### Multiple View Geometry

Marc Pollefeys

### Schedule (tentative)

| #  | date   | topic                              |
|----|--------|------------------------------------|
| 1  | Sep.17 | Introduction and geometry          |
| 2  | Sep.24 | Camera models and calibration      |
| 3  | Oct.1  | Invariant features                 |
| 4  | Oct.8  | Multiple-view geometry             |
| 5  | Oct.15 | Model fitting (RANSAC, EM,)        |
| 6  | Oct.22 | Stereo Matching                    |
| 7  | Oct.29 | Structure from motion              |
| 8  | Nov.5  | Segmentation                       |
| 9  | Nov.12 | Shape from X (silhouettes,)        |
| 10 | Nov.19 | Optical flow                       |
| 11 | Nov.26 | Tracking (Kalman, particle filter) |
| 12 | Dec.3  | Object category recognition        |
| 13 | Dec.10 | Specific object recognition        |
| 14 | Dec.17 | Research overview                  |

### **Two-view geometry**

#### Three questions:

- (i) Correspondence geometry: Given an image point x in the first image, how does this constrain the position of the corresponding point x' in the second image?
- (ii) Camera geometry (motion): Given a set of corresponding image points {x<sub>i</sub> ↔x'<sub>i</sub>}, i=1,...,n, what are the cameras P and P' for the two views?
- (iii) Scene geometry (structure): Given corresponding image points  $x_i \leftrightarrow x_i'$  and cameras P, P', what is the position of (their pre-image) X in space?

### The epipolar geometry



C,C',x,x' and X are coplanar

### The epipolar geometry



What if only C,C',x are known?

### The epipolar geometry



All points on  $\pi$  project on 1 and 1'

### The epipolar geometry



Family of planes  $\pi$  and lines I and I' Intersection in e and e'

#### The epipolar geometry

epipoles e,e'

- = intersection of baseline with image plane
- = projection of projection center in other image
- = vanishing point of camera motion direction



an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image (always come in corresponding pairs)

### **Example: converging cameras**







### **Example: motion parallel with image plane**







(simple for stereo → rectification)

### **Example: forward motion**







#### The fundamental matrix F

algebraic representation of epipolar geometry

$$x \mapsto 1'$$

we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) represented by the fundamental matrix **F** 

#### The fundamental matrix F

geometric derivation



$$x' = H_{\pi}x$$

$$1' = e' \times x' = [e']_{\times} H_{\pi} x = Fx$$

mapping from 2-D to 1-D family (rank 2)

#### The fundamental matrix F

#### algebraic derivation

$$X(\lambda) = P^+ x + \lambda C$$

$$1' = P'C \times P'P^{+}x$$

$$F = [e']_{\times} P' P^+$$

$$\left(PP^{+}=I\right)$$



(note: doesn't work for  $C=C' \Rightarrow F=0$ )

# The fundamental matrix F correspondence condition

The fundamental matrix satisfies the condition that for any pair of corresponding points  $x \leftrightarrow x'$  in the two images  $x'^T F x = 0 \qquad \left(x'^T l' = 0\right)$ 

#### The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x'<sup>T</sup>Fx=0 for all  $x \leftrightarrow x'$ 

- (i) Transpose: if F is fundamental matrix for (P,P'), then F<sup>T</sup> is fundamental matrix for (P',P)
- (ii) Epipolar lines:  $I' = Fx \& I = F^Tx'$
- (iii) Epipoles: on all epipolar lines, thus e'<sup>T</sup>Fx=0, ∀x ⇒e'<sup>T</sup>F=0, similarly Fe=0
- (iv) F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- (v) F is a correlation, projective mapping from a point x to a line I'=Fx (not a proper correlation, i.e. not invertible)

### Fundamental matrix for pure translation



### Fundamental matrix for pure translation







#### Fundamental matrix for pure translation

General motion

$$F = [e']_{\times} P' P^+$$

Pure translation

$$P = K[I | 0] \qquad P^{+} = \begin{bmatrix} K^{-1} \\ 0 \end{bmatrix}$$

$$P' = K[I | t]$$

$$F = [e']_{x} = \begin{bmatrix} 0 & e'_{z} & -e'_{y} \\ -e'_{z} & 0 & e'_{x} \\ e'_{y} & -e'_{x} & 0 \end{bmatrix}$$

for pure translation F only has 2 degrees of freedom

#### The fundamental matrix F

relation to homographies



$$[e']_{k}H_{\pi} = F$$
  $1' = H_{\pi}^{-T}1$   $e' = H_{\pi}e$ 

valid for all plane homographies

#### The fundamental matrix F

relation to homographies



$$x' = H_{\pi}x = [l_{\pi}]_{\times}Fx$$
requires 
$$l_{\pi}^{T}e' \neq 0$$

e.g. 
$$H = [e']_{x} F$$
  
 $(e'^{T} e' \neq 0)$ 

#### Projective transformation and invariance

Derivation based purely on projective concepts

$$\hat{\mathbf{x}} = \mathbf{H}\mathbf{x}, \ \hat{\mathbf{x}}' = \mathbf{H}'\mathbf{x}' \Longrightarrow \hat{\mathbf{F}} = \mathbf{H}'^{-T} \mathbf{F} \mathbf{H}^{-1}$$

F invariant to transformations of projective 3-space

$$x = PX = (PH)(H^{-1}X) = \hat{P}\hat{X}$$
  
 $x' = P'X = (P'H)(H^{-1}X) = \hat{P}'\hat{X}$ 



$$(P, P') \mapsto F$$
 unique

$$F \mapsto (P, P')$$
 not unique

canonical form

$$P = [I \mid 0] 
P' = [M \mid m]$$

$$F = [m]_{\times} M \qquad (F = [e']_{\times} P' P^{+})$$

### Projective ambiguity of cameras given F

previous slide: at least projective ambiguity this slide: not more!

Show that if F is same for (P,P') and  $(\tilde{P},\tilde{P}')$ , there exists a projective transformation H so that  $\tilde{P}=HP$  and  $\tilde{P}'=HP'$ 

$$\begin{array}{ll} P = [I \mid 0] & P' = [A \mid a] \\ \widetilde{P} = [I \mid 0] & \widetilde{P}' = [\widetilde{A} \mid \widetilde{a}] \end{array} \qquad F = \begin{bmatrix} a \end{bmatrix}_{k} A = \begin{bmatrix} \widetilde{a} \end{bmatrix}_{k} \widetilde{A}$$

**lemma:** 
$$\widetilde{a} = ka \text{ and } \widetilde{A} = k^{-1}(A + av^{T})$$

$$aF = a[a]_{\times} A = 0 = \widetilde{a}F \xrightarrow{\text{rank 2}} \widetilde{a} = ka$$

$$[a]_{\times} A = [\widetilde{a}]_{\times} \widetilde{A} \Rightarrow [a]_{\times} (k\widetilde{A} - A) = 0 \Rightarrow (k\widetilde{A} - A) = av^{T}$$

$$\mathbf{H} = \begin{bmatrix} k^{-1}I & 0 \\ k^{-1}\mathbf{v}^{\mathrm{T}} & k \end{bmatrix} \quad \mathbf{P'H} = [\mathbf{A} \mid \mathbf{a}] \begin{bmatrix} k^{-1}I & 0 \\ k^{-1}\mathbf{v}^{\mathrm{T}} & k \end{bmatrix}$$
$$(22-15=7, \text{ ok}) \qquad = [k^{-1}(\mathbf{A} - \mathbf{a}\mathbf{v}^{\mathrm{T}}) \mid k\mathbf{a}] = \widetilde{\mathbf{P}'}$$

#### The projective reconstruction theorem

If a <u>set of point correspondences</u> in two views <u>determine the fundamental matrix uniquely</u>, then the <u>scene and cameras</u> may be reconstructed from these correspondences alone, and any two such reconstructions from these correspondences are <u>projectively equivalent</u>

#### allows reconstruction from pair of uncalibrated images!



### Canonical cameras given F

#### Possible choice:

$$P = [I | 0] P' = [[e']_{\times} F | e']$$

$$F = [e']_{\times} P'P' = [e']_{\times} [[e']_{\times} F | e'] \begin{bmatrix} I \\ 0 \end{bmatrix}$$

$$([e']_{\times} [e']_{\times} = e'.e'' - (e''.e')I)$$

$$= (e'.e'' - (e'''.e'))F = \lambda F$$

#### **Canonical representation:**

$$P = [I | 0] P' = [[e']_{x} F + e' v^{T} | \lambda e']$$

### **Epipolar geometry**

**Underlying** structure in set of matches for rigid scenes



**Canonical** representation:

$$P = [I \mid 0] P' = [[e']_{\times} F + e' v^{T} \mid \lambda e']^{2}$$

- Computable from corresponding points
- Simplifies matching
- Allows to detect wrong matches
- Related to calibration

### Epipolar geometry?



#### Other entities besides points?

Lines give no constraint for two view geometry (but will for three and more views)



Curves and surfaces yield some constraints





### Computation of F (and E)

- Linear (8-point)
- Minimal (7-point)
- Non-linear refinement (MLE, ...)
- Calibrated 5-point
- Calibrated + know vertical 3-point

### Epipolar geometry: basic equation

$$x'^T Fx = 0$$

$$x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0$$

#### separate known from unknown

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} f = 0$$

$$Af = 0$$

### Problem with eight-point algorithm

|           |           |        |           |           |        |        |        |      | $(F_{11})$           | 1  |
|-----------|-----------|--------|-----------|-----------|--------|--------|--------|------|----------------------|----|
|           |           |        |           |           |        |        |        |      | $F_{12}$             |    |
| 250906.36 | 183269.57 | 921.81 | 200931.10 | 146766.13 | 738.21 | 272.19 | 198.81 | 1.00 | $F_{13}$             |    |
| 2692.28   | 131633.03 | 176.27 | 6196.73   | 302975.59 | 405.71 | 15.27  | 746.79 | 1.00 | I                    |    |
| 416374.23 | 871684.30 | 935.47 | 408110.89 | 854384.92 | 916.90 | 445.10 | 931.81 | 1.00 | $F_{21}$             |    |
| 191183.60 | 171759.40 | 410.27 | 416435.62 | 374125.90 | 893.65 | 465.99 | 418.65 | 1.00 | $F_{22}$             | =0 |
| 48988.86  | 30401.76  | 57.89  | 298604.57 | 185309.58 | 352.87 | 846.22 | 525.15 | 1.00 | ı                    |    |
| 164786.04 | 546559.67 | 813.17 | 1998.37   | 6628.15   | 9.86   | 202.65 | 672.14 | 1.00 | $F_{23}$             |    |
| 116407.01 | 2727.75   | 138.89 | 169941.27 | 3982.21   | 202.77 | 838.12 | 19.64  | 1.00 | $F_{31}$             |    |
| 135384.58 | 75411.13  | 198.72 | 411350.03 | 229127.78 | 603.79 | 681.28 | 379.48 | 1.00 |                      |    |
|           |           |        |           |           |        |        |        |      | $F_{32}$             |    |
|           |           |        |           |           |        |        |        |      | $\setminus F_{33}$ ) | 1  |

linear least-squares: unit norm vector F yielding smallest residual

What happens when there is noise?

# The Normalized Eight-Point Algorithm (Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels:  $q_i = T p_i$ ,  $q_i' = T'_i p'_i$ .
- $\bullet$  Use the eight-point algorithm to compute  $\mathcal F$  from the points  $q_{\, {\bf i}}$  and  $q_{\, {\bf i}}^{\, \prime}$  .
- Enforce the rank-2 constraint.
- Output  $T^{\mathsf{T}}\mathcal{F}T'$ .

#### Simplified normalized 8-point algorithm

Transform image to  $\sim$ [-1,1]x[-1,1]



normalized least squares yields good results

### the singularity constraint

$$e^{T} F = 0$$
 Fe = 0  $detF = 0$  rank  $F = 2$ 

#### **SVD from linearly computed F matrix (rank 3)**

$$F = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T + U_3 \sigma_3 V_3^T$$

### Compute closest rank-2 approximation $\min \|F - F\|_{F}$

$$F' = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ 0 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T$$





#### the minimum case – 7 point correspondences

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_7 x_7 & x'_7 y_7 & x'_7 & y'_7 x_7 & y'_7 y_7 & y'_7 & x_7 & y_7 & 1 \end{bmatrix} \mathbf{f} = 0$$

$$A = U_{7x7} diag(\sigma_1, ..., \sigma_7, 0, 0) V_{9x9}^{T}$$

$$\Rightarrow$$
 A[V<sub>8</sub>V<sub>9</sub>] = 0<sub>9x2</sub>

$$\left( e.g.V^{T}V_{8} = [000000010]^{T} \right)$$

$$\mathbf{x}_{i}^{\mathrm{T}}(\mathbf{F}_{1} + \lambda \mathbf{F}_{2})\mathbf{x}_{i} = 0, \forall i = 1...7$$

one parameter family of solutions

but  $F_1+\lambda F_2$  not automatically rank 2

#### the minimum case – impose rank 2



$$\det(\mathbf{F}_1 + \lambda \mathbf{F}_2) = a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$$
 (cubic equation)

$$\det(F_1 + \lambda F_2) = \det F_2 \det(F_2^{-1}F_1 + \lambda I) = 0 \quad (\det(AB) = \det(A)\det(B))$$

Compute possible  $\lambda$  as eigenvalues  $df_2^{-1}F_1$  (only real solutions are potential solutions)

#### Epipolar Constraint: Calibrated Case



$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0 \qquad \mathbf{p} \cdot [\mathbf{t} \times (\mathcal{R}\mathbf{p}')] = 0 \quad \text{with} \begin{cases} \mathbf{p} = (u, v, 1)^T \\ \mathbf{p}' = (u', v', 1)^T \\ \mathcal{M} = (\text{Id } \mathbf{0}) \\ \mathcal{M}' = (\mathcal{R}^T, -\mathcal{R}^T \mathbf{t}) \end{cases}$$

Essential Matrix (Longuet-Higgins, 1981)



 $\boldsymbol{p}^T \boldsymbol{\mathcal{E}} \boldsymbol{p}' = 0$  with  $\boldsymbol{\mathcal{E}} = [\boldsymbol{t}_{\times}] \boldsymbol{\mathcal{R}}$ 

#### Properties of the Essential Matrix

$$\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$$
 with  $\mathcal{E} = [\boldsymbol{t}_{\times}] \mathcal{R}$ 

- $\mathcal{I}$  p' is the epipolar line associated with p'.
- $\mathcal{F}^T$ p is the epipolar line associated with p.
- $\mathcal{E}$  e' = 0 and  $\mathcal{E}^{\mathcal{T}}$ e=0.
- $\mathcal{E}$  is singular.
- $\mathcal{E}$  has two equal non-zero singular values (Huang and Faugeras, 1989).

### 5-point relative motion

(Nister, CVPR03)

Linear equations for 5 points <sup>e</sup> E<sub>11</sub> <sup>u</sup> ú
 E<sub>12</sub> <sup>u</sup>

Linear solution space

E = xX + yY + zZ + wW scale does not matter, choose W = 1

Non-linear constraints

$$\det \mathbf{E} = 0$$

$$\mathbf{E}\mathbf{E}^{\mathrm{T}}\mathbf{E} - \frac{1}{2}trace(\mathbf{E}\mathbf{E}^{\mathrm{T}})\mathbf{E} = 0$$

### 5-point relative motion

(Nister, CVPRO3)

Perform Gauss-Jordan elimination on polynomials
 [n] represents polynomial of degree n in z

|                         | A                             | $x^3$ | $y^3$ | $x^2y$ | $xy^2$ | $x^2z$ | $x^2$ | $y^2z$ | $y^2$ | xyz | xy | x   | y   | 1   |
|-------------------------|-------------------------------|-------|-------|--------|--------|--------|-------|--------|-------|-----|----|-----|-----|-----|
|                         | $\langle a \rangle$           | 1     |       |        |        |        |       |        |       |     |    | [2] | [2] | [3] |
|                         | $\langle b \rangle$           |       | 1     |        |        |        |       |        |       |     |    | [2] | [2] | [3] |
|                         | $\langle c \rangle$           |       |       | 1      |        |        |       |        |       |     |    | [2] | [2] | [3] |
|                         | $\langle d \rangle$           |       |       |        | 1      |        |       |        |       |     |    | [2] | [2] | [3] |
| /1\                     | $\langle e \rangle$           |       |       |        |        | 1      |       |        |       |     |    | [2] | [2] | [3] |
| $\langle k \rangle$     | $\mathbf{Z}\langle f \rangle$ |       |       |        |        |        | 1     |        |       |     |    | [2] | [2] | [3] |
| /1\                     | $\langle g \rangle$           |       |       |        |        |        |       | 1      |       |     |    | [2] | [2] | [3] |
| $\langle \iota \rangle$ | $\mathbf{Z}\langle h \rangle$ |       |       |        |        |        |       |        | 1     |     |    | [2] | [2] | [3] |
| /m\[                    | $\langle i \rangle$           |       |       |        |        |        |       |        |       | 1   |    | [2] | [2] | [3] |
| $\langle m \rangle$     | $\mathbf{Z}\langle j \rangle$ |       |       |        |        |        |       |        |       |     | 1  | [2] | [2] | [3] |

$$\langle k \rangle \equiv \langle e \rangle - z \langle f \rangle$$
$$\langle l \rangle \equiv \langle g \rangle - z \langle h \rangle$$
$$\langle m \rangle \equiv \langle i \rangle - z \langle j \rangle$$

| B                   | x   | y   | 1   |
|---------------------|-----|-----|-----|
| $\langle k \rangle$ | [3] | [3] | [4] |
| $\langle l \rangle$ | [3] | [3] | [4] |
| $\langle m \rangle$ | [3] | [3] | [4] |

$$\langle n \rangle \equiv det(B)$$

# Minimal relative pose with know vertical

Fraundorfer, Tanskanen and Pollefeys, ECCV2010



Vertical direction can often be estimated

- inertial sensor
- vanishing point

$$E = \begin{bmatrix} t_z \sin(y) & -t_z \cos(y) & t_y \\ t_z \cos(y) & t_z \sin(y) & -t_x \\ -t_y \cos(y) - t_x \sin(y) & t_x \cos(y) - t_y \sin(y) & 0 \end{bmatrix}$$

5 linear unknowns → linear 5 point algorithm 3 unknowns → quartic 3 point algorithm

#### two-view geometry





geometric relations between two views is fully described by recovered 3x3 matrix F

### Triangulation



### Triangulation

Backprojection

$$\lambda x = PX$$

$$P_3Xx = P_1X$$
  
 $P_3Xy = P_2X$ 

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{bmatrix}
 P_3 X x & = & P_1 X \\
 P_3 X y & = & P_2 X
 \end{bmatrix}
 \begin{bmatrix}
 P_3 x - P_1 \\
 P_3 y - P_2
 \end{bmatrix}
 X = 0$$

Triangulation

$$\begin{bmatrix} P_3x - P_1 \\ P_3y - P_2 \\ P_3'x' - P_1' \\ P_3'y' - P_2' \end{bmatrix}$$

$$\begin{bmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ P'_{3}x' - P'_{1} \\ P'_{3}y' - P'_{2} \end{bmatrix} X = 0 \begin{bmatrix} \frac{1}{P_{3}\tilde{X}} \begin{pmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ \frac{1}{P'_{3}\tilde{X}} \begin{pmatrix} P'_{3}x - P'_{1} \\ P'_{3}x - P'_{1} \\ P'_{3}y - P'_{2} \end{pmatrix} X = 0$$

Iterative least-squares

Maximum Likelihood Triangulation

$$\arg\min_{\mathbf{X}} \sum_{i} \left( \mathbf{x}_{i} - \lambda^{-1} \mathbf{P}_{i} \mathbf{X} \right)^{2}$$



#### Optimal 3D point in epipolar plane

Given an epipolar plane, find best 3D point for (m<sub>1</sub>,m<sub>2</sub>)



Select closest points (m<sub>1</sub>′,m<sub>2</sub>′) on epipolar lines Obtain 3D point through exact triangulation Guarantees minimal reprojection error (given this epipolar plane)

#### Non-iterative optimal solution

 Reconstruct matches in projective frame by minimizing the reprojection error

$$D(\mathbf{m}_1, \mathbf{P}_1 \mathbf{M})^2 + D(\mathbf{m}_2, \mathbf{P}_2 \mathbf{M})^2$$
 3DOF

Non-iterative method (Hartley and Sturm, CVIU´97)

Determine the epipolar plane for reconstruction

$$D(\mathbf{m}_1, \mathbf{l}_1(\alpha))^2 + D(\mathbf{m}_2, \mathbf{l}_2(\alpha))^2$$
 (polynomial of degree 6)



Reconstruct optimal point from selected epipolar plane Note: only works for two views

#### Trinocular Epipolar Constraints



$$\left\{egin{aligned} oldsymbol{p}_1^T \mathcal{E}_{12} oldsymbol{p}_2 &= 0 \ oldsymbol{p}_2^T \mathcal{E}_{23} oldsymbol{p}_3 &= 0 \ oldsymbol{p}_3^T \mathcal{E}_{31} oldsymbol{p}_1 &= 0 \end{aligned}
ight.$$



These constraints are not independent!

$$e_{31}^T \mathcal{E}_{12} e_{32} = e_{12}^T \mathcal{E}_{23} e_{13} = e_{23}^T \mathcal{E}_{31} e_{21} = 0$$

#### Trinocular Epipolar Constraints: Transfer



$$egin{cases} oldsymbol{p}_1^T \mathcal{E}_{12} oldsymbol{p}_2 = 0 \ oldsymbol{p}_2^T \mathcal{E}_{23} oldsymbol{p}_3 = 0 \ oldsymbol{p}_3^T \mathcal{E}_{31} oldsymbol{p}_1 = 0 \end{cases}$$

Given  $p_1$  and  $p_2$ ,  $p_3$  can be computed as the solution of linear equations.

#### Trinocular Epipolar Constraints: Transfer

problem for epipolar transfer in trifocal plane!



There must be more to trifocal geometry...

### Backprojection

Represent point as intersection of row and column

$$\mathbf{x} = \mathbf{1}_x \times \mathbf{1}_y \text{ with } \mathbf{1}_x = \begin{bmatrix} -1 \\ 0 \\ x \end{bmatrix}, \mathbf{1}_y = \begin{bmatrix} 0 \\ -1 \\ y \end{bmatrix}$$

$$\Pi = \mathbf{P}^{\top} \mathbf{1}$$

$$\begin{bmatrix} \Pi_x^\top \\ \Pi_y^\top \end{bmatrix} X = 0 \qquad \begin{bmatrix} \mathbf{1}_x^\top P \\ \mathbf{1}_y^\top P \end{bmatrix} X = 0$$

Condition for solution?

$$\det \begin{bmatrix} \mathbf{1}_{x}^{\top} \mathbf{P} \\ \mathbf{1}_{y}^{\top} \mathbf{P} \\ \mathbf{1}_{x'}^{\top} \mathbf{P}' \\ \mathbf{1}_{y'}^{\top} \mathbf{P}' \end{bmatrix} = \mathbf{0}$$

Useful presentation for deriving and understanding multiple view geometry (notice 3D planes are linear in 2D point coordinates)

### Multi-view geometry

$$\det \begin{bmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ P_1' - x'P_3' \\ P_2' - y'P_3' \end{bmatrix} = 0$$
 (intersection constraint)

$$\begin{vmatrix} P_{1} - xP_{3} \\ P_{2} - yP_{3} \\ P'_{1} - x'P'_{3} \\ P'_{2} - y'P'_{3} \end{vmatrix} = \begin{vmatrix} P_{1} \\ P_{2} - yP_{3} \\ P'_{1} - x'P'_{3} \\ P'_{2} - y'P'_{3} \end{vmatrix} - x \begin{vmatrix} P_{3} \\ P_{2} - yP_{3} \\ P'_{1} - x'P'_{3} \\ P'_{2} - y'P'_{3} \end{vmatrix}$$
 (multi-linearity of determinants)

$$= \begin{vmatrix} P_1 & P_3 & P_2 & P_3 & P_2 & P_3 & P_3 & P_3 & P_4 & P_5 &$$

 $= \cdots$ 

$$= axx' + byx' + cx' + dxy' + eyy' + fy' + gx + hy + i = 0$$

(= epipolar constraint!)

(counting argument: 11x2-15=7)

### Multi-view geometry

$$\det\begin{bmatrix} P_{1} - xP_{3} \\ P_{2} - yP_{3} \\ P'_{1} - x'P'_{3} \\ P''_{1} - x''P''_{3} \end{bmatrix} = 0$$

$$\det\begin{bmatrix} P_{1} - xP_{3} \\ P_{2} - yP_{3} \\ l'_{1}P'_{1} + l'_{2}P'_{2} + l'_{3}P'_{3} \\ l''_{1}P''_{1} + l''_{2}P''_{2} + l''_{3}P''_{3} \end{bmatrix} = 0$$
(multi-linearity of determinants)

$$\begin{vmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ l_1'P_1' + l_2'P_2' + l_3'P_3' \\ l_1''P_1'' + l_2''P_2'' + l_3''P_3'' \end{vmatrix} = l_1' \begin{vmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ P_1' \\ l_1''P_1'' + l_2''P_2'' + l_3''P_3'' \end{vmatrix} + l_2' \begin{vmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ P_2' \\ l_1''P_1'' + l_2''P_2'' + l_3''P_3'' \end{vmatrix} + l_3' \begin{vmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ P_2' \\ l_1''P_1'' + l_2''P_2'' + l_3''P_3'' \end{vmatrix} + l_3' \begin{vmatrix} P_1 - xP_3 \\ P_2 - yP_3 \\ P_3' \\ l_1''P_1'' + l_2''P_2'' + l_3''P_3'' \end{vmatrix}$$

 $= \cdots$   $= axl'_1l''_1 + byl'_1l''_1 + cl'_1l''_1 + dxl'_2l''_1 + \cdots$  (3x3x3=27 coefficients)
(= trifocal constraint!)

(counting argument: 11x3-15=18)

### Multi-view geometry

$$\det \begin{bmatrix} P_1 - xP_3 \\ P'_1 - x'P'_3 \\ P''_1 - x''P''_3 \\ P'''_1 - x'''P'''_3 \end{bmatrix} = 0$$

$$\det \begin{bmatrix} l_1 P_1 + l_2 P_2 + l_3 P_3 \\ l_1' P_1' + l_2' P_2' + l_3' P_3' \\ l_1'' P_1'' + l_2'' P_2'' + l_3'' P_3'' \\ l_1''' P_1''' + l_2''' P_2''' + l_3''' P_3''' \end{bmatrix} = 0$$



$$= al_1 l_1' l_1'' l_1''' + bl_2 l_1' l_1'' l_1''' + cl_3 l_1' l_1'' l_1''' + \cdots$$
 (3x3x3x3=81 coefficients)

(= quadrifocal constraint!)

(counting argument: 11x4-15=29)

#### from perspective to omnidirectional cameras



perspective camera
(2 constraints / feature)



radial camera (uncalibrated) (1 constraints / feature)

3 constraints allow to reconstruct 3D point



more constraints also tell something



multilinear constraints known as epipolar, trifocal and quadrifocal constraints

### Quadrifocal constraint

$$\lambda \mathbf{l} = \varepsilon \mathbf{P} \mathbf{X} \text{ with } \varepsilon = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \varepsilon \mathbf{P} & 1 & 0 & 0 & 0 \\ \varepsilon \mathbf{P}' & 0 & 1' & 0 & 0 \\ \varepsilon \mathbf{P}'' & 0 & 0 & 1'' & 0 \\ \varepsilon \mathbf{P}''' & 0 & 0 & 0 & 1''' \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ -\lambda \\ -\lambda' \\ -\lambda'' \\ -\lambda''' \end{bmatrix} = \mathbf{0}$$

$$\mathbf{l}_i \mathbf{l}_j' \mathbf{l}_k'' \mathbf{l}_l''' \mathbf{Q}^{ijkl} = 0$$



#### Radial quadrifocal tensor

$$l = \left(\begin{array}{c} y \\ -x \end{array}\right)$$

Linearly compute radial quadrifocal tensor Q<sup>ijkl</sup> from 15 pts in 4 views

$$l_i l_j l_k l_l Q^{ijkl} = 0$$
 (2x2x2x2 tensor)

Reconstruct 3D scene and use it for calibration

Not easy for real data, hard to avoid degenerate cases (e.g. 3 optical axes intersect in single point).

However, degenerate case leads to simpler 3 view algorithm for pure rotation

Radial trifocal tensor T<sup>ijk</sup> from 7 points in 3 views

$$l_i l_j l_k T^{ijk} = 0$$
 (2x2x2 tensor)

Reconstruct 2D panorama and use it for calibration

#### Dealing with Wide FOV Camera

(Thirthala and Pollefeys CVPR05)

- Two-step linear approach to compute radial distortion
- Estimates distortion polynomial of arbitrary







undistorted image



estimated distortion (4-8 coefficients)

#### Dealing with Wide FOV Camera

(Thirthala and Pollefeys CVPR05)

Two-step linear approach to compute radial distortion

Estimates distortion polynomial of arbitrary

degree





estimated distortion (4-8 coefficients)



unfolded cubemap

#### Non-parametric distortion calibration

(Thirthala and Pollefeys ICCV05)

Models fish-eye lenses, cata-dioptric systems,



#### Non-parametric distortion calibration

(Thirthala and Pollefeys ICCV05)

Models fish-eye lenses, cata-dioptric



# Synthetic quadrifocal tensor example

- Perspective
- Fish-eye
- Spherical mirror
- Hyperbolic mirror









#### Next week

Model fitting (RANSAC, EM,...)