Herbst 12 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Formulieren Sie den Existenz- und Eindeutigkeitssatz von Picard-Lindelöf.
- b) Sei $\alpha \in \mathbb{R}, \alpha > 0$. Zeigen Sie, dass das Anfangswertproblem

$$y' = |y|^{\alpha}, y(0) = 0$$

genau im Fall $\alpha \geq 1$ eine eindeutige Lösung auf $[0, \infty)$ besitzt.

Lösungsvorschlag:

- a) Es gibt verschiedene Versionen, wir formulieren hier nur eine qualitative Version. Sei $D \subset \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ stetig und lokal lipschitzstetig bezüglich $x \in \mathbb{R}^n$ und $(t_0, x_0) \in D$. Dann existiert auf einer Umgebung von t_0 genau eine Lösung des Anfangswertproblems $y'(t) = f(t, y(t)), y(t_0) = x_0$.
- b) Für jegliches $\alpha > 0$ stellt die Nulllösung $y \equiv 0$ eine Lösung dar. Wir zeigen die Eindeutigkeit im Falle $\alpha \geq 1$ und geben eine zweite Lösung für $0 < \alpha < 1$ an. Sei $\alpha > 1$. Die Strukturfunktion $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f(t,x) = |x|^{\alpha}$ ist stetig, stetig partiell differenzierbar nach t und stetig partiell differenzierbar auf $\mathbb{R} \times \mathbb{R} \setminus \{0\}$ als Verkettung differenzierbarer Funktionen. Es gilt $\partial_x f(t,x) = \alpha \operatorname{sgn}(x) x^{\alpha-1}$; wir zeigen zusätzlich die Differenzierbarkeit in $(t,0), t \in \mathbb{R}$.

Es gilt $\lim_{h\to 0} \frac{f(t,h)-f(t,0)}{h} = \lim_{h\to 0} h^{\alpha-1} = 0$, da $\alpha > 1$ sein soll. Wegen $\lim_{x\to 0} \partial_x f(t,x) = 0 = \partial_x f(t,0)$ ist f also auch stetig partiell differenzierbar und damit lokal lipschitzstetig. Nach dem Satz von Picard-Lindelöf ist die Nulllösung also die einzige Lösung und diese existiert natürlich auf $[0,\infty)$.

Für $\alpha=1$ erhalten wir als Strukturfunktion die Betragsfunktion. Diese ist nach der umgekehrten Dreiecksungleichung lipschitzstetig und wieder folgt die Aussage mit dem Satz von Picard-Lindelöf.

Für $0 < \alpha < 1$ erhalten wir durch Trennung der Variablen eine weitere Lösung auf $[0, \infty)$ durch $y(t) = ((1 - \alpha)t)^{\frac{1}{1-\alpha}}$, was zeigt, dass hier keine Eindeutigkeit der Lösung vorliegt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$