$\sum_{i} = I \frac{d^{2}\theta}{dt} = -n \operatorname{gdsid}$ $V = 0 = \frac{d\theta}{dt}$ $V = 0 = \frac{d\theta}{dt}$ $V = \frac{d\theta}{dt} = \frac{d\theta}{dt} = \omega$ $V = \frac{d\psi}{dt} = \frac{d\psi}{dt} = -\frac{9}{4} \sin \theta$ $V = \frac{d\psi}{dt} = \frac{d\psi}{dt} = -\frac{9}{4} \sin \theta$ $V = \frac{d\psi}{dt} = \frac{d\psi}{dt} = -\frac{9}{4} \sin \theta$ $V = \frac{d\psi}{dt} = \frac{d\psi}{dt} = -\frac{9}{4} \sin \theta$

P-4 h, RK4 =) err, · y (x+h) = yest + 0 (h3) ers, = Ch, 2500 = Cho5 $\frac{210}{15} = h^{5} \left(\frac{erro}{erro}\right)$

Poisson $X \in \{0,1,2,\ldots,\infty\}$ $P(abdilty (X = nim) = \frac{n^a e^{-t}}{n!}$ M = 1.0 $P(X = 0) = e^{-t}$ $P(X = 1) = e^{-t}$ $P(X = 2) = \frac{1}{2}e^{-t}$ $P(X = 2) = \frac{1}{2}e^{-t}$

 $\chi^{2}(m_{\tau})$ $\int_{0.012}^{1.780+0.015} 1.780+0.015$ $\int_{-2.012}^{1.780+0.015} 1.780+0.015$ $\int_{-2}^{1.780+0.015} 1.780+0.015$