

Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

Mahwish Waqas

Lecture Outline

- Recursion
 - Recursive definition of function
 - Recursive definition of sequence
 - Recursive definition of sets

Recursive Objects

- Recursion is the process of repeating items in a selfsimilar way.
- Sometimes it is difficult to define an object explicitly, but it is easier to define it in terms of itself.

Factorial Recursive Function

```
int factorial(int n)
{
   if(n == 0)
      return 1;
      Basis Step
   else
   return n * factorial(n - 1);
}
Recursive Step
```

Recursive Functions

- We can define a function recursively by specifying:
 - Basis: the value of the function at the smallest element of the domain.
 - e.g. : f(0) = 1
 - Recursive step: A rule for finding the value of the function at an integer from its values at smaller integers.
 - e.g. : f(n+1) = 2 * f(n)
- Many common functions can be defined recursively.

- Can you write n! as a recursive function
 - F(0) = 1
 - F(n) = n * F(n-1)
 - What is the value of F(5)?

•
$$F(5) = 5F(4)$$

= 5 . 4F(3)
= 5 . 4 . 3F(2)
= 5 . 4 . 3 . 2F(1)
= 5 . 4 . 3 . 2 . 1F(0)
= 5 . 4 . 3 . 2 . 1 . 1 = 120

- Can you write n! as a recursive function
 - F(0) = 1
 - F(n) = n * F(n-1)
 - What is the value of F(5)?

$$F(5) = 5F(4)$$
 $F(1) = 1*1 = 1$
 $F(4) = 4F(3)$ $F(2) = 2*1 = 2$
 $F(3) = 3F(2)$ $F(3) = 3*2 = 6$
 $F(2) = 2F(1)$ $F(4) = 4*6 = 24$
 $F(0) = 1$ $F(5) = 5*24 = 120$

Suppose that f is defined recursively by

- f(0) = 3,
- f(n+1) = 2f(n)+3. for $n \ge 1$

Find f(3).

Solution:

$$f(3) = 2f(2) + 3 = 2(21) + 3 = 45$$

$$f(2) = 2f(1) + 3 = 2(9) + 3 = 21$$

$$f(1) = 2f(0) + 3 = 2(3) + 3 = 9$$

Suppose that f is defined recursively by

•
$$f(0) = -1$$
, $f(1) = 2$

• f(n+1) = f(n)+3f(n-1), for $n \ge 2$

Find f(4).

Solution:

$$f(4) = f(3) + 3f(2) = 5 + 3(-1) = 2$$

$$f(3) = f(2) + 3f(1) = -1 + 3(2) = 5$$

$$f(2) = f(1) + 3f(0) = 2 + 3(-1) = -1$$

- Fibonacci Numbers
 - F(0) = 0, F(1) = 1
 - F(n) = F(n-1) + F(n-2) for n = 2, 3, 4, ...
- Find the Fibonacci number F(4).

Solution:

$$F(4) = F(3) + F(2) = 2 + 1 = 3$$

$$F(3) = F(2) + F(1) = 1 + 1 = 2$$

$$F(2) = F(1) + F(0) = 1 + 0 = 1$$

- Let a and b denote positive integers. Suppose a function Q is defined recursively as follows:
- Find the value of Q(4,5) and Q(14,3).
- Find Q(55, 7).

$$Q(a,b) = \begin{cases} 0 & \text{if } a < b \\ Q(a-b,b) + 1 & \text{if } a \ge b \end{cases}$$

$$Q(4,5) = 0$$
 if $a < b$

$$Q(a,b) = \begin{cases} 0 & \text{if } a < b \\ Q(a-b,b)+1 & \text{if } a \ge b \end{cases}$$

$$Q(14,3) = Q(14-3,3)+1 = Q(11,3)+1$$

$$Q(11,3) = Q(8,3)+1$$

$$Q(8,3) = Q(5,3)+1$$

$$Q(5,3) = Q(2,3)+1$$

$$Q(2,3) = 0$$

$$Q(5,3) = 0+1=1$$

$$Q(8,3) = 1+1=2$$

$$Q(11,3) = 2+1=3$$

$$Q(14,3) = 3+1=4$$

Recursive Algorithms

 An algorithm is called recursive if it solves a problem by reducing it to a smaller instance of the same problem.

```
Computing n!
  int factorial(int n)
  { If (n==0; return 1;
   else return n*factorial(n-1); }

    Computing GCD

  gcd(a,b)
  /* assumption a < b */
   If a=0, then return b
   Else return gcd(b mod a, a)
```

$$GCD(a,b) = \begin{cases} b & \text{if } a = 0\\ GCD(b\% a, a) & \text{if } a < b \end{cases}$$

Find *GCD*(30,108).

$$GCD(30,108) = GCD(108\%30,30)$$

$$=GCD(18,30) = GCD(30\%18,18)$$

$$=GCD(12,18) = GCD(18\%12,12)$$

$$=GCD(6,12) = GCD(12\%6,6)$$

$$=GCD(0,6)=6$$

Sequence

Find the explicit formula and recursive formula of following sequence:

2,4,8,16,32,...

Explicit Formula:

$$a = 2$$

$$r = 2$$

$$a_n = ar^{n-1}$$

$$a_n = 2(2)^{n-1}$$

$$a_n = 2^n$$

Recursive Formula:

Basis Step:
$$a_2 = 2a_1$$
 $a_1 = 2$ $a_3 = 2a_2$
Recursive Step: $a_4 = 2a_3$
 $a_{n+1} = 2a_n$
 \vdots
 $a_{n+1} = 2a_n$

After giving the first term, each term of the sequence can be defined from the previous term.

Sequence

Find the explicit formula and recursive formula of following sequence:

5,10,15,20,25,...

Explicit Formula:

$$a = 5$$

$$d = 5$$

$$a_n = a + (n-1)d$$

$$a_n = 5 + (n-1)5$$

$$a_n = 5n$$

Recursive Formula:

Basis Step:

$$a_1 = 5$$

 $a_2 = a_1 + 5$
 $a_3 = a_2 + 5$
Recursive Step:
 $a_4 = a_3 + 5$
 $a_{n+1} = a_n + 5$
 \vdots
 $a_{n+1} = a_n + 5$

After giving the first term, each term of the sequence can be defined from the previous term.

Recursively Defined Sets

- Assume S is a set.
- We use two steps to define the elements of S.
- Basis step:
 - Specify an initial collection of elements.
- Recursive step:
 - Give a rule for forming new elements from those already known to be in S.

Recursively Defined Sets

- Consider S ⊆ Z defined by
- Basis step: (Specify initial elements.)
 - 0 ∈ S
- Recursive step: (Give a rule using existing elements)
 - If $x \in S$, then $2x + 2 \in S$.
- # of elements in set S after applying 3 time recursion
- 0
- 0, 2 (1st)
- 0, 2, 6 (2nd)
- 0, 2, 6, 14 (3rd)

Recursively Defined Sets

- Consider S ⊆ Z defined by
- Basis step: (Specify initial elements.)
 - 3 ∈ S
- Recursive step: (Give a rule using existing elements)
 - If $x \in S$ and $y \in S$, then $x + y \in S$.
- # of elements in set S after applying 3 time recursion
- 3
- 3, 6 (1st)
- 3, 6, 9, 12 (2nd)
- 3, 6, 9, 12, 15, 18, 21, 24 (3rd)
- This is the set of all positive multiples of 3.

Exercise Questions

Chapter # 5

Topic # 5.3

Q. 1, 2, 3, 4, 7, 27-a, 48 (Ackermann's Function), 51