

Becoming a Knowledge Scientist

Ernesto Jiménez-Ruiz

Lecturer in Artificial Intelligence

About the Module

Module Leader and Lecturer

- Ernesto Jiménez-Ruiz
- Research Centre for Adaptive Computing Systems and Machine Learning

Module Leader and Lecturer

- Ernesto Jiménez-Ruiz
- Research Centre for Adaptive Computing Systems and Machine Learning
- Contact:
 - Moodle forum / Teams
 - ernesto.jimenez-ruiz@city.ac.uk
 - https://www.city.ac.uk/people/academics/ernesto-jimenez-ruiz

Lecture and Lab: IN3067/INM713

Lecture:

- Lecture Capture: Recorded and live-streamed
- Thursday, 09:00-10:50,
- C312 Tait Building

Laboratory:

- R201 (Franklin Building). 48 seats/PCs. 10 min walk.
- Session 1: Thursday, 11:00-11:50.
- Session 2: Thursday, 12:00-12:50 (Weeks: 1-4, weeks 7, 9 and 11).
 C301 on weeks 5, 8 and 10.
- Programming languages: Python and/or Java

Drop-in hours

- Term 2
 - Tuesday 2-3pm (online)
 - Thursdays 2-4pm (on-campus or online)
- Additional (online) drop-ins can be arranged via email.

Coursework

(Automatic) transformation of tabular data into semantic data.

- Part 1 (20%): creation of an ontology that covers the knowledge of a given domain. Deadline: Sunday, 3 March 2024, 5:00 PM
- Part 2 (80%): Design and development of a software component.
 Deadline: Sunday, 12 May 2024, 5:00 PM
- Allowed to work in pairs, or individually
- To deliver: codes or ontology, short report and video.
- There may be a short interview/presentation per student.

Reading list

- General resources list in <u>moodle</u> and Reading List Online.
- Recommended reading for each week.
- Suggested Books:
 - Semantic Web for the Working Ontologist. Morgan Kaufmann 2020
 - Knowledge Graphs. Morgan & Claypool 2021
 - Enterprise Knowledge Graphs. Morgan & Claypool 2021
 - Foundations of Semantic Web Technologies. CRC Press 2009

Students background questionnaire (2024)

Knowledge of...

- Semantic Web: 27%

- Knowledge Graphs: 18%

- Ontologies: 18%

Students background questionnaire (2024)

Knowledge of...

- Semantic Web: 27%

- Knowledge Graphs: 18%

Ontologies: 18%

- Python preference: 64%, Java preference: 27%, Both: 9%

Students background questionnaire (2024)

Knowledge of...

Semantic Web: 27%

- Knowledge Graphs: 18%

Ontologies: 18%

Python preference: 64%, Java preference: 27%, Both: 9%

– Topics of interest:

ML/AI + KGs

Module topics (tentative) - (i)

- Week 1: Introduction: becoming a knowledge scientist.
 - Release of coursework part 1 and part 2.
- Week 2: RDF-based knowledge graphs.
- Week 3: OWL ontology language. Focus on modelling.
- Week 4: SPARQL 1.0.
- Week 5: From tabular data to KG.
 - Assignment coursework part 1 (March 3).

Module topics (tentative) - (ii)

- Week 6: Reading week
 - Release model OWL ontology for coursework part 2.
- Week 7: RDFS Semantics and OWL 2 profiles.
- Week 8: Ontology (KG) Alignment.
- Week 9: Ontology (KG) Embeddings and Machine Learning.
- Week 10: SPARQL 1.1, Rules and Graph Database solutions
- Week 11: To be defined (LLMs and KGs?)
 - Seminar and/or invited talk(s)

Brief introduction

About Semantic Web technologies

- Originally designed as an extension of the World Wide Web to make Internet data machine-readable.
- Nowadays also covers the encoding of the semantics of arbitrary data (e.g., enterprise data): Knowledge Graphs

About Semantic Web technologies

- Originally designed as an extension of the World Wide Web to make Internet data machine-readable.
- Nowadays also covers the encoding of the semantics of arbitrary data (e.g., enterprise data): Knowledge Graphs

(*) How LLMs fit within the Semantic Web / Knowledge Graphs vision?

About Knowledge Graphs

- (data graph) capture information about entities of interest (like people, places or events), and
- (knowledge) with an underlying formal model

Knowledge Graphs: https://arxiv.org/abs/2003.02320.

About Knowledge Graphs

- In data science and AI, knowledge graphs are commonly used to:
 - Serve as bridges between humans and systems;
 - Facilitate access to and integration of data sources; and
 - Add context and depth to other, more data-driven AI techniques such as machine learning (e.g., Neurosymbolic AI)

 $\textbf{Interest Group @ The Alan Turing Institute:} \ \texttt{https://www.turing.ac.uk/research/interest-groups/knowledge-graphs}$

Relevance to BSc and MSc programmes

Knowledge Scientist: https://www.knowledgescientist.org/

Relevance to BSc and MSc programmes

 $\textbf{KGs on AWS}: \texttt{https://aws.amazon.com/neptune/knowledge-graphs-on-aws/, https://aws.amazon.com/neptune/knowledge-graphs-on-aws/, https://aws.amazon.com/neptune/k$

Industry interest in KGs

There is a growing demand of computer scientists with KG experience

Semantic Web

The Vision of a Semantic Web: Tim Berners-Lee

"I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web—the content, links, and transactions between people and computers. A 'Semantic Web', which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The 'intelligent agents' people have touted for ages will finally materialize."

Quoted from: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web. Tim Berners-Lee with Mark Fischetti. Harper San Francisco, 1999.

What is the Web?

 The Web can be seen as a distributed network of hypertext pages that can refer to each other via URLs.

 $Semantic \ Web, \ and \ Other \ Technologies \ to \ Watch, \ 2007. \ https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/.$

Resource identifiers

- IRI (Internationalized Resource Identifier): allows Unicode characters.
- URI (Uniform Resource Identifier): ASCII characters, includes URL and URN
- URL (Uniform Resource Locator): usually locates resources within the World Wide Web.
- URN (Uniform Resource Name): uses the urn: scheme and it is adopted by the ISBN system.

Resource identifiers (examples)

(*) Prefix definitions (or namespaces). an: = http://animals.com# http://animals.com#lion \rightarrow an:lion

What is the Semantic Web? (i)

 The Semantic Web aims at going beyond the Web, towards a Web of Data where each individual data element has its own URI.

Semantic Web, and Other Technologies to Watch, 2007. https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/.

What is the Semantic Web? (i)

 The Semantic Web aims at going beyond the Web, towards a Web of Data where each individual data element has its own URI.

Semantic Web, and Other Technologies to Watch, 2007. https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/.

What is the Semantic Web? (i)

 The Semantic Web aims at going beyond the Web, towards a Web of Data where each individual data element has its own URI.

Semantic Web, and Other Technologies to Watch, 2007. https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/.

What is the Semantic Web? (ii)

The Semantic Web also aims for a Web of Data with clear semantics:

- Data is published in a machine-readable format
- Different information sources can be linked.
- Data is enriched with machine-interpretable meaning (domain knowledge).
- Smart agents can draw conclusions from the available information.

What is the Semantic Web? (ii)

The Semantic Web also aims for a Web of Data with clear semantics:

- Data is published in a machine-readable format (*)
- Different information sources can be linked.
- Data is enriched with machine-interpretable meaning (domain knowledge).
- Smart agents can draw conclusions from the available information.

(*) How LLMs fit within the Semantic Web vision?

Semantic Web technology stack (i)

- The World Wide Web Consortium (W3C) is an international community that develops open standards to ensure the long-term growth of the Web: https://www.w3.org/

– Why standards?

- broader industry (and academic) agreement,
- interoperability across organizations and applications,
- avoids vendor lock-in of a particular (exchange) format.
- The Semantic Web (as the Web) is built around W3C standards: the Semantic Web stack.

Semantic Web technology stack (ii)

Identification: URI/IRI

- Data Representation: RDF

Knowledge and Reasoning: RDFS and OWI.

– Query language: SPARQL

– Exchange format: XML

Semantic Web technology stack (iii)

Overview standards. https://csiro-enviro-informatics.github.io/info-engineering/standards.html. Image created by Benjamin Nowack (CC BY 3.0 Deed).

Motivating example

How to get to the cinemas in London that show a comedy? Current situation:

- search to first find a possibly incomplete list of cinemas
- check if they are screening comedies
- locate the cinemas in the map
- find the best way to get there

Motivating example: necessary ingredients

How to get to the cinemas in London that show a comedy?

- 1. Semantic language to express this query
- 2. Information with shared syntax and semantics across providers (e.g., interoperability among ODEON, Cineworld and Transport of London)
- 3. A smart agent that can orchestrate all the information sources

(**) LLMs can facilitate some of the steps.

^(*) Google already facilitates a number of searches with its own mash-ups (now also in the form of a KG), but it does not contain mash-ups for all possible and desired Web searches. It may also lack updated information.

Motivating example: RDF triples (i)

Cinema 1:

subject	predicate	object
http://cinemas/1	rdf:type	http://cinemas/Cinema
http://cinemas/1	http://cinemas/screening	http://movies/1
http://cinemas/1	http://cinemas/location	http://places/london
http://cinemas/1	http://cinemas/address	"London W1T 1BX"
http://movies/1	rdf:type	http://movies/Movie
http://movies/1	http://movies/has_genre	http://genres/parody

Motivating example: RDF triples (ii)

Cinema 2:

subject	predicate	object
http://cinemas/2	http://cinemas/screening	http://movies/2
http://movies/2	http://movies/has_genre	http://genres/zombies

Additional background knowledge:

http://places/london	rdf:type	http://places/City
http://genres/parody	rdf:type	http://genres/Comedy
http://genres/Comedy	rdfs:subClassOf	http://genres/Genre
http://genres/zombies	rdf:type	http://genres/Horror
http://genres/Comedy	owl:disjointWith	http://genres/Horror

Motivating example: SPARQL query

Example of (partial) query to extract relevant cinema addresses:

```
PREFIX cine: <a href="http://cinemas/">http://cinemas/>
PREFIX place: <a href="http://places/">http://places/>
PREFIX movie: <a href="http://movies/">http://movies/>
PREFIX gen: <a href="http://genres/">http://genres/>
SELECT DISTINCT ?address WHERE {
  ?x rdf:type cine:Cinema .
  ?x cine:location place:london .
  ?x cine:address ?address .
  ?x cine:screening [ movie:has_genre [rdf:type gen:Comedy] ]
```

Challenges and Future of the Semantic Web (i)

- Distributed Web of Data applied to the whole Web is challenging
 - Data should be provided in RDF
 - Data should be linked to knowledge (e.g., about cinemas, movies, genres, places, etc.)
 - Data providers should agree about the knowledge in intersecting domains
 - Consistency and trust of the data and knowledge
 - Smart agents in the Web

Challenges and Future of the Semantic Web (ii)

- We are moving forward:
 - There was also scepticism about the Web
 - Examples: Wikidata, DBPedia, the Linked Open Data Cloud, Bio2RDF, Google's Knowledge Graph.
 - Semantic Web within an organisation: Graph(s) of Knowledge
 - Combination of LLMs and KGs.

Graph(s) of Knowledge (i)

- Semantic Web in more controlled scenarios
- Not new but fresh notion of knowledge graph in industry
- Availability of (mature) Semantic Web technology
- Enterprise data as a knowledge graph to drive products and make them more "intelligent"

Graph(s) of Knowledge (ii)

- Identify and integrate disparate resources in the Web (e.g., transport, cinemas, films)
- Integrate data within an organisation (e.g., multiple data sources and departments)
- Combine life science data from genetic, pharmaceutical, patient database, etc.
- Cross-reference disparate digital libraries

Graph(s) of Knowledge: new search experience

Google's Knowledge Graph

Challenges to create Graph(s) of Knowledge

- How to expose data (e.g., databases, csv files) as knowledge graphs?
- How to create (or reuse) and use (abstract) knowledge (i.e., Ontologies)?
- How to align different knowledge graphs? (*)
- How to check consistency and trust of the data and knowledge? (*)

(*) Better with things than with strings

Knowledge Representation and Reasoning

Ontologies (in philosophy)

- Ontology is a discipline that deals with how to represent and categorise entities
- Aristotle (384-322BC): first systematic taxonomy of biology
- Porphyrian tree or Aristotle's categories (right)

Ontologies (information sciences)

- Play a key role in the development of the Semantic Web
- "Formal specifications of a shared domain conceptualization"
- "Abstract symbolic representations of a domain expressed in a formal language"

Thomas R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge Sharing. 1993 Pim Borst, Hans Akkermans, and Jan Top. Engineering ontologies. 1999.

Ontologies as domain models (i)

- A model is a simplified (abstract) representation of certain aspects of the real world.
- Models help people communicate.
- Models explain and make predictions.
- Models mediate among multiple viewpoints.

Dean Allemang, James Hendler. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL.

Ontologies as domain models (ii)

- include vocabulary relevant to a domain
- specify meaning (semantics) of terms
 - Heart is a muscular organ that is part of the circulatory system

Ontologies as domain models (ii)

- include vocabulary relevant to a domain
- specify meaning (semantics) of terms
 - Heart is a muscular organ that is part of the circulatory system
- are formalised using a suitable logic language
 - $egin{array}{l} & orall x.[Heart(x)
 ightarrow \ & MuscularOrgan(x) \land \ & \exists y.[isPartOf(x,y) \land \ & CirculatorySystem(y)]] \end{array}$

Logic-based languages

Symbolic logic is a subset of the formal logic

– Propositional logic:

- simple facts or declarative propositions: a='Ernesto is a Lecturer'
- Connectives: \vee , \wedge , \neg , \rightarrow , \leftrightarrow .

Logic-based languages

Symbolic logic is a subset of the formal logic

– Propositional logic:

- simple facts or declarative propositions: a='Ernesto is a Lecturer'
- Connectives: \vee , \wedge , \neg , \rightarrow , \leftrightarrow .
- Predicate logic (e.g., First Order Logic)
 - use of predicates (relationships)
 - unary predicates: Lecturer(ernesto), University(city)
 - binary predicates: TeachesIn(ernesto, city),
 - use of quantifiers (\forall, \exists) over variables in formulas:

```
orall x.(Lecturer(x) 
ightarrow Academic(x))
```

Description Logics and OWL

 Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).

Description Logics and OWL

- Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).
- Core reasoning problems in FOL are undecidable (e.g., is ernesto an Academic?)
- Trade-off between expressiveness and computational properties

Description Logics and OWL

- Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).
- Core reasoning problems in FOL are undecidable (e.g., is ernesto an Academic?)
- Trade-off between expressiveness and computational properties
- Description Logics (DL):
 - Family of knowledge representation languages
 - Decidable subset of FOL
 - Original called: Terminological language or concept language
 - OWL is based on DL

Calculating with Knowledge (i)

- Syllogisms (i.e., inference) can be traced back to Aristotle
- Example:

All humans are mortal
Socrates is a human
Therefore, Socrates is mortal

Calculating with Knowledge (i)

- Syllogisms (i.e., inference) can be traced back to Aristotle
- Example:

All humans are mortal
Socrates is a human
Therefore, Socrates is mortal

- Algorithmic manipulation of knowledge...
- ... where the *meaning* of the words is not needed, e.g.,

All A are B
a is a A
Therefore, a is a B

Calculating with Knowledge (ii)

– Is Ernesto and Academic?

$$egin{aligned} Lecturer(ernesto) \ orall x.(Lecturer(x)
ightarrow Academic(x)) \ Academic(ernesto) \end{aligned}$$

Ontologies and Knowledge Graphs

- Google has relaunched the interest on KGs
- Graph data models extensively studied in Al
- Core idea of knowledge graphs is the enhancement of the graph data model with knowledge.
- In this module: OWL-layered RDF-based knowledge graphs

Aidan Hogan and others. Knowledge Graphs. CoRR abs/2003.02320 (2020)

Ontologies VS relational databases

- Independence of logical/physical schema: domain model
- Vocabulary closer to domain experts: more user-friendly
- Incomplete and semi-structured data: flexibility
- Integration of heterogeneous sources: unified view

(*) They can complement each other.

Exposing data sources as RDF data

- Virtual (Knowledge Graph)
 exposure of the data (OBDA:
 Ontology Based Data Access)
- Materialised Data Export.
 Useful to exchange data.

Exposing data sources as RDF data: ingredients

 Ontology vocabulary. Custom and/or given by a public KG.

Mappings

- RDB to RDF: relate ontology terms to queries over the RDB (W3C standard).
- CSV to RDF: transformation functions. (W3C standard)

Knowledge Graph Alignment

- The same domain can be modelled from multiple points of views
- Same entity may come from different data sources
- Key to enable interoperability
- Easier to find agreement among things than strings

lan Harrow and others. Ontology mapping for semantically enabled applications. Drug Discovery Today, 2019. Jérôme Euzenat, Pavel Shvaiko: Ontology Matching, Second Edition. Springer 2013, ISBN

Knowledge Graph Alignment (example)

KGs for AI and Data Science

Motivation

Data understanding and data preparation involves the 80% of work on a data mining project.

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

Adding Semantics to Tabular Data

- Tabular data in the form of CSV files is the common input format in a data analytics pipeline.
- The lack of semantics and context in datasets hinders their usability.
- Gaining semantic understanding will be very valuable for KG creation, data integration, data cleaning, data mining, machine learning and knowledge discovery tasks.

Contribution of Semantics in Data Wrangling Challenges

- Data parsing, e.g. converting csv's or tables.
- -(+++)Data dictionary: basic types and semantic types.
- − (++)Data integration from multiple sources (foreign key discovery).
- -(++)*Entity resolution*: duplication and record linkage.
- (+)Format variability: e.g. for dates and names.
- (+)Structural variability in the data.
- (++)Identifying and repairing missing data.
- (+) Anomaly detection and repair.
- (+++)**Metadata/contextual information**. (Semantic) data governance.

Adding Semantics to Tabular Data: Basic Tasks

- Matching a cell to a KG entity (CEA task Cell-Entity Annotation)
- Assigning a semantic type (e.g., a KG class) to an (entity) column (CTA task - Column-Type Annotation)
- Assigning a KG property to the relationship between two columns (CPA task - Columns-Property Annotation)
- (*) We assume the existence of a (possibly incomplete) **Knowledge Graph (KG)** relevant to the domain.
- (**) We may or not transform the (tabular) data into semantic data (i.e., extend the KG).

Ernesto Jiménez-Ruiz and others. SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems. ESWC 2020

Adding Semantics to Tabular Data: Basic Tasks

Next Decade in Al

- Gary Marcus has recently highlighted the need of richer AI systems,
 i.e., semantically sound, explainable, and reliable.
- Impressive results in Deep Learning (including LLMs) but require (very) large datasets and lack explanation.
- Limitations of KG systems: maintenance and flexibility in the inference.
 - e.g., $\forall x. \forall y. (A(x) \land R(x,y) \land B(y) \rightarrow C(x)), \ A(a), \ B'(b), \ \mathsf{and} \ R(a,b).$ Does C(a) hold?
- Solution? Combinations of connectionist or sub-symbolic systems with symbolic system (e.g., neuro-symbolic integration, KG-augmented LLMs. LLMs-enhanced KGs)

Gartner's 2020 Hype Cycles: Al

Week 1, Feb 1, 2024

As of July 2020

Gartner's 2020 Hype Cycles: Emerging Technologies

The Knowledge Scientist

Tasks of a Data Scientist

- Understand the data and its context
- Reliability of the data (shared with Data Engineers)
- Data wrangling
- Data analytics

Tasks of a Data Scientist

- Understand the data and its context
- Reliability of the data (shared with Data Engineers)
- Data wrangling
- Data analytics

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

The Knowledge Scientist (i)

- Data Engineer: harnesses and collects data.
- Data Scientist: draws value from data.
- Knowledge Engineer: encodes domain expertise.
- Knowledge Scientist: adds context to the data to make it more useful, clean, reliable and ready to be used.

The Knowledge Scientist (ii)

- Bridges the data and the business requirements/questions.
- Outputs a data model (e.g., a knowledge graph): how business users see the world.
- Drives a semantic-lifting of the data (from Data Engineers to Data Scientists)
- Relies on the **technology and skills** we cover in this module

George Fletcher and others. Knowledge Scientists: Unlocking the data-driven organization. 2020

The Knowledge Scientist (iii)

Coursework

Part 1: Ontology modelling

(*) Ontology CW2 = Model solution \neq Your Ontology Part 1

Part 2: The global picture

Laboratory Session

Laboratory Session

- R201 (Franklin building) 10 min. walk.
- This session is about infrastructure set-up.
- https://staffhub.city.ac.uk/
 timetabling/
 rooms-by-building/
 franklin-building/r201

