Demand Estimation for Subscription Models

Identifying Willingness to Pay without Price Variation

Vineet Kumar

Yale University, USA

Yale Faculty Seminar April 2023

Research Overview – Substantive

Research Overview - Methodological

- Structural Models:
 - Linear Estimation of Aggregate Dynamic Discrete Demand for Durable Goods without the Curse of Dimensionality, with C.
 Chou and T. Derdenger Marketing Science
 - Estimating Dynamic Discrete Choice Models with Aggregate
 Data: Properties of the Inclusive Value Approximation, with T.

 Derdenger, Quantitative Marketing and Economics

Research Overview - Methodological

- Machine Learning:
 - Nonparametric Bandits Leveraging Informational Externalities to Learn the Demand Curve, with I. Weaver, Major Revision at Marketing Science
 - A Theory-Based Interpretable Deep Learning Architecture for Music Emotion, with H. Fong and K. Sudhir, Major Revision at Marketing Science
 - Automatically Discovering Unknown Product Attributes
 Impacting Consumer Preferences, with A. Sisodia and A.
 Burnap, Revision at Journal of Marketing Research

Subscription business

- Subscription market is fast growing and potentially huge
 - ullet Growth rate > 100% each year in the past 5 years
 - Multibillion revenue per year
 - Across a wide range of product categories (digital + physical)
 - Pay upfront and consume over time

Frontier Airlines Now Has an Unlimited Pass for Summer — Here's How to Score One

"For people with flexible schedules, this is a terrific opportunity to have a truly epic summer and then some, soaking up rays on the beach, exploring national parks and visiting new cities."

By Alison Fox Updated on February 1, 2023

Subscriptions are an increasingly common way to buy products and services online

Note: Figures may not sum to 100%, because of rounding.

'Which of the following have you purchased or subscribed to in the past 12 months? % of those selecting online subscription-box service that delivers products regularly (eg, Blue Apron, Dollar Shave Club, Ipsy, Stitch Fix), subscription-based media (eg, ClassPass, Hulu, Netflix, Spotlfy), both, or neither.

Subscribe for replenishment Subscribe for curation	32 55	Save time and money Be surprised by product variety	Replenish the same or similar items Primary categories are commodity items such as razors, vitamins Receive a curated selection of different	Amazon Subscribe & Save, Dollar Shave Club, and Ritual
	55			
			items, with varying levels of consumer decision making required Primary categories are apparel, food, beauty products	and out of PIX
Subscribe for access	13	Gain exclusive access	Membership provides access and can convey additional "VIP" perks Primary categories are	JustFab, NatureBox, and Thrive Market

Industry	Product or Service	Price (\$)	Period	Total subscribers
	Netflix	9.99	Monthly	23 million (US)
$Media~\mathcal{E}$	Spotify	9.99	Monthly	70 million (World)
Entertain-	New York Times	3.75	Weekly	4 million (US)
Entertain- ment	MoviePass	19.95	Monthly	2 million
тепі	Kindle Unlimited	9.99	Monthly	_
	Apple News	9.99	Monthly	36 million
G - H	Microsoft Office 365	9.99	Monthly	120 million
Software-as- a-Service	Adobe Creative Cloud (One App)	20.99	Monthly	15 million
а-зетисе	Dropbox Premium	9.99	Monthly	>11 million
Membership	Costco (Basic)*	60	Annual	94 million
Clubs	Amazon Prime	119	Annual	90 million
Ciuos	24 hour fitness (Gym)	40	Monthly	4 million
eCommerce	Harry's	35	Monthly	-
eCommerce	Birchbox	15	Monthly	2 million
	Rent the Runway	159	Monthly	6 million
	Public Transit Pass (MTA)	121	30-days	_
Transportation	Uber Ride Pass*	14.99	Monthly	-
	Jetblue "All You can Jet" Pass	699	Monthly	_

Subscription business

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?
 - How to design plans for specific demographic segments (e.g. students).
- Everything relies on knowing the distribution of willingness to pay (WTP) for subscription service.
 - Demand curve
 - Elasticities

Related Research - WTP elicitation

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)
- Revealed preference stream uses transaction data for demand estimation, with individual data (Guadagni and Little 1983) or aggregate data (Berry 1994, BLP 1995)
- Comprehensive Survey: Breidert (2007)

What's common to above?

All these cases have price variation!

Related Research - Consumption Data

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b, 2013)
- Consumption in above is inferred, treated like nuisance
 - Limited exceptions with consumption data: Nevo, Turner and Williams (2016), Huang, Khwaja and Sudhir (2015)

Big Picture Idea:

Leverage high frequency usage data for identification.

Contribution

- Main contribution: a novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.
- We also obtain the conditional WTP distribution (so, we can get WTP based on observables like gender / age / student etc.)
- No existing research that demonstrates how to obtain the WTP distribution in the absence of price variation.
 - Nevo, Turner and Williams (ECTA, 2016) leverages an "overage charge"

Research questions

Focus:

Obtain WTP estimates for a subscription service with high frequency usage data

More specifically:

- In absence of price variation, under what conditions on usage is it possible to identify distribution of WTP?
- Is price variation the same as usage variation or is there additional value?
- What demand responses and profits to counterfactual product and pricing choices by the firm can be determined?

With Price Variation – Notation

Cross section data with price variation.

Notation

- i indicates a consumer
- Subscription decision: $S_i = 1$ (sub) and = 0 (not).
- WTP: W_i
- Price: P_i

Decision rule:

$$\underbrace{W_i - P_i}_{\text{money-metric}} \text{ vs } \underbrace{\mu = 0}_{\text{money-metric utility}} \Rightarrow$$

$$S_i = \begin{cases} 1, & W_i > P_i \\ 0, & W_i \le P_i. \end{cases}$$

or
$$S_i = \mathbb{I}(W_i > P_i)$$
.

• When $W_i \perp \!\!\! \perp P_i$, for any w in the support of P_i $\Pr(W_i > w) = \Pr(S_i = 1 \mid P_i = w).$

Subscription Models

Data: Mkt shr in the pop facing price w

Model Overview and Elements

Model is based on microfoundations of usage based on leisure, aggregated over time

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)
- Low frequency Purchase: Consumer makes purchase (subscription) decisions every T periods at constant price P
 - Form expectations about future usage in making purchase decision

Microfoundations of Usage

Consider the consumer allocating leisure time:

- consumer leisure time spent in focal activity, e.g. listening to streaming music q_{it} ,
- Other "leisure" activities (e.g. playing outdoors) q_{0it} .
- Specify a money-metric utility function:

$$u_{it}(q_{it}, q_{0it}) = D_{it}u^{(1)}(q_{it}, q_{0it}; \theta_{im(t)}) + (1 - D_{it})u^{(0)}(q_{0it}; \theta_{im(t)})$$

• $D_{it} \in \{0,1\}$ is an indicator for whether the focal activity is present or absent \implies rationalizes zero usage in many periods

Microfoundations of Usage

We need to characterize usage at the daily level and relate to the monthly level WTP

ullet Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

- μ_i is heterogeneous across individuals
- Z_{it} includes example variables like weekend or holiday dummy variables or weather
- Leisure shocks ε_{it} can be serially correlated (ignore for now)
- Monthly expected leisure $L_{im} \equiv \sum_{t:m(t)=m} (\mu_i + \gamma' Z_{it})$

Characterization of Value of Subscription

Connecting daily usage of focal service to monthly indirect utility:

Theorem (Usage to Indirect Utility)

For any utility function homogeneous of degree 1, the difference between the expected monthly indirect utilities with and without a subscription, W_{im} , satisfies

$$W_{im} = \alpha_{im}L_{im}$$
 or $\ln W_{im} = \ln \alpha_{im} + \ln L_{im}$,

The daily usage of the subscription satisfies

$$Q_{it} = D_{it} r_{im(t)} \ell_{it},$$

- What class of utility functions are included?
 - Cobb-Douglas, CES, perfect substitutes, perfect complements,

Leontief

Subscription Decisions

We know that WTP is: $W_{im} = \alpha_{im} L_{im}$

• account of consumer heterogeneity, both observed X_{im} and unobserved U_{im} . Consider a linear projection of $\ln \alpha_{im}$ onto X_{im} as:

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im},$$

where
$$\beta' = (\beta_0, \beta'_1)$$
 and $X'_{im} = (1, X'_{1im})$.

• Subscription choice $S_{im} = \mathbb{I}(\ln W_{im} > \ln P)$ becomes

$$S_{im} = \mathbb{I}(\ln L_{im} + \beta' X_{im} - \ln P + U_{im} > 0).$$

Exogenous Variation

What exogenous variations are required for identification?

Assumption (Exogenous Variation)

$$\mathbf{Z}_{im} \perp \mathcal{U}_{im} \mid (X_{im}, \mu_i),$$

• Above implies monthly expected leisure $L_{im} \perp \!\!\! \perp U_{im} \mid (X_{im}, \mu_i)$ because the randomness of L_{im} only comes from \mathbf{Z}_{im} and μ_i .

Model Components – Overview

Model Components – Overview

- Usage model [High frequency]:
 - Leisure shifters ⇒ Daily leisure ⇒ Usage
 - Usage / Leisure parameters are separately identified.
- Purchase model [Low frequency]:
 - Expectation of Leisure shifters ⇒ Aggregate Leisure
 - Aggregate Leisure + Consumer-level variables (vary across consumer and time) ⇒ Purchase

23 / 43

Model Components – Overview

- We capture across consumer heterogeneity in a couple of ways:
 - Usage: Unobservable heterogeneity captured by μ_i
 - Purchase: Observed heterogeneity captured by X_{im} and Unobserved heterogeneity by U_{im}

Main Result

Theorem (Parametric Identification of WTP)

We have the following results when $U_{im} \mid (X_{im}, \mu_i) \sim \mathcal{N}(\sigma_{u,\mu}\mu_{im}^*, \sigma_u^2)$

- The unknown parameters $(\beta, \sigma_u, \sigma_{u,u})$ are identified.
- The distribution of WTP is identified, and

$$F_W(w|X_{im},\mu_i,L_{im}) = \Phi\left[\frac{1}{\sigma_u}\left(\ln w - \ln L_{im} - \beta'X_{im} - \sigma_{u,\mu}\mu_{im}^*\right)\right].$$

We do not need this parametric assumption above.

Boundary conditions of method

• What happens without usage data? Subscription equation

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln P + \beta' X_{im} + U_{im} > 0)$$

= $\mathbb{I}[(\beta_0 - \ln P) + \beta'_1 X_{1im} + (\ln L_{im} + U_{im}) > 0]$

Cannot distinguish between L_{im} and U_{im}

- ullet Without exogenous shifters Z_{it} , again this approach will not work
- Need both usage data and exogenous shifters

Is Usage Variation the Same as Price Variation

- If we want to identify switching costs, no amount of usage variation is sufficient..
 - Why?
- Consider a more general subscription choice with δ :

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln(P_{im} - \delta' X_{2im}) + \beta_0 + \beta_1' X_{1im} + U_{im} > 0).$$

Switching Cost

Need at least 2 price levels to identify switching cost.

Big usage data of YBOX, a music streaming service

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015-Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service
 - basic demographics (age and gender)
- No price variation for monthly music streaming service over time
- Average daily listening hours range from 45 mins to > 6 hours
- Average monthly listening hours range from less than 1 hour to more than 150 hours.

Estimation – Usage

- Leisure: $\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it}$ and Usage $Q_{it} = D_{it} r_{im(t)} \ell_{it}$
- Step 1: Estimate the usage model using finite mixture heterogeneity. Let $(\hat{\mu}_i, \hat{r}_{im}, \hat{\gamma}')$ be the estimates of (μ_i, r_{im}, γ')
- **Step 2:** Estimate monthly expected leisure L_{im} by substituting the unknown parameters (μ_i, γ') with the estimates $(\hat{\mu}_i, \hat{\gamma}')$. Denote this estimator by \hat{L}_{im} .

Estimation – Subcription

WTP for the service: $W_{im} = \alpha_{im} L_{im}$

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im}$$

$$S_{im} = \mathbb{I}(\ln L_{im} + \beta' X_{im} - \ln P + U_{im} > 0)$$

- **Step 3:** For each month m, implement a linear regression of $\hat{\mu}_i$ on X_{im} and obtain the residuals $\hat{\mu}_{im}^*$. These residuals are the estimates of μ_{im}^* .
- **Step 4:** Run the probit regression of S_{im} on $\ln(\hat{L}_{im}/P)$, X_{im} , and $\hat{\mu}_{im}^*$. The probit regression provides estimates of σ_u^{-1} , β/σ_u , $\sigma_{u,\mu}/\sigma_u$. Then the estimates of β and $\sigma_{u,\mu}$ are obtained easily.

	All Users	Never Cancelled	Ever Cancelled
Monthly Usage (Hours)	41.73	44.25	18.48
	(50.65)	(52.07)	(24.76)
Daily Usage (Hours): Weekend	1.31	1.39	0.57
	(2.21)	(2.27)	(1.41)
Daily Usage (Hours): Weekdays	1.39	1.47	0.62
	(2.28)	(2.35)	(1.30)
Age	30.91	31.12	29.69
	(9.09)	(9.32)	(7.56)
Female (%)	42.00	42.35	40.00
Number of Users	300	255	45

Figure: Estimates of the Distribution of WTP for the Monthly Plan

	Parameters	Estimates	Std Err
	$\mu_{Type\ 1}$	0.8279	(0.0471)
	r_{Type1}	2.1130	(0.1566)
	$\gamma_{Holiday,Type1}$	0.0297	(0.0157)
	$\gamma_{Weekend,Type1}$	0.0257	(0.0142)
	μ_{Type2}	0.8339	(0.0539)
	r_{Type2}	5.3138	(0.9502)
$Usage\ eq.$	$\gamma_{Holiday,Type2}$	-0.0365	(0.0223)
	$\gamma_{Weekend,Type2}$	-0.0369	(0.0251)
	$\gamma_{Humidity}$	-0.0010	(0.0005)
	$\gamma_{Precipitation}$	0.0004	(0.0002)
	β_0/σ_u	5.9226	(1.4853)
<i>a</i>	$1/\sigma_u$	2.5261	(0.7895)
Subscription eq.	β_{Age}/σ_u	0.0115	(0.0039)
	β_{Female}/σ_u	0.1095	(0.0698)
	$\sigma_{u,\mu}/\sigma_u$	-6.2721	(4.0592)

Segment	Price l	Elasticity	Revenue Max Price	Mean Usage	$Median\ WTP\ (\$)$
All Users	-0.31	(0.10)	206	1.37	280.00
Male	-0.33	(0.11)	202	1.43	275.00
Female	-0.27	(0.08)	212	1.29	288.00
$\mathrm{Age} \leq 22$	-0.37	(0.13)	197	1.45	268.00
Age~2330	-0.34	(0.11)	201	1.55	273.00
$\mathrm{Age} > 30$	-0.26	(0.08)	214	1.22	290.00

User Groups	Humidity Only	Precipitation Only	Both
All Users	-0.307	-0.367	-0.366
	(0.098)	(0.106)	(0.105)
Male	-0.332	-0.397	-0.396
	(0.111)	(0.122)	(0.121)
Female	-0.273	-0.326	-0.325
	(0.083)	(0.090)	(0.089)
$\mathrm{Age} \leq 22$	-0.368	-0.439	-0.437
	(0.129)	(0.142)	(0.141)
Age~23–30	-0.339	-0.405	-0.403
	(0.114)	(0.125)	(0.124)
Age > 30	-0.261	-0.313	-0.312
	(0.078)	(0.083)	(0.083)

	All Users	Never Cancelled	Ever Cancelled
Monthly Usage (Hours)	41.73	44.25	18.48
	(50.65)	(52.07)	(24.76)
Daily Usage (Hours): Weekend	1.31	1.39	0.57
	(2.21)	(2.27)	(1.41)
Daily Usage (Hours): Weekdays	1.39	1.47	0.62
	(2.28)	(2.35)	(1.30)
Age	30.91	31.12	29.69
	(9.09)	(9.32)	(7.56)
Female (%)	42.00	42.35	40.00
Number of Users	300	255	45

WTP variation with age / college status

-Age < 19 (before college)--Age between 19 and 22 (college)--Age between 23 and 30- Greater 30

Conclusions

Without Price variation, can we obtain WTP?

- A: Qualified Yes.
- What big data on usage tracking can tell us?
 - The distribution of WTP under some restrictions
- Can design counterfactual products and pricing strategies
- Cannot replace the role of price variation, even limited, in identifying switching costs

Duration as a segmentation device

- Firms offer plans of different durations, e.g. Amazon offers
 Prime monthly and annual plans
- What's the distribution of the WTP for the shorter plan?
- One idea is to examine whether we can use duration effectively as a segmentation device
- When does it work well and when does it not?

Segmentation by duration

Identify interesting mechanisms based on plan duration

- Shorter plans allow flexibility and could increase consumer WTP
 - WTP for Prime might be higher during holiday season, maybe I just buy then?
- Longer plans:
 - Can lock in consumers in the presence of switching costs, firms have to discount
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity

Segmentation by duration

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type
 - If we offer a 2 month plan, then both consumers should have WTP: $(v_L + v_H)$
 - Might make it easier to extract surplus
 - ullet But, wait ... including 3rd month \Longrightarrow heterogeneity \uparrow
- Duration can be a strategic design decision so the firm needs to figure out what duration plans to offer.

A bigger picture (of a fridge)

- Essentially, we need the separation of purchase (subscription) and consumption (usage).
- Such separation also holds in packaged goods (beer)—but we did not track the usage.

My Research Overview

- Substantive: Digital Business Models
- ullet Methodological: Structural Models \Longleftrightarrow Machine Learning
 - Different approaches to ML

Some projects:

- Nonparametric Bandits Leveraging Informational Externalities to Learn the Demand Curve, with Ian Weaver (Major Revision at Marketing Science)
- Automatically Discovering Visual Product Characteristics, with Ankit Sisodia and Alex Burnap (Revision at Journal of Marketing Research)

ADDITIONAL SLIDES