

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

SRINIVASA RAMANUJAN THE MAN WHO KNEW INFINITY

UNIT - II Vector Calculus

Tutorial Sheet - 3

		1 utoriur bricer b	
	Sl.No.	Questions	Answer
		Part – A	
1	Find $\int_C \overrightarrow{F} \cdot \overrightarrow{dr}$ w hy -plane bound	$[-2ab^2]$	
2	Verify Stoke's theorem for $\overrightarrow{F} = (y-z+2)\overrightarrow{i} - (yz+4)\overrightarrow{j} - xz\overrightarrow{k}$ over the surface of a cube $x=0,\ y=0,\ z=0,\ x=2,\ y=2$ and $z=2$.		-4
3	Verify Stoke's the half of the sphere	π	
4	Verify Stoke's theorem for $\overrightarrow{F} = (x^2 + y^2)\overrightarrow{i} - 2xy\overrightarrow{j}$ taken round the rectangle bounded by $x = \pm a$, $y = 0$ and $y = b$.		$[-4ab^2]$
5	Verify Green's theorem in a plane for the $\int_C (x-2y) dx + x dy$ taken around the circle $x^2 + y^2 = 1$.		3 π
		Part – B	
6	Using Stoke's theorem to evaluate $\int \int (\nabla \times \overrightarrow{F}) \cdot \hat{n} ds$ where $\overrightarrow{F} = y \overrightarrow{i} + (x - 2xz) \overrightarrow{j} xz \overrightarrow{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy -plane. (Answer		0
7	Verify Gauss divergence theorem for $\overrightarrow{F} = x^2 \overrightarrow{i} + z \overrightarrow{j} + yz \overrightarrow{k}$ over the cube formed by $x = \pm 1$, $y = \pm 1$ and $z = \pm 1$.		0
8	Using Stoke's theorem evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = \sin(x-y)\overrightarrow{i} - \cos x\overrightarrow{j}$ where C is the boundary of the triangle where vertices are $(0,0), (\frac{\pi}{2},0)$ and $(\frac{\pi}{2},1)$. (Answer		$\left[\frac{\pi}{4} + \frac{2}{\pi}\right]$
9.	Apply Gauss divergence theorem to evaluate $\int \int ((x^3 - yz)dydz - 2x^2ydzdx + zdxdy)$ over the surface of a cube bounded by the co-ordinate plane $x = y = z = a$.		$a^2\left[\frac{a^3}{3} + a\right]$
10		regence theorem for $\overrightarrow{F} = (x^2 - yz)\overrightarrow{i} + (y^2 - zx)\overrightarrow{j} + (z^2 - xy)\overrightarrow{k}$ ectangular parallelopiped $0 \le x \le a, \ 0 \le y \le b$ and $0 \le z \le c$.	abc(a+b+c)

Co-Ordinators: Dr.Sundarammal Kesavan, Dr.V.Srinivasan, Dr.N.Parvathi, Dr.N.Balaji