Logical Constraints

Given the optimization problem:

Max
$$z = f(x_1, x_2, ..., x_n)$$

s.t.
$$g_1(x_1, x_2, ..., x_n) \ge 0$$
 (1)
 $g_2(x_1, x_2, ..., x_n) \ge 0$ (2)

Only a given "combination" of the constraints must be imposed.

Only One Constraint

Only one of the two constraints (1) and (2) must be imposed.

- Let L_1 and L_2 be the "inferior limits" of functions g_1 and g_2 , respectively (f. i., M, with M very large positive number).
- * Let t_1 and t_2 be two binary variables such that: $t_k = 0$ if constraint (k) is imposed, $t_k = 1$ otherwise (k = 1, 2);
- * Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)
 $g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$ (2a)

and impose the additional constraint:

$$t_1 + t_2 = 1$$
, with t_1 , t_2 binary variables $(t_1, t_2 \in \{0,1\})$

Not Both Constraints

Or only (1), or only (2), or none of the two constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)

$$g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$$
 (2a)

and impose the additional constraint:

$$t_1 + t_2 \ge 1,$$

with $t_1, t_2 \in \{0,1\}$

Not Only One Constraint

Or both (1) and (2), or none of the two constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge tL_1$$
 (1b)

$$g_2(x_1, x_2, ..., x_n) \ge tL_2$$
 (2b)

with $t \in \{0,1\}$

At Least One Constraint

Or only (1), or only (2), or both constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)

$$g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$$
 (2a)

and impose the additional constraint:

$$t_1 + t_2 \le 1,$$

with $t_1, t_2 \in \{0,1\}$

* Combinations of 3 or more constraints

Minimum Production Lots

- Production of *n* items.
- M_j minimum "lot" of item j (j = 1,...,n) (minimum quantity to be produced).
- x_i = quantity of item j to be produced.
- At least a quantity M_j of item j is produced $(x_j \ge M_j)$ or item j is not produced $(x_j = 0), j = 1,...,n$.
- * Let t_i be a binary variable such that:

$$t_{j} = 0$$
 if $(x_{i} = 0)$, and $t_{j} = 1$ if $(x_{i} \ge M_{i})$.

• Impose the following constraints (j = 1,...,n):

$$x_j \ge M_j t_j$$
; $x_j \le G t_j$; $t_j \in \{0,1\}$ with G very large positive number.

Minimum Production Lots

- Production of *n* items.
- M_j minimum "lot" of item j (j = 1,...,n) (minimum quantity to be produced).
- x_i = quantity of item j to be produced.
- * Let t_i be a binary variable such that:

$$t_{j} = 0$$
 if $(x_{j} = 0)$, and $t_{j} = 1$ if $(x_{j} \ge M_{j})$.

• Impose the following constraints (j = 1,...,n):

$$x_j \ge M_j t_j$$
; $x_j \le G t_j$; $t_j \in \{0,1\}$ with G very large positive number.

- If $t_j = 0$: $x_j \le 0$ and $x_j \ge 0$, hence: $x_j = 0$;
- If $t_j = 1$: $x_i \le G$ and $x_i \ge M_i$, hence: $x_i \ge M_i$

Fixed Production Cost

- Production Problem concerning *n* items.
- The cost of item j (j = 1,...,n) is given by:
 - 0, if item j is not produced $(x_j = 0)$
 - $F_j + p_j x_j$ if item j is produced $(x_j > 0)$

- F_i = fixed cost (machine)
- p_j = unit production cost
- discontinuity at the origin (not algebraic function)

Fixed Production Cost (2)

$$y_{j} = \begin{cases} 1 & \text{if } x_{j} > 0 \\ 0 & \text{if } x_{j} = 0 \end{cases}$$

$$(j = 1, ..., n)$$

$$\mathbf{Min} \ \Sigma_{j=1,n} \ (F_j \ y_j + p_j \ x_j)$$

$$Ax \ge b$$

$$x \ge 0$$

$$y \in \{0,1\}$$

Logical constraints (*if* ...)

Variables x and y must be connected through linear constraints

Fixed Production Cost (3)

$$y_{j} = \begin{cases} 1 & \text{if } x_{j} > 0 \\ 0 & \text{if } x_{j} = 0 \end{cases} \Rightarrow \begin{cases} x_{j} \leq My_{j} & (j = 1, ..., n) \\ \cos M >> 1 & (\cong +\infty) \end{cases}$$

- Satisfaction of the constraint:
 - if $x_i > 0$ y_i must be = 1 $(x_i \le M)$
 - if $x_i = 0$ y_i can be = 0 or $1 (0 \le 0 \text{ or } 0 \le M)$

or

- if $y_i = 0$ x_i must be = 0 ($x_i \le 0$) (since $x_i \ge 0$)
- if $y_j = 1$ x_j can be = 0 or > 0 $(x_j \le M)$
- The constraint imposes only a part of the logical relation

Fixed Production Cost (4)

Min
$$\sum_{j=1,n} (F_j y_j + p_j x_j)$$

 $Ax \geq b$
 $x_j \leq My_j$
 $x_j \geq 0, y_j \in \{0, 1\} \quad (j = 1, ..., n)$

MILP Model (Mixed Integer Linear Programming)

- It is not necessary to impose also the other part of the logical relation:
- a feasible solution with $x_j = 0$ and $y_j = 1$ cannot be optimal (an alternative feasible solution with a smaller cost exists: $x_i = 0$, $y_i = 0$)

Discrete Variables

* Variable x must have a value among k (with k > 1) given different values:

$$x \in S = \{s_1, s_2, ..., s_k\}$$

* Let t_h (h = 1, 2, ..., k) be a binary variable such that:

$$t_h = 1$$
 if $(x = s_h)$, and $t_h = 0$ if $(x \neq s_h)$.

*
$$\mathbf{x} = \sum_{h=1,k} \mathbf{s}_h t_h$$

with
$$\Sigma_{h=1,k}$$
 $t_h = 1$

and
$$t_h \in \{0, 1\}$$
 $(h = 1, ..., k)$

Discrete Variables (2)

* Example

$$x \in S = \{0.2, 0.4, ..., 2.0\} \quad (k = 10)$$

• $t_h \in \{0, 1\}$ with h = 1, 2, ..., 10

•
$$x = 0.2 t_1 + 0.4 t_2 + 0.6 t_3 + ... + 2.0 t_{10}$$

with

$$\Sigma_{h=1,10} t_h = 1$$

* Alternative technique:

$$x = 0.2 y$$
 with $y \ge 1$, $y \le 10$, y integer

* x integer variable with $x \ge 0$, $x \le k$

* Introduce (k + 1) binary variables t_h , with h = 0, ..., k $(t_h = 1 \text{ if } \mathbf{x} = h, \text{ and } t_h = 0 \text{ otherwise})$

$$x = \sum_{h=0,k} h t_h$$

 $\sum_{h=0,k} t_h = 1$ with $t_h \in \{0,1\} h = 0, ..., k$

• x integer variable with $x \ge 0$, $x \le k$

Alternative technique (binary expression of an integer): introduce q binary variables t_h , with h = 1, ..., q

$$x = \sum_{h=1, q} 2^{h-1} t_h = t_1 + 2 t_2 + 4 t_3 + \dots + 2^{q-1} t_q$$

$$\sum_{h=1, q} 2^{h-1} t_h \le k \qquad t_h \in \{0, 1\} \ h = 1, \dots, q \ (**)$$

$$q = \lceil z \rceil$$
 with $z = log_2(k+1)$

• Example: x integer variable with $0 \le x \le 27$

•
$$z = log_2 (27 + 1), q = \lceil z \rceil = 5$$

•
$$x = t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 16 t_5$$

We must impose the constraint:

$$t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 16 t_5 \le 27$$
 (**)
(for $t_1 = t_2 = t_3 = t_4 = t_5 = 1$, we have: $x = 31$)

- Example, Alternative Transformation:
- x integer variable with $0 \le x \le 27$, q = 5

•
$$x = t_1 + 2t_2 + 4t_3 + 8t_4 + 12t_5$$

We have not to impose the constraint:

$$t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 12 t_5 \le 27$$
 (**)
(for $t_1 = t_2 = t_3 = t_4 = t_5 = 1$, we have: $x = 27$)

• x integer variable with $x \ge b$, $x \le k$ with $b \ne 0$

introduce q binary variables t_h , with h = 1, ..., q

$$x = \sum_{h=1,q} 2^{h-1} t_h + b$$
, $q = \lceil z \rceil, z = \log_2 (k-b+1)$

$$\sum_{h=1,q} 2^{h-1} t_h \leq k-b \qquad t_h \in \{0,1\} \ h=1,...,q \ (**)$$

Example: $5 \le x \le 8$, q = 2, $x = 5 + t_1 + 2t_2$