Jakob Willforss, Aakash Chawade and Fredrik Levander

09/07/2018

Abstract

Technical biases reduces the ability to see the desired biological changes when performing omics experiments. There are numerous normalization techniques available to counter the biases, but to find the optimal normalization is often a non-trivial task. Furthermore there are limited tools available to counter biases such as retention-time based biases caused by fluctuating electrospray intensities. NormalyzerDE helps this process by performing a wide range of normalization techniques including a general and openly available approach to countering retention-time based biases. More importantly it calculates and visualizes a number of performance measures to guide the users selection of normalization technique. Furthermore, NormalyzerDE provides means to easily perform differential expression statistics using either the empirical Bayes Limma approach or ANOVA. Evaluation visualizations are available for both normalization performance measures and as P-value histograms for the subsequent differential expression analysis comparisons. NormalyzerDE package version: 0.99.8

Contents

1	Installation				
2	Default use				
	2.1	Citing	3		
	2.2	Input format	3		
	2.3	Running NormalyzerDE evaluation	3		
	2.4	Running NormalyzerDE statistical comparisons	4		
3	Reter	ntion time normalization	5		
	3.1	Basic usage	5		
	3.2	Performing layered normalization	7		
4	Stepv	vise processing (normalization part)	8		
	4.1	Step 1: Loading data	8		
	4.2	Step 2: Generate normalizations	8		
	4.3	Step 3: Generate performance measures	8		
	4.4	Step 4: Output matrices to file	9		

	4.5	Step 5: Generate evaluation plots	9
5	Stepv	vise processing (differential expression analysis part)	9
	5.1	Step 1: Setup folders and data matrices	9
	5.2	Step 2: Calculate statistics	9
	5.3	Step 3: Generate final matrix and output	10
6	Code	organization	10

1 Installation

Installation is preferably performed using BiocManager (requires R version \geq 3.5):

```
install.packages("BiocManager")
BiocManager::install("NormalyzerDE")
```

2 Default use

2.1 Citing

Willforss, J., Chawade, A., Levander, F. Submitted article.

2.2 Input format

NormalyzerDE expects a raw data file. Columns can contain annotation information or sample data. Each column should start with a header.

```
pepseq s1
                 s2
                         s3
ATAAGG
        20.0
                 21.2
                         19.4
                                  18.5
AWAG
        23.3
                 24.1
                         23.5
                                  17.3
ACATGM 22.1
                 22.3
                         22.5
                                  23.2
```

This data should be provided with a design matrix where all data samples should be represented. One column (default header "sample") should match the columns containing samples in the raw data. Another column (default header "group") should contain condition levels which could be used for group-based evaluations.

```
sample group
s1 condA
s2 condA
s3 condB
```

Alternatively the data can be provided as an instance of a SummarizedExperiment S4 class. This class is available in the SummarizedExperiment Bioconductor package.

2.3 Running NormalyzerDE evaluation

The evaluation step can be performed with one command, normalyzer. This command expects a path to the data file, a name for the run-job, a path to a design matrix and finally a path to an output directory.

Alternatively the designPath and dataPath arguments can be replaced with the experimen tObj argument where the first assay should contain the data matrix of interest, the colData attribute the design matrix and the rowData attribute the annotation columns.

```
library(NormalyzerDE)
outDir <- tempdir()</pre>
designFp <- system.file(package="NormalyzerDE", "extdata", "design.tsv")</pre>
dataFp <- system.file(package="NormalyzerDE", "extdata", "data.tsv")</pre>
normalyzer(jobName="vignette_run", designPath=designFp, dataPath=dataFp,
           outputDir=outDir)
## [Step 1/5] Load data and verify input
## Input data checked. All fields are valid.
## Sample check: More than one sample group found
## Sample replication check: All samples have replicates
## RT annotation column found (5)
## [Step 1/5] Input verified, job directory prepared at:/tmp/RtmphiiCqn/vignette_run
## [Step 2/5] Performing normalizations
## [Step 2/5] Done!
## [Step 3/5] Generating evaluation measures...
## [Step 3/5] Done!
## [Step 4/5] Writing matrices to file
## [Step 4/5] Matrices successfully written
## [Step 5/5] Generating plots...
## [Step 5/5] Plots successfully generated
## All done! Results are stored in: /tmp/RtmphiiCqn/vignette_run, processing time was 0.7 minutes
```

2.4 Running NormalyzerDE statistical comparisons

When you after performing the evaluation and having evaluated the report have decided for which normalization approach seems to work best you can continue to the statistical step.

Here, expected parameters are the path to the target normalization matrix, the sample design matrix as in the previous step, a job name, the path to an output directory and a list of the pairwise comparisons for which you want to calculate contrasts. They are provided as a character vector with conditions to compare separated by a dash ("-").

Similarly as for the normalization step the designPath and dataPath arguments can be replaced with an instance of SummarizedExperiment sent to the experimentObj argument.

3 Retention time normalization

Retention time based normalization can be performed with an arbitrary normalization matrix.

3.1 Basic usage

There are two points of access for the higher order normalization. Either by calling getRT NormalizedMatrix which applies the target normalization approach stepwise over the matrix based on retention times, or by calling getSmoothedRTNormalizedMatrix which generates multiple layered matrices and combines them. To use them you need your raw data loaded into a matrix, a list containing retention times and a normalization matrix able to take a raw matrix and return a normalized in similar format.

```
fullDf <- read.csv(dataFp, sep="\t")</pre>
designDf <- read.csv(designFp, sep="\t")</pre>
head(fullDf, 1)
       Cluster.ID Peptide.Sequence External.IDs Charge Average.RT Average.m.z
                                                         20.25051
## 1 1493882053114
                        AAAAEINVKD
                                         P38156
                                                     2
    s_12500amol_1 s_12500amol_2 s_12500amol_3 s_125amol_1 s_125amol_2
## 1
        115597000
                      109302000
                                    100314000
                                                 98182352
##
    s_125amol_3 s_25000amol_1 s_25000amol_2 s_25000amol_3 s_2500amol_1
                     99315200
                                  185658000
                                                161331008
## 1
       98702800
                                                             124908000
    s_2500amol_2 s_2500amol_3 s_250amol_1 s_250amol_2 s_250amol_3
## 1
       116218000 112467000 90528896
                                             82128304
    s_50000amol_1 s_50000amol_2 s_50000amol_3 s_5000amol_1 s_5000amol_2
                      132508000
## 1
        155924000
                                    139174000
                                                 110084000
                                                              107755000
##
    s_5000amol_3 s_500amol_1 s_500amol_2 s_500amol_3 s_50amol_1 s_50amol_2
## 1
      108817000 98170000 96898704 104109000
                                                       88484096
##
    s_50amol_3
## 1 97952512
head(designDf, 1)
        sample group batch
## 1 s_50amol_1
                   1
```

At this point we have loaded the full data into dataframes. Next, we use the sample names present in the design matrix to extract sample columns from the raw data. Be careful that the sample names is a character vector. If it is a factor it will extract wrong columns.

Make sure that sample names extracted from design matrix are in right format. We expect it to be in 'character' format.

```
sampleNames <- as.character(designDf$sample)
typeof(sampleNames)
## [1] "character"</pre>
```

Now we are ready to extract the data matrix from the full matrix. We also need to get the retention time column from the full matrix.

```
dataMat <- as.matrix(fullDf[, sampleNames])
retentionTimes <- fullDf$Average.RT</pre>
```

```
head(dataMat, 1)
       s_50amol_1 s_50amol_2 s_50amol_3 s_125amol_1 s_125amol_2 s_125amol_3
## [1,] 88484096 92873168 97952512
                                         98182352
                                                     87241776
                                                                98702800
       s_250amol_1 s_250amol_2 s_250amol_3 s_500amol_1 s_500amol_2 s_500amol_3
                   82128304 90611000
                                            98170000
                                                       96898704 104109000
## [1,]
          90528896
       s_2500amol_1 s_2500amol_2 s_2500amol_3 s_5000amol_1 s_5000amol_2
## [1,] 124908000 116218000 112467000
                                              110084000
                                                          107755000
       s_5000amol_3 s_12500amol_1 s_12500amol_2 s_12500amol_3 s_25000amol_1
## [1,] 108817000 115597000
                                   109302000
                                                  100314000
                                                                99315200
##
       s_25000amol_2 s_25000amol_3 s_50000amol_1 s_50000amol_2 s_50000amol_3
           185658000
                        161331008
                                     155924000
                                                  132508000
                                                                139174000
## [1,]
```

If everything is fine the data matrix should be double, and have the same number of rows as the number of retention time values we have.

```
typeof(dataMat)
## [1] "double"

print("Rows and columns of data")
## [1] "Rows and columns of data"
dim(dataMat)
## [1] 100 27

print("Number of retention times")
## [1] "Number of retention times"
length(retentionTimes)
## [1] 100
```

The normalization function is expected to take a raw intensity matrix and return log transformed values. We borrow the wrapper function for Loess normalization from NormalyzerDE. It can be replaced with any custom function as long as the wrapper has the same input/output format.

```
performCyclicLoessNormalization <- function(rawMatrix) {
    log2Matrix <- log2(rawMatrix)
    normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast")
    colnames(normMatrix) <- colnames(rawMatrix)
    normMatrix
}</pre>
```

We are ready to perform the normalization.

Let's double check the results. We expect a matrix in the same format and shape as before. Furthermore, we expect similar but not the exact same values as if we'd applied the normalization globally.

```
globalNormMat <- performCyclicLoessNormalization(dataMat)</pre>
dim(rtNormMat)
## [1] 100 27
dim(globalNormMat)
## [1] 100 27
head(rtNormMat, 1)
## s_50amol_1 s_50amol_2 s_50amol_3 s_125amol_1 s_125amol_2 s_125amol_3
      26.4195 26.49648 26.60364
                                    26.53692
                                                 26.31423
## s_250amol_1 s_250amol_2 s_250amol_3 s_500amol_1 s_500amol_2 s_500amol_3
##
       26.3765
                  26.32032
                             26.41595
                                         26.44011
                                                    26.43208
                                                                26.59369
## s_2500amol_1 s_2500amol_2 s_2500amol_3 s_5000amol_1 s_5000amol_2
       26.94727 26.85807
                               26.76096
                                            26.69457
## s_5000amol_3 s_12500amol_1 s_12500amol_2 s_12500amol_3 s_25000amol_1
       26.68261 26.76658
                                  26.70266
                                                26.59615
## s_25000amol_2 s_25000amol_3 s_50000amol_1 s_50000amol_2 s_50000amol_3
        27.24251
                      27.0744
                                 27.00559
                                                26.78887
head(globalNormMat, 1)
       s_50amol_1 s_50amol_2 s_50amol_3 s_125amol_1 s_125amol_2 s_125amol_3
          26.4195 26.49648 26.60364 26.53692
                                                   26.31423
       s_250amol_1 s_250amol_2 s_250amol_3 s_500amol_1 s_500amol_2 s_500amol_3
## [1,]
           26.3765 26.32032 26.41595
                                            26.44011
                                                        26.43208
                                                                    26.59369
       s_2500amol_1 s_2500amol_2 s_2500amol_3 s_5000amol_1 s_5000amol_2
## [1,]
           26.94727
                      26.85807 26.76096
                                                26.69457
                                                             26.70806
       s_5000amol_3 s_12500amol_1 s_12500amol_2 s_12500amol_3 s_25000amol_1
                                                   26.59615
           26.68261
                      26.76658
                                      26.70266
                                                                 26.71226
       s_25000amol_2 s_25000amol_3 s_50000amol_1 s_50000amol_2 s_50000amol_3
            27.24251
                          27.0744
                                       27.00559
                                                    26.78887
```

3.2 Performing layered normalization

We have everything set up to perform the layered normalization. The result here is expected to be overall similar to the normal retention time approach.

```
layeredRtNormMat <- getSmoothedRTNormalizedMatrix(</pre>
    dataMat,
    retentionTimes,
    performCyclicLoessNormalization,
    stepSizeMinutes=1,
    windowMinCount=100,
    windowShifts=3,
    mergeMethod="mean")
dim(layeredRtNormMat)
## [1] 100 27
head(layeredRtNormMat, 1)
       s_50amol_1 s_50amol_2 s_50amol_3 s_125amol_1 s_125amol_2 s_125amol_3
          26.4195 26.49648 26.60364 26.53692
                                                     26.31423
## [1,]
       s_250amol_1 s_250amol_2 s_250amol_3 s_500amol_1 s_500amol_2 s_500amol_3
##
## [1,]
           26.3765
                      26.32032 26.41595
                                              26.44011
                                                         26.43208
```

```
s_2500amol_1 s_2500amol_2 s_2500amol_3 s_5000amol_1 s_5000amol_2
            26.94727
                                                    26.69457
                                                                 26.70806
## [1,]
                         26.85807
                                      26.76096
##
        s_5000amol_3 s_12500amol_1 s_12500amol_2 s_12500amol_3 s_25000amol_1
            26.68261
                          26.76658
                                        26.70266
                                                       26.59615
                                                                     26.71226
        s_25000amol_2 s_25000amol_3 s_50000amol_1 s_50000amol_2 s_50000amol_3
             27.24251
                            27.0744
                                          27.00559
                                                        26.78887
                                                                      26.85155
```

4 Stepwise processing (normalization part)

NormalyzerDE consists of a set of steps. The workflow can be run as a whole, or step by step.

4.1 Step 1: Loading data

This step performs input validation of the data, and generates an object of the class NormalyzerDataset.

```
jobName <- "vignette_run"
experimentObj <- setupRawDataObject(dataFp, designFp, "default", TRUE, "sample", "group")
normObj <- getVerifiedNormalyzerObject(jobName, experimentObj)
## Input data checked. All fields are valid.
## Sample check: More than one sample group found
## Sample replication check: All samples have replicates
## RT annotation column found (5)</pre>
```

The function setupRawDataObject returns a SummarizedExperiment object. This object can be prepared directly and should in that case contain the raw data as the default assay, the design matrix as colData and annotation rows as rowData.

4.2 Step 2: Generate normalizations

Here, normalizations are performed. This generates a NormalyzerResults object containing both a reference to its original dataset object, but also generated normalization matrices.

```
normResults <- normMethods(normObj)</pre>
```

4.3 Step 3: Generate performance measures

Performance measures are calculated for normalizations. These are stored in an object NormalizationEvaluationResults. A NormalyzerResults object similar to the one sent in is returned, but with this field added.

```
normResultsWithEval <- analyzeNormalizations(normResults)
```

4.4 Step 4: Output matrices to file

Generated normalization matrices are written to the provided folder.

```
jobDir <- setupJobDir("vignette_run", tempdir())
writeNormalizedDatasets(normResultsWithEval, jobDir)</pre>
```

4.5 Step 5: Generate evaluation plots

Performance measures are used to generate evaluation figures which is written in an evaluation report.

```
generatePlots(normResultsWithEval, jobDir)
## pdf
## 2
```

After this evaluation of normalizations and progression to statistics follows as described previously in this report.

5 Stepwise processing (differential expression analysis part)

5.1 Step 1: Setup folders and data matrices

For continued processing you select the matrix containing the normalized data from the best performing normalization. The design matrix is the same as for the normalization step.

Similarly as to for the normalization evaluation step the experimentObj above can be prepared directly as a SummarizedExperiment object.

5.2 Step 2: Calculate statistics

Now we are ready to perform the contrasts. Contrasts are provided as a vector in the format c("condA-condB", "condB-condC"), where condX is the group levels.

```
comparisons <- c("1-2", "2-3")
nst <- calculateContrasts(nst, comparisons, condCol="group")</pre>
```

5.3 Step 3: Generate final matrix and output

Finally we generate a table containing the statistics results for each feature and write it to file together with an evaluation report containing P-value histograms for each comparison.

```
annotDf <- generateAnnotatedMatrix(nst)
utils::write.table(annotDf, file=paste(jobDir, "stat_table.tsv", sep="/"))
generateStatsReport(nst, "Vignette stats", jobDir)
## pdf
## 2</pre>
```

6 Code organization

NormalyzerDE consists of a number of scripts and classes. They are focused around two separate workflows. One is for normalizing and evaluating the normalizations. The second is for performing differential expression analysis. Classes are contained in scripts with the same name.

Code organization:

Figure 1: NormalyzerDE schematics

The standard workflow for the normalization is the following:

- The normalyzer function in the NormalyzerDE.R script is called, starting the process.
- If applicable (that is, input is in Proteois or MaxQuant format), the dataset is preprocessed into the standard format using code in preparsers.R.

- The input is verified to capture standard errors early on using code in inputVerifica tion.R. This results in an instance of the NormalyzerDataset class.
- The data is normalized using several normalization methods present in normMethods.R.
 This yields an instance of NormalyzerResults which links to the original Normalyzer Dataset instance and also contains all the resulting normalized datasets.
- If specified (and if a column with retention time values is present) retention-time segmented approaches are performed by applying normalizations from normMethods.R over retention time using functions present in higherOrderNormMethods.R.
- The results are analyzed using functions present in analyzeResults.R. This yields an instance of NormalyzerEvaluationResults containing the evaluation results. This instance is attached to the NormalyzerResults object.
- The final results are sent to outputUtils.R where the normalizations are written to an output directory, and to generatePlots.R which contains visualizations for the performance measures. It also uses code in printMeta.R and printPlots.R to output the results in a desired format.

When a normalized matrix is selected the analysis proceeds to the statistical analysis.

- The normalyzerde function in the NormalyzerDE.R script is called starting the differential expression analysis pipeline.
- An instance of NormalyzerStatistics is prepared containing the input data.
- Code in the calculateStatistics.R script is used to calculate the statistical contrasts. The results are attached to the NormalyzerStatistics object.
- The resulting statistics are used to generate a report and an annotated output matrix where key statistical measures are attached to the original matrix.