Examples from Class Connor Baker, March 2017

Example 1 (Prove that if $(3|a) \land (3|b)$ then 9|(ab)). Assume that $\exists k, j \in \mathbb{N} : 3k = a, 3j = b$. Then, ab = 9kj. Since $k, j \in \mathbb{N}$, and $(kj) \in \mathbb{N}$, then $(9kj) \in \mathbb{N}$. By the definition of divisibility, 9|(ab).

Example 2 (Let $m, n \in \mathbb{N}$ and q prime. Then $q|m \iff q|m^2$.). If q|m, then $q|m^2$. Then $\exists k \in \mathbb{N} : qk = m$. Then, $m^2 = q^2k^2$. By definition, since it has the same factor twice, $q|m^2$.

If $q|m^2$, then q|m. Let the unique prime factor decomposition of $m=p_1^{n_1}\cdot p_2^{n_2}\cdots p_k^{n_k}$. Then $m^2=p_1^{2n_1}\cdot p_2^{2n_2}\cdots p_k^{n_k}$. Since $q|m^2,q=p_i^{2n_i}$ for some $i\in\mathbb{N},i\leq k$. Since q is prime and is in $\mathbb{N},2n_i\geq 2\implies n_i\geq 1$. Furthermore, q must be in the unique prime factorization of m (which we can infer from q's being prime and a factor of m^2 – it must have a factor of at least q^2). As such, q|m. Therefore, $q|m\iff q|m^2$.

Example 3 ($\sqrt{2}$ is irrational). If $(x > 0) \land (x^2 = 2)$, then x is irrational. We will prove by contradiction that x is irrational.

Assume that x is rational and $x>0, x^2=2$. Then, since x is rational, $\exists m,n\in\mathbb{N}: x=\frac{m}{n}$, and m,n have no common factors. As such, $2=x^2=\frac{m^2}{n^2}\Longrightarrow m^2=2n^2$, and $2|m^2$, which by the previous example, means 2|m. Since $2|m,\exists k\in\mathbb{N}$ where m=2k. As such, $x=\frac{2k}{n}\Longrightarrow x^2=\frac{4k^2}{n^2}=2\Longrightarrow 2k^2=n^2$. Therfore, $2|n^2\Longrightarrow 2|n$.

So, m, n both have no factors in common, yet they have a factor of two, which is a contradiction. Therefore, it must the case that if $(x > 0) \land (x^2 = 2)$, then x is irrational.

Example 4 $(A = \{(-a, a) : (a \in \mathbb{R}) \land (a > 0)\}$. Show that the union over the indexed family of sets is \mathbb{R} .). We must show that given the definition of A above:

$$\bigcup_{A\in\mathcal{A}}A=\mathbb{R}.$$

We begin by proving that:

$$\bigcup_{A\in\mathcal{A}}A\subseteq\mathbb{R}.$$

Let $x \in \bigcup_{A \in \mathcal{A}} A$. Then, $\exists a \in \mathbb{R}, a > 0 : x \in (-a.a)$. Then -a < x < a. Since $a \in \mathbb{R}, x \in (-a,a)$, it must be that $x \in \mathbb{R}$, and $\bigcup_{A \in \mathcal{A}} A \subseteq \mathbb{R}$.

We now prove that:

$$\mathbb{R}\subseteq\bigcup_{A\in\mathcal{A}}A.$$

Let $x \in \mathbb{R}$. Then $0 \le |x| \le (|x|+1)$ and $-|x| \le x \le |x|$. Using this inequality, we see that $-(|x|+1) < x \le |x| < (|x|+1)$. Then $x \in (-(|x|+1), (|x|+1)) \in A$, so by the definition of union, $x \in \bigcup_{A \in \mathcal{A}} A$, which implies that all elements of \mathbb{R} are in the union, so $\mathbb{R} \subseteq \bigcup_{A \in \mathcal{A}} A$. Therefore,

$$\bigcup_{A \in \mathcal{A}} A = \mathbb{R}.$$

Example 5 $(A = \{(-a, a) : (a \in \mathbb{R}) \land (a > 0)\}$. Show that the intersection over the indexed family of sets is $\{0\}$.). We must show that given the definition of A above:

$$\bigcap_{A \in \mathcal{A}} A = \{0\}.$$

We begin by proving that:

$$\bigcap_{A\in\mathcal{A}}A\subseteq\{0\}.$$

Let $x \in \cap_{A \in \mathcal{A}} A$. Then, if $x \in \{0\}$, x = 0. However, suppose that $x \neq 0$. Then since $x \in \mathbb{R}$, $\forall a \in \mathbb{R}^+$, $x \in (-a, a)$. We now prove that x is in every interval, but not one specific interval. Let $(-|x|/2, |x|/2) \in \mathcal{A}$. Then, since |x|/2 < |x|, it follows that -|x| < -|x|/2 < |x|/2 < |x|. Furthermore, x = -|x| or x = |x|, so $x \notin (-|x|/2, |x|/2)$.

This is a contradiction of our assumption that $x \in \cap_{A \in \mathcal{A}} A$ and $x \neq 0$. It must be the case that x = 0 and is the only element of the intersection. As such, $\cap_{A \in \mathcal{A}} A \subseteq \{0\}$. We now prove that:

$$\{0\}\subseteq\bigcap_{A\in\mathcal{A}}A.$$

Let $I \in \mathcal{A}$. Then $\exists a \in \mathbb{R}^+$ such that when I = (-a, a), -a < 0 < a (since a > 0). Therefore $0 \in (-a, a) \ \forall a > 0$. So, $0 \in I, \forall I \in \mathcal{A}$. As such, it must be the case that $\{0\} \subseteq \cap_{A \in \mathcal{A}} A$. Therefore,

$$\bigcap_{A \in \mathcal{A}} A = \{0\}.$$