分组号:3-07

《基础物理实验》实验报告

 实验名称
 用示波器观测动态磁滞回线
 指导教师
 高林青

 姓
 名 桂庭釋 学号 2019K8009929019 专
 业 计算机科学与技术
 班级 03 座号 6

 实验日期 2020 年 11 月 04 日 实验地点 教学楼 705 调课/补课 □是 成绩评定

1. 实验目的

- 1. 掌握利用示波器测量铁磁材料动态磁滞回线的方法;
- 2. 了解铁磁性材料的动态磁化特性;
- 3. 了解磁滞、磁滞回线和磁化曲线的概念,加深对饱和磁化强度、剩余磁化强度、矫顽力等物理量的理解。

2. 实验器材

磁特性综合测量仪(包含正弦波信号源,待测样品及绕组,积分电路所用电阻和电容), 双踪示波器,直流电源,电感,数字多用表。

磁特性综合测量仪主要技术指标如下:

- (1) 样品 1: 锰锌铁氧体,圆形罗兰环,磁滞损耗较小。平均磁路长度 $l=0.130\,\mathrm{m}$,铁芯实验样品截面积 $S=1.24\times 10^{-4}\,\mathrm{m}^2$,线圈匝数: $N_1=N_2=N_3=150\,\mathrm{m}$ 。
- (2) 样品 2: EI 型硅钢片,磁滞损耗较大。平均磁路长度 $l=0.075\,\mathrm{m}$,铁芯实验样品截面积 $S=1.20\times 10^{-4}\,\mathrm{m}^2$,线圈匝数: $N_1=N_2=N_3=150\,\mathrm{m}$ 。
- (3) 信号源的频率在 20 ~ 200 Hz 间可调;可调标准电阻 R_1, R_2 均为无感交流电阻, R_1 的调节范围为 $0.1 \sim 11 \Omega$, R_2 的调节范围为 $1 \sim 100 \, \text{k}\Omega$;标准电容有 $0.1 \, \mu\text{F} \sim 11 \mu\text{F}$ 可选。

3. 实验原理

3.1 铁磁材料的磁化特性

把物体放在外磁场 H 中,物体就会被磁化,在其内部产生磁场。设其内部磁化强度为M,磁感应强度为 B,可以定义磁化率 χ_m 和相对磁导率 μ_r 表示物质被磁化的难易程度:

$$\chi_m = \frac{M}{H}, \quad \mu_r = \frac{B}{\mu_0 H}$$

其中 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$ 是真空磁导率。又由于 $B = \mu_0 (M+H)$,所以 $\mu_r = 1 + \chi_m$ 。物质的磁性按磁化率可分为抗磁性、顺磁性和铁磁性三种,其中铁磁性物质的磁化率通常大于 1,远大于前两类物质。

图 1: 铁磁材料的动态磁滞回线和动态磁化曲线示意图

除磁导率高这一特点外,铁磁材料还具有特殊的磁化规律。对一个处于磁中性状态 (H = 0, B = 0) 的铁磁材料加上由小变大的磁场 H 进行磁化时,磁感应强度 B 随 H 的变化曲线大致分为三个阶段: (1) 可逆磁化阶段; (2) 不可逆化阶段; (3) 饱和磁化阶段。 H_S , B_S 分别称为饱和磁场强度与饱和磁感应强度。

如果磁场在 $[-H_S, H_S]$ 间作循环变化,那么 B 也会作循环变化,从而 B-H 图象成为一个闭合的磁滞回线,此时的磁滞回线称为饱和磁滞回线。同一频率下(动态磁滞回线的形状与磁化场频率与幅度都有关),将磁场幅值从 0 增到 H_S 得到的一系列磁滞回线,他们的顶点 (H_m, B_m) 的连线称为动态磁化曲线。

从这条曲线出发,考虑足够弱的交流磁场、直流偏置磁场的情况,可以分别定义振幅磁导率 μ_m, μ_i, μ_B :

$$\mu_m = \frac{B_m}{\mu_0 H_m}, \quad \mu_i = \lim_{H \to 0} \frac{B}{\mu_0 H}, \quad \mu_R = \lim_{\Delta H \to 0} \frac{\Delta B}{\mu_0 \Delta H}$$

闭合磁滞回线的面积对应于循环磁化一周所发生的能量损耗。对材料进行交流动态磁化时,损耗来自于磁滞损耗、涡流损耗、剩余损耗。对于金属氧化物组成的铁氧体磁性材料电阻率高,高频条件下其涡流损耗很小。

由于铁磁材料在加上磁场 H 后产生的 B 不仅与磁场强度本身有关,还与材料的磁化历史有关,所以在研究铁磁材料的起始磁化性质时,通常先对铁磁材料进行退磁处理,使之达到磁中性状态。

3.2 动态磁滞回线的测量

测量动态磁滞回线的原理电路如图 2 所示。

环形铁芯上绕有三组线圈。线圈 1 为交流励磁线圈,接交流正弦信号源;线圈 2 为感应线圈,接 RC 积分电路;线圈 3 为直流励磁线圈,用于在测有直流偏置磁场下的可逆磁导率时接直流电源。将 u_{R_1} 和 u_C 从示波器两通道输入,在示波器 X-Y 显示模式下即可看到动态磁滞回线。

图 2: 用示波器测量动态磁滞回线电路图

由安培环路定理,磁场强度 H 正比于励磁电流 i_1 :

$$H = \frac{N_1}{l}i_1$$

其中 N_1 是线圈 1 的匝数,l 是磁环的等效磁路长度。由于 $i_1=\frac{u_{R_1}}{R_1}$,因此 H 也与 u_{R_1} 成正 比

$$H = \frac{N_1}{lR_1} u_{R_1}$$

由法拉第电磁感应定律,线圈 2 上的感应电压 u_2 来源于线圈 2 中的全磁通的变化

$$u_2 = -\frac{N_2 \,\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{N_2 S \,\mathrm{d}B}{\mathrm{d}t}$$

其中 N_2 是线圈 2 的匝数, Φ 是单匝线圈中的磁通量,S 是单匝线圈环绕的面积(此处相当于磁芯的横截面积)。如果 $R_2C\gg T$ (T 为外磁场周期),那么电容 C 上的电压远小于总电压 u_2 ,电阻 u_2 ,电阻 u_2 上的电压 u_3 是单匝线圈环绕的面积(此处相当于磁芯的横截面积)。如果 u_3 是单匝线圈环绕的面积(此处相当于磁芯的横截面积)。如果 u_3 是单匝线圈环绕的面积(此处相当)。

$$u_C = \frac{Q}{C} = \frac{1}{C} \int i_2 \, \mathrm{d}t = \frac{1}{CR_2} \int u_{R_2} \, \mathrm{d}t \approx \frac{1}{CR_2} \int u_2 \, \mathrm{d}t$$

其中 Q 是电容器极板上的电荷量, i_2 是线圈 2 中的电流。那么交流磁感应强度 B 正比于 u_C :

$$B = \frac{R_2 C}{N_2 S} u_C$$

4. 实验内容

4.1 实验一:观测样品 1 (铁氧体)的饱和动态磁滞回线

根据原理电路图连接样品 1 与交流励磁电路, RC 积分电路。

- (1) 调节频率为 f = 100 Hz,取参数 $R_1 = 2.0\,\Omega$, $R_2 = 50$ k Ω ,C = 10.0 μ F。调节励磁电流大小与示波器,用示波器的 X-Y 模式观察 $u_C u_{R_1}$ 图象,由于 $B \propto u_C$, $H \propto u_{R_1}$,所观察到的图象即为在 X,Y 方向缩放后的磁滞回线。调得相对原点对称的饱和磁滞回线,利用示波器光标 (cursor) 功能测量 B_S , B_r , H_C ,并在图象的上下半支各取至少 9 个数据点记录坐标。根据所取的数据点绘制磁滞回线的 B H 图象。
- (2) 在同一幅度下,在仪器频率可调范围内,观测不同频率时的磁滞回线。特别地,在 R_1, R_2C 不变时测量并比较 f = 95 Hz 和 150 Hz 时的 B_r 与 H_C 。
- (3) 在频率 $f = 50 \,\text{Hz}$ 下,固定励磁电流幅度 $I_m = 0.1 \,\text{A}$, $R_1 = 2.0 \,\Omega$,改变积分常量 $R_2 C$ 分别为 $0.01 \,\text{s}$, $0.05 \,\text{s}$, $0.5 \,\text{s}$,观察并粗略绘制不同积分常量下 $u_{R_1} u_C$ 李萨如图形的示意图,并考虑积分常量为何影响该李萨如图形、是否影响真实的磁滞回线形状。

4.2 实验二:测量样品 1 (铁氧体)的动态磁滞回线

进行以下测量前需先对样品进行退磁处理。

- (1) 在 $f = 100 \,\text{Hz}$ 时,取 $R_1 = 2.0 \,\Omega$, $R_2 = 50 \,\text{k}\Omega$, $C = 10.0 \,\mu\text{F}$,调节磁场幅度从 0 单调增加到 H_S ,取至少二十个数据点,并绘制动态磁化曲线。
 - (2) 根据测得数据,计算并画出 $\mu_m H_m$ 曲线;
 - (3) 测定起始磁导率 μ_i ;

4.3 实验三:观察不同频率下样品 2 (硅钢)的动态磁滞回线

改变电路连接方式,将样品2接入实验电路。

取 $R_1 = 2.0 \,\Omega$, $R_2 = 50 \,\mathrm{k}\Omega$, $C = 10.0 \,\mathrm{\mu F}$,给定交变磁场幅度 $H_m = 400 \,\mathrm{A/m}$ 下,分别测量频率 $f = 20 \,\mathrm{Hz}$,40 Hz,60 Hz 时的 B_m , B_r , H_C 。

4.4 实验四:测量样品 1 (铁氧体) 在不同直流偏置磁场 H 下的可逆磁导率

改变电路连接方式,重新将样品 1 接入实验电路,对其进行退磁处理,并将直流偏置电路与对应线圈连通。

设置交流磁场频率为 $f=100\,\mathrm{Hz}$,其幅度 ΔH 足够小,调节电阻、电容分别为 $R_1=2.0\,\Omega$, $R_2=20\,\mathrm{k}\Omega$, $C=2.0\,\mathrm{\mu F}$ 。将直流偏置磁场从 0 单调增加到 H_S ,调节示波器使得便于观察磁化的可逆过程,记录至少 10 个不同 H 下的磁导率 μ_R ,绘制 μ_R-H 曲线。

5. 实验结果与数据处理

5.1 实验一:观察样品 1 的饱和动态磁滞回线

(1) 记录的 B - H 图象中点的坐标如下表:

H(A/m)	B(T)	H(A/m)	B(T)
-0.75	0.10	1.50	-0.09
9.75	0.10	-6.75	-0.09
6.75	0.19	-3.00	-0.18
15.00	0.19	-10.50	-0.18
19.50	0.29	-9.00	-0.27
13.50	0.29	-15.75	-0.27
31.50	0.39	-21.75	-0.37
27.75	0.39	-24.75	-0.37
65.77	0.48	-65.77	-0.48

表 1: 磁滞回线的 B-H 坐标记录表

此外测得的 $B_S = 0.48\,\mathrm{T},\ B_r = 0.12\,\mathrm{T},\ H_C = 6.75\,\mathrm{A/m}$,根据这些数据可以画出图 3的 饱和磁滞回线。

图 3: 锰锌铁氧体的饱和磁滞回线

(2) 在信号源幅度保持不变的情况下, 频率越大, 饱和磁滞回线所围成的面积越小。

交变磁场频率越大,属于金属氧化物的锰锌铁氧体由于电阻率较高,高频条件下其涡流 损耗较小,进而交变磁场磁化过程中的总能量损耗减小,而饱和磁滞回线所包围的面积正比 于该损耗,故而饱和磁滞回线所包围的面积减小。

在频率 $f = 95 \,\mathrm{Hz}$, $150 \,\mathrm{Hz}$ 下, B_r 与 H_C 如下:

f(Hz)	$B_r(\mathrm{T})$	$H_C(A/m)$
95	0.12	12.17
150	0.12	5.08

表 2: 不同频率下对应的 B_r 与矫顽力 H_C

(3) 当 $R_2C = 0.01 \,\mathrm{s}, \ 0.05 \,\mathrm{s}, \ 0.5 \,\mathrm{s}$ 时, $u_{R_1} - u_C$ 的大致图象如图 4。

积分常量在实验中所起到的作用为使得 B 与易测得的 u_C 近似于线性关系。改变积分常量并不会影响真实的磁滞回线形状,只会影响通过 RC 积分电路得到的 u_C 与实际磁感应强度 B 之间的关系。在实验电路中,RC 积分电路并不影响磁化过程,仅是用于测定铁芯的磁感应强度 B。

图 4: 不同积分常量下的李萨如图形

5.2 实验二:测量样品 1 的动态磁滞回线

- (1) 根据原始数据计算得到 *H*, *B* 数据如下根据上表可绘制动态磁化曲线图如图 5。
- (2) 根据表 3中数据,可计算得到表 4中数据,进而绘制图 6:

H(A/m)	B(T)	H(A/m)	B(T)
8.08	0.10	35.77	0.41
10.38	0.14	39.23	0.42
13.85	0.16	42.49	0.43
16.15	0.22	45.00	0.44
18.46	0.24	47.31	0.45
21.92	0.29	50.31	0.457
24.23	0.31	53.08	0.462
26.54	0.33	70.38	0.49
30.00	0.37	20.31	0.28
32.30	0.39	28.15	0.36

表 3: 样品 1 的动态磁化曲线测绘数据表

H(A/m)	$\mu_m(\mathbf{A}\cdot\mathbf{T}\cdot\mathbf{m}/\mathbf{N})$	H(A/m)	$\mu_m(\mathbf{A}\cdot\mathbf{T}\cdot\mathbf{m}/\mathbf{N})$
8.08	9848.7	35.77	9121.3
10.38	10733.0	39.23	8519.6
13.85	9193.1	42.49	8053.3
16.15	10840.3	45.00	7780.9
18.46	10345.9	47.31	7569.2
21.92	10528.0	50.31	7228.6
24.23	10181.2	53.08	6926.3
26.54	9894.7	70.38	5540.3
30.00	9814.6	20.31	10970.8
32.30	9608.4	28.15	10176.9

表 4: 样品 1 的 $\mu_m - H_m$ 数据表

图 5: $f = 100 \, \text{Hz}$ 下锰锌铁氧体的动态磁化曲线

图 6: 样品 1 的 $\mu_m - H_m$ 曲线

(3) 取表 3前 6 个数据点进行线性拟合如图 7

图 7: 可逆磁化阶段的 B-H 的线性拟合

得到线性拟合函数的斜率 $\frac{B}{H}$ 后,将其代入 $\mu_i = \lim_{H \to 0} \frac{B}{\mu_0 H}$ 可计算得到

$$\mu_i = 10743.0 \,\mathrm{A} \cdot \mathrm{T} \cdot \mathrm{m/N}$$

5.3 实验三:观察不同频率下样品 2 的动态磁滞回线

对原始数据进行运算后可得到所求的 B_m, B_r, H_C , 即有表 5。

f(Hz)	$B_m(T)$	$B_r(T)$	$H_C(A/m)$
20	0.978	0.644	120.0
40	0.978	0.622	112.0
60	0.978	0.644	144.0

表 5: 不同频率下样品 2 部分磁化性质参数

表 2与表 5中随着频率的增大, B_r 均应有一定程度的减小,实际未测得可能是实验过程中二者差距较小,在当时所用示波器纵向缩放倍率下读数未能得到差异。

5.4 实验四:测量样品 1 在直流偏置磁场下的可逆磁导率

对原始数据进行运算之后得到表 6中数据,进而可绘制出图 8中 μ_R-H 曲线。

H(A/m)	$\mu_R(A \cdot T \cdot m/N)$	H(A/m)	$\mu_R(A \cdot T \cdot m/N)$
11.54	7356.50	69.23	843.06
23.08	5424.14	80.77	621.51
34.62	3262.96	92.31	438.50
46.15	1779.80	103.85	377.53
57.69	1186.53	115.38	213.58

表 6: 直流偏置磁场 H 与 μ_R 数据记录

图 8: $\mu_R - H$ 曲线

6. 实验总结

6.1 思考题

1. 铁磁材料的动态磁滞回线与静态磁滞回线在概念上有什么区别? 铁磁材料动态磁滞回线的形状和面积受哪些因素影响?

动态磁滞回线是指铁磁材料在交变磁场作用下得到的一条闭合 B-H 曲线, 其特点在于使材料磁化的磁场是交变的, 且通常不只有一个周期。

静态磁滞回线是指铁磁材料在磁化完全后 B-H 曲线,实际测量时会选择在磁场强度 H 的一个周期内缓慢变化其值,测定此时的 B,进而绘制得到可近似为静态磁滞回线的准静态磁滞回线。

这两种外部条件使得对于静态磁滞回线而言,一次循环磁化过程中的能量损耗(这于 B-H 曲线所包围的面积成正比)仅包括磁滞损耗;而对于动态磁滞回线,一次循环磁化过程中的能量损耗除了磁滞损耗,还包括涡流损耗。

铁磁材料动态磁滞回线的形状和面积和材料本身性质、外磁场的频率与幅度均有关联。

材料本身的矫顽力越小,磁滞回线的形状越窄;一般地,交变外磁场的频率越大、幅度越小,磁滞回线所包围的面积越小(饱和后则基本不变);根据涡流损耗 $W=\frac{U^2}{R}\cdot t$,电阻率较低材料的磁滞回线所包围的面积越大。

2. 铁氧体和硅钢材料的动态磁化特性各有什么特点?

铁氧体是硬磁材料,硅钢是软磁材料。硬磁材料具有较高的磁导率,相比软磁材料更易被磁化,而软磁材料的矫顽力小,磁滞损耗小。故而铁氧体的动态磁滞回线包围的面积比硅钢更大。

3. 本实验中,电路参量应怎样设置才能保证 $u_{R_1} - u_C$ 所形成的李萨如图形正确反映材料动态 磁滞回线的形状?

由实验原理可知,要使李萨如图形正确反应材料动态磁滞回线形状的条件为使得 $B\propto u_C \approx \frac{1}{CR_2}\int u_2\,\mathrm{d}t$,即要使 $u_C\ll u_2$,从而需要设置积分电路中的 $R_2C\gg T$ 。

6.2 心得体会与反思收获

本次实验使用磁特性综合测量实验仪与数字化直流电源,大大简化了电路的搭建与参数调整工作。由此,实验的主要操作在于预科实验中已经学习过的各种示波器操作。在这次实验中,虽然我正确地利用示波器完成了大部分实验数据的读取,但显然表 2 和表 5 中 B_r 值的测量不够精确,可以看出在示波器使用上还有不足。此外实际实验过程中我还曾因未注意到实验所需参数而被迫返工,这样的粗心在以后的实验中应当力求避免。