}{\partial x} x^{\top} a = \frac{\partial}{\partial x} a^{\top} x = a$

 $\bullet \frac{\partial}{\partial x} x^{\top} x = 2x \bullet \frac{\partial}{\partial x} ||y - Xx||_2^2 = 2X^{\top} (Xx - y)$

Density of $\mathcal{N}(\mu, \Sigma)$:

$$p(x \mid y; \mu_y, \Sigma_y) = \frac{1}{(2\pi)^{\frac{d}{2}} (\det \Sigma_y)^{\frac{1}{2}}} e^{-\frac{(x-\mu_y)^{\top} \Sigma_y^{-1} (x-\mu_y)}{2}}$$

Shortcuts, Tips and Tricks

Let $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ denote eigenvalues of (**Self-)Attention:** Learn to predict a weighted, $\frac{1}{n}X^{\top}X$ (spd/sym) and σ_i denote *i*-th singular value of X, then $\lambda_i = \sigma_i^2/n$. $L(k) = \sum_{i=k+1}^d \lambda_i$.

• $\min(x, y)$ • $\frac{\min(x, y)}{\max(x, y)}$ • g(x)k(x, y)g(y) Invalid:

•
$$\max(x,y)$$
 • $f(k(x,y))$, f any poly. • $\cos(x+y)$
MLE: • $\hat{p}_{poi} = \hat{\mu}_{\mathcal{N}} = \frac{\sum x_i}{n}$ • $\hat{\lambda}_{exp} = \hat{p}_{geo} = \frac{n}{\sum x_i}$

$$\hat{p}_{bin} = \frac{1}{N} \frac{\sum_{i=1}^{N} x_i}{n} \cdot \hat{\sigma}_{\mathcal{N}} = \frac{1}{n} \sum_{i=1}^{N} (x_i - \hat{\mu}_{\mathcal{N}})^2$$

KL-Divergence: Divergence between refer-**Multi-Head Attention:** Use multiple queries, ence distribution *P* and another distribution *Q*.

$$D_{KL}(P \parallel Q) := \mathbb{E}_{X \sim P}[\log \frac{p(X)}{q(X)}]$$

= $\int_{\mathbb{R}} p(x) \log \frac{p(x)}{q(x)} dx$